УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 18

> Студент Гаврилин Олег Сергеевич P3130

Преподаватель Поляков Владимир Иванович Функция $f(x_1,x_2,x_3,x_4,x_5)$ принимает значение 1 при $2 \le |x_1x_2-x_3x_4x_5| \le 4$ и неопределенное значение при $|x_1x_2-x_3x_4x_5| = 1$.

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	x_1x_2	$x_3x_4x_5$	x_1x_2	$x_3x_4x_5$	f
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	1	d
2	0	0	0	1	0	0	2	0	2	1
3	0	0	0	1	1	0	3	0	3	1
4	0	0	1	0	0	0	4	0	4	1
5	0	0	1	0	1	0	5	0	5	0
6	0	0	1	1	0	0	6	0	6	0
7	0	0	1	1	1	0	7	0	7	0
8	0	1	0	0	0	1	0	1	0	d
9	0	1	0	0	1	1	1	1	1	0
10	0	1	0	1	0	1	2	1	2	d
11	0	1	0	1	1	1	3	1	3	1
12	0	1	1	0	0	1	4	1	4	1
13	0	1	1	0	1	1	5	1	5	1
14	0	1	1	1	0	1	6	1	6	0
15	0	1	1	1	1	1	7	1	7	0
16	1	0	0	0	0	2	0	2	0	1
17	1	0	0	0	1	2	1	2	1	d
18	1	0	0	1	0	2	2	2	2	0
19	1	0	0	1	1	2	3	2	3	d
20	1	0	1	0	0	2	4	2	4	1
21	1	0	1	0	1	2	5	2	5	1
22	1	0	1	1	0	2	6	2	6	1
23	1	0	1	1	1	2	7	2	7	0
24	1	1	0	0	0	3	0	3	0	1
25	1	1	0	0	1	3	1	3	1	1
26	1	1	0	1	0	3	2	3	2	d
27	1	1	0	1	1	3	3	3	3	0
28	1	1	1	0	0	3	4	3	4	d
29	1	1	1	0	1	3	5	3	5	1
30	1	1	1	1	0	3	6	3	6	1
31	1	1	1	1	1	3	7	3	7	1

Аналитический вид

Каноническая ДНФ:

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$ $(x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	√
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\checkmark
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\checkmark
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	√
$m_3 00011 \checkmark m_4 - m_{12} 0X100 \checkmark m_8 - m_{10} - m_{24} - m_{26} X10X0$	•
100077 (
m_{20} 10100 \checkmark m_{16} - m_{20} 10X00 \checkmark m_{4} - m_{12} - m_{20} - m_{28} XX100	
m_{24} 11000 \checkmark m_{16} - m_{24} 1X000 \checkmark m_{24} - m_{25} - m_{28} - m_{29} 11X0X	\checkmark
m_{10} 01010 \checkmark m_1 - m_{17} X0001 \checkmark m_{24} - m_{26} - m_{28} - m_{30} 11XX0	
m_{17} 10001 \checkmark m_{4} - m_{20} X0100 \checkmark m_{20} - m_{21} - m_{28} - m_{29} 1X10X	\checkmark
m_{11} 01011 \checkmark m_8 - m_{24} X1000 \checkmark m_{20} - m_{22} - m_{28} - m_{30} 1X1X0	,
m_{13} 01101 \checkmark m_{10} - m_{11} 0101X \checkmark m_{17} - m_{21} - m_{25} - m_{29} 1XX01	\checkmark
m_{21} 10101 \checkmark m_{12} - m_{13} 0110X \checkmark m_{12} - m_{13} - m_{28} - m_{29} X110X	
m_{22} 10110 \checkmark m_3 - m_{11} 0X011 \checkmark m_{28} - m_{29} - m_{30} - m_{31} 111XX	
$ m_{25} 11001 \checkmark m_{17} - m_{19} 100X1 \checkmark $	
$ m_{19} 10011 \checkmark \mid m_{20} - m_{21} 1010X \checkmark \mid$	
$ m_{26} 11010 \checkmark \mid m_{20} - m_{22} 101 \text{X0} \checkmark \mid$	
$ m_{28} 11100 \checkmark m_{17} - m_{21} 10X01 \checkmark $	
m_{29} 11101 \checkmark m_{24} - m_{25} 1100X \checkmark	
$ m_{30} 11110 \checkmark m_{24} - m_{26} 110 \times 0 \checkmark $	
m_{31} 11111 \checkmark m_{24} - m_{28} 11X00 \checkmark	
m_{17} - m_{25} 1X001 \checkmark	
m_{20} - m_{28} 1X100 \checkmark	
m_3 - m_{19} X0011 \checkmark	
m_{10} - m_{26} X1010 \checkmark	
m_{12} - m_{28} X1100 \checkmark	
m_{28} - m_{29} 1110X \checkmark	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
m_{25} - m_{29} 11X01 \checkmark	
$m_{26} - m_{30} = 11 \times 10^{-2}$	
$\begin{pmatrix} m_{26} & m_{30} & 11X10 & \checkmark \\ m_{21} - m_{29} & 1X101 & \checkmark \end{pmatrix}$	
$\begin{pmatrix} m_{21} - m_{29} & 1X101 & \checkmark \\ m_{22} - m_{30} & 1X110 & \checkmark \end{pmatrix}$	
371101	
111177	
111771	
m_{29} - m_{31} 111X1 \checkmark	
$K^3(f)$ $Z(f)$	
m_{16} - m_{17} - m_{20} - m_{21} - m_{24} - m_{25} - m_{28} - m_{29} 1XX0X 0X1X	
X00X1	
X10X0	
X1X00	
XX100	
11XX0	
1X1X0	
X110X	
111XX	

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

Простые импликанты		0-кубы													
		0 0 1 1 3	0 0 1 0 0	0 1 0 1 1 11	0 1 1 0 0	0 1 1 0 1 13	1 0 0 0 0 16	1 0 1 0 0	1 0 1 0 1 21	1 0 1 1 0 22	1 1 0 0 0	1 1 0 0 1 25	1 1 1 0 1 29	1 1 1 1 0	1 1 1 1 1 1 1 31
0X01X	2 X	X		X	12	10	10	20	21		21	20	20	90	91
X00X1		X		11											
X10X0											Х				
X1X00					Х						Х				
XX100			Ж		X			Ж							
11XX0											Ж			Х	
1X1X0								Ж		X				Х	
X110X					X	-X							X		
111XX													X	Х	X
1XX0X							X	X	X		X	X	X		

Ядро покрытия:

$$T = \begin{cases} 0X01X \\ XX100 \\ X110X \\ 1XX0X \\ 1X1X0 \\ 111XX \end{cases}$$

Вся таблица вычеркнулась, следовательно ядро покрытия является минимальным покрытием

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X01X \\ XX100 \\ X110X \\ 1XX0X \\ 1X1X0 \\ 111XX \end{cases}$$
$$S^{a} = 17$$
$$S^{b} = 23$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1}\,\overline{x_3}\,x_4 \vee x_3\,\overline{x_4}\,\overline{x_5} \vee x_2\,x_3\,\overline{x_4} \vee x_1\,\overline{x_4} \vee x_1\,x_3\,\overline{x_5} \vee x_1\,x_2\,x_3$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1}\,\overline{x_3}\,x_4 \vee x_3\,\overline{x_4}\,\overline{x_5} \vee x_2\,x_3\,\overline{x_4} \vee x_1\,\overline{x_4} \vee x_1\,x_3\,\overline{x_5} \vee x_1\,x_2\,x_3$$

Определение МКНФ

$$f = (x_1 \lor x_3 \lor x_4) \ (x_1 \lor \overline{x_3} \lor \overline{x_4}) \ (\overline{x_1} \lor x_3 \lor \overline{x_4}) \ (x_1 \lor x_2 \lor x_4 \lor \overline{x_5}) \ (\overline{x_1} \lor x_2 \lor \overline{x_4} \lor \overline{x_5})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,\overline{x_3}\,x_4\vee x_3\,\overline{x_4}\,\overline{x_5}\vee x_2\,x_3\,\overline{x_4}\vee x_1\,\overline{x_4}\vee x_1\,x_3\,\overline{x_5}\vee x_1\,x_2\,x_3 \qquad S_Q=23 \quad \tau=2$$

$$f=x_1\,\overline{x_4}\vee x_3\,\left(x_1\vee\overline{x_4}\right)\,\left(x_2\vee\overline{x_5}\right)\vee\overline{x_1}\,\overline{x_3}\,x_4 \qquad \qquad S_Q=15 \quad \tau=3$$

$$\varphi=\overline{x_1}\,x_4$$

$$\overline{\varphi}=x_1\vee\overline{x_4}$$

$$f=x_1\,\overline{x_4}\vee x_3\,\overline{\varphi}\,\left(x_2\vee\overline{x_5}\right)\vee\varphi\,\overline{x_3} \qquad \qquad S_Q=15 \quad \tau=4$$
 Декомпозиция нецелесообразна
$$f=x_1\,\overline{x_4}\vee x_3\,\left(x_1\vee\overline{x_4}\right)\,\left(x_2\vee\overline{x_5}\right)\vee\overline{x_1}\,\overline{x_3}\,x_4 \qquad \qquad S_Q=15 \quad \tau=3$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \vee x_3 \vee x_4) \ (x_1 \vee \overline{x_3} \vee \overline{x_4}) \ (\overline{x_1} \vee x_3 \vee \overline{x_4}) \ (x_1 \vee x_2 \vee x_4 \vee \overline{x_5}) \ (\overline{x_1} \vee x_2 \vee \overline{x_4} \vee \overline{x_5}) \quad S_Q = 22 \quad \tau = 2$$
 Декомпозиция невозможна
$$f = (x_3 \ (x_2 \vee \overline{x_5}) \vee (x_1 \vee x_4) \ (\overline{x_1} \vee \overline{x_4})) \ (x_1 \vee \overline{x_3} \vee \overline{x_4}) \qquad \qquad S_Q = 17 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = x_1 \, \overline{x_4} \vee x_3 \, \left(x_1 \vee \overline{x_4} \right) \, \left(x_2 \vee \overline{x_5} \right) \vee \overline{x_1} \, \overline{x_3} \, x_4 \quad \left(S_Q = 15, \tau = 3 \right)$$

Схема по упрощенной МКНФ:

$$f = (x_3 \ (x_2 \vee \overline{x_5}) \vee (x_1 \vee x_4) \ (\overline{x_1} \vee \overline{x_4})) \ (x_1 \vee \overline{x_3} \vee \overline{x_4}) \quad (S_Q = 17, \tau = 4)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1 \, \overline{x_4}}} \, \overline{x_3 \, \overline{\varphi} \, \overline{\overline{x_2} \, x_5}} \, \overline{\varphi \, \overline{x_3}} \quad (S_Q = 20, \tau = 6)$$
$$\varphi = \overline{x_1} \, x_4$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{\overline{x_3} \, \overline{\overline{x_2} \, x_5}} \, \overline{\overline{\overline{x_1}} \, \overline{x_4}} \, \overline{x_1 \, x_4} \, \overline{x_1} \, x_3 \, x_4 \quad (S_Q = 24, \tau = 7)$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{\overline{x_3}} \overline{\overline{x_2}} \overline{x_5}} \overline{\overline{\overline{x_1}} \overline{x_4}} \overline{\overline{x_1}} \overline{\overline{x_4}} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_4}}$$
 $(S_Q = 22, \tau = 5)$

