Package 'KSD'

October 12, 2022

Type Package

Title Goodness-of-Fit Tests using Kernelized Stein Discrepancy
Version 1.0.1
Date 2021-01-11
Description An adaptation of Kernelized Stein Discrepancy, this package provides a goodness-of-fit test of whether a given i.i.d. sample is drawn from a given distribution. It works for any distribution once its score function (the derivative of log-density) can be provided. This method is based on `A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation" by Liu, Lee, and Jordan, available at <arxiv:1602.03253>.</arxiv:1602.03253>
License MIT + file LICENSE
LazyData TRUE
RoxygenNote 7.1.1
Imports pryr, graphics, stats
Suggests datasets, ggplot2, gridExtra, mclust, mvtnorm
NeedsCompilation no
Author Min Hyung Kang [aut, cre], Qiang Liu [aut]
Maintainer Min Hyung Kang <minhyung.daniel.kang@gmail.com></minhyung.daniel.kang@gmail.com>
Repository CRAN
Date/Publication 2021-01-11 08:50:16 UTC
R topics documented:
demo_gmm

demo_iris

	likelihoodgmm		
	perturbgmm	 	 7
	plotgmm	 	 8
	posteriorgmm	 	 8
	rgmm		
	scorefunctiongmm	 	 10
Index			11

demo_gmm

Tests 1-dimensional Gaussian Mixture Models.

Description

Tests 1-dimensional Gaussian Mixture Models.

Usage

```
demo_gmm()
```

demo_gmm_multi

Tests multidimensional Gaussian Mixture Models.

Description

Tests multidimensional Gaussian Mixture Models.

Usage

```
demo_gmm_multi()
```

demo_iris

Fits Gaussian Mixture model and computes the KSD value for the model

Description

We fit a Gaussian Mixture Model for a given dataset (Fisher's Iris), and we compute the KSD P-value on the hold-out test dataset. User may tune the parameters and observe the change in results. Reports average of p-values obtained during each k-fold. It also plots the contour for each k-fold iteration if only 2 dimensions of data are used. If a vector is specified for nClust, the code tries each element as the number of clusters and reports the optimal parameter by choosing one with highest p-value.

Usage

```
demo_iris(cols = c(1, 2), nClust = 3, kfold = 5)
```

Arguments

cols : Columns of iris data set to use. If 2 dimensions, plots the contour for each

k-fold.

nClust : Number of clusters want to estimate with If vector, use each element as number

of clusters and reports the optimal number.

kfold : Number of k to use for k-fold

demo_normal_performance

Shows KSD p value change with respect variation in noise

Description

We generate a standard normal distribution, and add varying gaussian noise to this dataset and see the change in pvalues.

Usage

```
demo_normal_performance()
```

demo_simple_gamma

Tests 1-dimensional Gamma Distribution with customized parameters

Description

We generate a gamma distribution with given parameters, and add gaussian noise to this dataset. We then compute the score of each dataset for the original true distribution.

Usage

```
demo_simple_gamma(
   trueshape = 10,
   truescale = 3,
   noisemu = 5,
   noisesd = 2,
   n = 100
)
```

4 gmm

Arguments

trueshape shape of true gamma distribution truescale scale of true gamma distribution noisemu mean of gaussian noise to add

noisesd standard deviation of gaussian noise to add

n number of samples to generate

 ${\tt demo_simple_gaussian} \quad \textit{Tests 1-dimensional Gaussian Distribution with customized parameters} \quad \textit{Tests 2-dimensional Gaussian Distribution With Customized Parameters} \quad \textit{Tests 2-dimensional Gaussian Distribution With Customized Parameters} \quad \textit{Tests 2-dimensional Gaussian Distribution With Customized Parameters} \quad \textit{Tests 3-dimensional Gaussian Conference Parameters} \quad \textit{Tests 3-dimensional Gaussian Confer$

ters

Description

We generate a gaussian distribution with given parameters, and add noise to this dataset. We then compute the score of each dataset for the original true distribution.

Usage

```
demo_simple_gaussian(truemu = 5, truesd = 1, noisemu = 0, noisesd = 2, n = 100)
```

Arguments

truemu mean of true distribution

truesd standard deviation of true distribution

noisemu mean of gaussian noise to add

noisesd standard deviation of gaussian noise to add

n number of samples to generate

gmm Returns a Gaussian Mixture Model

Description

Returns a Gaussian Mixture Model

Usage

```
gmm(nComp = NULL, mu = NULL, sigma = NULL, weights = NULL, d = NULL)
```

KSD 5

Arguments

nComp (scalar): number of components mu (d by k): mean of each component

sigma (d by d by k): covariance of each component

weights (1 by k): mixing weight of each proportion (optional)

d : number of dimensions of vector (optional)

Value

model: A Gaussian Mixture Model generated from the given parameters

Examples

```
# Default 1-d gaussian mixture model
model <- gmm()

# 1-d Gaussian mixture model with 3 components
model <- gmm(nComp = 3)

# 3-d Gaussian mixture model with 3 components, with specified mu,sigma and weights
mu <- matrix(c(1,2,3,2,3,4,5,6,7),ncol=3)
sigma <- array(diag(3),c(3,3,3))
model <- gmm(nComp = 3, mu = mu, sigma=sigma, weights = c(0.2,0.4,0.4), d = 3)</pre>
```

KSD

Estimate Kernelized Stein Discrepancy (KSD)

Description

Estimate kernelized Stein discrepancy (KSD) using U-statistics, and use bootstrap to test H0: x_i is drawn from p(X) (via KSD=0).

Usage

```
KSD(x, score_function, kernel = "rbf", width = -1, nboot = 1000)
```

Arguments

X	Sample of size Num_Instance x Num_Dimension
score_function	$(\nabla_x \log p(x))$ Score funtion : takes x as input and output a column vector of size Num_Instance X Dimension. User may use pryr package to pass in a function that only takes in dataset as parameter, or user may also pass in computed score for a given dataset.
kernel	Type of kernel (default = 'rbf')
width	Bandwidth of the kernel (when width = -1 or 'median', set it to be the median distance between data points)
nboot	Bootstrap sample size

6 likelihoodgmm

Value

A list which includes the following variables:

- "ksd" : Estimated Kernelized Stein Discrepancy (KSD)
- "p": p-Value for rejecting the null hypothesis that ksd = 0
- "bootstrapSamples": the bootstrap sample
- "info": other information, including: bandwidth, M, nboot, ksd_V

Examples

```
# Pass in a dataset generated by Gaussian distribution,
# use pryr package to pass in score function
model <- gmm()</pre>
X \leftarrow rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X,score_function=score_function)</pre>
# Pass in a dataset generated by Gaussian distribution,
# pass in computed score rather than score function
model <- gmm()</pre>
X \leftarrow rgmm(model, n=100)
score_function = scorefunctiongmm(model=model, X=X)
result <- KSD(X,score_function=score_function)</pre>
# Pass in a dataset generated by Gaussian distribution,
# pass in computed score rather than score function
# Use median_heuristic by specifying width to be −2.0
model <- gmm()</pre>
X \leftarrow rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X,score_function=score_function, 'rbf',-2.0)</pre>
# Pass in a dataset generated by specific Gaussian distribution,
# pass in computed score rather than score function
# Use median_heuristic by specifying width to be -2.0
model <- gmm()</pre>
X \leftarrow rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X,score_function=score_function, 'rbf',-2.0)
```

likelihoodgmm

Calculates the likelihood for a given dataset for a GMM

Description

Calculates the likelihood for a given dataset for a GMM

perturbgmm 7

Usage

```
likelihoodgmm(model = NULL, X = NULL)
```

Arguments

model : The Gaussian Mixture Model

X (n by d): The dataset of interest, where n is the number of samples and d is the

dimension

Value

P (n by k): The likelihood of each dataset belonging to each of the k component

Examples

```
# compute likelihood for a default 1-d gaussian mixture model
# and dataset generated from it
model <- gmm()
X <- rgmm(model)
p <- likelihoodgmm(model=model, X=X)</pre>
```

perturbgmm

Returns a perturbed model of given GMM

Description

Returns a perturbed model of given GMM

Usage

```
perturbgmm(model = NULL)
```

Arguments

model

: The base Gaussian Mixture Model

Value

perturbedModel: Perturbed model with added noise to the supplied GMM

Examples

```
#Add noise to default 1-d gaussian mixture model
model <- gmm()
noisymodel <- perturbgmm(model)</pre>
```

8 posteriorgmm

plotgmm

Plots histogram for 1-d GMM given the dataset

Description

Plots histogram for 1-d GMM given the dataset

Usage

```
plotgmm(data, mu = NULL)
```

Arguments

data (n by 1): The dataset of interest, where n is the number of samples.

mu : True mean of the GMM (optional)

Examples

```
# Plot pdf histogram for a given dataset
model <- gmm()
X <- rgmm(model)
plotgmm(data=X)

# Plot pdf histogram for a given dataset, with lines that indicate the mean
model <- gmm()
mu <- model$mu
X <- rgmm(model)
plotgmm(data=X, mu=mu)</pre>
```

posteriorgmm

Calculates the posterior probability for a given dataset for a GMM

Description

Calculates the posterior probability for a given dataset for a GMM

Usage

```
posteriorgmm(model = NULL, X = NULL)
```

Arguments

model : The Gaussian Mixture Model

X (n by d): The dataset of interest, where n is the number of samples and d is the

dimension

rgmm 9

Value

P (n by k): The posterior probabilty of each dataset belonging to each of the k component

Examples

```
# compute posterior probability for a default 1-d gaussian mixture model
# and dataset generated from it
model <- gmm()
X <- rgmm(model)
p <- posteriorgmm(model=model, X=X)</pre>
```

rgmm

Generates dataset from Gaussian Mixture Model

Description

Generates dataset from Gaussian Mixture Model

Usage

```
rgmm(model = NULL, n = 100)
```

Arguments

model : Gaussian Mixture Model defined by gmm()

n : number of samples desired

Value

data (n by d): Random dataset generated from given the Gaussian Mixture Model

Note

Requires library mytnorm

Examples

```
#Generate 100 samples from default gaussian mixture model
model <- gmm()
X <- rgmm(model)

#Generate 300 samples from 3-d gaussian mixture model
model <- gmm(d=3)
X <- rgmm(model,n=300)</pre>
```

10 scorefunctiongmm

scorefunctiongmm	Score function for given GMM: calculates score function $dlogp(x)/dx$ for a given Gaussian Mixture Model

Description

Score function for given GMM : calculates score function dlogp(x)/dx for a given Gaussian Mixture Model

Usage

```
scorefunctiongmm(model = NULL, X = NULL)
```

Arguments

model : The Gaussian Mixture Model

X (n by d): The dataset of interest, where n is the number of samples and d is the

dimension

Value

y: The score computed by the given function

Examples

```
# Compute score for a given gaussianmixture model and dataset
model <- gmm()
X <- rgmm(model)
score <- scorefunctiongmm(model=model, X=X)</pre>
```

Index

```
demo_gmm, 2
demo_gmm_multi, 2
demo_iris, 2
demo_normal_performance, 3
demo_simple_gamma, 3
demo_simple_gaussian, 4
gmm, 4
KSD, 5
likelihoodgmm, 6
perturbgmm, 7
plotgmm, 8
posteriorgmm, 8
rgmm, 9
scorefunctiongmm, 10
```