Semantic Specialization in MoE Appears with Scale: A Study of DeepSeek-R1 Expert Specialization

Matthew Lyle Olson^{1,†} Neale Ratzlaff^{1,†} Musashi Hinck^{1,†} Man Luo¹ Sungduk Yu¹ Chendi Xue² Vasudev Lal¹

¹Intel Labs ²Intel Corporation

Abstract

DeepSeek-R1, the largest open-source Mixtureof-Experts (MoE) model, has demonstrated reasoning capabilities comparable to proprietary frontier models. Prior research has explored expert routing in MoE models, but findings suggest that expert selection is often token-dependent rather than semantically driven. Given DeepSeek-R1's enhanced reasoning abilities, we investigate whether its routing mechanism exhibits greater semantic specialization than previous MoE models. To explore this, we conduct two key experiments: (1) a word sense disambiguation task, where we examine expert activation patterns for words with differing senses, and (2) a cognitive reasoning analysis, where we assess DeepSeek-R1's structured thought process in an interactive task setting of DiscoveryWorld. We conclude that DeepSeek-R1's routing mechanism is more semantically aware and it engages in structured cognitive processes.

1 Introduction

Since their popularization in Fedus et al. (2022), the Mixture-of-Experts (MoE) architecture (Jacobs et al., 1991) has been integrated into many stateof-the-art large language models (LLMs) (Lieber et al., 2024; Jiang et al., 2024; Liu et al., 2024). Recently, DeepSeek-R1 (Guo et al., 2025) (hereafter abbreviated R1), based on the MoE architecture, was released as the largest open-source (MIT License) LLM by total parameter count. Notably, it is the first open-source model to achieve performance comparable to OpenAI's o-series of models (Zhong et al., 2024). Trained with reinforcement learning (RL) (Shao et al., 2024), R1 demonstrates remarkable reasoning (Wei et al., 2022), including emergent behaviors such as the "aha moment" (Guo et al., 2025).

The release of R1's model weights opens up several exciting research opportunities, one of which is the study of expert routing behavior in very large scale MoEs. Several prior studies have explored expert activation patterns in MoE models, hypothesizing that each expert may specialize in specific domains, tasks, or topics (Zoph et al., 2022; Jiang et al., 2024; Xue et al., 2024). While it is intuitive to expect some degree of semantic specialization, previous research has struggled to establish a clear semantic role for individual experts, concluding instead that expert activation is primarily token-dependent rather than being driven by deeper semantic relationships.

Given the scale and strong reasoning capabilities of R1, we investigate whether its expert routing exhibits greater semantic specialization than previous MoE models. We design two experiments to analyze R1's routing mechanisms. First, we employ a word sense disambiguation (WSD) task (Pilehvar and Camacho-Collados, 2018), where a target word appears in two sentences, either with the same semantic value (sense) or differing senses. Our results show significantly higher expert overlap where the word sense is the same than where it differs. In contrast, the rate of expert overlap differs less between the two cases in previous MoE models like Mixtral (Jiang et al., 2024). Additionally, we analyze R1's reasoning structure to further understand its cognitive behavior using the agentic DiscoveryWorld environment (Jansen et al., 2024) (Apache 2.0) as a testbed. We qualitatively probe the model's chain of thought with a Sparse Autoencoder (SAE); a modern tool for interpreting LLMs (Cunningham et al., 2023). Our findings reveal that R1 follows a structured reasoning approach, incorporating self-evaluation, and hypothesis testing (see Figure (1) for an example). Finally, R1's thought patterns favor specific experts, indicating that the expert specialization extends to cognitive processes.

[†] The first authors contributed equally; order was determined randomly.

This supports the hypothesis that explicit calibration is needed. The existing knowledge has a confirmed hypothesis about manual input being required.

But maybe a new measurement here that activation failed despite correct frequency calculation. Wait, the last action's result was that the reactor <code>isn</code>'t activatable.

But is the crystal accessible? It's inside the reactor, so perhaps I need to interact with the crystal through the reactor.

Wait, the accessibleEnvironmentObjects include the quantum crystal 3 in the reactor.

Figure 1: Left: identified reasoning tokens of SAE head 15376 (highlights indicate non-zero head activation) on DiscoveryWorld chain of thought generations. This head activates when the model analyzes its hypotheses. Right: tokens from SAE head 12649. This head activates when R1 catches an internal reasoning error.

In summary, this study explores the emergent behaviors of DeepSeek-R1, with a particular focus on expert routing and cognitive specialization. Our findings suggest that R1's routing mechanism demonstrates greater semantic specialization compared to prior MoE models, which may contribute to its remarkable performance.

2 Related Work

Current research on expert specialization in MoE models is sparse, yet available studies reveal little evidence of semantic-level differentiation. For example, Xue et al. (2024) tracked token routing patterns across datasets segmented by different topics, languages, and tasks, but failed to find any coherent pattern at such high-level semantics. Rather, they found indications of token-level specialization, mainly concerning low-level semantic features like special characters or auxiliary verbs. Similar findings have been reported in studies using independently developed MoE models (e.g., Zoph et al., 2022; Jiang et al., 2024; Fan et al., 2024).

While some neuroscience research has provided evidence that the brain functions like a Mixture of Experts (Stocco et al., 2010; O'Doherty et al., 2021)—suggesting the possibility of semantic-level specialization—other studies have shown that MoE models with random routing can perform comparably to those using the more common top-k routing approach (Roller et al., 2021; Zuo et al., 2021; Ren et al., 2023). One potential explanation for these mixed results is that prior models (using 8 to 32 experts) might not have been sufficiently expressive to capture fine-grained specialization patterns. The recently-released DeepSeek v3, featuring an extensive network of experts (256 routed specialists alongside one shared generalist expert), provides us with a unique opportunity. Hence, in this study, we test whether a more capable MoE architecture exhibits semantic-level expert specialization.

3 Experiments

3.1 Words-in-Context

We leverage polysemy to test for semantic specialization in expert activation. If words that are written the same but have different meanings are routed differently, then this is evidence that routing occurs based on meaning. To test this hypothesis, we use the WiC dataset (Pilehvar and Camacho-Collados, 2018) (CC BY-NC 4.0), which consists of two types of paired sentences: 1) pairs where a target word has the same sense and 2) pairs where the target word has different senses across sentences. For each target words and sentence, we prompt the model with: "Please define {target word} in this context." Additionally, we include an internal reasoning step: "<think> Okay, so I need to figure out the meaning of the word {target word}." to ensure that the subsequent inference isolates the word in question instead of additional thinking tokens.

3.2 DiscoveryWorld

DiscoveryWorld (Jansen et al., 2024) is a largescale agentic environment suite that tests the abilities of an agent to perform the scientific method. Each environment has a terminal goal, for example, we study "Reactor Lab" where the agent must tune the frequency of quantum crystals to activate a reactor. To succeed, the agent must formulate and test hypotheses by using available tools, literature, and its own memory. DiscoveryWorld is notably difficult for frontier models like GPT40, and even take human experts hundreds of in-game steps to complete a task (Jansen et al., 2024). Hence, DiscoveryWorld offers a testbed to examine the longhorizon reasoning capabilities of R1. Building on the Words-in-Context experiment, we want to know if a similar phenomena of expert specialization can be found for the reasoning patterns that we observe within DeepSeek-R1's chain of thought.

Sparse Autoencoders

To get a clearer picture of how these patterns are invoked internally, we employ SAEs to learn a mapping between the internal activations of R1 and a set of underlying semantic structures exhibited by the model. Briefly, an SAE learns a compressed representation of input vectors $x \in \mathbb{R}^d$. The encoder maps inputs to a higher-dimensional latent space, while the decoder reconstructs the input from the latent representation. Given an encoding dimension n, we define the encoder and decoder as: $z = \max(0, W_{\text{enc}}x + b_{\text{enc}})$ and $\hat{x} = W_{\text{dec}}z$

where $W_{\text{enc}} \in \mathbb{R}^{n \times d}$ and $W_{\text{dec}} \in \mathbb{R}^{d \times n}$ are the learnable weight matrices of the encoder and decoder respectively, and $b_{\text{enc}} \in \mathbb{R}^n$ is a bias term. The model is trained using a loss function that balances reconstruction accuracy and sparsity: $L = \|x - \hat{x}\|_2^2 + \lambda \|z\|_1$

where the first term is the mean squared error for reconstruction, and the second term is an L_1 penalty that encourages sparsity in the latent activations, where we choose $\lambda=5$ as the trade-off between reconstruction fidelity and sparsity.

4 Results

Word-in-Context For 1K pairs of sentences in WiC, we collect router activations for DeepSeek-R1, Mixtral-8x7B and Mixtral-8x22B and record the number of overlapping experts at each layer.

We compare the average rate of overlap in sentence pairs where the target word has the same sense versus sentence pairs where it has a different meaning. If sentence pairs where the target word has different senses have higher expert overlap than sentence pairs where the target word has the same sense, then this is evidence that expert routing differentiates on a semantic basis.

Figure (2) presents the number of overlapping experts by layer, averaged across sentence pairs in each of the two conditions and by model. We compute selected expert overlap by normalizing using the following formula:

$$score = \frac{observed - expected}{maximum - expected}$$

where *observed* is the number of overlapping experts, *maximum* is the maximum number of overlapping experts (2 for Mixtral, 8 for DeepSeek) and *expected* is the expected number of overlapping experts from a random baseline. This ensures a more fair comparison with models of differing number of

Figure 2: Average normalized expert overlap by layer: we show the normalized mean number of overlapping experts by layer for WiC sentence pairs with same and different target word senses. The shading indicates a bootstrapped 95% confidence interval.

total and selected experts. See §A.2 for a derivation of the random baseline.

We find strong evidence for semantic specialization in these experiments; expert overlap is **lower** for sentence pairs where the target word has different senses than when they are the same. This effect is statistically significant (p < 0.001) for all models considered when averaged across all layers. See appendix §A.1 for further details. For all models the difference in overlap *increases* in intermediary layers. This supports prior findings that semantic features are more salient in the intermediary layers of LLMs (Niu et al., 2022; Kaplan et al., 2024). Our results are also suggestive that this pattern emerges at scale; the difference in expert overlap increases with model size.

DiscoveryWorld At a high level, we find that R1's reasoning traces on DiscoveryWorld display many indicators reminiscent of System 2 thinking, such as backtracking, self-evaluation, and situational awareness, see Appendix §B for an example.

Given R1's thinking text on DiscoveryWorld, we want to investigate if its experts are specialized on reasoning strategies. Given any reasoning trace, we can find groups of tokens that correspond to a specific reasoning strategy and observe which experts are subsequently activated. If similar experts are used to process all the tokens for a given reasoning strategy, then we have evidence that the experts also specialize by cognitive pattern. To this

Expert 138	Expert 89	Expert 81
reactor	reactor	reactor
core	microscope	microscope
microscope	,	frequency
it	it	maybe
frequency	frequency	crystal

Table 1: Top 5 tokens associated with experts often selected for words such as "hypothesis" and "Wait".

end, we train an SAE to obtain an atlas of different reasoning patterns (see Figure (1) for an example), and show that R1 tends to activate similar experts for all tokens given by single SAE head (neuron), meaning that the experts are not just semantically specialized, but also control the presence of high level reasoning.

SAE Training Details We evaluate DeepSeek-R1 on the DiscoveryWorld environment: "Reactor Lab", collecting 100 steps through the environment. For each step we collect all valid output text including the chain of thought and the corresponding prerouter activations: (the embeddings before expert selection). We consider a generation valid if we have a complete set of "<think>", "</think>" tags. In total we collect 200,000 token-activation pairs. We perform all inference using VLLM (Kwon et al., 2023) on Intel® Gaudi 3 AI accelerators in the Intel® TiberTM AI Cloud.

We train a standard SAE on these activations using the SAELens library (Joseph Bloom and Chanin, 2024) (MIT License). We trained for 30,000 steps with a batch size of 4096, learning rate of $5e^{-5}$, SAE width of 28,672, and we reset dead SAE weights after 1K steps. We train the SAE on the activations of layer 7 for a trade-off between early layers with clear token-expert mapping and later layers having high expert selection diversity.

Results As an illustrative example, we choose two tokens associated with reasoning: "hypothesis" and "Wait". As a baseline, Table (1) shows an expert-token analysis without an SAE. We see that the experts that are most often allocated for "Wait", are also chosen for tokens like "microscope", "frequency", and "crystal". These ancillary tokens are objects/quantities from the environment i.e. the subject of reasoning, but yield no additional information about the reasoning process itself.

The SAE provides further insight by examining sets of tokens that are linked through the maximal activation of a single SAE head. Table (2) shows an example where a single head (active on "Wait")

Input Token	SAE Value	Top 5 occurring experts					
bet	17.16	47	133	136	138	148	
Wait	7.94	81	89	95	133	136	
notes	6.79	71	89	90	133	138	
probably	4.97	48	57	101	136	138	
output	4.59	81	89	133	136	138	
3	3.92	81	89	95	136	138	
fail	3.53	81	89	121	133	136	
It	2.87	89	133	136	138	183	
ones	2.06	57	101	121	133	136	
attempt	1.72	15	81	89	95	133	

Table 2: We selected the top activating SAE head on the word "Wait" and used its activations to identify additional activating tokens. We find the top 5 occurring experts given these tokens is highly consistent, experts chosen for 50% or more tokens are bolded.

identifies semantically similar tokens. By inspecting the corresponding SAE activations, we observe tokens such as "bet," "probably," and "attempt," which suggest a cognitive pattern of uncertainty regarding the current strategy. Moreover, we find that this reasoning pattern is most commonly routed to a small set of experts. Examining these tokens and activations in context (e.g., see Figure (1)) further illustrates how R1 leverages contextual information in its reasoning process.

We also find that the SAE head corresponding to "hypothesis", yields a pattern of overlapping experts along semantically similar tokens such as: "definitely", "perform", "analyzing", "scientific", and "information". See the appendix §A.3 for more detailed examples. In summation, we find that R1 consistently chooses a small set of experts for reasoning patterns identified by the SAE, indicating that the experts also specialize by thought process.

5 Conclusion

With access to DeepSeek-R1's model weights and motivated by its significant improvements in reasoning and cognitive behavior, we analyzed its expert selection mechanism. Our study focused on two key settings: semantic context and reasoning strategy analysis. In the first experiment, we found that DeepSeek-R1 exhibits stronger semantic specialization than previous MoE models, with expert selection aligning more closely with semantic meaning. In the second experiment, we discovered cognitive specialization, where different experts are responsible for distinct reasoning processes. Over-

all, our findings provide a deeper interpretation of DeepSeek-R1's routing behavior, highlighting its semantic awareness and structured cognitive processing. These insights contribute to a better understanding of how MoE models can be optimized for reasoning and efficiency.

Limitations

Since DeepSeek-R1 has significantly more experts than Mistral (256 vs. 8), the probability of selecting overlapping experts is inherently lower from a statistical standpoint. To account for this, we normalized the overlap values based on the expected distribution. Additionally, the larger number of experts in DeepSeek-R1 could itself be a contributing factor to the emergence of semantic specialization. This raises the question of whether the observed semantic alignment is an intrinsic property of DeepSeek-R1's specific training setup e.g. device-specific expert allocation (Liu et al., 2024), fine-tuning via GRPO (Shao et al., 2024), or a natural consequence of a more fine-grained expert distribution. Future studies should explore this relationship further to disentangle the effects of model architecture and training setup from routing behavior.

Ethics Statement

For each artifact used e.g. R1 model weights, WiC dataset, we follow the intended use, and while we do not believe that our analysis of DeepSeek-R1 poses any risks or ethical considerations, we acknowledge the inherent issues with LLMs that are trained on web-scale or biased data. Outputs from LLMs may raise safety concerns due to hallucinations or bias in the training data.

References

- Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. 2023. Sparse autoencoders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*.
- Dongyang Fan, Bettina Messmer, and Martin Jaggi. 2024. Towards an empirical understanding of moe design choices. *arXiv preprint arXiv:2402.13089*.
- William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*.
- Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of local experts. *Neural computation*, 3(1):79–87.

- Peter Jansen, Marc-Alexandre Côté, Tushar Khot, Erin Bransom, Bhavana Dalvi Mishra, Bodhisattwa Prasad Majumder, Oyvind Tafjord, and Peter Clark. 2024. Discoveryworld: A virtual environment for developing and evaluating automated scientific discovery agents. *arXiv preprint arXiv:2406.06769*.
- Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint arXiv:2401.04088.
- Curt Tigges Joseph Bloom and David Chanin. 2024. Saelens. https://github.com/jbloomAus/SAELens.
- Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz. 2024. From tokens to words: On the inner lexicon of llms. *arXiv preprint arXiv:2410.05864*.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. In *Proceedings of the 29th Symposium on Operating Systems Principles*, pages 611–626.
- Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. 2024. Jamba: A hybrid transformer-mamba language model. *arXiv preprint arXiv:2403.19887*.
- Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437.
- Jingcheng Niu, Wenjie Lu, and Gerald Penn. 2022. Does bert rediscover a classical nlp pipeline? In *Proceedings of the 29th International Conference on Computational Linguistics*, pages 3143–3153.
- John P O'Doherty, Sang Wan Lee, Reza Tadayonnejad, Jeff Cockburn, Kyo Iigaya, and Caroline J Charpentier. 2021. Why and how the brain weights contributions from a mixture of experts. *Neuroscience & Biobehavioral Reviews*, 123:14–23.
- Mohammad Taher Pilehvar and Jose Camacho-Collados. 2018. Wic: the word-in-context dataset for evaluating context-sensitive meaning representations. *arXiv* preprint arXiv:1808.09121.
- Xiaozhe Ren, Pingyi Zhou, Xinfan Meng, Xinjing Huang, Yadao Wang, Weichao Wang, Pengfei Li, Xiaoda Zhang, Alexander Podolskiy, Grigory Arshinov, et al. 2023. Pangu-{\Sigma}: Towards trillion parameter language model with sparse heterogeneous computing. arXiv preprint arXiv:2303.10845.

- Stephen Roller, Sainbayar Sukhbaatar, Jason Weston, et al. 2021. Hash layers for large sparse models. *Advances in Neural Information Processing Systems*, 34:17555–17566.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*.
- Andrea Stocco, Christian Lebiere, and John R Anderson. 2010. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. *Psychological review*, 117(2):541.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837.
- Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You. 2024. Openmoe: An early effort on open mixture-of-experts language models.
- Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu, Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. 2024. Evaluation of openai o1: Opportunities and challenges of agi. arXiv preprint arXiv:2409.18486.
- Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and William Fedus. 2022. St-moe: Designing stable and transferable sparse expert models.
- Simiao Zuo, Xiaodong Liu, Jian Jiao, Young Jin Kim, Hany Hassan, Ruofei Zhang, Tuo Zhao, and Jianfeng Gao. 2021. Taming sparsely activated transformer with stochastic experts. *arXiv preprint arXiv:2110.04260*.

A Statistical Tests

A.1 Words-in-Context

To statistically test the difference between the "Same" and "Different" sentence pairs, we conduct a two-sampled t-test on the null hypothesis that the distribution of average overlap for the two conditions is equal. The p-values are reported in table (3).

Model	t	p
DeepSeek-R1	12.1	< 0.0001
Mistral-8x22B	11.1	< 0.0001
Mistral-8x7B	7.82	< 0.0001

Table 3: Two-sample t-test on null of no difference between "Same" and "Different" conditions.

A.2 Random Baseline

The baseline number of overlapping experts of we expect to select at random in a given MoE layer can be formalized as follows. Given independent two draws of k items from N elements (without replacement), the expected number of overlapping items between the two draws can be calculated according to the following formula:

$$\mathbb{E}[\text{overlap}] = \frac{k^2}{N}$$

Proof. The first draw of k items is at random. For the first item in the second draw, the probability of selecting the same item is $\frac{k}{N}$.

Using the linearity of expectation, the expected total overlap is $\sum_{i=N}^{k} \frac{k}{N} = k \cdot \frac{k}{N} = \frac{k^2}{N}$.

A.3 SAE token analysis

In tables (4, 5, 6, 7, 8, 9, 10, 11, 12), we show top experts by leveraging SAE activations on a selection of hand chosen interesting tokens. We find striking consistency across expert selection when using the SAE to find semantically similar concepts.

B DiscoveryWorld Environment Details

DiscoveryWorld features 8 tasks centered on different scientific fields. We choose to evaluate R1 on the "Reactor Lab" environment, where the stated goal is to: "discover a relationship (linear or quadratic) between a physical crystal property

Input Token	SAE Value	Top 5 occurring experts					
wait	14.97	47	133	138	148	183	
Are	1.7	90	133	136	138	170	
ones	1.24	57	101	121	133	136	
No	0.32	26	47	136	138	183	
best	0.16	15	47	81	89	133	
attempt	0.05	15	81	89	95	133	
Wait	0.02	81	89	95	133	136	

Table 4: An analysis of selected experts by leveraging the trained Sparse Autoencoder. The target token is "wait."

Input Token	SAE Value	Top 5 occurring experts				
giving	4.47	11	15	81	89	90
hypothesis	4.04	11	15	81	89	90
definitely	2.26	11	15	81	89	90
perform	1.96	11	15	81	89	90
priority	1.82	11	15	81	89	90
analyzing	1.51	11	15	81	89	90
scientific	1.17	11	15	81	89	90

Table 5: An analysis of selected experts by leveraging the trained Sparse Autoencoder. The target token is "hypothesis."

Input Token	SAE Value	Top 5 occurring experts				
combining	13.50	11	15	69	90	136
formatted	13.32	11	15	69	90	136
frequencies	13.31	11	15	69	90	136
accessible	13.31	11	15	26	136	138
restrictions	13.29	11	15	26	136	138
rejected	13.13	11	15	69	90	136
559	9.92	11	15	69	90	136
UUID	6.83	11	15	26	136	138
854	6.62	11	15	69	90	136
obtaining	6.44	15	90	95	136	138

Table 6: An analysis of selected experts by leveraging the trained Sparse Autoencoder. We selected the top activating SAE head on the word "UUID" and used its activation's value to identify other semantically similar tokens. The top 5 occurring experts are highly consistent across these varying words.

Input Token	SAE Value	Top 5 occurring experts					
plan	10.25	4 81 118 121 136					
block	7.59	47 81 101 118 121					
panel	1.3	11 47 81 89 136					
've	0.78	11 89 95 121 133					
says	0.41	118 121 138 144 148					
data	0.27	11 15 47 81 136					
memory	0.26	4 8 11 26 121					
Wait	0.03	81 89 95 133 136					
But	0.02	11 15 28 81 89					
core	0.02	11 22 79 109 118					

Table 7: Analysis of selected experts for the token "plan" using a trained Sparse Autoencoder.

Input Token	SAE Value	Top 5 occurring experts				
changes	8.48	15	81	89	90	95
THEN	8.33	15	28	81	89	95
Unless	8.3	15	28	81	89	95
along	8.26	15	28	81	89	95
puts	8.1	15	28	81	89	95
matters	7.77	15	81	89	90	95
approach	6.11	15	28	81	89	95
close	5.47	15	81	89	90	95
floor	5.23	15	28	81	89	95
outline	4.77	15	28	81	89	90

Table 8: Analysis of selected experts for the token "approach" using a trained Sparse Autoencoder.

Input Token	SAE Value	Top 5 occurring experts							
work	4.22	11	15	89	90	95			
better	2.44	15	89	90	95	136			
two	2.23	11	15	23	69	89			
error	2.19	15	23	69	89	90			
let	2.16	15	69	89	95	138			
I	2.14	11	15	81	89	90			
	2.14	11	15	69	90	95			
three	2.04	15	69	89	90	95			
case	1.81	11	15	89	90	95			
per	1.71	69	89	132	138	148			

Table 9: An analysis of selected experts by leveraging the trained Sparse Autoencoder. We selected the top activating SAE head on the word "work" and used its activation's value to identify other semantically similar tokens. The top 5 occurring experts are highly consistent across these varying words.

Input Token	SAE Value	Top 5 occurring experts					
helps	8.36	11	15	81	89	90	
resulted	8.29	11	15	69	89	90	
parameter	8.27	11	15	81	89	90	
consider	8.14	11	15	89	90	180	
positions	7.96	11	15	81	89	90	
ensuring	7.92	11	15	69	89	90	
include	7.83	11	15	69	89	90	
generate	7.79	11	15	68	89	90	
separate	7.72	11	15	81	89	90	
limitations	7.71	11	15	81	89	90	

Table 10: An analysis of selected experts by leveraging the trained Sparse Autoencoder. We selected the top activating SAE head on the word "consider" and used its activation's value to identify other semantically similar tokens. The top 5 occurring experts are highly consistent across these varying words.

Input Token	SAE Value	Top 5 occurring experts					
bet	17.16	47	133	136	138	148	
Wait	7.94	81	89	95	133	136	
notes	6.79	71	89	90	133	138	
probably	4.97	48	57	101	136	138	
output	4.59	81	89	133	136	138	
20	3.92	81	89	95	136	138	
fail	3.53	81	89	121	133	136	
It	2.87	89	133	136	138	183	
ones	2.06	57	101	121	133	136	
attempt	1.72	15	81	89	95	133	

Table 11: An analysis of selected experts by leveraging the trained Sparse Autoencoder. We selected the top activating SAE head on the word "bet" and used its activation's value to identify other semantically similar tokens. The top 5 occurring experts are highly consistent across these varying words.

Input Token	SAE Value	Top 5 occurring experts				
examine	7.28	15	81	89	95	136
arg	5.45	11	15	81	89	95
twice	5.33	11	15	28	81	89
walls	5.33	15	28	81	89	95
if	4.29	11	15	81	89	95
so	3.66	11	15	81	89	95
actions	3.58	11	15	81	89	95
1	3.52	11	15	81	89	95
'11	3.42	15	81	89	95	121
same	3.31	15	28	81	89	95

Table 12: An analysis of selected experts by leveraging the trained Sparse Autoencoder. We selected the top activating SAE head on the word "so" and used its activation's value to identify other semantically similar tokens. The top 5 occurring experts are highly consistent across these varying words.

(like temperature or density) and its resonance frequency through regression, and use this to tune and activate a reactor."

In Figure (3), we show the Reactor Lab environment, where the agent has access the crystals and microscope in its inventory. The pixel-based visual observation itself it not used by R1 directly, but the prompt (see below) contains a structured description of the environment.

Figure 3: Visual observation in the Reactor Lab environment at step 50.

We show an example prompt and chain of thought output by R1 in the Reactor Lab environment below.

Example Prompt on DiscoveryWorld Reactor Lab

```
You are playing a video game about making scientific discoveries. The game is in the style of a
2D top-down RPG (you are the agent with green hair in the center of the image), and as input
you get both an image, as well as information from the user interface (provided in the JSON below)
that describes your location, inventory, objects in front of you, the result of your last action,
and the task that you're assigned to complete. Because this is a game, the actions that you can
complete are limited to a set of actions that are defined by the game. Those are also described
below. This game is played step-by-step. At each step, you get the input that I am providing,
and output a single action to take as the next step. Note that this game has a spatial component,
given that it's played on a 2D map. The objects shown in `nearbyObjects` are objects that are near
you. If you can't see an object you're looking for, you'll have to move to find it (or, it may be
located in a closed container).
Environment Observation (as JSON): ```json
"errors": [], "ui": {
"accessibleEnvironmentObjects": [ {
"description": "floor", "name": "floor", "uuid": 20777
} ],
"agentLocation": { "directions_blocked": [
"north" ],
"directions_you_can_move": [ "east",
"south",
"west" ],
"faceDirection": "south", "x": 16,
"y": 18
"description": "floor", "name": "floor", "uuid": 25494
    }, "dialog_box": {
"is_in_dialog": false },
"discoveryFeed": {
"description": "This section contains recent posts (from the last few steps)
on the Discovery Feed social media platform.", "posts": [
"author": "Colony Founder",
"content": "Welcome to Discovery World!", "postID": 1,
"step": 0,
"type": "update"
} ],
"scientific_articles": [] },
"extended_action_message": "", "inventoryObjects": [], "lastActionMessage": "", "nearbyAgents":
"description": "This section lists the recent action history (i.e. within the last few steps)
of any agents that are nearby. This can help you understand what other agents are doing, and
what they might be planning to do.",
"list_of_agents": {
"crystal reactor (activated) uuid 51739": [],
"crystal reactor (activated) uuid 8549": [],
"crystal reactor (no crystal present) uuid 33120": []
} },
"nearbyObjects": {
"distance": 3,
"note": "The objects below are within 3 tiles of the agent, but may not
neccesarily be usable if they're not in the agent inventory, or directly in front of the agent.
This list should help in navigating to objects you'd like to interact with or use. Objects to
interact with or use should be in the 'accessibleEnvironmentObjects' or 'inventoryObjects'
lists.",
"objects": { "east": [
{
"description": "floor", "distance": 1, "name": "floor",
    "uuid": 2508 },
"description": "wall", "distance": 2, "name": "wall", "uuid": 50350
}, {
}, {
} ],
```

```
"north": [ {
 "description": "wall", "distance": 3, "name": "wall", "uuid": 37350
}, {
}, {
}, {
"description": "plant (generic)", "distance": 3,
"name": "plant (generic)", "uuid": 7078
"description": "grass", "distance": 3,
"name": "grass", "uuid": 65231
"description": "generator core (33% activated)", "distance": 2,
"name": "generator core (33% activated)", "uuid": 11878
"description": "floor", "distance": 2, "name": "floor", "uuid": 2056
"description": "table", "distance": 1, "name": "table",
      "uuid": 55934 },
"description": "crystal reactor (activated)", "distance": 1,
 "name": "crystal reactor (activated)", "uuid": 51739
"description": "quantum crystal 2 (in crystal reactor (activated) [uuid: 51739])",
"distance": 1,
 "name": "quantum crystal 2", "uuid": 13162
}, {
 } ],
"north-east": [ {
"description": "wall", "distance": 4, "name": "wall", "uuid": 1787
}, {
}, {
 "description": "floor", "distance": 1, "name": "floor", "uuid": 47477
 "description": "generator", "distance": 3,
"name": "generator", "uuid": 42960
"description": "floor", "distance": 3, "name": "floor", "uuid": 46461
"description": "table", "distance": 2,
      "name": "table",
"uuid": 35632 },
"name": "crystal reactor (no crystal present)", "uuid": 33120
}, {
}, {
}, {
}, {
}, {
"description": "floor", "distance": 2, "name": "floor", "uuid": 65141
"description": "wall", "distance": 5, "name": "wall", "uuid": 50423
"description": "wall", "distance": 4, "name": "wall", "uuid": 776
"description": "wall", "distance": 3, "name": "wall", "uuid": 20359
"description": "grass", "distance": 6,
"name": "grass", "uuid": 3230
"description": "grass", "distance": 5,
"name": "grass", "uuid": 48819
      }, {
} ],
"north-west": [ {
"description": "grass", "distance": 6,
"name": "grass", "uuid": 423
}, {
}, {
}, {
}, {
}, {
"description": "grass", "distance": 4,
"name": "grass", "uuid": 14236
"description": "grass", "distance": 5,
```

```
"name": "grass", "uuid": 29205
"description": "grass", "distance": 4,
"name": "grass", "uuid": 57841
"description": "wall", "distance": 5, "name": "wall", "uuid": 14424
"description": "wall", "distance": 4, "name": "wall", "uuid": 44861
"description": "wall", "distance": 3, "name": "wall", "uuid": 24902
}, {
}, {
}, {
}, {
"description": "quantum crystal 1 (in crystal reactor (activated) [uuid: 8549])",
"distance": 2,
"name": "quantum crystal 1", "uuid": 21559
"description": "wall", "distance": 4, "name": "wall", "uuid": 40815
"description": "generator", "distance": 3,
"name": "generator", "uuid": 46683
"description": "floor", "distance": 3, "name": "floor", "uuid": 60834 "description": "table", "distance": 2, "name": "table", "uuid": 57736
"description": "crystal reactor (activated)", "distance": 2,
"name": "crystal reactor (activated)", "uuid": 8549
"description": "floor", "distance": 2, "name": "floor", "uuid": 4766
      ], "same_location": [
"description": "agent", "distance": 0,
"name": "agent", "uuid": 12622
}, {
} ],
"south": [ {
"description": "floor", "distance": 1, "name": "floor", "uuid": 25494
}, {
}, {
} ],
 "south-east": [ {
"description": "floor", "distance": 0, "name": "floor", "uuid": 20777
"description": "closed locked door", "distance": 2,
"name": "door",
"uuid": 33841
"description": "floor", "distance": 2, "name": "floor", "uuid": 36757 "description": "path", "distance": 3, "name": "path", "uuid": 10680
"description": "table",
      "distance": 2, "name": "table", "uuid": 57306
}, {
}, {
}, {
}, {
"description": "quantum crystal 3 (on table [uuid: 57306])", "distance": 2,
"name": "quantum crystal 3",
"uuid": 24678
"description": "floor", "distance": 2, "name": "floor", "uuid": 32662
"description": "wall", "distance": 3, "name": "wall", "uuid": 41671
"description": "grass", "distance": 4,
"name": "grass", "uuid": 41428
"description": "wall", "distance": 3, "name": "wall", "uuid": 47309
"description": "wall", "distance": 4, "name": "wall", "uuid": 34833
"description": "grass", "distance": 5,
"name": "grass"
"name": "grass",
```

```
"uuid": 16937 },
"description": "grass", "distance": 4,
"name": "grass", "uuid": 27561
} ],
"south-west": [ {
"description": "grass", "distance": 4, "name": "grass", "uuid": 21437
}, {
}, {
}, {
}, {
  "description": "grass", "distance": 5,
  "name": "grass", "uuid": 3348
  "description": "grass", "distance": 6,
  "name": "grass", "uuid": 27376
  "description": "grass", "distance": 5,
  "name": "grass", "uuid": 58193
  "description": "grass", "distance": 6,
  "name": "grass", "uuid": 57051
  "description": "wall", "distance": 3, "name": "wall",
      "uuid": 18573 },
{
"description": "wall", "distance": 4, "name": "wall", "uuid": 56968
}, {
}, {
}, {
}, {
}, {
"description": "grass", "distance": 5,
"name": "grass", "uuid": 19401
 "description": "table", "distance": 2, "name": "table", "uuid": 58937
 "description": "microscope (on table [uuid: 58937])", "distance": 2,
"name": "microscope",
"uuid": 35975
"description": "floor", "distance": 2, "name": "floor", "uuid": 29924 "description": "sign", "distance": 3, "name": "sign", "uuid": 31729 "description": "wall", "distance": 3, "name": "wall", "uuid": 56191
"description": "grass", "distance": 4, "name": "grass", "uuid": 58627
} ],
"west": [ {
"description": "plant (generic)", "distance": 3,
 "name": "plant (generic)", "uuid": 46527
}, {
}, {
} ]
} },
"taskProgress": [ {
"completed": false,
"completedSuccessfully": false,
"description": "You are at the Quantum Reactor Lab on Planet X.
Quantum Crystals offer the potential to generate a great deal of power, but require their
respective crystal reactors to be tuned to a specific frequency that appears unique for each
crystal. Through great effort, a previous research scientist manually stumbled upon the correct
frequencies for Crystal 1 and Crystal 2, which
"description": "grass", "distance": 3,
"name": "grass", "uuid": 15002
"description": "wall", "distance": 2, "name": "wall", "uuid": 56583
"description": "floor", "distance": 1, "name": "floor", "uuid": 53954
```

```
are in their respective reactors. Your task is to use science to figure out the correct
   frequency for Crystal 3, set it's reactor to the appropriate frequency, and install the crystal.
    Once all three crystals are installed, the reactor will be able to generate a great deal of
    power. To support your task, a scientific instrument is available in the lab. ",
"taskName": "ReactorTaskEasy" }
"world_steps": 1 }
Actions: ```json {
"ACTIVATE": { "args": [
"arg1" ],
"desc": "activate an object (arg1)" },
"CLOSE": { "args": [ "arg1"
"desc": "close an object (arg1)" },
"DEACTIVATE": { "args": [
"arg1" ],
"desc": "deactivate an object (arg1)" },
"DISCOVERY_FEED_GET_POST_BY_ID": { "args": [
"arg1" ], "desc": "read a specific post on discovery feed (arg1). 'arg1' should be the integer ID of
the post."
}, "DISCOVERY_FEED_GET_UPDATES": {
"args": [],
"desc": "read the latest status updates on discovery feed" },
    "DROP": { "args": [ "arg1"
"desc": "drop an object (arg1)" },
"EAT": { "args": [ "arg1" ],
"desc": "eat an object (arg1)" },
"MOVE_DIRECTION": { "args": [
"arg1" ],
"desc": "move in a specific direction (arg1), which is one of 'north', 'east', 'south', or 'west'."
}, "OPEN": {
"args": [ "arg1"
"desc": "open an object (arg1)" },
"PICKUP": { "args": [ "arg1"
"desc": "pick up an object (arg1)" },
"PUT": { "args": [
"arg1"
"arg2" ],
"desc": "put an object (arg1) in/on another object (arg2), or give an object (arg1) to
another agent (arg2)"
}, "READ": {
"args": [ "arg1"
"desc": "read an object (arg1)"
}, "ROTATE_DIRECTION": {
"args": [ "arg1"
"desc": "rotate to face a specific direction (arg1), which is one of 'north', 'east',
'south', or 'west'."
}, "TALK": {
"args": [ "arg1"
"desc": "talk to another agent (arg1)" },
"TELEPORT_TO_LOCATION": { "args": [
"arg1"
"arg1" ], "desc": "teleport to a specific location (arg1), by name. A list of valid teleport locations
is provided elsewhere.'
}, "TELEPORT_TO_OBJECT": {
"args": [ "arg1"
```

```
"desc": "teleport beside a specific object (arg1). 'arg1' should be the UUID of the object
to teleport to."
}, "USE": {
"args": [ "arg1", "arg2"
"desc": "use an object (arg1), e.g. a thermometer, on another object (arg2), e.g. water."
Additional information on actions, and how to format your response:
Actions are expressed as JSON. The format is as follows: `{"action": "USE", "arg1": 5,
"arg2": 12}`, where 'action' is the action type, and 'arg1' and 'arg2' refer to the UUIDs
of the objects that serve as arguments. Some actions may require arg1, arg2, or no arguments.
Some actions, like MOVE_DIRECTION, ROTATE_DIRECTION, and Discovery Feed actions require
different arguments, shown above. What arguments are required for specific actions is
provided in the known actions list above. Attempting actions not in the known actions list,
or providing incorrect arguments, will result in an error. Your last few action(s), explanation
for those action(s), and messages you've left in your scratchpad:
```json
Action 0:
"action": "This is the first action", "explanation": "This is the first explanation",
"extended_action_message": "",
"memory": "This is the first memory", "result_of_last_action": "", "running_hypotheses": []
Teleporting: To make moving easier, you can teleport to a list of specific locations in the
environment, using the teleport action. In this case, 'arg1' is the name of a location, from the list below. An example teleport action would be: `{"action": "TELEPORT_TO_LOCATION",
"arg1": "school"}).
```json {
"start location": { "gridX": 16, "gridY": 18
} }`
VERY IMPORTANT: You can also teleport to OBJECTS. This is probably the easiest way for you to
move to new locations, because it's fast and error-free. You can teleport to any object, including
objects you can't see. In this case, 'arg1' is the UUID of the object you want to teleport
to. An example teleport action would be: `{"action": "TELEPORT_TO_OBJECT", "arg1": 123}).
Navigation note: In the image, you are in the center, north is the top, south is the bottom,
east is the right, and west is the left. Moving forward moves you in the direction you're facing.
You are currently facing `south`. From your current location, the directions that you can move
to (i.e. they don't have an object blocking them) are: ['east', 'south', 'west']. You seen to confuse
directions a lot. Directions are relative to the center of the image. Things above the center are
north of the agent. Things left of the center are east of the agent.
Interaction note: You can only interact (i.e. take actions with) objects that are in
    your inventory, or directly (i.e. one square) in front of you, in the direction that you're
   facing. E.g. if you want to pick an object up, you need to move directly in front of it, and face
    it, before using the pick-up action on it.
Please create your output (the next action you'd like to take) below. It should be in the JSON
form expected above e.g.(`{"action": "USE", "arg1": 5, "arg2": 12}`). Your response should ONLY be
in JSON. You should include an additional JSON key, "explanation", to describe your reasoning for performing this action. e.g. `{"action": "USE", "arg1": 5, "arg2": 12, "explanation": "Using the shovel on the soil will allow me to dig a hole to plant a seed"}`. Note that even though this
explanation is short, yours can be a few hundred tokens, if you'd like. Your explanation should say:
(1) What your subgoal is, (2) What you see around you, (3) What you see in front of you, (4) What you
are doing to progress towards your immediate subgoal.
Lastly, your response should also include an additional JSON key, "memory", that includes any
information you'd like to write down and pass on to yourself for the future. This can be helpful in
remembering important results, high-level tasks, low-level subtasks, or anything else you'd like to
remember or think would be helpful. e.g.
`{"action": "USE", "arg1": 5, "arg2": 12, "explanation": "...", "memory": "..."}`
To make your memory helpful, you might consider including things learned from attempting your last
action -- e.g. adding in that certain actions were useful, or not useful, and retaining
(and adding to) this information over time.
To help frame your investigations scientifically, and also evaluate your investigations, please
include an additional JSON key, "running_hypotheses", that includes your current running
hypothesis/hypotheses that you're working on developing and/or testing.
If your last action failed, or other last recent actions failed, please consider thinking why they
failed, and trying different actions unless you believe things have changed to make failed actions
work this time.
```

If you don't see what you're looking for, and anticipate it might be in another location, consider teleporting to that location.

For reference again, here is a list of the objects that are interactable (from your inventory, and directly in front of you): [{"name": "floor", "uuid": 20777}, {"name": "floor", "uuid": 25494}] REMEMBER: you should only output JSON in between code brackets as ```json <Action>

Example Reasoning Output from DeepSeek-R1 (step 50)

Okay, so I'm trying to figure out the next step in this game. Let me start by understanding the current situation. From the environment observation, I see that I'm in the Quantum Reactor Lab on Planet X. My task is to calibrate the crystal reactor for Crystal 3. I've already used the microscope on the crystal reactor, but it didn't give me the frequency information I needed. The result just mentioned a metallic surface, which doesn't help much.

Looking at the nearby objects, I notice there's a table (UUID 35632) right in front of me. I tried reading it before, but it wasn't readable. Maybe I should try a different approach. Perhaps the table has some objects on it that I can interact with. Since I can't read the table, maybe there's a console or a screen that I can use. The table is accessible, so maybe using the microscope on it could reveal something.

Wait, I already have the microscope in my inventory. Using it on the table might show some details that I missed before. Maybe there are notes or diagrams on the table that the microscope can zoom in on. That could give me the frequency data I need for Crystal 3.

So, my next step should be to use the microscope on the table. I'll face north since the table is in that direction. Using the microscope on the table might provide the necessary information to calibrate the reactor correctly. If that doesn't work, I might need to look for other objects or perhaps check the generator again, but for now, the table seems like the best bet.

I should make sure I'm facing the right direction and that the table is directly in front of me. Since I can only interact with objects directly in front, my facing direction is crucial. Once I use the microscope on the table, I'll see if it reveals any clues about the frequency. If it does, I can proceed to calibrate the reactor. If not, I'll have to think of another plan, maybe teleporting to another object or checking other nearby items.

In summary, using the microscope on the table is the logical next step to gather the necessary information for calibrating the reactor. This action aligns with my goal of finding the correct frequency for Crystal 3 and completing the task.