Attributed Graph Clustering

Presented by Zhao Zhou

Outline

- Motivation
- Related work
- Attributed Graph
- Distance-based Clustering Algorithm
- Model-based Clustering Algorithm
- Conclusion

Graph Clustering

- For a given set of objects, we would like to divide it into groups of similar objects.
- The similarity between objects is defined by objective functions

Real Applications

- Community Detection
 - Nodes represent members
 - Friendship relationship represent the corresponding links
- Telecommunication Networks
 - Individual phone numbers represent nodes
 - Phone calls represented as edges
- Email Analysis
 - Individuals represented as nodes
 - Emails sent represented as edges

Related work

- A number of algorithms for graph clustering proposed before
 - 1. The Minimum Cut Algorithm [3]
 - 2. Multi-way Graph Partition [4]
 - 3. k-medoid and k-means algorithm [5]
 - 4. Spectral Clustering method [6]
 - 5.

Attributed Graph

- Existing graph clustering methods
 - mainly focus on the topological structure for clustering
 - Ignore the vertex properties
- Proliferation of rich information for real objects
 - Vertices associated with a number of attributes
 - Its attributes describe the characteristics and properties
 - give rise to a new type of graphs

Applications

- Attributed graph clustering is useful in many domains
 - Service-oriented social network
 - Communication network

Service-oriented social network

- Each user can characterized by his profile
 - Interests, gender, education, etc
- Clustering users by considering both relationships and profile is more useful
 - Recommendation system
 - User-targeted online advertising

Communication network

- Each subscriber is associated with
 - Demographic information, service usage, etc
- Attributed Graph clustering on users is useful in
 - Design effective group-oriented marketing strategies

Problem Definition

- Given an attributed graph G and the number of clusters K, the clustering is to partition the vertex set V of G into K disjoint subsets $V_1,...,V_k$
 - Vertices within clusters are densely connected
 - Vertices in different clusters are sparsely connected
 - Vertices within clusters shave low diversity in their attribute values
 - Vertices in different clusters have diverse attribute values

Attributed Graph Clustering Algorithm

- The algorithms for attributed graph clustering can be categorized into two types
 - Distance-based Approaches
 - Model-based Approaches

Distance-based Approaches(vldb09)

• The main idea is to design a distance measure for vertex pairs that combines both structural and attribute information

- Based on this measure, standard clustering algorithms like kmedoids are then applied to cluster the vertices
- The state-of-the-art approaches are the SA-cluster [1] and its extended version [7,8]

Basic solution

ullet Design a distance function between v_i and v_j

•
$$d(v_i, v_j) = \alpha \cdot d_S(v_i, v_j) + \beta \cdot d_A(v_i, v_j)$$

• Hard to set the parameters α and β

Attribute augmented Graph

- An attribute augmented graph is $G_a = (V \cup V_a, E \cup E_a)$
 - \bullet V_{a} is the set of attribute vertex, v_{ij} represents attribute I takes the jth value
 - E_a is attribute edge, (v_i, v_{ij}) means vertex vi takes a value of a_{ij} on attribute i

Transition probat weight of structure edge

Transition probability between struct

weight of attribute edge

- $P(v_i, v_j) = \frac{w_o}{|N(v_i)| * w_o + w_1 + \dots + w_m}$
- Transition probability through structure vertex to attribute vertex
 - $P(\mathbf{v}_{i}, \mathbf{v}_{j}) = \frac{w_{j}}{|N(v_{i})| * w_{0} + w_{1} + \dots + w_{m}}$
- Transition probability through attribute vertex to structure vertex
 - $\bullet P(v_{ik}, v_j) = \frac{1}{|N(v_{ik})|}$

Transition probability matrix

- Presentation of transition probability matrix
 - $\bullet \ \mathbf{P}_{\mathbf{A}} = \begin{bmatrix} P_V & A \\ B & o \end{bmatrix}$
 - P_V transition probability between vertices
 - A transition probability between vertices and attribute vertices
 - B transition probability between attribute vertices and vertices
- P_A can be incrementally computed by

$$\bullet \ P_{A}^{\ l} = \begin{bmatrix} T_{l} & T_{l-1}A \\ BT_{l-1} & BT_{l-2}A \end{bmatrix}$$

$$\bullet T_{l} = P_{V}T_{l-1} + ABT_{l-2}$$

Random Walk Distance

- Random walk distance
 - $R_A^{l} = \sum_{\tau=1}^{l} c(1-c)^{\tau} P_A^{\tau}$
 - \bullet au length of path
 - c decay factor
 - P_A probability transition matrix

Initialization of Clustering Method

Density Function

•
$$f(v_i) = \sum_{v_j \in V} (1 - e^{\frac{d(v_i, v_j)^2}{2\sigma^2}})$$

- ullet σ is a user-specified parameter
- Select the densest k vertices on $f\left(v_{i}\right)$ as the initial centroids $\{c1^{0},\ldots,c1^{k}\}$

Clustering Process

- Assign vertex to its closest centroid c*
 - $c* = \operatorname{argmax}_{c_j^t} d(v_i, c_j^t)$
- Compute the "average point" of a cluster V_i
 - $R_A^l(avg(v_i), v_j) = \frac{1}{|V_i|} \sum_{v_k \in V_i} R_A^l(v_k, v_j)$
- Find the new centroid c_i^{t+1} in cluster V_i
 - $c_i^{t+1} = \operatorname{argmin} v_j \in V_i \mid |R_A^1(v_j) R_A^1(\operatorname{avg}(v_i))|$

Weight Self-Adjustment

- If a large portion of vertices within clusters shares the same value of a certain attribute a_i , it means that ai has a good clustering accuracy.
- If vertices within clusters have a very random distribution on values of a certain attribute a_i , then a_i is not a good clustering attribute.

Weight Self-Adjustment

• $Vote_i(v_p, v_q) = 1$ if v_p and v_q share the same value on a_i

$$\omega_i^{t+1} = \frac{1}{2}(\omega_i^t + \Delta \omega_i^t) = \frac{1}{2}(\omega_i^t + \frac{m\sum_{j=1}^k \sum_{v \in V_j} vote_i(c_j, v)}{\sum_{p=1}^m \sum_{j=1}^k \sum_{v \in V_j} vote_p(c_j, v)})$$

Clustering Procedure

- 1. Assign vertices to their closest centroids
- 2. Update cluster centroids
- 3. Adjust attribute edge weights $\{w_1, ..., w_m\}$
- 4. Re-calculate the random walk distance matrix R_A

Experimental Result

- SA-Cluster: considers both structural and attribute similarities
- S-Cluster: only considers structural distance
- W-Cluster: consider structural and attribute similarities equally important
- K-SNAP: partition vertices with the same attribute values into a cluster

Experimental Result

Model-based Approach(SIGMOD12)

- Avoids the artificial design of a distance measure
- Based on probabilistic model
 - Fuses both structural and attribute information
 - Vertices from the same cluster behave similar, while vertices from different clusters can behave differently.
- Clustering with the proposed model can be transformed into a probabilistic inference problem
 - Model enforces the intra-cluster similarity by asserting that the attribute values and edge connections of a vertex should depend on its cluster label

Problem Statement

- An attributed graph G is a 4-tuple (V,E,Λ,F)
 - $V = \{v_1, v_2, \dots, v_N\}$: a set of N vertices
 - $E = \{(v_i, v_i)\}$: a set of edges
 - $\Lambda = \{a^1, a^2, \dots, a^T\}$: a set of T categorical attributes
 - $F = \{f_1, f_2, ..., f_T\}$: a set of functions map each element in attribute vector to attribute value i.e. $f_t(v_i)$

Bayesian Model for Clustering

• Given a set of vertices V, a set of attributes Λ , and the number of clusters K, the model defines a joint probability distribution over all possible partitions over V.

• The goal is to find the most probable clustering with the maximum probability.

Notations

- X : adjacency matrix (N*N)
 - \bullet X_{ij} is a binary random variable
 - Indicates the existence of edge
- Y : attribute matrix (N*T)
 - Y_i^t is a categorical random variable
 - Denotes the value of attribute a^t associated with vertex v_i
- Z : clustering of vertices (N*1)
 - Z_i is a categorical random variable
 - Denotes the label of vertex v_i

Generating Z

- Cluster label Z_i of each vertex v_i is sampled from multinomial distribution independently
 - $P(Z_i = k \mid \alpha) = \alpha_k, k = 1, 2, ... K$
 - \bullet α_k denotes the proportion of the vertices belonging to cluster k
 - $\sum_{k=1}^{K} \alpha_k = 1, \alpha_k \in [0, 1]$

Generating Y

- Given cluster label Z_i for vertex \boldsymbol{v}_i , the attribute values of \boldsymbol{v}_i is by
 - $P(Y_i^t = m | \theta_{Zi}^t) = \theta_{Zim}^t, m = 1, 2, ..., M^t$
 - M^t is the size of the domain dom(a^t)
 - θ_{Zim}^{t} denotes the proportion of vertices in cluster Z_{i} that take the m-th value in dom(a^{t})
 - $\sum_{m=1}^{Mt} \theta_{Zim}^{t} = 1, \theta_{Zim}^{t} \in [0, 1]$

Generating X

- Given the cluster labels Z_i and Z_j for vertex v_i and v_j , the indicator X_{ij} denotes the existence of an edge between them
 - X_{ij} is a binary variable taking value 0 or 1
 - $P(X_{ij} | \phi_{ZiZj}) = (1 \phi_{ZiZj})^{1 Xij} (\phi_{ZiZj})^{Xij}$
 - $\phi_{ZiZi} \in [0, 1]$

Graphical representation

Model Definition

• Given the hyper-parameters ϵ , γ , μ , ν , the joint distribution over α , θ , ϕ , X,Y,Z can be decomposed as

$$p(\alpha, \theta, \phi, \mathbf{X}, \mathbf{Y}, \mathbf{Z} | \xi, \gamma, \mu, \nu)$$

$$= p(\alpha|\xi)p(\theta|\gamma)p(\phi|\mu,\nu)p(\mathbf{Z}|\alpha)p(\mathbf{X}|\mathbf{Z},\phi)p(\mathbf{Y}|\mathbf{Z},\theta),$$

Model-based Clustering of Attributed Graph

- The problem of clustering a given attributed graph (X,Y) can be transformed into a standard probabilistic inference problem
- Find the clustering Z conditioning on X,Y such that
 - $Z^* = \operatorname{argmax}_{z} p(Z \mid X, Y)$

Challenges

- The first difficulty is the maximization over the N variables $Z = \{Z_1, Z_2, \ldots, Z_N\}$. For large N, the global maximization is computationally prohibitive
- The second difficulty is in the calculation of the posterior distri $p(\mathbf{Z}|\mathbf{X},\mathbf{Y}) = \iiint p(\alpha,\theta,\phi,\mathbf{Z}|\mathbf{X},\mathbf{Y}) \mathrm{d}\alpha \mathrm{d}\theta \mathrm{d}\phi,$
 - where

$$p(\alpha, \theta, \phi, \mathbf{Z} | \mathbf{X}, \mathbf{Y}) = \frac{p(\alpha, \theta, \phi, \mathbf{X}, \mathbf{Y}, \mathbf{Z})}{\sum_{\mathbf{Z}} \iiint p(\alpha, \theta, \phi, \mathbf{X}, \mathbf{Y}, \mathbf{Z}) d\alpha d\theta d\phi}.$$

Solution

- Variational algorithm to solve the problem
 - Approximate distribution $p(\alpha, \theta, \phi, Z \mid X, Y)$ by variational distribution $Q = q(\alpha)q(\theta)q(\phi)\prod_i q(Z_i)$

$$\mathbf{Z}^{\star} = \arg \max_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \mathbf{Y})$$

$$= \arg \max_{\mathbf{Z}} \iiint p(\alpha, \theta, \phi, \mathbf{Z}|\mathbf{X}, \mathbf{Y}) d\alpha d\theta d\phi$$

$$\approx \arg \max_{\mathbf{Z}} \iiint q(\alpha, \theta, \phi, \mathbf{Z}) d\alpha d\theta d\phi$$

$$= \arg \max_{\mathbf{Z}} \iiint q(\alpha) q(\theta) q(\phi) \prod_{i} q(Z_{i}) d\alpha d\theta d\phi$$

$$= \arg \max_{\mathbf{Z}} \prod_{i} q(Z_{i})$$

$$= \left[\arg \max_{Z_{1}} q(Z_{1}), \arg \max_{Z_{2}} q(Z_{2}), \dots, \arg \max_{Z_{N}} q(Z_{N})\right]$$

• The global maximization over Z reduces to local maximization over each Z_i independently

Variational Approximation

- Approximate P(Z | X, Y) by distribution Q(Z) is to maximize the distribution : $L = \sum_{Z} Q(Z) \log \frac{P(Z, X, Y)}{O(Z)}$
 - $D_{KL}(Q||P) = \sum_{Z} Q(Z) log \frac{Q(Z)}{P(Z|X,Y)}$
 - $D_{KL}(Q||P) = \sum_{Z} Q(Z) \log \frac{Q(Z)}{P(Z,X,Y)} + \log p(X,Y)$
 - $\log p(X,Y) = D_{KL}(Q||P) \sum_{Z} Q(Z) \log \frac{Q(Z)}{P(Z,X,Y)}$
 - $\log p(X,Y) = D_{KL}(Q||P) + \sum_{Z} Q(Z) \log \frac{P(Z,X,Y)}{Q(Z)}$

Maximize L

In order to maximize the objective function L, we take the derivatives of L with respect to variational parameters and set these derivatives to zeros.

$$\nabla \widetilde{L}(q) = \left(\frac{\partial \widetilde{L}}{\partial \widetilde{\xi}}, \frac{\partial \widetilde{L}}{\partial \widetilde{\gamma}}, \frac{\partial \widetilde{L}}{\partial \widetilde{\mu}}, \frac{\partial \widetilde{L}}{\partial \widetilde{\nu}}, \frac{\partial \widetilde{L}}{\partial \widetilde{\beta}}\right) = 0.$$

Experimental Result

Figure 2: Clustering Performance on Political Blogs

Conclusion

- Introduce the problem of attributed graph clustering and its wide applications
- Introduce two state-of-the-art approaches: distance-based attributed graph clustering and model-based attributed graph clustering
- Demonstrate the performance of both algorithms on the real data set.

Reference

- 1. <u>Yang Zhou</u>, <u>Hong Cheng</u>, <u>Jeffrey Xu Yu</u>: Graph Clustering Based on Structural/Attribute Similarities. <u>PVLDB 2(1):718-729 (2009)</u>
- 2. A Model-based Approach to Attributed Graph Clustering
- 3. <u>Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin</u>: Network flows theory, algorithms and applications. <u>Prentice Hall 1993</u>
- 4. <u>Lixin Tao, Yongchang Zhao</u>: Multi-way graph partition by stochastic probe. <u>Computers & OR (COR) 20(3):321-347 (1993)</u>
- 5. <u>Matthew J. Rattigan</u>, <u>Marc E. Maier</u>, <u>David Jensen</u>: Graph clustering with network structure indices. <u>ICML 2007:783-790</u>
- 6. <u>Charu C. Aggarwal</u>, <u>Haixun Wang</u>: A Survey of Clustering Algorithms for Graph Data. <u>Managing and Mining Graph Data 2010:275-301</u>
- 7. <u>Hong Cheng, Yang Zhou</u>, <u>Jeffrey XuYu</u>: Clustering Large Attributed Graphs: A Balance between Structural and Attribute Similarities. <u>TKDD 5(2):12</u> (2011)
- 8. <u>Yang Zhou</u>, <u>Hong Cheng</u>, <u>Jeffrey XuYu</u>: Clustering Large Attributed Graphs: An Efficient Incremental Approach. <u>ICDM 2010:689-698</u>

Thank you