Dietary habits and disease activity in rheumatoid arthritis patients

RESEARCH QUESTIONS

RETRIEVE DIETARY PATTERNS

Are there prevalent dietary patterns (DPs) followed by patients?

TECHNIQUES

- Principal component analysis
- Factor analysis

RELATE PATTERNS WITH DISEASE ACTIVITY

- Are there significant relationships between different dietary patterns and disease form?

TECHNIQUES

- Clustering
- (Logistic Regression)

Analysis supported by

Edefonti V, Parpinel M, Ferraroni M, Boracchi P, Schioppo T, Scotti I, Ubiali T, Currenti W, De Lucia O, Cutolo M, Caporali R, Ingegnoli F. A Posteriori Dietary Patterns and Rheumatoid Arthritis Disease Activity: A Beneficial Role of Vegetable and Animal Unsaturated Fatty Acids. Nutrients. 2020 Dec 17;12(12):3856. doi: 10.3390/nu12123856. PMID: 33348651; PMCID: PMC7766886.

1. DATASET

PRE-PROCESSING

365 observations, 499 variables.

Each row is a patient suffering of rheumatoid arthritis.

RELEVANT ATTRIBUTES

- Patients' info
- Nutrients (34 variables)
- Single foods (110 variables)
- Food groups (35 variables)
- Others: Diseases, drugs, etc.

IRRELEVANT ATTRIBUTES

- Attributes for a study on the relation between air pollution and rheumatoid arthritis
- Answers to the food frequency questionnaire: already translated into scores

365 observations, 304 variables left

EXPLORATORY ANALYSIS

Descriptive analysis of the most relevant variables

BIOLOGICAL SEX and AGE

- Highly unbalanced dataset
- Nearly 80% of patients are female patients. Disease mainly affecting female individuals

In both groups most of the patients are in their **50s**

Beginning	Present	Duration		
ETA_ESORDIO	ETA_VISITA	DURATA_MALATTIA		
Min. : 2.00	Min. :21.00	Min. : 1.00		
1st Qu.:31.00	1st Qu.:48.00	1st Qu.: 8.00		
Median :42.00	Median :58.00	Median :13.00		
Mean :41.88	Mean :57.51	Mean :15.72		
3rd Qu.:53.00	3rd Qu.:69.00	3rd Qu.:21.00		
Max. :82.00	Max. :91.00	Max. :57.00		

Since the average duration is 15 years, the highest **incidence** is around the **30s**

DISEASE ACTIVITY INDICATORS

DAS28 = (0.56 * sqr(CAD)) + (0.28 * sqr(CAG)) + (0.7 * ln(VES)) + (0.014 * GH)

RHEUMATOID FACTOR {0,1}

- □ 1: severe activity
- 0: low-moderate activity

DAS28 (0.0,9.9)

- DAS28 < 2,6: Remission
- DAS28 >= 2,6 & <= 3,2: Low activity
- DAS28 > 3,2 & <= 5,1: Moderate activity
- DAS28 > 5,1: Severe activity

Composite index

SDAI (0.0,100.0)

- SDAI <3.3: Remission
- SDAI >= 3.3 & <= 11: Low activity</p>
- SDAI > 11 & <= 26: Moderate activity
- ▶ **SDAI > 26**: Severe activity

Composite index (Simplified Disease Activity Index): measuring pain in 28 joints

SDAI

108 REMISSION

155 LOW ACTIVITY

81

MODERATE ACTIVITY

21 SEVERE ACTIVITY

DAS28

227
REMISSION

60 LOW ACTIVITY

64
MODERATE ACTIVITY

14
SEVERE ACTIVITY

EDUCATION

- ≥ 16 missing values
- No expected relationship between disease activity and education level

Primary school education according to age

Higher incidence of 1 in primary school due to the age of patients: older people more likely to have the disease and more likely to have finished primary school only. **No correlation**

ALCOHOL and SMOKE

No relevant relationship

1/mese 1/settimene 2-3/die 2-3/settimene 2/mese

COMORBIDITIES

2. DPs RETRIEVAL

PCA and FACTOR ANALYSIS

Principal Component Analysis

- Goal: Reduce dataset and find suitable number of components explaining the majority of the variance in the dataset
- PCA was performed on the original dataset as well as subsets, split based on the DAS28 score to find possible differences between lightly/heavily affected patients
- Only subset with high DAS28 (>3.2)
 Included in presentation

Principal Component Analysis

	Cumulative Proportion
PC1	0,610
PC2	0,688
PC3	0,761
PC4	0,811
PC5	0,845
PC6	0,872

Principal Component Analysis – high DAS28 score

Principal Component Analysis

Principal Component Analysis

- Table of PC1-5 including the full set of individuals
- To find the most contributing variables and derive insights about the nature of the components and their driving factors for the individual components we checked the correlations
- C20.5, C22.6 are omega3 fatty acids
- C20.4 (arachidonic),
- C18.2 (linoleic), C18.3 (linolenic) omega6

Factor Analysis - loadings

- Goal: retrieve 5 factor loadings for the components found in the PCA and associate them to possible dietary patterns
- FA has been performed on set of 34 nutrients included in the dataset
- Outstanding aspects in terms of loading for the nutrients have been highlighted
- ▷ 5 DP have been formulated

Loadings:					
de transferance de la const	Factor1	Factor2	Factor3	Factor4	Factor5
Proteineg	0.844				0.155
Lipidi.g			0.638		0.601
Colesterolomg	0.180		-0.145	0.172	0.774
Carboidrati.disponibilig	0.816			-0.145	60 Deccres 000
Amidog	0.866	-0.325		-0.145	
Zuccheri.solubilig	2.0000000000000000000000000000000000000	0.800			0.212
Fibra.solubileg	0.182	0.806			
Fibra.insolubileg	0.318	0.711			-0.125
Sodiomg	0.545	-0.147			0.329
Potassiomg	0.294	0.744			
Ferromg	0.729	0.363			-0.142
Calciomg	0.251	0.432	-0.126		0.533
Fosforomg	0.698	0.217			0.181
Magnesiomg	0.771	0.306	0.131		-0.172
Zincomg	0.714	0.243			
Ramemg	0.659	0.278	0.283		-0.224
Selenioµg	1.059	-0.251			
Tiaminamg	0.728	0.194	0.100		
Riboflavinamg	0.448	0.390			0.245
Niacinamg	0.904	100000000000		0.166	-0.137
Vitamina.A.retinolo.eqμg		0.865			0.230
Vitamina.Cmg	-0.142	1.065			
Vitamina.Emg		0.356	0.683		
Saturi.totali			0.179		0.923
Monoinsaturi.totali		-0.108	0.714		0.477
C20.5				0.964	
C22.6				1.000	
C18.2		-0.179	0.966		
C18.3			0.870		
C20.4	0.332			0.273	0.150
Vitamina.dμg.				0.956	
Flavonoids		0.717			
Phenolic.acids		0.280	0.206		-0.189
Lignans	-0.123	0.877	-0.173		

Factor Analysis - Correlations

- The factor loadings have then been analysed in a correlation matrix with the food groups from the dataset to check validity of the dietary patterns
- They show the strongest correlations with the groups we would expect from each dietary pattern

	Starch_rich	Vitamins_fiber	VUFA	AUFA	Animal_pro
vf_fast_food	0.25	-	-	-	-
vf_formaggio_spalmabile	0.2	0.17	-	-	0.41
vf_redmeat	0.34	0.16	-	0.13	0.34
vf_whitemeat	-	-	-	-	0.17
vf_fish	0.19	0.25	0.15	0.72	0.11
vf_fat_fish	0.23	0.20	0.20	0.73	0.19
vf_seafood	-	0.13	-	0.16	-
vf_eggs		-	-	-	-
vf_sweets	0.24	0.13	0.29	-	0.42
vf_snacks	0.17	-	0.24	-	0.26
vf_dried_fruit		-	0.17	-	-
vf_nuts	0.26	0.24	0.85	0.12	-
vf_olive_oil	0.18	0.22	0.37	0.18	
vf_seed_oil		-	-	-	-
vf_vegetables	0.45	0.73	0.35	0.28	0.24
vf_leafy_vegetables	0.37	0.60	0.33	0.27	0.19
vf_cabbages	0.29	0.55	0.19	0.19	0.13
vf_legumes	0.57	0.44	0.32	0.24	0.16
vf_onion_garlic	0.29	0.31	0.21	0.21	0.11
vf_mushrooms	0.29	0.27	0.15	0.22	0.23
vf_soy_products	0.15	0.15	0.21	-	-
vf_fruits_allseasons	0.37	0.79	0.38	0.22	0.24
vf_winter_fruits	0.31	0.73	0.20	0.18	0.24
vf_summer_fruits	0.34	0.74	0.37	0.17	0.22
vf_unsweetened_beverages	0.15	0.31	0.18	0.17	-
vf_coffee	0.19	0.14	-	-	0.14
vf_alcoholic_beverages	-	-	-	-	-
vf_soft_drinks	-	-	-	-	0.12
vf refined grains	0.55	-	0.2	-	0.33
vf_potatoes	0.31	0.19	0.21	0.16	0.29
vf_whole_grains	0.64	0.24	0.3	-	0.13
vf refined grains	0.55	-	0.2	-	0.33
vf_potatoes	0.31	0.19	0.21	0.16	0.29
vf_whole_grains	0.64	0.24	0.3	-	0.13
vf_butter_margarine	0.11	-	0.11	-	0.35
vf milk yoghurt	0.25	0.18	-	-	0.37
vf_stagionato_cheese	0.31	0.35	0.17	-	0.67
vf other cheese	0.37	0.25	0.11	0.12	0.65

Adherence to DP's

 We assigned the DP's to the individuals according to the highest factor loading

Stark-rich	Vitamins_ Fiber	VUFA	AUFA	Animal Products	
53	65	49	101	97	

Pattern <dbl></dbl>	max <dbl></dbl>	Factor5 <dbl></dbl>	Factor4 <dbl></dbl>	Factor3 <dbl></dbl>	Factor2 <dbl></dbl>	Factor1 <dbl></dbl>
1	-0.089557962	-0.432295498	-0.699896011	-0.309470804	-0.952617282	-0.089557962
2	2.896447533	-0.475993577	0.072934347	0.095706199	2.896447533	0.176391754
4	2.618567038	-0.458250869	2.618567038	0.434579857	-0.496801613	-0.393344158
3	0.062558390	-0.145708982	-0.124279305	0.062558390	-0.592607424	-0.214375554
4	1.197109111	-0.315964828	1.197109111	-0.700194240	0.038098349	-0.345842414
5	1.622782675	1.622782675	-0.445499120	0.019487269	-0.236465336	0.020924569
5	0.962940720	0.962940720	-0.775288183	-0.817745857	-0.551359920	-0.417339508
2	1.718206606	0.176111789	-0.199041084	0.367929245	1.718206606	0.370064100
5	0.723633343	0.723633343	0.118788140	-0.104176233	-0.043110154	-0.121462369
3	-0.517700190	-1.030894846	-0.996676432	-0.517700190	-0.917078655	-0.633622025

3. CLUSTERING

Confirmatory analysis

Despite Silhouette method result, 5 clusters were identified using k-means

- Attempt with 5 clusters revealed an outlier
- ► K-means with 6 clusters to have 5 actual groups

> table(km.outcome\$cluster)

1	2	3	4	5	6
103	93	46	15	1	107

	ID <int></int>	SESSO <fctr></fctr>	ALTEZZA <int></int>	PESO <int></int>	BMI <dbl></dbl>	SCOLORITA <fctr></fctr>	CITTADINANZA <chr></chr>	Fumatore <fctr></fctr>	FR <fctr></fctr>
272	300	Femmina	168	55	19.48696	medie	italiana	Ex-fumatore	1

> Average consumption scores for different clusters

	vf_ca	rni_rosse <dbl></dbl>	vf_maiale <chr></chr>	vf_fast food <chr></chr>	vf_carni_	bianca <dbl></dbl>	vf_carni	_processata <dbl></dbl>		
1		0.16	-	4		0.30		0.17		
2		0.19	¥	¥		0.24		0.25		
3		0.23	0.08	0.01		0.28		0.24		
4		0.25	0.06	0.03		0.28		0.25		
5		0.36	0.36	0		0.64		0.64		
6		0.20	0.09	0.01		0.25		0.25		
	vf_pere <dbl></dbl>	vf_aran	ce_mandarini <dbl></dbl>	vf_arance_rosse <dbl></dbl>	vf_banana <dbl></dbl>	vf_uva <dbl></dbl>	vf_melone <dbl></dbl>	vf_anguria <dbl></dbl>	vf_pesche <dbl></dbl>	vf_albicocche <dbl></dbl>
1	0.20		0.51	0.35	0.28	0.20	0.20	0.17	0.37	0.35
2	0.23		0.59	0.45	0.33	0.30	0.30	0.29	0.55	0.50
3	0.66		1.83	0.87	0.56	1.02	0.48	0.53	1.47	1.67
4	1.48		2.19	1 <u>.61</u>	0.79	1.69	1.19	1.08	2.10	2.78
5	2.50		4.50	4.50	0.00	0.00	0.36	4.50	4.50	4.50
6	0.28		0.73	0.39	0.25	0.25	0.25	0.29	0.51	0.53

	vf_spinaci <dbl></dbl>	vf_broccoli <chr></chr>	vf_cavoli <chr></chr>	vf_cavolfiori <chr></chr>	vf_piselli <dbl></dbl>	vf_fagiolini <dbl></dbl>	vf_zucchine <dbl></dbl>	vf_cicoria <chr></chr>	vf_asparagi <chr></chr>	vf_insalata
1	0.13	0.13		.6	0.11	0.13	0.23	0.12	-	0.44
2	0.11	ā	5	范	0.11	0.12	0.22	5	-	0.42
3	0.14	0.19	0.12	0.16	0.17	0.26	0.27	0.2	0.13	0.90
4	0.29	0.29	0.17	0.23	0.26	0.37	0.36	0.13	0.17	1.39
5	4.50	4.5	4.5	4.5	0.36	0.14	0.64	0.06	4.5	0.3
6	0.12	0.13	0.08	0.1	0.10	0.14	0.24	0.1	0.09	0.6

Hard to find one-to-one correspondence with DPs (e.g. 4th cluster could be Vitamins and fiber DP)

2

5	(0.64	0.06	0	0.14	0.14 0		0.03
6		1.26	0.60	0.17	0.22	0.47 0.14		0.14
vf_fo	rmaggio_giallo <dbl></dbl>	vf_ricotta_formaggi_magri <dbl></dbl>		vf_mozzarella <dbl></dbl>	vf_formaggio spalmabile	vf_bur <db< td=""><td>o vf_margarina > <chr></chr></td><td>vf_dolci_vari <dbl></dbl></td></db<>	o vf_margarina > <chr></chr>	vf_dolci_vari <dbl></dbl>
1	0.25	0.18		0.11	is .	0.1	4 -	0.53
2	0.38	0.20		0.18	0.12	0.2	5 -	0.85
3	0.59	0.32		0.21	0.22	0.2	0 0.02	1.45
4	0.51	0.29		0.18	0.15	0.1	2 0.03	0.99
5	2.50	0.06		0.06	0.03	0.0	0 0.03	0.06
6	0.32	0.26		0.16	0.08	0.1	2 0.02	0.62

vf_pasta vf_riso_pasta_integrali

0.43 -

0.62 0.12

0.56 0.16

0.31 0.15

vf_patate

0.15

0.15

0.19

0.19 0.03 0.14

vf_riso <dbl>

0.24

0.29

0.29

0.27

2nd and 3rd clusters could be **starch-rich** and **AUFA** respectively.

0.32 0.14

0.55 0.18

0.87 0.17

0.47 -

 $\begin{array}{ccc} vf_pane_farinacei & vf_pane_farinacei_integrali & vf_cornflakes_cereali \\ < dbl> & < chr> \end{array}$

0.67

1.28

1.26

0.80

ard clusters could be starch-rich and AUFA respectively								
cluster <int></int>	DAS28 <dbl></dbl>	SDAI <dbl></dbl>	duration <dbl></dbl>					
1	2.671083	10.789311	14.17476					
2	2.237788	7.194032	15.68817					
3	2.587020	10.136457	17.54348					
4	1.886081	3.617400	15.80000					
5	3.813994	14.080000	16.00000					
6	2.478682	9.125897	16.42991					

Different comorbidities ratios in the clusters by using most relevant diseases **High blood pressure (hypertension)**

GASTROESOPHAGEAL REFLUX DISEASE (GERD)

GASTRITIS

THANK YOU FOR YOUR ATTENTION!

Any questions?