

EXERCISES

Module Four

1.) Consider the vectors
$$\mathbf{x}=\left(\begin{array}{c}5\\1\end{array}\right)$$
 and $\mathbf{y}=\left(\begin{array}{c}1\\6\end{array}\right)$.

Compute the length d of the projection of \mathbf{x} onto \mathbf{y} as well as the vector $\mathbf{proj_y}(\mathbf{x})$. Round your answers to two decimal places.

$$d = \frac{11}{\sqrt{37}} = 1.81 \quad \mathbf{proj_y(x)} = \begin{pmatrix} \frac{11}{37} \\ \frac{66}{37} \end{pmatrix} = \begin{pmatrix} 0.30 \\ 1.78 \end{pmatrix}$$

2.) Consider the vectors
$$\mathbf{x}=\begin{pmatrix} 4\\3 \end{pmatrix}$$
 and $\mathbf{y}=\begin{pmatrix} -12\\5 \end{pmatrix}$.

Compute the length d of the projection of \mathbf{x} onto \mathbf{y} as well as the vector $\mathbf{proj_y}(\mathbf{x})$. Round your answers to two decimal places.

$$d = \frac{-33}{13} = -2.54 \quad \text{proj}_{\mathbf{y}}(\mathbf{x}) \quad \begin{pmatrix} \frac{396}{169} \\ -\frac{165}{169} \end{pmatrix} = \begin{pmatrix} 2.34 \\ -0.98 \end{pmatrix}$$

3.) Consider the vectors $\mathbf{x}=\begin{pmatrix} 4\\ -3 \end{pmatrix}$ and $\mathbf{y}=\begin{pmatrix} 6\\ 8 \end{pmatrix}$.

Compute the length d of the projection of \mathbf{x} onto \mathbf{y} as well as the vector $\mathbf{proj}_{\mathbf{y}}(\mathbf{x})$. Round your answers to two decimal places.

It turns out that these two vectors are orthogonal (the dot product is zero).

Therefore,
$$d=0$$
 and $\mathbf{proj_y}(\mathbf{x})=\left(egin{array}{c} 0 \\ 0 \end{array}
ight)$

- **4.)** Consider the line $\mathbf{w} \cdot \mathbf{x} = b$ given by $\mathbf{w} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ and b = 0.
 - a.) Does this line pass through the origin? Explain.

Yes, because
$$b=0$$
.

b.) Consider the points $P_1=(3,-1)$ and $P_2=(-5,1)$. Compute the distance between the two points and the line.

For
$$P_1$$
: $\mathbf{w}\cdot\mathbf{p}_1=-11$ and $||\mathbf{w}||=\sqrt{29}$. Thus, the distance is $\frac{-11}{\sqrt{29}}=-2.04$.

For
$$P_2$$
: $\mathbf{w}\cdot\mathbf{p}_2=15$ and $||\mathbf{w}||=\sqrt{29}$. Thus, the distance is $\frac{15}{\sqrt{29}}=2.79$.

- **5.)** Consider the line ${f w}\cdot{f x}=b$ given by ${f w}=\left(\begin{array}{c}15\\8\end{array}\right)$ and b=-16 .
 - **a.)** Does this line pass through the origin? Explain.

No, because $b \neq 0$.

b.) Consider the points $P_1=(-5,0)$, $P_2=(1,1)$, and $P_3=(0,-2)$. Compute the distance between the three points and the line.

For
$$P_1$$
: $\mathbf{w} \cdot \mathbf{p}_1 = -75$, $b = -16$, and $||\mathbf{w}|| = 17$. Thus, $d_1 = \frac{-75 - (-16)}{17} = \frac{-59}{17} = -3.47$.

For
$$P_2$$
 : $\mathbf{w} \cdot \mathbf{p}_2 = 23$, $b = -16$, and $||\mathbf{w}|| = 17$. Thus, $d_2 = \frac{23 - (-16)}{17} = \frac{39}{17} = 2.29$.

For
$$P_3$$
: $\mathbf{w} \cdot \mathbf{p}_3 = -16$, $b = -16$, and $||\mathbf{w}|| = 17$. Thus, $d_3 = \frac{-16 - (-16)}{17} = \frac{0}{17} = 0$.