Report of Entropy estimates based on NIST SP 800-90B non-IID track

2024-Jul-10 13:45:12.596724

1 Identification information

1.1 Identification of acquisition data from entropy source

Table 1 Identification information of acquisition data from entropy source

URL of the acquisition data	https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/bin/data.pi.bin
SHA-256 hash value of the acqui- sition data [hex]	d9a7de4e 1f170f36 3bcb2a85 570e4b6e d2320d55 00abc579 5bc4bfad cb93b928

- $\bullet\,$ Name of the submitter of the acquisition data :
- Brief explanation of the acquisition data (or entropy source) :

1.2 Identification of analysis environment

Table 2 Identification information of analysis environment

Analysis tool	Name	Another entropy estimation tool with extensions
	Versioning information	1.0.55
	built as	64-bit application
	built by	Intel C++ Compiler (INTEL_LLVM_COMPILER: 20240100)
	linked libraries	Boost C++ 1.85.0
Analysis environment	Hostname	
	CPU information	AMD Ryzen
	Physical memory size	MiB
	OS information	Windows 10 or greater 64-bit
	Username	

1.3 Identification of analysis conditions

Table 3 $\,$ Identification information of analysis conditions

Number of samples	1165666
Bits per sample	1

1.4 Identification of analysis method

NIST SP 800-90B [1] 6.3 with corrections [2] is applied

2.1 Numerical results of min-entropy estimates based on non-IID track

Table 4 Numerical results

Estimator	$H_{ m bitstring}{}^{ m a}$	Notes to $H_{\text{bitstring}}$
	[bit / 1 - bit]	
The Most Common Value Estimate	0.811141	see 3.1
The Collision Estimate	0.569537	see 3.3
The Markov Estimate	0.723181	see 3.5
The Compression Estimate	0.601559	see 3.6
The t-Tuple Estimate	0.701861	see 3.8
The Longest Repeated Substring (LRS) Estimate	0.908804	see 3.10
Multi Most Common in Window Prediction Estimate	0.812333	see 3.12
The Lag Prediction Estimate	0.811435	see 3.14
The MultiMMC Prediction Estimate	0.811184	see 3.16
The LZ78Y Prediction Estimate	0.811159	see 3.18
The intial entropy source estimate [bit / 1 -bit]	0.	.569537
$H_I = H_{ m bitstring}$		
^a Entropy estimate of the sequential dataset [source: NIST SP 800-90B [1] 3.1.3]		

2.2 Visual comparison of min-entropy estimates from binary samples

Fig. 1 $\,$ Estimated Min-Entropy using $\S 6.3$ of NIST SP 800-90B $\,$

3 Detailed results of analysis from original samples

3.1 The Most Common Value Estimate (NIST SP 800-90B Section 6.3.1)

Fig. 2 Distribution of x_i

3.2 Supplemental information for traceability

Table 5 Supplemental information for traceability (NIST SP 800-90B Section 6.3.1)

Symbol	Value
mode	662972
\hat{p}	0.56875
p_u	0.569931

3.3 The Collision Estimate (NIST SP 800-90B Section 6.3.2)

Fig. 3 Distribution of intermediate value t_{ν}

Fig. 4 Solution to the equation in step 7

3.4 Supplemental information for traceability

Table 6 Supplemental information for traceability (NIST SP 800-90B Section 6.3.2)

Symbol	Value
p	0.673833
\bar{X}	2.44142
$ar{X}'$	2.43956
$\hat{\sigma}$	0.496557

3.5 The Markov Estimate (NIST SP 800-90B Section 6.3.3)

Fig. 5 Transition probability $P_{i,j}$ of §6.3.3 of NIST SP 800-90B

Fig. 6 Estimated Min-Entropy using $\S 6.3.3$ of NIST SP 800-90B

3.6 The Compression Estimate (NIST SP 800-90B Section 6.3.4)

Fig. 7 Distribution of intermediate value D_i

3.7 Supplemental information for traceability

Table 7 Supplemental information for traceability (NIST SP 800-90B Section 6.3.4)

Symbol	Value
p	0.0819362
\bar{X}	5.12804
$\hat{\sigma}$	1.0483
\bar{X}'	5.1219

3.8 The t-tuple Estimate (NIST SP 800-90B Section 6.3.5)

Fig. 8 Intermediate value Q[i] ~ in $\S 6.3.5$ of NIST SP 800-90B

Fig. 9 $P[i]^{1/i}$ in $\S 6.3.5$ of NIST SP 800-90B

3.9 Supplemental information for traceability

Table 8 Supplemental information for traceability (NIST SP 800-90B Section 6.3.5)

Symbol	Value
t	18
\hat{p}_{\max}	0.613617
p_u	0.614779

3.10 The LRS Estimate (NIST SP 800-90B Section 6.3.6)

Fig. 10 Estimated W-tuple collision probability in Step 3 of $\S 6.3.6$ of NIST SP 800-90B

Fig. 11 Estimated average collision probability per string symbol in Step 3 of $\S 6.3.6$ of NIST SP 800-90B

3.11 Supplemental information for traceability

Table 9 Supplemental information for traceability (NIST SP 800-90B Section 6.3.6)

Symbol	Value
u	19
v	43
\hat{p}	0.531436
p_u	0.532627

3.12 Multi Most Common in Window Prediction Estimate (NIST SP 800-90B Section 6.3.7)

Fig. 12 Distribution of correct

3.13 Supplemental information for traceability

Table 10 Supplemental information for traceability (NIST SP 800-90B Section 6.3.7)

Symbol	Value
N	1165603
C	662387
P_{global}	0.568278
$P'_{ m global}$	0.56946
r	23
$P_{ m local}$	0.458082

3.14 Lag Prediction Estimate (NIST SP 800-90B Section 6.3.8)

Fig. 13 Distribution of correct

3.15 Supplemental information for traceability

Table 11 Supplemental information for traceability (NIST SP 800-90B Section 6.3.8)

Symbol	Value
N	1165665
C	662836
$P_{ m global}$	0.568633
$P_{ m global}'$	0.569815
r	22
$P_{ m local}$	0.441506

3.16 The MultiMMC Prediction Estimate (NIST SP 800-90B Section 6.3.9)

Fig. 14 Distribution of correct

3.17 Supplemental information for traceability

Table 12 Supplemental information for traceability (NIST SP 800-90B Section 6.3.9)

Symbol	Value
N	1165664
C	662951
P_{global}	0.568732
$P'_{ m global}$	0.569914
r	23
$P_{ m local}$	0.458081

3.18 The LZ78Y Prediction Estimate (NIST SP 800-90B Section 6.3.10)

Fig. 15 Distribution of correct

3.19 Supplemental information for traceability

Table 13 Supplemental information for traceability (NIST SP 800-90B Section 6.3.10)

Symbol	Value
N	1165649
C	662954
P_{global}	0.568742
$P'_{ m global}$	0.569924
r	23
$P_{ m local}$	0.458082

3 References

^[1] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay, Mary L. Baish, Mike Boyle Recommendation for the Entropy Sources Used for Random Bit Generation, NIST Special Publication 800-90B, Jan. 2018 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf

^[2] G. Sakurai, Proposed list of corrections for NIST SP 800-90B 6.3 Estimators, Dec. 2022 https://github.com/g-g-sakura/AnotherEntropyEstimationTool/blob/main/documentation/ProposedListOfCorrections_SP800-90B.pdf