Zestaw 5

- **1.** Definiujemy rekurencyjnie $s_0 = 1$ i $s_{n+1} = 2/s_n$ dla $n \in \mathbb{N}$.
 - a) Wypisz kilka pierwszych wyrazów tego ciągu.
 - b) Jaki jest zbiór wartości ciągu s?
- **2.** Definiujemy rekurencyjnie SEQ(0) = 0 i SEQ(n+1) = 1/[1+SEQ(n)] dla $n \in \mathbb{N}$. Oblicz SEQ(n) dla n = 1, 2, 3, 4 oraz 6.
- **3.** Weźmy ciąg SEQ: (1, 3, 9, 27, 81, ...).
 - a) Podaj wzór na n-ty wyraz ciągu SEQ(n), gdzie SEQ(0) = 1.
 - b) Podaj definicję rekurencyjną ciągu SEQ.
- **4.** a) Podaj definicję rekurencyjną ciągu $(2, 2^2(2^2)^2, ((2^2)^2)^2, ...)$, tzn. ciągu (2,4,16,256,...).
 - b) Podaj definicję rekurencyjną ciągu $(2,2^2,2^{(2^2)},2^{(2^{(2^2)})},...)$, tzn. ciągu (2,4,16,65536,...).
- **5.** Czy następująca definicja jest definicją rekurencyjną ciągu SEQ? Odpowiedź uzasadnij.

$$SEQ(0) = 1, SEQ(n+1) = SEQ(n)/(100 - n).$$

- 6. Oblicz:
 - a) SEQ(9), gdzie SEQ(0)=1, SEQ(n+1)=(n+1)/SEQ(n) dla $n\in\mathbb{N}.$
 - b) FIB(11), gdzie FIB(0)=FIB(1)=1, FIB(n)=FIB(n-1)+FIB(n-2) dla $n\geq 2.$

- 7. Niech $\sum = \{a, b, c\}$ i niech s_n oznacza liczbę słów długości n, które nie mają kolejnych liter a.
 - a) Oblicz s_0 , s_1 i s_2 .
 - b) Znajdź wzór rekurencyjny na s_n .
 - c) Oblicz s_3 i s_4 .
- 8. Niech $\sum = \{a, b\}$ i niech s_n oznacza liczbę słów długości n, nie zawierających ciągu ab.
 - a) Oblicz $s_0, s_1, s_2 i s_3$.
 - b) Znajdź wzór na s_n i udowodnij, że jest on poprawny.
- 9. Niech $\sum = \{a, b\}$ i niech t_n oznacza liczbę słów długości n, w których jest parzysta liczba liter a.
 - a) Oblicz $t_0, t_1, t_2 i t_3$.
 - b) Znajdź wzór na t_n i udowodnij, że jest on poprawny.
 - c) Czy twój wzór na t_n jest prawdziwy dla n = 0?
- **10.** Weźmy ciąg SEQ określiny w następujący sposób: SEQ(0) = 1, SEQ(1) = 0, SEQ(n) = SEQ(n-2) dla $n \ge 2$.
 - a) Wypisz kilka pierwszych wyrazów tego ciągu.
 - b) Jaki jest zbiór wartości tego ciągu?
- **11.** Definiujemy rekurencyjnie ciąg za pomocą wzorów $a_0 = a_1 = 1$ oraz $a_n = a_{n-1} + 2a_{n-2}$ dla $n \ge 2$.
 - a) Oblicz rekurencyjnie a_6 .
 - b) Udowodnij, że wszystkie wyrazy ciągu a_n są nieparzyste.
- 12. Definiujemy rekurencyjnie ciąg za pomocą wzorów $b_0=b_1=1$ oraz $b_n=2b_{n-1}+b_{n-2}$ dla $n\geq 2.$
 - a) Oblicz b_5 metodą iteracyjną.
 - b) Wyjaśnij, dlaczego wszystkie wyrazy b_n są nieparzyste. Wskazówka: rozważ pierwszy wyraz parzysty.

- 13. Definiujemy rekurencyjnie ciąg wzorami $a_0=0, a_1=1, a_2=2$ oraz $a_n=a_{n-1}-a_{n-2}+a_{n-3}$ dla $n\geq 3.$
 - a) Wypisz kilka pierwszych wyrazów tego ciągu, aż pojawi się pewna prawidłowość.
 - b) Jaki jest wzór wartości tego ciągu?
- 14. Weźmy ciąg FOO określony wzorami FOO(0)=1, FOO(1)=1 oraz $FOO(n)=\frac{10\cdot FOO(n-1)+100}{FOO(n-2)}$ dla $n\geq 2.$
 - a) Jaki jest zbiór wartości ciągu FOO?
 - b) Powtórz ćwiczenie a) dla ciągu GOO określonego wzorami GOO(0)=1, GOO(1)=2 oraz $GOO(n)=\frac{10\cdot GOO(n-1)+100}{GOO(n-2)}$ dla $n\geq 2$.

1 Twierdzenie

Rozważmy zależność rekurencyjną postaci:

- $\bullet \ s_n = as_{n-1} + bs_{n-2}$
- 1. Gdy $b = 0(s_n = as_{n-1})$, to dla wszystkich $n \in \mathbb{N}$:
 - $\bullet \ s_n = a^n s_0$
- 2. Gdy $a = 0(s_n = bs_{n-2})$, to dla wszystkich $n \in \mathbb{N}$:
 - $s_{2n} = b^n s_0$ (wyrazy parzyste),
 - $s_{2n+1} = b^n s_1$ (wyrazy nieparzyste).
- 3. Gdy $a \neq 0 \land b \neq 0$, to należy rozwiązać ze względu na r równanie charakterystyczne postaci:
 - $r^2 ar b = 0$
 - a) Jeśli równanie charakterystyczne ma dwa różne pierwiastki $r_1 \neq r_2$, to
 - $\bullet \ s_n = c_1 r_1^n + c_2 r_2^n$

Stałe c_1 i c_2 można wyznaczyć podstawiając odpowiednio n=0 i s_0 oraz n=1 i s_1 do powyższego równania otrzymując układ dwóch równań z dwiema niewiadomymi.

- b) Jeśli równanie charakterystycznie ma tylko jeden pierwiastek podwójny r_0 , to
 - $\bullet \ s_n = c_1 r_0^n + c_2 \cdot n \cdot r_0^n$

Stałe c_1 i c_2 wyznaczamy tak jak w podpunkcie a).

- 1. Podaj wzór jawny na s_n , gdzie $s_0 = 3$ oraz $s_n = -2s_{n-1}$ dla $n \ge 1$
- **2.** a) Podaj wzór jawny na $s_n = 4s_{n-2}$, gdzie $s_0 = s_1 = 1$.
 - b) Powtórz ćwiczenie a) dla $s_0 = 1$ i $s_1 = 2$.
- **3.** Udowodnij, że jeśli $s_n = as_{n-1}$ dla $n \ge 1$ i $a \ne 0$, to $s_n = a^n \cdot s_0$ dla $n \in \mathbb{N}$.
- 4. Sprawdź, że ciąg dany wzorem $s_n=2^{n+1}+(-1)^n$ spełnia warunki: $s_0=s_1=3$ oraz $s_{n-1}+2s_{n-2}$ dla $n\geq 2$.
- **5.** Sprawdź, że ciąg s_n dany wzorem $s_n=3^n-2\cdot n\cdot 3^n$ spełnia warunki: $s_0=1, s_1=-3$ oraz $s_n=6s_{n-1}-9s_{n-2}$ dla $n\geq 2$.
- **6.** Skożystaj z wzoru $FIB(n) = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$ i sprawdź za pomocą kalkulatora, że FIB(5) = 8.
- 7. Podaj wzór jawny na s_n , gdzie $s_0 = 3$, $s_1 = 6$ i $s_n = s_{n-1} + 2s_{n-2}$ dla $n \ge 2$.
- 8. Powtórz ćwiczenie 7 dla $s_0 = 3$ i $s_1 = -3$.
- 9. Weźmy ciąg s_n , gdzie $s_0=2, s_1=1$ oraz $s_n=s_{n-1}+s_{n-2}$ dla $n\geq 2.$
 - a) Oblicz s_n dla n = 2, 3, 4, 5 oraz 6.
 - b) Podaj wzór jawny na s_n .
- 10. W każdym z następujących przypadków podaj wzór jawny na s_n :
 - a) $s_0 = 2, s_1 = -1 \text{ oraz } s_n = -s_{n-1} + 6s_{n-2} \text{ dla } n \ge 2.$
 - b) $s_0 = 2 \text{ oraz } s_n = 5 \cdot s_{n-1} \text{ dla } n \ge 1.$
 - c) $s_0 = 1, s_1 = 8 \text{ oraz } s_n = 4s_{n-1} 4s_{n-2} \text{ dla } n \ge 2.$

- d) $s_0 = c, s_1 = d$ oraz $s_n = 5s_{n-1} 6s_{n-2}$ dla $n \ge 2$. Liczby c i d są pewnymi stałymi.
- e) $s_0 = 1, s_1 = 4 \text{ oraz } s_n = s_{n-2} \text{ dla } n \ge 2.$
- f) $s_0 = 1, s_1 = 2 \text{ oraz } s_n = 3 \cdot s_{n-2} \text{ dla } n \ge 2.$
- g) $s_0 = 1, s_1 = -3 \text{ oraz } s_n = -2s_{n-1} + 3s_{n-2} \text{ dla } n \ge 2.$
- h) $s_0 = 1, s_1 = 2 \text{ oraz } s_n = -2s_{n-1} + 3s_{n-2} \text{ dla } n \ge 2.$
- 12. Przypomnijmy, że jeśli $s_n = bs_{n-2}$ dla $n \ge 2$ to $s_{2n} = b^n s_0$ oraz $s_{2n+1} = b^n s_1$ dla $n \in \mathbb{N}$. Pokaż, że twierdzenie 1 jest prawdziwe dla a = 0 i b > 0 oraz spróbuj pogodzić ten fakt z poprzednim zadaniem. To znaczy, określ r_1, r_2, c_1 i c_2 za pomocą b, s_0 i s_1 .
- 13. W każdym z następujących przypadków podaj wzór jawny na s_{2^m} :
 - a) $s_{2n} = 2s_n + 3, s_1 = 1.$
 - b) $s_{2n} = 2s_n, s_1 = 3.$
 - c) $s_{2n} = 2s_n + 5n, s_1 = 0.$
 - d) $S_{2n} = 2s_n + 3 + 5n, s_1 = 2.$
 - e) $s_{2n} = 2s_n 7, s_1 = 1.$
 - f) $s_{2n} = 2s_n 7, s_1 = 5.$
 - g) $s_{2n} = 2s_n n, s_1 = 3.$
 - h) $s_{2n} = 2s_n + 5 7n, s_1 = 0.$

2 Twierdzenie

Rozważmy zależność rekurencyjną postaci:

•
$$s_{2n} = 2 \cdot s_n + f(n)$$
 dla $n \in \mathbb{N}^+$

Wtedy dla $m \in \mathbb{N}$:

•
$$s_{2^m} = 2^m \cdot \left[s_1 + \frac{1}{2} \sum_{i=0}^{m-1} \frac{f(2^i)}{2^i} \right].$$

W szczególności jeśli

$$\bullet \ \ s_{2^m} = 2 \cdot s_n + A + B \cdot n$$

dla pewnych stałych A i B, to

•
$$s_{2^m} = 2^m \cdot s_1 + (2^m - 1) \cdot A + \frac{B}{2} \cdot 2^m \cdot m$$
.

Zatem, jeśli $n=2^m$, to w tym przypadku mamy:

•
$$s_n = ns_1 + (n-1)A + \frac{B}{2} \cdot n \cdot \log_2 n$$
.