Aula 15 - Árvores Binárias de Busca

Estruturas de Dados 2018/1 Prof. Diego Furtado Silva

Tabela de símbolos

Abstração do par chave-valor

- Insere um valor associado a uma chave
- Dada uma chave, busca o valor correspondente

Ex: DNS lookup (Domain Name System)

URL	Endereço IP
ufscar.br	200.136.207.48
dc.ufscar.br	200.18.99.34
ava.ead.ufscar.br	200.133.224.2

Tabela de símbolos

Aplicação	Chave	Valor
Dicionário	Palavra	Definição
Índice remissivo	Termo	Lista de número de páginas
Spotify e afins	Nome da música	Áudio relativo à música buscada
Compilador	Nome da variável	Tipo e valor
Sistemas de arquivos	Nome do arquivo	Localização do arquivo no disco
Busca web	Termo	Páginas relacionadas à busca

Tabela de símbolos

Aplicação	Chave	Valor
Dicionário	Palavra	Definição
Índice remissivo	Termo	Lista de número de páginas
Spotify e afins	Nome da música	Áudio relativo à música buscada
Compilador	Nome da variável	Tipo e valor
Sistemas de arquivos	Nome do arquivo	Localização do arquivo no disco
Busca web	Termo	Páginas relacionadas à busca

Vocês sabem implementar uma tabela de símbolos?

Busca linear: varrer o vetor da primeira à (potencialmente) última posição, comparando o item buscado com o item armazenado na posição atual da varredura

Exemplo no quadro

Busca linear: varrer o vetor da primeira à (potencialmente) última posição, comparando o item buscado com o item armazenado na posição atual da varredura

Busca em O(n)

Procedimento similar para listas ligadas

Busca binária: Dado um vetor ordenado, utilizamos a estratégia de reduzir para conquistar.

Exemplo no quadro

Busca binária: Dado um vetor ordenado, utilizamos a estratégia de reduzir para conquistar.

Busca em O(log n)

Não aplicável a listas ligadas. Por quê?

Busca binária: Dado um vetor ordenado, utilizamos a estratégia de reduzir para conquistar.

Busca em O(log n)

E se não estiver ordenado?

E se eu tiver que fazer algumas alterações?

SPOILER ALERT!

Vamos voltar no exemplo do cadastro de mutantes da Escola para Jovens Superdotados, agora com o Deadpool

Deadpool vira um membro (trainee) dos X-Men

- Incluímos ele no cadastro

Quando ele morre, ele sai do cadastro de atuantes

- Removemos ele desse cadastro

Podemos incluir e remover muitos itens durante a execução da minha aplicação. O que acontece com a eficiência das operações?

Pergunta da aula

Como melhorar a implementação de uma tabela de símbolos usando árvores binárias?

Árvores Binárias de Busca (ABB)

Uma ABB é uma AB tal que

 Os nós pertencentes à sub-árvore esquerda de um nó possuem chaves menores que de tal (nó) raiz

 Os nós pertencentes à sub-árvore direita de um nó possuem chaves maiores que de tal (nó) raiz

Árvores Binárias de Busca (ABB)

Árvores Binárias de Busca (ABB)

Principais operações de uma ABB

- Pesquisar
- Inserir
- Remover

Também podemos realizar percursos na ABB.

O que acontece se utilizarmos os percursos já apresentados (pré-, em e pós-ordem)?

ABB - Pesquisa

Sugestões?

ABB - Pesquisa

- 1. Iniciar a busca no nó raiz
- 2. Se a chave do nó é igual à pesquisada, retorna valor. Senão
 - a. Se chave(pesquisada) < chave(nó), assume a subárvore da esquerda como novo espaço de busca e retorna para o passo 2.
 - Se chave(pesquisada) > chave(nó), assume a subárvore da direita como novo espaço de busca e retorna para o passo 2.
 - c. Se nó é NULO, a chave não foi encontrada.

ABB - Pesquisa

Na lousa: buscar chaves 5, 3, 8 e 7

Sugestões?

A inserção é sempre feita nas folhas. Primeiro, encontramos a posição do novo nó folha.

- 1. Inicia a busca da posição no nó raiz
- 2. Verifica se a chave a ser inserida é maior ou menor que a chave do nó analizado
 - a. Caso seja maior e o filho à direita for nulo, insere à direita. Se não for nulo, segue para o filho da direita e volta para o passo 2.
 - b. Similar à esquerda, caso seja menor.

Na lousa: inserir chaves 4 e 7

Exercício: Inserir as chaves (a partir de uma ABB vazia)

{17,99,13,1,3,100,400}

ABB - Remoção

Sugestões?

ABB - Remoção

Casos a verificar:

O nó a ser removido é um nó folha
 Maravilha! Podemos tirar o nó sem nenhum problema

Remover a chave 6

Remover a chave 6

Remover a chave 6 🗸 🗆

Remover a chave 1

Remover a chave 1 🗸 🗆

ABB - Remoção

Casos a verificar:

- O nó a ser removido é um nó folha
 Maravilha! Podemos tirar o nó sem nenhum problema
- 2. O nó possui uma subárvore (ou direita ou esquerda)
 A raiz da subárvore pode "assumir o posto" do nó removido

Remover a chave 8

Remover a chave 8

Remover a chave 8 🗸 🗆

Remover a chave 10

Remover a chave 10

Remover a chave 10 ✓ □

ABB - Remoção

Casos a verificar:

- O nó a ser removido é um nó folha
 Maravilha! Podemos tirar o nó sem nenhum problema
- 2. O nó possui uma subárvore (ou direita ou esquerda) A raiz da subárvore pode "assumir o posto" do nó removido
- 3. O nó possui as duas subárvores Substituir pelo mais à direita do filho à esquerda (ou mais à esquerda do filho à direita). Qual a relação com percurso em ordem?

Remover a chave 10

Remover a chave 10

Mais à direita do filho à esquerda = 9

Remover a chave 10 ✓ □

Remover a chave 10

[OU] Mais à esquerda do filho à direita = 12

Remover a chave 10

[OU] Mais à esquerda do filho à direita = 12

Remover a chave 10 ✓ □

ABB - Exercício

- Fazer inserções de números aleatórios em uma ABB.
- Junto a isso, depois de algumas inserções, fazer remoções aleatórias.

Como fica a geometria da árvore?

ABB - Próxima aula

Complexidade (melhor e pior caso) e implementação

"You know about binary search trees?" "Say no more"