

LOGIC GROUP

Special Note:

In the explanation of every instruction, I have mentioned its machine cycles and T-states. You will understand this part once you watch the two videos of timing diagrams

1) ANA R

Logically AND the contents of the specified register with accumulator, store result in accumulator.

Eg: ANA B ; A ← A AND B

Addr. Mode	Flags Affected	Cycles	T-States
Register	ALL	1	4

2) ANA M

Logically AND the contents of the memory location pointed by HL pair, with the accumulator.

Eg: ANA M ; A ← A AND M

Addr. Mode	Flags Affected	Cycles	T-States
Indirect	ALL	2	7

3) ANI 8-bit data

Logically AND the immidiate 8-bit data, with the accumulator.

Eg: ANA 25; A ← A AND 25

Addr. Mode	Flags Affected	Cycles	T-States
Immidiate	ALL	2	7

Special Note: Use of AND operation

To "Clear any bit", we must "AND" that bit with "0" and the remaining bits with "1".

Eg: ANI F0H will Clear the Lower Nibble of A while the Higher Nibble will remain the same.

Simillarly we have the other logic instrctions as follows:

- 4) ORA R
- 5) ORA M
- 6) ORI 8-bit data

Special Note: Use of OR operation

To "Set any bit", we must "OR" that bit with "1" and the remaining bits with "0". Eg: ORI 0FH will Set the Lower Nibble of A while the Higher Nibble will remain the same.

- 7) XRA R
- 8) XRA M
- 9) XRI 8-bit data

Special Note: Use of XOR operation

To "Complement any bit", we must "XOR" that bit with "1" and the remaining bits with "0". Eg: XRI 0FH will Complement the Lower Nibble while the Higher Nibble will remain the same.

10) CMP R

Compares the contents of register R and accumulator.

Comparision essntially is subtraction. Hence, this instruction performs A – R.

It is very important to **remember** that the **result** of this comparision is **NOT stored** in **accumulator**, only the Flags are afftected. \bigcirc In case of doubts, contact Bharat Sir: - 98204 08217.

Eg: CMP B; Compares A and B i.e. A – B (and not B - A)

We decide which one of the two is greater by checking the flags affected as follows:

Conclusion	Zero Flag 'Z'	Carry Flag 'Cy'
A > B	0	0
A = B	1	0
A < B	0	1

Addr. Mode	Flags Affected	Cycles	T-States
Register	ALL	1	4

Simillarly we have the other comparision instrctions as follows:

11) CMP M

12) CPI 8-bit data

13)STC

Sets the carry flag.

Cy **←** 1.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	Only Carry	1	4

14) CMC

Complements the carry flag.

Cy **←** Cy.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	Only Carry	1	4

15) CMA

Complements the accumulator.

A ← 1's complement of A.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	None	1	4

Special Note: Use of CMA operation

It acts as a NOT gate. AND followed by NOT gives a NAND.

Hence using CMA we can derive NAND, NOR and XNOR operations.

16) RLC

The Contents of accumulator are rotated left by 1.

The MSB goes to the Carry AND the LSB.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	Carry	1	4

17) RRC

The Contents of accumulator are rotated right by 1. The LSB goes to the Carry AND the MSB.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	Carry	1	4

18) RAL

The Contents of accumulator are rotated left by 1.

The MSB goes to the Carry and THE CARRY goes to LSB.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	Carry	1	4

19) RAR

The Contents of accumulator are rotated right by 1.

The LSB goes to the Carry and the CARRY goes to the MSB.

Addr. Mode	Flags Affected	Cycles	T-States
Implied	Carry	1	4

Bharat Acharya Education

Learn...

8085 | 8086 | 80386 | Pentium |

8051 | ARM7 | COA

Fees: 1199/-

Duration: 6 months Activation: Immediate Certification: Yes

Free: PDFs of theory explanation Free: VIVA questions and answers Free: PDF of Multiple Choice Questions

Start Learning... NOW!

Bharat Acharya Education

Order our Books here...

8086 Microprocessor book Link: https://amzn.to/3qHDpJH

8051 Microcontroller book Link: https://amzn.to/3aFQkXc

Official WhatsApp number:

+91 9136428051