SECTION-A Answer all the questions each one carries one mark.

Ŋ	Which of the following a) rubber		c) steel	d)copper	
2)	The Young's modulus of wire of length L and radius r is Y. If the length is reduced to $L/2$ and radius $r/2$, then its young's modulus will be				
	a) Y/2		c) 2Y	d) 4Y	
3)	A wire is stretched by a certain amount under a load. If the load and radius both are increased to 4 times, then find the stretch caused in the wire				
	a) $\Delta L/2$	b) ΔL/4	c) ΔL/6	$d)\Delta L/8$	
4)				rea. If the maximum stress	
16	is not to exceed 10° N	1/m ² , then what is the	maximum load the ca	able can support	
5		b) 3*10 ⁴ N			
5) Two wires of same radius and material have their lengths in the ratio 1:2. If they a stretched by same force, the strain produced in the two wires will be in the ratio					
	a) 1:1	b)1:2	c)2:1	d)1:4	
6X	,	,	,		
6) Two wires of the same length and radius are joined end to end and lo modulus of the material of the two wires are Y ₁ and Y ₂ , the combination					
	single wire of young		·		
			$c)Y_1 - Y_2$	d) $2Y_1Y_2/(Y_1+Y_2)$	
7)	A sphere contracts in	volume by 0.01% wh	en taken to the bottor	n of leg 1 km deep. If the	
	density of water is 1 gm/cc, the bulk modulus of water is				
		b) $9.8*10^8 \text{N/m}^2$			
8)	compress it by 0.10% (Bulk				
	modulus of water is	$2.2*10^9 \text{N/m}^2$			
/	a) $220*10^{3} \text{ N/m}^2$	b)22*10 ⁵ N/m ²	c) 2.2*10° N/m²	d) None	
9) Pascal's law states that pressure in a fluid at rest is the same at all points, if					
	a) they are at the sa				
	b) they are having s				
	c) they are carrying	g same mass			
1.0	d) both a and b	compressed air exert a	force F. on a small	piston having a radius of 5	
10	om This pressure is	transmitted to a secon	d piston of radius 15	cm. If the mass of the car t	
	be lifted is 1350 Kg	calculate F ₁ (Take g=	9.8 m/s^2)	om. If the mass of the car t	
	a) 1470 N	b) 1500 N	c) 1420 N	d) 1380 N	
VI) Bernoulli's theorem	,	,	u) 1500 11	
• .	a) conservation of		c) conservation of	energy	
	b) conservation of		d) conservation of angular momentum		
V	2) Viscosity of liquids				
	a) increases with i	ncrease of temperature		of temperature	
	/	increase in temperature	d) None		
1	3) If $R_e > 3000$, then t				
	a) turbulent	b) stream line	c) both a and b	d) None	

14) If temperature incre a) increases b) of 15) If work done by an is required to increase a) W	decreases c) resexernal agent to form	mains same d) fir	rst increases then decreases is W. Then how much energy d) 9W			
16) The work done in blowing a soap bubble of radius 3.5 cm is (S= 3*10 ⁻² N/m) a) 0.66 *10 ⁻⁴ Nm b) 3.5 *10 ⁻⁴ Nm c) 1.32 *10 ⁻⁴ Nm d) 2.6 *10 ⁻⁴ Nm N) A liquid does not wet the solid surface if angle of contact is						
$a) 0^{0}$	b) 45°	c) 90°	d) $> 90^{\circ}$			
18) Find the depression of the miniscus in the capillary tube of diameter 0.4 mm dipped in a beaker containing mercury (mercury density =13.6*10 ³ Kg/m ³ , S=0.49 N/m and angle of contact = 135 ⁰)						
a) - 0.024 m	b) -0.0024 m	c) -0.2 m	d) -0.001 m			
19) A 20 cm long capillary tube is dipped in water. The water rises upto 8 cm. If the entire arrangement is put in a freely falling elevator then the length of water column in the capillary tube will be						
a) 4 cm	b) 8 cm	c) 10 cm	d) 20 cm			
20) Excess pressure inside a soap bubble						
a) 2S/r	b) 4S/r	c) 8S/r	d) None			
	<u>S</u>	ECTION-B				
Answer any two of th	ne following each on	e carries five marks.	2*5=10 M			

1.

a) Draw and expalin about the stress-strain curve in detail. (3 M)

b) A wire of length L and radius r is rigidly fixed at one end. On stretching the other end of the wire with a force F, the increase in its length is l. If another wire of same material but of length 2L and radius 2r is stretched with a force of 2F, then find the increase in its legth. (2 M)

2.

a) State and prove Bernoulli's principle. (3M)

b) A horizontal pipe of non-uniform cross-section allows water to flow through it with a velocity of 1 m/s when pressure is 50 kPa at a point. If the velocity of flow has to be 2 m/s at some other point, what will the pressure at that point? (2 M)

3.

- a) Derive the formula for velocity of fluid flow at the wide open end of Venturi meter with neat diagram. (3M)
- b) Derive the formula for gauge pressure for open tube manometer with neat diagram.(2 M)

4.

- a) Derive the formula for pressure difference of a liquid drop, cavity and bubble during the expansion of radius by Δr . (3 M)
- b) Write the formula for efflux speed of water in Toricelli's law. From that formula show that speed of efflux of water is equals to freely falling body. (2 M)