

集成电路学院实验报告

姓	名:	张乐天	学	号:	221900182
专	小:	集成电路设计与集成系统	年	级:	2022
课程	呈名称:	楼	莫拟电	路实验	
实验	公名称:	放大电路——	_单级	放大与负点	
实验	验时间:	2023-2024 学年第二学期	实	验教室:	科创大厦 2 号实验室
实验	硷成绩:		指-	导教师:	田静

评阅意见:

1 实验目的

- 1) 熟悉电子仪器测量具体电路的参数的方式,学习电路静态参数的设置方式与动态参数的测算方式;
 - 2) 分析 BJT 晶体管共射放大电路的直流特性与交流特性;
 - 3) 分析多级放大电路中,负反馈的引入对放大电路放大性能的影响。

2 实验仪器与主要器材

仪器:

双踪示波器: RIGOL DS2302A

万用表: RIGOL DM3058E

函数发生器: RIGOL DG2102

电源: RIGOL DP832

硬件:

模拟电路综合实验箱 (晶体管放大器电路)

三极管 S9013

导线若干

软件:

NI Multisim 14.3 (Education Edition)

3 实验原理

利用 BJT 搭建放大电路时,要根据信号的放大要求设立电路的静态参数,即确定静态工作点。根据静态工作点附近的器件参数做一阶线性近似确定交流参数。

3.1 电路搭建

单级放大实验电路为共射极放大电路,信号由基极输入、集电极输出,发射极作为公共极。这里具体采用基极分压式射极偏置共射极放大电路,如图 1 所示。

此种偏置方式的温度稳定性较好^[1],这是因为在直流通路中,基极电压由 $R_{b1}(+R_{p})$ 、 R_{b2} 对 V_{CC} 的分压实现,因此基极电位 V_{BQ} 基本不变。当环境温度升高时候,BJT 的反向饱和电流与放大系数均会增大,这会使得 $I_{CO} \approx I_{EO}$ 增大。由于射极电阻 R_{e} 的存在,而 $V_{EO} = I_{EO}R_{e}$,因

此射极点位 V_{EQ} 上升,使得 V_{BEQ} 减小,从而 I_{BQ} 减小,抑制了 $I_{CQ} \approx I_{EQ}$ 的增大。

实际上,这里引入了电流负反馈,射极电阻 R_e 即为引入的反馈电阻。

图 1 单级放大实验电路——基极分压式射极偏置共射极放大电路

图 2 负反馈放大实验电路

对于负反馈放大电路,两级均为基极分压式射极偏置共射极放大电路,电路图如图 2 所示。其中, R_F 与 C_F 串联,为电路引入了电压串联负反馈。

由于电压串联负反馈的存在,放大电路的放大倍数会降低,但放大带宽会增大。反馈的具体效果受到电路参数与反馈系数的影响。

3.2 静态参数与放大系数 β

在具体分析交流通路之前,需要测试实验所用晶体管 S9013 的相关器件参数,主要是交流放大系数 β 的确定。

根据图 1,调节 R_p 可以调节 BJT 的静态工作点,使其工作在不同的放大状态。结合电阻 阻值与各点的电位可以测算获得不同静态工作点下的 I_{BO} 与 I_{EO} ,从而计算 β 。

静态参数确定后,电路的交流信号便可确定。一般静态工作点会取在 $V_{\rm CC}/2$ 附近,这里为6V,这样能够使信号放大的幅值尽可能大。

3.3 交流参数

电路的交流参数(或者小信号模型)是由静态工作点处器件特性的一阶线性展开近似得到的。在低频情况下,会受到电路电抗元件的影响;在高频情况下,需要考虑器件自身的电抗特性。因此,幅频特性曲线往往在中频区存在通带。

在中频区,可以忽略所有电抗元件的影响,因而可以分析交流通路的输入电阻与输出电阻。其测量原理与直流电路相似,仅仅全部改变为使用交流信号。

由于在负反馈电路中引入了反馈,减小了放大倍数,因而通带被展宽。

4 实验过程

4.1 β值测量

4.1.1 硬件测试

在图 1中,通过调节 $R_{\rm p}$ 来改变 $V_{\rm C}$,分别使得 $I_{\rm C}=\frac{v_{\rm CC}-v_{\rm C}}{R_{\rm C}}$ 为 0.5mA、1mA 与 1.5mA。利用

$$I_{ ext{BQ}} = rac{V_{ ext{CC}} - V_{ ext{BQ}}}{R_{ ext{b}}} - rac{V_{ ext{BQ}}}{R_{ ext{b}2}}$$
 $eta = rac{I_{ ext{C}}}{I_{ ext{B}}}$

两式计算 I_B 与 β ,其中 $R_b = R_{b1} + R_p$ 。记录电路静态参数数据如表 1 所示。

I (m A)	W (W)	测量		计算值		
$I_{\text{CQ}} \text{ (mA)}$	$V_{\rm CQ}$ (V)	$V_{\rm BQ}$ (V)	$R_{\rm b}~({\rm k}\Omega)$	$I_{\rm BQ}~(\mu {\rm A})$	β	
0.5	9.45	1.56	154.7	2.485	201.2	
1	6.90	2.53	75.9	4.828	207.1	
1.5	4.35	3.49	55.7	7.366	203.6	

表 1 β值测量

从表 $1 中 \beta$ 的测量值可以估算出,该三极管工作在放大区时的 β 值在 205 左右。

4.1.2 软件仿真

通常, β 不是个常数,一般会随 I_B 的增大而增大。在 Multisim 中搭建如图 3 所示电路图,直流参数扫描仿真后可得到如图 4 所示结果。可知, β 确实随 I_B 的增大而增大。

图 3 β值测量电路

图 4 直流参数扫描β值

4.2 单级放大电路静态工作点设定与调整

在图 1 所示电路中,通过调节 $R_{\rm p}$ 使得 $V_{\rm CO}=6$ V,测算电路中相关参数,得到表 2。

	测量值		测量计算值			
$R_{\rm b}~({\rm k}\Omega)$	$V_{\rm BQ}$ (V)	$V_{\rm EQ}$ (V)	$I_{\text{BQ}} (\mu A)$	I_{CQ} (mA)	β	
72.9	2.87	2.24	5.657	1.176	207.9	

表 2 单级放大电路静态工作点调整

该静态工作点下,三极管的 β 值测量值大于表 1 中的测量值,这种误差是允许的。同时这也印证了 4.1.2 中的仿真结果,表明三极管 β 不是个常数。

根据图 1,直流负载线可由 $V_{\rm CC}$ 与 $R_{\rm c}$ 、 $R_{\rm e}$ 确定,绘制如图 5 所示。其中输出特性曲线由 Multisim 仿真给出。

图 5 直流负载线

可以看出,交点在 3.7V 附近,表明静态工作点 $V_{CEO} \approx 3.7V$ 。

4.3 单级放大电路动态特性分析

交流参数基于电路的静态参数,若未加改变,均保持图 1 电路的静态工作点 $V_{CQ} = 6V$ 。

4.3.1 通带交流放大倍数

在本实验电路中,在交流信号输入端有一个由 R_1 、 R_2 组成的 1/101 的分压器。这是因为,信号源是有源仪器,当其输出电压较小时,其输出的信噪比随输出信号的减小而降低;信号源的输出信号的最小幅值较大,直接做输入时会导致输出严重失真(实验所用函数发生器为DG2102,其最小幅值可以满足该实验要求)。因此为了获得质量较好、信噪比较高的交流小

信号,这里采用分压电路,由 R_2 端提供 ν_i 输入。

取输入信号频率f=10kHz,有效值 $(v_i)_{rms}=3$ mV。通过示波器观察 v_s 与 v_o 的波形,如图 6 所示。可以看到 v_s 与 v_o 的波形基本呈反向关系。其中 v_s 为一通道。

图 6 v_s 与 v_o 波形

将 R_L 断开,使电路空载,并保持输入信号频率f=10kHz,改变有效值 $V_i=(v_i)_{rms}$,测量 V_o ,测算结果记录如表 3。其中最后一行为 v_o 不严重失真时的最大输入值 $(V_i)_{max}$ 。

II (II)	W (37)	A_v		
$V_{\rm i}~({ m mV})$	$V_{\rm o}$ (V)	由测量值计算	理论估算值	
3	0.644	214.7		
6	1.281	213.5	220.0	
9	1.896	210.7	220.9	
10	2.096	209.6		

表 3 单级放大电路空载交流放大倍数

随着 V_i 的增大,测量计算得到的增益 A_v 逐渐减小而且均小于理论估算值。这是因为三极管 β 值在放大区并不是恒定值,而是会随着 v_{CE} 的增大而增大,因此测量计算得到的增益 A_v 均小于理论估算值;通过仿真可知, β 值在放大区随着 v_{CE} 的增大而增大的量会逐渐变大,因此当输入信号幅值变大时,输出信号的幅值不会按照比例增大,即出现了线性失真。

当 $V_i = 10$ mV时,波形如图 7 所示,可以看出顶部产生了失真。由于这里示波器采取了交流耦合,因此并不能具体看出失真情况,采用直流耦合会更清晰。

图 7 空载放大出现失真

将负载 $R_{\rm L}$ 接入,输入信号频率 $f=10{
m kHz}$,有效值 $(v_{\rm i})_{rms}=3{
m mV}$,测量 $V_{\rm o}$,测算结果记录如表 4。

 $R_{\rm L}$ (kΩ)
 $V_{\rm i}$ (mV)
 $V_{\rm o}$ (V)
 $A_{\rm v}$

 测量计算值
 理论估算值

 5.1k
 3
 0.329
 109.7
 110.4

 2.2k
 3
 0.199
 66.3
 66.6

表 4 单级放大电路有载交流放大倍数

可绘制交流负载线如图 8 所示。可以发现,负载线交于同一点,即静态工作点 Q。

负载线 (Vc = 6V)

图 8 交流负载线

4.3.2 幅频特性

保持输入信号有效值 $(v_i)_{rms}=1$ mV 不变,改变信号频率f,寻找 $V_o=(v_o)_{rms}$ 的最大值 V_{oM} ,即寻找通频带下 \dot{A}_{vM} ,这是因为

$$20\lg\left|rac{\dot{A}_v}{\dot{A}_{v\mathrm{M}}}
ight| = 20\lg\left|rac{V_\mathrm{o}}{V_\mathrm{oM}}
ight|$$

这样,仅需测量以便可计算放大系数的频率特性。

经测量,f = 15kHz 附近有 V_{oM} ,进一步测算幅频特性如表 5 所示。

空载	$20 \lg \dot{A}_v/\dot{A}_{vM} $ (dB)	-20	-16	-12	-10	-7	-3	0
	f (Hz)	72	134	240	310	480	980	3700
		7.7M	4.88M	2.91M	2.28M	1.44M	0.71M	0.1M
有载 $R_{\rm L}=5.1$ kΩ	$20 \lg \dot{A}_v/\dot{A}_{vM} $ (dB)	-20	-16	-12	-10	-7	-3	0
	f (Hz)	110	160	260	350	490	1000	4700
		12.7M	8.8M	5.7M	4.5M	2.9M	1.4M	0.2M

表 5 单级放大电路幅频特性

根据表 5,可绘制幅频特性曲线如图 9 所示。能够明显注意到,有载情况下放大电路的上限频率 f_H 有所提升,而且由表中数据可以估算,带宽约展宽为原来的 2 倍。这是因为与空载情况相比,有载情况下电路在通频带的增益 $\dot{A}_{\nu M}$ 减小,而减小的数量约为空载情况下的1/2。这可以由电路的输出电阻 R_0 与负载 R_L 的大小关系以及增益-带宽积为常数得到。

单级放大电路幅频特性曲线

图 9 单极放大电路幅频特性曲线

4.3.3 非线性失真

在 Multisim 中搭建电路,利用傅里叶分析可知谐波失真情况如图 10 所示。

图 10 单极放大电路非线性失真

由图 10 可知,该单级放大电路的谐波失真很小,二次谐波谱线幅值仅约为基波幅值的 2%,高次谐波不超过 0.1%。说明电路的非线性失真很小,小信号模型的引入是合理的。

4.3.4 直流偏置的影响

当电路静态工作点变化时,会对信号放大产生影响。当工作点过高或过低时,输出信号 v_0 均会出现明显失真。具体对放大性能的影响如表 6 所示。

$R_{ m p}$	$V_{\rm B}$ (V)	V_{C} (V)	$V_{\rm E}$ (V)	输出波形情况
最大	0.53	11.90	0.02	截止失真
适中	2.87	6.0	2.24	正常 (反相放大)
最小	3.85	3.47	3.20	饱和失真

表 6 直流偏置对放大性能影响

出现饱和失真与截止失真时,波形分别如图 11 与图 12 所示。

图 11 饱和失真

图 12 截止失真

4.3.5 输入电阻与输出电阻

对于交流信号,输入输出两端的等效电路如图 13 所示。

图 13 输入输出等效电路

不难推出,输入电阻与输出电阻的表达式为

$$egin{align} R_{ ext{i}} &= rac{R_{ ext{s}}}{V_{ ext{i}}} - 1 \ R_{ ext{o}} &= \left(rac{V_{ ext{o}}|_{R_{ ext{L}} = + \infty}}{V_{ ext{o}}|_{R_{ ext{s}} = R_{ ext{o}}}} - 1
ight) R_{0} \ \end{aligned}$$

在测量输入电阻时,要接入负载,并将图 1 中电阻 R_2 断开,视 R_1 为 R_s ;在测量输出电阻时,需要将电阻 R_2 重新接入电路,恢复由 R_1 、 R_2 组成的分压器。测算的数据如表 7 所示。

 $V_{\rm s}$ (mV) V_0 (mV) 测量计算值 (kΩ) 理论估算值 $(k\Omega)$ 输入电阻 R_i 22.7 10 4.0 3.8 $V_{\rm o}|_{R_{\rm L}=+\infty}$ (V) $V_{\rm o}|_{R_{\rm L}=5.1{\rm k}\Omega}$ (V) 测量计算值 $(k\Omega)$ 理论估算值 $(k\Omega)$ 输出电阻 R_0 0.633 0.324 4.86 5.1

表 7 单级放大电路输入输出电阻

4.4 负反馈放大电路

根据图 2 搭建电路,预留 R_F 与 C_F 所在支路。

4.4.1 放大器静态参数

调节 $R_{\rm p1}$ 、 $R_{\rm p2}$ 使 $V_{\rm C1Q}$ 、 $V_{\rm C2Q}$ 均趋近于 6V,并分别将 $R_{\rm F}$ 与 $C_{\rm F}$ 所在支路断开、闭合,从而测量放大器的开环静态参数与闭环静态参数如表 8 所示。

放大器状态	第一级			第二级		
从八台小心	$V_{\rm B1Q}$ (V)	$V_{\rm C1Q}$ (V)	$V_{\rm E1Q}$ (V)	$V_{\rm B2Q}$ (V)	V_{C2Q} (V)	$V_{\rm E2Q}$ (V)
开环	2.866	6.003	2.242	2.637	6.008	2.002
闭环	2.866	6.003	2.242	2.637	6.008	2.002

表 8 负反馈放大电路静态参数

从表 8 中可以发现,开环闭环对电路的静态参数没有影响,这是因为引入的负反馈中含有电容 $C_{\rm F}$ 。因此反馈回路对于直流是短路的,总是"开环"的。

4.4.2 放大器动态特性

同单级放大电路,放大器交流参数基于电路的静态参数,若未加改变,均保持图 2 电路的静态参数如表 8 所示,同时使负载 $R_{\rm L}$ 开路。

4. 4. 2. 1 通带交流放大倍数

同 4.3.1 中所述,采用分压电路获得 v_i 。取输入信号频率f=10kHz,测算交流放大倍数如表 9 所示。

放大器状态	V (mV)	V_{c1} (mV)	V (mV)	电压放大倍数			
从八台小心	$V_{\rm i}~({ m mV})$	V_{c1} (mV)	$V_{\rm o}~({\rm mV})$	A_{v1}	A_{v2}	A_v	
开环	0.7	9.97	2028.4	14.24	2034.5	2897.7	
闭环	1	0.54	30.43	0.54	56.35	30.43	

表 9 负反馈放大电路交流放大倍数

可以看到,开环增益 $20\lg A_v=69.2dB$,远远大于闭环增益。测量中,应当适当调大闭环状态下输入信号 v_i ,这样能使 V_{c1} 与 V_0 更大,从而使得测量更为准确。

4.4.2.2 幅频特性

同 4.3.2 中测算方式,保持输入信号有效值 $(v_i)_{rms}=0.5$ mV 不变,发现当信号频率f=10kHz 时,有 $V_0=(v_0)_{rms}$ 的最大值 V_{0M} 。

结合

$$20\lg\left|rac{\dot{A}_v}{\dot{A}_{v\mathrm{M}}}
ight| = 20\lg\left|rac{V_\mathrm{o}}{V_\mathrm{oM}}
ight|$$

可测算得到负反馈放大器开环与闭环的幅频特性如表 10 所示。

		$20 \lg \dot{A}_v/\dot{A}_{vM} $ (dB)	-20	-16	-13	-10	-7	-3	0
开环	£ (II_)	124	165	215	281	394	720	2920	
	f (Hz)	620k	382k	264k	181k	120k	71k	20k	
		$20 \lg \dot{A}_v/\dot{A}_{vM} $ (dB)	-20	-16	-13	-10	-7	-3	0
闭环	闭环	f (II)	17.4	35.5	53.7	79	124	240	700
	f (Hz)	-	-	-	-	-	10.7M	8.7M	

表 10 负反馈放大电路幅频特性

根据表 10, 可绘制幅频特性曲线如图 14 所示。

负反馈放大电路幅频特性曲线

图 14 负反馈放大电路幅频特性曲线

图中,闭环的幅频特性曲线与开环相比,其通带明显展宽, f_L 明显减小而 f_H 明显增大。在这里,也可以进一步验证增益-带宽积为常数。

4.4.2.3 输入电阻与输出电阻

同 4.3.5 中测算方式,结合表 9 中测量得到的放大器增益 A_v ,得到负反馈放大电路的输入电阻与输出电阻如表 11 所示。表中理论估算输入输出电阻一栏可采取如下公式 $^{[2]}$

$$R_{ ext{if}} = (1 + A_v F_v) R_{ ext{i}} \ R_{ ext{of}} = rac{R_{ ext{o}}}{1 + A_{vo} F_v}$$

其中,电压串联反馈系数 $F_{\nu} = R_1/(R_1 + R_F)$ 。

输入	放大器状态	$V_{\rm s}~({\rm mV})$	$V_{\rm o}~({\rm mV})$	测量计算值 (kΩ)	理论估算值 (kΩ)
电阻	开环	50.2	34.6	10.76	10.6
$R_{\rm i}$	闭环	50.3	38.7	17.01	17.7
输出	放大器状态	$V_{\rm o} _{R_{\rm L}=+\infty}$	$V_{\rm o} _{R_{\rm L}=1.5{\rm k}\Omega}$	测量计算值 (Ω)	理论估算值 (Ω)
电阻	开环	1.421 V	0.495 V	2.81k	5.1k
$R_{\rm o}$	闭环	14.9 mV	14.62 mV	28.72	30.7

表 11 负反馈放大电路输入输出电阻

从表 11 中可以看出,引入电压串联负反馈后,放大器的输入电阻增大,而输出电阻明显减小。

5 实验小结

从晶体管放大电路的单级到两级,是一个系统逐渐复杂的过程。即使是单级放大电路,几乎一致的静态工作点,对于不同的晶体管,电路的具体参数也与同学的测量结果不同。同时,由于仪器的测量精度,以及可能引入的各种干扰与噪声的影响,对于各个量的测量测算的值都会产生误差。但是,与同学交流可以知道,测量结果的量级基本是一致的,这也与理论课程中的讲解是一致的,即任何精确的计算都不能得到与实际相符合的结果。这也让我逐渐理解模拟电路设计过程中,相关的参数的建立在于不断调整,设计的指标与要求也更多的是一个范围。同时,负反馈放大电路实验,也进一步理解了串联电压负反馈,可以通过减小一部分放大倍数来扩宽电路的通频带,并也可以改变电路的输入和输出电阻,改变电路前后级对电路的放大倍数等性能的影响。

同时,在实验过程中,也进一步了解了示波器与万用表的使用,包括 FFT、相位比较、 交流测量等,也逐渐认识到测量精度与测量值有效位数对于实验要求精度的影响。

6 思考题

1、若要求降低放大器电路的低频截止频率。可如何修改放大电路?

答:考虑电路的低频小信号模型,从 $\tau = RC$ 来看,通常需要调整电路的电容以及电阻,使其变大,以减小时间常数,从而降低 f_{L} 。常用的方法有以下几种:

- (1) 增大耦合电容。通过加大输入耦合电容和输出耦合电容的容量,可以降低低频截 止频率,允许更多的低频信号通过。
- (2) 加大旁路电容,提高低频信号增益。同上。
- (3) 提高耦合电容回路电阻,电路的截止频率取决于电容所在回路的时间常数。因此,

可以通过回路电阻来增加回路时间常数,从而降低下限频率。

- 2、若要减小电路非线性谐波失真,有哪些途径?
- 答: (1) 可以采用线性度好的元器件,从而减小非线性失真。
 - (2)调整静态工作点,使放大器工作在更线性的区域。同时,可以尽可能避免饱和 失真和截止失真。
 - (3) 施加适量的负反馈。通过引入负反馈可以有效地减小非线性失真。

致谢

在该部分实验中,感谢田老师的讲解,身体不适也依然来到实验室上课。实验过程中, 也感谢同学的支持,让我确信测量的过程与结果是正确的。第一次做模拟电路实验,多少有 些不熟练,感谢同学与我交流,更快地推进实验。

参考文献

- [1] 温度对放大电路的影响[OL].[2024-05-10]. https://zhuanlan.zhihu.com/p/356527325.
- [2] 康华光,张林. 电子技术基础:模拟部分[M]. 7 版. 北京:高等教育出版社,2021:302-322.

附件

	為為	大学	战电路	系实具	验报~	告	,
	题目	单级效	大电路				
姓名		1	年 4 月	23日	第	页	
学号 22190	0/82			99			
	卷1-1-1	测量月值	Rb1 = 47	ksi Rcz	-5.1ks	Rb2 = 24ks	
	Vc(V)	测量值	i	计算值			
75 (M/4)	Vcl V/	VB(V) Rolk	n) lei	(MA) B		= 204	0
0,5	9,45	1,56 107.	7+47 2.	481- 20	1.2		
1	6.90	253 38.	9+47 4.	. 828 20	7.1		
1.5	4.35	3.49 8.7	1+47	7.366 2	03.6		
25.9+47	N层值 VB(V) 1	/E(V) Ze	657 1.17	= 1.176 mA	ich 171 1176	R=2.2k2 PR=51k	
RL(kハ). よ.1 2.2	表 1-1-4 测量(以(mV) 3	有就交流放水 b.(v) 0.329 0~199	危数 测影構 A v /09.7 66.3	173.60% Av 110. 66.	4	同都	

南京大学 蘇聯 系实验报告

题目 单级放大电路

姓名 子长牙衣

2024年4月30日

第____页

学是 221900/82

表 1-1-7 直流偏置对放大性筋影响

R _P	V _B (V)	V _c (v)	V _E (V)	插出波形情况
最大(500k几)	0.53	11.9	0.02	裁战复印
送当	2.87	61000	2.24	端(烟)
最N、(0)	3.85	3.47	3.20	避免和镇 (T寄)

表 1-1-8 輸入輸出电阻

Vs (mV) VilmV) 测量(n) 现境(n)

ri: 22.7 10 4.0k 3.8k

V。(R=+100) V。(R=5.1k元) 例是(の) 現場的(の)
Y。: 0.633V 0.324V 4.86k 5.1k.

的多种飞

		NA BA	拍京	大学	集成略	老系	实验	报告	•
		of mark	题目		溃级大电				11111
	姓名	张乐天		2024	年	月	H	第	页
漫号 221900182									
表 1-2-1 静态参数									
第一级 第二级 $Y_{BZ}(V)$ $V_{CZ}(V)$ $V_{EZ}(V)$									
	V	(V)	$V_{c1}(V)$	VEI(V)	VBZ(V)	Vc2 7	(V) '	VEZ (V)	
			6.003						
	闭环	2.866	6.003			7 6	800	2,002	
			表 1-2-2	2 茶流流	狀化數	(系)	用有数值		
		Vi(mV)	Va (m V) Vo(ml	/) A	vi A	vz A	v	
	和不	1	14.5	·b 279	55. 14	456 1	92,00 29	U.J -	发绀真
	洲环	1	0.5	4 30.	43. 0	5-4 5	76.31	3043	
	在37、	617	9.95	202	84214	1.24	2034,5	28 97.7	
			4 1.	G.	L =4				
			表 1-2-		旅時性				• •
		2019/A.)3			-/3	-16	-20
	开动	不解		1k 71k	120/5	181k	264k	382k	620/2
	₩n:	不解	(Hz) 8	92/< 720 7M 10.7M	1	281.	215	165	12K
*	IN A	1 74		00 240		79	53.7	35.5	17.4
			表 1-2-	上 统入	能 从由FFA	7条:	山冷水场)	~ 2.h
卷 1-2-5 薪以薪出烟 (采取新维) 1239 新八烟灯 (Rs=5.1ks) 薪出电路									
) Alabo	s(mv) vil	mV $h:=$	Rs (1	Z) Z	26 - 36121 210 - 3121	Val.	r (5)
	477	3	70.Z 34	.06	10.76k		1,421V	0.495V	ro (sz) 2.81ksz.
	洲	不	50.3 38		17.01k				