# Experiments on Deep Learning (Performance Prediction as Study Case)

### 簡述:

此為深度學習模型的的實驗,實驗數據為效能預估模型(內含程式碼與互動網頁)

- 特徵: ["batchsize", "elements\_matrix", "elements\_kernel", "channels\_in", "channels\_out", "padding", "strides", "use\_bias", "activation\_fct"]
- 目標: "time"
- Epochs: 2000 (多少次走訪全部資料)
- Optimizer: Adam (優化方法)
- Learning Rate: 0.1 (初始學習率)
- Scheduler\_Step: 400 (多少步驟下降學習率)
- Scheduler\_Gamma: 0.5 (下降學習率比例)

## 知識點 - Loss function(損失函數):

y\_hat 為預估, y 為真實

1. MSE:

$$MSE = \frac{1}{n} \sum_{i} (\widehat{y} - y)^2$$

2. **MSLE:** 

$$MSLE = \frac{1}{n} \sum (log(1+\hat{y}) - log(1+y))^2$$

3. Poisson:

$$Poisson = \frac{1}{n} \sum_{i} (\widehat{y} - y * log(\widehat{y}))$$

4. MALPE:

$$MALPE = \frac{1}{n} \sum \left| \frac{log(1+\hat{y}) - log(1+y)}{log(1+y)} \right|$$

## 知識點 - Transformation(轉換):

log:

正偏移(Positively skewed)資料轉換成類正態分佈的一種轉換

$$New\ Value = log(Value)$$

sqrt:

正偏移(Positively skewed)資料轉換成類正態分佈的一種轉換

$$New\ Value = \sqrt{(Value)}$$

3. Box-Cox<sup>[2]</sup>:

透過選擇最優超參數lambda,將資料轉換成最接近正態分佈的一種轉換

$$NewValue = \begin{cases} \frac{Value^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0, \\ log(Value) & \text{if } \lambda = 0, \end{cases}$$

# 知識點 - Metrics (衡量指標):

#### y\_hat 為預估, y\_bar 為真實的平均, y 為真實

1. ABSe: 絕對誤差

$$ABSe = \frac{1}{n} \sum |\hat{y} - y|$$

2. Re: 相對誤差

$$Re = \frac{1}{n} \sum \frac{\hat{y} - y}{y}$$

3. RMSe: 方均根誤差

類似絕對誤差的標準之一,但涵蓋著標準差的概念在裡頭[3]

$$RMSe = \sqrt{\frac{1}{n}\sum(\hat{y} - y)^2}$$

4. R2: 決定係數<sup>[4]</sup>

介於-1至1之間,接近-1表負相關;+1表正相關

通常 0.9 以上為高度正相關

$$R2 = 1 - \frac{\frac{1}{n} \sum (\hat{y} - y)^2}{\frac{1}{n} \sum (\bar{y} - y)^2}$$

# Experiment 1 (損失函數測試):

由於此為偏曲(skewed)資料<sup>[1]</sup>, 想藉由檢測不同的 loss function (含目標 Transormation 與 L2 正則)後, 看對準確度所帶來的影響 NN 架構: PerfnetA [Exp2\_A1 (金字塔型)]

特徵: ["batchsize", "elements\_matrix", "elements\_kernel", "channels\_in", "channels\_out", "padding", "strides", "use\_bias", "activation\_fct"]

特徵轉換: sqrt: ["elements\_matrix", "elements\_kernel"]

#### 損失函數與目標轉換表

| 名稱      | 損失函數    | 目標轉換 |
|---------|---------|------|
| Exp1_A1 | MALPE   | None |
| Exp1_A2 | MLSE    | None |
| Exp1_A3 | Poisson | None |
| Exp1_A4 | MSE     | Log  |

圖表(這裡先附上所有指標的圖,以後僅提供Re,請自行透過程式碼得到想要觀測的圖表):





**○ ●**+□○ □□×☆ :== <u>···</u>

#### Different Loss Function on Same NN Structure Test(re)



B NAME OF BERN







#### 四項標準最好的結果:

| 名稱               | 訓練/測試 | ABSe(ms) | Re(%)  | RMSe(ms) | R2(-1~1) |
|------------------|-------|----------|--------|----------|----------|
| Exp1_A1(MALPE)   | Train | 2.103    | 7.331  | 6.221    | 0.988    |
| Exp1_A1(MALPE)   | Test  | 1.98     | 8.034  | 5.868    | 0.988    |
| Exp1_A2(MLSE)    | Train | 3.36     | 7.793  | 7.391    | 0.982    |
| Exp1_A2(MLSE)    | Test  | 2.178    | 8.269  | 6.752    | 0.984    |
| Exp1_A3(Poisson) | Train | 7.021    | 20.211 | 21.36    | 0.868    |

| Exp1_A3(Poisson) | Test  | 2.209  | 10.431 | 5.84  | 0.988 |
|------------------|-------|--------|--------|-------|-------|
| Exp1_A4(Log_MSE) | Train | 17.313 | 17.313 | 20.53 | 0.885 |
| Exp1_A4(Log_MSE) | Test  | 8.309  | 8.309  | 5.72  | 0.989 |

#### 結論:

這裡可以看出 MALPE 不論在測試或是訓練有最好的ABSe 與 Re 且 RMSe 與 R2 也不差, 故我們可以選這個當作損失函數

其中Log\_MSE 在測試集有著最好的RMSe與R2, 但是訓練集卻不好, 可能是特徵過多, 資料過少或是這就是資料的真實結果, 我更傾向最後

# Experiment 2 (形狀測試):

測試相同 損失函數 與 特徵(含轉換)後, 更改 NN 架構不同的形狀. 看對準確度所帶來的影響

特徵: ["batchsize", "elements\_matrix", "elements\_kernel", "channels\_in", "channels\_out", "padding", "strides", "use\_bias", "activation\_fct"]

特徵轉換: sqrt: ["elements\_matrix", "elements\_kernel"]

損失函數: MALPE

#### 架構轉換表

| 名稱      | NN 架構     | 形狀                     | 備註        |
|---------|-----------|------------------------|-----------|
| Exp2_A1 | PerfNetA  | 32<br>64<br>128<br>256 | 金字塔型_全連接層 |
| Exp2_A2 | PerfNetAS | 256                    | 水桶型_全連接層  |
|         |           | 256                    |           |
|         |           | 256                    |           |
|         |           | 256                    |           |
|         |           |                        |           |





| 名稱            | 訓練/測試 | Loss | ABSe(ms) | Re(%)  | RMSe(ms) | R2(-1~1) |
|---------------|-------|------|----------|--------|----------|----------|
| EXP2_A1(金字塔)  | Train | 0.18 | 2.103    | 7.331  | 6.221    | 0.988    |
| EXP2_A1(金字塔)  | Test  | 0.19 | 1.98     | 8.034  | 5.868    | 0.988    |
| EXP2_A2(水桶)   | Train | 0.12 | 1.797    | 5.042  | 5.688    | 0.990    |
| EXP2_A2(水桶)   | Test  | 0.20 | 1.96     | 8.315  | 5.657    | 0.989    |
| EXP2_A3(逆金)   | Train | 0.26 | 3.067    | 10.546 | 8.451    | 0.978    |
| EXP2_A3(逆金)   | Test  | 0.19 | 1.997    | 8.181  | 5.808    | 0.989    |
| EXP2_A4(論文原型) | Train | 0.20 | 2.346    | 8.206  | 6.777    | 0.985    |
| EXP2_A4(論文原型) | Test  | 0.21 | 2.107    | 8.599  | 6.077    | 0.988    |
| EXP2_A5(金金)   | Train | 0.18 | 2.135    | 7.398  | 6.237    | 0.988    |
| EXP2_A5(金金)   | Test  | 0.20 | 2.034    | 8.217  | 5.927    | 0.988    |

#### 結論:

#### 明顯看出,這個資料集合中,論文原型是準確度最低的選項

而EXP\_A2 水桶型 與 EXP2\_A1(金字塔), 可能都是最好的選項, 其中水桶型幾乎趨近 overfitting (EXP2\_A3 則是 underfitting), 可以透過 Loss Value 加以檢驗

#### Loss 圖表:



一般來說,此狀況選EXP2\_A1(金字塔)對此資料的符合度最理想

# Experiment 3 (層數堆疊測試):

測試相同 損失函數 與 特徵(含轉換)後, 堆疊 NN 的層數. 看對準確度所帶來的影響

Note: 其中透過 Exp2\_A2(水桶) 堆疊 相同 NN 輸出 大小為 256的 全連結層

特徵: ["batchsize", "elements\_matrix", "elements\_kernel", "channels\_in", "channels\_out", "padding", "strides", "use\_bias", "activation\_fct"]

特徵轉換: sqrt: ["elements\_matrix", "elements\_kernel"]

損失函數: MALPE

基本型: Exp2\_A2(水桶) = Exp3\_A4 (4層)

#### 層數堆疊表:

| 名稱      | 層數 | 備註                 |
|---------|----|--------------------|
| Exp3_A1 | 1  |                    |
| Exp3_A2 | 2  |                    |
| Exp3_A3 | 3  |                    |
| Exp3_A4 | 4  | 與 Exp2_A2(水桶) 相同架構 |
| Exp3_A5 | 5  |                    |

#### 圖表

Number of Layers Test(re)



| 名稱      | 訓練/測試 | Loss  | ABSe(ms) | Re(%)  | RMSe(ms) | R2(-1~1) |
|---------|-------|-------|----------|--------|----------|----------|
| Exp3_A1 | Train | 0.083 | 9.254    | 39.311 | 26.424   | 0.572    |
| Exp3_A1 | Test  | 0.078 | 8.716    | 36.343 | 25.226   | 0.593    |
| Exp3_A2 | Train | 0.023 | 2.924    | 9.448  | 9.882    | 0.965    |
| Exp3_A2 | Test  | 0.022 | 2.564    | 9.084  | 9.037    | 0.970    |
| Exp3_A3 | Train | 0.015 | 2.054    | 6.414  | 6.322    | 0.987    |
| Exp3_A3 | Test  | 0.020 | 2.034    | 8.338  | 5.999    | 0.988    |
| Exp3_A4 | Train | 0.012 | 1.797    | 5.042  | 5.688    | 0.990    |
| Exp3_A4 | Test  | 0.020 | 1.96     | 8.315  | 5.657    | 0.898    |
| Exp3_A5 | Train | 0.010 | 1.604    | 4.282  | 5.163    | 0.992    |
| Exp3_A5 | Test  | 0.019 | 1.938    | 8.102  | 5.576    | 0.990    |

#### 結論:

可以從圖表中輕易看出,疊超過3層之後,效果越來越不好,其中5層之後可能有嚴重的 overfitting

故這邊建議 如果同樣的架構下,這個資料使用三層或四層即可

# Experiment 4 (特徵轉換測試):

測試相同 損失函數 與 nn 架構後後, 更改不同的特徵轉換. 看對準確度所帶來的影響

NN 架構: PerfnetA [Exp2\_A1 (金字塔型)]

損失函數: MALPE

特徵: ["batchsize", "elements\_matrix", "elements\_kernel", "channels\_in", "channels\_out", "padding", "strides", "use\_bias", "activation\_fct"]

特徵轉換目標: ["elements\_matrix", "elements\_kernel"]

多項式轉換<sup>[5]</sup>目標: ["batchsize", "elements\_matrix", "elements\_kernel", "channels\_in", "channels\_out", "padding", "strides", "use\_bias", "activation\_fct"]

#### 多項式轉換量:2

#### 特徵轉換表:

| 名稱      | 特徵轉換   | 多項式轉換量 | 備註                     |
|---------|--------|--------|------------------------|
| Exp4_A1 | ВохСох | None   |                        |
| Exp4_A2 | Sqrt   | None   | 與 Exp1_A1 (MALPE) 相同架構 |
| Exp4_A3 | None   | None   |                        |
| Exp4_A4 | ВохСох | 2      | 特效全開                   |

#### 圖表:

Diiferent Prenrocessing on Same NN Structure Test(re)



| 名稱      | 訓練/測試 | ABSe(ms) | Re(%) | RMSe(ms) | R2(-1~1) |
|---------|-------|----------|-------|----------|----------|
| Exp4_A1 | Train | 2.088    | 7.222 | 6.156    | 0.988    |
| Exp4_A1 | Test  | 1.98     | 8.046 | 5.726    | 0.989    |
| Exp4_A1 | Train | 2.103    | 7.331 | 6.221    | 0.988    |
| Exp4_A1 | Test  | 1.98     | 8.034 | 5.868    | 0.988    |
| Exp4_A1 | Train | 2.211    | 7.978 | 6.531    | 0.968    |
| Exp4_A1 | Test  | 2.145    | 9.514 | 6.316    | 0.987    |
| Exp4_A1 | Train | 20.57    | 6.947 | 6.145    | 0.988    |
| Exp4_A1 | Test  | 1.982    | 8.137 | 5.756    | 0.989    |

#### 結論:

這裡可以看出對特徵轉換目標做特徵轉換是有用的,其中以 Box-Cox 最好

而再進行額外的多項式轉換步驟開始時有一定效果,但在經過幾次的學習率衰減步驟後,將會與沒做多項式轉換結果類似 (i.e.: 多項式轉換在本次實驗中幾乎無效)。

## Reference:

- [1] Skewed Data: Poisson regression test for skewed data
- [2] Box-Cox Transformation: https://baike.baidu.com/item/Box-Cox%E5%8F%98%E6%8D%A2/10278422
- [3] RMSe: https://zh.wikipedia.org/wiki/%E5%9D%87%E6%96%B9%E6%A0%B9%E8%AF%AF%E5%B7%AE
- [4] R2: https://zh.wikipedia.org/zh-tw/%E5%86%B3%E5%AE%9A%E7%B3%BB%E6%95%B0
- [5] Polynomial regression: https://en.wikipedia.org/wiki/Polynomial\_regression

# **Interactive Graphics:**

1. Experiment 1 (損失函數測試):



2. Experiment 2 (形狀測試):



3. Experiment 3 (層數堆疊測試):



## 4. Experiment 4 (特徵轉換測試):



# Code:

