

Aula 10 – Segmentação de imagens III Regiões

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Roteiro

- Crescimento de regiões
- Divisão e fusão de regiões

CRESCIMENTO DE REGIÕES

- f(x, y) é a imagem de entrada;
- S(x, y) é uma imagem contendo sementes:
 - S é uma imagem binária com o mesmo tamanho da imagem f.
 - Os pixels com valor 1 indicam as sementes e os 0s as demais localizações;
- **Q** denota **alguma propriedade** a ser aplicada em cada posição **(x, y)**.

- f(x, y) é a imagem de entrada;
- **S(x, y)** é uma imagem contendo sementes:
 - S é uma imagem binária com o mesmo tamanho da imagem f.
 - Os pixels com valor 1 indicam as sementes e os 0s as demais localizações;
- Q denota alguma propriedade a ser aplicada em cada posição (x, y).

- Algoritmo básico de crescimento da regiões (baseado em conectividade-8):
 - Reduzir cada componente conectado em S(x, y) a um único pixel (erosão morfológica).
 - Rotular todos os pixels, r = [1, 2, 3, ... N].
 - Para cada semente r, gerar uma imagem f_r em que:
 - $f_r(x, y) = r$, se o pixel da imagem de entrada satisfaz Q;
 - $f_r(x, y) = 0$, caso contrário.
 - A imagem de saída g é formada anexando a cada semente em S todos os pixels rotulados com o número r em f_r que estão 8-conectados a essa semente.
 - Em caso de conflito atribuir ao menor rótulo. "O primeiro leva tudo".

• (A) Imagem original f(x, y) com tamanho 5 x 5, profundidade de 3 bits (L = 8) e duas sementes.

• (B) Imagem com as sementes S(x, y). As sementes já foram reduzidas a um único pixel e rotuladas.

- (C) Imagem com as diferenças absolutas entre o pixel sob a semente com rótulo 1 e os demais pixels.
 - Propriedade Q: diferença absoluta entre os pixels (T).

(0)						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	- Τ₁	=	f(x,	y) -	- 1	

- (D) Imagem com as diferenças absolutas entre o pixel sob a semente com rótulo 2 e os demais pixels.
 - Propriedade Q: diferença absoluta entre os pixels (T).

(C)						
(C)	6	1	4	5	4	
	4	0	4	6	6	
	1	2	5	4	5	
	1	0	6	6	5	
	1	0	4	5	0	
	T_1	=	f(x,	y) -	- 1	

/ D\						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	$-T_2$	=	f(x,	y) -	- 7	

- (E) Segmentação da imagem f considerando Q = T < 3.
 - Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

В)	0 0	0	0	2	0 0 0	
	<u>U</u>				U	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
				S()	(, y)	
				'	//	

4				
2	0	1	1	6
1	0	2	0	1
2	2	1	0	2
7	6	4	6	6
0	2	7	5	7
(D)				

/ ->						
(D)	0	1	0	0	0	
	0	1	0	2	0	
	1	1	0	0	0	
	1	1	0	0	0	
	1	1	0	0	0	
	7			T_1	< 3	

- (E) Segmentação da imagem f considerando Q = T < 3.
 - Pixels em T₂ que satisfazem Q e possuem um caminho 8-conectado à semente.

1		6	5	5	0
5	=	6	4	6	5
1	=	4	5	6	4
1	=	0	2	0	0
6	О	4	1	1	1
(C)	(-)				

/ D\						
(D)	0	7	2	1	2	
	2	6	2	0	0	
	7	4	1	2	1	
	5	6	0	0	1	
	7	6	2	1	6	
	T_2	=	f(x,	y) -	- 7	

	0	0	0	0	0	< 3
	0	2	0	0	0	T_1
	0	0	0	0	0	
	1	1	1	1	1	
	0	0	1	1	1	
(5)	(D)					

• (F) Segmentação da imagem f considerando Q = T < 3.

F)						
·)	0	1	2	2	2	
	0	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	2	
	1	1	2	2	0	
				T	< 3	

- (G) Segmentação da imagem f considerando Q = T < 5.
 - Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

3)	0	1	1	0	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
				T_1	< 5	

- (H) Segmentação da imagem f considerando Q = T < 5.
 - Pixels em T₂ que satisfazem Q e possuem um caminho 8-conectado à semente.

(0)						
(G)	0	1	1	0	0	
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
				T_1	< 5	

- (I) Segmentação da imagem f considerando Q = T < 5.
 - Em caso de conflito, o pixel é atribuído a região com o menor rótulo de forma arbitrária.

) [0	1	1	0	0	
, ,	U		1	0	0	
	1	1	1	2	0	
	1	1	0	1	0	
	1	1	0	0	0	
	1	1	1	0	0	
	,			T_1	< 5	

						•
(1)	0	1	1	2	2	1
	1	1	1	2	2	
	1	1	2	1	2	
	1	1	2	2	2	
	1	1	1	2	0	
				Т	< 5	
	/					

S(x, y)

(J) Segmentação da imagem f considerando Q = T < 5.

0

0 0 0

(1)	0	1	1	2	2	
	1	1	1	2	2	
	1	1	2	1	2	
	1	1	2	2	2	
	1	1	1	2	0	
				Т	< 5	
	/					

S(x, y)

- (K) Segmentação da imagem f considerando Q = T < 8.
 - Pixels em T₁ que satisfazem Q e possuem um caminho 8-conectado à semente.

	4	6	5	5	0	-1
	5	6	4	6	5	y) -
	4	4		6	4	f(x,
	1	0	2	0	0	=
	6	4	1	1	1	T_1
(0)	(C)					

/ D\						Ţ
(B)	0	0	0	0	0	
	0	0	0	2	0	
	0	0	0	0	0	
	0	1	0	0	0	
	0	0	0	0	0	
				S()	(, y)	
	7			21/	', <i>y</i> ,	

2	0	1	1	6
1	0	2	0	1
2	2	1	0	2
7	6	4	6	6
0	2	7	5	7
(D)				

(14)						
(K)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
				T ₁	< 8	

- (L) Segmentação da imagem f considerando Q = T < 8.
 - Pixels em T₂ que satisfazem Q e possuem um caminho 8-conectado à semente.

(12)						
(K)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
				T_1	< 8	

- (M) Segmentação da imagem f considerando Q = T < 8.
 - Em caso de conflito, o pixel é atribuído a região com o menor rótulo de forma arbitrária.

S(x, y)

- (N) Segmentação da imagem f considerando Q = T < 8.
 - Com T < 8, todos os pixels atribuídos à semente 1.

• Segmentações da imagem f considerando (G) Q = T < 3; (J) Q = T < 5; (N) Q = T < 8.

/a						
(N)	1	1	1	1	1	
	1	1	1	2	1	
	1	1	1	1	1	
	1	1	1	1	1	
	1	1	1	1	1	
				T	< 8	

DIVISÃO E FUSÃO DE REGIÕES

- Algoritmo de divisão e fusão de regiões.
 - Dividir em quatro quadrantes qualquer região R_i em que Q(R_i)=Falso.
 - Quando não for possível dividir um região, fundir as regiões adjacentes R_j e R_k em que $Q(R_j \cup R_k)$ = Verdade.
 - 3. Parar quando a fusão não for mais possível.

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=	1	8.	8
σ=	2	.2	4

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

0	0	0	0
1	1	2	2
1	1	2	2
3	3	2	2

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=2.81 σ=2.48

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 0
 0
 0
 0

 1
 1
 2
 2

 1
 1
 2
 2

 3
 3
 2
 2

μ=1.44 σ=2.09

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

 μ =1.88 σ =2.69

 μ =1.38

 $\sigma = 0.99$

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 μ =1.88 σ =2.24

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=2.81 σ=2.48

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 0
 0
 0
 0

 1
 1
 2
 2

 1
 1
 2
 2

 3
 3
 2
 2

 μ =1.44 σ =2.09

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

μ=1.88 σ=2.69

 μ =1.38

 $\sigma = 0.99$

0	0	2	0
0	0	4	0
7	7	1	7
0	0	0	2

 $\mu = 1.88$ $\sigma = 2.24$

0-2							
0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

 μ =2.81 $\sigma = 2.48$

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

6

3

2

0

 $\mu = 1.44$

 $\sigma = 2.09$

0

0

0

 μ =1.38 $\sigma = 0.99$

0	0	0	0
1	1	2	2
1	1	2	2
3	3	2	2

 $\mu = 1.88$ $\sigma = 2.69$

0-2.03						
0	0	2	0			
0	0	4	0			
7	7	1	7			
0	0	0	2			

0	0
0	5

0	5	
0	5	

0	0
0	0

6	4
3	6

0

5 5

5

5

2	1
0	0

4

0

 $\mu = 1.88$ $\sigma = 2.24$

U-Z	.27						
0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=	2.	81	
σ=	2.	48	

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

1

0

2

0

 $\mu = 1.38$ $\sigma = 0.99$

σ=2	.17
0	0
0	5
μ=2 σ=2	
0	5
0	5
μ=0 σ=0	
0	0
0	0
μ=0 σ=0	
0	1
0	0

σ=2.	
0	0
0	5
μ=2. σ=2.	
0	5
0	5
μ=0. σ=0.	
0	0
0	0
μ=0. σ=0.	
0	1
0	0

μ=1 σ=2	
0	0
0	5
μ=2 σ=2	
0	5
0	5
μ=0 σ=0	
0	0
0	0
μ=0 σ=0	
0	1
0	0

μ=2.50 σ=2.50			
0	0		
5	5		
μ=5.00 σ=0.00			
5	5		
5	5		

 $\mu = 1.88$ $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=2.81	
$\sigma = 2.48$	

 $\mu = 1.44$ σ-2 na

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

 μ =1.38 σ =0.99

0

0	0	6	4
0	0	3	6
0	1	2	1
0	0	0	0

σ=2	σ=2.69			
0	0	2	0	
0	0	4	0	
7	7	1	7	
0	0	0	2	

0	0
0	5

0	5	5	5
		μ=5 σ=0	
0	5	5	5
0	5	5	5

6

3

 μ =0.75 σ =0.83

0

$\sigma = 0.00$					
0	0				
0	0				
μ=0.25					
σ=0.43					

u=0.00

μ=0 σ=0	
0	0
0	0
7	7
Λ	0

4

 $\mu = 1.88$ $\sigma = 2.24$

0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=2.81	
$\sigma = 2.48$	

 $\mu = 1.44$

 $\sigma = 2.09$

0

0

0

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

6

3

2

0

 $\mu = 1.38$ σ =0.99

3

 $\mu = 1.88$

 σ =2.69

0 0

0

0

3

0

2

0

)	
Ī	

0	5
0	5
0	5
μ=0 σ=0	
0	0
0	0
μ=0 σ=0	
0	1
0	0

	0	0	
	5	5	
	μ=5. σ=0.		
	5	5	
	5	5	
	6	4	
	3	6	
	μ=0. σ=0.		
	2	1	
	0	0	

0	0		
5	5		
μ=5. σ=0.			
5	5		
5	5		
		μ=0 σ=0	
6	4	0	0
3	6	0	0
μ=0 σ=0			
2	1	7	7
		_	
0	0	0	0

 $\mu = 1.88$

σ=2	.24						
0	0	0	0	0	0	0	0
0	5	5	5	1	1	2	2
0	5	5	5	1	1	2	2
0	5	5	5	3	3	2	2
0	0	6	4	0	0	2	0
0	0	3	6	0	0	4	0
0	1	2	1	7	7	1	7
0	0	0	0	0	0	0	2

Q: $\mu > 2.5 \text{ e } \sigma > 1.0$

μ=	2	.81	l
σ=	2	48	2

0	0	0	0
0	5	5	5
0	5	5	5
0	5	5	5

0

 μ =1.38 σ =0.99

σ=2.69					
0	0	2	0		
0	0	4	0		
7	7	1	7		
0	0	0	2		

U	U
0	5
0	5
0	5
μ=0 σ=0	
0	0
0	0
μ=0 σ=0	
0	1
0	0

5 5 μ=5.00 σ=0.00 5 5				
σ=0.00 5 5				
5 5				
6 4				
3 6				
μ=0.75 σ=0.83				
2 1				
0 0				

0	0		
5	5		
μ=5. σ=0.			
5	5		
5	5		
		μ=0 σ=0	
6	4	0	
3	6	0	
μ=0. σ=0.			
2	1	7	
0	0	0	

Bibliografia

- MARQUES FILHO, O.; VIEIRA NETO, H. Processamento digital de imagens. Brasport, 1999.
 - Disponível para download no site do autor (Exclusivo para uso pessoal)
 - http://dainf.ct.utfpr.edu.br/~hvieir/pub.html
- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- J. E. R. Queiroz, H. M. Gomes. Introdução ao Processamento Digital de Imagens. RITA. v. 13, 2006.
 - http://www.dsc.ufcg.edu.br/~hmg/disciplinas/graduacao/vc-2016.2/Rita-Tutorial PDI.pdf

FIM