Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: STATISTICS 6684

uestion number	Scheme	Marks	
1. (a)	List of patients registered with the practice. Require 'list' or 'register' or database or similar	r B 1	(1)
(b)	The patient(s)	B 1	(1)
(c)	Adv: Quicker, cheaper, easier, used when testing results in destruction of item, quality of info about each sampling unit is often better. Any one Disadv: Uncertainty due to natural variation, uncertainty due to bias, possible	B1	(1)
	bias as sampling frame incomplete, bias due to subjective choice of sample, bias due to non-response. Any one	B1	
(d)	Non-response due to patients registered with the practice but who have left the area	B 1	(2)
4	(°	Total 5 Mai	(1) rks)
2(a)	$P(R \ge 4) = 1 - P(R \le 3) = 0.6533$ Require 1 minus and correct inequality	M1A1	
(b)	$P(S \le 1) = P(S = 0) + P(S = 1), = e^{-2.71} + 2.71e^{-2.71}, = 0.2469$ awrt 0.247	M1,A1,A1	
(c)	$P(T \le 18) = P(Z \le \frac{18-25}{5}), = P(Z \le -1.4) = 0.0808$ 4 dp, cc no marks	M1,A1	(3)
	C C	Fotal 7 Mai	(2) rks)
3(a)	$p = \frac{1}{2}$	B1	
(b)	Binomial distribution is symmetrical	B 1	(1)(1)
(c)	Since <i>n</i> is large and $p \approx 0.5$ then use normal approximation, Can be implied below $np = 96$ and $npq = 49.92$	M1 A1A1	(-)
	$P(90 \le X < 105) \approx P(89.5 \le Y \le 104.5)$ where $Y \sim N(96,49.92)$ ±0.5 cc on both	M1,	
	$\approx P\left(\frac{89.5 - 96}{\sqrt{49.92}} \le Z \le \frac{104.5 - 96}{\sqrt{49.92}}\right)$ Standardisation of both	M1	
	$\approx P(-0.92 \le Z \le 1.20)$ awrt -0.92 & 1.20	Al	
	≈ 0.7055-0.7070 4dp in range	A1	
	C	Fotal 9 Mai	(7) rks)

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: STATISTICS 6684

Question number	Scheme	Marks		
4 (a)	n large, p small	B1,B1	(2)	
(b)	Let X represent the number of people catching the virus, $X \sim B\left(12, \frac{1}{150}\right)$ Imp	olied B1	(2)	
	$P(X=2) = C_2^{12} \left(\frac{1}{150}\right)^2 \left(\frac{149}{150}\right)^{10}, = 0.0027 \text{ Use of Bin including } C_2^{12}, 0.0027(4)$	only M1A1,A	1	
(c)	$X \sim \text{Po}(np) = \text{Po}(8)$ $P(X < 7) = P(X \le 6) = 0.3134$ Poisson, $X \le 6 \text{ for method, } 0.313$	-	(4)	
		(Total 10 Ma	(4) rks)	
5(a)	Vehicles pass at random / one at a time / independently / at a constant rate Any 2&contextB1B1dep			
(b)	X is the number of vehicles passing in a 10 minute interval,		(2)	
	(51)	co(8.5) B1		
	$P(X=6) = \frac{8.5^6 e^{-8.5}}{6!}$, = 0.1066 (or 0.2562-0.1496=0.1066) Clear attempt using 6	, 4dp M1A1		
(c)	$P(X \ge 9) = 1 - P(X \le 8) = 0.4769$ Require 1 minus and correct inequ	nality M1A1	(3) (2)	
(d)	$H_0: \lambda = 8.5, H_1: \lambda < 8.5$ One tailed test only for alt	hyp B1J,B1J		
	$P(X \le 4 \lambda = 8.5) = 0.0744, > 0.05$ $X \le 4 \text{ for method, 0.}$	0744 M1,A1		
	1 = (== = 1, = = = 1, = = = = = = = = = = = =			
	(Or $P(X \le 3 \lambda = 8.5) = 0.0301, < 0.05 \text{ so } CR X \le 3 \text{ correct } CR$	M1,A1)		
	(Or $P(X \le 3 \lambda = 8.5) = 0.0301, < 0.05 \text{ so } CR X \le 3 \text{ correct } CR$	M1,A1)		
	(Or $P(X \le 3 \lambda = 8.5) = 0.0301, < 0.05 \text{ so } CR X \le 3 \text{ correct } CR$	•	(6)	

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: STATISTICS 6684

Question number	Scheme	Marks	
6 (a)	Let X represent the number of plant pots with defects, $X \sim B(25,0.20)$ Implied $P(X \le 1) = 0.0274, P(X \ge 10) = 0.0173$ Clear attempt at both tails required, 4dp Critical region is $X \le 1, X \ge 10$	Bi MIAIAI AI	(4
(b)	Significance level = 0.0274+0.0173=0.0447	B1 cao	(1
(c)	$H_0: \lambda = 10, H_1: \lambda > 10 \text{ (or } H_0: \lambda = 60, H_1: \lambda > 60)$	B1B1	(1
	Let Y represent the number sold in 6 weeks, under H_0 , $Y \sim Po(60)$ $P(Y \ge 74) \approx P(W > 73.5)$ where $W \sim N(60,60)$ ± 0.5 for cc ,73.5	M1A1	
	$\approx P(Z \ge \frac{73.5 - 60}{\sqrt{60}}) = P(Z > 1.74) = 0.0407 - 0.0409 < 0.05 \text{ Standardise using } 60\sqrt{60}$	M1,A1	
	Evidence that rate of sales per week has increased.	Λ1∫	
	Γ)	otal 13 Ma	(7 rks

Stewart House 32 Russell Square London WC1B 5DN

January 2004

Advanced Subsidiary / Advanced Level General Certificate of Education

SUBJECT: STATISTICS 6684

Question number	Scheme	M	arks	
7 (a)	\$\frac{4}{7} \cdot(5 - \cdot) \lambda \cdot 1	••••		
	$\int_0^4 kx(5-x)\mathrm{d}x = 1$	Limits required	M1	
	$k \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^4 = 1$	$\left[\frac{5x^2}{2} - \frac{x^3}{3}\right]$	A1	
	Sub in limits and solve to give **** $k = \frac{3}{56}$ ****	Correct solution	A1	
	56			(2)
(b)				(3)
(b)	$F(x) = \int_0^{x_0} f(x) dx = \int_0^{x_0} \frac{3}{56} x (5 - x) dx = \frac{3}{56} \left[\frac{5x^2}{2} - \frac{x^3}{3} \right]_0^{x_0}$	Variable upper limit require	edM1	
	$=\frac{x_0^2}{112}(15-2x_0)$ 0 $x < 0$		A1	
	$F(x) = \frac{x^2}{112}(15 - 2x) \qquad 0 \le x \le 4$	Ends, middle.	B1,B1∫	
	1 x > 4			
				(4)
(c)	$E(x) = \int_0^4 \frac{3}{56} x^2 (5 - x) dx = \frac{3}{56} \left[\frac{5x^3}{3} - \frac{x^4}{4} \right]_0^4 = 2.29 \int x f(x) dx$	$(x) dx$, $\left[\frac{5x^3}{3} - \frac{x^4}{4}\right]$, $3sf(2\frac{2}{7})$	·)M1A1A1	
	•			(3)
(d)	$f'(x) = \frac{3}{56}(5-2x) = 0 \implies \text{Mode}=2.5$	empt $f'(x)$, $(5-2x) = 0$, 2.	5 M1A1A1	
	30	or Sketch M1, x=0&5 A1, Moo	de=2.5 A1)	
(a)	·			(3)
(e)	F(2.3)=0.491, F(2.5)=0.558 Their F, awrt 0. F(m)=0.5 \Rightarrow m lies between 2.3 and 2.5	491 & 0.558 or 0.984 & -6.5 cso	M1,A1 A1	
	1 (iii) 0.5 - iii neb between 2.5 and 2.5	030	111	(3)
(f)	Mean (2.29) <median (2.3-2.5)<mode="" (2.5)<="" td=""><td></td><td>B1</td><td></td></median>		B 1	
	Negative skew		B1 dep	
		,,	T-4-140 B#	(2)
		C	Total 18 Mar	rks)