Admitere * Universitatea Politehnica din București 2001 Disciplina: Algebră și Elemente de Analiză Matematică

- 1. Să se calculeze f'(0) pentru funcția $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x-3}{x^2+x+2}$.
 - a) $\frac{1}{4}$; b) 1; c) $\frac{5}{4}$; d) $\frac{3}{4}$; e) $-\frac{7}{4}$; f) $-\frac{5}{4}$.
- 2. Fiind dată ecuația $x^2 + x + m = 0$ cu soluțiile x_1, x_2 , să se determine parametrul real m dacă $x_1^2 + x_2^2 = 5$.
 - a) m = 2; b) $m \in \{1, 2\}$; c) $m \in (-\infty, -2)$; d) nu există m; e) m = 1; f) m = -2.
- 3. Să se calculeze $\lim_{x\to 0} \frac{1}{x} \int_{x+1}^{2x+1} \sqrt{t^2+1} dt$.
 - a) 0; b) $\sqrt{3}$; c) 1; d) $3\sqrt{2}$; e) $\sqrt{2}$; f) ∞ .
- 4. Să se calculeze $\int_0^1 \frac{x-1}{x^2+1} dx$.
 - a) $\ln 2$; b) $\frac{1}{2} \ln 2 \frac{\pi}{4}$; c) $\frac{1}{2} \ln 2$; d) $\ln 2 + \frac{\pi}{4}$; e) $\frac{\pi}{4}$; f) $\frac{1}{2} \ln 2 + \frac{\pi}{4}$.
- 5. Să se determine parametrul real m dacă sistemul

$$\begin{cases} mx + 2y - z = 0 \\ x + (m+2)y - 2z = 0 \\ x + y + (m-1)z = 0 \end{cases}$$

are soluții nenule.

- a) $m \neq 0$; b) $m \neq -1$; c) $m \in \{-1, 2\}$; d) $m \in \{-1, 1\}$; e) $m \in \mathbb{R}$; f) $m^2 \neq 1$.
- 6. Să se determine n natural maxim astfel încât $\sum_{k=1}^{n} \frac{k-1}{k!} < 0,99$.
 - a) 100; b) 5; c) 99; d) 4; e) nu există n; f) 3.
- 7. Fie matricele $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & x \\ y & 1 \end{pmatrix}$. Să se determine perechile de numere reale (x, y) astfel încât AB = BA.
 - a) (1,3); b) (x,x), cu $x \neq 0$; c) (0,1); d) (1,1); e) (0,0); f) (1,0).
- 8. Să se determine parametrul real m astfel încât ecuația x |x 1| = m să admită o infinitate de soluții.
 - a) m = 0; b) m = -1; c) m = -2; d) m = 2; e) nu există m; f) m = 1.
- 9. Să se rezolve ecuația $\log_{2x+1}(3x+1)=2$.
 - a) 0 și 1; b) 0; c) 1; d) $-\frac{1}{4}$; e) nu există soluții; f) 0 și $-\frac{1}{4}$.
- 10. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + \sqrt{x^2 + 1}$. Să se precizeze care dintre următoarele afirmații relativ la graficul lui f este adevărată:
 - a) nu are asimptote; b) are puncte de inflexiune;
 - c) are numai asimptote orizontale; d) are numai asimptote oblice;
 - e) are puncte de întoarcere;
 - f) are atât asimptote orizontale cât și oblice.
- 11. Să se rezolve inecuația $2^x \ge 2^{2-x}$.
 - a) $x \in [1, \infty)$; b) $x \in [0, 1]$; c) $x \in (0, \infty)$; d) x = 1; e) nu există soluții; f) $x \in [0, \infty)$.
- 12. Să se calculeze suma tuturor elementelor inelului \mathbb{Z}_6 .
 - a) $\hat{2}$; b) $\hat{3}$; c) $\hat{4}$; d) $\hat{1}$; e) $\hat{5}$; f) $\hat{0}$.

- 13. Se cere suma soluțiilor ecuației $x^3 9x = 0$.
 - a) 3; b) 2; c) 0; d) -6; e) 6; f) 9.
- 14. Să se calculeze $\lim_{x \to \infty} \frac{\sqrt{4x^2 + x + 2}}{1 x}.$
 - a) ∞ ; b) -2; c) -1; d) 0; e) $-\infty$; f) 2.
- 15. Determinați constanta reală a dacă polinomul $x^3 + ax + 4$ are rădăcina 1 + i.
 - a) 2; b) 0; c) 4; d) -2; e) -1; f) 1.