Lecture notes advanced logic

Barteld Kooi and Rineke Verbrugge

6 Variations of modal logic

6.1 Normal modal logics

6.1.1 Modal logic K

No restrictions on R

6.1.2 Restriction ρ

R is reflexive iff for all $w \in W$, wRw.

6.1.3 Restriction σ

R is symmetric iff for all $w_1,w_2\in W,$ (if $w_1Rw_2,$ then w_2Rw_1).

6.1.4 Restriction τ

R is transitive iff for all $w_1, w_2, w_3 \in W$, (if w_1Rw_2 and w_2Rw_3 , then w_1Rw_3).

6.1.5 Restriction η

R is extendable iff for all $w_1 \in W$ there is a $w_2 \in W$ such that $w_1 R w_2$.

Note that for each accessibility relation R: If R is reflexive, then R is extendable.

If R is symmetric, transitive and extendable, then R is reflexive.

6.1.6 Normal modal logics: definition

K is a normal modal logic and all *normal modal logics* other than K are obtained by defining validity with respect to truth preservation in a special class of possible worlds models. We have just introduced some examples given by restrictions on the accessibility relation R.

6.1.7 Standard names of modal systems

C.I. Lewis (1883–1964)

6.1.8 Validity

Now we have many notions of validity:

$$\models_K, \models_{K_{\rho}}, \models_{K_{\eta}}, \models_{K_{\rho\sigma}}, \models_{K_{\rho\sigma}}, \models_{K_{\rho\sigma\tau}}, \dots$$

For example:

$$\Sigma \models_{K_{o\tau}} A \text{ iff}$$

for all models $\langle W, R, v \rangle$ in which R is reflexive and transitive and all $w \in W$: (if $v_w(B) = 1$ for all $B \in \Sigma$, then $v_w(A) = 1$).

In the picture above, e.g. $I_{K_{\rho}}$ stands for the class of possible worlds models that satisfy the restriction ρ . Note that roughly speaking, the more restrictions, the *smaller* the set of corresponding models.

On the other hand, roughly speaking, the more restrictions, the *larger* the set of validities.

For example,

$$\not\models_{K} \Box p \supset p \text{ but}$$

$$\models_{K_{\rho}} \Box p \supset p$$

$$\not\models_{K_{\rho}} \Box p \supset \Box \Box p \text{ but}$$

$$\models_{K_{\rho\tau}} \Box p \supset \Box \Box p$$

More and more inferences are valid as you move towards the centre of the circle, because there are fewer and fewer (counter) models.

Special case: We will see in Section 3.5 of Priest that for restriction v (universal relation), $I_{K_v} \subsetneq I_{K_{\rho\sigma\tau}}$, while K_v and $K_{\rho\sigma\tau}$ have the same validities.

6.2Tableaux

The rule for $\Box A$, i should be applied to all j for which irj is on the branch.

The rule for $\Diamond A, i$ introduces irj for a new j on the branch.

Reminder shortcuts

The rules for $\neg \Diamond A$ and $\neg \Box A$ may also be applied with a shortcut:

$$egin{array}{cccc}
\neg \Box A, i & \neg \Diamond A, i \\
\downarrow & & \downarrow \\
irj & & \downarrow \\
\neg A, j & \neg A, j
\end{array}$$

Note that the shortcut rule for $\neg \Box A, i$ introduces a new j such that irj is introduced on the branch.

Note that the shortcut rule for $\neg \Diamond A, i$ should be applied to all j such that irj appears on the branch.

6.2.2 New extra rules corresponding to specific restrictions

Rule for ρ (reflexive)

•
1
1
::
iri

Here, i is any integer on the tableau.

Rule for σ (symmetric):

$$\bigcup_{jri}^{irj}$$

Rule for τ (transitive):

$$irj$$
 jrk

$$\downarrow$$
 irk

Now we can show:

- $\vdash_{K_{\rho}} \Box p \supset p$ (see book)
- $\vdash_{K_{\sigma}} p \supset \Box \Diamond p$ (see book)
- $\vdash_{K_{\tau}} \Box p \supset \Box \Box p$ (see book)
- $\vdash_{K_{\sigma\tau}} \Diamond p \supset \Box \Diamond p$ (see book)
- $\bullet \hspace{0.2cm} \not\vdash_{K_{\tau}} \Box \Box p \supset \Box p$
- $\not\vdash_{K_{\rho}\sigma} \Box p \supset \Box \Box p$ (see book)

6.3 Infinite tableaux

Rule for η (extendable):

This is applied to any integer i on the branch, provided there was nothing of the form irj on the branch yet.

When applying the rule, i is not new but j is new.

Now we can show:

- $\bullet \vdash_{K_{\eta}} \Box p \supset \Diamond p$
- $\not\vdash_{K_{\eta}} \Box p$.

For the second item, consider the following tableau:

$$\neg \Box p, 0$$

 $\Diamond \neg p, 0$
 $0r1$
 $\neg p, 1$
 $1r2$
 $2r3$
 $3r4$

Embrace the infinite and define the extendable countermodel to $\Box p$ as follows:

- $W = \{w_n \mid n \in \mathbb{N}\}$
- $R = \{\langle w_n, w_{n+1} \rangle \mid n \in \mathbb{N} \}$
- $v_{w_n}(p) = 0$ for all $n \in \mathbb{N}$

Note that the above valuation is a correct instance of the official formulation " $v_{w_1}(p) = 0$ and $v_{w_i}(p)$ can be anything one wishes for $i \neq 1$."

Also, when showing that $\not\vdash_{\tau} \neg (\Diamond p \wedge \Box \Diamond p)$, the tableau method will produce an infinite open branch.

In both these cases, it is also possible to find finite counter-models.

6.4 S5

The system $K_{\rho\sigma\tau}$ is called S5.

- For all $w \in WwRw$ (reflexive);
- For all $w_1, w_2 \in W$, if $w_1 R w_2$, then $w_2 R w_1$ (symmetric);
- For all $w_1, w_2, w_3 \in W$, i if $w_1 R w_2$ and $w_2 R w_3$, then $w_1 R w_3$ (transitive).

Such relations are called equivalence relations.

The picture above is divided into three equivalence classes according to R. In general, for truth of a sentence in a world, only the worlds in the same equivalence class are important. Within an equivalence class, worlds that cannot be reached by R are irrelevant; within the equivalence class, the accessibility relation is universal. This helps to explain why K_v (see below) and $K_{\rho\sigma\tau}=S5$ have the same validities.

6.4.1 General restriction v (universal)

v ("upsilon"): $w_1 R w_2$ for all $w_1, w_2 \in W$.

If R is universal, then R is really irrelevant! This is reflected in special tableau rules corresponding to v:

$$\Diamond A, i \qquad \Box A, i$$

$$\downarrow \qquad \qquad \downarrow$$

$$A, j \qquad A, j$$

j is new for all j appearing on the branch

Figure 1: Johan van Benthem (1949 -) and Arthur Prior (1914 - 1969)

6.5 Tense logic

6.5.1 Language: new operators

- [P]A at all earlier times A
- [F]A at all future times A
- $\langle P \rangle A$ at some earlier time A
- $\langle F \rangle A$ at some future time A

6.5.2 Semantics

```
\begin{array}{lll} v_w([P]A)=1 & \text{iff} & \text{for all } w' \text{ such that } w'Rw, \, v_{w'}(A)=1 \\ v_w([F]A)=1 & \text{iff} & \text{for all } w' \text{ such that } wRw', \, v_{w'}(A)=1 \\ v_w(\langle P \rangle A)=1 & \text{iff} & \text{for some } w' \text{ such that } w'Rw, \, v_{w'}(A)=1 \\ v_w(\langle F \rangle A)=1 & \text{iff} & \text{for some } w' \text{ such that } wRw', \, v_{w'}(A)=1 \end{array}
```

6.5.3 Tableau rules for the general system K^t

Note that:

- the rule for [F]A, i should be applied to all j such that irj appears on the branch;
- the rule for [P]A, i should be applied to all j such that jri appears on the branch;
- the rule for $\langle F \rangle A, i$ introduces a new j such that irj is introduced on the branch;
- the rule for $\langle P \rangle A, i$ introduces a $new\ j$ such that jri is introduced on the branch.

Shortcuts rules for tense logic

The rules for $\neg \langle F \rangle A$, $\neg [F]A$, $\neg \langle P \rangle A$, and $\neg [P]A$ may also be applied with a shortcut:

Note that the shortcut rules for $\neg [F]A$, i and $\neg [P]A$, i both introduce a new j such that irj is introduced on the branch.

Note that the shortcut rules for $\neg \langle F \rangle A$, i and $\neg \langle P \rangle A$, i should both be applied to all j such that irj appears on the branch.

We can show:

- $p \vdash_{K^t} [P] \langle F \rangle p$
- $p \vdash_{K^t} [F] \langle P \rangle p$

6.5.4 Additional rule for dense models: restriction δ

R is dense iff for all $w, z \in W$, (if wRz, then there is a $y \in W$ such that wRy and yRz).

Tableau rule for δ :

To be applied for all irj occurring on the branch; for each such irj, the rule introduces a $new\ k$.

6.5.5 Extra rules for non-branching models: restrictions φ , β

Constraint φ :

R is forward convergent iff

for all $x, w, y \in W$, if xRy and xRz, then (zRy or y = z or yRz).

Constraint β :

R is backward convergent iff

for all $x, w, y \in W$, if yRx and zRx, then (zRy or y = z or yRz).

We will need some auxiliary tableau rules for =:

$$\begin{array}{ccc} \alpha(i) & & \alpha(i) \\ i = j & & j = i \\ \downarrow & & \downarrow \\ \alpha(j) & & \alpha(j) \end{array}$$

Rule for φ :

Rule for β :

