Справочник по математике

Борис Кожуховский, Максим Гунбин

2017

Оглавление

T	Алгебра 5											
1	Элементарная 6											
	1.1	Рациональные выражения										
		1.1.1 Формулы сокращённого умножения										
2	Лиг	Линейная алгебра										
4	2.1	Линейные комбинации										
	$\frac{2.1}{2.2}$	Матрицы										
	2.2	2.2.1 Операции над матрицами										
		2.2.2 Определитель матрицы										
		2.2.3 Ранг матрицы										
		2.2.4 Элементарные преобразования матриц										
		2.2.5 Обратные матрицы										
	2.3	Векторные пространства										
	2.0	2.3.1 Базис и размерность векторного пространства										
	2.4	Системы линейных алгебраических уравнений										
	2.1	2.4.1 Матричная форма системы линейных уравнений										
		2.4.2 Линейная независимость										
		2.4.3 Решение систем линейных уравнений										
		2.4.4 Фундаментальная система решений										
	2.5	Многочлены от одной переменной										
		2.5.1 Деление многочленов										
		2.5.2 Корень многочлена										
	2.6	Многочлены от нескольких переменных										
	2.0	2.6.1 Симметрические многочлены										
	2.7	Квадратные формы										
II	\mathbf{N}	Іатематический анализ 25										
9	Ф	na n										
3	Функции и их свойства. 26 3.1 График функции											
	$3.1 \\ 3.2$	Периодичность ф-ий										
	3.2	периодичность ф-ии										
4	Пределы 28											
	4.1	Предел на бесконечности										
5	Про	ризводная										
_	5.1	Свойства производных										
		5.1.1 Экстремумы функции двух переменных										
		5.1.2 Экстремумы функции трёх переменных										

	5.2	5.1.3 Экстремум с условием. Метод множителей Лагранжа	30 30									
	0.2	1 еометрическая интерпретация производной	30									
		5.2.2 Нормаль	31									
		0.2.2 Пормаль	91									
III Геометрия												
I	V	Дискретная математика	33									
6	Бул	левы функции	34									
	6.1	Методы минимализации	34									
		6.1.1 Импликанты	34									
		6.1.2 Сокращенные ДНФ	34									
		6.1.3 Тупиковые ДНФ	34									
		6.1.4 Кратчайшие и минимальные ДНФ	34									
	6.2	Классы булевых функций и полнота	34									
		6.2.1 Классы БФ	34									
		6.2.2 Теорема о функциональной полноте	34									
7	Теория графов											
	7.1	Основные понятия	35									
	7.2	Связность графов	36									
		7.2.1 Эйлеровы графы	37									
		7.2.2 Гамильтоновы графы	38									
	7.3	Деревья	39									
		7.3.1 Остовные деревья и методы нахождения минимальных остовных де-										
		ревьев	41									
		7.3.2 Код Прюфера	42									
	7.4	Планарные графы	43									
\mathbf{V}	\mathbf{T}	Сеория множеств	46									
8	Осн	выткноп эмнаон	47									
	8.1	Определение	47									
	8.2	Аксиоматика	47									
	8.3	Операции на множествами	47									
9	Φy	нкции над множествами	48									
	9.1	Определение	48									
	9.2	Биекции, Иньекции, Сюрьекции	48									
m V	T 1	Комбинаторика	49									
•		- I	_ ~									

Введение

Цели этого справочника:

- Систематизация и сохранение математических знаний, полученных мной за годы учёбы
- Сбор информации, которую трудно найти в понятном мне виде
- Конспектирование лекций в красивом виде
- Изучение LaTeX

Благодарность

Автор это справочника благодарит Максима Гунбина за предоставление некоторых материалов в уже написанном в TeX виде.

Часть І

Алгебра

Элементарная

1.1 Рациональные выражения

1.1.1 Формулы сокращённого умножения

• $(a \pm b)^n$ вычисляется через треугольник паскаля

Например:

6

Линейная алгебра

2.1 Линейные комбинации

Выражение, построенное на множестве элементов путём сложения этих элементов, умноженных на некоторые коэффициенты, называется **линейной комбинацией**. Если все коэффициенты линейной комбинации равны нулю, то она называется **тривиальной**, иначе — **нетривиальной**.

2.2 Матрицы

Матрицей называется прямоугольная таблица из чисел, содержащая m строк и n столбцов, и обозначается

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Числа m и n называются порядками матрицы.

Если m=n, то матрица называется **квадратной**, а число m=n- её **порядком**. **Главной** называется диагональ квадратной матрицы, состоящая из элементов $a_{11}, a_{22}, \ldots, a_{nn}$, а **побочной** — состоящая из элементов $a_{n1}, a_{n-12}, \ldots, a_{1n}$.

i-я строка матрицы обозначается A_i, j -й столбец — A^j .

Две матрицы называются **равными**, если их порядки и соответствующие элементы совпадают, иначе — **неравными**.

2.2.1 Операции над матрицами

Матрица, все элементы которой равны 0, называется **нулевой** и обозначается O.

Квадратная матрица, в которой элементы главной диагонали равны 1, а остальные — 0, называется **единичной** и обозначается E.

Над матрицами определены следующие операции:

• Сложение. Определено только над матрицами одинакового размера.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{vmatrix}$$

Пусть A, B, C — матрицы. Свойства сложения:

- коммутативность: A + B = B + A
- ассоциативность: (A + B) + C = A + (B + C)
- Умножение на число.

$$\lambda \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{vmatrix}$$

Пусть α, β — числа, A, B — матрицы. Свойства умножения на число:

- ассоциативность: $(\alpha \cdot \beta) \cdot A = \alpha \cdot (\beta \cdot A)$
- дистрибутивность относительно сложения чисел: $(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A$
- дистрибутивность относительно сложения матриц: $\alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B$
- Умножение. $A \cdot B$ определено, только если количество столбцов в матрице A совпадает с количеством строк в матрице B.

где суммирование производится по i от 1 до k.

Пусть λ — число, A, B, C — матрицы. Свойства умножения:

- ассоциативность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- дистрибутивность: $(A+B)\cdot C = A\cdot C + B\cdot C, A\cdot (B+C) = A\cdot B + A\cdot C$
- ассоциативность и коммутативность относительно умножения на число: $(\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B) = A \cdot (\lambda \cdot B)$

2.2.2 Определитель матрицы

Определителем порядка n, соответствующим квадратной матрице A порядка n, называется число, равное

$$\Delta = \det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{\sigma = (i_1; \dots; i_n) \in S_n} (-1)^{|\sigma|} a_{1i_1} a_{2i_2} \cdots a_{ni_n}, \ |\sigma| = \begin{cases} 0, \sigma \text{ чётная} \\ 1, \sigma \text{ нечётная} \end{cases}$$

$$(2.1)$$

где S_n — множество всех перестановок n-элементного множества.

Матрица называется **вырожденной**, если её определитель равен 0, иначе — **невы- рожденной**.

Свойства определителя:

• Если элементы какой-либо строки или столбца определителя имеют общий множитель λ , то его можно вынести за знак определителя.

Доказательство.

$$\Delta = \sum (-1)^{|\sigma|} a_{1 i_1} a_{2 i_2} \cdot \ldots \cdot a_{n i_n}$$

Каждое слагаемое имеет множитель из каждой строки, а также из каждого столбца, т. к. σ является перестановкой и содержит все номера столбцов от 1 до n включительно. Тогда все слагаемые имеют общий множитель λ , поэтому его можно вынести за скобки. \blacksquare

• Если какая-либо строка или столбец определителя состоит из нулей, то он равен 0.

•

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{|\sigma|} a_{1i_1} \cdot \ldots \cdot a_{ni_n} =$$

| Каждое слагаемое содержит ровно 1 элемент из i-й строки и поэтому имеет вид |

$$= \sum (-1)^{|\sigma|} a_{1 i_{1}} \cdot \ldots \cdot a_{k-1 i_{k-1}} (a_{k i_{k}} + b_{k i_{k}}) a_{k+1 i_{k+1}} \cdot \ldots \cdot a_{n i_{n}} =$$

$$= \sum (-1)^{|\sigma|} a_{1 i_{1}} \cdot \ldots \cdot a_{k i_{k}} \cdot \ldots \cdot a_{n i_{n}} + \sum (-1)^{|\sigma|} a_{1 i_{1}} \cdot \ldots \cdot b_{k i_{k}} \cdot \ldots \cdot a_{n i_{n}} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

• Если в определителе поменять две строки или два столбца местами, то он изменит знак.

Доказательство. При перестановке строк или столбцов местами все перестановки в формуле (2.1) меняют чётность, значит, каждое слагаемое меняет знак, тогда и определитель меняет знак. ■

• Если в определителе две строки или два столбца совпадают, то он равен 0.

Доказательство. Если поменять местами совпадающие строки или столбцы, то он, с одной стороны, не изменится, а с другой, поменяет знак. Значит, определитель равен 0. ■

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \cdots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{j2} & \cdots & a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} + a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} + a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} + a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} + a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots &$$

Свойство для столбцов доказывается аналогично.

Пусть дана матрица

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Алгебраическим дополнением элемента a_{ij} называется число, равное

$$A_{ij} = (-1)^{i+j} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1j-1} & a_{1j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1} & \cdots & a_{i-1j-1} & a_{i-1j+1} & \cdots & a_{i-1n} \\ a_{i+1} & \cdots & a_{i+1j-1} & a_{i+1j+1} & \cdots & a_{i+1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nj-1} & a_{nj+1} & \cdots & a_{nn} \end{vmatrix}$$

Лемма 2.2.1.

$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Доказательство.

$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$= \sum a \cdot a_{2i_2} \cdot \ldots \cdot a_{ni_n} + \sum 0 \cdot a_{2i_2} \cdot \ldots \cdot a_{ni_n} + \ldots + \sum 0 \cdot a_{2i_2} \cdot \ldots \cdot a_{ni_n} =$$

$$= a \sum a_{2i_2} \cdot \ldots \cdot a_{ni_n} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Teopema 2.2.1. Любой определитель можно **разложить** по элементам произвольной строки или столбца:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

где A_{ij} — алгебраическое дополнение элемента a_{ij} .

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot \begin{vmatrix} a_{i1} & a_{i+12} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-2} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & a_{i2} & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & 0 & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & 0 & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{i+1} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{i2} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{11} & a_{13} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i+1} \cdot \begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{i2} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{11} & a_{13} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-1} & a_{n-2} & \cdots & a_{nn} \end{vmatrix} - \begin{vmatrix} a_{i2} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{11} & a_{13} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-1} & a_{n-2} & \cdots & a_{nn} \end{vmatrix} - \begin{vmatrix} a_{i2} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{11} & a_{13} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-1} & a_{n-2} & \cdots & a_{nn} \end{vmatrix} - \begin{vmatrix} a_{i2} & a_{i-11} & a_{i-13} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-1} & a_{n-2} & \cdots & a_{nn} \end{vmatrix} + \cdots + \begin{vmatrix} a_{i-1} & a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} - \begin{vmatrix} a_{i1} & a_{i-12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots$$

$$+ (-1)^{n-1} \cdot \begin{vmatrix} a_{in} & 0 & \cdots & 0 \\ a_{1n} & a_{11} & \cdots & a_{1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-1n} & a_{i-11} & \cdots & a_{i-1n-1} \\ a_{i+1n} & a_{i+11} & \cdots & a_{i+1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{n1} & \cdots & a_{nn-1} \end{vmatrix} =$$

$$= (-1)^{i+1}a_{i1} \cdot \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{i-12} & \cdots & a_{i-1n} \\ a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2}a_{i2} \cdot \begin{vmatrix} a_{11} & a_{13} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-13} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+13} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n3} & \cdots & a_{nn} \end{vmatrix} + \dots +$$

$$+ (-1)^{i+n}a_{in} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{i-11} & \cdots & a_{i-1n-1} \\ \vdots & \ddots & \vdots \\ a_{i+1n} & \cdots & a_{i+1n-1} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \end{vmatrix} = \sum_{j=1}^{n} a_{ij}A_{ij}$$

$$\vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots$$

Аналогично доказывается

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Транспонированием матрицы или определителя называется операция, в результате которой строки меняются местами со столбцами с сохранением порядка следования:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Полученная матрица или определитель называется **транспонированной** по отношению к исходной.

Утверждение 2.2.1. Определитель транспонированной матрицы равен определителю исходной.

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{1j} A_{1j} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

2.2.3 Ранг матрицы

Строка (столбец) матрицы называется **линейно зависимой**, если она является линейной комбинацией остальных строк (столбцов), иначе — **линейно независимой**.

Рангом матрицы называется максимальное количество её линейно независимых строк.

Минором k-го порядка матрицы называется определитель, содержащий только те её элементы, которые стоят на пересечении некоторых k строк и k столбцов. Минор наибольшего порядка, отличный от нуля, называется **базисным**.

Теорема 2.2.2. Ранг матрицы равен порядку базисного минора.

Доказательство. Пусть

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

 M_k — базисный минор k-го порядка. При перестановке строк и столбцов минора равенство с нулём сохраняется, значит, без ограничения общности можно считать, что

$$M_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

 $M_k \neq 0$, значит, строки A_1, \dots, A_k линейно независимы. Пусть M_{k+1} — минор (k+1)-го порядка:

$$M_{k+1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2k} & a_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & a_{kj} \\ a_{i1} & a_{i2} & \cdots & a_{ik} & a_{ij} \end{vmatrix} = 0$$

т. к. M_k — базисный минор. Тогда

$$a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{kj}A_{kj} + a_{ij}A_{ij} = 0, \ A_{ij} = M_k \neq 0 \Rightarrow$$

$$\Rightarrow a_{ij} = -\frac{A_{1j}}{A_{ij}}a_{1j} - \frac{A_{2j}}{A_{ij}}a_{2j} - \dots - \frac{A_{kj}}{A_{ij}}a_{kj}$$

где $A_{1j},\ldots,A_{kj},A_{ij}$ — алгебраические дополнения $a_{1j},\ldots,a_{kj},a_{ij}$. $A_{1j},\ldots,A_{kj},A_{ij}$ не зависят от j, тогда A_i — линейная комбинация A_1,\ldots,A_k , значит, k — ранг матрицы A.

Рангом матрицы по строкам (столбцам) называется максимальное количество её линейно независимых строк (столбцов).

Следствие 2.2.1. Ранг матрицы по строкам равен рангу матрицы по столбцам. Для доказательства достаточно заметить, что определитель транспонированной матрицы равен определителю исходной.

2.2.4 Элементарные преобразования матриц

Элементарными преобразованиями называются следующие операции над матрицей, не изменяющие её ранга:

- **Перестановка строк** матриц. Очевидно, что ранг матрицы при перестановке строк не меняется.
- Умножение строки на $\lambda \neq 0$. Доказательство.

• Прибавление к строке матрицы другой строки, умноженной на $\lambda \neq 0$. Доказательство.

Аналогично определяются элементарные преобразования над столбцами. Матрица A имеет **ступенчатый вид**, если:

- все нулевые строки стоят последними;
- для любой ненулевой строки A_p верно, что $\forall i > p, \ j \leqslant q \ a_{ij} = 0$, где a_{pq} первый ненулевой элемент строки A_p .

Teopema 2.2.3. Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду.

Доказательство.

2.2.5 Обратные матрицы

Матрица B называется **певой обратной** к квадратной матрице A, если BA = E. Матрица C называется **правой обратной** к квадратной матрице A, если AC = E. Заметим, что обе матрицы B и C — квадратные того же порядка, что и A.

Утверждение 2.2.2. Если существуют левая и правая обратные к A матрицы B и C, то они совпадают.

Доказательство. B = BE = BAC = EC = C

Т. о., матрица A^{-1} называется **обратной** к матрице A, если $A^{-1}A = AA^{-1} = E$.

Теорема 2.2.4. Пусть даны матрицы

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}, \quad \tilde{A} = \begin{vmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{vmatrix}$$

где A_{ij} — алгебраическое дополнение a_{ij} .

 $Если |A| \neq 0$, то

$$A^{-1} = \frac{\tilde{A}^T}{|A|}$$

Доказательство.

Теорема 2.2.5. Пусть дана невырожденная матрица

$$A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Присоединим к ней единичную матрицу:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{vmatrix}$$

и с помощью элементарных преобразований только над строками полученной матрицы (или только над столбцами) приведём её левую часть к единичной матрице. Тогда правая часть будет обратной к A матрицей.

Доказательство.

2.3 Векторные пространства

n-мерным векторным пространством над полем вещественных чисел называется множество

$$V_n = \mathbb{R}^n = \{(x_1; \dots; x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}\$$

элементы которого называются **векторами**. Над ними определены операции сложения и умножения на число, удовлетворяющие аксиомам:

1. Коммутативность сложения:

$$\forall \overline{a}, \overline{b} \in V_n \ \overline{a} + \overline{b} = \overline{b} + \overline{a}$$

2. Ассоциативность сложения:

$$\forall \overline{a}, \overline{b}, \overline{c} \in V_n \ \overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$$

3. Существование **нулевого** вектора, или **нуля**, обозначаемого $\overline{0}$:

$$\exists \overline{0} \in V_n : \forall \overline{a} \in V \ \overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$$

4. Существование противоположного вектора:

$$\forall \overline{a} \in V_n \ \exists (-\overline{a}) \in V_n : \overline{a} + (-\overline{a}) = \overline{0}$$

5. Ассоциативность умножения на число:

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ \alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}$$

6. Дистрибутивность умножения на число относительно сложения векторов:

$$\forall \alpha \in \mathbb{R}, \ \forall \overline{a}, \overline{b} \in V_n \ \alpha(\overline{a} + \overline{b}) = \alpha \overline{a} + \alpha \overline{b}$$

7. Дистрибутивность умножения на число относительно сложения чисел:

$$\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ (\alpha + \beta) \overline{a} = \alpha \overline{a} + \beta \overline{a}$$

8. Существование единицы:

$$\forall \overline{a} \in V_n \ 1 \cdot \overline{a} = \overline{a}$$

2.3.1 Базис и размерность векторного пространства

Векторы $\overline{a_1},\dots,\overline{a_n}$ называются **линейно зависимыми**, если

$$\exists \alpha_1, \dots, \alpha_n \colon \sum_{i=1}^n \alpha_i \overline{a_i} = \overline{0}, \ \sum_{i=1}^n \alpha_i^2 \neq 0$$

иначе — линейно независимыми.

Множество линейно независимых векторов $\overline{e_1},\dots,\overline{e_n}$ векторного пространства V называется **базисом** этого пространства, если

$$\forall \overline{x} \in V \ \exists \alpha_1, \dots, \alpha_n \colon \overline{x} = \sum_{i=1}^n \alpha_i \overline{e_i}$$

Приведённое равенство называется **разложением** вектора \overline{x} по базису $\overline{e_1}, \ldots, \overline{e_n}$.

Теорема 2.3.1 (о базисе). Любой вектор \overline{x} может быть разложен по базису $\overline{e_1}, \dots, \overline{e_n}$ единственным образом.

Доказательство.

Размерностью векторного пространства называется максимальное количество линейно независимых векторов.

Теорема 2.3.2. В векторном пространстве размерности n любые n линейно независимых векторов образуют его базис.

Доказательство.

Теорема 2.3.3. Если векторное пространство имеет базис из n векторов, то его размерность равна n.

Доказательство.

2.4 Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений имеет вид

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

где x_1, \ldots, x_n — переменные.

 $a_{11}, a_{12}, \dots, a_{mn}$ называются коэффициентами при переменных, b_1, b_2, \dots, b_m — свободными членами.

Система линейных уравнений называется **однородной**, если все её свободные члены равны 0, иначе — **неоднородной**.

Система линейных уравнений называется **совместной**, если она имеет хотя бы одно решение, иначе — **несовместной**.

Система линейных уравнений называется определённой, если она имеет единственное решение. Если система имеет более одного решения, то она называется неопределённой.

Две системы линейных уравнений называются **эквивалентными**, если их решения совпадают или обе не имеют решений.

2.4.1 Матричная форма системы линейных уравнений

Систему линейных уравнений можно представить в матричной форме:

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow$$

$$\Leftrightarrow A \cdot X = B$$

A называется основной матрицей системы, X — столбцом переменных, B — столбцом свободных членов. Если к основной матрице справа приписать столбец свободных членов, то получится расширенная матрица системы:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{vmatrix}$$

2.4.2 Линейная независимость

Уравнение системы линейных уравнений называется **линейно зависимым**, если соответствующая ему строка расширенной матрицы является нетривиальной линейной комбинацией других строк, иначе — **линейно независимым**.

Система линейных уравнений называется **линейно зависимой**, если существует нетривиальная линейная комбинация строк расширенной матрицы, в результате которой получается нулевая строка, иначе — **линейно независимой**.

Утверждение 2.4.1. *Система линейных уравнений линейно зависима* ⇔ одно из её уравнений линейно зависимо.

Доказательство.

1. \Rightarrow . Пусть система из строк A_1, \ldots, A_n линейно зависима:

$$\sum_{i=1}^{n} \alpha_i A_i = O, \ \sum_{i=1}^{n} \alpha_i^2 \neq 0$$

где O — нулевая строка. Без ограничения общности можно считать, что $\alpha_1 \neq 0$, тогда

$$A_1 = -\sum_{i=2}^n \frac{\alpha_i}{\alpha_1} A_i$$

Значит, A_1 — линейно зависимая строка.

2. \Leftarrow . Пусть одна из строк линейно зависима:

$$A_1 = \sum_{i=2}^{n} \alpha_i A_i \Leftrightarrow 1 \cdot A_1 - \alpha_2 A_2 - \ldots - \alpha_n A_n = O$$

Значит, система линейно зависима.

2.4.3 Решение систем линейных уравнений

Лемма 2.4.1. Пусть система из строк A_1, \ldots, A_n линейно независима и A_{n+1} не является линейной комбинацией A_1, \ldots, A_n . Тогда система из строк $A_1, \ldots, A_n, A_{n+1}$ линейно независима.

Доказательство (методом от противного). Пусть система из строк $A_1, \ldots, A_n, A_{n+1}$ линейно зависима:

$$\sum_{i=1}^{n+1} \alpha_i A_i = O, \ \sum_{i=1}^{n+1} \alpha_i^2 \neq 0$$

где O — нулевая строка. Система из строк A_1,\dots,A_n линейно независима по условию, тогда

$$\alpha_{n+1} \neq 0 \Rightarrow A_{n+1} = -\sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} A_i$$

Значит, A_{n+1} — линейная комбинация A_1, \ldots, A_n . Противоречие с условием. \blacksquare

Теорема 2.4.1 (Кронекера — **Капелли).** Система линейных уравнений совместна \Leftrightarrow ранг основной матрицы совпадает c рангом расширенной матрицы.

Доказательство.

- $1. \Rightarrow .$
- $2. \Leftarrow.$

Метод Гаусса

Пусть дана система линейных уравнений

$$\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(2.2)

Её расширенную матрицу можно привести к ступенчатому виду, т. е. (2.2) эквивалентна

$$\begin{cases}
 a_{1j_1}x_{j_1} + \dots + a_{1j_n}x_{j_n} = b_1 \\
 a_{2j_2}x_{j_2} + \dots + a_{2j_n}x_{j_n} = b_2 \\
 \vdots \\
 a_{rj_r}x_{j_r} + \dots + a_{rj_n}x_{j_n} = b_r \\
 0 = b_{r+1} \\
 \vdots \\
 0 = b_m
\end{cases} (2.3)$$

где $a_{1j_1}, \ldots, a_{rj_r} \neq 0$. Без ограничения общности можно считать, что в базисный минор основной матрицы системы (2.3) входят только коэффициенты при переменных x_{j_1}, \ldots, x_{j_r} , называемых главными (зависимыми). Остальные переменные называются свободными (независимыми).

Если $\exists i>r\colon b_i\neq 0,$ то система несовместна. Пусть $\forall i>r$ $b_i=0.$ Тогда получим систему

$$\begin{cases} x_{j_1} = \frac{b_1}{a_{1\,j_1}} - \frac{a_{1\,j_2}}{a_{1\,j_1}} x_{j_2} - \dots - \frac{a_{1\,j_n}}{a_{1\,j_1}} x_{j_n} \\ x_{j_2} = \frac{b_2}{a_{2\,j_2}} - \frac{a_{2\,j_3}}{a_{2\,j_2}} x_{j_3} - \dots - \frac{a_{2\,j_n}}{a_{2\,j_2}} x_{j_n} \\ \vdots \\ x_{j_r} = \frac{b_r}{a_{r\,j_r}} - \frac{a_{r\,j_{r+1}}}{a_{r\,j_r}} x_{j_{r+1}} - \dots - \frac{a_{r\,j_n}}{a_{r\,j_r}} x_{j_n} \end{cases}$$

Если свободным переменным полученной системы придавать все возможные значения и решать новую систему относительно главных неизвестных от нижнего уравнения к верхнему, то получим все решения данной системы.

Метод Крамера

Позволяет решить только те системы, которые имеют единственное решение. Пусть дана система линейно независимых уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Определитель основной матрицы системы не равен 0, т. к. строки линейно независимы. Запишем систему в матричной форме:

$$||AX| = B \Leftrightarrow X = A^{-1}B \Leftrightarrow$$

$$||AX| = ||AX| = ||AX$$

где A_{ij} — алгебраическое дополнение a_{ij} .

Т. о., получим решение системы:

$$x_{i} = \frac{\sum_{j=1}^{n} A_{ji} b_{j}}{|A|} = \begin{vmatrix} a_{11} & \cdots & a_{1i-1} & b_{1} & a_{1i+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i-1} & b_{2} & a_{2i+1} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni-1} & b_{n} & a_{ni+1} & \cdots & a_{nn} \end{vmatrix}, i = 1, \dots, n$$

Полученные формулы называется формулами Крамера.

2.4.4 Фундаментальная система решений

Утверждение 2.4.2. Однородная линейно независимая система уравнений

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0\\ \sum_{i=1}^{n} a_{2i}x_{i} = 0\\ \vdots\\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases}$$

задаёт векторное пространство размерности n-m.

Доказательство.

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества всех её решений.

Нахождение фундаментальной системы решений

Пусть дана однородная линейно независимая система уравнений:

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0 \\ \sum_{i=1}^{n} a_{2i}x_{i} = 0 \\ \vdots \\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} \sum_{i=1}^{m} a_{1i}x_{i} = -\sum_{i=m+1}^{n} a_{1i}x_{i} \\ \sum_{i=1}^{m} a_{2i}x_{i} = -\sum_{i=m+1}^{n} a_{2i}x_{i} \\ \vdots \\ \sum_{i=1}^{m} a_{mi}x_{i} = -\sum_{i=m+1}^{n} a_{mi}x_{i} \end{cases}$$

Пусть

$$(x_{11}; x_{21}; \dots; x_{m1}; 1; 0; \dots; 0)$$

$$(x_{12}; x_{22}; \dots; x_{m2}; 0; 1; \dots; 0)$$

$$\vdots$$

$$(x_{1n-m}; x_{2n-m}; \dots; x_{mn-m}; 0; 0; \dots; 1)$$

являются решениями данной системы. Тогда они образуют фундаментальную систему решений.

Доказательство.

Теорема 2.4.2. Общее решение неоднородной системы линейных уравнений равно сумме её частного решения и общего решения соответствующей однородной системы, т. е. с теми же самыми коэффициентами при переменных.

Доказательство.

2.5 Многочлены от одной переменной

Одночленом, или **мономом**, называется произведение числового множителя и нуля и более переменных, взятых каждая в неотрицательной степени.

Степенью одночлена называется сумма степеней входящих в него переменных. Степень тождественного нуля равна $-\infty$.

Многочленом, или полиномом, от одной переменной называется сумма вида

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

где x_1, \ldots, x_n — переменные.

Степенью многочлена называется максимальная из степеней его одночленов.

Лемма 2.5.1. Пусть f и g — многочлены, тогда $\deg fg = \deg f + \deg g$.

2.5.1 Деление многочленов

Теорема 2.5.1. Пусть f(x) и $g(x) \neq 0$ — многочлены, тогда существуют единственные многочлены q(x) и r(x) такие, что f = qg + r, причём либо r = 0, либо $\deg r < \deg g$. Доказательство.

- 1. Докажем единственность.
- 2. Докажем существование.

Общим делителем многочленов f(x) и g(x) называется многочлен h(x), на который и f, и g делятся нацело:

$$f = ph, q = qh$$

Наибольшим называется общий делитель наибольшей степени и обозначается НОД. **Теорема 2.5.2 (алгоритм Евклида).** Любые два многочлена имеют единственный НОЛ.

Доказательство.

2.5.2 Корень многочлена

Корнем многочлена f(x) называется такое число a, что f(a) = 0.

Теорема 2.5.3 (Безу). Остаток от деления многочлена f(x) на двучлен x-a равен f(a).

Доказательство.

$$f(x) = g(x)(x-a) + r \Rightarrow f(a) = g(a)(a-a) + r \Leftrightarrow r = f(a)$$

Следствие 2.5.1. Если a — корень f(x), то f(x) делится на x - a без остатка.

Кратностью корня a многочлена f(x) называется число $m : f(x) : (x-a)^m, f(x) \not / (x-a)^{m+1}$.

Теорема 2.5.4 (основная теорема алгебры). Если f(x) — многочлен, отличный от константы, то он имеет хотя бы один комплексный корень. Доказательство теоремы слишком сложно, поэтому здесь не приводится.

Следствие 2.5.2. Многочлен n-й степени имеет ровно n комплексных корней c учётом их кратности.

Доказательство. Пусть f(x) — многочлен n-й степени. По основной теореме алгебры (2.5.4) он имеет корень a, тогда по следствию (2.5.1) f(x) = g(x)(x-a), где g(x) — многочлен (n-1)-й степени, который также имеет корень. Будем повторять деление до тех пор, пока не получим константу. Т. о., получим n корней. \blacksquare

Следствие 2.5.3. Любой многочлен f(x) n-й степени представим в виде

$$f(x) = a(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

где a — число, x_0, \ldots, x_{n-1} — корни f(x).

Лемма 2.5.2. Если f(x) — многочлен c действительными коэффициентами, $z \in \mathbb{C}$, то $\overline{f(z)} = f(\overline{z})$.

Доказательство. Пусть $z_1 = a_1 + b_1 i, z_2 = a_2 + b_2 i, a_1, b_1, a_2, b_2 \in \mathbb{R}$. Многочлен строится при помощи операций сложения и умножения, поэтому достаточно доказать следующее:

1.
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 + z_2} = \overline{(a_1 + a_2) + (b_1 + b_2)i} = (a_1 + a_2) - (b_1 + b_2)i = (a_1 - b_1i) + (a_2 - b_2i) = \overline{z_1} + \overline{z_2}$$

2.
$$\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$\overline{z_1 z_2} = \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i} = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1)i = (a_1 - b_1 i)(a_2 - b_2 i) = \overline{z_1} \cdot \overline{z_2}$$

Тогда $\overline{a_nz^n+\ldots+a_1z+a_0}=a_n\overline{z}^n+\ldots+a_1\overline{z}+a_0$ при $a_0,a_1,\ldots,a_n\in\mathbb{R}.$

Teopema 2.5.5. Любой многочлен с действительными коэффициентами можно разложить на линейные и квадратные множители с действительными коэффициентами.

Доказательство. Пусть $\underline{f(x)}$ — многочлен с действительными коэффициентами, тогда если f(z)=0, то $f(\overline{z})=\overline{f(z)}=\overline{0}=0$. Значит, если a+bi — корень f(x), то a-bi — тоже корень f(x). Имеем:

$$f(x) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x - (a_j + b_j i))(x - (a_j - b_j i)) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x^2 - 2a_j x + a_j^2 + b_j^2)$$

где $a, x_1, \ldots, x_m, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$,

 $x_1,\ldots,x_m,a_1+b_1i,\ldots,a_n+b_ni$ — корни f(x).

Теорема 2.5.6 (формулы Виета). Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$
 (2.4)

тогда

$$a_{n-1} = -a_n \sum_{i=0}^{n-1} x_i$$

$$a_{n-2} = a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} x_i x_j$$

$$a_{n-3} = -a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} \sum_{k=j+1}^{n-1} x_i x_j x_k$$

$$\vdots$$

$$a_1 = (-1)^{n-1} a_n \sum_{i=0}^{n-1} x_0 x_1 \cdot \ldots \cdot x_{i-1} x_{i+1} \cdot \ldots \cdot x_{n-1}$$

$$a_1 = (-1)^n a_n x_0 x_1 \cdot \ldots \cdot x_{n-1}$$

Для доказательства достаточно раскрыть скобки в правой части равенства (2.4).

Теорема 2.5.7. Пусть на плоскости даны n+1 точек, никакие две из которых не лежат

на прямой, паралелльной оси ординат, тогда через них проходит единственная кривая n-го порядка.

Доказательство. Пусть данные точки заданы координатами $(a_0; b_0), (a_1; b_1), \dots, (a_n; b_n),$ тогда кривая

$$f = \sum_{i=0}^{n} b_i \frac{(x - a_0) \cdot \dots \cdot (x - a_{i-1})(x - a_{i+1}) \cdot \dots \cdot (x - a_n)}{(a_i - a_0) \cdot \dots \cdot (a_i - a_{i-1})(a_i - a_{i+1}) \cdot \dots \cdot (a_i - a_n)}$$

Докажем, что f проходит через все данные точки. Рассмотрим точку $(a_k; b_k)$. Подставим $x = a_k$, тогда k-е (считая с нуля) слагаемое равно b_k , а остальные — 0.

2.6 Многочлены от нескольких переменных

- 1. В многочлене $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ подставим $a_i = P_i(y)$ многочлен от y. Получим многочлен от x и y.
- 2. Пусть имеем многочлен от n переменных. Подставим вместо его коэффициентов многочлен от одной переменной, получим многочлен от n+1 переменных.

Одночлены многочлена будем записывать в лексикографическом порядке степеней переменных (члены с бо́льшими степенями идут раньше).

Теорема 2.6.1. Старший член произведения многочленов равен произведению старших членов множителей.

Доказательство. Перемножая члены с наибольшими показателями старшей переменной, получим член с наибольшим показателем при этой переменной. Проведя аналогичные рассуждения для остальных переменной, придём к выводу, что полученный член является старшим. ■

Аналогично доказывается следующая теорема.

Теорема 2.6.2. Младший член произведения многочленов равен произведению младших членов множителей.

2.6.1 Симметрические многочлены

Многочлен называется **симметрическим**, если при перестановке переменных он не изменяется.

Утверждение 2.6.1. Если $f(x_1,\ldots,x_n)=ax_1^{i_1}x_2^{i_2}\cdot\ldots\cdot x_n^{i_n}+\ldots-$ симметрический многочлен, то $i_1\geqslant i_2\geqslant\ldots\geqslant i_n$.

Доказательство (методом от противного). Пусть $\exists r < q \colon i_r < i_q$, тогда f содержит $bx_1^{i_1}x_2^{i_2}\dots x_r^{i_r}\dots x_q^{i_r}\dots x_n^{i_n}$, который старше, чем $ax_1^{i_1}x_2^{i_2}\dots x_n^{i_n}$. Противоречие. \blacksquare

Элементарными симметрическими многочленами от n переменных называются многочлены

$$\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n x_i$$

$$\sigma_2(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i+1}^n x_i x_j$$

$$\vdots$$

$$\sigma_n(x_1, \dots, x_n) = x_1 x_2 \cdot \dots \cdot x_n$$

Теорема 2.6.3 (основная теорема о симметрических многочленах). Любой симметрический многочлен может быть представлен в виде многочлена от элементарных симметрических многочленов.

Доказательство. Пусть $f(x_1,\ldots,x_n)=ax_1^{k_1}\cdot\ldots\cdot x_n^{k_n}+\ldots$ — симметрический многочлен. Введём

$$g_1(\sigma_1, \dots, \sigma_n) = a\sigma_1^{k_1 - k_2} \sigma_2^{k_2 - k_3} \cdot \dots \cdot \sigma_{n-1}^{k_{n-1} - k_n} \sigma_n^{k_n} =$$

$$= a(x_1 + \dots)^{k_1 - k_2} (x_1 x_2 + \dots)^{k_2 - k_3} \cdot \dots \cdot (x_1 x_2 \cdot \dots \cdot x_{n-1} + \dots)^{k_{n-1} - k_n} (x_1 x_2 \cdot \dots \cdot x_n)^{k_n} =$$

$$= ax_1^{k_1} \cdot \dots \cdot x_n^{k_n} + \dots$$

Тогда старший член многочлена $f_1 = f - g_1$ младше старшего члена многочлена f. Повторим те же действия с многочленом f_1 . Будем продолжать таким образом, пока не получим ноль. В итоге получим $f = g_1 + g_2 + \ldots + g_m$, где g_1, g_2, \ldots, g_m — многочлены от элементарных симметрических многочленов.

2.7 Квадратные формы

Квадратичной формой называется многочлен, все одночлены в котором второй степени:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

Для определённости полагают $a_{ij} = a_{ji}$.

Квадратичной форме можно сопоставить **матрицу квадратичной формы**, составленную из коэффициентов:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Каноническим видом квадратичной формы называется её представление в виде суммы квадратов с некоторыми коэффициентами.

Теорема 2.7.1 (метод Лагранжа). Любая квадратичная форма может быть приведена к каноническому виду.

Доказательство.

Нормальным видом квадратичной формы называется её канонический вид, коэффициенты в котором равны -1 или 1.

Рангом квадратичной формы называется количество переменных в её каноническом виде. Количество положительных коэффициентов в каноническом виде квадратичной формы называется её положительным индексом, а отрицательных — отрицательным индексом. Сигнатурой квадратичной формы называется модуль разности положительного и отрицательного индексов.

Ранг, положительный и отрицательный индексы и сигнатура одинаковы для всех канонических видов квадратичной формы.

Часть II Математический анализ

Функции и их свойства.

3.1 График функции

Преобразование графиков ф-ий:

- 1. Симметрия относительно осей координат
 - Функции y = f(x) и y = -f(x) имеют одну и ту же область определения, их графики симметричны относительно оси Ox.
 - Функции y = f(x) и y = f(-x) имеют области определения, симметричные относительно точки O. Их графики симметричны относительно оси Oy.
- 2. Сдвиг вдоль осей координат (параллельный перенос)
 - Функция y = f(x a), где $a \neq 0$, определена для всех x, таких, что $(x a) \in D(f(x))$. График ф-ии y = f(x a) получается сдвигом вдоль оси Ox на величину |a| графика функции y = f(x) вправо, если a > 0, и влево, если a < 0.
 - Функция y = f(x) + B, где $B \neq 0$, имеет ту же область определения, что и ф-ия y = f(x). График ф-ии y = f(x) + B получается сдвигом вдоль оси Oy на величину |B| графика функции y = f(x) вверх, если B > 0, и вниз, если B < 0.
- 3. Растяжение с сжатие графика вдоль всей оси координат
- 4. Построение графика функции y = Af(k(x-a)) + B) по графику функции y = f(x)
- 5. Симметрия относительно прямой y = x

3.2 Периодичность ф-ий

Определение:

Функцию y=f(x) с областью определения X называют периодической, если $\exists T\neq 0 \quad \forall x\in X$ такой, что $(x+T)\in X,$ и $(x-t)\in X,$ и f(x+T)=f(x)

Пример ур-ия, где используется периодичность ф-ий:

Пусть f(x) - периодическая функция с периодом 8, такая, что $f(x) = 8x - x^2$ при $x \in [0; 8)$.

Решите уравнение f(2x + 16) + 23 = 5f(x). Решение:

1.

$$\begin{cases} f(x) = f(x+T) = f(x-T) \\ T = 8 \end{cases} \implies f(2x+16) = f(2x)$$

 $2. \ x \in [0;4) \implies 2x \in [0;8)$

Решаем уравнение для этого случая:

$$f(2x) + 23 = 5f(x)$$

$$16x - 4x^{2} + 23 = 40x - 5x^{2}$$

$$x^{2} - 24x + 23 = 0$$

x1 = 1

x2=23 побочный корень для $x \in [0;4)$

3. $x \in [4; 8) \implies (2x - 8) \in [0; 8)$

Решаем уравнение для этого случая:

$$f(2x-8) + 23 = 5f(x)$$

$$16x - 64 - 4x^{2} + 16x - 64 + 23 = 40x - 5x^{2}$$

$$x^{2} - 8x - 105 = 0$$

$$x1 = 7$$

x2 = -15 побочный корень для $x \in [4; 8)$

4. Так как наша функция имеет период 8, то и корни будут повторятся с такой же периодичностью, так как f(x) = f(x+T) = f(x-T). То есть получаем корни x = 1 + 8n и x = 7 + 8n.

Ответ: x = 1 + 8n и x = 7 + 8n.

Пределы

4.1 Предел на бесконечности

Производная

Определение:

Производной функции в точке называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к 0.

$$f'(\mathbf{x_0}) = \lim_{\triangle \mathbf{x} \to \mathbf{0}} \frac{\triangle \mathbf{f}}{\triangle \mathbf{x}} = \lim_{\triangle \mathbf{x} \to \mathbf{0}} \frac{\mathbf{f}(\mathbf{x_0} + \triangle \mathbf{x}) - \mathbf{f}(\mathbf{x_0})}{\triangle \mathbf{x}}$$

 $\triangle x$ - приращение аргумента, то есть изменение аргумента от x до x_0 (дельта x). $\triangle f = f(x + \triangle x) - f(x)$ - приращение функции (дельта f).

5.1 Свойства производных

1.
$$(C * x)' = C * (x)'$$
 $C = const$

2.
$$(f + g)' = f' + g'$$

3.
$$(f * g)' = f' * g + g' * f$$

4.
$$\left(\frac{f}{g}\right)' = \frac{f' * g - g' * f}{g^2}$$

5.
$$(f(g))' = f'(g) * g'(f)$$

6.
$$(\mathbf{f}^{\mathbf{g}}) = \mathbf{f}^{\mathbf{g}} * \ln \mathbf{f} * \mathbf{g}' + \mathbf{g} * \mathbf{f}'(\mathbf{g} - \mathbf{1}) * \mathbf{f}'$$

7.
$$f'(y)=rac{1}{g(x)}$$
 $f(y)$ и $g(x)$ - взаимообратные функции $(D(f(y))=E(g(x))$ и $D(g(x))=E(f(y))$).

5.1.1 Экстремумы функции двух переменных

Для того, чтобы найти экстремум функции z(x,y) двух переменных, нужно найти точки, в которых частные производные 1-ого порядка равны 0. Пусть мы нашли такую точку $M_0(x_0,y_0)$. Тогда найдём производные второго порядка в этой точке $A=z_{xx}''(x_0,y_0)$, $B=z_{xy}''(x_0,y_0)$ и $C=z_{yy}''(x_0,y_0)$. Если $AC-B^2>0$, то z(x,y) имеет экстремум в точке M_0 (если A>0, то минимум, если A<0, то максимум).

5.1.2 Экстремумы функции трёх переменных

Для того, чтобы найти экстремум функции f(x,y,z) двух переменных, нужно найти точки, в которых частные производные 1-ого порядка равны 0. Пусть мы нашли такую точку $M_0(x_0,y_0,z_0)$. Тогда найдём производные второго порядка в этой точке, вычислим их и составим матрицу Гессе:

$$\begin{pmatrix} f''_{xx}(M_0) & f''_{xy}(M_0) & f''_{xz}(M_0) \\ f''_{yx}(M_0) & f''_{yy}(M_0) & f''_{yz}(M_0) \\ f''_{zx}(M_0) & f''_{zy}(M_0) & f''_{zz}(M_0) \end{pmatrix}$$

Найдём угловые миноры: $\sigma_1 = f''_{xx}(M_0)$,

$$\sigma_{2} = \begin{bmatrix} f''_{xx}(M_{0}) & f''_{xy}(M_{0}) \\ f''_{yx}(M_{0}) & f''_{yy}(M_{0}) \end{bmatrix},$$

$$\sigma_{3} = \begin{bmatrix} f''_{xx}(M_{0}) & f''_{xy}(M_{0}) & f''_{xz}(M_{0}) \\ f''_{xx}(M_{0}) & f''_{xy}(M_{0}) & f''_{yz}(M_{0}) \\ f''_{zx}(M_{0}) & f''_{zy}(M_{0}) & f''_{zz}(M_{0}) \end{bmatrix}$$
The standard with plants of the property o

Теперь возможны 4 случая:

- 1. Если $\sigma_1>0,\,\sigma_2>0$ и $\sigma_3>0,\,$ то $M_0(x_0,y_0,z_0)$ точка минимума.
- 2. Если $\sigma_1 < 0, \, \sigma_2 > 0$ и $\sigma_3 < 0, \, \text{то} \, M_0(x_0,y_0,z_0)$ точка максимума.
- 3. Иначе если $\sigma_3 \neq 0$, то $M_0(x_0, y_0, z_0)$ седловая точка.
- 4. При $\sigma_3 = 0$, то нужно дополнительное исследование.

5.1.3 Экстремум с условием. Метод множителей Лагранжа

Пусть дана функция $f(x_1...x_n)$ и несколько условий $u_1(x_1...x_n) = 0...u_k(x_1...x_n) = 0$. Нужно найти экстремум функции при этих условиях. Метод множителей Лагранжа:

- 1. Составим функцию Лагранжа от n+k переменных $L(x_1 ... x_n, \lambda_1 ... \lambda_k) = f(x_1 ... x_n) + \sum_{i=1}^k \lambda_i u_i(x_1 ... x_n).$
- 2. Составим систему уравнений, приравняв частные производные $L \ \kappa \ 0$.
- 3. Если полученная система имеет решение относительно параметров x_j' и λ_i' , тогда точка x' может быть условным экстремумом, то есть решением исходной задачи. Заметим, что это условие носит необходимый, но не достаточный характер. Проверка точки для функции двух переменных: найдём дифференциал второго порядка $d^2L = L_{xx}''(dx)^2 + 2L_{xy}''dxdy + L_{yy}''$. Если $d^2L > 0 \quad \forall x, y$ то функция достигает минимума в точке x', если $d^2L < 0 \quad \forall x, y$, то функция достигает максимума в точке x'.

5.2 Геометрическая интерпретация производной

5.2.1 Касательная

В трёхмерном пространстве

Пусть дана функция, задающая поверхность F(x, y, z) = 0.

Касательная плоскость к поверхности в точке M_0 – это плоскость, содержащая касательные ко всем кривым, которые принадлежат данной поверхности и проходят через точку M_0 . Её уравнение имеет вид $F'_x(M_0)(x-x_0)+F'_y(M_0)(y-y_0)+F'_z(M_0)(z-z_0)=0$.

5.2.2 Нормаль

В трёхмерном пространстве

Пусть дана функция, задающая поверхность F(x,y,z)=0.

Нормаль к поверхности в точке M_0 – это прямая, проходящая через данную точку перпендикулярно касательной плоскости. Её каноническое уравнение имеет вид $\frac{x-x_0}{F_x'(M_0)}=\frac{y-y_0}{F_y'(M_0)}=\frac{z-z_0}{F_z'(M_0)}$.

Часть III

Геометрия

Часть IV Дискретная математика

Булевы функции

6.1 Методы минимализации

6.1.1 Импликанты

Литерал - это переменная или её отрицание. Н-р: $x_1, \overline{x_1}x_2$

Импликант K - это такая коньюкция литералов функции F, что $K_i \to F_i$

Простой ипликант - это такой импликант, что вычеркиванием из него литералов нельзя получить новый импликант.

Н-р:

x_1	x_2	x_3	$K_1 = x_1$	$K_2 = \overline{x_3}$	x_1x_2	F
0	0	0	0	1	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	0	0	0
1	0	0	1	1	0	1
1	0	1	1	0	0	1
1	1	0	1	1	1	1
1	1	1	1	0	1	1

 K_1 - простой импликант

 K_2 - не импликант

 K_3 - импликант

- 6.1.2 Сокращенные ДНФ
- 6.1.3 Тупиковые ДНФ
- 6.1.4 Кратчайшие и минимальные ДНФ
- 6.2 Классы булевых функций и полнота
- 6.2.1 Классы БФ
- 6.2.2 Теорема о функциональной полноте

Теория графов

7.1 Основные понятия

Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин. Например, за множество вершин можно взять множество аэропортов, обслуживаемых некоторой авиакомпанией, а за множество рёбер взять регулярные рейсы этой авиакомпании между городами. Пример графа:

Формальное определение:

Графом называется пара множеств G = (V, E), где V — множество вершин графа, $E \subseteq V^2$ — множество рёбер графа.

Если $e = \{u, v\}, e \in E$, то говорят, что:

- \bullet ребро e соединяет вершины u и v;
- u и v концы ребра e;
- ребро e инцидентно вершинам u и v;
- вершины u и v инцидентны ребру e.

На рисунках вершины графа изображают точками, а рёбра $e = \{u, v\}$ — кривыми, соединяющими точки, которые изображают вершины u и v.

Вершины называются соседними, если их соединяет ребро, иначе — несоседними.

Ребро вида $e = \{u, u\}$ называется **петлёй**.

Граф, в котором любые две вершины соединены ребром, называется **полным** и обозначается K_n , где n — число вершин в нём.

Графы $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называются **изоморфными**, если существует биекция $\varphi \colon V_1 \to V_2$ такая, что $\forall u, v \in V_1 \ ((u, v) \in E_1 \Leftrightarrow (\varphi(u), \varphi(v)) \in E_2)$, иначе —

неизоморфными. Иными словами два графа называются **изоморфными**, если они одинаковые с точностью до переименования вершин.

 φ называется изоморфизмом.

Число рёбер в графе G, инцидентных вершине u, называется **степенью** вершины и обозначается $\deg_G u$.

Лемма 7.1.1 (о рукопожатиях).

$$\sum_{u \in V} \deg_G u = 2|E|$$

где $G = (V, E) - \operatorname{гра} \phi$.

Доказательство (методом математической индукции).

- База индукции. |E|=0: в таком графе $\sum_{u\in V} \deg u=0$.
- Шаг индукции. Пусть лемма верна для |E| = n. Докажем её для |E| = n+1. Для этого достаточно заметить, что каждое новое ребро увеличивает степени двух вершин на 1.

Маршрутом в графе G = (V, E) называется последовательность вершин и рёбер вида $v_1e_1v_2\dots e_kv_{k+1}$, где $e_i = \{v_i, v_{i+1}\}$.

Маршрут, в котором все рёбра различны, называется цепью.

Цепь, в которой все вершины, за исключением, может быть, первой и последней, различны, называется **простой**.

Маршрут, в котором первая и последняя вершины совпадают, называется **замкнутым**. Замкнутая цепь называется **циклом**.

Маршрут, соединяющий вершины u и v, называется (u, v)-маршрутом.

Лемма 7.1.2. (u, v)-маршрут содержит (u, v)-простую цепь.

Доказательство. Пусть $u = v_1 e_1 v_2 \dots e_k v_{k+1} = v$ — не простая цепь, тогда $\exists i < j \colon v_i = v_j$. Уберём из маршрута подпоследовательность $e_i v_{i+1} \dots e_{j-1} v_j$, получим маршрут, в котором совпадающих вершин на одну меньше. Повторяя, получим простую цепь, являющуюся частью данного маршрута. \blacksquare

Лемма 7.1.3. Любой цикл содержит простой цикл. Доказательство аналогично предыдущему.

Лемма 7.1.4. Если в графе есть две различные простые цепи, соединяющие одни и те же вершины, то в этом графе есть простой цикл.

Доказательство. Пусть $u=v_1e_1v_2\dots e_nv_{n+1}=v,\ u=v_1'e_1'v_2'\dots e_m'v_{m+1}'=v$ простые цепи. Найдём наименьшее $i\colon e_i\neq e_i',$ тогда $v_ie_iv_{i+1}\dots e_nv_{n+1}=v_{m+1}'e_m'\dots e_i'v_i'=v_i$ пикл, значит, можно получить простой цикл. \blacksquare

7.2 Связность графов

Вершины u и v называются **связанными**, если существует (u,v)-маршрут, иначе — **несвязанными**.

Граф называется **связным**, если в нём любые две вершины связаны, иначе — **несвязным**.

Граф G' = (V', E') называется **подграфом** графа G = (V, E), если $V' \subseteq V$ и $E' \subseteq E$.

Компонентой связности графа называется его максимальный (относительно включения) связный подграф.

7.2.1 Эйлеровы графы

Цикл, содержащий все рёбра графа, называется эйлеровым.

Граф, содержащий эйлеров цикл, называется эйлеровым.

Теорема 7.2.1. Связный граф эйлеров ⇔ степени всех вершин чётны.

Доказательство.

1. \Rightarrow . Пусть в графе есть эйлеров цикл. Выберем вершину v_0 в этом цикле и начнём обходить его. При каждом посещении вершины $v \neq v_0$ её степень увеличивается на 2. То есть, если посетить её k раз, то deg $v = 2k \div 2$.

Для v_0 степень увеличивается на 1 в начале обхода, на 1 в конце обхода и на 2 при промежуточных посещениях. Т. о., её степень чётна.

2. \Leftarrow . Пусть степени всех вершин чётны. Выберём цепь $C = (v_0; e_0; v_1; e_1; \dots; e_{k-1}; v_k)$ наибольшей длины. Все рёбра, инцидентные v_k , присутствуют в этой цепи, иначе её можно было бы удлинить.

Докажем методом от противного, что $v_0 = v_k$. Пусть $v_0 \neq v_k$. При прохождении вершины $v_i = v_k$, где 0 < i < k, степень v_k увеличивается на 2. Также проходим по ребру e_{k-1} , тогда степень v_k нечётна. Противоречие.

Докажем методом от противного, что C содержит все рёбра. Пусть найдётся ребро $e = \{u, v\}$, не входящее в C. Возьмём первое ребро $e' = \{v_i, v'\}$ из (v_0, u) -маршрута, не входящее в C. Тогда цепь $(v'; e'; v_i; e_i; \ldots; e_{k-1}; v_k = v_0; e_0; v_1; e_1; \ldots; v_{i-1})$ длиннее, чем C. Противоречие.

Алгоритмы нахождения эйлерова цикла

1. Алгоритм Флёри (очень медленный).

- (а) Выберем произвольную вершину.
- (b) Пусть находимся в вершине v. Выберем ребро, инцидентное ей, которое должно быть мостом, только если не осталось других рёбер.
- (с) Проходим по выбранному ребру и вычёркиваем его.
- (d) Повторяем, пока есть рёбра.

2. Алгоритм объединения циклов.

- (а) Выберем произвольную вершину.
- (b) Выбираем любое непосещённое ребро и идём по нему.
- (с) Повторяем, пока не вернёмся в начальную вершину.
- (d) Получим цикл C. Если он не эйлеров, то $\exists u \in C, \ e = \{u, u'\} : u' \notin C$. Повторяем шаги 2a–2c для начальной вершины u. Получим цикл C', рёбра которого не совпадают с рёбрами C. Объединим эти циклы и получим новый. Повторяем шаг 2d.

Цепь называется **эйлеровым путём**, если она не является циклом и содержит все рёбра.

Граф называется полуэйлеровым, если в нём есть эйлеров путь.

Теорема 7.2.2. Связный граф полуэйлеров \Leftrightarrow степени двух вершин нечётны, а остальных — чётны.

Доказательство.

- 1. ⇒. Пусть в графе есть эйлеров путь. Соединив его концы ребром, получим эйлеров цикл. Степени соединённых вершин увеличились каждая на 1, значит, они были нечётными, а степени остальных вершин чётными.
- 2. ⇐. Пусть степени двух вершин нечётны, а остальных чётны. Соединим нечётные вершины ребром, тогда можно получить эйлеров цикл. Убрав из него добавленное ребро, получим эйлеров путь.

7.2.2 Гамильтоновы графы

Простой цикл, содержащий все вершины графа, называется гамильтоновым.

Граф называется гамильтоновым, если в нём есть гамильтонов цикл.

Теорема 7.2.3 (Дирака). Если в графе G = (V, E) с $n \ge 3$ вершинами $\forall u \in V \deg u \ge \frac{n}{2}$, то граф гамильтонов.

Доказательство.

- 1. Докажем методом от противного, что граф связный. Пусть он несвязный. Выберем компоненту связности G'=(V',E') с наименьшим числом вершин, тогда $|V'|\leqslant \frac{n}{2}$. Возьмём $v\in V'$, тогда $\deg v\leqslant |V'|-1<\frac{n}{2}$. Противоречие с условием.
- 2. Выберем цепь $C=(v_0;e_0;v_1;\ldots;e_{k-1};v_k)$ максимальной длины. Тогда все вершины, соседние с v_0 , лежат в этой цепи, иначе можно увеличить длину цепи. Среди v_1,v_2,\ldots,v_k не менее $\frac{n}{2}$ вершин, соседних с v_0 , т. к. $\deg v_0\geqslant \frac{n}{2}$. Аналогично для v_k . Найдутся v_{i-1} и v_i такие, что v_{i-1} соседняя с v_k , а v_i с v_0 .

Докажем, что $(v_i; e_{i+1}; \ldots; v_k; e; v_{i-1}; e_{i-1}; \ldots; v_0; e'; v_i)$ — гамильтонов цикл, методом от противного. Предположим обратное, тогда есть вершина u, не входящая в цикл, и существует (v_0, u) -маршрут. Значит, существует ребро, инцидентное одной из вершин цикла, но не входящее в него, и можно получить более длинную цепь. Противоречие.

Теорема 7.2.4 (Оре). Если в графе с $n \geqslant 3$ вершинами для любых двух несмежных вершин u и v $degu + degv \geqslant n$, то граф гамильтонов.

Доказательство.

1. Докажем методом от противного, что граф связный. Пусть он несвязный, тогда в нём найдутся хотя бы две компоненты связности $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$. Пусть $u \in V_1$, $v \in V_2$. u и v несмежные, тогда

$$\deg u \leq |V_1| - 1, \ \deg v \leq |V_2| - 1 \Rightarrow \deg u + \deg vopbr \leq |V_1| + |V_2| - 2 \leq n - 2$$

Противоречие с условием.

2. Докажем, что граф гамильтонов. Выберем цепь $W = (v_0; e_0; v_1; \dots; e_{k-1}; v_k)$ наибольшей длины. В ней содержатся все вершины, соседние с v_0 или с v_k . Т. о., среди вершин v_1, \dots, v_k $deg v_0$ соседних с v_0 . Аналогично для v_k .

 $\deg v_0 + \deg v_k \geqslant n$, тогда найдутся v_i и v_{i+1} такие, что v_i соседняя с v_k , а $v_{i+1} - c v_0$. $(v_{i+1}; e_{i+1}; \ldots; v_k; e; v_i; e_{i-1}; v_{i-1}; \ldots; e_0; v_0; e'; v_{i+1})$ — гамильтонов цикл (доказательство аналогично доказательству в теореме 7.2.3 (Дирака)).

7.3 Деревья

Граф без циклов называется лесом.

Связный лес называется деревом.

Ребро называется **мостом**, если при его удалении увеличивается число компонент связности.

Дерево с n вершинами, которым сопоставлены числа $1, \ldots, n$, называется **помечен- ным**.

Утверждение 7.3.1. *Ребро* — мост ровно тогда, когда оно не содержится в цикле. *А* Доказательство.

- 1. Докажем методом от противного, что если ребро содержится в цикле, то оно не является мостом. Пусть ребро e содержится в цикле $W=v_0e_0\dots uev\dots v_k, u'$ и v' смежные вершины.
 - (a) Если в этом маршруте нет ребра e, то при его удалении из графа u' и v' останутся смежными.
 - (b) Если $u' = v'_0 e'_0 \dots uev \dots e_m v'_m = v'$ маршрут, соединяющий u' и v', тогда при удалении e из графа u' и v' соединяет маршрут $u' = v'_0 e'_0 \dots u \dots e_0 v_0 = v_k e_{k-1} \dots v \dots e_m v'_m = v'$.
- 2. Пусть e=(u,v) не является мостом, тогда u,v лежат в одной компоненте связности. Удалим e из графа, тогда число компонент связности не изменилось, значит, u и v также лежат в одной компоненте связности, т./,е. существует цепь, соединяющая u и v: $u=v_0e_0\dots e_{k-1}v_k=v$. Тогда в исходном графе существует цикл $u=v_0e_0\dots e_{k-1}v_k=veu$.

Теорема 7.3.1. Следующие утверждения о графе G c n вершинами эквивалентны:

- 1. G дерево.
- 2. G связный и имеет n-1 ребро.
- 3. G связный и каждое его ребро мост.
- 4. G не содержит циклов и имеет n-1 ребро.
- 5. Любые две вершины графа G соединены ровно одной простой цепью.
- 6. G не содержит циклов и добавление ребра приводит к появлению цикла.

Доказательство.

- Докажем 1) \Rightarrow 3). Связность следует из определения дерева. В силу пред. утв. каждое ребро — мост.
- Докажем 3) \Rightarrow 2). Связность по предположению. Докажем методом математической индукции, что в графе n-1 ребро.
 - База индукции. Для n = 1, 2 очевидно.
 - Шаг индукции. Пусть для графов с числом вершин, меньшим n, Возьмём мост e и удалим его. Получим две компоненты связности $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$. По предположению индукции $|E_1| = |V_1| 1$, $|E_2| = |V_2| 1$. В исходном графе рёбер $|E_1| + |E_2| + 1 = |V_1| + |V_2| 1 = n 1$.
- Докажем $2) \Rightarrow 4$). В G n-1 ребро по предположению. Докажем методом математической индукции, что G не содержит циклов.
 - База индукции. Для n = 1, 2 очевидно.
 - Шаг индукции. Докажем, что в графе есть вершина степени 1. $\forall u \ degu \geqslant 1$. $\forall u \ degu \geqslant 2 \Rightarrow 2|E| = \sum_{u \in V} degu \geqslant 2n \Rightarrow n-1 = |E| \geqslant n$. Значит, в графе найдётся вершина степени 1. Удалим её и инцидентное ей ребро. Полученный граф содержит n-1 вершину и удовлетворяет утверждению 2). По предположению индукции он не содержит циклов, тогда и исходный граф не содержит циклов.
- Докажем $4) \Rightarrow 5$). Докажем связность методом математической индукции.
 - База индукции. Для n = 1, 2 очевидно.
 - Шаг индукции. Пусть в графе k компонент связности: $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \ldots, G_k = (V_k, E_k)$. Они являются деревьями.

$$|E_1|=|V_1|-1,$$
 $|E_2|=|V_2|-1,\ldots,$ $|E_k|=|V_k|-1.$ $n-1=|E_1|+\ldots+|E_k|=n-k\Rightarrow k=1,$ значит, граф связный.

Пусть существуют вершины u, v такие, что их соединяют две простые цепи, тогда в графе есть цикл, что противоречит предположению. Тогда эти вершины соединены ровно одной простой цепью.

• Докажем 5) \Rightarrow 6). Предположим, что в графе есть цикл $v_0e_0v_1e_1\dots v_k=v_0$, тогда есть две простые цепи $v_0e_0\dots v_{k-1}$ и $v_{k-1}e_kv_k=v_0$, соединяющие v_0 и v_{k-1} , что противоречит предположению.

Докажем, что добавление ребра приводит к появлению ровно одного цикла. Рассмотрим несоседних вершины u v. По предположению есть цепь $u=v_0e_0\ldots v_k=v$, соединяющая их. Тогда $u=v_0e_0\ldots v_k=veu$ — цикл, где e — (u,v)-маршрут. Пусть есть 2 цикла, соединяющих u u v. Удалим e, цикл останется. Получили исходный граф, в котором нет циклов. Противоречие.

• 6) \Rightarrow 1). Докажем связность. Рассмотрим вершины u v. Если они не соединены ребром, то соединим u по предположению получим цикл $v_0e_0\dots uev\dots e_{k-1}v_k=v_0$. Тогда $u\dots e_0v_0=v_ke_{k-1}\dots v-(u,v)$ -маршрут. Противоречие.

7.3.1 Остовные деревья и методы нахождения минимальных остовных деревьев

Остовом графа G=(V,E) называется его подграф G'=(V',E') такой, что V=V' и G' — дерево.

Утверждение 7.3.2. Любой связный граф содержит остов.

Утверждение 7.3.3. Если граф не является деревом, то в нём несколько остовов.

Пусть G = (V, E) — граф. Весом называется функция $\alpha \colon E \to \mathbb{R}^+$. Весом графа называется $\sum_{e \in E} \alpha(e)$.

Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.

Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.

Алгоритмы поиска минимального остовного дерева

• Алгоритм Крускала

Алгоритм Крускала изначально помещает каждую вершину в своё дерево, а затем постепенно объединяет эти деревья, объединяя на каждой итерации два некоторых дерева некоторым ребром. Перед началом выполнения алгоритма, все рёбра сортируются по весу (в порядке неубывания). Затем начинается процесс объединения: перебираются все рёбра от первого до последнего (в порядке сортировки), и если у текущего ребра его концы принадлежат разным поддеревьям, то эти поддеревья объединяются, а ребро добавляется к ответу. По окончании перебора всех рёбер все вершины окажутся принадлежащими одному поддереву, и ответ найден.

• Алгоритм Прима

Искомый минимальный остов строится постепенно, добавлением в него рёбер по одному. Изначально остов полагается состоящим из единственной вершины (её можно выбрать произвольно). Затем выбирается ребро минимального веса, исходящее из этой вершины, и добавляется в минимальный остов. После этого остов содержит уже две вершины, и теперь ищется и добавляется ребро минимального веса, имеющее один конец в одной из двух выбранных вершин, а другой — наоборот, во всех остальных, кроме этих двух. И так далее, т.е. всякий раз ищется минимальное по весу ребро, один конец которого — уже взятая в остов вершина, а другой конец —

ещё не взятая, и это ребро добавляется в остов (если таких рёбер несколько, можно взять любое). Этот процесс повторяется до тех пор, пока остов не станет содержать все вершины (или, что то же самое, n-1 ребро).

В итоге будет построен остов, являющийся минимальным. Если граф был изначально не связен, то остов найден не будет (количество выбранных рёбер останется меньше n-1).

7.3.2 Код Прюфера

Каждому помеченному дереву можно взаимнооднозначно сопоставить последовательность из (n-2) чисел от 1 до n, называемая **кодом Прюфера**. Алгоритм построения кода Прюфера для помеченного дерева G = (V, E):

- 1. Выбираем висячую вершину v с наименьшим номером.
- 2. Добавляем номер вершины, смежной с v, в код.
- 3. Удаляем v и ребро, инцидентное v, из дерева.
- 4. Повторить, начиная с шага 1, (n-2) раза.

Утверждение 7.3.4. Различным помеченным деревьям соответствуют различные коды Прюфера.

Доказательство (методом математической индукции).

- *База индукции*. При n=3 легко проверить.
- Шаг индукции. Пусть утверждение верно при $n \ge 3$, G = (V, E) и G' = (V', E') различные помеченные деревья с (n+1) вершинами в каждом.
 - 1. Пусть в G и G' вершины с наименьшим номером смежны с вершинами с различными номерами.
 - 2. Пусть в G и G' вершины с наименьшим номером смежны с вершинами с одинаковыми номерами. Выполняем шаг построения кода, тогда оставшиеся деревья различны, значит, по предположению индукции у них различные коды.

Алгоритм построения дерева по коду $A_0 = (a_1, \dots, a_{n-2}).$

- 1. Пусть $B_0 = (1, \ldots, n)$.
- 2. Находим наименьшее $b \in B_i$: $b \notin A_i$. Тогда в дереве есть ребро $\{b, a_i\}$. $A_{i+1} = A_i \setminus \{a_i\}$, $B_{i+1} = B_i \setminus \{b\}$.
- 3. Повторяем шаг 2 (n-2) раз. Получим $B_{n-2}=\{b',b''\}$, значит, в дереве есть ребро $\{b',b''\}$.

Утверждение 7.3.5. Указанный алгоритм построения дерева по коду из n чисел строит дерево.

Доказательство (методом математической индукции).

• *База индукции*. При n=1 легко проверить.

• Шаг индукции. Рассмотрим графы T_1, \ldots, T_{n-1} , полученные в процессе построения дерева. T_1 не содежрит циклов. T_2 получается из T_1 либо добавлением новой вершины, либо добавлением моста, что не приводит к появлению цикла.

 T_{n-1} не содержит циклов и содержит n вершин и (n-1) ребёр, значит, T_{n-1} — дерево.

Теорема 7.3.2 (Кэли). Пусть G = (V, E) — дерево, n = |V|, вершинам G сопоставлены числа $1, \ldots, n$. Всего можно составить n^{n-2} таких неизоморфных деревьев.

7.4 Планарные графы

Плоским называется граф G = (V, E) такой, что:

- $V \subset \mathbb{R}^2$;
- рёбра (Жордановы) кривые, концами которых являются вершины;
- различные рёбра не имеют общих точек, за исключением концов.

Простыми словами **плоский граф** - граф, который "нарисован"на плоскости так, чтобы ребра не пересекались.

Планарный граф - граф, который изоморфный плоскому.

Разбиением графа G называется граф, получающийся добавлением новой вершины на какое-нибудь ребро графа G.

Если G — граф и G' — плоский граф, изоморфный G, то G' называется укладкой G в \mathbb{R}^2 .

Аналогично можно определить укладку графа в \mathbb{R}^3 , на сферу и т. д.

Теорема 7.4.1. Любой граф можно уложить в \mathbb{R}^3 .

Доказательство. Пусть G=(V,E) — граф, $V=\{(1;0;0),(2;0;0),\dots,(n;0;0)\}$. Рассмотрим плоскости, проходящие через Ox и образующие с плоскостью Oxy углы $\frac{\pi}{2},\frac{\pi}{2\cdot 2},\dots,\frac{\pi}{2m}$, где m=|E|. Получим плоский граф, т. к. плоскости пересекаются только по прямой Ox.

Теорема 7.4.2. Граф укладывается на плоскость ровно тогда, когда он укладывается на сферу.

Доказательство. Пусть плоскость z=0 касается сферы в точке O(0;0;0), N — точка на сфере, диаметрально противоположная точке O. Для каждой точки сферы, не совпадающей с N, проведём прямую через неё и точку N, которая пересечёт сферу и плоскость, причём любые две из этих прямых имеют единственную общую точку N. Получим биекцию между точками сферы и точками плоскости, тогда можно построить биекцию между укладками на сфере и укладками на плоскости. \blacksquare

Множество на плоскости называется **линейно связным**, если любые две точки этого множества можно соединить кривой, целиком лежащей в этом множестве.

Гранью плоского графа G = (V, E) называется часть множества $\mathbb{R}^2 \setminus G$, которая линейно связна и не является подмножеством другого линейно связного множества.

Грань плоского графа - часть плоскости, границей которого являются его рёбра, и не содержащая внутри себя простых циклов. На рисунке 7.2 у графа G есть 4 грани: между вершинами ACD, ABC, AFE и та часть плоскости, которая окружает весь граф.

Теорема 7.4.3 (формула Эйлера). В плоском связном графе n-m+f=2, где n,m,f— число вершин, рёбер и граней соответственно.

Доказательство. Рассмотрим остов данного графа. В нём n вершин, n-1 рёбер и 1 грань. Формула Эйлера верна для него: n-(n-1)+1=2.

Рис. 7.1: Плоский граф G и изоморфный ему планарный граф

Добавим 1 ребро данного графа, тогда оно разобьёт одну грань на две, т. е. число граней увеличится на 1. Формула Эйлера верна для полученного графа. Повторяя (m-(n-1)) раз, получим исходный граф, для которого формула Эйлера верна. \blacksquare

Теорема 7.4.4. Пусть G- планарный граф c $n\geqslant 3$ вершинами и m рёбрами. Тогда $m\leqslant 3n-6$.

Доказательство. При m=2 неравенство выполняется.

Пусть в графе f граней, m_i — число рёбер в границе i-й грани. Тогда $m_i\geqslant 3,\, \sum_{i=1}^f m_i\geqslant$

3f. С другой стороны, $\sum_{i=1}^f m_i = 2m$. По формуле Эйлера $n-m+f=2 \Leftrightarrow f=m+2-n$. Получим:

$$2m \geqslant 3f \Leftrightarrow 2m \geqslant 3m + 6 - 3n \Leftrightarrow m \leqslant 3n - 6$$

Следствие 7.4.1. Планарный граф содержит хотя бы одну вершину со степенью, не большей 5.

Доказательство (методом от противного). Пусть $\forall v \in V \ degv \geqslant 6$. Тогда **Теорема 7.4.5.** Графы K_5 и $K_{3,3}$ не планарные. Доказательство.

- Рассмотрим K_5 : n=5, m=10. Тогда $m \leqslant 3n-6 \Leftrightarrow 10 \leqslant 9$. Неверно, значит, K_5 не планарен.
- Рассмотрим $K_{3,3}$. Пусть он планарный. В нём самый короткий цикл имеет длину 4. Тогда $2m\geqslant 4f\Leftrightarrow 2m\geqslant 4m+8-4n\Leftrightarrow m\leqslant 2n-4.$ n=6, m=9, тогда $9\leqslant 8.$ Неверно, значит, $K_{3,3}$ не планарен.

Граф G'=(V',E') получается подразбиением ребра $e=\{u,v\}$ графа G=(V,E), если:

- $\bullet \ V' = V \cup \{u'\};$
- $E' = (E \setminus \{e\}) \cup \{\{u, u'\}, \{v, u'\}\}.$

Графы G и G' **гомеоморфны**, если они изоморфны графам, получающимся подразбиениями рёбер одного и того же графа (Стягиваем вершины степени 2 в ребро (удаляем их)).

Рис. 7.2: Граф G и получающийся из него двумя подразбиениями $(AB\Rightarrow AEB,\quad AD\Rightarrow AFD)$ граф G'.

Теорема 7.4.6 (Понтрягина-Куратовского). Граф G планарен ровно тогда, когда он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

Доказательство. Очевидно, что подграф планарного графа планарен. Если G — планарный граф, содержащий подграф G', гомеоморфный K_5 или $K_{3,3}$, то G' тоже планарный, значит, K_5 или $K_{3,3}$ планарен. Противоречие. \blacksquare

Часть V Теория множеств

Глава 8

Основные понятия

8.1 Определение

Множество - ключевое понятие теории множест. Оно аксиоматично, то есть неопределяемо. Обозначаются множества обычно заглавными буквами латинского алфивита. ∈ - символ принадлежности множеству.

Пустое множество — множество, не содержащее ни одного элемента.

Универсальное множество (универсум) — множество, содержащее все мыслимые объекты. В связи с парадоксом Рассела данное понятие трактуется в настоящее время как «множество, включающее все множества, участвующие в рассматриваемой задаче».

8.2 Аксиоматика

8.3 Операции на множествами

- ullet Объеденение $A \cup B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ или $c \in B$
- Пересечение $A \cap B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ и $c \in B$
- Разница $A \backslash B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A$ и $c \notin B$
- Симметрическая разница $A \triangle B = C \quad \Leftrightarrow \quad \forall c \in C : c \in A \cup \ \text{и} \ c \notin A \cap B$
- Дополнение к множеству A (в универсальном множестве M) $\overline{A} \Leftrightarrow \forall x \in \overline{A}, x \in M: x \notin A$

Глава 9

Функции над множествами

9.1 Определение

Функцией f : $A \to B$ называется правило, ставящие в соответствие каждому элементу множества A единственный элемент множества B ($f(a) \in B$, $a \in A$). Множество A - область определения f. Множество B - область заначения f.

9.2 Биекции, Иньекции, Сюрьекции

- $f:A\to B$ называют **иньективной**, если $\forall x,y\in A:x\neq y\Rightarrow f(x)\neq f(y)$
- ullet f:A o B называют **сюрьективной**, если $\forall b\in B\exists a\in A:f(a)=b$
- ullet f:A o B называют **биньюктивной**, если она является и иньективной и сюрьективной одновременно.

Часть VI Комбинаторика

Index

Алгебраическое дополнение, 10 Множество, 47 Определитель матрицы, 8 Функция, 48