1 Design of Studies	2 Association	3.1 Sampling Methods		3.2.2 Random Bias
Definition 1.1 Exposure/Treatment variable (x): Variable participants are exposed to.	Relationship between 2 variables; Scatter Diagram	3.1.1 Probability Sampling Plans Simple Random Pure RNG		Definition 3.4 X% Confidence Interval: Range of values that we are X% confident our population parameter lies in.
Definition 1.2 Response/Outcome variable (y): Response to elicit from exposure/treatment	2.1 Correlation Coefficient (r)Strength of relationship	Systematic Sel Is rar	lect unit every k interval. SRS if order of units is	Alternative Definition: If ∞ samples are taken, 95% of CIs would contain the PP.
Definition 1.3 Control Group: Participants without treatment or exposure, serves as a comparison	 Not affected by addition/multiplication, except multiplication of negative numbers 	gro	vide population into oups, SRS within every oup	CI is NOT: "P(PP lies in this range)"
1.1 Controlled Experiment	 Regression line of y on x: Can calculate estimated y when x = ? r → 1: Strong linear association 	Cluster Di	vide population into oups, choose random	Larger sample size, ↓ random error ⇒ More certain where PP is, ↓ width of CI
Expose different groups of people different levels of exposure variable, compare results.	Removal of data affects r	Multi-stage Di	oup, sample all in group vide population into oups, SRS groups and	99% CI is wider than 95% CI, : accomodate for more samples to have the PP within its range
Randomised Control Assignment makes the groups more similar, less likely to be affected by confounders	2.1.1 LimitationsCausality Unclear	within groups Limitation: Practical Considerations		4 Risks and Odds
1.2 Observational Study	Outliers distort CorrelationNon-Linear Causation	3.1.2 Non-P Sampling Plans		Risk(A B) = Rate(A B) $Risk Ratio = \frac{Risk(A Group1)}{Risk(A Group2)}$
Placed into groups based on exposure they already have, observe different results.	2.2 Ecological Correlation	joi Ma	ay not require sampling	$\begin{aligned} &Risk(A Group2) \\ &Odds(A B) = \frac{risk}{1-risk} \\ &Odds \text{ Ratio} = \frac{Odds(A Group1)}{Odds(A Group2)} \end{aligned}$
NO randomised assignment ; cannot ask a non-smoker to smoke.	Correlation based on group averages (Tends to overstate strength of association in individuals) Ecological Fallacy Applying findings for	Convenience Just Judgement Int	et pick :) terviewer's discretion to	
1.3 (Double-)Blinding	group averages on indivi- duals	Quota Str	oose participants ratified but non-P selecti-	4.1 Cohort StudiesSamples from exposure groups, monitored for
Participants or Experimenters knowing groups skew results Placebo can be used for double-blinding	Atomistics Fallacy Applying findings for individual averages on groups	On Limitation: Selection Bias		period of time • Estimates Population RR and OR
1.4 Confounders	2.3 Range of data	3.1.3 Difficulties in Sampling		4.2 Case-Control Studies
Definition 1.4 Confounder: Third factor associated with both exposure and response variables.	Definition 2.1 Attenuation Effect: r understates strength of association if range is restricted from initial studied range.	ling Frame inc	nwanted units included, crease cost of study to ad and remove o one respond :(Samples from outcome (disease) groups Then compare rate(A Disease) & (A NoDisease)
Slicing: Sub-divide sample, study relation between exposure and response in each subgroup	Outside of studied range: predicting y based on x is inaccurate since association may change	3.2 Estimating Sample Parameter		 Ensures there is representation from all groups; Good for rarer diseases Estimates (only) OR, NOT RR
1.5 Rate & Association	3 Sampling	Estimate = Parameter + RandomError + Bias 3.2.1 Bias		= D 1 1 1 1 1 4 4
$rate(A B) > rate(A \sim B)$ or $rate(B A) > rate(B \sim A)$ show positive assocation between A and B	Definition 3.1 Population: Collection of Units Census: Measurement taken for entire population			5 Probabilities 5.1 Independent Events
$rate(B) = rate(B A) * rate(A) + rate(B \sim A) * rate(\sim A)$ Assocation != Causation	Definition 3.2 Sample: Portion of Population A good sample allows results to extend to the population	fr 1)	om sample. Caused by: Imperfect samp frame	$P(A B) = P(A \sim B) = P(A)$
Definition 1.5 Yule-Simpson's Paradox: Trends in several groups disappear when groups are combined.	Definition 3.3 Sampling Frame: List of sampling units to identifies all units in population. A good sampling frame has good coverage and is up-to-date.	Non-response Bias D	Non-P sampling istorts response; non-espondents may be different than respondents	5.2 Mutually Exclusive $P(A \cap B) = 0$ $P(A \cup B) = P(A) + P(B) + P(A \cap B) = P(A) + P(B)$

5.3 Disease/ Rare Events

Base Rate P(Disease)

Sensitivity P(Positive|Disease) Specificity P(Negative|NoDisease)

6 Hypothesis Testing

Definition 6.1 Null Hypothesis H_0 : Old Belief

Alternative Hypothesis: New Belief

From an observation: Do we reject null hypothesis or accept new one?

Definition 6.2 p-value: P(outcome equal to or more extreme than observed outcome) assuming H_0 is true

Big p-value: more likely that observation occured by chance, null hypothesis likely remains true.

Small p-value: Unlikely for observed to occur by change, unlikely null hypothesis is true

- p-value \leq Level of statistical significance \rightarrow Reject null-hypothesis
- Increasing sample size \rightarrow p-value \downarrow