Testset ES10FST 10/19/25, 12:26 PM

Testset ES10FST

These instances are the result of the following procedure. First there were files with random generated points in the plane on a 10,000,000 by 10,000,000 grid.

These points serve as terminals and were converted to rectalinear graphs with L1 edge weights, by building the Hanan grid (see $\underline{Han66}$).

Then these graphs were preprocessed with <u>GeoSteiner</u> a Software for computing Full-Steiner-Sets by <u>M. Zachariasen</u> and <u>D.M. Warme</u>. For a description of the Algorithm see <u>War97</u> and <u>WWZ00</u>.

The original point sets are from the <u>OR-Library</u> named ES10 to ES10000 corresponding to the number of points given.

Some results on solving the smaller instances without FST-preprocessing are published in <u>KM98</u>. Since there seems to be no reason why today someone should try to solve these instances without FST-preprocessing anymore we only list the preprocessed ones.

Here is an picture of *es250fst01* with solution:

Testset ES10FST 10/19/25, 12:26 PM

The files can be found in the <u>download</u> section.

Name	IVI	IEI	ITI	DC	Opt
es10fst01	18	20	10	?s	22920745
es10fst02	14	13	10	?s	19134104
es10fst03	17	20	10	?s	26003678
es10fst04	18	20	10	?s	20461116
es10fst05	12	11	10	?s	18818916

Testset ES10FST 10/19/25, 12:26 PM

es10fst06	17	20	10	?s	26540768
es10fst07	14	13	10	?s	26025072
es10fst08	21	28	10	?s	25056214
es10fst09	21	29	10	?s	22062355
es10fst10	18	21	10	?s	23936095
es10fst11	14	13	10	?s	22239535
es10fst12	13	12	10	?s	19626318
es10fst13	18	21	10	?s	19483914
es10fst14	24	32	10	?s	21856128
es10fst15	16	18	10	?s	18641924

The column **DC** classifies the difficulty of the instance.

L Solvable by usage of local preprocessing. Typical examples are the SD-Test, BD-n Tests and FST computations. Neither a global upper nor lower bound needs to be computed.

P Solvable by polynomial time algorithms, like dual ascent in combination with primal heuristic, a integral LP formulation or advanced preprocessing like reduced cost criteria or the RCR-Test.

NP

No polynomial time algorithm is known. Use of an exponential time enumeration sceme like Branchand-Bound is neccessary.

The letter after class gives an impression how long it takes to solve the problem using state-of-the-art soft-and hardware. secounds means less than a minute (this includes instances which can be solved in fractions of a second). minutes means less than an hour. hours is less than a day and days is less than a week. weeks mean it takes really a long time to solve this instance.? means the instance is not solved or the time is not known.

If the number in the **Opt** column is written in *italics* the optimum is not known. The number given is the best know upper bound.

Last Update: 2015/02/11 11:57:20 \$ by Thorsten Koch

© 2001 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

URL: http://www.zib.de