COL703: Logic for Computer Science (Aug-Nov 2022)

Lectures 13 & 14 (Predicate Logic)

Kumar Madhukar

madhukar@cse.iitd.ac.in

September 22nd and 29th, 2022

The need for a richer language

- the logical aspects of natural and artificial languages are much richer
 - than what propositional logic can capture
 - limited to sentence components like not, and, or, if ... then
- consider the following declarative sentence
 - Every student is younger than some instructor.
- a propositional atom denoting this fails to capture the finer logical structure of this sentence.

The need for a richer language

Every student is younger than some instructor.

this is about being a student, being an instructor, and being younger than somebody else

we would like a mechanism to express these with their logical relationships

this is what we will use predicates for

Predicates

- we can use predicates S, I, and Y
- S(John) John is a student
- I(Paul) Paul is an instructor
- Y(John, Paul) John is younger than Paul
- the meaning of these symbols must be specified exactly

Predicates

• can we now express "Every student is younger than some instructor."

Predicates

- can we now express "Every student is younger than some instructor."
- we don't want to write down every instance of S(.)
- use variables as place holders for concrete values
- S(x) x is a student
- I(x) x is an instructor
- Y(x, y) x is younger than y

Quantifiers

• can we now express "Every student is younger than some instructor."

Quantifiers

- can we now express "Every student is younger than some instructor."
- Every student is younger than some instructor.
- \forall (for all) and \exists (there exists)

Quantifiers

- can we now express "Every student is younger than some instructor."
- Every student is younger than some instructor.
- ∀ (for all) and ∃ (there exists)
- the quantifiers always come attached to a variable
- $\forall x \text{ (for all } x) \text{ and } \exists z \text{ (there exists } z)$

Example

• can we now express "Every student is younger than some instructor."

Example

- can we now express "Every student is younger than some instructor."
- $\forall x \ (S(x) \to (\exists y \ (I(y) \land Y(x,y))))$
- for every x, if x is a student, then there is some y such that y is an instructor and x is younger than y
- predicates can have any (finite) number of arguments (arity)

- Not all birds can fly.
- B(x) x is a bird
- F(x) x can fly

- Not all birds can fly.
- B(x) x is a bird
- F(x) x can fly
- $\neg(\forall x \ (B(x) \rightarrow F(x)))$

- Not all birds can fly.
- B(x) x is a bird
- F(x) x can fly
- $\neg(\forall x (B(x) \rightarrow F(x)))$
- alternatively, $\exists x \ (B(x) \land \neg F(x))$

- Not all birds can fly.
- B(x) x is a bird
- F(x) x can fly
- $\neg(\forall x (B(x) \rightarrow F(x)))$
- alternatively, $\exists x \ (B(x) \land \neg F(x))$
- does this formula evaluate to true in the world we currently live in?

Every child is younger than its mother.

Every child is younger than its mother.

$$\forall x \ \forall y \ ((C(x) \land M(x,y)) \rightarrow Y(x,y))$$

Andy and Paul have the same maternal grandmother.

Andy and Paul have the same maternal grandmother.

$$\forall x \ \forall y \ \forall u \ \forall v \ ((M(x,y) \land M(y,Andy) \land M(u,v) \land M(v,Paul)) \rightarrow x = u)$$

Andy and Paul have the same maternal grandmother.

$$\forall x \ \forall y \ \forall u \ \forall v \ ((M(x,y) \land M(y,Andy) \land M(u,v) \land M(v,Paul)) \rightarrow x = u)$$

- function symbols can help us avoid the inelegent encoding
- equality has been used as a special predicate

As a formal language

there are two sorts of things involved in a predicate logic formula:

objects that we are talking about – constants, variables, m(a), g(x, y)

expressions denoting objects are called terms

the other sort of things are formulas

Terms

- Any variable is a term.
- If $c \in \mathcal{F}$ is a nullary function, then c is a term.
- If t_1, t_2, \ldots, t_n are terms and $f \in \mathcal{F}$ has arity n > 0, then $f(t_1, t_2, \ldots, t_n)$ is a term.
- Nothing else is a term.

In Backus Naur form we may write

$$t ::= x \mid c \mid f(t, \dots, t)$$

where x ranges over a set of variables $\operatorname{\mathsf{var}}, c$ over nullary function symbols in \mathcal{F} , and f over those elements of \mathcal{F} with arity n > 0.

Formulas

- If $P \in \mathcal{P}$ is a predicate symbol of arity $n \geq 1$, and if t_1, t_2, \ldots, t_n are terms over \mathcal{F} , then $P(t_1, t_2, \ldots, t_n)$ is a formula.
- If ϕ is a formula, then so is $(\neg \phi)$.
- If ϕ and ψ are formulas, then so are $(\phi \land \psi)$, $(\phi \lor \psi)$ and $(\phi \to \psi)$.
- If ϕ is a formula and x is a variable, then $(\forall x \phi)$ and $(\exists x \phi)$ are formulas.
- Nothing else is a formula.

Note how the arguments given to predicates are always terms. This can also be seen in the Backus Naur form (BNF) for predicate logic:

$$\phi ::= P(t_1, t_2, \dots, t_n) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\forall x \phi) \mid (\exists x \phi)$$

Binding properties

- \neg , $\forall y$, $\exists y$ bind most tightly
- then \vee and \wedge
- ullet then ullet, which is right-associative

Every son of my father is my brother.

Parse trees

$$\forall x \ ((P(x) \to Q(x)) \land S(x,y))$$

Free and bound variables

$$(\forall x \ (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Substitution

given a variable x, a term t, and a formula ϕ

we define $\phi[t/x]$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t

Substitution: example

example: $((\forall x \ (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y)))[f(x,y)/x]$

Undesired side-effects of substitution

substitution must be avoided if t is not free for x in ϕ

Proof theory (natural deduction rules)

(from the book by Huth and Ryan, pages 107-117)

Quantifier Equivalence

(from the book by Huth and Ryan, pages 117-122)

Next week

- Semantics of FOL
- Normal forms, Herbrand theorem, Ground resolution
- Undecidability result

Thank you!