# Schülerskript SMP

# MATHEMATIK

# Inhaltsverzeichnis

| 1        | Folg              | ${f gen}$                                           |
|----------|-------------------|-----------------------------------------------------|
|          | 1.1               | Verschiedene Darstellungen                          |
|          |                   | 1.1.1 Explizite Darstellung                         |
|          |                   | 1.1.2 Rekursive Darstellung                         |
|          | 1.2               | Auffällige Folgen                                   |
|          |                   | 1.2.1 Arithmetische Folgen                          |
|          |                   | 1.2.2 Geometrische Folgen                           |
|          | 1.3               | Klassifizierung von Folgen                          |
|          |                   | 1.3.1 Monotonie                                     |
|          |                   | 1.3.2 Beschränktheit                                |
|          |                   | 1.3.3 Konvergenz                                    |
|          | 1.4               | Vollständige Induktion                              |
|          |                   |                                                     |
| <b>2</b> | Rei               |                                                     |
|          | 2.1               | Artithmetische Reihen                               |
|          |                   | 2.1.1 Gauß'sche Summenformel                        |
|          |                   | 2.1.2 Allgemein                                     |
|          | 2.2               | Geometrische Reihen                                 |
| 3        | T                 | ktionsuntersuchung 11                               |
| 0        | 3.1               | Iktionsuntersuchung         11           Stetigkeit |
|          | $\frac{3.1}{3.2}$ |                                                     |
|          | 3.2               | Differenzierbarkeit                                 |
|          | 3.3               | Ableitungsregeln                                    |
|          | ა.ა               | 3.3.1 Produktregel                                  |
|          |                   | 3.3.2 Quotientenregel                               |
|          |                   | 3.3.3 Kettenregel                                   |
|          |                   |                                                     |
|          | 9.4               |                                                     |
|          | 3.4               | Vollständige Funktionsuntersuchung                  |
|          |                   |                                                     |
|          |                   | 1                                                   |
|          |                   | 3.4.3 Symmetrie                                     |
|          |                   |                                                     |
|          |                   | 3.4.5 Asymptoten                                    |
|          |                   | 3.4.6 Monotonie                                     |
|          |                   | 3.4.7 Extremstellen                                 |
|          |                   | 3.4.8 Wendestellen                                  |
|          |                   | 3.4.9 Umkehrbarkeit                                 |
|          | 0.5               | 3.4.10 Beispiel                                     |
|          | 3.5               | Funktionenscharen                                   |
|          |                   | 3.5.1 Beispiel                                      |

Inhaltsverzeichnis Skript SMP

| 4 | Trig | onometrie 2                                 | 28       |
|---|------|---------------------------------------------|----------|
|   | 4.1  |                                             | 28       |
|   | 4.2  | Additions- und Verdopplungssätze            | 29       |
|   | 4.3  | Allgemeine Sinus- und Kosinussätze          | 29       |
|   | 4.4  |                                             | 29       |
|   | 4.5  |                                             | 30       |
|   |      | $\Theta$                                    | 30       |
|   | 4.6  | I .                                         | 30       |
|   |      |                                             | 30       |
|   |      | •                                           | 31       |
|   |      |                                             | 31       |
|   |      |                                             | 31       |
|   |      |                                             | 31       |
|   |      |                                             | 32       |
|   |      |                                             | 33       |
|   |      | 4.6.8 Symmetrie                             | 33       |
| 5 | Vek  | orielle Geometrie                           | 34       |
|   | 5.1  | Vektoren                                    | 34       |
|   |      | 5.1.1 Besondere Vektoren                    | 34       |
|   | 5.2  | Basen und Erzeugendensystem                 | 35       |
|   |      | 5.2.1 Besondere Basen                       | 35       |
|   |      |                                             | 36       |
|   | 5.3  |                                             | 37       |
|   |      |                                             | 37       |
|   |      | $\Theta$                                    | 37       |
|   | 5.4  |                                             | 38       |
|   | 5.5  | •                                           | 39       |
|   | 5.6  | 1                                           | 39       |
|   | 5.7  |                                             | 39<br>39 |
|   |      | 8                                           | 10       |
|   |      |                                             | ‡0<br>12 |
|   |      |                                             | 15       |
|   | 5.8  |                                             | 16       |
|   |      |                                             | 16       |
|   |      |                                             | 18       |
|   |      | 5.8.3 Lagebeziehungen zwischen Ebenen       | 50       |
|   |      |                                             | 53       |
|   |      | 5.8.5 Abstand zu einem Punkt                | 53       |
|   | 5.9  |                                             | 53       |
|   |      |                                             | 53       |
|   |      |                                             | 53       |
|   |      |                                             | 53       |
|   |      | v                                           | 53       |
|   | 5.12 |                                             | 53       |
|   |      | 5.12.1 Der Satz des Apollinius              | 53       |
| 6 | Kon  | plexe Zahlen 5                              | 57       |
|   | 6.1  |                                             | 57       |
|   | 6.2  |                                             | 58       |
|   |      | · · · · · · · · · · · · · · · · · · ·       | 58       |
|   |      | 0                                           | 59       |
|   |      | 6.2.3 Umrechnung zwischen den Darstellungen | 31       |
| 7 | Stat | stik und Wahrscheinlichkeit                 | 32       |
| • | 7.1  |                                             | 32       |
|   |      |                                             |          |

Inhaltsverzeichnis Skript SMP

| 8  | Arithmetik                                                                    | 63              |
|----|-------------------------------------------------------------------------------|-----------------|
| 9  | Matrizen 9.1 Lineare Gleichungssysteme und Gaußalgorythmus                    |                 |
|    | 9.2 LGS mit dem Taschenrechner lösen                                          | 64              |
| 10 | ) Algorithhmik                                                                | 66              |
|    | 10.1 Algorithmen und Programmierung                                           | 66              |
|    | 10.1.1 Pseudocode                                                             | 66              |
|    | 10.1.2 Python                                                                 |                 |
|    | 10.2 Algorithmen und mathematische Anwendungen                                |                 |
|    | 10.2.1 Iterationsverfahren                                                    | 07              |
| 11 | Integrale                                                                     | 70              |
|    | 11.1 Einführung                                                               | 70              |
|    | 11.2 Bestimmte Integrale                                                      | 70              |
|    | 11.3 Stammfunktionen und der Hauptsatz der Differential- und Integralrechnung | 70              |
|    | 11.3.1 Sätze über Integrale                                                   | 71              |
|    | 11.4 Flächenberechnung mittels Integralen                                     | 72              |
|    | 11.5 Integrationsregeln                                                       | 73<br>73        |
|    | 11.5.1 Produktintegration                                                     | 74              |
|    | 11.5.2 Substitutionsmethode                                                   | $\frac{74}{75}$ |
|    | 11.6 Beispiele zur Integration                                                |                 |
|    | 2110 Zenopiele Zan invegrancia i viviviviviviviviviviviviviviviviviv          | •               |
| 12 | Exponentialfunktionen                                                         | <b>7</b> 9      |
|    | 12.1 Wiederholung: Potenzgesetze                                              | 79              |
|    | 12.2 Die Eulersche Zahl (e)                                                   | 79              |
|    | 12.2.1 Verschiedene Darstellungen                                             | 80              |
|    | 12.2.2 Herleitung zur Zahl $e$                                                |                 |
|    | 12.4 Ableitungsregeln                                                         |                 |
|    | 12.4.1 Aktivität                                                              |                 |
|    | 12.111 11K01V1000                                                             | 00              |
| 13 | 3 Logarithmen                                                                 | 81              |
|    | 13.1 Eigenschaften                                                            |                 |
|    | 13.2 Rechengesetze                                                            | 81              |
| 14 | Algebra                                                                       | 82              |
| 15 | ANHANG: Physik                                                                | 83              |
| -0 | 15.1 Interaction gravitationelle                                              |                 |
|    | 15.2 Interaction électromagnétique                                            |                 |

## **FOLGEN**

#### Definition 1.0.0

Eine Funktion , bei der nur natürlichen Zahlen eine reelle Zahl zugeordnet wird, nennt man Folge. Folgen können auch nur für Teilbereiche von  $\mathbb N$  definiert sein.

 $(a_n)_{n\in\mathbb{N}}$  bezeichnet die Folge, wobei  $a:\mathbb{N}\to\mathbb{R}$ 

#### Bemerkung:

In einem Ausdruck muss das n immer dasselbe bleiben!

## 1.1 Verschiedene Darstellungen

## 1.1.1 Explizite Darstellung

#### Definition 1.1.1

Wenn ein beliebiges Glied der Folge direkt berechenbar ist, ist ihre Darstellung explizit.

#### Beispiel:

- 1.  $a_n = 3^n \Rightarrow a_4 = 3^4 = 91$
- 2. Die Folge der n-ten positiven, ungeraden Zahl:  $a_n=1+2\cdot(n-1)\Rightarrow$  Die 8. positive, ungerade Zahl ist  $a_8=1+2\cdot(8-1)=15$

#### 1.1.2 Rekursive Darstellung

## Definition 1.1.2

Wenn für die Berechnung des n - ten Gliedes einer Folge das (n - 1) - te Glied benötigt wird, ist ihre Darstellung rekursiv. In diesen Fällen braucht man immer ein Startglied, oft  $a_0$  oder  $a_1$ .

#### Beispiel:

- 1.  $a_n = 3 \cdot a_{n-1} + 2$ ;  $a_0 = 5$   $a_1 = 3 \cdot a_{1-1} + 2 = 3 \cdot a_0 + 2 = 3 \cdot 5 + 2 = 17$   $a_2 = 3 \cdot a_{2-1} + 2 = 3 \cdot a_1 + 2 = 3 \cdot 17 + 2 = 53$  $a_3 = 3 \cdot a_{3-1} + 2 = 3 \cdot a_2 + 2 = 3 \cdot 53 + 2 = 159$
- 2. Die Folge der n-ten positiven, ungeraden Zahl:  $a_n=a_{n-1}+2; a_1=1$

Kapitel 1. Folgen Skript SMP

#### Bemerkung:

Für manche Folgen sind beide Darstellungen möglich, wobei die explizite Darstellung oftmals viel praktischer ist, da die Berechnung der Folgeglieder anhand der rekursiven Darstellung schnell sehr aufwendig wird.

#### GTR-Tipp:

Wie man im GTR macht

#### Web-Diagramme

Hier handelt es sich um eine graphisches Verfahren, das dazu dient, das Verhalten einer Folge, deren Darstellung rekursiv ist, zu untersuchen.

Dazu muss man der rekursiven Folgenvorschrift eine Funktion  $f(a_{n-1}) = a_n$  zuordnen, sodass - grob gesagt - "die Funktion das Gleiche mit x macht, dass die Folge macht, um von  $a_n$  auf  $a_{n+1}$  zu kommen. Zusätzlich zeichnet man in ein kartesisches Koordinatensystem die Hauptdiagonale ein (entspricht dem Graphen von f(x) = x).

Dann trägt man das erste Folgeglied auf die Abzissenachse ein und verbindet ihn mit der entsprechenden Funktion anhand eines vertikalen

#### Bemerkung:

Dieses Verfahren kann aber ausschließlich bei rekusiven Folgen angewendet werden, bei denen keine zusätzliche Abhängigkeit von n vorliegt (Beispiel:  $a_n = 3 \cdot a_{n-1} + 3 + 4 \cdot n$ ) oder die Rekursivitätsebene den 1. Grad überschreitet, was bedeutet, dass  $a_n$  nicht nur in Abhängigkeit von  $a_{n-1}$  beschrieben wird, sondern zusätzlich von mindestens  $a_{n-2}$  (Beispiel: die Fibonacci-Folge).

#### GTR-Tipp:

Verwendung mit dem GTR

## 1.2 Auffällige Folgen

#### 1.2.1 Arithmetische Folgen

#### Definition 1.2.1

Eine Folge wird arithmetisch genannt, wenn die Differenz zweier aufeinander folgender Glieder konstant ist.

1. Rekursive Darstellung:

$$a_n = a_{n-1} + d$$

2. Explizite Darstellung:

Mit Startglied  $a_0$ :  $a_n = a_0 + n \cdot d$ 

Mit Startglied  $a_1$ :  $a_n = a_1 + (n-1) \cdot d$ 

Mit Startglied  $a_x$ :  $a_n = a_x + (n - x) \cdot d$ 

#### Bemerkung:

Letzteres gilt auch für beliebige Folgeglieder, also ist  $a_n = a_p + (n-p) \cdot d; n, p \in \mathbb{N}$ 

#### Beispiel:

$$\overline{a_n = a_{n-1} + 3}; a_0 = 0 \Leftrightarrow a_n = 0 + n \cdot 3$$

#### Bemerkung:

Jedes Folgeglied einer solchen Folge ist das arithmetische Mittel seines Vorgängers und Nachgängers:  $a_n = \frac{a_{n-1} + a_{n+1}}{2}$ 

#### 1.2.2 Geometrische Folgen

#### Definition 1.2.2

Eine Folge wird geometrisch genannt, wenn der Quotient zweier aufeinander folgender Glieder konstant ist.

1. Rekursive Darstellung:

$$a_n = a_{n-1} \cdot q$$

2. Explizite Darstellung:

Mit Startglied  $a_0$ :  $a_n = a_0 \cdot q^n$ 

Mit Startglied  $a_1$ :  $a_n = a_1 \cdot q^{n-1}$ 

Mit Startglied  $a_x$ :  $a_n = a_x \cdot q^{n-x}$ 

#### Bemerkung:

Letzteres gilt auch für beliebige Folgeglieder, also ist  $a_n = a_p \cdot q^{n-p}; n, p \in \mathbb{N}$ 

#### Beispiel:

$$\overline{a_n = a_{n-1} \cdot 3}$$
;  $a_0 = 2 \Leftrightarrow a_n = 2 \cdot 3^n$ 

#### Bemerkung

Jedes Folgeglied einer solchen Folge ist das geometrische Mittel seines Vorgängers und Nachgängers:

$$a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$$

## 1.3 Klassifizierung von Folgen

- 1.3.1 Monotonie
- 1.3.2 Beschränktheit
- 1.3.3 Konvergenz

Definition

Epsilon-n0-Definition

Grenzwertsätze

## 1.4 Vollständige Induktion

# REIHEN

#### Definition 2.0.0

Eine Reihe ist eine Folge, deren Glieder die Partialsummen einer anderen Folge ist. Das bedeutet, dass das n-te Glied der Reihe, die Summe der ersten n Glieder einer anderen Folge ist. Man hat also:

- 1. Mit Startglied  $a_0$ :  $s_n = \sum_{i=0}^{n-1} a_i$
- 2. Mit Startglied  $a_1$ :  $s_n = \sum_{i=1}^n a_i$
- 3. Mit Startglied  $a_x$ :  $s_n = \sum_{i=x}^{x+n-1} a_i$

#### Bemerkung:

In manchen Fällen steht  $s_n$  für die Partialsumme einer anderen Folge bis zum n-ten Glied. Dann gilt für ein beliebiges Startglied  $a_x$  der Folge:  $s_n = \sum_{i=r}^n a_i$ 

## 2.1 Artithmetische Reihen

#### 2.1.1 Gauß'sche Summenformel

Die Gauß'sche Summenformel bezeichnet die Summe der n ersten natürlichen Zahlen, also:

$$1 + 2 + 3 + ... + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

#### Begründung:

|        | 1              | 2   | 3   | 4   | <br>n   |
|--------|----------------|-----|-----|-----|---------|
|        | $\overline{n}$ | n-1 | n-2 | n-3 | <br>1   |
| $\sum$ | n+1            | n+1 | n+1 | n+1 | <br>n+1 |

So sieht man also, dass wenn man die vorher bestimmte Reihe mit sich selbst addiert (ein Mal davon "falschrum"), man n Mal n+1 bekommt. Um dann den Wert einer einzelnen Reihe zu bekommen teilt man durch zwei.

#### Bemerkung:

Die Gauß'sche Summenformel ist ein Spezialfall der arithmetischen Reihe, ihre Glieder werden **Dreieckszahlen** genannt.

7

#### Beweis

Um zu beweisen, dass für alle  $n \in \mathbb{N}$ 

$$\sum_{k=1}^{n} f(k) = g(n)$$

gilt, reicht es aus,

$$g(n) - g(n-1) = f(n)$$

für alle positiven n und

$$g(0) = 0$$

zu zeigen. In der Tat trifft dies hier zu:

$$g(n) - g(n-1) = \frac{n(n+1)}{2} - \frac{(n-1)n}{2} = \frac{n(n+1-n+1)}{2} = \frac{n \cdot 2}{2} = n = f(n)$$

für alle  $\boldsymbol{n}$ 

$$\text{und } g(0) = \frac{0 \cdot 1}{2} = 0$$

Quelle: Wikipedia (Gaußsche Summenformel)

Bemerkung: auch ein Beweis durch vollständige Induktion ist möglich

## 2.1.2 Allgemein

#### Definition 2.1.2

Wenn  $s_n$  die Summe der ersten n Folgeglieder einer arithmetische Folge ist, heißt sie arithmetische Reihe.

Sei eine arithmetische Folge a mit Startglied  $a_x$  und s, die entsprechende Reihe, dann gilt

$$s_n = \frac{n \cdot (a_x + a_{x+n-1})}{2}$$

#### Bemerkung:

- 1. Am häufigsten wird verwendet:
  - Mit Startglied  $a_0: s_n = \frac{n \cdot (a_0 + a_{n-1})}{2}$
  - Mit Startglied  $a_1: s_n = \frac{n \cdot (a_1 + a_n)}{2}$
- 2. Alternativ kann auch folgende Darstellung verwendet werden:

$$s_n = \frac{n \cdot (2a_x + (n-1) \cdot d)}{2}$$

Kapitel 2. Reihen Skript SMP

#### Beweis

Sei eine arithmetische Folge a, mit Startglied  $a_x$  und Differenz d, und s die entsprechende Reihe ist.

$$s_{n} = a_{x} + a_{x+1} + a_{x+2} + \dots a_{x+n-1}$$

$$= a_{x} + (a_{x} + d) + (a_{x} + 2d) + \dots + (a_{x} + (n-1) \cdot d)$$

$$= n \cdot a_{x} + d + 2d + \dots + (n-1) \cdot d$$

$$= n \cdot a_{x} + (1 + 2 + \dots + (n-1)) \cdot d \qquad \text{(Gauß)}$$

$$= n \cdot a_{x} + \frac{(n-1) \cdot n}{2} \cdot d$$

$$= n \cdot \frac{2a_{x} + (n-1) \cdot d}{2}$$

$$= n \cdot \frac{2a_{x} + (n-1) \cdot d}{2}$$

$$= n \cdot \frac{a_{x} + a_{x+n-1}}{2}$$

## 2.2 Geometrische Reihen

#### Definition 2.2.0

Wenn  $s_n$  die Summe der ersten n Folgeglieder einer geometrischen Folge ist, heißt sie geometrischen Reihe.

Sei eine geometrische Folge a mit Startglied  $a_x$  und s, die entsprechende Reihe, dann gilt

$$s_n = \sum_{i=x}^{n+x-1} a_i = a_x \cdot \frac{1-q^n}{1-q}$$

#### Bemerkung:

Am häufigsten wird verwendet:

- Mit Startglied  $a_0: s_n = a_0 \cdot \frac{1 q^n}{1 q}$
- Mit Startglied  $a_1: s_n = a_1 \cdot \frac{1-q^n}{1-q}$

Kapitel 2. Reihen Skript SMP

#### Reweis

#### Allgemein:

$$\begin{aligned} &(1-q)(1+q+q^2+q^3+\ldots+q^n)\\ &=(1-q)+(q-q^2)+(q^2-q^3)+(q^3-q^4)+\ldots+(q^n-q^{n+1})\\ &=1+(-q+q)+(-q^2+q^2)+(-q^3+q^3)+\ldots+(-q^n+q^n)-q^{n+1}\\ &=1-q^{n+1} \end{aligned}$$

Man hat also 
$$\sum_{k=0}^{n} q^k = 1 + q + q^2 + q^3 + ... + q^n = \frac{1 - q^{n+1}}{1 - q}$$

Entsprechend ergibt sich 
$$\sum_{k=0}^{n-1} q^k = \underbrace{1 + q + q^2 + q^3 + \dots + q^{n-1}}_{n \quad Summanden} = \frac{1 - q^n}{1 - q}$$

Somit gilt für eine Reihe s, die die Partialsumme einer geometrischen Folge a, mit Quotient q und Anfangsglied  $a_x$ , ist, folgendes:

$$s_n = \sum_{i=x}^{x+n-1} a_i$$

$$= a_x + a_{x+1} + a_{x+2} + \dots + a_{x+n-1}$$

$$= a_x + a_x \cdot q + a_x \cdot q^2 + \dots + a_x \cdot q^{n-1}$$

$$= a_x \cdot (1 + q + q^2 + \dots + q^{n-1})$$

$$= a_x \cdot \sum_{k=0}^{n-1} q^k$$

$$= a_x \cdot \frac{1 - q^n}{1 - q}$$

## **FUNKTIONSUNTERSUCHUNG**

Die Analysis (griechisch análysis, deutsch "Auflösung") ist ein Teilgebiet der Mathematik. Die Untersuchung von reellen und komplexen Funktionen hinsichtlich Stetigkeit, Differenzierbarkeit und Integrierbarkeit zählt zu den Hauptgegenständen der Analysis. Die hierzu entwickelten Methoden sind in allen Naturund Ingenieurwissenschaften von großer Bedeutung.

## 3.1 Stetigkeit

#### Definition 3.1.0

Eine Funktion ist stetig an der Stelle  $x_0$ , wenn:

- 1.  $x_0 \in D$
- 2.  $\lim_{x \to x_0} f(x)$  existient
- 3.  $\lim_{x \to x_0^{\pm}} f(x) = f(x_0)$

Stetigkeit ist eine lokale Eigenschaft. Die Funktion f heißt dann stetig, wenn sie an jeder Stelle ihrer Definitionsmenge stetig ist.

#### Bemerkung:

Ist f stetig und  $I \subset \mathbb{R}$  ein reelles Intevall, dann ist f(I) ebenfalls ein Intervall. Ist f zudem streng monoton, so ist die Umkehrfunktion  $f^{-1}$  ebenfalls stetig.

#### Bemerkung:

Stetige Funktionen haben sehr angenehme Eigenschaften, die intuitiv mit der "Definition" des Stiftes, welcher beim Zeichnen des Funktionsgraphen nicht angehoben wird, im Zusammenhang stehen.

So sagt der **Zwischenwertsatz** aus, dass eine reelle, im Intervall [a; b] stetige Funktion f jeden Wert zwischen f(a) und f(b) ainnimmt.

Haben a und b zudem verschiedene Vorzeichen, so verspricht der Zwischenwertsatz mindestens eine Nullstelle von f in diesem abgeschlossenen Intervall. Dieser Sonderfall ist als **Nullstellensatz** von Bolzano bekannt.

#### Definition 3.1.0

#### Zwischenwertsatz:

Ist  $f: [a;b] \Rightarrow$  eine stetige reelle Funktion die auf einem Intervall definiert ist, dann existiert zu **jedem**  $s \in [f(a); f(b)]$  bzw. [f(b); f(a)] (vom Vorzeichen der Funktionswerte abhängig) **ein**  $c \in [a;b]$  mit f(c) = s

#### Stetige Fortsetzungen

beim Vereinfachen von gebrochenrationalen Funktionen ist Vorsicht geboten, denn eine hebbare Definitionslücke "aufzuheben" verändert den Definitionsbereich der Funktion. Die daraus resultierende Funktion wird stetige Fortsetzung genannt.

## 3.2 Differenzierbarkeit

#### Definition 3.2.0

Eine Funktion ist differenzierbar an der Stelle  $x_0 \in D$ , wenn der beitseitige Grenzwert des Differenzenquotienten für  $h \to 0$  existiert. Anschaulich soll Die Funktion links und rechts des  $x_0$  die selbe Ableitung haben.

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0)$$

Dieser Grenzwert ist die **Ableitung** von f an der Stelle  $x_0$ .

Die Funktion heißt differenzierbar, wenn sie  $\forall x \in D$  differenzierbar ist.

Die Funktion f(x) = |x| ist nicht differenzierbar, da bei der Stelle  $x_0 = 0$  der linksseitige Grenzwert des Differenzenquotienten  $(\lim_{h\to 0^-} f'(x_0) = -1)$  nicht mit dem rechtsseitigen Grenzwert (1) übereinstimmt.

#### 3.2.1 Zusammenhang zwischen Stetigkeit und Differenzierbarkeit

Ist eine Funktion f an der Stelle  $x_0$  differenzierbar, so ist sie an dieser Stelle auch stetig. Die Umkehrung gilt erst einmal nicht, aber es gibt eine verneinende Aussage: Ist f an der Stelle  $x_0$  nicht stetig, so ist sie hier auch nicht differenzierbar.

Ist eine Funktion differenzierbar und ist ihre Ableitung zusätzlich stetig, dann wird sie **Stetig differenzierbar** genannt.

## 3.3 Ableitungsregeln

Ein Ableitungswert gibt die Steigung an einem bestimmten Punkt an. Im Allgemeinen und zum Beweisen wird der Differentenquotient benötigt, um eine Ableitungsfunktion zu definieren, es geht aber in vielen Fällen schneller.

#### 3.3.1 Produktregel

#### Definition 3.3.1

Sind die Funktionen u und v an der Stelle  $x_0 \in D$  differenzierbar, dann ist die Funktion  $f(x) = u(x) \cdot v(x)$  bei  $x_0$  auch differenzierbar und es gilt:

$$f'(x0) = u'(x_0)v(x_0) + u(x_0)v'(x_0)$$

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h) + u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h)v(x_0 + h) - u(x_0)v(x_0 + h)}{h} + \lim_{h \to 0} \frac{u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}$$

$$= \lim_{h \to 0} v(x_0 + h) \frac{u(x_0 + h) - u(x_0)}{h} \lim_{h \to 0} u(x_0) \frac{v(x_0 + h) - v(x_0)}{h}$$

$$= v(x_0) \lim_{h \to 0} \frac{u(x_0 + h) - u(x_0)}{h} + u(x_0) \lim_{h \to 0} \frac{v(x_0 + h) - v(x_0)}{h}$$

$$= u'(x_0)v(x_0) - u(x_0)v'(x_0)$$

#### 3.3.2Quotientenregel

#### Definition 3.3.2

Sind die Funktionen u und v an der Stelle  $x_0 \in D$  differenzierbar, dann ist die Funktion  $f(x) = \frac{u(x)}{v(x)}$ bei  $x_0$  auch differenzierbar und es gilt:

$$f'(x_0) = \frac{u'(x_0) \cdot v(x_0) - u(x_0) \cdot v'(x_0)}{v^2(x_0)}$$

Beweis
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\frac{u(x_0 + h)}{v(x_0 + h)} - \frac{u(x_0)}{v(x_0)}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h)}{h} - \frac{u(x_0)}{v(x_0 + h)}}{\frac{u(x_0 + h)v(x_0)}{v(x_0 + h)} - \frac{u(x_0)v(x_0 + h)}{v(x_0 + h)v(x_0)}}{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0 + h)}{v(x_0 + h)v(x_0)h}}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0 + h)}{h}}{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0 + h) + u(x_0)v(x_0)}{v(x_0 + h)v(x_0)h}}{\frac{u(x_0 + h)v(x_0) - u(x_0)v(x_0) - u(x_0)v(x_0 + h) - u(x_0)v(x_0)}{h}}{\frac{u(x_0 + h) - u(x_0)}{h} - \frac{u(x_0 + h)v(x_0)}{h}}{h}}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h}}{h} \frac{v(x_0 + h)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h}}{h} \frac{v(x_0 + h)v(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x_0 + h) - u(x_0)}{h}}{h} \frac{v(x_0 + h)v(x_0)}{h}}{h}$$

$$= \lim_{h \to 0} \frac{u(x_0 + h) - u(x_0)}{h} \frac{v(x_0 + h)v(x_0)}{h}$$

$$= \frac{u'(x_0)v(x_0) - u(x_0)v'(x_0)}{(v(x_0))^2}$$

### 3.3.3 Kettenregel

#### Definition 3.3.3

Die Funktion v sei an der Stelle  $x_0$  differenzierbar und die Funktion u an der Stelle  $v(x_0)$ . Dann ist die Funktion  $f = u \circ v$  mit der Gleichung f(x) = u(v(x)) an der Stelle  $x_0$  differenzierbar. Es gilt:

$$f'(x_0) = v'(x_0) \cdot u'(v(x_0))$$

#### 3.3.4 Tangente und Normale

#### Definition 3.3.4

Ist die Funktion f differenzierbar an der Stelle  $x_0$ , dann hat die **Tangente** an dem Graphen von f die Steigung  $a = f'(x_0)$  und den Y-Achsenabschnitt  $b = -f'(x_0) \cdot x_0 + f(x_0)$ . Daraus ergibt sich die Tangentengleichung:

$$T_{x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$

Eine Merkhilfe dazu ist das Wort "Fuxufu", wobei "u" dem  $x_0$  entspricht.

Die **Normale** an der Stelle  $x_0$  bezeichnet die Gerade, die genau senkrecht zur Tangente steht und diese im Berührpunkt des Graphen schneidet.

$$N_{x_0}(x) = \frac{1}{f'(x_0)} \cdot (x - x_0) + f(x_0)$$

## 3.4 Vollständige Funktionsuntersuchung

#### 3.4.1 Definitionsbereich

Am Anfang muss der Definitionsbereich angegeben werden, um eventuelle Divisionen durch null zu vermeiden. Man achte dabei auch auf hebbare Definitionslücken (siehe "Stetigkeit")

#### 3.4.2 Achsenschnittpunkte

Es gibt zwei Arten von Achsenschnittpunkten:

- 1. X-Achsenschittpunkte (Nullstellen), die man mit f(x) = 0 herausfindet
- 2. Y-Achsenschnittpunkt, den man durch einsetzen bekommt: f(0)

#### 3.4.3 Symmetrie

#### Y-Achsensymmetrie

Durch Lösung der Gleichung f(x) = f(-x) findet man heraus ob die Funktion achsensymmetrisch ist. Zudem ist die Funktion dann achsensymmetrisch, wenn nur gerade Exponenten vorhanden sind. Die Funktion nennt man **gerade**.

#### Symmetrie zum Origo

Durch Lösung der Gleichung f(x) = -f(-x) findet man heraus ob die Funktion punktsymmetrisch ist. Zudem ist die Funktion dann punktsymmetrisch, wenn nur ungerade Exponenten vorhanden sind. Die Funktion nennt man **ungerade**.

#### Symmetrie zu einem beliebigen Punkt

#### Definition 3.4.3

Symmetrie zu einem Punkt liegt vor, wenn für den Punkt  $P(x_0|y_0)$  gilt:

$$f(x_0 + h) - y_0 = -f(x_0 - h) + y_0$$

#### Beispiel:

$$f(x) = \frac{x}{x-1}$$

Aus dem Schnittpunkt der Asymptoten kann man vermuten, dass f(x) achsensymmetrisch zum Punkt P(1|1) ist.

#### 3.4.4 Grenzwerte

#### Definition 3.4.4

Das Symbol  $\lim_{x\to x_0} f(x)$  mit  $x_0 \in \mathbb{R}$  ( $\pm \infty$  eingeschlossen) bezeichnet den Limes der reellen Funktion  $f: D \to \mathbb{R}$  für den Grenzübergang von x gegen eine Stelle  $x_0$ , wobei  $x_0$  nicht umbedingt in der Definitionsmenge von f enthalten sein muss.

Eine Zahl  $g \in \mathbb{R}$  ist der Grenzwert einer Funktion  $f: D \to \mathbb{R}$  für  $x \to x_0$ , falls für jede Folge  $(a_n)_{n \in \mathbb{N}}$  mit Folgegliedern aus D und Grenzwert  $x_0$  die Folge  $(f(a_n))_{n \in \mathbb{N}}$  den Grenzwert g hat.

$$\lim_{x \to x_0} f(x) = g \quad \Leftrightarrow \quad \forall (a_n)_{n \in \mathbb{N}} \text{ mit } \lim_{n \to \infty} a_n = x_0 : \lim_{n \to \infty} f(a_n) = g$$

#### 3.4.5 Asymptoten

Eine Asymptote ist eine Gerade oder Kurve, die sich dem Graphen einer Funktion immer weiter annähert. Dabei unterscheidet man verschiedene Fälle:

## Definition 3.4.5

1. Senkrechte Asymptote: Hat f an der stelle  $x_0$  eine Polstelle, und gilt:

$$\lim_{x\to x_{0^+}} f(x) = \pm \infty$$

dann ist die Gerade  $x = x_0$  eine senkrechte Asymptote von f.

2. Waagerechte Asymptote: Konvergiert f für  $x \to \infty$  gegen eine reelle Zahl  $g \in \mathbb{R}$ , das heißt  $\lim_{x \to x_{0^+}} f(x) = g$ .

Die Gerde y = g ist die waagerechte Asymptote von f. Das Gleiche gilt für  $\lim_{x \to -\infty}$ .

Bei gebrochen<br/>rationalen Funktionen ist dies der Fall, wenn der Zählergrad kleiner (dann ist <br/> g=0) oder gleich dem Nennergrad m ist.

3. Schräge Asymptote: Sie ist eine Gerade  $(g : \mathbb{R} \to \mathbb{R})$ , der sich f mit  $|x| \to \infty$  beliebig annähert:

$$\lim_{x \to \infty} [f(x) - g(x)] = 0 \text{ oder } \lim_{x \to -\infty} [f(x) - g(x)] = 0$$

Bei einer gebrochen<br/>rationalen Funktion ist der "Fehlergrad", das heißt der Abstand von g zu<br/> f durch den Rest der Polynomdivision von Zähler mit Nenner gegeben.

4. **Asymptotische Kurven** Indem man in der Definition der schrägen Asymptote auch Polynome zulässt, erhält man Näherungskuven, die die gleiche Limesbedingung erfüllen müssen:

$$\lim_{x \to \infty} [f(x) - P(x)] = 0 \text{ oder } \lim_{x \to -\infty} [f(x) - P(x)] = 0$$

Diese begegnen einen bei gebrochen<br/>rationalen Funktion mit n > m+1.

#### 3.4.6 Monotonie

#### Definition 3.4.6

Eine stetige Funktion f mit  $a, b \in I \subset D_f$  ist :

- 1. ... auf dem Intervall I monoton wachsend, wenn  $\forall a < b : f(a) \leq f(b)$
- 2. ... auf dem Intervall I monoton fallend, wenn  $\forall a < b : f(a) \ge f(b)$

Wenn die Ordnungsrelation strikt sind, dann wird die Funktion als **streng monoton** bezeichnet. Die Funktion f hat eine Ableitungsfunktion f'. Falls f...

- 1. monoton wachsend auf I ist, dann ist  $f'(x) \geq 0$ ,  $\forall x \in I$
- 2. monoton fallend auf I ist, dann ist  $f'(x) \leq 0$ ,  $\forall x \in I$
- 3. konstant auf I ist, dann ist f'(x) = 0,  $\forall x \in I$

Beim Aufstellen der Monotonietabelle sind Definitinslücken zu beachten.

Es handelt sich dabei um eine Tabelle, die die Definitionsmenge in Intervalle mit monotonen Steigungsverhalten unterteilt wird. Das Monotonieverhalten verändert sich an Extrem- oder Polstellen.

#### Bemerkung:

 $\overline{f}$  sei eine Funktion...

- dann ist die Zahl S obere Schranke, wenn  $\forall x: f(x) \leq S$ . f heißt in diesem Fall nach oben beschränkt. Die in diesem Fall kleinstmögliche Zahl wird **Supremum** genannt:  $\sup f$
- dann ist die Zahl s untere Schranke, wenn  $\forall x: f(x) \geq s$ . f ist in diesem Fall nach unten beschränkt. Die in diesem Fall größtmögliche Zahl wird **Infimum** genannt: inf f

#### 3.4.7 Extremstellen

#### 3.4.8 Wendestellen

#### Bemerkung:

Eine Hilfsformel, die den Zusammenhang zwischen den verschiedenen Ableitungen einfach darstellt ist die NEW-Regel:

$$N = Nullstellen$$

$$E = Extremstellen$$

$$W = Wendestellen$$

#### 3.4.9 Umkehrbarkeit

## Definition 3.4.9

Sei f eine Funktion mit  $f: D_f \mapsto W_f$  mit  $x \mapsto y$ , dann ist die Funktion genau dann eindeutig umkehrbar, wenn es zu jedem  $y \in W_f$  genau ein  $x \in D_f$  existiert.

Wenn diese Funktion umkehrbar ist, dann existiert auch eine Umkehrfunktion  $\overline{f}(x)$  die jedem  $x \in W_f$  genau ein  $y \in D_f$  zuordnet, analog zur Funktion, nur andersrum, also mit  $y \mapsto x$ 

Es gilt: 
$$D_{\overline{f}} = W_f$$
 und  $W_{\overline{f}} = D_f$ 

#### Bemerkung:

Es gibt viele Funktionen die nicht in ihren vollständigen Definitionsmengen umkehrbar sind, zum Beispiel  $x^n$  mit n als gerade Zahl,  $\sin(x)$ ,  $\tan(x)$ , und viele mehr. Hier beschränkt man die Funktion auf ein bestimmtes Intervall, um sie umkehren zu können.

Die Funktion  $f(x) = x^2$  mit  $D_f = \mathbb{R}$  und  $W_f = \mathbb{R}_0^+$  hat für y = 4 zwei Urbilder: -2 und 2. Schränkt man die Funktion auf  $D_f = \mathbb{R}_0^+$ , ist sie umkehrbar und die Umkehrfunktion lautet  $\overline{f}(x) = \sqrt{x}$ 

#### Bemerkung:

Anschaulich ist eine Umkehrfunktion eine Axenspiegelung entlang der Winkelhalbierende am Ursprung, also dem Funktionsgraphen von f(x) = x

### Beispiel:

Die Funktion  $f(x) = x^2$  mit  $D_f = \mathbb{R}_0^+$  ist umzukehren. Leichtes Spiel...

$$\begin{array}{llll} \Rightarrow & \mathrm{y} & = & \mathrm{x}^2 \\ \Leftrightarrow & \mathrm{x} & = & \sqrt{y} & Variablen \ tauschen \\ \Leftrightarrow & \mathrm{y} & = & \sqrt{x} \\ \Rightarrow & \overline{f}(x) & = & \sqrt{x} \end{array}$$



#### 3.4.10 Beispiel

$$f(x) = \frac{4x^2 - 8x + 4}{2x - 1} = \frac{(2x - 2)^2}{2x - 1}$$
  $D_f = \mathbb{R} \setminus \{\frac{1}{2}\}$ 

$$f'(x) = \frac{(8x-8)(2x-1) - (4x^2 - 8x + 4)(2)}{(2x-1)^2} = \frac{16x^2 - 8x - 16x + 8 - 8x^2 + 16x - 8}{4x^2 - 4x + 1} = \frac{8x^2 - 8x}{(2x-1)^2}$$

$$f''(x) = \frac{(16x - 8)(4x^2 - 4x + 1) - (8x^2 - 8x)(8x - 4)}{((2x - 1)^2)^2}$$

$$= \frac{(2x - 1) \cdot 8 \cdot (4x^2 - 4x + 1) - (8x^2 - 8x) \cdot 4 \cdot (2x - 1)}{(2x - 1)^{43}} = \frac{8}{8x^3 - 12x^3 + 6x - 1}$$

### Achsenschnittpunkte

Bestimmung der Nullstelle(n):

$$\Rightarrow f(x) = 0 \quad D = \mathbb{R} \setminus \{\frac{1}{2}\}$$

$$\Leftrightarrow \frac{(2x-2)^2}{(2x-1)} = 0$$

$$\Leftrightarrow 2x-2 = 0$$

$$\Leftrightarrow x = 1 \quad L = \{1\}$$

Die Gleichung für die senkrechte Asymptote lautet deshalb x = 1

Bestimmung des Y-Achsenabschnitts:

$$\Rightarrow f(0) = \frac{4}{-1} = -4$$

#### Symmetrie:

Man kann anhand des GTR vermuten dass f punktsymmetrisch ist. Dieser Symmetriepunkt  $P_0$  lässt sich entweder dort ablesen oder ist (häufig) den Schnittpunkt der Asymptoten.  $P_o(\frac{1}{2}|-2)$ 

$$\Rightarrow f(x_0 + h) - y_0 = f(\frac{1}{2} + h) + 2$$

$$= \frac{4(\frac{1}{2} + h)^2 - 8(\frac{1}{2} + h) + 4}{2(\frac{1}{2} + h) - 1} + 2$$

$$= \frac{4(\frac{1}{4} + h + h^2) - 4 - 8h + 4}{2h} + \frac{4h}{2h}$$

$$= \frac{1 + 4h + 4h^2 - 8h + 4h}{2h} = \frac{4h^2 + 1}{2h}$$

$$\Rightarrow -f(x_0 - h) + y_0 = -f(\frac{1}{2} - h) - 2$$

$$= -\frac{4(\frac{1}{2} - h)^2 - 8(\frac{1}{2} - h) + 4}{2(\frac{1}{2} - h) - 1} - 2$$

$$= -\frac{4(\frac{1}{4} - h + h^2) - 4 + 8h + 4}{-2h} - \frac{4h}{2h}$$

$$= \frac{1 - 4h + 4h^2 + 8h - 4h}{2h} = \frac{4h^2 + 1}{2h}$$

Hiermit hat man die Punktsymmetrie von f zu  $P_0$  bewiesen.

#### Bestimmung der Grenzwerte der Funktion:

$$\Rightarrow \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{4x^2 - 8x + 4}{2x - 1} = \frac{\lim_{x \to +\infty} \left(4 - \frac{8}{x} + \frac{4}{x^2}\right)}{\lim_{x \to +\infty} \frac{2}{x} - \frac{1}{x^2}} = \frac{4 - 0 + 0}{0 - 0} = +\infty$$

$$\Rightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{4x^2 - 8x + 4}{2x - 1} = \frac{\lim_{x \to +\infty} \left( -4 + \frac{8}{x} + \frac{4}{x^2} \right)}{\lim_{x \to +\infty} -\frac{2}{x} - \frac{1}{x^2}} = \frac{-4 + 0 + 0}{-0 - 0} = -\infty$$

#### Bemerkung:

Da die Punktsymmetrie vorher bewiesen wurde hätte der  $\lim_{x\to-\infty} f(x)$  gar nicht errechnet werden müssen!

$$\Rightarrow \lim_{x \to \frac{1}{2}^{+}} f(x) = \lim_{h \to 0} \frac{4(\frac{1}{2} + h)^{2} - 8(\frac{1}{2} + h) + 4}{2(\frac{1}{2} + h) - 1} = \lim_{h \to 0} \frac{1 + 4h + 4h^{2} - 4 + h + 4}{2h}$$

$$= \lim_{h \to 0} \frac{1 + 5h + 4h^{2}}{\lim_{h \to 0} 2h}$$

$$= \frac{1}{0} = +\infty$$

$$\Rightarrow \lim_{x \to \frac{1}{2}^{-}} f(x) = \lim_{h \to 0} \frac{4(\frac{1}{2} - h)^{2} - 8(\frac{1}{2} - h) + 4}{2(\frac{1}{2} - h) - 1} = \lim_{h \to 0} \frac{1 - 4h + 4h^{2} - 4 - 4h + 4}{-2h}$$

$$= \lim_{h \to 0} \frac{1 - 8h + 4h^{2}}{\lim_{h \to 0} -2h}$$

$$= -\frac{1}{0} = -\infty$$

#### Asymptoten:

Es liegt eine nicht hebbare Definitionslücke bei  $x = \frac{1}{2}$  vor, also ist dies die Gleichung der senkrechten Asymptote.

Da der Grenzwert  $\to \pm \infty$  keinen eindeutigen Wert annimmt, macht man eine Polynomdivision ...

$$\Rightarrow (4x^{2} -8x +4) : (2x-1) = 2x-3+\frac{1}{2x-1}$$

$$-(4x^{2} -2x)$$

$$-6x +4$$

$$-(-6x +3)$$
1

... und erhält die Gleichung der schiefen Asymptote  $y=2x-3\,$ 

#### Monotonieverhalten:

Untersuchung auf Extremstellen:

• Notwendige Bedingung:  $\Rightarrow f'(x) = 0$ 

$$\Leftrightarrow \frac{8x^2 - 8x}{4x^2 - 4x + 1} = 0 \qquad D = \mathbb{R} \setminus \{\frac{1}{2}\}$$

$$\Leftrightarrow x(8x - 8) = 0$$

$$\Leftrightarrow x = 0 \quad \forall \quad x = 1 \qquad L = \{1; 0\}$$

 $\bullet$  Hinreichende Bedingung: Vorzeichenwechsel f'(x)oder  $f''(x) \neq 0$ 

| x          | $-\infty$       | 0     | $\frac{1}{2}$ | 1        | $+\infty$ |
|------------|-----------------|-------|---------------|----------|-----------|
| x          | _               | 0 +   | +             |          | +         |
| (8x - 8)   | _               | _     | -             | 0        | +         |
| $(2x-1)^2$ | +               | +     | +             |          | +         |
| f'(x)      | +               | 0 -   | _             | 0        | +         |
| f(x)       | (0  <i>s</i> −∞ | f(0)) | +∞            | (1 f(1)) | +∞        |

## Krümmungsverhalten:

Untersuchung auf Wendestellen:

• Notwendige Bedingung:  $\Rightarrow f''(x) = 0$ 

$$\Leftrightarrow \frac{8}{(2x-1)^3} = 0$$

$$\Leftrightarrow 8 = 0$$

Die Funktion weist keine Wendestellen vor. Bei Lösbarkeit der Gleichung ist als hinreichende Bedingung ein Vorzeichenwechsel von f''(x) zu zeigen oder  $f''' \neq 0$  zu beweisen. Dann kann die Skizze beginnen:



## 3.5 Funktionenscharen

Erklärung:

Eine **Funktionenschar** ist eine Menge von Funktionen, die neben der Variable auch noch einen veränderlichen Parameter im Funktionsterm enthält. Jedem Wert des Parameters ist ein Graph der Schar zugeordnet. Der Parameter, oft a, wird hierbei überall wie eine Konstante behandelt.

Der Punkt, den alle Graphen, unabhängig von ihren Parametern, beinhalten, nennt man Bündel. Die Graphen einer Funktionenschar bilden gemeinsam eine Kurvenschar.

Hier ist die Kurvenschar der Funktion  $f(x) = ax^3$ . Sie verlaufen alle durch das Bündel P(0|0)



## 3.5.1 Beispiel

$$f_a(x) = \frac{x^2 - 3ax}{x + a}$$
  $D_f = \mathbb{R} \setminus \{-a\}, \quad a \in \mathbb{R}^+$ 

Sei  $K_a$  der Graph der Funktion.

Bestimmen Sie die Schnittpunkte von  $K_a$  mit den Koordinatenachsen

$$f_a(0) = \frac{0}{x+a} = 0$$

$$\Rightarrow f_a(x) = 0 \Leftrightarrow x^2 - 3x = 0$$
$$\Leftrightarrow x(x - 3a) = 0$$
$$\Leftrightarrow x = 0 \lor x = 3a$$

Es ergeben sich die Punkte  $P_1(0|0)$  und  $P_2(3a|0)$ 

Bestimmen Sie die Asymptoten von  $K_a$ 

$$\Rightarrow (x^2 -3ax +0) : (x+a) = x-4a + \frac{4a^2}{x+a}$$

$$-(x^2 +ax)$$

$$-4ax +0$$

$$-(-4ax -4a^2)$$

$$4a^2$$

Man erhält die schiefe Asymptote y = x - 4a

Es liegt eine nicht hebbare Definitionslücke bei -a vor, daraus ergibt sich eine vertikale Asymptote  $\Rightarrow x = -a$ 

Zeigen Sie 
$$f_a''(x) = \frac{8a^2}{(x+a)^3}$$
  

$$f'_a(x) = \frac{(2x-3a)(x+a) - (x^2-3ax)(1)}{(x+a)^2}$$

$$= \frac{2x^2 + 2ax - 3ax - 3a^2 - x^2 - 3ax}{x^2 + 2ax + a^2}$$

$$= \frac{x^2 + 2ax - 3a^2}{(x+a)^2}$$

$$f''_a(x) = \frac{(2x+2a)(x^2 + 2ax + a^2) - (x^2 - 2ax - 3a^2)(2(x+a))}{(x+a)^4}$$

$$= \frac{2x^2 + 4ax + 2a^2 - 2x^2 + 4ax + 6a^2}{(x+a)^3}$$

$$= \frac{8a^2}{(x+a)^3}$$

Weisen Sie nach, dass  $K_a$  genau einen Hochpunkt und genau einen Tiefpunkt besitzt. Geben Sie die Koordinaten dieser Punkte in Abhängigkeit von a an und erstellen Sie eine Monotonietabelle der Funktionen  $f_a$ 

Notwendige Bedingung für Extremstellen:  $\Rightarrow f'(x) = 0$ 

$$\Leftrightarrow x^2 + 2ax - 3a^2 = 0 \qquad D = \mathbb{R} \setminus \{-a\}$$

$$\Rightarrow \Delta = 4a^2 + 12a^2 = 16a^2$$

$$\Leftrightarrow x_1 = a \quad \lor \quad x_2 = -3a \qquad L = \{a; -3a\}$$

$$\Rightarrow f(a) = \frac{a^2 - 3a^2}{2a} = -a$$

$$\Rightarrow f(-3a) = \frac{9a^2 + 9a^2}{-2a} = -9a$$

Es ergeben sich somit die Extremstellen H(-3a|-9a) und T(a|-a). Bevor man mit der Monotonietabelle beginnt, muss die Polstelle untersucht werden.

$$\lim_{x \to -a^+} f_a = \lim_{x \to -a^+} \frac{x^2 - 3ax}{x + a} = \lim_{h \to 0} \frac{(-a + h)^2 - 3a(-a + h)}{(-a + h) + a} = \lim_{h \to 0} \frac{h^2 - 5ah + 4a^2}{h} = +\infty$$

$$\lim_{x \to -a^{-}} f_{a} = \lim_{x \to -a^{-}} \frac{x^{2} - 3ax}{x + a} = \lim_{h \to 0} \frac{(-a - h)^{2} - 3a(-a - h)}{(-a - h) + a} = \lim_{h \to 0} \frac{h^{2} + 5ah + 4a^{2}}{-h} = -\infty$$

Jetzt kann die Monotonietabelle erstellt werden:

| x                | $-\infty$   | -3a    |            | -a | a     |      | $+\infty$ |
|------------------|-------------|--------|------------|----|-------|------|-----------|
| $x^2 - 2ax - 3a$ | +           | 0      | _          | -  | - 0   | +    |           |
| $(x+a)^2$        | +           |        | +          | -  | +     | +    |           |
| $f_a'(x)$        | +           | 0      | _          | -  | - 0   | +    |           |
| $f_a(x)$         | <i>H</i> (( | -3a -9 | ()a)<br>-0 | +∞ | T(a - | - a) | +∞        |

#### Zeigen Sie, dass es genau einen Punkt gibt, durch den alle Graphen Ka gehen.

Diesen Punkt haben wir schon per "Zufall" herausgefunden, da wir eine Nullstelle gefunden haben, die nicht von a abhängt. Wenn man diesen aber nicht gefunden hat, geht man diesen Lösungsweg:

$$\Rightarrow f_1 = f_2 \Leftrightarrow \frac{x^2 - 3x}{x+1} = \frac{x^2 - 6x}{x+2}$$

$$\Leftrightarrow \frac{x-3}{x+1} = \frac{x-6}{x+2}$$

$$\Leftrightarrow -x = -5x$$

$$\Leftrightarrow x = 0$$

$$L = \{0\}$$

Bestimmen Sie  $a \in \mathbb{R}^+$  so, dass der Graph  $K_a$  durch den Punkt  $P(5|\frac{5}{3})$  verläuft

$$\Rightarrow f_a(5) = \frac{5}{3} \Leftrightarrow \frac{5^2 - 15a}{5 + a} = \frac{5}{3} \qquad D = \mathbb{R} \setminus \{-5\}$$

$$\Leftrightarrow 15 - 9a = 5 + a$$

$$\Leftrightarrow a = 1 \qquad L = \{1\}$$

Berechnen Sie die Schnittpunkte von  $K_1$  mit der Geraden j(x) = -15x - 4

$$\Rightarrow f_1(x) = \frac{x^2 - 3x}{x + 1} = -15x - 4 = y$$

$$\Leftrightarrow x^2 - 3x = -15x^2 - 19x - 4$$

$$\Leftrightarrow 4x^2 + 4x + 1 = 0$$

$$\Delta = 0 \Rightarrow x = -\frac{1}{2}$$

$$\Rightarrow f_1(-\frac{1}{2}) = \frac{(\frac{1}{2})^2 - 3 \cdot (\frac{1}{2})}{-\frac{1}{2} + 1} = \frac{7}{2}$$

Es existiert genau ein Schnittpunkt von  $K_1$  mit der Geraden j:  $P_{K_1j}(-\frac{1}{2}|\frac{7}{2})$ 

Vom Punkt A(0|-4) wird die Tangente an  $K_1$  gelegt. Bestimmen Sie eine Gleichung der Tangente und die Koordinaten des Berührpunktes

Sei  $B(x_0|f(x_0))$ , dann lautet die Tangentengleichung:

$$\Rightarrow T_{x_0}(x) = f'(x_0) \cdot (x - x_0) + f(x_0)$$
$$= \frac{x_0^2 + 2x_0 - 3}{(x_0 + 1)^2} \cdot (x - x_0) + \frac{x_0^2 - 3x_0}{x_0 + 1}$$

Jetzt werden die Koordinaten des Punktes A(0|-4), durch den die Tangente auch noch geht, eingesetzt.

$$\Rightarrow T_{x_0}(0) = -4 = \frac{x_0^2 + 2x_0 - 3}{(x_0 + 1)^2} \cdot (-x_0) + \frac{x_0^2 - 3x_0}{x_0 + 1} \qquad D = \mathbb{R} \setminus \{-1\}$$

$$\Leftrightarrow -4(x_0 + 1)^2 = (x_0^2 + 2x_0 - 3)(-x_0) + (x_0^2 - 3x_0)(x_0 + 1)$$

$$\Leftrightarrow -4x_0^2 - 8x_0 - 4 = -x_0^3 - 2x_0^2 + 3x_0 + x_0^3 + x_0^2 - 3x_0^2 - 3x_0$$

$$\Leftrightarrow 4x_0^2 + 8x_0 + 4 = 4x_0^2$$

$$\Leftrightarrow x_0 = -\frac{1}{2} \qquad L = \left\{-\frac{1}{2}\right\}$$

Nun werden die Koordinaten des Berührpunktes mit der Ursprünglichen Funktion f durch einsetzen errechnet.

$$\Rightarrow f_1\left(-\frac{1}{2}\right) = \frac{\left(-\frac{1}{2}\right)^2 - 3 \cdot -\frac{1}{2}}{-\frac{1}{2} + 1} = \frac{7}{2}$$
$$\Rightarrow B\left(-\frac{1}{2}|\frac{7}{2}\right)$$

Da es sich um eine Tangente handelt, muss nun die Steigung am Berührpunkt errechnet werden, um die Tangentengleichung bestimmen zu können.

$$\Rightarrow f_1'\left(-\frac{1}{2}\right) = \frac{\left(-\frac{1}{2}\right)^2 + 2\left(-\frac{1}{2}\right) - 3}{\left(-\frac{1}{2}\right)^2} = -15$$

Die Tangentengleichung lautet:

$$t(x) = -15x - 4 \qquad \text{mit} \quad D_t = \mathbb{R}$$

# TRIGONOMETRIE

#### 4.1 Kurze Wiederholung

## Definition 4.1.0

Im Kreis mit Radius 1 gelte:

$$\cos(\alpha) = x_{\scriptscriptstyle M}$$

$$\sin(\alpha) = y_{\scriptscriptstyle M}$$

$$\cos(\alpha) = x_M$$

$$\sin(\alpha) = y_M$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$$



Es ergeben sich folgende (wissenswerte) Werte:

|                | 0° | 30°                  | 45°                  | 60°                  | 90°             | 180°  | 270°             | 360°   |
|----------------|----|----------------------|----------------------|----------------------|-----------------|-------|------------------|--------|
|                | 0  | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | $\pi$ | $\frac{3\pi}{2}$ | $2\pi$ |
| $\sin(\alpha)$ | 0  | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1               | 0     | -1               | 0      |
| $\cos(\alpha)$ | 1  | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0               | -1    | 0                | 1      |
| $\tan(\alpha)$ | 0  | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | X               | 0     | X                | 0      |

## 4.2 Additions- und Verdopplungssätze

# Theorem $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$ $\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$ $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$

Hieraus ergeben sich einige weitere Relationen, wie z.B.  $\sin(2a)$ . Diese lassen sich jedoch schnell und leicht herleiten.

## 4.3 Allgemeine Sinus- und Kosinussätze

In einem beliebigen Dreieck gelten abgewandelte Formen der aus der 8. Klasse bekannten Sätze:

# Theorem $\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$ $c^2 = a^2 + b^2 - 2ab\cos(\gamma)$



Man bemerkt, dass sich die bekannten Relationen ergeben, wenn einer der Winkel den Wert  $\frac{\pi}{2}$  annimmt.

## 4.4 Sinusfunktionen

Zur Vollständigen Funktionsdiskussion einer Sinus-Funktion sind einige Besonderheiten zu beachten:

- 1. Amplitude und Periodizität Eine Funktion der Form  $f(x) = a \cdot \sin(b(x-c)) + d$  hat:
  - die Periode  $P = \frac{2\pi}{|b|}$
  - die Amplitude A = |a|
  - $\bullet$  die Verschiebung entlang der x-Achse um d und entlang der y-Achse um c
- 2. Symmetrieeigenschaften

Hier sollte zumindest bekannt sein, dass  $f(x) = \sin(x)$  punktsymmetrisch zum Origo ist, und dass  $f(x) = \cos(x)$  Achsensymmetrisch zur y-Achse ist.

3. Die Null-, Extrem- und Wendestellen sind in Form einer Menge anzugeben. (Es sei denn, die Aufgabenvorschrift fordert explizit auf eine Begrenzung auf ein angegebenes Intervall auf)

Beispiel:

Die Nullstellen der Funktion  $f(x) = \sin(x)$  lassen sich dartstellen als:  $x \in \{k\pi | k \in \mathbb{Z}\}$ 

4. Bei der Teilung durch eine Sinusfunktion können Definitionslücken an dessen Nullstellen entstehen. Auch diese können in der bereits gezeigten Form angegeben werden.

### 4.5 Polarkoordinaten

In der Kursstufe beschränken wir uns auf die Benutzung von Polarkoordinaten für Punkte in der Ebene (2D).

#### Definition 4.5.0

Polarkoordinaten sind eine Form der eindeutigen Punktangaben, doch anstatt wie kartesische Koordinaten 2 Entfernungen x und y zu verwenden, haben sie die Form  $(r|\varphi)$ . r ist hierbei die Entfernung zum Origo und  $\varphi$  ein orientierter Winkel (in rad).



## 4.5.1 Umrechnung

 $Kartesisch \rightarrow Polar$ 

- $r = \sqrt{x^2 + y^2}$
- $\varphi = \tan(\frac{y}{x})$

 $Polar \rightarrow Kartesisch$ 

- $x = r \cdot \cos(\varphi)$
- $y = r \cdot \sin(\varphi)$

## 4.6 Beispiel einer Funktionsdiskussion

Sei die Funktion  $f(x) = 2\cos(x) + 2\sin(x)\cos(x)$ , ihr Schaubild sei K.

Untersuchen Sie K im Intervall  $[0; 2\pi]$  auf gemeinsame Punkte mit der x-Achse, sowie Extrem- und Wendepunkte. Zeichnen Sie K im Intervall  $[0; 2\pi]$ . Untersuchen Sie K auf Symmetrie.

## 4.6.1 Definitionsmenge

 $D = \mathbb{R}$ 

## 4.6.2 Periodizität und Amplitude

Die Periode von f ist  $P=2\pi.$  Die Amplitude A beträgt  $\frac{3}{2}\sqrt{3}.$ 

#### 4.6.3 Nullstellen

## Notwendige und hinreichende Bedingung:

$$f(x) = 0$$

$$\Leftrightarrow 2\cos(x) + 2\sin(x)\cos(x) = 0$$

$$\Leftrightarrow 2\cos(x)(1 + \sin(x)) = 0$$

$$S.d.N \begin{cases} 2\cos(x) = 0 \\ 1 + \sin(x) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \cos(x) = 0 \\ \sin(x) = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_1 = \frac{1}{2}\pi \\ x_2 = \frac{3}{2}\pi \end{cases}$$

$$\Rightarrow \mathbb{L} = \{(\frac{1}{2}\pi|0); (\frac{3}{2}\pi|0)\}$$

#### 4.6.5 Extremstellen

#### Notwendige Bedingung:

$$\begin{split} &\mathbf{f}'(\mathbf{x}) \! = \! 0 \\ &\Leftrightarrow 4 \sin^2(x) - 2 \sin(x) + 2 = 0 \\ &Substitution: y = \sin(x) \\ &\Rightarrow 4y^2 - 2y + 2 = 0 \\ &\stackrel{ABC-Formel}{\Rightarrow} y_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 * (-4) * 2}}{-8} \\ &Resubstitution: \\ &\Leftrightarrow \begin{cases} \sin(x) &= \frac{2 + \sqrt{20}}{-8} \\ \sin(x) &= \frac{2 - \sqrt{20}}{-8} \end{cases} \\ &\Rightarrow \mathbb{L} = \{\frac{1}{6}\pi; \frac{5}{6}\pi; \frac{3}{2}\pi\} \end{split}$$

## 4.6.4 Ableitungen

$$f'(x) = -2\sin(x) + 2(\cos(x)\cos(x) - \sin(x)\sin(x))$$

$$= -2\sin(x) + 2(\cos^{2}(x) - \sin^{2}(x))$$

$$= -2\sin(x) + 2(1 - \sin^{2}(x) - \sin^{2}(x))$$

$$= -4\sin^{2}(x) - 2\sin(x) + 2$$

$$f''(x) = -4(\cos(x)\sin(x) + \sin(x)\cos(x)) - 2\cos(x)$$

$$= -8\sin(x)\cos(x) - 2\cos(x)$$

$$f'''(x) = -8(\cos(x)\cos(x) - \sin(x)\sin(x)) + 2\sin(x)$$

$$= -8(1 - \sin^{2}(x) - \sin^{2}(x)) + 2\sin(x)$$

$$= 16\sin^{2}(x) + 2\sin(x) - 8$$

## Hinreichende Bedingung:

$$f''(x) \neq 0$$

$$\Rightarrow \begin{cases} f''(\frac{1}{6}\pi) & \stackrel{?}{=} 0 \\ f''(\frac{5}{6}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Rightarrow \begin{cases} 8\sin(\frac{1}{6}\pi)\cos(\frac{1}{6}\pi) - 2\sin(\frac{1}{6}\pi) & \stackrel{?}{=} 0 \\ 8\sin(\frac{5}{6}\pi)\cos(\frac{5}{6}\pi) - 2\sin(\frac{5}{6}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8\sin(\frac{3}{2}\pi)\cos(\frac{3}{2}\pi) - 2\sin(\frac{3}{2}\pi) & \stackrel{?}{=} 0 \\ 8\sin(\frac{3}{2}\pi)\cos(\frac{3}{2}\pi) - 2\sin(\frac{3}{2}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 8*\frac{1}{2}*\frac{\sqrt{3}}{2} - 2*\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , < 0 \Rightarrow HP \\ 8*\frac{1}{2}*-\frac{\sqrt{3}}{2} - 2*-\frac{\sqrt{3}}{2} & \stackrel{!}{\neq} 0 , > 0 \Rightarrow TP \\ 8*(-1)(0) - 2(0) & \stackrel{!}{=} 0 \Rightarrow \text{kein } EP \end{cases}$$

#### Ergebnis

Auf dem Intervall  $[0; 2\pi]$  besitzt K den Hochpunkt  $H(\frac{1}{6}\pi|f(\frac{1}{6}\pi))$  und den Tiefpunk  $T(\frac{5}{6}\pi|f(\frac{5}{6}\pi))$ .  $\Leftrightarrow H(\frac{1}{6}\pi|\frac{3}{2}\sqrt{3})$  und  $T(\frac{5}{6}\pi|-\frac{3}{2}\sqrt{3})$ .

#### 4.6.6 Wendestellen

#### Notwendige Bedingung:

$$f''(x) = 0$$

$$\Leftrightarrow -8\sin(x)\cos(x) - 2\cos(x) = 0$$

$$\Leftrightarrow \cos(x)(-2 - 8\sin(x)) = 0$$

$$\stackrel{SdN}{\Rightarrow} \begin{cases} \cos(x) = 0 \\ \sin(x) = -\frac{1}{4} \end{cases}$$

$$\Rightarrow \mathbb{L} = \{\frac{1}{2}\pi; \frac{3}{2}\pi; \sim 3,394; \sim 6,031\}$$

#### Hinreichende Bedingung:

$$f'''(x) \neq 0$$

$$\begin{cases} f'''(\frac{1}{2}\pi) & \stackrel{?}{=} 0 \\ f'''(\frac{1}{2}\pi) & \stackrel{?}{=} 0 \end{cases}$$

$$\Rightarrow \begin{cases} f'''(\frac{1}{2}\pi) & \stackrel{?}{=} 0 \\ f'''(3,394) & \stackrel{?}{=} 0 \end{cases}$$

$$f'''(6,031) & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 16\sin^2(\frac{1}{2}\pi) + \sin(\frac{1}{2}\pi) - 8 & \stackrel{?}{=} 0 \\ 16\sin^2(\frac{3}{2}\pi) + \sin(\frac{3}{2}\pi) - 8 & \stackrel{?}{=} 0 \\ 16\sin^2(3,394) + \sin(3,394) - 8 & \stackrel{?}{=} 0 \\ 16\sin^2(6,031) + \sin(6,031) - 8 & \stackrel{?}{=} 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} 16*1 + 1 - 8 & \stackrel{!}{\neq} 0 , > 0 \Rightarrow WP \\ 16*1 - 1 - 8 & \stackrel{!}{\neq} 0 , > 0, \text{ außerdem: } f'(\frac{3}{2}\pi) = 0 \Rightarrow Sattelpunkt \\ -7.5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP \\ -7.5 & \stackrel{!}{=} 0 , < 0 \Rightarrow WP \end{cases}$$

## Ergebnis

Auf dem Intervall  $[0;2\pi]$  besitzt K die Wendepunkte  $(\frac{1}{2}\pi|f(\frac{1}{2}\pi)), (3,394|f(3,394)), (6,031|f(6,031))$  und den Sattelpunkt  $(\frac{3}{2}\pi|f(\frac{3}{2}\pi)).$ 

$$\Leftrightarrow$$
W<sub>1</sub> $(\frac{1}{2}\pi|0), W_2(3,394|-1,452), W_3(6,031|1,452), S(\frac{3}{2}\pi|0).$ 

#### 4.6.7 Schaubild



## 4.6.8 Symmetrie

K ist punktsymmetrisch zu  $W_1$ , denn es gilt:

$$f(\frac{1}{2}\pi + x) = -1 * f(\frac{1}{2}\pi - x)$$

$$\Leftrightarrow 2\cos(\frac{1}{2}\pi + x) + 2\sin(\frac{1}{2}\pi + x)\cos(\frac{1}{2}\pi + x) = -1 * (2\cos(\frac{1}{2}\pi - x) + 2\sin(\frac{1}{2}\pi - x)\cos(\frac{1}{2}\pi - x))$$

$$\Leftrightarrow -2\sin(x) - 2\cos(x)\sin(x) = -1 * (2\sin(x) + 2\cos(x)\sin(x))$$

K ist außerdem zu S punktsymmetrisch, denn es gilt:

$$f(\frac{3}{2}\pi + x) = -1 * f(\frac{3}{2}\pi - x)$$

$$\Leftrightarrow 2\cos(\frac{3}{2}\pi + x) + 2\sin(\frac{3}{2}\pi + x)\cos(\frac{3}{2}\pi + x) = -1 * (2\cos(\frac{3}{2}\pi - x) + 2\sin(\frac{3}{2}\pi - x)\cos(\frac{3}{2}\pi - x))$$

$$\Leftrightarrow 2\sin(x) + 2\cos(x)\sin(x) = -1 * (-2\sin(x) - 2\cos(x)\sin(x))$$

# Vektorielle Geometrie

## 5.1 Vektoren

#### Definition 5.1.0

Ein Vektor ist Element eines Vektorraums.

Vektorräume, wir erinnern uns zurück. Verknüpfungen, inverse Elemente und die dazugehörenden Gesetze, konsequente Definitionen und mathematische Korrektheit, die guten alten Zeiten...

Tatsächlich kann ein Vektor in den meisten Fällen als Verschiebung bezeichnet werden, **nicht aber als** Pfeil oder Strich!

#### 5.1.1 Besondere Vektoren

#### Der Ortsvektor

Der Vektor von O auf den Punkt P, geschrieben als  $\overrightarrow{OP}$  oder  $\overrightarrow{p}$ .

Hat 
$$P$$
 die Koordinaten  $(P_1|P_2|...|P_n)$ , so besitzt  $\overrightarrow{p}$  die Darstellung  $\begin{pmatrix} P_1 \\ P_2 \\ ... \\ P_n \end{pmatrix}$ .

#### Der Nullvektor

Der Vektor mit Wert  $\begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$ , er hat keine und alle Richtungen zugleich.

#### Bemerkung:

Er ist somit das neutrale Element der Vektoraddition.

#### Der Verbindungsvektor

Der Vektor  $\overrightarrow{AB}$  ist der Vektor, der den Punkt A auf den Punkt B abbildet. Er ist definiert als:  $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ , woraus folgt, dass:

$$\overrightarrow{AB} = \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ \dots \\ b_n - a_n \end{pmatrix}.$$

### Der Gegenvektor

Der Gegenvektor zu  $\overrightarrow{AB}$  ist  $\overrightarrow{BA}$ , definiert als  $-\overrightarrow{AB}$ .

#### Bemerkung:

Er ist somit das inverse Element der Vektoraddition.

#### Der Einheitsvektor

Norm eines Vektors

Die Norm eines Vektors ist anschaulich als seine Länge zu interpretieren. Der Betrag, wie sie ebenfalls genannt wird, eines Vektors  $\overrightarrow{v}$  ist folgendermaßen definiert:  $|\overrightarrow{v}| = \sqrt{\sum_{i=1}^n v_i^2}; \overrightarrow{v} \in \mathbb{R}^n$ .



Anhand dieser Graphik lässt sich die Berechnung der Norm eines Vektors  $\vec{v} \in \mathbb{R}^3$  verdeutlichen. Für diesen glit:  $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$ .

Ein Vektor, dessen Norm 1 beträgt wird als normiert oder Einheitsvektor bezeichnet. Für jeden Vektor  $\overrightarrow{v} \in \mathbb{R}^3$  existiert ein Einheitsvektor  $\overrightarrow{v^*}$ , der folgendermaßen definiert wird:  $\overrightarrow{v^*} = \frac{1}{|\overrightarrow{v}|} * \overrightarrow{v}$ .

## 5.2 Basen und Erzeugendensystem

Eine endliche Anzahl von Vektoren  $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$  heißt Erzeugendensystem, wenn sich jeder Vektor  $\overrightarrow{v} \in V$  als Linearkombination dieser Vektoren schreiben lässt. Um ein Erzeugendensystem zu bilden benötigt man mindestens die Anzahl Vektoren, die der Anzahl von Dimensionen von  $\overrightarrow{v}$  entspricht. Wenn man **genau** diese Anzahl besitzt, spricht man von einer Basis.

#### 5.2.1 Besondere Basen

#### Orthogonalbasis

Sind die Vektoren der Basis paarweise orthogonal zueinander, so spricht man von einer **Orthogonal-basis**.

## Orthonormalbasis

Sind die Vektoren zusätzlich zu dieser Bedingung normiert, wird sie als **Orthonormalbasis** bezeichnet. Die einfachste und meist benutzte Basis des  $\mathbb{R}^3$  besteht aus den drei Vektoren  $\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ . Sie wird als **Standardbasis** des  $\mathbb{R}^3$  bezeichnet. Vektoren wie  $\overrightarrow{v} = \begin{pmatrix} 2 \\ 3 \\ 8 \end{pmatrix}$  lassen sich als eine Linearkombination der drei Vektoren der Standardbasis darstellen:  $\overrightarrow{v} = 2 \cdot \overrightarrow{e_1} + 3 \cdot \overrightarrow{e_2} + 8 \cdot \overrightarrow{e_3}$ .

## 5.2.2 Basistransformation

Bilden die Vektoren  $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n}$  eine Basis des n-dimensionalen Vektorraums V und sei der Vektor  $\overrightarrow{v} = \begin{pmatrix} v_1 \\ v_2 \\ ... \\ v_n \end{pmatrix}$ ;  $\overrightarrow{v} \in V$ . Dann gilt wie üblich:  $\overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + ... + v_n \cdot \overrightarrow{a_n}$ . Sei eine weitere Basis

 $\overrightarrow{b_1}, \overrightarrow{b_2}, ..., \overrightarrow{b_n} \text{ des selben Vektorraumes, so besitzt der Vektor } \overrightarrow{v} \text{ andere Koordinaten: } \overrightarrow{v} = \begin{pmatrix} v_1' \\ v_2' \\ ... \\ v_n' \end{pmatrix}. \text{ Dabei}$   $\text{muss gelten: } \overrightarrow{v} = v_1 \cdot \overrightarrow{a_1} + v_2 \cdot \overrightarrow{a_2} + ... + v_n \cdot \overrightarrow{a_n} = v_1' \cdot \overrightarrow{b_1} + v_2' \cdot \overrightarrow{b_2} + ... + v_n' \cdot \overrightarrow{b_n}.$ 

## Bemerkung:

Um die Koordinaten eines Vektors in einer anderen Basis als der Aktuellen zu bestimmen, löst man diese Gleichung, die sich ergibt.

### Beispiel:

Basis 1: Standardbasis des 
$$\mathbb{R}^3$$
, Basis 2:  $\overrightarrow{b_1} = \begin{pmatrix} 4 \\ 9 \\ -1 \end{pmatrix}$ ,  $\overrightarrow{b_2} = \begin{pmatrix} -2 \\ -2 \\ 8 \end{pmatrix}$ ,  $\overrightarrow{b_3} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$ , Vektor  $\overrightarrow{v} = \begin{pmatrix} -5 \\ 3 \\ 2 \end{pmatrix}$  (in der Standardbasis des  $\mathbb{R}^3$ )
$$\overrightarrow{v} = -5 \cdot \overrightarrow{a_1} + 3 \cdot \overrightarrow{a_2} + 2 \cdot \overrightarrow{a_3} = r \cdot \overrightarrow{b_1} + s \cdot \overrightarrow{b_2} + t \cdot \overrightarrow{b_3} \Leftrightarrow \begin{vmatrix} 4r & -2s & t & = -5 \\ 9r & -2s & 3t & = 3 \\ -r & 8s & t & = 2 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} -r & 8s & t & = 2 \\ 0 & 30s & 5t & = 3 \\ 0 & 70s & 12t & = 21 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} -r & 8s & t & = 2 \\ 0 & 30s & 5t & = 3 \\ 0 & 0 & \frac{1}{3} \cdot t & = 14 \end{vmatrix}$$

$$\Leftrightarrow \begin{vmatrix} r & = -15.2 \\ s & = -6.9 \\ t & = 42 \end{vmatrix}$$

$$\mathbb{L} = \{-15.2 | -6.9 | 42\}$$

Daraus lässt sich folgern: 
$$\overrightarrow{v} = -15.2 \cdot \overrightarrow{b_1} - 6.9 \cdot \overrightarrow{b_2} + 42 \cdot \overrightarrow{b_3} = \begin{pmatrix} -15.2 \\ -6.9 \\ 42 \end{pmatrix}$$
 (in der anderen Basis).

## 5.3 Winkel zwischen Vektoren

### Definition 5.3.0

Unter einem Winkel zwischen zwei Vektoren versteht man den Winkel, der ensteht, wenn man beide Vektoren an einen **gemeinsamen Startpunkt** verschiebt ohne dabei ihre Ausrichtung zu verändern.

### 5.3.1 Orientierte Winkel

Wenn man in der Mathematik mit Winkeln arbeitet, werden sie immer im **mathematisch positiven** Sinn angegeben. Dies bedeutet, dass man von einem Vektor oder Schenkel, der an den Winkel grenzt, ausgeht und über Rotation um den Schnittpunkt "gegen den Uhrzeigersinn"zum anderen gelangt, bis beide übereinanderliegen (wenn man davon ausgeht, dass sich beide schneiden). So ergibt sich  $\alpha = \angle ABC = \angle ac = (\overrightarrow{BA}, \overrightarrow{BC}) = \frac{\pi}{3}$ 





Ein Winkel  $\alpha$  wird zudem immer so angegeben, dass  $\alpha \in I; I = [-\pi, \pi]$  gilt. Dies bedeutet, dass man nur Winkel zwischen 0 und 180 erhält, und das in beide "Richtungen", als im mathematisch positiven und negativen Sinn. Diese Einschränkung kennzeichnet man mit dem Ausdruck "**modulo**  $2\pi$ ".

## 5.3.2 Rechnungen mit Winkeln

Bei Berechnungen von Winkeln zwischen Vektoren geht man genau wie in der elementaren Geometrie vor. So wird die Differenz zwischen zwei Winkeln  $\theta_1$  und  $\theta_2$  wie gehabt berechnet:  $\Delta\theta = \theta_1 - \theta_2$ . Jedoch benötigt man weitere Rechenregeln, um mit Winkeln rechnen zu können.

## Theorem

Relation de Chasles:

$$(\vec{u}, \vec{w}) + (\vec{w}, \vec{v}) = (\vec{u}, \vec{v}); \quad modulo \quad 2\pi$$

Umformungen:

(1) 
$$(\vec{u}, \vec{v}) = -(\vec{v}, \vec{u})$$

$$(2) \ (-\overrightarrow{u}, -\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v})$$

(3) 
$$(\vec{u}, \vec{v}) = \pi + (-\vec{u}, \vec{v})$$

Aus der ersten und letzten dieser Relationen lässt sich analog dazu bestimmen:

(4) 
$$(\overrightarrow{u}, \overrightarrow{v}) = -(\overrightarrow{v}, \overrightarrow{u}) = \pi - (-\overrightarrow{v}, \overrightarrow{u})$$



## 5.4 Linearkombination

Vektoren lassen sich allgemein mit der additiven Verknüpfung des Vektorraums verknüpfen. Diese Verknüpfung zwischen zwei beliebigen Vektoren  $\overrightarrow{v}$  und  $\overrightarrow{u}$  erfolgt, wie auch schon im Teil Verbindungsvektor

gezeigt wird, wie folgt: 
$$\vec{v} + \vec{u} = \begin{pmatrix} v_1 + u_1 \\ v_2 + u_2 \\ \dots \\ v_n + u_n \end{pmatrix}$$
.

## Definition 5.4.0

Eine Familie von Vektoren  $\overrightarrow{a_1}, \overrightarrow{a_2}, ..., \overrightarrow{a_n} \in V$  wird als linear abhängig bezeichnet, wenn die Gleichung:  $r_1 \cdot \overrightarrow{a_1} + r_2 \cdot \overrightarrow{a_2} + ... + r_n \cdot \overrightarrow{a_n} = \overrightarrow{0}$ ;  $r_i \in \mathbb{R}$  nicht nur die triviale Lösung  $r_1 = r_2 = ... = r_n = 0$  besitzt. Existiert nur diese Lösung, ist die Familie linear unabhägig.

Anders gesagt, ist eine Familie von Vektoren linear abhängig, wenn sich einzelne Vektoren dieser Familie als Linearkombination von einer beliebigen Anzahl anderer Vektoren der Familie darstellen lassen.

## Bemerkung:

Eine linear abhängige Familie **aus genau zwei** Vektoren wird als kollinear bezeichnet. Eine linear abhängige Familie **aus genau drei** Vektoren dagegen nennt man komplanar.

## 5.5 Skalarprodukt



## Bemerkung:

Aus dieser Gleichung folgt:  $\cos(\alpha) = \frac{\vec{v} \odot \vec{u}}{|\vec{v}| \cdot |\vec{u}|}$ .

## 5.6 Kreuzprodukt

## 5.7 Geraden

## 5.7.1 Darstellungen

Eine Gerade ist ein sehr bekannter Bestandteil der elementaren Geometrie. Bezogen auf die Vektorgeometrie ist sie nichts anderes als ein unendlich langer Vektor, beziehungsweise eine Linearkombination aus unendlich vielen (identischen / kollinearen) Vektoren. Somit ergibt sich die eindeutige **Parameterform** einer Geraden  $g: g: \vec{x} = \vec{q} + s \cdot \vec{u}; s \in \mathbb{R}$ . Diese Schreibweise beschreibt die der Geraden zugehörigen Punktmenge. Der Vektor  $\vec{q}$  bestimmt die Position der Geraden im Raum und trägt folglich den Namen **Stützvektor**, wohingegen der Vektor  $\vec{u}$  die Ausrichtung der Geraden anzeigt und **Richtungsvektor** genannt wird.

## Bemerkung:

Die Parameterform ist die einzige mögliche Darstellungsform einer Geraden im  $\mathbb{R}^3$ , da ihr Normalvektor nicht eindeutig bestimmt werden kann. Im  $\mathbb{R}^2$  jedoch ist dies möglich, ähnlich wie für Kreise. Zudem kann eine Gerade in Koordinatenform durch **die Schnittmenge zweier Ebenen** beschrieben werden (siehe auch, 5.7.3 Lagebeziehungen zwischen Ebenen").



## 5.7.2 Lagebeziehungen zwischen Geraden

Es gibt bezüglich Geraden vier verschiedene Beziehungen, vorausgesetzt diese befinden sich im  $\mathbb{R}^3$ . Zwei Geraden g und h können...

## $1) \ ... \mathbf{parallel} ...$



## $2) \ ... \mathbf{identisch} ...$



3) ...windschief zueinander...



...sein oder...

## 4) ...sich schneiden



Die Lagebeziehung zwischen zwei Geraden g und h lässt sich wie folgt ermitteln:



## 5.7.3 Abstand zu einem Punkt

## Definition 5.7.3

Der **Lotfußpunkt** L einer Geraden  $g: \overrightarrow{x} = \overrightarrow{q} + t \cdot \overrightarrow{u}; t \in \mathbb{R}$  zu einem Punkt  $P \notin g$  ist definiert durch:  $\overrightarrow{LP} \odot \overrightarrow{u} = 0$ . Er ist somit der dem Punkt P am nähesten gelegenen Punkt der Gerade g und wird folglich hauptsächlich zur Abstandsberechnung genutzt.

Der Abstand von einer Geraden g zu einem Punkt P ist äquivalent zur Norm des Verbindungsvektors  $\overrightarrow{LP}$ , wobei L der Lotfußpunkt der Geraden g zu P ist. Für die Berechnung des Abstands gibt es drei

verschiedene Lösungsansätze (OHG) von denen zwei gebräuchlicher sind als der dritte.

## Orthogonalität:

Da die Norm des Verbindungsvektors gesucht wird, gilt es nun diesen eindeutig zu bestimmen. Folgender Ablauf führt zum Ziel:

1) Punkt L auf der Geraden q in Abhängigkeit des Faktors des Richtungsvektors bestimmen:

$$\overrightarrow{l} = \begin{pmatrix} q_1 + t \cdot u_1 \\ q_2 + t \cdot u_2 \\ q_3 + t \cdot u_3 \end{pmatrix}$$

2) Verbindungsvektor bestimmen:

$$\overrightarrow{LP} = \begin{pmatrix} p_1 - (q_1 + t \cdot u_1) \\ p_2 - (q_2 + t \cdot u_2) \\ p_3 - (q_3 + t \cdot u_3) \end{pmatrix}$$

3)  $\overrightarrow{LP} \odot \overrightarrow{u} = 0$  und Gleichung lösen (nach t auflösen):

$$0 = u_1 \cdot (p_1 - (q_1 + t \cdot u_1)) + u_2 \cdot (p_2 - (q_2 + t \cdot u_2)) + u_3 \cdot (p_3 - (q_3 + t \cdot u_3))$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

4) Verbindungsvektor berechnen:

$$\overrightarrow{LP} = \left(\begin{array}{c} p_1 - (q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1) \\ p_2 - (q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2) \\ p_3 - (q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3) \end{array}\right)$$

5) Norm des Verbindungsvektors berechnen:

$$\begin{split} d(g,P) &= |\overrightarrow{LP}| \\ &= \left| \left( \begin{array}{c} p_1 - (q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1) \right) \\ p_2 - (q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2) \right) \\ p_3 - (q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3) \right) \right| \\ &= \sqrt{(p_1 - (q_1 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_1))^2} \\ &+ (p_2 - (q_2 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_2))^2} \\ &+ (p_3 - (q_3 + \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2} \cdot u_3))^2 \end{split}$$

### Hilfsebene:

Diese Methode hat sich Platz zwei erkämpft:

1) Hilfsebene E bestimmen ( $\vec{n} \equiv \vec{u}$   $P \in E$ , da die Gerade g die Ebene im rechten Winkel durchstößt und der Verbindungsvektor somit orthogonal zur Geraden ist):

$$E: \vec{u} \odot [\vec{x} - \vec{p}] = 0$$
  
 
$$\Leftrightarrow u_1 x_1 + u_2 x_2 + u_3 x_3 = u_1 p_1 + u_2 p_2 + u_3 p_3$$

2) g = E und Gleichung lösen (nach t auflösen):

$$u_1(q_1 + t \cdot u_1) + u_2(q_2 + t \cdot u_2) + u_3(q_3 + t \cdot u_3) = u_1p_1 + u_2p_2 + u_3p_3$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

- 3) Siehe Schritt 4 Orthogonalität
- 4) Siehe Schritt 5 Orthogonalität

## Grenzwertberechnung:

Zu guter Letzt wollen wir die Analysis Fanatiker befriedigen:

- 1) Siehe Schritt 1 Orthogonalität
- 2) Siehe Schritt 2 Orthogonalität
- 3) Norm des Vektors in Abhängigkeit von t bestimmen:

$$|\overrightarrow{LP}| = \sqrt{(p_1 - (q_1 + t \cdot u_1))^2 + (p_2 - (q_2 + t \cdot u_2))^2 + (p_3 - (q_3 + t \cdot u_3))^2}$$

$$= \sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}$$

$$+ ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)$$

Somit ergibt sich eine Funktion f(t):

$$f(t) = \sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t} + ((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)$$

4) Tiefpunkt von f(t) berechnen:

$$f'(t) = \frac{2(u_1^2 + u_2^2 + u_3^2)t + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)}{2\sqrt{(u_1^2 + u_2^2 + u_3^2)t^2 + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3)t}} \dots \frac{1}{+((p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2)}$$

notwendige Bedingung TP:

$$f'(t) = 0$$

$$\Leftrightarrow 0 = 2(u_1^2 + u_2^2 + u_3^2)t + 2((q_1 - p_1) \cdot u_1 + (q_2 - p_2) \cdot u_2 + (q_3 - p_3) \cdot u_3$$

$$\Leftrightarrow t = \frac{u_1 \cdot (p_1 - q_1) + u_2 \cdot (p_2 - q_2) + u_3 \cdot (p_3 - q_3)}{u_1^2 + u_2^2 + u_3^2}$$

Die hinreichende Bedingung ist nicht zu prüfen, sie gilt (der Minimalabstand existiert immer), und die Art des Extremwerts ist ebenfalls vorbestimmt, da der Verbindungsvektor unendlich lang wird wenn man den Lotfußpunkt in beide Richtungen entlang der Geraden verschiebt.

- 5) Siehe Schritt 4 Orthogonalität
- 6) Siehe Schritt 5 Orthogonalität

## Bemerkung:

Wie sich unschwer erkennen lässt, sind die Formeln für die Berechnung von t bei allen drei Lösungsansätzen identisch. Die Methoden unterscheiden sich somit nur am Anfang voneiander.

## Bemerkung:

Zur Abstandsberechnung gibt es eine allgemeine Formel, welche die oben aufgelisteten Vorgehensweisen überflüssig macht. Da sie für das Abitur allerdings nicht zugelassen ist, wird sie hier nicht bewiesen beziehungsweise graphisch ergänzt:  $d(g,P) = \frac{|\overrightarrow{u} \times \overrightarrow{QP}|}{|\overrightarrow{u}|}$ .

### 5.7.4 Abstand zweier Geraden

Zwei nicht sich schneidende oder identische Geraden haben einen **eindeutig definierten Minimal-abstand**. Bei zwei parallelen Geraden ist dies einfach zu visualisieren, der Abstand zweier windschiefer Geraden jedoch weniger. Im Folgenden sollen beide Fälle untersucht werden.

### Parallele Geraden:

Der Abstand zweier paralleler Geraden g und h entspricht genau dem Abstand eines Punktes  $P \in g \lor P \in h$  zur jeweiligen gegenüberliegenden Geraden. Somit genügt es den Abstand zwischen zwischen dem Stützpunkt einer Geraden und der anderen zu berechnen.

### Windschiefe Geraden:

Der minimale Abstand zweier windschiefer Geraden lässt sich mithilfe einer **Hilsebene** verbildlichen und bestimmen. Gegeben seien zwei Geraden  $g: \vec{x} = \vec{p} + r \cdot \vec{u}; r \in \mathbb{R}$  und  $h: \vec{x} = \vec{q} + s \cdot \vec{v}; s \in \mathbb{R}$ . Daraus folgt, dass:  $E: \vec{x} = \vec{p} + r \cdot \vec{u} + s \cdot \vec{v} \vee E: \vec{x} = \vec{q} + r \cdot \vec{u} + s \cdot \vec{v}; s, r \in \mathbb{R}$ . Somit ergibt sich eine Ebene, welche entweder die Gerade g oder h enthält und parallel zur anderen ist. Der Minimalabstand ist äquivalent zum Abstand zwischen einem Punkt der Geraden, die nicht in der Ebene enthalten ist, und der Ebene. Für die genaue Vorgehensweise von diesem Punkt aus empfiehlt es sich sich den Teil "Abstand zu einem Punkt" unter Ebenen zuzuwenden.

## Bemerkung:

Zur Berechnung des Abstands zweier windschiefer Geraden gibt es zudem eine Formel, welche zugleich das Ergebnis des Skalarprodukts veranschaulicht. Aus zwei Geraden

$$g: \overrightarrow{x} = \overrightarrow{p} + r \cdot \overrightarrow{u}; r \in \mathbb{R}$$
 und  $h: \overrightarrow{x} = \overrightarrow{q} + s \cdot \overrightarrow{v}; s \in \mathbb{R}$ 

lässt sich mit dem Kreuzprodukt ein normierter Normalenvektor  $n_0$  zu beiden Richtungsvektoren  $\vec{u}$  und  $\vec{v}$  errechnen, den man mit dem Verbindungsvektor der beiden Ortsvektoren  $(\vec{q} - \vec{p})$  zur Minimalabstandsberechnung der beiden Geraden skaliert:

$$d(g,h) = |n_0 \odot (\overrightarrow{q} - \overrightarrow{p})| = |\frac{\overrightarrow{u} \times \overrightarrow{v}}{|\overrightarrow{u} \times \overrightarrow{v}|} \odot (\overrightarrow{q} - \overrightarrow{p})|$$

## 5.8 Ebenen

## 5.8.1 Darstellungen

Die Darstellung einer Ebene beinhaltet immer die gleichen Informationen: Ihre Position im Raum und ihre Ausrichtung:

| Name            | Darstellung                                                                                                                        |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Parameterform   | $E: \overrightarrow{x} = \overrightarrow{p} + s \cdot \overrightarrow{u} + t \cdot \overrightarrow{v}; \qquad s, t \in \mathbb{R}$ |
| Normalenform    | $E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} = 0$                                                        |
| Koordinatenform | $E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;  d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3$                         |

Die erste bei Geraden bereits eingeführte Form ist leicht zu verstehen. An den Stützvektor setzt man anschließend einen zweiten Richtungsvektor; die beiden Vektoren werden **Spannvektoren** genannt, da sie gemeinsam die Ebene aufspannen. Da man sich über diese beliebig in zwei Dimensionen bewegen kann, ist jeder Punkt in einer Ebene erreichbar. Bei der Bildung der Ebene muss man beachten, dass die Spannvektoren **nicht kollinear** sind. In diesem Fall erhält man wieder eine Gerade.



Die Normalenform und Koordinatenform sind weitaus weniger intuitiv und erfordern eine genauere Erklärung. Sie lässt sich zudem leichter anhand einer Graphik erklären:



Somit ist jeder Punkt  $X \in E$ , wenn der Verbindingsvektor  $(\vec{x} - \vec{q})$  orthogonal zum Vektor  $\vec{n}$  ist. Dabei spielt die Position des sogenannten **Normalenvektors** keine Rolle, ebenso wenig wie seine Norm. Allein seine Ausrichtung bestimmt die der Ebene. Um die Position im Raum genau zu bestimmen, benötigt man zudem einen Punkt  $Q \in E$ . Diese zusätzliche Information schließt alle anderen parallelen Ebenen aus, die durch einen kollinearen Normalenvektor defniert sind.

Aus der Normalenform lässt sich die Koordinatenform ableiten. Man macht häufiger Gebrauch von letzterer, da sich leichter mit ihr rechnen lässt. Man bildet sie wie folgt:

$$\begin{split} E: (\overrightarrow{x} - \overrightarrow{q}) \odot \overrightarrow{n} &= 0 \\ \Leftrightarrow E: \overrightarrow{x} \odot \overrightarrow{n} &= \overrightarrow{q} \odot \overrightarrow{n} \\ \Leftrightarrow E: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 &= d; \quad d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \end{split}$$

### Bemerkung:

Ebenen lassen sich auch mittels **Spurpunkten** und **Spurgeraden** lokalisieren. Spurpunkte sind die der Achsen des Koordinatensystems, welche in der Ebene enthalten sind. Aus diesen lassen sich

anschließend die Spurgeraden bilden (durch Verbinden der Punkte). Folgende Möglichkeiten bieten sich an:

- 1) 3 Spurpunkte
- 2) 2 Spurpunkte  $\Rightarrow E \parallel \overrightarrow{x_1} \lor E \parallel \overrightarrow{x_2} \lor E \parallel \overrightarrow{x_3}$
- 3) 1 Spurpunkt  $\Rightarrow E \parallel E_{x_1x_2} \vee E \parallel E_{x_2x_3} \vee E \parallel E_{x_1x_3}$
- 4) Ausnahme des vorherigen Falls:  $P \equiv O \Rightarrow$  Ausrichtung von E lässt sich nicht bestimmen
- 5)  $\infty$  Punkte  $\Rightarrow$  Eine der Achsen des Koordinatensystems  $\in E$ , Ausrichtung von E lässt sich nicht bestimmen
- 6)  $\infty, \cdot 2^{\circ}$  Punkte  $\Rightarrow E \equiv E_{x_1x_2} \lor E \equiv E_{x_2x_3} \lor E \equiv E_{x_1x_3}$

Drei beziehungsweise zwei (falls man Normalenform und Koordinatenform als eine ansieht) verschiedene Darstellungsweisen sind zwar interessant und eine nicht ganz unwichtige Überlegung, jedoch scheint das auf den ersten Blick unnütz. Im Laufe dieser section wird sich der jeweilige Nutzen noch offenbaren. Dann wird einem auch deutlich, dass es manchmal von Vorteil sein kann die Formen umzuformen. Die Herangehensweisen für jede Umformung unterscheiden sich nur wenig voneiander, Folgendes Diagramm stellt eine Möglichkeit vor:



- 1) Siehe oben
- 2)  $\vec{n}$  aus den einzelnen Faktoren herausarbeiten  $\wedge$  Per Punktprobe (Koordinaten einsetzen) einen Punkt Q von E ermitteln
- 3)  $\overrightarrow{n}$  mittels Kreuzprodukt ermitteln  $\wedge$  Stützpunkt P als Punkt Q einsetzen
- 4) Zwei Punkte  $U, V \not\equiv Q$  von E ermitteln  $\land Q$  als Stützpunkt  $P \land (\vec{u} \vec{q})$  und  $(\vec{v} \vec{q})$  als Spannvektoren einsetzen
- 5) Siehe 4 (gleiches Prinzip)
- 6) Siehe 3 (gleiches Prinzip) \(\times\) Skalarprodukt "ausmultiplizieren"

### 5.8.2 Lagebeziehungen zwischen Ebenen und Geraden

Ebenen und Geraden können im Gegensatz zu zwei Geraden nur eine von den drei folgenden Beziehungen zueinander haben. Eine Ebene E und eine Gerade g können...

1) ...parallel...



...sein oder...

## $2) \ ... {\bf sich \ schneiden}$



Zudem kann g...

## 3) ...in E liegen



Die Lagebeziehung zwischen einer Ebene E und einer Geraden g lässt sich wie folgt ermitteln:



## 5.8.3 Lagebeziehungen zwischen Ebenen

Ebenen teilen bezüglich ihrer Lage zue<br/>inander eine Eigenschaft mit einer Ebene und einer Geraden. Zwei Ebene<br/>n $E_1$ und  $E_2$ können ebenfalls:

1) ...parallel...



## 2) ...identisch



...sein oder...

## 3) ...sich schneiden



Die Lagebeziehung zwischen zwei Ebenen  $E_1$  und  $E_2$  lässt sich wie folgt ermitteln:



Für die Berechnung der Schnittgeraden gibt es unterschiedliche Ansätze abhängig von der Ausgangssituation, welche durch die zwei möglichen Darstellungsweisen von Ebenen bedingt sind. Drei mögliche Fälle können auftreten:

- 1)  $E_1: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$   $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3 \wedge E_2: n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3 = d;$   $d = n_1 \cdot q_1 + n_2 \cdot q_2 + n_3 \cdot q_3$
- $2) \ E_1: \underline{n_1} \cdot x_1 + \underline{n_2} \cdot x_2 + \underline{n_3} \cdot x_3 = d; \quad d = \underline{n_1} \cdot q_1 + \underline{n_2} \cdot q_2 + \underline{n_3} \cdot q_3 \ \land \ E_2: \overrightarrow{x} = \overrightarrow{p} + s \cdot \overrightarrow{u} + t \cdot \overrightarrow{v}; \quad s, t \in \mathbb{R}$
- 3)  $E_1: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R} \land E_2: \vec{x} = \vec{p} + s \cdot \vec{u} + t \cdot \vec{v}; \quad s, t \in \mathbb{R}$

- 5.8.4 Winkel zwischen Ebenen (und Geraden)
- 5.8.5 Abstand zu einem Punkt
- 5.9 Kreise und Kugeln
- 5.9.1 Kreise
- 5.9.2 Kugeln
- 5.10 Spatprodukt
- 5.11 Dyadisches Produkt
- 5.12 Sätze
- 5.12.1 Der Satz des Apollinius

## Definition 5.12.1

Gegeben sind: Eine Strecke [AB] und eine positive Zahl  $\lambda \in \mathbb{R}^+ \setminus \{1\}$ . Dann ist die Punktmenge

$$M_A = \{X | \frac{\overline{AX}}{\overline{XB}} = \lambda\}$$

ein Kreis, den man **Kreis des Apollinius** nennt. Anschaulich:



Der Satz besagt also, dass alle Punkte X deren Abstände zu A  $(\overline{AX})$  und zu B  $(\overline{XB})$  im Verhältnis  $\lambda$  stehen, auf einem Kreis liegen.

Beweis: Anfangen kann man den den Beweis damit, dass man zwei Punkte sucht, die die Bedingung erfüllen und auf der Geraden AB liegen. Logisch ist, dass einer dieser Punkte zwischen A und B sein wird, dieser wird innerer Teilungspunkt  $T_i$  genannt. Der andere Punkt liegt außerhalb der Strecke [AB] und wird äußerer Teilungspunkt  $T_a$  genannt.

Im letzten Schritt des Beweises wird man anhand des Skalarprodukts zeigen, dass für alle Punkte X, die ebenfalls die Verhältnisgleichung erfüllen, die Vektoren  $\overline{T_iX}$  und  $\overline{T_aX}$  orthogonal zueinander sind. Somit liegen diese Punkte auf dem Thaleskreis (frz.: Theoreme du triangle rectangle) über  $T_i$  und  $T_a$ , der dann **Apolliniuskreis** genannt wird.

1. Um uns die Arbeit so einfach wie möglich zu machen, platzieren wir unseren ersten Punkt A auf den Ursprung eines Koordinatensystems und die Strecke [AB] entlang der x-Achse. Der Punkt B hat den Abstand  $\overline{AB}$  zu A, den man b abkürzt. Gleichermaßen verfährt man mit den Längen  $\overline{AT_i} = t_i$  und  $\overline{AT_a} = t_a$ , und man führt den Punkt X(x|y) ein. Hier nochmal ein Überblick:

$$\triangleright A(0|0) \qquad \triangleright B(b|0) \qquad \triangleright T_i(t_i|0) \qquad \triangleright T_a(t_a|0) \qquad \triangleright X(x|y)$$

2. Nun gilt:

$$\frac{\overline{AT_i}}{\overline{T_iB}} = \lambda$$
 und  $\frac{\overline{AT_a}}{\overline{T_aB}} = \lambda$ 

Das benutzt man, um die Koordinaten  $t_i$  und  $t_a$  in Abhängigkeit von b und  $\lambda$  auszudrücken, denn diese Punkte sind ja durch das Verhältnis  $\lambda$  in der Ebene festgelegt.

$$\frac{\overline{AT_i}}{\overline{T_iB}} = \lambda \qquad \qquad \frac{\overline{AT_a}}{\overline{T_aB}} = \lambda$$

$$\Leftrightarrow \frac{t_i}{b-t_i} = \lambda \qquad \qquad \Leftrightarrow \frac{t_a}{t_a-b} = \lambda$$

$$\Leftrightarrow t_i = \lambda \cdot b - \lambda \cdot t_i \qquad \Leftrightarrow t_a = \lambda \cdot t_a - \lambda \cdot b$$

$$\Leftrightarrow \lambda \cdot t_i + t_i = \lambda \cdot b \qquad \Leftrightarrow \lambda \cdot t_a - t_a = \lambda \cdot b$$

$$\Leftrightarrow (\lambda+1) \cdot t_i = \lambda \cdot b \qquad \Leftrightarrow (\lambda-1 \cdot) t_a = \lambda \cdot b$$

$$\Leftrightarrow t_i = \frac{\lambda}{\lambda+1} \cdot b \qquad \Leftrightarrow t_a = \frac{\lambda}{\lambda-1} \cdot b$$
Jetzt wo wir  $T_i$  und  $T_a$  in Abhängigkeit von  $b$  und  $\lambda$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  und  $b$  bestimmt haben, kann man die Vorrent von  $b$  von

3. Jetzt wo wir  $T_i$  und  $T_a$  in Abhängigkeit von b und  $\lambda$  bestimmt haben, kann man die Vorraussetzung auch noch auf den Punkt X anwenden.

$$\frac{AX}{\overline{XB}} = \lambda$$

$$\Leftrightarrow (\frac{AX}{\overline{XB}})^2 = \lambda^2$$

$$\Leftrightarrow \frac{(AX)^2}{(\overline{XB})^2} = \lambda^2$$

$$\Leftrightarrow \frac{x^2 + y^2}{(x - b)^2 + y^2} = \lambda^2$$

$$\Leftrightarrow x^2 + y^2 = \lambda^2[(x - b)^2 + y^2]$$

$$\Leftrightarrow x^2 + y^2 = \lambda^2 \cdot (x - b)^2 + \lambda^2 y^2 - x^2 - y^2$$

$$\Leftrightarrow 0 = x^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2$$

$$\Leftrightarrow 0 = x^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2$$

$$(1)$$

4. Bevor man zum Ende kommt, kann man noch die Ergebnisse aus 2) benutzen, um  $t_i$  und  $t_a$  miteinander zu verrechnen, denn diesen Zusammenhang braucht man gleich.

$$t_{i} + t_{a} = \frac{\lambda}{\lambda + 1} \cdot b + \frac{\lambda}{\lambda - 1} \cdot b = (\frac{\lambda}{\lambda + 1} + \frac{\lambda}{\lambda - 1}) \cdot b = \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot 2b$$

$$t_{i} \cdot t_{a} = \frac{\lambda}{\lambda + 1} \cdot b \cdot \frac{\lambda}{\lambda + 1} \cdot b = \frac{\lambda^{2}}{\lambda^{2} - 1} \cdot b^{2}$$
(3)

5. Nun kommt der finale Schritt. Man bildet die Vektoren  $\overrightarrow{T_iX} = \begin{pmatrix} x - t_i \\ y \end{pmatrix}$  und  $\overrightarrow{T_aX} = \begin{pmatrix} x - t_a \\ y \end{pmatrix}$  und berechnet deren Skalarprodukt. \* TROMMELWIRBEL\*

$$\overrightarrow{T_iX} \cdot \overrightarrow{T_aX} = (x-t_i) \cdot (x-t_a) + y^2$$

$$= x^2 - (t_i + t_a)x + t_i \cdot t_a + y^2 \qquad \text{Benutze (2) und (3)}$$

$$= x^2 - \frac{\lambda^2}{\lambda^2 - 1} \cdot 2bx + \frac{\lambda^2}{\lambda^2 - 1} \cdot b^2 + y^2$$

$$= \frac{x^2 \cdot (\lambda^2 - 1) - 2bx \cdot \lambda^2 + b^2 \cdot \lambda^2 + y^2 \cdot (\lambda^2 - 1)}{\lambda^2 - 1}$$

$$= \frac{x^2 \cdot \lambda^2 - 2bx \cdot \lambda^2 b^2 \cdot \lambda^2 + y^2 \cdot \lambda^2 - x^2 - y^2}{\lambda^2 - 1} \qquad \text{Benutze (1)}$$

$$= 0$$

Damit hat man bewiesen, dass für alle Punkte X die Vektoren  $\overrightarrow{T_iX}$  und  $\overrightarrow{T_aX}$  orthogonal zueinander sind, weshalb sie auf dem Thaleskreis über  $T_i$  und  $T_a$  liegen müssen.

Die Figur und die Zusammenhänge, die man durch den Satz des Apollinius erhalten hat, kann man benutzen, um ein wenig mit Winkeln zu spielen:



Auf dieser Skizze sind 10 Winkel gekennzeichnet, zu welchen sich eine ganze Reihe von Beziehungen aufstellen lässt:

$$\triangleright \alpha + \beta + \gamma = 180 \quad \triangleright \beta + \gamma_2 + \delta_2 = 180 \quad \triangleright \delta_1 + \delta_2 = 180 \quad \triangleright \alpha + \gamma + \epsilon + \zeta = 180 \quad \triangleright \epsilon + \zeta + \eta = 180 \\ \triangleright + \gamma_1 + \delta_1 = 180 \quad \triangleright \gamma_1 + \gamma_2 = \gamma \quad \triangleright \gamma_2 + \epsilon = 90 \quad \triangleright \beta + \eta = 180 \quad \triangleright \gamma_2 + \delta_2 + \epsilon + \zeta = 180$$

Hiermit bekommt man ein zehndimensionales Gleichungssystem mit dem sich  $\gamma_1 = \gamma_2$  zeigen lässt. Dies bedeutet dass die Gerade  $T_iX$  auch noch die Winkelhalbierende des Winkels  $\gamma = \angle AXB$  ist:

## Definition 5.12.1

Eine Innenwinkelhalbierende eines Dreiecks teilt die gegenüberliegende Seite im Verhältnis der Anliegenden Seiten.  $\gamma_1 = \gamma_2 \Rightarrow \overline{AT_i} : \overline{T_iB} = \overline{AX} : \overline{XB}$ 



Quelle (Apollinus): Tobias Rave, 06.03.18, Skript 1ere SBC S.68-71

# KOMPLEXE ZAHLEN

## 6.1 Einführung

<u>Problem:</u> Es gibt algebraische Gleichungen, die in der Menge der reellen Zahlen  $\mathbb{R}$  keine Lösung besitzen.

$$\Rightarrow x^2 + 1 = 0$$
  
 $\Leftrightarrow x = \sqrt{-1}$  Keine Reelle Lösung!

Es kann hierbei ein neues Symbol eingeführt werden :  $i = \sqrt{-1}$ Damit kann man der obigen Gleichung die Lösung x = i zuordnen

Wenn wir voraussetzen, dass diese neue Zahlen nach denselben Rechengesetzen genügen, wie die reellen Zahlen, erhalten wir damit auch Lösungen für andere bisher nicht lösbare quadratische Gleichungen, wie das folgende Beispiel zeigt:

$$\Rightarrow x^2 + 2x + 5 = 0$$

$$\Rightarrow x = \frac{-2\sqrt{16*(-1)}}{2\sqrt{4-20}} = \frac{-24i}{2} = -12i$$

## Bemerkung:

Bezeichnungen

- 1. Der Ausdruck  $\sqrt{-1}$  heißt **imaginäre Einheit** und wird hier mit i bezeichnet.
- 2. Ausdrücke der Form  $i \cdot y$  mit  $y \in \mathbb{R}$  heißen imaginäre Zahlen
- 3. Ausdrücke der Form z=x+i\*y mit  $x,y\in\mathbb{R}$  werden als **Komplexe Zahlen** bezeichnet
- 4. Ist z = x + i \* y eine Komplexe Zahl, so heißen x = Re(z) Realteil von z y = Im(z) Imaginärteil von z
- 5. Die Menge  $\mathbb{C}=\{z=x+jy|x,y\in\mathbb{R}\}$  wird als Menge der Komplexen Zahlen bezeichnet

## Bemerkung:

Aber

Der Imaginärteil y einer komplexen Zahl z = x + i \* y ist selbst eine reelle Zahl! Der Imaginärteil ist lediglich der Faktor bei i!

## 6.2 Darstellung komplexer Zahlen

Eine komplexe Zahl wird durch zwei reelle Zahlen charakterisiert. Wie bei zweidimensionalen Vektoren brauchen wir hier zur geometrischen Veranschaulichung auch eine zweidimensionale Ebene.

## 6.2.1 Kartesische Darstellung

Jeder komplexen Zahl z = x + i \* y entspricht genau ein Punkt P = (x, y) in der komplexen Zahlenebene und umgekehrt.



Bemerkung: Bezeichnungen

- 1. Die komplexe Zahlenebene nennt sich auch Gaußsche- Zahlenebene
- 2. Hier werden die Achsen des Koordinatensystems als **reelle Achse** bzw. **imaginäre Achse** bezeichnet.

 $\frac{\text{Bemerkung:}}{\text{Beispiel}}$ 

Die folgenden komplexen Zahlen sind in der Gaußschen Zahlenebene darzustellen:  $z_1=2+3*j$   $z_2=-3-j$  (i wird hier j genannt)



 $\frac{\text{Bemerkung:}}{\text{Bemerkungen}}$ 

Für manche Anwendungen ist es hilfreich, eine komplexe Zahl nicht als Punkt P = (x, y) in der Gaußschen Zahlenebene zu veranschaulichen, sondern stattdessen den Ortsvektor zu betrachten

$$z = x + j * y \Leftrightarrow z = \begin{pmatrix} x \\ y \end{pmatrix}$$



In diesem Fall spricht man von z als einem komplexen Zeiger.

## 6.2.2 Polarkoordinatendarstellung

Neben der eben eingeführten kartesischen Darstellung z = x + j \* y kann eine komplexe Zahl auch entsprechend der hier stehenden Skizze dich ihren Radius und den Winkel eindeutig festgelegt werden.



 $\frac{\text{Bemerkung:}}{\text{Erinnerung}}$ 

Zusammenhang zwischen den Koordinaten P(x, y) und  $P(r, \varphi)$ :

$$\begin{pmatrix} x = r * cos(\varphi) \\ y = r * sin(\varphi) \end{pmatrix} \text{ bzw. } \begin{pmatrix} r = \sqrt{x^2 + y^2} \\ tan(\varphi) = \frac{y}{x} \end{pmatrix}$$

Bemerkung: Bemerkung

Der Zusammenhang zwischen dem Quotienten  $\frac{x}{y}$  und dem Winkel  $\varphi \in [0, 2\pi)$  eindeutig, da die Tangensfunktion -periodisch ist.

Damit erhält man die trigonometrische Darstellung:

$$z = x + j * y = r * cos(\varphi) + j * r * sin(\varphi) \Rightarrow z = r(cos(\varphi) + j * sin(\varphi))$$

Dieser Ausdruck von z wird im Folgenden sehr häufig auftreten. Deshalb wird dafür die Abkürzung

$$e^{j\varphi} = \cos(\varphi) + j * \sin(\varphi)$$

ein. Somit ergibt sich schließlich eine sehr kompakte Darstellung, die sogenannte **Exponentialdarstellung** einer komplexen Zahl:

$$z = r(\cos(\varphi) + r * j * \sin(\varphi)) = r * e^{j\varphi}$$

Bemerkung:

Zusammenfassung

Eine komplexe Zahl lässt sich auf verschiedene Arten darstellen:

- 1. z = x + j \* y (kartesische Darstellung)
- 2.  $z = (\cos(\varphi) + j * \sin(\varphi))$  (trigonometrische Darstellung)
- 3.  $z = r * e^{j\varphi}$  (Exponential-Darstellung)

## 6.2.3 Umrechnung zwischen den Darstellungen

| Kar | oitel | 7 |
|-----|-------|---|
| ~,  |       | • |

# STATISTIK UND WAHRSCHEINLICHKEIT

dsfdfs

## 7.1 Hypothesentests

Nur ein Test zur GH Kompabilituf OSX Geräten  $\gamma_{\mathbf{a}}$ 

| $Kapitel\ 8$ |  |
|--------------|--|
| ARITHMETIK   |  |

## Matrizen

## 9.1 Lineare Gleichungssysteme und Gaußalgorythmus

Lineare Gleichungssysteme lassen sich aufwendig mit Einsetzungsverfahren oder Additionsverfahren lösen, Carl Friedrich Gauß (1777-1855) hat ein "Algorythmus" erfunden, mit dem sie sich ohne Taschenrechner leicht und relativ schnell lösen lassen.

Am Besten wird dieser mit einem Beispiel Erläutert:

$$\Rightarrow \begin{cases} 4x + 3y + z &= 13 & (1) \\ 2x - 5y + 3z &= 1 & (2) \\ 7x - y - 2z &= -1 & (3) \end{cases}$$
  $\{ 1 \cdot (1) - 2 \cdot (2) \} \text{ und } \{ 7 \cdot (1) - 4 \cdot (3) \}$   $D = \mathbb{R}^3$ 

Hier versucht man in Zeile (2) und (3) die erste Variabel zu eliminieren

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5z &= 11\\ 0x + 25y + 15z &= 95 \end{cases} \left\{ \begin{array}{ll} 25 \cdot (2) - 13 \cdot (3) \end{array} \right\}$$

Jetzt versucht man die zweite Variabel in der dritten Gleichung zu eliminieren

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5z &= 11\\ 0x + 0y - 320z &= -960 & \Leftrightarrow z = 3 \end{cases}$$

Jetzt wird eingesetzt

$$\Leftrightarrow \begin{cases} 4x + 3y + z &= 13\\ 0x + 13y - 5 \cdot 3 &= 11\\ 0x + 0y + z &= 3 \end{cases} \Leftrightarrow y = 2$$

$$\Leftrightarrow \begin{cases} x + 0y + 0z = 1\\ 0x + y + 0z = 2\\ 0x + 0y + z = 3 \end{cases}$$

 $\mathbb{L} = \{(1|2|3)\}$  Die Lösungsmenge wird als n-Tupel alphabetisch sortiert.

## 9.2 LGS mit dem Taschenrechner lösen

Ein lineares Gleichungssystem lässt sich sehr viel schneller mit dem Taschgenrechner lösen:

Kapitel 9. Matrizen Skript SMP

$$\Rightarrow \left\{ \begin{array}{rcl} 4x+3y+z&=&13\\ 2x-5y+3z&=&1\\ 7x-y-2z&=&-1 \end{array} \right.$$

Hierfür geht man beim Taschenrechner auf [matrix] und auf [edit]. Dann gibt man seine Matrix (hier als Beispiel) ein:

$$\Rightarrow \left| \begin{array}{cccc} 4 & 3 & 1 & 13 \\ 2 & -5 & 3 & 1 \\ 7 & -1 & -2 & -1 \end{array} \right|$$

Dann geht man wieder in den rechnen-Modus und gibt ein: [matrix], dann geht man auf [math], [rref]. dann geht man nochmal auf [matrix], [A] (die gerade bearbeitete Matrix):

$$\Rightarrow \left| \begin{array}{ccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{array} \right| \qquad \Rightarrow \mathbb{L} = \{(1|2|3)\}$$

Wenn Werte mit Kommazahlen drankommen, ist es ntzlich, im Taschenrechner [Math] + [1](Frac) einzugeben, um sich die Werte in Brchen anzeigen zu lassen.

## ALGORITHHMIK

## 10.1 Algorithmen und Programmierung

## Definition 10.1.0

Algorithmen besitzen die folgenden charakteristischen Eigenschaften:

- 1. Eindeutigkeit: ein Algorithmus darf keine widersprüchliche Beschreibung haben. Diese muss eindeutig sein.
- 2. Eindeutigkeit: ein Algorithmus darf keine widersprüchliche Beschreibung haben. Diese muss eindeutig sein.
- 3. Ausführbarkeit: jeder Einzelschritt muss ausführbar sein.
- 4. Finitheit (= Endlichkeit): die Beschreibung des Algorithmus muss endlich sein.
- 5. Terminierung: nach endlich vielen Schritten muss der Algorithmus enden und ein Ergebnis liefern.
- 6. Determiniertheit: der Algorithmus muss bei gleichen Voraussetzungen stets das gleiche Ergebnis liefern.
- 7. Determinismus: zu jedem Zeitpunkt der Ausführung besteht höchstens eine Möglichkeit der Fortsetzung. Der Folgeschritt ist also eindeutig bestimmt.

Diese Eigenschaften können in der Mathematik genutzt werden, um Probleme zu lösen. Hierfür bedarf es einer einheitlichen Schreibweise.

Insbesondere vor dem Abitur stehen den Schülern mehrere Möglichkeiten zur Verfügung, die im Folgenden behandelt werden.

### 10.1.1 Pseudocode

Pseudocode ist ein Programmcode, der nicht zur maschinellen Interpretation, sondern lediglich zur Veranschaulichung eines Algorithmus dient. Meistens ähnelt er höheren Programmiersprachen, gemischt mit natürlicher Sprache und mathematischer Notation.

Ein Beispiel erübrigt sich.

### 10.1.2 Python

Programmiersprache, bekannt durch ihre einfach verständliche Syntax, sie gilt als höhere Sprache, was sie zu einer auf die (gesprochene) Sprache angepasste Sprache macht. Sie ist somit gerade für Einsteiger interessant und eignet sich dennoch für größere Projekte. Ein weiterer Vorteil ist die mitllerweile allgegenwärtige Präsenz der Sprache, mittlerweile wird sie auch für Apps und Webdeveloppement verwendet.

Er ist leichter verständlich als realer Programmcode aber klarer und weniger missverständlich als eine Beschreibung in natürlicher Sprache.

### **Syntax**

Folgendes macht die Syntax Pythons aus:

- 1. gute Lesbarkeit des Quellcodes
- 2. englische Schlüsselwörter
- 3. wenig syntaktische Konstruktionen

### Funktionsweise

Python verwendet Schleifen und Verzweigungen.

```
#Schleifen:
for: #(Wiederholung ueber Elemente einer Sequenz (Zahl, Liste, Zeit...))
   #Inhalt der Schleife
while: #(Wiederholung, solange ein logischer Ausdruck wahr ist)
   #Inhalt der Schleife

#Verzweigungen:
if: #(prueft,ob ein logischer Ausdruck wahr ist)
   #Inhalt der Verzweigung
elif: #(prueft,ob ein anderer logischer Ausdruck wahr ist)
   #Inhalt der Verzweigung
else: #(letzter Fall, tritt ein, wenn keine der obigen Bedingungen erfuellt wurde)
   #Inhalt der Verzweigung
```

## Beispiel

Man nehme den Algorithmus, der die Fibonacci-Sequenz bis zum n-ten Glied generiert:

```
a = 0
b = 1
n = 10
for iteration in range(n):
    print(a)
    a = a+b
    b = a-b
```

## 10.2 Algorithmen und mathematische Anwendungen

### 10.2.1 Iterationsverfahren

Unter Iteration versteht man ein Verfahren zur schrittweisen Annäherung an die Lösung einer Gleichung unter Anwendung eines sich wiederholenden Rechengangs. Das bedeutet, (wenn es möglich ist) aus einer Näherungslösung durch Anwenden eines Algorithmus zu einer besseren Näherungslösung zu kommen und

die Lösung beliebig gut an die exakte Lösung heranzuführen. Man sagt dann, dass die Iteration konvergiert. Beispiele für Verfahren dieser Art werden im Folgenden behandelt.

### Newton-Rhapson Verfahren

Das Newton-Rhapson Verfahren, auch bekannt als Newtonmethode dient der Nullstellenbestimmung komplexer Polynome und allgemein jeder differenzierbaren Funktion.

Die Grundidee ist, die Nullstelle der Tangente an der Stelle  $x_0$  von f zu nehmen und den Vorgang mit  $f(NS_T)$  zu wiederholen.

Eine mögliche Umsetung in Python wäre:

```
def fx(x):
    return 3*x**3+5x**2+3  #beliebige Funktion (muss angegeben werden)

def f_strich(x):
    return 9*x**2+10*x  #muss auch manuell angegeben werden

def NS_Tangente(x):
    NS_T = x - fx(x)/f_strich(x)
    return NS_T

Startwert=1
    altwert = NS_Tangente(Startwert)
    Genauigkeit = 0.00001

while abs(altwert-NS_Tangente(altwert))>Genauigkeit:
    altwert=NS_Tangente(altwert)
print(altwert)
```

### Heron-Verfahren

Es handelt sich hierbei um eine vereinfachte Version des Newton-Rhapson Verfahrens, da es zur Berechnung einer Näherung der Quadratwurzel einer reellen Zahl a > 0 dient.

Man erhält das gewünschte Ergebnis durch die Berechnung der Nullstelle einer Funktion  $f(x) = x^2 - a$ . Es gilt also: f'(x) = 2x.

Durch die Verwendung des Newton-Rhapson Verfahrens erhält man die Iterationsvorschrift:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Leftrightarrow x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{x_n^2 + a}{2x_n} = \frac{1}{2}(x_n + \frac{a}{x_n})$$

Als kluger, ungefähr zutreffender Startwert gilt  $x_0 = \frac{a+1}{2}$ 

Eine mögliche Umsetung in Python wäre:

```
a=2  #Muss manuell angegeben werden
def fx(x):
    return x**2-a

def f_strich(x):
    return 2*x

def next_val(wert):
    return 0.5*(wert+(a/wert))
```

```
Startwert=(a+1)/2
altwert = next_val(Startwert)
Genauigkeit = 0.00001

while abs(altwert-next_val(altwert))>Genauigkeit:
    altwert=next_val(altwert)
print(altwert)
```

## INTEGRALE

## 11.1 Einführung

Der Hauptunterschied zwischen einem bestimmten und einem unbestimmen Integral ist die Existenz (bestimmtes Integral) bzw. das Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

Bei einem bestimmten Integral ist die Lösung ein Flächeinhalt, also ein einfacher Zahlenwert.

Bei einem unbestimmten Integral erhält man als Lösung eine Funktion, eine sogenannte Stammfunktion.

## 11.2 Bestimmte Integrale

### Definition 11.2.0

Wenn Integralgrenzen angegeben werden, handelt es sich um ein bestimmtes Integral:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} U_{n} = \lim_{n \to \infty} s_{n}$$

$$= \lim_{n \to \infty} O_{n} = \lim_{n \to \infty} S_{n}$$

$$= \lim_{n \to \infty} \frac{b - a}{n} \sum_{k=1}^{n} f(\frac{b - a}{n}k)$$
So und  $O_{n}$  begains and  $O_{n}$  begains and  $O_{n}$  begains  $O_{n}$ 

 $S_n$  und  $O_n$  bezeichnen die Öbersumme, wohingegen  $s_n$  und  $U_n$  die Untersumme bezeichnen.

### Bemerkung:

a und b bezeichnen jeweils die untere und obere Grenze des zu berechnenden Integrals. Sie bezeichnen anschaulich die x-Werte, zwischen denen die Fläche berechnet wird.

### Bemerkung:

 $\overline{\text{Im allgemeinen Fall muss der Integrand } f(x) \text{ im Intervall } [a; b] \text{ stetig sein, damit das Integral bestimmt}$ 

## 11.3 Stammfunktionen und der Hauptsatz der Differential- und Integralrechnung

### Definition 11.3.0

Eine Funktion F heißt Stammfunktion der Funktion f, wenn F'(x) = f(x) gilt.

Ist F irgendeine Stammfunktion von f, dann ist auch F(x) + C (mit konstantem C) eine Stammfunktion, denn beim Ableiten fällt C als konstanter Summand weg. Jede Funktion hat also unendlich viele Stammfunktionen, die sich aber nur um einen konstanten Summanden unterscheiden.

Kapitel 11. Integrale Skript SMP

## 11.3.1 Sätze über Integrale

| Theorem                                                        |                                      |
|----------------------------------------------------------------|--------------------------------------|
| $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$                   | Invertieren der Intergrationsgrenzen |
| $\int_a^b (f(x) + g(x))dx = \int_a^b f(x)dx + \int_a^b g(x)dx$ | Summenregel                          |
| $\int_{a}^{b} r * f(x)dx = r * \int_{a}^{b} f(x)dx$            | Linearität                           |
| $\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$          | Abschnittweise Integration           |

### **Beweise**

Beweise

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}) \Delta x_{k} = F(b) - F(a) = [F(x)]_{a}^{b}$$

Dies ist der **Hauptsatz der Differential- und Integralrechnung**. Mit ihm wird das Problem der Integration auf das Auffinden einer Stammfunktion zurückgeführt. Als Mathematiker müsste man noch anfügen, dass diese Beziehung nicht immer gilt, sondern nur unter gewissen Voraussetzungen.

Der Hauptsatz ist sicher dann richtig, wenn die Funktion f stetig ist. In diesem Fall kann man auch so formulieren:

$$I_a(x) = \int_a^x f(\xi)\xi \qquad \qquad I'_a(x) = f(x)$$

Die Funktion  $I_a$  nennt man hier die Integralfunktion. Man kann sie sich vorstellen als die Funktion die jeder Stelle x die Fläche zwischen a und x zuordnet. Unter den obigen Voraussetzungen ist also die Ableitung der Integralfunktion gleich der Randfunktion. Ist die Randfunktion f nicht im ganzen Intervall stetig, sondern nur »stückweise stetig«, dann ist zwar die Integralfunktion immer noch stetig, aber in den Trennpunkten der Stetigkeitsbereiche nicht mehr notwendig differenzierbar.

Häufig kommen auch sogenannte *unbestimmte Integrale* vor. Ein unbestimmtes Integral ist einfach eine Stammfunktion. Man schreibt dann

$$\int f(x)x = F(x) + C$$

und nennt C die Integrationskonstante.

Eine Stammfunktion zu finden, ist allerdings häufig auch nicht sehr einfach. Für viele aus elementaren Funktionen zusammengesetzte Funktionen bekommt man leider Stammfunktionen, die nicht mehr elementar dargestellt werden können. Das gilt schon für so einfach aussehende Integrale wie

$$\int \frac{\sin x}{x} x$$

Da  $\sin x/x$  in ihrem Definitionsbereich stetig ist, muss sie nach dem Hauptsatz eine Stammfunktion haben. Sie lässt sich allerdings nicht mehr durch elementare Funktionen ausdrücken, sondern gibt eine »neue« sogenannte »höhere« Funktion, die man Integralsinus nennt. Ihre Funktionswerte kann man mit Tabellen oder mit Computerprogrammen bestimmen. Zunächst mag man meinen, dies sei etwas besonderes, aber auch die Werte eines Logarithmus oder eines Sinus kann man nur mit dem Taschenrechner berechnen oder aus einer Funktionentafel entnehmen.

#### 11.4 Flächenberechnung mittels Integralen

#### Definition 11.4.0

Für die auf dem Intervall [a; b] (also stückweise) stetige Funktion f mit Nullstellen und  $x_1, x_2, ..., x_n$ mit  $a \leq x_1 \leq x_2 \leq \ldots \leq x_n \leq b$  ist der Flächeninhalt A zwischen dem Graphen von f und der  $x_1$ -Achse im Intervall [a;b] gegeben durch:

$$A = \left| \int_{a}^{x_1} f(x) dx \right| + \left| \int_{x_1}^{x_2} f(x) dx \right| \dots + \left| \int_{x_{n-1}}^{x_n} f(x) dx \right| + \left| \int_{x_n}^{b} f(x) dx \right|$$



Graph+Intergal

Beispiel: 
$$f(x) = x^2 - 2x^3; x \in \mathbb{R}$$

notwendige und hinreichende Bedingung für Nullstellen: f(x) = 0

$$\Leftrightarrow x^{2}(x-2) = 0$$

$$\Leftrightarrow \begin{cases} x^{2} = 0 \\ x-2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_{1} = 0 \\ x_{2} = 2 \end{cases}$$

$$\begin{cases} x - 2 = 0 \\ \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 2 \end{cases}$$

Also gilt: 
$$A_{-1}^{3} = |\int_{-1}^{0} x^{3} - 2x^{2} dx| + |\int_{0}^{2} x^{3} - 2x^{2} dx| + |\int_{2}^{3} x^{3} - 2x^{2} dx|$$

$$= |\left[\frac{1}{4}x^{4} - \frac{2}{3}x^{3}\right]_{-1}^{0}| + |\left[\frac{1}{4}x^{4} - \frac{2}{3}x^{3}\right]_{0}^{2}| + |\left[\frac{1}{4}x^{4} - \frac{2}{3}x^{3}\right]_{2}^{2}|$$

$$= |0 - (\frac{1}{4} - \frac{2}{3})| + |4 - \frac{8}{3} - 0| + |\frac{81}{4} - 54 - (4 - \frac{8}{3})|$$

$$= \frac{35}{6} \text{FE}$$

(Also hoffentlich)

#### GTR-Tipp:

Mit  $Y_1 = f(x)$  und  $Y_2 = abs(Y_1)$  bzw.  $Y_2 = |Y_1|$  (zu finden in 'MATH'>'NUM' oder über Alpha-F2) lässt sich die Fläche berechnen über 2nd-CALC mit der Option Integral.

Hierzu wählt man  $Y_2$  aus und gibt a und b an.

Kapitel 11. Integrale Skript SMP

#### 11.5Integrationsregeln

Da Integration die Umkehrung des Ableitens ist (»Aufleiten«) übertragen sich die Ableitungsregeln auf das Integrieren:

- Konstante Faktoren bleiben stehen.
- Summen werden summandenweise aufgeleitet.
- $\int_a^b = \int_a^c + \int_c^b$
- $\int_a^b = -\int_b^a$
- Es gibt keine direkte Umkehrung der Produkt-, Quotienten und Kettenregel, sondern hier muss man kompliziertere Verfahren verwenden.

Wichtige Integrale sind:

$$\int x^n x = \frac{x^{n+1}}{n+1} \tag{11.1}$$

$$\int \sin xx = -\cos x \tag{11.2}$$

$$\int \sin xx = -\cos x \tag{11.2}$$

$$\int \cos xx = \sin x \tag{11.3}$$

$$\int \frac{x}{\cos^2 x} = \tan x \tag{11.4}$$

$$\int \frac{1}{x}x = \ln|x| \tag{11.5}$$

$$\int \frac{x}{1+x^2} = \arctan x \tag{11.6}$$

In Formelsammlungen stehen viele Integrale, es gibt auch Integraltafeln, die hunderte von Integralen fertig angeben. CAS-Programme können alle sehr gut integrieren.

Aus der Formel (??) erkennt man, dass das Integral negativ wird, wenn im betrachteten Intervall f(x)0 ist. Dann verläuft die Kurve unterhalb der x-Achse, und man muss als Fläche den Betrag nehmen. Integrale sind aber nicht nur Flächen, mit ihnen kann man Volumina, Energien, Ladungen und und und ... ausrechnen, und bei vielen dieser Größen sind negative Werte durchaus sinnvoll!

#### 11.5.1Produktintegration

Nach der Produktregel ist (uv)' = u'v + uv'. Integriert man nun beide Seiten, und beachtet, dass nach dem Hauptsatz  $\int (uv)'x = uv$  ist, dann bekommt man die Formel für die Produktintegration, die auch partielle Integration genannt wird.

$$\int u'vx = uv - \int uv'x \tag{11.7}$$

Mit dieser Regel kann man Integrale folgender Form lösen:

$$\int x \sin xx$$

Setzt man hier  $u' = \sin x$ , v = x, dann ist  $u = -\cos x$  und v' = 1. Setzt man diese Werte in die Produktintegrations-Formel ein, dann folgt:

$$\int x \sin xx = (-\cos x)x - \int (-\cos x) \cdot 1x$$
$$= -x \cos x + \int \cos xx = -x \cos x + \sin x$$

Ein anderes schönes Beispiel ist die Stammfunktion von  $\ln x$ . Dazu fasst man  $\ln x$  als  $1 \cdot \ln x$  auf und wählt u' = 1,  $v = \ln x$ , also u = x und v' = 1/x und erhält:

$$\int \ln xx = x \ln x - \int x \cdot \frac{1}{x}x = x \ln x - \int 1x = x \ln x - x$$

#### 11.5.2 Substitutionsmethode

Es soll die Stammfunktion von  $x(1-x^2)^9$  bestimmt werden. Hier wäre zum Ableiten die Kettenregel und die Produktregel nötig, beides gibt es aber in reiner Form beim Integrieren nicht. Man kann aber häufig durch geschickte Substitution das Integral auf eine Form bringen, für die dann eine Stammfunktion angegeben werden kann. Der wesentliche Punkt dabei ist, dass nicht nur x sondern auch x der Substitution unterworfen werden muss.

In diesem Beispiel setzen wir  $u = 1 - x^2$ . Dann ist u = u'(x)x = -2xx. Somit ist x = -u/2x. Nun geht's los:

$$\int x(1-x^2)^9 x = \int xu^9 \frac{-1}{2x} u = -\frac{1}{2} \int u^9 u = -\frac{1}{20} u^{10} = -\frac{1}{20} (1-x^2)^{10}$$

Hätten wir hier die Stammfunktion nicht benötigt, sondern nur den Wert eines bestimmten Integrals, dann hätte man sich die Rücksetzung sparen können, indem man die Grenzen auf die neue Variable umschreibt:

$$\int_{x=0}^{1} x(1-x^2)^9 x = -\frac{1}{2} \int_{u=1}^{0} u^9 u = -\frac{1}{20} \left[ u^{10} \right]_{1}^{0} = -\frac{1}{20} (0-1) = \frac{1}{20}$$

In diesem Beispiel haben wir einen Teilausdruck des Integrals gleich u gesetzt. Im folgenden Beispiel machen wir es anders herum und setzen x gleich einer Funktion von u. Es soll die Fläche einer Ellipse berechnet werden. Für den oberen Ellipsenbogen gilt die Gleichung (Auflösen der Mittelpunktsform (??) nach y):

$$y = \frac{b}{a}\sqrt{a^2 - x^2}$$

Die Fläche unter dem oberen Ellipsenbogen ist die halbe Ellipsenfläche und berechnet sich so:

$$A = \int_{x=-a}^{a} \frac{b}{a} \sqrt{a^2 - x^2} \, x = \int_{u=-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{b}{a} \sqrt{a^2 - a^2 \sin^2 u} \, a \cos u \, u = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} ab \cos^2 u \, u$$

Dabei hat man  $x = a \sin u$  gesetzt, dann wird  $x = a \cos uu$ . Nun muss man nur noch die Stammfunktion von  $\cos^2 u$  ermitteln. Dazu kann man etwa die Beziehung  $\cos 2u = 2 \cos^2 u - 1$  heranziehen, also  $\cos^2 u = \frac{1}{2}(1 + \cos 2u)$ . Diese hat die Stammfunktion  $\frac{1}{2}(u + \sin u \cos u)$ . Damit bekommt man für die Fläche:

$$A = \frac{ab}{2} \left[ u + \sin u \cos u \right]_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} = \frac{ab}{2} \left[ \left( \frac{\pi}{2} + 0 \right) - \left( -\frac{\pi}{2} + 0 \right) \right] = \frac{1}{2} \pi ab$$

Die gesamte Fläche der Ellipse ist doppelt so groß, also  $\pi ab$ .

#### 11.5.3 Partialbruchzerlegung

Die Partialbruchzerlegung ist ein allgemeines Verfahren zur Integration gebrochen rationaler Funktionen. Es sei gegeben:

$$f(x) = \frac{P(x)}{Q(x)} = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$
(11.8)

Im Falle  $m \leq n$  führt man zuerst eine Polynomdivision aus, dann bekommt man eine ganzrationale Funktion und eine gebrochen rationale mit m > n, so dass wir uns für das Weitere auf den Fall m > n beschränken können.

Das Nennerpolynom kann im Komplexen vollständig in Linearfaktoren zerlegt werden, im Reellen bleiben ggf. quadratische Faktoren übrig, die keine reellen Nullstellen mehr haben. Seien nun  $x_k$  die Nullstellen von Q(x) mit der Vielfachheit  $\nu_k$  dann kann man Q(x) stets auf die folgende Form bringen:

$$Q(x) = b_m(x - x_1)^{\nu_1}(x - x_2)^{\nu_2} \dots (x - x_k)^{\nu_k}(x^2 + \alpha_1 x + \beta_1)^{\mu_1} \dots (x^2 + \alpha_r x + \beta_r)^{\mu_r}$$
(11.9)

Die gebrochen rationale Funktion f(x) lässt sich nun als Summe von Partialbrüchen schreiben. Dabei gilt:

1. Jeder Linearfaktor  $(x - x_k)$  der Vielfachheit  $\nu_k$  trägt zur Zerlegung die folgenden Summanden bei:

$$\frac{A_1}{(x-x_k)} + \frac{A_2}{(x-x_k)^2} + \dots + \frac{A_{\nu_k}}{(x-x_k)^{\nu_k}}$$

2. Jeder quadratische Faktor mit der Vielfachheit  $\mu_k$  trägt die folgenden Summanden bei:

$$\frac{C_1x + D_1}{(x^2 + \alpha x + \beta)} + \frac{C_2x + D_2}{(x^2 + \alpha x + \beta)^2} + \dots + \frac{C_{\mu_k}x + D_{\mu_k}}{(x^2 + \alpha x + \beta)^{\mu_k}}$$

Die Linearfaktoren lassen sich sofort integrieren, bei den quadratischen geht man so vor:

$$(x^2 + \alpha x + \beta) = (x + \frac{\alpha}{2})^2 + \delta^2 = (\delta y)^2 + \delta^2 = \delta^2 (y^2 + 1)$$

Hier hat man quadratisch ergänzt und  $\delta \cdot y = x + \frac{\alpha}{2}$  substituiert. Mit dieser Substitution ist

$$x = \delta y - \frac{\alpha}{2}$$
  $y = \frac{x + \frac{\alpha}{2}}{\delta}$   $x = \delta y$ 

Nun wird das Integral zu:

$$\int \frac{Cx+D}{(x^2+\alpha x+\beta)^{\mu}} x = \frac{1}{\delta^{2\mu-1}} \int \frac{C\delta y+D-\frac{1}{2}C\alpha}{(y^2+1)^{\mu}} y$$
$$= \frac{C}{\delta^{2\mu-2}} \int \frac{yy}{(y^2+1)^{\mu}} + \frac{D-\frac{1}{2}C\alpha}{\delta^{2\mu-1}} \int \frac{y}{(y^2+1)^{\mu}}$$

Für das erste der beiden verbleibenden Integrale bekommt man dann

$$\int \frac{yy}{(y^2+1)^{\mu}} = \frac{1}{2} \int \frac{u}{u^{\mu}} = \begin{cases} \frac{u^{1-\mu}}{2(1-\mu)} = & \text{für } \mu = 2, 3, \dots \\ \frac{1}{2} \ln|u| & \text{für } \mu = 1 \end{cases}$$
(11.10)

Hier hat man  $u=y^2+1$  gesetzt. Nun muss noch das zweite bestimmt werden.

$$J_{\mu} = \int \frac{y}{(y^2 + 1)^{\mu}}$$

Für  $\mu = 1$  ist es bekannt,  $J_1 = \arctan y$ .

Wir werden eine Rekursionsformel für die  $J_{\mu}$  herleiten. Wir beginnen mit der Beziehung

$$J_{\mu+1} = \int \frac{(y^2+1)-y^2}{(y^2+1)^{\mu+1}} y = J_{\mu} - \int \frac{y^2}{(y^2+1)^{\mu+1}} y$$

Nun denken wir uns den zweiten Integranden als y-Rest geschrieben und integrieren partiell:

$$\int y \cdot \frac{yy}{(y^2+1)^{\mu+1}} = \frac{-y}{2\mu(y^2+1)^{\mu}} + \frac{1}{2\mu} \int \frac{y}{(y^2+1)^{\mu}} = \frac{-y}{2\mu(y^2+1)^{\mu}} + \frac{1}{2\mu} J_{\mu}$$

Setzt man das oben ein, so bekommt man die Rekursionsformel:

$$J_{\mu+1} = \left(1 - \frac{1}{2\mu}\right)J_{\mu} + \frac{y}{2\mu(y^2 + 1)^{\mu}} \tag{11.11}$$

Insbesondere ist dann (rechne das nach!)

$$J_1 = \arctan y$$

$$J_2 = \frac{1}{2}\arctan y + \frac{y}{2(y^2 + 1)}$$

$$J_3 = \frac{3}{8}\left(\arctan y + \frac{y}{y^2 + 1}\right) + \frac{y}{4(y^2 + 1)^2}$$

$$J_4 = \frac{5}{16}\left(\arctan y + \frac{y}{y^2 + 1}\right) + \frac{5}{24} \cdot \frac{y}{(y^2 + 1)^2} + \frac{y}{6(y^2 + 1)^3}$$

### 11.6 Beispiele zur Integration

Man bestimme die Fläche unter der Parabel  $y=2x^2$  im Bereich  $1 \le x \le 4$ .

$$\int_{1}^{4} 2x^{2}x = \left[\frac{2}{3}x^{3}\right]_{1}^{4} = \frac{2}{3}(64 - 1) = 42$$

Bestimme die Formel für das Volumen einer Pyramide der Höhe h und der Grundfläche G.

Man stellt sich die Pyramide aus dünnen Schichten der Dicke x parallel zur Grundfläche aufgebaut vor. Die x-Achse legt man durch die Spitze der Pyramide, so dass die Höhe auf die x-Achse zu liegen kommt. Da die Flächen der Schichten dann durch zentrische Streckung aus der Grundfläche entstehen, hat eine Schicht im Abstand x von der Spitze die Fläche A(x), für die nach dem Strahlensatz gilt:

$$\frac{x^2}{h^2} = \frac{A(x)}{G} \qquad A(x) = \frac{G}{h^2}x^2$$

Das Volumen einer Schicht ist dann V = A(x)x. Das Volumen der Pyramide ist die Summe der Volumina aller Schichten, diese Summe bekommt man durch Integration:

$$V = \int_0^h V = \int_0^h \frac{G}{h^2} x^2 x = \frac{G}{h^2} \cdot \frac{1}{3} \left[ x^3 \right]_0^h = \frac{G}{3h^2} (h^3 - 0) = \frac{1}{3} G h$$

Bestimme die Energie, die notwendig ist, um einen Körper der Masse m im Schwerefeld der Masse M vom Abstand R ins Unendliche zu bringen.

Um den Körper das Stückchen r vom Zentralkörper zu entfernen, braucht man die Arbeit W = Fr, wobei F die Gravitationskraft ist. Die gesamte notwendige Arbeit ist dann:

$$W = \int_R^\infty W = \int_R^\infty G \frac{Mm}{r^2} r = GMm \left[ -\frac{1}{r} \right]_R^\infty = GMm (0 - (-\frac{1}{R})) = \frac{GMm}{R}$$

Dies war ein Beispiel eines sogenannten *uneigentlichen Integrals*, bei solchen liegen entweder die Grenzen im Unendlichen, oder die Funktion selbst wird an einer Stelle unendlich.

Bestimme  $\int_{-\infty}^{\infty} -x^2 x$ 

Diese Aufgabe habe ich eingefügt, weil das ein wichtiges Integral ist. Seine Berechnung ist aber nicht ganz einfach, man muss einen »Umweg« machen. Zuerst schreiben wir:

$$\int_{-\infty}^{\infty} -x^2 x = \sqrt{\left(\int_{-\infty}^{\infty} -x^2 x\right) \left(\int_{-\infty}^{\infty} -y^2 y\right)} = \sqrt{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} -(x^2 + y^2) xy}$$

Führt man nun Polarkoordinaten ein, also  $x = r \cos \phi$ ;  $y = r \sin \phi$ , dann ist das Flächenelement  $r \phi r$  und  $x^2 + y^2 = r^2$ . Das letzte Integral wird dadurch

$$\int_{0}^{2\pi} \phi \int_{0}^{\infty} r^{-r^{2}} r = 2\pi \left[ -\frac{1}{2}^{-r^{2}} \right]_{0}^{\infty} = \pi \int_{-\infty}^{\infty} -x^{2} x = \sqrt{\pi}$$

Mit Substitution kann man nun noch beweisen:

$$\int_{-\infty}^{\infty} -ax^2 x = \sqrt{\frac{\pi}{a}}$$

Dazu setzt man  $u^2 = ax^2u = \sqrt{a}x$ . Dies kann nur gehen, wenn a > 0 ist. Man kann zeigen, dass die Formel sogar für komplexe a stimmt, sofern  $\Re a > 0$  ist.

**Anmerkung:**  $^{-x^2}$  hat keine elementare Stammfunktion, es gibt aber eine Reihe von höheren Funktionen, die mit diesem Integral verwandt sind. Zunächst ist dabei die aus der Wahrscheinlichkeitsrechnung bekannte Normalverteilung (Gauß-Verteilung) zu erwähnen, die durch

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} -\frac{1}{2}t^2 t mit \Phi(\infty) = 1$$

definiert ist. Daneben gibt es die Gaußsche Fehlerfunktion

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x -t^2 twobei\Phi(x) = \frac{1}{2} \left( 1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right)$$

Bestimme das Integral durch Partialbruchzerlegung. Es sei gegeben:

$$f(x) = \frac{x+2}{(x^2-1)(x^2+1)^2} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{Ex+F}{x^2+1}$$

Nun müssen die Koeffizienten  $A, \ldots, F$  bestimmt werden. Dazu multipliziert man zuerst mit dem Hauptnenner durch:

$$x + 2 = A(x+1)(x^2+1)^2 + B(x-1)(x^2+1)^2 + (Cx+D)(x^2-1) + (Ex+F)(x^4-1)$$

Zunächst kann man nun für x spezielle Werte einsetzen, so dass möglichst viele Ausdrücke Null werden:

$$x = 1:$$
  $3 = 8AA = \frac{3}{8}$   
 $x = -1:$   $1 = -8BB = -\frac{1}{8}$   
 $x = 0:$   $2 = \frac{3}{8} + \frac{1}{8} - D - F$ 

Hätte man nur einfache Vielfachheiten, so könnte man auf diese Weise alle Koeffizienten bestimmen. Hier ist das leider nicht der Fall, so dass wir zur »Ochsentour« greifen müssen. Dazu wird die rechte Seite ausmultipliziert und dann ein Koeffizientenvergleich gemacht:

$$x + 2 = (A - B - D - F) + (A + B - C - E)x + (2A - 2B + D)x^{2} + (2A + 2B + C)x^{3} + (A - B + F)x^{4} + (A + B + E)x^{5}$$

Der Koeffizientenvergleich liefert nun ein Gleichungssystem (wobei wir unsere schon bekannten Werte für A und B gleich einsetzen)

$$\begin{split} 2 &= \frac{3}{8} + \frac{1}{8} - D - F \\ 1 &= \frac{3}{8} - \frac{1}{8} - C - E \\ 0 &= \frac{3}{4} + \frac{1}{4} + DD = -1 \\ 0 &= \frac{3}{4} - \frac{1}{4} + CC = -\frac{1}{2} \\ 0 &= \frac{3}{8} + \frac{1}{8} + FF = -\frac{1}{2} \\ 0 &= \frac{3}{8} - \frac{1}{8} + EE = -\frac{1}{4} \end{split}$$

Setzt man die sich aus den letzten vier Gleichungen ergebenden Werte nun in die beiden ersten ein, so sind diese erfüllt. Wir sind fertig und haben das Ergebnis

$$f(x) = \frac{\frac{3}{8}}{(x-1)} - \frac{\frac{1}{8}}{x+1} - \frac{\frac{1}{2}x+1}{(x^2+1)^2} - \frac{\frac{1}{4}x+\frac{1}{2}}{x^2+1}$$

Nach den Gleichungen (11.5.3) und (11.5.3) ergibt sich so:

$$\int f(x)x = \frac{3}{8}\ln|x-1| - \frac{1}{8}\ln|x+1| + \frac{1}{4} \cdot \frac{1}{x^2 + 1}$$
$$-\frac{1}{2}\arctan x - \frac{x}{2(x^2 + 1)} - \frac{1}{8}\ln|x^2 + 1| - \frac{1}{2}\arctan x$$

Der Koeffizientenvergleich ist deshalb so leicht gegangen, weil wir schon einige Werte mit der Einsetze-Methode ermittelt hatten. Man hätte statt des Koeffizientenvergleichs auch weitere Gleichungen erzeugen können, indem man einfach weitere Zahlen einsetzt. Wenn irgend möglich, sollte man versuchen mit der Einsetze-Methode zum Ziel zu kommen. Am aller einfachsten ist es allerdings, Mathematica anzuwerfen, dann hat man das Integral in Sekundenbruchteilen.

## **EXPONENTIALFUNKTIONEN**

#### Definition 12.0.0

Man bezeichnet als Exponentialfunktion eine Funktion der Form  $x \to a^x$  mit  $a \in \mathbb{R}$ , a > 0 und  $a \neq 1$  x ist die Variable und wird Exponent oder Hochzahl genannt.

a nennt man Basis oder Grundzahl, sie ist für jede Funktion fest forgegeben.

Die natürliche Exponentialfunktion wird durch die Funktionsvorschrift  $f(x) = e^x$  beschrieben.

Hier Graphen für a<1

a>1

a=e

### 12.1 Wiederholung: Potenzgesetze

Seien a und b aus  $\mathbb{R}$ , sowie n und m aus  $\mathbb{N}$ , dann gilt:

1. 
$$a^0 = 1$$
 (für  $a \neq 0$ )

2. 
$$a^1 = a$$

$$3. \ a^n = \underbrace{a \cdot a \cdot \dots \cdot a}_{nMal}$$

$$4. \ a^m \cdot a^n = a^{m+n}$$

$$5. (a^n)^m = a^{n \cdot m}$$

6. 
$$a^{-n} = \frac{1}{a^n}$$

$$7. \ \frac{a^n}{a^m} = a^{n-m}$$

8. 
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

9. 
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

10. 
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

## 12.2 Die Eulersche Zahl (e)

#### Definition 12.2.0

 $e=2,71828182845904523536028747135266249775724709369995\dots$ 

e ist eine irrationale, transzendente und reelle Zahl, die die Basis des (natürlichen) Logarithmus und der (natürlichen) Exponentialfunktion ist.

Die Darstellung, der man am Häufigsten begegnet ist diese:  $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ 

Benannt nach dem bekannten Mathematiker Leonhard Euler ist diese Zahl eine der wichtigsten Konstanten der Mathematik. Sie ist die Basis des natürlichen Logarithmus und der natürlichen Exponentialfunktion. Diese (spezielle) Exponentialfunktion wird aufgrund dieser Beziehung zur Zahl e häufig kurz e-Funktion genannt.

#### Definition 12.2.0

Eine reelle Zahl heißt (oder allgemeiner eine komplexe Zahl) transzendent, wenn sie nicht Nullstelle eines Polynoms mit ganzzahligen Koeffizienten ist. Andernfalls handelt es sich um eine algebraische Zahl. Jede reelle transzendente Zahl ist überdies irrational.

### 12.2.1 Verschiedene Darstellungen

e ist darstellbar bzw. ergibt sich durch:

$$\bullet \ \sum_{k=0}^{\infty} \frac{1}{k!}$$

• 
$$\lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t$$
;  $t \in \mathbb{R}$ 

$$\bullet \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n; n\in\mathbb{N}$$

### 12.2.2 Herleitung zur Zahl e

Anhand mancher Überlegungen, denen wir jetzt nachgehen werden, lassen sich einige Eigenschaften der Eulerschen Zahl schließen.

Wir definieren eine Folge  $(e_n)n \in \mathbb{N}$  durch  $e_n = \left(1 + \frac{1}{n}\right)^n$  und versuchen ihre Konvergenz zu beweisen.

$$\bullet \ \frac{e_{n+1}}{e_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^n} = \left(\frac{n(n+2)}{(n+1)^2}\right)^n \cdot \left(1 + \frac{1}{n}\right) = \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n}$$

- Die Umformung ermöglicht uns auf den Term  $\left(1-\frac{1}{(n+1)^2}\right)^{n+1}$ , die Ungleichung von Bernoulli anzuwenden. Diese besagt Folgendes:  $(1+x)^n>1+nx$  für  $n\geq 2$  und x>-1  $\left(1-\frac{1}{(n+1)^2}\right)^{n+1}>1+(n+1)\cdot\left(-\frac{1}{(n+1)^2}\right)$
- Dies kann man an den ersten Ausdruck anwenden:  $\Rightarrow \left(1 \frac{1}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n} > 1 + (n+1) \cdot \left(-\frac{1}{(n+1)^2}\right) \cdot \frac{n+1}{n} = 1 \frac{1}{n}$

## 12.3 Eigenschaften

## 12.4 Ableitungsregeln

1.

#### 12.4.1 Aktivität

Quelle: Déclic 1ère

## Kapitel 13

# LOGARITHMEN

### Definition 13.0.0

Hier Graphen

- 13.1 Eigenschaften
- 13.2 Rechengesetze

| Kapitel 14 |  |
|------------|--|
| ALGEBRA    |  |

## Kapitel 15

## ANHANG: PHYSIK

- 15.1 Interaction gravitationelle
- 15.2 Interaction électromagnétique