Fundamentals of Econometrics Lecture 7: Heteroskedasticity

Section 1

Heteroskedasticity

Model Assumptions: Classical Linear Models

In order to have unbiased and consistent estimates, the classical linear model assumptions must hold:

- **1 Linearity**: The true model is linear in parameters.
- **2** Random Sampling: The data are a random sample from the population.
- No Perfect Collinearity: The regressors are not perfectly collinear.
- **4** Zero Conditional Mean: E(u|x) = 0.
- **1** Homoskedasticity: $Var(u|x) = \sigma^2$.
- **o** Normality: $u|x \sim N(0, \sigma^2)$.

Thought

How do we know if any assumption is violated? And, what to do if they are?

Heteroskedasticity

- Heteroskedasticity is the violation of the homoskedasticity assumption.
- ullet It occurs when the variance of the error term varies for different values of ${f x}$.

Consequences

- OLS is still unbiased and consistent under heteroskedasticity.
- Interpretations of R^2 and \bar{R}^2 are not changed: $R^2 = 1 \sigma_u^2/\sigma_y^2$ where σ_y^2 is the **unconditional** error variance. Heteroskedasticity affects the **conditional** error variance.
- Main issue is inference:
 - Variance formulas for OLS estimator are no longer valid.
 - Usual F-tests are no longer valid.
 - OLS is no longer BLUE. There might be more efficient linear estimators.

Robust Standard Errors

Consider the univariate model:

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

If Assumptions 1-4 hold but 5 does not, then

$$Var(u_i|x_i) = \sigma_i^2$$

The OLS estimator is given by:

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (x_i - \bar{x}) u_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

The variance of the OLS estimator is now given by:

$$Var(\hat{\beta}_1) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \sigma_i^2}{SST_x^2}; \quad SST_x = \sum_{i=1}^n (x_i - \bar{x})^2.$$
 (1)

Under homosked asticity, $\sigma_i^2 = \sigma^2$ for all i. In this case, $Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_x^2}$.

Robust Standard Errors

- Since the standard error of $\hat{\beta}_1$ is based on directly estimating $var(\hat{\beta}_1)$, we will need a way to estimate Equation (1) when σ_i^2 under heteroskedasticity.
- White (1980) proposed a consistent estimator for the variance of the OLS estimator under any form of heteroskedasticity:

$$\widehat{Var}(\hat{\beta}_1) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \hat{u}_i^2}{SST_x^2}$$

where \hat{u}_i is the OLS residual.

• Consistent means that as $n \to \infty$, $\widehat{Var}(\hat{\beta}_1) \to Var(\hat{\beta}_1)$.

Robust Standard Errors

In a multiple regression model, the White estimator for the variance of the OLS estimator is given by:

$$\widehat{Var}(\widehat{\beta}) = \frac{\sum_{i=1}^{n} \widehat{r}_{ij}^{2} \widehat{u}_{i}^{2}}{SSR_{j}^{2}}$$
 (2)

where \hat{r}_{ij} is the *ith* residual from regressing x_i on all other independent variables, and SSR_i is the sum of squared residuals from this regression. Recall the concept of **partialling out** from earlier.

• The square root of Equation (2) is referred to as the heteroskedasticity-robust standard error for $\hat{\beta}_i$.

Usual covariance matrix:

$$\widehat{Var}(\hat{\beta}) = \hat{\sigma}^2 (X'X)^{-1}$$

Robust covariance matrix:

$$\widehat{Var}(\hat{\beta}) = (X'X)^{-1}X'\Omega'X(X'X)^{-1}$$

Table 1:

	Dependent variable:		
	wage		
	OLS	Robust SE	
	(1)	(2)	
educ	0.556***	0.556***	
	(0.050)	(0.061)	
exper	0.255***	0.255***	
	(0.035)	(0.033)	
expersq	-0.004***	-0.004***	
	(0.001)	(0.001)	
female	-2.110***	-2.110***	
	(0.263)	(0.250)	
Constant	-2.320***	-2.320***	
	(0.739)	(0.818)	
Observations	526	526	
\mathbb{R}^2	0.350	0.350	
Adjusted R ²	0.345	0.345	
Residual Std. Error (df = 521)	2.990	2.990	

```
m1 <- lm(wage ~ educ + exper + expersq + female, data = wage1)
# Heteroskedasticity-robust standard errors
# require("sandwich"); require ("lmtest")
# coeftest(m1, vcov = vcovHC(m1, type = "HC1"))</pre>
```

cov1 <- vcovHC(m1, type = "HCO") # Robust covariance matrix
robust.se <- sqrt(diag(cov1)) # Robust standard errors</pre>

stargazer(m1, m1, se = list(NULL, robust.se), font.size = "scr:

header = FALSE, column.labels = c("OLS", "Robust SE"

require("ggfortify")
autoplot(m1, which = c(1:3,5), ncol = 2, label.size = 3)

OLS

(1)

-1.610***

gdistance

sqftbuilding

sqftlot

Constant

Observations

age

 \mathbb{R}^2

ganovanico	(0.177)	(0.171)	(0.172)	(0.172)
wdistance	0.665***	0.665***	0.665***	0.665***
	(0.159)	(0.148)	(0.148)	(0.149)
cdistance	2.440***	2.440**	2.440**	2.440**
	(0.929)	(1.040)	(1.040)	(1.040)
bathrooms	2,460.000	2,460.000	2,460.000	2,460.000
	(1,759.000)	(2,000.000)	(2,004.000)	(2,021.000)
bedrooms	-5,855.000***	-5,855.000***	-5,855.000***	-5,855.000**
	(1,164.000)	(1,335.000)	(1.337.000)	(1,340.000)

Table 2:

72.800*** 72.800*** 72.800*** 72.800*** (3.080)(3.100)

(0.127)

(5,327.000)

HC0

(2)

-1.610***

(1.940)(3.070)0.506*** 0.506***

(0.048)-506.000***

(4.308.000)

2.661

0.678

(37.300)46.319.000***

-506.000***(44.600)46.319.000***

-506.000***(44.700)46,319.000***

0.506***

(0.127)

(5.336.000)

Dependent Variable: saleprice

HC1

(3)

-1.610***

HC2

(4)

-1.610***

0.506***

(0.133)

(44.800)

46.319.000**

(5.354.000)

-506.000

Why not always use robust standard errors?

- Robust errors are easily computed in R. So why not use them all the time?
- For small samples, the robust standard errors from the White estimator (HCO), for example can be produce inaccurate test statistics.
- Other robust standard errors measures might be better for small samples and might prove more conservative.

How can we test for Heteroskedasticity?

Testing for Heteroskedasticity

• Breusch-Pagan Test: The null hypothesis is homoskedasticity.

$$\hat{u}_i^2 = \delta_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik} + error$$

We will regress the squared residuals on the independent variables and test whether this auxiliary regression has explanatory power.

$$H_0: \delta_1 = \delta_2 = \dots = \delta_k = 0$$

$$F = \frac{R_{\hat{u}^2}^2 / k}{(1 - R_{\hat{u}^2}^2) / (n - k - 1)}$$

Alternatively, we can use the LM test:

$$LM = n \cdot R_{\hat{u}^2}^2 \sim \chi^2(k)$$

• In both cases, a large $R_{\hat{u}^2}^2$ provides evidence against (rejection of) the null.

Breusch-Pagan Test

```
h1 <- lm(price ~ lotsize + sqrft + bdrms, data = hprice1)
h1_aux <- lm(resid(h1)^2 ~ lotsize + sqrft + bdrms, data = hprice1)
r2_u <- summary(h1_aux)$r.squared
N <- nobs(h1)
k <- length(coef(h1_aux)) - 1
Fstat <- (r2_u/k) / ((1 - r2_u)/(N - k - 1))
F_crit <- qf(0.95, k, N - k - 1)
pval <- 1 - pf(Fstat, k, N - k - 1)
LM <- N * r2_u
LM_crit <- qchisq(0.95, k)
LM_pval <- 1 - pchisq(LM, k)</pre>
```

- The F-statistic is 5.339 with a p-value of 0.002.
- The F-critical value is 2.713.
- The LM statistic is 14.092 with a critical value $(\chi^2(3,5\%))$ of 7.815.
- The LM test p-value is 0.003.
- What do we conclude?

Breusch-Pagan Test

How do the results above change if we used logged variables instead?

p-value(LM) for the logged variables is 0.238

White test for Heteroskedasticity

• Modified the Breusch-Pagan test to include quadratic and interaction terms.

Trade-offs??

- Generating all the extra terms adds lots of variables to the model thereby using up a lot of the degrees of freedom.
- Even a small number of variables can result in a large number of extra terms.
 - \bullet For example k = 6 leads to 27 parameters to be estimated.

Issues with Heteroskedasticity Tests

What do we do if we Reject the null of homoskedasticity?

White test for Heteroskedasticity

$$\hat{u}_i^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \delta_4 x_1^2 + \delta_5 x_2^2 + \delta_6 x_3^2 + \delta_7 x_1 x_2 + \delta_8 x_1 x_3 + \delta_9 x_2 x_3 + error$$

$$H_0: \delta_1 = \delta_2 = \dots = \delta_9 = 0$$

$$LM = n \cdot R_{\hat{u}^2}^2 \sim \chi^2(9)$$

Conducting the tets

• Breusch-Pagan test: bptest() in the lmtest package.

```
bptest(h1)
```

##

```
## studentized Breusch-Pagan test
##
## data: h1
## BP = 14, df = 3, p-value = 0.003
```

Conducting the tets

• White test: using the bptest() function.

```
##
## studentized Breusch-Pagan test
##
## data: h1
## BP = 34, df = 9, p-value = 1e-04
```

Alternative Form of White Test

- We can indirectly test the dependence of the squared residuals on the explanatory variables, their squares, and their cross-products (interactions), using the predicted values of y.
- This works because the predicted values of y and its square implicitly contain all these squared and cross-product terms.

$$\hat{u}_i^2 = \delta_0 + \delta_1 \hat{y}_i + \delta_2 \hat{y}_i^2 + error$$
 $H_0: \delta_1 = \delta_2 = 0$, (Homoskedastic)
 $H_1: \text{At least one is not zero, (Heteroskedastic)}$

The LM test is given by:

$$LM = n \cdot R_{\hat{u}^2}^2 \sim \chi^2(2)$$

$$R_{\hat{u}^2}^2 = 0.0392, LM = 0.0392 \times 88 \approx 3.45$$

$$LM_{p-value} = 1 - \text{pchisq}(3.45, 2) = 0.178$$

```
# Using the log house price equation
bptest(h2, ~fitted(h2) + I(fitted(h2)^2), data = hprice1)
```

```
##
## data: h2
```

BP = 3, df = 2, p-value = 0.2

studentized Breusch-Pagan test

##

Weighted Least Squares

• If the form of heteroskedasticity is known, we can use weighted least squares (WLS) to estimate the model.

Assume that

$$var(u_i|x_1) = \sigma^2 h(\mathbf{x})$$

where $h(\mathbf{x})$ is a known function of the independent variables that determines the heteroskedasticity.

• Because variances must be positive, $h(\mathbf{x}) > 0$ for all possible values of the independent variables.

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$$

$$\Rightarrow \frac{y_i}{\sqrt{h_i}} = \beta_0 \frac{1}{\sqrt{h_i}} + \frac{\beta_1 x_{i1}}{\sqrt{h_i}} + \dots + \frac{\beta_k x_{ik}}{\sqrt{h_i}} + \frac{u_i}{\sqrt{h_i}}$$

The transformed model is:

$$y_i^* = \beta_0 x_{i0}^* + \beta_1 x_{i1}^* + \ldots + \beta_k x_{ik}^* + u_i^*$$

Weighted Least Squares

Example: Savings and Income

$$sav_i = \beta_0 + \beta_1 inc_i + u_i, \quad var(u_i|inc_i) = \sigma^2 inc_i$$

The transformed model is (note, no intercept):

$$\frac{sav_i}{\sqrt{inc_i}} = \beta_0 \frac{1}{\sqrt{inc_i}} + \beta_1 \frac{inc_i}{\sqrt{inc_i}} + \frac{u_i}{\sqrt{inc_i}}$$

The transformed model is now homoskedastic:

$$E(u_i^{*2}|x_i) = E\left[\left(\frac{u_i^2}{\sqrt{(inc_i)}}\right)^2|x_i\right] = \frac{E(u_i^2|x_i)}{inc_i} = \frac{\sigma^2 \cdot inc_i}{inc_i} = \sigma^2$$

If the GM assumptions hold, OLS applied to the transformed model will be BLUE.

What is WLS doing?

$$\min \sum_{i=1}^{n} \left(\frac{y_i}{\sqrt{h_i}} - \beta_0 \frac{1}{\sqrt{h_i}} - \dots - \beta_k \frac{x_{ik}}{\sqrt{h_i}} \right)^2$$

Obs with larger h_i will have smaller weights in the optimization problem.

$$min \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \ldots - \beta_k x_{ik})^2 / h_i$$

- WLS is more efficient than OLS in the original model.
 - Observations with a large variance are less informative than observations with small variance and therefore should get less weight.
- WLS is a special case of generalized least squares (GLS)

Table 3:

	OLS	WLS	OLS	WLS
	(1)	(2)	(3)	(4)
inc	0.821*** (0.104)	0.787*** (0.063)	0.771*** (0.099)	0.740*** (0.064)
$I((age - 25)^2)$			0.025*** (0.004)	0.018*** (0.002)
male			2.480 (2.060)	1.840 (1.560)
e401k			6.890*** (2.280)	5.190*** (1.700)
Constant	-10.600^{***} (2.530)	-9.580*** (1.650)	-21.000^{***} (3.490)	-16.700^{***} (1.960)
Observations R ²		2,017 0.071		2,017 0.112
11		0.071		0.112

0.070

7.220 (df = 2015) $154.000^{***} \text{ (df} = 1; 2015)$

Dependent Variable: nettfa

*p<0.1; **p<0.05; ***p

7.070 (df = 201 $63.100^{***} \text{ (df} = 4;$

0.110

Adjusted R²

Residual Std. Error

dep.var.caption = "Dependent Variable: nettfa",
column.labels = c(rep(c("OLS", "WLS"), 2)),

dep.var.labels.include = FALSE, model.names = FALSE)

Special Case of Heteroskedasticity

• If the observations are reported as averages at the city/county/state/-country/firm level, they should be weighted by the size of the unit.

For example:

$$\overline{contrib_i} = \beta_0 + \beta_1 \overline{earns_i} + \beta_2 \overline{age_i} + \beta_3 \overline{mrate_i} + \overline{u_i}$$

where $\overline{contrib}_i$, \overline{earns}_i , \overline{age}_i , and \overline{mrate}_i are the average contribution, earnings, age, and firm contribution to the plan, respectively. The error term is assumed to be heteroskedastic.

$$\Rightarrow var(u_i) = var\left(\frac{1}{m}\sum_{i=1}^{m_i}u_{i,e}\right) = \frac{\sigma^2}{m_i}$$

where m_i is the number of observations (workers) in the i^{th} group. The error variance is assumed to be homoskedastic at the individual level.

Unknown Form of Heteroskedasticity

• If the form of heteroskedasticity is unknown, we can use **Feasible Generalized Least Squares (FGLS)**.

Option 1:

Assume a general form of heteroskedasticity:

$$var(u_i|x_i) = \sigma^2 \underbrace{exp(\delta_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik})}_{\text{Ensures positive values}} = \sigma^2 h(x)$$

We need to estimate the δ 's, to get $\hat{h}(x)$.

$$u^2 = \sigma^2 \exp(\delta_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik}) \cdot \nu$$

Assuming ν is independent of x, we can write:

$$log(u^2) = \alpha_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik} + e$$

Replacing the unobserved u^2 with residuals, we run the regression:

$$\log(\hat{u}^2) = \alpha_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik} + e$$

Collect fitted values, \hat{g}_i and exponentiate to get \hat{h}_i .

$$\hat{h}_i = \exp(\hat{g}_i(x)_i)$$

Summary of Option 1

- **1** Run regression of y on x_1, x_2, \ldots, x_k and obtain residuals, \hat{u}_i .
- **3** Regress $log(\hat{u}^2)$ on x_1, x_2, \ldots, x_k and obtain the fitted values, \hat{g}_i .
- **4** Exponentiate \hat{g}_i to get $\hat{h}(x)$.
- **6** Run WLS with weights $1/\hat{h}(x)$.

Unknown Form of Heteroskedasticity

Option 2:

• As we saw in the case of the White model modifications of the Breusch-Pagan test, we can estimate h_i using the predicted and squared predicted values of y, \hat{y}_i and \hat{y}_i^2 instead.

Summary of Step 2

- **Q** Run regression of y on x_1, x_2, \ldots, x_k and obtain residuals, \hat{u}_i .
- \bigcirc Create $log(\hat{u}^2)$
- **3** Regress $log(\hat{u}^2)$ on \hat{y}_i and \hat{y}_i^2 and obtain the fitted values, \hat{g}_i .
- Exponentiate \hat{g}_i to get $\hat{h}(x)$.
- **3** Run WLS with weights $1/\hat{h}(x)$.

```
# Test for heteroskedasticity
bptest(ols.cig)
```

##

```
## studentized Breusch-Pagan test
##
## data: ols.cig
## BP = 32, df = 6, p-value = 1e-05
```

age 0.48195 9.68e-02 4.978 7.86e-07 ## agesq -0.00563 9.39e-04 -5.990 3.17e-09 ## restaurn -3.46106 7.96e-01 -4.351 1.53e-05

Table 4:

	Dependent Variable: cigs		
	OLS	WLS	
	(1)	(2)	
lincome	0.880	1.290***	
	(0.728)	(0.437)	
leigpric	-0.751	-2.940	
•	(5.770)	(4.460)	
educ	-0.501***	-0.463***	
	(0.167)	(0.120)	
age	0.771***	0.482***	
	(0.160)	(0.097)	
agesq	-0.009***	-0.006***	
	(0.002)	(0.001)	
restaurn	-2.830**	-3.460***	
10000011	(1.110)	(0.796)	

What if our heteroskedasticity function is wrong?

- If the heterosked asticity function is misspecified, WLS is still consistent under MLR.1 – MLR.4, but robust standard errors should be computed.
- WLS is consistent under MLR.4 but not necessarily under MLR.4'
- If OLS and WLS produce very different estimates, this typically indicates that some other assumptions (e.g. MLR.4) are wrong.
- If there is strong heteroskedasticity, it is still often better to use a wrong form of heteroskedasticity in order to increase efficiency.