In this lab, you'll explore the breast cancer dataset and try to train the model to predict if the person is having breast cancer or not. We will start off with a weak learner, a decision tree with maximum depth = 2.

We will then build an adaboost ensemble with 50 trees with a step of 3 and compare the performance with the weak learner.

Let's get started by loading the libraries.

```
In [1]: import numpy as np
        import pandas as pd
        import sklearn
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.cross_validation import train_test_split
        from sklearn.model selection import KFold
        from sklearn.model selection import GridSearchCV
        from sklearn.model selection import cross val score
        from sklearn.preprocessing import LabelEncoder
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn.datasets import load breast cancer
        from sklearn.datasets import load digits
        from sklearn import metrics
        %matplotlib inline
        import os
        import warnings
        warnings.filterwarnings('ignore')
```

C:\Users\Kaustabh.Singh\Anaconda3\lib\site-packages\sklearn\cross_validation. py:41: DeprecationWarning: This module was deprecated in version 0.18 in favo r of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20. "This module will be removed in 0.20.", DeprecationWarning)

We will use the breast cancer dataset in which the target variable has 1 if the person has cancer and 0 otherwise. Let's load the data.

```
In [2]: cancer = load_breast_cancer()
    digits = load_digits()
    data = cancer

In [3]: df = pd.DataFrame(data= np.c_[data['data'], data['target']],
```

columns= list(data['feature names']) + ['target'])

df['target'] = df['target'].astype('uint16')

In [4]: df

Out[4]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
0	17.990	10.38	122.80	1001.0	0.11840	0.27760	0.300100	0.147100
1	20.570	17.77	132.90	1326.0	0.08474	0.07864	0.086900	0.070170
2	19.690	21.25	130.00	1203.0	0.10960	0.15990	0.197400	0.127900
3	11.420	20.38	77.58	386.1	0.14250	0.28390	0.241400	0.105200
4	20.290	14.34	135.10	1297.0	0.10030	0.13280	0.198000	0.104300
5	12.450	15.70	82.57	477.1	0.12780	0.17000	0.157800	0.080890
6	18.250	19.98	119.60	1040.0	0.09463	0.10900	0.112700	0.074000
7	13.710	20.83	90.20	577.9	0.11890	0.16450	0.093660	0.059850
8	13.000	21.82	87.50	519.8	0.12730	0.19320	0.185900	0.093530
9	12.460	24.04	83.97	475.9	0.11860	0.23960	0.227300	0.085430
10	16.020	23.24	102.70	797.8	0.08206	0.06669	0.032990	0.033230
11	15.780	17.89	103.60	781.0	0.09710	0.12920	0.099540	0.066060
12	19.170	24.80	132.40	1123.0	0.09740	0.24580	0.206500	0.111800
13	15.850	23.95	103.70	782.7	0.08401	0.10020	0.099380	0.053640
14	13.730	22.61	93.60	578.3	0.11310	0.22930	0.212800	0.080250
15	14.540	27.54	96.73	658.8	0.11390	0.15950	0.163900	0.073640
16	14.680	20.13	94.74	684.5	0.09867	0.07200	0.073950	0.052590
17	16.130	20.68	108.10	798.8	0.11700	0.20220	0.172200	0.102800
18	19.810	22.15	130.00	1260.0	0.09831	0.10270	0.147900	0.094980
19	13.540	14.36	87.46	566.3	0.09779	0.08129	0.066640	0.047810
20	13.080	15.71	85.63	520.0	0.10750	0.12700	0.045680	0.031100
21	9.504	12.44	60.34	273.9	0.10240	0.06492	0.029560	0.020760
22	15.340	14.26	102.50	704.4	0.10730	0.21350	0.207700	0.097560
23	21.160	23.04	137.20	1404.0	0.09428	0.10220	0.109700	0.086320
24	16.650	21.38	110.00	904.6	0.11210	0.14570	0.152500	0.091700
25	17.140	16.40	116.00	912.7	0.11860	0.22760	0.222900	0.140100
26	14.580	21.53	97.41	644.8	0.10540	0.18680	0.142500	0.087830
27	18.610	20.25	122.10	1094.0	0.09440	0.10660	0.149000	0.077310
28	15.300	25.27	102.40	732.4	0.10820	0.16970	0.168300	0.087510
29	17.570	15.05	115.00	955.1	0.09847	0.11570	0.098750	0.079530

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points
539	7.691	25.44	48.34	170.4	0.08668	0.11990	0.092520	0.013640
540	11.540	14.44	74.65	402.9	0.09984	0.11200	0.067370	0.025940
541	14.470	24.99	95.81	656.4	0.08837	0.12300	0.100900	0.038900
542	14.740	25.42	94.70	668.6	0.08275	0.07214	0.041050	0.030270
543	13.210	28.06	84.88	538.4	0.08671	0.06877	0.029870	0.032750
544	13.870	20.70	89.77	584.8	0.09578	0.10180	0.036880	0.023690
545	13.620	23.23	87.19	573.2	0.09246	0.06747	0.029740	0.024430
546	10.320	16.35	65.31	324.9	0.09434	0.04994	0.010120	0.005495
547	10.260	16.58	65.85	320.8	0.08877	0.08066	0.043580	0.024380
548	9.683	19.34	61.05	285.7	0.08491	0.05030	0.023370	0.009615
549	10.820	24.21	68.89	361.6	0.08192	0.06602	0.015480	0.008160
550	10.860	21.48	68.51	360.5	0.07431	0.04227	0.000000	0.000000
551	11.130	22.44	71.49	378.4	0.09566	0.08194	0.048240	0.022570
552	12.770	29.43	81.35	507.9	0.08276	0.04234	0.019970	0.014990
553	9.333	21.94	59.01	264.0	0.09240	0.05605	0.039960	0.012820
554	12.880	28.92	82.50	514.3	0.08123	0.05824	0.061950	0.023430
555	10.290	27.61	65.67	321.4	0.09030	0.07658	0.059990	0.027380
556	10.160	19.59	64.73	311.7	0.10030	0.07504	0.005025	0.011160
557	9.423	27.88	59.26	271.3	0.08123	0.04971	0.000000	0.000000
558	14.590	22.68	96.39	657.1	0.08473	0.13300	0.102900	0.037360
559	11.510	23.93	74.52	403.5	0.09261	0.10210	0.111200	0.041050
560	14.050	27.15	91.38	600.4	0.09929	0.11260	0.044620	0.043040
561	11.200	29.37	70.67	386.0	0.07449	0.03558	0.000000	0.000000
562	15.220	30.62	103.40	716.9	0.10480	0.20870	0.255000	0.094290
563	20.920	25.09	143.00	1347.0	0.10990	0.22360	0.317400	0.147400
564	21.560	22.39	142.00	1479.0	0.11100	0.11590	0.243900	0.138900
565	20.130	28.25	131.20	1261.0	0.09780	0.10340	0.144000	0.097910
566	16.600	28.08	108.30	858.1	0.08455	0.10230	0.092510	0.053020
567	20.600	29.33	140.10	1265.0	0.11780	0.27700	0.351400	0.152000
568	7.760	24.54	47.92	181.0	0.05263	0.04362	0.000000	0.000000

569 rows × 31 columns

In [5]: df.head()

Out[5]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	syı
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1

5 rows × 31 columns

```
In [6]: # adaboost experiments
# create x and y train
X = df.drop('target', axis=1)
y = df[['target']]

# split data into train and test/validation sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, rand om_state=101)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
```

(455, 30)

(455, 1)

(114, 30)

(114, 1)

In [7]: # check the average cancer occurence rates in train and test data, should be c
 omparable
 print(y_train.mean())
 print(y_test.mean())

target 0.626374 dtype: float64 target 0.631579 dtype: float64

```
In [8]: # base estimator: a weak learner with max_depth=2
shallow_tree = DecisionTreeClassifier(max_depth=2, random_state = 100)
```

Out[9]: 0.9385964912280702

Now, we will see the accuracy using the AdaBoost algorithm. In this following code, we will write code to calculate the accuracy of the AdaBoost models as we increase the number of trees from 1 to 50 with a step of 3 in the lines:

```
'estimators = list(range(1, 50, 3))'
```

'for n_est in estimators:'

We finally end up with the accuracy of all the models in a single list abc scores.

```
In [10]: # adaboost with the tree as base estimator

    estimators = list(range(1, 50, 3))

abc_scores = []
    for n_est in estimators:
        ABC = AdaBoostClassifier(
        base_estimator=shallow_tree,
        n_estimators = n_est)

ABC.fit(X_train, y_train)
    y_pred = ABC.predict(X_test)
    score = metrics.accuracy_score(y_test, y_pred)
    abc_scores.append(score)
```

```
In [11]:
          abc_scores
Out[11]: [0.9473684210526315,
          0.956140350877193,
          0.9473684210526315,
          0.9385964912280702,
          0.9385964912280702,
          0.9473684210526315,
          0.9473684210526315,
          0.9649122807017544,
          0.956140350877193,
          0.956140350877193,
          0.9736842105263158,
          0.9736842105263158,
          0.9736842105263158,
          0.9736842105263158,
          0.9824561403508771,
          0.9824561403508771,
          0.9824561403508771]
```


