

University of Engineering & Management (UEM), Jaipur | Kolkata

Institute of Engineering & Management (IEM), Jaipur | Kolkata

Topic: Numerical Methods

Instructor: Doyel Sarkar

Email: doyel.sarkar@uem.edu.in

Affiliation: Department of Basic Science and Humanities, University of Engineering and Management - [UEM], Kolkata

Topics of Discussion:

- **✓** Difference Operators
- **✓** Shift Operator
- ✓ Missing Term(s)
- ✓ Interpolation:
 - **Newton's Forward Interpolation**
 - ☐ Newton's Backward Interpolation
 - ☐ Lagrange's Interpolation

Finite differences.

Let y = f(x) be a real-valued function of x defined in an interval [a,b] and its values are known for (n+1) equally spacing points x_i $(i=0,1,2,\cdots,n)$ such that x_i-x_i+ih $(i=0,1,2,\cdots,n)$ where $x_i=a,x_n-b$ and h is the space length. Then x_i $(i=0,1,2,\cdots,n)$ are called nodes and the corresponding values y_i are termed as entries.

We now introduce the concept of various type differences in order to find the values of f(x) or its derivative for some intermediate values of x in [a,b].

Forward Differences.

$$\Delta f(x) = f(x+h) - f(x).$$

$$\Delta y_i = y_{i+1} - y_i \quad (i = 0, 1, 2, \dots, n-1)$$

Similarly, the higher order forward differences are define as

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$$

$$\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i \qquad \cdots \qquad (3)$$

$$\Delta^r y_i = \Delta^{r-1} y_{i+1} - \Delta^{r-1} y_i$$

where $i = 0, 1, 2, \dots, n-1$ and $r(1 \le r \le n)$ is a positive integer.

$$\Delta^{2}y_{0} = \Delta y_{1} - \Delta y_{0} = (y_{2} - y_{1}) - (y_{1} - y_{0}) = y_{2} - 2y_{1} + y_{0}$$

$$\Delta^{3}y_{0} = \Delta^{2}y_{1} - \Delta^{2}y_{0} = (y_{3} - 2y_{2} + y_{1}) - (y_{2} - 2y_{1} + y_{0})$$

$$= y_{3} - 3y_{2} + 3y_{1} - y_{0}$$

Difference Table:

Table: Forward difference table:

x	у	Δχ	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
x_0	y ₀		4 1	4	W
		Δy_0		in the second	e. 1
x_1	y_1	101 . 42 1	$\Delta^2 {oldsymbol y}_0$		
	1	Δy_1	dae a ka	$\Delta^3 y_0$	
x_2	y_2		$\Delta^2 y_1$	400	$\Delta^4 y_0$
		Δy_2	2	$\Delta^3 {m y}_1$	
x_3	y_3	There is a	$\Delta^2 {\boldsymbol y}_2$		
22. 5		Δy_3		*	
x_4	y_4				

x	у	Δy	$\Delta^2 y$	$\Delta^3 \nu$
1	0			
3	1	1	-4	
5	-2	-3	18	22
7	13	15	-17	-35
9	1.1	-2		

2.4. Some properties of Δ .

If a and b be any two constants, then

(i)
$$\Delta a = 0$$

(ii)
$$\Delta \{af(x)\} = a\Delta f(x)$$

(iii)
$$\Delta \{af(x) \pm bg(x)\} = a\Delta f(x) \pm b\Delta g(x)$$

(iv)
$$\Delta[f(x)g(x)] = f(x)\Delta g(x) + \Delta f(x).g(x+h)$$

= $f(x+h)\Delta g(x) + \Delta f(x)g(x)$

(v)
$$\Delta \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x)g(x+h)}$$

Backward differences:

The differences $y_1 - y_0, y_2 - y_1, y_3 - y_2, \dots, y_n - y_{n-1}$ are called the first backward differences and denoted by $\nabla y_1, \nabla y_2, \dots, \nabla y_n$ respectively.

Thus we have

$$\nabla y_i = y_i - y_{i-1}, \quad i = 1, 2, \dots, n$$
 ... (5)

where ∇ is called the backward difference operator. In general backward differece operator is defined as

$$\nabla f(x) = f(x) - f(x - h)$$

Similarly, the higher order backward differences are defined as

$$\nabla^2 y_i = \nabla y_i - \nabla y_{i-1}$$

$$\nabla^3 y_i = \nabla^2 y_i - \nabla^2 y_{i-1}$$

and so on.

Example 3. Construct the backward difference table of $y = x^2 + 4$ for x = 1, 3, 5, 7, 9 and find the values of $\nabla^2 f(5)$, $\nabla^2 f(7)$ and $\nabla^3 f(9)$. Solution. The backward difference table is

x	у	∇у	$\nabla^2 y$	$\nabla^3 y$
1	5		101 /6	
3	13	8		
5	29	16	8	
7	53	24	8	0
9	85	32	8	0

From the table, we have

$$\nabla^2 f(5) = 8$$
, $\nabla^2 f(7) = 8$, $\nabla^3 f(9) = 0$

Show that $\Delta, \nabla \equiv \Delta - \nabla$

Shift Operator

Ef(x) = f(x+h), h being the spacing

$$\therefore E^2 f(x) = Ef(x+h) = f(x+2h)$$

$$E^3 f(x) = Ef(x + 2h) = f(x + 3h)$$

In this way, in general, we have

$$E^n f(x) = f(x + nh)$$

The inverse shift operator E^{-1} is defined by

$$E^{-1}f(x) = f(x-h)$$

and in general, we have

$$E^{-n}f(x) = f(x - nh)$$

Since $\Delta f(x) = f(x+h) - f(x)$, it follows that

$$Ef(x) = f(x+h) = \Delta f(x) + f(x) = (\Delta + 1)f(x)$$

so that

$$E \equiv \Delta + 1$$

i.e.
$$\Delta \equiv E-1$$

Prob: - Find the missing teams in the following table: \[\frac{10}{5} \frac{10}{15} \frac{15}{20} \frac{25}{31} \]

In the given table, only 4 Values of 7
are given So by wing there 4 point
we can construct a poly. of Log. 3
Where 4th order Lifterena Will be 6.

Difference table:

$$\frac{x}{2} \quad \frac{y}{2} \quad \Delta y$$
 $\frac{x}{2} \quad \frac{y}{2} \quad \Delta y$
 $\frac{x}{2} \quad \frac{y}{2} \quad \frac{y}{2} \quad \Delta y$
 $\frac{x}{2} \quad \frac{y}{2} \quad \frac{y}{2}$

i.e $6\alpha + 5 - 102 = 6$ $4 \cdot 4\alpha + 45 - 143 = 6$ i.e, $6\alpha + 5 = 102 - (i)$ $4 \cdot 4\alpha + 45 = 143$ Lin

Solving (i) f(ii): $\alpha = 5\frac{3}{4} + 6 = 4\frac{5}{2}$ $\therefore J(10) = \frac{53}{4} = 13.25 + J(20) = 22.5$ Example 9. Estimate the missing term in the following tables:

x	1	0	1	2	3	4
f(x)	:	1	3	9		81

Solution. Since we are given four values of y, so we take

$$y = f(x)$$
 to be a polynomial of degree 3 in x so that $\Delta^4 f(x) = 0$

i.e.,
$$(E-1)^4 f(x) = 0$$

i.e.,
$$E^4 f(x) - 4E^3 f(x) + 6E^2 f(x) - 4Ef(x) + f(x) = 0$$

$$f(x+4)-4f(x+3)+6f(x+2)-4f(x+1)+f(x)=0$$

$$\left[:: E^n f(x) = f(x+nh), h^{-1} \right]$$

Putting
$$x = 0$$
, we get
$$f(4) - 4f(3) + 6f(2) - 4f(1) + f(0) = 0$$
or, $81 - 4f(3) + 6 \times 9 - 4 \times 3 + 1 = 0$

$$f(3) = 31$$

Ex.24 Find the missing value in the following table:

x: 2 4 6 8 10 y: 5.6 8.6 13.9 - 35.6

Ex.25. Find the missing term in the following table:

 x
 :0
 1
 2
 3
 4
 5

 y
 :0
 8
 15
 35

[W.B.U.T., C.S-312, 2007, M(CS)-301,2015]

Interpolation:

Interpolation is the process (on method) by which we can approximate a function y = f(x) by another function of gelatively simple known form.

The process of computing the value of y connexponding to any value x (+ n; i = o(1)n) in [no, nn] is called interpolation.

* The process of computing the value of y cornesponding to any value of n outside the interval [xo, xn] but in the visinity of [no, xn] is called enterpolation.

* The Newton Forward Interpolation formula is $f(x) = \sqrt{30 + \frac{u}{1!}} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \frac{u(u-1)(u-2)}{3!} \Delta^3 y_0 + \cdots$ When $u = \frac{x-x_0}{\pi}$.

Remark(1): - The N.F.I.F is used when the interpolating boint n is near to the beginning of the table.

R(2): - To get better approximate neglit, the starting argument no should be so choosen such that ocuci. More Smaller value of n. gives us more accurate neglit.

Remark(3): - It is used for an interpolating point

R(4): To get better approximate nesult,
the starting point no should be so choosen
that -1 < u < 0.

Morre Smeller value of u, gives us morn accurate result.

Ex. If y(10) = 35.3, y(15) = 32.4, y(20) = 29.2, y(25) = 26.1, y(30) = 23.2, and y(35) = 20.5, find y(12) using Newton's forward interpolation formula. [W.B. U.T., M(CS)-301, 2009]

Solution. The difference table is

x	У	Δχ	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	
10	35.3						
500000		-2.9	0.0				
15	32.4	-3.2	-0.3	0.4		_	_
20	29.2		0.1		-0.3		
		-3.1		0.1		0.2	
25	26.1		0.2		-0.1	10	
		-2.9		0.0		L	-
30	23.2		0.2				
A STATE OF		-2.7		- 1			
35	20.5						

To find y(12), we choose $x_0 = 10$ Here n = 12, h = 5 $\therefore s = \frac{x - x_0}{h} = \frac{12 - 10}{5} = 0.4$:. From Newton's forward difference interpolation formula,

$$y(x) \simeq y_0 + s\Delta y_0 + \frac{s(s-1)}{2!} \Delta^2 y_0 + \dots,$$

we have

$$y(12) = 35.3 + 0.4(-29) + \frac{0.4(0.4 - 1)}{2!} \times (-0.3)$$

$$+ \frac{0.4(0.4 - 1)(0.4 - 2)}{3!} \times (0.4)$$

$$+ \frac{0.4(0.4 - 1)(0.4 - 2)(0.4 - 3)}{4!} \times (-0.3) = 34.21408$$

Prod. Compute f (0.23) & f (0.29), using suitable formula, from the table given below: I

$\gamma \rightarrow$	0.20	0.22	0,24	0.26	6.28	0.30
y=fw	1.6596	1.698			1.7024	1.4139

The difference table B: f(n) Afen) 12fen 13fen 14fen) 15fin) 0.20 1.6596 0.22 1.6698 0.0102 -> 0.6004 ----> 0.0106 - ---> -0.0002 6·28 1.7029 0·0115 0.30 1.7139 5

For f(0.23): - Since all the values of n are equidistant f interpolating point n = 0.23 (i.e., in the degining in the table, we we (apply)

Newton Forward interpolation formula:- $f(x) \simeq J_0 + \frac{U}{1!} \Delta J_0 + \frac{U(U-1)}{2!} \Delta^2 J_0 + \frac{U(U-1)(U-2)}{3!} \Delta^3 J_0 + \cdots$ When $U = \frac{N-N_0}{R}$.

Here: n = 0.23, R = 0.02. Let $n_0 = 0.22$. $L = \frac{N - N_0}{R} = \frac{0.23 - 0.22}{0.02} = 0.5$ [6 < U < I]

$$f(0.13) = 1.6698 + \frac{0.5}{1!}(0.0106) + \frac{0.5(0.5-1)(0.5-2)}{2!}$$

$$+ \frac{0.5(0.5-1)(0.5-1)}{3!}(0.0002) + \frac{0.5(0.5-1)(0.5-2)}{(0.5-3)(-0.003)}$$

$$= 1.6698 + 0.6053 - 0.600025 + 0.6000125$$

$$- 6.60001172$$

$$= 1.6750 9922$$

$$= 1.6751$$

Hence f (0.23) = 1.6751 Connect who 4D.

Fon f(0.29):-

Since All He values of χ are equidistant of interpolating point M=0.29 but at the end in the table, we use N.B.IF:
Let $M_{\eta}=0.30$, M=0.29, R=0.02. $M=\frac{\eta-\eta_{\eta}}{R}=\frac{0.29-0.30}{0.02}=\frac{0.5}{0.02}$

According to N.B.I.P formula: $f(0.25) = f(3n) + \frac{u}{1!} \Delta y_{n-1} + \frac{u(u+1)\Delta^2 y_{n-2}}{2!} + \frac{u(u+1)(u+2)}{3!} \Delta^3 y_{n-3} + \frac{u(u+1)(u+2)(u+2)(u+3)}{4!} \Delta^4 y_{n-4} + \cdots$

$$= 1.768149608 \approx 1.7681 (Connect whio 4D)$$

$$= 1.768149608 \approx 1.7681 (Connect whio 4D)$$

$$= 1.768149608 \approx 1.7681 (Connect whio 4D)$$

Task:

Ex. Compute the value of f(3.5) and f(7.5) using Newtan's interpolation from the following table:

x: 3 4 5 6 7 8 f(x): 27 64 125 216 343 512

[W.B.U.T., CS-312, 2008]

Lagrange's interpolation formula.

Let y = f(x) be a function of x, continuous and (n + 1) times continuously differentiable in [a, b]. Let us divide the interval [a, b] by (n + 1) points $a = x_0, x_1, ..., x_n = b$ which are not necessarily equispaced and the corresponding entries are $y_i = f(x_i)$ (i = 0, 1, 2, ..., n). We now wish to find a polynomial $L_n(x)$ in x of degree n such that

$$L_n(x_i) = f(x_i) = y_i (i = 0, 1, 2, ..., n)$$
 ... (28)

$$L_{n}(x) = \frac{(x - x_{1})(x - x_{2})....(x - x_{n})}{(x_{0} - x_{1})(x_{0} - x_{2})....(x_{0} - x_{n})} y_{0}$$

$$+ \frac{(x - x_{0})(x - x_{2})....(x - x_{n})}{(x_{1} - x_{0})(x_{1} - x_{2})...(x_{1} - x_{n})} y_{1} + ...$$

$$+ \frac{(x - x_{0})(x - x_{1})....(x - x_{n-1})}{(x_{n} - x_{0})(x_{n} - x_{1})....(x_{n} - x_{n-1})} y_{n}$$

Example. Find the polynomial of degree ≤ 3 passing through the points (-1, 1), (0, 1), (1, 1) and (2, -3).

$$L_{n}(x) = \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{1})(x_{1}-x_{2})(x_{0}-x_{3})} \cdot y_{0} + \frac{(x-x_{0})(x-x_{2})(x-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{2})(x_{1}-x_{3})} \cdot y_{1}$$

$$+ \frac{(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})} \cdot y_{2} + \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})} \cdot y_{3}$$

$$= \frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)} \cdot 1 + \frac{(x+1)(x-1)(x-2)}{(0+1)(0-1)(0-2)} \cdot 1$$

$$+ \frac{(x+1)(x-0)(x-2)}{(1+1)(1-0)(1-2)} \cdot 1 + \frac{(x+1)(x-0)(x-1)}{(2+1)(2-0)(2-1)} (-3)$$

$$= \frac{1}{3} \left(-2x^{3} + 2x + 3 \right).$$

Hence the required polynomial is

$$\frac{1}{3}(-2x^3+2x+3)$$

x : 0 2 3 4 7 8 f(x) : 4 26 58 112 466 668

Find f(5)

Ans: 194 (near about)

