LECTURE 7 - RESPONSE TO PULSE EXCITATION CE 225

Prof DeJong

UC Berkeley

September 18, 2025

STEP FORCE OF FINITE DURATION

STEP FORCE OF FINITE DURATION

STEP FORCE WITH FINITE RISE TIME

STEP FORCE WITH FINITE RISE TIME

HALF SINE PULSE

HALF SINE PULSE

TRIANGULAR PULSE

TRIANGULAR PULSE

COMPARISON OF PULSE SHAPES

RESPONSE ENVELOPES

IMPULSES OF SHORT DURATION

► Assume impulse can just be treated as initial velocity (generally conservative)

EFFECT OF DAMPING

- $^{u'(u_{\rm st})_o}$ (a) Response of damped system ($\zeta=0.1$) to a half-cycle sine pulse force with $t_d/T_n=\frac{1}{2}$;
- (b) Force-deformation diagram showing energy dissipated in viscous damping.

-1

-2

EFFECT OF DAMPING

Figure 4.11.2 Shock spectra for a half-cycle sine pulse force for five damping values.

BLAST LOADING

Figure 2: Blast wave pressure – Time history

Figure 3: Blast loads on a building

¹Ngo et al. (2007). EJSE Special Issue: Loading on Structures

BLAST LOADING

PRESSURE AMPLIFICATION

OKLAHOMA CITY BOMBING

Figure 3-5 Peak overpressures on north elevation of nine-story portion of Murrah Building.

SIMPLIFIED APPROACH

Global building response:

- Assume impulse only causes initial velocity:
- ► Assume damping has small effect:

WHAT ABOUT WINDOW/WALL ELEMENT?

WINDOW/WALL ELEMENT

WINDOW/WALL ELEMENT

CONVOLUTION TO FIND THE RESPONSE

Figure 3.8 Side-on blast wave parameters for spherical charges of TNT (after Ref. 6)