Propositional Logic Resolution and DPLL

Mario Alviano

University of Calabria, Italy

A.Y. 2018/2019

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

1 Eliminate \top , \bot , \rightarrow , \leftrightarrow

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:

- 1 Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$
- 4 Apply distributivity equivalence:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$
 - $\neg (\phi \land \psi) \equiv \neg \psi \lor \neg \phi$
- 4 Apply distributivity equivalence:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalences:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \psi \land \neg \phi$
- 4 Apply distributivity equivalence:

Order of 2-4 does not matter!

$$\neg((A \to B) \land (B \leftrightarrow C))$$

$$\neg((A \to B) \land (B \leftrightarrow C))$$

$$\neg((A \to B) \land (B \leftrightarrow C))$$
1
$$\neg((A \to B) \land (B \leftrightarrow C)) \equiv \neg((\neg A \lor B) \land (B \leftrightarrow C))$$
1
$$\neg((\neg A \lor B) \land (B \leftrightarrow C)) \equiv \neg((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B)))$$
3
$$\neg((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \neg(\neg A \lor B) \lor \neg((\neg B \lor C) \land (\neg C \lor B))$$

$$\neg((A \to B) \land (B \leftrightarrow C))$$

$$\neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$$

$$\neg((A \to B) \land (B \leftrightarrow C))$$

$$\neg ((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$$

$$(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$$

$$\neg ((A \rightarrow B) \land (B \leftrightarrow C))$$

$$((\neg A \lor B) \land ((\neg B \lor C) \land (\neg C \lor B))) \equiv \\ \neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$$

$$\neg (\neg A \lor B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$$

$$(\neg \neg A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B))$$

$$(A \land \neg B) \lor \neg ((\neg B \lor C) \land (\neg C \lor B)) \equiv (A \land \neg B) \lor (\neg (\neg B \lor C) \lor \neg (\neg C \lor B))$$

$$(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$$

- $(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$
- $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$

- $(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$
- $(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$
- $(A \land \neg B) \lor ((B \land \neg C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$

$$(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$$

$$(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$$

$$(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$$

$$(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$$

So far so good!

With the exception of 1, we are reducing the size of the formula

$$(A \land \neg B) \lor (\neg(\neg B \lor C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg(\neg C \lor B))$$

$$(A \land \neg B) \lor ((\neg \neg B \land \neg C) \lor \neg (\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor \neg (\neg C \lor B))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor \neg(\neg C \lor B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B))$$

$$(A \land \neg B) \lor ((B \land \neg C) \lor (\neg \neg C \land \neg B)) \equiv (A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B))$$

So far so good!

With the exception of 1, we are reducing the size of the formula

4
$$(A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv (A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$$

- 4 $(A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv (A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

- $(A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv$ $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

- $(A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv$ $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

- $(A \land \neg B) \lor ((B \land \neg C) \lor (C \land \neg B)) \equiv$ $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor ((B \land \neg C) \lor (C \land \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

CHALLENGE ACCEPTED

4
$$(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$$

- 4 $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))))$
- 4 $((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$

- 4 $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg A \lor (\neg A \lor \neg B)))) \land (\neg A \lor (\neg A \lor \neg B)))$

- 4 $(A \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv ((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $((A \lor ((B \lor C) \land (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B)))$
- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land (A \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg A \lor (\neg C \lor \neg B))))$

$$\begin{array}{l} 4 & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv \\ & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \end{array}$$

- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))))$
- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))))$

- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))))$
- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))))$
- $\begin{array}{l} 4 & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \equiv \\ & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \end{array}$

- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor ((B \land \neg C) \lor (C \land \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B)))$
- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \land \neg C) \lor C) \land ((B \land \neg C) \lor \neg B))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B)))$
- $\begin{array}{l} 4 & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \land \neg C) \lor \neg B))) \equiv \\ & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \\ & ((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \\ \end{array}$

4
$$(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B))))$$

- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B))))$
- 4 $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor (\neg C \lor \neg C))))$

- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (\neg B \lor (((B \lor C) \land (\neg C \lor C)) \land ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B))))$
- $(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land ((\neg B \lor ((B \lor C) \land (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor (\neg C \lor \neg C))))$

$$\begin{array}{l} 4 & (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B)) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land ((\neg B \lor (\neg C \lor \neg B)))) \land (\neg B \lor (\neg C \lor \neg B)))) \end{aligned}$$

4
$$(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B)))) \land (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B))) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land ((\neg B \lor (\neg C \lor \neg B)))) \land (\neg B \lor (\neg C \lor \neg B))))$$

Flattening

$$(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B)$$

4
$$(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B)))) \land (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B))) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land ((\neg B \lor (\neg C \lor \neg B)))) \land (\neg B \lor (\neg C \lor \neg B))))$$

Flattening

$$(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B)$$

Eliminate clauses containing A and $\neg A$ (those are equivalent to \top and are hence neutral for \land)

$$(A \lor B \lor C) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor \neg C)$$

4
$$(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B))) \land (\neg C \lor \neg B)))) \equiv (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor \neg C)))) \land ((\neg B \lor (\neg C \lor \neg B)))) \land (\neg B \lor (\neg C \lor \neg B))))$$

Flattening

$$(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor \neg B) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor B \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor B \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C \lor \neg C) \land (\neg B \lor \neg C) \land (\neg C \lor \neg C) \land (\neg C) \land (\neg C \lor \neg C) \land (\neg C \lor$$

Eliminate clauses containing A and $\neg A$ (those are equivalent to \top and are hence neutral for \land)

$$(A \lor B \lor C) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor \neg C)$$

4
$$(((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor C))) \land (\neg B \lor ((B \lor \neg B)))) = (((A \lor (B \lor C)) \land (A \lor (\neg C \lor C))) \land ((A \lor (B \lor \neg B)) \land (A \lor (\neg C \lor \neg B)))) \land (((\neg B \lor (B \lor C)) \land (\neg B \lor (\neg C \lor \neg C)))) \land ((\neg B \lor (\neg C \lor \neg B)))))$$

Flattening

$$(A \lor B \lor C) \land (A \lor \neg C \lor C) \land (A \lor B \lor \neg B) \land (A \lor \neg C \lor \neg B) \land (\neg B \lor B \lor C) \land (\neg B \lor \neg C \lor C) \land (\neg B \lor B \lor \neg B) \land (\neg B \lor \neg C \lor C)$$

Eliminate clauses containing A and $\neg A$ (those are equivalent to \top and are hence neutral for \land)

Be careful! This algorithm outputs formulas of exponential size in general

(1)

YOU DON'T SAY?

Yes, I say!

Yes, I say!

Yes, I say!

Seriously

YOU DON'T SAY?

Yes, I say!

Seriously

Yes, I say!

Seriously

Yes, I say!

Seriously

CNF transformation in practice

Yes, I say!

13/48

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

$$(\odot = \vee) \neg X \vee L_1 \vee L_2 X \vee \neg L_1, X \vee \neg L_2$$

$$[X \rightarrow L_1 \lor L_2]$$
$$[L_1 \lor L_2 \rightarrow X]$$

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

$$(\odot = \vee) \neg X \lor L_1 \lor L_2 \qquad [X \to L_1 \lor L_2]$$

$$X \lor \neg L_1, X \lor \neg L_2 \qquad [L_1 \lor L_2 \to X]$$

$$(\odot = \wedge) \neg X \lor L_1, \neg X \lor L_2 \qquad [X \to L_1 \land L_2]$$

$$X \lor \neg L_1 \lor \neg L_2 \qquad [L_1 \land L_2 \to X]$$

$$(\odot = \to) \neg X \lor \neg L_1 \lor L_2 \qquad [X \to (L_1 \to L_2)]$$

$$X \lor L_1, X \lor \neg L_2 \qquad [(L_1 \to L_2) \to X]$$

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

$$\begin{array}{llll} (\odot = \vee) & \neg X \vee L_1 \vee L_2 & [X \rightarrow L_1 \vee L_2] \\ & X \vee \neg L_1, \ X \vee \neg L_2 & [L_1 \vee L_2 \rightarrow X] \\ (\odot = \wedge) & \neg X \vee L_1, \ \neg X \vee L_2 & [X \rightarrow L_1 \wedge L_2] \\ & X \vee \neg L_1 \vee \neg L_2 & [L_1 \wedge L_2 \rightarrow X] \\ (\odot = \rightarrow) & \neg X \vee \neg L_1 \vee L_2 & [X \rightarrow (L_1 \rightarrow L_2)] \\ & X \vee L_1, \ X \vee \neg L_2 & [(L_1 \rightarrow L_2) \rightarrow X] \\ (\odot = \leftrightarrow) & \neg X \vee \neg L_1 \vee L_2, \ \neg X \vee \neg L_2 \vee L_1 & [X \rightarrow (L_1 \leftrightarrow L_2)] \\ & X \vee \neg L_1 \vee \neg L_2, \ X \vee L_1 \vee L_2 & [(L_1 \leftrightarrow L_2) \rightarrow X] \end{array}$$

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

1 Replace each $L_1 \odot L_2$ (L_1, L_2 literals, $\odot \in \{\lor, \land, \rightarrow, \leftrightarrow\}$) by an auxiliary (fresh) variable X and introduce formula $X \leftrightarrow L_1 \odot L_2$, i.e.,

2 Apply double negation equivalences:

$$\neg \neg \phi \equiv \phi$$

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

1 Replace each $L_1 \odot L_2$ (L_1, L_2 literals, $\odot \in \{\lor, \land, \rightarrow, \leftrightarrow\}$) by an auxiliary (fresh) variable X and introduce formula $X \leftrightarrow L_1 \odot L_2$, i.e.,

2 Apply double negation equivalences:

3 Simplify \top , \bot

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

1 Replace each $L_1 \odot L_2$ (L_1, L_2 literals, $\odot \in \{\lor, \land, \rightarrow, \leftrightarrow\}$) by an auxiliary (fresh) variable X and introduce formula $X \leftrightarrow L_1 \odot L_2$, i.e.,

$$\begin{array}{lll} (\odot=\vee) & \neg X \vee L_1 \vee L_2 \\ & X \vee \neg L_1, \ X \vee \neg L_2 \end{array} & \begin{bmatrix} X \to L_1 \vee L_2 \\ L_1 \vee L_2 \to X \end{bmatrix} \\ (\odot=\wedge) & \neg X \vee L_1, \ \neg X \vee L_2 \\ & X \vee \neg L_1 \vee \neg L_2 \end{array} & \begin{bmatrix} X \to L_1 \wedge L_2 \\ [X \to L_1 \wedge L_2 \end{bmatrix} \\ (\odot=\to) & \neg X \vee \neg L_1 \vee L_2 \\ & X \vee L_1, \ X \vee \neg L_2 \end{array} & \begin{bmatrix} [X \to L_1 \vee L_2 \\ [X \to L_1 \wedge L_2 \end{bmatrix} \\ & [X \to (L_1 \to L_2)] \\ & X \vee L_1, \ X \vee \neg L_2 \vee L_1 \\ & X \vee \neg L_1 \vee \neg L_2, \ X \vee L_1 \vee L_2 \end{array} & \begin{bmatrix} [X \to (L_1 \to L_2) \to X] \\ & [X \to (L_1 \to L_2) \to X] \\ & [X \to (L_1 \to L_2) \to X] \end{array}$$

2 Apply double negation equivalences:

$$\neg \neg \phi \equiv \phi$$

Simplify ⊤, ⊥

You may also apply De Morgan equivalences, but they are not necessary

Work bottom-up on the structure of the formula and build a set of clauses preserving only (un)satisfiability (not equivalence)

1 Replace each $L_1 \odot L_2$ (L_1, L_2 literals, $\odot \in \{\lor, \land, \rightarrow, \leftrightarrow\}$) by an auxiliary (fresh) variable X and introduce formula $X \leftrightarrow L_1 \odot L_2$, i.e.,

$$\begin{array}{lll} (\odot = \vee) & \neg X \vee L_1 \vee L_2 & [X \rightarrow L_1 \vee L_2] \\ & X \vee \neg L_1, \ X \vee \neg L_2 & [L_1 \vee L_2 \rightarrow X] \\ (\odot = \wedge) & \neg X \vee L_1, \ \neg X \vee L_2 & [X \rightarrow L_1 \wedge L_2] \\ & X \vee \neg L_1 \vee \neg L_2 & [L_1 \wedge L_2 \rightarrow X] \\ (\odot = \rightarrow) & \neg X \vee \neg L_1 \vee L_2 & [X \rightarrow (L_1 \rightarrow L_2)] \\ & X \vee L_1, \ X \vee \neg L_2 & [(L_1 \rightarrow L_2) \rightarrow X] \\ (\odot = \leftrightarrow) & \neg X \vee \neg L_1 \vee L_2, \ \neg X \vee \neg L_2 \vee L_1 & [X \rightarrow (L_1 \leftrightarrow L_2)] \\ & X \vee \neg L_1 \vee \neg L_2, \ X \vee L_1 \vee L_2 & [(L_1 \leftrightarrow L_2) \rightarrow X] \\ \end{array}$$

2 Apply double negation equivalences:

3 Simplify \top , \bot

You may also apply De Morgan equivalences, but they are not necessary

And do not apply distributivity equivalence!

(reloaded)

$$\begin{array}{l}
 \neg X_2 \lor \neg B \lor C, \\
 \neg X_2 \lor \neg C \lor B \\
 X_2 \lor \neg B \lor \neg C, X_2 \lor B \lor C
\end{array}$$

$$\neg X_2 \lor \neg B \lor C,
\neg X_2 \lor \neg C \lor B
X_2 \lor \neg B \lor \neg C, X_2 \lor B \lor C$$

$$\begin{array}{c} \blacksquare \neg X_3 \lor X_1, \neg X_3 \lor X_2 \\ X_3 \lor \neg X_1 \lor \neg X_2 \end{array}$$

$$\blacksquare$$
 $\neg X_3$

$$\blacksquare \neg X_3$$

$$(L_{1_1} \vee \cdots \vee L_{m_1}) \wedge \ldots \wedge (L_{1_n} \vee \cdots \vee L_{m_n})$$

$$(L_{1_1} \vee \cdots \vee L_{m_1}) \wedge \ldots \wedge (L_{1_n} \vee \cdots \vee L_{m_n})$$

It is clear where which connectives are

$$(L_{1_1} \vee \cdots \vee L_{m_1}) \wedge \ldots \wedge (L_{1_n} \vee \cdots \vee L_{m_n})$$

- It is clear where which connectives are
- Let us write the CNF as a set of clauses

$$(L_{1_1} \vee \cdots \vee L_{m_1}) \wedge \ldots \wedge (L_{1_n} \vee \cdots \vee L_{m_n})$$

- It is clear where which connectives are
- Let us write the CNF as a set of clauses
 - Write clauses as sets of literals

$$(L_{1_1} \vee \cdots \vee L_{m_1}) \wedge \ldots \wedge (L_{1_n} \vee \cdots \vee L_{m_n})$$

- It is clear where which connectives are
- Let us write the CNF as a set of clauses
 - Write clauses as sets of literals
 - Write CNFs as a set of sets of literals

$$(L_{1_1} \vee \cdots \vee L_{m_1}) \wedge \ldots \wedge (L_{1_n} \vee \cdots \vee L_{m_n})$$

- It is clear where which connectives are
- Let us write the CNF as a set of clauses
 - Write clauses as sets of literals
 - Write CNFs as a set of sets of literals

$$\{\{L_{1_1},\ldots,L_{m_1}\},\ldots,\{L_{1_n},\ldots,L_{m_n}\}\}$$

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

1 Eliminate \top , \bot , \rightarrow , \leftrightarrow

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- Apply double negation equivalence:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- 4 Apply distributivity equivalence:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:
 - $\neg \neg \phi \equiv \phi$
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- 4 Apply distributivity equivalence:

- **1** Eliminate \top , \bot , \rightarrow , \leftrightarrow
- 2 Apply double negation equivalence:
- 3 Apply De Morgan equivalences:
 - $\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$
- 4 Apply distributivity equivalence:

Order of 2-4 does not matter!

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

$$(a \lor b) \land (\neg a \lor c) \equiv (a \lor b) \land (\neg a \lor c) \land (b \lor c)$$

$$(a \lor b) \land (\neg a \lor c) \equiv (a \lor b) \land (\neg a \lor c) \land (b \lor c)$$

$$(a \lor b) \land (\neg a \lor c) \models (b \lor c)$$

$$(a \lor b) \land (\neg a \lor c) \equiv (a \lor b) \land (\neg a \lor c) \land (b \lor c)$$

$$(a \lor b) \land (\neg a \lor c) \models (b \lor c)$$

More general

$$C_1 \wedge \cdots \wedge C_k \wedge (a \vee L_1^1 \vee \ldots \vee L_n^1) \wedge (\neg a \vee L_1^2 \vee \ldots \vee L_m^2)$$

$$\models (L_1^1 \vee \ldots \vee L_n^1 \vee L_1^2 \vee \ldots \vee L_m^2)$$

$$(a \lor b) \land (\neg a \lor c) \equiv (a \lor b) \land (\neg a \lor c) \land (b \lor c)$$

$$(a \lor b) \land (\neg a \lor c) \models (b \lor c)$$

More general

$$C_1 \wedge \cdots \wedge C_k \wedge (a \vee L_1^1 \vee \ldots \vee L_n^1) \wedge (\neg a \vee L_1^2 \vee \ldots \vee L_m^2)$$

$$\models (L_1^1 \vee \ldots \vee L_n^1 \vee L_1^2 \vee \ldots \vee L_m^2)$$

This is known as resolution!

Additional observation

$$(a \lor a \lor B) \equiv (a \lor B)$$

- Remove duplicated literals in clauses
- It is known as factorization

Additional observation

$$(a \lor a \lor B) \equiv (a \lor B)$$

- Remove duplicated literals in clauses
- It is known as factorization

Resolution (set notation)

$$C_1, \ldots, C_k, \{a, L_1^1, \ldots, L_n^1\}, \{\neg a, L_1^2, \ldots, L_m^2\}$$

 $\models \{L_1^1, \ldots, L_n^1, L_1^2, \ldots, L_m^2\}$

Additional observation

$$(a \lor a \lor B) \equiv (a \lor B)$$

- Remove duplicated literals in clauses
- It is known as factorization

Resolution (set notation)

$$C_1, \ldots, C_k, \{a, L_1^1, \ldots, L_n^1\}, \{\neg a, L_1^2, \ldots, L_m^2\}$$

 $\models \{L_1^1, \ldots, L_n^1, L_1^2, \ldots, L_m^2\}$

Factorization comes "for free"!

Resolvent

Given two clauses C_1 and C_2 such that $a \in C_1$ and $\neg a \in C_2$, $(C_1 \setminus \{a\}) \cup (C_2 \setminus \{\neg a\})$ is the resolvent of C_1 and C_2 .

Resolvent

Given two clauses C_1 and C_2 such that $a \in C_1$ and $\neg a \in C_2$, $(C_1 \setminus \{a\}) \cup (C_2 \setminus \{\neg a\})$ is the resolvent of C_1 and C_2 .

Derivation

Given a set Γ of clauses, a derivation by resolution of a clause C from Γ , denoted $\Gamma \vdash_R C$, is a sequence C_1, \ldots, C_n such that $C_n = C$ and for each C_i $(1 \le i \le n)$ we have

- 1 $C_i \in \Gamma$, or
- 2 C_i is a resolvent of C_j and C_k , where j < i and k < i.

Resolvent

Given two clauses C_1 and C_2 such that $a \in C_1$ and $\neg a \in C_2$, $(C_1 \setminus \{a\}) \cup (C_2 \setminus \{\neg a\})$ is the resolvent of C_1 and C_2 .

Derivation

Given a set Γ of clauses, a derivation by resolution of a clause C from Γ , denoted $\Gamma \vdash_R C$, is a sequence C_1, \ldots, C_n such that $C_n = C$ and for each C_i $(1 \le i \le n)$ we have

- 1 $C_i \in \Gamma$, or
- **2** C_i is a resolvent of C_i and C_k , where j < i and k < i.

Lemma

If $\Gamma \vdash_R C$ then $\Gamma \models C$.

Proof. By induction on the sequence C_1, \ldots, C_n .

Consider

 $\blacksquare \ \Gamma = \{\textit{rain} \rightarrow \textit{streetwet}, \ \textit{rain}\}$

Derivation by resolution

Consider

- $\Gamma = \{ rain \rightarrow streetwet, rain \}, or equivalently$
- $\blacksquare \ \Gamma = \{ \neg \textit{rain} \lor \textit{streetwet}, \ \textit{rain} \}$

- $\Gamma = \{ rain \rightarrow streetwet, rain \}$, or equivalently
- $\Gamma = \{\neg rain \lor streetwet, rain\}$, or equivalently
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

- $\Gamma = \{ rain \rightarrow streetwet, rain \}$, or equivalently
- $\Gamma = \{\neg rain \lor streetwet, rain\}$, or equivalently
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

The following is a derivation by resolution:

- $\Gamma = \{ rain \rightarrow streetwet, rain \}$, or equivalently
- Γ = {¬rain ∨ streetwet, rain}, or equivalently
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

The following is a derivation by resolution:

lacksquare $C_1 = \{\neg rain, streetwet\}$

 $\{\neg rain, streetwet\}$

- $\Gamma = \{ rain \rightarrow streetwet, rain \}, or equivalently$
- $\Gamma = \{\neg rain \lor streetwet, rain\}, or equivalently$
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

The following is a derivation by resolution:

- $ightharpoonup C_1 = \{\neg rain, streetwet\}$
- $C_2 = \{rain\}$

 $\{\neg rain, streetwet\}$

 $\{rain\}$

- $\Gamma = \{ rain \rightarrow streetwet, rain \}, or equivalently$
- $\Gamma = \{\neg rain \lor streetwet, rain\}, or equivalently$
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

The following is a derivation by resolution:

- lacksquare $C_1 = \{\neg rain, streetwet\}$
- $C_2 = \{rain\}$
- $C_3 = \{streetwet\}$

Derivation by resolution

Consider

- $\Gamma = \{ rain \rightarrow streetwet, rain \}$, or equivalently
- $\Gamma = \{\neg rain \lor streetwet, rain\}, or equivalently$
- $\Gamma = \{\{\neg rain, streetwet\}, \{rain\}\}$

The following is a derivation by resolution:

- lacksquare $C_1 = \{\neg rain, streetwet\}$
- $C_2 = \{rain\}$
- $C_3 = \{streetwet\}$

 $rain \rightarrow streetwet, rain \vdash_{R} streetwet$

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

Refutation

(1)

 \blacksquare Our goal is to model $\Gamma \models \bot$

- Our goal is to model $\Gamma \models \bot$
- Let □ be the empty clause

- Our goal is to model $\Gamma \models \bot$
- Let □ be the empty clause
 - lacksquare \Box is like \bot

- Our goal is to model $\Gamma \models \bot$
- Let □ be the empty clause
 - □ is like ⊥
 - ☐ is different from an empty set of formulas!

- Our goal is to model $\Gamma \models \bot$
- Let □ be the empty clause
 - □ is like ⊥
 - ☐ is different from an empty set of formulas!

Refutation

A derivation by resolution of \Box from Γ is called a refutation of $\Gamma.$

- lacksquare Our goal is to model $\Gamma \models \bot$
- Let □ be the empty clause
 - □ is like ⊥
 - ☐ is different from an empty set of formulas!

Refutation

A derivation by resolution of \square from Γ is called a refutation of Γ .

Resolution Theorem

 $\Gamma \vdash_B \Box$ if and only if Γ is unsatisfiable.

Proof. Soundness: $\Gamma \vdash_R \square$ implies $\Gamma \models \square$ (by the previous Lemma).

Completeness: by induction over the number of variables in Γ .

Goal: $\{rain \rightarrow streetwet, rain\} \models streetwet$

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet
```

IFF: $\{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot$

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet

IFF: \{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot
```

The following is a refutation of $\{rain \rightarrow streetwet, rain, \neg streetwet\}$:

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet \ IFF: \{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot \} The following is a refutation of \{rain \rightarrow streetwet, rain, \neg streetwet\}:

• C_1 = \{\neg rain, streetwet\}
```

 $\{\neg rain, streetwet\}$

{rain}

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet
IFF: \{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot
The following is a refutation of \{rain \rightarrow streetwet, rain, \neg streetwet\}:

• C_1 = \{\neg rain, streetwet\}
• C_2 = \{rain\}
```

 $\{\neg rain, streetwet\}$

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet

IFF: \{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot

The following is a refutation of \{rain \rightarrow streetwet, rain, \neg streetwet\}:

C_1 = \{\neg rain, streetwet\}

C_2 = \{rain\}

C_3 = \{\neg streetwet\}
```

{rain}

 $\{\neg rain, streetwet\}$

{¬streetwet}

$$\{\neg rain, streetwet\}$$
 $\{rain\}$ $\{\neg streetwet\}$

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet
```

IFF: $\{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot$

The following is a refutation of

 $\{rain \rightarrow streetwet, rain, \neg streetwet\}$:

 $ightharpoonup C_1 = \{\neg rain, streetwet\}$

C₄ = {streetwet}
 C₅ = {} = □

lacksquare $C_2 = \{rain\}$

Refutation

_ 05

 $C_3 = \{\neg streetwet\}$

Refutation

```
Goal: \{rain \rightarrow streetwet, rain\} \models streetwet
```

IFF: $\{rain \rightarrow streetwet, rain\} \cup \{\neg streetwet\} \models \bot$

The following is a refutation of

$$\{rain \rightarrow streetwet, rain, \neg streetwet\}$$
:

$$C_1 = \{\neg rain, streetwet\}$$

$$lacksquare$$
 $C_4 = \{streetwet\}$

$$C_2 = \{rain\}$$

•
$$C_5 = \{\} = \square$$

 $C_3 = \{\neg streetwet\}$

Validity

$$\models \phi \text{ iff } \neg \phi \models \bot$$

■ Test whether $\neg \phi \vdash_R \Box$

Validity

$$\models \phi \text{ iff } \neg \phi \models \bot$$

■ Test whether $\neg \phi \vdash_R \Box$

Equivalence

$$\phi \equiv \psi \text{ iff } \neg (\phi \leftrightarrow \psi) \models \bot$$

■ Test whether $\neg(\phi \leftrightarrow \psi) \vdash_R \Box$

Validity

$$\models \phi \text{ iff } \neg \phi \models \bot$$

■ Test whether $\neg \phi \vdash_R \Box$

Equivalence

$$\phi \equiv \psi \text{ iff } \neg (\phi \leftrightarrow \psi) \models \bot$$

■ Test whether $\neg(\phi \leftrightarrow \psi) \vdash_{B} \Box$

Entailment

$$\Gamma \models \phi \text{ iff } \Gamma, \ \neg \phi \models \bot$$

■ Test whether Γ , $\neg \phi \vdash_R \Box$

Validity

$$\models \phi \text{ iff } \neg \phi \models \bot$$

■ Test whether $\neg \phi \vdash_B \Box$

Equivalence

$$\phi \equiv \psi \text{ iff } \neg (\phi \leftrightarrow \psi) \models \bot$$

■ Test whether $\neg(\phi \leftrightarrow \psi) \vdash_{B} \Box$

Entailment

$$\Gamma \models \phi \text{ iff } \Gamma, \ \neg \phi \models \bot$$

■ Test whether Γ , $\neg \phi \vdash_B \square$

Satisfiability

 ϕ is satisfiable iff $\neg \phi$ is not valid

Test whether $\phi \not\vdash_R \Box$

Implementing resolution

Algorithm: SAT by resolution

```
Input: a set \Gamma of wffs
Output: true if \Gamma is SAT; false otherwise

begin

\Gamma^{CNF} := trasformToCNF(\Gamma);
repeat

if \square \in \Gamma^{CNF} then
\Gamma^{CNF} := \Gamma^{CNF}
return false;

\Gamma_{old} := \Gamma^{CNF};
\Gamma^{CNF} := \Gamma^{CNF} \cup resolveAll(\Gamma^{CNF});
until \Gamma_{old} = \Gamma^{CNF};
return T^{CNF};
return T^{CNF};
```

Function resolveAll(Γ^{CNF} : set of clauses)

```
begin

\begin{array}{c|c}
\Gamma_{res} := \emptyset; \\
\Gamma_{res} := \emptyset; \\
\Gamma_{res} := \emptyset; \\
\Gamma_{res} := \Gamma_{res} \cap \Gamma_{res} \\
\Gamma_{res} := \Gamma_{res} \cap \Gamma_{res} \cap \Gamma_{res}
\end{array}

begin

\Gamma_{res} := \emptyset; \\
\Gamma_{res} := \Gamma_{res} \cap \Gamma_{res} \cap
```

Complexity

Deciding $\Gamma \vdash_R \Box$ requires up to an exponential number of steps (with respect to the size of the formula)

Complexity

Deciding $\Gamma \vdash_R \Box$ requires up to an exponential number of steps (with respect to the size of the formula)

Since unsatisfiability of a formula is coNP-complete, this is "reasonable"

Complexity

Deciding $\Gamma \vdash_R \square$ requires up to an exponential number of steps (with respect to the size of the formula)

Since unsatisfiability of a formula is coNP-complete, this is "reasonable"

Example

Is the following formula satisfiable?

$$(A \lor B) \land (A \leftrightarrow B) \land (\neg A \lor \neg B)$$

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

Drop tautological clauses

A clause C is a tautology if there is $a \in V$ such that $a \in C$ and $\neg a \in C$

Drop tautological clauses

A clause C is a tautology if there is $a \in V$ such that $a \in C$ and $\neg a \in C$

Drop subsumed clauses

A clause C_1 subsumes a clause C_2 if $C_1 \subseteq C_2$

Drop tautological clauses

A clause C is a tautology if there is $a \in V$ such that $a \in C$ and $\neg a \in C$

Drop subsumed clauses

A clause C_1 subsumes a clause C_2 if $C_1 \subseteq C_2$

Linear Resolution

Any intermediate derivation uses the clause obtained in the previous step.

Drop tautological clauses

A clause C is a tautology if there is $a \in V$ such that $a \in C$ and $\neg a \in C$

Drop subsumed clauses

A clause C_1 subsumes a clause C_2 if $C_1 \subseteq C_2$

Linear Resolution

Any intermediate derivation uses the clause obtained in the previous step.

Theorem

Linear resolution is refutation complete: If a set of wffs is unsatisfiable then a refutation by linear resolution exists.

Drop tautological clauses

A clause C is a tautology if there is $a \in V$ such that $a \in C$ and $\neg a \in C$

Drop subsumed clauses

A clause C_1 subsumes a clause C_2 if $C_1 \subseteq C_2$

Linear Resolution

Any intermediate derivation uses the clause obtained in the previous step.

Theorem

Linear resolution is refutation complete: If a set of wffs is unsatisfiable then a refutation by linear resolution exists.

$$\{\{A, B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$$

Any intermediate derivation uses the clause obtained in the previous step and a clause of the original formula.

Any intermediate derivation uses the clause obtained in the previous step and a clause of the original formula.

Theorem

Linear input resolution is refutation complete for (sets of) Horn clauses, where a Horn clause is a clause containing at most one positive atom.

Any intermediate derivation uses the clause obtained in the previous step and a clause of the original formula.

Theorem

Linear input resolution is refutation complete for (sets of) Horn clauses, where a Horn clause is a clause containing at most one positive atom.

Any intermediate derivation uses the clause obtained in the previous step and a clause of the original formula.

Theorem

Linear input resolution is refutation complete for (sets of) Horn clauses, where a Horn clause is a clause containing at most one positive atom.

- 1 $\{\{A, B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$
- $\{\{A\}, \{B\}, \{A, \neg B\}, \{\neg A, B\}, \{\neg A, \neg B\}\}$

- 1 Is $(A_1 \lor A_2) \land (\neg A_2 \lor \neg A_3) \land (A_3 \lor A_4) \land (\neg A_4 \lor \neg A_1)$ satisfiable?
- 2 Does A follow from $(A \lor B \lor C) \land (\neg C \lor B) \land (A \lor \neg B)$?
- 3 Does $\neg A$ follow from $(A \lor B \lor C) \land (\neg C \lor B) \land (A \lor \neg B)$?
- 4 Does $A \land B$ follow from $(\neg A \rightarrow B) \land (A \rightarrow B) \land (\neg A \rightarrow \neg B)$?

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

DPLL algorithm

- By $\neg \ell$ we denote the opposite literal of ℓ
 - \blacksquare if $\ell = \neg a$ then $\neg \ell = a$
- Simplify is often called Unit Propagation
 - Call-by-name parameters (references)

Algorithm: DPLL

```
Input: a set \Gamma of clauses

Output: true if \Gamma is SAT; false otherwise

begin

Simplify(\Gamma);

if \Gamma = \emptyset then return true;

if \square \in \Gamma then return false;

\ell := \text{ChooseLiteral}(\Gamma);

return DPLL(\Gamma \cup \{\{\ell\}\}) or DPLL(\Gamma \cup \{\{\neg\ell\}\});
```

Procedure Simplify(Γ)

```
begin  \begin{array}{c|c} \mathbf{begin} \\ \mathbf{c} \\ \mathbf{c
```

■ DPLL(Γ) returns true if Γ is satisfiable, and false otherwise

- DPLL(Γ) returns true if Γ is satisfiable, and false otherwise
- DPLL(Γ) can be (easily) modified in order to compute one (or all) models of Γ

- DPLL(Γ) returns true if Γ is satisfiable, and false otherwise
- DPLL(Γ) can be (easily) modified in order to compute one (or all) models of Γ
 - DPLL is sound and complete

- DPLL(Γ) returns true if Γ is satisfiable, and false otherwise
- DPLL(Γ) can be (easily) modified in order to compute one (or all) models of Γ
 - DPLL is sound and complete
- DPLL(Γ) works in polynomial-space

Features

Simplification

The input set of clauses is simplified at each branch using (at least) unit clause propagation

Features

Simplification

The input set of clauses is simplified at each branch using (at least) unit clause propagation

Branching

When no further simplification is possible, a literal is selected using some heuristic criterion (ChooseLiteral) and assumed as a unit clause in the current set of clauses

Features

Simplification

The input set of clauses is simplified at each branch using (at least) unit clause propagation

Branching

When no further simplification is possible, a literal is selected using some heuristic criterion (ChooseLiteral) and assumed as a unit clause in the current set of clauses

Backtracking

When a contradiction (empty clause) arises, the search resumes from some previous assumption ℓ by assuming $\neg \ell$ instead

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

■ Simplify using $\{\neg x_2\}$:

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

■ Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$:

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

Example

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

■ Simplify using $\{\neg x_2\}$:

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

Example

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

■ Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$
- If ChooseLiteral returns $\neg x_3$,

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$
- If ChooseLiteral returns $\neg x_3$, the process is the same as before;

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$
- If ChooseLiteral returns $\neg x_3$, the process is the same as before; otherwise, if x_1 is returned,

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$
- If ChooseLiteral returns $\neg x_3$, the process is the same as before; otherwise, if x_1 is returned, another choice has to be made

$$\Gamma = \{\{x_1, x_2, \neg x_3\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3\}, \{x_4, \neg x_3\}\}$
- ChooseLiteral returns $\neg x_3$: $\Gamma = \emptyset$, i.e., the formula is SAT!

Example

$$\Gamma = \{\{x_1, x_2, \neg x_3, \neg x_4\}, \{\neg x_2\}, \{x_4, \neg x_3\}\}$$

- Simplify using $\{\neg x_2\}$: $\Gamma = \{\{x_1, \neg x_3, \neg x_4\}, \{x_4, \neg x_3\}\}$
- If ChooseLiteral returns $\neg x_3$, the process is the same as before; otherwise, if x_1 is returned, another choice has to be made

Branching order (ChooseLiteral) can make big differences!

1
$$\{\{x_1, x_2, x_3\}, \{x_1, x_2, \neg x_3\}, \{x_1, \neg x_2, x_3\}, \{x_1, \neg x_2, \neg x_3\}, \{\neg x_1, x_4\}, \{x_1, \neg x_4, \neg x_5, x_6\}, \{\neg x_1, x_7\}\}$$

- 1 $\{\{x_1, x_2, x_3\}, \{x_1, x_2, \neg x_3\}, \{x_1, \neg x_2, x_3\}, \{x_1, \neg x_2, \neg x_3\}, \{\neg x_1, x_4\}, \{x_1, \neg x_4, \neg x_5, x_6\}, \{\neg x_1, x_7\}\}$

■ How to efficiently detect unit clauses?

- How to efficiently detect unit clauses?
 - 2-watched literals

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics
- How to take advantage from conflicts?

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics
- How to take advantage from conflicts?
 - Learning

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics
- How to take advantage from conflicts?
 - Learning
 - Backjumping

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics
- How to take advantage from conflicts?
 - Learning
 - Backjumping
- Can we reuse something from a previous computation?

- How to efficiently detect unit clauses?
 - 2-watched literals
- How to implement ChooseLiteral?
 - Look-ahead heuristics
 - Look-back heuristics
- How to take advantage from conflicts?
 - Learning
 - Backjumping
- Can we reuse something from a previous computation?
 - Progressive SAT

Outline

- 1 More on normal forms
 - Conjunctive Normal Form
 - Tientsin transformation
 - Disjunctive Normal Form
- 2 Propositional resolution
 - Resolution
 - Refutations
 - Refinements and examples
- 3 DPLL
- 4 Exercises

(From Logic for Computer Science: Foundations of Automatic Theorem Proving)

Show that the following set of clauses are unsatisfiable using the resolution method:

```
    {{A, B, ¬C}, {A, B, C}, {A, ¬B}, {¬A}}
    {{A, ¬B, C}, {B, C}, {¬A, C}, {B, ¬C}, {¬B}}
    {{A, ¬B}, {A, C}, {¬B, C}, {¬A, B}, {B, ¬C}, {¬A, ¬C}}
    {{A, B}, {¬A, B}, {A, ¬B}, {¬A, ¬B}, }
```

Find all resolvents of the following pairs of clauses:

```
1 {A, B}, {¬A, ¬B}
2 {A, ¬B}, {B, C, D}
3 {¬A, B, ¬C}, {B, C}
4 {A, ¬A}, {A, ¬A}
```

3 Find all resolvents of the following sets of clauses:

```
    {{A,¬B}, {A,B}, {¬A}}
    {{A,B,C}, {¬B,¬C}, {¬A,¬C}}
    {{¬A,¬B}, {B,C}, {¬C,A}}
    {{A,B,C}, {A}, {B}}
```

- Show using resolution whether the following statements hold:
 - 1 $x \lor y \lor \neg z \models (x \lor z) \leftrightarrow (\neg y \rightarrow x)$
 - $((\neg X \lor \neg Y) \to \neg (\neg Y \lor X)) \text{ is satisfiable}$

(From Logic for Computer Science: Foundations of Automatic Theorem Proving)

- 1 Show that the following set of clauses are unsatisfiable using the DPLL algorithm:
 - 1 $\{\{A, B, \neg C\}, \{A, B, C\}, \{A, \neg B\}, \{\neg A\}\}$
 - $\{A, \neg B, C\}, \{B, C\}, \{\neg A, C\}, \{B, \neg C\}, \{\neg B\}\}$

 - $\{ \{A, B\}, \{\neg A, B\}, \{A, \neg B\}, \{\neg A, \neg B\}, \}$
- 2 Show using DPLL whether the following statements hold:
 - 1 $x \lor y \lor \neg z \models (x \lor z) \leftrightarrow (\neg y \rightarrow x)$
 - 2 $((\neg X \lor \neg Y) \to \neg(\neg Y \lor X))$ is satisfiable

Find formulas in CNF and DNF having the following truth table:

Α	В	C	D	ϕ	Α	В	C	D	ϕ
0	0	0	0	0	1	0	0	0	0
0	0	0	1	1	1	0	0	1	0
0	0	1	0	1	1	0	1	0	1
0	0	1	1	0	1	0	1	1	0
0	1	0	0	1	1	1	0	0	1
0	1	0	1	1	1	1	0	1	0
0	1	1	0	0	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1

2 Decide whether the following formula is satisfiable:

$$A_1 \wedge (\neg A_1 \vee \neg A_2) \wedge (A_2 \vee A_3) \wedge (\neg A_3 \vee \neg A_4) \wedge (A_4 \vee A_5)$$

END OF THE LECTURE