

COMPUTER ARCHITECTURE AND SOFTWARE EXECUTION PROCESS

MICROPROCESSOR ARCHITECTURE

- Bachelor in Artificial Intelligence, Data and Management Sciences
- m CentraleSupelec and ESSEC Business School 2023/2024

OUTLINE

- Introduction
- External Architecture
- Internal architecture
- the sequencer

Back to the begin - Back to the outline

OUTLINE

- Introduction
- External Architecture
- Internal architecture
- the sequencer

Back to the begin - Back to the outline

REMINDER

REMINDER

- What can a computer do?
 - copy values between storage units
 - perform logical/arithmetic operations between stored values
 - move within the program (jump), possibly conditionally

REMINDER

- What can a computer do?
 - copy values between storage units
 - perform logical/arithmetic operations between stored values
 - move within the program (jump), possibly conditionally
- A computer executes a very low level language (Machine Language)
 - means of controlling and elementary control of computer electronics
 - the instructions of this language carry out elementary operations

Some questions

• What operation to perform?

- What operation to perform?
- Where are the operands?

- What operation to perform?
- Where are the operands?
- Where to put the result?

- What operation to perform?
- Where are the operands?
- Where to put the result?
- Where is the following instruction?

- What operation to perform?
- Where are the operands?
- Where to put the result?
- Where is the following instruction?
- What size for memory words, instructions, and data?

• 4-address machine

operation code
argument 1
argument 2
Result
the following instruction

• 4-address machine

operation code
argument 1
argument 2
Result
the following instruction

• 3-address machine (with the PC-Program Counter register)

• 2-address machine (duality of an operand)

operation code
argument 1
argument 2 and result

• 2-address machine (duality of an operand)

operation code						
argument 1						
argument 2 and result						

• 1-address machine (adding the AC-Accumulator register)

operation code Argument

OUTLINE

- Introduction
- External Architecture
- Internal architecture
- the sequencer

Back to the begin - Back to the outline

THE VON NEUMANN MACHINE

The architecture

- 1-address machine
- Memory containing 16-bit words (2 bytes): data and instructions
- Addresses also on 16 bits (2¹⁶ = 64 kilo words = 128 kilo bytes)

The architecture

- 1-address machine
- Memory containing 16-bit words (2 bytes): data and instructions
- Addresses also on 16 bits (2¹⁶ = 64 kilo words = 128 kilo bytes)

Operations

- loading (LDA) and storing (STA) the accumulator in memory
- addition (ADD) and subtraction(SUB)
- clearing the accumulator (CLR)
- jump to an instruction (JMP and JAN)

Addressing modes

- immediate: argument = the operand (ADD #10)
- direct: argument = address of the operand (LDA \$2000)
- indirect: argument = the address of the address of the operand (STA @\$3000)
- implicit: no argument (CLR)

Addressing modes

- immediate: argument = the operand (ADD #10)
- direct: argument = address of the operand (LDA \$2000)
- indirect: argument = the address of the address of the operand (STA @\$3000)
- implicit: no argument (CLR)

Case of Jump

- direct jump (JMP \$2000)
- indirect jump (JMP @\$3000)

INSTRUCTION CODING

- Writing a value to an address: Mem[\$200] := 45
- Reading the value contained at an address: R := Mem[\$20F]

INSTRUCTION CODING

- Writing a value to an address: Mem[\$200] := 45
- Reading the value contained at an address: R := Mem[\$20F]

	immediate	Direct	Indirect			
LDA	AC := arg	AC := Mem[arg]	AC := Mem[Mem[arg]]			
STA		Mem[arg] := AC	Mem[Mem[arg]] := AC			
ADD	AC := AC + arg	AC := AC + Mem[arg]	AC := AC + Mem[Mem[arg]]			
SUB	AC := AC - arg	AC := AC - Mem[arg]	AC := AC - Mem[Mem[arg]]			
JMP/JAN		PC := arg	PC := Mem[arg]			

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
						Χ	Χ						Χ	Χ	Х	

00 : implicit 000 : LDA

01: immediate 001: ADD

10 : direct 010 : SUB

11: indirect 011: STA

100: JMP

101: JAN

110:CLR

111: CentraleSupéleo

AN EXAMPLE

Direct	0000	0010	0000	0000	LDA
	0010	0000	0000	0000	\$2000
immediate	0000	0001	0000	0001	ADD
	0000	0000	0000	1010	\$000A
Indirect	0000	0011	0000	0011	STA
	0010	0000	0000	0010	\$2002

```
1 LDA $2000
2 ADD #$000A
3 STA @$2002
```


ANOTHER EXAMPLE

```
1 NB1: WORD #100
2 NB2: WORD #0
3 NB2ADR: WORD NB2
4
5 BEGIN: LDA NB1
6 ADD #10
7 STA @NB2ADR
```


OUTLINE

- Introduction
- External Architecture
- Internal architecture
- the sequencer

Back to the begin - Back to the outline

THE PROCESSOR CYCLE

THE PROCESSOR CYCLE

- The processor cycle takes place in 3 stages
 - 1. fetch the instruction
 - 2. fetch the operand
 - 3. execute the instruction

THE PROCESSOR CYCLE

- The processor cycle takes place in 3 stages
 - 1. fetch the instruction
 - 2. fetch the operand
 - 3. execute the instruction
- Need to store instruction in step 1 to know what to do in step 3
 - instruction register (IR)

A GENERIC DATA PATH

ADAPTATION TO OUR PROCESSOR

OUTLINE

- Introduction
- External Architecture
- Internal architecture
- the sequencer

Back to the begin - Back to the outline

SEQUENCER CLOCK

- Execution of an instruction : several successive steps
- 2 types of signals required :
 - data path configuration signals
 - register loading signals

SEQUENCER CLOCK

SIGNALS GENERATED BY THE SEQUENCER

Commandes

SIGNALS TO PROVIDE TO THE SEQUENCER

SEQUENCER AND DATA PATH

IMPLEMENTING THE SEQUENCER

Each time, generate the control signals according to the status signals

Chemin de données

Séquenceur

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8	
lmm									
Dir									
Ind									ale

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8
lmm								
Dir								
Ind	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRADM	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	Т7	Т8
lmm								
Dir	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRADM	CUAL=V2 HAQ HN	
Ind	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRADM	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	Т7	Т8
lmm	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HAQ HN		
Dir	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRADM	CUAL=V2 HAQ HN	
Ind	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRADM	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8
lmm	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HAQ HN		
Dir	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN	
Ind	idem	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8
lmm	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HAQ HN		
Dir	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN	
Ind	idem	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8
Imm	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO			CUAL=V2 HAQ HN
Dir	idem	idem	idem	idem	idem	CUAL=V2 HRADM		CUAL=V2 HAQ HN
Ind	idem	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8
Imm	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO			CUAL=V2 HAQ HN
Dir	idem	idem	idem	idem	idem	CUAL=V2 HRADM		CUAL=V2 HAQ HN
Ind	idem	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN

LDA	T1	T2	Т3	T4	T5	Т6	T7	Т8
Imm	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO			CUAL=V2 HAQ HN
Dir	idem	idem	idem	idem	idem	CUAL=V2 HRADM		CUAL=V2 HAQ HN
Ind	idem	idem	idem	idem	idem	idem	CUAL=V2 HRADM	CUAL=V2 HAQ HN

	T1	T2	Т3	T4	T5	Т6	T7	Т8
LDA	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRI	VCO CUAL=V1 HRADM	VCO CUAL=V1+1 HCO	CUAL=V2 HRADM si Dir ou Ind	CUAL=V2 HRADM si Ind	CUAL=V2 HAQ HN

T1	T2	Т3	T4	T5	Т6	Т7	Т8
VCO CUAL=V1	VCO CUAL=V1+1	CUAL=V2	VCO CUAL=V1	VCO CUAL=V1+1	CUAL=V2	CUAL=V2	
HRADM	нсо	HRI	HRADM	нсо	HRADM	HRADM	
					si Dir ou Ind	si Ind	

THANK YOU

Back to the begin - Back to the outline

