

О себе

- 18 лет в IT
- Frontend, backend, DB MS stack
- C++ -> .NET -> R/Python

Что такое Data Science

Machine Learning

Machine Learning / Training set

_	f_1	f_2	• • •	f_{m}
X_1				
X_2				
,		•	'	'
X_n				

Machine Learning / Training set

Machine Learning / Training set

Machine Learning

Machine Learning

Life sciences

- Agriculture, Fisheries & Food
- Anatomy & Morphology
- Behavioral Sciences
- Biology, Biochemistry and Biotechnology
- Biophysics
- Ecology, Evolution & Environment
- Entomology
- Forestry
- Genetics & Heredity
- Immunology
- Mycology

- Paleontology
- Parasitology
- Pharmacology & Pharmacy
- Physiology
- Plant Sciences
- Toxicology
- Veterinary
 Sciences
- Virology
- Zoology
- •


```
interface I3ClassTumorClassifier
{
    Tuple<float, float, float> Predict(Image image);
}
```

Вероятности принадлежности изображения к одному из трёх классов. В сумме равны единице.

Вероятности принадлежности изображения к одному из трёх классов. В сумме равны единице.

float[] — Нейросеть float[]

Перцептрон

Модель нейрона

Модель нейрона

Свёрточная нейросеть / Свёртка

Свёрточная нейросеть / Субдискретизация

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Свёрточная нейросеть

- Сегментирование: на что именно смотрим?
- Извлечение признаков: как представляем?
- Классификация: к какому классу относится представление?

```
class Mask
{
    private float [,] mask;
}
interface ISegmenter
{
    Mask GetMask(Image image);
}
```


Fully Convolutional Network

http://cvlab.postech.ac.kr/research/deconvnet/

- Сегментирование: на что именно смотрим?
- Извлечение признаков: как представляем?
- Классификация: к какому классу относится представление?

- Сегментирование: на что именно смотрим?
- Извлечение признаков: как представляем?
- Классификация: к какому классу относится представление?

- Сегментирование: на что именно смотрим?
- Извлечение признаков: как представляем?
- Классификация: к какому классу относится представление?

- Более простая форма триаж
 - Классы степени критичности
 - До поступления к эксперту

Проблемы: переобучение

Проблемы: использование не по назначению


```
var candidateCompound = Lab.GetNextCompound();
var bindResult = candidateCompound.TryBindTo(Body.SomeTargetProtein);
if (!bindResult.Successful)
{
    Console.WriteLine("Time and money has been wasted.");
}
```


- Найти действующее вещество с нужными свойствами
 - Связывается с правильным белком
 - Не связывается с неправильными
- Перебирать все слишком долго и дорого (1060 веществ)

- Предсказать результат до эксперимента
 - Отбросить обречённые вещества
 - Сосредоточиться на перспективных

- Biosignature Based Drug Design
 - Известна способность некоторых веществ связываться с некоторыми белками
 - Предсказать эту способность для других комбинаций вещество-белок

	Белок 1	Белок 2	•••	Белок т
Вещество 1	Модель 1	Модель 2	•••	Модель m
Вещество 2				
•••				
Вещество n				

- Biosignature Based Drug Design
 - Известна способность некоторых веществ связываться с некоторыми белками
 - Предсказать эту способность для других комбинаций вещество-белок

Интеллектуальный анализ текста (Text mining)

- Классификация документов
- Кластеризация документов
- Извлечение именованных сущностей
- Анализ тональности
- Суммаризация текста
- Извлечение отношений

Тематическое моделирование

Document 1

Document n

Представление документов

Document-term matrix

Document 1

• • •

Document n

Тематическое моделирование

Latent Dirichlet Allocation

	€ Filter						
*	Topic [‡]	Topic [‡] 2	Topic [‡] 3	Topic [‡] 4	Topic 5		
1	new	death	house	mexico	democratic		
2	york	democrats	ban	agree	election		
3	city	president	gay	state	democrats		
4	mideast	don	time	school	party		
5	delay	senate	white	president	bloomberg		
6	care	penalty	kills	kansas	use		
7	health	resigns	china	system	issue		
8	texas	study	class	cut	presidential		
9	ethics	people	saudi	pakistan	air		
10	state	cancer	web	senator	candidates		

Тематическое моделирование

Corrective Action Preventive Action

CAPA 1

• • •

CAPA n

Document-term matrix

IBM Watson for Oncology

IBM Watson for Oncology

Данные нового пациента Диагноз Рекомендации по лечению Из одного медцентра. Предвзятость.

Истории болезни
Медицинские журналы
Учебники
Исследования

Инструмент

- NumPy, SciPy, Pandas
- StatsModels
- Matplotlib, Seaborn, Plotly, Bokeh
- Scikit-learn
- XGBoost, LightGBM
- TensorFlow, Keras

- dplyr, readr, data.table, xts
- ggplot2, plotly
- caret
- gbm, XGBoost, randomForest
- TensorFlow, Keras

Инструмент

- ML.NET https://github.com/dotnet/machinelearning/
- Microsoft Cognitive Toolkit https://www.microsoft.com/en-us/cognitive-toolkit/
- Microsoft Cognitive Services https://azure.microsoft.com/en-us/services/cognitive-services/
- Accord.NET https://github.com/accord-net/framework
- Encog https://github.com/encog/encog-dotnet-core
- numl https://github.com/sethjuarez/numl
- SharpLearning https://github.com/mdabros/SharpLearning

Инструмент

- Линейная алгебра
- Математическая статистика
- Методы оптимизации
- Структуры данных
- Теория вероятностей
- Многомерный анализ
- <u>machinelearning.ru</u>
- Курс «Машинное обучение» 2014 К.В. Воронцов.
- https://www.youtube.com/results?search_query=машинное+обучение

Вопросы

