

> Data Science Grundlagen Data Preparation

Prof. Dr. Carsten Lanquillon

Fakultät Wirtschaft und Verkehr

Wirtschaftsinformatik

CRISP-DM Phase 3: Data Preparation

Ziel: Aufbereitung der Daten (oft als Datenmatrix) für die Modellierungsphase

Aufgaben

- Integration unterschiedlicher Datenquellen
- Datenbereinigung (Fehler, fehlende Werte)
- Formatierung, Codierung, Skalierung
- Auswahl relevanter Merkmale (Feature Selection)
- Konstruktion neuer Merkmale (Feature Engineering)

Data Science Grundlagen: Data Preparation Prof. Dr. Carsten Languillon

Data Preparation oder Data Preprocessing

Ziel: Erzeugung der Datenmatrix für die Modellierungsphase

- > Bereinigung der Daten
 - > Umgang mit fehlenden Werten
 - > Umgang mit Ausreißern
 - > Berücksichtigung Datentypen und Skalenniveaus
- > Feature Selection (Dimensionsreduktion)
 - > Filter-Ansätze
 - > Wrapper-Ansätze
- Feature Engineering
 - > Konstruktion neuer Merkmale
 - > Dimensionsreduktion durch neue Merkmale

Data Science Grundlagen: Data Preparation | Prof. Dr. Carsten Languillon

Datenbereinigung

Ziel: Behebung von Datenqualitätsproblemen, korrekte Formatierung und richtiges Skalenniveau

- > Erinnerung: Datenmatrix
 - > Eine Zeile pro Objekt
 - > Eine Spalte pro Merkmal
 - > Atomare Werte (Ausprägungen)
- > Behandlung fehlender Werte
- > Behandlung Ausreißer
- > Werte korrekt Formatiert
- > Datentypen und Skalenniveaus anpassen

Merkmal 1	Merkmal 2	Merkmal 3	 Merkmal m
Wert ₁₁	Wert ₁₂	Wert ₁₃	 Wert _{1m}
Wert ₂₁	Wert ₂₂	Wert ₂₃	 Wert _{2m}
1			
Wert _{n1}	Wert _{n2}	Wert _{n3}	 Wert _{nm}

Datenbereinigung: Umgang mit fehlenden Werte

- > Fehlende Werte nicht verändern
- > Zeilen mit zu vielen fehlenden Werten entfernen
- > Spalten mit zu vielen fehlenden Werten entfernen
- > Fehlende Werte sinnvoll ersetzen
 - Konstanter Wert
 - Vorgabe durch Experten
 - Als eigenen Wert eines nominalen Merkmals betrachten
 - Modus (für nominale oder rangskalierte Daten)
 - Mittelwert (nur für metrische Merkmale)
 - Vorgänger, Nachfolgewert, Mittelwert (nur für Zeitreihen)
 - Werte zufällig erzeugen

Abhängigkeit Datenaufbereitung und Modellierung

- > Die erforderlichen Vorverarbeitungsschritte hängen teilweise vom Lernverfahren ab
- > Es gibt nicht die eine richtige oder beste Art der Datenvorverarbeitung
- > Mögliche relevante Fragen
 - Welche Skalenniveaus werden erwartet?
 - Kann das Lernverfahren mit fehlenden Werten umgehen?
 - Ist das Lernverfahren robust gegenüber Ausreißern?
 - Ist das Lernverfahren robust gegenüber Unterschieden in den Wertebereichen?
 - Ist das Lernverfahren robust gegenüber irrelevanten oder redundanten Merkmalen?

Beispiel: Klassifikation mit dem nächsten Nachbarn

Einfache Lösung: Ordne neue Objekte der Klasse zu, die der nächste Nachbar hat!

Beispiel: Clusteranalyse

Erzeuge Gruppen (Cluster, Klassen, Segmente) von Objekten mit folgenden Eigenschaften:

- "Within-Cluster Homogeneity"
 Objekte in einer Gruppe sind ähnlich zueinander
- "Between-Cluster Heterogeneity"
 Objects in verschiedenen Gruppen sind unähnlich

Wan sind Objekte ähnlich?

→ Benötigt Ähnlichkeits- oder Distanzmaße!

| 9

Exkurs: Abstandsberechnung (1)

Zerlegung der Abstandsberechnung zwischen zwei Objekten in zwei Schritte:

1. Merkmalsebene

- Definiere geeignetes Abstandsmaß für jedes Merkmal unter Berücksichtigung des Skalenniveaus
- Stelle Vergleichbarkeit der Größenordnungen der resultierenden Abstandswerte aller Merkmale sicher

2. Objektebene

Aggregation der Abstandswerte auf Merkmalsebene zu einem kombinierten Abstandswert

Data Science Grundlagen: Data Preparation | Prof. Dr. Carsten Lanquillon

Exkurs: Abstandsberechnung – Merkmalsebene

- Der Abstand bei **nominalen Merkmalen** ist 0, wenn die Werte gleich sind, sonst 1
 - \rightarrow d_{nominal} $(x,y) \in \{0,1\}$
- Der Abstand zwischen zwei Ausprägungen eines ordinalen Merkmals sollte proportional zur Anzahl der dazwischenliegenden Ränge sein
 - \rightarrow 0 \leq d_{ordinal}(x,y) \leq k-1 mit Anzahl k der verschiedenen Ausprägungen
- Bei metrischen Merkmalen ist der Abstand bereits inhärent als absolute Differenz definiert
 - \rightarrow d_{metric}(x,y) = |x-y| \in [0, ∞)
- Beobachtung: Sehr unterschiedliche Größenordnungen bei den Wertebereiche möglich!

Exkurs: Abstandsberechnung – Wertebereiche

Beispiel: Körpergröße und Gewicht eines Patienten

> Fall 1

> Körpergröße in cm: Werte zwischen 100 und 200

> Gewicht in **kg**: Werte zwischen 30 und 130

→ Ergibt vergleichbare Größenordnungen bei beiden Abstandswerten

> Fall 2

> Körpergröße in **m**: Werte zwischen 1 und 2

> Gewicht in **g**: Werte zwischen 30.000 und 130.000

→ Ergibt stark unterschiedliche Größenordnungen bei beiden Abstandswerten

→ Beobachtung: Größenordnungen hängen von den verwendeten Einheiten ab!

Exkurs: Abstandsberechnung – Skalierungseffekte

→ Unterschiedliche Ergebnisse in Abhängigkeit der Skalierung

→ Durch **Normalisierung** oder **Standardisierung** kann eine Vergleichbarkeit der Wertebereiche bei Abstandsberechnung erreicht werden!

Exkurs: Abstandsberechnung – Min-Max-Normalisierung

- Lineare Transformation der ursprünglichen Werte in einen vorgegebenen Bereich (meist das Einheitsintervall [0,1])
- > Es seien a und b die untere und obere Grenze des ursprünglichen Wertebereichs:

$$x^{new} = \frac{x - a}{b - a}$$

- > Verwendung von natürlichen Grenzen oder beobachtetes Minimum und Maximum
- > Achtung:
 - > Ausreißer verzerren der Ergebnis stark: Die meisten Objekte sind ähnlich!
 - > Zukünftige Werte können außerhalb der bekannten Grenzen liegen!

Exkurs: Abstandsberechnung – Standardisierung

Transformation der ursprünglichen Werte, so dass die neuen Werte Mittelwert 0 und Standardabweichung 1 haben:

$$x^{new} = \frac{x - \overline{x}}{S}$$

> Mit empirischem arithmetischen Mittelwert und empirischer Varianz:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$
 $s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$

Normalverteilte Merkmale sind danach standardnormalverteilt!

Exkurs: Abstandsberechnung – log-Normalisierung

- > Transformation der ursprünglichen Werte durch Logarithmierung
- > Meist Verwendung des natürlichen Logarithmus (Basis e)
- > Berücksichtigt relative Veränderungen (Größenordnung der Änderung)
- > Weitere Eigenschaft: Neuer Wertebereich ist positiv

		-	log						
0 20000 40000	60000 80000	100000	-	8	9	10	11	12	13
Laufleistung von Fahrzeugen			Logarithmierte Laufleistung						

X	X ^{neu}
10	2,3
100	4,6
1.000	6,9
10.000	9,2

Exkurs: Abstandsberechnung – Objektebene (1)

> **Ziel:** Quantifizierung des Abstands $d(\mathbf{x}, \mathbf{y})$ zwischen den Objekten \mathbf{x} und \mathbf{y} mit $\mathbf{x} = (x_1, ..., x_m)$ und $\mathbf{y} = (y_1, ..., y_m)$ mit m Merkmalswerten

- > Anforderungen an die Abstandsfunktion (Metrik) *d*:
 - Nicht-Negativität $d(\mathbf{x},\mathbf{y}) \ge 0$
 - Identität $d(\mathbf{x},\mathbf{x}) = 0$
 - Symmetrie $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
 - Dreiecksungleichung $d(\mathbf{x},\mathbf{y}) \le d(\mathbf{x},\mathbf{z}) + d(\mathbf{z},\mathbf{y})$

Exkurs: Abstandsberechnung – Objektebene (2)

> Aggregation der Abstände auf Merkmalsebene d_i zwischen den Objekten **x** und **y**

$$d(\mathbf{x}, \mathbf{y}) = \sqrt[p]{\sum_{i} d_{i}(x_{i}, y_{i})^{p}}$$

- > Typische Werte für den Parameter p
 - $-p = 1 \rightarrow$ Manhatten-Abstand (city block metric)
 - -p=2 \rightarrow Euklidischer Abstand
 - $-p = \infty$ → Maxium (Supremum) Norm

Exkurs: Abstandsberechnung – Zusammenfassung

- > Auswahl problemadäquate Abstandsfunktion oder Ähnlichkeitsfunktion
- > Viele Werkzeuge erwarten einheitliche Skalenniveaus (meist ausschließlich numerisch)
- > Anpassung Skalenniveaus
 - → Feature Encoding
- > Normalisierung oder Standardisierung zum Angleichen der Skalen
- > Entfernung irrelevanter und redundanter Merkmale verbessert die Abstandsberechnung
 - → Dimensionsreduktion

Feature Encoding – Repräsentation

Viele Lernverfahren oder Werkzeuge erwarten spezielle Format oder Skalenniveaus

Nominal zu metrisch

Achtung: Die einfache ganzzahlige Codierung ohne Berücksichtigung der Zusammenhänge ist sehr problematisch, wenn Entfernungen zwischen Objekten berechnet werden!

Stattdessen:

- One-Hot-Encoding (Dummy-Encoding):
 - → Ein binäres (0/1) Merkmal für jede Ausprägung
- Representation Learning, Feature Embeddings
- Metrisch zu nominal bzw. ordinal
 - Binning (Klassierung)
 - Zusammenfassung durch Aggregationsfunktionen

Farbe	rot	gelb	grün
rot	 1	0	0
gelb	0	1	0
grün	0	0	1

Dimensionsreduktion Feature Selection vs. Feature Engineering

- > Feature Selection
 - → Dimensionsreduktion durch Auswahl bestehender Merkmale
- > Feature Engineering
 - → Konstruktion neuer Merkmale
 - Geeignetere Repräsentation→ Feature Encoding
 - Erzeugung neuer Merkmale, die Zusammenhänge besser erfassen
 - Dimensionsreduktion→ Feature Extraction

Dimensionsreduktion durch Feature Selection

Dimensionsreduktion durch Feature Extraction

Warum Dimensionsreduktion?

- > Datenmatrix
 - ist weniger komplex
 - benötigt weniger Speicherplatz
 - benötigt weniger Rechenleistung für die Verarbeitung
- > Vermeidung des "Curse of Dimensionality"
 - Abstandsberechnungen in hochdimensionalen Räumen schwierig
 - Geringere Gefahr für Overfitting bei der Modellierung
- > Visualisierung der wichtigsten Zusammenhänge

Feature Selection (Merkmalsauswahl)

Ziel: Finde eine für das Analyseziel geeignete Teilmenge relevanter Merkmale

- > Filter-Ansätze
 - Entfernung von Merkmalen mit vielen fehlenden Werten
 - Entfernung redundanter Merkmale (doppelte Merkmale, Zusammenhang untereinander)
 - Selektiere die besten k Merkmale nach vorgegebenem Bewertungskriterium
 - → Bei überwachtem Lernen: Stärke des Zusammenhangs mit der Zielgröße!
- > Wrapper-Ansätze in Verbindung mit einem Lernverfahren
 - Schrittweises Entfernen (stepwise backward elimination)
 - Schrittweises Hinzufügen (stepwise forward selection)

Feature Selection: Beispiel redundante Merkmale

Scatter Matrix (Matrix aus Streudiagrammen) und Korrelationsmatrix

	weight_lbs		weigl	veight_kg		height_in	
weight_lbs		1.00		1.00		0.47	
weight_kg		1.00		1.00		0.47	
height_in	(0.47		0.47		1.00	

Feature Extraction - Dimensionsreduktion

Ziel: Bilde die gegebenen m Merkmale auf eine kleinere Anzahl an Merkmalen ab

- > **Beispiel:** Hauptachsentransformation Principal Component Analysis (PCA)
 - Zerlegt Eingaberaum in orthogonale Komponenten, die jeweils so viel Varianz wie möglich erklären
 - Dimensionsreduktion erfolgt durch Beschränkung auf die ersten k Komponenten (k < m)
- > Nachteile
 - Neue Darstellung schwierig zu interpretieren
 - Nur f
 ür lineare Zusammenh
 änge geeignet
 - Andere Verfahren für nicht-lineare Zusammenhänge

Data Preparation – Zusammenfassung

- Vorbereitung der Datenmatrix für die Modellierungsphase
- Gute Datenaufbereitung essentiell für das erfolgreiche Lernen aus Daten
- Erfordert Fach- und Analyseexpertise
- Sehr zeitaufwendiger, meist (noch) manueller Prozess
- Ausnahmen für spezielle Anwendungen wie etwa Bilderkennung
 - > Automatische Merkmalserzeugung möglich (Deep Learning bzw. Representation Learning)