1. Soit la suite définie par

$$u0 = 2$$
; $u_{n+1} = u_n^2 / 2 + 1$

Calculer u₀, u₁, u₂, u₃ et u₄. Quel semble être le sens de variation de cette suite?

$$U_0 = 2$$

$$U_1 = u_0^2/2 + 1 = 2^2/2 + 1 = 3$$

$$U_2 = u_1^2/2 + 1 = 3^2/2 + 1 = 11/2 > 5$$

$$U_3 = u_2^2/2 + 1 = 11^2/22 + 1 = 129/8 > 15$$

$$U_4 = u_3^2/2 + 1 = 129^2 / (8^2 \times 2) + 1 = 16641/128 + 1 = 16769 / 128 > 131$$

La suite u n semble donc être croissante.

2. Etudier le sens de variation de la fonction $f(x) = \frac{1}{2}x^2 + 1$ sur $[0; +\infty[$

La fonction f(x) est la somme d'une fonction $1/2 \, x^2$ qui est strictement croissante dans l'intervalle

[0; + ∞ [et d'une fonction constante. Elle est donc strictement croissante pour tout x > 0.

En posant $x = u_n$, il vient $f(u_n) = \frac{1}{2}u_n^2 + 1 = u_{n+1}$ et de même $f(u_{n-1}) = \frac{1}{2}u_{n-1}^2 + 1 = u_n$

La fonction f(x) étant croissante, on peut écrire :

Si $u_n > u_{n-1}$, alors $f(u_n) > f(u_{n-1})$

Si $u_n > u_{n-1}$, alors $u_{n+1} > u_n$

Comme la suite est définie par u 0 = 2 et u 1 = 3 > u0, on en déduit par récurrence que u $_{n+1} > u$ $_n$ pour tout n.

La suite u n est donc croissante.

ATTENTION:

Soit

Montrer que f(x) est une fonction croissante ne suffit pas à démontrer que u_n étant définie par $u_{n+1} = f(u_n)$, alors u_n est une suite croissante

Suite définie par u0 = 4, $u_{n+1} = \sqrt{u_n}$

La fonction $\forall x$ est une fonction croissante. Mais la suite u_n est décroissante.

2. Calculer et étudier le signe de u n+1 - u n

$$u_{n+1} - u_n = u_n^2 / 2 - u_n + 1 = \frac{1}{2} [(u_n - 1)^2 + 1] > 0$$
 pour tout u_n .

On a donc pour tout n, $u_{n+1} > u_{n}$.

La suite u n est donc croissante.