Adaptive data-driven optimal weighting

Guillermo Durand

PhD under the supervision of E. Roquain and P. Neuvial LPMA, Université Pierre et Marie Curie, France

Table of contents

- 1. Introduction
- 2. Background
- 3. New procedures
- 4. Results
- 5. Simulations

Table of contents

- 1. Introduction
- 2. Background
- New procedures
- 4. Results
- Simulations

Motivation

Grouped hypotheses

Context

Test hypotheses that have a group structure

Example:

▶ fMRI studies. 1 voxel = 1 p-value. Different groups in the brain where they have different distribution.

4 / 33

The well-known BH procedure

- ▶ Sort p-values : $p_{(1)} \le \cdots \le p_{(m)}$
- ▶ Let $\hat{k} := \max\{k : p_{(k)} \leq \alpha k/m\}$
- Reject all $p_i \leq \alpha \frac{\hat{k}}{m}$
- ▶ FDR control at level $\pi_0 \alpha$ when wPRDS

 $\mathsf{FDR}(R) = \mathbb{E}\left[\mathsf{FDP}(R)\right]$ and $\mathsf{FDP} = \frac{|R \cap \mathcal{H}_0|}{|R|}$ with \mathcal{H}_0 the true nulls.

The well-known BH procedure

Deal with groups Weighting

- ▶ By weighting the type I error rate [Benjamini and Hochberg (1997)]
- By weighting the p-values :
 - ► For FWER control [Holm (1979)]
 - ► For FDR control [Genovese et al. (2006)], [Blanchard and Roquain (2008)], [Hu et al. (2010)], [Zhao and Zhang (2014)], [Ignatiadis et al. (2016)]
- ► Search for optimal power [Roquain and Van De Wiel (2009)]

G. Durand (LPMA) ADDOW Introduction 7 / 33

An example of weighted BH

▶ Weights can increase detections ⇒ increase power ?

In this talk

- ► A generalization of IHW [Ignatiadis et al. (2016)]
- Asymptotic FDR control and power optimality
- ► Also a stabilization variant (if I have time)
- Numerical illustrations

Table of contents

- 1. Introduction
- 2. Background
- 3. New procedures
- 4. Results
- 5. Simulations

Back to BH

- ▶ Order p-values : $p_{(1)} \le \cdots \le p_{(m)}$
- ▶ Let $\hat{k} = \max\{k : p_{(k)} \le \alpha k/m\}$
- Reject all $p_i \leq \alpha \frac{\hat{k}}{m}$

Useful other formulation

$$rac{\hat{k}}{m}:=\max\left\{u:\,\widehat{G}(u)\geq u
ight\}:=\mathcal{I}\left(\widehat{G}
ight)$$
 where

$$\widehat{G}: u \mapsto m^{-1} \sum_{i=1}^{m} \mathbb{1}_{\{p_i \le \alpha u\}}, u \in [0, 1]$$

▶ The only formulation that makes sense asymptotically

An illustration of $\mathcal{I}(\widehat{\textit{G}}\,)$

Last crossing point between \widehat{G} and the identity

Weighted BH (WBH)

Take some weights $(w_i)_{1 \le i \le m}, w_i \ge 0$, form

$$\widehat{G}_w: u \mapsto m^{-1} \sum_{i=1}^m \mathbb{1}_{\{p_i \leq \alpha u w_i\}}$$

and reject all $p_i \leq \alpha \hat{u} w_i$ with $\hat{u} = \mathcal{I}(\widehat{G}_w)$.

▶ Choose the right weight space for FDR control, such as

$$\left\{w: \sum_{i} w_{i} \leq m\right\}.$$

▶ BH is a WBH procedure with $w_i = 1 \ \forall i$.

Weighted-Step-Up (WSU)

A generalization to non-linear weight functions [Roquain and Van De Wiel (2009)]

Take a weight function $u \mapsto W(u)$ such that

$$\widehat{G}_W: u \mapsto m^{-1} \sum_{i=1}^m \mathbb{1}_{\{p_i \leq \alpha u W_i(u)\}}$$
 is nondecreasing,

then WSU
$$(W) = \{i : p_i \leq \alpha \hat{u} W_i(\hat{u})\}$$
 with $\hat{u} = \mathcal{I}(\widehat{G}_W)$.

A WBH(w) is a WSU with constant weight function $u \mapsto w$.

14 / 33

Optimal weighting

- ▶ Consider the procedure $R_{u,w}$ rejecting p_i if $p_i \leq \alpha uw_i$
- ightharpoonup Maximize its power for all u on a given weight space $\mathcal W$:

Definition of optimal weights [Roquain and Van De Wiel (2009)]

$$W_{or}^*(u) = \operatorname*{argmax}_{w \in \mathcal{W}} \mathsf{Pow}\left(R_{u,w}\right)$$

Power definition

$$Pow(R) = m^{-1}\mathbb{E}[|R \cap \mathcal{H}_1|]$$

- \triangleright Differs from the usual definition with m_1 by a multiplicative factor
- ▶ Depends on the F_i 's, the c.d.f. under \mathcal{H}_1

G. Durand (LPMA)

Optimal weighting

Existence, uniqueness and asymptotics

- Assume regularity properties of the F_i (concavity), fulfilled in the gaussian 1-sided framework
- $\blacktriangleright \mathcal{W} = \{w : \sum_i w_i \leq m\}$

Theorem [Roquain and Van De Wiel (2009)]

We have existence, uniqueness of W_{or}^* (and other nice properties).

Theorem [Roquain and Van De Wiel (2009)]

Moreover, WSU (W_{or}^*) asymptotically enjoys FDR control at level $\pi_0\alpha$ and power optimality among all WBH procedures.

Optimal weighting

- $ightharpoonup F_i$ unknown under the alternative! So is W_{or}^*
- $\{w: \sum_i w_i \leq m\} \Longrightarrow \pi_0 \alpha$ -FDR control \Longrightarrow conservativeness

Goal

- Estimate the oracle optimal weights
- enlarge W in a way that incorporates π_0 estimation
- obtain asymptotical results on FDR control and power optimality

⇒ Adaptive Data-Driven Optimal Weighting (ADDOW)

Table of contents

- 1. Introduction
- 2. Background
- 3. New procedures
- 4. Results
- 5. Simulations

Model

- ▶ G groups of sizes m_g , hypotheses $H_{g,i}$, p-values $p_{g,i}$
- $p_{g,i}|H_{g,i} = 0 \sim \mathcal{U}([0,1])$
- $p_{g,i}|H_{g,i}=1\sim F_g$ with F_g strictly concave
- ▶ p-values follow weak dependency [Storey et al. (2004)]
- ho \sim some critical $lpha^*$ (0 in Gaussian 1-sided) [Chi (2007)], [Neuvial (2013)]

π_0 estimation

- lacksquare G estimators $\hat{\pi}_{g,0}$ such that $\hat{\pi}_{g,0} \stackrel{\mathbb{P}}{\longrightarrow} \tilde{\pi}_{g,0} \geq \pi_{g,0}$
- lacksquare Non Estimation (NE) : $\hat{\pi}_{g,0} = \tilde{\pi}_{g,0} = 1 \ \forall g$
- lacktriangle Evenly Estimation (EE) : $ilde{\pi}_{g,0} = ilde{\pi}_0 \ orall g$
- lacktriangle Consistent Estimation (CE) : $\tilde{\pi}_{g,0} = \pi_{g,0} \ \forall g$
- $m{\mathcal{W}} = \left\{ w: \sum_{g} rac{m_g}{m} \hat{\pi}_{g,0} w_g \leq 1
 ight\}$ allows larger weights !

Definition

$$\mathsf{ADDOW} = \mathsf{WSU}\left(\widehat{W}^*\right)$$

where

$$\forall u, \ \widehat{W}^*(u) = \underset{w \in \mathcal{W}}{\operatorname{argmax}} \widehat{G}_w(u)$$

 $\Longrightarrow \widehat{W}^*$ maximizes the *rejections*

Key idea

Under (CE) or (ED)+(EE), maximize the rejections is the same as maximizing the power

▶ (ED) : Evenly Distribution, $\pi_{g,0} = \pi_0 \ \forall g$

Remark: under (NE), ADDOW=IHW [Ignatiadis et al. (2016)]

Stabilization for weak signal

- ▶ ADDOW overfits so FDR control lost with weak signal in finite sample
- ▶ We should prefer BH then
- lacktriangleright \Longrightarrow test if there is signal before choosing the procedure, like KS tests

Definition

$$\mathsf{sADDOW}_\beta = \left\{ \begin{array}{ll} \mathsf{ADDOW} & \text{if } \phi_\beta = \mathbbm{1}_{\{Z_m > q_{\beta,m}\}} = 1 \\ \mathsf{BH} & \text{if } \phi_\beta = \mathbbm{1}_{\{Z_m > q_{\beta,m}\}} = 0 \end{array} \right.$$

with $Z_m = \sqrt{m} \sup_{u \in [0,1]} \left(\widehat{G}_{\widehat{W}^*}(u) - \alpha u \right)$ and $q_{\beta,m}$ the $(1-\beta)$ quantile of Z_{0m} (independent copy of Z_m under full null, (NE), and independence).

Table of contents

- 1. Introduction
- 2. Background
- 3. New procedures
- 4. Results
- 5. Simulations

Asymptotic FDR control

Theorem

$$\lim_{m\to\infty} \mathsf{FDR}\,(\mathsf{ADDOW}) \leq \alpha$$

Moreover if $\alpha \leq \tilde{\pi}_0$:

$$\lim_{m\to\infty} \mathrm{FDR}\,(\mathrm{ADDOW}) = \frac{\pi_0}{\tilde{\pi}_0}\alpha \text{ if (ED)+(EE)}, = \alpha \text{ if (CE)}$$

Proofs inspired by [Roquain and Van De Wiel (2009)], [Hu et al. (2010)] and [Zhao and Zhang (2014)].

Corollary

In (ED) case:

$$\lim_{m\to\infty} FDR(IHW) = \pi_0 \alpha.$$

Power optimality

Theorem

In (CE) or (ED)+(EE) case,

$$\lim_{m \to \infty} \mathsf{Pow}\left(\mathsf{ADDOW}\right) \geq \limsup_{m \to \infty} \mathsf{Pow}\left(\mathsf{WSU}\left(\widehat{W}\right)\right)$$

for any weight function such that $\sum_g \frac{m_g}{m} \hat{\pi}_{g,0} \widehat{W}_g(u) \leq 1$.

Corollary

In (ED) case,

$$\lim_{m \to \infty} \mathsf{Pow}\left(\mathsf{IHW}\right) \geq \limsup_{m \to \infty} \mathsf{Pow}\left(\mathsf{WSU}\left(\widehat{W}\right)\right)$$

for any weight function such that $\sum_{g} \frac{m_g}{m} \widehat{W}_g(u) \leq 1$.

11-11

$sADDOW_{\beta}$ equivalent to ADDOW

Theorem

sADDOW_{β} is asymptotically equivalent to ADDOW because $\phi_{\beta} \xrightarrow{a.s.} 1$ when $m \to \infty$, even if $\beta = \beta_m \to 0$ not too slowly $(\beta_m \ge \exp\left(-m^{1-\nu}\right), \nu > 0)$.

Proof relies on the DKWM inequality [Massart (1990)]

Table of contents

- 1. Introduction
- 2. Background
- New procedures
- 4. Results
- 5. Simulations

Stabilization for weak signal : $\bar{\mu}=0.01$

 $\pi_1 = \pi_2 = 0.5, \ \pi_0 = 0.8, \ \mu_1 = \bar{\mu}, \ \mu_2 = 2\bar{\mu}, \ 1000 \ \text{replications}$

Stabilization for strong signal : $\bar{\mu}=3$ $\pi_1=\pi_2=0.5, \ \mu_1=\bar{\mu}, \ \mu_2=2\bar{\mu}, \ 1000$ replications

Comparison with other methods

 $\alpha=$ 0.05, $\pi_{1,0}=$ 0.7, $\pi_{2,0}=$ 0.8, $m_1=m_2=$ 1500, $\beta=$ 0.025, $\mu_1=\bar{\mu}$ and $\mu_2=2\bar{\mu}$, 2000 replications

- ► ADDOW, the oracle and ZZ in (NE) and (CE) cases [Roquain and Van De Wiel (2009)], [Zhao and Zhang (2014)]
- ightharpoonup Varying signal $\bar{\mu}$
- ▶ Also ABH and HZZ : only adaptation to π_0 [Hu et al. (2010)]
- ▶ $sADDOW_{\beta}$ in (NE) case

Comparison with other methods

- Overfitting in both cases
- ▶ Benefit of π_0 -adaptation
- $\triangleright \alpha$ level FDR control ?

BH better than IHW

Possible outside of (ED) case !

 $\alpha=0.7,~\pi_{1,0}=0.05,~\pi_{2,0}=0.85,~m_1=1000,~m_2=9000,~\mu_1=2~{\rm and}~\mu_2=\bar{\mu},~1000$ replications

Conclusion

- Optimal asymptotical properties but with strong assumptions and possible overfitting
- ► Positive dependence ?
- Use a better estimator of the rejections than \widehat{G}_w ?
- FDR bound in finite sample ?
- ightharpoonup Convergence speed ? With more regularity assumptions on F_g ?

Bibliography I

- Benjamini, Yoav and Yosef Hochberg (1997). "Multiple hypotheses testing with weights". In: Scandinavian Journal of Statistics 24.3, pp. 407–418.
- Blanchard, Gilles and Etienne Roquain (2008). "Two simple sufficient conditions for FDR control". In: *Electronic journal of Statistics* 2, pp. 963–992.
- Cai, T. Tony and Wenguang Sun (2009). "Simultaneous testing of grouped hypotheses: Finding needles in multiple haystacks". In: Journal of the American Statistical Association 104.488, pp. 1467–1481.
- Chi, Zhiyi (2007). "On the performance of FDR control: constraints and a partial solution". In: *The Annals of Statistics* 35.4, pp. 1409–1431.
- Genovese, Christopher R., Kathryn Roeder, and Larry Wasserman (2006). "False discovery control with p-value weighting". In: *Biometrika*, pp. 509–524.
- Holm, Sture (1979). "A simple sequentially rejective multiple test procedure". In: Scandinavian journal of statistics, pp. 65–70.
- Hu, James X., Hongyu Zhao, and Harrison H. Zhou (2010). "False discovery rate control with groups". In: *Journal of the American Statistical Association* 105.491.
- Ignatiadis, Nikolaos et al. (2016). "Data-driven hypothesis weighting increases detection power in genome-scale multiple testing". In: *Nature methods* 13.7, pp. 577–580.
- Massart, Pascal (1990). "The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality". In: The Annals of Probability, pp. 1269–1283.

Bibliography II

- Neuvial, Pierre (2013). "Asymptotic results on adaptive false discovery rate controlling procedures based on kernel estimators". In: The Journal of Machine Learning Research 14.1, pp. 1423–1459.
- Roquain, Etienne and Mark A. Van De Wiel (2009). "Optimal weighting for false discovery rate control". In: *Electronic Journal of Statistics* 3, pp. 678–711.
- Storey, John D, Jonathan E Taylor, and David Siegmund (2004). "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach". In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66.1, pp. 187–205.
- Zhao, Haibing and Jiajia Zhang (2014). "Weighted p-value procedures for controlling FDR of grouped hypotheses". In: Journal of Statistical Planning and Inference 151, pp. 90–106.

Weighted Step-Up (WSU)

A practical way to compute $\mathcal{I}\left(\widehat{G}_{W}\right)$

No need to compute W(u) for each u!

 $\forall k \in \llbracket 1, m
rbracket$, compute all $rac{p_i}{W_i(rac{k}{\cdot})}$ and take q_k the k-th smallest.

Let $q_0 = 0$.

Then $\mathcal{I}\left(\widehat{G}_{W}\right)=m^{-1}\max\{k\in\llbracket 0,m\rrbracket:q_{k}\leq\alpha\frac{k}{m}\}.$

Stabilization variant

Main idea (under independence)

Weak signal $\Longrightarrow Z_m$ close to Z_{0m} in distribution, and

$$\begin{aligned} \mathsf{FDR}\left(\mathsf{sADDOW}_{\beta}\right) &= \mathbb{E}\left[\phi_{\beta}\,\mathsf{FDP}\left(\mathsf{ADDOW}\right) + \left(1-\phi_{\beta}\right)\,\mathsf{FDP}\left(\mathsf{BH}\right)\right] \\ &\leq \mathbb{E}\left[\phi_{\beta} + \mathsf{FDP}\left(\mathsf{BH}\right)\right] \\ &\leq \mathbb{P}\left(Z_{m} > q_{\beta,m}\right) + \frac{m_{0}}{m}\alpha \\ &\lesssim \mathbb{P}\left(Z_{0m} > q_{\beta,m}\right) + \frac{m_{0}}{m}\alpha \\ &\leq \beta + \frac{m_{0}}{m}\alpha \end{aligned}$$

About the computation of \widehat{W}^* Key ideas

- ▶ Compute only $\widehat{W}^*(u)$ for $u = \frac{1}{m}, \frac{2}{m}, \dots, \frac{m-1}{m}, 1$
- ▶ Fixing $u, w \mapsto \widehat{G}_w(u)$ only jumps at the $\frac{p_{g,i}}{\alpha u} \Longrightarrow \text{let } \widehat{W}_g^*(u) = \frac{p_{g,i_g}}{\alpha u}$ such that $\sum m_g \frac{p_{g,i_g}}{\alpha u} \le m$ and $\max \sum_g i_g$
- ▶ $\widehat{G}_w(u)$ nondecreasing in u AND w: try to reject 1 hyp, then 2, then 3... for $u = \frac{1}{m}$, when fail at k hyp, try to reject k hyp for $u = \frac{2}{m}$, ...

