SAVEETHA University

CSA13 Theory of Computation

Time: 2 Hours Total marks: 70

Answer all the questions. Make your answers short and precise.

1. (2.5+2.5 marks) Let the alphabet be $\{a, b\}$. Write regular expressions for the following languages.

- (a) Set of all words that contain no *ab*. For instance the words *b* and *baa* are in the language but not *abb* or *aab*.
- (b) Set of all words that contain an *a* as well as a *b*.
- 2. (5 marks) Construct a grammar for the set of words given by the regular expression $(ab)^*a$.
- 3. (12 marks) Let $L \subseteq \{a, b\}^*$ be the set of all words of length at least 2 whose last two letters are the same. For example abb is in L but not aba. Construct an NFA for the language and determinize it and draw the resulting DFA.

4. (6+6 marks)

- (a) Show that if $L \subseteq \Sigma^*$ is regular then the language $w^{-1}L = \{u \mid wu \in L\}$ is also regular.
- (b) Is the language $\{a^nb^{2n} \mid n \ge 0\}$ regular? Justify.

5. (6+6 marks)

(a) Simplify the following grammar (remove all the useless productions, unit productions and epsilon productions).

$$S \rightarrow aA \mid aBB$$

 $A \rightarrow aaA \mid \epsilon$

$$B \rightarrow bB \mid bbC$$

$$C \rightarrow B$$

(b) Show that the language $\{a^nb^mc^nd^m\mid m\geq 0, n\geq 0\}$ is not context-free.

6. (6+6 marks)

- (a) Give the informal description of a push down automaton that accepts the language $\{a^mb^{2m}\mid m\geq 0\}$.
- (b) Show that if L_1 and L_2 are languages accepted by Turing machines then $L_1 \cup L_2$ is also accepted by a Turing machine.

7. (6+6 marks)

- (a) Is it decidable to check if the language of a Turing machine is finite? Justify.
- (b) Show that there is a language $L \subseteq \{1\}^*$ that is not-recursively enumerable.

1