

The Rare Retrieval

การทดสอบความสามารถในการแก้ปัญหาโดยการเขียนโปรแกรม

เขียนวันที่ 2 ส.ค. 2566

ยานอวกาศลำหนึ่งต้องใช้แร่ Adamantium ในการขับเคลื่อนด้วยความเร็วแสงและการกระจายพลังงานที่ใช้ กับอุปกรณ์ทั้งหมดภายในยาน แร่ Dysonium ในการเดินทางข้ามเวลา และแร่ Tecillium ในการจำลองสนาม โน้มถ่วงและชั้นบรรยากาศภายในยาน ซึ่งถูกบรรจุในถังที่หุ้มด้วยใบ Mycelium สังเคราะห์เสริมความ แข็งแกร่งเพื่อให้มีความทนทาน พังได้ยาก โอกาสรั่วหรือสูญหายต่ำ

ในการทำงานปรกติ แร่เหล่านี้จะถูกใช้จนหมดพอดีกับเวลาที่แท่นขุดเจาะสะสมแร่ได้เต็มคลัง เนื่องด้วยใน ช่วงเวลาที่ผ่านมา ยานได้รับสั่งให้สานต่อภาระกิจจากยานที่เพิ่งปลดประจำการเนื่องด้วยสภาพของเครื่องยนต์ ที่เก่าจนไม่ผ่านการตรวจด้วยเกณฑ์การประเมินคุณภาพอวกาศยานประจำดาว ทำให้ยานใช้ทรัพยากรหมดเร็ว กว่าปรกติ ผู้บัญชาการยานจึงได้สั่งให้ลูกสมุนประจำยานขนส่งขนาดเล็กไปรับแร่ชั่วคราวมาล่วงหน้า แต่ยาน ขนส่งนั้นไม่สามารถบรรจุแร่ทั้งหมดที่ยานต้องใช้ได้ถึง U บัลธาซาร์ ที่อัตราการบีบอัด R เท่า จึงจำเป็นต้องวาง แผนการเดินทางให้ไม่เสียเที่ยวเพราะเชื้อเพลิงมีจำกัด

ทางยานอวกาศได้ติดต่อไปยังสถานีขุดเจาะต่างๆ D สถานี แต่ไม่มีสถานีขุดเจาะใดสะสมแร่ไว้เต็มคลังเลย ยาน ขนส่งขนาดเล็กได้รับข้อมูลจากยานอวกาศว่าแต่ละสถานีสามารถแบ่งแร่ของคลังมาบีบอัดได้ C เท่าใส่ถังขนาด มาตรฐานได้ B ถัง และการขนส่งจะมีประสิทธิภาพสุดก็ต่อเมื่อยานขนส่งรับทุกถังของทุกสถานีที่ไปรับ ซึ่งยาน ขนส่งมีพื้นที่ที่สามารถรับได้เพียง S ถังเท่านั้น

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม U R S และ D (1 \leq U \leq 100,000; 1 \leq R, S \leq 1,000; 1 \leq D \leq 10,000)

อีก D บรรทัดระบุรายละเอียดของสถานีขุดเจาะ กล่าวคือบรรทัดที่ i+1 สำหรับ $1 \le i \le D$ จะระบุข้อมูลเป็น จำนวนเต็ม 2 จำนวน แทนจำนวนถังทั้งหมด B ถังและอัตราการบีบอัด C เท่าของสถานีขุดเจาะที่ i ตามลำดับ $(1 \le B, C \le 1,000)$

ข้อมูลส่งออก

มี 3 บรรทัด บรรทัดแรกระบุผลรวมของจำนวนกำลังอัดจากทุกสถานีที่รับถังแร่มา บรรทัดต่อมาระบุจำนวนถัง ทั้งหมดที่รับจากสถานีขุดเจาะที่ไป โดยหากไปรับมากกว่าหนึ่งสถานีจะขั้นด้วยช่องว่างเรียงจากมากไปน้อย บรรทัดสุดท้ายระบุปริมาณแร่ที่ขาดในกำลังบีบอัด 1 เท่าหลังนำทรัพยากรที่รับมาแล้วมาแปลงให้เป็นกำลังบีบ อัด R และนำไปเติมให้ยานอวกาศ (รับประกันว่าไม่มีการแปลงใดที่ทำให้คำตอบเป็นเลขทศนิยม)

เงื่อนไขการทำงาน

โปรแกรมต้องทำงานภายใน 1 วินาที ใช้หน่วยความจำไม่เกิน 64 MB

ตัวอย่าง 1

Input	Output
50 1 7 4	9
1 1	4 3
3 4	18
4 5	
5 6	

ตัวอย่าง 2

Input	Output
100 5 10 4	90
5 10	4 3
4 40	190
6 30	
3 50	

ตัวอย่าง 3

Input	Output
300 20 50 3	220
10 60	30 20
20 100	400
30 120	

ตัวอย่าง 4

Input	Output
2000 2 75 4	200
20 40	30 20 10
10 100	400
40 50	
30 60	