Építsünk walipinit! v1.0

Benke Tamás email: tombenke@gmail.com

2017. szeptember 5.

Tartalomjegyzék

1.	Bevezetés	4
2.	Miért építsünk walipini-t?	5
3.	Milyen klíma optimális a növények számára?	6
	3.1. Hőmérséklet	6
	3.1.1. Minimális hőmérséklet	6
	3.1.2. Optimális hőmérséklet	7
	3.1.3. Maximális hőmérséklet	7
	3.1.4. Hőingadozás	7
	3.2. Fény	8
	3.3. Páratartalom	8
	3.3.1. Alapfogalmak	8
	3.3.2. A páratartalom hatása a növényekre	9
	3.3.3. Pára szabályozás, párásítás	10
	3.4. Légmozgás	10
	3.4.1. Szellőztetés	11
	3.5. Szén-dioxid	11
4.	Hogyan működik a Walipini	14
	4.1. A Föld természetes hője - Miért ássuk a walipinit a földbe?	14
	4.2. Még több ingyen energia - a Nap	14
	4.3. Hőtárolás - a tömeg, mint lendítőkerék	15
	4.3.1. A "lendítőkerék effektus"	15
	4.4. A hőveszteség csökkentése - szigetelés	15
5 .	A walipini tájolása	16
	5.1. A Nap látszólagos pályája	16
	5.2. Az azimutális koordináta-rendszer	
	5.3. Tájolás a téli naphoz igazítva	
	5.4. Az optimális tető dőlésszög meghatározása	

	5.5.	Tereptárgyak, árnyékoló tényezők	9
6.	A w	ralipini tervezése 2	7
	6.1.	A walipini elhelyezése	7
		6.1.1. A vízbehatolás veszélyei	7
		6.1.2. Hegyoldalba ásva	7
	6.2.	Méret és költség megfontolások	8
	6.3.	A szellőző rendszer	8
		6.3.1. 1. Módszer	9
		6.3.2. 2. Módszer	9
		6.3.3. 3. Módszer	0
		6.3.4. 4. Módszer	0
	6.4.	-	2
	6.5.	A külső vízelvezetés	3
	6.6.	Víz gyűjtő/elvezető/fűtő rendszer	4
7.	A w	ralipini építése 3	6
	7.1.	Szerszámlista	6
	7.2.		7
	7.3.		8
	7.4.		8
	7.5.	A falak	0
	7.6.	Tetőszerkezet és fóliázás	1
	7.7.	Rézsűk és külső vízelvezetés	2
	7.8.	A szellőző rendszer	3
	7.9.	Befejezés, üzembehelyezés	4

Bevezetés

A walipini egy föld alatti, vagy másnéven verem növényház. Az elnevezés Aymara indián nyelven azt jelenti: *a meleg helye*. A zöldségtermesztéshez biztosít egész évben kiegyenlített hőmérsékletű, meleg, világos körülményeket, amihez elsődlegesen a természet erőforrásait használja fel.

Nagyjából 180-240 cm (6-8 lábnyi) mélyre van a földbe süllyesztve. A hossztengelye úgy van tájolva, hogy télen, a déli nap a legnagyobb mértékben be tudja világítani. A tető két rétegű fóliából, vagy üvegrétegből készül, így a két réteg egy szigetelő légréteget fog közre.

Az eredeti, La Paz walipini rendszert a "Walipini Construction (The Underground Greenhouse)" című kiadvány [1], ismerteti, amely alapján ez a füzet is készült.

A célunk az, hogy összefoglaljunk minden szükséges, alap információt, ami egy hazánkban alkalmazható konstrukció megtervezéséhez, megépítéséhez és működtetéséhez szükséges.

La Paz az Egyenlítőtől délre, a $-16,9^\circ$ szélességi körön fekszik, Magyarország pedig a mérsékelt égövben nagyjából a 47° szélességi körön $(45,7-48,6^\circ)$, ezért az eredeti, bolíviai megoldás bizonyos mértékben eltér a hazánkban alkalmazandó kialakítástól. Ez első sorban a tető formájára, és annak dőlésszögére vonatkozik.

Miért építsünk walipini-t?

Azért építünk walipini-t, amiért általában üvegházat, vagy fóliasátrat: a növénytermesztési időszak kibővítése céljából, vagyis, hogy késő ősszel és kora tavasszal friss zöldséggel lásson el minket, és a palántákat, a szabadföldi ültetés céljából legyen hol felnevelnünk, a tél végén.

A Bolíviában épített walipinik olyan, 3000m tengerszint feletti magasságú fennsíkon épülnek, ahol meglehetősen zordak az időjárási körülmények: éjszaka hideg van, gyakran fúj a szél, ugyanakkor elég sokat süt a nap. A walipini konstrukciók egyik leghasznosabb jellemzője, hogy olcsó megépíteni, és a legnagyobb üzemeltetési költségtényezőt, a fűtést, az épület földbesüllyesztésével, és a megfelelően kialakított tájolásával, tetőszerkezetével szintén minimalizálja. Alapvetően természetes erőforrásokra alapozza a működését.

Az általunk létrehozott szoftverrel tervezhető és vezérelhető, intelligens walipini is követi ezeket az alapelveket, ugyanakkor a korszerű technika eszköztárával segítjük a kivitelezést, hogy maximálisan ki tudjuk aknázni a természet kínálta erőforrásokat, ki tudjuk elégíteni a walipiniben termesztett növények igényeit. Ez lényegében az öntözés, páraszabályozás, szellőztetés automatizálását jelenti, de a szabályozást -igény esetén- manuálisan is el lehet végezni.

A walipini tehát egy olyan növényház, amit ideális esetben nem kell fűtenünk, és mégis, viszonylag kielégítő körülményeket biztosít a növények életbenmaradásához, fejlődéséhez.

Milyen klíma optimális a növények számára?

Szeretnénk a növényeink számára optimális körülményeket teremteni a walipiniben, ezért ebben a fejezetben sorra vesszük a növények klíma-szükségleteire vonatkozó legfontosabb információkat, a következő források alapján: [4], [5], [6], [7], [3], [9].

A növények életfeltételeit befolyásoló klíma-elemek:

- hőmérséklet,
- fény,
- páratartalom,
- légmozgás,
- talajnedvesség,
- szén-dioxid.

3.1. Hőmérséklet

3.1.1. Minimális hőmérséklet

A növények hőmérséklet szükséglete, és hőmennyiség igénye fajonként jelentősen eltér. Ha mégis általánosítva szeretnénk meghatározni, akkor a fóliás termesztésnél, az optimális hőmérséklettartomány kb. $20-25C^{\circ}$ között van.

A fólia alatt tartandó minimális hőmérséklen nagyjából $13C^{\circ}$. Ennél alacsonyabb hőmérsékleten a növekedés és fejlődés mindaddig szünetel, vagy

igen lassú, míg a hőmérséklet a kellő szintet el nem éri. De nem csak a növekedés leállásával kell számolnunk alacsony hőmérsékleten, az egész állomány gazdasági haszna veszhet oda, ha például a karalábé nem fejleszt rendes gumót. A legfontosabb, hogy a fólia fagymentes legyen.

3.1.2. Optimális hőmérséklet

A fólia alatt biztosítandó optimális hőmérséklet, növény típusonként, hőmérsékletigény szerint növekvő sorrendben:

 $13C^{\circ}$: Káposztafélék, retek, torma.

Korai vetésű retek, petrezselyem és borsó $13 - 16C^{\circ}$.

 $16C^{\circ}$: Sárgarépa, petrezselyem, cikória, borsó, fejes saláta, paraj, rebarbara, sóska, hagyma.

 $19C^{\circ}$: Cékla, vöröshagyma, fokhagyma, zeller, spárga.

22C°: Paradicsom, padlizsán, sütőtök, bab, kukorica.

 $25C^{\circ}$ (min. $15C^{\circ}$): Dinnyefélék, uborka, spárgatök, paprika.

Az optimálisnál magasabb hőmérséklet hatására a palánták megnyúlnak, fejlődésük lelassul.

3.1.3. Maximális hőmérséklet

A felső hőhatár, kb. $40C^{\circ}$ körül van. Ennél magasabb hőmérsékleten a növények levelei leperzselődhetnek. A termésen égési sérülések keletkezhetnek. $35C^{\circ}$ felett a növény légzési vesztesége nagyobb mint a fotoszintézis nyeresége.

3.1.4. Hőingadozás

A növények az optimális hőfoktól legfeljebb $\pm 7C^{\circ}$ eltérést viselnek el károsodás nélkül. A $7-14C^{\circ}$ -os eltérés már fejlődési rendellenességet okoz.

A hőingadozás, vagyis a napi legalacsonyabb és legmagasabb hőmérséklet közötti érték lehetőleg ne haladja meg a $10C^{\circ}$ -ot!

3.2. Fény

Fény nélül nincs fotoszintézis, nincs növényi élet. A nyári időszakban bőven rendelkezésre áll, azonban télen még a mesterséges megvilágítással történő pótlására is szükség lehet. Hogy meghatározzuk, hogy nyáron mennyi árnyékolásra, és télen mennyi pótvilágításra lehet szükségünk, érdemes megmérnünk a fóliába beeső fény erősségét.

Fényerősségen az egységnyi felületen, egységnyi idő alatt átáramló sugárzó fényt értjük, mértékegysége: Joule/m2/sec, amit gyakran W/m^2 -ben fejeznek ki.

A fény-intenzitást a nap iránya, és a légkör állapota befolyásolja. Az épület ablakfelülete ezen felül befolyásolja, a beesési szögtől függően, hogy mennyi a direkt, és mennyi szórt fényt enged át, továbbá, hogy a spektrumból melyik hullámhosszt milyen mértékben ereszti át, ill. engedi visszasugározni.

Az ultraibolya-sugárzás télen elhanyagolható, a nyári időszakban jelentő-sen megnövekszik.

Az UV sugarakat, az üveg csak kis mértékben engedi át, a fólia viszont nagyobb mértékben, ezért a fóliás létesítményekben zömökebb, egészségesebb növények fejlődnek.

3.3. Páratartalom

A hőmérséklet és fény mellett, a megfelelő talajnedvesség és a levegő páratartalom is kulcs szerepet játszanak a növények életében.

3.3.1. Alapfogalmak

Abszolút légnedvesség, tényleges páratartalom: Az egységnyi térfogatban lévő vízgőz grammban kifejezett tömege az abszolút légnedvesség vagy tényleges páratartalom. Viszonyaink között ennek értéke köbméterenként néhány tized grammtól 25–30 g-ig változhat szabadföldi körülmények között. A termesztőberendezések levegőjében ez az érték – a hőmérséklettől függően – elméletileg akár a 60 g-ot is elérheti.

Maximális, telítési páratartalom: A levegő párabefogadó képessége nem végtelen, a mindenkori hőmérséklet függvényében van egy felső határa, amit maximális vagy telítési páratartalomnak nevezünk.

Relatív páratartalom: A gyakorlatban legtöbbször a relatív páratartalom kifejezést használjuk, amely az abszolút- és a maximális értékek hányadosa.

Értéke kifejezi, hogy a tényleges nedvesség hány százaléka az uralkodó hőmérsékleten lehetséges maximális nedvességnek.

Adott relatív nedvességű levegő melegedése a relatív páratartalom csökkenését, lehűlése pedig annak növekedését eredményezi. Ennek természetesen feltétele, hogy a légtérbe további pára ne jusson be, és onnan ne is távozzon el.

3.3.2. A páratartalom hatása a növényekre

Párologtatás

A páratartalom hat a párologtatás erősségére, ugyanis ha a légtérben magas a relatív páratartalom, akkor a növények keveset, ha pedig alacsony, akkor pedig sokat párologtatnak.

Az első esetben – amennyiben a relatív páratartalom közelíti vagy eléri a 100%-os értéket – a párologtatás gyakorlatilag meg is szűnik.

A túlságosan alacsony relatív páratartalom éppúgy károsítja a növényeket, mint a magas. A növények a túl száraz levegőben megperzselődnek, kritikus esetben ki is száradhatnak. A magas páratartalom kedvez a gombabetegségek kialakulásának.

A párologtatás jelentős vízfogyasztással jár, ugyanakkor csökkenti a levelek hőmérsékletét, ezáltal lehetővé teszi a növények asszimilációját még a legnagyobb melegben is.

A paradicsom a vegetatív növekedési időszakában pl. 70–80%-os páratartalmat kíván.

Virágok kötődése

A páratartalom nagymértékben befolyásolja a virágok kötődését is.

A paradicsomvirágok és a virágpor képződésének optimuma 60–70%, a bibére tapadáshoz valamint a kicsírázáshoz már megint magasabb, mintegy 70–80% közötti relatív páratartalom szükséges.

Tápanyagfelvétel

A párologtatás jelentős kihatással van a tápanyagok felvételére is.

A nem túl magas páratartalom éjjel, a paradicsombogyók növekedésekor és az érés kezdetekor elősegíti a kalcium felvételét, nappal pedig csökkenti a repedésre való hajlamot, valamint a két színből érő fajtáknál a sárga gallér kialakulását.

Betegségek, kártevők

A páratartalom szabályozza betegségek, kártevők megjelenését, terjedését is. Jó hatásfokkal segít a védekezésben a vegetációs fűtés, mert a hajnali órákban kicsapódott párát leszárítja a levelek fonáki részéről.

A paradicsom fitoftórás betegsége elterjedéséért pl. kifejezetten a magas (90–100%-os) páratartalom tehető felelőssé, de ugyanakkor az is ismert, hogy az üvegházi molytetű nősténye a legtöbb tojást 75–80%-os relatív páratartalom mellett rakja.

Az optimális páratartalom kb. 70-80% (pl. paradicsom esetében). A maximális érték 80-90%. Ha a páratartalom 30% alá esik, akkor megáll a növekedés, a fejlődés.

3.3.3. Pára szabályozás, párásítás

A páratartalmat leginkább öntözéssel, párásítással és szellőztetéssel befolyásoljuk [8].

Csepegtető öntözésnél nem alakul ki a szükséges levegő páratartalom, ezért korszerű telepeken a cseppenkénti öntözőrendszerek mellé mikroszórófejeket is telepítenek öntözés, de főleg párásítás céljából. Ezek automatikus szabályozásával napjában többszöri, 1-2 liter/m² vízadag kijuttatásával a növények számára megteremthető az ideális páratartalom anélkül, hogy a leveleket jelentősen nedvesítenénk, illetve a baktériumos és gombás betegségek elterjedését elősegítenénk.

Nagynyomású, kezelt víz porlasztása révén a víz teljesen elpárolog, mi-közben párásítja és hűti a környezetet. A víz porlasztása ipari nagynyomású szivattyúkkal történik 80-100 bar nyomáson. A bejuttatott vízcseppek mérete nem haladja meg az 5-10 mikron átmérőt, ez a parányi méret lehetőséget ad arra, hogy a beporlasztott vízrészecskék, hosszú ideig ködszerűen a levegőben maradjanak.

Nyáron a ködpára gyors elpárolgása csökkenti az üvegházak, fóliasátrak belsejében a hőmérsékletet, mintegy párásító hűtésként, közben pedig növeli a levegő páratartalmát, ahogyan egyre több nedvesség kerül a levegőbe. Télen, a páratartalom optimáis szinten tartásával lehet ellensúlyozni az esetlegesen alkalmazott fűtés szárító hatását.

Párásítással akár az öntözés szükséges mértékét is csökkenthetjük.

3.4. Légmozgás

A levegő mozgásának felgyorsulása kiszárítja a talajt, csökkenti a levegő páratartalmát, kritikus esetekben mechanikai értelemben is károsítja a növény-

állományt (a leveleket letépi, a hajtásokat letördeli stb.). A szeles időszakok tehát nem kedveznek a növényeinknek, ilyenkor be kell csukni az ajtókat, szellőztetőket. Ha ilyenkor a nap is süt, a növények hőmérséklete túlzottan megemelkedhet, s ez egy bizonyos érték felett már kedvezőtlen lehet.

3.4.1. Szellőztetés

A szellőztetés alapvető feladata a nyári időszakban a fölösleges hőmennyiség, téli időszakban pedig a megnövekedett pára- és oxigéntartalom eltávolítása.

A légcsere a hőmérséklet szabályozásán túl megváltoztatja a levegő páratartalmát, a szén-dioxid-tartalmát és légmozgást is előidézhet.

A külső és a belső légtér hőmérséklet különbségének következtében párakicsapódás is végbemegy, így némileg módosul a berendezésben a megvilágítás erőssége is.

A szellőztetéssel tehát öt klímaelemet szabályozunk, módosítunk egyszerre.

nyári: A nyári szellőztetés hatékonyabb módja a tető- és oldalszellőztetők együttes használata. Ilyenkor úgynevezett kéményhatás alakul ki, amelynél a légcsere a meleg és a hideg levegő sűrűségkülönbsége alapján jön létre. A walipinik, jellemzően ezt az eljárást alkalmazzák.

téli: A téli szellőztetés során a lehető legkisebb hőveszteséggel kell eltávolítani a párát. A kinti, hideg levegő a növényeken stresszt okozhat, ha hirtelen, közvetlenül éri azokat. Ennek elkerülése érdekében üvegházakban általában felfűtik a légteret $18\,^{\circ}20C^{\circ}$ -ig, így a berendezésben lévő páratartalom elkeveredik a levegővel ($16C^{\circ}$ alatt a keveredés csekély mértékű). Ezután a szellőzőt néhány percre kinyitják, majd újból becsukják.

3.5. Szén-dioxid

A szén-dioxid színtelen, kis koncentrációban szagtalan, a levegőnél és oxigénnél nagyobb sűrűségű gáz. Légkörbe elsősorban a légzés, illetve széntartalmú anyagok égésével kerül. Jelentős üvegházhatású gáz. A növények fotoszintézisük során széndioxidot kötnek meg: $6CO_2 + H_2O + fény(energia) = C_6H_{12}O_6 + 6O_2$. A keletkezett glükóz képezi a különféle egyszerű és összetett szénhidrátok alapanyagát.

A külső légtér szén-dioxid-koncentrációja kb. 400 ppm (0,04 térfogat %), a jól záródó üvegházakban, nagy növénytömeg esetén ennek az értéknek

töredéke található (kb. 30–70 ppm), amelyből a növény már semmit sem tud felvenni.

A szén-dioxid-felvétel sebessége a koncentráció emelésével mintegy 800 ppm-ig rohamosan nő, 1200-1600 ppm-es töménységig már csak 10-20%-os mértékben fokozódik.

Üvegházi körülmények között a széndioxid mint trágyázószer szerepelhet, zárt térben a fotoszintézis intenzitása növelhető meg a légköri széndioxid szint 0,04%-ról 1%-ra emelésével (nem árt az óvatosság és a védőfelszerelés ilyen körülmények között a balesetek elkerülésére).

Az emberek a növények szükségleteihez képest nagyságrenddel nagyobb CO_2 -koncentrációt képes elviselni. A tünetek pl. fejfájás, hányinger stb. 3 térfogat%-os érték fölött kezdenek jelentkezni. A biztonság érdekében a megengedett legnagyobb CO_2 -koncentráció 0,5 térfogat%.

A széndioxid visszapótlás eredményeképpen:

- A hidegtűrő zöldségfajok tenyészideje mintegy 5–7 nappal lerövidül, és javul az áru minősége.
- A palántanevelésben is hasonló eredményre számíthatunk.

A CO₂ visszapótlás lehetséges módjai:

szellőztetéssel az intenzív fotoszintézis időszakában óránként 10–12-szeres légcserére van szükség.

ezzel mintegy 5–15%-os termésnövekedést érhetünk el.

A téli időszakban ez csak nagy energiaveszteség mellett képzelhető el.

mesterséges adagolással A szén-dioxid mesterséges adagolásával a szabadban lévő koncentrációt hozzávetőleg háromszorosára gazdaságos dúsítani. Ezt jól záródó, nagy légterű üvegházakban érdemes alkalmazni.

A mesterséges adagolást napkelte után 1–1,5 órával kell elkezdeni, és napnyugta előtt ugyanennyi idővel befejezni.

Csak jól záródó, nagy légterű létesítményekben érdemes a szén-dioxidtrágyázásra berendezkedni. Természetesen a szellőztetések ideje alatt szüneteltetni kell.

Ezt az eljárást itt csak a teljesség kedvéért említjük meg, mivel a walipini esetében komoly biztonsági kockázatot is jelenthet a felhalmozódó széndioxid, ugyanis a walipini, a konstrukciók többségében teljesen, vagy részben a föld alatt helyezkedik el.

Ha a helyiség szén-dioxid koncentrációja a szokásos 0,04%-ról 4-5%-ra emelkedik, szaporább és mélyebb légzés alakul ki, míg 20% felett légzésbénulás következik be. A problémát leggyakrabban azonban az oxigénhiány okozza. Mivel a szén-dioxid nehezebb az oxigénnél, ezért alulról tölti ki a gázteret, és az oxigént kiszorítja onnan. Gondoljunk csak a pincékben az erjedő mustból felszabaduló széndioxid miatt bekövetkező halálos balesetekre.

A mi esetünkben tehát marad a szellőztetés, és a visszapótlás a szabad levegőből. Esetleg, a petróleumlámpa alkalmazása szintén kielégítő lehet (egy liter petróleum elégetésekor 2,5 kg szén-dioxid keletkezik, melynek szobahőmérsékletre vonatkoztatott térfogata 1363 liter). A témában további információk találhatóak a [10] könyvben.

Hogyan működik a Walipini

4.1. A Föld természetes hője - Miért ássuk a walipinit a földbe?

A walipini alapvetően egy kb. (1,8-2,4m) mély, szögletes gödör, a tengelye a téli napsütés irányával merőlegesen tájolva.

A hőmérséklet, 1,2m mélyen, állandóan $10-15C^{\circ}$ között van. A walipini, a fölbesüllyesztés révén, ezt az igen jelentős fűtő/hűtő-hatást használja ki.

A walipiniben $-12C^{\circ}$ külső hideg, szeles időjárás esetén is legalább $8C^{\circ}$ -kal melegebb van mint odakint. Emiatt a kívánt, állandó belső hőmérséklet eléréséhez jóval kevesebb külső energia betáplálásra van szüksége, mint pl. a felszínen elhelyezett üvegházaknak.

A föld alatti $10C^\circ$ hőmérséklethez képest mindőssze $16C^\circ$ plusz szükséges a $26C^\circ$ hőmérséklet eléréséhez. Külső üvegháznál ez az érték: $-12C^\circ \to 26C^\circ = 38C^\circ$.

4.2. Még több ingyen energia - a Nap

A nap meleget és a növekedéshez szükséges fényt biztosítja.

Üveg helyett kétrétegű fóliát alkalmaznak, hogy a teljes spektrum áteresztésre kerüljön, mivel az üveg bizonyos sugarakat (UV tartomány) nem ereszti át.

A hátsó fal vastag, döngölt föld, az első fal lényegesen alacsonyabb, hogy a megfelelő dőlésszögben tartsa a tetőt, hogy a nap irányából érkező, közvetlen napsugarak, lehetőleg merőlegesen hatoljanak át a tetőn.

4.3. Hőtárolás - a tömeg, mint lendítőkerék

A benti levegő, és maga az egész építmény tárolja a meleget. Minél nagyobb a tömeg, annál több hőenergiát képes tárolni. A beérkező napfény által átadott hőenergiát tehát az épület eltárolja, hasonlóan ahhoz, mint amikor az elektromos akkumulátort feltöltjük.

A sötétebb színű anyag jobban elnyeli a hőt (fekete talaj, zöld növények)

A hőtároló tömeg növelésére használnak kb. 200literes, vízzel töltött, feketére festett falú hordókat is. Ez előmelegített vizet is szolgáltathat egyúttal a növények számára, hogy ne érje őket sokkhatás az öntözéskor.

4.3.1. A "lendítőkerék effektus"

Nappal a nagytömegű, sötét anyag (föld) felmelegszik és éjjel, amikor a legnagyobb szükség van rá, leadja a tárolt meleget.

A legkritikusabb időszak a téli napforduló ideje, amikor a leghosszabbak az éjszakák. Ez az északi féltekén december 21-én (esetenként 22-én vagy 20-án), a déli féltekén pedig június 21-én (esetenként 22-én) van.

Az épület kialakítása olyan, hogy az év három leghidegebb hónapjában legyen képes felvenni a legtöbbet a besugárzott energiából.

Åltalában a cél az, hogy a hőmérséklet ne csökkenjen $7-8C^{\circ}$ alá, a leghidegebb periódusban sem, de a szükséges minimális hőmérséklet függ a növények fajtájától, tűrőképességétől is.

4.4. A hőveszteség csökkentése - szigetelés

A hőveszteség csökkentése nagyon fontos. Ezért alkalmaznak dupla fólia borítást. Ez a levegőréteg ami a két fólia felület között helyezkedik el, csökkenti az éjszakai hőveszteséget. A légréteg vastagsága 2-10cm között van. A gerendák vastagsága (7,5-10cm) biztosítja a kívánt távolságot. A belső fólia egyúttal megakadályozza a gerendázat rothadását, azáltal, hogy attól távol tartja a párát.

A föld feletti falazatot vastag rézsűként kell kialakítani, a szél, a hideg és külső nedvesség elleni védekezés céljából.

Éjszakára, amikor jóval fagypont alá zuhan a külső hőmérséklet, a tetőre további szigetelő réteget lehet helyezni, pl.: szigetelő lapokat, szénával, vagy szalmával töltőtt paplanokat. Ez munkaigényes, de sok helyen nincs is rá szükség.

A walipini tájolása

5.1. A Nap látszólagos pályája

A Föld 150 millió kilométer távolságban kering a Nap körül, elliptikus pályán.

A saját tengelye körül is forog, ami a nappalok és éjszakák váltakozását eredményezi. A forgástengely mindíg azonos irányba mutat.

A forgástengely az ekliptika síkjával 66°33′-es szöget zár be, tehát az Egyenlítő ekliptikához viszonyított helyzete ennek a pótszöge, 23°27′ (5.1. ábra). A tengely irányának változatlansága szemléletesen azt jelenti, hogy a keringés során önmagával párhuzamosan tolódik el. Ezt úgy érzékeljük, hogy a képzeletbeli forgástengely, a sarkcsillag irányába mutat egész évben [11].

A Nap látszólagos évi pályáját az égen ekliptikának nevezzük (5.3.ábra).

Emiatt delel a Nap alacsonyabban télen, mint nyáron, és emiatt van, hogy minden nap egy picit más irányban, és magasságban van az égen a nap ugyanazon időpontjában, pl. délben (5.2. ábra).

5.2. Az azimutális koordináta-rendszer

Ha a Nap látszólagos mozgását egy adott földrajzi helyre vonatkoztatva szeretnénk vizsgálni, ahová walipinit tervezünk, akkor erre a célra alkalmas a topocentrikus horizontális (azimutális) koordináta-rendszer (5.4. ábra). Ebben a koordináta-rendszerben a rendszer középpontja: a megfigyelő. A köré rajzolt képzeletbeli gömböt éggömbnek nevezzük. A rendszer alapsíkja a látóhatár (horizont).

A meridián a csillagászatban egy tetszőleges földi megfigyelő helyéről szemlélve a zeniten és az égi póluson áthaladó égi főkör. A meridián merőleges a lokális horizontra.

A Nap irányát egy adott pillanatban két szöggel írhatjuk le, az ún. azimuttal, ami az égitestnek a horizontra vetített irányszögét adja meg, az északi irányhoz képest, az óramutató járásával megegyező irányban számítva. A másik szög, a magasság (elevation), ami a horizonthoz képesti, függőleges szöget jelenti. A koordináták egy adott földrajzi helyre és egy adott időpillanatra érvényesek.

A meridián és a horizont déli – földmérőknél északi – metszéspontja az azimut kezdőpontja. Csillagászati értelemben tehát az azimut-ot a déli iránytól kezdve, -az óra járásával megegyező irányban- számítjuk, de geodéziai értelemben az északi iránytól.

A tájoláshoz és a nap mozgásának tanulmányozásához kiválóan alkalmas, ingyenesen használható SunEarthTool weboldal [12]. Mivel ez az eszköz északtól számítja az azimutot, vagyis a geodéziai értelemben adja meg a szögeket, ezért a továbbiakban mi is ezt fogjuk követni, az egyszerűség kedvéért, ill. hogy ne kelljen átszámolni az eszköz által szolgáltatott értékeket a csillagászati értékre.

A napkelte, és napnyugta azimutja között bezárt szög az évszakokkal változik. Nyáron nagyobb, télen kisebb (5.4. ábra).

A napkelte és a napnyugta közötti szögek a következőképpen alakulnak Verőce esetében:

$$Ny$$
ári $napfordul$ ó : $306^{\circ} - 53^{\circ} = 253^{\circ}$

 $T\'eli~nap fordul\'o:~234^{\circ}-126^{\circ}=108^{\circ}$

(5.6. ábra)

(5.5. ábra)

5.3. Tájolás a téli naphoz igazítva

A walipini orientációjának olyannak kell lennie, hogy az év leghidegebb periodusában a legjobban ki tudja aknázni a beeső napsugarakból származó energiát.

A nap keleten kel fel és nyugaton nyugszik le, ezért az épület hossztengelyét ebbe az irányba kell tájolni.

A napsugárra merőleges ablak felületet pedig déli irányba kell tájolni az északi féltekén, és északi irányba, a déli féltekén.

Természetesen a helyi adottságokat is figyelembe kell venni, de arra kell törekedni, hogy a fenti tájolás minél közelebb legyen az ideálishoz.

A helyi időjárási viszonyok is befolyásolhatják a tájolást. Ha például a téli időszakban a reggel ködös, párás, vagy hegy takarja el a keleti irányból érkező napfelkeltét, akkor célszerű 10-15 fokkal észak-nyugat felé tájolni az épületet, hogy a hossztengelye a "valóságos" kelet felé mutasson, és, hogy a délutáni nap hosszabb ideig melegíthesse az építményt.

Ha viszont a reggeli fényviszonyok jobbak a délutáninál, akkor inkább az észak-keleti irányba orientáljuk egy kicsit az épületet, hogy a reggeli napsütés hamarabb fel tudja melegíteni azt.

A legintenzívebb napos periódus általában a 10.00-15.00 közötti időszak.

5.4. Az optimális tető dőlésszög meghatározása

Az eredeti, La Paz walipini teteje sík, mert a Bolívia az Egyelítőhöz közel fekszik, és a Nap szinte egész évben meredek szögből éri az épületet. A mérsékelt égövben nyáron a napsugár meredeken érkezik, de a téli nap szöge alacsony. Emiatt másfajta tető-konstrukciót célszerű kialakítani. A 5.7. ábra egy olyan konstrukciót szemléltet, ami mérsékelt égövhöz lett igazítva az ablakok dőlésszögeit tekintve.

Az optimális tető-hajlásszög meghatározását a következő lépésekben végezzük:

1. Határozzuk meg a szélességi kört (latitude), ahol a walipini-t építeni tervezzük! Magyarországon az egyenlítőtől északra, a 45,73°-48,58° sávban helyezkedik el. Például Verőce esetében:

$$latitude = 47,82^{\circ}$$

 $longitude = 19,06^{\circ}$

- 2. Határozzuk meg, hogy az északi, vagy déli szélességről van-e szó (a latitude értéke pozitív, vagy negatív)!
- 3. Határozzuk meg a nap magasságát, délben, a téli napfordulókor:

$$\dot{E}: magass\acute{a}g = \pm f\"{o}ldtengely\ elhajl\acute{a}s - latitude + 90^{\circ}$$

$$D: magass\acute{a}g = \pm latitude - deklin\acute{a}ci\acute{o} + 90^{\circ}$$

$$A\ f\"{o}ldtengely\ elhajl\acute{a}s = 23,5^{\circ}$$

Mivel Verőce az északi félgömbön helyezkedik el, ezért a nyári és a téli napforduló esetében a magasságok a következők lesznek:

$$e_{ny\acute{a}ri} = +23,5^{\circ} - 47,82^{\circ} + 90^{\circ} = 65,68^{\circ}$$

$$e_{téli} = -23.5^{\circ} - 47.82^{\circ} + 90^{\circ} = 18.68^{\circ}$$

Esetünkben az a szög a fontosabb, amiben a nap a téli napforduló idején, délben látszik. Erre kell merőlegesnek lennie a tető azon részének, ahol a napsugarak belépnek az épületbe, hogy azok merőlegesen érkezzenek, és minimális legyen a visszaverődésből adódó veszteség.

Ez az érték az esetünkben a következő:

$$k\ddot{u}ls\tilde{o}\ sz\ddot{o}g:180^{\circ}-e_{t\acute{e}li}=180^{\circ}-18,68^{\circ}=108,65^{\circ}$$

$$bels\tilde{o}\ sz\ddot{o}g:180^{\circ}-k\ddot{u}ls\tilde{o}\ sz\ddot{o}g=71,35^{\circ}$$

Nyáron ugyanez a dőlésszög az ellenkező hatást váltja ki, vagyis növeli a visszaverődést, és csökkenti a beeső fényenergiát.

Mivel a délfelé néző ablak dőlésszöge 108,65 fok, ezért a nyári napforduló idején a beeső napsugarak az ablakot a következő szögben érik: $180^{\circ} - 65,68^{\circ} = 42,97^{\circ}$

Ennek a merőlegestől való eltérése: $90^{\circ} - 42,97^{\circ} = 47,03^{\circ}$

Ez azt jelenti, hogy a közvetlen napsugárzás közel 80%-át visszaveri, és csak kb. 20%-ot enged át az üveg.

Az optimális tető hajlásszög meghatározására, az épület orientációjának megfelelő benapozottság vizsgálatára (pl.: árnyékok megtekintése különböző évés napszakokban), továbbá a pontos építési méretek meghatározásához használható fel az általunk fejlesztett az on-line, walipini szimulátor [14].

5.5. Tereptárgyak, árnyékoló tényezők

Gondoskodjunk róla, hogy a déli irányban, ahonnan a nap éri a walipinit (5.6. ábra), a korábban kiszámolt magasságból érkező napsugarak útját ne akadályozza semmi (fák, épületek, stb.).

5.1.ábra. A Föld keringési síkja és forgási tengelye által bezárt szög

5.2. ábra. A föld forgási tengelyének iránya, és az évszakok kapcsolata

5.3.ábra. A Föld keringési pályálya

5.4. ábra. Nap pálya

5.5.ábra. A nyári napforduló azimut és elevation szögei

5.6. ábra. A téli napforduló azimut és elevation szögei

5.7.ábra. Mérsékelt égövi walipini konstrukció

5.8. ábra. Walipini szimulátor

A walipini tervezése

6.1. A walipini elhelyezése

6.1.1. A vízbehatolás veszélyei

A falakat védeni kell a víztől. A szivárgó víz átáztatja a falakat, amelyek beomolhatnak ettől. Ha a padlózat irányából szivárog fel a víz, akkor az növénybetegségeket és rothadást okozhat.

A walipini padlójának legalább 1,5m-rel magasabban kell lennie, mint a talajvízszint.

Az épületet körbe kell venni drénezéssel, ami a szivárgó vizet az épülettől jó messzire elvezeti.

A walipini oldalát képező, külső rézsűt úgy kell kialakítani, hogy egy vízzáró réteg kerüljön bele, 15 – 30cm mélyen a felszíne alá. Ez lehet vízzáró agyag-réteg, vagy műanyag fólia. Lejtősre kell kialakítani, hogy a szivárgó vizet a drénezésre szolgáló árokba vezesse.

Olyan helyeken, ahol a talaj vízáteresztőképessége kicsi, nincs szükség külön vízzáró réteg behelyezésére.

6.1.2. Hegyoldalba ásva

A walipini domb, vagy hegyoldalba is építhető, de csak olyan helyre, ahol stabil a talaj, én nincs olyan erőhatás, ami a beomlást előidézné, mivel az egyszerű walipininek nincs sem alapja, sem lábazata.

Instabil talajba ásva, a walipini fala könnyen beomolhat.

6.2. Méret és költség megfontolások

A minimális méret: $2,5\times3,5m$. Általában elmondható, hogy minél nagyobb, annál gazdaságosabb, egy négyzetméterre vetítve.

A teljes éves ellátáshoz egy személyre vetítve a szükséges minimális terület nagysága kb. $10,5m^2$. A hasznos terület ennél kisebb, mivel annak kb. 16%-a közlekedés céljára lesz igénybe véve (6.1. ábra).

A La Paz walipini modelben egy 7 fős család számára szükséges terület nagysága: $12' \times 66' = 792$ négyzetláb $(3,65 \times 20,11=73,4m^2)$.

Négy fős család számára szükséges terület: $4 \times 10, 5 = 42 \ m^2$, azaz $4m \times 10, 5m$, vagy $3m \times 12m$

A modell lényege, a költségszint lehető legalacsonyabb szinten tartása. Ez az alábbiakkal érhető el:

- Ingyen munkaerő (családtagok, barátok, szomszédok).
- Béleletlen, lejtős, csupasz, falak kialakítása, döngölt földből. Beton alapra nincs szükség, amennyiben az épület környezetéből a vízelvezetést jól megoldottuk.
- UV-álló fólia takarás (két rétegben), üveg helyett.
- Olcsó gerendák (10cm-es akác rudak, vagy PVC csővek)
- Az ásás során kinyert felső, talajréteg felhasználása termesztő közegként, a walipini alján.
- A fennmaradó talajból alakítjuk ki a falakat, padkát az épület körül.
- Tetszőleges, a közelben hozzáférhető kő, vagy kavics, az ültető közeg alatti drénezés, és csapadék elnyelés céljából.
- Újrahasznosítható dolgok (hordók, stb.) alkalmazása, minden esetben, ha ez lehetséges.

6.3. A szellőző rendszer

A szellőzés megfelelő megoldása kulcsfontosságú a walipini esetében, a túlmelegedés, és a túl magas páratartalom kialakulásának megelőzése céljából. A túl sok szellőzés ugyanakkor hátrányos is lehet, ezért fontos az optimális mérték beállítása, a növények számára.

Négy szellőzési módszer terjedt el. Mindegyiknek vannak előnyei és hátrányai.

6.1. ábra. Felülnézet

6.3.1. 1. Módszer

Két egyforma méretű ajtót alkalmaz, az épület egymással átellenes sarkában (6.2 ábra).

Előnyei: Nem igényel további szellőztető berendezést, anyagot vagy munkát.

Hátrányai: Állandó volumenű, vagyis nem biztosít –a belső körülményektől függő– változó mértékű, konvekciós szellőzést, ha a pára vagy a hőmérséklet túl magassá válik.

6.3.2. 2. Módszer

Hasonló, mint az 1. módszer, de egy további nyílást alkalmaz a hátsó fal közepén, felül (6.3 ábra). A nyílás mérete szabályozható, és teljesen nyitott állapotban akkora, mint az ajtók mérete.

Előnyei: Jóval nagyobb szellőzési teljesítményre képes, mint az 1. módszer.

Hátrányai: • A hőtárolás hatékonyságát csökkenti, mivel pont a hátsó fal az, ahol a tömeg hőtárolóképességét alkalmazzuk, mivel az átáramló hideg levegőnek tesszük ki a hátsó falat.

- Egy szemöldökfára van szükség, ami áthidalja a szellőző nyílást, és megtartja a gerendákat.
- Több munka szükséges a kivitelezés során, a szellőző kialakításához, és a vízszigeteléshez.

6.2. ábra. 1. típusú szellőző

6.3.3. 3. Módszer

Az 1. módszer ajtónyílásait használja, egy nyitható, tetőablakkal kiegészítve (6.4 ábra).

Ez a szellőző ablak a tető közepén, a hátsó fal felé eső oldalon helyezkedik el, a legmagasabb ponton (La Paz-ban, ahol ez az épület legmagasabb pontja, a mérsékelt égövben ez nem feltétlenül igaz).

Mérete kb. $1, 2 \times 1, 2m$.

Előnyei: • Szükség esetén nagyobb szellőzési mennyiség érhető el.

- Nincs akkora hőveszteség, a hátsó fal vonatkozásában.
- Könnyen kivitelezhető, mindössze egy keret és néhány zsanér szükséges hozzá.

Hátrányai: Ha a szellőző nyílás, zárt állapotában nem szigetel tökéletesen, akkor az esővíz beszivároghat, és hő áramolhat ki rajta keresztül, pont akkor, amikor arra egyébként a legnagyobb szükség lenne.

6.3.4. 4. Módszer

A korábbi módszereknek megfelelően, ugyanazokat a belépő ajtókat használja, a hátfalba épített szellőző kéménnyel kiegészítve (6.5. ábra).

6.3. ábra. 2. típusú szellőző

6.4. ábra. 3. típusú szellőző

Előnyei: Ez a megoldás biztosítja a legjobb szellőzési viszonyokat. a legnagyobb térfogatáramot, és szabályozási lehetőséget, a tömegben tárolt hő megtartása mellett.

Hátrányai: • Ez igényli a négy megoldás közül a legtöbb munkát, és anyagot.

• Vályog kéményt, szabályozható nyílást, és eső ellen védő tetőt, a nyílás felett.

6.5. ábra. 4. típusú szellőző

6.4. A belső vízelvezetés

A belső drénezés kialakítása fontos, a növénybetegségek megakadályozása érdekében, mivel a felesleges nedvességet távol kell tartanunk az építménytől.

Az ásás során a gödröt kb. 30-60 cm-rel mélyebbre kell ásni, mint a végleges, használati mélysége lesz. Ezt a részt kaviccsal és annak tetején kb. 20cm vastag talajréteggel töltjük fel. Az aljára kerülnek a nagyobb kövek, sziklák, és ahogy felfelé haladunk, egyre kisebb kavicson kerülnek.

A gödör alja fokozatosan lejt a közepétől a szélek irányában 1/4" per láb mértékben $(0,63/30 \text{ cm}, \text{ kb } 1,2^{\circ})$. Mivel a tipikus La Paz walipini méretei 12×33 láb, vagyis a hossza kb. 10 méter, ezért a közepétől a széléig terjedő 5 méteren, az esés kb. 10,5 cm-nek felel meg. Ez a lejtés biztosítja, hogy a felgyülemlő víz a szélek irányában elszivároghasson.

Az épület mindkét végén egy-egy 30×60 cm méretű víz-nyelő akna elegendő, hogy a szivárgó vizet befogadja. Az akna tetejét levehetőre kell csinálni,

6.6. ábra. A belső vízelvezetés

hogy szükség esetén az leemelhető legyen, hogy a felgyülemlett vízet egy vödörrel ki tudjuk merni.

A walipiniben lévő nedvességtartalom öntözéssel és szellőztetéssel is befolyásolható.

6.5. A külső vízelvezetés

A külső vízelvezetés, pl. eső alkalmával, létfontosságú a walipini szempontjából (6.7. ábra). Hogy a külső vizet gyorsan elvezessük, a rézsűket és padkákat megfelelő (min. $1,2^{\circ}$) dőlésszögűre kell kialakítani.

A rézsűk méretezése attól is függ, hogy mennyire sikerül vízzáróra készíteni azokat, ill. hogy mennyire sikerül a takarást összedolgozni a rézsűvel, hogy a víz ne tudjon beszivárogni a falra. A talaj porozitásától függően szükség lehet vízzáró agyag réteg, vagy fólia alkalmazására.

A jelenleg legelterjedtebben alkalmazott walipinik esetében a rézsű méretei a következők:

- a hátsó, magasabb falak esetében kb. 10 láb (3,3 m)
- az első fal, és oldalfalak esetében kb. 5 láb (1,6 m)

Ezek az adatok az eredeti konstrukcióra vonatkoznak, melyek erősen agyagos talajon készülnek, amelyek hatékonyan képesek távol tartani a külső nevességet. A mérsékelt égövben épített walipiniknél a tető formája más, az optimális beesési szög elérése miatt, ezért a falak mérete is eltér az eredeti konstrukcióban alkalmazottétól.

6.7. ábra. Drénezés és rézsűk

6.6. Víz gyűjtő/elvezető/fűtő rendszer

A klasszikus, La Paz walipinikban az elülső fal alatt galvanizált fém, vagy PVC esőcsatornát helyeznek el, ami összegyűjti a tetőről lefolyó esővizet, és csöveken keresztül, a hátsó fal előtt, vagy abban elhelyezett kb. 200 literes hordókba vezeti. Ez a víz egyaránt szolgál hőtárolásra, és locsolásra is.

A hordók túlfolyó csövekkel vannak egymáshoz kötve. A túlfolyási láncolatban lévő utolsó hordó túlfolyó szintje, és nyílása úgy van kialakítva, hogy az onnan kifolyó víz, a külső, vízelvezető árokba vezesse ki a felesleges vizet. Célszerű egy T elosztó idomot elhelyezni az esőcsatorna aljára, hogy egy esetleges felhőszakadás alkalmával az esővizet közvetlenül egy külső vízelvezető árokba irányítsuk, a korábban esetleg már megtelt hordók helyett.

A csövek átmérőjének méretezése függ a várható vízhozamtól. Ezt célszerű helyileg méretezni, a várható esőmennyiség alapján, a helyi jellemző időjárási viszonyoknak megfelelően.

6.8. ábra. Esővíz elvezetése, összegyűjtése

A walipini építése

7.1. Szerszámlista

A kivitelezéshez szükséges szerszámok listája:

- kalapács,
- lapát,
- csákány,
- fűrész,
- talicska,
- emelőrúd,
- sablon vagy zsalu a döngölt föld kialakításához. két összeerősített $2 \times 10 \times 5$ m deszka, vagy 5×4 cm es fém rúd, stb.,
- vályog formák,
- kézi tömörítő eszköz,
- mérőszalagok: 10 m-es, és 30 m-es. Ha nincs 30 méteres, akkor használjunk egy hosszú zsineget, amire felmérjük a megfelelő távolságot, azt használjuk az épület kitűzésére,
- szintező: átlátszó tömlő, vagy szintező slag, a sarkok szintezéséhez,
- kés,
- fúró, és fúrógép,

- vizes tömlő, szórófejjel,
- póznák,
- zsinór.

7.2. Anyaglista

A walipinihez a következő anyagokra van szükségünk:

- víz,
- póznák, vagy PVC cső, a tető tartásához,
- 3 db zsanérral ellátott ajtó, (az egyik a szellőzőnyílást fogja takarni),
- 3 db ajtó keret (Ha a hátsó szellőzőnyílást nem a falban alakítjuk ki, akkor csak 2 kell),
- 2 db ajtó szemöldökfa,
- 1 db szellőző szemöldökfa, vagy tetőkeret a szellőző számára, amennyiben a tetőn alakítjuk ki a nyílást,
- 200 micron vastag agrofilm (polyethylene UV plastic),
- lapát, traktor, eke, stb. a gödör kiásásához,
- kavics, a padló drénezés feltöltéséhez
- kavics, vagy kő a két drén nyelő gödör feltöltéséhez,
- a termőrétegből kiemelt, és deponált fedőtalaj a növény ültetésére,
- az altalajból kitermelt föld a döngölt falak kialakításához,
- a maradék föld a rézsűk és padkák kialakítására lesz felhasználva,
- műanyag fólia, a földdel takart vízelvezetés, drénezés számára, ha erre szükség van,
- drén cső, továbbá eső csatorna, a tető alacsonyabbik feléhez,
- lejtősen elhelyezett cső, ami a csatornákból a hordókon keresztül a külső drén árokba vezeti az esővizet,

- szögek, csavarok,
- vályogtéglák, az épület külső részére, a tetőfólia rögzítéséhez.

Az on-line, walipini szimulátort [14] használjuk fel a pontos anyagmennyiség meghatározásához.

7.3. Az épület kitűzése

Miután a korábbi fejezetben leírtak alapján kiválasztottuk a megfelelő területet, és meghatároztuk az épület optimális tájolását, jelöljük ki a felvonulási területet, cövekekkel, és zsinórral.

Pontosítsuk a kijelölést, előre kimért hosszúságú zsinór segítségével, hogy a falak merőlegessége, a sarkok derékszöge pontos legyen.

A zsinór mentén végighaladva, mésszel, vagy más jól látható anyaggal jelöljük ki a gödör szegélyét.

7.4. A föld kiásása

Ne felejtsük el, hogy a gödröt 30-60 cm-rel mélyebre kell ásni a végleges mélységnél, a vízelvezetés miatt.

Az első 20cm termőréteget, különítsük el az ásás során, mert ezt fogjuk később visszahelyezni, ültetőközegnek az építmény aljára.

Az ásás és föld kiemelése során úgy deponáljuk azt, hogy a későbbiekben a padkák és a döngölt oldalfal kialakításához minél kevesebbet kelljen mozgatni azt. A döngölt föld-fal akár egyidejűleg is készülhet a föld kiemelésével, ezzel is munkát takaríthatunk meg, mert a kitermelt föl egy részét közvetlenül a fal megerősítésére használhatjuk.

A döngöléshez használt földnek kb. 10% nedvességet kell tartalmaznia. Ezt úgy ellenőrizhetjük, hogy a kézzel összenyomott föld megőrzi az alakját, de még nem folyik, sárszerűen.

Ne feledkezzünk meg az épület két átellenes oldalán az ajtók számára lejáratot készíteni.

A falaknak kifelé kell lejteniük, vagyis a gödör, az épület az aljától, a teteje felé haladva szélesedik. 1,8m magas fal esetén a dőlés minimum 15cm legyen (kb 85°). Ez nagymértékben hozzájárul ahhoz, hogy a fal a későbbiekben ne omoljon be, és a talaj ne peregjen.

Ha elértük a megfelelő mélységet, akkor alakítsuk ki a lejtést, a nyelő aknák irányában. Ezt követően töltsük fel kövekkel, majd egyre csökkenő méretű, kaviccsal az aljzatot. Ezt követi a termőtalaj.

A termőtalajt kevejük össze szerves anyaggal, trágyával, a szükséges arányban, és terítsük legalább 20cm vastagságban a kavicságy ölé.

Miután elértük a végleges padlószintet, helyezzül be az ajtókereteket.

Az ajtó keretek anyagvastagsága legalább 5cm, szélessége 20cm legyen.

7.1. ábra. Az ajtókeret kialakítása

Az ajtókeretet az oldalain az alján és a tetején fúrjuk ki. A lyukakon keresztül rögzíthatjük a keretet a falhoz, amibe ágyazzuk, fa vagy betonacél rudak segítségével a 7.1 ábrán látható módon. Helyezzük be az ajtókat, és győződjünk meg róla, hogy csukott állapotban légzáróak. Ha nyílásokat észlelünk a keret körül, azt tömjük be vályoggal (homok, agyag és szalmatörek és víz keveréke). Ezzel a föld alatti rész elkészült.

7.5. A falak

Győződjünk meg róla, hogy a fal alapja mindenhol egy szintben van, és egységes, homogén.

A falakat a kijelölt éltől számított kb. 15 cm távolságra kezdjük el készíteni, a döngölő formák segítségével, a sarkoktól kiindulva, miután kijelöltük mésszel annak vonalát.

Mielőtt a formába töltjük a földet, keverjük össze kb. vízzel, hogy kb. 10% nedvességtartalma legyen. A megfelelő nedvességtartalmat a következő-képpen ellenőrizhetjük:

- 1. Ha markunkba veszünk egy darabot, és összeszorítjuk, akkor, az elengedését követően megőrzi alaját.
- 2. Ha a földre ejtjük, akkor megreped, és összeomlik, ahelyett, hogy sárszerűen szétfolyna.
- 3. Mielőtt elkezdjük a falat, öntözzük meg alaposan alatta a talajt, hogy a tapadás a fal és az altalaj között jobb legyen.
- 4. Jelöljünk ki egy sarkot, és onnan kezdjük el döngölni a falat.
- 5. Amikor elérünk egy ajtó helyéig,helyezzük be a keretet, és tegyük fel a keret fölé a szemöldökfát, hogy amikor a falat az ajtó fölött készítjük, a szemöldökfa viselje a fal tömegét.
- 6. A szemöldökfának olyan szélesnek kell lennie, mint amilyen vastag a fal (45-90 cm) és a keret mintkét oldalán 30 cm-rel hosszabbnak, mint a keret szélessége, és legalább 10 cm vastag anyagból készüljön.
- 7. Folytassuk a fal készítését tovább, egészen addig, amíg a teljes épület falának adott szintje el nem készül.
- 8. Minden egyes szint befejezésekor ellenőrizzük annak meredekségét, és az elkészített réteg felszínének vízszintességét, valamint az irányát.
- 9. Amikor a formát a következő szintre emeljük, a következő réteg készítéséhez, a keretet helyezzük az előző réteg közepére.
- 10. Ez kissé dőltté teszi a falat, ami növeli a stabilitását és erősíti a függőleges összeköttetést az egymásra helyezett sávok között.
- 11. Minden egyes réteg megkezdése előtt nedvesítsük be az előző réteg felületét, amire a formát helyeztük.

- 12. Ez a vízszintes irányú tapadást, kapcsolódást teszi erősebbé.
- 13. Folytassuk ezt a lépéssort mindaddig, amíg elérjük a kívánt falmagasságot.
- 14. Ha olyan szellőzési megoldást alkalmazunk, ami a hátsó fal közepén, felül alkalmaz egy nyílást, abban az esetben hagyjunk egy 90 cm, 1,8 m magas méretű rést szabadon, amikor az utolsó rétegeket visszük fel.
- 15. Ezt a nyílást egy 5 cm vastag szemöldökfával kell lefednünk, a közepén egy támasztó oszloppal, hogy a tető gerendákat hozzá tudjuk rögzíteni szögekkel.
- 16. A falak tetejét végül a megfelelő szögben, lapáttal, vagy ásóval simára kell faragnunk.
- 17. Az elülső, és hát falak formázása hasonlóképpen történik, a szükséges sík formára, úgy, hogy a gerendák megfelelően feküdjenek fel a falak tetején.
- 18. Ha ezzel a művelettel készen vagyunk, elkészült a falazatunk.
- 19. Ha a falakat megfelelően tűztük ki, és készítettük el, akkor a döngölt fal alja, és az ásott rész teteje között egy kb. 15cm széles polc fog képződni, aminek számos funkciója lehet. A falak készítése során például ez akadályozza meg a döngölés során, az ásott rész beomlását.

7.6. Tetőszerkezet és fóliázás

A tető építését megelőzően ellenőrizzük, hogy a falak tetejének szöge, megfelelő, és az elülső ablak olyan szögben fog állni, ami a téli napforduló idején, a napsugarakra merőleges.

A gerendákat egész hosszukban tisztítsuk, csupaszítsuk le, hogy a fólia rögzítése hatékonyabb legyen, és hogy a ráfektetett fóliát a szélmozgás ne tegye tönkre.

Mielőtt felhelyeznénk a gerendákat, előtte fektessük alá az alsó fólia réteget, az épület teljes hosszában, az alsó és felső részre is, a túlnyúlásokat is beleértve.

Most fektessük a gerendákat a falak tetejére, a közepüket egyenlő távolságra egymástól, az épület egyik végtől kiindulva, úgy, hogy az épület két végén legalább 30-30 cm túlnyúlást legyen, a falakon. Valamennyi túlnyúlás nem csak az oldalfalakon, hanem az első és hátsó falon is szükséges, hogy

a fólia takarás esetén ne érje közvetlen eróziós hatás a gerendák illesztési helyét.

A fóliák szegélyét rögzítsük a gerendák végéhez, és ezzel lényegében előkészítettük a belső fólia réteget ("üvegezést").

Fúrjunk egy-egy lyukat a gerendákba a falaknál, és rögzítsük azokat a falakhoz, karókkal.

Töltsük fel teljesen a gerendák közét vályoggal, úgy, hogy az végül kövesse a gerendák által meghatározott síkot.

Ez meg fogja akadályozni, hogy a külső, hideg levegő behatolhasson a fólia rétegek közé, és elvigye a belső meleget.

Terítsük rá a külső fólia réteget a gerendákra, és hagyjunk legalább 15 cm túlnyúlást, amit ráhajtunk a gerendák végére, hogy tökéletesen biztosítsuk a fóliarétegek közötti légréteg elzárását, majd egy léccel rözítsük a gerendák végéhez.

A fóliákat szalagok vagy vékony léc segítségével szögezzük rá a gerendákra, hogy a mozgását megakadályozzuk.

Fektessünk végig egy vályog réteget az épület teljes kerületében, a gerendák végén, kivéve az alsó falat, ahová az esőcsatornát fogjuk elhelyezni. Ez a réteg fogja rögzíteni a fóliát a falakhoz.

Az alsó részen a fóliának bele kell lógia az ereszcsatornába, olymódon, hogy a víz a tető irányából akadálytalanul belefolyhasson.

Most menjünk be az épületbe, és az alsó fóliát a külsőhöz hasonlóan, rögzítsük hozzá a gerendákhoz.

Ezek után ellenőrizzük, hogy a gerendák közé zárt tér teljesen hermetikusan el van zárva a külvilágtól. Amennyiben valahol szivárgást észlelünk, ott tömjük be a lyukat vályoggal.

Végül ismét menjünk ki, és helyezzük fel az esőcsatornákat (7.2. ábra). A csatornának lejtenie kell abban az irányban, ahol majd a lefolyó segítségével a hordókba fogjuk vezetni a vizet. A csatorna ezen végére helyezzük fel a T idomot.

Vezessünk be a T idom befelé mutató ágáról egy csövet, megfelelő lejtéssel az első tároló hordóba. Ezután vezessük át a túlfolyók segítségével a hordókon keresztül a vizet, és az utolsó hordóból vezessük ki a külső vízgyűjtő árokba azt. Ügyeljünk a szintezésre. Ezzel elkészült a tetőszerkezet.

7.7. Rézsűk és külső vízelvezetés

Most a külső rézsűk, padkák elkészítése, és a külső vízelvezetés kialakítása a soron következő lépés. Minél magasabb, és vastagabb a rézsű, annél nagyobb annak hőtároló tömege és az általa biztosított szigetelés, amit a walipini föld

7.2. ábra. Csövezés

feletti része számára akarunk biztosítani. Ezzel egyidejűleg, megfelelő dőlésszöget kell adni ennek a rézsűnek, amit szükség esetén fóliával is fedhetünk, hogy a káros vizet elvezessük.

Függetlenül a rézsű méretétől, az egész épület kerületében takarnunk kell a tető fóliával a falak tetejét, ahol a gerendák felfekszenek, és a fal találkozik a rézsűvel, hogy a víz akadály nélkül elfolyhasson.

Az ajtókat szintén hőszigetelnünk kell, pl. keményhab hőszigetelő lapok felerősítésével, az ajtó mind belső, mind pedig külső felületére, hogy amikor a walipini már funkcionál, minél kisebb legyen ezen a helyen a hőveszteség.

Ahol a rézsű eléri a természetes talajszintet, célszerű egy sekély árkot kialakítani, amit elvezetünk az épülettől lehetőleg jó messzire. Ez mind az épület irányából, mind a közvetlen környezetéből származó esővizet eltávolítja a walipinitől.

7.8. A szellőző rendszer

Ha az első két szellőzési módszer valamelyikét választjuk, akkor lényegében ezzel készen is vagyunk, feltéve, hogy a fal építésekor kialakítottuk a 2. módszer esetében a szellőzőnyílást a fal tetején.

A 3-4. megoldások esetében további szerkezetekre van szükség.

A 3. módszer egy egyszerű keret beépítését igényli, melynek körülbelüli méretei: $120 \times 120 \times 10~cm$. Ezt a keretet a tetőgerendákhoz tudjuk rögzíteni. A keretet az épület közepére, a legmagasabb pontra kell felrögzíteni.

Zsanérokkal kell felerősíteni az ablakot, ami a tető többi részéhez hasonlóan, két rétegben le van fedve fóliával.

A felső részre fektetett fólia, körben kb. 15cm-rel legyen nagyobb, mint az ablak nyílása, és símuljon rá felülről a külső tetőfóliára, a jobb hőmegtartás, és kisebb víz beszivárgás érdekében. Ezt az ajtót belülről kell tudnunk nyitni, és úgy kell kialakítani a kitámasztását, hogy több fokozatban lehessen állítani nyitott állapotában. Ezzel tudjuk szabályozni a ventilláció mértékét.

A 4. típus egy kémény építését feltételezi az építmény legmagasabb pontján. A kéménynek legalább 60 cm-rel magasabban kell lennie, mint az épület tetőszerkezetének legmagasabb pontja. A kémény tetején egy eső ellen védő, fóliával fedett kis tetőcskét kell kialakítani. A kémény alján egy csúszó ajtót helyezünk el, aminek a segítségével, valamint az ajtók nyitásával tudjuk a légáramot szabályozni.

7.9. Befejezés, üzembehelyezés

A walipini alapvetően elkészült, és készen áll a beültetésre.

Üzembeállítás előtt mindíg ellenőrizzük, hogy a rendszer megfelelően szigetelt, és pótoljuk az esetlegesen észlelt hiányosságokat. pl. az épületben gerjesztett füst segítségével könnyedén megállapíthatjuk, ha valahol nyílás van, és szökik a meleg levegő.

Ha a szigetelés megfelelő, az ajtók és szellőzők bezárásával elkezdhetjük a rendszer "felmelegítését" és a tároló tömegek "feltöltését" hővel. Ha a belső hőmérséklet a hajnali, leghidegebb órákban (3.00-4.00) is meghaladja már a $7C^{\circ}$ -ot, akkor a walipini készen áll a növények telepítésére.

A rendszert működését a következő dolgokkal szabályozásával tudjuk befolyásolni:

- öntözés,
- vízelvezetés,
- párásítás,
- szellőztetés.

Az optimális működtetést tapasztalati úton, a rendszer használata közbeni megfigyeléssel, folyamatos tanulással tudjuk elérni.

Irodalomjegyzék

- [1] Walipini Construction (The Underground Greenhouse), Benson Agriculture and Food Institute, Brigham Young University B-49 Provo, Utah 84602
- [2] Walipini on wikipedia https://en.wikipedia.org/wiki/Walipini
- [3] A termesztés sikere szempontjából kulcsfontosságú a megfelelő páratartalom, Dr. Terbe István, https://www.agroinform.hu/gazdasag/atermesztes-sikere-szempontjabol-kulcsfontossagu-a-megfeleloparatartalom-32347-001
- [4] Zöldségnövények hőigénye, http://ilkertje.blogspot.hu/2011/01/zoldsegnovenyek-hoigenye.html
- [5] Növények hőigénye Kertészeti lexikon, https://www.tuja.hu/kerteszeti-lexikon/novenyek-hoigenye.html
- [6] Ismerjük meg a zöldségfélék hőigényét, http://www.agraroldal.hu/ismerjuk-meg-a-zoldsegfelek-hoigenyet.html
- [7] Zöldségtermesztők kézikönyve, dr. Balázs Sándor, http://www.tankonyvtar.hu/hu/tartalom/tkt/zoldsegtermesztok/index.html
- [8] Üvegházi, fóliás zöldség és gyümölcs párasítás http://www.teraszklima.hu/uveghazi-folias-zoldseg-es-gyumolcs-parasitas.html
- [9] A fotoszintézis és a légzés szabályozása, http://www.tankonyvtar.hu/hu/tartalom/tkt/zoldseg-disznoveny/ch03s04.html
- [10] A zöldség-, dísznövény és szaporítóanyag-termesztés berendezései és gépei, Láng Zoltán, Mezőgazda Kiadó, (http://www.tankonyvtar.hu/hu/tartalom/tkt/zoldseg-disznoveny/ch03s04.html)

- [11] CSILLAGÁSZATI FÖLDRAJZ Dr. Gábris Gyula, dr. Marik Miklós, dr. Szabó József
- [12] SunEarthTools.com Tools for consumers and designers of solar, http://www.sunearthtools.com/dp/tools/pos_sun.php
- [13] Láb (mértékegység) https://hu.wikipedia.org/wiki/L
- [14] On-line walipini szimulátor https://wsimu.herokuapp.com