

Clique Cover

Dionatas Santos, Gabriel Pietroluongo e Maria Júlia Damasceno

Definições

O que é um clique?

O que é uma partição?

Clique

O que é um "Clique"?

- Tradução livre: "Panelinha"
- Conjunto de vértices tal que todos os vértices no conjunto são adjacentes

Partição

Definição

Um agrupamento dos elementos em subconjuntos nãovazios tal que cada elemento esteja incluso em exatamente um subconjunto.

Clique Cover

Enfim, ao problema principal:

Duas definições, dois problemas:

- 1 Qual a menor quantidade k de cliques necessária para cobrir o grafo?
 - 2 É possível cobrir o grafo com *k cliques*?

Qual a menor quantidade de cliques k necessária para cobrir um determinado grafo?

Essa formulação do problema é *np-hard*

Como resolver?

0

Passo 1

Pegar o grafo original e inverter suas arestas.

Passo 2

Aplicar o algoritmo de colorização de vértices. (Chromatic Number)

Passo 3

Transformar os conjuntos com mesmas cores em *cliques*.

Passo 4

Voltar ao grafo original com os *cliques* definidos.

Exemplo prático

Grafo completo

Grafo completo

Pergunta:

Qual a menor quantidade de *cliques* necessária para cobrir o grafo R?

R

R

O problema não possui uma única solução

O problema de clique cover em sua versão não-decidível possui múltiplas soluções!

Exemplo prático

(mais um)

R'

R'

Por que fazer isso tudo?

Transformação de Problemas

Essencialmente, isso
transforma o problema
inicial em uma instância do
problema de chromatic
number.

Redução

Apesar de ser no sentido "inverso" do desejado, isso abre caminho para realizar uma redução.

Redução formal

A formalização da redução do *clique cover* para *C-Col*

Seja R um grafo não direcional

R é o grafo que se deseja determinar o clique cover.

Seja C uma instância do problema de C-Col

Nessa instância,
convenientemente, o grafo
a ser colorido é
exatamente o complemento
do grafo que se deseja
determinar o clique cover ou seja: R'.

Resolva o problema aplicando o algoritmo de C-Col

Aplique o algoritmo de resolução na instância C do problema *C-Col*.

Retorne ao grafo original com a solução

Use a solução da instância C como resposta do seu problema *clique cover* em R.

Por que é uma redução?

Mapeia o problema adequadamente

Sejam Cn as instâncias de C-Col e On as instâncias de *Clique Cover*. Para cada Ci, uma instância Qi equivalente é gerada pela redução.

Roda em tempo polinomial

A redução em si basicamente consiste em determinar o complemento do grafo de Qi, uma operação que pode ser executada em tempo polinomial.

A resposta é correta

Em qualquer instância, a resposta para Qi é sim se e apenas se a resposta para Ci também é sim.

O problema é *np-hard*

É possível afirmar que o problema é *np-hard* por ser possível obter uma redução para o problema de C-Col, que também é *np-hard*. [Teorema de *Cook-Levin*]

É possível cobrir o grafo com k cliques? Ou seja: dado uma quantidade k de elementos, é possível cobrir o gráfico?

Essa formulação do problema é *np-complete*

Como resolver?

Passo 1

Pegar o grafo original e inverter suas arestas.

Passo 2

Aplicar o algoritmo de colorização de vértices. (k-Coloring)

Passo 3

Transformar os conjuntos com mesmas cores em *cliques*.

Passo 4

Voltar ao grafo original com os *cliques* definidos.

Sim, é a mesma estratégia da versão de minimização, mas aplicando *k-Coloring* ao invés de *Chromatic Number*!

Redução formal

A formalização da redução do *clique cover* para *C-Col*

Seja R um grafo não direcional

R é o grafo que se deseja determinar o clique cover.

Seja C uma instância do problema de k-Col

Nessa instância,
convenientemente, o grafo
a ser colorido é
exatamente o complemento
do grafo que se deseja
determinar o clique cover ou seja: R'.

Resolva o problema aplicando o algoritmo de k-Col

Aplique o algoritmo de resolução na instância C do problema k-*Col*.

Retorne ao grafo original com a solução

Use a solução da instância C como resposta do seu problema *clique cover* em R.

Por que é uma redução?

Mapeia o problema adequadamente

Sejam Kn as instâncias de k-Col e On as instâncias de *Clique Cover*. Para cada Ki, uma instância Qi equivalente é gerada pela redução.

Roda em tempo polinomial

A redução em si basicamente consiste em determinar o complemento do grafo de Qi, uma operação que pode ser executada em tempo polinomial.

A resposta é correta

Em qualquer instância, a resposta para Ki é sim se e apenas se a resposta para Ci também é sim.

O problema é *np-complete*

É possível afirmar que o problema é *np-complete* por ser possível obter uma redução para o problema de *k-Col*, que também é *np-complete*.

[Teorema de Cook-Levin]

O problema #2 está em NP

Por ser um problema de decisão e atender aos critérios abaixo:

Dada uma solução, é possível verificar a corretude dessa solução em tempo polinomial. Dada uma máquina de Turing não determinística, é possível determinar uma solução em tempo polinomial.

A máquina de checar soluções é simples

Basta viajar por todos os vértices de cada *clique* construída marcando os que já foram visitados. Quando não for possível sair do vértice atual, basta checar a quantidade de vértices visitados.

Conferindo Soluções

E como a DTM funciona?

1 - Chute uma cor para cada vértice

A máquina escolhe uma cor para cada vértice aleatoriamente. Essa operação é realizada de forma polinomial.

2 - ???

Como a máquina é não determinística, então necessariamente ao menos uma instância da máquina irá assumir as cores corretas.

3 - Lucro

Com as cores definidas, basta verificar se o problema foi resolvido. Isso também pode ser realizado em tempo polinomial e, portanto, a máquina não determinística resolve o problema em tempo polinomial.

Aplicações

Algumas aplicações do Clique Cover

Algoritmos de redes sociais podem usar esse problema para recomendações de amigos em comum.

É possível modelar a propagação de doenças por meio do contato direto entre diferentes pessoas.

Em geral

As aplicações envolvem agrupamento de informações por meio de ligações em comum dentro de um determinado grupo.

Obrigado!