Rishad Rahman (Deepak's Recitation)

February 11, 2015

## 6.046 Problem 1-1

Collaborators: Cheng Wang

(a) The graph below has 4 as the optimal value but the incorrect greedy algorithm would give 3 instead.



(b) **Algorithm:** Let u be any vertex in G and use BFS to convert G into a tree with root u. We output MAXPROFIT(G, u).

```
\begin{aligned} \operatorname{MaxProfit}(G,u) \\ & \text{if } u = \emptyset \\ & G_u.profit = 0 \\ & \text{return } \emptyset \end{aligned}  \text{else}   S_1 = \bigcup_{v \in u.children} \operatorname{MaxProfit}(G,v) \\ & S_2 = \bigcup_{v \in u.grandchildren} \operatorname{MaxProfit}(G,v) \\ & M_1 = \sum_{v \in u.children} G_v.profit \\ & M_2 = p_u + \sum_{v \in u.grandchildren} G_v.profit \\ & \text{if } M_2 > M_1 \\ & G_u.profit = M_2 \\ & \text{return } \{u\} \cup S_2 \end{aligned}   \text{else}   G_u.profit = M_1 \\ & \text{return } S_1
```

Correctness: The top portion of the algorithm covers the base case of a u not being a root i.e. a tree with 0 levels. We now proceed via strong induction and we assume the algorithm holds for trees with up to  $k \geq 0$  levels. A vertex u is either in the optimal set or not. If it is in the set, the profit is  $p_u$  plus the sum of the maximum profits of the trees rooted by the grandchildren of u since none of the children can now be in the set. Else if u is not in the set we just remove u, and sum over the trees rooted by the children of u. Obviously these trees are smaller than |G| so the optimal sets/profits we get from them is correct by our assumption and the rest of the algorithm handles the logic for taking the set corresponding to a higher profit for G.

Runtime: A memo can be kept to make sure the recursion does not need to recompute subproblems. There are  $\Theta(V)$  subproblems, 1 for each  $v \in V$ , with each subproblem taking  $\Theta(c(v) + g(v))$  time where c(v) is the number of children and g(v) is the number of grandchildren of v. Note linked lists can make the union operation O(1). Summing this over all v gives  $\Theta(E)$  since this is equivalent to each edge being counted at most 2 times, for child and grandchild access. Hence our runtime, including the initial BFS, is  $\Theta(V + E) = \Theta(V)$  since this is a tree.

(d) **Algorithm:** Again use BFS to convert G into a tree.

```
\begin{split} L \leftarrow G.leaves \\ \text{MaxLocations}(G) \\ \text{if } G &= \emptyset \\ \text{return } \emptyset \\ \text{else} \\ & u \leftarrow L.pop() \\ v \leftarrow u.parent \\ \text{Remove } u, v \text{ updating the pointers of } v\text{'s neighbors accordingly to modify } G. \\ \text{Also if } v \text{ was the only child of its parent, insert that parent into } L. \\ \text{return } \{u\} \cup \text{MaxLocations}(G) \end{split}
```

Correctness: Base case is obvious. Otherwise, let  $G_1$  be the graph after the modification, before the recursive step. Then our algorithm returns a set with length  $1 + |\text{MAXLocations}(G_1)|$ . Suppose on the other hand that u was not in our optimal set. This implies v is in the optimal set, otherwise we would be able to add u since it is a leaf connected to v. We then would have to remove u, v, and the neighbors of v reducing G to  $G_2$  where  $G_2 \subset G_1$ . However this implies  $|\text{MAXLocations}(G_2)| \leq |\text{MAXLocations}(G_1)|$  hence we cannot do better than when u is included.

**Runtime:** The recursion removes edges and points from G until it becomes  $\emptyset$  hence our runtime is  $\Theta(V+E)=\Theta(V)$ .

(d) We use the algorithm as in (b) except we do not convert G into a tree (because we can't). Instead of children and grandchildren we have neighbors of distance 1 and 2 away and instead of using roots as a key we modify G into  $G_1$  and  $G_2$ , corresponding to removing distance 1 neighbors and distance  $\leq 2$  neighbors, then recurse on both. Correctness follows easily since we are literally brute forcing based on whether u is in the optimal set or not. As a result our runtime is  $O((V+E)2^E)$  since we take O(V+E) time to iterate through a graph but there are  $O(2^E)$  possible ways to go through the iteration.

Rishad Rahman (Deepak's Recitation)

February 19, 2015

## 6.046 Problem 1-2

Collaborators: Cheng Wang

(a) The maximum distance in a  $\frac{1}{2} \times \frac{1}{2}$  box is  $\frac{\sqrt{2}}{2} < 1$ .

## (b) Algorithm:

```
FINDBADDISTANCE(S)
```

Let L be the set of points to the left of the median x-coordinate and R those to the right.

if  $FINDBADDISTANCE(L) \vee FINDBADDISTANCE(R)$ 

return the pair found

else

Let S' be the set of points whose x-coordinate is < 1 away from the median x-coordinate, sorted by y-coordinate.

Let i iterate through S'

Let j iterate through the 11 closest points above i if d(i, j) < 1 return (i, j)

Correctness: Base case is obvious, we are halving the problem size each time so eventually we will reach a size of 1 which is not a bad pair so we don't handle it. The divide part of our algorithm, checking L and R, sees if either side contains a bad pair, however it doesn't check to see if d(p,q) < 1 with  $p \in L$  and  $q \in R$ . If this was the case then  $q_x - p_x \leq d(p,q) < 1$ , hence p,q must lie within the 2 unit strip centered on the median x-coordinate. We claim if this was the case, our algorithm will detect it. WLOG  $p_y < q_y$  since we are iterating through S' in order of y-coordinate. If you divided the map into  $\frac{1}{2} \times \frac{1}{2}$  squares so that the median coincides with the boundary of two consecutive squares, then we must have each point in the 2 unit strip must be in a unique square otherwise we would have two points on the same side in the same square which implies their distance is < 1 by (a) and we would've detected it in the recurrence. We have that there are 4 squares per row in our 2 unit strip. If d(p,q) < 1we claim q cannot be in a square that is more than 2 rows above p's square which follows since  $q_y - p_y \le d(p,q) < 1 = 2 \times \frac{1}{2}$ . Therefore (p,q) lie in a  $3 \times 4$  set of squares where there is no more than 1 point per square hence there cannot be more than 11 points between them.

**Runtime:** The merge is O(n) since we look at 11 points max per point in S' hence our recursion is  $T(n) = 2T(\frac{n}{2}) + O(n)$  which by Master Theorem tells us our runtime is  $O(n \log n)$ .

(c) The algorithm is pretty much almost exactly the same as the one in (b) except a slight modification on the merge. We now let j iterate through the 23 closest points above i and instead of terminating once we find d(i,j) < 1 we let j finish iterating and add all j such that d(i,j) < 1 into a set J. Then we check all the pairwise distances in J and return  $(i,j_1,j_2)$  if  $\exists j_1,j_2 \in J$  such that  $d(j_1,j_2) < 1$ . Correctness follows in the merge since there can be a maximum of 2 points per square now and if  $(i,j_1,j_2)$  has all its pairwise distances < 1 and WLOG  $i \in L$  and  $j_1, j_2 \in R$ , then we must have  $j_1, j_2$  must be in the 12 squares mentioned in the correctness of (b). At that point manually checking all possible  $j_1, j_2$  suffices to see if the last distance is indeed < 1. The runtime is still  $O(n \log n)$  since the merge time is still linear as the amount of time per point is still constant as we only need  $\le {23 \choose 2}$  comparisons.