Práctica Circuitos Electrónicos 5 Memoria

Óscar Gómez Borzdynski Jose Ignacio Gómez García

Prepráctica:

EJERCICIO A

Realizando los cálculos teóricos para una serie discreta de frecuencias, obtuvimos los siguientes resultados:

Frecuencia (Hz)	Av (dB)	Φ (2)
10	-74.14	∂90 º
100	-54.13	∂90 º
1000	-33.79	∂90 º
10000	-23.55	∂(-90 º)
100000	-46.04	∂(-90º)

Como se puede apreciar en la gráfica, estos valores son muy similares. Además, llegamos a la conclusión de que se asemeja a un filtro pasa-banda, ya que deja pasar las frecuencias intermedias

EJERCICIO 2

En este caso, obtenemos los siguientes resultados teóricos:

Frecuencia (Hz)	Av (dB)	Φ (Θ)
10	-38.17	⊕ 0°
100	-38.27	∂8 º
1000	-32.47	∂ 56º
10000	-23.61	⊕(-88 º)
100000	-46.05	∂(-90 º)

Se puede apreciar que los valores obtenidos teóricamente se asemejan bastante a los obtenidos en la simulación.

Por otro lado, el *plateau* que se aprecia a frecuencias bajas en el segundo circuito se debe a que cuando la frecuencia tiende a 0 tenemos un circuito equivalente donde Vo depende de una resistencia (Zl tiende a 0 y Zc tiende a infinito), por lo que dependerá de nuestra resistencia de 40 ohmios, sin embargo cuando la frecuencia tiende a infinito, Vo depende de un cortocircuito (Producido por Zc tendiendo a 0 y Zl tendiendo a infinito)

Montaje:

Para el montaje utilizaremos el generador de funciones, el osciloscopio y los componentes necesarios.

Ejercicio 1:

Tras realizar el montaje tomamos las medidas oportunas para distintos valores de frecuencia en el generador de funciones:

frecuencia (Hz)	V1(v)	Vab (V)	Av	dB	At (s)	Grados ⁹
50	1,96	0,048	0,0244898	-32,2202967	0	0
60	1,96	0,048	0,0244898	-32,2202967	0	0
70	1,96	0,048	0,0244898	-32,2202967	0	0
80	1,96	0,048	0,0244898	-32,2202967	0	0
90	1,96	0,048	0,0244898	-32,2202967	0	0
100	1,96	0,048	0,0244898	-32,2202967	0	0
200	1,96	0,048	0,0244898	-32,2202967	0,00024	17,28
300	1,96	0,048	0,0244898	-32,2202967	0,00024	25,92
400	1,96	0,048	0,0244898	-32,2202967	0,00024	34,56
500	1,96	0,048	0,0244898	-32,2202967	0,0002	36
600	1,96	0,052	0,02653061	-31,5250546	0,0002	43,2
700	1,96	0,054	0,02755102	-31,1972462	0,0002	50,4
800	1,96	0,056	0,02857143	-30,8813609	0,00022	63,36
900	1,96	0,062	0,03163265	-29,9972876	0,0002	64,8
1000	1,96	0,064	0,03265306	-29,7215219	0,00019	68,4
2000	1,96	0,112	0,05714286	-24,860761	0,0001	72
3000	1,96	0,208	0,10612245	-19,4838547	0,00007	75,6
4000	1,92	0,42	0,21875	-13,2010388	0,000044	63,36
5000	1,9	0,88	0,46315789	-6,68541858	0	0
6000	2	0,5	0,25	-12,0411998	0,00003	-64,8
7000	1,96	0,34	0,17346939	-15,2155431	0,000032	-80,64
8000	1,96	0,28	0,14285714	-16,9019608	0,000027	-77,76
9000	1,94	0,24	0,12371134	-18,1518098	0,0000275	-89,1
10000	1,96	0,168	0,08571429	-21,3389358	0,0000241	-86,76
20000	1,96	0,072	0,03673469	-28,6984715	0,0000119	-85,68
30000	1,96	0,058	0,02959184	-30,5765616	0,0000082	-88,56
40000	1,96	0,044	0,02244898	-32,9760679	0,0000061	-87,84
50000	1,96	0,04	0,02040816	-33,8039216	0,0000048	-86,4
60000	1,96	0,0038	0,00193878	-54,2494495	0,0000038	-82,08
70000	1,96	0,036	0,01836735	-34,7190714	0,0000035	-88,2
80000	1,96	0,028	0,01428571	-36,9019608	0,0000031	-89,28
90000	1,96	0,024	0,0122449	-38,2408966	0,0000027	-87,48
100000	1,96	0,023	0,01173469	-38,6105647	0,0000024	-86,4
200000	1,96	0,021	0,01071429	-39,4007355	0,0000012	-86,4
300000	1,96	0,019	0,00969388	-40,2700494	0,0000008	-86,4
400000	1,96	0,018	0,00918367	-40,7396713	0,0000006	-86,4
500000	1,96	0,016	0,00816327	-41,7627218	0,0000005	-90

Podemos comprobar que los valores son muy similares a los obtenidos de manera teórica y coinciden con los valores de la gráfica de LTSpice:

En el caso de éste filtro, la frecuencia natural es 5kHz, donde el valor de |Av| = 0.46.

Para calcular la frecuencia de corte buscamos la frecuencia donde $|Av| = \frac{0.46}{\sqrt{2}} = 0.325 \quad \text{, con ello obtenemos las frecuencias 4485Hz y 5468Hz,}$ por lo que el ancho de banda es cercano a los 1000Hz (983Hz).

Ejercicio 2:

En este ejercicio analizaremos el circuito con una señal de entrada cuadrada.

Obtenemos las siguientes medidas:

frecuencia(Hz)	k	Vab	(4/pi*k)* Avmax
5000	1	1,2	0,589710947
15000	3	0,32	0,196570316
25000	5	0,28	0,117942189
35000	7	0,06	0,084244421
45000	9	0,056	0,065523439
55000	11	0,046	0,053610086
65000	13	0,04	0,045362381
75000	15	0,038	0,039314063
85000	17	0,036	0,034688879
95000	19	0,03	0,031037418
105000	21	0,03	0,028081474
115000	23	0,03	0,025639606
125000	25	0,03	0,023588438
135000	27	0,03	0,021841146
145000	29	0,03	0,02033486
155000	31	0,03	0,019022934

Las desviaciones de nuestro circuito se deben al ligero margen de error de nuestras resistencias, bobina y condensador que puedan tener, así como por el margen de error que puedan introducir el osciloscopio y el generador de funciones.

Conclusiones finales:

En el primer ejercicio llegamos a la conclusión de que nos encontramos ante un filtro pasa banda con una frecuencia natural de 5000Hz, con un ancho de banda de 1000Hz. Los valores experimentales obtenidos fueron muy similares a los valores teóricos previamente calculados utilizando una resistencia en serie con la bobina, ya que en nuestro caso no contamos con una bobina ideal, sino que tiene una resistencia interna.

En el ejercicio 2 tomamos un primer contacto con las series de Fourier, los valores obtenidos difieren de los valores teóricos esperados, pero pensamos que se producen debido a las irregularidades de los componentes, que no son ideales.