ESERCIZI 3

(1) Provare che

(a)
$$-(-x) = x$$
, $\forall x \in \mathbb{R}$

(b)
$$-(x+y) = -x - y$$
, $\forall x, y \in \mathbb{R}$

(c)
$$x = y \iff x + z = y + z, \quad \forall x, y, z \in \mathbb{R}$$

(d)
$$(-x) \cdot y = x \cdot (-y) = -(x \cdot y), \quad \forall x, y \in \mathbb{R}$$

(e)
$$\frac{1}{\frac{1}{x}} = x$$
, $\forall x \in \mathbb{R} \setminus \{0\}$

(f)
$$x = y \iff x \cdot z = y \cdot z$$
, $\forall x, y \in \mathbb{R}, \forall z \in \mathbb{R} \setminus \{0\}$

(g)
$$\frac{1}{x \cdot y} = \frac{1}{x} \cdot \frac{1}{y}, \quad \forall x, y \in \mathbb{R} \setminus \{0\}$$

(h)
$$\frac{x}{y} = \frac{x \cdot z}{y \cdot z}$$
, $\forall x \in \mathbb{R}, \forall y, z \in \mathbb{R} \setminus \{0\}$

(i)
$$x \le y \iff -x \ge -y$$
, $\forall x, y \in \mathbb{R}$. Inoltre: $x < y \iff -x > -y$, $\forall x, y \in \mathbb{R}$

(j)
$$x^2 \ge 0$$
, $\forall x \in \mathbb{R}$. Inoltre: $x^2 > 0$, $\forall x \in \mathbb{R} \setminus \{0\}$

Osservazione. Dalla (j) deduciamo immediatamente che

$$1 = 1 \cdot 1 > 0$$
.

Inoltre, sempre dalla (j) deduciamo che l'equazione $x^2 + 1 = 0 \iff x^2 = -1$ non può avere soluzioni in campo reale.

(k)
$$x > 0 \Longleftrightarrow \frac{1}{x} > 0$$

(1)
$$x \le y \Longleftrightarrow x + z \le y + z, \quad \forall x, y, z \in \mathbb{R}$$

(m)
$$x \le y \iff x \cdot z \le y \cdot z$$
, $\forall x, y \in \mathbb{R}, \forall z > 0$

(n)
$$x \leq y \iff x \cdot z \geq y \cdot z$$
, $\forall x, y \in \mathbb{R}, \forall z < 0$