## **WebDancer:**

# Towards Autonomous Information Seeking Agency

如何拥有像DEEP RESEARCH那样的信息检索能力?

代码: HTTPS://GITHUB.COM/ALIBABA-NLP/WEBAGENT

Jialong Wu\*, Baixuan Li\*, Runnan Fang\*, Wenbiao Yin\*, Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun Xi, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou

Tongyi Lab 🔯 , Alibaba Group

Correspondence to: wujialongml@gmail.com

{yinwenbiao.ywb,yongjiang.jy}@alibaba-inc.com

WebDancer 通过 ReAct-style 推理轨迹建模、可控复杂度的 TIR 数据生成机制,以及 SFT + DAPO 的 两阶段训练策略,实现了面向信息检索任务的多工具集成推理。

- 1. ReAct范式的推理和工具交互流程:即以交替的 { <think> 思考、<tool> 调用 和 <observe> 工具响应}三元组的形式组织推 理轨迹。
- 2. 覆盖广度和可控难度的TIR推理数据生成机制: a) CRAWLQA通过爬取高质量网页内容,使用GPT-4o合成 COUNT、 MULTI-HOP、INTERSECTION 等类问题,提升数据的知识覆盖与任务广度; b) E2HQA 采用逐步"反向构造"策略,利用搜索 和重写操作逐步构造出更复杂的多跳问题,可控地增加数据推理难度。
- 3. 两阶段训练流程: SFT + DAPO

尽管LLM在问答与推理任务中取得了显著进展,但在开放领域的 信息获取场景中仍面临知识截止与幻觉问题。当前主流解决方案 是将搜索工具引入推理流程,形成Tool-Integrated Reasoning (TIR)框架,使模型在生成过程中可动态调用外部工具以弥补 知识盲区。

如果想进一步具备类似Deep Research式的深度信息检索与推 理能力,该如何做呢? WebDancer从可控复杂度的(query, answer)构造、推理轨迹生成和两阶段训练流程,进行了探索。

# 实验设置 信息检索任务: GAIA和WEBWALKERQA 两个Tool: SEARCH 和访问网页

- 实验对象: Qwen2.5 7B/32B, QwQ 32B
- 强化学习算法: DAPO
- ORM Reward设计: format reward和answer reward两项。两个reward都是二值型(取值0或 1),用LLM-as-Judge计算answer reward而非 计算EM或F1

$$R(\hat{y}_i, y) = 0.1 * score_{format} + 0.9 * score_{answer}$$



| Close-Sourced Agentic Frameworks |                        |      |      |      |      |      |      |      |      |
|----------------------------------|------------------------|------|------|------|------|------|------|------|------|
|                                  |                        |      |      |      |      |      |      |      |      |
| Open-sourced Agentic Frameworks  |                        |      |      |      |      |      |      |      |      |
| Qwen-2.5-7B                      | Search-o1              | 23.1 | 17.3 | 0.0  | 17.5 | -    | -    | -    | -    |
|                                  | R1-Searcher            | 28.2 | 19.2 | 8.3  | 20.4 | -    | -    | -    | -    |
| Qwen-2.5-32B                     | Search-o1              | 33.3 | 25.0 | 0.0  | 28.2 | -    | -    | -    | -    |
| QwQ-32B                          | Search-o1              | 53.8 | 34.6 | 16.7 | 39.8 | 43.1 | 35.0 | 27.1 | 34.1 |
|                                  | WebThinker-Base♣       | 51.2 | 43.4 | 8.3  | 41.7 | 47.5 | 33.2 | 25.0 | 33.6 |
|                                  | WebThinker-RL♣         | 53.8 | 44.2 | 8.3  | 43.7 | 46.2 | 39.2 | 28.7 | 37.2 |
| ReAct Agentic Frameworks         |                        |      |      |      |      |      |      |      |      |
| Qwen-2.5-7B                      | Vanilla ReAct          | 28.2 | 15.3 | 0.0  | 18.4 | 28.1 | 31.2 | 16.0 | 24.2 |
|                                  | WebDancer <sup>‡</sup> | 41.0 | 30.7 | 0.0  | 31.0 | 40.6 | 44.1 | 28.2 | 36.0 |
| Qwen-2.5-32B                     | Vanilla ReAct          | 46.1 | 26.9 | 0.0  | 31.0 | 35.6 | 38.7 | 22.5 | 31.9 |
|                                  | WebDancer <sup>‡</sup> | 46.1 | 44.2 | 8.3  | 40.7 | 44.3 | 46.7 | 29.2 | 38.4 |
| QwQ-32B                          | Vanilla ReAct          | 48.7 | 34.6 | 16.6 | 37.8 | 35.6 | 29.1 | 13.2 | 24.1 |
|                                  | WebDancer <sup>†</sup> | 56.4 | 48.1 | 25.0 | 46.6 | 49.4 | 55.0 | 29.6 | 43.2 |
| GPT-4o                           | Vanilla ReAct          | 51.2 | 34.6 | 8.3  | 34.6 | 34.6 | 42.0 | 23.9 | 33.8 |
|                                  |                        |      |      |      |      |      |      |      |      |

# CONCLUSION

Deep Research展现出的深度信息检索与融合能力让人眼 馋,本文从训练数据构造与多工具TIR的角度出发,提出了 自己的探索方案,如果再加上一个自动生成报告的模块, 那就更完善啦。不过有一点我没想明白: 作者将TIR推理轨 迹表示为ReAct 格式,即(think, act, act response)组 成的三元组序列。事实上,很多TIR工作本来就采用类似的 结构化标签(如 <think>、<query>、<doc> 等)来区分推 理过程中的不同内容,形式上也符合ReAct的定义。所 以,ReAct在这里是一种写作封装还是确实有所不同呢? 不管怎样,我相信Deep Research方向会持续涌现出更多 优秀的工作,令人期待。