Black Box Testing of Finite State Machines

Frits Vaandrager

(based on slides Petra van den Bos and Ramon Janssen)

December 2, 2022

Black Box Testing

A method of software testing that examines the functionality of an application without peering into its internal structures or workings.

Manual Testing

Automated Testing

Model-Based Testing

Test Hypothesis

Test Hypothesis

- 1. What is a model?
 - Today: a Finite State Machine (FSM)

1. What is a model?

Today: a Finite State Machine (FSM)

2. What is conformance?

Today: FSM equivalence

1. What is a model?

Today: a Finite State Machine (FSM)

2. What is conformance?

Today: FSM equivalence

3. How can we construct a good test suite?

Today: an *n*-complete test suite for FSMs

1. What is a model?

Today: a Finite State Machine (FSM)

2. What is conformance?

Today: FSM equivalence

3. How can we construct a good test suite?

Today: an *n*-complete test suite for FSMs

Literature:

- Dorofeeva, Rita, et al. FSM-based conformance testing methods —
 A survey annotated with experimental evaluation. Information and Software Technology, 2010, 52.12: 1286-1297.
- Ural, Hasan. Formal methods for test sequence generation.
 Computer communications, 1992, 15.5: 311-325.
- Lee, David; Yannakakis, Mihalis. Principles and methods of testing finite state machines-a survey. Proc. IEEE, 1996, 84.8: 1090-1123.

Finite State Machine

FSM

An FSM (also called Mealy machine) consists of:

- states
- transitions
- inputs
- outputs

What Can Be Modeled With FSMs?

- FSMs are used for modeling functional behavior of reactive systems
- Examples:
 - communication protocols: TCP, SSH, TLS,...
 - hardware circuits
 - web applications
 - embedded control software within printers, cars, X-ray scanners, lithography systems, elevators, thermostats, . . .
 - ...

FSMs are Quite Restrictive!

- 1. Each input triggers exactly one output
- 2. Source state and input uniquely determine target state (determinism)
- 3. Only finitely many states, inputs and outputs
- 4. No data parameters

Representing FSMs with a Table

$States \to$	0		5		10	
Inputs ↓	Output	New state	Output	New state	Output	New state
5ct	-	5	-	10	5ct	10
10ct	-	10	5ct	10	10ct	10
coffee	-	0	-	5	coffee	0

Formal Definition

An FSM (Mealy machine) is a 6-tuple $M = (Q, q_0, I, O, \delta, \lambda)$ with:

- Q a finite set of states
- q₀ the initial state
- I a finite set of inputs
- O a finite set of outputs
- $\delta: Q \times I \rightarrow Q$ the transition function
- $\lambda: Q \times I \rightarrow O$ the output function

Formal Definition

An FSM (Mealy machine) is a 6-tuple $M = (Q, q_0, I, O, \delta, \lambda)$ with:

- Q a finite set of states
- q₀ the initial state
- *I* a finite set of inputs
- O a finite set of outputs
- $\delta: Q \times I \rightarrow Q$ the transition function
- $\lambda: Q \times I \rightarrow O$ the output function

Q ightarrow	0		5		10	
1 ↓	λ	δ	λ	δ	λ	δ
5ct	-	5	-	10	5ct	10
10ct	-	10	5ct	10	10ct	10
coffee	-	0	-	5	coffee	0

Extend δ and λ to sequences: $\delta^*: Q \times I^* \to Q$ and $\lambda^*: Q \times I^* \to O^*$:

$$\delta^*(q,\epsilon)=q$$

$$\delta^*(q,\mu\cdot\sigma)=\delta^*(\delta(q,\mu),\sigma) \qquad (\mu\in I \text{ is a single symbol})$$

$$\lambda^*(q, \epsilon) = \epsilon$$
$$\lambda^*(q, \mu \cdot \sigma) = \lambda(q, \mu) \cdot \lambda^*(\delta(q, \mu), \sigma)$$

Extend δ and λ to sequences: $\delta^*: Q \times I^* \to Q$ and $\lambda^*: Q \times I^* \to O^*$:

$$\delta^*(q,\epsilon) = q$$

$$\delta^*(q,\mu \cdot \sigma) = \delta^*(\delta(q,\mu),\sigma) \qquad (\mu \in I \text{ is a single symbol})$$

$$\lambda^*(q, \epsilon) = \epsilon$$
$$\lambda^*(q, \mu \cdot \sigma) = \lambda(q, \mu) \cdot \lambda^*(\delta(q, \mu), \sigma)$$

For FMS M with initial state q_0 , we write:

$$\delta^*(M,\sigma) = \delta^*(q_0,\sigma)$$
$$\lambda^*(M,\sigma) = \lambda^*(q_0,\sigma)$$

$$\delta^*(M, 5ct? 10ct? coffee?) =$$

$$\delta^*(M, 5ct? 10ct? coffee?) = 0$$

$$\delta^*(M, 5ct? 10ct? coffee?) = 0$$

 $\lambda^*(M, 5ct? 10ct? coffee?) =$

 $\delta^*(M, 5ct? 10ct? coffee?) = 0$ $\lambda^*(M, 5ct? 10ct? coffee?) = - 5ct! coffee!$

FSM Restrictions

FSMs are:

• deterministic: δ and λ , δ^* and λ^* are functions

FSM Restrictions

FSMs are:

- deterministic: δ and λ , δ^* and λ^* are functions
- completely specified: δ , λ , δ^* and λ^* are complete functions
 - Symbol '-' in the coffee machine is an artificial output

FSM Restrictions

FSMs are:

- deterministic: δ and λ , δ^* and λ^* are functions
- completely specified: δ , λ , δ^* and λ^* are complete functions
 - Symbol '-' in the coffee machine is an artificial output
- connected: from initial state any other state can be reached
 - Every non-connected FSM can be rewritten to a connected FSM

• States q and q' are equivalent if they produce the same output sequence for every input sequence:

$$\forall \sigma \in I^* : \lambda^*(q, \sigma) = \lambda^*(q', \sigma)$$

 States q and q' are equivalent if they produce the same output sequence for every input sequence:

$$\forall \sigma \in I^* : \lambda^*(q, \sigma) = \lambda^*(q', \sigma)$$

• States q and q' are inequivalent if there exists a separating sequence:

$$\exists \sigma \in I^* : \lambda^*(q, \sigma) \neq \lambda^*(q', \sigma)$$

 States q and q' are equivalent if they produce the same output sequence for every input sequence:

$$\forall \sigma \in I^* : \lambda^*(q,\sigma) = \lambda^*(q',\sigma)$$

• States q and q' are inequivalent if there exists a separating sequence:

$$\exists \sigma \in I^* : \lambda^*(q, \sigma) \neq \lambda^*(q', \sigma)$$

• Two FSMs are equivalent if their initial states are equivalent

 States q and q' are equivalent if they produce the same output sequence for every input sequence:

$$\forall \sigma \in I^* : \lambda^*(q,\sigma) = \lambda^*(q',\sigma)$$

• States q and q' are inequivalent if there exists a separating sequence:

$$\exists \sigma \in I^* : \lambda^*(q, \sigma) \neq \lambda^*(q', \sigma)$$

• Two FSMs are equivalent if their initial states are equivalent

For FSMs, we use equivalence as conformance relation

Minimality

An FSM is minimal if no two states are equivalent.

Every non-minimal FSM can be rewritten to an equivalent minimal FSM

Output fault: transition has wrong output

coffee?/
coffee?/
coffee?/
coffee?/
10ct?/
10ct?/10ct

5ct?/5ct

separating sequence?

Output fault: transition has wrong output

separating sequence?

$$\lambda^*(M,5ct?) = -$$

 $\lambda^*(M',5ct?) = coffee!$

Transition fault: transition goes to wrong state

separating sequence?

Transition fault: transition goes to wrong state

Inequivalence Examples

Missing states and extra states

Inequivalence Examples

Missing states and extra states

Inequivalence Examples

Missing states and extra states

n-Complete Test Suites

Test Suite

Given a specification FSM S and an implementation FSM M:

A test case is an input sequence σ ∈ I*
 (expected outputs and judgment are implicit from S)

Test Suite

Given a specification FSM S and an implementation FSM M:

- A test case is an input sequence σ ∈ I*
 (expected outputs and judgment are implicit from S)
- M passes σ if $\lambda^*(S, \sigma) = \lambda^*(M, \sigma)$
- $M \text{ fails } \sigma \text{ if } \lambda^*(S, \sigma) \neq \lambda^*(M, \sigma)$

Test Suite

Given a specification FSM S and an implementation FSM M:

- A test case is an input sequence σ ∈ I*
 (expected outputs and judgment are implicit from S)
- M passes σ if $\lambda^*(S, \sigma) = \lambda^*(M, \sigma)$
- $M \text{ fails } \sigma \text{ if } \lambda^*(S, \sigma) \neq \lambda^*(M, \sigma)$
- A test suite is a finite set of test cases T ⊂ I*
- A test suite fails if a single test case fails, and passes otherwise

Executing a Test Suite

To execute T on a black-box system:

- apply input sequences $\sigma \in T$
- observe output sequences $\lambda^*(M, \sigma)$ - fail if $\lambda^*(M, \sigma) \neq \lambda^*(S, \sigma)$
- reset system in between tests

Complete Test Suite

- Let *S* be a specification and *T* a test suite.
- Then *T* is complete if for any implementation *M*:

M passes $T \iff M$ equivalent to S

Complete Test Suite

- Let S be a specification and T a test suite.
- Then T is complete if for any implementation M:
 M passes T ← M equivalent to S
- Complete test suites do not exist!
 Specification:

Implementation:

Test cases of length < n will not find this fault, and n can be arbitrarily large

n-Complete Test Suite

- Let S be a specification and T a test suite.
- Then T is n-complete if:
 for any implementation M with at most n extra states w.r.t. S:
 M passes T ← M equivalent to S

n-Complete Test Suite

- Let S be a specification and T a test suite.
- Then T is n-complete if:
 for any implementation M with at most n extra states w.r.t. S:
 M passes T ← M equivalent to S
- Exists! Based on access sequences and characterization sets (a.k.a. the W-method).

Building Block: Access sequences

Let S be a specification FSM with states Q and initial state q_0 .

- An access sequence for state $q \in Q$ is any sequence σ with $\delta^*(q_0, \sigma) = q$.
- An access sequence set $A \subseteq I^*$ for Q contains an access sequence for all states in Q; we require $\epsilon \in A$.

Executing A ensures that we reach all states in Q.

Access Sequences Example

$$A = ?$$

Access Sequences Example

$$A = \{\epsilon, 1?, 1?1?\}$$

Building Block: Characterization Sets

Let S be a minimal specification FSM with states Q.

• A characterization set $C \subseteq I^*$ for Q contains a separating sequence for every pair of states $q, q' \in Q$ (with $q \neq q'$).

$$C = ?$$

$$C = \{0?, 1?\}$$

$$C = \{0?, 1?\}$$

$$\lambda^*(0,1?) = 0! \neq 1! = \lambda^*(s,1?)$$
 (C separates 0 and s)

$$C = \{0?, 1?\}$$

$$\lambda^*(0,1?) = 0! \neq 1! = \lambda^*(s,1?)$$
 (*C* separates 0 and *s*)
 $\lambda^*(0,0?) = 0! \neq 1! = \lambda^*(1,0?)$ (*C* separates 0 and 1)

$$C = \{0?, 1?\}$$

$$\lambda^*(0,1?) = 0! \neq 1! = \lambda^*(s,1?)$$
 (*C* separates 0 and *s*)
 $\lambda^*(0,0?) = 0! \neq 1! = \lambda^*(1,0?)$ (*C* separates 0 and 1)
 $\lambda^*(1,0?) = 1! \neq 0! = \lambda^*(s,0?)$ (*C* separates 1 and *s*)

$$C = \{0?, 1?\}$$

Why is this a characterization set?

$$\lambda^*(0,1?) = 0! \neq 1! = \lambda^*(s,1?)$$
 (*C* separates 0 and *s*)
 $\lambda^*(0,0?) = 0! \neq 1! = \lambda^*(1,0?)$ (*C* separates 0 and 1)
 $\lambda^*(1,0?) = 1! \neq 0! = \lambda^*(s,0?)$ (*C* separates 1 and *s*)

(why is ?reset useless in a characterization set?)

$$C = \{0?, 1?\}$$

λ^*	0?	1?
0	0!	0!
S	0!	1!
1	1!	1!

All rows of this table (λ^* for Q and C) are different: state identification

Building Blocks for 0-Complete Test Suite

- Check that the implementation has at least as many states as the specification (no missing states)
- Check that each implementation state is correct:
 - outgoing transitions have a correct output (no output fault), and
 - lead to correct specification state (no transition fault)

Building Blocks for 0-Complete Test Suite

- Check that the implementation has at least as many states as the specification (no missing states)
- Check that each implementation state is correct:
 - outgoing transitions have a correct output (no output fault), and
 - lead to correct specification state (no transition fault)

Assumption: 0 extra states w.r.t. S (no extra states)

Check that M has at least as many states as specification S:

- Execute all input sequences of A · C on M
- For every $a, a' \in A$, execution of $a \cdot C$ and $a' \cdot C$ shows that a and a' reach different specification states

Check that M has at least as many states as specification S:

- Execute all input sequences of A · C on M
- For every $a, a' \in A$, execution of $a \cdot C$ and $a' \cdot C$ shows that a and a' reach different specification states

```
A = \{\epsilon, 1?, 1?1?\}
C = \{0?, 1?\}
A \cdot C = \{0?, 1?, 1?0?, 1?1?, 1?1?0?, 1?1?1?\}
```

$$A \cdot C = \{0?, 1?, 1?0?, 1?1?, 1?1?0?, 1?1?1?\}$$

A passing implementation must have at least 3 states, reached by A:

a·c						
$\lambda^*(M, a \cdot c)$	0!	0!	0!0!	0!1!	0!1!1!	0!1!1!

 $A \cdot C$ does not find all output faults yet!

reset?/1!

This works, because A reaches all implementation states

```
Solution: also test A \cdot I = \{0?, 1?, reset?, 1?0?, 1?1?, 1?reset?, 1?1?0?, 1?1?1?, 1?1?reset?\}
```

Solution: also test $A \cdot I = \{0?, 1?, reset?, 1?0?, 1?1?, 1?1?reset?, 1?1?0?, 1?1?1?, 1?1?reset?\}$

This works, because A reaches all implementation states

$$\lambda^*(S, 1?reset?) = 0! - \lambda^*(M, 1?reset?) = 0!1!$$

 $A \cdot C + A \cdot I$ does not detect transition faults yet!

 $A \cdot C + A \cdot I$ does not detect transition faults yet! Solution: also test $A \cdot I \cdot C$

• C tests whether the right state is reached after $A \cdot I$

 $A \cdot C + A \cdot I$ does not detect transition faults yet! Solution: also test $A \cdot I \cdot C$

• C tests whether the right state is reached after $A \cdot I$

$$\lambda(S, 1?1?1?0?) = 0!1!1!1!$$

 $\lambda(M, 1?1?1?0?) = 0!1!1!0!$

(access sequence 1?1?; faulty transition 1?; separating sequence 0? for states s and 1)

0-Complete Test Suite

Full 0-complete test suite is $T = A \cdot C + A \cdot I + A \cdot I \cdot C$

0-Complete Test Suite

Full 0-complete test suite is $A \cdot C + A \cdot I + A \cdot I \cdot C$

 $A \cdot I$ contains only prefixes of $A \cdot I \cdot C$ so we can leave it out:

 $T = A \cdot C + A \cdot I \cdot C$

```
Full 0-complete test suite is A \cdot C + A \cdot I + A \cdot I \cdot C

A \cdot I contains only prefixes of A \cdot I \cdot C so we can leave it out: A \cdot C + A \cdot I \cdot C

or simply T = A \cdot I^{\leq 1} \cdot C
```

 $(I^{\leq 1}$ means all sequences in I^* up to length 1)

```
Full 0-complete test suite is A \cdot C + A \cdot I + A \cdot I \cdot C
```

 $A \cdot I$ contains only prefixes of $A \cdot I \cdot C$ so we can leave it out:

$$A \cdot C + A \cdot I \cdot C$$

or simply

$$T = A \cdot I^{\leq 1} \cdot C$$

($I^{\leq 1}$ means all sequences in I^* up to length 1)

Note: many possible sets A and C!

Correctness

Theorem Let S be a minimal FSM with set of access sequences A, set of inputs I, and characterization set C. Then $T = A \cdot I^{\leq 1} \cdot C$ is 0-complete.

Correctness

Theorem Let S be a minimal FSM with set of access sequences A, set of inputs I, and characterization set C. Then $T = A \cdot I^{\leq 1} \cdot C$ is 0-complete. **Proof:** We use the concept of a bisimulation.

Bisimulation

Definition Let M_1 and M_2 be FSMs with inputs I. A bisimulation between M_1 and M_2 is a relation $R \subseteq Q_1 \times Q_2$ such that $(q_0^1, q_0^2) \in R$ and, for all $(q, r) \in R$ and $i \in I$,

- 1. $\lambda_1(q,i) = \lambda_2(r,i)$,
- 2. $(\delta_1(q,i), \delta_2(r,i)) \in R$.

Bisimulation (cnt)

Lemma If there exists a bisimulation R between M_1 and M_2 , then M_1 and M_2 are equivalent.

Proof: Assume $(q, r) \in R$ and $\sigma \in I^*$. By induction on the length of σ we prove that $\lambda_1^*(q, \sigma) = \lambda_2^*(r, \sigma)$.

- Base. Trivial since $\lambda_1^*(q, \epsilon) = \epsilon = \lambda_1^*(r, \epsilon)$.
- Induction step. Let $\sigma = i \rho$. By definition,

$$\lambda_1^*(q,\sigma) = \lambda_1(q,i) \lambda_1^*(\delta_1(q,i),\rho),$$

$$\lambda_2^*(r,\sigma) = \lambda_2(r,i) \lambda_2^*(\delta_2(r,i),\rho).$$

By condition (1) for bisimulations $\lambda_1(q,i) = \lambda_2(r,i)$. By condition (2) for bisimulations $(\delta_1(q,i),\delta_2(r,i)) \in R$. Therefore, by induction hypothesis, $\lambda_1^*(\delta_1(q,i),\rho) = \lambda_2^*(\delta_2(r,i),\rho)$. This implies that $\lambda_1^*(q,\sigma) = \lambda_2^*(r,\sigma)$, as required.

From this property the lemma follows since $(q_0^1, q_0^2) \in R$.

Correctness (cnt)

Theorem Let S be a minimal FSM with set of access sequences A, set of inputs I, and characterization set C. Then $T = A \cdot I^{\leq 1} \cdot C$ is 0-complete. **Proof:** Let M be an FSM with at most as many states as S such that M passes tests T. By the previous lemma, it suffices to show that the following relation R is a bisimulation between M and S:

$$(q,r) \in R \Leftrightarrow \forall \sigma \in C : \lambda_M^*(q,\sigma) = \lambda_S^*(r,\sigma)$$

Because we require $\epsilon \in A$ we have $C \subseteq R$. Therefore, since M passes T, $\forall \sigma \in C : \lambda_M^*(q_0^M, \sigma) = \lambda_S^*(q_0^S, \sigma)$. This implies $(q_0^M, q_0^S) \in R$, as required.

Correctness (cnt)

Suppose r_1 and r_2 are distinct states of S with access sequences ρ_1 and ρ_2 , respectively. Then there exists a separating sequence $\sigma \in C$ for r_1 and r_2 . Let q_1 and q_2 be the states of M reached by access sequences ρ_1 and ρ_2 . Then, since M passes $A \cdot C$, σ is also a separating sequence for q_1 and q_2 . Since all states of S can be reached and pairwise be separated by C, this means that M has at least as many states as S, that can pairwise be separated by C. Since we assume that M has at most as many states as S, we conclude that M and S have the same number of states. Moreover, since M passes $A \cdot C$, we know that for each pair $(q,r) \in R$ there exists an access sequence $\rho \in A$ such that $\delta_M(q_0^M, \rho) = q$ and $\delta_S(q_0^S, \rho) = r$.

Correctness (cnt)

Now suppose that $(q, r) \in R$ and $i \in I$. Let ρ be an access sequence for q and r. Then, since M passes tests ρ i C we may conclude

- 1. $\lambda_M(q,i) = \lambda_S(r,i)$,
- 2. $(\delta_M(q,i), \delta_S(r,i)) \in R$,

which means that R is a bisimulation between M and S.

$$A = \{\epsilon, 5ct?, 10ct?\}$$

$$A = \{\epsilon, 5ct?, 10ct?\}$$

$$I^{\leq 1} = \{\epsilon, 5ct?, 10ct?, coffee?\}$$

$$A = \{\epsilon, 5ct?, 10ct?\}$$

$$I^{\leq 1} = \{\epsilon, 5ct?, 10ct?, coffee?\}$$

$$C = \{10ct?\}$$


```
A = \{\epsilon, 5ct?, 10ct?\}
I^{\leq 1} = \{\epsilon, 5ct?, 10ct?, coffee?\}
C = \{10ct?\}
A \cdot I^{\leq 1} \cdot C = \{10ct?\}
```


$$A = \{\epsilon, 5ct?, 10ct?\}$$

$$I^{\leq 1} = \{\epsilon, 5ct?, 10ct?, coffee?\}$$

$$C = \{10ct?\}$$

$$A \cdot I^{\leq 1} \cdot C = \{10ct?,$$

$$\begin{split} A &= \{\epsilon, \; 5ct?, \; 10ct?\} \\ I^{\leq 1} &= \{\epsilon, \; 5ct?, \; 10ct?, \; coffee?\} \\ C &= \{10ct?\} \\ A \cdot I^{\leq 1} \cdot C &= \\ \{10ct?, \; 5ct?10ct?, \end{split}$$

$$A = \{\epsilon, 5ct?, 10ct?\}$$

$$I^{\leq 1} = \{\epsilon, 5ct?, 10ct?, coffee?\}$$

$$C = \{10ct?\}$$

$$A \cdot I^{\leq 1} \cdot C = \{10ct?, 5ct?10ct?, 10ct?10ct?, coffee?10ct?, 10ct?10ct?, 10ct?10ct?$$

$$\begin{split} A &= \{\epsilon, \ 5ct?, \ 10ct?\} \\ I^{\leq 1} &= \{\epsilon, \ 5ct?, \ 10ct?, \ coffee?\} \\ C &= \{10ct?\} \\ A \cdot I^{\leq 1} \cdot C &= \\ \{10ct?, \ 5ct?10ct?, \ 10ct?10ct?, \ coffee?10ct?, \\ 5ct?10ct?, \end{split}$$


```
\begin{split} A &= \{\epsilon, \ 5ct?, \ 10ct?\} \\ I^{\leq 1} &= \{\epsilon, \ 5ct?, \ 10ct?, \ coffee?\} \\ C &= \{10ct?\} \\ A \cdot I^{\leq 1} \cdot C &= \\ \{10ct?, \ 5ct?10ct?, \ 10ct?10ct?, \ coffee?10ct?, \\ 5ct?10ct?, \ 5ct?5ct?10ct?, \ 5ct?10ct?, \ 5ct?coffee?10ct?, \end{split}
```



```
A = \{\epsilon, 5ct?, 10ct?\}
I^{\leq 1} = \{\epsilon, 5ct?, 10ct?, coffee?\}
C = \{10ct?\}
A \cdot I^{\leq 1} \cdot C = \{10ct?, 5ct?10ct?, 10ct?10ct?, coffee?10ct?, 5ct?10ct?, 5ct?10ct?, 5ct?10ct?, 5ct?10ct?, 10ct?10ct?, 10ct?coffee?10ct?, 10ct?10ct?, 10ct?coffee?10ct?, 10ct?10ct?, 10ct?coffee?10ct?\}
(remove redundant prefixes)
```

What if n > 0?

• We should detect up to *n* extra states.

What if n > 0?

- We should detect up to *n* extra states.
- $A \cdot I^{\leq n}$ reaches all implementation states!
- replace A in the 0-complete test suite by $A \cdot I^{\leq n}$

What if n > 0?

- We should detect up to *n* extra states.
- $A \cdot I^{\leq n}$ reaches all implementation states!
- replace A in the 0-complete test suite by $A \cdot I^{\leq n}$

An *n*-complete test suite:

$$\mathcal{T} = (\mathsf{A} \cdot \mathsf{I}^{\leq \mathsf{n}}) \cdot \mathsf{I}^{\leq 1} \cdot \mathsf{C}$$

What if n > 0?

- We should detect up to *n* extra states.
- $A \cdot I^{\leq n}$ reaches all implementation states!
- replace A in the 0-complete test suite by $A \cdot I^{\leq n}$

An *n*-complete test suite:

$$(A \cdot I^{\leq n}) \cdot I^{\leq 1} \cdot C$$

or simply

$$\mathsf{T} = \mathsf{A} \cdot \mathsf{I}^{\leq \mathsf{n}+1} \cdot \mathsf{C}$$

Characterization Sets

Large Characterisation Sets

- Remember: set $C \subseteq I^*$ is a characterisation set for specification S if:
 - For each pair of distinct states q and q' of S there is a $c \in C$ such that $\lambda^*(q,c) \neq \lambda^*(q',c)$
- Upper bound on the size of C is $(\frac{|S|^2-|S|}{2})$ elements.

- A sequence c ∈ C is a Unique Input Output sequence (UIO) for some state q if:
 - for all other states q' of S: $\lambda^*(q,c) \neq \lambda^*(q',c)$
- Hence, a characterisation set of UIOs needs only |S| 1 elements.

- A sequence c ∈ C is a Unique Input Output sequence (UIO) for some state q if:
 - for all other states q' of $S: \lambda^*(q,c) \neq \lambda^*(q',c)$
- Hence, a characterisation set of UIOs needs only |S| 1 elements.
- A sequence $c \in C$ is a Distinguishing Sequence (DS) for S if:
 - For all states q, q' (with $q \neq q'$) of $S: \lambda^*(q, c) \neq \lambda^*(q', c)$
- Hence, a DS gives a singleton characterization set!

- A sequence c ∈ C is a Unique Input Output sequence (UIO) for some state q if:
 - for all other states q' of $S: \lambda^*(q,c) \neq \lambda^*(q',c)$
- Hence, a characterisation set of UIOs needs only |S|-1 elements.
- A sequence $c \in C$ is a Distinguishing Sequence (DS) for S if:
 - For all states q, q' (with $q \neq q'$) of $S: \lambda^*(q, c) \neq \lambda^*(q', c)$
- Hence, a DS gives a singleton characterization set!
- Note:
 - A DS is for an entire specification
 - UIOs are per state
 - Separating sequences are per pair of states

- A sequence c ∈ C is a Unique Input Output sequence (UIO) for some state q if:
 - for all other states q' of $S: \lambda^*(q,c) \neq \lambda^*(q',c)$
- Hence, a characterisation set of UIOs needs only |S|-1 elements.
- A sequence $c \in C$ is a Distinguishing Sequence (DS) for S if:
 - For all states q, q' (with $q \neq q'$) of $S: \lambda^*(q, c) \neq \lambda^*(q', c)$
- Hence, a DS gives a singleton characterization set!
- Note:
 - A DS is for an entire specification
 - UIOs are per state
 - Separating sequences are per pair of states
- UIOs and DSs do not always exist...

Example: SS, UIO, or DSs?

• 10ct?

Example: SS, UIO, or DSs?

- 10ct? DS
- 5ct? coffee?

Example: SS, UIO, or DSs?

- 10ct? DS
- 5ct? coffee? DS
- coffee?

Example: SS, UIO, or DSs?

- 10ct? **DS**
- 5ct? coffee? DS
- coffee? **UIO** for state 10

• Any DS?

- Any DS? no
- Does 0 have an UIO?

- Any DS? no
- Does 0 have an UIO? yes, sequence 1?.
- Does s have an UIO?

- Any DS? no
- Does 0 have an UIO? yes, sequence 1?.
- Does s have an UIO? no
- Does 1 have an UIO?

- Any DS? no
- Does 0 have an UIO? yes, sequence 1?.
- Does s have an UIO? no
- Does 1 have an UIO? yes, sequence 0?.

A More Realistic Example

- $\bullet \quad \pm \ 10.000$ states and $\pm \ 150$ inputs
- Test suite from this lecture: $\pm 5, 0 \cdot 10^8$ inputs
- Smarter test suite (adaptive DS + SS): $\pm 1.5 \cdot 10^8$ inputs

- Using breadth-first search for each pair of states: $O(pn^3)$
- Do it all at once (next slides): $O(pn^2)$
- Optimal (Hopcroft): $O(pn \log n)$

```
(n = number of states, p = number of inputs)
```

- Use partition refinement
- Initially, all states are not separated: one block
- Gradually separate states: refine partitions
 - A block is split if we find a separating sequence

 $\{1,2,3\}$

{1,2,3} b?

 $\{1,2\}$ can be split based on a? and the split of $\{1,2,3\}$, because

- $\delta(1, a?) = 2$ and $\delta(2, a?) = 3$, and
- states 2 and 3 are already split in node $\{1,2,3\}$ (they are in different children of $\{1,2,3\}$)

 $\{1,2\}$ can be split based on a? and the split of $\{1,2,3\}$, because

- $\delta(1, a?) = 2$ and $\delta(2, a?) = 3$, and
- states 2 and 3 are already split in node $\{1,2,3\}$ (they are in different children of $\{1,2,3\}$)

 $\{1,2\}$ can be split based on a? and the split of $\{1,2,3\}$, because

- $\delta(1, a?) = 2$ and $\delta(2, a?) = 3$, and
- states 2 and 3 are already split in node $\{1,2,3\}$ (they are in different children of $\{1,2,3\}$)

- $\{1,2\}$ can be split based on a? and the split of $\{1,2,3\}$, because
- $\delta(1, a?) = 2$ and $\delta(2, a?) = 3$, and
- states 2 and 3 are already split in node $\{1,2,3\}$ (they are in different children of $\{1,2,3\}$)

$$C = \{a?, a?b?\}$$

Initialisation: create root with all states

Initialisation: create root with all states repeat until no more splits can be made: pick any leaf N and input i: if λ gives different outputs for i, for different states in N split with N with i

```
Initialisation: create root with all states repeat until no more splits can be made: pick any leaf N and input i: if \lambda gives different outputs for i, for different states in N split with N with i repeat until finished: pick any leaf N and input i: if \delta brings us to states already split with sequence \sigma split N with i append i \cdot \sigma to N
```

```
Initialisation: create root with all states repeat until no more splits can be made: pick any leaf N and input i: if \lambda gives different outputs for i, for different states in N split with N with i repeat until finished: pick any leaf N and input i: if \delta brings us to states already split with sequence \sigma split N with i append i \cdot \sigma to N
```

A split for node N and input i partitions N into multiple smaller parts

Test Suites Without Resets

Testing Without Reset

- To execute multiple tests a reset is needed!
- What if the SUT has no reset?
- Use a synchronising sequence:
 - A sequence which always ends in the same state
 - May not exist!
 - Instead of reset, synchronize to initial state
- (Synchronizing sequences are not n-complete!)

• to state 10:

- to state 10: 10ct?
- to state 0:

- to state 10: 10ct?
- to state 0: 10ct? coffee?
- to state 5:

- to state 10: 10ct?
- to state 0: 10ct? coffee?
- to state 5: 10ct? coffee? 5ct?

Transition Tour

Alternative: make a transition tour

- long sequence going trough all transitions ending in the initial state
- Can only detect output faults

coffee? 5ct? coffee? 5ct? 5ct? 10ct? coffee?
10ct? coffee?
5ct? 10ct? coffee?

Recap

- Finite state machines
- Equivalence
- *n*-complete test suite = $A \cdot I^{\leq n+1} \cdot C$ with
 - Access sequences A
 - Characterization set C, built up from
 - Separating sequences
 - Unique input output sequences (UIO)
 - Distinguishing sequence (DS)
- Algorithm for finding separating sequences
- No reset: transition tour or synchronising sequence

Questions?