Abstract Algebra Notes

Definition. A <u>map</u> $f : A \to B$ is a subset $f \subset A \times B$ such that for all $a \in A$, there exists a $b \in B$ such that b is unique with $(a, b) \in f$.

Definition. We write f(a) = b if $(a, b) \in f$. A is the **domain** of f and B is the **codomain**.

Definition. A **binary operation** on A is a map $\star : A \times A \rightarrow A$ such that $\star(a_1, a_2) = a_1 \star a_2$ for $a_1, a_2 \in A$.

Definition. A binary operation \star is **associative** on A if for all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.

Definition. An element $e \in A$ is an **identity** element of \star if for each $a \in A$, $e \star a = a \star e = a$.

Definition. An element $a \in A$ has an <u>inverse</u> under \star if there exists a $b \in A$ such that $a \star b = b \star a = e$.

Definition. A set A with an associative binary operation \star is a **group** if A has an identity element under \star and every $a \in A$ has an inverse.

Definition

A group is a pair (G, \star) where G is a set and \star is a binary operation on G such that

- 1. For all $a, b, c \in A$, $a \star (b \star c) = (a \star b) \star c$.
- 2. There exists an $e \in G$ such that $a \star e = e \star a = a$ for all $a \in G$.
- 3. For all $a \in G$, there exists a $b \in G$ such that $a \star b = b \star a = e$.