

Copyright © 2013 Amazon Web Services, Inc. and its affiliates. All rights reserved.

This work may not be reproduced or redistributed, in whole or in part, without prior written permission from Amazon Web Services, Inc.

Commercial copying, lending, or selling is prohibited.

Errors or corrections? Email us at aws-course-feedback@amazon.com.

Other questions? Email us at aws-training-info@amazon.com.

Architecting on AWS

Security and Compliance

Security and Compliance | Before we start

Identify the correct statements:

Security and patching of the operating system and the application is the responsibility of the customer.

Penetration testing is a violation of the AWS Terms of Service.

Data on block storage devices (i.e., ephemeral storage and EBS) is encrypted by default.

Port scanning is performed by AWS to check for vulnerabilities in your application.

AWS is PCI DSS Level 1 certified, but customers are responsible for managing PCI compliance and certification for their own applications.

Each AWS Region has at least one Disaster Recovery Availability Zone.

Security and Compliance | What we'll cover

The shared responsibility security model

WS role in

AWS role in security

3

Your role in security

4

Securing networks with Security Groups

The shared responsibility security model

Amazon Provided

AWS Global Infrastructure

Hardware

Software

Network

AWS Data Centers

- 24x7 guards
- Limited access
- Two-factor auth.
- Disk destruction
- Intrusion detection
- Security reviews
- Network monitoring
- Secure API endpts

AWS role in security

Shared Responsibility Security Model

AWS

- Facilities
- Physical Security
 - Physical infrastructure
 - Network infrastructure
- Virtualization infrastructure
- Third-Party Attestations,
 Reports, and Certifications for the above

Customer

- Operating system
- Application
- Security groups
- OS Firewalls
- Network configuration
- Account Management
- Certifying your applications

US Regions

Global Regions

Physical Security of Data Centers

- Controlled, need-based access
 - All access is logged and reviewed
 - Multi-factor authentication
- Separation of Duties
 - Employees with physical access don't have logical access
- 24 x 7 security guards

Network Security

- Distributed Denial of Service (DDoS)
 - Standard mitigation techniques in effect
- Man in the Middle (MITM)
 - All API endpoints protected by SSL
- IP Spoofing
 - Prohibited at host OS level

Network Security

- Unauthorized Port Scanning
 - Violation of TOS
 - Detected, stopped and blocked
- Packet Sniffing
 - Promiscuous mode ineffective
 - Protection at hypervisor level

Storage Device Decommissioning

- Uses techniques from:
 - DoD 5220.22-M ("National Industrial Security Program Operating Manual ")
 - NIST 800-88 ("Guidelines for Media Sanitization")

Storage Device Decommissioning

- Uses techniques from:
 - DoD 5220.22-M ("National Industrial Security Program Operating Manual")
 - NIST 800-88 ("Guidelines for Media Sanitization")
- Ultimately, all devices are:
 - degaussed
 - physically destroyed

Virtual Memory and Local Disk

- Proprietary disk management prevents one instance from reading disk contents of another
- Disk is wiped upon creation
- Disks can be encrypted by customer

amazon webservices

Security and Compliance | AWS Role in Security

AWS Third-Party Attestations, Reports, and Certifications

- AWS Environment
 - Service Organization Controls (SOC) Reports
 - SOC 1 Type II (SSAE 16/ISAE 3402/formerly SAS70)
 - SOC 2 Type II
 - SOC 3
 - Payment Card Industry Data Security Standard (PCI DSS) Level
 1 Certification
 - ISO 27001 Certification
 - FedRAMPSM
 - DIACAP and FISMA
 - ITAR
 - FIPS 140-2

Additional information available at https://aws.amazon.com/compliance/.

AWS Third-Party Attestations, Reports and Certifications

- Customers have deployed various compliant applications:
 - Sarbanes-Oxley (SOX)
 - HIPAA (healthcare)
 - FedRAMPSM (US Public Sector)
 - FISMA (US Public Sector)
 - ITAR (US Public Sector)
 - DIACAP MAC III Sensitive IATO

Shared Responsibility: Half Way There

Any questions about the AWS half?

Shared Responsibility: Half Way There

- Any questions about the AWS half?
- Now, let's talk about...

Your role in security

Shared Responsibility Security Model

AWS

- Facilities
- Physical Security
 - Physical infrastructure
 - Network infrastructure
- Virtualization infrastructure
- Third-Party Attestations,
 Reports, and Certifications for the above

Customer

- Operating system
- Application
- Security groups
- OS Firewalls
- Network configuration
- Account Management
- Certifying your applications

AWS Account Management

Master (i.e., root) account has root/admin-level access

AWS Account Management

- Multiple accounts may be created to isolate resources
- Accounts may be isolated by:
 - Environment (e.g., dev, test, prod)
 - Major System
 - Line of business / function
 - Customer
 - Risk level

AWS Account Management

- Multiple accounts may be created to isolate resources
- Accounts may be isolated by:
 - Environment (e.g., dev, test, prod)
 - Major System
 - Line of business / function
 - Customer
 - Risk level

AWS Account Management – By Environment

Dev

Build servers

App 1 (dev)

App 2 (dev)

Test

Test servers

App 1

Application 2

Prod

App 1

App 2

Each env is a separate account with separate master credentials

AWS Account Management – By Environment

Dev

Build servers

App 1 (dev)

App 2 (dev)

Test

Test servers

App 1

Application 2

Prod

App 1

App 2

Consolidated billing allows one account (e.g., Prod) to be the 'paying account'

Identity and Access Management

Create Users and Groups within a master account

Identity and Access Management

Dev

Test

Prod

- Guest (i.e., Instance) operating system
 - Customer controlled (customer owns root/admin)
 - AWS admins cannot log in

- Guest (i.e., Instance) operating system
 - Customer controlled (customer owns root/admin)
 - AWS admins cannot log in ← Why not?

- Guest (i.e., Instance) operating system
 - Customer controlled (customer owns root/admin)
 - AWS admins cannot log in ← Why not?
- EC2 Key Pairs

- Guest (i.e., Instance) operating system
 - Customer controlled (customer owns root/admin)
 - AWS admins cannot log in ← Why not?
- EC2 Key Pairs
 - You (and only you) have the private half of the key
 - You (and only you) can:
 - SSH to the instance (Linux)
 - Decrypt the Administrator password (Windows)

amazon webservices

Security and Compliance | Your Role in Security

- You still need to patch
 - Most traditional tools will work
 - Emerging options
 - Chef (www.opscode.com/chef)
 - Puppet (www.puppetlabs.com)
 - Fabric/Cuisine (www.fabfile.org)
 - Capistrano (https://github.com/capistrano/capistrano/wiki)

Your Data

Protect privacy and enforce your policies with data encryption

- Encrypt data in transit
 - (SSL/TLS)
- Encrypt data at rest
 - Consider encrypted file systems for sensitive data
 - Encrypt objects before storing them
 - Encrypt records before writing in database

Your Data

- EBS and Ephemeral volumes can be encrypted
- Variety of options
 - EncFS, Loop-AES, dm-Crypt, TrueCrypt, etc...

Encryption: File Systems

Managing encryption keys

- Study key management capabilities of encryption product(s) you choose
- Establish a procedure that minimizes possibility of losing keys

Encryption: File Systems

Managing encryption keys

- AWS CloudHSM
 - Securely generate, store and manage cryptographic keys used for data encryption
 - Dedicated SafeNet Luna SA

Use Multiple Layers of Defense

Use Multiple Layers of Defense

- Security Groups (EC2, VPC, RDS, ElastiCache)
- Bastion Host
- Host-based Firewalls*
- IDS*

^{*} Third-Party tools/solutions

Use Multiple Layers of Defense

- Security Groups (EC2, VPC, RDS, ElastiCache)
- Bastion Host
- Host-based Firewalls*
- IDS*

^{*} Third-Party tools/solutions

Securing networks with Security Groups

Security and Compliance

Network Security: Security Groups

- Control inbound traffic
- Apply many Security Groups to 1 instance
- Default group: no access

Network Security: Security Groups

Several services use Security Groups

- EC2
- VPC (more advanced features)
- RDS
- ElastiCache

Network Security: Security Groups

- When defining inbound rules, specify source by:
 - CIDR address
 - e.g. 0.0.0.0/0 for Internet, 10.0.0.0/16 for EC2 private, etc
 - Security Group Name
 - Restrict access to other EC2 instances in the specified security group

Network Security: Security Groups

Let's take a brief detour to explain CIDR notation...

Brief Detour: CIDR Notation

- Useful for expressing a range of IP addresses
- Consider this IP(v4) address:

216.173.122.34

Brief Detour: CIDR Notation

Each number can have a decimal value between 0 and 255.

Brief Detour: CIDR Notation

Each number is a single byte (8 bits).

Brief Detour: CIDR Notation

216.173.122.*

What if you wanted to express a firewall rule that allowed traffic from any address in the last octet?

Brief Detour: CIDR Notation

216.173.122.0

Specify the first valid number in the range. If we want to allow all values in the last octet, the first allowable value is 0.

Brief Detour: CIDR Notation

Now specify a mask that indicates how many bits (starting from the left) are "frozen".

Brief Detour: CIDR Notation

Now specify a mask that indicates how many bits (starting from the left) are "frozen".

In this case, we want to freeze the first 3 octets. 3 octets = 3 bytes = 24 bits.

Brief Detour: CIDR Notation

216.173.122.0/24

Now specify a mask that indicates how many bits (starting from the left) are "frozen".

In this case, we want to freeze the first 3 octets. 3 octets = 3 bytes = 24 bits.

Brief Detour: CIDR Notation

A few more examples...

Brief Detour: CIDR Notation

Match an exact address: 216.173.122.34

Brief Detour: CIDR Notation

Match an exact address: 216.173.122.34

216.173.122.34/32

Brief Detour: CIDR Notation

Match any address: *.*.*.*

Brief Detour: CIDR Notation

Match any address: *.*.*.*

0.0.0.0/0

Network Security: Security Groups

Example: Web Server Instance

 Design a security group for Apache web servers in your application's web tier

Network Security: Security Groups

Example: Web Server Instance

Web Tier security group

Name Your Group

Network Security: Security Groups

Example: Web Server Instance

Web Tier security group

Network Security: Security Groups

Example: Web Server Instance

Launch EC2 instances into security group

An instance can belong to more than one security group

Network Security: Security Groups

Example: Web Server Instance

Multi-tier Security Group Activity

Multi-tier Security Group Activity

Multi-tier Security Group Activity

Tier	Port	Source
Web		
App		
DB		
Bast ion		

Tier	Port	Source
Web		
Арр		
DB		
Bast ion	22	207.171.191.60/32

Tier	Port	Source
Web		
Арр		
DB	3306 3306 22	207.171.191.92/32 App Bastion
Bast ion	22	207.171.191.60/32

Tier	Port	Source
Web		
Арр	22 8000	Bastion
DB	3306 3306 22	207.171.191.92/32 App Bastion
Bast ion	22	207.171.191.60/32

Tier	Port	Source
Web	80	0.0.0.0/0
	443	0.0.0.0/0
	22	Bastion
Арр	22	Bastion
	8000	Web
DB	3306	207.171.191.92/32
	3306	Арр
	22	Bastion
Bast ion	22	207.171.191.60/32

Security and Compliance | Conclusion

Most security best practices still apply in the Cloud

- Secure coding standards
- Perform penetration testing
 - http://aws.amazon.com/security/penetration-testing
- Antivirus where appropriate

amazon webservices

Security and Compliance | Conclusion

Most security best practices still apply in the Cloud

- Intrusion Detection
 - Host-based Intrusion Detection (e.g., OSSEC)
- Log events
- Role-based access control
 - AWS Identity & Access Management
 - LDAP and/or Active Directory for Operating Systems & Applications

Security and Compliance | Conclusion

For review

- What are the five main layers of security for cloud architecture?
- What security model is used with AWS services
- What areas of security is AWS responsible for?
- What areas of security are you, the customer, responsible for?

Appendix

Activity: Identify Security Mechanisms

Consider the architecture for a scalable web application. How do you secure it? Address the following aspects of security:

- Physical
- Network
- Data (in transit and at rest)
- Operating system
- Security credential management
- Logging

Build security in every layer

