

Kunstmatige intelligentie

Bert De Saffel

Master in de Industriële Wetenschappen: Informatica Academiejaar 2018–2019

Gecompileerd op 14 februari 2019

Inhoudsopgave

1	Inle	Inleiding		
	1.1	Kunnen machines denken?	2	
	1.2	Toepassingen van AI en data mining	3	
	1.3	Leren	3	
	1.4	Classificatie	4	
	1.5	Informatie en beslissingsbomen	4	
	1.6	Klasseren zonder leren		
	17	Fen toenassing: Watson	F	

Hoofdstuk 1

Inleiding

- Twee doelen van kunstmatige intelligentie:
 - o Het laten overnemen, door machines, van taken waarvoor intelligentie vereist is.
 - Studie van natuurlijke intelligentie.
- Twee vormen om kennis in te brengen in een computersysteem:
 - Expliciete kennis.
 - o Kennis kan zelf verworven worden.

1.1 Kunnen machines denken?

- Twee voorbeelden.
 - ELIZA:
 - ♦ Computerprogramma dat zich voordoet als een pyschotherapeut.
 - Maakt gebruik van simpele vervangingsregels.
 - Probeert de conversatie zo te sturen zodat de echte persoon het meest moet vertellen.
 - Chinese kamer:
 - Denkrichting die aantoont dat een entiteit eerst iets moet begrijpen, vooraleer er van intelligentie sprake is.
 - 1. Iemand die geen Chinees kent wordt in een kamer gebracht.
 - 2. Door een luik krijgt hij briefjes in het Chinees aangereikt, en de bedoeling is dat hij daar schriftelijk een zinnige antwoord op teruggeeft.
 - 3. De persoon krijgt handboeken waarin conversieregels staan.
 - ♦ De proefpersoon volgt mechanisch de regels vanuit het handboek, zodat hij wel intelligent gedrag vertoont, maar de berichten niet begrijpt.
- Denken is elke vorm van complexe informatieverwerking waarvan de onderliggende mechanismen niet volledig gekend zijn.
- Turingtest:
 - Proefpersoon kan contact maken met twee entiteiten: een mens en een machine, maar hij weet niet wie de mens of machine is.
 - o De proefpersoon kan eender welke vragen stellen aan beide entiteiten.
 - Als de proefpersoon er niet in slaagt om na zijn vragenronde de entiteit aan te duiden die een machine is, dan is de machine geslaagd voor de Turingtest.

1.2 Toepassingen van AI en data mining

• Classificatie:

- \circ Stel een verzameling van k klassen.
- o Een bepaalde invoer met gelinkt worden aan één van die klassen.
- <u>Harde classificatie</u>: beperkt aantal duidelijk van elkaar gescheiden klassen. Hier spreekt men ook van patroonherkenning.
- o Zachte classificatie: continue overgang van de klassen.

• Toepassingen:

- Aanbevelingssystemen.
- Kwaliteitscontrole.
- Probleemgestuurd: uitgaande van een probleem een oplossing zoeken.
- <u>Datagestuurd</u>: vanuit bestaande informatie problemen zoeken die ermee opgelost kunnen worden. Dit wordt ook data mining genoemd. Vaak moet de data eerst gereorganiseerd worden vooraleer de informatie nuttig wordt.

1.3 Leren

- Moderne AI houdt zich bezig met systemen met een zeer groot aantal aanpasbare parameters. Zulke systemen noemt men massief lerende systemen.
- Voorbeelden van massief lerende systemen:
 - o Neurale netwerken: trachten het biologische denksysteem na te bootsen.
 - Hidden Markov Model: wordt gebruikt bij de analyse van allerhande sequenties, waarbij de toestand soms onbekend is.
- Parameters hebben niet noodzakelijk een betekenis, en is daarom ook onmogelijk om ze met de hand in te voeren. Daarom laat men een systeem leren, met behulp van drie methoden:
 - Algoritmisch leren: Er wordt gedemonstreerd hoe een bepaalde actie moet uitgevoerd worden. Het systeem kan hierna deze actie inoefenen door het herhalen van deze instructies. Deze vorm komt goed overeen met het programmeren van een computer.
 - Leren met supervisie: Hier wordt er geen gebruik gemaakt van een algoritme maar eerder van voorbeelden. Deze voorbeelden worden een leerverzameling genoemd en bevatten inputgegevens die het systeem moet leren herkennen, met de daarbij horende resultaten. Er wordt een verband opgelegd tussen een bepaalde input en output.
 - Leren zonder supervisie: Dit gebeurt gedeeltelijk algoritmisch aangezien er enige instructies nodig zijn om de machine op gang te krijgen. De machine zal nadien zelf experimenteren wat er gebeurd bij het aanpassen van verschillende parameters. Het leren gebeurt dus niet met voorbeelden, maar uit eigen ervaring. Hier is er dan ook geen verband tussen het resultaat en de verschillende deeltaken, maar er is wel een algemeen idee wat er aangeleerd moet worden.

1.4 Classificatie

- Classificatie is het mappen van een bepaalde input op een klasse.
- We spreken van een item dat we moeten klasseren.
- Dit item wordt gekarakteriseerd door een aantal meetwaarden.
- _ToDo: vector shit

1.5 Informatie en beslissingsbomen

- Een beslissingsboom is een klassiek hulpmiddel bij classificatie:
 - o Elke knoop dat geen blad is bevat een vraag met een beperkt mogelijk aantal antwoorden.
 - o Elk mogelijk antwoord verwijst naar een kind van de knoop.
 - o Een item klasseren is een pad vanuit de wortel naar een blad, waarin de klasse staat.
- De informatie-inhoud van een bericht:
 - Een bericht is enkel nuttig indien ontvanger een betekenis kan geven aan het bericht. De belangrijke elementen voor de informatie-inhoud is dus het bericht zelf en de kennis van de ontvanger.
 - o Met de kennis kan aan elk mogelijk bericht B een waarschijnlijkheid P(B) toekennen. De informatie-inhoud wordt dan gedefinieerd door

$$-\log_2(P(B))$$
 bits

Voor P(B) = 1 is de informatie-inhoud 0 bits, wat logisch is aangezien de ontvanger niets heeft bijgeleerd van dit bericht.

- ! De informatie-inhoud van een bericht is niet altijd een geheel getal.
- ! De informatie-inhoud is nooit negatief.
- o <u>Voorbeeld</u>: Stel dat een byte verwacht wordt, maar er is geen idee welke byte. Elke byte is even waarschijnlijk met kans 1/256. De informatie-inhoud van de byte die dan binnenkomt is $-\log_2(1/256)$ bits = 8 bits.
- o <u>Voorbeeld:</u> Stel een alfabet van 4 letters: A, C, G en T. De waarschijnlijkheid dat ze voorkomen wordt weergegeven in tabel 1.1. Als de ontvanger dit weet dan wordt de

Tabel 1.1: De waarschijnlijkheden voor de letters A, C, G en T.

informatie-inhoud voor elke letter:

$$A: -\log_2(0,7071) = 0,5$$

$$C: -\log_2(0,1250) = 3,0$$

$$G: -\log_2(0,0839) = 3,575$$

$$T: -\log_2(0,0839) = 3,575$$

- 1.6 Klasseren zonder leren
- 1.7 Een toepassing: Watson