

AULA 09

Descoberta de Serviços

Prof. Windson Viana de Carvalho

DESCOBERTA DE SERVIÇO - CONCEITO

Encontrar de forma automática ou semiautomática serviços, recursos e/ou dispositivos utilizando uma rede de computadores

DESCOBERTA DE SERVIÇO - CONCEITO

Princípios Fundamentais

- Interface de descrição
- Serviço de publicação
- Método de consulta e mapeamento
- Invocação final

Service Discovery Protocol

 Protocolo responsável por definir o modelo de publicação, consulta e ligação final entre os serviços

3

QUAL É O PROBLEMA CENTRAL?

```
public void connectToMyServer(){
String URL = "http://myserverXY.com"
....
}
...
```

```
public void
connectToGameServerOnOtherDevice(){
   String DeviceIP = "200.19.190.1"
....
}
```

TRANSPARÊNCIA DE LOCALIZAÇÃO!

Múltiplos Servidores

Cenários Voláteis - Smart Home

PRINCIPAIS ELEMENTOS DA DESCOBERTA DE SERVIÇO

Arquitetura de descoberta de serviços Escopo da descoberta de serviços Técnicas de descrição de serviços Mecanismo de consulta às informações de serviços

PRINCIPAIS ELEMENTOS DA DESCOBERTA DE SERVIÇO

Mecanismos de requisição e anúncio de serviços Armazenamento das informações de serviços Mecanismos de seleção e invocação de serviços Mecanismos para oferecer suporte à mobilidade e segurança

ARQUITETURA

MODELO CENTRALIZADO — BASEADO EM DIRETÓRIO

U

MODELO CENTRALIZADO — BASEADO EM DIRETÓRIO

MODELO CENTRALIZADO — BASEADO EM DIRETÓRIO

COMO ENCONTRAR O REGISTRO?

DHCP — EXEMPLO

DHCP — EXEMPLO

DHCP — EXEMPLO

EXEMPLOS DE DESCOBERTA CENTRALIZADA

RMI — REMOTE METHOD INVOCATION

Vários objetos e módulos separados estão envolvidos na realização de uma invocação a método remoto.

DESCOBERTA DE SERVIÇO - RMI

UNINDO AS PARTES — INTERFACE REMOTA

```
//Classe compartilhada pelo
cliente e pelo servidor
package example.hello;
import java.rmi.Remote;
import
iava.rmi.RemoteException;
public interface Hello extends
Remote {
   String sayHello() throws
RemoteException;
```

```
//Objeto remoto real
public class Server implements
Hello {
   public Server() {}
   public String sayHello() {
 return "Hello, best students are
in SMD!":
```

UNINDO AS PARTES - SERVIDOR

```
public static void main(String args[]) {
Server obj = new Server();
 Hello stub = (example.hello.Hello)
UnicastRemoteObject.exportObject(obj,0);
  // Bind the remote object's stub in the registry
  Registry reg=null;
  try {
      reg = LocateRegistry.createRegistry(1099);
   } catch(Exception e){}
  req.rebind("HelloService", stub);
```

UNINDO AS PARTES - CLIENTE

```
public static void main(String[] args) {
String host="localhost";
try {
  Registry registry = LocateRegistry.getRegistry(host);
  Hello stub = (Hello) registry.lookup("HelloService");
      if (stub!=null){
         String response = stub.sayHello();
         System.out.println("response: " + response);
} catch (Exception e) { }}
```

DESCOBERTA DE SERVIÇO — WEB SERVICES W3C

EUREKA — NETFLIX OSS

Fonte: https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

EUREKA — NETFLIX OSS

Eureka é um serviço baseado em REST (Representational State Transfer)

Nuvem da AWS

Localizar serviços com o objetivo de balanceamento de carga

Failover de servidores de camada intermediária.

Fonte: https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

ABORDAGENS DESCENTRALIZADAS?

TAREFA 01

Quais cenários seriam interessantes de possuir uma abordagem descentralizada?

Como solucionar o problema do registro central?

Onde os recursos/serviços iriam se registrar?

Qual seria o mecanismo de endereçamento dos serviços/recursos?

Como seria a descrição do serviço?

Como funcionaria a consulta?

9

UPNP - Universal Plug and Play

- Extensão do modelo Plug and Play da Microsoft para dispositivos de uma rede local
- Protocolo de descoberta de serviços orientado a dispositivos.
 - ·Descrição do serviço no formato XML
- Uso do Simple Service Discovery Protocol para descoberta e anúncio na rede
 - Multicast UDP no endereço 239.255.255.250, porta 1900

Fonte: https://dangfan.me/en/posts/upnp-intro

UPNP — Universal Plug and Play

Entrada do Dispositivo na Rede

```
NOTIFY * HTTP/1.1
```

Host:239.255.255.250:1900

Cache-control:max-age=1800

Location:http://192.168.0.1:49152/des.xml

Nt:upnp:rootdevice

Nts:ssdp:alive

Usn:uuid:de5d6118-bfcb-918e-0000-00001eccef34::upnp:rootdevice

Fonte: https://dangfan.me/en/posts/upnp-intro

DESCRIÇÃO DO SERVIÇO/DISPOSITIVO

```
<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
  <specVersion>
    <major>1</major>
    <minor>1</minor>
  </specVersion>
  <device>
    <deviceType>urn:schemas-upnp-ora:device:BinaryLight:1</deviceType>
    <friendlyName>Kitchen Lights</friendlyName>
    <manufacturer>OpenedHand/manufacturer>
    <modelName>Virtual Light</modelName>
    <UDN>uui d:cc93d8e6-6b8b-4f60-87cq-228c36b5b0e8</UDN>
    <serviceList>
      <service>
        <serviceTvpe>urn:schemas-upnp-ora:service:SwitchPower:1
        <serviceId>urn:upnp-org:serviceId:SwitchPower:1</serviceId>
        <SCPDURL>/SwitchPower1 xml</SCPDURL>
        <controlURL>/SwitchPower/Control</controlURL>
        <eventSubURL>/SwitchPower/Event</eventSubURL>
      </service>
    </serviceList>
  </device>
</root>
```

REQUISIÇÃO SOAP PARA CONTROLE

```
POST /control/url HTTP/1 1
HOST: hostname:portNumber
CONTENT-TYPE: text/xml; charset="utf-8"
CONTENT-LENGTH: length of body
USER-AGENT: OS/version UPnP/1.1 product/version
SOAPACTION: "urn:schemas-upnp-ora:service:serviceType:v#actionName"
<?xml version="1.0"?>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
 s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
    <s:Bodv>
        <u:actionName xmlns:u="urn:schemas-upnp-org:service:serviceType:v">
            <araumentName>in ara value</araumentName>
        </u:actionName>
    </s:Bodv>
</s:Envelope>
```

Nome e argumentos do serviço a ser invocado

DESCOBERTA DE SERVIÇO — BLUETOOTH SERVICE DISCOVERY PROTOCOL (SDP)

DESCOBERTA DE SERVIÇO — BLUETOOTH SERVICE DISCOVERY PROTOCOL (SDP)

TAREFA 02 — SOBRE O BLUETOOTH SERVICE DISCOVERY

Como funciona o processo de registro e busca do SDP ? O que é um UUID? Como funciona o processo de busca no Bluetooth BLE ? O que difere os atributos ATT e UUID?

ZEROCONF — O QUE É?

Cr	eated in 1999 by the group IETF (Internet Engineering Task	
Fo	rce), the Zero Configuration Networking (Zeroconf) is a	
	ethodology and a special set of technologies that enable the	
	nfiguration of a network and discovery of services in a simpl	
way that an average user will not notice.		
	Atribuição de endereços IP (sem um DHCP server)	
	Resolução de nomes (sem um DNS server)	
	Busca e listagem de serviços (sem um serviço de diretórios)	
	Atribuição de endereços IP multicast, se necessário	

ZEROCONF — IMPLEMENTAÇÕES

Apple Bonjour

Android Network Service
Discovery
(parcialmente)

ZEROCONF — TECNOLOGIAS DE DESCOBERTA

☐ IPv4 Link-Local

☐ Multicast DNS

☐ DNS Service Discovery

ZEROCONF — IPV4 LINK-LOCAL ADDRESS

- ☐ Sem servidor central
- ☐ Cada dispositivo escolhe seu próprio endereço

ZEROCONF — IPV4 LINK-LOCAL ADDRESS

☐ Endereço randômico entre 169.254.1.0 e 169.254.254.255

☐ IPv4LL usa ARP (Address Resolution Protocol) para checar se o IP está livre

ZEROCONF — MULTICAST DNS (MDNS)

☐ Sem servidor central de DNS	
☐ Cada host escolhe seu próprio nome Domínio .local é um TLD reservado para o ZeroConf	
☐ Uso do MDNS Responder	
Consultas para saber do uso do nome e paranúncios	C
Broadcast MDNS usa um arupo multicast 224.0.0.251	

ZEROCONF - MULTICAST DNS (MDNS)

DNS — SERVICE DISCOVERY (DNS-SD)

☐ Busca automática de serviços na rede
 ☐ uso MDNS ou consultas clássicas
 ☐ Menssagens do DNS-SD tem o mesmo formato de consultas DNS (UDP) padrão
 ☐ Consultas são do tipo SRV, PTR, A and TXT

PROCESSO DE DESCOBERTA

DNS — SERVICE DISCOVERY (DNS-SD)

APPLE BONJOUR

Bonjour é uma implementação da Apple de Zeroconfiguration networking Substituiu o Rendez-vous

https://developer.apple.com/bonjour/

APPLE BONJOUR

Bonjour localiza dispositivos tais como impressoras, outros computadores e os serviços que estes dispositivos ofereçam em uma <u>rede local</u> usando uma multicast <u>Domain Name System</u> (mDNS).

8

APPLE BONJOUR - CONSULTA

APPLE BONJOUR - CONSULTA

APPLE BONJOUR - DESCOBERTA

APPLE BONJOUR - DESCOBERTA

DESCOBERTA DE SERVIÇO EM ANDROID

- O Network Service Discovery (NSD) fornece ao seu aplicativo acesso a serviços que outros dispositivos fornecem em uma rede local
 - Os dispositivos que suportam o NSD incluem impressoras, webcams, servidores HTTPS e outros dispositivos móveis.
- DNS-based Service Discovery (DNS-SD)
 - · Aplicação define seu nome de descoberta e porta associada
 - https://www.youtube.com/watch?v=oi_ARV_I8Dc

REGISTRO

```
public void registerService(int port) {
    NsdServiceInfo serviceInfo = new NsdServiceInfo();
    serviceInfo.setServiceName("NsdChat");
    serviceInfo.setServiceType(" http. tcp.");
    serviceInfo.setPort(port);
    mNsdManager = Context.getSystemService(Context.NSD SERVICE);
    mNsdManager.registerService(
            serviceInfo, NsdManager.PROTOCOL DNS SD,
mRegistrationListener);
```

IANA Name - Port http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

DESCOBERTA

```
@Override
        public void onServiceFound(NsdServiceInfo service) {
            // A service was found! Do something with it.
            Log.d(TAG, "Service discovery success" + service);
            if (!service.getServiceType().equals(SERVICE TYPE)) {
                // Service type is the string containing the protocol and
                // transport layer for this service.
                Log.d(TAG, "Unknown Service Type: " +
service.getServiceType());
            } else if (service.getServiceName().equals(mServiceName)) {
                // The name of the service tells the user what they'd be
                // connecting to. It could be "Bob's Chat App".
                Log.d(TAG, "Same machine: " + mServiceName);
            } else if (service.getServiceName().contains("NsdChat")){
                mNsdManager.resolveService(service, mResolveListener);
```

Thanks!

windson@virtual.ufc.br