Tarea # 5 (Cocientes y conexidad)

David Cardozo

25 de febrero de 2015

1. Considere la relación de equivalencia sobre \mathbb{R} definida por:

$$x \sim y \iff x = y \lor x, y \in \mathbb{Z}$$

Muestre que \mathbb{R}/\sim es de Fréchet-Urysohn pero no es primero contable. $Soluci\acute{o}n$

Lema 1. Considere la relación de equivalencia sobre \mathbb{R} definida por:

$$x \sim y \iff x = y \lor x, y \in \mathbb{Z}$$

Muestre que \mathbb{R}/\sim no es primero contable, es separable y normal

Demostración Considere la relación de equivalencia definida sobre $\mathbb R$ tal que $x \sim y$ si x = y ó si ambos son enteros. Considere el espacio cociente $\mathbb R/\sim$ con la topología cociente y definamos $q:\mathbb R\to\mathbb R/\sim$ el mapa cociente, queremos ver que $\mathbb R/\sim$ es separable y también normal. Sean A y B conjuntos cerrados y contenidos en $\mathbb R/\sim$.

Caso primero, suponga que $q(0) \not\in A \cup B$. Entonces $q^{-1}(A)$ y $q^{-1}(B)$ son conjuntos disjuntos cerrados en $\mathbb{R}\backslash\mathbb{Z}$, es decir existen subconjuntos abiertos $U, V \subseteq \mathbb{R}\backslash\mathbb{Z}$ que son disjuntos, y que $q^{-1}(A) \subseteq U$ y $q^{-1}(B) \subseteq V$, por lo tanto q(U), q(V) son abiertos y disjuntos en la topología cociente y $A \subseteq q(U)$ y $B \subseteq q(V)$.

Caso segundo, $q(0) \in A \cup B$, y suponga sin perdida de generalidad que $q(0) \in A$ (la prueba es similar para $q(0) \in B$). Tenemos entonces que $q^{-1}(A)$ y $q^{-1}(B)$ son cerrados disjuntos en \mathbb{R} , y que $\mathbb{Z} \subseteq q^{-1}(A)$, entonces existen abiertos disjuntos $U, V \subseteq \mathbb{R}$ y que $q^{-1}(A) \subseteq U$ y $q^{-1}(B) \subseteq V$, por lo tanto q(U), q(V) son abiertos y disjuntos en la topología cociente y $A \subseteq q(U)$ y $B \subseteq q(V)$. Concluimos entonces que \mathbb{R}/\sim es normal.

Ahora suponga que $(N_z)_{z\in\mathbb{Z}_+}$ es una secuencia de vecindades de q(0) sobre \mathbb{R}/\sim . Observar que para cada $z\in\mathbb{Z}$, existe $0<\epsilon(z)<1$ para el cual $(z-\epsilon(Z),z+\epsilon(z)\subseteq q^{-1}(N_z).$ Considere entonces el conjunto $M=(-\infty,1)\cup (\bigcup_{z\in\mathbb{Z}}(z-\epsilon(z)/2,z+\epsilon(z)/2))$, tenemos entonces que q(M) is una vencidad de q(0) en \mathbb{R}/\sim , y $N_z\not\subseteq q(M)$ para cualquier $z\in Z$, por lo tanto $(N_z)_{z\in\mathbb{Z}}$ no es base de vecindades de q(0)m es decir, \mathbb{R}/\sim no es primero contable.

Nos toca, revisar entonces que no existe copia del espacio Arens-Fort en esta topología. Pues tenemos en la referencia [1], la siguiente proposición:

Lema 2. Sea W un espacio secuencial, entonces W es de Fréchet si y solo si no hay una copia homomorfea del esoacio de Arens-Fort

2. Suponga que U es un subespacio abierto de \mathbb{R}^n . Pruebe que U es conexo si y sólo si U es conexo por caminos. Muestre que si n=1, la hipótesos de que U es abierto se puede omitir.

Solución

Empezaremos por dar una caracterización de los espacios conexos, es decir:

Teorema 1. Si X es un espacio conexo, entonces las siguientes son equivalentes:

- No hay abiertos $V, W \subseteq U$ tal que $\bar{V} \cap W = \varnothing, v \cap \bar{W} = \varnothing$ y $V \cup W = U$ (la clausura se toma con respecto a U).
- Los únicos subespacios de X que son abiertos y cerrados a la vez son: Ø y X.
- X no puede ser la unión de dos conjuntos no vacíos disjuntos

Estas son las afirmaciones que *Munkres* empieza el capitulo de espacios convexos. El teorema anterior es necesario para poder continuar.

Proposición 1. Sea un abierto $U \subseteq \mathbb{R}^n$, entonces U es conexo si y solo si U es conexo por caminos.

Demostración

Tenemos una dirección fácil y es:

Lema: Si un conjunto es conexo por caminos entonces es conexo.

Demostración (Por contradicción) Sea X un conjunto no conexo. Entonces, existen conjuntos disjuntos abiertos $U,v\subseteq X$ tal que $X=U\cup V$. Sea $x\in U$ y $y\in V$. Debido a que X es conexo por caminos, existe una función continua $f:[0,1]\to X$ para la cual f(0)=x y f(1)=y. Considere entonces los subconjuntos $f^{-1}(U)$ y $f^{-1}(V)$. Observar que estos son disjuntos en [0,1] y la unión de estos es [0,1]. Por la continuidad de f, ambos son abiertos en [0,1]. Observar entonces, que dado que $0\in f^{-1}(U), 1\in f^{-1}(V)$, ambos son diferentes de vacío. Observamos entonces que hemos expresado [0,1] como la unión de dos conjuntos abiertos y disjuntos, contradiciendo el hecho que [0,1] es conexo. \Box

Volviendo a la prueba original, tenemos entonces la otra dirección, queremos ver U conexo, implica U es conexo por caminos (en el espacio euclidiano, en general esto es falso).

Sea U conexo, gracias al teorema en la primera parte, tenemos que los únicos subespacios que son abiertos y cerrados a la vez en U son el vacío y el conjunto U, queremos ver U es conexo por caminos. Sea $p \in U$ y considere $P(p) = \{u \in U | \exists h \text{ continua}, \text{ tal que } h : [0,1] \to U \text{ y } h(0) = p, h(1) = u\}$, teniendo este conjunto, queremos ver P = U, para ello bastará ver que P es abierto y cerrado a la vez.

Primero, P es abierto. sea $r \in P$, como $r \in U$, existe una vecindad de r que esta en U, es decir para algún $\epsilon > 0$, existe $B_{\epsilon}(r) \subseteq U$. Considere $q \in B_{\epsilon}(r)$,

observar que existe una función g tal que $g:[0,1] \to U$, la cual cumple con g(0)=q y g(1)=p, esto debido a que ya sabemos que existe una función continua de r a q, pues $q \in B_{\epsilon}(r)$ y por el lema de pegamiento, tenemos una función continua, pues esta función restringida a $B_{\epsilon}(r)$ es continua, y como $r \in P$, tenemos que esta restricción la función es continua. Por lo tanto concluimos $q \in P$ para todo $r \in B_{\epsilon}(r)$. Concluimos entonces P es un conjunto abierto.

Ahora, queremos ver que P es cerrado. Sea r un punto limite de P, queremos ver $r \in P$. Considere $V = B_{\epsilon}(r)$ para algún $\epsilon > 0$, como r es punto limite, se cumple que $P \cap q \in (B_{\epsilon}(r) \setminus \{r\}) \neq \emptyset$, es decir existe $q \in P$, para el cual $q \in P \cap q \in (B_{\epsilon}(r) \setminus \{r\})$. En particular, $q \in B_{\epsilon}(r)$, $q \neq r$ y $q \in P$, es decir, existe una función continua que caracteriza el camino que va de p a q, como tenemos $q \in B_{\epsilon}(r)$ existe también una función continua que da un camino de r a q, otra vez, por teorema de pegamiento, podemos concatenar estas funciones y concluimos que existe una función q tal que $q : [0,1] \to U$, la cual cumple con q(0) = r y q(1) = p. Por lo tanto $r \in P$. y como r era un punto limite arbitrario, concluimos que q contiene todos sus puntos limites, es decir q es cerrado.

Vemos entonces que P es abierto y cerrado a la vez, entonces P tiene que ser U o \varnothing , pero observemos que P tiene que existe una función g tal que $g:[0,1] \to U$, la cual cumple con g(0) = p y g(1) = p (el trivial). por lo tanto P = U, lo cual significa que existe una función g tal que $g:[0,1] \to U$, la cual cumple con g(0) = p y g(1) = u para todo $u \in U$, como p era arbitrario, tenemos entonces, que existe una función g tal que $g:[0,1] \to U$, la cual cumple con g(0) = p y g(1) = u, para cualquier $p \in U$. Es decir U es conexo por caminos. \square

3. Sea $p:X\to Y$ una aplicación cociente. Demuestre que si Y y los conjuntos de la forma $p^{-1}(\{y\})$ son conexos, entonces X es conexo. Solución

Proposición 2. Sea $p: X \to Y$ una aplicación cociente. Si Y y los conjuntos de la forma $p^{-1}(\{y\})$ son conexos, entonces X es conexo.

 $Demostraci\'{o}n$

 $(Por\ contradicción)$ Suponga que X no es conexo, es decir existen V y W conjuntos abiertos disjuntos diferentes de vacío, para los cuales $V \cup W = X$, como p es una función sobreyectiva, entonces $p(V) \cup p(W) = Y$. Sea $y \in p(U) \cap p(W)$, sea $C = p^{-1}(\{y\})$, sabemos que C is conexo y los conjuntos $C \cap V$ y $C \cap W$ son abiertos en C y $C = (C \cap W) \cup (C \cap V)$

4. Sea (x,d) un espacio métrico. Para cada $p \in X, \epsilon \in \mathbb{R}_+$, definimos $B_{\epsilon}(p) = \{x \in X | d(p,x) < \epsilon\}$ y $C_{\epsilon}(p) = \{x \in X | d(p,x) \le \epsilon\}$ Las siguientes afirmaciones pueden ser falsas, o verdaderas (probar, o dar un contraejemplo).

A. Para todo $p \in X$ y todo $\epsilon \in \mathbb{R}_+$, $B_{\epsilon}(p)$ es conexo.

Falso, contraejemplo

Sea $X = [0,3) \cup (4,6]$ un subconjunto de (\mathbb{R},d) . Observar que la bola $B_3(2) = [0,3) \cup (4,5)$ no es convexa.

В.

C. Si $C_{\epsilon}(p)$ es conexo entonces $B_{\epsilon}(p)$ es conexo.

D. Si $B_{\epsilon}(p)$ y $B_{\delta}(q)$ son conexos entonces $B_{\epsilon}(p) \cap B_{\delta}(q)$ es conexo. **Falso**, contraejemplo:

En \mathbb{R}^2 sea $A = B_1((0,0))$, y sea $C = B_1((1,0))$, cada uno es conexo, pero se interceptan en dos puntos, es decir un conjunto disconexo.

Referencias:

https://dantopology.wordpress.com/2010/08/18/a-note-about-the-arens-space/