AREL ÜNİVERSİTESİ DEVRE ANALIZI İŞLEMSEL KUVVETLENDİRİCİLER DR. GÖRKEM SERBES

- İşlemsel kuvvetlendirici (Op-Amp); farksal girişi ve tek uçlu çıkışı olan DC kuplajlı, yüksek kazançlı bir elektronik gerilim kuvvetlendiricidir.
- Bir Op-Amp, girişleri arasındaki potansiyel farkın genel anlamda yüzbinlerce katı olan çıkış potansiyeli üretebilir.
- Op-Amp'lar günlük hayatta çok çeşitli elektronik devre uygulamalarında kullanılır.

Op-Amp'ın fonksiyonunu yerine getirebilmesi için harici bir güç kaynağına ihtiyacı vardır.

Sadeleştirilmiş Şematik:

Op-Amp' ın fonksiyonu;

Harici bir geri besleme ile v_p-v_n gerilim farkını, $A_v>10^6$ gibi bir kazanç ile kuvvetlendirmektir.

İdeal Op-Amp Kuralları

➤ Herhangi bir giriş terminalinden içeriye hiç akım akmaz

$$v_n \approx v_p$$

$$i_n = i_p \approx 0$$

Giriş terminalleri arasında gerilim farkı yoktur.

"Op Amp"

National Semiconductor LM741 datasheet

Order Number LM741CJ or LM741J/883

LM741 Entegresinin İç Yapısı

• V_{in} = 2V, R_f = 10 k Ω ve R_1 = 2 k Ω ise V_{out} gerilimini belirleyin.

KCL @
$$v_n$$
:
$$\frac{v_{\text{out}} - v_n}{10} + \frac{2 - v_n}{2} - i_n = 0$$

$$v_p = 0$$

$$v_{\text{out}} = -10 \text{ V}$$
 (Eviren Kuvvetlendirici)

ÖRNEK

• $v_{in}(t)=5 \sin 3t \text{ mV}, R_f = 47 \text{ k}\Omega, R_1 = 4.7 \text{ k}\Omega$

• v_{out} gerilimini v_{in} , R_f ve R_1 cinsinden ifade ediniz.

$$v_n = v_p \qquad i_n = i_p = 0 \qquad v_p = v_{\rm in}$$

$$\frac{-v_{\text{in}}}{R_1} + \frac{v_{\text{out}} - v_{\text{in}}}{R_f} = 0 \qquad \qquad \frac{v_{\text{in}}}{R_1} + \frac{v_{\text{in}}}{R_f} = \frac{v_{\text{out}}}{R_f}$$

$$v_{\text{out}} = \left(\frac{R_f}{R_1} + 1\right) v_{\text{in}}$$

Evirmeyen Kuvvetlendirici

ÖRNEK

• $v_{in}(t)$ =5 sin 3t mV, R_f = 47 k Ω , R_1 =4.7 k Ω

- Şekildeki devre R1 direnci sonsuz, Rf direnci sıfıra ayarlanmış evirmeyen (non-inverting) kuvvetlendirici Op-Amp devresidir. Çıkış gerilimi hem büyüklük hem işaret bakımından giriş gerilimi ile aynıdır.
- Bu yeni devre Gerilim İzleyici (Voltage Follower), v_{out}=v_{in}, diye adlandırılır, ayrıca Birim Kazanç Kuvvetlendirici (Unity Gain Amplifier) olarak da bilinir.
- Op-Amp' ın giriş empedansı çok yüksektir. Sinyal kaynağı ile çıkış arasında etkili bir izolasyon sağlar. Sinyal kaynağından çok az güç çekilir ve böylece yüklenme (loading) etkilerinden kaçınılır.

$$v_{\rm out} = v_{\rm in}$$

v_{out} gerilimini v₁, v₂, R_f, R₁, R₂ ve R_L cinsinden ifade ediniz.

$$v_n = v_p$$

$$i_n = i_p = 0$$

$$\frac{v_{\text{out}}}{R_f} + \frac{v_1}{R_1} + \frac{v_2}{R_2} = 0$$

$$\frac{v_{\text{out}}}{R_f} + \frac{v_1}{R_1} + \frac{v_2}{R_2} = 0 \qquad v_{\text{out}} = -R_f \frac{v_1}{R_1} - R_f \frac{v_2}{R_2}$$

$$v_{\text{out}} = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2\right)$$

(inverting) summing amplifier eviren toplayıcı kuvvetlendirici

• v_{out} gerilimini v_1 , v_2 , R_1 , R_2 ve R_L cinsinden ifade ediniz.

$$v_n = v_p$$

$$i_n = i_p = 0$$

$$v_{\text{out}} = v_2 - v_1$$

difference amplifier

(fark alıcı kuvvetlendirici)

Basit Op-Amp Devrelerinin Özeti (1)

Voltage Follower (Gerilim İzleyici) ya da Unity Gain Amplifier (Birim Kazanç Kuvvetlendirici)

 $v_{\rm out} = v_{\rm in}$

Basit Op-Amp Devrelerinin Özeti (2)

Ardışık (Kaskat) Bağlı Op-Amp Devreleri

 Op-Amp devreleri, girişler ve çıkışlar arasındaki arzu edilen bağıntıyı elde etmek için ardışık katlar şeklinde kombin edilebilir.

$$v_{\text{out}} = -\frac{R_2}{R_1} \left\{ -\frac{R_f}{R} (v_1 + v_2) \right\}$$

$$v_{\text{out}} = \frac{R_2 R_f}{R_1 R} \left(v_1 + v_2 \right)$$

Op-Amp Devresi #6 Tasarım Örneği (1)

Yandaki çıkış gerilimi ifadesini $v_{out} = 2v_1 - 3v_2 + 4v_3 - 6v_4$ sağlayan bir devre tasarlayınız.

$$v_{\text{out}} = \left(\frac{R_y}{R_x} + 1\right) v_{\text{in}}$$

 $v_{\text{out}} = \left(\frac{R_{y}}{R_{..}} + 1\right) v_{\text{in}} \left[v_{\text{out}} = -\frac{R_{b}}{R_{..}} v_{\text{in}} \right] \left[v_{\text{out}} = -\left(\frac{R_{f}}{R_{1}} v_{1} + \frac{R_{f}}{R_{2}} v_{2} + ...\right) \right] \left[v_{\text{out}} = v_{2} - v_{1} + ... + v_{2} + ... + v_{2} + ... + v_{2} + ... + v_{3} + ... + v_{4} + ... + v$

non-inverting amp

inverting amp

inverting sum

difference

$$v_{\text{out}} = -\left\{\frac{R_f}{R_1}\left(-\frac{R_b}{R_a}v_1\right) + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}\left(-\frac{R_d}{R_c}v_3\right) + \frac{R_f}{R_4}v_4\right\}$$
invert

inverting sum

$$v_{\text{out}} = \frac{R_f R_b}{R_1 R_a} v_1 - \frac{R_f}{R_2} v_2 + \frac{R_f R_d}{R_3 R_c} v_3 - \frac{R_f}{R_4} v_4$$

Op-Amp Devresi #6 Tasarım Örneği (2)

$$v_{\text{out}} = 2v_1 - 3v_2 + 4v_3 - 6v_4$$
 ifadesini sağlayan devreyi tasarlayınız

$$v_{\text{out}} = \frac{R_f R_b}{R_1 R_a} v_1 - \frac{R_f}{R_2} v_2 + \frac{R_f R_d}{R_3 R_c} v_3 - \frac{R_f}{R_4} v_4$$

$$R_{\rm a} = R_{\rm b} = R_{\rm c} = R_{\rm d} = 2 \text{ k}\Omega \dots$$
 Seçildi

$$v_{\text{out}} = \frac{R_f}{R_1} v_1 - \frac{R_f}{R_2} v_2 + \frac{R_f}{R_3} v_3 - \frac{R_f}{R_4} v_4$$

$$R_f = 12 \text{ k}\Omega \rightarrow R_1 = 6 \text{ k}\Omega, R_2 = 4 \text{ k}\Omega, R_3 = 3 \text{ k}\Omega, R_4 = 2 \text{ k}\Omega \dots$$
 Seçildi

$$v_{\text{out}} = \frac{12}{6}v_1 - \frac{12}{4}v_2 + \frac{12}{3}v_3 - \frac{12}{2}v_4$$

Op-Amp Devresi #6 Tasarım Örneği (3)

Güvenilir bir gerilim kaynağı

Bu devre bataryanın zamanla değişimine bakmaksızın doğru bir çıkış gerilimi üretir.

UYGULAMA 6.4

• 6V referans gerilimi sağlayacak bir devreyi 1N750 Zener diyot ve evirmeyen kuvvetlendirici kullanarak tasarlayınız. $V_{bat} = 9V$, $R_{ref} = 115 \ \Omega$

$$V_{\text{bat}} = 9 \text{ V},$$

$$R_{\text{ref}} = 115 \ \Omega$$
, $R_1 = 1 \ \text{k}\Omega$, and $R_f = 268 \ \Omega$

Güvenilir bir akım kaynağı

- Herhangi bir yük üzerinden sabit bir referans gerilim kaynağı, V_{ref} , ile sabit bir $I_s = V_{ref} / R_{ref}$ akımını sürebiliriz.
- R_L yüküne sağlanan akım, onun direncine bağlı değildir. (İdeal bir akım kaynağının temel özelliği)

Daha detaylı bir Op-Amp modeli

- ➤ Op-Amp aşağıda verilen bileşenlerle birlikte bağımlı bir gerilim kaynağı olarak modellenebilir:
- Giriş direnci, R_i
- Çıkış direnci, R_o
- Açık çevrim kazancı, A

Op-Amp Parametreleri

TABLE 6.3 Typical Parameter Values for Several Types of Op Amps

Part Number	μ Α741	LM324	LF411	AD549K	OPA690
Description	General purpose	Low-power quad	Low-offset, low- drift JFET input	Ultralow input bias current	Wideband video frequency op amp
Open loop gain A	$2 \times 10^5 \text{ V/V}$	10^{5} V/V	$2 \times 10^5 \text{ V/V}$	10 ⁶ V/V	2800 V/V
Input resistance	$2\mathrm{M}\Omega$	*	1 ΤΩ	$10 \text{ T}\Omega$	190 k Ω
Output resistance	75 Ω	*	\sim 1 Ω	\sim 15 Ω	*
Input bias current	80 nA	45 nA	50 pA	75 fA	$3 \mu\mathrm{A}$
Input offset voltage	1.0 mV	2.0 mV	0.8 mV	0.150 mV	$\pm 1.0~\text{mV}$
CMRR	90 dB	85 dB	100 dB	100 dB	65 dB
Slew rate	$0.5 \text{ V/}\mu\text{s}$	*	$15 \text{ V}/\mu\text{s}$	$3 \text{ V}/\mu\text{s}$	1800 V/μs
PSpice Model	1	✓	✓		

ÖRNEK 6.6 (1)

- 741 Op-Amp için (A=200,000, R_i =2M Ω , R_o =75 Ω)
- $v_{out}(t) = -49.997 \sin 3t \, mV.$

İdeal bir Op-Amp $v_{out}(t) = -50 \sin 3t \, mV$ gerilimini üretiyor.

[Düğüm analizi ile detaylı Op-Amp modelini analiz ediniz]

Örnek:

 $v_{in}(t)$ =5 sin 3t mV, R_f =47 k Ω , R_1 =4.7 k Ω

ÖRNEK 6.6 (2)

- A= ∞ , R_o= 0 Ω ve R_i = ∞ Ω iken, Op-Amp ideal davranış gösterir. (v_d= 0, i_{in}= 0)
- Artık ideal Op-Amp modelini kullanmadığımız için ideal Op-Amp kurallarını da kullanamayacağımıza dikkat etmeliyiz.

$$v_{\text{out}} = \left[\frac{R_o + R_f}{R_o - AR_f} \left(\frac{1}{R_1} + \frac{1}{R_f} + \frac{1}{R_i} \right) - \frac{1}{R_f} \right]^{-1} \frac{v_{\text{in}}}{R_1}$$

$$v_{\text{out}} = -9.999448v_{\text{in}} = -49.99724\sin 3t$$
 mV

Giriş Besleme (Bias) Akımı ve Giriş Ofset Gerilimi

- Pratikte Op-Amp' lar, besleme koşullarına bağlı olarak (BJT girişler durumunda) veya kaçaklara (leakage) bağlı olarak (MOSFET tabanlı girişler durumunda) her bir girişinden küçük bir akım *(Giriş besleme akımı)* çeker. (I1+I2)/2
- İdeal bir Op-Amp farksal girişleri kuvvetlendirir; eğer bu giriş 0 ise (örneğin iki giriş geriliminde ground a göre aynı gerilimde olması durumu) çıkış da 0 olmalıdır. Ancak üretim proseslerine bağlı olarak gerçek Op-Amp' ların farksal giriş transistörleri tam olarak birbirine uymayabilir (matching problem). Bundan dolayı farksal girişlerin sıfırdan farklı bir gerilim değeri için çıkış gerilimi sıfır olacaktır ve buna da *giriş ofset gerilimi* denir.

Common Mode Rejection (Ortak Modu Bastırma)

- Eğer giriş terminallerinin ikisine aynı gerilim uygulanırsa, çıkış geriliminin sıfır olmasını bekleriz. Op-Amp'ın bu yeteneği en cazip niteliğidir ve *ortak modu bastırma* olarak bilinir.
- Eğer $v_1 = 2 + 3\sin 3t$ volt ve $v_2 = 2V$ ise, çıkış geriliminin -3sin3t volt olmasını bekleriz; v_1 ve v_2 için ortak olan 2V bileşeni kuvvetlendirilmez.
- Gerçekte Op-Amplar için pratik uygulamalarda ortak modlu işaretlerin cevabında çıkışta küçük bir katkı bulunur. Op-Amp'ın ortak modu bastırma yeteneğini ifade eden ortak mod bastırma oranı, CMRR, parametresi bir Op-Amp tipini diğerinden ayırt etmek için bize sık sık yardımcı olmaktadır.
- Vo_{cm} 'yi girişler birbirine eşit olduğunda (v₁=v₂=v_{cm}) elde edilen çıkış gerilimi olarak tanımlayarak
 Op-Amp' ın ortak mod kazancını aşağıdaki gibi belirleyebiliriz.

$$A_{CM} = \left| \frac{Vo_{CM}}{V_{CM}} \right|$$
 $CMRR \equiv \left| \frac{A}{A_{CM}} \right|$ $CMRR_{(dB)} \equiv 20log_{10} \left| \frac{A}{A_{CM}} \right|$ dB

A: farksal kazanç

A_{CM}: ortak mod kazancı

CMRR parametresi bize farksal girişli kuvvetlendiricinin gürültüyü ne kadar iyi bastırdığını anlatır

Negatif Geri besleme

 Kuvvetlendirici devrelerinde negatif geri besleme kullanılmasının başlıca avantajarı; kararlılığı iyileştirmek, bileşenlerin değişimlerine karşı daha iyi tolerasyon gösterme, DC driftlere karşı stabilizasyon ve bunlara ilaveten kuvvetlendiricinin band genişliğini artırmasıdır.

Doyma (Saturation)

- Bir Op-Amp güç kaynağına ihtiyaç duyar.
- Genellikle eşit büyüklükte ve zıt işaretli gerilimler V+ ve V- terminallerine bağlanır.
- Tipik gerilim değerleri 5V ile 24V arasındadır.
- Güç kaynağı ve sinyalin toprakları aynı olmalıdır.

Bu örnekte +18V V⁻' ya ve -18V V⁻' ye bağlıdır.

Doyma (Saturation)

• $V_{out}=10v_{in}$; fakat sadece $\pm 18V$ kaynaklara kadar geçerlidir.

Slew Rate (Değişim/Yükselme Hızı)

• Bir Op-Amp' ın frekans performansının bir ölçüsü de onun slew rate' idir. Op-Ampın girişine büyük genlikli bir darbe gerilimi uygulandığında, çıkış geriliminin ne kadar hızlı değiştiğini gösteren bir özelliktir. En çok V/µs ile ifade edilir. Slew rate çıkış için maksimum V/µs'dir.

The Comparator (Karşılaştırıcı)

Op-Amp' lar açık çevrimde kararlar vermek için kullanılabilir. Aşağıda verilen durumda v_{in} > 2.5V koşulunda ne oluyor?

Enstrümentasyon Kuvvetlendiricisi

• Bu cihaz küçük gerilim farklarının hassas/kesin bir şekilde kuvvetlendirilmesine izin verir.

$$v_{out}=K(v_{+}-v_{-})$$

$$R_4/R_3 = R_2/R_1 = K_1$$

(a) Basit enstrümentasyon kuvvetlendiricisi

(b) Yaygın kullanılan sembol

Chapter 6 Özet & Tekrar

- ➤ İşlemsel Kuvvetlendirici
- Kurallara uygun bir şekilde uygulandığında (güç, geri besleme) toplama, fark alma ve gerilim/akım girişlerini (akım taşıma kapasitesine ve belli bir opampın giriş-güç seviyelerine bağlı) kuvvetlendirme işlerini yapan lineer bir devre elemanıdır.
- Op-Amp Analizi
- İki ideal Op-Amp kuralı:
 - 1. Giriş terminallerindeki gerilimler eşittir $(v_n = v_p)$
 - 2. Her bir giriş terminalinden içeri akan akım sıfırdır ($i_n = i_m = 0$)
- Tek katlı bir Op-Ampın giriş ve çıkışı düğüm analizi yapıldığında birbiriyle ilişkilidir. (tipik olarak Op-Ampın bir/iki girişinde KCL)
- > Ardışık bağlı Op-Amplar
- Girişten çıkışa doğru bir seferde tek bir kat analiz edilir.
- Bir katın çıkışı, kendinden hemen sonra gelen katın girişi olur.
- ➤ Op-Amp'ın doymaya girmesi
- Bu durumda bir Op-Amp'ın çıkış gerilimi +/- Vcc'yi geçemez.
- Analog sinyallerden dijital sinyaller üretirken kullanışlıdır (lineer olmayan davranış).