Sequences and limits (Sec. 7-9)

Definition (Sequences)

A sequence is a function $s:\{m,m+1,\ldots\}\to\mathbb{R}\ (m\in\mathbb{Z})$. Notation: $s_n=s(n),\ (s_n)_{n\geqslant m}$.

Examples. $(\sin(2n))_{n\geqslant 0}$, $(\ln(n-2))_{n\geqslant 3}$.

Definition (Convergence and limit)

We say that (s_n) converges to $L \in \mathbb{R}$ if $\forall \varepsilon > 0 \exists N \in \mathbb{R}$ s.t. $|s_n - L| < \varepsilon$ for n > N. L is the limit of (s_n) . We write $\lim_n s_n = L$, or $s_n \xrightarrow{n} L$.

Uniqueness of limits (pp. 37-38)

Proposition

A sequence cannot have more than one limit.

Proof. Suppose, for the sake of contradiction, that (s_n) converges to both a and b, with a < b. Let $\varepsilon = |b - a|/3$.

Find $M \in \mathbb{R}$ s.t. $|s_n - a| < \varepsilon$ for n > M.

Find $N \in \mathbb{R}$ s.t. $|s_n - b| < \varepsilon$ for n > N.

If $n > \max\{N, M\}$, then, by Triangle Inequality,

 $|b-a|=3\varepsilon\leqslant |b-s_n|+|a-s_n|<2\varepsilon$, which is impossible.

Examples of limits

1. $\lim \frac{1}{n} = 0$.

For $\varepsilon > 0$, need to find $N \in \mathbb{R}$ s.t. $\left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \varepsilon$ for n > N. Note that $\frac{1}{n} < \frac{1}{N}$ when n > N, so it suffices to select $N \in \mathbb{N}$ with $\frac{1}{N} \leqslant \varepsilon$. This, in turn, is equivalent to $N \geqslant \varepsilon^{-1}$. We can, in fact, take $N = \varepsilon^{-1}$. **To summarize:** if $N = \varepsilon^{-1}$, and n > N, then $\left| \frac{1}{n} - 0 \right| < \varepsilon$.

2. $((-1)^n)_{n\in\mathbb{N}}$ does not converge.

Suppose, for contradiction, that the sequence $(-1)^n$ converges to some L. Find $N \in \mathbb{R}$ s.t. $|(-1)^n - L| < 1$ whenever n > N (use definition of convergence with $\varepsilon = 1$).

If n > N, then $2n > 2n - 1 \ge n > N$. Therefore, $|1 - L| = |(-1)^{2n} - L| < 1$, and $|-1 - L| = |(-1)^{2n-1} - L| < 1$. Triangle Inequality:

 $2 = |1 - (-1)| = |(1 - L) - (-1 - L)| \le |1 - L| + |-1 - L| < 1 + 1 = 2$, impossible!

Examples of limits

3.
$$\lim \frac{3n+1}{2n+1} = \frac{3}{2}$$
.

Guess. When n is large, then $\frac{3n+1}{2n+1} \approx \frac{3n}{2n} = \frac{3}{2}$, so we conjecture that $\lim \frac{3n+1}{2n+1} = \frac{3}{2}$.

Verification. $\left| \frac{3n+1}{2n+1} - \frac{3}{2} \right| = \frac{|2(3n+1)-3(2n+1)|}{2(2n+1)} = \frac{1}{2(2n+1)}$; want to make the

RHS less than ε (for n > N).

If
$$n > N$$
, then $\frac{1}{2(2n+1)} < \frac{1}{4n} < \frac{1}{4N}$.

Conclusion. If
$$N = \frac{1}{4\varepsilon}$$
, then $\left| \frac{3n+1}{2n+1} - \frac{3}{2} \right| < \varepsilon$.

Facts about limits (Sec. 8)

Proposition

If (s_n) converges, and $s_n \geqslant a$ for all but finitely many n, then $s = \lim s_n \geqslant a$.

Proof. Suppose, for the sake of contradiction, that s < a.

Find $N \in \mathbb{R}$ so that $s_n \geqslant a$ for n > N.

Let $\varepsilon = a - s$. Find $M \in \mathbb{R}$ so that $|s_n - s| < \varepsilon$ for n > M.

For such n, $s - \varepsilon < s_n < s + \varepsilon = a$.

For $n > \max\{N, M\}$, $s_n < a \leqslant s_n$, contradiction!

Note: It may happen that $s_n > a$ for any n, but $\lim s_n = a$. Consider, for instance, $s_n = \frac{1}{n}$, a = 0.

If
$$s_n \geqslant 0 \ \forall \ n$$
, and $\lim s_n = s$, then $\lim \sqrt{s_n} = \sqrt{s}$

Proposition (Example 5 from p. 42)

If $s_n \geqslant 0 \ \forall \ n$, and $\lim s_n = s$, then $\lim \sqrt{s_n} = \sqrt{s}$.

Note that $s \ge 0$, so \sqrt{s} makes sense.

Proof for s > 0. Useful trick – multiplication by the conjugate:

$$\sqrt{a} - \sqrt{b} = \left(\sqrt{a} - \sqrt{b}\right) \cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{\sqrt{a^2 - \sqrt{b^2}}}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

$$\left|\sqrt{s_n}-\sqrt{s}\right|=\frac{|s_n-s|}{\sqrt{s_n}+\sqrt{s}}\leqslant \frac{|s_n-s|}{\sqrt{s}}.$$

For $\varepsilon > 0$, select $N \in \mathbb{R}$ so that $|s_n - s| < \sqrt{s} \cdot \varepsilon$ for n > N.

For such
$$n$$
, $\left|\sqrt{s_n}-\sqrt{s}\right|\leqslant \frac{|s_n-s|}{\sqrt{s}}<\varepsilon$.

Proof for s = 0.

We have to show: $\forall \varepsilon > 0$, $\exists N \in \mathbb{R}$ s.t. $\sqrt{s_n} < \varepsilon$ whenever n > N.

Note that $\sqrt{s_n} < \varepsilon$ holds iff $s_n < \varepsilon^2$. As $\lim s_n = 0$, we can find N with the property that $s_n < \varepsilon^2$ whenever n > N. For such $n, \sqrt{s_n} < \varepsilon$.

Convergent sequences are bounded

Definition (Bounded sequences)

A sequence (s_n) is called bounded if $\exists A \in \mathbb{R}$ s.t. $\forall n, |s_n| \leqslant A$.

Theorem (Theorem 9.1)

Convergent sequences are bounded.

Proof. Suppose a sequence $(s_n)_{n \ge k}$ converges to s.

Find $N \in \mathbb{R}$ s.t. $|s_n - s| < 1$ for n > N.

For
$$n > N$$
, $|s_n| \le |s| + |s_n - s| < |s| + 1$ (Triangle Inequality).

Let
$$A = \max \{ \max_{k \leqslant n \leqslant N} |s_n|, |s|+1 \}$$
. For any n , $|s_n| \leqslant A$.

Is any bounded sequence convergent? **No!** Example: $s_n = (-1)^n$.

Sums, products, ratios of limits (Section 9)

Theorem (Theorems 9.3, 9.4, 9.6 from textbook)

Suppose $\lim s_n = s$ and $\lim t_n = t$. Then:

- $\bullet \ \lim(s_n+t_n)=s+t$
- $\lim(as_n) = as$, for any $a \in \mathbb{R}$.
- $\lim(s_nt_n)=st.$
- If, in addition, $t \neq 0$, then $\lim \frac{s_n}{t_n} = \frac{s}{t}$.

If $t \neq 0$, then $t_n \neq 0$ for *n* sufficiently large.

Indeed, find $N \in \mathbb{R}$ s.t. $|t_n - t| < |t|$ for n > N.

By Triangle Inequality, for such n, $|t_n| \ge |t| - |t - t_n| > |t| - |t| = 0$.

The proof will be given in the next lecture.