Project Report: Diabetes Dataset Analysis & Prediction

1. Dataset Overview

Records: 768Variables: 9

• Data Types: 7 int, 2 float

Nulls: NoneDuplicates: None

• Memory Usage: ~54 KB

2. Variable-Level Summary

Variable	Range (Min–Max)	Mean ± Std	Notes on Distribution	Outliers
Pregnancies	0 – 17	3.85 ± 3.37	Right-skewed; spread almost as wide as mean	High (≥12– 17)
Glucose	0 – 199	120.9 ± 32.0	Reasonable spread; skewed right	Low (0), High (>180)
BloodPressure	0 – 122	69.1 ± 19.4	Wide spread; implausible 0 values	Low (0), High (>110)
SkinThickness	0 – 99	20.5 ± 16.0	Many zeros (Q1=0); right- skewed	High (>70)
Insulin	0 – 846	79.8 ± 115.2	Extremely skewed; many zeros	High (>300)
ВМІ	0 – 67.1	32.0 ± 7.9	Typical BMI spread; invalid zeros present	Low (0), High (>50)
DiabetesPedigreeFunction	0.078 – 2.42	0.47 ± 0.33	Right-skewed; large variability	High (>2.0)
Age	21 – 81	33.2 ± 11.8	Spread across adults; skewed younger	High (>70)
Outcome	0 – 1	0.35 ± 0.48	Binary variable; ~35% positive cases	None

3. Issues Identified

1. Hidden Missing Data (Fake Zeros) in BloodPressure, SkinThickness, Insulin, and BMI.

- 2. **Outliers** in Pregnancies (≥12), Insulin (>300), and Age (>70).
- 3. **Skewed Distributions** in Insulin, Pedigree Function, Pregnancies, and Age.
- 4. **Biological Implausibility**: BP = 0, BMI = 0, SkinThickness = $0 \rightarrow \text{invalid}$.

4. Exploratory Analysis & Key Findings

4.1 Outcome Frequency

• 500 non-diabetic vs 268 diabetic patients → class imbalance.

4.2 Glucose by Outcome

• Diabetics have **higher glucose**, median >126 mg/dL.

4.3 Missing Insulin vs Diabetes

• Similar diabetes prevalence across missing vs measured insulin.

Diabetes Rate in Patients with Measured vs Missing Insulin

Insulin Measurement Status

4.4 Joint Glucose & BMI

• **High-risk cluster** = high glucose + high BMI.

Joint Distribution of Glucose and BMI by Diabetes Outcome

4.5 BMI vs Age

• Diabetics consistently have **higher BMI across all ages**.

4.6 Blood Pressure (Excluding Zeros)

• Slightly higher BP in diabetics; distributions overlap.

4.7 Pedigree Function

• Higher values in diabetics → stronger genetic predisposition.

Diabetes Pedigree Function by Outcome (Violin = Density, Black Line = IQR & Median)

4.8 Correlations

- **Top predictors**: Glucose (0.467), BMI (0.293), Age (0.238), Pregnancies (0.222), Pedigree (0.174).
- Insulin & SkinThickness weak predictors.

5. Modeling Approach

5.1 Preprocessing

- RobustScaler used for feature scaling.
- **SMOTE** applied to balance classes (500 diabetic samples).
- Train/Test Split: 90/10, stratified.

5.2 Baseline Model Comparison (Before vs After SMOTE)

Model	Test Acc. (Before)	Test Acc. (After)
Logistic Reg.	0.764	0.755
Random Forest	0.759	0.821
SVM	0.772	0.794

Model	Test Acc. (Before)	Test Acc. (After)
Linear SVM	0.766	0.755
KNN	0.747	0.786
CART	0.719	0.774
ExtraTree	0.686	0.749

SMOTE improved performance across most models.

5.3 Hyperparameter Tuning

• Random Forest (Best Model)

• Test Accuracy: 0.86

• Test AUC: 0.90

• No overfitting → excellent generalization.

SVM

- Test Accuracy: 0.84
- Test AUC: 0.87
- Slight overfitting (train acc. 0.90).

☑ Best Choice: Random Forest

- Robust, stable, and generalizes well.
- Saved as Random Forest Classifier.pkl.

6. Deployment

A **Streamlit web app** was developed for real-time prediction.

Features:

- User inputs (Pregnancies, Glucose, BP, BMI, etc.).
- Model predicts **Diabetes Positive / Negative** with probability.
- Simple and interactive interface.

7. Summary & Conclusion

- **Glucose** = strongest predictor of diabetes.
- BMI, Age, and Genetics contribute significantly.
- **Random Forest** is the best performing model (86% accuracy, AUC 0.90).
- Class imbalance addressed via SMOTE.
- Deployed via Streamlit App for practical use.

8. Next Steps

- Further improve missing value imputation.
- Try ensemble methods (XGBoost, LightGBM).
- Deploy app on **Streamlit Cloud / Heroku**.
- Integrate with medical record systems.