Das Planck'sche Strahlungsgesetz

Lie.

Max Planck (1858-1947) fand es im Jahr 1900. Seine Formel $K(\Box,T) = \Box J/\Box\Box$ gibt die Energieflussdichte $\Box J$ pro Wellenlängenintervall $\Box\Box$ an, die bei der Wellenlänge \Box von einem schwarzen Körper mit der absoluten Temperatur T ausgeht.

$$K(\square,T) = \frac{\square J}{\square \square} = \frac{2 \square h c^2}{\square} \frac{1}{\exp \left[\frac{\square h c}{\square \square} \right]}$$

$$[K] = \frac{W/m^2}{m} = \frac{W}{m^3}$$

In der Strahlungsformel kommen die Lichtgeschwindigkeit c, das Planck'sche Wirkungsquantum h und die Boltzmann-Konstante k vor.

Figur 1: Spektren der Schwarz-körperstrahlung nach Planck.

Die Gesamtemission (Fläche unter der Kurve) wächst mit T.

Bei wachsender Temperatur wandert das Maximum zu kürzeren Wellenlängen.

Die Fläche unter der Kurve ist Das Maximum von K liegt bei

 $J = \prod T^4$ $\prod_{\text{max}} = b/T$

(Gesetz von Stefan-Boltzmann). (Wien'sches Verschiebungsgesetz).

Figur 2: Normierte Darstellung der Planck'schen Strahlungsformel.

Das Spektrum ist breitbandig.

(Gegensatz: schmalbandig, z.B. Laser)

Das Spektrum ist kontinuierlich.

(Gegensatz: diskret, z.B. Hg-Lampe mit vereinzelten Emissionslinien)

Bei der Herleitung fand Max Planck heraus, dass Wärmestrahlung portionenweise (in Quanten) ausgesandt wird. Damit begann die Ära der Quantenphysik.