Rate Normalization

The reconstruction efficiency for $K^0 \to \pi^+\pi^-$ and $\overline{K}^0 \to \pi^+\pi^-$ are identical BUT the initial (t=0) number of K^0 and \overline{K}^0 mesons recorded on tape are different! The reasons are related to the strangeness tagging using charged kaons:

- left and right curved track are reconstructed differently because of deviations from the cylinder geometry ideal solution: change frequently polarity of magnetic field OK
- positive and negative charged kaons are reconstructed with different efficiency because of different strong interactions with the detector material

ideal solution: use also detector made of antimatter $not\ possible$

Principles of the CPLEAR Experiment

Measurement of time dependent decay rate asymmetries:

$$\mathbf{A}_f(\tau) \,=\, \frac{\mathbf{R}_{\overline{\mathbf{K}}^0 \to \overline{f}}(\tau) - \mathbf{R}_{\mathbf{K}^0 \to f}(\tau)}{\mathbf{R}_{\overline{\mathbf{K}}^0 \to \overline{f}}(\tau) + \mathbf{R}_{\mathbf{K}^0 \to f}(\tau)}$$

acceptances cancel

Production and Tagging:

$$p\bar{p} \text{ (at rest)}
ightarrow egin{array}{c} K^{-}\pi^{+}K^{0} & 2 \times 10^{-3} \\ K^{+}\pi^{-}\overline{K}^{0} & 2 \times 10^{-3} \end{array}$$

The Strangeness of the neutral kaon K^0 (\overline{K}^0) at time $\tau = 0$ is defined by the charged kaon K^- (K^+).

$$\frac{\textit{Tagging at decay time:}}{\text{K}^0 \rightarrow e^+ \nu \pi^-} \qquad \overline{\text{K}}^0 \rightarrow e^- \overline{\nu} \pi^+$$

The Strangeness of the neutral kaon K^0 (\overline{K}^0) at the decay time is defined by the charge of the lepton ($\Delta S = \Delta Q$).

The CPLEAR Physics Program

$\diamond CP$ violation

Precision measurements of $|\eta_{+-}|$ and φ_{+-}

Measurements of $|\eta_{00}|$ and φ_{00}

Improved limits on η_{+-0} , η_{000}

⋄ CPT invariance

Direct measurement of $\Re e(\delta)$

Quantum Gravitation

$\diamond \mathcal{T}$ violation

♦ Non *CP*-Physics

Precision measurement of the $K_{\rm L}-K_{\rm S}$ mass difference: Δm

Search for $\Delta S = \Delta Q$ forbidden decays

Measurement of $K_S \to \pi^+\pi^-\pi^0$

EPR Paradox, Test of Quantum Mechanics

Study of pp annihilation, Bose-Einstein ...