

# Лекция 7

# Тензорное произведение пространств

#### Содержание лекции:

В данной лекции обсуждаются билинейные отображения и структуры, которые ими индуцируются. Здесь мы подробно рассмотрим тензорное произведение двух пространств и обсудим как связанные с ним определения связаны с тем, что обсуждалось ранее. Также мы изучим свойства операции тензорного произведения и обсудим наиболее важные следуствия этих свойств.

#### Ключевые слова:

Билинейное отображение, тензорное произведение двух пространств, базис тензорного произведения, координаты тензора, разложимые элементы, основной принцип тензорной алгебры.

#### Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

### 7.1 Определение тензорного произведения

**Nota bene** Пусть X, Y, Z - линейные пространства над полем  $\mathbb{k}$ , причем

$$\dim_{\mathbb{k}} X = n$$
,  $\dim_{\mathbb{k}} Y = m$ ,

и пусть дано билинейное отображение  $b: X \times Y \to Z$ :

$$b(x_1 + x_2, y) = b(x_1, y) + b(x_2, y),$$
  

$$b(x, y_1 + y_2) = b(x, y_1) + b(x, y_2),$$
  

$$b(\alpha x, y) = \alpha b(x, y) = b(x, \alpha y),$$

для любых  $x, x_1, x_2 \in X, y, y_1, y_2 \in Y, \alpha \in \mathbb{k}$ .

 $\pmb{Nota~bene}~~$  Пусть  $\{e_i\}_{i=1}^n$  - базис  $X,\,\{f_j\}_{j=1}^m$  - базис  $Y,\,x\in X$  и  $y\in Y,\,$ тогда

$$x = \sum_{i=1}^{n} e_i \xi^i, \quad y = \sum_{j=1}^{m} f_j \eta^j,$$

$$b(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} b(e_i, f_j) \xi^i \eta^j = \sum_{i=1}^{n} \sum_{j=1}^{m} h_{ij} \xi^i \eta^j \in Z.$$

Лемма 7.1. Следующие утверждения эквивалентны:

- 1. набор  $\{b(e_i, f_j)\}$  является базисом в Z;
- 2. для любого  $z \in Z$  единственно разложение

$$z = \sum_{i=1}^{n} b(e_i, y_i), \quad y_i \in Y.$$

3. для любого  $z \in Z$  единственно разложение

$$z = \sum_{j=1}^{m} b(x_j, f_j), \quad x_j \in X.$$

Доказательство  $(1) \Leftrightarrow (2)$ 

$$z = \sum_{i=1}^{n} \sum_{i=1}^{m} \zeta^{ij} b(e_i, f_j) = \sum_{i=1}^{n} b\left(e_i, \sum_{i=1}^{m} \zeta^{ij} f_j\right) = \sum_{i=1}^{n} b\left(e_i, y_i\right).$$

Доказательство (1)  $\Leftrightarrow$  (3) проводится аналогично.  $\blacktriangleleft$ 

**Тензорным произведением** линейных пространств X и Y называется линейное пространство  $T = X \otimes Y$  вместе с билинейным отображением

$$\otimes: X \times Y \to T$$

так что если  $\{e_i\}_{i=1}^n$  - базис X и  $\{f_j\}_{j=1}^m$  - базис Y, то  $\{e_i\otimes f_j\}$  - базис T.

Nota bene Имеет место равенство:

$$\dim_{\mathbb{k}} T = \dim_{\mathbb{k}} X \cdot \dim_{\mathbb{k}} Y.$$

**Nota bene** Пусть  $z \in T$ , тогда единственно разложение

$$z = \sum_{i=1}^{n} \sum_{j=1}^{m} (e_i \otimes f_j) \zeta^{ij},$$

и набор  $\zeta^{ij}$  называется координатами элемента z в базисе  $\{e_i \otimes f_j\}$ .

Элемент  $z \in T$  называется **разложимым**, если

$$\exists x \in X, y \in Y : z = x \otimes y.$$

 $Nota\ bene$  Не все элементы T являются разложимыми:

$$z = e_1 \otimes f_2 + e_2 \otimes f_1.$$

## 7.2 Основная теорема тензорной алгебры

**Лемма 7.2.** Для произвольного билинейного отображения  $b: X \times Y \to Z$  существует единственное линейное отображение  $\tilde{b}: X \otimes Y \to Z$ , такое что:

$$\forall x, \in X, \quad y \in Y \quad b(x, y) = \tilde{b}(x \otimes y).$$

Искомое отображение  $\tilde{b}$  задается на базисных векторах пространства  $X\otimes Y$  при помощи формулы:

$$\tilde{b}(e_i \otimes f_i) = b(e_i, f_i),$$

и по линейности может быть доопределено на всех элементах  $X \otimes Y$ .

◀

Nota bene Утверждение леммы эквивалентно коммутативности диаграммы:



Лемма 7.3. С точностью до изоморфизма тензорное произведение единственно:

$$T_1 = X \otimes_1 Y, \quad T_2 = X \otimes_2 Y \quad \Rightarrow \quad T_1 \simeq T_2.$$

▶

Искомый изоморфизм  $\psi:T_1\to T_2$  определяется следующим образом:

$$\psi(e_i \otimes_1 f_j) = e_i \otimes_2 f_j,$$

и по линейности доопределяется на всех элементах  $T_1$ 

4

**Лемма 7.4.** Операция  $\otimes$  имеет следующие свойства:

$$X \otimes Y \simeq Y \otimes X,$$
  
 $X \otimes (Y \otimes Z) \simeq (X \otimes Y) \otimes Z.$ 

**Nota bene** Тензорное произведение произвольного числа линейных пространств  $X_1, X_2, \dots, X_p$  можно определить индукцией по p, полагая, что отображение

$$b: X_1 \times X_2 \times \ldots \times X_p \to Z$$
,

является р-линейным.

**Теорема 7.1.** (Основной принцип тензорной алгебры) Для любого p-линейного отображения  $b: X_1 \times \ldots \times X_p \to Z$  существует единственное линейное отображение  $\tilde{b}: X_1 \otimes \ldots \otimes X_p \to Z$ , такое что следующая диаграмма является коммутативной:

$$X_1 \times \ldots \times X_p \longrightarrow X_1 \otimes \ldots \otimes X_p$$

# 7.3 Изоморфизмы тензорных произведений

**Пример 7.1.** Для любых  $\alpha \in X^*$  и  $y \in Y$ , определим билинейное отображение:

$$\alpha \otimes y : X \to Y, \quad (\alpha \otimes y)(x) = \alpha(x)y, \quad \forall x \in X.$$

Тем самым мы получим билинейное отображение

$$\otimes: X^* \times Y \to \operatorname{Hom}(X;Y),$$

где Hom(X;Y) - множество линейных отображений из пространства X в пространство Y. Имеет место изоморфизм:

$$\operatorname{Hom}(X;Y) \simeq X^* \otimes Y.$$

**Пример 7.2.** Для любых  $\alpha \in X^*$  и  $\beta \in Y^*$  определим билинейное отображение

$$\alpha \otimes \beta$$
:  $X \times Y \to \mathbb{k}$ ,  $(\alpha \otimes \beta)(x, y) = \alpha(x)\beta(y)$ .

Получим билинейное отображение

$$\otimes: X^* \times Y^* \to \operatorname{Hom}(X, Y; \mathbb{k}).$$

Кроме того, имеет место изоморфизм

$$\operatorname{Hom}(X,Y;\mathbb{k}) \simeq X^* \otimes Y^*.$$

Nota bene В силу основного принципа имеет место следующий изоморфизм:

$$\operatorname{Hom}(X \otimes Y; Z) \simeq \operatorname{Hom}(X, Y; Z),$$

переводящий линейное отображение  $\tilde{b}:X\otimes Y\to Z$  в билинейное отображение  $b:X\times Y\to Z$ . В частности, при  $Z=\Bbbk$  можно получить

$$(X \otimes Y)^* \simeq \operatorname{Hom}(X, Y; \mathbb{k}).$$

**Пример 7.3.** Последнее замечание может быть обобщено на случай произвольного числа пространств, что дает

$$\operatorname{Hom}(X_1 \otimes \ldots \otimes X_p; Z) \simeq \operatorname{Hom}(X_1, \ldots, X_p; Z),$$

и при  $Z=\Bbbk$  можно получить

$$(X_1 \otimes \ldots \otimes X_p)^* \simeq \operatorname{Hom}(X_1, \ldots, X_p; \mathbb{k}).$$