Détection d'anomalies de classification dans l'IoT via Machine Learning

Antoine Urban, Yohan Chalier

Projet de filière SR2I Télécom ParisTech

24 juin 2018

Introduction •0000

Introduction

La détection d'obstacles : un enjeu de sécurité!

FIGURE 1 – Fonctions automatisées nécessitant un ou des capteur(s)

Attaques potentielles

FIGURE 2 – Attaque par aveuglement des capteurs

FIGURE 3 – Attaque par modification

Introduction 00000

Objectifs

Proposition d'un modèle de classification multi-classes en réalisant un classeur à partir d'un algorithme d'apprentissage supervisé.

Système de classification

FIGURE 4 - Structure du système de classification

- A Hors-ligne Bases de données externes séparées en un jeu d'entraînement et un jeu de test
- B En-ligne Conception des messages à classer par les différents capteurs du véhicules
- C Module de détection Traitement des données et application de la fonction de classification
- D Hors-ligne Paramétrage et entraînement des classeurs; évaluation des performances
- E Sorties Classes de sortie : message valide ou message malicieux

- Extraction des colonnes largeur et longueur de la base de données
- Suppression des redondances
- Définition de zones de décision arbitraires
- Génération des données malicieuses

validité	intervalle de longueur	intervalle de largeur
non-malicieux	3 à 6,5 mètres	1,4 à 2,4 mètres
malicieux	3 à 4,1 mètres	2,05 à 2,4 mètres
malicieux	5,25 à 6,5 mètres	1,4 à 1,65 mètres

Première implémentation

Paramétrage et résultats

FIGURE 5 – Régions de décision arbitraires

Chargement des bases de données

- 1. Création de la matrice de classe : formatage des données issues des CSV
- 2. Création de la matrice globale en fusionnant les matrices de chaque classe
- Instanciation de la classe Dectector
 - 3.1 Suppression des redondances
 - 3.2 Génération des données malicieuses
 - 3.3 Création du jeu d'entraînement et du jeu de test

Chargement des bases de données

FIGURE 6 - Base de données après traitement

- Pré-traitement
 - clean
 - append_odd_points
 - format
- Interface scikit-learn
 - classify
 - tune_parameters
 - predict
- Affichage
 - plot
 - plot_decision_boudaries

Matrice de confusion

Exemple pour Random Forest

Différentes métriques

- ratio de vrai positif : $TPR = \frac{TP}{TP + FN} = 0.987$
- ratio de vrai négatif : $TNR = \frac{TN}{TN \perp FP} = 0.959$
- ratio de faux positif : $FPR = \frac{FP}{TP + TN} = 0.04$
- ratio de faux négatif : $FNR = \frac{FN}{TD \perp FN} = 0.01$
- valeur prédictive positive : $PPV = \frac{TP}{TP \perp FP} = 0.993$
- valeur prédictive négative : $NPV = \frac{TN}{TN \perp FN} = 0.928$
- taux de fausses découvertes : $FDR = \frac{FP}{TD \perp FD} = 0.001$
- taux de fausses omissions : $FOR = \frac{FN}{TN \perp FN} = 0.072$

Méthodes d'évaluation

Score F1

Objectif

Maximisation du score F1 comme critère de performance

$$\mathsf{f1\text{-}score} = \frac{2 \times (\mathsf{Recall} \times \mathsf{Precision})}{(\mathsf{Recall} + \mathsf{Precision})} = 2 \times \frac{PPV \times TPR}{PPV + TPR} \tag{1}$$

$$Precision = \frac{TP}{TP + FP}$$
 (2)

$$Recall = \frac{TP}{TP + FN} \tag{3}$$

Recherche exhaustive et validation croisée

Paramétrage et résultats •0000000000

- Recherche des paramètres optimaux : GridSearchCV
- Utilisation d'une fonction de score (F1-score) personnalisée
- Export des données en formats exploitables (JSON, CSV)
 - Table des jeux de paramètres
 - Table des scores

Paramètres optimaux

Paramétrage et résultats 0000000000

Perceptron à couches multiples

- Beaucoup de paramètres à tester (plus de 18 heures de test sur les serveurs InfRes)
- Score F1 moyen maximal de 0.937
- Beaucoup de fluctuations

paramètre	rôle	valeur optimale	
learning_rate	taux d'apprentissage	'constant'	
alpha	régularisation <i>l</i> ₂	10^{-6}	
activation	fonction d'activation	'tanh'	
solver	descente du gradient	'lbfgs'	
$hidden_layer_sizes$	couches cachées	[28, 28, 28]	

TABLE 1 – Paramètres optimaux pour MLP

FIGURE 7 – Évolution du score du MLP selon la fonction d'activation

 $\mathbf{Figure}~8-\acute{\text{E}}\text{volution du score du MLP selon l'algorithme de descente}$ du gradient

Paramètres optimaux AdaBoost

Paramétrage et résultats 00000000000

- Tests relativement rapides
- Scores rapidement bons (Score F1 moyen maximal de 0.947)
- Beaucoup moins de fluctuations

paramètre	valeur optimale
${\tt n_estimators}$	46
$learning_rate$	0.3
$base_estimator$	Arbre de décision de profondeur maximale 3

TABLE 2 – Paramètres optimaux pour AdaBoost

FIGURE 9 – Évolution du score de AdaBoost selon la profondeur maximale des DecisionTrees

Problème multi-classe dans SVM

Comparaison de deux méthodes d'adaptation au multiclasse :

- "One-Versus-the-Rest"
- Méthode directe de Crammer et Singer

FIGURE 10 – Problème multi-classe et séparation "One-Versus-the-Rest"

Paramètres optimaux

- Très long temps de calcul
- Score F1 moyen maximal de 0.934

paramètre	valeurs testées	valeurs optimales
$multi_class$	ovr, crammer_singer	$crammer_singer$
C	$\{10^k \mid k \in \llbracket -2, 3 \rrbracket \}$	100
tol	$\{10^{-k} \mid k \in [3, 6]\}$	0.00001

TABLE 3 – Paramètres testés et paramètres optimaux pour SVM

00000000000

MLP AdaBoost SVM R. Forest	TPR	FPR	TNR	FNR	PPV	f1-score
MLP	0.568	0.005	0.995	0.432	0.949	0.711
AdaBoost	0.935	0.010	0.990	0.065	0.941	0.938
SVM	0.966	1.0	0.0	0.034	0.145	0.252
R. Forest	0.917	0.007	0.993	0.083	0.960	0.938

TABLE 4 – Détails des scores en fonction des classeurs après paramétrage

- AdaBoost et Random Forest se démarquent
- SVM reste très décevant

Régions de décision

FIGURE 11 – Régions de décisions pour le classeur AdaBoost

Prédiction en ligne

Paramétrage et résultats 0000000000

- 1. Créer un objet Detector en chargeant les bases de données récoltées
- 2. Entraîner un classeur, dont les paramètres sont ceux résultant de l'optimisation effectuée précédemment, avec ces données
- 3. Attribuer ce classeur en tant que classeur de prédiction pour le Detector
- 4. Sauvegarder la méthode predict

Conclusion

Dans ce travail, nous avons :

- implémenté un algorithme de classification d'obstacles,
- mené une étude de comparative de performances selon le score F1

Résultats

Les algorithmes de Random Forest et AdaBoost atteignent des score F1 supérieurs à 0.93

Travaux futurs

Orienter les recherches sur la sécurité du dispositif

Merci pour votre attention.