武汉大学国家网络安全学院

2018-2019 学年度第一学期

《密码学》期末考试试卷 (A卷)

本卷依据网安流出18 年试卷重制而成,以方便打印,感谢提供者! — by xyz

卓亚:	-		孝号:	У	生名:			
说明:	答案请全部	部写在答题纸上,	写在试卷上无效	0				
	考试试卷、	答题纸、草稿纸	均不得带离考场,	否则视为违规。				
	题号 一		1 1	=	四	总分		
	分值	24	40	20	16	100		

一、简答题(共4小题,每小题6分,共24分)

- 1. 请描述加密解密基本过程及密钥的作用。
- 2. 密码学中的'对称'与'非对称'的含义是什么?
- 3. 什么是认证?认证与数字签名的区别是什么?
- 4. 请解释什么是短块问题,列举常用处理方法,比较优缺点。

二、计算题(共4小题,每小题10分,共40分)

- 1. 以英文为例用加法密码,取密钥常数 k=5.
- (1) 写出密文字母表; (4分)
- (2) 对明文 WUHAN UNIVERSITY 进行加密,求出密文。(6分)
- 2. DES 密码中第一个 S 盒为如下表所示(16 进制表示),

	$b_1b_2b_3b_4$															
$b_0 b_5$	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	Е	4	D	1	2	F	В	8	3	A	6	C	5	9	0	7
1	0	F	7	4	E	2	D	1	A	6	C	В	9	5	3	8
2	4	1	E	8	D	6	2	В	F	C	9	7	3	A	5	0
3	F	C	8	2	4	9	1	7	5	В	3	E	A	0	6	D

- 设S 盒的输入为X,输出为Y。(X 和Y 都以二进制表示)
- (1) 对于已知输入值 $X_1 = 001010$ 和 $X_2 = 101010$,分别求出对应的输出值 Y_1 (3 分)和 Y_2 (3 分)。
- (2)比较输出值 Y_1 和 Y_2 各位的异同,即按位计算 $Y_1 \oplus Y_2$ 。(2 分)该计算结果体现了 S 盒的什么特点?(2 分)
- 注:要求答案以二进制表示。
- 3. 已知 $g(x) = x^4 + x^3 + x^2 + x + 1$ 为 GF(2)上的多项式,以其为连接多项式组成线性移位寄存器。

- (1) 求出反馈函数(2分),并画出简化后的逻辑框图(2分);
- (2) 试穷举其所有非零状态(2分),给出状态变迁(2分)并求出其周期(2分)。
- 4. 已知素数域上椭圆曲线方程 $y^2 = x^3 + ax + b \mod p$,参数a = 2,b = 9,p = 13。请求出该曲线在 GF(p) 上的全部解点。

三、分析判断题(共2小题,每小题10分,共20分)

- 1. 判断下列说法的正误,并给出相应安全应用实例或者攻击实例:
- "既然有安全隐蔽信道,那么不需要密码算法也可以实现数据保密通信"
- 2. 判断下列说法的正误:
- "对于公钥密码,任何人都可以进行公钥操作,即任何人都可以加密消息,任何人都可以验证签名"。 根据你对于上述说法判断,对下述加密和签名过程给出改击实例:

用户 A 向用户 B 发送消息,采用先加密再签名的方案—使用接受方 B 的公钥 KeB 进行加密,再用发送方自己的私钥 K_{cA} 进行签名,即用户 A 发送如下消息给 B。

$$D(E(M, K_{eB}), K_{dA})$$

四、综合设计题(共16分)

请针对远程支付系统(选择其中一种),进行安全性分析与设计。分析设计时主要包括:

- (1) 应用问题描述;
- (2) 你认为其中的主要安全问题有哪些(写主要问题 1—2个即可);
- (3) 你觉得可以采用什么样的安全协议或密码学技术可以解决;
- (4) 若现有技术无法有效解决,请提出你的观点。