

Hacking the Data Science Resume

TABLE OF CONTENTS

Background

02

Data

03

Models

6

07

01

BACKGROUND

07

(M)

AI GENERATES JOBS

Gartner expects to see 2.3 million jobs starting in 2021

LOTS OF JOBS

Fifty Thousand Jobs

LOTS OF DATA

90% of the world's data was generated within the past two years alone

200

6

GOAL

Recommends what are important skills, based on job descriptions.

- Helps the user keep up with new trends
- Helps the user understand differences in job titles

The data I used was scraped from Indeed.com

SUPERVISED LEARNING

UNSUPERVISED LEARNING

NATURAL LANGUAGE PROCESSING

DATA CLEANING

2

60

Features

Features

SQL, Python Ect.

Each one is split and is on its own

Job Description

Used a TfidfVectorizer to make the words into useable data

200

M

DATA

Samples

THE MODELS

Scores

Jaccard similarity coefficient - size of the intersection divided by the size of the union of two label

$$rac{1}{|N|\cdot |L|} \sum_{i=1}^{|N|} \sum_{j=1}^{|L|} \mathrm{xor}(y_{i,j}, z_{i,j})$$

HAMMING LOSS

the fraction of the wrong labels to the total number of labels

MODEL PLACEHOLDER

IACCARD SCORE

HAMMING LOSS

| Confusion Matrix |

```
[[2742 91]
[ 78 1028]]
```

| Precision | Recall | F1 |

Precision Score: 0.95

F1 Score: 0.95

Recall Score: 0.95

| What title words are significant |

datascientist: algorithms vastly link div nine predictive python statistics ser unlimited

CLUSTERING

