Machine Learning Algorithm Cheat Sheet

September 09, 2014

Here is a cheat sheet that shows which algorithms perform best at which tasks.

Algorithm	Pros	Cons	Good at
Linear regression	 Very fast (runs in constant time) Easy to understand the model Less prone to overfitting 	- Unable to model complex relationships -Unable to capture nonlinear relationships without first transforming the inputs	The first look at a datasetNumerical data with lots of features
Decision trees	FastRobust to noise and missing valuesAccurate	Complex trees are hard to interpretDuplication within the same sub-tree is possible	Star classificationMedical diagnosisCredit risk analysis
Neural networks	- Extremely powerful - Can model even very complex relationships - No need to understand the underlying data - Almost works by "magic"	 Prone to overfitting Long training time Requires significant computing power for large datasets Model is essentially unreadable 	- Images - Video - "Human-intelligence" type tasks like driving or flying - Robotics
Support Vector Machines	- Can model complex, nonlinear relationships - Robust to noise (because they maximize margins)	 Need to select a good kernel function Model parameters are difficult to interpret Sometimes numerical stability problems Requires significant memory and processing power 	Classifying proteinsText classificationImage classificationHandwritingrecognition
K-Nearest Neighbors	- Simple - Powerful - No training involved ("lazy") - Naturally handles multiclass classification and regression	- Expensive and slow to predict new instances - Must define a meaningful distance function - Performs poorly on high-dimensionality datasets	- Low-dimensional datasets - Computer security: intrusion detection - Fault detection in semiconducter manufacturing - Video content retrieval - Gene expression - Protein-protein interaction

<u>Lauradhamilton.com</u> is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to amazon.com.