Elekt	rische Systeme 1	(ES 1)	ÜBUN	GSKLAUSUR	Blatt 1/5		
Nam	ne	IV	latrNummer	Datum	Note		
	<u> </u>						
Erlaubte Hilfsmittel: Taschenrechner, schriftliche Unterlagen außer alten Klausuren Bearbeitungszeit: 90 Minuten							
Hinweis: Zur Lösung der Aufgaben 2 und 3 ist ein MATLAB M-File zu erstellen.							
		Aufgabe	erreichte Punktzahl				
	an san gadalah	1					
		2					
	- 3 /1	3 Σ					
	n * 1,						
1. Aufgabe (20 von 60 Punkten)							
Beantworten Sie die folgenden 10 Fragen, indem Sie jeweils eine der gegebenen Antworten ankreuzen (2 Punkte für jede richtig beantwortete Frage): Durch eine reale Spule mit dem komplexen Widerstand 2 + j10 Ω fließe ein Strom von 1 A. Welche Wirkleistung wird in der Spule umgesetzt? a) 2 W b) 10 W							
	•						
	c) 4 W						
In einem induktiven Zweipol werde gleichviel Wirk- wie Blindleistung umgesetzt. Um welchen Winkel eilt die sinusförmige Spannung dem Strom vor?							
	b) 60°						
	c) π/4						
Was geschieht mit dem Strom zu einem Verbraucher, wenn eine Blindleistungskom- pensation am Verbraucher vorgenommen wird?							
	a) Der Strom stei	gt					
	b) Der Strom fällt						
	c) Der Strom ble	bt gleich					

Elel	ktrische Systeme 1 (ES 1)	ÜBUNGSKLAUSUR	Blatt 2/5
	chen Vorteil bietet eine Ortskurve g ramm?	regenüber der Darstellung im B	ode-
\prod	a) Gleichzeitige Darstellung von	Betrag und Phase in einem Dia	agramm
	b) Höhere Frequenzauflösung		
	c) Sie kann im allgemeinen leich	ter konstruiert werden	
leitei 3 A i	symmetrischer Verbraucher werde r an einem Drehstromnetz betriebe fließt. Wie groß ist betragsmäßig de brauchers durchbrennt?	n, wobei in jedem Strang ein N	ennstrom von
	a) √3 A		
	b) 6A		
	c) 3A		
stroi	nem symmetrischen Drehstromver n von 1 A. Die Strangspannung be deistung wird insgesamt in dem Ve	trage 220 V und $cos(\varphi) = 0.5$. V	
	a) √3 •110 W		
	b) 330 W		
	c) 110 W		
	sieht die Ortskurve des komplexer s Kondensators mit einem ohmsch ?		
	a) Sie beschreibt einen Halbkrei	s	
	b) Eine Gerade parallel zur reell	en Achse	
	c) Eine Gerade parallel zur imag	ginären Achse	
	chen Wert nimmt der Widerstand b s idealen Kondensators C bei der j	<u> </u>	len Spule L und

a) null

c) $j\omega_0L$

b) unendlich

Eine Spannungsquelle habe den Innenwiderstand \underline{Z}_{i} . Welchen Wert muss ein an die Quelle angeschlossener Lastwiderstand aufweisen, damit maximale Leistung in ihm umgesetzt wird?

- a) _<u>Z</u>,
- b) 0
- ___ c) z

Wie groß ist der Vierpolparameter $\underline{Z}_{11} = \left\{ \frac{\underline{U}_1}{\underline{I}_1} \right\}_{\underline{I}_2 = 0}$ der folgenden Schaltung?

- a) jωL
- b) R
- c) R+ jωL

2. Aufgabe (20 von 60 Punkten)

Gegeben sei das folgende elektrische Netzwerk, bestehend aus einer komplexen Spannungsquelle, drei ohmschen Widerständen, einer Induktivität und einem Kondensator:

- a) Geben Sie den Wert der Spule und des Kondensators in den Grundeinheiten Henry (H) bzw. Farad (F) an.
- b) Berechnen Sie den Gesamtwiderstand \underline{Z}_{ges} der Schaltung, den die Spannungsquelle bei der Frequenz f=50 Hz sieht. Verwenden Sie hierzu die in MATLAB verfügbare komplexe Rechnung, indem Sie durch geeignete Invertierung zwischen \underline{Z} und \underline{Y} -Notation die gegebenen Ersatzschaltbildelemente R_1 , R_2 , R_3 , C und L zu \underline{Z}_{ges} verknüpfen.
- c) Es soll die Ersatzspannungsquelle der Schaltung bezüglich der Klemmen A-B bestimmt werden (ohne R_3). Ermitteln Sie die Leerlaufspannung U_L , die an diesen Klemmen auftritt, den Kurzschlussstrom I_K sowie den Ersatzwiderstand \underline{Z}_{ers} und zeichnen Sie das sich ergebende Ersatzschaltbild.
- d) Wie groß ist der Strom I₃ durch R₃?
- e) Bei welcher Frequenz wird keine Leistung in R₃ umgesetzt?
- f) Wie groß ist bei dieser Frequenz die aufgenommene Blindleistung der Schaltung?

3. Aufgabe (20 von 60 Punkten)

Gegeben sei die folgende Wechselstromschaltung mit den in der Tabelle enthaltenen Elementen und es sollen die eingetragenen Ströme \underline{I}_1 bis \underline{I}_6 berechnet werden.

- a) Geben Sie abhängig von den gegebenen Ersatzschaltbildelementen die komplexen Widerstände \underline{Z}_1 bis \underline{Z}_6 an, die jeweils mit den Strömen \underline{I}_1 bis \underline{I}_6 verknüpft sind.
- b) Wieviele Knotengleichungen können zur Berechnung der Ströme verwendet werden?
- c) Markieren Sie die von Ihnen ausgewählten Knoten im Ersatzschaltbild und stellen Sie die Knotengleichungen auf.
- d) Wieviele zusätzliche Maschengleichungen werden benötigt?
- e) Zeichnen Sie in das Ersatzschaltbild die von Ihnen gewählten Maschen mit Umlaufrichtung ein und stellen Sie die Maschengleichungen auf. (<u>Hinweis:</u> Benutzen Sie hierfür die unter 1. ermittelten komplexen Widerstände).
- f) Geben Sie die Widerstandsmatrix \underline{Z} und den Spannungsvektor \underline{U} mit Hilfe der aufgestellten Gleichungen an und berechnen Sie hieraus den Stromvektor I.
- g) Wie groß ist die insgesamt von den beiden Spannungsquellen gelieferte komplexe Scheinleistung?