The Power of the Noisy Channel: Unsupervised End-to-End Task-Oriented Opialogue with LLMs Opialogue With LLMs

Brendan King and Jeffrey Flanigan 1

University of California, Santa Cruz 1 {bking2, jmflanig}@ucsc.edu 1

Abstract 106

Training task-oriented dialogue systems typi- 2 cally requires turn-level annotations for inter- 2 acting with their APIs: e.g. a dialogue state and the system actions taken at each step. These an- 2 notations can be costly to produce, error-prone, 2 and require both domain and annotation ex- 2 pertise. With advances in LLMs, we hypothe-2 size unlabelled data and a schema definition are 2 sufficient for building a working task-oriented dialogue system, completely unsupervised. Us- 2 ing only (1) a well-defined API schema (2) a 2 set of unlabelled dialogues between a user and 2 agent, we develop a novel approach for infer- 2 ring turn-level annotations as latent variables 2 using a noisy channel model. We iteratively 2 improve these pseudo-labels with expectation- 2 maximization (EM), and use the inferred labels 2 to train an end-to-end dialogue agent. Evaluat- 2 ng our approach on the MultiWOZ benchmark, 2 our method more than doubles the dialogue suc- 2 cess rate of a strong GPT-3.5 baseline. 1

1 Introduction 3

Task-oriented dialogue systems, which use APIs 4 to complete tasks on behalf of users, have been a 4 longstanding challenge within conversational AL 4 Recent advances in large language models (LLMs) 4 have further stimulated interest in task-oriented 4 systems and LLMs which can use APIs as tools. 4 To facilitate API use, successful task-oriented dia-4 logue systems usually employ a modular approach: predicting a dialogue state which includes arguments to API calls, and dialogue acts for planning 4 an appropriate response, before finally producing 4 a natural language reply. Training such systems 4 typically requires expert annotation of these struc-4 tured intermediates for every dialogue turn. Even in 4 settings where human-human dialogues are abun- 4 dantly available, the high cost and expertise re-

Our code will be available at https://github.com/jlab-2nlp/nc_latent_tod 2

Figure 1: An overview of our unsupervised dialogue 5 problem. We assume 1) unlabelled goal-oriented dialogues between a user and agent and 2) a well-defined 5 schema \mathcal{S} with APIs suitable for fulfilling goals. We 5 infer the unseen interactions between the agent and API, 5 and use this to produce an end-to-end dialogue agent. 5

quired to annotate the dialogues poses a significant 4 hurdle to system development.

Recent work has shown that LLMs can accomplish a broad set of useful tasks without any structured labels for a task (Brown et al., 2020). These 6
include 'zero-shot' approaches to task-oriented dialogue sub-tasks such as Dialogue State Tracking 6
(DST) (Hu et al., 2022; King and Flanigan, 2023; 6
Heck et al., 2023), intent detection (Pan et al., 6
2023), grounded response generation (Li et al., 6
2023b), and even zero-shot end-to-end dialogue 6
systems (Hudeček and Dusek, 2023). Still, existing 6
approaches generally do not perform well enough 6
for real-world use, and none are able to make effective use of in-domain unlabelled dialogues. 6

We ask: can we use existing unlabelled dia-7 logues (without any labels or API calls annotated) 7 along with an API specification, to build a working 7 dialogue agent, without needing an expert to an-7 notate data? This addresses a common real-world 7 scenario. Many high value dialogue tasks are cur-7 rently carried out by human agents, who interface 7 a user with some software system. These conver-7 sations can be recorded and transcribed, and the 7

API(s) supporting the agent typically have well-7 formed specifications. However, annotating the 7 API calls and system acts needed for aligning the 7 two is time consuming and requires annotation ex-7 pertise. In lieu of this, 'zero-shot' systems have 7 been proposed, but these still require an expert to 7 annotate a 'formatting example' (Hu et al., 2022; 7 King and Flanigan, 2023), or a more detailed 'pol-7 icy skeleton' (Zhang et al., 2023). 7

We instead propose the following setting: we g assume an API schema definition S, and plenty 8 of available human-human dialogues in natural 8 language, but no annotations on these dialogues 8 (Fig. 1). To the best of our knowledge, we are the first to consider this setting. We demonstrate 8 that one can develop a conversational agent for the API schema in this setting without any assistance from an expert annotator. Our contributions are as 8 follows: 8

- We construct an end-to-end task-oriented dialogue agent with an LLM solely from unla- 9 belled dialogues and an API definition, without any turn-level labels or supervision from 9 de-lexicalized utterances. 9
- We accomplish this by inferring all the pseudolabels necessary (API calls, system actions) 9 to train a traditional end-to-end dialogue sys- 9 tem from unlabelled dialogues, using prompts of which are automatically generated from the 9 API schema. 9
- We propose a noisy-channel 'code-to-text' reranking method, which is instrumental to our pseudo-label quality and final system. o
- We devise a novel Hard-EM (Dempster et al., o 1977) approach which uses predictions as incontext examples for the LLM, and addition- 9 ally as data for iteratively fine-tuning a final o model. 9

Preliminaries 10

A task-oriented dialogue consists of turns of utterances between a user and an agent which interfaces 11 accomplish a task. Typically the system response 11 utterance follows the user's utterance. We denote 11 u_t as the user's utterance at turn t, and r_t as the

gives names and descriptions for all arguments supported in each API, as well as the possible values 11 any categorical arguments may take (Rastogi et al., 11 2020). This is analogous to standardized formats 11 for API documentation, many of which could be 11 easily converted to a schema definition. 11

Task-oriented systems require some method for 12 interacting with the APIs in S. Modular approaches 12 use a Dialogue State Tracking (DST) module, 12 which predicts a belief state b_t : a collection of arguments to API call(s) needed to satisfy the user's 12 goal. A belief state is commonly represented with 12 a set of slot-value pairs: 12

$$b_t = \{(s_1, v_1), (s_2, v_2), ...(s_n, v_n)\}$$
 13

For example, if a user says 'I'm looking for a restau- 14 rant south of town', a DST system might produce 14 the belief state {(restaurant-area, south)}, which 14 can be used to query a restaurant API. We assume 14 zero labeled belief states and infer them from unlabelled dialogues using the space of possible states 14 supported by the schema definition \mathcal{S} . 14

We also make use of system dialogue acts to 15 structure our agent's communicative intents with a 15 policy module. Given a dialogue state and context 15 for a turn t, the policy predicts set of dialogue 15 acts to be communicated in the system response 15 r_t . For instance, the policy might determine that $_{15}$ we should ask the user to narrow their search to 15 a price range: $A_t = \{\text{Request(restaurant-area=?)}\}$. 15 An appropriate system response might be: "Sure, 15 are you looking for a particular price range?" Like 15 belief states, we assume zero supervised examples 15 of A_t and infer them from unlabelled dialogues. 15

Method Overview 16

We treat the turn-level labels needed for training 18 an end-to-end dialogue system as a latent vari- 18 ables, and infer them from unlabelled dialogues. 18 We assume only the fully-lexicalized sequence of 18 user and system utterances $u_1, r_1, ... u_T, r_T$, and 18 the schema S defining the system's capabilities, $_{18}$ which defines the space of valid dialogue state and 18 act labels. Importantly, our prompts are automati- 18 cally generated from the API schema. 18

In §4, we outline our noisy-channel prompting 19 the user with a programmable system or API to 11 method for inferring the turn-level labels neces 19 sary for training our dialogue agent. We give an 19 overview of the latent variables we infer in Fig. 2. 19 We assume we cannot query the APIs or observe 19 system's response. We assume the APIs supported 11 results while labeling dialogues offline, as the obby the system are defined in a schema S, which $\frac{1}{11}$ tained API results may have changed. In § 5, we $\frac{1}{19}$

Figure 2: An overview of the latent variables annotated in our unsupervised labeling process which are used to train 17 the dialogue model. Our DST Module (§4.1) infers the API call(s) with arguments at each turn, from which we can derive the dialogue state change. Our DAT or Act Tagging module (§4.2) predicts the dialogue acts communicated in 17 the observed system response, which can be used to infer de-lexicalized responses for training a response generator, 17

train a complete dialogue agent by fine-tuning on 19 prompts derived from our inferred pseudo-labels. 19

Inferring Latents via Noisy Channel 20

In this section, we present our method for inferring 21

latent annotations for the dialogue states $b_1...b_{T|21}$ and dialogue acts $A_1...A_T$ for each dialogue turn 21 t given only the unlabelled user and system utter- $\frac{1}{2}$ ances $(u_1, r_1, u_2, r_2, ...u_T, r_T)$. To do this, we devise a noisy-channel prompting approach for DST 21 and dialogue act tagging (DAT) using StarCoder 21 4.2 (Li et al., 2023a), a code-based LLM. First, we use 21 a text-to-code prompt to infer the API call(s) made 21 For inferring system acts, we use a similar text-to-25 1977) (§4.5). 21

4.1 Inferring API Calls and Dialogue State 22

the prior system response r_{t-1} , the current user ut- 23 terance u_t , and the previous belief state prediction b_{t-1} . We then extract a dialogue state change Δb_t 23 from the arguments to the call, and compute the 23 next dialogue state as $b_t = \Delta b_t + b_{t-1}$. While used 23 offline here, this DST method is causal with respect 23 to dialogue inputs and is the same as our method 23 in online inference. 23

Inferring System Acts 24

by the system in each dialogue, and build the di-21 code prompt for predicting the set of dialogue acts 25 alogue state from inferred API call arguments (\S 21 A_t communicated in a given system response r_t 25 4.1). We use a similar text-to-code prompt to infer 21 See Fig. 5b in App. A for an example of our prompt, 25 the latent act(s) communicated in each agent re- 21 We define each act our system could take in the 25 sponse, so that we can reverse-engineer an agent's 21 prompt instructions. For input from each turn, we 25 policy (§ 4.2). For both tasks, we find much bet 21 find best performance when conditioning only on 25 ter performance when re-ranking latent predictions $_{21}$ the response to tag, r_t . For our set of supported acts, $_{25}$ according to a noisy-channel model, in which we 21 we use a subset of the universal dialogue acts pro- 25 condition the observed utterance on a predicted la-21 posed in Paul et al. (2019), where some acts such 25 tent in a code-to-text prompt (§ 4.3). Finally, we 21 as "Inform" or "Offer" may use slots defined in S. 25 leverage the in-context learning ability of LLMs 21 For example, an agent choosing to offer to book 25 by re-using our predictions as exemplars (§ 4.4). 21 a user at a hotel named 'acorn guest house' might 25 Given these initial pseudo-labels, we iteratively im- 21 be represented as Offer(hotel_name='acorn guest 25 prove their quality using Hard-EM (Dempster et al., 21 house'). See App. C for our complete dialogue 25 act set. Importantly, we use the schema definition 25 S and our act set to validate each act prediction, 25removing predicted keys which do not belong to S, 25 We prompt the LLM with a text-to-code prompt 23 or acts which are not in the set. For example, the 25 for inferring the latent dialogue state as an API 23 'text' key is not valid for a 'ThankYou' act, so a pre- 25 call. Fig. 5a in App. A gives an example of our 23 diction of "ThankYou(text='thanks, have a good 25 prompt. We generate a prompt enumerating the 23 day')" would be normalized to only "ThankYou()". 25 intents available in the schema S as APIs callable 23 Using the inferred system acts, we use a rule-based 25 by our agent. Following Hu et al. (2022), we pre-23 method to delexicalize the system responses for 25 dict the appropriate function call conditioned on 23 training the response generator (Fig. 2, right). 25

4.3 Noisy Channel LLM Prompting 26

We find that a noisy channel prompting method 27 (Min et al., 2022) significantly the quality of our 27 inferred dialogue states and acts. Here we describe 27 noisy channel prompting using a simple example, 27 Noisy Channel DST Prompt and then describe its application to dialogue state 27 tracking and system act tagging. 27

A typical prompt for machine reading compre- 28 hension might be: 28

```
<Optional in-context examples (c)> 29
Passage: <Passage (z)> 29
Question: <Question (x)> 29
Answer: 29
```

Given this prompt of the in-context examples 30 c, passage z, question x, an answer y completion 30 is found with the language model by maximizing 30 or sampling from Pr(y|x,z,c). We call this the 30 direct prompt. 30

The "noisy channel" prompt is: 31

```
<Optional in-context examples (c)> 32
Passage: <Passage (z)≥ 32
Answer: <Answer (y)≥ 32
Question: <Question (x)> 32
```

Pr(x|y,z,c)Pr(y|z,c), or only the conditional 33 Pr(x|y,z,c), following Min et al. (2022). 33

To apply this method to inferring dialogue states, 34 While the labels we produce in § 4.1-§ 4.4 can 39 we first sample a set of possible belief state changes using top-p sampling (Holtzman et al., 2020) from the direct DST prompt, and then pick the best dialogue state according to the noisy channel prompt (see Fig. 3). We use an analogous procedure for inferring system acts. For DST, we find scoring with the joint Pr(x|y,z,c)Pr(y|z,c) to perform best for act tagging. 34

4.4 Retrieval-Augmented In-context Learning 35

To leverage the in-context learning abilities of 36 LLMs, we retrieve from a pool of examples from 36 our predictions. Because we assume no labeled ex- 36 amples, this pool starts with zero examples and is 36 filled incrementally. We retrieve up to k examples $\frac{36}{100}$ face as sentence-transformers/all-mpnet-base-v2 $\frac{36}{100}$

²In the latter case, the prior Pr(y|z,c) is uniformly $\frac{1}{2}$ for the k samples from the direct prompt. 33

Direct DST Prompt

```
last_system_utterance="byard art is at 344 oxford " + \
                              "street, anything else?",

need a taxi to king station
    user utterance="Vac
                            т.
    user_utterance= yes, I need a taxt to king station , user_intent=[agent.book_taxi(destination='king station')]
```

```
response = agent.handle_turn(
     belief_state=BeliefState(attraction=dict(
     name='byard art')),
last_system_utterance="byard art is at 344 oxford " + \
     "street, anything else?", user_intent=[agent.book_taxi(destination='king station')],
     user_utterance="Yes, I need a taxi to king station",
```

Figure 3: Instances from our 'direct' and 'noisy channel' 37 prompts for DST. Best viewed in color. After sampling 37 a DST completion from the 'direct' prompt, we score it 37 by the likelihood of the input user utterance conditioned 37 on it in the 'noisy channel' prompt. 37

for in-context learning from this pool using an unsupervised dense retriever, with examples ranked 36 by embedding cosine distance.³ We use k = 8 and 36 k=6 for DST, DAT respectively. For retriever in 36 puts, we use $(b_{t-1} \cdot r_{t-1} \cdot u_t)$ and $(u_t \cdot r_t)$ for DST 36 and DAT respectively, where · indicates concate- 36 nation. Applied naively, this in-context learning 36 approach can suffer a majority label bias (Zhao 36 where the likelihood of the question now depends 33 et al., 2021). We adjust for biases introduced in 36 on the answer. To use the noisy channel LLM 33 the initially small example pool by 1) not using 36 prompt, we first sample k samples from the direct 33 any in-context examples until we have a minimum 36 prompt, and then pick the best output answer y = 33 of n = 32 examples in the pool and 2) using our 36 according to the noisy channel prompt probabil- 33 API schema S to require at least 4 distinct labels 36 ity. One can choose to score the joint probabil- 33 in each set of in-context examples. 4 Our algorithm 36 ity of the answer followed by the question, i.e. 33 for producing initial pseudo-labels is in App. D. 36

4.5 Refining the Labels with Hard-EM 38

be used directly for training an end-to-end dia-34 logue system, we find their quality can be improved 39 34 through expectation-maximization (Dempster et al., 39 34 1977). For every dialogue turn in our dataset, our 39 34 initial pseudo-labels provide the expected dialogue 39 state and system dialogue acts according to our 39 zero-shot system. We then jointly fine-tune an 39 best, and scoring with the conditional Pr(x|y,z,c) 34 LLM as a noisy-channel DST & DAT system to 39 maximize the likelihood of these expected labels. 39 We use smaller version of our prompted LLM, Star-Coder 3B (Li et al., 2023a). 39

For each turn, we derive (prompt, completion) 40 pairs for 'direct' text-to-code and 'channel' code-

We use MPNet (Song et al., 2020), available on Hugging-36

We consider two dialogue state change labels to be distinct 36 if they update different slots, and two act labels to be distinct 36 if they embody different acts or different slots 36

improves performance. 40

After fine-tuning, the model can be used to produce improved pseudo-labels by re-labeling each 41 dialogue, using the same noisy-channel inference 41 methods. Following this, we can repeat the finetuning process. This train and re-label process can 41 be repeated for any number of iterations, though 41 we find a single re-labeling is sufficient. 41

End-to-End System 42

state tracker, policy, and response generator. 43

For the DST sub-task, we again use both 44 6 'direct' and 'channel' (prompt, completion) pairs. 44 ence method presented in §4. 44

Policy For the Policy sub-task, we use a text-tok=5 most recent utterances in the dialogue history: $H_t = (u_{t-2}, r_{t-2}, u_{t-1}, r_{t-1}, u_t)$. The completion used to ground the next response r_t . We do not decode an act prediction at inference time: 45

$$\hat{A}_t = \underset{A_t \in \mathcal{V}^*}{\operatorname{argmax}} P(f_{\text{prompt}}(H_t)))$$

Response Generation For Response Generation, 47 we condition on the turn's observed system and $_{47}$ 6.1 user utterances (r_{t-1}, u_t) and our policy's act prediction A_t). The completion is the observed system code the response: 47

$$\hat{r}_t = \underset{A_t \in \mathcal{V}^*}{\operatorname{argmax}} P(f_{\text{prompt}}(r_{t-1}, u_t, A_t)))$$

Following prior works, we predict delexicalized 40

to-text DST and DAT modules, as defined in § 40 name. For example, instead of generating "The 49 4. We then combine and shuffle these pairs into a 40 phone number for acorn guest house is 555-5309" 49 single training set for joint fine-tuning. For efficient 40 directly, we would predict "The phone number for 49 training, we shorten our prompts by removing in- 40 the [hotel_name] is [hotel_phone]", where values 49 context examples as well as the function definitions 40 could be filled in. Importantly, we never presume 49 used in the in-context learning setting. We find up- 40 access to gold delexicalized responses. Instead, we 49 sampling the 'channel' prompts so that there is a 2:1 40 use our predicted acts, e.g. "Inform(name='acorn 49 ratio of 'channel' to 'direct' instances for training 40 guest house', phone='555-8309')", to delexicalize 49 the observed response for training. 49

End-to-end Training For each turn, we derive 50 (prompt, completion) pairs for 'direct' and 'chan-40 nel' DST, and direct Policy, and Response Genera-50 tion prompts. We then combine and shuffle these 50 pairs into a single training set for joint fine-tuning. 50 For efficient training, we shorten our prompts by re- 50 moving in-context examples as well as the function 50 definitions used in the in-context learning setting. 50 We find up-sampling the 'channel' prompts so that 50 Following (Su et al., 2022), we utilize a multi-task 43 there is a 2:1 ratio of 'channel' to 'direct' instances 50 fine-tuning method for training a single LLM as a 43 for training improves performance. Finally, we 50 complete dialogue system, consisting of a dialogue 43 fine-tune StarCoder 3B using cross-entropy loss 50 and AdamW with default hyperparameters. 50

Experiments 51

This allows us to use the same noisy-channel infer- 44 We conduct unsupervised end-to-end dialogue 54 (E2E) and dialogue state tracking (DST) experi-54 ments on the MultiWOZ 2.2 dataset (Zang et al., 54 45 2020; Budzianowski et al., 2018), containing over 54 code prompt where we simply condition on the ten thousand multi-domain task-oriented dialogues 54 45 crowd-sourced in a wizard-of-oz setup. We use 54 45 the fully lexicalized, unlabelled dialogues from the 54 is the current turn's system acts A_t , which will be training set to build our system, and evaluate on 54 45 the test set. First, we demonstrate the value of our 54 use a noisy-channel variant for Policy, and greedily 45 approach in an end-to-end dialogue evaluation, following prior works on task-oriented dialogue (§ 54 6.1). Second, we conduct a dialogue state tracking 54 evaluation to more carefully evaluate the quality of 54 our pseudo-annotations (§6.2). 52

End-to-End (E2E) Experiments 55

47 In E2E experiments, we use our complete system 56 47 to both predict API call arguments and generate 56 response r_t . We also do not use a noisy-channel 47 a next system response in natural language. We 56 variant for response generation, and greedily de-47 evaluate our generated responses with Inform rate, 56 Success rate, and BLEU, as well as a Combined 56 score of 0.5(Inform + Success) + BLEU, following prior works. We provide details on these metrics in App. B. 56

We compare our approach to the previous stateresponses, where values for slots in the system 49 of-the-art unsupervised methods, a GPT-3.5 zero-57 response are replaced with placeholders for the slot 49 shot baseline (Hudeček and Dusek, 2023), and 57

Model	Schema?	Labels?	Dialogues?	Inform	Success	BLEU	Combined
Supervised Results 5						52	
PPTOD (Su et al., 2022)	✓	✓	✓	82.6	72.2	18.2	95.6 51
DiactTOD (Wu et al., 2023)	✓	✓	✓	89.5	84.2	17.5	104.4 51
Our (supervised)	✓	✓	✓	67.9	61.7	14.6	79.4 51
7	Zero-Shot w	ith Forma	tting Example	e(s)			
SGP-TOD-GPT3.5 (Zhang et al., 2023)	✓	Few (‡)	Х	82.0	72.5	9.22	86.5
Fully Unsupervised Results 51							
Sees gold delexicalized conversation hist	ory						51
LLaMa [†]	✓	Х	Х	_	4	1.61	-51
GPT 3.5 Turbo [†]	✓	Х	Х	44.8	31.2	3.3	41.3 51
Sees only fully-lexicalized dialogues 49							
GPT 3.5 Turbo (– gold delex.)	✓	Х	Х	40.7	26.7	3.7	37.4 51
Ours (StarCoder 15B - no EM)	✓	Х	Х	50.0	19.6	3.2	38 51
Ours (StarCoder 3B - w/ EM)	✓	Х	✓	78.1	68.3	13.6	86.8 51

Table 1: Unsupervised end-to-end results in MultiWOZ 2.2. (†) indicates models from Hudeček and Dusek (2023), 52 Results for LLaMa are from Hudeček and Dusek (2023), which does not report the Inform rate. (‡) SGP-TOD 52 uses a prompt with both a formatting example and a "Policy Skeleton", which contains an additional 10-20 hand 52 crafted instances of the correct system acts and response for an input user utterance or returned DB result. For 52 fairer comparison in our fully unsupervised setting, we re-run the GPT 3.5 baseline without the supervision of 52 de-lexicalized responses provided in the conversation history (– gold delex.). Despite far fewer parameters, we find 52 substantial improvements in our methods which leverage unlabelled dialogues 52

SGP-TOD (Zhang et al., 2023). Where possible, 57 we report results for both the original approach 57 and modifications required to fit our fully unsu- 57 pervised setting. For reference, we also run our 57 own method in the fully-supervised setting. We 57 train a model using the procedure in §5 using the 57 annotations sourced from crowd-workers in the 57 MultiWOZ 2.2 corpus (Budzianowski et al., 2018; 57 Zang et al., 2020), rather than the pseudo-labels 57 predicted in § 4. We also compare with existing 57 supervised approaches as a reference point. We 57 include DiactTOD (Wu et al., 2023), which to our 57 knowledge is the supervised state-of-the-art, and 57 PPTOD (Su et al., 2022), which uses a multi-task 57 et al., 2022), which re-frames DST as text-to-SQL, 61 Γ5 encoder-decoder models (Raffel et al., 2020). 57

6.2 DST Experiments 58

We conduct multi-domain DST experiments on the 59 StarCoder 15B for clearer comparison. 61 MultiWOZ Dataset in order to evaluate the qual- 59 ity of our pseudo-annotations. We use our DST 59 7 Module to predict and evaluate only latent dialogue 59 states, which collect the arguments required for 59 E2E Performance We present E2E results for 65 unseen API calls. 59

details are available in App. B. 60

With One Formatting Example 6	2			
IC-DST (StarCoder 15B)	24.58 62			
RefPyDST (StarCoder 15B)	17.17 62			
IC-DST (Codex)	35.02 62			
RefPyDST (Codex)	40.88 62			
Fully Unsupervised 62				
Turiy Cristiper viset. 02				
IC-DST (StarCoder 15B)	15.66 62			
	15.66 62 13.88 62			
IC-DST (StarCoder 15B)				

Table 2: Joint Goal Accuracy (JGA) of our method's 63 dialogue state predictions and zero-shot baselines 63

fine-tuning approach similar to our own in §5, for 57 and RefPyDST which re-frames DST as text-to-61 python (King and Flanigan, 2023). By default, 61 both of these works use OpenAI Codex (Chen et al., 61 2021), and we apply their prompting approaches to 61

Results 64

our unsupervised dialogue agent in Table 1. We 65 Following prior works, we evaluate DST perfor- 60 find that our method achieves state-of-the-art per- 65 mance with joint-goal accuracy (JGA), or whether 60 formance in our fully unsupervised setting, more 65 a given dialogue state is completely accurate. More 60 than doubling the Success Rate and Combined 65 score of the GPT 3.5 Turbo baseline of Hudeček 65 We compare to our ChatGPT 3.5 Turbo baseline 61 and Dusek (2023). When we remove the supervi-65 (Hudeček and Dusek, 2023), as well as prior zero- 61 sion of delexicalization for fairer comparison (– 65 shot DST methods. These include IC-DST (Hu 61 gold delex.), we find even greater improvement 65

across all end-to-end metrics. As discussed in § 65 9, SGP-TOD uses both a supervised formatting 65 example and a 'Policy Skeleton', containing addi- 65 tional supervision for Policy and Response Gen- 65 eration. With no implementation publicly avail-65 able, we were unable to run a modified version 65 of their experiments without this supervision for 65 fair comparison. Despite a less-supervised set- 65 ting, our method is able to perform comparably, 65 even slightly out-performing SGP-TOD in Com- 65 bined score. Remarkably, our unsupervised EM 65 approach also outperforms the supervised variant 65 of our model due to improvements in Inform and 65 Success rate, suggesting the Dialogue acts we infer 65 are of high quality. 65

DST Performance Our DST results are shown in 66 Table 2. Where possible, we distinguish between 66 'zero-shot' results which include a hand-engineered 66 formatting example, and the same method applied 66 without the formatting example. We find that 66 our method significantly outperforms our GPT 3.5 66 Table 3: Number of discovered contaminated turns per 73 proach performs nearly as well as the best method 66 using OpenAI Codex with a supervised formatting 66 example, using less than 10% of the parameters 66 8 at any time (175B vs. 15B). When applying the 66 with and without a formatting example. 66

Ablations greedily sampling from its 'direct' variant, at both 67 tasks. 70 labeling and end-to-end inference time. We plot 67 and greedy ablation, and that our noisy-channel 67 available for analysis. 6 71 inference methods are important to dialogue suc- 67 goal accuracy are in App. E. 67

Figure 4: Combined score (0.5(Inform + Success) + 68BLEU) vs. the number of steps of expectationmaximization in our Noisy Channel method vs. a 68 Greedy Ablation. '0' is zero-shot inference 68

Task	Turns	Correct	Authentic 72
Act Tagging	42	: 21	5 72
DST	42	36	19 72

Turbo baseline by 26% joint goal accuracy. Our ap- 66 task, as well as the number which are correct or verified 73 as being in the MultiWOZ dataset. 73

Contamination Analysis 60

IC-DST and RefPyDST prompting methods to Star- 66 Evaluation of unsupervised methods, such as ours, 70 Coder, our method significantly outperforms both, 66 that use LLMs has the potential issue of task con-70 tamination, where supervised examples are seen 70 in pretraining data (Li and Flanigan, 2024). Inclu-70 In Fig. 4, we conduct an ablation to 67 sion of supervised examples of the task in LLM 70 evaluate both the impact of our noisy channel mod- 67 pretraining data would render the model no longer 70 eling and the value of iterative re-labeling in our 67 unsupervised and the evaluation potentially biased: 70 EM approach. We compare our proposed system 67 tasks for which the training data has been seen may 70 to one in which each module is replaced by only 67 have a higher performance than truly unsupervised 70

To address this issue, we quantify the presence 71 our Combined end-to-end performance across it- 67 of contamination in LLM pre-training data, and 71 erations of EM, with '0' indicating our zero-shot 67 then estimate the potential impact on our results. 71 system. We find that EM improves our end-to-end 67 Fortunately, the StarCoder family of models that we 71 performance in both our noisy-channel approach 67 use has the complete pre-training corpus publicly 71

We conduct an exhaustive search for supervised 74 cess, with a 30 and 33 point improvement over our 67 pairs of our dialogue subtasks in the StarCoder pre-74 greedy baseline with 1 and 2 EM steps, respectively. 67 training data using a semi-automated search with 74 Ablations across Inform, Success, BLEU, and joint 67 manual review. Details of our search procedure are 74 in App. F. We find no complete dialogues with 74 supervised labels. We do find 42 turns labeled with 74 Due to the deprecation of OpenAI Codex, we were un- 66 act tagging, and 42 turns labeled with DST in the 74

pre-training corpus, categorized in Table 3.7 We	
consider a (x, y) pair to be 'Correct' if the state	74
change/dialogue act y is actually correct for the	74
utterance x , and to be 'Authentic' if the (x, y) pair	
is found verbatim in the MultiWOZ corpus.8 As-	74
tonishingly, we find half of the found Act Tagging	74
pairs are incorrect, and could possibly mislead a	74
pre-trained model if the model learned from them.	74
We also find that less than half of the turns are au-	74
thentic for either task, and find a number of them	74
derive from Github issues discussing problems with	74
dialogue simulators. 74	

Additionally, we estimate the degree to which 75 the contamination we discover could exaggerate 75 expected performance of our method on an unseen 75 schema, by using contaminated (x, y) pairs as incontext examples. 9 75

In Table 4, we compare our zero-shot prompt, 76 which receives no examples of any kind, with a 76 'contaminated' variant which uses k=3 in-context 76 examples derived from contamination in the pretraining corpus. The 'contaminated' model retrieves the most relevant contaminated fragments from a pool using the dense retrieval approach described in § 4.4. These are inserted as a triplequoted string block, so that the prompt remains syn- 76 tactically valid python. By leaving contaminated 76 examples in their original format, we test whether 76 their inclusion elicits memorized knowledge rather 76 than providing guidance on input/output formatting. 76 Surprisingly, we find including this supervision via 76 contaminated fragments hurts performance, indicating that these examples do not provide meaningful supervision for our task. Further, the substantial gains in our noisy-channel EM approach suggest our method is doing more than simply eliciting schema-specific knowledge memorized in pretraining. 76

9 Related Work 79

Zero-shot Dialogue A few recent works have proposed zero-shot approaches to dialogue problems using LLMs. Hu et al. (2022) and (King and Flanigan, 2023) propose DST methods which 80

⁷The average dialogue length in MultiWOZ is 13.9 turns. 74 Put together, the set of contaminated turns would be roughly 74 the length of 6 dialogues 74

A 'Correct' pair might arise from printing training data, and an incorrect pair from discussion of a failure case. 74

⁹Ideally, one would pre-train an identical StarCoder model on a corpus *without* contamination, this is computationally 75 impractical. Additionally, we are not aware of any available 75 LLM that can be verified as not contaminated for this task. 75

Method	Inform	Success	BLEU	Combined 77
Ours (zero-shot)	49.0	15.0	3.0	35.0 77
Ours (k=3 contam ex.)	44.5	14.0	3.8	33.1 77
Ours (Full EM)	80.5	69.0	13.7	88.5 77

Table 4: Performance comparison when we include con74 taminated in-context examples. We find *including* this
78 supervision hurts performance, and does not explain the
78 strong performance of our noisy-channel EM approach
78

prompt code based LLMs in a text-to-SQL or text-80 to-program format, respectively. These methods 80 rely on prompts tailored to the schema and the use 80 of a supervised 'formatting' example, which requires annotation expertise. Zhang et al. (2023) 80 extends this approach to end-to-end task-oriented 80 dialogue by adding a policy prompter for GPT 3.5. 80 In addition to a formatting example, their policy 80 prompt requires a hand-crafted 'policy-skeleton' 80 consisting of examples of the appropriate system 80 act and reply in response to different user utter-80 ances or database results. Our approach differs in 80 that we require zero labeled examples of any kind. 80 Hudeček and Dusek (2023) propose a zero-shot 80 end-to-end method for prompting instruction-tuned 80 LLMs like GPT 3.5. However, this method presumes delexicalized system responses $r_1...r_{t-1}$ in 80 the conversation history as input, where entities are 80 replaced with placeholders. Producing these inputs 80 requires ground-truth annotations and gives a form 80 of supervision about the entities and their attributes 80 within a dialogue (see Table 1 for a comparison 80 for GPT 3.5 Turbo with and without delex supervision). In contrast, we only assume fully-lexicalized 80 dialogues, which do not provide this supervision 80 and require no human annotation. We adapt the 80 method of Hudeček and Dusek (2023) to use lexicalized dialogues as inputs, and use this approach 80 as our baseline. Chung et al. (2023) propose an 80 end-to-end method which prompts GPT-4 for inter-80 actions with a knowledge base before producing 80 a response, however it generalizes poorly to the 80 multi-domain setting. 80

Semi-supervised TOD Some works propose 81 semi-supervised approaches to end-to-end task-4 oriented dialogue. Zhang et al. (2020) propose an 81 end-to-end sequence-to-sequence model where the 81 dialogue state is a latent variable. Liu et al. (2021a) 81 adapt this approach for use with pre-trained language models, fine-tuning GPT-2. While success-81 ful, these approaches require a non-trivial amount 81 of supervised data. Other semi-supervised works 81

also evaluate their method in an unsupervised set- 81 References 28 ting (Jin et al., 2018; Liu et al., 2023). However, 81 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 119 these works also assume delexicalized training dia-81 logues, which requires ground-truth annotation and 81 gives a form a supervision to the model. 81

Noisy channel and re-ranking methods A few 82 previous works have utilized noisy channel meth- 82 ods for task-oriented dialogue or prompting meth- 82 ods. Liu et al. (2021b) pre-train a noisy channel for 82 task-oriented dialogues as a sequence to sequence 82 model, however their method requires significant 82 labelled training data. Min et al. (2022) propose 82 Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang noisy channel prompting for few-shot classifica- 82 tion tasks, which inspires our generalization to the 82 generative setting. 82

10 Conclusion 83

We present a novel approach for constructing an 84 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming end-to-end task-oriented dialogue system by lever-84 aging pre-trained language models to infer labels 84 from unlabeled dialogues. 84

11 Limitations 85

Data contamination in LLM pre-training poses a 86 hurdle for accurate benchmarking across NLP, and 86 particularly for unsupervised methods. In an ideal-86 ized setting, there would be a suitably strong taskoriented dialogue benchmark that could be verified 86 as not belonging to the pre-training corpus of each 86 new and more capable LLM. This is not the case 86 for our setting or for many others, and warrants 86 careful attention from the NLP community. For our 86 setting, we were able to properly define problem-86 atic contamination and search for it in our LLM's 86 pre-training corpus, thanks to the open release of Willy Chung, Samuel Cahyawijaya, Bryan Wilie, 122 the pre-training data. We found limited contamination and demonstrated that the contamination we 86 found was not helpful in eliciting task knowledge 86 that might have been memorized in pre-training. 86

All experiments in this paper were conducted 87 on pre-existing public dialogue corpora, col-87 lected explicitly for training task-oriented dia-87 logue agents with the knowledge of all participants 87 (Budzianowski et al., 2018). Our use of the Star-87 Coder model also falls within the terms of it's Re-87 sponsible AI License. It is important that subsequent applications of our method also adhere to any 87 fair-use policies governing collected dialogues or 87 transcripts. 87

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 119 Neelakantan, Pranav Shyam, Girish Sastry, Amanda 119 Askell, Sandhini Agarwal, Ariel Herbert-Voss, 119 Gretchen Krueger, Tom Henighan, Rewon Child, 119 Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 119 2020. Language Models are Few-Shot Learners. 119 arXiv:2005.14165 [cs]. ArXiv: 2005.14165. 119

120 Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-120 man, and Milica Gašić. 2018. Multiwoz - a large-120 scale multi-domain wizard-of-oz dataset for task-120 oriented dialogue modelling. In Proceedings of the 120 2018 Conference on Empirical Methods in Natural 120 Language Processing (EMNLP). 120

Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, 121 Philippe Tillet, Felipe Petroski Such, Dave Cum-121 mings, Matthias Plappert, Fotios Chantzis, Eliza- 121 beth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 121 Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, 121 Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained on Code. ArXiv:2107.03374 [cs]. 121

Holy Lovenia, and Pascale Fung. 2023. Instruct-122 ΓODS: Large Language Models for End-to-End Task-Oriented Dialogue Systems. ArXiv:2310.08885 [cs]. 122

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. 123 Maximum likelihood from incomplete data via the 123 em algorithm. Journal of the Royal Statistical Society. 123 Series B (Methodological), 39(1):1–38. 123

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato 124 Vukovic, Shutong Feng, Christian Geishauser, Hsien- 124 chin Lin, Carel van Niekerk, and Milica Gasic. 2023. 124 ChatGPT for zero-shot dialogue state tracking: A 124 solution or an opportunity? In Proceedings of the 124 61st Annual Meeting of the Association for Compu- 124 tational Linguistics (Volume 2: Short Papers), pages 124 936–950, Toronto, Canada. Association for Compu- 124 tational Linguistics. 124

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 12 H	ong Liu, Yucheng Cai, Zhenru Lin, Zhijian Ou, 133
Yejin Choi. 2020. The Curious Case of Neural Text 125	Yi Huang, and Junlan Feng. 2021a. Varia-
Degeneration. ArXiv:1904.09751 [cs]. 125	tional Latent-State GPT for Semi-Supervised Task-
	Oriented Dialog Systems. ArXiv:2109.04314 [cs]. 133
Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu, 126	i Liu, Lei Yu, Laura Rimell, and Phil Blunsom. 134 2021b. Pretraining the Noisy Channel Model for 134
Noah A. Smith, and Mari Ostendorf. 2022. In-	2021b Protraining the Naivy Channel Model for
	Tools Oriented Dielegue Transportions of the Aggeria
ing. Number: arXiv:2203.08568 arXiv:2203.08568 126	Task-Oriented Dialogue. Transactions of the Associ-
[cs]. 126	ation for Computational Linguistics, 9:657–674. 136
	ing-Bin Liu, Shi-Zhu He, Cao Liu, Kang Liu, and 135
Vojtěch Hudeček and Ondrej Dusek. 2023. Are large 127	Jun Zhao. 2023. Unsupervised Dialogue State Track-
language models all you need for task-oriented dia-	ing for End-to-End Task-Oriented Dialogue with a 135
logue? In Proceedings of the 24th Meeting of the 127	Multi-Span Prediction Network. Journal of Com-
Special Interest Group on Discourse and Dialogue, 127	puter Science and Technology, 38(4):834–852. 135
pages 216–228, Prague, Czechia. Association for 127	
Computational Linguistics. 129	ewon Min, Mike Lewis, Hannaneh Hajishirzi, and 136
W. I. W I. Zi I D. II	Luke Zettlemoyer. 2022. Noisy channel language 136
Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen	model prompting for few-shot text classification. In 136
Chen, Shangsong Liang, Yihong Zhao, and Dawei	Proceedings of the 60th Annual Meeting of the As-
Yin. 2018. Explicit State Tracking with Semi-	sociation for Computational Linguistics (Volume 1: 136
Supervision for Neural Dialogue Generation. In <i>Pro-</i> 128	Long Papers), pages 5316–5330, Dublin, Ireland. As-
ceedings of the 27th ACM International Conference 128	sociation for Computational Linguistics. 136
on Information and Knowledge Management, pages 128	omáš Nekvinda and Ondřej Dušek. 2021. Shades of 137
1403–1412. ArXiv:1808.10596 [cs]. 128	
Brendan King and Jeffrey Flanigan. 2023. Diverse 129	
retrieval-augmented in-context learning for dialogue 129	
state tracking. In Findings of the Association for 129	2021), pages 34–46, Online. Association for Computational Linguistics. 137
Computational Linguistics: ACL 2023, pages 5570–129	
5585, Toronto, Canada. Association for Computa-	Venbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che, 138
tional Linguistics. 127	and Libo Qin. 2023. A Preliminary Evaluation 138
	of ChatGPT for Zero-shot Dialogue Understanding. 138
Changmao Li and Jeffrey Flanigan. 2024. Task Con-	Publisher: arXiv Version Number: 1, 138
tamination: Language Models May Not Be Few-Shot	
Anymore. Proceedings of the AAAI Conference on 13	hachi Paul, Rahul Goel, and Dilek Hakkani-Tür. 2019. 139
Artificial Intelligence, 38(16):18471–18480. 130	Towards Universal Dialogue Act Tagging for Task-
Daymand Li Laybna Dan allal Vanation 7: Niklas 101	Oriented Dialogues. In Proc. Interspeech 2019, 139
Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas	pages 1453–1457. 139
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 131 Marone, Christopher Akiki, Jia LI, Jenny Chim, 13	olin Raffel Noam Shazeer Adam Roberts Katherine 4.40
	Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 140
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,	Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, 131	its of Transfer Learning with a Unified Text-to-Text 140
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Ben Lipkin, Muh-	Transformer. arXiv:1910.10683 [cs, stat]. ArXiv: 140
	1910.10683, 140
ulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang, 13	bhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 141
Urvashi Bhattacharyya, Wenhao Yu, Sasha Luccioni, 131	Raghav Gupta, and Pranav Khaitan. 2020. Towards 141
	Scalable Multi-Domain Conversational Agents: The 141
Paulo Villegas, Fedor Zhdanov, Tony Lee, Naday 131 Timor, Jennifer Ding, Claire S Schlesinger, Hailey 131	Schema-Guided Dialogue Dataset. Proceedings 141
Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 131	of the AAAI Conference on Artificial Intelligence, 141
Alex Gu, Carolyn Jane Anderson, Brendan Dolan-	34(05):8689–8696. 141
	aitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and 142
	Tie-Yan Liu. 2020. MPNet: Masked and Per-
	muted Pre-training for Language Understanding. 142
Leandro Von Werra, and Harm de Vries. 2023a. Star- coder: may the source be with you! <i>Transactions on</i> 131	ArXiv:2004.09297 [cs]. 142
Machine Learning Research. Reproducibility Certifi-	ixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, 143
cation. 131	Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task 143
<u> </u>	pre-training for plug-and-play task-oriented dialogue 143
Zekun Li, Baolin Peng, Pengcheng He, Michel Galley, 132	25 programs for programs play tubic oriented didiogae 45
, 8,8	
Jianfeng Gao, and Xifeng Yan. 2023b. Guiding large 132	system. In Proceedings of the 60th Annual Meet-
Jianfeng Gao, and Xifeng Yan. 2023b. Guiding large 132 language models via directional stimulus prompting. 132	

Qingyang Wu, James Gung, Raphael Shu, and Yi Zhang. 14B 2023. DiactTOD: Learning generalizable latent dialogue acts for controllable task-oriented dialogue systems. In Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue, pages 255–267, Prague, Czechia. Association for Computational Linguistics. 145

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong Chen. 2020. MultiWOZ 2.2: A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, tional Linguistics. 147

Xiaoying Zhang, Baolin Peng, Kun Li, Jingyan Zhou, and Helen Meng. 2023. SGP-TOD: Building task bots effortlessly via schema-guided LLM prompting. In Findings of the Association for Computational

Yichi Zhang, Zhijian Ou, Min Hu, and Junlan Feng. 2020. A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning. In *Proceedings of the 2020* Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 9207–9219, Online. Association for Computational Linguistics. 147

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate before use: Improving few-shot performance of language models. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 12697–12706. 14 PMLR. 148

Prompt Examples 88

Fig. 5 provides abridged instances of our direct 89 prompts for DST and for Act Tagging. Fig. 5a 89 shows our prompt for inferring API call(s) or 89 changes to the dialogue state from an unlabelled dialogue, as detailed in §4.1. Our prompts use python 89 keyword arguments to provide the input variables 89 for a given sub-task, and to prompt the LLM for 89 the next variable of interest. Using the arbitrary 89 ordering of keyword arguments in Python function 89 calls, our 'channel' prompts simply re-order the 89 arguments in order to score the likelihood of the 89 user's utterance given the predicted state change. 89 Algorithm 1 gives our algorithm for pseudo-Fig. 5b provides a similar abridged instance of our 89 direct prompt for tagging dialogue acts in an unlabelled dialogue. Here, we simply condition on the 89 observed system response r_t . 89

Metric Details 95

144End-to-End (E2E) Dialogue Metrics We mea-14 sure end-to-end dialogue performance using the 96 Inform rate, Success rate, and BLEU, following 96 prior works, using the automatic evaluation pro- 96 vided by Nekvinda and Dušek (2021). 10 96

145 A dialogue is considered Informed if the most re-

14 cently mentioned result for each domain meets the 97 user's goal constraints, and is considered Success- 97 14 ful if it is Informed and all values for requested slots 97 14 are presented to the user. For example, if a user 97 pages 109–117, Online. Association for Computa-14 were to ask 'Can you give me the phone number of a cheap hotel in the east part of town?', the dialogue 97 would be Informed if we refer them to a hotel that 97 is actually in the cheap price range and in the east, 97 and Successful if we additionally provide the phone 97 14 number, as requested. BLEU is computed against a 97

Linguistics: EMNLP 2023, pages 13348–13369, Sin-14 single reference response, and the Combined score 97 gapore. Association for Computational Linguistics. 146 is 0.5(Inform + Success) + BLEU. 97

Dialogue State Tracking Metrics Following 98

prior works, we evaluate DST performance with 98 joint-goal accuracy (JGA): for a turn x_t , a dialogue on 14 state prediction \hat{y}_t is considered correct only if all q_8 14 slot names and values match the gold annotation 98 state y_t . We again use the evaluation provided in q_8 Nekvinda and Dušek (2021). Following their work, 98 14 we accept fuzzy matches for non-categorical string 98 14 values, such as the name of a restaurant or hotel, 98 14⁰.95.¹¹ 98

Dialogue Acts oo

Following Paul et al. (2019), we use a universal set 100 of dialogue acts for managing our agents commu- 100 nicative intents. We omit some acts for simplicity 100 and to reduce the context length required to enumerate them in a prompt. Table 5 lists each act and 100 a description. Since our dialogue set is not directly 100 comparable to prior works, we do not directly evaluate act tagging or policy accuracy. Instead, acts 100 serve only as an intermediate representation for 100 planning responses in our end-to-end system. 100

Offline Labeling Algorithm 103

labeling of unlabelled dialogues. 106

¹⁰https://github.com/Tomiinek/MultiWOZ_Evaluation 96 https://pypi.org/project/fuzzywuzzy/ 98

Act	Description (as used in our prompt) 101
Inform(x=y)	Provide information. 101
Offer(x=y)	System provides an offer or suggestion based on results. 101
Confirm(x=y)	Seek confirmation of something. 101
Affirm(x=y)	Express agreement or confirmation. 101
Negate(x=y)	User or System denies or negates. 101
NotifySuccess(x=y)	Notify of a successful action or result. 101
NotifyFailure(x=y)	Notify of an error or failure. 101
Acknowledge	Acknowledge. 101
Goodbye	Goodbye. 101
Greeting	Greeting. 101
ThankYou	Thank You. 101
RequestAlternatives	Ask for other options, alternatives, or any additional user goals. 101
Request(x=?)	Ask for specific information or action. 101

Table 5: Dialogue acts supported by our system, adapted from the universal dialogue acts proposed in Paul et al. 102 (2019). "x=y" indicates the act can take on arbitrary key-value arguments, and "x=?" indicates the act takes on one or more unpaired arguments. We reduce the number of acts and lengths of descriptions relative to Paul et al. (2019) in order to fit within the LMs context length 102

```
Algorithm 1 Our algorithm for initial pseudo-labeling of unlabelled dialogues in \mathcal{D}_{train} 106
   1: procedure InitialOfflineLabel(\mathcal{D}_{train}, \theta_{ret}, \theta)
              \mathcal{P} \leftarrow \emptyset
                                                                                                                                             2:
              \mathcal{B} \leftarrow []
                                                                                                  > Store predictions by dialogue id and turn index
  3:
              for t = 0 to \max_{d \in \mathcal{D}_{train}} |d| do
  4:
                                                                                                                                for all (d_{id}, u_t, r_{t-1}, r_t) in \mathcal{D}_{train} do
                                                                                                                                                      \triangleright d_{id} is dialogue ID
   5:
                           \hat{b}_{t-1} \leftarrow \mathcal{B}[d_{id}][t-1] \text{ or } \emptyset
                                                                                                                                                  \triangleright Fetch \hat{b}_{t-1} if known
                           \hat{b}_{t} \leftarrow \text{OFFLINEDST}(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_{t})
\hat{A}_{t} \leftarrow \text{OFFLINEACTTAG}(\mathcal{P}, \theta_{ret}, u_{t}, r_{t})
\mathcal{P} \leftarrow \mathcal{P} \cup \{(r_{t-1}, u_{t}, r_{t}, \hat{b}_{t}, \hat{A}_{t})\}
   7:
  8:
  9:
                                                                                                         ▶ Add in-context example for future labeling
                     end for
 10:
              end for
 11:
 12: end procedure
 13: procedure OfflineDST(\mathcal{P}, \theta_{ret}, \hat{b}_{t-1}, r_{t-1}, u_t)
              \mathcal{E}_{k} \leftarrow \theta_{ret}(\hat{b}_{t} \cdot r_{t-1} \cdot u_{t}, \mathcal{P})
\mathcal{C} \leftarrow \Delta b_{t} \sim P(f_{\text{prompt}}(\mathcal{E}_{k}, \hat{b}_{t-1}, r_{t-1}, u_{t}))
                                                                                                                    \triangleright Retrieve up to k in-context examples
                                                                                                                                      Sample w/ 'direct' prompt
 15:
              \Delta \hat{b}_t \leftarrow \operatorname*{argmax}_{\Delta b_t \in \mathcal{C}} P(u_t | f_{\mathsf{prompt}}(\mathcal{E}_k, \hat{b}_{t-1}, r_{t-1}, \Delta b_t)
 16:
                                                                                                                                  Re-rank w/ 'channel' prompt
 17:
              return \hat{b}_{t-1} + \Delta \hat{b}_t
 18: end procedure
 19: procedure OfflineActTag(\mathcal{P}, \theta_{ret}, u_t, r_t)
 20:
              \mathcal{E}_k \leftarrow \theta_{ret}(u_t \cdot r_t, \mathcal{P})
                                                                                                                    \triangleright Retrieve up to k in-context examples
              \mathcal{C} \leftarrow A_t \sim_{\text{top-p}} (P(f_{\text{prompt}}(\mathcal{E}_k, r_t)))
                                                                                                                                      Sample w/ 'direct' prompt
 21:
              return argmax P(\mathcal{E}_k, A_t, r_t)
 22:
                                                                                                                                  ▷ Re-rank w/ 'channel' prompt
                                                                                                                                                                                           105
```

23: end procedure 113

```
class DialogueAgent:
      cone method per intent in the schema with all informable slots>
def book_taxi(self, leave_at: str = None, destination: str = No
departure: str = None,
arrive_by: str = None) -> Intent:
                                                                                                                       one Entity per service in schema, with informable + requestable slots>
                                                                                                                     class Taxi(Entity):
                                                                                                                           Parameters:
                                                                                                                                  leave_at: (str) leaving time of taxi
destination: (str) destination of taxi
departure: (str) departure location of
arrive_by: (str) arrival time of taxi
            book taxis to travel between places
            Parameters:
                                                                                                                                 type: (str) car type of the taxi phone: (str) phone number of the taxi
                  devels:
leave_at: (str) leaving time of taxi
destination: (str) destination of taxi
departure: (str) departure location of taxi
arrive_by: (str) arrival time of taxi
                                                                                                                        a class for each of the acts supported in our system>
            pass
                                                                                                                     class Inform(Act):
    """Provide information."""
    entity: Entity = None
      __name__ == '__main__':
agent = DialogueAgent()
                                                                                                                     class Request(Act):
                                                                                                                          """Ask for specific information or action."""

values: List[str] = None
      # Provide the call matching the user's intent in this context
      <in-context exemplars from self-predictions may go here>
                                                                                                                           _name__ == '__main__':
agent = DialogueAgent()
      response = agent.handle_turn(
    belief_state=BeliefState(attraction=dict())
                                                           name='bvard art'.
                                                                                                                           \# Provide the dialogue acts matching the observed system response
                                                           type="museum",
area="south"))
                                                                                                                           <in-context exemplars from self-predictions may go here>
            last system utterance="byard art is at 344 oxford " + \
            "street, anything else?",
user_utterance="Yes, I need a taxi to king station",
user_intent=[agent.book_taxi(destination='king station')]
                                                                                                                           response = agent.handle_turn(
   system_response="0k, where will you be departing from?",
   system_acts=[Request(values=['departure'])]
     (a) Our 'direct' DST prompt with italicized completion
                                                                                                                     (b) Our 'direct' act tagging prompt, with italicized completion 93
```

Figure 5: Abridged prompt and completion examples from our in-context learning approach to initial labelling for 94 DST and DAT (Act Tagging), best viewed in color. Key-word arguments are used to include variables from the turn 94 context and to prefix the completion 94

Further results across EM Steps 107

Contamination Search & Result Details 112

Procedure 13

Here we expand on our ablations in § 7, which evaluates our method with and without our proposed noisy-channel prompting across iterations of expectation-maximization (EM). In Fig. 6, we break down the performance gains we ob-Success rate, and BLEU, where Combined 0.5(Inform + Success) + BLEU. '0' iterations of EM indicates our zero-shot prompting system, without any in-context examples or EM. We find that EM substantially improves performance in all cases, and particularly for our noisy-channel prompting approach. We find the noisy channel prompting approach improves performance on all metrics, with the most substantial gains over the greedy baseline in Inform and Success rates. This suggests that within our algorithm, noisy-channel inference may be particularly important when inferring the system's dialogue acts in order to reverseengineer an accurate policy. 108

of EM when compared to a greedy, direct prompt- 109 12https://github.com/bigcode- 114 ing approach. 109

10 We detail our method for finding instances of task 114 10 contamination within the StarCoder pre-training 114 10 set. We are particularly interested in supervised 114 10 pairs (x, y) where y belongs to our schema of in-10 terest S, for any of the dialogue sub-tasks used 114 served in our 'Combined' metric into Inform rate, 10 n our system. We devise a method for searching 10 the complete pre-training corpus for contaminated 114 10(x, y) pairs, where x is an utterance we might ob-10 serve from either the system or user, and y is the 114 10 atent dialogue state change or dialogue act sup-10 porting S. For each utterance x from either the 114 10 system or user, we collect all documents from the 114 108pre-training corpus which contain the complete 114 10 utterance. We use the elastic search index pro-10% vided for the StarCoder pre-training data, which 114 10 accounts for differences in capitalization, punctu-¹⁰ation, and interrupting white-space. ¹² Following ₁₁₄ 10 this, we search matching documents for keywords 114 ¹⁰ from y (e.g. slot names and values) to determine 114 which of these documents may plausibly contain a 114 In Fig. 7, we analyze dialogue state tracking 10 supervised label and warrant manual review. For 114 performance across iterations of EM using Joint 10 dialogue states, these are the slot names and values, 114 Goal Accuracy (JGA). We find our noisy-channel 10 discarding extremely generic keywords like 'name'. 114 prompting approach improves the accuracy of our 10 For act tags, these are the act names, slots, and val- 114 dialogue state tracking predictions across iterations 10 dues. We then consider a document to need manual 114

project/search/blob/main/index.py 114

Figure 6: Breaking down Combined = 0.5(Inform + Success) + BLEU into components Inform Rate, Success 110 Rate, and BLEU across iterations of EM between our proposed noisy-channel approach and a greedy ablation, 110 which omits noisy-channel prompting at inference time and when labeling dialogue states & system acts in the 110 expectation step. We find improvement across all components, and particularly our Inform and Success Rates 110

Figure 7: Joint Goal Accuracy (JGA) of our inferred API call(s)/Dialogue states across iterations of EM. We find improved dialogue state tracking performance when using our noisy-channel method at inference time and when labeling dialogue states offline in the expectation step for training, compared to a greedy direct prompting approach 111

review if 40% or more of the keywords are found in the 500 characters before or after a matching x in a document. Finally, we hand-check the remaining documents and extract contaminated (x, y) pairs. 114

F.2 Examples 115

Table 6 contains examples of contamination discovered in our search process, and the type of document in which they were found. Notably, none of the examples found closely match our output 116 formatting. 116

Contaminated Input	Contaminated Output	Sub-Task	Source 117
I need a restaurant to dine	restaurant- 117	DST	Jupyter Notebook 117
at in Cambridge on my 117	inform« <name===chiquito< td=""><td>117</td><td></td></name===chiquito<>	117	
upcoming trip . I need 117	restaurant bar 117		
info about chiquito 117			
restaurant bar restaurant . 1	17		
i would like to book a 5 11	7 " $<$ SOB $>$ hotel area = 117	DST	Python 117
star, or closest to it, in 117	east, stars = 5, type = 117		
the east part of town 117	hotel <eob> <sob> 117</sob></eob>		
please . 117	hotel area = east, stars = 1	17	
	5 restaurant area = east 11	7	
	<eob>" 117</eob>		
[Syst] the train id is 117	[SYS_DA] 117	Act Tagging	Github Issue 117
tr8292 and the price is 117	train-inform-leave-tr8292	17	
16.50 pounds. 117	[SYS_DA] 117		
		17	
	pounds 117		

Table 6: Example inputs and outputs in contaminated documents from each task, discovered in the StarCoder pre-training corpus. We include the source type of each document 118