Examen AG¹

Student: Grupa:

- 1. Se consideră graful $G=pK_n$ $(p,n\in\mathbb{N},\ p\geqslant 2,\ n\geqslant 3)$. Unul din vârfurile lui G se unește cu câte un vârf din fiecare graf complet care nu-l conține, obținându-se un graf conex H. Să se determine numărul arborilor parțiali ai grafului H.
- 2. Fie G=(V,E) un graf dat prin liste de adiacență, cu n vârfuri și cu gradul maxim 2. Descrieți un algoritm de complexitate timp $\mathcal{O}(n)$ pentru aflarea numărului de stabilitate, $\alpha(G)$, al acestui graf.
- 3. Fie D=(V,E) un digraf. Se consideră digraful $D_c=(V_c,E_c)$, unde V_c este mulțimea componentelor tari conexe ale lui D, iar $(C_1,C_2)\in E_c$ dacă și numai dacă C_1 și C_2 sunt componente tari conexe diferite ale lui D și există $v\in C_1$, $u\in C_2$ astfel încât $vu\in E$. Demonstrați că D_c este un digraf aciclic (nu are circuite).
- 4. Demonstrați că pentru un graf oarecare G se poate construi în timp polinomial un graf bipartit H astfel încât G este hamiltonian dacă și numai dacă H este hamiltonian.
- 5. Fie x^* un flux de valoare maximă în rețeaua R = (G, s, t, c). Să se arate că se poate construi în $\mathcal{O}(|V| + |E|)$ o secțiune (S^*, T^*) astfel încât $v(x^*) = c(S^*, T^*)$.

 $^{^{1}}$ Baza = 10 puncte, fiecare exercițiu = 10 puncte. Soluțiile se scriu pe propriile foi.

Examen AG²

Student: Grupa:

- 1. Demonstrați că graful lui Petersen nu este planar folosind formula lui Euler (și corolariile formulei din curs).
- **2.** Fie G=(V,E) un graf dat prin liste de adiacență, cu n vârfuri și cu gradul maxim 2. Descrieți un algoritm care să determine ordinul maxim al unui subgraf conex al lui G.
- 3. Fie G=(V,E) un graf conex și $w:E\to\mathbb{R}$ o funcÂčie de cost pe muchiile sale. Presupunem că G este reprezentat prin liste de adiacență. Descrieți un algoritm de complexitate timp $\mathcal{O}(|E|\log|V|)$ care să testeze dacă, pentru două noduri date, $x,y\in V$, există un drum de la x la y în G cu toate muchiile de același cost.
- 4. Valoarea fluxului maxim în rețeaua R=(G,s,t,c) este v. Rețeaua R' se obține din R considerând capacitatea fiecărui arc $e\in E(G)$ ca fiind $c'(e)=\lambda\cdot c(e)$, unde λ este un număr real pozitiv. Este adevărat că valoarea fluxului maxim în rețeaua R' este $\lambda\cdot v$? (Justificați.)
- 5. Demonstrați că dacă problema de mai jos se poate rezolva în timp polinomial, atunci se poate determina în timp polinomial numărul de stabilitate al unui graf oarecare.

Instanță: G un graf și $k \in \mathbb{N}^*$.

Întrebare: Există în G o clică de cardinal cel puţin k?

 $^{^2}$ Baza = 10 puncte, fiecare exercițiu = 10 puncte. Soluțiile se scriu pe propriile foi.