<u>Definition</u> 1.6. Let E be a Banach space and $(T(t))_{t\geq 0}$ a semigroup on E . We call the semigroup

- 1. uniformly exponentially stable, if $||T(t)|| \le Me^{-Wt}$ for some w, M > 0 and all $t \ge 0$.
- 2. uniformly stable, if $\lim_{t\to\infty} T(t) = 0$ in the strong operator topology.
- 3. weakly stable, if $\lim_{t\to\infty} T(t) = 0$ in the weak operator topology.

Surprisingly all these properties coincide for positive semigroups on C^* -algebras with unit.

Theorem 1.7. Let M be a C*-algebra with unit and $(T(t))_{t\geq 0}$ a positive semigroup on M . Then the following assertion are equivalent.

- 1. s(A) < 0.
- 2. The semigroup $(T(t))_{t\geq 0}$ is uniformly exponentially stable.
- 3. The semigroup $(T(t))_{t\geq 0}$ is uniformly stable.
- 4. The semigroup $(T(t))_{t\geq 0}$ is weakly stable.

<u>Proof.</u> Since 's(A) = ω ' by Theorem 1.3, it suffices to show that 4. implies 1. For t > 0 there exists $\phi \in S(M)$ such that

$$T(t)'\phi = r(T(t))\phi.$$

Then for $x \in M$

$$\phi(T(t)^{n}x) = (r(T(t)))^{n} \phi(x) \rightarrow 0$$

as $n \to \infty$. Therefore r(T(t)) < 1 or $\omega < 0$. Since $s(A) \le \omega$ the assertion follows.