EECS 445

Introduction to Machine Learning

Honglak Lee - Fall 2015

Contributors: Max Smith

Latest revision: July 4, 2015

Contents

1	Introduction and Overview	1
	Bishop: 2.1, Appendix B	1
		1
	Lecture 1	3
2	Supervised Learning: Regression	3
		3
		3
	1	3
	1 0	3
		3
		3
	1 0 /	3
		ა 3
	Lecture 4	3
3	Supervised Learning: Classification	3
	Bishop: 4.1, 4.3	3
	Murphy: 8.1-8.3, 1.4.1-1.4.3	3
	Lecture 5	3
		3
	±	3
		3
		3
	1 0 / /	3
	Lecture 8	3

4	Kernel Methods	3
	Bishop: 6.1-6.3	3
	Murphy: 14.1-14.2, 14.4	3
	Lecture 9	3
		$\overline{3}$
		$\frac{3}{3}$
	Decime 11	J
5	Regularization and Model Selection	3
		3
		3
6	Advice on Using ML Algorithms	3
	Lecture 13	3
_		
7		3
		3
		3
		3
	Bengio's Survey	3
	Lecture 15	3
	Lecture 16	3
_		_
8	•	3
		3
		3
		3
		3
		3
	•	3
		3
		3
		3
	Lecture 20	3
0	Gaussian Process	3
9		о 3
	Lecture 21	3
10	Midterm Review	3
		$\frac{1}{3}$
		$\frac{3}{3}$
11	Ensemble Methods	3
	Bishop: 14.3	3
	Lecture 24	2

12 Sequence Modeling Bishop: 13.1-13.2 Lecture 25	
13 Learning Theory Lecture 26	3

Abstract

Theory and implementation of state-of-the-art machine learning algorithms for large-scale real-world applications. Topics include supervised learning (regression, classification, kernel methods, neural networks, and regularization) and unsupervised learning (clustering, density estimation, and dimensionality reduction).

1 Introduction and Overview

Bishop: 2.1, Appendix B

Definition 1.1 (Binary Variable). Single variable that can take on either 1, or 0; $x \in \{0,1\}$. We denote μ $(0 \le \mu \le 1)$ to be the probability that the random binary variable x = 1

$$p(x=1|\mu) = \mu$$

$$p(x=0|\mu) = 1 - \mu$$

Definition 1.2 (Bernoulli Distribution). Probability distribution of the binary variable x, where μ is the probability x = 1.

Bern
$$(x|\mu) = \mu^x (1-\mu)^{1-x}$$

The distribution has the following properties:

- $E(x) = \mu$
- $Var(x) = \mu(1 \mu)$
- $\mathcal{D} = \{x_1, \dots, x_N\} \to p(\mathcal{D}|\mu) = \prod_{n=1}^N p(x_n|\mu)$
- Maximum likelihood estimator: $\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{numOfOnes}{sampleSize}$ (aka. sample mean)

Definition 1.3 (Binomial Distribution). Distribution of m observations of x = 1, given a sample size of N.

Bin
$$(m|N, \mu = {}_{m}^{N}\mu^{m}(1-\mu)^{N-m}$$

- $E(m) = N\mu$
- $Var(m) = N\mu(1-\mu)$

The Beta Distribution

In order to develop a Bayesian treatment for fitting data sets, we will introduce a prior distribution $p(\mu)$.

- Conjugacy: when the prior and posterior distributions belong to the same family.

Definition 1.4 (Beta Distribution).

$$Beta(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1}$$

Where $\Gamma(x)$ is the gamma function. The distribution has the following properties:

- $E(\mu) = \frac{a}{a+b}$
- $\operatorname{Var}(\mu) = \frac{ab}{(a+b)^2(a+b+1)}$

- conjugacy
- $a \to \infty || b \to \infty \to \text{variance}$ to0

Conjugacy can be shown by the distribution by the likelihood function (binomial):

$$p(\mu|m, l, a, b) \propto \mu^{m+a-1} (1-\mu)^{l+b-1}$$

Normalized to:

$$p(\mu|m,l,a,b) = \frac{\Gamma(m+a+l+b)}{\Gamma(m+a)\Gamma(l+b)} \mu^{m+a-1} (1-\mu)^{l+b-1}$$

- **Hyperparameters:** parameters that control the distribution of the regular parameters.
- **Sequential Approach:** method of learning where you make use of an observation one at a time, or in small batches, and then discard them before the next observation are used. (Can be shown with a Beta, where observing $x = 1 \rightarrow a + +, x = 0 \rightarrow b + +$, then normalizing)
- For a finite data set, the posterior mean for μ always lies between the prior mean and the maximum likelihood estimate.
- A general property of Bayesian learning is when we observe more and more data the uncertainty of the posterior distribution will steadily decrease.
- More information and examples of probability distributions can be found in Appendix B of Bishop's 'Pattern Recognition and Machine Learning.'

Lecture 1

2 Supervised Learning: Regression

2.1 Linear Regression

Bishop: 3.1

Murphy: 7.1-7.3

Lecture 2

Bishop: 3.2, 1.1, 2.5

Murphy: 7.3, 7.5

Lecture 3

Murphy: 14.7.5

Lecture 4

3 Supervised Learning: Classification

Bishop: 4.1, 4.3

Murphy: 8.1-8.3, 1.4.1-1.4.3

Lecture 5

Bishop: 4.2

Murphy: 4.2

Lecture 6

Murphy: 3.5, 8.6, 8.5.4

Lecture 7

Lecture 8

4 Kernel Methods

Bishop: 6.1-6.3

Murphy: 14.1-14.2, 14.4

Lecture 9

Murphy: 14.7

Lecture 10

Bishop: 7.1

Murphy: 14.5

Lecture 11

5 Regularization and Model Selection

3

Murphy: 1.4.8

Lecture 12