Тема II. Линейные операторы

§ 7. Полярное разложение линейных операторов

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Постановка задачи

На прошлой лекции мы обсуждали два важных типа линейных операторов на пространстве со скалярным произведением: *изометрические* операторы и *самосопряженные* операторы.

Мы определяли через некоторые формальные условия, но из обсуждения стал ясен их содержательный геометрический смысл.

Изометрические операторы – это в точности движения, сохраняющие расстояния между точками. Они не меняют форму и размеры «твердых тел», а только поворачивают пространство вокруг начала координат или отражают его относительно каких-то подпространств.

Самосопряженные операторы — это растяжения/сжатия или проектирования вдоль каких-то взаимно перпендикулярных осей, возможно в сочетании с отражениями относительно подпространств.

Сегодня мы покажем, что произвольный линейный оператор на пространстве со скалярным произведением является произведением некоторого самосопряженного и некоторого изометрического операторов.

Итак, на пространстве со скалярным произведением любой линейный оператор сначала растягивает/сжимает или проектирует пространство вдоль взаимно перпендикулярных осей, а затем поворачивает его вокруг начала координат или отражает относительно какого-то подпространства.

Reverse engineering

Хотим представить оператор $\mathcal A$ в виде $\mathcal A=\mathcal B\mathcal U$, где $\mathcal B^*=\mathcal B$, $\mathcal U^*=\mathcal U^{-1}$. Откуда взять такие операторы $\mathcal B$ и $\mathcal U$? Заметим, что $\mathcal A^*=\mathcal U^*\mathcal B^*=\mathcal U^{-1}\mathcal B$. Перемножая, получаем $\mathcal A\mathcal A^*=\mathcal B\mathcal U\mathcal U^{-1}\mathcal B=\mathcal B^2$.

Итак, оператор ${\cal B}$ необходимо должен быть «квадратным корнем» из ${\cal A}{\cal A}^*$. Но мы не извлекали квадратные корни из операторов! Придется научиться.

Определение

Самосопряженный оператор $\mathcal{A}\colon V\to V$ называется неотрицательным, если $\mathcal{A}\mathbf{x}\mathbf{x}\geq 0$ для любого вектора $\mathbf{x}\in V$. Если $\mathcal{A}\mathbf{x}\mathbf{x}>0$ для любого ненулевого вектора $\mathbf{x}\in V$, оператор называется положительным.

abla 1. Для любого линейного оператора $\mathcal A$ оператор $\mathcal A\mathcal A^*$ неотрицательный. Доказательство. Имеем $(\mathcal A\mathcal A^*)^*=(\mathcal A^*)^*\mathcal A^*=\mathcal A\mathcal A^*$, поэтому $\mathcal A\mathcal A^*$ – самосопряженный оператор. Для любого вектора $\mathbf x$ имеем

$$((\mathcal{A}\mathcal{A}^*)\mathbf{x})\mathbf{x} = (\mathcal{A}^*(\mathcal{A}\mathbf{x}))\mathbf{x} = (\mathcal{A}\mathbf{x})(\mathcal{A}\mathbf{x}) \ge 0.$$

Неотрицательные самосопряженные операторы

 $\nabla 2$. Самосопряженный оператор неотрицателен тогда и только тогда, когда все его собственные значения неотрицательны.

Доказательство. Необходимость. Пусть \mathcal{A} – неотрицательный оператор, λ – его собственное значение, а \mathbf{x} – собственный вектор, принадлежащий λ . Тогда $\lambda \mathbf{x} \mathbf{x} = (\lambda \mathbf{x})\mathbf{x} = (\mathcal{A}\mathbf{x})\mathbf{x} \geq 0$. Поскольку $\mathbf{x}\mathbf{x} > 0$, имеем $\lambda \geq 0$.

Достаточность. Пусть \mathcal{A} — самосопряженный оператор, $\lambda_1,\dots,\lambda_n$ — все его собственные значения, а $\mathbf{e}_1,\dots,\mathbf{e}_n$ — ортонормированный базис из принадлежащих этим собственным значениям собственных векторов. Разложим произвольный вектор \mathbf{x} по этому базису: $\mathbf{x}=x_1\mathbf{e}_1+\dots+x_n\mathbf{e}_n$. Тогда $\mathcal{A}\mathbf{x}\mathbf{x}=(\mathcal{A}(x_1\mathbf{e}_1+\dots+x_n\mathbf{e}_n))(x_1\mathbf{e}_1+\dots+x_n\mathbf{e}_n)=(\lambda_1x_1\mathbf{e}_1+\dots+\lambda_nx_n\mathbf{e}_n)(x_1\mathbf{e}_1+\dots+x_n\mathbf{e}_n)=\lambda_1x_1\overline{x_1}+\dots+\lambda_nx_n\overline{x_n}\geq 0$.

 $\nabla 3$. Неотрицательный оператор положителен тогда и только тогда, когда он невырожденный.

Это сразу следует из доказательства $\nabla 2$, если учесть, что оператор невырожденный тогда и только тогда, когда все его собственные значения отличны от нуля (объясните, почему).

Квадратные корни из неотрицательных операторов

Теорема (существование и единственность квадратного корня)

Для любого неотрицательного оператора ${\cal A}$ существует единственный неотрицательный оператор ${\cal B}$ такой, что ${\cal B}^2={\cal A}.$

Доказательство. Существование. Возьмем тот ортонормированный базис $\mathbf{e}_1,\dots,\mathbf{e}_n$, в котором оператор $\mathcal A$ имеет диагональную матрицу

$$A=egin{pmatrix} \lambda_1&\ldots&0\ dots&\ddots&dots\ 0&\ldots&\lambda_n \end{pmatrix}$$
 . Числа, стоящие на диагонали, суть собственные

значения оператора \mathcal{A} , и по $\nabla 2$ все они неотрицательны. Оператор \mathcal{B} ,

имеющий в том же базисе матрицу $B:=\begin{pmatrix} \sqrt{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sqrt{\lambda_n} \end{pmatrix}$, неотрицателен

по $\nabla 2$. По построению имеем матричное равенство $B^2=A$, откуда следует равенство операторов $\mathcal{B}^2=\mathcal{A}$.

Единственность. Пусть $\alpha_1, \alpha_2, \dots, \alpha_s$ — все попарно различные собственные значения \mathcal{A} , т.е. $\lambda_1 = \dots = \lambda_{k_1} = \alpha_1$, $\lambda_{k_1+1} = \dots = \lambda_{k_2} = \alpha_2$, ..., $\lambda_{k_{s-1}+1} = \dots = \lambda_n = \alpha_s$.

Квадратные корни из неотрицательных операторов (2)

Тогда матрицу A можно представить как блочную матрицу

$$A = \begin{pmatrix} \alpha_1 E_1 & O & \dots & O \\ O & \alpha_2 E_2 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & \alpha_s E_s \end{pmatrix} \text{, где } E_1, E_2, \dots, E_s \text{ - единичные матрицы}$$
 размеров $k_1, \ k_2 - k_1, \ \dots n - k_{s-1}, \ \text{а через } O \text{ обозначены нулевые блоки}$

соответствующих размеров. Соответственно, матрица ${\cal B}$ имеет вид

$$B=egin{pmatrix} \sqrt{lpha_1}E_1 & O & \dots & O \\ O & \sqrt{lpha_2}E_2 & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & \sqrt{lpha_s}E_s \end{pmatrix}$$
. Возьмем любой неотрицательный

оператор \mathcal{C} такой, что $\mathcal{C}^2 = \mathcal{A}$, и покажем, что $\mathcal{C} = \mathcal{B}$. Пусть C – матрица оператора ${\mathcal C}$ в том же базисе; тогда $C^2=A$. Разбив C на блоки тех же

размеров, что и у матрицы
$$A$$
, запишем $C = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1s} \\ C_{21} & C_{22} & \dots & C_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ C_{s1} & C_{s2} & \dots & C_{ss} \end{pmatrix}$. Тогда

у матрицы AC блок в позиции (i,j) равен $\alpha_i C_{ij}$, а у матрицы CA в той же позиции стоит блок $C_{ij}\alpha_{j}=\alpha_{j}C_{ij}$. Поскольку $AC=C^{3}=CA$, имеем $lpha_i C_{ij} = lpha_j C_{ij}$, т.е. $(lpha_i - lpha_j) C_{ij} = O$ для всех i,j, но при i
eq j такое равенство возможно только, если $C_{ii} = O$.

Квадратные корни из неотрицательных операторов (3)

Итак,
$$C$$
 имеет вид $\begin{pmatrix} C_{11} & O & \dots & O \\ O & C_{22} & \dots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \dots & C_{ss} \end{pmatrix}$. В частности, подпространство V_1 ,

натянутое на вектора $\mathbf{e}_1,\dots,\mathbf{e}_{k_1}$, инвариантно относительно оператора $\mathcal{C}.$ Заметим, что для любого вектора $\mathbf{x}=x_1\mathbf{e}_1+\dots+x_{k_1}\mathbf{e}_{k_1}\in V_1$

$$\mathcal{A}\mathbf{x} = \mathcal{A}(x_1\mathbf{e}_1 + \dots + x_{k_1}\mathbf{e}_{k_1}) = x_1\alpha_1\mathbf{e}_1 + \dots + x_{k_1}\alpha_1\mathbf{e}_{k_1} = \alpha_1\mathbf{x}.$$

Ограничение оператора $\mathcal C$ на подпространство V_1 — неотрицательный оператор с матрицей C_{11} . Выберем в V_1 ортонормированный базис $\mathbf f_1,\dots,\mathbf f_{k_1}$ из собственных векторов этого оператора, принадлежащих собственным значениям $\gamma_1,\dots,\gamma_{k_1}$. Для каждого $j=1,\dots,k_1$ имеем $\alpha_1\mathbf f_j=\mathcal A\mathbf f_j=\mathcal C^2\mathbf f_j=\mathcal C(\mathcal C\mathbf f_j)=\mathcal C(\gamma_j\mathbf f_j)=\gamma_j^2\mathbf f_j$. Отсюда $\gamma_j^2=\alpha_1$, и так как $\gamma_j\geq 0$, имеем $\gamma_j=\sqrt{\alpha_1}$. Итак, $\gamma_1=\dots=\gamma_{k_1}=\sqrt{\alpha_1}$. Вектора $\mathbf e_1,\dots,\mathbf e_{k_1}$ выражаются через $\mathbf f_1,\dots,\mathbf f_{k_1}$, откуда $\mathcal C\mathbf e_i=\sqrt{\alpha_1}\mathbf e_i$ для всех $i=1,\dots,k_1$. Блок $C_{11}=\sqrt{\alpha_1}E_1$ равен первому диагональному блоку матрицы B. Тот же аргумент работает для любого диагонального блока матрицы C, откуда C=B и $\mathcal C=\mathcal B$.

Полярное разложение невырожденного оператора

Теорема (полярное разложение невырожденного оператора)

Для любого невырожденного линейного оператора \mathcal{A} на унитарном (евклидовом) пространстве существует единственная пара операторов \mathcal{B} и \mathcal{U} такая, что $\mathcal{A} = \mathcal{B}\mathcal{U}$, причем $\mathcal{B} -$ положительный оператор, а $\mathcal{U} -$ унитарный (ортогональный) оператор.

Доказательство. Существование. По $\nabla 1$ и $\nabla 3$ оператор $\mathcal{A}\mathcal{A}^*$ положительный. Квадратный корень \mathcal{B} из $\mathcal{A}\mathcal{A}^*$ также будет положительным оператором. Пусть $\mathcal{U}:=\mathcal{B}^{-1}\mathcal{A}$; тогда ясно, что $\mathcal{A}=\mathcal{B}\mathcal{U}$, и остается проверить, что \mathcal{U} – унитарный (ортогональный) оператор. Действительно, $\mathcal{U}^*=\mathcal{A}^*\mathcal{B}^{-1}$, так как \mathcal{B}^{-1} – самосопряженный оператор и $\mathcal{U}\mathcal{U}^*=\mathcal{B}^{-1}\mathcal{A}\mathcal{A}^*\mathcal{B}^{-1}=\mathcal{B}^{-1}\mathcal{B}^2\mathcal{B}^{-1}=\mathcal{E}$. Итак, $\mathcal{U}^*=\mathcal{U}^{-1}$.

Единственность. Мы уже отмечали, что если $\mathcal{A} = \mathcal{BU}$, где \mathcal{B} – неотрицательный, а \mathcal{U} – изометрический операторы, то \mathcal{B} необходимо будет квадратным корнем из $\mathcal{A}\mathcal{A}^*$. Если \mathcal{B} – положительный оператор, то \mathcal{U} однозначно определяется из равенства $\mathcal{A} = \mathcal{BU}$ как $\mathcal{B}^{-1}\mathcal{A}$.

Следствие

Любая невырожденная матрица над полем $\mathbb C$ однозначно представима как произведение эрмитовой и унитарной матриц.

Дуальное разложение невырожденного оператора + замечания

Используя те же рассуждения, можно разложить любой невырожденный линейный оператор в произведение изометрического и положительного:

Теорема (дуальный вариант полярного разложения)

Для любого невырожденного линейного оператора \mathcal{A} на унитарном (евклидовом) пространстве существует единственная пара операторов \mathcal{C} и \mathcal{V} такая, что $\mathcal{A}=\mathcal{V}\mathcal{C}$, причем \mathcal{C} – положительный оператор, а \mathcal{V} – унитарный (ортогональный) оператор.

Докажите этот вариант самостоятельно. Подсказка: примените reverse engineering и поймите, какой оператор необходимо взять в роли \mathcal{C} .

 ${\it 3}$ амечание 1. Из того, что ${\it A}={\it B}{\it U}={\it V}{\it C}$, не следует, вообще говоря, что ${\it B}={\it C}$ и ${\it U}={\it V}$.

Замечание 2. Полярное разложение невырожденного оператора напоминает представление ненулевого комплексного числа в тригонометрической форме — как произведение положительного действительного числа и комплексного числа с модулем 1.

Замечание 3. Полярное разложение раскрывает геометрический смысл произвольного невырожденного линейного преобразования.

Иллюстрация

Полярное разложение произвольного оператора

Теорема (полярное разложение произвольного оператора)

Для любого линейного оператора $\mathcal A$ на унитарном (евклидовом) пространстве существует пара операторов $\mathcal B$ и $\mathcal U$ такая, что $\mathcal A=\mathcal B\mathcal U$, где $\mathcal B$ – однозначно определяемый неотрицательный оператор, а $\mathcal U$ – унитарный (ортогональный) оператор.

Доказательство опирается на следующую лемму.

Лемма (о метрически равных операторах)

Пусть \mathcal{A} и \mathcal{B} – линейные операторы на пространстве V со скалярным произведением и $\mathcal{A}\mathbf{x}\mathcal{A}\mathbf{y} = \mathcal{B}\mathbf{x}\mathcal{B}\mathbf{y}$ для всех $\mathbf{x},\mathbf{y} \in V$. Тогда существует изометрический оператор \mathcal{U} такой, что $\mathcal{A} = \mathcal{B}\mathcal{U}$.

Вывод теоремы из леммы. По $\nabla 1$ оператор $\mathcal{A}\mathcal{A}^*$ неотрицательный. Пусть \mathcal{B} – квадратный корень из $\mathcal{A}\mathcal{A}^*$. Для всех \mathbf{x},\mathbf{y} имеем

$$AxAy = x(A^*(Ay)) = x((AA^*)y) = x(B^2y) = BxBy.$$

По лемме $\mathcal{A}=\mathcal{B}\mathcal{U}$ для некоторого изометрического оператора $\mathcal{U}.$

Доказательство леммы о метрически равных операторах

Лемма (о метрически равных операторах)

Пусть \mathcal{A} и \mathcal{B} – линейные операторы на пространстве V со скалярным произведением и $\mathcal{A}\mathbf{x}\mathcal{A}\mathbf{y} = \mathcal{B}\mathbf{x}\mathcal{B}\mathbf{y}$ для всех $\mathbf{x},\mathbf{y} \in V$. Тогда существует изометрический оператор \mathcal{U} такой, что $\mathcal{A} = \mathcal{B}\mathcal{U}$.

 \mathcal{A} оказательство. Заметим, что из равенства $\mathcal{A}\mathbf{x}\mathcal{A}\mathbf{x}=\mathcal{B}\mathbf{x}\mathcal{B}\mathbf{x}$ следует, что $\mathcal{A}\mathbf{x}=\mathbf{0}$ тогда и только тогда, когда $\mathcal{B}\mathbf{x}=\mathbf{0}$, т.е. $\ker\mathcal{A}=\ker\mathcal{B}$. По теореме о сумме ранга и дефекта ранги \mathcal{A} и \mathcal{B} равны. Выберем в $\mathop{\mathrm{Im}} \mathcal{A}$ некоторый ортонормированный базис $\mathbf{e}_1,\dots,\mathbf{e}_r$, где r – ранг \mathcal{A} . Пусть $\mathbf{h}_1,\dots,\mathbf{h}_r\in V$ – какие-то вектора со свойством $\mathcal{A}\mathbf{h}_i=\mathbf{e}_i$ для каждого $i=1,\dots,r$. Положим $\mathbf{f}_i:=\mathcal{B}\mathbf{h}_i$; тогда $\mathbf{f}_i\mathbf{f}_j=\mathbf{e}_i\mathbf{e}_j=\begin{cases} 1 & \text{при } i=j, \\ 0 & \text{при } i\neq j. \end{cases}$

Поэтому вектора $\mathbf{f}_1,\ldots,\mathbf{f}_r$ образуют ортонормированный базис в $\operatorname{Im}\mathcal{B}$. Выберем в ортогональном дополнении $(\operatorname{Im}\mathcal{A})^\perp$ подпространства $\operatorname{Im}\mathcal{A}$ какой-то ортонормированный базис $\mathbf{e}_{r+1},\ldots,\mathbf{e}_n$, а в ортогональном дополнении $(\operatorname{Im}\mathcal{B})^\perp$ – какой-то ортонормированный базис $\mathbf{f}_{r+1},\ldots,\mathbf{f}_n$.

Тогда $\mathbf{e}_1, \dots, \mathbf{e}_r, \mathbf{e}_{r+1}, \dots, \mathbf{e}_n$ и $\mathbf{f}_1, \dots, \mathbf{f}_r, \mathbf{f}_{r+1}, \dots, \mathbf{f}_n$ – два ортонормированных базиса пространства V. Оператор \mathcal{U} , переводящий второй из них в первый, будет унитарным. Покажем, что $\mathcal{A} = \mathcal{B}\mathcal{U}$.

Доказательство леммы о метрически равных операторах (2)

Напомним, что мы зафиксировали вектора $\mathbf{h}_1,\dots,\mathbf{h}_r$ со свойством $\mathcal{A}\mathbf{h}_i=\mathbf{e}_i$ для каждого $i=1,\dots,r$. Эти вектора линейно независимы, поскольку линейно независимы их образы $\mathbf{e}_1,\dots,\mathbf{e}_r$. Дополним систему $\mathbf{h}_1,\dots,\mathbf{h}_r$ базисом $\ker\mathcal{A}=\ker\mathcal{B}$ до базиса $\mathbf{h}_1,\dots,\mathbf{h}_r,\mathbf{h}_{r+1},\dots,\mathbf{h}_n$ всего пространства V (это конструкция из доказательства теоремы о сумме ранга и дефекта). Разложим произвольный вектор $\mathbf{x}\in V$ по этому базису:

$$\mathbf{x} = x_1 \mathbf{h}_1 + \dots + x_r \mathbf{h}_r + x_{r+1} \mathbf{h}_{r+1} + \dots + x_n \mathbf{h}_n$$

и подсчитаем $\mathcal{A}\mathbf{x}$ и $(\mathcal{B}\mathcal{U})\mathbf{x}$.

$$\mathcal{A}\mathbf{x} = \mathcal{A}(x_1\mathbf{h}_1 + \dots + x_n\mathbf{h}_n) =$$
 (так как $\mathbf{h}_{r+1}, \dots, \mathbf{h}_n \in \operatorname{Ker} \mathcal{A} = \operatorname{Ker} \mathcal{B}$)
$$= x_1\mathcal{A}\mathbf{h}_1 + \dots + x_r\mathcal{A}\mathbf{h}_r = x_1\mathbf{e}_1 + \dots + x_r\mathbf{e}_r.$$

$$(\mathcal{B}\mathcal{U})\mathbf{x} = \mathcal{U}(\mathcal{B}\mathbf{x}) = \mathcal{U}(\mathcal{B}(x_1\mathbf{h}_1 + \dots + x_n\mathbf{h}_n)) =$$

$$= \mathcal{U}(x_1\mathcal{B}\mathbf{h}_1 + \dots + x_r\mathcal{B}\mathbf{h}_r) = \mathcal{U}(x_1\mathbf{f}_1 + \dots + x_r\mathbf{f}_r) =$$

$$= x_1\mathcal{U}\mathbf{f}_1 + \dots + x_r\mathcal{U}\mathbf{f}_r = x_1\mathbf{e}_1 + \dots + x_r\mathbf{e}_r.$$

Итак,
$$\mathcal{A}\mathbf{x}=(\mathcal{B}\mathcal{U})\mathbf{x}$$
 для любого $\mathbf{x}\in V$, т.е. $\mathcal{A}=\mathcal{B}\mathcal{U}.$