

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

льный исследовательский универси (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № _4__

Название: Исследование мультиплексоров

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-43Б		Р.Р. Хамзина
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Полпись, дата)	(И.О. Фамилия)

Цель работы: изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Ход работы:

Мультиплексор - функциональный узел, имеющий п адресных входов и $N=2^n$ информационных входов и выполняющий коммутацию на выход того информационного сигнала, адрес (т.е. номер) которого установлен на адресных входах. Мультиплексор переключает сигнал с одной из N входных линий на один выход.

- 1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 1 цифровых сигналов.
- а) на информационные входы $D_0...D_7$ мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения $U = 5 \, \mathrm{B}$ и 0 B (общая);
- б) на адресные входы A_2 , A_1 , A_0 подать сигналы Q_3 , Q_2 , Q_1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой $500 \text{ к}\Gamma\text{u}$.

Для варианта 19 D0...D7 = 11000110.

Рисунок 1 — Схема с мультиплексором ADG508 в качестве коммутатора MUX 8 — 1 цифровых сигналов, на информационных входах $D_0...D_7$ мультиплексора — последовательность 11000110

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Рисунок 2 — Временная диаграмма сигналов при EN = 1 схемы с мультиплексором ADG508, последовательность 11000110

- 2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 1 аналоговых сигналов:
- а) на информационные входы $D_0...D_7$ мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A_2 , A_1 , A_0 подать сигналы Q_3 , Q_2 , Q_1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q_0). На вход счетчика подать импульсы генератора с частотой $500 \text{ к}\Gamma$ ц;

Рисунок 3 — Схема с мультиплексором ADG508 в качестве коммутатора MUX 8 — 1 цифровых сигналов, на информационных входах $D_0...D_7$ мультиплексора - дискретные уровни напряжений с источников напряжения UCC

в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора – на логическом анализаторе и осциллографе.

Рисунок 4 — Временная диаграмма сигналов при EN = 1 схемы с мультиплексором ADG508, дискретные уровни напряжений с источников напряжения UCC

Рисунок 5 – Наблюдение выходного сигнала на осциллографе

Рисунок 6 - Схема с мультиплексором ADG508 в качестве коммутатора MUX 8-1 цифровых сигналов, на информационных входах $D_0...D_7$ мультиплексора - дискретные уровни напряжений с источников напряжения UCC с катушкой индуктивности

Рисунок 7 - Наблюдение выходного сигнала на осциллографе с катушкой индуктивности

3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8-1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных. ФАЛ задается преподавателем из табл. 2. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

Для варианта 19 Φ АЛ = 0, 1, 3, 4, 7, 9 10, 11, 13.

№	x4	x3	x2	x1	f	Di
0	0	0	0	0	1	D0: 1
1	0	0	0	1	1	
2	0	0	1	0	0	D1: x1
3	0	0	1	1	1	
4	0	1	0	0	1	D2: ~x1
5	0	1	0	1	0	
6	0	1	1	0	0	D3: x1
7	0	1	1	1	1	
8	1	0	0	0	0	D4: x1
9	1	0	0	1	1	
10	1	0	1	0	1	D5: 1
11	1	0	1	1	1	
12	1	1	0	0	0	D6: x1
13	1	1	0	1	1	
14	1	1	1	0	0	D7: 0
15	1	1	1	1	0	

Таблица 1 — Таблица истинности для Φ АЛ = 0, 1, 3, 4, 7, 9 10, 11, 13

Рисунок 8 — Схема с мультиплексором ADG508 как коммутатором MUX 8 — 1 цифровых сигналов в качестве формирователя Φ AЛ четырех переменных

Рисунок 9 — Временная диаграмма сигналов при EN = 1 схемы с мультиплексором ADG508 как коммутатором MUX 8 — 1 цифровых сигналов в качестве формирователя Φ AЛ четырех переменных

4. Наращивание мультиплексора. Построить схему мультиплексора MUX 16 - 1 на основе простого мультиплексора MUX 4 - 1 и дешифратора DC 2-4 (рис.2, второй вариант наращивания, см. выше). Исследовать мультиплексора MUX 16 - 1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 - из табл. 2. Провести анализ временной диаграммы сигналов мультиплексора MUX 16 - 1.

Рисунок 10 – Схема мультиплексора MUX 16 – 1 на основе простого мультиплексора MUX 4 – 1 и дешифратора DC 2-4

Рисунок 11 - Временная диаграмма сигналов мультиплексора MUX 16 — 1 для набора значений 1101 1001 0111 0100

Вывод по лабораторной работе: были изучены принципы построения мультиплексоров и реализованы функции мультиплексоров.

Контрольные вопросы

1. Что такое мультиплексор?

Мультиплексор - функциональный узел, имеющий п адресных входов и N= 2ⁿ информационных входов и выполняющий коммутацию на выход того информационного сигнала, адрес (т.е. номер) которого установлен на адресных входах. Мультиплексор переключает сигнал с одной из N входных линий на один выход.

2. Какую логическую функцию выполняет мультиплексор?

$$Y = EN \cdot \bigvee_{j=0}^{2^{n}-1} D_{j} \cdot m_{j} (A_{n-1}, A_{n-2}, ..., A_{i}, ..., A_{1}, A_{0}),$$

 A_i – адресные входы и сигналы, i=0, 1, ..., n-1;

 D_{j} - информационные входы и сигналы, j=0, 1,..., ;

 m_j - конституента единицы (конъюнкция всех переменных A_i), номер которой равен числу, образованному двоичным кодом сигналов на адресных входах; EN- вход и сигнал разрешения (стробирования).

3. Каково назначение и использование входа разрешения?

Вход разрешения ЕN используется:

- собственно для разрешения работы мультиплексора;
- для стробирования;
- для наращивания числа информационных входов.

При EN=1 разрешается работа мультиплексора и выполнение им своей функции, при EN=0 работа мультиплексора запрещена и на его выходах устанавливаются неактивные уровни сигналов.

4. Какие функции может выполнять мультиплексор?

Мультиплексоры широко применяются для построения:

- коммутаторов-селекторов;
- постоянных запоминающих устройств емкостью 2ⁿ×1 бит;
- комбинационных схем, реализующих функции алгебры логики;
- преобразователей кодов (например, параллельного кода в последовательный) и других узлов.
 - 5. Какие способы наращивания мультиплексоров?

- по пирамидальной схеме соединения мультиплексоров меньшей размерности;
- путем выбора мультиплексора группы информационных входов по адресу (т.е. номеру) мультиплексора с помощью дешифратора адреса мультиплексора группы, а затем выбором информационного сигнала мультиплексором группы по адресу информационного сигнала в группе.
 - 6. Поясните методику синтеза формирователя ФАЛ на мультиплексоре?

Реализация Φ АЛ п переменных на мультиплексоре с п-адресными входами: на адресные входы подаются переменные, на информационные входы — значения Φ АЛ на соответствующих наборах переменных. На выходе мультиплексора образуются значения Φ АЛ в соответствии с наборами переменных.

Для реализации Φ АЛ n+1 переменных на адресные входы мультиплексора подаются n переменных, на информационные входы — (n+1)-я переменная или ее инверсия, константы 0 или 1 в соответствии со значениями Φ АЛ.

7. Почему возникают ложные сигналы на выходе мультиплексора? Как их устранить?

Для исключения на выходе ложных сигналов, вызванных гонками входных сигналов, вход EN используется как стробирующий: для выделения полезного сигнала на вход EN подается сигнал в интервале времени, свободном от действия ложных сигналов.