

Featurized representation: word embedding

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)	
1 Gerder	-1		-0.95	0.97	0.00	0.01	
Gender" 300 Royal"	0.01	0.62	0.93	0.95	-0.01	0.00	
Age	0.03	0.02	0.7	0.69	0.03	-0.02	
Food	6.09	0.01	0.02	0.01	0.95	0.97	
size cost valiv verb	(esza)	6 ⁴⁸²³	I want a glass of orange juice. I want a glass of apple juice. Andrew				

Visualizing word embeddings

Named entity recognition example

Transfer learning and word embeddings

1. Learn word embeddings from large text corpus. (1-100B words)

(Or download pre-trained embedding online.)

- 2. Transfer embedding to new task with smaller training set. (say, 100k words) → 10,000 → 300
- 3. Optional: Continue to finetune the word embeddings with new data.

Andrew Ng

[Taigman et. al., 2014. DeepFace: Closing the gap to human level performance]

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)
Gender	-1	1	-0.95	0.97	0.00	0.01
Royal	0.01	0.02	0.93	0.95	-0.01	0.00
Age	0.03	0.02	0.70	0.69	0.03	-0.02
Food	0.09	0.01	0.02	0.01	0.95	0.97
Man ->	CS391 Cman Woman U	O .	? Queen		$\approx \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}$	1
9	man - Quaman	2 Cking -	C?		ween ~ [-000	And

Cosine similarity

In practice, use specialized function to look up an embedding.

Neural language model I want glass of orange 4343 3852 9665 1 6163 6257 Q4343 = E 04343 apple juice 04343 e_{4343} E want 09665 e_{9665} 0 6 Ê a 01 e_1 0 0 Eglass 03852 e_{3852} 10,000 E e_{6163} of 06163 E orange 06257 [Bengio et. al., 2003, A neural probabilistic language model] 🗢 Andrew Ng

Other context/target pairs

I want a glass of orange juice to go along with my cereal.

Andrew Ng

Skip-grams

I want a glass of orange juice to go along with my cereal.

[Mikolov et. al., 2013. Efficient estimation of word representations in vector space.]

Model

Vocab size = 10,000k

How to sample the context c?

Defining a new learning problem

Negative Sampling

I want a glass of orange juice to go along with my cereal.

It's really to try to distinguish between these two types of distributions from which you might sample a pair of words.

[Mikolov et. al., 2013. Distributed representation of words and phrases and their compositionality]

Andrew Ng

Selecting negative examples

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

[Pennington et. al., 2014. GloVe: Global vectors for word representation]

Andrew Ng

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

A note on the featurization view of word

minimize $\sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) \left(\theta_i^T e_j + b_i - b_j' - \log X_{ij} \right)^2$ $\left(A \Theta_i \right)^T \left(A^T e_j \right) = \Theta_i^T \mathcal{A} \mathcal{A}^T e_j$

[Pennington et. al., 2014. GloVe: Global vectors for word representation]
2. Correction in 'GloVe word vectors' slide 4 (8:11): typo: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i \bigcirc b_j' - \log X_{ij})^2$ corrected: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log X_{ij})^2$

Sentiment classification problem

Simple sentiment classification model

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker X

Father:Doctor as Mother: Nurse X

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the <u>text used to train the</u> model.

[Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings]

Andrew Ng

Addressing bias in word embeddings

[Bolukbasi et. al., 2016. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings] &

Want only difference in their embedding to be gender so both should be some exact similarity or exactly some difference