Motivation

Goal: Improve Autonomous Robot Control

- Evolve adaptive control:
 - changes to a control signal
 - changes in the environment
 - changes in dynamics (morphology)
- Not behaviors

Motivation: Robotic Fish

Industrial

Biological

Anthony J. Clark | ALIFE 2014 : EPS Workshop

Outline

Small Robotic Fish

Stickleback size

- robot :7 cm

- real : 4 to 6 cm

Electrical components

- 32-bit ARM μ-controller
- 3-axis accelerometer
- 3-axis gyroscope
- 2 light sensors
- 2.4 GHz wireless
- magnetic motor
- 1 hour battery life
- NOT tethered

Robot Prototype

Robot Prototype

Dynamic Modeling

[Wang 2012, Clark 2012]

Robot Prototype

Dynamic Modeling

Parameter Identification

Robot Prototype

Dynamic Modeling

Parameter Identification

Control Design

Control System

- r : desired system output
- y : actual system output
- e : system output error
- u : control signal

Robot Prototype

Dynamic Modeling

Parameter Identification

Control Design

Simulation

[Clark 2013]

Repeat to refine

- reduce modeling error
- improve parameter estimates
- model noisy sensors

Repeat for new robot

- different parameters
- different sensors

Outline

Adaptive Control: MRAC

Model-Free Adaptive Control

Model-Free Adaptive Control

Adaptive Neural Network

Network Activation

- feed-forward network
- propagated error
- sigmoid activation

Network Update

- minimize error

$$E_s(t) = \frac{1}{2} e(t)^2$$

Adaptive Neural Network

$$\Delta w_{ij}(n) \propto \frac{\partial E_s}{\partial w_{ij}},$$

$$= \frac{\partial E_s}{\partial y} \frac{\partial y}{\partial w_{ij}},$$

$$= \frac{\partial E_s}{\partial y} \frac{\partial y}{\partial u} \frac{\partial u}{\partial w_{ij}},$$

$$= \frac{\partial E_s}{\partial y} \frac{\partial y}{\partial u} \frac{\partial u}{\partial o} \frac{\partial o}{\partial w_{ij}},$$

$$= \frac{\partial E_s}{\partial y} \frac{\partial y}{\partial u} \frac{\partial u}{\partial o} \frac{\partial o}{\partial q} \frac{\partial q}{\partial w_{ij}},$$

$$= \frac{\partial E_s}{\partial y} \frac{\partial y}{\partial u} \frac{\partial u}{\partial o} \frac{\partial o}{\partial q} \frac{\partial q}{\partial q} \frac{\partial p}{\partial w_{ij}},$$

$$= \frac{\partial E_s}{\partial y} \frac{\partial y}{\partial u} \frac{\partial u}{\partial o} \frac{\partial o}{\partial q} \frac{\partial q}{\partial q} \frac{\partial p}{\partial w_{ij}}.$$

$$\begin{split} \Delta h_j(n) & \propto \frac{\partial E_x}{\partial h_j} \;, \\ & = \frac{\partial E_x}{\partial y} \; \frac{\partial y}{\partial h_j} \;, \\ & = \frac{\partial E_x}{\partial y} \; \frac{\partial y}{\partial u} \; \frac{\partial u}{\partial h_j} \;, \\ & = \frac{\partial E_x}{\partial y} \; \frac{\partial y}{\partial u} \; \frac{\partial u}{\partial o} \; \frac{\partial o}{\partial h_j} \;, \\ & = -\eta \; K_c \, S_f(n) \, e(n) \, q_j \;. \end{split}$$

$$= -\eta K_c S_f(n) e(n) q_j(n) (1 - q_j(n)) E_i(n) \sum_{k=1}^N h_k(n),$$

Parameters

Network values

- hidden layer bias
- hidden layer bias weights
- output layer bias
- output layer bias weight

Learning Values

learning rate

Network topology

- number of input nodes
- number of hidden nodes

Control values

- gain
- error bounds
- activation period

Outline

Simulation Study

Swim at a given (changing) speed

Adapt to:

- different control signals
- changing fin flexibilities
- changing fin lengths

Evaluation

- simulate for 60 seconds with a varying control signal
- fitness = mean absolute error

Un-tuned Parameters

Single Trial Evolution

Multi-trial Evolution

Name	Flexibility	Length
sim1	100%	100%
sim2	200%	100%
sim3	50%	100%
sim4	100%	110%
sim 5	200%	110%
sim 6	50%	110%
sim7	100%	90%
sim8	200%	90%
sim 9	50%	90%

Multi-trial Evolution

Changing Dynamics

Outline

Station Keeping

Video of new fish

SISO to MIMO

SISO to MIMO

Outline

Future Work: High-level Control

- Higher level control
 - FSM
 - ANN

Future Work: Failure

- When MFA fails
 - the error signal gets to high
 - combine with Self-modeling

[Rose 2013, Bongard 2006]

Conclusions

- Increase adaptability of autonomous robots
 - control signals, morphology, noise
- Decrease modeling effort
 - evolve online/onboard
- Help cross the reality gap in traditional ER
 - handle disparity between simulation and reality
- Requires higher-level control for behaviors

The authors gratefully acknowledge the contributions and feedback on the work provided by:

- Jared Moore,
- Jianxun Wang, and
- the BEACON Center at Michigan State University.

This work was supported in part by National Science Foundation grants IIS-1319602, CCF-1331852, CNS-1059373, CNS-0915855, and DBI-0939454, and by a grant from Michigan State University.

Thank You

References

- [Wang 2012]: Dynamic modeling of robotic fish with a flexible caudal fin.
 - In Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference, joint with the JSME 2012 11th Motion and Vibration Conference, Ft. Lauderdale, Florida, USA, October 2012.
- [Clark 2012]: Evolutionary design and experimental validation of a flexible caudal fin for robotic fish.
 - In Proceedings of the Thirteenth International Conference on the Synthesis and Simulation of Living Systems, pages 325–332, East Lansing, Michigan, USA, July 2012.
- [Bongard 2006]: Resilient machines through continuous self-modeling.
 - Science 314.5802 (2006): 1118-1121.
- [Rose 2013]: Just Keep Swimming: Accounting for Uncertainty in Self-Modeling Aquatic Robots
 - In Proceedings of the 6th International Workshop on Evolutionary and Reinforcement Learning for Autonomous Robot Systems, Taormina, Italy, September 2013