The d-Block Elements and some of their Compounds

SINGLE CORRECT CHOICE TYPE QUESTIONS

- Which of the following statements is wrong regarding copper sulphate.
 - (A) It reacts with KI to give I,
 - (B) It reacts with KCl to give Cl₂.
 - (C) Its tartarate complex reacts with NaOH and glucose followed by heating to give Cu₂O.
 - (D) It gives CuO on strong heating in air.
- 2. ZnO shows yellow colour on heating due to
 - (A) d-d transition.
 - (B) charge transfer spectra.
 - (C) higher polarization caused by Zn2+ ion.
 - (D) presence of F-center.
- 3. Malachite and azurite are used respectively as
 - (A) blue and green pigment.
 - (B) red and green pigment.
 - (C) green and blue pigment.
 - (D) green and red pigment.
- Choose the correct options (true or false) for the following statements.
 - (i) FeO is stable enough at room temperature.
 - (ii) FeCl₂ on heating in air and in steam produces the same iron oxide.
 - (iii) The colour of FeCl₂ depends upon the number of water of crystallization.
 - (A) TTF
 - (B) FTF
 - (C) FFT
 - (D) TFT
- The elements with maximum and minimum melting points in the second transition series respectively are
 - (A) Cr and Zn.
 - (B) Cr and Cd.
 - (C) Cr and Hg.
 - (D) Mo and Cd.
- (i) BaCO₃ + Na₂CrO₄ + AcOH→ M aq. suspension ppt.
 - (ii) BaCO₃ + Na₂CrO₄ + HCN→ N aq. suspension ppt.

Which is the correct option regarding the above reactions?

- (A) M and N are the same and characterized as BaCrO_a.
- (B) M is BaCrO4 and N stands for no precipitate.
- (C) M is BaCrO₄ and N is BaCO₃.
- (D) M stands for no precipitate and N is BaCrO,.
- 7. Which of the following statements is incorrect regarding the similarities between hexavalent Cr and S compounds?
 - (A) SO₃ and CrO₃ both are acidic.
 - (B) SO₂Cl₂ and CrO₂Cl₂ on alkaline hydrolysis produce similar type of products.

- (C) CrO₃ and γ-SO₃ have the same structure.
- (D) Both can form X₂O₇² type of compounds.
- 8. $E_{\text{MnO}_4^{-1}/\text{MnO}_2}^0 = 2.26 \text{ V}$ and $E_{\text{MnO}_4^{-1}/\text{MnO}_4^{-1}}^0 = 0.56 \text{ V}$ Which of the following reactions will be spontaneous?
 - (A) $MnO_4^{2-} \rightarrow MnO_4^{-}$
 - (B) $MnO_4^- \rightarrow MnO_2 + MnO_4^{2-}$
 - (C) $MnO_4^{2-} \rightarrow MnO_2 + MnO_4^{-}$
 - (D) None of these.
- 9. For the preparation of KMnO₄ from K₂MnO₄ which of the following reagents is the best?
 - (A) Dil. H, SO,
 - (B) SnCl₂ (acidified)
 - (C) CO, is passed
 - (D) Cl₂ is passed
- When KMnO₄ reacts with H₂O₂ in a slightly alkaline and acidic medium, the respective products obtained are
 - (A) K₂MnO₄ and Mn²⁺ (B) MnO₂ and MnO₂
 - (C) MnO₂ and Mn²⁺.
- (D) Mn2+ and MnO2
- 11. AgO actually exists as Ag [AgO₂], which is diamagnetic in nature. Then which of the following statements is true regarding AgO?
 - (A) The arrangement of O²⁻ ions around Ag⁺ ion is square planar.
 - (B) The arrangement of O²⁻ ions around Ag³⁺ ion is tetrahedral.
 - (C) The arrangement of O²⁻ ions around Ag³⁺ ion is square planar.
 - (D) Both (B) and (C) are correct.
- Total number of d-orbitals involved in the hybridization of central metal ion in complex ion [MnO₄] is
 - (A) 6
- (B) 4
- (C) 2
- (D) 3
- 13. Which of the following metal ions is expected to be coloured?
 - (A) Zn2+
- (B) Ti³⁺
- (C) Sc3+
- (D) Ti⁴⁺
- 14. When Cu²⁺ solution reacts with excess KI, which of the following statements is correct?
 - (A) White ppt. of Cu₂I₂ is obtained.
 - (B) A clear brown solution is obtained.
 - (C) A dark brown solution is obtained in which ppt. of Cu₂I₂ is invisible.
 - (D) A blue solution is obtained.
- When KMnO₄ is heated with fused KOH, then the product formed is
 - (A) KMnO4, purple
 - (B) K₂MnO₄, green
 - (C) MnO2, black
 - (D) Mn2O3, brown

MULTIPLE CORRECT CHOICE TYPE QUESTIONS

- 1. Measurement of magnetic moment helps to predict
 - (A) whether the compound is paramagnetic or diamagnetic.
 - (B) whether the compound is coloured or not.
 - (C) the number of unpaired electrons in the system.
 - (D) whether the compound is low spin or high spin, wherever it is applicable.
- 2. Which of the following properties of a substance disappear in solution?
 - (A) Paramagnetism.
 - (B) Diamagnetism.
 - (C) Ferromagnetism.
 - (D) Antiferromagnetism.
- 3. The colour of a compound may be due to
 - (A) polarization.
 - (B) d-d transition.
 - (C) f-f transition.
 - (D) charge transfer spectra.
- 4. The colour of a metal ion depends upon
 - (A) the nature of the ligand.
 - (B) the number of ligands.
 - (C) the shape of the complex.
 - (D) None of these.
- 5. Which of the following statements are correct regarding Mohr's salt?
 - (A) It does not dissolve in water completely.
 - (B) It is one of the primary standard substances used in the laboratory.
 - (C) The oxidation state of Fe in it is +III.
 - (D) It produces NH, when NaOH is added into it.
- 6. K₂MnO₄ in unstable in solution and the green solution obtained is changed into purple colouration. Correct statements regarding the above change are:
 - (A) It is a disproportionation reaction.
 - (B) It produces KMnO₄.

- (C) Overall solution becomes alkaline.
- (D) It produces black precipitate of hydrated MnO₂.
- When chromite ore is heated with Na₂CO₃ powder in the presence of air
 - (A) one gaseous product is formed.
 - (B) one product is water insoluble which is dark brown in colour.
 - (C) one product is water soluble which is red in colour.
 - (D) one product is water soluble which is yellow in colour.
- Choose incorrect options from the following statements.
 - (A) O₂ is evolved during the hydrolysis of XeF₂, XeF₄, XeF₆.
 - (B) K₂Cr₂O₇ is not a deliquescent substance.
 - (C) All C-C bonds are ruptured in glucose when it is treated with alkaline solution of AgNO₃.
 - (D) K₂Cr₂O₇ reacts with cold conc. H₂SO₄ to produce a green compound.
- 9. For the standardization of hypo solution
 - (A) standard KMnO₄ can be used which is prepared fresh
 - (B) standard K₂Cr₂O_γ can be used which is prepared one month before.
 - (C) Both can be used.
 - (D) None is suitable.
- 10. Consider the following reaction:

Metal M+ aq. KCN + air \rightarrow ? $\xrightarrow{Z_n}$ [Zn(CN)₄]²⁻ + \xrightarrow{M} \downarrow (Pure)

- Then M is:
- (A) Au
- (B) Ag
- (C) Both
- (D) None

COMPREHENSION TYPE QUESTIONS

Passage 1: For Questions 1-3

A mixture is treated with KI as follows:

1 mole of each (CuSO₄, CdSO₄ and FeCl₃) $\xrightarrow{\text{KI in excess}}$ product mixture $\xrightarrow{\text{Na}_2\text{S}_2\text{O}_3 \text{ solution}}$ ppt. obtained

- 1. How many moles of Na₂S₂O₃ are required in the above process?
 - (A) $\frac{1}{2}$ mole
 - (B) 2 moles
 - (C) 1 mole
 - (D) $1\frac{1}{2}$ moles

- 2. How many moles of KI are consumed to obtain the product mixture?
 - (A) 4 moles
 - (B) $6\frac{1}{2}$ moles
 - (C) 7 moles
 - (D) $5\frac{1}{2}$ moles
- 3. The precipitate obtained is:
 - (A) CdI₂ + Cu₂I₂
 - (B) Cu₂I₂
 - (C) Cu₂I₂ + FeI₂
 - (D) None of these.

Passage 2: For Questions 4-6

- (i) D and E are acidic gases.
- (ii) D is passed through HgCl₂ solution to give yellow precipitate.
- (iii) When E is passed through water first and then H₂S is passed, white turbidity is obtained.
- (iv) A is water soluble and on addition of HgCl₂ in it, a white precipitate is obtained which does not turn grey on addition of excess solution of A.
- 4. D and E are respectively
 - (A) SO₂ and SO₃.
 - (B) SO₃ and SO₂.
 - (C) SO, and CO,
 - (D) CO, and CO.
- 5. The yellow precipitate in the above reaction is
 - (A) mercuric oxide.
 - (B) basic mercury(II) sulphite.
 - (C) basic mercury (II) sulphate.
 - (D) mercuric iodide.
- 6. C is soluble in
 - (A) dil. HCl.
 - (B) dil. H₂SO₄
 - (C) conc. H₂SO₄ under hot conditions.
 - (D) boiled conc. HCl.

Passage 3: For Questions 7-9

Aqueous solution of A+ AgNO₃→ Black ppt. (B)

Aqueous solution of A + $[Cr(H_2O)_6]^{3+} \xrightarrow{H+}$ yellow to orange solution (C)

Aqueous solution of A + MnSO₄ solution $\xrightarrow{\text{H+}}$ pink solution (D) $\xrightarrow{\text{BaCl}_2}$ pink ppt. (E)

- 7. The black precipitate is
 - (A) AgO
 - (B) Ag₂O
 - (C) Ag₂S
 - (D) Ag
- 8. The true oxidation state of Ag in the black precipitate is/are
 - (A) +2 (B) +1 and +3
 - (C) +1
 - (D) None of these.
- 9. The formula of pink precipitate (E) is
 - (A) BaSO₄
 - (B) Ba(MnO₄),
 - (C) MnO,
 - (D) MnSO,

Passage 4: For Questions 10-12

- 10. The evolved gas F is
 - (A) O2
 - (B) O,
 - (C) H,
 - (D) N,
- 11. In which of the following compounds will chromium have the same oxidation state (VI)?
 - (A) A, B, C
 - (B) B, D, E
 - (C) D, E
 - (D) B, C, D
- 12. For the conversion of C → D, which other reagent can be used?
 - (A) NaBO3 + NaOH
 - (B) Br₂ + NaOH
 - (C) Na₂ S₂O₈ + H
 - (D) All of these.

Passage 5: For Questions 13-16

- 13. The evolved gas F is
 - (A) N₂
 - (B) H,
 - (C) NH,
 - (D) O,
- 14. The product H is
 - (A) Ca(CN)2
 - (B) CaCN₂
 - (C) CaH,
 - (D) CaCN2 + C

- The number of water of crystallization present in compound E is
 - (A) 4
 - (B) 5
 - (C) 2
 - (D) 6

- 16. The oxidation state of the metal present in A is the same as that of the metal present in
 - (A) G and I
 - (B) G and E
 - (C) B and E
 - (D) B and G

ASSERTION-REASONING TYPE QUESTIONS

In the following set of questions, a Statement I is given and a corresponding Statement II is given below it. Mark the correct answer as:

- (A) If both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation for Statement I.
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false but Statement II is true.
- 1. Statement I: Cu2+ is more stable than Cu4.

Statement II: Ligand field effects in the complexes are more important than electron configuration in determining stable oxidation state.

 Statement I: Concentrated solution of CuCl₂ in water is yellow in colour.

Statement II: The concentrated solution contains $[CuCl_4]^{2-}$ ion and $[Cu(H_2O)_4]^{2+}$ ion.

 Statement I: Anhydrous ZnCl₂ cannot be made by heating ZnCl₂ · 2H₂O.

Statement II: It undergoes hydrolysis to produce Zn(OH)₂ and HCl.

4. Statement I: FeCl2 is a secondary standard substance.

Statement II: The weight of FeCl₂ changes with time by any means. 5. Statement I: CuI, does not exist.

Statement II: I^- ions are very susceptible towards oxidation by Cu^{2+} ions.

 Statement I: MgSO₄ · 7H₂O is isomorphous with ZnSO₄ · 7H₂O.

Statement II: Both molecules have the same number of water molecules of crystallization.

Statement I: Lithophone is preferred over white lead as white pigment.

Statement II: In the presence of H₂S in air, white lead turns black.

 Statement I: CO₃²⁻ and HCO₃⁻ ions are distinguished by using AgNO₃.

Statement II: CO₃²⁻ gives white (yellowish) ppt. with AgNO₃ and no ppt. with HCO₃⁻.

Statement I: Ag does not liberate H₂ with dil. HCl.

Statement II: $E^0_{Ag/Ag^*} > E^0_{\frac{1}{2}H_2/H^*}$

Statement I: On addition of alkali to the yellow solution of chromate, it turns orange.

Statement II: CrO₄² and Cr₂O₇² are present in equilibrium and their relative concentrations depend upon the pH of the medium.

INTEGER ANSWER TYPE QUESTIONS

The answer to each of the following questions is a nonnegative integer.

- How many non-axial d-orbitals are involved in the hybridization of CrO₂Cl₂?
- The sum of the oxidation states of Mn in KMnO₄, K₂MnO₄ and K₃MnO₄ is ______.
- The number of equivalent Cr–O bonds in CrO₄²⁻ is

 The number of the following reagents that produce ppt. with ZnSO₄ solution is ______.

NaOH, Na2CO3, NaCl, Na2HPO4, Na2S, CH3CO3Na.

- The change in the magnetic moment value when [Cu(H₂O)₄]²⁺ is converted to [Cu(NH₃)₄]²⁺ is
- The change in the number of unpaired electrons when [Fe(H₂O)₆]²⁺ is changed into [Fe(CN)₆]⁴⁻ is

MATRIX-MATCH TYPE QUESTIONS

In each of the following questions, statements are given in two columns, which have to be matched. The statements in Column I are labelled as (A), (B), (C) and (D), while those in Column II are labelled as (P), (Q), (R), (S) and (T). Any given statement in Column I can have correct matching with *one or more* statements in Column II.

1. Match the names with their chemical formulae.

Column I		Column II	
(A)	Kipp's apparatus waste	(P) HgCl ₂	
(B)	Corrosive sublimate	(Q) Cu(OH) ₂ · 2CuCO ₃	
(C)	Azurite	(R) FeSO ₄ solution	
(D)	Bordeaux mixture	(S) $Ca(OH)_2 + CuSO_4$	

2. Match the compounds with their chemical properties.

Column I	Column II
(A) KMnO ₄	(P) Acts as oxidizing agent.
(B) $K_2Cr_2O_7$	(Q) All X–O bonds are equivalent.
(C) Na ₂ SO ₄	(R) d ³ s hybridization for the central atom (s)

Match the reaction with the nature of the product obtained.

Column I	Column II	
(A) $C_2O_4^{2-} + H_2O_2 + H^+ \rightarrow$	(P) Redox reaction	
(B) $CrO_5 + H^+ \rightarrow$	(Q) Evolution of O ₂ takes place.	
(C) $Cr^{3+} + K_2S_2O_8 + H^+ \rightarrow$	(R) A green solution is obtained.	
(D) $KMnO_4 + conc. KOH \rightarrow$	(S) A blue solution is obtained.	

Match the isolated gaseous ions with the number of unpaired electrons.

Column I	Column II
(A) Cr3+	(P) 2
(B) Fe ³⁺	(Q) 3
(C) Ni ²⁺	(R) 4
(D) Mn ³⁺	(S) 5

5. Match the ore with its formula and the use to which it is put.

Column I	Column II	Column III
(A) Chromite ore	$(M) Ca_2B_6O_{11}\cdot 5H_2O$	(P) For preparing KMnO ₄
(B) Colemanite ore	(N) MnO ₂	(Q) For preparing borax
(C) Pyrolusite ore	(O) FeCr ₂ O ₄	(R) For preparing K ₂ Cr ₂ O ₇ .

ANSWERS

Single Correct Choice Type Questions

- 1. (B)
- 4. (C)
- 7. (C)
- 10. (C)
- 13. (B)

- 2. (D)
- 5. (D)
- 8. (C)
- 11. (C)
- 14. (C)

- 3. (C)
- 6. (C)
- 9. (D)
- 12. (D)
- 15. (B)

Multiple Correct Choice Type Questions

- 1. (A), (C), (D)
- **3.** (A), (B), (C), (D)
- **5.** (B), (D)
- 7. (A), (B), (D)
- 9. (A), (B), (C)

- 2. (C), (D)
- **4.** (A), (B), (C)
- **6.** (A), (B), (C), (D) **8.** (A), (C)
- **10.** (A), (B), (C)

Comprehension Type Questions

- 1. (B)
- **5.** (C)

- 9. (A)
- 13. (C)

- 2. (A)
- 6. (D)

- 10. (A)
- 14. (D)

3. (B)

7. (A)

- 11. (C)
- 15. (B)

4. (B)

8. (B)

- 12. (D)
- 16. (A)

Assertion-Reasoning Type Questions

- 1. (A)
- 3. (C)
- 5. (A)
- 7. (A)
- 9. (C)

- 2. (D)
- 4. (A)
- 6. (B)
- 8. (A)
- 10. (D)

Integer Answer Type Questions

- 1. 3
- **2.** 18
- **3.** 4
- 4. 4
- **5.** 0
- 6. 4

Matrix-Match Type Questions

- 1. $(A) \rightarrow (R)$
 - (B) → (P)
 - $(C) \rightarrow (Q)$
 - $(D) \rightarrow (S)$

2. (A) \to (P), (Q), (R)

 $(B) \rightarrow (P), (R)$ $(C) \rightarrow (Q)$

- 3. $(A) \rightarrow (P)$
 - $(B) \rightarrow (P), (Q), (R)$
 - $(C) \rightarrow (P)$
 - $(D) \rightarrow (P), (Q), (R)$
- **4.** (A) → (Q)
 - $(B) \rightarrow (S)$
 - $(C) \rightarrow (P)$ $(D) \rightarrow (R)$

- 5. (A) \rightarrow (O), (R)
 - $(B) \rightarrow (M), (Q)$
 - $(C) \rightarrow (N), (P)$