Capítulo

1

Construção do Ambiente 3D

1.1 O SISTEMA DE PROJEÇÃO

Inicialmente, vamos definir o sistema de projeção. Analisemos a figura abaixo:

Fig. 1

Na figura MR, MF e MT são os sistemas coordenados do mundo rotacionado, mundo fixo e tela, respectivamente. Um sistema coordenado é definido por um ponto de origem em relação a um outro sistema e um conjunto de três vetores ortonormais, ou seja, uma base no espaço tridimensional. No nosso caso, todos os sistemas coordenados são definidos com relação a MF.

Em linguagem C, podemos representar um sistema coordenado por meio de da estrutura abaixo.

```
struct SisCoord
{
  Vetor pini;
  Vetor e[3];
}:
```

4 Construção do Ambiente 3D

O é o observador , sua posição é determinada por \overrightarrow{vmfor} e \overrightarrow{vtor} nos sistemas MF e MT , respectivamente .

 \mathbf{MF} e \mathbf{MT} possuem o mesmo conjunto de vetores ortonormais, portanto \mathbf{MT} pode ser definido univocamente por $\overline{\mathbf{vmft}}$ e pelos vetores base de \mathbf{MF} , e, se definirmos que $\overline{\mathbf{vmft}}$ é paralelo a $\mathbf{MF} \rightarrow \mathbf{e}[2]$, podemos substituir $\overline{\mathbf{vmft}}$ pela variável ztela.

Finalmente pt1, pt2, pt3 e pt4 são os pontos que delimitam a tela do computador, no sistema de coordenadas do mundo MF, suas coordenadas ficam:

6 Construção do Ambiente 3D

Capítulo

2

Intersecções

8 Intersecções

2.1 FUNCÕES ÚTEIS

2.1.1 Distância de um ponto P a uma reta r definida por dois pontos P1 e P2

O problema é mostrado no desenho abaixo:

 $\mathbf{p_1}$ e $\mathbf{p_2}$ definem a reta, d é a distância do ponto \mathbf{p} à reta, ou seja, o que desejamos calcular.

O vetor unitário r é definido como:

$$\hat{\mathbf{r}} = \frac{(\mathbf{P2} - \mathbf{P1})}{|\mathbf{P2} - \mathbf{P1}|} \quad \text{(eq. 1)}$$

 $\mathbf{E} \mathbf{\vec{v}}$ é igual a $\mathbf{P} - \mathbf{P1}$.

Obtemos d projetando $\vec{\mathbf{v}}$ sobre $\hat{\mathbf{r}}$ e somando \mathbf{P}_1 a este resultado para obter \mathbf{P}_1 , então a norma de $\mathbf{P}_-\mathbf{P}_1$ é igual a d, veja as duas equações abaixo:

$$\mathbf{PI} = \mathbf{P1} + (\vec{\mathbf{v}} \cdot \hat{\mathbf{r}}) \cdot \hat{\mathbf{r}} \quad (eq. 2)$$

$$d = |\mathbf{PI} - \mathbf{P}| \qquad (eq. 3)$$

Abaixo uma implementação em C:

```
\label{lem:control_decomposition} $$ \begin{subarray}{ll} $ \end{subarray} $$ double distanciapontoareta3d(Vetor *p1,Vetor *p2,Vetor *p,NDOUBLE *alpha,Vetor *p1) $$ \{$ Vetor p_i,v;$ $$ Vetor::sub(p,p1,&v);Vetor::sub(p2,p1,&p_i);$ $$ if(alpha) $$ \{ p_i.norma(); *alpha=(v*p_i)/p_i.normaquad; \}$ $$ p_i.normaliza();$ $$ Vetor::mult(&p_i,v*p_i,&p_i);$ Vetor::soma(&p_i,p1,&p_i);$ $$ if(pI) *pI=p_i; Vetor::sub(p,&p_i,&p_i);$ $$ return p_i.norma();$ $$ \}
```

Note que, eventualmente, pode nos ser útil saber também qual é o

ponto \mathbf{PI} e o parâmetro α definido por $\alpha = \frac{\left(\vec{\mathbf{v}} \cdot \hat{\mathbf{r}}\right)}{\left|\mathbf{P2} - \mathbf{P1}\right|}$, analisando este

parâmetro podemos verificar se **PI** pertence ao segmento **P1** \rightarrow **P2** $(0 \le \alpha \le 1)$, ou não $(\alpha < 0)$ ou $\alpha > 1$, daí a adição dos ponteiros alpha e pI no trecho de código acima.

Calculamos aqui a distância de um ponto no espaço tridimensional à uma reta no espaço tridimensional, porém as mesmas equações valem para o espaço bidimensional, basta definir os vetores e pontos em questão por uma dupla de números reais ao invés de uma tripla ou apenas fazer a terceira coordenada dos vetores e pontos igual a zero.

10 Intersecções

2.1 RESOLUÇÃO DE SISTEMAS DE 3 EQUAÇÕES UTILIZANDO NOTAÇÃO VETORIAL

Considere o sistema de 3 equações abaixo:

$$\begin{cases} A_{11} \cdot x + A_{12} \cdot y + A_{13} \cdot z = G_1 \\ A_{21} \cdot x + A_{22} \cdot y + A_{23} \cdot z = G_2 \\ A_{31} \cdot x + A_{32} \cdot y + A_{33} \cdot z = G_3 \end{cases}$$
 (eq. 1)

Definimos agora os seguintes vetores:

$$\vec{\mathbf{a}} = \mathbf{A}_{11} \, \mathbf{i} + \mathbf{A}_{12} \, \mathbf{j} + \mathbf{A}_{13} \, \mathbf{k} \quad (\text{eq. 2})$$

$$\vec{\mathbf{b}} = \mathbf{A}_{21} \, \mathbf{i} + \mathbf{A}_{22} \, \mathbf{j} + \mathbf{A}_{23} \, \mathbf{k} \quad (\text{eq. 3})$$

$$\vec{\mathbf{c}} = \mathbf{A}_{31} \, \mathbf{i} + \mathbf{A}_{32} \, \mathbf{j} + \mathbf{A}_{33} \, \mathbf{k} \quad (\text{eq. 4})$$

$$\vec{\mathbf{d}} = (d_x, d_y, d_z) = \vec{\mathbf{b}} \times \vec{\mathbf{c}} \quad (\text{eq. 6})$$

$$\vec{\mathbf{e}} = (e_x, e_y, e_z) = \vec{\mathbf{c}} \times \vec{\mathbf{a}} \quad (\text{eq. 6})$$

$$\vec{\mathbf{f}} = (f_x, f_y, f_z) = \vec{\mathbf{a}} \times \vec{\mathbf{b}} \quad (\text{eq. 7})$$

$$\vec{\mathbf{g}} = G_1 \mathbf{i} + G_2 \mathbf{j} + G_3 \mathbf{k} \quad (\text{eq. 8})$$

$$\vec{\mathbf{h}}_x = (\vec{\mathbf{d}} \cdot \mathbf{i}) \mathbf{i} + (\vec{\mathbf{e}} \cdot \mathbf{i}) \mathbf{j} + (\vec{\mathbf{f}} \cdot \mathbf{i}) \mathbf{k} = d_x \mathbf{i} + e_x \mathbf{j} + f_x \mathbf{k} \quad (\text{eq. 9})$$

$$\vec{\mathbf{h}}_y = (\vec{\mathbf{d}} \cdot \mathbf{j}) \mathbf{i} + (\vec{\mathbf{e}} \cdot \mathbf{j}) \mathbf{j} + (\vec{\mathbf{f}} \cdot \mathbf{j}) \mathbf{k} = d_y \mathbf{i} + e_y \mathbf{j} + f_y \mathbf{k} \quad (\text{eq. 10})$$

$$\vec{\mathbf{h}}_z = (\vec{\mathbf{d}} \cdot \mathbf{k}) \mathbf{i} + (\vec{\mathbf{e}} \cdot \mathbf{k}) \mathbf{j} + (\vec{\mathbf{f}} \cdot \mathbf{k}) \mathbf{k} = d_z \mathbf{i} + e_z \mathbf{j} + f_z \mathbf{k} \quad (\text{eq. 11})$$

A solução, surpreendentemente simples, então é:

$$x = \frac{\vec{\mathbf{h}}_{\mathbf{x}} \cdot \vec{\mathbf{g}}}{\vec{\mathbf{a}} \cdot \vec{\mathbf{d}}}, \ y = \frac{\vec{\mathbf{h}}_{\mathbf{y}} \cdot \vec{\mathbf{g}}}{\vec{\mathbf{a}} \cdot \vec{\mathbf{d}}}, \ z = \frac{\vec{\mathbf{h}}_{\mathbf{z}} \cdot \vec{\mathbf{g}}}{\vec{\mathbf{a}} \cdot \vec{\mathbf{d}}}$$
 (eq. 12)

Naturalmente se $\vec{a} \cdot \vec{d} = 0$ o sistema não tem soluções ou tem infinitas soluções.

2.2 INTERSECÇÃO RETA-RETA

Consideremos o problema de encontrar o ponto de intersecção entre duas linhas com as seguintes equações paramétricas:

$$\mathbf{P}(\alpha) = \mathbf{r_0} + \alpha \cdot \vec{\mathbf{r}} \quad \text{(eq.1)}$$

$$\mathbf{P}(\beta) = \mathbf{s_0} + \beta \cdot \vec{\mathbf{s}}$$
 (eq. 2)

Analise a figura abaixo:

Na figura acima \mathbf{r}_0 , \mathbf{s}_0 , \mathbf{r}_1 e \mathbf{s}_1 são pontos de \mathfrak{R}^3 que definem as retas, $\vec{\mathbf{r}} = \mathbf{r}_1 - \mathbf{r}_0$ e $\vec{\mathbf{s}} = \mathbf{s}_1 - \mathbf{s}_0$ são os vetores que definem a direção da reta (note que o sentido aqui não é importante), \mathbf{P} é o ponto que desejamos determinar e $\mathbf{P}(\alpha)$ e $\mathbf{P}(\beta)$ são as equações de um ponto que pertence à reta definida por $(\mathbf{r}_0, \hat{\mathbf{r}})$ e $(\mathbf{s}_0, \hat{\mathbf{s}})$, respectivamente.

A primeira coisa a fazer é verificar se os pontos \mathbf{r}_0 e \mathbf{s}_0 são coplanares com relação aos vetores $\hat{\mathbf{r}}$ e $\hat{\mathbf{s}}$, pois somente assim pode existir um ponto comum às duas retas, basta verificar se a seguinte relação é verdadeira:

$$(\mathbf{r}_0 - \mathbf{s}_0) \bullet (\vec{\mathbf{r}} \times \vec{\mathbf{s}}) = 0$$
 (eq. 3)

Se a equação 3 é verdadeira, pode haver intersecção, mas por enquanto não há garantia alguma que realmente exista, pois mesmo sendo coplanares, as retas ainda podem ser paralelas, note que, se as retas são paralelas o resultado acima é sempre verdadeiro pois $\vec{r} \times \vec{s}$ é zero se os vetores \vec{r} e \vec{s} são paralelos.

A solução do problema fica fácil se percebermos que no ponto **P** a reta definida por $P(\alpha) - P(\beta)$, deve necessariamente ser perpendicular à $\vec{r} \in \vec{s}$, expressando isto matematicamente, obtemos:

$$[\mathbf{P}(\alpha) - \mathbf{P}(\beta)] \bullet \mathbf{r} = 0 \text{ (eq. 4)}$$

$$\mathbf{e}$$

$$[\mathbf{P}(\alpha) - \mathbf{P}(\beta)] \bullet \mathbf{s} = 0 \text{ (eq. 5)}$$

$$[\mathbf{P}(\alpha) - \mathbf{P}(\beta)] \bullet \vec{\mathbf{s}} = 0 \quad (eq. 5)$$

Substituindo as definições de $P(\alpha)$ e $P(\beta)$ dadas pelas (eq. 1) e (eq. 2) nas duas equções acima e resolvendo para α e β , conseguimos o seguinte resultado:

$$\alpha = \frac{\left\{ \left[\vec{\mathbf{r}} \bullet (\mathbf{r}_0 - \mathbf{s}_0) \right] \cdot (\vec{\mathbf{s}} \bullet \vec{\mathbf{s}}) - \left[\vec{\mathbf{s}} \bullet (\mathbf{r}_0 - \mathbf{s}_0) \right] \cdot (\vec{\mathbf{r}} \bullet \vec{\mathbf{s}}) \right\}}{(\vec{\mathbf{r}} \bullet \vec{\mathbf{s}}) \cdot (\vec{\mathbf{r}} \bullet \vec{\mathbf{s}}) - (\vec{\mathbf{r}} \bullet \vec{\mathbf{r}}) \cdot (\vec{\mathbf{s}} \bullet \vec{\mathbf{s}})} \quad (eq. 6)$$

$$\beta = \frac{\left\{ \left[\vec{r} \cdot (r_0 - s_0) \right] \cdot (\vec{r} \cdot \vec{s}) - \left[\vec{s} \cdot (r_0 - s_0) \right] \cdot (\vec{r} \cdot \vec{r}) \right\}}{(\vec{r} \cdot \vec{s}) \cdot (\vec{r} \cdot \vec{s}) - (\vec{r} \cdot \vec{r}) \cdot (\vec{s} \cdot \vec{s})} \quad (eq. 7)$$

Obviamente, apenas um dos parâmetros necessita ser calculado para definir unicamente o ponto **p**. Se o denominador das equações acima são nulos não há intersecção ou há infinitas intersecções, ou seja o ponto p é indeterminado, isto ocorre quando, além do denominador anular-se o numerador também é igual a zero.

Os parâmetros α e β são importantes quando desejamos verificar se os segmentos definido pelos pontos $(\mathbf{r}_0, \mathbf{r}_1)$ e $(\mathbf{s}_0, \mathbf{s}_1)$ interceptam as retas definidas por $(\mathbf{s}_0, \mathbf{s}_1)$ e $(\mathbf{r}_0, \mathbf{r}_1)$, respectivamente, caso em que α e β devem estar pertencer ao intervalo fechado [0,1], ou no caso da intersecção raio (semi-reta) com reta ou raio com raio, onde α e β devem ser positivos ou igual a zero.

2.3 INTERSECÇÃO CÍRCULO-RETA

Vamos, agora, resolver o problema da intersecção entre um círculo com e uma reta s.

Poderíamos utilizar as equações algébricas ou paramétricas do círculo e da linha para obtermos a solução, porém vamos utilizar uma outra abordagem, utilizando a simetria inerente ao círculo.

Observe a figura abaixo:

No desenho \mathbf{C} é o centro do círculo, r é o raio, \mathbf{pI} é o ponto da reta s resultante da intersecção da reta perpendicular à s e que passa por \mathbf{C} , d é a distância do centro \mathbf{C} até a reta s, ou seja, a distância entre \mathbf{C} e \mathbf{pI} , $\mathbf{pi1}$ e $\mathbf{pi2}$ são os pontos de intersecção que desejamos encontrar e a é a distância de \mathbf{pI} a $\mathbf{pi1}$ que, devido à simetria do círculo, é igual à distância de \mathbf{pI} a $\mathbf{pi2}$. Não mostramos na figura, mas lembrem-se de que o círculo está no espaço tridimensional e portanto assumimos que um certo vetor $\hat{\mathbf{k}}$, unitário e ortogonal ao plano do círculo, determina a orientação do círculo no espaço.

Os passos necessários à resolução são os seguintes:

1-Verificamos se a reta e o círculo são coplanares (vamos nos limitar ao caso em que ambos pertencem ao mesmo plano).

Para que estes sejam coplanares, as duas seguintes afirmações devem ser verdadeiras:

$$(\mathbf{P2} - \mathbf{P1}) \cdot \hat{\mathbf{k}} = 0$$
$$(\mathbf{C} - \mathbf{P1}) \cdot \hat{\mathbf{k}} = 0$$

2-Calculamos a distância d do centro do círculo à reta e o ponto **pI** como explanado na seção 2.1, os três casos possíveis devem ser analisados:

- a) d > r, não existe intersecção;
- b) d = r, a reta e o círculo se interceptam em um único ponto;
- c) $d \le r$, a reta e o círculo se interceptam em dois pontos distintos;

14 Intersecções

3-Calculamos a distância *a* utilizando a equação seguinte:

$$a = \sqrt{r^2 - d^2}$$

4-Obtemos, finalmente os pontos pi1 e pi2 utilizando as equações abaixo:

$$pi1 = pI - a \cdot \frac{(P2 - P1)}{|P2 - P1|}$$
$$pi2 = pI + a \cdot \frac{(P2 - P1)}{|P2 - P1|}$$

Eis a implementação:

```
bool interceptacircereta(Vetor *p1r, Vetor *p2r, Vetor *centro, NDOUBLE raio, Vetor *k, Vetor
*pi1,Vetor*pi2)
      Vetor p1p2r,p1rc,pI;
      NDOUBLE dist;
      Vetor::sub(p2r,p1r,&p1p2r);
      Vetor::sub(centro,p1r,&p1rc);
      p1p2r.normaliza();
      if(igualazero(p1p2r.normad)||!igualazero(p1p2r*(*k))||!igualazero(p1rc*(*k)))
       return false;//nao coplanares
      NDOUBLE a;
      int sinaldistrelr;
      dist=distanciapontoareta3d(p1r,p2r,centro,0,&pI);
      sinaldistrelr=FuncoesNumericas::comp(dist,raio,EPS);
      if(sinaldistrelr>0)return false;
      a=sqrt(raio*raio-dist*dist);
      *pi1=*pi2=p1p2r;
      Vetor::mult(pi1,-a,pi1);
      Vetor::soma(pi1,&pI,pi1);
      Vetor::mult(pi2,a,pi2);
      Vetor::soma(pi2,&pI,pi2);
      return true;
```

2.4 INTERSECÇÃO CÍRCULO-CÍRCULO

Vamos utilizar um método que aproveita a simetria de um círculo para verificar se dois círculo se interceptam e determinar os pontos de intersecção se estes existem. A figura abaixo mostra as simetrias que usaremos e os parâmetroa envolvidos.

Na figura acima $\hat{\mathbf{n}}_1$ e $\hat{\mathbf{n}}_2$ são as normais unitárias ao plano dos círculos que determinam as suas posições no espaço, r_1 e r_2 são seus respectivos raios, \mathbf{C}_1 e \mathbf{C}_2 seus centros, \mathbf{P}_1 e \mathbf{P}_2 são os pontos de intersecção que desejamos encontrar, os pontos de intersecção podem ser distintos, coincidentes ou inexistentes, d é a distância do centro \mathbf{C}_1 ao centro \mathbf{C}_2 , d_1 é a distância do centro \mathbf{C}_1 à reta que passa pelos pontos de intersecção \mathbf{P}_1 e \mathbf{P}_2 e finalmente a é a metade da distância entre \mathbf{P}_1 e \mathbf{P}_2 .

16 Intersecções

Uma exigência imposta para que este método funcione é a de que os dois círculos sejam coplanares, para verificar isto basta calcular o produto vetorial entre as duas normais, se o resultado for igual ao vetor nulo os círculos são coplanares, caso contrário não, ou seja, para que os círculos sejam coplanares a expressão abaixo deve ser verdadeira:

$$\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2 = \vec{\mathbf{0}}$$

Outra exigência é que os centros não sejam coincidentes, pois, neste caso, ou não existe intersecção alguma ou existem infinitas intersecções. Então:

$$C_1 \neq C_2$$

A terceira e última exigência é a seguinte:

$$\left|\mathbf{C}_{1}-\mathbf{C}_{2}\right|\leq r_{1}+r_{2}$$

Obviamente, se a inequação acima for falsa não pode existir intersecção alguma entre o círculo, ou seja eles não se encontram em nenhum ponto.

Da figura, conseguimos obter duas equações utilizando o teorema de Pitágoras:

$$a^{2} = r_{1}^{2} - d_{1}^{2}$$

$$a^{2} = r_{2}^{2} - (d - d_{1})^{2} = r_{2}^{2} - d^{2} + 2d_{1}d - d_{1}^{2}$$
 (2.4.1)

Igualando as duas obtemos:

$$r_1^2 = r_2^2 - d^2 + 2d_1d$$

Resolvendo para d_1 :

$$d_1 = \frac{r_1^2 - r_2^2 + d^2}{2d}$$
 (2.4.2)

Substituindo este resultado na primeira das equações 2.4.1, conseguimos determinar a, ou seja:

$$a = \sqrt{r_1^2 - \left(\frac{r_1^2 - r_2^2 + d^2}{2d}\right)^2}$$
 (2.4.3)

Definindo dois vetores $\hat{\mathbf{v}} = \frac{\mathbf{C}_2 - \mathbf{C}_1}{|\mathbf{C}_2 - \mathbf{C}_1|}$ e $\hat{\mathbf{u}} = \hat{\mathbf{n}}_1 \times \hat{\mathbf{v}}$, os pontos \mathbf{P}_1 e \mathbf{P}_2 podem ser determinados pela seguinte equação:

$$\mathbf{P}_{1} = \mathbf{C}_{1} + d_{1}\hat{\mathbf{v}} + a\hat{\mathbf{u}}$$

$$\mathbf{P}_{2} = \mathbf{C}_{1} + d_{1}\hat{\mathbf{v}} - a\hat{\mathbf{u}}$$
(2.4.4)

2.5 INTERSECÇÃO ENTRE DOIS PLANOS

O objetivo desta seção é estudar a intersecção entre dois planos infinitos, definidos respectivamente por $(\mathbf{P}_1, \hat{\mathbf{n}}_1)$ e $(\mathbf{P}_2, \hat{\mathbf{n}}_2)$, observe a figura abaixo.

Nesta figura $\vec{\mathbf{r}} = \hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2$ é o vetor diretor da reta resultante da intersecção entre os dois planos, \mathbf{P}_0 é um ponto qualquer pertencente simultaneamente à ambos os planos e $\mathbf{P}(\alpha)$ é a equação paramétrica da reta dada por:

$$\mathbf{P}(\alpha) = \mathbf{P}_0 + \alpha \cdot \vec{\mathbf{r}} \quad (eq.1)$$

Vemos que basta escolher apropriadamente \mathbf{P}_0 e o problema estará resolvido, uma opção é escolher \mathbf{P}_0 como a intersecção dos planos definidos por $(\mathbf{P}_1, \hat{\mathbf{n}}_1)$, $(\mathbf{P}_2, \hat{\mathbf{n}}_2)$ e $(\mathbf{P}_1, \dot{\mathbf{r}})$, as equações que devem ser satisfeitas por \mathbf{P}_0 são:

18 Intersecções

$$(\mathbf{P}_0 - \mathbf{P}_1) \cdot \hat{\mathbf{n}}_1 = 0 \quad (\text{eq. 2})$$
$$(\mathbf{P}_0 - \mathbf{P}_2) \cdot \hat{\mathbf{n}}_2 = 0 \quad (\text{eq. 3})$$
$$(\mathbf{P}_0 - \mathbf{P}_1) \cdot \vec{\mathbf{r}} = 0 \quad (\text{eq. 4})$$

Utilizando o método de resolução de sistemas lineares da seção 1 deste capítulo, obtemos o seguinte resultado para $\mathbf{P}_0 = (x_0, y_0, z_0)$:

$$x_0 = \frac{(\mathbf{P}_1 \cdot \hat{\mathbf{n}}_1) \cdot [(\hat{\mathbf{n}}_2 \times \vec{\mathbf{r}}) \cdot \mathbf{i}] + (\mathbf{P}_2 \cdot \hat{\mathbf{n}}_2) \cdot [(\vec{\mathbf{r}} \times \hat{\mathbf{n}}_1) \cdot \mathbf{i}] + (\mathbf{P}_1 \cdot \vec{\mathbf{r}}) \cdot (\vec{\mathbf{r}} \cdot \mathbf{i})}{\hat{\mathbf{n}}_1 \cdot (\hat{\mathbf{n}}_2 \times \vec{\mathbf{r}})} \quad (eq. 5)$$

$$y_0 = \frac{(\mathbf{P}_1 \cdot \hat{\mathbf{n}}_1) \cdot [(\hat{\mathbf{n}}_2 \times \vec{\mathbf{r}}) \cdot \mathbf{j}] + (\mathbf{P}_2 \cdot \hat{\mathbf{n}}_2) \cdot [(\vec{\mathbf{r}} \times \hat{\mathbf{n}}_1) \cdot \mathbf{j}] + (\mathbf{P}_1 \cdot \vec{\mathbf{r}}) \cdot (\vec{\mathbf{r}} \cdot \mathbf{j})}{\hat{\mathbf{n}}_1 \cdot (\hat{\mathbf{n}}_2 \times \vec{\mathbf{r}})} \quad (eq. 6)$$

$$z_0 = \frac{(\mathbf{P}_1 \cdot \hat{\mathbf{n}}_1) \cdot [(\hat{\mathbf{n}}_2 \times \vec{\mathbf{r}}) \cdot \mathbf{k}] + (\mathbf{P}_2 \cdot \hat{\mathbf{n}}_2) \cdot [(\vec{\mathbf{r}} \times \hat{\mathbf{n}}_1) \cdot \mathbf{k}] + (\mathbf{P}_1 \cdot \vec{\mathbf{r}}) \cdot (\vec{\mathbf{r}} \cdot \mathbf{k})}{\hat{\mathbf{n}}_1 \cdot (\hat{\mathbf{n}}_2 \times \vec{\mathbf{r}})}$$
(eq. 7)

A única condição necessária e suficiente para que exista uma solução para a intersecção de dois planos é a de que $\vec{r} = \hat{n}_1 \times \hat{n}_2$ seja diferente do vetor nulo, se $\vec{r} = \vec{0}$ então os planos são paralelos e coincidentes (solução indeterminada) ou paralelos e não coincidentes (solução inexistente).

2.6 INTERSECÇÃO RAIO-TRIÂNGULO

O objetivo é determinar o ponto \mathbf{p} da figura abaixo e verificar se ele está dentro do polígono tringular $\mathbf{P}_0\mathbf{P}_1\mathbf{P}_2$, observe a figura abaixo:

Fig. 1

Onde \mathbf{R}_0 é o ponto inicial do raio, $\hat{\mathbf{r}}$ é o vetor unitário que determina a direção da semi-reta (raio), $\hat{\mathbf{n}}$ é o vetor normal ao triângulo, \mathbf{P}_0 , \mathbf{P}_1 e \mathbf{P}_2 são os pontos coplanares que definem o triângulo e \mathbf{P} é o ponto que desejamos determinar.

O ponto **p** deve pertencer ao plano do polígono, logo a seguinte relação deve ser verdadeira:

$$(\mathbf{P} - \mathbf{P_0}) \cdot \hat{\mathbf{n}} = 0 \quad (eq.1)$$

O ponto $\, {f P} \,$ também deve pertencer à reta definida por $\, {f R}_0 \,$ e $\, \hat{{f r}} \,$, a condição necessária é que:

$$\mathbf{P} = \mathbf{R}_0 + \alpha \cdot \hat{\mathbf{r}}$$
 (eq. 2)

20 Intersecções

Substituindo o valor de **P** da eq. 2 na eq. 1, obtemos:

$$(\mathbf{R}_0 + \alpha \cdot \hat{\mathbf{r}} - \mathbf{P}_0) \cdot \hat{\mathbf{n}} = 0 \quad (eq. 3)$$

Resolvendo para α , o resultado é o seguinte:

$$\alpha = \frac{(\mathbf{P}_0 - \mathbf{R}_0) \cdot \hat{\mathbf{n}}}{\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}} \quad (eq. 4)$$

E portanto, substituindo este resultado de α na eq. 2, conseguimos o valor desejado para \mathbf{p} :

$$\mathbf{P} = \mathbf{R}_0 + \left[\frac{\left(\mathbf{P}_0 - \mathbf{R}_0 \right) \cdot \hat{\mathbf{n}}}{\hat{\mathbf{r}} \cdot \hat{\mathbf{n}}} \right] \cdot \hat{\mathbf{r}} \quad \text{(eq. 5)}$$

Agora a análise, são quatro casos possíveis:

- 1. Se $(\mathbf{P_0} \mathbf{R_0}) \cdot \hat{\mathbf{n}} \neq 0$ e $\hat{\mathbf{r}} \cdot \hat{\mathbf{n}} = 0$ a reta é paralela ao plano e não há intersecção;
- 2. Se $(\mathbf{P_0} \mathbf{R_0}) \cdot \hat{\mathbf{n}} = 0$ e $\hat{\mathbf{r}} \cdot \hat{\mathbf{n}} = 0$ a reta é paralela ao plano e $\mathbf{R_0}$ pertence ao plano, consequentemente \mathbf{p} é indeterminado, ou seja, a solução não é um ponto e sim a própria reta, para questões práticas consideremos que não existe intersecção, muito embora na realidade existam infinitas;
 - 3. Se α é negativo o ponto \mathbf{R}_0 está além do plano e não há intersecção;
- 4. Finalmente, se os três casos anteriores são falsos, o ponto **p** é dado pela eq. 5.

Resta-nos apenas determinar se o ponto \mathbf{p} está dentro do triângulo $\mathbf{P}_0\mathbf{P}_1\mathbf{P}_2$, para isto basta verificar se as três desigualdades abaixo são verdadeiras:

a)
$$\left[\left(\mathbf{P}_1 - \mathbf{P}_0 \right) \times \left(\mathbf{P} - \mathbf{P}_0 \right) \right] \cdot \hat{\mathbf{n}} \ge 0$$

b)
$$[(\mathbf{P}_2 - \mathbf{P}_1) \times (\mathbf{P} - \mathbf{P}_1)] \cdot \hat{\mathbf{n}} \ge 0$$

c)
$$\left[\left(\mathbf{P}_0 - \mathbf{P}_2 \right) \times \left(\mathbf{P} - \mathbf{P}_2 \right) \right] \cdot \hat{\mathbf{n}} \ge 0$$

2.7 INTERSECÇÃO RAIO-ESFERA

A intersecção entre um raio (semi-reta) e uma esfera é muito usado quando nas técnicas de traçado de raios, considere a figura abaixo:

Figura 1

Onde \mathbf{R}_0 é o ponto inicial do raio, $\hat{\mathbf{r}}$ é o vetor unitário que determina a direção da semi-reta (raio), R é o raio da esfera, $\mathbf{P}_{\mathbf{c}}$ é o centro da esfera e \mathbf{P}_1 e \mathbf{P}_2 são os pontos que desejamos determinar, neste caso o raio intercepta a esfera em dois pontos, mas pode haver apenas um ponto de intersecção, caso em que a reta é tangente à esfera ou \mathbf{R}_0 é interior à esfera.

Observando que \mathbf{P}_1 e \mathbf{P}_2 devem obedecer a equação de uma esfera, portanto a seguinte relação deve ser satisfeita:

$$\left| \mathbf{P_i} - \mathbf{P_c} \right|^2 = R^2 , \ (i = 1,2)$$

22 Intersecções

Ou em termos de produto escalar:

$$(\mathbf{P}_{i} - \mathbf{P}_{c}) \bullet (\mathbf{P}_{i} - \mathbf{P}_{c}) = R^{2}, \quad (i = 1,2)$$
 (eq. 1)

E observando que \mathbf{P}_1 e \mathbf{P}_2 devem também obedecer a equação da reta por \mathbf{R}_0 e com vetor diretor $\hat{\mathbf{r}}$, isto quer dizer que:

$$\mathbf{P}_{i} = \mathbf{R}_{0} + \alpha_{i} \cdot \hat{\mathbf{r}} , (i = 1,2)$$
 (eq. 2)

Substituindo esta última na eq. 1, agrupando os termos de potências iguais de $\alpha_{1,2}$ e observando que $\hat{\mathbf{r}} \bullet \hat{\mathbf{r}}$ é igual a 1 (vetor unitário), obtemos:

$$\alpha_{21}^2 + 2 \cdot [\hat{\mathbf{r}} \bullet (\mathbf{R}_0 - \mathbf{P}_c)] \cdot \alpha_{21} + (\mathbf{R}_0 - \mathbf{P}_c) \bullet (\mathbf{R}_0 - \mathbf{P}_c) - R^2 = 0$$
 (eq. 3)

A equação 3 tem a seguinte solução:

$$\alpha_{2.1} = [\hat{\mathbf{r}} \bullet (\mathbf{P}_{c} - \mathbf{R}_{0})] \pm \sqrt{[\hat{\mathbf{r}} \bullet (\mathbf{R}_{0} - \mathbf{P}_{c})]^{2} - (\mathbf{R}_{0} - \mathbf{P}_{c}) \bullet (\mathbf{R}_{0} - \mathbf{P}_{c}) + R^{2}}$$
 (eq. 4)

Ou abreviadamente:

$$\alpha_1 = [\hat{\mathbf{r}} \bullet (\mathbf{P_c} - \mathbf{R_0})] - \sqrt{\Delta}$$
 (eq. 5a)

$$\alpha_2 = [\hat{\mathbf{r}} \bullet (\mathbf{P_c} - \mathbf{R_0})] + \sqrt{\Delta}$$
 (eq. 5b)

Onde
$$\Delta = [\hat{\mathbf{r}} \bullet (\mathbf{R}_0 - \mathbf{P}_c)]^2 - (\mathbf{R}_0 - \mathbf{P}_c) \bullet (\mathbf{R}_0 - \mathbf{P}_c) + R^2$$
.

Temos agora cinco casos a considerar:

1. Δ é positivo e $\alpha_1 \ge 0$ e $\alpha_2 \ge 0$, o raio intercepta a esfera em dois pontos distintos \mathbf{P}_1 e \mathbf{P}_2 dados por:

$$\mathbf{P}_{1} = \mathbf{R}_{0} + \left[\hat{\mathbf{r}} \bullet (\mathbf{P}_{c} - \mathbf{R}_{0}) \right] - \sqrt{\Delta} \cdot \hat{\mathbf{r}} \quad \text{(eq. 6)}$$

$$\mathbf{P}_{2} = \mathbf{R}_{0} + \left\{ \left[\hat{\mathbf{r}} \bullet \left(\mathbf{P}_{c} - \mathbf{R}_{0} \right) \right] + \sqrt{\Delta} \right\} \cdot \hat{\mathbf{r}} \quad \text{(eq. 7)}$$

2. Δ é positivo e $\alpha_1 < 0$ e $\alpha_2 \ge 0$, o raio intercepta a esfera em um único ponto ${\bf p}$ dados por:

$$\mathbf{P} = \mathbf{R}_0 + \left[\left[\hat{\mathbf{r}} \bullet \left(\mathbf{P}_c - \mathbf{R}_0 \right) \right] + \sqrt{\Delta} \right] \cdot \hat{\mathbf{r}} \quad \text{(eq. 8)}$$

- 3 . $_{\Delta}$ é positivo $\alpha_1 < 0$ e $\alpha_2 < 0$, a esfera está atrás do ponto inicial $\mathbf{R_0}$ do raio e não há intersecção alguma;
 - 4 . Δ é zero e portanto α_1 e α_2 são iguais e reais e $\mathbf{P}_1 = \mathbf{P}_2 = \mathbf{P}$ dado por:

$$\mathbf{P} = \mathbf{R}_0 + \{ [\hat{\mathbf{r}} \bullet (\mathbf{P}_c - \mathbf{R}_0)] \} \cdot \hat{\mathbf{r}} \quad (eq. 9)$$

5 . $_\Delta$ é negativo e portanto α_1 e α_2 são complexos conjugados e não há intersecção alguma, o raio não atravessa a esfera.

24 Intersecções

3.1 OPERAÇÕES BOOLEANAS UNIDIMENSINAIS

3.1.1 INTRODUÇÃO

Operações booleanas 1D são usadas na resolução de diversos problemas de computação gráfica, como, por exemplo, na visualização de uma árvore CSG usando ray tracing ou ray casting e na intersecção de duas faces ou polígonos em 3D.

Vamos analisar quatro tipos de operações, duas básicas, negação(\neg) e intersecção(\cap), e duas derivadas das básicas, diferença(\setminus) e união(\bigcup).

Observe os intervalos abaixo:

A negação dos intervalos acima é mostrada na figura abaixo:

Note que devemos estabelecer um limite inferior e superior para que as operações subseqüentes sejam corretas.

A intersecção de dois intervalos é trivial.

Dado dois intervalos $\mathbf{A} \in \mathbf{B}$, a diferença $\mathbf{A} \setminus \mathbf{B}$ é definida como:

$$\mathbf{A} \setminus \mathbf{B} = \mathbf{A} \cap (\neg \mathbf{B}) \tag{1}$$

E a união **A**∪**B** é definida como:

$$\mathbf{A} \cup \mathbf{B} = \neg ((\neg \mathbf{A}) \cap (\neg \mathbf{B})) \qquad (2)$$

3.1.2 IMPLEMENTAÇÃO

Para resolvermos o problema de operações booleanas entre intervalos de maneira simples, podemos usar as seguintes estruturas de dados para descrever os intervalos:

```
class ListaIntervalos
public:
Intervalo *prm,*atual,*ult;
int nitems;
static Intervalo *listsort(Intervalo *cabeca,Intervalo **cauda);
static bool sobrepoe(Intervalo *amostra,Intervalo *i);
static void mistura(ListaIntervalos *a,ListaIntervalos *b,
                     ListaIntervalos *dest);
static void interseccao(ListaIntervalos *a,ListaIntervalos *b,
                         ListaIntervalos *dest);
static void negacao(ListaIntervalos *org,ListaIntervalos *bd1,
                      ListaIntervalos *bd2,ListaIntervalos *dest);
static void uniao(ListaIntervalos *a,ListaIntervalos *b,
                    ListaIntervalos *dest):
static void diferenca(ListaIntervalos *a,ListaIntervalos *b,
                        ListaIntervalos *dest);
NDOUBLE imax, imin;
ListaIntervalos();
~ListaIntervalos();
FVOID limpa();
FVOID novo(NDOUBLE ini,NDOUBLE fim);
};
```

código 1

A classe ListaIntervalos possui todas as funções necessárias para executar as operações, vou descrever brevemente as funções. A função sobrepõe verifica se um intervalo i sobrepõe o intervalo amostra, ou seja, verifica se o ponto inicial de i, $i \rightarrow ini$, está contido em [amostra \rightarrow ini,amostra \rightarrow fim), note que o intervalo é semi-aberto, isto é necessário, caso contrário o operador \bigcap pode resultar em um intervalo degenerado, que nao nos interessa. As outras funções são explicadas pelos seus próprios nomes.

O algoritmo reduz-se em determinar a negação e a intersecção, a partir daí obtemos a diferença e união das equações 1 e 2.

Os passos necessários para construir a negação de uma lista de intervalos são os seguintes:

28 Operações booleanas

- 1. Ordene a lista em ordem crescente com relação ao ponto inicial de cada intervalo;
- 2. Se o limite mínimo imin do intervalo é maior que o limite mínimo imin2 do outro intervalo considerado, crie um novo intervalo de imin2 a imin e o armazene em uma nova lista de intervalos;
- 3. Para cada intervalo i da lista que possui um intervalo posterior (prx!=NULL), adicione à nova lista o intervalo de $i \rightarrow fim$ a $i \rightarrow prx \rightarrow ini$;
- 4. Se o limite máximo imax do intervalo é menor que o limite máximo imax2 do outro intervalo considerado, crie um novo intervalo de imax a imax2 e o armazene na nova lista.

Abaixo, o código:

```
void ListaIntervalos::negacao(ListaIntervalos *org,ListaIntervalos *bd1,
    ListaIntervalos *bd2,ListaIntervalos *dest)
{
    Intervalo *i,*iprx;
    i=org->prm;
    if(org->prm)
    {
        if(min(bd1->imin,bd2->imin)org->prm->ini)
        dest->novo(min(bd1->imin,bd2->imin),org->prm->ini);
    }
    while(i&&i->prx)
    {
        dest->novo(i->fim,i->prx->ini);
        i=i->prx;
    }
    if(org->ult)
    {
        if(max(bd1->imax,bd2->imax)>org->ult->fim)
        dest->novo(org->ult->fim,max(bd1->imax,bd2->imax));
    }
}
```

Os passos do algoritmo intersecção para duas listas de intervalos, a e b, é descrito abaixo:

2. Compare todos os intervalos i de $_{\bf a}$ com todos os intervalos i de $_{\bf b}$, caso haja sobreposição entre i e j, crie um novo intervalo de $\max(i \to ini, j \to ini)$ até $\min(i \to fim, j \to fim)$ na lista destino.

Abaixo a implementação das funções "ordena", "sobrepoe" e "intersecção":

```
Intervalo *ListaIntervalos::ordena(Intervalo *cabeca,Intervalo **cauda)
Intervalo *p, *q, *e;
int insize, nmerges, psize, qsize, i;
if (!cabeca) return NULL;
insize = 1;
while (1)
 p = cabeca; cabeca = NULL; *cauda = NULL; nmerges = 0;
 while (p)
 nmerges++; q = p; psize = 0;
 for (i = 0; i < insize; i++)
  psize++; q = q->prx; if (!q) break;
 qsize = insize;
 while (psize > 0 \parallel (qsize > 0 \&\& q))
  if (psize == 0) { e = q; q = q->prx; qsize--; }
  else if (qsize == 0 \parallel !q) \{ e = p; p = p > prx; psize --; \}
  else if (p-\sin \le q-\sin) { e=p; p=p-px; psize--; }
  else { e = q; q = q->prx; qsize--; }
  if (*cauda) (*cauda)->prx = e;
  else cabeca = e;
  e->ant = *cauda;
  *cauda = e;
 }
 p = q;
 (*cauda)->prx = NULL;
 if (nmerges \le 1)
 return cabeca;
 insize *= 2;
```

codigo 4 (cont...)

Para encerrar a seção, criamos as operações uniao e diferença utilizando as equações (1) e (2), observe os códigos abaixo:

código 4

```
void ListaIntervalos::uniao(ListaIntervalos *a,ListaIntervalos *b,ListaIntervalos
*dest)
{
    ListaIntervalos nega,negb,resneg;
    negacao(a,a,b,&nega);
    negacao(b,a,b,&negb);
    interseccao(&nega,&negb,&resneg);
    negacao(&resneg,a,b,dest);
}

void ListaIntervalos::diferenca(ListaIntervalos *a,ListaIntervalos
*b,ListaIntervalos *dest)
{
    ListaIntervalos negb;
    negacao(b,a,b,&negb);
    interseccao(a,&negb,dest);
}
```

código 5

3.2 OPERAÇÕES BOOLEANAS BIDIMENSIONAIS (2D)

3.2.1 INTRODUÇÃO

O objetivo desta secção é desenvolver um algoritmo capaz de realizar operações booleanas entre dois polígonos **A** e **B**, pertencentes a um mesmo plano.

O esboço do algoritmo segue abaixo:

- 1-Verifique se **A** e **B** têm a mesma orientação, se não, inverta-os convenientemente;
- 2-Armazene as arestas de **A** que não interceptam a borda de **B** na lista **aforab**, exclua essas arestas da lista de arestas de **A**.
 - 3-Idem para as arestas de **B** armazenando em **bforaa**.
- 4-Calcule a intersecção, utilizando os algoritmos da seção anterior, de cada aresta **a** de **A** colinear a outra aresta **b** de **B**, armazene essas intersecções na lista **asobrebpos** se **a** e **b** têm o mesmo sentido, ou em **asobrebneg**, se seus sentidos são opostos. Calcule as arestas resultantes da diferença entre **a** e **b** e adicione-as a **A**, faça o mesmo com a diferença entre **b** e **a**, inserindo o resultado em **B**. Exclua **a** de **A** e **b** de **B**.
- 5-Calcule as intersecções entre as arestas $\mathbf{a}(\mathbf{P}_{1a}, \mathbf{P}_{2a})$ de \mathbf{A} e $\mathbf{b}(\mathbf{P}_{1b}, \mathbf{P}_{2b})$ de \mathbf{B} que restaram no processamento dos passos 2,3 e 4. Armazene cada intersecção de \mathbf{a} com \mathbf{b} nas próprias arestas, devem ser armazenados em \mathbf{a} e em \mathbf{b} o ponto de intersecção \mathbf{pi} e os parâmetros $0 < \alpha_a < 1$ tal que $\mathbf{pi} = \mathbf{P}_{1a} + \alpha_a (\mathbf{P}_{2a} \mathbf{P}_{1a})$ e $0 < \alpha_b < 1$ tal que $\mathbf{pi} = \mathbf{P}_{1b} + \alpha_b (\mathbf{P}_{2b} \mathbf{P}_{1b})$, respectivamente. Após o cálculo e armazenamento das intersecções devemos adicionar os parâmetros $\alpha_a = 0$ e $\alpha_a = 1$ para \mathbf{a} e $\alpha_b = 0$ e $\alpha_b = 1$ para \mathbf{b} , ordenamos, então, os parâmetros de todas as arestas \mathbf{a} e \mathbf{b} em ordem crescente

32 Operações booleanas

34 Curvas

4.1 CURVA DE HERMITE

A curva de Hermite é uma curva polinomial cúbica definida por dois pontos e duas tangentes ou por quatro pontos (ver figura abaixo).

A forma geral da curva deve ser:

$$P(t) = at^3 + bt^2 + ct + d$$
 $(0 \le t \le 1)$ (eq 4.1)

Devemos então calcular os coeficientes vetoriais a, b, c e d.

A curva deve satisfazer as quatro seguintes condições:

a)
$$P(0) = P_1$$

b)
$$P(1) = P_2$$

c)
$$\mathbf{P}'(0) = \overrightarrow{\mathbf{T}}_1$$

d)
$$P'(1) = \vec{T}_2$$

Onde o 'significa a derivada em relação a t, $\mathbf{P}'(t)$ é igual a:

$$P'(t) = 3at^2 + 2bt + c \text{ (eq 4.2)}$$

Das condições a,b,c e d obtemos as equações abaixo, respectivamente:

$$\mathbf{d} = \mathbf{P}_1 \qquad (\text{eq } 4.3)$$

$$a + b + c + d = P_2$$
 (eq 4.4)

$$\mathbf{c} = \overrightarrow{\mathbf{T}}_1 \quad (\text{eq } 4.5)$$

 $3\mathbf{a} + 2\mathbf{b} + \mathbf{c} = \overrightarrow{\mathbf{T}}_2 \quad (\text{eq } 4.6)$

Substituindo os valores de **c** e **d** obtidos nas equações 4.6 e 4.4, obtemos o seguinte sistema de duas equações com duas incógnitas:

$$\mathbf{a} + \mathbf{b} = \mathbf{P}_2 \overrightarrow{-\mathbf{T}}_1 - \mathbf{P}_1$$
$$3\mathbf{a} + 2\mathbf{b} = \overrightarrow{\mathbf{T}}_2 - \overrightarrow{\mathbf{T}}_1$$

A solução é:

$$\mathbf{a} = 2(\mathbf{P}_1 - \mathbf{P}_2) + \overrightarrow{\mathbf{T}}_1 + \overrightarrow{\mathbf{T}}_2$$

$$\mathbf{b} = 3(\mathbf{P}_2 - \mathbf{P}_1) - 2\overrightarrow{\mathbf{T}}_1 - \overrightarrow{\mathbf{T}}_2$$

P(t) então fica:

$$\mathbf{P}(t) = \left[2(\mathbf{P}_1 - \mathbf{P}_2) + \overrightarrow{\mathbf{T}}_1 + \overrightarrow{\mathbf{T}}_2 \right] t^3 + \left[3(\mathbf{P}_2 - \mathbf{P}_1) - 2\overrightarrow{\mathbf{T}}_1 - \overrightarrow{\mathbf{T}}_2 \right] t^2 + \overrightarrow{\mathbf{T}}_1 t + \mathbf{P}_1 (4.7)$$

Isto pode ser arranjado em termos de quatro funções base:

$$\mathbf{P}(t) = (2t^3 - 3t^2 + 1)\mathbf{P}_1 + (-2t^3 + 3t^2)\mathbf{P}_2 + (t^3 - 2t^2 + t)\mathbf{T}_1 + (t^3 - t^2)\mathbf{T}_2$$
 (4.8a)
Ou seja:

$$\mathbf{P}(t) = H_1(t)\mathbf{P}_1 + H_2(t)\mathbf{P}_2 + H_3(t)\vec{\mathbf{T}}_1 + H_4(t)\vec{\mathbf{T}}_2$$
 (4.8b)

Onde:

$$H_1(t) = 2t^3 - 3t^2 + 1$$

$$H_2(t) = -2t^3 + 3t^2$$

$$H_3(t) = t^3 - 2t^2 + t \quad (4.9)$$

$$H_4(t) = t^3 - t^2$$

Podemos expressar P(t) em forma de matriz:

$$\mathbf{P}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \vec{\mathbf{T}}_1 \\ \vec{\mathbf{T}}_2 \end{bmatrix}$$
(4.8c)

As tangentes $\vec{\mathbf{T}}_1$ e $\vec{\mathbf{T}}_2$ podem ser definidas a partir de seus pontos iniciais e finais, ou seja (veja a figura):

$$\vec{\mathbf{T}}_1 = \mathbf{P}_3 - \mathbf{P}_1$$
$$\vec{\mathbf{T}}_2 = \mathbf{P}_4 - \mathbf{P}_2$$

Substituindo estes valores de \vec{T}_1 e \vec{T}_2 na equação 4.8b podemos exprimir a curva em função de quatro pontos, isto pode ser útil na implementação e manipulação da curva, o resultado é o seguinte:

$$\mathbf{P}(t) = [H_1(t) - H_3(t)]\mathbf{P}_1 + [H_2(t) - H_4(t)]\mathbf{P}_2 + H_3(t)\mathbf{P}_3 + H_4(t)\mathbf{P}_4$$

Ou seja:

$$\mathbf{P}(t) = [t^3 - t^2 - t + 1]\mathbf{P}_1 + [-3t^3 + 4t^2]\mathbf{P}_2 + H_3(t)\mathbf{P}_3 + H_4(t)\mathbf{P}_4$$

Vamos definir duas funções base G1 e G2, como abaixo:

$$G_1(t) = t^3 - t^2 - t + 1$$

 $G_2(t) = -3t^3 + 4t^2$

P(t) então fica:

$$\mathbf{P}(t) = G_1(t)\mathbf{P}_1 + G_2(t)\mathbf{P}_2 + H_3(t)\vec{\mathbf{T}}_1 + H_4(t)\vec{\mathbf{T}}_2$$
 (4.10a)

E a forma matricial agora fica:

$$\mathbf{P}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 1 & -3 & 1 & 1 \\ -1 & 4 & -2 & -1 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \\ \mathbf{P}_4 \end{bmatrix}$$
 (4.10b)

4.2 CURVA DE BÉZIER

4.2.1 CURVA DE BÉZIER LINEAR (GRAU 1)

Uma curva de Bézier linear é uma curva de grau 1, que coincide com o segmento de reta definido por dois pontos, cuja equação é a seguinte :

$$\mathbf{P}(t) = (1.0 - t)\mathbf{P}_1 + t\mathbf{P}_2 \quad (0 \le t \le 1)$$

Podemos expressar essa equação como:

$$\mathbf{P}(t) = (1.0 - t)\mathbf{P}_0^1 + t\mathbf{P}_1^1 = \sum_{i=0}^{1} \mathbf{B}_{i,1}(t)\mathbf{P}_i^0$$

com

$$B_{0,1}(t) = (1.0-t)$$

 $B_{1,1}(t) = t$

Onde $B_{i,1}(t)$ (i = 0,1) são denominadas funções base. Uma propriedade importante destas funções é complemento da unidade, ou seja:

$$\sum_{i=0}^{1} \mathbf{B}_{i,1}(t) = 1$$

Está propriedade será válida para uma curva de Bézier de qualquer grau, como veremos nas próximas seções.

Abaixo a forma matricial de P(t):

$$\mathbf{P}(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \end{bmatrix}$$

Note as funções base são justamente os termos da expansão de $[(1-t)+t]^1$ pelo teorema binomial (apêndice A1):

$$[(1.0-t)+t]^{1} = \sum_{i=0}^{1} \frac{1!}{i!(1-i)!} (1.0-t)^{1-i} t^{i} = (1.0-t) + t = B_{0,1}(t) + B_{1,1}(t)$$

Esta expansão justifica a propriedade do complemento da unidade, isto vale para curvas de Bézier de qualquer grau.

4.2.2 CURVA DE BÉZIER QUADRÁTICA

Uma curva de Bézier quadrática é uma curva de grau 2, definida por três pontos de controle \mathbf{P}_0^0 , \mathbf{P}_1^0 e \mathbf{P}_2^0 , conforme a figura abaixo.

Os pontos \mathbf{P}_0^1 e \mathbf{P}_1^1 são determinados através da interpolação linear entre os pontos que definem o segmento ao qual pertencem, o resultado é:

$$\mathbf{P}_0^1 = (1.0 - t)\mathbf{P}_0^0 + t\mathbf{P}_1^0
\mathbf{P}_1^1 = (1.0 - t)\mathbf{P}_1^0 + t\mathbf{P}_2^0$$
(4.2.2.0)

Os ponto $\mathbf{P}_0^2 = \mathbf{P}(t)$ é determinado também pela interpolação linear entre os pontos que definem o segmento ao qual pertencem, ou seja, \mathbf{P}_0^1 e \mathbf{P}_1^1 . O desenvolvimento é mostrado abaixo:

$$\begin{aligned} & \mathbf{P}_{0}^{2} = \mathbf{P}(t) = (1.0 - t)\mathbf{P}_{0}^{1} + t\mathbf{P}_{1}^{1} \\ & \Rightarrow \mathbf{P}(t) = (1.0 - t)\left[(1.0 - t)\mathbf{P}_{0}^{0} + t\mathbf{P}_{1}^{0}\right] + t\left[(1.0 - t)\mathbf{P}_{1}^{0} + t\mathbf{P}_{2}^{0}\right] \\ & \Rightarrow \mathbf{P}(t) = (1.0 - t)^{2}\mathbf{P}_{0}^{0} + (1.0 - t)t\mathbf{P}_{1}^{0} + (1.0 - t)t\mathbf{P}_{1}^{0} + t^{2}\mathbf{P}_{2}^{0} \end{aligned}$$

Finalmente obtemos o seguinte:

$$\mathbf{P}(t) = (1.0 - t)^2 \mathbf{P}_0^0 + 2(1.0 - t)t\mathbf{P}_1^0 + t^2 \mathbf{P}_2^0 \quad (4.2.2.1)$$

Ou em termos das funções base:

$$\mathbf{P}(t) = \mathbf{B}_{0,2}(t)\mathbf{P}_0^0 + \mathbf{B}_{1,2}(t)\mathbf{P}_1^0 + \mathbf{B}_{2,2}(t)\mathbf{P}_2^0 = \sum_{i=0}^2 \mathbf{B}_{i,2}(t)\mathbf{P}_i^0$$

onde:

$$B_{0,2}(t) = (1.0 - t)^{2}$$

$$B_{1,2}(t) = 2(1.0 - t)t$$

$$B_{2,2}(t) = t^{2}$$

Em forma matricial P(t) fica:

$$\mathbf{P}(t) = \begin{bmatrix} t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_0^0 \\ \mathbf{P}_1^0 \\ \mathbf{P}_2^0 \end{bmatrix}$$

Como exercício verifique que as funções base satisfazem a propriedade de complemento da unidade.

Verifique também que as funções base são os termos da expansão de $[(1.0-t)+t]^2$ pelo teorema binomial (apêndice A1).

40 Curvas

4.2.3 CURVA DE BÉZIER CÚBICA

Uma curva de Bézier cúbica é uma curva de grau 3, definida por quatro pontos de controle \mathbf{P}_0^0 , \mathbf{P}_1^0 , \mathbf{P}_2^0 e \mathbf{P}_3^0 , conforme a figura abaixo.

Seguindo o mesmo desenvolvimento da bézier quadrática \mathbf{P}_0^1 , \mathbf{P}_1^1 e \mathbf{P}_2^1 são obtidos da interpolação linear entre os pontos iniciais e finais dos segmentos ao qual pertencem, ou seja:

$$\begin{aligned} \mathbf{P}_0^1 &= (1.0 - t) \mathbf{P}_0^0 + t \mathbf{P}_1^0 \\ \mathbf{P}_1^1 &= (1.0 - t) \mathbf{P}_1^0 + t \mathbf{P}_2^0 \\ \mathbf{P}_2^1 &= (1.0 - t) \mathbf{P}_2^0 + t \mathbf{P}_3^0 \end{aligned}$$

42 Curvas

4.x CONVERSÃO ENTRE BÉZIER QUADRÁTICA E B-SPLINE PARABÓLICA UNIFORME

A B-spline parabólica uniforme é constituida por várias curvas de bézier quadráticas conectadas de forma adequada, conforme a figura abaixo mostra.

Note que a primeira e a última curvas de bézier possuem dois pontos coincidentes, isto é necessário para que o ponto inicial da curva coincida com o ponto de controle inicial e o ponto final da curva coincida com o ponto de controle final.

De acordo com as seções anteriores, uma curva de bézier quadrática pode ser expressa como:

$$\mathbf{Bz}(t) = \begin{bmatrix} t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{i-1} \\ \mathbf{Q}_i \\ \mathbf{Q}_{i+1} \end{bmatrix}$$

Ou de forma mais compacta:

$$\mathbf{Bz}(t) = \mathbf{tBQ} \quad (4.x.1)$$

Da mesma maneira a B-spline parabólica pode ser expressa como:

$$\mathbf{Bs}(t) = \begin{bmatrix} t^2 & t & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{i-1} \\ \mathbf{P}_{i} \\ \mathbf{P}_{i+1} \end{bmatrix}$$

Ou de forma mais compacta:

$$\mathbf{Bs}(t) = \mathbf{t} \frac{1}{2} \mathbf{SP} \quad (4.\mathbf{x}.2)$$

Igualando as equações 4.x.1 e 4.x.2, temos:

$$\mathbf{t}\frac{1}{2}\mathbf{SP} = \mathbf{tBQ}$$

De onde concluímos que $\frac{1}{2}$ **SP** = **BQ** é a equação que relaciona os pontos de controle de uma curva à outra. A solução é direta e dada pelas duas seguintes equações:

$$\mathbf{Q} = \frac{1}{2} \mathbf{B}^{-1} \mathbf{S} \mathbf{P}$$

$$\mathbf{P} = 2\mathbf{S}^{-1}\mathbf{B}\mathbf{Q}$$

Onde ${\bf B}^{-1}$ e ${\bf S}^{-1}$ são as matrizes inversas de ${\bf B}$ e ${\bf S}$, respectivamente. Essas matrizes são as seguintes:

$$\mathbf{B}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1/2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{S}^{-1} = \begin{bmatrix} 0 & -1/4 & 1/2 \\ 0 & 1/4 & 1/2 \\ 1 & 3/4 & 1/2 \end{bmatrix}$$

44 Curvas

O resultado final é o seguinte:

$$\mathbf{Q} = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1/2 \end{bmatrix} \mathbf{P} \quad (4.x.3)$$

$$\mathbf{P} = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix} \mathbf{Q}$$
 (4.x.4)

Observe que este resultado concorda com a figura, o mesmo resultado poderia ser encontrado a partir da geometria mostrada na figura, isto fica como exercício para o leitor.

46 Apêndice A - Teoremas úteis

A.1 TEOREMA BINOMIAL

$$(a+b)^{n} = \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} a^{i} b^{n-i}$$
 (a1.1)

A equação a 1.0 pode ser expressa em uma forma simétrica fazendo n=i+j, o resultado é o seguinte :

$$(a+b)^n = \sum_{i,j\geq 0}^{i+j=n} \frac{(i+j)!}{i!j!} a^i b^j$$
 (a1.2)

A.2 TEOREMA TRINOMIAL

Basta expandir $(a+(b+c))^n$ usando a equação a 1.1, obtemos o seguinte:

$$(a+(b+c))^{n} = \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} a^{n-i} (b+c)^{i}$$

Expandimos novamente $(b+c)^i$:

$$(a+(b+c))^{n} = \sum_{i=0}^{n} \frac{n!}{i!(n-i)!} a^{n-i} \sum_{i=0}^{i} \frac{i!}{j!(i-j)!} b^{i-j} c^{j}$$

Simplificando fica:

$$(a+(b+c))^n = \sum_{i=0}^n \sum_{j=0}^i \frac{n!}{(n-i)! \, j! (i-j)!} a^{n-i} b^{i-j} c^j \quad (a2.1)$$

A equação a2.0 também pode ser expressa em uma forma simétrica fazendo n=i+j+k, o resultado é o seguinte :

$$(a+b+c)^n = \sum_{i+j+k>0}^{i+j+k=n} \frac{(i+j+k)!}{i!j!k!} a^i b^j c^k \quad (a2.2)$$

A.3 SOMA DE UMA PROGRESSÃO ARITMÉTICA

Uma progressão aritmética é um somatório de n termos tal que os termos se relacionam da seguinte maneira:

$$a_i = a_1 + (i-1) \cdot r$$
 $1 \le i \le n$

Onde a_1 é o primeiro termo e r uma constante arbitrária.

A progressão então pode ser expressa como abaixo:

$$\sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} (a_{1} + (i-1) \cdot r)$$

Este somatório pode ser avaliado em termos de a_1 , a_n e n ou em função de r e n, como as duas equações abaixo mostram:

$$\sum_{i=1}^{n} a_i = \frac{(a_1 + a_n)}{2} \quad (a3.1)$$

$$\sum_{i=1}^{n} a_{i} = a_{1} \cdot n + \frac{n \cdot (n-1)}{2} \cdot r \quad (a3.2)$$