Outliers and Anomalies

PROFESSIONAL & CONTINUING EDUCATION

Outliers

Outlier: anything too extreme in value, that is oftentimes better removed from the sample

-In a normal distribution, outliers are considered to be all the points that are beyond 2 standards deviations from the mean (sometimes 3)

The exact threshold beyond which something is an outlier varies and relates to a p-value (e.g. 0.05)

-This is a heuristical approach, so any outliers you identify this way are better off being examined further, before removing

PROFESSIONAL & CONTINUING EDUCATION

ANOMALY DETECTION

Involves identifying data points that are very different to the bulk of the dataset (aka anomalies)

-Anomalies can be outlier or inliers

Anomalies tend to be quite different from each other

–Anomaly detection methods rely on figuring out "what's normal"

Anything deviating from the "normal" data points is considered an anomaly

-What's normal can be a combination of different things (i.e. different clusters of data points)

PROFESSIONAL & CONTINUING EDUCATION

Importance of anomaly detection

Essential for figuring out:

- -Fraud in monetary transactions
- -Fraud in web traffic
- -Network hacking (intrusion detection) and other cyber security issues
- -Potential terrorists
- -Spam emails
- -Diseases based on diagnostics

Useful for cleaning up data

A great research topic as it pushes the envelope of what's possible through data science

Data Science: Process and Tools

Examples of anomalies in a common data science application

NLP = Natural Language Processing (analyzing and processing text written in plain English or some other language the system is trained on)

Common anomalies in NLP data:

- Very rare words or phrases (appearing only once or twice in the whole corpus)
- -Very common words or phrases (aka stopwords)
- -Irrelevant words, appearing in normal frequencies (e.g. "1990s", common abbreviations, etc.)

Outliers and inliers as anomalies

Anomalies can be seen as points with very low density Outliers

- -Points having very high values
- -Points having very low values
- -Easy to identify using their p-values

Inliers

- -Points within the main body of the distribution
- -Their neighbors tend to be far, in general
- -Harder to identify (their p-values appear normal)

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Methods for identifying anomalies

Single dimensional data

- -P-value
- -Other statistical methods

Multiple dimensional data

- -One-class SVMs
- -Parametric statical methods (e.g. multivariate Gaussian distribution)
- -Other methods (e.g. kNN, ANNs, Rule-based systems, etc.)

One-Class SVMs

- Trained on "normal" data
- Classify a given data point as whether it belongs to that class or not
- Need to define a cut-off threshold (i.e. below which probability score a data point is considered an "outsider" of the normal class)
- Very effective for highly complex datasets

Statistical methods

For 1 dimensional data:

- Ensure distribution is normal
- -identify data points with p-value <= th (e.g. 0.01)

For n dimensional data

- -Ensure that each feature's distribution is normal
- -Calculate n-dimensional p-value for every data point using the formula $p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$

where μ = mean, n = number of features, Σ = covariance matrix

Some considerations

- Often it is a good idea to perform dimensionality reduction before anomaly detection to reduce computational cost.
 - If number of original features > number of data points, multivariate anomaly detection won't work
- Not every anomaly is a data point that should be removed.
 - Sometimes anomalous data is useful, especially if it's large enough to constitute clusters beyond the ones of normal data
- It is recommended you try different anomaly detection methods before labeling a data point as an anomaly
- For more information on multivariate anomaly detection, check out http://bit.ly/2lgTpFl

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY OF WASHINGTON

Python functions and classes

Stats-based Anomaly Detection:

- -Single dimensional data: descriptive stats functions from *numpy* package (e.g. *mean*, *std*, etc.) as well as from the *scipy.stats.norm* class, various functions (e.g. *sf*, *ppf*, etc.)
- -Multiple dimensional data: same as for single dimensional data, but with aggregation of p-values, using a product

One-class SVMs: *OneClassSVM* function in *sklearn.svm* class

PROFESSIONAL & CONTINUING EDUCATION

Summary

- >Anomalies are points with low density
 - -Outliers usually more than 2 standard deviations
 - -Inliers usually far from their neighbors
- >Look for normal distributions
 - -1-dimensional data look at p-value
 - -N-dimensional data check at all the features
- >Perform dimensionality reduction before anomaly detection