TD $N^{\circ}2$: Le traitement alternatif (conditionnel)

Ne pas considérer dans cette série les cas d'erreur possibles de l'utilisateur

Exercice 2_01:

Quel est le résultat final d'exécution de chacun des algorithmes suivants :

Algo Exo2_1_a		Algo Exo2_1_b	L'opération mod permet de donner
<u>Variables</u>		<u>Variables</u>	le reste de la division (13 mod 5 =
A, B, C : Entier		N, P : Entier	3)
<u>Début</u>		<u>Début</u>	D M (D
Lire (A,B)	Pour A=3 et B=6, C=	Lire (N)	Pour N = 6, P =
Si A < 5 ou B < 8 :	Pour A=3 et B=10, C=	Si N mod 2 = 0 :	Pour N = 9, P =
$ C \leftarrow A + B * 2$		$ N \leftarrow N + 4$	
<u>Sinon</u>	Pour A=5 et B=10, C=	<u>Fsi</u>	
C ← A * 2 + B		P ← 1 + N * 3	
<u>Fsi</u>		Ecrire(P)	
Ecrire (C)		<u>Fin</u>	
<u>Fin</u>			
Algo Exo2_1_c		Algo Exo2_1_d	
<u>Variables</u>		Variables	
N, R : Entier		A, B, C, D : Réel	
<u>Début</u>		<u>Début</u>	
Lire(N)	Pour N = 5, P =	Lire(A,B,C)	Pour A=2, B=15 et C=9, D =
Si N < 0 :	Pour N = -13, P =	D← A	Pour A=0, B=-3 et C=12, D =
R← 0	Doug N = 21 D =	<u>Si</u> B > D :	Pour A = 27, P = 10 at C = 10, D =
<u>Sinon</u>	Pour N = 21, P =		Pour A=27, B=10 et C=19, D=
		Fsi	
R ← 1		<u>Si</u> C > D :	
		D← C	- Que fait cet algorithme ?
R←2		Fsi	_
		Ecrire (D)	
<u>Fsi</u>		<u>Fin</u>	
Ecrire(R)			
<u>Fin</u>			

Exercice 2_02:

L'algorithme de la 1^{ère} case est écrit syntaxiquement correct.

a-Repérer les erreurs syntaxiques dans chacune des écritures suivantes (de 2 à 9), s'il y en a.

1	2	3	4	5
Algo Exo2_2_1	Algo Exo2_2_2	<u>Algo</u> Exo2_2_3	Algo Exo2_2_4	<u>Algo</u> Exo2_2_5
<u>Variables</u>	<u>Variables</u>	<u>Variables</u>	<u>Variables</u>	<u>Variables</u>
N : Entier	N : Entier	N : Entier	N : Entier	N : Entier
<u>Début</u>	<u>Début</u>	<u>Début</u>	<u>Début</u>	<u>Début</u>
Lire(N)	Lire(N)	Lire(N)	Lire(N)	Lire(N)
<u>Si</u> N < 10 :	<u>Si</u> N < 10	Si N < 10 Alors	<u>Si</u> N < 10 :	<u>Si</u> N < 10 :
Ecrire("chiffre")	Ecrire("chiffre")	Ecrire("chiffre")	Ecrire("chiffre")	Ecrire("chiffre")
Sinon	<u>Sinon</u>	<u>Sinon</u>	<u>Sinon</u>	<u>Fsi</u>
Ecrire("nombre")	Ecrire('nombre')	crire("nombre")	Ecrire("nombre")	<u>Fin</u>
<u>Fsi</u>	<u>Finsi</u>	Fsi		
<u>Fin</u>	<u>Fin</u>	<u>Fin</u>	<u>Fin</u>	

6	7	8	9
<u>Algo</u> Exo2_2_6	<u>Algo</u> Exo2_2_7	<u>Algo</u> Exo2_2_8	<u>Algo</u> Exo2_2_9
<u>Variables</u>	<u>Variables</u>	<u>Variables</u>	<u>Variables</u>
N : Entier	N : Entier	N : Entier	N : Entier
<u>Début</u>	<u>Début</u>	<u>Début</u>	<u>Début</u>
Lire(N)	Lire(N)	Lire(N)	Lire(N)
<u>Si</u> N < 10 :	Si N < 10 :	Si 0 ≤ N < 10 :	<mark>Si</mark> (N < 10) et (N ≥ 0) :
Ecrire("chiffre")	Ecrire("chiffre")	Ecrire("chiffre")	Ecrire("chiffre")
Sinon		<u>Sinon</u>	<u>Sinon</u>
Fsi	Ecrire("binaire")	Ecrire("nombre")	Ecrire("nombre")
<u>Fin</u>		<u>Fsi</u>	
	<u>Sinon</u>	<u>Fin</u>	<u>Fin</u>
	Ecrire("nombre")		
	Fsi		
	<u>Fin</u>		

Exercice 2 03:

a- Lesquelles des expressions logiques suivantes sont correctes syntaxiquement?

X ≤ 3 X <= 3	X =< 3	 0 ≤ X < 10	(X ≥ 0) et (X < 10)	X =100 ou X ≥ 0 et X < 10	Si $(X \ge 0 \text{ et } X < 10 \text{ ou } X = 100)$
Non(X ≥ 0 et X < 10) Si X		Si X = 1 :	Si X == 1:	et X ≠ 1 : 	

b- Soit l'expression logique suivante : X = 100 ou $X \ge 0$ et X < 10. Dire pour chaque valeur de X, si elle vaut Vrai ou Faux :

Χ	5	10	100	-14
Valeur logique				

Exercice 2_04:

L'indice de masse corporelle (IMC) est une grandeur qui permet d'estimer la corpulence d'une personne adulte.

Il se calcule comme suit : IMC (kg/m²) = $\frac{Poids}{Taille^2}$

La classification adoptée est :

_		
IMC < 18.5 → maigreur	$18.5 \le IMC \le 25$ → poids normal	IMC > 25 \rightarrow surpoids

- Ecrire deux variantes d'algorithme qui permet d'estimer la corpulence d'une personne à partir de son poids et de sa taille. Une variante avec des traitements alternatifs imbriqués et l'autre non.

Exercice 2 05:

Ecrire un algorithme qui demande cinq (5) valeurs réelles et affiche la plus grande d'entre elles. S'il y a deux valeurs égales ou plus, il ne doit pas le préciser.

Exercice 2_06:

- a- Ecrire un algorithme qui vérifie si un nombre entier **Nb** est pair ou impair (qu'il soit positif ou négatif), en affichant un message "Pair" ou "Impair" (Utiliser l'opération **mod**).
- b- Ecrire un algorithme qui demande à l'utilisateur de donner trois nombres entiers, et affiche ceux qui sont multiple de 5.

Exercice 2_07 (supplémentaire):

- a- Ecrire un algorithme qui résout une équation du premier degré (aX+b=0), tel que (a, b) $\in \mathbb{R}^2$ et a $\neq 0$.
- b- Ecrire un algorithme qui résout une équation du premier degré (aX+b=0), tel que (a, b) $\in \mathbb{R}^2$.
- c- Ecrire un algorithme qui résout dans R, une équation du second degré $(aX^2+bX+c=0)$, tel que $(a, b, c) \in R^3$ et $a \neq 0$
- d- Ecrire un algorithme qui résout dans R, une équation du second degré ($aX^2+bX+c=0$), tel que (a, b, c) $\in \mathbb{R}^3$.
 - R : l'ensemble des nombres réels.
 - L'écriture mathématique : $(a, b) \in \mathbb{R}^2$ est l'équivalent de : $a \in \mathbb{R}$ et $b \in \mathbb{R}$

TD : Initiation à l'algorithmique 1^{ère} Année (2021-2022)

Exercice 2_08 (supplémentaire):

Ecrire un algorithme de tarification d'un hôtel. Les tarifs sont les suivants :

7500 Dinars pour un adulte en chambre individuelle ;

6000 Dinars par chambre pour trois chambres individuelles ou plus réservées ;

9500 Dinars pour deux adultes en chambre double;

8000 Dinars par chambre pour quatre chambres doubles ou plus réservées ;

Gratuité pour le premier enfant ;

3000 Dinars par enfant à partir du deuxième.

Le petit déjeuner est obligatoire et fixé à 300 Dinars par personne quel que soit son âge.

Une chambre double doit accueillir obligatoirement deux et uniquement deux personnes.

Pour calculer le prix total à payer, on doit donc saisir les informations suivantes : nombre de chambres individuelles, nombre de chambres doubles, nombre d'enfants et nombre de nuits.

Exercice 2_09 (supplémentaire):

L'année du calendrier est divisée en 12 mois numérotés de 1 à 12 avec les principes suivants :

- les mois 1, 3, 5, 7, 8, 10 et 12 se composent de 31 jours.
- les mois 4, 6, 9 et 11 se composent de 30 jours.
- le mois 2 se compose de 29 jours si l'année est bissextile et de 28 jours sinon.

Note: une année (après JC) est bissextile si:

- elle est divisible par 4 et non divisible par 100, ou
- elle est divisible par 400.
- Ecrire un algorithme qui a pour données un mois et une année et qui affiche le nombre de jours de ce mois.

Exercice 2_10 (supplémentaire):

a- Ecrire un algorithme destiné à lire, au clavier l'heure et les minutes pour afficher l'heure qu'il sera une minute plus tard. Par exemple, si l'utilisateur tape 21 puis 32, l'algorithme doit répondre :

"Dans une minute il sera 21:33". Une variante avec des traitements alternatifs séparés (non imbriqués), et une autre avec des traitements imbriqués.

b- Réécrire l'algorithme pour afficher l'heure qu'il sera 8 minutes plus tard.

Exercice 2 11 (supplémentaire):

Soit les coefficients et crédits respectifs des différentes matières du 1^{er} semestre du tronc commun MI.

Sold les Confidences de Crouses les provins des différences induceres du 1 sold sold de troit confidence in the								
Unité	Unité1			Unité2		Unité3		Unité4
Matière	Algo1	Anal1	Alg1	Terminologie	Bureautique	CRI	Compo	Ang1
Coefficient (17)	4	4	2	1	1	2	2	1
Crédit (30)	6	5	6	4	3	2	2	2

a- Ecrire un algorithme qui à partir des notes des 8 matières d'un étudiant donné :

- calcule sa MG1 (Moyenne Générale du 1^{er} semestre).
- calcule la Somme de ses Crédits (SC1) comme suit :

Si l'étudiant a obtenu une MG semestrielle \geq 10, on lui accorde 30 crédits, sinon s'il a obtenu une MG de l'unité \geq 10, on lui accorde la somme des crédits des matières dont il a obtenu une note \geq 10.

On considère à la fin de l'année, qu'un étudiant est :

Admis : s'il a une MGA (Moyenne Générale Annuelle) ≥ 10/20.

Admis avec dettes : s'il a plus de 30 crédits dans l'année, avec au moins 10 crédits dans chaque semestre.

Ajourné: sinon.

b- Sachant que la somme des coefficients du deuxième semestre est 16, modifier l'algorithme de la question 'a' pour, qu'à partir en plus, de MG2 (Moyenne Générale du 2^{ème} semestre) et SC2 (Sommes des Crédits du 2^{ème} semestre), on affiche le résultat final d'un étudiant donné.