Aufgabe 3

EP Gruppe 8

20. Mai 2014

Aufgabe 3

Aufgabe 3

2 Aufgabe 5

Differenz Verstärker

Annahme: optimaler OPV

- $U_{-} = U_{+}$
- wenn $U_2 = 0V$ dann $U_{out} = -U_1 \cdot \frac{R_3}{R_1}$
- $\begin{array}{l} \bullet \text{ wenn } U_1 = 0V \text{ dann} \\ U_+ = U_2 \cdot \frac{R_4}{R_2 + R_4} = U_-, \\ U_- = U_{out} \cdot \frac{R_1}{R_1 + R_3} \\ \Rightarrow U_{out} = U_2 \cdot \frac{R_4}{R_2 + R_4} \cdot \frac{R_1 + R_3}{R_1} \end{array}$

Annahme: optimaler OPV

- $U_{-} = U_{+}$
- wenn $U_2=0V$ dann $U_{out}=-U_{in}\cdot rac{R_3}{R_1}$
- $\begin{array}{l} \bullet \ \ \text{wenn} \ \ U_1 = 0V \ \ \text{dann} \ \ U_+ = U_2 \cdot \frac{R_4}{R_2 + R_4} = U_-, \\ U_- = U_{out} \cdot \frac{R_1}{R_1 + R_3} \\ \Rightarrow U_{out} = U_2 \cdot \frac{R_4}{R_2 + R_4} \cdot \frac{R_1 + R_3}{R_1} \end{array}$
- ullet zusammen: $U_{out}=U_2\cdotrac{R_4}{R_2+R_4}\cdotrac{R_1+R_3}{R_1}-U_1\cdotrac{R_3}{R_1}$
- Widerstände eingesetzt: $4.7 \cdot (U_2 U_1)$ \Rightarrow der Verstärker verstärkt die Differenz zwischen den beiden Eingangsspannungen, Gleichtaktspannung wird nicht verstärkt

Fit der Verstärkung ergibt 4.7048, stimmt mit der Theorie überein

Gleichtaktspannung

der Differenzverstärker verstärkt die Gleichtaktspannung nicht, solange $U_{CM} < Uout, max$ hängt von Versorgungsspannung ab

Übertragungsfunktion

Der Differenzverstärker mit Mehrfachgegenkopplung $A=-rac{Z_2}{Z_1}$ da U_+ vom Prinzip geerdet

Übertragungsfunktion

Der Differenzverstärker mit Mehrfachgegenkopplung

$$A = -\frac{Z_2}{Z_1}$$
 da U_+ vom Prinzip geerdet

•
$$Z_1 = \frac{1}{\omega 100\mu F} \cdot e^{-j\frac{\pi}{2}} + 10k\Omega$$

$$\bullet \ \ Z_2 = \frac{1}{\frac{1}{1M\Omega} + \frac{\omega 100\mu F}{e^{-j\frac{\pi}{2}}}}$$

$$\Rightarrow A(\omega) = -\frac{1}{\frac{1}{1M\Omega} + \frac{\omega 100\mu F}{e^{-j\frac{\pi}{2}}}} \cdot \frac{\omega 100\mu F}{e^{-j\frac{\pi}{2}}}$$

Woher kommt das EKG-Signal?

Elektrische Feldvektoren sind verantworlich für die Erregung des Herzmuskels