NCEAC.FORM. 001-D

COURSE DESCRIPTION FORM

INSTITUTION FAST - National University of Computers and Emerging

Sciences

BS - Computer Science

PROGRAM (S) TO BE EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled-out form should not be more than 2-3 pages.)

Course Title	Theory of Computation / Automata					
Course Code	CS3005	Credit Hours	3 + 0			
Prerequisites by Course(s)	Discrete Structures	Semester	Spring 2023			
Assessment Instruments (With tentative weights)	Semester Work 20% (at least 3 assignments and 3 quizzes) Midterm 30% (2 Mid semester exam – Week 6 and Week 11) Final 50% (Comprehensive end of semester exam)					
Course Coordinator	Muhammad Shahzad					
Office Hours	Details displayed outside my Basen	Details displayed outside my Basement (Old library- CS Block).				
Current Catalog Description	Finite State Models: Language definitions preliminaries, Regular expressions/Regula languages, Finite automata (FAs), Transition graphs (TGs), NFAs, Kleene's theorem Transducers (automata with output), Pumping lemma and non-regular language Grammars and PDA: CFGs, Derivations, derivation trees and ambiguity, Simplifying CFLs, Normal form grammars and parsing, Decidability, Context sensitive languages grammars and linear bounded automata (LBA), Chomsky's hierarchy of grammars Turing Machines Theory: Turing machines, Post machine, Variations on TM, TM encoding, Universal Turing Machine, Defining Computers by TMs					
Textbook (or Laboratory Manual for Laboratory Courses)	 John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation P. Linz. Introduction to Formal Languages and Automata, 6th edition, 2017 (or 5th or 4th edition), Jones and Barlett Daniel I. A. Cohen, Introduction to Computer Theory 					
Reference Material	 John Martin, Introduction to Computer Theory John Martin, Introduction to Languages and the Theory of Computation, Third Edition Michael Sipser, Introduction to Theory of Computation Instructor Notes 					

NCEAC.FORM. 001-D

A. Course Learning Outcomes (CLOs)

CLO No.	Course Learning Outcomes	Bloom Taxonomy	Tools
CLO-1	Explain and manipulate the different concepts in automata theory and formal languages such as formal proofs, automata, regular expressions, Turing machines etc	C2 (Understand)	A1, Q1
CLO-2	Prove properties of languages, grammars and automata with rigorously formal mathematical methods	C2 (Understand)	A2, Q2
CLO-3	Design of automata, RE and CFG	C3 (Apply)	Q3, M1, F1
CLO-4	Transform between equivalent NFAs, DFAs and Res	C3 (Apply)	M1, F1
CLO-5	Define Turing machines, PDA machines performing simple tasks	C2 (Understand)	A3, M2, F1 Q3

Tool: A = Assignment, Q = Quiz, M = Midterm, F=Final, CEP = Complex Engineering Problem.

Course Goals

B. Prog	ram Learning Outco	mes
PLO 1	Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.
PLO 2	Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.
PLO 3	Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
PLO 4	Investigation & Experimentation	Conduct investigation of complex computing problems using research-based knowledge and research-based methods
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
PLO 10	Communication	Communicate effectively on complex computing

NCEAC.FORM.

			activities with the computing community and with society at large.
l		ect Mgmnt and ince	Demonstrate knowledge and understanding of management principles and economic decision making own work as a member or a team.
	PLO 12	Life Long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.

001-D

(CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)											
						PLO	s				
		1	2	3	4	5	6	7	8	9	10
	1	~									
	2		~								
CLO s	3			~							
	4			>							
	5			~							

Topics Covered in the Course (Tentative plan)

Please note:

- 1. Students are expected to go through the suggested reading topics from at least one reference book and internet, before & after each class.
- Representative topic of suggested chapters is given week-wise (on right) as Chapter [Ullman] / [Cohen].

Week	Lecture	Topics	CLO	Chapters	Assessments
1.	1.	Discussion on Course Outline, Introduction to Finite Automata	CLO-1	[HMU]:1.1 [Linz]: 1	
	2.	What does automata mean? Introduction to Languages, Alphabets, Strings	CLO-1	[HMU]: 1.5 [DC]: 1	
	3.	Kleene Star Closure, Regular Expression (RE)	CLO-3	[DC]: 4 [HMU]: 3 [JM]: 3 [Linz]: 3	
2.	1.	Equivalent RE, Finite Automaton (FAs), Equivalent FAs	CLO-3	[HMU]: 2 [JM]: 2 [MS]: 1	
	2.	FA corresponding to finite languages, Transition Graph	CLO-3	[Linz]: 2.1 [DC]: 6	
	3.	Continued			

NCEAC.FORM. 001-D

3.	Please read the full chapter(s).	3.	1.	Examples of TGs: accepting all strings, ccepting none, starting with b, not nding in b, containing aa, containing aa or bb.	CLO-4	[Linz]: 2 [DC]: 6	Assignment 1 Friday Release Week 3
J.	Apart from graded assignments, students are expected to discuss and solve		2.	Generalized Transition Graph	CLO-4	[DC]: 6	
	exercises at the end of each chapter.		3.	Language accepted by NFA, Recursive definition of NFA	CLO-4	[Linz]: 2.2 [HMU]:2.3	
		4.	1.	Basis Clause and Inductive Clause of NFA	CLO-4, 2	[Instructor Notes]	Quiz no 1
			2.	NFA with Λ Transitions, Language accepted by NFA- Λ, Definition of Λ-Closure, Basis Clause and Inductive Clause of NFA- Λ	CLO-4	[Instructor Notes]	
			3.	Conversion of NFA- ∧ to equivalent NFA	CLO-4	[Instructor Notes]	
I		5.	1.	Conversion of NFA to equivalent DFA	CLO-4	[Instructor Notes]	Assignment 1 submission
I			2.	Equivalence of DFAs, NFAs and NFA- $\ensuremath{\Lambda}$	CLO-4	[Instructor Notes]	Monday Week 5
			3.	Kleene's Theorem Part-1 & Part-2	CLO-4	[JM]: 3.4, 3.5 [DC]: 7	
		6.	1.				
			2.	Mid-I Examination			
			3.				
		7.	1.	Complement of Regular Language and Complement of DFA, Intersection of Regular Languages	CLO-3	[Instructor Notes]	
			2.	Properties of RLs	CLO-2, 3	[Linz]: 4 [HMU]: 4	
			3.	Pumping Lemma	CLO-3	[HMU]: 4.1 [JM]: 2.4	
		8.	1.	Minimization of DFA	CLO-4	Notes]	Quiz no 2 Assignment 2 Friday Release Week 8
			2.	Mealy & Moore Machines	CLO-4	[DC]: 9	
			3.	Conversion between Mealy & Moore Machines	CLO-4	[Instructor Notes]	
1							

NCEAC.FORM. 001-D

	9.	1.	Regular Grammars, Linear Grammar,	CLO-2,	[DC]: 13	
			Context-free Languages (CFL), Context-free grammars (CFG).	3	[MS]: 2	
			arse Trees, Derivations and	CLO-3	[DC]: 20	
	Ì		ambiguity and Chomsky-normal-form	J_J_J	[Linz]: 6.2	
			grammars (CNF), Null Production			
		3.	Trees, Polish Notations, Total	CLO-3	[JM]: 4.4	
			Language Tree			
	10.	1.	Push down automata (PDA)	CLO-5	[JM]: 5	Assignment 2
					[DC]: 17	submission
					[MS]: 2.2	Monday Week
		_		0.0 -		10
		2.	Deterministic PDA, Pumping Lemma for CFG	CLO-5		
			IOI CFG			
		3.	NPDA and CFG Equivalence	CLO-5		
	11.	1.				
		2.	Mid-II Examination			
		3.				
	12.	1.	Turing Machines (TM) Intro &	CLO-5	[MS]: 3.1	
			Formalities	01.0.5	[Linz]: 9	
		2.	Designing TM as Acceptors/Transducers	CLO-5	[Linz]: 9	
		3.	Turing's Thesis, Turing Machine	CLO-5	[MS]: 3.2	
			Variations		[DC]: 27	
	13.	1.	Universal Turing Machine Decidability	CLO-5	[JM]: 7.8	Assignment 3
					[DC]: 27	Friday Release Week 13
						Week 13
		2.	Recursive vs. recursively enumerable	CLO-5	[JM]: 8	
					[DC]: 28	
[]	-	3.	Continued			
		ა.	Continued			
[]						
			5 :111 5 :1	01.0.1	F IB 43 - 0	
	14.	1.	Decidable Problem and Undecidable	CLO-4	[JM]: 9 [HMU]: 9	Quiz no 3
			Problem,		[MS]: 4	
		2.	Continued		IIVIOJ. T	
		3.	Continued			
I 1						
		1.	Reducibility, Reduction problems	CLO-5	[MS]: 5.1	Assignment 3
	15.				F IB 47 O O	submission
	15.	2.	The Chomsky Hierarchy	CLO-1,	[JM]: 8.3	
	15.	2.	The Chomsky Hierarchy	CLO-1, 2,3	[JM]: 8.3	Monday Week
	15.				[JM]: 8.3	
	15.	2.	The Chomsky Hierarchy		[ЛМ]: 8.3	Monday Week
	15.	2.	The Chomsky Hierarchy		[ЈМ]: 8.3	Monday Week
		2. 3.	The Chomsky Hierarchy Continued		[ЈМ]: 8.3	Monday Week
		2. 3.	The Chomsky Hierarchy Continued		[JMJ: 8.3	Monday Week

NCEAC.FORM. 001-D

Class Time		Problem Analysis	Solution Design	Social and Ethical Issues		
(in credit)	5	15	28	0		
Oral and Written Communications	Every student is required to submit at least 3 assignments and 3 quizzes with no oral presentations.					

Instruc	ctor Name	Muhammad Shahzad
Instruc	tor Signature	Mad .
Date	16-01-2023	76