[東北大・文]

a>0 を実数とする。 関数 $f(t)=-4t^3+(a+3)t$ の $0 \le t \le 1$ における最大値を M(a) とする。

- (1) *M*(a)を求めよ。
- (2) 実数x>0に対し、 $g(x)=M(x)^2$ とおく。xy 平面において、関数y=g(x)のグラフに点(s,g(s))で接する直線が原点を通るとき、実数s>0とその接線の傾きを求めよ。
- (3) a が正の実数全体を動くとき、 $k = \frac{M(a)}{\sqrt{a}}$ の最小値を求めよ。

[東京医歯大]

実数 a, b に対し, $f(x)=x^3-3ax+b$ とおく。 $-1 \le x \le 1$ における|f(x)|の最大値 を M とする。このとき以下の各問いに答えよ。

- (1) a>0 のとき、f(x) の極値を a,b を用いて表せ。
- (2) $b \ge 0$ のとき, M を a, b を用いて表せ。
- (3) a, b が実数全体を動くとき、Mのとりうる値の範囲を求めよ。

[九州大・理]

 C_1 , C_2 をそれぞれ次式で与えられる放物線の一部分とする。

$$C_1: y = -x^2 + 2x \ (0 \le x \le 2), \ C_2: y = -x^2 - 2x \ (-2 \le x \le 0)$$

また, a を実数とし, 直線 y = a(x+4) を l とする。

- (1) 直線 l と C_1 が異なる 2 つの共有点をもつための a の値の範囲を求めよ。 以下, a が(1)の条件を満たすとする。このとき, l と C_1 で囲まれた領域の面積を S_1 , x 軸と C_2 で囲まれた領域で l の下側にある部分の面積を S_2 とする。
- (2) S_1 を a を用いて表せ。
- (3) $S_1 = S_2$ を満たす実数 a が $0 < a < \frac{1}{5}$ の範囲に存在することを示せ。

[東北大・文]

(1)
$$f(t) = -4t^3 + (a+3)t$$
 に対して、 $f'(t) = -12t^2 + a + 3$ $a > 0$ より、 $f'(t) = 0$ の解は $t = \pm \sqrt{\frac{a+3}{12}}$ となる。

(i)
$$\sqrt{\frac{a+3}{12}} < 1 \ (0 < a < 9) \ \mathcal{O} \ge 3$$

 $0 \le t \le 1$ における f(t) の増減は右表のよう になる。これより,f(t) は $t = \sqrt{\frac{a+3}{12}}$ にお

t	0	•••	$\sqrt{\frac{a+3}{12}}$		1
f'(t)		+	0	1	
f(t)		7		>	

いて最大値M(a)をとり

$$M(a) = \sqrt{\frac{a+3}{12}} \left(-4 \cdot \frac{a+3}{12} + a+3 \right) = \frac{\sqrt{a+3}}{2\sqrt{3}} \cdot \frac{2}{3} (a+3) = \frac{\sqrt{3}}{9} (a+3)^{\frac{3}{2}}$$

(ii)
$$\sqrt{\frac{a+3}{12}} \ge 1 \ (a \ge 9) \ \mathcal{O} \ge 3$$

 $0 \le t \le 1$ において f(t) は単調増加するので、t=1 において最大値 M(a) をとり、

$$M(a) = -4 + (a+3) = a-1$$

(2)
$$g(x) = M(x)^2$$
 より、(1)から、

$$g(x) = \left\{ \frac{\sqrt{3}}{9} (x+3)^{\frac{3}{2}} \right\}^2 = \frac{1}{27} (x+3)^3 \quad (0 < x < 9)$$

$$g(x) = (x-1)^2 \quad (x \ge 9)$$

さて、点(s, g(s))で接する直線が原点を通るより、

$$\frac{g(s)}{s} = g'(s) \cdot \dots \cdot (*)$$

(*)より,
$$\frac{1}{27} \cdot \frac{(s+3)^3}{s} = \frac{1}{9}(s+3)^2$$
 から $s+3=3s$ となり, $s=\frac{3}{2}$

(i)(ii)より,
$$s=\frac{3}{2}$$
となり,このとき接線の傾きは, $\frac{1}{9}(\frac{3}{2}+3)^2=\frac{9}{4}$ である。

(3)
$$k = \frac{M(a)}{\sqrt{a}}$$
 より、 $k^2 = \frac{M(a)^2}{a} = \frac{g(a)}{a}$ となり、 k^2 は原点 O と点(a, $g(a)$)を結

ぶ直線の傾きとなる。

すると、(2)より
$$k^2$$
 の最小値は $\frac{9}{4}$ となるので、 k の最小値は $\sqrt{\frac{9}{4}}=\frac{3}{2}$ である。

[解 説]

微分法の総合問題です。(3)の分数関数を直線の傾きとみる方法は必須技法です。

になる。

[東京医歯大]

(1) $f(x) = x^3 - 3ax + b$ とおくと, a > 0 のとき,

$$f'(x) = 3x^2 - 3a = 3(x^2 - a)$$

= 3(x + \sqrt{a})(x - \sqrt{a})

これより、f(x)の増減は右表のよう

\boldsymbol{x}		$-\sqrt{a}$		\sqrt{a}	
f'(x)	+	0	_	0	+
f(x)	7		>		7

よって、極大値 $f(-\sqrt{a}) = 2a\sqrt{a} + b$ 、極小値 $f(\sqrt{a}) = -2a\sqrt{a} + b$ である。

- (2) まず, f(x)+f(-x)=2b より, y=f(x) のグラフは点(0, b) に関して対称である。そして, $-1 \le x \le 1$ における|f(x)| の最大値を M とすると, $b \ge 0$ の場合では,
 - (i) a > 0のとき (1)より y = f(x) は右図のようになり、
 - (i-i) $\sqrt{a} > 1 (a > 1)$ のとき M = |f(-1)| = f(-1) = -1 + 3a + b
 - (i-ii) $\sqrt{a} \le 1 < 2\sqrt{a} \left(\frac{1}{4} < a \le 1\right) \emptyset \ge 8$ $M = \left| f(-\sqrt{a}) \right| = f(-\sqrt{a}) = 2a\sqrt{a} + b$

- (i-iii) $2\sqrt{a} \le 1 \left(0 < a \le \frac{1}{4}\right)$ $\emptyset \ge 3$ M = |f(1)| = f(1) = 1 3a + b
- (ii) $a \le 0$ のとき $f'(x) \ge 0$ より f(x) は単調増加し、 M = |f(1)| = f(1) = 1 3a + b
- (i)(ii)より, |f(x)|の最大値Mは,

$$\begin{split} M = -1 + 3a + b & (a > 1), \quad M = 2a\sqrt{a} + b & \left(\frac{1}{4} < a \leq 1\right) \\ M = 1 - 3a + b & \left(a \leq \frac{1}{4}\right) \end{split}$$

また,b < 0のとき,(2)と同様にすると,

(i)
$$a > 1$$
 O ≥ 3 $M = |f(1)| = -f(1) = -1 + 3a - b$

(ii)
$$\frac{1}{4} < a \le 1$$
 $\emptyset \ge 3$ $M = \left| f(\sqrt{a}) \right| = -f(\sqrt{a}) = 2a\sqrt{a} - b$

(iii)
$$a \le \frac{1}{4}$$
 \emptyset \succeq $\stackrel{*}{>}$ $M = |f(-1)| = -f(-1) = 1 - 3a - b$

(i)~(iii)より,bがb<0で動くとき, $M > \frac{1}{4}$ である。

以上より、a,b が実数全体を動くとき、M のとりうる範囲は $M \ge \frac{1}{4}$ である。

[解 説]

よく見かける 3 次関数の増減に関する問題ですが、絶対値をとる設定のため、複雑になっています。なお、上のグラフに破線で長方形を書き込んでいますが、この知識が方針を立てるうえで、ポイントになります。

「九州大・理〕

$$x^2 + (a-2)x + 4a = 0$$
 ……① $l \geq C_1$ が $0 < x < 2$ で接する条件は、①より、

 $D = (a-2)^2 - 16a = 0 \cdots 2$

$$0 < -\frac{a-2}{2} < 2 \cdots 3$$

②より, $a^2-20a+4=0$, $a=10\pm4\sqrt{6}$ となり,③から-2< a< 2 なので,満たす a の値は, $a=10-4\sqrt{6}$ である。したがって,l と C_1 が異なる 2 つの共有点をもつ条件は,右上図より, $0\leq a<10-4\sqrt{6}$ である。

(2) ①の解 $x = \frac{-(a-2) \pm \sqrt{a^2 - 20a + 4}}{2}$ を、 $x = \alpha$ 、 β ($\alpha < \beta$) とおくと、l と C_1 で囲

まれた領域の面積を S_1 は、

$$S_{1} = \int_{\alpha}^{\beta} \{-x^{2} + 2x - a(x+4)\} dx = -\int_{\alpha}^{\beta} (x - \alpha)(x - \beta) dx$$
$$= \frac{1}{6} (\beta - \alpha)^{3} = \frac{1}{6} (\sqrt{a^{2} - 20a + 4})^{3}$$

(3) まず, x軸と C_1 で囲まれた領域の面積は,

$$\int_0^2 (-x^2 + 2x) dx = \left[-\frac{x^3}{3} + x^2 \right]_0^2 = \frac{4}{3}$$

次に、 C_1 と y 軸対称である $C_2: y = -x^2 - 2x$

 $(-2 \le x \le 0)$ と l: y = a(x+4) の式を連立すると、 $x^2 + (a+2)x + 4a = 0$ ……④ ここで、l と C_2 で囲まれた領域の面積を S_3 とおき、(2) と同様にすると、④の解が $x = \frac{-(a+2) \pm \sqrt{a^2 - 12a + 4}}{2}$ より、 $S_3 = \frac{1}{c}(\sqrt{a^2 - 12a + 4})^3$ となる。

さて、条件より x 軸と C_2 で囲まれた領域で l の下側にある部分の面積 S_2 に対し、 $F(a)=S_1-S_2$ とおくと、 $S_2=\frac{4}{3}-S_3$ より、

$$F(a) = \frac{1}{6} \left(\sqrt{a^2 - 20a + 4} \right)^3 + \frac{1}{6} \left(\sqrt{a^2 - 12a + 4} \right)^3 - \frac{4}{3}$$

すると、 $F(0) = \frac{4}{3} > 0$ 、 $F\left(\frac{1}{5}\right) = \frac{1}{6}\left(\frac{1+41\sqrt{41}}{5^3} - 8\right) < 0$ より、F(a) = 0 すなわ

ち $S_1 = S_2$ を満たす実数aが $0 < a < \frac{1}{5}$ の範囲に存在する。

[解 説]

 $10-4\sqrt{6} = 0.202$ より, (3)の結論は、図からほとんど明らかなのですが……。