Approaches to Machine Translation: Rule-based, Statistical and Hybrid

Alignment - Introduction (I)

Lluís Formiga

July 11, 2014

A picture is worth a million equations

Recap

Concepts to be studied

- Noisy Channel Model
- Lexical translation
- Word Alignment
- Expectation Maximization (EM) Algorithm
- IBM Models 1--5
 - IBM Model 1: lexical translation
 - IBM Model 2: alignment model
 - IBM Model 3: fertility
 - IBM Model 4: relative alignment model
 - IBM Model 5: deficiency
- HMM Models: dependent alignment model
- Problems of Word Alignment
- Quality of Word Alignment

Machine Translation

Noisy Channel

From the Noisy Channel model we have:

$$p(e|f) =$$

From the Noisy Channel model we have:

$$p(e|f) = \mathop{arg\,max}_{e} \mathbf{p(f|e)} p(e)$$

From the Noisy Channel model we have:

$$p(e|f) = \mathop{arg\,max}_{e} \mathop{p(f|e)}_{p(e)}$$

However...

- We don't have a model for p(f|e)
- Does this model depend on previous decisions?

Word based models

We can collect basic statistics:

► IBM Model 1 is just a table capturing t(f|e)

Translations of mesa	p(f e)
table	0.3771
round	0.1476
panel	0.1344
round-table	0.0452
petitioners	0.0282
bureau	0.0229
officers	0.0190
Committee	0.0169
Round	0.0153
roundtable	0.0124

What is alignment?

Alignment function

- When translating, we align words between languages.
- What is alignment?
 - Each foreign language word f is generated by exactly by one translated language word e

- We need to define an alignment function
- Not an easy task! Different phenomena might occur!

Concepts to deal with Problems:Reordering

The order of the source does not match with the target

Former example:

$$\mathsf{a} = \langle 2, 1, \cdot, 6, 5, \cdot \rangle$$

Concepts to deal with Problems: Word insertion

- Words (typically function words) are added when translating
- Special NULL token helps map translated words to source

New example:

$$\mathsf{a} = \langle \cdot, \cdot, \cdot, \cdot, 0, \cdot, \cdot, \cdot, \cdot, \cdot \rangle$$

Concepts to deal with Problems: Word deletion

 Words may be dropped when translated (la disappears on English Sentence)

Concepts to deal with?

Former example:

$$a = \langle 1, 1, 3, 4, 5 \rangle$$

Concepts to deal with Problems: Fertility

One-to-many translation

Concepts to deal with?

► A source word may translate into multiple target words:

Former example:

$$\mathsf{a} = \langle 1, 1, \cdot, \cdot, \cdot \rangle$$

What is alignment?

Alignment Function

- Maps each foreign word f at position j
 - \rightarrow to translated word e at position i with function a : j \rightarrow i

foreign: source (e.g. English) translated: target (e.g. Spanish)

Example:

 $\mathsf{a} \quad = \quad \langle 2, 1, 3, 6, 5, 7 \rangle$

 $l_f = 6$ source token length

 $l_e = 7$

target token length

What is alignment?

Word and Alignment based

Also we can collect advanced statistics:

Basic statistics:

IBM Model 1 captures p(f|e)

Translations of mesa	p(f e)
table	0.3771
round	0.1476
panel	0.1344
round-table	0.0452
petitioners	0.0282
bureau	0.0229
officers	0.0190
Committee	0.0169
Round	0.0153
roundtable	0.0124

IBM Model 2 captures $q(j|i, l_f, l_e)$

= carpta. ca q(J[., .], .						
	j	i	I_{f}	le	$q(j i, l_e, l_f)$	
	1	1 2	5 5	7	0.27	
	1	2	5	7	0.14	
	:	7	5 5	7 7	0.07	
	5	7	5		1e-14	
	1	1 2	5 5	8	0.32	
	1	2	5	8	0.18	
	:	8	5 5	6	0.13	
	5	8	5	8	1e-19	
	:		:	:	:	
	1	1 2	6	8	0.30	
	1	2	6	8	0.12	
	:	:	6	8	0.17	
	6	8	6	8	1e-10	

Concept of alignment

- Alignments are obtained by means of unsupervised learning (Expectation Maximization Algorithm)
- Not a unique solution:
 - Each foreign word f has l_e + 1 choices, so we have l_f^{l+1} total combinations.
 - Hence, we built a conditional model projecting translations from the alignments
- We assume independence:
 - Every word is translated independently:

$$\begin{split} p(f_1,f_2,\dots,f_{I_f}|e_1,e_2,\dots,e_{I_e},I_f) &= \\ &= \sum_{f \in A} p(f_1,\dots,f_{I_f},a_1,\dots,a_{I_f}|e_1,\dots,e_{I_e}I,I_f) \end{split}$$

IBM Alignment Models

- Proposed by IBM in the late 80s/early 90s
- Five different models:

```
IBM Model 1 lexical translation (words);
IBM Model 2 adds absolute align. model
IBM Model 3 adds fertility model;
IBM Model 4 adds relative align. model
IBM Model 5 fixes deficiency
```


Next session

- Noisy Channel Model
- Lexical translation
- Word Alignment
- Expectation Maximization (EM) Algorithm
- IBM Models 1--5
 - ► IBM Model 1: lexical translation
 - IBM Model 2: alignment model
 - IBM Model 3: fertility
 - ► IBM Model 4: relative alignment model
 - IBM Model 5: deficiency
- HMM Models: dependent alignment model
- Problems of Word Alignment
- Quality of Word Alignment

