

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología II

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

Índice general

1. Relaciones de Ejercicios													5															
	1.1.	Conexión	por arcos	s .																								5

Topología II Índice general

1. Relaciones de Ejercicios

1.1. Conexión por arcos

Ejercicio 1.1.1. Muestra que cualquier esfera de \mathbb{R}^n , $n \ge 2$ es arcoconexa con la topología usual.

Es decir, queremos ver que \mathbb{S}^n es arcoconexa para $n \ge 1$. (notemos que $\mathbb{S}^0 = \{x \in \mathbb{R} : ||x|| = 1\} = \{-1, 1\}$ no es un conjunto arcoconexo).

Para ello, sea $n \ge 2$, sabemos que $\mathbb{S}^n \setminus \{p\}$ (con $p \in \mathbb{S}^n$) es homeomorfa a \mathbb{R}^{n-1} , que es un conjunto arcoconexo por ser convexo (es una espacio vectorial). Como la arcoconexión es una propiedad topológica, esta se conserva por homeomorfismo, luego $\mathbb{S}^n \setminus \{p\}$ es un conjunto arcoconexo, $\forall p \in \mathbb{S}^n$.

Tomando $N = (0, ..., 0, 1), S = (0, ..., 0, -1) \in \mathbb{S}^n$, podemos ver \mathbb{S}^n como unión de dos conjuntos arcoconexos:

$$\mathbb{S}^n = (\mathbb{S}^n \setminus \{N\}) \cup (\mathbb{S}^n \setminus \{S\})$$

no disjuntos:

$$(\mathbb{S}^n\setminus\{N\})\cap(\mathbb{S}^n\setminus\{S\})=\mathbb{S}^n\setminus\{N,S\}$$

Por lo que \mathbb{S}^n es un conjunto arcoconexo, $\forall n \geq 2$.

Ejercicio 1.1.2. Demuestra que si $\{A_i\}_{i\in I}$ es una familia de arcoconexos de X tales que todos intersecan a uno de ellos, es decir,

$$A_i \cap A_{i_0} \neq \emptyset, \quad \forall i \in I,$$

entonces $\bigcup_{i \in I} A_i$ es arcoconexo.

Sean $x, y \in \bigcup_{i \in I} A_i$, entonces existen $i, j \in I$ de forma que $x \in A_i$ y $y \in A_j$. Como $A_i \cap A_{i_0}, A_j \cap A_{i_0} \neq \emptyset$, podemos tomar $a \in A_i \cap A_{i_0}$ y $b \in A_j \cap A_{i_0}$.

- A_i es un conjunto arcoconexo con $x, a \in A_i$, por lo que existe un camino, α , que une x con a.
- A_j también es un conjunto arcoconexo con $y, b \in A_j$, por lo que existe un camino, β , que une y con b.
- Además, A_{i_0} es un conjunto arcoconexo con $a, b \in A_{i_0}$, por lo que existe un tercer camino, γ , que une a con b.

De esta forma, podemos tomar:

$$\sigma = \alpha * \left(\gamma * \tilde{\beta}\right)$$

Que es un camino que une x con y. Como x e y eran arbitrarios, podemos unir cualesquiera dos puntos de $\bigcup_{i\in I} A_i$, por lo que dicho conjunto es arcoconexo.

Figura 1.1: Forma de unir dos puntos cualesquiera.

Ejercicio 1.1.3. Sea X un conjunto, $x_0 \in X$, y consideramos la topología (del punto incluido) dada por

$$T = \{U \subset X : x_0 \in U\} \cup \{\emptyset\}$$

¿Es (X,T) arcoconexo?

Sí: sea $x \in X$, veamos que la aplicación $\alpha: [0,1] \to X$ dada por

$$\alpha(t) = \begin{cases} x & \text{si } t \in [0, \frac{1}{2}] \\ x_0 & \text{si } t \in [\frac{1}{2}, 1] \end{cases} \quad \forall t \in [0, 1]$$

es continua. Sea $U \in T$:

- Si $U = \emptyset$, entonces $\alpha^{-1}(U) = \emptyset \in \mathcal{T}_u|_{[0,1]}$.
- Si $x_0 \in U$ y $x \notin U$, entonces $\alpha^{-1}(U) =]1/2, 1] \in \mathcal{T}_u|_{[0,1]}$.
- Si $x_0, x \in U$, entonces $\alpha^{-1}(U) = [0, 1] \in \mathcal{T}_u|_{[0, 1]}$.

Como la preimagen de cualquier conjunto abierto es abierta, tenemos que α es continua, luego es un arco que une x con x_0 .

Ahora, si $x, y \in X$, tenemos que existen $\alpha, \beta : [0, 1] \to X$ de forma que α une x con x_0 y β une y con x_0 ; por lo que $\alpha * \tilde{\beta}$ es un arco que une x con y. Como x e y eran arbitrarios, concluimos que X es arcoconexo.

Ejercicio 1.1.4. Demustra que en \mathbb{R}^n con la topología usual, todo abierto conexo es arcoconexo. ¿Es cierto que todo cerrado conexo de \mathbb{R}^n es arcoconexo?

En teoría vimos que:

Un conjunto es arcoconexo
$$\Longleftrightarrow \left\{ \begin{array}{l} \text{Es conexo} \\ \text{Todo punto admite un entorno arcoconexo} \end{array} \right.$$

Sea U un abierto conexo de $(\mathbb{R}^n, \mathcal{T}_u)$, falta ver que todo punto suyo admite un entorno arcoconexo en la topología inducida en U para ver que U es arcoconexo. Para ello, sea $x \in U$, como U es abierto existe $r \in \mathbb{R}^+$ de forma que $B(x,r) \subset U$. B(x,r) es un conjunto arcoconexo por ser convexo, luego es un entorno arcoconexo de x en U. Como x era un punto arbitrario de U, todo punto suyo admite un entorno arcoconexo, y como U era conexo, tenemos que U es arcoconexo.

Ahora, no es cierto que todo cerrado conexo de \mathbb{R}^n es arcoconexo, ya que si consideramos $f: \mathbb{R}^+ \to \mathbb{R}$ dada por:

$$f(x) = \operatorname{sen}\left(\frac{1}{x}\right) \qquad \forall x \in \mathbb{R}^+$$

Tenemos que

$$C = \overline{Gr(f)} = \overline{\{(x, f(x)) : x \in \mathbb{R}^+\}} = Gr(f) \cup (\{0\} \times [-1, 1])$$

es un conjunto cerrado y conexo (se vio en Topología I) pero que no es arcoconexo, puede probarse por un razonamiento similar a un ejemplo visto en teoría.

Figura 1.2: Dibujo de la adherencia de la gráfica de f(x).

Ejercicio 1.1.5. Prueba que la componente arcoconexa de un punto x_0 está contenida en la componente conexa de x_0 .

Sea (X,T) un espacio topológico, $x_0 \in X$ y C la componente arcoconexa de x_0 en X, en particular tenemos que C es un conjunto arcoconexo, luego es conexo, por lo que está contenida en la componente conexa de x, al ser esta el mayor conjunto conexo que contiene a x.

Ejercicio 1.1.6. En $\mathbb R$ con la topología de Sorgenfrey, esto es, la topología que tiene como base

$$\mathcal{B}_S = \{ [a, b) \subset \mathbb{R} : a < b \},\$$

determina sus componentes arcoconexas.

En Topología I vimos que las componentes conexas de la topología de Sorgenfrey eran los conjuntos de puntos unitarios $\{x\}$, ya que si tenemos un conjunto $A \subset \mathbb{R}$ con al menos dos puntos distintos x e y (suponemos x < y), entonces en la topología inducida en A podemos considerar los abiertos:

$$U = [-\infty, y) \cap A, \qquad V = [y, +\infty) \cap A$$

de forma que $U, V \neq \emptyset, U \cup V = A$ y $U \cap V = \emptyset$, por lo que A (cualquier conjunto con al menos dos puntos distintos) es disconexo, luego las componentes conexas han de ser los conjuntos unitarios, ya que los conjuntos unitarios son conexos en cualquier topología.

Como las componentes arcoconexas se encuentran contenidas en las componentes conexas, no queda más salida que las componentes arcoconexas de la topología de Sorgenfrey sean los conjuntos unitarios.

Ejercicio 1.1.7. Sea $f: X \to Y$ un homeomorfismo entre espacios topológicos. Demuestra que $A \subset X$ es una componente arcoconexa de X si y solo si f(X) es una componente arcoconexa de Y. Deduce que el número de componentes arcoconexas es invariante por homeomorfismos.

Sea $A \subset X$ una componente arcoconexa de X, veamos que f(A) es una componente arcoconexa de Y. Para ello, por reducción al absurdo, si f(A) no fuera una componente arcoconexa de Y podría ser por dos razones:

- f(A) no es un conjunto arcoconexo, algo que llevaría a una contradicción, ya que se vio que la imagen por una función continua de un conjunto arcoconexo era arcoconexa.
- Porque existe $B \subset Y$ un conjunto arcoconexo distinto de f(A) de forma que $f(A) \subset B \subset Y$. En dicho caso, si aplicamos f^{-1} en la anterior inclusión tenemos que:

$$f^{-1}(f(A)) = A \subset f^{-1}(B) \subset X$$

Por lo que tenemos $f^{-1}(B)$, un conjunto arcoconexo¹ distinto de A que contiene a A, luego A no era una componentes arcoconexa de X, contradicción.

En definitiva, si $A \subset X$ es una componente arcoconexa entonces f(A) también lo es de Y. Ahora, si f(A) es una componente arcoconexa de Y, basta aplicar que f^{-1} también es un homeomorfismo para concluir que $f^{-1}(f(A)) = A$ es una componente arcoconexa de X.

Sea Z un espacio topológico, notaremos en este ejercicio:

$$\Gamma_Z = \{U \subset Z : U \text{ es una componente arcoconexa de } Z\}$$

¹por ser imagen por una función continua de un conjunto arcoconexo.

Recuperando el homeomorfismo $f: X \to Y$, definimos

$$\begin{array}{ccc} \Phi: & \Gamma_X & \longrightarrow & \Gamma_Y \\ & U & \longmapsto & f(U) \end{array}$$

- Φ está bien definida (es decir, $f(U) \in \Gamma_Y$ para $U \in \Gamma_X$), ya que hemos visto que la imagen de una componente arcoconexa de X es una componente arcoconexa de Y.
- Φ es inyectiva, ya que si $U, V \in \Gamma_X$ con f(U) = f(V), entonces por ser f inyectiva tenemos que U = V.
- Φ es sobreyectiva, ya que si $W \in \Gamma_Y$, entonces $f^{-1}(W) \in \Gamma_X$, con:

$$\Phi(f^{-1}(W)) = f(f^{-1}(W)) = W$$

Por ser Φ biyectiva concluimos que $|\Gamma_X| = |\Gamma_Y|$; es decir, el número de componentes arcoconexas es invariante por homeomorfismos.

Ejercicio 1.1.8. En $X = \mathbb{R} \times \{0,1\}$ se considera la topología que tiene por base

$$\mathcal{B} = \{ |a, b[\times \{0, 1\} : a < b \}.$$

Demuestra que X es arcoconexo. ¿Es X homeomorfo a $\mathbb R$ con la topología usual?

Sean $\alpha = (x, a), \beta = (y, b) \in X$, vamos a tratar de crear un arco que una α con β :

• Si a = b, entonces $\gamma : [0, 1] \to X$ dada por:

$$\gamma(t) = ((1-t)x + ty, a) \qquad \forall t \in [0, 1]$$

Es una aplicación continua, ya que si tomamos $B = [a, b] \times \{0, 1\} \in \mathcal{B}$, tenemos:

$$\gamma^{-1}(B) = \gamma^{-1}(]a, b[\times \{0\})$$
 abierto de $[0, 1]$

Ya que el conjunto $]a,b[\times\{0\}]$ es un abierto para la topología usual y α es una aplicación continua para la topología usual.

• Si $\alpha = (0,0)$ y $\beta = (0,1)$, entonces si tomamos $\gamma : [0,1] \to X$ dada por:

$$\gamma(t) = \begin{cases} \alpha & \text{si } 0 \leqslant t \leqslant \frac{1}{2} \\ \beta & \text{si } \frac{1}{2} < t \leqslant 1 \end{cases}$$

tenemos que γ es continua, ya que si $B = [a, b] \times \{0, 1\} \in \mathcal{B}$, tenemos que:

$$\gamma^{-1}(B) = \begin{cases} \emptyset & \text{si } 0 \notin]a, b[\\ [0,1] & \text{si } 0 \in]a, b[\end{cases}$$

- Una vez discutidos dichos casos, suponemos ahora que $\alpha = (x,0)$ y $\beta = (y,1)$ (en caso contrario, sustituimos los papeles de α y β), en cuyo caso:
 - Sabemos de la existencia de un arco γ que une α con (0,0).

- Sabemos de la existencia de un arco τ que une (0,0) con (0,1).
- Sabemos de la existencia de un arco π que une β con (0,1).

Si consideramos el arco $\gamma * (\tau * \tilde{\pi})$ obtenemos un arco que une α con β .

Por tanto, X es arcoconexo, ya que somos capaces de unir cualesquiera dos puntos distintos de X por un arco.

Ahora, para responder a la pregunta de si $(\mathbb{R}, \mathcal{T}_u)$ es homeomorfo a X, la respuesta es que no, y tenemos dos formas de justificar la respuesta:

Opción 1. Sabemos que $(\mathbb{R}, \mathcal{T}_u)$ es T2 por ser un espacio topológico metrizable, mientras que podemos probar que X no es T2, ya que no existen ningún par de abiertos disjuntos uno conteniendo a (0,0) y otro conteniendo a (0,1), puesto que si U es un abierto de X que contiene a (0,0), entonces como \mathcal{B} es una base, existen $a, b \in \mathbb{R}$ de forma que:

$$(0,0) \in [a,b[\times \{0,1\} \subset U]$$

Sin embargo, tendríamos entonces que $(0,1) \in]a,b[\times \{0,1\},$ de donde $(0,1) \in U$, por lo que X no es T2 y como ser T2 es una propiedad topológica, dichos espacios no pueden ser homeomorfos.

- **Opción 2.** Otra forma sería suponer que son homeomorfos, con lo que existe un homeomorfismo $f: \mathbb{R} \to X$. Sea $p \in \mathbb{R}$, resulta entonces que $\mathbb{R} \setminus \{p\}$ es homeomorfo a $X \setminus \{(p,0)\}$, pero:
 - $\blacksquare \mathbb{R} \setminus \{p\}$ no es arcoconexo.
 - $X \setminus \{(p,0)\}$ sí es arcoconexo, ya que podemos hacer que cualquier curva "salte" a (p,1) sin perder su continuidad, con lo que podemos seguir conectando dos puntos cualesquiera.

Ejercicio 1.1.9. En \mathbb{R}^3 con la topología usual, calcula las componentes arcoconexas de

$$X = \{x, y, z) \in \mathbb{R}^3 : xyz = 1\}$$

Notemos que como xyz = 1, ninguno de ellos puede ser igual a 0, por lo que:

$$X = \left\{ (x, y, z) \in \mathbb{R}^3 : z = \frac{1}{xy}, \quad xy \neq 0 \right\}$$

Si tomamos:

$$\Gamma = \left\{ (x, y) \in \mathbb{R}^2 : xy \neq 0 \right\} = \mathbb{R}^* \times \mathbb{R}^*$$

y definimos $f: \Gamma \to \mathbb{R}$ dada por:

$$f(x,y) = \frac{1}{xy} \quad \forall (x,y) \in \Gamma$$

Tenemos que X = Gr(f). Por tanto, definiendo $h: \Gamma \to X$ por:

$$h(x,y) = (x, y, f(x,y)) \quad \forall (x,y) \in \Gamma$$

Obtenemos (como vimos en Topología I) un homeomorfismo entre Γ y X. Como Γ tiene 4 componentes arcoconexas:

$$\mathbb{R}^+ \times \mathbb{R}^+, \qquad \mathbb{R}^+ \times \mathbb{R}^-, \qquad \mathbb{R}^- \times \mathbb{R}^-, \qquad \mathbb{R}^- \times \mathbb{R}^-$$

y las componentes arcoconexas se convervan por homeomorfismos tal y como acabamos de ver en el ejercicio 7, tenemos que:

$$h(\mathbb{R}^+ \times \mathbb{R}^+), \qquad h(\mathbb{R}^+ \times \mathbb{R}^-), \qquad h(\mathbb{R}^- \times \mathbb{R}^-), \qquad h(\mathbb{R}^- \times \mathbb{R}^-)$$

Son las componentes arcoconexas de X.

Ejercicio 1.1.10. En \mathbb{R}^2 con la topología usual consideremos las rectas horizontales $A_n = \mathbb{R} \times \{1/n\}$, $B_n = \mathbb{R} \times \{-1/n\}$ y el eje de ordenadas menos el origen, esto es, $C = \{0\} \times (\mathbb{R} \setminus \{0\})$. Calcula las componentes conexas y arcoconexas de

$$X = \left(\bigcup_{n \in \mathbb{N}} A_n\right) \cup \left(\bigcup_{n \in \mathbb{N}} B_n\right) \cup C \cup \{(1,0)\}.$$