BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI-HYDERABAD CAMPUS

SECOND SEMESTER 2023-2024

Course Handout (Part II)

09/01/2024

In addition to part-I (general handout for all courses in the time table) this handout provides the specific details regarding the course.

Course No.: ME F242

Course Title: IC Engines

Instructor-in-charge: K. Ram Chandra Murthy

Course Description:

Working cycles and operation of two strokes, four stroke SI and CI engine cycles. Ignition, combustion, alternative fuels, emission and their control.

Scope and Objective:

This course has been designed to make the students familiar with the working principles of an internal combustion engines. It deals with the principle of operations, fuels, combustion and performance of an internal combustion engines; along with working analysis and design of various systems.

Text Books:

V. Ganeshan, *Internal Combustion Engines*, Tata McGraw-Hill, 4th Edition, 2012

Reference Books:

M. L. Mathur and R. P. Sharma, A course in Internal Combustion Engines, Dhanpath Rai and Sons.

A. R. Rogowski, Elements of I. C. Engines, Tata McGraw-Hill.

Course Plan:

Lec t No.	Learning Objectives	Topics to be covered	Reference to Text
1-3	Introduction to IC Engines	Working principle, classification and performance parameters of an IC Engines	Ch 1
4-6	Air standard cycles	Auto, Diesel and Dual cycle.	Ch 2

	and their analysis		
7-9	Fuel-air cycles and	Variable specific heats, Dissociation,	Ch 4
	their analysis	Comparison of air standard and fuel air	
		cycle	
10-	Actual cycle and	Valve-timing diagram, Time loss factor,	Ch 5
11	their analysis	Heat loss factor, Exhaust blow down	
12	Conventional and	Conventional fuel, Liquid fuels, Possible	Ch 6 & 7
	Alternative Fuels	alternative fuels	
13-	Carburetion	Carburetion, Engine mixture	Ch 8
14		requirements, Simple carburetor,	
		Calculation of air fuel ratio	
15-	Mechanical and	Classification, Fuel feed Pump, Injector,	Ch 9 & 10
16	Electronic injection	Nozzle, MPFI and ECU	
	system		
17-	Ignition	Battery ignition system, Magneto	Ch 11
18		ignition system, Modern ignition	
		systems	
19-	Engine friction and	Mechanical friction. Lubrication,	Ch 13
20	lubrication	Properties of lubricant	_
21-	Heat rejection and	Temperature distribution, Liquid and	Ch 14
22	cooling	Air cooling system	
23	Engine Emissions	Hydrocarbon and other emissions,	Ch 15
	and their control	Converter	
24-	Measurement and	Measurement of IP, BP, etc, Efficiency	Ch 16 & 17
25	Testing,	and heat balance sheet	
	Performance		
	parameters and		
26	characteristics		61.40
26	Supercharging	Supercharger, Supercharging methods	Ch 19
27-	To know the	All the systems of an IC engines	Lab Visit
28	engines		

Evaluation Scheme:

Sr.	Evaluation	Duratio	Weighta	Date, Time and	Nature of
No.	Component	n	ge (%)	Venue	Component
01	Mid Semester	90 min	25		Closed Book
	Test			11.00AM	
02	Test	30 min	30	Best 4 out of 5	Open Book
03	Compre.	3 hrs	45	16/05 FN	Close Book

Chamber Consultation Hours:

To be announced in the class.

Notices:

All notices related to this course will be put on the Mechanical Engineering Group Notice Board.

Make-up Policy:

Make-up will be given to extremely genuine student, but prior permission is required. No make-up will be given for the surprise tests. Surprise tests may be conducted in either lecture hour or tutorial/common hour.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge ME F242