Содержание

7.	Комбинаторика	2
8.	Рекуррентности и производящие функции	10
X	. Программа экзамена в $2023/2024$	15
	5. Теория графов.	15
	6. Теория автоматов	22
	7. Комбинаторика	28
	8. Рекуррентности и производящие функции	29

7. Комбинаторика

Базовые понятия:

- Алфавит (Alphabet) Σ (или X, $Ex. X = \{a, b, c\}$) множество символов в нашей системе
- Диапазон (Range) $[n] = \{1, ..., n\}$ конечное множество последовательных натуральных чисел
- Расстановка (Ordered arrangement) последовательность каких-либо элементов (тоже самое, что кортеж), $Ex. \ x = (a,b,c,d,b,c) \ |x| = n$ Расстановку можно представить как функцию $f: [n] \to \sum_{\text{domain}} x$, которая по порядковому номеру выдает символ $ranf = \{c \in \Sigma \mid \exists i \in [n] : f(i) = c\}$
- Перестановка (Permutation) $\pi:[n] \to \Sigma,$ где $n=|\Sigma|$ Расстановка π биекция между [n] и Σ

Одна из задач комбинаторики - посчитать количество различных расстановок или перестановок при заданных n и Σ

• k-перестановка (k-permutation) - расстановка из k различных элементов из Σ

$$Ex.$$
 31475 = 5 5-регт из Σ =[7] k -перестановка - инъекция $\pi:[k] \to \Sigma \ (k \le n = |\Sigma|)$

• P(n,k) - множество всех k-перестановок алфавита $\Sigma = [n]$ (если исходный алфавит не состоит из чисел, то мы можем сделать биекцию между ним и [n])

$$P(n,k) = \{ f \mid f : [k] \rightarrow [n] \}$$

Чаще интересует не само множество, а его размер, поэтому под обозначением P(n,k) подразумевается |P(n,k)|

• $S_n = P_n = P(n, n)$ - множество всех перестановок. Также чаще всего нас будет интересовать не множество, а его размер $|S_n| = n!$ - всего существует n! перестановок

$$|P(n,k)| = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

• Циклические *k*-перестановки (Circular *k*-permutations)

 $\pi_1, \pi_2 \in P(n,k)$ - циклически эквивалентны тогда и только тогда:

$$\exists s \mid \forall i \ \pi_1((i+s)\%k) = \pi_2(i)$$

 $P_C(n,k)$ - множество всех циклических k-перестановок в Σ

$$|P_C(n,k)| \cdot k = |P(n,k)|$$

 $|P_C(n,k)| = \frac{|P(n,k)|}{k} = \frac{n!}{k(n-k)!}$

• Неупорядоченная расстановка k элементов (Unordered arrangement of k elements) - мультимножество Σ^* размера k

$$Ex. \ \Sigma^* = \{ \triangle, \triangle, \square, \triangle, \circ, \square \}^* = \{ 3 \cdot \triangle, 2 \cdot \square, 1 \cdot \circ \} = (\Sigma, r)$$
 Неупорядоченную расстановку можно представить как функцию:

 $r:\Sigma o \mathbb{N}, \quad r(x)$ - кол-во повторений объекта x

• k-сочетание (k-combination) - неупорядоченная перестановка из k различных элементов из Σ (еще называют k-подмножеством, k-subset)

Соответственно C(n,k) - множество всех таких k-сочетаний

$$|C(n,k)| = C_n^k = \binom{n}{k}$$

$$C(n,k) = \binom{\Sigma}{k}$$

$$\binom{n}{k} \cdot k! = |P(n,k)|$$

$$|C(n,k)| = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Th. Биномиальная теорема (Binomial theorem):

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

 $\binom{n}{k}$ - биномиальный коэффициент

Th. Мультиномиальная теорема (Multinomial theorem)

$$(x_1 + \dots + x_r)^n = \sum_{\substack{k_i \in 1 \dots n, \\ k_1 + \dots + k_r = n}} \binom{n}{k_1, \dots, k_r} x_1^{k_1} \cdot \dots \cdot x_r^{k_r}$$

$$\binom{n}{k_1,\ldots,k_r}=rac{n!}{k_1!\ldots k_r!}$$
 - мультиномиальный коэффициент

Ех. мультиномиальной теоремы:

$$(x+y+z)^4 = 1(x^4+y^4+z^4) + 4(xy^3+xz^3+x^3y+yz^3+y^3z+yz^3) + 6(x^2y^2+y^2z^2+x^2z^2) + 12(xyz^2+xy^2z+x^2yz)$$

Доказательство:

$$(x_1 + \dots + x_r)^n = \sum_{\substack{i_j \in [r] \\ j \in [n]}} x_{i_1}^1 \cdot \dots \cdot x_{i_n}^1 = \sum_{\substack{i_j \in [r] \\ j \in [n]}} x_1^{k_1} \cdot \dots \cdot x_r^{k_r},$$
где k_t - количество x с индексом t в одночлене $(k_t = |\{j \in [n] | i_j = t\}|)$

Получается мультиномиальный коэффицциент $\binom{n}{k_1,\ldots,k_r}$ будет равен количество способов

поставить k_1 единиц в индексы в $x_{i_1}^1 \cdot \dots \cdot x_{i_n}^1$, k_2 двоек в индексы и так далее

У нас есть $\binom{n}{k_1}$ способов поставить единицу в индексы в одночлен, $\binom{n-k_1}{k_2}$ способов поставить

$$\binom{n}{k_1, \dots, k_r} = \binom{n}{k_1} \binom{n - k_1}{k_2} \dots \binom{n - k_1 - \dots - k_{r-1}}{k_r} = [n - k_1 - \dots - k_r = 0] = \frac{n!}{k_1! (n - k_1)!} \frac{(n - k_1)!}{k_2! (n - k_1 - k_2)!} \dots \frac{(n - k_1 - \dots - k_{r-1})!}{k_r! 0!} = \frac{n!}{k_1! \dots k_r!}$$

• Перестановка мультимножества Σ^* (Permutations of a multiset Σ^*)

$$\Sigma^* = \{ \triangle^1, \triangle^2, \square, \star \} = (\Sigma, r) \quad r : \Sigma \to \mathbb{N}_0 \quad n = |\Sigma^*| = 4 \quad s = |\Sigma| = 3$$

Nota. $\begin{cases} \Delta^1, \Delta^2, \square, \bigstar \\ \Delta^2, \Delta^1, \square, \bigstar \end{cases}$ считаются равными перестановками

$$|P^*(\Sigma^*,n)|=rac{n!}{r_1!\dots r_s!}=egin{pmatrix}n\\r_1,\dots,r_s\end{pmatrix}$$
 - количество перестановок мультимножества, где r_i -

количество i-ого элемента в мультимножестве

• k-комбинация бесконечного мультимножества (k-combinations of infinite multiset) - такое субмультимножество размера k, содержащее элементы из исходного мультимножества. При этом соблюдается, что количество какого-либо элемента r_i в исходном мультимножестве не больше размера комбинации k

$$\Sigma^* = \{ \infty \cdot \triangle, \infty \cdot \square, \infty \cdot \star, \infty \cdot \not A \}^* \quad n = |\Sigma^*| = \infty$$

$$\Sigma = \{ \triangle, \square, \star, \not A \} \quad s = |\Sigma| = 4$$

Ex. 5-комбинация: $\{ \triangle, \star, \square, \star, \square \}$

Разделяем на группы по Σ палочками:

$$\triangle \Box \Box \star \star$$

Заменяем элементы на точечки - нам уже не так важен тип элемента, потому что мы знаем из разделения:

(другой
$$Ex. \bullet \bullet \bullet \bullet \parallel \bullet = \{4 \cdot \triangle, 1 \cdot \cancel{A}\}$$
)

Получается всего k точечек и s-1 палочек, всего k+s-1 объектов. Получаем мультимножество $\{k \cdot \bullet, (s-1) \cdot | \}$ (Star and Bars method)

Получаем количество перестановок этого мультимножества: $\frac{(k+s-1)!}{k!(s-1)!} = \binom{k+s-1}{k,s-1} =$

$$\binom{k+s-1}{k} = \binom{k+s-1}{s-1}$$

что и является количеством возможных k-комбинаций бесконечного мультимножества

• Слабая композиция (Weak composition) неотрицательного целого числа n в k частей - это решение (b_1,\ldots,b_k) уравнение $b_1+\cdots+b_k=n$, где $b_i\geq 0$

|{слабая композиция
$$n$$
 в k частей}| = $\binom{n+k-1}{n,k-1}$

Для решения воспользуемся аналогичным из доказательства мультиномиальной теоремы приемом:

$$n = 1 + 1 + 1 + \cdots + 1$$

Поставим палочки:

$$n = 1 + 1 \left| 1 \right| \dots + 1$$

Получаем задачу поиска количеств k-комбинаций в мультимножестве: $\{n \cdot 1, (k-1) \cdot | \}$;

получаем
$$\binom{n+k-1}{n,k-1}$$

• Композиция (Composition) - решение для $b_1 + \cdots + b_k = n$, где $b_i > 0$

$$|\{$$
композиция n в k частей $\}|=egin{pmatrix} n-k+k-1\\ n-k,k-1 \end{pmatrix}$

Мы знаем, что одну единичку получит каждая b_i , поэтому мы решаем это как слабую композицию для n-k в k частей

• Число композиций *n* в некоторой число частей (Number of all compositions into some number of positive parts)

$$\sum_{k=1}^{n} \binom{n-1}{k-1} = 2^{n-1}$$
 Пусть $t = k-1$, тогда $\sum_{t=0}^{n-1} \binom{n-1}{t} = 2^{n-1}$

• Разбиения множества (Set partitions) - множество размера k непересекающихся непустых подмножеств

$$Ex. \ \{1,2,3,4\}, \textit{n}=4, \textit{k}=2 \to [\text{разбиение в 2 части}] \to \ \{\{1\},\{2,3,4\}\}, \\ \{\{1,2\},\{3,4\}\}, \\ \{\{1,2,3\},\{4\}\}, \\ \{\{1,4\},\{2,3\}\}, \\ \{\{2\},\{1,3,4\}\}, \\ \{\{3\},\{1,2,4\}\} \}$$

 $|\{$ разбиение n элементов в k частей $\}|=egin{cases} n\\k \end{bmatrix}=S_k^{II}(n)=S(n,k)$ - число Стирлинга второго рода

Для примера выше число Стирлинга $S(4,2) = \begin{cases} 4 \\ 2 \end{cases} = 7$

Согласно Википедии для формулы Стирлинга есть формула: $S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k+j} \binom{k}{j} j^n$

• Формула Паскаля (Pascal's formula)

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

• Рекуррентное отношение для чисел Стирлинга (Recurrence relation for Stirling⁽²⁾ number):

$${n \brace k} = {n-1 \brace k-1} + k \cdot {n-1 \brack k}$$

Возьмем какое-либо разбиение для n-1 элементов на k частей, тогда возможны два случая:

1) В k-ое множество нет ни одного элемента, тогда мы обязаны в него положить наш

 $\emph{n}\textsc{-}$ ый элемент по определению, количество перестановок будет равно ${n-1 \brace k-1} \cdot 1$

2) В k-ом множестве уже есть элементы, тогда все множества будут заполнены и у нас будет выбор из k множеств, куда положить k-ый элемент, то есть $k \cdot {n-1 \brace k}$

Эти два случая независимы, поэтому получаем ${n-1 \brace k-1} + k \cdot {n-1 \brack k}$

• Число Белла (Bell number) - количество всех неупорядоченных разбиений множества размера n

Число Белла вычисляется по формуле: $B_n = \sum_{m=0}^n S(n,m)$

• Целочисленное разбиение (Integer partition) - решение для $a_1+\cdots+a_k=n$, где $a_1\geq a_2\geq \cdots \geq a_k\geq 1$

p(n,k) - число целочисленных разбиений n в k частей

$$p(n) = \sum_{k=1}^{n} p(n,k)$$
 - число всех разбиений для n

$$Ex. 5 = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$$

• Принцип включения / исключения (Principle of Incusion/Exclusion (PIE)) $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$

Ex. есть n=11 объектов, нужно распределить их между k=3 группами A, B и C Эту задачу можно решить с помощью $Stars\ and\ bars\ method$, тогда мы получим $\binom{n+k-1}{n,k-1} = \binom{13}{2} = 78$

Введем ограничение: пусть мощность каждого множества будет не больше 4.

Посчитаем количество неподходящих вариантов:

$$|A| = |\{b_A \ge 5\}| = 1 \cdot {11 - 5 + 3 - 1 \choose 3 - 1} = {8 \choose 2} = 28$$

$$|A \cap B| = |\{b_A \ge 5 \land b_B \ge 5\}| = {3 \choose 2} = 3$$

$$|A \cap B \cap C| = |\{b_A \ge 5 \land b_B \ge 5 \land b_C \ge 5\}| = 0$$

Итого получаем $28 \cdot 3 + 3 \cdot 3 + 0 = 75$ вариантов.

Далее исключаем эти варианты из количества всех вариантов, а значит подходящих вариантов всего 78-75=3

- Принцип включения (исключения (Inclusion/Exclusion Principle (PIE))
 - X начальное множество элементов

- $-P_1,\ldots,P_m$ свойства
- Пусть $X_i = \{x \in X \mid P_i \text{свойство для } x\}$
- Пусть $S \in [m]$ множество свойств
- Пусть $N(S) = \bigcap_{i=1}^n X_i = \{x \in X \mid x$ имеет все свойства $P_1, \ldots, P_m\}$

$$N(\emptyset) = X \quad |N(\emptyset)| = |X| = n$$

• **Теорема** ПВ/И (Theorem PIE)

 $|X\setminus (X_1\cup X_2\cup\ldots\cup X_m)|=\sum_{S\subseteq \lceil m \rceil} (-1)^{|S|}|N(S)|$ - количество элементов множества X, не

имеющих никакое из свойств

Доказательство:

Пусть $x \in X$

Если x не имеет свойств P_1, \ldots, P_m , то $x \in N(\emptyset)$ и $x \notin N(S) \ \forall S \neq \emptyset$

Поэтому x дает в общую сумму 1

Иначе, если x имеет $k \ge 1$ свойств $T \in {[m] \choose k}$,

то $x \in N(S)$ тогда и только тогда, когда $S \subseteq T$.

Поэтому
$$x$$
 дает в сумму $\sum_{S\subseteq T} (-1)^{|S|} = \sum_{i=0}^k \binom{k}{i} (-1)^i = 0$

• Следствие

$$|\bigcup_{i \in [m]} X_i| = |X| - \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S \subseteq [m], S \neq \emptyset} (-1)^{|S|-1} |N(S)|$$

• Приложения:

- * Определяете «плохие» свойства P_1, \ldots, P_m
- * Посчитываете N(S)
- * Применяете ПВ/И

• Количество сюръекций (правототальных функций)

- * $X = \{ \text{функция } f : [k] \rightarrow [n] \}$
- * Плохое свойство $P_i: X_i = \{f: [k] \to [n] \mid \nexists j \in [k]: f(j) = i\}$ * $|\{$ сюръекции $f: [k] \to [n]\}| = |X \setminus (X_1 \cup \ldots \cup X_m)| \stackrel{\mathrm{PIE}}{=} \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S \subseteq [m]} (-1)^{|S|} (n 1)^{|S|} |N(S)| = \sum_{S \subseteq [m]} (-1)^{|S|} |N(S)| = \sum_{S$

$$|S|)^k = \sum_{i=0}^k (-1)^i \binom{k}{i} (k-i)^n$$

• Количество биекций

$$n! = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{n}$$

• Число Стирлинга (опять)

Заметим, что сюръекция = разбиение, тогда:

$$\sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n} = n! S_{n}^{II}(k)$$

• Беспорядки (Derangements) - перестановка без фиксированных точек

Если f(i) = i, то i - фиксированная точка

- *X = все n! перестановок
- * Плохие свойства $P_1,\dots,P_m:\pi\in X$ имеет свойство $P_i\Longleftrightarrow\pi(i)=i$
- * Посчитаем N(S): N(S) = (n |S|)!
- * Применяем ПВ/И: $X \setminus (X_1 \cup \ldots \cup X_n) = \sum_{S \subseteq [n]} (-1)^{|S|} N(S) = \sum_{S \subseteq [n]} (-1)^{|S|} (n |S|)! =$

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)!$$

8. Рекуррентности и производящие функции

• Производящие функции (Generating Functions)

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$$

Функция выше задает последовательность a_0, a_1, a_2, \dots

Ex.
$$3 + 8x^2 + x^3 + \frac{1}{7}x^5 + 100x^6 + \dots \rightarrow (3, 0, 8, 1, 0, \frac{1}{7}, 100, \dots)$$

Ex. Последовательность $(1,1,1,\dots)$ задает функцию $1+x+x^2+\dots=\sum_{n=0}^{\infty}x^n$

Пусть
$$S=1+x+x^2+\ldots$$
, тогда $xS=x+x^2+\ldots$, $(1-x)S=1\Longrightarrow$ $S=\frac{1}{1-x}$ задает последовательность $(1,1,1,\ldots)$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n x^n$$

$$\frac{1}{1-3x} = 1 + 3x + 9x^2 + 27x^3 + \dots = \sum_{n=0}^{\infty} 3^n x^n$$

$$\frac{2}{1-x} = 2 + 2x + 2x^2 + 2x^3 + \dots = \sum_{n=0}^{\infty} 2x^n$$

$$(2, 4, 10, 28, 82, \dots) = (1, 1, 1, 1, 1, \dots) + (1, 3, 9, 27, 81, \dots)$$

$$\frac{1}{1-x} + \frac{1}{1-3x} = \frac{2-4x}{(1-x)(1-3x)}$$

$$\frac{1}{1-x^2} = 1 + x^2 + x^4 + x^6 + \dots = \sum_{n=0}^{\infty} x^{2n} \to (1, 0, 1, 0, \dots)$$

$$\frac{x}{1-x^2} = x + x^3 + x^5 + \dots = \sum_{n=0}^{\infty} x^{2n+1} \to (0, 1, 0, 1, \dots)$$

Взятие производной

$$\frac{d}{dx}(\frac{1}{1-x}) = \frac{1}{(1-x)^2} = \frac{d}{dx}(1+x+x^2+\dots) = 1+2x+3x^2+4x^3+\dots \to (1,2,3,4,\dots)$$

 $\it Ex.$ Найти ПФ для $(1,3,5,7,9,\dots)$

$$A(x) = 1 + 3x + 5x^2 + \dots$$

$$xA = 0 + x + 3x^2 + 5x^3 + \dots$$

$$(1-x)A = 1 + 2x + 2x^2 + 2x^3 + \dots$$

$$(1-x)A = 1 + \frac{2x}{1-x}$$
 $A = \frac{1 + \frac{2x}{1-x}}{1-x} = \frac{1+x}{(1-x)^2}$

 $\it Ex.$ Найти ПФ для $(1,4,9,16,\dots)$

$$A = 1 + 4x + 9x^2 + 16x^3 + \dots$$
 $(1 - x)A =$

• Подсчет, используя производящие функции

Найти число решений для $x_1 + x_2 + x_3 = 6$, где $x_i \ge 0, x_1 \le 4, x_2 \le 3, x_3 \le 5$

$$A_1(x) = 1 + x + x^2 + x^3 + x^4$$

$$A_2(x) = 1 + x + x^2 + x^3$$

$$A_3(x) = 1 + x + x^2 + x^3 + x^4 + x^5$$

$$A(x) = A_1 \cdot A_2 \cdot A_3 = 1 + 3x + 6x^2 + 10x^3 + 14x^4 + 17x^5 + \underline{18x^6} + 17x^7 + \dots$$

Ответ - 18

• Рекуррентные соотношения (Recurrence relations)

Решить рекуррентное соотношение - найти закрытую формулу

Ех. Арифметическая прогрессия

$$a_n = \begin{cases} a_0 = const & n = 0\\ a_{n-1} + d, & n > 0 \end{cases}$$

Решение: $a_n = a_0 + nd$ - анзац (Ansatz, догадка)

Проверка:
$$a_n = a_0 + nd = a_{n-1} + d = a_0 + (n-1)d + d = a_0 + nd$$
 -

• Метод характеристического уравнения

Рекуррентное соотношение $\stackrel{a_n \to r^n}{\leadsto}$ Характеристическое решение корни $\stackrel{магия}{\leadsto}$ Решение \leadsto Проверка

$$Ex. \ a_n = a_{n-1} + 6a_{n-2}$$

$$r^n - r^{n-1} - 6r^{n-2} = 0$$

$$r^{n-2}(r^2 - r - 6) = 0$$

$$r_{1,2} = -2, 3$$

Если $r_1 \neq r_2$, то $a_n = ar_1^n + br_2^n$ - общее решение

Если
$$r_1 = r_2 = r$$
, то $a_n = ar^n + bnr^n$

$$a_n = a(-2)^n + b(3)^n$$

Пусть
$$\begin{cases} a_0 = 1 = a + b \\ a_1 = 8 = -2a + 3b \end{cases}$$

Пусть
$$\begin{cases} a_0 = 1 = a + b \\ a_1 = 8 = -2a + 3b \end{cases}$$
$$-5a = 5 \Longrightarrow \begin{cases} a = -1 \\ b = 2 \end{cases} \Longrightarrow a_n = -(-2)^n + 2 \cdot 3^n$$

• Разделяй и властвуй (Divide-and-Conquer)

$$T(n) = \underbrace{2T\left(rac{n}{2}
ight)}_{ ext{работа рекурсии}} + \underbrace{\theta(n)}_{ ext{работа разделения/слияния}}$$

• Основная теорема о рекуррентных соотношениях (Master Theorem) *тык*

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Из этого, $c_{crit} = \log_b a$

I случай: слияние < рекурсия

$$\overline{f(n) \in O(n^c)}$$
, где $c < c_{crit} \Longrightarrow T(n) \in \Theta(n^{c_{crit}})$

$$f(n) \in O(n^c) \iff f(n) \in o(n^{c_{crit}})$$

II случай: слияние ≈ рекурсия

$$f(n) \in \Theta(n^{c_{crit}} \log^k n) \Longrightarrow T(n) \in \Theta(n^{c_{crit}} \log^{k+1} n)$$

Здесь $k \ge 0$. В общем случае см. википедию

III случай: слияние > рекурсия

$$f(n) \in \Omega(n^c)$$
, где $c > c_{crit} \Longrightarrow T(n) \in \Theta(f(n))$

• Метод Акра-Бацци (Akra-Bazzi method)

_{ТЫК}

$$T(n)=f(n)+\sum_{i=1}^k a_i T(b_i n+h_i(n))\Longrightarrow T(n)\in\Theta\left(n^p\cdot\left(1+\int_1^n rac{f(x)}{x^{p+1}}dx
ight)
ight),$$
 где p - решение для $\sum_{i=1}^k a_i b_i^p=1$

$$a_i > 0$$

$$0 < b_i < 1$$

$$\left(h_1(n) \in O(rac{n}{\log^2 n})$$
 - малые возмущения

 $Ex.\ T(n) = T\left(\lfloor \frac{n}{2} \rfloor\right) + T\left(\lceil \frac{n}{2} \rceil\right) + n$ - асимптотика сортировки слиянием

$$T(n) = T\left(\frac{n}{2} + O(1)\right) + T\left(\frac{n}{2} - O(1)\right) + \theta(n)$$

Здесь
$$b_i = \frac{1}{2}$$
, $h = \pm O(1) \in O\left(\frac{n}{\log^2 n}\right)$

Ex.
$$T(n) = T\left(\frac{3n}{4}\right) + T\left(\frac{n}{4}\right) + n$$

$$a_1 = 1, b_1 = \frac{3}{4}, a_2 = 1, b_2 = \frac{1}{4}, f(n) = n$$

$$(\frac{3}{4})^p + (\frac{1}{4})^{p^4} = 1$$

$$p = 1$$

$$\int_{1}^{n} \frac{x}{x^{1+1}} dx = \int_{1}^{n} \frac{dx}{x} = \ln x \Big|_{1}^{n} = \ln n$$

$$T(n) \in \Theta(n \cdot (1 + \ln n))$$

$$T(n) \in \Theta(n \ln n)$$

• Решить рекуррентное соотношение $a_n = 3a_{n-1} - 2a_{n-1}$, где $a_0 = 1$, $a_1 = 3$

Используем производящие функции:
$$A(x) = \frac{1}{1 - 3x + 2x^2} = \frac{1}{(1 - x)(1 - 2x)} = \frac{-1}{1 - x} + \frac{2}{1 - 2x} \rightarrow 2^{n+1} - 1$$

• Линейные рекуррентности (Linear recurrences)

$$\underbrace{k_1 a_n + k_2 a_{n-1} + k_3 a_{n-2} + \dots}_{$$
динейная комб. рекуррентных членов функция от n

Линейное рекуррентное соотношение - $\begin{cases} f=0 \Longrightarrow \text{гомогенное (однородное}) \\ f \neq 0 \Longrightarrow \text{негомогенное (неоднородное}) \end{cases}$

Ех. Последовательность Фибоначчи:

$$F(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ F(n-1) + F(n-2) \end{cases}$$

$$F(n) - F(n-1) - F(n-2) = 0$$
 - однородное

• Операторы:

Cymma: (f+g)(n) = f(n) + g(n)

Умножение на число: $(\alpha \cdot f)(n) = \alpha f(n)$

Сдвиг: (Ef)(n) = f(n+1)

$$Ex. \ E(f - 3(g - h)) = Ef + (-3)Eg + 3Eh$$

Составные операторы:

$$(E-2)f = Ef + (-2)f = f(n+1) - 2f(n)$$

 $E^2f = E(Ef) = f(n+2)$

Ex.
$$f(n) = 2^n$$

 $2f = 2 \cdot 2^n$
 $Ef = 2^{n+1}$
 $(E^2 - 1)f(n) = E^2 f(n) - f(n) = 2^{n+2} - 2^n = 3 \cdot 2^n$

• Аннигилятор (Annihilator) - оператор, который трансформирует f в функцию, тождественную 0

Ex. Оператор (E-2) аннигилирует функцию $f(n)=2^n$

 $\mathit{Ex.}\ (\mathit{E}-\mathit{c})$ аннигилирует c^n

Ex. (E-3)(E-2) аннигилирует $2^{n}+3^{n}$

 $Ex. (E-c)^d$ аннигилирует любую функцию формы $p(n) \cdot C^n$, где p(n) - многочлен степени не больше d-1

Nota. Любой составной оператор аннигилирует класс функций

Nota. Любая функция, составленная из полинома и экспоненты, имеет свой единственный аннигилятор

Если X аннигилирует f, то X также аннигилирует Ef

Если X аннигилирует f и Y аннигилирует g, то XY аннигилирует $f\pm g$

- Аннигилирование рекуррентностей:
 - 1. Запишите рекуррентное соотношение в форме операторов
 - 2. Выделите аннигилятор для соотношения
 - 3. Разложите на множители (если понадобится)
 - 4. Выделите общее решение из аннигилятора
 - 5. Найдите коэффициенты используя базовые случаи (если даны)

Ex.
$$r(n) = 5r(n-1), r(0) = 3$$

1.
$$r(n+1) - 5r(n) = 0$$
 $(E-5)r(n) = 0$

- 2. (E-5) аннигилирует r(n)
- 3. (E-5) уже разложен
- 4. $r(n) = \alpha \cdot 5^n$
- 5. $r(0) = 3 \Longrightarrow \alpha = 3$

Ex.
$$T(n) = 2T(n-1) + 1$$
, $T(0) = 0$

- 1. (E-2)T(n) = 1
- 2. (E-2) не аннигилирует T(n), остается 1. Тогда добавим аннигилятор (E-1), получим, что (E-1)(E-2) аннигилирует T(n)
- 3. Разложение не требуется
- 4. $T(n) = \alpha \cdot 2^n + \beta$ общее решение

5.
$$T(0) = 0 = \alpha \cdot 2^0 + \beta$$

$$T(1) = 1 = \alpha \cdot 2^1 + \beta$$

$$\alpha = 1, \beta = -1$$

• Псевдонелинейные уравнения (Pseudo-non-linear equations)

Ex.
$$a_n = 3a_{n-1}^2$$
, $a_0 = 1$

$$\log_2 a_n = \log_2(3a_{n-1}^2)$$

Пусть
$$b_n = \log_2 a_n$$

$$b_n = 2b_{n-1} + \log_2 3, b_0 = 0$$

$$b_n = (2^n - 1)\log_2 3$$

$$a_n = 2^{(2^n - 1)\log_2 3} = 3^{2^n - 1}$$

X. Программа экзамена в 2023/2024

5. Теория графов.

1. Ориентированные и неориентированные графы (Directed and undirected graphs)

Граф - множество вершин V и множество ребер E (в общем случае), соединяющие какие-либо две вершины: G(V,E)

По виду ребер различают:

неориентированный граф v_2 v_3 v_5

ориентированный граф

- ребра не имеют направлений

- ребра имеют направления

2. Простые графы и псевдографы (Simple graphs and pseudographs)

Простой граф G(V, E) - граф, в котором

- $V \neq \emptyset$ граф не пустой
- $E \subseteq V \times V$ ребра представлены как множество пар вершин
- $\forall v \in V \ \langle v,v \rangle \notin E$ граф не содержит петлей ребер, соединяющих одну вершину с собой же

Петля

Псевдограф G(V, E) - простой граф, в котором разрешены петли

3. Мультиребра и мультиграфы (Multiedges and multigraphs)

Мультиребра - ребра, соединяющие одну и ту же пару вершин больше одного раза

Мультиграфы - графы, содержащие мультиребра. В этом случае E - мультимножество

4. Гиперграфы (*Hypergraphs*)

Гиперребро - ребро, соединяющее несколько вершин

Гиперграф - граф, содержащий гиперребро

5. Нуль-граф, пустой граф и синглтон (Null, empty, singleton graphs)

Нуль-граф - граф, не содержащий вершин (и ребер)

Пустой граф - граф, не содержащий ребер

Синглтон - граф, содержащий из одной вершины

6. Полный граф (Complete graph)

Полный граф K_n - простой граф из n вершин, в которой все вершин соединены друг с другом

7. Взвешенный граф (Weighted graph)

Взвешенный граф - граф, в котором ребра (и/или вершины) имеют числовой вес. Иначе говоря, определена функция $w: E \to \mathbb{R}$

8. Планарный граф (Planar graphs)

Планарный граф - граф, который можно изобразить на плоскости без пересечений рёбер По теореме Понтрягина-Куратовского граф планарен morda u morbko morda, korda он не содержит подграфов, гомеоморфных полному графу из пяти вершин K_5 или графу «домики и колодцы» $K_{3,3}$

9. Подграф (Subgraph)

Подграф графа G(V,E) - граф G'(V',E') такой, что $V'\subseteq V,E'\subseteq E$

10. Остовный подграф (Spanning subgraph)

Остовный подграф графа G(V,E) - такой подграф G'(V,E'), содержащий все вершины исходного

11. Порожденный подграф (Induced subgraph)

Порожденный подграф G[S] графа G(V, E) - подграф G'(S, E'), который содержит все ребра, соединяющие вершины из S в исходном графе

12. Отношение смежности (Adjacency relation)

Отношение смежности - отношение A между вершинами, соединенными ребром: $A = \{\langle u,v \rangle \mid \langle u,v \rangle \in E\}$

13. Матрица смежности (Adjacency matrix)

Матрица смежности - матрица A_V , выражающее отношение смежности

14. Отношение инцидентности (Incidence relation)

Отношение инцидентности - отношение B между вершиной и соединяющей ее ребром: $B = \{\langle u,e \rangle \mid u \in V \land e \in E \land \exists v \in V \mid (\langle u,v \rangle \in E \lor \langle v,u \rangle \in E)\}$

15. Матрица инцидентности (Incidence matrix)

Матрица инцидентности - матрица A_V , выражающее отношение инцидентности

16. Степень вершины (Vertex degree)

Степень $\deg(v)$ вершины v - количество и ребер из этой вершины (петли считаются дважды)

Назовем $\delta(G)$ - минимальная степень вершины в графе, $\Delta(G)$ - максимальная степень вершины в графе

17. Регулярный граф (Regular graph)

r-регулярный граф - граф, все степени вершин которого равны r - $\forall v \in V \deg(v) = r$

18. Лемма о рукопожатиях (Handshaking lemma)

 $\sum_{v \in V} \deg(v) = 2|E|$ - сумма степеней всех вершин равна удвоенному количеству ребер

19. Изоморфизм графов (Graph isomorphism)

Графы G(V,E) и H(U,F) называются изоморфными, если существует биекция $f\mid V\to U$ такая, что если вершины v и u графа G смежны, то и вершины f(v) и f(u) графа H тоже смежны

20. Гомоморфизм графов (Graph homomorphism)

Гомоморфизм графов - отображение вершин графа G в вершины графа H такое, что смежные вершины графа G отображаются в смежные вершины графа H

21. Гомеоморфизм графов (*Graph homeomorphism*) Деление (Subdivision) ребра $\langle u, v \rangle$ - операция, добавляющее верщину w, ребра $\langle u, w \rangle$ и $\langle w, v \rangle$ и удаляющее ребро $\langle u, v \rangle$

Исключение (Smoothing) вершины w (степени 2) - операция, обратная делению - исключение вершины w и ребер $\langle u,w\rangle$ и $\langle w,v\rangle$ и добавление ребра $\langle u,v\rangle$ Графы G и H гомеоморфны, если граф H можно получить в результате деления или исключения графа G

Гомоморфизм

Гомеоморфизм

22. Пути и циклы (Walks, paths, trails, cycles)

Путь (Walk) - последовательность из вершин и ребер, соединяющих соседние вершины: $l=(v_0,e_0,v_1,e_1,\ldots,e_{n-1},v_n)$

Цепь (Trail) - путь (walk), все ребра которого различны

Простая цепь (Path) - путь (walk), все вершины (и соответственно ребра) которого различны

Замкнутый путь (Closed walk) - путь (walk), начальная вершина которого является конечной

Контур (Circuit) - цепь (trail), являющаяся замкнутым Цикл (Cycle) - простая цепь (path), являющаяся замкнутым (*терминология из Википедии)

23. Эйлеровы путь, цикл, граф (Eulerian path, cycle, graph)

Эйлеров путь - путь, содержащий все ребра графа

Эйлеров цикл - замкнутый путь, содержащий все ребра графа

Граф называют эйлеровым, если в нем есть эйлеров цикл. Граф называют полуэйлеровым, если в ней есть эйлеров путь.

24. **Теорема Эйлера** для графов (Euler's theorem for graphs)

Граф эйлеров, если все степени вершин четные, а ребра принадлежат одной компоненте связности

Граф полуэйлеров, если ровно 2 вершины имеют нечетную степень, а ребра принадлежат одной компоненте связности

25. Гамильтоновы путь, цикл, граф (Hamiltonian path, cycle, graph)

Гамильтонов путь - путь, содержащий все вершины графа

Гамильтонов цикл - замкнутый путь, содержащий все вершины графа

Граф называют гамильтоновым, если в нем есть гамильтонов цикл. Граф называют полугамильтоновым, если в ней есть гамильтонов путь.

26. **Теорема Оре** (Ore's theorem)

Теорема Оре - достаточное условие существования гамильтонова цикла: если в графе G(V, E) для любых $u, v \in V \deg u + \deg v \geq |V|$, то граф G гамильтонов

27. Теорема Дирака (Dirac's theorem)

Теорема Дирака - достаточное условие существования гамильтонова цикла: если в графе G(V,E) для любой $u \in V \deg u \geq \frac{|V|}{2}$, то граф G гамильтонов

28. Эксцентриситет вершины (Eccentricity of a vertex)

Расстояние ${\rm dist}(u,v)$ - длина (количество ребер) кратчайшего пути между u и v Эксцентриситет $\varepsilon(v)$ - наибольшая длина кратчайшего пути от этой вершины до другой в этом графе: $\varepsilon(v) = \max_{u \in V} {\rm dist}(v,u)$

29. Радиус и диаметр графа (Radius and diameter of a graph)

Радиус графа $\mathrm{rad}(G)$ - наименьший эксцентриситет вершины из графа: $\mathrm{rad}(G) = \min_{v \in V} \varepsilon(v)$ Диаметр графа $\mathrm{diam}(G)$ - наибольший эксцентриситет вершины из графа: $\mathrm{diam}(G) = \max_{v \in V} \varepsilon(v)$

30. Центр графа (Center of a graph)

Центр графа - вершина (вершины), эксцентриситет которой равен радиусу графа: $\operatorname{center}(G) = \{v \in V \mid \varepsilon(v) = \operatorname{rad}(G)\}$

31. Центроид дерева (Centroid of a tree)

Центроид дерева - вершина (или 2 вершины), удаление которой приведет к распаду на поддеревья, каждое из которое имеет не больше $\frac{|V|}{2}$ вершин

Очевидно, что только деревья, состоящие из четного количества вершин, могут иметь 2 центроида

32. **К**лика (*Clique*)

Клика графа - порожденный подграф, который является полный графом. 1-клика - вершина, 2-клика - 2 вершины и ребро, 3-клика - треугольник, n-клика - граф K_n

33. Независимое (стабильное множество) (Independent set)

Независимое (стабильное) множество - множество вершин, каждая из которых не соединена ребром с другой вершиной из множества

34. Паросочетание (Matching)

Паросочетание (независимое множество ребер) - множество ребер, каждые из которые не соединяют одну и ту же вершину

35. Идеальное паросочетание (Perfect matching)

Идеальное паросочетание - паросочетание, ребра которого инцидентны ко всем вершинам графа (то есть паросочетание, являющееся реберным покрытием)

36. Вершинное покрытие (Vertex cover)

Вершинное покрытие - множество вершин, к которым инцидентны все ребра графа

37. Реберное покрытие ($Edge\ cover$)

Реберное покрытие - множество ребер, которые инцидентны ко всем вершинам

38. Дерево (*Tree*)

Дерево - связный ацикличный граф

39. **Лес** (*Forest*)

Лес - несвязный граф, каждая компонента которого не имеет циклов (граф, состоящий из деревьев)

40. Минимальное остовное дерево (Minimum spanning tree)

Минимальное остовное дерево взвешенного графа G(V, E, w) - дерево T(V, E'), сумма весов ребер которого имеет наименьшее значение

41. **Код Прюфера** (*Prüfer code*)

Код Прюфера - алгоритм кодировки маркированного дерева размера n в последовательность чисел

Кодировка:

- 1. Делаем биекцию между названиями вершин и числа из диапазона [1;n] (если необходимо)
- 2. Берем лист с наименьшим значением, удаляем его, записываем в последовательность номер его родителя
- 3. Повторяем 2. до тех пор, пока не останется 2 вершины их кодировка тривиальна и не нуждается в хранении

Декодировка:

- 1. Создаем n вершин, и множество вершин W, которых нет в последовательности
- 2. Читаем номер вершины из последовательности
- 3. Соединяем эту вершину с вершиной из W с минимальным номером, удалив ее
- 4. Добавляем вершину из последовательности в W
- 5. Повторяем 2.-4.
- 6. Соединяем 2 оставшиеся вершины из W

42. Двудольный граф (Bipartite graph)

Двудольный граф $K_{n,m}$ - граф, вершины которого можно разбить на две части размеров n и m таким образом, что вершины из одной части не смежны друг с другом

43. **Теорема баланса регулярных двудольных графов** (Theorem on the balance of regular bipartite graphs)

Если двудольный граф $K_{n,m}$ регулярный, то n=m

 \square Граф регулярный $\Longrightarrow \forall v \in V \deg v = r \in \mathbb{N} \Longrightarrow$ левая доля имеет nr исходящих ребер, а правая доля имеет mr входящих ребер, но так как вершины в долях не соединены ребрами, nr = mr \square

44. Теорема существования идеального паросочетания регулярного двудольного графа (Theorem on the existence of a perfect matching in a regular bipartite graph)

Теорема: у любого r-регулярного двудольного графа (r > 0) существует идеальное паросочетание

Пусть G(V,E) - граф, вершины разбиваются на две доли $X\oplus Y=V$

Пусть $N(A) = \{y \in Y \mid \exists x \in X \ \langle x,y \rangle \in E\}$ - соседи (смежные вершины) вершин из множества $A \subseteq X$

Докажем от противного: пусть идеального паросочетания не существует, тогда по теореме Холла $\exists S \subset X \mid |S| > |N(S)|$, но тогда кол-во ребер, выходящих из S, равно r|S|, но кол-во ребер, выходящих из N(S), равно r|N(S)|

Из этого r|S| > r|N(S)|, что невозможно, так как N(S) - соседи S - противоречие \square

45. **Теорема Хо**лла (Hall's theorem (on the existence of an X-perfect matching in a bipartite graph))

Пусть G(V,E) - граф, вершины разбиваются на две доли $X\oplus Y=V$

Тогда в графе G(V, E) существует X-идеальное паросочетание (паросочетание, покрывающее все вершины X) тогда и только тогда, когда для любого $A \subset X |A| \leq |N(A)|$

- \square Если существует такое A, что |A| > |N(A)|, то какой-либо вершине из A не найдется противоположная вершина из N(A) и X-идеального паросочетания не выйдет \square
- 46. Связность в неориентированных графах (Connectivity in undirected graphs)

Компонента связность графа - максимальный подграф, в котором от каждой вершины до любой другой существует путь

Граф считается связным, если он представляет собой одну компоненту связности

47. Сильная и слабая связность в ориентированных графах (Strong and weak connectivity in directed graphs)

Компонента сильной связности - максимальный подграф, в котором для любых вершин u,v существует пути $u\leadsto v$ и $v\leadsto u$

Компонента слабой связности - максимальный подграф, который является компонентой

связности в неориентированном графе, полученном при удалении ориентации ребер у исходного

48. Конденсация ориентированного графа (Condensation of a directed graph)

Конденсация графа - сжатие сильно связных компонент графа до вершин с целью получения упрощенного и ациклического графа

49. Вершинная связность (Vertex connectivity)

Вершинная связность $\kappa(G)$ графа G - минимальное число вершин, которое нужно удалить в графе, чтобы он стал несвязным или синглтоном

50. Реберная связность (Edge connectivity)

Реберная связность $\lambda(G)$ графа G - минимальное число ребер, которое нужно удалить в графе, чтобы он стал несвязным

51. **Теорема Уитни** (Whitney's theorem)

Для любого графа $\kappa(G) \leq \lambda(G) \leq \delta(G)$

Допустим, что $\kappa(G) > \lambda(G)$, тогда после удаления $\lambda(G)$ ребер будет $k \leq \lambda(G)$ вершин со одной стороны и $m \leq \lambda(G)$ с другой. Но мы их тоже можем удалить, и граф распадется, значит $\lambda < \kappa(G) = \min(k, m) \leq \lambda(G)$ - противоречие

Допустим, что $\lambda(G) > \delta(G)$, тогда мы можем найти в графе вершину с наименьшей степенью $\delta(G)$, при удалении $\delta(G)$ ребер граф распадется, значит $\lambda(G) = \delta(G)$ - противоречие

52. **k-связный граф** (k-connected graph)

k-вершинно-связный граф - граф, остающийся связным после удаления k вершин ($\kappa(G) \ge k$).

НО: синглтон имеет $\kappa(G) = 0$, он не 1-вершинно-связный, при этом он связный; K_2 имеет $\kappa(G) = 1$, поэтому он не 2-вершинно-связный, но K_2 может быть блоком

k-реберно-связный граф - граф, остающийся связным после удаления k ребер $(\lambda(G) \ge k)$ НО: у синглтона $\lambda(G) = 0$, он не 1-реберно-связный, при этом синглтон - компонента реберной двусвязности

53. **Теорема Менгера** (Menger's theorem)

Теорема (Менгера о реберной двойственности в ориентированном графе):

Между вершинами u и v существует L реберно непересекающихся путей тогда и только тогда, когда после удаления любых (L-1) ребер существует путь из u в v.

Теорема (Менгера о вершинной двойственности в ориентированном графе):

Между вершинами u и v существует L вершинно непересекающихся путей тогда и только тогда, когда после удаления любых (L-1) вершин существует путь из u в v.

Доказательства

54. Двусвязность (Biconnectivity)

Двусвязность (вершинная) определяется как отношение эквивалентности 2 ребер, между

концами которых существуют 2 вершинно-различных пути

Компонента (вершинной) двусвязности (также блок) - подграф, который включает все двусвязные ребра (класс эквивалентности двусвязности).

Реберная двусвязность определяется как отношение эквивалентности 2 вершины, между которыми существуют 2 реберно-различных пути

Компонента реберной двусвязности - подграф, который включает все двусвязные вершины (класс эквивалентности двусвязности).

55. Точка сочленения (Articulation point)

Точка сочленения - вершина, принадлежащая нескольким компонентам (вершинной) двусвязности

56. Moct (Bridge)

Мост - ребро, соединяющее две компоненты реберной двусвязности

57. **Блок** (*Blocks*)

Блок - компонента вершинной двусвязности

58. Дерево блоков и точек сочленений (*Block-cut tree*)

Дерево блоков и точек сочленений графа - дерево, в котором каждая вершина представляет собой либо точку сочленения, либо блок, при этом вершина точки сочленения соединена только с вершиной блока и наоборот

6. Теория автоматов.

1. Детерминированный конечный автомат (Deterministic Finite Automaton (DFA))

Детерминированный конечный автомат $A = (Q, \Sigma, \delta, q_0, F)$ - объект, представляющий собой множество состояний Q, множество входных символов Σ , функция переходов $\delta: Q \times \Sigma \to Q$, начальное состояние q_0 и множество конечных состояний F

Автомат принимает какую-то цепочку символов из Σ^* и решает, принадлежит ли она соответствующему автомату регулярному языку L

Для простоты обычно выбирают $\Sigma = \{0,1\}$

Автомат можно представить как орграф

Или как таблицу функции переходов

	0	1
$\rightarrow q_0$	q_2	q_0
$*q_1$	q_1	q_1
q_2	q_2	q_1

2. **Недетерминированный конечный автомат (НКА)** (Non-deterministic Finite Automaton (NFA))

Недетерминированный конечный автомат $A = (Q, \Sigma, \delta, q_0, F)$ - объект, представляющий собой множество состояний Q, множество входных символов Σ , функция переходов $\delta: P(Q) \times \Sigma \to \mathcal{P}(Q)$, начальное состояние q_0 и множество конечных состояний F Главное отличие НКА от ДКА: от одного состояния в НКА можно перейти сразу к нескольким другим или к ни одному

Пример:

3. Формальные языки (Formal languages)

Формальный язык L - множество конечных слов над конечным алфавитом символов Σ

4. Операции над формальными языками (конкатенация, объединение, замыкание Клини) (Operations on formal languages (concat, union, Kleene closure))

Конкатенация LM языков L и M - множество слов, состоящих из записанных подряд слова из L и слова из M: $LM = \{uw \mid u \in L \land w \in M\}$

Объединения $L \cup M$ языков L и M - множество слов, которые содержатся в L или/и в M: $L \cup M = \{w \mid w \in L \lor w \in M\}$

Замыкание Клини L^* языка L - множество слов, которые могут быть получены в результате конкатенации слов из L: $L^* = \{w_1 w_2 \dots w_n \forall n \geq 0 \mid w_i \in L\}$ (включая пустое слово ε)

5. Регулярные языки (Regular languages)

Регулярный язык - формальный язык, который задается некоторым автоматом Также регулярный язык задается индуктивно:

- 1. Пустое множество \varnothing и множество из пустой строки $\{\varepsilon\}$ являются регулярными языками
- 2. Множество из однобуквенного слова $\{a\}$, где $a \in \Sigma$ является регулярным языком
- 3. Для регулярных языков α и β объединение $\alpha \cup \beta$, конкатенация $\alpha\beta$ и замыкание Клини α^* тоже регулярные языки
- 4. Других регулярных языков нет
- 6. Регулярное выражение (Regular expression)

Регулярное выражение - способ описания регулярного языка

Регулярное выражение	Язык, который оно описывает	
	Ø	
${m arepsilon}$	$\{arepsilon\}$	
а (какое-либо РВ)	α	
<i>b</i> (какое-либо PB)	β	
(a)	α	
ab	lphaeta	
a+b	$lpha \cup eta$	
a*	$lpha^*$	

7. Теорема Клини (Kleene's theorem)

Для любого регулярного выражения существует конечный автомат, и они описывают равные регулярные языки

8. Конструкция подмножеств (ДКА из НКА) (Powerset construction (DFA from NFA)) Из состояний Q НКА построим ДКА с состояниями, каждое из которых представляет собой подмножество Q. Далее при помощи магии умным образом строим переходы

Как можем видеть, 5 состояний являются недостижимыми, поэтому их мы можем удалить. В итоге в ДКА остается 3 состояния (зачастую количество состояний не $2^{|Q|}$, а чуть больше |Q|)

9. ε**-ΗΚΑ** (ε-NFA)

 ε -НКА $A=(Q,\Sigma,\delta,q_0,F)$ - НКА, допускающий ε переходы (переходы по пустым строчкам) Тогда $\delta: Q\times (\Sigma\cup \{\varepsilon\})\to \mathcal{P}(Q)$

Пример - автомат, допускающий цепочки 01(01)*:

10. Конструкция НКА из ε -НКА (NFA construction from ε -NFA)

Алгоритм:

- 1. Транзитивное замыкание: если из состояния u мы можем сделать больше одного ε -перехода в состояние w, то мы можем сделать сразу ε -переход из u в w
- 2. Добавление допускающих состояний: если есть ε -переход из u в w, причем w допускающее состояние, то u можно сделать тоже допускающем
- 3. Добавление ребер: если есть переходы $\delta(u,\varepsilon)=v$ и $\delta(v,c)=w$, то сделаем равное ребро $\delta(u,c)=w$
- 4. Удаление ε -переходов

11. **Конструкция Томпсона (ε-НКА из регулярного выражения)** (*Thompson's construction (ε-NFA from regular expression*))

`	,	, 3
Регулярное	Язык, ко-	
выраже-	торый оно	Автомат
ние	описывает	
	Ø	\rightarrow
ε	$\{arepsilon\}$	$\rightarrow \bigcirc \stackrel{\mathcal{E}}{\longrightarrow} \bigcirc$
с (символ)	{c}	$\rightarrow \bigcirc \stackrel{c}{\longrightarrow} \bigcirc$
ab	αβ	
<i>a</i> + <i>b</i>	$lpha \cup eta$	ABTOMAT β ABTOMAT β
a*	$lpha^*$	ABTOMAT α ε ε

Пользуясь этими преобразованиям, можно построить ε -HKA

12. Алгоритм Клини (Kleene's algorithm)

Алгоритм Клини - алгоритм для превращения ДКА в регулярное выражение

Пусть ДКА $(Q, \Sigma, \delta, q_0, F)$, а $Q = \{q_0, \dots, q_n\}, F = \{q_i \mid i \in \mathbb{N}_F \subset \mathbb{N}\}$

Определим $R_{ij}^{-1}=a_1+\cdots+a_m$, где $q_j\in\delta(q_i,a_k)$ для k - другими словами все символы, по которым можно перейти из q_i в q_j . Для i=j $R_{ii}^{-1}=a_1+\cdots+a_m+\varepsilon$

Далее для каждого k от 0 до n итеративно определяем

$$R_{ij}^k = R_{ik}^{k-1}(R_{kk}^{k-1}) * R_{kj}^{k-1}|R_{ij}^{k-1}$$

Таким образом, ответом будет регулярное выражение $\bigcup_{i\in\mathbb{N}_F}R^n_{0i}$

13. Лемма о накачке для регулярных языков (Pumping lemma for regular languages)

Если L - регулярный язык, то существует константа $p \ge 1$, зависящая от L, такая, что любая строка $w \in L(|w| \ge p)$ может быть записана w = xyz так, что удовлетворены условия:

- 1. $|y| \ge 1$
- $2. |xy| \le p$
- 3. Для любого $n \ge 0$ $xy^nz \in L$

14. Свойства замыкания регулярных языков (Closure properties of regular languages)

Для регулярных языков L и M:

- 1. L^* (замыкание Клини) регулярный язык
- 2. $L \cup M$ (объединение) регулярный язык
- 3. LM (конкатенация) регулярный язык
- 4. $L \cap M$ (пересечение) регулярный язык
- 5. \overline{L} (дополнение $\Sigma^* \setminus L = \overline{L}$) регулярный язык
- $6.~L^R$ (инверсия abac o caba) регулярный язык
- 7. $L \setminus M$ (разность) регулярный язык
- 8. h(L) (гомоморфизм $h \mid \Sigma \to \Sigma^*$, например h(0) = ab, h(1) = ba) регулярный язык
- 9. $h^{-1}(L)$ (обратный гомоморфизм $h^{-1}\mid \Sigma^* \to \Sigma$, например $h^{-1}(01)=a, h^{-1}(10)=b)$ регулярный язык

15. Автомат Мили (Mealy machine)

Автомат Мили $M_{\mathrm{Mealy}} = (Q, \Sigma, \Omega, q_0, \delta, \lambda)$ - автомат, выводящий последовательность, которая зависит от входной последовательности

Здесь Ω - алфавит выходящей последовательности, а $\lambda: Q \times \Sigma \to \Omega$ - функция выходов, зависящая от состояния и входного символа

Значение функции λ на ребре графа обозначают после переходного символа

Этот автомат Мили преобразует каж-дый 3-ий символ с 0 на 1 и наоборот: $100101 \rightarrow 101100$

16. Abtomat Mypa (Moore machine)

Автомат Мура $M_{\text{Moore}} = (Q, \Sigma, \Omega, q_0, \delta, \lambda)$ - автомат, выводящий последовательность, зависящую от входной последовательности

Как и в автомате Мили, в автомате Мура Ω - алфавит выходящей последовательности, но $\lambda: Q \to \Omega$ - функция выходов, зависящая от текущего состояния

Значение функции λ на графе обозначают в вершине состояния

Этот автомат Мура выдает ⁽¹⁾, если двоичное число делится на 3, иначе [№]

17. Пустота языка конечного автомата (Emptiness of finite automaton language)

Язык автомата L считается пустым в том случае, если язык не содержит никаких цепочек (в том числе пустых) - $L=\emptyset$

По конечному автомату можно понять, является ли язык пустым: если какое-либо допускающее состояние можно достигнуть из начального, то язык автомата не является пустым (это можно определить при помощи обхода графа)

18. Конечность языка конечного автомата (Finiteness of finite automaton language)

Язык автомата L считается конечным, если он содержит конечное множество цепочек Конечность языка можно определить так: если есть такое состояние v, что к нему можно прийти из начального состояния, от него можно прийти к какому-либо допускающему состоянию, а из v можно каким-либо образом прийти в v, то язык бесконечный - мы можем сколь угодно раз зацикливаться по v и получать бесконечное количество цепочек

19. Эквивалентность конечных автоматов (Equivalence of finite automata)

Автоматы эквивалентны, если они допускают одно и то же множество цепочек.

Пусть автомат $A = (Q, \Sigma, \delta, q_0, F)$. Введем функцию $\lambda: Q \to \{0, 1\}$, возвращающую 1, если состояние допускающее, иначе 0

Введем такое отношение эквивалентности $R_0 \subset Q \times Q$ между состояниями. Определим, что $q R_0 p$ в том случае, если $\lambda(q) = \lambda(p)$

Теперь определим R_1 как отношение состояний q и p, для которых $\lambda(q) = \lambda(p)$ и $\lambda(\delta(q,c)) = \lambda(\delta(p,c))$ для любого символа $c \in \Sigma$

Теперь определим R_2 как отношение состояний q и p, для которых $\lambda(\hat{\delta}(q,w)) = \lambda(\hat{\delta}(p,w))$ для любой цепочки $w \in \Sigma^*$ длины не больше 2

Окончательно определим R как отношение состояний q и p, для которых $\lambda(\hat{\delta}(q,w)) = \lambda(\hat{\delta}(p,w))$ для любой цепочки $w \in \Sigma^*$

Пусть даны автоматы $M=(Q_1,\Sigma,\delta_1,q_1,F_1)$ и $N=(Q_2,\Sigma,\delta_2,q_2,F_2).$

Теперь построим такой автомат $A = (Q, \Sigma, \delta, q_1, F)$, выбрав какое-либо начальное состояние, объединив множества состояний и множества допускающих состояний и расширив функцию переходов

Автоматы M и N эквивалентны, если состояния q_1 и q_2 принадлежат одному классу эквивалентности, то есть $q_1\,R\,q_2$

20. Теорема Майхилла-Нероуда (Myhill-Nerode theorem)

На языке L определим различимое расширение как строку z, которой можно расширить строки x и y до строк xz и yz так, что только одна из этих строк принадлежит языку L Определим отношение эквивалентности \sim_L на языке L как отношение между такими строками x и y, что не существует никакого различимого расширения z (то есть либо строки xz,yz принадлежат языку, либо не принадлежат). Отношение \sim_L разделяет цепочки на классы эквивалентности

Теорема Майхилла-Нероуда гласит:

- 1) Язык L регулярен тогда и только тогда, когда количество классов эквивалентности конечно
- 2) Минимальный ДКА, допускающий язык L, имеет столько состояний, сколько классов эквивалентности
- 3) Любой минимальный ДКА, допускающий L, изоморфен следующему: пусть каждый класс эквивалентности [x] для строки x будет соотнесен к состоянию, причем существуют переходы $[x] \to [xa]$ для $a \in \Sigma$, начальным состоянием будет состояние класса $[\varepsilon]$, а допускающими состояниями будут состояния классов [s] для $s \in L$

7. Комбинаторика.

- 1. (Ordered arrangements)
- 2. (Permutations)
- $3. \quad (k\text{-}permutations)$
- 4. (Cyclic permutations)
- 5. (Unordered arrangements)
- $6. \quad (k\text{-}combinations)$
- 7. (Multisets)
- 8. (Permutations of multisets)
- 9. (Combinations of infinite multisets)
- 10. (Compositions)

- 11. (Set partitions)
- 12. (Stirling numbers of the second kind)
- 13. (Integer partitions)
- 14. (Principle of Inclusion-Exclusion)

8. Рекуррентности и производящие функции.

- 1. (Recurrence relations)
- 2. (Solving recurrence relations using characteristic equations)
- 3. (Generating functions)
- 4. (Power series)
- 5. (Solving linear recurrences using generating functions)
- 6. (Solving combinatorial problems using generating functions)
- 7. (Operators and annihilators)
- 8. (Solving linear recurrences using annihilators)
- 9. (Catalan numbers)
- 10. (Divide-and-Conquer algorithms analysis using recursion trees)
- 11. (Master theorem)
- 12. (Akra-Bazzi method)