HELIDA TECH DATA ACQUISITION BOARD (DAQ)

TOF-MS DATA BOARD

HLD-PCle-A2T2500M数据采集卡

产品介绍

HLD-PCIe-A2T2500M高速数据采集卡,是专为飞行时间(TOF)测量应用设计的板卡。该板卡具有如下特性:

- 1 具有2个模拟输入通道
- 2 每个通道2.5Gsps采样率、14bit位宽
- 3 模拟输入带宽1.5GHz(-3db)
- 4 每个通道程控AC或DC耦合、50或1M欧姆匹配
- 5 每个通道程控设置用户偏移
- 6 板卡带零点校正与标点校正(存储在EEPROM)
- 7 板卡具有频率校正(1PPS)(存储在EEPROM)
- 8 输入范围4Vpp/2Vpp/1Vpp/500mVpp @50Ω
- 9 输入范围±40V/±10V/±5V/±1V/±500mV/± 250mV/±125mV @1MΩ
- 10 触发输入比较器阈值可配置0至2.5V(50Ω匹配)
- 11 触发输入与数据的同步精度可达64ps
- 12 PCle×8 Gen 3高速接口
- 13 板载8GB内存(数据存储缓存)
- 14 具有外部时钟输入、同步信号输入
- 15 多种工作模式可选(支持用户定制功能)
- 16 预留9个差分对输入(TYPEC)、2输入、1输出
- 17 预留1000M网络接口、40G光纤接口

典型应用场所:

- 1 飞行时间测量
- 2 质谱仪(TOF-MS)
- 3 激光雷达
- 4 射频雷达
- 5 数字化仪
- 6 飞行时间光声成像
- 7 高分辨率医疗图像重建
- 8 快速脉冲检测和分析
- 9 粒子物理、量子物理实验
- 10 高端精密测量仪器

功能框图(Hardware block diagram)

图2 电路架构示意图

软件与平台

操作系统	编程语言	支持软件
• Windows10, 11	\bullet C, C++, C#, Python	HLD-DAQ
• Linux kernel 3.10+	 Java, VB, Delphi 	MATLAB
		LabView

参数说明(Specifications)

参数		规格	备注
	采样率	2.5Gsps/1.25Gsps	程控选择
	分辨率	14 Bit	
	模拟带宽	1.5GHz	固定
	输入类型	单端	MCX 内孔
	输入阻抗	$50\Omega/1 \mathrm{M}\Omega$	程控选择
	耦合方式	AC/DC	程控选择
模拟输入		4Vpp/2Vpp/1Vpp/500mVpp @50Ω	50Ω 匹配
	输入范围	$\pm 40 \text{V} / \pm 10 \text{V} / \pm 5 \text{V} / \pm 1 \text{V} / \pm 500 \text{mV} /$ $\pm 250 \text{mV} / \pm 125 \text{mV} @ 1 \text{M} \Omega$	1ΜΩ 匹配
	输入偏置	- 1.0V to + 1.0V @4Vpp @50Ω - 0.5V to + 0.5V @2Vpp@50Ω - 40V to + 40V @ \pm 40Vpp @1MΩ - 10V to + 10V @ \pm 10Vpp@1MΩ	程序配置
	串扰	>80dB	ADC>90dB
	信噪比(SNR)	>62dBFS >60dBFS >59dBFS	$\begin{aligned} f_{in} &= 155 MHz \\ f_{in} &= 900 MHz \\ f_{in} &= 2100 MHz \end{aligned}$
	错误率(CER)	9×10^{-9} Errors	AVDD1=0.975 V
	有效位宽(ENOB)	10.1 Bits 9.8 Bits 9.5 Bits	$\begin{aligned} f_{in} &= 155 MHz \\ f_{in} &= 900 MHz \\ f_{in} &= 2100 MHz \end{aligned}$
触发输入	输入类型	单端	MCX 内孔
	输入标准	5V TTL	最大 5V
	比较器阈值	0至3V	程序配置
	触发类型	上升沿(逐步增加)	
	触发与数据同步精度	≤64ps	内部 TDC 同步
	单次最大采样点 M	触发前+触发后≤1GB-32	每通道
	触发前样本最大 N	≤ 1G-32	程序配置

	触发后样本最大 M-N	≤ 1G-32	程序配置
时钟	时钟模式	内部 PLL, 外部参考输入	
	内部时钟精度	<±20ppm	
	外部时钟输入类型	单端	MCX 内孔
	外部时钟输入范围	10MHz~400MHz	默认 100MHz
	耦合方式	直流(50Ω)	
同步输入	同步信号输入类型	单端	MCX 内孔
	同步方式	脉冲同步	
	信号类型	TTL	
传输接口	PCIe×8 Gen 3	使用 PCIe×8 或×16 插槽	
	传输方式	DMA	
功能	采集模式	预触发、延迟触发	支持客户定制
	最大采集样本	<2G×16 Bits/通道	1个通道
		<1G×16 Bits/通道	2个通道
	时间戳	相对时间	
其它	尺寸	1 个标准插槽	带散热风扇
	供电	PCIe	可选 6PIN

工作模式

1 顺序预触发模式(带时间戳)

在该模式下,用户设置好单次触发的总采样点数(M)、触发前采样点数(N)以及触发次数(F)这3个参数,然后开始运行后就会按照设置好的参数进行数据采集。顺序触发模式的工作示意图如下所示。

图3 顺序预触发工作模式示意图

2 顺序延迟触发模式(带时间戳)

在该模式下,用户设置好单次触发的总采样点数(M)、触发后延迟点数(N) 以及触发次数(F)这3个参数,然后开始运行后就会按照设置好的参数进行数据采 集。顺序延迟触发模式的工作示意图如下所示。

图4 顺序延迟触发工作模式示意图

注意: 设置参数时会有一些限制,具体如下:

单次的总采样点数 (M) 是要大于2的整数幂 (x) 减去64 (信息),小于 1)

2的整数幂 (x+1) 减去64 (信息), 2个通道总和为一个块(Block)。 Block内部自动设置,该值最小1024=1KB,最大4GB。

每通道

$$(M \times 2B + 64) \times F < 2GB$$

每通道

例如:如果单次设置270个点,那么内部会转换成512×16 Bits,2个通道参 数相同, 所以单次采样会占用1024×16 Bits。即

$$(2^x - 64) < M < (2^{x+1} - 64)$$

触发前的采样点(N)要小于总采样点(M) 2)

$$N \leq M$$

单次总采样点占用的空间(Block)乘以触发次数要小于8GB减去1个Block 3)

$$Block \times F \le 8GB - Block$$

即:

$$Block \times (F + 1) \le 8GB$$

当N为0时,建议使用顺序延迟触发模式,此时可减少因数据重组带来的内 4) 存消耗。

协议(DLL)

1. 采购后提供: