UNCLASSIFIED

AD 406712_

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Appendix D

GOBACK

Contents

Section	P	age
I	INTRODUCTION	-1
II	TWO-DIMENSIONAL CASE	-3
III	SURFACE EQUATIONS	-5
	A. WATERLINE AND STATION EQUATIONS	-7
	B. STANDARD CUBIC EQUATIONS FOR WATERLINES AND STATIONS	-8
	C. BUTTOCKS	-10
	D. DIAGONAL PIANES	-10
	E. SEGMENTATION OF WATERLINES AND FRAMES D	-11
	F. INTERSECTIONS WITH CURVES D	-14
IV	SURFACE EQUATION WITH END CONDITIONS	-15
	A. EQUATIONS FOR WATERLINES AND STATIONS D	-15
	B. BUTTOCKS	-16
v	GOBACK 1	-19
	A. OPERATING INSTRUCTIONS D	-19
	B. SAMPLE PROBLEM D	-29
	C. FLOW DIAGRAM	-36
	D. LISTING	-61
VI	GGBACK 2	-71
	A. OPERATING INSTRUCTIONS D	-71
	B. SAMPLE PROBLEM	-78
	C. FLOW DIAGRAM D	-84
	D. LISTING	-103
VII	GOBACK 3	-117
	A. OPERATING INSTRUCTIONS D	-117
	B. SAMPLE PROBLEM	-120
	C. FLOW DIAGRAM	-123
	D. LISTING	-130

Section I

INTRODUCTION

There are three programs in the set of computer programs called GOBACK. The purpose of these programs is to accept the coefficients of a curve or surface equation as produced by the linear programming formulation, and from these to calculate the basic loft information to produce the ship. The use of each of the three programs is given below.

- GOBACK 1 Calculates information from a surface equation which contains no profile requirements
- GOBACK 2 Calculates information from a surface equation containing profile requirements
- GOBACK 3 Calculates information from an equation describing a curve, and can plot the curve at the same time

Sections II and III of this Appendix describe the application of these programs. Section II describes the two-dimensional case handled by GOBACK 3, and Section III extends this to the three-dimensional case handled by GOBACK 1 and GOBACK 2.

€*

Section II

TWO DIMENSIONAL CASE

A typical curve which may require analysis is shown in Fig. D-1 The equations that may be used to describe the curve are also shown.

See text ("Mathematical Ship Lofting - Part 1. Theory," Technical Report 1.0.0-1) for explanation of this notation.

Fig. D-1

Lines (1) describe the order and range of influence of the coefficients for a single splined equation. Lines (2) provide similar information for a double-splined equation. Note that the offset at \mathbf{x}_0 equals A and the equation goes exactly through that offset. GCBACK 3 is capable of providing offsets, first and second derivatives from these equations

Section III

SURFACE EQUATIONS

GOBACK 1 performs calculations from a three-dimensional surface equation such as that shown in Fig. D-2. This surface equation is an extension of the two-dimensional case. The surface equation is always double splined in the x direction (lengthwise on the ship). It may be either single or double splined in the z direction (vertical direction on the ship). The resulting equation for either representation is shown for a five-station by five-waterline surface in Fig. D-2.

The program has the ability to extract the following information from the surface equation:

- (1) The offset, and first and second derivatives, at any point on the surface
- (2) The offsets, and first and second derivatives, along any waterline or station at any given increment or at an exact interval, such that straight lines joining the offsets will have its greatest deviation from the surface equal to a given tolerance.
- (3) The Theilheimer equation, or the standard cubic equations for each interval, along any waterline or station.
- (4) Heights and offsets at any interval along the intersection of the surface with any given spline curve.
- (5) Heights and offsets at any increment along buttocks and diagonal planes.

Surface Equation (Double splined in x and z direction)

y =
$$A_{00} + A_{01}x + A_{02}x^2 + A_{03}x^3 + A_{04}(x-x_2)^3$$

+ $\left(A_{10} + A_{11}x + A_{12}x^2 + A_{13}x^3 + A_{14}(x-x_2)^3\right) z$
+ $\left(A_{20} + A_{21}x + A_{22}x^2 + A_{23}x^3 + A_{24}(x-x_2)^3\right) z^2$
+ $\left(A_{30} + A_{31}x + A_{32}x^2 + A_{33}x^3 + A_{34}(x-x_2)^3\right) z^3$
+ $\left(A_{40} + A_{41}x + A_{42}x^3 + A_{43}x^3 + A_{44}(x-x_2)^3\right) (z-z_2)^3$

Surface Equation (Double splined in x , single splined in z direction)

$$y = A_{00} + A_{01}x + A_{02}x^{2} + A_{03}x^{3} + A_{04}(x-x_{2})^{3}_{\#}$$

$$+ \begin{vmatrix} A_{10} + A_{11}x + A_{12}x^{2} + A_{13}x^{3} + A_{14}(x-x_{2})^{3}_{\#} \end{vmatrix} z$$

$$+ \begin{vmatrix} A_{20} + A_{21}x + A_{22}x^{2} + A_{23}x^{3} + A_{24}(x-x_{2})^{3}_{\#} \end{vmatrix} z^{2}$$

$$+ \begin{vmatrix} A_{30} + A_{31}x + A_{32}x^{2} + A_{33}x^{3} + A_{34}(x-x_{2})^{3}_{\#} \end{vmatrix} z^{3}$$

$$+ \begin{vmatrix} A_{40} + A_{41}x + A_{42}x^{2} + A_{43}x^{3} + A_{44}(x-x_{2})^{3}_{\#} \end{vmatrix} (z-z_{1})^{3}_{\#}$$

$$+ \begin{vmatrix} A_{50} + A_{51}x + A_{52}x^{2} + A_{53}x^{3} + A_{54}(x-x_{2})^{3}_{\#} \end{vmatrix} (z-z_{2})^{3}_{\#}$$

$$+ \begin{vmatrix} A_{60} + A_{61}x + A_{62}x^{2} + A_{63}x^{3} + A_{64}(x-x_{2})^{3}_{\#} \end{vmatrix} (z-z_{3})^{3}_{\#}$$

Fig. D-2

1

A. WATERLINE AND STATION EQUATIONS

The equations for waterlines and stations may be extracted from the surface equation by setting x (for stations) or z (for waterlines) constant and summing coefficients. Using coefficients from equation (2), Fig. D-2, the equation for waterline 3 is found as follows by summing vertically with z=3.

$$B_{1} = A_{00} + A_{10}(3) + A_{20}(3)^{2} + A_{30}(3)^{3} + A_{40}(3-2)_{4}^{3}$$

$$B_{2} = A_{01} + A_{11}(3) + A_{21}(3)^{2} + A_{31}(3)^{3} + A_{41}(3-2)_{4}^{3}$$

$$B_{3} = A_{02} + A_{12}(3) + A_{22}(3)^{2} + A_{32}(3)^{3} + A_{42}(3-2)_{4}^{3}$$

$$B_{3} = A_{03} + A_{13}(3) + A_{23}(3)^{2} + A_{33}(3)^{3} + A_{43}(3-2)_{4}^{3}$$

$$B_{4} = A_{04} + A_{14}(3) + A_{24}(3)^{2} + A_{34}(3)^{3} + A_{44}(3-2)_{4}^{3}$$

$$B_{5} = A_{05} + A_{15}(3) + A_{25}(3)^{2} + A_{35}(3)^{3} + A_{45}(3-2)_{4}^{3}$$

The equation for the waterline is:

$$y = B_1 + B_2 x + B_3 x^2 + B_4 x^3 + B_5 (x-x_2)_{\#}^3$$

The equation for a station is found by summing across in Equation 2, Fig. D-2. The equation for Station 2 is found as follows:

Set x = 2, then:

$$c_1 = A_{00} + A_{01}(2) + A_{02}(2)^2 + A_{03}(2)^3$$

$$c_2 = A_{10} + A_{11}(2) + A_{12}(2)^2 + A_{13}(2)^3$$

$$c_3 = A_{20} + A_{21}(2) + A_{22}(2)^2 + A_{23}(2)^3$$

$$c_4 = A_{30} + A_{31}(2) + A_{32}(2)^2 + A_{33}(2)^3$$

$$c_5 = A_{40} + A_{41}(2) + A_{42}(2)^2 + A_{43}(2)^3$$

The equation for the station is:

$$Y = c_1 + c_2 z + c_3 z^2 + c_4 z^3 + c_5 (z - z_2)^3$$

B. STANDARD CUBIC EQUATIONS FOR WATERLINES AND STATIONS

Using the above two-dimensional equations we can now develop the standard cubic equations between each of the points where an additional coefficient is added. On single-spline curves there is one in every interval between offsets. On double-spline curves there will be a standard cubic between every odd numbered point (0, 1, 3, ...).

The following formulas are used to find the standard cubic equation on a waterline curve between the ith and ith points of discontinuity. Using the waterline coefficients developed above:

$$D_{1} = B_{1} - \sum_{j=1}^{i} B_{j+4} \times_{j}^{3}$$

$$D_{2} = B_{2} + 3 \sum_{j=1}^{i} B_{j+4} \times_{j}^{2}$$

$$D_{3} = B_{3} - 3 \sum_{j=1}^{i} B_{j+4} \times_{j}^{2}$$

$$D_{4} = B_{4} + \sum_{j=5}^{i+4} B_{j}$$

The equation is

$$y = D_1 + D_2 x + D_3 x^2 + D_4 x^3$$
 $x_j \le x \le x_{j+1}$

Using the example of Fig. D-2 and the coefficients of Waterline 3, the standard cubic coefficients between points 2 and 4 would be:

$$D_1 = B_1 - B_5(1)^3$$

$$D_2 = B_2 + 3(B_5)(1)^2$$

$$D_3 = B_3 - 3(B_5)(1)$$

$$D_4 = B_4 + B_5$$

The standard cubic coefficients for an interval on a station are found in a similar manner. Using the station curve coefficients developed above, the coefficients between the i_{th} and $i_{th} + 1$ points of discontinuity are:

$$E_{1} = c_{1} - \sum_{j=1}^{i} c_{j+4} z_{j}^{3}$$

$$E_{2} = c_{2} + 3 \sum_{j=1}^{i} c_{j+4} z_{j}^{3}$$

$$E_{3} = c_{3} - 3 \sum_{j=1}^{i} c_{j+4} z_{j}$$

The equation is:

$$y = E_1 + E_2 z + E_3 z^2 + E_4 z^3$$

C. BUTTOCKS

The following procedure is used to obtain the heights of the intersection of buttock planes (y = constant) and the hull surface.

At each position along the length of a surface where a height is to be calculated, the two-dimensional equation for the frame is obtained, $y_f = f(z)$. The equation for the buttock is $y_B = C$, where C is the distance from the centerplane. Subtracting the two equations gives:

$$\delta y = y_f - y_b = f(z) - C$$

Trial and error solution until $|\xi y| \le \xi$, where ξ is a small number provides the correct value of z.

D. DIAGONAL PLANES

It is sometimes of interest to calculate the intersections of diagonal planes with the surface. GOBACK 1 has the capability of handling diagonal planes which pass through the intersection of the centerline plane and a waterline and whose intersection with the hull surface is below that waterline (Fig. D-3)

Fig. D-3

The procedure is similar to that used in finding heights of the intersection of the surface and buttock. First, the equation for the frame is found, then the equation for the plane is subtracted from it, giving:

$$\delta y = y_s - y_d = f(z) - \tan x (z_m - z)$$

The equation is solved for z by trial and error.

E. SEGMENTATION OF WATERLINES AND FRAMES

It is frequently necessary, primarily for purposes of numerical control, to be able to approximate waterline and station curves with straight lines such that the deviation between curve and line is no greater than some given tolerance. The GOBACK 1 program has the ability to segment a station or waterline curve so the greatest deviation will always be exactly the specified tolerance. A development of the method used is given below.

For the purposes of the development, a waterline curve has been selected. The method applies equally well to a station curve.

Figure D-4 shows the geometry of the problem.

1.0.0-2

Statement of the problem:

Given curve $y = f(x) = A + Bx + Cx^2 + Dx^3$, a point on that curve P_1 and a tolerance \mathcal{E}_1 ; find a point on the curve P_2 , with a greater x coordinate, such that a line joining P_1 and P_2 will have its greatest deviation from the curve equal to \mathcal{E} .

As shown in Fig. D-4, the greatest deviation from the chord (L_1) occurs at the point (P_3) where the tangent to the curve (L_2) is parallel to the chord. The slope of the tangent at this point $m_1 = f'(x)$ evaluated at x_3 , which is equal to the slope of the chord

The equations for these lines are:

$$L_1$$
, $Y - Y_1 = m_1 [x-x_1]$

$$L_2$$
, $Y-Y_3 = m_1 \left[x-x_3\right]$

or

$$L_1$$
 , $Y = Y_1 + m_1 \times m_1 \times m_1$

$$L_2$$
 , $Y = Y_3 + m_1 \times - m_1 x_3$

Now let

$$\mathbf{c}_1 = \mathbf{v}_1 - \mathbf{m}_1 \mathbf{x}_1$$

now the length of the line joining P_3 and P_4 equals

$$c_1 - c_2 = \frac{\mathcal{E}}{\cos (\tan^{-1} m_1)}$$

Therefore

$$\mathcal{E} = \frac{\mathbf{Y}_3 - \mathbf{Y}_1 - \mathbf{m}_1 \mathbf{X}_3 + \mathbf{m}_1 \mathbf{X}_1}{\left[1 + \mathbf{m}_1^2\right]^{\frac{1}{2}}}$$

Substituting the equation for y_3 , its first derivative for m_1 and rearranging gives:

$$\mathcal{E}\left[1 + (B + Cx_3 + Dx_3^2)^2\right]^{\frac{1}{2}} = (A - y_1 + Bx_1) + (2Cx_1) x_3 + (3Dx_1 - C) x_3^2 - 2Dx_3^3$$

 \mathbf{x}_3 is the only unknown in this equation. It may be solved by trial and error to yield \mathbf{x}_3 .

Substituting \mathbf{x}_3 into the first derivative of the equation of the curve yields the slope at that point \mathbf{m}_1

Now from the equation for L_1

$$y_2 = y_1 + m_1 (x_2 - x_1)$$

And from the equation of the curve

$$Y_2 = A + Bx_2 + Cx_2^2 + Dx_2^3$$

Subtracting

$$0 = Y_1 + m_1 (x_2 - x_1) - \left[A + Bx_2 + Cx_2^2 + Dx_2^3 \right]$$

This equation may now be solved for its only unknown, \mathbf{x}_2 , by trial and error.

Finally substituting x_2 in the equation for the curve gives:

$$y_2 = A + Bx_2 + Cx_2^2 + Dx_2^3$$

Note that we have assumed in this derivation that f(x) is a standard cubic equation. GOBACK 1 solves for the standard cubic equation coefficients in each interval before segmenting the curve.

F. INTERSECTIONS WITH CURVES

It is frequently necessary to find intersections of the hull surface equation y = f(x,z) with previously defined curves. For example, to find offsets of sight edges or longitudinals.

The curves are usually defined by a faired Theilheimer equation z=G(x) representing the trace of the heights of the curve on the centerplane of the ship. To find the intersection of the curve with a given frame, GOBACK first solves G(x) at the given x of the frame for the height z, then plugs x and z in f(x,z) to obtain the offset y. The curve G(x) must have the same origins and be scaled the same as f(x,z),

Although GOBACK expects a form for z - G(x), such as:

$$z = A + Bx + Cx^2 + Dx^3 - E_1 (x-x_1)_{\#}^{3} + ...$$

it is clearly possible to use degenerates of this function, such as $z = Cx^2$ by making the other coefficients zero.

Section IV

SURFACE EQUATION WITH END CONDITIONS

When the surface which has been faired contains an end profile, the equation requires a special function which guarantees that the surface will assume the shape of the profile. The profile function has the effect of squeezing the surface down to the required profile. This function usually is effective up to about one station space from the profile.

The surface equation now becomes

$$y(x,z) = F(x,z) \cdot T(x,z)$$

where F(x,z) is the original surface equation and T(x,z) is the profile function.

The function equals:
$$T(x,z) = \left[1 - \left(\frac{D + G(z) - x}{D}\right)_{\frac{a}{2}}^{2}\right]_{\frac{a}{2}}^{P}$$

where G(z) is a two-dimensional Thielheimer equation of the profile.

G(z) has the same origin and is scaled the same as the surface equation.

D is the fraction of the station spacing over which the function is effective and P determines if the slope at the profile is finite or infinite. If P has a value 1 the slope is finite, a value of 1/3 would give infinite slope.

A. EQUATIONS FOR WATERLINES AND STATIONS

The equations for waterlines and stations are obtained in the same manner as in GOBACK 1. Offsets are obtained from these equations

in the same manner as GOBACK 1, except a value for the end profile function must be found and the result multiplied by it. This is done by GOBACK 2. First and second derivatives are calculated as shown in Appendix B.

B. BUTTOCKS

Because the GOBACK 2 program is required to calculate data in the extreme ends of the ship, a somewhat more sophisticated routine for finding buttocks was included in it.

As shown in Fig. D-5 the buttock for a ship can be single, double, or triple valued on any given station. Also, different buttocks on the same ship are different cases.

If the hull shape is such that the case shown in Fig. D-5a can be guaranteed, the program will calculate buttocks as shown in Section III.

If there is a possibility that one of the other cases is present, the following procedure is used.

- (1) The equation of the frame is calculated from the surface equation.
- (2) The intersection of the frame with the baseline is found (y_q) .
- (3) The coordinates of Point P (yp, zp) are found by examining the slope of the curve at intervals starting at the baseline until the slope changes from negative to positive. The Point P is the exact point on the curve where this takes place. If no point P is found, then this is also

FIG. D-5-a

FIG. D-5-b

Fig. D-5

the case shown in Fig. 5-a.

(4) The values y_q and y_p and compared with the y value of the buttock plane (y_h) .

If:

 $y_q < y_b < y_p$ the case is that of buttock 1 Fig. 5-b and only one intersection will be found

 $y_q < y_b > y_p$ the case is that of buttock 2 Fig 5-b, and three intersections must be checked for

 $y_q > y_b < y_p$ the case is that of buttock 1 of Fig. 5-c and no intersections are present

 $y_q > y_b > y_p$ the case is shown as buttock 2 Fig. 5-c, and two intersections may be present.

(5) The coordinates of the intersections themselves are found by finding a trial and error solution of the frame equation minus the buttock equation.

The first frame cut for a given buttock line is found by finding the intersection of the buttock with the uppermost waterline on the surface. From this point, frame cuts are made at a specified interval along the ship, and the intersections of each frame with the buttock is found.

Section V

GOBACK 1

A. OPERATING INSTRUCTIONS

This version of GOBACK will accept coefficients of a surface equation such as shown in Fig. D-2 which does not have end profile requirements. The equation must be single splined in the \times direction and may be single or double splined in the z direction.

The following data can be calculated with this program:

- Offsets, first and second derivatives along a waterline at a given interval or at an interval determined by a tolerance
- Offsets, first and second derivatives along a station at a given interval or at an interval determined by a tolerance
- Standard cubic coefficients for each section of a waterline
- Standard cubic coefficients for each section of a station
- Offsets at a given interval along buttocks
- Offsets at a given interval along diagonal planes

Fortran Input Symbols

Symbol		<u>Definition</u>
жо	-	The actual full scale coordinate of the first station of the surface
Z 0	-	The actual full scale Z coordinate of the first waterline of the surface
FINTX	-	This value is used as a scale factor in the x direction. If the surface equation is scaled so the stations are one unit apart, FINTX equals the actual full scale station interval (x_1-x_2) . If

the stations of the surface equation are less than one unit apart, FINTX becomes some multiple of the station spacing. For example, if the stations in the equation are 1/4 unit apart, FINTX becomes four times the actual full-scale station spacing $4(\mathbf{x}_1^{-\mathbf{x}}_0)$

- FINTZ Same definition as FINTX, except in the Z direction $(z_1 z_0)$
- M The total number of points of discontinuity along a station (points where z coefficients are added) including the points at the first and last waterlines. For example, if a surface containing seven waterlines were single splined, M would equal seven, since there are third derivative discontinuities at each waterline. If the seven-waterline surface were double splined, M would equal four, since there are discontinuities only at waterlines 0 , 2 , 4 , and 6.
- N The total number of points of discontinuity along a waterline (points where x coefficients are added). The example used for M is valid except using stations instead of waterlines.
- SEGX Desired interval between consecutive calculated offsets along waterlines, buttocks, and diagonal planes.
- SEGZ Desired interval between consecutive calculated offsets along stations.
- KS The value SEGX can be changed when working along a curve in the x direction. KS is the number of <u>changes</u> to be made.
- XS The x distance from the origin of the surface to a point where SEGX is to be changed. This must coincide with a station or a specific point (see definition of K).

- SEGXS Value to which SEGX is to be changed when XS is reached.
- Coefficients of the surface equation produced by linear program. There are (M+2)(N+2) coefficients.
- z coordinates of waterlines where coefficients are added, plus that of the last waterline. There are (M-1) since the value for the first waterline isn't included.
- X Same as Z except for stations (N-1)
- IDENT Code which tells the program what data is required from the surface (See Input Format description)
- K The program makes a provision for obtaining offsets at specific distances along a curve which may not coincide with the intervals specified by SEGX or SEGZ. These are called "specific points." K is the number of points asked for along a curve.
- ZT The z coordinate of a waterline along which data is to be calculated.
- XT The x coordinate of a station or frame along which data is to be calculated.
- NN A symbol consisting of two letters used to identify specific points in the output. The same symbol must be used for all specific points on any one curve (see ISP below)
- ISP A companion symbol to NN providing two additional characters for identification. For example, if the specific point on a station corresponded to longitudinal 13, NN might become LG and ISP become 13, as the specific point would be identified LG13.

- The x coordinate of specific points on waterlines, diagonals, and buttocks (see definition of K).
- ZE Same as XE except for stations
- ANGLE The angle (\precedum in Fig. D-3) between a diagonal plane and the vertical centerplane of the ship.
- BUTTK The y distance from the centerplane of the ship to a buttock along which heights are to be calculated
- SX The starting point on a curve when segmenting with a tolerance in the x direction
- SZ The starting coordinate when segmenting a station according to a tolerance
- FX The finish coordinate corresponding to SX
- FZ The finish coordinate corresponding to SZ
- TOL The maximum deviation between a curve and the straight line segments approximating it when segmenting according to a tolerance.

Input Data Cards

There are two distinct kinds of sets of data used for input to GOBACK 1. The first set consists entirely of data describing the surface equation to the program. No output is produced from this set. The second set of data consists of packets of data cards. Each packet describes some information required from the surface and gives the geometric data necessary to obtain the information from the surface equation. Only one of the first sets of data are entered per problem. There may be many small packets, each of

calls for offsets along a waterline or station, or perhaps standard cubic coefficients etc.

There are limitations on some of the input parameters of the program. These limitations follow.

<u>Variable</u>	Minimum	Maximum
M	3	20
N ·	3	40
<pre>K (no. of specific points/curve)</pre>	0	20

In describing the various data cards, the actual FORTRAN format field description is used in most cases. These fields come consecutively across the card with no gaps or blank columns between. The field descriptions are the FORTRAN F field which uses the FORTRAN fixed point decimal number, and the I field that used the FORTRAN integer number which is always right justified. The card numbers are not punched on the data cards.

First Data Set

This data set is the one that describes the surface equation

Contents of Card						Card No.	
The first any alpha Columns	anumerio			•			1
Format Variable	F15.8 X0	F15.8 Z0	F15.8 FINTX	F15.8 FINTZ	15 M	15 N	2
Format Variable	F15.8 SEGX	F15.8 SEGZ	F15.8 KS				3
Format Variable	F15.8 SEGXS	F15.8 XSEG					next KS cards
Format Variable	F15.8						next (M+2)(N+2) cards

Format F15.8 next
Variable Z (M-1)cards

Format F15.8 next
Variable X (N-1) cards

This completes the first data set.

The coefficients of the surface equation (A) are presented in the following order (see Fig. D-2):

$$A_{00}$$
, A_{01} , A_{02} , A_{03} , A_{04} , ..., A_{10} , A_{11} , A_{12} , A_{13} , A_{14} , ..., A_{20} , A_{21} , A_{22} , A_{23} , A_{24} , ..., A_{31} , A_{32} , A_{33} , A_{34} , ..., A_{40} , ...,

This is generally the order in which they will be received from the L.P. Coefficient A_{00} is the constant term for the equation. It is equal to the preliminary offset of the first point on the surface (x_0, z_0) . Any coefficients that weren't in the final solution must have a zero value included in the data deck.

Second Data Set

This data set contains the packets of cards, each of which describes some information to be extracted from the surface. Any number of these packets may be used in a problem. They may be entered in any desired order by simply stacking them behind the first data set in the card reader. A description of each data packet follows. The first card for each of these packets is an identification card and contains a specific value of IDENT in Column 4.

Packet for Offsets on a Waterline

Contents of Card The first card is the identification card and contains a 1 in Column 4.				Card No.		
				n card and	1	
Format		F15.8				2
Variable	K	ZT				
Format	12	13	3 X	F15.8		next
Variable	NN	ISP	3 blank	ZE		K cards

(This set of K cards contains the identification and location of any specific points. They are to be arranged so the smallest ZE is the first card progressing in order to the largest ZE in the last one)

Packet for Offsets of a Station

Contents of Card				Card No.	
This card	has a	2	in Column	4	1
Format Variable	14 K	F15.	8		2
Format Variable	12 NN	I3 ISP	3X 3 blank Cols.	F15.8 ZE	next K cards

(Begin with the smallest ZE and progress to largest)

Packet for Offsets of a Diagonal Plane

Contents of Card	Card No.
This card contains a 3 in Column 4	1
Format F15.8 Variable ANGLE	2
Packet for Offsets of a Buttock	
Contents of Card	Card No.
This card contains a 4 in Column 4	1
Format F15.8	2

1.0.0-2 D-25

Format F15.8 Variable BUTTK

Packet for Standard Cubic Coefficients on a Waterline

Contents of Card	Card No.
This card contains a 5 in Column 4	1
Format F15.8 Variable XT	2
Packet for Standard Cubic Coefficients on a Station	
Contents of Card	Card No
This card contains a 6 in Column 4	1
Format F15.8 Variable XT	2
Packet for Segmentation of a Waterline	
Contents of Card	Card No.
This card contains a 7 in Column 4	1
Format F15.8 F15.8 F15.8 F15.8 Variable ZT SX FX TOL	2
Packet for Segmentation of a Station	
Contents of Card	Card No.
This card contains an 8 in Column 4	1
Format F15.8 F15.8 F15.8 F15.8 Variable XT SZ FZ TOL	2

Output Data

The output data for the different types of information requested is given below. When this output data consists of offsets of curves which may need to be plotted, GOBACK 1 includes cards which place the plotter pen up or down at the proper times. The data deck is arranged in order and punched in such a format that the deck can be directly plotted using the plotting program of Appendix F.

Offsets of a Waterline

The first N+2 cards punched when the offsets of a waterline are called for contain the coefficients for the two-dimensional Thielheimer equation of the waterline. Following this is a header card and finally cards each containing:

- (1) A waterline identification number (WL)
- (2) The x coordinate of the offset
- (3) The offset on the waterline
- (4) The first derivative of the waterline
- (5) The second derivative of the waterline

Offsets of a Station or Frame

Information corresponding to that of a waterline is punched. The frame identification (FR) and the z coordinate of the offset are given.

Offsets of a Diagonal Plane

First, a header card is punched and then cards containing the following data:

- (1) An identification of the diagonal plane (DP)
- (2) The x coordinate of the offsets
- (3) The z coordinate of the offset
- (4) The offset y_{dp} as shown in Fig. D-3

Lifsets of a Buttock

First, a header card is punched and then cards containing the following:

- (1) An identification of the buttock (BK)
- (2) The x coordinate of the point is given
- (3) The z coordinate of the point is given

Standard Cubic Coefficients for a Waterline

The first card punched contains an identification of the waterline. Following this are a set of N cards, each of which contains the following information for an interval along the waterline:

- (1) The coefficients A,B,C,D, of the cubic
- (2) The starting and ending x coordinates of the interval.

Standard Cubic Coefficients of a Frame

The same data is given as for a waterline, except that there are M intervals and the z coordinates of the start and finish of an interval are given.

Segmentation of a Waterline to a Tolerance

First, a header card is punched. Then cards containing the following information are punched:

- (1) The identification of the waterline
- (2) The x coordinate of the offset
- (3) The offset
- (4) The tolerance

Segmentation of a Station to a Tolerance

The same information is punched as for a waterline, except the z coordinate of the offset is given.

Sense Switches

Sense Switch 4 ON - No second derivatives are punched for waterlines or stations

Scnsc Switch 4 OFF - Whenever an offset is punched on a waterline or station the second derivative is punched

All other sense switches are ignored.

B. SAMPLE PROBLEM

The sample problem is a seven station by eight waterline surface from the DE-1037 class ships. The stations were 5 through 11 and the waterlines were the 4' through 32'. The surface was single splined in the z direction.

Offsets were calculated for one frame, one waterline, and one buttock. Standard cubic equations were found for one waterline and one frame, and the heights and halfbreadths of the intersection of the O1 level and the surface were found.

B. SAMPLE PROBLEM FOR GOBACK 1

* * SAMPLE INPUT * *

```
DE 1037
                                                                                              8
                                                                     8.
    87.5
                                               35.
 4
   20.
                                                  3
                           107.5
    2.5
                          150.
     1.
     41.5
                          151.
    7.395835
3.4021024
.43256810
-.23899897
-.05975052
.30222755
8.5007951
-45.380311
86.461133
                       Coefficients of the surface equation
-37.816704
45.392666
23.518814
-12.388975
164.50268
-298.36348
129.49442
-154.92941
-79.380046
8.2593167
 -139.79112
252.23775
-109.53571
131.40512
64.742903
-8.8703614
176.86673
-320.34323
139.37182
-167.77884
-77.970667
1.4378967
-46.174359
85.877451
```

```
-37.57123
45.564253
14.238035
-1.0426593
12.468567
-22.614727
9.4637234
-10.732676
.15734228
.72400226
-6.8605798
9.8515627
-3.6732793
4.0526781
-3.8607566
-.79698505
4.5303580
-6.1544445
2.3878876
-3.2185290
3.8711793
.06938527
12.769376
-20.364931
8.1774277
-9.6133634
1.0232311
      12.
      16.
                           Waterline where new z coefficients are to be added (z)
      20.
      24.
      28.
      32.
      122.5
157.5
192.5
                           Stations where new x coefficients are to be added (x)
                                                                First Data Set
     L
          30.
F ...
            107.5
      1
            115.
150.
      2
                                                                Second Data Set
      3
      4
            151.
     2
          145.
25.52666
2666
     3
      3
 ST
```

```
ST 1 28.52666

45.0

8.7

30. 5

145. 7

30. 130. 170. .001

145. 17. 26. .001

9 0-1 LEVEL

30.56853

-.1967334

-.13065

.06418331

-.072799998
```

* * SAMPLE OUTPUT * *

DE 1037 -

15.08539200 2.56392320			
.00166476			
29505930			
.53263620 45633232			
IDENT. X	Y	FIRST DER.	SECOND DER.
WL 30.00 87.50000000	15.08539200	.07325494	.00000271
PEN DOWN 5000.000000000 FR 1 107.49999000	16.49597900		
FR 2 114.99999000	16.95781000	-100	00411015
WL 30.00 122.50000000	17.35592000	.04805928 .04046389	00144247 00127623
WL 30.00 127.49999000 WL 30.00 147.49999000	17.57887700 18.19321000	.04046369	00061129
WL 30.00 147.49999000 FR 3 149.99999000	18.24735500	.017/7200	
FR 4 150.99999000	18.26805900	04700471	00002000
WL 30.00 157.50000000	18.39205900 18.55238000	.01793654 .037461 0 9	00027882 00058495
WL 30.00 167.49999000 WL 30.00 187.49999000	18.66692400	.13486811	00119721
WL 30.00 192.50000000	18.63029900	.17204520	00135028
PEN UP 6000.00000000	19 (202000		
GO TO 87.50000000 13.07689200	18.63029900		
11.68305200			
-14.38853300			
8.61199300			
-9.49738800 2.87433700			
-2.48411930			
.83143300			
23205720 21185000			
10ENT. Z	Y	FIRST DER.	SECOND DER.
FR 145.00 4.00000000	13.07689200	1.46038150	44964165
PEN DOWN 5000.00000000 FR 145.00 8.00000000	16.39778400	.46918918	04595448

```
FR 145.00
              12.00000000
                                  17.79623100
                                                     .64755556
                                                                    -.08745737
 FR 145.00
              16.00000000
                                  18.15465200
                                                   -.09573533
                                                                     .00577428
 FR 145.00
              20.00000000
                                  18.29494700
                                                  -3.87459450
                                                                    -.01743714
 FR 145.00
              24.00000000
                                  18.26018300
                                                 -13.09499600
                                                                    -.00167504
 ST
              25.52666000
                                  18.22452200
 ST
              27.02666000
                                  18.18990000
 FR 145.00
              28.00000000
                                  18.16960000
                                                 -30.13434200
                                                                     .00320919
 ST
              28.52666000
                                  18.15974900
 FR 145.00
              32.00000000
                                  18.10387900
                                                 -57.38450500
                                                                    -.00183689
 PEN UP
            6000.00000000
 20 TO
               4.00000000
                                  18.10387900
  IDENT.
                   χ
DP 45.00
              87.50000000
                                  17.30200700
                                                  19.76562500
PER DOWN
           5000.00000000
ÜP 45.00
             107.49999000
                                  20.43979100
                                                  17.54687500
DP 45.00
             122.50000000
                                  22.77103300
                                                  15.89843700
DP 45.00
             142.49999000
                                 25.27905000
                                                  14.12500000
DP 45.00
             157.50000000
                                 26.59382700
                                                  13.19531200
DP 45.00
            177.49999000
                                 27.78706900
                                                  12.35156200
DP 45.00
             192.50000000
                                 28.17376800
                                                  12.07812400
PEN UP
           6000.00000000
GO TO
             87.50000000
                                 12.07812400
  IDENT.
BK
    8.00
             87.50000000
                                  4.64062500
PEN DOWN
           5000.00000000
BK
    8.00
            107.49999000
                                  4.00000000
BK
    8.00
            122.50000000
                                  4.00000000
BK
    8.00
            142.49999000
                                  4.00000000
BK
    8.00
            157.50000000
                                  4.00000000
BK
    8.00
            177.49999000
                                  4.00000000
    8.00
ΒK
            192.50000000
                                  4.00000000
PEN UP
           6000.00000000
GO TO
             87.50000000
                                  4.00000000
WL
    30.00
                       В
                                      C
                                                      D
                                                                 START
   15.08539200
                                                                         FINISH
                     .07325494
                                    .00000135
                                                  -.00000688
                                                                87.500 122.500
   14.55275600
                     .11890948
                                   -.00130305
                                                    .00000554 122.500 157.500
   18.20341400
                    -.03754730
                                    .00093204
                                                  -.00000510 157.500 192.500
FR 145.00
                       В
                                      C
                                                                 START
                                                                        FINISH
   13.07689200
                    1.46038150
                                   -.22482082
                                                    .01682029
                                                                 4.000
                                                                          8.000
   14.26406500
                     .57000137
                                   -.00222579
                                                  -.00172928
                                                                 8.000
                                                                        12,000
   11.38972800
                    1.64787770
                                   -.13696034
                                                   .00388465
                                                                12.000
                                                                        16,000
   19.77363000
                   -.44809775
                                    .03770428
                                                  -.00096714
                                                                16.000
                                                                        20.000
   13.12216600
                    .79905175
                                   -.04024256
                                                   .00065674
                                                               20.000
                                                                        24.000
   16.74805900
                     .25516768
                                   -.01304835
                                                   .00020351
                                                                24.000
                                                                        28,000
   22.46800900
                   -.45982606
                                    .01674304
                                                  -.00021025
                                                               28,000
                                                                        32,000
```

```
TOLERANCE
 IDENT.
            129.99999000
                                 17.67813200
                                                    .00100000
    30.00
WL
            132.63960000
                                 17.77484800
                                                    .00100000
    30.00
WL
            135.38715000
                                 17.86734600
WL
    30.00
                                                    .00100000
            138.26559000
                                 17.95605100
                                                    .00100000
WL
    30.00
            141.30284000
                                                    .00100000
WL.
    30.00
                                 18.04141700
                                                    .00100000
                                 18.12415200
WL
    30.00
            144.54118000
            148.04749000
                                 18.20537800
                                                    .00100000
WL
    30.00
                                 18,28706100
WL
    30.00
            151,93962000
                                                    .00100000
            156.47632000
                                                    .00100000
                                 18.37354600
WL
    30.00
                                                    .00100000
            157.50000000
                                 18.39205900
    30.00
WL.
            162,26849000
                                 18.47386700
                                                    .00100000
WL
    30.00
                                 18.53596100
                                                    .00100000
WL
    30.00
            166.32337000
                                                    .00100000
            169.96221000
                                 18.58406100
WL
    30.00
                                                    .00100000
                                 18.58451700
WL
    30.00
            169.99999000
                                                    TOLERANCE
 IDENT.
FR 145.00
                                 18.19557000
                                                    .00100000
             17.00000000
                                 18.25104600
                                                    .00100000
   145.00
             18.38721400
FR
   145.00
             19.25546800
                                 18.27884000
                                                    .00100000
FR
                                 18,29463200
                                                    .00100000
FR
   145.00
             19.98029800
   145.00
                                 18.29494300
                                                    .00100000
             20.00000000
FR
                                                    .00100000
                                 18.30189200
FR
   145.00
             20.70570100
             21.48541600
                                                    .00100000
FR
   145.00
                                 18.30114000
FR
   145.00
             22.38815800
                                 18.29159400
                                                    .00100000
                                                    .00100000
FR
   145.00
             23.56892300
                                 18.26968400
   145.00
             24,00000000
                                 18.26017000
                                                    .00100000
FR
                                 18.24666900
   145.00
             24.58768000
                                                    .00100000
FR
                                 18.21334600
                                                    .00100000
FR 145.00
             26.00000000
  0-1 LEVEL
                                      15.28253600
                     30.56853000
    87.50000000
                                      16.59634800
                     30.42542500
   107.49999000
   122.50000000
                     30.30533000
                                      17.39770100
                                      17.60595300
   127.49999000
                     30.26864300
   147.49999000
                                      18.18858100
                     30.14414200
                                      18.38372500
    157.50000000
                     30.09313100
                     30.04800600
   167.49999000
                                      18.54872600
   187.49999000
                     29.97059000
                                      18,67598500
                                      18.63659300
    192.50000000
                     29.95303000
```

C. FLOW DIAGRAM - GOBACK 1

1.0.0-2 D-41

1.0.6-2

1.0.0-2

D-51

D-55

1.0.0-2 D-56


```
SURFACE GO BACK (NO PROFILE)
  101 FORMAT (4F15.8,215)
  102 FORMAT(4F15.8)
  103 FORMAT (5HGO TO, 4X, F14.8, 3X, F15.8)
  104 FORMAT (2F15.8, 15)
  105 FORMAT (7H IDENT., 9X, 1HZ, 17X, 1HY, 11X, 10HFIRST DER., 4X, 11HSECOND
DER
       C.)
  106 FORMAT(14.F15.8)
  107 FORMAT (2HWL, F7.2, F14.8, 3X, 3F15.8)
   108 FORMAT(8HPEN DOWN, F15.8)
  109 FORMAT (2HFR, F7.2, F14.8, 3x, 3F15.8)
110 FORMAT (6HPEN UP, 2X, F15.8)
111 FORMAT (2HLG, 13, 3X, F15.8, 3X, F15.8)
  112 FORMAT(7H IDENT.,9X,1HZ,17X,1HY,12X,9HTOLERANCE)
113 FORMAT(7H IDENT.,9X,1HX,17X,1HY,12X,9HTOLERANCE)
114 FORMAT(2HDP,F6.2,F15.8,3X,2F15.8)
   115 FORMAT (7H IDENT.,9X,1HX,17X,1HY,11X,10HFIRST DER.,4X,11HSECOND
DER
   116 FORMAT(1X,6HIDENT.,9X,1HX,17X,1HY,7X,14HFIRST DERIVAT.)
117 FORMAT(1X,6HIDENT.,10X,1HX,17X,1HY,14X,1HZ)
118 FORMAT(1X,6HIDENT.,9X,1HZ,17X,1HY,7X,14HFIRST DERIVAT.)
119 FORMAT(2HBK,F6.2,F15.8,3X,F15.8)
   120 FORMAT (7X, 1HA, 13X, 1HB, 13X, 1HC, 13X, 1HD, 9X, 5HSTART, 8H FINISH)
   121 FORMAT (7H IDENT., 10X, 1HX, 17X, 1HZ)
   122 FORMAT (4F14.8, 2F8.3)
                                                                                                )
   123 FORMAT(50H
124 FORMAT(25H
                                                            )
   125 FORMAT(8X,1HX,14X,1HZ,14X,1HY)
DIMENSION X(40),A(22,42),XE(40),Z(20),C(43),ZX(40),ISP(20)
         DIMENSION SEGXS(5), XSEG(5), CZ(42)
   100 READ 123
         PUNCH 123
         READ 101, XORIG, ZORIG, FINTX, FINTZ, M, N
         READ 104, SEGX, SEGZ, KS
         IF(KS-1)170,171,172
    171 READ 102, SEGXS(1), XSEG(1)
         GO TO 170
    172 DO 173 I=1,KS
    173 READ 102, SEGXS(1), XSEG(1)
    170 NP=N+2
         MP=M+2
         FIVE=5000.
         SIX=6000.
         DO 201 1=1,MP
          DO 202 J=1,NP
    202 READ 102, A(I,J)
```

```
201 CONTINUE
     M=MP-3
     N=NP-3
     DO 203 I=1,M
     READ 102, Z(1)
IF(M-1)230, 232, 203
232 TOTZ=Z(I)
203 Z(1)=(Z(1)-ZORIG)/FINTZ
230 DO 204 I=1,N
     READ 102, X(1)
     IF(N-1)205,233,204
233 TOTX=X(1)
204 \times (1) = (\dot{x}(1) - xOR + G) / FINTX
205 READ 106, IDNT
     K2=0
     K3 = 1
     KSR=KS
     XZ=O.
     KID=1
     IND=0
     OLD=0.
     IF(IDNT-1)600,209,600
600 IF(IDNT-2)601,310,601
601 IF(IDNT-3)602,231,602
602 IF(IDNT-4)603,234,603
603 IF(IDNT-5)604,801,604
604 | F(|DNT-6)605,831,605
605 | F(|DNT-7)606,800,606
606 | F(|DNT-8)700,820,700
     * * A) OFFSETS OF A WATER LINE * *
209 READ
             106,K,ZT
     IF(K-1)200,206,207
207 DO 210 I=1,K
     READ 111. ISP(I). XE(I)
210 XE(1)=(XE(1)-XORIG)/FINTX
     GO TO 200
206 READ 111, ISP(1), XE(1)
     XE(1)=(XE(1)-XORIG)/FINTX
200 FINT=FINTX
     SEG=SEGX/FINTX
     ROR I G= XOR I G
     TOT=TOTX
     IK=0
804 INX=NP
     DO 236 I=1,N
236 ZX(1)=X(1)
     ZZ=(ZT-ZORIG)/FINTZ
740 DO 211 I=1,M
```

```
MAZ≈1-1
    1F(ZZ-Z(1))212,212,211
211 CONTINUE
212 IF(IDNT-9)721,722,721
721 DO 213 I=1, INX
213 C(|)=A(1,|)+A(2,1)*ZZ+A(3,1)*ZZ*ZZ+A(4,1)*ZZ**3
     IF(MAZ-1)221,215,216
215 DO 217 I=1.INX
217 C(1)=C(1)+A(5,1)*(ZZ-Z(1))**3
221 IF(IDNT-5)214,503,503
216 INZ=MAZ+4
    DO 218 1=1, INX
DO 219 J=5, INZ
219 C(I)=C(I)+A(J,I)*(ZZ-Z(J-4))**3
218 CONTINUE
     IF(IDNT-5)214,503,503
214 INZ=INX
    GO TO 314
     * * B) OFFSETS OF A FRAME OR STATION * *
310 IK=0
    READ 106,K,ZT
IF(K-1)901,403,404
403 READ 111,15P(1),XE(1)
     XE(1)=(XE(1)-ZORIG)/FINTZ
     GO TO 901
404 DO 400 I=1,K

READ 111, ISP(I), XE(I)

400 XE(I)=(XE(I)-ZORIG)/FINTZ
901 FINT=FINTZ
     SEG=SEGZ/FINTZ
     RORIG=ZORIG
     TOT=TOTZ
903 DO 401 I=1,M
401 ZX(1)=Z(1)
     XX=(ZT-XORIG)/FINTX
360 DO 311 I=1,N
     MAX=1-1
     IF(XX-X(1))312,312,311
311 CONTINUE
312 1NZ=MP
DO 313 I=1, INZ
313 C(I)=A(I,1)+A(I,2)*XX+A(I,3)*XX*XX+A(I,4)*XX**3
IF(MAX-1)902,315,316
315 DO 317 I=1, INZ
317 C(1)=C(1)+A(1,5)*(XX-X(1))**3
902 IF(IDNT-5)314,906,906
906 IF(IDNT-9)503,702,503
316 INX=MAX+4
     DO 318 I=1.INZ
```

```
DO 319 J=5, INX
319 C(I)=C(I)+A(I,J)*(XX-X(J-4))**3
318 CONTINUE
    IF(IDNT-5)314,906,906
314 IF(IDNT-3)905,321,321
905 DO 320 I=1, INZ
320 PUNCH 102.C(1)
    IF(SENSE SWITCH 4)322,323
322 IF(!DNT-2)181,182,182
181 PUNCH 116
    GO TO 405
182 PUNCH 118
    GO TO 405
323 IF(IDNT-2)183,184,184
183 PUNCH 115
    GO TO 405
184 PUNCH 105
405 Y=C(1)+C(2)*XZ+C(3)*XZ*XZ+C(4)*XZ**3
TDER!=C(2)+C(3)*2.*XZ+C(4)*3.*XZ*XZ
    SDERI=C(3)*2.+C(4)*6.*XZ
    IF(IND-1)406.408.408
408 DO 409 I=1, IND
    DIF=XZ-ZX(I)
    IF(DIF-.000001)406,406,491
491 Y=Y+C(1+4)*(D1F)**3
    TDER1=TDER1+3.*C(1+4)*(D1F)**2
    SDER!=SDER!+6.*C(!+4)*D!F
409 CONTINUE
406 XZ=XZ*FINT+RORIG
    RDERI-TDERI/FINT
    SDERI-SDERI/(FINT*FINT)
    IF(K2)438,439,438
439 IF(SENSE SWITCH 4)410.411
410 IF(IDNT-2)437,436,436
437 PUNCH 107, ZT, XZ, Y, RDERI
    GO TO 412
436 PUNCH 109, ZT, XZ, Y, RDERI
    GO TO 412
411 IF(IDNT-2)441,440,440
441 PUNCH 107, ZT, XZ, Y, RDERI, SDERI
    GO TO 412
440 PUNCH 109, ZT, XZ, Y, RDERI, SDERI
    GO TO 412
438 PUNCH 111, ISP(IK), XZ, Y
412 IF(XZ-TOT)497,51,51
    PUNCH 110.SIX
51
    PUNCH 103, RORIG, Y
```

```
GO TO 205
497 IF(K3)52,415,52
52 PUNCH 108, FIVE
    K3-0
415 IF(KSR-1)174,175,176
175 IF(XSEG(1)-XZ)174,178,174
178 SEG=SEGXS(1)/FINTX
    KSR=0
GO TO 174
176 DO 177 I=1,KSR
    F(XSEG(1)-XZ)177,179,177
179 SEG=SEGXS(I)/FINTX
    IF(KSR-1)177,180,177
180 KSR=0
177 CONTINUE
418 IF(K)419,419,420
420 IF(K-KID)419,421,421
421 IF(ZX(IND+1)-XE(KID))419,422,423
423 XZ=XE(KID)
    K2 = 1
     IF(K-KID)405,424,424
424 KID=KID+1
     |K = |K+1|
     GO TO 405
422 | ND= | ND+1
     GO TO 423
419 (ND=1ND+1
     K2=0
     XZ=ZX(IND)
     GO TO 709
417 IF(K)430,430,428
428 IF(K-KID)430,429,429
429 IF(ZX(IND+1)-XE(KID))430,431,423
431 OLD=OLD+SEG
     GO TO 422
430 OLD=OLD+SEG
     GO TO 419
416 IF(K)432,432,433
433 IF(K-KID)432,434,434
434 IF (OLD+SEG-XE(KID)) 432, 435, 423
435 OLD=OLD+SEG
     GO TO 423
432 XZ=OLD+SEG
     OLD=OLD+SEG
     K2=0
709 IF(IDNT-9)405,710,405
710 XX=XZ
```

```
GO TO 360
    * * E) STANDARD CUBIC COEFFICIENTS FOR A WATER LINE * *
801 KEAD 102, ZT
    PULCH 107, ZT
    PUNCH 120
    NA=1
    RORIG=XORIG
    FINT=FintX
    GO TO 804
503 | F(|DNT-7)811,810,810
810 DO 805 I=1,NA
    INX=I-1
     IF(S-ZX(1))506,805,805
805 CONTINUE
    GO TO 506
811 INX=0
506 \times E(1) = C(1)
    XE(2)=C(2)
    XE(3)=C(3)
    XE(4)=C(4)
    iF(INX-1)508,507,507
507 DO 504 I=1, INX

XE(1)=XE(1)-C(1+4)*ZX(1)**3

XE(2)=XE(2)+3.*C(1+4)*ZX(1)*ZX(1)
    XE(3)=XE(3)-3.*C(1+4)*ZX(1)
    XE(4) = XE(4) + C(1+4)
    1F(1-1NX)504,508,508
504 CONTINUE
508 | F(IDNT-7)807,806,806
806 XS=S
     | F(XS-F)23,22,22
22
    XS=F
    Y=XE(1)+XE(2)*XS+XE(3)*XS*XS+XE(4)*XS*XS*XS
23
     IF(IDNT-8)840,841,841
840 XT=XS*FINTX+XORIG
    PUNCH 107, ZT, XT, Y, TOL
    GO TO 842
841 XT=XS*FINTZ+ZORIG
PUNCH 109, ZT, XT, Y, TOL
842 IF(XS-F)34, 205, 205
34 AA=3.*XE(4)*S-XE(3)
    AC=XE(3)*S*S+XE(4)*S*S*S
     AAA=2.*XE(4)*XS*XS*XS-AA*XS*XS-2.*XE(3)*S*XS+AC
    DER=(XE(2)+2.*XE(3)*XS+3.*XE(4)*XS*XS)/FINTX
    Y=AAA*AAA-TOL*TOL*(1.+DER*DER)
     |F(Y)4,12,4|
    H=2.*TOL
    CA=Y
     XS=XS+H
```

```
IF(XS-ZX(INX+1))7,7,44
    S=ZX(INX+1)
    GO TO 810
    AAA=2.*XE(4)*XS*XS*XS-AA*XS*XS-2.*XE(3)*S*XS+AC
7
    DER=(XE(2)+2.*XE(3)*XS+3.*XE(4)*XS*XS)/FINTX
    Y=AAA*AAA-TOL*TOL*(1.+DER*DER)
    IF(CA*Y)9,12,5
    IF(ABS(H)-.0001)10.11.11
11
    H=-H/2.
    GO TO 5
    XS=XS-H/2.
    RAD=8.*XE(3)*XE(4)*XS+12.*XE(4)**2*XS**2-2.*XE(3)*XE(4)*S
RAD=SQRT(RAD-3.*XE(4)*XE(4)*S*S+XE(3)*XE(3))
12
    XX=-.5*(S+(XE(3)+RAD)/XE(4))
13
    IF(XX-S)14,15,15
14
    RAD=-RAD
    GO TO 13
    IF(XX-ZX(INX+1))19,44,44
15
19
    F(XX-F)16,17,17
16
    S = XX
    GO TO 806
17
    S=F
    GO TO 806
807 IF(INX)280,280,281
280 S=RORIG
    F=ZX(1)*FINT+RORIG
    GO TO 282
281 S=ZX(I)*FINT+RORIG
    F=ZX(I+1)*F!NT+RORIG
282 DO 283 I=2.4
283 XE(1)=XE(1)/F1NT**(1-1)
    PUNCH 122, XE(1), XE(2), XE(3), XE(4), S, F
    IF(INX-NA+2)509,509,205
509 INX=INX+1
    GO TO 506
    * * H) SEGMENTATION OF A FRAME* *
820 READ 102, ZT, S, F, TOL
    S=(S-ZORIG)/FINTZ
    F=(F-ZORIG)/FINTZ
    Na=M
    PUNCH 112
    GO TO 903
* * F) STANDARD CUBIC COEFFICIENTS FOR A FRAME **
831 READ 102, ZT
    NA=M
    PUNCH 109, ZT
    PUNCH 120
    RORIG=ZORIG
```

```
FINT=FINTZ
  402 INZ=MP
      GO TO 903
      * * G) SEGMENTATION OF A WATER LINE * *
C
  800 READ 102, ZT, S, F, TOL
      S=(S-XORIG)/FINTX
      F= (F-XORIG)/FINTX
      NA=N
      PUNCH 113
      GO TO 804
      * * D) OFFSETS OF A BUTTOCK * *
  234 READ 102, BUTTK
      PUNCH 121
      GO TO 1360
      * * C) OFFSETS OF A DIAGONAL PLANE * *
  231 READ 102, ANGLE
      TAN=ANGLE*3.14159/180.
      SI=SIN(TAN)
      CO=COS (TAN)
      TAN=-SI/CO
      PUNCH 117
 1360 SEG=SEGX/FINTX
      SEGTZ=SEGZ/FINTZ
      XX=0.
      I NZ=MP
      GO TO 360
  321 K=1
      KID=1
  452 ZXZ=XZ*FINTZ+ZORIG
      Y=C(1)+C(2)*XZ+C(3)*XZ*XZ+C(4)*XZ**3
      IF(IND-1)465,454,455
  454 Y=Y+C(5)*(XZ-Z(1))**3
      GO TO 465
  455 DO 456 I=1.IND
  456 Y=Y+C(1+4)*(XZ-Z(1))**3
  465 IF(IDNT-4)478,477,477
  477 IF(BUTTK) 480, 485, 480
  485 ZXZ=ZORIG
      GO TO 457
  480 Y=Y-BUTTK
      GO TO 453
  478 Y=TAN*(TOTZ-ZXZ)+Y
  453 IF(ABS(Y)-.005)457,457,479
479 GO TO (481,482),KID
  481 KID=2
  IF(Y)473,457,457
482 GO TO (471,472),K
  471 IF(Y)473,457,474
```

```
473 IF(ZXZ+SEGZ-TOTZ)483,483,484
484 DXZ=TOTZ
    90 TO 457
483 OLD=XX
    XX=XZ+SEGTZ
    GO TO 458
474 K=2
    GO TO 475
472 IF(Y)476,457,475
475 XT=XZ
    XZ=XZ-(ABS(XZ-OLD))/2.
    OLD=XT
    GO TO 458
476 XT=XZ
    XZ=XZ+(ABS(XZ-OLD))/2.
    OLD=XT
458 DO 459 I=1, M
IF(XZ-Z(I))452,452,459
459 IND=1
    GO TO 452
457 XZ=XX*FINTX+XORIG
    IF(IDNT-4)467.468.468
467 Y = (TOTZ - ZXZ)/CO
    PUNCH 114, ANGLE, XZ, Y, ZXZ
    GO TO 466
468 PUNCH 119, BUTTK, XZ, ZXZ
466 IF(XZ-TOTX) 497,64,64
64 PUNCH 110, SIX
66
   PUNCH 103, XORIG, ZXZ
    GO TO 205
185 IF(XX+SEG-X(K2+1))463,462,461
461 K2=K2+1
    XX = X(K2)
324 XZ=0.
    IND=0
    GO TO 360
462 K2=K2+1
463 XX=XX+SEG
    GO TO 324
    * * 1) OFFSETS OF LONGITUDINAL ELEMENTS * *
700 READ 124
    PUNCH 124
    PUNCH 125
    DO 701 I=1,NP
    READ 102, CZ(1)
701 CONTINUE
    DO 707 l=1,N
707 ZX(1)=X(1)
```

```
K=0
     TOT=TOTX
     SEG=SEGX/FINTX
     XX=0.
GO TO 360
702 ZPCH=CZ(1)+CZ(2)*XX+CZ(3)*XX*XX+CZ(4)*XX**3
     IF(MAX-1)1000,704,704
 704 DO 705 I=1, MAX
     ZPCH=ZPCH+CZ(1+4)*(XX-X(1))**3
     IF(MAX-I)1000,1000,705
 705 CONTINUE
1000 ZZ=(ZPCH-ZORIG)/FINTZ
GO TO 740
722 Y=C(1)+C(2)*ZZ+C(3)*ZZ*ZZ+C(4)*ZZ**3
     IF(MAZ-1)703,724,724
 724 DO 725 1=1,MAZ
     Y=Y+C(1+4)*(ZZ-Z(1))**3
     IF(MAZ-1)703,703,725
 725 CONTINUE
 703 XPCH=(XX*FINTX)+XORIG
     PUNCH 101, XPCH, ZPCH, Y
     XZ = XX
     IF (XPCH-TOT) 186,205,205
     END
```

1.0.0-2 D-70

Section VI

GOBACK 2 3-D PROFILE

A. OPERATING INSTRUCTIONS

This version of GOBACK will accept coefficients of a surface equation such as given in Fig. D-2, modified as shown in Section IV, for end profile requirements. The equation must be single splined in the \times direction and may be single or double splined in the z direction.

The following data can be calculated with this program:

- Offsets, first and second derivatives along a waterline at a given interval
- Offsets, first and second derivatives along a station at a given interval
- Offsets at a given interval along buttocks as given in Section IV-B. of this appendix.

Fortran Input Symbols

Symbol		<u>Definition</u>
X 0	-	The actual full scale coordinate of the first station of the surface
ZO	-	The actual full scale z coordinate of the first waterline
FINTX	-	This value is used as a scale factor in the x direction. If the surface equation is scaled so the stations are one unit apart, FINTX equals the actual full scale station interval (x_1-x_0) . If the stations of the surface equation are less than one unit apart FINTX becomes some multiple of the station spacing. For example, if the stations in the equation are 1/4 unit apart FINTX becomes 4 times the actual full scale station spacing

FINTZ - Same definition as FINTX, except in the z direction (z_1-z_0) .

M - The total number of points of discontinuity along a station (points where z coefficients are added) including the points at the first and last waterlines. For example, if a surface containing seven waterlines were single splined, M would equal seven since there are third derivative discontinuities at each waterline. If the seven-waterline surface were double splined, M would equal four, since there are discontinuities only at waterlines 0,2,4, and 6.

N - The total number of points of discontinuity along a waterline (points where x coefficients are added). The example used for M is valid except using stations instead of waterlines.

K - The number of coefficients in the profile equation

NAB - This value tells the program whether the surface has been single splined in the z direction (NAB = +1) or or double splined in the z direction (NAB = -1)

SEGX - Desired interval between consecutive calculated offsets along waterlines, buttocks, and diagonal planes.

SEGZ - Desired interval between consecutive calculated offsets along stations.

POINT - The actual full scale interval over which the end condition is to be effective. Usually less than or equal to the first station interval (D in Section IV)

PWR1 - In the end condition function of Section IV $\left(T(x,z) = \begin{bmatrix} 1 - \left(\frac{D+G(z)-x}{D}\right)^r \\ \frac{1}{4} \end{bmatrix} \right)^p$

PWR1 is the value of $\ \ \ \ \ \$. It is nearly always equal to 3 .

PWR2 - Equals the power (P) to which the function T(x,z) is to be raised.

CZ - The coefficients of the profile equations. These coefficients must be scaled the same and have the same origin as the surface equation.

A - The coefficients of the surface equation produced by the linear program. There are (M+2) (N+2) coefficients.

- X Same as Z except for stations (N-1)
- ZP If the surface equation has been double splined in the z direction (NAB = -1), the z coordinates of the waterlines where new coefficients are added must be read in. These are ZP and there are (K-3). If the equation is single splined in the z direction (NAB = +1) and these are not necessary.
- IDENT Code which tells the program what data is required from the surface
- ZT z coordinate of a waterline along which data is to be calculated
- NBOW An indicator for telling the program if the buttocks will be single valued or multi-valued. If NBOW = 1 the case must be that shown in Fig. D-5a, Section IV-B.

 If NBOW = 2 the program will expect to find the more complicated cases.
- BUTTK The y distance from the centerplane of the ship to a buttock along which heights are to be calculated

Input Data Cards

There are two distinct kinds of sets of data used for input to GOBACK 2. The first set consists entirely of data describing the surface equation to the program. No output is produced from this set. The second set of data consists of packets of data cards. Each packet describes some information required from the surface and gives the geometric data necessary to obtain the information from the surface equation. Only one of the first sets of data are entered per problem. There may be many small packets, each of which calls for offsets along a waterline or station or perhaps standard cubic coefficients, etc.

There are limitations on some of the input parameters of the

program. These limitations follow:

<u>Variable</u>	Minimum	Maximum
M (no. of waterlines)	3	11
N (no. of stations)	3	15
K (no. of coefficients in profile equation)	1	16

In describing the various data cards, the actual FORTRAN format field description is used in most cases. These fields come consecutively across the card with no gaps or blank columns between, except where indicated. The field descriptions are the FORTRAN F field, which uses the FORTRAN fixed point decimal number, and the I field that used the FORTRAN integer number, which is always right justified. The card numbers are not punched on the data cards.

First Data Set

This data set is the one that describes the surface equation

	Contents	of Car	d					Ca	rd No.
The first any alpha columns	numeric			-					1
Format Variable	F15.8 X0	F15.8 Z0	F15.8 FINTX	F15.8 FINTZ	15 M	15 N	15 K	15 NAB	2
Format Variable	F15.8 SEGX	F15.8 SEGZ	F15.8 POINT	F15.8 PWR1	F15.8 PWR2		I5 BOW		3
Format Variable	F15.8 CZ							nex K c	t ards
Format Variable	F15.8 A							nex (M+2) card	(N+2)
Format Variable	F15.8 Z							nex (M-1	t) cards
Format Variable	F15.8 X							nex (N-1	t.) cards

Format F15.8 next Variable ZP (K-3)

(This set of K-3 cards need be entered only if NAB = -1, see Input Symbol Definition)

This completes the first data set.

The coefficients of the surface equation (A) are presented in the following order (See Fig. D-2):

$$A_{00}$$
, A_{01} , A_{02} , A_{03} , A_{04} , ..., A_{10} , A_{11} , A_{12} , A_{13} , A_{14} , ..., A_{20} , A_{21} , A_{22} , A_{23} , A_{24} , ..., A_{31} , A_{32} , A_{33} , A_{34} , ..., A_{40} , ...,

This is generally the order in which they will be received from the L.P. Any coefficients that weren't in the final solution must have a zero value included in the data deck.

Second Data Set

This data set contains the packets of cards, each of which describes some information to be extracted from the surface. Any number of these packets may be used in a problem. They may be entered in any desired order by simply stacking them behind the first data set in the card reader. A description of each data packet follows. The first card for each of these packets is an identification card and contains a specific value of IDENT in Column 4.

Packet for Offsets on a Waterline

	Card No.	
	card is the identification card and a 1 in Column 4	1
Format Variable	F15.8 ZT	2

Packet for Offsets of a Station

	Conte	Card No.	
This card	has a	2 in Column 4	1
Format Variable	14 K	F15.8	2

Packet for Offsets of a Buttock

Contents of Card					Card No.	
This card	contains a	a	4	in	Column 4	1
Format Variable	F15.8 BUTTK					2

Output Data

The output data for the different types of information requested is given below. Since the output data consists of offsets of curves which may need to be plotted, GOBACK 2 includes cards which place the plotter pen up or down at the proper times. The data deck is arranged in order and punched in such a format that the deck can be directly plotted using the plotting program of Appendix F.

Offsets of a Waterline

The first N+2 cards punched when the offsets of a waterline are called for contain the coefficients for the two-dimensional Thielheimer equation of the waterline. Following this is a header card and finally cards each containing:

- (1) A waterline identification (WL)
- (2) The x coordinate of the offset
- (3) The offset on the waterline
- (4) The first derivative of the waterline
- (5) The second derivative of the waterline

Offsets of a Station or Frame

Information corresponding to that of a waterline is punched. The frame identification (FR) and the z coordinate of the offset are given.

Offsets of a Buttock

First, a header card is punched and then cards each containing the following:

- (1) An identification of the buttock
- (2) The x coordinate of the offset
- (3) The z height of the offset
- (4) The point number on the frame

If the buttock is multi-valued on a frame, the points are numbered in Columns 48 and 49 of the card. The points are numbered consecutively beginning with the lowest (least z) value on each frame. If a buttock is multivalued during only part of its length, the series of numbers describing it may change as shown in the figure below.

Sense Switches

All sense switches are ignored.

B. SAMPLE PROBLEM

The sample problem was taken from a surface describing the bow of the DLG-26 class frigate. The surface has eleven waterlines and five stations. It has been double splined in both the x and z directions. The offsets of one waterline, one station, and one buttock have been solved for.

In this case the buttock is double valued overpart of its length. The offsets for the two lines must be separated before plotting. This can be done by examining their $\, z \,$ coordinates.

```
COMPLETE BOW DLG 1 -- -
    0.0
                      0.0
                                                       8.
                                     5.10
                                                                           6
  13
    1.0
                     2.
                                     1.275
                                                         3.
                                                                         .3333333
   .8562
  -.272763473
 0.0
  -,6288
                        Coefficients of the profile equation
   .1531
  -.0704
  -.0041
 0.0
 0.0
 0.0
0.0
 0.0
 0.0
    7.16765334
15.10834002
     3.90044334
0.0
     1.37436000
     5.17799440
    21.63735908
                       Coefficients of the surface equation
     6.09769242
0.0
     1.46282033
     2.89710319
    10.92294755
     3.04203734
0.0
     .01033209
2.33844915
     1.72304778
       .46882580
0.0
       .26489650
     3.81770188
```


D-30

* * SAMPLE OUTPUT * *

```
COMPLETE BOW DLG + - -
       .65988975
     1.68165847
       .08525161
     -.00001677
      -.01417503
 IDENT.
                                       Υ
                                                    FIRST DER.
                                                                    SECOND DER.
                  X
               2.29857000
                                   0.00000000
                                                    0.00000000
                                                                     0.00000000
WL
    28.00-
PEN DOWN
           5000.00000000
                                     .23643444
                                                      .32099980
                                                                       .00823214
    28.00~
               1.29857000
WL.
                . 2985 7000
                                                                       .00655552
                                     .56173237
                                                      .32777970
WL
    28.00-
                                                      .33433484
                                                                       .00655476
                                     .89278971
WL
    28.00
                .70142999
                                    1.23040181
                                                      .34088923
                                                                       .00655400
    28.00
               1.70142999
WL
                                                      .34744285
    28.00
               2.70142999
                                   1.57456792
                                                                       .00655324
WL
               3.70142999
                                    1.92528728
                                                                       .00655248
                                                      .35399572
WL
    28.00
                                   2.28255912
2.64638268
                                                      .36054783
                                                                       .00655172
               4.70142999
WL
    28.00
                                                                       .00655096
               5.70142999
                                                      .36709917
    28.00
WL
               6.70142999
                                                      .37364976
                                                                       .00655021
    28,00
                                   3.01675722
WL
               7.70142999
                                                      .38019959
                                                                       .00654945
    28.00
                                   3.39368197
WL
                                                      . 386 74867
                                                                       .00654869
WL
    28.00
               8.70142999
                                    3.77715617
               9.70142999
                                   4.16717906
WL
    28.00
                                                      .39329698
                                                                       .00654793
    28.00
              10.2000000
                                   4.36407894
                                                      .39656149
                                                                       .00654755
WL
    28.00
                                   4.76380722
                                                       40278809
                                                                       .00590563
WL
              11.19999999
                                                      .40837277
                                                                       .00526372
WL
    28.00
              12.19999999
                                   5.16944115
WL
    28.00
              13.19999999
                                   5.58033880
                                                      .41331553
                                                                       .00462180
                                   5.99585825
    28.00
              14.19999999
                                                       41761638
                                                                       .00397988
WL
              15.19999999
                                   6.41535759
                                                       42127531
                                                                       .00333797
    28.00
WL
              16.19999999
                                   6.83819491
                                                       42429233
                                                                       .00269605
WL
    28.00
                                                                       .00205414
WL
    28.00
              17.19999999
                                    7.26372829
                                                       42666742
              18.19999999
                                    7.69131580
    28.00
                                                       42840061
                                                                       .00141222
WL
                                   8.12031554
    28.00
              19.19999999
                                                                       .00077030
                                                      .42949187
WL
                                                      .42994122
                                   8.55008558
                                                                       .00012839
              20.19999999
WL
    28.00
                                   8.63607554
                                                      .42995406
                                                                      0.00000000
WL
    28,00
              20.40000000
           6000.00000000
PEN UP
               2.29857000
                                   8.63607554
GO TO
      6.61527891
   -13.45460022
    12.38146087
    -3.85844631
      3.57647199
```

D-81

•	4	9	0	1	9	3	3	C
	1							
 •	8	2	7	3	4	9	2	6

	82	734926			
101	ENT.	Z	Y	FIRST DER.	SECOND DER.
FR	7.50	0.00000000	6.61527891	-1.68182502	
	DOWN	5000.00000000	0.01727071	-1.00102502	.38692065
FR	7.50	2.00000000	3.96518193	00014605	2241222
FR	7.50	4.00000000	3.70510195	99841605	. 29648831
FR	7.50		2.50103822	49587176	.20605598
		6.00000000	1.86111844	17419213	.11562364
FR	7.50	8.00000000	1.68369324	03337717	.02519131
FR	7.50	10.00000000	1.66291566	.01039666	.01858253
FR	7.50	12.00000000	1.71646822	.04095296	.01197376
FR	7.50	14.00000000	1.81791584	.05829172	.00536499
FR	7.50	16.00000000	1.94082342	.06241293	.00124378
FR	7.50	18.00000000	2.06641513	.06480549	.00363634
FR	7.50	20.00000000	2.20655225	.07695833	.00851648
FR	7.50	22.00000000	2.38075530	.09887142	01220661
FR	7.50	24.00000000	2.60854480	.13054478	.01339661
FR	7.50	26.00000000	2.91122454		.01827674
FR	7.50	28.00000000	3.31723123	.17465327	.02583174
FR	7.50	30.00000000		.23387175	.03338673
FR	7.50	32.00000000	3.85678487	.30820021	.04094172
FR	7.50	34.00000000	4.56010542	.39763866	.04849672
FR			5.44448553	.48279610	.03666071
FR	7.50	36.00000000	6.47550851	.54428153	.02482471
	7.50	38.00000000	7.60583035	.58209496	.01298870
FR	7.50	40.00000000	8.78810703	.59623637	.00115270
PEN		6000.00000000			
GO 1		0.00000000	8.78810703		
	NT.	X	Z		
BK	4.00	.36766906	4 0. 00000000	1	
	DOWN	5000.00000000		•	
ВK	4.00	1.36766906	38.35546875	1	
BK	4.00	2.36766906	36.87158203	i	
BK	4.00	3.36766906	35.52490234	;	
BK	4.00	4.36766906	34.27441406	i	
BK	4.00	5.36766906		——————————————————————————————————————	
BK	4.00	5.36766906	.31738281	1	
BK	4.00	6.36766906	33.07373046	2	
BK			1.21630859	1	
	4.00	6.36766906	31.87304687	2	
BK	4.00	7.36766906	1.89062500	1	
BK	4.00	7.36766906	30.62207031	2	
BK	4.00	8.36766906	2.37829589	1	
	4.00	8.36766906	29.29235839	2	
	4.00	9.36766906	2.69628906	Ī	
	4.00	9.36766906	27.86230468	2	
	4.00	10.2000000	2.82910156	<u>ī</u>	
BK	4.00	10.2000000	26.57812499	ż	
	4.00	11.19999999	2.81616210	1	
	4.00	11.19999999	24.89819335	2	
	-		Z-10001000	4	

PEN UP 6000.00000000 GO TO .36766906 5.08984375	BK 4.00 BK 4.00 BK 4.00 BK 4.00 BK 4.00 PEN UP 60		2.20458984 20.85302734 1.57788085 18.12866210 .70214843 14.48730468 11.06445312 9.12500000 7.85693359 6.72802734 5.40087890 5.08984375	1 2 1 2 1 1 1 1 1
--	--	--	---	---

C. FLOW DIAGRAM

2.0. -

1.0.0-2 D-00

1.0.0-2 D-94

* ACTUAL FORTRAN NUMBER

* ACTUAL FORTRAN NUMBER

0.0.0-2 D-5%

1.0.0-2

GOBACK 2 - WITH PROFILE

D. LISTING

```
*1205
       SUMPACE GO BACK
                            PROFILE
       DIMENSION X(15), A(13,17), Z(11), C(18), CZ(16), ZX(15), ZP(11)
  100 READ 123
       PULICH 123
       READ 101, XORIG, ZORIG, FINTX, FINTZ, M, N, K, NAB
       READ 102, SEGX, SEGZ, POINT, PWR1, PWR2, NBOW
       PC I T= (POINT-MORIG) /FINTM
       1.P=1+2
       MP= 1+2
       00 206 (=1,K
KEAD 102,CZ(1)
  206 COLTITUE
       F17E=5000.
        STC=6000.
       00 305 (=1,MP
00 202 d=1,1P
  202 (EAT 102, A(1,3)
305 COLTILUE
       M=MP-3
       N=NP-3
       DU 203 i=1,M
       READ 102, 2(1)
        F(M-1)230,232,203
   232 TOTZ=Z(1)
   203 Z(1)=(2(1)-ZORIG)/FINTZ
  230 DO 204 (=1,R) READ 102,X(1)
        1F(N-1)340,233,204
   233 TOTX=X(1
   204 X(1)=(X(1)-XORIG)/FIRTX
   340 IF(NAB) 341, 341, 343
   341 KS=K-3
        DO 342 (=1,55 READ 102, ZP(.)
   342 ZP(1)=(ZP(1)-ZURIG)/FINTZ
        GO TO 205
   343 KS=M
        DO 344 = 1.11
   344 \text{ ZP}(1)=Z(1)
   205 READ 106, IDAT
        K1=1
```

```
NUMBR=1
       ISTRT=3
       K2=0
       K3 = 1
       K4 = 1
       K5=1
       KSR=KS
       KID=1
       XZ=0.
       I ND=1
       OLD=0.
       NCOMP=1
       IF(IDNT-1)600,209,600
  600 IF(IDNT-2)601,310,601
601 IF(IDNT-3)205,205,234

C POINT ON THE PROFILE CORRESPONDING TO W. L. ZZ
690 CALL FUNCT1 (CZ(1),CZ(2),CZ(3),CZ(4),ZZ,FZ)
FUPZ=CZ(2)+2.*ZZ*CZ(3)+3.*CZ(4)*ZZ*ZZ
       FUSZ=2.*CZ(3)+6.*CZ(4)*ZZ
       IF(ZZ-ZP(1))179,179,691
  691 DO 700 I=1,KS
       DIF=ZZ-ZP(1)
        IF(DIF-.0000001)179,179,720
  720 FUPZ=FUPZ+3.*CZ(1+4)*DIF*DIF
       FUSZ=FUSZ+6.*CZ(1+4)*DIF
   700 CALL FUNCT2 (FZ,CZ(1+4),DIF,FZ)
   179 GO TO (697,405,265,265), IDNT
   697 XX=FZ
       XZ=FZ
       GO TO 77
  EQUATION OF W.L. ZZ
   212 DO 213 I=1,NP
        CALL FUNCT1 (A(1,1),A(2,1),A(3,1),A(4,1),ZZ,C(1))
   213 CONTINUE
        IF(ZZ-Z(1))216,216,215
   215 DO 218 I=1,NP
       DO 219 J=5,MP
       DIF=ZZ-Z(J-4)
       IF(DIF-.00000001)218,218,82
  82 CALL FUNCT2 (C(I),A(\dot{J},I),DIF,C(I))
   219 CONTINUE
   218 CONTINUE
   216 IF(IDNT-4)75,690,690
       DO 76 I=1,NP
   76
       PUNCH 101, C(1)
       PUNCH 115
        GO TO 690
   POINT ON THE PROFILE CORRESPONDING TO FRAME XX
  268 GO TO (571,572,572), NBOW 572 SEGVA=ZP(2)-ZP(1)
```

```
GO TO 321
571 SEGVA=Z(2)-Z(1)
321 IF(XZ-Z(M))581,581,580
580 PAUSE 1
581 CALL FUNCT1 (CZ(1),CZ(2),CZ(3),CZ(4),XZ,Y)
    IF(XZ-ZP(1))322,322,300
300 DO 323 I=1,KS
    DIF=XZ-ZP(1)
    IF(DIF-.0000001)322,322,323
323 CALL FUNCT2 (Y,CZ(I+4),DIF,Y)
322 DIF=XX-Y
    IF(ABSF(DIF)-.00001)430,430,326
326 GO TO (642,642,643),K1
643 IF(DIF)641,430,778
642 IF(DIF)327,430,328
327 K1=2
778 OLDZ=XZ
    XZ=XZ+SEGVA
GO TO 321
328 GO TO (640,641),K1
640 K1=3
    GO TO 778
641 XZ=XZ-SEGVA/2.
329 CALL FUNCT1 (CZ(1),CZ(2),CZ(3),CZ(4),XZ,Y)
    IF(XZ-ZP(1))330,330,331
331 DO 332 I=1,KS
    DIF=XZ-ZP(1)
    IF(DIF-.0000001)330,330,332
332 CALL FUNCT2 (Y.CZ(I+4),DIF.Y)
330 DIF=XX-Y
    IF(ABSF(DIF)-.00001)430,430,333
333 GO TO (644,644,645),K1
645 IF(DIF)335,430,334
644 IF(DIF)334,430,335
334 SEGVA=XZ-OLDZ
    OLDZ=XZ
    XZ=XZ+SEGVA/2.
    GO TO 329
335 SEGVA=XZ-OLDZ
    GO TO 641
430 IF(IDNT-3) 85,292,292
85
    DO 84 1=1.M
    K2=I-1
    IF (XZ-Z(I))798,84,84
84
    CONTINUE
798 Y=0.
    RDERI=0.
    SDERI=0.
    GO TO 270
292 GO TO (566,566,452), ISTRT
```

```
C EQUATION OF FRAME XX
  360 DO 313 I=1,MP
  313 CALL FUNCTI (A(1,1),A(1,2),A(1,3),A(1,4),XX,C(1))
      IF(XX-X(1))902,902,315
  315 DO 318 I=1,MP
      DO 319 J=5,NP
      D \mid F = XX - X(J - 4)
      IF(DIF-.00000001)318,318,83
     CALL FUNCT2 (C(1), A(1, J), DIF, C(1))
  319 CONTINUE
  318 CONTINUE
  902 K5=1
      IF(IDNT-4)78,79,79
      DO 80 I=1,MP
      PUNCH 101,C(1)
  80
      PUNCH 105
  797 IF(IDNT-4)552,780,780
  780 IND=2
      GO TO 566
C
      * * D) OFFSETS OF A BUTTOCK * *
  234 SEG=SEGX/FINTX
      SGTZ=SEGZ/FINTZ
      ZXZ=TOTZ
      ZZ=Z(M)
      READ 102, BUTTK
      PUNCH 121
      IF(BUTTK)263,566,263
  263 DO 293 !=1,N
  293 ZX(I)=X(I)
      TOT=X(N)
      NM=N
      FUPZ=0
      FUSZ=0
  GO TO (621,597,597),NBOW 621 XGREA=CZ(1)
      ISTRT=1
      GO TO 212
   INTERSECTION OF BTK WITH A WL OR FR
  480 Y=Y-BUTTK
  453 IF(ABSF(Y)-.0001)457,457,479
  479 GO TO (481,482),KID
  481 KID=2
      IF(Y)473,457,585
  585 K1=3
      GO TO 772
  482 GO TO (471,472),K4
  471 GO TO (770,770,771),K1
  770 IF(Y)473,457,474
```

```
771 IF(Y)474,457.772
473 K1=2
772 OLD=XZ
    XZ=XZ+SEGTZ
    GO TO 275
474 K4=2
    GO TO 475
472 GO TO (583,583,584),K1
583 IF(Y)476,457,475
584 IF(Y)475.457.476
475 XT=XZ
     XZ=XZ-(ABSF(XZ-OLD))/2.
    OLD=XT
     GO TO 275
476 XT=XZ
     XZ=XZ+(ABSF(XZ-OLD))/2.
     OLD=XT
     GO TO 275
457 GO TO (277,452), ISTRT
452 ZXZ=XZ*FINTZ+ZORIG
273 XZ=XX*FINTX+XORIG
468 CALL PUNCH3 (BUTTK, XZ, ZXZ, NUMBR)
     NUMBR=NUMBR+1
466 GO TO (650,582,582), ISTRT
650 ISTRT=2
     GO TO 573
582 IF(ZXZ-ZMAX)574,573,573
574 GO TO (573,575,575), NBOW
575 IF(BUTTK)752,753,752
752 IF(BUTTK-XMAX)573,620,576
753 IF(XX-XMAX)576,620,573
576 XZ=(ZXZ-ZORIG)/FINTZ
     SEGVA=ZP(2)-ZP(1)
     SEGTZ=SEGVA
     IF(BUTTK) 754, 755, 754
754 K4=1
GO TO (585,585,473),K1
755 GO TO (640,640,327),K1
CHECK FOR LAST VALUE
573 IF(XZ-TOTX)60,64,64
     PUNCH 110.SIX
64
 65 CALL PUNCH2 (XPLOT, ZXZ)
     GO TO 205
     IF(K3)61,460,61
PUNCH 108,FIVE
60
     K3=0
460 IF(XX+SEG-X(K2+1))463,461,461
461 K2=K2+1
     XX=X(K2)
324 XZ=0.
```

1

```
NUMBR=1
    I ND = 1
CHECK FOR FR OUTSIDE OF AREA WHERE FUNCT. T IS DEFINED
    IF(XX-POINT-XGREA)674,675,675
675 NCOMP=2
    GO TO 673
674 NCOMP=1
673 K4=1
    KID=1
    K1=1
    GO TO (360,360,266), ISTRT
463 XX=XX+SEG
    GO TO 324
 FUNCT. T AND ITS 1ST AND 2ND DERIV
364 CALL PROFL2 (XX,FZ,PWR1,FUPZ,FUSZ,PWR2,POINT,T,TP.TS,NCOMP)
IF(K5-3)272,590,750
272 IF(XZ-TOT)586,586,587
587 XZ=0.
    GO TO 452
586 CALL FUNCT1(C(1),C(2),C(3),C(4),XZ,Y)
    IF(XZ-ZX(1))368,368,369
369 DO 346 I=1.NM
    DIF=XZ-ZX(1)
    IF(DIF-.000001)368.368.346
346 CALL FUNCT2 (Y,C(1+4),DIF,Y)
368 GO TO (721,722),K5
721 DIFF1=T*DIFF1+Y*TP
    GO TO (724,726),KID
722 Y=Y*T
    GO TO 480
265 GO TO (670,364,670), ISTRT
670 XX=FZ
301 GO TO (271,364,269), ISTRT
269 XPLOT=XX*FINTX+XORIG
    GO TO 273
266 IF(XX-XLARG)268,267,267
267 GO TO (275,275,291), ISTRT
291 ZXZ=ZORIG
    GO TO 273
271 XZ≖XX
    SEGTZ=SEG
275 GO TO (550,272), NCOMP
550 GO TO (553,552,364), ISTRT
552 ZZ=XZ
    GO TO 690
277 DO 294 I=1,M
294 ZX(1)=Z(1)
    TOT=Z(M)
```

```
NM=M
    XX=X7
    SEGTZ=ZP(2)-ZP(1)
    XPLOT=XX*FINTX+XORIG
77
    DO 370 I=1,N
    K2 = 1 - 1
     1F(XX-X(1)) 81,370,370
370 CONTINUE
81
    iF(IDNT-4)901,273,273
553 XX=XZ
 GO TO 364
DETERMINE THE PT WHERE 1ST DERIV. CHANGES FROM - TO + IN
 THE PROFILE OR FRAME EQUATIONS
566 GO TO (596,597,597), NBOW
596 GO TO (589,589,598), ISTRT
598 XMAX=CZ(1)
    ZMAX=ZORIG
    XLARG=CZ(1)
    GO TO 567
597 SEGVA=(ZP(2)-ZP(1))/2.
557 GO TO (568,568,671), ISTRT
671 IF(XZ-Z(M)) 710,710,596
710 DIFF1=CZ(2)+2.*CZ(3)*XZ+3.*CZ(4)*XZ*XZ
     IF(XZ-ZP(1))562,562,551
551 DO 563 I=1.KS
    DIF=XZ-ZP(1)
     IF(DIF-.0000001)562,562,563
563 DIFF1=DIFF1+3.*CZ(I+4)*DIF*DIF
562 GO TO (564,565), KID
564 GO TO (725,725,724), ISTRT
724 IF(DIFF1)556,555,555
555 OLD=XZ
     XZ=XZ+SEGVA
    GO TO 557
556 KID=2
    GO TO 555
565 GO TO (725,725,726), ISTRT
725 ZZ≖XZ
    GO TO (7,79,690), IND
779 FZ=XX
     1ND=2
    GO TO 364
726 IF(ABSF(DIFF1/FINTZ)-.00001)560,560,782
782 IF(ABSF(OLD-XZ)-.001/FINTZ)560,560,783
783 IF(DIFF1)558,560,561
558 GO TO (555,559),K4
568 IF(XZ-Z(M))588,588,589
588 DIFF1=C(2)+2.*C(3)*XZ+3.*C(4)*XZ*XZ
     IF(XZ-Z(1))562,562,776
776 DO 777 I=1,M
```

```
DIF=XZ-Z(I)
    IF(DIF-.0000001)562,562,777
777 DIFF1=DIFF1+3.*C(I+4)*DIF*DIF
    GO TO 562
589 K5=3
    XMAX=C(1)
    GO TO 751
774 K5=3
    CALL FUNCT1(C(1),C(2),C(3),C(4),XZ,XMAX)
    IF(XZ-Z(1))552,552,591
591 DO 592 I=1,M
    DIF=XZ-Z(I)
IF(DIF-.0000001)552,552,592
592 CALL FUNCT2(XMAX,C(1+4),DIF,XMAX)
    GO TO 552
590 XMAX=XMAX*T
    K5=4
751 FZ=CZ(1)
    GO TO 364
750 COEF=C(1)*T
    IF(XMAX-COEF)594,593,593
593 XLARG=COEF
    GO TO 595
594 XLARG=XMAX
595 K4=1
    K5=2
    KID=1
    NCOMP=1
    XZ=0.
    GO TO 275
559 SEGVA=OLD1-XZ
    OLD=XZ
    XZ=XZ+SEGVA/2.
    GO TO 557
561 K4=2
    SEGVA=XZ-OLD
    OLD1=XZ
    XZ=XZ-SEGVA/2.
    GO TO 557
560 ZMAX=XZ*FINTZ+ZORIG
GO TO (774,774,775), ISTRT
775 CALL FUNCT1(CZ(1),CZ(2),CZ(3),CZ(4),XZ,XMAX)
    IF(XZ-ZP(1))577,577,569
569 DO 570 I=1,KS
    DIF=XZ-ZP(1)
IF(DIF-.0000001)577,577,570
570 CALL FUNCT2 (XMAX,CZ(I+4),DIF,XMAX)
577 IF(XMAX-CZ(1))578,578,579
578 XLARG=CZ(1)
    GO TO 567
```

```
579 XLARG=XMAX
 567 K4=1
      K5=2
      KID=1
      XGREA=XLARG
      IF(IDNT-4)795,794,795
  795 XZ=0.
      GO TO 360
  794 IF(BUTTK)622,690,622
  622 GO TO (212,690,623), ISTRT
  623 | STRT=1
      GO TO 212
  620 ZXZ=ZMAX
      GO TO 273
      * * A) OFFSETS OF A WATER LINE * *
C
  209 READ 102.ZT
      FINT=FINTX
      SEG=SEGX/FINTX
      RORIG=XORIG
      TOT=TOTX
      DO 236 I=1,N
  236 ZX(1)=X(1)
      ZZ=(ZT-ZORIG)/FINTZ
      GO TO 212
  405 GO TO (901,70), NCOMP
   FUNCT. T AND ITS 1ST AND 2ND DERIV
  901 CALL PROFL2 (XX,FZ,PWR1,FUPZ,FUSZ,PWR2,POINT,T,TP,TS,NCOMP)
   70 Y=C(1)+C(2)*XZ+C(3)*XZ*XZ+C(4)*XZ**3
      TDERI=C(2)+C(3)*2.*XZ+C(4)*3.*XZ*XZ
      SDER I=C(3)*2.+C(4)*6.*XZ
      IF(K2-1)406,408,408
  408 DO 409 I=1,K2
      DIF=XZ-ZX(1)
      IF(ABSF(DIF)-.00000001)409,409,252
  252 PRODCT=C(I+4)*DIF
      Y=Y+PRODCT*DIF*DIF
      TDERI=TDERI+3.*PRODCT*DIF
      SDERI=SDERI+6.*PRODCT
       IF(I-K2)409,406,406
  409 CONTINUE
  406 RDERI=(TDERI*T+Y*TP)/FINT
      SDERI=(SDERI*T+2.*TDERI*TP+Y*TS)/(FINT*FINT)
      Y=Y*T
  270 ZXZ=XZ*FINT+RORIG
      CALL PUNCH! (ZT, ZXZ, Y, RDER!, SDER!, IDNT)
  412 IF(ZXZ-TOT)497,51,51
      PUNCH 110,SIX
  51
       CALL PUNCH2 (XPLOT,Y)
       GO TO 205
```

```
497 IF(K3)52,415,52
  52 PUNCH 108, FIVE
       XPLOT=ZXZ
       K3=0
  415 IF(XZ+SEG-ZX(K2+1))416,501,501
  501 K2=K2+1
       XZ=ZX(K2)
       GO TO 432
  416 XZ=XZ +SEG
  432 GO TO (903,799), IDNT
  799 IF(XX-POINT-XGREA)552,405,405
  903 XX=XZ
       GO TO 405
C
       * * B) OFFSETS OF A FRAME OR STATION * *
  310 READ 102, ZT
       FINT=FINTZ
       SEG=SEGZ/FINTZ
       RORIG=ZORIG
       TOT=TOTZ
       DO 401 I=1,M
  401 ZX(I)=Z(I)
       XX=(ZT-XORIG)/FINTX
       GO TO 566
  101 FORMAT(4F15.8,415)
  102 FORMAT(5F15.8,15)
  104 FORMAT(2F15.8,15)
  105 FORMAT(7H IDENT.,9X,1HZ,17X,1HY,11X,10HFIRST DER.,4X,11HSECOND
DER
  106 FORMAT(14,F15.8)
  107 FORMAT(2HWL, F7.2, F14.8, 3x, 3F15.8)
108 FORMAT(8HPEN DOWN, F15.8)
109 FORMAT(2HFR, F7.2, F14.8, 3x, 3F15.8)
110 FORMAT(6HPEN UP, 2x, F15.8)
  111 FORMAT(2HLG, 13, 3x, F15.8, 3x, F15.8)
  112 FORMAT (7H IDENT., 9X, 1HZ, 17X, 1HY, 12X, 9HTOLERANCE)
  113 FORMAT(7H IDENT.,9X,1HX,17X,1HY,12X,9HTOLERANCE)
  114 FORMAT(2HDP, F6.2, F15.8, 3x, 2F15.8)
  115 FORMAT(7H IDENT.,9X,1HX,17X,1HY,11X,10HFIRST DER.,4X,11HSECOND
DER
  116 FORMAT(1X,6HIDENT.,9X,1HX,17X,1HY,7X,14HFIRST DERIVAT.)
117 FORMAT(1X,6HIDENT.,10X,1HX,17X,1HY,14X,1HZ)
  118 FORMAT(1x,6HIDENT.,9x,1HZ,17x,1HY,7x,14HFIRST DERIVAT.)
  120 FORMAT (7X, 1HA, 13X, 1HB, 13X, 1HC, 13X, 1HD, 9X, 5HSTART, 8H FINISH)
121 FORMAT (7H IDENT., 10X, 1HX, 17X, 1HZ)
  122 FORMAT(4F14.8,2F8.3)
  123 FORMAT(50H
                                                                                  )
  124 FORMAT(25H
                                                   )
```

```
125 FORMAT(8x,1Hx,14x,1HZ,14x,1HY)
      END
*1205
      SUBROUTINE PROFL2(XD.FD.EXPD1,TZPD,TZSD,EXPD2,X1,TD,TPD,TSD,NCD
)
      TD=(X1+FD-XD)/X1
      IF(TD-,00001)1,1,2
    2 DIFD=EXPD1-1.
      PROD=TD**DIFD
      TPD1=EXPD1*TZPD*PROD
      TSD1=EXPD1*(D|FD*TD**(D|FD-1.)*TZPD**2+TZSD*PROD)
      TD=1.-TD**EXPD1
      IF(TD-.00001)7,7,4
    4 DIFD=EXPD2-1.
      TDEXP=TD**DIFD
      TPD=-EXPD2*TPD1*TDEXP
      TSD=EXPD2*(D|FD*TD**(EXPD2-2.)*TPD1*TPD1-TSD1*TDEXP)
      TD=TD**E XPD2
      1F(TD-.00001)7,7,6
    7 TD=0.
      GO TO 3
    6 NCD=1
      RETURN
    1 NCD=2
      TD=1.
    5 TPD=0.
      TSD=0.
      RETURN
    3 NCD=1
      GO TO 5
      END
*1205
      SUBROUTINE PUNCH1 (ZD, XID, YID, RD, SD, ID)
      XD=XID
      YD=YID
       IF(XD)1,2,2
    1 XD=-XD
      IF(YD)3,4,4
    2 IF(YD)5,6,6
    5 YD=-YD
      GO TO (7,8), ID
    7 PUNCH 20, ZD, XD, YD, RD, SD
      RETURN
    8 PUNCH 21, ZD, XD, YD, RD, SD
      RETURN
    6 GO TO (9,10), ID
    9 PUNCH 22, ZD, XD, YD, RD, SD
      RETURN
   10 PUNCH 23, ZD, XD, YD, RD, SD
      RETURN
    3 YD=-YD
```

```
GO TO (11,12), ID
   11 PUNCH 24, ZD, XD, YD, RD, SD
      RETURN
   12 PUNCH 25, ZD, XD, YD, RD, SD
      RETURN
    4 GO TO (13,14), ID
   13 PUNCH 26, ZD, XD, YD, RD, SD
      RETURN
   14 PUNCH 27, ZD, XD, YD, RD, SD
      RETURN
   20 FORMAT(2HWL, F7.2, F14.8, 4x, 1H-, F13.8, 2F15.8)
   21 FORMAT (2HFR, F7.2, F14.8, 4X, 1H-, F13.8, 2F15.8)
   22 FORMAT(2HWL,F7.2,F14.8,3X,3F15.8)
23 FORMAT(2HFR,F7.2,F14.8,3X,3F15.8)
24 FORMAT(2HWL,F7.2,1H-,F13.8,4X,1H-,F13.8,2F15.8)
   25 FORMAT (2HFR, F7.2, 1H-, F13.8, 4X, 1H-, F13.8, 2F15.8)
   26 FORMAT(2HWL, F7.2, 1H-, F13.8, 3X, 3F15.8)
   27 FORMAT(2HFR, F7.2, 1H-, F13.8, 3X, 3F15.8)
       END
*1205
       SUBROUTINE PUNCH2 (XID, YID)
       XD = XID
       YD=YID
       IF(XD)1,2,2
    1 XD=-XD
       IF(YD)3,4,4
    2 IF(YD)5,6,6
    3 YD=-YD
       PUNCH 30, XD, YD
       RETURN
    4 PUNCH 31, XD, YD
       RETURN
     5 YD=-YD
       PUNCH 32, XD, YD
       RETURN
     6 PUNCH 33, XD, YD
       RETURN
    30 FORMAT (5HGO TO,4X,1H-,F13.8,4X,1H-,F13.8)
               (5HGO TO,4X,1H-,F13.8,3X,F15.8)
    31 FORMAT
    32 FORMAT
               (5HGO TO,4X,F14.8,4X,1H-,F13.8)
   33 FORMAT (5HGO TO,4X,F14.8,3X,F15.8)
       END
*1205
       SUBROUTINE PUNCH3 (BUTTK, XZ, ZXZ, NUMBR)
       |F (XZ) 1,2,2
     1 XZ4=-XZ
       PUNCH 126, BUTTK, XZ4, ZXZ, NUMBR
       RETURN
     2 PUNCH 119,BUTTK,XZ,ZXZ,NUMBR
```

1.0.0-2 **D-**114

```
RETURN
  119 FORMAT(2HBK, F6.2, F15.8, 3X, F15.8, 6X, 12)
126 FORMAT(2HBK, F6.2, 2H -, F13.8, 3X, F15.8, 6X, 12)
       END
*1205
       SUBROUTINE FUNCT1 (C1, C2, C3, C4, XD, YD)
       YD=C1+C2*XD+C3*XD*XD+C4*XD*XD*XD
       RETURN
       END
*1205
       SUBROUTINE FUNCT2 (YD1,C5,DIFD,YD2)
       YD2=YD1+C5*D!FD*D!FD*D!FD
       RETURN
       END
*1205
       SUBROUTINE DERIV1 (C2D,C3D,C4D,FXD,FZPD,FZSD)
       FZPD=C2D+2.*C3D*FXD+3.*C4D*FXD*FXD
       FZSD=2.*C3D+6.*C4D*FXD
       RETURN
       END
*1205
       SUBROUTINE DERIV2 (C5D,DIFD,FPD,FSD,FZPD,FZSD)
       PROD=3.*C5D*D1FD
       FZPD=FPD+PROD*DIFD
       FZSD=FSD+2.*PROD
       RETURN
       END
```

Section VII

GOBACK 3

A. OPERATING INSTRUCTIONS

This version of GOBACK will accept coefficients of two-dimensional curves, either single or double splined, as shown in Fig. D-1.

From these coefficients it will do the following:

- (1) Calculate offsets
- (2) Calculate first and second derivatives
- (3) Plot a picture of the curve

The program is written in FORTRAN for the IBM-1620 computer. In order to plot the results, one of the subroutines of Appendix F must be included in the FORTRAN compiler and the hardware requirements of Appendix F must be met.

Fortran Symbol Definitions

Symbol		<u>Pefinition</u>
RORIG	-	The x coordinate of the first point on the full size curve
SEG	-	Interval between calculated offsets on the full size curve
CA	-	Value of the offset of the first point on the full size curve
N	-	Number of coefficients in the equation without the first coefficient
L	-	Number of offsets given in the data, except the first offset
K	-	Number of specific points where offsets must be calculated (0 if none required)

CX	-	Scale factor for plotting in the x direction on the curve (lengthwise on the plotter). x plotted equals x calculated times CX
CY	-	Scale factor for plotting in the y direction on the curve (crosswise on the plotter). y plotted equals y calculated times CY
FINT	-	The interval between the first two stations on the original curve (x_1-x_0)
A	-	The coefficients of the equation
XA	-	The x coordinates of the original data offsets (stations) from Station 2 to the last station
XE	-	List of x coordinates of specific points where offsets are to be calculated in order from least to greatest x value

Input Data Cards

The description of the cards given below is in terms of the actual FORTRAN format. The standard F field description - for fixed point decimal numbers, and the I field - for integer numbers which must always be right justified, are used. The fields given come consecutively across the card.

Card Formats

	Contents	_		Card No.
Format Variable	F15.8 RORIG	F15.8 SEG	F15.8 CA	1
Format Variable	15 N	15 L	15 K	2
Format Variable	F15.8 CX	F15.8 CY	F15.8 FINT	3
Format Variable	F15.8 A			Next N cards
Format Variable	F15.8 XA			Next L cards
Format Variable	F15.8 XE			Next K cards

Output Data

The first output will be the input data punched in the same format as it was read in, except cards 3 and 2 are punched on one card. Following that, a header card will be punched and then the x coordinate, y coordinate, and derivatives of the curve as required. The curve may be plotted simultaneously with this output, or the output may be omitted and only the plot obtained.

Sense Switch Settings

Switch 1 OFF - Both the first and second derivatives of the curve will be punched

Switch 1 ON - Only the first derivative will be punched

Switch 2 OFF - The curve will not be plotted

Switch 2 ON - The curve will be plotted

Switch 3 OFF - All output will be punched

Switch 3 ON - No output will be punched

All the switch positions may be changed any time during the execution of the program to obtain partial data.

B. SAMPLE PROBLEM FOR GOBACK 3

Input Data 0.0 5.0 19.50 11 0 0.05 0_125 25.5 0.0 0.0 0.000000 -0.2068768 -0.8883194 1.7682645 Coefficients -1.9088810 2.0039195 -1.6010168 2.7202405 -0.25504729 25.5 38.25 51.0 63.75 76.5 x coordinates of original data offsets 89.25 102.0 114.75 127.5 Output

```
.00000000
                  5.0000000
                                  19.50000000
  .05000000
                   .12500000
                                  25.50000000
                                                  11
                                                         9
         .00000000
         .00000000
2345678
         .00000000
       -.20687680
       -.88831940
       1.76826450
      -1.90888100
       2.00391950
9
      -1.60101680
10
       2.72024050
11
       -.25504720
1
      25.50000000
234
      38.25000000
      51.00000000
      63.75000000
5
      76.50000000
                          (Continued on next page)
```

```
89.25000000
6
7
8
    102.00000000
    114.75000000
9
    127.50000000
                                         FIRST DERIVAT.
          .00000000
                            19.50000000
                                               .00000000
         5,00000000
                            19.50000000
                                               .00000000
         9.99999990
                            19.50000000
                                               .00000000
        15.00000000
                            19.50000000
                                               .00000000
                            19.50000000
        20.00000000
                                               .00000000
        25.00000000
                            19.50000000
                                               .00000000
                            19.5000000
        25.50000000
                                               .00000000
        29.99999800
                            19.49886400
                                              -.00075794
        35.00000000
                            19.48930300
                                              -.00337800
        38.25000000
                            19.47414100
                                              -.00608461
                            19.46167700
        39.99999900
                                              -.00836172
        44.99999800
                                              -.02155531
                            19.39101300
                            19.22961200
        50.0000000
                                              -.04465637
                            19.18208500
        51.00000000
                                              -.05046548
        54.99999900
                            18.93476200
                                              -.07254610
        59.99999800
                            18.51419200
                                              -.09466698
        63.75000000
                            18.13450500
                                              -.10726189
                                              -.11123872
-.13413327
        65.00000000
                            17.99801600
                            17.38924400
        69.99999900
        74.99999800
                            16.63805100
                                              -.16820734
        76.50000000
                            16.37656200
                                              -18060960
                            15.69371800
        80.00000000
                                              -.20901960
        84.99999900
                            14.55902700
                                              -.24369906
                            13.47049500
        89.25000000
                                              -.26771338
                            13.26826900
                                              -.27159293
        89.99999800
                            11.83795200
10.23781400
                                              -.30178948
        94.99999800
        99.9999900
                                              -.33952080
-.35672312
                             9.54177140
8.43461480
       102,00000000
      105.00000000
                                              -.38035745
                             6.46138250
                                              -.40608937
       110.00000000
                             4.50586050
                                              -.41472047
       114.75000000
       115.00000000
                             4.40217670
                                              -.41475082
                             2.34013220
                                              -.40760490
       120.00000000
                              .35073487
                                              -.38569304
       125.00000000
                                              -.36919978
       127.50000000
                             -.59364910
```

þ

C. FLOW DIAGRAM

1.0.0-2 D-127

1.0.0-2 D-123

1.0.0-2

```
GOBACK 3
D. LISTING
```

```
C
      * * 2D GO BACK -
    DIMENSION XA(100), A(100), B(100), XZ(100), XE(100), XEZ(100)
99
    READ 2, RORIG, SEG, CA
    READ 7,N,L,K
    READ 2,CX,CY,FINT
PRINT 42
    PAUSE
    IF (SENSE SWITCH 3) 360,361
361 PUNCH 2, RORIG, SEG, CA
    PUNCH24, CX, CY, FINT, N, L, K
360 X=0.
    KID=1
    IF(SENSE SWITCH 2)701,702
702 DUMMY=PLOT(11111.)
701 XX-0.
    1ND=4
    OLDX=RORIG
    Y=0.
     DO 22 I=1.N
    READ 2.A(1)
    IF (SENSE SWITCH 3)22,36
36
     PUNCH 26,1,A(1)
22
     CONTINUE
    DO 33 I=1,L
    READ 2.XA(I)
    IF (SENSE SWITCH 3) 410,39
39 PUNCH 26, 1, XA(1)
410 XZ(1)=(XA(1)-RORIG)/FINT
33
     CONTINUE
    L=L+3
    IF(K) 109, 109, 110
110 DO 104 I=1,K
    READ 2.XE(1)
    XEZ(I)=(XE(I)-RORIG)/FINT
    IF(SENSE SWITCH 3)104,112
112 PUNCH 26,1,XE(1)
104 CONTINUE
109 IF(SENSE SWITCH 3) 55,400
400 IF (SENSE SWITCH 1) 183.184
183 PUNCH 44
    GO TO 55
184 PUNCH 43
55
    YY=CA+A(1)*XX+A(2)*(XX**2)+A(3)*(XX**3)
    TDERI=A(1)+A(2)*2.*XX+A(3)*3.*XX*XX
    SDERI=A(2)*2.+A(3)*6.*XX
    IF(IND-5)100, 66,77
   YY=YY+((XX-XZ(1))**3)*A(4)
    TDER 1 = TDER 1 + 3.*A(4)*((XX-XZ(1))**2)
    SDERI=SDERI+6.*A(4)*(XX-XZ(1))
```

```
GO TO 100
   | N= | ND-1
503 DO 78 1=4, IN
    TDERI=TDERI+(3.*A(1)*((XX-XZ(1-3))**2))
SDERI=SDERI+(6.*A(1)*(XX-XZ(1-3)))
   YY=YY+((XX-XZ(1-3))**3)*A(1)
100 XX=XX*FINT+RORIG
    YR=YY
     XR=XX
    RDERI=TDERI/FINT
     SDERI=SDERI/(FINT*FINT)
203 IF (SENSE SWITCH 3)81,700
700 IF (SENSE SWITCH 1) 185,186
185 PUNCH 40, XR, YR, RDERI
     GO TO 81
186 PUNCH 40, XR, YR, RDERI, SDERI
81 IF (SENSE SWITCH 2)201,103
201 IF (SENSE SWITCH 3)202,1
202 PRINT 42
     PAUSE
     GO TO 203
103 YR=YR*CY
     XR=XR*CX
     DUMMY=PLOT(YR)
     IF(XX-XA(L-3))88,99,99
88 IF((OLDX+SEG)-XA(IND-3))87,97,197
197 IF(K)301,301,311
311 IF(K-KID)301,402,402
402 IF(XA(IND-3)-XE(KID))301,309,303
303 XX=XEZ(KID)
     if(K-KID)55,308,308
308 KID=KID+1
     GO TO 55
309 IF(L-IND)303,303,302
302 IND=IND+1
     GO TO 303
301 XX=XZ(1\0-3)
     (F(L-140)55,55,310
310 IND=100+1
SO TO 55
97 IF(K)304,304,312
312 F(K-KID)304,403,403
403 F(KA(1MD-3)-XE(KID))304,305,303
305 OLDX=OLDX+SEG
     GO TO 309
304 OLDX=OLDX+SEG
     GO TO 301
87 IF(K)307,307,313
313 IF(K-KID)307,401,401
```

1.0.0-2 D=131

```
401 IF(OLOX+SEG-XE(KID))307,306,303
306 OLDX=OLDX+SEG
     GO TO 303
307 XX=(OLDX+SEG-RORIG)/FIRT
     OLD X=OLD X+SEG
     GO TO 55
FORMAT(4F15.8)
FORMAT(15,15,15)
FORMAT(3F15.8,15,15,15)
FORMAT (16,F15.8)
2
7
24
26
     FOLMAT(8X, F15.8, 3X, 3F15.8)
40
     FORMAT(29HSET SWITCHES, THEN PUSH START)
FORMAT(16X,1HX,17X,1HY,7X,14HFIRST DERIVAT.,1X,15HSECOLD DERIVAT
42
43
     FORMAT(16x, 1Hx, 17x, 1HY, 7x, 14HFIRST DERIVAT.)
     END
```

1.0.0-2 D-132

Appendix E

PROGRAM FOR CONVERSION OF STANDARD CUBIC COEFFICIENTS FOR NUMERICAL CONTROL

CONTENTS

	F	?age
OPERATING INSTRUCTIONS		E-1
SAMPLE PROBLEM	•	E- 5
PROGRAM FLOW CHART	•	E- 6
PROGRAM LISTING		E-9

Appendix E

PROGRAM FOR CONVERSION OF STANDARD CUBIC COEFFICIENTS FOR NUMERICAL CONTROL

OPERATING INSTRUCTIONS

This program accepts coefficients of cubic equations of the standard form:

$$Y = A + BX + CX^{2} + DX^{3}$$
$$X_{1} \le X \le X_{2}$$

with the following conditions:

- (1) Y Units are feet
- (2) X units are feet
- (3) X_1 and X_2 units are feet
- (4) X, X_1 , X_2 may be scaled
- (5) The coefficients are in the normal fixed point format of FORTRAN, and are on cards as punched by GO BACK (See Fig. E-1)

These coefficients are converted to meet the following conditions

- (1) Y units in inches
- (2) X units in inches
- (3) X_1 and X_2 in inches
- (4) X, X_1 and X_2 rescaled usually to full size
- (5) The coefficients are presented in normalized, excess 50 floating point format similar to that used in SPS-I for the 1620 computer.
- (6) The origin of the equation and its limits may have been translated along the X axis.
- (7) The coefficients and limits are punched on a card along with the appropriate AUTOMAP statement as shown in Fig. E-1, and in an order such that the equation now reads:

$$Y = DX^3 + DX^2 + BX + A$$

As may be noted from the flow chart, this program contains a fairly concise

TYPICAL INPUT CARDS

TYPICAL OUTPUT CARDS

Fig. E-1 Typical Data Cards

routine for converting from fixed point to excess 50 normalized floating point in FORTRAN, as well as overcoming FORTRAN format difficulties in punching the resulting numbers.

A number of sets of coefficients, which together describe a given curve, may be processed at the same time. The AUTOMAP program requires that the first card of a particular set be punched with a different format than that of the others. The program does this automatically and also punches a curve identification number in each card of each set.

The program is written in FORTRAN II for the IBM-1620 computer. The variable word length feature of this version of FORTRAN has been used.

Integer numbers have been increased in length to ten digits. The length of floating point numbers remains at eight digits.

A. Input Data

	Symbol	Format	Card Columns	<u>Definition</u>	
1st Card	n T Sf	I10 F10.1 F10.5	1-10 11-20 21-30	No. of segments Translation Factor Scale Factor*	
2nd and Remaining Cards					
	A,B,C,D	4 F 14.8	A 1-14 B 15-28 C 29-42 D 43-56	Cubic Coefficients	
	ХВ	F8.1	57-64	Beginning Point	
	XE	F8.1	65-72	Ending Point	

^{*}The X values of the limits and assumed in the equation are multiplied by the scale factor. Thus, the scale factor for doubling the curve length would be 2 .

b. Output Data

	Symbol	Format	Card Columns	<u>Definition</u>
Each Card	D,B,C,A	4111	D 13-23 C 24-34 B 35-45 A 46-56	Converted Coefficients
	XВ	F7.1	57-63	Beginning Point
	XE	F7.1	65-71	Ending Point
	ISTA	15	73-77	Curve Identification

SAMPLE PROBLEM - CONVERSION OF STANDARD CUBIC COEFFICIENTS FOR NUMERICAL CONTROL

Inpi	t Data					
	N	T SF				
	.A 5	0.0 1.0000	c C	อ	START	FACTS
	1.000000000	6.40809230	-2.45932740	.41387163	0.000	1.99
9	4.54152120	1.09581030	.19681363	02881854	1.999	3.99
9	2.07012650	2.94935630	26657288	.00979699	3.9 99	7.99
9	6.39770760	1.32651330	06 371750	.00134469	7.999	12.00
5	6.69046240	1.25332460	05761844	.00117527	12.000	15.999

Output

	F!}	D	С	В	А	KB	ΧE
UL	=CU3/	4828741085-	-5020494395	5164080923	4983333333	0.0,	23.9
,	52	-4720012875	4916401135	5110958103	503 78 46 0 10	23.9,	47.
9,	52	4668034652-	-4922214406	5129493563	5017251054	47.9,	95.
9,	52	4593381250-	-4853097916	5113265133	5053314230	95.9,	144.0
,	52	4581615972-	-4848015366	5112533246	5055753853	144.0,	191.
9,	52						

PROGRAM FLOW CHART - CONVERSION OF STANDARD CUBIC COEFFICIENTS
FOR NUMERICAL CONTROL

1 C 0-0

PROGRAM LISTING - CONVERSION OF STANDARD CUBIC COEFFICIENTS FOR NUMERICAL CONTROL

```
*0810
     1 READ 150, N, T, SF
       T=T*12.
       ACCEPT 149, ISTA
       DO 21=1,N
       REAU 151, 4, 3, C, D, XB, XE
       MB = (MB \times 12. \times SF) + T
       XE = (XE \times 12. \times SF) + T
       CALL CUBIC (A,B,C,D,T,SF)
       J1 = 0
       J2=0
       ..3=0
       J4=0
       CALL FMT(A,J4)
       CALL FMT(B, J3)
CALL FMT(C, J2)
       CALL FMT(D, J1)
       1F(1-1)3,3,4
     3 PUNCH 152, J1, J2, J3, J4, XB, XE, ISTA
       GO TO 2
     4 PUNCH 153, J1, J2, J3, J4, XB, XE, ISTA
     2 CONTINUE
      PAUSE
       GO TO 1
  149 FORMAT(15)
  153 FORMAT(12X,4111,F7.1,1H,,F7.1,1H,,1X,15)
152 FORMAT(12HHULL =CUB/,4111,F7.1,1H,,F7.1,1H,,1X,15)
  151 FORMAT (4F14.8, 2F8.1)
  150 FORMAT(110,F10.1,F10.5)
*0810
       SUBROUTINE CUBIC (A,B,C,D,T,SF)
       A=A/12.
       B=B/SF
       C=C/(12.*SF*SF)
       D=D/(144.*SF*SF*SF)
       T2=T*T
       T3=T2*T
       A=A-B*T+C*T2-D*T3
       B=B-2.*C*T+3.*D*T2
       C=C-3.*D*T
       RETURN
       END
*0810
       SUBROUTINE FMT(CF.J)
       AF=CF
       CF=ABSF(CF)
       J = 50
     1 | F(CF-10.)3,5,2
     2 J = J + 1
       CF=CF/10.
```

```
GO TO 1
3 IF(CF-1.)4,6,6
4 J=J-1
CF=CF*10.
GO TO 3
5 J=J+2
CF=CF*1000000.
GO TO 7
6 J=J+1
CF=CF*10000000.
7 NF=CF
IF(AF)8,9,9
8 J=(J*100000000+NF)*(-1)
GO TO 10
9 J=J*100000000+NF
```

Appendix Y

PLOTTING ROUTINES

CONTENTS

Se ction	n	Page
	INTRODUCTION	F-1
I	PLOT SUBBOUTING	F-3
II	INSTRUCTIONS FOR USE OF THE PLOTTING PROGRAM	y-7
	IMPUT BATA	¥- 7
	SENSE SWITCH SETTINGS	Y-9
	PROCESURE	F-9
	SAMPLE PROBLEM	F-10
III	USE OF THE SUBROUTINE IN A PORTRAN PROGRAM	F-11
	SAMPLE PROBLEM	F-12
IA	FLOW DIAGRAM FOR PLOTTING PROGRAM	¥-14
V	LISTING FOR PLOT PROGRAM	y- 21
V I	LISTING FOR FORTRAN I SUBROUTINE	y-33
YII	LISTING FOR FORTRAN II SUBROUTINE	¥-47

Appendix F

PLOTTING ROUTINES

INTRODUCTION

When working with mathematical equations for curves, particularly if there are certain requirements on the characteristics of the curves, it is desirable to have some type of automatic plotting device. This will provide an accurate picture of the contour of the curve and permit a subjective analysis of the curve's characteristics.

The plotting device used in developing this system consists of a small digital incremental plotter (CalComp Model 560-R) which is connected directly to the IBM-1620 computer. By means of a switch, output signals normally routed to the paper tape punch of the computer can be channeled directly to the plotter instead. By feeding the plotter a series of digits (0, ..., 9) which it recognizes as instructions (See Section I of this Appendix), line increments can be drawn.

The purpose of the plotting program is to feed the plotter the series of digits which will cause the plotter to draw a line between any two given points. If enough points to describe the periphery of an object are made available to the plotting program in order, it will cause the plotter to draw a picture of that object.

Plotting routines which accept data points from two different sources are included with this report: first, the plotting program, which reads data directly from cards processed through the card reader (see Section II of this Appendix for operating instructions); and second, the plotting subroutine which is used with a master FORTRAN program.

The master FORTRAN program collects or calculates the desired data points,

1.0.0-2 F-1

and places them in certain computer memory locations It then calls on the plotting subroutine which plots the calculated points.

There are two versions of this subroutine: one is meant to be placed in a FORTRAN I subroutine deck (see the program listing in Section V of this Appendix); the other is meant for the FORTRAN II subroutine deck (see program listing in Section VI). The use and operating instructions of each of these programs are the same (Section III) only the program instructions themselves change

All of the plotting programs are written in SPS-1 for the IBM-1620 computer The subroutine programs are intended for a machine with 60-K digits of memory. The plotting program can be used with any size memory.

PLOT SUBROUTINE

METHOD

The plotter traces straight line increments along one of the eight directions (four axes) shown in Fig. 1. The increments are .01" in the X and Y directions, and .01414" for the inclined directions.

A punch tape instruction, 1, 2, 3, ..., 8, will move the plotter in one of eight specific directions. Instruction 0 will raise the pen, and 9 will lower the pen.

Fig. 1 Direction of Movement of Plotter

Given a particular quadrant (Fig. 2), and a specific point, the line connecting this point to the origin must fall in one of the five cases listed below:

Case 1 Point P: $\triangle Y = 0$ Case 2 Point Q: $\triangle X > \triangle Y$ Case 3 Point R: $\triangle X = \triangle Y$ Case 4 Point S: $\triangle Y > \triangle X$ Case 5 Point T: $\triangle X = 0$

Case 5

Fig. 2

After determining the case, the problem is reduced to positioning the point to one side of the bisector of the quadrant.

For Point P having a null or less than .005 increment in the Y direction, the procedure is as follows:

- Round off the increment at the 1/100 position by adding or subtracting .005 to its value if positive or negative respectively.
- 2. Add this rounded value to the corresponding coordinate of Point 0 and store it as the origin to determine the increment for the next point to be joined.
- Check for digit in the units position of the absolute value of the increment for fast one-inch moves.
- 4. Check for digit in the 1/10 position for fast 1/10th-inch moves.
- 5. Test for digit in the 1/100 position for single moves.

By subtracting one from the corresponding position after each move, the increment will be zero at the completion of the total move.

For Point R the procedure is the same as mentioned above for Point P with the difference that both increments X and Y ..., (Fig. 2) will be rounded off and added to the coordinates of Point O.

The method for plotting those Points Q having unequal increments in X and Y is as follows:

- Get the ratio of the smaller to the larger increment in absolute value.
- Round off the increments X and Y and add them to the coordinates
 of the Point O to use these new values as the origin to calculate
 the increments for the next point to be joined.
- 3. Approximate the line \overline{OQ} (Fig. 3) with segments \overline{OA} , \overline{AB} , etc., in the following manner.
- 4. Set an XY counter equal to .005
- 5. Add MN (Ratio x .01") to the counter
- 6. Compare the counter with \overline{AM} (= .01) (check for digit in the 1/100 position)
 - a. If the counter is greater, it means that we are closer to the actual line going through the diagonal rather than the horizontal line

$$\overline{MN} + .005 > \overline{AM}$$
 $\overline{AM} - \overline{MN} < .005$

(Note: The XY counter has to be reduced by MA after the diagonal move and the cycle goes back to Step 5.)

b. If the counter is less than MA the closest path is the horizontal line

$$\overline{MN} + .005 < \overline{AM}$$
 $\therefore \overline{AM} - \overline{MN} > .005$

(Note: The cycle goes back directly to Step 5 after the horizontal move.)

An analysis of the moves from $\ 0$ to $\ B$ of Fig. 3 will help to clarify the method

- 1. XY counter = $\overline{MN} + 005 > \overline{AM}$
- 2. Move \overline{OA}
- 3. XY Counter = $\overline{MN} + .005 \overline{AM}$
- 4. XY Counter = $\overline{MN} + .005 \overline{AM} + \overline{MN}$
 - $= 2\overline{MN} + .005 \overline{AM}$
- 5. XY Counter = \overline{LK} + .005 \overline{AM} < \overline{AM}
 - $\therefore \overline{LK} + .005 \leqslant \overline{2AM}$
 - 005 < HK LK
- 6. Move AB

Fig 3

Section II

INSTRUCTIONS FOR USE OF THE PLOTTING PROGRAM

INPUT DATA

There are three types of input cards for the plotting program:

- (1) Scaling data
- (2) Pen raising and lowering instructions
- (3) Coordinates of data points

(1) Scaling Card

If it is desired to plot the data at some scale other than $1^n = 1$ unit dimension, a scale factor must be entered with a value for scaling X and a value for scaling Y. The plotted values are determined by:

X = X (*) scale factor

Y = Y (*) scale factor

The format for this card is given below:

Card columns	Contents
1 - 9	Blank
10	Minus (-) for negative X scale factor, Blank for positive
11 - 19	X scale factor
15	Decimal point for X scale factor
20 - 27	Blank
28	Minus (-) for negative Y scale factor
29 - 37	Y scale factor
33	Decimal point for Y scale factor
38 - 80	Any alphanumeric information

If scaling is required, this card must be the first valid card of the data deck.

Only cards with a decimal point in Column 15 are recognized by this program.

(2) Pen Raising or Lowering Instruction Cards

Cards must be placed in the deck to inform the program when the plotter pen must be raised or lowered. These cards have the following format. Any card which does not have a decimal point in Column 15 is ignored.

Pen Down Card

Card Columns	1 - 10	11,	12 ,	13 ,	14,	15	16 - 38 39 - 80
Contents	Blank	5	0	0	0	•	Blank Anything
Pen Up Card							
Card Columns	1 - 10	11 ,	12 ,	13 ,	14 ,	15	16 - 38 39 - 80
Contents	Blank	6	0	0	0		Blank Anything

(3) Data Coordinate Cards

Coordinates of points to be plotted are presented one set to a card in the following format. The origin of the picture will always be the first point in the data set.

Card Columns	Contents
1 - 9	Blank or any alphanumeric information (ignored by the plotting program)
10	Minus (-) if the X coordinate is negative, blank if plus
11 - 19	X coordinate of point to be plotted
15	Decimal point of X coordinate
20 - 27	Same as Cols. 1 - 9
28	Minus (-) if the Y coordinate is negative, blank if plus
29 - 37	Y coordinate of point
33	Decimal point of Y coordinate
38 - 80	Same as Cols. 1 - 9

SENSE SWITCH SETTINGS

- Switch 1 ON All values of X and Y will be scaled by multiplying them by the scale factors given on the first card
- Switch 1 OFF Values will be plotted "full scale," that is, each inch on the plot will be equal to 1 unit of the coordinate dimensions. No scale card used.

PROCEDURE

The following sequence of events takes place when using this program:

- (1) Load program deck and data deck in card reader, including a scaling card if desired
- (2) Push load button on card reader, causing the program to load
- (3) Program loading is complete when the typewriter types the message, "Switch 1 On to Scale"
- (4) Set the switch as desired, pushing "start" will execute the program

1.0.0-2 F-9

SAMPLE PROBLEM FOR PLOTTING PROGRAM

SAMPLE		FOR	PLOTTING	
_ ,	•5		•	•5
2 6 6	•		2, 2, 6, 6, 2,	•
6.	•		2.	•
6	•		6,	•
2	•		6,	•
2				
6000			2	•
6000			Ď,	•
5 5 000			2,	•
5000			30 50 6	•
6000			O.	•
6			2	
5000	•			
5			3	•
600Ó	•		Ŏ.	•
2			6.	•
5000	•		0	•
			5	•
5	•		5	•
5	•		3	•
3 5 5 3 3	•		0 3 0 6 0 5 5 3 3 5	•
3	•		5	•

FIGURE PLOTTED FROM SAMPLE DATA

1.0.0-2 F-10

USE OF THE SUBROUTINE IN A FORTRAN PROGRAM*

The calling sequence for the plot subroutine is:

X = Any expression

Dummy = PLOTF (Y)

Where:

X = Coordinate X of the point to be plotted. This value must be on the right-hand side of the instruction preceding the plot instruction. This is to place this value in FAC (Floating Point Accumulator).

Y = Coordinate Y of the same point

Dummy = Any floating point dummy variable not used in computation

- a. Dummy = PLOTF (11111.) is an instruction that must be placed at the beginning of the program. This will set the subroutine to start, put the pen down, and ready the subroutine for a set of data.
- b. Dummy = PLOTF (50000.) will only put the pen down
- c. Dummy = PLOTF (60000.) will put the pen up

Instructions b., and c., are complete by themselves and do not require any prior inscruction.

Attention is called to the fact that the origin of the plotted figure is automatically set as the first point.

This subroutine can only handle X and Y values having up to three integers (at the moment they are stored in FAC and argument, respectively, ready to be plotted).

^{*}The User should refer to the FORTRAN Manual for the procedure to incorporate this subroutine in the library subroutines deck.

```
* * *
                   SAMPLE FORTRAN PROGRAM
                                                     * * *
C
       SAMPLE PROBLEM FOR PLOT SUBROUTINE
       JUL 10=0
       SET THE PLOT SUBROUTINE TO INITIATE
   1C DUMMY=PLOTF(11111.)
       FEAD 100, SCALK, SCALY
READ IN X AND Y COORDINATES OF THE POINT
C
   11 READ 100,X,Y
CHECK FOR PEN UP OR DOWN
       IF(X-5000.)12,13,14
       PUT THE PEN DOWN
   13 DUMMY=PLOTF(50000.)
       GO TO 11
       PUT THE PEN UP
   14 DUMMY#PLOTF(60000.)
       GO TO 11
   12 Y=Y*50.1 Y
       X=X*SC.11.X
       DUMMY-PLOTF(Y)
       GC TO 11
  100 FORMAT(8X,F15.8,3X,F15.8)
       FHD
                   SAMPLE DATA
                                       * * *
                                    2.
                                    2.
                                    6.
                                    2.
           GOOD.
           5000.
           6000.
                                    ( ,
           Been.
               5.
            suco.
                                    \theta_{\bullet}
           5000.
               3.
                                    5.
               5.
                                    5.
```

5.

NEW SAMPLE CHICET FORT

1.0 0.

Section IV FLOW DIAGRAM FOR PLOTTING PROGRAM

FLOW CHART OF PLOT SUBROUTINE

F-15

₩ (C. 5)

. ∪ **. ∪-2**

.0,0-2 F-20

OPERANDS

o o

P/L LABEL

# # 1 # * * * * * * * * * * * * * * * * * *	0562- START.a,421# 0470- 0488- 0612-	
000900026 - 3/6/63	-6-0548-0562- SCALE. PUSH START -6-0420-0470- -6-0470-0488- -6-0562-0612-	11111111111111111111111111111111111111
0000026(00000 0GRAM -	Ä	
5900274250001100000 0000011490001200000 Linear PLOT ProGram 01* * * *	SW1 0% T0	5.* 50.111111111111111111111111111111111111
1440001200275260005900274250001100000260009000269 12600114002742500000011490001200000 * * * * LINEAR PLOT PROGRAM - 3/6/63 BORG 501* 89 C0 DS 5* 194 AX US 7* 195 AY US 7* 198 SY US 7* 198 PX US 7* 199 PY DS 7*	14,04 34, PUT 41534503(50,04 600000000(64 64 64 84 84	6# 6# 6# 50.1111 1111111111111111111111111111111
275260 274250 * * 00RG 05 05 05 05	DC DAC 006243 DC 000000 US US US	15 X0 DS 14 Y0 DS 15 X1 LS 16 Y1 DS 17 ONE SH DC 111111111111111111111111111111111111
0001200 011400 * 11400 60 AAX AAX SX PX	CLEER SWITCH 006356 000000 XCNTR YCNTR YCNTR XYCNTR	Y 0 X 1 Y 1 ONE SH 1111111 ONE ST
00500440 00200260 00094 00094 00095 00098 00098	00100 00106 71005655 030# 00107 00108 00108 00110	00114 00115 00116 00117 11111111 00119 00120
60007200500360020100500 60009500264310000000200 0501 0505 00007 000 0519 00007 000 0519 00007 000 0533 00007 000 0540 00007 000	00561 00014 00100 CLEER DC 14,0# 00100-0000000000000000000000000000000	00006 00006 00006 00006 00050 1111111111
360007 260009 260009 00501 00512 00518 00526 00533	00100- 00100- 00100- 001064 000111- 0006111- 00623 00623 00623	00649 00655 00661 00717 00717 00767 00768 00779 00120J

I-ADD OP

00122 TWOSH DC 50,222222222222222222222222222222222222	-6-0894-0896- 333333333333333333333333333333333333	-6-1008-1010- 50.444444444444444444444444444444444444	00137 FIVEH DC 50,55555555555555555555555555555555555
50,2222222222222 22222222222222222 222222	127 THREH DC 50,333333333333333333333333333333333333	32 FOURH DC 50,444444444444444444444444444444444444	50,55555555555555555555555555555555555
2222 2222 2222 2222 2222 2222	5533 5333 5333 50 50 50	20 20 20 20 20 20 20 20 20 20 20 20 20 2	00 00 00 00 00 00 00
TWOSH 2222222 2222222 TWOST TWOSO	27 THREH 3333333333 28 5333333333 29 30 THRET 31 THREO	132 FOURH 1444444444 133 1444444444 34 35 FOURT	F1VEH 5555555 5555555 5555555
00122 2222222 00123 2222222 00124 00125	333 333 333 00 00		00137 555555 00138 555555 00139
00050 2222222 00050 00001 00001 2222222	00126K* 00945 00050 00127L3333333333333 00995 00050 00128L3333333333333 00996 00001 00107 00011 001007 00002	00050 44444444 00050 44444444 000011 4444444	00050 5555555555 00050 55555555555 00001

I-ADD OP

(

OPERANDS

OP

P/L LABEL

		99	.6666666666666666 50,66666666666666666666	-6-1288-1338-	-6-1238-1230-		-6-1339-1350-		-6-1350-1352-	4 SEVSM DC	-0-132-1405-1711-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-	-6-1402-1452-		-6-1452-1453-		-6-1453-1464-		-9911-1911-9-	50,8848888888888888888888888888888888888	-6-1466-1516-	88	-9-1516-1566-		1566-1567-		-6-1567-1578-		-6-1578-1580-			BSOLUTE VALUE OF	ABSOLUTE VALUE OF DELTAY*		-6-1604-1607-
OPERANDS	2,5@#	50,666666666666	\$66666666666666666666668	96666666666666666666	**************************************	11,6666666666		2,6@#)))))))))))))))))))))	777777777	*11111111111111111111111111111111111111	#6.		11,77777777		2,70+		50,88888888888888	186888888888888888	50,88888888888888	188888888888888888	1,94		11,88888888888		2,89		* 9	*9	6	6	3,004	
О	20	ည	66666 DC	9999	3	മ		ဌ	Ş	UC 7777	- - -	7777	ည)	20		2		20	8888	သ	8888	2		႘		၁		DS	08	Sa	OS	പ്പ	
P/L LABEL	FIVEO	SIXSH	9999999	9999999		SIXST		SIXSO		SEVSH	-	777777			SEVST		SEV SO		E16HH	3888888		888888			EIGHT.		E16H0		DELTAX	DELTAY	ABSDX	ABSDY	PENDMN	
P/L	00141	00142	6666666 00143	999999	77 700	00145		97100		1410-	00148	777777	00149		00150		00151		00152	888888	00153	888888	00154	,	00155		00156		00157	00158	4480	0644	00159	
I-ADD 0P	237 00002	00141N# 01287 60050 00142 SIXSH DC 50,666666666666666666	14206666666666666 337 00050	1430666666666666666	358 00001 144±	349 00011	145066666666	351 00002	1460+	401 00000 104 11,7677777777777777777	WS1 00050	148P777777777777777777777777777777777777	452 00001	140*	463 00011	150P77777777	465 00002	151P*	515 00050	152088888888888888	565 00050	1530888888888888888	566 00001	154	577 00011	155088888888	579 00002	1560#	585 00006	591 00006	597 00006	603 00006		159-0#
-	0	30	00	00	5 6	35	00	5	00	- 0	2	00	0	00	5	00	0	00	0	00	0	00	0	00	<u>-</u>	00	<u></u>	00	0	0	0	0	0	00

ţ

	-0191-2091-9-	TOLERENCE OF .005 INCH+ -6-1610-1613-												CHECK FOR DEC. POINT IN COL.		CHECK FOR PEN UP OR DOWN#																				
OPERANDS	3,92	3,5,,	#	SWITCH62*	#	3000#	3000\$	CO,CLEER-9#	PENDMN-1#	\$5666	2,10023	1,10022#	#_	2,3,10,	BEG#	JUL 10, 10015,,	AY, CLEER#	AX-5#	10029, AX#	AX-5*	10021, AX-3#	-AX, 10012#	AY-3#	10065, AY#	AY-5#	10057, 4Y-3#	FAY, 10048#	CO, 5, 10#	*624	CO, 1, 10#	SCALE#	CO, 1, 7*	GABOR#	X0,AX#	YO,AY*	BEG#
90	DG DG	20	RCTY	WATY	I	83	DORG	7	MNP T	RACD	10	2	SF	Š	BNE	βD	7	SF	INS	S.	INS	90	SF	TNS	SF	SNL	90	Σ O	ВÞ	A	8C 1	₹ O	96	ᄔ	TF.	6
LABEL	PENUP	TOLER	START						PEND	866													MISS							و						
P/L	4520	4630	10000	10001	10005	10026	10030	10035	10037	10040	10041	10042	10043	10044	10045	10036	10046	10050	10055		10065	10070	10075	10080	10085	06001	10095	10096	10097	10100	10105	10110		10120	10125	10130
			00102	00100	00000	00000		00552	00200	00500	10023	10022	00000	000-3	01200	10015	19500	00000	00512	00000	00200	10012	00000	00519	00000	00516	10048	000-3	01100	1-000	00100	-0001	01100	00512	00519	00000
•	00003	00003	000	00423	000	300		0505	1605	9666	0005	0001	1000	0002	3024	3348	0519	6050	0029	1050	0021	3444	9150	0065	0514	0057	3468	0505	3276	0505	3492	050	340	64900	065	302
0 O	*0-			39				26	38	37	52	25	32	<u></u>	147	43	56	32	22	32	12	43	32	12	32	72	43	<i>‡</i>	46	~	94	<u></u>	94	26	26	¢ 4
I-ADD	160	01612	161	162	163	165	300	300	501	302	303	304	306	307	508	309	310	312	313	314	315	316	518	319	320	321	322	324	325	326	327	328	330	331	332	333

15#

		CHECK FOR PEN DOWN#																																			TOTAL INCREMENT IN THE X DIRECTION#	
OPERANDS	10014#	10015,75,10,	PEND#	PENUP-1#	8EG#	X1,AX*	Y1, AY*	NEXT 1+	AX*	MISS#	AY*	2	CO,2,7#	ALL*	FIRST#	SX, AX#	SY, AY+	BEC#	AX,SX#	\$66*96	*16	*0*0×	AY,SY#	*66*96	+16	Y0,96*	8EG#	AX.SX#	+66*96	÷1.6		AY,SY*	*66,96	914	Y1,96*	DELIAX, X1,01#	DELTAX, XO, 01,	ABSOX, DELTAX, 03*
0 b	SF	3	BE	Ldna	30	u.	<u>.</u>	30	SF	20	SF	æ	Œ.	дθ	9E	16	T F	60	Σ	χ	SF	16	Æ	¥	SF	TF	മ	Σ	Ŧ	SF	11	Σ	T.	SF	TF	±	S	1
LABEL	JUL 10					GABOR			FAX		FAY		SCALE						FIRST									ALL								NEXT 1		
P/L	0	0		0	0	0	0	0	S	0	0	0	0	0	0	0	0	0	20030	0	0	0	Ō	0	Ö	20055	0	0	0	0	0	Õ	0	20085	0		9	Ō
	000	900	120	020	000	051	051	000	000	000	000	000	000	0 1	120	051	051	000	052	600	000	600	053	600	000	600	000	052	600	000	600	053	600	000	600	00661	†90	158
Δ.	00	00	301	160	302	990	990	376	051	318	051	326	020	367	356	052	053	302	051	600	600	190	051	600	600	065	302	051	600	600	990	051	600	600	990	01585	158	159
1-ADD OF	3348 3	3360 1	3372 4	3384 3	3396 4	3408 2	3420 2	3432 4	3444 3	3456 4	\$468 3	3480 4	3492 1	3504 ti	3516 4	3528 2	3540 2	3552 4	3564 2	3576 7	3588 3	3600 2	3612 2	3624 7	3636 3	3648 2	3660 4	3672 2	3684 7	3696 3	3708 2	3720 2	3732 7	3744 3	3756 2	03768 KO	3780 K	3792 K

	OIRECT ION#	*500*			* 002 *
	IN THE Y O	LESS THAN . X # 0* LESS THAN .			LESS THAN
	INCREMENT	FOR ABSDX LY FOR DELTAX FOR ABSDY LY	D-LTA	# ! >-	T FOR ABSDY LIT FOR DELTAY BELTAY BEL
	TOTAL	TEST TEST TEST	TEST AY-#	17# TIVE DE # 17#	TES TES TIVE 17#
OPERANDS	ABSDX,,0# DELTAY,Y1,01# DELTAY,Y0,01, ABSDY,DELTAY,01#	ABSDY, 10LER, 01, *£24,00# NEXTS, 0# DELTAX, ZER01,01, NEXT2,0# ABSDY, 10LER, 01,	*£24,,0# NEXT6,,0# DELTAY,ZERO],0[, NEXT3,,0# E DELTAX AND DELTAY XOUT,SEVSO-1,0[7# YOUT,FIVEO-1,017# XYOUT,SIXSO-1,017#	GOXY2E6,SIXSO-1,0 GOGG,,0# E DELTAX AND POSI XOUT,SEVSO-1,017# YOUT,ONESO-1,617# XYOUT,EIGHO-1,017 GOXY2E6,EIGHO-1,0	ABSDY, TOLLR, 01, *624, 04 NEXT6, 04 DELTAY, ZERO1, 01, NEXT4, 04 E DELTAX AND NEGA XOUT, THREO-1, 0174 YOUT, FIVEO-1, 0174 XYOUT, FOURO-1, 0174 GOXY226, FOURO-1, 077
00	91 × 1 9		BB CC BP ATIV TFM	1 F M A T I V I F M I F M I F M I F M I F M I F M I F M I F M I T I V I I I I I V I I I I I V	C B B B C C C C C C C C C C C C C C C C
LABEL			+ -NEG	* -NEG NEXT3 * -POS	NEXT2
1/d	1690 1700 1710 1720	1740 1750 1760 1770 1780	1810 1810 1820 1830 1840 1850 1860	1880 1890 1900 1910 1920 1940 1950	1970 1980 1990 2000 2010 2030 2040 2060
	000 066 065 159	01612 01100 00000 00643 01100	110 000 006 100 110 125 135	150000000000000000000000000000000000000	01612 01100 00000 00643 01100 -1236 -1122
	159 159 159 160	01597 01597 05604 01585 04304	396 585 159 104 404 404 478 463	501 427 4478 463 501	01603 04140 05856 01591 04224 04410 04782
ao o		TAEAEA TA A O E O E	EEXE DOD	שרררר צר	TOOLO OOOO
I-AD(380 381 382 384 384	03854 03864 03876 03900 03912 03924	393 394 394 397 399 400 400	# # # # # # # # # # # # # # # # # # #	04104 04116 04128 04128 04164 04164 041164

,				;		ć	
1-400	a o	۵.		7,4	LABEL	a O	UPEKANDS
				- 6		;	
04212	Σ	04272	00000	2010		20.	
				2080	* + POS	<u> </u>	L UELIAX AND DELIAY-#
42		01:4	ı	2090	NEXT	E.	XOUT, THRE0-1,017#
42		0478	0	2100		X.U.L	YOUT, ONESO-1, 017 +
42		0463	7	2110		X L	XYOUT.1x0S0-1.017+
42		0501	0	2120		M L	GOXY266, TWOSO-1, 017#
42		0159	0		0909	ں	ABSDX, ABSDY, 01, TEST FOR BIGGER INCREMENT#
04284	¥	05052	01200	N		H.	OK • • 0 *
42		0468	Ö			8N	Y816ER**0*
		 			* -DEL	TAX	GREATER THAN DELTAY-+
43	7	600	0	2220		רם	
04320	2R	00007	01597			a	97, ABSDX, 1#
43	M	600	00			SF	
43	¥	063	0			7	RATIO,93,0, RATIO DELTAY/DELTAX#
4.3	₹.	505	00			80	
					* -DEL	TAX	GREATER THAN DELTAY-#
436		0061	C	2280		u.	XCNTR.DELTAX-1.01. SET XCOUNTER EGUAL TO DELTAX#
438		0062	00	2290	602	⋖	
04392	¥		00	2300		80	GOXY1, XYCNTR-3,01, TEST FOR DIGIT IN XYCOUNTER#
011		0000	0	2310		IdNa	#
44		0000		2320	XOUT	DS	5,4-5
177	7	00617	ŏ		603	S	
442	7	00617	ĭ			C	XCNTR,0,07, TEST FOR LAST MOVE*
11 11 11	N N	04380	0	2350		85	602,**U*
				2360	NIH- *	AL A	THE Y DIRECTION-#
04452	Σ	04548	01591	2370		BNF	5
				2380	* -NEG	ATIV	E DELTAY-≉
944		0159	ŏ			ں	DELTAY-1, YCNTR-1,01, TEST FOR FINAL ADJUSTMENT#
747		0522	ō			ee Ee	CLEAR,,0#
844		0452	0			S S	*636,,0
04500	8	01236	00200			LdNX	FIVE0-1,,0#
451		0522	ŏ			90	CLEAR,,0#
452		0078	00			I dra	ONESO-1,,0#
453		0522	00			~	CLEAR,,0≠
					* -P0S	ITIV	E DELTAY-#
454		0.15	0			ပ	DELTAY-1, YCNTR-1, 01, TEST FOR FINAL ADJUSTMENT#
04540	Ð	052	01200			BE	CLEAR,,0#
457		70	0			Z Z	*6.36**04

OPERANDS	ONESO-1,,0# CLEAR,,0# FIVEO-i,,0# CLEAR,,0#	N XYCOUN +	5,*-5+ XYCNTR,1000,08+	YCNTR, 10, 010+ GO5, .0+	LARGER THAN DELTAX-+	97. ABSDY. 1#	91	RATIO,93,0#		**		Te MOD	60XYZ+XYCNIK-3+01+ +	S	YCNTR, 1,010*	YCNTR,0,07, TEST FOR LAST MOVE*	004**0	IRECTION-#				*636**0	SEVSO-1,,04	CLEAR, O #	THRE0-1,00#		E DELTAX-#	DELIAX-1, XCNTR-1, 01, TEST FOR FINAL ADJUSTMENT#
do	R N N N N N N N N N N N N N N N N N N N		OS SM	Α A M			SF	11	ß		<u>ц</u> .	d 0	E S	ūS	S	X.	86	AL A	ATIV	ن	ВĒ	S N	F d N.M	ග	FUND	80	ITIV	ပ
LABEL		* -DIG	XYOUT		* -DEL					* DELT	•	†09		YOUT	605			* -FIN	* INTEG) !							* - p0s	
P/L	2500 2510 2520 2530	2540 2550	2560 2570	2580 2590	2600	2620	2630	2640	2650	2660	2670	2680	2700	2710	2720	2730	2740	2750	2770	2780	2790	2600	2810	2820	2830	2840	2850	2860
	00200 00000 00200 00000	0200	1000		1507	01603	0000	0093	0000	4	1590	0657	00200		00-1	0000-	1100	01595	000	9190	1200	1300		0000	0200	0000		91900
	00780 05220 01236 05220	000	00005	062 441	7000	26000	0031	0637	5052	3	790	290	00000	000	062	062	475	00000	7	1584	5220	9684	19410	5220	1008	5220		01584
d O O	3 L 3 L	38		- 6 - 8	_	2 K	7	9	~	(<u>.</u>	-	. w		N	オつ	9	2					-8				;	X :
I-ADD	04584 04596 04608 04620	463	04644	465 466	468	04692	470	1 2 1	472		コード	# (5 1,4	04776	478	4 78	480	48	40840	4	4836	8484	1860	04872	4884	9684	8064	(04920

OPERANDS	#£36,04 THECO-1:,04 CLEAR:,04 N XYCOUNTER #DELTAY LARGER THAN DELTAXD-+ # XYCOUNTER #DELTAY LARGER THAN DELTAXD-+ # XYCOUNTER #DELTAY LARGER THAN DELTAXD-+ # XYCOUNTER #DELTAY-4 GOS,:04 BELTAX,04 DELTAX,04 DELTAX,04 DELTAX,04 DELTAX,04 DELTAX,04 DELTAX,04 DELTAX,04 DELTAX,04 DELTAY,05 DELTAY,01 DELT
0 b	BUNNA DIMAMAMAN AND ALMAN AND AND AND AND AND AND AND AND AND A
LABEL	* -DIG GOXY2 * -DEL OK • -CLE CLEAR * DELT XYGO
P/L	22880 22890 22890 22890 22890 22890 22890 22890 23880 23880 23880 23880 23880 23880 23880
	001300 00000 000000 000000 00000 00000 00000
	1008 1008 1008 1008 1008 1008 1008 1008
d0 i	00000 0000 0000000000000 0000 0000 000000
I-ADD	04944 04968 04968 04992 04992 05016 05016 05018 0518 05

	TEST FOR DIGIT IN THE TENS POSITION# TEST FOR DIGIT IN THE UNITS POSIT.# TEST FOR DIGIT IN THE 1/10 POSIT.# TEST FOR LAST SINGLE MOVE#	TEST FOR LAST 1/10 INCH MOVE#	FOR LAST ONE INCH MO	TEST FOR DELTAY EQUAL ZERO* TIVE DELTAY-* ROUND OFF DELTAY*
OPERANÚS	TENS, XCNTR-4,01, UNITS, XCNTR-3,01, TENTHS, XCNTR-2,01, XCNTR-1,0,07, CLEAR, 10+ + 5,*-5+ XCNTR-1,1,010+ IAST. 04	XCNTR-2,0,08, LAST,04 # 5,*-5+ XCNTR-2,1,010+ TENTHS,04	* *	11, NEGA 017+ 017+
ò	80 80 80 CM CM 8NP 8NP SM	-	CCM B B B B B B B B B B B B B B B B B B B	B B B B B B B B B B B B B B B B B B B
LABEL	FAST LAST FILLI	TENTHS FILL2	UNITS FILL3 TENS FILL4 FILL4 NEXTS	+ -DEL
P/L	3260 3270 3280 3280 3280 3380 3380 3380	3350 3350 3370 3380 3390 5400	34.20 34.20 34.20 34.50 34.50 34.70 35.00	3550 3550 3550 3550 3550 3550 3550 3550
	0613 0614 0615 0000 1100 0200	200	00-00 0200 0200 00-1 0000 0200 0200	000000 000000 00000 00000 01100 -1236 -1225 -1225 0000-5
	555 555 552 552 552 552 553 553 553	5388 5388 5000 5005 5005 5448	5 3 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	05540 05220 05220 01591 05418 05478 05538 05538
0 O	しししゅて 80			50000 6396 50000 6396
I-ADD	533 533 533 533 533 533 533 533 533 533	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		05616 05628 05640 05640 05676 05688 05700 05712

PERANDS		ZERO AND POSITIVE DELTAY-#	ONESG-1,017+	•ONEST-10.017*	,ONESH-49,017*	,FILL3,01	Y,5,010, ROUND OFF DELTAY#	**O*O*	-1, DELTAY-1, 01, SET XCOUNTER EQUAL TO DELTAY*	LIAY,01, ADJUST YO#	*0			DELT	\sim	**0*0*11#	,SEVSO-1,017#	•SEVST-10•017#	*SEVSH-49.017*	,FILL.3,01#	-1, DELTAX-1, 01, SET XCOUNTER EQUAL TO BELTAX#	LTAX,01, ADJUST X0*	*0	ZERO AND POSITIVE DELTAX-#	,THRE0-1,017*	*THRET-10*017*	• THREH-49.017 *	,FILL3,01#	x,5,010, ROUND OFF DELTAX*	*0*0*x	XCNTR-1, DELTAX-1, 01, SET XCOUNTER EQUAL TO DELTAX#	LTAX,01, ADJUST X0*	*0	**	-8-0096-0115-	5003600000000500 021610050015102006021814200* -	090012141618151811242720242# -
OPERANDS		IVE	1.0NESO-1.017#	2, ONEST-10,017	3, ONE SH-49, 017#	FILL4, FILL3,01*	OUND OFF	1	Y-1,01, SET XCOUNTER	YO, DELIAY, 01, ADJUST YO#	*0	R0-#		DELT	OFF	DELTAX,0,011*	FILL1, SEVSO-1,017#	2.SEVST-10.017*	3,SEVSH-49,017*	FILL4.FILL3.01#	<pre><-1,DELTAX-1,01,SET XCOUNTER EQU</pre>	ELTAX,01, ADJUST X0+	#0.	EQUAL ZERO AND POSITIVE DELTAX-#	1, THRE0-1,017*	2,THRET-10,017#	3,1HREH-49,017#	+,FILL3,01#	DELTAX,5,010, ROUND OFF DELTAX	DELTAX,0,0*	R-1, DELTAX-1, 01, SET XCOUNTER EQ	ELTAX,01, ADJUST X0#	*0*	#			090817263000000000005060708090012141618151811242720242# -
90		TAX EQUAL		TFM FILLS	TEM FILL	TF FILL	AM DELTA	TDM DELTA	TF XCNT					_	SM DELTA	TOM DELT			*		TF XCNT	A XO.DE					5			I	TF XCNTS	A X0,UE	B FAST, 10#	DEND START#		0036003160(60902100408	000020000
LABEL		* -DEL		•					NEXTY	7				* -DEL		•	•							DEL	NEXT66										#	00244005	93000009
P/L	3640	3650	3660	3670	3680	3690	3700	3710	3720	3730	3740	3750	3760	3770	3780	3790	3800	3810	5820	3830	3840	3850	3860	5870	3880	3890	3900	3910	3920	3930	3940	3950	3960	20905	#000006)500 36	908172
	00000		Ö	ō	990	553	00	00	159	01591	000		01585		00	000	146	145	13	553	01584	158	000		õ	-0997	89	53	6	õ	58	58	0			02030400	\sim
	05820		54.1	245	553	558	159	159	190	00655	535		05976		158	158	54.1	2 74 5	553	558	00616	190	535		541	05478	553	558	158	158	90	190	535		9	200	306
0 O	δ W		ဝိ	9	9	Š	=	75	Š	Z	Š		ĭ		75	35	9	ဝှ	9	8 0	×	3	OX.		9	9	9	Š	5	5	Ŷ	¥	٥ ع		۲6	0000000	820
I-ADD	05736		574	576	577	578	579	580	582	05832	584		05856		586	588	589	590	591	592	07650	595	596		597	05988	909	601	602	603	409	909	607	161	060	00	1 70
1.0.0	٠2																																			F-3	1

(

(

822363520353045403632484455324946536048465462*f*54453627180123456789123456† 789-23456789-J3456789-JK456789-JKL56789-JKLM6789-JKLMN789-JKLMN89-JKLMN* #800000000000049-16140P9-JKLMNOPQ‡ L10038800019M900000000000M9003600000

9 P/L LABEL

OPERANDS

1.0.0-2

I-ADD OP

F-32

Section VI - LISTING FOR FORTRAN I SUBROUTINE

OPERANDS

o

P/L LABEL

1

(

			000	* P	01 S	UBROUTINE - FORT	RAN FORMAT 12/14/62#
			00010		DORG	\$000	0010 00RG 5000*
	502	82	0020		1 F	BOX, AKC, 0,	STORE ADRESS OF THE ARGUMENT IN BOX#
о У	966	05023	0030		<u>u.</u>	Y,80x,01*	
	000		©±00	80X	DS	5,**	
7	966	-00	0020		Š	Y.5.010;	TEST FOR CHARACTERISTIC EQUAL 5#
X.	521	_	0060		BNE	*E180.,0#	
¥	507	502	0020		<u>u</u>	BOX2, BOX, 01*	
×	507	993	0.800		s	BOX2, FF, 01,	ADJUST FOR FIELD LENGTH#
す	000	00000	0600		Š	,50,010,	TEST FOR PEN DOWN#
	000		0010	B0X2	DS	5, *-5	
Z.	512	120	0110		BNE	*636,,0#	
نــ	066	020	0120		FUNT	PENDWN-1,04	
#	000	000	0130		98	#	
	515	502	0140		1	BOX5,50X,01#	
×	515	09931	0.150		s	BOX3, FF, 01,	ADJUST FOR FIELD LENGTH#
7	000	000	0160		Σ	,60,0,00	TEST FOR PEN UP+
	000		0110	B0X3	30	5,*-5*	
Σ	519	120	0180		BNE	*636,,0,	BRANCH TO INITIATE#
- 1.8	R0660	00200	0160		MNP T	PENUP-10#	
#	000	000	0200		88	#	
			0210	Z	ITIA	TION-+	
ד	966	000	0220		TFM	CO.0.07,	CLEAR COUNTER 10 ZERO#
SE -	05096	00000	0230		8	*-108:,0	
×	992	891	0240		4	AX, ZEKO1, 01,	CLEAR AX TO ZERO#
¥	366	891	0250		1 F	AY, ZERO1, 01.	CLEAR AY TO ZERO*
7	502	-00	0560		S	BOX,2,010*	
¥	527	502	0220		<u> </u>	BOX1, BOX, 01#	
¥	968	527	0280		TF.	Y-2,80x1,01,	STORE MANTISA OF THE ARGUMENT#
	000		0290	80X1	DS	5,**	
7	966	-00	0300		Š	CO,2,010,	TEST FOR COUNTER EQUAL 24
	531	120	0310		θE	* 624 , , 0 +	
7	966	000	0320		Æ	CG,1,07#	
2 Z	900	09915	0330		ပ	FAC. EX. 1,	TEST FOR X EQUAL ZERO#
Σ	534	120	34		u.V.	M185,00	
					ׅׅׅׅ֝֝֝֝֝֝֝֝֝֝֝֝֝֝ ֡		

1-ADD OP

	BL	OR X WITH 2 INTEGERS#			FOR X WITHOUT INTEGERS#			OR CHARACTERISTIC OF X # -2#			#0 FOR CHARACT. LESS THAN -2	Y EQUAL ZERO#			OR X EQUAL ZERO#			FOR Y WITH 2 INTEGERS#			FOR Y WITHOUF INTEGERS#			FOR CHARACTERISTIC OF Y # -24			#U FOR CHARACT. LESS THAN -2		OF X WITH 3 INTEGERS+#		FOR FIELD LENGIH#					OF X WITH 2 INTEGERS-#		FOR FIELD LENGTH#
		1ESI F			TEST F			TEST F			SET AX	TEST FOR			TEST FO			TEST			TEST F			TEST F			SET AY		TO VALUES		ADJUST					TO VALUES		ADJUST
OPERANDS	10h OF X AND	FAC, EX2, 1,	GABOK, 0 *	FIX2,,0#	FAC, EXO, 1,	FIX1,,0#	FIX0,,0#	FAC, EXMZ, 1,		FIXM2,,0#	AX, ZERO1, 01,	Y, EX, UI,	*E60,,04	AY, ZE401,014	FAC, Ex, 1;	FIRST,,0+	F , , 0 +	Y, EX2, 01,	FIXY3 , +0+	FIXY2,,0#	Y, EX0, 01,	FIXY1,,0#	FIXYO,,0#	Y, EXM2,01,	FIXYM1,,0#	FIXYM2,,0+	AY, ZEROI, 01,	F,,0#	CORRESPONDING	80X4, FAC, 07#	BOX4, FF, 01,	80X4,4,010#	AX,,0#	5,**	6, 0,	CORRESPONDING	80X5, FAC, 07#	60X5, FF, 01,
90 0	VERT	ں	ъ С	δĒ	ں	ВΡ	BE	J	86	κE	TF	ر	BNE	<u>٦</u>	ں	BE.	20	ن	6.	ВĒ	ں	8 b	θĒ	ပ	ВР	æ w	-	æ.	LION	Z L	S	¥.	느	SO	r ∆		TFN	S
LABEL	* -C0₽	MISS										وي																	* SEC	GABOR				80×4		* - SEC	F1x2	
P/L	0370	0380	0390	0400	0410	0450	0430	0440	0年20	0940	0410	0480	0640	0200	0510	0550	0530	0540	0550	0990	0250	0580	0280	0090	0610	0620	0630	0490	0690	0990	0670	0890	0690	0010	0110	0720	0730	0140
		66	2	120	991	1 10	120	166	10	120	891	166	120	89.1	166	120	000	661	110	120	09913	110	120	166	7.0	120	891	000		900	12660	-00	000		00000		-0900	993
		900	567	573	900	580	587	900	969	900	992	966	554	992	900	651	240	966	809	614	19660	621	628	966	635	647	992	647		573	271	571	992	90000	949	1	05779	211
90		Š	Ø W	¥	Š	9 ¥	φ ¥	E V	Σ Ç	₽	×	ž.	Σ	Š	23.2	Ø E	Z.	Σ	Ø ¥	9	X X	Š	Š	¥	O Z	Š	3	Σ		9	X X	=	Х Ф		œ Σ		9	
I-A00		5.54	536	537	538	539	540	545	543	244	545	546	548	540	550	551	552	554	555	556	05576	558	560	561	562	563	564	999		567	568	898	570	05719	572	1	05732	£ 2 5

					,	ING TO VALUES OF X WITH 1 INTEGER-#		ADJUST FOR FIELD LENGTH#						ING TO VALUES OF X WITHOUT INTEGERS-#		ADJUST FOR FIELD LENGTH#						ERISTIC OF X #-1 -#		ADJUST FOR FIELD LENGIH#					EKISTIC OF X #-2 -4		ADJUST FOR FIELD LENGTH#						OF Y WITH 3 INTEGERS-#	
OPERANDS	80X5, 3,010#	AX 0 *	5,**	AX-40.0#	6,,0	CORRESPONDI	BOX6, FAC, 07#	BOX6, FF, 01,	BUX6,2,010#	AX,,0#	5,**	AX-3, 10+	¢,,0,	CORRESPONDING	BOX7, FAC, 07	80X7, FF, 01,	80X7,1,010#	AX ; , 0 \$	2,**	AX-2,,0#	0,00	FOR CHARACTERISTIC	80X8, FAC, 07#	BOX8, FF, 01,	AX,,C#	5,**	AX-1,,0+	61.04	FOR CHARACTERISTIC	BOX9, FAC, 07#	80X9, FF, 0;	BOX9, 1,010*	AX.,0*	5,**	AX,,0#		VALUES	BOX 10, Y, 017#
d O	¥	. . 1	0.5	r.	c	TION	TFM	S	M	ŭ.	50	E.	r	LION	T.	S	A M	L L	DS.	S.			TER	S	Ŧ	SG	Ľ.	9	110N	TEM	s	SE	2	08	S.	8	LION	X.
LABEL			BOXS			* -SEC	FIXI				9X09			* -SEC	FIX0				80x7			* -SEC	FIXMI			вохв			* -SEC	FIXM2				80×9			* -SEC	FIXY3
P/1	0220	0910	0770	0810	0620	0800	0810	0820	0830	0480	0880	0990	0K70	0880	0830	0060	0610	0420	0630	0460	060	0960	0250	0860	0660	1000	1010	1020	1030	1040	1050	1060	1070	1080	1090	1100	1110	1120
	000-3	00000		00000	00000		-00060	09931	000-2	00000		00000	00000		-0060	18660	000-1	00000		00000	00000		-0000	18660	00000		00000	00000		-0000	09931	1-000	00000		00000	00000		1966-
		\sim	00000	-	•		585	585	05851	992	000	992	246		265	05923	265	992	000	992	949		868	05983	992	000	865	246		605	06055	605	992	000	992	246		06127
do o	_	¥		15	٥٠ ک		ç	×	_	Ϋ́		L 3			9	¥	5	* 0		L 3			9	¥	¥		6 3			96	¥	75	*		L 3) I		0
I-ADU	575	576	05179	578	579		580	54.1	05828	584	585	585	586		587	05888	290	591	592	265	593		294	09650	597	598	598	599		909	06020	603	†09	605	605	60 6	,	0 0 0 8 0

1.0.0.2

	ADJUST FOR FIELD LENGTH#					Y WITH 2 INTEGERS-+		ADJUST FOR FIELD LENGIH#						Y WITH ! INTEGER-#		ADJUST FOR FIELD LENGTH#						MITHOUT INTEGERS-#		ADJUST FOR FIELD LENGTH#						STIC OF Y #-1 -#		ADJUST FOR FIELD LENGTH#					STIC OF Y #-2*	
OPERANDS	80x10, FF, 01,	BOX 10,4,010#	AY,,014	5,**	f * * O *	u.	BOX11,7,017	BOX11, FF, 01,	BOX11,3,010#	AY.,014	5,**	AY-4000	F,,0*	u.	BOX12,Y,017	BOX12, FF, 01;	BOX12,2,010#	AY,,01+	2**	AY-3, 00	F,,0+	FOR VALUES OF Y	B0x13,Y,017#	BOX13, FF, 01,	BOX13,1,010	AY , , 0 1 +	5,**	AY-2,00	F.,0#	FOR CHARACTERISTIC	80x14,Y,017#	BOX14, FF, 01,	AY,,01#	5,**	AY1,.6#	F,,0#	FOR CHARACTERISTIC	80X15,Y,017
90	s	AM	1F	OS		LION		S	X.			CF.		110N				u.	0S			7	Z L	S	¥.	<u>ч</u>	SO	CF	£	LION	¥.L.	s	<u> </u>	08	F.	Я	NOTE	T T
LABEL				8CX 10		* ~SEC	FIXY2				80×11			* SEC	FIXY1				80×12			* -SEC	F1 XY0				80×13			* -SEC	FIXYMI			BOX 14			* - SEC	FIXYMZ
P/L	1130	1140	1150	1160	1170	1180	1190	1200	1210	1220	1250	1240	1250	1260	1270	1280	1290	1300	1310	1320	1330	1.340	1350	1360	1370	1380	1390	1400	1410	1420	1430	0 11 11	1450	1460	1470	1480	1490	1500
	09931	4-000	00000		00000		-9961	18660	000-3	00000		00000	00000		1966-	15560	000-2	00000		00000	00000		1966-	18660	000-1	00000		00000	00000		-9961	09931	00000		00000	00000		-966
	6127	6127	04924	8	₹9		5810	6187	06187	9929	8	9925	9449		6529	06259	6259	6366	9	9926	91 49		6331	06331	6331	6266	00	66	\$		6391	1659	6656		9928	9149	;	06463
90	×	=	Š		⊙		9	¥	=	Š		ر ا	Š		9	퐀	_	Š		23	Σ O		9	X X	<u> </u>	Š		Ü			9	¥	Š			Š		9
1-ADG	609	010	06116	612	612		6 14	615	06164	617	8 8	618	620		621	06224	623	624	625	626	627		628	06296	6.50	632	633	633	634		635	636	638	06391	639	049		06416

	ADJUST FOR FIELD LENGTH*					TEST FOR NEGATIVE X#	FOR		TEST FOR COUNTER EQUAL 1#		INITIAL VALUE X0#						TOTAL INCREMENT IN THE X DIRECTION*				TOTAL INCREMENT IN THE Y DIRECTION+			TEST FOR ABSDX LESS THAN .005#			TEST FOR DELTAX # 0#		TEST FOR ABSDY LESS THAN .005#			TEST FOR DELTAY # 0#		1 A Y \$	**	· H-	!	*210
OPERANDS	BOX15, FF, 01,	B0x15,1,010#	AY,,01#	5,**	AY,,0#	AX, FAC-2,0,	FIRST, Y-2,01,	AY0*	CO, 1, 07,	ALL,,0#	X0,AX,U1,	Y0,AY,01,	#	X!,AX,01#	Y1,AY,01+	DELIAX,X1,01*	DELTAX, XO, 01,	ABSUX, DELTAX, 01#	ABSDX,,0#	DELTAY, Y1,01+	DELTAY, YG, 01,	ABSDY, DELTAY, 01+	ABSDY,,0#	ABSDX, TOLER, 01,	*624,,0+	NEXT5,,0#	DELTAX, ZERO1, 01,	NEXT2,,0#	ABSDY, TOLER, 01,	*£24,,0*	NEX16,,0#	DELTAY, ZERO1, 01,	NEXT3,,0#	E DELTAX AND DELTAY	XOUT, SEVSO-1,017	YOUT . FIVEO-1,017	XYOUT, SIXSO- 1,017	G0XY266,51XS0-3,017
ď	S	X.	ជ	OS	F)	¥.	BNF	SF	Š	вР	1F	<u>ب</u>		u.		u.			ل					ں	θЬ	10	ပ	8P	ں	86	œ	ں	99	ATIV		Z L	TFM	TFM
LABEL				BOX 15		u.			FIRST					ALL		NE X I 1																		# -NEG				
P/L	S	1520	3	J.	5	S	2	1580	5	•	1610	Ŷ	Q	9	9	O	Ŷ	1680	•	^- -	~	~	~	1740	~	7	~	1780			1810					1860		1880
	993	0000-1	000		000	005	995	000	000	110	992	992	000	942	992	968	468	988	000	896	895	696	000	19660	110	000	891	110	966	110	000	891	2		76	-9536	65	965
	9 # 9	06463	992	000	992	992	651	992	966	559	894	895	000	896	896	988	988	989	989	686	989	066	066	686	672	843	988	693	066	678	868	989	687		723	07610	746	783
o C		12			7	۵	Ī	12	オつ	Š	Š	S S	74	Ŷ	¥	¥	¥	×	57	S ¥	¥	2	ا ا	X	Ş	Š	X	Q X	X	¥	رن ¥	¥	ě		9	Ö	S	9
1-ADC	642	04490	645	949	949	249	648	650	651	652	653	654	656	657	658	659	999	662	663	499	665	666	668	699	670	671	672	674	675	676	677	678	680		681	06824	683	489

1-ADD OP 10-ADD OP 1		POSITIVE DELTA Y-#			#	*017*			TEST FOR ABSOY LESS THAN			TEST FOR DELTAY # 0+		ITIVE DELTAY-#			*	174		_AY-+			#	17*	TEST FOR BIGGER INCREMENT#			'AY-#				RATIO DELTAY/DELTAX#		>	I, SET XCOUNTER EQUAL 10 DELTAX		•	
1-ADD OP 6860 M9 07100 00000 1890 6872 J0 07234 -9764 1910 NEXT3 6884 J0 07610 -9080 1920 6886 J0 07610 -9080 1920 6986 J0 07610 -9080 1920 6996 J0 07838 -9878 1940 6950 M9 07100 00000 1950 6944 M6 06966 01100 1990 6956 M9 06684 00000 1990 6998 KM 09891 08917 2000 6998 KM 09891 08917 2000 6990 M6 07052 01100 2010 7016 J0 07238 -9308 2030 7026 J0 07238 -9308 2030 7026 J0 07610 -9080 2100 7076 J0 07610 -9080 2100 7076 J0 07650 -9194 2120 7124 M7 07508 01300 2200 7134 S2 00091 00000 2240 7136 ZQ 00096 09903 2220 7148 ZR 00097 09897 2230 7196 XC 08923 09884 2280 7196 XC 08923 09884 2280 7220 ML 07460 08932 2300 7220 ML 07460 08932 2300	OPERANDS	AND	50-1,	YOUT, ONE SO-1, 017#	XYOUT, EIGHO-1,017	GOXY246, E1GHO-1,0	*0*	DELTAX	ABSDY, TOLER, 01,	*£24,,0#	NEX16:00	DELTAY, ZEROI, 01.	NEXIt : +0+	E DELTAX AND NEGA	XOUT, THREO-1,017#	YOUT, FIVEO-1,017#	XYOUT . FOURO-1,017	GOXY266, FOURO-1, 0	000000000000000000000000000000000000000	E DELTAX AND DELT	XOUI, IHREO-1,017#	YOUT ONE SO-1,017#	XYOUT, TWOSO-1,017	GOXY246.TWUSO-100	ABSDX, ABSDY, 01°	0K.,0#	Y816ER,,0*	_	96,ABSDY,1#	97, ABSDX, 1#	+16	RAT10,93,0,	OK , , 0 #	GREATER THAN DELT	XCNTR+DELTAX-1:01	XYCNTR, RATIO, 61,	GOXY1, XYCNTR-5,01	++
11-ADD OP 6860 M9 07100 00000 1890 6872 J0 07234 -9764 1910 6884 J0 07610 -9680 1920 6896 J0 07466 -9878 1940 6920 M9 07100 00000 1950 6932 KM 09903 09964 1970 6942 M9 07100 00000 1990 6956 M9 06684 00000 1990 6958 KM 09891 08917 2000 6958 KM 09891 08917 2000 6950 M9 07100 2010 7028 J0 07238 -9308 2030 7028 J0 07238 -9308 2030 7028 J0 07238 -9308 2030 7026 J0 07610 -9536 2040 7026 J0 07610 -9536 2040 7026 J0 07638 -9194 2120 7026 J0 07630 00000 2200 7126 KM 09897 09903 2250 7136 ZQ 00091 00000 2260 7172 K6 08943 00093 2250 7196 KC 08923 09884 2280 7220 ML 07460 08932 2300	O.D				TFR	7.1	aŭ	AIII	ر ر	θÞ	တ	ر	80	ITIV	NH.	ΣH	ΣL	TEM	α	1 T I V	ΣUL	TFM	¥ 14 14	15%	Ų	e E	9 <u>N</u>	TAX	0	9	SF	16	8	TAX	11	۷	30	KNDI
1-ADD OP 6860 M9 07100 00000 18 6872 J0 07234 -9764 19 6884 J0 07466 -9878 19 6920 M9 07100 00000 19 6920 M9 07100 00000 19 6932 KM 09903 09964 19 6956 M9 07100 00000 19 6958 MM 09891 08917 20 7028 J0 07238 -9308 20 7028 J0 07238 -9308 20 7026 J0 07238 -9308 20 7026 J0 07238 -9308 20 7026 J0 0738 -9922 20 7026 J0 07610 -9530 22 7026 J0 07838 -9194 21 7026 J0 07838 -9194 21 712 M6 07880 01200 22 7136 ZQ 00096 09903 22 7136 ZQ 00096 09903 22 7136 XC 08923 09884 22 7196 KC 08923 09884 22 7208 KJ 08935 08842 23		+ -NEG	NEXT3					* -P0S	NEX 12					ł						* -POS	NEXTU				0909			* -DE1						* -DEL		602		
1-ADD OP 6860 M9 07100 00000 6872 J0 07234 -9764 6884 J0 07610 -9080 6986 J0 07466 -9878 6908 J0 07838 -9378 6920 M9 07100 00000 6932 KM 09903 09964 6944 M6 06965 01100 6956 M9 07100 00000 6958 KM 09891 08917 6990 M9 07100 00000 7016 J0 07238 -9308 7028 J0 07238 -9308 7028 J0 07838 -9194 7052 J0 07238 -9308 7054 J0 07610 -9680 7056 J0 07838 -9194 7100 KM 09897 09903 7136 Z0 00096 09903 7136 Z0 00096 09903 7136 Z0 00096 09903 7136 KC 08923 09884 7220 ML 07460 08932	P/L	1890	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100	2110	2120	2180	2190	2200	2210	2220	2230	2240	2250	2260	2270	2280	\sim	2300	2310
11-ADD OP 6860 M9 0710 6884 JO 0723 6884 JO 0723 6884 JO 0783 6920 M9 0710 6932 KM 0999 6956 M9 0710 6956 M9 0710 7028 JO 0723 7016 JO 0783 7028 JO 0783 7028 JO 0783 7052 JO 0723 7052 JO 0723 7052 JO 0723 7052 JO 0723 7124 M9 0710 7136 ZO 0009 7136 ZO 0009 7136 ZO 0009 7136 ZO 0009 7137 K6 0899 7117 K6 0899 7196 KC 0899 7196 KC 0899		000	16	0	٥	O	0		Ŷ		\circ	œ	_		9	Ŷ	0	0	0		9	Ď.	Ò	Ò	0	_	-		O.	0	0	Ö	0		0	œ	ø	0
1-ADD 0 68860 68872 10 68872 10 68872 10 69872 10 69872 10 69872 10 7028 10 70		710	723	761	746	783	710		066	969	# 0 X	686	705		723	761	746	783	710		723	761	246	783	686	788	750		00	600	600	894	788		892	893	246	000
-	O	Ď.	0	9	9	9	∂		χ	¥	Ç X	¥	Ø W		9	ဝှ	္	9	Š		9	ဝိ	S	9	X	M 6	Z		50	2 R	32	¥	ტ Σ		X O	ž	χ.	38
	1	86	687	688	689	530	692		693	469	695	969	698		669	700	701	702	704		705	706	707	708	7.10	711	712		713	7 1.4	716	7117	718		611	720	722	723

۰۰۰		>	L		7 / 1	LADEL	5	OPERANDS
_	723		000		2320	XOUT	OS	5.**5.
	07244		08925	000-1	2330	603	S	XCNTR, 1,010#
	725	± →	892	-0000	2340		Š	XCNIR,0,07, TEST FOR LAST MOVE*
	726		720	01100	2350		d:S	
					2360	2 3 4	Al. A	AT IN THE Y
	07280	ΣΣ	07376	16860	2370		BNF	AY,01,
					2380	* NEG	AIIV	E DELIAY-+
	729		686	Ů.	2390		ပ	DELIAY-1, YCNTR-1, 01, TEST FOR FINAL ADJUSTMENT#
	07304	Ø Z	08048	01200	2400		8E	
	731		735	_	2410		S N	*6.36,,0#
	752		955	C	2420		MNPT	FIVEO-1, 0*
	734		804	0	2430		3 C	CLEAR,,0#
	735		906	U	2440		I dar	ONE 50-1, 00
	736		#08		2450		αú	CLEAR,,0#
					2460	* -P0S	1110	E DELIAY-#
	3.7		989	ဏ	2470		ں	DELTAY-1, YCNTR-1,01,TEST FOR FINAL ADJUSTMENT#
	738		804		2480		. 30 	
	07400	×	07436	01500	2490		N.O.	*636,00
	741		908	O	2500		FUNK	ONESO-1, 00#
	742		804	0	2510		æ	CLEAR,,0#
	743		953	\circ	2520		FNPT	FIVE0-1, 0 0 =
	744		804	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2530		න	CLEAR,,0*
					2540	910- *	I	N XYCOUNTER SDELTAX GRATER THAN DELTAYD-#
	942	38	000	00200	2550	60×Y1	T GNM	-
	746		000		2560	XYOUT	OS	5++-5+
	07472		08935	00000	2570		X.S	XYCNIR, 1000,08*
	748	_	892	~	2580		ΜÞ	YCNTR, 10, 010*
	149	Σ	124	00000	2590		3 2	603, , ∪ +
					2600	* -DEL	ŢΑΥ	LARGER THAN DELTAX-*
	750	~	600	Ò	2610	YBIGER	07	
	752	~	600	Ċ	2620		a	97, ABSDY, 1#
	753	M	600	0	2630		SF	#16
	07544	χ 6	08943	00093	2640		4	RA110,93,0#
	755	Σ	788	0	2650		89	0K,,0#
					2000	* DELT	AY L	ARCER THAN DELTAX*
	07568	X	08929	06860	2670		16	-
	758	Ž	893	8	2680	409	A	
	759	ź	783		2690		ස ධ	GOXY2, XYCHTR-3,01, TEST FOR DIGIT IN XYCOUNTER#

				TEST FOR LAST MOVE#		×	11, TEST FOR NEGATIVE DELTAX+		"K+1,01,TEST FOR FINAL ADJUSTMENT#								R-1,01, TEST FOR FINAL ADJUSTMENT#							%DELTAY LARGER THAN DELTAXD- ≠		1/4			AY~*	4X • 0 ! #	ROUND OFF DELTAX*		(~3,01#	ADJUST X0#	ΔΥ,01#	ROUND OFF DELTAY#		7.01+
OPERANDS	#	5,*~5	YCNTR, 1,010#	YCNIR,0,07,	604,,04	DUCSTMENT IN	*696, DELTAX,	E DELTAX-+	DELIAX-1, XCNTK-1	CLEAR,,0#	*636,,0#	SEVSO-1,,0#	CLEAR,,0#	THRE0-1, .0+	CLEAR, 10#	E DELTAX-+	DELIAX-1, XCN1	CLEAR, , 0 #	*636,,04	THRE0-1, , 0+	CLEAR,,0#	SEVSO1, , 0*	CLEAR, OF	N XYCOUNTER 3	#	XYCN1R, 1000,07	XCNTR, 10,010#	605,,04	EQUAL TO DELT	DELTAX-3, DELT	DELTAX,5,010,	DELIAX,0,0	DELTAX, DELTAX-3,0	X0, DEL. TAX, 01,	DEL FAY-3, DEL TAY, 0	DELTAY, 5, 010,	DELTAY,0,0*	DELTAY.DELTAY
0 b	TONM	DS	E.S	Œ.	d d	AL A	BNF	ATIV	ر	å E	ΒN	Idna	. 2)	LONK	Ð	111	ں	BE	8N	L d Z Z	ထ	MNPT	æ.	1 11	MNP 1	S.	ΑX	20	TAX	¥.	Æ	TOM	¥F	Ø	u. ∑	AM	NO.	T.
LABEL		YOUT	605			* -FIR		* -NEG								\$0d- *								* -BIG	60xY2				* -OEL	0,K								
P/L	2700	2710	2720	2730	2740	2750	2760	2770	2780	2790	2800	2810	2820	2850	2840	2850	2860	2870	2880	2890	2900	2910	2920	2930	2740	2950	2960	2970	2980	2990	3000	3010	3620	3030	5040	3050	3060	3070
	00200		1-000	-0000	01100		09885		08922	01200	01300	00200	00000	00200	00000		08922	01200	01300	00200	00000	00200	01200		00200	-1000	00000	00000		09885	5-000	00000	09882	09885	16860	2~000	00000	09888
	\sim	90	08929	<u></u>	30		84220		4886	8048	7724	4926	84080	9308	8048		4886	8048	7808	09308	8048	4926	8048		ე000	08435	8923	7616		9832	9885	9885	9885	6468	9888	15860	686	989
90 a	35		~	オつ	Q		ī.		X	Ŷ	<u>~</u> ∑.	3	<u>ئ</u>	8	٥ ا					8					38	75	_	⊅		ュ	_	25	2	٦ ٢	f d	=	35	G
I-ADD	760	763	07616	762	764		07652		166	767	768	770	07712	772	773		174	776	111	07784	622	780	182		783	07844	785	786		788	789	190	62	792	16/	07952	196	197

1.0.0.2	1-4 PD	YYEE DYY YDYDYYYXXXXXXX TET TO TETAM D	008922 00892 0	1 00001 000000000000000000000000000000	P/L 3090 3090 3110 3	# -CLE CLEAR CLEAR * DELT XYGO XYGO FILLI FILLI FILLI	A X W	YO, UELTAY, 01, DELTAX-1, DELTAY-1, 01, IEST FUR LANGOU-12, 04 XYCO, 104 GOU-12, 04 GO2-12, 04 COUNTER AND YCOUNTER TO ZEROS AND XYCNTR, ZERO1, 014 # QUAL TO DELTAY# # QUAL TO DELTAY# # QUAL TO DELTAY# # DUAL TO DELTAY# # FILL2, XYOUT, 01# XYOUT, 11, 010# # FILL2, XYOUT, 01# XYOUT, 101, 00# # FILL3, XYOUT, 01# # FILL3	DE LARGER INCREMENT# DE LARGER INCREMENT# S AND SET XYCOUNTER #.005 DIGIT IN THE TENS POSITION# DIGIT IN THE INS POSITION# DIGIT IN THE INITS POSITION# LAST SINGLE MOVE# LAST 1/10 INCH MOVE#
F-41	632 633 633 633 633 633 633 633 633 633	1 8 4 t 4 t 4 t 4 t 4 t 4 t 4 t 4 t 4 t 4	827 892 827 000 892	00000 00-00 01100 00200	****	UNITS FILL3	B CA BNP BNP SN SM	TEST FOR	LAST ONE INCH MOVE#
	;	•)	1		;		

C

							TEST FOR ABSDY LESS THAN .005#			TEST FOR DELTAY EQUAL ZERO#		NEGATIVE DELTAY-+	#	1	1 *		ROUND OFF DELTAY#			ISITIVE DELTAY-#	**	1+	14		ROUND OFF DELTAY*		.01, SET XCOUNTER EQUAL TO DELTAY*	ADJUST YO#				DEL TA	ROUND OFF DELTAX#			7*	7*	
OPERANDS		XCNTR-3, 1,010#	#	5,4-5	FAST + , 0 +	EQUAL ZERO-#	ABSDY, TOLER, 01,	*624,,0+	CLEAR, . 0 #	DELTAY, ZERO1, 01,	NEXT550#	EQUAL ZERO AND NE	FILL1, FIVEO-1,017	FILL2, FIVET-10,01	F1LL3,F1VEH-49,017#	FILL4, FIVEH-49,01	DELTAY, 5,010,	DELTAY,,011#	NEXTY: 10#	EQUAL ZERO AND PO	FILL1, ONE SO-1,017	FILL2, ONEST-10,01	FILL3, ONE SH-49,01	FILL4.FILL3.01#	DELTAY,5,010, ROUND	DELTAY,0,0*	XCNTR -1, DELTAY-1,01, SET XCOUNTER	YO, DELTAY, 01,	FAST,,0#	EQUAL ZERO-#	NEXT66, DELTAX, 01,	EQUAL ZERO AND NEGATIVE	DELTAX.5.010.	DELTAX,0,011#	FILL 1, SEVSO-1, 017:	F1LL2, SEVST-10,017	F1LL3, SEVSH-49,017	FILL4,FILL3,01*
90	10	N.S	T dnm	DS	3	TAX	ں	99	8	ပ	8ь	IAX	TFM	TH	TFM	T L	S	¥Q1		TAX	TFM		5		¥		T.	4	80	TAY	BNF	TAY	N.	TOM	TFM	TFM	TEM	H-
LABEL		TENS		FILLL		* -DEL	NEX15					* -DEL								* -DEL	NEXT55						NEXTY			DEL	NEXT6	* -DEL						·
P/L	3460	3470	3480	3490	3500	3510	3520	3530	3540	3550	3560	3570	3580	3590	3600	3610	3620	3630	3640	3650	3660	3670	3680	3690	3700	3710	3720	3730	3740	3750	3760	5770	3780	3790	3800	3810	3820	3830
	\circ	000-1	$^{\circ}$		00000		vn	\boldsymbol{c}	\Box	11680	\mathbf{c}		~	\sim	-9424	A.		-0000			0	0	0	3	000-5	0	30	ထာ	8		09885					-9753		
_	833	08720	000	000	818		66	78	80	16860	85		08246	08306	08366	08414	09891	16860	8		824	830	836	841	16860	686	892	895	818		08804		09885	09885	08246	08306	08366	08414
90	O.	12	38		Š		X	\$	Š	X	Ş T		ဗှ	ဗ္	ဝှ	9	32	15	D.		9	9	9	Š	5	25	0 ¥	3	Š		Ī		12	75	9	9	9	X
I-ADD	838	08396	840	841	842		843	1118	845	08468	848		78	85	85	85	85	08552	85		857	858	860	861	08624	863	864	866	867		08684		869	870	872	08732	874	875

(:

OPERANDS	XCNTR-1, DELTAX-1,01,SET XCOUNTER EQUAL TO DELTAX+X0,DELTAX,01, ADJUST X0+	FAST, ,0+	EQUAL ZERO AND POSITIVE DELTAX-*	FILL1, THRE0-1,017*	F1LL2,THRET-10,017*	FILL3, THREH-49,017#	F11L4,F11L5,01*	DELTAX.5.010, KOUND OFF DELTAX*	DELTAX,0,0+	XCNTR-1, DELTAX-1, 01, SET XCOUNTER EQUAL TO DELTAX#	XO, DELTAX, 01, ADJUST XO*	FAST, , 0 +	*0 *9	-6-8912-8918-	*O*9	-6-8918-8924-	*0 *9	-6-8924-8930-	6,5 ‡	-6-8930-8936-	*** 9	X VALUE OF THE PEN	Y VALUE OF THE	COORDINATE X OF THE	_			50,111111111111111111111111111111111111	11111111111111116-9018-9068-	+0.1	-6906-8906-9-	11,111111113+	-9-306-3080-	2,10+		
d 0	7 A	Ω	TAY	TL	T.	TFM	TF.	Z Z	TOM	1 E	4	&	ည		ည		ည		2		SO	os	0.5	08	DS	ည္က				2		ည္မ		ည	ç	2222
LABEL			* -0EL	NEX166									2ERO1		XCNTR		YCNTR		XYCNTR		RATIO	o X	۷0	ž	۲۱	ONESH						ONEST		ONE SO	1.00.1	222222
P/L	3840 3850	3860	3870	3880	3890	3900	3910	3920	3930	3940	3950	9969	3970		3980		3990		0004		4010	4020	4030	0101	4050		_	4070	_	4080		0604		4 100	01.1	5 C
	09884 09885	00000		-9308	-9297	-9169	08366	000-5	00000	09884	98880	00000																	11111				#			22222
	08922 08949			•	Δ.			09885					90000	*00000	90000	*00000	90000	‡00	90000	00000	90000	90000	90000	90000	90000	00020	111111	00000	111111	0000		00011		00005		2222222
0 O	2 X	Š				9	0	=	5	9	3	9		-000		000		000		-000							=======================================		1111						*	222
I-ADD	08768 08780	08792		880	08816	08828	08840	08852	08864	08876	08888	08600	11680	39700-	08923	39800-	08929	39900-00008	08935	4 0000	08943	08646	08955	19680	19680	09017	70090 m	19060	40700.	09068	4 0800	0000	40000	09081	0001	4 1100K

C

I-ADD	40	P/L	LABEL	dO	OPERANDS	
	0000	4120		<u>ა</u>	50,222222222222222222222222222222222222	22222222
$^{\circ}$	2222222222	222222	222222	2222	222222222222222222222222222222222222222	
1,1200+	- 0000	100		3	1+4+ 	
09193	11000	0 1 1 7	TWOST	Ü	11.222222223#	
4 1400K2	222222#	•		,	-49183-9194-	
	00002	4150	TWOSO	ည	2,20*	
4 1500K#					-9616-9616-9-	
0.7245	00000	4160	THREH	ည	353333333	3333333333333333333
4 1600L3.	33333333333	3333333	333333	35333	33333333333333333333333333333333	
09295	00000	4 170		ည္က	50,3343333333333333333333333333333333333	3353333333
4 1700L3.	533333333333	333333	5553333	33333	333335553333333333333333333333333	
09296	00001	4180		ည	1•0+	
4 1800#					-6-9296-9297-	
09307	11000	190	THRET	ည	11,33333333334	
4 1900L3	55533335				-6-9297-9308-	
09309	00005	4200	THREO	ည	2,30	
42000L#					-6-9308-9310-	
09359	00020	4210	FOURH	2	* 1991 -	***
42100M4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	771777	***	111111	444444444444444444444444444444++	
60460	00000	4220		2	≠ 11911 911919191919191919191919191919191	******
42200M4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111	4444444	1111111	-01 16-0926-9- + + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
09410	1 0000	4230		ဥ	1,94	
42300#	42300#				-1146-0146-9-	
09421	00011	4240	FOURT	ည္ပ	*@११११११११११	
4 24 00 MA	* 12 12 12 12 12 12 12 12 12 12 12 12 12				-6-9411-9422-	
09423	0000	4250	FOURO	മ	2,40,4	
\$2500M#					-6-9422-9424-	
09473	00020	4260	FIVEH	മ	50,555555555555555555555555555555555555	55555555
4 2600N5	5555555555	555555	555555	55555	55555555555555	
09523	00000	4270		ဌ	50,555555555555555555555555555555555555	55555555
42700N55	55555555555555555555	555555	555555	55555	5555555555555555555555555555555	
09524	10000	4280		ည္တ	#@* <u>-</u>	
4 2800#					-6-9524-9525-	
	11000	4290	FIVET	ဗ္	11,55555558#	
^	¥6666666	9	61.460	۲	PSC-4C7C-40-	
4 3000N#	2000	000		ક	-92-36-6-92-6-92-6-92-8-	

O

(

09587 4310006 09637 4520006						
20006/ 638	00050 666666666666666	4310 666666 4320	SIXSH 6666666	DC 6666660 DC	09587 00050 4310 SIXSH DC 50,666666666666666666666666666666666666	50,666666666666666666666666666666666666
	00001	4330	99999999	000000 DC	4520006666666666666666666666666666666666	
300# 549	00011	4.340	SIXST	DC	11.6666666668#	-6-4638-9639-
90004	4340006666666) <u>(</u>	+07	-6-9639-9650-
350004	20000	4320	2120	ຸ	Z+0a+	-6-9650-9652-
701	0000	4360	SEVSH	20	50,77777777777777	7171717171717171717171717171717
\$600P7	77777777777	7777777	7777777	777777	*777777777777777	-6-9652-9707-777777777777777
152	_	4370		ဌ	50,777777777777777	\$0,1777777777777777777777777777777777777
43700P7	777777777777777777777777777777	777777	1111111	777777	777777777777777777777777777777777777777	-6-9702-9752-
1800	-			3		-6-9752-9753-
09763	00011	4390	SEVST	20	11.777777779	
1900P7	43900P77777777)))	}		-6-9753-9764-
09765	00002	0011	SEVSO	ಜ	2,70	
#4000					•	-6-9764-9766-
09815	00000	0174	E I GHH	റ്റ	50,68888888888888888	50,6888888888888888888888888888888888888
10008	88888888888	8888888	8888888	888888	44100Q8888888888888888888888888888888888	-6-9766-9816-
98860	05000	4420		2	50,888888888888888888888888888888888888	50,8848888888888888888888888888888888888
20008	88888888888	888888	8888888	888888	 420008888888888888888888888888888888888	-6-9816-9866-
99860	10000	4430		2	7,0+	
# # 300#						-6-9866-9867-
09877	11000	0111	E1GHT	20	11,888888888	
# 000 B	4440008888888					-6-9867-9878-
09879	00005	4450	E16H0	ಜ	2,8@#	
#0005##						-6-9878-9880-
885	90000	0944	DELTAX	08	6 * * * *	×
1891	90000	4470	DELTAY	DS	6,,,	
1897	90000	0844	ABSDX	SO	6111	ABSOLUTE VALUE OF DELTAX#
9903	90000	0644	ABSDY	SO	6,,,	ABSOLUTE VALUE OF DELTAY*
90660	00003	4510	PENDWN	ದ	3,004	
5100-0#						-4066-4066-9-
60660	00003	4520	PENUP	ട്ട	3,90	
200-0#	*					-0166-2066-9-

	.6.00.010.	-21 55-01 55-0-	-6-9912-9914-	-9-30-14-90-9-	-8166-9166-9-	INITIAL ADRESS OF X#	INITIAL ADRESS OF Y#	FLOATING POINT ACCUMULATOR*		FLOATING POINT FIELD LENGTH#	-6-9930-9932-		-6-9932-9962-	FOLERENCE OF .005 INCH#	-6-9962-9965-	-6-9965-9970-		5004900000+ 17200500360024400500360031600500360000000500 172005003650024400500360031600500360000000500 304000204056000003060902100408021610050015102006021814200+ 2300908172630000000000005060708090012141618151811242720242+ 0363248445532494653664846546275445362718612456789123456+ 56789-JK456789-JKL56789-JKLM6789-JKLMN089-JKLMN+ 56789-JKLMNUPQ+ L15038800019M900000000036000000
OPERANDS	2,2#	2,0*	2,-9-9#	2,-2#		6111	6111	3,60,,	4,59829,,	2,8,,		30,0#		3,5,,		5,0#	5000#	5004900000+ 17200500360024400500360031600500360000000500 304000020405080003060902100408021610050015102 230090817263000000000005060708090012141618151 03632484455324946536048462462754453627186123 56789-JK456789-JKL56789-JKLM6789-JKLMN789-JK
O	သ	oc nc	20	၁၀		0.5	08	OS	0.5	ည္ရ		ည	#00	ည		ည္	OFNE	500360 500360 536048 536048
P/L LABEL	Ex2	£ x 0	ËX	EXM2		ΑX	ΑY	FAC	ARG	FF		>	0000000	TOLER		00		08244009 080003(3000000 3249465 5789-JKI
P/L	4530	0454	4550	4560		4570	4580	0654	0097	4610		4620	*000000000000000000000000	4630		0494	4650	5004900001 17205003600240 3040002040508000 2300908172630000 03632484455389-3 56789-JKLS6789-3
90	70000	00005	* 00002			90000	90000	00003	70000	00005		00030	46200-00000000000000	00003	2 ‡	00005		46500 L6000000050 360010000500360017 0000000000000102030 704112820080614223 822363520353045403 789-23456789-33456 ************************************
I-A00 0P	09911	09913	45400-0# 09915	45500RR# 09917	45600-K#	09923	03650	09000	59829	09931	46100-8	19660	46200-00	19660	46300-05	0000-0000 rep00-0000	00000	#6500 36001000 000000000 70411282 82236353 789-2345 #8000000

C.

Section VII - LISTING FOR FORTRAN II SUBROUTINE

OPERANDS

O

P/L LABEL

C

+ PI OT S LIBROLITINE - FORTRAN II 12/11/62*		BOX, ARG, 01. STORE ADRESS OF THE ARGUMENT IN BOX#	80X•01*		5,010, TEST FOR CHARACTERISTIC EQUAL 5#		BOX2, BOX, 01*	BOX2,FF,0, ADJUST FOR FIELD LENGTH*	TEST FO		*6.36,,0	PENDWN-1,,0#		X3, BOX, 01#	•0	,60,010, TEST FOR PEN UP+	2**-2*	#£36,,0, BRANCH TO INITIATE#	PENUP-1,,0+		#-NOIL	CO,0,07, CLEAR COUNTER TO ZERO#		CLEAR	1, CLEAR AY TO	80X,2,010*	80x1,80x,01*	2,80X1,01, STORE MANTISA OF THE ARGUMENT#	#	CO,2,010, TEST FOR COUNTER EQUAL 2*	*624**0*	CO.1.07*	FAC, EX, 1, TEST FOR X EQUAL ZERO#		\$ • () 4
0000			>	2	*	ಳ *	90	80	Š	5,	بن *		#	80	80	•	'n					၁	+	XX	AY	80	80	-	5,**	0	*	0	FA(X	5
27526 27425 01	DORG	<u>u</u> !	<u>+</u>	DS	Š	BNE	15	s	3	DS	BNE	MNPT	88	7	s	٣	OS	BNE	MNPI	88		T.L	&	T F	16	S	TF	4	SO	Σ	BE	¥	ن	BNE	20
0001200 0011400 * Pi	•			80x						B0X2							60×3				ZI- +								80X1						
5004 2002	00100	0050	0030	00400	0020	0900	0000	0080	0600	0100	0110	0120	0130	0140	0120	0100	0110	0180	0100	0200	0210	0220	0230	0540	0220	0560	0220	0280	0520	0300	0310	0320	0330	0340	0360
60020100 100000000		66660	0023		00-5	01200	0023	0402	0000		1200	0200	0000	0023	00405	0000		01200	0200	0000		0000	0000	2917	13917	00-2	0023	0275		00-2	1200	0001	14915	1200	0000
500360 264310		10023	4959	9000	4959	0216	82	8200	0000	000	0120	4905	0000	0150	20	0000	0005	0192	8061	0000		1964	9600	925	4929	0023	0275	4957	000	1961	0312	1964	00485	948	0468
200 500		0 ±	2		\$	X	X	2	きつ						×			~	6	42		9	Š	Š	×	~	0	0		#	9	_	Z.	~	<u>٠</u>
360007	8	10000	0	02	02	03	70	90	07	007	008	600	010	012	2	70	015	015	910	0 18		6	020	5	022	024	25	026	027	027	028	030	10312	32	M M

I-ADD 0P

		*	X # -2# THAN -2#				Y # -2# THAN -2#		
	ES-# Integers#	WITHOUT INTEGERS#	OF ESS		INTEGERS#	GERS	OF ESS	INTEGERS-#	INTEGERS-#
	VARIABLES-* WITH 2 INTE	II THOUT	CHARACTERISTIC FOR CHARACT. LI	Y EQUAL ZERO# X FOIIAI ZERO#	WITH 2 1	11 THOUT	CHARACTERISTIC FOR CHARACT. LO	WITH S I	WITH 2 I
	⊢×	×			· >	>		×	×
	POINT FOR X	FOR	FOR AX#0	FOR	FOR	FOR	FOR AY#0	. 0F	. 0F
	FIXED	TEST	TEST SET A		TEST	TEST	SET A	VALUES	VALUES
	10							10	10
OPERANDS	ION OF X AND Y FAC, EX2, 1, GABOR, 0 + FIX2, 0 +	FAC, EXO, 1, FIX1, 0# FIX0, 0#	FAC, EXM2, 1, FIXM1, 0# FIXM2, 0# AX, ZERO1, 01,	Y,EX,O;, *660,,O* AY,ZERO;,O! FAC,EX.;	FIRST,,0# F,,0# Y,EX2,01, FIXY3,,0#	FIXY2,,0# Y,EX0,01, FIXY1,,0# FIXY0,,0#	Y,EXMZ,01; FIXYM1,00# FIXYM2,,00# AY,ZERO1,01,	F++0+ CORRESPONDING BOX4,FAC,07+ BOX4,FF,0+ BOX4,4,010+	AX;;0# 5;** G;;0# CORRESPONDING TO VALUES OF BUX5;FAC;07# BOX5;FF;0#
d 0	VERT C BP BP	2 B C	1 8 8 T T T T T T T T T T T T T T T T T	C T F C F	9 2 2 B	3 C E E E E E E E E E E E E E E E E E E	HEBP.	TION TEM S	15 05 6 110N 1FM S
LABEL	* -CON			9				* -SEC GABOR	BOX4 # -SEC FIX2
1/4	0370 0380 0390 0400	0410 0420 0430	0440 0440 0440	0480 0490 0500	0520 0530 0540 0540	0560 0570 0580 0590	0610 0620 0630	0650 0650 0670 0680	0690 0700 0710 0720 0730
	491 110 120	110	491 120 391	491 120 391 491	120 000 491 110	01200 14913 01100 01200	120 120 391	8000	000 000 000
	048 067 073	048 080 087	00 th	# 60 2 0 5 4 0 6 2 0 6 8 0 6 8	151 147 108 108	111140 14959 11212 11284	130	071	4923 00005 0468 0779
90 0	I 0 0	E 0 0	E 4 40	I ~ O I	0 I 0	0 Z 0 0 3	E 40 40 0	- 20 -	0 0 00
I-ADD	34 36 37	38 39	いななので	2 4 4 6 0 0 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	522 25	10564 10576 10588 10600	6 6 3 5	0 999	071 072 073 073
									£.49

O

	WITH I INTEGER-#	WITHOUT INTEGERS-+		# 1
	×	×	#	#-2 -+ INTEGERS-+
	S OF	S OF	* *	INTE
	VALUES	TO VALUES	90	06 x
OPERANDS	80X5,3,010# AX;0# 5,** AX-4,0# G,0# CORRESPONDING TO BOX6,FEC,07# BCX6,FF,0# AX;0#	4x-3,0+ 6,0+ CORRESPONDING BOX7,FAC,07+ BOX7,FF,0+ BOX7,1,010+ AX,0+	5,*** 4x-2,,0* G,,0* FOR CHARACTERISTIC BOX8,FAC,07* BOX8,FF,0* Ax,,0*	AX-1,.0# G,.0# FOR CHARACTERISTIC OF BOX9, FAC, 07# BOX9, FF, 0# BOX9, 1,0 10# AX,.0# 5,** AX,.0# G,.0# FOR VALUES OF Y WITH BOX10,Y,017#
90		CF CF TFM TFM TFM	CF B TION TF S OS	CF B TION SM SM SM SM DS CF TION TION
P/L LABEL	80X5 + - SEC FIX1	# - SEC FIXO	* + SEC FIXM1 BOX8	* -SEC FIXM2 BOX9 * -SEC FIXY3
P/L	0750 0760 0770 0780 0780 0810 0810 0820 0830	0880 0880 0890 0900 0910	0940 0940 0940 0940 0980 1000	1020 1020 1030 1040 1060 1070 1080 1110 1110
	00000 00000 00000 00000 -0485 00002 000-2	000000 000000 -0485 00402 0000-1	0000 0000 0485 0402 0000	00000 00000 00000 00000 00000 00000
	10779 14923 00005 14919 10468 10468 10851 14923	0923 0923 0923 0923	0983 0983 0983 0005	0468 0468 1055 1055 1055 1468 1127
d O 0	X 7 7 7 8 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6	X L X 4 5 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6	mo 9019	6 94 5026 94 6 75 75 75 75 75 75 75 75 75 75 75 75 75
1-ADO	10756 10768 10779 10780 10792 10804 10816 10828 10840	10852 10864 10876 10888 10900 10912	900 B	10984 10996 11020 11032 11044 11055 11068
1.0.0	.2			E.J.G

 \mathbf{C}^{i}

I-ADD	90	_		P/L	LABEL	90	OPERANDS	
11092	3	11127	00402	1130		v	B0x10.FF.0#	
11104	=	11127		1100) X	DOX 10 12 010+	
11116	, ×	14929		1150		1 T	AV 0.1+	
11127		0000		1160	B0X10	SO	***************************************	
11128	D D	11476	00000	1170			F • • 0 *	
				1180	* -SEC	NOIL	FOR VALUES OF Y WITH 2 INTEGERS-#	
11140	ဗ္	11187		1190	FIXY2	TFM		
11152	X	11187	00405	1200		s	BOX11, FF, 0#	
11164	5	11187		1210		AM	BOX11,3,010*	
11176	Š	14929	00000	1220		15	AY,,01*	
11187		00005		1230	80×11	08	5,**	
11188	L3	14925	00000	1240		r.	AY-4, , 0 t	
11200		11476	00000	1250		32	F , , 0 #	
				1260	+ -SEC	TION	FOR VALUES OF Y WITH ! INTEGER-#	
11212	9	11259	34959	1270	FIXY	M LL	BOX12, Y, 017#	
11224	¥2	11259	00405	1280		S	BOX12, FF, 0#	
11236		11259		1290		AM	BOX12,2,010#	
11248		14929		1300		15	AY, 01+	
11259		00002		1310	80×12	DS	5.**	
11260		14926		1520		C.	AY-5, 10#	
11272	Ç	11476		1330		3 0	F • • 0 +	
				1340	* -SEC	TION	FOR VALUES OF Y WITHOUT INTEGERS-#	
11284	ဝှ	11331	14959	1350	FIXYO	TEM	BOX13, Y, 017*	
11296	%	11331	00405	1360		s	BOX13,FF,0#	
11308	=	11331	000-1	1370		A	BOX13,1,010#	
11320	Š	14929	00000	1380		T	AY, • 0 1 *	
11331		00005		1390	80×13	OS	5,**	
11332	L 3	14927	00000	1400		ن	AY-2,,0#	
11344	Ç X	11476	00000	1410		ဆ	F••0#	
				1420	* -SEC	TION	FOR CHARACTERISTIC OF Y #-1 -+	
11356	ဗ္	11391	14959	1430	FIXYMI	IFM	BOX14, Y, 017*	
11368	¥2	11391	_	0 4 4 6		s	BOX14,FF,O#	
11380		14929		1450		1 F	AY,,01+	
11391		00005		1460	80×14	DS	2,**	
11392		14928		1470		Ę.	AY-1,,0#	
1046		11476	00000	1480		39	F,,0+	
	9			1490	* -SEC	TION	FOR CHARACTERISTIC OF Y #-2#	
11416	9	11463	34959	1500	FIXYMZ	X.	60X15,Y,017	

 \mathbf{C}_{i}

OPERANDS	BOX15*FF*O* BOX15*1*010*	AY**01*	5,**		TEST FOR	TEST FOR		CO.1,07, TEST FOR COUNTER EQUAL 1#		INITIAL VALUE	YO, AY, 01, INITIAL VALUE YO*	**	X1,AX,01*	Y1,AY,01#	DELTAX,X1,01	DELIAX, XO, 01, TOTAL INCREMENT IN THE X DIRECTION+	ABSDX, DELTAX, 01*	ABSDX , 0 +		DELTAY, YO, 01, TOTAL INCREMENT IN THE Y DIRECTION#	ABSDY, DELTAY, 01*		ABSDX, TOLEK, 01, TEST FOR ABSDX LESS THAN .005+	*624,,0;		DELTAX, ZERO1, 01, TEST FOR DELTAX # 0*	NEXT2,,0+	ABSDY, TOLER, 01, TEST FOR ABSDY LESS THAN .005#		NEX16,,0#	DELTAY, ZERO1, 01, TEST FOR DELTAY # 0#	NEXT3,00	E DELTAX AND DELTAY-+	XOUT, SEYSO-1,017*	YOUT, FIVEO-1,017*	TAIC 1 COATS FIGAR
90	S				MF	H.		X U						TF	16	S	TF							Δ.	89	ں	ВР	ں	ВP	9	ں	8P	SATIV	¥U.	THE	2
LABEL			80×15		u.			FIRST					ALL		NEXTI																		* -NEG			
P/L	1510	1530	1540	1550	1560	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	ø	•	7	1710	~	~	1740	~	1760	1770	1780	1790	1800	1810	1820	1830	1840	1850	1860	0401
	00402	000) } !	000	940	495	000	000	110	492	492	000	492	492	396	394	488	000	396	395	489	000	961	110	000	13917	10	964	110	000	391	110		76	14536	3 7
	11463	4929	9000	492	492	151	1,92	964	157	394	395	8	396	396	488	488	684	89	684	489	064	064	684	172	343	88	193	061	178	68	489	187		223	12610	i
8	~			~	_	Σ	~	#	9	0	0	N	0	0	0	¥	o	L 3	0 2	¥	×	L3	¥	Q E	٥ ١	X	¥	¥	9 H	OE	X	£		9	9	•
I-ADD	11428	145	146	146	147	148	150	151	152	153	154	156	157	158	159	160	162	163	164	165	166	168	169	170	171	172	174	175	176	177	178	180		18	1 1824	

C

1.0.	I-ADD	90 OC	0		P/L	P/L LABEL	d _O	OPERANDS
٥.2	11860	W 0	12100	00000	1890	i.	89	
	∞		m	34764	19.00	* -NEC NEXT3	A I I V	E DELIAX AND POSITIVE DELIA Y-+ XOUT,SEVSO-1,017+
	18	9	12610	14080	1920		TFM	YOUT, ONESO-1,017#
	30		ø	14878	1930		¥ L L	XYOUT, EIGH0-1,017*
	2		M		1940		X.L	GOXY2&6,EIGHO-1,017*
	2		0	00000	1950		6 0	*0,000
					1960	* -POS	ITIV	E DELTAX-+
	193		90	14962	1970	NEXT2	ں	ABSDY, TOLER, 01, TEST FOR ABSDY LESS THAN .005
	11944	¥ •	6	00110	1980		ВР	
	195		68	$\boldsymbol{\circ}$	1990		6	NEXT6,,0#
	196		89	13917	2000		ပ	DELTAY, ZERO1, 01, TEST FOR DELTAY # 0+
	198		05	01100	2010		99	
					2020	* -P0S	ITIV	E DELTAX AND NEGATIVE DELTAY-*
	_		223	-3	2030		TFM	
	~		61	4	2040		TFM	YOUT, FIVEO-1,017*
	12016	9	12466	34422	2050		Z L	XYOUT, FOUR0-1, 017 *
	~		83	-3	2060		TEM	G0XY266, F0URO-1, 017*
	~		2	00000	2070		8	±0
					2080	* POS	ITIV	E DELTAX AND DELTAY-#
	205		23	-	2090	NEXTE	THE	X0U1, THREO-1,017
	206		9	3	2100		TEM	YOUT, ONESO-1,017*
	207		\$	76176	2110		THE	XYOUT, TWOSO-1, 017#
	208		83	3	2120		THE	GOXY2E6, TWOSO-1, 017*
	210		684	#	2180	0909	ں	ABSDX, ABSDY, O1, TEST FOR BIGGER INCREMENT#
	12112	¥	12880	01200	2190		96	0K,,0*
	212		250	_	2200	!	Z	
	1	•			2210	* -DEL	TAX	GREATER THAN DELTAY-#
	213	~	600		2220		2	96,ABSDY,1*
	214	~	600		2230		۵	97,ABSDX,1#
	12160	32	0000	00000	2240		SF	914
	217	×	394	00093	2250		11	RATIO,93,0, RATIO DELTAY/DELTAX#
	218	Œ	288	0	2260		3 0	0K**0*
					2270	* -DEL	TAX	GREATER THAN DELTAY-#
	5	×	392	↑88 †1	2280		¥	-
F	12208	7	13935	13943	2290	602	⋖	MODIFY XY
- 5	22	Σ	546	13932	2300		80	GOXY1, XYCNTR-3,01, TEST FOR DIGIT IN XYCOUNTER#
12	22	2	000	00200	2310		MADA	#

C

OPERANDS	5**-5*	1,010*	XCNTR,0,07, TEST FOR LAST MOVE*		NT IN THE Y			DELTAY-1, YCNTR-1, 01, TEST FOR FINAL ADJUSTMENT#	CLEAR, 0+	*636,00	FIVEO-1,,0#	CLEAR,,0*	ONESO-1,,0*	CLEAR,,0*	E DELTAY-*	DELTAY-1, YCNTR-1,01, TEST FOR FINAL ADJUSTMENT#	CLEAR, , O #	*£36°°0*	ONESO-10+	CLEAR,,0*	F1VEO-1,,0*	CLEAR,,0#	N XYCOUNTER SDELTAX GRATER THAN DELTAYD-+	*	5,4-5	XYCNTK, 1000,08#	YCNTR,10,010*	603••0	LARGER THAN DELTAX-+	96,ABSDX,1*	97,ABSDY,1*	*10	RATIO,93,0*	0K*,0*	ARGER THAN DELTAX*	01,	MODIFY XYCOUNTER	GOXY2,XYCNTR-3,01, TEST FOR DIGIT IN XYCOUNTER+
90	os s		×	99	4	11.	ATIV E	<u>ن</u> ن	BE C	• N9	H 1dNH	8	WNPT		ITIV E	J	8E C	• NO	MAPT C	9	MNPT F	_	IT I	ENPT	05 5	X IS	7 H4		TAY L	6 07	0	SF		9	: - -	7. 7.		90
P/L LABEL	XOUT		-		NIL-		- INEG								* -P0S	_							* -DIG		XYOUT		-		* -DEL	YBIGER					. DELT		709	
PAL	2320	2330	2340	2350	2360	2370	2380	2390	2400	2410	2420	2430	2440	2450	2460	2470	2480	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2600	2610	2620	2630	2640	2650	2660	2670	2680	2690
		9	0	01100		14891		92	20	30	00200	8	20	8		~	2	8	2	8	00200	2		00200		00000	00000	00000		8	0	00000	0	8		89	13943	93
	000	13923	3923	2208		12376		4890	3048	2352	14536	3048	4080	3048		1890	3048	2436	80	3048	4536	3048		00000	2000	3935	3929	2244		9600	2600	16000	3943	2880		392	13935	283
00		~	#	Q E		Ī		X			6					X	Q E	L E	L 8	Š	6 8	₹		38	-	'n	5	•		0	¥	32	•	•		0	3	_
I-ADD	223	12244	225	226		12280		229	230	231	12328	234	235	236		37	238	240		242	243	244			246	247	248	249		250	252	12532	254	255		256	12580	259

OP P/L LABEL OP 38 00000 00200 2710 WNPT 12 13929 00001 2710 YOUT DS 14 13929 -0000 2730 CM 14 13929 -0000 2730 CM 14 13929 -0000 2730 CM 14 13929 -0000 2740 CM 15 14884 13922 2780 CM 15 14884 13922 2780 CM 16 13048 01200 2810 BNF 18 14764 00200 2810 BNF 18 14308 01200 2820 BNF 18 14308 00000 2840 BNF 18 14308 00000 2840 BNF 18 14308 00000 2840 BNF 18 14308 01200 2890 BNF <	OPERANDS	* 5,*-5* YCNIR,1,010* YCNIR,0,07, TEST FOR LAST MOVE*	GO4.,0# DJUSTMENT IN THE X DIRECTION-# *£96,DELTAX,0!, TEST FOR NEGATIVE DELTAX# E DELTAX-# DELTAX-!,XCNTR-1,0!,TEST FOR FINAL ADJUSTMENT# CLEAR,.0#	SEVSO-1,.0# CLLAR,.0# THREO-1,.0# CLEAR,.0# E DELTAX-+ CLEAR,.0# CLEAR,.0# *6.56,.0# *6.56,.0#	CLEARO* SEVSO-1O* CLEARO* N XYCOUNTER &DELTAY LARGER THAN DELTAXH-+ XYCNTR.1000.07* XCNTR.10.010* GO5O*	DELTAX-3,DELTAX,01# DELTAX,5,010, ROUND OFF DELTAX# DELTAX,0,0# DELTAX,DELTAX-3,01# X0,DELTAX,01, ADJUST X0# DELTAY-3,DELTAY,01# DELTAY-5,DELTAY,01#
38 00000 00200 27 39 00005 000-1 27 30 13929 000-1 27 30 13929 000-1 27 30 12580 01100 27 30 12580 01100 27 30 13028 01200 28 30 13028 01200 28 30 13028 01200 28 30 13028 01200 28 30 13028 01200 28 31 13928 01200 28 32 13928 01200 28 33 13028 01200 28 34 13028 01200 28 35 13028 01200 28 36 13020 01200 28 37 12616 01200 29 38 12616 01200 29 39 13028 01200 29 30 13028 01200 29 31 14885 01200 29 31 14885 01200 29 32 14885 01200 29 33 14885 01200 29 34 14885 01200 29 35 14885 01200 29 36 13048 01200 29 37 14885 01200 29 38 14885 01200 29 39 14885 01200 29 30 14885 01200 29 31 14886 14891 30			• •	•	. •	
00000000000000000000000000000000000000	۵					
28 00000 29 00000 20 0000 20 00000 20 0000 20 00000 20 0000 20 0000 20 0000 20 0000 20 0000 20 0000 20 000		0.00	000		000 0100	~~~~~~ ~~~~~~~~~
m mma a yarurur yarurur mmma ammasam	<u>a</u> .	000	1258 1274 1488 1304 1272	130 130	130 130 139 139 126	8 3 3 4 5 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	-ADD 0		I I AII	TETE ATET	EUE MODE	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

O

<u>C</u>.

1-ADD	90		P/L	LABEL	90	OPERANDS				
2988	139	5 1489	M		<	Y0.DELTAY.01. AC	ADJUST Y0*	*		
3000	M 148	4 1489	N		ں	DELTAY-1.0		R LARGER		INCREMENTA
3012	7 125	8 0130	M		8	604-12.0				
13024 M	6 130	96 01200	רא ו		9 E	XY60,,0#				
3036	9 121	9 0000	m		20	602-12,,0#				
			3130	* -CLE	AR X	COUNTER AND YCOUNTER	TO ZEROS	AND	SET XY	XYCOUNTER #.005 -
3048	6 139	5 -00	~	CLEAR	TFM	XYCNTR, 5,07#				
3060	0 139	3 1391	*		Ŧ	XCNTR, ZERO1,01+				
13072 K	0 139	29 13911	m	•	Ŧ	YCNTR, LERO1,01+				
3084	2 000	0000 0	K		88	*				
			3180	* DELT	AXE	QUAL TO DELTAY*				
3096	0 132	6 1246	M	XYGO	7	FILL1, XYOUT, 01*				
3108	2 124	FOOO 9	M		SH	XYOUT, 11,010#				
3120	0 133	6 1246	M		1	FILL2, XYOUT, 014				
3132	2 124	0000 9	M		SM	XYOUT, 101,09#				
3144	0 133	6 1246	*		T E	FILL3,XYOUT,01#				
15	0 134	14 12466	M		7.					
3168	0 139	2 1488	M		1F	9.0	NCOX		EQUAL TO	0
3180	L 133	6 1391	M	FAST	80		TEST FOR		IN THE	
3192	L 133	6 1392	*1)		90	01,	FOR		IN THE	UNI TS
3204	L 132	6 1392	*1		90	-2,01,	FOR	_	黑	1/10 POSIT.*
3216	4 139	2 -000	m	LAST	3	• 07•	TEST FOR	LAST SI	INGLE	MOVE*
228	7 130	8 0110	M		BNP	CLEAR, 0#				
13240	8 000	020	3310		HNP T	*				
324	8	05	3320	FILLI	SO	5•+-5#				
3252	2 139	2 000-	M		S	XCNTR-1,1,010#				
3264	9 132	9 0000	M		8					
276	39	0-00	0 3350	TENTHS	3	0,08,	TEST FOR	LAST 1/	N1 01/1	INCH MOVE*
3288	7 132	9 01 10	M		BNP BNP	LAST,,0*				
3300	8 000	0 00 0	M		ENDI	*				
3306	000	S	M	FILL2	SO	5,*-5				
3312	2 139	1 000	M		S	XCNTR-2,1,010*				
3324	9 132	0000 9	M		20	TENTHSO*				
3336	39	0-00 0	0 3410	UNITS	5	•60	TEST FOR	LAST ON	ONE INCH	H MOVE#
3348	7 132	6 0110	٠,		BND	TENTHS, 0+				
3360	8 000	0 0050	M		T d NE	*				
336	000	ĵ,	3440	FILL3	os Os	5.4-5				
3372	30	20 000-1	3450		N.	XCNTR-3, 1,010*				

()

	I-A	1		6	P/L	LABEL	8	OPERANDS
	13384	Ž:	13336	00000	3460	47.50	ئ د د	CNITSO.*
	300	7 8	700) (3440	2 2 2	LONI	ACAIX=39 = 90 = 0 +
	3 4	3		9	3490	41114	SO	5.4
	342	Ě	318	00000	3500		, 6	AST.
					3510	* -DEL	TAX	EQUAL ZERO-+
	343	¥	190	#	3520	NEXTS	ں	ABSDY, TOLER, 01, TEST FOR ABSDY LESS THAN . 005+
	344	P E	346	_	3530		8P	*624,,0
	S	Ç	30	0	3540		~	CLEAR,,0*
	13468	X	14891	13917	3550		ပ	DELTAY, ZERO1, 01, TEST FOR DELTAY EQUAL ZERO*
	8	¥	57	1100	3560			NEXT55,+0+
					3570	* -DEL	×	EQUAL ZERO AND NEGATIVE DELTAY-+
	4	9	24	536	3580			FILL1, FIVEO-1, 017*
	50	9	30	J4525	3590			FILL2, FIVET-10,017*
	5	9	36	J4424	3600			FILL3, FIVEH-49,017*
	52	9	3	34424	3610		TFM	FILL4, FIVEH-49,017*
		75	14891	2-000	3620		N.	DELTAY,5,010, ROUND OFF DELTAY*
	55	15	89	-0000	3630		TOM	DELTAY, 011*
	13564	E T	\$9	00000	3640		60	NEXTY • • 0 *
					3650	* -DEL		EQUAL ZERO AND POSITIVE DELTAY-+
	57	9	24	*	3660	NEXT55	TER	FILL1, ONESO-1,017+
	58	9	30	2	3670			FILL2, ONEST-10,017
	9	9	336	\sim	3680			FILL3, ONESH-49,017*
	5	8	34.1	~	3690		7	
	62	Ξ	489	0	3700		¥	DELTAY, 5, 010, ROUND OFF DELTAY*
	63	72	489	0	3710		TOM	-
	13648	Š V	13922	14890	3720	NEXTY	7	TAY-1.0
	99	Z	395	*	3730		⋖	YO, DELTAY, 01, ADJUST YO*
	29	P F	8	0	3740		æ	FAST,,0+
					3750	* -DEL	TAY	EQUAL ZERO-+
	13684	I	13804	14885	3760	NEXT6	BNF	TAX,01, TEST
					3770	DEL	TAY	GATIVE
	369	75	488	000-5	3780		S	
	370	5	88	-0000	3790		10H	DELTAX,0,011*
	13720	9	13246	34764	3800		TER	FILL1, SEVSO-1,017*
	373	ဇ္	30	J4753	3810		TL	F1LL2,SEVST-10,017*
	7	9	36	34.652	5820		TER	FILL3, SEVSH-49,017*
-1	2	×	7	13366	5830		16	FILL4,FILL5,01*

1.0.0.2

(

. C:

F-56

OPERANDS	<pre>xcntr-1, Deltax-1, 01, Set xcounter equal to Deltax* x0, Deltax, 01,</pre>	FAST, , 0#	EQUAL ZERO AND POSITIVE DELIAX-#	FILL1,THRE0-1,017*	FILL2,THRET-10,017*	F1LL3,THREH-49,017*	F1LL4,F1LL3,01*	DELTAX,5,010, ROUND OFF DELTAX*	DELTAX,0,0*	XCNTR-1, DELTAX-1, 01, SET XCOUNTER EQUAL TO DELTAX*	XO, DELTAX, 01, ADJUST XO*	FAST, 10#	¢•0*	-61391213918-	6 ₁ 0 ₄	-6.3918.3924-	*0*9	-633924J3930-	45.5	-61393013936-		X VALUE OF THE PEN AFTER EACH	Y VALUE OF	6,,,					111111111111111 -63401834068-	### ### ### ### #### #################	-69040890409-	1,11111112*	-08040690409-	2.12*	+6666666666666666666666666666666666666	22222222222222222222222222222224 -6J4082J4132-
90	TF A	æ	IAY	TER	X.L	TLE	TF	¥	TOM	<u>;</u>	⋖	æ	ಜ		ည		ည္က		ည		90	OS	c,s	ن د د	os	ಜ		മ		2		8		ည္ရ	2	22222
LABEL			* -0EL	NEXT66									ZEROI		XCNTR		YCNTR		XYCNTR		RATIO	õ	¥0	-×	۲۱	ONESH						ONEST		ONESO	11000	222222
P/L	3840 3850	3860	3870	3880	3890	3900	3910	3920	3930	3940	3950	96	3970		3980		3990		0004		4010	4020	4030	0101	4050	090		4070		4080		0604		100	-	222222
	14884																												1111				<u>*</u>			222222
	13922	318		13246			13414	14885	14885	13922	13949	13180	90000	*00000	90000	*00000	90000	*00000	90000	005	80000	90000	90000	90000	90000	00020	111111	00020	1111111	00001		00011		70000		222222222
I-ADD 0P	13768 KO 13780 KJ	13792 M9		13804 30	13816 JO				7	×		1 5900 M9	13917	1	5923		1 5929		13935	* 0000-0000	13943	13949	13955	1 3961	13967	14017	40600111	14067	40700111		* 0080 *				Ö	4 1 100K22
1.0.0	٠2																																		۲.	57

_	I-ADD	dO	P/L	LABEL	0 b	OPERANDS	
_							
_	14181	05000	4120		ည	50,222222222222222222222222222222222222	22222222222
	4 1200K2	222222222	222222	222222	22222	4,1200K2222222222222222222222222222222222	
	4 1 300#	-	1		3	-61418214183-	
	14193	11000	0414	THOST	ည	11,222222223#	
	¥	2222222				-491418334194-	
	14195	0000	4150	TWOSO	2	2,20#	
	4 1500K#					-96146461469-	
	14245	0000	4 160	THREH	ည္က	50,335333333333333555553333333333333333	33333333333333333333
		5333333333333333333	3333333	3333333	533333	33333333333	
	14295	0000	4170		2	33333	4 5433333333333333333333333333333333
	41700L3	333333333333	333	3333333	333333	333533333333	
	14296	0000	4 180	180 00	ည	1,94	
	# 1800 #					-67429674297-	
	14307	00011	4 190	THRET	2	11,3333333333	
	4 1900L3	13333333				-67429734308-	
	14309	0000	4200	THREO	20	2,39	
	4 2000L #					-01247802479-	
	14359	0000	4210	FOURH	ည	+02440444444444444444444444444444444444	* 121112121212121212121
	42100M4	u 2 100Muu u u u u u u u u u u u u u u u u		***	****	-09246015469- +444444444444444444444444444444444444	
	14409	0000	4220		2	+ 1144444444444444444444444444444444444	* 11 11 11 11 11 11 11 11 11 11 11 11 11
	4 2200M4	42200M444444444444444444444444444444444	12 12 12 12 12 12 12 12 12 12 12 12 12 1	111111111	22222	-01446098469- +444444444444444444444444444444444444	
	14410	10000	4230		ဗ္ဓ	1,90	
	42300#					-1144014410-	
	14421	00011	4240	FOURT	2	*@nnnnnnnnnnnn	
	42400M4	* 1 1 1 1 1 1 1 1 1 1 1 1				-63441134422-	
	14423	0000	4250	FOURC	ည	2,40+	
	42500M#					-63442234424-	
	14473	0000	4260	FIVEH	2	50,555555555555555555555555555555555555	5555555555555555
	42600NS	55	555555	555555	55555	5555555555555	
	14523	00000	4270		2	50,555555555555555555555555555555555555	55555555555555555
	#2700NS	55	555555	555555	55555	>555>555555555555555555555555	
	14524	1 0000	4280		ဍ	#36	
	42800		1			-6345474555-	
	14535	1 2000	4290	FIVET	ပ္	11,555555558*	
۷.	16527	*CCCCCCC	400	0 4 V	ځ	-06040636400- +67.6	
5 1	# 3000N#) } })	3	-61453614538-	
ł							

6

()

1-ADD 00-1		7.4	P/L LABEL	à	OPEKANDS	
14911	00002	4530	EX2	2	2,2*	
45300-2#						-61491034912-
14913	0000	0454	EXO	೪	2,0+	
#2#00-0# #						-61491234914-
14915	00002	4550	EX	ಜ	2,-9-9	
45500RR#				·		-91617416479-
14917	00002	4560	EXM2	ಜ	2,-2	
\$ 5600-K#						-8164636969-
14923	90000	4570	×Ψ	OS	••••	INITIAL ADRESS OF X*
14929	90000	4580	AY	OS	4449	INITIAL ADRESS OF Y*
00485	00003	4590	FAC	OS	3,485,	FLOATING ACCUMULATOR*
66660	\$0000	4 600	ARG	DS	4.0000	ARGUMENT#
00402	00003	4610	H.	DS	3,402,,	FLOATING POINT FIELD LENGTH
14959	00030	4620	>	ဥ	30.0#	
		000000	\$000000000000000000000000000000000000	#00	•	-63495034960-
14962	00003	4630	TOLER	ຊ	3,5,,	TOLERENCE OF .005 INCH*
46300-05			1			-63496034963-
14967	90000	0494	ខ	2	5.0+	
*0000-0049	*00					-67496334968-
10000		4650		DEND	10000#	
	1,60000000000	\$000006±00500	#			-8-0096-0115-
2	_	0050036	0024400	500360	0017200500360024400500360031600500360000000500	
000000000000000000000000000000000000000	000010203040	002040	6080003	060902	030400020406080003060902100408021610050015102006021814200	51020060218142004 -
70411282008061	008061422300	1908172	6300000	00000	42230090817263000000000005060708090012141618151811242720242	3151811242720242# -
82236352035304		3248445	5324946	536048	46546275445362718(1123456789123456# -
789-23456789-J3	6789-J345678	39-JK#5	6789+JK	1.56789	1456789-JK456789+JKL56789-JKLM6789-JKLMN789-JKLMN089-JKLMN+	O-LKL MNO89-LKLMN+ -
M 80000000000000 M		100000P9-JKLMN0PQ+	#OLONE	ر د	L 100 388000 19 M900000000000M9000 3600000	- 00000990000W00000

C

Appendix G

PROGRAM FOR SHELL DEVELOPMENT FOR SHIPS' HULLS

CONTENTS

Section		Page
I	INTRODUCTION	G-1
II	THE PROBLEM	G-3
III	EQUATIONS FOR PASSING A CIRCLE THROUGH THREE POINTS	G-5
IV	DIAGONAL ARC LENGTH APPROXIMATION	G-9
v	OUTLINE OF THE ANALYTIC PROCEDURE FOR ESTABLISHING THE FLAT PLATE CONTOUR	G-11
VI	SHIFT OF SIGHT EDGE	G-19
VII	INPUT AND OUTPUT	G-23
VIII	SAMPLE PROBLEM	G-27
IX	FLOW DIAGRAM	G-29
x	FORTRAN PROGRAM LISTING	G-39

1.0.0-2

Section I

INTRODUCTION

This report gives a detailed description of the input/output, operating instructions, and computing procedures (flow diagram) of a shell development program.

The program was written to provide a more accurate and economical method of developing shell plate than the graphical method now employed by the shipbuilding industry.

The development is made from a table of final lofted offsets which locate the plate on the hull surface. With these offsets, the program computes a set of two-dimensional coordinates which represent points on the perimeter of the plate at each frame. These points, when plotted and faired, can be used as a pattern for cutting the shell plate.

The program is written in FORTRAN for an IBM-1620 computer.

Section II

THE PROBLEM

The process of developing shell plate separates into two distinct portions:

- (1) Calculating the true lengths of line segments on the hull surface
- (2) Assembling these calculated line segments into the shape of the plate to be cut.

The information necessary to solve the problem is a complete table of offsets, including those at the plate sight edges.

FINDING THE TRUE LENGTH OF THE LINE SEGMENTS

Since the equation of the hull surface is unknown, the equation for each line segment is also unknown. The curve must, therefore be approximated by passing a known function through the data points. The length of the known curve in that interval may then be found.

The method which is presented is independent of this approximating function. Because the equation for passing a circle through the given points is simple and convenient to calculate, circles were used for this purpose. Other functions, such as parabolas, could be easily substituted.

Any three points in three-dimensional space are co-planner. For this reason it is most convenient to fit the approximating function to groups of three offsets at a time.

This equation is most accurate if the plane passing through the three points is very nearly perpendicular to the center plane of the ship, i.e., the projection on the centerline plane of a line passing through the three points is nearly straight. This condition is met by points

along frame lines and along plate sight edges.

In finding the length of lines such as Line 7 of Fig. 1 (Page G-12 of this Appendix), this condition is only rarely met. Usually the coordinates of the line of Points $B_1 \ldots B_i$ are much closer to one edge of the plate than to the other edge. In this situation the plane passing through the points necessary to find the arc length (Points C_0 , B_1 , A_2 for Line 7) intersects the centerplane at some angle very different than 90° . A circle passing through these three points would project as an arc on the centerplane. The length of the line obtained would be in error by the amount the projected arc exceeds the length of projected straight lines between the points.

For this reason, the shell plate for finding the length of these lines is assumed to be a cylinder, and the arc length found using the method of Section IV of this Appendix.

Establishing the Flat Plate Contour

Once the true lengths of the curves have been found, they must be assembled to accurately determine the shape of the flat plate. This procedure is accomplished by triangulation (See Fig. 1, Page G-12). Since the lengths of the three sides of each of the triangles are known, the triangles are completely determined. The procedure then becomes that of assembling these triangles and solving for the coordinates of points on the periphery of the plate which determine its shape.

An outline of this procedure is given in Section V.

Section III

EQUATIONS FOR PASSING A CIRCLE THROUGH 3 POINTS

Length of the circular arc constructed through three arbitrary points

Objective: Determine the length of the arc $\,$ A given only the coordinates of the three points $\,$ P $_1$, $\,$ P $_2$, $\,$ P $_3$.

 \mathbf{S}_1 , \mathbf{S}_2 , \mathbf{S}_3 can be calculated from the well-known formula for the distance between two points, i.e.,

$$s_1 = \sqrt{(x_3-x_1)^2 + (y_3-y_1)^2 + (z_3-z_1)^2}$$

$$s_2 = \sqrt{(x_2-x_3)^2 + (x_2-x_3)^2 + (z_2-z_2)^2}$$

$$s_3 = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$

For the present, assume R (Radius of Circle through \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3) is known.

L.0.0-2

The problem now becomes: Determine A as a function of S and R only. The length of an arc on a circle is equal to the product of the radius and the central angle determined by the end points of this arc. In the immediate application this implies:

(1) A = RT

T must now be expressed in terms of S₃ and R.

Employing the law of cosines with respect to triangle P₁ Q P₂, it can readily be seen that:

$$S_3^2 = 2R^2 - 2R^2 \cos (T)$$
or
$$\frac{S_3^2}{2R^2} = 1 - \cos (T)$$

Using the identity $\sin^2(T/2) - 1/2 - 1/2 \cos(T)$

above expression becomes

$$\sin^2 T/2 = s_3^2/4R^2$$

or

$$Sin T/2 = S_2/2R$$

Equivalently

(2)
$$T = 2 \sin^{-1} s_3/2R$$

Combining (1) and (2) the expression for A in terms of S_3 and R is obtained:

(3)
$$A = 2R \sin^{-1} \frac{s_3}{2R}$$

Using a trigonometric series:

(4)
$$\sin^{-1}(x) = x + \frac{x^3}{6} + \frac{1 \cdot 3 \cdot x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot x^9}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 9} + \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot x^{11}}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 11}$$

The argument X must now be expressed in terms of S_3 and R. Utilizing law of sines with respect to U P_1 P_2 P_3 :

 $\frac{s_3}{\sin U} = Diameter of circumscribed circle$

$$\frac{S_3}{SinU} = ZR$$

$$\frac{1}{R} = \frac{2\sin U}{S_3}$$

Using law of cosines with respect to $UP_1P_2P_3$:

$$s_3^2 = s_2^2 + s_1^2 - 2s_1 s_3 \cos v$$

$$\cos v = \frac{s_2^2 + s_1^2 - s_3^2}{2s_1 s_2}$$

also

(6)
$$\sin^{2} U = 1 - \cos^{3} U$$
$$\sin^{2} U = 1 - \frac{\left(s_{2}^{2} + s_{1}^{2} - s_{3}^{2}\right)^{2}}{4s_{1}^{2} s_{2}^{2}}$$

Combining (5) and (6)
$$\frac{1}{R} = \sqrt{\frac{4s_1^2 s_2^2 - (s_2^2 + s_1^2 - s_3^2)^2}{s_1^2 s_2^2 s_3^2}}$$

(7) Let
$$X = \left(\frac{s_3}{R}\right)^2$$

(8)
$$x = s_3^2 = \frac{\left[4s_1^2 s_2^2 - \left(s_2^2 + s_1^2 - s_3^2\right)^2\right]}{s_1^2 s_2^2 s_3^2}$$

Combining (3), (4), and (7), the final expression for arc length becomes:

(9)
$$A = s_3 \left(1 + \frac{x}{24} + \frac{3}{640}x^2 + \frac{5}{7168}x^3 + \frac{35}{48\cdot48\cdot128}x^4 + \frac{63}{2816\cdot32\cdot32}x^5 \right)$$

Replacing S_3 by S_1 in (8) and (9) would give the arc length between P_1 and P_3 , etc.

SECTION IV

DIAGONAL ARC LENGTH APPROXIMATION

The following describes the method used to find the arc lengths of certain lines (See Fig. I, lines 3, 7, 10, 11 of Section V).

Known: P_1, P_2, P_3, P_5 $X_0 = X_1 = X_3$

$$E = \sqrt{(Y_3 - Y_6)^2 + (Z_3 - Z_6)^2} \quad ; \quad F = \sqrt{(Y_1 - Y_6)^2 + (Z_1 - Z_6)^2} \quad ; \quad H = \sqrt{(Y_3 - Y_1)^2 + (Z_3 - Z_1)^2}$$

$$(1) \quad G = \sqrt{(Y_2 - Y_6)^2 + (Z_2 - Z_6)^2} \quad (2) \quad D = \sqrt{(Y_3 - Y_2)^2 + (Z_3 - Z_2)^2}$$

$$\overline{R}_{R} = X_2 - X_6$$

Knowing lengths of E,F, and H , arc lengths P_1 P_4 and P_4P_5 can be computed using (1) and (2) with the method described in Section III. .

Then using the Pythagorean theorem: $P_1P_2 = \sqrt{(P_1P_2)^2 + (P_1P_2)^2}$

$$RR = \sqrt{(RR)^2 + (RR)^2}$$

(

OUTLINE OF THE ANALYTIC PROCEDURE FOR ESTABLISHING THE FLAT PLATE CONTOUR

In Fig. 1; Line C_0 , C_1 , ..., C_i , and Line A_0 , A_1 , ..., A_i are on the upper and lower sight edges of the plate; Line B_0 , B_1 , ..., is either a waterline or buttock line which passes reasonably close to the mean line between the sight edges.

The following assumes the coordinates of Points A_0, \ldots, A_1 ; B_0, \ldots, B_1 ; C_0, \ldots, C_1 are known on the ship's hull (heights and half-breadths), and also assumes that the arc lengths between the points have been calculated using Appendix I-A, or some similar method.

 B_0 is the plate origin (See Fig. 1) and its coordinates are therefore known. Line $\overline{B_0B_1}$ is assumed to be parallel to the X axis

$$\begin{split} & \overline{B_0} \ \overline{B_1} \ , \ \overline{B_0} \ \overline{A_0} \ , \ \overline{B_1} \overline{A_0} \ \text{are known} \\ & S_0 = \frac{1}{2} \ \overline{(B_0B_1} + \overline{B_0A_0} + \overline{B_1A_0}) \\ & r_0 = \frac{1}{2} \left[(S_0 - \frac{+}{\overline{B_0}B_1}) \ (S_0 - \overline{B_0A_0}) \ (S_0 - \overline{B_1A_0}) \right]^{\frac{1}{2}} \\ & \cos \ \beta_0 = \underline{(\overline{B_0B_1})^2 + (\overline{B_0A_0})^2 - (\overline{B_1A_0})^2} \end{split}$$

$$A_{\text{oy}} = \frac{2r_{\text{o}}s_{\text{o}}}{8\sigma^{3}1}$$

$$A_{\text{ox}} = \frac{8\sigma^{3}}{8\sigma^{3}}\cos\beta_{\text{o}}$$
Coordinates of Point A_o

Note: Circled numbers indicate order that triangles are used in triangulation process.

Fig. 1 Method of Plate Segmentation for Lofting by Triangulation

7. Arctan
$$\left[\begin{array}{c} \frac{2r_{o}}{s_{o} - \frac{1}{s_{o} s_{1}}} \\ \frac{1}{1} - \left(\frac{r_{o}}{s_{o} - \frac{1}{s_{o} s_{1}}} \right) \end{array} \right]$$

$$\begin{array}{lll} \overline{B_0C_0} & , & \overline{B_1C_0} & \text{Known} \\ \\ s_1 & = \frac{1}{2} & (\overline{B_0B_1} + \overline{B_0C_0} + \overline{B_1C_0}) \\ \\ r_1 & = \left[\frac{1}{8_1} \left(s_1 - \overline{B_0B_1}\right) + \left(s_1 - \overline{B_0C_0}\right) + \left(s_1 - \overline{C_0B_1}\right)\right]^{\frac{1}{4}} \\ \\ \cos \beta_1 & = \frac{\left(\overline{B_1B_0}\right)^2 + \left(\overline{B_0C_0}\right)^2 - \left(\overline{B_1C_0}\right)^2}{2\left(\overline{B_0B_1}\right) + \left(\overline{B_0C_0}\right)^2} \end{array}$$

$$\begin{bmatrix}
\frac{2r_1}{s_1 - \overline{s_0 s_1}} \\
1 - \left(\frac{r_1}{s_1 - \overline{s_0 s_1}}\right)^2
\end{bmatrix}$$

$$B_{1}x = \overline{B_{0}B_{1}}$$

$$B_{1}y = 0_{0}$$
Coordinates of B_{1}

AoA1 , B1B1 known

$$S_{2} = \frac{1}{S_{2}} \left(\overline{B_{1}} \overline{A_{0}} + \overline{A_{0}} \overline{A_{1}} + \overline{A_{1}} \overline{B_{1}} \right)$$

$$r_{2} = \left[\frac{1}{S_{2}} \left(S_{2} - \overline{B_{1}} \overline{A_{0}} \right) \left(S_{2} - \overline{A_{0}} \overline{A_{1}} \right) \left(S_{2} - \overline{A_{1}} \overline{B_{1}} \right) \right]^{\frac{1}{A_{2}}}$$

$$\beta_{o} = \tan^{-1} \frac{A_{o}X}{A_{o}Y}$$

$$\delta_2 = \operatorname{Arctan} \left[\frac{2r_2}{s_2 - \overline{b_1}\overline{A}_1} - \frac{1 - \left(\frac{r_2}{s_2 - \overline{b_1}\overline{A}_1}\right)^2} \right]$$

 $\alpha_2 = 90^{\circ} - T_{\circ} - \gamma_2 - \beta_{\circ}$, where $\Lambda_{\circ}X$ is negative

$$\alpha_2 = 90^\circ - T_0 + \beta_0 - \gamma_2$$
, where AX is positive or zero

$$A_1y - A_0y + \overline{A_0A_1} \quad \sin \alpha_2$$
 Coord

Coordinates of A

Coci , CB Known

$$s_3 = \frac{1}{2} (\overline{B_1C_0} + \overline{C_0C_1} + \overline{C_1B_1})$$

$$r_3 = \frac{1}{\bar{s}_3} \left[(s_3 - \overline{b_1 c_0}) (s_3 - \overline{c_0 c_1}) (s_3 - \overline{c_1 B_1}) \right]^{\frac{1}{2}}$$

$$p_1 = \tan^{-1}$$

$$\begin{bmatrix}
\frac{2\mathbf{r}_{3}}{\mathbf{s}_{3} - \overline{\mathbf{s}_{1}}\mathbf{c}_{1}} \\
\hline
1 - \mathbf{r}_{3} \\
\hline
\left(\mathbf{s}_{3} - \overline{\mathbf{s}_{1}}\mathbf{c}_{1}\right)^{2}
\end{bmatrix}$$

$$C_{1}y = C_{0}y + \overline{C_{0}C_{1}} \quad \sin \quad \swarrow_{3}$$

$$C_{1}x = C_{0}x + \overline{C_{0}C_{1}} \quad \cos \quad \swarrow_{3}$$
Coordinates of C_{1}

$$\overline{C_1B_2}$$
 , $\overline{A_1B_2}$ Known

$$\overline{A_1C_1} = \left[(C_1x - A_1x)^2 + (C_1y - A_1y)^2 \right]^{\frac{1}{2}}$$

$$\searrow_4 = \frac{\pi}{2}$$
, where $A_1 X = C_1 X$

$$\sum_{k=1}^{\infty} tan^{-1} \left(\frac{C_1 Y - A_1 Y}{C_1 X - A_1 X} \right), \text{ where } A_1 X < C_1 X$$

$$\searrow_4 = 180^{\circ} - \tan^{-1} \left(\frac{C_1 Y - A_1 Y}{A_1 X - C_1 X} \right)$$
, where $A_1 X > C_1 X$

$$S_4 = \frac{1}{2} \left(\overline{A_1 C_1} + \overline{A_1 B_2} + \overline{B_2 C_1} \right)$$

$$\mathbf{r}_{4} = \begin{bmatrix} \frac{1}{S_{4}} & (S_{4} - \overline{A_{1}C_{1}}) & (S_{4} - \overline{A_{1}B_{2}}) & (S_{4} - \overline{B_{2}C_{1}}) \end{bmatrix}^{\frac{1}{2}}$$

$$\rho_{4} = Arctan \left[\frac{24_{4}}{s_{4} - c_{1}B_{2}} - \frac{24_{4}}{1 - \left(\frac{4}{s_{4} - \overline{c_{1}B_{2}}}\right)^{2}} \right]$$

$$B_2 y = A_1 y + \overline{A_1} \overline{B_2} \sin \gamma_5$$

$$\mathbf{B}_{2}^{\mathbf{x}} = \mathbf{A}_{1}^{\mathbf{x}} + \overline{\mathbf{A}_{1}^{\mathbf{B}}}_{2} \cos \Upsilon_{5}$$

$$\overline{\mathbf{A}_1}^{\mathbf{A}_2}$$
 , $\overline{\mathbf{A}_2}^{\mathbf{B}_2}$ Known

$$S_5 = \frac{1}{2} \left(\overline{A_1 B_2} + \overline{B_2 A_2} + \overline{A_2 A_1} \right)$$

$$R_5 + \begin{bmatrix} \frac{1}{S_5} & (S_5 - \overline{A_1B_2})(S_5 - \overline{B_2A_2})(S_5 - \overline{A_2A_1}) \end{bmatrix}$$

$$\delta_5 = Arctan$$

$$\begin{bmatrix}
\frac{2r_5}{s_5 - \overline{b_2 A_2}} \\
\frac{1}{s_5 - \overline{b_2 A_2}}
\end{bmatrix}^2$$

$$A_2 y = A_1 y + \overline{A_1} A_2 \sin 35$$

$$A_{2}y = A_{1}y + \overline{A_{1}}A_{2} \sin \beta_{5}$$

$$A_{2}x = A_{1}x + \overline{A_{1}}A_{2} \cos \beta_{5}$$
Coordinates of A_{2}

$$\begin{bmatrix} \frac{2r_4}{s_4 - \overline{A_1B_2}} \\ \frac{1 - \left(\frac{r_4}{s_4 - A_1B_2}\right)^2} \\ \end{bmatrix}$$

$$Y_6 = 180^{\circ} - X_4 - E_4$$

$$\overline{c_1 c_2}$$
 , $\overline{c_1 B_2}$ Known

$$s_6 = \frac{1}{2} (\overline{B_2C_1} + \overline{C_1C_2} + \overline{C_2B_2})$$

$$\mathbf{r}_{6} = \left[\frac{1}{S_{6}} \left(S_{6} - B_{2}C_{1}\right)\left(S_{6} - C_{1}C_{2}\right)\left(S_{6} - C_{2}B_{2}\right)\right]^{\frac{1}{2}}$$

$$\delta_{6} = Arctan \qquad \left[\frac{\frac{2r_{6}}{s_{6} - \overline{B_{2}C_{2}}}}{1 - \left(\frac{r_{6}}{s_{6} - \overline{B_{2}C_{2}}} \right)^{2}} \right]$$

$$\begin{bmatrix}
 c_2 y = c_1 y + c_1 c_2 & \sin & f_6 \\
 c_2 x = c_1 x + c_1 c_2 & \cos & f_6
 \end{bmatrix}$$
Coordinates of c_2

REPEAT FROM LOOP FOR NEXT TRIANGLE, ETC.

Section VI

SHIFT OF SIGHT EDGE

In manual methods of shell plate development, the neutral plane is graphically projected to define the equivalent flat plate pattern. The neutral plane is determined, conventionally, by a point 1/2 t from and normal to the molded line of the plate, where t = plate thickness. This is necessary since the finished mold loft offsets lie on the mold line, which is normally the interior surface of the plate. The point which is the intersection of the plate edge and the mold line is called the sight edge offset, as shown in Fig. G-2.

To exactly duplicate the foregoing in a computer program, calculation of the slope of the curve would be necessary to establish the normal to the plate through the sight edge offset. This complication can be avoided entirely by permitting the final plate sight edge to deviate slightly from that provided by the loft. Of importance is that the deviation in sight edge on one plate is entirely compensated for on the adjoining plate. The plate itself remains in exactly the same position on the hull. Fig. G-2 shows the method employed in the computer program wherein the neutral plane is approximated by finding the point which is $\frac{t}{2}$ from the sight edge offset along the plane of measurement. Whether the projection is to a vertical plane or a horizontal plane depends upon whether the sight edge offset is defined by the mold loft from waterline half breadths or buttock heights, respectively.

It is obvious that no shift of sight edge will occur where the slope of the mold line is either zero or infinite. For all other slopes, the deviation varies as the cosine of the angle of tangency, with maximum deviation occurring when that angle equals forty-five degrees.

In a one-half inch shell plate, the maximum deviation would be slightly less than one-fourth inch. Since such a negligible shift in sight edge permits a substantial simplification in the computer program, its adoption is considered justifiable.

The foregoing is presented in detail, since the computer method produces a result which deviates from conventional lofting methods. This deviation must be known by the loftsman, otherwise it will appear that the computer solution produces a measurable error in some cases, when checked in the loft by conventional methods. Further, if both computer development and manual plate development are done on the same ship, the manual method must conform to the computer method in order to achieve compatibility.

Fig. G-2 Section Through Plate and Seam

Section VII

INPUT AND OUTPUT

When shell plating is placed on the ship it is butted or joined between frames. Because the offsets are provided on the frames only, the computing methods used in the program require that the offsets be given one frame ahead of the butt at the start of the plate, and for two frames beyond the butt at the other end. This, then, means that for a plate covering twenty frames, offsets for twenty-three frames are needed.

The offsets provided by the loft are given for the upper and lower sight edges, as well as for a waterline or butt line on the plate which passes between the sight edges. The program provides for a maximum plate length of fifty frames and a minimum of two frames.

The offsets are given in feet, inches, eighths, and sixteenths, and are in the form X, Y, and Z, where X is frame spacing, Y is half-breadths, and Z is height. When the plate is on the bottom of the hull, the $\frac{t}{2}$ (detailed above) value must be subtracted from the Z terms. However, the program was written so that $\frac{t}{2}$ is algebraically added to the Y terms; consequently, the X and Z values are reversed on the input data cards, and the $\frac{t}{2}$ input is made negative.

The punched output containing the coordinates is in a format compatible with the input format requirements of an existing program which will plot these points for fairing. However, the coordinate information can readily be used to manually plot the traces of the plates.

Input Format

The card format for X, Y, and Z, is as follows:

A complete input data deck is constructed in the following manner:

The first card is the plate identification, e.g., D-bb7, B-b14, I3
D-101, The second card contains the number of frames of the plate (I3 format), and the plate thickness (F7.4 format).

The third card will be the start of the offsets, as previously described.

The offsets for the upper edge of the plate must be first in order, followed by the middle line offsets, and finally the offsets for the lower edge.

Output Format

The first card of punched output is the plate identification, which is identical to the first card of input data. The remaining cards are the X-Y coordinates of the plate. The coordinates of the upper edge on every frame are punched first, and then the cooresponding coordinates for the lower edge are punched. The computed coordinates are in inches at one-tenth scale. The cards containing the upper

edge points have a format as follows:

13 F9.3 I3 F9.3

XU(n)=+XXXX.XXXbYU(n)+XXXX.XXX

XU and YU being X upper and Y upper

The cards for the lower edge have the same format, except XU and YU are replaced by XL and YL (X lower and Y lower).

Operating Instructions for IBM-1620

- 1. All switches to off and program
- 2. Clear memory and reset
- 3. Sense Switch 3 ON, if printout of lengths is desired
- 4. Load Object Deck and push "Load" Switch on 1622
- 5. Load Data Deck(s) on command, "load data" message printed by typewriter, and push "reader start" switch on 1622
- 6. Load Punch Hopper and push "punch start" on 1622
- 7. Data processing is complete when (a) all data cards have been read properly, (b) output has been punched, and (c) a "reader-no-feed" light on 1620 console
- 8. A non-process runout of the 1622 card punch must be made to obtain the last-punched output card

Timing

(

(

- Sense Switch 3 ON Load program, load data, and execute 1.4 min/frame
- Sense Switch 3 OFF Load program, load data, and execute
 1.04 min/frame

_			2 10			_		- -1		.,	=1		_	_,	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	-,	_	_	_	_	_	_	_	—
	SEQ	B	ğ	8	8	30	90	3	goo	3	3	1	1		•	•	ŀ	Ŀ	L	4	1	4	4	1	4	4	•	4	4	4	4	1	4	4	3	•			_ ;		4	4
	•	17	٩	9	9	9	ď	3	9	9	9	4	1	3	•	•		Ŀ	I	$\{$	-	3	-	}	1	•	5	3	-	3	-	4	3	1	3		-		_	Ŀ		3
		2	2	3	4	7	S	7	7	3	7	4	4	4	L	F	F	F	F	Ŧ	+	4	4	-	\Box	Н		H	-	-	+	-	+	4	4		H	H	-	\vdash	Н	\dashv
	HB.	6	J	J	7	1	ļ	٦	J	٦	J	4	4	4	4	Ľ	Ľ	Ľ	1	1	1	1	4	4	_	_	1	Н	4	4	4	4	1	4	4	ļ	Ц	Н	با	Н	H	4
			٦,	6	7	7	3	4	1	4	٦,	1	1	1	1			ŀ	1	1	1	7	4	1	1	•	•	1	3	1	3	3	1	3	3	•		_3	Ŀ	Ŀ	\exists	3
.0	7	0		7	7	7	7	٩	3	ব	ব	4	3	3				Γ	Ŧ	1	4	3	-	-	-		-	4	•	-	•	3	3	3	-		-	-	•	3	-	3
1	<u> </u>	90	110	Š	7	6	3	7	冒	몱	\mathcal{L}	7	4	4		Е	F	F	F	Ŧ	4	7	\neg	\exists				Н		_	4	4	4	\exists			\vdash	尸	F	П	Я	\exists
			7	ĭ	7		j	۲	Ĭ	710	97	4	4	4		Ľ	L	L	1	1	1	4	_	_	_		1	Ц	1	_	4	4	4	1	4	Ī	Ľ	Ľ	Ľ	Ľ	Н	Н
LOWER	[里]	9	7	7	٦	7	٦	7	7	7	7	1	1	‡	:	1	1	1	1	1	1	1	4	1	1	•	•	1	4	1	1	1	4	7	1	•	[1	:	13	13	4
Ó		10	7	9	9	d	9	0	9	9	0	\exists	3	3	Ī		Γ	Γ	Ī	\mathbf{I}	3	3	7	-	-	•			_	•	3	3	3	3	-	•	Ŀ	-	Ŀ	-	\Box	\Box
1	١:	1	20	夕	ă	2	Z	70		20	8	4	4	\Box		L	F	F	Ŧ	7	4	4				Ц		П			\exists		4				Г	F	F		\Box	Н
	×.	ļ	7	7	Ľ	7	ļ	7	Ĭ	Ĭ	Ĭ	4	4	_1	Ŀ	Ľ	L	1	1	1	4	4		_	_	Ľ	Ľ	Ц		_1	4	4	4	_		Ľ	Ľ	Ļ	Ľ	Ľ	Ľ	Н
L			•	7	1	3	7	"	7	7	7	4	1		•	Ŀ	L	L	1	1	1	4	•	1	•	•	:	1	•	1	1	3	1	•	•		Ŀ	Ŀ	Ŀ	Ŀ	13	L
	SEO.	1:10	12	(3	Ä	পু	1	1.7	MI.	510	020	}	3	-	•		ſ	Ī	-	3	3	3	3	3			:	1	-	-	3	3	3	3	:		[Γ		ſ:	\Box	B
	1	18	УO	7	ą	7	00	90	Ø	77	ar	7	٦	٦	۲.	H	t	t	1	1	7	7	7	H		-	۲.	H	•	-	_	_	┪	-	-	١.	H	H	١.	Ι.	H	H
0	ا در ا	12	V	19	ত	ত	S	5	V	5	7				Ė	t	t	t	‡	1	1									Н							L	t	t	t	Ħ	口
3	EB.	9	9	9	9	9	9	9	9	9	0	4	•	Ŀ	٠	L	Ł	Ł	1	Ł	4	_	-	·	Ŀ	Ŀ	Ŀ	Ŀ	٠	•	_	•	_	_	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	ᆸ
	-;	97	3	3	4	9	8	9	7	۲.	9	1	4			l.	1	┧	1	1	4	4	1	:	-	-	:	1 :	-		4	•	4	¥ .		:	١.	:	:	: 1	1:	11
STRIVERR	HEIGHT	ŧ	9	7		Ø	7	7	H	d	7	H	┪	H	Τ.	t	t	†	‡	†	┪	7	Τ,	۲.	١.	۲	†	1	۲	F	7	•	_	H	۲.	۲	۲	<u></u>	1	‡.	۲.	H
13		4	Q	1/	ন	13	177	5		2	Ż	ロ				t	t	‡	‡	#	⇉		Ξ				L		Ш	╘					L		L	上	t	上	二	
18		14	~	7	7	2	7	7	2	2	3	╛	_	Ĺ	Ŀ	L	1	1	1	1	ᅼ	_	•	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ		1	_	Ľ	Ŀ	Ŀ	Ŀ	Ŀ	L	Ţ	╧	너
15	置]9	1	7	7	,	7	7	7	7	9		4		7	1	1	1	1	1	4	4	•	:	:	:	:	1	•	:	4	-	1	1	:	1:	1:	1:	1:	1:	1:	
1	М	7	Ø	0	U	0	10	Q	4	0	0	Ħ	7	Γ.	T	T	t	†	†	7	╗	_	Ī	Ī	Γ	T	Г	1	ŀ	7	7	Γ	ľ	ļ.	T.	1	Ţ	T	T	1	1.	П
1	1:	45	Ş	2	101	3	4	2	Q	2	ē	H	_		Ε	L	ļ	1	#	7					F	F	L		F	E	П	Ц	П	Γ	Ε	F	Į	丰	Į	Ļ	F	口
1	 ×]	֡֡֝֞֞֞֞֞֞֞֞֡֞֞֩֞֞֡֡֞֞֩֞֡֡֞֞֞֡֡֡֡֡֡֡֡֡֡֡	Ľ	7	1		7	7	ב		7	Ц		Ľ	L	1	1	1	1	4	_		_	Ŀ	Ľ	Ľ	L	Ŀ	Ŀ	Ŀ	Ľ	Ľ	Ľ	Ŀ	Ŀ	Ľ	1	1	1	1	Ľ	ᅥ
]`	"				11	77	3	7	7	4		:	1	1	1	1	‡	4	4	•	:	:	1	1		1:	:	:	:	:	:	:	1	1	1.	1.	1	<u>1</u> .	1:	14
	SEO	7	7	Z	i.	X	113	3	1	2	250	1	-		Γ	Ţ	Ī	Ţ	Ŧ	}	3	-	•			Γ	1	:		:	-		•	:		1	Γ	Γ	ſ	Ţ	Ţ	П
1	M	18	8	9	9	90	90	0027	16	9	7	H		۲	۲	t	†	†	╁	-}	-]	Η.	H		۲	H	+	t.	H	H	۲	H	H	H	۲	t	+	t	+	+	+	H
	١.,	ł	6	L			O	i	o	11	4	Н		F	H	t	t	t	t	1			E	H	t	t	t	t	L	\vdash	L	H	F	H	H	t	t	士	t	\pm	士	H
	8	ďΘ	10	Ó	0	0	Q	10	O	О	0	-	•	ŀ	Γ	T	Ŧ	Ŧ	7	4	•	•	•	•	-	Γ	\mathbf{I}	-	Γ	ŀ		ŀ	ŀ	Γ	ŀ	Τ	$\overline{\mathbf{I}}$	T	T	Γ	$ar{1}$	П
	Ŧ	27	1	7	7	7	7	7	7	7	7	П		Γ	Γ	{	1	Ŧ	1]	-		:	T:		Ţ	Γ	:	Γ		:		T:			Γ	Ŧ	Ţ	{	Ţ	1	П
7		\$	1	F	V	ν.	k	F	1	ᇫ	5	H	Η.	۲	۲	†	†	†	†	1	ㅓ	۲	H	۲	+	t	+	+	H	Ι.	ا	t.	۲.	t.	۲	+	+	†	†	+	+	H
11	11-	42			7				10	Ø	M	Н		E	\vdash	t	${\sf t}$	t	t	1		Ь	L	E	t	t	t	t	t	t	E	L	E	E	t	t	t	士	\pm	士	士	Ħ
	등	7	10	0	0	0	9	L	_		L		ŀ	Ŀ	ſ	I	ſ	ſ	$ar{f}$	-	•	ŀ		Γ		\mathbf{I}	ſ	1	Ŀ		Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	\int	$oxed{I}$	1	1	$oxed{I}$	1	$\{ \}$
EX	HEISH	7	7	9	9	0	9	9	19	5	9	H		Γ	Γ	1	Ţ	1	1	}	3				Τ	Ţ	Ţ	1:	Γ	[:		Γ	1	Ţ	Ţ	1	1	T :	1
LOWER	 	4	4	0	Ь	0	b	₹	þ	0	4	H	H	-	╁	+	†	†	†	┪	۲	H	H	t	t	†	t	+	╁	†		t	+	+	╁	╁	†	†	╁	†	†	H
17		\$	2	Ø	9	9	2	2	10	0	2			L	t	t	1	#	1	1			E	t	t	t	t	t	L	t			L	t	t	t	t	‡	#	#	土	Ħ
	×	┪	L.,	2	2			┺	1_	_	L	L	Ľ	L	L	1	1	1	1	_		Ľ	L	Ŀ	1	L	1	<u> 1</u>	L	L	Ŀ	Ŀ	Ŀ	L	L	₹_	1	1	1	1	1	نــــــــــــــــــــــــــــــــــــــ
	`	7	14	4	٩	8	0	2	15	ド	18		:		1	1	1	1	1	4	1	;	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	‡	1	1	1
<u> </u>	2	1	1	Ū	0	¥	Ų	な	木	4	6	H	H	H	t	t	†	†	†	1	Н	H	T	T	t	t	t	t	t	t	T	t	t	t	t	t	t	†	†	t	t	H
	FR	1	L		Ĺ		L	Ľ	纟	Ė	0//	L		L	L	l	1	1					L	L	L	L	L	L			L	L		L	1		L	L	1	L	L	

Fig. G-3 Sample Problem - The Set of Input Data for the Shell Plate to be Developed

1.0.0-2

Section VIII

SAMPLE PROBLEM

Figure G-3 shows a set of input data for a shell plate to be developed. The form on which this data is recorded was developed for use by the manual loft. Below is the listing of the coordinates of the pattern developed which was typed as the program was executed.

Output (From computer typewriter)

Listing of the coordinates of the pattern developed

```
A- 10A
                .0018YU(
                                    5.2069 FR 116 A
 XU(
                                    5.2006 FR 116 B
               2.4018YU
                            2)=
       2)=
 XU (
               4.8018YU(
                                    5.2014 FR 116 C
 XU
                            4)=
                                    5.2011 FR 116 D
 XU
               7.2019YU(
     5)=
6)=
                           5)=
                                   5.2019 FR 116 E
 XU (
              9.6019YU(
                          6)<del>=</del>
                                  5.1958 FR 116 F
           12.0019YU(
 ΧU
                            7)=
8)=
                                    5.1972 FR 116
 XU
       7)=
8)=
              14.4020YU(
                                    5.1924 FR
 XU
              16.8021YU
              19.2022YU
 XU
       9)=
                            9)=
                                    5.1936 FR
                                               118
                                    3.6794 FR 116 A
 XL(
                .0004YL(
 XL (
      2)=
              2.3995YL(
                           2)=
                                   3.6797 FR 116 B
       3)=
4)=
                                    3.6799 FR 116 C
 XL (
               4.7995YL
               7.1995YL
                                    3.6792 FR 116 D
 XL (
                                    3.6795 FR 116 E
 XL
       5)=
               9.5995YL(
                                   3.6792 FR 116 F
             11.9995YL(
 XL
                                    3.6793 FR 116
 XL
                                    3.6795 FR 117
              16.7995YL
                                    3.6852 FR 118
              19.1995YL(
```

FLOW BRACEAN

Rev 1. 8-24-62 1-0.0-2

(

G-33

8-24-62 1.0.0-2 G-34

-

Rev. 1.

Ì

G-36

1 - 3 C-3

Section X

١

ł

FORTRAN PROGRAM LISTING

```
DIMENSION X(53,3),Y(53,3),Z(53,3),SC(51),SA(51),ACB(53)
DIMENSION DSCB(51),DSAB(51)
DIMENSION BX(53),BY(53),ABA(53),SB(2),AC(53)
DIMENSION XL(53),XU(53),YU(53),YL(53)
90 READ 108, ID
     READ 100,N,T
     DO 9 J=1,3
     DO 3 I=1.N
  1 READIO1, IXF, IXI, IXE, IXS, IZF, IZI, IZE, IZS, IYF, IYI, IYE, IYS
     XF=IXF
     XI = IXI
     XE=!XE
     XS=IXS
     YF=IYF
     YI = IYI
     YE=!YE
     YS=1YS
     ZF=IZF
     Z1=1Z1
     ZE=IZE
     ZS=1ZS
     X(I,J)=XF+(XI/12.)+(XE/96.)+(XS/192.)
     Y(1,J)=YF+(Y1/12.)+(YE/96.)+(YS/192.)+(T/24.)
  3 Z(I,J)=ZF+(ZI/12.)+(ZE/96.)+(ZS/192.)
  9 CONTINUE
     1=1
      J=1
     L=0
     N2=N-2
     DO 2 1=1,N2
  8 L=L+1
     SC1=(X(1+2,J)-X(1,J))*(X(1+2,J)-X(1,J))
SC1=SC1+(Y(1+2,J)-Y(1,J))*(Y(1+2,J)-Y(1,J))
     SC1=SC1+(Y(1+2,J)-Y(1,J))*(Y(1+2,J)-Y(1,J))

SC1= (SC1+(Z(1+2,J)-Z(1,J))*(Z(1+2,J)-Z(1,J)))

SC2=(X(1+1,J)-X(1,J))*(X(1+1,J)-X(1,J))

SC2=SC2+(Y(1+1,J)-Y(1,J))*(Y(1+1,J)-Y(1,J))

SC2= SC2+(Z(1+1,J)-Z(1,J))*(Z(1+1,J)-Z(1,J))

SC3=(X(1+2,J)-X(1+1,J))*(X(1+2,J)-X(1+1,J))

SC3=SC3+(Y(1+2,J)-Y(1+1,J))*(Y(1+2,J)-Y(1+1,J))

SC3=SC3+(Y(1+2,J)-Y(1+1,J))*(Y(1+2,J)-Y(1+1,J))
    SC2=
                      (SC3+(Z(1+2,J)-Z(1+1,J))*(Z(1+2,J)-Z(1+1,J)))
     SC3=
      I N=1
     A1=SC1
     A2=SC2
     A3=SC3
     A6=SC2
     GO TO 300
  2 SC(L)=A3
```

L=1

ĺ

```
11 1-1
       J=2
12 SB1=(X(i+2,J)-X(I,J))*(X(I+2,J)-X(I,J))
SB1=SB1+(Y(I+2,J)-Y(I,J))*(Y(I+2,J)-Y(I,J))
SB1= (SB1+(Z(I+2,J)-Z(I,J))*(Z(I+2,J)-Z(I,J)))
SB2=(X(I+1,J)-X(I,J))*(X(I+1,J)-X(I,J))
SB2=SB2+(Y(I+1,J)-Y(I,J))*(Y(I+1,J)-Y(I,J))
SB2= (SB2+(Z(I+1,J)-Z(I,J))*(Z(I+1,J)-Z(I,J)))
SB2= (SB2+(Z(I+1,J)-Z(I,J))*(Z(I+1,J)-Z(I,J)))
       SB3=(X(I+2,J)-X(I+1,J))*(X(I+2,J)-X(I+1,J))
SB3=SB3+(Y(I+2,J)-Y(I+1,J))*(Y(I+2,J)-Y(I+1,J))
                            (SB3+(Z(1+2,J)-Z(1+1,J))*(Z(1+2,J)-Z(1+1,J)))
       SB3=
       A1=S81
       A2=SB2
       A3=SB3
       | N=2
       A6=SB2
       GO TO 300
13 SB(L)=A3
       J=3
        1=1
       L=0
       D015 I=1,N2
 14 L=L+1
       SA1=(X(!+2,J)-X(!,J))*(X(!+2,J)-X(!,J))
SA1=SA1+(Y(!+2,J)-Y(!,J))*(Y(!+2,J)-Y(!,J))
SA1= (SA1+(Z(!+2,J)-Z(!,J))*(Z(!+2,J)-Z(!,J)))
SA2=(X(!+1,J)-X(!,J))*(X(!+1,J)-X(!,J))
SA2=SA2+(Y(!+1,J)-Y(!,J))*(Y(!+1,J)-Y(!,J))
SA2= (SA2+(Z(!+1,J)-Z(!,J))*(Z(!+1,J)-Z(!,J)))
        SA3=(X(1+2,J)-X(1+1,J))*(X(1+2,J)-X(1+1,J))
SA3=SA3+(Y(1+2,J)-Y(1+1,J))*(Y(1+2,J)-Y(1+1,J))
                            (SA3+(Z(I+2,J)-Z(I+1,J))*(Z(I+2,J)-Z(I+1,J)))
        SA3=
        A1=SA1
        A2=SA2
        A3=SA3
        A6-SA2
        I N=3
        GO TO 300
 15 SA(L)=A3
        |=1
        J=1
        L=0
        DO 18 I=1.N
        L=L+1
        SCA=(X(I,J+2)-X(I,J))*(X(I,J+2)-X(I,J))
SCA=SCA+(Y(I,J+2)-Y(I,J))*(Y(I,J+2)-Y(I,J))
SCA= (SCA+(Z(I,J+2)-Z(I,J))*(Z(I,J+2)-Z(I,J)))
```

```
SCB=(X(I,J+1)-X(I,J))*(X(I,J+1)-X(I,J))
SCB=SCB+(Y(I,J+1)-Y(I,J))*(Y(I,J+1)-Y(I,J))
SCB= (SCB+(Z(I,J+1)-Z(I,J))*(Z(I,J+1)-Z(I,J)))
         SBA=(X(I,J+2)-X(I,J+1))*(X(I,J+2)-X(I,J+1))

SBA=SBA+(Y(I,J+2)-Y(I,J+1))*(Y(I,J+2)-Y(I,J+1))

SBA= (SBA+(Z(I,J+2)-Z(I,J+1))*(Z(I,J+2)-Z(I,J+1)))
          A1=SCA
          A2=SCB
          A3=SBA
          A6-SCB
          1 N=4
          GO TO 300
     17 ACB(L)=A3
          XX=2.*A2*A1+2.*A2*A4+2.*A4*A1-A2*A2-A4*A4-A1*A1
          XX=XX/(A2*A1)
          IF(XX-1.)905,905,906
   906 TYPE 115
  905 A3=1.+XX/24.+3.*XX*XX/640.+5.*XX*XX*XX/7168.
A3=A3+35.*XX**4/294912.+63.*XX**5/2883584.
A3=SQRTF(A4)*A3
     18 ABA(L)=A3
          1=1
          J=1
          L=0
         DO 21 I=1, N2
          L=L+1
         CA=(Y(1,J+2)-Y(1,J))*(Y(1,J+2)-Y(1,J))
         CA=CA+(Z(I,J+2)-Z(I,J))*(Z(I,J+2)-Z(I,J))
CB=(Y(I,J+1)-Y(I,J))*(Y(I,J+1)-Y(I,J))
CB=CB+(Z(I,J+1)-Z(I,J))*(Z(I,J+1)-Z(I,J))
         BA=(Y(1,J+2)-Y(1,J+1))*(Y(1,J+2)-Y(1,J+1))
          BA=BA+(Z(1,J+2)-Z(1,J+1))*(Z(1,J+2)-Z(1,J+1))
         CB1=(Y(I+1,J+1)-Y(I,J))*(Y(I+1,J+1)-Y(I,J))

CB1=CB1+(Z(I+1,J+1)-Z(I,J))*(Z(I+1,J+1)-Z(I,J))

BA1=(Y(I+1,J+1)-Y(I,J+2))*(Y(I+1,J+1)-Y(I,J+2))

BA1=BA1+(Z(I+1,J+1)-Z(I,J+2))*(Z(I+1,J+1)-Z(I,J+2))
          A1=CA
          A2=CB
          A3=BA
          A6=CB1
          I N=5
          GOTO 300
     19 DSCB(L)=SQRTF(A3*A3+(X(!+1.J+1)-X(!.J+1))*(X(!+1.J+1)-X(!.J+1))
)
          A1=CA
          A2=CB
          A3-BA
          A6-BA1
```

1

1...

```
I N=6
      GO TO 300
   21 DSAB(L)=SQRTF(A3*A3+(X(I+1,J+1)-X(I,J+1))*(X(I+1,J+1)-X(I,J+1))
)
      IF(SENSE SWITCH 3)400,405
  400 N8-N-2
      L=0
      DO 401 I=1,N8
      L=L+1
 401 TYPE 105 ,L,SC(1),L,SA(1)
      L=0
      N1 = N - 1
      DO 402 I=1,N1
      L=L+1
 402 TYPE 106 ,L,ACB(1),L,ABA(1)
      L=0
      DO 403 I=1.N8
      L=L+1
 403 TYPE 107 ,L,DSCB(1),L,DSAB(1)
 405 1-1
      J=1
      L=1
      A1=SB(L)
      A2=ABA(L)
      A3=DSAB(L)
      1P=1
      A5=SB(L)
  GO TO 301
23 COSB=((SB(L))**2+(ABA(L))**2-(DSAB(L))**2)/(2.*SB(L)*ABA(L))
      YL(L)=(-2.*RT*S)/SB(L)
      XL(L)=ABA(L)*COSB
      PUNCH 108, ID
      TAU1=A5
      A1=SB(L)
      A2=ACB(L)
      A3=DSCB(L)
      1P=2
      A5=SB(L)
      GO TO 301
  24 COSB=((SB(L))**2+(ACB(L))**2-(DSCB(L))**2)/(2.*SB(L)*ACB(L))
      YU(L)=(2.*RT*S)/SB(L)
      XU(L)=ACB(L)*COSB
      TAU2=A5
      L=2
      BX(L)=SB(L-1)
      BY(L)=0.0
      L=1
      A1=DSAB(L)
```

 $P_{ij}, r_i, q_{ij}^{k} \in$

```
A2=SA(L)
                  A3=ABA(L+1)
                   1P=3
                  A5=ABA(L+1)
                  GO TO 301
        25 GAM2=A5
        30 BET1=XL(L)/YL(L)
                   BET1=ATANF(ABSF(BET1))
        36 BET2=XU(L)/YU(L)
                   BET2=ATANF (ABSF (BET2))
        1F(XL(L))37,35,35
37 ALPH2=1,5708-(TAU1+GAM2+BET1)
                   GO TO 34
        35 ALPH2=1.5708-(TAU1-BET1+GAM2)
        34 YL(L+1)=YL(L)+(SA(L)*SINF(ALPH2))
                   XL(L+1)=XL(L)+(SA(L)*COSF(ALPH2))
                   L=1
                   A1=DSCB(L)
                   A2=SC(L)
                   A3=ACB(L+1)
                   1P=4
                   A5=ACB(L+1)
                   GO TO 301
         38 GAM3=A5
                    IF(XU(L))26,28,28
         26 ALPH3=TAU2+GAM3+BET2-1.5708
                   GO TO 29
         28 ALPH3=TAU2-BET2+GAM3-1.5708
         29 YU(L+1)=YU(L)+(SC(L)*SINF(ALPH3))
                    XU(L+1)=XU(L)+(SC(L)*COSF(ALPH3))
                    L=2
                    N1=N-1
                    DO47 I=2,N1
         39 \overline{AC}(L)=(\overline{(XU(L)-XL(L))*(XU(L)-XL(L)))+((YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L))*(YU(L)-YL(L)-YL(L))*(YU(L)-YL(L)-YL(L))*(YU(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L)-YL(L
))
                    AC(L)=SQRTF(ABSF(AC(L)))
                     IF(XL(L)-XU(L))41,40,42
          40 XLAM-1.5708
                    GO TO 43
          41 XLAM-ATANF((YU(L)-YL(L))/(XU(L)-XL(L)))
                     GO TO 43
          42 XLAM=3.1416-ATANF((YU(L)-YL(L))/(XL(L)-XU(L)))
          43 A1=AC(L)
                     A2=DSAB(L)
                     A3=DSCB(L)
                      1P=5
                     A5=DSCB(L)
                     GO TO 301
```

G-43

网络大大学 不知 数

```
44 RHO=A5
   XNU=XLAM-RHO
   BY(L+1)=YL(L)+(DSAB(L)*SINF(XNU))
BX(L+1)=XL(L)+(DSAB(L)*COSF(XNU))
   S1=S
   RT1=RT
   A1=DSAB(L)
   A2=ABA(L+1)
   A3=SA(L)
   1P=6
   A5=ABA(L+1)
   GO TO 301
45 DELT-A5
   SIGH-XNU-DELT
   YL(L+1)=YL(L)+(SA(L)*SINF(SIGH))
   XL(L+1)=XL(L)+(SA(L)*COSF(SIGH))
EPS=ATANF(((2.*RT1)/(S1-DSAB(L)))/(1.-(RT1/(S1-DSAB(L)))**2))
   XNEW=3.1416-XLAM-EPS
   A1=DSCB(L)
   A2=SC(L)
   A3=ACB(L+1)
   1P=7
   A5=ACB(L+1)
   GO TO 301
46 DELT-A5
   SIGH=DELT-XNEW
   YU(L+1)=YU(L)+(SC(L)*S!NF(S!GH))
XU(L+1)=XU(L)+(SC(L)*COSF(S!GH))
47 L=L+1
   DO 48 L=1,N1
    XU(L)=XU(L)*1.2
    YU(L)=YU(L)*1.2
    IF(XÚ(L))51,52,52
51 XU(L)=ABSF(XU(L))
    ÎF(YÚ(L))54,58,58
54 YU(L)=ABSF(YU(L))
    PUNCH 110, L, XU(L), L, YU(L)
    GO TO 48
58 PUNCH 113, L, XU(L), L, YU(L)
    GO TO 48
52 IF(YU(L))55,56,56
55 YU(L)=ABSF(YU(L))
    PUNCH 114,L,XU(L),L,YU(L)
    GO TO 48
56 PUNCH 103,L,XU(L),L,YU(L)
48 CONTINUE
    DO 49 L=1,N1
    XL(L)=XL(\dot{L})*1.2
```

G-44

3,600

```
YL(L)=YL(L)*1.2
      IF(XL(L))61,62,62
 61 XL(L)=ABSF(XL(L))
      IF(YL(L))64,68,68
 64 YL(L)=ABSF(YL(L))
      PUNCH 109, L, XL(L), L, YL(L)
      GO TO 49
 68 PUNCH 111, L, XL(L), L, YL(L)
      GO TO 49
 62 IF(YL(L))65,66,66
 65 YL(L)=ABSF(YL(L))
      PUNCH 112 ,L,XL(L),L,YL(L)
      GO TO 49
 66 PUNCH 102, L, XL(L), L, YL(L)
 49 CONTINUE
      GO TO
                 90
300 A4-A3
      XX=2.*A2*A1+2.*A2*A3+2.*A3*A1-A2*A2-A3*A3-A1*A1
      XX=(XX*A6)/(A3*A2*A1)
      IF(XX-1.)900,900,901
901 TYPE 115
900 A3=1.+XX/24.+3.*XX*XX/640.+5.*XX*XX*XX/7168.
      A3=A3+35.*XX**4/294912.+63.*XX**5/2883584.
      A3=SORTF(A6)*A3
GO TO (2,13,15,17,19,21), IN

301 S=(A1+A2+A3)/2.

RT=SQRTF(ABSF(((S-A1)*(S-A2)*(S-A3))/S))

A5=ATANF((2.*RT/(S-A5))/(1.-(RT/(S-A5))**2))

GO TO(23,24,25,38,44,45,46), IP

101 FORMAT(13,12,11,12,13,12,11,12,13,12,11,12)
100 FORMAT(13, F7.4)
102 FORMAT (4H XL(, 13, 2H)=, F10.4, 3HYL(, 13, 2H)=, F10.4)
103 FORMAT(4H XU(,13,2H)=,F10.4,3HYU(,13,2H)=,F10.4)
105 FORMAT(3HSC(,13,2H)=,F9.4,4X,3HSA(,13,2H)=,F9.4)
106 FORMAT(4HACB(,13,2H)=,F9.4,4X,4HABA(,13,2H)=,F9.4)
107 FORMAT(5HDSCB(,13,2H)=,F9.4,4X,5HDSAB(,13,2H)=,F9.4)
108 FORMAT(2HA=,13)
109 FORMAT(4HACB(,13,2H)=,F9.4,4X,5HDSAB(,13,2H)=,F9.4)
109 FORMAT(4H XL(,13,3H)=-,F9.4,3HYL(,13,3H)=-,F9.4)
110 FORMAT(4H XU(,13,3H)=-,F9.4,3HYU(,13,3H)=-,F9.4)
111 FORMAT(4H XL(,13,3H)=-,F9.4,3HYL(,13,2H)=,F10.4)
113 FORMAT(4H XU(,13,3H)=-,F9.4,3HYU(,13,2H)=,F10,4)
112 FORMAT(4H XL(,13,2H)=,F10.4,3HYL(,13,3H)=-,F9.4)
114 FORMAT(4H XU(,13,2H)=,F10.4,3HYU(,13,3H)=-,F9.4)
115 FORMAT (20HS/R GREATER THAN ONE)
       END
```

Kana,

Appendix H

CALCULATION OF OFFSETS FOR FRAME BENDING TEMPLATES

CONTENTS

																	Page
method of soluti	ION .	•		•		•		•	•	•		•	•		•	•	H-1
SAMPLE PROBLEM.		•		•	•	•		•	•							•	H-7
FLOW DIAGRAM		•	•	•	•	•	•	•			•	•					H-8
PROGRAM LISTING																	H-12

Appendix H

CALCULATION OF OFFSETS FOR FRAME BENDING TEMPLATES

Bending templates for accurately determining the shape of frames for forming are one form of information required of any lofting system.

Assuming an equation is at hand for the shape of the hull at a given frame, this program calculates the proper offsets for describing the frame bending template.

The program is written in FORTRAN II for the IBM-1620 computer. The method of solution, operating details, a sample problem, flow diagram, and program listing are included in this Appendix.

METHOD OF SOLUTION

The input information necessary to solve the problem consists of:

- The function that describes the shape of the hull, Y = F(Z)
- The end points of the frame segments, Z₁ and Z₂
- The step size between solution points, S
- The offset (V) which gives depth to the template, or allows for the width of the frame.

This problem is graphically presented in Fig. H-1. The solution is as follows:

GIVEN: $Y = f(Z), Z_1, Z_2, V$, S

FIND: OFFSETS W_{T.} at intervals S as shown in Fig. H-1

METHOD:

1.
$$Y_1 = f(Z)$$
 at Z_1
 $Y_2 = f(Z)$ at Z_2

2.
$$\mathbf{H} = \frac{\mathbf{z}_1 - \mathbf{z}_2}{\mathbf{y}_1 - \mathbf{y}_2}$$

4.
$$H = S \sin \gamma$$

$$R = S \cos \gamma$$

$$F = \Psi \sin \beta$$

$$G = \Psi \cos \beta$$

$$\beta = 90^{\circ} - \%$$

6.
$$YA_1 = Y_1 - G$$

7.
$$\delta = \frac{|\mathbf{M}|}{\mathbf{H}},$$

 δ assumes a value of +1 if the slope is positive, -1 if the slope is negative

8.
$$\mathbf{ZA}_1 = \mathbf{Z}_1 + \delta \mathbf{F}$$
$$\mathbf{Z} \quad \mathbf{END} = \mathbf{Z}_2 + \delta \mathbf{F}$$

9. The Coordinates of Points PA_1 and P_{end} have now been established. The offset at these points is, of course equal to V.

Fig. H-1 Geometry of Frame Bending Problem

^{*} DENOTES GIVEN DATA

- 10. Step through the following for each required offset , W_L = 1 , 2 , 3 , ... , until ZA_L \leq Z_{END} + H
- 11. $\mathbf{ZA_{L}} = \mathbf{ZA_{L-1}} \mathbf{H}$ $\mathbf{ZB_{L}} = \mathbf{ZB_{L-1}} \mathbf{H}$ $\mathbf{YA_{L}} = \mathbf{YA_{L-1}} \mathbf{S} \mathbf{R}$ $\mathbf{YB_{L}} = \mathbf{YB_{L-1}} \mathbf{S} \mathbf{R}$
- 12. The solution for ZC involves a trial and error solution.

 Rewton's Method was selected for this:

First:

Also:

(2)
$$YC_{L} = YE_{L} - H(S) (ZC_{L} - ZE_{L})$$

Subtracting (2) from (1) gives

(3)
$$0 = AZC_L^3 + BZC_L^2 + CZC_L + D - \left[YB_L - H(S)(BC_L - ZB_L)\right]$$

ZCL is the only unknown in (3) and may be solved for using Newton's Method.

13.
$$YC_L = f(Z)_{ZCL}$$

14.
$$W_L = \left[(YC_L - YA_L)^2 + (ZC_L - ZA_L)^2 \right]^{\frac{1}{2}}$$

a. Input Data

A definition of the program input symbols and card formats are given below:

Input Symbols

A Coefficients of a standard cubic equation describing

 $\frac{B}{C}$ = the molded shape of the frame. The equation is of the

D form $Ax^3 + Bx^2 + Cx + D$

IDSTA = Four digit integer frame identification

 \mathbf{Z}_1 = Upper limit of the frame segment to be analyzed

Z₂ = Lower limit of the frame segment to be analyzed

DIS = Minimum offset to allow for depth of frame (F in Fig. H-1)

S = Distance along chord of curve between required offsets.

First Card Format:

<u>Yariable</u>	Format	Card Columns
A B C	4 F 15.8	$ \begin{cases} 1 - 15 \\ 16 - 30 \\ 31 - 45 \end{cases} $
d Dis S. Idsta	2 F 7.3	(46 - 60 ∫61 - 67 (68 - 74 75 - 79
Last Card Format		
$egin{array}{c} \mathbf{z}_1 \ \mathbf{z}_2 \end{array}$	2 F 10.5	$\begin{cases} 1 - 10 \\ 11 - 20 \end{cases}$

b. Sutput Bata

The order of output is as follows:

- 1. The frame identification is typed
- 2. The coordinates of P_1 and P_2 (Fig. H-1) are typed
- 3. The coordinates of each successive point ${\tt PA}_{\tt L}$ and the offset at that point are typed

Output Messages

If the slope of the chord of the frame segment equals zero, a message is typed and the angle γ is set to 90°

c. Switch Settings

- Switch 1 OFF, After completion of the calculations for a given problem, the program looks for an entire new set of data in the card reader.
- Switch 1 0M, After completion of a problem, the program looks for a new limits card (Z_1, Z_2) in the card reader.

All other switches are ignored

SANTIE PROBLEM - FRAME BENDING PROGRAM

Data for Sample Problem - Frame No. 1234

$$\mathbf{r}(\mathbf{z}) = -.00013834\mathbf{z}^3 -.00210378\mathbf{z}^2 -.330263\mathbf{z} + 36.0$$

1620 Typewriter Listing while executing sample problem:

FRAME NO. 1234

PT. NO.	Z	Y	PERP. DIST. TO CURVE
1	12.91815	27.78623	3.00000
2	10.12000	28.86807	3.16161
3	7.32185	29.94991	3.22862
4	4.52371	31.03175	3.21436
5	1.72556	32.11359	3.13377
6	-1.07258	33.19543	3.00320
7	-1.08185	33.20185	3.00000

PROGRAM FLOW CHART CALCULATION OF OFFSETS FOR FRAME RENDUNG TEMPLATES

* ARCTANGENT FORMULA TAKEN FROM

PROGRAM LISTING

```
C
        OFFSETS FOR FRAME BENDING
        DIMENSION Z(3),Y(3)
         Y(1)=0:0
        Y(2)=0.0
         ALPA-0.0
   1 READ 100, A,B,C,D,DIS,S,IDSTA
PRINT 105, IDSTA
14 READ 101, Z(1), Z(2)
CALL CURVE(A,B,C,D,Y(1),Z(1))
CALL CURVE(A,B,C,D,Y(2),Z(2))
        PRINT 106
        PRINT 102,Z(1),Y(1),Z(2),Y(2)
PRINT 104
     4 SLP=(Z(1)-Z(2))/(Y(1)-Y(2))
        PSLP-SLP
        SP=ABSF(SLP)
        PM-SP-1.
        PL=SP+1.
   IF(SLP)26,21,26
26 ANG=.7853982+.995354*(PM/PL)-.288679*((PM/PL)**3)
ANG=ANG+.079331*((PM/PL)**5)
23 H=S*SINF(ANG)
R=S*COSF(ANG)
        BANG-(1.5708-ANG)
        YA=Y(1)-DIS*COSF(BANG)
        YB=Y(1)
        Q-DIS*SINF(BANG)
   IF(SLP)15,16,16
15 ZA=Z(1)-Q
ZEND=Z(2)-Q
        GO TO 17
        16 ZA=Z(1)+Q
        ZEND-Z(2)+Q
   17 ZB=Z(1)
        L=1
       PRINT 103, L, ZA, YA, DIS
     6 L=L+1
        ZA-ZA-H
        ZB=ZB-H
        IF(SLP) 25, 18, 18
   25 YA=YA+R
       YB-YB+R
       GO TO 19
   18 YA-YA-R
```

```
YB=YB-R
  19 ZC=ZB
  10 CALL CURVE(A,B,C,D,ALPA,ZC)
ALPA=ALPA—PSLP*(ZC-ZB)—YB
    7 BETE=3.*A*ZC*ZC+2.*B*ZC+C-PSLP
ZC1=ZC-(ALPA/BETE)
       IF(ABSF(ZC1-ZC)-.0001)5.5.11
  11 ZC=ZC1
       GO TO 10
   5 ZC=ZC1
   CALL CURVE(A,B,C,D,ALPA,ZC)

8 DZ=(ZC-ZA)*(ZC-ZA)
       DY=(ALPA-YA)*(ALPA-YA)
       DIF=SQRTF(DZ+DY)
       PRINT 103,L,ZA,YA,DIF
IF(ZA—ABSF(ZEND+ABSF(H)))9,6,6
   9 L=L+1
       YA=Y(2)-DIS*COSF(BANG)
 PRINT 107, L, ZEND, YA, DIS
22 IF (SENSE SWITCH 1)14,1
21 PRINT-108
       ANG=1.5708
GO TO 23
100 FORMAT (4F15.8,2F7.3,15)
101 FORMAT (2F10.5)
102 FORMAT(4F10.5/)
102 FORMAT (4F10.5/)
103 FORMAT (14,10x,F10.5,2x,F10.5,13x,F10.5)
104 FORMAT (7HPT. NO.,10x,1Hz,12x,1Hy,10x,20HPERP. DIST. TO CURVE)
105 FORMAT (9HFRAME NO.,15/)
106 FORMAT (3x,4Hz(1),7x,4Hy(1),7x,4Hz(2),7x,4Hy(2))
107 FORMAT (14,10x,F10.5,2x,F10.5,13x,F10.5/)
108 FORMAT (20H SLOPE EQUALS ZERO)
       END
       SUBROUTINE CURVE(A,B,C,D,FX,X)
       FX=A*X*X*X+B*X*X+C*X+D
       RETURN
       END
```

ł

Appendix I

DECK OFFSETS ROUTINE

CONTENTS

																Page
INTRODUCTION	•						•				•	•	•	•		I-1
FORMULAS												•				I-1
INPUT DATA .									•	•	•	•	•			I-2
OUTPUT	•												•			I-8
SENSE SWITCH	SE	TT	IN	GS												I-8
SAMPLE PROBLE	M									•					•	1-9
FLOW DIAGRAM																I-10
FORTRAN PROGI	KAM	L	IS	TI	NG	; .										I-31

I

Appendix I

DECK OFFSETS ROUTINE

INTRODUCTION

The purpose of this program is to provide vertical deck camber offsets describing some standard deck forms easily expressed mathematically. The configurations which this program handles are:

- Straight line sheer and straight line camber
- Straight line sheer and parabolic camber
- Parabolic sheer and parabolic camber

The program is intended to be as general as possible within the confines of the above cases. It is possible to vary the frame spacing along the length of the ship and to vary the transverse interval between offsets. It is also possible to have variations in slope of the straight sheer line and to put knuckles in the straight line camber.

FORMULAS

The offsets calculated by this program are vertical offsets, whose base plane is a horizontal plane at a height above the base line of the ship, equal to the height of the lowest point on the sheer curve. The formulas for finding the height of the deck at the centerline are given below:

(1) The height of the deck at the centerplane amidships

$$h_n = .04 Y_n = 2y_n(.24)/12$$

where y is the molded halfbreadth amidship

(2) The height of the deck at the centerplane and at the forward perpendicular

$$h_f = (.2P_L + 20)/12$$

where P_1 is the length between perpendiculars

(3) The height at the aft perpendicular $h_a = (.1P_L + 10)/12$

Figure 1 gives the configuration of the decks in the longitudinal direction. Figure 2 presents the cross sections of the decks. The definitions of the symbols used are the same as given in the FORTRAN Input Symbol Definitions.

The program is written in Fortran II for the IBM-1620 computer.

INPUT DATA

Input Symbol Definition

Symbo:	Ĺ	<u>Befinition</u>
D	-	Distance from the midship section of the ship to the section that has the lowest freeboard (lowest point on the sheer profile). D is negative if this point is aft of midship.
PL	-	Ship's length between perpendiculars
P	-	Overall length of the ship
YM	-	The maximum molded half-breadth of the ship
DIST	-	Difference in length between the overall length of the ship measured forward from midship and the length between perpendiculars measured forward from midship.
CST	-	Length of the transverse interval between two deck offsets (Fig. 2-a).
Ll	-	For the cases having straight sheer, this is the number of different slopes in the sheer line forward of midship. (L1 = 3 in Fig. 1-b).
1.2	-	Same as L1, except aft of midship (L2 - 2 in Fig. 1-b).
1.3	-	For the cases having straight camber, this is the number of different slopes in the camber from the center plane to the sheer line (L3 = 2 in Fig. 2-b).
14	-	The number of intervals of different frame spacing forward of the section with minimum freeboard. The minimum number of intervals must be 2. That is,

(:

()

there must be at least one change in frame spacing.

- 15 The number of intervals of different frame spacing used aft of the section of minimum freeboard. The maximum number is 2.
- DB Length of each different slope (corresponding to L1) from midships forward. Each DF is presented in order starting at midship and working forward.
- DA Same as DF (corresponds to L2) starting at midship and working aft.
 - E Length in feet of each longitudinal section having a different station spacing (corresponds to I4) starting at the point of minimum freeboard at working forward.
 - V The interval between frames in each section E above.
- EA Same as E, except aft (corresponds to L5)
- VA Same as V , except aft
- T Length in feet of each of the slopes (corresponds to L3) from the centerline plane to the sheer line.

Input Data Cards

There are four different sets of data specified for this program, one set for each of the four cases given in the introduction.

The limitations on those variables which have dimension restrictions are given below.

<u>Variable</u>	<u>Minimum</u>	<u>Maximum</u>		
E , KA	2	20		
V , VA	2.	20		
DB , DA	1	21		
Ť	1	21		

The actual FORTRAN format field descriptions have been used to describe the data cards. The field descriptions are the FORTRAN F field, which contains a fixed point decimal number, and the I field, which contains an integer number that is always right justified.

A. Parabolic Sheer and Camber

Card 1 (This card is a header card. For this case it contains a 1 in Column 5)

Card 2					
Format	F15.9	F15.9	F15.9	F15.9	F15.9
Columns	1-15	16-30	31-45	46-60	61-75
Variable	D	PL	P	YM	DIST
Card 3					
Format	F15.9	I 5	15		
Columns	1-15	16-20	21-25		
Variable	CST	14	1.5		
Next L4 Cards	5				
Format	F15.9	F15.9			
Columns	1-15	16-30			
Variable	E	Ą			
Next L5 Card	8				
Format	F15.9	¥15.9			
Columns	1-15	16-30			
Variable	EA	VA			

B. Straight Sheer and Camber

Card 1 (He	eader card	contains	a 2 in	Column .	5)	
Card 2						
Format	F15.9	F15.9	F15.9	F15.9	F15.9	
Columns	1-15	16-30	31-45	46-60	61-75	
Variable	D	PL	P	YM	DIST	
Card 3						
Format	F15.9	15	15	15	15	15
Columns	1-15	16-20	21-25	26-30	31-35	36-40
Variable	CST	L1	1.2	1.3	14	15
Next L1 Card	is					
Format	F15.9					
Columns	1-15					
Variable	DB					
Next L2 Card	is					
Format	F15.9					
Columns	1-15					
Variab le	DA					
Next L3						
Format	F15.9					
Columns	1-15					
Variable	T					

Next LA Cards		
Format	F15.9	F15.9
Columns	1-15	16-30
Variable	E	V
Next L5 Cards		
Format	F15.9	F15.9
Columns	1-15	16-30
Variable	ea.	VA

Straight Shee	r and Farabol	<u>ic Camber</u>			
Card 1	(Header . card;	contains	a 3 ir	Column 5	5)
Card 2					
Format	F15.9	F15.9	F15.9	F15.9	F15.9
Columns	1-15	16-30	31-45	46-60	61-75
V ari a ble	D	PL	P	YM	DIST
Card 3					
Format	F15.9	15	15	15	15
Columns	1-15	16-20	21-25	26-30	31-35
Variable	CST	L1	1.2	14	1.5
Next Ll Car	ds				
Format	F15.9				
Columns	1-15				
Variable	DB				
Next L2 Car	ds				
Format	F15.9				
Columns	1-15				
Variable	DA				
Next L4 Car	ds				
Format	F15.9	F15.9			
Columns	1-15	16-30			
Variable	E	V			
Next L5 Car	ds				
F ormat	F15.9	F15.9			
Columns	1-15	16-30			
Variable	EA	VA			

D. Parabolic Sheer and Straight Camber

Card 1 (Header	card;	contains a	4 in	Column 5)	
Card 2 .					
Format	F15.9	F15.9	F15.9	F15.9	F15.9
Columns	1-15	16-30	31-45	46-60	61-75
Variable	D	PL	P	YM	DIST
Card 3					
Format	F15.9	15	15	15	
Columns	1-15	16-20	21-25	26-30	
Variable	CST	L3	14	L5	
Next IA Cards					
Format	F15.9	F15.9			
Columns	1-15	16-30			
Variable	E	A			
Next L5 Cards					
Format	F15.9	F15.9			
Columns	1-15	16-30			
Variable	EA	VA			

OUTPUT

All the output will be punched on cards. The deck height offsets of Section D will be punched first, followed by those of the sections forward of D. After completing these sections the message "Deck Offsets Aft" will be punched. The message will be followed by the offsets from the section just aft of D to the stern.

For each section the program will punch offsets out to the halfbreadth (YM). At stations forward and aft of the midship station (or parallel middlebody) some of these offsets will not be valid since they will lie outside the sheer line.

SENSE SWITCH SETTINGS

All the sense switches are normally off, with one exception. The value of the transverse interval between offsets (CST) can be changed during execution by turning Switch 3 on. The program will halt and wait for a new value of CST to be typed in (Format F15.9). Switch 3 must be turned off before pushing start to continue.

SAMPLE PROBLEM

Input Data

```
1
                   50.0
                                     60.0
                                                      12.0
                                                                      5.0
-10.0
                           2
                     Ž
  4.0
 20.0
                   10.0
 20.0
                   10.0
 10.0
                   10.0
 10.0
                    5.0
```

Output

DECK OFFSETS FORWARD .-

FRAME -10.0000 .47999999 .42666666 .26666667 .00000001 FRAME 0.0000 .64489794 .59156461

.43156462 .16489796 FRAME 10.0000 1.13959170 1.08625840 .92625847

.92625047 .65959181 FRAME 20.0000 1.96408150 1.91074810 1.75074810 1.48408150

1.48408150 FRAME 30.0000 3.11836710

3.06503380 2.90503380 2.63836720

DECK OFFSETS AFT.-FRAME -20.0000 .82222223

.76888893 .60888893

.34222233 FRAME -25.0000 1.24999990

1.19666660 1.03666660 .7700003

FRAME -30.0000 1.84888870 1.79555540

1.79555540 1.63555540 1.36888880

١

SIDE VIEW OF SAMPLE PROBLEM

CROSS SECTION OF DECK

į

l

1.0.0-2

ŧ

{:

FORTRAN PROGRAM LISTING

```
* * *
               DECK OFFSETS
                                * * *
CCCC
                   PARABOLIC SHEER AND CAMBER
       IDNT=1
                   STRAIGHT SHEER AND CAMBER
       IDNT=2
                   STRAIGHT SHEER AND PARABOLIC CAMBER
       IDNT=3
                   PARABOLIC SHEER AND STRAIGHT CAMBER
       1DNT=4
        DIMENSION DB(21), DA(21), E(20), EA(20), V(20), VA(20), T(21), C(21)
       DIMENSION Z(21)
       LE=1
       GO TO 600
   26 PAUSE 2
  600 READ 506, IDNT
       READ 500,D,PL,P,YM,DIST
HF=(.2*PL+20.)/12.
HA=(.1*PL+10.)/12.
HM=(2.*YM*.24)/12.
       PL2=PL/2.
       PL2SQ=PL2*PL2
       DSQ=D*D
       A=HM/(YM*YM)
       A1=(HF-HM)/(PL2SQ-2.*D*PL2+DSQ)
A2=(HA-HM)/(PL2SQ+2.*D*PL2+DSQ)
       B1=-2.*D*A1
       B2=-2.*D*A2
       AB1=B1*B1/(4.*A1)+HM
       AB2=B2*B2/(4.*A2)+HM
       P1=PL2+DIST
       P2=P-P1
       GO TO (131,132,130,133), IDNT
  131 READ 502, CST, L4, L5
       DO 52 I=1,L4
READ 500,E(1),V(1)
  34
  52
       DO 53 I=1,L5
       READ 500, EA(1), VA(1)
       E(1)=E(1)+D
       EA(1)=EA(1)-D
       DO 41 1=2,L4
       E(1)=E(1)+E(1-1)
  41
       DO 42 1=2,L5
EA(1)=EA(1)+EA(1-1)
       LE=1
       X=D
       GO TO (43,44,701,702), IDNT
   43 PUNCH 503
  54
       Y-0.
       PUNCH 505.X
  56
       ZP=-A*Y*Y+A1*X*X+B1*X+AB1
       PUNCH 500, ZP
IF (SENSE SWITCH 3) 30,31
  30
       ACCEPT 500,CST
```

ı

```
31
     Y=Y+CST
 IF(YM-Y)55,56,56
55 IF(E(LE)-X)58,57,59
7 IF(L4-LE)54,60,58
57
58
     LE=LE+1
59
     X=X+V(LE)
1F(P1-X)60,54,54
 60 PUNCH 504
     LE=1
     X=D-VA(1)
61
     Y=0.
     PUNCH 505, X
     ZP=-A*Y*Y+A2*X*X+B2*X+AB2
     PUNCH 500, ZP
IF(SENSE SWITCH 3) 32,33
32
     ACCEPT 500,CST
33
     Y=Y+CST
 IF(YM-Y)62,63,63
62 IF(-EA(LE)-X)66,64,65
    IF(L5-LE)61,26,65
64
     LE=LE+1
     X=X-VA(LE)
     IF(-P2-X)61,61,26
132 READ 502,C1,L1,L2,L3,L4,L5
     L3=L3+1
     L1=L1+1
     L2=L2+1
     DO 1 1=2,L1
     READ 500, DB(1)
     D0 3 1=2,L2
3
     READ 500, DA(1)
     DO 5 1=2,L3
     READ 500, T(1)
GO TO 34
DA(1)=D
5
44
     DB(1)=D
     Z(1)=HM
     T(1)=0.
     PUNCH 503
     DO 27 1=2,L3
27
     T(1)=T(1)+T(1-1)
     DO 6 J=2,L1
X=DB(J-1)
     DB(J)=DB(J)+DB(J-1)
     Z(J)=A1*DB(J)*DB(J)+B1*DB(J)+AB1

AN=(Z(J)-Z(J-1))/(DB(J)-DB(J-1))
     C(1)=Z(J-1)+AN*(X-DB(J-1))
```

```
Y-0.
       PUNCH 505,X
      DO 7 I=2,L3
C(I)=C(1)-A*T(I)*T(I)
AM=(C(I-1)-C(I))/(T(I)-T(I-1))
ZT=C(I-1)-AM*(Y-T(I-1))
 9
       PUNCH 500.ZT
       IF(SENSE SWITCH 3) 35,36
       ACCEPT 500,C1
 36
       Y=Y+C1
       IF(L3-1)11,10,11
IF(T(1)-Y)7,9,9
 10
       IF(T(1)-Y)7,7,9
 11
 7
       CONTINUE
       IF(E(LE)-X)12,28,13
 28
       IF(L4-LE)6,6,12
 12
       LE=LE+1
. 13
       X=X+V(LE)
       IF(L1-J)15,14,15
IF(DB(J)-X)6,8,8
 14
       IF(DB(J)-X)6,6,8
 15
       CONTINUE
       PUNCH 504
       LE-1
       X=D-VA(1)
       DO 16 J=2,L2
DA(J)=-DA(J)+DA(J-1)
       Z(J)=A2*DA(J)*DA(J)+B2*DA(J)+AB2

AN=(Z(J)-Z(J-1))/(DA(J-1)-DA(J))
 19
       C(1)=Z(J)-AN*(X-DA(J))
       Y=0.
       PUNCH 505,X
       DO 17 1=2,L3
       C(1)=C(1)-A*T(1)*T(1)
       AM=(C(1-1)-C(1))/(T(1)-T(1-1))
ZT=C(1-1)-AM*(Y-T(1-1))
 18
       PUNCH 500, ZT
       IF(SENSE SWITCH 3) 37,38
 37
38
       ACCEPT 500,C1
       Y=Y+C1
       IF(L3-1)21,20,21
IF(T(1)-Y)17,18,18
IF(T(1)-Y)17,17,18
 20
 21
       CONTINUE
  17
       IF(-EA(LE)-X)25,29,24
IF(L5-LE)16,16,24
  24
       LE=LE+1
```

```
X=X-VA(LE)
     IF(L2-J)23,22,23
IF(DA(J)-X)19,19,16
IF(DA(J)-X)19,16,16
22
23
     CONTINUE
     GO TO 26
130 READ 502, CST, L1, L2, L4, L5
     L1=L1+1
     L2=L2+1
     DO 70 1=2,L1
     READ 500, DB(1)
     DO 72 1=2,L2
     READ 500, DA(1)
GO TO 34
701 Z(1)=HM
     DB(1)=D
     DA(1)=D
     PUNCH 503
     DO 74 I=2,L1
DB(1)=DB(1)+DB(1-1)
     Z(1)=A1*DB(1)*DB(1)+B1*DB(1)+AB1
     AN=(Z(1)-Z(1-1))/(DB(1)-DB(1-1))
     C(1)=Z(1-1)+AN*(X-DB(1-1))
75
     Y=0.
     PUNCH 505, X
     ZT=C(1)-A*Y*Y
     PUNCH 500, ZT
     IF(SENSE SWITCH 3)766,67
766 ACCEPT 500,CST
     Y=Y+CST
 IF(YM-Y)77,76,76
77 IF(E(LE)-X)79,78,80
1F(L4-LE)74,74,79
78
79
80
     LE=LE+1
     X=X+V(LE)
     IF(P1-X)74,82,83
IF(DB(I)-X)74,75,75
IF(DB(I)-X)74,74,75
82
83
74
     CONTINUE
     PUNCH 504
     LE=1
     X=D-VA(LE)
     DO 84 i=2,L2
     DA(I) = -DA(J) + DA(I-I)
     Z(|)=A2*DA(|)*DA(|)+B2*DA(|)+AB2
AN=(Z(|)-Z(|-1))/(DA(|-1)-DA(|))
85
     C(1)=Z(1)-AN*(X-DA(1))
      Y=0.
```

```
PUNCH 505,X
     ZT=C(1)-A*Y*Y
     PUNCH 500, ZT
     IF(SENSE SWITCH 3) 762,763
762 ACCEPT 500,CST
763 Y=Y+CST
 IF(YM-Y)87,86,86
87 IF(-EA(LE)-X)90,88,89
     IF(L5-LE)84,84,89
89
     LE=LE+1
90
     X=X-VA(LE)
     IF(-P2-X)93,92,84
IF(DA(I)-X)85,85,84
IF(DA(I)-X)85,84,84
91
92
     CONTINUE
     GO TO 26
133 READ 502,CST,L3,L4,L5
     T(1)=0.
     L3=L3+1
     GO TO 34
702 DO 732 I=2,L3
732 READ 500,T(1)
     DO 150 I=2,L3
150 T(1)=T(1)+\hat{T}(1-1)
     PUNCH 503
733 C(1)=A1*X*X+B1*X+AB1
     Y=0.
     PUNCH 505, X
DO 734 1=2, L3
     C(1)=C(1)-A*T(1)*T(1)
AM=(C(1-1)-C(1))/(T(1)-T(1-1))
735 ZP=C(I-1)-AM*(Y-T(I-1))
     PUNCH 500, ZP
     IF(SENSE SWITCH 3)68,69
     ACCEPT 500,CST
68
     Y=Y+CST
69
IF(L3-1)737,736,737
736 IF(T(1)-Y)734,735,735
737 IF(T(I)-Y)734,734,735
734 CONTINUE
     IF(E(LE)-X)738,39,40
IF(L4-LE)733,742,738
738 LE=LE+1
40 X=X+V(L
     X=X+V(LE)
     IF(P1-X)742,733,733
742 PUNCH 504
     LE=1
     X=D-VA(1)
```

ŧ

```
743 C(1)=A2*X*X+B2*X+AB2
      Y=0.
      PUNCH 505,X

DO 744 I=2,L3

C(1)=C(1)-A*T(1)*T(1)

AM=(C(I-1)-C(1))/(T(1)-T(1-1))

ZP=C(1-1)-AM*(Y-T(1-1))
      PUNCH 500, ZP
       IF(SENSE SWITCH 3) 764,765
764 ACCEPT 500,CST
765 Y=Y+CST
      IF(L3-1)47,46,47
IF(T(1)-Y)744,45,45
IF(T(1)-Y)744,744,45
46
47 IF(T(I)-
744 CONTINUE
      1F(-EA(LE)-X)48,49,50
1F(L5-LE)743,741,50
49
50
      LE=LE+1
48
      X=X-VA(LE)
      IF(-P2-X)743,743,741
51
741 GO TO 26
500 FORMAT(5F15.9)
502 FORMAT(F15.9,515)
503 FORMAT (22HDECK OFFSETS FORWARD.-)
504 FORMAT (18HDECK OFFSETS AFT.-)
505 FORMAT (6HFRAME , F10.4)
506 FORMAT (215)
      END
```

Appendix J

PROGRAM FOR INNER EDGE OF WEB FRAMES

CONTENTS

	Page
OPERATING INSTRUCTIONS	J-1
SAMPLE PROBLEM	J-5
FLOW DIAGRAM	J-6
PROGRAM LISTING	J-11

Appendix J

PROGRAM FOR INNER EDGE OF WEB FRAMES

The purpose of this program is to find the inner contour of a web frame when given offsets describing the mold line contour of the frame. That is, given a set of points which lie on a smooth mold line of a frame, we wish to apply a transformation to these points. This transformation is to be such that the transformed points lie on a curve which is similar in contour but which now passes an ordinate distance C_1 from the upper point and C_2 from the lowest point. (See Fig. J-la.)

To accomplish this transformation, the curve is first translated the distance \mathbf{C}_1 . By examining Fig. J-la it can be seen that if the curve is now rotated so that the end point was a distance \mathbf{C}_2 from its original position, the resulting curve would be too short and in a distorted position. To overcome this condition the curve is extended by fitting a parabola to the three lowest data points and extrapolating a new end point.

A special condition which may sometimes be found on web frames is the existence of a knuckle near the upper point. This condition is illustrated in Fig. J-lb. The inner contour will be a smooth curve from the beginning at the upper edge. The true distance to which the points below the knuckle must be translated is not given by \mathbf{C}_1 . Therefore, a new \mathbf{C}_1 must be calculated which gives a closer approximation of the correct distance.

The new distance \mathbf{C}_1 is approximated by passing a parabola through the uppermost three data points below the knuckle, or if given including the point at the knuckle itself, \mathbf{C}_1 can then be found by solving for the point on the parabola corresponding to the upper frame edge.

The program is written in FORTRAN for the IBM-1620 computer.

1.0.0-2

1

1

a. Input Data

3

I

FORTRAN Input Symbols

- N = Number of points, must be an integer with no decimal point, and must be right justified to Column 5. N ≤ 25
- C1 = Ordinate distance curve is to be moved at first
 point
- C2 = Ordinate distance curve is to be moved at last point
- CC = Abscissa distance from first point to place where Cl is given. This applies only when the curve contains a knuckle
- X(I),Y(I) = Coordinates of points describing the curve

Data Cards

There are a total of (N+1) cards

First Card:

<u>Variable</u>	Format	Card Column						
N	15	1 - 5						
C1		$ \begin{cases} 6 - 15 \\ 16 - 25 \\ 26 - 35 \end{cases} $						
C2	3F10.5	∤16 - 25						
CC		(26 - 35						

If Sense Switch 1 is OFF, CC will be ignored and nothing need be punched in Columns 26 - 35.

Remaining (N) cards:

<u>Variable</u>	Format	Card Columns
X(I)	2 F 15.6	$\begin{cases} 1 - 15 \\ 16 - 30 \end{cases}$
Y(I)		(16 - 30

b. Sense Switch Settings

Switch 1 ON - Frame Curve contains a knuckle

Switch 1 OFF - Frame curve does not contain a knuckle

c. <u>Output</u> (Via Typewriter)

Transformed points (X,Y)

SANCTIZ PROBLEM

Input

7	-2.0	-3.5
8.0		10.296
7.0		9.758
6.0		9.157
5.0		8.516
4.0		7.853
3.0		7.065
2.0		5.540

260000 20000 3RS LOAD DATA

Output

8.000000	8.296000
7.046353	7.679557
6.097758	7.000316
5.152369	6.281204
4.208745	5.540163
3.275142	4.674525
2.400629	3.074258
2.000000	2.040000

1

1

į

7

PROGRAM LISTING

```
CONTOUR TRANSFORMATION
C
       DIMENSION X(25), Y(25)
IF(SENSE SWITCH 1)50,51
 1
       READ100, N, C1, C2, CC
 50
       GO TO 52
       READ 100, N, C1, C2
 51
       DO 20 1-1, N
READ101, X(I), Y(I)
IF(SENSE SWITCH 1)40,42
 52
 20
       BB = (X(3) - X(2)) * (Y(4) - Y(2)) - (X(4) - X(2)) * (Y(3) - Y(2))
BB = BB/((X(3) - X(2)) * (X(4) - X(2)) * (X(4) - X(3)))
 40
       AA=(Y(3)-Y(2))/(X(3)-X(2))-BB*(X(3)-X(2))
       Z=X(1)+CC
       WW=Y(2)+AA*(Z-X(2))+BB*(Z-X(2))**2
       C1=C1=WW+Y(1)+CC*(Y(1)-Y(2))/(X(1)-X(2))
       DO 41 I=1.N
       K=N+1-1
       X(K+1)=X(K)
 41
       Y(K+1)=Y(K)
       X(1)=X(1)+CC
       Y(1)=WW
       N=N+1
 42
       TX=X(1)
       TY=Y(1)
       SXX=X(N)
       SYY=Y(N)+C2
       DO 21 I=1,N
       X(1)=X(1)-TX
 21
       Y(1)=Y(1)-TY
       B=(Y(N-2)-Y(N))*(X(N-1)-X(N))-(Y(N-1)-Y(N))*(X(N-2)-X(N))
       B=B/((X(N-2)-X(N))*(X(N-1)-X(N))*(X(N-2)-X(N-1)))
       A=(Y(N-1)-Y(N))/(X(N-1)-X(N))-B*(X(N-1)-X(N))
       D=X(N)**2+(Y(N)+C2-C1)**2
       Z=X(N)
       T=Z**2+Y(N)**2-D
 30
       IF(T)2.9.31
 31
       Z=.5*Z
       GO TO 30
        1F(Z)4,9,3
 2
 3
       H=.5
       GO TO 5
 4
       H=-.5
       CA-T
       Z=Z+H
       W=Y(N)+A*(Z-X(N))+B*(Z-X(N))**2
        T=Z**2+W**2-D
        IF(CA*T)6,9,5
```

Ĭ

ł

```
6
       HA=ABS(H)
       IF(HA-.0001)7,8,8
Z=Z-H/2.
7
       GO TO 9
8
       H=-H/2.
       GO TO 5
C3=(Z-X(N))**2+(Y(N)+C2-C1-W)**2
       CS=1.0-.5*C3/D
SN=SQRT(1.0-CS**2)
       DO 25 1=1,N
IF(C2*X(N))22,22,23
SX=X(I)*CS+Y(I)*SN+TX
22
       SY=-X(1)*SN+Y(1)*CS+TY+C1
       GO TO 25
SX=X(1)*CS-Y(1)*SN+TX
23
       SY= X(1)*SN+Y(1)*CS+TY+C1
PRINT 101,SX,SY
PRINT 101,SXX,SYY
25
       GO TO 1
       FORMAT(15,3F10.5)
FORMAT(2F15.6)
100
101
       END
```

Appendix K

ROUTINE FOR IDENTITY MATRICES

CONTENTS

OPERAT1	ING INST	RUCTI	ONS	3.	•	•	•	•	•	•	•	•	•	•	•	•	•	K- 1
MPLE	PROGRAM																	
	INPUT	DATA	•	•	•	•							•					K-2
	OUTPU'	r															•	K-3
DDCCDAN	A TICTIN	2																K-2

1.0.0-2 K-

Appendix K

ROUTINE FOR IDENTITY MATRICES

The function of this program is to provide an identity matrix and associated cards for providing a basic feasible solution for the matrices produced by SMOG 1 and SMOG 2.

OPERATING INSTRUCTIONS

The program is written in FORTRAN II for the IBM-1620.

Fortran Input Variable Definitions

The number of the first column in the "identity" matrix.

IOWS - The number of rows in the non-basis matrix produced

by SMOG.

COST - The cost on the columns of the matrix

Input Format

The input consists of one card with the following format:

Format I5 I5 F10.4 Variable IOLM IOWS COST

Output

The output is in the following order:

- (1) a card punched "BASIS"
- (2) A set of basis headings
- (3) The identity matrix including the cost row and elements.

Sense Switches

None used

PROGRAM LISTING

```
1 READ 150, IOLM, IOWS, COST
PUNCH 151
10F=IOLM
D0 2 I=1, IOWS
PUNCH 152, IOF, I
2 IOF=IOF+1
IOF=IOLM
D0 3 I=1, IOWS
PUNCH 153, IOF, COST
PUNCH 154, IOF, I
3 IOF=IOF+1
G0 T0 1
150 FORMAT(15, I5, F10.4)
151 FORMAT(5HBASIS)
152 FORMAT(7X, 1HC, I4, 2H R, I4)
153 FORMAT(6X, 2H C, I4, 6H OFSET, F12.5)
154 FORMAT(7X, 1HC, I4, 2H R, I4, 8H 1.)
END
```

SAMPLE INPUT DATA

100 30 1000.0

SAMPLE OUTPUT

BASIS

```
100 R
101
              R
                      234567890
    102 R
    103 R
    104 R
    105 R
106 R
107 R
108 R
    109
110
              R
                      11
              R
                     12
    111
              R
    112 R
113 R
114 R
115 R
116 R
117 R
                      13
    113 R 14
114 R 15
115 R 16
116 R 17
117 R 18
118 R 20
120 R 21
121 R 22
122 R 24
124 R 25
125 R 26
126 R 27
127 R 28
128 R 29
129 R 30
100 OFSET
100 R 1
                               1000.00000
C
                                    1.0
C
     101
              OFSET
                               1000,00000
              R
CCC
                                      1.0
     101
                               1000.00000
1.0
     102 OFSET
    102 OFSET
102 R 3
103 OFSET
103 R 4
104 OFSET
104 R 5
105 OFSET
000000000
                               1000.00000
                                      1.0
                               1000.000cc
                                      1.0
                               1000.00000
    105 R
106 OI
106 R
                               1.0
                     6
              OFSET
                         7
                                       1.0
```

1.0.0-2

Ţ

```
107 OFSET
               1000.00000
            8
  107 R
                   1.0
C
  108 OFSET
               1000.00000
  108 R
                   1.0
  109 OFSET
               1000.00000
C
  109
      R
         10
                   1.0
C
      OFSET
               1000.00000
  110
C
  110 R
          11
                   1.0
      OFSET
               1000.00000
  111
C
      R
         12
  111
                 1.0
  112 OFSET
               1000.00000
         13
  112 R
                   1.0
  113
      OFSET
               1000.00000
C
  113
      R
         14
                  1.0
C
  114 OFSET
               1000,00000
C
  114
      R
          15
                  1.0
  115
      OFSET
               1000.00000
000000
  115
          16
      R
                  1.0
  116
      OFSET
               1000.00000
  116
      R
          17
                   1.0
  117 OFSET
               1000.00000
  117
      R
         18
                   1.0
  118
      OFSET
               1000.00000
CCCCCC
  118
      R
         19
                  1.0
  119 OFSET
               1000.00000
  119 R
          20
                  1.0
               1000.00000
  120
      OFSET
  120
      R
          21
                  1.0
  121
      OFSET
               1000.00000
C
  121
      R
          22
                  1.0
CCCCCCC
  122
      OFSET
               1000.00000
  122
      R
          23
                  1.0
  123
      OFSET
               1000.00000
  123
      R
          24
                  1.0
  124
      OFSET
               1000.00000
  124
      R
          25
                  1.0
  125
               1000.00000
      OFSET
  125
126
Ċ
          26
      R
                  1.0
CCCCCC
      OFSET
               1000.00000
  126
      R
          27
                  1.0
  127 OFSET
               1000,00000
          28
  127
      R
                  1.0
  128
      OFSET
               1000.00000
  128
      R
          29
                  1.0
C
  129
      OFSET
               1000.00000
  129 R
          30
                  1.0
```