EE658/758 Machine Learning in Engineering Assignment

1. Data Preprocessing

```
In [2]: # Libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.model selection import train test split # For Data Splitting
        df = pd.read csv('insurance.csv')
        df.head()
Out[2]:
           Age Gender BMI Children Smoker
                                                Region Expenses
                 female 27.9
                                         yes southwest
                                                        16884.92
            18
                  male 33.8
                                                         1725.55
                                   1
                                          no southeast
            28
                  male 33.0
                                          no southeast
                                                         4449.46
        3 33
                  male 22.7
                                          no northwest 21984.47
          32
                  male 28.9
                                   0
                                                         3866.86
                                          no northwest
In [3]: df.shape
Out[3]: (1338, 7)
In [4]: df.dtypes
```

```
Out[4]: Age
                      int64
        Gender
                     object
        BMI
                    float64
        Children
                      int64
        Smoker
                     object
        Region
                     object
        Expenses
                    float64
        dtype: object
In [5]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1338 entries, 0 to 1337
      Data columns (total 7 columns):
           Column
                     Non-Null Count Dtype
                                   int64
           Age
                     1338 non-null
           Gender
                     1332 non-null
                                     object
       2
           BMI
                     1330 non-null
                                    float64
       3
           Children 1338 non-null
                                    int64
           Smoker
                     1338 non-null
                                     object
           Region
                     1336 non-null
                                    object
           Expenses 1337 non-null
                                   float64
       dtypes: float64(2), int64(2), object(3)
       memory usage: 73.3+ KB
In [6]: df.describe()
```

Out[6]:		Age	ВМІ	Children	Expenses
	count	1338.000000	1330.000000	1338.000000	1337.000000
	mean	39.207025	30.676917	1.136024	13273.306111
	std	14.049960	6.094868	3.194662	12114.083012
	min	18.000000	16.000000	-65.000000	1121.870000
	25%	27.000000	26.300000	0.000000	4738.270000
	50%	39.000000	30.400000	1.000000	9377.900000
	75%	51.000000	34.700000	2.000000	16657.720000
	max	64.000000	53.100000	70.000000	63770.430000

Out[8]:		Age	Gender	ВМІ	Children	Smoker	Region	Expenses
	425	45	NaN	24.3	5	no	southeast	9788.87
	572	30	NaN	43.1	2	no	southeast	4753.64
	729	41	NaN	36.1	1	no	southeast	6781.35
	914	33	NaN	24.6	2	no	northwest	5257.51
	1313	19	NaN	34.7	2	yes	southwest	36397.58
	1334	18	NaN	31.9	0	no	northeast	2205.98

In [9]: df[df['BMI'].isnull()]

Out[9]:

	Age	Gender	ВМІ	Children	Smoker	Region	Expenses
8	37	male	NaN	2	no	northeast	6406.41
283	55	female	NaN	1	no	northeast	11879.10
580	59	male	NaN	1	no	northeast	12913.99
769	38	female	NaN	2	no	northwest	6933.24
946	42	male	NaN	2	no	southwest	7160.09
1100	33	female	NaN	2	yes	northeast	16776.30
1235	26	male	NaN	0	no	northwest	2699.57
1335	18	female	NaN	0	no	southeast	1629.83

In [10]: df[df['Expenses'].isnull()]

Out[10]:

]:		Age	Gender	ВМІ	Children	Smoker	Region	Expenses
	810	46	female	30.8	3	no	southwest	NaN

```
In [11]: df[df['Region'].isnull()]
Out[11]:
             Age Gender BMI Children Smoker Region Expenses
                   female 31.1
                                                        8280.62
         652
                                     0
                                            no
                                                  NaN
                    male 22.5
                                                        5209.58
         788
               29
                                            no
                                                 NaN
In [12]: df.dropna(inplace=True)
In [13]: df.isnull().sum()
Out[13]: Age
                    0
         Gender
         BMI
         Children
         Smoker
         Region
         Expenses
         dtype: int64
In [14]: df[df.duplicated()]
Out[14]:
             Age Gender BMI Children Smoker
                                                 Region Expenses
         581
              19
                    male 30.6
                                     0
                                            no northwest 1639.56
In [15]: df[(df['Age'] == 19) & (df['Gender'] =='male') & (df['BMI'] == 30.6)]
Out[15]:
             Age Gender BMI Children Smoker
                                                 Region Expenses
         195
              19
                    male 30.6
                                     0
                                                          1639.56
                                            no northwest
         581
              19
                    male 30.6
                                     0
                                            no northwest
                                                         1639.56
In [16]: df.drop duplicates(inplace=True)
```

```
In [17]: df[df.duplicated()]
Out[17]:
          Age Gender BMI Children Smoker Region Expenses
In [18]: df['Gender'].value_counts()
Out[18]: Gender
         male
                   668
         female
                   652
         Name: count, dtype: int64
In [19]: df['Smoker'].value counts()
Out[19]: Smoker
                1048
         no
                 272
         yes
         Name: count, dtype: int64
In [20]: df['Region'].value counts()
Out[20]: Region
         southeast
                      359
         southwest
                      322
         northwest
                      321
         northeast
                      318
         Name: count, dtype: int64
         Encoding
        gender_mapping = {'male': 0, 'female': 1}
         smoker mapping = {'no': 0, 'yes': 1}
         df['Gender'] = df['Gender'].map(gender mapping)
         df['Smoker'] = df['Smoker'].map(smoker mapping)
In [22]: df.head()
```

```
Out[22]:
           Age Gender BMI Children Smoker
                                                Region Expenses
         0
           19
                     1 27.9
                                   0
                                           1 southwest
                                                       16884.92
             18
                     0 33.8
                                   1
                                           0 southeast
                                                        1725.55
         2
             28
                     0 33.0
                                   3
                                           0 southeast
                                                        4449.46
                     0 22.7
            33
                                   0
                                           0 northwest 21984.47
         4
            32
                     0 28.9
                                   0
                                           0 northwest
                                                         3866.86
In [23]: region mapping = {'southeast': 1, 'southwest': 2, 'northwest': 3, 'northeast': 4}
         df['Region'] = df['Region'].map(region mapping)
In [24]: df.head()
Out[24]:
           Age Gender BMI Children Smoker Region Expenses
            19
                     1 27.9
                                                  2 16884.92
         0
                                   0
                                           1
            18
                     0 33.8
                                   1
                                                      1725.55
                                           0
             28
                     0 33.0
                                                      4449.46
         2
                                   3
                                           0
            33
                     0 22.7
                                   0
                                           0
                                                  3 21984.47
             32
                     0 28.9
                                   0
                                                      3866.86
         4
                                           0
In [25]: df.dtypes
Out[25]: Age
                      int64
         Gender
                      int64
         BMI
                    float64
         Children
                      int64
         Smoker
                      int64
         Region
                      int64
         Expenses
                    float64
         dtype: object
```

Min Max Scaling

```
from sklearn.preprocessing import MinMaxScaler
         scaler = MinMaxScaler()
In [27]: # Expenses column is Tareat COlumn
         features to normalize = ['Age', 'Gender', 'BMI', 'Children', 'Smoker', 'Region']
         features to normalize
Out[27]: ['Age', 'Gender', 'BMI', 'Children', 'Smoker', 'Region']
In [28]: df[features to normalize] = scaler.fit transform(df[features to normalize])
In [29]: df.head()
Out[29]:
                Age Gender
                                 BMI Children Smoker
                                                         Region Expenses
         0 0.021739
                         1.0 0.320755 0.481481
                                                    1.0 0.333333
                                                                 16884.92
                                                    0.0 0.000000
         1 0.000000
                         0.0 0.479784 0.488889
                                                                  1725.55
         2 0.217391
                         0.0 0.458221 0.503704
                                                    0.0 0.000000
                                                                   4449.46
         3 0.326087
                         0.0 0.180593 0.481481
                                                    0.0 0.666667
                                                                 21984.47
         4 0.304348
                         0.0 0.347709 0.481481
                                                    0.0 0.666667
                                                                   3866.86
```

2. Splitting the Data

```
In [30]: X = df.drop('Expenses',axis=1) # Features
Y = df['Expenses'] # Labels
In [31]: X.head()
```

```
Out[31]:
               Age Gender
                                 BMI Children Smoker Region
         0 0.021739
                         1.0 0.320755 0.481481
                                                   1.0 0.333333
         1 0.000000
                         0.0 0.479784 0.488889
                                                   0.0 0.000000
         2 0.217391
                         0.0 0.458221 0.503704
                                                   0.0 0.000000
         3 0.326087
                         0.0 0.180593 0.481481
                                                   0.0 0.666667
         4 0.304348
                         0.0 0.347709 0.481481
                                                   0.0 0.666667
In [32]: Y.head()
              16884.92
Out[32]: 0
         1
              1725.55
         2
             4449.46
              21984.47
               3866.86
         Name: Expenses, dtype: float64
In [33]: # Split Ratio ---> 75:25
         # Training : Testing
         # Random State for reproducibility
         X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, random_state=42)
In [34]: print("X_train:\n", X_train.head(1))
         print("\nX_test:\n", X_test.head(1))
         print("\ny train:\n", y train.head(1))
         print("\ny_test:\n", y_test.head(1))
```

X_train:

Age Gender BMI Children Smoker Region 587 0.347826 1.0 0.382749 0.488889 1.0 0.666667

X_test:

Age Gender BMI Children Smoker Region 685 0.76087 0.0 0.280323 0.496296 0.0 1.0

y_train:

587 43943.88

Name: Expenses, dtype: float64

y_test:

685 11244.38

Name: Expenses, dtype: float64

3. Gradient Descent Implementation

In [35]: X_train.head()

Out[35]:

		Age	Gender	ВМІ	Children	Smoker	Region
	587	0.347826	1.0	0.382749	0.488889	1.0	0.666667
	356	0.608696	0.0	0.752022	0.503704	0.0	0.000000
	992	0.695652	1.0	0.420485	0.496296	0.0	0.333333
	464	0.021739	0.0	0.247978	0.481481	0.0	0.666667
	950	0.847826	0.0	0.061995	0.481481	0.0	1.000000

In [36]: y_train.head()

```
Out[36]: 587
                43943.88
          356
                 8944.12
          992
                10118.42
          464
               1632.04
          950
              11534.87
         Name: Expenses, dtype: float64
In [37]: from sklearn.metrics import mean squared error
         def gradient descent(X train, y train, learning rate=0.01, n iterations=10000, decay rate=None):
             if len(X train.shape) == 1: # For 1D Conversion
                 X train = X train.reshape(-1, 1)
             if len(y train.shape) == 1: # For 1D Conversion since ytrain is seris so using numpy here
                 y train = y train.to numpy().reshape(-1, 1)
             # X bias term
             X b = np.c [np.ones((X train.shape[0], 1)), X train]
             # Data points and features
             m, n = X train.shape[0],X train.shape[0]
             # Weight matrix (W^T)
             W = np.random.randn(X_train.shape[1] + 1, 1)
             loss values = []
             for iteration in range(n iterations):
                 gradients = 1/m * X b.T.dot(X b.dot(W) - y train)
                 if decay rate:
                     current learning rate = learning rate / (1 + decay rate * iteration)
                 else:
                     current learning rate = learning rate
                 W = W - current learning rate * gradients
                 predictions = X b.dot(W)
                 loss values.append(mean squared error(y train, predictions))
                 #result string = f"Coefficient and Intercept of the Model: {W}\nLoss Values:\n{loss values}"
                 #print(result string)
```

```
gradient descent(X train, y train) # With Constant Rate
In [38]: # Learning Rate Analysis with 0.01
         gradient descent(X train, y train, decay rate=0.01)
In [39]: # Plot for Consant & Decay Learning Rates
         def gradient descent(X train, y train, learning rate=0.01, n iterations=10000, decay rate=None):
             if len(X train.shape) == 1: # For 1D Conversion
                 X train = X train.reshape(-1, 1)
             if len(y train.shape) == 1: # For 1D Conversion since ytrain is seris so using numpy here
                 y train = y train.to numpy().reshape(-1, 1)
             # X hias term
             X b = np.c [np.ones((X train.shape[0], 1)), X train]
             # Data points and features
             m, n = X train.shape[0], X train.shape[1]
             # Weight matrix (W^T)
             W constant = np.random.randn(n + 1, 1)
             W decaying = np.random.randn(n + 1, 1)
             loss values constant = []
             loss values decaying = []
             for iteration in range(n iterations):
                  gradients constant = 1/m * X b.T.dot(X b.dot(W constant) - y train)
                 W constant = W constant - learning rate * gradients constant
                 predictions constant = X b.dot(W constant)
                 loss values constant.append(mean squared error(y train, predictions constant))
                 gradients decaying = 1/m * X b.T.dot(X b.dot(W decaying) - y train)
                 if decay rate:
                     current learning rate decaying = learning rate / (1 + decay rate * iteration)
                 else:
                     current learning rate decaying = learning rate
                 W_decaying = W_decaying - current_learning_rate_decaying * gradients_decaying
```

```
predictions_decaying = X_b.dot(W_decaying)
    loss_values_decaying.append(mean_squared_error(y_train, predictions_decaying))

plt.figure(figsize=(10, 6))
plt.plot(range(1, n_iterations + 1), loss_values_constant, label='Constant Learning Rate')
plt.plot(range(1, n_iterations + 1), loss_values_decaying, label='Decaying Learning Rate')
plt.xlabel('Number of Iterations')
plt.ylabel('Mean Squared Error')
plt.title('Loss Values over Iterations')
plt.legend()
plt.show()

return W_constant, loss_values_constant, W_decaying, loss_values_decaying

W_constant, loss_values_constant, W_decaying, loss_values_decaying = gradient_descent(X_train, y_train, decay_rate=0.01)
```


4. Model Evaluation

```
In [40]: from sklearn.metrics import mean_absolute_error, mean_squared_error
def evaluate_model(X_test, y_test, W_constant, W_decaying):
    if len(X_test.shape) == 1: # For 1D Conversion
        X_test = X_test.reshape(-1, 1)
```

```
if len(y test.shape) == 1: # For 1D Conversion since ytrain is seris so using numpy here
   y test = y test.to numpy().reshape(-1, 1)
X test b = np.c [np.ones((X test.shape[0], 1)), X test]
predictions test constant = X test b.dot(W constant)
predictions test decaying = X test b.dot(W decaying)
# Computing MAE and MSE for both constant and decaying learning rates
mae constant = mean absolute error(y test, predictions test constant)
mse constant = mean squared error(y test, predictions test constant)
mae decaying = mean absolute error(y test, predictions test decaying)
mse decaying = mean squared error(y test, predictions test decaying)
# Histogram For Consstant
error distribution constant = y test - predictions test constant
plt.figure(figsize=(10, 6))
plt.hist(error distribution constant, bins=30, edgecolor='black')
plt.title('Error Distribution - Constant Learning Rate')
plt.xlabel('Error')
plt.vlabel('Frequency')
plt.show()
# Histogram For Decying Rate
error_distribution_decaying = y_test - predictions_test_decaying
plt.figure(figsize=(10, 6))
plt.hist(error distribution decaying, bins=30, edgecolor='black')
plt.title('Error Distribution - Decaying Learning Rate')
plt.xlabel('Error')
plt.ylabel('Frequency')
plt.show()
print("Constant Learning Rate:")
print(f"MAE: {mae constant:.2f}")
print(f"MSE: {mse constant:.2f}")
print("\nDecaying Learning Rate:")
print(f"MAE: {mae decaying:.2f}")
```

```
print(f"MSE: {mse_decaying:.2f}")

# Example usage
evaluate_model(X_test, y_test, W_constant, W_decaying)
```

Error Distribution - Constant Learning Rate

Error Distribution - Decaying Learning Rate

Constant Learning Rate:

MAE: 4543.38 MSE: 43794979.02

Decaying Learning Rate:

MAE: 5988.32 MSE: 65776966.98

5. Learning Rate Analysis

```
In [41]: from sklearn.preprocessing import StandardScaler
         def learning rate analysis(X, y, learning rates, n iterations=1000):
             # Convert y to a NumPy array if it's a Pandas Series
             if isinstance(y, pd.Series):
                 y = y.to numpy()
             # 2d to 1D Conversion
             if len(X.shape) == 1:
                 X = X.reshape(-1, 1)
             if len(v.shape) == 1:
                 y = y.reshape(-1, 1)
             X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
             scaler = StandardScaler()
             X train scaled = scaler.fit transform(X train)
             X test scaled = scaler.transform(X test)
             W = np.random.randn(X train scaled.shape[1] + 1, 1)
             X train b = np.c [np.ones((X train scaled.shape[0], 1)), X train scaled]
             loss values = []
             for learning rate in learning rates:
                 W current = W.copy()
                 local loss values = []
                 for iteration in range(n iterations):
                     gradients = 1/X train b.shape[0] * X train b.T.dot(X train b.dot(W current) - y train)
                     W_current = W_current - learning_rate * gradients
                     predictions = X train b.dot(W current)
```

```
local_loss_values.append(mean_squared_error(y_train, predictions))

loss_values.append(local_loss_values)

plt.figure(figsize=(10, 6))
    for i, learning_rate in enumerate(learning_rates):
        plt.plot(range(n_iterations), loss_values[i], label=f'LR={learning_rate}')

plt.xlabel('Iterations')
    plt.ylabel('Mean Squared Error')
    plt.title('Learning Rate Analysis')
    plt.legend()
    plt.show()

    return loss_values

learning_rates_to_analyze = [0.01, 0.05, 0.1, 0.5]
loss_values = learning_rate_analysis(X, Y, learning_rates_to_analyze)
```


6. Scikit-learn Implementation

```
In [42]: from sklearn.linear_model import LinearRegression
def scikit_learn_regression(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

model = LinearRegression()

model.fit(X_train_scaled, y_train)

predictions = model.predict(X_test_scaled)

# MSE & MAE Comparsion
mae = mean_absolute_error(y_test, predictions)
mse = mean_squared_error(y_test, predictions)

return mae, mse

mae, mse = scikit_learn_regression(X, Y)
print("MAE:", mae)
print("MSE:", mse)
```

MAE: 4743.839512329654 MSE: 47119179.47700916

7. Normal Equation Implementation

```
In [43]: def normal_equation_regression(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)

    X_train_b = np.c_[np.ones((X_train_scaled.shape[0], 1)), X_train_scaled]
    theta = np.linalg.inv(X_train_b.T.dot(X_train_b)).dot(X_train_b.T).dot(y_train)

    X_test_b = np.c_[np.ones((X_test_scaled.shape[0], 1)), X_test_scaled]
    predictions = X_test_b.dot(theta)
```

```
mae = mean_absolute_error(y_test, predictions)
mse = mean_squared_error(y_test, predictions)

return mae, mse

mae_normal, mse_normal = normal_equation_regression(X, Y)
print("MAE (Normal Equation):", mae_normal)
print("MSE (Normal Equation):", mse_normal)

MAE (Normal Equation): 4743.839512329654
MSE (Normal Equation): 47119179.477009155
```

Observation ? ? ? :

• MAE and MSE are almost Same for Linear Regression Model and Normal Equation because both use Linear Regression Model

```
In [44]: # MAE & MSE Calcualtion for Gradient Descent
         def gradient descent(X, y, learning rate=0.01, n iterations=1000, decay rate=None):
             if len(X.shape) == 1: # For 1D Conversion
                 X = X.reshape(-1, 1)
             if len(y.shape) == 1: # For 1D Conversion since ytrain is series so using numpy here
                 y = y.to numpy().reshape(-1, 1)
             X_b = np.c_[np.ones((X.shape[0], 1)), X]
             m, n = X.shape[0], X.shape[1]
             W = np.random.randn(n + 1, 1)
             loss values = []
             for iteration in range(n iterations):
                 gradients = 1/m * X b.T.dot(X b.dot(W) - y)
                 if decay rate:
                     current learning rate = learning rate / (1 + decay rate * iteration)
                 else:
                     current learning rate = learning rate
```

```
W = W - current learning rate * gradients
                 predictions = X b.dot(W)
                 loss values.append(mean squared error(v, predictions))
             return W, loss values
         scaler = StandardScaler()
         X train scaled = scaler.fit transform(X train)
         X test scaled = scaler.transform(X test)
         W gradient descent, loss values gradient descent = gradient descent(X train scaled, y train)
         mae gradient descent = mean absolute error(y test, np.c [np.ones((X test scaled.shape[0], 1)), X test scaled].dot(W gradient d
         mse gradient descent = mean squared error(y test, np.c [np.ones((X test scaled.shape[0], 1)), X test scaled].dot(W gradient de
         print(f"Gradient Descent - MAE: {mae_gradient_descent:.4f}, MSE: {mse_gradient_descent:.4f}")
        Gradient Descent - MAE: 4618.5731, MSE: 45290930.4499
In [45]: import time
         np.random.seed(42)
         X = np.random.rand(1000, 5)
         theta true = np.random.rand(6, 1)
         X b = np.c [np.ones((1000, 1)), X]
         y = X b.dot(theta true) + np.random.randn(1000, 1) * 0.1 # Adding noise for realism
         X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
         scaler = StandardScaler()
         X train scaled = scaler.fit transform(X train)
         X test scaled = scaler.transform(X test)
         # Computational efficiency for Gradient Descent
         start time = time.time()
         W gradient descent, = gradient descent(X train scaled, y train)
         end time = time.time()
         mae gradient descent = mean absolute error(y test, np.c [np.ones((X test scaled.shape[0], 1)), X test scaled].dot(W gradient d
         mse gradient descent = mean squared error(y test, np.c [np.ones((X test scaled.shape[0], 1)), X test scaled].dot(W gradient de
         ct gradient = end time-start time
         print(f"Gradient Descent - Time: {ct gradient:.4f}s, MAE: {mae gradient descent:.4f}, MSE: {mse gradient descent:.4f}")
         # For Normal Equation
         start time = time.time()
```

```
mae normal, mse normal = normal equation regression(X train, y train)
         end time = time.time()
         ct normal = end time-start time
         print(f"Normal Equation - Time: {ct normal:.4f}s, MAE: {mae normal:.4f}, MSE: {mse normal:.4f}")
         # For scikit-learn Linear Regression
         start time = time.time()
         mae scikit learn, mse scikit learn = scikit learn regression(X train, y train)
         end time = time.time()
         ct scikit learn = end time - start time
         print(f"Scikit-learn Linear Regression - Time: {ct scikit learn:.4f}s, MAE: {mae scikit learn:.4f}, MSE: {mse scikit learn:.4f}
        Gradient Descent - Time: 0.7779s, MAE: 0.0897, MSE: 0.0120
        Normal Equation - Time: 0.0000s, MAE: 0.0860, MSE: 0.0118
        Scikit-learn Linear Regression - Time: 0.0105s, MAE: 0.0860, MSE: 0.0118
In [46]: mae gradient descent, mae normal, mae scikit learn
Out[46]: (0.089650517747645, 0.086048081464194, 0.08604808146419404)
In [47]: mse gradient descent, mse normal, mse scikit learn
Out[47]: (0.012018391740325483, 0.011786053686983744, 0.011786053686983738)
In [48]: ct gradient,ct normal,ct scikit learn
Out[48]: (0.7779483795166016, 0.0, 0.01051473617553711)
In [51]: import matplotlib.pyplot as plt
         # Values
         mae values = [mae gradient descent, mae normal, mae scikit learn]
         mse values = [mse gradient descent, mse normal, mse scikit learn]
         ct values = [ct gradient, ct normal, ct scikit learn]
         # Types
         methods = ['Gradient Descent', 'Normal Equation', 'Scikit-learn']
         # MAE plot
         plt.figure(figsize=(10, 5))
```

```
plt.subplot(1, 3, 1)
plt.barh(methods, mae values, color=['yellow', 'green', 'orange'])
plt.title('MAE Comparison')
plt.ylabel('MAE')
# MSE PLot
plt.subplot(1, 3, 2)
plt.barh(methods, mse_values, color=['yellow', 'green', 'orange'])
plt.title('MSE Comparison')
plt.ylabel('MSE')
# Computational Time Plot
plt.subplot(1, 3, 3)
plt.barh(methods, ct_values, color=['blue', 'green', 'orange'])
plt.title('Computational Time Comparison')
plt.ylabel('Computational Time (s)')
plt.tight_layout()
plt.show()
```

