II. Softwarové inženýrství

Update: 5. května 2018

Obsah

1	lýza, funkční analýza; nástroje a modely.	2
2	Relační datový model, SQL; funkční závislosti, dekompozice a normální formy.	6
3	Transakce, zotavení, log, ACID, operace COMMIT a ROLLBACK; problémy souběhu, řízení souběhu: zamykání, úroveň izolace v SQL.	14
4	Procedurální rozšíření SQL, PL/SQL, T-SQL, triggery, funkce, procedury, kurzory, hromadné operace.	15
5	Základní fyzická implementace databázových systémů: tabulky a indexy; plán vykonávání dotazů.	16
6	Objektově-relační datový model a XML datový model: principy, dotazovací jazyky.	17
7	Datová vrstva informačního systému; existující API, rámce a implementace, bezpečnost; objektově-relační mapování.	18
8	Distribuované SŘBD, fragmentace a replikace.	19

1 Modelování databázových systémů, konceptuální modelování, datová analýza, funkční analýza; nástroje a modely.

1.1 Modelování databázových systémů

Databázový systém můžeme modelovat **třemi datovými modely**. Ve fázi analýzy se používá **konceptuální model**, který modeluje realitu na logickou úroveň databáze. Konceptuální model je výsledkem datové analýzy a je **nezávislý na konkrétní implementaci**.

V implementační fázi si pak pomáháme **databázovými modely**, kde modelujeme vazby a vztahy (realitu) na konkrétní tabulky (obecně SŘBD). Databázový model můžeme dále dělit na **relační** a **síťový** model. **Fyzickým uložením dat** na paměťové médium se zabývá **interní model**.

1.1.1 Základní pojmy

- Entita objekt reálného světa.
- Atribut vlastnost entity (možné hodnoty jsou označeny jako doména atributu).
- Entitní typ množina entit se stejnými atributy.
- Vztah vztah mezi dvěma entitními typy.
- Kardinalita vztahu dělení vztahů podle počtu entit vstupujících do vztahu 1:1, 1:N, M:N.

1.2 Datová analýza a konceptuální model

Datová analýza **zkoumá objekty reálného světa, jejich vlastnosti a vztahy**. Zabývá se strukturou obsahové části systému (**strukturou databaze**). Výsledkem datové analýzy je **konceptuální model**. V rámci datové analýzy zpracováváme zadání (specifikaci požadavků na IS):

- podtrhneme **podstatná jména** = identifikujeme **objekty**,
- podtrhneme slovesa = identifikujeme vazby mezi objekty,

• najdeme vlastnosti a stavy nalezených objektu = identifikujeme atributy.

Z takto získaných informací sestavíme konceptuální model. **Konceptuální model** je jednoduchý **popis entit a jejich vzájemných vztahů**. Jedná se o jakýsi prvotní jednoduchý návrh námi vytvářené databáze. Je kladen důraz na zobrazeních všech entit, jejich vztahů a je **nezávislý** na SŘBD. Skládá z:

• ER Diagram, lineární zápis entit, lineární zápis vztahů, datový slovník, popis dalších IO (integritních omezení).

1.2.1 ER (Entity-Relationship) Diagram

Grafické znázornění konceptuálního modelu (objektů a vztahů mezi nimi). Může mít několik podob v závislosti na používaném prostředí a detailnosti s jakou jej potřebujeme vypracovat. Atributy můžou být v grafu znázorněny ovály spojenými s objekty (obdélníky), vazba 1:N může být znázorněna "hráběmi" místo N, či celý diagram se může podobat třídnímu diagramu s atributy vepsanými do objektu.

1.2.2 Lineární zápis entit a vztahů

Lineárním zápisem **popisujeme objekty**, jejich vlastnosti a vztahy **z pohledu implementačního**. Lineárním zápisem entit jsou v podstatě definovány **tabulky a jejich atributy** včetně **primárních** a *cizích klíčů*.

- Příklad lineárního zápisu entity: Pes (IDPes, jmeno, pohlavi, vek, CRasa, IDUtulek).
- Příklad lineárního zápisu vztahů: NABIZI (Útulek, Pes) 1:N.

1.2.3 Datový slovník

Podrobný rozpis jednotlivých atributů. Tabulka obsahuje typ atributů, velikost, integritní omezení, atd.

Integritní omezení obsahují další specifikace atributů, které nejsou dány typem a délkou. Nejčastěji se týkají formátu atributu (podmínka v jakém má být formátu) – např: login se skládá z třech čísel a třech písmen, nebo rodné číslo je složeno z data narození, apod.

Další integritní omezení – konceptuální schéma obsahuje také soupis dalších IO, které se týkají entit (tabulek) a vazeb mezi nimi. Může jít například o omezení vícenásobné vazby, vyjádření hierarchie mezi entitama, apod.

Pes	Typ	Délka	Klíč	NOT NULL	IO
IDPes	int	8	primarni	ano	pravidla pro tvar čipového čísla
jmeno	varchar	50			
vek	int	2			
CRasa	int	2	sekundarni		

Tabulka 1: Datový slovník pro tabulku Pes.

1.3 Funkční analýza

Zatímco datová analýza se zabývá strukturou obsahové části systému (strukturou databaze), funkční analýza řeší funkce systému. Funkční analýza tedy vyhodnocuje manipulaci s daty v systému. Skrze **DFD** (Data Flow Diagramy) analyzuje toky dat, základní funkce systému a aktéry, kteří se systémem pracují. Výstupem jsou pak minispecifikace – podrobné analýzy elementárních funkcí systému.

Cílem je popsat vytvářený systém jako "černou skříňku", definovat její **vnější chování** a strukturalizovat **okolí systému**, které se systémem komunikuje. **Popsat všechny funkce**, **které se budou s daty provádět.**

Otázky na požadavky

- PROČ nový systém.
- ČEMU má sloužit.
- KDO s ním pracuje běžně, příležitostně, pravidelně zřídka.
- VSTUPY objekty, atributy
- VÝSTUPY výstupní sestavy, požadované informace
- FUNKCE jaké výpočty, odvozování, výběry, třídění, ...
- Vazby na OKOLÍ systému odkud data a kam.

Nefunkční požadavky

- Požadavky na výsledný program.
- Vnější požadavky: ostatní nefunkční implementační požadavky, použití standardů, cenová omezení, časové požadavky.

1.3.1 Diagram datových toků (DFD)

DFD je grafický nástroj pro **modelování funkcí a vztahů v systému**. Znázorňuje nejen procesy (funkce) a datové toky, ke kterým v systému dochází, ale definuje také hlavní aktéry a jejích omezení nad systémem. DFD diagram obsahuje tyto prvky: **aktér** (obdélník mimo systém), **proces** (kruh uvnitř systému), **datové toky** (šipky) a **paměť** (viz. obr. Akce a Člen).

DFD diagramy lze zakreslit v různých úrovních. Např. proces Evidence akcí na obrázku lze dále rozkreslit dalším DFD, obsahující procesy vytvoření a editace akce. DFD nejvyšší úrovně se nazývá kontextový diagram. Znázorňuje pouze práci aktérů se systémem jako celkem. Systém v kontextovém diagramu vystupuje jako černá skříňka a v diagramu tedy nejsou použity prvky procesu a paměti. Hlavní znaky DFD:

- Má několik úrovní podrobnosti.
- Definuje hranici systému.
- Definuje všechny akce, které mezi systémem a jeho okolím probíhají.

1.3.2 Minispecifikace = algoritmy elementárních funkcí

- Popisuje logiku každé z funkcí **poslední úrovně DFD**.
- Každému elementárnímu (nerozložitelnému) procesu z poslední úrovně DFD odpovídá jedna minispecifikace.
- Popisuje postup, jak jsou vstupní data transformována na výstupní.
- Popisuje, co funkce znamená, ne jak se to spočítá.
- Používá se přirozený jazyk s omezeným množstvím jasně definovaných pojmů, aby byla srozumitelná jak pro analytika, tak i uživatele a programátorovi.

```
IF všechny výrobky v objednávce jsou rezervovány,
THEN pošli objednávku k dalšímu zpracování oddělení prodeje.
OTHERWISE,
FOR EVERY nezarezervovaný výrobek v objednávce DO:
Zkus najít volný výrobek a rezervuj ho.
IF výrobek není na skladě,
THEN informuj správce.
```

2 Relační datový model, SQL; funkční závislosti, dekompozice a normální formy.

2.1 Relační datový model

Relační datový model představuje **způsob uchování dat v tabulkách**. Relační se mu říká proto, jelikož tabulka je definována přes Relaci.

Obrázek 1: Tabulka s dvěma atributy jako relace (vlevo), relace zobrazena tabulkou (vpravo).

Relace je tabulka definována jako podmnožina kartézského součinu domén. Relace na obrázku je tedy podmnožina kartézského součinu množin {Dudak, Novák, Dvořák} × {Milan, Martin, Jan, ..., Aleš}.

Na rozdíl od matematické relace se ta databázová **mění v čase** (přidáváním a odebíráním prvků relace). Kromě základních **množinových operací** se u databázové relace setkáme s operaci **selekce** – výběr řádků a **projekce** – výběr sloupců.

- Doména je množina všech hodnot, kterých může daný atribut nabývat (obor hodnot atributu). V praxi je doména dána integritním omezením (IO). Doména atributu Přijmení z obrázků je množina {Dudak, Novák, Dvořák}.
- Atribut je vlastnost entity (z pohledu tabulky jde o sloupec).
- Relační schéma můžeme chápat jako strukturu tabulky (atributy a domény). Relační schéma R je výraz tvaru R(A, f), kde R je jméno schématu, A = A1, A2,..., An je konečná množina jmen atributů, f je zobrazení přiřazující každému jménu atributu Ai neprázdnou množinu (obor hodnot atributu), kterou nazýváme doménou atributu Di, tedy f(Ai) = Di.

Příklad pro tabulku (relaci) Učitel

- Atributy: ID, jméno, příjmení, funkce, kancelář.
- Domény:
 - D1 tři písmena z příjmení, tří cifry pořadového čísla,
 - D2 kalendář jmen,

- D3 množina příjmení,
- D4 množina funkcí (asistent, vědec, učitel,...),
- D5 A101, A102, ... A160.
- Relační schéma: Učitel (ID, jméno, příjmení, funkce, kancelář).
- Relace: Učitel = {(nov001, lukas, novak, vědec, A135), (kom123, jan, komensky, učitel, A111), ...}

2.1.1 Základní úlohy relačního modelu:

- 1. Návrh "správné" struktury databáze bez redundancí funkční závislosti, normální formy.
- 2. Vyhledávání informací z databáze (dotazovací) relační jazyky.

2.1.2 Vlastnosti relačního datového modelu

Z definice relace vyplývají tyto jejich tabulkové vlastnosti:

- Homogenita (stejnorodost) sloupců (prvky domény).
- Každý údaj (hodnota atributu ve sloupci) je atomickou položkou.
- Na **pořadí** řádků a sloupců **nezáleží** (jsou to množiny prvků/atributů).
- Každý řádek tabulky je jednoznačně identifikovatelný hodnotami jednoho nebo několika atributů (primárního klíče).

2.1.3 Vazby relačního modelu

Obecně se vazby v relačním modelu realizují pomocí další relace (tabulky). Jedná se o tzv. vazební tabulku. Ta obsahuje ty atributy relací (tabulek, které se vazby účastní), které jednoznačné identifikují jejich entity – primární klíče. Obsahuje-li tabulka atribut, který slouží jako primární klíč v jiné tabulce, pak obsahuje cizí klíč. Vazební tabulka tedy obsahuje cizí klíče. Příklad vazby M:N:

	Učí		Předmět				
idu	jméno	příjmení	idu	ср		ср	nazev
dvo01 kov01 kov02 chy01 mal01	Marie	Dvořák Kovářová Kovadlina Chtrá Malinová	dvo01 dvo01 kov01 chy01 mal01	3 1 2 1 5	1	1 2 3 4 5	matematika anglický j. fyzika biologie český j.

2.2 SQL (Structured Query Language)

SQL (Structured Query Language) je relační jazyk založen na predikátovém kalkulu. Na rozdíl od jazyků založených na relační algebře, kde se dotaz zadává algoritmem, tyto jazyky se soustředí na to co se má hledat, ne jak.

- Standardizovaný strukturovaný dotazovací jazyk, který je používán pro práci s
 daty v relačních databázích. (DQL Data Query Language).
- Navržen IBM jako dotazovací jazyk (původní název Sequel).
- Základem je **n-ticový relační kalkul**.
- Standardy podporuje prakticky každá relační databáze, ale obvykle nejsou implementovány vždy všechny požadavky normy.
- Obsahuje i příkazy pro vytvoření a modifikace tabulek, pro ukládání, modifikaci a rušení dat v databázi a řadu dalších příkazů.
- Příklad: CREATE TABLE Drazitel (jmeno CHAR(20), adresa CHAR(30), aukce NUMBER(4), zisk NUMBER(4)); INSERT INTO clovek VALUES('nj001', 'Jan', 'Novotný', '777111222'); SELECT telefon FROM clovek WHERE prijmeni = "Novotný";

2.2.1 Příkazy SQL

- Vytváření a modifikace relačního schematu (tabulek, databází) CREATE, ALTER (MODIFY, ADD, DROP), DROP = vytvoř, uprav, smaž.
- Modifikací dat INSERT, UPDATE, DELETE = vlož, uprav, smaž.
- Vyhledávání v relacích SELECT, ORDER BY, GROUP BY, JOIN = vyhledej, seřaď, shlukuj, spoj.
- Transakce COMMIT, ROLBACK = úspěšně provedená transakce, save-point uvnitř transakce ke kterému se dá vrátit byla-li transakce přerušena.
- Další, pro podmínky, logické operatory,... (WHERE, LIKE, BETWEEN, IN, IS NULL, DISTINCT/UNIQUE, JOIN, INNER JOIN, OUTER JOIN, EXISTS, HAVING, COUNT, VIEW, INDEX,...).

2.3 Relační jazyky

Jazyky pro formulaci požadavků na výběr dat z relační databáze (dotazovací jazyky) se dělí do dvou skupin:

Jazyky založené na relační algebře, kde jsou výběrové požadavky vyjádřeny jako
posloupnost speciálních operací prováděných nad daty. Dotaz je tedy zadán algoritmem, jak vyhledat požadované informace.

- Jazyky založené na predikátovém kalkulu, které požadavky na výběr zadávají
 jako predikát charakterizující vybranou relaci. Je úlohou překladače jazyka nalézt
 odpovídající algoritmus. Tyto jazyky se dále dělí na
 - n-ticové relační kalkuly,
 - doménové relační kalkuly.

2.4 Relační algebra

Relační algebra je velmi silný **dotazovací jazyk** vysoké úrovně. Nepracuje s jednotlivými enticemi relací, ale **s celými relacemi**. Operátory relační algebry se aplikují na relace, výsledkem jsou opět relace. Protože relace jsou množiny, přirozenými prostředky pro manipulaci s relacemi budou množinové operace.

I když relační algebra v této podobě **není vždy implementována v jazycích SŘBD**, je její zvládnutí nutnou podmínkou pro správnost manipulací s relacemi. I složitější dotazy jazyka SQL, který je deskriptivním dotazovacím jazykem, mohou být bez zkušeností s relační algebrou problematické.

2.4.1 Základní operace relační algebry

Jsou dány relace R a S. Množinové operace:

- Sjednocení relací téhož stupně: $R \cup S = \{x | x \in R \lor x \in S\}$
- Průnik relací: $R \cap S = \{x | x \in R \land x \in S\}$
- Rozdíl relací: $R S = \{x | x \in R \land x \notin S\}$
- Kartézský součin relace R stupně m a relace S stupně n: $RxS = \{rs | r \in R \land s \in S\}$, kde $rs = \{r1, ..., rm, s1, ...sn\}$

Další relační operace:

- **Projekce** (výběr sloupců) relace R, jedná se o unární operaci $\Pi_{\mathbf{X}}(R)$, kde X je množina názvů atributů.
- Selekce (výběr řádků) z relace R podle podmínky P. Selekce je unární relační operace $\sigma_{\varphi(\mathbf{X})}(R)$, kde R je relace, $\varphi(\mathbf{X})$ predikátová formule hovořící o jednotlivých prvcích a jejich příslušnosti do relací.
- Spojení relací R s atributy A a S s atributy B (join). Značí se $R \bowtie S$, výsledkem je množina všech kombinací prvků relace \mathbf{R} a \mathbf{S} . Takto definovaný join se nazývá Přirozené spojení (natural join). Exsitují i další (outer, inner, left, right . . .).

2.5 N-ticový relační kalkul

 Dr. Codd definoval n-ticový relační kalkul pro RDM jazyk matematické logiky - predikátový počet je využit pro výběr informací z relační databáze.

- Název odvozen z oboru hodnot jeho proměnných relace je množina prvků = n-tic.
- Je základem pro jazyk typu SQL.
- Syntaxe je **přizpůsobena** programovacímu jazyku: **matematické vyjádření** $\{x|F(x)\}$ nahradíme zápisem x WHERE F(x)
 - Kde x je proměnná pro hledané n-tice (struktura relace).
 - F(x) je podmínka, kterou má x splňovat (výběr prvků relace).

2.5.1 Definice

Výraz n-ticového relačního kalkulu je výraz tvaru x WHERE F(x), kde x je jediná volná proměnná ve formuli F. Základní operace relační algebry se dají vyjádřit pomocí výrazů n-ticového relačního kalkulu, tedy n-ticový relační kalkul je relačně úplný.

```
Platí: R \cup S => x WHERE R(x) OR S(x)

R \cap S => x WHERE R(x) AND S(x)

R \cdot S => x WHERE R(x) AND NOT S(x)

R \times S => x, y WHERE R(x) AND S(y)

R[a_1,a_2,...,a_k] => x.a<sub>1</sub>, x.a<sub>2</sub>,..., x.a<sub>k</sub> WHERE R(x)

R(P) => x WHERE R(x) AND P

R[A*B]S => x, y WHERE R(x) AND S(y) AND x.A * y.B
```

2.6 Funkční závislost

Funkční závislost je v databázi **vztah mezi atributy** takový, že máme-li atribut Y je funkčně závislý na atributu X píšeme $X \to Y$, pak se **nemůže stát**, aby **dva řádky mající stejnou** hodnotu atributu **X** měly **různou hodnotu Y**. Je-li Y, X říkáme, že závislost X $\to Y$ je **triviální**.

- FZ je definována **mezi dvěma podmnožinami atributů** v rámci jednoho schématu relace. Jde o vztah mezi atributy, nikoliv mezi entitami.
- FZ je definována na základě všech možných aktuálních relací, není tedy možné soudit na funkční závislost z vlastností jediné relace. Tak můžeme poznat jen neplatnost funkční závislosti.
- FZ jsou tvrzení o reálném světě, o významu atributů nebo vztahů mezi entitami, je nutné realitu brát v úvahu při návrhu schématu databáze.

Příklad: Atribut 'datum narození' je funkčně závislý na atributu 'rodné číslo' (nemůže se stát, že u záznamů se stejnými rodnými čísly bude různé datum narození).

Pomocí funkčních závislostí můžeme **automaticky navrhnout schéma databáze** a předejít problémům jako je **redundance**, **nekonzistence databáze**, zablokování při vkládání záznamů, apod.

2.7 Armstrongovy axiomy

K určení klíče schématu a logických implikací množiny závislostí potřebujeme nalézt uzávěr F+, nebo určit, zda daná závislost $X \to Y$ je prvkem F+. K tomu existují pravidla zvaná Armstrongovy axiomy. Jsou **úplná** (dovolují odvodit z dané množiny závislostí F všechny závislosti patřící do F+) a **bezesporná** (dovolují z F odvodit pouze závislosti patřící do F+).

- Reflexivita je-li $Y \subset X \subset A$, pak $X \to Y$
- Tranzitivita pokud je $X \to Y$ a $Y \to Z$, pak $X \to Z$
- Pseudotranzitivita pokud je X \rightarrow Y a WY \rightarrow Z, pak XW \rightarrow Z
- Sjednocení pokud je X \rightarrow Y a X \rightarrow Z, pak X \rightarrow YZ
- Dekompozice pokud je $X \to YZ$, pak $X \to Y$ a $X \to Z$
- Rozšíření pokud je $X \to Y$ a $Z \subset A$, pak $XZ \to YZ$
- **Zúžení** pokud je $X \to Y$ a $Z \subset Y$, pak $X \to Z$

Závislost, která má na pravé straně pouze jeden atribut, nazýváme elementární.

2.7.1 Určení klíče pomoci funkčních závislostí

Ze zadání jsme určili atributy $A = \{u\check{c}itel, jm\acute{e}no, příjmení, email, předmět, název, kredity, místnost, čas\} a funkční závislosti <math>F$:

- \bullet učitel \rightarrow jméno, příjmení, email
- $\bullet\,$ předmět \rightarrow název, kredity
- místnost, čas \rightarrow učitel, předmět

Rozšíření:

- ullet učitel, **místnos**t, **čas** o jméno, příjmení, email, **místnos**t, **čas**
- předmět \rightarrow název, kredity
- místnost, čas \rightarrow učitel, předmět

Dekompozice 1:

- učitel, místnost, čas → jméno, příjmení, email, místnost, čas, učitel, předmět
- předmět \rightarrow název, kredity

Dekompozice 2:

 učitel, místnost, čas → jméno, příjmení, email, místnost, čas, učitel, předmět, název, kredity

Atributy **učitel**, **místnost**, **čas** je klíč schématu velké relace. V dalším kroku je třeba provést dekompozici a tuto velkou relaci rozbít na menší relace.

2.8 Dekompozice

Dekompozice relačního schématu je **rozklad relačního schématu na menší** relač. sch. (rozloží velkou tabulku na menší) aniž by došlo k narušení redundance databáze. Mezi základní vlastnosti dekompozice patří - **zachování informace** a **zachování funkčních závislostí**.

- Algoritmus dekompozice (metoda shora dolů) na počátku máme celé relační schéma se všemi atributy, snažíme se od tohoto schématu odebírat funkční závislosti a tvořit schémata nová. Exponenciální složitost, BCNF.
- Algoritmus syntézy (zdola nahoru) vytvoří pro každou funkční závislost novou relaci. Pak tyto malé relace spojuje do větších celků. Menší složitost, 3NF.

Binární dekompozice, kterou budeme dále řešit je rozklad jednoho relačního schématu na dvě. Obecná dekompozice vznikne postupnou aplikací binárních. Dekompozice relačního schématu R(A,f) je množina relačních $RO=\{R1(A1, f2), R2(A2, f2), ...\}$, kde $A=A1 \cup A2 \cup A3 \cup ...$

2.9 Normální formy

Normální formy relací (NF) prozrazují jak dobře je databáze navržena (čím vyšší NF tím lepší).

- 1 NF definuje tabulky, které obsahují **pouze atomické atributy**. Žádné složené atributy např. v jednom atributu je Jméno i Příjmení.
- 2 NF je v 1NF + každý sekundární atribut je úplně závislý na každém klíči schématu. Neboli neexistuje závislost sekundárních na podklíči (pokud se klíč skládá z více atributů). Např.: když AB → CD, pak nesmí být B → C. Atribut adresa není závislý na všech klíčích FZ, ale pouze na F.

2NF FZ → C						
<u>firma</u>	adresa	<u>zboží</u>	cena			
F1	A1	Z010	100			
F1	A1	Z020	50			
F2	A2	Z020	80			

• 3 NF – je 2NF + žádný sekundární atribut **není tranzitivně závislý** na žádném klíči schématu. Nesmí existovat závislosti mezi sekundárními atributy (Model auta ->

značka auta). Když AB \rightarrow CD, pak nesmí C \rightarrow D. **Příklad porušení 3NF** – atribut počet obyvatel je tranzitivně závislý (přes atr. město) na klíči.

F→	M	→ ○ 3NF
firma	město	obyvatel
F1	M1	100 000
F2	M1	100 000
F3	M2	8 000

BCNF (Boyce-Coddova normální forma) – 3NF + je-li funkční závislost (X → Y)
 ∈ F+ a Y ∉ X, pak X obsahuje klíč schématu. Musí být závislost sekundárních atributů na primárních nikoli naopak. Když AB → CD, pak nesmí C → A

3 Transakce, zotavení, log, ACID, operace COMMIT a ROLL-BACK; problémy souběhu, řízení souběhu: zamykání, úroveň izolace v SQL.

4 Procedurální rozšíření SQL, PL/SQL, T-SQL, triggery, funkce, procedury, kurzory, hromadné operace.

5 Základní fyzická implementace databázových systémů: tabulky a indexy; plán vykonávání dotazů.

6 Objektově-relační datový model a XML datový model: principy, dotazovací jazyky.

7 Datová vrstva informačního systému; existující API, rámce a implementace, bezpečnost; objektově-relační mapování.

8 Distribuované SŘBD, fragmentace a replikace.