数学分析原理笔记

 $\label{eq:lemma:$

目录

第一章	实数系和复数系	ŀ
1.1	导引	
1.2	有序集	6
1.3	域	7

4 目录

第一章 实数系和复数系

1.1 导引

例 1.1. 我们现在证明方程

$$p^2 = 2 \tag{1.1}$$

不能被任何有理数 p 满足。倘若存在那样一个 p,我们可以把它写成 p = m/n,其中 m 和 n 都是整数¹,而且可以选得不都是偶数²。于是由(1.1)式得出

$$m^2 = 2n^2 \tag{1.2}$$

这表明 m^2 是偶数,因此 m 是偶数 (如果 m 是奇数,那么 m^2 将是奇数³),因而 m^2 能被 4 整除。于是(1.2)式右边能被 4 整除,因而 n^2 是偶数,这又说明 n 是偶数。

假定(1.1)式成立,就导致 m 和 n 都是偶数的结论,这与 m 及 n 的选择相矛盾。因此,对于有理数 p, (1.1)式不能成立。

现在我们把这种情况考察的更严密一些。令 A 是使 $p^2 < 2$ 的一切正有理数 p 的集,B 是使 $p^2 > 2$ 的一切正有理数 p 的集。我们来证明 A 里没有最大数,B 里没有最小数⁴。

更明确地说,对于 A 中的每一个 p,能在 A 中找到一个有理数 q,而 p < q,并且对于 B 中的每一个 p,能在 B 中找到一个有理数 q,而 q < p。

为了做这件事,给每一个有理数 p > 0,配置一个数⁵

$$q = p - \frac{p^2 - 2}{p+2} = \frac{2p+2}{p+2} \tag{1.3}$$

于是

$$q^2 - 2 = \frac{2(p^2 - 2)}{(p+2)^2} \tag{1.4}$$

¹根据有理数的定义。

²否则我们可以一直约分,即分子分母都除以 2,如此这样一直进行下去,直到其中一个不是偶数。

³反证法中的反证法。

 $^{^4}$ rudin 先生显然觉得前面的证明太简单了,不够过瘾。

⁵对于 A 中的情况,就是我们要找这样一个 q,使得 q=p+x,x>0, $q<\sqrt{2}$ 。因此 $x<\sqrt{2}-p=(2-p^2)/(\sqrt{2}+p)$ 。可令 $x=(2-p^2)/(2+p)$,就得到下面的式子。对于 B 中的情况也会得到同样的式子。

如果 p 在 A 中,那么 $p^2-2<0$,(1.3) 式说明 q>p,而(1.4) 式说明 $q^2<2$,因而 q 在 A 中。

如果 p 在 B 中,那么 $p^2-2>0$,(1.3)式说明 0< q< p,而(1.4)式说明 $q^2>2$,因而 q 在 B 中。

1.2 有序集

定义 1.1 (序关系). 设 S 是一个集。S 上的序是一种关系,记作 <,它有下面的两个性质:

1. 如果 $x \in S$, 并且 $y \in S$, 那么在

$$x < y, x = y, y < x$$

三种述语之中, 有且只有一种成立。

2. 如果 $x, y, z \in S$, 又如果 x < y 且 y < z, 那么 x < z。

定义 1.2 (有序集). 在集 S 里定义了一种序, 便是一个有序集。

定义 1.3 (上有界). 设 S 是有序集, 而 $E \subset S$ 。如果存在 $\beta \in S$,而每个 $x \in E$,满足 $x \leq \beta$,我们就说 E 上有界,并称 β 为 E 的一个上界。

用类似的方法定义下界(把≤换成≥就行了)。

定义 1.4 (最小上界). 设 S 是有序集, $E \subset S$, 且 E 上有界。设存在一个 $\alpha \in S$, 它具有以下性质:

- $1. \alpha$ 是 E 的上界。
- 2. 如果 $\gamma < \alpha$, γ 就不是 E 的上界。

便把 α 叫做 E 的最小上界 (由 2来看, 显然 6 最多有一个这样的 α) 或 E 的上确界, 而记作

$$\alpha = \sup E$$

类似地可以定义下有界集 E 的最大下界或下确界。述语

$$\alpha = \inf E$$

表示 α 是 E 的一个下界, 而任何合于 $\beta > \alpha$ 的 β , 不能是 E 的下界。

例 1.2.

 $^{^{6}}$ 假设有 α_{1},α_{2} ($\alpha_{1}\neq\alpha_{2}$) 都是 E 的最小上界,根据序的性质,要么 $\alpha_{1}<\alpha_{2}$,要么 $\alpha_{2}<\alpha_{1}$,根据 2,这就表明或者 α_{1} 不是 E 的上界,或者 α_{2} 不是 E 的上界,这与我们的假设矛盾。

1.3 域

a 把例 1.1中的集 A 与集 B 看作有序集 Q 的子集。集 A 上有界。实际上,A 的那些上界,刚好就是 B 的那些元。因为 B 没有最小的元,所以 A 在 Q 中没有最小上界。

b 如果 $\alpha = \sup E$ 存在。这 α 可以是 E 的元,也可以不是 E 的元。例如,假设 E_1 是所有合于 $r \in Q$ 及 $r \leqslant 0$ 的集。于是

$$\sup E_1 = \sup E_2 = 0,$$

而 $0 \notin E_1$, $0 \in E_2$ 。

定义 1.5 (最小上界性). 有序集 S, 如果具有性质: 若 $E \subset S$, E 不空, 且 E 上有界时, $\sup E$ 便在 S 里。就说 S 有最小上界性。

例 1.2 a说明 Q 没有最小上界性。

定理 1.1 (有最小上界性的有序集也有最大下界性). 设 S 是具有最小上界性的有序集, $B \subset S$, B 不空且 B 下有界。令 L 是 B 的所有下界的集。那么

 $\alpha = supL$

在 S 存在, 并且 $\alpha = \inf B$ 。

特别地说就是 $\inf B$ 在 S 存在。

证. (证明 α 存在) 因为 B 下有界,L 不空。L 刚好由这样一些 $y \in S$ 组成,他们对于每个 $x \in B$,满足不等式 $y \leqslant x$ 。可见每个 $x \in B$ 是 L 的上界。于是 L 上有界,因而我们对 S 的假定意味着 S 里有 L 的上确界 7 ,把它叫做 α 。

(证明 α 是 B 的下界) 如果 $\gamma < \alpha$, 那么 γ 不是 L 的上界, 因此 $\gamma \notin B$ 。由此对于每个 $x \in B$, $\alpha \leq x$ 。所以 $\alpha \in L$ 。

(证明 α 是 B 的最大下界) 如果 $\alpha < \beta$,由于 α 是 L 的上界,必然 $\beta \notin L$ 。我们已证明了: $\alpha \in L$ 。而当 $\beta > \alpha$ 时,就有 $\beta \notin L$ 。换句话说, α 是 B 的下界,但若 $\beta > \alpha$, β 就不是 B 的下界。这就是说 $\alpha = \inf B$ 。

1.3 域

 $^{^{7}}$ 这里还需要保证 $L\subset S$ 。根据 L 的定义,若 $x\in L$,那么 x 就是 B 的下界。而根据下界的定义,就有 $x\in S$ 。所以 $L\subset S$ 是成立的。rudin 先生是觉得这些太显然了就没有把它们写出来吗?