Zależność parametrów ogniwa fotowoltaicznego od temperatury

Jędrzej Górny, Jan Kurek, Rafał Staroszczyk

1 Metodologia badania

2 Wyniki i wnioski

Podczas badania krzywej prądowo-napięciowej ogniwa otrzymano następujące wykresy dla różnych temperatur.

Rysunek 1: Zależność prądowo-napięciowa od temperatury

Z otrzymanych danych można obliczyć zależność mocy od napięcia według wzoru P=UI.

Rysunek 2: Zależność krzywej mocy od temperatury

 ${\bf Z}$ wykresu 2 można odczytać parametry ogniwa w punkcie maksymalnej mocy:

Tempera [°C]	atura U_{OC} [mV]	I_{SC} [mA]	U_{MPP} [mV]	I_{MPP} [mA]	FF [%]	P_{MPP} [mW]
25 40	2029.2 1898.3	112.5 116.9	1581.6 1495.9	104.9 104.9	73 71	165.9 156.9
50 60	$1859.5 \\ 1770.3$	$118.0 \\ 121.6$	$1390.7 \\ 1317.2$	$108.6 \\ 110.5$	69 68	$151.0 \\ 145.6$

Tabela 1: Parametry ogniwa w PMM dla różnych temperatur

Wraz ze wzrostem temperatury występuje spadek napięcia układu otwartego i punktu maksymalnej mocy, współczynnika wypełnienia oraz mocy maksymalnej. Zwiększa się jednak prąd obwodu zamkniętego i punktu maksymalnej mocy. Wszystkie zależności są w przybliżeniu liniowe w badanym zakresie.

Rysunek 3: Zmiany parametrów z temperaturą

3 Podsumowanie