Ускорение семплирования из диффузионных моделей с использованием состязательных сетей

Охотников Никита Владимирович

мфти

2023

Цели исследования

Цель

Модификацировать классическую диффузионную модель для существенного ускорения процесса семплирования

Задача

Проанализировать способы моделирования мультимодального распределения в обратном диффузионном процессе

Предлагается

Использовать неявную генеративную модель – состязательну сеть на каждом шаге диффузионного процесса

Необходимо

Рассмотреть различные постановки минимизацонной задачи для используемой модели

Неявное моделирование обратного диффузионного процесса

Диффузионный процесс

Прямой:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \mathbf{x}_{t-1}\sqrt{1-\beta_t}, \beta_t \mathbf{I})$$

где $t=\overline{0,\,T},\,\mathbf{x}_0$ — семпл из исходного распределения, \mathbf{x}_t — семпл на шаге $t,\,eta_t\in(0,1)$

Обратный:

Предложение

 Использовать неявную модель для восстановления распределения

Мотивация

 Моделирование мультимодального распределения для существенного уменьшения Т

Основные предположения

- Марковость обратного процесса
- Нормальность и следовательно унимодальность $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

Диффузионная модель

Описание

В основе модели лежит постепенное добавление случайного нормального шума с коэффициентом $\beta_t \in (0,1)$ в семпл \mathbf{x}_0 из исходного распределения в прямом процессе и постепенное восстановление распределения в обратном.

Прямой процесс

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \mathbf{x}_{t-1}\sqrt{1-\beta_t}, \beta_t \mathbf{I})$$

где $t=\overline{0,\,T},\,\mathbf{x}_t$ – семпл на шаге t. В таком случае, принимая $\alpha_t=1-\beta_t,\,\,\overline{\alpha_t}=\prod_{i=1}^t\alpha_i$ можно записать:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\overline{\alpha_t}}\mathbf{x}_0, (1-\overline{\alpha_t})\mathbf{I})$$

Таким образом, при достаточно больших T со сколь угодно большой точностью $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, а значит обратный процесс начинается с нормального шума.

Обратный процесс

В приближении $T\gg 1$ распределение каждого следующего семпла в обратном процессе обусловлено только на предыдущий, а также нормально.

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) \underset{\mathsf{T}\gg 1}{\approx} \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\theta}(\mathbf{x}_{t}, t), \Sigma_{\theta}(\mathbf{x}_{t}, t))$$

Если $\mathbf{X}=(\mathbf{x}_0^1\dots \mathbf{x}_0^n)\sim p_0(\mathbf{x})$, то из метода максимального правдоподобия:

$$\theta = \operatorname*{argmax}_{\theta} p(\mathbf{X}|\theta) = \operatorname*{argmax}_{\theta} \sum_{i=1}^{n} \log p(\mathbf{x}_{0}^{i}|\theta)$$

После некоторых математических преобразований получаем минимизационную задачу:

$$\sum_{t=1}^{n} \mathbb{E}_{\mathbf{x_1}...\mathbf{x}_T} KL\left(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \mid\mid p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)\right) \xrightarrow{\theta} \min$$

Постановка задачи

Проблема

При существенном уменьшении числа шагов обратного диффузионного процесса $(T\gtrsim 1)$ предположения марковости и тем более нормальности $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ очевидно не верны. Кроме того, $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ мультимодальное.

Задача

Предложить неявную модель для аппроксимации мультимодального распределения в обратном процессе.

Метод

По аналогии с классической диффузионной моделью будем минимизировать некоторую меру близости между распределениями D_{adv}

$$\sum_{t=1}^{n} \mathbb{E}_{\mathbf{x_1}...\mathbf{x}_T} D_{adv} \left(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \mid\mid p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \right) \underset{\theta}{\rightarrow} \min$$

где D_{adv} , в случае состязательных сетей, есть некоторая f-дивергенция или метрика Вассерштайна.

Введение GAN моделей

Дискриминатор

Будем тренировать дискриминатор отличать сгенерированные генератором, обусловленным на \mathbf{x}_{t-1}^{fake} , семплы \mathbf{x}_{t}^{fake} от полученных зашумлением семплов из исходного распределения \mathbf{x}_{t}^{real} .

Зададим в таком случае дискриминатор как $D_{\varphi}(\mathbf{x}_{t-1},\mathbf{x}_t,t)$, где φ – обучаемые параметры.

Для начала используем схему тренировки для non-saturating GAN^1 , как ранее было предложено 2 , тогда задача минимизации для дискриминатора:

$$\min_{\varphi} \sum_{t\geqslant 1}^{n} \mathbb{E}_{q(\mathsf{x}_{t})}[\mathbb{E}_{q(\mathsf{x}_{t-1}|\mathsf{x}_{t})}[-\log\left(D_{\varphi}(\mathsf{x}_{t-1},\mathsf{x}_{t},t)\right)] + \mathbb{E}_{p_{\theta}(\mathsf{x}_{t-1}|\mathsf{x}_{t})}[-\log\left(1-D_{\varphi}(\mathsf{x}_{t-1},\mathsf{x}_{t},t)\right)]]$$

¹https://doi.org/10.48550/arxiv.1406.2661

²https://doi.org/10.48550/arxiv.2112.07804

Введение GAN моделей

Генератор

Введем генератор $G_{\theta}(\mathbf{x}_{t-1}^{fake},\mathbf{z},t)$ с параметрами θ , латентной переменной $\mathbf{z} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$, обусловленный на \mathbf{x}_{t-1}^{fake} и порождающий семплы из исходного распределения. В таком случае целевое распределение в обратном диффузионном процессе:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \int p_{\theta}(\mathbf{x}_0|\mathbf{x}_t)q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)d\mathbf{x}_0 = \int p(z)q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0 = G_{\theta}(\mathbf{x}_t,\mathbf{z},t))d\mathbf{z}$$

При известном дискриминаторе тренируем генератор на максимизацию

$$\max_{\theta} \sum_{t \geqslant 1}^{n} \mathbb{E}_{q(\mathbf{x}_{t})} \mathbb{E}_{q(\mathbf{x}_{t-1}|\mathbf{x}_{t})} [\log (D_{\varphi}(\mathbf{x}_{t-1}, \mathbf{x}_{t}, t))]$$