Process for improving the heat resistance of zirconium and its alloys

Patent number:

FR2334763

Publication date:

1977-07-08

Inventor:

ARMAND MARCEL; CHARQUET DANIEL

Applicant:

UGINE ACIERS (FR)

Classification:

- international:

C22F1/16; C22C16/00; G21C3/06

- european:

C22F1/18D; G21C3/07

Application number:

FR19750039403 19751212

Priority number(s):

FR19750039403 19751212

Also published as:

US4108687 (A1) JP52085010 (A) GB1561826 (A)

DE2655709 (A1) CH597358 (A5)

more >>

Report a data error here

Abstract not available for FR2334763

Abstract of corresponding document: US4108687

A method for treating zirconium and zirconium alloys, in particular the zirconium alloys used in nuclear reactors which are water cooled, as a structural or casing material for fuels. The method consists in dissolving or maintaining a solid solution of the majority of carbon contained in these alloys by thermal or thermo-mechanical treatments carried out in the alpha + beta range or if necessary in the beta range followed by a rolling in alpha phase if necessary. The products obtained have a highly improved mechanical resistance under heat, in particular with regard to resistance to creep; they are particularly suitable for constructing casing tubes for fuels in water cooled nuclear reactors having a better resistance to distortion in relation to time.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) Nº de publication : (A n'utiliser que pour les commandes de reproduction).

2 334 763

A1

DEMANDE DE BREVET D'INVENTION

N° 75 39403 21)

- 64 Procédé permettant d'améliorer la tenue à chaud du zirconium et de ses alliages. C 22 F 1/16; G 21 C 3/06//C 22 C 16/00. **(51)** Classification internationale (Int. Cl.2). 12 décembre 1975, à 15 h 55 mn. Date de dépôt 33 32 33 Priorité revendiquée : **41** Date de la mise à la disposition du B.O.P.I. - «Listes» n. 27 du 8-7-1977. public de la demande
 - 7 Déposant : UGINE ACIERS, résidant en France.
 - (72) Invention de : Marcel Armand et Daniel Charquet.
 - Titulaire: Idem (71)
 - 74 Mandataire: Jean-Pierre Givord. Pechiney Ugine Kuhlmann.

Le procédé qui fait l'objet de l'invention résulte des travaux de Messieurs Marcel ARMAND et Danie 1 CHARQUET.

Sont utilisés dans le coeur des réacteurs nucléaires comme matériaux de structu5 re ou comme gainage du combustible. Ce procédé permet de conférer de façon générale au zirconium et à ses alliages une tenue au fluage considérablement améliorée. Cette amélioration est particulièrement importante aux températures auxquelles sont exposés les alliages à base de zirconium, dans les réacteurs nucléaires
à eau, lourge ou légère, bouillante ou présurrisée. Le procédé s'applique de
10 façon beaucoup plus générale à tous les domaines de la technique dans lesquels
on utilise, ou on peut utiliser, des alliages à base de zirconium, à des températures relativement élevées, c'est-à-dire de l'ordre de 200 à 600°C. Ce peutêtre le cas en particulier, de certaines applications chimiques où on fait appel
au zirconium allié ou non allié à cause de sa résistance à la corrosion à température élevée et sous des contraintes importantes.

Les alliages de zirconium qui ont été mis au point pour utilisation dans les réacteurs nucléaires comportent des éléments d'addition destinés à renforcer leurs caractéristiques mécaniques, et quelquefois aussi, à améliorer leur résistance à la corrosion, tout en n'augmentant pas de façon trop importante leur section de capture des neutrons thermiques. La faille section de capture du zirconium est, en effet, l'une des raisons essentielles de son utilisation dans le coeur des réacteurs nucléaires. De façon générale, les éléments d'alliage utilisés peuvent se diviser en deux groupes :

Le premier comprend ceux qui renforcent mécaniquement l'alliage par formation d'une solution solide dans la phase à du zirconium, c'est le cas, par exemple, du niobium, de l'oxygène ou de l'étainw:

Le deuxième comprend des éléments peu solubles dans la phase α, et en général davantage solubles dans la phase β qui forment avec le zirconium des composés intermétalliques. C'est le cas de Fe, Cr, Ni, Mo, Cu, V etc ... Les êléments du deuxième groupe sont plutôt choisis à cause de leur action favorable sur la résistance à la corrosion; leur action sur les caractéristiques mécaniques de l'alliage et, en particulier, sur la résistance à chaud, est moins sensible que celle des éléments du premier groupe.

Parmi les alliages utilisés dans les réacteurs nucléaires, les deux 35 plus importants sont le zircaloy 2 et le zircaloy 4 dont nous donnons ci-après les compositions exprimées en 2 en poids :

(: Sn	: : Fe	: Cr	: Ni)	
(Zircaloy 2	: : 1,2 à 1,7	: : 0,07 à 0,24	: : 0,05 à 0,15	: 0,03 à 0,08)	
(Zircaloy 4	: 1,2 ãà 1,7	: 0,18 à 0,24	: 0,07 a 0,13	: -)	

D'autres alliages sont également utilisés de façon plus limitées tels 10 que les binaires Zr, Nb à 1 ou 2,5 % de Nb et aussi certains alliages plus complexes tels que celui appelé oghénite 0,5 qui contient de petites quantités de Nb, Fe, Ni et Sn et certains ternaiges Zr, Cr. Fe, Zr, Fe V, Zr Cu Fe, etc...

De nombreuses impuretés ont un rôle défavorable soft du point de vue de la section de capture, soit du point de vue de la résistance à la corrosion.

Pour cette raison, des limites maximales sont fixées par les utilisateurs aux teneurs de charune de ces impuretés pour l'emploi en réacteur nucléaire. C'est ainsi que le carbone considéré comme défavorable au-delà d'une certaine teneur pour la résistance à la corrosion par l'eau ou la vapeur à hauté température, est généralement limité à des valeurs ne dépassant pas 400 parties par million dans les zircaloys. En fait, la quantité de carbone qui se trouve enssolution dans la phase & du zirconium, aux températures proches de l'ambiante, est généralement de l'ordre de 100 à 150 ppm; si la teneur totale en carbone dépasse notablement ces valeurs, l'excès précipite sous forme de particules de carbure ZrC. Tent que la teneur totale du carbone ne dépasse par largement 400 ppm, on n'observe pas d'influence sensible de cet élément sur les caractéristiques mécaniques des alliages de zirconium sous forme de produits finis, lorsqu'on utilise les méthodes habituelles de transformation.

De façon tout à fait inattendue les inventeurs ont découvert la possibilité de renforcer de façon importante les caractéristiques mécaniques à chaud du zirconium et, en particulier, sa résistance au fluage en augmentant la quantité de carbone en solution solide, dans la phase α du zirconium. Des résultates très intéressants sont obtenus dans le cas des zircaloys sans dépasser la limite de teneur en carbone total qui est de 400 ppm. Le même effet est obtenue avec tout alliage de zirconium dont la structure est en majeure partie α au-dessous de 850°C. L'addition de quantités de carbone supérmeures à 400 ppm conduit à un renforcement des caractéristiques mécaniques encore plus important. Le procédé s'applique aussi bien aux alliages de zirconium nucléaires qu'à ceux utilisés dans l'industrie chimique. Ces derniers contiennent souvent 2 à 3 π de pafnium ce qui est sans inconvénient pour la mise en oeuvre du prodédé suivant L'invention. Enfin, il est possible également de renforcer de la même façon le zirco-

nium non allié, hafnié ou déhafnié. On peut obtenir alors de nouveaux alliages dérconium-carbone pouvant présenter des caractéristiques très élevées. Pour atteindre ces résultats, deux conditions seulement sont nécessaires : il faut, en premier lieu, que le carbone soit présent à un niveau convenable de teneur ; comme on bient de l'écrire, il n'est pas nécessaire que ce niveau dépasse la limite fixée actuellement pour les zircaloys, qui est d'environ 400 ppm ; on peut cependant énvisager d'obtenir des alliages à caractéristiques encore plus élevées en dépassant notablement cette limite. En deuxième lieu, il faut choisir des conditions de transformation thermomécanique et/ou thermiques des alliages de zirconium, bien différentes des conditions habituelles, car celles-ci ne permettent pas de maintemir en solution des quantités de carbone suffisantes. Ainsi, une séquence classique de transformation d'un lingot de zircaloy 4 comporte les étapes suivantes :

- l°/ Dégrossissæggedu lingot brut de coulée en phase β homogène à une 15 température initiale en général supérieure à 1 000°C et ne dépassant pas 1 100°C suivi d'un refroidissement rapide.
 - 2° / Transformation des demi-produits obtenus par laminage ou filage en phase α à une température finférieure à 780°C.
- 3°/ **Fra** de transformation à froid par laminage ou étirage avec recuits 20 intermédiaires et finals en phase à dune température inférieure à 780°C.

Les investigations desimmenteurs leur ont montré que, dès la première étape, une fraction du carbone précipite sous forme de ZrC. Ce phénomène est probablement dû à la faible solumilité du carbone dans la phase β qui doit être de l'ordre de 120 à 130 ppm à 1 000°C et ne doit guère dépasser 200 ppm à 1 100°C.

25 Les températures supérieures à 1 100°C ne sont pratiquement pas utilisées dans l'émat actuél de la technique à cause de l'oxydabilité des alliages de zirconium à haute température. Au cours des traitements ultérieurs à température inférieure à 780°C, l'expérience à montré que ces carbures grossiers ne se redissolvaient pas de façon motable et que, dans le produit fini, la répartition du carbone entre la solution solide et la phase précipitée ZrC était pratiquement la même ; ceci explique que la quantité de carbone en médiution solide seit de façon générale inférieure à 150 ppm.

Le procédé qui fait l'objet de l'invention s'applique au zirconium ou à des alliages à base de zirconium contenant au moins 150 ppm de carbone et, de préférence, 200 à 1 000 ppm. Dans certains cas, on peut même envisager des teneurs enccarbone allant jusqu'à la limite de solubilité du carbone dans la phase du zirconium qui atteint environ 4 000 ppm à 870°C(Y.G. GODIN et coll. Special Research Report: High Purity Metals and Alloys Fabrication Properties and Testing edited by V.S. EMELYANOV - A.I. EVSTYUKHIN translated from Russian 1967,

"Il comporte, après une étape de dégrossissage des lingots bruts de coulée, effectuée en général dans le domaine eta , un traitement thermique où thermomécanique de solubilisation du carbone, effectué dans le domaine α + β . Dans le cas d'un zircaloy 4 ou d'un zircaloy 2 contenant par exemple 300 ppm de carbone, - 5 le domaine de température le plus favorable se situe entre 830 et 950°C. Si on opère à une température supérieure à 950°C, la diminution de la quantité de phase a limite les possibilités de mise en solution solide du carbone et, de plus, on observe une hétérogénéisation de l'alliage défavorable à sa résistance à la corrosion. Si on opère, au contraire, au-dessous de 830°C et au-dessus de 780°C, 10 c'est-à-dire dans le cas des zircaloys 2 et 4 dans le bas du domaine α + β , la quantité de phase β devient très faible et on observe un grossissement important de grains à ainsi que coalescence des phases intermétalliques précipitées, à base de Zr, Fe, Cr, et éventuellement Ni, défavorable aux caractéristiques mécamiques. De plus, la vitesse de mise en solution des carbures devient beaucoup 15 plus faible. Par contre, au-dessus de 830°C, ces phénomènes défavorables ne sont pas observés ; le grossissement du grain a est limité et les précipités de phases intermétalliques conservent une finesse suffisant pien qu'ils aient tendance à se localiser au voisinage des limites de grains lpha . Si le traitement est purement thermique, il est en général nécessaire de faize un maintien de plusieurs 20 heures qui doit souvent se prolonger pendant 10 à 30 heures si on veut obtenir une mise en solution complète ou presque complète du carbone. Laudrateplasce ongraitement sera d'autant plus longue que les particules de ZrC qui doivent être mises en solution sont plus grosses et que la température est plus proche de la limite inférieure de la fourchette. On peut raccourcir la durée du traitement en combinant et/ou en juxtaposant les effets thermiques et mécaniques. C'est le cas, par exemple, de passes de laminage successives à des températures comprises entre 830 et 950°C avec des réchauffages intermédiaires danz ce même domaine de températures. Ces actions de corroyage peuvent aussi être réalisées dans le même domaine de température par forgeage ou filage. Ce traitement thermique ou thermomécanique effectué dans le domaine α + β présente l'inconvénient de conférer au produit obtenu une résistance à la corrosion insuffisante due à la répartition relativement hétérogène des phases intermétalliques précipitées qui se localisent de préférence aux limites des grains a . Il a été trouvé qu'il était possible de ramédier à ce défaut en faisant subir au métal un corroyage suffisant dans le 35 domaine monophasé lpha . Un tel traitement entrâîne une certaine redispersion des précipités et il en rémulte une améléoration très importante de la résistance à la corrosion. L'expérience a montré que de bons résultats sont obtenus lorsqu'on fait subir au produit une réduction totale de section dans le domaine a à chaud et on à froid atteignant environ les 2/3 de la section initiale. Dans le cas d'une 40 tôle, ceci correspond à un rapport de 3 entre l'épaisseur inttiale et l'épaisseur

finale pour une largeur constante. Les essais ont montré que des taux de réduction plus faible entraînent déjà une amélioration de la résistance à la corrosion, mais que celle-ci n'est pas toujours suffisante ; au contraire, des taux de réduction supérirurs à 3 donnent des résultats encore meilleurs.

Il est relativement facile de prévoir une phase de réduction de section telle que celle qui vient d'être décrite dans le processus de transformation du zirconium ou les alliages à base de zirconium, après le traitement de misem en solution du carbone. Cette réduction peut se faire par tout procédé classique tel que filage, laminage ou étirage, ou encore une combinaison de ces pro-10 cédés.

L'exemple non limitatif ci-après décrit un mode de mise en oeuvre de l'invention et permet de comparer les résulsats obtenus avec ceux qu'on obtient par une méthode classique de transformation :

EXEMPLE : On a élaboré par des méthodes connues de l'homme de l'art un lingot de 55 zircaloy 4 de 500 mm de diamètre ayant la composition pondérale suivante :

(Sn	Fe	Cr	С	Si	0	H	N
(1,45 %	0,20 %	0,11 %	232 ppm	78 ppm	1200 ppm	10 ррш	23 ррш

20 On a ensuite transformé ce lingot par forgeage à 1030°C; c'est-à-dire $oldsymbol{eta}$, en barres carrées de 100 mm de côté. Ces barres ont ensuite été recuites I heure à 1050°C puis trempées à l'eau. A partir de là, deux séquences de transformation ont été utilisées : la séquence 1, classique, et la séquence 2 conforme à l'invention.

La séquence la comporté :un forgeage à 750°C dans le domaine a pour transformer le carré de 100 à 100 en plats de 12 mm d'épaisseur, puis un laminage à la même température jusqu'à 6 mm d'épaisseur.

La sequence 2 a comporté un préchauffage d'environ 4 heures à 850°C suivi d'un forgeage jusqu'à 12 mm d'épaisseur à la même température, puis, après 30 nouveau réchauffage d'environ 2 heures à 850°C, un laminage à même température jusqu'à 6 mm d'épaisseur en 6 passes environ avec réchauffage entre chaque passe d'environ 15 minutes à 850°C.

Les plats de 6 mm d'épaisseur obtenus par les deux séquences ont été ensuite laminés à froid jusqu'à une épaisseur finate de 2 mm, avec un recuit 35 intemmédiaire à 3,5 mm d'spaisseur et un recuit final effectués tous deux durant 3 heures à 650°C.

Les examens microscopiques effectués ont montré que la grosseur des grains a était la même dans les deux cas. Les précipités de phases intermétalliques répartis de façon homogène étaient un peu plus gros dans le cas des tôles 40 obtenues de façon classique, conformément à la séquence !. Dans le cas des tôles

5

obtenues suivant la séquence 2 la répartition des précipités intermétalliques était un peur moins homogène que dans le cas de la séquence ! mais la réduction de section par laminage à froid depuis 6 jusqu'à 2 mm avait cependant entraîné une dispersion suffisante pour donner une bonne tenue à la corrosion.

Enfin, on observait sur ces mêmes tôles obtenues suivant la séquence l de gros précipités de carbures plus ou moins brisés qui étaient absents dans le cas des tôles obtenues suivant la séquence 2 conforme à l'invention. Ceci montrait donc bien que les traitements thermomécaniques effectués à 850°C avaient mis en solution les carbures initialement présents dans les carrés de 100 après forgeage en Bfet trempe.

On a mesuré ensuite sur les tôles de 2 mm recuites à 650°C deux des plus importantes caractéristiques mécaniques à 400°C. Le tableau ci-dessous donne les résultats obtenus :

15 Limite élastique en Allongement de fluage en 100 h MPA sous une contrainte de 98,07 MB en 7 en long en travers en long en tzavers 20 Gamme classique : 12914 122,6 0,647 0,685 Séquence 1 Gamme suivant 1'inven-: 139,25 : 153.96 tion 0, 154 0.096 Séquence 2

CARACTERISTIQUES MECANIQUES A 400°C

25 Ces résultats montrent que le traitement thermomécanique effectué conformément à l'invention, qui a eu pour résultat de mettre en solution les précipités de ZrC, entraîne une augmentation de la limite élastique de 7 à 20 % et une amélioration encore plus importante de la résistance au fluage, le taux de fluage Etant de 4 à 7 fois plus faible.

Comme cela a été dit plus haut, la phase de mise en solution du procédé suivant l'invention peut comporter des traitements puressant thermiques ou thermomécaniques comme dans l'exemple ci-dessus ; l'accroissement de la température de traitement à l'intérieur de la fourchatte qui a été définie, permet, toutes choses égales d'ailleurs, de diminaer le temps de traitement ou d'augmen-35 ter les teneurs en carbone dissout.

De même, dans le hut de faciliter la mise en solution des carbures formés, on peut envisager de réduire leur taille individuelle. On a en effet constaté que la précipitation de ces carbures pouvait être initiée par la présence dans le zirconium ou les alliages de zirconium de certains éléments insolubles

tels que le phosphore et le silicimm. Ces éléments sont en général présents sous forme d'impuretés à des teneurs dell'ordre de quelques ppm à quelques dizaines de ppm. Lorsque leur teneur est trop faible, c'est-à-dire de l'ordre d'une dizaine de ppm ou moins pour chacun d'eux, le carbone a tendance à précipiter sous forme d'un petit nombre de particules de carbures de fortes dimensions. La remise en solution de ces carbures est relativement longue et difficide. Si au contraire la teneur en P et/ou Si est un peu plus élevé : quelques dizaines de ppm pour l'un ou l'autre, ou les deux, la précipitation du carbone tend à se faire sous forme de particules beaucoup plus nombreuses et par conséquent plus petites.

Il est possible, enpparticulier, d'élaborer de nouveaux alliages à base de zirconium, ayant des compositions analogues aux zircaloys 2 et 4, mais avec des teneurs en carbone dépassant les limites fixées par les normes nucléaires des zircaloys 2 et 4. De tels alliages présentent des caractéritiques mécaniques encore plus élevées, qui sont particulièrement intéressantes pour les utilisations à chaud.

Le procédé qui fait l'objet de l'invention s'applique particulièrement bien à la fabrication des tubes de gaingge des réacteurs nucléaires à eau préssurisée, pour lesquels un alliage présentant une tenger au fluage accrue permet l'utilisation d'épaisseurs plus faibles, ou encore évite le recours à une préssu-20 risation interne des tubes qui n'est passans inconvénients. Le procédé gent s'appliquer aussi à d'autres alliages à base de zirconium que les zircaloys, dans la mesure où ils présentent un domaine biphasé α + β comportant une zone située dans l'intervalle de température compris entre 830 et \$50°C. Ceci est le cas d'un certain nombre d'alliages expérimentaux appartenent aux systèmes ternaires 25 Zr Cr Fe, Zr Fe V, Zr Fe Cu. C'est aussi le cas de l'alliage connu sous le nom d'ozhénite 0,5. Pour tous alliages, on peut, en faisant varier la teneur en carbone entre 150 ppm et une valeur maximale de l'ordre de 1000 ppm pouvant atteindre dans certains cas jusqu'à 4000 ppm, obtenir toute une gamme de caractéristiques mécaniques, la tenme : au fluage étant d'autant meilleure que la quantité de 30 carbone mise en solution est plus élevée. Le traitement thermique ou thermomécanique doit être imi aussi adapté, en longueur et durée, aux quantités de carbone qui doivent être mises en solution, et aussi à la grosseur des particules de carbure qui se sont formées au cours de liébauchage des lingots à haute température.

Comme cela a été dit précédemment, le rprocédé peut s'appliquer aussi aux alliages de zirconium contenant du hafnium, qui sont utilisés le plus souvent pour des emplois non nucléaires, à cause de leur plus faible prix. Ces alliages ont généralement une teneur en hafnium inférieure au égale à 3 % de Hf. En fait, la teneur en Hf n'a pas d'influence notable sur les conditions de mise en 40 oeuvre de l'invention, et les résultats obtenus avec les alliages contenant du

HF sont voisins de ceux obtenus avec les mêmes alliages exempts de Hf. Le procédé peut, de même, s'appliquer au zirconium non allié, qu'il soit hafnié ou déhafnié dans des conditions de température comparables. Là aussi, il estrpossible d'introduire des quantités de carbone bien supérieures à celles qui sont habituellement considérées comme acceptables. On peut, alors, en dépassant les teneurs habituelles de quelques cantaines de ppm et en atteignant des teneurs proches de 1000 ppm et pouvant éventuellement aller jusqu'à 4000 ppm obtenir de métitate bles alliages zirconium-carbone ayant des caractéristiques mécaniques à chaud très élevées. De tels alliages peuvent trouver des applications importantes dans l'industrie chimique dans le cas de processus mettant en oeuvre des températures et des pressions élevées et pour lesquels l'emploi de structures sandwich présente souvent de sérieux inconvénients.

On peut envisager également de remplacer le traitement thermique ou thermomécanique de mise en solution du carbone dans le domaine a + B 15 traitement dans le domaine β à une température telle que la limite de solubilité du carbone soit supérieure ou sensiblement égale à la teneur en carbone du zirconium eu de l'alliage de zirconium. Pour être efficace, un tel traitement devra être fait à une température supérieure à 1100CC et pouvant atteindre 1200°C et même davantage si on veut dissoudre des quantités de carbone de 1'or-20 dre de 300 à 400 ppm ou plus. Ce traitement présente l'inconvénient d'exposer le métal à une oxydation rapide à haute température. De plus, il est nécessaire de refroidir très rapidement si on veut éviter la précipitation des carbures. Dans le cas où des précipités de carbures ont cependant le temps de se former, leurs dimensions sont faibles et ils suffit d'un traitement thermique ou thermo-25 mécamique de très courte durée dans le domaine a + & au-dessus de 830°C pour les redissoudre.

THIS PAGE BLANK (USPTO)

REVENDICATIONS

- 1°) Procédé de renforcement des caractéristiques mécaniques à chaud et, en particulier, de la résistance au fluage du zirconium hafnié ou déhafnié et de ceux de ses alliages dont la structure comporte une proportion notable de phase ξ dans une partie au moins due demaine de température compris entre 830 et 950°C, ce zirconium ou ces alliages contenant plus de 150 ppm de carbone, caractérisé en ce que, au cours des opérations métallurgiques de transformation des lingots en produits cinis, on effectue un ou plusieurs traitements thermiques et/ou thermomécaniques dans la partie du domaine de température comprise entre 830 et 950°C dans laquelle une proportion notable de phase α est présente afin de solubiliser une partie au moins du carbone, en ce que les traitements thermiques ultérieurs ne sont pas effectués à une température supérieure à 950°C.
 - 2°) Procédé suivant 1 caractérisé en ce que la teneur en Ceest comprise entre 150 et 400 ppm.
 - 3°) Procédé suivant 1 caractérisé en ce que on effectue un ou plusieurs traitements thermiques de solubilisation d'une durée totale de 2 à 30 heures.
- 4°) Procédé deirenforcement des caractéristiques mécaniques à chaud du zirconium et ses alliages caractérisé en ce que après avoir effectué le ou les traitements de solubilisation du carbone suivant la revendication ! on effectue 20 un corroyage dans le domaine a chaud et / ou à firoid pour disperser les phases précipiéées
 - 5°) Procédé suivant 4 dans lequel le corroyage total entraîne une réduction de section d'au moins 50 %.
- 6°) Procédé suivant l'une des revendications 1, 2, 3, 4, ou 5, carac-25 térisé en ce que on introduit dans le zirconium ou l'alliage de zirconium 19 à 100 ppm de phosphore et/ou 10 à 100 ppm de silicium.
 - 7°) Produits obtenus par le procédé suivant 1'une des revendications 1 à 6.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

