Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization

Fabian Pedregosa^{†‡}, Rémi Leblond[†], Simon Lacoste–Julien*

† INRIA and École Normale Supérieure, Paris, France. ‡ Currently at UC Berkeley * MILA and DIRO, Université de Montréal, Canada

Summary

Optimization methods need to be adapted to the parallel setting to leverage modern computer architectures.

Highly efficient variants of stochastic gradient descent have been recently proposed, such as Hogwild [1], Kromagnon [2], ASAGA [3].

They assume that the objective function is smooth, so are inapplicable to problems such as Lasso, optimization with constraints, etc.

Contributions:

- . Sparse Proximal SAGA, a sparse variant of the linearly-convergent proximal SAGA algorithm.
- . ProxASAGA, the first parallel asynchronous variance-reduced method that supports composite objective functions.

Problem Setting

Objective: develop parallel asynchronous method for problems of the form $\min_{oldsymbol{x} \in \mathbb{R}^p} \lim_{i \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(oldsymbol{x}) + h(oldsymbol{x}) ,$

- f_i is differentiable with L-Lipschitz gradient.
- h is block-separable $(h(x) = \sum_B h_B([{m x}]_B))$ and "simple" in the sense that we have access to $\mathbf{prox}_{\gamma h} \stackrel{\mathsf{def}}{=} \mathbf{arg} \, \mathbf{min}_{m{x}} \, \gamma h(m{x}) + \frac{1}{2} \|m{x} - m{z}\|^2$.
- includes Lasso, group Lasso or ERM with box constraints.

Variance-reduced stochastic gradient methods are natural candidates due to their state of the art performance and recent asynchronous variants.

The **SAGA** algorithm [4] maintains current iterate $oldsymbol{x} \in \mathbb{R}^p$ and table of historical gradients $oldsymbol{lpha} \in \mathbb{R}^{n imes p}$. At each iteration, it samples an index $i \in$ $\{1,\ldots,n\}$ and computes next iterate $({m x}^+,{m lpha}^+)$ as

$$\boldsymbol{x}^{+} = \mathbf{prox}_{\gamma g}(\boldsymbol{x} - \gamma(\nabla f_i(\boldsymbol{x}) - \boldsymbol{\alpha}_i + \overline{\boldsymbol{\alpha}})), \ \boldsymbol{\alpha}_i^{+} = \nabla f_i(\boldsymbol{x}).$$
 (SAGA)

Difficulty of a Composite Extension

- Existing methods exhibit best performance when updates are sparse.
- Even in the presence of sparse gradients, the (SAGA) update is not sparse due to the presence of $\overline{\alpha}$ and prox.
- Existing convergence proofs bound noise from asynchrony using by the Lipschitz of the gradient. Property does not extend to composite case.

A new sequential algorithm: Sparse Proximal SAGA

The algorithm relies on the following quantities

• Extended support T_i : set of blocks that intersect with ∇f_i .

$$T_i \stackrel{\mathsf{def}}{=} \{B : \mathsf{supp}(\nabla f_i) \cap B \neq \varnothing, \ B \in \mathcal{B}\}$$

- For each block $B \in \mathcal{B}$, $d_B \stackrel{\mathsf{def}}{=} n/n_B$, where $n_B := \sum_i \mathbb{1}\{B \in T_i\}$ is the number of times that $B \in T_i$.
- $m{D}_i$ is a diagonal matrix defined block-wise $[m{D}_i]_{B,B} \stackrel{\mathsf{def}}{=} d_B \mathbb{1}\{B \in T_i\} m{I}_{|B|}$.
- ullet φ_i is a block-wise reweighting of h: $arphi_i \stackrel{ ext{def}}{=} \sum_{B \in T_i} d_B h_B(oldsymbol{x})$

Justification. The following properties are verified

 $\boldsymbol{D}_i \boldsymbol{x}$ is zero outside T_i $\varphi_i(\boldsymbol{x})$ is zero outside T_i (sparsity) $\mathbb{E}_i \, oldsymbol{D}_i = oldsymbol{I}$ (unbiasedness) $\mathbb{E}_i \, \varphi_i = h$

Algorithm. As SAGA, it maintains current iterate $oldsymbol{x} \in \mathbb{R}^p$ and table of historical gradients $\pmb{\alpha} \in \mathbb{R}^{n \times p}$. At each iteration, it samples an index $i \in \{1,\ldots,n\}$ and computes next iterate $(\boldsymbol{x}^+,\boldsymbol{\alpha}^+)$ as

$$oldsymbol{v}_i =
abla f_i(oldsymbol{x}) - oldsymbol{lpha}_i + oldsymbol{D}_i \overline{oldsymbol{lpha}}; \ oldsymbol{x}^+ = \mathbf{prox}_{\gamma arphi_i} \left(oldsymbol{x} - \gamma oldsymbol{v}_i
ight); \ oldsymbol{lpha}_i^+ =
abla f_i(oldsymbol{x})$$

Features

- Iteration cost $\mathcal{O}(|T_i|)$ (only coefficients in T_i are updated)
- Easy to implement (compared to the lagged update approach [5]).
- Parallelizable.

Convergence Analysis

For step size $\gamma = \frac{1}{5L}$ and f μ -strongly convex ($\mu > 0$), Sparse Proximal SAGA converges geometrically in expectation. At iteration t we have

$$\mathbb{E}\|\boldsymbol{x}_t - \boldsymbol{x}^*\|^2 \le (1 - \frac{1}{5}\min\{\frac{1}{n}, \frac{1}{\kappa}\})^t C_0,$$

(SAGA) with $C_0 = \| \boldsymbol{x}_0 - \boldsymbol{x}^* \|^2 + \frac{1}{5L^2} \sum_{i=1}^n \| \boldsymbol{\alpha}_i^0 - \nabla f_i(\boldsymbol{x}^*) \|^2$ and $\kappa = \frac{L}{n}$ (condition

Implications

- Adaptivity to strong convexity, i.e., no need to know strong convexity parameter to obtain linear convergence.
- In the "big data regime" $(n \ge \kappa)$: convergence rate is $\mathcal{O}(1/n)$.
- In the "ill-conditioned regime" ($n \le \kappa$): convergence rate is $\mathcal{O}(1/\kappa)$.

A New Parallel Algorithm: Proximal Asynchronous SAGA

The Proximal Asynchronous SAGA (ProxASAGA) runs Inconsistent read: no locks while reading, i.e., read the vector while another core might be writing to it.

Algorithm 1 ProxASAGA

```
Initialize shared variables x, (\alpha_i)_{i=1}^n, \overline{\alpha}
keep doing in parallel
          Sample i uniformly in \{1, ..., n\}
           [\hat{\boldsymbol{x}}]_{T_i} = \text{inconsistent read of } \boldsymbol{x} \text{ on } T_i
           \hat{m{lpha}}_i = 	ext{inconsistent read of } m{lpha}_i
            [\overline{\alpha}]_{T_i} = \text{inconsistent read of } \overline{\alpha} \text{ on } T_i
            [\delta oldsymbol{lpha}]_{S_i} = [
abla f_i(\hat{oldsymbol{x}})]_{S_i} - [\hat{oldsymbol{lpha}}_i]_{S_i}
           [\hat{oldsymbol{v}}]_{T_i} = [\delta oldsymbol{lpha}]_{T_i} + [oldsymbol{D}_i \overline{oldsymbol{lpha}}]_{T_i}
           [\delta oldsymbol{x}]_{T_i} = [\mathbf{prox}_{\gamma_{\mathcal{O}_i}}(\hat{oldsymbol{x}} - \gamma \hat{oldsymbol{v}})]_{T_i} - [\hat{oldsymbol{x}}]_{T_i}
          for B in T_i do
                   for b in B do
                            [\boldsymbol{x}]_b \leftarrow [\boldsymbol{x}]_b + [\delta \boldsymbol{x}]_b
                                                                                                                                              > atomic
                            if b \in \text{support}(\nabla f_i) then
                                     [\overline{\boldsymbol{\alpha}}]_b \leftarrow [\overline{\boldsymbol{\alpha}}]_b + 1/n[\delta \boldsymbol{\alpha}]_b
                                                                                                                                              end if
                   end for
          end for
```

Perturbed iterates framework

19: end parallel loop

Problem: Analysis of parallel algorithms is hard.

 $\alpha_i \leftarrow \nabla f_i(\hat{\boldsymbol{x}})$ (scalar update)

Solution: Cast them as sequential algorithms working on *perturbed* inputs. Distinguish:

- $\hat{m{x}}_t$: inconsistent quantity read by the cores
- x_t : the *virtual* iterate defined by

 $m{x}_{t+1} \stackrel{\mathsf{def}}{=} m{x}_t - \gamma m{g}_t$ with $m{g}(m{x}, m{v}, i) = rac{1}{\gamma} (\hat{m{x}}_t - \mathbf{prox}_{\gamma arphi_i} (\hat{m{x}}_t - \gamma \hat{m{v}}_{i_t}))$, Interpret \hat{x}_t as a noisy version of \boldsymbol{x}_t due to asynchrony.

Analysis preliminaries

Definition (measure of sparsity). Let $\Delta := \max_{B \in \mathcal{B}} |\{i : T_i \ni B\}|/n$. This is the normalized maximum number of times that a block appears in the extended support. We always have $1/n \le \Delta \le 1$.

Definition (delay bound). τ is a uniform bound on the maximum delay between two iterations processed concurrently.

Convergence guarantee of ProxASAGA

Suppose $\tau \leq \frac{1}{10\sqrt{\Lambda}}$. For any step size $\gamma = \frac{a}{L}$ with $a \leq a^*(\tau) := \frac{1}{36} \min\{1, \frac{6\kappa}{\tau}\}$, the inconsistent read iterates of ProxASAGA converge in expectation at a geometric rate factor of at least: $\rho(a) = \frac{1}{5}\min\left\{\frac{1}{n},a_{\kappa}^{1}\right\}$, i.e. $\mathbb{E}\|\hat{x}_{t}-x^{*}\|^{2} \leq 1$ $(1ho)^t \tilde{C}_0$, where \tilde{C}_0 is a constant independent of t ($pprox rac{n\kappa}{a} C_0$ with C_0 as defined in Theorem ??).

Experimental results

Comparison on 3 large-scale datasets

References

> atomic

- Niu, F., Recht, B., Re, C. & Wright, S. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. in NIPS (201 Mania, H. et al. Perturbed iterate analysis for asynchronous stochastic optimization. SIAM Journal on Optimization (2017).
- Leblond, R., Pedregosa, F. & Lacoste-Julien, S. ASAGA: asynchronous parallel SAGA. AISTATS (2017).
- Defazio, A., Bach, F. & Lacoste-Julien, S. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. in NIPS (2014).
- Schmidt, M., Le Roux, N. & Bach, F. Minimizing finite sums with the stochastic average gradient. *Mathematical Programming*