Both theory and programming questions are due Thursday, September 15 at 11:59PM. Please download the .zip archive for this problem set, and refer to the README.txt file for instructions on preparing your solutions. Remember, your goal is to communicate. Full credit will be given only to a correct solution which is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea of the problem.

We will provide the solutions to the problem set 10 hours after the problem set is due, which you will use to find any errors in the proof that you submitted. You will need to submit a critique of your solutions by Tuesday, September 20th, 11:59PM. Your grade will be based on both your solutions and your critique of the solutions.

Collaborators: None.

Problem 1-1. [15 points] Asymptotic Practice

For each group of functions, sort the functions in increasing order of asymptotic (big-O) complexity:

(a) [5 points] Group 1:

$$f_1(n) = n^{0.999999} \log n$$

 $f_2(n) = 10000000n$
 $f_3(n) = 1.000001^n$
 $f_4(n) = n^2$

Your Solution: 1, 2, 4, 3

(b) [5 points] Group 2:

$$f_1(n) = 2^{2^{1000000}}$$

$$f_2(n) = 2^{100000n}$$

$$f_3(n) = \binom{n}{2}$$

$$f_4(n) = n\sqrt{n}$$

Your Solution: 1, 4, 3, 2

(c) [5 points] Group 3:

$$f_1(n) = n^{\sqrt{n}}$$

$$f_2(n) = 2^n$$

$$f_3(n) = n^{10} \cdot 2^{n/2}$$

$$f_4(n) = \sum_{i=1}^n (i+1)$$

Your Solution: 4, 1, 3, 2

Problem 1-2. [15 points] Recurrence Relation Resolution

For each of the following recurrence relations, pick the correct asymptotic runtime:

(a) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and} \\ T(x,y) & = & \Theta(x+y) + T(x/2,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

(b) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$T(x,c) = \Theta(x)$$
 for $c \le 2$,
 $T(c,y) = \Theta(y)$ for $c \le 2$, and
 $T(x,y) = \Theta(x) + T(x,y/2)$.

- 1. $\Theta(\log n)$.
- $2. \Theta(n).$
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

(c) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lll} T(x,c) &=& \Theta(x) & \text{for } c \leq 2, \\ T(x,y) &=& \Theta(x) + S(x,y/2), \\ S(c,y) &=& \Theta(y) & \text{for } c \leq 2, \text{ and } \\ S(x,y) &=& \Theta(y) + T(x/2,y). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

Peak-Finding

In Lecture 1, you saw the peak-finding problem. As a reminder, a peak in a matrix is a location with the property that its four neighbors (north, south, east, and west) have value less than or equal to the value of the peak. We have posted Python code for solving this problem to the website in a file called ps1.zip. In the file algorithms.py, there are four different algorithms which have been written to solve the peak-finding problem, only some of which are correct. Your goal is to figure out which of these algorithms are correct and which are efficient.

Problem 1-3. [16 points] Peak-Finding Correctness

- (a) [4 points] Is algorithm1 correct?
 - 1. Yes.
 - 2. No.

Your Solution: 1

- (b) [4 points] Is algorithm2 correct?
 - 1. Yes.
 - 2. No.

- (c) [4 points] Is algorithm3 correct?
 - 1. Yes.

2. No.

Your Solution: 2

- (d) [4 points] Is algorithm4 correct?
 - 1. Yes.
 - 2. No.

Your Solution: 1

Problem 1-4. [16 points] Peak-Finding Efficiency

- (a) [4 points] What is the worst-case runtime of algorithm1 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 3

- (b) [4 points] What is the worst-case runtime of algorithm2 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - $2. \Theta(n).$
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 5

- (c) [4 points] What is the worst-case runtime of algorithm3 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

(d) [4 points] What is the worst-case runtime of algorithm on a problem of size $n \times n$?

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

Problem 1-5. [19 points] Peak-Finding Proof

Please modify the proof below to construct a proof of correctness for the most efficient correct algorithm among algorithm2, algorithm3, and algorithm4.

The following is the proof of correctness for algorithm1, which was sketched in Lecture 1.

We wish to show that algorithm1 will always return a peak, as long as the problem is not empty. To that end, we wish to prove the following two statements:

1. If the peak problem is not empty, then algorithm1 will always return a location. Say that we start with a problem of size $m \times n$. The recursive subproblem examined by algorithm1 will have dimensions $m \times \lfloor n/2 \rfloor$ or $m \times (n - \lfloor n/2 \rfloor - 1)$. Therefore, the number of columns in the problem strictly decreases with each recursive call as long as n > 0. So algorithm1 either returns a location at some point, or eventually examines a subproblem with a non-positive number of columns. The only way for the number of columns to become strictly negative, according to the formulas that determine the size of the subproblem, is to have n = 0 at some point. So if algorithm1 doesn't return a location, it must eventually examine an empty subproblem.

We wish to show that there is no way that this can occur. Assume, to the contrary, that algorithm1 does examine an empty subproblem. Just prior to this, it must examine a subproblem of size $m \times 1$ or $m \times 2$. If the problem is of size $m \times 1$, then calculating the maximum of the central column is equivalent to calculating the maximum of the entire problem. Hence, the maximum that the algorithm finds must be a peak, and it will halt and return the location. If the problem has dimensions $m \times 2$, then there are two possibilities: either the maximum of the central column is a peak (in which case the algorithm will halt and return the location), or it has a strictly better neighbor in the other column (in which case the algorithm will recurse on the non-empty subproblem with dimensions $m \times 1$, thus reducing to the previous case). So algorithm1 can never recurse into an empty subproblem, and therefore algorithm1 must eventually return a location.

2. If algorithm1 returns a location, it will be a peak in the original problem. If algorithm1 returns a location (r_1, c_1) , then that location must have the best value in column c_1 , and must have been a peak within some recursive subproblem. Assume, for the sake of contradiction, that (r_1, c_1) is not also a peak within the original problem. Then as the location (r_1, c_1) is passed up the chain of recursive calls, it must eventually reach a level where it stops being a peak. At that level, the location (r_1, c_1) must be adjacent to the dividing column c_2 (where $|c_1 - c_2| = 1$), and the values must satisfy the inequality $val(r_1, c_1) < val(r_1, c_2)$.

Let (r_2, c_2) be the location of the maximum value found by algorithm1 in the dividing column. As a result, it must be that $val(r_1, c_2) \leq val(r_2, c_2)$. Because the algorithm chose to recurse on the half containing (r_1, c_1) , we know that $val(r_2, c_2) < val(r_2, c_1)$. Hence, we have the following chain of inequalities:

$$val(r_1, c_1) < val(r_1, c_2) \le val(r_2, c_2) < val(r_2, c_1)$$

But in order for algorithm1 to return (r_1, c_1) as a peak, the value at (r_1, c_1) must have been the greatest in its column, making $val(r_1, c_1) \ge val(r_2, c_1)$. Hence, we have a contradiction.

Your Solution: I wish to show that algorithm will always return a peak, as long as the problem is not empty. To that end, I wish to prove the following two statements:

1. If the peak problem is not empty, then algorithm4 will always return a location. Say that we start with a problem of size $m \times n$. The first recursive subproblem examined by algorithm4 will have dimensions $\lfloor m/2 \rfloor \times n$ or $(m - \lfloor m/2 \rfloor - 1) \times n$. It will look for highest number, if not peak mark the coordinate greater than it. First function call made through dividing columns to decrease problem, every recursive call will divide problem almost by 2 and everytime updates highest number likely to be peak with first call's approach, recurs to that number changing between dividing columns and rows.

I wish to show that there is no way that this can occur. Assume, to the contrary, that algorithm4 does examine an empty subproblem. Just prior to this, it must examine a subproblem of size $1 \times n$ or $2 \times n$. If the problem is of size $1 \times n$, then calculating the maximum of the central row is equivalent to calculating the maximum of the entire problem. Hence, the maximum that the algorithm finds must be a peak, and it will halt and return the location. If the problem has dimensions $2 \times n$, then there are two possibilities: either the maximum of the central row is a peak (in which case the algorithm will halt and return the location), or it has a strictly better neighbor in the other row (in which case the algorithm will recurse on the non-empty subproblem with dimensions $2 \times (n - \lfloor n/2 \rfloor - 1)$ or $2 \times (n - \lfloor n/2 \rfloor)$, in this situation in the last state which is dimensions 2×2 , algorithm will compare last 2 of 3 coordinates to determine the peak is real or not to return. So algorithm4 can never recurse into an empty subproblem, and therefore algorithm4 must eventually return a location.

2. If algorithm4 returns a location, it will be a peak in the original problem. If algorithm4 returns a location (r_1, c_1) , then that location must have the best value or be greater than

another column or row's best value in column c_1 or row r_1 . Assume, for the sake of contradiction, that (r_1, c_1) is not also a peak within the original problem. Then as the location (r_1, c_1) is passed up the chain of recursive calls, it must eventually reach a level where it stops being a peak while recurring it's edges. At that level, the location (r_1, c_1) must be adjacent to the dividing dimensions as a row and a column (where $|x_1 - r_2| = 1$) -and the values must satisfy the inequality and dimension x_2 (where $|x_1 - x_2| = 1$) and the values must satisfy the inequality for example $val(r_1, c_1) < val(r_1, c_2)$.

Problem 1-6. [19 points] Peak-Finding Counterexamples

For each incorrect algorithm, upload a Python file giving a counterexample (i.e. a matrix for which the algorithm returns a location that is not a peak).

```
\begin{aligned} & problemMatrix = [\\ & [0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0], \\ & [0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0], \\ & [0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0], \\ & [3, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0], \\ & [4, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0], \\ & [0, \, 0, \, 1, \, 2, \, 0, \, 0, \, 0], \\ & [0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0] \end{aligned}
```