$44251017\ Huang Jiahui$

Condition

	M1	M2	M3
Pro A	aı	a2	аз
Pro B	bı	b ₂	b³

 $max\{M2\ process time\} \le min\{M1, M3\ process\ time\}$

Proof

Show that under the above condition, we can apply Johnson's algorithm by converting the 3-machine problem into a 2-machine problem using pseudomachines:

- F1 = M1 + M2
- F2 = M2 + M3

Total lead time when scheduling $A \rightarrow B$

$$T_{A->B}=a_1+b_3+max\{(b_1+b_2),(a_2+b_2),(a_2+a_3)\}$$

Since:

 $max\{M2\ process\ time\} \leq min\{M1,M3\ process\ time\}$

$$\Rightarrow min\{(b_1+b_2),(a_2+b_2),(a_2+a_3)\}=(a_2+b_2)$$

$$\Rightarrow T_{A->B} = a_1 + b_3 + max\{(b_1+b_2), (a_2+a_3)\}$$

Assume $T_{A->B}$ is shorter:

Then $T_{A->B} \leq T_{B->A}$

$$\Rightarrow a1 + b3 + max\{(b1 + b2), (a2 + a3)\} \leqq b1 + a3 + max\{(a1 + a2), (b2 + b3)\}$$

$$\Rightarrow max\{-(b1+b2), -(a2+a3)\} \leq max\{-(a1+a2), -(b2+b3)\}$$

$$\Rightarrow -min\{(b1+b2), (a2+a3)\} \leq -min\{(a1+a2), (b2+b3)\}$$

$$\Rightarrow -min\{(b1+b2), (a2+a3)\} \leq -min\{(a1+a2), (b2+b3)\}$$

$$\Rightarrow min\{(b1+b2), (a2+a3)\} \ge min\{(a1+a2), (b2+b3)\}$$

$$\iff$$
 Process time of $(a1 + a2)$ or $(b2 + b3)$ is shortest

Thus, by Johnson's algorithm:

If the front (F1 = M1+M2) is smaller \rightarrow place early

If the back (F2 = M2+M3) is smaller \rightarrow place later

the 3-machine problem can be reduced to a 2-machine pseudo problem