ER 1.

a) 1024

b) 10

c) $\sim 4,087$

d) 5

e) 4

ER 2.

ER 3.

Melhor caso: n subtrações - O(n), $\Omega(n)$, $\Theta(n)$ Pior caso: 2n subtrações - $O(n), \Omega(n), \Theta(n)$

ER 4.

subtrações - O(n), $\Omega(n)$, $\Theta(n)$

ER 5.

lg(n)+1 multiplicações - $O(lg(n)), \Omega(lg(n)), \Theta(lg(n))$

ER 6.

```
File Edit View Bookmarks Settings Help

cont ==> 0

[n = 4] => 4 2 1 (3 vezes)
[n = 5] => 5 2 1 (3 vezes)
[n = 6] => 6 3 1 (3 vezes)
[n = 7] => 7 3 1 (3 vezes)
[n = 8] => 8 4 2 1 (4 vezes)
[n = 9] => 9 4 2 1 (4 vezes)
[n = 10] => 10 5 2 1 (4 vezes)
[n = 11] => 11 5 2 1 (4 vezes)
[n = 12] => 12 6 3 1 (4 vezes)
[n = 13] => 13 6 3 1 (4 vezes)
[n = 14] => 14 7 3 1 (4 vezes)
[n = 15] => 15 7 3 1 (4 vezes)
[n = 16] => 16 8 4 2 1 (5 vezes)
[n = 17] => 17 8 4 2 1 (5 vezes)
[n = 31] => 31 15 7 3 1 (5 vezes)
[n = 32] => 32 16 8 4 2 1 (6 vezes)
[n = 63] => 63 31 15 7 3 1 (6 vezes)
[n = 64] => 64 32 16 8 4 2 1 (7 vezes)
[n = 65] => 65 32 16 8 4 2 1 (7 vezes)
[shell>
```

ER 7.

- 1) Comparação entre elementos.
- 2) f(n)=n-1.
- 3) Todos os casos (pior, melhor, médio).

ER 8.

- 1) Comparação entre elementos (min > array[i]).
- 2) f(n)=n-1.
- 3) Todos os casos (pior, melhor, médio).
- 4) Sim, pois é necessário comparar todos os elementos para encontrar o valor mínimo.

ER 9.

- 1) Comparação entre elementos (array[i] == x).
- 2) Pior caso: f(n)=n; Melhor caso: f(n)=1; Caso médio: $f(n)=\frac{n+1}{2}$
- 3) Sim, pois é necessário comparar todos os elementos para verificar se o valor procurado está no arranjo.

E 1.

```
int max = array[0];
int min = array[0];

for (int i = 1; i < n; i++) {
   if (array[i] > max) max = array[i];
   if (array[i] < min) min = array[i];
}</pre>
```

2 comparações realizadas n - 1 vezes $\rightarrow f(n)=2(n-1)$ (pior caso, melhor caso e caso médio) $\rightarrow \Theta(n)$

E 2.

OK

ER 10.

- 1. Custo da pesquisa sequencial: $\Theta(n)$
- 2. Custo da ordenação: $\Theta(n \cdot lg(n))$ + custo da pesquisa binária: $\Theta(lg(n))$

Logo, o aluno deve escolher a opção 1, por ter um custo menor.

FR 11.

a) F; b) V; c) V; d) V; e) V; f) F; g) F; h) V; i) F.

E 3.

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)	X	>	<		5		\ \)
$f(n) = n \cdot lg(n)$	X	X	×	>		<		>.
f(n) = 5n + 1	X	×		>	>	>		>
$f(n) = 7n^5 - 3n^2$	X	X	×	X	×	×	>	>
$f(n) = 99n^3 - 1000n^2$	×	×	X	×	×	7	<	\
$f(n) = n^5 - 99999n^4$	X	X	X	×	X	X	/)

E 4.

	Ω(1)	Ω(lg n)	Ω(n)	$\Omega(n.lg(n))$	$\Omega(n^2)$	$\Omega(n^3)$	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)	>	>	X	×	X	×	X	X
$f(n) = n \cdot lg(n)$	7	>	>	>	X	X	×	X
f(n) = 5n + 1	>	>	>	×	×	×	×	×
$f(n) = 7n^5 - 3n^2$	5	>		<	5	<		×
f(n) = 99n ³ - 1000n ²	5	\	5	5	S	7	X	×
$f(n) = n^5 - 99999n^4$	J		\	>	5	>	>	×

E 5.

	⊖ (1)	⊖ (lg n)	⊖ (n)	⊕ (n.lg(n))	⊖ (n²)	⊖ (n³)	⊖ (n⁵)	⊖ (n ²⁰)
f(n) = Ig(n)	×	\	×	×	X	7	×	*
$f(n) = n \cdot lg(n)$	×	X	X	>	×	X	×	×
f(n) = 5n + 1	×	X	>	×	×	X	×	×
$f(n) = 7n^5 - 3n^2$	X	X	×	X	×	¥	>	X
$f(n) = 99n^3 - 1000n^2$	X	X	X	X	X	>	×	¥
$f(n) = n^5 - 99999n^4$	Y	X	×	X	¥	X	>	Y

E 6.

a) $O(n^8)$ b) $O(n^8)$ c) $O(n^3 \cdot lg(n))$ d) $O(n^8)$ e) $O(n^4 \cdot lg^3(n))$ f) $O(n^2)$

E 7.

- a) c=4 e m=6
- b) c=1 e m=5
- c) Para $c < \infty$, não há nenhum valor c possível para que $c \cdot n \ge 3n^2 + 5n + 1$ ocorra sempre a partir de um valor m para infinitos n .

E 8.

- a) c=2 e m=1
- b) c=1 e m=1
- c) Não existe nenhuma constante positiva c para que $c \cdot n^3 \le 3n^2 + 5n + 1$ ocorra sempre a partir de um valor m para infinitos n.

E 9.

- a) $c_1 = 2$ e $c_2 = 4$
- b) Para $c_2 < \infty$, não há nenhum valor c_2 possível para que $c_2 \cdot n \ge 3n^2 + 5n + 1$ ocorra sempre a partir de um valor m para infinitos n.
- c) Não existe nenhuma constante positiva c_1 para que $c_1 \cdot n^3 \le 3 n^2 + 5 n + 1$ ocorra sempre a partir de um valor m para infinitos n.

E 10.

OK

ER 12.

Comparações

Pior caso: $f(n)=1+2\cdot(n-2)$; $O(n),\Omega(n),\Theta(n)$ Melhor caso: f(n)=1+(n-2); $O(n),\Omega(n),\Theta(n)$

Movimentações

Pior caso: f(n)=2+(n-2); $O(n),\Omega(n),\Theta(n)$ Melhor caso: f(n)=2; $O(1),\Omega(1),\Theta(1)$

```
ER 13.
```

```
Pior caso: f(n)=n+2; O(n),\Omega(n),\Theta(n)
Melhor caso: f(n)=n+1; O(n),\Omega(n),\Theta(n)
```

ER 14.

```
Pior caso = melhor caso: f(n)=2n^2+n; O(n^2), \Omega(n^2), \Theta(n^2)
```

ER 15.

```
Pior caso = melhor caso: f(n)=n \cdot lg(n)+n ; O(n \cdot lg(n)), \Omega(n \cdot lg(n)), \Theta(n \cdot lg(n))
```

E 11.

Alarme

```
Pior caso: f(n)=n-1; O(n), \Omega(n), \Theta(n)
Melhor caso: f(n)=1; O(1), \Omega(1), \Theta(1)
```

Outros

```
Pior caso: f(n)=2n-2; O(n),\Omega(n),\Theta(n)
Melhor caso: f(n)=n-1; O(n),\Omega(n),\Theta(n)
```

E 12.

```
int max = v[0] , min = v[0];
for (int i = 1; i < n ; i++) {
    if (v[i] > max) max = v[i];
    else if (v[i] < min) min = v[i];
}</pre>
```

Pior caso: 2(n-1) = O(n)Melhor caso: n-1 = O(n)

ER 16.

	Constante	Linear	Polinomial	Exponencial
3n				
1	7			
(3/2)n		>		
2n³				
2 ⁿ				/
3n ²				
1000				
(3/2) ⁿ				

$$f_6 < f_2 < f_1 < f_5 < f_4 < f_3$$

ER 18.

$$f_6 < f_3 < f_2 < f_9 < f_1 < f_5 < f_4 < f_7 < f_8$$

ER 19.

f(n)		g(n)
n + 30	2 _	n ⁴
n ² + 2n - 10	4	3n - 1
n ³ . 3n	1	lg(2n)
lg(n)	3 -	n² + 3n

E 13. Neste caso, a segunda solução é mais eficiente.

Referências

ZIVIANI, Nivio. **Projeto de Algoritmos com implementações em Java e C++**. Cengage Learning, 2006.