Computer Organization

1. The input fields of each pipeline register:

IF/ID:

Pipeline_IM -input (instr), output (IF_instr)

ID/EX:

Pipeline_Reg size(11) Pipeline_Control:

- input {RegWrite, ALUOP, ALUSrc, RegDst, MemRead, MemWrite, MemtoReg},
- output {ID_RegWrite, ID_ALUOp, ID_ALUSrc, ID_RegDst, ID_MemRead, ID_MemWrite, ID_MemtoReg}

Pipeline_Reg size(32) Pipeline_RS:

- input ReadData1
- output ID_rs_data

Pipeline_Reg size(32) Pipeline_RT:

- input ReadData2
- output ID_rt_data

Pipeline_Reg size(32) Pipeline_SE:

- input signextend
- ouput ID_sign_instr

Pipeline_Reg size(32) Pipeline_ZF:

- input zerofilled
- output ID zero instr

Pipeline_Reg size(32) Pipeline_IM_ID_EX:

- input IF_instr
- output ID_IF_instr

EX/MEM

Pipeline_Reg size(5) Pipeline_Control_EX:

- input {ID RegWrite, ID MemRead, ID MemWrite, ID MemtoReg}
- output {EX_ID_RegWrite, EX_ID_MemRead, EX_ID_MemWrite, EX_ID_MemtoReg}

Pipeline_Reg size(32) Pipeline_Write_Data:

- input WriteData
- output EX Write Data

Pipeline_Reg size(32) Pipeline_RT_EX:

- input ID_rt_data
- output EX_ID_rt_data

Pipeline_Reg .size(5) Pipeline_Write_reg:

- input WriteReg_addr
- output EX_Write_reg

MEM/WB

Pipeline_Reg size(3) Pipeline_Control_MEM:

- input {EX_ID_RegWrite, EX_ID_MemtoReg}
- output {MEM_EX_ID_RegWrite, MEM_EX_ID_MemtoReg}

Pipeline_Reg size(32) Pipeline_Write_Data_MEM

- input EX_Write_Data
- output MEM_EX_Write_Data

Pipeline_Reg size(32) Pipeline_MEM_Data:

- input DM_ReadData
- output MEM_MemReadData

Pipeline_Reg size(5) Pipeline_Write_reg_MEM:

- input EX_Write_reg
- output MEM_EX_Write_reg

2. Compared with lab4, the extra modules:

I have added new module Pipeline register.

Pipeline_Reg.v: when reset is 0, assign 0 to output, otherwise posedge of clk, assign input to output.

3. Explain your control signals in sixth cycle (both test patterns CO_P5_test_data1 and CO_P5_test_data2 are needed):

Picture:

CO_P5_test_data1	CO_P5_test_data2
clock: 1 2 3 4 C addi IF ID EX MEM WB addi IF ID EX MEM WB addi IF ID EX MEM WB and IF ID EX MEM WB ard IF ID EX MEM WB or IF ID EX MEM WB or IF ID EX MEM WB IF ID EX MEM WB Mem Write: 0 Reg Write: 1	clock: 1 = 3 4 0 6 7 8 9 10 Reg Dst: 00 addi IF ID EX MEM WB sw IF ID EX MEM WB IF ID EX MEM WB Mem Write: 0 Reg Write: 1 ALUOP: 011 Branch: 0 Mem Write: 0 Mem Read: 0 Reg Write: 1

4. Problems you met and solutions:

The pipeline CPU needs additional module compared to the previous lab. I added new module Pipeline_Reg.v into my work and solve the problem.

5. Summary:

I modified the single cycle cpu implemented in lab4 to pipeline cpu.