Metody Numeryczne Instrukcja do laboratorium 9

29 maja 2023

1 Zasady oceniania

Liczba przebadanych metod	Ocena
1	3,0
2	3,5
3	4,0
4	5,0

UWAGA: Za pośrednictwem platformy Moodle proszę przesłać kod powstały w czasie robienia tego laboratorium. Proszę przesłać kod w takiej wersji, by po uruchomieniu zostały wyświetlane rozwiązania kolejnych równań oraz wyniki obliczeń kolejnych całek.

UWAGA: Termin oddania zadania jest ustawiony w systemie moodle. W przypadku nie oddania zadania w terminie, uzyskana ocena będzie zmniejszana o 0,5 za każdy zaczęty tydzień opóźnienia. Zadania oddawane później niż miesiąc po terminie ustawionym na moodle są oddawane i rozliczane w trybie indywidualnym na zajęciach lub po umówieniu się z prowadzącym.

UWAGA: W przypadku wysłania zadania w formie niezgodnej z opisem w instrukcji prowadzący zastrzega prawo do wystawienia oceny negatywnej za taką pracę. Przykład: wysłanie .zip lub .pdf tam, gdzie był wymagany plik tekstowy z rozszerzeniem .py.

2 Zadania do rozwiązania

2.1 Interpolacja 1

Dokonaj interpolacji danych umieszczonych w poniższej tabeli. Użyj do tego celu funkcji scipy.interpolate.interpld(), zgodnie z informacją przedstawioną na wykładzie. Użyj trzy rodzaje interpolacji: linear, nearest oraz cubic.

Na wykresie przedstaw dane oryginalne (punkty z tabeli), oraz 3 różne typy interpolacji. Który typ interpolacji najlepiej pasuje do tych danych?

Tabela 1: Dane do Zadania 1

x	y
0	-1
1	2
2	5
3	8
4	11

2.2 Interpolacja 2

Dokonaj interpolacji danych umieszczonych w poniższej tabeli. Użyj do tego celu funkcji scipy.interpolate.interpld(), zgodnie z informacją przedstawioną na wykładzie. Użyj trzy rodzaje interpolacji: linear, nearest oraz cubic.

Na wykresie przedstaw dane oryginalne (punkty z tabeli), oraz 3 różne typy interpolacji. Który typ interpolacji najlepiej pasuje do tych danych?

Tabela 2: Dane do Zadania 2

x	y
0.0	0.0
0.5	0.84
1.0	0.91
1.5	0.14
2.0	-0.76
2.5	-0.96
3.0	-0.28

2.3 Aproksymacja 1

Wykonaj aproksymację danych przedstawionych w tabeli wielomianem N-tego stopnia. W przypadku poniższych danych można dokonać aproksymację wielomianami stopnia 1, 2, 3, 4. Przy tym, przy aproksymacji wielomianem stopnia 4 funkcja będzie przechodzić przez wszystkie punkty, czyli interpolować nasze dane. Aproksymację należy dokonać zgodnie z przykładami pokazanymi na wykładzie (funkcja scipy.optimize.curve_fit()).

Na wykresie przedstaw dane oryginalne (punkty z tabeli), oraz kolejne aproksymacje wielomianowe. Wielomian którego stopnia w najlepszy sposób odwzorowuje trend danych?

Tabela 3<u>: Dane do Z</u>adania 3

\boldsymbol{x}	y
0	1.55
1	4.71
2	5.99
3	9.47
4	13.18

2.4 Aproksymacja 4

Wykonaj aproksymację danych przedstawionych w tabeli wielomianem N-tego stopnia. W przypadku poniższych danych można dokonać aproksymację wielomianami stopnia 1, 2, 3, 4, 5, 6. Przy tym, przy aproksymacji wielomianem stopnia 6 funkcja będzie przechodzić przez wszystkie punkty, czyli interpolować nasze dane. Aproksymację należy dokonać zgodnie z przykładami pokazanymi na wykładzie (funkcja scipy.optimize.curve_fit()).

Na wykresie przedstaw dane oryginalne (punkty z tabeli), oraz kolejne aproksymacje wielomianowe. Wielomian którego stopnia w najlepszy sposób odwzorowuje trend danych?

Tabela 4: Dane do Zadania 4

x	y
0.0	1.0
0.5	0.92
1.0	0.63
1.5	-0.41
2.0	-0.94
2.5	0.27
3.0	0.89