

EVOLUTIONARY ALGORITHMS

PROJECT REPORT

AUTHOR: EL KHADIR BACHIR

Abstract

This paper presents the results of the application of Evolutionary algorithms on various problems. The problems are different, but the modelling remane the same. The first section presents a generic class EA implementing the base mechanism of genetic algorithm. For each problem, we must find a suitable representation for the individuals (tuple, matrix ...), then we must implement a fitness function and a mutation/crossover operator.

I chose **Python** as a programming langage.

Libraries used:

- numpy/scipy: provides powerful tools to manipulate arrays and generate random numbers
- pydot: allows to easily draw graphs from Python
- pygame: for image rendering
- pyalgotrade: provides financial tools, used only in the last program

Contents

```
1 Implementation of the GA algorithm (file "ga.py")
                      \mathbf{2}
The One-Max problem (file "onemax.py")
                      3
3
The Maximum Matching (file "matching.py")
                      4
5
 4 Euler cycles (file "eulerian cycle.py")
                      6
5 Own Idea
                      9
```

1 Implementation of the GA algorithm (file "ga.py")

The EA class implements the (self adapt) $(1 + (\lambda, \lambda))$ GA in a generic form. The constructor is:

It requires:

- a fitness function to evaluate individuals,
- a mutation operator, by default, this operator is used:

```
def default_mutation(1, x):
    bits_to_change = random.sample(range(len(x)), 1)
    x_mut = list(x)
    for b in bits_to_change:
        x_mut[b] = 1 - x_mut[b]
    return x_mut
```

• a crossover operator

```
def default_crossover(c, x, xx):
    parent = [x, xx]
    parent_choice = bernoulli.rvs(c, size=len(x))
    return [ parent[p][i] for i, p in enumerate(parent_choice) ]
```

• a function that generates l from some distribution. By default, l is generated from a binomial distribution.

```
def default_rule(offspring_size, better_solution_found):
    return offspring_size
```

Then, the run function does all the work. It generate the children, select the best one, does the crossover and mutation phase, adapt λ if needed, and then repeat the process n generations times.

- \bullet *n* is the size of individuals
- x_i init is the initial individual
- $offspring_size$ is λ
- n_qenerations is the maximum number of generations before the function ends
- $self_adapt_rule$ is function that updates λ in each loop. The default rule is the rule that does nothing:

• $max_fitness$: when the fitness of x is greater than $max_fitness$, the function returns immediately

2 The One-Max problem (file "onemax.py")

The implementation of the one-max problem is straight forward. We start with a random vector in $\{0,1\}^n$. Default mutation and crossover operator work fine. For the fitness function, we sum all the bits in x (there is a builtin function sum provided with Python). The code is as follow:

```
ea_algo = ga.EA(fitness=sum)
x_init = np.random.random_integers(0, 1, size=n)
best_x = ea_algo.run(n, x_init, offspring_size=5, n_generations=100)
```

2.1 Stats

All numbers reported are derived from 100 independent runs of the respective algorithms. In all experiments reported below, we set $p = \frac{\lambda}{n}$ and $c = \frac{1}{\lambda}$.

```
For raw data, see "'one
maxstats.zip"'. Stat files contains data in the following format:
 n~\lambda N
```

Where a_i is the result obtained for the i^{th} realisation.

Figure 1: Number of fitness evaluations for $\lambda \in \{1, 4, 8, 12\}$

The 1 + (8 + 8)-EA gives the best results, better than the classic (1+1)-EA. I tried the self-adaptive rule, that is:

$$\lambda = \left\{ \begin{array}{l} \lambda/F \text{ after a successful iteration} \\ \lambda * F^{1/a} \text{ otherwise} \end{array} \right.$$

with $a \in \{3, 4, 6, 9\}$

Figure 2: Number of fitness evaluations for $a \in \{3, 4, 6, 9\}$

Whatever the initial value for λ , the self-adaptive version of the algorithm behave like the best version of the $1+(\lambda+\lambda)$ -EA, that is $\lambda=8$.

3 The Maximum Matching (file "matching.py")

We represent an undirected graph by it's adjacency list. For example:

The function responsible for calculating the degree of a vertex v in ine the subgraph consisting of the edges of M:

```
def deg(M):
    deg_m = np.zeros(n)
    for i, (e, f) in enumerate(edges):
        if M[i]:
          deg_m[e] += 1
          deg_m[f] += 1
        return sum([max(0, d-1) for d in deg_m])
    And the fitness function:

def fitness(M):
    return sum(M) - m * deg(M)
```

3.1 Stats

For raw data see "'matchingstats.zip"'.

3.1.1 First example: rings of size n

Unlike the onemax problem, the traditional (1+1) - EA gives the best results.

3.1.2 Second example: random graphs

Protocol: We took n = 10 fixed and $\lambda \in \{1, 3, 6\}$. I generated N = 1000 independant random graph with n vertices, Each of them chooses uniformly at random 3 friends. The following graph shows how the fitness evolves over time in average.

Solution quality (fitness) evolution over time

Random instance

4 Euler cycles (file "eulerian cycle.py")

We represent graphes by their adjacency matrix.

Individuals are represented by a list of matchings, ie $x = \{M_v \mid v \in V\}$ where each M_v is a dictionnary. **Helper functions:**

```
# Matches e and f
def match(Mv, e, f):
        Mv[e] = f
        Mv[f] = e
def find_match_and_remove(Mv, e):
        # Look for an edge f matched to e
        f = Mv.pop(e, None)
        # Remove the matching (if possible)
        if f is not None:
                        del Mv[f]
        return f
def count_walks(x):
        \# k is the number of independent paths induced by the matching x
        k = 0
        xx = deepcopy(x)
        # Each vertex v, we follow and remove the path induced by the matching
        for v in vertices:
                while len(xx[v]) > 0:
                        e, f = xx[v].popitem()
                        del xx[v][f]
                        is_cycle = False
                        # follow the path in both directions
                        for i, j in [ (e, f), (f, e)]:
                                 # if we have found a cycle, there is no need
                                 # to follow the path in the opposite direction
                                 if is_cycle: break
                                 # s is the current vertex, i the precedent, and j the next
                                 # i -> s -> j
                                 i, s = v, j
```

```
i, s = s, j
                                # we have found a cycle if the last vertex visited == v
                                is_cycle = (i == v)
                                k += 1
        return k
  We can use the default crossover operator.
  We implement the mutation operator as suggested:
def mutation(1, x):
        x_mut = deepcopy(x)
        for _ in range(1):
                # Choose a random vertex v
                v = random.randint(0, n-1)
                Mv = x_mut[v]
                deg_v = sum([edges[v][i] for i in vertices if i != v])
                if deg_v < 2:
                        raise Exception('The graph is not eulerian because
                        vertex %d has deg = %d' % (v, deg_v))
                # if deg(v) == 2, a trivial perfect matching is [ (i, j) ]
                elif deg_v == 2:
                        i, j = [w for w in vertices if edges[v][w] and v != w]
                        match(Mv, i, j)
                else:
                        # Choose a random edge e incident to v,
                        e = random.choice([i for i in vertices if i != v and edges[v][i]])
                        # See if it is matched. If it's the case, remove the match
                        f = find_match_and_remove(Mv, e)
                        # Same thing for (ee, ff)
                        ee = random.choice([i for i in vertices if (not i in[ v, e, f]) and edges[v][i]])
                        ff = find_match_and_remove(Mv, ee)
                        # match (e, ee) and (f, ff) if possible
                        match(Mv, e, ee)
                        if f and ff:
                                match(Mv, f, ff)
        return x_mut
  The fitness function:
def fitness(x):
        k = count_walks(x)
        cycles_penality = nb_edges - sum(map(lambda Mv: len(Mv), x))/2
        return - cycles_penality - (k-1)
  We run the program as follow:
def poisson_distribution(n, p):
   return 1 + np.random.poisson(1)
# Start with empty matchings
best_x = ea_algo.run(n, x_init=x_init, offspring_size=4, n_generations=1000,
                                max_fitness=0, l_distribution=poisson_distribution)
  After the algorithm has finished, we can reconstruct the tour from the maximum matching:
# Reconstruct the tour induced by x
def reconstruct_tour(x, start=0):
```

while j != None:

j = find_match_and_remove(xx[s], i)

```
xx = deepcopy(x)
if len(xx[start]) == 0: return []

# v is the current vertex, i the precedent, and j the next
# i -> v -> j
i, j = xx[start].popitem()
path = [i, start, j]
i, v = start, j
while j is not None:
    j = find_match_and_remove(xx[v], i)
    path.append(j)
    i, v = v, j
return path[:-1]
```

4.1 Some Tests

See the file "graph.py" for graph creation and rendering.

Example of tours found by the algorithm

For the following simulations, I compare the average optimization time of the $(1+(\lambda,\lambda))$ GA for l following the B(n,p) distribution and P(1) distribution. As graph instance, I took triangular graphs:

when l follows a binomial distribution, the performance is independent from the value of λ . When l follows a poisson distribution, it's better to choose $\lambda = 1$.

For raw data, see "eulerstats.zip".

5 Own Idea

5.1 The N-Queen's Problem (file "chess.py")

In chess, a queen can move horizontally, vertically, or diagonally. Given a chess board with N rows and N columns, N-Queen's problem asks how to place N queens on the chess board so that none of them can hit any other in one move.

Since the number of queens is equal to the number of rows/columns, in each row there is exactly one queen, and two different queens are placed in two different columns. Therefore a configuration (position of the queens on the chess board) is represented with a permutation of $\{0, ..., N-1\}$. An individual is a N-tuple $x = (x_1, ..., x_N)$, where $0 \le x_i < N$ is the column of the queen placed on the row i. We start with the N-tuple (0, ..., N-1):

```
x_init = range(n)
```

With this representation, there will be no queens on the same row/column. We only have to check for possible collisions diagonally. The **fitness** function counts the number of those collisions:

```
def fitness(t):
    x = np.zeros((n , n))
    for i, j in enumerate(t):
        x[i][j] = 1

s = 0
# diags
for k in range(-n + 1, n):
        # diag (i, i+k) (n-i-1, i+k)
        q_diag = sum([ x[i][i + k] for i in range(max(0, -k), min(n, n - k))])
        s += max(0, q_diag - 1)
        q_diag = sum([ x[n - i - 1][i + k] for i in range(max(0, -k), min(n, n - k))])
        s += max(0, q_diag - 1)
        return -s
```

The **mutation** operator select l random elements, and permutates them randomly:

```
def mutation(1, x):
    # selection of the bits to mutate
    bits_to_change = random.sample(range(len(x)), 1)
# apply a random permutation to bits_to_change
```

The **crossover** operator select a parent p: x with probability c and xx with probability 1-c. Then it find an element that is not already present in the child y, add it to y, and then repeat n times:

Figure 3: A Valid configuration

(see the file "draw.py" for drawing function)

5.2 2D Image reconstruction (file "2d reconstruct.py")

This program tries to rebuild a 2D grey scale image using only disks. Individuals are strings representing a list of 256 circles $\{(x, y, radius, color, alpha)\}$ in binary format where:

- x and y are the position of the center of the circle
- color is an integer between 0 and 255 giving the tone of grey the circle must be filled with
- *alpha* is the transparency

The fitness function is a per-pixel RGB comparison:

```
def fitness(x):
    draw_spheres(x)
    pixels = array2d(srf)
    return -np.linalg.norm((reference_pixels - pixels) / M)
```

Since we use a string based representation, we can use the default crossover and mutation operators as in the first algorithm.

Here is the result:

Figure 4: Source image

Figure 5: Evolution

5.3 Finance (file "finance.py")

Genetic algorithm can be used in trading. Trading strategies (individuals) can be represented by boolean trees, for instance:

Figure 6: A tree representing a trading strategy

It can be interpreted as a boolean value like this: If:

• the average of the 50 last stock values is less the actual price and the min of the 6 last stock values is less the actual price. then answer True, else False

If the answer is True, then send a BUY signal, and SELL signal otherwise. See the file "'rules.py"' for the tree representaion.

- The fitness is the benefit we gain if we apply this strategy daily during a year to a given share (ORACLE for example). I use the library **pyalgotrade** to calculate the fitness.
- The mutation operator changes some random nodes of the tree.
- The crossover operator takes a sub tree of x and replace it by a sub tree of xx.

The output of the program is a tree like this:

Figure 7: Best trading strategy

This strategy has a fitness of 76\$.