Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A method of preparing at least one benzazepine compound of general formula (IA):

$$(R^{1})_{n} \qquad R^{2} \qquad R^{3} \qquad (IA)$$

in which:

- R¹ is chosen from the group consisting of halogen atoms chosen from the group consisting of chlorine, fluorine, bromine and iodine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, and:

R^k, R^l and R^m are each independently chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, and heterocycles,

or R^k and R^l form, together with the atom to which they are attached, a heterocycle,

with m denoting an integer greater than or equal to 0,

n represents an integer chosen from the group consisting of 0, 1, 2, 3 and 4, with, when n is greater than or equal to 2, r the corresponding R¹ groups are identical or different, and optionally form, together, a hydrocarbon-based ring or a heterocycle,

R², R³, R⁴, R⁵, R⁶ and R⁷, independently of one another, are chosen from the group consisting of hydrogen atom, halogen atoms chosen from the group consisting of chlorine, fluorine and bromine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituents groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-S(O)R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, with R^k, R^l, R^m and m as defined above,

or R⁴, R⁵, R⁶ and R⁷ form, in pairs, one or more hydrocarbonbased ring(s) or heterocycle(s), with at least one of the R⁴, R⁵, R⁶ and R⁷ groups representing a hydrogen atom,

from at least one compound of general formula (IIA)

$$(R^1)_{n} \xrightarrow{Q} S z^1$$

$$(IIA)$$

in which

 Z^1 represents a group chosen from the group consisting of:

(i) alkyl groups, acyl groups, aryl groups, aralkyl groups, alkene groups, alkyne groups, hydrocarbon-based rings, and heterocycles,

- (ii) $-OR^a$ or $-SR^a$ groups in which R^a is a group chosen from the group consisting of:
- alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, and polymer chains;
 - - CR^bR^cPO(OR^d)(OR^e) groups in which:
- R^b and R^c are each, independently of one another, chosen from the group consisting of hydrogen atom, halogen atoms, alkyl groups, perfluoroalkyl groups, hydrocarbon-based rings, heterocycles, -NO₂ groups, -NCO groups, -CN groups, and groups chosen from the group consisting of -R^f, -SO₃R^f, -OR^f, -SR^f, -NR^fR^g, -COOR^f, -O₂CR^f, -CONR^fR^g, -NR^fCOR^g, in which R^f and R^g are each independently chosen from the group consisting of alkyl groups, alkenyl groups, alkynyl groups, cycloalkenyl groups, cycloalkynyl groups, and aryl groups optionally condensed with a heterocycle, alkaryl, arylalkyl or heteroaryl,
- or R^b and R^c form, together with the carbon atom to which they are attached, a C=O group, a C=S group, a hydrocarbon-based ring or a heterocycle; and
- R^d and R^e are each, independently of one another, chosen from the group consisting of radicals of members of the group consisting of alkyl groups, alkenyl groups, alkynyl groups, cycloalkenyl groups, cycloalkynyl groups, and aryl groups optionally condensed with a heterocycle, alkaryl, arylalkyl or heteroaryl;
- or R^d and R^e form, together, a

 hydrocarbon-based chain containing from 2 to 4 carbon atoms, optionally interrupted with a

 group chosen from -O-, -S- and -NR^h-; where R^h is chosen from the group consisting of alkyl

groups, alkenyl groups, alkynyl groups, cycloalkenyl groups, cycloalkynyl groups, and aryl groups optionally condensed with a heterocycle, alkaryl, arylalkyl or heteroaryl;

(iii) an -NRⁱR^j group, in which:

Rⁱ and R^j are each, independently of one another, chosen from the group consisting of radicals chosen from alkyl groups, haloalkyl groups, alkenyl groups, acyl groups, ester groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings and heterocycles; or

Rⁱ and R^j form, together, a hydrocarbon-based chain containing from 2 to 4 carbon atoms, optionally interrupted with an -O-, -S-, or -NR^h-group, where R^his as defined above;

R^{2a} represents a group chosen from the group consisting of hydrogen atoms, halogen atoms, alkyl groups, haloalkyl groups, acyl groups, aryl groups, arylalkyl groups, hydrocarbon-based rings, heterocycles, polymer chains and groups chosen from the group consisting of –(CH₂)_m–OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CO, -(CH₂)_m-PO(OR^k)(OR^l), (CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k and -(CH₂)_m-NR^kR^l, in which R^k, R^l, R^m and m are as defined above,

- R¹ and n are as defined above,

wherein the method comprises at leaststages a-e:

a- reacting said compound of general formula (ΠA) with at least one olefin of general formula (A)

$$\begin{array}{ccc}
R^7 & R^4 \\
R^6 & R^5
\end{array}$$
(A)

in which:

 R^4 , R^5 , R^6 and R^7 are as defined above, with at least one of the R^4 , R^5 , R^6 or R^7 groups representing a hydrogen atom,

so as to obtain at least one compound of general formula (IIIA)

$$(R^{1})_{n}$$

$$R^{7}$$

$$R^{6}$$

$$R^{5}$$

$$S$$

$$S$$

$$(IIIA)$$

in which:

 R^1 , R^{2a} , R^4 , R^5 , R^6 , R^7 , Z^1 and n are as defined above,

b- cyclizing, by radical-based process, said compound of general formula (IIIA) so as to obtain at least one tetralone compound of general formula (IVA)

$$(R^{1})_{n} \xrightarrow{R^{2a}} R^{5}$$

$$(IVA)$$

in which:

R¹, R^{2a}, R⁴, R⁵, R⁶, R⁷ and n are as defined above,

c- converting said compound of general formula (IVA) into at least its oxime derivative of general formula (VA)

$$(R^1)_n$$
 R^2
 R^4
 R^5
 R^6
 R^5

in which:

R¹, R^{2a}, R⁴, R⁵, R⁶, R⁷ and n are as defined above,

d- converting said compound of general formula (VA), by Beckmann rearrangement and consecutive reduction(s), into at least one compound of general formula (IA), and

e-recovering said compound of general formula (IA).

- 2. (Previously Presented) The method according to claim 1, wherein, in general formula (IA), n = 1.
- 3. (Previously Presented) The method according to claim 2, wherein the R¹ group is in a para-position.
- 4. (Currently Amended) The method-as according to claim 1, wherein, in general formula (IA), R¹ is chosen from the group consisting of halogen atoms and alkoxy groups.
- 5. (Previously Presented) The method according to claim 1, wherein, in general formula (IA), R² and R³ are each independently chosen from the group consisting of hydrogen atom and alkyl groups.
- 6. (Previously Presented) The method according to claim 1, wherein, in general formula (IA), R^2 and R^3 are each chosen from the group consisting of halogen atoms.
- 7. (Previously Presented) The method according to claim 1, wherein, in the compound of formula (IIA), Z¹ represents -OR^a.
- 8. (Previously Presented) The method according to claim 1, wherein the olefin of general formula (A) is disubstituted.
- 9. (Previously Presented) The method according to claim 1, wherein the olefin of general formula (A) is monosubstituted.
- 10. (Previously Presented) The method according to claim 1, wherein the substituent(s) of said olefin of general formula (A) is (are) chosen from -Oacyl groups and groups of -(CH₂)_PCN type with p representing an integer ranging from 1 to 10.

- 11. (Previously Presented) The method according to claim 1, wherein the olefin of formula (A) is chosen from:
 - vinyl pivalate,
 - allyl cyanide, and
 - N-vinylphthalimide.
- 12. (Previously Presented) The method according to claim 1, wherein stage a is carried out in the presence of an effective amount of at least one radical initiator.
- 13. (Previously Presented) The method according to claim 1, wherein stage b is carried out in an acidic medium.
- 14. (Previously Presented) A method of preparing at least one compound of general formula (IB)

$$(R^{1})_{n} \xrightarrow{R}^{R^{1}} R^{3}$$

$$(IB)$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

in which:

R¹ is chosen from the group consisting of halogen atoms chosen from the group consisting of chlorine, fluorine, bromine and iodine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, and:

R^k, R^l and R^m are each independently chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkynyl groups, arylalkynyl groups, hydrocarbon-based rings, and heterocycles,

or R^k and R^l form, together with the atom to which they are attached, a heterocycle,

with m denoting an integer greater than or equal to 0,

n represents an integer chosen from the group consisting of 0, 1, 2, 3 and 4, with, when n is greater than or equal to 2, r the corresponding R¹ groups are identical or different, and form, together, a hydrocarbon-based ring or a heterocycle,

R², R³, R⁴, R⁵ and R⁶, independently of one another, are chosen from the group consisting of hydrogen atom, halogen atoms chosen from the group consisting of chlorine, fluorine and bromine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituents groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-S(O)R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, with R^k, R^l, R^m and m as defined above,

or R^4 , R^5 and R^6 form, in pairs, one or more hydrocarbon-based ring(s) or heterocycle(s), with at least one of the R^4 , R^5 and R^6 groups representing a hydrogen atom,

X is chosen from the group consisting of O, NR⁹, S, S(O), SO₂, SO₂NR⁹, and R⁸ and R⁹ are each, independently of one another, chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups,

acyl groups, aryl groups, arylalkyl groups, alkaryl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, and polymer chains, optionally substituted, or R^8 and R^9 form, together with the atom to which they are attached, a

heterocycle from at least one compound of general formula (IVB)

$$(R^{1})_{n}$$

$$R^{2a}$$

$$R^{4}$$

$$R^{5}$$

$$R^{6}$$
(IVB)

in which:

R¹, R⁴, R⁵, R⁶, R⁸, X and n are as defined above, and R^{2a} represents a group chosen from the group consisting of

hydrogen atom, halogen atoms, alkyl groups, haloalkyl groups, acyl groups, aryl groups, arylalkyl groups, hydrocarbon-based rings, heterocycles, polymer chains and groups chosen from the group consisting of $-(CH_2)_m-OR^k$, $-CH(OR^k)(OR^l)$, $-(CH_2)_m-SR^k$, $-(CH_2)_m-S(O)R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_2NR^kR^l$, $-(CH_2)_m-SO_3R^k$, $-(CH_2)_m-NO_2$, $-(CH_2)_m-CN$, $-(CH_2)_m-PO(OR^k)(OR^l)$, $-(CH_2)_m-SiR^kR^lR^m$, $-(CH_2)_m-COOR^k$, $-(CH_2)_m-NCOR^k$ and $-(CH_2)_m-NR^kR^l$, in which $-(CH_2)_m-NR^kR^l$, in which -(CH

wherein the method comprises at least stages a'-c':

a'- converting said compound of general formula (IVB) into at least its oxime derivative of general formula (VB)

$$(R^{1})_{n}$$

$$R^{8}X$$

$$R^{6}$$

$$R^{6}$$

$$R^{5}$$

$$R^{6}$$

$$R^{5}$$

in which:

 R^1 , R^{2a} , R^4 , R^5 , R^6 , R^8 , X and n are as defined above,

b'- converting said compound of general formula (VB), by Beckmann rearrangement and consecutive reduction(s), into at least said compound of general formula (IB), and

c'- recovering said compound of general formula (IB).

- 15. (Previously Presented) The method according to claim 1, wherein the stage c consisting of preparation of the oxime derivative of formula (VA) comprises placing said compound of general formula (IVA) in the presence of an effective amount of nitromethane or of hydroxylamine.
- 16. (Previously Presented) The method according to claim 15, further comprising a stage consisting of recovery of the product of formula (VA).
- 17. (Previously Presented) The method according to claim 1, wherein the conversion of the compound (VA) by Beckmann rearrangement is carried out in the presence of an effective amount of PCl₅.
- 18. (Previously Presented) The method according to claim 17, wherein the PCl₅ is used in molar excess relative to the compound of formula (VA).
- 19. (Previously Presented) The method according to claim 1, wherein the product derived from the Beckmann rearrangement is reduced with an effective amount of at least one metal reducing agent.
- 20. (Previously Presented) The method according to claim 19, wherein the reduction product obtained is treated with an effective amount of reducing agent.
 - 21. (Canceled)

22. (Previously Presented) A compound of general formula (IA)

$$(R^{1})_{n} \qquad R^{2} \qquad (IA)$$

in which:

R¹ is chosen from the group consisting of halogen atoms chosen from the group consisting of chlorine, fluorine, bromine and iodine, alkyl groups, haloalkyl groups, alkenyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, and:

R^k, R^l and R^m are each independently chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkynyl groups, arylalkynyl groups, hydrocarbon-based rings, and heterocycles,

or R^k and R^l form, together with the atom to which they are attached, a heterocycle,

with m denoting an integer greater than or equal to 0, $R^2, R^3, R^4, R^5 \text{ and } R^6 \text{ independently of one another, are chosen from}$ the group consisting of hydrogen atom, halogen atoms chosen from the group consisting of chlorine, fluorine and bromine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl

groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-S(O)R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂NR^kR^l, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, with R^k, R^l, R^m and m as defined above,

or R^4 , R^5 and R^6 form, in pairs, one or more hydrocarbon-based ring(s) or heterocycle(s), with at least one of the R^4 , R^5 and R^6 groups representing a hydrogen atom,

 $R^7 = -XR^8$, where X is chosen from the group consisting of O, NR^9 , S, S(O), SO₂, SO₂NR⁹, and R⁸ and R⁹ are each, independently of one another, chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, and polymer chain, optionally substituted,

or R⁸ and R⁹ form, together with the atom to which they are attached, a heterocycle from at least one compound of general formula (IVB)

$$(R^{1})_{n} \xrightarrow{R^{4}} (IVB)$$

in which:

 R^1 , R^4 , R^5 , R^6 , R^8 , X and n are as defined above, and R^{2a} represents a group chosen from the group consisting of hydrogen atom, halogen atoms, alkyl groups, haloalkyl groups, acyl groups, aryl groups,

arylalkyl groups, hydrocarbon-based rings, heterocycles, polymer chains and groups chosen from the group consisting of $-(CH_2)_m-OR^k$, $-CH(OR^k)(OR^l)$, $-(CH_2)_m-SR^k$, $-(CH_2)_m-SO(OR^k)$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_3R^k$, $-(CH_2)_m-NO_2$, $-(CH_2)_m-CN$, $-(CH_2)_m-PO(OR^k)(OR^l)$, $(CH_2)_m-SiR^kR^lR^m$, $-(CH_2)_m-COOR^k$, $-(CH_2)_m-NCOR^k$ and $-(CH_2)_m-NR^kR^l$, in which R^k , R^l , R^m and R^m are as defined above, and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m are as defined above, and R^m and R^m and R^m are as defined above, and R^m and R^m are as defined above, and R^m and R^m are as defined above, and R^m and R^m are as defined above.

- 23. (Previously Presented) The compound according to claim 22, wherein the compound is chosen from the group consisting of:
- 7-chloro-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-yl 2,2-dimethylpropionate,
- 7-fluoro-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-yl 2,2-dimethylpropionate,
- 7-methoxy-2,3,4,5-tetrahydro-1H-benzoazepin-5-yl 2,2-dimethylpropionate,
- (7-fluoro-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-yl)acetonitrile,
- 3,3,7-tricholoro-2,3,4,5-tetrahydro-1H-benzo[b]azepin-5-yl 2,2-dimethylpropionate, and
- derivatives thereof.
 - 24. (Previously Presented) A compound of general formula (VB)

$$(R^{1})_{n} \xrightarrow{R^{2}a} (VB)$$

in which:

R¹ is chosen from the group consisting of halogen atoms chosen from the group consisting of chlorine, fluorine, bromine and iodine, alkyl groups, haloalkyl groups, alkenyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent

groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, and:

 R^k , R^l and R^m each independently chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, or R^k and R^l form, together with the atom to which they are attached, a heterocycle, with m denoting an integer greater than or equal to 0,

R⁴, R⁵ and R⁶ independently of one another, are chosen from the group consisting of hydrogen atom, halogen atoms chosen from the group consisting of chlorine, fluorine and bromine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituents groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-S(O)R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, with R^k, R^l, R^m and m as defined above, or R⁴, R⁵ and R⁶ form, in pairs, one or more hydrocarbon-based ring(s) or heterocycle(s), with at least one of the R⁴, R⁵ and R⁶ groups representing a hydrogen atom,

 R^{2a} represents a group chosen from the group consisting of hydrogen atoms, halogen atoms, alkyl groups, haloalkyl groups, acyl groups, aryl groups, arylalkyl groups, hydrocarbon-based rings, heterocycles, polymer chains and groups chosen from the group consisting of $-(CH_2)_m-OR^k$, $-CH(OR^k)(OR^l)$, $-(CH_2)_m-SR^k$, $-(CH_2)_m-S(O)R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_3R^k$, $-(CH_2)_m-NO_2$, $-(CH_2)_m-CN$,

- $(CH_2)_m$ - $PO(OR^k)(OR^l)$, $(CH_2)_m$ - $SiR^kR^lR^m$, - $(CH_2)_m$ - $COOR^k$, - $(CH_2)_m$ - $NCOR^k$ and - $(CH_2)_m$ - NR^kR^l , in which R^k , R^l , R^m and m are as defined above,

X is chosen from the group consisting of O, NR⁹, S, S(O), SO₂, SO₂NR⁹, and R⁸ and R⁹ are each, independently of one another, chosen from the group consisting of hydrogen atoms, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkynyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, and polymer chains, optionally substituted,

or R⁸ and R⁹ form, together with the atom to which they are attached, a heterocycle from at least one compound of general formula (IVB)

$$(R^{1})_{n}$$

$$RX$$

$$R^{6}$$

$$R^{5}$$

$$RX$$

$$R^{6}$$

$$R^{5}$$

$$R^{5}$$

in which:

 R^1 , R^{2a} , R^4 , R^5 , R^6 , R^8 , X and n are as defined above.

- 25. (Previously Presented) A compound according to claim 24, wherein the compound is chosen from the group consisting of:
- 4-[(E)-hydroxyimino]-7-chloro-1,2,3,4-tetrahydronaphthalen-1-yl 2,2-dimethylpropionate,
- 4-[(E)-hydroxyimino]-7-fluoro-1,2,3,4-tetrahydronaphthalen-1-yl 2,2-dimethylpropionate, and
- 4-[(E)-hydroxyimino]-7-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl 2,2-dimethylpropionate, and
 - derivatives thereof.

26. (Previously Presented) A method of preparing a benzazepine of general formula (VIA):

in which:

R¹ is chosen from the group consisting of halogen atoms chosen from the group consisting of chlorine, fluorine, bromine and iodine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, and:

R^k, R^l and R^m are each independently chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkynyl groups, arylalkynyl groups, hydrocarbon-based rings, and heterocycles,

or R^k and R^l form, together with the atom to which they are attached, a heterocycle,

with m denoting an integer greater than or equal to 0,

R², R³, R⁴, R⁵ and R⁶ independently of one another, are chosen from the group consisting of hydrogen atom, halogen atoms chosen from the group consisting of chlorine, fluorine and bromine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-S(O)R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, with R^k, R^l, R^m and m as defined above,

or R^4 , R^5 and R^6 form, in pairs, one or more hydrocarbon-based ring(s) or heterocycle(s), with at least one of the R^4 , R^5 and R^6 groups representing a hydrogen atom,

 $R^7 = -XR^8$, where X is chosen from the group consisting of O, NR^9 , S, S(O), SO₂, SO₂NR⁹, and R⁸ and R⁹ are each, independently of one another, chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, and polymer chain, optionally substituted,

or R⁸ and R⁹ form, together with the atom to which they are attached, a heterocycle from at least one compound of general formula (IVB)

$$(R^{1})_{n}$$

$$RX R^{6}$$

$$RX R^{5}$$
(IVB)

in which:

R¹, R⁴, R⁵, R⁶, R⁸, X and n are as defined above, and R^{2a} represents a group chosen from the group consisting

of hydrogen atom, halogen atoms, alkyl groups, haloalkyl groups, acyl groups, aryl groups, aryl groups, arylalkyl groups, hydrocarbon-based rings, heterocycles, polymer chains and groups chosen from the group consisting of $-(CH_2)_m-OR^k$, $-CH(OR^k)(OR^l)$, $-(CH_2)_m-SR^k$, $-(CH_2)_m-S(O)R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_2NR^kR^l$, $-(CH_2)_m-SO_3R^k$, $-(CH_2)_m-NO_2$, $-(CH_2)_m-CN$, $-(CH_2)_m-PO(OR^k)(OR^l)$, $(CH_2)_m-SiR^kR^lR^m$, $-(CH_2)_m-COOR^k$, $-(CH_2)_m-NCOR^k$ and $-(CH_2)_m-NR^kR^l$, in which R^k , R^l , R^m and R^m are as defined above,

$$n = 1$$
, and

R¹⁰ is chosen from the group consisting of hydrogen atom, alkyl groups and acyl groups,

wherein the method comprises converting a compound of general formula (IIA) into a compound of formula (IA) according to the method according to claim 1.

27. (Previously Presented) A method of preparing a benzazepine of general formula (VIB):

in which:

R¹ is chosen from the group consisting of halogen atoms chosen from the group consisting of chlorine, fluorine, bromine and iodine, alkyl groups, haloalkyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkyl groups, arylalkenyl groups,

arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^kR^l, -(CH₂)_m-SO₃R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, and:

R^k, R^l and R^m are each independently chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, arylalkyl groups, arylalkynyl groups, arylalkynyl groups, hydrocarbon-based rings, and heterocycles,

or R^k and R^l form, together with the atom to which they are attached, a heterocycle,

with m denoting an integer greater than or equal to 0,

R², R³, R⁴, R⁵ and R⁶ independently of one another, are chosen from the group consisting of hydrogen atom, halogen atoms chosen from the group consisting of chlorine, fluorine and bromine, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, polymer chains, and substituent groups chosen from the group consisting of -(CH₂)_m-OR^k, -CH(OR^k)(OR^l), -(CH₂)_m-SR^k, -(CH₂)_m-S(O)R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-SO₂R^k, -(CH₂)_m-NO₂, -(CH₂)_m-CN, -(CH₂)_m-PO(OR^k)(OR^l), -(CH₂)_m-SiR^kR^lR^m, -(CH₂)_m-COOR^k, -(CH₂)_m-NCOR^k, and -(CH₂)_m-NR^kR^l, with R^k, R^l, R^m and m as defined above,

or R⁴, R⁵ and R⁶ form, in pairs, one or more hydrocarbon-based ring(s) or heterocycle(s), with at least one of the R⁴, R⁵ and R⁶ groups representing a hydrogen atom,

 $R^7 = -XR^8$, where X is chosen from the group consisting of O, NR⁹, S, S(O), SO₂, SO₂NR⁹, and R⁸ and R⁹ are each, independently of one another, chosen from the group consisting of hydrogen atom, alkyl groups, haloalkyl groups, alkenyl groups, alkynyl groups, acyl groups, aryl groups, arylalkyl groups, alkaryl groups, arylalkenyl groups, arylalkynyl groups, hydrocarbon-based rings, heterocycles, and polymer chain, optionally substituted,

or R⁸ and R⁹ form, together with the atom to which they are attached, a heterocycle from at least one compound of general formula (IVB)

$$(R^{1})_{n} \xrightarrow{R^{4}} (IVB)$$

$$RX R^{6} R^{5}$$

in which:

 $R^1, R^4, R^5, R^6, R^8, X$ and n are as defined above, and R^{2a} represents a group chosen from the group consisting of hydrogen atom, halogen atoms, alkyl groups, haloalkyl groups, acyl groups, aryl groups, arylalkyl groups, hydrocarbon-based rings, heterocycles, polymer chains and groups chosen from the group consisting of $-(CH_2)_m-OR^k$, $-CH(OR^k)(OR^l)$, $-(CH_2)_m-SR^k$, $-(CH_2)_m-S(O)R^k$, $-(CH_2)_m-SO_2R^k$, $-(CH_2)_m-SO_2NR^kR^l$, $-(CH_2)_m-SO_3R^k$, $-(CH_2)_m-NO_2$, $-(CH_2)_m-CN$, $-(CH_2)_m-PO(OR^k)(OR^l)$, $(CH_2)_m-SiR^kR^lR^m$, $-(CH_2)_m-COOR^k$, $-(CH_2)_m-NCOR^k$ and $-(CH_2)_m-NR^kR^l$, in which R^k , R^l , R^m and m are as defined above,

n = 1, and

 R^{10} is chosen from the group consisting of hydrogen atom, alkyl groups and acyl groups,

wherein the method comprises converting a compound of general formula (IVB) into a compound of formula (IB) according to the method according to claim 14.

- 28. (Previously Presented) The method according to claim 1, wherein, in general formula (IIA), R^{2a} is a hydrogen atom.
- 29. (Previously Presented) The method according to claim 1, wherein, in general formula (IIA), R^{2a} is a halogen atom chosen from the group consisting of chlorine atoms, fluorine atoms and bromine atoms.
- 30. (Previously Presented) The method according to claim 6, wherein, in general formula (IA), R² and R³ are each chosen from the group consisting of chlorine atoms, fluorine atoms and bromine atoms.
- 31. (Previously Presented) The method according to claim 7, wherein R^a is chosen from the group consisting of C_1 to C_{12} alkyl groups.
- 32. (Previously Presented) The method according to claim 8, wherein the olefin of general formula (A) is terminal disubstituted or cyclic.
- 33. (Previously Presented) The method according to claim 9, wherein, in the olefin of general formula (A), R⁴, R⁵ and R⁶ are each hydrogen atoms.
- 34. (Previously Presented) The method according to claim 12, wherein said at least one radical initiator is dilauroyl peroxide (DLP).
- 36. (Previously Presented) The method according to claim 13, wherein the acidic medium is camphorsulfonic acid.
- 36. (Previously Presented) The method according to claim 16, further comprising recovery of the product of formula (VA) is accomplished by recrystallization.

37-39. (Canceled)

40. (Currently Amended) The method according to claim 14, wherein the stage a' consisting of preparation of the oxime derivative of formula-(Vb) (VB) comprises placing

said compound of general formula-(IVb) (IVB) in the presence of an effective amount of nitromethane or of hydroxylamine.

- 41. (Previously Presented) The method according to claim 40, further comprising a stage consisting of recovery of the product of formula (VB).
- 42. (Previously Presented) The method according to claim 41, further comprising recovery of the product of formula (VB) is accomplished by recrystallization.
- 43. (Previously Presented) The method according to claim 14, wherein the conversion of the compound (VB) by Beckmann rearrangement is carried out in the presence of an effective amount of PCl₅.
- 43. (Previously Presented) The method according to claim 43, wherein the PCl₅ is used in molar excess relative to the compound of formula (VB).
- 44. (Previously Presented) The method according to claim 14, wherein the product derived from the Beckmann rearrangement is reduced with an effective amount of at least one metal reducing agent.
 - 45. (Canceled)
- 46. (Previously Presented) The method according to claim 44, wherein the reduction product obtained is treated with an effective amount of reducing agent.
 - 47-49. (Canceled)
- 50. (Previously Presented) The method according to claim 26, wherein R¹⁰ represents a methyl group.
- 51. (Previously Presented) The method according to claim 27, wherein R¹⁰ represents a methyl group.