Errors

Error propagation

Week 5: aim to cover

Assignment Project Exam Help

- root-finding: bisehtitps f/xpdpviroiteratiom(Lecture 9)
- error propagation, bisection, fixed point iteration (Lab 5)
 Newton's method, secant method, fixed point iteration (Lab 5)

Root-finding methods

Iterative processes

```
'find zeroes of f', 'find roots of f', 'root-finding'
We look for iterative procedures roject Exam Help
guess x_0 \to x_1 \to x_2 \cdots
https://powcoder.com
So we must construct a rule so the sequence of iterates converges to the root x^*. Since we have we construct on error (this dominates roundoff error until v. close to root)
```

Most problems of continuous mathematics cannot be solved by finite algorithms.

Trefethen's Maxims

Fixed point iteration

Rearrange f(x) = 0 to x = g(x) (not uniquely)

Definition

Assignment Project Exam Help

A point x^* that satisfies $x^* = g(x^*)$ is a fixed point of the function g

then try the iteration

Add WeChat powcoder

does it converge to the fixed point? Let's try it ...

Behaviour of fixed point iteration

what happens?

Assignment Project Exam Help

sometimes it blows up!

- if it converges, (http://porcorderies.ikg

Add WeChat powcoder

linear convergence

- **3** *k* is different for different *g*
- 4 the smaller k is, the faster the convergence

—Root-finding

Explanation by Taylor series ...

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Some Theorems!

Definition

If g is defined or A[s,t] g has a fixed point $x^* \subset [a,b]$

https://powcoder.com

Theorem

Sufficient conditions for a unique fixed point

- 1 Existence: If $g \in C[a, b]$ and $g(x) \in [a, b]$ (g maps [a, b] onto [a, b] or a subinterval) then g has a fixed point in [a, b]
- 2 Uniqueness: If, also, if g'(x) exists on (a,b) and $|g'(x)| \le k < 1$ on (a,b) then g has a unique fixed point in [a,b]

Useful theorems from analysis

Theorem

Intermediate Value Theorem IVT
Assignment Project Exam Help
Given $f \in C[a, b]$ with f(a) > 0, f(b) < 0 $\implies \exists c \in [a, b] \text{ such } f(b) = 0$ $\implies \exists c \in [a, b] \text{ such } f(b) = 0$

Add WeChat powcoder

Theorem

Mean Value Theorem MVT

Given
$$f \in C^1[a, b]$$

 $\implies \exists c \in [a, b] \text{ such that } \frac{f(b) - f(a)}{b - a} = f'(c)$

Proofs!

Proof.

Existence:

If g(a) = a or g(b) = b fixed point exists, so suppose not.

Then g(a) > a, gas igniment Ph by let E(x) and $Help \exists h \in C[a, b]$ with h(a) > 0, h(b) < 0

$$\Rightarrow$$
 by IVT, $\exists c \in [ahatpsch/thatwasoler.com]$

$$\implies g(c) = c \implies c$$
 is a fixed point of g .

Proof.

Uniqueness: We have $|g'(x)| \le k < 1$ and suppose p, q are fixed points of g with $p \ne q$. We prove a contradiction which implies that p = q By MVT, $\exists c$ such that

$$g(p) - g(q) = g'(c)(p - q)$$

 \implies $|p-q|=|g(p)-g(q)|=|g'(c)||p-q| \le k |p-q| < |p-q|$ which can't be true, so we have proved that p=q

Theorem: Convergence of fixed point iteration

 $|g'(x)| \le k < 1 \implies g$ is a contraction mapping

Theorem

Under conditions $x_n = g(x_{n-1})$ converges to the unique fixed point x^* .

https://powcoder.com

Proof.

By previous theorem, a unique fixed point [a,b], the sequence of iterates $\{x_n\}$ is defined.

$$|x_n - x^*| = |g(x_{n-1}) - g(x^*)| = |g'(c)| |x_{n-1} - x^*|$$

 $\leq k |x_{n-1} - x^*| \leq k^2 |x_{n-2} - x^*| \cdots \leq k^n |x_0 - x^*|$

so
$$\lim_{n\to\infty}|x_n-x^*|=|x_0-x^*|\lim_{n\to\infty}k^n=0$$
 since $k<1$ so $x_n\to x^*$

Root-finding

so far so good

BUT

Assignment Project Exam Help

- not cheap to decide when conditions of theorem are met https://powcoder.com
 for a given g, this method may not find all roots

but this method is used that sweether the Contraction **Mapping Theorem**

Root-finding

Pseudocode

```
Assignment Project Exam Help
```

what stopping criterion to use?

Stopping criteria

Assignment Project Exam Help

Many possible:

- . https://powcoder.com tolerance on residual of function $|f(x_n)| < f$ Tol
- 2 tolerance on absoluted twise hat powe odel sTol
- 3 tolerance on *relative change* $|x_n x_{n-1}| / |x_n| < \text{RelTol}$

- 1 is OK if Assignment Project Exam Help
- 2 OK provided Apttps://ptowerder.com
- usually 3 is safe if RelTol > a few uAdd WeChat powcoder

Mixed tolerance

Combine absolute and relative tolerances Exam Help

- I mixed tolerance $|x_n|$ powerer to $|x_n|$
- 2 mixed residual $|f(x_n)| < \text{AbsfTol} + \text{RelfTol} |f(x_0)|$ 1 switches between absolute tolerance if x_n is small and relative tolerance for $|x_n| > 1$
- 2 uses $| f(x_0) |$ to 'set a scale' for relative residual

—Root-finding

Bisection

Assignment Project Exam Help

Fixed point iteration in the simple but not guaranteed to converge! Simplest **globally convergent** method is **bisection aka interval halving** Start with an interval $[a_1, b_1]$ by IVT $[a_1, b_2]$ a root lies in $[a_1, b_1]$ by IVT

Pseudocode

```
Find midpoint p_1 = (a_1 + b_1)/2
Repeat until convergence the step:

Assignment Project Exam Help

if f(p1) = 0

x* = p1

https://powcoder.com

else (choose subinterval s.t. root lies there)

if f(p1) and f(AthdhaveCslane project exam Help

else

<math>x* in [p1,b1]

else

x* in [a1,p1]

end
```

This is just a floating point version of binary search.

Properties of bisection method

- Since we keep x* within the interval at each step, we are guaranteed convergenc Assignment Project Exam Help
- We have a precise error bound, since https://powcoder.com

$$|p_N - x^*| \le \max(p_N - a_N, b_N - p_N) \le |b_N - a_N|/2$$
Add WeChat powcoder
Interval halves at every step, so we get an extra bit of accuracy

- Interval halves at every step, so we get an extra bit of accuracy every step.
 - \implies For a given tolerance tol, required number of steps N is known in advance:

$$2^{-N}(b-a) < \text{tol} \implies N > \log_2(\frac{b-a}{\text{tol}})$$

Root-finding

Example

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

error bound halves at every step (actual error jumps around a bit)

Assignment Project Exam Help

End of Lecture 9

https://powcoder.com

Add WeChat powcoder