

DEPARTMENT OF PHYSICS Institute for Beam Physics and Technology

Stability Improvements at FLUTE (Verbesserung der Stabilität von FLUTE)

Master thesis of

Marvin-Dennis Noll

at the Institute for Beam Physics and Technology

Reviewer: Prof. Dr.-Ing. John Jelonnek Second Reviewer: Prof. Dr.-Ing. Thomas Zwick

Advisor: Dr. Nigel Smale

15.11.2020 - 17.05.2021

Erklärung zur Selbstständigkeit

mittel vollständig und genau Arbeiten anderer unverändert	angegeben und alles kenntl oder mit Abänderungen ent ng guter wissenschaftlicher	angefertigt, alle benutzten Hilfs- ich gemacht zu haben, was aus nommen wurde und dass ich die Praxis in der gültigen Fassung
ŀ	Karlsruhe, den 17.05.2021,	
		Marvin-Dennis Noll
	Als P	rüfungsexemplar genehmigt von
F	Karlsruhe, den 17.05.2021,	
		Prof. DrIng. John Jelonnek

Contents

1.		oduction	3
	1.1.	FLUTE - Ferninfrarot Linac- und Test-Experiment	3
2.	The	oretical Background	5
	2.1.	Linear accelerators	5
		2.1.1. RF cavities	5
	2.2.	Relevant controlled systems theory	5
3.	Prol	olem and Previous Work	7
	3.1.	Problem statement	7
	3.2.	Previous work	7
		3.2.1. 50Hz noise	7
		3.2.2. Stabilizing water temperature	7
4.	Owr	ı Work	9
	4.1.	General improvement ideas	9
	4.2.	Preliminary tests	9
	4.3.	Sensors: Selection and Evaluation	9
		4.3.1. Faraday cup	9
		4.3.2. PT1000 temperature sensor	9
	4.4.	Actuators: Selection and Evaluation	9
		4.4.1. RF attenuator	9
	4.5.	Implementing control algorithm	9
5.	Resi	ults 1	1
6.	Con	clusion and Outlook 1	.3
	6.1.	Conclusion	13
			13
Αp	pend	lix 1	.5
•	-		L5

List of Figures

List of Tables

Abstract

-TODO-

${\bf Kurz fassung}$

-TODO-

1. Introduction

 ${\bf 1.1.} \ \ {\bf FLUTE} \ \ {\bf -} \ {\bf Ferninfrarot} \ \ {\bf Linac-} \ \ {\bf und} \ \ {\bf Test-Experiment}$

2. Theoretical Background

- 2.1. Linear accelerators
- 2.1.1. RF cavities
- 2.2. Relevant controlled systems theory

3. Problem and Previous Work

- 3.1. Problem statement
- 3.2. Previous work
- 3.2.1. 50Hz noise
- 3.2.2. Stabilizing water temperature

4. Own Work

- 4.1. General improvement ideas
- 4.2. Preliminary tests
- 4.3. Sensors: Selection and Evaluation
- 4.3.1. Faraday cup
- 4.3.2. PT1000 temperature sensor
- 4.4. Actuators: Selection and Evaluation
- 4.4.1. RF attenuator
- 4.5. Implementing control algorithm

5. Results

6. Conclusion and Outlook

- 6.1. Conclusion
- 6.2. Outlook

Appendix

A. Lab test and measurement devices overview