Voltage Regulator - Low Power Low, Dropout 100 mA

LP2950, LP2951, NCV2951

The LP2950 and LP2951 are micropower voltage regulators that are specifically designed to maintain proper regulation with an extremely low input–to–output voltage differential. These devices feature a very low quiescent bias current of 75 μA and are capable of supplying output currents in excess of 100 mA. Internal current and thermal limiting protection is provided.

The LP2951 has three additional features. The first is the Error Output that can be used to signal external circuitry of an out of regulation condition, or as a microprocessor power—on reset. The second feature allows the output voltage to be preset to 5.0 V, 3.3 V or 3.0 V output (depending on the version) or programmed from 1.25 V to 29 V. It consists of a pinned out resistor divider along with direct access to the Error Amplifier feedback input. The third feature is a Shutdown input that allows a logic level signal to turn—off or turn—on the regulator output.

Due to the low input-to-output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable. The LP2950 is available in the three pin case 29 and DPAK packages, and the LP2951 is available in the eight pin dual-in-line, SOIC-8 and Micro8 surface mount packages. The 'A' suffix devices feature an initial output voltage tolerance $\pm 0.5\%$.

Features

- Low Quiescent Bias Current of 75 μA
- $\bullet\,$ Low Input–to–Output Voltage Differential of 50 mV at 100 μA and 380 mV at 100 mA
- 5.0 V, 3.3 V or 3.0 V $\pm 0.5\%$ Allows Use as a Regulator or Reference
- Extremely Tight Line and Load Regulation
- Requires Only a 1.0 μF Output Capacitor for Stability
- Internal Current and Thermal Limiting
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and RoHS Compliant

LP2951 Additional Features

- Error Output Signals an Out of Regulation Condition
- Output Programmable from 1.25 V to 29 V
- Logic Level Shutdown Input

(See Following Page for Device Information.)

ON Semiconductor®

www.onsemi.com

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

PIN CONNECTIONS

CASE 846A

ORDERING & MARKING INFORMATION

See detailed ordering and shipping information in the package dimensions section on pages 14 and 15 of this data sheet. See general marking information in the device marking section on page 17 of this data sheet.

DEVICE INFORMATION

		Output	Voltage		Operating Ambient
Package	3.0 V	3.3 V	5.0 V	Adjustable	Temperature Range
TO-92 Suffix Z	LP2950CZ-3.0 LP2950CZ-3.3 LP2950CZ-5.0 Not LP2950ACZ-3.0 LP2950ACZ-3.3 LP2950ACZ-5.0 Available		$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$		
DPAK	LP2950CDT-3.0	LP2950CDT-3.3	LP2950CDT-5.0	Not	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$
Suffix DT	LP2950ACDT-3.0	LP2950ACDT-3.3	LP2950ACDT-5.0	Available	
SOIC-8	-	NCV2951ACD-3.3R2	NCV2951ACDR2	NCV2951CDR2	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$
SOIC-8	LP2951CD-3.0	LP2951CD-3.3	LP2951CD	LP2951CD	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$
Suffix D	LP2951ACD-3.0	LP2951ACD-3.3	LP2951ACD	LP2951ACD	
Micro8	LP2951CDM-3.0	LP2951CDM-3.3	LP2951CDM	LP2951CDM	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$
Suffix DM	LP2951ACDM-3.0	LP2951ACDM-3.3	LP2951ACDM	LP2951ACDM	
DIP-8	LP2951CN-3.0	LP2951CN-3.3	LP2951CN	LP2951CN	$T_A = -40^{\circ} \text{ to } +125^{\circ}\text{C}$
Suffix N	LP2951ACN-3.0	LP2951ACN-3.3	LP2951ACN	LP2951ACN	

LP2950Cx-xx / LP2951Cxx-xx LP2950ACx-xx / LP2951ACxx-xx 1% Output Voltage Precision at T_A = 25°C 0.5% Output Voltage Precision at T_A = 25°C

Figure 1. Representative Block Diagrams

MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	V _{CC}	30	Vdc
Peak Transient Input Voltage (t < 300 ms)	V _{CC}	32	Vdc
Power Dissipation and Thermal Characteristics			
Maximum Power Dissipation	P_{D}	Internally Limited	W
Case 751 (SOIC-8) D Suffix			
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	180	°C/W
Thermal Resistance, Junction-to-Case	$R_{ hetaJC}$	45	°C/W
Case 369A (DPAK) DT Suffix (Note 1)			
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	92	°C/W
Thermal Resistance, Junction-to-Case	$R_{ hetaJC}$	6.0	°C/W
Case 29 (TO-226AA/TO-92) Z Suffix			
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	160	°C/W
Thermal Resistance, Junction-to-Case	$R_{ hetaJC}$	83	°C/W
Case 626 N Suffix			
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	105	°C/W
Case 846A (Micro8) DM Suffix			
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	240	°C/W
Feedback Input Voltage	V _{fb}	-1.5 to +30	Vdc
Shutdown Input Voltage	V _{sd}	-0.3 to +30	Vdc
Error Comparator Output Voltage	V _{err}	-0.3 to +30	Vdc
Operating Ambient Temperature Range T _A		-40 to +125	°C
Maximum Die Junction Temperature Range	TJ	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS

 $(V_{in} = V_O + 1.0 \text{ V}, I_O = 100 \mu\text{A}, C_O = 1.0 \mu\text{F}, T_A = 25^{\circ}\text{C}$ [Note 3], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Output Voltage, 5.0 V Versions	Vo				V
$V_{in} = 6.0 \text{ V}, I_{O} = 100 \mu\text{A}, T_{A} = 25^{\circ}\text{C}$					
LP2950C-5.0/LP2951C/NCV2951C*		4.950	5.000	5.050	
LP2950AC-5.0/LP2951AC/NCV2951AC*		4.975	5.000	5.025	
$T_A = -40 \text{ to } +125^{\circ}\text{C}$					
LP2950C-5.0/LP2951C/NCV2951C*		4.900	-	5.100	
LP2950AC-5.0/LP2951AC/NCV2951AC*		4.940	-	5.060	
V_{in} = 6.0 to 30 V, I_{O} = 100 μA to 100 mA, T_{A} = -40 to +125°C					
LP2950C-5.0/LP2951C/NCV2951C*		4.880	-	5.120	
LP2950AC-5.0/LP2951AC/NCV2951AC*		4.925	_	5.075	
Output Voltage, 3.3 V Versions	V _O				V
$V_{in} = 4.3 \text{ V}, I_{O} = 100 \mu\text{A}, T_{A} = 25^{\circ}\text{C}$					
LP2950C-3.3/LP2951C-3.3		3.267	3.300	3.333	
LP2950AC-3.3/LP2951AC-3.3/NCV2951AC-3.3*		3.284	3.300	3.317	
$T_A = -40 \text{ to } +125^{\circ}\text{C}$					
LP2950C-3.3/LP2951C-3.3		3.234	-	3.366	
LP2950AC-3.3/LP2951AC-3.3/NCV2951AC-3.3*		3.260	-	3.340	
V_{in} = 4.3 to 30 V, I_{O} = 100 μA to 100 mA, T_{A} = -40 to +125°C					
LP2950C-3.3/LP2951C-3.3		3.221	-	3.379	
LP2950AC-3.3/LP2951AC-3.3/NCV2951AC-3.3*		3.254	-	3.346	
Output Voltage, 3.0 V Versions	V _O				V
V_{in} = 4.0 V, I_{O} = 100 μ A, T_{A} = 25°C					
LP2950C-3.0/LP2951C-3.0		2.970	3.000	3.030	
LP2950AC-3.0/LP2951AC-3.0		2.985	3.000	3.015	
$T_A = -40 \text{ to } +125^{\circ}\text{C}$					
LP2950C-3.0/LP2951C-3.0		2.940	-	3.060	
LP2950AC-3.0/LP2951AC-3.0		2.964	_	3.036	
V_{in} = 4.0 to 30 V, I_{O} = 100 μA to 100 mA, T_{A} = -40 to +125°C					
LP2950C-3.0/LP2951C-3.0		2.928	_	3.072	
LP2950AC-3.0/LP2951AC-3.0		2.958		3.042	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 1. The Junction-to-Ambient Thermal Resistance is determined by PCB copper area per Figure 29.
- 2. This device series contains ESD protection and exceeds the following tests:

Human Body Model (HBM), 2000 V, Class 2, JESD22 A114–C Machine Model (MM), 200 V, Class B, JESD22 A115–A

Charged Device Model (CDM), 2000 V, Class IV, JESD22 C101-C

- 3. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
- 4. V_{O(nom)} is the part number voltage option.
- 5. Noise tests on the LP2951 are made with a 0.01 μF capacitor connected across Pins 7 and 1.
- 6. Latch-up Current Maximum Rating tested per JEDEC standard: JESD78
 - Inputs Low: passing positive current 100 mA and negative current –100 mA
 - Inputs High: passing positive current 100 mA and negative current -10 mA.

*NCV prefix is for automotive and other applications requiring site and change control.

ELECTRICAL CHARACTERISTICS (continued)

(V_{in} = V_O + 1.0 V, I_O = 100 μ A, C_O = 1.0 μ F, T_A = 25 $^{\circ}$ C [Note 9], unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Line Regulation (V _{in} = V _{O(nom)} +1.0 V to 30 V) (Note 10)	Reg _{line}				%
LP2950C-XX/LP2951C/LP2951C-XX/NCV2951C*		-	0.08	0.20	
LP2950AC-XX/LP2951AC/LP2951AC-XX/NCV2951AC*		-	0.04	0.10	
Load Regulation (I _O = 100 μA to 100 mA)	Reg _{load}		0.40	0.00	%
LP2950C-XX/LP2951C/LP2951C-XX/NCV2951C* LP2950AC-XX/LP2951AC/LP2951AC-XX/NCV2951AC*		_	0.13 0.05	0.20 0.10	
Dropout Voltage	V _I – V _O	_	0.03	0.10	mV
I _O = 100 μA	vi - vO	_	30	80	IIIV
I _O = 100 mA		-	350	450	
Supply Bias Current	I _{CC}				
I _O = 100 μA		-	93	120	μΑ
I _O = 100 mA		-	4.0	12	mA
Dropout Supply Bias Current (V _{in} = V _{O(nom)} - 0.5 V,	I _{CCdropout}	_	110	170	μΑ
I _O = 100 μA) (Note 10)					
Current Limit (V _O Shorted to Ground)	I _{Limit}	_	220	300	mA
Thermal Regulation	Reg _{thermal}	-	0.05	0.20	%/W
Output Noise Voltage (10 Hz to 100 kHz) (Note 11)	V _n				μVrms
$C_{L} = 1.0 \mu F$		-	126	-	
C _L = 100 μF	1	_	56	_	
LP2951A/LP2951AC Only	•	1		T	1
Reference Voltage (T _A = 25°C)	V_{ref}	4.040	4 005	4 000	V
LP2951C/LP2951C-XX/NCV2951C* LP2951AC/LP2951AC-XX/NCV2951AC*		1.210 1.220	1.235 1.235	1.260 1.250	
Reference Voltage ($T_A = -40 \text{ to } +125^{\circ}\text{C}$)	V _{ref}	1.220	1.200	1.230	V
LP2951C/LP2951C–XX/NCV2951C*	v ret	1.200	_	1.270	V
LP2951AC/LP2951AC-XX/NCV2951AC*		1.200	_	1.260	
Reference Voltage (T _A = -40 to +125°C)	V_{ref}				V
I_O = 100 μA to 100 mA, V_{in} = 23 to 30 V					
LP2951C/LP2951C-XX/NCV2951C*		1.185	-	1.285	
LP2951AC/LP2951AC-XX/NCV2951AC*		1.190	_	1.270	
Feedback Pin Bias Current	I _{FB}	_	15	40	nA
Error Comparator					
Output Leakage Current (V _{OH} = 30 V)	I _{lkg}	_	0.01	1.0	μΑ
Output Low Voltage (V _{in} = 4.5 V, I _{OL} = 400 μA)	V _{OL}	_	150	250	mV
Upper Threshold Voltage (V _{in} = 6.0 V)	V_{thu}	40	45	_	mV
Lower Threshold Voltage (V _{in} = 6.0 V)	V _{thl}	_	60	95	mV
Hysteresis (V _{in} = 6.0 V)	V _{hy}	_	15	_	mV
Shutdown Input	1119				
Input Logic Voltage	V_{shtdn}				V
Logic "0" (Regulator "On")	sntan	0	_	0.7	
Logic "1" (Regulator "Off")		2.0	-	30	
Shutdown Pin Input Current	I _{shtdn}				μΑ
V _{shtdn} = 2.4 V		-	35	50	
V _{shtdn} = 30 V		-	450	600	
Regulator Output Current in Shutdown Mode	I _{off}	-	3.0	10	μΑ
$(V_{in} = 30 \text{ V}, V_{shtdn} = 2.0 \text{ V}, V_{O} = 0, \text{ Pin 6 Connected to Pin 7})$	1				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{7.} The Junction-to-Ambient Thermal Resistance is determined by PCB copper area per Figure 29.

^{8.} ESD data available upon request.

^{9.} Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

^{10.} $V_{O(nom)}$ is the part number voltage option. 11. Noise tests on the LP2951 are made with a 0.01 μ F capacitor connected across Pins 7 and 1.

^{*}NCV prefix is for automotive and other applications requiring site and change control.

DEFINITIONS

Dropout Voltage – The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements.

Line Regulation – The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that average chip temperature is not significantly affected.

Load Regulation – The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Bias Current – Current which is used to operate the regulator chip and is not delivered to the load.

Figure 2. Quiescent Current

Figure 4. Output Voltage versus Temperature

Output Noise Voltage – The RMS ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Leakage Current – Current drawn through a bipolar transistor collector–base junction, under a specified collector voltage, when the transistor is "off".

Upper Threshold Voltage – Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic "0" to "1".

Lower Threshold Voltage – Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic "1" to "0".

Hysteresis – The difference between Lower Threshold voltage and Upper Threshold voltage.

Figure 3. 5.0 V Dropout Characteristics over Load

Figure 5. 5.0 V Dropout Characteristics with \mbox{R}_L = 50 Ω

Figure 6. Input Current

Figure 7. Dropout Voltage versus Output Current

Figure 8. Dropout Voltage versus Temperature

Figure 9. Error Comparator Output

Figure 10. Line Transient Response

Figure 11. LP2951 Enable Transient

Figure 12. Load Transient Response

Figure 13. Ripple Rejection

Figure 14. Output Noise

Figure 15. Shutdown Threshold Voltage versus Temperature

Figure 16. Maximum Rated Output Current

Figure 17. Output Stability versus Output Capacitor Change

APPLICATIONS INFORMATION

Introduction

The LP2950/LP2951 regulators are designed with internal current limiting and thermal shutdown making them user-friendly. Typical application circuits for the LP2950 and LP2951 are shown in Figures 20 through 28.

These regulators are not internally compensated and thus require a 1.0 μF (or greater) capacitance between the LP2950/LP2951 output terminal and ground for stability. Most types of aluminum, tantalum or multilayer ceramic will perform adequately. Solid tantalums or appropriate multilayer ceramic capacitors are recommended for operation below $25^{\circ}C.$

At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to $0.33\,\mu F$ for currents less than 10 mA, or $0.1\,\mu F$ for currents below 1.0 mA. Using the 8 pin versions at voltages less than 5.0 V operates the error amplifier at lower values of gain, so that more output capacitance is needed for stability. For the worst case operating condition of a 100 mA load at 1.23 V output (output Pin 1 connected to the feedback Pin 7) a minimum capacitance of $3.3\,\mu F$ is recommended.

The LP2950 will remain stable and in regulation when operated with no output load. When setting the output voltage of the LP2951 with external resistors, the resistance values should be chosen to draw a minimum of $1.0~\mu A$.

A bypass capacitor is recommended across the LP2950/LP2951 input to ground if more than 4 inches of wire connects the input to either a battery or power supply filter capacitor.

Input capacitance at the LP2951 Feedback Pin 7 can create a pole, causing instability if high value external resistors are used to set the output voltage. Adding a 100 pF capacitor between the Output Pin 1 and the Feedback Pin 7 and increasing the output filter capacitor to at least 3.3 μF will stabilize the feedback loop.

Error Detection Comparator

The comparator switches to a positive logic low whenever the LP2951 output voltage falls more than approximately 5.0% out of regulation. This value is the comparator's designed–in offset voltage of 60 mV divided by the 1.235 V internal reference. As shown in the representative block diagram. This trip level remains 5.0% below normal regardless of the value of regulated output voltage. For example, the error flag trip level is 4.75 V for a normal 5.0 V regulated output, or 9.50 V for a 10 V output voltage.

Figure 2 is a timing diagram which shows the \overline{ERROR} signal and the regulated output voltage as the input voltage

to the LP2951 is ramped up and down. The ERROR signal becomes valid (low) at about 1.3 V input. It goes high when the input reaches about 5.0 V (Vout exceeds about 4.75 V). Since the LP2951's dropout voltage is dependent upon the load current (refer to the curve in the Typical Performance Characteristics), the input voltage trip point will vary with load current. The output voltage trip point does not vary with load.

The error comparator output is an open collector which requires an external pullup resistor. This resistor may be returned to the output or some other voltage within the system. The resistance value should be chosen to be consistent with the 400 μA sink capability of the error comparator. A value between 100 k Ω and 1.0 M Ω is suggested. No pullup resistance is required if this output is unused.

When operated in the power down mode (V_{in} = 0 V), the error comparator output will go high if it has been pulled up to an external supply (the output transistor is in high impedance state). To avoid this invalid response, the error comparator output should be pulled up to V_{out} (see Figure 18).

Figure 18. ERROR Output Timing

Programming the Output Voltage (LP2951)

The LP2951CX may be pin-strapped for the nominal fixed output voltage using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5.0 V tap). Alternatively, it may be programmed for any output voltage between its 1.235 reference voltage and its 30 V maximum rating. An external pair of resistors is required, as shown in Figure 19.

Figure 19. Adjustable Regulator

The complete equation for the output voltage is:

$$V_{out} = V_{ref} (1 + R1/R2) + I_{FB} R1$$

where V_{ref} is the nominal 1.235 V reference voltage and I_{FB} is the feedback pin bias current, nominally -20 nA. The minimum recommended load current of 1.0 μA forces an upper limit of 1.2 M Ω on the value of R2, if the regulator must work with no load. I_{FB} will produce a 2% typical error in V_{out} which may be eliminated at room temperature by adjusting R1. For better accuracy, choosing R2 = 100 k reduces this error to 0.17% while increasing the resistor program current to 12 μA . Since the LP2951 typically draws 75 μA at no load with Pin 2 open circuited, the extra 12 μA of current drawn is often a worthwhile tradeoff for eliminating the need to set output voltage in test.

Output Noise

In many applications it is desirable to reduce the noise present at the output. Reducing the regulator bandwidth by increasing the size of the output capacitor is the only method for reducing noise on the 3 lead LP2950. However, increasing the capacitor from 1.0 μF to 220 μF only decreases the noise from 430 μV to 160 $\mu V rms$ for a 100 kHz bandwidth at the 5.0 V output.

Noise can be reduced fourfold by a bypass capacitor across R1, since it reduces the high frequency gain from 4 to unity. Pick

$$C_{Bypass} \approx \frac{1}{2\pi R1 \times 200 \text{ Hz}}$$

or about 0.01 μ F. When doing this, the output capacitor must be increased to 3.3 μ F to maintain stability. These changes reduce the output noise from 430 μ V to 126 μ Vrms for a 100 kHz bandwidth at 5.0 V output. With bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

Figure 20. 1.0 A Regulator with 1.2 V Dropout

TYPICAL APPLICATIONS

Figure 21. Lithium Ion Battery Cell Charger

Figure 22. Low Drift Current Sink

Figure 23. Latch Off When Error Flag Occurs

Figure 24. 5.0 V Regulator with 2.5 V Sleep Function

All diodes are 1N4148.

Early Warning flag on low input voltage.

Main output latches off at lower input voltages.

Battery backup on auxiliary output.

Operation: Regulator #1's V_{out} is programmed one diode drop above 5.0 V. Its error flag becomes active when $V_{in} \leq 5.7$ V. When V_{in} drops below 5.3 V, the error flag of regulator #2 becomes active and via Q1 latches the main output "off". When V_{in} again exceeds 5.7 V, regulator #1 is back in regulation and the early warning signal rises, unlatching regulator #2 via D3.

Figure 25. Regulator with Early Warning and Auxiliary Output

 $V_{out} = 1.25V (1.0 + R1/R2)$

For 5.0 V output, use internal resistors. Wire Pin 6 to 7, and wire Pin 2 to +V $_{out}$ Bus.

Figure 26. 2.0 A Low Dropout Regulator

Figure 27. Open Circuit Detector for 4.0 to 20 mA Current Loop

Figure 28. Low Battery Disconnect

Figure 29. DPAK Thermal Resistance and Maximum Power Dissipation versus PCB Copper Length

ORDERING INFORMATION (LP2950)

Part Number	Output Voltage (Volts)	Tolerance (%)	Package	Shipping [†]
LP2950CZ-3.0G	3.0	1.0	TO-92 (Pb-Free)	2000 Units / Bag
LP2950CZ-3.0RAG	3.0	1.0	TO-92 (Pb-Free)	2000 Units / Tape & Reel
LP2950ACZ-3.0G	3.0	0.5	TO-92 (Pb-Free)	2000 Units / Bag
LP2950ACZ-3.0RAG	3.0	0.5	TO-92 (Pb-Free)	2000 Units / Tape & Reel
LP2950CZ-3.3G	3.3	1.0	TO-92 (Pb-Free)	2000 Units / Bag
LP2950CZ-3.3RAG	3.3	1.0	TO-92 (Pb-Free)	2000 Units / Tape & Reel
LP2950ACZ-3.3G	3.3	0.5	TO-92 (Pb-Free)	2000 Units / Bag
LP2950ACZ-3.3RAG	3.3	0.5	TO-92 (Pb-Free)	2000 Units / Tape & Reel
LP2950CZ-5.0G	5.0	1.0	TO-92 (Pb-Free)	2000 Units / Bag
LP2950CZ-5.0RAG	5.0	1.0	TO-92 (Pb-Free)	2000 Units / Tape & Reel
LP2950CZ-5.0RPG	5.0	1.0	TO-92 (Pb-Free)	2000 Units / Ammo Pack
LP2950ACZ-5.0G	5.0	0.5	TO-92 (Pb-Free)	2000 Units / Bag
LP2950ACZ-5.0RAG	5.0	0.5	TO-92 (Pb-Free)	2000 Units / Tape & Reel
LP2950CDT-3.0G	3.0	1.0	DPAK (Pb-Free)	75 Units / Rail
LP2950CDT-3.0RKG	3.0	1.0	DPAK (Pb-Free)	2500 Units / Tape & Reel
LP2950ACDT-3.0G	3.0	0.5	DPAK (Pb-Free)	75 Units / Rail
LP2950ACDT-3RKG	3.0	0.5	DPAK (Pb-Free)	2500 Units / Tape & Reel
LP2950CDT-3.3G	3.3	1.0	DPAK (Pb-Free)	75 Units / Rail
LP2950CDT-3.3RKG	3.3	1.0	DPAK (Pb-Free)	2500 Units / Tape & Reel
LP2950ACDT-3.3RG	3.3	0.5	DPAK (Pb-Free)	2500 Units / Tape & Reel
LP2950CDT-5.0G	5.0	1.0	DPAK (Pb-Free)	75 Units / Rail
LP2950CDT-5.0RKG	5.0	1.0	DPAK (Pb-Free)	2500 Units / Tape & Reel
LP2950ACDT-5.0G	5.0	0.5	DPAK (Pb-Free)	75 Units / Rail
LP2950ACDT-5RKG	5.0	0.5	DPAK (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION (LP2951)

Part Number	Output Voltage (Volts)	Tolerance (%)	Package	Shipping [†]
LP2951CD-3.0G	3.0	1.0	SOIC-8 (Pb-Free)	98 Units / Rail
LP2951CD-3.0R2G	3.0	1.0	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
LP2951ACD-3.0G	3.0	0.5	SOIC-8 (Pb-Free)	98 Units / Rail
LP2951ACD-3.0R2G	3.0	0.5	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
LP2951CD-3.3G	3.3	1.0	SOIC-8 (Pb-Free)	98 Units / Rail
LP2951CD-3.3R2G	3.3	1.0	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
LP2951ACD-3.3G	3.3	0.5	SOIC-8 (Pb-Free)	98 Units / Rail
LP2951ACD-3.3R2G	3.3	0.5	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
LP2951CDG	5.0 or Adj.	1.0	SOIC-8 (Pb-Free)	98 Units / Rail
LP2951CDR2G	5.0 or Adj.	1.0	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
LP2951ACDG	5.0 or Adj.	0.5	SOIC-8 (Pb-Free)	98 Units / Rail
LP2951ACDR2G	5.0 or Adj.	0.5	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
LP2951CDM-3.0R2G	3.0	1.0	Micro8 (Pb-Free)	4000 Units / Tape & Reel
LP2951ACDM-3.0RG	3.0	0.5	Micro8 (Pb-Free)	4000 Units / Tape & Reel
LP2951CDM-3.3R2G	3.3	1.0	Micro8 (Pb-Free)	4000 Units / Tape & Reel
LP2951ACDM-3.3RG	3.3	0.5	Micro8 (Pb-Free)	4000 Units / Tape & Reel
LP2951CDMR2G	5.0 or Adj.	1.0	Micro8 (Pb-Free)	4000 Units / Tape & Reel
LP2951ACDMR2G	5.0 or Adj.	0.5	Micro8 (Pb-Free)	4000 Units / Tape & Reel
LP2951ACN-3.0G	3.0	0.5	PDIP-8 (Pb-Free)	50 Units / Rail
LP2951CN-3.3G	3.3	1.0	PDIP-8 (Pb-Free)	50 Units / Rail
LP2951ACN-3.3G	3.3	0.5	PDIP-8 (Pb-Free)	50 Units / Rail
LP2951CNG	5.0 or Adj.	1.0	PDIP-8 (Pb-Free)	50 Units / Rail
LP2951ACNG	5.0 or Adj.	0.5	PDIP-8 (Pb-Free)	50 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION (NCV2951)

Part Number	Output Voltage (Volts)	Tolerance (%)	Package	Shipping [†]
NCV2951ACD3.3R2G*	3.3	0.5	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
NCV2951ACDR2G*	5.0 or Adj.	0.5	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
NCV2951CDR2G*	5.0 or Adj.	1.0	SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
NCV2951ACDMR2G*	5.0 or Adj.	0.5	Micro8 (Pb-Free)	4000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable.

MARKING DIAGRAMS

xx = 3.0, 3.3, or 5.0 y = 3 or 5 yy = 30, 33, or 50 z = A or C

A = Assembly Location WL, L = Wafer Lot

YY, Y = Year WW, W = Work Week G = Pb-Free Package ■ Pb-Free Package

(Note: Microdot may be in either location)

^{*}This marking diagram also applies to NCV2951.

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

STRAIGHT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Δ	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
Ø	0.38	0.465	0.55			
ρQ	0.62	0.70	0.78			
C	0.35	0.40	0.45			
D	7.85	8.00	8.15			
E	4.75	4.90	5.05			
E2	3.90					
е	1.27 BSC					
L	13.80	14.00	14.20			

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS					
DIM	MIN.	N□M.	MAX.			
Α	3.75	3.90	4.05			
A1	1.28	1.43	1.58			
р	0.38	0.465	0.55			
b2	0.62	0.70	0.78			
С	0.35	0.40	0.45			
D	7.85	8.00	8.15			
Е	4.75	4.90	5.05			
E2	3.90					
O.	2.50 BSC					
∟	13.80	14.00	14.20			
L2	13.20	13.60	14.00			
L3	3.00 REF					

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE D

DATE 05 MAR 2021

2.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	PIN 1. 2.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	
	GATE	PIN 1.	SOURCE DRAIN	PIN 1. 2.	DRAIN	2.	BASE 1 EMITTER BASE 2		CATHODE GATE ANODE
2.	CATHODE & ANODE	2.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	2.	ANODE 1 GATE CATHODE 2		EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1
2.	ANODE	DINI 1	COLLECTOR BASE EMITTER	PIN 1	ANODE	PIN 1. 2.	GATE ANODE CATHODE	2.	NOT CONNECTED CATHODE ANODE
2.		PIN 1. 2.		PIN 1. 2.	GATE	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	V _{CC}		MT	PIN 1. 2.		PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	
		STYLE 32: PIN 1. 2. 3.	BASE COLLECTOR EMITTER	STYLE 33: PIN 1. 2. 3.	RETURN	PIN 1. 2.	INPUT GROUND LOGIC		

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repo- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

В

- h3

Ո

L3

b2 e **DATE 21 JUL 2015**

DPAK (SINGLE GAUGE) CASE 369C ISSUE F SCALE 1:1

DETAIL A

C-

NOTES:

- IOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114 REF		2.90	REF
L2	0.020 BSC		0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

NOTE 7

BOTTOM VIEW

BOTTOM VIEW ALTERNATE CONSTRUCTIONS

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
	2. DRAIN	2. CATHODE	2. ANODE	2. ANODE
	3. SOURCE	3. ANODE	3. GATE	3. CATHODE
	4. DRAIN	4. CATHODE	4. ANODE	4. ANODE
4. COLLECTOR	4. DRAIN	4. CATHODE	4. ANODE	4. ANODE

STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:
PIN 1. MT1	PIN 1. GATE	PIN 1. N/C	PIN 1. ANODE	PIN 1. CATHODE
2. MT2	COLLECTOR	CATHODE	2. CATHODE	ANODE
3. GATE	EMITTER	ANODE	RESISTOR ADJUST	3. CATHODE
4. MT2	COLLECTOR	4. CATHODE	4. CATHODE	4. ANODE

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week

G

*This information is generic. Please refer to device data sheet for actual part marking.

= Pb-Free Package

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

PDIP-8 CASE 626-05 ISSUE P

DATE 22 APR 2015

NOTE 5

STYLE 1: PIN 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN

5. GROUND 6. OUTPUT 7. AUXILIARY 8. V_{CC}

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-
- AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
- DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- 6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
- LEADS UNCONSTRAINED.

 DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
- PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP		1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100 BSC		2.54	BSC
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
M		10°		10°

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location WL = Wafer Lot

YY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42420B Electronic versions are uncontrolled except when accessed directly from the Docu- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in		
DESCRIPTION:	PDIP-8		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		IMETERS INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
7	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww

= Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED of the control of	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. PINS 2	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 7: PIN 1. IMPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2	3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE
PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND	PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2	PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE 2. SOURCE
PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND	PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2	PIN 1. SOURCE 2. SOURCE
6. BIAS 2 7. INPUT 8. GROUND	5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		
	PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 8. CATHODE 9. COMMON CATHODE/VCC 9. COMMON CATHODE/VCC 1. (/O LINE 1 2. COMMON CATHODE/VCC 1. (/O LINE 3 5. COMMON ANODE/GND 6. (/O LINE 5 8. COMMON ANODE/GND 8.	PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 8. N-DRAIN 7. CATHODE, COMMON 8. N-DRAIN 8. CATHODE, COMMON 8. CATHODE 9IN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 4. GATE 2 5. DRAIN 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 8. COMMON CATHODE/VCC 1. COMMON CATHODE/VCC 1. COMMON CATHODE/VCC 1. (/O LINE 1 2. COMMON CATHODE/VCC 1. (/O LINE 3 5. COMMON ANODE/GND 6. (/O LINE 4 7. (/O LINE 5 8. COMMON ANODE/GND 8. LINE 2 OUT 9. COMMON ANODE/GND 8. LINE 1 OUT STYLE 26: PIN 1. GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 28: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. LINE 1 OUT STYLE 29: PIN 1. ILIMIT 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. COMMON ANODE/GND 9. LINE 2 OUT 9. COMMON ANODE/GND 9. COMM

DOCUMENT NUMBER:	98ASB42564B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		' '
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DDES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

RECOMMENDED MOUNTING FOOTPRINT

MID	MI	LLIMETE	RS
DIM	MIN.	N□M.	MAX.
Α	-	-	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
С	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
HE	4.75	4.90	5.05
L	0.40	0.55	0.70

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
SOURCE	2. GATE 1	2. N-GATE
SOURCE	3. SOURCE 2	P-SOURCE
GATE	4. GATE 2	4. P-GATE
DRAIN	5. DRAIN 2	5. P-DRAIN
DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MICRO8		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NCV2951ACD-3.3R2 NCV2951ACD3.3R2G NCV2951ACDR2 NCV2951ACDR2G NCV2951CDR2 NCV2951CDR2G LP2950ACDT-3.0 LP2950ACDT-3.0G LP2950ACDT-3.0RK LP2950ACDT-3.3 LP2950ACDT-3.3RG LP2950ACDT-3.3RK LP2950ACDT-3RKG LP2950ACDT-5.0 LP2950ACDT-5.0G LP2950ACDT-5.0RK LP2950ACDT-5RKG LP2950ACZ-3.0 LP2950ACZ-3.0G LP2950ACZ-3.0RA LP2950ACZ-3.0RAG LP2950ACZ-3.3 LP2950ACZ-3.3G LP2950ACZ-3.3RA LP2950ACZ-3.3RAG LP2950ACZ-5.0 LP2950ACZ-5.0G LP2950ACZ-5.0RA LP2950ACZ-5.0RAG LP2950CDT-3.0 LP2950CDT-3.0G LP2950CDT-3.0RK LP2950CDT-3.0RKG LP2950CDT-3.3 LP2950CDT-3.3G LP2950CDT-3.3RK LP2950CDT-3.3RKG LP2950CDT-5.0 LP2950CDT-5.0G LP2950CDT-5.0RK LP2950CDT-5.0RKG LP2950CZ-3.0 LP2950CZ-3.0G LP2950CZ-3.0RA LP2950CZ-3.0RAG LP2950CZ-3.3 LP2950CZ-3.3G LP2950CZ-3.3RA LP2950CZ-3.3RAG LP2950CZ-5.0 LP2950CZ-5.0G LP2950CZ-5.0RA LP2950CZ-5.0RAG LP2950CZ-5.0RP LP2950CZ-5.0RPG LP2951ACD LP2951ACD-3.0 LP2951ACD-3.0G LP2951ACD-3.0R2 LP2951ACD-3.0R2G LP2951ACD-3.3 LP2951ACD-3.3G LP2951ACD-3.3R2 LP2951ACD-3.3R2G LP2951ACDG LP2951ACDM-3.0R2 LP2951ACDM-3.3R2 LP2951ACDM-3.3RG LP2951ACDM-5.0R2 LP2951ACDMR2 LP2951ACDMR2G LP2951ACDR2 LP2951ACDR2G LP2951ACN LP2951ACN-3.0 LP2951ACN-3.0G LP2951ACN-3.3 LP2951ACN-3.3G LP2951ACNG LP2951CD LP2951CD-3.0 LP2951CD-3.0G LP2951CD-3.0R2 LP2951CD-3.0R2G LP2951CD-3.3 LP2951CD-3.3G LP2951CD-3.3R2 LP2951CD-3.3R2G LP2951CDG LP2951CDM-3.0R2 LP2951CDM-3.0R2G LP2951CDM-3.3R2 LP2951CDM-3.3R2G LP2951CDMR2 LP2951CDMR2G LP2951CDR2 LP2951CDR2G LP2951CN LP2951CN-3.0 LP2951CN-3.0G