## 1. Z-test

## Eg1.

웹사이트를 관리하고 있으며, 새로운 버전의 웹페이지가 사용자가 페이지에 머무는 평균 시간을 증가시키는지 알고 싶다고 가정해자. 과거 데이터에 따르면, 사용자는 평균적으로 200초 동안 머물며, 표준 편차는 40초이다. 새로운 페이지에서 100명의 사용자를 샘플링한 결과, 평균 210초 동안 머물렀다.(양측 5% 유의 수준을 고려한다.)

### **Answer**

- 1. 가설 설정:
- 귀무가설(H0): 평균 시간 = 200초.
- 대립가설(H1): 평균 시간 ≠ 200초.
- 2. Z-점수 계산:  $Z=rac{ar{x}-\mu}{rac{\sigma}{\sqrt{n}}}$

여기서,  $\bar{x}=210$ 초,  $\mu=200$ 초,  $\sigma=40$ 초, n=100이다.

$$Z = \frac{210 - 200}{\frac{40}{\sqrt{100}}} = \frac{10}{4} = 2.5$$

3. 유의성 판단:



Z-표에서 Z-score를 임계값과 비교한다. 만약 Z = 2.5이고, 5% 유의 수준(양측 검정)을 사용하는 경우, 임계 Z-값은  $\pm 1.96$ 이다. 2.5 > 1.96이므로, 귀무가설을 기각하고 새로운 페이지가 사용자가 머무는 시간을 증가시킨다고 결론 내릴 수 있다.

## Eg2.

한 회사가 자사의 전구 수명이 평균 1200시간이며 표준 편차가 200시간이라고 주장한다. 50개의 전구를 테스트한 결과 평균 1150시간 동안 지속되었다.(양측 5% 유의 수준을 고려한다.)

#### Answer

### 문제 1)

- 1. 가설 설정:
  - 귀무가설 (H0): 평균 수명 = 1200시간.
  - o 대립가설 (H1): 평균 수명 ≠ 1200시간.
- 2. Z-점수 계산:  $Z=rac{ar{x}-\mu}{rac{\sigma}{\sqrt{n}}}$

$$ar{x}=1150$$
,  $\mu=1200$ ,  $\sigma=200$ ,  $n=50$ 

$$Z = \frac{1150 - 1200}{\frac{200}{\sqrt{50}}}$$

$$Z = \frac{-50}{200}$$

$$Z = \frac{-50}{28.284}$$

$$Z \approx -1.77$$

3. 해석: 양측 5% 유의 수준에서 임계 Z-값은 ±1.96이다. -1.77은 -1.96과 1.96 사이에 있으므로, 귀무가설(H0)을 기각하지 않는다. 즉, 전구의 수명은 1200시간과 유의미하게 다르지 않는 것으로 볼 수 있다.

### Eg3.

한 음료 회사는 자사의 소다 캔에 355 ml가 들어 있으며 표준 편차가 5 ml라고 주장한다36개의 캔을 샘플링한 결과 평균 350 ml가 들어 있었었다. 실제 내용물이 355 ml와 다른지 테스트해보자.(양측 5% 유의 수준을 고려한다.)

### **Answer**

- 1. 가설 설정:
- 귀무가설(H0): 내용물 용량간 유의미한 차이가 없다.
- 대립가설(H1): 내용물 용량간 유의미한 차이가 있다. 모 평균 : 355ml 모 표준편차 : 5ml 표본 평균 : 350ml  $Z=\frac{\bar{x}-\mu}{\frac{C}{\sqrt{n}}}$

$$Z = rac{350 - 355}{rac{5}{\sqrt{36}}} = rac{-5}{rac{5}{6}} = rac{-5}{0.833} pprox -6.0$$

임계 Z-값은  $\pm 1.96$ 이다. -6.0 < -1.96이므로 귀무가설 $(H_0)$ 을 기각한다. 내용물이 355 ml와 유의미하게 다르다.

## 2. T-test

### Eg1.

한 학교가 한 학급의 30명의 학생들에게 새로운 교육 방법을 도입했다. 역사적 평균 시험 점수는 75점이고 표준 편차는 10점이다. 새로운 학급의 평균 점수는 80점이다.(양측 5% 유의 수준을 고려

한다.)

### **Answer**

- 1. 가설 설정:
- 귀무가설(H0): 평균 점수 = 75.
- 대립가설(H1): 평균 점수 ≠ 75.

2. T-점수 계산: 
$$t=rac{ar{x}-\mu}{rac{s}{\sqrt{n}}}$$

여기서, 
$$ar{x}=80$$
,  $\mu=75$ ,  $s=10$ ,  $n=30$ 이다.

$$t = rac{80-75}{rac{10}{\sqrt{30}}} = rac{5}{rac{10}{\sqrt{30}}} = rac{5}{1.83} pprox 2.73$$

3. 유의성 판단:

| df/p | 0.40     | 0.25     | 0.10     | 0.05     | 0.025    | 0.01     | 0.005    | 0.0005   |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1    | 0.324920 | 1.000000 | 3.077684 | 6.313752 | 12.70620 | 31.82052 | 63.65674 | 636.6192 |
| 2    | 0.288675 | 0.816497 | 1.885618 | 2.919986 | 4.30265  | 6.96456  | 9.92484  | 31.5991  |
| 3    | 0.276671 | 0.764892 | 1.637744 | 2.353363 | 3.18245  | 4.54070  | 5.84091  | 12.9240  |
| 4    | 0.270722 | 0.740697 | 1.533206 | 2.131847 | 2.77645  | 3.74695  | 4.60409  | 8.6103   |
| 5    | 0.267181 | 0.726687 | 1.475884 | 2.015048 | 2.57058  | 3.36493  | 4.03214  | 6.8688   |
| 6    | 0.264835 | 0.717558 | 1.439756 | 1.943180 | 2.44691  | 3.14267  | 3.70743  | 5.9588   |
| 7    | 0.263167 | 0.711142 | 1.414924 | 1.894579 | 2.36462  | 2.99795  | 3.49948  | 5.4079   |
| 8    | 0.261921 | 0.706387 | 1.396815 | 1.859548 | 2.30600  | 2.89646  | 3.35539  | 5.0413   |
| 9    | 0.260955 | 0.702722 | 1.383029 | 1.833113 | 2.26216  | 2.82144  | 3.24984  | 4.7809   |
| 10   | 0.260185 | 0.699812 | 1.372184 | 1.812461 | 2.22814  | 2.76377  | 3.16927  | 4.5869   |
| 11   | 0.259556 | 0.697445 | 1.363430 | 1.795885 | 2.20099  | 2.71808  | 3.10581  | 4.4370   |
| 12   | 0.259033 | 0.695483 | 1.356217 | 1.782288 | 2.17881  | 2.68100  | 3.05454  | 43178    |
| 13   | 0.258591 | 0.693829 | 1.350171 | 1.770933 | 2.16037  | 2.65031  | 3.01228  | 4.2208   |
| 14   | 0.258213 | 0.692417 | 1.345030 | 1.761310 | 2.14479  | 2.62449  | 2.97684  | 4.1405   |
| 15   | 0.257885 | 0.691197 | 1.340606 | 1.753050 | 2.13145  | 2.60248  | 2.94671  | 4.0728   |
| 16   | 0.257599 | 0.690132 | 1.336757 | 1.745884 | 2.11991  | 2.58349  | 2.92078  | 4.0150   |
| 17   | 0.257347 | 0.689195 | 1.333379 | 1.739607 | 2.10982  | 2.56693  | 2.89823  | 3.9651   |
| 18   | 0.257123 | 0.688364 | 1.330391 | 1.734064 | 2.10092  | 2.55238  | 2.87844  | 3.9216   |
| 19   | 0.256923 | 0.687621 | 1.327728 | 1.729133 | 2.09302  | 2.53948  | 2.86093  | 3.8834   |
| 20   | 0.256743 | 0.686954 | 1.325341 | 1.724718 | 2.08596  | 2.52798  | 2.84534  | 3.8495   |
| 21   | 0.256580 | 0.686352 | 1.323188 | 1.720743 | 2.07961  | 2.51765  | 2.83136  | 3.8193   |
| 22   | 0.256432 | 0.685805 | 1.321237 | 1.717144 | 2.07387  | 2.50832  | 2.81876  | 3.7921   |
| 23   | 0.256297 | 0.685306 | 1.319460 | 1.713872 | 2.06866  | 2.49987  | 2.80734  | 3.7676   |
| 24   | 0.256173 | 0.684850 | 1.317836 | 1.710882 | 2.06390  | 2.49216  | 2.79694  | 3.7454   |
| 25   | 0.256060 | 0.684430 | 1.316345 | 1.708141 | 2.05954  | 2.48511  | 2.78744  | 3.7251   |
| 26   | 0.255955 | 0.684043 | 1.314972 | 1.705618 | 2.05553  | 2.47863  | 2.77871  | 3.7066   |
| 27   | 0.255858 | 0.683685 | 1.313703 | 1.703288 | 2.05183  | 2.47266  | 2.77068  | 3.6896   |
| 28   | 0.255768 | 0.683353 | 1.312527 | 1.701131 | 2.04841  | 2.46714  | 2.76326  | 3.6739   |
| 29   | 0.255684 | 0.683044 | 1.311434 | 1.699127 | 2.04523  | 2.46202  | 2.75639  | 3.6594   |
| 30   | 0.255605 | 0.682756 | 1.310415 | 1.697261 | 2.04227  | 2.45726  | 2.75000  | 3.6460   |
| z    | 0.253347 | 0.674490 | 1.281552 | 1.644854 | 1.95996  | 2.32635  | 2.57583  | 3.2905   |
| CI   |          |          | 80%      | 90%      | 95%      | 98%      | 99%      | 99.9%    |

24. 6. 19. 오전 8:16 1. Z-test

T-분포표에서 자유도 n-1 (29)로 T-점수를 임계값과 비교한다. 유의 수준 5%일 때 임계 T-값이약 2.045이고, t=2.73이면 귀무가설을 기각한다. 즉, 새로운 방법이 점수를 향상시킨다고 결론 내릴 수 있다.

### Eg2.

작은 클리닉에서 혈압 감소를 위한 새로운 다이어트 계획을 테스트한다. 10명의 환자가 등록되었고, 평균 감소는 8 mmHg, 표본 표준 편차는 4 mmHg이다. 예상 감소량은 5 mmHg이다.(양측 5% 유의 수준을 고려한다.) 해석: 예상 감소량은 기존의 감소량을 뜻한다. 기존의 평균 감소량(모평균)이 5mmHg라고 해석할 수 있다.

### **Answer**

- 1. 가설 설정:
  - 귀무가설 (H0): 평균 감소량 = 5 mmHg.
  - o 대립가설 (H1): 평균 감소량 ≠ 5 mmHg.
- 2. T-점수 계산:  $t=rac{ar{x}-\mu}{rac{s}{\sqrt{n}}}$

여기서,  $ar{x}=8$ ,  $\mu=5$ , s=4, n=10이다.

$$t=rac{8-5}{rac{4}{\sqrt{10}}}$$

$$t=rac{3}{rac{4}{3.162}}$$

$$t=rac{3}{1.264}pprox 2.37$$

3. 해석: 자유도 9에서 유의 수준 5% (양측 검정)일 때 임계 t-값은 약 2.262이다. 2.37 > 2.262이므로 귀무가설(H0)을 기각한다. 즉, 다이어트 계획이 유의미한 효과가 있음을 보여준다.

## Eg3.

한 교사가 8명의 학생이 있는 반에 새로운 학습 방법을 도입했다. 평균 시험 점수 증가는 15점이며, 표본 표준 편차는 5점이다. 예상 증가는 10점이다. 새로운 방법이 효과적인지 테스트해보자(양측 5% 유의 수준을 고려한다.)

### Answer

- 1. 가설 설정:
  - 귀무가설 (H0): 새로운 방법은 기존과 차이가 없다.
  - 대립가설 (H1): 새로운 방법은 기존과 차이가 있다.(효과적이다)

모평균:10점 표본평균:15점 표본표준편차:5점 자유도:7

$$t=rac{ar{x}-\mu}{rac{s}{\sqrt{n}}}$$

$$t = rac{15-10}{rac{5}{\sqrt{8}}} = rac{5}{rac{5}{2.828}} = rac{5}{1.77} pprox 2.82$$

| df/p | 0.40     | 0.25     | 0.10     | 0.05     | 0.025    | 0.01     | 0.005    | 0.0005   |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1    | 0.324920 | 1.000000 | 3.077684 | 6.313752 | 12.70620 | 31.82052 | 63.65674 | 636.6192 |
| 2    | 0.288675 | 0.816497 | 1.885618 | 2.919986 | 4.30265  | 6.96456  | 9.92484  | 31.5991  |
| 3    | 0.276671 | 0.764892 | 1.637744 | 2.353363 | 3.18245  | 4.54070  | 5.84091  | 12.9240  |
| 4    | 0.270722 | 0.740697 | 1.533206 | 2.131847 | 2.77645  | 3.74695  | 4.60409  | 8.6103   |
| 5    | 0.267181 | 0.726687 | 1.475884 | 2.015048 | 2.57058  | 3.36493  | 4.03214  | 6.8688   |
| 6    | 0.264835 | 0.717558 | 1.439756 | 1.943180 | 2.44691  | 3.14267  | 3.70743  | 5.9588   |
| 7    | 0.263167 | 0.711142 | 1.414924 | 1.894579 | 2.36462  | 2.99795  | 3.49948  | 5.4079   |
| 8    | 0.261921 | 0.706387 | 1.396815 | 1.859548 | 2.30600  | 2.89646  | 3.35539  | 5.0413   |
| 9    | 0.260955 | 0.702722 | 1.383029 | 1.833113 | 2.26216  | 2.82144  | 3.24984  | 4.7809   |
| 10   | 0.260185 | 0.699812 | 1.372184 | 1.812461 | 2.22814  | 2.76377  | 3.16927  | 4.5869   |
| 11   | 0.259556 | 0.697445 | 1.363430 | 1.795885 | 2.20099  | 2.71808  | 3.10581  | 4.4370   |
| 12   | 0.259033 | 0.695483 | 1.356217 | 1.782288 | 2.17881  | 2.68100  | 3.05454  | 43178    |
| 13   | 0.258591 | 0.693829 | 1.350171 | 1.770933 | 2.16037  | 2.65031  | 3.01228  | 4.2208   |
| 14   | 0.258213 | 0.692417 | 1.345030 | 1.761310 | 2.14479  | 2.62449  | 2.97684  | 4.1405   |
| 15   | 0.257885 | 0.691197 | 1.340606 | 1.753050 | 2.13145  | 2.60248  | 2.94671  | 4.0728   |
| 16   | 0.257599 | 0.690132 | 1.336757 | 1.745884 | 2.11991  | 2.58349  | 2.92078  | 4.0150   |
| 17   | 0.257347 | 0.689195 | 1.333379 | 1.739607 | 2.10982  | 2.56693  | 2.89823  | 3.9651   |
| 18   | 0.257123 | 0.688364 | 1.330391 | 1.734064 | 2.10092  | 2.55238  | 2.87844  | 3.9216   |
| 19   | 0.256923 | 0.687621 | 1.327728 | 1.729133 | 2.09302  | 2.53948  | 2.86093  | 3.8834   |
| 20   | 0.256743 | 0.686954 | 1.325341 | 1.724718 | 2.08596  | 2.52798  | 2.84534  | 3.8495   |
| 21   | 0.256580 | 0.686352 | 1.323188 | 1.720743 | 2.07961  | 2.51765  | 2.83136  | 3.8193   |
| 22   | 0.256432 | 0.685805 | 1.321237 | 1.717144 | 2.07387  | 2.50832  | 2.81876  | 3.7921   |
| 23   | 0.256297 | 0.685306 | 1.319460 | 1.713872 | 2.06866  | 2.49987  | 2.80734  | 3.7676   |
| 24   | 0.256173 | 0.684850 | 1.317836 | 1.710882 | 2.06390  | 2.49216  | 2.79694  | 3.7454   |
| 25   | 0.256060 | 0.684430 | 1.316345 | 1.708141 | 2.05954  | 2.48511  | 2.78744  | 3.7251   |
| 26   | 0.255955 | 0.684043 | 1.314972 | 1.705618 | 2.05553  | 2.47863  | 2.77871  | 3.7066   |
| 27   | 0.255858 | 0.683685 | 1.313703 | 1.703288 | 2.05183  | 2.47266  | 2.77068  | 3.6896   |
| 28   | 0.255768 | 0.683353 | 1.312527 | 1.701131 | 2.04841  | 2.46714  | 2.76326  | 3.6739   |
| 29   | 0.255684 | 0.683044 | 1.311434 | 1.699127 | 2.04523  | 2.46202  | 2.75639  | 3.6594   |
| 30   | 0.255605 | 0.682756 | 1.310415 | 1.697261 | 2.04227  | 2.45726  | 2.75000  | 3.6460   |
| z    | 0.253347 | 0.674490 | 1.281552 | 1.644854 | 1.95996  | 2.32635  | 2.57583  | 3.2905   |
| CI   |          |          | 80%      | 90%      | 95%      | 98%      | 99%      | 99.9%    |

자유도 7에서 임계 t-값은 약 2.365이다. 2.82 > -2.365이므로 귀무가설 $(H_0)$ 을 기각한다. 방법은 효과적이다.

# 3. Chi-Square Test

여러 집단에 대해, 분산의 차이를 검정할때 주로 사용한다.

## Eg1.

여섯 면이 있는 주사위가 공정한지 확인하고 싶다. 주사위를 60번 굴려서 다음과 같은 결과를 얻었다고 가정해보자.

1:5번

- 2:9번
- 3:11번
- 4:13번
- 5:12번
- 6:10번 (한쪽의 5% 유의 수준을 고려)

### **Answer**

1. 기대 빈도: 공정한 주사위의 경우 각 면의 기대 빈도는 10번이다 (60 / 6).

각 면에 대해 계산한 후 합산한다:  $\chi^2 = \sum rac{(O_i - E_i)^2}{E_i}$  여기서,  $O_i$  = 관측 빈도,  $E_i$  = 기대 빈도 (10).

$$\begin{split} \chi^2 &= \frac{(5-10)^2}{10} + \frac{(9-10)^2}{10} + \frac{(11-10)^2}{10} + \frac{(13-10)^2}{10} + \frac{(12-10)^2}{10} + \frac{(10-10)^2}{10} \\ \chi^2 &= \frac{25}{10} + \frac{1}{10} + \frac{1}{10} + \frac{9}{10} + \frac{4}{10} + \frac{0}{10} \\ \chi^2 &= 2.5 + 0.1 + 0.1 + 0.9 + 0.4 + 0 \\ \chi^2 &= 4.0 \end{split}$$

2. 유의성 판단:

| ν\α | 0.995 | 0.990 | 0.975 | 0.950 | 0.900 | 0.500 | 0.100  | 0.050  | 0.025  | 0.010  | 0.0050 |
|-----|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| 1   | 0.00  | 0.00  | 0.00  | 0.00  | 0.02  | 0.45  | 2.71   | 3.84   | 5.02   | 6.63   | 7.88   |
| 2   | 0.01  | 0.02  | 0.05  | 0.10  | 0.21  | 1.39  | 4.61   | 5.99   | 7.38   | 9.21   | 10.60  |
| 3   | 0.07  | 0.11  | 0.22  | 0.35  | 0.58  | 2.37  | 6.25   | 7.81   | 9.35   | 11.34  | 12.84  |
| Δ   | 0.21  | 0.30  | 0.48  | 0.71  | 1.06  | 3.36  | 7 78   | 9.49   | 11 14  | 13 28  | 14 86  |
| 5   | 0.41  | 0.55  | 0.83  | 1.15  | 1.61  | 4.35  | 9.24   | 11.07  | 12.83  | 15.09  | 16.75  |
| 6   | 0.68  | 0.87  | 1.24  | 1.64  | 2.20  | 5.35  | 10.64  | 12.59  | 14.45  | 16.81  | 18.55  |
| 7   | 0.99  | 1.24  | 1.69  | 2.17  | 2.83  | 6.35  | 12.02  | 14.07  | 16.01  | 18.48  | 20.28  |
| 8   | 1.34  | 1.65  | 2.18  | 2.73  | 3.49  | 7.34  | 13.36  | 15.51  | 17.53  | 20.09  | 21.95  |
| 9   | 1.73  | 2.09  | 2.70  | 3.33  | 4.17  | 8.34  | 14.68  | 16.92  | 19.02  | 21.67  | 23.59  |
| 10  | 2.16  | 2.56  | 3.25  | 3.94  | 4.87  | 9.34  | 15.99  | 18.31  | 20.48  | 23.21  | 25.19  |
| 11  | 2.60  | 3.05  | 3.82  | 4.57  | 5.58  | 10.34 | 17.28  | 19.68  | 21.92  | 24.72  | 26.76  |
| 12  | 3.07  | 3.57  | 4.40  | 5.23  | 6.30  | 11.34 | 18.55  | 21.03  | 23.34  | 26.22  | 28.30  |
| 13  | 3.57  | 4.11  | 5.01  | 5.89  | 7.04  | 12.34 | 19.81  | 22.36  | 24.74  | 27.69  | 29.82  |
| 14  | 4.07  | 4.66  | 5.63  | 6.57  | 7.79  | 13.34 | 21.06  | 23.68  | 26.12  | 29.14  | 31.32  |
| 15  | 4.60  | 5.23  | 6.26  | 7.26  | 8.55  | 14.34 | 22.31  | 25.00  | 27.49  | 30.58  | 32.80  |
| 16  | 5.14  | 5.81  | 6.91  | 7.96  | 9.31  | 15.34 | 23.54  | 26.30  | 28.85  | 32.00  | 34.27  |
| 17  | 5.70  | 6.41  | 7.56  | 8.67  | 10.09 | 16.34 | 24.77  | 27.59  | 30.19  | 33.41  | 35.72  |
| 18  | 6.26  | 7.01  | 8.23  | 9.39  | 10.86 | 17.34 | 25.99  | 28.87  | 31.53  | 34.81  | 37.16  |
| 19  | 6.84  | 7.63  | 8.91  | 10.12 | 11.65 | 18.34 | 27.20  | 30.14  | 32.85  | 36.19  | 38.58  |
| 20  | 7.43  | 8.26  | 9.59  | 10.85 | 12.44 | 19.34 | 28.41  | 31.41  | 34.17  | 37.57  | 40.00  |
| 21  | 8.03  | 8.90  | 10.28 | 11.59 | 13.24 | 20.34 | 29.62  | 32.67  | 35.48  | 38.93  | 41.40  |
| 22  | 8.64  | 9.54  | 10.98 | 12.34 | 14.04 | 21.34 | 30.81  | 33.92  | 36.78  | 40.29  | 42.80  |
| 23  | 9.26  | 10.20 | 11.69 | 13.09 | 14.85 | 22.34 | 32.01  | 35.17  | 38.08  | 41.64  | 44.18  |
| 24  | 9.89  | 10.86 | 12.40 | 13.85 | 15.66 | 23.34 | 33.20  | 36.42  | 39.36  | 42.98  | 45.56  |
| 25  | 10.52 | 11.52 | 13.12 | 14.61 | 16.47 | 24.34 | 34.38  | 37.65  | 40.65  | 44.31  | 46.93  |
| 26  | 11.16 | 12.20 | 13.84 | 15.38 | 17.29 | 25.34 | 35.56  | 38.89  | 41.92  | 45.64  | 48.29  |
| 27  | 11.81 | 12.88 | 14.57 | 16.15 | 18.11 | 26.34 | 36.74  | 40.11  | 43.19  | 46.96  | 49.64  |
| 28  | 12.46 | 13.56 | 15.31 | 16.93 | 18.94 | 27.34 | 37.92  | 41.34  | 44.46  | 48.28  | 50.99  |
| 29  | 13.12 | 14.26 | 16.05 | 17.71 | 19.77 | 28.34 | 39.09  | 42.56  | 45.72  | 49.59  | 52.34  |
| 30  | 13.79 | 14.95 | 16.79 | 18.49 | 20.60 | 29.34 | 40.26  | 43.77  | 46.98  | 50.89  | 53.67  |
| 40  | 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 39.34 | 51.81  | 55.76  | 59.34  | 63.69  | 66.77  |
| 50  | 27.99 | 29.71 | 32.36 | 34.76 | 37.69 | 49.33 | 63.17  | 67.50  | 71.42  | 76.15  | 79.49  |
| 60  | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 59.33 | 74.40  | 79.08  | 83.30  | 88.38  | 91.9   |
| 70  | 43.28 | 45.44 | 48.76 | 51.74 | 55.33 | 69.33 | 85.53  | 90.53  | 95.02  | 100.43 | 104.21 |
| 80  | 51.17 | 53.54 | 57.15 | 60.39 | 64.28 | 79.33 | 96.58  | 101.88 | 106.63 | 112.33 | 116.32 |
| 90  | 59.20 | 61.75 | 65.65 | 69.13 | 73.29 | 89.33 | 107.57 | 113.15 | 118.14 | 124.12 | 128.30 |
| 100 | 67.33 | 70.06 | 74.22 | 77.93 | 82.36 | 99.33 | 118.50 | 124.34 | 129.56 | 135.81 | 140.17 |

자유도 5로 카이제곱 분포와 비교한다.  $\chi^2=4.0$ 이고 유의 수준 5%에서 임계값이 11.07이면 귀무가설( $H_0$ )을 기각하지 못하므로, 주사위는 공정한 것으로 볼 수 있다.

### Eg2.

판촉 행사 동안 한 가게는 세 가지 종류의 기념품(펜, 노트북, 열쇠고리)을 제공한다. 고객의 관심에 따라 40%가 펜을 선택하고, 40%가 노트북을 선택하며, 20%가 열쇠고리를 선택할 것으로 예상된다. 200명의 고객 중 70명이 펜을 선택하고, 100명이 노트북을 선택하며, 30명이 열쇠고리를 선택했다.(한쪽의 5% 유의 수준을 고려) 해석: 사람들의 선호도가 예측한 정도인 4:4:2정도인지 테스트를 하는 것이다.

### **Answer**

1. 기대 빈도: 200명의 고객에 대해:

○ 펜: 0.4 x 200 = 80

○ 노트북: 0.4 x 200 = 80

○ 열쇠고리: 0.2 x 200 = 40

2. 카이제곱 통계량 계산:  $\chi^2 = \sum_{E_i} \frac{(O_i - E_i)^2}{E_i}$ 

여기서,  $O_i$  = 관측 빈도,  $E_i$  = 기대 빈도.

$$\chi^2 = \frac{(70-80)^2}{80} + \frac{(100-80)^2}{80} + \frac{(30-40)^2}{40}$$

$$\chi^2 = \frac{100}{80} + \frac{400}{80} + \frac{100}{40}$$

$$\chi^2 = 1.25 + 5 + 2.5$$

$$\chi^{2} = 8.75$$

3. 해석: 자유도 2에서 유의 수준 5%일 때 임계값은 5.99이다. 8.75 > 5.99이므로 귀무가설( $H_0$ )을 기각한다. 즉, 기념품의 분포가 예상과 유의미하게 다르다. 따라서 예측을 빗나갔다고 할수 있다.

## Eg3.

한 극장에서 드라마, 액션, 코미디 세 가지 장르의 영화를 상영하고 있다. 관객 분포가 균등할 것으로 예상된다. 하지만 150명의 관객 중 40명은 드라마를, 70명은 액션을, 40명은 코미디를 보았다.. 장르 선호도가 균등하게 분포되어 있는지 테스트하십시오.(한쪽의 5% 유의 수준을 고려)

### Answer

예측된 선호도: 50:50:50

$$\chi^2 = \sum rac{(O_i - E_i)^2}{E_i}$$

여기서,  $O_i$  = 관측 빈도,  $E_i$  = 기대 빈도.

$$\chi^2 = \frac{(40-50)^2}{50} + \frac{(70-50)^2}{50} + \frac{(40-50)^2}{50} = 2 + 8 + 2 = 12$$

| ν\a | 0.995 | 0.990 | 0.975 | 0.950 | 0.900 | 0.500 | 0.100  | 0.050  | 0.025  | 0.010  | 0.0050 |
|-----|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|
| 1   | 0.00  | 0.00  | 0.00  | 0.00  | 0.02  | 0.45  | 2.71   | 3.84   | 5.02   | 6.63   | 7.88   |
| 2   | 0.01  | 0.02  | 0.05  | 0.10  | 0.21  | 1.39  | 4.61   | 5.99   | 7.38   | 9.21   | 10.60  |
| 3   | 0.07  | 0.11  | 0.22  | 0.35  | 0.58  | 2.37  | 6.25   | 7.81   | 9.35   | 11.34  | 12.84  |
| 4   | 0.21  | 0.30  | 0.48  | 0.71  | 1.06  | 3.36  | 7.78   | 9.49   | 11.14  | 13.28  | 14.86  |
| 5   | 0.41  | 0.55  | 0.83  | 1.15  | 1.61  | 4.35  | 9.24   | 11.07  | 12.83  | 15.09  | 16.75  |
| 6   | 0.68  | 0.87  | 1.24  | 1.64  | 2.20  | 5.35  | 10.64  | 12.59  | 14.45  | 16.81  | 18.55  |
| 7   | 0.99  | 1.24  | 1.69  | 2.17  | 2.83  | 6.35  | 12.02  | 14.07  | 16.01  | 18.48  | 20.28  |
| 8   | 1.34  | 1.65  | 2.18  | 2.73  | 3.49  | 7.34  | 13.36  | 15.51  | 17.53  | 20.09  | 21.95  |
| 9   | 1.73  | 2.09  | 2.70  | 3.33  | 4.17  | 8.34  | 14.68  | 16.92  | 19.02  | 21.67  | 23.59  |
| 10  | 2.16  | 2.56  | 3.25  | 3.94  | 4.87  | 9.34  | 15.99  | 18.31  | 20.48  | 23.21  | 25.19  |
| 11  | 2.60  | 3.05  | 3.82  | 4.57  | 5.58  | 10.34 | 17.28  | 19.68  | 21.92  | 24.72  | 26.76  |
| 12  | 3.07  | 3.57  | 4.40  | 5.23  | 6.30  | 11.34 | 18.55  | 21.03  | 23.34  | 26.22  | 28.30  |
| 13  | 3.57  | 4.11  | 5.01  | 5.89  | 7.04  | 12.34 | 19.81  | 22.36  | 24.74  | 27.69  | 29.82  |
| 14  | 4.07  | 4.66  | 5.63  | 6.57  | 7.79  | 13.34 | 21.06  | 23.68  | 26.12  | 29.14  | 31.32  |
| 15  | 4.60  | 5.23  | 6.26  | 7.26  | 8.55  | 14.34 | 22.31  | 25.00  | 27.49  | 30.58  | 32.80  |
| 16  | 5.14  | 5.81  | 6.91  | 7.96  | 9.31  | 15.34 | 23.54  | 26.30  | 28.85  | 32.00  | 34.27  |
| 17  | 5.70  | 6.41  | 7.56  | 8.67  | 10.09 | 16.34 | 24.77  | 27.59  | 30.19  | 33.41  | 35.72  |
| 18  | 6.26  | 7.01  | 8.23  | 9.39  | 10.86 | 17.34 | 25.99  | 28.87  | 31.53  | 34.81  | 37.16  |
| 19  | 6.84  | 7.63  | 8.91  | 10.12 | 11.65 | 18.34 | 27.20  | 30.14  | 32.85  | 36.19  | 38.58  |
| 20  | 7.43  | 8.26  | 9.59  | 10.85 | 12.44 | 19.34 | 28.41  | 31.41  | 34.17  | 37.57  | 40.00  |
| 21  | 8.03  | 8.90  | 10.28 | 11.59 | 13.24 | 20.34 | 29.62  | 32.67  | 35.48  | 38.93  | 41.40  |
| 22  | 8.64  | 9.54  | 10.98 | 12.34 | 14.04 | 21.34 | 30.81  | 33.92  | 36.78  | 40.29  | 42.80  |
| 23  | 9.26  | 10.20 | 11.69 | 13.09 | 14.85 | 22.34 | 32.01  | 35.17  | 38.08  | 41.64  | 44.18  |
| 24  | 9.89  | 10.86 | 12.40 | 13.85 | 15.66 | 23.34 | 33.20  | 36.42  | 39.36  | 42.98  | 45.56  |
| 25  | 10.52 | 11.52 | 13.12 | 14.61 | 16.47 | 24.34 | 34.38  | 37.65  | 40.65  | 44.31  | 46.93  |
| 26  | 11.16 | 12.20 | 13.84 | 15.38 | 17.29 | 25.34 | 35.56  | 38.89  | 41.92  | 45.64  | 48.29  |
| 27  | 11.81 | 12.88 | 14.57 | 16.15 | 18.11 | 26.34 | 36.74  | 40.11  | 43.19  | 46.96  | 49.64  |
| 28  | 12.46 | 13.56 | 15.31 | 16.93 | 18.94 | 27.34 | 37.92  | 41.34  | 44.46  | 48.28  | 50.99  |
| 29  | 13.12 | 14.26 | 16.05 | 17.71 | 19.77 | 28.34 | 39.09  | 42.56  | 45.72  | 49.59  | 52.34  |
| 30  | 13.79 | 14.95 | 16.79 | 18.49 | 20.60 | 29.34 | 40.26  | 43.77  | 46.98  | 50.89  | 53.67  |
| 40  | 20.71 | 22.16 | 24.43 | 26.51 | 29.05 | 39.34 | 51.81  | 55.76  | 59.34  | 63.69  | 66.77  |
| 50  | 27.99 | 29.71 | 32.36 | 34.76 | 37.69 | 49.33 | 63.17  | 67.50  | 71.42  | 76.15  | 79.49  |
| 60  | 35.53 | 37.48 | 40.48 | 43.19 | 46.46 | 59.33 | 74.40  | 79.08  | 83.30  | 88.38  | 91.95  |
| 70  | 43.28 | 45.44 | 48.76 | 51.74 | 55.33 | 69.33 | 85.53  | 90.53  | 95.02  | 100.43 | 104.21 |
| 80  | 51.17 | 53.54 | 57.15 | 60.39 | 64.28 | 79.33 | 96.58  | 101.88 | 106.63 | 112.33 | 116.32 |
| 90  | 59.20 | 61.75 | 65.65 | 69.13 | 73.29 | 89.33 | 107.57 | 113.15 | 118.14 | 124.12 | 128.30 |
| 100 | 67.33 | 70.06 | 74.22 | 77.93 | 82.36 | 99.33 | 118.50 | 124.34 | 129.56 | 135.81 | 140.17 |

자유도 2에서 임계값은 5.99이다. 12 > 5.99이므로 귀무가설((H\_0))을 기각한다. 선호도가 균등하지 않다.

## 4. F-test

## Eg1.

24. 6. 19. 오전 8:16

두 클래스가 서로 다른 교육법을 사용하고 있으며, 시험 점수의 분산을 비교하여 한 방법이 더 일 관된 점수를 유도하는지 확인하자. 클래스 A(12명 학생)의 분산은 20이고, 클래스 B(15명 학생)의 분산은 30이다. (5% 한측 유의 수준을 고려) 해석: 분산을 본다는 것은 절대적인 점수의 상승이 아니라 점수의 안정성을 보는 것이다.

#### **Answer**

1. 가설 설정:

- 귀무 가설 (H0): 분산이 동일하다.
- 대립 가설 (H1): 분산이 동일하지 않다.
- 2. F-통계량 계산:

$$F=rac{s_1^2}{s_2^2}$$

여기서  $s_1^2$ 와 $s_2^2$ 는 표본 분산이며 더 큰 분산을 분자로 사용하자.  $F=rac{30}{20}=1.5$ 

3. 유의성 결정: 자유도  $df_1=n_1-1$  및  $df_2=n_2-1$ 을 가진 F-분포와 비교한다. 여기서  $n_1=15$ 이고  $n_2=12$ 이다. F-표에서  $F_{(14,11)}$ 를 확인한다. 여기서 df1과 df2의 순서를 헷갈리지 않도록 주의하자. 관찰된 F 값이 임계 값보다 크면 귀무 가설을 기각하고, 그렇지 않으면 분산이 유의미하게 다르지 않다고 결론을 내린다.

|             | Critical Values of the F-Distribution: $\alpha = 0.05$ |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
|-------------|--------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $\leq$      | ν:                                                     |                 |                 |                 |                 |                 |                 |                 |                 |                 | TOR DEGR        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| $v_2$       | $\setminus$                                            | 1               | 2               | 3               | 4               | 5               | 6               | 7               | 8               | 9               | 10              | 11              | 12              | 13              | 14              | 15              | 16              | 17              | 18              | 19              | 20              |
|             | 1 2                                                    | 161.45<br>18.51 | 199.50<br>19.00 | 215.71<br>19.16 | 224.58<br>19.25 | 230.16<br>19.30 | 233.99<br>19.33 | 236.77<br>19.35 | 238.88<br>19.37 | 240.54<br>19.38 | 241.88<br>19.40 | 242.98<br>19.40 | 243.91<br>19.41 | 244.69<br>19.42 | 245.36<br>19.42 | 245.95<br>19.43 | 246.46<br>19.43 | 246.92<br>19.44 | 247.32<br>19.44 | 247.69<br>19.44 | 248.01<br>19.45 |
|             | 3                                                      | 10.13           | 9.55            | 9.28            | 9.12            | 9.01            | 8.94            | 8.89            | 8.85            | 8.81            | 8.79            | 8.76            | 8.74            | 8.73            | 8.71            | 8.70            | 8.69            | 8.68            | 8.67            | 8.67            | 8.66            |
|             | 4                                                      | 7.71            | 6.94            | 6.59            | 6.39            | 6.26            | 6.16            | 6.09            | 6.04            | 6.00            | 5.96            | 5.94            | 5.91            | 5.89            | 5.87            | 5.86            | 5.84            | 5.83            | 5.82            | 5.81            | 5.80            |
|             | 5                                                      | 6.61            | 5.79            | 5.41            | 5.19            | 5.05            | 4.95            | 4.88            | 4.82            | 4.77            | 4.74            | 4.70            | 4.68            | 4.66            | 4.64            | 4.62            | 4.60            | 4.59            | 4.58            | 4.57            | 4.56            |
|             | 6                                                      | 5.99            | 5.14            | 4.76            | 4.53            | 4.39            | 4.28            | 4.21            | 4.15            | 4.10            | 4.06            | 4.03            | 4.00            | 3.98            | 3.96            | 3.94            | 3.92            | 3.91            | 3.90            | 3.88            | 3.87            |
|             | 7                                                      | 5.59            | 4.74            | 4.35            | 4.12            | 3.97            | 3.87            | 3.79            | 3.73            | 3.68            | 3.64            | 3.60            | 3.57            | 3.55            | 3.53            | 3.51            | 3.49            | 3.48            | 3.47            | 3.46            | 3.44            |
|             | 8                                                      | 5.32            | 4.46            | 4.07            | 3.84            | 3.69            | 3.58            | 3.50            | 3.44            | 3.39            | 3.35            | 3.31            | 3.28            | 3.26            | 3.24            | 3.22            | 3.20            | 3.19            | 3.17            | 3.16            | 3.15            |
|             | 10                                                     | 5.12            | 4.26            | 3.86            | 3.63            | 3.48            | 3.37            | 3.29            | 3.23            | 3.18            | 3.14            | 3.10            | 3.07            | 3.05            | 3.03            | 3.01            | 2.99            | 2.97            | 2.96            | 2.95            | 2.94            |
|             | 11                                                     | 4.84            | 3.98            | 3.59            | 3.36            | 3.20            | 3.09            | 3.01            | 2.95            | 2.90            | 2.85            | 2.82            | 2.79            | 2.76            | 2.74            | 2.72            | 2.70            | 2.69            | 2.67            | 2.66            | 2.65            |
| _ '         | 12                                                     | 4.75            | 3.89            | 3.49            | 3.26            | 3.11            | 3.00            | 2.91            | 2.85            | 2.80            | 2.75            | 2.72            | 2.69            | 2.66            | 2.64            | 2.62            | 2.60            | 2.58            | 2.57            | 2.56            | 2.54            |
| FREEDOM     | 13                                                     | 4.67            | 3.81            | 3.41            | 3.18            | 3.03            | 2.92            | 2.83            | 2.77            | 2.71            | 2.67            | 2.63            | 2.60            | 2.58            | 2.55            | 2.53            | 2.51            | 2.50            | 2.48            | 2.47            | 2.46            |
| 8           | 14                                                     | 4.60            | 3.74            | 3.34            | 3.11            | 2.96            | 2.85            | 2.76            | 2.70            | 2.65            | 2.60            | 2.57            | 2.53            | 2.51            | 2.48            | 2.46            | 2.44            | 2.43            | 2.41            | 2.40            | 2.39            |
| #           | 15<br>16                                               | 4.54<br>4.49    | 3.68            | 3.29            | 3.06            | 2.90            | 2.79            | 2.71            | 2.64            | 2.59            | 2.54            | 2.51            | 2.48            | 2.45            | 2.42<br>2.37    | 2.40<br>2.35    | 2.38            | 2.37            | 2.35            | 2.34            | 2.33            |
| P.          | 17                                                     | 4.49            | 3.63            | 3.24            | 2.96            | 2.85            | 2.74            | 2.66            | 2.59            | 2.54            | 2.49            | 2.46            | 2.42            | 2.40            | 2.37            | 2.35            | 2.33            | 2.32            | 2.30            | 2.29            | 2.28            |
|             | 18                                                     | 4.41            | 3.55            | 3.16            | 2.93            | 2.77            | 2.66            | 2.58            | 2.55            | 2.49            | 2.45            | 2.41            | 2.34            | 2.35            | 2.33            | 2.27            | 2.25            | 2.23            | 2.22            | 2.24            | 2.19            |
| H           | 19                                                     | 4.38            | 3.52            | 3.13            | 2.90            | 2.74            | 2.63            | 2.54            | 2.48            | 2.42            | 2.38            | 2.34            | 2.31            | 2.28            | 2.26            | 2.23            | 2.21            | 2.20            | 2.18            | 2.17            | 2.16            |
| DEGREES     | 20                                                     | 4.35            | 3.49            | 3.10            | 2.87            | 2.71            | 2.60            | 2.51            | 2.45            | 2.39            | 2.35            | 2.31            | 2.28            | 2.25            | 2.22            | 2.20            | 2.18            | 2.17            | 2.15            | 2.14            | 2.12            |
| Ë           | 22                                                     | 4.30            | 3.44            | 3.05            | 2.82            | 2.66            | 2.55            | 2.46            | 2.40            | 2.34            | 2.30            | 2.26            | 2.23            | 2.20            | 2.17            | 2.15            | 2.13            | 2.11            | 2.10            | 2.08            | 2.07            |
|             | 24                                                     | 4.26            | 3.40            | 3.01            | 2.78            | 2.62            | 2.51            | 2.42            | 2.36            | 2.30            | 2.25            | 2.22            | 2.18            | 2.15            | 2.13            | 2.11            | 2.09            | 2.07            | 2.05            | 2.04            | 2.03            |
| DENOMINATOR | 26<br>28                                               | 4.23            | 3.37            | 2.98            | 2.74            | 2.59            | 2.47            | 2.39            | 2.32            | 2.27            | 2.22            | 2.18            | 2.15            | 2.12            | 2.09            | 2.07            | 2.05            | 2.03            | 1.99            | 2.00            | 1.99            |
| ≧           | 30                                                     | 4.20            | 3.34            | 2.95<br>2.92    | 2.71            | 2.56<br>2.53    | 2.45            | 2.36            | 2.29            | 2.24            | 2.19<br>2.16    | 2.15<br>2.13    | 2.12            | 2.09            | 2.06<br>2.04    | 2.04            | 2.02<br>1.99    | 2.00<br>1.98    | 1.99            | 1.97<br>1.95    | 1.96<br>1.93    |
| ŏ.          | 35                                                     | 4.12            | 3.27            | 2.87            | 2.64            | 2.49            | 2.37            | 2.29            | 2.22            | 2.16            | 2.11            | 2.07            | 2.04            | 2.01            | 1.99            | 1.96            | 1.94            | 1.92            | 1.91            | 1.89            | 1.88            |
| Ē           | 40                                                     | 4.08            | 3.23            | 2.84            | 2.61            | 2.45            | 2.34            | 2.25            | 2.18            | 2.12            | 2.08            | 2.04            | 2.00            | 1.97            | 1.95            | 1.92            | 1.90            | 1.89            | 1.87            | 1.85            | 1.84            |
| ۵           | 45                                                     | 4.06            | 3.20            | 2.81            | 2.58            | 2.42            | 2.31            | 2.22            | 2.15            | 2.10            | 2.05            | 2.01            | 1.97            | 1.94            | 1.92            | 1.89            | 1.87            | 1.86            | 1.84            | 1.82            | 1.81            |
|             | 50                                                     | 4.03            | 3.18            | 2.79            | 2.56            | 2.40            | 2.29            | 2.20            | 2.13            | 2.07            | 2.03            | 1.99            | 1.95            | 1.92            | 1.89            | 1.87            | 1.85            | 1.83            | 1.81            | 1.80            | 1.78            |
|             | 60<br>70                                               | 4.00            | 3.15            | 2.76            | 2.53            | 2.37            | 2.25            | 2.17            | 2.10            | 2.04            | 1.99            | 1.95            | 1.92            | 1.89            | 1.86            | 1.84            | 1.82            | 1.80            | 1.78            | 1.76            | 1.75            |
|             | 80                                                     | 3.98<br>3.96    | 3.13            | 2.74            | 2.50<br>2.49    | 2.35            | 2.23            | 2.14            | 2.07            | 2.02            | 1.97<br>1.95    | 1.93            | 1.89            | 1.86            | 1.84            | 1.81<br>1.79    | 1.79            | 1.77            | 1.75            | 1.74            | 1.72            |
|             | 90                                                     | 3.95            | 3.10            | 2.72            | 2.49            | 2.32            | 2.20            | 2.13            | 2.06            | 1.99            | 1.93            | 1.90            | 1.86            | 1.83            | 1.80            | 1.78            | 1.76            | 1.74            | 1.72            | 1.72            | 1.69            |
|             | 100                                                    | 3.94            | 3.09            | 2.71            | 2.47            | 2.32            | 2.19            | 2.11            | 2.04            | 1.99            | 1.93            | 1.89            | 1.85            | 1.82            | 1.79            | 1.77            | 1.75            | 1.73            | 1.71            | 1.69            | 1.68            |
|             | 120                                                    | 3.92            | 3.07            | 2.68            | 2.45            | 2.29            | 2.18            | 2.09            | 2.02            | 1.96            | 1.91            | 1.87            | 1.83            | 1.80            | 1.78            | 1.75            | 1.73            | 1.71            | 1.69            | 1.67            | 1.66            |
|             | 140                                                    | 3.91            | 3.06            | 2.67            | 2.44            | 2.28            | 2.16            | 2.08            | 2.01            | 1.95            | 1.90            | 1.86            | 1.82            | 1.79            | 1.76            | 1.74            | 1.72            | 1.70            | 1.68            | 1.66            | 1.65            |
|             | 160                                                    | 3.90            | 3.05            | 2.66            | 2.43            | 2.27            | 2.16            | 2.07            | 2.00            | 1.94            | 1.89            | 1.85            | 1.81            | 1.78            | 1.75            | 1.73            | 1.71            | 1.69            | 1.67            | 1.65            | 1.64            |
|             | 180                                                    | 3.89            | 3.05            | 2.65            | 2.42            | 2.26            | 2.15            | 2.06            | 1.99            | 1.93            | 1.88            | 1.84            | 1.81            | 1.77            | 1.75            | 1.72            | 1.70            | 1.68            | 1.66            | 1.64            | 1.63            |
|             | 200                                                    | 3.89            | 3.04            | 2.65            | 2.42            | 2.26            | 2.14            | 2.06            | 1.98            | 1.93            | 1.88            | 1.84            | 1.80            | 1.77            | 1.74            | 1.72            | 1.69            | 1.67            | 1.66            | 1.64            | 1.62            |
|             | æ                                                      | 3.84            | 3.00            | 2.60            | 2.37            | 2.21            | 2.10            | 2.01            | 1.94            | 1.88            | 1.83            | 1.79            | 1.75            | 1.72            | 1.69            | 1.67            | 1.64            | 1.62            | 1.60            | 1.59            | 1.57            |

lpha값에 따라 테이블이 다른다.(테이블이 여러개 주어질 수도 있다) F 값(1.5)이 임계 값(2.74) 보다 작으므로, 귀무 가설을 기각하지 않는다. 분산에 유의한 차이가 없다. 해석하면, 두 교육법상에 큰 차이가 없다.

## Eg2.

두 개의 다른 화학 용액 배치가 점도의 일관성을 위해 분석되었다. 배치 A (15 샘플)는 분산이 50이고, 배치 B (12 샘플)는 분산이 30이다. (5% 유의 수준(단측검정)을 고려)

### **Answer**

- 1. 가설 설정:
  - 귀무 가설 (H0): 분산이 동일하다.
  - 대립 가설 (H1): 분산이 동일하지 않다.
- 2. F-통계량 계산:  $F=rac{s1^2}{s2^2}$  여기서  $s1^2$ 와  $s2^2$ 는 표본 분산이다. 더 큰 분산을 분자로 사용한다.  $F=rac{50}{30}=1.67$
- 3. 유의성 결정:

자유도 df1=14와 df2=11에서 5% 유의 수준의 임계 F-값은 2.74이다. 1.76<2.74이므로, 귀무 가설을 기각하지 않는다. 분산에는 유의한 차이가 없다.

### Eg3.

실험에서 한 기계는 분산이 22인 부품을 생산하고 (샘플 수 11), 다른 기계는 분산이 14인 부품을 생산한다 (샘플 수 9). 분산에 유의한 차이가 있는지 검정하자. (5% 한측 유의 수준을 고려)

### Answer

- 1. 가설 설정:
  - 귀무 가설 (H0): 분산이 동일하다.
  - 대립 가설 (H1): 분산이 동일하지 않다.
- 2. F-통계량 계산:  $F=rac{s1^2}{s2^2}$  여기서  $s1^2$ 와  $s2^2$ 는 표본 분산이다. 더 큰 분산을 분자로 사용한다.  $F=rac{22}{14}=1.57$

Critical Values of the F-Distribution:  $\alpha = 0.05$ 

|                | _             |              |        |              |              |              |              |        |        |             |              |              |             |              |        |        |              |        |        |              |              |
|----------------|---------------|--------------|--------|--------------|--------------|--------------|--------------|--------|--------|-------------|--------------|--------------|-------------|--------------|--------|--------|--------------|--------|--------|--------------|--------------|
|                | Ÿ:  -         | 1            | 2      | 3            | 4            | 5            | 6            | 7      | 8      | NUMERA<br>9 | TOR DEGR     | EES OF FR    | EEDOM<br>12 | 13           | 14     | 15     | 16           | 17     | 18     | 19           | 20           |
| ν <sub>2</sub> | $\rightarrow$ | 161.45       | 199.50 | 215.71       | 224.58       | 230.16       | 233.99       | 236.77 | 238.88 | 240.54      | 241.88       | 242.98       | 243.91      | 244.69       | 245.36 | 245.95 | 246.46       | 246.92 | 247.32 | 247.69       | 248.01       |
|                | 2             | 18.51        | 19.00  | 19.16        | 19.25        | 19.30        | 19.33        | 19.35  | 19.37  | 19.38       | 19.40        | 19.40        | 19.41       | 19.42        | 19.42  | 19.43  | 19.43        | 19.44  | 19.44  | 19.44        | 19.45        |
|                | 3             | 10.13        | 9.55   | 9.28         | 9.12         | 9.01         | 8.94         | 8.89   | 8.85   | 8.81        | 8.79         | 8.76         | 8.74        | 8.73         | 8.71   | 8.70   | 8.69         | 8.68   | 8.67   | 8.67         | 8.66         |
|                | 4             | 7.71         | 6.94   | 6.59         | 6.39         | 6.26         | 6.16         | 6.09   | 6.04   | 6.00        | 5.96         | 5.94         | 5.91        | 5.89         | 5.87   | 5.86   | 5.84         | 5.83   | 5.82   | 5.81         | 5.80         |
|                | 5             | 6.61         | 5.79   | 5.41         | 5.19         | 5.05         | 4.95         | 4.88   | 4.82   | 4.77        | 4.74         | 4.70         | 4.68        | 4.66         | 4.64   | 4.62   | 4.60         | 4.59   | 4.58   | 4.57         | 4.56         |
|                | 6             | 5.99         | 5.14   | 4.76         | 4.53         | 4.39         | 4.28         | 4.21   | 4.15   | 4.10        | 4.06         | 4.03         | 4.00        | 3.98         | 3.96   | 3.94   | 3.92         | 3.91   | 3.90   | 3.88         | 3.87         |
|                | 7             | 5.59         | 4.74   | 4.35         | 4.12         | 3.97         | 3.87         | 3.79   | 3.73   | 3.68        | 3.64         | 3.60         | 3.57        | 3.55         | 3.53   | 3.51   | 3.49         | 3.48   | 3.47   | 3.46         | 3.44         |
|                | 8             | 5.32         | 4.46   | 4.07         | 3.84         | 3.69         | 3.58         | 3.50   | 3.44   | 3.39        | 3.35         | 3.31         | 3.28        | 3.26         | 3.24   | 3.22   | 3.20         | 3.19   | 3.17   | 3.16         | 3.15         |
|                | 9             | 5.12         | 4.26   | 3.86         | 3.63         | 3.48         | 3.37         | 3.29   | 3.23   | 3.18        | 3.14         | 3.10         | 3.07        | 3.05         | 3.03   | 3.01   | 2.99         | 2.97   | 2.96   | 2.95         | 2.94         |
|                | 10            | 4.96         | 4.10   | 3.71         | 3.48         | 3.33         | 3.22         | 3.14   | 3.07   | 3.02        | 2.98         | 2.94         | 2.91        | 2.89         | 2.86   | 2.85   | 2.83         | 2.81   | 2.80   | 2.79         | 2.77         |
|                | 11            | 4.84         | 3.98   | 3.59         | 3.36         | 3.20         | 3.09         | 3.01   | 2.95   | 2.90        | 2.85         | 2.82         | 2.79        | 2.76         | 2.74   | 2.72   | 2.70         | 2.69   | 2.67   | 2.66         | 2.65         |
| 2              | 12            | 4.75<br>4.67 | 3.89   | 3.49         | 3.26         | 3.11         | 3.00<br>2.92 | 2.91   | 2.85   | 2.80        | 2.75<br>2.67 | 2.72         | 2.69        | 2.66<br>2.58 | 2.64   | 2.62   | 2.60<br>2.51 | 2.58   | 2.57   | 2.56<br>2.47 | 2.54         |
| 8              | 13            | 4.60         | 3.74   | 3.41         | 3.18         | 2.96         | 2.92         | 2.83   | 2.77   | 2.65        | 2.60         | 2.53         | 2.53        | 2.58         | 2.55   | 2.53   | 2.51         | 2.50   | 2.48   | 2.47         | 2.46         |
| FREEDOM        |               |              | 3.74   |              |              |              | 2.85         | 2.76   |        | 2.59        | 2.54         | 2.57         |             |              | 2.48   |        |              | 2.43   | 2.41   |              | 2.39         |
| œ              | 15<br>16      | 4.54<br>4.49 | 3.68   | 3.29<br>3.24 | 3.06         | 2.90<br>2.85 | 2.79         | 2.71   | 2.64   | 2.59        | 2.54         | 2.51         | 2.48        | 2.45         | 2.42   | 2.40   | 2.38         | 2.37   | 2.35   | 2.34         | 2.33         |
| -F             | 17            | 4.45         | 3.59   | 3.20         | 2.96         | 2.81         | 2.70         | 2.61   | 2.55   | 2.49        | 2.45         | 2.41         | 2.38        | 2.35         | 2.33   | 2.31   | 2.29         | 2.27   | 2.26   | 2.24         | 2.23         |
|                | 18            | 4.41         | 3.55   | 3.16         | 2.93         | 2.77         | 2.66         | 2.58   | 2.51   | 2.46        | 2.41         | 2.37         | 2.34        | 2.31         | 2.29   | 2.27   | 2.25         | 2.23   | 2.22   | 2.20         | 2.19         |
| Ü              | 19            | 4.38         | 3.52   | 3.13         | 2.90         | 2.74         | 2.63         | 2.54   | 2.48   | 2.42        | 2.38         | 2.34         | 2.31        | 2.28         | 2.26   | 2.23   | 2.21         | 2.20   | 2.18   | 2.17         | 2.16         |
| DEGREES        | 20            | 4.35         | 3.49   | 3.10         | 2.87         | 2.71         | 2.60         | 2.51   | 2.45   | 2.39        | 2.35         | 2.31         | 2.28        | 2.25         | 2.22   | 2.20   | 2.18         | 2.17   | 2.15   | 2.14         | 2.12         |
| ĕ              | 22            | 4.30         | 3.44   | 3.05         | 2.82         | 2.66         | 2.55         | 2.46   | 2.40   | 2.34        | 2.30         | 2.26         | 2.23        | 2.20         | 2.17   | 2.15   | 2.13         | 2.11   | 2.10   | 2.08         | 2.07         |
|                | 24            | 4.26         | 3.40   | 3.01         | 2.78         | 2.62         | 2.51         | 2.42   | 2.36   | 2.30        | 2.25         | 2.22         | 2.18        | 2.15         | 2.13   | 2.11   | 2.09         | 2.07   | 2.05   | 2.04         | 2.03         |
| DENOMINATOR    | 26            | 4.23         | 3.37   | 2.98         | 2.74         | 2.59         | 2.47         | 2.39   | 2.32   | 2.27        | 2.22         | 2.18         | 2.15        | 2.12         | 2.09   | 2.07   | 2.05         | 2.03   | 2.02   | 2.00         | 1.99         |
| 3              | 28            | 4.20         | 3.34   | 2.95         | 2.71         | 2.56         | 2.45         | 2.36   | 2.29   | 2.24        | 2.19         | 2.15         | 2.12        | 2.09         | 2.06   | 2.04   | 2.02         | 2.00   | 1.99   | 1.97         | 1.96         |
| 2              | 30            | 4.17         | 3.32   | 2.92         | 2.69         | 2.53         | 2.42         | 2.33   | 2.27   | 2.21        | 2.16         | 2.13         | 2.09        | 2.06         | 2.04   | 2.01   | 1.99         | 1.98   | 1.96   | 1.95         | 1.93         |
| 9              | 35            | 4.12         | 3.27   | 2.87         | 2.64         | 2.49         | 2.37         | 2.29   | 2.22   | 2.16        | 2.11         | 2.07         | 2.04        | 2.01         | 1.99   | 1.96   | 1.94         | 1.92   | 1.91   | 1.89         | 1.88         |
| Ē              | 40            | 4.08         | 3.23   | 2.84         | 2.61         | 2.45         | 2.34         | 2.25   | 2.18   | 2.12        | 2.08         | 2.04         | 2.00        | 1.97         | 1.95   | 1.92   | 1.90         | 1.89   | 1.87   | 1.85         | 1.84         |
| _              | 45            | 4.06         | 3.20   | 2.81         | 2.58         | 2.42         | 2.31         | 2.22   | 2.15   | 2.10        | 2.05         | 2.01<br>1.99 | 1.97        | 1.94         | 1.92   | 1.89   | 1.87         | 1.86   | 1.84   | 1.82         | 1.81         |
|                | 50<br>60      | 4.03         | 3.18   | 2.79         | 2.56<br>2.53 | 2.40         | 2.29         | 2.20   | 2.13   | 2.07        | 2.03<br>1.99 | 1.99         | 1.95        | 1.92         | 1.89   | 1.87   | 1.85         | 1.83   | 1.81   | 1.80         | 1.78<br>1.75 |
|                | 70            | 3.98         | 3.13   | 2.74         | 2.50         | 2.35         | 2.23         | 2.14   | 2.10   | 2.04        | 1.99         | 1.93         | 1.89        | 1.86         | 1.84   | 1.81   | 1.79         | 1.77   | 1.75   | 1.74         | 1.72         |
|                | 80            | 3.96         | 3.11   | 2.72         | 2.49         | 2.33         | 2.21         | 2.13   | 2.06   | 2.00        | 1.95         | 1.91         | 1.88        | 1.84         | 1.82   | 1.79   | 1.77         | 1.75   | 1.73   | 1.72         | 1.70         |
|                | 90            | 3.95         | 3.10   | 2.71         | 2.47         | 2.32         | 2.20         | 2.11   | 2.04   | 1.99        | 1.94         | 1.90         | 1.86        | 1.83         | 1.80   | 1.78   | 1.76         | 1.74   | 1.72   | 1.70         | 1.69         |
|                | 100           | 3.94         | 3.09   | 2.70         | 2.46         | 2.31         | 2.19         | 2.10   | 2.03   | 1.97        | 1.93         | 1.89         | 1.85        | 1.82         | 1.79   | 1.77   | 1.75         | 1.73   | 1.71   | 1.69         | 1.68         |
|                | 120           | 3.92         | 3.07   | 2.68         | 2.45         | 2.29         | 2.18         | 2.09   | 2.02   | 1.96        | 1.91         | 1.87         | 1.83        | 1.80         | 1.78   | 1.75   | 1.73         | 1.71   | 1.69   | 1.67         | 1.66         |
|                | 140           | 3.91         | 3.06   | 2.67         | 2.44         | 2.28         | 2.16         | 2.08   | 2.01   | 1.95        | 1.90         | 1.86         | 1.82        | 1.79         | 1.76   | 1.74   | 1.72         | 1.70   | 1.68   | 1.66         | 1.65         |
|                | 160           | 3.90         | 3.05   | 2.66         | 2.43         | 2.27         | 2.16         | 2.07   | 2.00   | 1.94        | 1.89         | 1.85         | 1.81        | 1.78         | 1.75   | 1.73   | 1.71         | 1.69   | 1.67   | 1.65         | 1.64         |
|                | 180           | 3.89         | 3.05   | 2.65         | 2.42         | 2.26         | 2.15         | 2.06   | 1.99   | 1.93        | 1.88         | 1.84         | 1.81        | 1.77         | 1.75   | 1.72   | 1.70         | 1.68   | 1.66   | 1.64         | 1.63         |
|                | 200           | 3.89         | 3.04   | 2.65         | 2.42         | 2.26         | 2.14         | 2.06   | 1.98   | 1.93        | 1.88         | 1.84         | 1.80        | 1.77         | 1.74   | 1.72   | 1.69         | 1.67   | 1.66   | 1.64         | 1.62         |
|                | æ             | 3.84         | 3.00   | 2.60         | 2.37         | 2.21         | 2.10         | 2.01   | 1.94   | 1.88        | 1.83         | 1.79         | 1.75        | 1.72         | 1.69   | 1.67   | 1.64         | 1.62   | 1.60   | 1.59         | 1.57         |

자유도  $df_1=10$  및  $df_2=8$ 을 가진 F-분포와 비교한다. 임계 F-값은 약 3.58이다. F 값(1.57**텍스트**)이 임계 값(3.58)보다 작으므로, 귀무 가설을 기각하지 않는다. 분산은 유의하게 다르지 않다.

## 정리

Z-검정 (Z-test)에서 Z-값이 임계 값(α)을 초과할 때 귀무 가설을 기각한다. T-검정 (T-test)에서 T-값이 임계 값(α)을 초과할 때 귀무 가설을 기각한다. 카이제곱 검정 (Chi-Square test)에서 계산된 카이제곱 값이 임계 값(α)을 초과할 때 귀무 가설을 기각한다. F-검정 (F-test)에서계산된 F-값이 임계 값을 초과할 때 귀무 가설을 기각한다.