Trabajo Curso Series de Tiempo

Eduardo Contreras Bohórquez

Estadísticas descriptivas

Serie de tiempo del número de heridos en la base de datos de accidentes. Contiene 163 registros mensuales desde enero de 2005 hasta julio de 2018.

Transformación Box-Cox para estabilizar la varianza

Aunque en la serie original no se observa un problema de heterocedasticidad severo, se aplicó la transformación BoxCox con el parámetro lambda = 2 obtenido a través del método BoxCox.lambda de R.

Descomposición de la serie

El diagrama de autocorrelación muestra que se presenta una asociación estadística entre el numero de heridos en el tiempo t, y los heridos a un rezago de tiempo h, esto se presenta inclusive a rezagos de más de 5 años como se observa en la gráfica.

autocorrelación

Se aplica diferenciación para remover la tendencia y estacionalidad de la serie.

ACF Diferenciación ordinaria

ACF Diferenciación estacional

Pruebas de raíces unitarias

El test de Dickey-Fuller de raíces unitarias sobre la serie que ha pasado por los procesos de estabilización de la varianza y diferenciación para remover tendencia y estacionalidad, indica que la componente restante es estacionaria con un nivel de confianza del 95%.

Postulación de modelos ARIMA

- A partir del diagrama de autocorrelación simple se postula el modelo de Promedios móviles puro MA(1).
- Mediante diagrama de autocorrelación parcial se postula el modelo Autorregresivo puro AR(2).
- Con la función auto.arima de R, restringiendo los órdenes ordinarios max.p=2, max.q=1, y estacionales max.P=2 y max.Q=1 (de acuerdo a los correlogramas), se obtuvo el modelo ARIMA(1,0,0)(2,0,0)[12] con media distinta de 0.

Ajuste de modelos ARIMA

En la siguiente tabla se puede ver resumido todos los modelos ajustados, así como las métricas BIC, Raiz del Error Cuadrático Medio (RECM), y la validación de supuestos sobre los residuales.

				No auto-	Parametros	Varianza	
MODELO	BIC	RECM	Normalidad	correlación	estables	constante	Media 0
ARIMA(0,1,1)(0,1,0)[12]							
Box Cox transformation: lambda= 2	4601.49	429.0486	no	no		no	
Regression with ARIMA(0,1,1)(0,1,0)[12] errors (outliers)							
Box Cox transformation: lambda= 2	4539.24		no	no			
ARIMA(2,1,0)(0,1,0)[12]							
Box Cox transformation: lambda= 2	4607.78	424.9401	no	no		no	
Regression with ARIMA(2,1,0)(0,1,0)[12] errors (outliers)							
Box Cox transformation: lambda= 2	4543.62			no			
ARIMA(1,0,0)(2,0,0)[12] with non-zero mean Box Cox transformation: lambda= 2	4963.8	367.3052	no				
Regression with ARIMA(1,0,0)(2,0,0)[12] errors (outliers) Box Cox transformation: lambda= 2	4936.63						
ARIMA(1,1,0)(2,1,0)[12] Box Cox transformation: lambda= 2	4565.51	345.3897	no	no			
Regression with ARIMA(1,1,0)(2,1,0)[12] errors							
Box Cox transformation: lambda= 2	4528.52		no			no	
ARIMA(1,1,0)(2,1,0)[12] Box Cox transformation: lambda= 3.172689	7410.35	326.2036	no	no			

Resultados

El modelo seleccionado es ARIMA(1,0,0)(2,0,0)[12] con BoxCox.lambda=2 y con modelamiento de outliers. Este modelo a pesar de no tener el BIC más bajo, tiene un RECM bajo y todos los supuestos sobre los residuales se cumplen.

Pronósticos

recasts from Regression with ARIMA(1,0,0)(2,0,0)[12]

Validación de supuestos sobre los residuales

Normailidad

N = 163 Bandwidth = 2.231e+05

No autocorrelación

CUSUMSQ

Media es 0

Rolling

Rolling (30% test)

Modelo con menor RECM

El modelo con menor RECM es ARIMA(1,1,0)(2,1,0)[12] con BoxCox.lambda = 3.172689. Dicho valor de lambda fue seleccionado por el procedimiento homologo en Python.

A continuación se presentan los pronósticos y el Rolling.

Forecasts from ARIMA(1,1,0)(2,1,0)[12]

Rolling (30% test)

