Formulae for Digital Signal Processing

Hogeschool van Arnhem en Nijmegen

ir drs E.J Boks

Convolutie in het tijddomein

An LTI system that is characterized by the impulse response h [n], will convert a signal x [n] to a result y [n] according to:

$$y[n] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

Fourier Transform

Ω is the sampled frequency which runs from 0 to 2π. Ω=π corresponds with $f = \frac{f_{sample}}{2}$

Description	Signal in time domain	Signal in frequency domain
Transformation	x[n]	$\sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$
Linearity	$a^*x_1[n] + b^*x_2[n]$	$a^*X_1(\Omega) + b^*X_2(\Omega)$
Time shift	x[n-a]*u[n-a]	X(Ω)e ^{-₁₆₃} •
Modulation	x₁[n]x₂[n]	$\frac{1}{2\pi}\int\limits_{-\pi}^{\pi}X_{1}(\lambda)X_{2}(\Omega\!-\!\lambda)d$
Convolution	x₁[n]*x₂[n]	$X_1(\Omega)X_2(\Omega)$
Time difference	x[n] –x[n-1]	X(Ω)(1-e ⁻¹⁶²)

Description	Signal in time domain x[n]	Signal in frequency domain $X(\Omega)$
Impulse	δ[n]	1
Delayed impulse	δ[n-n ₀]	$e^{-j\Omegan_0}$
Step	u[n]	$\frac{1}{1-e^{-j\Omega}}$
Rectangular pulse in the time domain	u[n+n ₀] - u[n-n ₀ +1]	$\frac{\sin((n_0 + \frac{1}{2})\Omega)}{\sin(\frac{1}{2}\Omega)}$
Rectangular pulse in the frequency domain	$\frac{\sin(n\Omega_0)}{n\pi} = \frac{\Omega_0}{\pi} sinc(n\Omega_0)$	$u[\Omega + \Omega_:] - u[\Omega - \Omega_:]$
Power	$a^nu[n]$	$\frac{1}{1-ae^{-j\Omega}}$

Z Transform

Description	Signal in time domain	Signal in Z domain
Transformation	x[n]	$\sum_{n=0}^{\infty} x[n]z^{-n}$
Linearity	a*x₁[n] + b*x₂[n]	$a*X_1(z) + b*X_2(z)$
Time shift	x[n-a]*u[n-a]	X(z)z-a
Time integration	$\sum_{k=0}^{N} x[k]$	$X(z)\frac{z}{z-1}$
Time difference	x[n] –x[n-1]	X(z)(1-z ⁻¹)
Convolution	x ₁ [n]*x ₂ [n]	$X_1(z)X_2(z)$
Final value theorem	$\lim_{n\to\infty}x[n]$	$\lim_{z\to 1} \left(\frac{z-1}{z}\right) X(z)$

Description	Signal in time domain	Signal in Z domain
Impulse	δ[n]	1
Step	u[n]	$\frac{z}{z-1}$ of $\frac{1}{1-z^{-1}}$
Slope	r[n]	$\frac{z}{(z-1)^2}$
Power	$a^nu[n]$	$\frac{z}{z-a}$

Transformatie van s- naar z-domein

A transfer function H (s), which exists after performing the Laplace transformation on a linear differential equation, can be converted to the z-domain by means of the bilinear z-transform. This BZT transformation is carried out according to:

$$s \equiv \frac{2}{T_s} \frac{z-1}{z+1}$$

Where T_{S} represents the sample time.

Leonhard Euler's rule:

$$e^{jx} = \cos x + j \sin x$$

$$\cos(x) = \frac{e^{jx} + e^{-jx}}{2} \quad \text{En} \quad \sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$$

Mar 21, 2023 by Ewout Boks .