Breast segmentation in MRI: Comparison of DIAG and MeVis approaches

Albert Gubern Mérida

Radboud University Nijmegen

Overview

- 1. Introduction
- 2. Methods
- 3. Material and evaluation
- 4. Results
- 5. Conclusions

Overview

1.Introduction

- 2. Methods
- 3. Material and evaluation
- 4. Results
- 5. Conclusions

1. Introduction

- Breast cancer is the most importat health problem for women.
- Breast cancer screening:
 - 1. Regular mammography
 - Sensitivity of mammography drops with density
 - 2. Magnetic Resonance Imaging (MRI)
 - Before surgery
 - High-density breasts

Mammography MLO view

2D axial slice from 3D MRI volume

1.1 Breast density

- Breast tissue density important risk factor for developing breast cancer.
- High density: 2-6 times higher risk
- Dense tissue estimation in different image modalities.

1.2 Why in MRI?

- Good contrast between breast tissues.
- Research interest:
 - Validation breast tissue segmentation in mammography.

CAD in breast MRI.

1.3 How in MRI?

 Similar image intensity values for pectoral muscle and dense tissue voxels.

- 1. Separation of the breast from the body.
- 2. "Thresholding" on breast area.

1.3 How in MRI?

 Similar image intensity values for pectoral muscle and dense tissue voxels.

- 1. Separation of the breast from the body.
- 2. "Thresholding" on breast area.

1.4 Breast segmentation

- Comparison of 3 breast segmentation methods
 - MeViS breast segmentation method [1].
 - DIAG probabilistic atlas breast segmentation method.
 - DIAG multi-atlas breast segmentation method.

Medical Centre

Overview

1. Introduction

2. Methods

- 3. Material and evaluation
- 4. Results
- 5. Conclusions

2. Methods

- 1. MeViS
 - Pectoral boundary by Hessian sheet detector.

- 2. DIAG Atlas-based methods
 - Multi-atlas
 - Probabilistic atlas

2.1 MeViS method [1]

Segmentation method for breast and pectoralis
boundary based on Hessian matrix for sheet

detection.

[1] Wang et al.: Fully automated segmentation of the Pectoralis Muscle Boundary in breast MRI. SPIE 2011 7963, 2011

2.2 DIAG atlas-based methods

- 27 fully manual segmented cases:
 - Background, breast tissues, pectoral muscle, lungs and heart.

 Background segmentation by slice-by-slice Region Growing

2.2 DIAG atlas-based methods

- Goal: accurate segmentation of the body.
- Registration focused on body area:
 - 1. Sternum alignment (translation):
 - First-derivative based filter and 3D connected component analysis.
 - High output for voxels in strong edge y direction

2. B-Splines non-rigid registration [1]

[1] D.Rueckert et al: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999 August; 18(8):712-21.

2.2.1 DIAG Probabilistic atlas

2.2.2 DIAG Multi-atlas

Overview

- 1. Introduction
- 2. Methods

3. Material and evaluation

- 4. Results
- 5. Conclusions

3. Material and evaluation

52 MRI cases with no sign of malignancy.

All cases segmented by the 3 methods.

3 different measures to precisly quantify the error.

Reference standard

Dense tissue and pectoral muscle manual segmentations

Pectoral sufrace from pectoral muscle manual segmentations

Automatic segmentation

Automatic breast segmentation

Pectoral sufrace from breast automatic segmentations

Evaluation

1. Dense tissue error

2. Pectoral muscle error

3. Pectoral surface distance

Overview

- 1. Introduction
- 2. Methods
- 3. Material and evaluation

4.Results

5. Conclusions

4.1 Dense tissue error

 Percentage of dense tissue voxels of the reference standard that are NOT included in the breast segmentation.

Method	$\mathbf{Mean}~(\%) \pm \mathbf{StDev}~(\%)$	Median (%)
MeVis	$0.873\% \pm 2.174\%$	0.163%
DIAG multi-atlas	$1.291\% \pm 4.050\%$	0.087%
DIAG probabilistic	$1.513\% \pm 4.348\%$	0.070%

4.2 Pectoral muscle error

 Percentage of pectoral muscle voxels of the reference standard that ARE included in breast segmentation.

Method	$\mathbf{Mean}~(\%) \pm \mathbf{StDev}~(\%)$	Median (%)
MeVis	$4.660\% \pm 1.548\%$	4.316%
DIAG multi-atlas	$6.498\% \pm 6.353\%$	4.697%
DIAG probabilistic	$7.662\% \pm 8.780\%$	5.566%

4.3 Pectoral surface distance

 Percentage of pectoral muscle voxels of the reference standard that ARE included in breast segmentation.

Method	$Mean \pm StDev (mm)$	Median (mm)
MeVis	0.834 ± 0.136	0.804
DIAG multi-atlas	0.948 ± 0.174	0.940
DIAG probabilistic	0.836 ± 0.151	0.820

4.4 Visual

Example 1:

MEVIS

Dense tissue error: 0.09 %

Pectoral muscle error: 5.46 %

Pectoral surface distance: 0.71 mm

MULTI

Dense tissue error: 0.06 %

Pectoral muscle error: 4.34 %

Pectoral surface distance: 0.99 mm

PROBAB.

Dense tissue error: 0.04%

Pectoral muscle error: 6.14 %

Pectoral surface distance: 0.75 mm

4.4 Visual

Example 2:

MEVIS

Dense tissue error:	0.87 %
Dense tissue error:	0.87 %

Pectoral muscle error: 8.58 %

Pectoral surface distance: 0.92 mm

MULTI

Dense tissue error: 27.26 %

Pectoral muscle error: 5.28 %

Pectoral surface distance: 0.94 mm

PROBAB.

Dense tissue error: 26.56%

Pectoral muscle error: 7.00 %

Pectoral surface distance: 1.23 mm

4.4 Visual

Example 3:

MEVIS

Dense tissue error: 0.55 %

Pectoral muscle error: 3.91 %

Pectoral surface distance: 0.80 mm

MULTI

Dense tissue error: 0.14 %

Pectoral muscle error: 4.79 %

Pectoral surface distance: 0.80 mm

PROBAB.

Dense tissue error: 0.12 %

Pectoral muscle error: 4.27 %

Pectoral surface distance: 0.76 mm

4.5 Time complexity

- MeVis: 70 sec.
- Multi-atlas: 3h (minimum)
- Probabilistic atlas: 9 min.

Overview

- 1. Introduction
- 2. Methods
- 3. Material and evaluation
- 4. Results

5. Conclusions

5. Conclusions

- MeVis method is the fastest and seems to be the most accurate.
- Difficult to define a single metric to study the performance of breast segmentation.
- Atlas-based methods too slow compared to MeViS method.
- Atlas-based methods provide segmentation of all the structures at once.

Questions?

Breast segmentation in MRI: Comparison of DIAG and MeVis approaches

Albert Gubern Mérida

Radboud University Nijmegen

