

Structuri de Date

Anul universitar 2019-2020 Prof. Adina Magda Florea

Curs Nr. 8

- ☐ Cozi de prioritate (heap)
- ☐ Structuri Heap
- □ Heapsort
- □ Treap

1. ADT Cozi de prioritate

- Pornesc de la structura de tip coada (ADT coadă)
- Sunt o generalizare a tipului de date abstracte (ADT) coadă în care fiecare element are asociată o prioritate iar elementele sunt extrase din coadă în ordinea acestei priorităţi
- Primul element extras din coada este elementul cu cea mai mare prioritate – *heap max*, sau elementul cu cea mai mică prioritate – *heap min*
- Au foarte multe aplicaţii

ADT Cozi de prioritate

- ADT implementat deja in unele limbaje
 - > C++: priority_queue
 - ➤ Java: PriorityQueue
 - > Python: heapq
- Printre algoritmii care folosesc PQ:
 - Algoritmul lui Dijstra
 - > Algoritmul lui Prim
 - > Algoritmul lui Huffman
 - ➤ Heapsort

2. Operaţii de bază

ADT PQ (Priority Queue)

- PQInit iniţializează coada
- PQEmpty verifică coadă vidă
- Insert inserează un element în coada de priorităţi
- ExtractMax elimină elementul cu prioritate maximă

Operaţii suplimentare

ADT PQ (Priority Queue)

- GetMax întoarce elementul cu prioritatea maximă (fără a-l elimina din coadă)
- ExtractEl elimină din coadă un anumit element (nu neapărat prioritate maxima)
- ChangePri schimbă prioritatea unui element din coada de priorităţi
- BuildPQ construieşte o coadă de priorităţi pornind de la o secvenţă de elemente
- JoinPQs combină 2 PQ într-o singură PQ

Exemplu

- O literă înseamnă inserarea acelei litere in coada de prioritati (Insert) şi * înseamnă eliminarea elementului cu prioritate maximă (ExtractMax)
- Care este secvenţa de elemente obţinută prin inserare si eliminare din coada de prioritati ca rezultat al următorului şir de comenzi, considerand pozitia literei in alfabet ca prioritatea elementului?

PRIO*R**I*T*Y***

- Putem utiliza diverse structuri pentru a implementa o coadă de priorităţi
- Listă nesortată

- Insert e adaugă elementul e la sfârşit
- ExtractMax parcurge lista pt a găsi maximul

Vector nesortat

- Insert e adaugă elementul e la sfârşit
- ExtractMax parcurge vectorul pt a găsi maximul

Vector sortat

- ExtractMax extrage ultimul element
- Insert e găseşte poziţia pentru e (folosind căutare binară de exemplu), deplasează apoi elementele la dreapta cu 1, inserează

Listă sortată

- ExtractMax extrage ultimul element
- Insert e găseşte poziţia pentru e şi inserează

	Insert	ExtractMax
Vector sau listă nesortată	O(1)	O(n)
Vector sau listă sortată	O(n)	O(1)

4. Structura de date Heap

- Permite implementarea eficientă a operațiilor cu cozi de prioritate
- Un heap-max binar este
 un arbore binar cu proprietatea:
 pentru orice nod, cheia nodului este mai
 mare decât cheile din nodurile copii,
 dacă există copii
- Proprietatea de ordonare a heap-ului (heap order property)

HEAP Max

Structura de date Heap

- Un heap este reprezentat de multe ori ca un arbore binar complet
- Arbore binar complet un arbore binar care este complet umplut, cu posibila excepţie a ultimului nivel care este umplut de la stânga la dreapta
- Proprietatea de structură a heap-ului (heap structure property)

Heap-max binar

Proprietate Heap

 Un arbore binar complet cu n noduri are înălţimea cel mult O(log n)

- Oferă astfel o aranjare a elementelor din heap care permite o căutare eficientă
- DAR operațiile cu heap trebuie să păstreze cele 2 proprietăți de heap

Operații cu Heap

HEAP max

Insert 25

SiftUp

SiftUp

Proprietatea de ordonare Heap refăcută

RemoveMax

RemoveMax

SiftDown

SiftDown

Proprietatea Heap refăcută

5. Reprezentare Heap

Un alt avantaj al arborilor binari compleţi: pot fi reprezentaţi convenabil ca un vector, deci nu mai avem nevoie de legăturile explicite dintr-un arbore binar.

Reprezentare heap ca vector

20

| 10 | 12 | 19 | 20 |

Reprezentare heap ca vector

```
typedef char *Item;
typedef struct
   Item content;
      int prior;
 } ItemType;
typedef struct heap
    { long int MaxHeapSize;
        long int Size;
        ItemType *elem;
    } PriQueue, *APriQueue;
```

Reprezentare heap ca arbore binar

```
typedef char *Item;
typedef struct
 { Item content;
      int prior;
 } ItemType;
typedef struct node *APriQueue;
typedef struct node {
         ItemType elem;
        APriQueue lt, rt; } PriQueue;
```

Reprezentare heap cu vector - simplificata

```
typedef int ItemType;
/* elementul este insasi prioritatea */
static long int MaxHeapSize;
typedef struct heap
    { long int Size;
        ItemType *elem;
    } PriQueue, *APriQueue;
PriQueue h;
```

6. Implementare - Pseudocod

Parent(i) intoarce [i/2]

LeftChild(i) intoarce 2*i

RightChild(i) intoarce 2*i+1

Algoritm Getmax(h)

intoarce elementul maxim

intoarce h.elem[1]

sfarsit

Implementare - Pseudocod

```
Algoritm Insert(h, element)
/* modifica h prin efect lateral sau intoarce eroare */
  daca h.Size = MaxHeapSize
  atunci intoarce eroare /* sau realoca */
  h.Size = h.Size + 1
  h.elem[h.Size] = element
  SiftUp(h, h.Size)
sfarsit
```

Implementare - Pseudocod

```
Algoritm SiftUp(h, i)
                  /* modifica h prin efect lateral */
  cat timp (i>1) si (h.elem[i] > h.elem[Parent(i)])
  repeta
      Interschimba (h.elem[Parent(i)], h.elem[i])
      i = Parent(i)
sfarsit
```

Implementare - Pseudocod

Algoritm ExtractMax(h)

```
/* modifica h prin efect lateral si intoarce elem maxim*/
```

rezultat = h.elem[1]

h.elem[1] = h.elem[h.Size]

h.Size = h.Size - 1

SiftDown(h,1)

intoarece rezultat

sfarsit

```
Algoritm SiftDown(h, i)
                    /* modifica h prin efect lateral */
  maxIndex = i
                    /* left = 2*i */
  left = LeftChild(i)
  daca left ≤ h.Size si h.elem[maxIndex] < h.elem[left]
  atunci maxIndex = left
                                  /* right = 2*i + 1*/
  right = RightChild(i)
  daca right ≤ h.Size si h.elem[maxIndex] < h.elem[right]
  atunci
      daca h.elem[left] < h.elem[right]
      atunci maxIndex = right
  if i!= maxIndex then
       Interschimba (h.elem[maxIndex], h.elem[i])
      SiftDown(h, maxIndex)
```

sfarsit


```
Algoritm SiftDownNR(h, i) – varianta nerecursiva
                 /* modifica h prin efect lateral */
  cat timp 2*i ≤ h.Size repeta
     i = 2*i
                       /* j=LeftChild(i) */
      daca j < h.Size si h.elem[j] < h.elem[j+1]
     atunci j = j+1 /* j=RightChild */
      daca h.elem[i] > h.elem[j] atunci break
      Interschimba (h.elem[i], h.elem[j])
      i = i
```

sfarsit

Algoritm ChangePri(h, i, noua_p)

```
/* modifica h prin efect lateral, schimba prioritatea
  elementului de pe pozitia i*/
  vechea_p = h.elem[i]
  h.elem[i] = noua_p
  daca noua_p > vechea_p
  atunci SiftUp(h,i)
  altfel SiftDown(h, i)
sfarsit
```

Algoritm ExtractEl(h, i)

```
/* modifica h prin efect lateral, elimina si intoarce
  elementul de pe pozitia i*/
  rezultat = h.elem[i]
  h.elem[i] = ConstFMARE
  SiftUp(h,i)
  j = ExtractMax(h)
  intoarece rezultat
sfarsit
```

Implementarea PQ prin Heap

- Implementarea rezultată este eficientă
 - O(log n) pentru Insert si ExtractMax
- Este eficientă si din punct de vedere al spaţiului folosit

 O coadă de prioritate poate fi folosită pentru a sorta un sir de elemente

7. Heapsort

- Sortare utilizând o coadă de prioritate
- Cel mai simplu: pentru a sorta a[1]...a[n]
- Creează a coadă de priorități vidă h
- pentru i=1 la n repeta
 Insert (h,a[i])
- pentru i = n la 1 repetaa[i] = ExtractMax(h)

O(n log n)

Heapsort

- Soluția anterioară folosește un spațiu dublu pentru a memora coada de priorități
- Soluţie mai bună: transformarea vectorului de sortat într-un heap

Heapsort

- Transformăm vectorul într-un heap prin permutarea elementelor lui; cum?
- Reparăm proprietatea de heap de jos în sus
- Inițial proprietatea de heap este satisfăcută în toate frunzele (pe ultimul nivel)
- Reparam toţi subarobii pe nivelul imediat superior, și așa mai departe
- Când ajungem la rădăcină, proprietatea de heap este satisfăcută pentru întregul arbore

http://www.cs.usfca.edu/~galles/visualization/HeapS ort.html

Heapsort

```
Algoritm BuildHeap(a[1..n])
  size = n
  pentru i = [n/2] la 1 repeta
     SiftDown(a,i)
sfarsit
Algoritm Heapsort(a[1..n])
   BuildHeap(a)
   size = n
   cat timp size ≥ 2 repeta
     Interschimba(a[1], a[size])
     size = size - 1
     SiftDown(a,1)
sfarsit
```

O(n log n)

8. Treaps

- Dacă construim un arbore binar de căutare (BST) cu valori aleatoare ale cheilor – Random Binary Search Tree - arborele rezultat va fi echilibrat cu o mare probabilitate
- Adâncimea medie a unui nod dat este aproximativ 2*In(n)
- Deci adancimea arborelui este proportionala cu logaritm din numarul de noduri cu o mare probabilitate
- Dacă structurăm un BST ca și cum ar fi un arbore aleator vom obține o structură destul de bună

Treaps

- Tree + Heap → Treap
- Structură de date care combină BST cu Heap binar
- Fiecare nod conţine (info, prioritate)
 info informaţia din arbore
 prioritate un număr aleator
- Treap:
 - Are proprietatea de arbore binar de cautare (info)
 - Are proprietatea de ordonare din Heap binar (prioritate)

Treaps

```
typedef struct node *Treap;
typedef struct node {
    int    key;
    int    pri;
    Treap lt, rt;} TreapNode;
```

Exemplu treap

Operații

- Cautare analog cu cea de la arbori binari de cautare
- Inserare
- Eliminare

(vezi implementare pe tabla)

- Alte operatii
 - Union
 - Intersection
 - Set difference
 - Operații ajutătoare: Split și Join (Merge)

Inserare in treap

- se genereaza o prioritate aleatoare pentru nodul inserat
- se insereaza informatia in treap folosind regula de inserare de la arbori binari de cautare
- se actualizeaza structura arborelui pentru a se asigura conditia de ordonare din heap raportata la prioritatile din nodurile arborelui: rotatii dreapta / stanga

Rotatii

Rotatie dreapta

Pr subarbore st (x) > Pr nod (y) pt HeapMax

Rotatie dreapta

Rotatie stanga

Eliminare

- Cauta x in arbore (analog cautare in arbore binar de cautare)
- Daca x este frunza atunci sterge nod
- Altfel inlocuieste prioritatea nodului x cu -inf
- Propaga nodul cu informatia x pana ajunge o frunza
 - (prin rotatii successive: stanga / dreapta)
- Sterge frunza ce contine informatia x din arbore
- Rotatia se face cu nodul avand prioritatea cea mai mare dintre cei 2 copii ai nodului x

Eliminare cheie Ina

Treap – alte operatii

- Alte operatii
 - Union
 - Intersection
 - Set difference
 - Operații ajutătoare: Split, Join (Merge)

Split

- Treap T
- Separa T in doua treapuri T_L siT_R dupa cheia k
- split(T,k) rezultă T_L si T_R

■ $\forall x1 \in T_L, x2 \in T_R$: $\ker(x1) \le k \text{ si key}(x2) > k$

Split

Caz 1: Cheia k nu se afla in treap

- Genereaza un nou nod x cu cheia k si prioritatea ∞.
- Insereaza x in T (x va fi radacina arborelui)
- Sterge radacina arborelui:

 T_{L} subarbore stang, T_{R} = subarbore drept

Caz 2: Daca cheia k se afla in treapul T

- Se elimina din treapul T nodul cu cheia k
- Se realizeaza operatia de split (cazul 1)
- Se insereaza nodul cu cheia k in treapul T_L

Join

- Unește două tripuri T_L si T_R
- Join se realizeaza in mod invers operatiei de split prin unirea celor 2 treapuri T_L si T_R in jurul unei chei k

$$\forall x1 \in T_L, x2 \in T_R$$
:
 $\text{key}(x1) < \text{k} < \text{key}(x2)$

- join(T_L,k,T_R) rezulta un treap
- Se creeaza un nod radacina cu cheia k si prioritate ∞, ce are ca subarbore stang pe T_L, iar ca subarbore drept pe T_R
- Sterge nodul cu cheia k

Union

construieste un nou treap, pe baza a doua treapuri T1 si T2

```
union(T1, T2) /* intoarece un nou treap T */
daca T1 == vid atunci intoarce T2
altfel daca T2 == vid atunci intoarce T1
       altfel daca prioritate(radacina(T1)) < prioritate(radacina(T2))
                            atunci interschimba T1 cu T2
       /* prioritate(radacina(T1) > prioritate(radacina(T2) */
     T1 este de forma TL1, r, TR1 /* r cheia din radacina lui T1 */
       /* Toate cheile din TL1 ≤ r si toate cheile din TR1 > r */
             TL2, TR2 = split(T2, r)
             intoarce join(union(TL1, TL2), r, union(TR1, TR2))
```

Alte operatii

- Intersection
- Set difference

Pentru examen

Treaps

- Structuri eficiente, asigura un bun timp mediu (average)
- Au performanțe asemanătoare cu arborii echilibrați dar se implementează mai simplu

Aplicatii

Treaps

- Se pot implementa ușor pe structuri paralele
- Folosite in multe aplicaţii, de exemplu wireless networking, memory allocation, fast parallel aggregate set operations
- Se pot utiliza pentru implementarea unor structuri de date avansate cum ar fi weighted trees, interval trees