Package 'trocSDM'

October 10, 2022

,
Title Including known interactions in SDM
Version 0.0.0.9000
Author Giovanni Poggiato and Jérémy Andréoletti
Maintainer Giovanni Poggiato <giov.poggiato@gmail.com></giov.poggiato@gmail.com>
Description Package to fit a trophic Species Distribution Model, analyse it and predict. See Poggiato et al. In prep.
License GPL-3
Encoding UTF-8
Imports igraph parallel estaparm dalur estap arm almost formula tools shind home piecesy

Imports igraph, parallel, rstanarm, dplyr, rstan, arm, glmnet, formula.tools, abind, brms, piecewiseSEM, stringr, broom, jtools, ggstance, ggplot2, gridExtra, dismo, stats, grDevices, Matrix

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

R topics documented:

buildFormula	2
coef.SDMfit	2
	3
compute Variable Importance	4
compute_TL_laplacian	5
evaluateModelFit	5
G	6
loo.trophicSDMfit	6
plot.SDMfit	7
plot.trophicSDMfit	7
plot G	8
Prove_memous.	8
predict.SDMfit	9
predict.trophicSDMfit	0
predictFundamental	1
print.SDMfit	2
print.trophicSDMfit	
SDMfit 1	
summary.SDMfit	
summary.trophicSDMfit	
trocSDM	
trophicSDM	6

2 coef.SDMfit

buildFormula

Builds SDM formulae

Description

Builds the formula of both the abiotic and biotic terms to fit a single species SDM based on the input parameters. The function is called inside the SDMfit function

Usage

```
buildFormula(
  form.init,
  species,
  sp.formula = NULL,
  sp.partition = NULL,
  useBRMS
)
```

Arguments

form.init The abiotic part of the formula

species The preys (or predators) of the focal species

 ${\tt sp.formula} \qquad {\tt optional\ parameter\ for\ composite\ variables.\ See\ ?trophicSDM}$

sp.partition optional parameter to specify groups of species for composite variables. See

?trophicSDM

useBRMS whether brms is used (TRUE if penal = "coeff.signs" and method = "stan_glm).

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

coef.SDMfit

Gets regression coefficients from a local model, i.e. a SDMfit object.

Description

Gets regression coefficients (eventually standardised) of a local model, i.e. a SDMfit object. p-values or credible intervales are returned when available.

Usage

```
## S3 method for class 'SDMfit'
coef(object, standardise = F, level = 0.95, ...)
```

coef.trophicSDMfit 3

Arguments

object A SDMfit object, typically obtained with trophicSDM() and available in the field

\$model of a trophicSDMfit object

standardise Whether to standardise regression coefficients. Default to FALSE. If TRUE,

coefficients are standardised using the latent variable standardisation (see Grace

et al. 2018) for more details.

level The confidence level of credible intervals, only available for stan_glm method.

Default to 0.95.

... additional arguments

Value

A table containing the inferred coefficients (with credible intervals or p-values when available).

Author(s)

Giovanni Poggiato

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

coef.trophicSDMfit

Gets regression coefficients from a fitted trophicSDM model.

Description

Gets regression coefficients (eventually standardised) of a fitted trophicSDM. p-values or credible intervales are returned when available.

Usage

```
## S3 method for class 'trophicSDMfit'
coef(object, standardise = F, level = 0.95, ...)
```

Arguments

object A trophicSDMfit object obtained with trophicSDM()

standardise Whether to standardise regression coefficients. Default to FALSE. If TRUE,

coefficients are standardised using the latent variable standardisation (see Grace

et al. 2018) for more details.

level The confidence level of credible intervals, only available for stan_glm method.

Default to 0.95.

... additional arguments

Value

A list containing, for each species, the inferred coefficients (with credible intervals or p-values when available).

Author(s)

Giovanni Poggiato

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

computeVariableImportance

Computes variable importance of (groups of) variables of fitted a trophicSDM model.

Description

Computes variable importance of (groups of) variables of fitted a trophicSDM model, for each species. Variable importance are computed as the standardised regression coefficients (summed across species of the same group). Standardisation is done using latent variable standardisation described in Grace et al. 2018.

Usage

computeVariableImportance(tSDM, groups = NULL)

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

groups A list where each element is group. Each group is specified as a vector contain-

ing species or environmental covariates names of a given group. Each element

of the list (i.e. each group) has to be named.

Value

A groups x species matrix containing variable importance for each groups of variables and each species.

Author(s)

Giovanni Poggiato #' @references Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

compute_TL_laplacian

compute_TL_laplacian Compute topological ordering

Description

Method to compute trophic levels from an igraph object G with the method described in MacKay et al 2020.

Usage

```
compute_TL_laplacian(G)
```

Arguments

G

The metaweb, it has to be an igraph object

Author(s)

Giovanni Poggiato

References

MacKay, R. S., Johnson, S., & Sansom, B. (2020). How directed is a directed network? Royal Society open science, 7(9), 201138.

evaluateModelFit

Evaluates prediction goodness of fit

Description

Evalute goodness of fit by comparing a true versus a predicted dataset of species distribution. Ypredicted is tipically predicted using a prediction method of trophicSDM (in cross-validation if trophicSDM_CV() is used).

Usage

```
evaluateModelFit(tSDM, Ynew = NULL, Ypredicted = NULL)
```

Arguments

 $t {\tt SDM} \qquad \qquad A \ trophic {\tt SDMfit} \ object \ obtained \ with \ trophic {\tt SDM()}.$

Ynew A sites x species matrix containing the true species occurrences state.

Ypredicted A sites x species matrix containing the predicted species occurrences state.

Value

A table specifying the goodness of fit metrics for each species. For presence-absence data, the model computes TSS and AUC. For Gaussian data, the R2.

6 loo.trophicSDMfit

Author(s)

Giovanni Poggiato

References

Grace, J. B., Johnson, D. J., Lefcheck, J. S., and Byrnes, J. E. K.. 2018. Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere 9(6):e02283.

G

Simulated environemntal covariates G

Description

Simulated environemntal covariates G

Usage

data(G)

Format

A simulated graph of trophic interactions G

Author(s)

Giovanni Poggiato

Examples

data(G)

loo.trophicSDMfit

Computes an approximation of loo for the whole model

Description

The global loo is computed by summing the loo of all the local models (since the likelihood factorises, the log-likelihood can be summed)

Usage

```
## S3 method for class 'trophicSDMfit'
loo(tSDM)
```

Arguments

tSDM

A trophicSDMfit object obtained with trophicSDM()

Author(s)

plot.SDMfit 7

-				
n	ot	SD	Mfi	+

Plots the regression coefficients of a local model

Description

Plots the regression coefficients of a local SDMfit model

Usage

```
## S3 method for class 'SDMfit'
plot(x, level = 0.95, ...)
```

Arguments

x A SDMfit object, typically obtained with trophicSDM() and available in the field

\$model of a trophicSDMfit object

level the confidence level of the confidence intervals

... additional arguments

Author(s)

Giovanni Poggiato

plot.trophicSDMfit

Plots the regression coefficients of a fitted trophicSDM model

Description

Plots the regression coefficients of a fitted trophicSDM model. A subset of species to be plotted can be specified in the parameterspecies.

Usage

```
## S3 method for class 'trophicSDMfit'
plot(x, species = NULL, ...)
```

Arguments

x A trophicSDMfit object obtained with trophicSDM()

species A vector of species names to be plot. If NULL (default), all species are plotted.

... additional arguments

Author(s)

8 plotG_inferred

plotG

Plots the metaweb G

Description

Plots the metaweb G used to fit the trophicSDM model

Usage

plotG(tSDM)

Arguments

tSDM

A trophicSDMfit object obtained with trophicSDM()

Value

A ggnet object

Author(s)

Giovanni Poggiato

plotG_inferred

Plot the metaweb G according to the inferred coefficients

Description

Plot the metaweb G with links colored accordingly to the inferred prey-predator regression coefficients of a fitted trophicSDM model. Plots the metaweb G, where each predator-prey link is colored according to whether the related regression coefficient if inferred as positive (in red), negative (in blue) or non-significant (dashed grey line) according to the confidence level specified in "level". Estimates of the significant standardised regression coefficients are pasted on the links. Only works if species are modelled as a function of their preys or predators without composite variables (i.e., if tSDM is fitted with sp.formula = NULL and sp.partition = NULL)

Usage

```
plotG_inferred(tSDM, level = 0.9)
```

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

level The confidence level used to decide whether regression coefficients are non-

significant or not. Default to 0.9.

Value

A ggnet object.

predict.SDMfit 9

Author(s)

Giovanni Poggiato

	predict.SDMfit	Predicts with a local model
--	----------------	-----------------------------

Description

Computes predicted values for a local model, i.e., a fitted SDMfit object This is sequentially called, for each species, by the function trophicSDM.predict

Usage

```
## S3 method for class 'SDMfit'
predict(object, newdata, pred_samples, prob.cov, ...)
```

Arguments

object	A SDMfit object, typically obtained with trophicSDM() and available in the field \$model of a trophicSDMfit object
newdata	A matrix containing both environmental covariates and the biotic variables that the local model uses to predict the species distribution.
pred_samples	Number of samples to draw from species posterior predictive distribution when method = "stan_glm". If NULL, set by the default to the number of iterations/10.
prob.cov	If set to FALSE, it gives back also predicted presence-absences (which is then used by trophicSDM.predict to predict the predators).
• • •	additional arguments

Value

A list containing for each species the predicted value at each sites. If method = "stan_glm", then each element of the list is a sites x pred_samples matrix containing the posterior predictive distribution of the species at each sites.

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

predict.trophicSDMfit Computes predicted values from the fitted trophicSDMfit model

Description

Computes predicted values from the fitted trophicSDMfit model at environmental conditions specified by Xnew. Once predictions have been obtained, their quality can eventually be evaluated with evaluateModelFit().

Usage

```
## S3 method for class 'trophicSDMfit'
predict(
   object,
   Xnew = NULL,
   prob.cov = F,
   pred_samples = NULL,
   run.parallel = T,
   verbose = F,
   fullPost = T,
   filter.table = NULL,
   ...
)
```

Arguments

object	A trophicSDMfit object obtained with trophicSDM()
Xnew	a matrix specifying the environmental covariates for the predictions to be made. If NULL (default), predictions are done on the training dataset (e.g. by setting Xnew = tSDM\$data\$X).
prob.cov	Parameter to predict with trophicSDM with presence-absence data. Whether to use predicted probability of presence (prob.cov = T) or the transformed presence-absences (default, prov.cov = F) to predict species distribution.
pred_samples	Number of samples to draw from species posterior predictive distribution when method = "stan_glm". If NULL, set by the default to the number of iterations/10.
run.parallel	Whether to use parallelise code when possible. Can speed up computation time.
verbose	Whether to print advances of the algorithm
fullPost	Optional parameter for stan_glm only. Whether to give back the full posterior predictive distribution (default, fillPost = TRUE) or just the posterior mean, and 2.5% and 97.5% quantiles,
filter.table	Optional, default to NULL, should be provided only if the users wants to filter some species predictions. A sites x species matrix of zeros and ones.
	additional arguments

Value

A list containing for each species the predicted value at each sites. If method = "stan_glm", then each element of the list is a sites x pred_samples matrix containing the posterior predictive distribution of the species at each sites.

predictFundamental 11

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

predictFundamental

Predicts species fundamental niche

Description

Compues predicted values of the fundamental niches of species from the fitted trophicSDMfit model at environmental conditions specified by Xnew. Predictions are obtained by setting preys to present when mode = "prey" or setting predators to absent when mode = "predator".

Usage

```
predictFundamental(
  tSDM,
  Xnew = NULL,
  pred_samples = NULL,
  run.parallel = T,
  verbose = F,
  fullPost = T
)
```

Arguments

tSDM A trophicSDMfit object obtained with trophicSDM()

Xnew a matrix specifying the environmental covariates for the predictions to be made.

If NULL (default), predictions are done on the training dataset (e.g. by setting

Xnew = tSDM\$data\$X).

pred_samples Number of samples to draw from species posterior predictive distribution when

method = "stan_glm". If NULL, set by the default to the number of iterations/10.

run.parallel Whether to use parallelise code when possible. Can speed up computation time.

verbose Whether to print advances of the algorithm.

fullPost Optional parameter for stan_glm only. Whether to give back the full posterior

predictive distribution (default, fillPost = TRUE) or just the posterior mean, and

2.5% and 97.5% quantiles.

Value

A list containing for each species the predicted value at each sites. If method = "stan_glm", then each element of the list is a sites x pred_samples matrix containing the posterior predictive distribution of the species at each sites.

Author(s)

Giovanni Poggiato and Jérémy Andréoletti

12 print.trophicSDMfit

print.SDMfit

Prints a SDMfit object

Description

Prints a SDMfit object

Usage

```
## S3 method for class 'SDMfit' print(x, ...)
```

Arguments

x A SDMfit object, typically obtained with trophicSDM() and available in the field

\$model of a trophicSDMfit object

... additional arguments

Author(s)

Giovanni Poggiato

print.trophicSDMfit

Prints a fitted trophicSDM model

Description

Prints a fitted trophicSDM model

Usage

```
## S3 method for class 'trophicSDMfit'
print(x, ...)
```

Arguments

x A trophicSDMfit object obtained with trophicSDM()

... additional arguments

Author(s)

SDMfit 13

SDMfit

Fitting a single-species SDM

Description

SDMfit is used to fit a single species SDM, what we call a 'local model' of trophicSDM. It returns an object of class 'SDMfit'. Requires basically the same inputs of trophicSDM, with the requirement to specify with the parameter 'focal' the species that is modelled by the SDMfit.

Usage

```
SDMfit(
  focal,
  Υ,
  Χ,
  G,
  formula.foc,
  sp.formula,
  sp.partition,
  mode = "prey",
  method = "stan_glm",
  family = NULL,
  penal = NULL,
  iter = 1000,
  chains = 2,
  verbose = T
)
```

Arguments

focal	the name of the species to be modeled
Υ	The sites x species matrix containing observed species distribution (e.g. presenceabsence).
X	The design matrix, i.e. sites x predictor matrix containing the value of each explanatory variable (e.g. the environmental conditions) at each site.
G	The species interaction network (aka metaweb). Needs to be an igraph object. Links must go from predator to preys. It needs to be a directed acyclic graph.
formula.foc	The formula for the abiotic part of the species distribution model.
sp.formula	(optional) It allows to specify a particular definition of the biotic part of the model, e.g., using composite variables (e.g., richness), or an interaction of the biotic and abitic component. More details in 'Details'.
sp.partition	(optional) a list to specify groups of species that are used to compute composite variables, e.g., a species can be modelled as a function of the richness of each group of preys. It has to be a list, each element is a vector containing the names of species in the group.
mode	"prey" if bottom-up control (default), "predators" otherwise. Notice that G needs to be such that links point from predators to prey.

14 SDMfit

method which SDM method to use. For now the available choises are: "glm" (frequentist) or "stan glm" (full bayesian MCMC, default). Notice that using "glm" does

not allow error propagation when predicting.

family the family parameter of the glm function (see glm). family=gaussian for gaus-

sian data or family=binomial(link = "logit") or binomial(link = "probit") for

presence-absence data.

penal (optional, default to NULL) Penalisation method to shrink regression coeffi-

cients.If NULL (default), the model does not penalise the regression coefficient. For now, available penalisation method are "horshoe" for stan_glm, "elasticnet" for glm and "coeff.signs" (prey coefficients are set to posite and predator coeffi-

cients to negative) for glm and stan_glm.

iter (for method="stan_glm" only) Number of iterations for each MCMC chain if

stan_glm is used

chains (for method="stan_glm" only) Number of MCMC chains (default to 2)

verbose Whether to print algorithm progresses

Details

"sp.formula" and "sp.partition" can be combined to define any kind of composite variables for the biotic part of the formula. "sp.formula" can be:

- A string defining a formula as function of "richness". E.g., sp.formula="richness+I(richness)^2" (species are modelled as a function of a quadratic polyome of their prey richness), "I(richness>0)" (species are modelled as a function of a dummy variable that is equal to 1 when at least one species is present). Importantly, when group of preys (or predators) are specified by "sp.partition", species are modeled as a function of the composite variable specified by "sp.formula" for each of their prey groups.
- A more flexible option is to specify sp.formula as a list (whose names are species' names) that contains for each species the definition biotic part of the model. Notice that, in this case, the function does not check that the model is a DAG. This allow to define any kind of composite variable, or to model interactions between environmental covariates and preys (or predators).

Value

A "SDMfit" object, containing:

model The output of the function used to fit the SDM. E.g., an object of class "glm" is

method = "glm", an object of class "stanreg" if method = "stan_glm".

Y A numeric vector of standard errors on parameters

form. all The formula used to fit the SDM (both abiotic and biotic terms)

method, family, penal, iter, chains

The input parameters used to fit the SDM.

sp. name The name of the species modeled

data The model.frame data.frame used to fit the model

coef The inferred coefficients (with credible intervals or p-values when available)

AIC The AIC of the local model

log.lik The log.likelihood of the local model

summary.SDMfit 15

Author(s)

Giovanni Poggiato and Jérémy Andréletti

summary.SDMfit

Summary of a fitted SDMfit model

Description

Summary of a fitted SDMfit model

Usage

```
## S3 method for class 'SDMfit'
summary(object, ...)
```

Arguments

object

A SDMfit object, typically obtained with trophicSDM() and available in the field

\$model of a trophicSDMfit object

... additional arguments

Author(s)

Giovanni Poggiato

summary.trophicSDMfit Summary of a fitted trophicSDM model

Description

Summary of a fitted trophicSDM model

Usage

```
## S3 method for class 'trophicSDMfit'
summary(object, ...)
```

Arguments

 $\label{eq:continuous} \textbf{A trophicSDM} \textbf{fit object obtained with trophicSDM}()$

... additional arguments

Author(s)

16 trophicSDM

trocSDM

trocSDM.

Description

Package to fit a trophic Species Distribution Model, analyse it and predict. See Poggiato et al. In prep.

Author(s)

Giovanni Poggiato <giov.poggiato@gmail.com> and Jérémy Andréoletti

trophicSDM

Fitting a trophic Species distribution model

Description

trophicSDM is used to fit a trophic species distribution model. Requires the species distribution data Y (the sites x species matrix), explanatory variables X and a directed acyclic graph G containing species interactions (i.e., the metaweb, with links going from predators to prey). The function fits the distribution of each species as a function of their preys (with mode = "prey", by default) or predators (if set mode = "predator").

Usage

```
trophicSDM(
 Υ,
 Χ,
 G,
  env.formula = NULL,
  sp.formula = NULL,
  sp.partition = NULL,
 penal = NULL,
 mode = "prey",
 method = "stan_glm",
  family,
  iter = 1000,
  chains = 2,
 run.parallel = F,
  verbose = F
)
```

Arguments

Y The sites x species matrix containing observed species distribution (e.g. presence-absence).

X The design matrix, i.e. sites x predictor matrix containing the value of each explanatory variable (e.g. the environmental conditions) at each site.

trophicSDM 17

G The species interaction network (aka metaweb). Needs to be an igraph object. Links must go from predator to preys. It needs to be a directed acyclic graph.

env. formula The definition of the abitic part of the model. It can be:

• a string specifying the formula (e.g. "~ X_1 + X_2"). In this case, the same environmental variables are used for every species.

A list that contains for each species the formula that describes the abiotic
part of the model. In this case, different species can be modeled as a function of different environmental covariates. The names of the list must coincide with the names of the species.

sp.formula

(optional) It allows to specify a particular definition of the biotic part of the model, e.g., using composite variables (e.g., richness), or an interaction of the biotic and abitic component. More details in 'Details'.

sp.partition

(optional) a list to specify groups of species that are used to compute composite variables, e.g., a species can be modelled as a function of the richness of each group of preys. It has to be a list, each element is a vector containing the names of species in the group. More details in 'Details'.

penal

Penalisation method to shrink regression coefficients. If NULL (default), the model does not penalise the regression coefficient. For now, available penalization method are "horshoe" for method stan_glm, "elasticnet" for method glm. It is also possible to constrain the sign of biotic coefficients (prey coefficients are set to posite and predator coefficients to negative) by setting "coeff.signs" for methods glm and stan_glm.

mode

"prey" if bottom-up control (default), "predators" otherwise. Notice that G needs to be such that links point from predators to prey.

method

which SDM method to use. For now the available choises are: "glm" (frequentist) or "stan_glm" (full bayesian MCMC, default). Notice that using "glm" does not allow error propagation when predicting.

family

the family parameter of the glm function (see glm). gaussian for gaussian data. binomial(link = "logit") or binomial(link = "probit") for presence-absence data

iter

(for "stan_glm" only) Number of iterations for each MCMC chain if stan_glm is used

chains (for "stan_glm" only) Number of MCMC chains (default to 2)

run.parallel Whether species models are fitted in parallel (can speed computational up time).

Default to FALSE.

verbose Whether to print algorithm progresses

Details

"sp.formula" and "sp.partition" can be combined to define any kind of composite variables for the biotic part of the formula. "sp.formula" can be:

• A string defining a formula as function of "richness". E.g., "richness+I(richness)^2" (species are modelled as a function of a quadratic polyome of their prey richness), "I(richness>0)" (species are modelled as a function of a dummy variable that is equal to 1 when at least one species is present). Importantly, when group of preys (or predators) are specified by "sp.partition", species are modeled as a function of the composite variable specified by "sp.formula" for each of their prey (or predator) groups.

18 trophicSDM

• A more flexible option is to specify sp.formula as a list (whose names are species' names) that contains for each species the definition of the biotic part of the model. Notice that, in this case, the function does not check that the model is a DAG. This allow to define any kind of composite variable, or to model interactions between environmental covariates and preys (or predators).

Value

A "trophicSDMfit" object, containing:

model	A list containing the local models (i.e. a SDM for each species). Each local model is an object of class "SDMfit". See ?SDMfit for more informations.
Υ	A numeric vector of standard errors on parameters
form.all	A list describing each species formula (both biotic and abiotic terms)
data	A list containing all the data used to fit the model
model.call	A list containing the modeling choices of the fitted model (e.g. method, penalisation)
coef	A list containing, for each species, the inferred coefficients (with credible intervals or p-values when available)
MCMC.diag	MCMC convergence metrics, only available for MCMC methods
AIC	Model's AIC

Author(s)

log.lik

Giovanni Poggiato and Jérémy Andréletti

Model's log.likelihood

Examples

trophicSDM_CV 19

trophicSDM_CV	Compute K-fold cross-validation predicted values from a fitted trophicSDM model
---------------	---

Description

Once the CV predicted values are obtained, their quality can be evaluated with evaluateModelFit().

Usage

```
trophicSDM_CV(
  tSDM,
  K,
  partition = NULL,
  prob.cov = F,
  pred_samples = NULL,
  iter = NULL,
  chains = NULL,
  run.parallel = T,
  verbose = F
)
```

Arguments

tSDM	A trophicSDMfit object obtained with trophicSDM()
K	The number of folds for the K-fold cross validation
partition	Optional parameter. A partition vector to specify a partition in K fold for cross validation
prob.cov	Parameter to predict with trophicSDM with presence-absence data. Whether to use predicted probability of presence (prob.cov = T) or the transformed presence-absences (default, prov.cov = F) to predict species distribution.
pred_samples	Number of samples to draw from species posterior predictive distribution when method = "stan_glm". If NULL, set by the default to the number of iterations/10.
iter	For method = "stan_glm": number of iterations of each MCMC chains to fit the trophicSDM model. Default to the number of iterations used to fit the provided trophicSDMfit object
chains	For method = "stan_glm": number of MCMC chains to fit the trophicSDM model. Default to the number of iterations used to fit the provided trophicS-DMfit object
run.parallel	Whether to use parallelise code when possible. Default to TRUE. Can speed up computation time
verbose	Whether to print advances of the algorithm

Value

A list containing:

meanPred a sites x species matrix of predicted occurrences of species for each site (e.g. probability of presence). With stan_glm the posterior predictive mean is return

20 Y

Pred975, Pred025

Only for method = "stan_glm", the 97.5% and 2.5% quantiles of the predictive

posterior distribution

partition the partition vector used to compute the K fold cross-validation

Author(s)

Giovanni Poggiato

Χ

Simulated environemntal covariates X

Description

Simulated environemntal covariates X

Usage

data(X)

Format

A site x covariates matrix X

Author(s)

Giovanni Poggiato

Examples

data(X)

Υ

Simulated species distribution Y

Description

Simulated species distribution Y

Usage

data(Y)

Format

A site x species matrix Y, a site x covariates matrix X and a trophic interaction network G (object igraph)

Author(s)

Y 21

Examples

data(Y)

Index

```
* datasets
    G, 6
    X, 20
    Y, 20
buildFormula, 2
coef.SDMfit, 2
coef.trophicSDMfit, 3
compute_TL_laplacian, 5
{\tt computeVariableImportance, 4}
evaluateModelFit, 5
G, 6
loo.trophicSDMfit,6
plot.SDMfit, 7
plot.trophicSDMfit, 7
plotG, 8
{\tt plotG\_inferred, 8}
predict.trophicSDMfit, 10
predictFundamental, 11
print.SDMfit, 12
print.trophicSDMfit, 12
SDMfit, 13
summary.SDMfit, 15
summary.trophicSDMfit, 15
trocSDM, 16
trophicSDM, 16
trophicSDM_CV, 19
X, 20
Y, 20
```