MATH4302, Algebra II

Jiang-Hua Lu

The University of Hong Kong

Thursday April 28, 22

Outline

Topics for today:

- §3.1.3: The main theorem of Galois theory: the Galois Correspondence
- **2** §3.1.5: Examples of the Galois Correspondence

§3.1.3: The Fundamental Theroem of Galois Theory: The Galois Correspondence

Recall the 4 characterizations of finite Galois extensions:

Theorem

For a finite extension $K \subset L$ with $G = \operatorname{Aut}_K(L)$, the following are equivalent:

- **1** $K \subset L$ is Galois, i.e., |G| = [L : K];
- $oldsymbol{\circ}$ The extension $K\subset L$ is normal and separable;
- **4** L is a splitting field over K of some separable polynomial in K[x].

Let $K \subset L$ be a field extension, and let $G = Aut_K(L)$.

Definition-Lemma.

- A subfield M of L containing K is called an intermediate field of $K \subset L$, and denoted as $K \subset M \subset L$.
- For any intermediate field $K \subset M \subset L$, $\operatorname{Aut}_M(L)$ is a subgroup of G;
- For any subgroup H of G,

$$L^H \stackrel{\text{def}}{=} \{ a \in L : \sigma(a) = a, \ \forall \ \sigma \in H \}$$

is an intermediate field of $K \subset L$, called the fixed field of H.

§3.1.3: The Fundamental Theroem of Galois Theory: The Galois Correspondence

For a field extension $K \subset L$ and $G = Aut_K(L)$, have

{intermediate fields
$$K \subset M \subset L$$
} $\stackrel{\Gamma}{\rightleftharpoons}$ {subgroups $H \subset G$ },
$$\Gamma(M) = \operatorname{Aut}_M(L) \quad \text{and} \quad F(H) = L^H = \{a \in L : \sigma(a) = a, \ \forall \sigma \in H\}.$$

$$(Q \subseteq G(E) = L \quad M = G)$$
Lemma. For all intermediate field M and subgroup H of G , one has
$$M \subset F(\Gamma(M)), \quad H \subset \Gamma(F(H)).$$

When H is a finite subgroup of G, Artin's Theorem gives $H = \Gamma(F(H))$.

When H is a finite subgroup of G, Artin's Theorem gives
$$H = \Gamma(F(H))$$
.

$$F(\Gamma(M)) = \left\{ A \in L : \sigma(A) = A \text{ for } \forall \sigma \in \Gamma(M) \right\}$$

$$= \left\{ A \in L : \sigma(A) = A \text{ for } \forall \sigma \in G \text{ , } \sigma(M) = M \text{ } \forall m \in M \right\}$$

$$\Rightarrow M$$

ihlu@ meths. hku. hk Autro (Q) &

Theorem (Fundamental Theorem of Galois Theory)

Let $K \subset L$ be a finite Galois extension. Then

- 1 the two maps Γ and F are inverses of each other; (R, M = F(P(M)))
- 2 for any intermediate $K \subset M \subset L$,
 - **1** the extension $M \subset L$ is Galois;
 - **Q** $K \subset M$ is Galois if and only if $\Gamma(M) = \operatorname{Aut}_M(L)$ is a normal subgroup of $\operatorname{Aut}_K(L)$, and in this case,

$$\operatorname{Aut}_{K}(M) = \operatorname{Aut}_{K}(L)/\operatorname{Aut}_{M}(L).$$

0 = Q(I, I, Is, 17 + 2/130/11)

The correspondence between intermediate fields $K \subset M \subset L$ and subgroups fof G is called the The Galois Correspondence.

§3.1.3: The Fundamental Theroem of Galois Theory: The Galois Correspondence

Proof of Fundamental Thm. of Galois Theory. Let $K \subset L$ be finite Galois.

- **1** L is splitting field over K of a separable $f \in K[x]$. Then L is also a splitting field over M of the separable $f \in M[x]$. Thus $M \subset L$ is Galois.
- 2 Already know that $H = \Gamma(F(H))$ by Artin's Theorem. For any Char. Intermediate $K \subset M \subset L$, by (i), $M \subset L$ is Galois, so $M = F(\Gamma(M))$ Galois
- **3** Assume first that $K \subset M$ is Galois.
 - M is the splitting field of some $g(x) \in K[x]$, so $M = K(R_g)$.
 - $\sigma(R_g) = R_g$ for every $\sigma \in \operatorname{Aut}_K(L)$, so $\sigma(M) = M$. Thus have the group homomorphism

$$\phi: \operatorname{Aut}_{K}(L) \longrightarrow \operatorname{Aut}_{K}(M), \sigma \longmapsto \sigma|_{M}$$

with $\ker \phi = \operatorname{Aut}_M(L)$. Thus $\operatorname{Aut}_M(L)$ is a normal subgroup of $\operatorname{Aut}_K(L)$.

Proof continued:

• Have injective group homomorphism

$$[\phi]: \operatorname{Aut}_{K}(L)/\operatorname{Aut}_{M}(L) \longrightarrow \operatorname{Aut}_{K}(M).$$

• As both $K \subset L$ and $K \subset M$ are Galois,

$$|\operatorname{Aut}_{K}(L)/\operatorname{Aut}_{M}(L)| = \frac{|\operatorname{Aut}_{K}(L)|}{|\operatorname{Aut}_{M}(L)|} = \frac{[L:K]}{[L:M]} = [M:K]$$
$$= |\operatorname{Aut}_{K}(M)|.$$

Thus $[\phi]$ is a group isomorphism.

Assume now that $\operatorname{Aut}_M(L)$ is a normal subgroup of $\operatorname{Aut}_K(L)$.

• Let $\sigma \in G$. For any $a \in M$ and $\tau \in {\rm Aut}_M(L)$, have $\sigma^{-1}\tau\sigma \in {\rm Aut}_M(L),$

so
$$(\sigma^{-1}\tau\sigma)(a)=a$$
, i.e., $\tau(\sigma(a))=\sigma(a)$, so $\sigma(a)\in F(\Gamma(M))$. By (ii), $F(\Gamma(M))=M$, so $\sigma(a)\in M$.

Proof continued:

• Thus again have group homomorphism

$$\phi: \operatorname{Aut}_{K}(L) \longrightarrow \operatorname{Aut}_{K}(M), \sigma \longmapsto \sigma|_{M},$$

and injective group homomorphism

$$[\phi]: \operatorname{Aut}_{K}(L)/\operatorname{Aut}_{M}(L) \longrightarrow \operatorname{Aut}_{K}(M).$$

- Since $|\operatorname{Aut}_K(M)| \leq [M:K]$, one has $|\operatorname{Aut}_K(M)| = [M:K]$. Thus $K \subset M$ is Galois.
- End of proof.

Corollary

A finite Galois extension $K \subset L$ has finitely many intermediate subfields.

$$Q(J_2+i) \geq Q$$

Example. $\mathbb{F}_p \subset \mathbb{F}_{p^n}$: p is a prime number, $n \ge 1$

- $\mathbb{F}_p \subset \mathbb{F}_{p^n}$ is Galois because \mathbb{F}_{p^n} is a splitting field of $x^{p^n} x \in \mathbb{F}_p[x]$;
- $G = \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z}$, generated by the Frobenius isomorphism
- $\langle \sigma \rangle = \langle \sigma \rangle = 1$ $\langle \sigma \rangle = 0$ $\langle \sigma \rangle = 0$ $\langle \sigma \rangle = 0$
 - One subgroup of G of order m for each m|n, generated by $G^d \in G$ where d = n/m.
 - The fixed field of $\langle \sigma^d \rangle$ is the subfield \mathbb{F}_{p^d} of \mathbb{F}_{p^n} .

$\S 3.1.5$: Examples of the Galois Correspondence

Example.
$$L = \mathbb{Q}(\sqrt[3]{2}, \omega)$$
, where $\omega = e^{(2\pi i)/3}$. Splitting field of

- Know that $|G = \operatorname{Aut}(\mathbb{Q})(L)| = [L : \mathbb{Q}] = 6$.
- f has exactly three roots, namely

$$r_1 = \sqrt[3]{2}, \quad r_2 = \omega \sqrt[3]{2}, \quad r_3 = \omega^2 \sqrt[3]{2},$$

so $G\cong S_3$, permutation group of the three roots.

over (1)

• Every $g \in G$ must satisfy

$$g(\omega) \in \{\omega, \omega^2\}, \quad g(\sqrt[4]{2}) \in \{r_1, r_2, r_3\}.$$

• Define $\sigma, \tau \in G$ by

$$\sigma(\omega) = \omega, \quad \sigma(\sqrt[3]{2}) = \omega\sqrt[3]{2}, \quad \tau(\omega) = \omega^2, \quad \tau(\sqrt[3]{2}) = \sqrt[3]{2}.$$

Then $\underline{\sigma}^3 = \underline{\tau}^2 = \mathrm{Id}$, and

$$G = \{e, \sigma, \sigma^2, \tau, \tau\sigma, \sigma\tau = \tau\sigma^2\}.$$

Among the 6 intermediate fields:

the extensions

$$\mathbb{Q} \subset \mathbb{Q}, \quad \mathbb{Q} \subset \mathbb{Q}(\omega), \quad \mathbb{Q} \subset L = \mathbb{Q}(\omega, \sqrt[3]{2})$$

are Galois, corresponding to the three normal subgroups

$$\{e\}, \{e, \sigma, \sigma^2\}, G;$$

the other three extensions

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}), \quad \mathbb{Q} \subset \mathbb{Q}(\omega\sqrt[3]{2}), \quad \mathbb{Q} \subset \mathbb{Q}(\omega^2\sqrt[3]{2})$$

are not Galois.

§3.1.5: Examples of the Galois Correspondence

§3.1.5: Examppes of the Galois Correspondence

§3.1.5: Examples of the Galois Correspondence

§3.1.5: Examples of the Galois Correspondence