

AOD4186

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD4186 combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$. This device is ideal for low voltage inverter applications.

Features

 $V_{DS}(V) = 40V$

$$\begin{split} I_D &= 50 A & (V_{GS} = 10 V) \\ R_{DS(ON)} &< 15 m \Omega & (V_{GS} = 10 V) \end{split}$$

 $R_{DS(ON)}$ < 19m Ω (V_{GS} = 4.5V)

- RoHS Compliant

- Halogen Free

100% UIS Tested! 100% R_g Tested!

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	40	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain T _C =25°C			35					
Current ^G	T _C =100°C	ID	27	Α				
Pulsed Drain Current ^C		I _{DM}	70					
Continuous Drain Current	T _A =25°C	I _{DSM}	10	۸				
	T _A =70°C		8	А				
Avalanche Current ^C		I _{AR}	24	Α				
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	29	mJ				
	T _C =25°C	D	50	W				
Power Dissipation ^B	T _C =100°C	-P _D	25	VV				
	T _A =25°C	D	2.5	W				
Power Dissipation ^A	T _A =70°C	P _{DSM}	1.6	VV				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 175	°C				

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	16.7	25	°C/W				
Maximum Junction-to-Ambient AD	Steady-State	Г∖өЈА	40	50	°C/W				
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	2.5	3	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Тур	Max	Units
STATIC F	PARAMETERS	•	•	-	•	
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	40			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =40V, V _{GS} =0V			1	μА
		T _J =	=55°C		5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	1.7	2.2	2.7	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V	100			Α
R _{DS(ON)}		V _{GS} =10V, I _D =20A		12.4	15	mΩ
	Static Drain-Source On-Resistance	$T_{J}=1$	125°C	20	24	11152
		V _{GS} =4.5V, I _D =15A		14.5	19	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A		60		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.75	1	V
Is	Maximum Body-Diode Continuous Curr			60	Α	
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		780	980	1200	pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =20V, f=1MHz	90	130	170	pF
C_{rss}	Reverse Transfer Capacitance		48	80	110	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	1.9	3.8	5.7	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge		13.5	17	20	nC
Q _g (4.5V)	Total Gate Charge	 - V _{GS} =10V, V _{DS} =20V, I _D =20 <i>P</i>	7	9	11	nC
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =20V, I _D =20F	2	2.5	3	nC
Q_{gd}	Gate Drain Charge		2.7	4.5	6.3	nC
t _{D(on)}	Turn-On DelayTime			6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =20V, R_{L} =1.0)Ω,	12		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		26		ns
t _f	Turn-Off Fall Time			7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs	9	12	15	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	24	31	38	nC

A. The value of $R_{\rm BJA}$ is measured with the device mounted on 1ir 2 FR-4 board with 2oz. Copper, in a still air environment with $T_{\rm A}$ =25°C. The Power dissipation $P_{\rm DSM}$ is based on $R_{\rm BJA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to case $R_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <30Q s pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175°C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_h =25°C.

Rev 0: Oct-08

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =175°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

