

# **IBIS/HSPICE Model Quality Report**

Design ID: **Z90B** 

**Description: 4Gb DDR4 SDRAM** 

Marketing device name(s): MT40A1G4RH, MT40A512M8RH, MT40A256M16GE,

MT40A1G4Z90B, MT40A512M8Z90B, MT40A512M8Z90B

Valid speed grades DDR4-1600, DDR4-1866, DDR4-2133, DDR4-2400, DDR4-2666, DDR4- 3200

Zip filename: z90b\_ibis.zip

IBIS filename (Version 5.0): z90b.ibs, z90b\_it.ibs File rev: 2.1

HSPICE filename: z90b\_hspice.zip File rev: 2.1

Die revision: B

**Date: April 4, 2018** 

Datasheet Link (from micron.com):

E-mail modelsupport@micron.com for questions regarding Quality Report.

## **Device Parameters**

VDDQ Slow: 1.14V Typical: 1.20V Fast: 1.26V

VDD Slow: 1.14V Typical: 1.20V Fast: 1.26V

Junction Temperature (Commercial) Slow: 110C Typical: 50C Fast: 0C

Junction Temperature (Industrial) Slow: 110C Typical: 50C Fast: -40C

VDDQ/VSSQ Decoupling Capacitance (Approximate value at 10MHz) - Full Die: 11.0nF

Included in HSPICE DQ/DQS/DM models? Yes Amount per DQ/DQS/DM model: 500pF

Included in IBIS DQ/DQS/DM models? No, must be included with separate Spice subcircuit (.ckt files) found in the zip file.

VDDQ/VSSQ Decoupling Capacitance ESR - Full Die: 55mohm

VDDQ/VSSQ Decoupling Capacitance ESR - per DQ model: 1.20hm



# **IBIS Quality Summary**

1. Include the IBIS Quality Specification 2.0 Overall IBIS Quality level. For details on IBIS Quality, reference the quality specification and quality checklist on IBIS quality webpage <a href="http://www.ibis.org/quality\_wip/checklist.html">http://www.ibis.org/quality\_wip/checklist.html</a>.

**Overall IBIS Quality Level: IQ3MSX** 

**Exceptions:** V-t length in Version 5.0 model is excessive due to inclusion of [Composite Current] I-t data.

2. 

Include the filename of the IBIS Quality Checklist that accompanies this report.

Filename for Version 5.0 file: z90b\_ibis\_quality\_checklist.xls

# **IBIS Model Correlation: datasheet**

1. ⊠ For Output or I/O model compare datasheet IOH/IOL data with IBIS pullup/pulldown data.



a. Model name: **DQ\_34\_2666** 

i. Pullup I-V versus **JEDEC** specification





#### ii. Pulldown I-V versus JEDEC specification





b. Model name: **DQ\_48\_2666** 

i. Pullup I-V versus JEDEC specification





#### ii. Pulldown I-V versus JEDEC specification



# **IBIS/HSPICE Model Quality Report**

2.  $\boxtimes$  Compare C\_comp with datasheet Input Capacitance. Provide C\_comp comparison table for all models and for all package combinations (i.e. x4, x8 and x16).

Component name: MT40A1G4RH, MT40A512M8RH, MT40A256M16GE

| Signal | IBIS die<br>min [pF] | IBIS die<br>max [pF] | Spec tot<br>min [pF] | Spec tot<br>max [pF] |
|--------|----------------------|----------------------|----------------------|----------------------|
| DQ     | 1.000                | 1.500                | 0.70                 | 1.40                 |
| INPUT  | 0.475                | 0.585                | 0.20                 | 0.70                 |
| CLK    | 0.470                | 0.570                | 0.20                 | 0.70                 |
| CTRL   | 0.475                | 0.585                | 0.20                 | 0.70                 |
| ALERT  | 0.935                | 1.035                | 0.50                 | 1.50                 |

 $3. \boxtimes$  Compare package impedance and time delay with datasheet specifications. Provide comparison table for all package combinations.

Component name: MT40A1G4RH, MT40A512M8RH, MT40A256M16GE

| Signal  | Z pkg IBIS<br>min [Ω] | Z pkg IBIS<br>max [Ω] | Z pkg SPEC<br>min [Ω] | Z pkg SPEC<br>max [Ω] | Td pkg IBIS<br>min [ps] | Td pkg IBIS<br>max [ps] | Td pkg SPEC<br>min [ps] | Td pkg SPEC<br>max [ps] |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 10      | 56.2                  | 65.1                  | 45                    | 85                    | 25.4                    | 33.4                    | 14                      | 40                      |
| ADD/CMD | 57.6                  | 75.4                  | 50                    | 90                    | 17.7                    | 40.4                    | 14                      | 40                      |
| CTRL    | 58.3                  | 64.0                  | 50                    | 90                    | 17.7                    | 26.9                    | 14                      | 40                      |
| CLK     | 59.2                  | 63.3                  | 50                    | 90                    | 23.9                    | 26.9                    | 14                      | 42                      |
| ALERT   | 53.3                  | 53.5                  | 40                    | 100                   | 34.0                    | 35.9                    | 20                      | 55                      |

4. ⊠ If slew rate specifications (rise/fall slew) are available from the datasheet, complete Spice simulations to generate slew rate data and provide a comparison table.

| Model      | IBIS slew rate<br>RISE [V/ns]<br>min | IBIS slew rate<br>RISE [V/ns]<br>typ | IBIS slew rate<br>RISE [V/ns]<br>max | SPEC slew rate<br>RISE [V/ns]<br>min | SPEC slew rate<br>RISE [V/ns]<br>max |
|------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| DQ_34_2666 | 3.89                                 | 5.44                                 | 6.88                                 | 4.0                                  | 9.0                                  |
| DQ 34 3200 | 4.95                                 | 5.88                                 | 6.89                                 | 4.0                                  | 9.0                                  |

| Model      | IBIS slew rate<br>FALL [V/ns]<br>min | IBIS slew rate<br>FALL [V/ns]<br>typ | IBIS slew rate<br>FALL [V/ns]<br>max | SPEC slew rate<br>FALL [V/ns]<br>min | SPEC slew rate<br>FALL [V/ns]<br>max |
|------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| DQ_34_2666 | 4.25                                 | 5.82                                 | 7.43                                 | 4.0                                  | 9.0                                  |
| DQ_34_3200 | 5.79                                 | 6.68                                 | 7.43                                 | 4.0                                  | 9.0                                  |



## 5. $\boxtimes$ Compare ODT data with datasheet.

#### a. **ODT34**





#### b. **ODT40**





#### c. **ODT48**





#### d. **ODT60**





#### e. **ODT80**





#### f. ODT120





#### g. **ODT240**





## **IBIS Model Correlation: IBIS vs Spice (Driver-Receiver)**

- 1.  $\boxtimes$  For all Output or I/O models, run Spice transient simulations using encrypted netlists and the IBIS model (b-element).
  - a. ⊠ Use the setup and node naming conventions shown below for the IBIS and Spice files. Update the setup diagram if it is different. Indicate the version of Spice simulator used for simulations: HSPICE 2016.03
  - b.  $\boxtimes$  Run simulations for all corners cases and at fastest speed grades, testing ODT models as loads when applicable

#### SETUP:



## i. DQ\_34\_2666 driving DQ\_34\_2666 (no ODT)





## ii. DQ\_34\_2666 driving DQ\_IN\_ODT34\_2666



## iii. DQ\_34\_2666 driving DQ\_IN\_ODT40\_2666





## iv. DQ\_34\_2666 driving DQ\_IN\_ODT48\_2666



## v. DQ\_34\_2666 driving DQ\_IN\_ODT60\_2666





## vi. DQ\_34\_2666 driving DQ\_IN\_ODT80\_2666



vii. DQ\_34\_2666 driving DQ\_IN\_0DT120\_2666





## viii. DQ\_34\_2666 driving DQ\_IN\_ODT240\_2666



ix. DQ\_40\_2666 driving DQ\_IN\_ODT60\_2666





## x. DQ\_48\_2666 driving DQ\_IN\_0DT60\_2666



## xi. DQ\_34\_3200 driving DQ\_34\_3200





## xii. DQ\_34\_3200 driving DQ\_IN\_0DT34\_3200



xiii. DQ\_34\_3200 driving DQ\_IN\_0DT40\_3200





## xiv. DQ\_34\_3200 driving DQ\_IN\_0DT48\_3200



xv. **DQ\_34\_3200** driving **DQ\_IN\_ODT60\_3200** 





## xvi. DQ\_34\_3200 driving DQ\_IN\_ODT80\_3200



xvii. DQ\_34\_3200 driving DQ\_IN\_ODT120\_3200





## xviii. DQ\_34\_3200 driving DQ\_IN\_ODT240\_3200



xix. DQ\_40\_3200 driving DQ\_IN\_0DT60\_3200





## xx. DQ\_48\_3200 driving DQ\_IN\_0DT60\_3200





# **IBIS Model Correlation: IBIS vs Spice (Driver Load)**

- 1.  $\boxtimes$  For all Output or I/O IBIS Version 5.0 power-aware models, run Spice transient simulations using encrypted netlists and the IBIS model (b-element) with a non-ideal power supply connection.
  - a. ☑ Use the setup and node naming conventions shown in Setup B below for the IBIS and Spice files. Update the setup diagram if it is different. Indicate the version of Spice simulator used for simulations: HSPICE 2016.03-1
  - b.  $\boxtimes$  Run simulations for all corner cases and at fastest speed grades

#### SETUP B:



#### **Test Load Values**

Z0 =  $50 \Omega$  Td = 200 ps Cload = 5 pF Rload =  $50 \Omega$ VTT = VDDQ/2

#### Package Model used for correlation

| Lpkg           | PAD       | BALL      | 1.25n | 0.25 |
|----------------|-----------|-----------|-------|------|
| Lpkg_vccq      | vccq_die  | vccq_ball | 1.25n | 0.25 |
| Lpkg_vssq      | vssq_die  | vssq_ball | 0.10n | 0.05 |
| K1             | Lpkg_vccq | Lpkg_vssq | 0.20  |      |
| K2             | Lpkg      | Lpkg_vccq | 0.20  |      |
| К3             | Lpkg      | Lpkg_vssq | 0.20  |      |
| Cpkg_vccq      | BALL      | vccq_ball | 0.20p |      |
| Cpkg_vssq      | BALL      | vssq_ball | 0.20p |      |
| Cpkg_vccq_vssq | vccq_ball | vssq_ball | 0.40p |      |



#### i. **DQ\_34\_2666**



## ii. **DQ\_40\_2666**





#### i. **DQ\_48\_2666**



## ii. **DQ\_34\_3200**





#### iii. DQ\_40\_3200



## iv. DQ\_48\_3200





## **Comments**

- 1. IBIS model may not reflect current speed grade availability.
- 2. C\_comp is compared with the DDR4-2666 specification only.
- 3. Slew rate is based on HSPICE simulation with a 50ohm load to VDDQ. This includes simple package parasitics for pin and power/gnd nets

# **Document Revision History**

- Rev 1.0 Date November 9, 2015
  - a. IBIS revision (Version 4.2) 1.0
  - b. IBIS revision (Version 5.0) TBA
  - c. HSPICE revision 1.0
- Rev 1.1 Date December 15, 2015
  - a. IBIS revision (Version 4.2) 1.0
  - b. IBIS revision (Version 5.0) 1.0
  - c. HSPICE revision 1.0
- Rev 2.0 Date April 18, 2017
  - a. IBIS revision (Version 5.0) 2.0
  - b. HSPICE revision 2.0
- Rev 2.1 Date June 28, 2017
  - a. IBIS revision (Version 5.0) 2.0
  - b. HSPICE revision 2.1
- Rev 2.2 Date April 4, 2018
  - a. IBIS revision (Version 5.0) 2.1
  - b. HSPICE revision 2.1