10/15/2010

Chap 7

Conservation of Energy

 $K = \frac{1}{2} \text{m} \text{v}^2$

U = postantial energy, stored energy

Ugrav = mgy Uspr = Zkx2

7.64

0) = 36° when he lets go 10m/ $\frac{1}{2}mv^2 = mgh$ = mg L(1-650)solve for v D motion $W = \int_{-\infty}^{\infty} F_x dx = -\Delta U$ $\Delta U = -\int_{x}^{b} F_{x} dx$ $U(x) = -\int_{x}^{x} F_{x}(x) dx + conft$

Follows that Mass is osding on spring w/ total energy E At edges of motion energy is all pot. Can Lauring bounts, & woyou. op here

(1-Dim) = -9x More gent h F=->() to consor a the forces 7.49 A particle TxF=0 wth total energy 3.55 is trapped in a pot I well described by V in voules $U = 7.0 - 8.0 \times + 1.7 \times^2$ Find turning points $= 035 = 7.0 - 8.0 \times 4.72$ She quant X = 0.400 m + 4.22 m

Skip Chap & Momentum Systems of particles. Collisions -orce Strong, acting for a short time - Unknown: 3rd Law: FAB = - FBA So for "particle"

Eventually, momentum Systems of particles

Mi Vi Ti, Vi, àc (me nome)

Me nome of the company of the For the first time We will add forces on different particles

N = \leftral mid = \leftral mid \frac{2^i}{4t^2}

Total

Call particles

= \leftral \frac{2^i}{t^2} \leftral mid \frac

Tem = M. P. Take 1+ $\sqrt{cm} = \frac{1}{N} \leq m_{c} \sqrt{c}$ $\vec{Q}_{cm} = \sqrt{\sum_{i} m_{i} \vec{Q}_{i}}$

 $X_{cm} = \sum_{m=1}^{\infty} \sum_{m \in X_{c}} M_{c} X_{c}$ $X_{cm} = \sum_{m=1}^{\infty} \sum_{m \in X_{c}} M_{c} X_{c}$