Самостійна робота з Основ дискретної математики

Номер варіанту обирати згідно з останньою цифрою свого студентського квитка. Цифра нуль відповідає десятому варіанту. У кожному з десяти завдань розв'язувати лише одне — відповідно до номеру свого варіанту

- 1. Нехай множина M містить n елементів. Визначити кількість відношень на M, які ϵ :
 - 1) рефлексивними;
 - 2) нерефлексивними й неантирефлексивними;
 - 3) симетричними;
 - 4) антисиметричними;
 - 5) рефлексивними й несиметричними;
 - 6) рефлексивними й симетричними;
 - 7) антирефлексивними й симетричними;
 - 8) антирефлексивними й несиметричними;
 - 9) рефлексивними й антисиметричними;
 - 10) антирефлексивними й антисиметричними.
- 2. Нехай на множині всіх людей P означено такі відношення: $F = \{(x,y) \mid x,y \in P \text{ i } x \in G$ батьком $y\}$, $D = \{(x,y) \mid x,y \in P \text{ i } x \in G$ онькою $y\}$. Описати відношення:
 - 1) $F \circ F$;
 - 2) $D \circ D$;
 - 3) $F \circ D$;
 - 4) $D \circ F$:
 - 5) $D \circ F^{-1}$;
 - 6) $F^{-1} \circ D$;
 - 7) $F \circ D^{-1}$:
 - 8) $F^{-1} \circ D^{-1}$;
 - 9) $D^{-1} \circ F$;
 - 10) $D^{-1} \circ D^{-1}$.
- 3. На множині $M = \{1,2,3,4\}$ задано відношення $R_1 = \{(1,2),(2,4),(3,1),(4,3)\}$, $R_2 = \{(1,4),(2,3),(3,2),(4,1)\}$. Знайти відношення X на множині M, для якого виконується рівність:
 - 1) $(R_1 \circ R_1) \circ X = R_2$;
 - 2) $X \circ (R_1 \circ R_2) = R_2$;
 - 3) $R_2 \circ X = R_1 \circ R_2$;
 - 4) $R_1 \circ X = R_2$;
 - 5) $R_2 \circ X = R_1$;
 - 6) $(R_2 \circ R_2) \circ X = R_1$;
 - 7) $X \circ R_1 = R_2$;
 - 8) $X \circ R_2 = R_1$;
 - 9) $(R_2 \circ R_1) \circ X = R_1$;
 - 10) $R_1 \circ X = R_2 \circ R_1$.
 - 4. Навести приклад таких відношень R_1 і R_2 на множині $M = \{1,2,3,4\}$, що:
 - 1) R_1 і R_2 антирефлексивні, а згортка $R_1 \,{}^{\circ}\, R_2$ не антирефлексивна;
 - 2) R_1 і R_2 антирефлексивні, а згортка $R_1 \circ R_2$ рефлексивна;
 - 3) R_1 і R_2 симетричні, а згортка $R_1 \circ R_2$ не симетрична;
 - 4) R_1 і R_2 симетричні й згортка $R_1 \circ R_2$ теж;
 - 5) R_1 і R_2 антисиметричні, а згортка $R_1 \circ R_2$ не антисиметрична;

- 6) R_1 і R_2 антисиметричні й згортка $R_1 \circ R_2$ теж;
- 7) R_1 і R_2 транзитивні, а згортка $R_1 \circ R_2$ не транзитивна;
- 8) R_1 і R_2 транзитивні й згортка $R_1 \circ R_2$ теж;
- 9) R_1 і R_2 транзитивні, а $R_1 \cup R_2$ не транзитивне;
- 10) R_1 і R_2 транзитивні й $R_1 \cup R_2$ теж.
- 5. Побудувати приклад частково впорядкованої множини, яка:
 - 1) має мінімальний елемент, але не має найменшого елемента;
 - 2) має точно один мінімальний елемент, але не має найменшого елемента;
 - 3) має максимальний елемент, але не має найбільшого елемента;
 - 4) має точно один максимальний елемент, але не має найбільшого елемента;
- 5) має мінімальний і максимальний елементи, але не має найменшого і найбільшого елементів;
- 6) має точно один мінімальний і точно один максимальний елементи, але не має найменшого і найбільшого елементів;
- 7) не має жодного мінімального і максимального елементів та не має найменшого і найбільшого елементів;
 - 8) має два мінімальні й три максимальні елементи;
 - 9) має два максимальні елементи і найменший елемент;
 - 10) має найменший і найбільший елементи й непорівнювані елементи.
- 6. У певному товаристві з n осіб кожен знайомий з k і тільки k іншими особами. З'ясувати, чи можливе подібне товариство для таких значень n і k:

```
1) n = 7, k = 2:
```

- 2) n = 7, k = 3;
- 3) n = 6, k = 4;
- 4) n = 8, k = 3;
- 5) n = 8, k = 4;
- 6) n = 11, k = 3;
- 7) n = 7, k = 4;
- 8) n = 12, k = 3;
- 9) n = 10, k = 1;
- 10) n = 9, k = 5.
- 7. Визначити, скільки існує попарно неізоморфних графів, які мають:
 - 1) 6 вершин і 11 ребер;
 - 2) 7 вершин і 18 ребер;
 - 3) 8 вершин і 24 ребра;
 - 4) 8 вершин і 26 ребер;
 - 5) 10 вершин і 43 ребра;
 - 6) *п* вершин і n(n-1)/2 2 ребра;
 - 7) 8 вершин і 25 ребер;
 - 8) 5 вершин і 8 ребер;
 - 9) 6 вершин і 12 ребер;
 - 10) 7 вершин і 19 ребер.
- 8. Побудувати три попарно неізоморфні дерева, які мають:
 - 1) 6 ребер та 3 кінцеві вершини;
 - 2) 6 ребер та 4 кінцеві вершини;
 - 3) 7 ребер та 3 кінцеві вершини;
 - 4) 10 ребер та 4 вершини степеня 3;
 - 5) 8 ребер та 3 кінцеві вершини;
 - 6) 12 ребер та 2 вершини степеня 5;
 - 7) 7 ребер та 4 кінцеві вершини;

- 8) 8 ребер та 5 кінцевих вершин;
- 9) 9 ребер та 4 кінцеві вершини;
- 10) 13 ребер та 3 вершини степеня 4.
- 9. Яку найбільшу та яку найменшу кількість кінцевих вершин може мати дерево з nвершинами? Яку структуру мають відповідні дерева?
 - 1) n = 18;
 - 2) n = 17;
 - 3) n = 19;
 - 4) n = 29;
 - 5) n = 20;
 - 6) n = 25;
 - 7) n = 15;
 - 8) n = 14;

 - 9) n = 28;
 - 10) n = 27.
- 10. Побудувати два неізоморфні ейлерові графи з n вершинами і k ребрами:
 - 1) n = 8, k = 12;
 - 2) n = 7, k = 12;
 - 3) n = 8, k = 10;
 - 4) n = 6, k = 8;
 - 5) n = 7, k = 11;
 - 6) n = 10, k = 16;
 - 7) n = 7, k = 10;
 - 8) n = 7, k = 13;
 - 9) n = 8, k = 16;
 - 10) n = 6, k = 10.