

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

Profesor: Sebastián Bugedo Ayudante: Sofía Errázuriz

Lógica para ciencias de la computación - IIC2213 Ayudantía 12 23 de junio, 2023

El objetivo de esta ayudantía es repasar los conceptos del curso entre las cases 00 y 06, para esto se hará un resumen de la materia, acompañado de los siguientes ejercicios:

Lógica proposicional

Ejercicio 1.

- 1. Defina una función $largo \mid \cdot \mid : \mathcal{L}(P) \rightarrow \mathbb{N}$ que entregue el número de símbolos de una fórmula (contando paréntesis, variables y conectivos).
- 2. Defina una función $var : \mathcal{L}(P) \to \mathbb{N}$, que entregue el número de ocurrencias de variables proposicionales para cualquier $\varphi \in \mathcal{L}(P)$ (incluye repeticiones).
- 3. Demuestre que toda fórmula $\varphi \in \mathcal{L}(P)$ que no contiene el símbolo ¬ cumple que $|\varphi| \leq 4 \cdot var(\varphi)^2$.

Ejercicio 2. Sea Σ un conjunto satisfacible de fórmulas proposicionales, y φ una fórmula proposicional que no es una tautología. Además, suponga que Σ y φ no tienen variables proposicionales en común. ¿Es cierto que $\Sigma \not\models \varphi$? Demuestre o de un contraejemplo.

Ejercicio 3. Dado un grafo G = (N, A), una secuencia de nodos (a_1, \ldots, a_n) es un camino en G si para todo $i \in [1, n-1]$ se tiene que $(a_i, a_{i+1}) \in A$. Decimos que G contiene un circuito Hamiltoniano si existe un camino (a_1, \ldots, a_n) en G tal que:

- \blacksquare n es el número de nodos de N,
- $a_i \neq a_j$ para cada $i, j \in \{1, \dots, n\}$ tales que $i \neq j$,
- $(a_n, a_1) \in A$.

Encuentre un algoritmo eficiente que dado un grafo G, construya una fórmula proposicional φ tal que G contiene un circuito Hamiltoniano si y sólo si φ es satisfacible.

Máquinas de Turing y complejidad

Ejercicio 4. Demuestre que si tenemos dos lenguajes \mathcal{L}_1 y \mathcal{L}_2 tales que existe una reducción de \mathcal{L}_1 a \mathcal{L}_2 , entonces:

- Si \mathcal{L}_2 es decidible, entonces \mathcal{L}_1 es decidible.
- Si \mathcal{L}_1 es indecidible, entonces \mathcal{L}_2 es indecidible.

Ejercicio 5. Construya una reducción de 3-COL a 4-COL, utilice esto para probar inductivamente que k-coloreabilidad es un problema NP-completo