Practical One

Sbonelo Gumede GMDSBO006

2025-02-07

Air quality data set

Remove missing values

Rows with NA

knitr::kable(airquality[rowSums(is.na(airquality)) > 0,])

	Ozone	Solar.R	Wind	Temp	Month	Day
5	NA	NA	14.3	56	5	5
6	28	NA	14.9	66	5	6
10	NA	194	8.6	69	5	10
11	7	NA	6.9	74	5	11
25	NA	66	16.6	57	5	25
26	NA	266	14.9	58	5	26
27	NA	NA	8.0	57	5	27
32	NA	286	8.6	78	6	1
33	NA	287	9.7	74	$\overset{\circ}{6}$	2
34	NA	242	16.1	67	6	3
35	NA	186	9.2	84	6	4
36	NA	220	8.6	85	6	5
37	NA	264	14.3	79	6	6
39	NA	273	6.9	87	6	8
42	NA	259	10.9	93	6	11
43	NA	250	9.2	92	6	12
45	NA	332	13.8	80	6	14
46	NA	322	11.5	79	6	15
52	NA	150	6.3	77	6	21
53	NA	59	1.7	76	6	22
54	NA	91	4.6	76	6	23
55	NA	250	6.3	76	6	24
56	NA	135	8.0	75	6	25
57	NA	127	8.0	78	6	26
58	NA	47	10.3	73	6	27
59	NA	98	11.5	80	6	28
60	NA	31	14.9	77	6	29
61	NA	138	8.0	83	6	30
65	NA	101	10.9	84	7	4
72	NA	139	8.6	82	7	11
75	NA	291	14.9	91	7	14
83	NA	258	9.7	81	7	22
84	NA	295	11.5	82	7	23
96	78	NA	6.9	86	8	4
97	35	NA	7.4	85	8	5
98	66	NA	4.6	87	8	6
102	NA	222	8.6	92	8	10
103	NA	137	11.5	86	8	11

	Ozone	Solar.R	Wind	Temp	Month	Day
107	NA	64	11.5	79	8	15
115	NA	255	12.6	75	8	23
119	NA	153	5.7	88	8	27
150	NA	145	13.2	77	9	27

```
# Remove rows with NA
data <- na.omit(airquality)</pre>
```

Temperature statistics

Statistics	Values
Mean	77.792793
Standard Deviation	9.529969
Minimum	57.000000
Maximum	97.000000

Ozone level statistics

Statistics	Values
Mean	42.09910
Standard Deviation	33.27597
Minimum	1.00000
Maximum	168.00000

Cars data set

Remove missing values

```
cars <- na.omit(cars)</pre>
```

First principle calculations function

```
f <- function(X, Y){</pre>
# Calculate beta estimates
B <- solve (t(X) %*\% X) %*\% t(X) %*\% Y
n <- length(cars$speed)</pre>
k < -2
df <- n-k
# Calculate standard errors
s_{quare} < (1/(df))* (t(Y - X%*%B) %*% (Y - X%*%B))
C <- solve(t(X) %*% X)</pre>
se <- sqrt(as.numeric(s_square) * diag(C))</pre>
# Calculate t-statistics
t_stats <- B/se
# Calculate p-values
p_{values} \leftarrow 2 * (1 - pt(abs(t_stats), df = df))
data_frame <- data.frame("Estimate"=B, "Std. Error"=se, "t value"=t_stats, "Pr(>|t|)"=p_values,
                                    check.names=FALSE)
row.names(data_frame) <- c("(Intercept)", "speed")</pre>
return(data_frame)
}
```

Using the first principle calculations function

```
X <- cbind(1, cars$speed)
Y <- cars$dist
knitr::kable(f(X, Y))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-17.579095	6.7584402	-2.601058	0.0123188
speed	3.932409	0.4155128	9.463990	0.0000000

Using the 1m function

```
# Fit a linear model
model <- lm (dist ~ speed, data = cars)

# Display the summary
summary_table <- as.data.frame(summary(model)$coefficients)
knitr::kable(summary_table)</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-17.579095	6.7584402	-2.601058	0.00-0
speed	3.932409	0.4155128	9.463990	0.0000000