Instituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

Redes de Computadores

Camada de enlace de dados Introdução

Aula 06

Nível de Enlace

Aplicação Protocolo nível de aplicação Aplicação Protocolo nível de apresentação Apresentação Apresentação Protocolo nivel de sessão Sessão Sessão Protocolo nivel de transporte **Transporte** Transporte Protocolo nível de rede Rede Rede Protocolo nível de enlace **Enlace Enlace** Protocolo nível de físico Físico Físco

Redes de Computadores

2

Introdução

- ☐ Comunicação entre dois dispositivos envolve uma infra-estrutura física composta pela interligação de vários dispositivos entre si
 - ◆ Cada interligação é o que se denomina de enlace
- □ Enlace é a interligação entre dois pontos
 - ◆ Dedicado (ponto-a-ponto)
 - ◆ Compartilhado (broadcast)
- □ Possui um protocolo
 - Normalmente implementado em um adaptador de rede (placa de rede)

Funções da camada de enlace

- □ Enquadramento de dados
- □ Endereçamento
- □ Detecção de erros ou detecção e correção de erros
- □ Controle de fluxo
- □ Controle de erros
- □ Prover serviços para a camada de rede
 - Orientado a conexão
 - ◆ Não orientado a conexão, sem confirmação
 - ◆ Não orientado a conexão, com confirmação
- □ Controle de acesso ao meio
 - ♦ Não definido no modelo de referência OSI

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

Redes de Computadores 3 Redes de Computadores 4

□ Problema: como identificar início (ou final) de um quadro se tudo é sinal eletromagnético (ou óptico) no nível físico?

□ Métodos básicos:

- ♦ Marca de início e fim
- ◆ Marca de início e informação do tamanho do quadro
- ◆ Marca de início e um período de silêncio após o quadro

□ A marca pode ser, por exemplo:

- ◆ Um caractere específico (flag) como 0111 1110
- ◆ Um conjunto de caracteres (DLE+STX e DLE+ETX)
- ♦ Violação na codificação empregada no nível físico
- □ Dependente da tecnologia usada pelo enlace

Bit stuffing ou Byte stuffing

5

Redes de Computadores

Detecção e correção de erros

- ☐ Erros acontecem!! Necessário tratar essa situação para fornecer um canal lógico livre de erros → controle de erros
- ☐ Controle de erros é baseado na capacidade de detecção e correção dos mesmos
- Metodologia básica:
 - ◆ Incluir informação junto a cada bloco de dados para possibilitar a detecção de um erro e eventualmente sua correção

Endereçamento

- □ Problema em enlaces compartilhados (broadcast)
 - ♦ Como identificar o destino ?
 - ◆ Como saber que uma transmissão é para mim ?
- □ Solução: definir endereços físicos (endereço MAC)
 - Exemplo: em redes IEEE802.3 tem-se 08:00:46:EC:69:52 (end. unicast)
- □ Questões:

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

- ◆ Unicidade de endereços (global/local)
- Endereços de grupo (multicast, caso especial, broadcast)

Redes de Computadores

Princípio básico para detecção de erros

R = redundância de informação para detecção de erros

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

Redes de Computadores

Redes de Computadores

Detecção de erros

- Métodos comuns para detecção de erros:
 - ◆ Redundância de caracter (paridade VRC)
 - ♦ Redundância de bloco (paridade LRC)
 - ♦ Checksum
 - ◆ Códigos polinomiais ou códigos cíclicos (CRC)
- □ Características básicas desses métodos
 - Quantidade de redundância inserida
 - ◆ Método utilizado para calcular a redundância
 - ◆ Cobertura → bits com erros podem passar despercebidos?
 - Depende dos fatores anteriores

Redes de Computadores

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

9

Cálculo de paridade

- □ Redundância de caracter (paridade VRC)
 - Inserção de um bit de paridade ao final de cada caracter
 - ◆ Paridade par: número de bits caracter + paridade ⇒par
 - ◆ Paridade impar: número de bits caracter + paridade ⇒impar
 - Problema: inversão de um número par de bits é não detectada
- □ Redundância de bloco (paridade LRC)
 - ◆ Divide os bits de dados a serem enviados em um bloco com /linhas e j colunas e calcula a paridade (par ou ímpar) de cada linha e coluna
 - Permite detectar e corrigir erros em único bit (apenas!!!)
 - ◆ Problema: pode ocorrer inversões de bits que mascaram o erro

Redes de Computadores 10

Redundância de caracter (VRC) e de bloco (LRC)

Soma de verificação (checksum)

- ☐ A informação de redundância é a soma dos dados em aritmética binária
- □ Transmissor:
 - ♦ Os bits de dados são divididos em k blocos de n bits, cada um
 - ◆ Soma os blocos e complementa o resultado (*checksum*)
 - O checksum é enviado junto com os dados
- □ Receptor:
 - ◆ Os bits recebidos são divididos em k blocos de n bits
 - ◆ Soma os blocos e complementa o resultado (*checksum*)
 - ◆ Se *checksum* for zero, os dados são aceitos → não houve erro!!

Instituto de Informática - UFRGS A. Carissimi-5-avr.-11

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

Redes de Computadores 12

Redes de Computadores

11

Exemplo de checksum

Dados a serem transmitidos: 1010100100111001 10101001 00111001 Feito pelo transmissor Soma 11100010 Checksum 00011101 Instituto de Informática - UFRGS A. Carissimi -5-avr.-11 Transmissão: 1010100100111001 00011101 10101001 Feito pelo receptor 00111001 00011101 Soma 11111111 Checksum 00000000 < Se ZERO, OK! Empregado pelo IP, UDP e TCP Redes de Computadores

Verificação de redundância cíclica (CRC)

- □ Cyclic Redundancy Check (CRC)
- □ Código polinomial pois considera a cadeia de bits a ser transmitida como um polinômio cujos coeficientes são 1 e 0

$$110101 \qquad \equiv x^5 + x^4 + x^2 + 1$$

- □ Dados (quadro) a serem transmitidos são n bits
 - ◆ polinômio de n termos
 - x ⁿ⁻¹ até x⁰

Redes de Computadores

14

CRC: Algoritmo de Cálculo

- □ Multiplicar M(x) por x^r
- \Box Dividir $x^rM(x)$ por G(x)
- Subtrair o resto da divisão de x^rM(x)
- □ Princípio básico (decima)

210278 <u>10941</u> 2399 →resto

(210278-2399) <u>10941</u> zero →resto

Redes de Computadores

CRC: erros detectados (alguns números...)

- □ Todos erros de um bit
- □ Todos erros duplos, se o polinômio possuir pelo menos 3 termos em 1
- □ Qualquer número ímpar de erros se polinômio for fatorável por x+1
- □ Qualquer erro em seqüências de *n* bits ou menos (*n*=grau do polinômio)
- □ CRC-16 e CRC-CITT
 - ◆ 100% das falhas em sequências de 16 ou menos bits, 99.997% das falhas em sequências de 17 bits, 99.998% em sequências de 18 bits ou mais
- □ CRC-32
 - ◆ Chance de receber dados ruins é de 1 em 4.3 bilhões

Se chegou sem erro de CRC, talvez esteja correto!!

Redes de Computadores 16

Instituto de Informática - UFRGS A. Carissimi-5-avr.-11

Instituto de Informática - UFRGS A. Carissimi-5-avr.-11

13

□ Polinômios geradores:

$$CRC - 12 = X^{12} + X^{11} + X^3 + X^2 + X + 1$$

 $CRC - 16 = X^{16} + X^{15} + X^2 + 1$
 $CRC - CCITT = X^{16} + X^{12} + X^5 + 1$
 $CRC - 32 = X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

- □ Implementação via hardware
 - ♦ Combinação de portas lógicas ou-exclusivo com shift registers
 - ◆ Empregado na Ethernet (IEEE 802.3): CRC-32

Redes de Computadores

Correção de erros

- □ Emprega duas estratégias básicas
 - ◆ Detecção de erros seguido por retransmissão
 - ◆ Detecção com correção automática de erros
- □ Para correção é necessário incluir informação para determinar se há um erro ou não e quais bits foram afetados
 - ◆ Mecanismo de FEC (Forward Error Correction)
 - Redundância adicional compensa?
 - ◆ Depende da taxa de erros

Redes de Computadores 18

Código de Hamming

- □ Define uma regra para determinar a relação entre bits de dados e de redundância
- □ Distância de Hamming:
 - Quanto bits diferem entre duas palavras de código
 - ◆ Se duas palavras de código estão separadas por a, serão necessários a erros para transformar uma palavra de código em outra.
 - ◆ 2ⁿ mensagens de dados são válidas
 - → 2^m palavras de código → nem todas são usadas
 - ◆ Detectar *e* erros se necessita de palavras de código com distância *d=e+1*
 - ◆ Corrigir *e* erros se ncessita de palavras de código com distância d=*2e+1*

Código de Hamming (visão simplificada!!)

Exemplo:

Letra D = 11111 11111 00000 00011 → Deduz → 00000 000<u>00</u> correção de 2 erros (d=5)

20

Palavras de código d=5

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

nstituto de Informática - UFRGS A. Carissimi -5-avr - 14

Redes de Computadores 19 Redes de Computadores

17

Código de Hamming

Leituras complementares

- □ Stallings, W. <u>Data and Computer Communications</u> (6th edition), Prentice Hall 1999.
 - ◆ Capítulo 7 seção 7.2
- □ Tanenbaum, A. *Redes de Computadores* (4ª edição), Campus, 2003.
 - ◆ Capítulo 3, seções 3.1 e 3.2

Instituto de Informática - UFRGS A. Carissimi -5-avr.-11

Redes de Computadores 22