

Exact Solutions > Functional Equations > Linear Difference and Functional Equations with One Independent Variable > mth-Order Constant-Coefficient Linear Homogeneous Difference Equation

13.
$$y_{n+m} + a_{m-1}y_{n+m-1} + \ldots + a_1y_{n+1} + a_0y_n = 0$$
.

This is an *mth-order linear homogeneous difference equation* defined on a discrete set of points $x = 0, 1, 2, \ldots$ The notation $y_n = y(n)$ is used.

Suppose $\lambda_1, \lambda_2, \ldots, \lambda_m$ are roots of the characteristic equation

$$P(\lambda) \equiv \lambda^m + a_{m-1}\lambda^{m-1} + \dots + a_1\lambda + a_0 = 0.$$
 (1)

If the roots of equation (1) are all different, the general solution of the difference equation is expressed as

$$y_n = \sum_{i=0}^{m-1} y_i \sum_{j=0}^{m-i-1} a_{i+j+1} \sum_{k=1}^m \frac{\lambda_k^{n+1}}{P'(\lambda_k)},$$
 (2)

where the prime stands for differentiation.

The initial values y_0, y_1, \ldots, y_m that occur in formula (2) can be set arbitrarily.

In the case of complex conjugate roots in solution (2), the real and imaginary parts should be separated.

References

Kuczma, M., Functional Equations in a Single Variable, Polish Scientific Publishers, 1968.

Doetsch, G., *Guide to the Applications of the Laplace and Z-Transforms* [in Russian], Nauka, Moscow, 1971 (page 213); English edition: Van Nostrand Reinhold Co., London, 1971.

Mirolyubov, A. A., and Soldatov, M. A., Linear Homogeneous Difference Equations [in Russian], Nauka, Moscow, 1981.

Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations: Exact Solutions (Supplement. Some Functional Equations)* [in Russian], Faktorial, Moscow, 1998.

mth-Order Constant-Coefficient Linear Difference Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/fe/fe1213.pdf