Lojik Tasarım

Ders 8

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Kod Çözücü (Decoder)

- Ayrık değerli bilgiler sayısal sistemlerde ikili kodlarla temsil edilir. n bitlik bir bilgi, 2ⁿ tane bağımsız bilgiyi temsil edebilme kapasitesine sahiptir.
- Kod çözücü n bitlik bir bilgiyi maksimum 2ⁿ çıkış hattına dönüştüren kombinezonal devredir.

3x8 Decoder

3'ten 8'e Kod Çözücünün Doğruluk Tablosu

	Girişler			Çıkışlar							
X	y	Z	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

3x8 Decoder

Kombinezonal Lojik Uygulaması

Bir kod çözücü n giriş değişkeninden 2^n minterim oluşturur. Herhangi bir Boole fonksiyonu kanonik formda minterimlerin toplamı biçiminde ifade edilebildiğinden, minterimleri üretmek için bir kod çözücü, toplamı biçimlendirmek için de dışardan eklenen bir VEYA kapısı kullanılabilir. Bu yolla, n giriş m çıkışlı herhangi bir kombinezonal devre, n'den 2^n 'ye kod çözücüyle m adet VEYA kapısından oluşabilir.

Örnek: Bir tam toplayıcının kod çözücü ile tasarlanması

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

İzin Girişli 2X4 Kod Çözücü

E	Α	В	D0	D1	D2	D3
0	X	Χ	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

D1 = E A' B

D2 = E A B'

D3 = E A B

Soru

4 adet 3x8 kod çözücü kullanarak 5x32 kod çözücü tasarlayınız

Soru

(a) Segment designation

- 7 Segment display nedir?
- BCD sayıları 7 segment displaye sürecek 7 segment display çözücü devresini tasarlayınız.

(b) Numerical designation for display

Multiplexer (Veri Seçici)

Veri seçmenin anlamı büyük sayıda bilgi birimlerinin daha az sayıdaki kanallara veya yollara aktarılmasıdır. Sayısal bir veri seçici bir veya daha fazla giriş hattından ikili bilgiyi seçen ve bunu tek çıkış hattına bağlayan bir kombinezonal devredir. Özel bir giriş hattının seçilmesi bir grup seçme hattıyla kontrol edilir. Normal olarak, 2^n giriş hattı ve hangi girişin seçileceğini belirleyen bit kombinasyonlarını oluşturan n seçme hattı vardır.

Multiplexer (Veri Seçici)

4 Kanallı MUX

Multiplexer (Veri Seçici)

Boole Fonksiyonlarının Uygulanması

n seçicili 2ⁿx1 lik mux kullanarak n+1 değişkenli fonksiyonlar tasarlanabilir.

Tasarım Yöntemi

- n+1 değişkenli bir fonksiyonumuz varsa n değişkeni alınır ve seçme hatlarına bağlanır.
- 2. Fonksiyonun kalan tek değişkeni veri seçicinin girişine bağlanır.

Örnek

 $f(A,B,C)=\Sigma(1,3,5,6)$ fonksiyonunu MUX kullanarak gerçekleştiriniz

Minterim	A	\boldsymbol{B}	C	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

(a) Veri seçici gerçeklemesi

(b) Doğruluk tablosu

(c) Gerçekleme tablosu

ŞEKİL 5-18

 $F(A, B, C) = \Sigma(1, 3, 5, 6)$ fonksiyonunun bir veri seçiciyle gerçekleştirilmesi

Örnek Aşağıdaki fonksiyonu bir veri seçici kullanarak gerçekleştirin:

$$F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$$

ŞEKİL 5-20

 $F(A, B, C, D) = \Sigma(0, 1, 3, 4, 8, 9, 15)$ fonksiyonunun gerçekleştirilmesi

Üç Durumlu Kapılar

FIGURE 4.29

Graphic symbol for a three-state buffer

DEMULTIPLEXER (Tekilleyici)

S_1	S_0	D_3	D_2	D_1	D_0
0	0	0	0	0	Е
0	1	0	0	Е	0
1	0	0	Е	0	0
1	1	Е	0	0	0

Haberleşme Sistemlerinde MUX ve DEMUX kullanımı

Salt Oku Bellek (ROM)

ROM

Kombinezonal Lojik Uygulamaları

Örnek

Girişine uygulanan 3 bitlik bir sayının karesinin ikili karşılığını çıkışında verebilecek kombinezonal devreyi bir ROM kullanarak gerçekleştirin.

İstenenleri gerçekleştirmek üzere ilk adım, kombinezonal devre için doğruluk tablosunun oluşturulmasıdır. Bu tür uygulamaların çoğunda bu iş-

TABLO 5-5 Örnek 5-3'teki Devrenin Doğruluk Tablosu

Girişler		Çıkışlar							
A_2	A_1	A_0	B_5	B_4	B_3	B_2	B_1	B_0	Onlu
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25
1	1	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

A_2	A_1	A_0	F_1	F_2	F_3	F_{a}
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

(a) Blok diyagram

(b) ROM'un doğruluk tablosu

ŞEKİL 5-24

Örnek 5-3'teki ROM uygulaması

Gelecek Ders

Sıralı Lojik Devreleri