1 Nullspace

Here we discuss methods to solve an underdetermined set of linear equations Ax = b where the number n of variables is larger than the number m of equations. In other words A is an $m \times n$ matrix with m < n.

The set of solutions is then the hyperplane $x_0 + ker(A)$ where ker(A) denotes the nullspace of A and x_0 is any particular solution of Ax = b.

We will represent the nullspace of A as the column space $\operatorname{colspace}(F)$ of a matrix F such that

$$AF = 0.$$

If F satisfies this equation, then the column space of F is a subspace of the null space ker(A). Recall also that the column space of F is the range Im(F) of the linear map defined by the matrix F.

We will generally assume that A has full rank, i.e. rank(A) = m. The nullspace ker(A) then has dimension n - m and the columns of F span the entire nullspace of A if and only if rank(F) = n - m.

If we have found such a matrix F and x_0 with $Ax_0 = b$, then the hyperplane of all solutions to Ax = b can be represented as

$$x_0 + ker(A) = x_0 + Im(F).$$

We want to apply this to the minimization problem

minimize
$$f: \mathbb{R}^n \to \mathbb{R}$$
 under the constraint $Ax = b$. (1)

Since the solutions x to the constraint are exactly the vectors x of the form $x = x_0 + Fu$, $u \in \mathbb{R}^{n-m}$, we can turn this into the unconstrained problem

minimize
$$g(u) = f(x_0 + Fu)$$
 on all of \mathbb{R}^{n-m} . (2)

Thereby we reduce the dimension of the problem from n to n-m. In large scale problems one would not do this since this operation can destroy the sparseness of the Hessian H(f) which is critical for computation in very large dimensional problems.

In dense small problem (up to say n = 3000 variables) the above elimination of the constraint Ax = b is a reasonable approach. We will discuss two algorithms to finding F and x_0 . In both cases the columns of F will be orthonormal and hence an orthonormal basis for the null space ker(A).

1.1 Null space with QR-decomposition of A

This approach relies on the relation $ker(A) = Im(A')^{\perp}$, where the prime denotes the matrix transpose and V^{\perp} is the orthogonal complement of a subspace V. Recall that

$$n = \dim(\ker(A)) + \dim(\ker(A)^{\perp}) = \dim(\ker(A)) + \dim(\operatorname{Im}(A'))$$
$$= (n - m) + \dim(\operatorname{Im}(A')).$$

Thus dim(Im(A')) = m. We will find the range Im(A') and its orthogonal complement using the QR-decomposition of the transpose A' (which has dimension $n \times m$, i.e. maps from \mathbb{R}^m to \mathbb{R}^n):

$$A' = QR, (3)$$

where Q is orthogonal and R upper triangular with nonzero diagonal, where R is $p \times m$ (i.e. maps from $\mathbb{R}^m \to \mathbb{R}^p$ and Q is $m \times p$, i.e maps from $\mathbb{R}^p \to \mathbb{R}^m$.

In such a factorization Q and R must be $n \times p$ and $p \times m$ respectively, since A' is $n \times m$. Moreover $rank(Q) \ge rank(A') = rank(A) = m$ and so we must have $p \ge m$. Because the columns of Q are linearly independent and of dimension n we also must have $p \le n$.

Indeed such factorizations exist for all $m \leq p \leq n$ but in practice (i.e. available in libraries) there are only two flavours:

(A) The reduced (minimal) form gives us R as an $m \times m$ matrix and $Q = [q_1, \ldots, q_m]$ as an $n \times m$ matrix with m-columns $q_j \in \mathbb{R}^n$. It follows that R maps onto $\mathbb{R}^m = dom(Q)$ and hence

$$Im(A') = Im(Q) = span(q_1, \dots, q_m).$$

From this we see that $ker(A) = Im(A')^{\perp} = span(q_1, \ldots, q_m)^{\perp}$ but if we use the reduced form we have to compute this orthogonal complement ourselves. In other words we have to extend $\{q_1, \ldots, q_m\}$ to an orthonormal basis $\{q_1, \ldots, q_m, q_{m+1}, \ldots, q_n\}$ of \mathbb{R}^n ourselves.

In R the minimal form is obtained as follows

$$qrA \leftarrow qr(t(A)); Q \leftarrow qr.Q(qrA); R \leftarrow qr.R(qrA)$$

Here we first compute a QR-decomposition object qrA and from this object extract the matrices Q and R using the helper functions qr.Q and qr.R.

The intermediate forms of the decomposition (3) with $m \leq p \leq n$ extend this matrix Q by adding (arbitrarily) orthonormal columns on the right

$$Q \to Q_+ = [q_1, \dots, q_m, q_{m+1}, \dots q_p]$$

and adjusting the matrix R by adding zero rows at the bottom (so that R becomes $p \times m$. This of course does not change the matrix product QR as we can see from block multiplication

$$Q_+ = [Q, Q_1], \ R_+ = \begin{pmatrix} R \\ 0 \end{pmatrix} \implies Q_+ R_+ = QR + Q1 * 0 = QR.$$

(B) The full (maximal) form of the decomposition has p = n, that is, the columns of Q have been extended to a full orthonormal basis of \mathbb{R}^n and so clearly

$$ker(A) = Im(A')^{\perp} = span(q_1, \dots, q_m)^{\perp} = span(q_{m+1}, \dots, q_n).$$
 (4)

In other words the matrix F can be chosen to be the matrix with columns q_{m+1}, \ldots, q_n :

$$F = [q_{m+1}, \dots, q_n] \in Mat_{n \times (n-m)}(\mathbb{R}). \tag{5}$$

To get a special solution x_0 of Ax = b note that A = R'Q' and solve the factored form R'Q'x = b. Set y = Q'x. Then forward solve the lower triangular system R'y = b and get x from Q'x = y as x = Qy.

To get the complete factorization $A' = Q_+ R_+$ in R we do

and then extract the matrix Q via $\mathbb{Q} \leftarrow \mathbb{Qp[,1:m]}$. R is already in incomplete form (no zero rows at bottom) since we have not specified complete=TRUE in the function $\mathbb{qr}.R$ (the default is complete=FALSE).

With this the factorization of A' becomes A' = QR (and not A' = QpR) and this is what we need in the computation of the special solution x_0 above. The QR factorization is computed by repeatedly applying (orthogonal) Householder updates and is thus a very stable algorithm.

1.2 Nullspace via SVD decomposition of A

We can also compute the nullspace ker(A) and special solution x_0 of Ax = b using the more involved SVD-decomposition of A:

$$A = U\Sigma V'$$

where $U \in Mat_{m \times m}(\mathbb{R})$ and $V \in Mat_{n \times m}(\mathbb{R})$ are orthonormal matrices and Σ is an $m \times n$ diagonal matrix with entries

$$\sigma_1 \geq \sigma_2 \cdots \geq \sigma_m \geq 0$$

(the singular values of A). Since rank(A) = m we must have $\sigma_i > 0$ and so the matrix Σ is invertible. Write $V = [v_1, \dots, v_m]$, where the $v_j \in \mathbb{R}^n$ are the columns of V. Thus, for all $x \in \mathbb{R}^n$,

$$Ax = 0 \iff U\Sigma V'x = 0$$

$$\iff \Sigma V'x = 0$$

$$\iff 0 = V'x = (v_1 \cdot x, v_2 \cdot x, \dots, v_m \cdot x)' = 0$$

$$\iff x \perp \{v_1, \dots, v_m\}$$

$$\iff x \in span(v_{m+1}, \dots, v_n)$$

In other words

$$ker(A) = span(v_{m+1}, \dots, v_n). \tag{6}$$

where $v_{m+1}, \ldots, v_n \in \mathbb{R}^n$ are vectors which extend v_1, \ldots, v_m to an ON-basis of \mathbb{R}^n . To get the full $n \times n$ matrix

$$V_+ = [V, v_{m+1}, \dots, v_n]$$

we must compute the SVD in R via

Now a particular solution of $U\Sigma V'x=Ax=b$ can be found by solving $\Sigma V'x=U'b:=c$ which is equivalent to

$$V'x = (c_1/\sigma_1, \dots, c_m/\sigma_m)',$$

A particular solution of this is given by

$$x_0 = Vw$$
, where $w = (c_1/\sigma_1, \dots, c_m/\sigma_m)' \in \mathbb{R}^m$. (7)

since the columns of V are orthonormal.