Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

58345 draft claims for national stage applications.

1. (Original) A compound capable of binding a metal ion, the compound according to the formula:

$$\begin{array}{c|c} R_C & (CR_AR_B)_n & R_C \\ N & N & R_C \\ & (CR_AR_B)_n & (CR_AR_B)_n \\ SH & HS & \end{array}$$

wherein:

R_A is independently chosen at each occurrence of R_A from the group consisting of hydrogen, lower alkyl having 1 to about 4 carbon atoms, alkyl ester groups having about 2 to about 8 carbon atoms, aryl ester groups having about 7 to about 18 carbon atoms, alkyl amide groups having about 2 to about 8 carbon atoms, aryl amide groups having about 7 to about 18 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

 $R_{\rm B}$ is hydrogen or a lower alkyl group having from 1 to about 6 carbon atoms for each occurrence of $R_{\rm B}$; or

-(CR_AR_B)- taken in combination is -(C=O)- such that there are zero or one -(C=O)-groups;

R_C is independently selected at each occurrence of R_C from the group consisting of hydrogen, lower alkyl groups having 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, alkyl ester or aryl ester groups having about 2 to about 8 carbon

atoms, alkyl amide or aryl amide groups having about 2 to 8 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain; and

 R_1 and R_2 each are independently selected unsubstituted alkyl groups having from 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, and substituted alkyl or alkoxyalkyl groups having from 1 to about 8 carbon atoms which are substituted with one or more groups selected from optionally substituted aryl, optionally substituted cycloalkyl, optionally substituted heteroalicyclic, and optionally substituted heteroaryl, wherein at least one of R_1 or R_2 is a substituted alkyl or alkyloxy group;

n is either 2 or 3 and is independently chosen at each occurrence of n; and at least one occurrence of R_A or R_C in Formula I is chosen to be -XNR₁R₂, where the metal complex resulting from the binding of the compound to the metal ion is either neutral or cationic.

- 2-4. (Cancelled).
- 5. (Original) A compound capable of binding a metal ion, the compound according to the formula:

$$A-N$$
 $(B)_k$

wherein

A is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted eycloalkyl, optionally substituted heteroalicyclic, optionally substituted heteroaralkyl, optionally substituted heteroaryl, and -X-Y;

B is independently selected at each occurrence of B from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, optionally substituted alkoxy, halogen, hydroxy, optionally substituted alkoxyalkyl, optionally substituted amino, optionally substituted mono and dialkyl amino, optionally substituted aryl, optionally substituted cycloalkyl, optionally substituted heteroaryl, and -X-Y;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain;

k is an integer from about 1 to about 3; and
Y is a group capable of chelating to at least one metal ion,
wherein at least one of A or B is chosen to be -X-Y.

6-10. (Cancelled).

11. (Original) The compound of claim 5, wherein Y is a group of the formula:

wherein:

R_A is independently chosen at each occurrence of R_A from the group consisting of hydrogen, lower alkyl having 1 to about 4 carbon atoms, alkyl ester groups having about 2 to about 8 carbon atoms, aryl ester groups having about 7 to about 18 carbon atoms, alkyl amide groups having about 2 to about 8 carbon atoms, aryl amide groups having about 7 to about 18 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 6 of 22

 $R_{\rm B}$ is hydrogen or lower alkyl having from about 1 to about 6 carbon atoms for each occurrence of $R_{\rm B}$; or

-(CR_AR_B)- taken in combination is -(C=O)- such that there are zero or one -(C=O)-groups;

 R_C is selected from the group consisting of hydrogen, lower alkyl groups having 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, alkyl ester or aryl ester groups having about 2 to about 8 carbon atoms, alkyl amide or aryl amide groups having about 2 to 8 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain; and

R₁ and R₂ each are independently selected unsubstituted alkyl groups having from 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, and substituted alkyl or alkoxyalkyl groups having from 1 to about 8 carbon atoms which are substituted with one or more groups selected from optionally substituted aryl, optionally substituted cycloalkyl, optionally substituted heteroalicyclic, optionally substituted heteroaryl;

n is either 2 or 3 and is independently chosen at each occurrence of n.

12. (Original) The compound of claim 11, wherein the group Y is selected from groups according to the formula:

wherein

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 7 of 22

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aralkyl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

E represents an oxo group or two hydrogen atoms.

13. (Original) The compound of claim 5, wherein X is selected from the group consisting of $-(CH_2)_m$ -C(O)NH- and α,ω -alkylene groups wherein the alkylene group has between about 1 and about 10 carbon atoms and between 0 and about 3 oxygen or sulfur atoms in the alkylene chain;

m is an integer of from about 1 to about 5.

14-15. (Cancelled).

16. (Currently Amended) A compound eapable of binding a metal ion, the compound according to the formula:

$$R_{C}$$
 N
 N
 X
 K_{A}
 K_{B}
 K_{A}
 K_{A}
 K_{B}
 K_{A}
 K_{A}

wherein:

B is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, optionally substituted alkoxy, optionally substituted alkoxyalkyl, optionally substituted amino, optionally substituted mono and dialkyl amino, halogen, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroarilyl, optionally substituted heteroarilyl, optionally substituted heteroarilyl, optionally substituted heteroaryl, and -X-Y;

R₄ is hydrogen, hydroxy, halogen, optionally substituted alkyl groups having from 1 to about 6 carbon atoms, optionally substituted alkoxy groups having from 1 to about 6 carbon atoms, or

R₄ and B taken in combination form an optionally substituted heterocyclic group having 5 or 12 ring atoms and one or two N, O, or S atoms and 1 or 2 fused rings;

R_A is independently chosen at each occurrence of R_A from the group consisting of hydrogen, lower alkyl having 1 to about 4 carbon atoms, alkyl ester groups having about 2 to about 8 carbon atoms, aryl ester groups having about 7 to about 18 carbon atoms, alkyl amide groups having about 2 to about 8 carbon atoms, aryl amide groups having about 7 to about 18 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

 R_{B} is hydrogen or lower alkyl having from 1 to about 4 carbon atoms for each occurrence of R_{B} ; or

-(CR_AR_B)- taken in combination is -(C=O)- such that there are zero or one -(C=O)-groups;

R_C is selected from the group consisting of hydrogen, lower alkyl groups having 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, alkyl ester or aryl ester groups having about 2 to about 8 carbon atoms, alkyl amide or aryl amide groups having about 2 to 8 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

Y is a group capable of chelating to at least one metal ion;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain;

R₁ and R₂ each are independently selected unsubstituted alkyl groups having from 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, and substituted alkyl or alkoxyalkyl groups having from 1 to about 8 carbon atoms which are substituted with one or more groups selected from optionally substituted aryl, optionally substituted cycloalkyl, optionally substituted heteroalicyclic, and optionally substituted heteroaryl; and

n is either 2 or 3 and is independently chosen at each occurrence of n.

17. (Original) The compound of claim 16, the compound according to the formula:

wherein:

B is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, optionally substituted alkoxy, optionally substituted alkoxyalkyl, optionally substituted amino, optionally substituted mono and dialkyl amino, halogen, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroarilyl, optionally substituted heteroarilyl, optionally substituted heteroaryl, and -X-Y;

Y is a group capable of chelating to at least one metal ion;

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aralkyl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

E represents an oxo group or two hydrogen atoms; and

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain.

18. (Original) A compound capable of binding a metal ion, the compound according to the formula:

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 10 of 22

wherein:

R_D is independently selected at each occurrence from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, amino, halogen, cyano, nitro, optionally substituted alkoxy, optionally substituted alkoxyalkyl, optionally substituted mono and dialkyl amino, optionally substituted aryl, optionally substituted heteroalicyclic groups;

R₄ is hydrogen, hydroxy, halogen, optionally substituted alkyl groups having from 1 to about 6 carbon atoms, optionally substituted alkoxy groups having from 1 to about 6 carbon atoms, or

Z₁ and Z₂ are independently selected from CH, CR_D, and N;

p is selected from integers between about 0 and about 5;

q is selected from integers between about 0 and about 10;

R_A is independently chosen at each occurrence of R_A from the group consisting of hydrogen, lower alkyl having 1 to about 4 carbon atoms, alkyl ester groups having about 2 to about 8 carbon atoms, aryl ester groups having about 7 to about 18 carbon atoms, alkyl amide groups having about 2 to about 8 carbon atoms, aryl amide groups having about 7 to about 18 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

 R_{B} is hydrogen or lower alkyl having from about 1 to about 4 carbon atoms for each occurrence of R_{B} ; or

-(CR_AR_B)- taken in combination is -(C=O)- such that there are zero or one -(C=O)-groups;

R_C is selected from the group consisting of hydrogen, lower alkyl groups having 1 to about 8 carbon atoms, alkoxyalkyl groups having from 2 to 8 carbon atoms, alkyl ester or aryl ester groups having about 2 to about 8 carbon atoms, alkyl amide or aryl amide groups having

about 2 to 8 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

Y is a group capable of chelating to at least one metal ion;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain;

 R_1 and R_2 each are independently selected unsubstituted alkyl groups having from 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, and substituted alkyl or alkoxyalkyl groups having from 1 to about 8 carbon atoms which are substituted with one or more groups selected from optionally substituted aryl, optionally substituted cycloalkyl, optionally substituted heteroalicyclic, and optionally substituted heteroaryl; and

n is either 2 or 3 and is independently chosen at each occurrence of n.

19. (Original) The compound of claim 18, the compound according to the formula:

wherein:

R_D is independently selected at each occurrence from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, amino, halogen, cyano, nitro, optionally substituted alkoxy, optionally substituted alkoxyalkyl, optionally substituted mono and dialkyl amino, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, and optionally substituted heteroalicyclic groups;

 Z_1 and Z_2 are independently selected from CH, CR_D, and N; p is selected from integers between about 0 and about 5; q is selected from integers between about 0 and about 10;

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 12 of 22

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

E represents an oxo group or two hydrogen atoms; and

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain.

20. (Original) A compound capable of binding a metal ion, the compound according to the formula:

wherein:

A is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroalicyclic, optionally substituted heteroaralkyl, optionally substituted heteroaryl, and -X-Y;

R_A is independently chosen at each occurrence of R_A from the group consisting of hydrogen, lower alkyl having 1 to about 4 carbon atoms, alkyl ester groups having about 2 to about 8 carbon atoms, aryl ester groups having about 7 to about 18 carbon atoms, alkyl amide groups having about 2 to about 8 carbon atoms, aryl amide groups having about 7 to about 18 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

 R_{B} is hydrogen or lower alkyl having from about 1 to about 4 carbon atoms for each occurrence of R_{B} ; or

-(CR_AR_B)- taken in combination is -(C=O)- such that there are zero or one -(C=O)-groups;

R_C is selected from the group consisting of hydrogen, lower alkyl groups having 1 to about 8 carbon atoms, alkoxyalkyl groups having from 2 to 8 carbon atoms, alkyl ester or aryl ester groups having about 2 to about 8 carbon atoms, alkyl amide or aryl amide groups having about 2 to 8 carbon atoms, di(alkyl)aminoalkyl groups where each alkyl group has 1 to about 4 carbon atoms, and -XNR₁R₂;

Y is a group capable of chelating to at least one metal ion;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain;

R₁ and R₂ each are independently selected unsubstituted alkyl groups having from 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, and substituted alkyl or alkoxyalkyl groups having from 1 to about 8 carbon atoms which are substituted with one or more groups selected from optionally substituted aryl, optionally substituted cycloalkyl, optionally substituted heteroalicyclic, and optionally substituted heteroaryl; and

n is either 2 or 3 and is independently chosen at each occurrence of n.

21. (Original) The compound of claim 20, the compound according to the formula:

wherein:

A is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 14 of 22

substituted aralkyl, optionally substituted cycloalkyl, optionally substituted heteroalicyclic, optionally substituted heteroaralkyl, optionally substituted heteroaryl, and -X-Y;

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

E represents an oxo group or two hydrogen atoms; and X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain.

22-23. (Cancelled).

24. (Currently Amended) A neutral or cationic complex comprising a metal ion and a compound according to any one of claims 1 through according to the formula:

$$A-N$$
 $(B)_k$

wherein

A is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aryl, optionally substituted heteroalicyclic, optionally substituted heteroaralkyl, optionally substituted heteroaryl, and -X-Y;

B is independently selected at each occurrence of B from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, optionally substituted alkoxy, halogen, hydroxy, optionally substituted alkoxyalkyl, optionally substituted amino, optionally substituted mono and dialkyl amino, optionally substituted aryl, optionally substituted aralkyl, optionally substituted cycloalkyl, optionally

<u>substituted heteroalicyclic</u>, <u>optionally substituted heteroaralkyl</u>, <u>optionally substituted heteroaryl</u>, <u>and -X-Y</u>;

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain;

k is an integer from about 1 to about 3; and
Y is a group capable of chelating to at least one metal ion,
wherein at least one of A or B is chosen to be -X-Y.

25-28. (Cancelled).

29. (Original) The complex of claim 24, wherein the complex is of the formula:

wherein

M is one or more isotopes of technetium or rhenium;

B is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, optionally substituted alkoxy, optionally substituted alkoxyalkyl, optionally substituted amino, optionally substituted mono and dialkyl amino, halogen, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaralkyl, optionally substituted heteroaralkyl, optionally substituted heteroaryl, and -X-Y;

R₄ is hydrogen, hydroxy, halogen, optionally substituted alkyl groups having from 1 to about 6 carbon atoms, optionally substituted alkoxy groups having from 1 to about 6 carbon atoms, or

R₄ and B taken in combination form an optionally substituted heterocyclic group having 5 or 12 ring atoms and one or two N, O, or S atoms and 1 or 2 fused rings;

Y is a group capable of chelating to at least one metal ion;

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aralkyl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

E represents an oxo group or two hydrogen atoms; and

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain.

30. (Currently Amended) A complex of elaim 24claim 29, wherein the complex is of the formula:

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein:

M is one or more isotopes of technetium or rhenium;

R_D is independently selected at each occurrence from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, hydroxy, amino, halogen, cyano, nitro, optionally substituted alkoxy, optionally substituted alkoxyalkyl, optionally substituted mono and dialkyl amino, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted cycloalkyl, and optionally substituted heteroalicyclic groups;

R₄ is hydrogen, hydroxy, halogen, optionally substituted alkyl groups having from 1 to about 6 carbon atoms, optionally substituted alkoxy groups having from 1 to about 6 carbon atoms;

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 17 of 22

 Z_1 and Z_2 are independently selected from CH, CR_D , and N;

p is selected from integers between about 0 and about 5;

q is selected from integers between about 0 and about 10;

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

E represents an oxo group or two hydrogen atoms; and

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain .

31. (Currently Amended) A complex of elaim 24claim 29, wherein the complex is of the formula:

wherein:

M is one or more isotopes of technetium or rhenium;

A is selected from the group consisting of optionally substituted alkyl, optionally substituted alkenyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroalicyclic, optionally substituted heteroaralkyl, optionally substituted heteroaryl, and -X-Y;

R is selected from hydrogen, $C(O)O(R_3)$, or $C(O)NH(R_3)$;

R₃ represents hydrogen, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted aryl, optionally substituted aralkyl, and optionally substituted cycloalkyl;

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 18 of 22

E represents an oxo group or two hydrogen atoms; and

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain.

32. (Currently Amended) The complex of any one of claims 24 through 31 claim 24, wherein the metal ion is radiolabelled or radioactive.

33-35. (Cancelled).

36. (Currently Amended) A method for in-vivo or in-vitro imaging of at least one tumor comprising the steps of:

providing a radiolabled complex comprising a compound of any one of claims 1-23 and a metal ion or a metal complex of any one of claims 24 through 3529 through 31, wherein;

contacting the tumor(s) with the radiolabeled metal complex; and making a radioagraphic image to visualize the tumor(s).

37-39. (Cancelled).

- 40. (Original) The method of claim 36, wherein the tumor(s) are neoplasm(s).
- 41. (Original) The method of claim 36, wherein the tumor(s) are carcinoma(s).
- 42. (Original) The method of claim 36, wherein the tumor(s) are melanoma(s).
- 43. (Original) The method of claim 36, wherein the tumor(s) are prostate carcinoma, breast carcinoma, lung carcinoma, renal carcinoma, colon carcinoma, glioblastoma, neuroblastoma, sarcoma, or a combination thereof.

44-45. (Cancelled).

46. (Currently Amended) A method for in-vivo or in-vitro imaging of at least one tissue expressing one or more proteins or receptors for which radiolabeled complexes have affinity, the method comprising the steps of:

providing a radiolabeled complex comprising a compound of any one of claims 1 through 23 and a metal ion or a metal complex of any one of claims 24 through 33 claim 24;

contacting the tissue(s) expressing the receptors with the radiolabeled metal complex; and making a radiographic image to visualize the tissue(s).

- 47. (Original) The method of claim 46, wherein the proteins or receptors selected from serotonin receptors, adrenergic receptors, adrenoceptors receptors, dopamine receptors, sigma receptors, emopamil binding proteins, calcium channel receptors, or any subtype or subclass thereof.
- 48. (Original) The method of claim 46, wherein the protein or receptor expressed by the tissue to be imaged are selected from $5HT_{1A}$, σ_1 , σ_2 , α_1 , Ca+2 channel receptors, EBP or a combination thereof.
 - 49-53. (Cancelled).
- 54. (Currently Amended) A method for the treatment of cancer comprising the steps of:

providing a cytotoxic metal complex comprising a metal ion and a compound of any one of claims 1-23 or a metal complex according to claim 24 any one of claims 24-33; and contacting the tumor(s) with the cytotoxic metal complex.

- 55-62. (Cancelled).
- 63. (Currently Amended) A method of inhibiting a protein or receptor comprising the steps of:

providing a metal complex comprising a metal ion and a compound of any one of claims 1-23 or a metal complex-according to claim 24 any one of claims 24-35; and contacting the tumor(s) with the metal complex.

- 64. (Original) The method of claim 63, the protein or receptor are selected from serotonin receptors, adrenergic receptors, adrenoceptors receptors, dopamine receptors, sigma receptors, emopamil binding proteins, calcium channel receptors, or any subtype or subclass thereof.
- 65. (Original) The method of claim 63, wherein the neuroreceptor(s) are selected from $5HT_{1A}$, σ_1 , σ_2 , α_1 , Ca^{2+} channel receptors, EBP or a combination thereof.

66-68. (Cancelled).

69. A compound capable of binding a metal ion, the compound according to the formula:

wherein

X is a linking group comprising a backbone chain having 1 to about 8 atoms, the backbone chain can optionally include ester, amide, ether or thioether linkages in the backbone chain; and

R₁ and R₂ each are independently selected unsubstituted alkyl groups having from 1 to about 8 carbon atoms, alkoxyalkyl group having from 2 to about 8 carbon atoms, and substituted alkyl or alkoxyalkyl groups having from 1 to about 8 carbon atoms which are substituted with one or more groups selected from optionally substituted aryl, optionally substituted cycloalkyl,

A. Mahmood, et. al U.S.S.N. Not yet assigned (§371 of PCT/US03/35618)) Page 21 of 22

optionally substituted heteroalicyclic, and optionally substituted heteroaryl, wherein at least one of R_1 or R_2 is a substituted alkyl or alkyloxy group;

R is selected from hydrogen, $C(O)O(R_3),\, or \, C(O)NH(R_3);\, and$

E represents an oxo group or two hydrogen atoms.