CS 3430: S22: Scientific Computing Midterm 03

Vladimir Kulyukin Department of Computer Science Utah State University

April 28, 2022

Instructions

- 1. This exam has 11 problems worth 25 points. Your solutions are due in Canvas by 11:59pm on April 29, 2022.
- 2. You're welcome to use your solutions to your previous homework problems in this exam, your class notes, the Canvas lecture materials, your Python IDE's documentation; you may not use any other materials while working on your solutions.
- 3. You'll type and code your solutions in the included file cs3430_s22_exam03.py and submit it in Canvas. Remember to write your name and A-number at the top of the file, which will make it easier for us to grade your work.
- 4. You may not talk to anyone during this exam orally, digitally, in writing, by phone, by sign language, or any other form of communication (including telepathy).
- 5. If you use your homework solutions, you must include all the homework files into your submission. For example, if, in cs3430_s22_exam03.py, you use your code from cs3430_s22_hw_x, put the following import statement in cs3430_s22_exam03.py

from cs3430_s22_hw_x import y

- and include cs3430_s22_hw_x.py into your submission. If you fail to include your former submission and your code doesn't pass a unit test due to a failed import, I'll give only partial credit at best. There won't be any back and forth on resubmissions for the final, because I must submit the grades 72 hours after the final exam. Take this note seriously.
- 6. Problems 1, 7, 8, and 11 do not require any coding. You'll type your answers in multi-line comments in cs3430_s22_exam03.py. The other problems require coding solutions. The file cs3430_s22_exam03_uts.py has 44 unit tests I've written to help you verify your solutions to the coding problems (Problems 2, 3, 4, 5, 6, 9, and 10).
- 7. You solutions in cs3430_s22_exam03.py are due in Canvas by 11:59pm on April 29, 2022. Again, if you have multiple files to submit, because of your imports, zip them all up in cs3430_s22_exam_03.zip and submit the zip.
- 8. I thank you all once again for taking CS 3430: S22 and wish you all best of luck on this exam and, as always, Happy Hacking!

Problem 1 (3 points)

Find an equivalence class whose elements give the remainders 7, 13, 17, 59 when divided by 29, 31, 37, 53, respectively. State your solution in the form $[a]_m$ (e.g., $[60]_{131}$). Recall that the notation $[a]_m$ is the equivalence class of a modulo m.

Problem 2 (2 points)

Write the function solve_cong_system_with_crt(m_ary, a_ary) that implements the Chinese Remainder Theorem (CRT) algorithm. The parameter m_ary is an array of pairwise relatively prime positive integers (i.e., $[m_1, m_2, ..., m_k]$), the parameter a_ary is an array of integers (i.e., $[a_1, a_2, ..., a_k]$). Remember that m_ary and a_ary must be of the same length. This function returns an equivalence class implemented as a Python generator that solves the congruence system $x \equiv a_i \pmod{m_i}$, $1 \le i \le k$. Save your code in cs3430_s22_exam03.py.

Problem 3 (2 points)

Write the function $solve_cong_with_xeuc(a, b, m)$ that uses the Extended Euclid algorithm to find a solution to the congruence $ax \equiv b \pmod{m}$, if it exists, and returns an equivalence class implemented as a Python generator that solves the congruence. If there is no solution, the function returns None. Save your code in $cs3430_s22_exam03.py$.

Problem 4 (2 points)

Implement the function rand_lcg(a, b, m, n, x0=0) that generates random numbers with the LCG method. This method takes the parameters a, b, m, where a is the multiplier, b is the increment, b is the modulus, and x0 is the seed. The parameter n specifies how many numbers are generated. This method returns a Python generator that generates n random numbers. Save your code in cs3430_s22_exam03.py.

Problem 5 (2 points)

Implement the function rand_xorshift(a, b, c, n, x0=1) that generates random numbers with the 32 xorshit method. This method takes the parameters where a, b, c define the xorshift triple. The parameter n specifies how many numbers are generated and the keyword x0 defines the seed. This method returns a Python generator to generate n random numbers. Save your code in cs3430_s22_exam03.py.

Problem 6 (3 points)

Implement equidistrib_test(seq, n, lower_bound, upper_bound) that executes the Equidistribution Test. This method returns two values: the V statistic and its p value. The argument seq is the sequence of n random numbers in the range [lower_bound, upper_bound], where lower_bound=0 and upper_bound is a positive integer. Save your code in cs3430_s22_exam03.py.

Problem 7 (1 point)

Consider the following decision tree.

Use this decision tree to classify the following examples with respect to the binary target PlayTennis. Write your answers in a multi-line comment for this problem in cs3430_s22_exam03.py. You don't have to write any code for this problem.

- 1. { Wind=Weak, Humidity=High, Outlook=Sunny, Temperature=Hot };
- 2. { Humidity=High, Temperature=Mild, Outlook=Rain, Wind=Weak };
- 3. { Temperature=Cool, Humidity=Normal, Wind=Strong, Outlook=Rain };
- 4. { Temperature=Mild, Humidity=High, Wind=Weak, Outlook=Sunny };
- 5. { Wind=Strong, Humidity=High, Temperature=Mild, Outlook=Rain }.

Problem 8 (2 points)

a) Compute the entropy of the following dataset with respect to the target PLAY_TENNIS.

DAY		OUTLOOK		TEMPERATURE		HUMIDITY		WIND		PLAY_TENNIS	
D1		Sunny		Hot		High		Weak		No	
D2		Sunny		Hot		High		Strong		No	
D3		Overcast		Hot		High		Weak		Yes	
D4		Rain		Mild		High		Weak		Yes	
D5		Rain		Cool		Normal		Weak		Yes	

b) Compute the entropy of the following dataset with respect to the target PLAY_TENNIS.

DAY		OUTLOOK		TEMPERATURE		HUMIDITY		WIND		PLAY_TENNIS	
D10		Rain		Mild		Normal		Weak		Yes	
D11	I	Sunny	1	Mild	I	Normal		Strong		Yes	
D12	1	Overcast	1	Mild	1	High		Strong		Yes	
D13	I	Overcast	I	Hot	I	Normal	I	Weak	l	Yes	1
D14	1	Rain		Mild	I	High		Strong		No	

c) Compute the gain of WIND of the following dataset given that the target is PLAY_TENNIS.

DAY	OUTLOOK		TEMPERATURE		HUMIDITY		WIND		PLAY_TENNIS	1
D1	Sunny		Hot	I	High		Weak		No	1
D2	Sunny	 	Hot	I	High	1	Strong		No	I
D3	Overcast		Hot	1	High		Weak		Yes	1
D4	Rain	I	Mild	1	High	1	Weak	1	Yes	l
D5	Rain	I	Cool	1	Normal		Weak		Yes	I

d) Compute the gain of HUMIDITY of the following dataset given that the target is PLAY_TENNIS.

DAY	1	OUTLOOK		TEMPERATURE	1	HUMIDITY		WIND	1	PLAY_TENNIS	I
D1	I	Sunny	I	Hot	I	High	I	Weak	I	No	I
D2	1	Sunny	1	Hot	1	High	1	Strong	1	No	1
D3		Overcast		Hot	1	High		Weak		Yes	1
D4		Rain		Mild		High		Weak		Yes	1
D5		Rain	 	Cool		Normal		Weak		Yes	

Write your answers in a multi-line comment for this problem in cs3430_s22_exam03.py. You don't have to write any code for this problem.

Problem 9 (3 points)

Use the files train_data.csv and test_data.csv for this problem. The file train_data.csv contains 123 training examples generated from the IRIS dataset. This is one of the standard machine learning datasets that consists of examples of IRIS flowers. The file test_data.csv contains 27 examples generated from this dataset. The target attribute for this dataset is called Class. The attributes SepLen and SepWid denote the septal length and width, respectfully, for each flower example. The attributes PetLen and PetWid denote the petal length and width, respectfully, for each flower example.

- a) Implement the function learn_bin_id3_dt_from_csv_file(csv_fp, target_attrib) that takes a path to a csv file of training examples, applies the binary ID3 algorithm to them with the target attribute specified by the second argument target_attrib, and returns the root of the learned binary ID3 decision tree (i.e., the object of the id3_node class in bin_id3.py you used in your homework).
- b) Implement the function classify_csv_file_with_bin_id3_dt(dt_root, csv_fp, target_attrib) that takes the root of the binary ID3 tree returned by learn_bin_id3_dt_from_csv_file() (dt_root), a path to a csv file with test examples (csv_fp) and the target attribute target_attrib, and returns the average classification accuracy of dt_root on the test examples in csv_fp.

Here's a test run of learn_bin_id3_dt_from_csv_file() and my output. Your tree may look different but shouldn't be deeper.

Your classification accuracy doesn't have to be 100%, but it should definitely be $\geq 90\%$, because it's a pretty simple dataset. Save your code in cs3430_s22_exam03.py.

Problem 10 (2 points)

- a) Write the function build_huffman_tree_from_text(txtstr) that takes a string txtstr and builds a Huffman tree from the frequencies of each character in the string txtstr. Save your code in cs3430_s22_exam03.py.
- b) Write the function encode_moby_dick_ch03() that produces the Huffman tree binary encoding of Chapter 3 from "Moby Dick" given in moby_dick_ch03.txt and saves the encoding in the current directory. This function should produce two files moby_dick_ch03.bin and moby_dick_ch03_pb.txt. In your comments next to encode_moby_dick_ch03(), subtract the sum of the sizes of moby_dick_ch03.bin and moby_dick_ch03_pb.txt from the size of moby_dick_ch03.txt and state how many bytes your encoding saved. Save your code in cs3430_s22_exam03.py.

Problem 11 (3 points)

Compute the correlation coefficients matrix between the following two matrices.

$$A = \begin{array}{|c|c|c|c|c|} \hline 10 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 0 \\ \hline \end{array}$$

Type your correlation matrix in a multi-line comment in cs3430_s22_exam03.py.

What to Submit

Submit cs3430_s22_exam03.py and all imports required to run your functions in cs3430_s22_exam03.py. Zip all your files in cs3430_s22_exam_03.zip and submit it in Canvas.