provided that the variance of the individual terms, $\operatorname{Var}[f(\boldsymbol{x}^{(i)})]$, is bounded. To see this more clearly, consider the variance of \hat{s}_n as n increases. The variance $\operatorname{Var}[\hat{s}_n]$ decreases and converges to 0, so long as $\operatorname{Var}[f(\mathbf{x}^{(i)})] < \infty$:

$$\operatorname{Var}[\hat{s}_n] = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}[f(\mathbf{x})]$$
 (17.6)

$$= \frac{\operatorname{Var}[f(\mathbf{x})]}{n}.\tag{17.7}$$

This convenient result also tells us how to estimate the uncertainty in a Monte Carlo average or equivalently the amount of expected error of the Monte Carlo approximation. We compute both the empirical average of the $f(\mathbf{x}^{(i)})$ and their empirical variance, and then divide the estimated variance by the number of samples n to obtain an estimator of $\operatorname{Var}[\hat{s}_n]$. The **central limit theorem** tells us that the distribution of the average, \hat{s}_n , converges to a normal distribution with mean s and variance $\frac{\operatorname{Var}[f(\mathbf{x})]}{n}$. This allows us to estimate confidence intervals around the estimate \hat{s}_n , using the cumulative distribution of the normal density.

However, all this relies on our ability to easily sample from the base distribution $p(\mathbf{x})$, but doing so is not always possible. When it is not feasible to sample from p, an alternative is to use importance sampling, presented in section 17.2. A more general approach is to form a sequence of estimators that converge towards the distribution of interest. That is the approach of Monte Carlo Markov chains (section 17.3).

17.2 Importance Sampling

An important step in the decomposition of the integrand (or summand) used by the Monte Carlo method in equation 17.2 is deciding which part of the integrand should play the role the probability p(x) and which part of the integrand should play the role of the quantity f(x) whose expected value (under that probability distribution) is to be estimated. There is no unique decomposition because p(x) f(x) can always be rewritten as

$$p(\mathbf{x})f(\mathbf{x}) = q(\mathbf{x})\frac{p(\mathbf{x})f(\mathbf{x})}{q(\mathbf{x})},$$
(17.8)

where we now sample from q and average $\frac{pf}{q}$. In many cases, we wish to compute an expectation for a given p and an f, and the fact that the problem is specified

¹The unbiased estimator of the variance is often preferred, in which the sum of squared differences is divided by n-1 instead of n.