

Angewandte In<mark>formatik</mark>

Bachelor of Science

(AIN)

HTWG Konstanz

Nach SPO Nr. 3 . (Version nach Amtsblatt Nr. 96 | Senat 10.12.2019) Stand: 15.06.2020

Gültig ab Wintersemester 2021/2022

Inhalt

Das Modulhandbuch enthält Informationen zum Umfang, der Lernform, den Inhalten, der Literatur, der Prüfungsart, dem Arbeitsaufwand, den ECTS-Leistungspunkten, den Voraussetzungen, dem Lernergebnis und den Modulverantwortlichen der Module des Bachelorstudiengangs Angewandte Informatik (AIN).

Einordnung

Das Modulhandbuch ist der Studien- und Prüfungsordnung (SPO) untergeordnet, d.h. für alle Inhalte, die durch die Studien- und Prüfungsordnung geregelt sind, z.B. insbesondere ECTS-Punkte, Prüfungsformen, - anforderungen und -arten, sind die Angaben in der Studien- und Prüfungsordnung entscheidend und rechtlich bindend.

Legende

Hinsichtlich Veranstaltungsart, Prüfungsform und Prüfungsart werden die Bezeichnungen aus der Studienund Prüfungsordnung verwendet und auf diese verwiesen (siehe Studien- und Prüfungsordnung der Hochschule Konstanz Technik, Wirtschaft und Gestaltung für die Bachelorstudiengänge (SPOBa) § 39).

Abkürzungen

SWS = Semesterwochenstunden

ECTS = European Credit Transfer System

PM = Pflichtmodul
WPM = Wahlpflichtmodul
GS = Grundstudium
HS = Hauptstudium
V = Vorlesung

Ü = Übung (mit Betreuung)

LÜ = Laborübung

W = Workshop, Seminar

P = Praktikum E = Exkursion

PSS = Integriertes praktisches Studiensemester

Kx = Klausur (x = Dauer in Minuten)

Mx = Mündliche Prüfung (x = Dauer in Minuten)

R = Referat

SP = sonstige schriftliche oder praktische Arbeit

AB = Ausarbeitungen/Berichte LP = Labor-/Programmierarbeiten

PR = Präsentation TE = Testat PJ = Projekt

Dokumentinformation

Version: SPO Nr. 3 | Version nach Amtsblatt Nr. 96 | Senat 10.12.2019

Stand: 15.06.2020

Editors: Prof. Dr. Markus Joachim Eiglsperger

INdigit: Automatisch generiert am 22.10.2021 um 11:35 Uhr

Aufbau des Studiengangs Angewandte Informatik (Bachelor of Science) für Studierende mit Studienbeginn ab Wintersemester 2021/2022:

Semester 1 Mathematik 1 | Digitaltechnik | Programmiertechnik 1

| Softwaremodellierung

Mathematik 2 | Stochastik | Programmiertechnik 2 | **Semester 2**

Systemprogrammierung | Rechnerarchitekturen

Sensoren, Signale und Systeme | Algorithmen und **Semester 3**

Theoretische Informatik | Software Engineering |

Betriebssysteme | Datenbanksysteme 1

Semester 4 Integriertes Praktisches Studiensemester

Grundlagen der IT-Sicherheit/Foundations of IT-**Semester 5**

Security | Rechnernetze | Module der

Vertiefungsrichtung (AI, ES, SE)

Verteilte Systeme | Teamprojekt | Module der Semester 6

Vertiefungsrichtung (AI, ES, SE)

Gruppenbetreuung | Bachelorarbeit | Module der **Semester 7**

Vertiefungsrichtung (AI, ES, SE)

Module der gewählten

Vertiefungsrichtung: Artificial

Artificial Intelligence | Mobile Roboter | Computergrafik | 2D Computer Vision | 3D Computer

Vision | Parallel Computing | Wahlpflichtmodul

Intelligence (AI)

Module der gewählten

Vertiefungsrichtung:

Embedded Systems (ES)

Mikroprozessorsysteme | Digitale Systeme | Parallel

Embedded Systems | Kommunikationstechnik |

Computing | Ubiquitous Computing |

Wahlpflichtmodul

Module der gewählten

Vertiefungsrichtung: Software

Engineering (SE)

Web-Applikationen | Sprachkonzepte |

Softwarearchitektur | Softwarequalitätssicherung | Datenbanksysteme 2 | Mobile Anwendungen |

Wahlpflichtmodul

Modul 01	Mathematik 1			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. R. Axthelm	SS, WS	MAT1/01	8	240 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	6	90 h	150 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: STO/06, SSS/10, COGR/AI3, 3DCV/AI5, nützlich für alle Vertiefungsrichtungen Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (TE)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Student*innen beherrschen mathematische Symboliken und Schreibweisen und haben ein Verständnis für aussagelogische Schlussfolgerungen sowie mengentheoretische Strukturen. Sie sind in der Lage grundlegende Berechnungsmethoden der Linearen Algebra durchzuführen, um mathematische Fragestellungen zu bearbeiten. Sie begreifen darüber hinaus die Bedeutung der verschiedenen Themen für ihr spezielles Studienfach.

Lernziele des Moduls

Personale Kompetenzen

Die Student*innen können mathematische Themen selbständig erarbeiten und Übungsaufgaben selbständig lösen. In den Übungen wird das Zusammenarbeiten von Studierenden gefördert, insbesondere dann wenn sie unterschiedlichen Kenntnisstand haben. Alle Teilnehmer*innen werden motiviert, Buch über den eigenen Erfolg zu führen.

Lehr- und Lernformen	
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mathematik 1 Prof. Dr. R. Axthelm	V	4	4	 Grundlagen (Mengen, Aussagen- und Prädikatenlogik) Relationen algebraische Strukturen Matrizen und Determinanten lineare Gleichungssysteme Homomorphismen und affine Abbildungen Vektorräume und Basen Eigenwerte und Eigenvektoren
Mathematik 1 Übungen Prof. Dr. R. Axthelm	Ü	2	4	In den Übungen werden Berechnungsmethoden zu den Themen in der Vorlesung geübt. Teilnehmer*innen präsentieren Ergebnisse und Verständnislücken, die dann in der Gruppe besprochen werden. Die Präsentation wird nicht bewertet ist aber Teil des unbenoteten Leistungsnachweises, zu dem des Weiteren das Bestehen von 4 online-Tests gehört.

Literatur/Medien	Alle unterlagen zum Kurs werden über Mood entsprechendne Links erfolgt in der ersten S	
Sprache	Deutsch	Zuletzt aktualisiert 15.06.2021

Modul 02	Digitaltechnik			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. I. Schoppa	SS, WS	DIGI/02	8	240 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	6	90 h	150 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: REAR/09, MPS/ES3, DSYS/ES4
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		SP (TE)
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

	Fachliche Kompetenzen Die Studierenden sind mit den theoretischen Grundlagen der Digitaltechnik auf der Logikebene vertraut und verfügen über Kenntnisse im Aufbau und in der Funktionsweise digitaler Grundschaltungen.
Lernziele des Moduls	Personale Kompetenzen Die Student*innen können mathematische Themen selbständig erarbeiten und Übungsaufgaben selbständig lösen. In den Übungen wird das Zusammenarbeiten von Studierenden gefördert, insbesondere dann wenn sie unterschiedlichen Kenntnisstand haben. Alle Teilnehmer*innen werden motiviert, Buch über den eigenen Erfolg zu führen.

i enr- una i ernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Digitaltechnik Prof. Dr. I. Schoppa	V	4	5	 Zahlensysteme und Rechenarithmetik Boolesche Algebra und logische Grundfunktionen graphische und algorithmische Minimierungsverfahren Dekodierer, Multiplexer, Demultiplexer Schaltketten und Arithmetikschaltungen Logikfamilien und deren Kenndaten dynamisches Verhalten von Schaltnetzen asynchrone und synchrone Flipflops Zustandsautomaten Register, Schieberegister und Zähler Registertransferoperationen Realisierungen von Steuerwerken Synthese von Schaltwerken
Digitaltechnik Übungen Prof. Dr. I. Schoppa	Ü	2	3	Die Lehrinhalte werden abschnittsweise über Übungen (inkl. Fragen, Diskussion, Teamarbeit in kleinen Gruppen, Präsentation derLösungsmethoden) vertieft. Sie werden ferner permanent übe eine Vielzahl von konkreten Praxisbeispielen veranschaulicht.

Literatur/Medien	 Schoppa, I.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. Beuth, K: Elektronik 4. Digitaltechnik, Vogel Fachbuchverlag, 2006. Pernards, P.: Digitaltechnik, Hüthig Verlag, 1992. Pernards, P.: Digitaltechnik 2, Einführung in die Schaltwerke, Hüthig Verlag, 1995.
------------------	---

	- Borucki, L.: Digitaltechnik, Teubner Verlag, 5. Auflage, 2000.				
Sprache	Deutsch	Zuletzt aktualisiert	15.06.2021		

Modul 03	Programmiertechnik 1								
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. Dr. H. von Drachenfels	SS, WS	PROG1/03	8	240 h					
	Dauer	SWS	Kontaktzeit	Selbststudium					
	1 Semester	6	90 h	150 h					

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: PROG2/07, SYPR/08, SENG/12, SPKO/SE2 Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K120			
	Modulteilprüfung (MTP)			SP (LP)	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Lernziele des Moduls	Fachliche Kompetenzen Die Studierenden kennen und verstehen die grundlegenden Konzepte der imperativen und objektorientierten Programmierung. Sie können einfache Problemstellungen mit Programmen lösen und können mit den für die praktische Umsetzung erforderlichen Programmierwerkzeugen umgehen.
	Personale Kompetenzen Sie sind in der Lage, sich die Zeit für das termingerechte Lösen einer Aufgabenstellung einzuteilen.

	☑ Vorlesung □ Übung ☑ Selbststudium □ Workshop/Seminar □ Projekt ☑ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Programmiertechnik 1 Prof. Dr. H. von Drachenfels	V	4	5	 Einführung in die Programmierung am Beispiel der Sprache Java Daten: Literale, Variablen, Typen Anweisungen: Ausdrücke, Operatoren, Ablaufsteuerung Klassen: Pakete, Methoden, Variablen, Objekte Objektorientierung: Kapselung, Vererbung, Polymorphie, dynamische Bindung
Programmiertechnik 1 Übungen Prof. Dr. H. von Drachenfels	LÜ	2	3	 Spezifikationen lesen und in Programme umsetzen Programme testen und auf Einhaltung von Stilregeln prüfen Programme im Labor vorführen, die Lösung verteidigen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement, Qualitätssicherung) den eigenen Arbeitsaufwand und Lernfortschritt dokumentieren und reflektieren

Literatur/Medien	 von Drachenfels, H.: Unterlagen zur F home.htwg-konstanz.de/~drachen/ Mössenböck, H.: Sprechen Sie Java?, ! Ratz, D. et al.: Grundkurs Programmi 2018 Schildt, H.: Java, A Beginner's Guide, 	5. Auflage, Dpunkt Verla eren in Java, 8. Auflage,	ag, 2014 Hanser Verlag,		
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018				

Modul 04	Softwaremodellierung			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. O. Eck	SS, WS	SOMO/04	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	1	

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: DBSYS1/14

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls

Die Studierenden sind in der Lage, Aufgaben und Probleme zu untersuchen, systematisch zu erfassen und zu beschreiben und in detaillierte, möglichst vollständige und formal korrekte Spezifikationen zu überführen, bevor diese durch Software implementiert werden. Die Studierenden haben Kenntnisse über die wichtigsten Techniken und Beschreibungen zur Modellierung von Software. Durch die Laborübungen entwickeln die Studierenden die Methodenkompetenz, Systeme zu modellieren und Softwaresysteme zu entwerfen. Zusätzlich können die Studierenden aktuelle, komplexe Modellierungswerkzeuge bedienen.

renr- und rerniormen	☑ Vorlesung ☑ Übung ☐ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Softwaremodellierung Prof. Dr. O. Eck	V	3	3	 Grundlagen der Systemanalyse, Beschreibungsmittel Datenmodellierung mit Entity Relationship-Modellen Zustandsmodellierung mit Petrinetzen Objektorientierte Modellierung am Beispiel UML Theoretische Grundlagen und praxisrelevante Aspekte zur Modellierung von Software Algebraische Spezifikation Modellierung durch Aussagenlogik, Prädikatenlogik Backus-Naur-Form, reguläre Ausdrücke
Softwaremodellierung Übungen Prof. Dr. O. Eck	LÜ	2	3	 Werkzeuge zur Modellierung von Systemen Bearbeitung von praktische Übungsaufgaben Vertiefung und Anwendung der Inhalte der Vorlesung

Literatur/Medien	 Eck, O.: Vorlesungsfolien und Übung: Kastens, U., Kleine Büning, H.: Model Methoden, Carl Hanser Verlag Müng: Kemper, A., Eickler, A.: Datenbanksys Auflage, 2015 Rupp, C., Queins, S., die SOPHISTen: Modellierung, Hanser Verlag, 4. Auflegen Oestereich, B.: Analyse und Design mach Softwareentwicklung, De Gruyter Oliment 	lierung – Grundlagen ur chen, 5. Auflage, 2021 steme – Eine Einführung UML 2 glasklar: Praxisw flage, 2012 uit UML 2.5: Objektorien	, De Gruyter, 10. issen für die UML- tierte
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2021

Modul 05	Mathematik 2			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. R. Axthelm	SS, WS	MAT2/05	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	keine
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: SSS/10, COGR/AI3, 3DCV/AI5, nützlich für alle Vertiefungsrichtungen
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP, TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Student*innen beherrschen grundlegende Grenzwert-, Ableitungs- und Integrationsmethoden, sowie einige Anwendungsfelder dazu. Sie begreifen die Bedeutung der verschiedenen Themen für ihr spezielles Studienfach. Dazu gehört, Ableitung und Integration auch für diskrete Funktionen begreifen und berechnen zu können.

Lernziele des Moduls

Methodische Kompetenzen

Zur besseren Verankerung der Lerninhalte erarbeiten die Student*innen in Gruppen selbständig kleinere Programme, die im Zusammenhang zu den Vorlesungsthemen stehen. Sie interpretieren, bewerten und präsentieren ihre Ergebnisse im Labor.

Personale Kompetenzen

Die Student*innen können mathematische Themen selbständig erarbeiten und Übungsaufgaben selbständig lösen. In den Übungen wird das Zusammenarbeiten von Student*innen gefördert, insbesondere dann wenn sie unterschiedlichen Kenntnisstand haben. Das Präsentieren von kleineren Rechnungen und das selbstständiges Erarbeiten kleinerer Themenabschnitte ist gefordert. Alle Teilnehmer*innen werden motiviert, Buch über den eigenen Erfolg zu führen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Leni- una Lennormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	SWS	ECTS	Lehrinhalt
Mathematik 2 Prof. Dr. R. Axthelm	V	2	2	 Folgen und Reihen Funktionen, Stetigkeit und Grenzwert Differentiation von uni- und multivariaten Funktionen (kontinuierllich) Differentiation von diskreten Funktionen (uni- und multivariat) Integralrechnung Taylorreihe

Mathematik 2 Übungen Prof. Dr. R. Axthelm	Ü	2	2	In den Übungen werden Berechnungsmethoden aus den Vorlesungen geübt. Die Teilnehmer*innen müssen in der Lage und bereit sein, ihre Ergebnisse zu präsentieren. Inhaltlich werden die Präsentationen nicht bewertet. Es wird darauf geachtet, dass ein genügend großer Teil der Übung dazu dient, Fragen stellen und klären zu können. Der unbenotete Leistungsnachweis wird durch 4 online-Tests erbracht, deren Termine zu beginn des Semesters festgelegt werden.
Mathematik 2 Labor Prof. Dr. R. Axthelm	LÜ	1	2	Im Labor werden die Themen der Vorlesung am Rechner praktisch umgesetzt. Jedes Übungsblatt enthält eine kleinere Laboraufgabe zur selbständigen Bearbeitung. Zusätzlich werden im Laufe des Semesters drei umfangreichere Aufgaben gestellt, die in Gruppen bis zu 5 Teilnehmer*innen bearbeitet, dokumentiert und abgegeben werden. Die Abgaben dienen als unbenoteter Leistungsnachweis. Im Vordergrund steht nicht die Fähigkeit des Programmierens sondern die Beantwortung mathematischer Fragestellungen durch und mit HIlfe der Programmergebnisse und das Vermögen die Ergebnisse verständlich in Schrift darzulegen. Die Programmiersprache ist dabei frei wählbar, wobei sich der Support in den Veranstaltungen auf Matlab bzw. Octave beschränkt.

Literatur/Medien	Unterlagen werden jeweils auf Moodle zur Verfügung gestellt. Der entsprechende Link wird jeweils in der Vorlesung bekanntgegeben.							
Sprache	Deutsch							

Modul 06	Stochastik			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. B. Staehle	SS, WS	STO/06	5	150 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	3	45 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	

Inhaltliche Teilnahme Voraussetzung	MAT1/01
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: MAT2/05
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Nützlich für alle Vertiefungsrichtungen

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K60		
	Modulteilprüfung (MTP)			SP (LP, AB)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden lernen Konzepte und Methoden der Stochastik kennen und sind in der Lage sie zur Lösung konkreter Beispiele anzuwenden. Sie sind einerseits in der Lage, einen gegebenen Datensatz mit Hilfe elektronischer Werkzeuge übersichtlich darzustellen und wichtige Kenngrößen abzuleiten. Andererseits können sie aber auch ein wahrscheinlichkeitstheoretisches Modell eines zufallsabhängigen Systems erstellen und mit wichtige Schlüsse hieraus ableiten.

Lernziele des Moduls

Personale Kompetenzen

Die Studierenden haben gelernt, alleine oder in kleinen Gruppen geeignete stochastische Modelle und Methoden zur Lösung abstrakter Aufgabenstellungen zu finden und ihre Erkenntnisse ihren Mitstudierenden zu präsentieren. Die Studierenden können die gesellschaftliche Relevanz von statistischen Methoden und Darstellungsformen einordnen und bewusst irreführende Statistiken identifzizieren.

Lehr- und Lernformen	☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☒ Labor
Lem una Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Stochastik Prof. Dr. B. Staehle	V	2	3	 Deskriptive Statistik: Graphische Darstellungen, Berechnung von Kenngrößen ein- und zweidimensionaler Daten Wahrscheinlichkeitsrechnung: Ereignisse und (bedingte) Wahrscheinlichkeiten, Kombinatorik, diskrete und stetige Zufallsvariablen, deren Verteilungen, Erwartungswert und Varianz, bekannte Verteilungen Induktive Statistik: Bewertung von Statistiken, Punkt- und Intervallschätzungen
Stochastik Übungen Prof. Dr. B. Staehle	Ü, LÜ	1	2	 Statistische Aufbereitung und Analyse von Datensätze Lösung verschiedener praxisnaher Aufgabenstellungen alleine und im Plenum Präsentation der Lösungsmethoden- und Ergebnisse vor der Gruppe

Literatur/Medien	 Staehle, B., Vorlesungs- und Übungsunterlagen, siehe https://moodle.htwg-konstanz.de/moodle/ Teschl und Teschl, Mathematik für Informatiker: Band 2: Analysis und Statistik, Springer Vieweg, 3. Auflage, 2012.
------------------	--

Hochschule Konstanz
Fakultät Informatik

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

	 Papula, Mathematik für Ingenieure und Naturwissenschaftler: Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung, Band 3, Vieweg, 7. Auflage, 2016. Downey, Think Stats - Exploratory Data Analysis in Python, O'Reilly, 2014. 				
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018		

Modul 07	Programmierte	Programmiertechnik 2			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. O. Bittel	SS, WS	PROG2/07	7	210 h	
	Dauer	sws	Kontaktzeit	Selbststudium	
	1 Semester	6	90 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG1/03
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: ALTH/11, SENG/12, DBSYS1/14, FITSEC/16, SPKO/SE2 Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K120		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Fachliche Kompetenzen - Beherrschen der Grundlagen der objektorientierten, generischen und funktionalen Programmierung am Beispiel von Java. - Container, Sortier- und Suchverfahren verstehen und einsetzen können. - Praktische Erfahrung mit Programmierwerkzeugen (Editor, Compiler und Debugger). Personale Kompetenzen

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lein- und Leimoimen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Die Studierenden können Lösungen zu Programmieraufgabe finden und präsentieren.

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Programmiertechnik 2 Prof. Dr. O. Bittel	V	4	4	 Entwurf und Implementierung von Datentypen Linear verkettete Listen: einfach verkettete Listen, doppelt verkettete Listen, Ringlisten Grundlegende Datentypen: Listen, Keller, Schlange, Iteratoren Generische Datentypen Rekursive Funktion, Teile-und-Herrsche-Verfahren, Endrekursion Komplexitätsanalyse elementare Sortierverfahren, QuickSort, MergeSort allgemeine Bäume, Binäre Suchbäume, Maps Java-Collections Funktionale Programmierung mit Lambdas + Stromverarbeitung Thread-Programmierung Einfache Entwurfsmuster Graphische Benutzeroberflächen mit AWT und Swing
Programmiertechnik 2 Übungen Prof. Dr. O. Bittel	LÜ	2	3	 Programme für vorgegebene Aufgaben mit einer integrierten Entwicklungsumgebung erstellen und testen Selbsterstelle Programme im Rahmen von Codereviews erklären können.

Literatur/Medien	- Folien von http://www-home.htwg-konstanz.de/~bittel/ain_fprog.html
------------------	--

Hochschule Konstanz
Fakultät Informatik

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

	 Scheffler, Wiesenberger, Seese und R 2014. Arnold, Gosling und Holmes, The Jav. 2008. Naftalin, Mastering Lambdas: Java Pro Hill, 2014. Bloch, Effective Java, Addison Wesley. Weiss, Data Structures and Algorithm 	a Programming Languago ogramming in a Multico 2017.	ge, Addison Wesley, re World, McGraw-
	- weiss, Data Structures and Algorithm	Analysis in Java, Addisi	on wesley, 2012.
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 08	Systemprogrammierung			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. H. von Drachenfels	SS, WS	SYPR/08	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	5	75 h	105 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG1/03
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: BSYS/13, MPS/ES3, SPKO/SE2
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: REAR/09

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls

Die Studierenden kennen und verstehen die Besonderheiten der Systemprogrammierung im Vergleich zur Anwendungsprogrammierung. Insbesondere können Sie mit dem elementaren Konzept Zeiger/Adresse und einer dynamischen Speicherverwaltung ohne automatische Speicherbereinigung umgehen. Sie können Programme in Übersetzungseinheiten und statische/dynamische Bibliotheken gliedern und können mit den erforderlichen Werkzeugen umgehen.

Personale Kompetenzen

Die Studierenden können Lösungen zu Programmieraufgabe finden und präsentieren. Ihnen ist die Bedeutung von Normen und Standards für Systemsoftware bewusst und sie können in einschlägigen Quellen dazu recherchieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Systemprogrammierung Prof. Dr. H. von Drachenfels	V	3	3	 Einführung in die Systemprogrammierung mit den Sprachen C und C++ C-Daten: Unterschiede zu Java, Zeiger, Felder, Zeichenketten, Strukturen C-Anweisungen: Unterschiede zu Java C-Programme: Funktionen, Makros, Übersetzungseinheiten, Bibliotheken C++: Erweiterungen gegenüber C Systemschnittstelle: Ein-/Ausgabe, Dateien, Speicherverwaltung Werkzeuge: Linux, Editor, Compiler/Linker, Debugger, make
Systemprogrammierung Übungen Prof. Dr. H. von Drachenfels	LÜ	2	3	 Programmieraufgaben lösen und Lösungen im Labor vorführen Ergebnisse von Tests und Laufzeitmessungen dokumentieren und interpretieren Umgang mit Werkzeugen (Linux, Editor, Compiler/Linker, Debugger, make) den eigenen Arbeitsaufwand und Lernfortschritt dokumentieren und reflektieren

Literatur/Medien	 von Drachenfels, H.: Unterlagen zur Lehrveranstaltung auf http://www-home.htwg-konstanz.de/~drachen/ Kernighan, B. W.; Ritchie, D. M.: Programmieren in C. Hanser 1990 Stroustrup, B.: Die C++-Programmiersprache. Hanser 2015 				
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018		

Modul 09	Rechnerarchitekturen							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. Dr. M. Blaich	SS, WS	REAR/09	6	180 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	5	75 h	105 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	2	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	DIGI/02
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: BSYS/13, MPS/ES3, DSYS/ES4
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls Die Studierenden beherrschen die fundamentalen Prinzipien, Strukturen und Prozesse von klassischen Rechnerarchitekturen. Sie können verschiedene Architekturkonzepte unterscheiden und kennen die Strukturen, Mechanismen und Probleme moderner superskalarer Maschinen. Sie besitzen fundamentale Kenntnisse über die verschiedenen Ebenen einer Speicherhierarchie in Rechnersystemen sowie über die zeitgerechte Verlagerung von Daten zwischen den Hierarchieebenen und die damit zusammenhängenden Problemstellungen. Durch die Laborübungen haben die Studierenden Kenntnisse zur maschinennahen Programmierung klassischer von-Neumann Architekturen erworben.

Personale Kompetenzen

Die Studierenden können in kleinen Gruppen Lösungen zu Aufgabenstellungen finden, dokumentieren und präsentieren.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Ecili uliu Ecilifornicii	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Rechnerarchitekturen Prof. Dr. M. Blaich	V, Ü	3	3	 Historie der Rechnerentwicklung Klassische Rechnerarchitekturen (Operations- und Steuerwerk) Busssysteme und Speicherbausteine Befehlsklassen und Adressierungsdaten, Assemblerprogrammierung RISC-Architekturen Pipeline-Architekturen, Leistungssteigerung und Abhängigkeiten Superskalare Prozessoren, Sprungzielvorhersage Speicherhierarchie und Prozesse Cache-Speicher, Strukturen und Probleme Virtuelle Adressierung, Paging und Segmentierung Ausnahmeverarbeitung
Rechnerarchitekturen Übungen Prof. Dr. M. Blaich	LÜ	2	3	Durch Laborübungen werden folgende Schlüssel- und Methodenkompetenzen entwickelt: - Teamarbeit in kleinen Gruppen, Zeitmanagement (Abgaben) - Anwendung von Lösungsmethoden, Dokumentation und Verteidigung einer Lösung

Literatur/Medien	 Patterson, Hennessy: Rechnerorganisation und Rechnerentwurf, Oldenbourg Verlag, 2016. Patterson, Hennessy: Computer Organization and Design, Morgan Kaufmann Verlag, 2013. Tanenbaum: Rechnerarchitektur, Pearson Studium, 2014. Flik: Mikroprozessorsysteme, 7. Auflage, Springer Verlag, 2006. 				
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018		

Modul 10	Sensoren, Signale und Systeme						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufv					
Prof. Dr. M. Franz	SS, WS	SSS/10	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	5	75 h	105 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	

Inhaltliche Teilnahme Voraussetzung	MAT1/01, MAT2/05	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:	
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:	

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP, TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls

Die Studierenden kennen wichtige Arbeitsmethoden der digitalen Signalverarbeitung und der linearen Systemtheorie und können diese exemplarisch auf Sensoren und messtechnische Themen anwenden. Mit Hilfe dieser Methoden sind sie in der Lage, sich selbständig in Themen der Signalverarbeitung und Sensorik weiter zu vertiefen. Im Rahmen der für die Laborübungen anzufertigenden Protokolle lernen die Studierenden die Grundregeln des wissenschaftlichen Schreibens und die Benutzung der dafür benötigten Software.

Personale Kompetenzen

Mit der Durchführung der Laborübungen wird auch die Fähigkeit zum Teamwork in kleinen Gruppen gestärkt.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- und Lemormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Signale, Systeme und Sensoren Prof. Dr. M. Franz	V	3	3	Die Vorlesung führt in die grundlegenden Verfahren zur Untersuchung und Modellierung digitaler Signale und Systeme ein. Zu Beginn werden die mathematische und graphische Darstellung von Signalen und die wichtigsten Grundsignale vorgestellt, zusammen mit einer Einführung in die komplexen Zahlen und in grundlegende Systemeigenschaften wie Kausalität, Linearität und Zeitinvarianz. Solche Systeme werden dann genauer im Zu-sammenhang mit dem Begriff der Faltung behandelt, bevor die Fourieranalyse von Sig-nalen entwickelt wird. Das erworbene Wissen wird auf zwei wichtigen Anwendungsge-bieten vertieft: Filterung von Signalen und Diskretisierung von kontinuierlichen Signalen durch Abtastung.
Signale, Systeme und Sensoren Übungen Prof. Dr. M. Franz	LÜ	2	3	Die Laborübungen vertiefen die in der Vorlesung behandelten Themen und vermitteln deren praktische Anwendung. Schwerpunkte des Praktikums: - Aufbau Kalibrierung und Einsatz eines einfachen Entfernungsmessers - Kalibrierung von digitalen Kameras - Fourieranalyse und Akustik - Aufbau eines einfachen Spracherkenners - Abtastung und Digitalisierung

Literatur/Medien	 Franz, M.O.: Unterlagen zu Sensoren, Moodle unter AIN/SSS) U. Karrenberg, "Signale – Prozesse – S A. V. Oppenheim, A. S. Willsky: Signa 	Systeme", Springer, Heio	delberg, 2005.
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 11	Algorithmen ui	Algorithmen und Theoretische Informatik					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. O. Bittel	SS, WS	ALTH/11	8	240 h			
	Dauer	sws	Kontaktzeit	Selbststudium			
	1 Semester	6	90 h	150 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG2/07
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: Nützlich für alle Vertiefungsrichtungen
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K120		
	Modulteilprüfung (MTP)			SP (LP, AB)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls

Die Studierenden kennen klassische Algorithmen und Datenstrukturen, verstehen diese und können diese für die Lösung praktischer Probleme anwenden. Sie haben verschiedene formale Sprachklassen, ihre Erzeugung mit Grammatiken und ihre algorithmische Verarbeitung mit Hilfe von Automaten kennengelernt. Die Studierenden sind in der Lage, abstrakte Beschreibungen von Algorithmen in eine konkrete Programmiersprache wie beispielsweise Java umzusetzen.

Personale Kompetenzen

Sie haben gelernt, geeignete Modelle und Methoden zur Lösung abstrakter Aufgabenstellungen zu finden und ihren Mitstudierenden zu präsentieren und mit diesen zu reflektieren. Mit der Durchführung der praktischen Aufgaben wird die Fähigkeit zum selbstständigen Arbeiten gestärkt.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- und Lemormen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Algorithmen und Datenstrukturen Prof. Dr. O. Bittel	V	2	2	 Komplexitätsanalyse Suchen: Hashverfahren, AVL-Bäume, B-Bäume, Rot-Schwarz-Bäume, Tries, kd-Bäume, Suche in Texten Algorithmen auf Graphen: Tiefen- und Breitensuche, topologisches Sortieren, minimal aufspannende Bäume, kürzeste Wege, Zusammenhangskomponenten, Flussprobleme, NP-vollständige Graphenprobleme Vorrangswarteschlangen: Binäre Heaps, Index-Heaps, Binomiale Heaps
Algorithmen und Datenstrukturen Übungen Prof. Dr. O. Bittel	LÜ	1	2	 Aufgaben zu Datenstrukturen für effiziente Suche in großen Datenmengen. Aufgaben zu Graphenalogrithmen wie z.B. Tiefensuche, Topologische Sortierung, Strenge Zusammenhangskomponenten, Kürzeste Wege und Minimal Aufspannende Bäume. Aufgaben werden in Java mit Hilfe der Collection-Klassen gelöst.

Theoretische Informatik Prof. Dr. B. Staehle	V	2	2	 Wiederholung und Grundlagen: Mengenlehre, Rekursion und Induktion, Logik Formale Sprachen, Grammatiken, Chomsky-Hierarchie: Alphabete, Sprachen, Grammatiken, Ableitungen und Ableitungsbäume Sprachklassen der Chomsky-Hierarchie: Erzeugung (Grammatiken und reguläre Ausdrücke), Akzeptanz (verschiedene Automatenmodelle), Besonderheiten Berechenbarkeit, Entscheidbarkeit und Komplexität: Turing-Maschinen, Entscheidbarkeit, Berechenbarkeit, Komplexitätsklassen und deren Hierarchie
Theoretische Informatik Übungen Prof. Dr. B. Staehle	Ü	1	2	Die Übungen vertiefen die in der Vorlesung behandelten Themen und vermitteln deren Anwendung und Umsetzung. Lösungen von Aufgaben werden im Plenum vorgestellt und diskutiert oder gemeinsam erarbeitet.

Literatur/Medien	 Bittel, Vorlesungs- und Übungsunterl konstanz.de/~bittel/ain_alda.html Weiss, Data Structures and Algorithm Sedgewick und Wayne, Algorithms, 4 Ottmann und Widmayer, Algorithmer Staehle, Vorlesungs- und Übungsunte konstanz.de/moodle/ Hoffmann, Theoretische Informatik, (Wagenknecht und Hielscher, Formale Compiler, Springer Vieweg, 2014. Hedtstück, Einführung in die theoreti Automatentheorie, Oldenbourg Ver 	Analysis in Java, Addiso th ed., Addison-Wesley, und Datenstrukturen, S erlagen, siehe https://m Carl Hanser Verlag, 201 Sprachen, abstrakte Au sche Informatik: formal	on Wesley, 2010. 2011. Spektrum, 2002. oodle.htwg- stomaten und
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 12	Software Engineering						
Modul-Koordination	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. Dr. M. Boger	SS	SENG/12	5	150 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	

Inhaltliche Teilnahme Voraussetzung	PROG1/03, PROG2/07
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: WAPP/SE1, SPKO/SE2, SOAR/SE3, SWQS/SE4, MOAN/SE6
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	SP (LP, PR, AB)			
	Modulteilprüfung (MTP)				
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Die Studierenden leisten den Schritt von der Betrachtung von Software im Kleinen (Klassen, Aufgaben) hin zu zusammenhängenden Softwarestrukturen (Komponenten, Pattern) und fertigen Produkten oder Projekten. Sie entwickeln aus einem Programm ein fertiges Produkt, das getestet, optimiert und dokumentiert ist. Die Studierenden lernen die Verwendung der jeweils richtigen Technik oder Sprache für den richtigen Zweck unter Abwägung von Kosten und Nutzen.

Lernziele des Moduls

Personale Kompetenzen

Die Studierenden beherrschen die Entwicklung von größeren Softwaresystemen im Team unter Einsatz moderner Software-Engineering-Methoden und -Werkzeugen. Hierfür lernen sie das Arbeiten im Team, das Planen des Softwareentwicklungsprojektes nach unterschiedlichen Prozessmodellen, die Abschätzung von Kosten und Einplanung von Fertigstellungsterminen. Die Studierenden können erarbeitete Lehrinhalte fachlich kompetent vertreten und an Entscheidungsprozessen im Team teilhaben.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Software Engineering Prof. Dr. M. Boger	V	2	3	 Einführung in die Funktionale Programmierung Versionsverwaltungssysteme und Softwareintegration Testen von Softwaresystemen Schichten- und Komponentenarchitekturen Entwicklungsprozessmodelle Designpatterns Dependency Injection Entwicklung von textuellen und graphischen Benutzeroberflächen Dokumentation von Softwareanforderungen und Softwarearchitekturen
Software Engineering Übungen Prof. Dr. M. Boger	LÜ	2	2	

Literatur/Medien	 Scott Chacon: Pro Git, Apress, http://progit.org J. Ludewig, H. Lichter: Software Engineering, dpunkt verlag
------------------	---

	 Ken Schwaber: Agiles Projektmanagement mit Scrum, Microsoft Press E. Gamma et al.: Design Patterns, Addison-Wesley R. Martin: Clean Code, Prentice Hall 					
Sprache	Deutsch	Zuletzt aktualisiert 30.10.2018				

Modul 13	Betriebssysteme							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand						
Prof. Dr. M. Mächtel	SS, WS	BSYS/13	6	180 h				
	Dauer	sws	Kontaktzeit	Selbststudium				
	1 Semester	4	60 h	120 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	3	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SYPR/08, REAR/09
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: ESYS/ES1, PACO/ES5, PACO/Al6
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Lernziele des Moduls

Die Student*innen beherrschen theoretische und praktische Konzepte und Methoden gängiger Betriebssysteme. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit Systemschnittstellen von Betriebssystemen.

Personale Kompetenzen

Sie sind in der Lage, sich in 2er-Gruppen die Zeit für das termingerechte Lösen einer Aufgabenstellung einzuteilen.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Betriebssysteme Prof. Dr. M. Mächtel	V	2	2	 Klassifikation der Betriebssysteme Betriebsmittel- und Prozessverwaltung Nebenläufigkeit Speicherverwaltung Datei- und Ein-/Ausgabeverwaltung
Betriebssysteme Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in Programme umsetzen Spezifikationen lesen und Aufgabenstellung mit Hilfe von Simulationsprogrammen lösen Programme und Simulationsergebnisse vorführen, die Lösung verteidigen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement)

Literatur/Medien	 Arpaci-Dusseau, Remzi and Arpaci-Du Easy Pieces, neuste Version Stallings, William: Operating Systems Silberschatz, Abraham: Operating Systems Sons, neuste Version. 	, akt. Auflage, Prentice I	Hall, neuste Version.
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 14	Datenbanksysteme 1				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. O. Eck	SS, WS	DBSYS1/14	5	150 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	90 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /	
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr	
AIN	B.Sc.	PM	3	SPO 3 / 2020	

Inhaltliche Teilnahme Voraussetzung	SOMO/04 , PROG2/07
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: DBSYS2/SE5
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP, AB)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Lernziele des Moduls

Die Studierenden verfügen über Kenntnisse über die grundsätzlichen Einsatzmöglichkeiten und die Verwendung von Datenbanksystemen. Sie sind in der Lage diese Kenntnisse zur Lösung konkreter Aufgabenstellungen anzuwenden. Dabei können sie im Rahmen eines Datenbankentwurfs Anforderungen an eine Datenbankanwendung erheben, eine konzeptuelle Datenbank-Modellierung durchführen und diese in ein Datenbankschema überführen. Die Studierenden können komplexere Suchanfragen an eine Datenbank stellen und Datenbankanwendungen programmieren.

Personale Kompetenzen

Sie sind in der Lage, sich die Zeit für das termingerechte Lösen einer Aufgabenstellung in einem Team einzuteilen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Datenbanksysteme 1 Prof. Dr. O. Eck	V	2	3	 Konzeptioneller Datenbankentwurf Relationales Datenbankmodell Normalformenlehre Anfragesprache SQL Einbettung SQL in Programmiersprachen 	
Datenbanksysteme 1 Übungen Prof. Dr. O. Eck	LÜ	2	2	DatenbankentwurfDatenbank-Abfragen mit SQLDatenbank-Programmierung	

Literatur/Medien	 Eck, O.: Vorlesungsfolien und Übung Kemper, A., Eickler, A.: Datenbanksy Auflage, 2015 Elmasri, R., Navathe, D.B.: Fundamer 2017 Sieben, J.: Oracle SQL - Das umfasse Auflage, 2018 	steme – Eine Einführung ntals of Database System	ns, Pearson, 7. Aufl.,
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2021

Modul 15	Integriertes Praktisches Studiensemester					
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Praktikantenamtsleiter	SS, WS	IPSS/15	30	900 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	2	30 h	870 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	4	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul: BACH/23
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)			
	Modulteilprüfung (MTP)			SP, R
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 			

Die Studierenden haben die betrieblichen Abläufe und Anforderungen an einem beispielhaften Informatik-Arbeitsplatz aus eigener Erfahrung kennengelernt. Sie können Fachkompetenzen in ihrer Bedeutung für die Berufstätigkeit einschätzen und können sie praxisorientiert anwenden und erweitern.

Lernziele des Moduls

Personale Kompetenzen

Die Studierenden haben personale kompetenzen im Bereich Sozialkompetenz (insb. Kommunikations-, Kooperations-, Team-, und Konfliktfähigkeit, Interdisziplinarität) und im Bereich Selbstkompetent(insb. Selbstreflecktion und Selbstständigkeit) in ihrer Bedeutung für die Berufstätigkeit trainiert. Sie können sie schon teilweise anwenden und dabei erweitern.

Lehr- und Lernformen	\square Vorlesung \square Übung \boxtimes Selbststudium \boxtimes Workshop/Seminar \square Projekt \square Labor
	\square Exkursion \square E-Learning \square Hausarbeit \boxtimes Sonstiges: Integriertes Praxissemester

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt		
Praktisches Studiensemester Professoren der Fakultät IN	PSS	0,15	27	0,15 27	Praktisches Studiensemester (PSS): - Praktikum in einem Betrieb oder in einer anderen Einrichtung der Berufspraxis.	
Blockveranstaltungen zum PSS Lehrbeauftragte(r)	W	1,85	3	Blockveranstaltungen zum PSS: - Bestandsaufnahme – Wie schätze ich mich ein? Was sind meine Ziele? - Wege in den Arbeitsmarkt – Wo findet man eine Stelle? Stelleanalyse - Bewerbung Inhalte, Telefonbewerbung, Onlinebewerbung - Vorstellungsgespräch Interview, Emotionale Intelligenz, Kommunikation - Assesmentcenter - Grundlagen der Studien-Berichtserstellung am Beispiel PSS-Bericht - Erfahrungsberichte der Praktikanten (WIN/6).		

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 16	Grundlagen der IT-Sicherheit/Foundations of IT-Security					
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. Dr. H. Langweg	SS, WS	FITSEC/16	6	180 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5	

Inhaltliche Teilnahme Voraussetzung	PROG2/07
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP, AB)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls Die Studierenden beherrschen die grundlegenden Begriffe, Mechanismen und Verfahren informationstechnischer Sicherheit und können diese auf reale betriebliche Systemstrukturen anwenden. Grundlegende kryptographische Verfahren und deren Anwendung sind bekannt. Die Studierenden verstehen die Wirkungsmechanismen IT-technischer Bedrohungen und beherrschen geeignete Maßnahmen zum Schutz von IT-Infrastrukturen, insbesondere auch die Ausgestaltung softwareintensiver Systeme mit dem Ziel geringer Verwundbarkeit gegenüber intelligenten Angreifern über den gesamten Lebenszyklus.

Personale Kompetenzen

Die Studierenden entwickeln durch die praktische Anwendung von Angriffsmethoden und die Analyse von deren Folgen ein Bewusstsein für die verantwortungsvolle Nutzung und Gestaltung von Informationstechnik.

Lehr- und Lernformen	☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor
Lem una Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Einführung in die IT- Sicherheit Prof. Dr. H. Langweg	V	1	1	 Goals and Principles - Data Protection, Design Principles for Secure Systems, Privacy By Design Security Management - ISO2700x, BSI Grundschutz, HR Security, Physical Security, Common Criteria, CVE Authentication - User Authentication, Passwords, Tokens, PKI Secure Operating Environments - OS Security, Access Control, Malware, Antivirus, Trusted Computing Cryptographic Primitives and Algorithms - Symmetric Encryption, Asymmetric Encryption, AES Applications of Cryptography - RSA, ECC, Electronic Signatures Network Security - Email Security, PKI, TLS, DH, IPv6 Security, DoS, IDS, Firewalls, Wireless Security Vorlesungsunterlagen englisch. Vorlesung findet in englischer Sprache statt, wenn Austauschstudierende teilnehmen.
Einführung in die IT- Sicherheit Übungen Prof. Dr. H. Langweg	Ü, LÜ	1	2	Lehrmaterial englisch. Individuelle Betreuung deutsch/englisch abhängig von Teilnahme von Austauschstudierende teilnehmen.

Softwaresicherheit Prof. Dr. H. Langweg	V	1	1	 Software Vulnerabilities - Taxonomies, CWE, OWASP Top 10 Offensive Security - CAPEC, Attack Vectors, CTF Secure Programming - Defensive Programming, Threat Analysis, List of Banned Functions Source Code Analysis - Supply Chain, Dependencies, Code Inspection, Data Flow Analysis, Patterns, Tools, Automation Security Testing - Absence/Presence of Vulnerabilities, Structured Testing, Abuse Cases, Penetration Testing, Fuzzing Secure Software Development Lifecycle - Principles, Practices, Activities, Integration, Software Delivery and Integrity Software Maintenance - Greenfield/Brownfield, Third-party Dependencies, Risk Analysis, Patching Vorlesungsunterlagen englisch. Vorlesung findet in englischer Sprache statt, wenn Austauschstudierende teilnehmen.
Softwaresicherheit Übungen Prof. Dr. H. Langweg	Ü, LÜ	1	2	Lehrmaterial englisch. Individuelle Betreuung deutsch/englisch abhängig von Teilnahme von Austauschstudierende teilnehmen.

Literatur/Medien	 Gollmann, D. (2011). Computer Security Stallings, W. (2006). Cryptography and 2 McGraw, G. (2006). Software Security 35670-3 	d Network Security. ISBI	N 978-0-131-87316-
Sprache	Englisch, ggf. Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 17	Rechnernetze			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. D. Staehle	SS, WS	RNET/17	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: VESY/18 Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	K90				
	Modulteilprüfung (MTP)			SP (LP)		
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 					

Lernziele des Moduls Die Studierenden erlangen ein grundlegendes Verständnis für Datenkommunikation sowie den Aufbau und die Funktionsweise des weltweiten Internets. Sie lernen die wichtigsten Netzknoten (Router, Switches, Proxies, etc.) kennen und verstehen die wichtigsten Internet-Protokolle (Routingprotokolle, TCP/IP, etc.). Damit sind sie in der Lage, die Eigenschaften verschiedener Kommunikationsnetze bei der Entwicklung von Applikationen zu berücksichtigen sowie kleinere Netze zu administrieren. Die Studierenden gewinnen im Labor erste Erfahrungen mit Tools, um Internetverkehr zu erfassen und zu analysieren. Sie beherrschen die Spezifikation von Anwendungsprotokollen und können verteilte Anwendungen basierend auf TCP/UDP Sockets implementieren.

Personale Kompetenzen

Durch das Labor wird sowohl die Fähigkeit zur Zusammenarbeit im Team als auch die Fähigkeit zur Koordination über Teamgrenzen hinweg gestärkt.

Lehr- und Lernformen	☑ Vorlesung ☑ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Rechnernetze Prof. Dr. D. Staehle	V	2	3	 Grundlagen von Rechnernetzen: Aufbau und Struktur, Paketdatenübertragung, Protokolle Grundlagen von Sockets und der verteilten Programmierung Funktionsweise von http und Übersicht der http Versionen, DNS Transportprotokolle: Ports, UDP, TCP, Datenflusssteuerung Verkehrslenkung und Adressierung im Internet: Switching in LANs, Routing Protokolle, IPv6, NAT
Rechnernetze Übungen Prof. Dr. D. Staehle	LÜ	2	3	 Umgang mit Tools zur Analyse des Netzwerks: WireShark, Ping, Traceroute, netstat, Entwurf von Protokollen auf der Anwendungsschicht Programmierung verteilter Anwendungen basierend auf Datagram und Stream Sockets

Literatur/Medien	 Staehle, D.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. Kurose, James F., Ross, Keith W.: Computernetze - Ein Top-Down Ansatz mit Schwerpunkt Internet - Pearson Studium, Addison-Wesley.
------------------	--

Hochschule Konstanz Fakultät Informatik Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Deutsch	Zuletzt aktualisiert	30.10.2018
-----------------	----------------------	------------

Modul 18	Verteilte Systeme			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. DrIng. O. Haase	SS, WS	VESY/18	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	6	

Inhaltliche Teilnahme Voraussetzung	RNET/17
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des

Moduls

Fachliche Kompetenzen Die Studierenden verfügen über breite Kenntnisse im Bereich verteilter Systeme und sind sich der inhärenten Komplexität verteilter Systeme bewusst. Sie haben theoretische und praktische Kenntnisse der wichtigsten Fragestellungen, Algorithmen und Kommunikationsparadigmen in verteilten Systemen und können beurteilen, in welchen Anwendungsszenarien und Architekturen diese eingesetzt werden können.

Personale Kompetenzen

Die Studierenden können in kleinen Gruppen Aufgabenstellungen bearbeiten.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Leni- una Lennormen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Verteilte Systeme Prof. DrIng. O. Haase	V	2	3	 Vor- und Nachteile verteilter Systeme, Skalierbarkeit, Verteilungstransparenz Nebenläufigkeit in verteilten Systemen Verteilte Architekturen Synchronisation Namensdienste Replikation und Konsistenz Sicherheit Fehlertoleranz verteilte objekt-orientierte Systeme Blockchains
Verteilte Systeme Übungen Prof. DrIng. O. Haase	LÜ	2	3	Praktische Anwendung der in der Vorlesung vermittelten Inhalte.

Literatur/Medien	 Haase, O.: Vorlesungs- und Übungsul A. S.Tanenbaum, M. van Steen. Vertei Addison-Wesley, 2007. ISBN 978-38 O. Haase. Kommunikation in verteilte Java RMI, CORBA und Jini, 2.Auflage 3486584813. Roger Wattenhofer. Distributed Ledge Blockchain. ISBN 978-1544232102. 	ilte Systeme: Prinzipien 27372932. In Anwendungen - Einfü I. Oldenbourg, 2008. ISE	und Paradigmen. hrung in Sockets, BN 978-
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 19	Teamprojekt			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SS, WS	TPRJ/19	9	270 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	1	15 h	255 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	6	

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: Modulen einer Vertiefungsrichtung

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, AB)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden sind in der Lage unter Anleitung eine größere Aufgabenstellung im Team zu lösen. Sie beherrschen defür die Instrumente zur Projektplanung, -Kontrolle und -Steuerung. Sie können sich hinreichend schnell und zielgerichtet die Aufgabenstellung analysieren und sich in ein fachfremdes Thema einarbeiten. Sie sind in der Lage, ein Softwaresystem, eine Dienstleistung, ein Artefakt o.ä. gemäß Vorgaben planen, entwerfen, ggf. implementieren, testen, qualitätssichern und dokumentieren.

Lernziele des Moduls

Personale Kompetenzen

Die Studierenden können sich selbst organisieren und die Projektergebnisse dokumentieren und präsentieren. Sie sind in der Lage selbst zu entscheiden, welche marktüblichen Werkzeuge und Methoden für die Lösung des jeweiligen Problems geeignet sind. Sie können im Team ergebnisorientiert an der Aufgabenstellung arbeiten, mit gängigen Medien kommunizieren und Konflikte lösen.

Lehr- und Lernformen	\square Vorlesung \square Übung \boxtimes Selbststudium \square Workshop/Seminar \boxtimes Projekt \square Labor
Lem und Lermonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Teamprojekt Professoren der Fakultät IN	P	1	9	Teams von 3 bis 7 Studierenden führen gemeinsam ein praxisnahes internes Projekt unter Anleitung eines Betreuers durch. Die fachlichen Inhalte sind abhängig von dem gewählten Projektthema.

Literatur/Medien	Abhängig vom jeweiligen Thema			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018	

Modul 20	Gruppenbetreuung				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Studiendekan / Studiengangsleiter AIN	SS, WS	GRUB/20	3	90 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	3	60 h	30 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen aus dem Grundstudium

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)		SP (LP, PR, AB, PJ)	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen □ Sonstiges: 			

Lernziele des

Moduls

Die Studierende können Arbeitsgruppen inhaltlich betreuen. Sie haben gelernt, erworbenes Wissen an andere zu vermitteln, wobei diese Vermittlung schriftlich, im allgemeinen Dialog mit der gesamten Arbeitsgruppe oder im individuellen Coaching von Kleingruppen geschehen kann. Es werden hierbei vor allem Sozial-, Selbst- und Methodenkompetenz gestärkt, aber auch die fachlichen Inhalte der zugeordneten Lehrveranstaltung vertieft.

Personale Kompetenzen

Fachliche Kompetenzen

Die Studierenden können Schulungen eigenverantwortlich durchführen und anleiten. Sie haben gelernt, mit Lernenden auf deren Verständnisniveau zu kommunizieren und bei Konflikten in Kleingruppen zu moderieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem- und Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Methoden zur Gruppenbetreuung Lehrbeauftragte(r)	V, W	1	1	Methoden der Gruppenbetreuung: - Selbst- und Ergebnispräsentationen vor der Gruppe - Erfolgsfaktoren der Gruppen- / Teamarbeit - Professioneller Einsatz von Visualisierungsmedien - Grundlagen und Methoden der Kommunikation, Fragetechniken; Aktives Zuhören; 4-Seiten-Modell - Professionelle Feedback: Methoden des Feedbacks; Spielregeln; ABC-Modell - Motivation; Modelle und Umsetzung im Tutorium - Praktische Fragen reflektieren und optimieren	
Tutoriat Professoren der Fakultät IN	Ü, LÜ	2	2	Tutorium: - Eigenverantwortliche Tätigkeit als Tutor in der Betreuung von Übungen, Praktika, Laboren etc Betreuung und Begleitung der Tätigkeit durch den Dozenten der zugehörigen Lehrveranstaltung - Vertiefung der fachlichen Inhalte der zugehörigen Lehrveranstaltung	

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul 21	Bachelorarbeit				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Studiendekan / Studiengangsleiter AIN	SS, WS	BARB/21	12	360 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	0	0 h	360 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	7	

Inhaltliche Teilnahme Voraussetzung	Grundstudium, IPSS/15
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen einer Vertiefungsrichtung

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	SP			
	Modulteilprüfung (MTP)				
Zusammensetzung der Endnote	 □ Note der benoteten Modul(teil)prüfung □ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☑ Sonstiges: Die Modulnote errechnet sich aus dem arithmetischen Mittel der Noten der beide Prüfer der Bachelorarbeit. 				

Die Studierenden sind in der Lage, innerhalb einer vorgegebenen Frist eine Problemstellung aus dem Bereich Informatik zu bearbeiten. Sie folgen dabei wissenschaftlichen Methoden und Erkenntnissen, können Arbeiten fremder Personen abgrenzen und/oder ggf. mit eigenen Ideen zusammenführen. Sie können die Lösungen methodisch erarbeiten, praktisch umsetzen und die Ergebnisse in der schriftlichen Ausarbeitung der Abschlussarbeit strukturiert darstellen.

Lernziele des Moduls

Personale Kompetenzen

Die Studierenden sind in der Lage, selbstständig zu arbeiten und sich während ihrer Abschlussarbeit selbst organisieren. Sie können ihren Fortschritt über einen längeren Zeitraum kritisch reflektieren und die Arbeit innerhalb der vorgegebenen Frist umsetzen. Sie sind in der Lage, sich kritisch mit der Aufgabenstellung und dem zugehörigen Themengebiet auseinander setzen. Sie können ihre Vorgehensweise und ihre Ergebnisse mit anderen zu diskutieren und Feedback entgegennehmen.

Lehr- und Lernformen	\square Vorlesung \square Übung \boxtimes Selbststudium \square Workshop/Seminar \square Projekt \square Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☒ Sonstiges: Abschlussarbeit

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Bachelorarbeit Professoren der Fakultät IN	Р	0	12	Abhängig vom jeweiligen Thema

Literatur/Medien	Abhängig vom jeweiligen Thema				
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018		

Modul Al1	Artificial Intelligence								
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand							
Prof. Dr. O. Bittel	SS	SS ARIN/AI1 6 180 h							
	Dauer	sws	Kontaktzeit	Selbststudium					
	1 Semester	4	60 h	120 h					

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/AI4, 3DCV/AI5, MORO/AI2

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis	
	Modulprüfung (MP)	K90			
	Modulteilprüfung (MTP)			SP (LP)	
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Grundlegende Begriffe und Methoden der künstlichen Intelligenz kennen lernen.
 Lösung von typischen Problemstellungen mit Hilfe von Java und Python

Lernziele des Moduls

Personale Kompetenzen

Zeit-/Selbstmanagement für individuelle Laboraufgaben mit vorgegebenen Abgabeterminen. Die Studierenden können die gesellschaftlichen Chancen und Risiken der KI einschätzen. Sie entwickeln ein Bewusstsein für ethische Leitlinien.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Artificial Intelligence Prof. Dr. O. Bittel	V	2	3	 Was ist künstliche Intelligenz (KI) Problemlösen durch Suchen Suchstrategien für Spiele Constraint Satisfaction Problems (CSP) Logikbasierte KI-Systeme Maschinelles Lernen (ML): lineare Regression, Overfitting, Regularisation, Neural Networks (NN) ML mit Convolutional Neural Networks (CNN) KI und Ethik
Artificial Intelligence Übungen Prof. Dr. O. Bittel / Prof. Dr. M. Franz	LÜ	2	3	

Literatur/Medien	 Ertel, Grundkurs Künstliche Intelligenz, Springer Vieweg, 2013. Russel und Norvig, Künstliche Intelligenz – Ein Moderner Ansatz, Pearson, 2012. Michael A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015 					
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018			

Modul Al2	Mobile Robote	•		
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. M. Blaich	WS	MORO/AI2	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/AI4, 3DCV/AI5, ARIN/AI1

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des	 Grundlegende Begriffe der mobilen Robotik kennen lernen Termingerechte Lösung typischer Problemstellungen mit Hilfe von Python und Roboter-
Moduls	Entwicklungs- und Simulationsumgebungen.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mobile Roboter Prof. Dr. M. Blaich	V	2	3	 Koordinatensysteme und Transformationen Kinematik Sensorik Einführung in Lokalisierung und Kartenerstellung Einführung in Planung und Navigation Steuerungsarchitekturen Roboter-Entwicklungsumgebungen
Mobile Roboter Übungen Prof. Dr. M. Blaich	Ü	2	3	

Literatur/Medien	 Hertzberg, Lingemann und Nüchter, Thrun, Burgard and Fox, Probabilistic Siegwart and Nourbakhsh, Introductic MIT Press, 2011. Choset et al., Principles of Robot Mot Siciliano and Khatib (eds), Handbook 	: Robotics, MIT Press, 20 on to Autonomous Mob ion, MIT Press, 2005.	005. ile Robots, 2nd ed.,
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Lernziele des

Moduls

Modul AI3	Computergrafik				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. G. Umlauf	WS	COGR/AI3	6	180 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	MAT1/1 , MAT2/5
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/Al4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Fachliche Kompetenzen

Die Studierenden sind in der Lage, die Problemstellungen der Computergrafik eigenständig in den Render-Prozess einzuordnen und Lösungsvorschläge zu erarbeiten. Sie kennen verschiedene Ausprägungen des Render-Prozesses und können den Ablauf an konkrete Anforderungen abändern bzw. konzipieren. Sie kennen verschiedene Prinzipien, Techniken, Algorithmen, mathematischen Beschreibungen und Modelle der Computergrafik und können diese an konkreten Beispielen anwenden. Durch die Laborübungen entwickeln die Studierenden die Methodenkompetenz, Computergrafiksysteme zu modellieren, zu entwerfen und zu realisieren. Zusätzlich können die Studierenden aktuelle Bibliotheken und Entwicklungstools der Computergrafik bedienen.

Personale Kompetenzen

Schlüsselkompetenz erhalten die Studierenden durch den seminarähnlichen Charakter der Laborübungen, in dem die Studierenden die von ihnen erarbeiteten Lösungen vor der Gruppe präsentieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Computergrafik Prof. Dr. G. Umlauf	V	2	3	 Hardware-Gundlagen Rasterisierung Transformationen und Projektionen Repräsentation und Modellierung von Objekten Rendering (Beleuchtung, Schattierung, Ray-Tracing, etc.) Sichtbarkeitsberechnungen Mapping-Techniken (Texture-Mapping, Bump-Mapping, etc.)
Computergrafik Übungen Prof. Dr. G. Umlauf	LÜ	2	3	

Literatur/Medien	 G. Umlauf: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. M. Bender, M. Brill: Computergrafik, Hanser Verlag, 2. Auflage, 2005. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes: Computer Graphics - Principles and Practice, Addison-Wesley, 2nd edition, 1997. A. Watt: 3d Computer Graphics, Pearson, 2000. D. Shreiner, M. Woo, J. Neider, T. Davis: OpenGL - Programming Guide, Addison-Wesley, 2007.
------------------	---

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

SpracheDeutsch, ggf. EnglischZuletzt aktualisiert10.06.2021

Modul AI4	2D Computer Vision						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. M. Franz	SS 2DCV/AI4 6 180 h						
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 3DCV/AI5

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, PR)		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Lernziele des Moduls

- Die Grundlagen der automatischen Verarbeitung von zweidimensionalen Bildern in Industrie, Medizin und Wirtschaft kennenlernen.

- Digitale Bildverarbeitung anhand einfacher Beispiele praktizieren.

Personale Kompetenzen

Mit der Durchführung der Laborübungen und des Abschlussprojekts wird die Fähigkeit zum Teamwork in kleinen Gruppen geübt, sowie Präsentationstechniken im praktischen und individuellen Einsatz.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
2D Computer Vision Prof. Dr. M. Franz	V	2	3	Die Vorlesung führt in die Grundlagen der digitalen Bildverarbeitung ein. Dabei werden zunächst Fragen der Bildaufnahme, Digitalisierung und Bildsensorik behandelt. Die theoretische Grundlage bildet die diskrete Signalverarbeitung und die Fouriertransformation, für die im Laufe der Vorlesung ein intuitives Verständnis erarbeitet wird. Auf dieser Grundlage werden die klassischen Bildverarbeitungsoperationen besprochen, d.h. Filterung, Punktoperatoren, morphologische Filter, regionenbasierte Verfahren und Interest-Point-Operatoren. Mit diesen Verfahren können bereits komplexere Fragestellungen angegangen werden, wie z.B. Detektion von einfachen Kurven, Texturanalyse und Bildvergleiche.
2D Computer Vision Übungen Prof. Dr. M. Franz	LÜ	2	3	In den Übungen werden die besprochenen Verfahren mit Hilfe von Python umgesetzt und an konkreten industriellen und nichtindustriellen Bildverarbeitungsproblemen getestet. In einem umfangreicheren Abschlussprojekt wird ein komplexes Projekt bearbeitet und vor den anderen Studierenden präsentiert.

Literatur/Medien	 Franz, M.O.: Unterlagen zu 2D Computer Vision, HTWG Konstanz (in Moodle unter AIN/2DCV) W. Burger & M. J. Burge: Digitale Bildverarbeitung. Springer 2006. 						
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018				

Lernziele des

Moduls

Modul AI5	3D Computer Vision						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. G. Umlauf	SS	3DCV/AI5	6	180 h			
	Dauer	sws	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	MAT1/1, MAT2/5
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: 2DCV/AI4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Fachliche Kompetenzen

Die Studierenden sind in der Lage, die Problemstellungen der 3d-Datenerfassung eigenständig in konkrete Anwendungssituationen einzuordnen und Lösungsvorschläge zu erarbeiten. Sie kennen verschiedene Hardware-Techniken und ihre Vor- und Nachteile im konkreten Einsatz. Sie kennen den Scan-Prozess und können den Ablauf an konkrete Anforderungen abändern bzw. konzipieren. Sie kennen verschiedene Prinzipien, Techniken, Algorithmen, mathematischen Beschreibungen und Modelle der 3d-Datenverarbeitung und können diese an konkreten Beispielen anwenden. Durch die Projektarbeit entwickeln die Studierenden die Methodenkompetenz, den 3d-Scan_Process zu modellieren, zu entwerfen und zu realisieren.

Personale Kompetenzen

Schlüsselkompetenz erhalten die Studierenden durch Teamarbeit in den Projekten, in dem die Studierenden die von Lösungen gemeinsame, zielorientiert erarbeiten und vor der Gruppe präsentieren müssen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem und Lermonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
3D Computer Vision Prof. Dr. G. Umlauf	V	2	3	 Grundlagen der 3d-Datenverarbeitung Affine und projektive Geometrie Hardware-Techniken zur 3d-Datenerfassung (Photogrammetrie, Structured-Light, Laser-Scanning, Shape-from-X, etc) Algorithmische Methoden der 3d-Datenerfassung Methoden der 3d-Rekonstruktion
3D Computer Vision Übungen Prof. Dr. G. Umlauf	LÜ	2	3	 projektive Geometrie Stereo-Normalfall 3d-Puinktwolken 3d-Registrierung

Literatur/Medien	 G. Umlauf: Vorlesungs- und Übungsunterlagen, HTWG Konstanz. Richard Sziliski: Computer Vision, Springer, 2011. Richard Hartley, Andrwe Zissman: Multiple View Geometry in Computer Vision, Cambridge University Press, 2003. 		
Sprache	Deutsch, ggf. Englisch Zuletzt aktualis		10.06.2021

Modul Al6	Parallel Compu	iting				
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand				
Prof. Dr. M. Mächtel	WS	PACO/AI6	6	180 h		
	Dauer	SWS	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	

Inhaltliche Teilnahme Voraussetzung	BSYS/13
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: RNET/17, VESY/18

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls

Die Student*innen beherrschen theoretische und praktische Konzepte und Methoden zur Programmierung paralleler Systeme. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit verschiedener Programmierkonzepten und Programmiersprachen von parallelen Systemen.

Personale Kompetenzen

Durch Laboraufgaben werden folgende Schlüssel- und Methodenkompetenzen entwickelt:

- Teamarbeit in kleinen GruppenPräsentation der Lösungsmethoden

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Leni- una Lennonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt	
Parallel Computing Prof. Dr. M. Mächtel	V	2	2	 Grundlagen und Konzepte von parallelen Systemen Rechnerarchitekturen für Parallele Systeme Programmiermodelle für gemeinsamen Speicher Performance Analyse paralleler Programme Thread Programming, GPU Programming Parallelisierung Nebenläufigkeitsprobleme paralleler Programmierung Rechenlastverteilung 	
Parallel Computing Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in der Entwicklung eines eigenen parallelen Systems umsetzen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement) Systeme und nötige Anwendungs-Programme vorführen, die Lösung verteidigen Darstellung der Ergebnisse in technischen Berichten 	

Literatur/Medien - Introduction to Parallel Computing, Second Edition ISBN: 0-201-64865-2 - Parallel Programmingfor Multicore and Cluster SystemsSecond Edition ISBN 978-3-642-37800-3 - Masterkurs Parallele und Verteilte Systeme ISBN 978-3-8348-1671-9 - Invasive Computing for Mapping Parallel Programs to Many-Core Architectures ISSN 2367-3478 (bearbeitet)

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Deutsch	Zuletzt aktualisiert	30.10.2018
-----------------	----------------------	------------

Modul AI7	Wahlpflichtmodul			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SS, WS	WPM/AI7	12	360 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	8	120 h	240 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	WPM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: Modulen aus der Vertiefungsrichtung Al

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	X	X	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls	Die Studierenden haben vertiefte Kenntnisse in Spezialgebieten der Informatik erworben.Falls sie Fächer aus dem Studium Generale ausgewählt haben, haben sie fachübergreifendeMethoden- und Sozialkompetenzen erworben.
-------------------------	---

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lenr- una Lernformen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wahlpflichtmodul gemäß Aushang Studiendekan / Studiengangsleiter AIN	Х	8	12	Lehrinhalte, Prüfungsmodalitäten und ggf. eine Gruppeneinteilung werden durch den/die Dozenten/Dozentin i.d.R. in der ersten Vorlesungsstunde bekannt gegeben.Es dürfen Veranstaltungen im Umfang von maximal 6 ECTS-Punkten aus dem Studium Generale gewählt werden.

Literatur/Medien	Abhängig vom jeweiligen Wahlpflichtmodul		
Sprache	Deutsch, ggf. Englisch	Zuletzt aktualisiert	30.10.2018

Modul ES1	Embedded Systems			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. M. Mächtel	SS	ESYS/ES1	6	180 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	BSYS/13
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: RNET/17, MPS/ES3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Lernziele des Moduls

Die Student*innen beherrschen theoretische und praktische Konzepte und Methoden zum Aufbau eines kompletten eingebetteten Systems, mit dem Schwerpunkt auf die verschiedenen Softwarekomponenten. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit verschiedener Systemsoftware von eingebetteten Systemen.

Personale Kompetenzen

Durch Laboraufgaben werden folgende Schlüssel- und Methodenkompetenzen entwickelt:

- Teamarbeit in kleinen Gruppen
 Präsentation der Lösungsmethoden

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
Lem- und Lemonnen	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Embedded Systems Prof. Dr. M. Mächtel	V	2	2	 Grundlagen und Konzepte von Embedded Systems Methoden der Entwicklung von Embedded Systems Tools zur Erstellung eines kompletten eingebetteten Systems (Fokus Software) Aspekte der verteilten Systemsoftware in Embedded Systems Sicherheitsaspekte abhängig von der jeweiligen Systemsoftwareschicht von eingebetteten Systemsn Nebenläufigkeitsprobleme in Systemsoftwarekomponenten mit Fokus Embedded Systems
Embedded Systems Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in der Entwicklung eines eigenen embedded Systems umsetzen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement) Systeme und nötige Anwendungs-Programme vorführen, die Lösung verteidigen Darstellung der Ergebnisse in technischen Berichten

Literatur/Medien	 Quade, Jürgen: Embedded Linux lernen mit dem Raspberry Pi: Linux-Systeme selber bauen und programmieren, neuste AuflageDiscovery Book,
------------------	--

	- Rust auf dem STM Board: https://docs.rust-embedded.org/discovery/			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018	

Modul ES2	Kommunikationstechnik							
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwan						
Prof. Dr. D. Staehle	SS	KOTE/ES2	6	180 h				
	Dauer	SWS	Kontaktzeit	Selbststudium				
	1 Semester	4	60 h	120 h				

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MPS/ES3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	M30		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	· /1	oteten Modulteilprüfun	gen

Lernziele des Moduls

Die Studierenden verstehen die nachrichtentechnischen Grundlagen für Informatiker. Sie können einfache Algorithmen zur Quellcodierung, Kanalcodierung, Leitungscodierung und digitalen Modulation in Matlab umsetzen. Sie kennen die gängigen Schnittstellen und Bussysteme für Eingebettete Systeme und können deren Möglichkeiten und Grenzen einschätzen. Die Studierenden sind mit den Grundlagen der Funkübertragung vertraut, die sie am Beispiel WLAN kennenlernen.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Kommunikationstechnik Prof. Dr. D. Staehle	V	2	3	 Quellcodierung: Informationstheoretische Grundlagen, Entropiecodierung, Wörterbuchcodierung Kanalcodierung: Grundlagen, Blockcodes, Faltungscodes Leitungscodierung und digitale Modulation Schnittstellen und Bussysteme für Eingebettete Systeme WLAN: Medienzugriff, LDPC Codes, OFDM, MIMO
Kommunikationstechnik Übungen Prof. Dr. D. Staehle	LÜ	2	3	 Umgang mit der Communication Toolbox in Matlab Entwicklung der Simulation einer WLAN-Übertragung Anwendung und Testen von Schnittstellen und Bussystemen auf einem Eingebetteten System

Literatur/Medien	 Dirk Staehle: Vorlesungs- und Übung Matlab Hilfe Dirk W. Hoffmann, Einführung in die Springer Vieweg, 2014 Martin Meyer, Kommunikationstechni Nachrichtenübertragung, Vieweg-Sp. Peter Adam Höher, Grundlagen der d Theorie zu Mobilfunkanwendungen Werner Martin, Nachrichtentechnik - Laufl., 2010 Andrea Goldsmith, Wireless Communication 	Informations- und Codie ik-Konzepte der moderr oringer, 5. Aufl., 2014 igitalen Informationsüb , 2. Aufl., 2013 Eine Einführung für alle ications, Cambridge Un	erungstheorie, nen ertragung - Von der Studiengänge, 7.		
Sprache	Deutsch Zuletzt aktualisiert 30.10.2018				

Modul ES3	Mikroprozessorsysteme						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. I. Schoppa	SS	MPS/ES3	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	DIGI/02, SYPR/08, REAR/09
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: DSYS/ES4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, TE)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	· / ·	oteten Modulteilprüfun	gen

Die Studierenden lernen am Beispiel eines modernen Low-Power-Mikrocontrollers vom Typ MSP430 seinen internen Aufbau und die Funktionsweise seiner Komponenten kennen und sind mit deren Einsatzmöglichkeiten in Low-Power-Anwendungen vertraut. Sie sind in der Lage, diese Komponenten per Software zu aktivieren und anwendungsorientiert so zu konfigurieren, dass eine Applikation das gewünschte Verhalten zeigt.

Methodische Kompetenzen

Lernziele des Moduls

Die Studierenden sind im Umgang mit modernen Werkzeugen zur Hardware-nahen Software-Entwicklung (Compiler, Linker, Debugger, Monitor) vertraut. Sie können den Speicherplatzbedarf sowie die Rechenzeit einer Applikation ermitteln und diese durch gezielte Optimierungsmassnahmen verbessern. Sie beherrschen elementare Kommunikationsprotokolle inkl. Fehlerbehandlung und können diese mittels synchroner und asynchroner, serieller Datenübertragung (SPI, UART) implementieren.

Personale Kompetenzen

Durch das projektorientierte Labor werden die Teamfähigkeit und die Fähigkeit zur Erstellung technischer Berichte gestärkt. Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen erarbeiten und ihre Erkenntnisse in schriftlicher oder mündlicher Form präsentieren.

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mikroprozessorsysteme Prof. Dr. I. Schoppa	V	2	2	 Hardware-nahe Programmierung eines Mikrocontrollers in C Interrupt-gesteuerte Applikationen mit echtzeitfähiger Datenverarbeitung Implementierung komplexer Abläufe in ereignisgesteuerten Applikationen kooperatives Multitasking effiziente Implementierung von Zustandsmaschinen synchrone und asynchrone, serielle Datenübertragung mittels SPI und UART Kommunikationsprotokolle mit Fehlerbehandlung

Mikroprozessorsysteme Übungen Prof. Dr. I. Schoppa	LÜ	2	4	Die Lehrinhalte werden abschnittsweise über Laborübungen (inkl. Fragen, Diskussion, Teamarbeit in kleinen Gruppen, Präsentation der Lösungsmethoden) vertieft. Sie werden ferner permanent über
				eine Vielzahl von konkreten Praxisbeispielen veranschaulicht.

Literatur/Medien	 Schoppa, I.: Vorlesungs- und Übungs Texas Instruments: MSP430 Optimizi Davies, J. H.: MSP430 Microcontroller Schaefer, M., Gnedina, A. und weitere Software für Steuerungen mit Siche Arbeitsschutz und Arbeitsmedizin, Nagy, C.: Embedded Systems Design 2013 	ng C/C++ Compiler, Usi Basics, Newnes, 2008. e: Programmierregeln fü rheitsaufgaben, Bundes 1998.	er's Guide, 2018. Ir die Erstellung von anstalt für
Sprache	Deutsch	Zuletzt aktualisiert	15.06.2021

Modul ES4	Digitale Systeme						
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand			
Prof. Dr. I. Schoppa	WS	DSYS/ES4	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	DIGI/02, REAR/09
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: MPS/ES3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Die Studierenden sind mit dem Aufbau und der Funktionsweise digitaler Komponenten sowie dem Aufbau und der Funktionsweise programmierbarer Logikbausteine (FPGA, CLPD) und mit deren Einsatzmöglichkeiten vertraut.

Methodische Kompetenzen

Lernziele des Moduls

Die Studierenden beherrschen die Grundlagen des computergestützten Entwurfes digitaler Systeme mittels der Hardwarebeschreibungssprache VHDL, und können digitale Komponenten durch algorithmische Verhaltensbeschreibung und durch hierarchische Strukturbeschreibung synthesegerecht modellieren. Sie sind auch in der Lage, solche Beschreibungen mit Hilfe der digitalen Simulation zu analysieren und für eine vorgegebene Zieltechnologie (FPGA, CPLD) zu synthetisieren. Die Studierenden sammeln praktische Erfahrungen im Umgang mit Simulations- und Synthesewerkzeugen und können diese auch zur Lösung umfangreicherer Probleme einsetzen.

Personale Kompetenzen

Durch das projektorientierte Labor werden die Teamfähigkeit und die Fähigkeit zur Erstellung technischer Berichte gestärkt. Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen erarbeiten und ihre Erkenntnisse in schriftlicher oder mündlicher Form präsentieren.

i tent- una terniormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Digitale Systeme Prof. Dr. I. Schoppa	V	2	2	 Einführung in VHDL Verhaltens- und Strukturbeschreibung VHDL-Codierungsstil und Entwurfsmuster Modellierung von Schaltnetzen und Schaltwerken programmierbare Logikbausteine FPGA/CPLD Systeme mit kooperierenden Schaltwerken Handshaking und Synchronisationsverfahren Fließbandorganisierte Rechenwerke
Digitale Systeme Übungen Prof. Dr. I. Schoppa	LÜ	2	4	Die Lehrinhalte werden abschnittsweise über Laborübungen (inkl. Fragen, Diskussion, Teamarbeit in kleinen Gruppen, Präsentation der Lösungsmethoden) vertieft. Sie werden ferner permanent über eine Vielzahl von konkreten Praxisbeispielen veranschaulicht.

Literatur/Medien	 Schoppa, I.: Vorlesungs- und Übungs Reichardt, J. und Schwarz, B.: VHDL-S Kesel, F. und Bartholomä, R.: Entwurf mit HDLs und FPGAs, Oldenbourg V Chu, P.: FPGA Prototyping by VHDL-E Chu, P.: RTL Hardware Design Using V Armstrong, J., Gray. F.: VHDL Design: Hall, 2000. Skahill, K.: VHDL for Programmable L 	synthese, Oldenbourg Vervon digitalen Schaltung Verlag, 2013. xamples, Wiley, 2011. VHDL, Wiley, 2006. Representation and Syn	erlag, 2013. gen und Systemen nthesis, Prentice
Sprache	Deutsch	Zuletzt aktualisiert	15.06.2021

Modul ES5	Parallel Computing						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. M. Mächtel	WS	PACO/ES5	6	180 h			
	Dauer	sws	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	BSYS/13
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: RNET/17, VESY/18

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☐ Sonstiges:	` ''	oteten Modulteilprüfun	gen

Lernziele des Moduls

Die Student*innen beherrschen theoretische und praktische Konzepte und Methoden zur Programmierung paralleler Systeme. Sie sind in der Lage geeignete Methoden zur Lösung spezifischer Aufgabenstellungen anzuwenden. Sie verfügen über praktische Laborerfahrung im Umgang mit verschiedener Programmierkonzepten und Programmiersprachen von parallelen Systemen.

Personale Kompetenzen

Durch Laboraufgaben werden folgende Schlüssel- und Methodenkompetenzen entwickelt:

- Teamarbeit in kleinen GruppenPräsentation der Lösungsmethoden

Lehr- und Lernformen	oximes Vorlesung $oxdot$ Übung $oxdot$ Selbststudium $oxdot$ Workshop/Seminar $oxdot$ Projekt $oxdot$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Parallel Computing Prof. Dr. M. Mächtel	V	2	2	 Grundlagen und Konzepte von parallelen Systemen Rechnerarchitekturen für Parallele Systeme Programmiermodelle für gemeinsamen Speicher Performance Analyse paralleler Programme Thread Programming, GPU Programming Parallelisierung Nebenläufigkeitsprobleme paralleler Programmierung Rechenlastverteilung
Parallel Computing Übungen Prof. Dr. M. Mächtel	LÜ	2	4	 Spezifikationen lesen und in der Entwicklung eines eigenen parallelen Systems umsetzen Umgang mit Werkzeugen (Linux, Editor, Compiler, Buildmanagement) Systeme und nötige Anwendungs-Programme vorführen, die Lösung verteidigen Darstellung der Ergebnisse in technischen Berichten

Literatur/Medien - Introduction to Parallel Computing, Second Edition IS - Parallel Programmingfor Multicore and Cluster Syste 3-642-37800-3 - Masterkurs Parallele und Verteilte Systeme ISBN 978 - Invasive Computing for Mapping Parallel Programs to ISSN 2367-3478 (bearbeitet)	msSecond Edition ISBN 978- -3-8348-1671-9
---	--

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Deutsch	Zuletzt aktualisiert	30.10.2018
-----------------	----------------------	------------

Modul ES6	Ubiquitous Computing						
Modul-Koordination	Start	Start Modul-Kürzel/-Nr. ECTS-Punkte Arbeitsaufwand					
Prof. Dr. R. Seepold	SS, WS	UbiCom/ES6	6	180 h			
	Dauer	SWS	Kontaktzeit	Selbststudium			
	1 Semester	4	60 h	120 h			

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (PR, AB)		
	Modulteilprüfung (MTP)			SP (LP, TE)
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Die Studierenden sind mit den Grundlagen von Ubiquitous Computing, Internet of Things und mit deren Anwendungen aus dem Bereich Active Assisted Living/Telemonitoring vertraut. Sie haben typische Szenarien kenngelernt und können diese bewerten. Sie sind in der Lage Problemstellungen zu analysieren und spezifische Lösungsvorschläge zu erarbeiten. Sie können einfache Problemlösungen selbständige programmieren.

Lernziele des Moduls

Personale Kompetenzen

Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen aus der Ubiquitous Computing finden und ihre Erkenntnisse präsentieren. Die Studierenden können die gesellschaftliche Relevanz von Ubiquitous Computing insbesondere in Bereichen wie z.B. ein selbstbestimmtes Leben, nachhaltige Pflege, Betreuung sowie Komfort und Gesundheit im Alter zu Hause ebenso einordnen, wie eine dezentrale, ressourcenschonende Energieversorgung.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Ubiquitous Computing Prof. Dr. R. Seepold	V	2	3	 Einführung, Begriffsdefinition Sensoren, Aktoren Peripher-Technologien Standards Hardware-Schnittstellen Protokoll-Schnittstellen Kontextsensitivität Integrationsplattformen Anwendungen Durch Übungen werden folgende Schlüssel- und Methodenkompetenzen entwickelt: Teamarbeit in kleinen Gruppen Eigenständige Lösungserarbeitung Präsentation der Lösungsmethoden
Ubiquitous Computing Übungen Prof. Dr. R. Seepold	LÜ	2	3	

Literatur/Medien	Seepold, R.: Vorlesungs- und Übungsunterlagen, HTWG Konstanz.
------------------	---

Modulhandbuch des Studiengangs Angewandte Informatik, Bachelor of Science

Sprache Englisch Zuletzt aktualisiert 30.10.2	18
---	----

Modul ES7	Wahlpflichtmoo	dul		
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SS, WS	WPM/ES7	12	360 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	8	120 h	240 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	WPM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen aus der Vertiefungsrichtung ES

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	Χ	X	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	· · · ·	oteten Modulteilprüfun	gen

Lernziele des Moduls	Die Studierenden haben vertiefte Kenntnisse in Spezialgebieten der Informatik erworben.Falls sie Fächer aus dem Studium Generale ausgewählt haben, haben sie fachübergreifende Methoden- und Sozialkompetenzen erworben.
-------------------------	--

Lenr- und Lerntormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wahlpflichtmodul gemäß Aushang Studiendekan / Studiengangsleiter AIN	X	8	12	Lehrinhalte, Prüfungsmodalitäten und ggf. eine Gruppeneinteilung werden durch den/die Dozenten/Dozentin i.d.R. in der ersten Vor- lesungsstunde bekannt gegeben.Es dürfen Veranstaltungen im Umfang von maximal 6 ECTS-Punkten aus dem Studium Generale gewählt werden.

Literatur/Medien	Abhängig vom jeweiligen Wahlpflichtmodul			
Sprache	Deutsch, ggf. Englisch	Zuletzt aktualisiert	30.10.2018	

Modul SE1	Web-Applikatio	Web-Applikationen				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand		
Prof. Dr. M. Boger	WS	WAPP/SE1	6	180 h		
	Dauer	sws	Kontaktzeit	Selbststudium		
	1 Semester	4	60 h	120 h		

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: SOAR/SE3, SWQS/SE4, MOAN/SE6

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, PR, AB)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☑ Sonstiges: Die Note ergibt sich aus einem zusammenhängenden Projekt 			

	Fachliche Kompetenzen Die Studierenden erlangen ein vertieftes Wissen über Internettechnologien und die Entwicklung von Web-Anwendungen.
Lernziele des	
Moduls	Personale Kompetenzen
	Die Studierenden setzen diese in kleinen Teams in einem zusammenhängen Projekt um, dass im
	Verlauf des Semesters auf Basis der behandelten Themen entwickelt wird. Die Studierenden können die gesellschaftliche Relevanz von Web-Appikationen insbesondere im Bereich Datenschutz einordnen.

Lenr- und Lerntormen	⊠ Vorlesung ⊠ Übung ⊠ Selbststudium □ Workshop/Seminar ⊠ Projekt ⊠ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Web-Applikationen Prof. Dr. M. Boger	V	2	2	 Fortgeschrittene Konzepte von HTML, CSS, SVG Browsertechnologien, Skriptsprachen im Browser (Javascript) Userinterface Design, UX Responsive Design (Bootstrap) Servertechnologien (Play) Kommunikation zwischen Browser und Server (AJAX, Comet, Web- Sockets) Clientseitige Frameworks (Vue) Authentifizierung Deployment
Web-Applikationen Übungen Prof. Dr. M. Boger	LÜ	2	4	

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE2	Sprachkonzepte				
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. H. von Drachenfels	WS	SPKO/SE2	6	180 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	PROG1/03, PROG2/07, SYPR/08, SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		SP
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	☑ Note der benoteten Mod☐ ECTS-gewichtetes, arithr☐ Sonstiges:	· / ·	oteten Modulteilprüfun	gen

Lernziele des Moduls

Die Studierenden kennen die wichtigsten Sprachkonzepte und können diese kritisch beurteilten. Sie können einschätzen, welche Sprachkonzepte für welche Problemstellung geeignet sind. Die Studierenden verstehen die Funktionsweise von Compilern und Interpretern. Sie sind in der Lage Compilerbau-Werkzeuge anzuwenden.

	·
Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
Lem- and Lemonnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Sprachkonzepte Prof. Dr. H. von Drachenfels	V	2	3	 Sprachen: Syntax, Semantik und Pragmatik Programmierparadigmen: imperative / deklarative Programmierung, Anwendungs- / Systemprogrammierung, Scripting, Textgenerierung Namen: Bindungen, Scopes, Lebensdauern Typsysteme: Typprüfung, Typinferenz, parametrische Polymorphie Beispiele
Sprachkonzepte Übungen Prof. Dr. H. von Drachenfels	LÜ	2	3	 Experimentieren mit Programmiersprachen Verwendung von Compilerbau-Werkzeugen Vertiefung der Inhalte der Vorlesung

Literatur/Medien	 Drachenfels, Heiko: Unterlagen zur Le home.htwg-konstanz.de/~drachen/ Scott, Michael: Programming Languag Sestoft, Peter: Programming Languag 	bzw. in Moodle ge Pragmatics. Morgan I	Kaufmann 2015
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE3	Softwarearchit	Softwarearchitektur		
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. M. Boger	SS	SOAR/SE3	6	180 h
	Dauer	sws	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls im o.g. Studiengang	Als Vorkenntnis erforderlich für Modul: Sinnvoll zu kombinieren mit Modul: WAPP/SE1, SWQS/SE4

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	SP (LP, PR, AB)		
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	☒ Note der benoteten Mod☐ ECTS-gewichtetes, arithn☒ Sonstiges: Die Note ergil	netisches Mittel der ben	•	•

Lernziele des Moduls

Die Studierenden erlernen grundlegende Kenntnisse zur Beurteilung, Entwicklung und Dokumentation von Softwarearchitekturen. Die Studierenden lernen Konzepte von Architekturen, wie Schichten, Abstraktion, Entkopplung und Komponentenbildung kennen und anwenden. Sie lernen Softwarearchitekturen für Einzelplatzlösungen, erweiterbare Systeme, verteilte Systeme, persistente Systeme, service-orientierte Systeme und Websysteme kennen. Sie lernen Mechanismen zur Entwicklung skalierbarer und erweiterbarer Systeme kennen. Sie lernen Techniken zur Messung und zur Optimierung der Performance kennen.

Tenr- und Terniormen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
zem una zermormen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Softwarearchitektur Prof. Dr. M. Boger	V	2	2	 Grundlagen der Softwarearchitektur Vertiefte Konzepte der funktionalen Programmierung Monaden Futures Aktormodell Verteilung Microservices Docker Persistence Performance-Messung und Optimierung Architektur-Muster
Softwarearchitektur Übungen Prof. Dr. M. Boger	LÜ	2	4	

Literatur/Medien			
Sprache	Deutsch	Zuletzt aktualisiert	30.10.2018

Modul SE4	Softwarequalitätssicherung			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Prof. Dr. M. J. Eiglsperger	SS	SWQS/SE4	6	180 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	4	60 h	120 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: WAPP/SE1, SOAR/SE3

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	K90		
	Modulteilprüfung (MTP)			SP (LP)
Zusammensetzung der Endnote	 ✓ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Fachliche Kompetenzen Die Studierenden kennen und verstehen die grundlegenden Konzepte der konstruktiven und der analytischen Qualitätssicherung für Software. Sie können Tests in allen Phasen des Softwarelebenszyklus erstellen, ausführen und bewerten und können mit den dafür notwendigen Werkzeugen umgehen. Die Studierenden können die Rolle des Testens in Plangetriebenen und Agilen Softwareentwicklungsprozessen einordnen.

Personale Kompetenzen Psychologie des Testens

i lenr- und Lerntormen	☑ Vorlesung ☐ Übung ☑ Selbststudium ☐ Workshop/Seminar ☐ Projekt ☑ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Softwarequalitätssicherung Prof. Dr. M. J. Eiglsperger	V	2	3	 Qualitätskriterien von Software nach ISO/IEC 25000. Konstruktive versus analytische Qualitätssicherung Integration der Softwarequalitätssicherung in Software-Entwicklungsprozesse. Testen im Software Lebenszyklus: Komponententest, Integrationstest, Systemtest, Akzeptanztest Testen in Agilen Projekten. Statische Testverfahren, z.B. Reviews, Inspektionen, Code Metriken. Dynamische Testverfahren, Blackbox-Testverfahren und Whitebox-Testverfahren Testwerkzeuge Psychologie des Testens
Softwarequalitätssicherung Übungen Prof. Dr. M. J. Eiglsperger	LÜ	2	3	 Testfälle entwickeln. Komponententest, Integrationstest, Systemtest, Akzeptanztest erstellen, durchführen und bewerten. Automatische und manuelle Prüfung an Software durchführen. Testwerkzeuge anwenden um Problemstellungen zu lösen.

Literatur/Medien	 Spillner Andreas, Linz Tilo: Basiswissen Softwaretest: Aus- und Weiterbildung zum Certified Tester – Foundation Level nach ISTQB-Standard, 5. Auflage, dpunkt.verlag, 2012.
------------------	---

	 Crispin Lisa, Gregory Janet: Agile Testing: A Practical Guide for Testers and Agile Teams, 1st Edition, Addison-Wesley Professional, 2009. 				
Sprache	Deutsch	Deutsch Zuletzt aktualisiert 30.10.2018			

Modul SE5	Datenbanksyst	Datenbanksysteme 2			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. O. Eck	WS	DBSYS2/SE5	6	180 h	
	Dauer	sws	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	DBSYS1/14
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul:

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	K90				
	Modulteilprüfung (MTP)			SP (LP)		
Zusammensetzung der Endnote		 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Lernziele des Moduls

Die Studierenden haben umfangreiche Kenntnisse über Konzepte von Datenbanksystemen, verstehen deren Einsatzmöglichkeiten und Funktionsweise. Die Studierenden wissen, wie sie die Sicherheit und Performance von Datenbanksystemen beeinflussen können. Sie kennen den Unterschied zwischen OLAP- und OLTP-Datenbanken, kennen deren Vor- und Nachteile und können beide Datenbanken verwenden. Sie wissen, wie man objektorientierte Strukturen in relationalen Datenbanksystemen speichert. Sie haben die Fähigkeit, Software für verschiedene Datenbanktypen zu programmieren.

Personale Kompetenzen

Die Studierenden sind in der Lage ihre Kenntnisse anhand von Literatur selbständig zu vertiefen. Die Studierenden können, alleine oder in kleinen Gruppen, Lösungen zu Aufgabenstellungen finden.

Lehr- und Lernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Datenbanksysteme 2 Prof. Dr. O. Eck	V	2	3	 Transaktionsverwaltung und Fehlerbehandlung Sicherheitsaspekte relationaler Datenbanken Optimierung relationaler Datenbanken Betriebliche Anwendungen von Datenbanken, OLAP Objektrelationales Mapping am Beispiel Hibernate Speicherung von JSON-Dokumenten Kategorisierung und theoretische Grundlagen von NoSQL-Datenbanken Dokumentenorientierte NoSQL-Datenbanken
Datenbanksysteme 2 Übungen Prof. Dr. O. Eck	LÜ	2	3	 Vertiefung und Anwendung der Inhalte der Vorlesung Programmierung von NoSQL-Datenbanken

Literatur/Medien	 Eck, O.: Vorlesungsfolien und Übungsunterlagen Kemper, A., Eickler, A.: Datenbanksysteme – Eine Einführung, De Gruyter, 10. Auflage, 2015 Elmasri, R., Navathe, D.B.: Fundamentals of Database Systems, Pearson, 7. Aufl., 2017
	 Sieben, J.: Oracle SQL - Das umfassende Handbuch, Rheinwerk Computing, 3. Auflage, 2018 Edlich, S., Friedland, A., Hampe, J., Brauer, B., Brücklner, M.: NoSQL: Einstieg in

	die Welt nichtrelationaler Web 2.0 Datenbanken, Carl Hanser Verlag, 2. Aufla 2011			
Sprache	Deutsch	Zuletzt aktualisiert	28.07.2021	

Modul SE6	Mobile Anwend	lungen			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand	
Prof. Dr. M. J. Eiglsperger	SS	MOAN/SE6	6	180 h	
	Dauer	SWS	Kontaktzeit	Selbststudium	
	1 Semester	4	60 h	120 h	

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	PM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	SENG/12
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: WAPP/SE1

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis		
	Modulprüfung (MP)	SP				
	Modulteilprüfung (MTP)					
Zusammensetzung der Endnote		 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 				

Lernziele des Moduls Die Studierenden kennen die spezifischen Herausforderungen bei der Realisierung mobiler Anwendungen. Sie können verschiedene mobile Anwendungen unter Benutzung unterschiedlicher Technologien realisieren und ausliefern. Sie sind in der Lage eine native Android Anwendung mit den entsprechenden Werkzeugen zu entwickeln und auszuliefern welche mittels einer GUI mit dem User, mittels Sensoren mit der Umwelt und mittels einer Schnittstelle mit einer Serveranwendung kommunizieren kann, sowie lokal Daten speichert und asynchron mit dem User kommuniziert.

Personale Kompetenzen

Die Studierenden setzen diese in kleinen Teams in einem zusammenhängenden Projekt um, dass im Verlauf des Semesters auf Basis der behandelten Themen entwickelt wird Die Studierenden können die gesellschaftliche Relevanz von mobilen Anwendungen insbesondere im Bereich Datenschutz einordnen.

Lehr- und Lernformen	☑ Vorlesung □ Übung ☑ Selbststudium □ Workshop/Seminar □ Projekt ☑ Labor
Lem- und Lemionnen	☐ Exkursion ☐ E-Learning ☐ Hausarbeit ☐ Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Mobile Anwendungen Prof. Dr. M. J. Eiglsperger	V	2	2	 Kontext und Rolle von mobilen Anwendungen und Plattformen. Prinzipielle Ablauf, Iterative Entwicklung und Rapid Prototyping von mobilen Anwendungen. Entwicklung von Benutzeroberflächen für ein mobiles OS. Datenspeicherung auf mobilen Geräten. Lebenszyklus einer Mobilen Anwendung. Kommunikation mit anderen Mobilen Anwendungen. Sensoren und ihre Schnittstellen. Cross-Plattform Entwicklung.
Mobile Anwendungen Übungen Prof. Dr. M. J. Eiglsperger	LÜ	2	4	 Beherrschen der Werkzeuge für die Entwicklung. Erstellen von Beispielapplikationen in unterschiedlichen Technologien inklusive Analyse, Entwurf, Entwicklung, Test und Bereitstellung.

Literatur/Medien	Dirk Louis, Peter Müller: Android: Der schnelle und einfache Einstieg in die Programmierung und Entwicklungsumgebung, 2. Auflage, Hanser Verlag, 2016.		
Sprache			30.10.2018

Modul SE7	Wahlpflichtmodul			
Modul-Koordination	Start	Modul-Kürzel/-Nr.	ECTS-Punkte	Arbeitsaufwand
Studiendekan / Studiengangsleiter AIN	SS, WS	WPM/SE7	12	360 h
	Dauer	SWS	Kontaktzeit	Selbststudium
	1 Semester	8	120 h	240 h

Einsatz des Moduls im	Angestrebter	Modul-Typ	Beginn im	SPO-Version /
Studiengang	Abschluss	(PM/WPM)	Studiensemester	Jahr
AIN	B.Sc.	WPM	5-7	SPO 3 / 2020

Inhaltliche Teilnahme Voraussetzung	Grundstudium
Verwendbarkeit des Moduls	Als Vorkenntnis erforderlich für Modul:
im o.g. Studiengang	Sinnvoll zu kombinieren mit Modul: Modulen aus der Vertiefungsrichtung SE

Püfungsleistungen des Moduls		Benotete Prüfung	Unbenotete Prüfung	Unbenoteter Leistungsnachweis
	Modulprüfung (MP)	Χ	X	
	Modulteilprüfung (MTP)			
Zusammensetzung der Endnote	 ☑ Note der benoteten Modul(teil)prüfung ☐ ECTS-gewichtetes, arithmetisches Mittel der benoteten Modulteilprüfungen ☐ Sonstiges: 			

Lernziele des Moduls	Die Studierenden haben vertiefte Kenntnisse in Spezialgebieten der Informatik erworben.Falls sie Fächer aus dem Studium Generale ausgewählt haben, haben sie fachübergreifende Methoden- und Sozialkompetenzen erworben.
-------------------------	--

i enr- una i ernformen	oximes Vorlesung $oximes$ Übung $oximes$ Selbststudium $oximes$ Workshop/Seminar $oximes$ Projekt $oximes$ Labor
	\square Exkursion \square E-Learning \square Hausarbeit \square Sonstiges:

Teilmodul Lehrende	Art	sws	ECTS	Lehrinhalt
Wahlpflichtmodul gemäß Aushang Studiendekan / Studiengangsleiter AIN	х	8	12	Lehrinhalte, Prüfungsmodalitäten und ggf. eine Gruppeneinteilung werden durch den/die Dozenten/Dozentin i.d.R. in der ersten Vorlesungsstunde bekannt gegeben. Es dürfen Veranstaltungen im Umfang von maximal 6 ECTS-Punkten aus dem Studium Generale gewählt werden.

Literatur/Medien	Abhängig vom jeweiligen Wahlpflichtmodul				
Sprache	Deutsch, ggf. Englisch	Zuletzt aktualisiert	30.10.2018		