MATH-221: Probability and Statistics

Tutorial # 5 (Function of Random Variable, Expectation, Variance, Variance and Expectation of function of Random Variable)

- 1. Let X be a random variable with distribution function F. Find the distribution function of the following random variables in terms of F. (i) $\max\{X,a\}$, where $a \in \mathbb{R}$ (ii) $|X|^{\frac{1}{3}}$ (iii) |X| (iv) e^X (v) $-\ln |X|$.
- 2. Let X be the uniform random variable on [0, 1]. Then Determine pdf of (i) \sqrt{X} (ii) aX + b, where $a \neq 0, b \in \mathbb{R}$ (iii) $X^{\frac{1}{4}}$.
- 3. Let X be a random variable with PMF

$$f_X(x) = \begin{cases} \frac{x^2}{a} & \text{if} \quad x = -3, -2, -1, 0, 1, 2, 3\\ 0 & \text{otherwise} \end{cases}$$

Find a. What is the PMF of the random variable $Z = (X - a)^2$.

- 4. Consider $X \sim U[-1,1]$. Another random variable Y is formed by using the transformation $Y = X^2 + X$. Find the distribution function $F_Y(y)$ and density function $f_Y(y)$ of the new transformed random variable Y.
- 5. (a) Let a random variable X has a continuous distribution function $F_X(x)$ which is strictly increasing on \mathbb{R} . Then show that $Y \sim U(0,1)$, where $Y = F_X(X)$. (Actually the result is true even for continuous distribution function which are constant over some intervals but proof of this is more involved).
 - (b) Use the general version of result in part (a), to show that if X is exponentially distributed with parameter λ , then $-\frac{1}{\lambda}\ln(1-Y)$ is also exponentially distributed, where $Y = F_X(X)$.
- 6. Find the mean and variance of (i) Bernoulli(p) (ii)binomial(n,p) (iii) geometric(p) (iv) Poisson(λ) (v) continuous uniform on [a, b] (vi)normal(μ , σ^2) (vii) exponential(λ) distributions.
- 7. Let X be exponentially distributed with parameter λ . Find the 4th moment.
- 8. Let X be standard normal random variable. Find E|X|.
- 9. Let X be a Binomial random variable with parameters $n=4, p=\frac{1}{2}$. Find $E\left[\sin\left(\frac{\pi x}{2}\right)\right]$.
- 10. Let X be a geometrically distributed random variable with parameter p and M be a positive integer. Find $E[\min\{X, M\}]$.
- 11. Assume that every time you attend your lecture there is a probability of 0.1 that your Professor will not show up. Assume his arrival to any given lecture is independent of his arrival (or non-arrival) to any other lecture. What is the expected number of classes you must attend until you arrive to find your Professor absent?
- 12. If X is the number of points rolled with a fair die, find the expected value of $g(X) = 2X^2 + 1$.
- 13. Let X be a random variable with E(X) = 6 and $E(X^2) = 45$, and let Y = 20 2X. Find E(Y) and Var(Y).

- 14. The thickness of a conductive coating in micrometers has a density function of $f_X(x) = 600x^{-2}$ for $100\mu m < x < 120\mu m$. Let X denote the coating thickness.
 - (a) Determine the mean and variance of X.
 - (b) If the coating costs 5 Rs. per micrometer of thickness on each part, what is the average cost of the coating per part?
 - (c) Find the probability that the coating thickness exceeds $110\mu m$.
- 15. An insurance policy reimburses a loss up to a benefit limit of 10. The policyholder's loss, X, follows a distribution with density function:

$$f_X(x) = \begin{cases} \frac{2}{x^3}, & x > 1, \\ 0 & \text{otherwise.} \end{cases}$$

What is the expected value of the benefit paid under the insurance policy? Also find the variance of the benefit paid under the insurance policy.

16. Let

$$P_X(x) = \begin{cases} \frac{1}{2^x}, & x = 1, 2, 3, \cdots, \\ 0, & otherwise. \end{cases}$$

be the pmf of the random variable X, then find all the possible values of t such that $E[e^{tX}]$ exist.

- 17. Let a random variable X of the continuous type have a pdf f(x) whose graph is symmetric with respect to x = c. If the mean value of X exists, then prove that E[X] = c.
- 18. Let X be a random variable with CDF

$$F_X(x) = \begin{cases} 1 & x > 1, \\ \frac{x}{2} + \frac{x^2}{2}, & 0 \le x \le 1, \\ 0, & x < 0. \end{cases}$$

then find $E(e^X)$.

19. The number of messages sent per hour over a computer network has the following distribution:

x = number of messages	10	11	12	13	14	15
$P_X(x)$	0.08	0.15	0.30	0.20	0.20	0.07

Determine the mean and standard deviation of the number of messages sent per hour.