EPITA

Mathematics

Midterm exam S3

November 2021

Duration: 3 hours

Name:	
First name:	
Class:	
MARK:	
Instructions:	
 Documents and pocket calculators are not allowed. 	

- Write your answers on the stapled sheets provided for answering. No other sheet will be corrected.
 Please, do not use lead pencils for answering.

Exercise 1 (3 points)

1. Find the nature of the series whose general term is: $u_n = \frac{\sin(2n)}{n^2}$.

2. Find the nature of the series whose general term is: $u_n = \frac{n^2}{e^{n^2}}$.

3. What is the nature of the series $\sum \frac{(-1)^n}{\ln(n)}$?

Exercise 2 (3 points)

Consider the sequence (u_n) defined for all $n \in \mathbb{N}^*$ by: $u_n = \sqrt{n + (-1)^n} - \sqrt{n}$.

The purpose of the exercise is to study the nature of $\sum u_n$.

1. Find $(a,b) \in \mathbb{R}^2$ such that $u_n = \frac{a(-1)^n}{n^{\frac{1}{2}}} + \frac{b}{n^{\frac{3}{2}}} + o\left(\frac{1}{n^{\frac{3}{2}}}\right)$.

Exercice 3 (4 points)

The purpose of this exercise is to study the nature of the sequence (u_n) defined by: $u_n = \frac{2 \times 4 \times 6 \times \cdots \times (2n)}{1 \times 3 \times 5 \times \cdots \times (2n-1)}$. In that purpose, consider the auxiliary sequence (v_n) defined by: $v_n = \ln(u_n)$.

1. Let $n \in \mathbb{N}^*$. Compute $\frac{u_{n+1}}{u_n}$ and deduce $v_{n+1} - v_n$.

2. Find $a \in \mathbb{R}^+$ such that $(v_{n+1} - v_n) \sim \frac{a}{n}$.

3. What is the nature of (v_n) ? Deduce what can be said about $\lim_{n\to+\infty} v_n$.

4. Deduce $\lim_{n\to+\infty} u_n$?

Exercise 4 (6 points)

In this exercise, the questions are mutually dependent.

If you have not answered to some of them, feel free to accept their results without proof and to use them, if it is helpful, in other questions.

1. Let $q \in \mathbb{R}^*$ and consider the power series $\sum q^n x^n$.

a. What is the value of its radius of convergence R?

b. Let f be the function defined on]-R,R[by: $f(x)=\sum_{n=0}^{+\infty}q^n\,x^n.$

Find an expression of f(x) as a rational fraction.

c. Deduce an expression of the function $g: x \mapsto \frac{1}{(1-qx)^2}$ as a power series: $g(x) = \sum_{n=0}^{+\infty} a_n x^n$.

2. Let $p \in]0,1[$. Consider a random experiment which can lead to a success (with the probability p) or to a failure (with the probability 1-p). Assume that this experiment can be done as many times as you want, the outcomes being mutually independent.

Finally, consider the random variable $X = \emptyset$ number of attempts required to get one success ». For example, if the first attempt is a success, then X = 1.

a. Give the distribution of X.

Deduce the expectation and the variance of X .	

a. Express Y as a sum of two random variables studied previously.

[this frame continues on next page]

c. Application:	using the previous	questions, find P	(Y=5).			
cise 5 (4 p	oints)					
				,		
be an integer ra	ndom variable whos	se generating fund	ction has the forn	$m G_X(t) = a \ln (1 -$	$-\frac{t}{3}$).	
	e of a?					
	e of a?					
	e of <i>a</i> ?					
	e of <i>a</i> ?					
What is the value of the value of the value of the geometric of the geometric of the value of th	e of a? tric series, express ($G_X(t)$ as a power	series. Give the r	cadius of convergen	ce and deduce the	e dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	cadius of convergen	ce and deduce the	dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	e dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	dist
What is the value		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	e dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	e dist
What is the value of the value of the geometric of the geometric of the geometric of the value o		$G_X(t)$ as a power	series. Give the r	adius of convergen	ce and deduce the	dist
Using the geome of X.			series. Give the r	adius of convergen	ce and deduce the	dist
Using the geome of X.	tric series, express (series. Give the r	adius of convergen	ce and deduce the	e dist
Using the geome of X.	tric series, express (series. Give the r	adius of convergen	ce and deduce the	dist
Using the geome of X.	tric series, express (series. Give the r	adius of convergen	ce and deduce the	dist
Using the geome of X.	tric series, express (series. Give the r	adius of convergen	ce and deduce the	e dist

. Fir	nd a function f s	such that, if we de	efine the random	variable $Y = f($	(X), then: G	$Y(t) = t G_X(t).$	