(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-217507 (P2003-217507A)

。(43)公開日 平成15年7月31日(2003.7.31)

- (51) Int.Cl.7	識別記号	FI	テーマコート*(多考)
H 0 1 J 61/20		H01J 61/20	D 5C015
61/16		61/16	B 5 C 0 4.3
61/34		61/34	C

審査請求 未請求 請求項の数13 OL (全 11 頁)

50043 AA01 CC03 DD02

(21) 出願番号	特願2002-381940(P2002-381940)	(71)出願人 000005832
		松下電工株式会社
(22)出題日	平成14年12月27日(2002.12.27)	大阪府門真市大字門真1048番地
		(72)発明者 ティモシー ケリー
(31)優先権主張番号	10/056, 457	アメリカ合衆国 マサチューセッツ州
(32)優先日	平成14年1月25日(2002.1.25)	02116 ポストン ウェストキャントンス
(33)優先権主張国	米国(US)	トリート#3 217
		(74)代理人 100087767
		弁理士 西川 惠清 (外1名)
		Fターム(参考) 50015 PP03 PP05 QQ02 QQ03 QQ06
		QQ10 QQ24 QQ25 QQ27 QQ34
		QQ35 QQ56 QQ57 QQ59 RR05

(54) 【発明の名称】 メタルハライドランプ

(57)【要約】

【課題】 赤色を見せる能力に大幅な改善のあるメタルハライドランプを提供する。

【解決手段】 メタルハライドランプは、CCTの等しい黒体光源のものに対して同等ないし超える赤色発光を行うものである。Cal、と、All、またはGal、の錯体化金属ハロゲン化物との化学組成の金属ハロゲン化物が、メタルハライドランプの赤色発光を実質的に増強するために使用される。また、充填物の化学組成にTlを含めることもCaに影響を与える上で重要であり、青色放射光を抑制するとともに可視スペクトルの原子および分子の赤色放射光を優先的に放射するようにしている。オプションで、ネオジウムが添加されたガラス製のシュラウドも使用され、黄色の光の透過を著しく抑制し、それによって、十分な白色および全般的に良好な演色性を維持しつつ赤色発光の割合をさらに改善する。

【特許請求の範囲】

【請求項1】 上位赤色演色特性を持つメタルハライドランプであって、

可視放射光に対して透過性の材料から形成され金属ハロゲン化物の充填物を含むアーク管と、このアーク管内の両端に対向配置される放電電極とを備え、

前記充填物は、Call、CaBr、から成るグループ ドは、ガラス製であって、から選択された少なくとも一つの要素と、All、A 40nm間の半値幅をもって、40nm間の半位幅をもって、40nm間の半位値をもって、40nm間の半位を40nmには、40nmには、40nmにはは、40nmには、40nmにはは、40nmには、

前記 Cal_1 , $CaBr_1$ の少なくとも一方は、前記ハロゲン化物全ての総モル量の約10~75%間のモル量であり、

前記All,、AlBr,の少なくとも一方は、前記ハロゲン化物全ての総モル量の約2~50%間のモル量であり、

前記TII, TIBrの少なくとも一方は、前記ハロゲン化物全ての総モル量の約5~50%間のモル量である ことを特徴とする請求項1記載のメタルハライドラン プ。

【請求項3】 前記充填物は、水銀と、ArかXeのどちらかと、Dy, Ho, Tm, Na, Li, Csの元素のうち少なくとも一つのハロゲン化物とをさらに含み、前記Cal, CaBr, の少なくとも一方は、前記ハロゲン化物全ての総モル量の約10~75%間のモル量であり、

前記All,、AlBr,の少なくとも一方は、前記ハロゲン化物全ての総モル量の約2~50%間のモル量であり、

前記TII, TIBrの少なくとも一方は、前記ハロゲン化物全ての総モル量の約5~50%間のモル量であることを特徴とする請求項1記載のメタルハライドランプ。

【請求項4】 前記アーク管を形成する材料は、多結晶 アルミナ、サファイヤまたは石英のいずれかであること を特徴とする請求項1記載のメタルハライドランプ。

【請求項5】 前記アーク管は、ガラス製の外郭によって包囲されていることを特徴とする請求項1記載のメタルハライドランプ。

【請求項6】 前記外郭は、約250~600トール間の圧力で窒素の充填ガスを含んでいることを特徴とする 請求項5記載のメタルハライドランプ。

【請求項7】 前記アーク管は、シュラウドによって包囲されていることを特徴とする請求項1記載のメタルハライドランプ。

【請求項8】 前記シュラウドは、石英ガラスまたはホ 50 なった技術のランプを記載している。上記出願明細書に

ウケイ酸ガラスから作製されることを特徴とする請求項 7記載のメタルハライドランプ。

【請求項9】 前記シュラウドは、円筒形状をしている ことを特徴とする請求項7記載のメタルハライドラン プ。

【請求項10】 前記アーク管を包囲しているシュラウドは、ガラス製であって、約585nmにおいて約5~40nm間の半値幅をもって放射光を低減する狭帯域フィルタとして使用されることを特徴とする請求項7記載のメタルハライドランプ。

【請求項11】 前記シュラウドは、前記フィルタとして作用するように適量のNdが添加された高シリカホウケイ酸ガラスから成ることを特徴とする請求項10記載のメタルハライドランプ。

【請求項12】 前記充填物はナトリウムを含まないことを特徴とする請求項2記載のメタルハライドランプ。 【請求項13】 上位赤色演色特性を持つメタルハライドランプであって、

可視放射光に対して透過性の材料となる多結晶アルミ ひ ナ、サファイヤまたは石英のいずれかから形成され金属 ハロゲン化物の充填物を含むアーク管と、このアーク管 内の両端に対向配置される放電電極とを備え、

前記充填物は、 Cal_x , $CaBr_x$ から成るグループ から選択された少なくとも一つの要素と、 All_x , All_x ,

前記充填物は、水銀と、ArかXeのどちらかと、D 30 y, Ho, Tm, Na, Li. Csの元素のうち少なく とも一つとをさらに含み、

前記 CaI_1 , $CaBr_1$ の少なくとも一方は、前記ハロゲン化物全ての総モル量の約 $10\sim75%$ 間のモル量であり、

前記All,、AlBr、の少なくとも一方は、前記ハロゲン化物全ての総モル量の約2~50%間のモル量であり、

前記T1I, T1Brの少なくとも一方は、前記ハロゲン化物全ての総モル量の約5~50%間のモル量である 40 ことを特徴とするメタルハライドランプ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、可視放射光発生用のメタルハライドランプに関連する。

[0002]

【従来の技術】米国特許出願第09/427、305号の"A Metal Halide Lampe with Enhanced Red Emission, in Excess of a Blackbody" (本願発明と同じ譲受人によって所有されている)は、類似の対象物であるが異なった技術のランプを記載している。上記出願明知書に

は、585nm近辺を中心とする黄色の放射光の透過を 阻止するために、ネオジム添加のガラス製のシュラウド (shroud)を備えるランプが記載されている。また、その ランプは、有効性を最大にするために、金属製の熱シー ルドおよび真空の外郭の使用を必要としている。これら の特徴は、製造の観点からランプを望ましくないものに するであろうし、真空の外郭は、ガスの充填された外郭 よりも多くの設計的考慮を必要とする潜在的な安全上の 問題を呈す。また、熱シールドから結果的に生じるシー ルの温度上昇は、長いランプ寿命にとって懸念となる。 【0003】Shintani他の米国特許第4、027、19 0号明細書(特許文献1)およびThornton, Jr. 他の米 国特許第4,360,758号明細書(特許文献2)に は、改善されたR、(後段の「課題を解決するための手 段」内の説明参照)および全般的な演色評価値(数)を 達成するため、ハロゲン化物と錯体化されたカルシウム ハロゲン化物を使用するメタルハライドランプが記載さ れている。Caruso他の米国特許第4,742,268号 明細書(特許文献3)には、例外的な演色性のため、S .n I、+CaI、の錯体化および長円体形状の石英アー ク管を使用するメタルハライドランプが記載されてい る。吸湿性のヨウ化カルシウムからの湿気を除去する処 理工程も説明されている。Kramer他の米国特許第4、8 01.846号明細書(特許文献4)には、赤色発光(r ed emission)を強化するため、ヨウ化カルシウムをヨウ 化ナトリウム+希土類元素ヨウ化物の化学組成に加える ことが記載されている。Wada他の米国特許第5、25 6,940号明細書(特許文献5)には、改善された演 色性を有するランプを造るべく、Na/Tl/ln/S n/Liのハロゲン化物の化学組成を錯体化するため に、アルミニウムのハロゲン化物を使用することが記載 されている。Fromm 他の米国特許第5, 461, 281 号明細書(特許文献6)には、例として、金属ハロゲン 化物による電極の劣化を防止するため、アーク管におい て酸素と反応させるために使用されるゲッター材として Alliを使用することが記載されている。Wijenberg 他の米国特許第6,031,332号明細書(特許文献 7)には、クレストファクタを低減して寿命を改善する ために、CalュをNal+希土類元素ヨウ化物の化学 組成に加えることが記載されている。Shaffner他の米国 特許第6,005,346号明細書(特許文献8)に は、映写機(プロジェクタ)用の光源として使用するた めに、原色が高度に飽和したスペクトルを発生するNa Tおよび水銀無しのメタルハライドランプが記載されて いる。特開昭52-120585号公報(特許文献9) および特開昭52-031583号公報(特許文献) 0)には、東芝株式会社によって権利化請求されていな いが、Caの使用に言及している。しかし、それらは、 AlまたはGaのハロゲン化物とのCaのハロゲン化物 の錯体化によるCaの赤色発光の強化については述べら

3

れていない。原子のCaの青色放射光を抑制する際のT 1ハロゲン化物の役割は説明されておらず、分子のCa 単一ハロゲン化物の赤色放射光も強化されていない。 【0004】定期刊行物の"Lighting Research & Techn ology"(8巻3号、1976年、136~140頁)に は、金属ハロゲン化物の錯体化についての科学的説明を

は、金属ハロゲン化物の錯体化についての科学的説明を載せ、色々な化学組成のメタルハライドランプに伴う作用を実地説明している幾つかの実験データを提供している"Improvement of metal halide lamps by complexfor mation"と題するR. Lorenz による論文が含まれている。

[0005]

【特許文献1】米国特許第4、027、190号明細書 【特許文献2】米国特許第4、360、758号明細書 【特許文献3】米国特許第4、742、268号明細書 【特許文献4】米国特許第4、801、846号明細書 【特許文献5】米国特許第5、256、940号明細書 【特許文献6】米国特許第5、461、281号明細書 【特許文献7】米国特許第6、031、332号明細書 【特許文献8】米国特許第6、005、346号明細書 【特許文献9】特開昭52-120585号公報 【特許文献10】特開昭52-031583号公報 【特許文献10】特開昭52-031583号公報

【発明が解決しようとする課題】本発明の目的は、赤色 (red colors)を見せる能力(赤色の演色能力)に大幅な改善のあるメタルハライドランプを提供することである。これは、小売りスペースと、肉、魚および食材などの食品とを照明するのに望ましい。人の皮膚の外観も、改善された赤色発光によって強化される。本ランプは、全体的な赤の演色を改善するために、単体であるいは標準的な光源と組み合わせて使用可能である。

【0007】本発明の別の目的は、市場で入手可能な同じ電力のランプと構造的上同等である上位赤色演色特性を持つメタルハライドランプを提供することである。 【0008】本発明の別の目的は、現存の標準的な製造

【0008】本発明の別の目的は、現存の標準的な製造設備で容易に製造されるメタルハライドランプを提供することである。

【0009】本発明のさらに別の目的は、一般的な照明 用途に採用されるように、上位赤色演色特性および許容 しうる効率ならびに全般的な演色評価数および白色度 (つまり特定の色相がない)を持つメタルハライドラン プを提供することである。

【0010】本発明の別の目的は、従来のメタルハライドおよび高圧水銀ランプよりもフィルタリングの必要性の少ない映写機用の照明に使用可能であり、高飽和原色(赤、緑および青)の光源を提供することである。これは、システムの効率を高め、色の全領域を拡大できるようにするものである。

[0011]

0 【課題を解決するための手段】請求項1記載の発明は、

上位赤色演色特性を持つメタルハライドランプであって、可視放射光に対して透過性の材料から形成され金属ハロゲン化物の充填物を含むアーク管と、このアーク管内の両端に対向配置される放電電極とを備え、前記充填物は、Cal, CaBr,から成るグループから選択された少なくとも一つの要素と、All, AlBr, Gal, GaBr,から成るグループから選択された少なくとも一つの要素と、Tll, TlBrから成るグループから選択された少なくとも一つの要素と、Tll, TlBrから成るグループから選択された少なくとも一つの要素とにより成ることを特徴とする。

【0012】請求項2記載の発明は、請求項1記載のメタルハライドランプにおいて、前記充填物は、水銀と、ArかXeのどちらかとをさらに含み、前記Cal,、CaBr,の少なくとも一方は、前記ハロゲン化物全ての総モル量の約10~75%間のモル量であり、前記All,、AlBr,の少なくとも一方は、前記ハロゲン化物全ての総モル量の約2~50%間のモル量であり、前記Tll,TlBrの少なくとも一方は、前記ハロゲン化物全ての総モル量の約5~50%間のモル量であることを特徴とする。

【0013】請求項3記載の発明は、請求項1記載のメタルハライドランプにおいて、前記充填物は、水銀と、ArかXeのどちらかと、Dy, Ho, Tm, Na, Li, Csの元素のうち少なくとも一つのハロゲン化物とをさらに含み、前記CaI, CaBr, の少なくとも一方は、前記ハロゲン化物全ての総モル量の約10~75%間のモル量であり、前記AlI, AlBr, の少なくとも一方は、前記ハロゲン化物全ての総モル量の約2~50%間のモル量であり、前記TlI, TlBrの少なくとも一方は、前記ハロゲン化物全ての総モル量の約2~50%間のモル量であり、前記TlI, TlBrの少なくとも一方は、前記ハロゲン化物全ての総モル量の30約5~50%間のモル量であることを特徴とする。

【0014】請求項4記載の発明は、請求項1記載のメタルハライドランプにおいて、前記アーク管を形成する材料は、多結晶アルミナ、サファイヤまたは石英のいずれかであることを特徴とする。

【0015】請求項5記載の発明は、請求項1記載のメタルハライドランプにおいて、前記アーク管は、ガラス製の外郭によって包囲されていることを特徴とする。

【0016】請求項6記載の発明は、請求項5記載のメタルハライドランプにおいて、前記外郭は、約250~ 40600トール間の圧力で窒素の充填ガスを含んでいることを特徴とする。

【0017】請求項7記載の発明は、請求項1記載のメタルハライドランプにおいて、前記アーク管は、シュラウド(shroud)によって包囲されていることを特徴とする。

【0018】請求項8記載の発明は、請求項7記載のメタルハライドランプにおいて、前記シュラウドは、石英ガラスまたはホウケイ酸ガラスから作製されることを特徴とする。

【0019】請求項9記載の発明は、請求項7記載のメタルハライドランプにおいて、前記シュラウドは、円筒形状をしていることを特徴とする。

【0020】請求項10記載の発明は、請求項7記載のメタルハライドランプにおいて、前記アーク管を包囲しているシュラウドは、ガラス製であって、約585nmにおいて約5~40nm間の半値幅をもって放射光を低減する狭帯域フィルタとして使用されることを特徴とする。

10 【0021】請求項11記載の発明は、請求項10記載のメタルハライドランプにおいて、前記シュラウドは、前記フィルタとして作用するように適量のNdが添加された高シリカホウケイ酸ガラスから成ることを特徴とする。

【0022】請求項12記載の発明は、請求項2記載のメタルハライドランプにおいて、前記充填物はナトリウムを含まないことを特徴とする。

【0023】請求項13記載の発明は、上位赤色演色特 性を持つメタルハライドランプであって、可視放射光に 20 対して透過性の材料となる多結晶アルミナ、サファイヤ または石英のいずれかから形成され金属ハロゲン化物の 充填物を含むアーク管と、このアーク管内の両端に対向 配置される放電電極とを備え、前記充填物は、СаІ 1. CaBr, から成るグループから選択された少なく とも一つの要素と、All」、AlBr」、Gal」、 GaBr,から成るグループから選択された少なくとも 一つの要素と、TII、TIBrから成るグループから 選択された少なくとも一つの要素とにより成り、前記充 填物は、水銀と、ArかXeのどちらかと、Dy,H o, Tm, Na, Li, Csの元素のうち少なくとも一 つとをさらに含み、前記Call。CaBr。の少なく とも一方は、前記ハロゲン化物全ての総モル量の約10 ~75%間のモル量であり、前記All, AlBr, の少なくとも一方は、前記ハロゲン化物全ての総モル量 の約2~50%間のモル量であり、前記T11, T1B rの少なくとも一方は、前記ハロゲン化物全ての総モル 量の約5~50%間のモル量であることを特徴とする。 【0024】ここで、本発明の技術的背景について説明 すると、メタルハライドランプは、髙(発光)効率、全 般的に良好な演色(性)および高光束(明るさ)の故に 多くの照明用途に望ましいことが分かっている。広範囲 のルーメン出力および色温度の製品が市場で入手可能で ある。しかし、標準的な市販のランプは、理想的な黒体 発光に非常に近い挙動をする白熱光源に比べて、赤色の 演色が良くない。本発明のメタルハライドランプは、新 鮮な食材・肉や、衣類・家具や、化粧品・美容院・ファ ッション小売りスペースや、ペイント・美術商や、さら に娯楽施設の照明など、赤色の演色特性が重要な利用分 野で使用可能である。

50 【0025】国際照明委員会(CIE)によってCIE

公布番号13.2で具体的に述べられているように、R ,の演色評価数は、テスト光源および基準光源の二つの 光源を用いて別々に見た時の標準化された赤色テストサ ンプルの反射強度間の比較を表す。5000Kよりも低 いCCT(相関色温度)のテスト光源にとって、基準光 源は、CCTおよび照度が等しい黒体放射光となる。赤色 テストサンプルからの二つの反射強度がより等しくなれ ばなるほど、R, 値はより高くなる。最大値の100 は、基準光源に等しく、特定の赤色テストサンブルの見 せ方をする光源を表す。100より小さいR, 値は、基 10 準光源と比べて、赤色発光がより少なめかより多めのど ちらかとなる光源を表す。この慣行は、赤の演色を比較 する際に扱うことが非常に難しい。テスト光源が赤色発 光で弱められるか強められるかの指標を、R、値が何ら 与えないからである。そこで、R、計測値が、黒体標準 - と比較して赤色が強化されたランプを表すようにするべ く、本発明の詳細な説明(の発明の実施の形態)におけ るデータは、(基準光源に対する赤色の)強化の点数を xとし、100+xで表した。これは、標準的な表記で はないが、扱いが非常に容易であった。例えば、テスト 20 ランプが、同等の黒体光源よりも20点多く赤色の強化 されたものであれば、20点赤色の弱められたランプと 区別できない厳密に正しい R。 値の80に代えて、10 0+20として表現される。この表記なしには、複雑な 色空間定義を利用したやっかいな図形法が必要とされ る。

【0026】大部分の市販のメタルハライド光源、とり わけCCTが4000K未満のランプは、共通してマイ ナスのR,値を持ち、赤色発光が著しく弱い。一般に、 石英アーク管は、同等のセラミックアーク管よりも低い 30 R,値をなす。メタルハライドランプの出力スペクトル・ は、一般に、動作温度および圧力の条件で気体相で存在 している金属の分布によって決定される。一般に、メタ ルハライドランプは、「飽和」状態で動作するのであ り、動作中、幾分かの金属ハロゲン化物は蒸気となる が、余剰の液体または固体の金属ハロゲン化物がなおも 十分な量存在している。気体相の金属の総置および分布 は、一般にアーク管本体内の最冷点温度での金属ハロゲ ン化物の蒸気圧によって決定される。一般に、金属ハロ ゲン化物の蒸気圧がより高くなると、対応する金属元素 40 の放出を高める結果となる。出力スペクトルの実験観察 に基づくと、金属ハロゲン化物の或る一定の混合物とと もに、幾分かの金属が、対応する金属ハロゲン化物の公 知の独立した蒸気圧に従って、予想される割台よりもよ り高い割合で気体相で存在していることが注目されてい る。R. Lorentz ("Lighting Research & Technology", 1976年, 8巻3号の136~140頁) は、金属ハ ロゲン化物の錯体化理論でこの現象を説明している。基 本的には、低蒸気圧の金属ハロゲン化物は、高蒸気圧で 高反応性の金属ハロゲン化物と反応して、反応体の低蒸 50

気圧の金属ハロゲン化物よりも高蒸気圧の金属ハロゲン化物錯体を生み出す。このように、低蒸気圧の金属ハロゲン化物の放出は、メタルハライドランプでは大幅に増大される。錯体化現象は、Callの独立した蒸発で可能なものよりも著しくより多くのカルシウム放射光を供給する点で、本発明にとって重要である。

【0027】次に、本発明の要約について説明すると、強化(増強)した赤色発光のメタルハライドランプを作製するために、R,の演色評価数によって計測される赤色の見せ方を改善するのに最適となる610nm~650nmの波長範囲を放射光にもたらすように、Cal,がアーク管充填物の化学組成に付加される。Cal,の低蒸気圧により、All,またはGal,の錯化剤も付加されて気体相のカルシウム量を著しく増大し、それによって赤色放射光を増強している。青色放射光を抑制して優先的に赤色のカルシウム原子および分子の放射光を強化するため、Tllも充填物の化学組成に含められる。オプションで、約585nmを中心とする帯域幅フィルタが、黄色の放射光を減じて赤色発光の割合をさらに強化するとともに十分な白色光源を維持するために使用される。

【0028】上位赤色演色特性を持つメタルハライドランプは、可視放射光に対して透過性の材料となる多結晶アルミナ、サファイヤまたは石英のいずれかから形成されるアーク管により成る。

【0029】このアーク管は、金属ハロゲン化物の充填物を含み、Cal、またはCaBr、と、All、AlBr、Gal、またはGaBr、と、TllまたはTlBrとを含む。Cal、CaBr、の少なくとも一方は、ハロゲン化物全ての総モル量の約10~75%間のモル量であり、All、AlBr、の少なくとも一方は、ハロゲン化物全ての総モル量の約2~50%間のモル量である。Tll、TlBrの少なくとも一方は、ハロゲン化物全ての総モル量の約5~50%間のモル量である。充填物は、水銀と、ArかXeのどちらかとをさらに含む。さらに、Dy、Ho、Tm、Na、Li、Csの元素のうち少なくとも一つのハロゲン化物が含まれるようにしてもよい。

[0030]

【発明の実施の形態】図1は一般照明用途のための本発明の典型的な実施形態を示す図である。多結晶アルミナ (PCA)製のアーク管1は、硬質ガラス製の外郭2内 に収容されている。外郭2内の空間3は、真空にされるかまたは窒素で充填される。ランプ電流は、アーク管1内に気密状態でシールされた電気フィードスルー(貫通電材)4a.4bによってランプ(アーク管1)内外に伝達される。アーク管1を包囲する管状のシュラウド5は、硬質ガラスまたは石英から作製され、そして図2に示すように、585nm近辺を中心とする黄色の波長帯域における可視光線を大いに吸収するようにネオジムが

オプションで添加される。150wで動作する設計のランプにあっては、アーク管1は、9~14mgのHg、100~300トールのAr、および金属ハロゲン化物の充填物6を収容し、その金属ハロゲン化物として、赤色発光用のCal,と、Caを含有するハロゲン化物の錯体形成用のAll,またはGal,とを含んでいる。独立したヨウ化カルシウムの蒸気圧よりもより高い蒸気圧を持ったヨウ化カルシウム赤色発光のために蒸気相のカルシウムを増加させる上で重要である。一般にTllは、釣り合いのとれた色および高効率のために、緑色放射光をもたらすように金属ハロゲン化物の添加物に含まれる。また、Tllは、スペクトルの赤色領域で優先的に発光するようにカルシウムに影響を与える役割を担う。

【0031】図2におけるスペクトル分析によって本発 明の重要な長所が理解される。R。の反射率曲線は、波 長が約610nmを越すに従ってスペクトル発光の反射 率が大きく増大することを示している。しかし、明所視 感度曲線(photopic eye sensitivity curve)は、波長が 20 555nmを越えて大きくなると眼の感度が急速に低下 することを示している。図3から図5において、約61 5 n mと約650n mの間で見受けられるカルシウム発 光は、それが赤色対象物から強力に反射するが、依然と して人の眼にはかなり見えているので、「赤色の見え 方」(red rendering) を改善する上で非常に効果的であ る。幾つかの市販のメタルハライドランプは、赤色の見 え方を改善する試みにおいて充填物にリチウムハロゲン 化物を含める。671nmで支配的なLi原子の輝線 は、人の眼には殆ど見えず、効果が制限される。611 nmのLi原子の放射光は、有効であるものの、一般に メタルハライドランプでは強くない。

【0032】本発明の全ての実施形態では、スペクトルの615~650nm領域でのカルシウム放射光は、赤色発光を強める主要な方法である。616nm~617nm範囲と、また644nm~650nm範囲とにおいて、密にグループ化された幾つかの原子カルシウムの放射光線が存在している。しかし、赤色放射光のより大きな寄与は、623~651nm範囲におけるカルシウムの単一ヨウ化物の分子放射光からくる。

【0033】本発明の全ての実施形態では、A1I,かGaI,のいずれかが、錯化剤および可視発光の広帯域発光剤として作用することを意図して、充填物の化学組成に含まれる。A1およびGaは、周期律表で連続した元素であり、そして化学的に類似しているために、A1I,およびGaI,の両方がテストされ、ヨウ化カルシウムと組み合わせることで有効的であることが分かっ

た。しかし、All,は、そのより高い反応性によって 好ましく、より好ましい錯化剤とすると考えられる。ま た、All,は、PCA製のアーク管とより化学的に適 合性があり、そしてGal,よりも低コストであると考 えられる。

【0034】T11は、本発明の充填物の化学組成にお いて重要な役割を担う。T1Iの添加量を増やすと、青 色の380~450 n m範囲においてカルシウム放射光 を抑制するとともに、615~650ヵmの範囲におい 10 てカルシウム発光を支援することで、R。性能に影響す ることが観察されている。顕著な自己吸収を通して、T 1の377.7nmの原子放射光は、自己保存されると ともに、TII添加量の増大に伴って徐々に大きく可視 青色波長へと拡大される広い吸収ノッチを造ると考えら れる。この作用は、R、を増大し、CCTを低下し、あ るいはスペクトル出力を釣り合わせて白色光源とするた めに、放射光の青色領域を制限する非常に有用な機構を 提供してくれる。スペクトル出力に関するT1I添加量 サイズの作用は、Cal、-All、-T1lの充填物 の化学組成に対する図6のグラフから理解される。図6 では、アルミニウムに対するカルシウムのモル比は、一 定に保たれている一方、TIモル比は調節されている。 明らかに、380~450nmからの青色放射光は、T 1添加量が増大されるに従って抑制されている。

【0035】本発明の幾つかの実施形態では、ネオジム が添加されたシュラウド5を使用することにより、R, を増大することが望ましい。図2は、585nm近辺を 中心とする黄色の放射光を吸収するために使用されるフ ィルタの透過スペクトルを示している。Ndが添加され 30 たガラス製のシュラウドは、半値幅で約30nmの広さ の吸収帯域を持っている。このように黄色の放射光を低 滅することは、Duv(偏差×1000)を著しく増大 することなく、赤色発光を相対的により大きくすること でR。を増大する。Ndが添加されたガラスは、市場で 入手可能な製品である。多くの市販のメタルハライドラ ンプは、通常、アーク管の熱損失を低減し、紫外線放射 光を吸収し、そして非静的なアーク管の故障から守るた め、透明なシュラウドを使用する。透明なシュラウド は、Ndが添加された特定のもので容易に代替される。 40 一般に、使用されるガラスは、高温動作に適した高シリ

【0036】以下の(表1)は、本発明の幾つかの実験の実施形態に対する性能データと、比較のための幾つかの標準的な市販のランプからのデータとを区分して示している。

カ含有量のホウケイ酸製品である。

[0037]

【表1】

12

ランプ	LPW	CRI	CCT	Duv	R,
(A) 標準3000K化学	[′] 86	84	2937	-4.1	-18
組成					
(B) 標準300K化学組	77	93	2960	-6.3	5.3
成+Cal,+All,					
(C) 標準3000K化学	68	91	3392	.2.2	74
組成+Nd添加シュラウド					
(D) 標準3000K化学	65	88	3174	-5.5	100+29
組成+Cal, +All,					
+Nd添加シュラウド					
(E) 標準4300K化学	83	91	4239	2.2	10
粗成					
(F) Cal, +All,	66	67	4087	-3.7	100+130
+T1J化学組成					
(G) CaI, +AlI,	72	84	3776	-2.4	100+48
+T11+Dy1, +Na					
I 化学組成					
(H) Cal, +All,	67	80	3601	-8.6	100+70
+TlI化学組成÷LiI					

【0038】図3から図5は、(表1)のランプの幾つかからのスペクトル強度のグラフを示している。ランプ(E)以外の全てのランプは、充填物の化学組成とNd添加のシュラウドを除いて、通常の製造許容値内で構造上同じである。ランプ(E)は、ほぼ同じ構造であるが、図1に示されているランプ(A)~(D)、(F)~(H)のテーパを持たない円筒形のアーク管を有している。全てのランプは、150 W仕様で設計し、150 W動作とした。

11

【0039】ランプ(A)は、ヨウ化ナトリウム、ヨウ化タリウム、ヨウ化リチウムと、ジスプロシウム、ホルミウムおよびツリウムのヨウ化希土類元素との金属ハロゲン化物の化学組成を持つ標準3000Kの市販のセラミックメタルハライド製品である。ランプ(B)は、本発明の第1実施形態を代表しており、ランプ(A)の標準の市販のセラミック金属ハロゲン化物の化学組成に加えて、6.8ミクロンモル/cm³の添加量のCaI、と、2.5ミクロンモル/cm³の添加量のA1I、とを含んでいる。図3では、ランプ(A)、(B)のスペ 40クトルが比較のためにプロットされている。ランプ

(B) にあっては、赤色(610~650nm)領域において相対的により多くの発光が観察される。

【0040】ランプ(C), (D)は、アーク管1を包囲している管状のシュラウド5を除いてそれぞれランプ(A), (B)と同等である。ランプ(C), (D)にあっては、図2に見られるスペクトル分布曲線をもたらすようにNdおよびCeが適量添加された高シリカのホウケイ酸ガラスが、標準的な透明のシュラウドと代替される。これにより、図4に示すように、DuvまたはC50

CTを大きく変えることなくR。値を増大するように、 スペクトルにおける赤色発光の割合を高める吸収ノッチ がスペクトルに設けられることになる。(表1)におけ るデータから、ランプ(A), (B)を比較すると、効 率がそれぞれランプ(C), (D)において約21%と 16%低減されている。ランプ(D)は、本発明の第2 実施形態を代表している。NdおよびCeで添加された 高シリカのホウケイ酸ガラスは、市場で入手可能な製品 30 である。スペクトルに585nm近辺を中心とする吸収 ノッチをもたらすNd添加が、本発明の第2実施形態に あっての本質である。メタルハライドランプにおいてシ ュラウドガラスのセリウム添加は、紫外線放射光の透過 を阻止するために一般的に行われることである。ランプ **(C). (D)に使用される管状のシュラウドは、1.** 5mmの壁厚を持ち、内径が19mmとなっている。 【0041】ランプ(E)は、ヨウ化ナトリウムおよび ヨウ化タリウムと、ジスプロシウム、ホルミウムおよび ツリウムのヨウ化希土類元素との金属ハロゲン化物の化 学組成を持つ標準的な4300Kの市販のセラミックメ タルハライド製品である。ランプ(F)は、本発明の第 3実施形態であり、6.8ミクロンモル/cm³のCa I 。と、2.5ミクロンモル/cm³のAll,と、 1. 5ミクロンモル/cm'のTllの化学組成の、ナ トリウム無しの三成分の金属ハロゲン化物を利用してい る。これにより、CCTの等しい白熱光源と比べて、大 幅に強化された赤色発光を伴う4000K近辺のCCT のランプとなる。この場合、スペクトルにおける自然ノ ッチが化学組成にナトリウムを含むことなく存在してい るので、スペクトルから黄色の放射光を除去するために

13

何らフィルタは必要とされない。この効果は、ランプ(E)、(F)のスペクトルを対比している図5に見ることができる。(表1)において、ランプ(F)は、100+130のR。値を有しているものとして計測されている。これはかなり極端な値であり、多くの照明用途では、より穏やかに強化された赤色放射光が要求される。ランプ(F)型の化学組成のR。の過剰飽和は、DyI,や他の希土類元素のハロゲン化物を加え、NaIを加え、そしてTIIの添加量を調節することにより、色々な用途のためにより低いレベルまで低減可能である。

【0042】(表1)のランプ(G)は、ランプ(F)よりも低いR,、高い効率および高いCRIを有する本発明の第4実施形態を代表している。ランプ(G)は、6.8ミクロンモル/cm³のCaI、2.5ミクロンモル/cm³のAII,、2.4ミクロンモル/cm³のTII、0.6ミクロンモル/cm³のDyI,および0.4ミクロンモル/cm³のNaIの化学組成の金属ハロゲン化物を含んでいる。

【0043】他の金属ハロゲン化合物を、CCTを下げ るなどの目的のためにランプ(F)型の化学組成に加え るようにしてもよい。例えば、(表1)のランプ(H) に示すように、CCTを下げるために、ランプ(F)の 化学組成にLilを付加することができる。ランプ (H)は、本発明の第5実施形態を代表しており、6. 8ミクロンモル/cm³のCal,、2.5ミクロンモ ル/cm³のAll,、1.5ミクロンモル/cm³の Li I の化学組成の金属ハロゲン化物を含んでいる。 【0044】セラミックメタルハライドランプのアーク 管1内への電気フィードスルー(電気インレット)4a、 4 b を気密にシールするために使用されるシーリングフ リットは、市販のセラミックメタルハライドランプでー 般に見受けられる希土類元素のハロゲン化物による化学 的ストレスに抗するように、酸化ジスプロシウムを一般 に含んでいる。第3実施形態(ランプ(F))のよう に、希土類元素のハロゲン化物を含まない化学充填物を 使用する際には、置換反応が、充填物の化学組成におけ る酸化ジスプシウムと金属ハロゲン化物との間で起き る。このことは、充填物の化学組成内へのDyⅠ」の導 入と、元の充填剤の部分的損失とをもたらすことにな る。充填物の化学組成におけるそのような変化は、ラン ブ寿命に渡ってスペクトル出力を変えたり、望ましくな い色ズレをもたらすと考えられる。そのような反応を回 避するために、充填物の化学組成にDyⅠ」を含めるこ とが推奨される。DyⅠ、が性能的な理由によってラン プの化学組成上望ましくなければ、酸化ジスプロシウム

を含まないが、Call、All、およびTllと化学

的に両立し得る代替シーリングフリットが開発される。

【0045】一般照明用の優れた赤色の見え方のする光

方も優れている。本発明の第3実施形態は、映写表示装置に使用するスペクトルの主要な赤、緑および青の領域で放射光を集中させるのに特に有効である。このことは、図5に示すように、ランプ(F)のスペクトルに見ることができる。映写表示システムに一般に使用される黄、シアンおよびマジェンタのノッチフィルタによって、放射光はほとんど失われることはない。本発明の出力スペクトルは、米国特許第6、005、346号明細書(特許文献8)でShaffnerによって説明されているように、例外的に生き生きした色表示を行うことができる広い色の全領域を効果的に生み出すために使用可能である。

【0046】説明の簡略化のために、本発明で使用される金属ハロゲン化物の化学組成全ての説明は、ヨウ化金属としたが、同様な効果を得るために上述したヨウ化金属に代えて臭化金属を用いることは、本発明の範囲に入っている。

[0047]

(8)

【発明の効果】本発明によれば、赤色を見せる能力に大幅な改善のあるメタルハライドランプを提供することができる。また、市場で入手可能な同じ電力のランプと構造的上同等である上位赤色演色特性を持つメタルハライドランプを提供することができる。また、現存の標準的な製造設備で容易に製造されるメタルハライドランプを提供することができる。また、一般的な照明用途に採用されるように、上位赤色演色特性および許容しうる効率ならびに全般的な演色評価数および白色度を持つメタルハライドランプを提供することができる。さらに、従来のメタルハライドおよび高圧水銀ランプよりもフィルタリングの必要性の少ない映写機用の照明に使用可能であり、高飽和原色の光源を提供することができる。

【図面の簡単な説明】

【図1】一般照明目的の典型的なセラミックメタルハライドランプの構造を示す図である。

【図2】明所視感度伝達曲線、R,の反射率曲線、およびNd添加ガラスの透過率曲線を示す図である。

【図3】一般的な色温度3000Kのセラミックメタルハライドランプ充填物へのCal、+All,付加による性能効果を示す図である。

0 【図4】CaI、およびAII、を付加した場合と付加しない場合における3000Kの化学組成のランプに対してNd添加フィルタシュラウドの使用で達成された赤色強化の性能およびスペクトルを示す図である。

【図5】Cal、、All、およびTllの3成分の金属ハロゲン化物の化学組成で達成された赤色強化の性能およびスペクトルを示す図である。

【図6】Cal、-All、-Tllの充填物化学組成に対するスペクトル分布上のヨウ化タリウムの添加量の効果を示す図である。

源に加えて、本発明は、緑および青の他の三原色の見え 50 【符号の説明】

15

1 アーク管

2 外郭

3 空間

16 * 4 a , 4 b 電気フィードスルー

5 シュラウド

* 6 充填物

【図1】

【図2】

[図3]

[図4]

【図5】

【図6】

THIS PAGE BLANK (USPTO)