Wearables (2)

CSE 162 – Mobile Computing
Hua Huang
Department of Computer Science and Engineering
University of California, Merced

In this lecture

Energy conservation techniques in Android

Risq: a wearable smoking detection system

- Battery energy is most constraining resource on mobile device
- The problem is even more acute in the wearable devices, where the sizes are even smaller.
- Most resources (CPU, RAM, WiFi speed, etc) increasing exponentially except battery energy

Figure 1. Improvements in laptop technology from 1990–2001.

Battery Conservation in mobile devices

- Three things to help
 - Make apps Lazy First
 - Take advantage of platform features
 - Use tools to identify battery draining components

Lazy First

Reduce

Are there redundant operations your app can cut out?

Defer

Does an app need to perform an action right away?

Coalesce

 Can work be batched, instead of putting the device into an active state many times?

Android platform features

Doze and App Standby:

- Two power saving features
- Manage how apps behave when a device is not connected to a power source

Doze

- Defers background CPU and network activities when the device is unused for a long time
- App Standby
 - Defers network activity when user has not recently interacted

Doze Mode

- Starts when a device is unplugged and stationary for a period of time, with the screen off
- Periodically, the system exits Doze to let apps complete their deferred activities, such as running pending syncs, jobs, alarms, and network access

Android App Standby

- The system puts an app into Standby mode and defers its network access if for a certain period of time,
 - the user has not explicitly launched the app, and
 - the app doesn't have a foreground process (activity), and
 - the app doesn't generate notifications, and
 - the app is not an active device admin app.
- When the phone is plugged to power, apps are released from standby state
- If the device is idle for a long period of time, idle apps access network around once a day

Battery Historian: A tool to analyze power use in Android

provides a system-wide visualization of various app and system behaviors, along with their correlation against battery consumption over time.

A closeup look

Battery historian: App-specific view

- Provides tables for the following data:
 - The app's estimated power use on the device.
 - Network information.
 - Wakelocks.
 - Services.
 - Process info.

Display the ranking of app powers

App specific data

System Stats History Stats	App Stats						
							Сор
Application				com.curlytail.pugpower			
Version Code				117			
UID				10372			
Device estimated power use				3.66%			
Total number of wakeup alarms				0			
Network Information:Wakelocks:							
Show 5 ▼ entries					Searc	ch:	Сор
Wakelock Name	♦ Full Time	♦ Full Count	Partial Time	Partial Count	♦ Window Time	♦ Window Count	
com.curlytail.treatsIntentService		0	1h 4m 34s 323ms	7		0	
alarm		0	177ms	8		0	
Showing 1 to 2 of 2 entries						Previous 1	Next

Other cases where Battery Historian can help

Examples:

- Firing wakeup alarms overly frequently (every 10 seconds or less).
- Continuously holding a GPS lock.
- Scheduling jobs every 30 seconds or less.
- Scheduling syncs every 30 seconds or less.
- Using the cellular radio more frequently than you expect.

Recognizing Smoking Gestures with Wearable Inertial Measurements Unit (IMU)

Smoking

- According to CDC, smoking is responsible for
 - 440,000 deaths in the United States
 - \$96 billion in medical costs
 - \$97 billion in lost productivity
- Over a billion smokers worldwide!

Smoking Cessation

- 40% smokers try to quit each year.
- Most efforts end in relapse.
- Well-timed interventions help!
 - Less than 10 % success rate
 - Requires presence of a ubiquitous agent

RisQ: A Mobile Solution for Intervention

Wristband

- Equipped with 9-axis Inertial Measurement Unit (IMU)
- Real-time smoking detection

Hand-to-mouth gesture characteristics

IMU Signals for various hand-to-mouth gestures

Outline

- Introduction
- Challenges
- Data Collection using IMUs
- Data Processing Pipeline
- Evaluation
- Conclusion

1: Orientation-dependent Characteristics

Signal characteristics change with user's body orientation

2: Unknown Gesture Boundaries

How to identify gesture boundaries in a passive manner?

3: Collecting labels for training

How to collect fine-grained labels for training a classification model?

Outline

- Introduction
- Challenges
- Data Collection using IMUs
- Data Processing Pipeline
- Evaluation
- Conclusion

Quaternion recap

- Mathematical entity to represent orientation of an object in 3D space
- $q = q_s + q_x i + q_y j + q_z k$
- One scalar and 3 imaginary components

 $q = \cos(a/2) + x \sin(a/2) i + y \sin(a/2) j + z \sin(a/2) k$

3D coordinates using Quaternions

- Point **p** w.r.t. IMU's local frame of reference
- IMU device orientation in the form of a quaternion q
- Coordinates of **p** w.r.t world frame of reference

$$q = \cos(\mathbf{a}/2) + \mathbf{x} \sin(\mathbf{a}/2) i + \mathbf{y} \sin(\mathbf{a}/2) j + \mathbf{z} \sin(\mathbf{a}/2) k$$

 $q' = \cos(\mathbf{a}/2) - \mathbf{x} \sin(\mathbf{a}/2) l - \mathbf{y} \sin(\mathbf{a}/2) j - \mathbf{z} \sin(\mathbf{a}/2) k$

Wrist Trajectory using Quaternions

Visualizing gestures using a wristband and an armband equipped with IMUs

Outline

- Introduction
- Challenges
- Data Collection using IMUs
- Data Processing Pipeline
- Evaluation
- Conclusion

- Orientation Independent Features
 - A set of 34 spatio-temporal features
- Duration-based features (4)
 - Gesture duration, time to raise arm, etc.
- Velocity-based features (6)
 - Maximum wrist speed, etc.
- Displacement-based features (6)
 - Vertical displacement, XY displacement, etc.
- Angle-based features (18)
 - Angle with the gravity, angular velocity, etc.

Gesture Classification

Session Detection

Outline

- Introduction
- Challenges
- Data Collection using IMUs
- Data Processing Pipeline
- Evaluation
- Conclusion

Evaluation Dataset

- Dataset
 - 28 hours of data from 15 volunteers
 - 17 smoking sessions (369 puffs)
 - 10 eating sessions (252 food bites)
 - 6 drinking sessions

Smoking Session Detection

Statistic	Avg ± Std Dev
Duration of smoking sessions	326.21 ± 19.65 s
Error in estimation	65.7 ± 30.6 s

Leave-one-session-out Cross-validation

Smoking Gesture Recognition

Machaniam	Performance Metrics				
Mechanism	Accuracy	Recall	Precision	FPR	
Random Forests	93.00%	0.85	0.72	0.023	
CRF	95.74%	0.81	0.91	0.005	

10-fold Cross-validation

- 369 puffs
- 252 bites
- 4976 other gestures

CRF improves precision at a cost of slight drop in recall

User Study

- Recruited 4 subjects for 3 days.
- Used our smoking detection app developed for Android OS.

User Study

Rarely missed any smoking session.

Eating Gesture Recognition

Mechanism	Eating 9	Sessions	All data		
Wechanism	Recall	Precision	Recall	Precision	
Bite-Counter	0.60	0.57	0.65	0.03	
Random Forests	0.92	0.78	0.69	0.64	
CRF	N/A	N/A	0.64	0.78	

- Eating gesture recognition
- Bite-Counter detects food bites when user explicitly indicates that eating session is in progress.

System Overhead

Statistic	Value
Time for segmentation	92.34ms
Time for feature extraction	79.88ms
Time for CRF inference	5.89ms
Memory	12-20MB
Binary Size	1.7MB

Measured on Samsung Galaxy Nexus

Conclusion

- An algorithm to recognize hand-gestures using a wristband
 - Demonstrated an application to detect smoking in real-time.
- Wearable accessories present a great platform to sense healthrelated behaviors like smoking, eating, and so on.
- Remarkable opportunity to create effective intervention strategies using wearables.

Optimizing Performance

- Use a cost function during RF classifier training to assign penalty for missing a smoking gesture.
- High cost results in lower precision
- Low cost results in lower recall and low FPR