MATH 3800 F

Assignment 2

Krystian Wojcicki, 101001444

Winter 2020

1. (0, 0), (2, 5), (4, 7)

$$\begin{aligned} y_1 &= S_1(x_1) : 0 = a_1 \\ y_2 &= S_1(x_2) : 5 = a_1 + 2b_1 + 4c_1 + 8d_1 \\ y_2 &= S_2(x_2) : 5 = a_2 + 2b_2 + 4c_2 + 8d_2 \\ y_3 &= S_2(x_3) : 7 = a_2 + 4b_2 + 16c_3 + 64d_2 \\ S_1\prime(x) &= b_1 + 2xc_1 + 3x^2d_1 \\ S_2\prime(x) &= b_2 + 2xc_2 + 3x^2d_2 \\ S_1\prime\prime(x) &= 2c_1 + 6xd_1 \\ S_2\prime\prime(x) &= 2c_2 + 6xd_2 \\ S_1\prime\prime(x_2) &= S_2\prime\prime(x_2) : b_1 + 4c_1 + 12d_1 = b_2 + 4c_2 + 12d_2 \\ S_1\prime\prime(x_2) &= S_2\prime\prime(x_2) : 2c_1 + 12d_1 = 2c_2 + 12d_2 \\ S_1\prime\prime(x_1) &= 0 : 2c_1 + 0 = 0 \\ S_2\prime\prime(x_3) &= 0 : 2c_2 + 24d_2 = 0 \end{aligned}$$

$$a_1 = 0$$
 $c_1 = 0$ $c_2 = 12d_1$ $d_1 = -d_2$

Verify that $f(x) = x^3 + 8x - 7$ has a root in [0,1]. Use fixed-point iteration to find this root to 5 decimal places. Start with $x_0 = 0.75$, but verify that your chosen g(x) will work before you begin:

First verify that f(a) * f(b) < 0.

$$f(0) = 0^3 + 8 * 0 - 7 = -7, f(1) = 1^3 + 8 * 1 - 7 = 2 \to f(a) * f(b) \to -7 * 2 < 0.$$

Therefore since there is a sign change there must also be a root in the interval [0,1].

$$f(x) = x^3 + 8x - 7 \rightarrow \frac{7 - x^3}{8}$$
. Take $g(x) = \frac{7 - x^3}{8}$

Since $|g'(x)| = |\frac{-3x^2}{8}| = |-\frac{3}{8}x^2| \le \frac{3}{8} < 1$ on [0, 1] then $x_{n+1} = g(x_n)$ will generate a convergent sequence.

$$x_0 = 0.75, x_1 = g(0.75) = \frac{7 - 0.75^3}{8} = 0.82227$$

$$x_2 = g(0.82227) = 0.80551$$

$$x_3 = g(0.80551) = 0.80967$$

$$x_4 = g(0.80967) = 0.80865$$

$$x_5 = g(0.80865) = 0.80890$$

$$x_6 = g(0.80890) = 0.80884$$

$$x_7 = g(0.80884) = 0.80885$$

$$x_8 = g(0.80885) = 0.80885$$

Check $f(0.80885) \simeq -0.00002$ therefore very close to 0 and the root is 0.80885.

2. Use Newton's Method to find the point of intersection of the curves $y=x^3$ and $y=\cos(x)$ to 6 decimal places. Start with $x_0 = 1$:

If
$$x^3 = cos(x)$$
 then $f(x) = x^3 - cos(x) = 0$. So $f'(x) = 3x^2 + sin(x)$.
So $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x^3 - cos(x)}{3x^2 + sin(x)} = \frac{2x^3 + x * sin(x) + cos(x)}{3x^2 + sin(x)}$

$$x_0 = 1, x_1 = \frac{2 * 1^3 + 1 * sin(1) + cos(1)}{3x^2 + sin(x)} = 0.8803$$

$$x_0 = 1, x_1 = \frac{2 * 1^3 + 1 * sin(1) + cos(1)}{3 * 1^2 + sin(1)} = 0.880333$$

$$x_2 = g(0.880333) = 0.865684$$

$$x_3 = g(0.865684) = 0.865474$$

$$x_4 = g(0.865474) = 0.865474$$

Check $f(0.865474) \simeq -9.96 * 10^{-8}$ which is very close to 0 therefore okay, in addition $x^3 = 0.865474^3 \simeq 0.65 \simeq$ cos(0.865464) = cos(x), and the root solution to the intersection of the curves is x = 0.865474.

3. Solve the following dynamical systems. Find and classify any equilibria.:

Firstly we know that when $a_{n+1} = r * a_n + b$ then $a_n = r^n(a_0 - a) + a$, $a = \frac{b}{1-r}$ if $r \neq 1$.

- (a) $a_{n+1}=(2/5)a_n, a_0=10$: $\rightarrow b=0, r=2/5 \rightarrow a=\frac{0}{1-r} \rightarrow a=0$. Therefore the solution is $a_n=(2/5)^n(10)$ and the equilibrium is when a=0 and since |r|<1 the solution is stable.
- (b) $a_{n+1} = (3/5)a_n + 100, a_0 = 20$: $\rightarrow b = 100, r = 3/5 \rightarrow a = \frac{100}{1-3/5} = 250$. Therefore the solution is $a_n = (3/5)^n(20-250) + 250$ and the equilibrium is when $a = \frac{100}{1-3/5} = 250$ and since |r| < 1 the solution is
- (c) $a_{n+1} = (-2/3)a_n + 500, a_0 = 25$: $\rightarrow b = 500, r = -2/3 \rightarrow a = \frac{500}{1--2/3} \rightarrow a = 300$. Therefore the solution is $a_n = (-2/3)^n (25 300) + 300$ and the equilibrium is when $a = \frac{500}{1--2/3} = 300$ and since |r| < 1 the solution
- (d) $a_{n+1} = 3a_n 30, a_0 = 0$: $\rightarrow b = -30, r = 3 \rightarrow a = \frac{-30}{1-3} \rightarrow a = 15$. Therefore the solution is $a_n = 3^n(0-15) + 15$ and the equilibrium is when $a = \frac{-30}{1-3} = 15$ and since |r| > 1 the solution is unstable.
- 4. Suppose that Owls have Mice for their primary food source in a wildlife sanctuary. If M_n is the Mouse population after n years and O_n is the Owl, the following model has been suggested:

$$M_{n+1} = 1.3M_n - 0.002O_nM_n$$
$$O_{n+1} = 0.6O_n + 0.0004O_nM_n$$

These equations can be rewritten as the following

$$M_{n+1} = M_n + \Delta M_n, \Delta M_n = M_n(0.3 - 0.002O_n)$$

 $O_{n+1} = O_n + \Delta O_n, \Delta O_n = O_n(-0.4 + 0.0004M_n)$

(a) What type of interaction is this? How do the coefficients tell us?:

$$M_{n+1} = \underbrace{\begin{array}{c} 1.3 \\ M_{0} = \\ 0.6 \end{array}}_{Oul\ population\ decreases\ if\ no\ mice} M_{n} - \underbrace{\begin{array}{c} 0.002 \\ M_{0} = \\ 0.0004 \end{array}}_{Oul\ population\ decreases\ if\ no\ mice} O_{n} M_{n}$$

The above mentioned interactions can also be seen from the Δ Equations.

$$\Delta M_n = M_n ($$
 0.3 - 0.002 -

 $\Delta O_n = O_n($

Absence of prey causes predators to die off
The more prey the more the growth rate of the predator increases Based on the coefficients this is a predator prey interaction as the Mice populations growth rate is decreased by an increase in the population of Owls.

(b) Find the equilibrium values?

As taught in class when we have a system of equtions as follows:

$$\Delta N_n = 0 = N(a - bP) \rightarrow N = 0 \text{ or } P = \frac{a}{b}$$

 $\Delta P_n = 0 = P(cN - d) \rightarrow P = 0 \text{ or } N = \frac{d}{c}$

Then the system has two fixed/equilbriums $(P, N) \to (0,0)$ and $(\frac{a}{b}, \frac{d}{c})$. Alternatively this can be rewritten using the original equations as follows:

$$x_{n+1} = ax_n - bx_n y_n$$
$$y_{n+1} = cy_n + dx_n y_n$$

Then the system has two fixed points (0,0) and $(\frac{1-c}{d},\frac{a-1}{b})$. In our case this gives equilibrium values of $(M,O) \rightarrow (\frac{1-c}{d},\frac{a-1}{b}) \rightarrow (\frac{1-0.6}{0.0004},\frac{1.3-1}{0.002}) \rightarrow (1000,150)$ or $(\frac{a}{b},\frac{d}{c}) \rightarrow (\frac{0.4}{0.0004},\frac{0.3}{0.002}) \rightarrow (1000,150)$ and the trivial solution of (0,0).

Putting in $M_0 = 1000$ and $O_0 = 150$ back into the equations to confirm they are indeed the equilibriums. $M_1 = 1.3 * M_0 - 0.002 * O_0 * M_0 = 1.3 * 1000 - 0.002 * 150 * 1500 = 1000$ $O_1 = 0.6 * O_0 + 0.0004 * O_0 * M_0 = 0.6 * 150 + 0.0004 * 150 * 1000 = 150$.

Therefore (1000, 150) is an equilibrium value and its trivial to see (0,0) is obviously an equilibrium value.

(c) Predict the long-term outcome if $M_0 = 1200$ and $O_0 = 100$

```
double mouse = 1200;
double owl = 100;

for(int i = 0; i < 100; i++) {
    System.out.println("m_" + i + ": " + mouse + " o_" + i + ": " + owl);
    double newMouse = 1.3 * mouse - 0.002 * owl * mouse;
    double newOwl = 0.6 * owl + 0.0004 * owl * mouse;

    mouse = Math.max(0, newMouse);
    owl = Math.max(0, newOwl);
}</pre>
```

```
m 0: 1200.0 o 0: 100.0
m 1: 1320.0 o 1: 108.0
m 2: 1430.88 o 2: 121.824
m_3: 1511.51294976 o_3: 142.820610048
m_4: 1533.2164315276495 o_4: 172.04244666087007
m_5: 1465.624748704614 o_5: 208.7367904527881
m_6: 1293.4525612104476 o_6: 247.61399669278296
m_7: 1040.934413145911 o_7: 276.6791813012039
m 8: 777.2049746547647 o 8: 281.2094612677063
m 9: 573.2516826166988 o 9: 256.14863364752284
m_10: 451.5519169248868 o_10: 212.424234283878
m_11: 395.1763516179801 o_11: 165.82276864720134
m_12: 382.6707836449873 o_12: 125.70535587999817
m_13: 401.2644846525417 o_13: 94.66472034518726
m_14: 445.67264960012704 o_14: 71.99306829674777
m 15: 515.2037614788562 o 15: 56.02997757831045
m 16: 612.03117951467 o 16: 45.164728628554876
m_17: 740.3560890990823 o_17: 38.1557260311307
m_18: 905.9652676265191 o_18: 34.192965259136
m_19: 1115.7995700705999 o_19: 32.90683472425657
m_20: 1377.1045770163605 o_20: 34.43107364963785
m_21: 1695.4055718922612 o_21: 39.62471983558419
m_22: 2069.6673018721012 o_22: 50.64682021891821
m_23: 2480.923356931952 o_23: 72.31691923170686
m_24: 2866.374895964932 o_24: 115.15524514834534
m_25: 3066.1311570906023 o_25: 201.12438862176907
m_26: 2752.6229954097735 o_26: 367.3441349346634
m_27: 1556.0900679325755 o_27: 624.870446180824
m 28: 78.20769821919339 o_28: 763.8641457271253
m_29: 0.0 o_29: 482.21451007207077
m 30: 0.0 o 30: 289.32870604324245
m 31: 0.0 o 31: 173.59722362594547
m_32: 0.0 o_32: 104.15833417556728
m_33: 0.0 o_33: 62.495000505340364
m_34: 0.0 o_34: 37.49700030320422
m 35: 0.0 o 35: 22.49820018192253
m_36: 0.0 o_36: 13.498920109153518
m_37: 0.0 o_37: 8.099352065492111
m_38: 0.0 o_38: 4.859611239295266
m_39: 0.0 o_39: 2.91576674357716
m_40: 0.0 o_40: 1.749460046146296
m_41: 0.0 o_41: 1.0496760276877775
m_42: 0.0 o_42: 0.6298056166126664
m 43: 0.0 o 43: 0.37788336996759986
m_44: 0.0 o_44: 0.22673002198055991
  45 0 0
            45 0 43003004340033504
```

```
m 45: 0.0 o 45: 0.13603801318833594
m 46: 0.0 o 46: 0.08162280791300157
m_47: 0.0 o_47: 0.04897368474780094
m 48: 0.0 o 48: 0.029384210848680564
m 49: 0.0 o 49: 0.01763052650920834
m_50: 0.0 o_50: 0.010578315905525004
m_51: 0.0 o_51: 0.006346989543315002
m 52: 0.0 o 52: 0.003808193725989001
m 53: 0.0 o 53: 0.002284916235593401
m_54: 0.0 o_54: 0.0013709497413560404
m_55: 0.0 o_55: 8.225698448136242E-4
m 56: 0.0 o 56: 4.935419068881745E-4
m 57: 0.0 o 57: 2.9612514413290467E-4
m_58: 0.0 o_58: 1.776750864797428E-4
m_59: 0.0 o_59: 1.0660505188784568E-4
m_60: 0.0 o_60: 6.39630311327074E-5
m_61: 0.0 o_61: 3.837781867962444E-5
m_62: 0.0 o_62: 2.3026691207774664E-5
m 63: 0.0 o 63: 1.3816014724664797E-5
m 64: 0.0 o 64: 8.289608834798877E-6
m 65: 0.0 o 65: 4.9737653008793265E-6
m_66: 0.0 o_66: 2.9842591805275958E-6
m_67: 0.0 o_67: 1.7905555083165574E-6
m 68: 0.0 o 68: 1.0743333049899343E-6
m_69: 0.0 o_69: 6.445999829939605E-7
m_70: 0.0 o_70: 3.867599897963763E-7
m_71: 0.0 o_71: 2.3205599387782577E-7
m 72: 0.0 o 72: 1.3923359632669545E-7
m 73: 0.0 o 73: 8.354015779601727E-8
m_74: 0.0 o_74: 5.012409467761036E-8
m_75: 0.0 o_75: 3.0074456806566214E-8
m 76: 0.0 o 76: 1.8044674083939727E-8
m_77: 0.0 o_77: 1.0826804450363835E-8
m_78: 0.0 o_78: 6.496082670218301E-9
m_79: 0.0 o_79: 3.8976496021309806E-9
m 80: 0.0 o 80: 2.3385897612785884E-9
m_81: 0.0 o_81: 1.403153856767153E-9
m_82: 0.0 o_82: 8.418923140602918E-10
m 83: 0.0 o 83: 5.05135388436175E-10
m 84: 0.0 o 84: 3.03081233061705E-10
m_85: 0.0 o_85: 1.81848739837023E-10
m 86: 0.0 o 86: 1.091092439022138E-10
m 87: 0.0 o 87: 6.546554634132828E-11
m 88: 0.0 o 88: 3.927932780479697E-11
m_89: 0.0 o_89: 2.356759668287818E-11
m_90: 0.0 o_90: 1.4140558009726907E-11
m 91: 0.0 o 91: 8.484334805836145E-12
m_92: 0.0 o_92: 5.090600883501686E-12
m_93: 0.0 o_93: 3.054360530101012E-12
m_94: 0.0 o_94: 1.832616318060607E-12
m 95: 0.0 o 95: 1.0995697908363643E-12
m 96: 0.0 o 96: 6.597418745018186E-13
m_97: 0.0 o_97: 3.9584512470109117E-13
m 98: 0.0 o 98: 2.3750707482065467E-13
m 99: 0.0 o 99: 1.425042448923928E-13
```

As can be seen from the above screenshots. There is first some cycling in the populations and at n = 29 the mice are completely wiped out, afterwards the owls die off as well due to the fact there are no mice left.