Curso: Engenharia de Computação

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

Circuitos digitais

1. COMBINACIONAIS

2. SEQUENCIAIS

Circuitos digitais

1. COMBINACIONAIS

2. SEQUENCIAIS

Circuitos digitais

1. COMBINACIONAIS

2. SEQUENCIAIS

Circuitos sequenciais

aqueles cujas saídas dependem das entradas e de uma realimentação da saída para a entrada a fim de gerar uma função de saída como uma função sequencial de suas entradas

Elementos básicos: Flip-flops

- Elemento básico de máquinas de estados finitos
- Requer como entrada um sinal de clock, que funciona como a base de referência do tempo
- Sinal de clock normalmente é uma sequência periódica de pulsos com determinada frequência, variando de estado 0 a 1, e vice-versa

Diagrama de estados contador

Operação de Flip-flops

- Existem vários tipos, cada um apresenta um comportamento específico
- A saída em um instante (Q_{n+1}) depende das entradas de clock em um instante e da saída em um instante anterior (Q_n) realimentada

Flip-flop tipo T

T	Qn	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

Na transição ↑ do clock

T=0 => igual a saída anterior

T=1 => inversão da saída anterior

Qn -> Qn+1	T
0 -> 0	0
0 -> 1	1
1 -> 0	1
1 -> 1	0

Flip-flop tipo D

D	Qn	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

Na transição ↑ do clock

D=0 => saída será 0

D=1 => saída será 1

Qn -> Qn+1	D
0 -> 0	0
0 -> 1	1
1 -> 0	0
1 -> 1	1

Circuitos sequenciais importantes

Registradores

Contadores

Registradores

armazenam conjunto de bits na saída

normalmente armazenam N bits

- 1. em paralelo a um barramento de *N* bits
- 2. em série, bit a bit, dos *N* bits armazenados

Contadores

circuitos sequenciais usados para converter um número de pulsos de entrada em um código, gerar sequências de códigos especiais etc.

Classificam-se de várias formas:

- número de saída de bits;
- sequência de código que gera;
- conforme a resposta seja síncrona ou assíncrona.

O sinal de clock

O sinal de clock

Na transição ↑ do clock

T=0 => igual a saída anterior

T=1 => inversão da saída anterior

Um contador de 2 bits

Um contador síncrono de 2 bits

Um contador assíncrono de 2 bits

Registrador de 4 bits

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

