Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации»

Нижегородский институт управления

Кафедра Информатики и информационных технологий

ОТЧЁТ О ЛАБОРАТОРНОЙ РАБОТЕ на тему: «Освоение работы с классификаторами»

> Выполнил: студент группы Иб-321 Беляков Леонид Дмитриевич

> > Проверил: Окулич Виктор Иванович

1. Введение	3
1.1. Предмет	3
Анализ общероссийского классификатора.	3
1.2. Объект	3
Общероссийский классификатор трансформационных событий 3	(ОКТС).
1.3. Цель работы	3
Познакомиться с методологией и научиться проводить анализ	
классификатора.	3
1.4. Задачи работы	3
2. Теоретическая часть.	3
2.1 Основные понятия	3
3. Практическая часть.	7
3.1 Общее описание классификатора	7
3.2 Состав частей кода трансформационного события:	8
Часть 1. Категория ГМО (1-3 разряды)	8
Часть 2. Характеристика ГИМ (4-9 разряды)	9
Часть 3. Опыт использования ГМО (10 разряд)	10
Часть 4. Характеристики ГМО (11-15 разряды)	10
Часть 5. Изменяемые признаки (16-23 разряды)	12
Часть 6. Знак подтверждения (24 разряд)	13
3.3 Ёмкость классификатора	14
3.4 Заполнение классификатора	14

1. Введение

1.1. Предмет

Анализ общероссийского классификатора.

1.2. Объект

Общероссийский классификатор трансформационных событий (ОКТС).

1.3. Цель работы

Познакомиться с методологией и научиться проводить анализ классификатора.

1.4. Задачи работы

- 1) Найти в сети Интернет необходимый классификатор;
- 2) Провести анализ выбранного классификатора;

2. Теоретическая часть.

2.1 Основные понятия

Классификация - разделение множества объектов на подмножества по их сходству или различию в соответствии с принятыми методами.

Классификация фиксирует закономерные связи между классами объектов.

Объект - любой предмет, процесс, явление материального или нематериального свойства.

Система классификации - совокупность правил распределения объектов множества на подмножества.

Система классификации позволяет сгруппировать объекты и выделить определённые классы, которые будут характеризоваться рядом общих свойств.

Признак классификации - свойство или характеристика объекта классификации, которое позволяет установить его сходство или различие с другими объектами классификации.

Классификационная группировка - множество или подмножество, объединяющее часть объектов классификации по одному или нескольким признакам.

Классификатор - документ, с помощью которого осуществляется формализованное описание информации в ИС, содержащей наименования объектов, наименования классификационных группировок и их кодовые обозначения.

По сфере действия выделяют виды классификаторов:

- 1) Международные (для передачи информации между организациями разных стран мирового сообщества);
- 2) <u>Общегосударственные</u> (для передачи и обработки информации между экономическими системами государственного уровня внутри страны);
- 3) Отраслевые (для передачи и обработки информации между организациями внутри отрасли);
- 4) <u>Локальные</u> (для передачи и обработки информации в пределах отдельных предприятий);

Каждая система классификации характеризуется свойствами:

- 1) <u>Гибкость</u> способность допускать включение новых признаков, объектов без разрушения структуры классификатора. Необходимая гибкость определяется временем жизни системы.
- 2) <u>Ёмкость</u> наибольшее количество классификационных группировок, допускаемое в данной системе классификации.
- 3) <u>Степень заполненности</u> определяется как частное от деления фактического количества группировок на величину ёмкости системы.

Типы систем классификации:

1) Иерархическая (последовательное разделение множества объектов на подчинённые, зависимые классификационные группировки)

В иерархической системе первоначальный объём классифицируемых объектов разбивается на подмножества по какому-либо признаку и детализируется на каждой следующей ступени классификации (Рисунок №1).

Рисунок №1 Обобщённое изображение иерархической схемы

Характерные особенности:

- 1. Возможность использования неограниченного количества признаков классификации.
- 2. Соподчинённость признаков классификации, что выражается разбиением каждой классификационной группировки, образованной по одному признаку, на множество классификационных группировок по нижестоящему признаку.

Положительные стороны иерархической системы:

- 1. Логичность.
- 2. Простота построения.
- 3. Удобство логической и арифметической обработки.

Недостатки иерархической системы:

1. Жесткость классификационной схемы (при изменении состава объектов классификации, их характеристик или характера решаемых задач требуется коренная переработка классификационной схемы).

2) Многоаспектная

<u>Аспект</u> - точка зрения на объект классификации, который характеризуется одним или несколькими признаками.

Многоаспектная система - система классификации, которая использует параллельно несколько независимых признаков(аспектов) в качестве основания классификации.

Существует два типа многоаспектных систем:

1. Фасетная

<u>Фасет</u> - аспект классификации, который используется для образования независимых классификационных группировок.

Под фасетным методом понимается "параллельное разделение множества на независимые классификационные группировки".

Преимущества фасетной системы:

- Большая ёмкость системы.
- Высокая гибкость.

Недостатки фасетной системы:

- Сложность структуры.
- Низкая степень заполненности системы.

2. Дескрипторная

<u>Дескриптор</u> - ключевое слово, определяющее некоторое понятие, которое формирует описание объекта и даёт принадлежность этого объекта к классу, группе и т.д.

В современных классификационных системах часто одновременно используются оба метода классификации. Это снижает влияние недостатков методов и расширяет возможность использования классификаторов в информационном обеспечении управления.

3. Практическая часть.

3.1 Общее описание классификатора

Для выполнения лабораторной работы был выбран общероссийский классификатор трансформационных событий.

Общероссийский классификатор трансформационных событий вводится в целях реализации положений Федерального закона от 5 июля 1996 г. N 86-ФЗ "О государственном регулировании в области генно-инженерной деятельности" и постановления Правительства Российской Федерации от 23 сентября 2013 г. N 839 "О государственной регистрации генно-инженерно-модифицированных организмов, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы".

ОКТС предназначен для:

- Кодирования и классификации информации о характеристиках трансформационных событий ГМО, необходимой для процесса регистрации ГМО, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы;
- Обеспечения достоверности, сопоставимости и автоматизированной обработки информации о ГМО, также необходимой для процесса регистрации ГМО;
- Обеспечения совместимости государственных информационных систем и ресурсов, создаваемых на федеральном и региональном уровнях управления в Российской Федерации в сфере исполнения функции по государственной регистрации ГМО, предназначенных для выпуска в окружающую среду, а также продукции, полученной с применением таких организмов или содержащей такие организмы.

Рассмотрим основные свойства классификатора:

- 1) Аббревиатура: ОКТС;
- 2) Обозначение: ОК 035-2015;
- 3) Ответственный: Росстандарт;
- 4) Основание: Приказ Росстандарта от 14.09.2015 г. № 1340-ст;
- 5) Дата введения: 01.11.2015;
- 6) Дата окончания: не установлена;
- 7) Тип классификатора: многоаспектный фасетный;
- 8) Метод кодирования: параллельный;
- 9) Объект классификации: трансформационные события.

Код трансформационного события состоит из 24 разрядов (6 частей), соответствующих 23 фасетам и знаку подтверждения.

3.2 Состав частей кода трансформационного события:

Часть 1. Категория ГМО (1-3 разряды)

Кодовое обозначение категории ГМО строится на основе 3 фасетов (с 1 по 3 включительно) и заполняется следующим образом:

Фасеты	Код	Значение									
1	Тип 1	ГМО									
	1	Животные									
	2	Растения									
	3	Грибы									
	4	Протисты									
	5	Бактерии									
	6	Археи									
	7	Вирусы									
	8	Культуры животных или растительных клеток									
2	Отно	осится ли ГМО к микроорганизмам									
	1	Да									
	2	Нет									
3	Тип і	генно-инженерной модификации									
	1	Внесение гена/группы генов									
	2	Генно-инженерной модификации Внесение гена/группы генов Удаление гена/группы генов									
	3	Изменение гена/комбинации генов (кроме случаев, указанных выше)									
	0	Иное									

Часть 2. Характеристика ГИМ (4-9 разряды)Кодовое обозначение характеристики ГИМ строится на основе 6 фасетов (с 4 по 9 включительно) и заполняется следующим образом:

Фасеты	Код	ительно) и заполняется следующим образом: Значение									
4	Исто	Источник генно-инженерного материала									
	1	Использован тот же биологический вид, что и организм или организмы, генотип которого(ых) изменен с применением методов генной инженерии									
	2	Использован другой биологический вид, чем организм или организмы, генотип которого(ых) изменен с применением методов генной инженерии									
	3	Использованы оба источника									
	4	Иное									
5	Селе	ктивная устойчивость к антибиотикам									
	1	Имеются гены, обеспечивающие селективную устойчивость к антибиотикам									
	2	Гены, обеспечивающие селективную устойчивость к антибиотикам, отсутствуют									
6	Селе	ктивная устойчивость к гербицидам									
	1	Имеются гены, обеспечивающие селективную устойчивость к гербицидам									
	2 Гены, обеспечивающие селективную устойчивость гербицидам, отсутствуют										
7		чие в составе ГИМ генов, позволяющих избирательно улировать рост и развитие организма									
	1	Имеются гены, позволяющие избирательно стимулировать рост и развитие организма									
	2	Гены, позволяющие избирательно стимулировать рост и развитие организма, отсутствуют									
8	иден	ичие в составе ГИМ генов, кодирующих легко тифицируемые продукты и используемые в качестве еров внедрения трансгена в клетку/орган/ткань, так									

	назы	ваемые гены визуальной селекции								
	1	Имеются гены, позволяющие проводить визуальную селекцию								
	2 Гены, позволяющие проводить визуальную селекцию, отсутствуют									
9	Нали	чие в составе ГИМ генов иных способов селекции								
	1 Имеются гены иных способов селекции									
	2	Гены иных способов селекции отсутствуют								

Часть 3. Опыт использования ГМО (10 разряд)

Кодовое обозначение опыта использования ГМО строится на основе фасета 10 и заполняется следующим образом:

Фасеты	Код	Значение
10		уск ГМО в окружающую среду и (или) получение с его енением (содержанием) продуктов
	1	Имеется опыт выпуска в окружающую среду и (или) получение продуктов с его применением
	0	Выпуск в окружающую среду и получение продуктов не осуществлялись

Часть 4. Характеристики ГМО (11-15 разряды)

Кодовое обозначение характеристик ГМО строится на основе 5 фасетов (с 11 по 15 включительно) и заполняется следующим образом:

Фасеты	Код	Значение						
11		оположение фрагментов ДНК, кодирующих привносимые наки в генетическом аппарате клетки						
	1	изнаки в генетическом аппарате клетки Фрагменты привносимой ДНК интегрированы в хромосомную ДНК Фрагменты привносимой ДНК не интегрированы в						
	2	наки в генетическом аппарате клетки Фрагменты привносимой ДНК интегрированы в хромосомную ДНК						

	_	
	3	Часть фрагментов привносимой ДНК интегрированы в хромосомную ДНК, часть - не интегрированы
	0	Иное
12	Прим защи	менение при создании ГМО методов биологической ты
	1	Использование методов биологической защиты при создании ГМО
	2	Методы биологической защиты при создании ГМО не использовались
13	матеј (возм	собность ГИМ в составе ГМО к передаче генетического риала другому организму, не являющемуся его потомком можность процесса указывается по опыту работы аботчика с ГМО)
	1	ГИМ в составе ГМО способен к передаче генетического материала другому организму, не являющемуся его потомком
	2	ГИМ в составе ГМО не способен к передаче генетического материала другому организму, не являющемуся его потомком
14	мате	собность ГИМ в составе ГМО к переносу генетического риала от организма к его потомству через неполовое, сексуальное или половое размножение
	1	ГИМ в составе ГМО способно к переносу генетического материала от организма к его потомству через неполовое, парасексуальное или половое размножение
	2	ГИМ в составе ГМО не способно к переносу генетического материала от организма к его потомству через неполовое, парасексуальное или половое размножение
15	Стаб	ильность ГМО
	1	Модификация пожизненная (наследуемость в потомстве)
	2	Модификация временная

	0	Иное (возможны оба варианта)
--	---	------------------------------

Часть 5. Изменяемые признаки (16-23 разряды)

Кодовое обозначение изменяемых признаков строится на основе 8 фасетов (с 16 по 23 включительно) и заполняется следующим образом:

Фасеты	Код	Значение					
16	значи эффе деяте	ственные и/или количественные изменения хозяйственно имых признаков, повышающих экономическую жтивность использования организма в хозяйственной ельности человека (в сельском хозяйстве, лесном истве, промышленности, медицине и др.)					
	1	Наличие изменения указанных признаков					
	0	Отсутствуют изменения указанных признаков					
17	Усто	йчивость к болезням и/или вредителям/паразитам					
	1	Устойчивость к болезням и/или вредителям/паразитам изменена					
	0	Изменения устойчивости к болезням и/или вредителям/паразитам отсутствуют					
18	Селе	ктивная устойчивость к гербицидам, антибиотикам и т.п.					
	1	Присутствуют изменения в селективной устойчивости к гербицидам, антибиотикам и т.п.					
	0	Отсутствуют изменения в селективной устойчивости к гербицидам, антибиотикам и т.п.					
19	орган	йчивость к неспецифическим изменениям, возникающим в низме под влиянием любых неблагоприятных и еждающих факторов неживой природы					
	1 Наличие изменений в устойчивости к неспецифи изменениям						
	0 Отсутствуют изменения в устойчивости к неспецифическим изменениям						
20	Прод	укция белков, полученных путем введения в ДНК гена					

	друго	ого организма								
	1	Является продукцией белков, полученных путем введения в ДНК гена другого организма								
	0	Не является продукцией белков, полученных путем введения в ДНК гена другого организма								
21		енения в процессах, сопряженных с половым ножением организма								
	1	Наличие изменений в процессах, сопряженных с половым размножением организма								
	0	Отсутствие изменений в процессах, сопряженных с половым размножением организма								
22	орган	Изменения в процессах, сопряженных с ростом и развитием организма в ходе его жизнедеятельности, не сопряженных с половым размножением								
	1	Наличие изменений в процессах, сопряженных с ростом и развитием организма в ходе его жизнедеятельности, не сопряженных с половым размножением								
	0	Отсутствие изменений в процессах, сопряженных с ростом и развитием организма в ходе его жизнедеятельности, не сопряженных с половым размножением								
23	Иныс	е изменения								
	1	Есть								
	0	Нет								

Часть 6. Знак подтверждения (24 разряд)

Знак подтверждения является однозначным числом, который вычисляется путем сложения всех числовых значений кода трансформационного события (с 1 по 23 разряды). Если полученная сумма не является однозначным числом, цифры суммы складываются до тех пор, пока окончательная сумма цифр не будет представлять собой однозначное число.

3.3 Ёмкость классификатора

Для 1-го фасета - 8;

Для расчёта ёмкости классификатора вычислим количество возможных комбинаций значений фасетов. Для этого перемножим количества признаков в каждом фасете, а именно:

```
    Для 2-го фасета - 2;

    Для 3-го фасета - 4;

    Для 4-го фасета - 4;

    Для 5-го фасета - 2;

- Для 6-го фасета - 2;

    Для 7-го фасета - 2;

    Для 8-го фасета - 2:

    Для 9-го фасета - 2;

- Для 10-го фасета - 2;
- Для 11-го фасета - 4;

    Для 12-го фасета - 2;

    Для 13-го фасета - 2;

    Для 14-го фасета - 2;

    Для 15-го фасета - 3;

    Для 16-го фасета - 2;

    Для 17-го фасета - 2;

    Для 18-го фасета - 2;
```

Таким образом, данный классификатор позволяет классифицировать 402 653 184 трансформационных событий ГМО.

3.4 Заполнение классификатора

Для 19-го фасета - 2;
Для 20-го фасета - 2;
Для 21-го фасета - 2;
Для 22-го фасета - 2;
Для 23-го фасета - 2;

Код	Х	Х	Х		Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Χ		Χ
Части	1 2						3	4						5									6				
Разряды	1	2	3		4	5	6	7	8	9	10	11	12	13	14	1 5		16	17	18	19	20	21	22	23		24