DC ANALYSIS OF DIODE CIRCUITS

SEMICONDUCTOR DIODE

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Diode Logic

- OR Gate
- AND Gate

Analyzing Diode Behavior in DC Circuits

DIODE LOGIC

v_1	v_2	v_{out}
0	0	O
0	5	
5	0	
5	5	

v_1	v_2	v_{out}
0	0	O
0	5	ょ
5	0	
5	5	

v_1	v_2	v_{out}
0	0	0
0	5	ょ
5	0	ち
5	5	

v_1	v_2	v_{out}
0	0	0
0	5	ょ
5	0	ち
5	5	ち

v_1	v_2	v_{out}
0	0	O
0	5	
5	0	
5	5	

v_1	v_2	v_{out}
0	0	O
0	5	O
5	0	
5	5	

v_1	v_2	v_{out}
0	0	O
0	5	O
5	0	O
5	5	

v_1	v_2	v_{out}
0	0	0
0	5	0
5	0	O
5	5	t

ANALYZING DIODE BEHAVIOR IN DC CIRCUITS

Determine the voltage across the load (v_L) , the current flowing through the load (i_L) , and the power dissipated by the load resistor (P_L) in the given circuit. note: Always assume silicon diode (Vo = 0.7V) if not Stated

Solution

Hode Analysic Method

$$i_{L} = \frac{v_{L}}{R}$$

$$u = \frac{7.3}{2.21}$$

$$P_{D} = i_{D} V_{D}$$

 $P_{D} = 3.32 m(0.7)$

$$t_{B}=2.32mW$$

Determine the voltage across the load (v_L), the current flowing through the load (i_L), and the power dissipated by the load resistor (P_L) in the given circuit.

Solution

Determine the voltage across the load (v_L) , the current flowing through the load (i_L) , and the power dissipated by the load resistor (P_L) in the given circuit.

Solution

Hode Analysis Method

$$V_L = 12 - 0.7 - 0.3$$

ans

Determine the output voltage (v_{out}), the current flowing through the resistor (i_R), and the currents flowing through diodes D_1 and D_2 (i_{D1} and i_{D2}) in the circuit.

Solution

$$VR = 10 - 0.7$$

$$VR = 9.3V$$

$$i_{\rm R} = \frac{9.5}{330}$$

Determine the output voltage (v_{out}), the current flowing through the resistor (i_R), and the currents flowing through diodes D_1 and D_2 (i_{D1} and i_{D2}) in the circuit.

Solution

| kale a | ioi | -ik + ioi + ioo = 0 | assume identical chiodes | ioi = ioo =
$$\frac{2 \sin x}{2} = \frac{28.18 \text{ m}}{2}$$
 | ioi = $\frac{28.18 \text{ m}}{2}$ | ioi = $\frac{14.09 \text{ mA}}{2}$ | ioz = $\frac{14.09 \text{ mA}}{2}$

ave

LABORATORY

