无锡学院

2021 — 2022 学年 第 2 学期

高等数学 I(2) 课程试卷

试卷类型_A_(注明 A、B卷) 考试类型_闭_(注明开、闭卷)

沙辛	1	本课程为 🔥	石	(注明必修或选修),	ᄽᄜᄮ	OG	学分为	C
汁. 豆.	Ι.	小	41念	() 十 印	字时万	96	字分刀	h

- **2、本试卷共<u>4</u>页;考试时间<u>120</u>**分钟; 出卷时间: **2022** 年 5 月
- 3、姓名、学号等必须写在指定地方; 考试时间: 2022 年 6 月 13 日
- 4、本考卷适用专业年级: 2021 级理工科各专业_

题 号	_	=	三	四	总 分
得 分					
阅卷人					

(以上内容为教师填写)

专业	年级	班级		
学号	姓名	任课教师		

请仔细阅读以下内容:

- 1、 考生必须遵守考试纪律,详细内容见《南京信息工程大学滨江学院考试纪律规定》。
- 2、 所有考试材料不得带离考场。
- 3、 考生进入考场后,须将学生证或身份证放在座位的左上角。
- 4、 考场内不许抽烟、吃食物、喝饮料。
- 5、 考生不得将书籍、作业、笔记、草稿纸带入考场,主考教师允许带入的除外。
- 6、 考试过程中, 不允许考生使用通讯工具。
- 7、 开考 15 分钟后不允许考生进入考场,考试进行 30 分钟后方可离场。
- 8、 考生之间不得进行任何形式的信息交流。
- 9、 除非被允许, 否则考生交卷后才能离开座位。
- 10、 考试违纪或作弊的同学将被请出考场, 其违纪或作弊行为将上报学院。

本人郑重承诺: 我已阅读上述 10 项规定,如果考试是违反了上述 10 项规定,本人将自愿接受学校按照有关规定所进行的处理。上面姓名栏所填姓名即表示本人已阅读本框的内容并签名。

一、填空题(每小题4分,共28分)

$$\lim_{\substack{x\to 0\\y\to 1}} (x+\cos y) = \underline{\qquad}.$$

2. 设
$$a = (1,1,2), b = (2,1,3)$$
,则 $a \cdot b =$ _____

3. 常微分方程
$$\frac{dy}{dx} = 2xy$$
 的通解为 $y =$ _____.

4. 设
$$z = 3x + \arctan y$$
,则 $\frac{\partial z}{\partial x} =$ ______.

5. 曲线
$$\begin{cases} x = t \\ y = 3t \end{cases}$$
 的一个切向量是______.

6. 曲面
$$x^2 + y^2 - z^2 = 1$$
 在点 (1,1,1) 处的一个法向量是_____.

7. 已知平面有界闭区域
$$D$$
 关于 y 轴对称,则 $\iint_D x^{2021} dx dy = _____.$

二、选择题(每小题4分,共32分)

1	2	3	4	5	6	7	8

1. 由方程
$$x+2y+3z=4$$
可得偏导数 $\frac{\partial z}{\partial x}=$ ()

2. 空间曲线
$$\begin{cases} x^2 + y^2 = 2z \\ z = 2 \end{cases}$$
 在 xOy 面上的投影曲线方程为()

A.
$$\begin{cases} x^2 + y^2 = 4 \\ z = 0 \end{cases}$$

B.
$$x^2 + y^2 = 4$$

A.
$$\begin{cases} x^2 + y^2 = 4 \\ z = 0 \end{cases}$$
 B. $x^2 + y^2 = 4$ C. $\begin{cases} x^2 + y^2 = 4 \\ z = 2 \end{cases}$ D. 以上都不对

3. 设曲线
$$L: \begin{cases} x = 2t, \\ y = 1, \end{cases}$$
 $t \in [a,b]$, 则 $\int_{L} (x - y) ds = ($)

A.
$$\int_{b}^{a} (4t-2)dt$$

A.
$$\int_{a}^{a} (4t-2)dt$$
 B. $\int_{a}^{b} (4t-2)dt$ C. $\int_{a}^{b} (2t-1)dt$ D. $\int_{a}^{b} (2t-1)ds$

C.
$$\int_{a}^{b} (2t-1)dt$$

D.
$$\int_{a}^{b} (2t-1)ds$$

4. 曲面
$$\Sigma : z = z(x, y)$$
的面积为 a ,则 $\iint_{\Sigma} dS = ($

B. 2*a*

C. 3*a*

D. 4*a*

5. $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数是(

A. $\frac{x}{1-x}$ (-1 < x < 1)

B. $\ln \frac{1}{1+x} (-1 < x \le 1)$

C. $\ln \frac{1}{1-x} (-1 \le x < 1)$

D. 以上都不对

6. 下列级数发散的是(

A. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ B. $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ C. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ D. $\sum_{n=1}^{\infty} (\sqrt{n} - \sqrt{n+1})$

7. 在条件 $\varphi(x,y)=6$ 下求函数f(x,y)的最值,拉格朗日辅助函数应设为(

A. $L = \varphi(x, y) + \lambda f(x, y)$

B. $L = f(x, y) + \lambda \varphi(x, y)$

C. $L = f(x, y) + \lambda [\varphi(x, y) - 6]$

D. 以上都不对

8. 由直线 y=2, y=x, y=2x 围成闭区域 D . 则 $\iint_{\Sigma} f(x,y) d\sigma = 0$

A. $\int_0^2 dy \int_{\frac{y}{2}}^y f(x, y) dx$

B. $\int_0^2 dy \int_x^{2x} f(x,y) dx$

C. $\int_0^2 dx \int_0^2 f(x, y) dy$

D. 以上都不对

三、微分计算题(每小题 5 分, 共 20 分)

1. 计算 $\frac{\partial z}{\partial y}$, 其中z = f(x+y, x-y).

2. 求方程 y'' - 2y' - 3y = 0 的通解.

3. 求 $z = 7x + 16y - 4xy - x^2 - 5y^2$ 的驻点和极大值.

4. 将 $\frac{1}{3+r}$ 展开为麦克劳林级数,并写出收敛域.

3

四、积分计算题(每小题5分,共20分)

- 1. 计算 \bigoplus_{Σ} xdydz+2ydzdx+3zdxdy,其中 Σ 是光滑的外侧封闭曲面,所围体积为 V.
- 2. 计算 $\iint_D (x+y) dx dy$, 其中 D 是由直线 y=x,y=1 和 y 轴所围成的区域.
- 3. 计算 $\oint_L (2xy x^2) dx + (x + y^2) dy$,其中 L 是两条抛物线 $y = x^2$ 及 $y^2 = x$ 所 围闭区域 D 的边界曲线,取逆时针方向.

4. 计算 $\iint_{\Omega} (x^2 + y^2) dxdydz$, 其中 Ω 是由曲面 $x^2 + y^2 = 2z$ 与z = 2所围封闭区域.