

TABELA 1

CRITÉRIOS DE CONVERGÊNCIA DE SÉRIES

Critérios	Descrição	Observações
Séries Geométricas	$ r < 1$, converge para $\frac{a}{1-r}$,
$\sum_{n=1}^{\infty} ar^{n-1}$	· ·	
n=1	$ r \ge 1$, diverge	
Séries de Dirichlet	$\alpha > 1$, converge	
$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}, \alpha \in]0, +\infty[$	$0 , diverge$	
Condição necessária de Convergência $\left(\lim_{n\to\infty}(a_n)\to 0\right)$	Se $\lim_{n\to\infty} (a_n) \neq 0$ então $\sum_{n=1}^{\infty} a_n$ diverge	Se $\lim_{n\to\infty} (a_n) \to 0$ então $\sum_{n=1}^{\infty} a_n$ poderá convergir ou não
1º Critério de Comparação	Se $0 \le a_n \le b_n$, $\forall n \ge p$, então $\sum_{n=1}^{\infty} b_n \text{ converge} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converge}$ $\sum_{n=1}^{\infty} a_n \text{ diverge} \Rightarrow \sum_{n=1}^{\infty} b_n \text{ diverge}$	
2º Critério de Comparação	Sejam $a_n, b_n > 0$ e $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ i) Se $L \neq 0, \infty$, então as séries $\sum a_n$ e $\sum a_n$ ii) Se $\lim_{n \to \infty} \frac{a_n}{b_n} = 0 \Rightarrow \begin{cases} \sum_{n=1}^{\infty} b_n \text{ convergente } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ divergente } \Rightarrow \sum_{n=1}^{\infty} a_n \text{ convergente } \Rightarrow \sum_{n=1}^{\infty} b_n \text{ divergente }$	$\sum_{n=1}^{\infty} a_n \text{ convergente}$ $\sum_{n=1}^{\infty} b_n \text{ divergente}$
Critério do Integral	Se $a_n = f_n \ge 0$ e f é contínua e decrescente em $[1,+\infty[$, então $\sum_{n=1}^{\infty} a_n \text{ converge se e só se } \int_1^{+\infty} f(x) dx$ converge.	Este critério utiliza-se sempre que $f(x)$ se integre facilmente.

Critério de D'Alembert ou Critério da Razão	Se $a_n > 0$ e $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, então se: $L > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge $L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ converge $L \to 1^+ \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge $L \to 1^-$ nada se pode concluir	Este critério deve ser usado para estudar séries cujo termo geral envolva factoriais, potências ou produtos sucessivos.
Critério de Cauchy ou Critério da Raiz	Se $a_n > 0$ e $L = \lim_{n \to \infty} \sqrt[n]{a_n}$, então se: $L > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge $L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ converge $L \to 1^+ \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge $L \to 1^-$ nada se pode concluir	Este critério deve ser utilizado para estudar séries cujo termo geral envolva potências de expoente n.
Critério de Leibniz (Para séries alternadas $\sum_{n=1}^{\infty} (-1)^n a_n, a_n \ge 0$	Convergirá se: a) $\lim_{n\to\infty} a_n = 0$ b) $\{a_n\}$ é decrescente	Este critério <u>apenas</u> poderá ser aplicado quando os termos da série são alternadamente positivos e negativos.
Critério da Convergência absoluta	$\sum_{n=1}^{\infty} a_n , \text{converge} \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converge}$	Para estudar a natureza da série $\sum_{n=1}^{\infty} a_n , \text{ podem ser usados os}$ critérios mencionados atrás para séries de termos não negativos.
Critério de D'Alembert ou Critério da Razão	Se $\sum_{n=1}^{\infty} a_n$, $a_n \in \Re$ e $L = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $ $L > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge $L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ converge(absolutamente)	Quando $L=1$ ter-se-á de analisar por critérios específicos a convergência da série particular
Critério de Cauchy ou Critério da Raiz	Se $\sum_{n=1}^{\infty} a_n$, $a_n \in \Re$ e $L = \lim_{n} \sqrt[n]{ a_n }$ $L > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ diverge $L < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ converge(absolutamente)	Quando $L=1$ ter-se-á de analisar, por critérios específicos, a convergência da série particular