Zginanie czyste

Wymiary stanowiska pomiarowego

		P	0-				
l[mm]	a[mm]	E[MPa]	b[mm]	h[mm]	$A[mm^2]$	$I_y[mm^4]$	$W_Y[mm^3]$
1000	296	$2.1 * 10^5$	30	20	600	$2*10^4$	$2*10^{3}$

Wyniki pomiarów

lp.	P[N]	$c_i[mm]$	$f_c = c_i - c_0[mm]$	$\epsilon_i[tens8]$	$\epsilon_i[tens9]$	$\epsilon_i[tens9] - \epsilon_0[tens9]$
0	0	7.5	0	0	- 0.156	0
1	49.05	7.93	0.43	0.036	-0.123	0.033
2	98.1	8.35	0.85	0.073	-0.088	0.068
3	147.15	8.79	1.29	0.112	-0.053	0.103
4	196.2	9.22	1.72	0.15	-0.017	0.139
5	215.82	9.39	1.84	0.164	-0.004	0.152

Wyznaczanie doświadczalnej wartości modułu Younga na podstawie pomiaru czujnikowego

Strzałka ugięcia:
$$f_c = \frac{Pal^2}{8EJ_y}$$

Bład względny:

$$E = \frac{Pal^2}{8J_u f_c} \qquad \qquad \frac{|E_i - E|}{E} * 100\%$$

$$E_1 = \frac{49.05N*0.296m*1^2m}{8*2*10^-8m^4*0.43*10^-3m} \approx 211.029GPa \quad \frac{|211.029GPa - 210GPa|}{210GPa} * 100\% = 0.49\%$$

$$E_2 = \frac{98.1N*0.296m*1^2m}{8*2*10^{-8}m^4*0.85*10^{-3}m} \approx 213.512GPa \quad \frac{|213.512GPa-210GPa|}{210GPa} * 100\% \approx 1.67\%$$

$$E_3 = \frac{147.15N*0.296m*1^2m}{8*2*10^{-8}m^4*1.29*10^{-3}m} \approx 211.029GPa \quad \frac{|211.029GPa - 210GPa|}{210GPa} * 100\% = 0.49\%$$

$$E_4 = \frac{196.2N*0.296m*1^2m}{8*2*10^{-}8m^4*1.72*10^{-}3m} \approx 211.029GPa \quad \frac{|211.029GPa - 210GPa|}{210GPa} * 100\% = 0.49\%$$

$$E_5 = \frac{215.82N*0.296m*1^2m}{8*2*10^{-8}m^4*1.84*10^{-3}m} \approx 216.993GPa \quad \frac{|216.993GPa - 210GPa|}{210GPa} * 100\% = 3.33\%$$

2.3.2 Wyznaczanie doświadczalnej wartości modułu Younga na podstawie pomiaru tensometrycznego $E=\frac{\sigma}{\epsilon}=\frac{M_gz}{I_y\epsilon}=\frac{Pah}{2I_y\epsilon}$

$$E = \frac{\sigma}{\epsilon} = \frac{M_g z}{I_{v \epsilon}} = \frac{Pah}{2I_{v \epsilon}}$$

$$E_{18} = \frac{49.05N*0.296m*2*10^{-2}m}{2*2*10^{-8}m^4*0.036*10^{-3}} \approx \frac{198.888-210|}{210} * 100\% \approx 5.29\%$$

$$E_{28} = \frac{98.1N*0.296m*2*10^{-2}m}{2*2*10^{-8}m^4*0.036*10^{-3}} \approx 198.888MPa \qquad \frac{|198.888-210|}{210} * 100\% \approx 5.29\%$$

$$E_{38} = \frac{147.15N*0.296m*2*10^{-2}m}{2*2*10^{-8}m^4*0.036*10^{-3}} \approx \frac{|198.888-210|}{210} * 100\% \approx 5.29\%$$

$$E_{48} = \frac{196.2N*0.296m*2*10^{-2}m}{2*2*10^{-8}m^4*0.036*10^{-3}} \approx \frac{|198.888-210|}{210} * 100\% \approx 5.29\%$$

$$E_{58} = \frac{215.82N*0.296m*2*10^{-2}m}{2*2*10^{-8}m^4*0.036*10^{-3}} \approx 194.764 \text{ MPa} \qquad \frac{|194.764-210|}{210} * 100\% \approx 7.26\%$$

2.3.3 Wyznaczyć wartość doświadczalną krzywizny osi belki na podstawie pomiaru:

a) czujnikowego:

Korzystając z:
$$f_c = \frac{Pal^2}{8EJ_y}$$

$$f_{c1} = \frac{215.82*0.296*1}{8*210*10^6*2*10^{-8}m^4} = 0.0036m = 3.6mm$$

$$f_{c2} = \frac{98.1*0.296*1}{8*210*10^6*2*10^{-8}m^4} = 0.00864m = 0.8646mm$$

$$f_{c3} = \frac{215.82*0.296*1}{8*210*10^6*2*10^{-8}m^4} = 0.0036m = 3.6mm$$

$$f_{c4} = \frac{215.82*0.296*1}{8*210*10^6*2*10^{-8}m^4} = 0.0036m = 3.6mm$$

$$f_{c5} = \frac{215.82*0.296*1}{8*210*10^6*2*10^{-8}m^4} = 0.0036m = 3.6mm$$

b) tensometrycznego dla wskazanego obciążenia wraz z porównaniem z wielkością teoretyczną(wraz z błędem względnym):

Zginanie poprzeczne

P[N]	c_{1i}	c_{2i}	$\epsilon_i(13)$	$\epsilon_i(14)$	$\epsilon_i(15)$	$\epsilon_i(16)$
$P_0 = 0$	0.25	7.1	0	-0.72	-0.139	-0.118
$P_1 = 20$	3.4	5.65	0.023	-0.687	-0.129	-0.086
$P_2 = 50$	5.13	3	0.075	-0.621	-0.106	-0.028
$P_1 + P_2 = 70$	8.45	1.6	0.098	-0.588	-0.095	0.003

3.3

c) zweryfikować zgodność naprężeń doświadczalnych w przekroju "13" z war-

tością teoretyczną:

Naprężenie teoretyczne:
$$\sigma = \frac{M_y h}{I_y 2}$$

Wartość rzeczywista: $\sigma_2 = \varepsilon * E$

Błąd względny:
$$\frac{|\sigma_i - \sigma|}{\sigma} * 100\%$$

$$\sigma_1 = \frac{M_{y_1}h}{I_y 2}$$

$$M_{y_1}$$

$$\sigma_2 = \frac{M_{y_2}h}{I_y 2}$$

$$\frac{|\sigma_1 - \sigma|}{\sigma} * 100\%$$

$$\sigma_2 = \frac{M_{y_2}h}{I_y2} \qquad \qquad \frac{|\sigma_2 - \sigma|}{\sigma} * 100\%$$

$$M_{y_2} = P_2 * 0.42m = 20.1Nm \qquad I_{y_2} = \frac{0.03*0.018^3}{12} = 1.46*10^{-8}m^4$$

$$\sigma_2 = \frac{20.1Nm*0.018m}{1.46*10^{-8}*2} = 12.4MPa \qquad \sigma_2 = 270*10^6*0.075 = 20.25MPa$$

$$\frac{|12.4 - 20.25|}{20.25} * 100 = 38.77\%$$

$$\sigma_3 = \frac{M_{y_3}h}{I_y 2} \qquad \frac{|\sigma_3 - \sigma|}{\sigma} * 100\%$$

$$M_{y_3} =$$

e) zweryfikować zasadę de Saint Venanta porównując naprężenia doświadczalne w przekroju "14" z wartością teoretyczną: Przez zastosowanie karbu, zasada Saint Venanta nie obowiązuje w tym przekroju.

P[N]	c'_{1i}	c'_{2i}	$\epsilon_i(13)$	$\epsilon_i'(14)$	$\epsilon_i'(15)$	$\epsilon_i'(16)$
$P_0 = 0$	0	0	0	0	0	0
$P_1 = 20$	3.15	1.45	0.023	0.033	0.01	0.032
$P_2 = 50$	4.88	4.1	0.075	0.099	0.033	0.09
$P_1 + P_2 = 70$	8.2	5.5	0.098	0.132	0.044	0.121

Zasada superpozycji - suma przemieszczeń z pierwszego i drugiego obciążenia osobno jest przemieszczeniem dla sumy obciążeń:

Powyższe wyniki, z powodu niskich błędów względnych (mniej niż 3%), można uznać za wiarygodne sprawdzenie zasady superpozycji na przykładzie zginanej belki.

Zasada Bettiego - praca wykonana przez pierwsze obciążenie na przemieszczeniu wywołanym drugim obciążeniem jest równa pracy drugiego obciążenia na przemieszczeniu wywołanym przez pierwsze:

$$P1 * c_{12} = P2 * c_{21}$$

$$20$$
 N * 4.88 mm = 50 N * 1.45 mm

$$97.6 \text{ N} * \text{mm} \approx 72.5 \text{ N} * \text{mm}$$

W przypadku zasady Bettiego wyniki doświadczalne odbiegają od założeń teoretycznych. Przyczyną tego mogą być nieliniowości w badanym ustroju.

Zginanie ukośne

	$V_i[N]$	$\epsilon_i(1)$	$\epsilon_i(2)$	$\epsilon_i(3)$	$\epsilon_i(4)$
0	0	0	-0.077	-0.299	-0.257
1	50	0.277	-0.16	-0.377	-0.16
2	70	0.39	-0.195	-0.41	-0.13
	$V_i[N]$	$\epsilon_i(1)$	$\epsilon_i'(2)$	$\epsilon_i'(3)$	$\epsilon_i'(4)$
	$v_{i}[Iv]$	$\epsilon_i(1)$	$\epsilon_i(z)$	$c_i(\mathbf{o})$	$\mid \epsilon_i(\mathbf{a}) \mid$
0	0	0	0	0	0
0	$\begin{bmatrix} v_i[1v] \\ 0 \\ 50 \end{bmatrix}$	$\frac{e_i(1)}{0}$ 0.277	$\frac{\epsilon_i(2)}{0}$ -0.083	0 -0.078	$\frac{e_i(4)}{0}$ 0.097

$$dural - E = 73 GPa$$

Wartości doświadczalne naprężeń ($\sigma = |\epsilon * E|$):

$$\sigma_1 = 0.277\% * 73GPa = 20.221MPa$$

$$\sigma_2 = -0.083\% * 73GPa = -6.059MPa$$

$$\sigma_3 = -0.078\% * 73GPa = -5.694MPa$$

$$\sigma_4 = 0.097\% * 73GPa = 7.081MPa$$

Współrzędne środka ciężkości:

$$x_c = \frac{30mm*5mm*15mm+45mm*5mm*27.5mm}{30mm*5mm+45mm*5mm} = 22.5mm$$

$$y_c = \frac{30mm*5mm*2.5mm+45mm*5mm}{30mm*5mm+45mm*5mm} = 17.5mm$$

$$S_c = [22.5mm; 17.5mm]$$

$$y_c = \frac{30mm*5mm*2.5mm+45mm*5mm*27.5mm}{30mm*5mm+45mm*5mm} = 17.5mm$$

$$S_c = [22.5mm; 17.5mm]$$

Momenty bezwładności względem osi x_1 i y_1 :

$$I_{x_1} = \frac{5mm*(45mm)^3}{12} + 5mm*43mm*(27.5mm - 17.5mm)^2 + \frac{30mm*(5mm)^3}{12} + 5mm*30mm*(17.5mm - 2.5mm)^2 = 59468.75mm^4 + 34062.5mm^4 = 10.5mm^4 + 34062.5mm^4 + 34062.5mm^4 = 10.5mm^4 + 34062.5mm^4 = 10.5mm^4 + 34062.5mm^4 = 10.5mm^4 +$$

$$I_{y_1} = \frac{5mm*(30mm)^3}{12} + 5mm*30mm*(22.5mm - 15mm)^2 + \frac{45mm*(5mm)^3}{12} + 45mm*5mm*(27.5mm - 22.5mm)^2 = 19687.5mm^4 + 6093.75mm^4 = 25781.25mm^4$$

Moment dewiacyjny względem układu x_1y_1 :

 $I_{x_1y_1} = 0 + (22.5mm - 15mm) * (17.5mm - 2.5mm) * 30mm * 5mm + 0 + (27.5mm - 22.5mm) * (27.5mm - 17.5mm) * 45mm * 5mm = 28125mm^4$ Momenty główne bezwładności:

$$I = \frac{I_{x_1} + I_{y_1}}{2} \pm \sqrt{\left(\frac{I_{x_1} + I_{y_1}}{2}\right)^2 + I_{x_1 y_1}^2}$$

$$I_1 = \frac{93531.25mm^4 + 25781mm^4}{2} + \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + (28125mm^4)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} + \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + (28125mm^4)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} + \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + (28125mm^4)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} + \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + \left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2} = \frac{93531.25mm^4 + 25781.25mm^4}{2} + \frac{93531.25mm^4}{2} + \frac{93$$

 $107562.78mm^4$

$$I_2 = \frac{93531.25mm^4 + 25781mm^4}{2} - \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + (28125mm^4)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} - \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + (28125mm^4)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} - \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + (28125mm^4)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} - \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + \left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2} = \frac{93531.25mm^4 + 25781mm^4}{2} - \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + \left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2} = \frac{93531.25mm^4 + 25781.25mm^4}{2} - \sqrt{\left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2 + \left(\frac{93531.25mm^4 + 25781.25mm^4}{2}\right)^2} = \frac{93531.25mm^4 + 25781.25mm^4}{2} - \frac{93531.25mm^4}{2} - \frac{93531.25$$

Kąt orientacji układu z osiami głównymi względem układu x_1y_1 : $tg(2\beta)=\frac{-2I_{x_1y_1}}{I_{x_1}-I_{y_1}}$

$$tg(2\beta) = \frac{-2I_{x_1y_1}}{I_{x_1} - I_{y_1}}$$

$$tg(2\beta) = \frac{-2*28125mm^4}{93531.25mm^4 - 25781mm^4} = -0.830255$$

$$\beta = -19.9^{\circ} \approx -20^{\circ}$$

Wektor momentu gnącego zrzutowany na osie nowego układu:

$$M_{\alpha} = M * cos\beta = 50N * 1m * cos20^{\circ} = 47Nm$$

$$M_{\gamma} = M * sin\beta = 50N * 1m * sin20^{\circ} = 17.1Nm$$

Równanie funkcji naprężeń:

$$\sigma = \frac{M_{\gamma}}{I_2} \alpha - \frac{M_{\alpha}}{I_1} \gamma$$

Rowname runkeji naprężen:
$$\sigma = \frac{M_{\gamma}}{I_2} \alpha - \frac{M_{\alpha}}{I_1} \gamma$$

$$\sigma = \frac{17.1Nm}{11749.22mm^4} \alpha - \frac{47Nm}{107562.78mm^4} \gamma$$

$$\sigma = 1455443016\alpha - 436957289 \gamma [\frac{1}{2}]$$

$$\sigma = 1455443016\alpha - 436957289\gamma[\frac{N}{m^3}]$$

Szukamy osi obojętnej:

$$\sigma = 0 \Rightarrow 0 = 1455443016\alpha - 436957289\gamma$$

$$\gamma=3,330858\alpha$$
 - równanie osi obojętnej w układzie osi głównych

$$\phi \approx 73.3^{\circ}$$
 - kat o jaki obrócona jest oś obojętna

Transformacja współrzędnych z układu pierwotnego do układu osi głównych:

$$\alpha = x_1 cos\beta - y_1 sin\beta$$

$$\gamma = x_1 sin\beta + y_1 cos\beta$$

Punkt
$$A(x_1, y_1) = [2.5 \text{ mm}, 32.5 \text{ mm}]$$
:

$$\alpha_A = 2.5mm * cos(20^\circ) - 32.5mm * sin(20^\circ) \approx -8.77mm$$

$$\gamma_A = 2.5mm*sin(20^\circ) + 32.5mm*cos(20^\circ) \approx 31.4mm$$

Punkt B
$$(x_1, y_1) = [7.5 \text{ mm}, -17.5 \text{ mm}]$$
:

$$\alpha_B = 7.5mm * cos(20^\circ) + 17.5mm * sin(20^\circ) \approx 13.03mm$$

$$\gamma_B = 7.5mm * sin(20^\circ) - 17.5mm * cos(20^\circ) \approx -13.88mm$$

Naprężenia w A:

$$\sigma_A = 1455443016\frac{N}{m^3}*(-8.77)mm - 436957289\frac{N}{m^3}*31.4mm = -26.485MPa$$
Naprężenia w B:

$$\sigma_B = 1455443016 \frac{N}{m^3} * 13.03 mm - 436957289 \frac{N}{m^3} * (-13.88) mm = 25.029 MPa$$

W naprężeniach należy uwzględnić, że faktyczne znaki są różne od powyższych, co zaznaczono na wykresie naprężeń.

Współrzędne tensometrów w układzie x_1y_1 :

tensometr	$x_1[mm]$	$y_1[mm]$
1	2.5	25.5
2	2.5	-5.3
3	-3.7,	-12.5
4	-17.1	-12.5

Transformacja do układu osi głównych $\alpha \gamma$:

${ m tensometr}$	$\alpha[mm]$	$\gamma[mm]$
1	-6.37	24.82
2	4.16	-4.13
3	0.8,	-13.01
4	-11.79	-17.59
tensometr	naprężei	nie [MPa]
$\frac{\mathrm{tensometr}}{1}$	1 0	nie [MPa] .116
$\frac{\text{tensometr}}{1 \\ 2}$	-20	
1	-20 7.3	.116

Błąd względny pomiarów tensometrycznych naprężeń:

tensometr	błąd względny
1	$\frac{ -20.116MPa - 20.221MPa }{ -20.116MPa } * 100\% \approx 0.52\%$
2	$\frac{ -20.116MPa - 20.221MPa }{ -20.116MPa }*100\% \approx 0.52\%$ $\frac{ 7.859MPa - 6.059MPa }{ 7.859MPa }*100\% \approx 22.9\%$
3	$\frac{ 6.849MPa - 5.694MPa }{ 6.849MPa } * 100\% \approx 16.9\%$
4	$\frac{ -9.474MPa - 7.081MPa }{ -9.474MPa } * 100\% \approx 25.3\%$

