Réduction des endomorphismes 3: Polynômes d'endomorphismes

Exercice 1

1. Soit A la matrice à coefficients réels :

$$A = \left(\begin{array}{ccccc} 0 & 1 & 2 & 1 & -2 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

Calculez le polynôme caractéristique de A

- 2. Déterminez la dimension des sous-espaces propres de A et donnez-en une base .
- 3. Calculez A^2 , déterminez une base de son noyau et, sans calcul, une base des sous-espaces caractéristiques de A.
- 4. Quel est le polynôme minimal de A?
- 5. Montrez que $\exp(A)$ est une combinaison linéaire de I_5 , $(A I_5)$, $(A I_5)^2$, $(A I_5)^3$, $(A I_5)^4$; donnez l'expression de $\exp(A)$ en fonction de ces matrices.

Exercice 2 Soit la matrice

$$M = \left(\begin{array}{cccc} 1 & -5 & -5 & -5 \\ 0 & -2 & -3 & -3 \\ 0 & 10 & 11 & 10 \\ 0 & -7 & -7 & -6 \end{array}\right).$$

Quel est le polynôme minimal de M? En déduire M^{-1} et $\exp(M)$.

Exercice 3 On suppose que A et B appartiennent à $M_n(\mathbb{C})$, montrez que si A et B sont semblables elles ont même polynôme minimal.

Exercice 4 Soit $A \in M_n(K)$, montrez que A et tA ont même polynôme minimal.

Exercice 5 Donner le polynôme minimal des matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix} \text{ et } B = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}.$$

Exercice 6 Soit E un \mathbb{C} -espace vectoriel de dimension 6. Chercher les endomorphismes f de E de polynôme minimal $(f^2 - f + 3)(f - 2Id)^2 = 0$

Exercice 7 Soit A une matrice réelle de taille n vérifiant

$$A^3 - 3A - 4I_n = 0.$$

Montrer que A est de déterminant strictement positif.

Exercice 8 Soit $n \ge 1$ et $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. On suppose que $A^2 + A + I_n = 0$. Montrer que n est pair.
- 2. On suppose que $A^3 + A^2 + A = 0$. Montrer que le rang de A est pair.

Exercice 9 Soient E un espace vectoriel réel de dimension finie et $f \in \mathcal{L}(E)$. On suppose que f possède un polynôme annulateur P vérifiant P(0) = 0 et $P'(0) \neq 0$. Montrer qu'on a alors $\text{Im}(f) \oplus \ker(f) = E$.

Exercice 10 Soient E un \mathbb{R} -espace vectoriel et $u \in \mathcal{L}(E)$. Existe-t-il toujours un polynôme annulateur de u (autre que le polynôme nul, évidemment)?

Exercice 11 Soit f un endomorphisme sur \mathbb{C}^n , on note M_f et C_f son polynôme minimal et son polynôme caractéristique. Montrer que M_f et C_f ont les mêmes facteurs irréductibles. Généraliser au cas des endomorphismes sur \mathbb{R}^n .