Development of Iron Thin Films for Polarization Analysis of Ultracold Neutrons

2021-1-12

Hiroaki Akatsuka, Masahiro Hino, TUCAN collaboration

Contents

Introduction

- Purpose of the project
- Principle of UCN polarization measurement

Development and Evaluation of UCN polarization analyzer films

- Development of UCN polarization analyzer films
- B-H curve measurement by Vibrating Sample Magnetometry (VSM)
- Neutron reflectivity measurement

Conclusions and Outlook

Purpose of the project

Context

• UCN polarization films were tested in 2018, but did not achieve a good performance (polarization: 60% cf. Sean Hansen-Romu 2019)

Purpose

- Establish in-house production procedures of iron films for reliable preparation of high-performance films (in collaboration with Porf. M. Hino (KURNS, Kyoto Univ.))
- In addition to conventional aluminum substrate, investigate silicon substrate iron films
- Characterize the samples with complementary methods:
 <u>Vibrating sample magnetometry</u>, cold neutron reflectometry (for Si substrate), (-> this talk), UCN (-> next talk)

	Advantages	Disadvantages
Al substrate	· Results used in previous research	· Larger magnetic field required for saturation
	· Can be made thin (~ 20 um) (small absorption)	· Neutron reflectivity measurement not possible
	· Neutron reflectivity measurement possible	· Cannot be made thinner than < 0.1 mm
Si substrate	 Smaller magnetic field required for saturation 	(Absorption is about~ 2% larger than aluminum)

Principle of UCN spin analyzer

- UCN are polarized by a magnetized iron film
- The effective potential experienced by UCN:

$$V = V_F \pm \mu_n B = 209 \text{ neV} \mp 60.3 \text{ neV/T} \cdot B$$

- Fermi potential of Fe: $V_F \sim 209 \, \mathrm{neV}$
- UCN kinetic energy $\leq 300 \, \text{neV}$
- With ~ 2 T magnetization
 - → full separation of the UCN spin states
 - → the film can be used as a spin analyzer

Simultaneous Spin Analyzer (SSA)

Simultaneous Spin Analyzer (SSA)

- Polarization analyzer
- Thin Fe film in a permanent magnet: allows only a specific spin state to transmit
- Simultaneous measurement of UCN in each spin state
 - Selection of the spin state by RF spin flipper
- Measure the polarization from the number of UCN for each spin.

Requirements on the polarization films for the SSA

- Large saturation magnetization ($\sim 2 \mathrm{T}$) (for high efficiency of spin analysis)
- Saturate with a low magnetic field (≤10 mT)
 - Low leakage field
 - Compact device
- Small absorption of UCN
 - S. Afach, et al, Euro. Phys. Jour. A 51, 143 (2015)

Development of polarization analysis film

Iron thin films were prepared using an ion beam sputtering system (IBS) at KURNS

Produced sample

Iron thin film

• thickness: 30, 50, 90 nm

Substrates

- Si (thickness $380 \,\mu\mathrm{m}$)
- Al (thickness $25 \,\mu\mathrm{m}$)

M. Hino et al, Nucl. Inst. Meth. A 797, 265 (2015)

BH curve measurement

sample	Hc(Oe)	Hs(Oe)	μοHs(mT)
Si+Fe(30 nm)	16.5	29.8	2.98
Si+Fe(50 nm)	16.7	24.5	2.45
Si+Fe(90 nm)	20.3	45.5	4.55

sample	Hc(Oe)	Hs(Oe)	μοHs(mT)	
Al+Fe(30 nm)	45.0	159	15.9	
Al+Fe(90 nm)	25.8	134	13.4	

- BH curves of each sample were measured by Vibrating Sample Magnetometry (VSM)
- Samples saturates with low magnetic fields (requirements : $\mu_0 H_s \lesssim 10 \, \mathrm{mT}$)
 - $\mu_0 H_s \lesssim 5 \,\mathrm{mT} \,\mathrm{(Si \, substrate)}$
 - $\mu_0 H_s \lesssim 15 \,\mathrm{mT}$ (Al substarte)

Comparison to previous TUCAN films

Sample	Hc (Oe)	Hs (Oe)
Al+Fe(30 nm) KURRI	25.8	29.8
Al+Fe(90 nm) KURRI	20.30	45.5
Al+Fe(400 nm) LeBow	33	161
Al+Fe(150 nm) Movatec	113	219

 H_c : Intersection of BH curve and B=0, H_s :H corresponding to 95% of B_{sat}

KURNS films saturated by a comparable field with LeBow films and much smaller magnetic field than the Movatec films.

Thanks to Blair and Beatrice for sending the LeBow and Movatec foils!

Comments (Hino-san):

- Higher Hc of 30 nm than 90 nm is within lot-per-lot fluctuations. This level of fluctuations exist among different lots, but the quality is rather homogeneous in the same lot (see p.7)

Comparison to PSI films

- PSI film VSM measurement: annual report 2012
- Al-substrate films by KURNS are comparable to the PSI's.

Applied field (Oe)

Neutron reflectometry

- Cold neutrons (wavelength $0.2 \sim 1~\rm nm$) are injected to a sample and the reflectivity is measured.
- From the reflectivity profile as a function of wave vector transfer $q=4\pi\sin\theta_0/\lambda$, the critical value q_c can be determined.
- From the critical value q_c , the magnetic potential experienced by the neutron can be extracted.

$$V_{\text{eff}} = \frac{\hbar^2 q^2}{8m_n} \qquad (m_n : \text{neutron mass})$$

Journal of the Neutron Science Society of Japan "Ripples" Vol.18, No.4, 2008 Principle of neutron reflectometry Naoya Torikai and Masayasu Taketa

Neutron reflectivity measurement Setup (J-PARC/MLF BL05)

Reflectivity measurement of the sample

Measurement procedure:

- A magnetic field of −8 mT was applied to the sample. (Reset)
- 2. The reflectivity R was measured while increasing the applied magnetic field.
 - The effective potential was determined from the reflectivity with the spin flipper on and off.

How to extract physical properties of interest:

- The critivcal value $q_{\rm c}$ of the reflectivity profile R(q)
 - ightarrow The potential $V_{
 m eff}$ experienced by neutrons at saturation
- From the magnetic field at which the effective potential V_{eff} rises
 - → Magnetic field required to saturate the film

Neutron reflectivity measurement results

Fe 90 nm + Si substrate (Neutrons incident in each spin states Reflectivity $R_{\rm down}$, $R_{\rm up}$)

- Fitted with a function which takes into account the beam polarization
- Fitting results

$$\begin{split} V_{\rm eff} &= 308(1)\,{\rm neV}\\ \text{(requirements: $V_{\rm eff} > 300\,{\rm neV} \gtrsim E_{\rm UCN}$)}\\ &\leftrightarrow {\rm Fe\ magnetization\ 2.02(1)\,T} \qquad ^{(E_{\rm UCN}\ :\ UCN\,{\rm energy})}\\ \text{when 8 mT is applied}\\ \text{(requirements: $\mu_0 {\rm H} \lesssim 10\,{\rm mT}$)} \end{split}$$

 Enough saturation magnetization obtained to polarize UCN at sufficiently low magnetic field

wave vector transfer q vs Spin-up reflectivity $R_{\rm up}$, Spin-down reflectivity $R_{\rm down}$ when 8mT is applied.

The global fit was performed using the Fermi potential of iron and the magnitude of the saturation magnetization as parameters.

Conclusion and outlook

- Development of UCN polarization analyzer for TUCAN
- Reflectivity measurement of the sample (Fe film and Si substrate)
 - $V_{\rm eff} \sim 308(1)\,{\rm neV}$ (requirements: $V_{\rm eff} \gtrsim 300\,{\rm neV} \gtrsim E_{\rm UCN}$), when 8 mT is applied. (requirements: $\mu_0{\rm H} \lesssim 10\,{\rm mT}$)
- Successfully produced films that can be used for UCN polarization analysis
- The iron thin film on Si substrate was found to be magnetized at about 1/3 of the applied magnetic field compared to the PSI thin film
- Evaluation with UCNs are planned in spring 2022.

Acknowledgements

Thank you for your attention!

