10 клас

Задача 1

Обладнання

Групове:

- туалетний папір;

Індивідуальне:

- пластикова трубка (довжиною приблизно 25 см);
- лінійка;
- ділянка парти, вкрита пакувальною плівкою;
- пластиковий стаканчик із мильним розчином (близько 20 мл).

Завдання

Визначте середню товщину стінки мильної бульбашки максимально можливого розміру, яка видувається на покритій плівкою поверхні парти.

Проаналізуйте похибки, які вносяться різними факторами та оцініть величини цих похибок.

Зміст основних етапів роботи

- 1. Набирається в трубку мильний розчин і визначається його об'єм $V_p = \pi d^2 h/4$, вимірюванням лінійкою внутрішнього діаметру трубки (отримане значення $d=2,5\pm0,5$ мм) та довжини стовпчика мильної рідини l (залежно від кількості набраної речовини звичайно $l\sim4\div8$ мм).
- 2. Видуваємо мильну бульбашку на поверхні парти (на плівці) та вимірюємо її діаметр за допомогою лінійки. Середній максимальний розмір бульбашки, при якому вона зберігається відносно тривалий час D=80 \pm 20 мм. При більших значеннях D час «життя» бульбашки не завжди достатній навіть для вимірювання діаметру.
- 3. На основі цих даних визначається об'єм оболонки мильної бульбашки. Вважатимемо, що бульбашка має форму напівсфери, причому вся речовина нижньої напівсфери розподілилась по поверхні парти (плівки), тобто на площі πR^2 (R=D/2). Також можна вважати коректним припущення про приблизну однорідність товщини плівки на всіх поверхнях бульбашки, тоді весь об'єм оболонки бульбашки складатиме $V=3\pi R^2 h$. Оболонка верхньої напівсфери матиме об'єм $V=2\pi R^2 h$, де h шукана товщина плівки.
- 4. Розрахунок товщини h за формулою $h=V_{\rm p}/3\pi R^2$ дає в першому наближенні значення в межах: $h=V/4\pi R^2\approx 0,001\div 0,0001$ мм, але цей діапазон може бути ще розширений при врахуванні неоднорідності стінок бульбашки та неточності вимірювань висоти стовпчика рідини в трубці. Таким чином, товщина стінок стабільної бульбашки може утримуватись в межах $h\sim 0,1\div 1$ мкм, поступово зменшуючись при стіканні рідини з верхньої напівкулі.
- 5. Перелік основних факторів, що впливають на точність вимірів:
 - 1) невизначеність товщини нижньої стінки напівсфери (яка торкається поверхні парти);
- 2) неточність визначення кількості рідини, що пішла на створення бульбашки як через неточність вимірів діаметру трубки і довжини стовпчика, так і через змочування рідиною поверхонь, яких вона торкається і внаслідок чого частина рідини залишається в трубці та на плівці;
- 3) неточність вимірювання діаметру бульбашки, включаючи відхилення форми бульбашки від строго напівсферичної;
- 4) постійне стікання рідини бульбашки, що призводить до безперервного зменшення товщини бульбашки.

Залача 2

Обладнання

Групове

- Годинник з великою секундною стрілкою (2-3 на групу);
- мікрометр (2-3 на групу).

Індивідуальне

- Штатив з горизонтально закріпленим стержнем;
- пляшка пластикова об'ємом 0,5 л з двома отворами у кришці;
- нитки;
- лінійка;
- відрізок мідного дроту (товщина лакової ізоляції 25 мкм);
- важок масою 100 г.

Завдання

- 1. Підвісивши пляшку на зробленому з ниток біфілярному (двонитковому) підвісі, визначте момент інерції *І* порожньої пляшки відносно її осі симетрії.
- 2. Визначте модуль пружності міді для деформації зсуву G.

У звіті наведіть:

- теоретичне обґрунтування запропонованої Вами експериментальної методики;
- план проведення вимірів;
- заходи, які Ви запровадили для забезпечення як найменшої похибки вимірювань;
- таблицю з вихідними даними, проміжними та кінцевими результатами;
- оцінку похибки вимірювань.

Можливий варіант розв'язку задачі №2

Частина 1. Визначення моменту інерції пляшки.

В основі метода визначення моменту інерції пляшки лежить аналіз її малих крутильних коливань на біфілярному підвісі з двох паралельних ниток. При закручуванні пляшки на невеликий кут φ навкруги вертикальної осі роль квазіупружних сил, що повертають пляшку до положення рівноваги, виконують горизонтальні складові сил пружності ниток, на яких підвішена пляшка. Ці сили утворюють з вертикаллю невеликий кут α , а модуль кожної з них практично дорівнює половині сили тяжіння, що діють на пляшку. Момент цих сил M дорівнює

$$M = -2 \cdot \frac{1}{2} mg \cdot \alpha \cdot r .$$

3 геометричних міркувань $\alpha = \frac{r}{i} \varphi$.

Тому
$$M = -\frac{mgr^2}{l} \cdot \varphi .$$

Користуючись другим законом Ньютона для обертального руху $M = I \cdot \varepsilon$, знаходимо кутове прискорення пляшки ε

$$\varepsilon = -\frac{mgr^2}{Il} \cdot \varphi$$

З цього виразу випливає, що при малих кутах закручування рух пляшки представлятиме собою гармонічні коливання з циклічною частотою

$$\omega = r \cdot \sqrt{\frac{mg}{Il}} \ .$$

Враховуючи, що період коливань $T = \frac{2\pi}{\omega}$, отримуємо для моменту інерції пляшки

$$I = \frac{mg}{l} \cdot \left(\frac{rT}{2\pi}\right)^2$$

Результати пробних вимірювань:

$$m=0.024\,\mathrm{kr}, \qquad r=9.7\,\mathrm{mm}, \qquad l=352\,\mathrm{mm}, \qquad T=2.77\,\mathrm{c}, \qquad g=9.81\,\frac{\mathrm{m}}{\mathrm{c}^2}.$$

Для визначення маси пляшки використовувався важок масою 100 г та лінійка у якості важеля. Період коливань визначався по часу 50 повних коливань за допомогою годинника з великою секундною стрілкою.

Результат розрахунку моменту інерції пляшки $I = 1,22 \cdot 10^{-5} \ \mathrm{kg \cdot m^2}$.

Частина 2. Визначення модуля пружності міді для деформації зсуву G.

Прикріплюємо відрізок мідного дроту довжиною l та радіусом r знизу до пляшки, зробивши маленьку петлю через отвори у корку. Верхній кінець дроту закріплюємо у штативі. Закручуємо пляшку навкруги осі симетрії на невеликий кут, акуратно відпускаємо та вимірюємо період крутильних коливань пляшки T.

Момент сили, що повертає пляшку до положення рівноваги,

$$M = -G \cdot \frac{\pi r^4}{2l} \cdot \varphi ,$$

За другим законом Ньютона для обертального руху кутове прискорення пляшки

$$\varepsilon = -G \cdot \frac{\pi r^4}{2l \cdot I} \cdot \varphi ,$$

Період коливань пляшки задовольняє співвідношенню

$$\left(\frac{2\pi}{T}\right)^2 = G \cdot \frac{\pi r^4}{2l \cdot l},$$

З цього для модуля пружності для деформації зсуву остаточно отримуємо

$$G = \frac{8\pi \cdot l \cdot I}{T^2 r^4}$$

Результати пробних вимірювань:

$$l = 1,22 \cdot 10^{-5} \text{ kg} \cdot \text{m}^2$$
, $r = 0,20 \text{ mm}$, $l = 345 \text{ mm}$, $T = 1,17 \text{ c}$.

Для визначення радіусу дроту його діаметр вимірювали мікрометром.

Розрахунки дають значення модуля пружності міді для деформації зсуву $G = 4.8 \cdot 10^{10} \, \text{Пa} = 48 \, \text{ГПa}$.