Problem 5.3.26

For what value of k, does the system of linear equations

$$2x + 3y = 7, (k-1)x + (k+2)y = 3k (1)$$

have an infinite number of solutions?

Input Variables and Vectors

Symbol	Description	Value/Expression
x, y	Unknown variables	Real numbers
k	Parameter in system	To be determined
x	Unknown vector	$\begin{pmatrix} x \\ y \end{pmatrix}$
A	Coefficient matrix	$\begin{pmatrix} 2 & 3 \\ k-1 & k+2 \end{pmatrix}$
b	RHS vector	$\binom{7}{3k}$
[A b]	Augmented matrix	$\left \begin{pmatrix} 2 & 3 & 7 \\ k-1 & k+2 & 3k \end{pmatrix} \right $

Table 1

Solution

$$\begin{pmatrix} 2 & 3 \\ k-1 & k+2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 7 \\ 3k \end{pmatrix}, \quad \text{where } \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}. \tag{2}$$

The augmented matrix is
$$\begin{pmatrix} 2 & 3 & 7 \\ k-1 & k+2 & 3k \end{pmatrix}$$
. (3)

$$R_2 \to R_2 - \frac{k-1}{2}R_1$$
 (4)

$$\begin{pmatrix} 2 & 3 & 7 \\ k-1 & k+2 & 3k \end{pmatrix} \to \begin{pmatrix} 2 & 3 & 7 \\ 0 & (k+2) - \frac{3}{2}(k-1) & 3k - \frac{7}{2}(k-1) \end{pmatrix}.$$
 (5)

$$= \begin{pmatrix} 2 & 3 & 7 \\ 0 & \frac{-k+7}{2} & \frac{-k+7}{2} \end{pmatrix}.$$
 (6)

For infinite solutions:
$$rank(A) = rank([A|b]) < 2.$$
 (7)

$$\frac{-k+7}{2} = 0 \implies k = 7.$$
 (8)

When
$$k = 7$$
, $\begin{pmatrix} 2 & 3 & 7 \\ 0 & 0 & 0 \end{pmatrix}$, (9)

$$rank(A) = rank([A|b]) = 1 < 2.$$
 (10)

The system has infinitely many solutions when k = 7. (11)

Figure 1