

3MICT

Лабораторна робота № 1	2
Лабораторна робота № 2	3
Лабораторна робота № 3	16
Лабораторна робота № 4	26

Змін. Арк № Докум. Підпис Дата

IKAT.420 010. 013 - 3/1

Арк

ЛАБОРАТОРНА РОБОТА № 1

ЗНАЙОМСТВО З ПРОГРАМОЮ ДЛЯ РОЗРОБКИ КРЕСЛЕНЬ SPLAN

Мета роботи — ознайомитись з призначенням та основними прийомами роботи в програмі для розробки креслень схем sPlan, навчитись виконувати креслення простих схем.

1.1 Короткі теоретичні відомості

Програма sPlan — простий і зручний інструмент для креслення електронних і електричних схем, вона дозволяє легко переносити символи з бібліотеки елементів на схему і прив'язувати їх до координатної сітки.

Програма підтримує автоматичну нумерацію елементів, контактів та можливість задання номіналів для елементів. Також є можливість створювати власні шаблони документів, а також компоненти та бібліотеки, що дає змогу створювати набори стандартних компонентів і поширювати їх між розробниками.

В функціонал також входить робота з текстовими елементами та таблицями. Також можна згенерувати перелік використаних компонентів.

Є можливість задавати розмірні лінії, що може бути зручним для схематичного зображення об'єктів.

Один документ в sPlan може мати декілька сторінок різних форматів, що полегшує роботу з багатосторінковими елементами.

Якщо в документі є повторювані значення, наприклад шифр документу то його можна задати у вигляді користувацької змінної, і вставляти автоматично. Це може бути також використано при створенні шаблонних документів. Створивши шаблон з вбудованим набором змінних отримаємо можливість автоматичної вставки значень в документ в налаштуваннях.

Змін	Арк	№ Докум.	Підпис	Дата

ЛАБОРАТОРНА РОБОТА № 2

ВИВЧЕННЯ ДОДАТКОВИХ МОЖЛИВОСТЕЙ ПРОГРАМИ ДЛЯ РОЗРОБКИ КРЕСЛЕНЬ SPLAN

Мета роботи — ознайомитись з додатковими можливостями програми для розробки креслень схем sPlan, навчитись працювати з формами документів, створювати власні елементи та бібліотеки компонентів.

2.1 Виконання роботи

2.1.1 Виконання креслення основного напису для креслення

1. Для початку роботи потрібно встановити книжну орієнтацію аркуша, та переконатись що задані параметри аркуша відповідають поставленому завданню. Для цього переходимо в меню "Лист" > "Свойства листа" (рис. 2.1).

Рис. 2.1: Вікно налаштувань аркуша

2. Задаємо початкові розміри аркуша використовуючи інструмент "Розміри" (рис. 2.2).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 2.2: Інструмент "Розміри"

3. Використовуючи інструмент "Прямокутник" будуємо зовнішню рамку (рис. 2.3).

Рис. 2.3: Інструмент "Прямокутник"

4. Використовуючи вище наведені інструменти задаємо розміри та будуємо праву частину основного напису (рис. 2.3).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 2.4

Рис. 2.5

5. Застосуємо інструмент лінія, для побудови відповідних горизонтальних та вертикальних ліній (рис. 2.6).

Рис. 2.6: Інструмент "Лінія"

Змін.	Арк	№ Докум.	Підпис	Дата

6. Добудовуємо залишок основного напису використовуючи вказані інструменти

Рис. 2.7

Рис. 2.8

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 2.9

Рис. 2.10

Рис. 2.11

Змін.	Арк	№ Докум.	Підпис	Дата

7. Виділивши необхідні лінії натискаємо праву клавішу мишки та обираємо пункт "Властивості" в якому задаємо необхідну товщину лінії.

Рис. 2.12

2.1.2 Створення користувацьої бібліотеки елементів

Натискаємо на піктограму Книги на панелі бібліотек і обираємо пункт "Бібліотеки...". У діалоговому віні обираємо пункт "Створити" (рис. 2.13).

Рис. 2.13: Вікно керування бібліотеками.

Змін.	Арк	№ Докум.	Підпис	Дата

2.1.3 Виконання крелсення елементів електронної схеми за варіантом

Згідно варіанту портрібно створити наступні елементи:

Рис. 2.14

Для створення елементів в бібліотеці на панелі клікаємо правою клавішою мишки, у випадаючому меню обираємо "Створити новий елемент" > "Редактор". У відкритому вікні створюємо необхідні елементи.

1. За домогою стандартних примітивів креслимо задані елементи (рис. 2.15).

Рис. 2.15

2. Задаємо заливку для необхідних елементів (рис. 2.16).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 2.16

3. Створюємо підписи до контактів та інші необхідні текстові елементи (рис. 2.17).

Рис. 2.17

4. Аналогічно вибудовуємо другий елемент (рис. 2.18).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 2.18: Готові елементи в бібліотеці

2.1.4 Виконання креслення електронної принципової схеми з використанням створених елементів

Перетягуємо створені елементи з бібліотеки на аркуш і використовуючи всі вище наведені інструменти будуємо принципову схему та таблицю під'єднання кіл живлення. Схема наведена на сторінці 12, таблиця під'єднання кіл живлення — на сторінці 13.

Змін.	Арк	№ Докум.	Підпис	Дата

Шина	Виводи /	мікросхем
Живлення	DD1DD3	D1D3
+5B	6	11
0B	4	14

Зм	Арк	№ Докум	Підпис	Дата

2.1.5 Створення переліку елементів схеми

Командою "Сервіс" > "Перелік елементів" ("Сервис" > "Перечень елементов.") створюємо перелік елементів (рис. 2.19).

Рис. 2.19: Перелік елементів

Змін.	Арк	№ Докум.	Підпис	Дата

Висновок

В межах даної лабораторної роботи було спроектовано і оформлено принципову схему, а також створено власні компоненти для бібліотеки які можуть використовуватись повторно. За допомогою програми SPLAN можна відносно швидко проектувати принципові схеми та інші схематичні зображення, створювати власні компоненти та шаблони, і використовувати його для робіт з виконання схематичного зображення електронних схем.

Зм	ін. Арк	№ Докум.	Підпис	Дата

ЛАБОРАТОРНА РОБОТА № 3

ЗНАЙОМСТВО З БАЗОВИМИ МОЖЛИВОСТЯМИ СИСТЕМИ КОМПАС-3D

Мета роботи — ознайомитись з основними прийомами роботи в програмному пакеті підготовки конструкторської документації КОМПАС-3D, навчитись виконувати креслення простих деталей на площині.

3.1 Короткі теоритичні відомості

Система КОМПАС-3D — інтерактивний графічний редактор з сучасним інтерфейсом, оснащений інструментальними засобами, які дозволяють створювати твердотілі об'єкти з використанням набору елементарних параметричних тіл (паралелепіпед, циліндр та ін.)

Просторові твердотілі та каркасні моделі об'єктів (деталей, вузлів, виробів, будівель і т. п.) при виконанні проектно-конструкторських, технологічних та дизайнерських робіт в машинобудуванні, приладобудуванні, будівництві, архітектурі).

3.1.1 Бібліотеки для КОМПАС

3.1.1.1 Бібліотека анімації

Бібліотека анімації є стандартним застосунком для КОМПАС-3D. Вона працює з версіями КОМПАС-3D V8 і вище. Додаткових модулів (окрім самого КОМПАС-3D) для роботи додатку не потрібно. Бібліотека призначена для імітації руху (анімації) виробів, розроблених у системі тривимірного твердотільного моделювання КОМПАС-3D. Бібліотека дозволяє:

- Імітувати рухи складових частин виробу в процесі реальної роботи (можуть використовуватися сполучення деталей, що накладаються користувачем у процесі проектування 3D-збірки). Для цих цілей
- Бібліотека дозволяє задавати як переміщення компонентів, так і їх обертальний рух.

Змін.	Арк	№ Докум.	Підпис	Дата

- Автоматично перевіряти можливі колізії (зіткнення деталей) у процесі руху для виявлення помилок у проектуванні.
- Наочно імітувати процес «розбирання-збірки» виробу для застосування в інтерактивному електронному технічному керівництві.
- Створювати діаграму послідовних положень механізму «кінограму» (набір послідовних кадрів у форматі *.frw фрагмент КОМПАС-Графік).
- Записувати відеоролик руху у форматі *.avi. Відтворення можливе як на поточному кроці анімації, так і в цілому.

Анімація складається з послідовних кроків. На кожному кроці можна задавати різні види руху деталей і параметри руху (швидкість, частота обертання, час). Сценарій процесу анімації зберігається в текстовому файлі стандартного ХМL-формату. Бібліотека анімації не тільки значно підвищує якість проектування виробів в цілому, його наочність і зручність, але також підсилює конкурентоспроможність підприємства на етапах виконання конкурсних проектів.

3.1.1.2 Бібліотека фотореалістики

Бібліотека призначена для створення фотореалістичного зображення тривимірної моделі деталі або збірки, спроектованої в КОМПАС-3D. Бібліотека фотореалістики дає можливості для створення 244 ефектних зображень виробу і використання їх у презентаціях і рекламній документації. Для зручності роботи в бібліотеці реалізований режим інтерактивного рендерінга, що дозволяє здійснювати попереднє відображення моделі з текстурами, призначеними в сцені. Матеріали:

- Вибір матеріалів з широкого списку вбудованої бібліотеки (різні види металів, дерева, каменя, пластика та багато інших).
- Настройка властивостей матеріалу, таких як колір поверхні, що відображає здатність, дзеркальність, прозорість, шорсткість і текстура.
- Можливе призначення матеріалів збіркам, деталям, операціям і поверхням.

Зм	ін. Арк	№ Докум.	Підпис	Дата

• Реалізований попередній перегляд матеріалів, сцени і джерел світла для зменшення часу отримання фотореалістичного зображення.

3.2 Виконання роботи

Згідно з варінтом для побудови була задана наступна деталь:

Рис. 3.1: Задана деталь для побудови

- 1. За допомогою інструменту "Прямокутник" будуємо відповідну фігуру і задаємо необхідні розміри (рис. 3.2).
- 2. За допомогою інструмента "Автоматичний розмір" проставляємо розміри деталі (рис. 3.3).
- 3. Видліяємо стоврений прямокутник, і вибираємо в контестному меню (викликається правим кліком мишки) пункт "Зруйнувати" ("Разрушить"), щоб розділити об'єкт на відрізки (рис. 3.4). Після чого формуємо необхідний контур.

					IKAT.420 010. 013 -	3/1
Paire	Λnν	МО Локим	Підпис	Пата		

Арк

Рис. 3.2: Застосування інструменту прямокутник

Рис. 3.3: Застосування інструменту "Автоматичний розмір"

- 4. За допомогою інструменту "Дуга", будуємо дугу з вказаним радіусом (рис. 3.5).
- 5. Використовуючи інструмент "Лінія між двома точками", будуємо осоьову лінію (рис. 3.6) та допрацьовуємо внутрішній контур клесленика (рис. 3.7).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 3.4: Застосування інструменту "Зруйнувати"

Рис. 3.5: Застосування інструменту "Дуга"

6. Інструментом "Радіальний розмір" вказуємо розміри дуги. (рис. 3.8).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 3.6: Застосування інструменту "Лінія між двома точками"

					WAT / 20 010 012 2.4	Арк
					IKA 1.420 U1U. U13 - 3/I	21
Змін.	Арк	№ Докум.	Підпис	Дата		21

Рис. 3.8: Застосування інструменту "Радіальний розмір"

Змін.	Арк	№ Докум.	Підпис	Дата

Висновки

КОМПАС 3D — потужний програмний пакет, що дозволяє створювати, креслення та інженерну документацію різної складності.

В ході виконання даної роботи, було проведено ознайомлення з базовими інструментами програми. З використанням цих інструментів було побудовано задану за варіантом деталь.

Змін.	Арк	№ Докум.	Підпис	Дата

ЛАБОРАТОРНА РОБОТА № 4

ВИВЧЕННЯ ДОДАТКОВИХ МОЖЛИВОСТЕЙ КРЕСЛЕННЯ В СИСТЕМІ КОМПАС-3D

Мета роботи — ознайомитись з додатковими прийомами виконання креслень в програмному пакеті підготовки конструкторської документації КОМПАС-3D, навчитись виконувати креслення ускладнених деталей на площині.

4.1 Виконання роботи

Згідно з варінтом для побудови була задана наступна деталь:

Рис. 4.1: Задана деталь для побудови

1. Створюємо новий шар (рис. 4.2) на якому буде знаходитись допоміжна геометрія, яку можна буде в процесі приховати, без ручного видалення допоміжних елементів. Основне креслення буде знаходитись в *системному шарі*.

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 4.2: Створення новго шару.

2. Створюємо два кола на на кординатах (0, 0) та (0, -110) та проводимо між центрами цих кіл осьову лінію з координатами (0,-110) та (0,50). Додаємо допоміжну точку на координатах (0, -65). (рис. 4.3).

Рис. 4.3

3. Задаємо розміри для побудованих елементів (рис. 4.4).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 4.4

4. Будуємо коло радіосом 5 мм та центром (-65 -30), опускаємо до нього тонкі лінії. Вставнолюємо точку з кординатами (-65, 30) в допоміжно шарі (рис. 4.5).

Рис. 4.5

5. Позначаємо розміри для побудованих елементів (рис. 4.6).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 4.6

6. Будуємо дугу радіусом 45мм та позначаємо її радіальний діаметр (рис. 4.7).

Рис. 4.7

7. Будуємо дуги радіусами 100мм, 80мм та 22 мм відповідно (рис. 4.8).

Змін.	Арк	№ Докум.	Підпис	Дата

Рис. 4.8

8. За допомогою інструменту "Відсікти криву" ("Усечь кривую") видалямо частини що періскаються для дуг R100 та R45 (рис. 4.9).

Рис. 4.9

9. За допомогою інструменту "Заокруглення" ("Скругление") закоруглюємо реда-

Змін.	Арк	№ Докум.	Підпис	Дата

говані дуги (рис. 4.10).

Рис. 4.10

10. Добудовуємо дуги R300, R10 та R50. (рис. 4.11).

Рис. 4.11

11. Для побудованих кривих проводимо ті ж операції, що і на кроках 8. — 9.. (рис. 4.12).

Арк

31

					IKAT.420 010. 013 - 3/1
Змін.	Арк	№ Докум.	Підпис	Дата	

Рис. 4.12

12. Вимикаємо видимість допоміжного шару, щоб сховати непотрібну допоміжну геометрію. (рис. 4.13).

Рис. 4.13

Готовий кресленик навадений на сторінці 33.

			·	
Змін.	Арк	№ Докум.	Підпис	Дата

Висновок В ході виконання данох лабораторної роботи було вивичено особливості роботи програмою (а саме з кривими та дугами) та побудовано задане за варіантом креслення деталі. Арк IKAT.420 010. 013 - 3/1 34

Підпис Дата

№ Докум.