hw04

October 28, 2025

1 Sampling, Bias, and Community Structure in Real Networks

1.1 Part A — Sampling and Bias in Network Analysis (15 pts)

Goal: Investigate how different sampling methods can change the observed structure of a social network.

```
[45]: import networkx as nx import random from tabulate import tabulate import matplotlib.pyplot as plt
```

```
[2]: G_fb = nx.read_edgelist("facebook_combined.txt", nodetype=int)
```

1.1.1 A1 – Create Two Samples (6 pts)

```
[]: # 1. Random Sample - Randomly select 250 nodes.
     nodes = random.sample(sorted(G_fb.nodes()), 250)
     G_random = G_fb.subgraph(nodes).copy()
     # 2. Ego-Centered Sample - Pick a node with degree > 50 and build its 1.
      ⇔5-degree ego network.
     center = max(G_fb, key=lambda n: G_fb.degree(n))
     G_ego = nx.ego_graph(G_fb, center, radius=1)
     print(
         tabulate(
             Γ
                 ["Random", G_random.number_of_nodes(), G_random.number_of_edges()],
                 ["Ego", G_ego.number_of_nodes(), G_ego.number_of_edges()],
             ],
             headers=["Sample", "# Nodes", "# Edges"]
         )
     )
```

Sample	# Nodes	# Edges
Random	250	376
Ego	1046	27795

1.2 A2 – Compute and Visualize Metrics (6 pts)

For each sample (G_random , G_ego):

- Compute Average Clustering Coefficient (C)
- Compute Average Shortest Path Length (L) (on largest component if needed)
- Find Maximum Degree (Max k)

1.2.1 1. Table of Metrics

```
[]: print(
         tabulate(
             "Random",
                     round(nx.average_clustering(G_random), 2),
                     round(
                         nx.average_shortest_path_length(
                             G_random.subgraph(
                                  max(nx.connected_components(G_random), key=len)
                             )
                         ),
                         2,
                     ),
                     max(G_random.degree, key=lambda x: x[1])[1],
                 ],
                 Γ
                     "Ego",
                     round(nx.average_clustering(G_ego), 2),
                     round(
                         nx.average_shortest_path_length(
                             G_ego.subgraph(
                                  max(nx.connected_components(G_ego), key=len)
                             )
                         ),
                         2,
                     ),
                     max(G_ego.degree, key=lambda x: x[1])[1],
                 ],
             ],
             headers=["Sample", "Avg Clustering (C)", "Avg Path (L)", "Max Degree"]
         )
     )
```

Sample	Avg Clustering (C)	Avg Path (L)	Max Degree
Random	0.35	1.93	14
Ego	0.58	1.95	1045

1.2.2 2. Two degree distribution plots (log-log axes)

Each plot must include a title, axis labels ("Degree (k)" and "Count of Nodes")

```
[]: fig, axes = plt.subplots(1, 2, figsize=(12, 4), sharex=True, sharey=True)

axes[0].set_title("Random Sample")
axes[0].set_xlabel("Degree")
axes[0].set_ylabel("Frequency")
degree_freq = nx.degree_histogram(G_random)
degrees = range(len(degree_freq))
axes[0].loglog(degrees, degree_freq, "o")

axes[1].set_title("Ego")
axes[1].set_xlabel("Degree")
axes[1].set_ylabel("Frequency")
degree_freq = nx.degree_histogram(G_ego)
degrees = range(len(degree_freq))
axes[1].loglog(degrees, degree_freq, "o")
plt.show()
```


1.3 A3 – Reflection (3 pts)

Write one paragraph (5–7 complete sentences) under the heading "Part A Reflection." Discuss: - How the random and ego-centered samples differ in clustering and degree patterns - What type of bias the ego-sampling method introduces - What the differences imply about sampling in real network data

1.3.1 Part A Reflection.

The random sample subgraph of the FB combined graph differ significantly from the ego subgraph because the ego subgraph is directly selecting for the node with highest degree centrality. This skews both the number of nodes and number of edges because the ego node has an unsually high

number of neighbors. Another sampling bias that is introduced when using the ego graph is that the degree distribution is pushed higher. We see that the random sample nicely follows the scale free trend, producing a strong linear relationship on a log-log plot. However, the degree distribution of the ego graph shows that there are more nodes that have a relatively high degree. This is a result of social prestige and preferential attatchment. Popular nodes tend to stick by other popular nodes, thus the ego graph of a popular node will have, on average, higher degrees.

1.4 Part B — Community Detection and Modularity (15 pts)

Goal: Identify and compare community structure across model networks and a real social network.

1.4.1 B1 – Run Community Detection (8 pts)

Compute the following for each graph (ER, WS, BA, Facebook): - Number of communities - Modularity Q - Size of largest community (number of nodes) - Also include one **visualization** showing a few detected communities in different colors.

```
[83]: n = len(G_fb)
m = len(G_fb.edges)
G_er = nx.erdos_renyi_graph(n, (2*m)/(n*(n-1)))
G_ws = nx.watts_strogatz_graph(n, 10, 0.1)
G_ba = nx.barabasi_albert_graph(n, 2)
```

```
[]: headers = ["Network", "# Communities", "Modularity (Q)", "Largest Community_

Size"]
     networks = {
         "ER": G_er,
         "WS": G_ws,
         "BA": G_ba,
         "Facebook": G_fb,
     }
     tabs = []
     for name, G in networks.items():
         tab = []
         tab.append(name)
         # Find communities
         communities = nx.community.greedy_modularity_communities(G)
         tab.append(len(communities))
         # Find modularity Q
         tab.append(nx.community.modularity(G, communities))
         # Find biggest community
         tab.append(max(len(community) for community in communities))
         tabs.append(tab)
```

print(tabulate(tabs, headers))

```
Network
            # Communities Modularity (Q) Largest Community Size
F.R.
                        5
                                   0.11962
                                                                  1497
WS
                        5
                                   0.702869
                                                                  1029
ΒA
                       27
                                   0.532719
                                                                   363
Facebook
                                   0.777378
                                                                   983
                        13
```

```
[101]: # Visuallize Facebook network communities
       def generate_n_random_hex_colors(n):
           11 11 11
           Generates a list of N random hexadecimal color codes.
           Each color is represented as a string in the format '#RRGGBB'.
           colors = []
           for _ in range(n):
               # Generate a random integer between 0 and OxFFFFFF (inclusive)
               # and format it as a 6-digit hexadecimal string.
               hex_color = '#%06x' % random.randint(0, 0xFFFFFF)
               colors.append(hex_color)
           return colors
       colors = generate_n_random_hex_colors(len(communities))
       communities = nx.community.greedy_modularity_communities(G_fb)
       # Compute positions for the node clusters as if they were themselves nodes in a
       # supergraph using a larger scale factor
       supergraph = nx.cycle_graph(len(communities))
       superpos = nx.spring_layout(supergraph, scale=2, seed=429)
       # Use the "supernode" positions as the center of each node cluster
       centers = list(superpos.values())
       pos = \{\}
       for center, comm in zip(centers, communities):
           pos.update(nx.spring_layout(nx.subgraph(G_fb, comm), center=center,_
       ⇒seed=1430))
       # Nodes colored by cluster
       for nodes, clr in zip(communities,
        →generate_n_random_hex_colors(len(communities))):
           nx.draw_networkx_nodes(G_fb, pos=pos, nodelist=nodes, node_color=clr,_
       ⊶node_size=50)
       nx.draw_networkx_edges(G_fb, pos=pos)
```

```
plt.tight_layout()
plt.show()
```


1.5 B2 – Quantitative Comparison and Summary (5 pts)

Use the results from B1 to create the following comparative metrics and visuals:

1. Summary Table

```
[102]: tabs = []
headers = ["Network", "Avg Community Size", "Avg Clustering (C)"]

for name, network in networks.items():
    tab = []
    tab.append(name)

    communities = nx.community.greedy_modularity_communities(network)
    tab.append(
        sum(len(community) for community in communities)/len(communities)
    )
```

```
tab.append(nx.average_clustering(network))
tabs.append(tab)
```

print(tabulate(tabs, headers))

Network	Avg Community Size	Avg Clustering (C)
ER	807.8	0.0108767
WS	807.8	0.484933
BA	149.593	0.0126924
Facebook	310.692	0.605547