$$ACAINT Ford 3$$
1. By definition.

(av ($\hat{F}_{n}^{f}(x), \hat{F}_{n}^{f}(y)$) = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ + $\mathbb{E}[\hat{F}_{n}^{f}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ + $\mathbb{E}[\hat{F}_{n}^{f}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ + $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ + $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$ = $\mathbb{E}[\hat{F}_{n}(w)\hat{F}_{n}^{f}(y)]$

