代数幾何まとめノート

Fefr

2024年5月29日

目次

第Ⅰ早 1.1	Scheme Zariski Topology	5 5
1.2	Algebraic Sets	
1.3	Sheaves	5
第2章	極限	11

Scheme

第1章

1.1 Zariski Topology

atodekakuyo

1.2 Algebraic Sets

atodekakuyo

1.3 Sheaves

Definition 1.3.1. X を位相空間とする。X 上の (Pーベル群の) **前層** (presheaf) F とは 次のデータ

- U を任意のX の開集合に対して $\mathcal{F}(U)$ はアーベル群。
- 制限写像 (restriction map) と言われる群準同型 $\rho_{U,V}:\mathcal{F}(U)\to\mathcal{F}(V)$ が任意の開集合 $V\subset U$ に対して存在する。

そして次の条件を満たす。

- (1) $\rho_{U,U} = \mathrm{id}_{\mathcal{F}(U)}$
- (2) 任意の開集合 $W \subset V \subset U$ に対して $\rho_{U,W} = \rho_{V,W} \circ \rho_{U,V}$ となる。

 $s \in \mathcal{F}(U)$ を U 上の \mathcal{F} の切断 (section) という。また、 $\rho_{U,V}(s) \in \mathcal{F}(V)$ を $s|_V$ と書いて s の

第 1. SCHEME

Vへの制限という。

Definition 1.3.2. 前層 \mathcal{F} が層 (sheaf) とは次の条件を満たすことをいう。

- (4) (Uniqueness) U を X の開集合とし $\{U_i\}_i$ をその開被覆とする。 $s \in \mathcal{F}(U)$ が任意の i に対して $s|_{U_i}=0$ ならば s=0
- (5) (Glueing local sections) 上の状況で、 $s_i \in \mathcal{F}(U_i)$ が $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ を満たすならば、 $s|_{U_i} = s_i$ を満たす $s \in \mathcal{F}(U)$ が存在する。

Remark . \mathcal{F} が層ならば $\mathcal{F}(\emptyset) = 0$ となる。

Example 1.3.1. *X* を位相空間とする。

 \mathcal{C}_X^0 を X の開集合 U に対して $U \to \mathbf{C}$ なる連続写像全体の集合 $\mathcal{C}_X^0(U)$ を対応させるものとし、制限写像を普通の制限とする。すると、 \mathcal{C}_X^0 は X 上の層となる。

Proof. $V \subset U$ なる開集合 U,V に対して U 上の連続写像 $f \in \mathcal{C}_X^0(U)$ を V に制限することによって得られる V 上の連続写像を $\rho_{U,V}(f)(=f|_V)$ と書く。すると、これは \mathbf{C} 上のベクトル空間 (\mathbf{C} 上の関数空間) の準同型 $\rho_{U,V}:\mathcal{C}_X^0(U) \to \mathcal{C}_X^0(V)$ となる。つまり (\mathcal{C}_X^0,ρ) は前層となる。

また、(4) を満たすのは明らかで。(5) もすぐに成り立つことがわかる。 $\{U_i\}_i$ をU の開被覆とする。 $f_i \in \mathcal{C}^0_X(U_i)$ が $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$ を満たすとする。するとそれらを張り合わせた関数を f とすればこれは $f \in \mathcal{C}^0_X(U)$ であり、 $f|_{U_i} = f_i$ となる。よって (\mathcal{C}^0_X, ρ) は層となる。これを連続写像が成す層という。 \blacksquare

Example 1.3.2. *X* を位相空間とする。

Aを自明でないアーベル群とする。 \mathcal{A}_X をXの空でない開集合Uに対して $\mathcal{A}_X(U)=A$ に、空集合 \varnothing に対して $\mathcal{A}_X(\varnothing)=0$ に対応させるものとし、制限写像を空でない開集合 $V\subset U$ に対して $\rho_{U,V}=\mathrm{id}_A$ とし、 $\rho_{U,\varnothing}=0$ とする。

すると、 (A_X, ρ) は X 上の前層にはなるが、一般に層とはならない。

Proof. 例えば、X が連結でないとすると、非交差な開集合 U,V があって $X=U\cup V$ とかける。すると $\{U,V\}$ は X の開被覆となる。 $s_U\in \mathcal{A}_X(U)=A$ が $s_U|_{U\cap V}=s_U|_{\varnothing}=0=s_V|_{U\cap V}$ を満たすとする。このとき、任意の $s\in\mathcal{A}_X(X)=A$ で $s|_U=s|_V=s$ となり層とならない。 \blacksquare

Remark . \mathcal{B} を位相空間 X の開基で有限交叉で閉じているものとする。(つまり任意の $U,V\in\mathcal{B}$ に対して $U\cap V\in\mathcal{B}$. e.g. Spec A の開基 $\{D(f)\}_f$) このとき \mathcal{B} -前層 (\mathcal{B} -presheaf) \mathcal{F}_0 とは

- $U \in \mathcal{B}$ に対して $\mathcal{F}_0(U)$ はアーベル群。
- $V \subset U \in \mathcal{B}$ に対して群準同型 $\rho_{U,V} : \mathcal{F}_0(U) \to \mathcal{F}_0(V)$ が定まる。

としたもの。

 \mathcal{B} -層 (\mathcal{B} -sheaf) \mathcal{F}_0 から X 上の層 \mathcal{F} を作ることができる。

位相空間 X の任意の開集合 U をとり、 $\{U_i\}_i$ をその開被覆とする。 $(U_i \in \mathcal{B})$

$$\mathcal{F}(U) := \left\{ (s_i)_i \in \prod_i \mathcal{F}_0(U_i) \; \middle| \;$$
任意の i,j に対して $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}
ight\}$

と定義する。するとこれは開被覆によらない。実際 $\mathcal{F}(U)_{U_i}$ を開被覆 $\{U_i\}_i$ による $\mathcal{F}(U)$ とし、 $\{V_j\}_j$ を別の開被覆とすると、 $\{U_i\cap V_j\}_{i,j}$ はこれら 2 つの細分である。 $\mathcal{F}(U)_{U_i}\to\mathcal{F}(U)_{U_i\cap V_i}$ なる群準同型を $(s_i)_i\mapsto (s_i|_{U_i\cap V_i})_{i,j}$ で定義できる。実際

$$\begin{aligned} s_{i}|_{U_{i}\cap V_{j}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} &= s_{i}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i}|_{U_{i}\cap U_{i'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i}\cap U_{i'}}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} & (\because (s_{i})_{i} \in \mathcal{F}(U)_{U_{i}}) \\ &= s_{i'}\Big|_{(U_{i}\cap V_{j})\cap(U_{i'}\cap V_{j'})} \\ &= s_{i'}|_{U_{i'}\cap V_{j'}}\Big|_{(U_{i}\cap V_{i})\cap(U_{i'}\cap V_{i'})} \end{aligned}$$

より $(s_i|_{U_i\cap V_i})_{i,j}\in\mathcal{F}(U)_{U_i\cap V_i}$

また、 $(s_{ij})_{ij} \in \mathcal{F}(U)_{U_i \cap V_j}$ を取ると、 $(s_{ij})_{ij} = (s_i|_{U_i \cap V_j})$ と出来るので全射 (? ? ? ? ?) Kernel を計算すると

$$s_i|_{U_i \cap V_j} = 0 \quad (\forall i, j)$$

$$s_i|_{U_i} = s_i = 0 \quad (\forall i) \quad (\because (4))$$

よって Kernel が自明なので単射。

Definition 1.3.3. 位相空間 X 上の前層 F と $x \in X$ に対して、x での F の茎 (stalk) F_x という群が定義できる。

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U)$$

ただし、U は x の開近傍をすべてを回る。U 上の切断 $s \in \mathcal{F}(U)$ に対して $x \in U$ の茎 \mathcal{F}_x への自然な群準同型の像を s_x と書いて、x での s の芽 (germ) という。

Lemma 1.3.3. $\mathcal F$ を X 上の層とする。 $s,t\in\mathcal F(X)$ が任意の $x\in X$ に対して $s_x=t_x$ ならば s=t

8 第 1. SCHEME

Proof. 差を考えれば t=0 のときを考えればいい。 $s_x=0$ ($\forall x\in X$) とすると、x の開近傍 U_x があって $s|_{U_x}=0$ となる。 $\{U_x\}_{x\in U_x}$ は X の開被覆なので、s=0 となる。

Definition 1.3.4. $X \perp 0$ 2 つの前層 \mathcal{F}, \mathcal{G} とする。**前層の射** $\alpha : \mathcal{F} \rightarrow \mathcal{G}$ とは、X の開集 合 U に対して群準同型 $\alpha(U) : \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ があって、任意の開集合の組 $V \subset U$ に対して $\alpha(V) \circ \rho_{UV}^{\mathcal{F}} = \rho_{UV}^{\mathcal{G}} \circ \alpha(U)$ を満たすことをいう。

X の任意の開集合 U に対して $\alpha(U)$ が単射ならば α は単射であるという。(全射はうまくいかんっぽい?)

 $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の前層の射とする。任意の $x \in X$ に対して α から自然に誘導される群準同型 $\alpha_x: \mathcal{F}_x \to \mathcal{G}_x$ で $(\alpha(U)(s))_x = \alpha_x(s_x)$ が X の任意の開集合 $U, s \in \mathcal{F}(U), x \in U$ で成り立つものが取れる。

 α_x が任意の $x \in X$ で全射なら α が全射であるという。

Example 1.3.4. $X = \mathbb{C} \setminus \{0\}$ としFをX上の正則関数がなす層とし、GをX上の双正則関数のなす層とする。今、任意の開集合U と任意の $f \in \mathcal{F}(U)$ に対して $\alpha(U)(f) = \exp(f)$ で定義される層の射 $\alpha: \mathcal{F} \to G$ が全射であることはよく知られている。しかし $\alpha(X): \mathcal{F}(X) \to \mathcal{G}(X)$ は全射ではない。例えば恒等写像は $\exp(f)$ と書けない。

Proposition 1.3.5. $\alpha: \mathcal{F} \to \mathcal{G}$ を X 上の層の射とする。

$$\alpha$$
 が同型 $\Leftrightarrow \alpha_x$ が同型 $(\forall x \in X)$

Theorem 1.3.6. 位相空間 X 上の前層 \mathcal{F} に対して、前層 \mathcal{F} の層化 (sheafification) \mathcal{F}^{\dagger} は存在する。

Proof. X の開集合U に対して

$$\mathcal{F}^{\dagger}(U) = \left\{ \sigma : U \to \prod_{x \in U} \mathcal{F}_x \,\middle|\, \forall x \in U, x \in \exists V \subset U : \text{open}, \exists s \in \mathcal{F}(V) \text{ s.t. } \sigma(y) = s_y \, (\forall y \in V) \right\}$$

とし、 $V \subset U$ なる開集合に対し、

$$\begin{array}{cccc} \rho_{U,V}^{\mathcal{F}^{\dagger}} : & \mathcal{F}^{\dagger}(U) & \longrightarrow & \mathcal{F}^{\dagger}(V) \\ & & & & & & & & & & & \\ & & & \sigma & \longmapsto & \sigma|_{V} \end{array}$$

が定義できる。実際、任意の $x \in V$ をとる。 $V \subset U$ であり、 $\sigma \in \mathcal{F}^{\dagger}(U)$ より

$$x \in \exists U_0 \subset U : \text{open}, \exists s \in \mathcal{F}(U_0) \text{ s.t. } \sigma(y) = s_y \ (\forall y \in U_0)$$

 $V_0=U_0\cap V,\quad t=s|_{V_0}$ とすると任意の $y\in V_0$ に対して

$$\sigma(y) = \sigma|_V(y) = s_u$$

$$\sigma|_V(y) = t_i$$

さらに帰納極限の定義から $\sigma|_V(y)=t_y$ 次に $\rho_{U,V}^{\mathcal{F}^\dagger}$ が準同型になっていることつまり $\rho_{U,V}^{\mathcal{F}^\dagger}(\sigma+\tau)=\rho_{U,V}^{\mathcal{F}^\dagger}(\sigma)+\rho_{U,V}^{\mathcal{F}^\dagger}(\tau)$ が成り立つことを示そう。 \blacksquare

$$\rho_{U,V}^{\mathcal{F}^{\dagger}}(\sigma+\tau) = \rho_{U,V}^{\mathcal{F}^{\dagger}}(\sigma) + \rho_{U,V}^{\mathcal{F}^{\dagger}}(\tau)$$

極限

第2章

とりあえず、帰納極限だけ述べる。射影極限は双対概念なのでまぁ頑張って。

Definition 2.0.1.(帰納系の定義)

 (Λ, \leq) を順序集合、 \mathscr{C} を圏とする。各 $\lambda \in \Lambda$ に対し、 $X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ が与えられ、 $\lambda \leq \mu$ に対して射 $\varphi_{\mu,\lambda}: X_{\lambda} \to X_{\mu}$ があって次を満たすとき、 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を順系 (direct system) または帰納系 (inductive system) という。しばし $\varphi_{\mu,\lambda}$ を省略して $\{X_{\lambda}\}_{\lambda \in \Lambda}$ や $\{X_{\lambda}\}_{\lambda}$ で表す。

- 任意の $\lambda \in \Lambda$ に他逸して $\varphi_{\lambda,\lambda} = \mathrm{id}_{X_{\lambda}}$
- $\lambda \leq \mu \leq \nu$ なる任意の $\lambda, \mu, \nu \in \Lambda$ に対して $\varphi_{\nu,\lambda} = \varphi_{\nu,\mu} \circ \varphi_{\mu,\lambda}$

Definition 2.0.2.(帰納系の射の定義)

 Λ を順序集合。 $\{X_{\lambda}, \varphi_{\lambda,\mu}\}, \{Y_{\lambda}, \psi_{\lambda,\mu}\}$ を Λ 上の圏 $\mathscr C$ における帰納系とする。このとき $\{X_{\lambda}\}$ から $\{Y_{\lambda}\}$ への射とは $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ なる射の族 $\{f_{\lambda}\}$ で、任意の $\lambda \leq \mu$ に対して $\psi_{\lambda,\mu} \circ f_{\mu} = f_{\lambda} \circ \varphi_{\lambda,\mu}$ となるものを言う。

Definition 2.0.3. \mathscr{C} を圏とし、 Λ を順序集合とする。 $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ を \mathscr{C} の帰納系とする。このとき $\{X_{\lambda}, \varphi_{\mu,\lambda}\}$ の順極限 (direct limit) または帰納的極限 (inductive limit) または帰納極限とは、 \mathscr{C} の対象 $\varinjlim_{\lambda \in \Lambda} X_{\lambda} \in \mathrm{Ob}(\mathscr{C})$ と射の族 $\{\varphi_{\lambda}: X_{\lambda} \to \varinjlim_{\lambda \in \Lambda} X_{\lambda}\}_{\lambda \in \Lambda}$ の組 $\{\varinjlim_{\lambda \in \Lambda} X_{\lambda}, \varphi_{\lambda}\}$ で、次の条件を満たすものをいう。

- $\lambda \leq \mu$ に対して $\varphi_{\mu} \circ \varphi_{\mu,\lambda} = \varphi_{\lambda}$
- $\lambda \leq \mu \ \text{に対して} \ f_{\mu} \circ \varphi_{\mu,\lambda} = f_{\lambda} \ \text{を満たす任意の射の族} \ \{f_{\lambda}: X_{\lambda} \to Y\}_{\lambda \in \Lambda} \ \text{に対し}$ て、 $f: \lim_{\lambda \in \Lambda} X_{\lambda} \to Y$ が一意に存在して

$$f \circ \varphi_{\lambda} = f_{\lambda} \quad (\forall \lambda \in \Lambda)$$

を満たす。

12 第 2. 極限

 \mathbf{Remark} . 一般の圏では帰納極限や射影極限は存在するとは限らない。しかし、存在するとすれば、同型を除いて一意である。

Proposition 2.0.1. 帰納極限は存在すれば、同型を除いて一意である。

Proof. 証明は後で書く。 ■