Lecture 7. ZigBee Communications (07/17)

B. ZigBee Communications
B1. Introduction
B2 Physical and MAC layers
B3. Modulation
B4. Data transfer
B5. Zig bee Network Coordinator
B6. Reduced-Function Device (RFD)
B7 Full-Function Device (FFD)
B8. IEEE 802.15.4 in the ISO-OSI Model
B9. The General Frame Formats
B10. Zig Bee Operation
B11. Zig Bee General Characteristics
B12. Zig Bee Application Scenarios
B13. Zig Bee and Bluetooth

Z-B

ZigBee Communications

ZigBee and 802.15.4 for Personal Area and Sensor Networks

Introduction to ZigBee Communications

- Zigbee is a subset of the 802.15.4 specification.
 This standard is completed in May 2003, and
 defines the specifications of the PHY and MAC
 layers for ZigBee.
- The IEEE 802.15.4 specification is manly designed for <u>command</u> and <u>control</u>, for maximum <u>200 Kbps</u> data rate.
- The ZigBee 1.0 specifications were defined in December 2004, and version 1.1 is now in the works.
- The distance about 70 meters.

Applications:

low data rate wireless applications: sensor monitoring, building and home automation, other applications requiring low power consumption

MAC layer

- 802.15.4 is a simple packet data protocol for wireless networks
 - Channel Access
 - Carrier Sense Multiple Access with collision avoidance (but, NO RTS / CTS)
 - Message acknowledgement
 - The system is specified to operate in one of the three license free bands, 27 channels specified:
 - 2.4 GHz: 16 channels, 250 kbps
 - 902-928 MHz: 10 channels, 40 kbps
 - 868.3 MHz: 1 channel, 20 kbps
 - Long battery life

The IEEE 802.15.4 channel structure.

MAC layer

Physical layer

- The 868/915 MHz PHY uses a simple DSSS.
- Binary data is encoded by multiplying each msequence by +1 or -1, and the resulting chip sequence is modulated onto the carrier using binary phase shift keying (BPSK).
 - The modulation techniques according to the band:
 - DSSS is used for spreading in all cases.
 - For the 868 and 915 MHz bands the modulation is BPSK.
 - For the 2.4 GHz band, Offset O-QPSK is employed.

IEEE 802.15.4 modulation parameters

PHY	Frequency band	Data parameters			Spreading parameters	
		Bit rate (kb/s)	Symbol rate (kbaud)	Modulation	Chip rate (Mchips/s)	Modulation
868/915	868-868.6 MHz	20	20	BPSK	0.3	BPSK
MHz PHY	902-928 MHz	40	40	BPSK	0.6	BPSK
2.4GHz PHY	2.4-2.4835 GHz	250	62.5	16-ary orthogonal	2.0	0-QPSK

Data transfer

- Employs 64-bit & 16-bit short addresses
 - Network size can be 264 nodes (more than probably is needed)
 - Using local addressing, simple networks of more than 65,000 nodes can be configured.
- Three devices specified
 - Network Coordinator
 - Full Function Device (FFD)
 - Reduced Function Device (RFD)

With characters:

- Simple frame structure
- Reliable delivery of data
- Association/disassociation
- CSMA/CA channel access. No RTS & CTS

An example of a Zig-Bee home network

- Three device types
 - Network Coordinator
 - Maintains overall network knowledge; most sophisticated of the three devices; most memory and computing power
 - Full Function Device (FFD)
 - Carries full 802.15.4 functionality and all features specified by the standard
 - Additional memory, computing power make it ideal for a network router function
 - Could also be used in network edge devices
 - Reduced Function Device (RFD)
 - Carriers limited functionality to control cost and complexity
 - General usage will be in network edge devices
- A ZigBee network is supporting 1 coordinator, with up to 254
 FFDs, and thousands of RFDs.

Network Coordinators

- The main-powered coordinator assumes the most important role in a ZigBee network, acting as the root of the network tree and bringing to other networks.
- It has the authority to establish networks and perform any network management that might be required.
- The coordinator also has routing capability and may serve as a gateway to the Internet or to other networks, and it can store information about the network. Because it contains the most memory, it is the most expansive of the three devices in a ZigBee network.

Reduced-Function device (RFD)

- The simplest ZigBee device is the RFD, also referred to as end device.
- It is smart enough to talk to the network but has no routing abilities.
- End devices are often battery powered. Typical end function as: <u>thermostats</u>, <u>humidistats</u>, <u>light switches</u>, <u>smoke detectors</u>, and <u>other</u> <u>sensors</u>.
- These end devices do not form a mesh by themselves, instead, they are usually asleep in order to conserve their batteries.

Full-Function device (FFD)

- The FFD, or router. It is fully network capable and powered.
- FFD can establish multiple peer-to-peer links with other routing nodes, and they accept connections from FFD devices, performing the role of intermediate routers.
- An FFD may serve as a gateway to the internet or other networks.

The general frame format.

The data is transferred in packets

- These have a maximum size of 128 bytes, allowing for a maximum payload of 104 bytes.
- The standard supports 64 bit addresses as well as 16 bit short addresses.
- The 64 bit addresses uniquely identify every device (IP address).
- Once a network is set up, the short addresses can be used and this enables over 65,000 nodes to be supported.
- It also has an optional superframe structure with a method for time synchronization.
- In addition to this it is recognized that some messages need to be given a high priority. This enables these high priority messages to be sent across the network as quickly as possible.

Data Frame format

			Octets:	2	1	4 to 20	n	2
MAC sublayer				Frame Control	Data Sequence Number	Address Information	Data Payload	FCS
					MH	łR	MSDU	MFR
Octets:	4	1	1	5 + (4 to 20) + n				
PHY layer	Preamble Sequence	Start of Frame Delimiter	Frame Length	MPDU				
	S	SHR PHR PSDU						
	11 + (4 to 20) + n							
	PPDU							

- One of two most basic and important structures in 802.15.4
- Provides up to 104 byte data payload capacity
- Data sequence numbering to ensure that all packets are tracked
- Frame Check Sequence (FCS) ensures that packets received are without error

18

Acknowledgement Frame Format

 Provides active feedback from receiver to sender that packet was received without error

MAC Command Frame format

- Mechanism for remote control/configuration of client nodes
- Allows a centralized network manager to configure individual clients no matter how large the network

Beacon Frame format

- Beacons add a new level of functionality to a network
- Client devices can wake up only when a beacon is to be broadcast, listen for their address, if not heard, return to sleep
- Beacons are important for mesh and cluster tree networks to keep all of the nodes synchronized without requiring nodes to consume precious battery energy listening for long periods of time

ZigBee Operation

- Non-beacon network
 - Standard ALOHA & CSMA-CA communications
 - Positive ACK for successfully received packets
- Beacon-enabled network
 - Superframe structure
 - For dedicated bandwidth and low latency
 - Set up by network coordinator to transmit beacons at predetermined intervals
 - >> 15ms to 252sec (15.38 ms*2n where 0 ≤ n ≤ 14)
 - » 16 equal-width time slots between beacons
 - » Channel access in each time slot is contention free

ZigBee General Characteristics

Specification	802.15.4
Data rate	200 Kbps
Distance about	70 meters
MAC, Non-beacon	CSMA/CA, but no RTS/CRS
MAC Beacon-enabled	slotted CSMA/CA, with super-frames
Bands and Channels	868-1; 915 MHz-10 BPSK; 2.4 GHz-16 O-QPSK
Three devices	Network Coordinator-1; FFD- 254; RFD-1000
Packet size	128 bytes
Payload size	104 bytes
IEEE addresses	64 bit; short addresses 16 bit; 65,000 nodes
transmit Set up	15ms to 252sec, 16 width between beacons
Encoding	DSSS- 11 chips/symbol
Network join time	30ms typically
Sleeping / to active	15ms typically
Active channel access	15ms typically

Zig Bee Application Scenarios: Noninvasive Biomedical Sensors

Body Sensor Network Communication

- Non-invasive biomedical sensors
 - Body Area Networks (BANs) have different properties than traditional wireless sensor networks (WSN).
 - Path loss affected by power level, antenna design, arm motion, and path orientation (along or across body).
 - Task: Determine wireless propagation around the body
- In-vivo biomedical sensors
 - Path loss due to interference from the body
 - Task: Determine wireless propagation from within the body.

Displaying Two Modes of Travel, Along the Body (Solid Line) and Around the Body (Dotted Line), in a Wireless Body Area Network

ZigBee and Bluetooth

Optimized for different applications

- ZigBee 802.15.4
 - Smaller packets over large network
 - Mostly Static networks with many, infrequently used devices
 - Home automation, toys, remote controls, etc.

- Bluetooth 802.15
 - Larger packets over small network
 - Ad-hoc networks
 - File transfer
 - Screen graphics, pictures, hands-free audio, Mobile phones, headsets, PDAs, etc.

Transceiver Comparisons

N-B

- Instantaneous Power Consumption
 - 15.4 Transceivers are "similar" to Bluetooth Transceivers
 - **802.15.4**
 - O-QPSK with shaping (Offset QPSK)
 - Max data rate 250 kbps over the air
 - 2 M.chips/s over the Direct Sequence Spread Spectrum (62.5ksps*32 spread)
 - -90 dBm sensitivity
 - Bluetooth 802.15
 - FSK
 - Max data rate 720 kbps over the air
 - 1 Msps over the Frequency Hop Spread Spectrum (79 channels @ 1600 hps)
 - -85dBm sensitivity

ZigBee and Bluetooth (cont)

Air interface

- ZigBee
- DSSS- 11 chips/ symbol
- 62.5 K symbols/s
- 4 Bits/ symbol
- Peak Information Rate
- ~128 Kbit/second

Bluetooth

- FHSS
- 1 M Symbol / second
- Peak Information Rate

~720 Kbit / second

ZigBee and Bluetooth (cont)

Timing Considerations

- ZigBee:
- Network join time = 30ms typically
- Sleeping slave changing to active = 15ms
- Active slave channel access time = 15ms

Bluetooth:

- Network join time = >3s
- Sleeping slave changing to active = 3s typically
- Active slave channel access time = 2ms typically

Light switch using ZigBee

- With DSSS interface, only need to perform CSMA before transmitting
 - Only 200 μs of latency
 - Highly efficient use of battery power

ZigBee offers longer battery life and lower latency than a Bluetooth equivalent.