

Fonctions récursives

Algorithmique

Objectifs

- Comprendre qu'il existe plusieurs façons d'aborder la notion d'itération en algorithmique et dans la plupart des langages de programmation.
- Apprendre à concevoir une solution récursive à un problème.

Introduction (1/3)

- Plusieurs façons d'aborder la notion d'itération en algorithmique et dans la plupart des langages de programmation
 - avec des boucles (while, for, loop, etc.)
 - avec la récursivité

- Montrer comment concevoir une solution récursive pour un problème.
- Une définition récursive est une définition dans laquelle intervient le nom qu'on est en train de définir.

Exemples

- Une personne A est un descendant d'une autre personne B si et seulement si
 - soit A est un enfant (fils ou fille) de B
 - soit A est un enfant (fils ou fille) d'un descendant de B
- Un entier naturel positif ou nul est
 - soit l'entier 0
 - soit le successeur d'un entier naturel positif ou nul.

Introduction (2/3)

 On trouve des définitions récursives dans beaucoup de domaines :

– Linguistique :

• Dictionnaire : chaque mot du dictionnaire est défini par d'autres mots eux-mêmes définis par d'autres mots dans ce même dictionnaire.

— Art :

- Œuvres d'Escher
- Image contenant une image similaire
- Les poupées russes
- Caméra qui filme devant un miroir

Introduction (2/3)

– Biologie :

- Motif de végétaux (fougère, cœur d'un tournesol, chou romanesco)
- Processus de développement (Nautile)
- Mathématique :
 - Suites récurrentes
 - Fractales (triangle de Sierpinski)
- En informatique, on trouve:
 - des fonctions récursives, c'est-à-dire qui s'appellent elles-mêmes
 - des structures de données récursives, c'est-à-dire qui se définissent en fonction d'elles-mêmes

Introduction (3/3)

- Dans la plupart des langages de programmation, une fonction peut s'appeler elle-même, on parle alors de fonction récursive
- Les fonctions récursives, permettent, pour certains types de problèmes
 - d'écrire plus facilement les programmes
 - → l'écriture se déduit de la définition de la fonction
 - de vérifier plus facilement que les programmes sont corrects
 - → preuve par induction
- Il existe aussi la possibilité d'avoir des **définitions mutuellement récursives** c'est-à-dire une fonction qui en appelle une 2e, qui en appelle une 3e,, qui appelle la première.

Rappels sur les fonctions en Python (1/4)

 Une fonction permet de définir un calcul à un endroit du programme (définition) et de l'utiliser (appel) partout dans le reste du programme.

DÉFINITION d'une fonction

```
def nom(param1,param2,... paramN):
   corps
```

la définition est enregistrée pour son utilisation ultérieure

Rappels sur les fonctions en Python (2/4)

APPEL d'une fonction

```
nom(arg1,arg2,... argN)
```

- à l'appel de nom (arg1, arg2, ..., argN), corps est exécuté après avoir remplacé respectivement chaque param par la valeur de arg

- Si la fonction doit produire une valeur, **return** va permettre de sortir de la fonction, et remplacer l'appel de fonction par la valeur retournée.
 - S'il n'y a pas de return la fonction se termine après la dernière instruction (et renvoie None).

Rappels sur les fonctions en Python (3/4)

Qu'affichent les programmes suivants ?

```
def pair_ou_impair(a):
   if (a % 2 == 0):
      return "pair"
   else:
      return "impair"

print(pair_ou_impair(2))
```


Rappels sur les fonctions en Python (4/4)

```
#on peut aussi écrire
def successeur(a):
   return a + 1
print(successeur(2))
```

```
# composition de fonctions
print(pair_ou_impair(successeur(20)))
print(pair_ou_impair(successeur(19)))
```


- On veut écrire un programme qui,
 - étant donné un entier n>0,
 - affiche les nombres de 1 à n par ordre croissant.

```
# avec une boucle while
n = eval(input())
i = 1
while i <= n:
    print("i : ",i)
    i = i + 1</pre>
```

```
# avec une boucle for
n = eval(input())
for i in range(1,n+1):
    print("i : ",i)
```


- Avec une fonction récursive de paramètre n :
 - ce qu'on sait faire facilement : quand le paramètre n vaut 1
 - → on affiche 1 et c'est fini

- quand n > 1,
 - → on affiche les entiers de 1 à n-1
 - → puis on affiche n

- le 1^{er} cas est appelé cas trivial ou cas d'arrêt de la récursivité
 - on s'arrête quand n vaut 1
- le 2e cas est appelé le cas récursif
 - →on ramène le problème à un sous-problème plus simple, c'est-à-dire de taille plus petite :
 - on fait un appel récursif à la fonction avec n-1
 - → on affichera donc les entiers de 1 à n-1
 - on affiche ensuite n


```
# avec une fonction récursive

def affichage_ordre_croissant(n):
    if n == 1:
        print("n : ",1)
    else:
        affichage_ordre_croissant(n-1)
        print("n : ",n)

affichage ordre croissant(5)
```


Exemple : Affichage de nombres – ordre décroissant

- Maintenant on veut écrire un programme qui,
 - étant donné un entier n > 0,
 - affiche les nombres de n à 1 par ordre décroissant.

```
# avec une boucle while
n = eval(input())
i = n
while i >= 1:
    print("i : ",i)
    i = i - 1
```

→On a dû changer

- l'initialisation de la variable de contrôle
- la condition de la boucle while

Exemple: Affichage de nombres – ordre décroissant

```
# avec une boucle for
n = eval(input())
for i in range(n,0,-1):
    print("i : ",i)
```

→ On a dû changer la séquence d'entiers que parcourt le for

Exemple: Affichage de nombres – ordre décroissant

```
# avec une fonction récursive
def affichage_ordre_decroissant(n):
    if n == 1:
        print("n : ",1)
    else:
        print("n : ",n)
        affichage_ordre_decroissant(n-1)

affichage ordre decroissant(5)
```

→On a *seulement* inversé l'ordre d'affichage et l'appel récursif dans le cas où n > 1

Exemple: Affichage de nombres – ordre décroissant

- Pour le cas trivial ou cas d'arrêt de la récursivité
 - on s'arrête quand n vaut 1
 - c'est toujours ce qu'on sait faire facilement : quand le paramètre n vaut 1, on affiche 1 et c'est fini
 - → INCHANGÉ par rapport à l'ordre croissant
- Pour le cas récursif
 - quand n > 1
 - on affiche n
 - on affiche ensuite les entiers de 1 à n-1
 - → ON A INVERSÉ par rapport à l'ordre croissant

Remarques

- On constate qu'une fonction récursive comporte :
 - (au moins) un cas trivial (cas d'arrêt) pour lequel on a directement le résultat

 (au moins) un appel récursif dans lequel on ramène le problème à un sous-problème plus simple dans lequel on aura diminué la "taille du problème"

Calcul de la puissance nième d'un entier strictement positif

- Soient a>0 et n>=0, la puissance nième de a est définie par
 - pour n=0 : $a^0 = 1$
 - pour n > 0: $a^n = a \times a^{n-1}$

- Cette définition mathématique comporte
 - un point de départ (n = 0) pour lequel on a directement le résultat $(a^0 = 1)$
 - un calcul de la puissance n^{ième} de a qui fait appel au calcul de la puissance (n-1)^{ième} de a.

Calcul de la puissance nième d'un entier strictement positif

- C'est donc une définition récursive avec :
 - un cas d'arrêt de la récursivité : n = 0
 - un cas de calcul récursif $a^n = a \times a^{n-1}$ dans lequel on fait **diminuer** la taille du problème (n-1)

• On constate donc que, pour tout n>0, le calcul finira par s'arrêter quand n atteindra le cas d'arrêt et la valeur 0.

Calcul de la puissance n^{ième} d'un entier strictement positif

- On se calque sur la définition mathématique pour écrire en Python la définition de la fonction puissance à 2 paramètres a (avec a>0) et n (avec n>=0)
 - un cas d'arrêt de la récursivité : n=0
 - → le résultat est 1
 - un cas de calcul récursif : n>0
 - → pour calculer an, on multiplie n avec le résultat du calcul de an-1

Calcul de la puissance n^{ième} d'un entier strictement positif

```
# calcul de a à la puissance n, pour a>0 et n>=0
def puissance(a,n):
  if n == 0:
    # cas d'arrêt
    return 1
  else:
    # n > 0 cas récursif
    return a * puissance(a,n-1)
puissance (2,4)
puissance (2,0)
```

Calcul de la puissance n^{ième} d'un entier strictement positif

```
# On peut aussi écrire sans le else :
def puissance_bis(a,n):
    if (n == 0):
        # cas d'arrêt
        return 1
        # n > 0 cas récursif
        return a * puissance_bis(a,n-1)

puissance_bis(2,4)
puissance_bis(2,0)
```

Démarche pour écrire une fonction récursive

- On commence par chercher le cas simple, c'est-àdire celui qui ne nécessite pas de rappeler récursivement la fonction :
 - Pour l'affichage, c'est le cas où n=1 (on affiche 1)
 - Pour la puissance, c'est le cas où n=0 (on sait que $a^0 = 1$)

Démarche pour écrire une fonction récursive

- On cherche ensuite le sous-problème récursif (sousproblème de taille réduite par rapport au problème) pour rappeler la fonction récursive pour chaque sous-problème à résoudre
 - Pour l'affichage, c'est afficher les n-1 entiers
 - Pour la puissance, c'est calculer aⁿ⁻¹

- Vérifier que la fonction se termine
 - → Atteint-on au moins un cas d'arrêt?

Problème de la terminaison

• Une fonction récursive doit obligatoirement avoir au moins un cas d'arrêt

 Les appels récursifs doivent permettre d'atteindre ce cas d'arrêt.

• Soit la définition de la fonction f ci-dessous.

```
def f(n):
   return n * f(n-1)
```

→ Que se passe t-il si on veut exécuter f(3)?

Soit la définition de la fonction f ci-dessous.

```
def f(n):
    return n * f(n-1)
```

 \rightarrow Que se passe t-il si on veut exécuter f(3)?

On a oublié le cas d'arrêt ! f(3) appelle f(2) puis f(1); f(0); f(-1)...

Soit la définition de la fonction g ci-dessous.

```
def g(n):
   if n==0:
     return 1
   else:
     return n * g(n+1)
```

 \rightarrow Que se passe t-il si on veut exécuter g(3)?

Soit la définition de la fonction g ci-dessous.

```
def g(n):
   if n==0:
     return 1
   else:
     return n * g(n+1)
```

 \rightarrow Que se passe t-il si on veut exécuter g(3)? n est croissant donc n'atteint pas 0 s'il est positif g(3) appelle g(4) puis g(5)...

Soit la définition de la fonction h ci-dessous.

```
def h(n):
   if n==0:
     return 1
   else:
     return n * h(n)-1
```

→ Que se passe t-il si on veut exécuter h(3)?

Soit la définition de la fonction h ci-dessous.

```
def h(n):
   if n==0:
     return 1
   else:
     return n * h(n)-1
```

→Que se passe t-il si on veut exécuter h(3)? attention : h(n) - 1 != h(n-1) h(n) rappelle indéfiniment le calcul de h(n)

Soit la définition de la fonction p ci-dessous.

```
def p(n):
   if n==0:
     return 1
   else:
     return n * p(n-2)
```

→Que se passe t-il si on veut exécuter p(3)?

On n'atteint le cas d'arrêt que si p est pair : p(3) appelle p(1)

puis p(-1)...

Problème du domaine de définition

- Écrire la fonction factorielle qui,
 - étant donné un entier n>=0,
 - calcule le nième terme de la suite F_n définie par :
 - pour n=0: $F_0 = 1$
 - pour n>0 : $F_n = n \times (n-1) \times ... \times 1 = n \times F_{n-1}$

Problème du domaine de définition

- Pour ce problème, l'écriture d'une fonction récursive en Python s'impose d'elle même en suivant la définition mathématique avec
 - un cas d'arrêt de la récursivité : n=0
 - → le résultat est 1
 - un cas de calcul récursif : n>0
 - \rightarrow pour calculer F_n , on doit multiplier n avec le résultat du calcul de F_{n-1} (sous-problème de taille réduite)

Fonction factorielle

```
def factorielle(n):
    if n == 0:
        return 1
    else:
        return n * factorielle(n-1)

print(factorielle(5))
```


Traces de la fonction factorielle

- On ajoute des impressions (avec print)
 - → Permet de tracer à chaque appel la valeur de l'argument et le résultat calculé

```
def factorielle_trace_argument_et_resultat(n):
    # ajout des impressions de n et du résultat calculé jusque là
    if n == 0:
        resultat = 1
    else:
        resultat = n * factorielle_trace_argument_et_resultat(n-1)
    print('Pour n = ', n, ' , factorielle(', n, ') est égal à :',
        resultat)
    return resultat

factorielle_trace_argument_et_resultat(5)
```

Traces de la fonction factorielle

```
Pour n = 0 , factorielle(0) est égal à : 1

Pour n = 1 , factorielle(1) est égal à : 1

Pour n = 2 , factorielle(2) est égal à : 2

Pour n = 3 , factorielle(3) est égal à : 6

Pour n = 4 , factorielle(4) est égal à : 24

Pour n = 5 , factorielle(5) est égal à : 120
```


Qu'en est-il de factorielle(-5)?

Qu'en est-il de factorielle(-5)?

- La fonction factorielle est définie sur N donc l'argument doit être positif ou nul, sinon on va vouloir calculer factorielle(-1), puis de -2, etc. et on boucle sur les entiers négatifs...
- Écrire une version qui permette de résoudre ce problème signifie qu'on va devoir vérifier la validité de la donnée.

Factorielle: Gestion des valeurs négatives

```
def factorielle argument valide(n):
  # tester si l'argument est positif ou nul pour faire les calculs
  if n < 0:
   print('Pour n =', n,
      ', qui est négatif, factorielle(',n,') est non définie')
  else:
    if (n == 0):
     print('Pour n =', n, ', factorielle(',n,') est égal à :', 1)
      return 1
    else:
      resultat = n * factorielle argument valide(n-1)
      print('Pour n =', n, ', factorielle(',n,') est égal à :', resultat)
      return resultat
factorielle argument valide(-5)
```


Factorielle : Gestion des valeurs négatives

Avec utilisation d'un assert

```
def factorielle argument valide bis(n):
  # si l'argument est négatif le programme s'arrête
  assert n >= 0,
    "Pour n négatif, factorielle(n) est non définie"
  # argument positif ou nul, on peut faire les calculs
  if n == 0:
   print('Pour n =', n,
      ', factorielle(',n,') est égal à :', 1)
    return 1
  else:
    resultat = n * factorielle argument valide bis(n-1)
    print('Pour n =', n,
      ', factorielle(',n,') est égal à :', resultat)
    return resultat
factorielle argument valide bis (-5)
```

Factorielle : Gestion des valeurs négatives

- Il ne semble pas judicieux de tester à chaque appel récursif si n < 0.
 - Si n < 0 dés le départ il faut signaler l'erreur de domaine
 - mais si n >= 0, le calcul permettra à n d'atteindre la valeur 0 (et donc arrêter le calcul) avant une valeur négative.

 On va séparer la vérification du domaine de validité de l'argument du calcul proprement dit quand l'argument est correct.

Factorielle : Gestion des valeurs négatives

```
def factorielle verification du domaine (n):
  # tester si l'argument est positif ou nul pour faire les calculs
  # cas d'erreur, pas de calcul de n!
  assert n >= 0, "Pour n négatif, factorielle(n) est non définie"
  # n est dans le domaine, on lance le calcul avec la fonction factorielle
  return factorielle(n)
def factorielle(n):
  # fonction sur N avec argument validé donc n >= 0
  if n == 0:
    return 1
  else:
    return n * factorielle(n-1)
factorielle verification du domaine (-5)
factorielle verification du domaine (5)
```


EXERCICES: Fonctions récursives sur les entiers

 Pour chacune des fonctions suivantes, on supposera la validité de l'argument sans la vérifier

Fibonacci

- Écrire la fonction *Fibonacci* qui, étant donné un entier n>0, calcule Fib_n, le nième terme de la suite définie par
 - $Fib_0 = 0$
 - $Fib_1 = 1$
 - Fib_{n+2} = Fib_{n+1} + Fib_n
- Quel est le résultat de l'appel suivant ?

fibonacci(12)

Fibonacci

- Cas trivial d'arrêt de la récursivité
 - n == 0 : dans ce cas le résultat est 1
 - n == 1 : dans ce cas le résultat est 1

- Cas de calcul récursif : n > 1
 - pour calculer F_n , on doit additionner les résultats des calculs de F_{n-1} et F_{n-2}

Fibonacci

```
def fibonacci(n):
    # 2 cas d'arrêt : n == 0 retournant 0
    # et n == 1 retournant 1
    if n == 0:
        return 0
    if n == 1:
        return 1
# cas général
# 2 appels récursifs avec la taille du problème diminuée
    return fibonacci(n - 1) + fibonacci(n - 2)
```


• Écrire la fonction *suite* qui, étant donné un entier $n \ge 0$, calcule U_n , le $n^{ième}$ terme de la suite définie par

$$- U_0 = 2$$

$$- U_{n+1} = (1 + 3 \times U_n) / (3 + U_n)$$

• Quel est le résultat de l'appel suivant ?

suite(12)

- Cas trivial d'arrêt de la récursivité
 - n = 0, dans ce cas, le résultat est 2
- Cas de calcul récursif : n > 0
 - pour calculer U_n, on utilise le résultat du calcul de U_{n-1}


```
def suite(n):
    # 1 cas d'arrêt : n = 0 retournant 2
    if (n == 0):
        return 2
    # cas général
    # 2 appels récursifs avec la taille du problème diminuée
    return (1 + 3 * suite(n-1)) / (3 + suite(n-1))
```

Peut-on améliorer cette solution?

- On remarque que suite (n-1) est calculée 2 fois à chaque appel récursif.
- On peut améliorer ce code en mémorisant le résultat de suite(n-1) calculé une seule fois pour l'utiliser 2 fois.
- La variable locale resultat_intermediaire sera différente à chaque appel.

• Quel est le résultat de l'appel suivant ?

suite_bis(12)


```
def suite bis(n):
    # cas d'arrêt : n = 0 retournant 2
    if (n == 0):
       return 2
    # cas général
    # 1 seul appel récursif
    # conserver le résultat dans une variable locale
    resultat intermediaire = suite bis(n-1)
    # on utilise le résultat sans le recalculer
    return (1 + 3 * resultat intermediaire) / \
      (3 + resultat intermediaire)
```


- Ecrire la fonction pgcd qui, étant donnés 2 entiers a > 0 et b > 0,
 calcule le plus grand commun diviseur de a et de b défini par :
 - pgcd(a,b) = a si a = b
 - pgcd(a,b) = pgcd(min(a,b),|a-b|) sinon
- Ecrire la fonction pgcd sans utiliser les fonctions python min et abs
- Quels sont les résultats pour les appels suivants ?

- Cas trivial d'arrêt de la récursivité
 - a=b: dans ce cas le résultat est a

- Cas de calcul récursif : a != b
 - Si a>b, le résultat est le même que celui du pgcd de b et a-b
 - Si b>a, le résultat est le même que celui du pgcd de a et b-a
 - → C'est un sous-problème du PGCD initial
 - → Petit à petit les deux nombres diminuent
 - → La différence est forcément positive
 - → Si a et b toujours différents, la différence va aboutir à 1

• PGCD(15,21)

- \rightarrow Plus petit : 15, différence : 6 \rightarrow =PGCD(15,6)
- \rightarrow Plus petit : 6, différence : 9 \rightarrow = PGCD(6,9)
- \rightarrow Plus petit : 6, différence : 3 \rightarrow = PGCD(6,3)
- \rightarrow Plus petit : 3, différence : 3 \rightarrow = PGCD(3,3)
- →a et b sont égaux et valent 3 donc PGCD(15,21)=3

- On peut aussi écrire les fonctions :
 - min qui, appliquée à 2 entiers, retourne le plus petit des 2
- val_abs qui retourne la valeur absolue de son paramètre et les composer
- Quels sont les résultats pour les appels suivants ?

```
pgcd_bis(15,21)
```

pgcd_bis(24, 48)


```
def min(a,b):
    if a < b:
        return a
    else:
        return b
def val abs(a):
    if a >= 0:
        return a
    else:
        return -a
```

```
def pgcd_bis(a,b):
    # cas d'arrêt : a = b retournant a
    if a == b:
        return a
    # cas général a != b
    else: # appel récursif
        # avec le plus petit des deux et la valeur absolue de leur différence
        return pgcd_bis(min(a,b),val_abs(a-b))
```

- mais le test a > b est ici effectué 2 fois :
 - $si a > b alors val_abs(a-b) = a-b$
 - $sinon val_abs(a-b) = b-a$

```
def pgcd_ter(a,b):
    # cas d'arrêt : a = b retournant a
    if a == b:
        return a
    # cas général a != b
    if a > b:
        grand, petit = a, b
    else:
        petit, grand = a, b
    return pgcd ter(petit, grand - petit)
```