浙江大学实验报告

专业: 信息工程 姓名: 李昕 学号: 3230103034 日期: 2024年12月3日 地点: 东 4-216

指导老师: 施红军, 叶险峰, 邓靖靖 成绩: _____ 课程名称: 电子电路设计实验 I 同组学生姓名: 罗启航

实验名称: 晶体管共射放大电路的设计、仿真与测试实验类型: 设计型实验

一、 实验目的

(1) 学习晶体管放大电路的设计方法

- (2) 掌握晶体管放大电路静态工作点的设置、测量与调整方法
- (3) 了解放大器的非线性失真
- (4) 掌握放大器电压增益、输入电阻、输出电阻、幅频响应等基本性能指标的测量方法
- (5) 理解负反馈对放大电路性能的影响

二、 实验任务和要求

- (1) 提出合理指标,用给定电路结构设计电路,并进行仿真
- (2) 对电路进行验算,将验算结果与仿真结果比较
- (3) 进行波形测量,与仿真值进行比较

三、实验原理

1. 共射放大电路分析计算

分立电路普遍采用、带射极电流负反馈、阻容耦合。

图 1: 共射放大电路

如图为示例共射放大电路。其中 R_{B1} 、 R_{b2} 提供静态工作点所需基极电压; R_{w1} 进行静态工作点的调节; R_{b1} 保护电路,避免 R_{w1} 调至 0 时基极电流过大,损坏 BJT; R_c 为直流负载电阻, R_L 为交流负载电阻, C_b 、 C_c 为耦合电容。其中 R_{e1} 、 R_{e2} 都参与直流电流负反馈,但只有 R_{e1} 参与交流电流负反馈(旁路电容 C_e 交流 短路)对共射放大电路进行直流分析,有:

$$\begin{cases} V_{BB} = V_{CC} \frac{R_{b2}}{R_{b1} + R_{b2}}, \\ R_{BB} = R_{B1} \parallel R_{b2}, \\ I_C = \frac{\beta}{1 + \beta} I_B \approx I_E, \\ V_{CE} \approx V_{CC} - (R_C + r_{be}) I_C, \\ I_E = \frac{V_{BB} - V_{BE}}{r_{bc} + \frac{R_{BB}}{r_{bc}}} \end{cases}$$

在交流小信号参数计算中,

$$\begin{cases} g_m = \frac{I_C}{V_T} \\ r_\pi = \frac{\beta}{g_m} \\ r_{be} \approx \frac{1}{q_m} \end{cases}$$

对电路进行交流分析,等效电路图如下:

图 2: 共射放大电路交流分析

此时,有:

$$R_i = R_{B1} \parallel R_{b2} \parallel [(1+\beta)(r_{be} + R_{sl})]$$

$$R_o \approx R_C$$

$$A_v = \frac{v_o}{v_i} \approx -\frac{\text{集电极总电阻}}{\text{发射极总电阻}} = -\frac{R_C \parallel R_L}{r_{be} + R_{e1}}$$

2. 静态工作点与失真

图 3: 波形示意图

静态工作点选得过高或过低都易产生非线性失真。如图,若工作点过高,如 Q_1 ,稍大的输入信号正半周将使晶体管进入饱和区,因而 i_c 波形将出现顶部压缩,输出电压 v_{CE} 波形将在底部压缩,这为**饱和失真**。若选择太低,如 Q_2 ,稍大的输入信号负半周将使晶体管进入截止区,因而 i_c 波形将出现底部削平,输出电压 v_{CE} 波形将在顶部削平,这为**截止失真**。

因此,要使放大器不失真地放大,工作点必须选择合适。初选静态工作点时,可以选取直流负载线的中点,即 $V_{CE}=0.5V_{CC}$ 或 $I_C=0.5I_{CS}$,这样便可获得较大输出动态范围。当放大器输出端接有负载 R_L 时,因交流负载线比直流负载线要陡,所以放大器动态范围要变小。当发射极接有电阻时,也会使信号动态范围变小。

学号: 3230103034

四、实验方案设计与参数计算

1. 实验电路设计

1.1 提出技术指标

选取 $V_{CC}=+12V,\ R_L=3k\Omega,\ V_i=10mV,\ R_S=600\Omega,$ 性能指标要求: $|A_v|>15V/V,\ R_i>3k\Omega,$ $f_L<50Hz.$

1.2 确定电路结构,偏置方案

下图为确定的实验电路结构

图 4: 实验电路

其中电路结构及晶体管选用 Q2SC1815, β 按 160 计算。

- 1.3 确定偏置元件值 I_C 、 V_{CE}
- (1) 被测信号幅度较小,考虑噪声系数,取 $I_C = 1mA$
- (2) 取 $V_B = 1/4V_{CC} = 3V$, 得 $r_{be} \approx \frac{V_B V_{BE}}{I_C} = 2.3k\Omega$
- (3) 当 $I_{R1} \gg I_B$ 时, $V_{BB} \approx V_B = 3V$,即

$$12 \times \frac{R_{b2}}{R_{B1} + R_{b2}} = 3$$

因此, $R_{B1}:R_{b2}=3:1$ 。 R_{B1} 、 R_{b2} 取太小会使 $R_i>3k\Omega$ 难以满足,取太大会使工作点稳定要求 $(I_{R1}\gg I_B)$ 难以满足。

因此,有两个思路:

a. $R_i = R_{B1} \parallel R_{b2} \parallel [(1+\beta)(r_{be} + R_{e1})]$, 因此,一般取 R_{b2} 为 R_i 下限值的 3 倍即可满足输入电阻要求,因此取 $R_{b2} = 15 k\Omega$,则 $R_{B1} = 45 k\Omega$ 。

b. 按
$$I_{R1} \gg I_B$$
,取 $I_{R1} = 10I_B = 0.1 \, mA$,则 $R_{B1} = \frac{V_{CC} - V_B}{I_{R1}} = 90 \, k\Omega, R_{b2} = 30 \, k\Omega$

- (4) 综合考虑, R_{b2} 可取标称值 $20 k\Omega$, R_{B1} 可取为 $60 k\Omega$
- 1.4 动态参数有关元件值的确定 (R_C, R_{e1})
- 电压增益 A_v 的计算公式为: $A_v = -\frac{R_C \parallel R_L}{r_{be} + R_{e1}}$
- 输入电阻 R_i 的计算公式为: $R_i = R_{B1} \| R_{b2} \| [(1+\beta)(r_{be} + R_{e1})]$

由 $I_C=1mA$ 得 $r_{be}\approx 26\Omega$ 。取 $|A_v|=20V/V$,有 $\frac{R_C\|3000}{26+R_{e1}}=20$ R_C 、 R_{e1} 的具体取值有两个思路:

- 从 R_{e1} 入手: 取 $R_i = 5 k\Omega$,可得 $R_{e1} = 48\Omega$, $R_C = 2.94 k\Omega$, $R_{e2} = 2.252 k\Omega$
- 从输出摆幅考虑: 取定一使输出摆幅较大的 $V_C = \frac{2}{3}V_{CC} = 8V$,可获得 4V 左右的输出信号摆幅。则 $R_C = 4k\Omega$, $R_{e1} = 60\Omega$, $R_{e2} = 2.24k\Omega$ 。
- 1.5 电容值确定

取
$$C_b = 10 \mu F, C_c = 10 \mu F, C_e = 47 \mu F$$

2. 实验电路验算

2.1 静态工作点相关参数

取 $V_{be} = 0.7V$, 则:

$$I_e = \frac{V_A - 0.7V}{r_{be}} = \frac{3.3V}{58.2k\Omega} = 1.020mA \Rightarrow I_c = I_e \cdot \frac{\beta}{1+\beta} = 1.013mA$$

$$V_{CE} = V_{CC} - I_C \cdot R_C - V_{EQ} = 12 - 1.013 \times 10^{-3} \times 3.9 \times 10^3 - 2.3 = 5.749V$$

$$V_{BE} = 0.7V, V_{BQ} = 3V$$

2.2 放大倍数

$$A_v = \frac{\beta I_b \cdot R_c || R_L}{I_b r_{be} + (1+\beta)I_b \cdot R_{e1}} = 30.00$$

2.3 输入电阻

$$R_i = R_{B1} \parallel R_{b2} \parallel (r_{be} + (1+\beta)R_{e1}) = 1.5k\Omega \parallel (26 + 161 \times 56\Omega) = 1286.57\Omega$$

2.4 输出电阻

$$R_O = R_C = 3.9k\Omega$$

五、 实验方案仿真

1. 静态工作点

按照之前的参数设定,绘制电路图,如下图所示。

图 5: 仿真电路图

如图所示,有 $I_C = \frac{(12.00-6.257)V}{3.9k\Omega} = 0.960mA, V_{CE} = 6.031V, V_{BE} = 0.725V, V_B = 2.910V$

2. $R_L = 3k\Omega$, 测量电压放大倍数

2.1 瞬态分析

测量输入波形,如图所示, V_i 峰值为 10mV

图 6: 输入波形

测量输出波形,如图所示,启动光标,测得的电压峰值为 154.158mV

图 7: 输出波形

图 8: 光标测量结果

故
$$A_V = \frac{V_o}{V_i} = \frac{154.158mV}{10mV}$$
 15.41

2.2 交流分析

图 9: 交流参数设置

进行交流分析。运行后在 Probe 窗口中,执行 Trace/Add Trace 命令,设置参数如上,显示出幅频特性如下图所示。

图 10: 交流分析频谱图

4						
	Trace Color	Trace Name	Y1		Y1 - Y2	Y1(Cursor1) -
		X Values	727.273K	10.000m	727.273K	Y1 - Y1(Cursor1)
	CURSOR 1	V(out)√V(in)	20.273	214.764u	20.273	0.000

图 11: 交流分析的光标测量结果

由光标测量结果,可知放大倍数 $A_V = 20.273$

3. $R_L = \infty$, 测量电压放大倍数

如下图,设计仿真电路图测量 $R_L = \infty$ 时的交流放大倍数:

图 12: $R_L = \infty$ 测量电压放大倍数电路

同理,对电路进行交流分析,设置同上,仿真波形如下:

图 14: $R_L = \infty$ 测量电压放大倍数电路光标

图 13: 交流分析

光标测量结果如下: 放大倍数为 46.451.

4. 测量输入电阻、输出电阻

4.1 输入电阻

图 15: 交流分析参数

进行交流分析,按上图设置参数,测得输入电阻的频率特性图如下:

图 16: 输入电阻的频率特性

光标测的结果如下,则 $R_{in}=6.8126k\Omega$

图 17: 光标测量结果

4.2 输出电阻

将电路的输入端短路,负载开路,在输出端加一信号源 V_o ,进行交流分析,选择 $\mathrm{V}(\mathrm{out})/I_{Ce1}$ 作为统计量。电路图如下:

图 18: 输出电阻测量电路

输出波形如下:

图 19: 输出电阻测量波形

光标测量结果如图:

图 20: 输出电阻光标测量结果

输出电阻为 $3.8731k\Omega$

六、 实验仪器设备

- (1) 电路板
- (2) 万用表
- (3) 示波器

七、 晶体管共射放大电路测试步骤、实验数据记录

1. 静态工作点的调整和测量

mA, V	I_c	V_{CE}	V_{BE}	V_B
仿真	$0.960 \mathrm{mA}$	6.031V	0.725V	2.910V
测量	1.003mA	5.86V	0.620V	2.90V

表 1: 静态工作点测量

该晶体管处于放大状态

2. 电压增益测量

(1) 保持 I_C 不变,调节信号源,使输出 2kHz 正弦波,加至放大电路输入端,使输入电压 v_i 幅度 30mV (以示波器显示为准)。不接入负载电阻,即 $R_L = \infty$ 。

学号: 3230103034

- (2) 用双踪显示观察输入-输出波形,他们的相位互补,和为 2π (见下失真图像)
- (3) 当输出波形无失真时,分别读出 v_i 、 v_o 的峰-峰值,记入下表。

测试条件		理论值			
	$V_{ m IP-P}$	$V_{\mathrm{OP-P}}$	$ V_{\text{OP-P,max}} $	$A_{ m v}$	$A_{ m v}$
$R_{\rm L} = \infty$	$57.65 \mathrm{mV}$	2.1976V	6.2073	38.120	46.451
$R_{\rm L} = 3k\Omega$	57.81mV	1.196V	×	20.688	20.273

(4) 增大输入信号幅度,用示波器监视输出波形。使输出波形出现失真,此时输出波形草图如下,C2 的最大值和最小值的绝对值之差超过了 0.3V, 出现了饱和失真。此时,测出最大不失真输出电压峰-峰值,记入表中。(见上表)

图 21: 失真波形图

3. 输入电阻测量

在信号源与被测放大器之间串入一个与 R_i 同一数量级(理论估算)的已知电阻 R ,在输出波形不失真的情况下,分别测出 v_s 和 v_i ,则放大器的输入电阻为 $R_i = \frac{v_i}{(v_s-v_i)/R} = \frac{v_i}{v_s-v_i} \times R$

图 22: 输入电阻测量示意图

测得的相关数据如下表。

$R_i(理论)$	R	v_s	v_i	R_i (实际)
$6.8216k\Omega$	$10k\Omega$	57.81mV	23.59mV	$6.894k\Omega$

表 2: 输入电阻测量表

4. 输出电阻测量

输出波形不失真情况下,分别测出输出端空载时的输出电压 v_o 、和接入负载 R_L 后的输出电压 v_o' ,则放大器的输出电阻为 $R_o=\frac{v_o-v_o'}{v_o'/R_L}=(\frac{v_o}{v_o'}-1)\times R_L$

图 23: 输出电阻测量

基于此原理,测得的数据如下:

R_o (理论)	R_L	v_o	v_o'	R_o (实际)
$3.8731k\Omega$	$3k\Omega$	1.056V	467.1mV	$3.7823k\Omega$

表 3: 输入电阻测量表

学号: 3230103034

5. 上限截止频率 f_H 、下限截止频率 f_L 测量

电压增益下降到中频增益 0.707 倍时(-3dB)所对应的上、下限频率即 f_H 、 f_L ,放大电路的通频带宽度 $BW=f_H-f_L$.

- (1) 在 I_C 为设计值、 $R_L = \infty$ 情况下,输入 $2 {
 m kHz}$ 正弦信号,改变输入信号幅度,使输出电压峰-峰值为 $0.5 V_{OP-Pmax}$ 左右(主要是为了避免输出过大而出现失真或输出过小影响测量精度)。准确测出此时输出 电压峰-峰值 $V_{Op-p} = 3.14 V$
- (2) 保持输入电压 vi 幅度不变, 改变信号源输出频率 (增加或减小), 当输出电压值达到 $0.707V_{Op-p}$ 值时, 停止信号源频率的改变.
- (3) 此时, 测得 $f_L = 39Hz, f_H = 385kHz$

八、 心得与体会

本次实验中,我亲自实现了三极管共射放大电路,并进行了从仿真到实体测量的过程,所得到的测量值与仿真结果也较为接近。