Föreläsning 13 i ADK

Grafer: maximala flöden

Viggo Kann KTH

Maximalt flöde i graf

- Indata: Digraf G med kantvikter $c(u,v) \ge 0$, två speciella hörn i G: källan s, utloppet t
- **Utdata**: Ett maximalt flöde genom grafen från s till t så att högst c(u,v) flödar genom kanten (u,v) för varje kant
- Exempel:

Maximalt flöde i graf

```
Algoritmidé: (Ford-Fulkerson) [8 i Goodrich, 7.1 - 7.3 i Kleinberg, 18 (förr 11) i Biggs, 27.2 i CLR, 33 i Sedgewick, 13.3 i Grimaldi]
Starta med flöde 0
while ∃ stig från s till t längs vilken flödet kan öka do
Öka flödet längs denna stig så mycket det går
```

Tidskomplexitet: $\mathcal{O}(|V|^3)$ (för bästa implementationen)

Sats

Om $c(u,v)\in\mathbb{N}$ (heltalskapaciteter) så producerar algoritmen ett maximalt flöde med heltalsflöden i varje kant

Restflödesgrafen

Ett enkelt sätt att hitta stigar som ökar flödet är att använda restflödesgrafen G_f som har samma hörn som G och en kant från u till v om flödet lokalt från u till v kan ökas; kantens kapacitet, restkapaciteten, är $c_f(u,v)=c(u,v)-f(u,v)$, där f(u,v)=-f(v,u).

Exempel: Det utritade flödet 3 i grafen:

Ger restflödesgrafen:

Edmonds-Karp algoritm för flöde

Ford-Fulkersons metod där den stig som har minst antal kanter alltid väljs.

Implementation:

 Hitta kortaste stigen i restflödesgrafen med hjälp av breddenförstsökning från s.

Komplexitetsanalys:

- Att hitta kortaste stigen tar tid $\mathcal{O}(|E|)$
- ullet Att uppdatera flödet längs stigen tar tid $\mathcal{O}(|V|)$

Lemma (beviset ingår inte i kursen)

Om den kortaste stigen väljs i Ford-Fulkersons metod hittas det maximala flödet efter högst |V||E| varv i slingan.

• Total tidskomplexitet: $\mathcal{O}(|V||E| \cdot |E|) = \mathcal{O}(|V||E|^2)$

Flödesexempel

Maximalt flöde = minimalt snitt

- Givet ett snitt (S, V S) i flödesgrafen så att $s \in S$ och $t \in V S$
- Låt c(S, V S) vara summan av vikterna på dom kanter som korsar snittet från S till V S

Idé: Flödet är högst c(S, V - S) för alla snitt

Sats

Det maximala flödet = $\min c(S, V - S)$

Bevis:

- Låt f vara ett maximalt flöde
- Då finns det ingen stig från s till t i restflödesgrafen G_f längst vilken flödet kan öka
- Låt $S = \{v \in V : \exists \text{ stig från } s \text{ till } v \text{ i } G_f\}$
- (S, V S) är ett snitt
- För varje kant (u,v) som korsar snittet från S till V-S gäller f(u,v)=c(u,v)

• \Rightarrow flödet = c(S, V - S)

Bipartit matchning

- Indata: Bipartit graf ⟨U ∪ V, E⟩
- **Utdata:** En matchning $M \subseteq E$ av maximal storlek
- *M* är en matchning om inga kanter i *M* har någon gemensam ändpunkt
- Exempel:

Bipartit matchning

- Indata: Bipartit graf ⟨U ∪ V, E⟩
- **Utdata:** En matchning $M \subseteq E$ av maximal storlek
- *M* är en matchning om inga kanter i *M* har någon gemensam ändpunkt
- Exempel:

Bipartit matchning, reduktion till flöde

Reduktion (transformation) av problemet bipartit matchning till flödesproblemet.

Vi löser alltså flödesproblemet och får en lösning till bipartit matchning.

function BIPARTITEMATCHING
$$(U,V,E)$$

$$V' \leftarrow U \cup V \cup \{s,t\}$$

$$E' \leftarrow E \cup \{(s,u) : u \in U\} \cup \{(v,t) : v \in V\}$$
for $e \in E'$ do
$$c(e) \leftarrow 1$$
return FORDFULKERSON $(V',E') \cap E$

function BIPARTITEMATCHING(
$$U,V,E$$
)

 $V' \leftarrow U \cup V \cup \{s,t\}$
 $E' \leftarrow E \cup \{(s,u) : u \in U\} \cup \{(v,t) : v \in V\}$

for $e \in E'$ do

 $c(e) \leftarrow 1$

return FORDFULKERSON(V', E') ∩ E

function BIPARTITEMATCHING
$$(U,V,E)$$

$$V' \leftarrow U \cup V \cup \{s,t\}$$

$$E' \leftarrow E \cup \{(s,u) : u \in U\} \cup \{(v,t) : v \in V\}$$
for $e \in E'$ do
$$c(e) \leftarrow 1$$
return FORDFULKERSON $(V',E') \cap E$

function BIPARTITEMATCHING(U,V,E)

$$V' \leftarrow U \cup V \cup \{s, t\}$$

$$E' \leftarrow E \cup \{(s, u) : u \in U\} \cup \{(v, t) : v \in V\}$$
for $e \in E'$ **do**

$$c(e) \leftarrow 1$$

return FordFulkerson $(V', E') \cap E$

function BIPARTITEMATCHING(U,V,E) $V' \leftarrow U \cup V \cup \{s,t\}$ $E' \leftarrow E \cup \{(s,u) : u \in U\} \cup \{(v,t) : v \in V\}$

for $e \in E'$ do $c(e) \leftarrow 1$

return FordFulkerson $(V', E') \cap E$


```
function BIPARTITEMATCHING(U,V,E)
V' \leftarrow U \cup V \cup \{s,t\}
E' \leftarrow E \cup \{(s,u) : u \in U\} \cup \{(v,t) : v \in V\}
for e \in E' do
c(e) \leftarrow 1
return FORDFULKERSON(V',E') \cap E
```

