

Reducing Regret in Q-Learning with Ensemble Mechanics

Bowen Jing, Kao Kitichotkul, George Wang

Department of Computer Science; Department of Electrical Engineering; Department of Physics, Stanford University

Introduction

Q-learning:

$$Q(s, a) \leftarrow Q(s, a) - \alpha \left(Q(s, a) - \left(r + \gamma \max_{a' \in \mathcal{A}(s')} Q(s', a') \right) \right)$$

ε-greedy:

$$\pi_{\text{act}}(s) = \begin{cases} \arg \max_{a \in \mathcal{A}(s)} Q(s, a) & \text{with probability } 1 - \epsilon \\ \text{uniformly from } \mathcal{A}(s) & \text{with probability } \epsilon \end{cases}$$

Softmax:

Softmax:
$$\pi_{\text{act}}(a \mid s) = \begin{cases} \frac{\exp(Q(s,a)/\tau)}{\sum_{b} \exp(Q(s,b)/\tau)} & \text{probability } \epsilon \\ \mathbf{1}[a = \arg\max_{a' \in \mathcal{A}(s)} Q(s,a')] & \text{probability } 1 - \epsilon \end{cases}$$

VDBE: adaptive π_{act} automatically decrease ϵ in response to environment

$$\delta = r + \gamma \max_{a' \in \mathcal{A}(s')} Q(s', a') - Q(s, a)$$

$$\epsilon \leftarrow \lambda \frac{1 - \exp(-|\alpha\delta|/\sigma)}{1 + \exp(-|\alpha\delta|/\sigma)} + (1 - \lambda)\epsilon$$

Goal: improve VDBE to reduce cumulative regret:

$$R(N) = \underset{\tau \sim \pi_{\text{opt}}}{N} \mathbb{E} \left[\sum_{t \in \tau} r(\hat{s}_t, \hat{a}_t) \right] - \sum_{i=1}^{N} \sum_{t \in \tau_i} r(s_t, a_t)$$

Methodology

Let

$$Q(s, a) = f(\phi(s, a); \mathbf{w})$$
$$\delta_{\mathbf{w}} = \nabla_{\mathbf{w}} \frac{1}{2} \left(Q(s, a) - \left(r + \gamma \max_{a' \in \mathcal{A}(s')} Q(s', a') \right) \right)^{2}$$

Fluctuation energy, where â is action from previous state

$$H(s, \hat{a}) = |Q(s, \hat{a}) - Q'(s, \hat{a})|$$

Then

$$\epsilon \leftarrow \lambda \frac{1 - \exp(-\sum_{\hat{a}} H(s, \hat{a}) / |\mathcal{A}(s)|\sigma)}{1 + \exp(-\sum_{\hat{a}} H(s, \hat{a}) / |\mathcal{A}(s)|\sigma)} + (1 - \lambda)\epsilon$$

- Baselines: ε -greedy, decaying ε , VDBE, and ensemble-mechanics ε-greedy (aka "Stat Mech") • Python 3.6.8
- Tests: Blackjack (stochastic) from homework; Minefield (nonstochastic) and FrozenLake (stochastic) from Ref. 9
 - SLLL
- **S** = start
- LHLH
- L = land, safe
- LLLH
- $\mathbf{H} = \text{hole/mine}$
- HLLE
- $\mathbf{E} = \text{end}$

Abstract

- Reduce speed of convergence (regret) in RL algorithms
- Our algorithm: ε -greedy, but update ε as agent moves through environment according to statistical mechanics
- Compare with three existing RL algorithms
- No improvement but a better *a priori* hyperparameter distribution could help

Results and Analysis

		ε-greedy	ε-decay	ε-VDBE	Stat Mech
Blackjack	Mean	213744	55601	127089	128443
$R(10^4)$	Std Error	6572	8898	20313	20115
Minefield	Mean	6089	6816	5350	5840
$R(10^4)$	Std Error	161	920	840	809
Frozen Lake	Mean	453	407	414	403
$W(10^4)$	Std Error	8.1	18.6	18.5	15.7

- Blackjack: high variance, average performance
- Minefield: high variance, decent performance
 - Only nonstochastic environment
- FrozenLake: low variance, bad performance
 - Use cumulative reward W (higher is better):

Blackjack

$$W(N) = \sum_{i=1}^{N} \sum_{t \in \tau_i} r(s_t, a_t)$$

Results and Analysis (continued)

Conclusion and Future Work

- Our algorithm ("Stat Mech") performs comparable to VDBE in two environments
- VDBE performs slightly better in one environment
- Used same hyperparameter distribution (a convenient assumption that can be improved) for all tests
 - Future: improve hyperparameter distributions
- Adaptive algorithms underperform nonadaptive in 2/3 tests, possibly due to stochasticity, as noted in Ref. 8
 - Future: formalize stochasticity

References and Acknowledgements

- Michel Tokic, etc. Ann. Conf. Artificial Intelligence, 2011, p. 335–346. Springer.
- Michel Tokic. Ann. Conf. Artificial Intelligence, 2010, p. 203–210. Springer.
- Peter Auer, etc. SIAM journal on computing, 32(1):48-77, 2002.
- Jad Rahme, etc. arXiv preprint arXiv:1906.10228, 2019.
- Zihan Zhang, etc. arXiv preprint arXiv:1906.05110, 2019.
- Adithya Devraj, etc. arXiv preprint arXiv:1707.03770, 2017. Chi Jin, etc. Adv. Neural Information Processing Systems, 2018, p. 4863–4873.
- James Gupta, etc. Stanford University. CS234 lecture note.
- Greg Brockman, etc. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

We appreciate Zach Barnes for his advice and help.

Stanford University