AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A method of assembling a semiconductor package, comprising:

attaching a protective tape to the active surface of a semiconductor wafer characterized by an initial wafer thickness, the active surface containing a plurality of semiconductor chips separated by scribe lines;

sawing the semiconductor wafer along the scribe lines to separate the plurality of semiconductor chips into individual chips, each individual chip being covered by a protective tape portion;

attaching an individual chip to a chip pad;

decreasing the adhesion between the individual chip and the corresponding protective tape portion; and

removing the protective tape portion from the individual chip,

wherein the individual chip is attached to the chip pad before the protective tape portion is removed.

2. (Original) The method of assembling a semiconductor package according to claim 1, further comprising:

reducing the initial thickness of the semiconductor wafer to reach a final thickness after attaching the protective tape to the active surface.

Page 4

3. (Original) The method of assembling a semiconductor package according to

claim 2, wherein the final thickness of the semiconductor wafer is no greater than about

 $200\ \mu m$.

4. (Original) The method of assembling a semiconductor package according to

claim 1, wherein the chip pad is provided on a leadframe, the leadframe also including outer

leads, further comprising:

forming the outer leads to provide external connections to the individual chip.

5. (Original) The method of assembling a semiconductor package according to

claim 1, wherein the chip pad is provided on a substrate, the substrate also including solder

balls to provide external connections to the individual chip.

6. (Original) The method of assembling a semiconductor package according to

claim 1, wherein decreasing the adhesion of the protective tape further comprises:

exposing the protective tape to UV radiation.

7. (Original) The method of assembling a semiconductor package according to

claim 1, wherein decreasing the adhesion of the protective tape further comprises:

heating the protective tape to a temperature above a degradation temperature.

Page 5

8. (Original) The method of assembling a semiconductor package according to

claim 1, wherein the protective tape is substantially transparent to visible light.

9. (Original) The method of assembling a semiconductor package according to

claim 1, wherein the protective tape has a thickness no greater than about 500 µm.

10. (Previously Presented) The method of assembling a semiconductor package

according to claim 9, wherein a ratio of a final thickness of the semiconductor wafer and the

thickness of the protective tape is between 1:1 and 1:10.

11. (Original) The method of assembling a semiconductor package according to

claim 10, wherein the ratio is between 1:1 and 1:3.

12. (Original) The method of assembling a semiconductor package according to

claim 1, wherein removing the protective tape portion further comprises:

extending a transfer device to contact a top surface of the protective tape portion;

applying a vacuum to a portion of the top surface of the protective tape portion to

establish a temporary attachment between the protective tape portion and the transfer device;

and

retracting transfer device to separate the protective tape portion from the individual

chip.

13. (Original) The method of assembling a semiconductor package according to claim 1, wherein removing the protective tape portion further comprises;

positioning a release tape adjacent a top surface of the protective tape portion, the release tape;

pressing an adhesive layer provided on the release tape against the top surface of the protective tape portion, causing the protective tape portion to adhere to the release tape; and

increasing a separation distance between the release tape and the individual chip, thereby removing the protective tape portion from the surface of the individual chip.

14. (Previously Presented) An apparatus for use in assembling a semiconductor package comprising:

a chip positioning device for positioning an individual chip, the individual chip including a protected surface having a protective tape portion arrayed thereon;

a tape positioning device for positioning a release tape adjacent the protective tape portion; and

a tape displacement device for causing the release tape to be attached to the protective tape portion and, once bonded, to separate the protective tape portion from the protected surface of the individual chip, while the individual chip is attached to a chip pad.

15. (Previously Presented) An apparatus for use in assembling a semiconductor package according to claim 14, further comprising:

a tape supply device for dispensing the release tape; and

a tape receiving device for receiving the release tape and the protective tape portion bonded thereto.

16. (Original) An apparatus for use in assembling a semiconductor package according to claim 15, wherein:

the tape supply device includes a release tape supply roll;

the chip positioning device includes a conveyor or a holder;

the tape positioning device includes a guide roller or guide pin;

the tape displacement device includes a pressure roller or a pressure pin;

the tape receiving device includes a winding roll.

17. (Original) An apparatus for use in assembling a semiconductor package according to claim 16, wherein:

the chip positioning device is arranged and configured to hold a plurality of individual chips mounted on a carrier.

18. (Original) An apparatus for use in assembling a semiconductor package according to claim 17, wherein:

the carrier is a frame, a leadframe or a circuit board.

Page 8

19. (Previously Presented) An apparatus for use in assembling a semiconductor

package comprising:

chip positioning device for positioning an individual chip, the individual chip

including a protected surface having a protective tape portion arrayed thereon; and

tape removal device for removing the protective tape portion from the protected

surface, while the individual chip is attached to a chip pad.

20. (Previously Presented) An apparatus for use in assembling a semiconductor

package according to claim 19, wherein:

the chip positioning device includes a conveyor or a holder; and

the tape removal device includes a vacuum device arranged and configured to

establish a secure, releasable attachment to an upper surface of the protective tape portion.

21. (Previously Presented) An apparatus for use in assembling a semiconductor

package according to claim 20, wherein:

the chip positioning device is arranged and configured to hold a plurality of individual

chips mounted on a carrier.

22. (Original) An apparatus for use in assembling a semiconductor package

according to claim 21, wherein:

the carrier is a frame, a leadframe or a circuit board.