Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Что было

- Рекуррентные нейросети прекрасны в задачах моделирования языка и машинного перевода.
- Но связи между элементами образуют направленную **последовательность** последовательная, а не параллельная обработка

Seq2seq

- Кодер обрабатывает входное предложение и преобразует информацию в контекстный вектор фиксированной длины
 (→ сложности с длинными предложениями).
- Декодер берет контекстный вектор, чтобы выдать выходное предложение.

Что с этим делали

- Чтобы улучшить результаты, добавляли механизм внимания.
- Но практически везде механизм внимания использоваться вместе с рекуррентными нейросетями.

Attention

• На какие части объекта нужно обратить внимание?

- Transformer
- Модель, которая использует только механизм внимания
- Никаких рекуррентных и сверточных нейросетей
- Может обрабатывать слова параллельно, а не последовательно
 для хороших результатов нужно мало времени

Кодер и декодер

• По 6 слоев

Кодер и декодер

- В каждом слое есть два подслоя
 - self-attention layer.
 - feed-forward neural network.
- В декодере есть еще третий слой с вниманием.

Кодер и декодер

• Используется residual/skip connection, после этого делается нормализация слоя, т.е. output каждого подслоя:

LayerNorm(x + Sublayer(x))

Кодер

- Каждое слово представляется в виде вектора
- Эмбеддинг происходит в самом нижнем слое кодера
- Каждое слово проходит через слои отдельно от других

Как считать self-attention

- Кладем наши эмбеддинги в матрицу X
- В процессе обучения получаем W^Q,W^K,W^V
- Умножаем X на матрицы W^Q,W^K,W^V
 → получаем Q, K, V

Scaled Dot-Product Attention

$$Attention(Q, K, V) = \\ = softmax \left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

- Take the query
- Find the most similar key
- Get the values that correspond to these similar keys
- Softmax gives the probability distribution over keys, which are peaked at the ones that are similar to a query.

Three ways of attention

- Encoder-decoder attention: Q из предыдущего слоя декодера, K, V из output'a кодера.
 - Every position attends over all positions in the input sequence. This mimics the typical encoder-decoder attention mechanisms in seq2seq models.
- Encoder self-attention: K,V,Q из output'a предыдущего слоя кодера. Each position in the encoder can attend to all positions in the previous layer of the encoder.
- **Decoder self-attention**: each position in the decoder attends to all positions in the decoder up to and including that position.
 - We implement this inside of scaled dot-product attention by masking out (setting to -∞) all values in the input of the softmax which correspond to illegal connections.

Механизмы внимания

Name	Alignment score function	Citation
Content-base attention	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \operatorname{cosine}[oldsymbol{s}_t,oldsymbol{h}_i]$	Graves2014
Additive(*)	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \mathbf{v}_a^{ op} \operatorname{tanh}(\mathbf{W}_a[oldsymbol{s}_t;oldsymbol{h}_i])$	Bahdanau2015
Location- Base	$lpha_{t,i} = \mathrm{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$ ext{score}(m{s}_t, m{h}_i) = m{s}_t^{ op} \mathbf{W}_a m{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$\operatorname{score}(oldsymbol{s}_t,oldsymbol{h}_i) = oldsymbol{s}_t^ op oldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \frac{\boldsymbol{s}_t^\top \boldsymbol{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

Scaled-dot product

- Dot-product attention быстрее и more space-efficient, чем additive attention, потому что мы просто перемножаем матрицы.
- Для маленьких значений d_k эти два механизма работают похожим образом, но если d_k большое, то additive attention лучше.
- Подозрение: с большим d_k , the dot products могут каузировать очень маленький градиент у функции softmax, что было бы плохо для обучения \rightarrow деление на корень из d_k

Feed-Forward

• Для каждого слова делаем следующее:

$$FFN(x) = W_2 \text{ReLU}(W_1 X + b_1) + b_2$$

- ReLU функция активации f(s) = max(0,s).
- Преобразования одинаковы по разным словам, но у них разные параметры в зависимости от слоя.

Ну и как?

- n²*d лучше чем n*d²
- D обычно около 1000, n количество слов в предложении (70)

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$

Multi-head attention

- h = 8 parallel attention layers (heads).
- Для каждого $d_k = d_v = d_{model}/h = 64$.
- Сократили размерность каждого слоя \rightarrow total computational cost примерно такая же, как если бы у нас был single-head attention with full dimensionality

1) Concatenate all the attention heads

 Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

 $MultiHead(Q, K, V) = Concat(head_1, ... head_h)W^O$ $head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Where the projections are parameter matrices $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$, $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$.

- 1) This is our 2) We embed input sentence* each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

W₀Q W₀K W₀V

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Positional encoding

suis

INPUT

le

étudiant

i – dimension

Декодер

 At each step the model is auto-regressive, consuming the previously generated symbols as additional input when generating the next.

Декодер

Which word in our vocabulary is associated with this index?

- У нас есть какие-то матрицы
- Как получить слово?

• Linear: нейросеть, которая из нашего вектора делает вектор еще больше (logits vector)

- Допустим наша модель знает 10000 слов (output vocabulary), которые она выучила по обучающей выборке → в векторе 10000 клеточек.
- softmax потом превращает это в вероятности.

Get the index of the cell with the highest value (argmax)

log_probs

logits

Decoder stack output

am

-

Machine translation results

Base: 12 часов

Big: 3,5 дней

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [15]	23.75				
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [31]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [26]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [32]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [31]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble [8]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2\cdot 10^{21}$	
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$		
Transformer (big)	28.4	41.0	2.3 ·	$2.3 \cdot 10^{19}$	

Результат

- Transformer, model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention.
- For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers.
- On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art.

Coreference resolution (Winograd Schema)

