Matrix Factorization of the Determinant over G(m,1,n)

Consider a finite reflection group G = G(m, 1, n) acting on $A = \mathbb{C}[x_1, \dots, x_n]$ by permuting the elements, then by the theorem of Chevalley-Sheppard Todd there exists algebraic independent $f_1, \dots, f_n \in A$ such that $B = A^G = \mathbb{C}[f_1, \dots, f_n]$ and A is a finite dimensional free module over B. For $\lambda = (\lambda_1, \dots, \lambda_m) \in \operatorname{type}(n_1, \dots, n_m)$ for a partition $(n_1, \dots, n_m) \vdash n$ we consider the Specht module S_λ and the isotypical components of A over λ as

$$A_{\lambda} = \hom_{\mathbb{C}G}(S_{\lambda}, A)$$

Consider the set of reflecting hyperplane $\mathfrak{A}(G)$ to be the set of hyperplanes in \mathbb{C}^n which are fixed for some reflection in G. For some reflecting hyperplane $h \in \mathfrak{A}(G)$ then the subgroup $\operatorname{stab}(h) \leq G$ is cyclic with order d_h , furthermore we could describe each hyperplane as a linear equation $e_h = 0$ where $e_h \in A$. We then define the following polynomials

$$z = \prod_{h \in \mathfrak{A}(G)} e_h$$
 and $j = \prod_{h \in \mathfrak{A}(G)} e_h^{d_h}$

With this we define the discriminant of G to be $\Delta=zj$. Note that we can define the linear maps $z,j:A\to A$ by multiplication by z and j respectively, and since A is a free module over B these maps are linear maps from A to itself as a B-module, which we will denote ρ_z and ρ_j respectively. It is known that z and j belongs to the determinial representation det so that multiplication by z yields the following map $z:A_\lambda\to A_{\lambda'}$ where $\lambda'=(\lambda_m,\lambda_1,\ldots,\lambda_{m-1})$ while multiplication by j gives $j:A_\lambda\to A_{\lambda^{-1}}$ where $\lambda^{-1}=(\lambda_2,\ldots,\lambda_m,\lambda_1)$. Knowing that $\Delta\in B$ we know that $\rho_z\circ\rho_j=\Delta I$ where I is the identity map from A to A as a module over B. This gives us a matrix factorization of Δ given by multiplication by z and j respectively

$$A_{\lambda} \xrightarrow{z} A_{\lambda'} \xrightarrow{j} A_{\lambda}$$

Recall that $ST(\lambda)$ is the set of m-tableaux (T_1, \ldots, T_m) such that T_i is a standard tableaux of shape λ_i , thus if $T \in ST(\lambda)$ then for each $1 \leq i \leq m$ we can build the following idempotents $\varepsilon_T = \sum_{c \in C(T_i)} \sum_{r \in R(T_i)} \operatorname{sgn}(c) \operatorname{cr}$ and $\sigma_T = \sum_{c \in C(T_i)} \sum_{r \in R(T_i)} \operatorname{sgn}(r) \operatorname{cr}$, where $C(T_i)$ and $R(T_i)$ are the column and row stabilizer respectively. Given $T, V \in ST(\lambda)$ we define the following polynomials

$$F_T^V = (\varepsilon_T.x_T^V)(\mu_T)$$
 and $H_T^V = (\sigma_T\varepsilon_T.x_T^V)(\mu_T)$

Where $\mu_T = \pi_{i=1}^m \pi_{j \in T_i}(x_j)^i$. With this we also define the following sets $F_T = \{F_T^S \mid S \in ST(\lambda)\}$ and $F^T = \{F_S^T \mid S \in ST(\lambda)\}$, similarly we define similar sets for H_T and H^T . Lastly if we index by λ , so $F_{\lambda} = \{F_T^V \mid T, V \in ST(\lambda)\}$

With the basis F_p and H_p we can now express the linear maps ρ_z and ρ_j as a matrix over B, where both matrices given are of size $\dim(S_\lambda)^2$. However we wish to decompose these matrix factorization further, to begin let us examine using H_p as a basis for A_p and $F_{p'}$ as a basis for $A_{p'}$ and restricting $\rho_z: H_p \to F_{p'}$. We obtain the following.

$$zH_T^V = \sum_{U,W \in ST(\lambda')} g_{U,T}^{W,V} F_U^W \tag{1}$$

Where $g_{U,T}^{W,V} \in B$ are the entries in this matrix. Recall that for $T,V \in ST(\lambda)$ we have that $F_T^V = \varepsilon_T x_T^V(\mu_T)$ and $H_T^V = \sigma_T \varepsilon_T x_T^V(\mu_T)$ where $\mu_T = \pi_{i=1}^m \pi_{j \in T_i}(x_j)^i$. First consider the group $P = Perm(T_i)$ for some $1 \leq i \leq m$ to be the

group permuting the entries of T_i of m-tableaux T, then it is easy to see that

$$\begin{split} g.F_{T}^{V} &= g(\varepsilon_{T}.x_{T}^{V})(\mu_{T}) \\ &= (g.\varepsilon_{T}.x_{T}^{V})(g.\mu_{T}) \\ &= (g.\varepsilon_{T}.x_{T}^{V})(g.\pi_{i=1}^{m}\pi_{j\in T_{i}}(x_{j})^{i}) \\ &= (g.\varepsilon_{T}.x_{T}^{V})(\pi_{i=1}^{m}\pi_{j\in T_{i}}(x_{g(j)})^{i}) \\ &= (g.\varepsilon_{T}.x_{T}^{V})(\mu_{T}) \end{split}$$

Therefore applying the idempotent $\varepsilon_{T_i}.F_T^V = F_T^V$ since all the terms in ε_{T_i} belong to permutations in T_i and $\varepsilon_{T_i}\varepsilon_T = \varepsilon_T$, a similar argument can be made and we may show that $\sigma_{T_i}.H_T^V = H_T^V$. Using this we can decompose the matrix factorizations we obtained from ρ_z and ρ_j into smaller ones by analyzing the $g_{U,T}^{W,V}$ coefficients in equation (1)

Theorem 1: given $T \in ST(\lambda)$ we have that multiplication by z will induce the map $z: H_T \to F_{T'}$ and $z: F_{T'} \to H_{T'}$

Proof: First consider $H_T^V \in H_T$, and recall the equation obtained by applying ρ_z to H_T^V we have

$$zH_T^V = \sum_{U,W \in \mathrm{ST}(\lambda')} g_{U,T}^{W,V} F_U^W$$

Recall that since $z \in A_{det}$ then for any $g \in S_n$ we have that $g.z = \operatorname{sgn}(g)z$, and that the row stabilizer $R(T_i)$ is the column stabilizer $C(T_i')$ of its conjugate tableaux, similarly $C(T_i) = R(T_i')$, with this we obtain the following

$$\begin{split} \varepsilon_{T_i'}(zH_T^V) &= \sum_{c \in C(T_i'), r \in R(T_i')} \operatorname{sgn}(c) cr(zH_T^V) \\ &= \sum_{c \in C(T_i'), r \in R(T_i')} z(\operatorname{sgn}(r)(cr(H_T^V))) \\ &= z(\sigma_{T_i}(H_T^V)) \\ &= z(\sigma_{T_i}(\sigma_{T_1} \cdots \sigma_{T_m}).x_T^V) \\ &= z(H_T^V) \end{split}$$

Thus $z(H_T^V)$ is invariant under the action of ε_{T_i} for any i. Now we look at the right hand side of the equation

$$\begin{split} \varepsilon_{T_i'}(\sum_{U,W \in \operatorname{ST}(\lambda')} g_{U,T}^{W,V} F_U^W) &= \sum_{U,W \in \operatorname{ST}(\lambda')} g_{U,T}^{W,V} \varepsilon_{T_i'} F_U^W \\ &= \sum_{U,W \in \operatorname{ST}(\lambda') \text{ and } U_j = T_i'} g_{U,T}^{W,V} F_U^W \end{split}$$

Therefore by applying $\varepsilon_{T'_i}$ we kill any higher Specht polynomial F_U^W of type λ' if $U = (U_1, \ldots, U_m)$ does not match one of it's j'th component with T'_i . From this we can conclude that by applying $\varepsilon_{T'}$ we would be left with term $F_{T'}^W$.

$$zH_T = \varepsilon_T(zH_T) = \varepsilon_T(\sum_{U,W \in ST(\lambda')} g_{U,T}^{W,V} F_U^W) = \sum_{W \in ST(\lambda')} g_{U,T}^{W,V} F_{T'}^W \in F_{T'}$$

With this theorem we obtain that each $T \in ST(\lambda)$ we have a matrix M_T such that $M_T : H_T \to F_{T'}$ given by the map ρ_z . Note that we can define a similar matrix N_T for the map ρ_j , which together will form the matrix factorization of $M_T N_{T'} = N_{T'} M_T = \Delta I$.