

- -회사 소개
- -D1 개선 기회 확인
- -D2 과제 구체화
- -D3 고객 요구사항 정의

- M1 CTQ도출
- M2 데이터 수집
- M3 현 수준 파악/목표설정
- 기대 효과

- A1 잠재 원인 도출
- A2 근본 원인 확인
- A3 핵심 원인 선정

- 11 개선방안도출
- I2 개선방안 선정/최적화
- 13 개선방안 실행/검증

창원 신성델타테크(가전 2공장)

● 회사명: 창원 신성델타테크 (Tel. 055-712-6520)

● **소재지**: 대한민국 경상남도 창원시 성산구 성주동 성주로97번길 27

● **설립일**: 1987.11.09

● **대표자** : 구자천/문준명

사원수: 331명

● **주요 사업내용**: 세탁기부품,에어컨부품, 냉장고부품, LCD부품, 자동차부품 제조 및 납품

연혁

1987년 11월 : 세탁기 부품을 생산하는 "신성델타공업㈜" 설립.

1996년 12월 : 에어컨 부품을 생산하는 2공장 설립 및 LG QA 인증 취득

1998년~2007년 : LCD공장과 기술연구소 설립 및 코스닥 상장.

2008년~ 현재: 신성 테크윈,테크닉스,신흥글로벌㈜ 등 다수의 회사를 인수 및 합병.

Drill Down Tree

전사

수익성 제고를 위한 잔업 및 재작업 시간의 감소

품질관리팀

제품 품질 향상을 위한 불량률 감소

생산팀

작업 효율성 향상 및 시간 단축

단위 혁신 과제

RTN 불량 개선을 위한 조립공정 개선

D 1 Define 개선기회 확인 - Process

D 1 Define 개선기회 확인

생산 수 및 불량 수

D 1 Define 개선기회 확인

D2 Define 과제 구체화

과제 목표

" RTN 불량률 개선 "

목표 선정 이유

고객사에 납품한 제품이 Return되어 재작업을 할 경우 시간, 비용, 생산 측면에서 많은 손해를 보기 때문에 RTN 불량률을 개선하는 것이 생산성을 크게 향상 시킬 것이다.

> * RTN : Return의 약어. 고객사에 납품 후 Return 되는 불량

D2 Define 과제 구체화

н	비즈니스 케이스 (과제 추진 배경)			개선 기회 기술(현재의 문제점)		
- RTN 불량률을 개선하여 재 작업시간 감소			소	파워코드 찍힘으로 인해 피복이 벗겨진다.		
- 작업자의 업무 숙지를 통한 재 작업시간 감소			감소	조립 시 작업자의 업무 미흡으로 인해 재작업 시간이 증가한다.		
- 부품 색상	을 구분을 명확	하게 하여 애로/	나항 감소	슬라이드 동작 불량이 있다.		
	목표	기술		프로젝트 범위		
āLO	당 사 조		ш Т	대상 : Base Assy, AL Pannel Assy		
항목 	현 수준	목표 수준	비고	핵심 프로세스: 조립 공정 중 RTN 불량률 개선		
	100/	70/	ој на	- 시작 : Base 검사		
RTN 불량률	10%	7%	월 별	- 끝 : 기능 및 외관 검사		

D2 Define 과제 구체화 - 추진 일정 계획

단계	ᄌᄋ하ᄃ		9	월			10)월			11	월			12월	
근계	주요활동	1주	2주	3주	4주	1주	2주	3주	4주	1주	2주	3주	4주	1주	2주	3주
	개선기회 확인															
Define	과제 구체화															
	고객 요구사항 정의															
	CTQ 도출															
Measure	데이터 수집															
	현수준 파악 및 목표 설정															
	잠재원인 도출															
Analyze	근본원인 확인															
	핵심원인 선정															
	개선방안 도출															
Improve	개선방안 평가 선정															
	개선방안 실행/검증															
	관리방안 수립															
Control	관리계획서 작성 및 실행															
	성과 확인 및 확산															

D3 Define 고객 요구사항 정의 - VOC,VOB 수집 및 핵심 ISSUE, CCR 도출

구분	고객	VOC	핵심 ISSUE	CCR
		부품 3정 위반		
	관리자	컨베이어벨트 속도 개선		
내부		불량품 폐기 시, 양품까지 폐기 된다.	• 생산/납품 일정 준수 애로	• 3정 5S 개선
고객		생산 종료 후 자재 방치		
		조명 불빛에 의한 부품 색상 구분이 어려워 불량률이 높다	• 높은 품질의 제품 생산	• 계획된 일정 준수
	작업자	치수 측정 시 많은 시간 소요	ᇫᆽᆈᆡᆉᅜᅡᄎ	• RTN 불량률 개선
		에어 게이지 관리 불편	• 조립 시간 단축	
		스티커 정위치 미부착	• 인원 부족	• 작업자 환경 개선
외부	LG	납기 기준일 준수하길 원한다		
고객		품질이 떨어지는 부품이 납품 되는 것을 원하지 않는다		

D3 Benefit 기대효과

불량률 감소

현 10%인 RTN 불량률을 목표치인 7%로 감소 시켜 재작업률 감소

생산성 증가

작업환경 개선을 통해 생산시간 감소

고객사 만족도 증가

RTN 불량률을 개선함으로써 고객사의 만족도 증가

Measure CTQ도출

Measure CTQ도출 - CTQ선정 매트릭스

78	잠재 CTQ							
구분		RTN 불량률개선		생산일정 준수율		부품 색상 개선		
Criteria (선정기준)	가중치	점수	가중 점수	점수	가중 점수	점수	가중 점수	
측정 가능 여부	6	9	54	9	54	3	18	
핵심 요구사항과 관련 정도	8	9	72	7	56	7	56	
조직에 미치는 영향 정도	9	9	81	6	54	5	45	
개선 효과	8	7	56	7	56	5	40	
합계	-	-	263	_	220	_	159	

우선 개선 대상

Measure CTQ도출 - RTN 불량 세부사항

1. 파워코드 찍힘으로 인한 피복 벗겨짐

작업 시 파워코드가 고정되어 있지 않아 컨베이어벨트 - 작업대 간 이동 중 찍힘이 발생하여 파워코드 손상

Panel의 휨, 단차, 고정 문제 등으로 디스플레이 부분과 Pannel 사이 틈이 발생하여 슬라이드 동작에 불량 발생

Measure 데이터 수집 - CTQ 정의 및 수집 계획

(CTQ	운용정의	데이터 유형	데이터 위치	데이터 수집자	데이터 생성시기	데이터 수집방법
RTN 불량률	파워코드 찍힘	품질검사 과정에서 발견된 파워코드 부적합품의 비율	이산형	품질관리부서	김민석 김유진	21.05~08	현장 조사
NIN BSB	슬라이드 불량	기능검사 과정에서 발견된 슬라이드 동작불량의 비율	이산형	품질관리부서	민현규 김형경 장연수	21.05~08	현장 조사

	종류	개선 전	개선 후	감소율
전체 생산량 기준 불량률	단차/틈새	3.38%	1.17%	2.21%
(평균 2000EA)	스크래치/찍힘	1.31%	0.48%	0.83%

약 3% 감소

Analysis 잠재 원인 도출 - 잠재 원인 Logic Tree

	구분		민현규	김형경	장연수	김유진	김민석	합계	채택 여부
No.	가중치 항목	5	2	2	2	2	2		
1	작업자의 피로도 증가	4	3	5	3	3	4	56	기각
2	컨베이어-작업대 이동 간 파워코드 찍힘	9	8	8	9	7	7	123	채택
3	판넬 로고 불량	4	6	4	8	3	4	70	기각
4	안착 상태에 따른 단차 및 틈새 발생	2	2	2	3	1	3	32	기각
5	고정 BRACKET의 불량으로 슬라이드 동작 애로	8	8	7	7	7	9	116	채택

Analysis **잠재 원인 도출 -** 분석 계획 수립

	분 석 계 획 서						
주요 잠재 원인	분석 대상	분석 방법	담당자	일정			
컨베이어-작업대 이동 간 파워코드 찍힘	현장 환경	현장 실사, 현장 작업자들과 인터뷰	민현규, 김형경	21.10.05~ 10.15			
고정 BRACKET의 불량으로 슬라이드 동작 애로	현장 환경	현장 실사, 현장 작업자들과 인터뷰	장연수, 김유진, 김민석	21.10.05~ 10.15			

A2 Analysis 근본 원인 확인 -분석 과정

컨베이어-작업대 이동 간 파워코드 찍힘						
분석 대상	현장 환경					
분석 내용	현장 실사, 현장 작업자들과 인터뷰					
분석 결과	작업자들의 정리 정돈 미흡으로 인하여 작업 공간이 협소해 파워코드 찍힘이 발생함					

고정 B	고정 BRACKET의 불량으로 슬라이드 동작 애로					
분석 대상	현장 환경					
분석 내용	현장 실사, 현장 작업자들과 인터뷰					
분석 결과	고정 BRACKET 부착 불량으로 인하여 슬라이드에 결과 단차가 생기거나 제대로 고정이 되어있지 않아 슬라이드 동작불량 발생					

A3 Analysis 핵심 원인 선정 - 분석 결과표

СТО	주요 잠재 원인	분석 대상	분석 방법	분석 결과	핵심 원인 여부
RTN	컨베이어-작업대 이동 간 파워코드 찍힘	현장 환경	현장 실사, 현장 작업자들과 인터뷰	작업자들의 정리 정돈 미흡으로 인하여 작업 공간이 협소해 파워코드 찍힘이 발생함	채택
불량률	고정 BRACKET의 불량으로 슬라이드 동작 애로	현장 환경	현장 실사, 현장 작업자들과 인터뷰	고정 BRACKET 부착 불량으로 인하여 슬라이드에 단차가 생기거나 제대로 고정이 되어있지 않아 슬라이드 동작불량 발생. (+추가로 불량 BRACKET을 제거하는 과정에서 양품 Pannel까지 손상을 입어 폐기되는 것을 확인.)	채택

핵심원인	개선 방향	개선 방안		
		몸체에 코드걸이 부착		
컨베이어-작업대 이동 간	작업환경 개선으로 인한	작업공간 확대		
파워코드 찍힘	시간 단축 및 업무 효율성 상승	작업 중 하차 과정 생략		
		찍힘 방지패드 부착		
		탈, 부착 되는 BRACKET 도입		
불량 발생 시 고정 BRACKET(양품)도 같이 폐기됌	새로운 작업방식 도입 및 검사 과정 개선으로 인한 불량률 감소	작업자 교육 실시		
		검사 과정 세분화		

개선 방안	개선효과	비용효과	시간	난이도	점수	우선순위	판정
몸체에 코드걸이 부착	19	20	20	19	78	1	채택
작업공간 확대	10	11	15	8	44	5	기각
작업 중 하차 과정 생략	10	7	12	13	42	6	기각
찍힘 방지패드 부착	11	16	9	10	46	4	기각
작업자 교육 실시	7	9	15	9	40	7	기각
탈, 부착 되는 BRACKET 도입	15	18	19	19	71	2	채택
검사 과정 세분화	16	20	14	10	60	3	기각

		추진 일정 계획							담당자		
개선 방안(구체적실행계획)		11월							о^I		
		14	15	16	17	18	19	22	23	24~	
	치수 조사										민현규
몸체에	코드걸이 선정										장연수
코드걸이	코드걸이 주문										김유진
부착	설치 및 가운용										김형경
	개선 전,후 데이터비교										김민석
	기존 시스템 조사										김형경
탈, 부착 되는	문제점 검토 및 새로운 시스템 선정										장연수, 김유진
BRACK ET 도입	도입 및 가 운용										민현규
	개선 전,후 데이터비교										김민석

개선 전 〈찍힌 파워코드〉 ⟨Base⟩

작업을 위해 Base를 컨베이어 벨트로 내리는 과정에서 파워코드 찍힘 발생

파워코드 걸이를 통해 Base를 내리는 과정에서 찍힘이 발생하지 않도록 하기 위해 3D 프린터를 활용하여 코드 걸이 제작. 이때, 걸이는 기능검사 후 제거하는 형식

	개선 전	개선 후
데이터	200	200
불량	26	13

평과 결과

개선 전 26개였던 불량수가 개선 방안 적용 후 13개로 감소

* 작업공간 협소로 인한 제품 이동 시, 파워코드 찍힘 발생 확인

컨베이어-작업대 이동 간 파워코드 찍힘

I Improve 개선 방

개선 방안 실행/검증 - 주요 개선 방안 B. 탈·부착 가능한 BRACKET 도입

개선 전

개선 후

슬라이드를 고정하는 4개의 BRACKET 중 하나라도 불량 발생 시, 슬라이드 동작에 애로 발생. 또한 AL PANEL도 같이 폐기되는 문제 발생

→ 강력본드로 부착/고정되어 있어 떨어지지 않아 망치 등 공구로 때려서 분해 해야 하기 때문 기존: 강력본드 도포 고정 + 속건 경화제 도포

변경: 경질 아티론 부착 고정

→ BRACKET 분리가 쉬워, 불량 발생시 BRACKET 분리 / 교체 가능 양품도 같이 폐기 되는 문제 감소

Improve 개선 방영

개선 방안 실행/검증 - 주요 개선 방안 B. 탈·부착 가능한 BRACKET 도입

	개선 전	개선 후
데이터	200	200
불량	68	31

평과 결과

개선 전 68개의 불량 수가 개선 방안 적용 후 31개로 감소

* 부착 불량으로 인한 슬라이드 BRACKET 폐기 확인

탈, 부착 되는 BRACKET 도입

B Improve 개선 방안 실행/검증 - 주요 개선 방안 별 확인 및 조치사항

* 불량률 2.5% 감소

개선 방안	확인사항	조치사항		
몸체에 코드걸이 부착	파워코드 찍힘 불량 수 26EA → 13EA	Base 외관검사 이후 걸이 부착 추가 및 부착된 걸이는 기능검사 후 제거		
탈, 부착 되는 BRACKET 도입	슬라이드 검사 미흡으로 인한 불량 수 68EA → 31EA	도입 완료, 표준화 및 사후관리		

