Examenul de bacalaureat national 2015

Proba E. c) Matematică *M* st-nat

Varianta 3

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Se consideră numerele complexe $z_1 = 3 + i$ și $z_2 = 3 i$. Arătați că numărul $z_1 z_2$ este real.
- **5p 2.** Determinați numărul real a, știind că punctul A(1,1) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt[3]{x^3 + 2x 4} = x$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 80\}$, acesta să fie divizibil cu 7.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(1,2) și B(2,a). Determinați numărul real a, știind că punctele O, A și B sunt coliniare.
- **5p 6.** Se consideră $E(x) = \cos \frac{x}{2} + \sin x$, unde x este număr real. Arătați că $E\left(\frac{\pi}{3}\right) = \sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 2 & x \\ x & 2 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(0)) = 4$.
- **5p b**) Determinați numărul real a, știind că A(1) + A(3) = aA(2).
- **5p** c) Arătați că $A(x)A(y) = 2A(x+y) + xyI_2$, pentru orice numere reale x și y, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 3xy + 6x + 6y + 10.
- **5p** | **a**) Arătați că 2*(-2) = -2.
- **5p b)** Arătați că x * y = 3(x+2)(y+2)-2, pentru orice numere reale x și y.
- **5p** c) Rezolvați în mulțimea numerelor reale ecuația x * x * x = x.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+1)e^x$.
- **5p** a) Arătați că $f'(x) = (x+2)e^x$, $x \in \mathbb{R}$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Arătați că funcția f este convexă pe intervalul $[-3, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3 + 3x}{x^2 + 1}$.
- **5p a)** Arătați că $\int_{-1}^{1} (x^2 + 1) f(x) dx = 0$.
- **5p b)** Arătați că $\int_{0}^{1} f(x) dx = \frac{1}{2} + \ln 2$.
- **5p** c) Determinați numărul real m, m > 0, știind că suprafața plană delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x) x, axa Ox și dreptele de ecuații x = 0 și x = m, are aria egală cu $\ln 2$.