1 Types of Scheduler in Hadoop. Schedulers in Hadoop determine how tasks are assigned to resources (CPU, memory) in a cluster. · FIFO (First-In-First-Out) Scheduler-Oldest jobs are scheduled first. Simple but not resource-efficient. · Capacity Schedular: Allow multiple organizations to stare a cluster. Resources are divided into queues, each with guaranteed capacity. · Fair Schedulen: Distributes resources so all jobs get an equal strang over time. Supports pooling & preemption. · Resource Manager Scheduler in YARIV: In Hadoop YARN, the resource monagen manages scheduling using Capacity or Faix scheduler 2 Limitations of Hadoop · High latency: Not suitable for real-time processing (butch- usionled). · Small file problem: HDFS performs poorly with many small files. · No toansactional suppost: - Limited ACII compliance. · Complex programming model: Writing MAPReduce jobs requires deep techniqual knowledges. · Resource intensive: - Needs a lot of memory & disk space. · Data security: - Basis by default; advanced features (Kerbonas, Rangon) need configurations. Pool sal support: compared to traditional databases or newer everyines like Hive or Spork SO.L.

Featroes	IBMS	Jata Wanchouse (JW)	Hadoop
Propose	OLTP (toan sactional) OLAP (analysis)	large scale batch data processing.
Jata _ Type	Stouctured	Stouctured	Structured, Semistructured.
Schema	Fixed (schema on woite)	Fixed (schema on write)	Flexible (schema on read).
Scalability	Ventical	Moderate (up to Partabyles)	Hurizontal (to patabytes/ exabytes)
Cost	Expensive	Very Expensive	(ast-effective (commodity-
Performance	Fast for boansactions.	Optimized for analytical queies	Slower for real-time. gret for batch.
Ex:-		Amazon Redshift, Snowflake, Teradula	Hadoop, HDFS+ Map Reduce/
		·	

Features	Map Reduce	YPRN (Yet Another Rescurce Negotiator	
Role	Programming model & execution engine	Resource management layer.	
Job Management	Bundled with MapReduce	Decoppled from processing engine.	
Resource Manager	Limited	Centralized (Resource Manager & Node Manager)	
Multi Francework	No	Yes (Spark, Tez, Flink can	
Scalability	Limited	Highly scalable	
Map Reduce is a data processing model: YARN is a more flexible &			

Map Reduce is a data processing model; YARN is a more flexible of scalable resource management to plateform introduced in Happop 2.X.