1/28 54

FIGURE 1A

1	CGGATGCTGC	TGCTACTGTC	ACTTCTGCCG	CTGCCGCTGT	TGTTACAGAT
51	TTTGCTTTTG	CTCCTTCTAC	CGCATGACAA	TTGTTTTCCT	CGCCTAAGCA
101	GATACCAGCC	TCAGATGCTC	AAGGTGAGAG	TCTTGCCTTT	CGCTCTGGGC
151	TATTGGTTCA	CTTAATCCGG	TCAATTTGTT	CGCTGCTCGT	GGTTGTCTTT
201	CTCCCCGCCC	TCCTTCCCCC	TGTTTTGTTT	TGTTTCGCTT	GCTTTCGGGG
251	GGACGCTCCT	TCCCTCAGTC	AGAAGAGCTG	GAATTGCTTG	AGAGGCGTAT
301	AAGGAATTAT	AAAAGTGGCC	AGGAAACACG	AGCGCAGTGA	CTGCAGAGCT
351	GCCCTTGGCT	TCGGCAAGGC	AGCGTGAGCG	GCAGAGGGCT	CGGGCAGGG
401	GCGGGGGGTC	TCCTTTTTCC	CGTGCGTTCC	TCTTCTCCCA	GTTCGGATGA
451	TGTTGCTGTT	TCGGACCTCT	CGCTGACTCC	TGCCCTGTGA	TTTTTGCTGA
501	GCGCTGTGAC	TGTTACTCCG	TCTCTTTCTG	TCTGTGTTTC	ACAGTAATGG
551	ACTGTGATAG	AGTTAAGGCC	TTTTGGAGGT	GAGCTGTGTC	ACAGCTGATG
601	CTTAAACATG	TCTGAAGTAG	GCACCGAGAC	TTTCCCCAGC	CCCTCGGCTC
651	AGCTGAGCCC	TGATGCATCC	CTTGGCGGGC	TCCCGGCTGA	GGAGAACATG
701	CCGGGGCCCC	ACAGAGAGGA	CAGCAGGGTC	CCAGGTGTGG	CAGGCCTGGC
751	CTCGACCTGC	TGCGTGTGCC	TGGAAGCAGA	GCGACTGAAG	GGCTGCCTCA
801	ACTCTGAGAA	GATCTGCATC	GCCCTATCC	TGGCTTGCCT	GCTCAGCCTC
851	TGCCTCTGCA	TTGCTGGCCT	CAAGTGGGTC	TTTGTGGACA	AGATTTTGA
901	GTATGACTCT	CCTACACACC	TTGACCCTGG	GAGGATAGGA	CAAGACCCAA
951	GGAGCACTGT	GGATCCTACA	GCTCTGTCTG	CCTGGGTGCC	TTCGGAGGTG
1001	TATGCCTCAC	CCTTCCCCAT	ACCTAGCCTT	GAGAGCAAGG	CTGAAGTGAC
1051	AGTGCAAACT	GACAGCTCGC	TCGTGCCCTC	CAGGCCCTTC	CTTCAGCCTT
1101	CTCTCTACAA	CCGCATCCTA	GATGTCGGGT	TGTGGTCCTC	TGCCACACCG
1151	TCACTGTCAC	CATCCTCCCT	GGAGCCTACC	ACGGCATCTC	AGGCACAAGC
1201	AACAGAAACC	AATCTCCAAA	CTGCTCCAAA	ACTTTCCACT	TCTACATCTA
1251	CAACTGGGAC	AAGTCATCTC	ACAAAATGTG	ACATAAAGCA	GAAAGCCTTC
1301	TGTGTAAATG	GGGGAGAGTG	CTACATGGTT	AAAGACCTCC	CAAACCCTCC

2/25 54

FIGURE 1B

1351	ACGATACCTA	TGCAGGTGCC	CAAATGAATT	TACTGGTGAT	CGCTGCCAAA
1401	ACTACGTAAT	GGCCAGCTTC	TACAAGCATC	TTGGGATTGA	ATTTATGGAA
1451	GCTGAGGAAC	TGTACCAGAA	ACGGGTGCTG	ACCATAACTG	GCATTTGCAT
1501	TGCTCTTCTA	GTAGTTGGCA	TCATGTGTGT	GGTGGCCTAC	TGCAAAACCA
1551	AGAAGCAGAG	GAAAAAGTTG	CATGACCGCC	TTCGGCAGAG	CCTTCGCTCA
1601	GAGAGGAACA	ACGTTATGAA	CATGGCAAAT	GGGCCACACC	ACCCCAACCC
1651	ACCACCAGAC	AATGTCCAGC	TGGTGAATCA	GTACGTTTCA	AAAAACATAA
1701	TCTCCAGTGA	ACGTGTCGTT	GAGCGAGAAA	CCGAGACCTC	GTTTTCCACA
1751	AGCCACTACA	CCTCAACAAC	TCATCACTCC	ATGACAGTCA	CCCAGACGCC
1801	TAGCCACAGC	TGGAGTAATG	GCCATACCGA	AAGCATTCTC	TCCGAAAGCC
1851	ACTCCGTGCT	CGTCAGCTCC	TCAGTGGAGA	ATAGCAGGCA	CACCAGCCCA
1901	ACAGGGCCAC	GAGGCCGCCT	CAATGGCATT	GGTGGGCCAA	GGGAAGGCAA
1951	CAGCTTCCTC	CGGCATGCAA	GAGAGACCCC	TGACTCCTAC	CGAGACTCTC
2001	CTCACAGTGA	AAGGTATGTC	TCAGCTATGA	CCACACCAGC	TCGCATGTCA
2051	CCCGTTGATT	TCCACACTCC	AACTTCTCCC	AAGTCCCCTC	CATCTGAAAT
2101	GTCACCACCA	GTTTCCAGCT	TGACCATCTC	CATCCCTTCG	GTGGCGGTGA
2151	GTCCCTTTAT	GGACGAGGAG	AGACCGCTGC	TGTTGGTGAC	CCCACCACGG
2201	CTGCGTGAGA	AGTACGACAA	CCACCTTCAG	CAATTCAACT	CCTTCCACAA
2251	CAATCCCACC	CATGAGAGCA	ACAGTCTGCC	ACCCAGTCCT	CTGAGGATAG
2301	TGGAGGATGA	AGAGTATGAG	ACCACGCAGG	AGTACGAACC	AGCACAGGAG
2351	CCTCCAAAGA	AACTCACCAA	CAGCCGGAGG	GTGAAAAGAA	CAAAGCCCAA
2401	TGGCCATATT	TCCAGCAGGG	TAGAAGTGGA	CTCCGACACA	AGCTCTCAGA
2451	GCACTAGCTC	TGAGAGCGAA	ACAGAAGATG	AAAGAATAGG	TGAGGATACA
2501	CCATTTCTTA	GCATACAAAA	TCCCATGGCA	ACCAGTCTGG	AGCCAGCCGC
2551	TGCATATCGG	CTGGCTGAGA	ACAGGACTAA	CCCGGCAAAT	CGCTTCTCCA
2601	CACCAGAAGA	GTTGCAAGCA	AGGTTGTCCA	GTGTAATAGC	TAACCAAGAC
2651	CCTATTGCTG	TATAAGACAT	AAACAAAACA	CATAGATTCA	CATGTAAAAC

3/25 54

FIGURE 1C

2701	TTTATTTTAT	ATAATGAAGT	ATTCCACCTT	TAAATTAAAC	AATTTATTT
2751	ATTTTAGCAA	TTCCGCTGAT	AGAAAACAAG	AGTGGAAAAA	GAAACTTTTA
2801	TAAATTAAGT	ATACGTATGT	ACAAATGTGT	TATGTGCCAT	ATGTAGCAAT
2851	TTTTTACAGT	ATTTCCAAAA	TGGGGAAAGA	TATCAATGGT	GCCTTTATGT
2901	TATGTTATGT	TGAGAGCAAG	TTTTGTACAG	CTACAATGAT	TGCTGTCCCG
2951	TAGTATTTTG	CAAAACCTTC	TAGCCCTCAG	TTGTTCTGGC	TTTTTTGTGC
3001	ATTGCATTAT	AATGACTGGA	TGTATGATTT	GCAAGAATTG	CAGAAGTCCC
3051	CATTTGCTTG	TTGTGGAATC	CCCAGATCAA	AAAGCCCTGT	TATGGCACTC
3101	ACACCCTATC	CACTTCACCA	GGAAAAAAAA	AAAATCAAAA	AAAAAAAAA
3151	AAAAAAAAGA	AAAGAAAGAG	AAAAAGAAA	AGAAAAAGAA	AAAAAAAGCT
3201	GAAAAAATAA	AA			

4/28 54

1	GCCCYCHFCR	CRCCYRFCFC	SFYRMTIVFL	A*ADTSLRCS	R*ESCLSLWA
51	IGSLNPVNLF	AARGCLSPRP	PSPCFVLFRL	LSGGRSFPQS	EELELLERRI
101	RNYKSGQETR	AQ*LQSCPWL	RQGSVSGRGL	GQGAGGLLFP	VRSSSPSSDD
151	VAVSDLSLTP	AL*FLLSAVT	VTPSLSVCVS	Q*WTVIELRP	FGGELCHS*C
201	LNMSEVGTET	FPSPSAQLSP	DASLGGLPAE	ENMPGPHRED	SRVPGVAGLA
251	STCCVCLEAE	RLKGCLNSEK	ICIAPILACL	LSLCLCIAGL	KWVFVDKIFE
301	YDSPTHLDPG	RIGODPRSTV	DPTALSAWVP	SEVYASPFPI	PSLESKAEVT
351	VQTDSSLVPS	RPFLQPSLYN	RILDVGLWSS	ATPSLSPSSL	EPTTASQAQA
401	TETNLQTAPK	LSTSTSTTGT	SHLTKCDIKQ	KAFCVNGGEC	YMVKDLPNPP
451	RYLCRCPNEF	TGDRCQNYVM	ASFYKHLGIE	FMEAEELYQK	RVLTITGICI
501	ALLVVGIMCV	VAYCKTKKQR	KKLHDRLRQS	LRSERNNVMN	MANGPHHPNP
551	PPDNVQLVNQ	YVSKNIISSE	RVVERETETS	FSTSHYTSTT	HHSMTVTQTP
601	SHSWSNGHTE	SILSESHSVL	VSSSVENSRH	TSPTGPRGRL	NGIGGPREGN
651	SFLRHARETP	DSYRDSPHSE	RYVSAMTTPA	RMSPVDFHTP	TSPKSPPSEM
701	SPPVSSLTIS	IPSVAVSPFM	DEERPLLLVT	PPRLREKYDN	HLQQFNSFHN
751	NPTHESNSLP	PSPLRIVEDE	EYETTQEYEP	AQEPPKKLTN	SRRVKRTKPN
801	GHISSRVEVD	SDTSSQSTSS	ESETEDERIG	EDTPFLSIQN	PMATSLEPAA
851	AYRLAENRTN	PANRFSTPEE	LQARLSSVIA	NQDPIAV*DI	NKTHRFTCKT
901	LFYIMKYSTF	KLNNLFYFSN	SADRKQEWKK	KLL*IKYTYV	QMCYVPYVAI
951	FYSISKMGKD	INGAFMLCYV	ESKFCTATMI	AVP*YFAKPS	SPQLFWLFCA
1001	LHYNDWMYDL	QELQKSPFAC	CGIPRSKSPV	MALTPYPLHQ	EKKKIKKKKK
1051	KKRKEREKRK	EKEKKS*KNK			

5/28 54

1	CGGCCTGTAA	GATGCTGTAT	CATTTGGTTG	GGGGGCCTC	TGCGTGGTAA
51	TGGACCGTGA	GAGCGGCCAG	GCCTTCTTCT	GGAGGTGAGC	CGATGGAGAT
101	TTATTCCCCA	GACATGTCTG	AGGTCGCCGC	CGAGAGGTCC	TCCAGCCCCT
151	CCACTCAGCT	GAGTGCAGAC	CCATCTCTTG	ATGGGCTTCC	GGCAGCAGAA
201	GACATGCCAG	AGCCCCAGAC	TGAAGATGGG	AGAACCCCTG	GACTCGTGGG
251	CCTGGCCGTG	CCCTGCTGTG	CGTGCCTAGA	AGCTGAGCGC	CTGAGAGGTT
301	GCCTCAACTC	AGAGAAAATC	TGCATTGTCC	CCATCCTGGC	TTGCCTGGTC
351	AGCCTCTGCC	TCTGCATCGC	CGGCCTCAAG	TGGGTATTTG	TGGACAAGAT
401	CTTTGAATAT	GACTCTCCTA	CTCACCTTGA	CCCTGGGGGG	TTAGGCCAGG
451	ACCCTATTAT	TTCTCTGGAC	GCAACTGCTG	CCTCAGCTGT	GTGGGTGTCG
501	TCTGAGGCAT	ACACTTCACC	TGTCTCTAGG	GCTCAATCTG	AAAGTGAGGT
551	TCAAGTTACA	GTGCAAGGTG	ACAAGGCTGT	TGTCTCCTTT	GAACCATCAG
601	CGGCACCGAC	ACCGAAGAAT	CGTATTTTTG	CCTTTTCTTT	CTTGCCGTCC
651	ACTGCGCCAT	CCTTCCCTTC	ACCCACCCGG	AACCCTGAGG	TGAGAACGCC
701	CAAGTCAGCA	ACTCAGCCAC	AAACAACAGA	AACTAATCTC	CAAACTGCTC
751	CTAAACTTTC	TACATCTACA	TCCACCACTG	GGACAAGCCA	TCTTGTAAAA
801	TGTGCGGAGA	AGGAGAAAAC	TTTCTGTGTG	AATGGAGGG	AGTGCTTCAT
851	GGTGAAAGAC	CTTTCAAACC	CCTCGAGATA	CTTGTGCAAA	GGCGGAGGAG
901	CTGTACCAGA	AGAGAGTGCT	GACCATAACC	GGCATCTGCA	TCGCCCTCCT
951	TGTGGTCGGC	ATCATGTGTG	TGGTGGCCTA	CTGCAAAACC	AAGAAACAGC
1001	GGAAAAAGCT	GCATGACCGT	CTTCGGCAGA	GCCTTCGGTC	TGAACGAAAC
1051	AATACGATGA	ACATTGCCAA	TGGGCCTCAC	CATCCTAACC	CACCCCCGA
1101	GAATGTCCAG	CTGGTGAATC	AATACGTATC	TAAAAACGTC	ATCTCCAGTG
1151	AGCATATTGT	TGAGAGAGAA	GCAGAGACAT	CCTTTTCCAC	CAGTCACTAT
1201	ACTTCCACAG	CCCATCACTC	CACTACTGTC	ACCCAGACTC	CTAGCCACAG
1251	CTGGAGCAAC	GGACACACTG	AAAGCATCCT	TTCCGAAAGC	CACTCTGTAA
1301	TCGTGATGTC	ATCCGTAGAA	AACAGTAGGC	ACAGCAGCCC	AACTGGGGCC
1351	G				

6/25 54

1	ACKMLYHLVG	GASAW*WTVR	AARPSSGGEP	MEIYSPDMSE	VAAERSSSPS
51	TQLSADPSLD	GLPAAEDMPE	PQTEDGRTPG	LVGLAVPCCA	CLEAERLRGC
	LNSEKICIVP	ILACLVSLCL	CIAGLKWVFV	DKIFEYDSPT	HLDPGGLGQD
151	PIISLDATAA	SAVWVSSEAY	TSPVSRAQSE	SEVQVTVQGD	KAVVSFEPSA
	APTPKNRIFA				
	KLSTSTSTTG				
3 51					
	FHSPSLHYCH			_	

FIGURE 7

Developmental Northern of ARIA and nARIA in the chick hindbrain and cerebellum

FIGURE 8A

ED5 ED8 ED11 ED13 ED16 RT-

FIGURE 8B

FIGURE 9A

FIGURE 9C

14/26 54

FIGURE 10C

FIGURE 10D

ARIA specific probe

ED7 trunk cross-section

16/2554

FIGURE 12

ELPB4 ID ELPB3 IP

ELPBS IP

ECFR IP

Crude lysate MD sense-itnA

> Crude lysate Sense CM

nARIA

ARIA

18/25 54

20/25 54

FIG. 17

24/25 54

FIG. 19

no treatment=sympathetic neurons alone

'Pre'=treatment of sympathetic neurons with presynaptic input-conditioned media+various oligos mmAS=mismatch antisense control

nARIA AS=nARIA specific antisense oligonucleotides

ARIA AS=ARIA specific antisense oligonucleotides

TABLE P1-1	α3	α5	α7	β 4
SYMPs ALONE (set to ≡ 1) mRNA/SyMp (fg/100 fg std)	1.2 ± 0.2	0.4 · .01	0.2 ± .05	0.4 <u>=</u> 0.1
SyMps + INPUT	4.9	6.6	18	1.6
SyMps + TARGET	0.6	6.3	3.0	4.6
SYMPs+ INPUT+ TARGET	2.7	10	23	10
. in vivo DEVELOPMENT	2.8	11	21	12

Anterograde (Input) and Retrograde (Target) co regulation of nAChR expression utilize distinct (~ additive) mechanisms. nAChR mRNA were assayed from synaptically naive SyNs (E9 chick) in vitro. Conditions indicated & presented as fold change relative to E9 SyMps (= 1), n= (from top):49, 51, 17, 31, 6 experiments of each condition. Single cell qPCR following electrophysiology, data corrected for amplification efficiency & actin standard (& Prog.; A2) ^RNase protection assay of E8 vs. E21, corrected for neuron number and actin standard. + heart target data: # kidney target data (see Aim 2 Progress)

VMN express long to, immature nAChRs, akin to those detected prior to synaptogenesis. MM = mismatch (control) oligo

mature array of high 1, brief to nAChR channel subtypes, normally induced by VMN input (B: far right). SyMps innervated by CRD-NRG AS-treated

FIG P1-2 CRD-NRG biochemistry
Purification of recombinant CRD NRG
(~75%; Lane 8, ~55 kD, by) and
assay of enriched P185 P-tyrosine activity.

CRD-NRG activation of specific erbB combinations expressed in the 32D cell line. CRD is unique in its pattern of erb activation (vs. EGF peptide = Ig NRG).

FIG. P2-1

TABLE P2-1: ∑ Regulation of nAChR s	(43)2(f3x)3	(a3),(a7),(βx)3	(a3)3(3x)2	$(a3)_1(a5)_1(a7)_1(\beta x)_2$	(a3)2(a5)2(βx)	$(a3)_1(a5)_2$ $(a7)_1(\beta x)$	47
γ (pS)	13.5 ± 2	23 ± 3	28 ± 4	38 ± 6	50 ± 3	51±3	2 ∓ 99
p 1(ms)	2.1 ± 5	1.1 ! 0.2	1.7 ± 0.1	1.7 ± 0.1	3.3 ± 0.5	3.3 ± 0.4	2.5 ± 0.8
(co 2 (ms)	7.6 ± 1 (65%)	7.0 ±1 (60%)	13 ± 0.9	10.8 ± 0.4 (67%)	,	16.6 ! 3.1 (39 %)	
ABUNDANCE							
Early develop.	++++	,	+	٠	+	r	,
Intermediate	* * *	+	+	+ + + + +	÷ + +	+ + + +	-
Late develop.	•	++	ŧ	++++	++++	++++	‡
INDUCED by							
Input	٠			+	+++	++	+
Contact with kidney	1	,	,	+	++++	•	÷ + +
Contact with heart	++++	++	+	•	,	•	•
PHARMACOLOGY	the number of	+ 's represents th	e refative app	f + 's represents the relative apparent affinity for ACh (where > +'s indicates > apparent affinity	here > +'s indicat	es > apparent affinity	
ACh (ref. K _{app})	++++	+++	++++	++	‡	+	+
Cytisine ²	+	1	+	,	+	•	GN
n-BgTx sensitivity	+	+	+	+	+	+	+
4BgTx sensitivity	ı	+	í	,	;	•	S
MLA sensitivity ²	,		5	*	•	+ :	+
DELETED by AS to:	r3	а3, а7	43	a3, a5, a7	α3, α5	a3, a5, a7	a7, ND

You have made it to AIM 1 FIGS AND TABLES

Table A1-1: The profile of nAChR subunit gene expression in the visceral motor & medial habenula nuclei changes during in vivo synaptogensis.							
$\boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$							
Visc. Motor E18 vs. P0. mouse E 9 vs. E18, chick	↑ ND	† ††	<u></u>	↑	† 	ND ↑	
Med. Habenula ↑ ↑ ↑ ↑ ↑ ND E16 vs. P0, mouse ↑ <t< td=""></t<>							
qPCR assay of chic from "side-by-side"	k tiss ' in sit	ue ext u assa	racts: ays (^{FN}	mous 1 , Me	e data thods) .	

ND: not determined: - no change or low signal.

subunit mRNA in "synaptically naive" neurons is set to 1.

Fig A1-2 Mapping postsynaptic

"hotspots" by VC recording:

WCR and tests at 5 sites of n-n contact reveals post-synaptic hotspot areas of agonist response.

Mapping presynaptic nAChR "hotspots" by fura2-imaging of nicotine-elicited [Ca2+] transients. Nicotine (1uM) was applied at 25 areas elicting increased [Ca] at 10 presynaptic hotspots (red filled circles & D in C). Blue /open circles areas tested. - after Mn quench.

Internal Mn perfusion of postsynaptic n. (A & pseudo color purple) quenches somatic signal (B) and unveils presynaptic fibers (C; & yellow green) calib: 0.2 fluor units x 20 secs)

TABLE A1-2	AChE Fibers	α3	α4	α5	α7	β2
IPN						1
E16	+	-	-	+	-	++
E18/P0	+++	+1-	+	++	+/-	++
P7	+++	++	++	+++	++	+
AMYG						
E16	-	-	-	-	-	-
E18/P0	+ (gc)	+/-	++	+/-	+	+/++
P7	+++	ND	+++	+	+++	++

"Amygdala" refers to 2 major cholinoceptive subregions: the basolateral nucleus (BLA), and the Nucleus of the lateral offactory tract nuclei (NLOT). (gc)= growth cone tipped AChE + fibers. ND= not determined.

Fig A1-5: Nicontine induces robust synaptic facilitation: slice-patch recording from P0 mouse IPN (B). Neurons are dye filled for subsequent re-location (A)

A. NIC

(XH)

OB

2

4

5

8

10

12

14

16

18

20

22

TIME (min)

41/54

TABLE A2-1	α3	α4	a5	α7	β2	β4
VMNs In vivo						
(mouse) DEV. Δ's; E16 vs. P0 CRD(-/-) vs. CONT (chick) in vitro	↑ ND	† ‡	-	†. ↓	†	ND ND
△ with target △ with CRD NRG	1	↑↑	↑ no	↑ ↑	ND ND	†† ††
MHN In vivo DEV. \(\Delta\)'s CRD(-/-) vs. CONT. in vitro	↑ no∆	↑ <u>↓</u> 2	1 1	1	↑ ↑ ↓?	ND
△ with target △ with CRD NRG	† †	†	†	†† †††	††† †††	↑ ↑ ↑
IPN In vivo DEV. Δ's CRD(-/-) vs. CONT	↑↑ "ND	1	五	↓ no	† no Δ	↑↑ ND
in vitro with input with CRD NRG	↑ ↑	↑ ND	↑? ↑?	†† †	↑↑ ND	↑↑ -/?↑
AMYGD In vivo 2 DEV (P0 vs. P7) 2 in CRD(-/-, P0 m.	ND ND	↑	†? ‡?	111 47	no Δ no Δ	ND ND
E16 mouse in vitro 2 with input	~1	<u>-1</u>	- 1	11	ηο Δ	ND

Mouse" in vivo" data refers to preliminary in situ analyses. All in vitro data refer to qPCR assays . no Δ ; no change in subunit levels. ND= not determined; – or ?; measurement uncertainty due to low "n" or low levels of expression. Also see Fig A2-2;

mRNA in mock treated neurons is set to 1.

Fig A2-2 CRD-NRG signaling may be required for expression & or targeting of presynaptic nAChRs in CNS neurons

(A).Control: presynaptic nAChRs are present at VMN – SyMp synapses, as detected by increased sEPSC frequency (synaptic facilitation) with applied nicotine. (B)Treatment of VMNs with CRD-NRG AS-.(48 hrs) blocks nicotine-induced facilitation, although baseline synaptic activity (sEPSC freq.without nicotine) is unaffected. MM = mismatch (control) oligo

44/54

Fig A2-3 CRD-NRG ennances axonal targeting of (AdV –tagged) a4 containing nAChRs in MHN neurons + CRD-NRG

After Adenovirus mediated gene transfer of $\alpha 4$ - FLAG in MHN, FLAG- nAChRs are seen only on the soma of control neurons,, whereas in CRD NRG treated (24 hrs), neurons, FLAG nAChRs are detected in MAP-minus neurites.

45/54

46/54

FIGURE 2A Wolpowitz et al

FIGURE 2B Wolpowitz et al

<u> DARIPEGE IDSIVOS</u>

CONTRACTOR

β-TUB

erb B3 mRNA

erb B3 mRNA

VAT mRNA

VAT mRNA

PBr /

