

SEQUENCE LISTING

<110> Anthony P. Heaney
Gregory A. Horwitz
Xun Zhang
Shlomo Melmed

<120> Methods of Using Pituitary Tumor
Transforming Gene (PTTG) Carboxy-terminal Peptides to
Inhibit Neoplastic Cellular Proliferation And/Or
Transformation of Breast and Ovarian Cells

<130> CEDAR-45257

<140> NOT ASSIGNED
<141> 2000-12-04

<150> US CIP 09/687,911
<151> 2000-10-13

<150> US CIP 09/569,956
<151> 2000-05-12

<150> US 08/894,251
<151> 1999-07-23

<150> PCT/US97/21463
<151> 1997-11-21

<150> US 60/031,338
<151> 1996-11-21

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 974
<212> DNA
<213> Rattus rattus

<400> 1
aattcggcac gagccaacct tgagcatctg atccctttgg ctttccttc ctatcgctga 60
gctggtaggc tggagacagt tgtttgggtg ccaacatcaa caaacgattt ctgtagttta 120
gcgttatga ccctggcgtg aagatttaag gtctggatta agcctgttga ctttccagc 180
taacttctaaa tttttgtgca taggtgtctt ggtctctgtt gctgcttagt tcttccagcc 240
ttcctcaatg ccagtttat aatatgcagg tctctccctt cagtaatcca ggatggctac 300
tctgatcttt gttgataagg ataacgaaga gccaggcagc cgtttggcat ctaaggatgg 360
attgaagctg ggctctggtg tcaaaggctt agatgggaaa ttgcaggttt caacgccacg 420
agtcggcaaa gtgttcggtg cccccaggctt gcctaaagcc agcaggaagg ctctgggaac 480
tgtcaacaga gttactgaaa agccagtgaa gagtagtaaa cccctgcaat cgaaacagcc 540
gactctgagt gtgaaaaaaga tcaccgagaa gtctactaag acacaaggct ctgtcctgc 600
tcctgatgat gcctacccag aaatagaaaa gttcttcccc ttgcattc tagattttga 660

gagtttgac ctgcctgaag agcaccagat ctcacttctc cccttgaatg gagtcctct 720
catgatcctg aatgaagaga gggggcttga gaagctgctg cacctggacc ccccttcccc 780
tctgcagaag cccttcctac cgtggaaatc tgatccgtt ccgtctcctc ccagcgccct 840
ctccgctctg gatgttgaat tgccgcctgt ttgttacgt gcagatattt aaacgtctta 900
ctccttata gtttatgtaa gttgtattaa taaagcattt gtgtgtaaaa aaaaaaaaaa 960
aaactcgaga gtac 974

<210> 2
<211> 199
<212> PRT
<213> Rattus rattus

<400> 2
Met Ala Thr Leu Ile Phe Val Asp Lys Asn Glu Glu Pro Gly Ser
1 5 10 15
Arg Leu Ala Ser Lys Asp Gly Leu Lys Leu Gly Ser Gly Val Lys Ala
20 25 30
Leu Asp Gly Lys Leu Gln Val Ser Thr Pro Arg Val Gly Lys Val Phe
35 40 45
Gly Ala Pro Gly Leu Pro Lys Ala Ser Arg Lys Ala Leu Gly Thr Val
50 55 60
Asn Arg Val Thr Glu Lys Pro Val Lys Ser Ser Lys Pro Leu Gln Ser
65 70 75 80
Lys Gln Pro Thr Leu Ser Val Lys Lys Ile Thr Glu Lys Ser Thr Lys
85 90 95
Thr Gln Gly Ser Ala Pro Ala Pro Asp Asp Ala Tyr Pro Glu Ile Glu
100 105 110
Lys Phe Phe Pro Phe Asp Pro Leu Asp Phe Glu Ser Phe Asp Leu Pro
115 120 125
Glu Glu His Gln Ile Ser Leu Leu Pro Leu Asn Gly Val Pro Leu Met
130 135 140
Ile Leu Asn Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Asp Pro
145 150 155 160
Pro Ser Pro Leu Gln Lys Pro Phe Leu Pro Trp Glu Ser Asp Pro Leu
165 170 175
Pro Ser Pro Ser Ala Leu Ser Ala Leu Asp Val Glu Leu Pro Pro
180 185 190
Val Cys Tyr Asp Ala Asp Ile
195

<210> 3
<211> 779
<212> DNA
<213> Homo sapiens

<400> 3
atggccgcga gtttgtgttt aaaccaggag tgccgcgcgt ccgttacccg cggcctcaga 60
tgaatgcggc tggtaagacc tgcaataatc cagaatggct actctgatct atgttgataa 120
ggaaaatggaa gaaccaggca cccgtgtggt tgctaaggat gggctgaagc tggggtctgg 180
accttcaatc aaagccttag atgggagatc tcaagttca acaccacgtt ttggcaaaac 240
gttcgatgcc ccaccagcct tacctaaagc tactagaaag gctttggaa ctgtcaacag 300
agctacagaa aagtctgtaa agaccaagg acccctcaaa caaaaacagc caagctttc 360
tgccaaaaag atgactgaga agactgttaa agcaaaaaagc tctgttctg cctcagatga 420
tgccttatcca gaaatagaaa aattcttcc cttcaatcct ctagactttg agagtttga 480

cctgcctgaa gagcaccaga ttgcgcacct ccccttgagt ggagtgcctc tcatgatcct 540
tgacgaggag agagagcttg aaaagcttt tcagctggc cccccttac ctgtgaagat 600
gccctctcca ccatggaat ccaatcttt gcagtcctt tcaagcattc tgctgaccct 660
ggatgttcaa ttgccacctg tttgtgtga catagatatt taaatttctt agtgcttcag 720
atgttgtgtg tatttgttatt aataaagcat tcttaacag ataaaaaaaaaaaaaaa 779

<210> 4
<211> 202
<212> PRT
<213> Homo sapiens

<400> 4
Met Ala Thr Leu Ile Tyr Val Asp Lys Glu Asn Gly Glu Pro Gly Thr
1 5 10 15
Arg Val Val Ala Lys Asp Gly Leu Lys Leu Gly Ser Gly Pro Ser Ile
20 25 30
Lys Ala Leu Asp Gly Arg Ser Gln Val Ser Thr Pro Arg Phe Gly Lys
35 40 45
Thr Phe Asp Ala Pro Pro Ala Leu Pro Lys Ala Thr Arg Lys Ala Leu
50 55 60
Gly Thr Val Asn Arg Ala Thr Glu Lys Ser Val Lys Thr Lys Gly Pro
65 70 75 80
Leu Lys Gln Lys Gln Pro Ser Phe Ser Ala Lys Lys Met Thr Glu Lys
85 90 95
Thr Val Lys Ala Lys Ser Ser Val Pro Ala Ser Asp Asp Ala Tyr Pro
100 105 110
Glu Ile Glu Lys Phe Pro Phe Asn Pro Leu Asp Phe Glu Ser Phe
115 120 125
Asp Leu Pro Glu Glu His Gln Ile Ala His Leu Pro Leu Ser Gly Val
130 135 140
Pro Leu Met Ile Leu Asp Glu Glu Arg Glu Leu Glu Lys Leu Phe Gln
145 150 155 160
Leu Gly Pro Pro Ser Pro Val Lys Met Pro Ser Pro Pro Trp Glu Ser
165 170 175
Asn Leu Leu Gln Ser Pro Ser Ser Ile Leu Ser Thr Leu Asp Val Glu
180 185 190
Leu Pro Pro Val Cys Cys Asp Ile Asp Ile
195 200

<210> 5
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide.

<400> 5
gatgctctcc gcactctggg aatccaatct g 31

<210> 6
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide.

 <400> 6
 ttcacaagg tggggcgcc cagctgaaac ag 32

 <210> 7
 <211> 32
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide specific to pCI-neo
 plasmid vector.

 <400> 7
 ggcttagatgtt cttatacga ctcactatag gc 32

 <210> 8
 <211> 31
 <212> DNA
 <213> Homo sapiens

 <400> 8
 ctatgtcaca gcaaacaggt ggcaattcaa c 31

 <210> 9
 <211> 56
 <212> PRT
 <213> Homo sapiens

 <400> 9
 Met Ile Leu Asp Glu Glu Arg Glu Leu Glu Lys Leu Phe Gln Leu Gly
 1 5 10 15
 Pro Pro Ser Pro Val Lys Met Pro Ser Pro Pro Trp Glu Ser Asn Leu
 20 25 30
 Leu Gln Ser Pro Ser Ser Ile Leu Ser Thr Leu Asp Val Glu Leu Pro
 35 40 45
 Pro Val Cys Cys Asp Ile Asp Ile
 50 55

 <210> 10
 <211> 168
 <212> DNA
 <213> Homo sapiens

 <400> 10
 atgatccttg acgaggagag agagcttgc aagctgttgc agctggggccc cccttcaccc 60
 gtgaagatgc cctctccacc atggaaatcc aatctgttgc agtctcccttc aagcattctg 120
 tcgaccctgg atgttgaatt gccacctgtt tgctgtgaca tagatatt 168

 <210> 11
 <211> 16

GENE LIBRARY

<212> DNA
<213> Artificial Sequence

<220>
<223> Anchored primer sequence.

<400> 11
aagctttttt tttttg 16

<210> 12
<211> 13
<212> DNA
<213> Artificial Sequence

<220>
<223> Arbitrary primer sequence.

<400> 12
aagcttgctg ctc 13

<210> 13
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> n = a, g, or c; Anchored primer sequence.

<400> 13
aagctttttt tttttt 16

<210> 14
<211> 194
<212> PRT
<213> Mus musculus

<400> 14
Met Ala Thr Leu Ile Phe Val Asp Lys Asn Glu Glu Pro Gly Arg
1 5 10 15
Arg Leu Ala Ser Lys Asp Gly Leu Lys Leu Gly Thr Gly Val Lys Ala
20 25 30
Leu Asp Gly Lys Leu Gln Val Ser Thr Pro Arg Val Gly Lys Val Phe
35 40 45
Asn Ala Pro Ala Val Pro Lys Ala Ser Arg Lys Ala Leu Gly Thr Val
50 55 60
Asn Arg Val Ala Glu Lys Pro Met Lys Thr Gly Lys Pro Leu Gln Pro
65 70 75 80
Lys Gln Pro Thr Leu Thr Gly Lys Ile Thr Glu Lys Ser Thr Lys
85 90 95
Thr Gln Ser Ser Val Pro Ala Pro Asp Asp Ala Tyr Pro Glu Ile Glu
100 105 110
Lys Phe Phe Pro Phe Asn Pro Leu Asp Phe Asp Leu Pro Glu Glu His
115 120 125
Gln Ile Ser Leu Leu Pro Leu Asn Gly Val Pro Leu Ile Thr Leu Asn
130 135 140

Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Gly Pro Pro Ser Pro
145 150 155 160
Leu Lys Thr Pro Phe Leu Ser Trp Glu Ser Asp Pro Lys Pro Pro Ser
165 170 175
Ala Leu Ser Thr Leu Asp Val Glu Leu Pro Pro Val Cys Tyr Asp Ala
180 185 190
Asp Ile

<210> 15
<211> 945
<212> DNA
<213> Mus musculus

<400> 15
tcttgaacctt gttatgttagc aggaggccaa atttgagcat cctcttggct tctcttata 60
gcagagatgt taggctggag acagtttga tgggtgccaa cataaaactga tttctgttaag 120
agttgagtgt ttatgaccc tggcgtgcag atttaggatc tggattaagc ctgttgcatt 180
ctccagctac ttataaattt ttgtgcatacg gtgccttggg taaagcttgg tctctgttac 240
tgcgttagtt ttccagccgt ctcaatgcca atattcaggc tctctccctt agagtaatcc 300
agaatggcta ctcttatctt tggataag gataatgaag aaccggccg ccgttggca 360
tctaaggatg ggttgaagct gggcactggt gtcaaggcct tagatggaa attgcagggtt 420
tcaacgcctc gagtcggcaa agtgttcaat gctccagccg tgccctaaagc cagcagaaaag 480
gcttgggaa cagtcaacag agttgcggaa aagcttatga agactggcaa acccctccaa 540
ccaaaacagc cgaccccttgc tggaaaaaaatcaccgaga agtctactaa gacacaaagc 600
tctgttccctg ctccctgatga tgccttaccca gaaatagaaa agttcttccc ttcaatcct 660
ctagatttttgc acctgcctga ggagcaccag atctcacttc tcccccttggaa tggcgtgcct 720
ctcatcaccc tgaatgaaga gagagggctg gagaagctgc tgcattttggg ccccccctagc 780
cctctgaaga cacccttct atcatggaa tctgtatccgc tgcattttttcc tcccaagtgc 840
ctctccactc tggatgttga attgccgcct gtttgttacg atgcagatat ttaaacttct 900
tacttctttg tagttctgt atgtatgttga tattataaaa gcatt 945

<210> 16
<211> 56
<212> PRT
<213> Rattus rattus

<400> 16
Met Ile Leu Asn Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Asp
1 5 10 15
Pro Pro Ser Pro Leu Gln Lys Pro Phe Leu Pro Trp Glu Ser Asp Pro
20 25 30
Leu Pro Ser Pro Pro Ser Ala Leu Ser Ala Leu Asp Val Glu Leu Pro
35 40 45
Pro Val Cys Tyr Asp Ala Asp Ile
50 55

<210> 17
<211> 56
<212> PRT
<213> Mus musculus

<400> 17

Ile Thr Leu Asn Glu Glu Arg Gly Leu Glu Lys Leu Leu His Leu Gly
1 5 10 15
Pro Pro Ser Pro Leu Lys Thr Pro Phe Leu Ser Trp Glu Ser Asp Pro
20 25 30
Leu Tyr Ser Pro Pro Ser Ala Leu Ser Thr Leu Asp Val Glu Leu Pro
35 40 45
Pro Val Cys Tyr Asp Ala Asp Ile
50 55

<210> 18
<211> 168
<212> DNA
<213> Rattus rattus

<400> 18
atgatcctga atgaagagag ggggctttag aagctgctgc acctggaccc cccttccccct 60
ctgcagaagc ccttccttacc gtggaaatct gatccgttgc cgtctccccc cagcgccctc 120
tccgctctgg atgttgaatt gccgcctgtt tgttacgatg cagatatt 168

<210> 19
<211> 168
<212> DNA
<213> Mus musculus

<400> 19
atcaccctga atgaagagag agggctggag aagctgctgc atctggccccc cccttagccct 60
ctgaagacac cctttctatac atggaaatct gatccgttgt actctccccc cagtgcctc 120
tccactctgg atgttgaatt gccgcctgtt tgttacgatg cagatatt 168