

LAB 9 Cointegration & Error Correction Model (ECM)

Teaching Assistant Time Series Econometrics 2023

Table of contents

- Pengenalan Konsep Kointegrasi
- Error Corection Model (ECM)
- Uji Kointegrasi (Residual-Based Approach)
- Tahapan Engle & Granger 2 Step Method
- Uji Hipotesis
- Contoh Engle & Granger Test
- Contoh Interpretasi-LR/SR Estimation
- Contoh Interpretasi-ECT

01) Permasalahan Penggunaan Model OLS

- > Regresi OLS mengharuskan variabel untuk stasioner.
- Namun, pada umumnya data time series "stasioner di turunan pertama".
- ➤ Proses stasioner di turunan pertama disebut juga dengan I(1) dan stasioner di level disebut dengan I(0).

(02) Permasalahan Penggunaan Model OLS

➤ Misalnya terdapat persamaan (1.1)

$$y_t = a + bx_t + e_t$$

- ightharpoonup Apabila y_t dan x_t sama-sama stasioner ditingkat level et seharusnya juga stasioner di tingkat level. Oleh karena itu, kita dapat mengestimasi parameter a dan b menggunakan OLS.
- ightharpoonup Apabila y_t dan x_t sama-sama tidak stasioner di tingkat level, model diatas menjadi spurious regression (regresi palsu).

(03) Permasalahan Penggunaan Model OLS: Grafik

- ightharpoonup Grafik (A) menunjukkan proses random walk dari variabel y_t dan z_t yang menunjukkan gejala spurious regression.
- ightharpoonup Hal ini dapat dicek melalui Grafik(B). Menurut scatter plot y_t terhadap z_t , terdapat korelasi kuat antara y_t dan z_t , sebesar -0.69. y_t cenderung naik ketika z_t turun.
- Selain itu, Grafik residu regresi menunjukkan bahwa residu (error) tidak stasioner.

Lalu bagaimana dapat dikatakan kointegrasi?

> Persamaan (1.1)

$$y_t = a + bx_t + e_t$$

ightharpoonup Apabila y_t dan x_t sama-sama stasioner di turunan pertama I(1) dan e_t stasioner ditingkat level I(0) maka y_t dan x_t dinyatakan berkointegrasi (hubungan jangka panjang).

(Cont.)

Grafik disamping menunjukkan walaupun random walk dari variabel y_t dan z_t samasama tidak stasioner (memiliki trend), keduanya memiliki trends stochastic yang sama, sehingga kombinasi linier $(y_t - z_t)$ kedua variabel adalah stasioner. Residu (error) stasioner. Oleh karena itu, kedua variabel disebut memiliki kointegrasi (hubungan jangka panjang).

Dikutip dari Brooks (2015, p.374)

- ➤ Banyak deret waktu tidak stasioner tetapi "bergerak bersama" dari waktu ke waktu menyiratkan bahwa kedua deret tersebut terikat oleh beberapa hubungan dalam jangka panjang.
- Kointegrasi juga dapat dilihat sebagai fenomena jangka panjang atau ekuilibrium, karena ada kemungkinan variabel kointegrasi menyimpang dari hubungannya dalam jangka pendek, tetapi hubungan mereka akan kembali dalam jangka panjang.

Error Correction Model (ECM)

Bila variabel dependen dan variabel independent **tidak stasioner** tetapi **saling berkointegrasi**, maka terdapat hubungan kesetimbangan (equilibrium) jangka panjang antara kedua variabel tersebut.

Dalam jangka pendek ada kemungkinan terjadi ketidaksetimbangan (disequilibrium) dan cara mengatasinya digunakan **model koreksi kesalahan (Error Correction Model)**

Persamaan Model ECM

$$\Delta \gamma_t = \beta_1 \Delta x_t + \beta_2 (\gamma_{t-1} - \gamma x_{t-1}) + u_t$$

Dimana,

 $(\gamma_{t-1} - \gamma x_{t-1})$ adalah error correction term atau ECT

Simpan residu yang
diperoleh dari model LR:
predict ect, resid

Contoh command ECM:

reg d.Y d.X1 l.ect

Uji ini merupakan uji stasioneritas, Namun, karena uji ini adalah uji untuk residual dari model, maka nilai kritis tidak menggunakan nilai kritis yang biasa dipakai dalam uji DF-ADF.

Nilai kritis yang digunakan adalah nilai kritis yang dikembangkan oleh Engle & Granger (1987), sehingga uji ini disebut Uji

Kointegrasi Engle-Granger.

Tahapan Engle & Granger 2 Steps Method

TAHAP 1

01

• Pastikan bahwa semua variabel memiliki derajat stasioneritas di I(1).

02

• Lakukan estimasi model jangka panjang menggunakan OLS, simpan residu dan uji apakah residu stasioner.

TAHAP 2

03

04

Lakukan estimasi jangka pendek – ECM.

• Uji diagnostik (multikolinearitas, heteroskedastisitas, normalitas, dan autokorelasi).

Uji Hipotesis

Hipotesis:

HO: Tidak terdapat kointegrasi

Ha: Terdapat kointegrasi

Kriteria:

Test Statistic < Critical value 5%, HO tidak dapat ditolak

Test Statistic > Critical value 5%, HO ditolak

Catatan: Dalam menyimpulkan, nilai t-stat dan cv dianggap sebagai nilai absolut

Contoh Engle-Granger Test

Engle-Grang	er test for coin	N (1st ste N (test)	p) = 92 = 91		
	Test Statistic	1% Critical Value	5% Critical Value	10% Critical Value	
Z(t)	-4.290	-4.456	-3.836	-3.521	
Critical va	lues from MacKin	non (1990, 2010)			

Hasil: Test Statistic > Critical value 5%, (4.290 > 3.836) maka HO ditolak

Kesimpulan: Dengan tingkat signifikansi 5% dapat disimpulkan bahwa terdapat kointegrasi antar variabel

Contoh Interpretasi – LR/SR Estimation

X berpengaruh (+/-) dan

(tidak/signifikan) terhadap Y.

Apabila terjadi peningkatan pada

X sebesar 1 (satuan) maka akan

(meningkatkan/menurunkan) Y

rata-rata sebesar____di jangka

(panjang/pendek)

92	_	mber of ob		MS	df	55	Source
57383.83	-	2, 89) ob > F		13.57094	2	27.141896	Model
0.9992	=	squared		.00023649	89	.021047993	Residual
0.9992	d =	j R-square	— Adj				
.01538	=	ot MSE	1 Roc	.29849389	91	27.162944	Total
Interval)	Conf.	[95%	P> t	t	Std. Err.	Coef.	ln_inc
		[95% . 013 7	P> t 0.009	t 2.67	Std. Err.	Coef.	ln_inc
Interval) .0941582	428						

Contoh Interpretasi – ECT

Koefisien dari $ECT_{(t-1)}$ (-0.222) bernilai negatif dan signifikan yang menegaskan adanya hubungan jangka panjang antara variabel. $ECT_{(t-1)}$ menunjukkan bahwa penyimpangan jangka pendek dalam pendapatan dikoreksi sebesar 22,2% per kuartalnya menuju keseimbangan jangka panjang yang stabil.

Source	SS	df	MS		er of ot	os =	91 13.76
Model Residual	.004126034 .008696367	3 87	.001375345	Proi	, 87) > F quared		0.0000 0.3218
Total	.012822401	90	.000142471		R-square t MSE	ed =	0.2984 .01
D.ln_inc	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
ln_inv D1.	018877	.0247042	-0.76	0.447	0679	793	. 0302253
ln_consump D1.	. 6969346	.1103496	6.32	0.000	. 4776	1028	.9162665
ect L1.	2226505	.0759392	-2.93	0.004	3735	878	0717132
_cons	.0067928	.0022363	3.04	0.003	.0023	1479	.0112376

Thanks!

Teaching Assistant Time Series Econometrics 2023

@econometrics.unpad