Analisi Matematikoa

Zenbaki-multzoak

Zenbaki arrazionalak eta errealak

2016.eko azaroaren 10

Gaien Aurkibidea

1.	Zenbaki-multzoak			
	1.1.	Zenbaki arrazionalak	1	
	1.2.	Zenbaki errealak	2	

Gaia Zenbaki-multzoak

1.1. Zenbaki arrazionalak

1.1. Definizioa. Zenbaki arrazionalen \mathbb{Q} multzoa hau da: $\mathbb{Q} = \{x \mid m = n \cdot x \quad \forall m, n \in \mathbb{Z}, n > 0\}$. Errepikapenik ez izateko z.k.h $\{m,n\}=1$ eskatuko dugu.

Hortaz, \mathbb{Q} multzoa hau izango da:

$$\mathbb{Q} = \{ \tfrac{m}{n} / \forall m, n \in \mathbb{Z}, n > 0 \text{ et a } \tfrac{m}{n} \text{ laburtezina baitira } \}.$$

Ondorioz, $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$ betetzen da.

1.2. Propietatea. \mathbb{Q} multzoa itxia da + batuketa, - kenketa, \times biderketa eta \div zatiketarako (zati 0 izan ezik), hau da, eragiketa horien emaitza beti arrazionala izango da.

1.3. Definizioa. \mathbb{Q} multzoan \leq ordena-erlazioa honela definitzen da:

 $\forall \tfrac{m}{n}, \tfrac{p}{q} \in \mathbb{Q} \quad \tfrac{m}{n} \leq \tfrac{p}{q} \ izango \ da \ m \cdot q \leq n \cdot \ p \ betetzen \ bada.$

Ordenak aukera ematen digu zenbaki arrazional guztiak zuzen batean ordenatzeko.

- 1.4. Propietatea. \mathbb{Q} multzoak propietate hauek ditu:
 - 1. \mathbb{Q} multzoa zenbakigarria da, hau da, \mathbb{Q} multzoak \mathbb{N} multzoak adina elementu ditu (infinitu zenbakigarria).
 - 2. $a, b \in \mathbb{Q}$ badira, $a \neq b$ izanik, $\exists c \in \mathbb{Q}/a < c < b$ baita. Ondorioz, bi zenbaki arrazional desberdinen artean infinitu zenbaki arrazional daude.
 - ${\it 3. \ Zenbaki\ arrazionalek\ hamartarren\ kopuru\ finitu\ edo\ infinitu\ periodikoa\ dute.}$

$$\frac{1}{4} = 0.25$$
 $\frac{1}{7} = 0.142857142...$

- **1.5. Definizioa.** $A \subset \mathbb{Q}$ multzoa emanik,
 - a) A goitik bornatua da $\exists k \in \mathbb{Q} \mid \forall x \in A \ x \leq k \ baita. \ k$ -ri Aren goi-borne deritzo.
 - b) A behetik bornatua da $\exists k' \in \mathbb{Q} \mid \forall x \in A \ k' \leq x \ baita. \ k'-ri \ Aren behe-borne deritzo.$

- c) A bornatua da goitik eta behetik bornatua bada, bestela A bornegabea da.
- 1.6. Adibidea. Multzo hauek bornatuak diren ala ez esan:
 - a) \mathbb{N} eta \mathbb{Z} bornegabeak dira, baina \mathbb{N} behetik bornatua da (K= -1, -20.000... behe borneak dira.)
 - b) $A = \{\frac{n+1}{n}, n \in \mathbb{N}^*\} = \{2, \frac{3}{2}, \frac{4}{3}, ...\} \Rightarrow A$ bornatua da: 0 eta 1 Aren behe-borneak eta 3 eta 4 goi-borneak.
- **1.7.** Definizioa. $A \subset \mathbb{Q}$ multzo bornatua emanik,
 - a) Aren goi-borne txikiena goi-muturra edo gorena da eta sup(A) idatziko dugu.
 - b) Aren behe-borne handiena behe-muturra edo beherena da eta inf(A) idatziko dugu.
- 1.8. Adibidea. Multzo hauen gorena eta beherena aztertu:
 - a) \mathbb{N} multzoak ez du gorenik ez duelako goi-bornerik. $\inf(\mathbb{N}) = 0$ da, behe-bornerik handiena.
 - b) $A = \{\frac{n+1}{n}, n \in \mathbb{N}^*\} = \{2, \frac{3}{2}, \frac{4}{3}, ...\} \Rightarrow \sup(A) = 2 \ da \ eta \ \inf(A) = 1 \ da.$
- **1.9.** Adibidea. \mathbb{Q} multzoa ez da oraindik nahikoa problema guztiak ebazteko; adibide bat hiru ikuspuntutan:
 - 1. $x^2 = 2$ ekuazioak ez du soluziorik $\mathbb Q$ multzoan ($\sqrt{2}$ ez dago $\mathbb Q$ ren barne)
 - 2. Grafikoan:

(Q multzoak ez du zuzena betetzen)

3.
$$A = \{x \in \mathbb{Q} \mid 0 \le x^2 < 2\} \Rightarrow \sup(A) = \sqrt{2} \notin \mathbb{Q}$$
.

1.2. Zenbaki errealak

- **1.10. Definizioa.** Zenbaki errealen \mathbb{R} multzoa hiru propietate hauek betetzen dituen multzoa da:
 - 1. \mathbb{R} multzoan + batuketa, · biderketa, · kenketa eta ÷ zatiketa (zati 0 izan ezik) definiturik daude (gorputzaren axioma).

_

1.2.. Zenbaki errealak 3

- 2. \mathbb{R} multzoan \leq ordena-erlazioa definiturik dago (ordenaren axioma)
- 3. Rren azpimultzo bornatu guztiek gorena eta beherena dauzkate(osotasun-axioma)

Definizio honetatik ondorio hauek atera ditzakegu:

- * \mathbb{R} multzoaren eta zuzenaren artean aplikazio bijektibo bat defini daiteke, hau da, zuzena osoa definituta dago.
- * Zenbaki errealek zifra hamartarren kopuru finitua, infinitu periodiko edo ez-periodikoa dute.
- * $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ betetzen da.

Arrazionalak ez diren zenbaki errealei irrazionalak deritze eta horien multzoa $\mathbb{R}-\mathbb{Q}$ edo \mathbb{I} adieraziko dugu.

1.11. Propietatea. \mathbb{R} multzoak propietate hauek ditu:

- 1. \mathbb{R} multzoa zenbakiezina da (\mathbb{I} multzoaren ondorioz).
- 2. Bi zenbaki erreal desberdinen artean infinitu zenbaki arrazional eta infinitu zenbaki irrazional daude.

1.12. Definizioa. $A \subset \mathbb{R}$ multzo bornatua emanik;

- a) Aren gorena Aren elementua bada, maximo deritzo eta max(A) idatziko dugu.
- b) Aren beherena Aren elementua bada, minimo deritzo eta min(A) idatziko duqu.

1.13. Adibidea. Aztertu multzo hauen maximoa eta minimoa:

- a) \mathbb{N} multzoan, $\inf(\mathbb{N}) = 0$ eta $0 \in \mathbb{N}$ denez, $\min(\mathbb{N}) = 0$ da.
- b) $A = \{\frac{n+1}{n}, n \in \mathbb{N}^*\} \Rightarrow \sup(A) = 2 \ eta \ 2 \in A \ denez, \max(A) = 2 \ da. \inf(A) = 1 \ eta \ 1 \notin A \ denez, \min(A) \ ez \ da \ existitzen.$

1.14. Teorema. Gorena eta beherena definitzeko baldintzak:

- 1. $A \subset \mathbb{R}$ multzoa goitik bornatua emanik, $\alpha \in \mathbb{R}$ Aren gorena da baldin, eta soilik baldin,
 - a) $\forall x \in A$ $x \leq \alpha$ (Goi-bornea)
 - b) $\forall \epsilon > 0$ $\exists x_0 \in A$ $\alpha \epsilon < x_0 \le \alpha$ (txikiena)

- 2. $A \subset \mathbb{R}$ behetik bornatua emanik, $\beta \in \mathbb{R}$ Aren beherena da baldin, eta soilik baldin,
 - a) $\forall x \in A$ $x \ge \beta$ (Behe-bornea)
 - b) $\forall \epsilon > 0$ $\exists x_0 \in A$ $\beta \leq x_0 < \beta + \epsilon \text{ (handiena)}$

1.15. Definizioa. $I \subset \mathbb{R}$ multzoa tartea da $\forall x, y \in I$ x < z < y bada, $z \in I$ betetzen bada.

Tarte bornatua:

$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$
 Tarte irekia $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ Tarte itxia

Tarte bornegabeak: $\pm \infty$ aldera hurbiltzen direnak.

$$(a, \infty) = \{x \in \mathbb{R} \mid a < x\} \text{ Tarte irekia}$$

$$[a, \infty) = \{x \in \mathbb{R} \mid a \le x\} \text{ Tarte irekia}$$

$$(-\infty, b) = \{x \in \mathbb{R} \mid x < b\} \text{ Tarte irekia}$$

$$(-\infty, b] = \{x \in \mathbb{R} \mid x \le b\} \text{ Tarte irekia}$$

1.2.. Zenbaki errealak

5

ARIKETAK

3. Froga ezazu bi zenbaki arrazional desberdinen artean infinitu zenbaki arrazional daudela.

a eta b
 zenbakien artean, adibidez, erdiko puntua $\frac{a+b}{2}$ da; a eta $\frac{a+b}{2}$ artean, erdiko puntua $\frac{3a+b}{4}$ da; eta horrela infinitura
ino joan gaitezke beti bi zenbaki arrazionalen arteko batuketak eta zatiketak zenbaki arrazional
 bat emango dutelako (gorputzaren axioma).

$$c = \frac{a+b}{2}$$
; $d = \frac{a+c}{2} = \frac{3a+b}{4}$; $e = \frac{a+d}{2} = \frac{7a+b}{8}$; ...

Formula orokorra ondoriozta dezakegu:

$$\frac{(2^n-1)a+b}{2^n} \ , \ non \ n \in \mathbb{N}$$

Horrela frogatuta geratzen da a eta b zenbaki arrazionalen artean beti beste c zebaki arrazionala existituko dela.

7.1 Irudika ezazu multzo hau zuzenaren gainean eta idatzi ezazu tarteen bidez:

$$A = \{ x \in \mathbb{R} / \mid x \mid \le 5 \}$$

$$|x| \le 5 \Leftrightarrow -5 \le x \le 5$$
 betetzen da.

8.1 Esan ezazu, arrazoituz, baieztapen hauek egiazkoak ala faltsuak diren:

 $\forall a \in \mathbb{Q}^* \text{ eta } \forall b \in \mathbb{R} - \mathbb{Q}, \text{ frogatu } \sqrt{a} \in \mathbb{Q} \text{ den ala ez.}$

$$\sqrt{a} \in \mathbb{Q}$$
 ez da egia. Kontra adibidea: $a \in \mathbb{Q}^*$ izanda, a=2 denean $(2 \in \mathbb{Q}), \sqrt{2} \notin \mathbb{Q}$

9.7 Determinatu ezazu multzo honen $\inf(A)$, $\sup(A)$, $\min(A)$ eta $\max(A)$:

$$A = (-\infty, 1] \cap \mathbb{R} - \mathbb{Q}$$

-∞ A 1

 $\inf(A)$ ez dago multzoa ez dagoelako behetik bornatua.

 $\sup(A)=1$ izateko hau bete behar da:

a) $\forall x \in A \quad x \le 1$

Bai, Aren elementu guztiak $(-\infty, 1)$ tartean daude eta tarteko puntu guztiak eskuineko muturra baino txikiagoak dira beti.

b)
$$\forall \epsilon > 0$$
 $\exists x_0 \in A / 1 - \epsilon < x_0 \le 1$

Bai, $1-\epsilon$ eta 1 zenbaki errealen artean infinitu zenbaki irrazional daudelako:

$$1 - \epsilon < x_0 \le 1 / x_0 \in A \in \mathbb{R} - \mathbb{Q}$$

 $\min(A)$ ez dago, horretarako beherena egon behar delako. $\max(A) \neq 1, 1 \notin A$ delako. Hortaz, $\max(A)$ ez da existitzen.