INTERNET OF THINGS (Effective from the academic year 2018 -2019) SEMESTER – VIII				
Course Code	18CS81	CIE Marks	40	
Number of Contact Hours/Week	3:0:0	SEE Marks	60	
Total Number of Contact Hours	40	Exam Hours	03	
CDEDITS 3				

CREDITS –3

Course Learning Objectives: This course (18CS81) will enable students to:

- Assess the genesis and impact of IoT applications, architectures in real world.
- Illustrate diverse methods of deploying smart objects and connect them to network.
- Compare different Application protocols for IoT.
- Infer the role of Data Analytics and Security in IoT.
- Identifysensor technologies for sensing real world entities and understand the role of IoT in various domains of Industry.

various domains of Industry.		
Module 1	Contact Hours	
What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT,	08	
IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network		
Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT		
Functional Stack, IoT Data Management and Compute Stack.		
Textbook 1: Ch.1, 2		
RBT: L1, L2, L3		
Module 2		
Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor	08	
Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies.		
Textbook 1: Ch.3, 4		
RBT: L1, L2, L3		
Module 3		
IP as the IoT Network Layer, The Business Case for IP, The need for Optimization,	08	
Optimizing IP for IoT, Profiles and Compliances, Application Protocols for IoT, The		
Transport Layer, IoT Application Transport Methods.		
Textbook 1: Ch.5, 6		
RBT: L1, L2, L3		
Module 4		
Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning,	08	
Big Data Analytics Tools and Technology, Edge Streaming Analytics, Network Analytics,		
Securing IoT, A Brief History of OT Security, Common Challenges in OT Security, How IT		
and OT Security Practices and Systems Vary, Formal Risk Analysis Structures: OCTAVE		
and FAIR, The Phased Application of Security in an Operational Environment		
Textbook 1: Ch.7, 8		
RBT: L1, L2, L3		
Module 5		
IoT Physical Devices and Endpoints - Arduino UNO: Introduction to Arduino, Arduino	08	
UNO, Installing the Software, Fundamentals of Arduino Programming. IoT Physical		
Devices and Endpoints - RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi		
Board: Hardware Layout, Operating Systems on RaspberryPi, Configuring RaspberryPi,		
Programming RaspberryPi with Python, Wireless Temperature Monitoring System Using Pi,		
DS18B20 Temperature Sensor, Connecting Raspberry Pi via SSH, Accessing Temperature		
from DS18B20 sensors, Remote access to RaspberryPi, Smart and Connected Cities, An IoT		

Strategy for Smarter Cities, Smart City IoT Architecture, Smart City Security Architecture, Smart City Use-Case Examples.

Textbook 1: Ch.12

Textbook 2: Ch.7.1 to 7.4, Ch.8.1 to 8.4, 8.6

RBT: L1, L2, L3

Course Outcomes: The student will be able to:

- Interpret the impact and challenges posed by IoT networks leading to new architectural models.
- Compare and contrast the deployment of smart objects and the technologies to connect them to network.
- Appraise the role of IoT protocols for efficient network communication.
- Elaborate the need for Data Analytics and Security in IoT.
- Illustrate different sensor technologies for sensing real world entities and identify the applications of IoT in Industry.

Question Paper Pattern:

- The question paper will have ten questions.
- Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

- 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"**IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things**", 1st Edition, Pearson Education (Cisco Press Indian Reprint). (**ISBN:** 978-9386873743)
- 2. Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017

Reference Books:

- Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1stEdition, VPT, 2014. (ISBN: 978-8173719547)
- 2. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017. (ISBN: 978-9352605224)

Mandatory Note:

Distribution of CIE Marks is a follows (Total 40 Marks):

- 20 Marks through IA Tests
- 20 Marks through practical assessment

Maintain a copy of the report for verification during LIC visit.

Posssible list of practicals:

- 1. Transmit a string using UART
- 2. Point-to-Point communication of two Motes over the radio frequency.
- 3. Multi-point to single point communication of Motes over the radio frequency.LAN (Subnetting).
- 4. I2C protocol study
- 5. Reading Temperature and Relative Humidity value from the sensor