

10 / 30 / 00

BIRCH, STEWART, KOLASCH & BIRCH, LLP

INTELLECTUAL PROPERTY LAW
8110 GATEHOUSE ROAD
SUITE 500 EAST
FALLS CHURCH, VA 22042-1210
U S A
(703) 205-8000

TERRELL C. BIRCH
RAYMOND C. STEWART
JOSEPH A. KOLASCH
JAMES M. SLATTERY
BERNARD L. SWEENEY*
MICHAEL K. MUTTER
CHARLES GORENSTEIN
GERALD M. MURPHY, JR.
LEONARD R. SVENSSON
TERRY L. CLARK
ANDREW D. MEIKLE
MARCS S. WEINER
JOE MCKINNEY MUNCY
ROBERT J. KENNEY
DONALD J. DALEY
JOHN W. BAILEY
JOHN A. CASTELLANO, II
GARY D. YACURA

OF COUNSEL
HERBERT M. BIRCH (1905-1996)
ELLIOT A. GOLDBERG*
WILLIAM L. GATES*
EDWARD H. VALANCE
RUPERT J. BRADY (RET.)*
F. PRINCE BUTLER
FRED S. WHISENHUNT

*ADMITTED TO A BAR OTHER THAN VA.

FAX: (703) 205-8050
(703) 698-8590 (G IV)

e-mail: mailroom@bskb.co
web: <http://www.bskb.com>

e-mail: mailroom@bskb.com
web: <http://www.bskb.com>

CALIFORNIA OFFICE:
COSTA MESA, CALIFORNIA

THOMAS S AUCHTERLONIE
JAMES T ELLER, JR
SCOTT L LOWE
MARK J NUELL, Ph D
D RICHARD ANDERSON
PAUL C LEWIS
MARK W MILSTEAD*
RICHARD J GALLAGHER
JAYNE M SAYDAH*

REG. PATENT AGENTS:
FREDERICK R. HANDREN
MARYANNE ARMSTRONG, Ph.D.
MAKI HATSUMI
MIKE S. RYU
CRAIG A. McROBBIE
GARTH M DAHLEN, Ph.D.
LAURA C. LUTZ
ROBERT E. GOOZNER, Ph.D.
HYUNG N. SOHN
MATTHEW J. LATTIG
ALAN PEDERSEN-GILES
C. KEITH MONTGOMERY
TIMOTHY R. WYCKOFF
KRISTI L. RUPERT, Ph.D
LARRY J. HUME
ALBERT LEE
HRAYRA A. SAYADIAN, Ph.D

Date: October 30, 2000

Docket No.: 1920-0111E

1030
C917 U69.874 pre

Assistant Commissioner for Patents
Box PATENT APPLICATION
Washington, D.C. 20231

Sir:

Transmitted herewith for filing is the patent application of

Inventor(s) : FRANCKE, Tom
PESKOV, Vladimir

APPARATUS AND METHOD FOR RADIATION DETECTION

Enclosed are:

- A specification consisting of 19 pages
 - 02 sheet(s) of Formal drawings
 - An assignment of the invention
 - Certified copy of Priority Document(s)
 - Executed Declaration Original Photocopy
 - A verified statement to establish small entity status under 37 CFR 1.9 and 37 CFR 1.27
 - Preliminary Amendment
 - Information Disclosure Statement, PTO-1449 and reference(s)

Other

The filing fee has been calculated as shown below:

			LARGE ENTITY		SMALL ENTITY	
FOR	NO. FILED	NO. EXTRA	RATE	Fee	RATE	Fee
BASIC FEE	***** ***** *****	***** ***** *****	***** ***** *****	\$710.00 or	**** **** ****	\$355.00 or
TOTAL CLAIMS	31 - 20 =	11	x18 = \$	0.00 or	x 9 = \$	99.00 or
INDEPENDENT	2 - 3 =	0	x80 = \$	0.00 or	x 40 = \$	0.00 or
MULTIPLE DEPENDENT CLAIM PRESENTED	<u>no</u>		+270 = \$	0.00 or	+135 = \$	0.00 or
			TOTAL \$	0.00	TOTAL \$	454.00

A check in the amount of \$ 494.00 to cover the filing fee and recording fee (if applicable) is enclosed.

Please charge Deposit Account No. 02-2448 in the amount of \$. A triplicate copy of this transmittal form is enclosed.

No fee is enclosed.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees required under 37 C.F.R. 1.16 or under 37 C.F.R. 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

By

JOHN CASTELLANO
Reg. No. 35,094
P. O. Box 747
Falls Church, Virginia 22040-0747

(703) 205-8000
JAC/cqc

STATEMENT CLAIMING SMALL ENTITY STATUS
(37 CFR 1.9(f) & 1.27(c)) - SMALL BUSINESS CONCERN

Docket Number: 1920-111P

10/30/00
JG17 U.S. PRO
09/698174

Applicant, Patentee, or Identifier: Tom Francke et al.

Application or Patent No.: New

Filed or Issued: October 30, 2000

Title: APPARATUS AND METHOD FOR RADIATION DETECTION

I hereby state that I am

- the owner of the small business concern identified below.
 an official of the small business concern empowered to act on behalf of the concern identified below:

NAME OF SMALL BUSINESS CONCERN XCounter AB

ADDRESS OF SMALL BUSINESS CONCERN Svärdevägen 3B, SE-182 33 Danderyd, Sweden

I hereby state that the above identified small business concern qualifies as a small business concern as defined in 37 CFR Part 121 for purposes of paying reduced fees to the United States Patent and Trademark Office, in that the number of employees of the concern, including those of its affiliates, does not exceed 500 persons. For purposes of this statement, (1) the number of employees of the business concern is the average over the previous fiscal year of the pay periods of the fiscal year, and (2) concerns are affiliates of each other when either, directly or indirectly, one concern controls or has the power to control the other, or a third party or parties controls or has the power to control both.

I hereby state that rights under contract or law have been conveyed to and remain with the small business concern identified above with regard to the invention described in:

- the specification filed herewith with title as listed above.
 the application identified above.
 the patent identified above.

If the rights held by the above identified small business concern are not exclusive, each individual, concern, or organization having rights in the invention must file separate statements as to their status as small entities, and no rights to the invention are held by any person, other than the inventor, who would not qualify as an independent inventor under 37 CFR 1.9(c) if that person made the invention, or by any concern which would not qualify as a small business concern under 37 CFR 1.9(d), or a nonprofit organization under 37 CFR 1.9(e).

Each person, concern, or organization having any rights in the invention is listed below:

- no such person, concern, or organization exists.
 each such person, concern, or organization is listed below.

Separate statements are required from each named person, concern, or organization having rights to the invention stating their status as small entities.
(37 CFR 1.27)

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b))

NAME OF PERSON SIGNING Tom Francke

TITLE IN ORGANIZATION OF PERSON SIGNING President

ADDRESS OF PERSON SIGNING Hemgårdsvägen 2, SE 191 44 Sollentuna, Sweden

SIGNATURE Tom Francke

DATE 9-10-2000

APPARATUS AND METHOD FOR RADIATION DETECTION**TECHNICAL FIELD OF THE INVENTION**

The present invention generally relates to an apparatus and method for detection of radiation.

- 5 The invention is usable in a variety of fields including e.g. medical radiology, computerized tomography (CT), microscopy, and non-destructive testing.

DESCRIPTION OF RELATED ART AND BACKGROUND OF THE INVENTION

Gaseous detectors, in general, are very attractive at photon
10 energies lower than approximately 10 keV. The main advantages of gaseous detectors are that they are cheap to manufacture compared to solid state detectors, and that they can employ gas multiplication to strongly (on orders of magnitude) amplify the signal amplitudes. However, at energies exceeding 10 keV the
15 gaseous detectors are less attractive as the stopping power of the gas decreases rapidly with increased photon energy. This results in a heavily deteriorated spatial resolution due to parallax errors of the conversion points of the often divergent incident beam of radiation, and due to extended tracks of so-called long-range electrons, which are created as a result of
20 the X-ray absorption.

An improved spatial resolution is achieved by a gaseous detector for use in planar beam radiography, in which electrons released by interactions between photons and gas atoms can be extracted
25 in a direction essentially perpendicular to the incident radiation. A detector of such a kind is described in our copending international application WO99/23859 entitled *A method and a device for planar beam radiography and a radiation detector* and filed on October 19, 1998.

Such detector comprising interactions between photons and gas atoms need, however, to be relatively deep and comprise a pressurized gas. Further, such detector need to use a gas optimized both for interaction with the incident radiation and 5 with accelerating electrons (during the electron multiplication).

SUMMARY OF THE INVENTION

An object of the present invention is to provide an apparatus and method for detection of ionizing radiation, which employ 10 avalanche amplification, and by which measurements of high spatial resolution are obtainable.

A further object of the present invention is to provide an apparatus and method for detection of ionizing radiation, which exhibit high signal-to-noise ratios.

15 Still a further object of the invention is to provide an apparatus and method for detection of ionizing radiation, which are sensitive and can thus be used employing very low X-ray fluxes.

20 Yet a further object of the present invention is to provide an apparatus and method for detection of ionizing radiation, which are effective, fast, accurate, reliable, easy to use, and of low cost.

25 Still a further object of the invention is to provide an apparatus and method for detection of ionizing radiation, in which electrons released during detection, can be extracted in a direction essentially perpendicular to the incident radiation. Hereby it is possible to obtain a particularly high spatial resolution.

30 Yet a further object of the invention is to provide an apparatus and method for detection of ionizing radiation, which can

operate at high X-ray fluxes without performance degradation and has a long lifetime.

These objects among others are, according to the present invention, attained by apparatus and methods as claimed in the 5 appended Claims.

By employing avalanche amplification of electrons released from a photocathode of the detection apparatus a particularly sensitive apparatus and method are achieved, which provide for the employment of extremely low doses of radiation, still 10 obtaining signal levels high enough for construction of images, which exhibit very low noise levels.

A further advantage of the invention is that the inventive detector apparatus is not very sensitive to magnetic fields.

Yet a further advantage of the invention is that it provides for 15 the manufacture and use of sensitive large-area detector apparatus to a low cost.

Further characteristics of the invention and advantages thereof will be evident from the following detailed description of preferred embodiments of the invention, which are shown in the 20 accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description of embodiments of the present invention given hereinbelow and the accompanying Figs. 1-3, which are 25 given by way of illustration only, and thus are not limitative of the invention.

Fig. 1 illustrates schematically, in cross sectional view, an arrangement for planar beam radiography, according to a first embodiment of the present invention.

Fig. 2 is a schematic, partly enlarged, cross sectional view of the first embodiment as taken along A-A in Fig. 1.

Fig. 3 illustrates schematically, in cross sectional view, an arrangement for planar beam radiography, according to a second 5 embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular dimensions and materials in order to provide a 10 thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known apparatus and processes are omitted 15 so as not to obscure the description of the present invention with unnecessary details.

With reference to Fig. 1, which schematically illustrates, in a sectional view in a plane orthogonal to the plane of a planar X-ray beam 1, an arrangement for planar beam radiography, a first 20 embodiment of the present invention will be described.

The arrangement includes an X-ray source (not shown), which together with a collimator window 5, produce the planar fan-shaped X-ray beam 1, for irradiation of an object 7 to be imaged. The collimator window 5 can be replaced by other means 25 for forming an essentially planar X-ray beam, such as an X-ray diffraction mirror or an X-ray lens etc.

The beam transmitted through the object 7 enters a detector apparatus 9. Optionally a slit or collimator window 11, which is aligned with the X-ray beam and forms the entrance for the X-ray 30 beam 1 to the apparatus 9, is provided. A major fraction of the incident X-ray photons are detected in detector 9, which

includes chamber 13, 53, photocathode 17,18, avalanche cathode 21, and avalanche anode 27, 29 arrangements.

The apparatus 9 is arranged and oriented such that the X-ray beam can enter sideways between the photocathode arrangement 17, 18 and the avalanche cathode arrangement 21, and impinge on the photocathode arrangement at grazing incidence, i.e. at a small grazing angle α . Preferably the relationship between the thickness t of the planar beam, the grazing angle α , and the depth D of apparatus 9 (i.e. length in the direction of incident radiation) are arranged such that a major portion of the photocathode arrangement is irradiated by beam 1. Note that the planar beam thickness and the grazing angle α have been exaggerated in Fig. 1 for illustrative purposes. Typical values are a planar beam thickness t of about 50-500 μm , a grazing angle α of about 0.05-500 mrad (preferably 0.50-50 mrad), and a detector apparatus depth D of about 1-10 cm.

The photocathode arrangement 17, 18 comprises a dielectric substrate 17, and a thin photocathode layer 18, which preferably is a 0.00001-0.1 mm thick layer of CsI, or an organic photo converters or any other efficient gaseous, liquid or solid photo converter. The photocathode layer material should have a low work function such that it can release photoelectrons in dependence on the incident radiation beam 1, i.e. the work function has to be lower than the photon energy of radiation beam 1.

Further photocathode arrangement 17, 18 may comprise a protective layer on the photocathode layer surface (not shown in Fig. 1), which preferably is a 0.01-1 μm thick layer of e.g. CsI. Photocathodes are generally sensitive to small impurities in any gas in contact with it, which impurities cause degradation of the quantum efficiency of the photocathode with time. Thus, the protective layer shall protect the photocathode

layer 18 from direct contact with gases within chamber 13, 53, of apparatus 9, but shall be transparent to the incident radiation as well as to the electrons released from the photocathode layer surface. Further, the protective layer shall 5 advantageously be opaque to light since there may occur fluorescence in chamber 13, 53 and this fluorescence light has to be prevented from reaching the photocathode layer and thus from striking out more electrons, which would affect the detection in an unwanted manner. If the protective layer is not 10 opaque to light it can be covered by a thin metallic layer, which is opaque to light and transparent to incident radiation and electrons.

The electrode arrangements 17, 18 and 21 are preferably mutually substantially parallel and separated by a short distance, e.g. 15 10 μm -10 mm. Further, during use, a first voltage is applied between photocathode 18 and avalanche cathode 21, resulting in a drift field in region 13 causing drift of electrons towards electrode 21.

Chamber 13, 53 is preferably filled with a gas, which can be for 20 example CO_2 or a mixture of for example helium and isobutane, or any other gas suitable for electron avalanche multiplication. The gas is preferably at atmospheric pressure, but can be both at under- as well as overpressure. In such instance, the detector includes a gas tight housing 31 with a slit entrance 25 window 33 of a radiation permeable material, through which the X-ray beam 1 enters the detector. Further, it shall be appreciated that the gas mixture composition and pressure are selected such that the gas does not absorb incident radiation beam 1, or only absorb incident radiation to a smaller extent.

30 Apparatus 9 is arranged such that the released photoelectrons will drift towards and enter an electron avalanche amplification region, preferably by passing through avalanche cathode arrangement 21, and wherein they will be multiplied by means of

a second voltage, which, during use, is applied between avalanche cathode arrangement 21 and avalanche anode arrangement 27, 29. The avalanche anode arrangement comprises a conductive anode layer 27 on a dielectric substrate 29.

5 The second voltage is selected such that photoelectrons from chamber section 13 pass cathode 21 and is accelerated towards anode arrangement 27, 29 resulting in electron multiplication and thus multiple avalanche electrons reaching arrangement 27, 29. The avalanche anode arrangement constitutes preferably also
10 a read-out arrangement of apparatus 9 for the detection of pulses induced by the electron avalanches.

Alternatively, the read-out arrangement can be formed separated from anode arrangement 27, 29 (not shown in Fig. 1).

15 The read-out arrangement 27, 29 is further connected to a signal processing device (not shown in Fig. 1) for further processing of the detected pulses. The pulses derivable from ionization by different X-ray photons are individually detectable, and hence single-photon detection is realized.

20 The X-ray source, the collimator window 5, the optional collimator window 11 and the detector 9 are preferably connected and fixed in relation to each other by a suitable means for example a support (not shown in Fig. 1).

Referring next to Fig. 2, which shows a schematic, partly enlarged, cross sectional view, taken along A-A of Fig. 1, the
25 detector, will be further described. It shall, however, be appreciated that the present invention is not limited to such a design. For instance, other possible avalanche amplification means designs are further elaborated in our co-pending Swedish patent application No. 9901325-2 entitled *Radiation detector, an apparatus for use in planar radiography and a method for detecting ionizing radiation* filed on April 14, 1999, which application hereby is incorporated by reference. It shall
30

further be appreciated that the avalanche amplification means may comprise a solid-state device or comprise a liquid amplification region.

A dielectric 49 may thus be arranged between avalanche cathode 21 and avalanche anode 27. This could be a gas or a solid substrate 49 carrying cathode 21 as shown in Fig. 2. The second voltage, which, during use, is applied between cathode 21 and anode 27, produces an electric field in a plurality of preferably gas-filled avalanche amplification regions 53.
5 Electrical field lines between a single one of the readout elements 27 and the photocathode layer 18 are schematically indicated by reference numeral 55 in Fig. 2. The avalanche regions 53 are formed in a region between and around the edges of the avalanche cathode 21 which are facing each other, and
10 between the avalanche cathode 21 and the avalanche anode 27, where, during use, a concentrated electric field will occur due to the applied voltages.
15

The avalanche regions 53 are formed by openings or channels in cathode 21 and in the dielectric substrate 49, if present. The openings or channels can be of arbitrary shape, e.g. having a circular or a square cross section. The openings or channels may be arranged in rows, each row of openings or channels including a plurality of openings or channels. A plurality of longitudinal openings or channels or rows of channels are formed beside each
20 other, parallel with each other or with the incident X-rays. Alternatively, the openings or channels can be arranged in other patterns.
25

Conductive anode layer comprises a number of pads or strips 27, which also form the read-out elements, are arranged in connection with the openings or channels forming the avalanche regions 53. Preferably at least one element 27 is provided for each opening or channel. The elements 27 are electrically insulated from each other by means of substrate 29, and
30

separately connected to the signal processing device (not illustrated).

By providing a plurality of read-out elements 27 as shown in Fig. 2 a detector 9 is achieved, wherein electron avalanches derivable mainly from ionization by transversely separated portions of the planar radiation beam 1 are separately detectable. Hereby, detector 9 provides for one-dimensional imaging. Preferably, the elements are elongated and pointed toward the radiation source. In such instance elements 27 are preferably put in a fan-shaped arrangement due to divergence of and finite distance to the radiation source.

The width of the inventive detector apparatus is preferably adapted to the intended use. Typical widths are up to 50 cm for medical X-ray applications, but for some particular applications the width may be as small as 0.1 mm comprising a single detector element.

In operation, the detector apparatus 21 of Fig. 1 is positioned in the path of the radiation desired to be detected. Rays of incident radiation emanating directly from the subject under examination will travel in a path so as to pass through collimator 11 and enter photocathode layer 18, whereas unwanted radiation scattered from the subject under examination towards the detection device will typically travel at some angle to the plane of the collimator and thus will not be able to traverse collimator 11.

Photons from the incident radiation hitting the photocathode layer 18 will cause electrons, so called photoelectrons, to be emitted. It is important that the material of the photocathode has a characteristic energy called work function (i.e. the binding energy of the cathode electrons) that is lower than the photon energy of the incident light so that electrons can be released.

The released photoelectrons, which will have a kinetic energy being the difference of the photon energy and the photocathode work function, are drifted towards the avalanche cathode 21 (which is held at a higher electric potential than the photocathode layer 18). At the avalanche cathode 21 the photoelectrons will be accelerated due to the strong concentrated electric field between the avalanche cathode 21 and anode 27, 29 arrangements (the avalanche anode layer 27 is held at a much higher electric potential than the avalanche cathode).

10 The accelerated electrons will interact with other substance (e.g. atoms, molecules etc.) in regions 59, causing electron-ion pairs to be produced. Those produced electrons will also be accelerated in the field, and will interact repetitively with new material, causing further electron-ion pairs to be produced.

15 This process continues during the travel of the electrons in the avalanche region towards anode arrangement 27, 29 located at the bottom of the avalanche region, and in such way electron avalanches are formed.

20 The electron avalanches induce electric pulses in the read-out elements of detector apparatus 9, which are individually detected as each readout element has its individual signal conduit to the signal processing device (not illustrated). The signal processing device processes the pulses; it possibly shapes the pulses, and integrates or counts thereafter the 25 pulses from each readout element 27.

With reference next to Fig. 3, which schematically illustrates a device for planar beam radiography, a second embodiment of the present invention will be depicted. This embodiment is identical with the first embodiment except of how the incident radiation 30 beam 1 is arranged to enter the detector and impinge on the photocathode arrangement 17, 18.

Apparatus 9 is here arranged such that the X-ray beam 1 can enter the apparatus through collimator 11 and hit the photocathode arrangement 17, 18 at grazing incidence from above. Substrate 17 has in this instance to be of a radiation transparent material such that radiation beam 1 can propagate through substrate 1 and be absorbed in photocathode layer 18.

It shall be appreciated that photocathode layer is thin such that it is capable of releasing electrons from the surface opposite to the surface onto which the photons are impinging.

- 10 It shall further be appreciated that as radiation beam 1 does not pass through chamber section on its travel towards photocathode layer 18, the gas mixture composition and pressure within chamber section 13 may be selected independently of how it absorbs the incident radiation.
- 15 Other features and characteristics of the inventive detector apparatus as described with reference to the first embodiment are also applicable as regards this second embodiment.

In the embodiments described above particular locations and geometries of photocathode, anode, cathode, and read-out arrangements are described. There are, however, a plurality of other locations and geometries that are equally well suitable in connection with the present invention.

It is general for the invention that each incident X-ray photon causes one induced pulse in one (or more) detector electrode element.

It is also general for the invention that the inter-electrode volumes are thin, which results in a fast removal of ions, which leads to low or no accumulation of space charges. This makes operation at high rate possible. The small distances leads also to low operating voltages, which results in low energy in possible sparks, which is favorable for the electronics. The

focusing of the field lines in the avalanche means is also favorable for suppressing streamer formations, which leads to a reduced risk for sparks.

Further, there will in such instance be possible to
5 geometrically discriminate unwanted radiation, such as fluorescent X-rays, which otherwise would lead to deteriorated spatial resolution and sensitivity. Such detection is further elaborated in our co-pending Swedish patent applications No. 9901326-0 entitled *A method for detecting ionizing radiation, a*
10 *radiation detector and an apparatus for use in planar beam radiography* filed on April 14, 1999 and No. 0000388-9 entitled *Detector and method for detection of ionizing radiation* filed on February 08, 2000. These applications are hereby incorporated by reference.

15 As an alternative, the electric field in the conversion and drift gap (volume) can be kept high enough to cause electron avalanches, hence to be used in a pre-amplification mode.

As a further alternative, at least in some instances, the electrode arrangement 21 may be dispensed with, and an electric
20 field between layer 18 and elements 27 can be kept high enough to cause electron avalanche amplification within the complete volume as defined by regions 13 and 53.

Further, all electrode surfaces may be covered by a resistive material in order to decrease the energy in possible sparks,
25 which would influence the measurement and could destroy electronic equipment of the detector. Such resistive layers are further described in our co-pending Swedish patent application No. 9901327-8 entitled *Radiation detector and an apparatus for use in radiography* filed on April 14, 1999. The application is
30 hereby incorporated by reference.

Alternatively, for the same reason, the complete electrodes may be made of a semi-conducting material, e.g. silicon, or only layers 18 and 27 may be of a semi-conducting material.

It will be obvious that the invention may be varied in a plurality of ways. For example, the voltages can be applied in other ways as long as the described electrical fields are created. Such variations are not to be regarded as a departure from the scope of the invention. All modifications as would be obvious to one skilled in the art are intended to be included within the scope of the appended Claims.

CLAIMS

1. An apparatus for detection of radiation comprising:

- a photocathode layer adapted to release photoelectrons in dependence on incident radiation;

5 - a radiation entrance arranged such that a beam of radiation can be entered into the apparatus through said radiation entrance and can impinge on said photocathode layer at grazing incidence;

10 - an electron avalanche amplifier adapted to avalanche amplify photoelectrons released from said photocathode layer; and

- a readout arrangement adapted to detect avalanche amplified electrons from said amplifier.

2. The apparatus as claimed in Claim 1 wherein the radiation entrance is arranged such that the beam of radiation can impinge 15 on a first surface of the photocathode layer; and said photocathode layer is adapted to release photoelectrons from said first surface, in dependence thereon.

20 3. The apparatus as claimed in Claim 1 wherein the radiation entrance is arranged such that the beam of radiation can impinge on a first surface, a back surface, of the photocathode layer; and said photocathode layer is adapted to release photoelectrons from a second surface, a front surface, in dependence thereon, said first and second surfaces being opposite to each other.

25 4. The apparatus as claimed in Claim 1 wherein the photocathode layer is 0.00001-0.1 mm thick.

5. The apparatus as claimed in Claim 1 wherein the photocathode layer is of a material having a work function, which is lower than the photon energy of said radiation beam.

6. The apparatus as claimed in Claim 1 wherein the photocathode layer is of CsI or an earth metal.
7. The apparatus as claimed in Claim 1 wherein the photocathode layer is provided with a protective layer, said protective layer being transparent to electrons; and the photocathode layer is adapted to release photoelectrons through said protective layer.
8. The apparatus as claimed in Claim 7 wherein the protective layer is opaque to light.
9. The apparatus as claimed in Claim 8 wherein the protective layer is provided with a thin, preferably metallic, layer, which is transparent to electrons and opaque to light.
10. The apparatus as claimed in Claims 7 wherein the protective layer is transparent to said radiation beam.
11. The apparatus as claimed in Claim 1 wherein the radiation entrance is arranged such that the beam of radiation can be entered into the apparatus and can impinge on said photocathode layer at a grazing angle α , which is lower than 500 mrad, preferably in the interval 0.05-500 mrad, and more preferably in the interval 0.50-50 mrad.
12. The apparatus as claimed in Claim 1 wherein the radiation entrance is provided with a window, which is transparent to said radiation beam.
13. The apparatus as claimed in Claim 1 comprising a collimator arranged in front of said radiation entrance.
14. The apparatus as claimed in Claim 1 wherein the electron avalanche amplifier includes an array of avalanche amplification regions filled with an avalanche amplification medium.
15. The apparatus as claimed in Claim 14 wherein the avalanche amplification medium is a gas or a gas mixture.

16. The apparatus as claimed in Claim 14 wherein the avalanche amplification medium is a liquid.

17. The apparatus as claimed in Claim 14 wherein the avalanche amplification medium is a solid.

5 18. The apparatus as claimed in Claim 14 wherein the individual avalanche amplification regions are separated from each other by a dielectric.

10 19. The apparatus as claimed in Claim 1 wherein the electron avalanche amplifier includes an avalanche cathode and an avalanche anode arrangement, respectively.

20. The apparatus as claimed in Claim 19 wherein the avalanche cathode is permeable to electrons.

15 21. The apparatus as claimed in Claim 19 wherein the avalanche anode and readout arrangements are comprised of a single arrangement.

22. The apparatus as claimed in Claim 1 wherein the readout arrangement includes an array of readout elements.

20 23. The apparatus as claimed in Claim 1 wherein the radiation entrance is arranged such that a planar radiation beam can be entered into the apparatus through said radiation entrance and can impinge on said photocathode layer at grazing incidence; and the read-out arrangement is arranged such that electron avalanches derivable mainly from absorption of transversely separated portions of said planar radiation beam are separately detectable.

25 24. An arrangement for use in planar beam radiography, said arrangement comprising an X-ray source, means for forming an essentially planar X-ray beam located between said X-ray source and an object to be imaged, and the detector as claimed in Claim

1 located and arranged for detection of the planar X-ray beam as transmitted through or reflected off said object.

25. A method for detection of radiation in a detector apparatus comprising a radiation entrance, a photocathode layer, an
5 electron avalanche amplifier, and a readout arrangement, said method comprising the steps of:

- introducing a beam of radiation into the detector apparatus through said radiation entrance such that said radiation beam impinges on said photocathode layer at grazing incidence;

10 - releasing photoelectrons in dependence on said incident radiation beam by means of said photocathode layer;

- avalanche amplifying the photoelectrons released from said photocathode layer by means of said electron avalanche amplifier; and

15 - detecting the avalanche amplified electrons by means of a readout arrangement.

26. The method as claimed in Claim 25 wherein the photoelectrons are released from a first surface of said photocathode layer, in dependence on the radiation beam impinging on said first
20 surface.

27. The method as claimed in Claim 25 wherein the photoelectrons are released from a first surface, a front surface, of said photocathode layer, in dependence on the radiation beam impinging on a second surface, a back surface, of said
25 photocathode layer, said first and second surfaces being opposite to each other.

28. The method as claimed in Claim 25 wherein the introduced radiation beam comprises photons having a photon energy, which is higher than the work function of the photocathode layer.

29. The method as claimed in Claim 25 wherein the beam of radiation is introduced such that it impinges on said photocathode layer at a grazing angle α , which is lower than 500 mrad, preferably in the interval 0.05-500 mrad, and more 5 preferably in the interval 0.50-50 mrad.

30. The method as claimed in Claim 25 wherein the photoelectrons are avalanche amplified in an array of avalanche amplification regions filled with an avalanche amplification medium, preferably an ionizable substance such as a gas or a gas 10 mixture.

31. The method as claimed in Claim 25 wherein a planar radiation beam is introduced into the apparatus through said radiation entrance such that it impinges on said photocathode layer at grazing incidence; and electron avalanches derivable mainly from 15 absorption of transversely separated portions of said planar radiation beam are separately detected by means of said read-out arrangement.

ABSTRACT

The present invention relates to an apparatus for detection of radiation comprising a photocathode layer adapted to release photoelectrons in dependence on incident radiation; a radiation entrance arranged such that a beam of radiation can be entered into the apparatus through said radiation entrance and can impinge on said photocathode layer at grazing incidence; an electron avalanche amplifier adapted to avalanche amplify photoelectrons released from said photocathode layer; and a readout arrangement adapted to detect avalanche amplified electrons from said amplifier. The invention further relates to a corresponding method for detection of ionizing radiation and to an arrangement for use in planar beam radiography comprising the detector apparatus.

15 (Fig. 1 suggested for publication)

1/2

Fig. 1

Fig. 2

2/2

Fig. 3

Attorney Docket No.

BIRCH, STEWART, KOLASCH & BIRCH, LLP

P.O. Box 747 • Falls Church, Virginia 22040-0747

Telephone: (703) 205-8000 • Facsimile: (703) 205-8050

PLEASE NOTE:
YOU MUST
COMPLETE THE
FOLLOWING

COMBINED DECLARATION AND POWER OF ATTORNEY
FOR PATENT AND DESIGN APPLICATIONS

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated next to my name; that I verily believe that I am the original, first and sole inventor (if only one inventor is named below) or an original, first and joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

APPARATUS AND METHOD FOR RADIATION DETECTION

Insert Title:

Fill in Appropriate
Information -
For Use Without
Specification
Attached:

the specification of which is attached hereto. If not attached hereto,
the specification was filed on _____ as
United States Application Number _____;
and amended on _____ (if applicable) and/or
the specification was filed on _____ as PCT
International Application Number _____; and was
amended under PCT Article 19 on _____ (if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

I do not know and do not believe the same was ever known or used in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof or more than one year prior to this application, that the same was not in public use or on sale in the United States of America more than one year prior to this application, that the invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representative or assigns more than twelve months (six months for designs) prior to this application, and that no application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to this application by me or my legal representatives or assigns, except as follows.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s)			Priority Claimed	
0002080-0	Sweden	5 June 2000	<input checked="" type="checkbox"/>	<input type="checkbox"/>
(Number)	(Country)	(Month/Day/Year Filed)	Yes	No
_____	_____	_____	<input type="checkbox"/>	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>	<input type="checkbox"/>
_____	_____	_____	<input type="checkbox"/>	<input type="checkbox"/>

I hereby claim the benefit under Title 35, United States Code, §19(e) of any United States provisional applications(s) listed below.

_____	_____
(Application Number)	(Filing Date)
_____	_____
(Application Number)	(Filing Date)

All Foreign Applications, if any, for any Patent or Inventor's Certificate Filed More than 12 Months (6 Months for Designs) Prior to the Filing Date of This Application:

Country	Application Number	Date of Filing (Month/Day/Year)
_____	_____	_____
_____	_____	_____

I hereby claim the benefit under Title 35, United States Code, §120 of any United States and/or PCT application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States and/or PCT application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose information which is material to the patentability as defined in Title 37, Code of Federal Regulations, §1.56 which became available between the filing date of the prior application and the national or PCT international filing date of this application.

_____	_____	(Status - patented, pending, abandoned)
(Application Number)	(Filing Date)	(Status - patented, pending, abandoned)
_____	_____	_____
(Application Number)	(Filing Date)	(Status - patented, pending, abandoned)

Insert Requested
Information:
(if appropriate)

Insert Prior U.S.
Application(s):
(if any)

I hereby appoint the following attorneys to prosecute this application and/or an international application based on this application and to transact all business in the Patent and Trademark Office connected therewith and in connection with the resulting patent based on instructions received from the entity who first sent the application papers to the attorneys identified below, unless the inventor(s) or assignee provides said attorneys with a written notice to the contrary:

Raymond C. Stewart (Reg. No. 21,066)	Terrell C. Birch (Reg. No. 19,382)
Joseph A. Kolasch (Reg. No. 22,463)	James M. Slattery (Reg. No. 28,380)
Bernard L. Sweeney (Reg. No. 24,448)	Michael K. Mutter (Reg. No. 29,680)
Charles Gorenstein (Reg. No. 29,271)	Gerald M. Murphy, Jr. (Reg. No. 28,977)
Leonard R. Svensson (Reg. No. 30,330)	Terry L. Clark (Reg. No. 32,644)
Andrew D. Meikle (Reg. No. 32,868)	Marc S. Weiner (Reg. No. 32,181)
Joe McKinney Muncy (Reg. No. 32,334)	Donald J. Daley (Reg. No. 34,313)
John W. Bailey (Reg. No. 32,881)	John A. Castellano (Reg. No. 35,094)
Gary D. Yacura (Reg. No. 35,416)	

Send Correspondence to:

BIRCH, STEWART, KOLASCH & BIRCH, LLP or **Customer No. 2292**
 P.O. Box 747 • Falls Church, Virginia 22040-0747
 Telephone: (703) 205-8000 • Facsimile: (703) 205-8050

PLEASE NOTE:
YOU MUST
COMPLETE
THE
FOLLOWING:
↓

Full Name of First
or Sole Inventor:
Insert Name of
Inventor:
Insert Date this
Document is Signed
→
Insert Residence
Insert Citizenship
→
Insert Post Office
Address
→
Full Name of Second
Inventor, if any:
see above
→
Full Name of Third
Inventor, if any:
see above
→
Full Name of Fourth
Inventor, if any:
see above
→
Full Name of Fifth
Inventor, if any:
see above
→

GIVEN NAME/FAMILY NAME		INVENTOR'S SIGNATURE	DATE*
Tom Francke			9-10-2000
Residence (City, State & Country) Sollentuna, Sweden		CITIZENSHIP Swedish	
POST OFFICE ADDRESS (Complete Street Address including City, State & Country) Hemgårdsvägen 2, SE-191 44 Sollentuna, Sweden			
GIVEN NAME/FAMILY NAME		INVENTOR'S SIGNATURE	DATE*
Vladimir Peskov			9-10-2000
Residence (City, State & Country) Stockholm, Sweden		CITIZENSHIP Russian	
POST OFFICE ADDRESS (Complete Street Address including City, State & Country) Sveavägen 164, Wennergren Center Apt 31N, SE-113 46 Stockholm, Sweden			
GIVEN NAME/FAMILY NAME		INVENTOR'S SIGNATURE	DATE*
Residence (City, State & Country)		CITIZENSHIP	
POST OFFICE ADDRESS (Complete Street Address including City, State & Country)			
GIVEN NAME/FAMILY NAME		INVENTOR'S SIGNATURE	DATE*
Residence (City, State & Country)		CITIZENSHIP	
POST OFFICE ADDRESS (Complete Street Address including City, State & Country)			
GIVEN NAME/FAMILY NAME		INVENTOR'S SIGNATURE	DATE*
Residence (City, State & Country)		CITIZENSHIP	
POST OFFICE ADDRESS (Complete Street Address including City, State & Country)			

*DATE OF SIGNATURE