Advanced Machine Learning

Likhit Nayak

Sequence modelling

Backpropagation through time (BPTT)

$$\begin{cases} h_t = Ux_t + Wh_{t-1} \\ o_t = Vh_t \end{cases}$$
 where:

$$h_t : \text{is the hidden state}$$

$$o_t : \text{is the output at time step t}$$

 x_t : is the inputat time step t

Backpropagation through time (BPTT)

$$\begin{split} \frac{\partial L}{\partial V} &= \sum_{t=1}^{T} \frac{\partial l}{\partial o_{t}}.h_{t}^{\mathsf{T}} \\ \frac{\partial L}{\partial W} &= \sum_{t}^{T} \sum_{k=1}^{t+1} \frac{\partial L_{t+1}}{\partial o_{t+1}}.\frac{\partial o_{t+1}}{\partial h_{t+1}}.\frac{\partial h_{t+1}}{\partial h_{k}}.\frac{\partial h_{k}}{\partial W} \\ \frac{\partial L}{\partial U} &= \sum_{t}^{T} \sum_{k=1}^{t+1} \frac{\partial L_{t+1}}{\partial o_{t+1}}.\frac{\partial o_{t+1}}{\partial h_{t+1}}.\frac{\partial h_{t+1}}{\partial h_{k}}.\frac{\partial h_{k}}{\partial U} \end{split}$$

Gated Recurrent Unit (GRU)

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." *arXiv preprint arXiv:1406.1078* (2014).

Gated Recurrent Unit (GRU)

$$egin{aligned} r_j &= \sigma \left(\left[\mathbf{W}_r \mathbf{x}
ight]_j + \left[\mathbf{U}_r \mathbf{h}_{\langle t-1
angle}
ight]_j
ight) \ &z_j &= \sigma \left(\left[\mathbf{W}_z \mathbf{x}
ight]_j + \left[\mathbf{U}_z \mathbf{h}_{\langle t-1
angle}
ight]_j
ight) \ &h_j^{\langle t
angle} &= z_j h_j^{\langle t-1
angle} + (1-z_j) ilde{h}_j^{\langle t
angle} \ & ilde{h}_j^{\langle t
angle} &= \phi \left(\left[\mathbf{W} \mathbf{x}
ight]_j + \left[\mathbf{U} \left(\mathbf{r} \odot \mathbf{h}_{\langle t-1
angle}
ight)
ight]_j
ight) \end{aligned}$$

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." *arXiv preprint arXiv:1406.1078* (2014).