BME TMIT 2022

14/3 Németh Gábor

λ-kalkulus I.

Lambda-kalkulus I.

- A. Church (1903–1995), 1932-1933
 - matematika formális leírása
 - ▶ ellentmondások is leírhatóak ☺
- függvények vizsgálata

- minden kiszámítható függvény leírható λ-kalkulusban, a λ-definiálható függvények pontosan a kiszámítható függvények
- Turing-tétel
 - λ-definiálhatóság és Turing-kiszámíthatóság ekvivalens

Lambda-kalkulus II.

- minden funkcionális program egy λ-kifejezésnek tekinthető
 - végrehajtás
 - kifejezés értékének a meghatározása

Egyszerű típusnélküli λ-kalkulus

Szintaktika Szemantika Normál forma

λ–kifejezések I.

```
Ábécé
változók (szimbólumok)
 λ
▶ . (pont)
\triangleright
  <λ-kifejezés> ::= <változó>
                       <λ-absztrakció>
                       <applikáció>
  <λ-absztrakció> ::= (λ<változó>.<λ-kifejezés>)
  <applikáció> ::= (<λ-kifejezés><λ-kifejezés>)
```

λ-kifejezések II.

- λ-kalkulus
 - nincs típus
 - nincs konstans
 - nincs konstanson értelmezett függvény
- **>**
 - szintaktikailag azonos
 - pontosan megegyeznek
 - \triangleright E \equiv F
 - \triangleright | $\equiv \lambda x.x$
 - ightharpoonup $K \equiv \lambda x.(\lambda y.x)$

λ-absztrakció

- ► $E \lambda$ -kifejezés
- x − változó

- jobbasszociatív
 - $\qquad \qquad \lambda x.(\lambda y.E) \equiv \lambda x.\lambda y.E \equiv \lambda xy.E$

$$\lambda x.E$$
 $E(x)$

$$\lambda x.EF$$
 $(E \circ F)(x) = E(F(x))$

Applikáció

E, F - λ-kifejezés

EF

- balasszociatív
 - \triangleright (EF)G ≡ EFG
- precedenciája nagyobb, mint a λ-absztrakciójénál

$$\lambda x.(yz) \equiv \lambda x.yz$$

 $\lambda x((\lambda y.E)F) \equiv \lambda x.(\lambda y.E)F$

$$\lambda xyz.xyz \equiv \lambda x.(\lambda y.(\lambda z.((xy)z)))$$

Körrizés

- minden függvénynek csak egy változója lehet
- mi a helyzet a többváltozós matematikai függvényekkel?
 - magasabb rendű függvények
 - applikációk sorozata
 - ezt nevezzük körrizésnek
 - G. Frege, M. Schönfinkel, H. Curry

Schönfinkeling

Szabad és kötött változók I.

- a törzsben levő változó melyik absztrakcióhoz tartozik
 - melyik absztrakció köti
 - "deklaráció láthatóságához hasonlóan"

$$\lambda x.(\lambda x.x)x$$

$$\lambda xx.x \equiv \lambda x.(\lambda x.x)$$

Szabad és kötött változók II.

- szabad változók (FV)
- x változó szabad az x kifejezésben
- x szabad λy.E, ha x ≠ y és x szabad Eben
- x szabad EF-ben, ha x szabad E-ben vagy F-ben

- kötött változók (BV)
- x kötött λy.E, ha x ≡ y és x szabad Eben
- x kötött λy.E-ben, ha x kötött E-ben
- x kötött EF-ben, ha x kötött E-ben vagy F-ben

```
FV(x) = \{x\}, ahol x változó

FV(\lambdax.E) = FV(E) \ \{x\}

FV(EF) = FV(E) U FV(F)
```

Szabad és kötött változók III.

► Hol kötött?

Szabad és kötött változók IV.

Melyek a szabad változók?

Kifejezések lezárása

- ha a λ-kifejezésben nincs szabad változó, akkor a λ-kifejezést zártnak nevezzük
 - a zárt λ-kifejezéseket kombinátoroknak is nevezik
 - \triangleright | $\equiv \lambda x.x$

 - \triangleright S \equiv $\lambda xyz.xz(yz)$
- ha $\{x_1, x_2, ..., x_n\}$ = FV(E), akkor a $\lambda x_1 x_2 ... x_n$. E kifejezést az E egy lezárásának nevezzük

Helyettesítés

- ha az E λ-kifejezésben a szabad x változót mindenütt az F λ-kifejezéssel helyettesítjük, akkor az így kapott λ-kifejezést E[x:=F]-fel jelöljük
 - szabad változó nem válhat kötötté

$$x[y:=G] \equiv \begin{cases} G & \text{ha } x \equiv y \\ x & \text{egy\'ebk\'ent} \end{cases}$$

$$(EF)[y:=G] \equiv (E[y:=G])(F[y:=G])$$

$$(\lambda x.E)[y:=G] \equiv \begin{cases} \lambda x.E & \text{ha } x \equiv y \\ \lambda x.E[y:=G] & \text{ha } x \not\equiv y \text{\'es } x \not\in FV(G) \\ \lambda x.E & \text{egy\'ebk\'ent} \end{cases}$$

Egyszerű típusnélküli λ-kalkulus

Szintaktika Szemantika Normál forma

β-konverzió I.

- ► funkcionális program → λ-kifejezés
- funkcionális program futtatása $\rightarrow \lambda$ -kifejezés egyszerűbb alakra hozása
 - konverziós szabályok
 - reflexív, szimmetrikus, tranzitív
- ▶ β-redukció (\rightarrow_{β})
- ha az E[x:=F]-ben F szabad változói nem válnak az E kötött változóivá, akkor ($\lambda x.E$)F \rightarrow_{β} E[x:=F]

- β-absztrakció (←_β)
- ha egy λ-kifejezésből olyan applikációt írunk fel, amelynek az első tagja λ-absztrakció

- ▶ β-konverzió (\leftrightarrow_{β})
- ► ha E \leftrightarrow_{β} F, akkor tetszőleges G λ-kifejezésre:
 - ightharpoonup GE \leftrightarrow_{β} GF
 - \triangleright EG \leftrightarrow_{β} FG
 - $ho \quad \lambda x.E \leftrightarrow_{\beta} \lambda x.F$


```
true \equiv \lambda xy.x
false \equiv \lambda xy.y
```

if
$$\equiv \lambda pqr.pqr$$

β-konverzió II.

```
if trueEF
                      ≡ (λpqr.pqr) trueEF
                       \rightarrow_{\beta} (\lambdaqr.trueqr)EF
                       \rightarrow_{\beta} (\lambda r.trueEr)F
                       \rightarrow_{\beta} trueEF
                        \equiv (\lambda xy.x)EF
                       \rightarrow_{\beta} (\lambda y.E)F
                       \rightarrow_{\beta} E
```

β-konverzió III.

```
≡ if E false true
not E
                      ≡ (λpqr.pqr) E false true
                      \rightarrow_{\beta} ...
                      \rightarrow_{\beta} E false true
                                                                          not \equiv \lambda x.x false true
not false
                      \equiv (\lambda x.x false true) false
                      \rightarrow_{\beta} false false true
                      \equiv (\lambda xy.y) false true
                      \rightarrow_{\beta} (\lambda y.y) true
                      \rightarrow_{\beta} true
```

α-konverzió

- a β-redukciót nem szabad végrehajtani, ha a redukálás után a paraméter szabad változója kötötté válik
- β-redukció nem alkalmazható:
 - \vdash $(\lambda xy.xy)y \nrightarrow_{\beta} \lambda y.yy$

- \vdash $(\lambda xy.xy)y \leftrightarrow_{\alpha}$
- $(\lambda xz.xz)y \rightarrow_{\beta}$
- ► λz.yz

- ► α -konverzió (\leftrightarrow_{α})
 - α-redukció, α-kontrakció
- ► ha az E-ben y nem szabad változó, akkor $\lambda x.E \leftrightarrow_{\alpha} \lambda y.E[x:=y]$
- nem könnyű implementálni
 - változók számmal való helyettesítése
 - de Brujin-számok

Egyenlőség I.

- az E és F λ-kifejezésekre E = F (egymásba konvertálhatóak), ha
 - E
 F
 - ▶ E → F

- ▶ reflexív (E=E)
- szimmetrikus (ha E=F, akkor F=E)
- tranzitív (ha E=F és F=G, akkor E=G)

Egyenlőség II.

- Leibnitz-szabály
 - ha E₁=F₁, E₁ az E λ-kifejezés egy részkifejezése, és F csak abban különbözik E-től, hogy benne az E₁ részkifejezése helyén F₁ szerepel, akkor E=F

- E=F, G tetszőleges λ-kifejezés
 - ▶ EG = FG
 - ▶ GE = GF
 - $\rightarrow \lambda x.E = \lambda x.F$

Egyszerű típusnélküli λ-kalkulus axiómái

Egyszerű típusnélküli λ-kifejezések között olyan E=F egyenlőségeket tartalmaz, amelyek a következő axiómák felhasználásával bizonyíthatóak:

- ► I. $(\lambda x.E)F = E[x:=F]$
- ► II. i. E=E
- ► II. ii. E=F ⇒ F=E
- ► II. iii. E=F, $F=G \Rightarrow E=G$
- ► II. iv. $E=F \Rightarrow EG = FG$
- ► II. v. $E=F \Rightarrow GE=GF$
- ► II. vi. $E=F \Rightarrow \lambda x.E = \lambda x.F$

- β-konverzió
- reflexivitás
- szimmetria
- tranzitivitás
- Leibnitz-szabály következménye
- Leibnitz-szabály következménye
- ξ-szabály

Egyszerű típusnélküli λ-kalkulus

Szintaktika Szemantika Normál forma

Normál forma, jelentéssel bíró kifejezés

- ► funkcionális program $\rightarrow \lambda$ -kifejezés
- funkcionális program futtatása → λ-kifejezés egyszerűbb alakra hozása
- ha egy λ-kifejezés nincs redukálható kifejezés (redex), akkor a λ-kifejezés normál formában van
- jelentéssel nem bíró kifejezések

 - $\vdash \quad Y \equiv (\lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$

- van normál formája
 - jelentéssel bíró (jelentős) λkifejezés
- nincs normál formája
 - nincs értelmezve függvényfogalom

A Church-Rosser-tulajdonság

- funkcionális program $\rightarrow \lambda$ -kifejezés
- funkcionális program futtatása $\rightarrow \lambda$ -kifejezés egyszerűbb alakra hozása
- ha egy λ-kifejezés nincs redukálható kifejezés (redex), akkor a λ-kifejezés normál formában van
- ha $E_1=E_2$, akkor létezik olyan F, amelyre $E_1 woheadrightarrow F$ és $E_2 woheadrightarrow F$ (I. Church-Rossertétel, rombusz tulajdonság)
- minden λ-kifejezésnek legfeljebb egy normál formája van
- ha E és F mindegyike normál forma, és E ≠ F, akkor E ≠ F

A λ-kifejezés gráfja

Redukálási stratégiák I.

- redukálási sorrend
- legkülső redex
 - nincs más redex belsejében
- legbelső redex
 - belsejében már nincs redex
- E és F két redukálható
 kifejezés, és E első λ-ja az F
 első λ-jától balra van, akkor E
 baloldalibb redex, mint F
- legbaloldalibb redex
 - baloldalibb a kifejezés minden más redexénél
- legjobboldali redex

>

Redukálási stratégiák II.

 $((\lambda p.p)((\lambda q.q)r))s((\lambda t.t)((\lambda u.u)v))$

Normál sorrendű redukálási stratégia I.

- legbaloldalibb legkülső
- normalizáló redukálási stratégia
 - normálformát adja
 - ▶ II. Church-Rossen-tétel
- név szerinti redukálási stratégia
 - speciális esete
 - absztrakciónál megáll

Normál sorrendű redukálási stratégia II.

- lusta redukálási stratégia
 - lusta paraméterátadás
 - az argumentum kiértékelését csak akkor végzi el, ha arra már szükség van
 - ▶ pl. imperatív nyelvek *if-then-else* struktúrája

Applikatív sorrendű redukálási stratégia

- ► legbaloldalibb legbelső
- nem feltétlenül találja meg a normál formát

$$(\lambda x.1)(????)$$

- érték szerint λ-kalkulus
 - ▶ G. D. Plotkin
 - ▶ Lisp , LM nyelvek alapja

Konstansok és függvények

Bevezetés

Logikai konstansok Rendezett pár Scott-számjegyek

Konstansok és függvények

- nincsenek konstansok
- nincsenek konstansokon értelmezett függvények

Konstansok és függvények Bevezetés Logikai konstansok Rendezett pár Scott-számjegyek

Logikai konstansok és műveletek

```
Legyen
                    \equiv \lambda xy.x
 true
 ▶ false
                    \equiv \lambda xy.y
 ⊳ if
                   ≡ λpqr.pqr
     and
                    ≡ ...
                    ≡ ...
     or
                    ≡ if E false true
     not
                    \equiv \lambda x.x false true
           not
                    \equiv \lambda xyz.xzy
           not
```

Konstansok és függvények Bevezetés Logikai konstansok Rendezett pár Scott-számjegyek

Rendezett pár

```
pair ≡ λxyz.zxy
```

- first $\equiv \lambda x.xtrue \equiv \lambda x.x(\lambda yz.y)$
- ► second $\equiv \lambda x.x$ false $\equiv \lambda x.x(\lambda yz.z)$
- ▶ pair EF → λz.zEF

Konstansok és függvények Bevezetés Logikai konstansok Rendezett pár Scott-számjegyek

Scott-számjegyek

▶ [0]

Succ

zero

pred

 $\equiv \lambda xy.x \equiv true$

≡ λzxy.yz

 $\equiv \lambda x.xtrue (\lambda y.false)$

 $\equiv \lambda x.x[0](\lambda y.y)$

► [i] Scott-számjegyek

Köszönöm a figyelmet!

Folytatjuk...