High School Graduation Rates

Introduction

- Data set consists of info on every county in the U.S.
- Contains features such as race, homeownership, health, death rates, income inequality, more (~ 100 + unique features)
- Target feature: Binned High school graduation rates

Modeling Objectives

- Model high school graduation rates and understand factors that are likely to be predictive of graduation rates.
- Initally attempted to predict high school graduation rates as multiclass classifier problem, analysis follows.
- The resulting model performed better than chance, to improve accuracy the analysis was repeated binning graduation rates into counties greater than and less than 90% (binary classifer).

Looking at Correlations

Top 3 Positive Correlations:

- 1. Percent non-hispanic white (Correlation: 0.31)
- 2. Home ownership (Correlation: 0.27)
- 3. Percentage rural (Correlation: 0.22)

Top 3 Negative Correlations:

- 1. Children in single-parent households (-0.32)
- 2. Severe housing problems (-0.31)
- 3. Percentage of households with high housing costs (-0.31)

Multiclass modeling

- Graduation rate split by quantiles
 - 0-84%
 - 0 84-89%
 - 0 89-93%
 - 0 93-100%
- Best model
 - o KNN
- Performance
 - o accuracy = 45%
 - o higher than random chance (25%)
 - Better at extreme highs/lows

Relationship between income and graduation rates

High income
High grad rate
Less variation

Low income
Lower grad rate
Higher variation

K-means clustering overlay

K-Means with PCA

K-means seems to map with high and low grad rates reasonably well at K=4

This might be improved by reducing graduation rate bins to 3 and K to 3

Model performance as a binary classifier problem

Random Forest

	precision	recall	f1-score	support
0 1	0.76 0.74	0.76 0.73	0.76 0.73	295 268
accuracy	0.75	0.75	0.75 0.75	563 563
weighted avg	0.75	0.75	0.75	563

Principal Component Analysis on Raw Data

KNN Model

Accuracy:0.7116477272727273 F1: 0.687211093990755								
		precision	recall	f1-score	support			
	0	0.72	0.74	0.73	374			
	1	0.70	0.68	0.69	330			
accura	су			0.71	704			
macro a	vg	0.71	0.71	0.71	704			
weighted a	vg	0.71	0.71	0.71	704			

SVM Model

Accuracy:0.7215909090909091 F1: 0.7074626865671643							
		precision	recall	f1-score	support		
	0	0.74	0.72	0.73	374		
	1	0.70	0.72	0.71	330		
accu	racy			0.72	704		
macro	avg	0.72	0.72	0.72	704		
weighted	avg	0.72	0.72	0.72	704		

Conclusions

- 1. Graduation rates correlate positively rural areas, home ownership, non-hispanic white populations, negatively with high housing costs, and single parent households.
- 2. KNN is best predictor in multiclass scenario, Random Forest performed best in binary scenario
- 3. KMeans clustering appears to show good grouping at extremes but there is overlap between two middle groups when comparing to graduation rates.
- 4. Clustering and multiclass modeling may be improved by reducing graduation bins to 3