Trabajo práctico 0: Algoritmo de Maximización de la Esperanza

Ph. D. Saúl Calderón Ramírez Instituto Tecnológico de Costa Rica, Escuela de Computación PAttern Recongition and MAchine Learning Group (PARMA-Group)

22 de septiembre de 2022

Fecha de entrega: Domingo 2 de Octubre del 2022.

Entrega: Un archivo .zip con el código fuente LaTeX o Lyx, el pdf, y un jupyter en Pytorch, debidamente documentado, con una función definida por ejercicio. A través del TEC-digital.

Modo de trabajo: Grupos de 3 personas.

Resumen

En el presente trabajo práctico se repasarán aspectos básicos del algebra lineal, relacionados con los conceptos a desarrollar a lo largo del curso, mezclando aspectos teóricos y prácticos, usando el lenguaje Python.

1. (100 puntos) Probabilidades: Algoritmo de Maximización de la Esperanza

A continuación, implemente el algoritmo de maximización de la esperanza (descrito en el material del curso), usando la definición y descripción de las siguientes funciones como base:

- 1. **(10 puntos)** Implemente la función *generate_data* la cual reciba la cantidad de observaciones unidimensionales total a generar N, y los parámetros correspondientes a K=2 funciones de densidad Gaussianas. Genere los datos siguiendo tales distribuciones, y retorne tal matriz de datos $X\in\mathbb{R}^N$.
 - a) Grafique los datos usando un *scatter plot* junto con las gráficas de la función de densidad de probabilidad, en la misma figura (gráfico), usando $\mu_1 = 10$, $\sigma_1 = 1.5$, $\mu_2 = 20$, $\sigma_2 = 3$.

- 2. (10 puntos) Implemente la función $init_random_parameters$ la cual genere una matriz de $W \in \mathbb{R}^{K \times 2}$ dimensiones, con los parámetros de las funciones de densidad Gaussiana generados completamente al azar.
 - *a*) Muestre un pantallazo donde verifique su funcionamiento correcto con los comentarios asociados.
 - b) Muestre una grafica de las funciones de densidad con los parametros inicializados aleatoriamente.
- 3. **(10 puntos)**Implemente la función *calculate_likelihood_gaussian_observation*(x_n , mu_k , $sigma_k$) la cual calcule la verosimilitud de una observación específica x_n , para una función de densidad Gaussiana con parámetros μ_k y σ_k .
 - *a*) Muestre un pantallazo donde verifique su funcionamiento correcto con los comentarios asociados, usando los datos anteriormente generados con $\mu_1 = 10$, $\sigma_1 = 1.5$, $\mu_2 = 20$, $\sigma_2 = 3$.
- 4. **(10 puntos)** Implemente la función $calculate_membership_dataset(X_dataset, Parameters_matrix)$, la cual, usando la matriz de parámetros W y la función anteriormente implementada $calculate_likelihood_gaussian_observation$, defina por cada observación $x_n \in X$ la pertenencia o membresía a cada cluster $k=1,\ldots K$, en una matriz binaria $M \in \mathbb{R}^{N \times K}$. Retorne tal matriz de membresía M.
 - a) Muestre un pantallazo donde verifique su funcionamiento correcto con los comentarios asociados, usando los datos de prueba anteriormente generados.
- 5. **(20 puntos)** Implemente la función *recalculate_parameters*(*X_dataset*, *Membership_data*), la cual recalcule los parámetros de las funciones de densidad Gaussianas representandas en la matriz *W*, de acuerdo a lo representado en la matriz de membresía *M*. Debe retornar la matriz con los parárametros *W*.
 - *a*) Use las funciones *mean* y *std* de pytorch para ello. Intente prescindir al máximo de estructuras de repetición tipo *for*.
 - *b*) Muestre el resultado para un conjunto de datos de prueba y comente los resultados.
- 6. **(20 puntos)** Ejecute 5 corridas diferentes del algoritmo, donde por cada una documente los parámetros a los que se arribó. Ejecute cada corrida con R=20 iteraciones.
 - a) Grafique las funciones de densidad de probabilidad a las que convergió el algoritmo. Puede graficar también las funciones de densidad obtenidas en 2 o 3 pasos intermedios.

- b) Comente los resultados, usando algún criterio de correctitud de los mismos.
- 7. **(20 puntos)** Proponga una mejor heurística para inicializar los parámetros del modelo aleatoriamente.
 - *a*) Compruebe la mejora obtenida con el método propuesto, corriendo las pruebas del punto anterior.