Complex Numbers Problems 31-40

Shiv Shankar Dayal

July 29, 2022

Important Identities Related to Cube Root of Unity

$$x^2 + x + 1 = (x - \omega)(x - \omega^2)$$

$$x^2 - x + 1 = (x + \omega)(x + \omega^2)$$

$$x^3 + y^3 = (x+y)(x+y\omega)(x+y\omega^2)$$

$$x^3 - y^3 = (x - y)(x - y\omega)(x - y\omega^2)$$

31. Find the square root of 7 + 8i.

Solution: Let
$$z=x+iy=\sqrt{7+8i}, \Rightarrow (x^2-y^2)+2ixy=7+8i$$

Comparing real and imaginary parts, we get

$$x^2 - y^2 = 7, 2xy = 8 \Rightarrow x^2 + y^2 = \sqrt{(x^2 - y^2)^2 + 4x^2y^2} = \sqrt{49 + 64} = \sqrt{113} [\because x, y \in R, x^2 + y^2 > x^2 - y^2 \Rightarrow x^2 + y^2 \neq -\sqrt{113}]$$

$$\Rightarrow 2x^2 = 7 + \sqrt{113} \Rightarrow x = \pm \sqrt{\frac{7 + \sqrt{113}}{2}}$$

$$2y^2 = \sqrt{113} - 7 \Rightarrow y = \pm \sqrt{\frac{\sqrt{113} - 7}{2}}$$

32. Find the square root of $a^2 - b^2 + 2iab \ \forall \ a,b \in R$.

Solution: Let
$$z=x+iy=\sqrt{a^2-b^2+2iab}\Rightarrow x^2-y^2+2ixy=a^2-b^2+2iab$$

Comparing real and imaginary parts, we get

$$\Rightarrow x^2 - y^2 = a^2 - b^2, 2xy = 2ab \Rightarrow x^2 + y^2 = \sqrt{(a^2 - b^2)^2 + 4a^2b^2} = a^2 + b^2[\because x, y \in R, x^2 + y^2 > x^2 - y^2 \Rightarrow x^2 + y^2 \neq -(a^2 + b^2)]$$

$$\Rightarrow 2x^2 = 2a^2 \Rightarrow x = +a \text{ and similarly. } y = +b$$

33. Find the square root of $\frac{x^2}{y^2}+\frac{y^2}{x^2}+\frac{1}{2i}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{31}{16}$.

Solution: Given equation can be rewritten as
$$\frac{x^2}{y^2}+\frac{y^2}{x^2}-2.\frac{i}{4}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{i^2}{4^2}-\frac{i^2}{4^2}+\frac{31}{16}$$

$$= \tfrac{x^2}{y^2} + \tfrac{y^2}{x^2} - 2.\tfrac{i}{4} \left(\tfrac{x}{y} + \tfrac{y}{z} \right) + \tfrac{i^2}{4^2} + \tfrac{1}{16} + \tfrac{31}{16}$$

$$= \tfrac{x^2}{y^2} + \tfrac{y^2}{x^2} - 2.\tfrac{i}{4} \left(\tfrac{x}{y} + \tfrac{y}{z} \right) + \tfrac{i^2}{4^2} + 2.\tfrac{x}{y}.\tfrac{y}{x}$$

$$= \left(\frac{x}{y} + \frac{y}{x} - \frac{i}{4}\right)^2$$

Therefore, square root is $\pm \left(\frac{x}{y} + \frac{y}{x} - \frac{i}{4} \right)$

34. Find the square root of
$$\frac{x^2}{y^2}+\frac{y^2}{x^2}-\frac{1}{i}\left(\frac{x}{y}-\frac{y}{x}\right)-\frac{9}{4}$$

Solution: Like prevous problem the given equation can be rewritten as $\frac{x^2}{y^2} + \frac{y^2}{x^2} + 2$. $\frac{i}{2} \left(\frac{x}{y} - \frac{y}{x} \right) + \frac{i^2}{2^2} - \frac{i^2}{2^2} - \frac{9}{4}$

$$= \frac{x^2}{y^2} + \frac{y^2}{x^2} + 2 \cdot \frac{i}{2} \left(\frac{x}{y} - \frac{y}{x} \right) + \frac{i^2}{2^2} - 2$$

$$= \frac{x^2}{y^2} + \frac{y^2}{x^2} + 2 \cdot \frac{i}{2} \left(\frac{x}{y} - \frac{y}{x} \right) + \frac{i^2}{2^2} - 2 \cdot \frac{x}{y} \cdot \frac{y}{x}$$

$$= \left(\frac{x}{y} - \frac{y}{x} + \frac{i}{2}\right)^2$$

Therefore, square root is $\pm \left(\frac{x}{y} - \frac{y}{x} + \frac{i}{2} \right)$

35. Find the square root of $x^2 + \frac{1}{x^2} + 4i\left(x - \frac{1}{x}\right) - 6$

Solution: Given equation can be written as
$$x^2 + \frac{1}{x^2} + 2.2i\left(x - \frac{1}{x}\right) + (2i)^2 - (2i)^2 - 6$$

$$= x^2 + \frac{1}{x^2} + 2.2i\left(x - \frac{1}{x}\right) + 4i^2 - 2 = x^2 + \frac{1}{x^2} + 2.2i\left(x - \frac{1}{x}\right) + 4i^2 - 2.x.\frac{1}{x}$$

$$= \left(x - \frac{1}{x} + 2i\right)^2$$

Thus square root is $\pm (x - \frac{1}{x} + 2i)$

Problrm 36

36. Find the minimum value of |z|+|z-2|

Solution: We know that for two complex numbers z_1 and $z_2, |z_1| + |z_2| \ge |z_1 - z_2|$

$$|z|+|z-2| \geq |z-(z-2)| = |2| = 2$$

Therefore, minimum value is 2.

37. If $|z_1-1|<1, |z_2-2|<2$ and $|z_3-3|<3$ then prove that maximum value of $|z_1+z_2+z_3|$ is 12.

$$\begin{aligned} & \textbf{Solution:} \ |z_1+z_2+z_3| = |(z_1-1)+(z_2-2)+(z_3-3)+6 \leq |z_1-1|+|z_2-2|+|z_3-3|+6 \\ &< 1+2+3+6 = 12 \end{aligned}$$

Thus, maximum value of $\vert z_1+z_2+z_3\vert$ is 12.

38. If α, β are two complex numbers then prove that $|\alpha|^2 + |\beta|^2 = \frac{1}{2}(|\alpha + \beta|^2 + |\alpha - \beta|^2)$.

$$\begin{split} & \textbf{Solution: } |\alpha+\beta|^2 = (\alpha+\beta)(\overline{\alpha+\beta}) = (\alpha+\beta)(\overline{\alpha}+\overline{\beta}) \\ & = \alpha\overline{\alpha} + \alpha\overline{\beta} + \overline{\alpha}\beta + \beta\overline{\beta} = |\alpha|^2 + |\beta|^2 + \alpha\overline{\beta} + \overline{\alpha}\beta \\ & \textbf{Similarly, } |\alpha-\beta|^2 = |\alpha|^2 + |\beta|^2 - \alpha\overline{\beta} - \overline{\alpha}\beta \\ & \textbf{Thus, } |\alpha|^2 + |\beta|^2 = \frac{1}{2}(|\alpha+\beta|^2 + |\alpha-\beta|^2) \end{split}$$

39. Find $\sqrt{i}\sqrt{-i}$

Solution: Let
$$z=\sqrt{i}\sqrt{-i}=\sqrt{-i^2}=\sqrt{-1.i^2}=i^2=-1$$

40. Simplify $i^{n+80} + i^{n+50}$ in the form of A + iB.