Ch 32 Light: Reflect & Refraction

Objective:

 \blacksquare Familiarize ourselves with the $mirror\ equation$ and $magnification\ equation$

By identifying what each variable means and its sign convention (\pm)

■ Create **ray diagrams** to illustrate how images are formed

By drawing the 2 principal rays (technically there's 3)

Content Review:

[5mins]

■ The **mirror equation** is given by

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

■ The magnification equation is given by

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

Group Activity (student - student)

[30mins]

Spherical Mirrors:

- 1. In your groups, create a copy of the Google Slides
- 2. Analyze the 3 special cases when working with spherical mirrors
 - By labeling the variables and drawing the principal rays
- 3. Fill in the contents of the table at the end of the Google Slides

Tip: You may find this optics simulation to be helpful. Make sure to click the option to replace the lens with a mirror. Feel free to play around with the settings and observe how they draw the principal rays.

Things to Consider:

- What seems to be the **critical point** that distinguishes Case 1a from Case 1b?
- Try drawing **Principal Ray #3** and see if it converges to the same point as **Principal Rays #1** and #2
 - ☐ My guess is that we have to draw it super on point in order for it to converge at the same point, but I'm not sure about this.
- What's the difference between a real image and a virtual image?
- Can a **convex mirror** ever create an inverted and real image?

Group Activity (leader - student)

[10mins]

Application of Spherical Mirrors:

You look at yourself in a shiny $9.2\,\mathrm{cm}$ diameter Christmas-decoration ball. Your face is located $25.0\,\mathrm{cm}$ away from the ball's front surface. Make sure to draw a diagram!

- a) Determine the location of your image i.e. solve for d_i
- b) Is it real or virtual? Is it upright or inverted?

Solution

- (a) $d_i = -2.1 \,\mathrm{cm}$, we want this negative sign since the image appears "within" the Christmas ball
- (b) The image is virtual and upright.