MIS7420

Prof. Zhiqiang Zheng, Prof. Vijay Mookerjee

Author: Yihong Liu,

NETID: YXL180111,

Contents

Li	List of Figures	3
Li	List of Tables	4
Li	List of Codes	5
1	1 Data Cleaning Process	6
2	2 Paper Replication	8
	2.1 Table 1	8
	2.2 Table 2	8
	2.3 Table 3	9
	2.4 Table 4	12
	2.5 Table 5	13
	2.6 Table 6	14
	2.7 Table 7	15
	2.8 Table 8	16
	2.9 Table 9	16
	2.10 Table 10	17
	2.11 Table 11	18
	2.12 Table 12	20
	2.13 Table 13	21
	2.14 Table 14	22
	2.15 Table C1	23
	2.16 Table D1-D4	25
	2.17 Table E1-E2	25
	2.18 Table G1-G3	25
3	3 Advanced Method	25
	3.1 Generalized Synthetic Control Method	25
	3.2 PSM and LA-PSM	25
	3.3 Causal Forest	25
4	4 References	26

List of Figures

List of Tables

1	Summary Statistics of Top Five Vendors by Sales Volume	8
2	Summary Statistics of Referring Domain Categories	8
3	Average Difference-in-Difference (DID) of the Outcome Variables	ç
4	Results of the Sales Effect (All Product Categories)	13
5	Results of the Search Effect (All Product Categories)	13
6	Results of the Sales Effect: Experience and Search Products	14
7	Results of the Online Search Effect: Experience Products	15
8	Results of the Online Search Effect: Search Products	16
9	Results of Logistic Regression for Referring Domain	17
10	Results of the Online Sales and Search Effect (All Product Categories)	18
11	Results of the Online Sales and Search Effect After Matching Zip Codes: TotalMonthlySales,	
	PagesPerDollar, and MinsPerDollar (All Product Categories)	18
12	Results of the Online Sales and Search Effect with Zip Code Demographics as Interactions	
	and Time Fixed Effects (All Product Categories)	20
13	Results of the Online Sales and Search Effect After Matching Zip Codes: TotalMonthlySales,	
	PagesPerDollar, and MinsPerDollar (All Product Categories)	21
14	Results of the Online Sales and Search Effect with Arbitrary Variance-Covariance Matrix	
	Corrections (All Product Categories)	22
15	Change in Demographics after Circuit City Store Closure	23

List of Codes

1	Data Preprocess	6
2	Table 1 Generation	8
3	Table 2 Generation	S
4	Table 3 Generation	Ĉ
5	Table 4 Generation	12
6	Table 5 Generation	13
7	Table 6 Generation	14
8	Table 7 Generation	15
9	Table 8 Generation	16
10	Table 9 Generation	17
11	Table 10 Generation	17
12	Table 11 Generation	18
13	Table 12 Generation	20
14	Table 13 Generation	21
15	Table 14 Generation	22
16	Table C1 Generation	23

1 Data Cleaning Process

```
1 # load library
 2 library('dplyr')
 3 library('haven')
 4 library('sqldf')
 5 library('zoo')
6 library('plm')
 7 library('stargazer')
9 # all data path
10 bb_zipcode_path <- 'data/bestbuyzipcodes_sample.sas7bdat'
11 sales_allother_zipcode_path <- 'data/sales_allotherzipcode_sample.sas7bdat'
12 sales_cc_Omile_path <- 'data/sales_ccityOmilezipcode_sample.sas7bdat
13 sales_cc_5miles_path <- 'data/sales_ccity5milezipcode_sample.sas7bdat
14
15 # load data
16 bb_zipcode <- read_sas(bb_zipcode_path)
17 sales_allother_zipcode <- read_sas(sales_allother_zipcode_path)
18 sales_cc_0mile <- read_sas(sales_cc_0mile_path)</pre>
19 sales_cc_5miles <- read_sas(sales_cc_5miles_path)
21 # Data Mapping
22 sales_allother_zipcode$Store_Close_Status <- 0 # NaN means no CC in 5-miles radius, we change NaN to 0
24 # Exclude Data without purchase
25 # All data should be with purchase -> tran_flg == 1
26 sales_allother_zipcode <- sales_allother_zipcode[sales_allother_zipcode$tran_flg == 1,]
27 sales_cc_Omile <- sales_cc_Omile[sales_cc_Omile$tran_flg == 1,]
28 sales_cc_5miles <- sales_cc_5miles[sales_cc_5miles$tran_flg == 1,]
29
30 # Filter Referring Domain
32 # groupby ref_domain and count
33 groupby_ref_domain_result <- aggregate(machine_id ~ ref_domain_name, rbind(sales_allother_zipcode, sales_cc_0mile, sales_cc_5miles), FUN = "length"
34 groupby_ref_domain_result <- groupby_ref_domain_result[order(-groupby_ref_domain_result$machine_id), ]
35 # we identify some search engines
36 search_engine_to_consider1 <- c("GOOGLE.COM", "YAHOO.COM", "google.com", "yahoo.com",
                                "MSN.COM", "msn.com", "aol.com", "AOL.COM", "LIVE.COM", "live.com",
                                "MYWEBSEARCH.COM". "ASK.COM". "MYWAY.COM". "mywebsearch.com".
38
39
                                "ask.com", "YAHOO.NET", "BIZRATE.COM", "bizrate.com",
                                "amazon.com", "staples.com", "dell.com", "walmart.com", "bestbuy.com",
40
41
                                "AMAZON.COM", "STAPLES.COM", "DELL.COM", "WALMART.COM", "BESTBUY.COM")
43 search_engine_to_consider2 <- c("GOOGLE.COM", "YAHOO.COM", "BING.COM", "google.com", "yahoo.com", "bing.com")
44
45
   ref_domain_to_consider1 <- c("", "GOOGLE.COM", "YAHOO.COM", "google.com", "yahoo.com",
46
                                "MSN.COM", "msn.com", "aol.com", "AOL.COM", "LIVE.COM", "live.com",
                                "MYWEBSEARCH.COM", "ASK.COM", "MYWAY.COM", "mywebsearch.com",
47
48
                                "ask.com", "YAHOO.NET", "BIZRATE.COM", "bizrate.com",
49
                                "amazon.com", "staples.com", "dell.com", "walmart.com", "bestbuy.com",
                                "AMAZON.COM", "STAPLES.COM", "DELL.COM", "WALMART.COM", "BESTBUY.COM")
51
    ref_domain_to_consider2 <- c("", "GOOGLE.COM", "YAHOO.COM", "BING.COM", "google.com", "yahoo.com", "bing.com")
53
54\, # Then we filter data by refer domain name
55 sales_allother_zipcode <- sales_allother_zipcode[(sales_allother_zipcode$ref_domain_name %in% ref_domain_to_consider1),]
56 sales cc Omile <- sales cc Omile ((sales cc Omile ref domain name %in% ref domain to consider1).]
57 sales_cc_5miles <- sales_cc_5miles[(sales_cc_5miles$ref_domain_name %in% ref_domain_to_consider1),]
60 groupby_target_domain_result <- aggregate(machine_id ~ domain_name, rbind(sales_allother_zipcode, sales_cc_5miles), FUN = "length")
61 groupby_target_domain_result <- groupby_target_domain_result[order(-groupby_target_domain_result$machine_id), ]
62 five_target_domain_to_consider <- c("amazon.com", "staples.com", "dell.com", "valmart.com", "bestbuy.com")
63 two_target_domain_to_consider <- c("amazon.com", "bestbuy.com")
65\, # we can choose what filter to apply
66 sales_allother_zipcode <- sales_allother_zipcode[sales_allother_zipcode$domain_name %in% five_target_domain_to_consider,]
67 sales_cc_Omile <- sales_cc_Omile[sales_cc_Omile$domain_name %in% five_target_domain_to_consider,]
68 sales_cc_5miles <- sales_cc_5miles[sales_cc_5miles$domain_name %in% five_target_domain_to_consider,]
```

```
69
70 # Product Categories
71 # 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
72 # Jay removed 28, 30, 39, 40
73 # We choose to remove 38 39 40
74 sort(unique(rbind(sales_allother_zipcode, sales_cc_0mile, sales_cc_5miles) prod_category_id))
75 category_to_consider <- c(22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37)
76 experience_product <- c(24, 25, 26, 27, 28, 31, 32, 33, 34, 36, 37)
77 search_product <- c(22, 23, 24, 29, 30, 35)
79 sales_allother_zipcode <- sales_allother_zipcode[sales_allother_zipcode$prod_category_id %in% category_to_consider,]
80 sales_cc_0mile <- sales_cc_0mile[sales_cc_0mile$prod_category_id %in% category_to_consider,]
81 sales_cc_5miles <- sales_cc_5miles[sales_cc_5miles$prod_category_id %in% category_to_consider,]
83 # Date Transform
84 sales_allother_zipcode$event_date <- as.Date(sales_allother_zipcode$event_date)
    sales_cc_Omile$event_date <- as.Date(sales_cc_Omile$event_date)
86 sales_cc_5miles$event_date <- as.Date(sales_cc_5miles$event_date)
87
88 # construct MonthYear - month of year
89 sales allother zipcode Month Year <- format (sales allother zipcode Sevent date, "%Y-%m")
90 sales_cc_Omile$MonthYear <- format(sales_cc_Omile$event_date, "%Y-%m")
91
    sales_cc_5miles$MonthYear <- format(sales_cc_5miles$event_date, "%Y-%m")
92
94
95 # CCStorePresent
96 # it is the same as Store_Close_Status
97 \\ \hspace*{0.2cm} \texttt{sales\_allother\_zipcode\$CCStorePresent} \leftarrow \\ \hspace*{0.2cm} \texttt{sales\_allother\_zipcode\$Store\_Close\_Status} \\ \\
    sales_cc_Omile$CCStorePresent <- sales_cc_Omile$Store_Close_Status
99 sales_cc_5miles$CCStorePresent <- sales_cc_5miles$Store_Close_Status
100
101 # AfterStoreClosing
102 sales_allother_zipcode$AfterStoreClosing <- ifelse(sales_allother_zipcode$MonthYear < "2008-11", 0, 1)
103 sales_cc_0mile$AfterStoreClosing <- ifelse(sales_cc_0mile<math>$MonthYear < "2008-11", 0, 1)
104 sales_cc_5miles $AfterStoreClosing <- ifelse(sales_cc_5miles $MonthYear < "2008-11", 0, 1)
105
106 # BBStorePresent
107 sales_allother_zipcode <- merge(sales_allother_zipcode, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
108 sales_cc_Omile <- merge(sales_cc_Omile, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
109 sales_cc_5miles <- merge(sales_cc_5miles, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
110
111 sales_allother_zipcode$BBStorePresent <- na.fill(sales_allother_zipcode$BB_Store_Status, 0)
112 sales cc Omile$BBStorePresent <- na.fill(sales cc Omile$BB Store Status. 0)
113 sales_cc_5miles$BBStorePresent <- na.fill(sales_cc_5miles$BB_Store_Status, 0)
114
115 # Mark Referring Domain
116 # Question: How to group data?
117 sales_allother_zipcode$NoReferringDomain <- ifelse(sales_allother_zipcode$ref_domain_name == "", 1, 0)
    sales_cc_Omile$NoReferringDomain <- ifelse(sales_cc_Omile$ref_domain_name == "", 1, 0)
119 sales cc 5miles NoReferringDomain <- ifelse (sales cc 5miles ref domain name == "", 1, 0)
120
121 sales_allother_zipcode$ReferringDomainIsSearchEngine <- ifelse(sales_allother_zipcode$ref_domain_name %in% search_engine_to_consider1, 1, 0)
122 sales_cc_Omile$ReferringDomainIsSearchEngine <- ifelse(sales_cc_Omile$ref_domain_name %in% search_engine_to_consider1, 1, 0)
123 sales_cc_5miles$ReferringDomainIsSearchEngine <- ifelse(sales_cc_5miles$ref_domain_name %in% search_engine_to_consider1, 1, 0)
124
125 # Aggregate Data
126 concat_data1 <- rbind(sales_allother_zipcode, sales_cc_0mile)
127 concat_data2 <- rbind(sales_allother_zipcode, sales_cc_5miles)
128 concat_data1_exp <- concat_data1[concat_data1$prod_category_id %in% experience_product, ]
129 concat_data1_search <- concat_data1[concat_data1$prod_category_id %in% search_product, ]
130 concat_data2_exp <- concat_data2[concat_data2$prod_category_id %in% experience_product, ]
131 concat_data2_search <- concat_data2[concat_data2$prod_category_id %in% search_product, ]
```

Code 1: Data Preprocess

2 Paper Replication

In this section, we provide our replication for this paper. Names for subsections correspond to the tables in the published paper.

2.1 Table 1

Table 1 shows the summary statistics of top five vendors by sales volume.

Table 1: Summary Statistics of Top Five Vendors by Sales Volume

Domain	Total	Total	Total Pages	Pages	Total	Mins
Name	Transactions	Sales	Viewed	Per Dollar	Duration	Per Dollar
dell.com	1,620	483, 703.300	66,953	0.138	57, 225.660	0.118
amazon.com	10,904	354,573.300	464,383	1.310	369,227.900	1.041
staples.com	5,927	236,982.300	247, 163	1.043	166, 189.900	0.701
walmart.com	1,977	156,606.100	80,397	0.513	68,434.890	0.437
bestbuy.com	1,230	149,950.400	50,627	0.338	36,735.900	0.245

Codes for generating Table 1 are listed below.

```
# Table 1

table1_raw <- rbind(read_sas(sales_allother_zipcode_path), read_sas(sales_cc_Omile_path))

table1 <- sqldf("SELECT domain_name as DomainName, count(*) as TotalTransaction, SUM(prod_totprice) AS TotalSales, SUM(pages_viewed) AS

TotalPagesViewed, SUM(pages_viewed)/SUM(prod_totprice) AS PagesPerDollar, SUM(duration) AS TotalDuration, SUM(duration)/SUM(prod_totprice) AS

MinsPerDollar FROM table1_raw GROUP BY domain_name ORDER BY TotalSales DESC")

4 stargazer(table1[1:5,], align=TRUE, summary = FALSE, rownames = FALSE, title="Summary Statistics of Top Five Vendors by Sales Volume")
```

Code 2: Table 1 Generation

2.2 Table 2

Table 2 summarizes the frequency of referral channels for various online retailers.

Table 2: Summary Statistics of Referring Domain Categories

Domain	Total	Referred by	Direct to	Referred by
Name	Transactions	Search Engine	Website	Others
amazon.com	10,904	2,955(27.1%)	7,018(64.4%)	931 (8.6%)
bestbuy.com	1,230	258(21.0%)	901(73.3%)	71(5.8%)
All Others	36,794	6,999(19.0%)	25,483 (69.3%)	4,312(11.7%)
All Transactions	48,928	10,212 (20.9%)	33,402 (68.3%)	5,314 (10.9%)

Codes for generating Table 2 are listed below.

```
# Table 2

table2_raw <- rbind(read_sas(sales_allother_zipcode_path), read_sas(sales_cc_Omile_path))

table2_raw$direct_to_website <- ifelse(table2_raw$ref_domain_name == '', 1, 0)

table2_raw$referred_by_search <- ifelse(table2_raw$ref_domain_name %in% search_engine_to_consider1, 1, 0)

table2_raw$referred_by_other <- ifelse(!(table2_raw$ref_domain_name %in% ref_domain_to_consider1), 1, 0)

table2_raw$domain_name[!(table2_raw$domain_name %in% c('amazon.com', 'bestbuy.com'))] <- "All Others"
```

Code 3: Table 2 Generation

2.3 Table 3

Table 3 reports the model-free average DID values for some outcome variables.

Table 3: Average Difference-in-Difference (DID) of the Outcome Variables

Outcome Variable	Groups	After Store	Before Store	First Difference	DID
	Groups	Closure	Closure	(se)	
Amazon	Control	3.418	3.303	0.115	
Sales	Control	5.410	5.505	(0.031)	-0.167
Sales	Treatment	3.351	3.403	-0.052	
	Heatment	5.551	5.405	(0.212)	
Amazon	Control	1.188	1.147	0.041	
PagesPerDollar	Collitor	1.100	1.147	(0.025)	0.257
i agesi erbonar	Treatment	1.363	1.065	0.298	
	Heatment	1.505	1.005	(0.153)	
Amazon	Control	1.016	0.975	0.041	
Amazon MinsPerDollar	Collitor	1.010	0.975	(0.025)	0.263
Willist et Dollar	Treatment	1.187	0.882	0.304	
		1.107		(0.137)	
bestbuy.com	Control	3.418	3.303	0.354	
Sales	Control	3.416	5.505	(0.031)	0.623
Sales	Treatment	3.351	3.403	0.976	
	пеаннен	3.331	5.405	(0.212)	
hoothuu oom	Control	1.188	1.147	-0.109	
bestbuy.com	Control	1.100	1.147	(0.025)	0.074
PagesPerDollar	Treatment	1.363	1.065	-0.035	
	reatment	1.505	1.005	(0.153)	
1 41	Ct1	1.016	0.075	-0.084	
bestbuy.com MinsPerDollar	Control	1.016	0.975	(0.025)	-0.012
winsrerDonar	Treatment	1.187	0.882	-0.096	
	reatment	1.101	0.002	(0.137)	

Codes for generating Table 3 are listed below.

```
# Table 3
temp <- read_sas(sales_allother_zipcode_path)
temp$Store_Close_Status <- 0
table3_0m_raw <- rbind(temp, read_sas(sales_cc_0mile_path))</pre>
```

```
5 table3_5m_raw <- rbind(temp, read_sas(sales_cc_5miles_path))
   # Date Transform
8 table3_0m_raw$event_date <- as.Date(table3_0m_raw$event_date)
9 table3_5m_raw$event_date <- as.Date(table3_5m_raw$event_date)
10
11 # construct MonthYear - month of year
12 table3_0m_raw$MonthYear <- format(table3_0m_raw$event_date, "%Y-%m")
13 \hspace{0.1in} \texttt{table3\_5m\_raw\$MonthYear} \hspace{0.1in} \textbf{<-} \hspace{0.1in} \textbf{format}(\texttt{table3\_5m\_raw\$event\_date}, \hspace{0.1in} \texttt{"\%Y-\%m"})
15 # Mark CC Closure
16
17 # CCStorePresent
18 # it is the same as Store_Close_Status
19 table3_0m_raw$CCStorePresent <- table3_0m_raw$Store_Close_Status
20 table3_5m_raw$CCStorePresent <- table3_5m_raw$Store_Close_Status
22 # AfterStoreClosing
23 table3_0m_raw$AfterStoreClosing <- ifelse(table3_0m_raw$MonthYear < "2008-11", 0, 1)
24 \hspace{0.1in} \texttt{table3\_5m\_raw\$AfterStoreClosing} \hspace{0.1in} \textbf{<-ifelse(table3\_5m\_raw\$MonthYear} \hspace{0.1in} \textbf{<-i2008-11", 0, 1)} \\
26 # BBStorePresent
27 table3_Om_raw <- merge(table3_Om_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
28 table3_5m_raw <- merge(table3_5m_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
30 table3_0m_raw$BBStorePresent <- na.fill(table3_0m_raw$BB_Store_Status, 0)
31
   table3_5m_raw$BBStorePresent <- na.fill(table3_5m_raw$BB_Store_Status, 0)
32
33 # aggregate data
35 table3_Om_aggregate <- sqldf("SELECT Zip_Code, MonthYear, domain_name, count(*) AS TotalTransactions, SUM(pages_viewed) as TotalPages, SUM(prod_
          totprice) as TotalMonthlySales, SUM(duration) as TotalMins, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM table3_Om_raw GROUP BY Zip_Code, MonthYear, domain_name")
36 table3_5m_aggregate <- sqldf("SELECT Zip_Code, MonthYear, domain_name, count(*) AS TotalTransactions, SUM(pages_viewed) as TotalPages, SUM(prod_
          totprice) as TotalMonthlySales, SUM(duration) as TotalMins, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM table3_5m_raw GROUP BY Zip_Code, MonthYear, domain_name")
37
38 # Table 3 Gen Func
39 table3_gen <- function(table3_raw, domain_name_used, print_name){
40
    # Amazon Sales
     # for control
42
     amazonsales control before <- table3 raw[(table3 raw$CCStorePresent == 0) & (table3 raw$domain name == domain name used) & (table3 raw$
         AfterStoreClosing == 0),] $TotalMonthlySales
     amazonsales_control_after <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
43
         AfterStoreClosing == 1),]$TotalMonthlySales
45
     amazonsales_control_before <- log(amazonsales_control_before + 1)
46
     amazonsales_control_after <- log(amazonsales_control_after + 1)
47
48
     {\tt t\_test.amazonsales\_control} \  \  {\tt \leftarrow t.test(amazonsales\_control\_after, amazonsales\_control\_before)}
49
     amazonsales_control_mean_diff_se <- t_test.amazonsales_control$stderr
50
     t_test.amazonsales_control$p.value
51
     amazonsales_control_after_mean <- t_test.amazonsales_control$estimate[["mean of x"]]
52
     amazonsales_control_before_mean <- t_test.amazonsales_control$estimate[["mean of y"]]
53
     amazonsales_control_mean_diff <- t_test.amazonsales_control$estimate[["mean of x"]] - t_test.amazonsales_control$estimate[["mean of y"]]
55
     # Amazon Sales
56
57
     amazonsales_treatment_before <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
         AfterStoreClosing == 0),]$TotalMonthlySales
     amazonsales_treatment_after <- table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
         AfterStoreClosing == 1),]$TotalMonthlySales
60
     amazonsales_treatment_before <- log(amazonsales_treatment_before + 1)
61
     amazonsales_treatment_after <- log(amazonsales_treatment_after + 1)
62
63
     t_test.amazonsales_treatment <- t.test(amazonsales_treatment_after, amazonsales_treatment_before)
64
      amazonsales_treatment_mean_diff_se <- t_test.amazonsales_treatment$stderr
65
     t_test.amazonsales_treatment$p.value
amazonsales_treatment_after_mean <- t_test.amazonsales_treatment$estimate[["mean of x"]]
```

```
67
                amazonsales treatment before mean <- t test, amazonsales treatment sestimate [["mean of v"]]
                amazonsales_treatment_mean_diff <- t_test.amazonsales_treatment$estimate[["mean of x"]] - t_test.amazonsales_treatment$estimate[["mean of y"]]
  68
  69
  70
  71
                amazonsales_did <- amazonsales_treatment_mean_diff - amazonsales_control_mean_diff
  72
  73
                # Amazon PagesPerDollar
  74
                # for control
  75
                amazonppd_control_before <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                            AfterStoreClosing == 0),]$TotalPages / table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$domain_name_used) & (table3_raw$domain_name_us
                            raw$AfterStoreClosing == 0),]$TotalMonthlySales
                 amazonppd_control_after <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                           AfterStoreClosing == 1),]$TotalPages / table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$domain_name_used) & (table3_raw$dom
                            raw$AfterStoreClosing == 1),]$TotalMonthlySales
  77
  78
                amazonppd_control_before <- log(amazonppd_control_before + 1)
                 amazonppd_control_after <- log(amazonppd_control_after + 1)
  79
  80
                # t test
  81
                t_test.amazonppd_control <- t.test(amazonppd_control_after, amazonppd_control_before)</pre>
  82
                amazonppd_control_mean_diff_se <- t_test.amazonppd_control$stderr
                t test.amazonppd control$p.value
  83
  84
                amazonppd_control_after_mean <- t_test.amazonppd_control$estimate[["mean of x"]]
  85
                amazonppd_control_before_mean <- t_test.amazonppd_control$estimate[["mean of y"]]
  86
                amazonppd_control_mean_diff <- t_test.amazonppd_control$estimate[["mean of x"]] - t_test.amazonppd_control$estimate[["mean of y"]]
  88
                # Amazon PagesPerDollar
  89
                amazonppd_treatment_before <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                           AfterStoreClosing == 0),]$TotalPages / table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$domain_name_used) & (table3_raw$domain_name_us
                            raw$AfterStoreClosing == 0),]$TotalMonthlySales
                amazonppd_treatment_after <- table3_raw[CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
  91
                           AfterStoreClosing == 1),]$TotalPages / table3_raw (table3_raw $CCStorePresent == 1) & (table3_raw $domain_name == domain_name_used) & (table3_raw $domain_name == domain_name_used) & (table3_raw $domain_name_used) & (table3_raw $dom
                            raw$AfterStoreClosing == 1),]$TotalMonthlySales
 92
                amazonppd_treatment_before <- log(amazonppd_treatment_before + 1)
  94
                amazonppd_treatment_after <- log(amazonppd_treatment_after + 1)
  95
  96
                t_test.amazonppd_treatment <- t.test(amazonppd_treatment_after, amazonppd_treatment_before)
  97
                amazonppd_treatment_mean_diff_se <- t_test.amazonppd_treatment$stderr
                 t_test.amazonppd_treatment$p.value
                amazonppd_treatment_after_mean <- t_test.amazonppd_treatment$estimate[["mean of x"]]
 99
100
                amazonppd\_treatment\_before\_mean <-t\_test.amazonppd\_treatment\\ \$estimate[["mean of y"]]
                 amazonppd_treatment_mean_diff <- t_test.amazonppd_treatment$estimate[["mean of x"]] - t_test.amazonppd_treatment$estimate[["mean of y"]]
102
                 # Amazon PagesPerDollar DID
104
                amazonppd_did <- amazonppd_treatment_mean_diff - amazonppd_control_mean_diff
106
                # Amazon MinsPerDollar
107
                 # for control
                amazonmpd_control_before <- table3_raw ((table3_raw $CCStorePresent == 0) & (table3_raw $domain_name == domain_name_used) & (table3_raw $
                           AfterStoreClosing == 0).]$TotalMins / table3 raw$(table3 raw$CCStorePresent == 0) & (table3 raw$domain name == domain name used) & (table3
                            raw$AfterStoreClosing == 0),]$TotalMonthlySales
                 amazonmpd_control_after <- table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
                         AfterStoreClosing == 1), ]$TotalMins / table3_raw[(table3_raw$CCStorePresent == 0) & (table3_raw$domain_name == domain_name_used) & (table3_
                            raw$AfterStoreClosing == 1),]$TotalMonthlySales
                amazonmpd_control_before <- log(amazonmpd_control_before + 1)
112
                amazonmpd_control_after <- log(amazonmpd_control_after + 1)
113
                # t test
114
                 t_test.amazonmpd_control <- t.test(amazonmpd_control_after, amazonmpd_control_before)
                amazonmpd_control_mean_diff_se <- t_test.amazonmpd_control$stderr
116
                \verb|t_test.amazonmpd_control| p.value|
117
                 amazonmpd_control_after_mean <- t_test.amazonmpd_control$estimate[["mean of x"]]
                amazonmpd control before mean <- t test.amazonmpd control sestimate [["mean of v"]]
118
                amazonmpd_control_mean_diff <- t_test.amazonmpd_control$estimate[["mean of x"]] - t_test.amazonmpd_control$estimate[["mean of y"]]
119
120
121
                # Amazon MinsPerDollar
                 # for treatment
                amazonmpd_treatment_before <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
123
                            AfterStoreClosing == 0),]$TotalMins / table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_
                            raw$AfterStoreClosing == 0),]$TotalMonthlySales
            amazonmpd_treatment_after <- table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_raw$
```

```
AfterStoreClosing == 1),]$TotalMins / table3_raw[(table3_raw$CCStorePresent == 1) & (table3_raw$domain_name == domain_name_used) & (table3_
           raw$AfterStoreClosing == 1),]$TotalMonthlySales
125
126
      amazonmpd_treatment_before <- log(amazonmpd_treatment_before + 1)
127
      amazonmpd_treatment_after <- log(amazonmpd_treatment_after + 1)
128
      # t test
129
      t_test.amazonmpd_treatment <- t.test(amazonmpd_treatment_after, amazonmpd_treatment_before)
130
      amazonmpd_treatment_mean_diff_se <- t_test.amazonmpd_treatment$stderr
131
      \verb|t_test.amazonmpd_treatment| \$p.value
      amazonmpd_treatment_after_mean <- t_test.amazonmpd_treatment$estimate[["mean of x"]]
      amazonmpd_treatment_before_mean <- t_test.amazonmpd_treatment$estimate[["mean of v"]]
133
      amazonmpd_treatment_mean_diff <- t_test.amazonmpd_treatment$estimate[["mean of x"]] - t_test.amazonmpd_treatment$estimate[["mean of y"]]
134
135
136
      # Amazon MinsPerDollar DID
137
      amazonmpd_did <- amazonmpd_treatment_mean_diff - amazonmpd_control_mean_diff
138
139
      return (rbind (c(paste(print_name, "Sales"), "Control", amazonsales_control_after_mean, amazonsales_control_before_mean, amazonsales_control_mean_
140
           diff, amazonsales_control_mean_diff_se, amazonsales_did),
                    c(paste(print_name, "Sales"), "Treatment", amazonsales_treatment_after_mean, amazonsales_treatment_before_mean, amazonsales_treatment
           mean diff, amazonsales treatment mean diff se, amazonsales did),
                   c(paste(print_name, "PagesPerDollar"), "Control", amazonppd_control_after_mean, amazonppd_control_before_mean, amazonppd_control_mean_
142
          diff, amazonppd_control_mean_diff_se, amazonppd_did),
143
                    c(paste(print_name, "PagesPerDollar"), "Treatment", amazonppd_treatment_after_mean, amazonppd_treatment_before_mean, amazonppd
          treatment_mean_diff, amazonppd_treatment_mean_diff_se, amazonppd_did),
144
                    c(paste(print_name, "MinsPerDollar"), "Control", amazonmpd_control_after_mean, amazonmpd_control_before_mean, amazonmpd_control_mean,
           diff, amazonmpd_control_mean_diff_se, amazonmpd_did),
                   c(paste(print_name, "MinsPerDollar"), "Treatment", amazonmpd_treatment_after_mean, amazonmpd_treatment_before_mean, amazonmpd_
145
           {\tt treatment\_mean\_diff}, \ {\tt amazonmpd\_treatment\_mean\_diff\_se}, \ {\tt amazonmpd\_did}))
147 }
148
149 # generate table
150 amazon_table3 <- table3_gen(table3_0m_aggregate, "amazon.com", "Amazon")
bestbuy_table3 <- table3_gen(table3_0m_aggregate, "bestbuy.com", "bestbuy.com")
153 #
154 stargazer(rbind(amazon_table3, bestbuy_table3), align=TRUE, summary = FALSE, rownames = FALSE, title="Summary Statistics of Top Five Vendors by
     Sales Volume")
```

Code 4: Table 3 Generation

2.4 Table 4

Codes for generating Table 4 are listed below.

```
2 data 0m t4 <- sqldf("SELECT Zip Code, MonthYear, domain name, SUM(prod totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent, AVG(
         BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
 3 data_5m_t4 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent, AVG(
          BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2 GROUP BY Zip_Code, MonthYear, domain_name")
 4 # manually construct DID and THREEINTERACTION
 5 data 0m t4$DID <- data 0m t4$CCStorePresent * data 0m t4$AfterStoreClosing
 6 data_0m_t4$THREEINTER <- data_0m_t4$CCStorePresent * data_0m_t4$AfterStoreClosing * data_0m_t4$BBStorePresent
 7 data_5m_t4$DID <- data_5m_t4$CCStorePresent * data_5m_t4$AfterStoreClosing
8 data_5m_t4$THREEINTER <- data_5m_t4$CCStorePresent * data_5m_t4$AfterStoreClosing * data_5m_t4$BBStorePresent
10 ama.t4.Omile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t4[data_0m_t4$domain_name == "amazon.com",], index = c("Zip_Code"
          , "MonthYear"), model = "within", effect = "twoways")
11 ama.t4.5mile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_5m_t4[data_5m_t4$domain_name == "amazon.com",], index = c("Zip_Code"
          , "MonthYear"), model = "within", effect = "twoways")
   bb.t4.Omile <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_Om_t4[data_0m_t4$domain_name == "bestbuy.com",], index = c("Zip_Code"
          , "MonthYear"), model = "within", effect = "twoways")
bb.t4.5mile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_5m_t4[data_5m_t4$domain_name == "bestbuy.com",], index = c("Zip_Code"
       , "MonthYear"), model = "within", effect = "twoways")
```

Code 5: Table 4 Generation

Table 4: Results of the Sales Effect (All Product Categories)

		$\log(\text{TotalMon})$	thlySales + 1)	
	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy-0\ Mile}$	BestBuy-5 Miles
	(1)	(2)	(3)	(4)
eta_1	0.014	-0.005	-0.002	-0.002
	(0.015)	(0.008)	(0.033)	(0.008)
β_2	-0.033	0.003	0.009	0.002
	(0.022)	(0.010)	(0.036)	(0.010)
Observations	68,472	75,096	14,664	16,848
\mathbb{R}^2	0.00003	0.00001	0.00002	0.00000
Adjusted R ²	-0.044	-0.044	-0.045	-0.045
F Statistic	1.091 (df = 2; 65594)	0.278 (df = 2; 71942)	0.154 (df = 2; 14028)	0.035 (df = 2; 1612)

Note:

*p<0.1; **p<0.05; ***p<0.01

2.5 Table 5

Table 5: Results of the Search Effect (All Product Categories)

		log(PagesPerDe	ollar + 1)		log(MinsPerDollar + 1)				
	Amazon-0 Mile	Amazon-0 Mile Amazon-5 Miles BestBuy		stBuy-0 Mile BestBuy-5 Miles	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy\text{-}0~Mile}$	BestBuy-5 Miles	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
β_1	0.003	-0.019***	0.001	0.002	0.004	-0.021***	0.001	0.003	
	(0.012)	(0.007)	(0.016)	(0.004)	(0.012)	(0.007)	(0.013)	(0.003)	
2	-0.068***	0.018**	0.003	-0.001	-0.057***	0.022***	0.0004	-0.002	
	(0.018)	(0.009)	(0.018)	(0.005)	(0.017)	(0.008)	(0.014)	(0.004)	
bservations	68,472	75,096	14,664	16,848	68,472	75,096	14,664	16,848	
2	0.0004	0.0001	0.00003	0.00004	0.0003	0.0001	0.00001	0.0001	
djusted R ²	-0.043	-0.044	-0.045	-0.045	-0.044	-0.044	-0.045	-0.045	
Statistic	12.530*** (df = 2; 65594)	3.985** (df = 2; 71942)	0.202 (df = 2; 14028)	0.337 (df = 2; 16121)	8.867*** (df = 2; 65594)	5.187*** (df = 2; 71942)	0.046 (df = 2; 14028)	0.451 (df = 2; 161)	

Note:

*p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 5 are listed below.

```
# Table 5 Data

data_Om_t5 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_datal GROUP BY Zip_Code, MonthYear, domain_name")

data_5m_t5 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2 GROUP BY Zip_Code, MonthYear, domain_name")

# # manually construct DID and THREEINTERACTION

data_Om_t5$DID <- data_Om_t5$CCStorePresent * data_Om_t5$AfterStoreClosing * data_Om_t5$BBStorePresent

data_5m_t5$THREEINTER <- data_5m_t5$CCStorePresent * data_5m_t5$AfterStoreClosing * data_5m_t5$BBStorePresent

# Table 5
```

*p<0.1: **p<0.05: ***p<0.01

```
10 # For PagesPerDollar
11 ama.t5.pagesperdollar.Omile <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t5[data_0m_t5$domain_name == "amazon.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t5.pagesperdollar.5mile <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_5m_t5[data_5m_t5$domain_name == "amazon.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
13 bb.t5.pagesperdollar.Omile <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t5[data_Om_t5$domain_name == "bestbuy.com",], index =
           c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
14 bb.t5.pagesperdollar.5mile <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_5m_t5[data_5m_t5$domain_name == "bestbuy.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
16 ama.t5.minsperdollar.Omile <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t5[data_Om_t5$domain_name == "amazon.com",], index = c(
          "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t5.minsperdollar.5mile <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_5m_t5[data_5m_t5$domain_name == "amazon.com",], index = c(
          "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
18 bb.t5.minsperdollar.Omile <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t5[data_0m_t5$domain_name == "bestbuy.com",], index = c(
         "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t5.minsperdollar.5mile <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_5m_t5[data_5m_t5$domain_name == "bestbuy.com",], index = c(
       "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 6: Table 5 Generation

2.6 Table 6

Note:

Table 6: Results of the Sales Effect: Experience and Search Products

	$\log(\text{TotalMonthlySales} + 1)$										
	Amazon-0 Mile-Exp	Amazon-5 Miles-Exp	Amazon-0 Mile-Search	Amazon-5 Miles-Search	${\bf BestBuy\text{-}0~Mile\text{-}Exp}$	${\it BestBuy-5~Miles-Exp}$	${\bf BestBuy\text{-}0~Mile\text{-}Exp}$	BestBuy-5 Miles-Search			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
β_1	0.005	-0.007	0.005	-0.008	-0.011	-0.009	-0.001	-0.010			
	(0.017)	(0.010)	(0.013)	(0.006)	(0.009)	(0.007)	(0.023)	(0.008)			
β_2	-0.043^{*}	0.009	-0.002	0.009		0.013	0.000	0.009			
	(0.024)	(0.012)	(0.018)	(0.008)		(0.008)	(0.028)	(0.010)			
Observations	32,112	35,568	52,392	57,648	10,224	11,712	5,664	6,600			
\mathbb{R}^2	0.0002	0.00002	0.00000	0.00003	0.0001	0.0002	0.00000	0.0002			
Adjusted R ²	-0.044	-0.044	-0.044	-0.044	-0.046	-0.045	-0.048	-0.047			
Statistic	2.775* (df = 2; 30749)	0.318 (df = 2; 34061)	0.101 (df = 2; 50184)	0.774 (df = 2; 55221)	1.377 (df = 1; 9774)	1.297 (df = 2; 11199)	0.004 (df = 2; 5403)	0.746 (df = 2; 6300)			

Codes for generating Table 6 are listed below.

Table 6 Data data_Om_t6_exp <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_datai_exp GROUP BY Zip_Code, MonthYear, domain 3 data_Om_t6_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent , AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data1_search GROUP BY Zip_Code, MonthYear, 4 data_5m_t6_exp <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2_exp GROUP BY Zip_Code, MonthYear, domain 5 data_5m_t6_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, AVG(CCStorePresent) AS CCStorePresent , AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data2_search GROUP BY Zip_Code, MonthYear, domain name") 6 # manually construct DID and THREEINTERACTION data_0m_t6_exp\$DID <- data_0m_t6_exp\$CCStorePresent * data_0m_t6_exp\$AfterStoreClosing 8 data_Om_t6_exp\$THREEINTER <- data_Om_t6_exp\$CCStorePresent * data_Om_t6_exp\$AfterStoreClosing * data_Om_t6_exp\$BBStorePresent 9 data_0m_t6_search\$DID <- data_0m_t6_search\$CCStorePresent * data_0m_t6_search\$AfterStoreClosing 10 data_0m_t6_search\$THREEINTER <- data_0m_t6_search\$CCStorePresent * data_0m_t6_search\$AfterStoreClosing * data_0m_t6_search\$BStorePresent 11 data_5m_t6_exp\$DID <- data_5m_t6_exp\$CCStorePresent * data_5m_t6_exp\$AfterStoreClosing 12 data_5m_t6_exp\$THREEINTER <- data_5m_t6_exp\$CCStorePresent * data_5m_t6_exp\$AfterStoreClosing * data_5m_t6_exp\$BBStorePresent 13 data 5m t6 search DID <- data 5m t6 search CCStorePresent * data 5m t6 search AfterStoreClosing 44 data_5m_t6_search\$THREEINTER <- data_5m_t6_search\$CStorePresent * data_5m_t6_search\$AfterStoreClosing * data_5m_t6_search\$BEStorePresent 15 # Table 6

```
# AmazonTotalMonthlySales & BBTotalMonthlySale vs Experience and Search Product
17 ama.t6.0mile.exp <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t6_exp[data_0m_t6_exp$domain_name == "amazon.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t6.5mile.exp <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_5m_t6_exp[data_5m_t6_exp$domain_name == "amazon.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
19 ama.t6.Omile.search <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_Om_t6_search[data_Om_t6_search$domain_name == "amazon.com",],
           index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
20 ama.t6.5mile.search <- plm(log(TotalMonthlySales + 1) - DID + THREEINTER, data = data_5m_t6_search[data_5m_t6_search$domain_name == "amazon.com",],
           index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t6.0mile.exp <- plm(log(TotalMonthlySales + 1) - DID + THREEINTER, data = data_0m_t6_exp[data_0m_t6_exp$domain_name == "bestbuy.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t6.5mile.exp <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_5m_t6_exp[data_5m_t6_exp$domain_name == "bestbuy.com",], index =
         c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t6.0mile.search <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_0m_t6_search[data_0m_t6_search$domain_name == "bestbuy.com",],
          index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
24 bb.t6.5mile.search <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_5m_t6_search[data_5m_t6_search$domain_name == "bestbuy.com",],
        index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 7: Table 6 Generation

2.7 Table 7

Table 7: Results of the Online Search Effect: Experience Products

		log(PagesPerDo	llar + 1)			log(MinsPerDoll	ar + 1)	
	Amazon-0 Mile	Amazon-5 Miles	BestBuy-0 Mile	BestBuy-5 Miles	Amazon-0 Mile	Amazon-5 Miles	${\bf BestBuy\text{-}0}$ Mile	BestBuy-5 Miles
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
β_1	0.007	-0.037***	0.006**	0.001	0.006	-0.039***	0.003	0.001
	(0.015)	(0.008)	(0.002)	(0.002)	(0.015)	(0.008)	(0.002)	(0.001)
β_2	-0.077***	0.030***		-0.0001	-0.067***	0.034***		-0.001
	(0.020)	(0.010)		(0.002)	(0.020)	(0.010)		(0.002)
Observations	32,112	35,568	10,224	11,712	32,112	35,568	10,224	11,712
\mathbb{R}^2	0.001	0.001	0.001	0.00003	0.001	0.001	0.0003	0.0001
djusted R ²	-0.043	-0.044	-0.045	-0.046	-0.044	-0.044	-0.046	-0.046
Statistic	12.857*** (df = 2; 30749)	10.009*** (df = 2; 34061)	5.763** (df = 1; 9774)	0.143 (df = 2; 11199)	10.349*** (df = 2; 30749)	11.626*** (df = 2; 34061)	2.508 (df = 1; 9774)	0.438 (df = 2; 111

*p<0.1: **p<0.05: ***p<0.05: ***p<0.05:

Codes for generating Table 7 are listed below.

```
data_Om_t7_exp <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1_exp GROUP BY Zip_Code, MonthYear, domain_name")
 3 data_Om_t8_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1_search GROUP BY Zip_Code, MonthYear, domain_name")
   data_5m_t7_exp <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
          prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data2_exp GROUP BY Zip_Code, MonthYear, domain_name")
   data_5m_t8_search <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(pages_viewed) / SUM(prod_totprice) AS PagesPerDollar, SUM(duration) / SUM(
         prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data2_search GROUP BY Zip_Code, MonthYear, domain_name")
 6 # manually construct DID and THREEINTERACTION
 7 data_0m_t7_exp$DID <- data_0m_t7_exp$CCStorePresent * data_0m_t7_exp$AfterStoreClosing
 8 data_0m_t7_exp$THREEINTER <- data_0m_t7_exp$CCStorePresent * data_0m_t7_exp$AfterStoreClosing * data_0m_t7_exp$BBStorePresent
    data_0m_t8_search$DID <- data_0m_t8_search$CCStorePresent * data_0m_t8_search$AfterStoreClosing
10 data 0m t8 search$THREEINTER <- data 0m t8 search$CCStorePresent * data 0m t8 search$AfterStoreClosing * data 0m t8 search$BEStorePresent
11 data_5m_t7_exp$DID <- data_5m_t7_exp$CCStorePresent * data_5m_t7_exp$AfterStoreClosing
12 data_5m_t7_exp$THREEINTER <- data_5m_t7_exp$CCStorePresent * data_5m_t7_exp$AfterStoreClosing * data_5m_t7_exp$BBStorePresent
13 data_5m_t8_search$DID <- data_5m_t8_search$CCStorePresent * data_5m_t8_search$AfterStoreClosing
44 data_5m_t8_search$fHREEINTER <- data_5m_t8_search$CCStorePresent * data_5m_t8_search$fterStoreClosing * data_5m_t8_search$BStorePresent
15 # Table 7
16 ama.t7.pagesperdollar.Omile.exp <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_Om_t7_exp[data_0m_t7_exp$domain_name == "amazon.com"
        ,], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

```
ama.t7.pagesperdollar.5mile.exp <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_5m_t7_exp[data_5m_t7_exp$domain_name == "amazon.com", ], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

bb.t7.pagesperdollar.0mile.exp <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_0m_t7_exp[data_0m_t7_exp$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

bb.t7.pagesperdollar.5mile.exp <- plm(log(PagesPerDollar + 1) - DID + THREEINTER, data = data_5m_t7_exp$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

ama.t7.minsperdollar.0mile.exp <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_5m_t7_exp$domain_name == "amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

ama.t7.minsperdollar.5mile.exp <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_5m_t7_exp$domain_name == "amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

bb.t7.minsperdollar.0mile.exp <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_0m_t7_exp$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

bb.t7.minsperdollar.5mile.exp <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_6m_t7_exp$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

bb.t7.minsperdollar.5mile.exp <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_6m_t7_exp$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 8: Table 7 Generation

2.8 Table 8

Table 8: Results of the Online Search Effect: Search Products

		log(PagesPer	Dollar + 1)		log(MinsPerDollar + 1)				
	Amazon-0 Mile	Amazon-0 Mile Amazon-5 Miles Best		BestBuy-5 Miles	Amazon-0 Mile	Amazon-5 Miles	BestBuy-0 Mile	${\bf BestBuy\text{-}5\ Miles}$	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
β_1	0.001	0.006	0.001	0.009*	0.003	0.004	0.0001	0.009*	
	(0.012)	(0.006)	(0.014)	(0.005)	(0.012)	(0.006)	(0.012)	(0.005)	
β_2	-0.019	-0.002	-0.000	-0.007	-0.019	0.001	-0.000	-0.008	
	(0.017)	(0.008)	(0.017)	(0.006)	(0.017)	(0.008)	(0.015)	(0.006)	
Observations	52,392	57,648	5,664	6,600	52,392	57,648	5,664	6,600	
\mathbb{R}^2	0.00005	0.00002	0.00000	0.001	0.00004	0.00003	0.00000	0.001	
Adjusted R ²	-0.044	-0.044	-0.048	-0.047	-0.044	-0.044	-0.048	-0.047	
Statistic	1.138 (df = 2; 50184)	0.553 (df = 2; 55221)	0.011 (df = 2; 5403)	1.590 (df = 2; 6300)	0.935 (df = 2; 50184)	0.696 (df = 2; 55221)	0.0001 (df = 2; 5403)	1.927 (df = 2; 630	

Note: *p<0.1; **p<0.05; ***p<0.05

Codes for generating Table 8 are listed below.

```
ama.t8.pagesperdollar.Omile.search <- plm(log(PagesPerDollar + 1) * DID + THREEINTER, data = data_Om_t8_search[data_Om_t8_search$domain_name == "
        amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
  ama.t8.pagesperdollar.5mile.search <- plm(log(PagesPerDollar + 1) * DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == "
        amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
  bb.t8.pagesperdollar.Omile.search <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t8_search[data_Om_t8_search$domain_name == "
          estbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
  bb.t8.pagesperdollar.5mile.search <- plm(log(PagesPerDollar + 1) ^ DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == "
         bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
  ama.t8.minsperdollar.Omile.search <- plm(log(MinsPerDollar + 1) - DID + THREEINTER, data = data_Om_t8_search[data_Om_t8_search$domain_name == "
        amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t8.minsperdollar.5mile.search <- plm(log(MinsPerDollar + 1) ° DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == "
        amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
  bb.t8.minsperdollar.Omile.search
                                     <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t8_search[data_Om_t8_search$domain_name == "
        bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
9 bb.t8.minsperdollar.5mile.search <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_5m_t8_search[data_5m_t8_search$domain_name == "
    bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 9: Table 8 Generation

2.9 Table 9

Stata codes for generating Table 9 are listed below.

	ReferringDomai	nIsSearchEngine	NoReferringDomain			
	Amazon-0 Mile	BestBuy-0 Mile	Amazon-0 Mile	BestBuy-0 Mile		
	(1)	(2)	(3)	(4)		
eta_1	-0.817^{*}	-15.12***	0.325	-0.223		
	(0.337)	(0.611)	(0.346)	(1.259)		
eta_2	0.697	14.43***	-0.415	0.916		
	(0.564)	(0.944)	(0.544)	(1.615)		
Observations	10,791	1,225	10,791	1,225		

Note:

```
*p<0.05; **p<0.01; ***p<0.001
```

```
* build variables

2 gen DID = CCStorePresent * AfterStoreClosing

3 gen THREEINTER = DID * BBStorePresent

4 egen Code_Time = group(Zip_Code MonthYear)

5

6 * Amazon - ReferringDomainIsSearchEngine & NoReferringDomain

7 eststo: logit ReferringDomainIsSearchEngine DID THREEINTER if domain_name == "amazon.com", vce(cluster Code_Time) noconstant

8 eststo: logit NoReferringDomain DID THREEINTER if domain_name == "amazon.com", vce(cluster Code_Time) noconstant

9 * BestBuy - ReferringDomainIsSearchEngine & NoReferringDomain

10 eststo: logit ReferringDomainIsSearchEngine DID THREEINTER if domain_name == "bestbuy.com", vce(cluster MonthYear) noconstant

11 eststo: logit NoReferringDomain DID THREEINTER if domain_name == "bestbuy.com", vce(cluster MonthYear) noconstant
```

Code 10: Table 9 Generation

2.10 Table 10

Codes for generating Table 10 are listed below.

	log(SalesPerTransaction + 1)		log(PagesPerTr	ransaction + 1)	log(MinsPerTransaction + 1)		
	Amazon-0 Mile	Amazon-0 Mile BestBuy-0 Mile		BestBuy-0 Mile	Amazon-0 Mile	BestBuy-0 Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	0.012	-0.001	0.004	0.0002	0.006	0.0002	
	(0.013)	(0.032)	(0.009)	(0.017)	(0.011)	(0.020)	
β_2	-0.018	0.010	-0.021*	0.005	-0.021	-0.003	
	(0.019)	(0.034)	(0.013)	(0.018)	(0.016)	(0.021)	
Observations	68,472	14,664	68,472	14,664	68,472	14,664	
\mathbb{R}^2	0.00002	0.00003	0.0001	0.00004	0.00003	0.00001	
Adjusted R ²	-0.044	-0.045	-0.044	-0.045	-0.044	-0.045	
F Statistic	0.539 (df = 2; 65594)	0.213 (df = 2; 14028)	1.867 (df = 2; 65594)	0.304 (df = 2; 14028)	0.939 (df = 2; 65594)	0.066 (df = 2; 14028	

Table 10: Results of the Online Sales and Search Effect (All Product Categories)

*p<0.1; **p<0.05; ***p<0.01

```
bb.t10.Omile.PagesPerTransaction <- plm(log(PagesPerTransaction + 1) DID + THREEINTER, data = data_Om_t10[data_Om_t10$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

12 ama.t10.Omile.MinsPerTransaction <- plm(log(MinsPerTransaction + 1) DID + THREEINTER, data = data_Om_t10[data_Om_t10$domain_name == "amazon.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")

13 bb.t10.Omile.MinsPerTransaction <- plm(log(MinsPerTransaction + 1) DID + THREEINTER, data = data_Om_t10[data_Om_t10$domain_name == "bestbuy.com",], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 11: Table 10 Generation

2.11 Table 11

Table 11: Results of the Online Sales and Search Effect After Matching Zip Codes: TotalMonthlySales, PagesPerDollar, and MinsPerDollar (All Product Categories)

	log(TotalMont	hlySales + 1)	log(PagesPer	·Dollar + 1)	log(MinsPerDollar + 1)		
	Amazon-0 Mile	BesyBuy-0 Mile	esyBuy-0 Mile Amazon-0 Mile	BesyBuy-0 Mile	Amazon-0 Mile	BesyBuy-0 Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	0.019	-0.0002	0.006	-0.001	0.003	-0.0002	
	(0.019)	(0.002)	(0.012)	(0.003)	(0.011)	(0.002)	
β_2	-0.026		-0.023		-0.024*		
	(0.024)		(0.016)		(0.013)		
Observations	1,776	384 1,776 384		1,776	384		
\mathbb{R}^2	0.001 0.00002		0.001	0.0001	0.002	0.00003	
Adjusted R ²	-0.058	-0.113	-0.057	-0.113	-0.113 -0.056		
F Statistic	0.740 (df = 2; 1677)	0.008 (df = 1; 344)	1.183 (df = 2; 1677)	0.030 (df = 1; 344)	1.931 (df = 2; 1677)	0.012 (df = 1; 344)	

Codes for generating Table 11 are listed below.

```
1 library(cem)
2 #matching based on zipcode demographics (cross-sectional)
3 data_Om_til <- sqldf("SELECT Zip_Code, SUM(prod_totprice) AS TotalMonthlySales,
```

```
AVG(CCStorePresent) AS CCStorePresent.
                        AVG(household_size) AS HoHSize,
 6
                        AVG(hoh_oldest_age) AS HoHAge,
 7
                        AVG(household_income) AS HoHIncome
                        AVG(children) AS HoHChildren,
9
                        AVG(connection_speed) AS HoHSpeed
10
                        FROM concat_data1 GROUP BY Zip_Code")
11
12 #check imblance within data set
13 vars <- c("HoHSize", "HoHAge", "HoHIncome", "HoHChildren", "HoHSpeed")
14 imbalance(group=data_0m_t11$CCStorePresent, data = data_0m_t11[vars])
16 # Default is not 1-1 matching in CEM. Use k2k = "True" to enforce 1 to 1 matching.
17 todrop <- c("TotalMonthlySales")
18 todrop2 <- c("TotalMonthlySales", "Zip_Code")
# mat <- cem(treatment = "CCStorePresent", data = data_0m_t11, drop = todrop, k2k ="True")</pre>
20
21 mat <- cem(treatment = "CCStorePresent",
22
             data = data_0m_t11,
23
              drop = todrop2,
             k2k = TRUE,
24
25
             method = "euclidean")
26 mat
27
28 # We got 110 zipcodes in total. We checked 2 dataframe from CEM results, "w" and "matched", and both have 110 values.
29 # Fortunately, they are the same. In the future, just use data from "matched". Note that this is only ID of row value of Zipcode
31 # assign ID of row value of zipcode from "matched"
32 zipcheck <- c()
33
34 for (i in 1:length(mat$matched)){
35 if (mat$matched[i] == "TRUE") zipcheck <-c(zipcheck,i)
36 }
37
38 data.frame(zipcheck)
39
40\, # assign ID of row value of zipcode from "w"
41 zipcheck1 <- c()
42
43 for (i in 1:length(mat$w)){
44 if (mat$w[i] == 1) zipcheck1 <-c(zipcheck1,i)
45 }
47 data.frame(zipcheck1)
49 # Test both dataframe, and they are same.
50 all.equal(zipcheck,zipcheck1)
52\, # add specific Zipcode by mapping from ID of row of matched zipcode
53 ziplist <- c()
54 for (i in 1:length(data 0m t11$Zip Code)){
if ( i %in% zipcheck) ziplist <-c(ziplist,data_0m_t11$Zip_Code[i])
56 }
57
58 data.frame(ziplist)
59
60 # assign matched zipcode to dataset
61 concat_data1$Zipmatch <- ifelse(concat_data1$Zip_Code %in% ziplist, 1, 0)
62 data_Om_til <- sqldf("SELECT Zip_Code, Zipmatch, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, SUM(pages_viewed) / SUM(prod_
          totprice) AS PagesPerDollar, SUM(duration) / SUM(prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent)
         AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
63 data_0m_t11$DID <- data_0m_t11$CCStorePresent * data_0m_t11$AfterStoreClosing
   data_Om_t11$THREEINTER <- data_Om_t11$DID * data_Om_t11$BBStorePresent
65
66 \ \ \hbox{\tt\# result for Amazon regarding Total Monthly Sales, Pages Per Dollar, Mins Per Dollar}
67 ama.t11.0mile <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t11[(data_0m_t11$domain_name == "amazon.com") & (data_0m_t11$
         Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
68 ama.tii.pagesperdollar.Omile <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_Om_tii[(data_Om_tii$domain_name == "amazon.com") & (
         data_Om_t11$Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t11.minsperdollar.Omile <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t11[(data_0m_t11$domain_name == "amazon.com") & (data_
        Om_t11$Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
70 \ \ \hbox{\# result for Bestbuy regarding Total Monthly Sales, Pages Per Dollar, Mins Per Dollar}
```

Code 12: Table 11 Generation

2.12 Table 12

Table 12: Results of the Online Sales and Search Effect with Zip Code Demographics as Interactions and Time Fixed Effects (All Product Categories)

	log(TotalMonthlySales + 1)		log(PagesPe	rDollar + 1)	log(MinsPerDollar + 1)		
	Amazon-0 Mile	Amazon-0 Mile BestBuy-0 Mile		BestBuy-0 Mile	Amazon-0 Mile	${\bf BestBuy\text{-}0}$ Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	-0.00001	-0.00001	0.0001	0.00001	0.0001	0.00000	
	(0.0001)	(0.0002)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	
β_2	-0.00001	-0.0001	-0.0002*	0.00002	-0.0002	0.00001	
	(0.0002)	(0.0002)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	
Observations	68,472	14,664	68,472	14,664	68,472	14,664	
\mathbb{R}^2	0.00000	0.00000 0.00004 0.00005		0.00002	0.00003	0.00001	
Adjusted R ²	-0.044	-0.045	-0.044	-0.045	-0.044	-0.045	
Statistic	0.019 (df = 2; 65594)	0.255 (df = 2; 14028)	1.478 (df = 2; 65594)	0.114 (df = 2; 14028)	1.131 (df = 2; 65594)	0.053 (df = 2; 1402)	

Note: *p<0.1; **p<0.05; ***p<0.01

Codes for generating Table 12 are listed below.

```
# Table 12 Data
   data_Om_t12 <- sqldf("SELECT Zip_Code, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, SUM(pages_viewed) / SUM(prod_totprice) AS
          PagesPerDollar, SUM(duration) / SUM(prod_totprice) AS MinsPerDollar, AVG(household_size) AS HoHSize, AVG(hoh_oldest_age) AS HoHAge, AVG(
          household_income) AS HoHIncome, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent) AS BBStorePresent, AVG(AfterStoreClosing) AS
          AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
 3 data_Om_t12$DID <- data_Om_t12$CCStorePresent * data_Om_t12$AfterStoreClosing * data_Om_t12$HoHSize * data_Om_t12$HoHAge * data_Om_t12$HoHIncome
 4 data_0m_t12$THREEINTER <- data_0m_t12$CCStorePresent * data_0m_t12$AfterStoreClosing * data_0m_t12$BBStorePresent
5 # Table 12
   ama.t12.0m.PagesPerDollar <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "amazon.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t12.0m.MinsPerDollar <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "amazon.com",], index = c(
          "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   ama.t12.0m.TotalMonthlySales <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "amazon.com",],
         index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
9 bb.ti2.0m.PagesPerDollar <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_0m_ti2[data_0m_ti2$domain_name == "bestbuy.com",], index =
          c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
10 bb.t12.0m.MinsPerDollar <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_0m_t12[data_0m_t12$domain_name == "bestbuy.com",], index = c(
          "Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.t12.0m.TotalMonthlySales <- plm(log(TotalMonthlySales + 1) DID + THREEINTER, data = data_Om_t12[data_0m_t12$domain_name == "bestbuy.com",],
    index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
```

Code 13: Table 12 Generation

Table 13: Results of the Online Sales and Search Effect After Matching Zip Codes: TotalMonthlySales, PagesPerDollar, and MinsPerDollar (All Product Categories)

	log(TotalMonthlySales + 1)		log(PagesPer	Dollar + 1)	log(MinsPerDollar + 1)		
	Amazon-0 Mile	BesyBuy-0 Mile	Amazon-0 Mile	BesyBuy-0 Mile	Amazon-0 Mile	BesyBuy-0 Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	0.023	-0.001	0.007	-0.003	0.009	-0.001	
	(0.015)	(0.003)	(0.010)	(0.006)	(0.008)	(0.004)	
β_2	-0.026		-0.023		-0.024^{*}		
	(0.024)		(0.015)		(0.013)		
Observations	1,776	208	1,776	208	1,776	208	
\mathbb{R}^2	0.001	0.0003	0.001	0.001	0.002	0.0004	
Adjusted R ²	-0.043	-0.083	-0.043	-0.083	-0.042 -0.083		
F Statistic	1.169 (df = 2; 1700)	0.052 (df = 1; 191)	1.182 (df = 2; 1700)	0.197 (df = 1; 191)	1.663 (df = 2; 1700) 0.078 (df = 1)		

*p<0.1; **p<0.05; ***p<0.01

2.13 Table 13

Codes for generating Table 13 are listed below.

```
library(cem)
 2\, #matching based on zipcode demographics (cross-sectional)
 3 data_Om_t11 <- sqldf("SELECT Zip_Code, SUM(prod_totprice) AS TotalMonthlySales,
                       AVG(CCStorePresent) AS CCStorePresent,
                       AVG(household_size) AS HoHSize,
                       AVG(hoh_oldest_age) AS HoHAge,
                       AVG(household_income) AS HoHIncome,
                       AVG(children) AS HoHChildren,
9
                       AVG(connection_speed) AS HoHSpeed
10
                       FROM concat_data1 GROUP BY Zip_Code")
11 # CEM
12 todrop2 <- c("TotalMonthlySales", "Zip_Code")
13 mat <- cem(treatment = "CCStorePresent",</pre>
14
             data = data_0m_t11,
             drop = todrop2,
15
16
            k2k = TRUE,
17
             method = "euclidean")
18 mat
19
20 # Check Matching
21 zipcheck <- c()
22
23 for (i in 1:length(mat$matched)){
24 if (mat$matched[i] == "TRUE") zipcheck <-c(zipcheck,i)
25 }
26
27 data.frame(zipcheck)
28
29 # assign ID of row value of zipcode from "w"
30 zipcheck1 <- c()
31
32 for (i in 1:length(mat$w)){
33 if (mat$w[i] == 1) zipcheck1 <-c(zipcheck1,i)
34 }
35
36 data.frame(zipcheck1)
37
38 # Test both dataframe, and they are same.
39 all.equal(zipcheck,zipcheck1)
```

p<0.1; p<0.05; p<0.01

```
41 # add specific Zipcode by mapping from ID of row of matched zipcode
42 ziplist <- c()
43 for (i in 1:length(data_Om_t11$Zip_Code)){
44 if ( i %in% zipcheck) ziplist <-c(ziplist,data_Om_t11$Zip_Code[i])
45 }
46
47 data.frame(ziplist)
48
49 # Assign matched zipcode to dataset
50 concat_data1$Zipmatch <- ifelse(concat_data1$Zip_Code %in% ziplist, 1, 0)
51 data_Om_t13 <- sqldf("SELECT Zip_Code, Zipmatch, MonthYear, domain_name, SUM(prod_totprice) AS TotalMonthlySales, SUM(pages_viewed) / SUM(prod_
          totprice) AS PagesPerDollar, SUM(duration) / SUM(prod_totprice) AS MinsPerDollar, AVG(CCStorePresent) AS CCStorePresent, AVG(BBStorePresent)
         AS BBStorePresent, AVG(AfterStoreClosing) AS AfterStoreClosing FROM concat_data1 GROUP BY Zip_Code, MonthYear, domain_name")
52 data_Om_t13$DID <- data_Om_t13$CCStorePresent * data_Om_t13$AfterStoreClosing
53 data_Om_t13$THREEINTER <- data_Om_t13$DID * data_Om_t13$BBStorePresent
55 # Table 13
56 ama.Om.t13.sales <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "amazon.com") & (data_Om_t13$
         Zipmatch == 1),], index = c("Zip_Code"), model = "within")
   ama.Om.t13.ppd <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "amazon.com") & (data_Om_t13$
        Zipmatch == 1),], index = c("Zip_Code"), model = "within")
   ama.Om.t13.mpd <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "amazon.com") & (data_Om_t13$
         Zipmatch == 1),], index = c("Zip_Code"), model = "within")
60 bb.Om.t13.sales <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "bestbuy.com") & (data_Om_t13$
         Zipmatch == 1),], index = c("Zip_Code"), model = "within")
   bb.0m.t13.ppd <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_0m_t13[(data_0m_t13$domain_name == "bestbuy.com") & (data_0m_t13$
        Zipmatch == 1),], index = c("Zip_Code"), model = "within")
   bb.Om.t13.mpd <- plm(log(MinsPerDollar + 1) ^ DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "bestbuy.com") & (data_Om_t13$
      Zipmatch == 1),], index = c("Zip_Code"), model = "within")
```

Code 14: Table 13 Generation

2.14 Table 14

Table 14: Results of the Online Sales and Search Effect with Arbitrary Variance-Covariance Matrix Corrections (All Product Categories)

	log(TotalMonthlySales + 1)		log(PagesPer	Dollar + 1)	log(MinsPerDollar + 1)		
	Amazon-0 Mile	mazon-0 Mile BestBuy-0 Mile		BestBuy-0 Mile	Amazon-0 Mile	BestBuy-0 Mile	
	(1)	(2)	(3)	(4)	(5)	(6)	
β_1	0.019	-0.001	0.006	-0.003	0.003	-0.001	
	(0.019)	(0.003)	(0.006)	(0.006)	(0.011)	(0.004)	
β_2	-0.026		-0.023***		-0.024***		
	(0.028)		(0.001)		(0.006)		
Observations	1,776	208	1,776	208	1,776	208	
\mathbb{R}^2	0.001	0.0002	0.001	0.001	0.001 0.002		
Adjusted R ²	-0.058	-0.156	-0.057	-0.156	-0.056	-0.156	
Statistic	0.740 (df = 2; 1677)	0.036 (df = 1; 179)	1.183 (df = 2; 1677)	0.136 (df = 1; 179)	1.931 (df = 2; 1677)	0.054 (df = 1; 17)	

Codes for generating Table 14 are listed below.

1 # Table 14

Note:

```
2 library(lmtest)
   library(sandwich)
 5 # Create Baseline
   ama.Om.t14.sale.base <- plm(log(TotalMonthlySales + 1) - DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "amazon.com") & (data_Om_t13$domain_name == "amazon.com") & (data_Om_t13$domain_name == "amazon.com")
          t13$Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
    ama.Om.t14.ppd.base <- plm(log(PagesPerDollar + 1) DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "amazon.com") & (data_Om_t13
         $Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
    ama.Om.t14.mpd.base <- plm(log(MinsPerDollar + 1) DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "amazon.com") & (data_Om_t13$
          Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
10 bb.Om.t14.sale.base <- plm(log(TotalMonthlySales + 1) ~ DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "bestbuy.com") & (data_Om_t13$domain_name == "bestbuy.com") & (data_Om_t13$domain_name == "bestbuy.com")
         t13%Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
   bb.Om.t14.ppd.base <- plm(log(PagesPerDollar + 1) ~ DID + THREEINTER, data = data_Om_t13[(data_Om_t13$domain_name == "bestbuy.com") & (data_Om_t13
         $Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
12 bb.0m.t14.mpd.base <- plm(log(MinsPerDollar + 1) ~ DID + THREEINTER, data = data_0m_t13[(data_0m_t13$domain_name == "bestbuy.com") & (data_0m_t13$
          Zipmatch == 1),], index = c("Zip_Code", "MonthYear"), model = "within", effect = "twoways")
13
14 # Correlation
15 coeftest(ama.Om.t14.sale.base, vcovDC)
16 coeftest(ama.0m.t14.ppd.base, vcovDC)
17 coeftest(ama.Om.t14.mpd.base, vcovDC)
```

Code 15: Table 14 Generation

2.15 Table C1

Table 15 shows

Table 15: Change in Demographics after Circuit City Store Closure

	Before Store Closure			After Store Closure			First Difference of Mean		
Group							(p-value)		
	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean
	Age	Income	Education	Age	Income	Education	\mathbf{Age}	Income	Education
Control	7.048	4.479	97.957	6.937	4.498	97.999	-0.111	0.019	0.042
Control		4.413	91.991				(<0.0001)	(0.300)	(0.639)
Treated	7.68 4.971	s 4 071	98.632	6.645	4.739	96.843	-1.035	-0.232	-1.789
rreated		50.052	0.010	4.703	30.043	(<0.0001)	(0.029)	(0.004)	

Codes for generating Table 15 are listed below.

```
temp <- read_sas(sales_allother_zipcode_path)

temp$Store_Close_Status <- 0

table_Cl_Om_raw <- rbind(temp, read_sas(sales_cc_Omile_path))

table_Cl_Om_raw <- rbind(temp, read_sas(sales_cc_Smiles_path))

# Date Transform

table_Cl_Om_raw$event_date <- as.Date(table_Cl_Om_raw$event_date)

table_Cl_Om_raw$event_date <- as.Date(table_Cl_Om_raw$event_date)

# construct MonthYear - month of year

table_Cl_Om_raw$MonthYear <- format(table_Cl_Om_raw$event_date, "%Y-%m")

table_Cl_Om_raw$MonthYear <- format(table_Cl_Om_raw$event_date, "%Y-%m")

# Mark CC Closure
```

```
16 # CCStorePresent
17 # it is the same as Store_Close_Status
18 table_C1_Om_raw$CCStorePresent <- table_C1_Om_raw$Store_Close_Status
19 table_C1_5m_raw$CCStorePresent <- table_C1_5m_raw$Store_Close_Status
21 # AfterStoreClosing
   table_C1_0m_raw$AfterStoreClosing <- ifelse(table_C1_0m_raw$MonthYear < "2008-11", 0, 1)
23 table_C1_5m_raw$AfterStoreClosing <- ifelse(table_C1_5m_raw$MonthYear < "2008-11", 0, 1)
24
26 table_C1_0m_raw <- merge(table_C1_0m_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
27 table_C1_5m_raw <- merge(table_C1_5m_raw, bb_zipcode, by.x ="Zip_Code", by.y = "Zip_Code", all.x = TRUE)
29 table_C1_0m_raw$BBStorePresent <- na.fill(table_C1_0m_raw$BB_Store_Status, 0)
30 table_C1_5m_raw$BBStorePresent <- na.fill(table_C1_5m_raw$BB_Store_Status, 0)
31
32 # t test
33 control_before_age <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 0)&(table_C1_0m_raw$AfterStoreClosing==0),]$hoh_oldest_age
34 control_before_income <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 0)&(table_C1_0m_raw$AfterStoreClosing==0),]$household_income
   control_before_edu <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 0)&(table_C1_Om_raw$AfterStoreClosing==0),]$hoh_most_education
36
37 control_after_age <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 0)&(table_C1_Om_raw$AfterStoreClosing==1),]$hoh_oldest_age
38 control_after_income <- table_C1_0m_raw [(table_C1_0m_raw & CCStorePresent == 0)&(table_C1_0m_raw & AfterStoreClosing == 1),] household_income
39 control_after_edu <- table_C1_Om_raw (table_C1_Om_raw CCStorePresent == 0)&(table_C1_Om_raw AfterStoreClosing == 1),]$hoh_most_education
41 test.control.age <- t.test(control_before_age, control_after_age)
   test.control.income <- t.test(control_before_income, control_after_income)
43 test.control.edu <- t.test(control_before_edu, control_after_edu)
44
45 treated_before_age <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 1)&(table_C1_Om_raw$AfterStoreClosing==0),]$hoh_oldest_age
46 treated_before_income <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 1)&(table_C1_Om_raw$AfterStoreClosing==0),]$household_income
47 treated_before_edu <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==0),]$hoh_most_education
49 treated_after_age <- table_C1_Om_raw[(table_C1_Om_raw$CCStorePresent == 1)&(table_C1_Om_raw$AfterStoreClosing==1),]$hoh_oldest_age
50 treated_after_income <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==1),]$household_income
51 treated_after_edu <- table_C1_0m_raw[(table_C1_0m_raw$CCStorePresent == 1)&(table_C1_0m_raw$AfterStoreClosing==1),]$hoh_most_education
53 test.treated.age <- t.test(treated_before_age, treated_after_age)
54 test.treated.income <- t.test(treated_before_income, treated_after_income)
55 test.treated.edu <- t.test(treated_before_edu, treated_after_edu)
57 # Construct Variables
58 test.control.age.before.mean
                                 <- test.control.age$estimate[["mean of x"]]</pre>
59 test.control.income.before.mean <- test.control.income$estimate[["mean of x"]]
60 test.control.edu.before.mean <- test.control.edu$estimate[["mean of x"]]
61
62 test.control.age.after.mean <- test.control.age$estimate[["mean of y"]]
63 test.control.income.after.mean <- test.control.income$estimate[["mean of y"]]
64 test.control.edu.after.mean <- test.control.edu$estimate[["mean of y"]]]
66 test.control.age.diff <- test.control.age.after.mean - test.control.age.before.mean
67 test.control.age.diff.se <- test.control.age$p.value
68 test.control.income.diff
                              <- test.control.income.after.mean - test.control.income.before.mean</pre>
69 test.control.income.diff.se <- test.control.income$p.value
70 test.control.edu.diff <- test.control.edu.after.mean - test.control.edu.before.mean
71 test.control.edu.diff.se <- test.control.edu$p.value
73 test.treated.age.before.mean <- test.treated.age$estimate[["mean of x"]]
74 test.treated.income.before.mean <- test.treated.income$estimate[["mean of x"]]
   test.treated.edu.before.mean <- test.treated.edu$estimate[["mean of x"]]
77 test.treated.age.after.mean <- test.treated.age$estimate[["mean of y"]]
   test.treated.income.after.mean <- test.treated.income$estimate[["mean of y"]]
79 test.treated.edu.after.mean <- test.treated.edu$estimate[["mean of v"]]
81 test.treated.age.diff <- test.treated.age.after.mean - test.treated.age.before.mean
82 test.treated.age.diff.se <- test.treated.age$p.value
83 test.treated.income.diff <- test.treated.income.after.mean - test.treated.income.before.mean
84 test.treated.income.diff.se <- test.treated.income$p.value
85 test.treated.edu.diff <- test.treated.edu.after.mean - test.treated.edu.before.mean
86 test.treated.edu.diff.se <- test.treated.edu$p.value
87
```

Code 16: Table C1 Generation

- 2.16 Table D1-D4
- 2.17 Table E1-E2
- 2.18 Table G1-G3
- 3 Advanced Method
- 3.1 Generalized Synthetic Control Method
- 3.2 PSM and LA-PSM
- 3.3 Causal Forest

4 References