Semi-supervised Medical image segmentation

Huansen Chen

Background

- Medical image segmentation
 - MRI, CT, UT···
 - UNet, ···
- Semi-supervised
 - **Smothness assumption:** for two input points x1, x2, that are close by in the input space, the corresponding labels y1, y2 should be the same.
 - Consistency regularization: a classifier should output the same class distribution for an unlabeled example even after it has been augmented.
- Other
 - Ensemble method: an ensemble of multiple neural networks generally yields better predictions than a single network in the ensemble

Pi-model

Π-model

Algorithm 1 Π-model pseudocode.

```
Require: x_i = training stimuli
Require: L = set of training input indices with known labels
Require: y_i = labels for labeled inputs i \in L
Require: w(t) = unsupervised weight ramp-up function
Require: f_{\theta}(x) = stochastic neural network with trainable parameters \theta
Require: g(x) = stochastic input augmentation function
  for t in [1, num\_epochs] do
     for each minibatch B do
                                                              > evaluate network outputs for augmented inputs
        z_{i \in B} \leftarrow f_{\theta}(g(x_{i \in B}))
       \tilde{z}_{i \in B} \leftarrow f_{\theta}(g(x_{i \in B}))
loss \leftarrow -\frac{1}{|B|} \sum_{i \in (B \cap L)} \log z_{i}[y_{i}]
+ w(t) \frac{1}{C|B|} \sum_{i \in B} ||z_{i} - \tilde{z}_{i}||^{2}

    ▶ again, with different dropout and augmentation

    b unsupervised loss component

        update \theta using, e.g., ADAM

    □ update network parameters

     end for
  end for
  return \theta
```

Temporal ensembling

Temporal ensembling

Algorithm 2 Temporal ensembling pseudocode. Note that the updates of Z and \tilde{z} could equally well be done inside the minibatch loop; in this pseudocode they occur between epochs for clarity.

```
Require: x_i = training stimuli
Require: L = set of training input indices with known labels
Require: y_i = labels for labeled inputs i \in L
Require: \alpha = ensembling momentum, 0 \le \alpha < 1
Require: w(t) = unsupervised weight ramp-up function
Require: f_{\theta}(x) = stochastic neural network with trainable parameters \theta
Require: q(x) = stochastic input augmentation function

    initialize ensemble predictions

  Z \leftarrow \mathbf{0}_{[N \times C]}
  \tilde{z} \leftarrow \mathbf{0}_{[N \times C]}

    initialize target vectors

  for t in [1, num\_epochs] do
     for each minibatch B do
       z_{i \in B} \leftarrow f_{\theta}(g(x_{i \in B}, t))
                                                           > evaluate network outputs for augmented inputs
       loss \leftarrow -\frac{1}{|B|} \sum_{i \in (B \cap L)} \log z_i[y_i]
                                                           + w(t) \frac{1}{C|B|} \sum_{i \in B} ||z_i - \tilde{z}_i||^2

    b unsupervised loss component

       update \theta using, e.g., ADAM

    □ update network parameters

     end for
     Z \leftarrow \alpha Z + (1 - \alpha)z

    b accumulate ensemble predictions

     \tilde{z} \leftarrow Z/(1-\alpha^t)
                                                           > construct target vectors by bias correction
  end for
  return \theta
```

- 1. Faster and downstream easily
- 2. Less noisy than with Pi-model

Mean teacher

- Since each target (of temporal ensembling) is updated **only once per epoch**, the learned information is incorporated into the training process at a slow pace
- To overcome the limitations of Temporal Ensembling, we propose averaging model weights instead of predictions
- Since the teacher model is an average of consecutive student models, we call this the Mean Teacher method

Mean teacher

- Teacher model weights are updated as an exponential moving average of the student weights.
- 2. The softmax output of the student model is compared with the one-hot label using classification cost and with the **teacher output** using **consistency cost**.

(UA-MT) Uncertainty-Aware Self-ensembling Model for Semi-supervised 3D Left Atrium Segmentation

MICCAI 2019

Motivation

- 1. Following the same spirit of mean teacher
- The predicted target from the teacher model may be unreliable and noisy
 → Uncertainty
- 3. By **exploiting** the **uncertainty** information of the teacher model, the student model can learns from the **meaningful** and **reliable** targets

Method

- 1. The teacher model **estimates** the uncertainty of each target prediction with **Monte Carlo sampling (dropout)**
- 2. With the guidance of the estimated uncertainty, we **filter out** the unreliable predictions and preserve only the reliable ones (**low uncertainty**)

Framework

$$\min_{\theta} \sum_{i=1}^{N} \mathcal{L}_s(f(x_i; \theta), y_i) + \lambda \sum_{i=1}^{N+M} \mathcal{L}_c(f(x_i; \theta', \xi'), f(x_i; \theta, \xi))$$

D_L: label data **D_u**: unlabel data **L_s**: supervised loss **L_c**: consistent loss **Monte Carlo Dropout**: perform **T stochastic** forward passes on the teacher model under random dropout and input Gaussian noise for each input volume

Uncertainty map: the predictive entropy can be summarized as:

$$\mu_c = \frac{1}{T} \sum_t \mathbf{p}_t^c$$
 and $u = -\sum_c \mu_c \log \mu_c$,

 p_t^c is the probability of the c-th class in the t-th time prediction

Consistency Loss:

$$\mathcal{L}_{c}(f', f) = \frac{\sum_{v} \mathbb{I}(u_{v} < H) \|f'_{v} - f_{v}\|^{2}}{\sum_{v} \mathbb{I}(u_{v} < H)},$$

U_v is the estimated uncertainty U at the v-th voxel; and H is a threshold to select the most certain targets

Experiment-Visualization

Fig. 2. Visualization of the segmentations by different methods and the uncertainty. Blue and red colors show the predictions and ground truths, respectively. (Color figure online)

Experiment-Comparison

Table 1. Comparison between our method and various methods.

Method	# scans used		Metrics				
	Labeled	Unlabeled	Dice [%]	Jaccard [%]	ASD [voxel]	95HD [voxel]	
Vanilla V-Net	16	0	84.13	73.26	4.75	17.93	
Bayesian V-Net	16	0	86.03	76.06	3.51	14.26	
Vanilla V-Net	80	0	90.25	82.40	1.91	8.29	
Bayesian V-Net	80	0	91.14	83.82	1.52	5.75	
Self-training [1]	16	64	86.92	77.28	2.21	9.19	
DAN [18]	16	64	87.52	78.29	2.42	9.01	
ASDNet [12]	16	64	87.90	78.85	2.08	9.24	
TCSE [10]	16	64	88.15	79.20	2.44	9.57	
UA-MT-UN (ours)	16	64	88.83	80.13	3.12	10.04	
UA-MT (ours)	16	64	88.88	80.21	2.26	7.32	

Experiment-Quantitative analysis

Table 2. Quantitative analysis of our method.

Method	# scans used		Metrics				
	Labeled	Unlabeled	Dice [%]	Jaccard [%]	ASD [voxel]	95HD [voxel]	
MT	16	64	88.23	79.29	2.73	10.64	
MT-Dice [5]	16	64	88.32	79.37	2.76	10.50	
Our UA-MT	16	64	88.88	80.21	2.26	7.32	
Bayesian V-Net	8	0	79.99	68.12	5.48	21.11	
Our UA-MT	8	72	84.25	73.48	3.36	13.84	
Bayesian V-Net	24	0	88.52	79.70	2.60	10.45	
Our UA-MT	24	56	90.16	82.18	2.73	8.90	

(SASSNet) Shape-Aware Semi-supervised 3D Semantic Segmentation for Medical Images

MICCAI 2020

Motivation

- Some semi-supervised methods lack explicit modeling of the geometric prior of semantic objects, often leading to poor object coverage and/or boundary prediction
- 2. Some priors typically assumes **properly aligned input images**, which is **difficult** to achieve **in practice** for objects with large variation in pose or shape

Contribution

- 1. propose a novel shape-aware semi-supervised segmentation approach by enforcing **geometric constraints** on labeled and unlabeled data
- develop a multi-task loss on segmentation and SDM (signed distance map) predictions, and impose global consistency in object shapes through adversarial learning

Framework

Definition [edit]

If Ω is a <u>subset</u> of a metric space, X_i , with metric, d_i , then the <u>signed distance function</u>, f_i is defined by

$$f(x) = egin{cases} d(x,\partial\Omega) & ext{if } x \in \Omega \ -d(x,\partial\Omega) & ext{if } x \in \Omega^c \end{cases}$$

where $\partial\Omega$ denotes the boundary of Ω . For any $x\in X$,

$$d(x,\partial\Omega):=\inf_{y\in\partial\Omega}d(x,y)$$

where inf denotes the infimum.

optimization function:

$$\min_{\theta} \max_{\zeta} \mathcal{V}(\theta, \zeta) = \mathcal{L}_s(\theta) + \beta \mathcal{L}_a(\theta, \zeta)$$
$$\mathcal{L}_s(\theta) = \mathcal{L}_{seg} + \alpha \mathcal{L}_{sdm}$$

Generative Adversarial Network (GAN)

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

Method

optimization function:

$$\min_{\theta} \max_{\zeta} \mathcal{V}(\theta, \zeta) = \mathcal{L}_s(\theta) + \beta \mathcal{L}_a(\theta, \zeta)$$

Supervised loss:

$$\mathcal{L}_s(\theta) = \mathcal{L}_{seg} + \alpha \mathcal{L}_{sdm}$$

$$\mathcal{L}_{seg} = \frac{1}{N} \sum_{i=1}^{N} l_{dice}(f_{seg}(\mathbf{X}_i; \theta), \mathbf{Y}_i); \quad \mathcal{L}_{sdm} = \frac{1}{N} \sum_{i=1}^{N} l_{mse}(f_{sdm}(\mathbf{X}_i; \theta), \mathbf{Z}_i)$$

Zi are the GT of SDMs derived from Yi

Adversarial loss:

From labeled set (real)

From unlabeled set (fake)

$$\mathcal{L}_a(\theta, \zeta) = \frac{1}{N} \sum_{n=1}^{N} \log D(\mathbf{X}_n, \mathbf{S}_n; \zeta) + \frac{1}{M} \sum_{m=N+1}^{N+M} \log \left(1 - D(\mathbf{X}_m, \mathbf{S}_m; \zeta)\right)$$

where $\mathbf{S}_n = f_{sdm}(\mathbf{X}_n; \theta)$ and $\mathbf{S}_m = f_{sdm}(\mathbf{X}_m; \theta)$ are the predicted SDMs.

Experiment-Visualization

Fig. 2. 2D and 3D Visualization of the segmentations by UA-MT [18] and our method, where GT denotes groundtruth segmentation.

Experiment-Comparison

Table 1. Quantitative comparisons of semi-supervised segmentation models on the LA dataset. All models use the V-Net as backbone network. Results on two different data partition settings show that our SASSNet outperforms the state-of-the-art results consistently.

Method	# Scans used		Metrics				
	Labeled	Unlabeled	Dice [%]	Jaccard [%]	ASD [voxel]	95HD [voxel]	
V-Net	80	0	91.14	83.82	1.52	5.75	
V-Net	16	0	86.03	76.06	3.51	14.26	
DAP [20]	16	64	87.89	78.72	2.74	9.29	
ASDNet [11]	16	64	87.90	78.85	2.08	9.24	
TCSE [9]	16	64	88.15	79.20	2.44	9.57	
UA-MT [18]	16	64	88.88	80.21	2.26	7.32	
UA-MT (+NMS)	16	64	89.11	80.62	2.21	7.30	
SASSNet (ours)	16	64	89.27	80.82	3.13	8.83	
${\rm SASSNet}\ (+{\rm NMS})$	16	64	89.54	81.24	2.20	8.24	
V-Net	8	0	79.99	68.12	5.48	21.11	
DAP [20]	8	72	81.89	71.23	3.80	15.81	
UA-MT [18]	8	72	84.25	73.48	3.36	13.84	
UA-MT(+NMS)	8	72	84.57	73.96	2.90	12.51	
SASSNet(ours)	8	72	86.81	76.92	3.94	12.54	
SASSNet(+NMS)	8	72	87.32	77.72	2.55	9.62	

Experiment-Ablative study

Table 2. Effectiveness of our proposed modules on the LA dataset. All the models use the same V-Net as the backbone, and we conduct an ablative study to show the contribution of each component module.

Method	# Scans used		Metrics	Cost			
	Labeled	Unlabeled	Dice [%]	Jaccard [%]	ASD [voxel]	95HD [voxel]	Params [M]
V-Net	8	0	79.99	68.12	5.48	21.11	187.7
V-Net +SDM	8	0	81.12	69.75	6.93	25.58	187.9
V-Net $+$ SDM $+$ GAN	8	72	86.81	76.92	3.94	12.54	249.7
UA-MT [18]	8	72	84.25	73.48	3.36	13.84	375.5
V-Net +SDM +MT	8	72	84.97	74.14	6.12	22.20	375.8

Thanks