Lecture Note 1: Proof of WLLN and SLLN

Xinyu Mao

March 15, 2020

Definition 1. Indicator function. For $S \subset \mathbb{R}$, $\mathbf{1}_{S}(x) := \begin{cases} 1, & \text{if } x \in S, \\ 0, & \text{otherwise.} \end{cases}$

Theorem 2 (WLLN). For all $\varepsilon > 0$, $\lim_{n \to \infty} P[\omega : |\frac{\sum_{i=1}^{n} d_i(\omega)}{n} - \frac{1}{2}| \ge \varepsilon] = 0$.

Proof. Let $r_i(\omega) = 2d_i(\omega) - 1$. One can easily check that $\{r_i\}$ are orthogonal functions on $\Omega := (0, 1]$, that is,

$$\int_{\Omega} r_i(\omega) r_j(\omega) \, \mathrm{d}\, \omega = \delta_{ij}. \tag{1}$$

Let $s_n(\omega) := \sum_{i=1}^n r_i(\omega)$. Note that

$$P\left[\omega: \left| \frac{\sum_{i=1}^{n} d_i(\omega)}{n} - \frac{1}{2} \right| \ge \varepsilon \right] = P[\omega: |s_n(\omega)| \ge n\varepsilon'] = \int_{\Omega} \mathbf{1}_{\Omega_2}(\omega) \, d\omega, \qquad (2)$$

where $\varepsilon' = 2\varepsilon$, $\Omega_2 = \{\omega : |s_n(\omega)| \ge n\varepsilon'\}$. Since ε is arbitrarily small, we can equate ε and ε' for simplicity. The key observation is that $\mathbf{1}_{\Omega_2}(x) \le \frac{1}{n^2\varepsilon^2} s_n^2(x)$ and thus

$$\int_{\Omega} \mathbf{1}_{\Omega_2}(\omega) \, \mathrm{d}\,\omega \le \frac{1}{n^2 \varepsilon^2} \int_0^1 s_n^2(\omega) \, \mathrm{d}\,\omega = \frac{1}{n \varepsilon^2},\tag{3}$$

where the last equality is obtained by Eq. (1) and the definition of s_n . Combine Eq. (2) and Eq. (3) and we get the desired result.

Definition 3. A set $S \subset R$ is negligible if for all $\varepsilon > 0$, there is a collection of intervals $\{I_i\}_{i=1}^{\infty}$ such that $S \subset \bigcup_{i=1}^{\infty} I_i$, and $\sum_{i=1}^{\infty} |I_i| < \varepsilon$, where $|\cdot|$ is the length of the interval.

Theorem 4 (SLLN). Let $\mathcal{N} = \{\omega : \lim_{n \to \infty} \frac{s_n(\omega)}{n} = 0\}$, \mathcal{N}^c is uncountable but negligible.

Proof. For $x \in (0, 1]$, say $x = 0.b_1b_2 \cdots$, let $f(x) = 0.11b_111b_211b_3 \cdots$. The set $S := \{f(x) : x \in (0, 1]\}$ is uncountable, for f is an injection, and $S \subset \mathcal{N}^c$ since numbers in S clearly violate the property of normal number. Hence, \mathcal{N}^c is uncountable.

By the same method used in the proof of Theorem 2, use s_n^4 instead of s_n^2 , we can establish

$$P[\omega : |s_n(\omega)| \ge n\varepsilon] \le \frac{1}{n^4 \varepsilon^4} \int_0^1 s_n^4(\omega) \, \mathrm{d} \, \omega. \tag{4}$$

We rewrite $s_n^4(\omega)$ as

$$s_n^4(\omega) = \sum_{1 \le i,j,k,l \le n} r_i(\omega) r_j(\omega) r_k(\omega) r_l(\omega). \tag{5}$$

We can figure out the integral value of each term by the orthogonality of $\{r_k\}$, which is shown in Table 1. In s_n^4 , n terms are of the first kind, 3n(n-1) terms are of the

Term	Interval value on Ω
r_i^4	1
$r_i^2 r_i^2$	1
$r_i^2 r_j r_k (\stackrel{\circ}{=} r_j r_k)$	0
$r_i^3 r_j (= r_i r_j)$	0
$r_i r_j r_k r_l$	0

Table 1: Interval value of terms in s_n^4 . In this table, i, j, k, l are pairwise distinct.

second kind, and thus

$$P[\omega : |s_n(\omega)| \ge n\varepsilon] \le \frac{1}{n^4 \varepsilon^4} \int_0^1 s_n^4(\omega) \, \mathrm{d}\, \omega = \frac{1}{n^4 \varepsilon^4} [n + 3n(n-1)] < \frac{3}{n^2 \varepsilon^4}. \tag{6}$$

The key is we can find a decreasing sequence $\{\varepsilon_n\}$ such that

- $\sum_{n=1}^{\infty} \frac{3}{n^2 \varepsilon_n^4}$ converges.
- $\lim_{n\to\infty} \varepsilon_n = 0$.

Let $A_n := \{\omega : |s_n(\omega)| \ge \varepsilon_n\}$. Intuitively, numbers in A_n violate the normal property at the n^{th} digit. Note that for all m > 0, $\bigcup_{j=m}^{\infty} A_j$ covers \mathcal{N}^c , because if $\omega \notin A_j$ for all $j \ge m$, $\omega \in \mathcal{N}$. By Eq. (6) and the proper choice of $\{\varepsilon_n\}$, we have

$$\sum_{n=1}^{\infty} |A_n| < \sum_{n=1}^{\infty} \frac{3}{n^2 \varepsilon_n^4} < \infty. \tag{7}$$

Hence, for $\varepsilon > 0$, there is an m such that $\sum_{j=m}^{\infty} |A_j| < \varepsilon$. Meanwhile, $\bigcup_{j=m}^{\infty} A_j$ covers \mathcal{N}^c , which implies \mathcal{N}^c is negligible.