Linear Algebra Summary

Outline

- Vectors and vector spaces
- Matrices
- Matrix operations
- Matrix inversion

Linear Algebra: Why do we need this?

- Fundamental representation for data in robotics applications is a matrix
 - e.g. transform matrix
- Robotics algorithms often deal with multi-dimensional data
- Many algorithms try to fit a model to data, e.g. using least-squares fitting based on linear algebra
- Not knowing basic linear algebra is like being illiterate in robotics (and much of Engineering)
 - You will have no idea what is going on in this course or more advanced robotics courses

Vectors

Scalar: a single number

e.g.
$$a = 5.297$$

Vector: an ordered list of n scalars (n is the dimensionality)

e.g.
$$\boldsymbol{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ \vdots \end{bmatrix}$$

Can be interpreted as arrows (or coordinates) in an n-dimensional vector space

e.g.
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \in \mathbf{R}^2$$

What can I do with vectors and scalars?

- For vectors with the <u>same dimensionality</u>
 - Can add them

$$\boldsymbol{v} + \boldsymbol{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \end{bmatrix}$$

Can subtract them

$$\boldsymbol{v} - \boldsymbol{w} = \begin{bmatrix} v_1 - w_1 \\ v_2 - w_2 \\ \vdots \end{bmatrix}$$

Can multiply vectors by scalars

$$a\mathbf{v} = \begin{bmatrix} av_1 \\ av_2 \\ \vdots \end{bmatrix}$$

- NO multiplication
- NO division

Vector addition with arrows

Vector norm

- Intuitively, a norm measures the "length" of a vector
- Formally, a p-norm is a function of the form

$$\|\boldsymbol{v}\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$$

L1-norm:

$$\|\boldsymbol{v}\|_1 = \sum_{i=1}^n |v_i|$$

L2-norm (aka the Euclidean Norm):

$$\|\boldsymbol{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \dots}$$

• L∞-norm:

$$\|\boldsymbol{v}\|_{\infty} = \max_{i} |v_{i}|$$

This is the most common norm, often people write ||v|| and mean $||v||_2$

Unit Vectors

A unit vector is a vector with Euclidean norm 1

$$||v||=1$$

 We will use unit vectors to describe directions when we do coordinate frames and transforms

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad y = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad z = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Basis Vectors

- Suppose we have an n-dimensional vector space Rⁿ
- A set of vectors $B = \{b_1, b_2, ...\}$ is a set of basis vectors if
 - 1. It spans the whole space:

B spans the space if for any $v \in R^n$ This is called a linear combination $v=a_1 b_1 + a_2 b_2 + \cdots$ where a_i are scalars

- 2. All the vectors in B are linearly independent
 - I.e. no \boldsymbol{b}_i is a linear combinations of the other vectors in B
- So we can represent any $v \in \mathbb{R}^n$ as a set of scalars and basis vectors

Basis Vectors

• Example: $\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$ is a basis for R^2

$$\begin{bmatrix} 1.3 \\ -2.4 \end{bmatrix} = 1.3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - 2.4 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Basis vectors are not unique!

Both $\{\mathbf{e}_1, \mathbf{e}_2\}$ and $\{f_1, f_2\}$ are bases for \mathbf{R}^2

We will use this fact extensively for transformation matrices

Example: PR2 Robot

Vector Dot Product

Dot product of vectors (sometimes called inner product)

$$\boldsymbol{v} \cdot \boldsymbol{w} = \langle \boldsymbol{v}, \boldsymbol{w} \rangle = \sum_{i=1}^{n} v_i w_i$$

Angle between two vectors:

- v and w are called orthogonal if $v \cdot w = 0$
 - What is the angle between two orthogonal vectors?

Vector Dot Product

Dot products and scalars:

$$a(\mathbf{v} \cdot \mathbf{w}) = (a\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (a\mathbf{w})$$

Can distribute dot product:

$$v \cdot (w + p) = v \cdot w + v \cdot p$$

Vector Projection and Rejection

 We sometimes need to divide a vector into components that are parallel and orthogonal to another vector (example later)

Scalar projection (from trigonometry):

$$\|\mathbf{a_1}\| = \|\mathbf{a}\|\cos(\theta)$$

• Angle between a_1 and b may be 0 or π !

Vector Projection and Rejection

Vector <u>Projection</u>

$$a_1 = \|a\|\cos(\theta)\frac{b}{\|b\|} = \frac{a \cdot b}{b \cdot b}b$$

Vector <u>Rejection</u>

$$\frac{a_2}{a_2} = a - \frac{a_1}{a_1}$$

How did we get this?

Vector Cross Product

• Given two <u>3D vectors</u> \boldsymbol{a} and \boldsymbol{b} , find a vector \boldsymbol{c} orthogonal to both of them:

$$c = a \times b$$

$$c_x = a_y b_z - a_z b_y$$

$$c_y = a_z b_x - a_x b_z$$

$$c_z = a_x b_y - a_y b_x$$

Only defined for 3D!

Example: Quadrotor

• We'd like to get a quadrotor to point its camera at a target. We calculate that, at the current position of the quadrotor, it should point the camera along a unit vector \boldsymbol{v} .

- However, the camera is rigidly attached to the quadrotor, so we need to command a rotation for the quadrotor. The camera points along x in the quadrotor frame.
 - Assume the camera frame and the quadrotor frame are the same
- To form a rotation matrix, we need three <u>orthogonal unit</u> basis vectors for \mathbb{R}^3 : $\mathbf{B} = \{v, w, p\}$

How do we find w and p?

Example: Quadrotor

$$B = \{v, w, p\}$$

- Let's do this one vector at a time
- Notice that ${m w}$ can be any unit vector that is orthogonal to ${m v}$
- So, start with a random 3 x 1 vector $\widetilde{\boldsymbol{w}}$
 - How do we make $\widetilde{\boldsymbol{w}}$ into a vector \boldsymbol{w} that is orthogonal to \boldsymbol{v} ?

$$w = \widetilde{w} - \frac{\widetilde{w} \cdot v}{v \cdot v} v$$

Let's check if we're right. We should have:

$$w \cdot v = 0$$

$$\left(\widetilde{w} - \frac{\widetilde{w} \cdot v}{v \cdot v}v\right) \cdot v = 0$$

$$\widetilde{w} \cdot v - \frac{\widetilde{w} \cdot v}{v \cdot v}v = 0$$

$$\widetilde{w} \cdot v - \widetilde{w} \cdot v = 0$$

• Finally, normalize w to make it a unit vector: w = w/||w||

Example: Quadrotor

$$B = \{v, w, p\}$$

- Now we need a $oldsymbol{p}$ that is orthogonal to both $oldsymbol{v}$ and $oldsymbol{w}$
- Can do this with vector projections, but in 3D it's easier to use the cross product:

$$p = v \times w$$

Do we need to normalize p?

$$||p|| = ||v|| ||w|| \sin(\theta)$$
$$||p|| = \sin(\theta)$$
$$||p|| = \sin(\pi/2)$$
$$||p|| = 1$$

BREAK

Matrices and Vectors

Matrix:

A square matrix has m = n

Vector: an m-by-1 matrix

Matrix operations

- For matrices with the same dimensions
 - Can add them elementwise, e.g.:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$$

Can scale them, e.g.:

$$2.4 \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} 2.4a_{11} & 2.4a_{12} & 2.4a_{13} \\ 2.4a_{21} & 2.4a_{22} & 2.4a_{23} \end{bmatrix}$$

Matrix Multiplication

- For matrices A and B, their product is written as AB
- Each element in AB is the dot product of <u>a row</u> of A with <u>a column</u> of B

 Number of columns of A

$$(\mathbf{AB})_{ij} = \sum_{k=1}^{n_a} a_{ik} b_{kj}$$

Example:

$$\begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} \cdot & b_{12} & \cdot \\ \cdot & b_{22} & \cdot \\ \cdot & b_{32} & \cdot \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & c_{22} & \cdot \end{bmatrix}$$

$$c_{22} = a_{2:} \cdot b_{:2} = a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}$$

Matrix Multiplication

Matrix multiplication is not commutative!

$$AB \neq BA$$

You can only multiply matrices if they have <u>compatible dimensions</u>

$$\mathbf{A}_{m_a \times n_a} \mathbf{B}_{m_b \times n_b} = \mathbf{C}_{m_a \times n_b}$$
 $n_a = m_b \text{ must be true}$

Matrix Multiplication

Which multiplications are valid? What is the dimension of AB?

Matrix Transpose

- The transpose of an m-by-n matrix A is denoted A^T
- Transpose is done by flipping the matrix about the diagonal; i.e. swap rows and columns:

$$[\mathbf{A}^T]_{ij} = \mathbf{A}_{ji}$$

• Example:

$$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Distributing transpose:

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

 $(\mathbf{A}^T)^T = \mathbf{A}$

Identity Matrix

- The identity matrix I_n is an $n \times n$ matrix that does no change when multiplied
 - Diagonal elements (i = j) are 1
 - Off-diagonal elements $(i \neq j)$ are 0

$$\mathbf{I_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For an $m \times n$ matrix **A**

$$\mathbf{AI}_n = \mathbf{A}$$

$$\mathbf{AI}_n = \mathbf{A}$$
 $\mathbf{I}_m \mathbf{A} = \mathbf{A}$

Matrix Inversion

- Matrix inversion is a common way to solve problems in linear algebra
 - Used everywhere in robotics, from vision to kinematics
- A^{-1} is the inverse of A if

$$A^{-1}A = AA^{-1} = I$$

- A must be square (n x n)
- A must be invertible...

Matrix Invertability

- A square matrix is called singular if it is not invertible
- An n x n matrix A is invertible if (the statements below are equivalent only need to check one)
 - A has rank n
 - Rank is the number of linearly independent columns
 - The determinant of A is not 0
 - The determinant can be viewed as how much the transformation described by the matrix scales an input
 - Many many other ways to check invertability....
- Rank, determinant, and inversion implementations are easy to find in scipy and Matlab

Using Matrix Inversion

 Probably the most common problem in linear algebra: Given a matrix A and vector b, and the following equation

$$\mathbf{A}x = b$$
 solve for the vector x

Use this to solve a system of linear equations. For example:

Solving $\mathbf{A}x = b$

- If A is <u>n x n</u> and b is n x 1
 - Check rank or determinant of A to see if it is invertible.
 - If so, use the matrix inverse:

$$\mathbf{A}^{-1}\mathbf{A}x = \mathbf{A}^{-1}b$$
$$\mathbf{I}x = \mathbf{A}^{-1}b$$
$$x = \mathbf{A}^{-1}b$$

If not, no solution

What if A is not square?

The Pseudo-inverse

The Moore-Penrose Pseudo-inverse is defined as

$$A^+ = (A^T A)^{-1} A^T$$
 (left pseudo-inverse)

Has some of the properties of the inverse, most importantly:

$$A^+A = I$$

Derivation:

$$I = (A^T A)^{-1} (A^T A)$$

$$I = [(A^T A)^{-1} A^T] A$$

$$I = A^+ A$$

The right pseudo-inverse is derived similarly to get AA⁺ = I

The Pseudo-inverse

$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

- Works even when A is not square
- What about $(\mathbf{A}^T\mathbf{A})^{-1}$?
 - $(\mathbf{A}^T \mathbf{A})$ is automatically square
 - But we need to check if (A^TA) is invertable
- If **A** is square and invertable, then $A^+ = A^{-1}$
 - We don't loose any generality by always using the pseudo-inverse

The Pseudo-inverse

• Can use the pseudo-inverse like an inverse to solve $\mathbf{A}x = b$ when \mathbf{A} is m x n and b is m x 1:

$$\mathbf{A}^{+}\mathbf{A}x = \mathbf{A}^{+}b$$
$$\mathbf{I}x = \mathbf{A}^{+}b$$
$$x = \mathbf{A}^{+}b$$

- This is known as the least-squares solution
- Remember that $(\mathbf{A}^T \mathbf{A})$ must be invertable

$$x = A^+b$$

- What does this mean for solving linear systems of equations represented by A (m x n) and b (m x 1)?
 - m is the number of equations
 - n is the number of unknowns (x is n x 1)
- If m = n
 - $x = A^+b$ is the exact solution to the system of equations
- If m < n (underdetermined; many solutions are possible)
 - $x = \mathbf{A}^+ b$ outputs an x that minimizes $||x||_2$
- If m > n (overdetermined; no exact solution in general)
 - $x = A^+b$ outputs an x that minimizes the sum of squared errors

- Suppose you have a IR range sensor that reports a distance, but the sensor is noisy
- You'd like to calibrate this sensor using a ruler as ground-truth
- You measure distance to an object from a series of positions and record the measurements as \boldsymbol{v}
- The corresponding ground-truth distances are d

- Goal: Find x_1 and x_2 for the function $x_1v + x_2 = d$ that minimize the sum of squared errors.
 - This is the "Linear Least-Squares" problem

Fire Bird V Mobile Robot

Measures distance v

- How do we turn this into an $\mathbf{A}x = b$ problem?
 - Let's start by thinking about a single datapoint: v_1 , d_1
 - We want an equation of the form $x_1v_1 + x_2 = d_1$
 - We rewrite it as

$$[v_1 \ 1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = d_1$$

• Let x be the vector of the unknowns, so $x=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Then, $[v_1 \ 1]x=d_1$

• Then define $\mathbf{A} = [v_1 \ 1]$ and $b = d_1$ and we have $\mathbf{A}x = b$

• What about multiple datapoints?

Solve
$$\mathbf{A}x = b$$
 for $x \implies x = \mathbf{A}^+b$

- Suppose the IR sensor outputs v = 0.9 m
- Then the true distance is estimated as 0.99 * 0.9m 0.01 = 0.88m

Homework

Read LaValle Book Chapter 3.2