Solution

Exercise

Determine whether the function is one-to-one: f(x) = 3x - 7

Solution

$$f(a) = f(b)$$

$$3a - 7 = 3b - 7$$

$$3a = 3b - 7 + 7$$

$$3a = 3b$$
Divide both sides by 3
$$a = b$$

∴ The function is one-to-one

Exercise

Determine whether the function is one-to-one: $f(x) = x^2 - 9$

Solution

$$1 \neq -1$$

$$1^{2} - 9 \neq (-1)^{2} - 9$$

$$-8 = -8 \rightarrow \text{ Contradict the definition}$$

$$f(a) = f(b)$$

$$a^{2} - 9 = b^{2} - 9$$

$$a^{2} = b^{2}$$

$$a = \pm b$$

∴ The function is *not* one-to-one

Exercise

Determine whether the function is one-to-one: $f(x) = \sqrt{x}$

Solution

$$f(a) = f(b)$$

$$\sqrt{a} = \sqrt{b}$$

$$(\sqrt{a})^2 = (\sqrt{b})^2$$
Square both sides
$$a = b$$

... The function is one-to-one

Determine whether the function is one-to-one:

 $f(x) = \sqrt[3]{x}$

Solution

$$f(a) = f(b)$$

$$\sqrt[3]{a} = \sqrt[3]{b}$$

$$(\sqrt[3]{a})^3 = (\sqrt[3]{b})^3$$
cube both sides
$$a = b$$

.. The function is one-to-one

Exercise

Determine whether the function is one-to-one:

f(x) = |x|

Solution

$$1 \neq -1$$

$$|1| \neq |-1|$$

$$1 \neq 1 \text{ (false)}$$

... The function is *not* one-to-one

Exercise

Determine whether the function is one-to-one $f(x) = \frac{2}{x+3}$

Solution

$$f(a) = f(b)$$

$$\frac{2}{a+3} = \frac{2}{b+3}$$

$$2(b+3) = 2(a+3)$$

$$b+3 = a+3$$

$$a = b$$

$$f \text{ is one-to-one}$$

Exercise

Determine whether the function is one-to-one $f(x) = (x-2)^3$

$$f(\mathbf{a}) = f(\mathbf{b})$$

$$(a-2)^3 = (b-2)^3$$

$$\left[(a-2)^3\right]^{1/3} = \left[(b-2)^3\right]^{1/3}$$

$$a-2=b-2$$

$$a=b$$
Add 2 on both sides

∴ Function is one-to-one

Exercise

Determine whether the function is one-to-one $y = x^2 + 2$

Solution

$$f(a) = f(b)$$

$$a^{2} + 2 = b^{2} + 2$$

$$a^{2} = b^{2}$$

$$a = \pm \sqrt{b^{2}}$$
Subtract 2

: Function is *not* a one-to-one

The inverse function doesn't exist.

Exercise

Determine whether the function is one-to-one $f(x) = \frac{x+1}{x-3}$

Solution

$$f(a) = f(b)$$

$$\frac{a+1}{a-3} = \frac{b+1}{b-3}$$

$$(a+1)(b-3) = (b+1)(a-3)$$

$$ab-3a+b-3 = ab-3b+a-3$$

$$-4a = -4b$$

$$a = b$$
Cross multiplication
$$Divide by -4$$

∴ Function is *one*-to-*one*

Given the function $f(x) = (x+8)^3$

- a) Find $f^{-1}(x)$
- b) Graph f and f^{-1} in the same rectangular coordinate system
- c) Find the domain and the range of f and f^{-1}

Solution

a)
$$y = (x+8)^3$$

Replace f(x) with y

$$x = (y+8)^3$$

Interchange x and y

$$(x)^{1/3} = ((y+8)^3)^{1/3}$$

$$x^{1/3} = y + 8$$

Subtract 8 from both sides.

$$f^{-1}(x) = x^{1/3} - 8$$

b)

c) Domain of $f = \text{Range of } f^{-1}: (-\infty, \infty)$

Range of $f = \text{Domain of } f^{-1}: (-\infty, \infty)$

For the given function $f(x) = \frac{2x}{x-1}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{2a}{a-1} = \frac{2b}{b-1}$$

$$2ab - 2a = 2ab - 2b$$

$$-2a = -2b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{2x}{x-1}$$

$$x = \frac{2y}{y-1}$$

$$xy - x = 2y$$

$$(x-2)y = x$$

$$y = \frac{x}{x-2} = f^{-1}(x)$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{1\}$ Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{2\}$

Exercise

For the given function $f(x) = \frac{x}{x-2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$\frac{a}{a-2} = \frac{b}{b-2}$$

$$ab - 2a = ab - 2b$$

$$-2a = -2b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{x}{x-2}$$

$$x = \frac{y}{y-2}$$

$$xy - 2x = y$$

$$(x-1)y = 2x$$

$$f^{-1}(x) = \frac{2x}{x-1}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{2\}$

Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{1\}$

Exercise

 $f(x) = \frac{x+1}{x-1}$ For the given function

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a)$$
 $f(a) = f(b)$

$$\frac{a+1}{a-1} = \frac{b+1}{b-1}$$

$$ab - a + b - 1 = ab - b + a - 1$$

$$-2a = -2b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{x+1}{x-1}$$

$$x = \frac{y+1}{y-1}$$

$$xy - x = y + 1$$

$$(x-1)y = x+1$$

$$f^{-1}(x) = \frac{x+1}{x-1}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{1\}$

Range of $f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{1\}$

Exercise
$$f(x) = \frac{2x+1}{x+3}$$

For the given function

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a) \quad f(a) = f(b)$$

$$\frac{2a+1}{a+3} = \frac{2b+1}{b+3}$$

$$2ab + 6a + b + 3 = 2ab + 6b + a + 3$$

$$5a = 5b$$

$$a = b$$

$$\therefore$$
 $f(x)$ is one-to-one function.

b)
$$y = \frac{2x+1}{x+3}$$

$$x = \frac{2y+1}{y+3}$$

$$xy + 3x = 2y + 1$$

$$(x-2)y = -3x + 1$$

$$f^{-1}(x) = \frac{-3x+1}{x-2}$$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{-3\}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{2\}$$

For the given function $f(x) = \frac{3x-1}{x-2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{3a-1}{a-2} = \frac{3b-1}{b-2}$$

$$3ab-6a-b+2 = 3ab-6b-a+2$$

$$-5a = -5b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{3x-1}{x-2}$$

 $x = \frac{3y-1}{y-2}$
 $xy-2x = 3y-1$
 $(x-3)y = 2x-1$
 $f^{-1}(x) = \frac{2x-1}{x-3}$

c) Domain of $f^{-1}(x) = \text{Range of } f(x)$: $\mathbb{R} - \{2\}$ Range of $f^{-1}(x) = \text{Domain of } f(x)$: $\mathbb{R} - \{3\}$

Exercise

For the given function $f(x) = \frac{3x - 2}{x + 4}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$\frac{3a-2}{a+4} = \frac{3b-2}{b+4}$$

$$3ab+12a-2b-8=3ab+12b-2a-8$$

$$14a = 14b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{3x-2}{x+4}$$

$$x = \frac{3y - 2}{y + 4}$$

$$xy + 4x = 3y - 2$$

$$(x-3)y = -4x-2$$

$$f^{-1}(x) = \frac{-4x-2}{x-3}$$

c) Domain of
$$f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{-4\}$$

Range of
$$f^{-1}(x) = \text{Domain of } f(x) : \mathbb{R} - \{3\}$$

Exercise

For the given function $f(x) = \frac{-3x - 2}{x + 4}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(a) = f(b)$$

$$\frac{-3a-2}{a+4} = \frac{-3b-2}{b+4}$$

$$-3ab-12a-2b-8 = -3ab-12b-2a-8$$

$$-10a = -10b$$

$$\underline{a} = \underline{b}$$

 \therefore f(x) is one-to-one function.

b)
$$y = \frac{-3x-2}{x+4}$$

$$x = \frac{-3y - 2}{y + 4}$$

$$xy + 4x = -3y - 2$$

$$(x+3)y = -4x - 2$$

$$f^{-1}(x) = \frac{-4x-2}{x+3}$$

c) Domain of $f^{-1}(x) = \text{Range of } f(x) : \mathbb{R} - \{-4\}$

Range of $f^{-1}(x) = \text{Domain of } f(x): \mathbb{R} - \{-3\}$

Exercise

For the given function $f(x) = \sqrt{x-1}$ $x \ge 1$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a) f(a) = f(b) $\sqrt{a-1} = \sqrt{b-1}$ $(\sqrt{a-1})^{2} = (\sqrt{b-1})^{2}$ a-1=b-1 a=b

f(x) is one-to-one function.

b) $y = \sqrt{x-1}$ $x = \sqrt{y-1}$ $x^{2} = y-1$ $y = x^{2}+1$ $f^{-1}(x) = x^{2}+1 \quad x \ge 0$

c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $[1, \infty)$

Range of $f(x) = \text{Domain of } f^{-1}(x)$: $[0, \infty)$

Exercise

For the given function $f(x) = \sqrt{2-x}$ $x \le 2$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\sqrt{2-a} = \sqrt{2-b}$$

$$(\sqrt{2-a})^2 = (\sqrt{2-b})^2$$

$$2-a = 2-b$$

$$a = b$$

 \therefore f(x) is one-to-one function.

b)
$$y = \sqrt{2 - x}$$

$$x = \sqrt{2 - y}$$

$$x^2 = 2 - y$$

$$y = 2 - x^2$$

$$f^{-1}(x) = 2 - x^2 \quad x \ge 0$$

c) Domain of $f(x) = \text{Range of } f^{-1}(x)$: $(-\infty, 2]$

Range of $f(x) = \text{Domain of } f^{-1}(x)$: $[0, \infty)$

Exercise

For the given function $f(x) = x^2 + 4x$ $x \ge -2$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$x_{vertex} = -\frac{4}{2}$$
$$= -2$$

$$f(-2) = 4 - 8$$
$$= -4 \mid$$

 $Vertex = \begin{pmatrix} -2, & -4 \end{pmatrix}$

$$b) \quad y = x^2 + 4x$$

$$x = y^2 + 4y$$

$$y^2 + 4y - x = 0$$

$$y = \frac{-4 \pm \sqrt{16 + 4x}}{2}$$

$$=\frac{-4\pm2\sqrt{4+x}}{2}$$

$$= -2 + \sqrt{x+4}$$

$$f^{-1}(x) = -2 + \sqrt{x+4} \quad x \ge 0$$

Range of
$$f(x) = \text{Domain of } f^{-1}(x)$$
: $[-4, \infty)$

For the given function f(x) = 3x + 5

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a)$$
 $f(a) = f(b)$

$$3a + 5 = 3b + 5$$

$$3a = 3b$$

$$a = b$$

$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 3x + 5$$

$$x = 3y + 5$$

$$x - 5 = 3y$$

$$\frac{x-5}{3} = y$$

$$f^{-1}(x) = \frac{x-5}{3}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

Interchange x and y

Solve for y

For the given function $f(x) = \frac{1}{3x - 2}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{1}{3a-2} = \frac{1}{3b-2}$$

$$3b - 2 = 3a - 2$$

$$3b = 3a$$

$$a = b$$

$$\therefore f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{1}{3x - 2}$$

$$x = \frac{1}{3y - 2}$$

Interchange x and y

$$x(3y-2)=1$$

Solve for y

$$3xy - 2x = 1$$

$$3xy = 1 + 2x$$

$$f^{-1}(x) = \frac{1+2x}{3x}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{2}{3} \right\}$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \{0\}$

Exercise

For the given function $f(x) = \frac{3x+2}{2x-5}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a)$$
 $f(a) = f(b)$

$$\frac{3a+2}{2a-5} = \frac{3b+2}{2b-5}$$

$$6ab - 15a + 4b - 10 = 6ab - 15b + 4a - 10$$

$$19a = 19b$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

b)
$$y = \frac{3x+2}{2x-5}$$

 $x = \frac{3y+2}{2y-5}$

$$2xy - 5x = 2y + 2$$

Solve for y

$$(2x-3)y = 5x + 2$$

$$f^{-1}(x) = \frac{5x+2}{2x-3}$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \left\{ \frac{5}{2} \right\}$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R} - \left\{ \frac{3}{2} \right\}$

Exercise

For the given function

$$f(x) = \frac{4x}{x - 2}$$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a) \quad f(a) = f(b)$$

$$\frac{4a}{a-2} = \frac{4b}{b-2}$$

$$4ab - 8a = 4ab - 8b$$

$$-8a = -8b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{4x}{x-2}$$

$$x = \frac{4y}{y - 2}$$

$$xy - 2x = 4y$$

$$(x-4)y=2x$$

$$f^{-1}(x) = \frac{2x}{x-4}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R} - \{2\}$ Range of $f^{-1} = \text{Domain of } f : \mathbb{R} - \{4\}$

Exercise

For the given function $f(x) = 2 - 3x^2$; $x \le 0$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$
$$2 - 3a^{2} = 2 - 3b^{2}$$
$$-3a^{2} = -3b^{2}$$
$$a^{2} = b^{2}$$
$$a = b \text{ since } x \le 0$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 2 - 3x^2$$

 $x = 2 - 3y^2$
 $3y^2 = 2 - x$
 $y^2 = \frac{2 - x}{3}$
 $f^{-1}(x) = -\sqrt{\frac{2 - x}{3}}$ Since $x < 0$

c) Domain of
$$f^{-1}$$
 = Range of $f: \mathbb{R}$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R}$

Exercise

For the given function $f(x) = 2x^3 - 5$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a) \quad f(a) = f(b)$$

$$2a^3 - 5 = 2b^3 - 5$$
$$a^3 = b^3$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = 2x^3 - 5$$

 $y + 5 = 2x^3$
 $\frac{y+5}{2} = x^3$
 $f^{-1}(x) = \sqrt[3]{\frac{x+5}{2}}$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R}$$

Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

For the given function $f(x) = \sqrt{3-x}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a) \quad f(\mathbf{a}) = f(\mathbf{b})$$

$$\left(\sqrt{3-a}\right)^2 = \left(\sqrt{3-b}\right)^2$$

$$3 - a = 3 - b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

$$b) \quad y = \sqrt{3 - x}$$

$$y \geq 0$$

$$y = \sqrt{3 - x}$$

$$y^2 = 3 - x$$

$$x = 3 - v^2$$

$$x \geq 0$$

$$f^{-1}(x) = 3 - x^2$$

c) Domain of f^{-1} = Range of $f: (-\infty, 3]$

Range of
$$f^{-1}$$
 = Domain of $f: [0, \infty)$

For the given function $f(x) = \sqrt[3]{x} + 1$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$
$$\sqrt[3]{a} + 1 = \sqrt[3]{b} + 1$$
$$\left(\sqrt[3]{a}\right)^3 = \left(\sqrt[3]{b}\right)^3$$

$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \sqrt[3]{x} + 1$$
$$y = \sqrt[3]{x} + 1$$
$$y - 1 = \sqrt[3]{x}$$
$$(y - 1)^3 = x$$
$$f^{-1}(x) = (x - 1)^3$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R}$$

Range of $f^{-1} = \text{Domain of } f : \mathbb{R}$

Exercise

For the given function $f(x) = (x^3 + 1)^5$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$(a^3 + 1)^5 = (b^3 + 1)^5$$

$$a^3 + 1 = b^3 + 1$$

$$a^3 = b^3$$

$$a = b$$

$$f(x) \text{ is } 1-1 & f^{-1}(x) \text{ exists}$$

$$b) \quad y = \left(x^3 + 1\right)^5$$

$$y = \left(x^3 + 1\right)^5$$

$$\sqrt[5]{y} = x^3 + 1$$

$$\sqrt[5]{y} - 1 = x^3$$

$$x = \sqrt[3]{\sqrt[5]{y} - 1}$$

$$f^{-1}(x) = \sqrt[3]{\sqrt[5]{x} - 1}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R}$

Range of f^{-1} = Domain of $f: \mathbb{R}$

Exercise

For the given function $f(x) = x^2 - 6x$; $x \ge 3$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

 $a^2 - 6a = b^2 - 6b$
 $a^2 - b^2 = 6a - 6b$
 $(a - b)(a + b) = 6(a - b)$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = x^2 - 6x$$

 $x^2 - 6x - y = 0$

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-y)}}{2(1)}$$

$$= \frac{6 \pm 4\sqrt{9 + y}}{2}$$

$$= 3 \pm \sqrt{9 + y}$$

Since $x \ge 3 \implies$ we can select $x = 3 + \sqrt{y+9}$

$$\therefore f^{-1}(x) = 3 + \sqrt{x+9}$$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R} : \geq 3$ Range of f^{-1} = Domain of $f: \ge -9$

Exercise

For the given function $f(x) = (x-2)^3$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

$$a)$$
 $f(a) = f(b)$

$$(a-2)^3 = (b-2)^3$$

$$a-2=b-2$$

$$a=b$$

$$a = l$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = (x-2)^3$$

$$x = (y - 2)^3$$

$$x^{1/3} = \left[(y-2)^3 \right]^{1/3}$$

$$x^{1/3} = y - 2$$

$$\sqrt[3]{x} + 2 = y$$

$$f^{-1}(x) = \sqrt[3]{x} + 2$$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R}$$

Range of
$$f^{-1}$$
 = Domain of $f: \mathbb{R}$

Exercise

 $f(x) = \frac{x+1}{x-3}$ For the given function

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

$$a) \quad f(a) = f(b)$$

$$\frac{a+1}{a-3} = \frac{b+1}{b-3}$$

$$ab-3a+b-3 = ab-3b+a-3$$

$$-4a = -4b$$

$$a = b$$

:
$$f(x)$$
 is **1–1 &** $f^{-1}(x)$ exists

b)
$$y = \frac{x+1}{x-3}$$

 $x = \frac{y+1}{y-3}$
 $x(y-3) = y+1$
 $xy-3x = y+1$
 $xy - y = 3x+1$
 $y(x-1) = 3x+1$
 $y = \frac{3x+1}{x-1} = f^{-1}(x)$

c) Domain of
$$f^{-1} = \text{Range of } f : \mathbb{R} - \{3\}$$

Range of $f^{-1} = \text{Domain of } f : \mathbb{R} - \{1\}$

For the given function $f(x) = \frac{2x+1}{x-3}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

a)
$$f(a) = f(b)$$

$$\frac{2a+1}{a-3} = \frac{2b+1}{b-3}$$

$$2ab-6a+b-3 = 2ab-6b+a-3$$

$$-7a = -7b$$

$$a = b$$

:
$$f(x)$$
 is 1–1 & $f^{-1}(x)$ exists

$$b) \quad y = \frac{2x+1}{x-3}$$

$$x = \frac{2y+1}{y-3}$$

$$xy - 3x = 2y+1$$

$$y(x-2) = 3x+1$$

 $f^{-1}(x) = \frac{3x+1}{x-2}$

c) Domain of $f^{-1} = \text{Range of } f : \mathbb{R} - \{3\}$

Range of f^{-1} = Domain of $f: \mathbb{R} - \{2\}$

Exercise

Simplify the expression
$$\frac{\left(e^x + e^{-x}\right)\left(e^x + e^{-x}\right) - \left(e^x - e^{-x}\right)\left(e^x - e^{-x}\right)}{\left(e^x + e^{-x}\right)^2}$$

Solution

$$\frac{\left(e^{x} + e^{-x}\right)\left(e^{x} + e^{-x}\right) - \left(e^{x} - e^{-x}\right)\left(e^{x} - e^{-x}\right)}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{\left(e^{x} + e^{-x}\right)^{2} - \left(e^{x} - e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{\left[\left(e^{x} + e^{-x}\right) - \left(e^{x} - e^{-x}\right)\right]\left[\left(e^{x} + e^{-x}\right) + \left(e^{x} - e^{-x}\right)\right]}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{\left(e^{x} + e^{-x}\right) - \left(e^{x} - e^{-x}\right)\left(e^{x} + e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{\left(2e^{-x}\right)\left(2e^{x}\right)}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{\left(2e^{-x}\right)\left(2e^{x}\right)}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{e^{-x}e^{x} = e^{0} = \frac{4}{\left(e^{x} + e^{-x}\right)^{2}}$$

Exercise

Simplify the expression
$$\frac{\left(e^{x}-e^{-x}\right)^{2}-\left(e^{x}+e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}}$$

Solution

$$\frac{\left(e^{x} - e^{-x}\right)^{2} - \left(e^{x} + e^{-x}\right)^{2}}{\left(e^{x} + e^{-x}\right)^{2}} = \frac{\left[\left(e^{x} - e^{-x}\right) - \left(e^{x} + e^{-x}\right)\right]\left[\left(e^{x} - e^{-x}\right) + \left(e^{x} + e^{-x}\right)\right]}{\left(e^{x} + e^{-x}\right)^{2}}$$

179

$$= \frac{\left(e^{x} - e^{-x} - e^{x} - e^{-x}\right)\left(e^{x} - e^{-x} + e^{x} + e^{-x}\right)}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{\left(-2e^{-x}\right)\left(2e^{x}\right)}{\left(e^{x} + e^{-x}\right)^{2}}$$

$$= \frac{-4}{\left(e^{x} + e^{-x}\right)^{2}}$$

Write the equation in its equivalent logarithmic form $2^6 = 64$ **Solution**

$$6 = \log_2 64$$

Exercise

Write the equation in its equivalent logarithmic form $5^4 = 625$ **Solution**

4 1-- (25

$$4 = \log_5 625$$

Exercise

Write the equation in its equivalent logarithmic form $5^{-3} = \frac{1}{125}$

Solution

$$-3 = \log_5 \frac{1}{125}$$

Exercise

Write the equation in its equivalent logarithmic form $\sqrt[3]{64} = 4$

$$64^{1/3} = 4$$

$$\log_{64} = \frac{1}{3}$$

Write the equation in its equivalent logarithmic form $b^3 = 343$

Solution

$$\log_b 343 = 3$$

Exercise

Write the equation in its equivalent logarithmic form $8^y = 300$

Solution

$$\log_8 300 = y$$

Exercise

Write the equation in its equivalent logarithmic form: $\sqrt[n]{x} = y$

Solution

$$\left(x\right)^{1/n} = y$$

$$\log_{x}(y) = \frac{1}{n}$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$

Solution

$$\log_{\frac{2}{3}}\left(\frac{27}{8}\right) = -3$$

Exercise

Write the equation in its equivalent logarithmic form: $\left(\frac{1}{2}\right)^{-5} = 32$

Solution

$$\log_{\frac{1}{2}}(32) = -5$$

Exercise

Write the equation in its equivalent logarithmic form: $e^{x-2} = 2y$

$$x - 2 = \ln |2y|$$

Write the equation in its equivalent logarithmic form: e = 3x

Solution

$$1 = \ln |3x|$$

Exercise

Write the equation in its equivalent logarithmic form: $\sqrt[3]{e^{2x}} = y$

Solution

$$e^{2x/3} = y$$

$$\frac{2x}{3} = \ln|y|$$

Exercise

Write the equation in its equivalent exponential form $\log_5 125 = y$

Solution

$$5^y = 125$$

Exercise

Write the equation in its equivalent exponential form $\log_4 16 = x$

Solution

$$16 = 4^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_5 \frac{1}{5} = x$

Solution

$$\frac{1}{5} = 5^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_2 \frac{1}{8} = x$

$$\frac{1}{8} = 2^x$$

Write the equation in its equivalent exponential form $\log_6 \sqrt{6} = x$

Solution

$$\sqrt{6} = 6^{x}$$

Exercise

Write the equation in its equivalent exponential form $\log_3 \frac{1}{\sqrt{3}} = x$

Solution

$$3^{-1/2} = 3^x$$

Exercise

Write the equation in its equivalent exponential form: $6 = \log_2 64$

Solution

$$6 = \log_2 \frac{64}{6} \iff 2^6 = \frac{64}{6}$$

Exercise

Write the equation in its equivalent exponential form: $2 = \log_9 x$

Solution

$$2 = \log_9 x \iff \underline{x = 2^9}$$

Exercise

Write the equation in its equivalent exponential form: $\log_{\sqrt{3}} 81 = 8$

Solution

$$\log_{\sqrt{3}} 81 = 8 \iff 81 = \left(\sqrt{3}\right)^8$$

Exercise

Write the equation in its equivalent exponential form: $\log_4 \frac{1}{64} = -3$

Solution

$$\log_4 \frac{1}{64} = -3 \quad \Leftrightarrow \quad \frac{1}{64} = x^{-3}$$

Exercise

Write the equation in its equivalent exponential form: $\log_4 26 = y$

Solution

$$\log_4 26 = y \iff 26 = 4^y$$

Exercise

Write the equation in its equivalent exponential form: $\ln M = c$

Solution

$$\ln M = c \iff \underline{M = e^{c}}$$

Exercise

Evaluate the expression without using a calculator: $\log_4 16$

Solution

$$\log_4 16 = \log_4 4^2 \qquad \qquad \log_b b^x = x$$

$$= 2 \rfloor$$

Exercise

Evaluate the expression without using a calculator: $\log_2 \frac{1}{8}$

Solution

$$\log_{2} \frac{1}{8} = \log_{2} \frac{1}{2^{3}}$$

$$= \log_{2} 2^{-3}$$

$$= -3$$

Exercise

Evaluate the expression without using a calculator: $\log_6 \sqrt{6}$

Solution

$$\log_6 \sqrt{6} = \log_6 6^{1/2}$$
$$= \frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \frac{1}{\sqrt{3}}$

Solution

$$\log_3 \frac{1}{\sqrt{3}} = \log_3 \frac{1}{3^{1/2}}$$

$$= \log_3 3^{-1/2} \qquad \log_b b^x = x$$

$$= -\frac{1}{2}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt[7]{3}$

Solution

$$\log_3 3^{1/7} = x$$

$$3^{1/7} = 3^x$$

$$x = \frac{1}{7}$$

$$\log_3 \sqrt[7]{3} = \frac{1}{7}$$

Exercise

Evaluate the expression without using a calculator: $\log_3 \sqrt{9}$

Solution

$$\log_3 \sqrt{9} = \log_3 3 \qquad \log_b b^x = x$$

$$= 1$$

Exercise

Evaluate the expression without using a calculator: $\log_{\frac{1}{2}} \sqrt{\frac{1}{2}}$

Solution

$$\log_{\frac{1}{2}} \sqrt{\frac{1}{2}} = \log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{\frac{1}{2}} \qquad \log_b b^x = x$$

$$= \frac{1}{2}$$

Exercise

Simplify $\log_5 1$

Solution

$$\log_5 1 = 0$$

Exercise

Simplify $\log_7 7^2$

Solution

$$\log_7 7^2 = 2$$

Exercise

Simplify $3^{\log_3 8}$

$$\frac{\log_3 8}{3} = 8$$

Simplify $10^{\log 3}$

Solution

 $10^{\log 3} = 3$

Exercise

Simplify $e^{2+\ln 3}$

Solution

 $e^{2+\ln 3} = e^2 e^{\ln 3}$

 $=3e^2$

Exercise

Simplify $\ln e^{-3}$

Solution

 $\ln e^{-3} = -3$

Exercise

Simplify $\ln e^{x-5}$

Solution

 $\ln e^{x-5} = x-5$

Exercise

Simplify $\log_b b^n$

Solution

 $\log_b b^n = n$

Simplify
$$\ln e^{x^2 + 3x}$$

Solution

$$\ln e^{x^2 + 3x} = x^2 + 3x$$

Exercise

Find the domain of $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Solution

$$e^x + e^{-x} > 0$$

Domain: \mathbb{R}

Exercise

Find the domain of $f(x) = \frac{e^{|x|}}{1 + e^x}$

Solution

$$1 + e^x > 0$$

Domain: \mathbb{R}

Exercise

Find the domain of $f(x) = \sqrt{1 - e^x}$

Solution

$$1 - e^x \ge 0$$

$$e^{x} \leq 1$$

$$x \le \ln 1$$

Domain: $x \le 0$

Exercise

Find the domain of $f(x) = \sqrt{e^x - e^{-x}}$

$$e^x - e^{-x} \ge 0$$

$$e^x \ge e^{-x}$$

$$e^{2x} \ge 1$$

$$2x \ge \ln 1$$

Domain: $x \ge 0$

Exercise

Find the domain of $f(x) = \log_5(x+4)$

Solution

Domain: x > -4

Exercise

Find the domain of $f(x) = \log_5 (x+6)$

Solution

Domain: x > -6

Exercise

Find the domain of $f(x) = \log(2 - x)$

Solution

Domain: x < 2

Exercise

Find the domain of $f(x) = \log(7 - x)$

Solution

Domain: x < 7

Exercise

Find the domain of $f(x) = \ln(x-2)^2$

Solution

Domain: $\mathbb{R} - \{2\}$ $(-\infty, 2) \cup (2, \infty)$

Find the domain of $f(x) = \ln(x-7)^2$

Solution

Domain: $\mathbb{R} - \{7\}$

 $(-\infty, 7) \cup (7, \infty)$

Exercise

Find the domain of $f(x) = \log(x^2 - 4x - 12)$

Solution

$$x^2 - 4x - 12 > 0$$

$$x = \frac{4 \pm \sqrt{16 + 48}}{2}$$

$$= \begin{cases} \frac{4-8}{2} = -2\\ \frac{4+8}{2} = 6 \end{cases}$$

$$x < -2$$
 $x > 6$

Domain:
$$x < -2$$
 $x > 6$ $(-\infty, -2) \cup (6, \infty)$

Exercise

Find the domain of $f(x) = \log(\frac{x-2}{x+5})$

Solution

$$\begin{cases} x \neq 2 \\ x \neq -5 \end{cases}$$

$$x < -5$$
 $x > 2$

Domain:
$$x < -5$$
 $x > 2$ $(-\infty, -5) \cup (2, \infty)$

Exercise

Find the domain of $f(x) = \log(\frac{3-x}{x-2})$

\int	x	≠	3	
	x	≠	2	

Domain: 2 < x < 3

0 2		3
_	+	_

Exercise

Find the domain of $f(x) = \ln(x^2 - 9)$

Solution

$$x^2 - 9 > 0$$

Domain: x < -3 x > 3

Exercise

Find the domain of $f(x) = \ln\left(\frac{x^2}{x-4}\right)$

Solution

$$\frac{x^2}{x-4} > 0$$

$$x^2 \to \mathbb{R}$$

Domain: x > 4

Exercise

Find the domain of $f(x) = \log_3(x^3 - x)$

Solution

$$x^3 - x > 0$$

$$x = 0, 0, 1$$

Domain: x > 1

Exercise

Find the domain of $f(x) = \log \sqrt{2x - 5}$

$$2x - 5 > 0$$

Domain:
$$x > \frac{5}{2}$$

Find the domain of
$$f(x) = 3\ln(5x - 6)$$

Solution

$$5x - 6 > 0$$

Domain:
$$x > \frac{6}{5}$$

Exercise

Find the domain of
$$f(x) = \log\left(\frac{x}{x-2}\right)$$

Solution

$$\frac{x}{x-2} > 0$$

$$x = 0, 2$$

Domain:
$$x < 0$$
 $x > 2$

Exercise

Find the domain of
$$f(x) = \log(4 - x^2)$$

Solution

$$4 - x^2 > 0$$

$$4 - x^2 = 0 \quad \rightarrow \quad x = \pm 2$$

Domain:
$$-2 < x < 2$$

Exercise

Find the domain of
$$f(x) = \ln(x^2 + 4)$$

$$x^2 + 4$$
 always positive.

Domain:
$$\mathbb{R}$$

Find the domain of $f(x) = \ln |4x - 8|$

Solution

$$4x - 8 = 0 \rightarrow x = 2$$

Domain: $\mathbb{R}-\{2\}$

Exercise

Find the domain of $f(x) = \ln |5 - x|$

Solution

$$5 - x = 0 \rightarrow x = 5$$

Domain: $\mathbb{R}-\{5\}$

Exercise

Find the domain of $f(x) = \ln(x-4)^2$

Solution

$$x-4=0 \rightarrow x=4$$

Domain: $\mathbb{R}-\{4\}$

Exercise

Find the domain of $f(x) = \ln(x^2 - 4)$

Solution

$$x^2 - 4 > 0$$

$$x^2 - 4 = 0 \quad \rightarrow \quad x = \pm 2$$

Domain: x < -2 x > 2

Exercise

Find the domain of $f(x) = \ln(x^2 - 4x + 3)$

$$x^2 - 4x + 3 = 0 \rightarrow x = 1, 3$$

$$x^2 - 4x + 3 > 0$$

Domain: x < 1 x > 3

Exercise

Find the domain of $f(x) = \ln(2x^2 - 5x + 3)$

Solution

$$2x^2 - 5x + 3 = 0 \rightarrow x = 1, \frac{3}{2}$$

$$2x^2 - 5x + 3 > 0$$

Domain: x < 1 $x > \frac{3}{2}$

Exercise

Find the domain of $f(x) = \log(x^2 + 4x + 3)$

Solution

$$x^2 + 4x + 3 = 0 \rightarrow \underline{x = -1, -3}$$

$$x^2 + 4x + 3 > 0$$

Domain: x < -3 x > -1

Exercise

Find the domain of $f(x) = \ln(x^4 - x^2)$

Solution

$$x^4 - x^2 = 0$$

$$x^2\left(x^2-1\right)=0$$

$$x = 0, 0, \pm 1$$

$$x^4 - x^2 > 0$$

Domain: x < -1 x > 1

-1	0,0) 1	2
+	1	_	+

Sketch the graph: $f(x) = 2^x + 3$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(3, \infty)$

X	f(x)
-1	3.5
0	4
1	5
2	7

Exercise

Sketch the graph: $f(x) = 2^{3-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

X	f(x)
1	4
2	2
0	8

Exercise

Sketch the graph: $f(x) = \left(\frac{2}{5}\right)^{-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
-1	0.4
0	1
1	2.5

Sketch the graph: $f(x) = -\left(\frac{1}{2}\right)^x + 4$

Solution

Asymptote: y = 4

Domain: $(-\infty, \infty)$

Range: $(-\infty, 4)$

х	f(x)
-2	0
-1	2
0	3

Exercise

Sketch the graph of $f(x) = 4^x$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
0	1
1	1

Exercise

Sketch the graph of $f(x) = 2 - 4^x$

Solution

Asymptote: y = 2

Domain: $(-\infty, \infty)$

Range: $(-\infty, 2)$

x	f(x)
0	1
1	-2

Sketch the graph of $f(x) = -3 + 4^{x-1}$

Solution

Asymptote: y = -3

Domain: $(-\infty, \infty)$

Range: $(-3, \infty)$

х	f(x)
1	-2
2	1

Exercise

Sketch the graph of $f(x) = 1 + \left(\frac{1}{4}\right)^{x+1}$

Solution

Asymptote: y = 1

Domain: $(-\infty, \infty)$

Range: $(1, \infty)$

x	f(x)
-1	2
0	$\frac{5}{4}$

Exercise

Sketch the graph of $f(x) = e^{x-2}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
2	1
3	2.7

Sketch the graph of $f(x) = 3 - e^{x-2}$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(-\infty, 3)$

x	f(x)
2	2
3	.3

Exercise

Sketch the graph of $f(x) = e^{x+4}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
-4	1
_3	2.7

Exercise

Sketch the graph of $f(x) = 2 + e^{x-1}$

Solution

Asymptote: y = 2

Domain: $(-\infty, \infty)$

Range: $(2, \infty)$

Х	f(x)
1	3
2	4.7

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log_{A} (x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-2-	
3	0
4	.5

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log_{\frac{1}{4}} |x|$

Solution

Asymptote: x = 0

Domain: $(-\infty, 0) \cup (0, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-0	
±1	0
<u>+4</u>	1

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = (\log_4 x) - 2$

Solution

Asymptote: x = 0

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-0	
1	0
4	-1

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \log(3-x)$

Solution

Asymptote: x = 3

Domain: $(-\infty, 3)$

Range: $(-\infty, \infty)$

x	f(x)
-3- -	
2	0

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = 2 - \log(x + 2)$

Solution

Asymptote: x = -2

Domain: $(-2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
2	
-1	2

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \ln(x-2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-2	
3	0

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = \ln(3-x)$

Solution

Asymptote: x = 3

Domain: $(-\infty, 3)$

Range: $(-\infty, \infty)$

x	f(x)
-3	
2	0

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = 2 + \ln(x+1)$

Solution

Asymptote: x = -1

Domain: $(-1, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
_=1	
0	2

Exercise

Find the *asymptote*, *domain*, and *range* of the given function. Then, sketch the graph $f(x) = 1 - \ln(x - 2)$

Solution

Asymptote: x = 2

Domain: $(2, \infty)$

Range: $(-\infty, \infty)$

x	f(x)
-2-	
3	1

On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed w, in feet per second, of a person living in a city of population P, in *thousands*, is given by the function

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.

Solution

124,848 = 124.848 thousand
a)
$$w(124.848) = 0.37 \ln(124.848) + 0.05$$

 $\approx 1.8 \text{ ft/sec}$

b)
$$w(1, 236.249) = 0.37 \ln(1, 236.249) + 0.05$$

 $\approx 2.7 \text{ ft/sec}$

Exercise

The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

Solution

$$d = 10\log \frac{10000I_0}{I_0}$$
= 10\log 10000
= 40 \ db \]

Exercise

Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1); t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?

a)
$$S(0) = 78 - 15 \log(1)$$

 $\approx 78\%$

b) After 4 months

$$S(4) = 78 - 15 \log(5)$$

$$\approx 67.5\%$$

After 24 months

$$S(24) = 78 - 15 \log(25)$$

$$\approx 57\%$$

Exercise

Starting on the left side of a standard 88–*key* piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

- a) Determine the frequency of middle C, key number 40 on an 88-key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?

Solution

a)
$$f(40) = (27.5) 2^{\frac{40-1}{12}}$$

 ≈ 261.63

the frequency of middle C is ≈ 262 vibrations per second.

b)
$$f(42) = (27.5) 2^{(41/12)}$$

 ≈ 293.66

The difference between the frequency of middle C and D is: $293.66 - 261.66 \approx 32$

$$f(44) = (27.5) 2^{(43/12)}$$

 ≈ 329.63

 \therefore The differences are *not* the same since the function is *not* linear function.

