We claim that there is some open b-ball $B_b(x,r)$ of radius r>0 and center x,

$$B_b(x,r) = \{ z \in E \mid ||z - x||_n < r \},$$

such that

$$B_b(x,r) \subseteq B_a(x,\rho).$$

Indeed, if we pick $r = \rho/C_1$, for any $z \in E$, if $||z - x||_b < \rho/C_1$, then

$$||z - x||_a \le C_1 ||z - x||_b < C_1(\rho/C_1) = \rho,$$

which means that

$$B_b(x, \rho/C_1) \subseteq B_a(x, \rho).$$

Similarly, for any radius $\rho > 0$ and any $x \in E$, we have

$$B_a(x, \rho/C_2) \subseteq B_b(x, \rho).$$

Now given a normed vector space (E, || ||), a subset U of E is said to be *open* (with respect to the norm || ||) if either $U = \emptyset$ or if for every $x \in U$, there is some open ball $B(x, \rho)$ (for some $\rho > 0$) such that $B(x, \rho) \subseteq U$.

The collection \mathcal{U} of open sets defined by the norm $\| \|$ is called the *topology on E induced* by the norm $\| \|$. What we showed above regarding the containments of open a-balls and open b-balls immediately implies that two equivalent norms induce the same topology on E. This is the reason why the notion of equivalent norms is important.

Given any norm $\| \|$ on a vector space of dimension n, for any basis (e_1, \ldots, e_n) of E, observe that for any vector $x = x_1e_1 + \cdots + x_ne_n$, we have

$$||x|| = ||x_1e_1 + \dots + x_ne_n|| \le |x_1| ||e_1|| + \dots + |x_n| ||e_n|| \le C(|x_1| + \dots + |x_n|) = C ||x||_1,$$

with $C = \max_{1 \le i \le n} ||e_i||$ and with the norm $||x||_1$ defined as

$$||x||_1 = ||x_1e_1 + \dots + x_ne_n|| = |x_1| + \dots + |x_n|.$$

The above implies that

$$| \| u \| - \| v \| | \le \| u - v \| \le C \| u - v \|_1$$

and this implies the following corollary.

Corollary 9.4. For any norm $u \mapsto ||u||$ on a finite-dimensional (complex or real) vector space E, the map $u \mapsto ||u||$ is continuous with respect to the norm $||\cdot||_1$.