Machine Learning Project

PREDICTIVE MAINTENANCE OF INDUSTRIAL MACHINERY

Presented By: Vivek Chauhan
World College of Technology and Management
Artificial Intelligence and Machine Learning

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Example:Unexpected failure of industrial machinery leads to unplanned downtime, costly repairs, and financial losses. Traditional maintenance methods are either schedule-based (which might waste resources) or reactive (after failure).

The challenge is to develop a predictive maintenance model that analyzes machinery sensor data and predicts the type of failure (e.g., tool wear, heat dissipation, power failure) before it occurs, enabling proactive action.

PROPOSED SOLUTION

- Goal: Use machine learning to anticipate machinery failures using real-time sensor data.
- Approach:
 - Collect and preprocess historical sensor data from industrial machines.
 - Train a classification model to identify failure patterns and predict failure types.
 - Deploy the model using IBM Cloud Lite services for real-time prediction and alerting.
- Modules:
 - Data Collection: Gather sensor data (temperature, vibration, pressure, etc.).
 - Preprocessing: Clean, handle missing values, and feature engineer the data.
 - Model Building: Use Random Forest/XGBoost for multiclass classification.
 - Deployment: Model deployed on IBM Watson Machine Learning via Watson Studio.
 - Alerts: Trigger proactive maintenance notifications

SYSTEM APPROACH

- IBM Cloud Lite Services:
 - IBM Watson Studio (data analysis, model development)
 - IBM Cloud Object Storage (data storage)
 - IBM Watson Machine Learning (model deployment)
 - IBM Cloud services for dashboard/notification (optional)
- Libraries Required:
 - Pandas, NumPy (data processing)
 - Scikit-learn, XGBoost (machine learning)
 - Matplotlib/Seaborn (visualizations)
 - IBM Watson SDKs (cloud integration)
- System Requirements:
 - Internet, modern browser
 - IBM Cloud Lite account

ALGORITHM & DEPLOYMENT

- In the Algorithm section, describe the machine learning algorithm chosen for predicting bike counts. Here's an example structure for this section:
- Algorithm Selection:
- Random Forest Classifier, XGBoost, Logistic Regression.
- Random Forest chosen due to its effectiveness in handling multiclass tabular data, and ability to interpret feature importance
- Data Input:
 - Sensor readings (temperature, vibration, voltage, etc.), machine ID, age, failure labels...
- Training Process:
- Data split into train/test sets.
- Data preprocessing: Imputation, scaling, encoding.
- Model trained with cross-validation and hyperparameter tuning.
- Prediction Process:
- Model exported and uploaded to IBM Watson Machine Learning.
- Exposed as REST API for real-time predictions on incoming sensor data.

Pipeline leaderboard

▽

Accuracy (Optimized)

Pipeline leaderboard ▽

Assurance (Optimized)

Enter input data

Text JSON

Enter data manually or use a CSV file to populate the spreadsheet. Max file size is 50 MB.

Download CSV template

Browse local files

Search in space

✓

	Product ID (other)	Type (other)	Air temperature [K] (double)	Process temperature [K] (double)	Rotational speed [rpm] (double)	Torque [Nm] (double)	Tool wear [min] (double)	Target (double)
1	M14860	М	298.1	308.6	1551	42.8	0	0
2	m1098	f	890.5	789	446	987	8	6
3								
4								
5								
6								
7								

2 rows, 9 columns

Clear all X

CONCLUSION

- Developed a robust predictive maintenance solution leveraging IBM Cloud and machine learning.
- Achieved high accuracy in predicting and classifying failure types.
- Enables maintenance teams to act proactively, thereby reducing downtime and cost.
- IBM Cloud Lite proved scalable and simple for deployment.

FUTURE SCOPE

- Integrate the solution with IoT platforms for seamless real-time data ingestion.
- Use advanced models (e.g., LSTM for time series).
- Expand to more failure types and equipment.
- Add dashboard and mobile app notifications for maintenance staff.

REFERENCES

- Kaggle Predictive Maintenance Dataset
- IBM Cloud Documentation
- Research papers on predictive maintenance and machine learning in industry

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Vivek Chauhan

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/7f5c7df6-034f-49a9-819e-99ec7fe9e78a

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Vivek Chauhan

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Vivek Chauhan

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

