🚀 Capacité 6 Déterminer les coordonnées du projeté orthogonal d'un point sur une Dans le plan muni d'un repère orthonormé, on considère la droite \mathcal{D} d'équation x+2y-4=0 et le point A(3;3). Déterminer une équation de la droite Δ, perpendiculaire à D passant par A. Déterminer les coordonnées du point H, projeté orthogonal de A sur D. On connence pou représenter la droite : d'équation oct 2 mg-h=0 · Pour n=0; 0+2 n-4=0 (=> y=2 4+2x-4=0 (=> xx=0) passe par les pourles ((0;2) et). (4;0) On peut oursi utiliser l'équation réduite en

11 D est la droite perpendiculaire à D passant par A.
passant par A.
3 d'équalier $x+2y-4=0a=1$ $b=2$
a=1
Lone un vedeur clinecteur de Dest no (-b;a)
Lone un vedeur clinedeur de Dest no (-b;a)
et- un vecleur mouras a 2 est- m (a,D)
et un vedeur normal à D est m'(a;b) m'(1;2)
Le vecleur II (-2;1) directour de D
Le vecleur in (-2:,1) directour de 2 est normal « 5.
Une équation de Dest danc de la forme:
-2n+1 n + c = 0
A (3,3) ES => -2 ×3+1×3+c=0
(=) c=3
Daniel 1920
Da pour Equation contesienne - 2xtyt3=0

2) le projeté authogenal de Assur D est-par définition le point d'interset - tien de Davec D. Des voordonnées sont denc solubais. $\begin{cases} x + 2xy - 4 = 0 \\ -2x + 4xy + 3 = 0 \end{cases} = \begin{cases} m = 4 - 2xy \\ -2(4 - 2xy) + 4xy + 3 = 0 \end{cases}$ les condonnées du projeté orbogral 11 de A sour 2 sont: Avec P(3:3) et H(2:1) on a AH(-1;-2) donc AH = (-1) + (-2) = 5 donc AH2-5 Jone AH- V5 c'est la distance du

point A à la droite 2.
•