Hausaufgabenblatt 1

Lineare Algebra 1 WS 22/23

Eingereicht von Yuchen Guo (Matr.Nr. 480788) und Meng Zhang (Matr.Nr. 484981). Tutor*in: Name

Aufgabe 1.1

(i)

Beweis. Wir setzen zur Abkürzung $S(n) = \sum_{k=0}^{n} k^3$ und zeigen die Gleichung $S(n) = \frac{n^2(n+1)^2}{4}$ durch vollständige Induktion.

- (i) Induktions-Anfang n=0. Es ist S(0)=0 und $\frac{0^2(0+1)^2}{4}=0,$ also gilt die Formel für n=0.
- (ii) Induktions-Schritt $n \to n+1$. Wir nehmen an, dass $S(n) = \frac{n^2(n+1)^2}{4}$ gilt für alle $n \in \mathbb{N}$ (Induktions-Voraussetzung) und müssen zeigen, dass daraus die Formel $S(n+1) = \frac{(n+1)^2(n+2)^2}{4}$ folgt. Dies sieht man so:

 $S(n+1) = S(n) + (n+1)^3$ $= \frac{n^2(n+1)^2}{4} + (n+1)^3$ $= \frac{n^2(n+1)^2}{4} + \frac{4(n+1)^3}{4}$ $= \frac{(n+1)^2(n^2 + 4(n+1))}{4}$ $= \frac{(n+1)^2(n+2)^2}{4}.$

Induktions-Voraussetzung

(ii)

Beweis. Wir setzen zur Abkürzung $S(n)=\prod_{k=1}^n k^k$ und zeigen die Ungleichheit $S(n)\leq n^{\frac{n(n+1)}{2}}$ durch vollständige Induktion.

- (i) Induktions-Anfang n=1. Es ist S(1)=1 und $n^{\frac{1(1+1)}{2}}=1,$ also gilt die Formel für n=1.
- (ii) Induktions-Schritt $n \to n+1$. Wir nehmen an, dass $S(n) \le n^{\frac{n(n+1)}{2}}$ gilt für alle $n \in \mathbb{N}, n \ge 1$ (Induktions-Voraussetzung) und müssen zeigen, dass daraus die Formel $S(n+1) \le (n+1)^{\frac{(n+1)(n+2)}{2}}$ folgt.

Dies sieht man so:

$$\begin{split} S(n+1) &= S(n) \cdot (n+1)^{(n+1)} \\ &\leq n^{\frac{n(n+1)}{2}} \cdot (n+1)^{(n+1)} & \text{Induktions-Voraussetzung} \\ &= n^{\frac{n^2+n}{2}} (n+1)^{(n+1)} \\ &= n^{\frac{n^2}{2}} \cdot n^{\frac{n}{2}} \cdot (n+1)^n \cdot (n+1) \\ &< (n+1)^{\frac{n^2}{2}} \cdot (n+1)^{\frac{n}{2}} \cdot (n+1)^n \cdot (n+1) & \text{Lemma Aufgabe 1.1.ii.1} \\ &= (n+1)^{\frac{(n+1)(n+2)}{2}} \end{split}$$

Bemerkung n(n+1) und (n+1)(n+2) sind durch 2 teilbar.

Lemma Aufgabe 1.1.ii.1 Für alle $n, k \in \mathbb{N} \setminus \{0\}$ gilt

$$n^k < (n+1)^k.$$

Beweis. Diese Behauptung folgt aus der Anordnungs-Axiome, nämlich:

$$0 \le x < y \quad \text{und} \quad 0 \le a < b \implies ax < by.$$

(i) Induktions-Anfang k = 1.

Es ist $n^1 < (n+1)^1$, also gilt die Formel für k=1.

(ii) Induktions-Schritt $k \to k+1$.

Wir nehmen an, dass $n^k < (n+1)^k$ gilt für alle $k \in \mathbb{N}, k \ge 1$ (Induktions-Voraussetzung) und müssen zeigen, dass daraus die Formel $n^{k+1} < (n+1)^{k+1}$ folgt.

$$n^{k+1} = n^k \cdot n$$

$$< n \cdot (n+1)^k$$

$$< (n+1) \cdot (n+1)^k$$

$$= (n+1)^{k+1}$$

Aufgabe 1.2

(i)

Zuerst formen wir die Aussage explizit in Form $A \implies B$ um.

A: n ist eine natürliche Zahl.

B: n und n+1 sind teilerfremd.

2

Beweis. Die Beweisführung erfolgt nach der Methode des Widerspruchsbeweises, das heißt, es wird gezeigt, dass die Annahme, die natürliche Zahlen n und n+1 nicht teilerfremd sind, zu einem Widerspruch führt. Angenommen, dass n und n+1 nicht teilerfremd sind und es somit einer Teiler $k \in \mathbb{N}$ gibt. Seien $p, q \in \mathbb{N}$, dann gilt $n = p \cdot k$ und $n+1 = q \cdot k$. Insbesondere,

$$(n+1) - n = (p-q) \cdot k = 1$$

Es existiert aber nur eine Lösung in der Menge der natürlichen Zahlen, die diese Gleichung erfüllt, nämlich

$$p - q = 1 \quad \wedge \quad k = 1.$$

Daraus folgt, dass k = 1 gilt und im Widerspruch zur Annahme n und n + 1 teilerfremd sind.

(ii)

A: Es gibt keine zwei natürliche Zahlen $a, b \in \mathbb{N}$.

 $B: a^2 - b^2 = 10.$

Beweis. Es gilt für alle $a, k \in \mathbb{N}, k \geq 2$, die Aussagen

$$(a+k)^2 - a^2 > (a+1)^2 - a^2 \tag{1}$$

$$(a+1)^2 - a^2 > a^2 - (a-1)^2 \tag{2}$$

Aus (1) folgt, dass $a^2 - b^2$ ist genau dann minimum, wenn b = a - 1 ist. Aus (2) folgt, dass je größer a ist, desto größer $a^2 - b^2$ ist. Es gilt $6^2 - 5^2 = 11$ und $5^2 - 4^2 = 9$. Wir wissen auch von (1) und (2), dass für alle andere Kombinationen von zwei natürlichen Zahlen, die Differenz ihrer Quadrate immer größer als 11 oder kleiner als 9 ist. Deshalb gibt es keine zwei natürlichen Zahlen, sodass die Differenz ihrer Quadrate gleich 10 ist.

(iii)

A: Für alle $a, b, c \in \mathbb{R} \setminus \mathbb{Q}$

$$B: a+b \in \mathbb{R} \setminus \mathbb{Q} \quad \lor \quad a+c \in \mathbb{R} \setminus \mathbb{Q} \quad \lor \quad b+c \in \mathbb{R} \setminus \mathbb{Q}.$$

Die Beweisführung erfolgt nach der Methode des indirekten Beweises, das heißt, es wird gezeigt, dass die Aussage $\neg B \implies \neg A$ gilt.

Beweis. $\neg B$: Es gibt $a, b, c \in \mathbb{R}$. Die Summen a + b, a + c, b + c sind rational.

 $\neg A: a, b, c \in \mathbb{Q}.$

Angenommen, $p_{1,2,3}$, $q_{1,2,3}$ sind ganze Zahlen, p_n und q_n sind teilerfremd.

$$a + b = \frac{p_1}{q_1}$$

$$a + c = \frac{p_2}{q_2}$$

$$b + c = \frac{p_3}{q_3}$$

$$b = \frac{1}{2}(a+b) + (b+c) - (a+c)$$

$$= \frac{p_1q_2q_3 + p_3q_1q_2 - p_2q_1q_3}{q_1q_2q_3}$$

Damit sind a, b, c rational, also $\neg A$ ist wahr. $\neg B \implies \neg A$ ist bewiesen.

Aufgabe 1.3

(i)

A	B	C	$A \vee B$	$A \lor B) \land C$	$A \wedge C$	$B \wedge C$	$(A \wedge C) \vee (B \wedge C)$
W	w	W	w	w	w	W	W
W	W	f	w	f	f	f	f
w	f	W	w	w	w	f	w
w	\mathbf{f}	f	w	f	f	f	f
\mathbf{f}	W	W	w	w	f	w	w
\mathbf{f}	W	f	w	f	f	f	f
\mathbf{f}	f	W	f	f	f	f	f
\mathbf{f}	f	f	f	f	f	f	f

(ii)

Aus Wahrheitstafel ...

A	B	$A \vee B$	$\neg A \wedge B$	$A \vee \neg B$	$A \wedge (A \vee B)$	$A \lor (\neg A \land B)$	$(A \vee B) \wedge (A \vee \neg B)$
w	W	w	f	w	W	w	W
w	f	w	f	W	w	\mathbf{w}	W
f	w	w	W	f	\mathbf{f}	w	\mathbf{f}
\mathbf{f}	f	\mathbf{f}	f	W	\mathbf{f}	f	\mathbf{f}

 \dots folgt:

$$A \wedge (A \vee B) = A$$

$$A \vee (\neg A \wedge B) = A \vee B$$

$$(A \vee B) \wedge (A \vee \neg B) = A$$

Aufgabe 1.4

A(n)	Daisy wohnt hier	Gustav schüchtern	Farbe des Autos	Geschwindigkeit
Do	W	f	\mathbf{r}	r
Ti	\mathbf{f}	f	g	r
Tri	\mathbf{f}	W	b	r
Tra	\mathbf{f}	f	b	1
Nr.	m	n	p	q

Angenommen, dass zwei Aussagen von Donald sind wahr, dann

• m, n wahr;

dann Aussagen p, q von Tri müssen wahr sein. also w,f,b,r ist wahr. In diesem Fall hätte Don 3 wahre Aussagen gemacht.

- m, p wahr; dann Aussagen n, q von Tri und Tra müssen gleichzeitig wahr sein, nicht möglich.
- m, q wahr; dann Aussagen n, p von Tra müssen wahr sein, Don hätte 3 wahre Aussagen.
- n, p wahr; dann Aussagen m, q von Tri müssen wahr sein, Don hätte 3 wahre Aussagen.
- $\bullet\,$ n, q
 wahr; dann wäre f f g/b r wahr. Dann hätte Ti 3 wahre Aussagen.
- p, q wahr; dann hätte Tri 3 wahre Aussagen gemacht.

Alle Möglichkeiten werden ausgeschlossen. Dagobert hat sich vertan.