(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

I IN BIN KUMUDI O KUMU KRIDI WI 18 INI DDI I ATIBO KUN INDI KUMI INDI BINGU KANDI KUMI

(43) 国際公開日 2003 年12 月18 日 (18.12.2003)

PCT

(10) 国際公開番号 WO 03/103657 A1

(51) 国際特許分類⁷: A61K 31/167, 31/17, 31/18, 31/235, 31/277, 31/381, 31/40, 31/402, 31/404, 31/415, 31/4164, 31/421, 31/422, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4406, 31/4418, 31/445, 31/4453, 31/451, 31/454, 31/47, 31/496, 31/4965, 31/498, 31/505, 31/5375, 31/5377, 31/695

(21) 国際出願番号:

PCT/JP03/07128

(22) 国際出願日:

2003年6月5日(05.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-169640 2002 年6 月11 日 (11.06.2002) J

(71) 出願人 /米国を除く全ての指定国について): 株式会社 医薬分子設計研究所 (INSTITUTE OF MEDICINAL MOLECULAR DESIGN. INC.) [JP/JP]; 〒113-0033 東 京都文京区本郷5丁目24番5号角川本郷ビル4 F Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 武藤 進 (MUTO,Susumu) [JP/JP]; 〒184-0003 東京都小金井市 緑町1-6-7 メイプルコーポB202 Tokyo (JP). 板井昭子 (ITAI,Akiko) [JP/JP]; 〒113-0033 東京都文 京区 本郷5 丁目 2 4番5 号 角川本郷ビル4 F 株式 会社医薬分子設計研究所内 Tokyo (JP).

- (74) 代理人: 特許業務法人特許事務所サイクス (SIKS & CO.); 〒104-0031 東京都 中央区 京橋一丁目 8番7号京橋日殖ビル8階 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

--- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: REMEDIES FOR NEURODEGENERATIVE DISEASES

(54) 発明の名称: 神経変性疾患治療剤

(57) Abstract: Preventive and/or therapeutic drugs for neuro- degenerative diseases including Alzheimer's disease, which contain as the active ingredient substances selected from the group consisting of compounds represented by the general formula (I), pharmacologically acceptable salts thereof, and hydrates and solvates of both: (I) wherein A is hydrogen or acetyl; E is 2,5- or 3,5-disubstituted phenyl or an optionally substituted monocyclic or fused-polycyclic heteroaryl group (exclusive of (1) fused-polycyclic heteroaryl whose benzene ring is bonded directly to the -CONH- group, (2) unsubstituted thiazol-2-yl, and (3) unsubstituted benzothiazol-2-yl); and Z is arene which may have a substituent in addition to the groups represented

by the general formulae: -O-A (wherein A is as defined above) and -CONH-E (wherein E is as defined above) or heteroarene which may have a substituent in addition to the groups represented by the general formulae: -O-A (wherein A is as defined above) and -CONH-E (wherein E is as defined above).

ì

(57) 要約:

下記一般式(I):

(式中、

Aは、水素原子又はアセチル基を表し、

Eは、2,5-ジ置換若しくは3,5-ジ置換基フェニル基、又は置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基(ただし、該へテロアリール基が、①式(I)中の-CONH-基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く)を表し、

環Zは、式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン、又は式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む、アルツハイマー症などの神経変性疾患の予防及び/又は治療のための医薬。

明細書

神経変性疾患治療剤

技術分野

本発明はアルツハイマー症又はてんかんなどの神経変性疾患の予防及び/又は治療のための医薬に関する。

背景技術

アルツハイマー症は老人性痴呆症を含む神経変性疾患であり、その患者の脳の特徴的な病理変化は、神経細胞の脱落による脳の萎縮、神経細胞内に繊維状の物質が蓄積した神経原繊維変化、大脳皮質の広範な部分に老人斑とよばれる斑状の蓄積物の存在である。現在では、老人班に蓄積している蛋白質が $A\beta$ (β -アミロイド)であることから、 $A\beta$ の何らかの原因による蓄積がアルツハイマー症の原因ではないかと言われている(アミロイド仮説)。すなわち、脳内の $A\beta$ の濃度が増大して凝集沈着することにより老人斑が形成され、凝集した $A\beta$ は神経細胞に作用して神経細胞死と神経原繊維変化を惹き起こすと言うものである。実際に $A\beta$ は神経細胞にアポトーシスを惹起することが報告されている(「ザ・ジャーナル・オブ・ニューロサイエンス:ジ・オフィシャル・ジャーナル・オブ・ザ・ソサエティー・フォー・ニューロサイエンス(The Journal of Neuroscience:the official journal of the society for neuroscience)」,(米国),2001年,第21巻,第1号,RC118)。よって、 $A\beta$ の蓄積による神経細胞死及び神経原繊維変化の防止はアルツハイマー症の治療の有効な手段となることが期待できる。

アルツハイマー症患者の脳内ではCOX(シクロオキシゲナーゼ)及VAβ前駆蛋白のプロモーター領域の活性が上昇しており、その上昇がNF-κB(Nuclear Factor-κB)の活性化によるものであると考えられている。脳内でのCOXの上

昇は炎症を惹き起こし、 $A\beta$ 前駆蛋白のプロモーター領域の活性の上昇は、 $A\beta$ を発現増殖させ細胞死を惹き起こすと考えられる。また $NF-\kappa$ Bは、神経細胞の可塑性に深く関係していると考えられることから、 $NF-\kappa$ Bがアルツハイマー症の発症に深く関わっていると考えられており、抗炎症剤及び $NF-\kappa$ B阻害作用を持つ薬剤によるアルツハイマー症の治療も検討されている(「ジャーナル・オブ・ペイン・アンド・シンプタム・マネージメント(Journal of Pain and Symptom Management)」,(米国),2002年,第23巻,第4号(増刊),p.S35-40;「ニューロレポート(Neuroreport)」,(英国),2001年,第12巻,第7号,p.1449-1452;「ザ・ジャーナル・オブ・クリニカル・インベスティゲーション(The Journal of Clinical Investigation)」,(米国),2001年,第107巻,第2号,p.135-142)。

しかしながら、神経細胞にΑβを作用させるとNF-κB以外にAP-1 (Activated Protein-1) も活性化されることが報告されており (「ザ・ジャーナ ル・オブ・ニューロサイエンス:ジ・オフィシャル・ジャーナル・オブ・ザ・ソ サエティー・フォー・ニューロサイエンス (The Journal of Neuroscience: the official journal of the society for neuroscience)」, (米国), 2001年, 第21巻, 第1号, RC118)、さらに最近の研究から、AP-1の活性化はア ポトーシスを惹起し、NF-κBの活性化は細胞を保護し細胞死を抑制すると考 えられているところから、NF-κBの選択的な活性化阻害はアポトーシスを促 進させ、アルツハイマー症の症状の悪化を招く可能性があると考えられる(「ザ・ ジャーナル・オブ・クリニカル・インベスティゲーション (The Journal of Clinical Investigation)」, (米国), 2001年, 第107巻, 第3号, p. 247-25 4: 「セル・アンド・ティシュー・リサーチ (Cell and Tissue Research)」, (ド イツ), 2000年, 第301巻, 第1号, p. 173-187;「ザ・ジャーナ ル・オプ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry)」, (米国), 2000年, 第275巻, 第20号, p. 15114-15121)。 従って、Αβの蓄積やΑβによる神経細胞死及び神経原繊維変化の防止のために

は、NF- κ BのみならずAP-1の活性化も同時に抑制する必要があると考えられる。実際にAP-1の活性化を抑制すると、紫外線照射や酸化的刺激によるアポトーシスが抑制されることが報告されており(「ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry)」,(米国),2001年,第276巻,第16号,p. 12697-12701;「モレキュラー・アンド・セルラー・バイオロジー(Molecular and Cellular Biology)」,(米国),2001年,第21巻,第9号,p. 3012-3024)、AP-1の活性化抑制がA β による神経細胞のアポトーシスの抑制にも効果的であることが期待される。

アルツハイマー症と同じく、脳に関する疾患であるてんかんでは、脳内の興奮性に働くグルタミン酸と抑制性に働く γ -アミノ酪酸のバランスの崩壊による大脳の異常興奮により発作が惹き起こされると考えられている。その際にAP-1が海馬や大脳皮質で活性化されていると考えられており(「薬学雑誌:ジャーナル・オブ・ザ・ファーマシューティカル・ソサエティー・オブ・ジャパン(Yakugaku Zasshi: Journal of The Pharmaceutical Society of Japan)」,1999年,第119巻,第7号,p. 510-518)、また、グルタミン酸レセプターのアゴニストであるカイニン酸をラットまたはマウスに投与すると $NF-\kappa$ Bも海馬で活性化されることが報告されていることから(「ニューロサイエンス(Neurosciece)」,(米国),1999年,第94巻,第1号,p. 83-91)、 $NF-\kappa$ B及びAP-1の阻害剤は、てんかんの発作の予防及び/又は治療に有効であると考えられる。

一方、N-フェニルサリチルアミド誘導体は、米国特許第4358443号明細書に植物成長阻害剤として開示されており、医薬としては、欧州特許第022121号明細書、特開昭62-99329号公報、及び米国特許第6117859号明細書に抗炎症剤としての開示がある。また、国際公開第99/65499号パンフレット、国際公開第02/49632号パンフレット、及び国際公開第02/076918号パンフレットではNF-κB阻害剤として開示されており、

国際公開第99/65499号パンフレット及び国際公開第02/49632号パンフレット中では抗アルツハイマー症薬としての用途についても示唆されている。しかしながら、同刊行物には、N-フェニルサリチルアミド誘導体がアルツハイマー症の予防又は治療に有効であることを示す直接的なデータは何一つ示されておらず、また、<math>AP-1(Activated Protein-1)活性化抑制作用についての記述もない。また、国際公開第02/051397号パンフレットにはN-フェニルサリチルアミド誘導体がサイトカイン産生抑制剤として開示されている。

発明の開示

本発明の課題は、アルツハイマー症又はてんかんの予防及び/又は治療のための医薬を提供することにある。本発明者らは、種々のN-アリールサリチルアミド誘導体及びその類縁体であるヒドロキシアリール誘導体について、 $TNF-\alpha$ 刺激下での $NF-\kappa$ B活性化抑制作用及び $TNF-\alpha$ 刺激下でのAP-1活性化抑制作用をレポーターアッセイ法にて検討した結果、本発明の化合物には $NF-\kappa$ B抑制作用に加えAP-1活性化抑制活性があることを見出した。この知見を基にして、本発明者らは、上記化合物についてアルツハイマー症及びてんかん病態モデル動物での有効性を確認して本発明を完成するに至った。

すなわち、本発明は、

(1) 下記一般式 (I):

(式中、

Aは、水素原子又はアセチル基を表し、

Eは、2,5-ジ置換若しくは3,5-ジ置換基フェニル基、又は置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基(ただし、該へテロア

リール基が、①式 (I) 中の-CONH-基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く)を表し、

環Zは、式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン、又は式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含み、アルツハイマー症の予防及び/又は治療のための医薬を提供するものである。また、本発明により、上記一般式(I)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む、てんかんの予防及び/又は治療のための医薬も提供される。

本発明の好ましい医薬としては、

- (2) Aが、水素原子である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (3) 環Zが、 $C_6 \sim C_{10}$ のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-CONH-E(式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)、又は5ないし10 員の $^-$ クーアレーン(該 $^-$ クーアレーンは、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-CONH-E(式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(4) 環 Z が、式 - O - A (式中、Aは一般式 (I) における定義と同義である) 及び式 - C O N H - E (式中、E は一般式 (I) における定義と同義である) で表される基の他にさらに置換基を有していてもよいベンゼン環、又は式 - O - A (式中、A は一般式 (I) における定義と同義である) 及び式 - C O N H - E (式中、E は一般式 (I) における定義と同義である) で表される基の他にさらに置換基を有していてもよいナフタレン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

- (5) 環 Z が、式 O A (式中、Aは一般式 (I) における定義と同義である) 及び式 C O N H E (式中、E は一般式 (I) における定義と同義である) で表される基の他にハロゲン原子をさらに有するベンゼン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (6) 環 Z が、式 O A (式中、Aは一般式 (I) における定義と同義である) 及び式 C O N H E (式中、E は一般式 (I) における定義と同義である) で表される基の他にさらに置換基を有していてもよいナフタレン環である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (7) Eが、2,5-ジ間換又は3,5-ジ間換基ブェニル基である化合物及び 薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物から なる群から選ばれる物質を有効成分として含む上記の医薬、
- (8) Eが、2,5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)、又は3,5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、
- (9) Eが、3,5-ビス(トリフルオロメチル)フェニル基である化合物及び

薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物から なる群から選ばれる物質を有効成分として含む上記の医薬、

(10) Eが、置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基(ただし、該へテロアリール基が、①式(I)中の一CONHー基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾールー2ーイル基、及び③無置換のベンゾチアゾールー2ーイル基である場合を除く)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬、

(11) Eが、置換基を有していてもよい5員の単環式へテロアリール基(ただし、該へテロアリール基が、無置換のチアゾールー2ーイル基である場合を除く)である化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む上記の医薬を挙げることができる。

別の観点からは、本発明により、上記の(1)~(11)の医薬の製造のための上記の各物質の使用が提供される。また、本発明により、アルツハイマー症の予防及び/又は治療方法であって、上記の各物質の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法、並びにてんかんの予防及び/又は治療方法であって、上記の各物質の予防及び/又は治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が提供される。

図面の簡単な説明

第1図は、本発明の医薬(化合物番号4)のアルツハイマーモデル動物における 記憶形成不全抑制作用を示した図である。

発明を実施するための最良の形態

本発明の理解のために「国際公開第02/49632号パンフレット」の開示を 参照することは有用である。上記「国際公開第02/49632号パンフレット」

の開示の全てを参照として本明細書の開示に含める。

本明細書において用いられる用語の意味は以下の通りである。

「ハロゲン原子」としては、特に言及する場合を除き、弗素原子、塩素原子、臭素原子、又は沃素原子のいずれを用いてもよい。

「炭化水素基」としては、例えば、脂肪族炭化水素基、アリール基、アリーレン 基、アラルキル基、架橋環式炭化水素基、スピロ環式炭化水素基、及びテルペン 系炭化水素等が挙げられる。

「脂肪族炭化水素基」としては、例えば、アルキル基、アルケニル基、アルキニル基、アルキレン基、アルケニレン基、アルキリデン基等の直鎖状又は分枝鎖状の1価若しくは2価の非環式炭化水素基;シクロアルキル基、シクロアルケニル基、シクロアルカンジエニル基、シクロアルキルーアルキル基、シクロアルケニレン基等の飽和又は不飽和の1価若しくは2価の脂環式炭化水素基等が挙げられる。

「アルキル基」としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s e c - ブチル、t e r t - ブチル、n - ペンチル、1 - ブチル、1 - ブチル、1 - ブチルプロピル、1 - ブチルプロピル、1 - ブメチルプロピル、1 - ブメチルペンチル、2 - ブメチルペンチル、1 - ブメチルペンチル、1 - ブメチルグナル、1 + ブチル、1 + ブチル、1

「アルケニル基」としては、例えば、ビニル、プロパー1-エンー1-イル、ア リル、イソプロペニル、ブター1-エンー1-イル、ブター2-エンー1-イル、 ブター3-エン-1-イル、2-メチルプロパー2-エンー1-イル、1-メチ

ルプロパー2ーエンー1ーイル、ペンター1ーエンー1ーイル、ペンター2ーエンー1ーイル、ペンター3ーエンー1ーイル、ペンター4ーエンー1ーイル、3ーメチルプター2ーエンー1ーイル、3ーメチルプター3ーエンー1ーイル、へキサー1ーエンー1ーイル、ヘキサー2ーエンー1ーイル、ヘキサー3ーエンー1ーイル、ヘキサー4ーエンー1ーイル、ヘキサー5ーエンー1ーイル、4ーメチルペンター3ーエンー1ーイル、ヘプター3ーエンー1ーイル、ヘプター3ーエンー1ーイル、カクター1ーエンー1ーイル、オクター1ーエンー1ーイル、ノナー1ーエンー1ーイル、ノナー8ーエンー1ーイル、デカー1ーエンー1ーイル、デカー9ーエンー1ーイル、ウンデカー1ーエンー1ーイル、ドデカー1ーエンー1ーイル、ドデカー1ーエンー1ーイル、トリデカー1ーエンー1ーイル、テトラデカー1コーエンー1ーイル、テトラデカー1コーエンー1ーイル、テトラデカー1コーエンー1ーイル、ペンタデカー14ーエンー1ーイル、ペンタデカー14ーエンー1ーイル、ペンタデカー14ーエンー1ーイル、ペンタデカー14ーエンー1ーイル、メンタデカー14ーエンー1ーイル、ボンタデカー14ーエンー1ーイル等の $C_2\sim C_{15}$ の直鎖状又は分枝鎖状のアルケニル基が挙げられる。

「アルキニル基」としては、例えば、エチニル、プロパー1ーインー1ーイル、プロパー2ーインー1ーイル、ブター1ーイル、ブター1ーイル、ブター3ーインー1ーイル、1ーメチルプロパー2ーインー1ーイル、ペンター1ーイル、ヘキサー1ーイル、ヘキサー1ーイル、ヘキサー5ーインー1ーイル、ヘプター4ーインー1ーイル、ヘプター1ーイル、ヘプター1ーイル、オクター1ーイル、オクター1ーインー1ーイル、オクター1ーインー1ーイル、オクター1ーインー1ーイル、ブカー1ーインー1ーイル、デカー1ーインー1ーイル、デカー1ーインー1ーイル、デカー1ーインー1ーイル、ドデカー1ーインー1ーイル、ドデカー1ーインー1ーイル、トリデカー12ーインー1ーイル、テトラデカー13ーインー1ーイル、ペンタデカー14ーインー11ーイル等の12。の直鎖状又は分枝鎖状のアルペンタデカー14ーインー11ーイル等の12。の直鎖状又は分枝鎖状のアル

キニル基が挙げられる。

「アルケニレン基」としては、例えば、エテンー1,2-ジイル、プロペンー1,3-ジイル、ブター1-エンー1,4-ジイル、プター2-エンー1,4-ジイル、ペンター2-エンー1,5-ジイル、ヘキサー3-エンー1,6-ジイル等の $C_1\sim C_6$ の直鎖状又は分枝鎖状のアルキレン基が挙げられる。

「アルキリデン基」としては、例えば、メチリデン、エチリデン、プロピリデン、 イソプロピリデン、プチリデン、ペンチリデン、ヘキシリデン等の $C_1 \sim C_6$ の直 鎖状又は分枝鎖状のアルキリデン基が挙げられる。

「シクロアルキル基」としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の $C_3 \sim C_8$ のシクロアルキル基が挙げられる。

なお、上記「シクロアルキル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1-インダニル、2-インダニル、1, 2, 3, 4-テトラヒドロナフタレン-1-イル、1, 2, 3, 4-テトラヒドロナフタレン-2-イル等の基が挙げられる。

「シクロアルケニル基」としては、例えば、2-シクロプロペン-1-イル、2-シクロプテン-1-イル、2-シクロペンテン-1-イル、3-シクロペンテン-1-イル、2-シクロヘキセン-1-イル、3-シクロヘキセン-1-イル、1-シクロプテン-1-イル、 $1-シクロペンテン-1-イル等の<math>C_3\sim C_6$ のシクロアルケニル基が挙げられる。

なお、上記「シクロアルケニル基」は、ベンゼン環、ナフタレン環等と縮環して

いてもよく、例えば、1-Aンダニル、2-Aンダニル、1, 2, 3, 4-Fトラヒドロナフタレン-1-Aル、1, 2, 3, 4-Fトラヒドロナフタレン-2-Aル、1-Aンデニル、2-Aンデニル等の基が挙げられる。

「シクロアルカンジエニル基」としては、例えば、2, 4 — シクロペンタンジエンー1 — イル、2, 4 — シクロヘキサンジエン-1 — イル、2, 5 — シクロヘキサンジエン-1 — イル等の C_5 \sim C_6 のシクロアルカンジエニル基が挙げられる。なお、上記「シクロアルカンジエニル基」は、ベンゼン環、ナフタレン環等と縮環していてもよく、例えば、1 — インデニル、2 — インデニル等の基が挙げられる。

「シクロアルキルーアルキル基」としては、「アルキル基」の1つの水素原子が、「シクロアルキル基」で置換された基が挙げられ、例えば、シクロプロピルメチル、1-シクロプロピルエチル、2-シクロプロピルエチル、3-シクロプロピルエチル、1-シクロプロピルエチル、1-シクロプロピルブチル、1-シクロプロピルブチル、1-シクロプロピルブチル、1-0クロプロピルブチル、1-0クロプロピルブチル、1-0クロプロピルブチル、1-0クロプロピルペンチル、1-0クロプロピルペンチル、1-0クロプロピルペンチル、シクロブチルメチル、シクロペンチルメチル、シクロペンチルメチル、シクロペンチルメチル、シクロペキシルブチル、シクロペキシルブチル、シクロペキシルブチル、シクロペナシルブチル、シクロペナシルデル、1-0シクロアルキルーアルキル基が挙げられる。

「シクロアルキレン基」としては、例えば、シクロプロパンー1,1 ージイル、シクロプロパンー1,2 ージイル、シクロブタンー1,1 ージイル、シクロブタンー1,2 ージイル、シクロブタンー1,3 ージイル、シクロペンタンー1,1 ージイル、シクロペンタンー1,2 ージイル、シクロペンタンー1,1 ージイル、シクロペナサンー1,1 ージイル、シクロヘキサンー1,1 ージイル、シクロヘキサンー1,1 ージイル、シクロヘキサンー1,1 ージイル、シクロヘプタンー1,1 ージイル、シクロヘプタンー1,1 ージイル、シクロヘプタンー1,1 ージイル、シクロトプタンー1,1 ージイル、シクロオクタンー1,1 ージイル等の1 ージイル等の1 ージイル、シクロオクタンー1,1 ージイル等の1 ージイル等の1 ージイル等の1 ージイル等の1 ージイル

「シクロアルケニレン基」としては、例えば、2-シクロプロペン-1, 1-ジイル、2-シクロプテン-1, 1-ジイル、2-シクロペンテン-1, 1-ジイル、3-シクロペンテン-1, 1-ジイル、2-シクロペキセン-1, 1-ジイル、2-シクロペキセン-1, 1-ジイル、2-シクロペキセン-1, 4-ジイル、3-シクロペキセン-1, 1-ジイル、1-シクロペキセン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1, 1-ジイル、1-シクロペンテン-1

「アリール基」としては、単環式又は縮合多環式芳香族炭化水素基が挙げられ、例えば、フェニル、1-ナフチル、2-ナフチル、アントリル、フェナントリル、アセナフチレニル等の $C_6\sim C_{14}$ のアリール基が挙げられる。

「アラルキル基」としては、「アルキル基」の1つの水素原子が、「アリール基」

で置換された基が挙げられ、例えば、ベンジル、1-tフチルメチル、2-tフチルメチル、アントラセニルメチル、フェナントレニルメチル、アセナフチレニルメチル、ジフェニルメチル、1-フェネチル、2-フェネチル、1-(1-tフチル) エチル、1-(2-tフチル) エチル、2-(1-tフチル) エチル、2-(1-tフチル) エチル、2-(2-tフチル) エチル、3-フェニルプロピル、3-(1-tフチル) プロピル、3-(1-tフチル) プロピル、3-(1-tフチル) プロピル、3-(1-tフチル) ブラル、4-(1-tフチル) ブチル、4-(1-tフチル) ブチル、4-(2-tフチル) ブチル、5-フェニルペンチル、5-(1-tフチル) ペンチル、5-(2-tフチル) ペンチル、6-フェニルへキシル、6-(1-tフチル) へキシル、6-(2-tフチル) へキシル等の $C_7 \sim C_{16}$ のアラルキル基が挙げられる。

「架橋環式炭化水素基」としては、例えば、ビシクロ〔2.1.0〕ペンチル、ビシクロ〔2.2.1〕ヘプチル、ビシクロ〔2.2.1〕オクチル、アダマンチル等の基が挙げられる。

「スピロ環式炭化水素基」、としては、例えば、スピロ[3.4]オクチル、スピロ[4.5]デカー[4.5]デカー[4.5]

「テルペン系炭化水素」としては、例えば、ゲラニル、ネリル、リナリル、フィチル、メンチル、ボルニル等の基が挙げられる。

「ハロゲン化アルキル基」としては、「アルキル基」の1つの水素原子が「ハロゲン原子」で置換された基が挙げられ、例えば、フルオロメチル、ジフルオロメチル、トリフルオロメチル、クロロメチル、ジクロロメチル、トリクロロメチル、ブロモメチル、ジブロモメチル、トリブロモメチル、ヨードメチル、ジョードメチル、トリヨードメチル、2, 2, 2ートリフルオロエチル、ペンタフルオロエチル、3, 3, 3ートリフルオロプロピル、ヘプタフルオロプロピル、ヘプタフルオロイソプロピル、ノナフルオロブチル、パーフルオロヘキシル等の1万至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキル基が挙げられる。

「ヘテロ環基」としては、例えば、環系を構成する原子(環原子)として、酸素

原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を少なくとも1個含む単環式又は縮合多環式非芳香族ヘテロ環基が挙げられる。

「単環式へテロアリール基」としては、例えば、2-フリル、3-フリル、2-チエニル、3ーチエニル、1ーピロリル、2ーピロリル、3ーピロリル、2ーオ キサゾリル、4-オキサゾリル、5-オキサゾリル、3-イソオキサゾリル、4 ーイソオキサゾリル、5ーイソオキサゾリル、2ーチアゾリル、4ーチアゾリル、 5-チアゾリル、3-イソチアゾリル、4-イソチアゾリル、5-イソチアゾリ ル、1ーイミダブリル、2ーイミダブリル、4ーイミダブリル、5ーイミダブリ ル、1ーピラブリル、3ーピラブリル、4ーピラブリル、5ーピラブリル、(1, 2. 3-オキサジアゾール) - 4-イル、(1, 2, 3-オキサジアゾール) - 5 アゾール) - 5 - イル、(1、2、5 - オキサジアゾール) - 3 - イル、(1, 2, 5-オキサジアゾール)-4-イル、(1, 3, 4-オキサジアゾール)-2-イ ル、(1, 3, 4- オキサジアゾール) - 5 - イル、フラザニル、<math>(1, 2, 3-チアジアゾール)-4-4ル、(1, 2, 3-4アジアゾール)-5-4ル、(1, 2, 3-4)2, 4-チアジアゾール) -3-イル、(1, 2, 4-チアジアゾール) -5-イ ル、(1, 2, 5-チアジアゾール) - 3-イル、(1, 2, 5-チアジアゾール) -1, 2, 3-1-5-イル、(2H-1, 2, 3-トリアゾール)-2-イル、(2H-1, 2, 3-トリアゾール) $3 - h y r y' - \mu - \mu - 4 - 4 \mu + (1 H - 1, 2, 4 - h y r y' - \mu) - 1 - 4 \mu + \mu$ (1H-1, 2, 4-1)ry $-<math>\nu$) -3-1 ν , <math>(1H-1, 2, 4-1)ryy-ル) -5-イル、(4H-1, 2, 4-トリアゾール) <math>-3-イル、(4H-1, 4H-1)

「縮合多環式へテロアリール基」としては、例えば、2ーベンゾフラニル、3ーベンゾフラニル、4ーベンゾフラニル、5ーベンゾフラニル、6ーベンゾフラニル、7ーベンゾフラニル、1ーイソベンゾフラニル、4ーイソベンゾフラニル、5ーイソベンゾフラニル、2ーベンゾ [b] チエニル、3ーベンゾ [b] チエニル、4ーベンゾ [b] チエニル、5ーベンゾ [b] チエニル、6ーベンゾ [b] チエニル、7ーベンゾ [b] チエニル、1ーベンゾ [c] チエニル、4ーベンゾ [c] チエニル、1ーインドリル、1ーインドリル、2ーインドリル、3ーインドリル、4ーインドリル、5ーインドリル、6ーインドリル、7ーインドリル、(2Hーイソインドール) ー1ーイル、(2Hーイソインドール) ー2ーイル、(2Hーイソインドール) ー2ーイル、(1Hーインダゾール) ー1ーイル、(1Hーインダゾール) ー3ーイル、(1Hーインダゾール) ー4ーイル、(1Hーインダゾール) ー5ーイル、(1Hーインダゾール) ー7ーイル、

(2H- インダゾール) - 1 - イル、 (2H- インダゾール) - 2 - イル、 (2Hーインダゾール) -4-イル、(2 H-インダゾール) -5-イル、2-ベンゾオ キサゾリル、2-ベンゾオキサゾリル、4-ベンゾオキサゾリル、5-ベンゾオ キサゾリル、6-ベンゾオキサゾリル、7-ベンゾオキサゾリル、(1,2-ベン ゾイソオキサゾール) -3-イル、(1,2-ベンゾイソオキサゾール) -4-イ ル、(1, 2ーベンゾイソオキサゾール)-5-イル、(1, 2-ベンゾイソオキ サゾール) -6-イル、(1, 2-ベンゾイソオキサゾール) -7-イル、(2, 1-ベンゾイソオキサゾール)-3-イル、(2,1-ベンゾイソオキサゾール) -4-イル、(2, 1-ベンゾイソオキサゾール)-5-イル、(2, 1-ベンゾ イソオキサゾール) - 6 - イル、(2,1 - ベンゾイソオキサゾール) - 7 - イル、 2-ベンゾチアゾリル、4-ベンゾチアゾリル、5-ベンゾチアゾリル、6-ベ ンプチアプリル、7ーベンブチアプリル、(1,2ーベンブイソチアプール)-3 -イル、(1, 2-ベンゾイソチアゾール) - 4 -イル、(1, 2-ベンゾイソチ (1, 2-4) (1, 2-4) (1, 2-4) (1, 2-4) (1, 2-4)-ベンゾイソチアゾール) - 7 -イル、(2, 1 -ベンゾイソチアゾール) - 3 -イル、(2, 1ーベンゾイソチアゾール)-4ーイル、(2, 1ーベンゾイソチア ゾール) -5-イル、(2, 1-ベンゾイソチアゾール)-6-イル、(2, 1-ベンゾイソチアゾール) - 7 - イル、(1, 2, 3 - ベンゾオキサジアゾール) -4-イル、(1, 2, 3-ベンゾオキサジアゾール) - 5 -イル、(1, 2, 3 -ベンゾオキサジアゾール) -6-イル、(1, 2, 3-ベンゾオキサジアゾール) -7-イル、(2, 1, 3-ベンゾオキサジアゾール)-4-イル、(2, 1, 3)ーベンゾオキサジアゾール) -5-イル、(1, 2, 3-ベンゾチアジアゾール) -4-4ル、(1, 2, 3-4ングチアジアゾール)-5-4ル、(1, 2, 3-4)ベンプチアジアゾール) -6-イル、(1,2,3-ベンブチアジアゾール) -7 ゾチアジアゾール) -5-イル、(1H-ベンゾトリアゾール) -1-イル、(1 H-ベンゾトリアゾール)-4-イル、(1H-ベンゾトリアゾール)-5-イル、

(1H-ベンゾトリアゾール)-6-イル、(1H-ベンゾトリアゾール)-7-イル、(2H-ベンゾトリアゾール)-2-イル、(2H-ベンゾトリアゾール) -4-イル、(2H-ベンゾトリアゾール)-5-イル、2-キノリル、3-キノ リル、4ーキノリル、5ーキノリル、6ーキノリル、7ーキノリル、8ーキノリ ル、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリ ル、6-イソキノリル、7-イソキノリル、8-イソキノリル、3-シンノリニ ル、4-シンノリニル、5-シンノリニル、6-シンノリニル、7-シンノリニ ル、8-シンノリニル、2-キナゾリニル、4-キナゾリニル、5-キナゾリニ ル、6ーキナゾリニル、7ーキナゾリニル、8ーキナゾリニル、2ーキノキサリ ニル、5-キノキサリニル、6-キノキサリニル、1-フタラジニル、5-フタ ラジニル、6-フタラジニル、2-ナフチリジニル、3-ナフチリジニル、4-ナフチリジニル、2-プリニル、6-プリニル、7-プリニル、8-プリニル、 2-プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニル、 1 - カルバプリル、2 - カルバプリル、3 - カルバプリル、4 - カルバプリル、 $9-カルバゾリル、<math>2-(\alpha-カルボリニル)$ 、 $3-(\alpha-カルボリニル)$ 、4- $(\alpha-\pi)$ ルボリニル)、 $5-(\alpha-\pi)$ ルボリニル)、 $6-(\alpha-\pi)$ ルボリニル)、7 $-(\alpha-\pi)$ カルボリニル)、 $8-(\alpha-\pi)$ カルボリニル)、 $9-(\alpha-\pi)$ カルボリニル)、 1-(β-π)カルボニリル)、3-(β-π)カルボニリル)、4-(β-π)カルボニリル)、 5-(β-π カルボニリル)、<math>6-(β-π カルボニリル)、7-(β-π カルボニリル)、 8 $-(\beta - \pi \mu \pi \pi \pi \mu \pi)$ 、9 $-(\beta - \pi \mu \pi \pi \mu \pi \mu)$ 、1 $-(\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $2-(y-\pi)$ カルボリニル)、 $4-(y-\pi)$ ルボリニル)、 $5-(y-\pi)$ ルボリニル)、 $6 - (\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $7 - (\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 $8 - (\gamma - \pi \mu \pi \mu \pi \mu \pi \mu)$ 、 9- (y-カルボリニル)、1-アクリジニル、2-アクリジニル、3-アクリジ ニル、4-アクリジニル、9-アクリジニル、1-フェノキサジニル、2-フェ ノキサジニル、3-フェノキサジニル、4-フェノキサジニル、10-フェノキ サジニル、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニ ル、4-フェノチアジニル、10-フェノチアジニル、1-フェナジニル、2-

フェナジニル、1ーフェナントリジニル、2-フェナントリジニル、3-フェナ ントリジニル、4-フェナントリジニル、6-フェナントリジニル、7-フェナ ントリジニル、8-フェナントリジニル、9-フェナントリジニル、10-フェ ナントリジニル、2-フェナントロリニル、3-フェナントロリニル、4-フェ ナントロリニル、5ーフェナントロリニル、6ーフェナントロリニル、7ーフェ ナントロリニル、8-フェナントロリニル、9-フェナントロリニル、10-フ ェナントロリニル、1ーチアントレニル、2ーチアントレニル、1ーインドリジ ニル、2ーインドリジニル、3ーインドリジニル、5ーインドリジニル、6ーイ ンドリジニル、7ーインドリジニル、8-インドリジニル、1-フェノキサチイ ニル、2-フェノキサチイニル、3-フェノキサチイニル、4-フェノキサチイ ニル、チエノ〔2, 3-b〕フリル、ピロロ〔1, 2-b〕ピリダジニル、ピラ プロ〔1,5ーa〕ピリジル、イミダゾ〔11,2ーa〕ピリジル、イミダゾ〔1, 5-a] ピリジル、イミダゾ〔1, 2-b] ピリダジニル、イミダゾ〔1, 2a] ピリミジニル、1, 2, 4ートリアゾロ [4, 3-a] ピリジル、1, 2, 4-トリアゾロ〔4, 3-a〕ピリダジニル等の8乃至14員の縮合多環式ヘテ ロアリール基が挙げられる。

「単環式非芳香族へテロ環基」としては、例えば、1ーアジリジニル、1ーアゼチジニル、1ーピロリジニル、2ーピロリジニル、3ーピロリジニル、2ーテトラヒドロフリル、チオラニル、1ーイミダゾリジニル、2ーイミダゾリジニル、2ーイミダゾリジニル、1ーピラゾリジニル、3ーピラゾリジニル、4ーピラゾリジニル、1ーピラゾリジニル、3ーピラゾリジニル、4ーピラゾリジニル、1ー(2ーピロリニル)、1ー(2ーイミダゾリニル)、2ー(2ーイミダゾリニル)、1ー(2ーピラゾリニル)、3ー(2ーピラゾリニル)、ピペリジノ、2ーピペリジニル、3ーピペリジニル、4ーピペリジニル、1ーホモピペリジニル、2ーテトラヒドロピラニル、モルホリノ、(チオモルホリン) ー4ーイル、1ーピペラジニル、1ーホモピペラジニル等の3乃至7員の飽和若しくは不飽和の単環式非芳香族へテロ環基が挙げられる。

「縮合多環式非芳香族ヘテロ環基」としては、例えば、2-キヌクリジニル、2

ークロマニル、3ークロマニル、4ークロマニル、5ークロマニル、6ークロマ ニル、7-クロマニル、8-クロマニル、1-イソクロマニル、3-イソクロマ ニル、4ーイソクロマニル、5ーイソクロマニル、6ーイソクロマニル、7ーイ ソクロマニル、8-イソクロマニル、2-チオクロマニル、3-チオクロマニル、 4-チオクロマニル、5-チオクロマニル、6-チオクロマニル、7-チオクロ マニル、8-チオクロマニル、1-イソチオクロマニル、3-イソチオクロマニ ル、4-イソチオクロマニル、5-イソチオクロマニル、6-イソチオクロマニ ル、7ーイソチオクロマニル、8ーイソチオクロマニル、1ーインドリニル、2 ーインドリニル、3ーインドリニル、4ーインドリニル、5ーインドリニル、6 ーインドリニル、7ーインドリニル、1ーイソインドリニル、2ーイソインドリ ニル、4-イソインドリニル、5-イソインドリニル、2-(4H-クロメニル)、 3-(4H-クロメニル)、4-(4H-クロメニル)、5-(4H-クロメニル)、 6-(4H-クロメニル)、7-(4H-クロメニル)、8-(4H-クロメニル)、1-イソクロメニル、3-イソクロメニル、4-イソクロメニル、5-イソクロ メニル、6-イソクロメニル、7-イソクロメニル、8-イソクロメニル、1-(1H-ピロリジニル)、2-(1H-ピロリジニル)、3-(1H-ピロリジニ $(1 H - 2 \pi)$ $(1 H - 2 \pi)$ ロリジニル) 等の8乃至10員の飽和若しくは不飽和の縮合多環式非芳香族ヘテ ロ環基が挙げられる。

上記「ヘテロ環基」の中で、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式ヘテロアリール基、並びに、環系を構成する原子(環原子)として、結合手を有する窒素原子の他に、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1乃至3種を有していてもよい単環式又は縮合多環式非芳香族ヘテロ環基を「環状アミノ基」と称し、例えば、1ーピロリジニル、1ーイミダゾリジニル、1ーピラゾリジニル、1ーオキサゾリジニル、1ーチアゾリジニル、ピペリジノ、モルホリノ、1ーピープロリジニル、1ープロリジニル、ピペリジノ、モルホリノ、1ーピープロリジニル、1ープロリジェル、1ープロリジェル、1ープロリジェル、1ープロリジェル、1ープロリジェル・1ープロリジェル・1ープロリンのは、1ープロリン

ペラジニル、チオモルホリンー4ーイル、1ーホモピペリジニル、1ーホモピペラジニル、2ーピロリンー1ーイル、2ーイミダゾリンー1ーイル、2ーピラゾリンー1ーイル、1ーインドリニル、2ーイソインドリニル、1, 2, 3, 4ーテトラヒドロキノリンー1ーイル、1, 2, 3, 4ーテトラヒドロイソキノリンー2ーイル、1ーピロリル、1ーイミダゾリル、1ーピラゾリル、1ーインドリル、1ーインダゾリル、2ーイソインドリル等の基が挙げられる。

上記「シクロアルキル基」、「シクロアルケニル基」、「シクロアルカンジェニル基」、「アリール基」、「シクロアルキレン基」、「シクロアルケニレン基」、「アリーレン基」、「架橋環式炭化水素基」、「スピロ環式炭化水素基」、及び「ヘテロ環基」を総称して「環式基」と称する。また、該「環式基」の中で、特に「アリール基」、「アリーレン基」、「単環式ヘテロアリール基」、及び「縮合多環式ヘテロアリール基」を総称して「芳香環式基」と称する。

「炭化水素-オキシ基」としては、「ヒドロキシ基」の水素原子が「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素-オキシ基」としては、例えば、アルコキシ基(アルキル-オキシ基)、アルケニル-オキシ基、アルキニル-オキシ基、シクロアルキル-オキシ基、シクロアルキル-オキシ基、シクロアルキル-オキシ基等の脂肪族炭化水素-オキシ基;アリール-オキシ基;アラルキル-オキシ基;アルキレン-ジオキシ基等が挙げられる。

「アルコキシ基(アルキルーオキシ基)」としては、例えば、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-プトキシ、n-プトキシ、n-プトキシ、n-プトキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペキシルオキシ、n-ペンチルオキシ、n-ペキシルオキシ、n-ペンチルオキシ、n-ペナチルペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-ペンチルオキシ、n-0 、n-0 、n-

3-ジメチルブトキシ、2-エチルブトキシ、1-エチルブトキシ、1-エチル-1-メチルプロポキシ、n-ペプチルオキシ、n-オクチルオキシ、n-ナンデシルオキシ、n-ドデシルオキシ、n-ドデシルオキシ、n-ドデシルオキシ、n-トリデシルオキシ、n-テトラデシルオキシ、n-ペンタデシルオキシ等のn-0-15の直鎖状又は分枝鎖状のアルコキシ基が挙げられる。

「アルケニルーオキシ基」としては、例えば、ビニルオキシ、(プロパー1ーエン -1-イル) オキシ、アリルオキシ、イソプロペニルオキシ、(ブター1-エンー 1-イル)オキシ、(ブター2-エン-1-イル)オキシ、(ブター3-エン-1 ーイル)オキシ、(2ーメチルプロパー2ーエンー1ーイル)オキシ、(1ーメチ ルプロパー2-エン-1-イル)オキシ、(ペンタ-1-エン-1-イル)オキシ、 (ペンター4-エン-1-イル)オキシ、(3-メチルブター2-エン-1-イル) オキシ、(3-メチルブタ-3-エン-1-イル)オキシ、(ヘキサ-1-エン-1-イル) オキシ、(ヘキサー2-エンー1-イル) オキシ、(ヘキサー3-エン -1-イル)オキシ、(ヘキサー4-エンー1ーイル)オキシ、(ヘキサー5-エ ン-1-イル)オキシ、(4-メチルペンタ-3-エン-1-イル)オキシ、(4 ーメチルペンター3ーエンー1ーイル)オキシ、(ヘプター1ーエンー1ーイル) オキシ、(ヘプター6-エンー1-イル) オキシ、(オクター1-エンー1-イル) オキシ、(オクター7ーエンー1ーイル)オキシ、(ノナー1ーエンー1ーイル) オキシ、(ノナー8-エン-1-イル) オキシ、(デカー1-エン-1-イル) オ キシ、(デカー9-エン-1-イル) オキシ、(ウンデカー1-エン-1-イル) オキシ、(ウンデカー10-エン-1-イル) オキシ、(ドデカー1-エン-1-イル) オキシ、(ドデカー11-エンー1-イル) オキシ、(トリデカー1-エン **-1-イル)オキシ、(トリデカ-12-エン-1-イル)オキシ、(テトラデカ** -1-エン-1-イル) オキシ、(テトラデカ-13-エン-1-イル) オキシ、 (ペンタデカー1-エンー1ーイル) オキシ、(ペンタデカー14-エンー1ーイ ル) オキシ等の C, ~ C, 5の直鎖状又は分枝鎖状のアルケニルーオキシ基が挙げ

られる。

「アルキニルーオキシ基」としては、例えば、エチニルオキシ、(プロパー1ーイ ンー1ーイル)オキシ、(プロパー2ーイン-1ーイル)オキシ、(ブター1ーイ ンー1ーイル)オキシ、(ブター3ーイン-1ーイル)オキシ、(1ーメチルプロ パー2-イン-1-イル)オキシ、(ペンター1-イン-1-イル)オキシ、(ペ ンター4ーインー1ーイル) オキシ、(ヘキサー1ーインー1ーイル) オキシ、(ヘ キサー5-イン-1-イル) オキシ、(ヘプター1-イン-1-イル) オキシ、(ヘ プター6ーイン-1ーイル) オキシ、(オクター1ーイン-1ーイル) オキシ、(オ クター7-イン-1-イル)オキシ、(ノナ-1-イン-1-イル)オキシ、(ノ ナー8-イン-1-イル)オキシ、(デカー1-イン-1-イル)オキシ、(デカ -9-イン-1-イル)オキシ、(ウンデカ-1-イン-1-イル)オキシ、(ウ ンデカー10-イン-1-イル)オキシ、(ドデカー1-イン-1-イル)オキシ、 (ドデカー11-イン-1-イル) オキシ、(トリデカー1-イン-1-イル) オ キシ、(トリデカー12ーインー1ーイル) オキシ、(テトラデカー1ーインー1 ーイル)オキシ、(テトラデカー13ーインー1ーイル)オキシ、(ペンタデカー 1-イン-1-イル) オキシ、(ペンタデカ-14-イン-1-イル) オキシ等の C₂~C₁₅の直鎖状又は分枝鎖状のアルキニルーオキシ基が挙げられる。

「シクロアルキルーオキシ基」としては、例えば、シクロプロポキシ、シクロブトキシ、シクロペンチルオキシ、シクロヘキシルオキシ、シクロヘプチルオキシ、シクロオクチルオキシ等の $C_3 \sim C_8$ のシクロアルキルーオキシ基が挙げられる。「シクロアルキルーアルキルーオキシ基」としては、例えば、シクロプロピルメトキシ、1ーシクロプロピルエトキシ、2ーシクロプロピルエトキシ、3ーシクロプロピルプロポキシ、4ーシクロプロピルブトキシ、5ーシクロプロピルペンチルオキシ、6ーシクロプロピルヘキシルオキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロペンチルメトキシ、シクロペンチルメトキシ、シクロヘキシルプロポキシ、4ーシクロヘキシルブトキシ、シクロヘプチルメトキシ、シクロスナルメトキシ、シクロスナルメトキシ、シクロスカチルメ

トキシ、6-シクロオクチルヘキシルオキシ等の $C_4\sim C_{14}$ のシクロアルキルーアルキルーオキシ基が挙げられる。

「アリールーオキシ基」としては、例えば、フェノキシ、1-ナフチルオキシ、2-ナフチルオキシ、アントリルオキシ、フェナントリルオキシ、アセナフチレニルオキシ等の $C_6 \sim C_{14}$ のアリールーオキシ基が挙げられる。

「アラルキルーオキシ基」としては、例えば、ベンジルオキシ、1-ナフチルメトキシ、2-ナフチルメトキシ、アントラセニルメトキシ、フェナントレニルメトキシ、アセナフチレニルメトキシ、ジフェニルメトキシ、1-フェネチルオキシ、2-フェネチルオキシ、1- (1-ナフチル) エトキシ、1- (2-ナフチル) エトキシ、2- (2-ナフチル) エトキシ、3-フェニルプロポキシ、3- (1-ナフチル) プロポキシ、3- (2-ナフチル) プロポキシ、4- (2-ナフチル) ブトキシ、4- (1-ナフチル) ブトキシ、4- (1-ナフチル) ブトキシ、1- (1-ナフチル) ブトキシ、1- (1-+フチル) ベンチルオキシ、1- (1-+フチル) ベンチルオキシ、1- (1-+フチル) ベキシルオキシ、1- (1-+フチル) ベキシルオキシ、1- (1-+フチル) ベキシルオキシ、1-+シーオーシーズェール・1-大ル (1-+フチル) ベキシルオキシ、1-+シーオーシーズェール・1-大ル (1-+フチル) ベキシルオキシ、1-+シーズェール・1-大ル (1-+フチル) ベキシルオキシ、1-+シーズェール・1-大ル (1-+フチル) ベキシルオキシ、1-+シーズェール・1-+ン・1-+ン・1-+ン・1-+ン・1-+ン・1-+ン・1-+ン・

「アルキレンジオキシ基」としては、例えば、メチレンジオキシ、エチレンジオキシ、1-メチルメチレンジオキシ、1, 1-ジメチルメチレンジオキシ等の基が挙げられる。

「ハロゲン化アルコキシ基(ハロゲン化アルキルーオキシ基)」としては、「ヒドロキシ基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、フルオロメトキシ、ジフルオロメトキシ、クロロメトキシ、ブロモメトキシ、ヨードメトキシ、トリフルオロメトキシ、トリクロロメトキシ、2,2,2ートリフルオロエトキシ、ペンタフルオロエトキシ、3,3,3ートリフルオロプポキシ、ヘプタフルオロプポキシ、ハナフルオロブポキシ、パーフルオロプポキシ、ヘプタフルオロイソプロポキシ、ノナフルオロブトキシ、パーフルオロヘキシルオキシ等の1万至13個のハロゲン原子で置換されたC1~C6の直鎖状又は分枝鎖状のハロゲン化アルコキシ基が挙げ

られる。

「ヘテロ環ーオキシ基」としては、「ヒドロキシ基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。「ヘテロ環ーオキシ基」としては、例えば、単環式ヘテロアリールーオキシ基、縮合多環式ヘテロアリールーオキシ基、単環式非芳香族ヘテロ環ーオキシ基、縮合多環式非芳香族ヘテロ環ーオキシ基等が挙げられる。

「単環式へテロアリールーオキシ基」としては、例えば、3-チエニルオキシ、(イソキサゾール-3-イル) オキシ、(チアゾール-4-イル) オキシ、2-ピリジルオキシ、3-ピリジルオキシ、4-ピリジルオキシ、(ピリミジン-4-イル) オキシ等の基が挙げられる。

「縮合多環式へテロアリールーオキシ基」としては、5 ーインドリルオキシ、(ベンズイミダゾールー2ーイル) オキシ、2 ーキノリルオキシ、3 ーキノリルオキシ シ、4 ーキノリルオキシ等の基が挙げられる。

「単環式非芳香族へテロ環ーオキシ基」としては、例えば、3-ピロリジニルオキシ、4-ピペリジニルオキシ等の基が挙げられる。

「縮合多環式非芳香族へテロ環ーオキシ基」としては、例えば、3-インドリニルオキシ、4-クロマニルオキシ等の基が挙げられる。

「炭化水素-スルファニル基」としては、「スルファニル基」の水素原子が、「炭化水素基」で置換された基が挙げられ、「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。「炭化水素-スルファニル基」としては、例えば、アルキル-スルファニル基、アルケニル-スルファニル基、アルキニル-スルファニル基、シクロアルキル-スルファニル基、シクロアルキル-スルファニル基、シクロアルキル-スルファニル基、アリール-スルファニル基、アラルキル-スルファニル基等が挙げられる。

「アルキルースルファニル基」としては、例えば、メチルスルファニル、エチルスルファニル、n-プロピルスルファニル、イソプロピルスルファニル、n-ブチルスルファニル、sec-ブチルスルファニル、t

「アルケニルースルファニル基」としては、例えば、ビニルスルファニル、(プロパー1ーエン-1ーイル)スルファニル、アリルスルファニル、イソプロペニルスルファニル、(ブタ-1ーエン-1ーイル)スルファニル、(ブタ-2-エン-1ーイル)スルファニル、(ブタ-1-エン-1ーイル)スルファニル、(グタ-2-エン-1ーイル)スルファニル、(ブタ-3-エン-1ーイル)スルファニル、(2-メチルプロパ-2-エン-1ーイル)スルファニル、(パンタ-1-エン-1ーイル)スルファニル、(パンタ-2-エン-1ーイル)スルファニル、(パンタ-2-エン-1ーイル)スルファニル、(パンタ-4-エン-1ーイル)スルファニル、(3-メチルブタ-2-エン-1ーイル)スルファニル、(3-メチルブタ-3-エン-1ーイル)スルファニル、(4+4-エン-1-イル)スルファニル

r=n、 $(4-x+n^2v+n-3-x-1-1-1)$ スルファニル、(4-x+n-2v+n-3-x-1-1-1) スルクター3-x-1-1-1 スルファニル、 $(n^2y+1-x-1-1-1)$ スルファニル、 $(n^2y+1-1-x-1-1-1)$ スルファニル等の $(n^2y+1-1-x-1-1-1)$ スルファニル等の $(n^2y+1-1-x-1-1-1)$ スルファニル等の $(n^2y+1-1-x-1-1-1)$ スルファニル等の $(n^2y+1-1-x-1-1-1)$ の直鎖状又は分枝 鎖状のアルケニルースルファニル基が挙げられる。

「アルキニルースルファニル基」としては、例えば、エチニルスルファニル、(プロパー1-インー1-イル)スルファニル,(プロパー2-インー1-イル)スルファニル,(ブター1-インー1-イル)スルファニル、(ブター3-インー1-イル)スルファニル、(ブター3-インー1-イル)スルファニル、(1-メチルプロパー2-インー1-イル)スルファニル、(ペンター1-インー1-イル)スルファニル、(ペンター1-インー1-イル)スルファニル、(ヘキサー1-イン)スルファニル、(ヘキサー1-イル)スルファニル、(ヘキサー1-イル)スルファニル、(ヘプター1-イル)スルファニル、(オクター1-イル)スルファニル、(オクター1-イル)スルファニル、(オクター1-インー1-イル)スルファニル、(オクター1-インー1-イル)スルファニル、(オクター1-インー1-イル)スルファニル、(ブカー1-インー1-イル)スルファニル、(デカー1-インー1-イル)スルファニル、(デカー1-インー1-イル)スルファニル、(ヴンデカー1-インー1-イル)スルファニル、(ヴンデカー1-インー1-イル)スルファニル、(ヴンデカー10-イン-1-イル)スルファニル、(ドデカー1-イン-1-イン-1-イル)スルファニル、(ドデカー1-イン-1-イン-1-イル)スルファニル、(ドデカー1-イン-1-

 $- \langle \lambda \rangle$ スルファニル、(トリデカー $1 - \langle \lambda \rangle$ スルファニル、(トリデカー $1 2 - \langle \lambda \rangle$ スルファニル、(テトラデカー $1 - \langle \lambda \rangle$ スルファニル、(テトラデカー $1 3 - \langle \lambda \rangle$ スルファニル、(ペンタデカー $1 - \langle \lambda \rangle$ スルファニル、(ペンタデカー $1 - \langle \lambda \rangle$ スルファニル、(ペンタデカー $1 - \langle \lambda \rangle$ スルファニル等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のアルキニルースルファニル基が挙げられる。

「シクロアルキルースルファニル基」としては、例えば、シクロプロピルスルファニル、シクロプチルスルファニル、シクロペンチルスルファニル、シクロヘキシルスルファニル、シクロへプチルスルファニル、シクロオクチルスルファニル等のC₃~C₈のシクロアルキルースルファニル基が挙げられる。

「シクロアルキルーアルキルースルファニル基」としては、例えば、(シクロプロピルメチル)スルファニル、(1-シクロプロピルエチル)スルファニル、(2-シクロプロピルエチル)スルファニル、(3-シクロプロピルプロピル)スルファニル、(1-シクロプロピルプロピル スルファニル、(1-シクロプロピルプロピル スルファニル、(1-シクロプロピルプロピル スルファニル、(1-シクロプロピルペンチル)スルファニル、(1-シクロプロピルペンチル)スルファニル、(1-シクロプロピルへキシル)スルファニル、(1-シクロブチルメチル)スルファニル、(1-シクロブチルメチル)スルファニル、(1-シクロへキシルメチル)スルファニル、(1-シクロへキシルブテル)スルファニル、(1-シクロへキシルブチル)スルファニル、(1-シクロへキシルブチル)スルファニル、(1-シクロへキシルブチル)スルファニル、(1-シクロへナシルブチル)スルファニル、(1-シクロへナシルブチル)スルファニル、(1-シクロへプチルメチル)スルファニル、(1-シクロオクチルメチル)スルファニル、(1-シクロオクチルメチル)スルファニル、(1-シクロオクチルスチル)スルファニル、(1-)クロオクチルスチル)スルファニル、(1-)クロオクチルスチル)スルファニル等の 1-00 と 1-

「アリールースルファニル基」としては、例えば、フェニルスルファニル、1-ナフチルスルファニル、2-ナフチルスルファニル、アントリルスルファニル、フェナントリルスルファニル、アセナフチレニルスルファニル等の $C_6 \sim C_{14}$ のアリールースルファニル基が挙げられる。

「アラルキルースルファニル基」としては、例えば、ベンジルスルファニル、(1

ーナフチルメチル)スルファニル、(2-ナフチルメチル)スルファニル、(7ントラセニルメチル)スルファニル、(7セナフチレニルメチル)スルファニル、(1セナフチレニルメチル)スルファニル、(10フェネチル)スルファニル、(10フェネチル)スルファニル、(11ーで 11ーで 11ーで 11ーで 12ーで 13ーで 14・アンチル)スルファニル、(11ーで 14・アンチル)スルファニル、(14・アンチル)スルファニル、(15・アンチル)スルファニル、(15・アンチル)スルファニル、(17・アンチル)スルファニル、(18・アンチル)スルファニル、(19・アンチル)スルファニル、(19・アンチル)スルファニル、(11・アンチル)スルファニル・(11・アンチル・(11・アンチル)スルファニル・(11・アンチル・(11・アン

「ハロゲン化アルキルースルファニル基」としては、「スルファニル基」の水素原子が「ハロゲン化アルキル基」で置換された基が挙げられ、例えば、(フルオロメチル)スルファニル、(クロロメチル)スルファニル、(ブロモメチル)スルファニル、(トリカロロメチル)スルファニル、(トリカロロメチル)スルファニル、(トリカロロメチル)スルファニル、(クカロロメチル)スルファニル、(クカロロメチル)スルファニル、(クカフルオロエチル)スルファニル、(クカフルオロエチル)スルファニル、(クカフルオロプロピル)スルファニル、(クカフルオロプロピル)スルファニル、(クカフルオロイソプロピル)スルファニル、(クナフルオロブチル)スルファニル、(クカフルオロイソプロピル)スルファニル、(クナフルオロブチル)スルファニル、(パーフルオロへキシル)スルファニル等の1万至13個のハロゲン原子で置換された $C_1 \sim C_6$ の直鎖状又は分枝鎖状のハロゲン化アルキルースルファニル基が挙げられる。

「ヘテロ環ースルファニル基」としては、「スルファニル基」の水素原子が、「ヘテロ環基」で置換された基が挙げられ、「ヘテロ環」としては、上記「ヘテロ環基」

と同様の基が挙げられる。「ヘテロ環ースルファニル基」としては、例えば、単環 式ヘテロアリールースルファニル基、縮合多環式ヘテロアリールースルファニル 基、単環式非芳香族ヘテロ環ースルファニル基、縮合多環式非芳香族ヘテロ環ー スルファニル基等が挙げられる。

「単環式へテロアリールースルファニル基」としては、例えば、(イミダゾールー2-4ル) スルファニル、(1, 2, 4-トリアゾール-2-4ル) スルファニル、(ピリジン-2-4ル) スルファニル、(ピリジン-4-4ル) スルファニル、(ピリジン-2-4ル) スルファニル、(ピリジン-2-4ル) スルファニル等の基が挙げられる。

「縮合多環式へテロアリールースルファニル基」としては、(ベンズイミダゾールー2ーイル) スルファニル、(キノリンー2ーイル) スルファニル、(キノリンー4ーイル) スルファニル等の基が挙げられる。

「単環式非芳香族へテロ環ースルファニル基」としては、例えば、(3-ピロリジニル)スルファニル、(4-ピペリジニル)スルファニル等の基が挙げられる。

「縮合多環式非芳香族へテロ環ースルファニル基」としては、例えば、(3ーインドリニル)スルファニル、(4ークロマニル)スルファニル等の基が挙げられる。「アシル基」としては、例えば、ホルミル基、グリオキシロイル基、チオホルミル基、カルバモイル基、チオカルバモイル基、スルファモイル基、スルフィナモイル基、カルボキシ基、スルホ基、ホスホノ基、及び下記式:

(式中、R^{a1}及びR^{b1}は、同一又は異なって、炭化水素基又はヘテロ環基を表すか、あるいはR^{a1}及びR^{b1}が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシル基」の定義において、

式 $(\omega-1$ A) で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 カルボニル基」(具体例: アセチル、プロピオニル、プチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ラウロイル、ミリストイル、パルミトイル、アクリロイル、プロピオロイル、メタクリロイル、クロトノイル、イソクロトノイル、シクロヘキシルカルボニル、シクロヘキシルメチルカルボニル、ベンゾイル、1-ナフトイル、2-ナフトイル、フェニルアセチル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーカルボニル基」(具体例: 2-テノイル、3-フロイル、ニコチノイル、イソニコチノイル等の基)と称する。

式 (ω-2A) で表される基の中で、R^{a1}が炭化水素基である基を「炭化水素-オキシーカルボニル基」(具体例:メトキシカルボニル、エトキシカルボニル、フェノキシカルボニル、ベンジルオキシカルボニル等の基)、R^{a1}がヘテロ環基である基を「ヘテロ環ーオキシーカルボニル基」(具体例:3-ピリジルオキシカルボニル等の基)と称する。

式 $(\omega - 3 A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素 - カルボニルーカルボニル基」(具体例: ピルボイル等の基)、 R^{a1} がヘテロ環基である基を「ヘテロ環ーカルボニルーカルボニル基」と称する。

式 (ω-4A) で表される基の中で、R^{a1}が炭化水素基である基を「炭化水素-オキシーカルボニルーカルボニル基」(具体例:メトキサリル、エトキサリル等の基)、R^{a1}がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニル基」と称する。

式 $(\omega-5\,A)$ で表される基の中で、 $R^{a\,1}$ が炭化水素基である基を「炭化水素ースルファニルーカルボニル基」、 $R^{a\,1}$ がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニル基」と称する。

式 $(\omega-6A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ーチオカルボニル基」、 R^{a1} がヘテロ環基である基を「ヘテロ環ーチオカルボニル基」と称する。

式 $(\omega - 7A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「炭化水素ー

オキシーチオカルボニル基」、R^{*1}がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニル基」と称する。

式 (ω-8A) で表される基の中で、R * 1 が炭化水素基である基を「炭化水素-スルファニルーチオカルボニル基」、R * 1 がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニル基」と称する。

式 $(\omega - 9A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「N – 炭化水素ーカルバモイル基」(具体例: N – メチルカルバモイル等の基)、 R^{a1} がヘテロ環基である基を「N – ヘテロ環 – カルバモイル基」と称する。

式 $(\omega-10A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイル基」(具体例:N, N-ジメチルカルバモイル等の基)、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -カルバモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ー置換カルバモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニル基」(具体例:モルホリノカルボニル等の基)と称する。

式 $(\omega-11A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素- チオカルバモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環- チオカルバモイル基」と称する。

式 $(\omega-12A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素) - チオカルバモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環) - チオカルバモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素- N-ヘテロ環ーチオカルバモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニル基」と称する。

式 $(\omega-13A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「N - 炭化 水素 - スルファモイル基」、 R^{*1} がヘテロ環基である基を「N - ヘテロ環 - スルファモイル基」と称する。

式 $(\omega-14A)$ で表される基の中で、 $R^{\bullet 1}$ 及び $R^{\bullet 1}$ が炭化水素基である基を「N, $N-\tilde{\wp}$ (炭化水素)-スルファモイル基」(具体例:N, $N-\tilde{\wp}$ メチルスルファモイル等の基)、 $R^{\bullet 1}$ 及び $R^{\bullet 1}$ がヘテロ環基である基を「N, $N-\tilde{\wp}$ (ヘテロ環)スルファモイル基」、 $R^{\bullet 1}$ が炭化水素基であり $R^{\bullet 1}$ がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルファモイル基」、 $R^{\bullet 1}$ 及び $R^{\bullet 1}$ が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニル基」(具体例:1-ピロリルスルホニル等の基)と称する。

式 $(\omega-15A)$ で表される基の中で、 R^{a1} が炭化水素基である基を「N-炭化水素ースルフィナモイル基」、 R^{a1} がヘテロ環基である基を「N-ヘテロ環ースルフィナモイル基」と称する。

式 $(\omega-16A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル基」、 R^{a1} 及び R^{b1} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニル基」と称する。

式 $(\omega-17A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素 - オキシースルホニル基」、 R^{*1} がヘテロ環基である基を「ヘテロ環ーオキシースルホニル基」と称する。

式 $(\omega-18A)$ で表される基の中で、 R^{*1} が炭化水素基である基を「炭化水素 - オキシースルフィニル基」、 R^{*1} がヘテロ環基である基を「ヘテロ環ーオキシースルフィニル基」と称する。

式 $(\omega-19A)$ で表される基の中で、 R^{a1} 及び R^{b1} が炭化水素基である基を「O, O'ージ(炭化水素) -ホスホノ基」、 R^{a1} 及び R^{b1} がヘテロ環基である基を「O, O'ージ (ヘテロ環) -ホスホノ基」、 R^{a1} が炭化水素基であり R^{b1} がヘテロ環基である基を「Oー炭化水素-O'ーヘテロ環-ホスホノ基」と称する。

式(ω-20A)で表される基の中で、R * 1 が炭化水素基である基を「炭化水素

-スルホニル基」(具体例:メタンスルホニル、ベンゼンスルホニル等の基)、R a 1 がヘテロ環基である基を「ヘテロ環-スルホニル基」と称する。

式 $(\omega-21A)$ で表される基の中で、 $R^{\alpha 1}$ が炭化水素基である基を「炭化水素 -スルフィニル基」具体例:メチルスルフィニル、ベンゼンスルフィニル等の基)、 $R^{\alpha 1}$ がヘテロ環基である基を「ヘテロ環ースルフィニル基」と称する。

上記式($\omega-1$ A)乃至($\omega-2$ 1 A)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「炭化水素-カルボニル基」としては、アルキル-カルボニル基、アルケニル-カルボニル基、アルキニル-カルボニル基、シクロアルキル-カルボニル基、シクロアルケニル-カルボニル基、シクロアルケニル-カルボニル基、シクロアルケニル-カルボニル基等の脂肪族炭化水素-カルボニル基;アリール-カルボニル基;アラルキル-カルボニル基;架橋環式炭化水素-カルボニル基;スピロ環式炭化水素-カルボニル基;テルペン系炭化水素-カルボニル基が挙げられる。以下、式($\omega-2$ A)乃至($\omega-2$ 1 A)で表される基も同様である。

上記式($\omega-1$ A)乃至($\omega-2$ 1 A)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ A)で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式($\omega-2$ A)乃至($\omega-2$ 1 A)で表される基も同様である。

上記式 $(\omega-10A)$ 乃至 $(\omega-16A)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

本明細書において、ある官能基について「置換基を有していてもよい」という場合には、特に言及する場合を除き、その官能基が、化学的に可能な位置に1個又は2個以上の「置換基」を有する場合があることを意味する。官能基に存在する置換基の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換

基が存在する場合には、それらは同一であっても異なっていてもよい。官能基に存在する「置換基」としては、例えば、ハロゲン原子、オキソ基、チオキソ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアナト基、チオシアナト基、イソシアナト基、イソチオシアナト基、ヒドロキシ基、スルファニル基、カルボキシ基、スルファニルカルボニル基、オキサロ基、メソオキサロ基、チオカルボキシ基、ジチオカルボキシ基、カルバモイル基、チオカルバモイル基、スルフェノ基、スルフィノ基、スルフィナモイル基、スルフェノ基、スルフェナモイル基、ホスホノ基、ヒドロキシホスホニル基、炭化水素基、ヘテロ環基、炭化水素ーオキシ基、ヘテロ環ーオキシ基、炭化水素ースルファニル基、ヘテロ環ーオキシ基、炭化水素ースルファニル基、ヘテロ環ースルファニル基、アシル基、アミノ基、ヒドラジノ基、カルバモイミドイル基(アミジノ基)、アジド基、イミノ基、ヒドロキシアミノ基、ヒドロキシイミノ基、アミノオキシ基、ジアゾ基、セミカルバジノ基、セミカルバゾノ基、アロファニル基、ヒダントイル基、ホスファノ基、ホスホロソ基、ホスホ基、ボリル基、シリル基、スタニル基、セラニル基、オキシド基等を挙げることができる。

上記「置換基を有していてもよい」の定義における「置換基」が2個以上存在する場合、該2個以上の置換基は、それらが結合している原子と一緒になって環式基を形成してもよい。このような環式基には、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種が1個以上含有されていてもよく、該環上には1個以上の置換基が存在していてもよい。該環は、単環式又は縮合多環式のいずれであってもよく、芳香族又は非芳香族のいずれであってもよい。

上記「置換基を有していてもよい」の定義における「置換基」は、該置換基上の 化学的に可能な位置で、上記「置換基」によって置換されていてもよい。置換基 の種類、置換基の個数、及び置換位置は特に限定されず、2個以上の置換基で置 換される場合には、それらは同一であっても異なっていてもよい。そのような例 として、例えば、ハロゲン化アルキルーカルボニル基(具体例:トリフルオロア

セチル等の基)、ハロゲン化アルキルースルホニル基(具体例:トリフルオロメタンスルホニル等の基)、アシルーオキシ基、アシルースルファニル基、Nー炭化水素基-アミノ基、N,Nージ(炭化水素)-アミノ基、Nーヘテロ環-アミノ基、Nー炭化水素-Nーヘテロ環-アミノ基、アシル-アミノ基、ジ(アシル)-アミノ基等の基が挙げられる。また、上記「置換基」上での「置換」は複数次にわたって繰り返されてもよい。

「アシルーオキシ基」としては、「ヒドロキシ基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルオキシ基、グリオキシロイルオキシ基、チオホルミルオキシ基、カルバモイルオキシ基、チオカルバモイルオキシ基、スルファモイルオキシ基、スルフィナモイルオキシ基、カルボキシオキシ基、スルホオキシ基、ホスホノオキシ基、及び下記式:

式 $(\omega-1\,B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - カルボニルーオキシ基」(具体例: アセトキシ、ベンゾイルオキシ等の基)、 R^{*2} がヘテロ環基である基を「ヘテロ環ーカルボニルーオキシ基」と称する。

式 (ω-2B) で表される基の中で、R * ² が炭化水素基である基を「炭化水素-オキシ-カルボニル-オキシ基」、R * ² がヘテロ環基である基を「ヘテロ環-オキシ-カルボニル-オキシ基」と称する。

式 (ω-3B) で表される基の中で、R^{a2}が炭化水素基である基を「炭化水素-カルボニルーカルボニルーオキシ基」、R^{a2}がヘテロ環基である基を「ヘテロ環-カルボニルーカルボニルーオキシ基」と称する。

式 $(\omega-4B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルーオキシ基」と称する。

式 $(\omega - 5B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - スルファニルーカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーオキシ基」と称する。

式 $(\omega-6B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素ーチオカルボニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ーチオカルボニルーオキシ基」と称する。

式 $(\omega-7B)$ で表される基の中で、 R^{a^2} が炭化水素基である基を「炭化水素ーオキシーチオカルボニルーオキシ基」、 R^{a^2} がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーオキシ基」と称する。

式 (ω-8B) で表される基の中で、R²が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーオキシ基」、R²がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルーオキシ基」と称する。

式 $(\omega - 9B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「N – 炭化水素 – カルバモイルーオキシ基」、 R^{a2} がヘテロ環基である基を「N – ヘテロ環ーカルバモイルーオキシ基」と称する。

(式中、R*2及びR^{b2}は、同一又は異なって、炭化水素基、又はヘテロ環基を表すか、あるいはR*2及びR^{b2}が一緒になって、それらが結合している窒素原子と共に環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーオキシ基」の定義において、

式 $(\omega-1\ 1\ B)$ で表される基の中で、 R^2 が炭化水素基である基を「N-炭化水素 - チオカルバモイルーオキシ基」、 R^2 がヘテロ環基である基を「N-ヘテロ環ーチオカルバモイルーオキシ基」と称する。

式 $(\omega-1\ 2\ B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素) -チオカルバモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -チオカルバモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ーチオカルバモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーオキシ基」と称する。

式 $(\omega-13B)$ で表される基の中で、R $^{\circ}$ $^{\circ}$ が炭化水素基である基を「N $^{\circ}$ 炭化水素 $^{\circ}$ $^{\circ}$

式 $(\omega-14B)$ で表される基の中で、 R^{*2} 及び R^{*2} が炭化水素基である基を「N, N-ジ(炭化水素) -スルファモイルーオキシ基」、 R^{*2} 及び R^{*2} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルファモイルーオキシ基」、 R^{*2} が炭化水素基であり R^{*2} がヘテロ環基である基を「N-炭化水素 - N-ヘテロ環 -スルファモイルーオキシ基」、 R^{*2} 及び R^{*2} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルーオキシ基」と称する。

式 $(\omega-15B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「N-炭化水素 - スルフィナモイルーオキシ基」、 R^{*2} がヘテロ環基である基を「N-ヘテロ環ースルフィナモイルーオキシ基」と称する。

式 $(\omega-16B)$ で表される基の中で、 R^a^2 及び R^b^2 が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイルーオキシ基」、 R^a^2 及び R^b^2 がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイルーオキシ基」、 R^a^2 が炭化水素基であり R^b^2 がヘテロ環基である基を「N-炭化水素-N-ヘテロ環ースルフィナモイルーオキシ基」、 R^a^2 及び R^b^2 が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニルーオキシ基」と称する。

式 $(\omega-17B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素 - オキシースルホニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーオキシ基」と称する。

式 $(\omega-18B)$ で表される基の中で、 R^{a2} が炭化水素基である基を「炭化水素 - オキシースルフィニルーオキシ基」、 R^{a2} がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーオキシ基」と称する。

式 $(\omega-19B)$ で表される基の中で、 $R^a ^2$ 及び $R^b ^2$ が炭化水素基である基を「O, O' -ジ(炭化水素) -ホスホノーオキシ基」、 $R^a ^2$ 及び $R^b ^2$ がヘテロ環基である基を「O, O' -ジ(ヘテロ環) -ホスホノーオキシ基」、 $R^a ^2$ が炭化水素基であり $R^b ^2$ がヘテロ環基である基を「O一炭化水素置換-O' -ヘテロ環置換ホスホノーオキシ基」と称する。

式 $(\omega - 20B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - スルホニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環ースルホニルーオキシ基」と称する。

式 $(\omega-21B)$ で表される基の中で、 R^{*2} が炭化水素基である基を「炭化水素 - スルフィニルーオキシ基」、 R^{*2} がヘテロ環基である基を「ヘテロ環 - スルフィニルーオキシ基」と称する。

上記式($\omega-1$ B)乃至($\omega-2$ 1 B)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ B)で表される「炭化水素ーカルボニルーオキシ基」としては、アルキルーカルボニルーオキシ基、アルケニルーカルボニルーオキシ基、アルキニルーカルボニルーオキシ基、シクロアルケニルーカルボニルーオキシ基、シクロアルケニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルカンジエニルーカルボニルーオキシ基、シクロアルキルーアルキルーカルボニルーオキシ基等の脂肪族炭化水素ーカルボニルーオキシ基;アリールーカルボニルーオキシ基;アラルキルーカルボニルーオキシ基;架橋環式炭化水素ーカルボニルーオキシ基;スピロ環式炭化水素ーカルボニルーオキシ基;テルペン系炭化水素ーカルボニルーオキシ基が挙げられる。以下、式($\omega-2$ B)乃至($\omega-2$ 1 B)で表される基も同様である。

上記式 $(\omega-1\,B)$ 乃至 $(\omega-2\,1\,B)$ で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式 $(\omega-1\,B)$ で表される「ヘテロ環ーカルボニル基」としては、例えば、単環式ヘテロアリールーカルボニル基、縮合多環式ヘテロアリールーカルボニル基、単環式非芳香族ヘテロ環ーカルボニル基、縮合多環式非芳香族ヘテロ環ーカルボニル基が挙げられる。以下、式 $(\omega-2\,B)$ 乃至 $(\omega-2\,1\,B)$ で表される基も同様である。

上記式 $(\omega-10B)$ 乃至 $(\omega-16B)$ で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーオキシ基」、「炭化水素-オキシ基」、及び「ヘテロ環-オキシ基」 を総称して、「置換オキシ基」と称する。また、これら「置換オキシ基」と「ヒド ロキシ基」を総称して、「置換基を有していてもよいヒドロキシ基」と称する。

「アシルースルファニル基」としては、「スルファニル基」の水素原子が「アシル基」で置換された基が挙げられ、例えば、ホルミルスルファニル基、グリオキシロイルスルファニル基、チオホルミルスルファニル基、カルバモイルスルファニル基、チオカルバモイルスルファニル基、スルファモイルスルファニル基、スルフィナモイルスルファニル基、カルボキシスルファニル基、スルホスルファニル

基、ホスホノスルファニル基、及び下記式:

(式中、R^{a3}及びR^{b3}は、同一又は異なって、置換基を有していてもよい炭化水 素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^{a3}及びR b3が一緒になって、それらが結合している窒素原子と共に、置換基を有していて

もよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルースルファニル基」の定義において、

式 (ω-1 C) で表される基の中で、R * 3 が炭化水素基である基を「炭化水素 - カルボニルースルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環ーカルボニルースルファニル基」と称する。

式 $(\omega-2C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルースルファニル基」と称する。

式 (ω-3C) で表される基の中で、R * 3 が炭化水素基である基を「炭化水素-カルボニル-カルボニル-スルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環-カルボニル-カルボニル-スルファニル基」と称する。

式 $(\omega-4\ C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を $[-\infty]$ 「ステロ環ーオキシーカルボニルーカルボニルースルファニル基」と称する。

式(ω-5C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素-スルファニルーカルボニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘテロ環-スルファニルーカルボニルースルファニル基」と称する。

式 $(\omega-6\ C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素-チオカルボニル-スルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環-チオカルボニル-スルファニル基」と称する。

式 (ω-7C) で表される基の中で、R * 3 が炭化水素基である基を「炭化水素-オキシーチオカルボニル-スルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環-オキシーチオカルボニル-スルファニル基」と称する。

式 $(\omega - 8 C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - スルファニルーチオカルボニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ースルファニルーチオカルボニルースルファニル基」と称する。

式 $(\omega - 9 C)$ で表される基の中で、 R^{3} が炭化水素基である基を「N - 炭化水

素ーカルバモイルースルファニル基」、R^{a3}がヘテロ環基である基を「N-ヘテロ環ーカルバモイルースルファニル基」と称する。

式 $(\omega-1\ 0\ C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素) -カルバモイルースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ 環基である基を「N, N-ジ(ヘテロ環) -カルバモイルースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素-N-ヘテロ 環ーカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが 結合している窒素原子と共に環状アミノ基である基を「環状アミノーカルボニルースルファモイル基」と称する。

式 $(\omega-11C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素-チオカルバモイル-スルファニル基」、 R^{a3} がヘテロ環基である基を「N-0トロ環-チオカルバモイル-スルファニル基」と称する。

式 $(\omega-1\ 2\ C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素) -チオカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -チオカルバモイルースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環-チオカルバモイルースルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルースルファニル基」と称する。

式 $(\omega-13C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素-スルファモイル-スルファニル基」、 R^{a3} がヘテロ環基である基を「N-ヘテロ環-スルファモイル-スルファニル基」と称する。

式 $(\omega-14C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素) -スルファモイルースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「N, N-ジ(ヘテロ環) -スルファモイルースルフィニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素-N-ヘテロ環スルファモイルースルファニル基」、 R^{a3} 及び R^{b3} が一緒になって、それら

が結合している窒素原子と共に環状アミノ基である基を「環状アミノースルホニルースルファニル基」と称する。

式 $(\omega-15C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「N-炭化水素ースルフィナモイルースルファニル基」、 R^{a3} がヘテロ環基である基を「N-クテロ環ースルフィナモイルースルファニル基」と称する。

式 $(\omega-16C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル-スルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル-スルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「N-炭化水素 N-0、N-0 、N-0 N-0 、N-0 N-0 N-0

式 $(\omega-17C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - オキシースルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環ーオキシースルホニルースルファニル基」と称する。

式 (ω-18C)で表される基の中で、R^{a3}が炭化水素基である基を「炭化水素 ーオキシースルフィニルースルファニル基」、R^{a3}がヘテロ環基である基を「ヘ テロ環ーオキシースルフィニルースルファニル基」と称する。

式 $(\omega - 1\ 9\ C)$ で表される基の中で、 R^{a3} 及び R^{b3} が炭化水素基である基を「O, O' -ジ(炭化水素) -ホスホノースルファニル基」、 R^{a3} 及び R^{b3} がヘテロ環基である基を「O, O' -ジ(ヘテロ環) -ホスホノースルファニル基」、 R^{a3} が炭化水素基であり R^{b3} がヘテロ環基である基を「O - 炭化水素-O' -ヘテロ環-ホスホノースルファニル基」と称する。

式 $(\omega - 20 C)$ で表される基の中で、 R^{a3} が炭化水素基である基を「炭化水素 - スルホニルースルファニル基」、 R^{a3} がヘテロ環基である基を「ヘテロ環- スルホニルースルファニル基」と称する。

式(ω-21C)で表される基の中で、R³が炭化水素基である基を「炭化水素

ースルフィニルースルファニル基」、R * 3 がヘテロ環基である基を「ヘテロ環ースルフィニルースルファニル基」と称する。

上記式($\omega-1$ C)乃至($\omega-2$ 1C)で表される基における「炭化水素」としては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「炭化水素-カルボニル-スルファニル基」としては、アルキル-カルボニル-スルファニル基、アルケニル-カルボニル-スルファニル基、アルキニル-カルボニル-スルファニル基、シクロアルキル-カルボニル-スルファニル基、シクロアルケニル-カルボニル-スルファニル基、シクロアルカンジエニル-カルボニル-スルファニル基、シクロアルカンジエニル-カルボニル-スルファニル基、シクロアルキル-カルボニル-スルファニル基;アリール-カルボニル-スルファニル基;アリール-カルボニル-スルファニル基;アラルキル-カルボニル-スルファニル基;架橋環式炭化水素-カルボニル-スルファニル基;スピロ環式炭化水素-カルボニル-スルファニル基;テルペン系炭化水素-カルボニル-スルファニル基が挙げられる。以下、式($\omega-2$ C)乃至($\omega-2$ 1C)で表される基も同様である。

上記式($\omega-1$ C)乃至($\omega-2$ 1 C)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ C)で表される「ヘテロ環ーカルボニルースルファニル基」としては、例えば、単環式ヘテロアリールーカルボニルースルファニル基、縮合多環式ヘテロアリールーカルボニルースルファニル基、単環式非芳香族ヘテロ環ーカルボニルースルファニル基、単環式非芳香族ヘテロ環ーカルボニルースルファニル基が挙げられる。以下、式($\omega-2$ C)乃至($\omega-2$ 1 C)で表される基も同様である。

上記式 $(\omega-10C)$ 乃至 $(\omega-16C)$ で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルースルファニル基」、「炭化水素ースルファニル基」、及び「ヘテロ環ースルファニル基」を総称して、「置換スルファニル基」と称する。また、これら「置換スルファニル基」と「スルファニル基」を総称して、「置換基を有していてもよいスルファニル基」と称する。

「Nー炭化水素-アミノ基」としては、「アミノ基」の1つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、Nーアルキルーアミノ基、Nーアルキニルーアミノ基、Nーシクロアルキルーアミノ基、Nーシクロアルキルーアミノ基、Nーシクロアルキルーアミノ基、Nーアリールーアミノ基、Nーアリールーアミノ基、Nーアリールーアミノ基等が挙げられる。

「N-rルキルーアミノ基」としては、例えば、メチルアミノ、エチルアミノ、n-rロピルアミノ、イソプロピルアミノ、n-rブチルアミノ、イソプチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブチルアミノ、n-rブナル)アミノ、n-rブロピル)アミノ、n-rブロピル)アミノ、n-r アミノ、n-r アミノ アミノ アルアミノ アルアミノ アルアミノ アルアミノ アルアミノ デシルアミノ デジルアミノ デジルアミノ アルキルーアミノ アルキルーアミノ アンドラデシルアミノ アルキルーアミノ アンドラボ 学が アルキルーアミノ アンドラボ アルキルーアミノ アンドラボ アル・n-r アルキルーアミノ アンドラボ アル・n-r アルキルーアミノ アンドラボ アル・n-r アルキルーアミノ アンド アシルアミノ アルキルーアミノ アルギザシルアミノ アルキルーアミノ 基が学げられる。

 $\lceil N-r n r - r r \rceil$ 上上 としては、例えば、ビニルアミノ、(プロパー1ーエンー1ーイル)アミノ、アリルアミノ、イソプロペニルアミノ、(ブター1ーエンー1ーイル)アミノ、(ブター2ーエンー1ーイル)アミノ、(プター3ーエンー1ーイル)アミノ、(2ーメチルプロパー2ーエンー1ーイル)アミノ、(1ーメチルプロパー2ーエンー1ーイル)アミノ、(ペンター1ーエンー1ーイル)アミノ、(ペンター2ーエンー1ーイル)アミノ、(ペンター3ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(ペンター4ーエンー1ーイル)アミノ、(3ーメチルブター2ーエンー

1-イル) アミノ、(3-メチルブター3-エンー1-イル) アミノ、(ヘキサー 1-エン-1-イル) アミノ、(ヘキサ-2-エン-1-イル) アミノ、(ヘキサ -3-エン-1-イル)アミノ、(ヘキサ-4-エン-1-イル)アミノ、(ヘキ サー5-エン-1-イル) アミノ、(4-メチルペンター3-エン-1-イル) ア ミノ、(4-メチルペンター3-エン-1-イル)アミノ、(ヘプター1-エンー 1-イル) アミノ、(ヘプター6-エン-1-イル) アミノ、(オクター1-エン ー1ーイル)アミノ、(オクター7ーエンー1ーイル)アミノ、(ノナー1ーエン -1-イル) アミノ、(ノナ-8-エン-1-イル) アミノ、(デカ-1-エン-1-イル) アミノ、(デカー9-エン-1-イル) アミノ、(ウンデカー1-エン -1-イル) アミノ、(ウンデカー10-エン-1-イル) アミノ、(ドデカー1 ーエンー1ーイル) アミノ、(ドデカー11ーエンー1ーイル) アミノ、(トリデ カー1ーエンー1ーイル)アミノ、(トリデカー12ーエンー1ーイル)アミノ、 (テトラデカー1ーエンー1ーイル) アミノ、(テトラデカー13-エンー1ーイ ル) アミノ、(ペンタデカー1ーエンー1ーイル) アミノ、(ペンタデカー14ー エンー1ーイル)アミノ等のC。~C1gの直鎖状又は分枝鎖状のNーアルケニル -アミノ基が挙げられる。

(ドデカー11-イン-1-イル) アミノ、(トリデカー1-イン-1-イル) アミノ、(トリデカー12-イン-1-イル) アミノ、(テトラデカー12-イン-1-イル) アミノ、(テトラデカー13-イン-1-イル) アミノ、(ペンタデカー1-イン-1-イル) アミノ、(ペンタデカー14-イン-1-イル) アミノ等の $C_2 \sim C_{15}$ の直鎖状又は分枝鎖状のN-アルキニル-アミノ基が挙げられる。

「N-シクロアルキルーアミノ基」としては、例えば、シクロプロピルアミノ、シクロプチルアミノ、シクロペンチルアミノ、シクロへキシルアミノ、シクロへ プチルアミノ、シクロオクチルアミノ等の $C_3 \sim C_8$ のN-シクロアルキルーアミノ基が挙げられる。

「N-シクロアルキルーアルキルーアミノ基」としては、例えば、(シクロプロピルメチル) アミノ、(1-シクロプロピルエチル) アミノ、(2-シクロプロピルエチル) アミノ、(3-シクロプロピルプロピル) アミノ、(4-シクロプロピルプロピル) アミノ、(4-シクロプロピルペンチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロプロピルペンチル) アミノ、(6-シクロペンチルメチル) アミノ、(6-) アミノ等の6-0 (6-) アミノ・(6-) アミノ等の6-0 (6-) アミノ・(6-) アン・(6-) アミノ・(6-) アン・(6-) アン・(6-)

「N-アリール-アミノ基」としては、例えば、フェニルアミノ、1-ナフチルアミノ、2-ナフチルアミノ、アントリルアミノ、フェナントリルアミノ、アセナフチレニルアミノ等の $C_6\sim C_{14}$ のN-モノ-アリールアミノ基が挙げられる。「N-アラルキル-アミノ基」としては、例えば、ベンジルアミノ、(1-ナフチルメチル)アミノ、(2-ナフチルメチル)アミノ、(7-ナフチルメチル)アミノ、(7-ナフチルメチル)アミノ、(7- ナフチレニルメチル)アミノ、(7- ナフチレニルメチル)アミノ、(7- ナフチレニルメチル)アミノ、(7- ナフェネチル)アミノ、(7- ナフェネチル)ア

「N, N-ジ(炭化水素)ーアミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」で置換された基が挙げられ、例えば、N, N-ジメチルアミノ、N, N-ジェチルアミノ、NーエチルーNーメチルアミノ、N, Nージーnープロピルアミノ、N, Nージイソプロピルアミノ、NーアリルーNーメチルアミノ、Nー(プロパー2ーインー1ーイル)ーNーメチルアミノ、N, Nージシクロへキシルアミノ、NーシクロへキシルーNーメチルアミノ、Nーシクロへキシルメチルアミノ、Nージャルアミノ、Nージャルアミノ、Nージャルアミノ、Nージャルアミノ、Nージャルアミノ、Nージャルアミノ、Sーメチルアミノ、Sーズチルアミノ、Sーズ・ジルーNーメチルアミノ、Sーズ・ジャの基が挙げられる。

「Nーヘテロ環ーアミノ基」としては、「アミノ基」の1つ水素原子が、「ヘテロ環基」で置換された基が挙げられ、例えば、(3ーピロリジニル) アミノ、(4ーピペリジニル) アミノ、(2ーテトラヒドロピラニル) アミノ、(3ーインドリニル) アミノ、(4ークロマニル) アミノ、(3ーチエニル) アミノ、(3ーピリジル) アミノ、(3ーキノリル) アミノ、(5ーインドリル) アミノ等の基が挙げられる。「Nー炭化水素ーNーヘテロ環ーアミノ基」としては、「アミノ基」の2つの水素原子が、「炭化水素基」及び「ヘテロ環基」で1つずつ置換された基が挙げられ、例えば、NーメチルーNー(4ーピペリジニル) アミノ、Nー(4ークロマニル) ーNーメチルアミノ、NーメチルーNー(3ーチエニル) アミノ、Nーメチルー

N-(3-ピリジル) アミノ、N-メチル-N-(3-キノリル) アミノ等の基が挙げられる。

「アシルーアミノ基」としては、「アミノ基」の1つの水素原子が、「アシル基」で置換された基が挙げられ、例えば、ホルミルアミノ基、グリオキシロイルアミノ基、チオホルミルアミノ基、カルバモイルアミノ基、チオカルバモイルアミノ基、スルファモイルアミノ基、スルフィナモイルアミノ基、カルボキシアミノ基、スルホアミノ基、ホスホノアミノ基、及び下記式:

(式中、R⁴4及びR⁶4は、同一又は異なって、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR⁴4及びR⁶4が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す)で表される基が挙げられる。

上記「アシルーアミノ基」の定義において、

式 (ω-1D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-カルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-カルボニルーアミノ基」と称する。

式 (ω-2D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-オキシーカルボニル-アミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-オキシーカルボニル-アミノ基」と称する。

式 (ω-3D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 – カルボニルーカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環 – カルボニルーカルボニルーアミノ基」と称する。

式 $(\omega - 4D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ーオキシーカルボニルーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーカルボニルーカルボニルーアミノ基」と称する。

式 $(\omega - 5D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素ースルファニルーカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ースルファニルーカルボニルーアミノ基」と称する。

式 (ω-6D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-チオカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環ーチオカルボニルーアミノ基」と称する。

式 $(\omega - 7D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 - オキシーチオカルボニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ーオキシーチオカルボニルーアミノ基」と称する。

式 (ω-8D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素-スルファニルーチオカルボニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環-スルファニルーチオカルボニルーアミノ基」と称する。

式 $(\omega - 9D)$ で表される基の中で、 R^4 が炭化水素基である基を「N - 炭化水素 - カルバモイル基」、 R^4 がヘテロ環基である基を「N - ヘテロ環 - カルバモ

イルーアミノ基」と称する。

式 $(\omega-11D)$ で表される基の中で、 R^4 が炭化水素基である基を「N-炭化水素-チオカルバモイル-アミノ基」、 R^4 がヘテロ環基である基を「N-ヘテロ環ーチオカルバモイル-アミノ基」と称する。

式 $(\omega-12D)$ で表される基の中で、 R^{a4} 及び R^{b4} が炭化水素基である基を「N, N-ジ(炭化水素) - チオカルバモイルーアミノ基」、 R^{a4} 及び R^{b4} がヘテロ環基である基を「N, N-ジ(ヘテロ環) - チオカルバモイルーアミノ基」、 R^{a4} が炭化水素基であり R^{b4} がヘテロ環基である基を「N 一炭化水素 - N - ヘテロ環 - チオカルバモイルーアミノ基」、 R^{a4} 及び R^{b4} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノーチオカルボニルーアミノ基」と称する。

式 $(\omega-13D)$ で表される基の中で、 R^4 が炭化水素基である基を「N-炭化水素-スルファモイルーアミノ基」、 R^4 がヘテロ環基である基を「N-ヘテロ環-スルファモイルーアミノ基」と称する。

式 $(\omega-14D)$ で表される基の中で、 R^4 及び R^4 が炭化水素基である基を「ジ (炭化水素)スルファモイルーアミノ基」、 R^4 及び R^4 がヘテロ環基である基を 「N, N ージ (ヘテロ環) スルファモイルーアミノ基」、 R^4 が炭化水素基で あり R^4 がヘテロ環基である基を 「N ー炭化水素 N ーヘテロ環 N ースルファモイルーアミノ基」、 N^4 が N ースルファモイルーアミノ基」、 N^4 及び N^4 が 一緒になって、それらが結合している 窒素原子 と共に環状アミノ基である基を 「環状アミノースルホニルーアミノ基」と称する。

式($\omega-15D$)で表される基の中で、 R^{44} が炭化水素基である基を「N-炭化水素-スルフィナモイル-アミノ基」、 R^{4} がヘテロ環基である基を「N-ヘテロ環-スルフィナモイル-アミノ基」と称する。;式($\omega-16D$)で表される基の中で、 R^{44} 及び R^{54} が炭化水素基である基を「N, N-ジ(炭化水素)-スルフィナモイル-アミノ基」、 R^{44} 及び R^{54} がヘテロ環基である基を「N, N-ジ(ヘテロ環)-スルフィナモイル-アミノ基」、 R^{44} 及び R^{54} がヘテロ環基である基を「N, N-ジ(ヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-アミノ基」、 R^{44} が炭化水素基であり R^{54} が、ヘテロ環基である基を「N-炭化水素-N-ヘテロ環-スルフィナモイル-アミノ基」、 R^{44} 及び R^{54} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「環状アミノースルフィニル-アミノ基」と称する。

式 $(\omega-17D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 - オキシースルホニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ー オキシースルホニルーアミノ基」と称する。

式 $(\omega-18D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 - オキシースルフィニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環 - オキシースルフィニルーアミノ基」と称する。

式($\omega-1$ 9 D)で表される基の中で、R * ⁴ 及びR * ⁴ が炭化水素基である基を「O, O' - ジ(炭化水素) - ホスホノーアミノ基」、R * ⁴ 及びR * ⁴ がヘテロ環基である基を「O, O' - ジ(ヘテロ環) - ホスホノーアミノ基」、R * ⁴ が炭化水素基でありR * ⁴ がヘテロ環基である基を「O - 炭化水素- でありR * ⁵ がヘテロ環基である基を「O - 炭化水素- で、アミノ基」と称する。

式 $(\omega-20D)$ で表される基の中で、 R^4 が炭化水素基である基を「炭化水素 -スルホニルーアミノ基」、 R^4 がヘテロ環基である基を「ヘテロ環ースルホニルーアミノ基」と称する。

式 (ω-21D) で表される基の中で、R * 4 が炭化水素基である基を「炭化水素 -スルフィニルーアミノ基」、R * 4 がヘテロ環基である基を「ヘテロ環 - スルフィニルーアミノ基」と称する。

上記式 $(\omega-1D)$ 乃至 $(\omega-21D)$ で表される基における「炭化水素」とし

では、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「炭化水素-カルボニル-アミノ基」としては、アルキル-カルボニル-アミノ基、アルケニル-カルボニル-アミノ基、アルキニル-カルボニル-アミノ基、シクロアルキル-カルボニル-アミノ基、シクロアルカルボニル-アミノ基、シクロアルカンジエニル-カルボニル-アミノ基、シクロアルカンジエニル-カルボニル-アミノ基、シクロアルキル-カルボニル-アミノ基等の脂肪族炭化水素-カルボニル-アミノ基;アリール-カルボニル-アミノ基;アラルキル-カルボニル-アミノ基;架橋環式炭化水素-カルボニル-アミノ基;スピロ環式炭化水素-カルボニル-アミノ基;テルペン系炭化水素-カルボニル-アミノ基が挙げられる。以下、式(ω - 2 D)乃至($\omega-$ 2 1 D)で表される基も同様である。

上記式($\omega-1$ D)乃至($\omega-2$ 1 D)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ D)で表される「ヘテロ環ーカルボニルーアミノ基」としては、例えば、単環式ヘテロアリールーカルボニルーアミノ基、縮合多環式ヘテロアリールーカルボニルーアミノ基、単環式非芳香族ヘテロ環ーカルボニルーアミノ基、縮合多環式非芳香族ヘテロ環ーカルボニルーアミノ基が挙げられる。以下、式($\omega-2$ D)乃至($\omega-2$ 1 D)で表される基も同様である。

上記式 $(\omega-10D)$ 乃至 $(\omega-16D)$ で表される基における「環状アミノ」 としては、上記「環状アミノ基」と同様の基が挙げられる。

「ジ (アシル) -アミノ基」としては、「アミノ基」の2つの水素原子が、上記「置換基を有していてもよい」の「置換基」の定義における「アシル基」で置換された基が挙げられ、例えば、ジ (ホルミル) -アミノ基、ジ (グリオキシロイル) -アミノ基、ジ (チオホルミル) -アミノ基、ジ (カルバモイル) -アミノ基、ジ (チオカルバモイル) -アミノ基、ジ (スルファモイル) -アミノ基、ジ (スルフィナモイル) -アミノ基、ジ (カルボキシ) -アミノ基、ジ (スルホ) -アミノ基、ジ (ホスホノ) -アミノ基、及び下記式:

$$\begin{array}{c} -N + \begin{pmatrix} C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, E) \,, & -N + \begin{pmatrix} C - O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 2 \, E) \,, \\ -N + \begin{pmatrix} C - C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 3 \, E) \,, & -N + \begin{pmatrix} C - C - O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 4 \, E) \,, \\ -N + \begin{pmatrix} C - S - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 5 \, E) \,, & -N + \begin{pmatrix} C - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 6 \, E) \,, \\ -N + \begin{pmatrix} C - O - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 7 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 8 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 0 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 0 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 1 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 2 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 3 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 4 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 6 \, E) \,, \\ -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega - 1 \, 5 \, E) \,, & -N + \begin{pmatrix} C - N - R^{a5} \\ 0 \end{pmatrix}_{2} & (\omega -$$

(式中、R^{a5}及びR^{b5}は、同一又は異なって、水素原子、置換基を有していてもよい炭化水素基、又は置換基を有していてもよいヘテロ環基を表すか、あるいはR^{a5}及びR^{b5}が一緒になって、それらが結合している窒素原子と共に、置換基を有していてもよい環状アミノ基を表す)で表される基があげられる上記「ジ (アシル) -アミノ基」の定義において、

式 $(\omega-1E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素

ーカルボニル) -アミノ基」、R * 5 がヘテロ環基である基を「ビス(ヘテロ環ーカルボニル)-アミノ基」と称する。

式 $(\omega-2E)$ で表される基で、 R^{65} が炭化水素基である基を「ビス(炭化水素 - オキシーカルボニル)- アミノ基」、 R^{65} がヘテロ環基である基を「ビス(ヘテロ環ーオキシーカルボニル)- アミノ基」と称する。

式 $(\omega - 3E)$ で表される基で、 R^{65} が炭化水素基である基を「ビス(炭化水素 - カルボニルーカルボニル) - アミノ基」、 R^{65} がヘテロ環基である基を「ビス (ヘテロ環ーカルボニルーカルボニル) - アミノ基」と称する。

式 $(\omega - 4E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素 - オキシーカルボニルーカルボニル) - アミノ基」、 R^{45} がヘテロ環基である基 を「ビス (ヘテロ環- オキシーカルボニルーカルボニル)- アミノ基」と称する。

式 $(\omega - 5E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素 - スルファニルーカルボニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス (ヘテロ環- スルファニルーカルボニル) - アミノ基」と称する。

式 $(\omega - 6E)$ で表される基で、 R^{*5} が炭化水素基である基を「ビス(炭化水素 - チオカルボニル)- アミノ基」、 R^{*5} がヘテロ環基である基を「ビス(ヘテロ環ーチオカルボニル)- アミノ基」と称する。

式 $(\omega - 7E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素 - オキシーチオカルボニル) - アミノ基」、 R^{45} がヘテロ環基である基を「ビス (ヘテロ環- オキシーチオカルボニル)- アミノ基」と称する。

式 (ω-8E) で表される基で、R * 5 が炭化水素基である基を「ビス(炭化水素 -スルファニルーチオカルボニル)-アミノ基」、R * 5 がヘテロ環基である基を 「ビス (ヘテロ環-スルファニルーチオカルボニル) -アミノ基」と称する。

式 $(\omega - 9E)$ で表される基で、 R^{5} が炭化水素基である基を「ビス(N - 炭化水素 - カルバモイル)アミノ基」、 R^{5} がヘテロ環基である基を「ビス(N - ヘテロ環 - カルバモイル) - アミノ基」と称する。

式 (ω-10E) で表される基で、R * 5 及びR b 5 が炭化水素基である基を「ビス

[N, N-ジ(炭化水素) -カルバモイル] -アミノ基」、 $R^{a\, 5}$ 及び $R^{b\, 5}$ がヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環) -カルバモイル] -アミノ基」、 $R^{a\, 5}$ が炭化水素基であり $R^{b\, 5}$ がヘテロ環基である基を「ビス (N-炭化水素-N-1) -0、アロ環 -カルバモイル) -アミノ基」、 $R^{a\, 5}$ 及び $R^{b\, 5}$ が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノカルボニル) -アミノ基」と称する。

式 $(\omega-11E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(N-炭化水素-チオカルバモイル)-アミノ基」、 R^{45} がヘテロ環基である基を「ビス (N-ヘテロ環-チオカルバモイル)-アミノ基」と称する。

式 $(\omega-12E)$ で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス $[N, N-\Im]$ (炭化水素) - チオカルバモイル] - アミノ基」、 R^{a5} 及び R^{b5} が ヘテロ環基である基を「ビス $[N, N-\Im]$ (ヘテロ環) - チオカルバモイル] - アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス (N- 炭化水素- N- ヘテロ環- チオカルバモイル) - アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス (環状アミノーチオカルボニル) - アミノ基」と称する。

式($\omega-14E$)で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素)-スルファモイル] -アミノ基」、 R^{a5} 及び R^{b5} がへ テロ環基である基を「ビス [N, N-ジ(ヘテロ環)-スルファモイル] -アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス(N-炭化水素-N-ヘテロ環-スルファモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルホニル)-アミノ基」と称する。

式 $(\omega-15E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス (N-炭)

化水素 - スルフィナモイル) - アミノ基」、R * 5 がヘテロ環基である基を「ビス (N - ヘテロ環 - スルフィナモイル) - アミノ基」と称する。

式($\omega-1$ 6E)で表される基で、 R^{a5} 及び R^{b5} が炭化水素基である基を「ビス [N, N-ジ(炭化水素)-スルフィナモイル] -アミノ基」、 R^{a5} 及び R^{b5} が ヘテロ環基である基を「ビス [N, N-ジ(ヘテロ環)-スルフィナモイル] - アミノ基」、 R^{a5} が炭化水素基であり R^{b5} がヘテロ環基である基を「ビス (N- 炭化水素-N-ヘテロ環-スルフィナモイル)-アミノ基」、 R^{a5} 及び R^{b5} が一緒になって、それらが結合している窒素原子と共に環状アミノ基である基を「ビス(環状アミノースルフィニル)-アミノ基」と称する。

式 $(\omega-17E)$ で表される基で、 R^{45} が炭化水素基である基を「ビス(炭化水素ーオキシースルホニルー)アミノ基」、 R^{45} がヘテロ環基である基を「ビス(ヘテロ環ーオキシースルホニル)ーアミノ基」と称する。

式 $(\omega-18E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ーオキシースルフィニル)ーアミノ基」、 R^{a5} がヘテロ環基である基を「ビス (ヘテロ環ーオキシースルフィニル)ーアミノ基」と称する。

式(ω-19E)で表される基で、R^{*5}及びR^{b5}が炭化水素基である基を「ビス [O, O'ージ(炭化水素)ーホスホノ]ーアミノ基」、R^{*5}及びR^{b5}がヘテロ 環基である基を「ビス [O, O'ージ(ヘテロ環)ーホスホノ]ーアミノ基」、R^{*5}が炭化水素基でありR^{b5}がヘテロ環基である基を「ビス(Oー炭化水素-O'ーヘテロ環ーホスホノ)ーアミノ基」と称する。

式 (ω - 2 0 E) で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素- スルホニル)- アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環- スルホニル)- アミノ基」と称する。

式 $(\omega - 21E)$ で表される基で、 R^{a5} が炭化水素基である基を「ビス(炭化水素ースルフィニル) - アミノ基」、 R^{a5} がヘテロ環基である基を「ビス(ヘテロ環ースルフィニル) - アミノ基」と称する。

上記式($\omega-1E$)乃至($\omega-21E$)で表される基における「炭化水素」とし

ては、上記「炭化水素基」と同様の基が挙げられる。例えば、式($\omega-1$ E)で表される「ビス(炭化水素-カルボニル)-アミノ基」としては、ビス(アルキルーカルボニル)-アミノ基、ビス(アルケニルーカルボニル)-アミノ基、ビス(アルキニルーカルボニル)-アミノ基、ビス(シクロアルキルーカルボニル)-アミノ基、ビス(シクロアルケニルーカルボニル)-アミノ基、ビス(シクロアルケニルーカルボニル)-アミノ基、ビス(シクロアルキルーアルキルーカルボニル)-アミノ基等のビス(脂肪族炭化水素-カルボニル)-アミノ基;ビス(アリールーカルボニル)-アミノ基;ビス(アラルキルーカルボニル)-アミノ基;ビス(アリールーカルボニル)-アミノ基;ビス(アラルキルーカルボニル)-アミノ基;ビス(タピロ環式炭化水素-カルボニル)-アミノ基;ビス(スピロ環式炭化水素-カルボニル)-アミノ基が挙げられる。以下、式($\omega-2$ E)乃至($\omega-2$ 1E)で表される基も同様である。

上記式($\omega-1$ E)乃至($\omega-2$ 1E)で表される基における「ヘテロ環」としては、上記「ヘテロ環基」と同様の基が挙げられる。例えば、式($\omega-1$ E)で表される「ビス(ヘテロ環ーカルボニル)-アミノ基」としては、例えば、ビス(単環式ヘテロアリールーカルボニル)-アミノ基、ビス(縮合多環式ヘテロアリールーカルボニル)-アミノ基、ビス(単環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)アミノ基、ビス(縮合多環式非芳香族ヘテロ環ーカルボニル)-アミノ基が挙げられる。以下、式($\omega-2$ E)乃至($\omega-2$ 1E)で表される基も同様である。上記式($\omega-1$ 0E)乃至($\omega-1$ 6E)で表される基における「環状アミノ」としては、上記「環状アミノ基」と同様の基が挙げられる。

上記「アシルーアミノ基」及び「ジ(アシル)ーアミノ基」を総称して、「アシル 置換アミノ基」と称する。また、上記「Nー炭化水素ーアミノ基」、「N, Nージ (炭化水素)ーアミノ基」、「Nーヘテロ環ーアミノ基」、「Nー炭化水素ーNーヘ テロ環ーアミノ基」、「環状アミノ基」、「アシルーアミノ基」、及び「ジ(アシル) ーアミノ基」を総称して、「置換アミノ基」と称する。

以下、上記一般式(I)で表される化合物について具体的に説明する。

上記一般式(I)において、Aとしては、水素原子又はアセチル基を挙げることができ、好適には水素原子である。

環Zの定義における「式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」の「アレーン」としては、単環式又は縮合多環式芳香族炭化水素が挙げられ、例えば、ベンゼン環、ナフタレン環、アンラセン環、フェナントレン環、アセナフチレン環等が挙げられる。好適には、ベンゼン環、ナフタレン環等の $C_6\sim C_{10}$ のアレーンであり、さらに好適には、ベンゼン環及びナフタレン環であり、最も好適には、ベンゼン環である。

上記環 Z の定義における「式 – O – A (式中、A は上記定義と同義である)及び式 – C O N H – E (式中、E は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のアレーン上での置換位置は特に限定されない。また、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環 Z の定義における「式ーOーA(式中、Aは上記定義と同義である)及び式ーCONHーE(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」が「式ーOーA(式中、Aは上記定義と同義である)及び式ーCONHーE(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいベンゼン環」である場合、好適には、「式ーOーA(式中、Aは上記定義と同義である)及び式ーCONHーE(式中、Eは上記定義と同義である)で表される基の他に更に1ないし3個の置換基を有するベンゼン環」であり、更に好適には、「式ーOーA(式中、Aは上記定義と同義である)及び式ーCONHーE(式中、Eは上記定義と同義である)で表される基の他に更に1個の置換基を有するベンゼン環」である。このとき、該置換基としては、好適には、下記「置換基群γー1 z」から選択される基であり、更に好適には、ハロゲン原子及びtertーブチル基〔(1,1ージメチル)エチ

[置換基群 y - 1 z] ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、メト

ル基〕であり、最も好適には、ハロゲン原子である。

キシ基、メチル基、イソプロピル基、tert-ブチル基、1,1,3,3-テ トラメチルブチル基、2-フェニルエテン-1-イル基、2,2-ジシアノエテ ン-1-イル基、2-シアノ-2-(メトキシカルボニル)エテン-1-イル基、 2-カルボキシー2-シアノエテン-1-イル基、エチニル基、フェニルエチニ ル基、(トリメチルシリル) エチニル基、トリフルオロメチル基、ペンタフルオロ エチル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロ フェニル基、2,4ージフルオロフェニル基、2-フェネチル基、1-ヒドロキ シエチル基、1-(メトキシイミノ)エチル基、1-[(ベンジルオキシ)イミノ] エチル基、2-チエニル基 [チオフェン-2-イル基]、3-チエニル基 [チオフ ェンー3-イル基]、1-ピロリル基 [ピロールー1-イル基]、2-メチルチア ゾールー4ーイル基、イミダゾ [1, 2-a] ピリジンー2ーイル基、2ーピリ ジル基 [ピリジン-2-イル基]、アセチル基、イソブチリル基、ピペリジノカル ボニル基、4-ベンジルピペリジノカルボニル基、(ピロール-1-イル) スルホ ニル基、カルボキシ基、メトキシカルボニル基、N-[3,5-ビス(トリフル オロメチル)フェニル]カルバモイル基、N, N-ジメチルカルバモイル基、ス ルファモイル基、N-[3, 5-ビス(トリフルオロメチル)フェニル]スルフ ァモイル基、N, N-ジメチルスルファモイル基、アミノ基、N, N-ジメチル アミノ基、アセチルアミノ基、ベンゾイルアミノ基、メタンスルホニルアミノ基、 ベンゼンスルホニルアミノ基、3-フェニルウレイド基、(3-フェニル) チオウ レイド基、(4-ニトロフェニル)ジアゼニル基、{[4-(ピリジン-2-イル) スルファモイル]フェニル}ジアゼニル基 上記環 Z の定義における「式-O-A (式中、Aは上記定義と同義である)及び

上記環 Z の定義における「式ーO-A (式中、Aは上記定義と同義である)及び式-CONH-E (式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン」が「式-O-A (式中、Aは上記定義と同義である)及び式-CONH-E (式中、Eは上記定義と同義である)で表さ

れる基の他にさらに置換基を有していてもよいベンゼン環」である場合、該置換基が1個であり、一般式 (I)における環Zを含む下記部分構造式 (I z - 1):

が下記式 (Iz-2):

で表される場合のR*の位置に存在することが最も好ましい。このとき、該置換基をR*と定義することができる。R*としては、好適には、下記「置換基群γー2z」から選択される基であり、更に好適には、ハロゲン原子及びtertーブチル基であり、最も好適には、ハロゲン原子である。

[置換基群 γ - 2 z] ハロゲン原子、ニトロ基、シアノ基、メトキシ基、メチル基、イソプロピル基、tert-ブチル基、1,1,3,3-テトラメチルブチル基、2-フェニルエテン-1-イル基、2,2-ジシアノエテン-1-イル基、2ーシアノ-2-(メトキシカルボニル)エテン-1-イル基、2ーカルボキシー2ーシアノエテン-1ーイル基、エチニル基、フェニルエチニル基、(トリメチルシリル)エチニル基、トリフルオロメチル基、ペンタフルオロエチル基、フェニル基、4-(トリフルオロメチル)フェニル基、4-フルオロフェニル基、2,4-ジフルオロフェニル基、2ーフェネチル基、1ーヒドロキシエチル基、1ー(メトキシイミノ)エチル基、1ー[(ベンジルオキシ)イミノ]エチル基、2ーチエニル基、3ーチエニル基、1ーピロリル基、2ーメチルチアゾールー4ーイル基、イミダソ[1,2-a]ピリジン-2ーイル基、2ーピリジル基、アセチル基、インブチリル基、ピペリジノカルボニル基、4ーベンジルピペリジノカル

ボニル基、(ピロールー1ーイル) スルホニル基、カルボキシ基、メトキシカルボニル基、N-[3,5-ビス(トリフルオロメチル) フェニル] カルバモイル基、N,N-ジメチルカルバモイル基、スルファモイル基、N-[3,5-ビス(トリフルオロメチル) フェニル] スルファモイル基、N,N-ジメチルスルファモイル基、アミノ基、N,N-ジメチルアミノ基、アセチルアミノ基、ベンゾイルアミノ基、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基、3-フェニルウレイド基、(3-フェニル) チオウレイド基、(4-ニトロフェニル) ジアゼニル基、{[4-(ピリジン-2-イル) スルファモイル] フェニル} ジアゼニル基

上記環Zの定義における「式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他に更に置換基を有していてもよいアレーン」が「式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他に更に置換基を有していてもよいナフタレン環」である場合、好適には、ナフタレン環である。

環2の定義における「式-O-A (式中、Aは上記定義と同義である)及び式-CONH-E (式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいへテロアレーン」の「ヘテロアレーン」としては、環系を構成する原子(環原子)として、酸素原子、硫黄原子及び窒素原子等から選択されたヘテロ原子1ないし3種を少なくとも1個含む単環式又は縮合多環式芳香族複素環が挙げられ、例えば、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、1,2,3ーオキサジアゾール環、1,2,3ーチアジアゾール環、1,2,3ートリアゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、1,2,3ートリアジン環、1,2,4ートリアジン環、1Hーアゼピン環、1,4ーオキセピン環、1,4ーチアゼピン環、ベンゾフラン環、イソベンゾフラン環、ベンゾ [b]チオフェン環、ベンゾ [c]チオフェン環、

上記環 Z の定義における「式ーOーA(式中、A は上記定義と同義である)及び式ーCONHーE(式中、E は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいへテロアレーン」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアレーン上での置換位置は特に限定されない。また、該置換基が 2 個以上存在する場合、それらは同一であっても異なっていてもよい。

上記環 Z の定義における「式 – O – A (式中、A は上記定義と同義である)及び式 – C O N H – E (式中、E は上記定義と同義である)で表される基の他にさらに置換基を有していてもよいヘテロアレーン」の「置換基」としては、好適には、ハロゲン原子である。

Eの定義における「2,5-ジ置換フェニル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。

上記Eの定義における「2, 5 - ジ置換フェニル基」の好適な基の具体例としては、下記「置換基群 δ - 1 e 」に示す基が挙げられる。

[置換基群 δ-1 e] 2, 5-ジメトキシフェニル基、2-クロロ-5-(トリ フルオロメチル)フェニル基、2,5-ビス(トリフルオロメチル)フェニル基、 2-フルオロ-5-(トリフルオロメチル)フェニル基、2-ニトロ-5-(ト リフルオロメチル)フェニル基、2-メチル-5-(トリフルオロメチル)フェ ニル基、2-メトキシ-5-(トリフルオロメチル)フェニル基、2-メチルス ルファニルー5-(トリフルオロメチル)フェニル基、2-(1-ピロリジニル) - 5 - (トリフルオロメチル)フェニル基、2 - モルホリノ - 5 - (トリフルオ ロメチル)フェニル基、2,5ージクロロフェニル基、2,5ービス[(1,1ー ·ジメチル) エチル] フェニル基、5 – [(1, 1 – ジメチル) エチル] – 2 – メト キシフェニル基、4-メトキシビフェニル-3-イル基、2-プロモー5-(ト リフルオロメチル)フェニル基、2-(2-ナフチルオキシ)-5-(トリフル オロメチル)フェニル基、2-(2,4-ジクロロフェノキシ)-5-(トリフ ルオロメチル)フェニル基、2-[4-(トリフルオロメチル)ピペリジンー1 ーイル] -5- (トリフルオロメチル) フェニル基、2- (2, 2, 2-トリフ ルオロエトキシ) -5- (トリフルオロメチル) フェニル基、2-(2-メトキ シフェノキシ) -5- (トリフルオロメチル) フェニル基、2- (4-クロロー 3,5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-ピペリジノ-5-(トリフルオロメチル)フェニル基、2-(4-メチルフェノ キシ) -5-(トリフルオロメチル)フェニル基、2-(4-クロロフェノキシ) -5-(トリフルオロメチル)フェニル基、5-イソプロピルー2-メチルフェ ニル基、2,5-ジエトキシフェニル基、2,5-ジメチルフェニル基、5-ク ロロー2ーシアノ基、5ージエチルスルファモイルー2ーメトキシフェニル基、 2-クロロ-5-ニトロフェニル基、2-メトキシ-5-(フェニルカルバモイ ル)フェニル基、5-アセチルアミノ-2-メトキシフェニル基、5-メトキシ -2-メチルフェニル基、2,5-ジブトキシフェニル基、2,5-ジイソペン

チルオキシ基、5-カルバモイル-2-メトキシフェニル基、5-[(1, 1-ジ メチル)プロピル]-2-フェノキシフェニル基、2-ヘキシルオキシ-5-メ タンスルホニル基、5-[(2,2-ジメチル)プロピオニル]-2-メチルフェ ニル基、5ーメトキシー2ー (1ーピロリル) フェニル基、5ークロロー2ー (p ートルエンスルホニル)フェニル基、2-クロロ-5-(p-トルエンスルホニ ル) フェニル基、2-フルオロー5-メタンスルホニル基、2-メトキシー5-フェノキシ基、2-メトキシ-5-(1-メチル-1-フェニルエチル)フェニ ル基、5-モルホリノー2-ニトロフェニル基、5-フルオロー2-(1-イミ ダゾリル)フェニル基、2-ブチル-5-ニトロフェニル基、5-[(1, 1-ジ メチル)プロピル]-2-ヒドロキシフェニル基、2-メトキシ-5-メチルフ ェニル基、2,5-ジフルオロフェニル基、2-ベンゾイル-5-メチルフェニ ル基、2-(4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、 2- (4-メトキシフェノキシ) -5- (トリフルオロメチル) フェニル基 上記Eの定義における「2,5-ジ置換フェニル基」としては、更に好適には、 「2,5-ジ置換フェニル基(但し、該置換基の少なくとも1個はトリフルオロ メチル基である)」であり、特に更に好適には、下記「置換基群 δ - 2 e 」から選 択される基であり、最も好適には、2,5-ビス(トリフルオロメチル)フェニ ル基である。

[置換基群 δ - 2 e] 2 - クロロー 5 - (トリフルオロメチル) フェニル基、2,5 - ピス (トリフルオロメチル) フェニル基、2 - フルオロー 5 - (トリフルオロメチル) フェニル基、2 - フルオロメチル) フェニル基、2 - メチル) フェニル基、2 - メチルー 5 - (トリフルオロメチル) フェニル基、2 - メチルー 5 - (トリフルオロメチル) フェニル基、2 - メチルスルファニルー 5 - (トリフルオロメチル) フェニル基、2 - ノーピロリジニル) - 5 - (トリフルオロメチル) フェニル基、2 - ブロモー 5 - (トリフルオロメチル) フェニル基、2 - (2 - ナフチルオキシ) - 5 - (トリフルオロメチル) フェニル基、2 - (2,4 - ジクロロフェノキシ)

-5-(トリフルオロメチル)フェニル基、2-[4-(トリフルオロメチル)ピペリジン-1-イル]-5-(トリフルオロメチル)フェニル基、2-(2,2-トリフルオロエトキシ)-5-(トリフルオロメチル)フェニル基、2-(2-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-クロロ-3,5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-ノロエー3,5-ジメチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-メチルフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-クロフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-シアノフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基、2-(4-メトキシフェノキシ)-5-(トリフルオロメチル)フェニル基

Eの定義における「3,5-ジ置換フェニル基」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。 上記Eの定義における「3,5-ジ置換フェニル基」の好適な基の具体例としては、下記「置換基群 $\delta-3$ e」に示す基が挙げられる。

[置換基群 δ - 3 e] 3, 5 - ビス (トリフルオロメチル) フェニル基、3, 5 - ジクロロフェニル基、3, 5 - ビス [(1, 1 - ジメチル) エチル] フェニル基、3 - フルオロー5 - (トリフルオロメチル) フェニル基、3 - ブロモー5 - (トリフルオロメチル) フェニル基、3 - ブロモー5 - (トリフルオロメチル) フェニル基、3, 5 - ジフルオロフェニル基、3, 5 - ジニトロフェニル基、3, 5 - ジメチルフェニル基、3, 5 - ジメトキシフェニル基、3, 5 - ビス (メトキシカルボニル) フェニル基、3 - メトキシカルボニルー5 - (トリフルオロメチル) フェニル基、3 - カルボキシー5 - (トリフルオロメチル) フェニル基、3 - カルボキシフェニル基、3 - ジカルボキシフェニル基、3 - ジカルボキシフェニル基

ル基である。

[置換基群 δ − 4 e] 3, 5 − ビス (トリフルオロメチル) フェニル基、3 − フルオロ − 5 − (トリフルオロメチル) フェニル基、3 − プロモー5 − (トリフルオロメチル) フェニル基、3 − メトキシー5 − (トリフルオロメチル) フェニル基、3 − メトキシカルボニルー5 − (トリフルオロメチル) フェニル基、3 − カルボキシー5 − (トリフルオロメチル) フェニル基

Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基(ただし、該へテロアリール基が、①式(I)中の一CONH一基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾールー2ーイル基、及び③無置換のベンゾチアゾールー2ーイル基である場合を除く)」の「置換基」としては、上記「置換基を有していてもよい」の定義における「置換基」と同様の基が挙げられる。該置換基のヘテロアリール基上での置換位置は特に限定されない。また、該置換基が2個以上存在する場合、それらは同一であっても異なっていてもよい。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へ テロアリール基」の「単環式へテロアリール基」としては、上記「ヘテロ環基」 の定義における「単環式へテロアリール基」と同様の基が挙げられる。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基」の「縮合多環式へテロアリール基」としては、上記「ヘテロ環基」の定義における「縮合多環式へテロアリール基」と同様の基が挙げられる。 上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基」としては、①一般式(I)中の一CONH-基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾールー2ーイル基、及び③無置換のベンゾチアゾールー2ーイル基は除く。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へ テロアリール基」の「単環式若しくは縮合多環式へテロアリール基」としては、 好適には、5ないし10員の単環式若しくは縮合多環式へテロアリール基であり、

このとき、好適な基の具体例としては、チアゾリル基、チエニル基、ピラゾリル 基、オキサゾリル基、1,3,4-チアジアゾリル基、ピリジル基、ピリミジニ ル基、ピラジニル基、及びキノリル基である。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基」の「単環式若しくは縮合多環式へテロアリール基」としては、 更に好適には、5員の単環式へテロアリール基であり、特に更に好適には、チア ゾリル基、チエニル基、ピラゾリル基、オキサゾリル基、及び1,3,4ーチア ジアゾリル基であり、最も好適には、チアゾリル基である。

ここで、上記Eの定義における「置換基を有していてもよい単環式若しくは縮合 多環式へテロアリール基」としては、「無置換のチアゾール-2-イル基は除く」 ので、該「置換基を有していてもよい単環式若しくは縮合多環式へテロアリール 基」としては、最も好適には、置換チアゾリル基である。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へ テロアリール基」が「置換チアゾリル基」である場合、好適には、「モノ置換チア ゾールー2ーイル基」、及び「ジ置換チアゾールー2ーイル基」であり、更に好適 には、「ジ置換チアゾールー2ーイル基」である。

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基」が「ジ置換チアゾール-2ーイル基」である場合、特に更に好適には、下記「置換基群 $\delta-5$ e」から選択される基であり、最も好適には、4-[(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール<math>-2ーイル基である。

オロメチル)フェニル]チアゾールー2-イル基、4-[(1,1-ジメチル)エ チル]-5-エチルチアゾール-2-イル基、4-エチル-5-フェニルチアゾ ールー2-イル基、4-イソプロピルー5-フェニルチアゾールー2-イル基、 4-ブチル-5-フェニルチアゾール-2-イル基、4-[(1,1-ジメチル) エチル] -5- [(2, 2-ジメチル) プロピオニル] チアゾールー2-イル基、 4-[(1, 1-ジメチル) エチル] -5-(エトキシカルボニル) チアゾールー 2-イル基、4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾールー 2-イル基、4-[(1,1-ジメチル)エチル]-5-モルホリノチアゾールー 2-イル基、4-[(1,1-ジメチル)エチル]-5-(4-メチルピペラジン -1-イル) チアゾール-2-イル基、4-[(1, 1-ジメチル) エチル] -5 - (4-フェニルピペラジン-1-イル)チアゾール-2-イル基、5-カルボ キシメチルー4-フェニルチアゾール-2-イル基、4,5-ジフェニルチアゾ ールー2-イル基、4-ベンジルー5-フェニルチアゾールー2-イル基、5-フェニルー4-(トリフルオロメチル)チアゾールー2-イル基、5-アセチル - 4 - フェニルチアゾール- 2 - イル基、 5 - ベンゾイル- 4 - フェニルチアゾ ールー2-イル基、5-エトキシカルボニルー4-フェニルチアゾールー2-イ ル基、5-エトキシカルボニル-4-(ペンタフルオロフェニル)チアゾールー 2-イル基、5-メチルカルバモイル-4-フェニルチアゾール-2-イル基、 5-エチルカルバモイル-4-フェニルチアゾール-2-イル基、5-イソプロ ピルカルバモイルー4-フェニルチアゾール-2-イル基、5-(2-フェニル エチル) カルバモイルー4-フェニルチアゾールー2-イル基、5-エトキシカ ルボニル-4- (トリフルオロメチル) チアゾール-2-イル基、5-カルボキ シー4-[(1,1-ジメチル) エチル] チアゾール-2-イル基、5-(エトキ シカルボニル) メチルー4ーフェニルチアゾールー2ーイル基、5ーカルボキシ -4-フェニルチアゾール-2-イル基、5-プロピルカルバモイル-4-フェ ニルチアゾールー2-イル基

上記Eの定義における「置換基を有していてもよい単環式若しくは縮合多環式へ

テロアリール基」が「モノ置換チアゾールー2ーイル基」である場合、好適な基の具体例としては、下記「置換基群 $\delta-6e$ 」に示す基が挙げられる。

[置換基群 $\delta-6$ e] 4-[(1, 1-ジメチル) エチル] チアゾールー 2-4ル 基、4-7ェニルチアゾールー 2-4ル基、4-[3, 5-ビス (トリフルオロメチル) フェニル] チアゾールー <math>2-4ル基、4-(2, 4-ジクロロフェニル) チアゾールー <math>2-4ル基、4-(3, 4-ジクロロフェニル) チアゾールー <math>2-4ル基、4-[4-(トリフルオロメチル) フェニル] チアゾールー <math>2-4ル基、4-(2, 5-ジフルオロフェニル) チアゾールー <math>2-4ル基、4-(4-X)キシフェニル) チアゾールー 2-4ル基、4-[3-(トリフルオロメチル) フェニル] チアゾールー <math>2-4ル基、4-(3-3-(-1)) チアゾールー 2-4ル基、4-(3-3-(-1)) チアゾールー 2-4ル基

上記一般式 (I) で表される化合物としては、好適には、「下記一般式 (X-1) で表される置換安息香酸誘導体」以外の化合物である。

$$R^{1001}$$
 I X^{1001} $(X-1)$

(式中、

R¹⁰⁰¹は、下記の一般式(X-2):

$$R^{1003}$$
 R^{1004}
 CH_2
 $(X-2)$

または、下記の一般式(X-3):

$$R^{1003}$$
 R^{1004}
 CH_2
 $(X-3)$

(式中、 R^{1003} 、 R^{1004} および R^{1005} は各々独立に水素原子、炭素数 $1\sim6$ のアルキル基または炭素数 $1\sim6$ のアルコキシ基であり、 R^{1009} および R^{1010} は各々独立に水素原子、炭素数 $1\sim6$ のアルキル基または炭素数 $2\sim1$ 1のアシル基を示す)であり;

 R^{1002} は、水素原子、置換されていてもよい炭素数 $1\sim6$ の低級アルキル基、置換されていてもよい炭素数 $6\sim1$ 2 のアリール基、置換されていてもよい炭素数 $4\sim1$ 1 のヘテロアリール基、置換されていてもよい炭素数 $7\sim1$ 4 のアラルキル基、置換されていてもよい炭素数 $5\sim1$ 3 のヘテロアリールアルキル基を示すか、あるいは炭素数 $2\sim1$ 1 のアシル基であり;

X¹⁰⁰¹は、エステル化またはアミド化されていてもよいカルボキシル基を示す。)上記一般式(I)で表される化合物は塩を形成することができる。薬理学的に許容される塩としては、酸性基が存在する場合には、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩等の金属塩、又はアンモニウム塩、メチルアンモニウム塩、ジメチルアンモニウム塩、トリメチルアンモニウム塩、ジシクロヘキシルアンモニウム塩等のアンモニウム塩をあげることができ、塩基性基が存在する場合には、例えば、塩酸塩、臭酸塩、硫酸塩、硝酸塩、リン酸塩等の鉱酸塩、あるいはメタンスルホン酸塩、ベンゼンスルホン酸塩、パラトールエンスルホン酸塩、酢酸塩、プロピオン酸塩、酒石酸塩、フマール酸塩、マレイン酸塩、リンゴ酸塩、シュウ酸塩、コハク酸塩、クエン酸塩、安息香酸塩、マンデル酸塩、ケイ皮酸塩、乳酸塩等の有機酸塩をあげることができる。グリシンなどのアミノ酸と塩を形成する場合もある。本発明の医薬の有効成分としては、薬学的に許容される塩も好適に用いることができる。

上記一般式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存

在する場合もある。本発明の医薬の有効成分としては、上記のいずれの物質を用いてもよい。さらに一般式(I)で表される化合物は1以上の不斉炭素を有する場合があり、光学活性体やジアステレオマーなどの立体異性体として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の立体異性体、光学対 掌体又はジアステレオマーの任意の混合物、ラセミ体などを用いてもよい。

また、一般式(I)で表される化合物が例えば2ーヒドロキシピリジン構造を有する場合、その互変異性体(tautomer)である2ーピリドン構造として存在する場合がある。本発明の医薬の有効成分としては、純粋な形態の互変異性体又はそれらの混合物を用いてもよい。また、一般式(I)で表される化合物がオレフィン性の二重結合を有する場合には、その配置はZ配置又はE配置のいずれでもよく、本発明の医薬の有効成分としてはいずれかの配置の幾何異性体又はそれらの混合物を用いてもよい。

本発明の医薬の有効成分として一般式 (I) に包含される化合物を以下に例示するが、本発明の医薬の有効成分は下記の化合物に限定されることはない。

なお、下記表において用いられる略語の意味は下記の通りである。

Me:メチル基、Et:エチル基。

化合物番号	A O	E
1	Me O	CF ₃
2	OH	CF ₃
3	OH F	CF ₃
4	OH C	CF ₃
5	Me O CI	CF ₃
6	OH Br	CF ₃

7	OH	CF ₃
8	OH NO ₂	CF ₃
9	OH CN	CF ₃
1 0	OH Me	CF ₃
11	OH Me Me	CF ₃
1 2	OH O Me	CF ₃
1 3	но	CF ₃
1 4	MeO N Me	CF ₃

1 5	OH OH Me	CF ₃
1 6	OH CN CN	CF ₃
1 7	OH CN CO ₂ Me	CF ₃
1 8	OH CN CO₂H	CF ₃
1 9	В	CF ₃
2 0	OH SiMe ₃	CF ₃

2 1	OH H	CF ₃
2 2	OH	CF ₃ CF ₃
2 3	OH	CF ₃
2 4	OH	CF ₃
2 5	OH CF ₃	CF ₃
2 6	OH CF ₂ CF ₃	CF ₃

2 7	OH N	CF ₃
2 8	OH S	CF ₃
2 9	OH S	CF ₃
3 0	OH S Me	CF ₃
3 1	OH Z Z	CF ₃
3 2	OH NO	CF ₃

3 3	OH OMe	CF ₃
3 4	OH O Me Me	CF ₃
3 5	OH CO ₂ Me	CF ₃
3 6	OH CO₂H	CF ₃
3 7	OH CF3	CF ₃
3 8	OH CONMe ₂	CF ₃
3 9	OH N	CF ₃

4 0	OH O N	CF ₃ CF ₃
4 1	OH SO ₂ NMe ₂	CF ₃
4 2	OH O	CF ₃
4 3	OH NH ₂	CF ₃
4 4	OH NMe ₂	CF ₃
4 5	OH HN O	CF ₃
4 6	OH H HN O	CF ₃

4 7	OH H H N S	CF ₃
4 8		CF ₃ CF ₃
4 9		CF ₃
5 0	Me N CI	CF ₃
5 1	CI	CF ₃
5 2	ОН	CF ₃

5 3	OH Me	CF ₃
5 4	HO Br	CF ₃
5 5	но	CF ₃
5 6	CI	CF ₃
5 7	HOOH	CF ₃
5 8	OH Me	CF ₃
5 9	OH	CF ₃
6 0	OH Me Me Me Me	CF ₃

6 1	a OH CI	CF ₃
6 2	Me OH Me Me Me	CF ₃
6 3	OH F	CF ₃
6 4	CI OF	CF ₃
6 5	MeO	CF ₃
6 6	ОМе	CF ₃
6 7	OH NHSO₂Me	CF ₃
6 8	OH HN S	CF ₃

6 9	OH HN Me	CF ₃
7 0	OH SO ₂ NH ₂	CF3
7 1	₹ - ₽	CF ₃
7 2	OH	CF ₃
7 3	OH	CF ₃
7 4	OH Br S	CF ₃
7 5	OH N CI	CF ₃
7 6	OH N	CF ₃

7 7	OH HN CI	CF ₃
7 8	OH	CF ₃
7 9	OH HN CI	CF ₃
8 0	OH Z Z	CF ₃
8 1	OH	CF ₃
8 2	Me O CI	CF ₃
8 3	OH Br	CF ₃
8 4	OH Me	CF ₃

		<u> </u>
8 5	OH CI	CF ₃
8 6	OH Br	CF ₃
8 7	OH C	CF ₃
8 8	5——————————————————————————————————————	CF ₃
8 9	O O CI	CF ₃
9 0	OH Br	CF ₃
9 1	OH	CF ₃
9 2	OH CI	CF ₃

9 3	OH Br	CF ₃ OMe
9 4	OH Br	CF ₃
9 5	OH	CF ₃
9 6	OH C	CF ₃
9 7	₽ _ ₽	_z
9 8	OH Br	و کے کی
9 9	OH NO ₂	CF ₃
100	OH Me	CF ₃

101	OH OMe	CF ₃
1 0 2	OH Me	CF ₃
103	OH Me	CF ₃
104	OH CI	CF ₃
1 0 5	OH CI	CF ₃
106	OH CI	CF ₃
1 0 7	OH	CF ₃
1 0 8	OH	CF ₃ CO₂Me

109	OH	CF ₃
110	OH	CF ₃
111	OH C	CF ₃
1 1 2	OH CI	CF ₃
113	OH CI	CF ₃ OCH ₂ CF ₃
114	OH	CF ₃

115	OH CI	CF ₃ O Me CI
1 1 6	OH C	CF ₃
117	OH OH	CF ₃
1 1 8	2 — E	CF ₃
1 1 9	OH N C	CF ₃
1 2 0	Me O	о—\о
1 2 1	OH	CI

1 2 2	OH	CI
1 2 3	OH Br	F
124	OH F	CI
1 2 5	OH	C C
1 2 6	OH Br	CI
1 2 7	OH	C C
1 2 8	OH Br	CI CI
1 2 9	CI	CI
1 3 0	OH NO ₂	CI

131	OH Me	CI
1 3 2	OH OMe	CI
1 3 3	OH Br	NO ₂
134	OH	Me Me Me Me
1 3 5	OH	Me Me Me
136	Me O CI	Me Me Me
1 3 7	OH Br	Me Me

138	OH CI	Me Me Me Me Me
139	O O CI	Me Me Me Me Me
1 4 0	OH Br	Me Me Me Me Me
141	OH	OMe
1 4 2	OH Br	OMe
1 4 3	OH Br	OMe
144	OH Br	CO ₂ Me

145	OH Me	Me Me Me Me
1 4 6	OH NO₂	Me Me Me Me
147	OH Me	Me Me Me Me Me
1 4 8	OH OMe	Me Me Me Me Me
1 4 9	OH Me	Me Me Me OMe
150	OH Br	со ₂ н
151	OH C	Me Me

152	OH	OEt OEt
153	OH CI	Me Me
154	OH	CI CN
155	OH	SO ₂ NEt ₂
156	OH	NO ₂
157	OH C	OMe
1 5 8	OH CI	OMe
159	OH CI	HN Me

160	OH	OMe Me
161	OH	O Me
1 6 2	OH C	Me Me Me Me
163	OH C	CONH ₂ OMe
164	OH CI	Me Me
165	OH CI	SO ₂ Me
166	OH CI	Me Me Me Me

		
167	OH CO	OMe
168	OH	CI O=S——Me
169	OH CI	O = S — Me
170	OH	SO ₂ Me
171	OH CI	OMe
172	OH CI	Me
173	OH CI	Me Me OMe

174	OH	O N NO ₂
175	OH	
176	OH	NO ₂
177	OH	Me Me OH
178	OH CI	Me OMe
179	OH	F F
180	OH CI	F
181	OH	CI

182	Ď.	a c
183	ŎH	OMe OMe
184	ë ≥ 5	Me Me Me Me
185	OH Br	Me Me Me
186	OH Br	Me Me Me S Br
187	OH Br	N CF3 S Br
188	OH	Me Me Me S CN
189	OH Br	Me Me Me S CN

190	OH Br	→ N S Me
191	OH Br	N Me S Me
192	OH Br	N Me
193	OH Br	N Me
194	OH Br	S CF3
195	OH Br	Me Me Me S Et
196	OH Br	N Et
197	OH Br	Me N Me
198	OH Br	N Me

199	OH CI	Me Me Me S O Me Me Me
200	Me O	Me Me Me S Me Me Me
2 0 1	OH Br	Me Me S Me Me Me Me Me Me
2 0 2	OH Br	Me Me N Me CO ₂ Et
2 0 3	OH Br	Me Me Me S CO₂H
204	OH Br	Me Me Me
2 0 5	OH Br	Me Me Me S N O

206	OH Br	Me Me Me
207	OH Br	Me Me Me
2 0 8	OH Br	~ N
2 0 9	OH Br	N CO ₂ Et
2 1 0	OH Br	N CO ₂ H
2 1 1	OH Br	~ S
2 1 2	OH Br	N S
213	OH Br	S CF3

214	OH Br	N Me
215	OH Br	N O
2 1 6	OH B	S CO ₂ Et
217	OH Br	S CO ₂ H
2 1 8	OH CI	S CO ₂ Et
2 1 9	OH Br	F F S CO ₂ Et
2 2 0	OH Br	N CONHMe
221	OH Br	N CONHE

		
2 2 2	OH Br	N H Me
2 2 3	OH Br	S H
2 2 4	OH Br	N CF3 CO₂Et
2 2 5	OH OH	S CO ₂ Et
226	OH F	N CO ₂ Et
227	OH F	N CO ₂ Et

228	OH CF3	N S CO ₂ Et
2 2 9	OH Z	N CO ₂ Et
230	OH OH	S CO ₂ Et
2 3.1	OH CI	CF ₃
2 3 2	OH CI	EtO ₂ C
2 3 3	OH Br	N-NH
234	OH Br	N Et

2 3 5	OH Br	
236	OH Br	N CO
2 3 7	OH	N-N CF ₃
2 3 8	OH Br	N-N N-CF ₃
2 3 9	OH	\(\int_{N}\)
2 4 0	OH	CI
2 4 1	OH	OMe N CI
2 4 2	OH	
2 4 3	OH CI	N Br

244	OH	\(\mathbb{N}\)
2 4 5	OH Br	N Br
2 4 6	OH Br	N :H N Me
2 4 7	OH O=S-NH O CF ₃	CF ₃
2 4 8	OH	Me Me O OH
2 4 9	OH	CF ₃
250	P OH	CF ₃
2 5 1	OH	Me F ₃ C CF ₃ Me NH ₂

252	CI	CF ₃
253	OH CI	CF ₃
254	OH	CF ₃
255	OH	N CI
256	Me OH	CF ₃
257	Me OH Me	CF ₃
258	OH Me Br	CF ₃
259	OH Br	CF ₃

260	OH	N CI CI
261	OH CI	N CF3
262	OH	CF ₃
263	OH	N F F
264	OH	OMe
265	OH	N CF ₃
266	OH C	F F F
267	OH CI	Me

2 6 8	OH Br	CF ₃
	Br	CF ₃

一般式(I)で表される化合物は、例えば、以下の反応工程式に示した方法によって製造することができる。

反応工程式

(式中、A、環Z及びEは、一般式(I)における定義と同意義であり、 A^{101} は水素原子又はヒドロキシ基の保護基(好ましくは、メチル基等のアルキル基;ベンジル基等のアラルキル基;アセチル基;メトキシメチル基等のアルコキシアルキル基;トリメチルシリル基等の置換シリル基)を表し、R及び R^{101} は水素原子、 $C_1 \sim C_6$ のアルキル基等を表し、 E^{101} は、一般式(I)の定義におけるE又はEの前駆体を表し、Gはヒドロキシ基、ハロゲン原子(好ましくは、塩素原子)、炭化水素ーオキシ基(好ましくは、ハロゲン原子で置換されていてもよいアリールーオキシ基)、アシルーオキシ基、イミドーオキシ基等を表す)

(第1工程)

カルボン酸誘導体(1)とアミン(2)とを脱水縮合させることにより、アミド (3) 製造することができる。この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、無溶媒又は非プロトン性溶媒中 0 \mathbb{C} \mathbb{C} の反応温度で行われる。

この反応は、酸ハロゲン化剤又は脱水縮合剤の存在下、塩基の存在又は非存在下、 無溶媒又は非プロトン性溶媒中0℃~180℃の反応温度で行われる。

酸ハロゲン化剤としては、例えば、塩化チオニル、臭化チオニル、塩化スルフリル、オキシ塩化リン、三塩化リン、五塩化リンなどを挙げることができ、 A^{101} が水素原子の場合には三塩化リンが、 A^{101} がアセチル基等の場合にはオキシ塩化リンが好ましい。脱水縮合剤としては、例えば、N, N ージシクロヘキシル

カルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、ジフェニルホスホリルアジドなどを挙げることができる。塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等の無機塩基、あるいはピリジン、トリエチルアミン、N,Nージエチルアニリン等の有機塩基が挙げられる。非プロトン性溶媒としてはジクロロメタン、ジクロロエタン、クロロホルム、テトラヒドロフラン、1,4ージオキサン、ベンゼン、トールエン、モノクロロベンゼン、ロージクロロベンゼン、N,Nージメチルホルムアミド、Nーメチルピロリドンなどを挙げることができ、酸ハロゲン化剤の存在下に反応を行う場合には、特に、トールエン、モノクロロベンゼン、ロージクロロベンゼンが好ましい。

また、例えば、「ジャーナル・オブ・メディシナルケミストリー(Journal of Medicinal Chemistry)」,(米国),1998年,第41巻,第16号,p. 293 9-2945 に記載の方法及びこれらに準じた方法により、予めカルボン酸から酸塩化物を製造、単離し、次いで E^{101} を有するアミンと反応させることにより目的とするアミドを製造することもできる。

Gがヒドロキシ基である場合の好適な反応条件として、例えば、「アーキブ・デア・ファルマツィー (Archiv der Pharmazie)」、(ドイツ)、1998年、第331巻、第1号、p.3-6. に記載された反応条件を用いることができる。

カルボン酸誘導体(1)及びアミン(2)の種類は特に限定されず、文献公知の 製造方法を適宜参照しつつ新規に合成するか、あるいは市販の試薬を入手して上 記反応に用いることができる。

(第2工程)

アミド(3)が保護基を有する場合及び/又は官能基修飾に有利な置換基(例えば、アミノ基及びその保護体若しくは前駆体;カルボキシ基及びその保護体若しくは前駆体;ヒドロキシ基及びその保護体若しくは前駆体など)を有する場合、この工程で脱保護反応及び/又は官能基修飾反応を行うことにより最終目的物である化合物(4)を製造することができる。該反応は、種々の公知の方法を用い

ることができ、脱保護反応及び官能基修飾反応としては、例えば、セオドラ・W.・ グリーン (Theodora W. Green), ピーター・G.・M.・ブッツ (Peter G. M. Wuts) 編「プロテクティブ・グループス・イン・オーガニック・シンセシズ (Protective Groups in Organic Syntheses)」、(米国)、第3版、ジョン・ウィリー・アンド・ サンズ・インク (John Wiley & Sons, Inc.), 1999年4月;「ハンドプック・ オブ・リエージェンツ・フォー・オーガニック・シンセシス (Handbook of Reagents for Organic Synthesis)」, (米国), 全4巻, ジョン・ウィリー・アンド・サンズ・ インク (Tohn Wiley & Sons, Inc.), 1999年6月, 等に記載の方法を;官能 基修飾反応としては、例えば、リチャード・F.・ヘック (Richard F. Heck) 著 「パラジウム・リエージェンツ・イン・オーガニック・シンセシス (Palladium Reagents in Organic Syntheses)」, (米国), アカデミック・プレス (Academic Press), 1985年; 辻二郎 (J. Tsuji) 著「パラジウム・リエージェンツ・アンド・カタ リスツ:イノベーションズ・イン・オーガニック・シンセシス (Palladium Reagents and Catalysts: Innovations in Organic Synthesis)」, (米国), ジョン・ウィリ ー・アンド・サンズ・インク (John Wiley & Sons, Inc.), 1999年,等に記 載の方法を用いることができる。

以上のような方法で製造された一般式(I)で表される化合物は、当業者に周知の方法、例えば、抽出、沈殿、分画クロマトグラフィー、分別結晶化、懸濁洗浄、再結晶などにより、単離、精製することができる。また、本発明化合物の薬理学的に許容される塩、並びにそれらの水和物及び溶媒和物も、それぞれ当業者に周知の方法で製造することができる。

本明細書の実施例には、一般式 (I) に包含される代表的化合物の製造方法が具体的に説明されている。従って、当業者は、上記の一般的な製造方法の説明及び 実施例の具体的製造方法の説明を参照しつつ、適宜の反応原料、反応試薬、反応 条件を選択し、必要に応じてこれらの方法に適宜の修飾ないし改変を加えること によって、一般式 (I) に包含される化合物をいずれも製造可能である。

一般式(I)で示される化合物はNF-κB及びAP-1の両者に対して活性化

抑制作用を有しており、アルツハイマー症の予防及び/又は治療のための医薬、あるいはてんかんの予防及び/又は治療のための医薬の有効成分として用いられる。本明細書において、アルツハイマー症の予防及び/又は治療とは、A β の蓄積抑制作用、神経細胞死抑制作用、脳萎縮抑制作用、神経原繊維変化抑制作用、及び痴呆改善作用などを含めて最も広義に解釈しなければならず、いなかる意味においても限定的に解釈してはならない。また、本明細書において、てんかんの予防及び/又は治療とは、強直間代発作、欠神発作、ミオクロニー発作等のてんかん発作抑制作用、大脳の神経細胞の異常興奮抑制作用、海馬の神経細胞死抑制作用等を含めて最も広義に解釈しなければならず、いかなる意味においても限定的に解釈してはならない。

また、最近の研究で、アルツハイマー症、パーキンソン病、及びハンチントン病 に代表される神経疾患において GSK 3 eta (glycogen synthase kinase-3 beta) が 重要な役割を演じていることが明らかとなってきており、 $GSK3\beta$ の阻害剤がこれ らの病気の治療薬となる可能性が示唆されている。本発明の化合物番号4の化合 物(2μ M)は、MOLT-4F細胞(ヒト白血病細胞)に 24 時間作用させると GSK 3 β がリン酸化されたリン酸化 GSK3 β の量を増大させ、同様な現象が神経細胞にお いても起こることが十分推定される。 $GSK3\beta$ は、リン酸化されることにより不活 .性化されるので、リン酸化 GSK 3 eta の量の増大は、実質的に GSK 3 eta の阻害を意味 するものであると考えられることから、これらの結果も、本発明の化合物がアル ツハイマー症、パーキンソン病、及びハンチントン病の治療薬として有効である ことを示唆している。(「ザ・バイオケミカル・ジャーナル (The Biochemical Journal)」, (英国), 2001年, 第359巻, 第PT1号, p. 1-16;「カ レント・オピニオン・イン・ニューロバイオロジー (Current Opinion in Neurobiology)」, (英国), 2002年, 第12巻, 第3号, p. 275-278; 「トレンズ・イン・モレキュラー・メディシン (Trends in Molecular Medicine)」, (英国), 2002年, 第8巻, 第3号, p. 126-132;「プロシーディン グス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユ

ナイテッド・ステイツ・オブ・アメリカ (Proceedings of The National Academy of Sciences of The United States of America)」, (米国), 1996年, 第93 巻, 第7号, p. 2719-2723;「ザ・ジャーナル・オブ・バイオロジカル・ ケミストリー (The Journal of Biological Chemistry)」, (米国), 2002年, 第277巻, 第44号, p. 42060-42065;「プロシーディングス・オ ブ・ザ・ナショナル・アカデミー・オブ・サイエンシズ・オブ・ザ・ユナイテッ ド・ステイツ・オブ・アメリカ (Proceedings of The National Academy of Sciences of The United States of America)」, (米国), 2003年, 第100巻, 第2号, p. 721-726;「アンアールズ・オブ・ザ・ニューヨーク・アカデミー・オ ブ・サイエンシズ (Annals of The New York Academy of Sciences)」, (米国), 2000年, 第920巻, p. 107-114; 「ネイチャー (Nature)」, (英国), 2003年, 第423巻, 第6938号, p. 435-439; 「ニューロン (Neuron)」, (米国), 2003年, 第38巻, 第4号, p. 555-565参照。) さらに、GSK3βはリチウムによって阻害されることも知られており、リチウムに ついては抗鬱作用があることが既に知られている。もし、リチウムの抗鬱作用が GSK3βの阻害によるものだとすると、本発明の化合物にも抗鬱剤としての使用が 期待できる。

本発明の医薬の有効成分としては、一般式(I)で表される化合物及び薬理学的に許容されるそれらの塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質の1種又は2種以上を用いることができる。本発明の医薬としては上記の物質自体を用いてもよいが、好適には、本発明の医薬は有効成分である上記の物質と1又は2以上の薬学的に許容される製剤用添加物とを含む医薬組成物の形態で提供される。上記医薬組成物において、製剤用添加物に対する有効成分の割合は、1重量%から90重量%程度である。

本発明の医薬は、例えば、顆粒剤、細粒剤、散剤、硬カプセル剤、軟カプセル剤、 シロップ剤、乳剤、懸濁剤、又は液剤などの経口投与用の医薬組成物として投与 してもよいし、静脈内投与、筋肉内投与、若しくは皮下投与用の注射剤、点滴剤、

坐剤、経皮吸収剤、経粘膜吸収剤、点鼻剤、点耳剤、点眼剤、吸入剤などの非経 口投与用の医薬組成物として投与することもできる。粉末の形態の医薬組成物と して調製された製剤を用時に溶解して注射剤又は点滴剤として使用してもよい。 医薬用組成物の製造には、固体又は液体の製剤用添加物を用いることができる。 製剤用添加物は有機又は無機のいずれであってもよい。すなわち、経口用固形製 剤を製造する場合は、主薬に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢 剤、着色剤、矯味矯臭剤などを加えた後、常法により錠剤、被覆錠剤、顆粒剤、 散剤、カプセル剤などの形態の製剤を調製することができる。用いられる賦形剤 としては、例えば、乳糖、蔗糖、白糖、ブドウ糖、コーンスターチ、デンプン、 タルク、ソルビット、結晶セルロース、デキストリン、カオリン、炭酸カルシウ ム、二酸化ケイ素などを挙げることができる。結合剤としては、例えば、ポリビ ニルアルコール、ポリビニルエーテル、エチルセルロース、メチルセルロース、 アラビアゴム、トラガント、ゼラチン、シェラック、ヒドロキシプロピルセルロ ース、ヒドロキシプロピルメチルセルロース、クエン酸カルシウム、デキストリ ン、ペクチンなどを挙げることができる。滑沢剤としては、例えば、ステアリン 酸マグネシウム、タルク、ポリエチレングリコール、シリカ、硬化直物油などを 挙げることができる。着色剤としては、通常医薬品に添加することが許可されて いるものであればいずれも使用することができる。矯味矯臭剤としては、ココア 末、ハッカ脳、芳香酸、ハッカ油、龍脳、桂皮末などを使用することができる。 これらの錠剤、顆粒剤には、糖衣、ゼラチン衣、その他必要により適宜コーティ ングを付することができる。また、必要に応じて、防腐剤、抗酸化剤等を添加す ることができる。

経口投与のための液体製剤、例えば、乳剤、シロップ剤、懸濁剤、液剤の製造には、一般的に用いられる不活性な希釈剤、例えば水又は植物油を用いることができる。この製剤には、不活性な希釈剤以外に、補助剤、例えば湿潤剤、懸濁補助剤、甘味剤、芳香剤、着色剤又は保存剤を配合することができる。液体製剤を調製した後、ゼラチンのような吸収されうる物質のカプセル中に充填してもよい。

非経口投与用の製剤、例えば注射剤又は坐剤等の製造に用いられる溶剤又は懸濁剤としては、例えば、水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチンを挙げることができる。坐剤の製造に用いられる基剤としては、例えば、カカオ脂、乳化カカオ脂、ラウリン脂、ウィテップゾールを挙げることができる。製剤の調製方法は特に限定されず、当業界で汎用されている方法はいずれも利用可能である。

注射剤の形態にする場合には、担体として、例えば、水、エチルアルコール、マクロゴール、プロピレングリコール、クエン酸、酢酸、リン酸、乳酸、乳酸ナトリウム、硫酸及び水酸化ナトリウム等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム及びリン酸ナトリウム等のpH 調整剤及び緩衝剤;ピロ亜硫酸ナトリウム、エチレンジアミン四酢酸、チオグリコール酸及びチオ乳酸等の安定化剤等が使用できる。なお、この場合、等張性の溶液を調製するために十分な量の食塩、ブドウ糖、マンニトール又はグリセリンを製剤中に配合してもよく、通常の溶解補助剤、無痛化剤又は局所麻酔剤等を使用することもできる。

軟膏剤、例えば、ペースト、クリーム及びゲルの形態にする場合には、通常使用される基剤、安定剤、湿潤剤及び保存剤等を必要に応じて配合することができ、常法により成分を混合して製剤化することができる。基剤としては、例えば、白色ワセリン、ポリエチレン、パラフィン、グリセリン、セルロース誘導体、ポリエチレングリコール、シリコン及びベントナイト等を使用することができる。保存剤としては、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル等を使用することができる。貼付剤の形態にする場合には、通常の支持体に上記軟膏、クリーム、ゲル又はペースト等を常法により塗布することができる。支持体としては、綿、スフ及び化学繊維からなる織布又は不織布;軟質塩化ビニル、ポリエチレン及びポリウレタン等のフィルム又は発泡体シートを好適に使用できる。

本発明の医薬の投与量は特に限定されないが、経口投与の場合には、成人一日あたり有効成分である上記物質の重量として通常0.01~5,000mgである。

この投与量を患者の年令、病態、症状に応じて適宜増減することが好ましい。前記一日量は一日に一回、又は適当な間隔をおいて一日に2~3回に分けて投与してもよいし、数日おきに間歇投与してもよい。注射剤として用いる場合には、成人一日あたり有効成分である上記物質の重量として0.001~100mg程度である。

実施例

以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の 実施例に限定されることはない。実施例中、化合物番号は上記の表において示し た化合物の番号と対応させてある。また、本実施例中には、市販の試薬を購入し そのまま試験に供した化合物が含まれる。そのような化合物については、試薬の 販売元及びカタログに記載されているコード番号を示す。

例1:化合物番号1の化合物の製造

〇一アセチルサリチロイルクロリド(345mg, 1.7mmol)のベンゼン (10mL)溶液に、氷冷、アルゴン雰囲気下、3,5ービス(トリフルオロメチル)アニリン (500mg, 2.2mmol)、ピリジン (0.5mL)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色固体(570mg,84.2%)を得た。

mp 124-125°C.

¹H-NMR (DMSO-d₆): δ 2. 36 (3H, s), 7. 19 (1H, d d, J=8.0, 1.2Hz), 7. 39 (1H, td, J=7.6, 1.2Hz), 7. 57 (1H, ddd, J=8.0, 7.6, 1.6Hz), 7. 65 (1H, s), 7. 83 (1H, dd, J=8.0, 1.6Hz), 8. 11 (2H, s), 8. 31 (1H, s).

例2:化合物番号2の化合物の製造

2-アセトキシーN-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミド(化合物番号1;100mg,0.25mmol)のエタノール(5mL)溶液に、2規定水酸化ナトリウム水溶液(0.5mL,1mmol)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体(40mg,45.1%)を得た。

mp 179-180°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 96-7. 02 (2H, m), 7. 45 (1H, ddd, J=8. 0, 7. 2, 1. 6Hz), 7. 81 (1H, s), 7. 87 (1H, dd, J=8. 0, 1. 6Hz), 8. 46 (2H, s), 10. 8 0 (1H, s), 11. 26 (1H, s).

例3:化合物番号3の化合物の製造

 $^{1}H-NMR$ (DMSO- d_{6}): δ 7. 04 (1H, ddd, J=9.0, 4.5, 1.2Hz), 7. 30-7. 37 (1H, m), 7. 66 (1H, ddd, J=9.0, 3.3, 1.2Hz), 7. 84 (1H, s), 8. 46 (2H, s), 10. 85 (1H, s), 11. 21 (1H, brs).

以下の実施例において例3の方法が引用されている場合、酸ハロゲン化剤として

は、三塩化リンを用いた。また、反応溶媒としては、モノクロロベンゼン、トル エン等の溶媒を用いた。

例4:化合物番号4の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:85.5%

¹H-NMR (DMSO- d_6): δ 7. 05 (1H, d, J=8.7Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 85 (1H, s), 7. 87 (1H, d, J=2.7Hz), 8. 45 (2H, s), 10. 85 (1H, s), 11. 39 (1H, s).

例5:化合物番号5の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロー2-ヒドロキシベンズアミド(化合物番号4;1.51g,3mmo1)、ピリジン(285mg,3.6mmo1)のテトラヒドロフラン(6mL)溶液に、氷冷下、アセチルクロリド(234mg,3.3mmo1)を加え、室温で1時間撹拌した。溶媒を減圧留去て得られた残渣に2規定塩酸を加え、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体(1.06g,83.0%)を得た。

¹H-NMR (DMSO-d₈): δ 2. 22 (3H, s), 7. 35 (1H, d, J=9. 0Hz), 7. 71 (1H, dd, J=8. 7, 2. 7Hz), 7. 85 (1H, s), 7. 88 (1H, d, J=2. 7Hz), 8. 37 (2H, s), 1. 05 (1H, brs).

以下の実施例において例5の方法が引用されている場合、塩基としては、ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン、ベンゼン等の溶媒を用いた。

例6:化合物番号6の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:88.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 59 (1H, dd, J=8.8, 2.8Hz), 7. 83 (1H, s), 7. 98 (1H, d, J=2.8Hz), 8. 43 (2H, s), 10. 82 (1H, s), 11. 37 (1H, s).

この化合物は、下記製造法によっても得ることができた。

2-rehキシ-N-[3,5-ビス(トリフルオロメチル)]ベンズアミド(化合物番号1;100mg,0.25mmol)の四塩化炭素(8mL)溶液に、鉄粉(30mg,0.54mmol)、臭素(0.02mL,0.39mmol)を添加し、次いで<math>50℃で4時間攪拌した。反応混合物を室温まで冷却後、 $NaHSO_4$ 水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n++ン:酢酸エチル=4:1)で精製して、標題化合物の白色固体(600mg,54.9%)を得た。

例7:化合物番号7の化合物の製造

原料として、5-ヨードサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:62.2%

¹H-NMR (DMSO-d₆): δ 6. 86 (1H, d, J=8. 4Hz), 7. 74 (1H, dd, J=8. 7, 2. 4Hz), 7. 84 (1H, s), 8. 13 (1H, d, J=2. 1Hz), 8. 84 (2H, s), 10. 82 (1H, s), 11. 41 (1H, s).

例8:化合物番号8の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:57.2%

を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 18 (1H, d, J=9.0Hz), 7. 86 (1H, s), 8. 31 (1H, dd, J=9. 0, 3. 0Hz), 8. 45 (2H, s), 8. 70 (1H, d, J=3.0Hz), 11. 12 (1H, s). 例9:化合物番号9の化合物の製造

(1) 2 - ベンジルオキシー5-ホルミル安息香酸ベンジルエステル 5-ホルミルサリチル酸(4.98g,30mmol)、ベンジルプロミド(15. 39g, 90mmol)、炭酸カリウム (16.59g, 120mmol)、メチ ルエチルケトン (350mL) の混合物を8時間加熱還流した。冷却後、溶媒を 減圧留去し、残渣に2規定塩酸を加え、酢酸エチルで抽出した。水、飽和食塩水 で洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣を シリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=3:1)で 精製、イソプロピルエーテルで加熱還流下懸濁洗浄して、標題化合物の白色固体 (5.98g,57.5%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 5. 27 (2H, s), 5. 37 (2H, s), 7. 15 (1H, d, J = 9. 0Hz), 7. 26-7. 46 (10H, m), 7. 99 (1H, dd, J=9.0, 2.4Hz), 8.36 (1H, d, J=2.4Hz), 9. 91 (1H, s).

(2) 2 - ベンジルオキシ-5-シアノ安息香酸ベンジルエステル 2ーベンジルオキシー5ーホルミル安息香酸ベンジルエステル(693mg, 2 mmol)、塩酸ヒドロキシルアミン (167mg, 2.4mmol)、Nーメチ ルピロリドン(3 m L)の混合物を115℃で4時間攪拌した。反応混合物を冷 却後、2規定塩酸(5mL)、水(30mL)を加え、酢酸エチルで抽出した。有 機層を2規定水酸化ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸マグ ネシウムで乾燥した。溶媒を減圧留去して得られた残渣をイソプロピルエーテル で加熱還流下懸濁洗浄して、標題化合物の白色固体 (527mg, 76. 7%)

¹H-NMR (CDC1₃): δ 5. 23 (2H, s), 5. 35 (2H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 33-7, 43 (10H, m), 7. 70 (1H, dd, J=8. 7, 2. 4Hz), 8. 13 (1H, d, J=2. 4Hz).

(3) 5-シアノサリチル酸

2-ベンジルオキシ-5-シアノ安息香酸ベンジルエステル(446mg, 1.3mmol), 5%パラジウム-炭素(45mg)にエタノール(10mL)、テトラヒドロフラン(10mL)を加え、室温で2時間水素添加した。不溶物を濾別後、溶媒を減圧留去して、標題化合物の白色固体(212mg, 100.0%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 02 (1H, d, J=8.7Hz), 7. 82 (1H, dd, J=8.7, 2.4Hz), 8. 12 (1H, d, J=2.1Hz).

(4) N-[3,5-ビス(トリフルオロメチル)フェニル]-5-シアノ-2-ヒドロキシベンズアミド(化合物番号9)

原料として、5-シアノサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:16.6%

¹H-NMR (DMSO-d₆): δ 7. 15 (1H, d, J=8.7Hz), 7. 85 (1H, s), 7. 86 (1H, dd, J=8.7, 2.1Hz), 8. 22 (1H, d, J=2.4Hz), 8. 43 (2H, s), 10. 93 (1H, s), 12. 00 (1H, brs).

例10:化合物番号10の化合物の製造

原料として、5-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:54.9%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 6. 92 (1H, d, J=8.7Hz), 7.

28 (1H, dd, J=8. 7, 1. 8Hz), 7. 71 (1H, d, J=1. 8Hz), 7. 82 (1H, s), 8. 47 (2H, s), 10. 80 (1H, s), 11. 14 (1H, s).

例11:化合物番号11の化合物の製造

(1) 5- [(1, 1-ジメチル) エチル] サリチル酸

5-[(1,1-i)メチル)エチル] -2-iヒドロキシベンズアルデヒド $_{3}(2.15g,12.1mmol)$ の1,4-iジオキサン(100mL)、水(40mL)溶液に、スルファミン酸(1.76g,18.1mmol)、リン酸ーナトリウム(7.33g,47mmol)を加えた。この混合物に、氷冷下、亜塩素酸ナトリウム(1.76g,15.5mmol)の水溶液(10mL)を滴下し、1時間攪拌した。次いでこの混合物に、亜硫酸ナトリウム(1.80g,14.3mmol)を加え、30分間攪拌した。反応混合物に濃塩酸を加え<math>pHelとした。1,4-iジオキサンを減圧留去して得られた残渣を酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をn-nキサンで懸濁洗浄して、標題化合物の白色粉末(1.81g,77.4%)を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 26 (9H, s), 6. 90 (1H, d, J=9. 0Hz), 7. 58 (1H, dd, J=8. 7, 2. 4Hz), 7. 75 (1H, d, J=2. 4Hz), 11. 07 (1H, brs).

(2) N-[3,5-ビス(トリフルオロメチル)フェニル]-5-[(1,1-ジメチル)エチル]-2-ヒドロキシベンズアミド(化合物番号11)

原料として、5-[(1,1-ジメチル)エチル]サリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:53.8%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 30 (9H, s), 6. 96 (1H, d, J=8.7Hz), 7. 50 (1H, dd, J=8.7, 2.4Hz), 7. 82

(1H, d, J=2.4Hz), 7.83 (1H, s), 8.46 (2H, s), 1 0.80 (1H, s) 11.12 (1H, s).

例12:化合物番号12の化合物の製造

を得た。

(1) 5-アセチルー2ーベンジルオキシ安息香酸 メチルエステル 5-アセチルサリチル酸 メチルエステル (13.59g,70mmol)、ベンジルプロミド (17.96g,105mmol)、炭酸カリウム (19.35g,140mmol)、メチルエチルケトン (350mL)の混合物を8時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣に2規定塩酸を加え、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテルから再結晶して、標題化合物の白色固体 (14.20g,71.4%)

¹H-NMR (CDCl₃): δ 2. 58 (3H, s), 3. 93 (3H, s), 5. 27 (2H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 26-7. 43 (3H, m), 7. 47-7. 50 (2H, m), 8. 07 (1H, dd, J=8. 7, 2. 4Hz), 8. 44 (1H, d, J=2. 4Hz).

(2) 5-アセチル-2-ベンジルオキシ安息香酸

5-アセチルー2ーベンジルオキシ安息香酸 メチルエステル (5.69g, 20mmol)のメタノール/テトラヒドロフラン (20mL+20mL)混合溶液に、2規定水酸化ナトリウム (11mL)を加え、8時間撹拌した。溶媒を減圧留去して得られた残渣に2規定塩酸を加え、ジクロロメタンで抽出した。ジクロロメタン層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテルで洗浄して、標題化合物の白色固体 (4.92g, 91.0%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 55 (3H, s), 5. 32 (2H, s), 7. 30-7. 43 (4H, m), 7. 49-7. 52 (2H, m), 8. 09 (1 H, dd, J=9. 0, 2. 7Hz), 8. 22 (1H, d, J=2. 4Hz).

(3) 5-rセチル-2-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル) フェニル] ベンズアミド

5-アセチルー2-ベンジルオキシ安息香酸(4.87g, 18 mm o 1)、3, 5-ビス(トリフルオロメチル)アニリン(4.54g, 19.8 mm o 1)、ピリジン(5.70g, 72 mm o 1)のテトラヒドロフラン/ジクロルメタン(72 mL +36 mL)混合溶液に、氷冷下、オキシ塩化リン(1.85 mL, 19.8 mm o 1)を加え、次いで室温で12時間攪拌した。溶媒を減圧留去して得られた残渣に1規定塩酸(100 mL)を加え、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $3:1\rightarrow 2:1$)で精製して、標題化合物の微黄緑色固体(5.47g, 63.1%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 57 (3H, s), 7. 11 (1H, d, J=8. 7Hz), 7. 86 (1H, s), 8. 05 (1H, dd, J=8. 4, 2. 1Hz), 8. 44 (1H, d, J=2. 1Hz), 8. 47 (2H, s), 10. 96 (1H, s), 11. 97 (1H, brs).

以下の実施例において例12(3)の製造法が引用されている場合、酸ハロゲン 化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。ま た、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独若 しくは混合して用いた。

(4) 5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号12)

5-アセチルー2-ベンジルオキシーN-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(602mg, 1.25mmo1)、5%パラジウム炭素(60mg)にエタノール(6mL)、テトラヒドロフラン(72mL)を加え、水素雰囲気下、室温で30分間攪拌した。不溶物を濾別後、溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固

体(230mg, 47.0%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 59 (3H, s), 5. 35 (2H, s), 7. 32-7. 36 (3H, m), 7. 43 (1H, d, J=8. 7Hz), 7. 52-7. 55 (2H, m), 7. 82 (1H, s), 8. 16 (1H, dd, J=8. 7, 2. 4Hz), 8. 25 (1H, d, J=2. 4Hz), 8. 31 (2H, s), 10. 89 (1H, s).

例13:化合物番号13の化合物の製造

5ーアセチルーNー[3,5ービス(トリフルオロメチル)フェニル]ー2ーヒドロキシベンズアミド(化合物番号12;50.5mg,0.13mmol)のエタノール(2mL)懸濁液に、水素化ホウ素ナトリウム(23.6mg,0.62mmol)を加え、室温で12時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテル/nーヘキサンで懸濁洗浄して、標題化合物の白色粉末(39.7mg,78.3%)を得た。

¹H-NMR (DMSO-d₆): δ 1. 34 (3H, d, J=6. 3Hz), 4. 71 (1H, q, J=6. 3Hz), 5. 18 (1H, brs), 6. 97 (1H, d, J=8. 4Hz), 7. 44 (1H, dd, J=8. 4, 2. 1Hz), 7. 84 (1H, s), 7. 86 (1H, d, J=2. 1Hz), 8. 48 (2H, s), 10. 85 (1H, s), 11. 32 (1H, s).

例14:化合物番号14の化合物の製造

5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号12;100.0mg,0.26mmol)のエタノール(3mL)溶液に、ピリジン(45μ L,0.56mmol)、O-メチルヒドロキシルアミン塩酸塩(25.8mg,0.31mmol)を加え、1時間加熱還流した。反応混合物を室温まで冷却後、希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 19 (3H, s), 3. 91 (3H, s), 7. 05 (1H, d, J=8. 7Hz), 7. 77 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 8. 09 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 87 (1H, s), 11. 48 (1H, s).

例15:化合物番号15の化合物の製造

収率:79.9%

原料として、5-アセチル-N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号12)、及びO-ベンジルヒドロキシルアミン塩酸塩を用いて例14と同様の操作を行い、標題化合物を得た。

¹H-NMR (DMSO-d₆): δ 2. 24 (3H, s), 5. 20 (2H, s), 7. 04 (1H, d, J=8. 7Hz), 7. 29-7. 47 (5H, m), 7. 76 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 8. 07 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 87 (1H, s), 11. 47 (1H, s).

例16:化合物番号16の化合物の製造

(1) 5-(2, 2-ジシアノエテン-1-イル) -2-ヒドロキシ安息香酸マロノニトリル (132mg, 2mmol) のエタノール (6mL) 溶液に、5-ホルミルサリチル酸 (332mg, 2mmol) を加え、氷冷下、ベンジルアミン (0.1mL) を加え、室温で2時間攪拌した。析出した黄色結晶を濾取、エタノールから再結晶して、標題化合物の淡黄色固体 (139.9mg, 32.7%) を得た。

¹H-NMR (DMSO-d₆): δ 7. 12 (1H, d, J=8.7Hz), 8. 09 (1H, dd, J=8.7, 2.4Hz), 8. 41 (1H, s), 8. 50 (1H, d, J=2.4Hz).

(2) N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(2,2-ジシアノエテン-1-イル)-2-ヒドロキシベンズアミド(化合物番号16)原料として、5-(2,2-ジシアノエテン-1-イル)-2-ヒドロキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 9.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 13 (1H, d, J=9.0Hz), 7. 83 (1H, s), 8. 04 (1H, dd, J=9.0, 2.4Hz), 8. 36 (1H, s), 8. 38 (1H, d, J=2.4Hz), 8. 43 (2H, s), 1 1. 43 (1H, s).

例17:化合物番号17の化合物の製造

(1) 5-[(2-シアノ-2-メトキシカルボニル) エテン<math>-1-4ル] -2-ヒドロキシ安息香酸

5-ホルミルサリチル酸($3.32\,\mathrm{mg}$, $2\,\mathrm{mmo}$ 1)、シアノ酢酸メチルエステル($1.98\,\mathrm{mg}$, $2\,\mathrm{mmo}$ 1)、酢酸($6\,\mathrm{mL}$)、トリエチルアミン($0.2\,\mathrm{m}$ 1)の混合物を $5\,\mathrm{時間}$ 加熱還流した。反応混合物を室温まで冷却後、水にあけ、析出した結晶を濾取、n-ヘキサンから再結晶して、標題化合物の淡黄色固体($3.2\,\mathrm{mg}$, 6.6.3%)を得た。

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 85 (3H, s), 7. 15 (1H, d, J=8. 7Hz), 8. 20 (1H, dd, J=8. 7, 2. 4Hz), 8. 37 (1H, s), 8. 66 (1H, d, J=2. 4Hz).

(2) $3-({N-[3,5-ビス(トリフルオロメチル)フェニル] カルバモイル<math>-4-$ ビドロキシフェニル)-2-シアノアクリル酸 メチルエステル(化合物番号17)

原料として、5-[(2-シアノ-2-メトキシカルボニル) エテン-1-イル] -2-ヒドロキシ安息香酸、及び3,5-ビス(トリフルオロメチル) アニリン を用いて例3と同様の操作を行い、標題化合物を得た

収率 66.3%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3. 85 (3H, s), 7. 19 (1H, d, J=9.0Hz), 7. 85 (1H, s), 8. 20 (1H, dd, J=8.7, 2. 1Hz), 8. 33 (1H, s), 8. 45 (2H, s), 8. 50 (1H, d, J=2.1Hz), 11. 00 (1H, s), 11. 03 (1H, s).

例18:化合物番号18の化合物の製造

 $3-(\{N-[3,5-ビス(トリフルオロメチル)フェニル]カルバモイル\}-4-ヒドロキシフェニル)-2-シアノアクリル酸 メチルエステル(化合物番号17;50mg,0.11mmo1)のエタノール(5mL)溶液に、2規定水酸化ナトリウム(0.11m1,0.22mmo1)を加え、室温で3時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチルから再結晶して、標題化合物の淡黄色固体(13.5mg,30.4%)を得た。$

¹H-NMR (DMSO- d_6): δ 7. 12 (1H, d, J=8.4Hz), 7. 84 (1H, s), 7. 94 (1H, dd, J=8.4, 2.1Hz), 8. 38 (1H, d, J=2.1Hz), 8. 45 (2H, s), 9. 87 (1H, s), 1 1. 41 (1H, s).

例19:化合物番号19の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7;475mg,1mmo1)、スチレン(130mg,1.25mmo1)、酢酸パラジウム(4.5mg,0.02mmo1)、トリス(オルトートリル)ホスフィン(12.2mg,0.04mmo1)、ジイソプロピルアミン(388mg,3mmo1)、N,Nージメチルホルムアミド(2mL)の混合物を8時間加熱還流した。反応混合物を室温まで冷却後、水を加え酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロ

マトグラフィー(n-ヘキサン:イソプロピルエーテル= $2:1\to 1:1$)で精製して、標題化合物の淡黄色固体($1.73\,\mathrm{mg}$, 3.8.3%)を得た。 ^1H-NMR ($DMSO-d_8$): δ 7.04 (1H, d, J=8.4Hz), 7.

TH-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8. 4Hz), 7. 20-7. 29 (3H, m), 7. 38 (2H, t, J=7. 5Hz), 7. 59 (2H, d, J=7. 5Hz), 7. 72 (1H, dd, J=8. 4, 2. 1Hz), 7. 86 (1H, s), 8. 07 (1H, d, J=2. 1Hz), 8. 49 (2H, s), 10. 89 (1H, s), 11. 33 (1H, brs).

例20:化合物番号20の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7;950mg,2mmo1)、トリメチルシリルアセチレン(246mg,2.5mmo1)、トリエチルアミン(2mL)のN,N-ジメチルホルムアミド(4mL)溶液に、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(23mg,0.02mmo1)、沃化第一銅(4mg,0.02mmo1)を加え、40℃で2時間攪拌した。反応混合物を室温まで冷却後、酢酸エチル(100mL)及び1規定クエン酸(100mL)にあけて攪拌し、次いでセライト濾過した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=19:1)で精製、n-ヘキサンで結晶化して、標題化合物の白色結晶(286mg,32.1%)を得た。

¹H-NMR (DMSO- d_6): δ 0. 23 (9H, s), 7. 00 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 4Hz), 7. 85 (1H, s), 7. 98 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 86 (1H, s), 11. 69 (1H, s).

例21:化合物番号21の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5- [(トリメチルシリル)エチニル]ベンズアミド(化合物番号20;233mg.

0.5 mmo1)のメタノール(1 mL)溶液に、2規定水酸化ナトリウム(1 mL)を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をエタノール/水から再結晶して、標題化合物の灰白色結晶(67 mg, 35.9%)を得た。

¹H-NMR (DMSO-d₆): δ 4. 11 (1H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 55 (1H, dd, J=8. 4, 2. 1Hz), 7. 85 (1H, s), 7. 98 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 8. 46 (2H, s), 10. 86 (1H, s), 11. 62 (1H, s).

例22:化合物番号22の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7)、及びフェニルアセチレンを用いて例20と同様の操作を行い、標題化合物を得た。

収率:40.8%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8. 4Hz), 7. 42-7. 46 (3H, m), 7. 53-7. 57 (2H, m), 7. 64 (1H, dd, J=8. 7, 2. 1Hz), 7. 86 (1H, s), 8. 06 (1H, d, J=2. 1Hz), 8. 48 (2H, s), 10. 94 (1H, s), 11. 64 (1H, brs).

例23:化合物番号23の化合物の製造

N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-ヨードベンズアミド(化合物番号7;200mg,0.42mmol)の1,2-ジメトキシエタン(3mL)溶液に、アルゴン雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(16mg,0.0014mmol)を添加し、室温で5分間攪拌した。次いでジヒドロキシフェニルボラン(57mg,0.47mmol)、1mol/L炭酸ナトリウム水溶液(1.3mL)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、希塩酸にあけ、酢酸エチルで抽出

した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-4+4):酢酸エチル= $6:1\rightarrow3:1$)で精製して、標題化合物の白色結晶 (109mg, 61.1%) を得た。

¹H-NMR (DMSO-d₆): δ 7. 12 (1H, d, J=8.7Hz), 7. 33-7. 38 (1H, m), 7. 48 (2H, t, J=7.5Hz), 7. 67 -7. 70 (2H, m), 7. 79 (1H, dd, J=8.4, 2.4Hz), 7. 87 (1H, s), 8. 17 (1H, d, J=2.4Hz), 8. 49 (2H, s), 10. 92 (1H, s), 11. 41 (1H, s).

例24:化合物番号24の化合物の製造

原料として、N-[3, 5-ビス (トリフルオロメチル) フェニル] <math>-2-ヒド ロキシ-5-(フェニルエチニル) ベンズアミド (化合物番号 22) を用いて例 12(4) と同様の操作を行い、標題化合物を得た。

収率:86.2%

¹H-NMR (DMSO-d₆): δ 2. 88 (4H, s), 6. 93 (1H, d, J=8. 1Hz), 7. 15-7. 34 (6H, m), 7. 76 (1H, d, J=2. 4Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 79 (1H, s), 11. 15 (1H, s).

例25:化合物番号25の化合物の製造

原料として、2-ヒドロキシ-5-(トリフルオロメチル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:44.7%

¹H-NMR (CDCl₃): δ 7. 17 (1H, d, J=9.0Hz) 7. 7 2-7. 75 (2H, m), 7. 86 (1H, s), 8. 17 (2H, s), 8. 3 5 (1H, s) 11. 88 (1H, s).

[2-ヒドロキシ-5-(トリフルオロメチル)安息香酸:「ケミカル・アンド・

ファーマシューティカル・プレティン (Chemical & Pharmaceutical Bulletin)」, 1996年, 第44巻, 第4号, p. 734-745参照]

例26:化合物番号26の化合物の製造

原料として、2-ヒドロキシ-5-(ペンタフルオロエチル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:65.7%

¹H-NMR (CDCl₃): δ 7. 19 (1H, d, J=9.0Hz) 7. 7 0 (1H, dd, J=8.7, 2.1Hz), 7. 81 (1H, d, J=2.1 Hz), 8. 17 (2H, s), 8. 37 (1H, s), 11. 92 (1H, s). [2-ヒドロキシー5-(ペンタフルオロエチル) 安息香酸:「ケミカル・アンド・ファーマシューティカル・ブレティン (Chemical & Pharmaceutical Bulletin)」, 1996年, 第44巻, 第4号, p. 734-745参照]

例27:化合物番号27の化合物の製造

原料として、2-ヒドロキシ-5-(ピロール-1-イル)安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標 顕化合物を得た。

収率:57.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 27 (2H, dd, J=2. 4, 1. 8Hz), 7. 10 (1H, d, J=9. 0Hz), 7. 29 (2H, dd, J=2. 4, 1. 8Hz), 7. 66 (1H, dd, J=9. 0, 2. 7Hz), 7. 86 (1H, s), 7. 98 (1H, d, J=2. 4Hz), 8. 47 (2H, s), 10. 89 (1H, s), 11. 24 (1H, s).

例28:化合物番号28の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ビドロキシ-5-ヨードベンズアミド(化合物番号7)、及び<math>2-チオフェンボロン酸を用いて例23と同様の操作を行い、標題化合物を得た。

収率:44.4%

¹H-NMR (DMSO-d₆): δ 7. 08 (1H, d, J=8. 4Hz), 7. 14 (1H, dd, J=5. 4, 3. 6Hz), 7. 45 (1H, dd, J=3. 6, 1. 2Hz), 7. 51 (1H, dd, J=5. 1, 0. 9Hz), 7. 75 (1H, dd, J=8. 4, 2. 4Hz), 7. 59 (1H, s), 8. 08 (1 H, d, J=2. 4Hz), 8. 48 (2H, s), 10. 91 (1H, s), 11. 38 (1H, s).

例29:化合物番号29の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ヨードベンズアミド(化合物番号7)、及び3-チオフェンボロン酸を用いて例23と同様の操作を行い、標題化合物を得た。

収率:38.7%

¹H-NMR (DMSO-d₆): δ 7. 06 (1H, d, J=8.7Hz), 7. 57 (1H, dd, J=4.8, 1.5Hz), 7. 66 (1H, dd, J=4.8, 3.0Hz), 7. 81-7. 84 (2H, m), 7. 86 (1H, s), 8. 18 (1H, d, J=2.1Hz), 8. 49 (2H, s), 10. 90 (1H, s), 11. 33 (1H, s).

例30:化合物番号30の化合物の製造

(1) 2-ベンジルオキシー5- (2-プロモアセチル) -N- [3, 5-ビス (トリフルオロメチル) フェニル] ベンズアミド

5ーアセチルー2ーベンジルオキシーNー[3,5ービス(トリフルオロメチル)フェニル]ベンズアミド(例12(3)の化合物;4.81g,10mmol)のテトラヒドロフラン(30ml)溶液に、フェニルトリメチルアンモニウムトリプロミド(3.75g,10mmol)を加え、室温で12時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を亜硫酸水素ナトリウム水溶液、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキ

サン: 酢酸エチル=4:1) で精製、酢酸エチル/n-ヘキサンから再結晶して、 標題化合物の白色固体(2.39g,42.7%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 91 (2H, s), 5. 36 (2H, s), 7. 32-7. 35 (3H, m), 7. 47 (1H, d, J=9. 0Hz), 7. 52-7. 56 (2H, m), 7. 82 (1H, s), 8. 21 (1H, dd, J=8. 7, 2. 4Hz), 8. 29 (1H, d, J=2. 4Hz), 8. 31 (2H, s), 10. 91 (1H, s).

(2) 2-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-(2-メチルチアゾール4-イル)ベンズアミド <math>2-ベンジルオキシ-5-(2-プロモアセチル)-N-[3,5-ビス(トリフルオロメチル)フェニル]ベンズアミド(280mg,0.5mmol)、チオ

アセタミド ($41 \, \mathrm{mg}$, $0.55 \, \mathrm{mmol}$)、炭酸水素ナトリウム ($50 \, \mathrm{mg}$, $0.60 \, \mathrm{mmol}$)、エタノール ($15 \, \mathrm{mL}$) の混合物を1時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、炭酸水素ナトリウムで中和、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー ($n-\!\!\!$ ~キサン:酢酸エチル=4:1) で精製して、標題化合物の白色固体 ($181 \, \mathrm{mg}$, 67.5%) を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 72 (3H, s), 5. 29 (2H, s), 7. 33-7. 36 (3H, m), 7. 40 (1H, d, J=9. 0Hz), 7. 54-7. 57 (2H, m), 7. 81 (1H, s), 7. 94 (1H, s), 8. 12 (1H, dd, J=8. 7, 2. 1Hz), 8. 27 (1H, d, J=2. 1Hz), 8. 31 (2H, s), 10. 86 (1H, s).

o1)、10%パラジウムー炭素(240mg)にエタノール(10m1)を加え、 水素雰囲気下、3.5時間攪拌した。反応混合物を濾過し、溶媒を減圧留去して、 標題化合物の白色固体(103.4mg,79.2%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 72 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 83 (1H, s), 7. 85 (1H, s), 8. 01 (1H, dd, J=8. 7, 2. 4Hz), 8. 42 (1H, d, J=2. 1Hz), 8. 50 (2H, s), 10. 96 (1H, s), 11. 40 (1H, s).

例31:化合物番号31の化合物の製造

2ーベンジルオキシー5ー (2ーブロモアセチル) -N- [3, 5ービス (トリフルオロメチル) フェニル] ベンズアミド (例12(3)の化合物;280mg,0.5mmol)、2ーアミノピリジン (51.8mg,0.55mmol)、炭酸水素ナトリウム (50mg,0.6mmol)、エタノール (10mL)の混合物を2時間加熱環流した。反応混合物を室温まで冷却後、炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (nーヘキサン:酢酸エチル=1:2)で精製して、白色固体 (130.3mg)を得た。次いでこの固体 (108mg,0.19mmol)と10%パラジウムー炭素 (11mg)、エタノール (8mL)、酢酸エチル (8mL)の混合物を、水素雰囲気下、7時間攪拌した。反応混合物を濾過し、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(nーヘキサン:酢酸エチル=1:3)で精製して、標題化合物の白色固体 (18.3mg,20.2%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 90 (1H, dt, J=6. 6, 0. 9Hz), 7. 10 (1H, d, J=8. 7Hz), 7. 25 (1H, m), 7. 5 7 (1H, d, J=9. 0Hz), 7. 86 (1H, s), 8. 04 (1H, dd, J=8. 7, 2. 1Hz), 8. 35 (1H, s), 8. 48-8. 56 (4H, m), 11. 00 (1H, s), 11. 41 (1H, s).

例32:化合物番号32の化合物の製造

(1) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ヨード-2 -メトキシメトキシベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-ヨードベンズアミド(化合物番号7;4.75g,10mmol)、クロロメチルメチルエーテル(1.14ml,15mmol)、炭酸カリウム(2.76g,20mmol)、アセトン(50mL)の混合物を8時間加熱還流した。反応混合物を室温まで冷却後、希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製、n-ヘキサン/酢酸エチルから再結晶して、標題化合物の白色固体(3.96g,76.3%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 38 (3H, s), 5. 28 (2H, s), 7. 12 (1H, d, J=9. 0Hz), 7. 81 (1H, s), 7. 82 (1H, dd, J=8. 7, 2. 4Hz), 7. 88 (1H, d, J=2. 4Hz), 8. 40 (2H, s), 10. 87 (1H, s).

(2) N-[3, 5-ピス(トリフルオロメチル)フェニル] -2-メトキシメトキシ-5-(ピリジン-2-イル)ベンズアミド

N-[3, 5-ビス (トリフルオロメチル) フェニル] -5-ヨード-2-メトキシメトキシベンズアミド (0.20g, 0.39mmol) のN, Nージメチルホルムアミド (8ml) 溶液に、トリーnープチル (2ーピリジル) スズ (0.13ml, 0.41mmol)、ジクロロビス (トリフェニルホスフィン) パラジウム (32.1mg、0.05mmol) を加え、100℃で1.5時間攪拌した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (nーへキサン:酢

酸エチル=2:1→1:1)で精製して、標題化合物の白色粉末(37.9mg,

20.8%)を得た。

¹H-NMR (CDCl₃): δ 3. 64 (3H, s), 5. 53 (2H, s), 7. 23-7. 28 (1H, m), 7. 36 (1H, d, J=8. 7Hz), 7. 65 (1H, s), 7. 77-7. 84 (2H, m), 8. 20 (2H, s), 8. 31 (1H, dd, J=8. 7, 2. 4Hz), 8. 68-8. 70 (1H, m), 8. 83 (1H, d, J=2. 4Hz), 10. 12 (1H, s).

(3) N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-(ピリジン-2-イル)ベンズアミド(化合物番号32)

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシメトキシー5-(ピリジン-2-イル)ベンズアミド(37.9mg,0.08mmol)にメタノール(3ml)、濃塩酸(0.5ml)を加え、2時間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の白色粉末(16.2mg,47.2%)を得た。

¹H-NMR (DMSO-d₆): δ 7. 13 (1H, d, J=8. 4Hz), 7. 33 (1H, ddd, J=7. 5, 6. 3, 1. 2Hz), 7. 86-7. 91 (2 H, m), 7. 97 (1H, d, J=7. 8Hz), 8. 20 (1H, dd, J=8. 7, 2. 1Hz), 8. 50 (2H, s), 8. 59 (1H, d, J=2. 4 Hz), 8. 64-8. 66 (1H, m), 10. 97 (1H, s), 11. 53 (1 H, s).

例33:化合物番号33の化合物の製造

原料として、5-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:56.8%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 3.77 (3H, s), 6.97 (1H, d,

J=9. 0 H z), 7. 10 (1H, dd, J=9. 0, 3. 0 H z), 7. 43 (1H, d, J=3. 0 H z), 7. 84 (1H, s), 8. 47 (2H, s), 10. 84 (1H, s), 10. 91 (1H, s).

例34:化合物番号34の化合物の製造

(1) 5-アセチル-2-メトキシ安息香酸 メチルエステル

5-アセチルサリチル酸 メチルエステル(5.00g, 25.7mmo1)、炭酸カリウム(7.10g, 51.4mmo1)、N, N-ジメチルホルムアミド(25mL)の混合物に、氷冷下、沃化メチル(2.5mL、40.1mmo1)を加え、室温で3時間攪拌した。反応混合物を水にあけ、塩酸で中和、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を懸濁洗浄(インプロピルエーテル/n-ヘキサン)して、標題化合物の白色結晶(5.17g, 96.5%)を得た。 ^1H-NMR ($CDC1_3$): $\delta2.59$ (3H, s), 3.92(3H, s), 3.99(3H, s), 7.04(1H, d, J=8.7Hz), 8.12(1H, d, J=8.7, 2.4Hz), 8.41(1H, d, J=2.4Hz).

(2) 5-イソプチリル-2-メトキシ安息香酸 メチルエステル

5-アセチル-2-メトキシ安息香酸 メチルエステル(0.50g,2.40 mmo1)、<math>tert-プトキシカリウム(0.81g,7.22mmo·1)、テトラヒドロフラン(10mL)の混合物に、氷冷下、沃化メチル(0.5mL、8.03mmo1)を加え、室温で1時間攪拌した。反応混合物を水にあけ、塩酸で中和、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-ヘキサン:酢酸エチル=3:1→2:1)で精製して、標題化合物の薄黄色オイル(143.1mg,25.2%)を得た。 ^1H-NMR ($CDC1_3$): δ 1.22(6H,d,J=6.9Hz),3.52(1H,m),3.92(3H,s),3.98(3H,s),7.05(1H,d,J=8.7Hz),8.13(1H,dd,J=8.7,2.4Hz),8.

42 (1 H, d, J = 2. 4 H z).

(3) 5-イソプチリルー2-メトキシ安息香酸

5-イソプチリル-2-メトキシ安息香酸 メチルエステル (143.1mg,

0.60mmol)のメタノール(5mL)溶液に、2規定水酸化ナトリウム溶液(1mL)を加え、1時間加熱環流した。反応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して、標題化合物の白色結晶(134mg,定量的)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 1. 22 (6H, d, J=6. 9Hz), 3. 5 9 (1H, m), 4. 15 (3H, s), 7. 16 (1H, d, J=8. 7Hz), 8. 24 (1H, dd, J=8. 7, 2. 4Hz), 8. 73 (1H, d, J=2. 1Hz).

(4) 5-イソプチリル-N-[3, 5-ビス(トリフルオロメチル)フェニル] -2-メトキシベンズアミド

原料として、5-イソプチリル-2-メトキシ安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:61.4%

¹H-NMR (CDCl₃): δ 1. 23 (6H, d, J=6. 9Hz), 3. 6 4 (1H, m), 4. 20 (3H, s), 7. 18 (1H, d, J=8. 7Hz), 7. 65 (1H, s), 8. 19 (2H, s), 8. 22 (1H, dd, J=8. 7, 2. 1Hz), 8. 88 (1H, d, J=2. 1Hz), 9. 98 (1H, s). (5) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ -5-イソプチリルベンズアミド (化合物番号34)

5-イソプチリル-N-[3, 5-ピス(トリフルオロメチル)フェニル]-2 -メトキシベンズアミド(143.4mg, 0.33mmol)、2, 4, 6-コ リジン(3ml)、沃化リチウム(53.1mg, 0.40mmol).の混合物を

1時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+2)・酢酸エチル=3:1)で精製し、酢酸エチル/イソプロピルエーテルで結晶化して、標題化合物の白色結晶(90.3 mg,65.3%)を得た。 ^1H-NMR (DMSO- d_6): δ 1.12(6H,d,J=6.9Hz),3.66(1H,m),7.12(1H,d,J=8.4Hz),7.85(1H,s),8.07(1H,dd,J=8.4,2.4Hz),8.45(1H,d,J=2.4Hz),8.47(2H,s),10.93(1H,s),11.95(1H,brs).

例35:化合物番号35の化合物の製造

原料として、4-ヒドロキシイソフタル酸-1-メチルエステル、及び3,5-ビス (トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:91.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 85 (3H, s), 7. 12 (1H, d, J=8. 4Hz), 7. 86 (1H, s), 8. 02 (1H, dd, J=8. 7, 2. 4Hz), 8. 46-8. 47 (3H, m), 10. 96 (1H, s), 12. 03 (1H, brs).

[4-ヒドロキシイソフタル酸-1-メチルエステル:「ジャーナル・オブ・ザ・ケミカル・ソサイエティー (Journal of the Chemical Society)」, (英国), 19 56年、p. 3099-3107参照]

例36:化合物番号36の化合物の製造

N-[3,5-ピス(トリフルオロメチル)フェニル]-4-ヒドロキシイソフタラミン酸 メチルエステル(化合物番号 35;2.85g,7mmo1)のメタノール/テトラヒドロフラン(14mL+14mL)懸濁液に、2規定水酸化ナトリウム水溶液(14mL)を加え、2時間加熱還流した。反応混合物を室温

まで冷却後、2規定塩酸(20mL)を加え、析出した固体を濾取、水洗、乾燥して、標題化合物の白色結晶(2.68g,97.4%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 10 (1H, d, J=8. 7Hz), 7. 82 (1H, s), 7. 86 (1H, s), 8. 01 (1H, dd, J=8. 7,

2. 4Hz), 8. 47 (2H, s), 8. 48 (1H, d, J=2. 4Hz), 1 0. 97 (1H, s), 11. 98 (1H, brs).

以下の実施例において例36の方法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

例37:化合物番号37の化合物の製造

4-ヒドロキシイソフタル酸($182\,\mathrm{mg}$, $1\,\mathrm{mmo}$ 1)、3, 5-ビス(トリフルオロメチル)アニリン($687\,\mathrm{mg}$, $3\,\mathrm{mmo}$ 1)、三塩化リン($87\,\mu$ L; $1\,\mathrm{mmo}$ 1)、トールエン($10\,\mathrm{mL}$)を用いて例 3 と同様の操作を行い、標題化合物の白色結晶($151\,\mathrm{mg}$, 25.0%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 18 (1H, d, J=8. 7Hz), 7. 82 (1H, s), 7. 86 (1H, s), 8. 11 (1H, dd, J=8. 7, 2. 4Hz), 8. 50 (2H, s), 8. 54 (2H, s), 8. 56 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 10. 99 (1H, s), 11. 84 (1H, brs).

例38:化合物番号38の化合物の製造

(1) 4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル] イソフタラミン酸 メチルエステル

水素化ナトリウム (60%; 1.04g, 26mmol) のN, Nージメチルホルムアミド (100mL) 懸濁液に、氷冷下、N-[3, 5-ビス (トリフルオロメチル) フェニル] -4-ヒドロキシイソフタラミン酸 メチルエステル (化合物番号35;8.15g, 20mmol) のN, Nージメチルホルムアミド (1

00mL) 溶液を加え、室温で1時間攪拌した。次いでベンジルブロミド(4.45g,26mmo1)のN,Nージメチルホルムアミド(10mL)溶液を加え、60℃で3時間攪拌した。反応混合物を室温まで冷却後、を氷水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣を酢酸エチル/n-へキサンから再結晶して、標題化合物の白色固体(5.38g,54.1%)を得た。 ^1H-NMR (DMSO- d_6): δ 3.87 (3H,s),5.33 (2H,s),7.33-7.36 (3H,m),7.46 (1H,d,J=8.7Hz),7.53-7.56 (2H,m),7.82 (1H,s),8.15 (1H,dd,J=8.7,2.1Hz),8.25 (1H,d,J=2.1Hz)8.28 (2H,s),10.87 (1H,s).

(2) 4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル] イソフタラミン酸

原料として、4 ーベンジルオキシーN ー [3, 5 ービス(トリフルオロメチル) フェニル] イソフタラミン酸 メチルエステルを用いて例 3 6 と同様の操作を行い、標題化合物を得た。

収率:79.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 5. 32 (2H, s), 7. 32-7. 34 (3H, m), 7. 43 (1H, d, J=8. 7Hz), 7. 52-7. 56 (2H, m), 7. 81 (1H, s), 8. 12 (1H, dd, J=8. 7, 2. 1Hz), 8. 22 (1H, d, J=2. 1Hz), 8. 28 (2H, s), 10. 85 (1H, s), 13. 81 (1H, brs).

4-ベンジルオキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸(242mg,0.50mmol)、ジメチルアミン塩酸塩(41mg,0.50mmol)、トリエチルアミン(51mg,0.50mmol)の

テトラヒドロフラン(5 m L)溶液に、氷冷下、1-(3-i)メチルアミノプロピル)-3-xチルカルボジイミド塩酸塩(以下、 $WSC\cdot HC1$ と略す;95 m g,0.50 m m o 1)を加え、室温で3時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を希塩酸、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:4)で精製して、標題化合物の白色固体(165 m g,64.9%)を得た。

¹H-NMR (DMSO-d₆): δ 2. 99 (6H, s) 5. 29 (2H, s), 7. 32-7. 38 (4H, m), 7. 52-7. 56 (2H, m), 7. 64 (1H, dd, J=8. 7, 2. 1Hz), 7. 73 (1H, d, J=2. 1Hz), 7. 80 (1H, s), 8. 28 (2H, s), 10. 83 (1H, s).

以下の実施例において例38(3)の方法が引用されている場合、塩基としては、 ピリジン、トリエチルアミン等の有機塩基を用いた。また、反応溶媒としては、 ジクロロメタン、テトラヒドロフラン等の溶媒を単独若しくは混合して用いた。

(4) $N^3 - [3, 5 - \forall x (トリフルオロメチル) フェニル] - 4 - ヒドロキシ-<math>N^1$, N^1 -ジメチルイソフタルアミド (化合物番号38)

¹H-NMR (DMSO-d₆): δ 2. 98 (6H, s), 7. 02 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 1Hz), 7. 84 (1H, s), 7. 95 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 1. 10 (1H, brs), 11. 63 (1H, brs).

例39:化合物番号39の化合物の製造

(1) 2ーベンジルオキシーNー[3, 5ービス(トリフルオロメチル)フェニ

例38(3)と同様の操作を行い、標題化合物を得た。

収率:56.4%

¹H-NMR (CDC1₃): δ 1. 53-1. 70 (6H, m), 3. 44 (2H, brs), 3. 70 (2H, brs), 5. 26 (2H, s), 7. 24 (1H, d, J=8. 7Hz), 7. 26 (1H, s), 7. 52-7. 58 (5H, m), 7. 66 (2H, s), 7. 74 (1H, dd, J=8. 7, 2. 4Hz), 8. 37 (1H, d, J=2. 1Hz), 10. 27 (1H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシー5-(ピペリジン-1-カルボニル)ベンズアミド(化合物番号39)原料として、2-ベンジルオキシーN-[3, 5-ビス(トリフルオロメチル)フェニル]-5-(ピペリジン-1-カルボニル)ベンズアミドを用いて例38(4)と同様の操作を行い、標題化合物を得た。

収率:96.3% 白色固体

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 51 (4H, brs), 1. 60-1. 65 (2H, m), 3. 47 (4H, brs), 7. 04 (1H, d, J=8. 4Hz), 7. 48 (1H, dd, J=8. 4, 2. 1Hz), 7. 85 (1H, s), 7. 92 (1H, d, J=2. 1Hz), 8. 46 (2H, s), 10. 99 (1H, s), 11. 64 (1H, brs).

例40:化合物番号40の化合物の製造

(1) 2-ベンジルオキシ-5-(4-ベンジルピペリジン-1-カルボニル) -N-[3, 5-ビス(トリフルオロメチル)フェニル]ベンズアミド 原料として、4-ベンジルオキシ-N-[3, 5-ビス(トリフルオロメチル)フェニル]イソフタラミン酸(例38(2)の化合物)、及び4-ベンジルピペリジンを用いて例38(3)と同様の操作を行い、標題化合物を得た。

収率:76.7%

¹H-NMR (CD₃OD): δ 1. 18-1. 38 (2H, m), 1. 67 (1H, brs), 1. 74 (1H, brs), 1. 84-1. 93 (1H, m), 2. 60 (2H, d, J=7. 2Hz), 2. 83 (1H, brs), 3. 10 (1H, brs), 3. 78 (1H, brs), 4. 59 (1H, brs), 5. 34 (2H, s), 7. 15-7. 18 (3H, m), 7. 24-7. 28 (2H, m), 7. 40-7. 46 (4H, m), 7. 57-7. 63 (3H, m), 7. 65 (1H, dd, J=8. 7, 2. 4Hz), 7. 96 (2H, s), 8. 05 (1H, d, J=2. 1Hz).

(2) N- [3, 5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシ-5-(4-ベンジルピペリジン-1-カルボニル)ベンズアミド(化合物番号40)

原料として、2-ベンジルオキシー5-(4-ベンジルピペリジンー1-カルボ -ル)-N-[3,5-ビス(トリフルオロメチル)フェニル] ベンズアミドを 用いて例 38 (4) と同様の操作を行い、標題化合物を得た。

収率 54.3% 白色固体

¹H-NMR (DMSO-d₆): δ 1. 08-1. 22 (2H, m), 1. 59 -1. 62 (2H, m), 1. 77-1. 80 (1H, m), 2. 50-2. 55 (2H, m), 2. 87 (2H, brs), 3. 75 (1H, br), 4. 39 (1H, br), 7. 06 (1H, d, J=8. 4Hz), 7. 17-7. 20 (3H, m), 7. 28 (2H, t, J=7. 2Hz), 7. 49 (1H, dd, J=8. 4, 2. 1Hz), 7. 84 (1H, s), 7. 93 (1H, d, J=2. 1Hz), 8. 47 (2H, s), 10. 89 (1H, s), 11. 65 (1H, s).

例41:化合物番号41の化合物の製造

(1) 2-メトキシー5-スルファモイル安息香酸

メチル 2-メトキシ-5-スルファモイルベングエート (4.91g,20mmo1) のメタノール (30mL) 溶液に、2規定水酸化ナトリウム溶液 (30mL)

mL, 60mmol) を加え、室温で1時間攪拌した。反応混合物を2規定塩酸にあけ、析出した固体を濾取して、標題化合物の白色固体(4.55g,98.3%)を得た。

¹H-NMR (DMSO-d₆): δ 3.89 (3H, s), 7.30 (1H, d, J=8.7Hz), 7.32 (2H, s), 7.92 (1H, dd, J=8.7, 2.7Hz), 8.09 (1H, d, J=2.7Hz), 13.03 (1H, br). (2) N-[3,5-ビス (トリフルオロメチル) フェニル] -2-メトキシー5-スルファモイルベンズアミド

原料として、2-メトキシ-5-スルファモイル安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例12(3)と同様の操作を行い、標題化合物を得た。

収率:24.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 97 (3H, s), 7. 38 (2H, s), 7. 39 (1H, d, J=8. 7Hz), 7. 85 (1H, s), 7. 96 (1H, dd, J=8. 7, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 8. 43 (2H, s), 10. 87 (1H, s).

(3) N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシー5-スルファモイルベンズアミド(442mg,1.0mmol)、沃化メチル(710mg,5.0mmol)、炭酸カリウム(415mg,3.0mmol)、アセトニトリル(10mL)の懸濁液を3時間加熱還流した。反応混合液を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣を<math>n-4+1で開発エチルから再結晶して、標題化合物の白色固体(207mg,44.1%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 6 2 (6H, s), 3. 99 (3H, s),

7. 45 (1H, d, J=9. 0Hz), 7. 85 (1H, s), 7. 91 (1H, dd, J=8. 7, 2. 4Hz), 7. 95 (1H, d, J=2. 4Hz) 8. 4 3 (2H, s), 10. 90 (1H, s).

(4) N-[3, 5-ビス(トリフルオロメチル)フェニル] -5-ジメチルスルファモイル-2-ヒドロキシベンズアミド(化合物番号41)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-5-ジメチルスルファモイル-2-メトキシベンズアミドを用いて例34(5)と同様の操作を行い、標題化合物を得た。

収率:45.5%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 61 (6H, s), 7. 20 (1H, d, J=8. 7Hz), 7. 77 (1H, dd, J=8. 7, 2. 1Hz), 7. 86 (1H, s), 8. 14 (1H, d, J=2. 1Hz) 8. 45 (2H, s), 1 1. 16 (1H, s), 12. 15 (1H, br).

例42:化合物番号42の化合物の製造

(1) N-[3, 5-ビス(トリフルオロメチル)フェニル] -2-メトキシー 5- (ピロール-1-スルホニル)ベンズアミド

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-スルファモイルベンズアミド(例41(2)の化合物;442mg,1mmol)、2,5-ジメトキシテトラヒドロフラン(159mg,1.2mmol)、酢酸(5mL)の混合物を2時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:2)で精製して、標題化合物の白色固体(436.5mg,88.6%)を得た。

 $^{1}H-NMR$ (DMSO- d_{6}): δ 3. 96 (3H, s), 6. 36 (2H, dd, J=2. 4, 2. 1Hz), 7. 37 (2H, dd, J=2. 4, 2. 1Hz),

7. 42 (1H, d, J=9.0Hz), 7. 85 (1H, s), 8. 80 (1H, dd, J=9.0, 2.4Hz) 8. 18 (1H, d, J=2.7Hz), 8. 38 (2H, s), 10.92 (1H, s).

(2) N-[3, 5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシ -5- (ピロール-1-スルホニル)ベンズアミド(化合物番号 42)

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-メトキシ-5-(ピロール-1-スルホニル)ベンズアミドを用いて例34(5)と同様の操作を行い、標題化合物を得た。

収率:79.4%

 $^{1}H-NMR$ (DMSO-d₆) δ 6. 36 (2H, dd, J=2. 4, 2. 1 Hz), 7. 18 (1H, d, J=9. 0Hz), 7. 34 (2H, dd, J=2. 4, 2. 1Hz), 7. 86 (1H, s), 7. 99 (1H, dd, J=9. 0, 2. 7Hz) 8. 31 (1H, d, J=2. 7Hz), 8. 42 (2H, s), 1 0. 98 (1H, s).

例43:化合物番号43の化合物の製造

原料として、N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-5-ニトロベンズアミド(化合物番号8)を用いて例38(4)と同様の操作を行い、標題化合物を得た。

収率:98.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 79 (2H, brs), 6. 76 (1H, d, J=2.1Hz), 6. 76 (1H, s), 7. 09 (1H, dd, J=2.1, 1.2Hz), 7. 80 (1H, s), 8. 45 (2H, s), 10. 30 (1H, br), 10. 84 (1H, s).

例44:化合物番号44の化合物の製造

原料として、5-ジメチルアミノサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:28.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 85 (6H, s), 6. 92 (1H, d, J=9. 0Hz), 7. 01 (1H, dd, J=8. 7, 3. 0Hz), 7. 22 (1H, d, J=3. 0Hz), 7. 84 (1H, s), 8. 47 (2H, s), 10. 62 (1H, s), 10. 83 (1H, s).

例45:化合物番号45の化合物の製造

アルゴン雰囲気下、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号43;364mg,1mmo1)、ピリジン(95mg,1.2mmo1)、テトラヒドロフラン(10mL)の混合物に、氷冷下、ベンゾイルクロリド(155mg,1.1mmo1)を加え、1時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-n++):酢酸エチル=4:1)で精製して、標題化合物の白色固体(121mg,25.7%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 51-7. 62 (3H, m), 7. 81 (1H, dd, J=8.7, 2.4Hz), 7. 83 (1H, s), 7. 98 (2H, d, J=7.2Hz), 8. 22 (1H, d, J=2.4Hz), 8. 49 (2H, s), 10. 27 (1H, s), 10. 8 9 (1H, s), 11. 07 (1H, s).

例46:化合物番号46の化合物の製造

 $5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号43;100.2mg,0.28mmol)のアセトニトリル(4ml)溶液に、<math>4-ジメチルアミノピリジン(3mg),フェニルイソシアネート(30 <math>\mu$ L,0.28mmol)を加え、60℃で5分間攪拌した。反応混合物を室温まで冷却後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製して、標題化合物の薄褐色固体(54.8mg,41.2%)を得た。

¹H-NMR (DMSO-d₆): δ 6. 93-6. 98 (1H, m), 6. 97 (1H, d, J=9. 3Hz), 7. 27 (2H, t, J=7. 8Hz), 7. 3 4-7. 46 (2H, m), 7. 50 (1H, dd, J=9. 0, 2. 4Hz), 7. 83 (1H, s), 7. 88 (1H, s), 8. 47 (2H, s), 8. 56 (1H, s), 8. 63 (1H, s), 10. 87 (1H, s), 10. 89 (1H, s). 例47: 化合物番号47の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号43)、及びフェニルイソチオシアネ -トを用いて例46と同様の操作を行い、標題化合物を得た。

収率:66.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 00 (1H, d, J=8.4Hz), 7. 13 (1H, tt, J=7.5, 1.2Hz), 7. 34 (2H, t, J=7.8 Hz), 7. 45-7.51 (3H, m), 7. 84 (1H, s), 7. 87 (1H, d, J=2.7Hz), 8. 47 (2H, s), 9. 65 (1H, s), 9. 74 (1H, s), 10. 84 (1H, s), 11. 32 (1H, s).

例48:化合物番号48の化合物の製造

原料として、5-[(4-ニトロフェニル)ジアゼニル]サリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:11.3%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 7. 23 (1H, d, J=9.0Hz), 7. 87 (1H, s), 8. 06 (2H, d, J=9.0Hz), 8. 10 (1H, d d, J=9.0, 2.4Hz), 8. 44 (2H, d, J=9.0Hz), 8. 5 0 (2H, s), 8. 53 (1H, d, J=2.4Hz), 11. 13 (1H, s), 12. 14 (1H, br).

例49:化合物番号49の化合物の製造

原料として、5-({[(4-ピリジン-2-イル) スルファモイル] フェニル}ジ

アゼニル) サリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率: 7.9%

¹H-NMR (DMSO-d₆): δ 6.87 (1H, t, J=6.0Hz), 7.22 (1H, d, J=8.7Hz), 7.21-7.23 (1H, m), 7.77 (1H, t, J=8.4Hz), 7.87 (1H, s), 7.95-7.98 (3H, m), 8.03-8.07 (4H, m), 8.47 (1H, d, J=2.4Hz), 8.49 (2H, s), 11.14 (1H, s), 12.03 (1H, br). 例 50: 化合物番号 50 の化合物の製造

(1) 4-アセチルアミノー5-クロロー2-メトキシ安息香酸

原料として、4-アセチルアミノ-5-クロロ-2-メトキシ安息香酸 メチルエステルを用いて例36と同様な操作を行い、標題化合物を得た。

収率:88.0%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 16 (3H, s), 3. 78 (3H, s), 7. 72 (1H, s), 7. 77 (1H, s), 9. 57 (1H, s), 12. 74 (1H, s).

(2) $4 - \text{PTP} + \text{PTP} + \text{PTP} = \text$

原料として、4-アセチルアミノー5-クロロー2-メトキシ安息香酸、及び3, 5-ビス(トリフルオロメチル)アニリンを用いて例12(3)と同様な操作を行い、標題化合物を得た。

収率:23.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 17 (3H, s), 3. 89 (3H, s), 7. 77-7. 82 (3H, m), 8. 45-8. 49 (2H, m), 9. 66 (1H, s), 10. 68 (1H, s).

(3) 4-アセチルアミノ-N-[3, 5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号50)

原料として、4-アセチルアミノ-N-[3,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-メトキシベンズアミドを用いて例 34(5)と同様の操作を行い、標題化合物を得た。

収率:72.8%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 17 (3H, s), 7. 75 (1H, s), 7. 82 (1H, s), 7. 95 (1H, s), 8. 44 (2H, s), 9. 45 (1H, s), 11. 16 (1H, brs), 11. 63 (1H, brs).

例51:化合物番号51の化合物の製造

原料として、4-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:55.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 05-7. 08 (2H, m), 7. 84 -7. 87 (2H, m), 8. 45 (2H, s), 10. 84 (1H, s) 11. 64 (1H, brs).

例52:化合物番号52の化合物の製造

原料として、6-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:86.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 36 (2H,d,J=8.4Hz), 7. 13 (1H,t,J=8.4Hz), 7. 79 (1H,s),8.38 (2H,s), 11.40 (2H,brs),11.96 (1H,brs).

例53:化合物番号53の化合物の製造

原料として、4-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:42.9%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 32 (3H, s) 6. 82 (1H, d, J=6. 6Hz) 6. 84 (1H, s) 7. 83 (1H, s) 7. 84 (1H,

d, J=8.5 Hz) 8. 47 (2H, s) 10. 76 (1H, s) 11. 44 (1H, s).

例54:化合物番号54の化合物の製造

原料として、5-ブロモ-4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:82.4%

 $^{1}H-NMR$ (CDCl₃): δ 5. 89 (1H, s) 6. 70 (1H, s) 7. 69 (2H, s) 7. 95 (1H, s) 8. 12 (2H, s) 11. 62 (1H, s).

例55:化合物番号55の化合物の製造

原料として、4-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:29.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 37 (1H, d, J=2.5Hz), 6. 42 (1H, dd, J=8.8, 2.5Hz), 7.81 (1H, s), 7.86 (1H, d, J=8.5Hz), 8.44 (2H, s), 10.31 (1H, s), 10.60 (1H, s), 11.77 (1H, s).

例56:化合物番号56の化合物の製造

原料として、3,5-ジクロロサリチル酸、及び3,5-ビス(トリフルオロメ チル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 7. 85 (1H, d, J=2.5Hz), 7. 91 (1H, s), 8. 01 (1H, d, J=2.5Hz), 8. 42 (2H, s), 11. 10 (1H, s).

例57:化合物番号57の化合物の製造

原料として、3-ヒドロキシサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率: 22. 7%

 $^{1}H-NMR$ (DMSO-d₆): δ 6.81 (1H, t, J=8.0Hz), 7.01 (1H, dd, J=8.0, 1.5Hz), 7.35 (1H, dd, J=8.0, 1.5Hz), 7.84 (1H, s), 8.46 (2H, s), 9.56 (1H, s), 10.79 (1H, s), 10.90 (1H, brs).

例58:化合物番号58の化合物の製造

原料として、3-メチルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:54.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 22 (3H, s), 6. 94 (1H, t, J=7. 4Hz), 7. 42 (1H, d, J=7. 4Hz), 7. 84-7. 85 (2H, m), 8. 47 (2H, s), 10. 87 (1H, s), 11. 87 (1H, s).

例59:化合物番号59の化合物の製造

原料として、3-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:34.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 85 (3H, s), 6. 94 (1H, t, J=8. 0Hz), 7. 20 (1H, dd, J=8. 0, 1. 4Hz), 7. 44 (1H, dd, J=8. 0, 1. 4Hz), 7. 84 (1H, s), 8. 45 (2H, s), 10. 82 (1H, s), 10. 94 (1H, brs).

例60:化合物番号60の化合物の製造

原料として、5-[(1,1,3,3-テトラメチル) ブチル] サリチル酸、及び <math>3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、 標題化合物を得た。

収率:64.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 0.70 (9H, s), 1.35 (6H, s),

1. 72 (2H, s), 6. 95 (1H, d, J=8. 4Hz), 7. 50 (1H, dd, J=8. 0, 2. 1Hz), 7. 83 (1H, s), 7. 84 (1H, d, J=2. 1Hz), 8. 46 (1H, s), 10. 77 (1H, s), 11. 20 (1H, s).

例61:化合物番号61の化合物の製造

原料として、3,5,6-トリクロロサリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率: 26. 2%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 88 (1H, s), 7. 93 (1H, s), 8. 33 (2H, s), 10. 88 (1H, s), 11. 36 (1H, s).

例62:化合物番号62の化合物の製造

原料として、3,5-ビス[(1,1-ジメチル)エチル]サリチル酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:65.0%

¹H-NMR (DMSO-d₆): δ 1. 34 (9H, s), 1. 40 (9H, s), 7. 49 (1H, d, J=2. 2Hz), 7. 82 (1H, d, J=2. 2Hz), 7. 91 (1H, s), 8. 40 (2H, s), 10. 82 (1H, s), 12. 44 (1H, s).

例63:化合物番号63の化合物の製造

原料として、6-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率: 35.9%

¹H-NMR (DMSO-d₆): δ 6. 73-6. 82 (2H, m), 7. 32 (1H, ddd, J=1. 4, 8. 5, 15. 3Hz), 7. 83 (1H, s), 8. 39 (2H, s), 10. 50 (1H, d, J=1. 4Hz), 11. 11 (1H, s).

例64:化合物番号64の化合物の製造

原料として、3-クロロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:61.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 05 (1H, dd, J=7. 6, 8. 0Hz), 7. 69 (1H, dd, J=1. 4, 13. 3Hz), 7. 90 (1H, s), 7. 93 (1H, dd, J=1. 4, 8. 0Hz), 8. 44 (2H, s), 11. 01 (1H, s), 11. 92 (1H, br. s).

例65:化合物番号65の化合物の製造

原料として、4-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:14.2%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 3. 81 (3H, s), 6. 54 (1H, d, J=2. 5Hz), 6. 61 (1H, dd, J=2. 5, 8. 8Hz), 7. 83 (1H, s), 7. 95 (1H, d, J=8. 8Hz), 8. 45 (2H, s), 10. 69 (1H, s), 11. 89 (1H, s).

例66:化合物番号66の化合物の製造

原料として、6-メトキシサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:63.1%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 3. 24 (3H, s), 6. 03 (1H, d, J=8. 0Hz), 6. 05 (1H, d, J=8. 5Hz), 6. 71 (1H, d d, J=8. 2, 8. 5Hz), 7. 25 (1H, s), 7. 88 (2H, s), 9. 67 (1H, s), 10. 31 (1H, s)

例67:化合物番号67の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号43)、及びメタンスルホニルクロリ

ドを用いて例45と同様な操作を行い、標題化合物を得た。

収率: 22.6%

¹H-NMR (DMSO-d₆): δ 2. 93 (3H, s), 7. 02 (1H, d, J=8. 4Hz), 7. 31 (1H, dd, J=8. 4, 2. 7Hz), 7. 68 (1H, d, J=2. 7Hz), 7. 83 (1H, s), 8. 46 (2H, s), 9. 48 (1H, s), 10. 85 (1H, s), 11. 15 (1H, s).

例68:化合物番号68の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号 43)、及びベンゼンスルホニルクロリドを用いて例 45と同様な操作を行い、標題化合物を得た。

収率: 45.3%

¹H-NMR (DMSO-d₆): δ 6.89 (1H, d, J=8.7Hz), 7.10 (1H, dd, J=8.7, 2.7Hz), 7.51-7.64 (4H, m), 7.68-7.71 (2H, m), 7.81 (1H, s), 8.42 (2H, s), 10.03 (1H, s), 10.87 (1H, s), 11.13 (1H, brs). 例69: 化合物番号69の化合物の製造

原料として、5-アミノ-N-[3,5-ビス(トリフルオロメチル)フェニル] -2-ヒドロキシベンズアミド(化合物番号43)、及びアセチルクロリドを用いて例45と同様な操作を行い、標題化合物を得た。

収率:44.8%

¹H-NMR (DMSO-d₆): δ 2. 02 (3H, s), 6. 97 (1H, d, J=8. 7Hz), 7. 61 (1H, dd, J=8. 7, 2. 7Hz), 7. 82 (1H, s), 7. 99 (1H, d, J=2. 7Hz), 8. 46 (2H, s), 9. 90 (1H, s), 10. 85 (1H, s), 10. 94 (1H, s).

例70:化合物番号70の化合物の製造

N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-メトキシ-5-スルファモイルベンズアミド (例 41 (2) の化合物) を用いて例 34 (5) と同

様な操作を行い、標題化合物を得た。

収率:59.9%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 17 (1H, d, J=8.7Hz), 7.

31 (2H, s), 7.85 (1H, s), 7.86 (1H, dd, J=8.4,

2. 4 Hz), 8. 26 (1H, d, J = 2. 7 Hz), 8. 47 (2H, s), 1

0. 95 (1H, s), 11. 90 (1H, s).

例71:化合物番号71の化合物の製造

原料として、1-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:65.5%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 51 (1H, d, J=9.0Hz), 7.

60 (1H, td, J=7.8, 0.9Hz), 7.70 (1H, td, J=7.

8, 0.9 Hz), 7.89(1 H, s), 7.93(1 H, d, J=8.4 Hz),

8. 09 (1H, d, J=9.0Hz), 8. 33 (1H, d, J=8.7Hz),

8. 51 (2H, s), 10. 92 (1H, s), 13. 36 (1H, s).

例72:化合物番号72の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:46.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 36-7. 41 (2H, m), 7. 50 -7. 55 (1H, m), 7. 79 (1H, d, J=8. 2Hz), 7. 85 (1H, d, J=0.6Hz), 7. 96 (1H, d, J=8.0Hz), 8. 51 (2H, s), 10. 98 (1H, s), 11. 05 (1H, s).

例73:化合物番号73の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ビス(ト

リフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:30.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 27 (1H, d, J=8.8Hz), 7. 32-7. 38 (1H, m), 7. 45-7. 50 (1H, m), 7. 72 (1H, d, J=8.5Hz), 7. 82-7. 93 (3H, m), 8. 50 (1H, s), 10. 28 (1H, s), 11. 07 (1H, brs).

例74:化合物番号74の化合物の製造

(1) 4-ブロモー3-ヒドロキシチオフェン-2-カルボン酸

4ーブロモー3ーヒドロキシチオフェンー2ーカルボン酸 メチルエステル (500mg, 2.1mmol)、水酸化ナトリウム (261mg, 6.3mmol)のメタノール/水 (2.5mL+2.5mL)混合溶液を2時間加熱還流した。反応混合物を室温まで冷却後、2規定塩酸でpHを1とし、酢酸エチル (50mL)で希釈した。酢酸エチル溶液を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去して、標題化合物の赤褐色粉末 (326mg, 69.4%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 4.05 (1H, brs), 7.40 (1H, s).

(2) 4-ブロモー3-ヒドロキシ-N-[3,5-ビス(トリフルオロメチル)フェニル]チオフェン-2-カルボキサミド(化合物番号74)

原料として、4 ーブロモー3 ーヒドロキシチオフェンー2 ーカルボン酸、及び3,5 ービス (トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:82.4%

¹H-NMR (CDCl₃): δ 7. 42 (1H, s), 7. 67 (1H, brs), 7. 78 (1H, brs), 8. 11 (2H, s), 9. 91 (1H, brs). 例75:化合物番号75の化合物の製造

5-クロロ-2-ヒドロキシニコチン酸 (174mg, 1mmol)、3, 5-ビ

ス(トリフルオロメチル)アニリン(275mg, 1.2mmol), ピリジン(316mg, 4mmol)のテトラヒドロフラン/ジクロロメタン(20mL+10mL)溶液に、オキシ塩化リン(0.112 ml, 1.2mmol)を加え、室温で2時間攪拌した。反応混合物を酢酸エチル(100mL)及び0.2規定塩酸(100mL)にあけ、30分間攪拌、セライト濾過し、水層を酢酸エチルで抽出した。合わせた酢酸エチル層を水、飽和食塩水で順次洗浄,無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1→1:1)で精製、エタノールで懸濁洗浄して、標題化合物の白色結晶(183mg, 47.6%)を得た。融点:>270℃

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7. 83 (1H, s), 8. 15 (1H, d, J=3. 3Hz), 8. 36 (1H, d, J=3. 0Hz), 8. 40 (2H, s), 12. 43 (1H, s).

以下の実施例において例75の製造法が引用されている場合、縮合剤(酸ハロゲン化剤)としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。 また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を単独 若しくは混合して用いた。

例76:化合物番号76の化合物の製造

原料として、3ーヒドロキシピリジン-2-カルボン酸、及び3,5ービス(トリフルオロメチル)アニリンを用いて例75と同様の操作を行い、標題化合物を得た。

収率: 45.0%

¹H-NMR (CDCl₃): δ 7. 40 (1H, dd, J=8. 4, 1. 8H z), 7. 46 (1H, dd, J=8. 4, 4. 2Hz), 7. 68 (1H, s), 8. 16 (1H, dd, J=4. 2, 1. 2Hz), 8. 25 (2H, s), 10. 24 (1H, s), 11. 42 (1H, s).

例77:化合物番号77の化合物の製造

3,5-ビス (トリフルオロメチル) フェニルイソシアネート ($255 \,\mathrm{mg}$, $1.0 \,\mathrm{mmol}$) のテトラヒドロフラン ($5 \,\mathrm{mL}$) 溶液に、アルゴン雰囲気下、 $6-2 \,\mathrm{nmol}$) のテトラヒドロフラン ($5 \,\mathrm{mL}$) 溶液、トリエチルアミン ($0.3 \,\mathrm{mL}$) を加え、室温で4時間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー ($1.0 \,\mathrm{mmol}$) で精製して、標題化合物の桃色固体 ($1.0 \,\mathrm{mmol}$) で精製して、標題化合物の桃色固体 ($1.0 \,\mathrm{mmol}$) で精製して、標題化合物の桃色固体 ($1.0 \,\mathrm{mmol}$) を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 97 (2H, s), 7. 29 (1H, d d, J=8. 1, 2. 1Hz), 7. 41 (1H, d, J=8. 1Hz), 7. 8 (1H, s), 8. 04 (1H, d, J=2. 1Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例78:化合物番号78の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及 びオキシインドールを用いて例77と同様の操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 98 (2H, s), 7. 22 (1H, t d, J=7. 8, 1. 2Hz), 7. 33-7. 40 (2H, m), 7. 87 (1H, s), 8. 02 (1H, d, J=7. 8Hz), 8. 38 (2H, s), 11. 00 (1H, s).

例79:化合物番号79の化合物の製造

原料として、3,5-ビス(トリフルオロメチル)フェニルイソシアネート、及び5-クロロオキシインドールを用いて例77と同様の操作を行い、標題化合物を得た。

収率:31.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 99 (2H, s), 7. 41 (1H, d

d, J=8. 7, 2. 4Hz), 7. 47(1H, d, J=2.1Hz), 7. 8 7 (1H, s), 8. 01 (1H, d, J=8. 4Hz), 8. 38 (2H, s), 10. 93 (1H, s).

例80:化合物番号80の化合物の製造

原料として、3-ヒドロキシキノキサリン-2-カルボン酸、及び3,5-ビス (トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物 を得た。

収率: 2. 7%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 40-7. 45 (2H, m), 7. 69 (1H, td, J=8. 4, 1. 5Hz), 7. 90-7. 93 (2H, m), 8. 41 (2H, s), 11. 64 (1H, s), 13. 02 (1H, s).

例81:化合物番号81の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率: 3. 6%

 $^{1}H-NMR$ (CDCl₃): δ 7. 03 (1H, d, J=8. 7Hz), 7. 4 3-7. 48 (2H, m), 6. 61 (1H, d, J=8. 1Hz), 7. 85 (1 H, d, J=8. 4Hz), 8. 36 (1H, brs), 8. 60 (1H, s), 1 1. 31 (1H, s).

例82:化合物番号82の化合物の製造

原料として、N-[2,5-ビス(トリフルオロメチル)フェニル]-5-クロロ-2-ヒドロキシベンズアミド(化合物番号81)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率:6.6%

 $^{1}H-NMR$ (CDCl₃): δ 2. 35 (3H, s), 7. 17 (1H, d, J = 8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 4Hz), 7. 55 (1H, d, J=8. 1Hz), 7. 80 (1H, d, J=8. 1Hz), 7. 95 (1

H, d, J = 2.4 Hz), 8.60 (1H, s), 8.73 (1H, s).

例83:化合物番号83の化合物の製造

原料として、5-ブロモサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:24.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7.65 (1H, dd, J=8.7, 2.7Hz), 7.76 (1H, d, J=8.4 Hz), 8.03 (1H, d, J=8.1Hz) 8.11 (1H, d, J=2.7 Hz), 8.74 (1H, s), 11.02 (1H, s), 12.34 (1H, s).

例84:化合物番号84の化合物の製造

原料として、5-メチルサリチル酸、及び2,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様な操作を行い、標題化合物を得た。

収率:1.5%

¹H-NMR (CDCl₃): δ 2.36 (3H, s), 6.97 (1H, d, J=8.4Hz), 7.23 (1H, s), 7.32 (1H, dd, J=8.4, 1.5Hz), 7.57 (1H, d, J=8.4Hz), 7.83 (1H, d, J=8.4Hz), 8.46 (1H, s), 8.69 (1H, s), 11.19 (1H, s). 例85: 化合物番号85の化合物の製造

原料として、5-クロロサリチル酸、及び3-フルオロ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:62.0%

¹H-NMR (DMSO-d₆): δ 7. 04 (1H, d, J=8. 7Hz), 7. 42 (1H, d, J=8. 4Hz), 7. 48 (1H, dd, J=9. 0, 3. 0 Hz), 7. 85 (1H, d, J=2. 4Hz), 7. 94 (1H, dd, J=1 1. 4, 2. 1Hz), 7. 99 (1H, s), 10. 73 (1H, s), 11. 46 (1H, s).

例86:化合物番号86の化合物の製造

原料として、5-ブロモサリチル酸、及び3-ブロモ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (DMSO- d_6): δ 6. 99 (1H, d, J=9.0Hz), 7. 60 (1H, dd, J=9.0, 2.4Hz), 7. 72 (1H, s), 7. 97 (1H, d, J=2.7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 10. 69 (1H, s), 11. 45 (1H, s).

例87:化合物番号87の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:77.9%

¹H-NMR (DMSO-d₆): δ 7. 07 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=9.0, 2.7Hz), 7. 58-7. 61 (2H, m), 7. 95 (1H, d, J=2.7Hz), 8. 71 (1H, d, J=7.5Hz), 10. 90 (1H, s), 12. 23 (1H, s).

例88:化合物番号88の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:49.1%

¹H-NMR (DMSO- d_6): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=9.0, 3.0Hz), 7. 55 (1H, dd, J=8.4, 2.7Hz), 7. 83 (1H, d, J=8.4Hz), 7. 98 (1H, d, J=3.0Hz), 8. 88 (1H, d, J=2.7Hz), 11. 14 (1H, s), 12. 39 (1H, s).

例89:化合物番号89の化合物の製造

原料として、5-クロローN-[2-クロロ-5-(トリフルオロメチル)フェニル]-2-ヒドロキシベンズアミド(化合物番号88)、及びアセチルクロリド

を用いて例5と同様の操作を行い、標題化合物を得た。

収率:34.0%

 $^{1}H-NMR$ (CDCl₃): δ 2. 39 (3H, s), 7. 16 (1H, d, J = 8. 7Hz), 7. 37 (1H, ddd, J=8. 7, 2. 4, 0. 6Hz), 7. 51-7. 56 (2H, m), 7. 97 (1H, d, J=3. 0Hz), 8. 85 (1H, s), 8. 94 (1H, d, J=1. 8Hz).

例90:化合物番号90の化合物の製造

原料として、5-ブロモサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:34.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=8.7Hz), 7. 56 (1H, ddd, J=8.1, 2.4, 1.2Hz), 7. 64 (1H, dd, J=8.7, 2.7Hz), 7. 83 (1H, dd, J=8.1, 1.2Hz), 8. 11 (1H, d, J=2.7Hz), 8. 87 (1H, d, J=2.4Hz), 11. 12 (1H, s), 12. 42 (1H, s).

例91:化合物番号91の化合物の製造

原料として、5-クロロサリチル酸、及び2-ニトロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:8.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, dd, J=8.4, 1.8Hz), 7. 95 (1H, d, J=3.0Hz), 8. 36 (1H, d, J=8.7Hz), 9. 01 (1H, d, J=1.8Hz), 12. 04 (1H, s), 12. 20 (1H, s).

例92:化合物番号92の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:73.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 39 (3H, s), 7. 07 (1H, d, J=8.7Hz), 7. 44-7. 54 (3H, m), 7. 99 (1H, d, J=3.0Hz), 8. 43 (1H, s), 10. 52 (1H, s), 12. 17 (1H, brs).

例93:化合物番号93の化合物の製造

原料として、5-ブロモサリチル酸、及び3-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:58.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 85 (3H, s), 6. 98 (1H, d, J=8.7Hz), 7. 03 (1H, s), 7. 57-7. 61 (2H, m), 7. 77 (1H, s), 8. 00 (1H, d, J=2.4Hz), 10. 57 (1H, s), 11. 56 (1H, s).

例94:化合物番号94の化合物の製造

原料として、5-ブロモサリチル酸、及び2-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:71.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 99 (3H, s), 7. 03 (1H, d, J=9. 0Hz), 7. 30 (1H, d, J=8. 7Hz), 7. 47-7. 51 (1H, m), 7. 61 (1H, dd, J=9. 0, 2. 4Hz), 8. 10 (1H, d, J=2. 4Hz), 8. 82 (1H, d, J=2. 1Hz) 11. 03 (1H, s), 12. 19 (1H, s).

例95:化合物番号95の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:83.4%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 4.00 (3H, s), 7.08 (1H, d,

J=9.0Hz), 7. 30 (1H, d, J=8.7Hz), 7. 47-7. 52 (2H, m), 7. 97 (1H, d, J=2.7Hz), 8. 83 (1H, d, J=2.4Hz), 11. 05 (1H, s), 12. 17 (1H, s).

例96:化合物番号96の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチルスルファニル-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。 収率:79.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 57 (3H, s), 7. 07 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 4Hz), 7. 55 (1H, dd, J=8. 4, 1. 5Hz), 7. 63 (1H, d, J=8. 1Hz), 8. 00 (1H, d, J=2. 4Hz), 8. 48 (1H, d, J=1. 5Hz), 10. 79 (1H, s), 12. 26 (1H, s).

例97:化合物番号97の化合物の製造

原料として、5-プロモサリチル酸、及び2-(1-ピロリジニル)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:44.5%

¹H-NMR (DMSO-d₆): δ 1. 86-1. 91 (4H, m), 3. 20 -3. 26 (4H, m), 6. 99 (1H, d, J=8. 7Hz), 7. 07 (1H, d, J=8. 7Hz), 7. 43 (1H, dd, J=8. 7, 2. 1Hz), 7. 62 (1H, dd, J=8. 7, 2. 4Hz), 7. 94 (1H, d, J=2. 1Hz), 8. 17 (1H, d, J=2. 4Hz), 10. 54 (1H, s), 12. 21 (1H, s).

例98:化合物番号98の化合物の製造

原料として、5-ブロモサリチル酸、及び2-モルホリノー5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:65.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 90 (4H, dd, J=4. 5, 4. 2Hz), 3. 84 (4H, dd, J=4. 8, 4. 2Hz), 7. 09 (1H, d, J=8. 4Hz), 7. 48 (2H, s), 7. 61 (1H, dd, J=8. 4, 2. 7Hz), 8. 13 (1H, d, J=2. 7Hz), 8. 90 (1H, s), 11. 21 (1H, s), 12. 04 (1H, s).

例99:化合物番号99の化合物の製造

原料として、5-ニトロサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:31.1%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 6. 98 (1H, d, J=9. 3Hz), 7. 52 (1H, dd, J=8. 4, 2. 1Hz), 7. 81 (1H, d, J=8. 4Hz), 8. 21 (1H, dd, J=9. 0, 3. 3Hz), 8. 82 (1H, d, J=3. 0Hz), 8. 93 (1H, d, J=2. 4Hz), 12. 18 (1H, s).

例100:化合物番号100の化合物の製造

原料として、5-メチルサリチル酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:15.8%

¹H-NMR (CDCl₃): δ 2. 36 (3H, s), 6. 95 (1H, d, J=8. 1Hz), 7. 26-7. 31 (2H, m), 7. 37 (1H, dd, J=8. 4, 1. 8Hz), 7. 56 (1H, d, J=8. 4Hz), 8. 65 (1H, brs), 8. 80 (1H, d, J=1. 8Hz), 11. 33 (1H, brs). 例101:化合物番号101の化合物の製造

原料として、5-メトキシサリチル酸、及び2-クロロ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:56.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 3.77 (3H, s), 6.91 (1H, d,

J=9. 0Hz), 7. 07 (1H, dd, J=8. 7, 3. 0Hz), 7. 20 (1H, t, J=1. 8Hz), 7. 52-7. 54 (3H, m), 10. 33 (1H, s), 11. 44 (1H, s).

例102:化合物番号102の化合物の製造

原料として、5-メチルサリチル酸、及び2-メチル-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:14.2%、白色固体

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 29 (3H, s), 2. 38 (3H, s), 6. 94 (1H, d, J=8. 4Hz), 7. 27 (1H, ddd, J=8. 4, 2. 4, 0. 6Hz), 7. 44 (1H, dd, J=8. 1, 1. 5Hz), 7, 52 (1H, d, J=7. 8Hz), 7. 84 (1H, d, J=2. 4Hz), 8. 46 (1H, d, J=1. 5Hz), 10. 55 (1H, s), 11. 72 (1H, s).

例103:化合物番号103の化合物の製造

原料として、5-メチルサリチル酸、及び2-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:77.9%

 $^{1}H-NMR$ (CDCl₃): δ 2. 35 (3H, s), 4. 02 (3H, s), 6. 93 (1H, d, J=9. 0Hz), 6. 98 (1H, d, J=8. 4Hz), 7. 25-7. 28 (2H, m), 7. 36 (1H, ddd, J=8. 4, 2. 1, 0. 9Hz), 8. 65 (1H, brs), 8. 73 (1H, d, J=2. 1Hz), 11. 69 (1H, s).

例104:化合物番号104の化合物の製造

原料として、5-クロロサリチル酸、及び3-プロモ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:37.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 7.03 (1H, d, J=9.3Hz), 7.

48 (1H, dd, J=8. 7, 2. 4Hz), 7. 72 (1H, s), 7. 84 (1H, d, J=2. 7Hz), 8. 16 (1H, s), 8. 28 (1H, s), 10. 69 (1H, s), 11. 42 (1H, s).

例105:化合物番号105の化合物の製造

原料として、5-クロロサリチル酸、及び3-メトキシ-5-(トリフルオロメ チル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:68.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 85 (3H, s), 7. 02 (1H, s), 7. 03 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 61 (1H, s), 7. 77 (1H, s), 7. 88 (1H, d, J=2.7Hz), 10. 57 (1H, s), 11. 53 (1H, s).

例106:化合物番号106の化合物の製造

原料として、5-クロロサリチル酸、及び2-モルホリノ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:64.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 90 (4H, m), 3. 84 (4H, m), 7. 15 (1H, d, J=9. 0Hz), 7. 48 (2H, s), 7. 50 (1H, dd, J=9. 0, 2. 7Hz), 8. 00 (1H, d, J=2. 7Hz), 8. 91 (1H, s), 11. 24 (1H, s), 12. 05 (1H, s).

例107:化合物番号107の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブロモ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:59.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 10 (1H, d, J=8. 7Hz), 7. 48 (1H, dd, J=8. 4, 2. 1Hz), 7. 53 (1H, dd, J=8. 7, 3. 0Hz), 7. 97-7. 99 (2H, m), 8. 81 (1H, d, J=2. 1Hz), 11. 03 (1H, s), 12. 38 (1H, s).

例108:化合物番号108の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-5-トリフルオロメチル 安息香酸メチルエステルを用いて例3と同様の操作を行い、標題化合物を得た。 収率:67.0%

¹H-NMR (DMSO- d_6): δ 3. 91 (3H, s), 7. 02 (1H, d, J=9. 3Hz), 7. 43 (1H, dd, J=9. 0, 2. 4Hz), 7. 57 (1H, d, J=2. 4Hz), 8. 13 (1H, s), 8. 23 (1H, s), 8. 29 (1H, s), 8. 36 (1H, s), 11. 52 (1H, s).

例109:化合物番号109の化合物の製造

5-クロロー2-ヒドロキシーN-[3-メトキシカルボニルー5-(トリフルオロメチル)フェニル]ベンズアミド(化合物番号108;105mg,0.281mmol)のメタノール(2.5mL)懸濁液に、2規定水酸化ナトリウム水溶液(0.6mL)を加え、室温で3時間攪拌した。反応液に水を加え、酢酸エチルで洗浄した。水層に希塩酸を加え酸性とした後、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテルで結晶化して、標題化合物の白色固体(100mg,99.0%)を得た。

¹H-NMR (DMSO- d_6): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=8.7, 2.7Hz), 7. 91 (1H, d, J=2.7Hz), 7. 93 (1H, s), 8. 43 (1H, s), 8. 59 (1H, s), 10. 78 (1H, s), 11. 48 (1H, s).

例110:化合物番号110の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-ナフチルオキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:89.6%

 $^{1}H-NMR$ (CDCl₃): δ 6. 94 (1H, d, J=9.6Hz), 6. 9

8 (1 H, d, J=9. 2 Hz), 7. 25-7. 41 (4 H, m), 7. 48-7. 57 (3 H, m), 7. 81 (1 H, d, J=6. 9 Hz), 7. 88 (1 H, d, J=6. 9 Hz), 7. 95 (1 H, d, J=8. 9 Hz), 8. 72 (1 H, s), 8. 83 (1 H, d, J=2. 0 Hz), 11. 70 (1 H, s).

例111:化合物番号111の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2,4-ジクロロフェノキシ) -5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題 化合物を得た。

収率: 4.7%

 $^{1}H-NMR$ (CDCl₃): δ 6. 78 (1H, d, J=8. 9Hz), 7. 0 2 (1H, d, J=8. 6Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 33-7. 38 (3H, m), 7. 42 (1H, dd, J=8. 6, 2. 6Hz), 7. 49 (1H, d, J=2. 6Hz) 7. 58 (1H, d, J=2. 3Hz), 8. 66 (1H, brs,), 8. 82 (1H, d, J=2. 0Hz), 11. 65 (1H, s).

例112:化合物番号112の化合物の製造

原料として、5 - クロロサリチル酸、及び2 - [(4 - トリフルオロメチル) ピペリジノ] - 5 - (トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:60.5%

¹H-NMR (CDC1₃): δ 1. 85-2. 05 (2H, m), 2. 15 (2 H, d, J=10. 9Hz), 2. 28 (1H, m), 2. 82 (2H, t, J=11. 0Hz), 3. 16 (2H, d, J=12. 2Hz), 7. 02 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=8. 3Hz), 7. 42 (2H, m), 7. 50 (1H, d, J=2. 6Hz), 8. 75 (1H, s), 9. 60 (1H, s), 11. 94 (1H, s)

例113:化合物番号113の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2, 2, 2-トリフルオロエトキシ)-5-(トリフルオロメチル)アニリンを用いて例 3 と同様の操作を行い、標題化合物を得た。

収率:94.5%

 $^{1}H-NMR$ (CDC1₃): δ 4. 58 (2H, q, J=7. 9Hz), 6. 9 9-7. 05 (2H, m), 7. 41-7. 50 (3H, m), 8. 63 (1H, brs), 8. 79 (1H, d, J=2. 0Hz), 11. 59 (1H, s).

例114:化合物番号114の化合物の製造

原料として、5-クロロサリチル酸、及び2-(2-メトキシフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:80.6%

¹H-NMR (DMSO-d₆): δ 3. 74 (3H, s), 6. 70 (1H, d, J=8. 4Hz), 7. 02 (1H, d, J=8. 7Hz), 7. 07 (1H, d d, J=1. 5, 7. 8Hz), 7. 24-7. 39 (4H, m), 7. 49 (1H, dd, J=3. 0, 8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 92 (1H, d, J=2. 1Hz), 11. 36 (1H, s), 12. 18 (1H, s).

例115:化合物番号115の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロ-3, 5-ジメチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:91.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 34 (6H, s), 7. 03 (1H, d, J=8. 8Hz), 7. 05 (1H, d, J=8. 1Hz), 7. 11 (2H, s), 7. 43-7. 47 (1H, m), 7. 48 (1H, dd, J=2. 9, 8. 8Hz), 7. 97 (1H, d, J=2. 6Hz), 8. 94 (1H, d, J=2. 2

Hz), 11. 25 (1H, s), 12. 12 (1H, s).

例116:化合物番号116の化合物の製造

原料として、5-クロロサリチル酸、及び2-ピペリジノ-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:73.7%

 $^{1}H-NMR$ (CDCl₃): δ 1. 68-1. 72 (2H, m), 1. 80-1. 88 (4H, m), 2. 89 (4H, t, J=5. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 31 (1H, d, J=8. 4Hz), 7. 39-7. 43 (2H, m), 7. 55 (1H, d, J=2. 4Hz), 8. 73 (1H, d, J=1. 8Hz), 9. 71 (1H, s), 12. 05 (1H, s)

例117:化合物番号117の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-メチルフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:67.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 33 (3H, s), 6. 93 (1H, d, J=8. 8Hz), 7. 03 (1H, dd, J=0. 5, 8. 8Hz), 7. 12 (2H, d, J=8. 2Hz), 7. 29 (2H, d, J=8. 5Hz), 7. 4 3 (1H, dd, J=2. 0, 8. 6Hz), 7. 48 (1H, ddd, J=0. 8, 2. 7, 8. 8Hz), 7. 98 (1H, dd, J=0. 8, 2. 7Hz), 8. 94 (1H, d, J=2. 2Hz), 11. 29 (1H, s), 12. 15 (1H, s).

例118:化合物番号118の化合物の製造

原料として、5-クロロサリチル酸、及び2-(4-クロロフェノキシ)-5-(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:74.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 01 (1H, d, J=8.8Hz), 7. 06 (1H, d, J=8.5Hz), 7. 22 (1H, d, J=8.5Hz), 7. 43-7. 48 (2H, m), 7. 50 (2H, d, J=8.2Hz), 7. 94 (1H, dd, J=0.5, 2.7Hz), 8. 92 (1H, d, J=2.2Hz), 11. 20 (1H, s), 12. 10 (1H, s).

例119:化合物番号119の化合物の製造

原料として、5-クロロ-2-ヒドロキシニコチン酸、及び2-クロロ-5-(トリフルオロメチル)アニリンを用いて例75と同様の操作を行い、標題化合物を得た。

収率: 42.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 52 (1H, dd, J=8. 4, 2. 1Hz), 7. 81 (1H, d, J=8. 4Hz), 8. 16 (1H, s), 8. 3 9 (1H, d, J=2. 7Hz), 8. 96 (1H, d, J=2. 1Hz), 12. 76 (1H, s), 13. 23 (1H, s).

例120:化合物番号120の化合物の製造

原料として、O-アセチルサリチル酸クロリド、及び3,5-ジクロロアニリンを用いて例1と同様の操作を行い、標題化合物を得た。

収率:73.5%

mp 167-168℃.

¹H-NMR (CDCl₃): δ 2.35 (3H, s), 7.14-7.18 (2H, m), 7.35-7.40 (1H, m), 7.52-7.57 (3H, m), 7.81 (1H, dd, J=7.8, 1.8Hz), 8.05 (1H, brs). 例121:化合物番号121の化合物の製造

原料として、2-アセトキシ-N-(3, 5-ジクロロフェニル)ベンズアミド (化合物番号121)を用いて例2と同様の操作を行い、標題化合物を得た。

収率:60.3%

mp 218-219°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 95-7. 02 (2H, m), 7. 35-7. 36 (1H, m), 7. 42-7. 47 (1H, m), 7. 83-7. 87 (3H, m), 10. 54 (1H, s), 11. 35 (1H, s).

例122:化合物番号122の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジクロロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:10.8%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 7. 08 (1H, d, J=9. 0Hz), 7. 24-7. 28 (1H, m), 7. 50-7. 54 (1H, m), 7. 61 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=2. 7Hz), 8. 58 (1H, d, J=2. 4Hz), 11. 02 (1H, s), 12. 35 (1H, brs).

例123:化合物番号123の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジフルオロアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:36.3%

mp 259-261°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 96-7. 04 (2H, m), 7. 45-7. 54 (2H, m), 7. 58 (1H, dd, J=8. 7, 2. 7Hz), 7. 94 (1H, d, J=2. 7Hz), 10. 60 (1H, s) 11. 48 (1H, s).

例124:化合物番号124の化合物の製造

原料として、5-フルオロサリチル酸、及び3,5-ジクロロアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:33.3%

mp 258-260°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 00-7. 05 (1H, m), 7. 28

-7.37 (2H, m), 7.63 (1H, dd, J=9.3, 3.3Hz), 7.84 (2H, d, J=2.1Hz), 10.56 (1H, s), 11.23 (1H, s).

例125:化合物番号125の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ジクロロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:41.2%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 7. 03 (1H, d, J=9.0Hz), 7. 36-7.37 (1H, m), 7.48 (1H, dd, J=8.7, 2.7Hz), 7.83-7.84 (3H, m), 10.56 (1H, s), 11.44 (1H, s).

例126:化合物番号126の化合物の製造

原料として、5-プロモサリチル酸、及び3,5-ジクロロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:61.6%

mp 243-244°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 36-7. 37 (1H, m), 7. 59 (1H, dd, J=9.0, 2.4Hz), 7. 83 (2H, d, J=1.8Hz), 7. 95 (1H, d, J=2.4Hz), 10. 56 (1H, s), 11. 46 (1H, s).

例127:化合物番号127の化合物の製造

原料として、5-ヨードサリチル酸、及び3,5-ジクロロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:65.4%

mp 244-245°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 84 (1H, d, J=9. 0Hz), 7. 35-7. 37 (1H, m), 7. 72 (1H, dd, J=9. 0, 2. 1

 H_z), 7. 83 (2H, d, J=1. 8Hz), 8. 09 (1H, d, J=2. 1Hz), 10. 55 (1H, s), 11. 45 (1H, s).

例128:化合物番号128の化合物の製造

原料として、3,5-ジブロモサリチル酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:44.2%

mp 181-182°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 42-7. 43 (1H, m), 7. 80 (2H, d, J=1.8Hz), 8. 03 (1H, d, J=2.1Hz), 8. 1 7 (1H, d, J=2.1Hz), 10. 82 (1H, s).

例129:化合物番号129の化合物の製造

原料として、4-クロロサリチル酸、及び3,5-ジクロロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:57.2%

mp 255-256°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 03-7. 06 (2H, m), 7. 34 -7. 36 (1H, m), 7. 82-7. 85 (3H, m), 10. 51 (1H, s), 11. 70 (1H, brs).

例130:化合物番号130の化合物の製造

原料として、5-ニトロサリチル酸、及び3,5-ジクロロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:83.1%

mp 232-233℃.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 16 (1H, d, J=9.6Hz), 7. 37-7. 39 (1H, m), 7. 84 (1H, d, J=2.1Hz), 8. 29 (1H, dd, J=9.0, 3.0Hz), 8. 65 (1H, d, J=3.0Hz), 10. 83 (1H, s).

例131:化合物番号131の化合物の製造

原料として、5-メチルサリチル酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:71.0%

mp 216-217°C.

¹H-NMR (DMSO-d₆): δ 2.28 (3H, s), 6.90 (1H, d, J=8.4Hz), 7.26 (1H, dd, J=8.7, 1.8Hz), 7.34-7.36 (1H, m), 7.67 (1H, d, J=1.5Hz), 7.85 (2H, d, J=1.8Hz), 10.52 (1H, s), 11.15 (1H, s). 例132: 化合物番号132の化合物の製造

原料として、5-メトキシサリチル酸、及び3,5-ジクロロアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率: 29.8%

mp 230-232°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 76 (3H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 08 (1H, dd, J=9. 0, 3. 0Hz), 7. 35-7. 36 (1H, m), 7. 40 (1H, d, J=3. 0Hz), 7. 85 (2H, d, J=1. 5Hz), 10. 55 (1H, s), 10. 95 (1H, s).

例133:化合物番号133の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジニトロアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:32.2%

mp 258-260°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98-7. 02 (1H, m), 7. 59 -7. 63 (1H, m), 7. 96-7. 97 (1H, m), 8. 56-8. 58 (1H, m), 9. 03-9. 05 (2H, m), 11. 04 (1H, s), 11. 39 (1H, brs).

例134:化合物番号134の化合物の製造

原料として、5-クロロサリチル酸、及び2, 5-ビス [(1, 1-ジメチル) エチル] アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:75.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 27 (9H, s), 1. 33 (9H, s), 7. 04 (1H, d, J=9. 0Hz), 7. 26 (1H, dd, J=8. 4, 2. 1Hz), 7. 35-7. 38 (2H, m), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 8. 07 (1H, d, J=2. 4Hz), 10. 22 (1H, s), 12. 38 (1H, brs).

例135:化合物番号135の化合物の製造

収率:89.5%

¹H-NMR (DMSO-d₆): δ 1.28 (9H, s), 3.33 (3H, s), 7.01 (1H, d, J=8.7Hz), 7.05 (1H, d, J=9.0Hz), 7.11 (1H, dd, J=8.7, 2.4Hz), 7.47 (1H, dd, J=9.0, 3.0Hz), 7.99 (1H, d, J=3.0Hz), 8.49 (1H, d, J=2.4Hz), 10.78 (1H, s), 12.03 (1H, s). 例136: 化合物番号136の化合物の製造

原料として、 $5-\rho$ ロローNー $\{5-[(1,1-ジメチル)$ エチル]ー2ーメトキシフェニル $\}$ ー2ーヒドロキシベンズアミド(化合物番号135)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率:87.5%

 $^{1}H-NMR$ (CDCl₃): δ 1. 35 (9H, s), 2. 37 (3H, s), 3. 91 (3H, s), 6. 86 (1H, d, J=8. 7Hz), 7. 12 (1H, dd, J=8. 7, 2. 4Hz), 7. 13 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 2. 4Hz), 8. 02 (1H, d, J=2. 7)

Hz), 8. 66 (1 H, d, J=2. 4 Hz), 8. 93 (1 H, s).

例137:化合物番号137の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジメチルアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:58.1%

mp 188-190°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 28 (6H, s), 6. 80 (1H, s), 6. 96 (1H, d, J=8. 7Hz), 7. 33 (2H, s), 7. 58 (1H, dd, J=9. 0, 2. 4Hz), 8. 10 (1H, d, J=2. 4Hz), 10. 29 (1H, s), 11. 93 (1H, brs).

例138:化合物番号138の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ビス[(1,1-ジメチル)エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:34.1%

¹H-NMR (CDCl₃): δ 1. 26 (18H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 29 (1H, t, J=1. 8Hz), 7. 39 (1、dd、J=9. 0, 2. 4Hz), 7. 41 (2H, d, J=1. 5Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 81 (1H, brs), 12. 01 (1H, s). 例139: 化合物番号139の化合物の製造

原料として、 $N-\{3,5-ビス[(1,1-ジメチル) エチル] フェニル\}-5$ -クロロ-2-ヒドロキシベンズアミド(化合物番号138)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率:66.1%

 $^{1}H-NMR$ (CDCl₃): δ 1. 34 (18H, s), 2. 36 (3H, s), 7. 12 (1H, d, J=8. 4Hz), 7. 25 (1H, d, J=1. 5Hz), 7. 44 (2H, d, J=1. 2Hz), 7. 47 (1H, dd, J=8. 7, 2. 7Hz), 7. 87 (1H, d, J=2. 4Hz), 7. 98 (1H, s).

例140:化合物番号140の化合物の製造

原料として、5-プロモサリチル酸、及び3,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 45. 2%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 30 (18H, s), 6. 95 (1H, d, J=8. 7Hz), 7. 20 (1H, t, J=1. 5Hz), 7. 56 (2H, d, J=1. 5Hz), 7. 58 (1H, dd, J=8. 7, 2. 4Hz), 8. 12 (1H, d, J=2. 7Hz), 10. 39 (1H, s), 11. 98 (1H, s).

例141:化合物番号141の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-メトキシビフェニル を用いて例3と同様の操作を行い、標題化合物を得た。

収率:37.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 95 (3H, s), 7. 08 (1H, d, J=8. 7Hz), 7. 20 (1H, d, J=8. 4Hz), 7. 34 (1H, t, J=7. 2Hz), 7. 40-7. 50 (4H, m), 7. 62 (1H, d, J=8. 7Hz), 8. 00 (1H, d, J=3. 0Hz), 8. 77 (1H, d, J=2. 1Hz), 10. 92 (1H, s), 12. 09 (1H, s).

例142:化合物番号142の化合物の製造

原料として、5-ブロモサリチル酸、及び2,5-ジメトキシアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:39.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 72 (3H, s), 3. 84 (3H, s), 6. 66 (1H, ddd, J=9. 0, 3. 0, 0. 6Hz), 6. 99-7. 0 3 (2H, m), 7. 58 (1H, ddd, J=9. 0, 2. 7, 0. 6Hz), 8. 10 (1H, dd, J=2. 4, 0. 6Hz), 8. 12 (1H, d, J=3. 0Hz), 10. 87 (1H, s), 12. 08 (1H, s).

例143:化合物番号143の化合物の製造

原料として、5-ブロモサリチル酸、及び3,5-ジメトキシアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:40.3%

mp 207-209°C.

¹H-NMR (DMSO-d₆): δ 3. 75 (6H, s), 6. 30-6. 32 (1H, m), 6. 94-6. 97 (3H, m), 7. 57 (1H, dd, J=8. 7, 2. 4Hz), 8. 04 (1H, d, J=2. 4Hz), 10. 32 (1H, s), 11. 78 (1H, s).

例144:化合物番号144の化合物の製造

原料として、5-プロモサリチル酸、及び5-アミノイソフタル酸 ジメチルエステルを用いて例3と同様の操作を行い、標題化合物を得た。

収率:74.1%

mp 254-256°C.

¹H-NMR (DMSO-d₆): δ 3. 92 (6H, s), 6. 97 (1H, d, J=9. 0Hz), 7. 60 (1H, dd, J=9. 0, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 8. 24-8. 25 (1H, m), 8. 62 (2H, m), 10. 71 (1H, s), 11. 57 (1H, s).

例145:化合物番号145の化合物の製造

原料として、5-メチルサリチル酸、及び2,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:61.1%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 27 (9H, s), 1. 33 (9H, s), 2. 28 (3H, s), 6. 89 (1H, d, J=8. 1Hz), 7. 24 (1H, d, J=2. 1Hz), 7. 27 (1H, d, J=2. 1Hz), 7. 32 (1H, d, J=2. 4Hz), 7. 37 (1H, d, J=8. 4Hz), 7. 88 (1H, d, J=1. 5Hz), 10. 15 (1H, s), 11. 98 (1H, brs).

例146:化合物番号146の化合物の製造

原料として、5-ニトロサリチル酸、及び3, 5-ビス [(1, 1-ジメチル) エチル] アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:46.7%

¹H-NMR (CDCl₃): δ 1. 37 (18H, s), 7. 13 (1H, d, J=9. 3Hz), 7. 32 (1H, t, J=1. 8Hz), 7. 46 (2H, d, J=1. 8Hz), 8. 07 (1H, s), 8. 33 (1H, dd, J=9. 3, 2. 1Hz), 8. 59 (1H, d, J=2. 4Hz), 13. 14 (1H, s). 例147: 化合物番号147の化合物の製造

原料として、5-メチルサリチル酸、及び3, 5-ビス [(1, 1-ジメチル) エチル] アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:16.3%

 $^{1}H-NMR$ (CDCl₃): δ 1. 35 (18H, s), 2. 35 (3H, s), 6. 94 (1H, d, H=8. 4Hz), 7. 23-7. 28 (2H, m), 7. 31 (1H, s), 7. 42 (1H, d, J=1. 8Hz), 7. 88 (1H, s), 11. 86 (1H, s).

例148:化合物番号148の化合物の製造

原料として、5-メトキシサリチル酸、及び3,5-ビス[(1,1-ジメチル) エチル]アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:12.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 30 (18H, s), 3. 77 (3H, s), 6. 91 (1H, d, J=9. 0Hz), 7. 07 (1H, dd, J=8. 7, 3. 0Hz), 7. 19-7. 20 (1H, m), 7. 52-7. 54 (3H, m), 10. 33 (1H, s), 11. 44 (1H, s).

例149:化合物番号149の化合物の製造

原料として、5-メチルサリチル酸、及び5-[(1, 1-ジメチル) エチル] -2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:84.7%

¹H-NMR (CDCl₃): δ 1. 35 (9H, s), 2. 34 (3H, s), 3. 93 (3H, s), 6. 86 (1H, d, J=8. 7Hz), 6. 93 (1H, d, J=8. 4Hz), 7. 12 (1H, dd, J=8. 7, 2. 4Hz), 7. 2 4 (1H, dd, J=8. 4, 1. 8Hz), 7. 2 7 (1H, brs), 8. 4 8 (1H, d, J=2. 4Hz), 8. 61 (1H, brs), 11. 95 (1H, s).

例150:化合物番号150の化合物の製造

原料として、5-プロモー2-ヒドロキシ-N-[3,5-ビス(メトキシカルボニル)フェニル] ベンズアミド(化合物番号<math>144)を用いて例109と同様の操作を行い、標題化合物を得た。

収率:89.0%

¹H-NMR (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 60 (1H, dd, J=8.7, 2.4Hz), 7. 24 (1H, dd, J=8.7, 2.7Hz), 8. 08 (1H, d, J=2.7Hz), 8. 24 (1H, t, J=1.5Hz), 8. 57 (2H, d, J=1.2Hz), 10. 67 (1H, s), 11. 64 (1H, s).

例151:化合物番号151の化合物の製造

原料として、5-クロロサリチル酸、及び2-メチル-5-[(1-メチル) エチル] アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:19.1%

¹H-NMR (CDCl₃): δ 1. 26 (6H, d, J=6. 9Hz), 2. 3 0 (3H, s), 2. 87-2. 96 (1H, m), 7. 00 (1H, d, J=8. 7Hz), 7. 08 (1H, dd, J=7. 8, 1. 8Hz), 7. 20 (1H, d, J=7. 8Hz), 7. 40 (1H, dd, J=8. 7, 2. 4Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 50 (1H, s), 7. 71 (1H, s), 11. 99 (1H, s).

例152:化合物番号152の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジエトキシアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:59.2%

¹H-NMR (DMSO-d₆): δ 1. 32 (3H, t, J=6.9Hz), 1. 41 (3H, t, J=6.9Hz), 3. 97 (2H, q, J=6.9Hz), 4. 06 (2H, q, J=6.9Hz), 6. 61 (1H, dd, J=9.0, 3.0 Hz), 6. 98 (1H, d, J=8.7Hz), 7. 10 (1H, d, J=8.7Hz), 7. 48 (1H, dd, J=8.7, 2.7Hz), 7. 97 (1H, d, J=2.7Hz), 8. 16 (1H, d, J=3.0Hz), 10. 96 (1H, s), 11. 91 (1H, s).

例153:化合物番号153の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメチルアニリンを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:90.5%

¹H-NMR (CDCl₃): δ 2. 28 (3H, s), 2. 35 (3H, s), 6. 99 (1H, d, J=8. 8Hz), 7. 02 (1H, brs), 7. 15 (1H, d, J=7. 7Hz), 7. 40 (1H, dd, J=8. 8, 2. 5Hz), 7. 45 (1H, brs), 7. 49 (1H, d, J=2. 5Hz) 7. 70 (1H, br), 11. 96 (1H, brs).

例154:化合物番号154の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-シアノアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:90.0%

¹H-NMR (DMSO- d_6): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 3.0Hz), 7. 82 (1H, dd, J=8. 7, 2.4Hz), 7. 95 (1H, d, J=3.0Hz), 8. 07 (1H, d,

J=2.4Hz), 8. 36 (1H, d, J=9.0Hz), 11. 11 (1H, s), 12. 36 (1H, s).

例155:化合物番号155の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N, N-ジエチルスルファモイル)-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:44.8%

¹H-NMR (CDCl₃): δ 1. 17 (6H, t, J=7. 3Hz), 3. 2 9 (4H, q, J=7. 3Hz), 4. 05 (3H, s), 7. 00 (2H, dd, J=2. 3, 8. 9Hz), 7. 41 (1H, dd, J=2. 3, 8. 9Hz), 7. 48 (1H, d, J=2. 6Hz), 7. 65 (1H, dd, J=2. 3, 8. 6Hz), 8. 56 (1H, br. s), 8. 84 (1H, d, J=2. 3Hz), 11. 82 (1H, s).

例156:化合物番号156の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-ニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:73.3%

¹H-NMR (CD₃OD): δ 6. 98 (1H, d, J=8. 6Hz), 7. 4 3 (1H, dd, J=2. 6, 8. 6Hz), 7. 74 (1H, d, J=8. 9Hz), 7. 99 (1H, dd, J=3. 0, 8. 9Hz), 8. 08 (1H, d, J=2. 6Hz), 9. 51 (1H, d, J=2. 6Hz)

例157:化合物番号157の化合物の製造

原料として、5-クロロサリチル酸、及び5-(N-フェニルカルバモイル)-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。 収率:40.3%

¹H-NMR (DMSO-d₆): δ 3. 99 (3H, s), 7. 09 (2H, d d, J=6. 6, 6. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 3

5 (2H, dd, 6. 9, 7. 3Hz), 7. 49 (1H, d, J=2. 3, 8. 9Hz), 7. 77 (3H, d, J=8. 6Hz), 8. 00 (1H, s), 8. 9 7 (1H, s), 10. 17 (1H, s), 10. 91 (1H, s), 12. 11 (1H, s).

例158:化合物番号158の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジメトキシアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:73.9%

 $^{1}H-NMR$ (CDC1₃): δ 3. 82 (3H, s), 3. 93 (3H, s), 6. 66 (1H, dd, J=3. 0, 8. 9Hz), 6. 86 (1H, d, J=8. 9Hz), 6. 98 (1H, d, J=8. 9Hz), 7. 39 (1H, dd, J=2. 6, 8. 9Hz), 7. 47 (1H, d, J=2. 6Hz), 8. 08 (1H, d, J=3. 0Hz), 8. 60 (1H, br. s), 12. 03 (1H, s).

原料として、5-クロロサリチル酸、及び5-アセチルアミノ-2-メトキシア ニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:16.9%

¹H-NMR (DMSO-d₆): δ 2. 01 (3H, s), 3. 85 (3H, s), 7. 03 (2H, t, J=9. 6Hz), 7. 49 (2H, dd, J=8. 9, 9. 2Hz), 7. 96 (1H, s), 8. 51 (1H, s), 9. 87 (1H, s), 10. 82 (1H, s), 12. 03 (1H, d, J=4. 0Hz).

例160:化合物番号160の化合物の製造

例159:化合物番号159の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-メチルアニリンを 用いて例3と同様の操作を行い、標題化合物を得た。

収率:100%

 $^{1}H-NMR$ (CDCl₃): δ 2. 29 (3H, s), 3. 82 (3H, s), 6. 75 (1H, dd, J=2. 6, 8. 2Hz), 7. 00 (1H, d, J=8.

9Hz), 7. 16 (1H, d, J=8. 6Hz), 7. 38 (1H, d, 2. 3Hz), 7. 41 (1H, dd, J=2. 3, 8. 9Hz), 7. 48 (1H, d, J=2. 3Hz), 7. 70 (1H, br. s), 11. 92 (1H, s).

例161:化合物番号161の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジブトキシアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:73.9%

¹H-NMR (CDCl₃): δ 0. 98 (3H, t, J=7. 2Hz), 1. 0 5 (3H, t, J=7. 2Hz), 1. 44-1. 65 (4H, m), 1. 72-1. 79 (2H, m), 1. 81-1. 91 (2H, m), 3. 97 (2H, t, J=6. 3Hz), 4. 07 (2H, t, J=6. 3Hz), 6. 64 (1H, d d, J=9. 0, 3. 0Hz), 6. 85 (1H, d, J=9. 3Hz), 6. 9 (1H, d, J=9. 0Hz), 7. 39 (1H, d d, J=8. 7, 2. 4Hz), 7. 44 (1H, d, J=2. 7Hz), 8. 08 (1H, d, J=3. 0Hz), 8. 76 (1H, s), 12. 08 (1H, s).

例162:化合物番号162の化合物の製造

原料として、5-クロロサリチル酸、及び2,5-ジイソペンチルオキシシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:59.7%

¹H-NMR (CDCl₃): δ 0. 97 (6H, d, J=6.6Hz), 1. 0 3 (6H, d, 6.6Hz), 1. 64-1. 98 (6H, m), 3. 99 (2H, t, J=6.6Hz), 4. 09 (2H, t, J=6.3Hz), 6. 63 (1H, dd, J=8.7, 3. 0Hz), 6. 85 (1H, d, J=8.7Hz), 6. 98 (1H, d, J=8.7Hz), 7. 38 (1H, dd, J=9.0, 2. 4Hz), 7. 43 (1H, d, J=2.7Hz), 8. 09 (1H, d, J=3.0Hz), 8. 75 (1H, s), 12. 08 (1H, s).

例163:化合物番号163の化合物の製造

原料として、5-クロロサリチル酸、及び5-カルバモイル-2-メトキシアニ リンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:31.2%

¹H-NMR (CD₃OD): δ 4.86 (3H, s), 6.93 (1H, d, J=7.6Hz), 7.18 (1H, d, J=8.6Hz), 7.35 (1H, dd, J=3.0, 7.6Hz), 7.47 (1H, dd, J=2.0, 8.6Hz), 8.00 (1H, d, J=3.0Hz), 8.80 (1H, d, J=2.0Hz). 例164:化合物番号164の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1,1-ジメチル)プロピル] -2-フェノキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。 収率:65.2%

¹H-NMR (CDCl₃): δ 0. 69 (3H, t, J=7.6Hz), 1. 2 9 (6H, s), 1. 64 (2H, q, J=7.6Hz), 6. 91 (1H, dd, J=1.7, 7.6Hz), 6. 96 (1H, d, J=8.9Hz), 7. 03 (2 H, d, J=8.9Hz), 7. 10 (1H, dt, J=1.7, 7.6Hz), 7. 16 (1H, dt, J=1.7, 7.6Hz), 7. 31-7. 40 (4H, m), 8. 42 (1H, dd, J=2.0, 7.9Hz), 8. 53 (1H, br. s) 11. 94 (1H, s).

例165:化合物番号165の化合物の製造

原料として、5-クロロサリチル酸、及び2-ヘキシルオキシ-5-(メチルスルホニル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:33.0%

¹H-NMR (CDC1₃): δ 0. 92 (3H, t, J=6. 9Hz), 1. 4 0-1. 59 (6H, m), 1. 90-2. 01 (2H, m), 3. 09 (3H, s), 4. 22 (2H, t, J=6. 3Hz), 7. 01 (1H, d, J=8. 9 Hz), 7. 06 (1H, d, J=8. 6Hz), 7. 40-7. 43 (2H, m), 7. 73 (1H, dd, J=8. 6, 2. 3Hz), 8. 74 (1H, brs),

8. 99 (1H, d, J=2. 3Hz), 11. 76 (1H, s).

例166:化合物番号163の化合物の製造

原料として、5-クロロサリチル酸、及び3'-アミノ-2,2,4'-トリメ チルプロピオフェノンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:44.8%

 $^{1}H-NMR$ (CDCl₃): δ 1. 38 (9H, s), 2. 38 (3H, s), 7. 01 (1H, d, J=8. 9Hz), 7. 31 (1H, d, J=7. 9Hz), 7. 42 (1H, dd, J=8. 9, 2. 6Hz), 7. 53 (1H, d, J=2. 6Hz), 7. 57 (1H, dd, J=7. 9, 2. 0Hz), 7. 83 (1H, brs). 8. 11 (1H, d, J=2. 0Hz), 11. 82 (1H, s).

例167:化合物番号167の化合物の製造

原料として、5-クロロサリチル酸、及び5-メトキシ-2-(1-ピロリル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:53.4%

 $^{1}H-NMR$ (CDCl₃): δ 2. 46 (3H, s), 6. 51-6. 52 (2 H, m), 6. 82-6. 85 (3H, m), 6. 93 (1H, d, J=8. 9H z), 7. 06 (1H, d, J=7. 9Hz), 7. 30 (1H, d, J=7. 9Hz), 7. 32 (1H, dd, J=2. 3, 8. 9Hz), 7. 61 (1H, s), 8. 29 (1H, s), 11. 86 (1H, br. s).

例168:化合物番号168の化合物の製造

原料として、5-クロロサリチル酸、及び5-クロロ-2-トシルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:8.0%

 $^{1}H-NMR$ (CDC1₃): δ 2. 38 (3H, s), 7. 02 (1H, d, J = 8. 9Hz), 7. 25-7. 31 (3H, m), 7. 46 (1H, dd, J = 2. 6, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 74 (1H, d, J=2. 3Hz), 7. 96 (1H, d, J=8. 6Hz), 8. 56 (1H,

d, J = 2.0 Hz), 10.75 (1H, s), 11.70 (1H, s).

例169:化合物番号169の化合物の製造

原料として、5-クロロサリチル酸、及び2-クロロ-5-トシルアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:43.5%

¹H-NMR (CDCl₃): δ 2. 38 (3H, s), 7. 02 (1H, d, J=8. 9Hz), 7. 27 (1H, d, J=7. 9Hz), 7. 29 (1H, dd, J=2. 0, 6. 6Hz), 7. 46 (1H, dd, J=2. 3, 8. 9Hz), 7. 68 (2H, d, J=8. 6Hz), 7. 73 (2H, d, J=2. 3Hz), 7. 97 (1H, d, J=8. 6Hz), 8. 56 (1H, d, J=2. 0Hz), 10. 73 (1H, s), 11. 71 (1H, s).

例170:化合物番号170の化合物の製造

原料として、5-クロロサリチル酸、及び2-フルオロ-5-(メチルスルホニル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:28.8%

¹H-NMR (CDCl₃): δ 3. 12 (3H, s), 7. 03 (1H, d, J = 8. 9Hz), 7. 38 (1H, dd, J=8. 6, 10. 2Hz), 7. 45 (1H, dd, J=2. 3, 8. 9Hz), 7. 53 (1H, d, J=2. 3Hz), 7. 80 (1H, ddd, J=2. 3, 4. 6, 8. 6Hz), 8. 25 (1H, s), 8. 98 (1H, dd, J=2. 3, 7. 7Hz), 11. 33 (1H, br. s).

例171:化合物番号171の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-フェノキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:77.0%

 $^{1}H-NMR$ (CDC1₃): δ 3. 98 (3H, s), 6. 80 (1H, d, J = 8. 8Hz), 6. 90 (1H, d, J=8. 8Hz), 6. 95-7. 00 (3

H, m), 7. 04-7. 09 (1H, m), 7. 29-7. 35 (2H, m), 7. 38 (1H, dd, J=8. 8, 2. 6 Hz), 7. 47 (1H, d, J=2. 6 Hz), 8. 19 (1H, d, J=2. 9 Hz), 8. 61 (1H, brs), 11. 92 (1H, s).

例172:化合物番号172の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノー4-メチルビフェニルを 用いて例3と同様の操作を行い、標題化合物を得た。

収率: 47. 7%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 33 (3H, s), 7. 06 (1H, d, J=8.7Hz), 7. 43-7. 52 (4H, m), 7. 64-7. 67 (2H, m), 8. 04 (1H, d, J=2.7Hz), 8. 19 (1H, d, J=1.5Hz), 10. 40 (1H, s), 12. 22 (1H, s).

例173:化合物番号173の化合物の製造

原料として、5-クロロサリチル酸、及び5-(α , $\alpha-$ ジメチルベンジル)-2-メトキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:89.0%

 $^{1}H-NMR$ (CDCl₃): δ 1. 72 (6H, s), 3. 93 (3H, s), 6. 83 (1H, d, J=8. 8Hz), 6. 93 (1H, dd, J=2. 6, 8. 8Hz), 6. 96 (1H, d, J=9. 2Hz), 7. 15-7. 20 (1H, m), 7. 25-7. 28 (4H, m), 7. 36 (1H, dd, J=2. 6, 8. 8Hz), 7. 46 (1H, d, J=2. 6Hz), 8. 35 (1H, d, J=2. 6Hz), 8. 51 (1H, s), 12. 04 (1H, s).

例174:化合物番号174の化合物の製造

原料として、5-クロロサリチル酸、及び5-モルホリノー2-ニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 4.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 46-3.52 (4H, m), 3. 85

-3.94 (4H, m), 7.03 (1H, d, J=8.8Hz), 7.47 (1H, dd, J=2.9, 8.8Hz), 7.80 (1H, dd, J=2.6, 8.8Hz), 7.82 (1H, d, J=2.6Hz), 7.88 (1H, d, J=8.8Hz), 8.20 (1H, d, J=2.2Hz), 10.70 (1H, s), 11.43 (1H, s)

例175:化合物番号175の化合物の製造

原料として、5-クロロサリチル酸、及び5-フルオロ-2-(1-イミダゾリル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:33.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 99 (1H, d, J=8.8Hz), 7. 12-7. 19 (2H, m), 7. 42-7. 51 (3H, m), 7. 89 (1H, d, J=2.8Hz), 7. 93 (1H, d, J=1.1Hz), 8. 34 (1H, dd, J=11.4, 2.8Hz), 10. 39 (1H, s), 11. 76 (1H, brs).

例176:化合物番号176の化合物の製造

原料として、5-クロロサリチル酸、及び2-ブチル-5-ニトロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:15.3%

 $^{1}H-NMR$ (CDC1₃): δ 0. 99 (3H, t, J=7. 3Hz), 1. 3 9-1. 51 (2H, m), 1. 59-1. 73 (2H, m), 2. 71-2. 7 9 (2H, m), 7. 03 (1H, d, J=8. 9Hz), 7. 41-7. 49 (3 H, m), 7. 92 (1H, s), 8. 07 (1H, dd, J=2. 3, 8. 4Hz), 8. 75 (1H, d, J=2. 4Hz), 11. 51 (1H, s).

例177:化合物番号177の化合物の製造

原料として、5-クロロサリチル酸、及び5-[(1, 1-ジメチル)プロピル] -2-ヒドロキシアニリンを用いて例3と同様の操作を行い、標題化合物を得た。 収率: 36.0%

 $^{1}H-NMR$ (CDCl₃): δ 0. 70 (3H, t, J=7. 4Hz), 1. 2 8 (6H, s), 1. 63 (2H, q, J=7. 4Hz), 6. 97 (1H, d, J=6. 3Hz), 7. 00 (1H, d, J=6. 6Hz), 7. 08 (1H, s), 7. 14 (1H, dd, J=2. 5, 8. 6Hz), 7. 36 (1H, d, J=2. 2Hz), 7. 42 (1H, dd, J=2. 5, 8. 8Hz), 7. 57 (1H, d, J=2. 5Hz), 8. 28 (1H, s), 11. 44 (1H, s).

例178:化合物番号178の化合物の製造

原料として、5-クロロサリチル酸、及び2-メトキシ-5-メチルアニリンを 用いて例3と同様の操作を行い、標題化合物を得た。

収率:74.2%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 2. 27 (3H, s), 3. 85 (3H, s), 6. 90 (1H, dd, J=9. 0, 2. 4Hz), 6. 98 (1H, d, J=9. 0Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 97 (1H, d, J=3. 0Hz), 8. 24 (1H, d, J=2. 4Hz), 10. 79 (1H, s), 12. 03 (1H, s).

原料として、5-クロロサリチル酸、及び2,5-ジフルオロアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:81.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98-7. 07 (1H, m), 7. 07 (1H, d, J=9.0Hz), 7. 37-7. 49 (1H, m), 7. 52 (1H, dd, J=8.7, 3.0Hz), 7. 95 (1H, d, J=2.7Hz), 8. 15-8. 22 (1H, m), 10. 83 (1H, s), 12. 25 (1H, s).

例180:化合物番号180の化合物の製造

例179:化合物番号179の化合物の製造

原料として、5-クロロサリチル酸、及び3,5-ジフルオロアニリンを用いて 例3と同様の操作を行い、標題化合物を得た。

収率:82.0%

¹H-NMR (DMSO-d₆): δ 7. 00 (1H, tt, J=9. 3, 2. 1), 7. 03 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=7. 5, 2. 7Hz), 7. 49 (1H, d, J=2. 7Hz), 7. 51 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=3. 0Hz), 10. 63 (1H, s), 11. 43 (1H, brs).

例181:化合物番号181の化合物の製造

原料として、3-ヒドロキシナフタレン-2-カルボン酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 44.3%

mp 254-255°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 34-7. 39 (3H, m), 7. 49 -7. 54 (1H, m), 7. 76-7. 79 (1H, m), 7. 89 (2H, d, J=1. 8Hz), 7. 92 (1H, m), 8. 39 (1H, s), 10. 75 (1H, s), 11. 01 (1H, s).

例182:化合物番号182の化合物の製造

原料として、2-ヒドロキシナフタレン-1-カルボン酸、及び3,5-ジクロロアニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:51.2%

mp 246-248°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 26 (1H, d, J=9. 3Hz), 7. 31-7. 37 (2H, m), 7. 44-7. 50 (1H, m), 7. 65-7. 68 (1H, m), 7. 85-7. 90 (4H, m), 10. 23 (1H, s), 10. 74 (1H, s).

例183:化合物番号183の化合物

本化合物は、市販化合物である。

販売元:Sigma-Aldrich社

カタログコード番号: S01361-8

例184:化合物番号184の化合物の製造

原料として、5-クロロー2-ヒドロキシニコチン酸、及び3,5-ビス[(1, 1-ジメチル) エチル] アニリンを用いて例75と同様の操作を行い、標題化合 物を得た。

収率:59.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 29 (18H, s), 7. 18 (1H, t, J = 1.8 Hz), 7.52 (2 H. d, J = 1.8 Hz), 8.07 (1 H, d, J = 2. 4 H z), 8. 35 (1 H, d, J = 3. 3 H z), 11. 92 (1 H, s), 13. 10 (1H, s).

例185:化合物番号185の化合物の製造

(1) 2-アミノー4-[(1, 1-ジメチル) エチル] チアゾール

1-プロモー3,3-ジメチルー2-プタノン(5.03g,28.1mmol)、チオウレア (2.35g,30.9mmol)、エタノール (30mL) の混合物 を1.5時間加熱還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリ ウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順 次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリ カゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=2:1→1:1) で精製して、標題化合物の黄白色粉末(3.99g,90.9%)を得た。 $^{1}H-NMR$ (CDC1₃): δ 1. 26 (9H, s), 4. 96 (2H, brs),

6. 09 (1H, s).

以下の実施例において例185 (1) の方法が引用されている場合、反応溶媒と しては、エタノール等の溶媒を用いた。

(2) $2-アセトキシー5-プロモーNー <math>\{4-[(1, 1-ジメチル) エチル]$ チアゾールー2ーイル} ベンズアミド

原料として、2-アセトキシー5-ブロモ安息香酸、及び2-アミノー4-[(1, 1-ジメチル) エチル] チアゾールを用いて例75と同様の操作を行い、標題化

合物を得た。

収率:59.4%

 $^{1}H-NMR$ (CDCl₃): δ 1. 31 (9H, s), 2. 44 (3H, s), 6. 60 (1H, s), 7. 13 (1H, d, J=8. 4Hz), 7. 68 (1H, d, J=8. 7, 2. 4Hz), 8. 17 (1H, d, J=2. 4Hz), 9. 72 (1H, brs).

[2-アセトキシ-5-プロモ安息香酸: [3-ロピアン・ジャーナル・オブ・メディシナル・ケミストリー(European Journal of Medicinal Chemistry)」,(フランス),1996年,第31巻,p. 861-874を参照し、原料として、5-ブロモサリチル酸、及び無水酢酸例を用いて34(1)と同様の操作を行って得た。後述する例244(1)と同様の操作を行って得た。]

(3) 5-プロモ-N- $\{4-[(1,1-ジメチル) エチル] チアゾール<math>-2-$ イル $\}-2-$ ヒドロキシベンズアミド (化合物番号185)

 $2-アセトキシ-5-プロモ-N-\{4-[(1,1-ジメチル) エチル] チアゾールー2ーイル ベンズアミド (100.1 mg,0.25 mmol) のテトラヒドロフラン (3 m L) 溶液に、2 規定水酸化ナトリウム (0.2 m l) を加え、室温で20分間攪拌した。反応混合物を希塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をイソプロピルエーテル/<math>n-$ ヘキサンで結晶化して、標題化合物の白色粉末 (70.1 mg,78.9%) を得た。

¹H-NMR (DMSO-d₆): δ 1.30 (9H, s), 6.80 (1H, b r s), 6.95 (1H, b r s), 7.57 (1H, b r s), 8.06 (1H, d, J=2.4Hz), 11.82 (1H, b r s), 13.27 (1H, b r s). 例186: 化合物番号186の化合物の製造

(1) $2-アセトキシ-5-プロモ-N-{5-プロモ-4-[(1,1-ジメチル) エチル] チアゾールー <math>2-$ イル $}$ ベンズアミド 2-アセトキシー5-プロモ-N- $\{4-[(1,1-ジメチル) エチル] チアゾ$

-N-2-4N ベンズアミド (例185 (2) の化合物; 0.20g, 0.5 0 mm o 1) のアセトニトリル (10 mL) 溶液に、N-プロモコハク酸イミド (97.9 mg, 0.55 mm o 1) を加え、室温で1時間攪拌した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n- キサン: 酢酸エチル=3:1) で精製して、標題化合物を粗生成物として得た。

(2) $5-プロモ-N-\{5-プロモ-4-[(1,1-ジメチル) エチル] チア ゾールー2ーイル <math>\}-2-$ ヒドロキシベンズアミド (化合物番号186) 原料として、2-アセトキシー5-プロモー $N-\{5-$ プロモー4-[(1,1-ジメチル) エチル] チアゾールー2-イル $\}$ ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率:90.9%(2工程)

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 42 (9H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 61 (1H, dd, J=8. 7, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 79 (1H, brs), 12. 00 (1H, brs).

例187:化合物番号187の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-ブロモ-4-(トリフルオロメチル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 22.4%

mp 215℃ (dec.).

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 00 (1H, d, J=8.8Hz), 7. 61 (1H, dd, J=8.8, 2.8Hz), 7. 97 (1H, d, J=2.4Hz).

[2-アミノ-5-ブロモ-4-(トリフルオロメチル) チアゾール:「ジャーナル・オブ・ヘテロサイクリック・ケミストリー (Journal of Heterocyclic Chemistry)」, (米国), 1991年, 第28巻, p. 1017参照]

例188:化合物番号188の化合物の製造

(1) αーブロモーピバロイルアセトニトリル

ピバロイルアセトニトリル(1.00g, 7.99mmol)の四塩化炭素(15mL)溶液に、N-プロモコハク酸イミド(1.42g, 7.99mmol)を加え、15分間加熱還流した。反応混合物を室温まで冷却後、不溶物を濾過して除去し、濾液を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=4:1)で精製して、標題化合物の黄褐色オイル(1.43g,87.9%)を得た。

 1 H-NMR(CDC1 $_{3}$): δ 1.33(9H,s),5.10(1H,s). 以下の実施例において例188(1)の方法が引用されている場合、ブロモ化剤 としては、N-プロモスクシンイミドを用いた。また、反応溶媒としては、四塩 化炭素等の溶媒を用いた。

(2) $2-アミノ-5-シアノ-4-[(1,1-ジメチル) エチル] チアゾール 原料として、<math>\alpha$ -ブロモーピバロイルアセトニトリル、及びチオウレアを用いて 例 185(1) と同様の操作を行い、標題化合物を得た。

収率:66.3%

 $^{1}H-NMR$ (CDCl₃): δ 1. 41 (9H, s), 5. 32 (2H, s).

(3) $5-\rho$ ロローN- $\{5-シアノ-4-[(1,1-ジメチル) エチル] チア ゾール-2-イル<math>\}$ -2-ヒドロキシベンズアミド (化合物番号188)

原料として、5-クロロサリチル酸、及び2-アミノ-5-シアノ-4-[(1, 1-ジメチル) エチル] チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:63.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 43 (9H, s), 7. 06 (1H, d, J=8.7Hz), 7. 51 (1H, dd, J=8.7, 3. 0Hz), 7. 85 (1H, d, J=2.7Hz), 12. 31 (2H, br).

例189:化合物番号189の化合物の製造

原料として、5 ープロモサリチル酸、及び2 ーアミノー5 ーシアノー4 ー [(1, 1-ジメチル) エチル] チアゾール(例188(2) の化合物)を用いて例3 と同様の操作を行い、標題化合物を得た。

収率:61.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 43 (9H, s), 7. 00 (1H, d, J=8. 7Hz), 7. 62 (1H, dd, J=8. 7, 2. 7Hz), 7. 97 (1H, d, J=2. 7Hz), 11. 75 (1H, br), 12. 43 (1H, br).

例190:化合物番号190の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノ-5-メチルチアゾールを 用いて例3と同様の操作を行い、標題化合物を得た。

収率:12.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 33 (3H, s), 6. 91 (1H, d, J=7.6Hz), 7. 26 (1H, s), 7. 54 (1H, d, J=9.6Hz), 8. 03 (1H, d, J=2.8Hz).

例191:化合物番号191の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノ-4,5-ジメチルチアゾ ールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:14.4%

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 2. 18 (3H, s), 2. 22 (3H, s), 6. 89 (1H, d, J=8.8Hz), 7. 51 (1H, d, J=6.8Hz), 8. 02 (1H, d, J=2.8Hz), 13. 23 (1H, brs).

例192:化合物番号192の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-メチル-4-フェニルチアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:27.7%

mp 243-244°C.

¹H-NMR (CD₃OD): δ 2. 47 (3H, s), 6. 92 (1H, d, J = 8. 7Hz), 7. 36-7. 41 (1H, m), 7. 44-7. 50 (2H, m), 7. 53 (1H, dd, J=9. 0, 2. 7Hz), 7. 57-7. 61 (2H, m), 8. 16 (1H, d, J=2. 7Hz).

[2-アミノー5-メチルー4-フェニルチアゾール:「薬学雑誌:ジャーナル・オブ・ザ・ファーマシューティカル・ソサエティ・オブ・ジャパン(Yakugaku Zasshi: Journal of The Pharmaceutical Society of Japan)」, 1961年, 第81巻, p. 1456参照]

例193:化合物番号193の化合物の製造

原料として、(4-7)ルオロフェニル)アセトンを用いて例 $188(1) \sim (3)$ と同様の操作を行い、標題化合物を得た。

収率:28.8%(3工程)

(1) α -ブロモー (4-フルオロフェニル) アセトン 1 H-NMR (CDCl₃): δ 2. 33 (3H, s), 5. 41 (1H, s), 7. 07 (2H, t, J=8. 7Hz), 7. 43 (2H, dd, J=8. 7, 5. 1Hz).

- (2) $2-7 \le J-4-3 \ne N-5-(4-7N \ne D7z=N) \ne 7 \ne N$ ¹H-NMR (CDCl₃): δ 2. 27 (3H, s), 4. 88 (2H, s),

 7. 07 (2H, t, J=8. 7Hz), 7. 32 (2H, dd, J=8. 7, 5. 4Hz).
- (3) 5-プロモーN- [4-メチルー5- (4-フルオロフェニル) チアゾールー2-イル] -2-ヒドロキシベンズアミド (化合物番号193) ¹H-NMR (DMSO-d₆): δ 2.36 (3H, s), 6.95 (1H, d, J=8.4Hz), 7.33 (2H, t, J=8.7Hz), 7.52-7.59 (3H, m), 8.06 (1H, d, J=3.0Hz), 12.01-13.65 (2H, br).

例194:化合物番号194の化合物の製造

原料として、3-(トリフルオロメチル)フェニルアセトンを用いて例188(1) $\sim (3)$ と同様の操作を行い、標題化合物を得た。

収率:39.8%(3工程)

- (1) $\alpha \vec{J} \Box \pm 3 (\text{hJJN} \vec{J} \Box \vec{J} \pm \vec{J})$ $\vec{J} = -1 \vec{J} \Box \vec{J} = -1 \vec{J} \Box \vec$
- (2) 2-アミノー4-メチル-5- [3-(トリフルオロメチル)フェニル] チアゾール
- $^{1}H-NMR$ (CDC1₃): δ 2. 32 (3H, s), 4. 95 (2H, s), 7. 46-7. 56 (3H, m), 7. 59-7. 61 (1H, m).
- (3) 5-プロモ-N- $\{4-$ メチル-5- [3-(トリフルオロメチル) フェニル] チアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド(化合物番号194)
- $^{1}H-NMR$ (DMSO-d₆): δ 2. 40 (3H, s), 6. 97 (1H, d, J=8. 7Hz), 7. 59 (1H, dd, J=8. 7, 2. 4Hz), 7. 71 -7. 84 (4H, m), 8. 06 (1H, d, J=2. 4Hz), 12. 09 (1H, br), 12. 91-13. 63 (1H, br).

例195:化合物番号195の化合物の製造

原料として、2, 2-ジメチル-3-ヘキサノンを用いて例188(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:17.0%(3工程)

- (2) $2-r \le J-4-[(1, 1-i \le J+n)] + (1-i \le J+n) = (1-i \le J+$
- (3) $5-プロモーN-{4-[(1, 1-ジメチル) エチル] -5-エチルチア$

ゾールー2ーイル $\}$ - 2ーヒドロキシベンズアミド (化合物番号195) 1 H-NMR (CDC1₃): δ 1. 32 (3H, t, J=7.5Hz), 1. 4 1 (9H, s), 2. 88 (2H, q, J=7.5Hz), 6. 84 (1H, d, J=9.0Hz), 7. 44 (1H, dd, J=8.7, 2.4Hz), 8. 05 (1H, d, J=2.7Hz), 11. 46 (2H, br).

例196:化合物番号196の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノ-4-エチル-5-フェニルチアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:17.4%

m p 224-225°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 24 (3H, t, J=7.6Hz), 2. 70 (2H, q, J=7.6Hz), 6. 95 (1H, brd, J=7.6 Hz), 7. 39-7. 42 (1H, m), 7. 45-7. 51 (4H, m), 7. 56 (1H, brd; J=8.0Hz), 8. 06 (1H, d, J=2.8Hz), 11. 98 (1H, brs).

例197:化合物番号197の化合物の製造

原料として、ベンジルイソプロピルケトンを用いて例188 (1) ~ (3) と同様の操作を行い、標題化合物を得た。

収率: 4. 4% (3工程)

(2) 2-アミノー4-イソプロピル-5-フェニルチアゾール

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (6H, d, J=6.6Hz), 3. 0 5 (1H, m), 4. 94 (2H, s), 7. 28-7. 41 (5H, m).

(3) 5-プロモ-N- (4-イソプロピル-5-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド (化合物番号197)

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 26 (6H, d, J=6.0Hz), 3. 15 (1H, m), 6. 98 (1H, brs), 7. 43-7. 53 (5H, m), 7. 59 (1H, brs), 8. 08 (1H, d, J=2.7Hz), 11. 90

(1H, brd), 13. 33 (1H, brd).

例198:化合物番号198の化合物の製造

原料として、1-7ェニルー2-ヘキサノンを用いて例188(1)~(3)と同様の操作を行い、標題化合物を得た。

収率:52.6%(3工程)

(1) $\alpha - \vec{J} \Box \tau - 1 - 2 = \lambda - 2 = \lambda + \tau + \tau$

 $^{1}H-NMR$ (CDC1₃): δ 0. 85 (3H, t, J=7. 2Hz), 1. 1 9-1. 32 (2H, m), 1, 50-1. 60 (2H, m), 2. 59 (2H, td, J=7. 5, 3. 9Hz), 5. 44 (1H, s), 7. 34-7. 45 (5H, m).

(2) 2-アミノ-4-ブチル-5-フェニルチアゾール

 $^{1}H-NMR$ (CDCl₃): δ 0. 89 (3H, t, J=7.5Hz), 1. 2 8-1. 41 (2H, m), 1. 61-1. 71 (2H, m), 2. 56-2. 6 1 (2H, m), 4. 87 (2H, s), 7. 25-7. 40 (5H, m).

(3) 5 - ブロモーN - (4 - ブチルー 5 - フェニルチアゾールー 2 - イル) -2 - ヒドロキシベンズアミド(化合物番号198)

¹H-NMR (DMSO-d₆): δ 0. 85 (3H, t, J=7. 2Hz), 1. 23-1. 35 (2H, m), 1. 59-1. 69 (2H, m), 2. 70 (2H, t, J=7. 2Hz), 6. 96 (1H, d, J=6. 9Hz), 7. 39-7. 59 (6H, m), 8. 07 (1H, d, J=2. 4Hz), 11. 93 (1H, br), 13. 18-13. 59 (1H, br).

例199:化合物番号199の化合物の製造

(1) 4 - ブロモー 2, 2, 6, 6 - テトラメチルー 3, 5 - ヘプタンジオン [α- ブロモージピバロイルメタン]

2, 2, 6, 6-テトラメチルー3, 5-ヘプタンジオン (ジピバロイルメタン; 1.00g, 5.42mmol) の四塩化炭素 (10mL) 溶液に、N-ブロモ コハク酸イミド (965.8mg, 5.42mmol) を加え、2時間加熱選流

した。反応混合物を室温まで冷却後、不溶物を濾過して除去し、濾液を減圧留去 して、標題化合物の白色結晶(1.42g,定量的)を得た。

 1 H-NMR(CDC1 $_{3}$): δ 1.27(18H,s),5.67(1H,s).以下の実施例において例199(1)の方法が引用されている場合、プロモ化剤としては、N-プロモコハク酸イミドを用いた。また、反応溶媒としては、四塩化炭素等の溶媒を用いた。

(2) 2-アミノ-4-[(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール

4-プロモー2, 2, 6, 6-Fトラメチルー3, $5-\alpha プタンジオン (α-ブロモージピバロイルメタン; 1. <math>42g$, 5. 40mmol)、チオウレア (45l 1. 8mg, 5. 94mmol)、エタノール (15mL) の混合物を 2時間加熱 還流した。反応混合物を室温まで冷却後、飽和炭酸水素ナトリウム水溶液にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をジクロロメタン/ $n-\alpha$ キサンで結晶化して、標題化合物の白色結晶 (1.23g, 94.5%) を得た。 ^1H-NMR ($CDCl_3$): δ 1. 26 (9H, s), 1. 29 (9H, s), 5. 03 (2H, s).

(3) 5-クロロ-N- $\{4-$ [(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール-2-イル $\}$ -2-ヒドロキシベンズアミド (化合物番号199)

 $5-\rho$ ロロサリチル酸(143.6mg, 0.83mmo1)、2-アミノー4-[(1,1-ジメチル)エチル]エチルー5ー[(2,2-ジメチル)プロピオニル]チアゾール(<math>200.0mg, 0.83mmo1)、三塩化リン(40μ L、0.46mmo1)、クロロベンゼン(4mL)の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色粉末(159.1mg, 48.4%)を得た。

 1 H-NMR (CDCl $_{3}$): δ 1. 33 (9H, s), 1. 35 (9H, s), 6. 99 (1H, d, J=8. 7Hz), 7. 43 (1H, dd, J=9. 0, 2. 7Hz), 7. 70 (1H, d, J=2. 7Hz), 10. 52 (2H, br). 以下の実施例において例199 (3) の方法が引用されている場合、酸ハロゲン 化剤としては、三塩化リンを用いた。また、反応溶媒としては、モノクロロベンゼン、トルエン等の溶媒を用いた。

例200:化合物番号200の化合物の製造

原料として、 $5-\rho$ ロローNー $\{4-[(1,1-ジメチル)$ エチル]ー5-[(2,2-i)メチル)プロピオニル]チアゾールー2-1イル $\{2-i$ アミド (化合物番号199)、及びアセチルクロリドを用いて例5と同様の操作を行い、標題化合物を得た。

収率:65.3%

 $^{1}H-NMR$ (CDCl₃): δ 1. 32 (9H, s), 1. 33 (9H, s), 2. 46 (3H, s), 7. 22 (1H, d, J=8. 4Hz), 7. 56 (1H, d d, J=8. 7, 2. 4Hz), 8. 05 (1H, d, J=2. 7Hz), 9. 8 2 (1H, brs).

例201:化合物番号201の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-[(1, 1-ジメチル) エチル] -5-[(2, 2-ジメチル) プロピオニル] チアゾール (例 199(2) の化合物)を用いて例 199(3)と同様の操作を行い、標題化合物を得た。

収率:23.8%

 $^{1}H-NMR$ (CDCl₃): δ 1. 33 (9H, s), 1. 35 (9H, s), 6. 94 (1H, d, J=8, 7Hz), 7. 55 (1H, dd, J=8. 7, 2. 1Hz), 7. 85 (1H, d, J=2. 1Hz), 10. 51 (2H, br).

例202:化合物番号202の化合物の製造

原料として、ピバロイル酢酸 エチルエステルを用いて例199(1)~(3) と同様の操作を行い、標題化合物を得た。

収率:45.7%(3工程)

(1) αープロモーピバロイル酢酸 エチルエステル

 $^{1}H-NMR$ (CDCl₃): δ 1. 28 (9H, s), 1. 29 (3H, t, J = 7. 2Hz), 4. 26 (2H, q, J=7. 2Hz), 5. 24 (1H, s).

(2) 2-アミノー4ー [(1, 1-ジメチル) エチル] チアゾールー5ーカルボン酸 エチルエステル

 $^{1}H-NMR$ (CDCl₃): δ 1. 32 (3H, t, J=7. 2Hz), 1. 4 3 (9H, s), 4. 24 (2H, q, J=7. 2Hz), 5. 18 (2H, s).

(3) 2-(5-ブロモ-2-ヒドロキシベンゾイル) アミノー4-[(1, 1-ジメチル) エチル] チアゾール-5-カルボン酸 エチルエステル (化合物番号202)

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 30 (3H, t, J=7. 2Hz), 1. 44 (9H, s), 4. 27 (2H, q, J=6. 9Hz), 7. 00 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 80 (1H, br), 12. 12 (1H, br).

例203:化合物番号203の化合物の製造

原料として、2-(5-プロモー2-ヒドロキシベンゾイル) アミノー4-[(1, 1-ジメチル) エチル] チアゾールー5-カルボン酸 エチルエステル (化合物番号 202) を用いて例 36 と同様の操作を行い、標題化合物を得た。

収率:85.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 44 (9H, s), 7. 00 (1H, d, J=9. 0Hz), 7. 62 (1H, dd, J=9. 0, 2. 7Hz), 8. 02 (1H, d, J=2. 4Hz), 11. 83 (1H, brs), 12. 04 (1H, brs), 12. 98 (1H, brs).

例204:化合物番号204の化合物の製造

(1) 2-アミノー5-プロモー4-[(1.1-ジメチル) エチル] チアゾール

2-アミノー4-[(1,1-ジメチル) エチル] チアゾール(例185(1)の 化合物;0.87g,5.6mmol)の四塩化炭素(<math>9mL)溶液に、N-ブロモコハク酸イミド(1.00g,5.6mmol)を加え、室温で1時間攪拌した。反応混合物にヘキサンを加え、不溶物を濾過して除去し、濾液を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の黄灰色粉末(1.23g,93.7%)を得た。

¹H-NMR (CDCl₃): δ 1.39 (9H, s), 4.81 (2H, brs).

(2)2-アミノー4-[(1,1-ジメチル)エチル]-5-ピペリジノチアゾ ール

2-アミノー5-プロモー4- [(1, 1-ジメチル) エチル] チアゾール (0. 10g, 0. 42mmol)、ピペリジン (0. 1mL)、炭酸カリウム (0. 20g)、アセトニトリル (4mL) の混合物を 3時間加熱還流した。反応混合物を室温まで冷却後、水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン:酢酸エチル=2:1)で精製して、標題化合物の黄色結晶 (80.7mg, 79.3%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 32 (9H, s), 1. 64 (4H, t, J = 5. 7Hz), 1. 71-1. 77 (2H, m), 2. 35 (2H, brs), 2. 99 (2H, brs), 4. 68 (2H, s).

以下の実施例において例204(2)の製造法が引用されている場合、塩基としては、炭酸ナトリウム等の塩基を用いた。また、反応溶媒としては、アセトニトリル等の溶媒を用いた。

(3) $2-アセトキシー5-プロモーNー <math>\{4-[(1, 1-ジメチル) エチル] -5-ピペリジノチアゾールー2-イル\}$ ベンズアミド

アルゴン雰囲気下、2-アセトキシ-5-プロモ安息香酸(90.3mg,0.35mmo1)、2-アミノ-4-[(1,1-ジメチル)エチル]-5-ピペリ

ジノチアゾール(80.7 mg, 0.34 mm o 1)、ピリジン(0.1 mL)、テトラヒドロフラン(3 mL)の混合物にオキシ塩化リン(46 μ L, 0.50 mm o 1)を加え、室温で2時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n ーヘキサン:酢酸エチル=3:1)で精製して、標題化合物の粗生成物(84.3 mg)を得た。

以下の実施例において例204(3)の製造法が引用されている場合、酸ハロゲン化剤としては、オキシ塩化リンを用いた。塩基としては、ピリジンを用いた。 また、反応溶媒としては、ジクロロメタン、テトラヒドロフラン等の溶媒を用いた。

(4) 5 - ブロモーNー $\{4-[(1,1-i)$ メチル)エチル] - 5 - ピペリジノチアゾールー2ーイル $\}$ - 2 - ヒドロキシベンズアミド(化合物番号204) 2 - アセトキシー5 - ブロモーNー $\{4-[(1,1-i)$ メチル)エチル] - 5 - ピペリジノチアゾールー2ーイル $\}$ ベンズアミド(粗生成物,84.3 mg)のエタノール(3 mL)溶液に、2 規定水酸化ナトリウム溶液(0.1 mL)を加え、室温で1時間攪拌した。反応混合物を2 規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n- ヘキサン:酢酸エチル=4:1)で精製して、標題化合物の白色粉末(54.1 mg,36.3%;2 工程)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 41 (9H, s), 1. 56 (2H, brs), 1. 67-1. 74 (4H, m), 2. 79 (4H, brs), 6. 85 (1H, d, J=9. 0Hz), 7. 45 (1H, dd, J=9. 0, 2. 4Hz), 8. 06 (1H, d, J=2. 4Hz), 11. 70 (2H, br).

以下の実施例において例204(4)の製造法が引用されている場合、塩基としては、水酸化ナトリウム、炭酸カリウム等の無機塩基を用いた。また、反応溶媒

としては、水、メタノール、エタノール、テトラヒドロフラン等の溶媒を単独若 しくは混合して用いた。

例205:化合物番号205の化合物の製造

原料として、2-アミノ-5-プロモ-4-[(1,1-ジメチル) エチル] チアゾール (例 <math>204(1) の化合物)、及びモルホリンを用いて例 $204(2) \sim (4)$ と同様の操作を行い、標題化合物を得た。

収率:17.1%

(2) 2-アミノー4-[(1, 1-ジメチル) エチル] -5-モルホリノチアゾ ール

 $^{1}H-NMR$ (CDCl₃): δ 1. 33 (9H, s), 2. 76 (4H, brs), 3. 79 (4H, brs), 4. 66 (2H, s).

(3) $2-アセトキシ-5-プロモーN- \{4-[(1, 1-ジメチル) エチル] -5-モルホリノチアゾール-2-イル<math>\}$ ベンズアミド

粗生成物のまま次反応に用いた。

(4) 5-プロモーN- {4- [(1, 1-ジメチル) エチル] -5-モルホリノチアゾール-2-イル} -2-ヒドロキシベンズアミド (化合物番号205) ¹H-NMR (CDCl₃): δ 1. 24 (9H, s), 2. 89 (4H, dd, J=4. 8, 4. 2Hz), 3. 83 (4H, dd, J=4. 5, 4. 2Hz), 6. 89 (1H, d, J=9. 0Hz), 7. 49 (1H, dd, J=9. 0, 2. 4Hz), 7. 98 (1H, d, J=2. 1Hz), 11. 20 (2H, br).

例206:化合物番号206の化合物の製造

原料として、2-アミノ-5-プロモー4-[(1,1-ジメチル) エチル] チアゾール (例 <math>204(1) の化合物)、及び $4-メチルピペラジンを用いて例 <math>204(2) \sim (4)$ と同様の操作を行い、標題化合物を得た。

収率: 6.9%

(2) 2-アミノ-4-[(1, 1-ジメチル) エチル] -5-(4-メチルピペラジン-1-イル) チアゾール

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 25 (9H, s), 2. 12 (2H, b r s), 2. 19 (3H, s), 2. 57 (2H, b r s), 2. 72 (4H, b r s), 6. 51 (2H, s).

- (3) $2-アセトキシ-N-\{4-[(1,1-ジメチル) エチル]-5-(4-メチルピペラジン-1-イル) チアゾール-2-イル ベンズアミド 粗生成物のまま次反応に用いた。$
- (4) 5-プロモ-N- $\{4-[(1,1-$ ジメチル) エチル] -5-(4-メチルピペラジン-1-イル) チアゾール-2-イル $\}-2-$ ヒドロキシベンズアミド (化合物番号 206)

 $^{1}H-NMR$ (CD₃OD): δ 1. 41 (9H, s), 2. 55 (3H, s), 2. 87 (4H, brs), 3. 03 (4H, brs), 6. 88 (1H, d, J = 8. 7Hz), 7. 49 (1H, dd, J=8. 7, 2. 7Hz), 8. 11 (1H, d, J=2. 7Hz).

例207:化合物番号207の化合物の製造

原料として、2-アミノ-5-ブロモー4-[(1,1-ジメチル) エチル] チアゾール (例 204(1) の化合物)、及び4-フェニルピペラジンを用いて例 $204(2)\sim(4)$ と同様の操作を行い、標題化合物を得た。

収率: 6.9%

- (2) 2-アミノ-4-[(1, 1-ジメチル) エチル] -5-(4-フェニルピペラジン-1-イル) チアゾール
- $^{1}H-NMR$ (CDCl₃): δ 1. 34 (9H, s), 2. 80 (2H, brs), 3. 03 (4H, brs), 3. 55 (2H, brs), 4. 69 (2H, s), 6. 88 (1H, tt, J=7. 2, 1. 2Hz), 6. 95 (2H, dd, J=9. 0, 1. 2Hz), 7. 28 (2H, dd, J=8. 7, 7. 2Hz).
- (3) 2-rセトキシ-5-rロモ $-N-\{4-[(1, 1-i)x$ チル) エチル] -5-(4-r) ペンズア ミド

粗生成物のまま次反応に用いた。

(4) 5 - プロモ-N- $\{4-$ [(1, 1-ジメチル) エチル] -5 - (4-フェニルピペラジン-1 -イル) チアゾール-2 -イル $\}$ -2 -ヒドロキシベンズアミド (化合物番号 2 0 7)

 $^{1}H-NMR (DMSO-d_{6}): \delta$ 1. 39 (9H, s), 2. 97 (4H, s), 3. 30 (4H, s), 6. 82 (1H, t, J=7. 5Hz), 6. 97 (2H, brs), 6. 99 (2H, t, J=7. 5Hz), 7. 58 (1H, brs), 8. 05 (1H, d, J=2. 4Hz), 11. 69 (1H, brs), 11. 82 (1H, brs).

例208:化合物番号208の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノー4-フェニルチアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率:16.0%

mp 239℃ (dec.).

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=8.4Hz), 7. 34 (1H, t, J=7.6Hz), 7. 44 (2H, t, J=7.6Hz), 7. 62 (1H, dd, J=8.4, 2.8Hz), 7. 67 (1H, s), 7. 92 (2H, d, J=7.2Hz), 8. 08 (1H, d, J=2.8Hz), 11. 88 (1H, brs), 12. 05 (1H, brs).

例209:化合物番号209の化合物の製造

原料として、5-プロモサリチル酸、及び<math>2-アミノー4-フェニルチアゾール -5-酢酸 メチルエステルを用いて例199(3)と同様の操作を行い、標題 化合物を得た。

収率:32.1%

mp 288, 5-229, 5° C.

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 66 (3H, s), 3. 95 (2H, s), 6. 99 (1H, d, J=8. 0Hz), 7. 42 (1H, d, J=6. 0Hz),

7. 48 (2H, brt, J=7. 6Hz), 7. 56-7. 61 (3H, m), 8. 07 (1H, d, J=2. 4Hz), 11. 85 (1H, brs), 11. 9 8 (1H, brs).

例210:化合物番号210の化合物の製造

{2-[(5-ブロモー2-ヒドロキシベンゾイル)アミノ]ー4-フェニルチアゾールー5-イル}酢酸 メチルエステル(化合物番号209;75mg,0.17mmol)のメタノール(5mL)溶液に、2規定水酸化ナトリウム(0.5mL,1mmol)を加え、室温で12時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をnーヘキサン/酢酸エチルで懸濁洗浄して、標題化合物の淡黄白色結晶(56mg,77.3%)を得た。

mp 284-286°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 84 (2H, s), 6. 98 (1H, d, J=8. 8Hz), 7. 42 (1H, d, J=6. 8Hz), 7. 49 (2H, t, J=7. 6Hz), 7. 58-7. 61 (3H, m), 8. 07 (1H, d, J=2. 8Hz), 12. 25 (1H, brs).

例211:化合物番号211の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4, 5-ジフェニルチア ゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率: 25.9%

mp 262-263℃.

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=8. 1Hz), 7. 34-7. 47 (10H, m), 7. 63 (1H, d, J=6. 9Hz), 8. 08 (1H, d, J=2. 4Hz), 11. 88 (1H, brs), 12. 08 (1H, brs).

[2-アミノー4, 5-ジフェニルチアゾール:「日本化学雑誌 (Nihon Kagaku

Zasshi)」, 1962年, 第83巻, p. 209参照]

例212:化合物番号212の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-4-ベンジル-5-フェ ニルチアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率:28.1%

mp 198-200°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 4. 08 (2H, s), 6. 95 (1H, d, J=8. 8Hz), 7. 15-7. 22 (3H, m), 7. 30 (2H, t, J=7. 6Hz), 7. 38-7. 43 (1H, m), 7. 47 (4H, d, J=4. 4Hz), 7. 57 (1H, brd, J=8. 8Hz), 8. 05 (1H, d, J=2. 4Hz), 11. 98 (1H, brs).

[2-アミノー4-ベンジルー5-フェニルチアゾール:「ケミカル・アンド・ファーマシューティカル・プレティン (Chemical & Pharmaceutical Bulletin)」, 1962年、第10巻、p. 376参照]

例213:化合物番号213の化合物の製造

原料として、5ーブロモサリチル酸、及び2ーアミノー5ーフェニルー4ー(トリフルオロメチル)チアゾールを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率:33.2%

mp 250% (dec.). $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1 H, d, J=8.8Hz), 7. 51 (5H, s), 7. 63 (1H, dd, J=8.8, 2.4Hz), 8. 02 (1H, d, J=2.8Hz), 12. 38 (1 H, brs).

例214:化合物番号214の化合物の製造

原料として、1-7 エニル-1, 3-7 タンジオンを用いて例 $199(1) \sim (3)$ と同様の操作を行い、標題化合物を得た。

収率:8.9%(3工程)

- (1) αーブロモー1ーフェニルー1, 3ーブタンジオン
- $^{1}H-NMR$ (CDC1₃): δ 2. 46 (3H, s), 5. 62 (1H, s),
- 7. 48-7. 54 (2H, m), 7. 64 (1H, tt, J=7. 5, 2. 1H z), 7. 97-8. 01 (2H, m).
- (2) 2-アミノ-5-アセチル-4-フェニルチアゾール
- $^{1}H-NMR$ (DMSO-d₆): δ 2. 18 (3H, s), 7. 50-7. 55 (2H, m), 7. 59-7. 68 (3H, m), 8. 69 (2H, brs).
- (3) 5-プロモーN- (5-アセチルー4-フェニルチアゾールー2-イル) -2-ヒドロキシベンズアミド (化合物番号214)
- $^{1}H-NMR$ (DMSO-d₆): δ 2. 44 (3H, s), 6. 99 (1H, d, J=9.0Hz), 7. 55-7. 71 (4H, m), 7. 76-7. 80 (2H, m), 8. 01 (1H, d, J=2.4Hz), 12. 36 (2H, br).

例215:化合物番号215の化合物の製造

原料として、1, 3-ジフェニル-1, 3-プロパンジオンを用いて例199(1) ~ (3) と同様の操作を行い、標題化合物を得た。

収率:49.7%

- (1) α -プロモー1, 3-ジフェニルー1, 3-プロパンジオン 1 H-NMR (CDCl₃): δ 6. 55 (1H, s), 7. 45-7. 50 (4H, m), 7. 61 (2H, tt, J=7. 2, 2. 1Hz), 7. 98-8. 0 1 (4H, m).
- (2) 2-アミノ-5-ベンゾイル-4-フェニルチアゾール
- $^{1}H-NMR$ (DMSO-d₆): δ 7. 04-7. 18 (5H, m), 7. 22 -7. 32 (3H, m), 7. 35-7. 38 (2H, m), 8. 02 (2H, s).
- (3) 5-プロモーN-(5-ベングイル-4-フェニルチアゾール-2-イル) -2-ヒドロキシベンズアミド (化合物番号215)
- $^{1}H-NMR$ (DMSO-d₆): δ 7.03 (1H, d, J=8.7Hz), 7. 17-7.30 (5H, m), 7.39-7.47 (3H, m), 7.57-7.

60 (2H, m), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 8. 05 (1H, d, J=2. 4Hz), 11. 82 (1H, brs), 12. 35 (1H, brs).

例216:化合物番号216の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-フェニルチアゾール -5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、 標題化合物を得た。

収率:28.6%

mp 197-199°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 21 (3H, t, J=6.8Hz), 4. 20 (2H, q, J=6.8Hz), 7. 01 (1H, d, J=8.8Hz), 7. 43-7. 48 (3H, m), 7. 63 (1H, dd, J=8.8, 2. 4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 33 (1H, brs).

例217:化合物番号217の化合物の製造

2- (5-ブロモ-2-ヒドロキシベンゾイル) アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号216) を用いて例36と同様の操作を行い、標題化合物を得た。

収率:67.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 00 (1H, d, J=8.8Hz), 7. 42-7. 44 (3H, m), 7. 62 (1H, dd, J=8.8, 2.4Hz), 7. 70-7. 72 (2H, m), 8. 04 (1H, d, J=2.4Hz), 12. 31 (1H, brs), 12. 99 (1H, brs).

例218:化合物番号218の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー4-フェニルチアゾール -5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、 標題化合物を得た。

収率:69.4%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 22 (3H, t, J=.7.5Hz), 4. 21 (2H, q, J=7.5Hz), 7. 07 (1H, d, J=8.7Hz), 7. 43-7. 47 (3H, m), 7. 53 (1H, dd, J=8.7, 2.4Hz), 7. 70-7. 74 (2H, m), 7. 92 (1H, d, J=3.0Hz), 11. 88 (1H, br), 12. 29 (1H, brs).

例219:化合物番号219の化合物の製造

原料として、ペンタフルオロベンゾイル酢酸エチルエステルを用いて例199

(1) ~ (3) と同様の操作を行い、標題化合物を得た。

収率:40.0%(3工程)

(1) αープロモーペンタフルオロベンゾイル酢酸 エチルエステル 粗成生物のまま次反応に用いた。

(2) 2-アミノー4- (ペンタフルオロフェニル) チアゾールー5-カルボン 酸 エチルエステル

 $^{1}H-NMR$ (CDCl₃): δ 1. 23 (3H, t, J=7. 2Hz), 4. 2 1 (2H, q, J=7. 2Hz), 5. 41 (2H, s).

(3) 2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-(ペンタフルオロフェニル) チアゾールー5-カルボン酸 エチル(化合物番号219) $^1H-NMR(DMSO-d_6):\delta$ 1. 20(3H, t, J=7.2Hz), 2.

51 (2H, q, J=7.2Hz), 7. 02 (1H, d, J=8.7Hz), 7. 64 (1H, dd, J=8.7.2.7Hz), 7. 90 (1H, d, J=3.0

Hz), 11. 92 (1H, br), 12. 58 (1H, br).

例220:化合物番号220の化合物の製造

2- (5-プロモー2-ヒドロキシベンゾイル) アミノー4-フェニルチアゾール-5-カルボン酸 (化合物番号217;0.20g,0.48mmol)、メチルアミン 40%メタノール溶液 (0.2ml)、1-ヒドロキシベンゾトリアゾール 水和物 (96.7mg、0.72mmol)、WSC・HCl (137.2

mg, 0.72 mmo 1)、テトラヒドロフラン(15 mL)の混合物を室温で18時間攪拌した。反応混合物を2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー($n-\alpha$ +サン:酢酸エチル=1:2)で精製、ジクロロメタン/ $n-\alpha$ +サンで結晶化して、標題化合物の白色粉末(87.9 mg, 42.6%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 70 (3H, d, J=4.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=9.0, 2.4Hz), 7. 68-7. 71 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 16 (1H, t, J=4.5Hz), 1 1. 88 (1H, br), 12. 15 (1H, brs).

以下の実施例において例220の方法が引用されている場合、脱水縮合剤としては、WSC・HC1、及び1-ヒドロキシベンゾトリアゾール水和物を用いた。また、反応溶媒としては、テトラヒドロフラン等の溶媒を用いた。

例221:化合物番号221の化合物の製造

原料として、2-(5-プロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール-5-カルボン酸(化合物番号217)、及びエチルアミンの70%水溶液を用いて例220と同様の操作を行い、標題化合物を得た。

収率:62.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 05 (3H, t, J=6.9Hz), 3. 15-3. 24 (2H, m), 7. 02 (1H, d, J=8.7Hz), 7. 40 -7. 47 (3H, m), 7. 63 (1H, dd, J=8.7, 3.0Hz), 7. 69-7. 72 (2H, m), 8. 06 (1H, d, J=2.4Hz), 8. 20 (1H, t, J=5.4Hz), 11. 84 (1H, br), 12. 14 (1H, brs).

例222:化合物番号222の化合物の製造

原料として、2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-フェ

ニルチアゾール-5-カルボン酸 (化合物番号217)、及びイソプロピルアミンを用いて例220と同様の操作を行い、標題化合物を得た。

収率:23.9%

¹H-NMR (DMSO-d₆): δ 1. 07 (6H, d, J=6. 3Hz), 4. 02 (1H, m), 7. 02 (1H, d, J=9. 0Hz), 7. 40-7. 52 (3H, m), 7. 64 (1H, dd, J=8. 7, 2. 7Hz), 7. 69-7. 73 (2H, m), 8. 06 (1H, d, J=2. 7Hz), 11. 89 (1H, br), 12. 14 (1H, brs).

例223:化合物番号223の化合物の製造

原料として、2-(5-プロモ-2-ヒドロキシベンゾイル) アミノー4-フェニルチアゾール-5-カルボン酸 (化合物番号217)、及び2-フェネチルアミンを用いて例<math>220と同様の操作を行い、標題化合物を得た。

収率:62.2%

¹H-NMR (DMSO-d₆): δ 2. 78 (2H, t, J=7.5Hz), 3. 43 (2H, q, J=7.5Hz), 7. 02 (1H, d, J=9.0Hz), 7. 19-7. 24 (3H, m), 7. 27-7. 33 (2H, m), 7. 39-7. 41 (3H, m), 7. 61-7. 65 (3H, m), 8. 06 (1H, d, J=2.4Hz), 8. 25 (1H, t, J=6.0Hz), 11. 85 (1H, brs), 12. 15 (1H, brs).

例224:化合物番号224の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー4-(トリフルオロメチル)チアゾール-5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率:88.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 32 (3H, t, J=7. 2Hz), 4. 33 (2H, q, J=7. 2Hz), 7. 01 (1H, d, J=8. 7Hz), 7. 63 (1H, dd, J=8. 7, 2. 7Hz), 7. 98 (1H, d, J=2. 4

 H_z), 12. 64 (1H, br).

例225:化合物番号225の化合物の製造

原料として、4-ヒドロキシビフェニル-3-カルボン酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率:61.7%

mp 207-208℃.

 $^{1}H-NMR$ (DMSO-d₆): δ 1.23(3H, t, J=7.2Hz), 4.

22 (2H, q, J=7.2Hz), 7.16 (1H, d, J=8.7Hz), 7.

36 (1H, t, J=7.5Hz), 7. 45-7.50 (5H, m), 7. 69

-7.76 (4H, m), 7.85 (1H, dd, J=8.7, 2.4Hz), 8.

31 (1 H, d, J = 2.4 Hz), 11.73 (1 H, brs), 12.60 (1 H, brs).

[4-ヒドロキシビフェニル-3-カルボン酸:「テトラヘドロン(Tetrahedron)」, (米国), 1997年, 第53巻, p. 11437参照]

例226:化合物番号226の化合物の製造

原料として、(4'-フルオロ-4-ヒドロキシビフェニル) -3-カルボン酸及 び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率:62.7%

mp 237-238℃.

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 13 (1H, d, J=8. 4Hz), 7. 28 (2H, t, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 71-7. 75 (4H, m), 7. 81 (1H, dd, J=8. 8, 2. 4Hz), 8. 27 (1H, d, J=2. 4Hz), 11. 67 (1H, brs), 12. 58 (1H, brs).

[(4' -フルオロ-4-ヒドロキシビフェニル) -3-カルボン酸:「テトラヘドロン (Tetrahedron)」, 1997年, 第53巻, p. 11437参照] 例227:化合物番号227の化合物の製造

原料として、(2', 4'-i)フルオロー4ーヒドロキシビフェニル)-3-カルボン酸及び2-アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例199(3)と同様の操作を行い、標題化合物を得た。

収率: 45.6%

mp 206-207°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7, 2Hz), 7. 17 (1H, d, J=9. 0Hz), 7. 21 (1H, td, J=8. 7, 2. 4Hz), 7. 38 (1H, ddd, J=11. 7, 9. 3, 2. 4Hz), 7. 44-7. 46 (3H, m), 7. 6 0-7. 75 (4H, m), 8. 13-8. 14 (1H, m), 11. 86 (1H, brs), 12. 46 (1H, brs).

例228:化合物番号228の化合物の製造

(1) [4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル] -3-カル ボン酸

5-プロモサリチル酸(500~mg,2.30~mmo1)、ジヒドロキシー4-(トリフルオロメチル)フェニルボラン(488mg,2.57mmo1)、酢酸パラジウム(10mg,0.040mmo1)及び1mo1/L炭酸ナトリウム水溶液(7mL)の混合物を80 $\mathbb C$ で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣を、定法に従い、トリメチルシリルジアゾメタン及びメタノールによりメチルエステル化し、次いでシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、無色液体(563mg)を得た。この液体のメタノール(10mL)溶液に、2規定水酸化ナトリウム(3mL)を加え、60 $\mathbb C$ で1

時間攪拌した。反応混合物を室温まで冷却後、2規定塩酸にあけ酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して、得られた残渣をnーヘキサン/ジクロルメタンで懸濁洗浄して、標題化合物の白色結晶(458mg,70.4%)を得た。

mp 185℃ (dec.).

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 09 (1H, d, J=8.8Hz), 7. 77 (2H, d, J=8.0Hz), 7. 85 (2H, d, J=8.0Hz), 7. 90 (1H, dd, J=8.8, 2.0Hz), 8. 10 (1H, d, J=2.4Hz), 11.80 (1H, brs).

(2) $2-\{[4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル]-3$ $-カルボニル\}$ アミノー4-フェニルチアゾール-5-カルボン酸 エチルエステル (化合物番号 2 2 8)

原料として、[4-ヒドロキシ-4'-(トリフルオロメチル) ビフェニル]-3-カルボン酸及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例 <math>199(3) と同様の操作を行い、標題化合物を得た。

収率:41.7%

mp 236-237°C.

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 21 (2H, q, J=7. 2Hz), 7. 18 (1H, d, J=8. 8Hz), 7. 44-7. 45 (3H, m), 7. 72-7. 74 (2H, m), 7. 81 (2H, d, J=8. 4Hz), 7. 91 (1H, dd, J=8. 8, 2. 4Hz), 7. 93 (2H, d, J=8.4Hz), 8. 36 (1H, d, J=2. 4Hz), 11. 78 (1H, brs), 12. 62 (1H, brs).

例229:化合物番号229の化合物の製造

原料として、2-ヒドロキシ-5-(1-ピロリル)安息香酸、及び2-アミノ-4-フェニルチアゾール-5-カルボン酸 エチルエステルを用いて例 199 (3) と同様の操作を行い、標題化合物を得た。

収率:55.0%

¹H-NMR (DMSO-d₆): δ 1. 22 (3H, t, J=7. 2Hz), 4. 22 (2H, q, J=7. 2Hz), 6. 26 (2H, t, J=2. 1Hz), 7. 13 (1H, d, J=8. 7Hz), 7. 32 (2H, t, J=2. 1Hz), 7. 43-7. 47 (3H, m), 7. 70-7. 75 (3H, m), 8. 09 (1H, d, J=2. 7Hz), 11. 58 (1H, brs), 12. 55 (1H, brs): 例230: 化合物番号230の化合物の製造

(1) 2-ヒドロキシ-5-(2-チエニル) 安息香酸

5-プロモサリチル酸(500mg, 2.30mmol)、の1,2-ジメトキシ エタン(5 m L)溶液に、アルゴン雰囲気下、テトラキス (トリフェニルホスフィ ン) パラジウム(80mg, 0.07mmol)を加え、室温で10分間攪拌した。 次いで、ジヒドロキシー2-チエニルボラン(324mg, 2.53mmo1)及 び1mo1/L炭酸ナトリウム水溶液(7mL)を加え、2時間加熱還流した。反 応混合物を室温まで冷却後、2規定塩酸にあけ、酢酸エチルで抽出した。酢酸エ チル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧 留去して得られた残渣を、定法に従い、トリメチルシリルジアゾメタン及びメタ ノールによりメチルエステル化し、次いで、シリカゲルカラムクロマトグラフィ - (n-ヘキサン: 酢酸エチル=5:1) で精製して、黄色液体(277mg) を得た。この液体のメタノール(5mL)溶液に、2規定水酸化ナトリウム(1.5 mL)を加え、60℃で1時間攪拌した。反応混合物を室温まで冷却後、2規定塩 酸にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、 無水硫酸マグネシウムで乾燥後、溶媒を減圧留去して得られた残渣をn-ヘキサ ン/ジクロルメタンで晶析して、標題化合物の白色結晶(58mg, 11.5%) を得た。

 $^{1}H-NMR(DMSO-d_{6}): \delta$ 6. 95(1H, d, J=8.8Hz), 7. 0 9(1H, dd, J=4.8, 3.6Hz), 7. 37(1H, dd, J=4.0, 1. 2Hz), 7. 45(1H, dd, J=5.2, 1.2Hz), 7. 74(1H, dd,

J=8. 8, 2. 8Hz), 7. 96(1H, d, J=2. 8Hz).

収率:58.2%

mp 213-214°C.

 $^{1}H-NMR(DMSO-d_{6}): \delta$ 1. 22(3H, t, J=7. 2Hz9, 4. 2 1(2H, q, J=7. 2Hz), 7. 10(1H, d, J=9. 2Hz), 7. 12(1 H, dd, J=4. 8, 3. 6Hz), 7. 44-7. 46(4H, m), 7. 50 (1H, dd, J=4. 8, 1. 2Hz), 7. 71-7. 74(2H, m), 7. 7 9(1H, dd, J=8. 8, 2. 4Hz), 8. 21(1H, d, J=2. 4Hz), 11. 78(1H, brs), 12. 44(1H, brs).

例231:化合物番号231の化合物の製造

(1) 2-アミノー4-[3, 5-ビス(トリフルオロメチル)フェニル]チアゾ ール

標題化合物の薄黄白色結晶 (520.1mg, 83.3%) を得た。

¹H-NMR (CDCl₃): δ 5. 03 (2H, s), 6. 93 (1H, s), 7. 77 (1H, s), 8. 23 (2H, s).

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 3.0Hz), 7. 94 (1H, d, J=3.0 Hz), 8. 07 (1H, s), 8. 29 (1H, s), 8. 60 (2H, s), 1 1. 77 (1H, s), 12. 23 (1H, s).

例232:化合物番号232の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー4, 5, 6, 7-テトラヒドロベンゾ [b] チオフェンー3-カルボン酸 エチルエステルを用いて例 3と同様の操作を行い、標題化合物を得た。

収率:49.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 1. 32 (3H, t, J=7. 2Hz), 1. 74 (4H, br), 2. 63 (2H, br), 2. 75 (2H, br), 4. 30 (2H, q, J=7. 2Hz), 7. 05 (1H, d, J=9. 0Hz), 7. 5 0 (1H, dd, J=8. 7, 3. 0Hz), 7. 92 (1H, d, J=3. 0Hz), 12. 23 (1H, s), 13. 07 (1H, s).

例233:化合物番号233の化合物の製造

原料として、5-ブロモサリチル酸、及び3-アミノ-5-フェニルピラゾール を用いて例3と同様の操作を行い、標題化合物を得た。

収率: 9. 2%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 01 (1H, s), 7. 35 (1H, t, J=7.6Hz), 7. 46 (2H, t, J=7.6Hz), 7. 58 (1H, dd, J=8.8, 2.8Hz), 7. 74 -7. 76 (2H, m), 8. 19 (1H, s), 10. 86 (1H, s), 12. 09 (1H, s), 13. 00 (1H, brs).

例234:化合物番号234の化合物の製造

(1) 2-アミノー4, 5-ジエチルオキサゾール

プロピオイン (1.03g, 8.87mmol) のエタノール (15mL) 溶液に、シアナミド (0.75g, 17.7mmol)、ナトリウムエトキシド (1.21g, 17.7mmol)を加え、室温で3.5時間攪拌した。反応混合物を水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=9:1)で精製して、標題化合物の黄色アモルファス(369.2mg, 29.7%)を得た。 1 H-NMR (DMSO-d₆): δ 1.04 (3H, t, J=7.5Hz), 1.

0.6 (3H, t, J=7.5Hz), 2.20 (2H, q, J=7.5Hz), 2. 4.3 (2H, q, J=7.5Hz), 6.15 (2H, s).

(2) 2ーアセトキシー5ープロモーNー(4,5ージエチルオキサゾール2ーイル)ベンズアミド

原料として、2-アセトキシ-5-ブロモ安息香酸、及び2-アミノ-4,5-ジエチルオキサゾールを用いて例5と同様の操作を行い、標題化合物を得た。

収率: 22.0%

 $^{1}H-NMR$ (CDCl₃): δ 1. 22 (3H, t, J=7. 5Hz), 1. 2

3 (3H, t, J=7.5Hz), 2. 38 (3H, s), 2. 48 (2H, q, J=7.5Hz), 2. 57 (2H, q, J=7.5Hz), 6. 96 (1H, d, J=8.7Hz), 7. 58 (1H, dd, J=8.7, 2.7Hz), 8. 32 (1H, s), 11. 40 (1H, br).

(3) 5-ブロモーN-(4,5-ジエチルオキサゾール2-イル)-2-ヒドロキシベンズアミド(化合物番号234)

原料として、2-アセトキシー5-プロモ-N-(4,5-ジエチルオキサゾール-2-イル)ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率:70.2%

 $^{1}H-NMR$ (CDCl₃) δ : 1. 25 (3H, t, J=7. 5Hz), 1.

26 (3H, t, J = 7. 5 H z), 2. 52 (2H, q, J = 7. 5 H z), 2.

60 (2H, q, J = 7. 5Hz), 6.84 (1H, d, J = 8.7Hz), 7.

43 (1H, dd, J=8.7, 3.0Hz), 8.17 (1H, d, J=3.0

Hz), 11. 35 (1H, br), 12. 83 (1H, br).

例235:化合物番号235の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノー4, 5-ジフェニルオキ サゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:32.6%

mp 188-189°C.

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8.7Hz), 7. 40-7. 49 (6H, m), 7. 53-7. 56 (2H, m), 7. 59-7. 63 (3H, m), 8. 01 (1H, d, J=2.4Hz), 11. 80 (2H, brs).

[2-アミノー4, 5-ジフェニルオキサゾール:「ツォーナル・オルガニッシェスコイ・キミー:ロシアン・ジャーナル・オブ・オーガニック・ケミストリー (Zhournal Organicheskoi Khimii: Russian Journal of Organic Chemistry)」,

(ロシア), 1980年, 第16巻, p. 2185参照]

例236:化合物番号236の化合物の製造

(1) 2-アミノー4, 5-ビス (フラン-2-イル) オキサゾール

フロイン (0.50g, 2.60mmol) のエタノール (15ml) 溶液に、シアナミド (218.8mg, 5.20mmol)、ナトリウムエトキシド (530.8mg, 7.80mmol) を加え、室温で2時間攪拌した。反応混合物を

水にあけ、酢酸エチルで抽出した。酢酸エチル層を水、飽和食塩水で順次洗浄、

無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル= $1:1 \rightarrow 1:2$)で精製

して、標題化合物の黒褐色結晶(175.0mg, 31.1%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 59 (1H, dd, J=3. 3, 2.

1 Hz), 6. 62 (1 H, d d, J = 3. 3, 2. 1 Hz), 6. 73 (1 H,

dd, J=3. 3, 0. 6Hz), 6. 80 (1H, dd, J=3. 3, 0. 9Hz), 7. 05 (2H, s), 7. 75-7. 76 (2H, m).

(2) 5-ブロモ-N-[4, 5-ビス (フラン-2-イル) オキサゾール-2

-イル] -2-ヒドロキシベンズアミド (化合物番号236)

原料として、5-ブロモサリチル酸、及び2-アミノ-4,5-ビス(フラン-2-イル)オキサゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:12.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 65 (1H, dd, J=3. 6, 1.

 $8 \, \mathrm{Hz}$), 6. 68 (1 H, d d, J=3. 6, 1. $8 \, \mathrm{Hz}$), 6. 75 (1 H,

d, J = 8, 7 H z), 6.92 (1 H, d d, J = 3.6, 0.9 H z), <math>6.

93 (1H, d, J=3.3Hz), 7.37 (1H, dd, J=8.7, 2.7

Hz), 7. 80 (1H, dd, J=1. 8, 0. 9Hz), 7. 84 (1H, d

d, J=1.8, 0.9 Hz), 7.92 (1H, d, J=3.0 Hz), 14.

88 (2H, br).

例237:化合物番号237の化合物の製造

(1) 2-アセトキシ-N- (5-トリフルオロメチル-1, 3, 4-チアジア ゾール-2-イル) ベンズアミド

原料として、O-アセチルサリチル酸クロリド、及び<math>2-アミノ-5-トリフル オロメチル-1, 3, 4-チアジアゾールを用いて例1と同様の操作を行い、標題化合物を得た。

収率:51.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 23 (3H, s), 7. 32 (1H, d d, J=8. 0, 1. 2Hz), 7. 45 (1H, td, J=7. 6, 1. 2Hz), 7. 69 (1H, td, J=8. 0, 2. 0Hz), 7. 87 (1H, dd, J=8. 0, 2. 0Hz), 13. 75 (1H, brs).

(2) 2-ヒドロキシ-N- (5-トリフルオロメチル-1, 3, 4-チアジア ゾール-2-イル) ベンズアミド (化合物番号 2 3 7)

原料として、2-アセトキシ-N-(5-トリフルオロメチル-1,3,4-チアジアゾール-2-イル)ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率:92.9%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 00 (1H, td, J=8. 0, 0. 8Hz), 7. 06 (1H, d, J=8. 4Hz), 7. 51 (1H, ddd, J=8. 4, 7. 6, 2. 0Hz), 7. 92 (1H, dd, J=8. 0, 1. 6Hz), 12. 16 (1H, br).

例238:化合物番号238の化合物の製造

原料として、5-プロモサリチル酸、及び2-アミノー5-トリフルオロメチル-1, 3, 4-チアジアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:80.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 01 (1H, d, J=9.0Hz), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 97 (1H, d, J=2.4

Hz).

例239:化合物番号239の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノピリジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:23.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 02 (1H, d, J=9. 3Hz), 7. 42 (1H, ddd, J=9. 0, 4. 8, 0. 6Hz), 7. 47 (1H, dd, J=8. 7, 5. 7Hz), 7. 92 (1H, d, J=2. 7Hz), 8. 15 (1H, ddd, J=8. 4, 2. 4, 1. 5Hz), 8. 35 (1H, dd, J=7. 8, 1. 5Hz), 8. 86 (1H, d, J=2. 4Hz), 10. 70 (1H, s).

例240:化合物番号240の化合物の製造

原料として、5-クロロサリチル酸、及び5-アミノ-2-クロロピリジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:12.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 04 (1H, d, J=9.0Hz), 7. 49 (1H, dd, J=9.0, 3.0Hz), 7. 54 (1H, d, J=8.4 Hz), 7. 88 (1H, d, J=2.7Hz), 8. 21 (1H, dd, J=8.7, 2.7Hz), 8. 74 (1H, d, J=2.7Hz), 10. 62 (1H, s), 11. 57 (1H, s).

例241:化合物番号241の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-クロロ-4-メトキシピリミジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 2. 2%、白色固体

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 86 (3H, s), 6. 85 (1H, s), 7. 01 (1H, d, J=9. 0Hz), 7. 47 (1H, dd, J=9. 0, 3. 0Hz), 7. 81 (1H, d, J=3. 0Hz), 11. 08 (1H, s), 11.

65 (1H, s).

例242:化合物番号242の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノキノリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率: 4.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.07 (1H, d, J=8.7Hz), 7. 51 (1H, dd, J=9.0, 3.0Hz), 7.61 (1H, dt, J=7.8, 1.2Hz), 7.70 (1H, dt, J=7.8, 1.5Hz), 7.98 (2H, d, J=3.0Hz), 8.01 (1H, s), 8.82 (1H, d, J=2.4Hz), 10.80 (1H, s), 11.74 (1H, s).

例243:化合物番号243の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノ-6-ブロモピリジンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:12.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 07 (1H, d, J=8.7Hz), 7. 42 (1H, d, J=7.8Hz), 7. 51 (1H, dd, J=8.7, 2.7 Hz), 7. 82 (1H, t, J=7.5Hz), 7. 94 (1H, d, J=3.0Hz), 8. 24 (1H, d, J=7.8Hz), 10. 95 (1H, s), 11. 97 (1H, s).

例244:化合物番号244の化合物の製造

(1) 2-アセトキシ-5-クロロ安息香酸

5-クロロサリチル酸(13.35g, 77mmo1)、無水酢酸(20mL)の混合物に濃硫酸(0.08mL)をゆっくり滴下した。反応混合物が固化した後、氷水にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサンで懸濁洗浄して、標題化合物の白色結晶(15.44g, 93.0%)を得た。 ^1H-NMR ($DMSO-d_6$): δ 2.25(3H, s),7.27(1H, d,

J=8.7 H z), 7.72 (1H, dd, J=8.7, 2.7Hz), 7.89 (1H, d, J=2.7 H z), 13.47 (1H, s).

(2) 2-アセトキシ-5-クロローN-(ピリダジン-2-イル)ベンズアミド

原料として、2-アセトキシ-5-クロロ安息香酸、及び2-アミノピリダジンを用いて例204(3)と同様の操作を行い、標題化合物を得た。

収率:19.7%

 $^{1}H-NMR$ (CDC1₃): δ 2. 42 (3H, s), 7. 19 (1H, d, J=8. 7Hz), 7. 54 (1H, dd, J=8. 7, 2. 7Hz), 8. 01 (1H, d, J=2. 4Hz), 8. 28 (1H, dd, J=2. 4, 1. 8Hz), 8. 42 (1H, d, J=2. 4Hz), 9. 09 (1H, s), 9. 66 (1H, d, J=1. 8Hz).

(3) 5-クロロ-2-ヒドロキシ-N-(ピリダジン-2-イル)ベンズアミド(化合物番号244)

原料として、2-アセトキシ-5-クロロ-N-(ピリダジン-2-イル)ベンズアミドを用いて例2と同様の操作を行い、標題化合物を得た。

収率:72.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 52 (1H, dd, J=8.7, 2.7Hz), 7. 96 (1H, d, J=2.7Hz), 8. 44-8. 47 (2H, m), 9. 49 (1H, s), 10. 99 (1H, s), 12. 04 (1H, s).

例245:化合物番号245の化合物の製造

原料として、5-ブロモサリチル酸、及び2-アミノ-5-ブロモピリミジンを 用いて例3と同様の操作を行い、標題化合物を得た。

収率:10.3%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 98 (1H, d, J=8.8Hz), 7. 59 (1H, dd, J=8.8, 2.4Hz), 8.00 (1H, d, J=2.8

Hz), 8. 86 (2H, s), 11. 09 (1H, s), 11. 79 (1H, s). 例 246: 化合物番号 246 の化合物の製造

原料として、2-(5-プロモ-2-ヒドロキシベンゾイル)アミノ-4-フェニルチアゾール5-カルボン酸(化合物番号217)、及びプロピルアミンを用いて例220と同様の操作を行い、標題化合物を得た。

収率:23.1%

¹H-NMR (DMSO-d₆): δ 0. 82 (3H, t, J=7.5Hz), 1. 39-1. 51 (2H, m), 3. 13 (2H, q, J=6.6Hz), 7. 02 (1H, d, J=9.0Hz), 7. 40-7. 48 (3H, m), 7. 63 (1H, dd, J=8.7, 2.7Hz), 7. 68-7. 72 (2H, m), 8. 06 (1H, d, J=2.7Hz), 8. 18 (1H, t, J=5.7Hz), 11. 87 (1H, brs), 12. 14 (1H, brs).

例247:化合物番号247の化合物の製造

 $5-スルフォサリチル酸(218 mg, 1 mm o 1)、3, 5-ビス(トリフルオロメチル)アニリン(229 mg, 1 mm o 1)、三塩化リン(88 <math>\mu$ L, 1 mm o 1)、オルトーキシレン(5 m L)の混合物を3時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=3:1)で精製して、標題化合物の白色固体(29 mg, 9.2%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 15 (1H, d, J=8.8Hz), 7. 65 (2H, s), 7. 73 (1H, s), 7. 81 (1H, s), 7. 82 (1H, dd, J=8.7, 2.5Hz), 8. 23 (1H, d, J=2.5Hz), 8. 38 (2H, s), 10. 87 (1H, s), 11. 15 (1H, brs).

例248:化合物番号248の化合物の製造

5-クロロサリチル酸($87\,\mathrm{mg}$, $0.5\,\mathrm{mmo}\,1$)、2, 2-ビス(3-アミノ -4-メチルフェニル)-1, 1, 1, 3, 3, 3-ヘキサフルオロプロパン($363\,\mathrm{mg}$, $1\,\mathrm{mmo}\,1$)、三塩化リン($44\,\mu$ L, $0.5\,\mathrm{mmo}\,1$)、トルエン(4

mL) の混合物を4時間加熱還流した。反応混合物を室温まで冷却後、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=5:1)で精製して、標題化合物の白色(16mg, 4.9%)を得た。(後述する例251、化合物番号251の化合物を副生成物として得た。)

 $^{1}H-NMR$ (DMSO-d₆): δ 2. 34 (6H, s), 7. 04 (4H, d, J=8. 8Hz), 7. 39 (2H, d, J=8. 4Hz), 7. 48 (2H, d d, J=8. 8, 2. 9Hz), 7. 96 (2H, d, J=2. 9Hz), 8. 19 (2H, s), 10. 44 (2H, s), 12. 17 (2H, s).

例249:化合物番号249の化合物の製造

原料として、3-フェニルサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:64.6%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 12 (1H, t, J=8. 1Hz), 7. 37 (1H, tt, J=7. 5, 1. 5Hz), 7. 43-7. 48 (2H, m), 7. 56-7. 60 (3H, m), 7. 91 (1H, s), 8. 07, (1H, dd, J=8. 1, 1. 5Hz), 8. 48 (2H, s), 11. 00 (1H, s), 12. 16 (1H, s).

例250:化合物番号250の化合物の製造

原料として、4-フルオロサリチル酸、及び3,5-ビス(トリフルオロメチル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:65.7%

 $^{1}H-NMR$ (DMSO-d₆): δ 6. 81-6. 90 (2H, m), 7. 84 (1H, s,), 7. 93-7. 98 (1H, m,), 8. 45 (2H, s,), 10. 78 (1H, s), 11. 81 (1H, s,).

例251:化合物番号251の化合物の製造

前述した例248において、化合物番号248の化合物との混合物を分離して得た。

収率:9.4%

 $^{1}H-NMR$ (CD₃OD): δ 2. 16 (3H, s), 2. 34 (3H, s), 6. 69 (1H, d, J=8. 2Hz), 6. 76 (1H, brs) 6. 95 (1H, d, J=8. 8Hz), 7. 02 (1H, d, J=8. 0Hz), 7. 15 (1H, d, J=8. 2Hz), 7. 29 (1H, d, J=8. 2Hz), 7. 37 (1H, dd, J=8. 8, 2. 6Hz), 7. 97 (1H, d, J=2. 6Hz), 7. 98 (1H, s).

例252:化合物番号252の化合物の製造

原料として、5-クロロサリチル酸、及び4-[2-アミノ-4-(トリフルオロメチル)フェノキシ]ベンゾニトリルを用いて例3と同様の操作を行い、標題化合物を得た。

収率:11.6%

 $^{1}H-NMR$ (CD₃OD): δ 6. 88 (1H, d, J=8. 6Hz), 7. 1 9 (2H, d, J=8. 9Hz), 7. 24 (1H, d, J=8. 6Hz), 7. 33 (1H, dd, J=8. 8, 2. 8Hz), 7. 46 (1H, dd, J=8. 9, 1. 9Hz), 7. 76 (2H, d, J=8. 9Hz), 7. 98 (1H, d, J=2. 7Hz), 8. 96 (1H, s).

例253:化合物番号253の化合物の製造

原料として、5-クロロサリチル酸、及び3-アミノ-4-(4-メトキシフェノキシ) ベンゾトリフルオライドを用いて例3と同様の操作を行い、標題化合物を得た。

収率:88.1%

 $^{1}H-NMR$ (CDC1₃): δ 3. 85 (3H, s) 6. 81 (1H, d, J = 8. 5Hz), 6. 97-7. 02 (3H, m), 7. 08 (2H, d, J=8. 8Hz), 7. 30 (1H, m), 7. 40 (1H, dd, J=8. 8, 1. 9Hz), 7. 45 (1H, d, J=2. 2Hz), 8. 70 (1H, s), 8. 78 (1H, d, J=1. 6Hz), 11. 76 (1H, s).

例254:化合物番号254の化合物の製造

原料として、サリチル酸、及び2,5-ビス(トリフルオロメチル)アニリンを 用いて例3と同様の操作を行い、標題化合物を得た。

収率:47.8%

 $^{1}H-NMR$ (CD₃OD): δ 7. 00-7. 06 (2H, m), 7. 48 (1 H, dt, J=1. 5, 7. 5Hz), 7. 74 (1H, d, J=8. 4Hz), 8. 01-8. 08 (2H, m), 8. 79 (1H, s), 11. 09 (1H, s), 12. 03 (1H, s).

例255:化合物番号255の化合物の製造

(1) 2-アミノ-4-(2, 4-ジクロロフェニル) チアゾール 原料として、2', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例 231(1) と同様の操作を行い、標題化合物を得た。

収率:97.1%

 $^{1}H-NMR$ (CDCl₃): δ 5. 01 (2H, s), 7. 09 (1H, s), 7. 28 (1H, dd, J=8. 4, 2. 1Hz), 7. 45 (1H, d, J=2. 1Hz), 7. 82 (1H, d, J=8. 4Hz).

(2) 5-クロロー2-ヒドロキシ-N-[4-(2, 4-ジクロロフェニル)
チアゾール-2-イル] ベンズアミド(化合物番号255)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(2, 4-ジクロロフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:8.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 50-7. 55 (2H, m), 7. 72-7. 76 (2H, m), 7. 91 (1H, d, J=8.4Hz), 7. 95 (1H, d, J=2.4Hz), 11. 87 (1H, brs), 12. 09 (1H, brs).

例256:化合物番号256の化合物の製造

原料として、3-イソプロピルサリチル酸、及び3,5-ビス(トリフルオロメ

チル) アニリンを用いて例3と同様の操作を行い、標題化合物を得た。 収率:99.2%

¹H-NMR (CDCl₃): δ 1. 26 (6H, d, J=6.9Hz), 3. 4 4 (1H, Hept, J=6.9Hz), 6. 92 (1H, t, J=7.8Hz), 7. 38 (1H, dd, J=8.1, 1.2Hz), 7. 44 (1H, d, J=7. 5Hz), 7. 69 (1H, s), 8. 13 (3H, s), 11. 88 (1H, s). Ø257: 化合物番号257の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-イソプロピルベンズアミド(化合物番号256;100mg,0.26mmol)の四塩化炭素(5mL)溶液に、アルゴン雰囲気下、臭素(14.4 μ L,0.28mmol)及び鉄粉(1.7mg,0.03mmol)を加え、室温で2時間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をn-ヘキサン/酢酸エチルで晶析して、標題化合物の白色固体(110mg.91.5%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 1. 25 (6H, d, J=6.9Hz), 3. 3 9 (1H, Hept, J=6.9Hz), 7. 49-7. 51 (2H, m), 7. 71 (1H, brs), 8. 11-8. 14 (3H, m), 11. 81 (1H, brs).

例258:化合物番号258の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-メチルベンズアミド(化合物番号58;150mg,0.41mmol)のメタノール/水(3:1)混合溶液(5mL)に、N-ブロモコハク酸イミド(88.2mg,0.50mmol)を加え、室温で10分間攪拌した。反応混合物を酢酸エチルで希釈した。酢酸エチル層を10%チオ硫酸ナトリウム水溶液、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル

=5:1) で精製して、標題化合物の白色粉末(167mg, 91.5%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 2. 28 (3H, s), 7. 47 (1H, s), 7. 50 (1H, d, J=2.4Hz), 7. 71 (1H, s), 8. 08 (1H, brs), 8. 13 (2H, s), 11. 71 (1H, s).

例259:化合物番号259の化合物の製造

N-[3,5-ビス(トリフルオロメチル)フェニル]-2-ヒドロキシ-3-フェニルベンズアミド(化合物番号249)を用いて例258と同様の操作を行い、標題化合物を得た。

収率:67.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 36-7. 50 (3H, m), 7. 55 -7. 59 (2H, m), 7. 71 (1H, d, J=2. 1Hz), 7. 93 (1 H, brs), 8. 28 (1H, d, J=2. 1Hz), 8. 45 (2H, s), 1 1. 06 (1H, brs), 12. 16 (1H, brs).

例260:化合物番号260の化合物の製造

(1) 2-アミノー4-(3, 4-ジクロロフェニル)チアゾール原料として、3', 4'-ジクロロアセトフェノン、及びチオウレアを用いて例231(1)と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 17 (2H, s), 7. 24 (1H, s), 7. 62 (1H, d, J=8. 4Hz), 7. 78 (1H, dd, J=8. 7, 2. 7Hz), 8. 22 (1H, d, J=2. 4Hz).

(2) 5-クロロー2-ヒドロキシーN-[4-(3, 4-ジクロロフェニル)チアゾール-2-イル] ベンズアミド(化合物番号260)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(3,4-ジクロロフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:15.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8. 7Hz), 7. 52 (1H, dd, J=8. 7, 2. 7Hz), 7. 71 (1H, d, J=8. 4Hz), 7. 91 (1H, d, J=1. 8Hz), 7. 94 (1H, s), 8. 18 (1H, d, J=1. 5Hz), 12. 09 (2H, bs).

例261:化合物番号261の化合物の製造

(1) 2-アミノー4-[4-(トリフルオロメチル)フェニル]チアゾール原料として、<math>4'-(トリフルオロメチル)アセトフェノン、及びチオウレアを用いて例<math>231(1)と同様の操作を行い、標題化合物を得た。

収率:77.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 18 (2H, s), 7. 26 (1H, s), 7. 72 (2H, d, J=8. 4Hz), 8. 00 (2H, d, J=8. 1Hz).

(2) 5-クロロ-2-ヒドロキシ-N- $\{4-$ [4- (トリフルオロメチル) フェニル] チアゾール-2-イル $\}$ ベンズアミド (化合物番号 2 6 1)

原料として、5ークロロサリチル酸、及び2-アミノ-4-[4-(トリフルオロメチル)フェニル]チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:16.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 09 (1H, d, J=9.0Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 81 (2H, d, J=8.4 Hz), 7. 96 (1H, d, J=2.4Hz), 7. 98 (1H, s), 8. 16 (2H, d, J=8.1Hz), 11. 91 (1H, bs), 12. 13 (1H, bs).

例262:化合物番号262の化合物の製造

(1) 2-メトキシ-4-フェニル安息香酸メチル

4-クロロ-2-メトキシ安息香酸メチル (904mg, 4.5mmol)、フェニルボロン酸 (500mg, 4.1mmol)、炭酸セシウム (2.7g, 8.2mmol) のN, N-ジメチルホルムアミド (15mL) 溶液に、アルゴン雰囲

気下、ジクロロビス(トリフェニルホスフィン)パラジウム(29mg, 0.04mmo1)を加え、120で8時間攪拌した。反応混合物を室温まで冷却後、酢酸エチルで希釈した。酢酸エチル層を水、飽和食塩水で順次洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=10:1)で精製して、標題化合物の無色油状物(410mg, 41.2%)を得た。

¹H-NMR (CDC1₃): δ 3. 91 (3H, s), 3. 98 (3H, s), 7. 17 (1H, d, J=1. 5Hz), 7. 20 (1H, dd, J=8. 1, 1. 5Hz), 7. 31-7. 50 (3H, m), 7. 59-7. 63 (2H, m), 7. 89 (1H, d, J=8. 1Hz).

(2) 2-メトキシー4-フェニル安息香酸

2-メトキシー4-フェニル安息香酸メチル(410mg, 1.69mmol)のメタノール(5mL)溶液に2規定水酸化ナトリウム水溶液(5mL)を加え、1時間加熱還流した。反応混合物を室温まで冷却後、溶媒を減圧留去した。得られた残渣に2規定塩酸を加え、析出した結晶を濾取して、標題化合物の粗生成物(371mg, 96.0%)を得た。

¹H-NMR (DMSO-d₆): δ 3. 93 (3H, s), 7. 29 (1H, d d, J=8. 1, 1. 5Hz), 7. 34 (1H, d, J=1. 5Hz), 7. 4 0-7. 53 (3H, m), 7. 73-7. 77 (3H, m), 12. 60 (1H, s).

(3) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-メトキシー 4-フェニルベンズアミド

原料として、2-メトキシ-4-フェニル安息香酸、及び3,5-ビス(トリフルオロメチル)アニリンを用いて例3と同様の操作を行い、標題化合物を得た。 収率:97.5%

 1 H-NMR (CDC l_{3}): δ 4. 19 (3H, s), 7. 25 (1H, m), 7. 38-7. 53 (4H, m), 7. 62-7. 65 (3H, m), 8. 12 (2

H, s), 8. 35 (1H, d, J=8. 1Hz), 10. 15 (1H, brs).
(4) N-[3, 5-ビス (トリフルオロメチル) フェニル] -2-ヒドロキシ
-4-フェニルベンズアミド (化合物番号262)

N-[3,5-ビス(トリフルオロメチル)フェニル] -2-メトキシ-4-フェニルベンズアミド(100mg,0.24mmo1)のジクロロメタン(5mL)溶液に1M三臭化ホウ素-ジクロロメタン溶液(0.71mL,0.71mmo1)を加え、室温で1時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和食塩水で順次洗浄、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー(<math>n-n+t):酢酸エチル=5:1)で精製して、標題化合物の白色粉末(69.3mg,71.6%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 20 (1H, dd, J=8. 4. 1. 8Hz), 7. 30 (1H, d, J=1. 8Hz), 7. 39-7. 51 (3H, m), 7. 60-7. 64 (3H, m), 7. 70 (1H, brs), 8. 15 (2H, s), 8. 19 (1H, brs), 11. 59 (1H, s).

例263:化合物番号263の化合物の製造

(1) 2-アミノ-4-(2,5-ジフルオロフェニル)チアゾール 原料として、2',5'-ジフルオロアセトフェノン、及びチオウレアを用いて 例 231(1) と同様の操作を行い、標題化合物を得た。

収率:77.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 45 (1H, d, J=2.7Hz), 7. 11-7. 17 (1H, m), 7. 19 (2H, s), 7. 28-7. 36 (1H, m), 7. 65-7. 71 (1H, m).

(2) $5-\rho$ ロロー 2-ヒドロキシ-N-[4-(2, 5-ジフルオロフェニル) チアゾール-2-イル] ベンズアミド (化合物番号 263)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(2,5-ジフルオロフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:36.5%

 $^{1}H-NMR$ (DMSO-d₆): δ 7.09 (1H, d, J=8.7Hz), 7. 22-7.30 (1H, m), 7.37 (1H, m), 7.53 (1H, dd, J=8.7, 3.0Hz), 7.72 (1H, d, J=2.4Hz), 7.77-7. 84 (1H, m), 7.94 (1H, d, J=3.0Hz), 11.89 (1H, bs), 12.12 (1H, bs).

例264:化合物番号264の化合物の製造

(1) 2-アミノー4-(4-メトキシフェニル) チアゾール

原料として、4'ーメトキシアセトフェノン、及びチオウレアを用いて例231

(1) と同様の操作を行い、標題化合物を得た。

収率:85.2%

 $^{1}H-NMR$ (DMSO-d₆): δ 3. 76 (3H, s), 6. 82 (1H, s), 6. 92 (2H, d, J=9. 0Hz), 7. 01 (2H, s), 7. 72 (2H, d, J=8. 7Hz).

(2) 5-クロロー2ーヒドロキシーN-[4-(4-メトキシフェニル)チア ゾールー2-イル]ベンズアミド(化合物番号264)

原料として、5-クロロサリチル酸、及び2-アミノ-4-(4-メトキシフェ ニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:16.4%

 $^{1}H-NMR$ (DMSO- d_{6}): δ 3. 80 (3H, s), 7. 01 (2H, d, J=9. 0Hz), 7. 07 (1H, d, J=8. 7Hz), 7. 50-7. 55 (2H, m), 7. 86 (2H, d, J=9. 0Hz), 7. 96 (1H, d, J=2. 7Hz), 11. 90 (1H, bs), 12. 04 (1H, bs).

例265:化合物番号265の化合物の製造

(1) 2-アミノ-4-[3-(トリフルオロメチル)フェニル]チアゾール 原料として、3'-(トリフルオロメチル)アセトフェノン、及びチオウレアを 用いて例231(1)と同様の操作を行い、標題化合物を得た。

収率:94.1%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 19 (2H, s), 7. 27 (1H, s), 7. 61 (2H, dd, J=3. 9, 1. 5Hz), 8. 07-8. 13 (2H, m).

(2) $5-\rho$ ロロー 2-ヒドロキシーN- $\{4-[3-(トリフルオロメチル)$ フェニル] チアゾールー 2-イル $\}$ ベンズアミド (化合物番号 265) 原料として、5-クロロサリチル酸、及び2-アミノー4-[3-(トリフルオロメチル) フェニル] チアゾールを用いて例 <math>3 と同様の操作を行い、標題化合物を得た。

収率:31.0%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 13 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=9.0, 2.7Hz), 7. 70 (1H, d, J=2.4 Hz), 7. 71 (1H, d, J=1.2Hz), 7. 95 (1H, d, J=2.7Hz), 8.00 (1H, s), 8.24-8.27 (2H, m), 12.16 (2H, bs).

例266:化合物番号266の化合物の製造

(1) 2-アミノー4-(2, 3, 4, 5, 6-ペンタフルオロフェニル) チア ゾール

原料として、2', 3', 4', 5', 6' -ペンタフルオロアセトフェノン、及びチオウレアを用いて例 2 3 1 (1) と同様の操作を行い、標題化合物を得た。収率:8 6 . 7 %

 1 H-NMR(CDCl $_{3}$): δ 5. 19 (2H, s), 6. 83 (1H, s). (2) 5-クロロ-2-ヒドロキシ-N-[4-(2, 3, 4, 5, 6-ペンタフルオロフェニル)チアゾール-2-イル] ベンズアミド(化合物番号266)原料として、5-クロロサリチル酸、及び2-アミノ-4-(2, 3, 4, 5, 6-ペンタフルオロフェニル)チアゾールを用いて例3と同様の操作を行い、標題化合物を得た。

収率:23.8%

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 08 (1H, d, J=8.7Hz), 7. 53 (1H, dd, J=8.7, 2.7Hz), 7. 73 (1H, s), 7. 93 (1H, d, J=2.7Hz), 11. 85 (1H, bs), 12. 15 (1H, bs).

例267:化合物番号267の化合物の製造

原料として、5-クロロサリチル酸、及び2-アミノー4-メチルベンゾフェノンを用いて例3と同様の操作を行い、標題化合物を得た。

収率:8.7%

 $^{1}H-NMR$ (CDC1₃): δ 2. 50 (3H, s), 6. 98 (1H, d, J = 8. 3Hz), 6. 99 (1H, d, J=7. 3Hz), 7. 39 (1H, dd, J=2. 0, 8. 6Hz), 7. 48-7. 64 (4H, m), 7. 72 (2H, d, J=7. 6Hz), 7. 83 (1H, d, J=2. 3Hz), 8. 57 (1H, s), 12. 18 (1H, s), 12. 34 (1H, br. s).

例268:化合物番号268の化合物の製造

2-Eドロキシ-N- [2, 5-Eス (トリフルオロメチル) フェニル] ベンズアミド (化合物番号254; $175\,\text{mg}$, $0.5\,\text{mmo}$ 1) の四塩化炭素 ($5\,\text{m}$ L) 溶液に、鉄 ($3\,\text{mg}$, $0.05\,\text{mmo}$ 1)、臭素 ($129\,\mu$ 1, $2.5\,\text{mmo}$ 1) を加え、 $50\,\text{C}$ で12時間攪拌した。反応混合物を室温まで冷却後、飽和重曹水、水、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィー (n-Nキサン: 酢酸エチル=2:1) で精製して、標題化合物の白色結晶 ($184.2\,\text{mg}$, $72.7\,\text{%}$)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 7. 92-7. 98 (1H, m), 8. 06 (1H, d, J=2. 1Hz), 8. 09 (1H, d, J=8. 4Hz), 8. 2 (1H, d, J=2. 1Hz), 8. 27-8. 32 (1H, m), 11. 31 (1H, s).

試験例1:NF-κB活性化阻害測定

NFー κ B活性化阻害作用を Hill らの方法(「セル(Cell)」,(米国),1993年,第73巻,第2号,p. 395-406参照。)を参考にして実施した。NF κ B 結合配列(TGGGGACTTTCCGC)を5個連結(タンデムに)したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子(Luc)の上流に組み込んだプラスミド(p NF κ BーLuc Reporter Plasmid:STRATAGENE 社製)をトランスフェクション試薬(Effectene、QIAGEN 社製)を用いてヒト肝癌由来細胞株 HepG2にQIAGEN社のプロトコールに従いトランスフェクトして、6~24時間培養した。その後、被検化合物の存在下又は非存在下で、TNF- α (40 ng/ml)を加えて4時間培養した後、細胞内のルシフェラーゼ活性をピッカジーンLT(東洋インキ社製)及び化学発光測定装置、(SPECTRAFLUORPLUS、TECAN社製)を用いて測定した。被検化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被検化合物 10μ g/ml及び 1μ g/ml存在下におけるNF- κ B活性阻害率を下記の表に示す。

1 1000 1000		
化合物番号	NF-κB活性化阻害率 (%)	
	薬物濃度10μg/mL	薬物濃度1μg/mL
1	97.1	90.9
2	95.6	93.3
3	94.3	81.5
4	97.5	95.7
5	99. 2	96.5
6	98.6	94.9
7	85.4	86.6
8	99. 2	92.0
9	99.6	92.2
1 0	99.4	95.8

1 1	98.3	92.9
1 2	99. 2	86.3
13	96.0	76.8
1 4	98.3	94.7
1 5	99.2	94.5
1 6	99.4	42.7
1 7	99.1	74.9
1 8	98.5	5 9 . 7
1 9	96.9	95.5
2 0	94.9	91.1
2 1	90.1	53.3
2 2	97.1	83.9
2 3	96.8	91.8
2 4	98.3	92.3
2 5	99.6	96.4
2 6	95.4	93.3
2 7	97.9	93.8
2 8	97.8	7 9. 5
2 9	92.9	8 1. 7
3 0	95.3	8 2. 1
3 2	99.0	90.4
3 3	97.0	3 0. 7
3 4	98.7	90.7
3 5	96.4	8 8 . 2
3 7	94.5	N.T.
3 8	87.1	16.0

3 9	82.2	23.7
4 0	96.0	44.9
4 1	95.9	42.2
4 2	98.1	84.4
4 4	67.5	N.T.
4 5	63.4	N.T.
4 6	88. 4	20.5
4 7	97.2	51.8
4 8	98. 7	96.2
4 9	89.1	19.4
5 0	96.0	6 9. 9
5 1	98.2	90.5
5 2	97.3	96.4
5 3	94.5	93.3
5 4	86.5	N.T.
5 5	88.6	10.8
5 6	95.1	89.4
5 7	91.9	N.T.
5 8	95.0	88.2
5 9	94.7	41.9
6 0	99. 1	94.0
6 1	97.2	95.1
6 2	86.9	37.0
6 3	85.0	85.4
6 4	94.1	84.9
6 5	89.8	83.3

		2.0.6
7 1	95.0	89.6
7 2	95.0	94.6
7 3	97.9	93.1
7 4	97.5	64.0
7 5	82.2	58.1
8 0	73.0	46.3
8 1	96.3	95.0
8 2	96.8	94.0
8 3	98.3	95.7
8 4	96.6	92.6
8 5	98.9	94.7
8 6	98. 7	96.7
8 7	95.9	93.1
8 8	97.1	94.8
8 9	97.4	96.7
9 0	94.1	88.9
9 1	96.7	86.3
9 2	97.9	93.8
9 3	97.2	84.5
9 4	93.4	76.6
9 5	98.5	91.8
9 6	99. 1	94.6
9 7	97.8	95.8
9 8	86.4	81.8
9 9	98.0	54.3
100	95.1	85.6

1 0 1	8 2. 0	17.7
102	98.3	89.3
104	99.2	97.2
105	97.5	94.6
106	92.1	92.3
107	96.2	94.9
108	88.4	41.5
110	98.7	96.5
1 1 1	9 9. 7	96.5
1 1 2	95.7	96.5
113	96.2	90.5
114	98.2	91.8
1 1 5	98.4	90.7
1 1 6	97.3	90.0
117	92.6	92.8
118	99.5	95.0
1 1 9	86.9	85.4
1 2 0	97.5	88.6
1 2 1	95.5	92.9
1 2 2	96.9	95.1
1 2 3	96.8	91.8
1 2 4	97.0	94.2
1 2 5	96.8	84.5
1 2 6	92.8	77.1
1 2 7	97.1	85.4
1 2 8	95.1	91.4

1 2 9	71.8	N.T.
1 3 0	70.6	N.T.
1 3 1	88. 7	49.1
1 3 3	95.6	91.0
1 3 4	96.3	8 9. 1
1 3 5	99. 2	86.2
1 3 6	99. 4	91.0
1 3 7	92.6	86.3
1 3 8	98. 1	8 9. 6
1 3 9	94.7	90.8
1 4 0	82.0	70.9
141	97.9	82.4
1 4 2	95.7	32.4
1 4 3	96.8	38.3
1 4 4	56.4	N.T.
1 4 6	98.5	91.2
1 4 7	91.0	38.9
1 4 9	87.1	37.4
151	98. 2	85.8
1 5 2	95.3	35.1
1 5 3	97.1	88.3
154	93.3	83.0
1 5 5	90.2	11.2
1 5 6	95.7	93.8
1 5 7	98.8	5 2 . 6
1 5 8	96.8	52.4
	_ 	

160	96.5	69.6
161	97.6	94.2
162	97.9	93.8
163	97.4	92.1
164	98.3	97.6
1 6 5	99. 4	95.9
1 6 6	96.4	94.1
1 6 7	98. 7	76.4
1 6 8	97.8	46.7
1 6 9	95.9	31.6
171	98. 1	90.6
172	96.4	93.7
173	98.3	86.4
174	89.6	N.T.
176	99. 5	96.0
177	99.4	87.8
1 7 8	89.7	N.T.
179	93.4	92.5
180	93.7	90.7
181	95.1	N.T.
182	90.2	85.3
183	86.8	N.T.
184	63.8	53.6
1 8 5	95.2	88.4
186	98.7	96.5
187	94.4	85.3

188	92.4	92.6
189	93.8	20.0
190	69.7	N.T.
191	67.2	N.T.
192	94.4	83.6
193	82.0	N.T.
194	71.7	N.T.
195	98.1	90.5
196	87.6	28.8
197	96.1	70.1
198	88.7	46.1
199	98.4	96.4
200	97.7	95.0
2 0 1	97.5	86.8
202	92.4	84.5
2 0 4	97.8	93.6
2 0 5	96.8	87.8
206	89.6	36.3
207	95.9	92.5
208	78.8	N.T.
2 1 0	72.1	N.T.
2 1 1	67.0	N.T.
2 1 2	95.0	79.7
2 1 3	89.4	85.1
2 1 4	95.9	70.2
2 1 5	97.3	90.7

2 1 6	82.8	5 5 . 8
218	94. 2	80.7
2 1 9	96.0	82.2
2 2 0	58.6	50.8
2 2 1	84.0	51.9
2 2 2	91.3	49.6
2 2 3	60.4	33.3
2 2 4	96.5	87.6
2 2 5	78.6	3 4. 6
2 2 6	85.8	45.0
2 2 7	90.3	31.8
2 2 8	90.0	66.9
2 2 9	90.1	74.0
2 3 0	84.8	40.8
2 3 1	94.5	95.9
2 3 2	85.4	8 8 . 2
2 3 3	84.7	26.6
2 3 4	63.1	2 9. 1
2 3 5	81.8	N.T.
2 3 6	56.0	21.4
2 3 7	81.9	N.T.
2 3 8	90.3	26.1
2 4 0	92.3	14.3
2 4 1	78.9	25.5
2 4 2	85.7	N.T.
2 4 3	95.1	84.2

2 4 7	> 9 9. 9	N.T.
2 4 8	> 9 9. 9	> 9 9. 9
2 4 9	90.7	86.6
2 5 0	95.4	94.2
251	96.8	93.6
2 5 2	96.3	93.9
2 5 3	99.5	96.3
2 5 5	N. T.	> 9 9. 9
2 5 6	N. T.	92.1
257	N. T.	> 9 9. 9
2 5 8	N. T.	>99.9
2 5 9	N. T.	>99.9
260	N. T.	>99.9
261	N. T.	>99.9
262	N. T.	>99.9
263	N. T.	>99.9
2 6 4	N. T.	>99.9
2 6 5	N. T.	>99.9
2 6 6	N. T.	> 9 9. 9
2 6 7	N. T.	28.6
2 6 8	98.4	87.1

N. T. 試験せず

試験例2:TNFα刺激によるAP-1活性化阻害測定

AP-1 結合配列 (TGACTAA) を7個連結(タンデムに)したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んだプラスミド(pAP-1-Luc Reporter Plasmid: STRATAGENE 社製) をトランスフェクション試薬

(Effectene、QIAGEN 社製)を用いてヒト子宮ガン由来細胞株 HeLaに QIAGEN 社のプロトコールに従いトランスフェクトして、 $6\sim$ 24 時間培養した。その後、被験化合物の存在下又は非存在下で、 $TNF-\alpha$ (40 ng/ml)を加えて4時間培養した後、細胞内のルシフェラ ーゼ活性をピッカジーンLT (東洋インキ社製)及び化学発光測定装置、(SPECTRAFLUORPLUS、TECAN 社製)を用いて測定した。被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被験化合物 10μ g/ml 及び 1μ g/ml 存在下におけるNF- κ B活性阻害率を下記の表に示す。

化合物番号	AP-1活性化阻害率(%)	
	薬物濃度10μg/mL	薬物濃度1μg/mL
4	89. 1	42. 4
6	91. 2	48. 4
7	82. 4	25. 4
19	33. 9	NT
22	44. 1	NT
	60. 9	18.1
29	51. 5	NT
75	56. 7	33. 3
124	67. 7	NT
125	74. 8	22. 7
126	83. 8	39. 3
127	75. 4	NT
187	49. 9	NT
211	29. 7	NT
217	55. 3	21.7
225	33. 5	NT

NT: 試験せず

試験例3:ラット海馬へのヒトβアミロイド注入によるアルツハイマーモデル動物を使った記憶形成不全抑制効果の測定

マイクロインジェクション法により、ラット海馬の数箇所にヒト β アミロイド(A β)のA β 1-40とA β 1-43の1:1混合物の注入を7日間連続で行い、8日目にウレタン麻酔下で、双極刺激電極を貫通路(Perforant Path way)に、記録用電極を海馬歯状回分子層に固定した。刺激電極からは約14-20mVのテストパルスにより、モノシナプティクな反応を探し、テスト刺激及びテタヌス刺激により長期増強反応(Long-term Potentiation,LTP:神経生理学的記憶モデル現象)を比較し、アルツハイマー病で問題となる記憶形成不全の有無を検証した。コントロール群は生理的食塩水、投与群は被験化合物投与群(30 mg/kg)を、 β アミロイド注入開始3日前より1日一回腹腔内投与し、LTPの比較を行った。結果を第1図に示す。

試験例4:てんかんモデルラットを用いたてんかん発作誘発抑制試験

自発性大発作てんかんラットである野田てんかんラット(NER)に、生理食塩水を 0.5 m 1 (コントロール群) 又は被験化合物 30 mg/kg (投与群)を 1日1回2週間腹腔内投与した。その後、ウレタン麻酔下刺激電極を貫通路に固定、記録電極海馬歯状回分子層に固定し、2つの連続した刺激電位(ペアードパルス)による誘発反応を比較した。この結果、コントロール群では刺激後にてんかんに見られるような継続的な棘波を記録したが、投与群では棘波は見られるものの、コントロール群のような継続した波形は観察されなかった。この結果は、本発明の医薬がてんかんの予防及び/又は治療に有用であることを示している。

試験例5:MEKK-1強制発現によるAP-1活性化阻害測定

AP-1 結合配列 (TGACTAA) を7個連結(タンデムに)したオリゴヌクレオチドをホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んだプラスミド(pAP-1-Luc Reporter Plasmid: STRATAGENE 社製)とMEKK-1発現プラスミド (pFCMEKK: STRATAGENE 社製)をトランスフェクション試薬(Effectene、QIAGEN

社製)を用いてヒト肝臓ガン由来細胞株H e p G 2に QIAGEN 社のプロトコールに従いコトランスフェクトして、 $20\sim24$ 時間培養した。その後、被験化合物の存在下又は非存在下で、24 時間培養した後、細胞内のルシフェラーゼ活性をピッカジーンLT(東洋インキ社製)及び化学発光測定装置、(Genios、TECAN 社製)を用いて測定した。被験化合物非存在下におけるルシフェラーゼ活性値に対しての比率で阻害率を求めた。被験化合物 1μ g/ml 及び/または 1μ M 存在下における P-1 活性阻害率を下記の表に示す。

化合物番号	AP-1活性化阻害率(%)	
	薬物濃度1μg/mL	薬物濃度1μΜ
51	>99.9	N. T.
50	99. 4	90. 7
67	94.8	N. T.
73	98. 7	N. T.
63	94. 9	N. T.
114	97. 1	N. T.
163	90.4	N. T.
71	98. 0	N. T.
56	96. 3	82. 6
98	>99. 9	N. T.
196	99.8	N. T.
122	92. 8	N. T.
195	95. 5	91.2
199	70.6	N. T.
201	79. 1	N. T.

83. 8	N. T.
76. 3	N. T.
N. T.	85. 3
	76. 3

N. T. : 試験せず

産業上の利用可能性

本発明の医薬はAP-1及び $NF-\kappa$ Bの活性化を同時に抑制する作用を有しており、該作用に基づいてアルツハイマー症及びてんかんの予防及び/又は治療に高い有効性を発揮できる。

請求の範囲

1. 下記一般式(I):

(式中、

Aは、水素原子又はアセチル基を表し、

Eは、2,5-ジ置換若しくは3,5-ジ置換基フェニル基、又は置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基(ただし、該へテロアリール基が、①式(I)中の-CONH-基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く)を表し、

環Zは、式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいアレーン、又は式-O-A(式中、Aは上記定義と同義である)及び式-CONH-E(式中、Eは上記定義と同義である)で表される基の他にさらに置換基を有していてもよいヘテロアレーンを表す)で表される化合物及び薬理学的に許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質を有効成分として含む、アルツハイマー症の予防及び/又は治療のための医薬。

- 2. 請求の範囲第1項に記載の一般式(I)で表される化合物及び薬理学的に 許容されるその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から 選ばれる物質を有効成分として含む、てんかんの予防及び/又は治療のための医 薬。
- 3. Aが水素原子である請求の範囲第1項又は第2項に記載の医薬。

4. 環Zが、 C_8 ~ C_{10} のアレーン(該アレーンは、式-O-A(式中、Aは -般式(I)における定義と同義である)及び式-CONH-E(式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)、又は5ないし10員のヘテロアレーン(該ヘテロアレーンは、式-O-A(式中、Aは一般式(I)における定義と同義である)及び式-CONH-E(式中、Eは一般式(I)における定義と同義である)で表される基の他にさらに置換基を有していてもよい)である請求の範囲第1項ないし第3項のいずれか1項に記載の医薬。

- 5. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 C O N H E (式中、E は一般式 (I) における定義と同義である) で表される基の他にさらに置換基を有していてもよいベンゼン環、又は式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 C O N H E (式中、E は一般式 (I) における定義と同義である) で表される基の他にさらに置換基を有していてもよいナフタレン環である請求の範囲第4項に記載の医薬。
- 6. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 C O N H E (式中、E は一般式 (I) における定義と同義である) で表される基の他にハロゲン原子をさらに有するベンゼン環である請求の範囲第5項に記載の医薬。
- 7. 環 Z が、式 O A (式中、A は一般式 (I) における定義と同義である) 及び式 C O N H E (式中、E は一般式 (I) における定義と同義である) で表される基の他にさらに置換基を有していてもよいナフタレン環である請求の範囲第5項に記載の医薬。
- 8. Eが、2,5-ジ置換又は3,5-ジ置換基フェニル基である請求の範囲 第1項ないし第7項のいずれか1項に記載の医薬。
- 9. Eが、2,5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)、又は3,5-ジ置換フェニル基(該置換基のうち少なくとも1個はトリフルオロメチル基である)である請求の範囲第8項に記載の医

薬。

10. Eが3, 5-ビス (トリフルオロメチル) フェニル基である請求の範囲 第9項に記載の医薬。

- 11. Eが、置換基を有していてもよい単環式若しくは縮合多環式へテロアリール基(ただし、該へテロアリール基が、①式(I)中の-CONH-基に直結する環がベンゼン環である縮合多環式へテロアリール基、②無置換のチアゾール-2-イル基、及び③無置換のベンゾチアゾール-2-イル基である場合を除く)である請求の範囲第1項ないし第7項のいずれか1項に記載の医薬。
- 12. Eが、置換基を有していてもよい5員の単環式へテロアリール基(ただし、該へテロアリール基が無置換のチアゾールー2ーイル基である場合を除く)である請求の範囲第11項に記載の医薬。

第1図

International application No.

PCT/JP03/07128

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl7 A61K31/167, 31/17, 31/18, 31/235, 31/277, 31/381, 31/40, 31/402, 31/404, 31/415, 31/4164, 31/421, 331/422, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4406, 31/4418, 31/445, 31/4453, 31/451, According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁷ A61K31/167, 31/17, 31/18, 31/235, 31/277, 31/381, 31/40, 31/402, 31/404, 31/415, 31/4164, 31/421, 331/422, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4406, 31/4418, 31/445, 31/4453, 31/451, Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS(STN), CAOLD(STN), REGISTRY(STN), MEDLINE(STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages X WO 93/24115 A1 (MCGEER, P.L.), 1,3,4,11,12 Y 09 December, 1993 (09.12.93), 5-10 Page 12 & US 5192753 A & EP 642336 A1 & JP 07-506559 A 1, 3, 4, 11, 12 Х WO 99/24404 A1 (AMGEN INC.), 20 May, 1999 (20.05.99), 5-10 Pages 51, 247 & US 6022884 A & EP 1029845 A1 & JP 2001-522834 A & US 6184237 B1 & US 2002/035094 A1 & US 6333341 B1 & US 6458813 B2 Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to document defining the general state of the art which is not considered to be of particular relevance understand the principle or theory underlying the invention "E" "X" document of particular relevance; the claimed invention cannot be earlier document but published on or after the international filing considered novel or cannot be considered to involve an inventive date step when the document is taken alone document which may throw doubts on priority claim(s) or which is document of particular relevance; the claimed invention cannot be cited to establish the publication date of another citation or other special reason (as specified) considered to involve an inventive step when the document is document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 05 August, 2003 (05.08.03) 19 August, 2003 (19.08.03) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No.

International application No.
PCT/JP03/07128

Citation of document, with indication, where appropriate, of the relevant passages WO 96/17832 A1 (WANER-LAMBERT CO.), 13 June, 1996 (13.06.96), Pages 2, 27	Relevant to claim No. 1-5,11 6-10,12
13 June, 1996 (13.06.96), Pages 2, 27	
& US 5721234 A & AU 9641522 A	0-10,12
WO 01/98290 A1 (PHARMACIA & UPJOHN S.P.A.), 27 December, 2001 (27.12.01), Pages 48, 57 & US 64114013 A & EP 1294707 A1	1,3-6,11,12 7-10
DUMAS, J., "Synthesis and structure-activity relationships of novel small molecule cathepsin D inhibitors", Bioorganic & Medicinal Chemistry Letters, (1999), Vol.9, No.17, pages 2531 to 2536	1,3-6,11 7-10,12
EP 1205478 A1 (TAKEDA CHEMICAL INDUSTRIES), 15 May, 2002 (15.05.02), Pages 70, 104 & JP 2001-14690 A & WO 01/10865 A1	1,3-6,11,12 7-10
EP 483881 A1 (MERRELL DOW PHARMACEUTICALS, INC.), 06 May 1992 (06.05.92), Pages 15, 89 & JP 07-033737 A & US 5189054 A & US 5491153 A & US 5675018 A & US 5703107 A	2-5,11 6-10,12
WO 98/20864 A2 (UNIVERSITA' DEGLI STUDI DI BRESCIA - DIPARTIMEIPARTIMENTO DI SCIENZE BIOMEDICHE), 22 May, 1998 (22.05.98), Page 17 (Family: none)	2-4,11,12 5-10
UPADHYAY, P., "Synthesis and pharmacological evaluation of some new imidazolinones as anticonvulsants", Indian Journal of Heterocyclic Chemistry, (1991), Vol.1, No.2, pages 71 to 74	2-5,7,11,12 6,8-10
LADVA, K., "Oxadiazoles. Part XV. Synthesis and biological activities of substituted 1,3,4-oxadiazole derivatives", Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, (1996), Vol.35B, No.10, pages 1062 to 1066	2-5,7,11,12 6,8-10
WO 99/65449 A2 (SMITHKLINE BEECHAM CORP.), 23 December, 1999 (23.12.99), Pages 23 to 27 & JP 2002-518307 A & EP 1085848 A1	1-10
	DUMAS, J., "Synthesis and structure-activity relationships of novel small molecule cathepsin D inhibitors", Bioorganic & Medicinal Chemistry Letters, (1999), Vol.9, No.17, pages 2531 to 2536 EP 1205478 A1 (TAKEDA CHEMICAL INDUSTRIES), 15 May, 2002 (15.05.02), Pages 70, 104 & WO 01/10865 A1 EP 483881 A1 (MERRELL DOW PHARMACEUTICALS, INC.), 06 May 1992 (06.05.92), Pages 15, 89 & US 5491153 A & US 5675018 A & US 5703107 A WO 98/20864 A2 (UNIVERSITA' DEGLI STUDI DI BRESCIA - DIPARTIMEIPARTIMENTO DI SCIENZE BIOMEDICHE), 22 May, 1998 (22.05.98), Page 17 (Family: none) UPADHYAY, P., "Synthesis and pharmacological evaluation of some new imidazolinones as anticonvulsants", Indian Journal of Heterocyclic Chemistry, (1991), Vol.1, No.2, pages 71 to 74 LADVA, K., "Oxadiazoles. Part XV. Synthesis and biological activities of substituted 1,3,4-oxadiazole derivatives", Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, (1996), Vol.35B, No.10, pages 1062 to 1066 WO 99/65449 A2 (SMITHKLINE BEECHAM CORP.), 23 December, 1999 (23.12.99), Pages 23 to 27

International application No.
PCT/JP03/07128

		Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	ł
	WO 00/03991 A1 (TAKEDA CHEMICAL INDUSTRIES), 27 January, 2000 (27.01.00), Pages 26 to 32 & JP 2002-520395 A & EP 1095021 A1	1,3-10
. Y	US 4661630 A (EIZAI CO., Ltd.), 28 April, 1987 (28.04.87), Columns 3 to 4 & JP 59-118750 A & DE 3346814 A1 & FR 2538386 A & GB 2133006 A	2-10
P,X	WO 02/49632 Al (Institute of Medicinal Molecular Design Inc.), 27 June, 2002 (27.06.02), Full text & AU 2268302 A	1-12
!		
	·	
	·	
·		
	·	

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP03/07128

Box I Observan	ons where certain claims were found unsearchable (Continuation of item 2 of first sneet)	
This international s	earch report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. Claims N	os.:	
because (hey relate to subject matter not required to be searched by this Authority, namely:	
because t	os.: 1-12 hey relate to parts of the international application that do not comply with the prescribed requirements to such an at no meaningful international search can be carried out, specifically:	
	extra sheet)	
3. Caims N	os.: they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observat	ions where unity of invention is lacking (Continuation of item 3 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows: Claim 1 relates to a preventive and/or therapeutic drug for Alzheimer's disease, containing a compound represented by the general formula (I) as the active ingredient, while claim 2 relates to a preventive and/or therapeutic drug for epilepsy, containing a compound represented by the general formula (I) as the active ingredient. The matter common to claims 1 and 2 is a drug containing a compound represented by the general formula (I) as the active ingredient, but such drugs are disclosed in documents (see WO 01/12588 A1, WO 99/65449 A1, and so on), being not novel. Thus, drugs containing compounds represented by the general formula (I) as (continued to extra sheet) 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.		
	rchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment ditional fee.	
	ome of the required additional search fees were timely paid by the applicant, this international search report covers e claims for which fees were paid, specifically claims Nos.:	
	ed additional search fees were timely paid by the applicant. Consequently, this international search report is to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protes	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

International application No.

PCT/JP03/07128

Continuation of A. CLASSIFICATION OF SUBJECT MATTER

(International Patent Classification (IPC))

Int.Cl⁷ 31/454, 31/47, 31/496, 31/4965, 31/498, 31/505, 31/5375, 31/5377, 31/695, A61P25/08, 25/28, 43/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum Documentation Searched (International Patent Classification (IPC))

Int.Cl⁷ 31/454, 31/47, 31/496, 31/4965, 31/498, 31/505, 31/5375, 31/5377, 31/695, A61P25/08, 25/28, 43/00

Minimum documentation searched (classification system followed by classification symbols)

Continuation of Box No.I-2 of continuation of first sheet(1)

The active ingredients of pharmaceutical compositions of claims 1-12 include an extremely wide range of compounds, and it is difficult to make complete search on all of them. Further, only a few of the active ingredients of pharmaceutical compositions of claims 1-12 are supported by the description within the meaning of PCT Article 6 and disclosed in the description within the meaning of PCT Article 5.

Thus, claims 1-12 and the description do not comply with the prescribed requirements to such an extent that a meaningful search cannot be carried out.

In this international search report, therefore, prior art search on the inventions of claims 1-12 has been made within a reasonable effort on the basis of compounds concretely disclosed in the description.

Continuation of Box No.II of continuation of first sheet(1)

the active ingredient are still a matter of prior art, and the common matter is not a special technical feature.

Further, there is no other matter which is common to all of the claims and is considered as a special technical feature. This international application contains two inventions.

国際調査報告

発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' A61K31/167, 31/17, 31/18, 31/235, 31/277, 31/381, 31/40, 31/402, 31/404, 31/415, 31/4164, 31/421, 331/422, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4406, 31/4418, 31/4453, 31/451, 31/454, 31/47, 31/496, 31/4965, 31/498, 31/505, 31/5375, 31/5377, 31/695

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl' A61K31/167, 31/17, 31/18, 31/235, 31/277, 31/381, 31/40, 31/402, 31/404, 31/415, 31/4164, 31/421, 331/422, 31/426, 31/427, 31/433, 31/437, 31/44, 31/4406, 31/4418, 31/445, 31/4453, 31/451, 31/454, 31/47, 31/496, 31/4965, 31/498, 31/505, 31/5375, 31/5377, 31/695

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN), CAOLD (STN), REGISTRY (STN), MEDLINE (STN)

C. 関連する			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X Y	WO 93/24115 A1 (MCGEER, P. L.) 1993.12.09 第12頁 & US 5192753 A & EP 642336 A1 & JP 07-506559 A	1, 3, 4, 11, 12 5-10	
X	WO 99/24404 A1 (AMGEN INC.) 1999.05.20 第51頁,第247頁 & US 6022884 A & EP 1028945 A1 & JP 2001-522834 A & US 6184237 B1 & US 6333341 B1 & US 2002/035094 A1 & US 6458813 B2		
X	WO 96/17832 A1 (WANER-LAMBERT CO.) 1996.06.13 第2頁,第27頁 & US 5721 234 A & AU 9641522 A	1-5, 11 6-10, 12	

区欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑惑を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに

「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献 国際調査を完了した日 国際調査報告の発送日 19.08.03 05.08.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 P 9837 日本国特許庁(ISA/JP) 安藤 倫世 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3492

C (続き) .	関連すると認められる文献	·
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X Y	WO 01/98290 A1 (PHARMACIA & UPJOHN S.P.A.) 2001.12.27 第48頁,第57頁 & US 6414013 A & EP 1294707 A1	1, 3-6, 11, 12 7-10
X Y	DUMAS, J., "Synthesis and structure-activity relationships of novel s mall molecule cathepsin D inhibitors" Bioorganic & Medicinal Chemistr y Letters (1999), Vol. 9, No. 17, pp. 2531-2536	
X Y	EP 1205478 A1 (TAKEDA CHEMICAL INDUSTRIES) 2002.05.15 第70頁,第104頁 & JP 2001-14690 A & WO 01/10865 A1	1, 3-6, 11, 12 7-10
X Y	EP 483881 A1 (MERRELL DOW PHARMACEUTICALS, INC.) 1992.05.06 第15頁, 第89頁 & JP 07-033737 A & US 5189054 A & US 5491153 A & US 5675018 A & US 5703107 A	2-5, 11 6-10, 12
X Y	WO 98/20864 A2 (UNIVERSITA' DEGLI STUDI DI BRESCIA - DIPARTIMEIPARTIM ENTO DI SCIENZE BIOMEDICHE) 1998.05.22 第17頁 (ファミリーなし)	2-4, 11, 12 5-10
X Y	UPADHYAY, P., "Synthesis and pharmacological evaluation of some new i midazolinones as anticonvulsants" Indian Journal of Heterocyclic Chem istry (1991), Vol. I, No. 2, pp. 71-74	
X Y	LADVA, K., "Oxadiazoles. Part XV. Synthesis and biological activities of substituted 1,3,4-oxadiazole derivatives" Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry (1996), Vol.35B, No. 10, pp. 1062-1066	1
Y	WO 99/65449 A2 (SMITHKLINE BEECHAM CORPORATION) 1999.12.23 第23-27頁 & JP 2002-518307 A & EP 1085848 A1	1-10
Y .	WO 00/03991 A1 (TAKEDA CHEMICAL INDUSTRIES) 2000.01.27 第26-32頁 & JP 2002-520395 A & EP 1095021 A1	1,3-10
Y	US 4661630 A (EIZAI CO., Ltd.) 1987.04.28 第3-4欄 & JP 59-118750 A & DE 3346814 A1 & FR 2538386 A & GB 2133006 A	2-10
PX	WO 02/49632 A1 (株式会社医薬分子設計研究所) 2002.06.27 全文 & AU 2268 302 A	1-12
-		

国際調査報告

第 I 欄 - 請求の範囲の一部の調査ができないときの意見(第 1 ページの 2 の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなかった。
1.
2. $\boxed{\mathbf{X}}$ 請求の範囲 $\boxed{1-12}$ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
即此会网
別紙参照。
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
MC-A < HOHK G 4 n C 4 i. th 4 . P
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
請求の範囲1は、一般式 (I) で表される化合物を有効成分として含む、アルツハイマー症の予防及び
/又は治療のための医薬に関するものであり、請求の範囲2は、一般式(I)で表される化合物を有効成分として含む、てんかんの予防及び/又は治療のための医薬に関するものである。
請求の範囲1及び2に共通の事項は、一般式 (I) で表される化合物を有効成分として含む医薬である
が、これは文献に開示されており(WO 01/12588 A1、WO 99/65449 A1等参照)、新規ではないから、一般 式 (I) で表される化合物を有効成分として含む医薬は先行技術の域を出ず、この共通事項は特別な技術
的特徴であるとは認められない。
また、請求の範囲全てに共通の事項であって、特別な技術的特徴と考えられる他の共通の事項は存在しないので、本出願に含まれる発明の数は2である。
OTT TO A TO THE PROPERTY OF A TO A
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
の範囲について作成した。
2. X 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の組付のあった次の請求の範囲のみについて作成した。
14 TO BY CHEMISTON CHEMISTON TO THE CAN STATE OF
・ 4.
4. 出願人が必要な追加調金手数科を期間内に納付しなかったので、この国际調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
追加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

- A. 発明の属する分野の分類(国際特許分類(IPC))の続き Int. Cl⁷ A61P25/08, 25/28, 43/00
- B. 調査を行った分野 の続き Int.C1' A61P25/08, 25/28, 43/00

第1欄の2. について

請求の範囲1-12の発明の医薬組成物の有効成分は、極めて広範囲かつ多彩な化合物を包含し、そのすべてについて、完全な調査を行うことは困難である。一方、特許協力条約第6条の意味において明細書に裏付けられ、また、特許協力条約第5条の意味において明細書に開示されているものは、請求の範囲1-12の発明の医薬組成物の有効成分の中のごく僅かな部分に過ぎない。

したがって、請求の範囲1-12及び明細書は、有意義な国際調査をすることができる程度まで所定の 要件を満たしていない。

そこで、この国際調査報告では、請求の範囲1-12の発明については、明細書に具体的に記載された化合物に基づいて、合理的な負担の範囲内で、先行技術文献調査を行った。