

Description

The VSM80N06 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_{D} = 80A$ $R_{DS(ON)} < 8.5 \text{m}\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- PWM
- Load Switching

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N06-T3	VSM80N06	TO-263	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	80	A A A W	
Drain Current-Continuous(T _C =100°C)	I _D (100℃)	56.5		
Pulsed Drain Current	I _{DM}	320		
Maximum Power Dissipation	P _D	110		
Derating factor		0.73	W/℃	
Single pulse avalanche energy (Note 5)	avalanche energy ^(Note 5) E _{AS}		mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	1.36	°C/W
---	-------------------	------	------

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250µA	2	2.8	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	7	8.5	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	20	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	.,	-	4000	-	PF
Output Capacitance	Coss	V_{DS} =30V, V_{GS} =0V, F=1.0MHz	-	290	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	210	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	8.5	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =1 Ω	-	7	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =3 Ω	-	40	-	nS
Turn-Off Fall Time	t _f		-	15	-	nS
Total Gate Charge	Q_g	V 20VI 20A	-	90		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=30V,I_{D}=20A,$ $V_{GS}=10V$	-	9		nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	18		nC
Drain-Source Diode Characteristics		•				
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	32	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	45	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature}.$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** E_{AS} condition : $Tj{=}25^{\circ}\text{C}, V_{DD}{=}30\text{V}, V_{G}{=}10\text{V}, L{=}0.5\text{mH}, Rg{=}25\Omega$

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance