

Personal Assistant for the Visually ImpairedTEAM SP25-42

Sarmad Ahmed, Luis Castellanos Project Advisor(s): Sasan Haghani

Abstract

Over 6 million Americans suffer from vision lost daily. These people often depend on basic assistive tools for navigating however, such systems do not provide a detailed description of the user's surroundings. To address this, our team has developed a portable, network-free AI assistant. By leveraging modern edge computing and advance software systems we created a system that integrates optical character recognition (OCR), Text-to-Speech (TTS), Speech-to-Text (STT), and real-time object detection into a cohesive, user-friendly device. Ultimately, the goal of Our project is to enhance the independence and awareness of visually impaired users.

Future Direction

- Limited processing power on Raspberry Pi 5 causes LLaVa
 Phi model to take approximately 10 15 minutes to run.
- Replace Raspberry Pi 5 with NVIDIA Jetson Orin Nano board optimized to run LLMs.
- Enhance YOLOv8 and ResNet-18 performance.
- Replacing Raspberry Pi HQ Camera with a lightweight depth sensing camera.
- Multilingual Support

Challenges

Hardware Limitations

- Optimizing models for deployment on Raspberry Pi 5.
- Creating a balance between accuracy and latency in speech and visual processing to provide the user reliable feedback.

Methods and Implementation

Voice Command Recognition (STT)

Microphone captures spoken user commands that are converted into text for the system.

Capturing Image

• User's voice command triggers camera to capture image.

Real Time Object Detection

- System analyzes captured image to identify objects in the user's surroundings.
- Detected objects passed on for prompt generation.
- YOLOv8n (Nano version) pretrained on COCO dataset.

Scene Recognition

- System identifies the scene/setting from the captured image.
- ResNet-18 pretrained on Places365
- Predictions > 0.6 confidence passed on for prompt generation.

Prompt Generation

 Generate prompt using the predicted object and scene labels from YOLO and ResNet-18 respectively.

Multimodal Inference

- Generates description of image combining captured image and the generated prompt.
- LLaVa-Phi model composed of:
 - CLIP-based Vision Encoder
 - Phi-2 Language Model
- Runs locally on Raspberry Pi 5 using llama.cpp
- Final output is 25 word sentence describing user's surroundings and potential safety concerns if any.

Audio Feedback (TTS)

- Converts generated surroundings description to audio for the user.
- User can also prompt device to extract text from images using Tesseract OCR.
- Piper TTS

Results

Image Captured by Camera

```
[=== YOLOv8 DETECTIONS ===
    {'bowl': 1, 'dining table': 1, 'chair': 3, 'refrigerator': 1, 'microwave': 1}
    (assistant-env) sa1790@raspberrypi:~/Capstone/llama.cpp $
```

Objects Identified by YOLO

```
kitchen with 0.7045653462409973 probability
wet_bar with 0.043919432908296585 probability
dining_room with 0.043560612946748734 probability

=== SCENE RECOGNITION (ResNet / Places365) ===
[('kitchen', 0.7045653462409973), ('wet_bar', 0.043919432908296585), ('dining_room', 0.043560612946748734)]
(assistant_env) sa17900raspherryni:~(Canstone/llama.cnn $
```

Predicted Scenes with Confidence

Prompt Generated to Input into LLaVa

Describe this kitchen scene with 1 bowl, 1 dining table, 3 chair, 1 refrigerator, 1 microwave. Briefly mention spatial relationships and safety concerns for visually impaired and blind people. Keep response under 25 words.

Final Output

You are in a kitchen. A dining table sits near the refrigerator. A cupboard is located to the far right. The floor space appears open for safe movement.

REFERENCES

- [1] Dmitrii Eliuseev, "YOLO Object Detection on the Raspberry Pi TDS Archive Medium," *Medium*, Jul. 11, 2023.
- [2] "LLaVA," *llava-vl.github.io*. https://llava-vl.github.io/
- [3] A. Rosebrock, "PyTorch image classification with pre-trained networks PyImageSearch," *PyImageSearch*, Jul. 26, 2021. \(accessed Apr. 18, 2025).