

Warunki początkowe:

W układach przedstawionych na schematach panował stan ustalony. W czasie t=0 zmieniono położenie klucza. Wyznaczyć wartości wskazanych wielkości* w czasie t=0+.

Wskazówka:

- *- Zwróć uwagę, że w wskazane wielkości dotyczą nie tylko wielkości zachowawczych tj. $i_L\left(0^+\right)$ oraz $u_C\left(0^+\right)$, ale również wielkości $u_L\left(0^+\right)$ oraz $i_C\left(0^+\right)$, których nie obejmują prawa komutacji.
- 1. Przeanalizuj obwód w stanie ustalonym przed komutacją i wyznacz $i_L\left(0^-\right)$ oraz $u_C\left(0^-\right)$.
- 2. Naszkicuj nową strukturę obwodu, która powstaje po komutacji. Obowiązuje ona dla czasu t>0 w tym $t=0^+$. "Zatrzymaj" obwód w czasie $t=0^+$ i zaznacz na rysunku wszystkie prądy i spadki napięć, traktując je jako wartości chwilowe np. $i_1(0^+), i_2(0^+), i_L(0^+), \dots, u_{R1}(0^+), u_{R2}(0^+), u_C(0^+)\dots$
- 3. Upewnij się czy struktura obwodu pozwala na wykorzystanie prawa komutacji. Jeśli tak, niektóre z powyższych wartości tj. wartości wielkości zachowawczych, otrzymasz bezpośrednio z praw komutacji $i_L\left(0^+\right)=i_L\left(0^-\right)$ oraz $u_C\left(0^+\right)=u_C\left(0^-\right)$. Jeśli nie, wykorzystaj odpowiednio zasadę zachowania strumienia w oczku lub zasadę zachowania ładunku w węźle.
- 4. Pozostałe wartości wyznacz wykorzystując dowolną metodę analizy obwodów (np. układu równań Kirchhoffa), przy wiadomych już z poprzedniego punktu wartościach $i_L(0^+), u_C(0^+)$.

zad. 6

zad. 7

Napięcie zasilające: t(t)=Em $sin(\omega t + \psi e)$ R,C.

zad. 8

Prąd zasilający $i(t) = 2\sqrt{2} \sin(\omega t)A$

$$R_1 = 40 \ \Omega, X_L = 30 \ \Omega, R_2 = 80 \ \Omega, X_C = 60 \ \Omega.$$

zad. 9

zad. 10**

** Zadanie o podwyższonym stopniu trudności.