

Redes Neurais Competitivas

Prof. Fabio M Simoes de Souza Centro de Matemática, Computação e Cognição

Livros

Aprendizagem Não Supervisionada

- A resposta correta (target) não é conhecida de antemão.
- Como treinar a rede nesse caso, se não existe um sinal de erro?
- Tentar identificar similaridades entre as entradas de maneira a categoriza-las em diferentes conjuntos (clusters).

What K-Means does for you

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid
That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

If any reassignment took place, go to STEP 4, otherwise go to FIN.

Your Model is Ready

• Classifique esses pontos em clusters

STEP 3: Assign each data point to the closest centroid → That forms K clusters

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 3: Assign each data point to the closest centroid - That forms K clusters

Algoritmo pode ser aplicado em dados de n dimensões!

Rede Neural K-Means

- O treinamento da rede é feito pela movimentação dos neurônios através do ajuste dos pesos
- Uma rede neural de uma única camada consegue implementar o algoritmo K-Means (K neurônios saída)

Espaço de Pesos

O Posição dos neurônios no espaço de pesos.

Espaço de Entrada

- Também é possível calcular a posição dos neurônios no espaço de entrada (x1, x2, x3), usando a distância euclidiana.
- Pode-se calcular as distâncias entre os neurônios e entradas para determinar quais neurônios estão mais próximos ou distantes.
- Neurônios próximos representariam um mesmo estímulo.

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Algoritmo K-Means

- É possível alinhar o espaço de pesos e o espaço de entrada da rede neural de maneira a criar uma representação das entradas na rede.
- Algoritmo K-Means: cria-se K categorias e depois se alinha as categorias (clusters) aos dados de entrada.
- O centro de cada cluster é calculado pela média das distâncias das entradas mais próximas àquele cluster.

Rede Neural K-Means

- Localiza-se os centros dos clusters no espaço de pesos
- Posiciona-se os neurônios nesses lugares através do treinamento da rede
- A posição de cada neurônio é a sua posição no espaço de pesos.
- Decide-se quais clusters estão mais próximos ao se calcular a distância de cada neurônio em relação à todos os clusters.
- Para cada entrada, determina-se a distância entre o neurônio no espaço de pesos e a entrada.

Aprendizado Competitivo

- Na camada de saída, os neurônios competem para ativar, de forma que apenas um neurônio por vez é ativado na camada se saída.
- Cada neurônio representa uma categoria (K neurônios)
- Para cada entrada, apenas o neurônio com máxima ativação h é o vencedor.
- O neurônio que vence é aquele mais próximo da entrada atual.
- Treinamento: move-se o neurônio vencedor para mais perto da entrada atual. Apenas os pesos dos vencedores são alterados
- O vetor de pesos é normalizado entre 0 e 1 para evitar distorções numéricas na competição (pesos muito grandes (10, 1000 etc), sempre iriam ganhar.

$$\Delta w_{ij} = \eta(x_j - w_{ij}),$$

Algoritmo K-Means

The On-Line k-Means Algorithm

Initialisation

- choose a value for k, which corresponds to the number of output nodes
- initialise the weights to have small random values

• Learning

- normalise the data so that all the points lie on the unit sphere
- repeat:
 - * for each datapoint:
 - compute the activations of all the nodes
 - pick the winner as the node with the highest activation
 - · update the weights using Equation (14.7) $\Delta w_{ij} = \eta(x_j w_{ij}),$
 - until number of iterations is above a threshold

Usage

- for each test point:
 - * compute the activations of all the nodes
 - pick the winner as the node with the highest activation

Clustering

- Aprender informações à respeito da organização dos dados (distribuição não paramétrica)
- Iris dataset (tipo de flor).
- 3 Classes: Espécies Iris Setosa, Iris Versicolour,
 Iris Virginica

4 atributos: comprimento e largura da sépala (cm), comprimento e largura da pétala (cm).

- o net = kmeansnet.kmeans(3,train)
- net.kmeanstrain(train)
- cluster = net.kmeansfwd(test)
- print cluster
- [0. 0. 0. 0. 0. 1. 1. 1. 1. 2. 1. 2. 2. 2. 0. 1. 2. 1. 0.
- 0 1. 2. 2. 2. 1. 1. 2. 0. 0. 1. 0. 0. 0. 0. 2. 0. 2. 1.]
- o print iris[3::4,4]
- [1. 1. 1. 1. 1. 2. 2. 2. 1. 0. 2. 0. 0. 0. 1. 1. 0. 2. 2.
- O 2. 0. 0. 0. 2. 2. 0. 1. 2. 1. 1. 1. 1. 1. 0. 1. 0. 2.]

- Compressão de dados
- Compressão de uma imagem tiff com milhares
 de cores para uma imagem RGB com apenas 16 cores.
- Usa-se K-means com 16 clusters.
- A imagem original tem as cores dos pixels correspondentes a cada cluster substituídas, gerando a compressão.

Mapas Corticais

- Organização neocortical
- Mapas de dominância ocular no córtex reveladas por fMRI
- Representação topográfica das áreas sensoriais sensíveis a pressão no córtex somatosensorial
- Atributos de entrada próximos são representados em areas corticais adjacentes

Lesão Cortical

- Reorganização dos mapas corticais após uma lesão em macacos
- Como essas reorganizações ocorrem?

J. Neurophysiol. 79: 2119–2148, 1998.

- Rede do mapa auto-organizado de Kohonen
- Inspirada na representação de mapas sensoriais no córtex cerebral

Mudando a visualização

Pesos são as coordenadas espaciais do nó no espaço de pesos

Calcule o nó com a menor distância do dado de entrada

Competição: calcule o nó com a menor distância dos dados de entrada

Exemplos

MACHINE LEARNING: An Algorithmic Perspective

https://www.superdatascience.com/pages/deep-learning

- Representação do espaço de entrada no espaço do mapa
- Neurônios próximos representam atributos similares
- Aprendizagem não supervisionada

- O mapa se auto-organiza movendo-se na direção dos dados
- Os nós vencedores aumentam o próprio peso e o peso dos outros nós em seu raio de ação, movendo-se na direção dos dados
- Existe competição entre os nós com intersecção de raio de ação
- O raio de ação dos nós vencedores é gradativamente reduzido ao longo do processo

https://en.wikipedia.org/wiki/Self-organizing map

Auto-organização do mapa

Nós vencedores

Raio de ação

Raio de ação

Raio de ação

Formação do mapa

Algoritmo do Mapa Auto-Organizado

The Self-Organising Feature Map Algorithm

Initialisation

- choose a size (number of neurons) and number of dimensions d for the map
- either:
 - * choose random values for the weight vectors so that they are all different OR
 - set the weight values to increase in the direction of the first d principal components of the dataset

Learning

- repeat:
 - * for each datapoint:
 - select the best-matching neuron n_b using the minimum Euclidean distance between the weights and the input,

$$n_b = \min_j \|\mathbf{x} - \mathbf{w}_j^T\|.$$
 (14.8)

* update the weight vector of the best-matching node using:

$$\mathbf{w}_{j}^{T} \leftarrow \mathbf{w}_{j}^{T} + \eta(t)(\mathbf{x} - \mathbf{w}_{j}^{T}),$$
 (14.9)

Algoritmo do Mapa Auto-Organizado

where $\eta(t)$ is the learning rate.

* update the weight vector of all other neurons using:

$$\mathbf{w}_{j}^{T} \leftarrow \mathbf{w}_{j}^{T} + \eta_{n}(t)h(n_{b}, t)(\mathbf{x} - \mathbf{w}_{j}^{T}),$$
 (14.10)

where $\eta_n(t)$ is the learning rate for neighbourhood nodes, and $h(n_b, t)$ is the neighbourhood function, which decides whether each neuron should be included in the neighbourhood of the winning neuron (so h = 1 for neighbours and h = 0 for non-neighbours)

- * reduce the learning rates and adjust the neighbourhood function, typically by η(t+1) = αη(t)^{k/kmax} where 0 ≤ α ≤ 1 decides how fast the size decreases, k is the number of iterations the algorithm has been running for, and k_{max} is when you want the learning to stop. The same equation is used for both learning rates (η, η_n) and the neighbourhood function h(n_b,t).
- until the map stops changing or some maximum number of iterations is exceeded

Usage

- for each test point:
 - * select the best-matching neuron n_b using the minimum Euclidean distance between the weights and the input:

$$n_b = \min_j \|\mathbf{x} - \mathbf{w}_j^T\| \qquad (14.11)$$

Fig. 4. Weight vectors during the ordering process, onedimensional array.

Fig. 3. Weight vectors during the ordering process, twodimensional array.

3D

Fig. 5. Representation of three-dimensional (uniform) density functions by two-dimensional maps.

- Mapas auto-organizados
- rij é a ativação dos neurônios

Fundamentals of Computational Neuroscience

- Regra de aprendizagem
- O vencedor leva tudo: neurônio vencedor aumenta o próprio peso e os pesos dos vizinhos em sua área de influência
- rij* é a ativação do neurônio vencedor

$$\Delta c_{ijk} = \epsilon r_{ij}^* (r_i^{\text{in}} - c_{ijk}),$$


```
"" Two dimensional self-organizing feature map at la Kohonen
      clear; nn=10; lambda=0.2; sig=2; sig2=1/(2*sig^2);
      [X,Y]=meshgrid(1:nn,1:nn); ntrial=0;
 4
      % Initial centres of prefered features:
      c1=0.5-.1*(2*rand(nn)-1):
     c2=0.5-.1*(2*rand(nn)-1);
 8
     %% training session
      while(true)
10
11
         if(mod(ntrial,100)==0) % Plot grid of feature centres
             clf; hold on; axis square; axis([0 1 0 1]);
12
             plot(c1,c2,'k'); plot(c1',c2','k');
13
             tstring=[int2str(ntrial) ' examples']; title(tstring);
14
15
             waitforbuttonpress;
16
         end
17
         r_in=[rand;rand];
         r=exp(-(c1-r_in(1)).^2-(c2-r_in(2)).^2);
18
         [rmax,x_winner]=max(max(r)); [rmax,y_winner]=max(max(r));
19
         r=exp(-((X-x\_winner).^2+(Y-y\_winner).^2)*sig2);
20
21
        c1=c1+lambda*r.*(r_in(1)-c1);
22
         c2=c2+lambda*r.*(r_in(2)-c2);
23
         ntrial=ntrial+1:
24
      end
```


r1=rand; r2=rand

r1=rand; r2=rand

r1=sin; r2=cos

r1=sin; r2=cos

r1=sin; r2=tan

r1=sin; r2=tan

- Auto-organização: interação é local, gerando uma organização global (como na inteligência de abelhas e formigas)
- Neurônios vencedores atraem outros neurônios próximos no espaço de pesos.
- Neurônios vencedores repelem neurônios distantes através do uso de pesos negativos.
- Neurônios muito distantes são ignorados (representam outros atributos)
- Função Chapéu Mexicano

- Mapas auto-organizados detém a topologia dos dados de entrada (como uma máscara)
- Mapas auto-organizados revelam correlações que não são fácilmente identificados
- Mapas auto-organizados classificam os dados sem supervisão
- Não precisa de target-vector e backpropagation para treinamento da rede
- Não existem conexões laterais entre os nós do mapa

 Bordas circulares (anel e torus) são utilizadas para minimizar efeitos de borda.

É computacionalmente eficiente considerar múltiplas cópias de um mesmo mapa colocados ao redor do mapa original

Exemplos de Aplicações

Taxonomia: Organização do Banco de Dados Iris

Exemplos de Aplicações

Taxonomia: cluster hierárquico

https://sci2s.ugr.es/keel/pdf/algorithm/articulo/19 90-Kohonen-PIEEE.pdf

Organização de Atributos

Nível de desenvolvimento dos países

A	A.	В	C	D	E
1	Country	Country C	Health Ex	Education E	Inflation
2	Aruba	ABW	9.418971	5.92467022	-2.13637
3	Afghanist	AFG	4.371774		-8.28308
4	Angola	AGO	5.791339		13.73145
5	Albania	ALB	6.75969		2.280502
6	Andorra	AND	4.57058	3.1638701	
7	Arab Wor	ARB	4.049924		3.524814
8	United Ar	ARE	7.634758		
9	Argentina	ARG	4.545323	4.88997984	6.282774
10	Armenia	ARM		3.84079003	3.406767
11	American	ASM	4.862062		
12	Antigua a	ATG	9.046056	2.55447006	-0.55016
13	Australia	AUS	11.19444	5.09262991	1.820112
14	Austria	AUT	5.85024	5.7674098	0.506313
15	Azerbaija	AZE	6.964187	3.22430992	1.401056
16	Burundi	BDI	10.39434	6.3197999	10.98147
17	Belgium	BEL	4.46431	6.41535997	-0.05315
18	Benin	BEN	7.405431	4.22204018	2.15683

http://www.ai-junkie.com/ann/som/som5.html

http://www.cis.hut.fi/

https://www.superdatascience.com/pages/deep-learning

Detecção de Fraude Cartão Crédito

- Casos são raros
- Quantidade de dados disponível muito baixa para aplicar aprendizado supervisionado
- Solução possível através de clustering dos dados por mapas auto-organizados
- Dataset:
 - http://archive.ics.uci.edu/ml/datasets/statlog+(australian+cred
 it+approval)
- As fraudes são os outliers (os pontos fora da curva, aqueles que não seguem as regras)

Detecção de Fraude Cartão Crédito

Até a Próxima Aula!