Additional Topics

- Residual analysis: Regression and logistic regression
- Weighted least squares
- Mixed models: Regression and logistic regression
- Multinomial models
- Shrinkage and regularization methods
- Dealing with multiple testing

Residual analysis: Linear regression

Standardized/studentized residuals:

$$r_i = \frac{\hat{\epsilon}_i}{\hat{\sigma}\sqrt{1 - h_i}}$$

Here h_i is the leverage associated to the \emph{i} -th observation and defined as

$$h_i = H_{i,i}, \quad H = X'(X'X)^{-1}X'$$

With H the "hat" matrix. The leverage is a useful diagnostic tool to determine extreme values and influential observations. Large leverages reduce the variance of \hat{e}_i , forcing the fit to be "close" to y_i . Rule of thumb: Leverages above 2p/n indicate potential influential observations/outliers

To obtain the studentized residuals in R:

```
>a=summary(Model)
>a_inf=influence(Model)
>stud=residuals(Model)/(a$sig*sqrt(1-a_inf$hat))
```

This is equivalent to:

```
>stud=rstandard(Model)
```

 Jacknife residuals (externally studentized or cross-validated residuals):

$$t_i = \frac{y_i - \hat{y}_{(i)}}{\hat{\sigma}_{(i)}(1 + x_i'(X_{(i)}'X_{(i)}))^{-1}x_i)^{1/2}}$$

Here the (i) notation refers to estimates obtained from a model that has the same predictors as the original model but excludes the i-th observation. They can also be written as:

$$t_i = r_i \left(\frac{n-p-1}{n-p-r_i^2}\right)^{1/2}$$

To obtain these residuals in R:

>jack=rstudent(Model)

Residual analysis: Logistic regression

Pearson residuals:

$$\frac{y_i - \hat{\theta}_i}{\sqrt{\hat{\theta}_i (1 - \hat{\theta}_i)/n_i}}$$

• Standardized residuals (also called "studentized residuals", "studentized Pearson"...):

$$r_i = \frac{y_i - \hat{\theta}_i}{\sqrt{1 - h_i}}$$

- Deviance residuals and standardized deviance residuals
- Jacknife residuals also available

To obtain the logistic regression residuals in R you can use the function residuals and rstandard:

```
>residuals(Model,type="pearson")
>residuals(Model,type="deviance")
```

For standardized versions of the Pearson and Deviance residuals you can use the function rstandard

Jacknife versions of the residuals are available using the function rstudent

Generalized Least Squares

Linear regression models assume $\epsilon \sim N(0, \sigma^2 I)$ or equivalently, $\epsilon_i \sim^{iid} N(0, \sigma^2)$ for all i. This assumption does not always hold.

We can instead assume that $\epsilon \sim N(0, \sigma^2 \Sigma)$ with Σ diagonal (i.e., errors uncorrelated but unequal variances). In this situation we can use generalized least squares which leads to:

$$\hat{\beta}_{GLS} = (X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}y$$

$$\hat{\sigma}_{GLS}^2 = (y - X\hat{\beta}_{GLS})'\Sigma^{-1}(y - X\hat{\beta}_{GLS})/(n - p)$$

This can be done in R by specifying the weights in the lm function:

$$\Sigma = \operatorname{diag}(1/w_1, ..., 1/w_n)$$

- Errors proportional to a predictor: $w_i = x_{j,i}^{-1}$, for example: >model=lm(y ~x1 + x2 + x3, weights=1/x1)
- When y_i are averages of n_i observations $var(\epsilon_i) = \sigma^2/n_i$, and so $w_i = n_i$

Note that: When using weights the residuals must be modified too so use $\sqrt{w_i}\hat{e}_t$ for diagnostics

Mixed Models: Fixed and random effects

• **Linear models:** The function 1mer from the 1me4 R library allows us to fit mixed effects models.

Lets revisit the the exam scores example:

Fixed effects models:

$$y_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad \epsilon_{i,j} \sim N(0,\sigma^2)$$
 EXAM STUDENT EFFECT (FIXED) (FIXED)

>Model_Fixed=lm(score ~ exam + student, data=scor.long)

```
>Model Fixed=lm(score ~ exam + student, data=scor.long)
>summary(Model Fixed)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 67.927
                      4.792 \quad 14.174 < 2e-16 ***
                      1.580 7.365 1.30e-12 ***
examvec 11.636
                      1.580 7.372 1.24e-12 ***
examalq 11.648
                      1.580 4.891 1.54e-06 ***
          7.727
examana
examsta 3.352
                      1.580 2.122 0.034570 *
-0.400
                      6.628
                             -0.060 \ 0.951915
student3 -1.600 6.628
                             -0.241 0.809401
Residual standard error: 10.48 on 348 degrees of freedom
Multiple R-squared: 0.6389, Adjusted R-squared: 0.5445
F-statistic: 6.766 on 91 and 348 DF, p-value: < 2.2e-16
```

> anova(Model_Fixed)
Analysis of Variance Table

```
Response: score

Df Sum Sq Mean Sq F value Pr(>F)

exam 4 9315 2328.72 21.201 1.163e-15 ***

student 87 58313 670.26 6.102 < 2.2e-16 ***

Residuals 348 38225 109.84
```

• Mixed effects: (Fixed: Exam) + (Random: students)

$$y_{i,j} = \mu + \alpha_i + \beta_j + \epsilon_{i,j}, \quad \epsilon_{i,j} \sim N(0, \sigma^2)$$
$$\beta_j \sim N(0, \tau^2)$$

```
>Model Mixed=lmer(score ~ exam + (1 | student), data=scor.long)
>summary(Model Mixed)
REML criterion at convergence: 3458.3
Random effects:
Groups Name Variance Std.Dev.
student (Intercept) 112.1 10.59
Residual
                  109.8 10.48
Number of obs: 440, groups: student, 88
Fixed effects:
          Estimate Std. Error t value
(Intercept) 38.955 1.588 24.530
examvec 11.636 1.580 7.365
examalg 11.648 1.580 7.372
                      1.580 4.891
         7.727
examana
       3.352
                      1.580 2.122
examsta
```

```
>anova(Model Mixed)
Analysis of Variance Table
     npar Sum Sq Mean Sq F value
        4 9314.9 2328.7 21.201
exam
>ranef(Model Mixed)
$student
    (Intercept)
  24.22469559
2 23.89024732
 22.88690254
>coef(Model Mixed)
$student
   (Intercept) examvec examalg examana examsta
     63.17924 11.63636 11.64773 7.727273 3.352273
     62.84479 11.63636 11.64773 7.727273 3.352273
     61.84145 11.63636 11.64773 7.727273 3.352273
```

 Note that fixed effects in mixed effects model correspond to fixed effects in the following model:

```
>Model Fixed 1=lm(score ~ exam, data=scor.long)
>summary(Model Fixed 1)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                       1.588 24.530 < 2e-16 ***
(Intercept) 38.955
examvec 11.636 2.246 5.181 3.38e-07 ***
examalg 11.648 2.246 5.186 3.29e-07 ***
examana 7.727 2.246 3.441 0.000636 ***
examsta 3.352
                       2.246 1.493 0.136251
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.9 on 435 degrees of freedom
Multiple R-squared: 0.088, Adjusted R-squared: 0.07961
F-statistic: 10.49 on 4 and 435 DF, p-value: 4.009e-08
```