MT5823 SEMIGROUP THEORY - SOLUTIONS TO MAY 2008 EXAM

- (1) (a) [Easy not from lectures] From the Cayley table, $\{b, c, c^2, bc, cb\} = \{a, b, c, d, e\}$. Now, cd = f and be = g. The semigroup S is not generated by a single element since $\langle a \rangle = \{a\}, \langle b \rangle = \{b\}, \langle c \rangle = \{a, c\}, \langle d \rangle = \{d, g\}, \langle e \rangle = \{e, g\}, \langle f \rangle = \{f\}, \text{ and } \langle g \rangle = \{g\}.$ (Alternatively, since $bc \neq cb$, S is not commutative and so not generated by a single element.)
 - (b) [Easy from lectures] The right Cayley graph is given in Figure 1 and the left Cayley graph is given in Figure 2.
 - (c) [Medium from lectures] It was shown in lectures that the \mathcal{R} -classes of a semi-group correspond to the strongly connected components of the right Cayley graph and the analogous statement for \mathcal{L} -classes. Hence the \mathcal{R} -classes of S are $\{a,c\},\{b,d\},\{e,f\},\{g\}$ and the \mathcal{L} -classes are $\{a,c\},\{b,e\},\{d,f\},\{g\}$. Since $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$, the \mathcal{H} -classes of S are $\{a,c\},\{b\},\{d\},\{e\},\{f\},\{g\}$. Likewise, since $\mathcal{D} = \mathcal{L} \circ \mathcal{R}$, the \mathcal{D} -classes of S are $\{a,c\},\{b,d,e,f\},\{g\}$. The eggbox diagram of the \mathcal{D} -classes can be seen in Figure 3.

Figure 3.

- (d) [Medium from lectures] A semigroup is inverse if it is regular and its idempotents commute. We saw in lectures that a semigroup is inverse if and only if every R-class and every L-class contains exactly one idempotent. It is easy to see from the eggbox diagrams given above that this is true. Alternatively from the Cayley table, the idempotents in the R-classes {a, c}, {b, d}, {e, f}, {g} are a, b, f, and g, respectively, and in the L-classes {a, c}, {b, e}, {d, f}, {g}. are
- a, b, f, and g.
 (e) [Hard similar to tutorial questions] We start by finding the elements of T. Using the algorithm given in lectures

$$t_{1} = x, t_{2} = y$$

$$t_{1}x = x^{2} = x, t_{1}y = xy = t_{3}$$

$$t_{2}x = yx = t_{4}, t_{2}y = y^{2} = t_{5}$$

$$t_{3}x = xyx = t_{6}, t_{3}y = xy^{2} = x$$

$$t_{4}x = yx^{2} = yx, t_{4}y = yxy = t_{7}$$

$$t_{5}x = y^{2}x = x, t_{5}y = y^{3} = y$$

$$t_{6}x = xyx^{2} = x^{2} = x, t_{6}y = xyxy = xyx$$

$$t_{7}x = yxyx = xyx, t_{7}y = yxy^{2} = yx.$$

Hence the elements of T are $\{x, y, xy, yx, y^2, xyx, yxy\}$.

Let $\phi: T \longrightarrow S$ be the mapping defined by $x\phi = b$ and $y\phi = c$. Since b and c generate S, ϕ is a surjective mapping and since T is finite ϕ is a bijection.

It suffices by a theorem from lectures to show that S satisfies the relations given in the presentation for T. So, in S

$$b^2 = b, bc^2 = ba = b, c^2b = ab = b, c^3 = c^2.c = ac = c, (bc)^2 = d^2 = g = db = bcb$$

$$(cb)^2 = e^2 = g = bcb.$$

It follows that ϕ is a bijective homomorphism.

(f) [Very hard - not from lectures] Let I_2 denote the symmetric inverse semigroup on a 2 element set. The elements of I_2 are

$$m = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, p = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, n = \begin{pmatrix} 1 & 2 \\ 1 & - \end{pmatrix}, q = \begin{pmatrix} 1 & 2 \\ 2 & - \end{pmatrix}, r = \begin{pmatrix} 1 & 2 \\ - & 2 \end{pmatrix},$$
$$s = \begin{pmatrix} 1 & 2 \\ - & 1 \end{pmatrix}, t = \begin{pmatrix} 1 & 2 \\ - & - \end{pmatrix}$$

and from tutorials we know that I_2 is generated by p and n. Define $\phi: S \to I_2$ by

$$\begin{pmatrix} a & b & c & d & e & f & g \\ m & n & p & q & r & s & t \end{pmatrix}.$$

It suffices, by part (e) above, to prove that I_2 satisfies the relations of the presentation defining T. Now,

$$n^2 = n, np^2 = n, p^2 n = n, p^3 = p,$$

$$(np)^2 = \begin{pmatrix} 1 & 2 \\ 2 & - \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 \\ - & - \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & - \end{pmatrix} n = npn, (pn)^2 = npn.$$

It follows that ϕ is an isomorphism.

- (2) (a) [Easy from lectures] A semigroup is *simple* if it has no proper two-sided ideals. The Rees theorem states that a finite semigroup is simple if and only if it is isomorphic to a Rees matrix semigroup $\mathcal{M}[G; I, \Lambda; P]$ where G is a finite group and I and Λ are finite sets.
 - (b) [Easy from lectures] (\Rightarrow) Let $(i, g, \lambda)\mathcal{R}(j, h, \mu)$. Then there exists $(i', g', \lambda') \in \mathcal{M}[G; I, \Lambda; P]$ such that

$$(i, g, \lambda)(i', g', \lambda') = (j, h, \mu)$$

$$\Rightarrow (i, gp_{\lambda i'}g', \lambda') = (j, h, \mu)$$

$$\Rightarrow i = j.$$

 (\Leftarrow) Let $(i, g, \lambda), (i, h, \mu) \in \mathcal{M}[G; I, \Lambda; P]$. Then

$$(i,g,\lambda)(i,p_{\lambda i}^{-1}g^{-1}h,\mu) = (i,h,\mu) \& (i,h,\mu)(i,p_{\mu i}^{-1}h^{-1}g,\lambda) = (i,g,\lambda).$$

Hence $(i, g, \lambda)\mathcal{R}(i, h, \mu)$.

The analogous statement for Green's \mathcal{L} -relation can be proved using a similar argument.

Since $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$, it follows that $(i, g, \lambda)\mathcal{H}(j, h, \mu)$ if and only if i = j and $\lambda = \mu$.

- (c) [Easy not from lectures] We know from lectures that the intersection of two equivalence relations is again an equivalence relation. Hence it remains to show that $\rho \cap \sigma$ is a congruence. Let $s \in S$ and $(x,y) \in \rho \cap \sigma$ be arbitrary. Then $(xs,ys),(sx,sy) \in \rho$ and $(xs,ys),(sx,sy) \in \sigma$ since ρ and σ are congruences. It follows that $(xs,ys),(sx,sy) \in \rho \cap \sigma$ and so $\rho \cap \sigma$ is a congruence.
- (d) [Moderate similar to lectures] We know from lectures that \mathcal{R} is a left congruence and so it suffices to prove that it is also a right congruence. Let $(i, g, \lambda)\mathcal{R}(j, h, \lambda)$ and $(k, t, \mu) \in \mathcal{M}[G; I, \Lambda; P]$ be arbitrary.

$$(i, g, \lambda)(k, t, \mu) = (i, gp_{\lambda k}t, \mu) \& (j, h, \lambda)(k, t, \mu) = (j, hp_{\lambda k}t, \mu).$$

Since i = j, it follows from part (b) above that $(i, g, \lambda)(k, t, \mu)\mathcal{R}(j, h, \lambda)(k, t, \mu)$. That \mathcal{L} is a 2-sided congruence follows by an analogous argument.

Since $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ by definition, it follows that from part (c) that \mathcal{H} is a congruence on $\mathcal{M}[G; I, \Lambda; P]$.

(e) [Hard - not from lectures] From part (b), $(i, g, \lambda)/\mathcal{R} = (j, h, \mu)/\mathcal{R}$ if and only if i = j. It follows that

$$(i, g, \lambda)/\mathcal{R}(j, h, \mu)/\mathcal{R} = (i, gp_{\lambda j}h, \mu)/\mathcal{R} = (i, g, \mu)/\mathcal{R}$$

for any $(i, g, \lambda), (j, h, \mu) \in \mathcal{M}[G; I, \Lambda; P]$. It follows that $\mathcal{M}[G; I, \Lambda; P]$ is a semi-group of left zeros.

It suffices from lectures to prove that $x^2 = x$ and xyz = xz for all $x, y, z \in \mathcal{M}[G; I, \Lambda; P]/\mathcal{H}$. Let $(i, g, \lambda)/\mathcal{H}, (j, h, \mu)/\mathcal{H}, (k, t, \mu)/\mathcal{H} \in \mathcal{M}[G; I, \Lambda; P]/\mathcal{H}$. Then

$$(i, g, \lambda)/\mathcal{H}$$
 $(i, g, \lambda)/\mathcal{H} = (i, gp_{\lambda i}g, \lambda)/\mathcal{H}$.

It follows by part (b) that $(i, gp_{\lambda i}g, \lambda)/\mathcal{H} = (i, g, \lambda)/\mathcal{H}$. Now,

$$(i,g,\lambda)/\mathcal{H}(j,h,\mu)/\mathcal{H}(k,t,\mu)/\mathcal{H} = (i,gp_{\lambda j}hp_{\mu k}t,\mu)/\mathcal{H} = (i,g,\lambda)/\mathcal{H}(k,t,\mu)/\mathcal{H}$$

again by part (b). We have shown that $\mathcal{M}[G; I, \Lambda; P]/\mathcal{H}$ is a rectangular band.

- (f) [Easy] A semigroup is *Clifford* if it is regular and its idempotents commute with all elements.
- (g) [Moderate not from lectures] It is obvious that (iii) implies (ii) and that (ii) implies (i). To see that (i) implies (iii), assume using the Rees theorem that $S = \mathcal{M}[G; I, \Lambda; P]$ where G is a group and I and Λ are finite. Now, S is an inverse semigroup and so every \mathcal{R} -class and every \mathcal{L} -class contains exactly one idempotent. By part (b), the number of \mathcal{R} -classes in S is |I| and by definition every \mathcal{R} -class contains $|\Lambda|$ idempotents. It follows that $|\Lambda| = 1$ and by symmetry |I| = 1. Thus S is isomorphic to the group G.
- (3) (a) [Easy similar to lectures] A mapping h is idempotent if and only if xh = x for all $x \in (h)$. It follows that from inspecting the elements that:

$$f^2, gf^2, gf, g^2f^2, f^2g^2, fg, f^2g, fg^2f, g^3$$

are the idempotents of S.

- (b) [Easy from to lectures] A semigroup is regular if and only if all of its elements are regular (that is, for all x there exists y such that xyx = x).
- (c) [Moderate not from lectures] A \mathcal{D} -class D is regular if and only if there exists an element in D that is regular. Every idempotent e is regular as $e^3 = e$. Now, $fg \in D_f$, $f^2 \in D_{f^2}$ and $g^3 \in D_{g^3}$. By part (a), fg, f^2 and g^3 are idempotents and so every \mathcal{D} -class of S is regular. It follows that S is regular.
- (d) [Moderate from lectures] (\Rightarrow) If $x \in S$ has an inverse, then there exists y such that xyx = x and yxy = y. Hence x is regular.
 - (\Leftarrow) If $x \in S$ is regular, then there exists $y \in S$ such that xyx = x. Let z = yxy. Then

xzx = xyxyx = xyx = x & zxz = y(xyx)yxy = y(xyx)y = yxy = z.

Thus z is an inverse for x.

- (e) [Easy similar to lectures] Inverses of f, f^2 , and g^3 are g, f^2 and g^3 , respectively.
- (f) [Hard similar to lectures] Since S is regular, its Green's \mathcal{L} and \mathcal{R} -classes are restrictions of those in T_5 . From lectures we know that $x\mathcal{L}y$ if and only if (x) = (y), and $x\mathcal{R}y$ if and only if $\ker(x) = \ker(y)$.

It follows that the number of \mathcal{L} -classes in D_f is 2 corresponding to the images $\{1,4,5\}$ and $\{3,4,5\}$, and the number of \mathcal{R} -classes in D_f is 2 corresponding to the kernels $\{\{1,2,4\},\{3\},\{5\}\}\}$ and $\{\{1\},\{2,4\},\{3,5\}\}$.

Likewise, the number of \mathcal{L} -classes in D_{f^2} is 3 corresponding to the images

$$\{1,5\},\{4,5\},\{3,5\},$$

and the number of \mathcal{R} -classes in D_{f^2} is 3 corresponding to the kernels

$$\{\{\{1\},\{2,3,4,5\}\},\{\{1,2,3,4\},\{5\}\},\{\{1,2,4\},\{3,5\}\}\}.$$

Since D_{g^3} contains only 1 element, the number of \mathcal{L} -classes is 1 and the number of \mathcal{R} -classes is 1.

(g) [Hard - not similar to lectures] A semigroup is inverse if and only if every \mathcal{R} -class and every \mathcal{L} -class contains precisely 1 idempotent. The \mathcal{R} -class R_{f^2} of f^2 is $\{f^2, f^2g, f^2g^2\}$ using the same argument as that used in part (e). Hence by part (a), R_{f^2} contains 3 idempotents and S is not an inverse semigroup.