Name:				
Maine.	-			

Roll Number:

EE2001 Quiz II

Monday, 02/04/18 Closed book, 50 mins, 20 points

Remember ...

- Make reasonable assumptions when in doubt. However, you should show all steps and justify assumptions for full credit. Provide final answers ONLY in the space provided.
- 1. Draw the state diagram for a Flip-Flop which has two inputs X and Y and two outputs Q and Q'. When Y=0, the output Q_n is equal to the previous state Q_{n-1} and when Y=1, $Q_n=X$. Realize the Flip-Flop using a D Flip-Flop and some gates. (4 pts)

2. Design and draw the circuit of a synchronous single input single output system such that the output Z = 1 with every occurrence of an input 1 following a string following a string of at least two consecutive 0 inputs. At all other times, the output Z = 0. (4 pts)

	A	ß	X	Ä	B+	°lp	DA	DB	
	0	0	0	0	1	0	0	1	
	0	0	1	0	0	0	0	٥	
	0	1	0	1	0	0	1	0	
-	9	1	1	0	0	0	0	0	
	1	0	0	1	0	0	1	^	
	1	0	1	0	0		0	0	
							*	*	
								_	

PA

3.	Design	and o	iraw t	he cir	rcuit	of a s	ynchrosed sta	onous	mod-	-6 cou	nter itput	whic	to 00	nts from	n 000 in the next cloc (4 pts)	e k	
	pulse.	- sut	shafe	No.	ch sh	re Qo	P.Flip Da	- Step.	input	TA	FYP	Ir	TA	00 01	11 10	TA QQ +	Q, Q0
0	Q ₂	0	0	0,	Q,	1	0	0	1	0	0	,	11	100 01	11 10	+ Q2	Sto
	0	0	0	0	1	0	0	,	1	0	0	1	020	1	111	$T_{g} = Q_{2}Q_{1}$ $+ Q_{2}Q_{2}$	
	0	1	(1	0	0	t	0	0	0	0	1	Tue	10001	11 10	Te = Q'+Q	1+ Ro
	1	0	1	0	0	0	0	0	0	1	0	1	, J	1 Sup 8	27:	K = Q Q	,
	1	1	0	0	0	0	0	0	0	1200	,	10	1	JA =	Q2 Q0	KB2 Q, Q	0
0,0		10	,	Pg Q ₂	6 3	01 11	10		020	-200		9			Q, Q,	Kcel	
11	1 = Q'Q	Q +	0,0,	Q'	DR	= Q, a	, Q0 +	0,0	Q'	Pe=	Q', Q.	+02	00	4 1	1	and	4.

4. Draw the circuit of a system which loads 4-bit parallel data once in every 4 clock pulses and outputs them as 4-bit serial data. The design <u>must</u> include generation of appropriate control signals to load data at proper intervals. (4 pts)

- 5. (a) Consider a 16 M x 8 memory constructed using the above element. The number of address lines and the input/output data lines required are ______ and _____ respectively. (2pts)
 - (b) The number of AND gates required for the decoder in the above memory is $\frac{2+}{2}$ for 1-D addressing and $\frac{2+}{2}$ for 2-D addressing (2pts)

