VU Formale Methoden der Informatik

Block 2: Satisfiability Problems

Bernhard Urban

Matr.Nr.: 0725771

lewurm@gmail.com

May 21, 2011

Exercise 1: Entailment, Equivalence

For the formulas on the left, mark with Yes or No in the table on the right whether the indicated logical releations hold:

- (1) $\forall x P(x) \lor \forall x Q(x,x)$
- (2) $\forall x (P(x) \lor Q(x,x))$
- (3) $\forall x(\forall z P(z) \land \forall y Q(x,y))$
- (4) $\exists y \forall x P(x,y)$
- (5) $\forall x \exists y P(x,y)$

	Yes	No
$(1) \Rightarrow (2)$	Х	
$(2) \Rightarrow (3)$		Х
$(3) \Rightarrow (1)$	Х	
$(4) \Rightarrow (5)$	Х	
$(5) \Rightarrow (4)$		Х

Analogously mark in the following table whether the equivalences hold:

	Yes	No
$\forall x \forall y F \Leftrightarrow \forall y \forall x F$	Х	
$\forall x \exists y F \Leftrightarrow \exists x \forall y F$		X
$\exists x \exists y F \Leftrightarrow \exists y \exists x F$	Х	
$\forall x F \lor \forall x G \Leftrightarrow \forall x (F \lor G)$		Х
$\forall x F \land \forall x G \Leftrightarrow \forall x (F \land G)$	Х	
$\exists x F \lor \exists x G \Leftrightarrow \exists x (F \lor G)$	Х	
$\exists x F \land \exists x G \Leftrightarrow \exists x (F \land G)$		Х

Exercise 2: Formulas and Structures

(a) We define a predicate M(x) if x is an element of M:

$$I(M(x)) = x \in M$$

Therefore we can write $\exists x \in M : P(x)$ in first-order logic as follows:

$$\exists x (M(x) \land P(x))$$

and $\forall x \in M : P(x)$ as:

$$\forall x (M(x) \to P(x)) = \forall x (\neg M(x) \lor P(x))$$

Also we should show that the following equivalence hold for our translation:

$$\neg \exists x \in M : P(x) \iff \forall x \in M : \neg P(x)$$

$$\neg \exists (M(x) \land P(x)) \iff \forall x (M(x) \to \neg P(x))$$

$$\forall x \neg (M(x) \land P(x)) \iff \forall x (\neg M(x) \lor \neg P(x))$$

$$\forall x (\neg M(x) \lor \neg P(x)) \iff \forall x (\neg M(x) \lor \neg P(x))$$

(b) Present models for the following formulas:

(i)
$$\neg \exists x \forall y P(x, y)$$

 $\mathcal{U} = \mathbb{N}_0$ $I(P(x, y)) = x > y$

(ii)
$$\exists x (Q(x,c) \land \neg \forall y Q(x,y))$$

 $\mathcal{U} = \mathbb{N}_0$ $I(P(x,y)) = x < y$ $I(c) = 1$

$$\mathcal{U} = \mathbb{N}_0 \qquad I(P(x,y)) = x < y \qquad I(c) = 1$$
(iii) $\forall x \forall y (P(x,y) \to P(x,f(y))) \land \forall x \exists y P(x,y)$

$$\mathcal{U} = \mathbb{N}_0 \qquad I(P(x,y)) = x < y \qquad I(f(x)) = x$$

- (c) Find a formula F in first-order logic such that the universe of any interpretation that is a model for F has:
 - (i) ... at least two elements.

$$F_i = \exists x \exists y (P(x) \land \neg P(y))$$

(ii) ... at least n elements.

$$F_{ii} = \exists x_1 \exists x_2 \dots \exists x_n \bigwedge_{i=0}^n \bigwedge_{j=0, j \neq i}^n P_i(x_i) \land \neg P_j(x_i)$$

(iii) ... infinitely many elements.

$$F_{iii} = \underbrace{\forall x \neg P(x, x)}_{\text{irreflexivity}} \land \underbrace{\forall x \forall y \forall z (P(x, y) \land P(y, z) \rightarrow P(x, z))}_{\text{transitivity}} \land \forall x \exists y P(x, y)$$

Exercise 3: Modelling and Solving

(a) The following formula F' describes all puzzles of size 9×9 are described:

$$F' = F_{\text{Row}} \wedge F_{\text{Column}} \wedge F_{\text{Block}} \wedge F_{\text{Field}}$$

$$F_{\text{Row}} = \bigwedge_{x=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{y=1}^{9} v_{x,y,z}$$

$$F_{\text{Column}} = \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{x=1}^{9} v_{x,y,z}$$

$$F_{\text{Block}} = \bigwedge_{lx=0}^{2} \bigwedge_{ly=0}^{2} \bigwedge_{z=1}^{9} \bigvee_{x=1}^{3} \bigvee_{y=1}^{3} v_{(lx\cdot3)+x,(ly\cdot3)+y,z}$$

$$F_{\text{Field}} = \bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{8} \bigwedge_{i=z+1}^{9} (\neg v_{x,y,z} \vee \neg v_{x,y,i})$$

(b) In order to solve the given puzzle, I wrote a small program which generates all clauses of F and G (given in the assignmet) in the DIMACS format.

Each cell is encoded with its number $(v_{x,y,z})$ in the following way:

$$c_{x,y,z} = x \cdot 10 \cdot 10 + y \cdot 10 + (z+1)$$
 where $x, y, z \in \{0, 1, \dots, 8\}$

Thus, we can easily extract all "positive" literals of the minisat output, however, this method leaves some gaps: We can "elimate" them by the following clauses:

$$F_{\text{Fill}} = \bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \neg c_{x,y,0}$$

For the sourcecode, Makefile and a sample output see the Appendix.

The solution for the given puzzle is:

6	8	3	1	9	7	5	4	2
1	4	5	6	3	2	9	8	7
7	2	9	8	5	4	6	1	3
8	9	6	7	4	3	2	5	1
5	3	7	2	6	1	4	9	8
4	1	2	5	8	9	3	7	6
3	7	4	9	2	8	1	6	5
2	6	1	4	7	5	8	3	9
9	5	8	3	1	6	7	2	4

Exercise 4: CNF Transformation

(1) Label the formula tree:

(2) Translate the "labeling formulas" to clauses:

Equivalences	Associated Clauses					
for SFOs ¹ in ϕ	$C_1(\phi)$	$C_2(\phi)$	$C_3(\phi)$	$C_4(\phi)$		
$I_1 \leftrightarrow y$	$\neg I_1 \lor y$	$I_1 \vee \neg y$				
$I_2 \leftrightarrow x$	$\neg I_2 \lor x$	$I_2 \vee \neg x$				
$I_3 \leftrightarrow \neg I_1$	$\neg I_3 \lor \neg I_1$	$I_3 \vee I_1$				
$I_4 \leftrightarrow I_2 \vee I_3$	$\neg I_4 \lor I_2 \lor I_3$	$I_4 \vee \neg I_2$	$I_4 \vee \neg I_3$			
$I_5 \leftrightarrow y$	$\neg I_5 \lor y$	$I_5 \vee \neg y$				
$I_6 \leftrightarrow \neg I_5$	$\neg I_6 \lor \neg I_5$	$I_6 \vee I_5$				
$I_7 \leftrightarrow z$	$\neg I_7 \lor z$	$I_7 \vee \neg z$				
$I_8 \leftrightarrow x$	$\neg I_8 \lor x$	$I_8 \vee \neg x$				
$I_9 \leftrightarrow I_6 \wedge I_7$	$\neg I_9 \lor I_6$	$\neg I_9 \lor I_7$	$I_9 \vee \neg I_6 \vee \neg I_7$			
$I_{10} \leftrightarrow I_8 \leftrightarrow I_9$	$\neg I_{10} \lor \neg I_8 \lor I_9$	$\neg I_{10} \lor I_8 \lor \neg I_9$	$I_{10} \vee \neg I_8 \vee \neg I_9$	$I_{10} \vee I_8 \vee I_9$		
$I_{11} \leftrightarrow I_4 \to I_{10}$	$ \neg I_{11} \lor \neg I_4 \lor I_3 $	$I_{11} \vee I_4$	$I_{11} \vee \neg I_{10}$			

(3) (a) Tseitin: All clauses in the table above get conjuncted.

¹subformula occurence

(b) Plaisted and Greenbaum:

$$(\neg I_1 \lor y) \land$$

$$(I_2 \lor \neg x) \land$$

$$(I_3 \lor I_1) \land$$

$$(I_4 \lor \neg I_2) \land (I_4 \lor \neg I_3) \land$$

$$(\neg I_5 \lor y) \land (I_5 \lor \neg y) \land$$

$$(\neg I_6 \lor \neg I_5) \land (I_6 \lor I_5) \land$$

$$(\neg I_7 \lor z) \land (I_7 \lor \neg z) \land$$

$$(\neg I_8 \lor x) \land (I_8 \lor \neg x) \land$$

$$(\neg I_9 \lor I_6) \land (\neg I_9 \lor I_7) \land (I_9 \lor \neg I_6 \lor \neg I_7) \land$$

$$(\neg I_{10} \lor \neg I_8 \lor I_9) \land (\neg I_{10} \lor I_8 \lor \neg I_9) \land$$

$$(\neg I_{11} \lor \neg I_4 \lor I_3)$$

Exercise 5: DPLL Procdures

(a) F_1

$$F_1 = \underbrace{(A \vee \neg B)}_{c_1} \wedge \underbrace{(C \vee \neg A)}_{c_2} \wedge \underbrace{(A \vee B)}_{c_3} \wedge \underbrace{(\neg A \vee \neg C)}_{c_4}$$

Since $C_{Ap} \not> C_{An}$ we choose A = false according to the DLIS heuristic, we have to set A = 0@1. Because of $C_{Bp} \not> C_{Bn}$ we choose B = false for the next step (cf. c_1), however this decision conflicts with c_3 , thus we have to go back to the first UIP² A = 0@1 and learn that A = 1@1.

Therefore, we set $C = \mathsf{false}$ (since $C_{Cp} \not> C_{Bn}$) and run into a similar conflict as before. Eventually, F_1 is unsatisfiable.

(b) F_2

$$F_2 = \underbrace{(A \vee \neg E)}_{c_1} \wedge \underbrace{(\neg C \vee \neg D)}_{c_2} \wedge \underbrace{(\neg A \vee B \vee D)}_{c_3} \wedge \underbrace{(C \vee D \vee \neg E)}_{c_4} \wedge \underbrace{(\neg A \vee E)}_{c_5} \wedge \underbrace{(\neg B \vee \neg E)}_{c_6}$$

Since $C_{Dp} \not> C_{En}$ we choose $E = \mathsf{false} \to E = 0@1$. Due to the unit clause c_5 we have to say that A = 0@1. Thus, just the clause c_2 is left over. We can choose between C and D; according to the assignment we should decide by lexical ordering $\to C = 0@2$. The remaining variables can have any value, but we should choose true: B = 1@2, D = 1@2. Finally we know that F_2 is satisfiable.

²unique implication point

Exercise 6: UIP

Assume that there are two unique implication points (UIP) for an decision node \mathcal{D} and a conflict node \mathcal{C} in a implication graph G(V, E), i.e. $u_1, u_2, \mathcal{D}, \mathcal{C} \in V$. Therefore, all paths from \mathcal{D} to \mathcal{C} must contain u_1 and u_2 too. We also assume that both UIPs have the same distance to \mathcal{C} . From that we can follow, that all paths from \mathcal{D} to \mathcal{C} must visit u_1 and u_2 which means in G a cycle exists. However, we know that G is a directed acyclic graph by definition and thus doesn't contain any cycles $\Rightarrow u_1 = u_2$.

Exercise 7: Ackermann's and Bryant's Reductions

Reduce the problem of validity of φ^{UF} to the problem of validity in equality logic.

Ackermann's Reductions

$$\varphi^{UF} = F(F(x_1)) \neq F(x_1) \land F(F(x_1)) \neq F(x_2) \land x_2 = F(x_1) \land G(x_1, F(x_2)) = F(G(x_1, x_2)) \land G(x_1, x_1) = F(x_1)$$

First we number the instances of the UF:

$$\varphi^{UF} = F_2(F_1(x_1)) \neq F_1(x_1) \land F_2(F_1(x_1)) \neq F_3(x_2) \land x_2 = F_1(x_1) \land G_1(x_1, F_3(x_2)) = F_4(G_2(x_1, x_2)) \land G_3(x_1, x_1) = F_1(x_1)$$

Compute $flat^E$ by replacing UF F_i by the new variable f_i :

$$flat^{E} = f_{2} \neq f_{1} \land f_{2} \neq f_{3} \land x_{2} = f_{1} \land g_{1} = f_{4} \land g_{3} = f_{1}$$

Add functionality constraints, i.e., compute FC^E :

$$(x_{1} = x_{1} \land f_{3} = x_{2} \rightarrow g_{1} = g_{2}) \qquad \land \qquad (x_{1} = x_{1} \land f_{3} = x_{1} \rightarrow g_{1} = g_{3}) \qquad \land \qquad (x_{1} = x_{1} \land x_{2} = x_{1} \rightarrow g_{2} = g_{3}) \qquad \land \qquad (x_{1} = f_{1} \rightarrow f_{1} = f_{2}) \qquad \land \qquad (x_{1} = f_{2} \rightarrow f_{1} = f_{3}) \qquad \land \qquad (x_{1} = x_{2} \rightarrow f_{1} = f_{3}) \qquad \land \qquad (f_{1} = x_{2} \rightarrow f_{2} = f_{3}) \qquad \land \qquad (f_{1} = x_{2} \rightarrow f_{2} = f_{3}) \qquad \land \qquad (x_{2} = g_{2} \rightarrow f_{3} = f_{4})$$

Now we have $\varphi^E: FC^E \to flat^E$

Bryant's Reductions

For the numbering part see above. Compute $flat^E$ by replacing UF F_i by the new term variable F_i^* :

$$flat^E = F_2^* \neq F_1^* \land F_2^* \neq F_3^* \land x_2 = F_1^* \land G_1^* = F_4^* \land G_3^* = F_1^*$$

Compute F_i^* and G_i^* :

$$F_1^* = f_1$$
 $F_2^* = \begin{pmatrix} \text{case } x_1 = F_1^* : f_1 \\ \text{true } : f_2 \end{pmatrix}$

$$F_3^* = \begin{pmatrix} \text{case} & x_1 = x_3 & :f_1 \\ & F_1^* = x_3 & :f_2 \\ & \text{true} & :f_3 \end{pmatrix} \qquad F_4^* = \begin{pmatrix} \text{case} & x_1 = G_2^* & :f_1 \\ & F_1^* = G_2^* & :f_2 \\ & x_2 = G_2^* & :f_3 \\ & \text{true} & :f_4 \end{pmatrix}$$

$$G_1^* = g_1$$
 $G_2^* = \begin{pmatrix} \text{case } x_1 = x_1 \land F_3^* = x_2 & : g_1 \\ \text{true } & : g_2 \end{pmatrix}$

$$G_3^* = \begin{pmatrix} \text{case} & x_1 = x_1 \land F_3^* = x_1 & : g_1 \\ & x_1 = x_1 \land x_2 = x_1 & : g_2 \\ & \text{true} & : g_3 \end{pmatrix}$$

Then $\varphi^E: (\bigwedge_{i=1}^4 F_i^* \wedge \bigwedge_{i=1}^3 G_i^*) \to flat^E$

Exercise 8: Sparse Method

For the following formula in equality logic φ^E we should compute an equisatisfiable formula in propositional logic:

$$\varphi^E : (x_1 = x_2 \lor x_2 = x_3) \land (x_3 \neq x_4 \lor x_4 = x_5 \lor x_5 = x_1) \land (x_1 = y_1 \lor y_1 \neq y_2) \land (y_1 = y_3 \lor y_2 = y_3)$$

From that, we can compute $E_{=}$ (equality literals) and E_{\neq} (disequality literals) of φ^{E} easily:

$$E_{=} = \{x_1 = x_2, x_2 = x_3, x_4 = x_5, x_5 = x_1, x_1 = y_1, y_1 = y_3, y_2 = y_3\}$$

 $E_{\neq} = \{x_3 \neq x_4, y_1 \neq y_2\}$

At this point we can construct an equality graph $G^E(\varphi^E) = (V, E_=, E_{\neq})$:

There are two contradictory cycles³ in the graph. We can simplify the graph, by setting the literals of the corresponding edges which are not part of any contradictory cycle to true. In our case the edge (x_1, y_1) is such one:

$$\varphi_1^E: (x_1 = x_2 \lor x_2 = x_3) \land (x_3 \neq x_4 \lor x_4 = x_5 \lor x_5 = x_1) \land \\ (\mathsf{true} \lor y_1 \neq y_2) \land (y_1 = y_3 \lor y_2 = y_3) \\ \varphi_1^E: (x_1 = x_2 \lor x_2 = x_3) \land (x_3 \neq x_4 \lor x_4 = x_5 \lor x_5 = x_1) \land \\ (y_1 = y_3 \lor y_2 = y_3)$$

Therefore, $G^E(\varphi_1^E)$ looks like:

³a cycle with exactly one disequality edge

As we can see, two more edges can be removed, namely (y_1, y_3) and (y_3, y_2) :

$$\begin{split} \varphi_2^E : & (x_1 = x_2 \vee x_2 = x_3) \wedge (x_3 \neq x_4 \vee x_4 = x_5 \vee x_5 = x_1) \wedge \\ & (\mathsf{true} \vee \mathsf{true}) \\ \varphi_2^E : & (x_1 = x_2 \vee x_2 = x_3) \wedge (x_3 \neq x_4 \vee x_4 = x_5 \vee x_5 = x_1) \end{split}$$

which results in the following graph:

After we have simplified the graph we have to construct a boolean formula $e(\varphi_2^E)$ by replacing $x_i = x_j$ in φ_2^E by a boolean variable $e_{i,j}$:

$$e(\varphi_2^E) = (e_{1,2} \lor e_{2,3}) \land (\neg e_{3,4} \lor e_{4,5} \lor e_{5,1})$$

Next we construct the nonpolor equality graph $G_{NP}^E(\varphi_2^E)$:

Now we make $G_{NP}^E(\varphi_2^E)$ chordal:

In the final steps we do the following:

- Set B_t to true
- \bullet For each triangle $(e_{i,j},e_{j,k},e_{k,i})$ in $G^E_{NP}(\varphi^E_2)$ do

$$B_t := (e_{i,j} \land e_{j,k} \to e_{i,k}) \land$$
$$(e_{i,j} \land e_{i,k} \to e_{j,k}) \land$$
$$(e_{i,k} \land e_{i,k} \to e_{i,j}) \land B_t$$

• Return $e(\varphi_2^E) \wedge B_t$

Therefore we get for $G_{NP}^E(\varphi_2^E)$:

$$B_{t} = (e_{1,2} \wedge e_{5,1} \to e_{2,5}) \wedge (e_{5,1} \wedge e_{2,5} \to e_{1,2}) \wedge (e_{2,5} \wedge e_{1,2} \to e_{5,1})$$

$$= (e_{2,3} \wedge e_{5,2} \to e_{3,5}) \wedge (e_{5,2} \wedge e_{3,5} \to e_{2,3}) \wedge (e_{3,5} \wedge e_{2,3} \to e_{5,2})$$

$$= (e_{3,4} \wedge e_{5,3} \to e_{4,5}) \wedge (e_{5,3} \wedge e_{4,5} \to e_{3,4}) \wedge (e_{4,5} \wedge e_{3,4} \to e_{5,3})$$

Finally, the following holds:

$$\varphi^E$$
 is satisfiable iff $e(\varphi_2^E) \wedge B_t$

Sourcecode of sdk.lhs

import Data.List
import Text.Printf
sdksize :: Int
sdksize = 9
type UnLit = (Int, Int, Int)

```
type Lit = Int
type Clause = [Lit]
main :: IO ()
main = do
  printf "c sup? some sudoku tonight, eh? lulz\n"
  let \ solution = (genRow + genCol + genBlock + genField + genStart + genFill)
  let \ solstr = concat \ \$ \ map \ showClause \ solution
  printf "p cnf 999 %d\n" (length solution)
  printf "%s" solstr
showClause :: Clause \rightarrow String
showClause (x:xs)
   x \equiv 0 = 0 
   | otherwise = (show x) + " " + (showClause xs) |
encode :: UnLit \rightarrow Lit
encode(x, y, z) = (x * 10 * 10) + (y * 10) + z
genRow :: [Clause] -- cf. F_{Row}
qenRow =
  [[encode\ (x,y,z)\ |\ y \leftarrow [1..sdksize]] + [0]
   x \leftarrow [1 \dots sdksize], z \leftarrow [1 \dots sdksize]
genCol :: [Clause] -- cf. F_{Column}
qenCol =
  [[encode\ (x,y,z)\ |\ x \leftarrow [1..sdksize]] + [0]
   |y \leftarrow [1 ... sdksize], z \leftarrow [1 ... sdksize]]
genBlock :: [Clause] -- cf. F_{Block}
qenBlock =
  [[encode\ ((lx*3) + x, (ly*3) + y, z)\ |\ y \leftarrow [1..sub], x \leftarrow [1..sub]] + [0]
   |lx \leftarrow [0..(sub-1)], ly \leftarrow [0..(sub-1)], z \leftarrow [1..sdksize]|
  where sub = sdksize 'div' 3
genField :: [Clause] -- cf. F_{Field}
qenField =
  [(-encode\ (x,y,z)):(-encode\ (x,y,i)):[0]
   x \leftarrow [1 \dots sdksize], y \leftarrow [1 \dots sdksize], z \leftarrow [1 \dots (sdksize-1)], i \leftarrow [(z+1) \dots sdksize]
qenStart :: [Clause]
genStart = map (flip (:) [0] \circ encode)
  (1,1,6), (1,8,4), (2,3,5), (2,6,2), (2,9,7), (3,1,7), (3,2,2),
  (3,3,9), (3,9,3), (4,2,9), (4,5,4), (4,9,1), (5,5,6), (6,1,4),
  (6,5,8), (6,8,7), (7,1,3), (7,7,1), (7,8,6), (7,9,5), (8,1,2),
  (8,4,4), (8,7,8), (9,2,5), (9,9,4)
  -- for better readability of the output we use natural numbering of the
  -- literals, however we have to "fill" the gaps and say they shouldn't
  -- be true ever.
```

```
\begin{split} &genFill :: [\textit{Clause}] -- \text{cf. } F_{Fill} \\ &genFill = \\ &[(-(encode\ (x,y,0))):[0] \\ &|\ x \leftarrow [0\mathinner{.\,.} sdksize], y \leftarrow [0\mathinner{.\,.} sdksize], (x>0 \lor y>0)] \end{split}
```

```
Makefile
SHELL := bash # ;(
all: solution
    sed -e 's/-[0-9]\{1,3\}//g' \
       -e 's/ \+/ /g' -e 's/0/TEH END\./g' \
       -e 's/ [0-9]1/n''g -e's/[0-9][0-9]//g' $<
solution: input
    -minisat $< $@
input: sudoku
    ./$< > $@
sudoku: sdk.lhs
   ghc --make $< -o $0
.PHONY: clean
clean:
    rm -Rf solution input sudoku *.hi
Sample Output
% make clean all
rm -Rf solution input sudoku *.hi
ghc --make sdk.lhs -o sudoku
[1 of 1] Compiling Main
                        (sdk.lhs, sdk.o)
Linking sudoku ...
./sudoku > input
minisat input solution
WARNING: for repeatability, setting FPU to use double precision
=========[ Problem Statistics ]==============================
| Number of variables:
                                999
```

3159

 $0.00 \, s$

| Number of clauses:

| Parse time:

 =:			:=====[S	Search Sta	ati	stics]==	:======		
	Conflicts		ORIGINAL				LEARNT	1	Progress
		Vars	Clauses	Literals		Limit	Clauses	Lit/Cl	
	100	675	2184	5544		800	100	16	32.433 %
	250	l 675	2184	5544		880	250	15	32.433 %
	475	l 675	2184	5544		968	475	17	32.433 %
	812	675	2184	5544		1065	812	18	32.433 %
	1318	675	2184	5544		1172	1318	18	32.433 %
	2077	675	2184	5544		1289	1313	20	32.433 %
	3216	675	2184	5544		1418	1634	19	32.433 %
	4924	l 675	2184	5544		1560	1566	17	32.433 %
	7486	672	2176	5528		1716	1230	15	32.733 %
	11330	l 639	1961	5098		1888	1813	17	36.036 %

restarts : 63

conflicts : 16339 (53868 /sec)

decisions : 30812 (0.00 % random) (101585 /sec)

propagations : 384474 (1267582 /sec) conflict literals : 292512 (10.26 % deleted)

 $\begin{array}{lll} \texttt{Memory used} & : 6.00 \ \texttt{MB} \\ \texttt{CPU time} & : 0.303313 \ \texttt{s} \end{array}$

SATISFIABLE

make: [solution] Error 10 (ignored)

sed -e 's/-[0-9][0-9][0-9]//g' -e 's/-[0-9][0-9]//g' \ -e 's/-[0-9]//g' -e 's/\+/ /g' -e 's/0/TEH END\./g' \

-e 's/ [0-9]1/n/g -e's/[0-9][0-9]/g' solution

SAT

6 8 3 1 9 7 5 4 2

1 4 5 6 3 2 9 8 7

7 2 9 8 5 4 6 1 3

8 9 6 7 4 3 2 5 1

5 3 7 2 6 1 4 9 8

4 1 2 5 8 9 3 7 6

3 7 4 9 2 8 1 6 5

2 6 1 4 7 5 8 3 9

9 5 8 3 1 6 7 2 4 TEH END.