直流一体化力矩伺服

YZ-AIM-EasyCan_v3.6.6

一. 产品特性

- 1. 隔离 CAN 通信(EasyCan 协议,简易,快速上手,速率 1M)。支持轮廓位置模式,和,周期同步模式。
- 2. 15 位绝对编码器,一圈脉冲高达 32768。
- 3. 多圈绝对值(需配电池)。脉冲模式: 重新上电自动回断电位置。 通信模式: 可断电记录位置。
- 4. 多级 DD 马达结构,大扭力输出。
- 5. 一体化伺服, 简化接线, 体积超小。
- 6. 低噪音,低振动,高速定位,高可靠性。
- 7. FOC 场定向矢量控制,支持位置/速度闭环。
- 8. 可工作在零滞后给定脉冲状态,跟随零滞后。
- 9. 16位电子齿轮功能。
- 10. 提供串口上位机,可监测电机状态和修改参数。
- 11. 位置模式,支持脉冲+方向信号,编码器跟随
- 12. 速度模式,支持 PWM 占空比信号调速
- 13. 具有堵转,过流保护,过压保护。

二. 参数表

型長		42AIM15C	42AIM10C			
电源	电压	24VDC±10%	24VDC±10%			
	电流	2.2A	1.6A			
电机参数	扭矩	0.48NM	0.33NM			
	额定转速	1000RPM	1000RPM			
	最大转速	1500RPM	1500RPM			
	功率	50W	35W			
反馈信号		单圈 15 位磁电编码器(单圈 32768 周	永冲)			
冷却方式		自然冷却				
重量						
位置控制模式	最大输入脉冲频率	500KHz				
	脉冲指令模式	脉冲+方向, A 相+B 相				
	电子齿轮比	设置范围 1~65535 比 1~65535	5 比 1~65535			
	位置采样频率	2KHz				
保护功能		堵转报警				
通信接口		Easycan(CAN 通信,速率 1M)				
		串口 TTL(19200,8,N,1)(监测电机状态和修改参数)。				
使用环境	环境温度	0~40°				
	电机允许最高温度	85°				
	湿度	5~95%				

型号参数		57AIM15C	57AIM15CH	57AIM30C	57AIM30CH		
电源	电压	24~36VDC	24~36VDC	24~36VDC	24~36VDC		
	电流	2.2A	2.2A	4.4A	4.4A		
电机参数	扭矩	0.48NM	0.24NM	0.96NM	0.48NM		
	额定转速	1000RPM	2000RPM	1000RPM	2000RPM		
	最大转速	1500RPM	2500RPM	1500RPM	2500RPM		
	功率	50W	50W	100W	100W		
反馈信号		多圈绝对值编码器	片(单圏 32768 脉冲	, 单圈 15 位)			
冷却方式		自然冷却					
重量							
位置控制模式	最大输入脉冲频率	500KHz					
	脉冲指令模式	脉冲+方向, A 相]+B 相				
	电子齿轮比	设置范围 1~65535 比 1~65535					
	位置采样频率	2KHz					
保护功能		堵转报警					
通信接口		Easycan(CAN 通信,速率 1M)					
		串口 TTL(19200	,8,N,1)(监测电机	状态和修改参数)	0		
使用环境	环境温度	0~40°					
	电机允许最高温度	85°					
	湿度	5~95%					

型号		60AIM25C	60AIM25CH			
电源	电压	36VDC±10%	36VDC±10%			
	电流	7A	7A			
电机参数	扭矩	2NM	1NM			
	额定转速	1000RPM	2000RPM			
最大转速		1500RPM	2500RPM			
功率		200W 200W				
反馈信号		单圈 15 位磁电编码器 (单圈 32768 脉冲)				
冷却方式		自然冷却				
重量						
位置控制模式	最大输入脉冲频率	500KHz				
	脉冲指令模式	脉冲+方向, A 相+B 相				
	电子齿轮比	设置范围 1~65535 比 1~65535				
位置采样频率		2KHz				
保护功能		堵转报警				
通信接口		Easycan(CAN 通信,速率 1M)				

		串口 TTL(19200,8,N,1)(监测电机状态和修改参数)。
使用环境	环境温度	0~40°
电机允许最高温度		85°
	湿度	5~95%

二. 驱动器接口

1. 电源与控制信号接口

端子序号	名称	功能
1	+24V	直流电源正极,+24V。 正负接反会直接短路电源,也可能损坏驱动器
2	GND	直流电源地。正负接反会直接短路电源,也可能损坏驱动器
3	PU+ (+5V)	脉冲控制信号:脉冲上升沿有效; PU-高电平时 3.3~5V, 低电平时 0~0.5V。
4	PU- (PU)	为了可靠响应脉冲信号,脉冲宽度应大于 1.2μs。如采用+12V 或+24V 时需串电阻。
5	DIR+ (+5V)	方向信号: 高/低电平信号, 为保证电机可靠换向, 方向信号应先于脉冲信号
6	DIR- (DIR)	至少 5μs 建立。DIR-高电平时 3.3~5V, 低电平时 0~0.5V。

端子序号:面对端子,左边为第一。

AIM 系列采用差分式接口电路可适用差分信号,单端共阴及共阳等接口,内置高速光电耦合器,允许接收长线驱动器,集电极开路和 PNP 输出电路的信号。

2. 通信与输出接口

端子序号:面对端子,下排从左到右分别为12345,上排从左到右分别为678910。

端子序号	名称	功能
1	CANL	Can 通信端口,使用 CAN 通信需要给 CAN_5V,COM 供电 5V
2	NC	
3	NC	
4	CANH	Can 通信端口,使用 CAN 通信需要给 CAN_5V,COM 供电 5V
5	GND	串口 GND
6	COM	输出信号与 can 电源公共地。
7	WR	报警信号输出,内部为光耦 NPN 输出。正常为高阻态,报警时与 COM 导通。
8	NC	
9	ZO	多圈编码器零点输出。编码器位置大于 0: NPN 输出导通信号,编码器位置小于 0: NPN
		不导通
10	CAN_5V	COM 通信 5V 电源,需要外部提供电源。(此电源通过控制器供电)

3. 状态指示与报警

开机后红灯绿灯都亮一次,用于检验 LED 是否工作正常。而后绿灯亮,红灯灭为正常状态。如果遇到报警状态,可以通过红色闪烁来判断原因,也可以通过 modbus 读取报警代码。

报警代码	红灯闪烁	报警原因	报警处理
0x10	一长闪	电池掉电报警	只提示,不停机
0x12	一长闪 2 短闪	过流报警	停机
0x14	一长闪 4 短闪	堵转报警	停机
0x15	一长闪 5 短闪	过压报警	停机,大惯性负载减速会发电,可能照成过压报警。需要在 电源处加放电模块,或者电源处加大电容储能。

注: 堵转报警, 堵转时间可以设置, 具体看寄存器说明。

三. 驱动器接线图与控制方式

1. 驱动器典型接线图

2.指令脉冲+方向位置控制模式

如果需要 3200 脉冲一圈

电子齿轮设置为 32768(编码器一圈脉冲数) 比 3200(需要设置的一圈脉冲数) 约分后为: 256 比 25 如果需要 8192 脉冲一圈(默认参数) 电子齿轮设置为 32768(编码器一圈脉冲数) 比 8192(需要设置的一圈脉冲数)

约分后为: 32768 比 8192

约分后为: 4比1

注意:能约分尽量约分,电子齿轮分子为32768,数值太大,会影响跟随性能

指令脉冲频率 = (需要电机运行的转速/60)* 一圈的脉冲数

例如: 需要点击 1000RPM 一圈脉冲数为 8192 脉冲频率 = 1000/60 * 8192= 136533HZ

3. 正交指令脉冲位置控制模式

通过设置特殊功能(0x19 地址)为 2,重新上电后,即为编码器跟随模式。这种模式可以用于编码器跟随,如一个轴接了编码器,将编码器输出接到驱动器(接线方式如 驱动器典型接线图),驱动器就能控制伺服电机,按输入编码器的信号,随动于控制的编码器。可以通过调节电子齿轮,来设置控制编码器和电机转动角度的比例。正转脉冲:

电机转动的方向: PU 上升沿超前 DIR 上升沿 为正转。PU 上升沿滞后 DIR 上升沿 为反转。

四. 参数调试

根据电机所接负载不同,参数需要调整才能达到最佳效果。

1. 内部加减速曲线

根据控制器输出信号的不同来选择是否使用内部加减速曲线。

使用内部加速曲线:

当电机加速度小于60000时,驱动器会使能内部加减速曲线,具体加速度的大小就和设置的值相同。

使用场合:使用内部加速曲线,会产生滞后脉冲的现象,一些不需要实时跟随的场合,可以使用内部加速曲线。有些控制器,脉冲直接给到对应速度的频率,没有加减速的情况,就使用内部加减速曲线,可以降低控制器编程难度。

禁止内部加速曲线:

当电机加速度大于等于60000时,驱动器根据外部脉冲的加减速允许,内部加速度无效。

使用场合:例如雕刻机,控制器输出的脉冲就是有加减速的,就不需要驱动器内部的加速曲线,如果这个时候使用,会滞后于实际的脉冲。

2. 丝杆负载

首先介绍下扭矩, 先用 400W 电机, 1.3NM。负载是 5mm 螺距的丝杆, 就是电机轴转一圈负载移动 5mm, 这样的话,

负载等效力臂 = 5mm / 3.14 = 1.592 mm

那电机能提供的推力就是

经过丝杆传动的推力 = 1.3NM / (1.592mm*0.001) = 816N

那能推动负载的重量就大约是 80KG, 这个是垂直的, 平推可以稍微大些。

由于丝杆负载电机转动一圈移动的距离较短,所以驱动器的参数 (加速度可以较大,如 20000,位置环 KP 可以较大,如 3000)。伺服电机最适合此种负载。

3. 皮带轮负载

伺服电机其实不是很适合接这种负载。因为皮带轮一般直径比较大,例如直径 30mm。那电机转一圈,负载移动的距离就是 $30mm^*\pi=94.2$,比上面说的丝杆 5mm 大了很多倍。

那电机能提供的推力就是

经过皮带传动的推力 = 1.3NM / (30mm*0.001) = 43.3 N

那能推动负载的重量大约是 4.3KG. 所以伺服电机其实不适合接同步轮,因为同步轮转动一圈负载移动的距离太长,力臂长。如果这种场合要用伺服电机,可以选择直接尽量小的同步轮或通过电机轴接小同步轮,负载端接大同步轮,这样减速几倍,可以达到较好的效果。这种场合驱动器参数(加速度设置较小,如 5000,),这样设置参数的目的是减小加速度和减速度,因为负载等效惯性大。

4. 圆盘负载

这种负载伺服无法直接带动,一般都需要接减速器。例如直径 200mm 重量 10KG 的圆盘。半径就是 100mm, 重量等效半径就是 50mm。力臂很大。如果伺服要接此类负载,比较接减速器再接负载。

如果圆盘不是特别重,可以牺牲一些定位精度和刚性来控制。具体方法,电机加速度设置到比较小,例如 1000 左右。 速度 KI 设置到 2000,取消积分作用。位置 KP 改到 1000. 改这些参数一般的圆盘负载也能用。

5. 自动找原点功能

自动找原点功能通过改 寄存器地址 0x19 (特殊功能)的参数来选择。如果需要上电自动找原点,设置方法如下:

modbus 使能 发送 1

特殊功能(地址 0x19)发送 10~32768(32768 对应电机的 360°)

参数保存发送 1

重新上电后就会自动找原点。由于是绝对值编码器,上电后可以自动找一圈中的任意位置。(DIR 极性是 1 或者 0 可以设置找原点的方向)

6. 自动找机械原点功能

自动找机械原点功能通过改 寄存器地址 0x19 (特殊功能)的参数来选择。如果需要上电自动找机械原点,设置方法如下:

modbus 使能 发送 1

特殊功能(地址 0x19) 发送 1 (此时立刻会自动找机械原点)

参数保存发送 1 (需要重新上电自动找机械原点可以通过保存此参数实现)

重新上电后就会自动反转到电机堵转,然后电机反转 36°作为原点。(DIR 极性是 1 或者 0 可以设置找原点的方向)

7. 通信方式清除位置

清除绝对位置:如果在运行过程中需要将绝对位置清 0,先电子齿轮分子发送 0(通信模式下电子齿轮无效,用于此特殊功能。如果通信控制可以直接电子齿轮分子保存成 0),然后绝对位置(0x16)发送 0,就直接给绝对位置 0.

急停:在通信模式下,如果剩余了很多脉冲需要走,需要急停的情况。先电子齿轮分子发送 0 (通信模式下电子齿轮无效,用于此特殊功能。如果通信控制可以直接电子齿轮分子保存成 0,再增量位置 (0x0C)发送 0,就可以急停。急停也有少量减速距离,减速距离长短通过位置环 KP 控制。

8. 上电默认通信控制

只要设置电子齿轮分子为 0, 保存以后, 重新上电, modbus 使能 默认 是 1.

9. 多圈绝对值的使用说明(带电池方案)

● A、设置多圈位置。

电机未安装以前,电机接上电池、电源和通信线。用上位机软件,对绝对位置发 0,让电机先走到原点,此时安装电机到系统,刚好对应系统的原点。

如果安装的时候没有对原点,电机单圈原点是编码器的原点,无法设置。多圈归零,可以通过同时把电源和电池断电来清除。

注意:是用多圈绝对值功能后,不能使用清楚绝对位置命令,因为清除绝对位置命令只是清除单片机内部的位置寄存器,无法清除编码器内部的多圈信息。如果要重新设置零点,就需要按上面步骤重新设置。

● B、通信控制方式如何使用多圈功能。

通过(A)方法设置好原点位置以后,每次上电通过通信读取绝对位置就能知道当前电机的位置。

● C、通过脉冲控制控制如何使用多圈功能。

方式 1: 可以通过接电机输出 ZO 信号,当电机位置大于零位 ZO 一直输出导通信号,当电机位置小于零位 ZO 一直输出不导通信号。刚上电,控制器读取 ZO,当 ZO 导通,反转至 ZO 不导通为零点。刚上电,控制器读取 ZO,当 ZO 不导通,正转至 ZO 导通为零点。

方式 2: 可以通过把电机参数 特殊功能 保存成 6.这样每次上电会自动走回设置的原点。上电回原点的速度通过加速度的个位来设置,

回原点速度 = ()加速度个位+1)*100

例如:加速度为 20000 时,回原点速度为 100.加速度为 20005 时,回原点速度为 600.

■ D、如何开启电池掉电报警。

首先,先设置好系统,接好电池后,通过提供的上位机软件,把静态最大输出(0x18)的个位改成单数(默认一般是 506 改成 505 即可),就会开启电池掉电报警功能。由于第一次上电,电池是未接状态,所以会报警提示电池掉电报警,通过通讯发 EN 使能发 1,就能清除掉报警。只要出现了一次掉电报警,如果不清除报警,以后再上电一直会报警提示掉电报警,直到发一次 EN 使能为 1,清除报警。

10. 刹车多圈绝对值使用说明

A. 多圈原点设置方法:

先通过我们提供的上位机控制电机旋转到设备的原点位置。(mdobus 使能先发送 1, 再发 pu 步数 控制电机旋转)

此时参数保存发送3(作用为保存单圈原点,保存好后,参数保存会显示2)。

直接拔掉电机电源插头(注意只能直接把电机端子的电源,而不能通过断 220V 电让开关电源间接断电),此位置,电机会自动记录成原点。而通过切断 220V 开关电源输入的时候,由于开关电源电容能储能,电压下降缓慢,电机检测到电源下降过程,会自动保存当前的位置,下次上电再自动读出更新到绝对值位置寄存器。(注: 所以如果开关电源电容容量太小,可能会照成不能正常工作,这个情况请在开关电源直流输出侧接一个 1000UF/63v 的电解电容)。

B. 通信控制使用方法:

首先要求电机是带刹车的电机, 先打开多圈绝对值功能, 设置如下:

Modbus 使能 发送 1。

特殊功能 发送 7。

参数保存 发送 1。

重新上电。

上电的时候,直接读取绝对位置寄存器的值,即为当前电机所在的位置值。32768 为一圈。

C. 脉冲控制使用方法:

方式 1:

首先要求电机是带刹车的电机, 先打开多圈绝对值功能, 设置如下:

Modbus 使能 发送 1。

特殊功能 发送 7。

参数保存 发送 1 。

重新上电。

可以通过接电机输出 ZO 信号,当电机位置大于零位 ZO 一直输出导通信号,当电机位置小于零位 ZO 一直输出不导通信号。刚上电,控制器读取 ZO,当 ZO 导通,反转至 ZO 不导通为零点。刚上电,控制器读取 ZO,当 ZO 不导通,正转至 ZO 导通为零点。

方式 2: 可以通过把电机参数 特殊功能 保存成 8.这样每次上电会自动走回设置的原点。

Modbus 使能 发送 1。

特殊功能 发送 8。

参数保存 发送 1。

重新上电 。

五. CAN 通信控制方式

1. 硬件连接

驱动器内部 485 都通过光耦隔离,解决了一台主机连接多台从机容易被干扰和损坏的问题。

2. 寄存器说明

驱动器可以通过 EasyCan 来控制驱动器。主机可以通过 can 的读写寄存器功能来设置驱动器参数和控制运行。寄存器列表如下:

地址	参数名称	只读/	参数范围	参数说明
		读写		
0x00	Modbus 使能	读写	0~1	0: modbus 禁止
				1: modbus 使能
0x01	驱动器输出使能	读写	0~1	0: 驱动器输出禁止
				1: 驱动器输出使能
0x02	电机目标速度	读写	0~3000 r/min	速度模式时,目标速度
				位置模式时,最大速度
0x03	电机加速度	读写	0~65535	参数小于 60000 时,驱动器内部产生加减速曲线,参数大于 60000
			(r/min)/s	时,驱动器内部不产生加减速脉冲
0x04	弱磁角度	读写	0~306	内部参数不需要另外设置
			r/min	
0x05	速度环比例系数	读写	0~10000	代表 0.0~10.0
				数值越大刚性越强
				个位为偶数:脉冲输入极性为断开时刻有效
				个位为奇数:脉冲输入极性为导通时刻有效
0x06	速度环积分时间	读写	2~2000	积分时间 2~2000ms
			ms	数值越小刚性越强
0x07	位置环比例系数	读写	60~30000	位置 KP,数值越大,刚性越强

				个位为偶数:报警输出常开(正常为常开,报警常闭) 个位为奇数:报警输出常闭(正常为常闭,报警常开)			
0x08	速度前馈	读写	0~12.0V/KRP M	327 代表 1V/KRPM,不需要自行设置 个位为 1 时,开启 CAN 通讯断开保护,CAN 通讯断开后 1 秒会 自动把目标转速设置为 0,把电机停止。			
0x09	DIR 极性	读写	0~1	0:外部 DIR 不导通顺时针旋转 1:外部 DIR 导通顺时针旋转			
0x0A	电子齿轮分子	读写	0~65535	16 位电子齿轮分子 如果电子齿轮分子为 0,可以实现特殊功能具体看前文介绍			
0x0B	电子齿轮分母	读写	1~65535	16 位电子齿轮分母			
0x0C	增量位置低 16 位	读写		需要走步数的高 16 位			
0x0D	增量位置高 16 位	读写		需要走步数的低 16 位			
0x0E	报警代码	只读					
0x0F	系统电流	只读	0~32767	实际电流为 x/2000(A)			
0x10	电机当前速度	只读	-30000~30000	实际电机转速=电机当前速度/10			
			r/min				
0x11	系统电压	只读	0~32767	实际电压为 x/327(V)			
0x12	系统温度	只读	0~100	摄氏度			
0x13	系统输出的 PWM	只读	-32768~32767	代表-100%~100%			
0x14	参数保存标志	读写	0~1	0: 参数未保存			
				1: 保存参数中			
				2: 保存完毕			
0x15	设备地址	只读	0~255	设备地址(can 通信需要保存重新上电后新地址生效)			
0x16	绝对位置低 16 位	读写		走过步数的高 16 位			
0x17	绝对位置高 16 位	读写		走过步数的低 16 位			
0x18	静止最大允许输出	读写	0~609	0~609 对应允许最大输出 0~60.9% 个位 1~9 对应堵转报警时间。 个位 0 堵转不报警. 个位是单数的时候,会开启电池断电报警功 能。			
0x19	特殊功能	读写	0~100	0: 脉冲+方向模式 1: 自动找机械原点并正转 36°(上电自动反转到机械零点,并正向走 36°停下) 2: 编码器跟随模式 3: 速度模式,占空比调速(10%~90%对应 0~1000RPM) 4: 自动找机械原点并正转到编码器零点(上电自动反转到机械零点,并正向走到编码器零点停下) 6. 带电池的状态,上电走动走回多圈零点。 7. 带刹车电机,刹车多圈绝对值功能,上电多圈位置更新在绝对位置寄存器。 8. 带刹车电机,刹车多圈绝对值功能,上电自动走回原点。			
				9. 通信插补(无滞后状态)需要对 PU 输入占空比 50%的 10K 信号 10~32768: 上电自动转到的角度, 算法为: X*360°/32768			
0x1a	绝对位置低 16 位(can 通信位置缓存)	读写	-32768~32767	信号			

	通信位置缓存)			电机同时运行。		
0x1c	Can 通信同步控制字	读写	0~65535	0:关闭同步模式。大于 0 时会同步内部 2ms 时间基准,并开启局步模式。当值为 255 时,同步通过 DIR 信号同步,DIR 需要输入一个每 0.1ms 一次高低电平切换的信		
				号。		
0x1d	最大允许电流	读写	0~10009	单位毫安,对应最大工作允许电流为 0~10.009A		
				个位 1~9,对应达到最大电流 1~9 秒即报警停机		
				个位为0时,达到最大电流一直维持最大电流不报警		

3. EasyCan 通信格式

EasyCan 通信协议采用数据帧标准格式。数据帧格式如下图所示:

SOF	标识符 RTR	r1 r0	DLC	数据段0~8字节	CRC	ACK	EOF	ITM
1bit	11bit 1bit	1bit 1bi	4bit	0~64bit	16bit	2bit	7bit	3bit

SOF: 帧间隔。

标识符: 范围 0~255, 表示目标设备的地址。主机发数据给从机,标识符即为从机地址。从机发数据给主机,

标识符即为主机地址。

RTR: 0:数据帧。(1:远程帧)。EasyCan 只使用数据帧。

r1 : 0: 标准标识符。(1: 扩展标识符)。EasyCan 只使用标准标识符。

r0 : 接收位。

DLC: 数据长度代码。

数据段: 具体协议参看后面表格。

a. 主机读取数据及从机应答格式 (功能码 03)

主机读取一个 16 位寄存器。主机地址: 0xff 。 从机地址: 0x1 。

主机读取 16 位寄存器 (功能码 03)									
仲裁段 控制段 数据段									
CAN 标识符(从机地址)	DLC(数据段长度)	主机地址	功能码	寄存器地址	数据长度				
0x01	0x04	0xff	0x03	0x00	0x01				

仲裁段	控制段	控制段数据段							
CAN 标识符(主机地址)	DLC(数据段长	从机地 功能 寄存器地 数据长 数据低 8 数据高							
	度)	址	码	址	度	位	位		
0xFF	0x06	0x01	0x03	0x00	0x01	00	00		

主机读取两个 16 位数据。主机地址: 0xff 。 从机地址: 0x1 。

	主机读取两个16位	立数据(功能码03)
仲裁段	控制段	数据段

CAN 标识符(从机地址)	DLC(数据段长度)	主机地址	功能码	寄存器地址	数据长度
0x01	0x04	0xff	0x03	0x00	0x02

	从机应答									
仲裁段	控制段					数据段				
CAN 标识符 (主	DLC(数据	从机地	功能	寄存器	数据长	寄存器 1	寄存器 1	寄存器 2	寄存器 2	
机地址)	段长度)	址	码	地址	度	低 8 位	高 8 位	低 8 位	高 8 位	
0xFF	0x08	0x01								

b. 主机写数据及从机应答格式 (功能码 06)

主机写一个16位寄存器。主机地址: 0xff 。 从机地址: 0x1 。

	主机 写一个 16 位寄存器 (功能码 06)									
仲裁段	控制段				数据段					
CAN 标识符(从机地址)	DLC(数据段长	主机地	功能	寄存器地	数据长	数据低8	数据高8			
	度)	址	码	址	度	位	位			
0x01	0x06	0xff	0x06	0x00	0x01	01	00			

	从机应答									
仲裁段	控制段				数据段					
CAN 标识符(主机地址)	DLC(数据段长	从机地	功能	寄存器地	数据长	数据低 8	数据高8			
	度)	址	码	址	度	位	位			
0xFF	0x06	0x01	0x06	0x00	0x01	01	00			

主机写两个16位寄存器。主机地址: 0xff 。 从机地址: 0x1 。

	主机写两个 16 位寄存器(功能码 06)											
仲裁段	控制段		数据段									
CAN 标识符(从	DLC(数据段	主机	功能	寄存器	数据长	寄存器 1	寄存器 1	寄存器 2	寄存器 2			
机地址)	长度)	地址	地址 码 地址 度 低位 高位 低位 高						高位			
0x01	0x08	0x08										

从机应答									
仲裁段	控制段					数据段			
CAN 标识符(主	DLC(数据段	从机地	功能	寄存器	数据长	数据1低	数据1高	数据2低	数据2高
机地址)	长度)	址	码	地址	度	8位	8 位	8 位	8 位
0xFF	0x08	0x01	0x01 0x06 0x00 0x02 01 00 01 00						

注意: 当写入的寄存器地址为 0xC (增量位置)时,返回的数据为,当前绝对位置。 当写入的寄存器地址为 0x16 (绝对位置)时,返回的数据为,当前绝对位置。

c. 主机写绝对位置缓存, 2ms 通信插补模式

主机地址: 0xff 。 从机地址: 0x1

主机写绝对位置缓存(从机不回复)									
仲裁段	控制段	数据段							
CAN 标识符(从机地	DLC(数据段长	绝对位置第	绝对位置第	绝对位置第	绝对位置第				
址)									

0x101	0x04	0x00	0x00	0x00	0x00
OATOI	OAOI	OAOO	OAOO	OAGO	OAOO

注:标示符的低 8 位,为实际从机地址。标示符高三位的最低位为 1 时,代表此帧发送的为绝对位置缓存,并且电机收到不回复数据,用于高速写入位置。

主机写绝对位置缓存(从机回复)									
仲裁段	控制段	数据段							
CAN 标识符(从机地	DLC(数据段长	绝对位置第	绝对位置第	绝对位置第	绝对位置第				
址)	度)	0~7 位	8~15 位	16~23 位	24~31 位				
0x301	0x04	0x00	0x00	0x00	0x00				

仲裁段	控制段数据段								
CAN 标识符(主机地	DLC(数据段长	绝对位置第	绝对位置第	绝对位置第	绝对位置第				
址)	度)	0~7 位	8~15 位	16~23 位	24~31 位				
0xFF	0x04	0x00	0x00	0x00	0x00				

注:标示符的低 8 位,为实际从机地址。标示符高三位的最低位为 1 并且第二位也为 1 时,代表此帧发送的为绝对位置缓存,并且电机收到数据需要回复当前位置。

d. 急停指令

主机地址: 0xff 。 从机地址: 0x1

	主机写急停		
仲裁段	控制段	数扩	居段
CAN 标识符(从机地址)	DLC(数据段长度)	主机地址	功能码
0x01	0x02	0xff	0x10

	从机应答		
仲裁段	控制段	数技	居段
CAN 标识符(主机地址)	DLC(数据段长度)	从机地址	功能码
0xFF	0x02	0x01	0x10

注: 主机写急停后, 电机立刻停止。

e. 绝对位置清零指令

主机地址: 0xff 。 从机地址: 0x1

主机写急停(从机不回复)							
仲裁段	控制段	数技	居段				
CAN 标识符(从机地址)	DLC(数据段长度)	主机地址	功能码				
0x01	0x04	0xff	0x11				

f. 一次读多个寄存器指令

主机地址: 0xff 。 从机地址: 0x1

	主机读三个 16 位寄存器(功能码 0x12)										
仲裁段	控制段	数据段									
CAN 标识符(从机地	DLC(数据段长	主机地	功能	第一个寄存器	第二个寄存器	第三个寄存器					
址)	度)	址	码	地址	地址	地址					
0x01	0x05	0xff	0x12	0x00	0x01	0x02					

仲裁段	控制段		数据段						
CAN 标识符 (主	DLC(数据	从机地	功能	第一个	第一个	第二个寄	第二个寄	第三个寄	第三个寄
机地址)	段长度)	址	码	寄存器	寄存器	存器低 8	存器高8	存器低 8	存器高 8
		低 8 位 高 8 位 位 位 位 位						位	
0xFF	0x08	0x01	0x12	0x01	0x00	0x01	0x00	0x01	0x00

4. EasyCan 方式主机控制过程

a: 位置模式(轮廓位置模式)详解

轮廓位置模式下,驱动器接收主站发送来的目标位置指令,在驱动器内部根据速度、加速度规划参数设置进行轨迹规划。例如:应用程序要求伺服轴以设定的速度、加速度运动到某个目标位置,驱动器接到这个指令后,在内部的轨迹生成器中计算出每个 NC 周期(比如: 1ms)伺服轴应该到达的位置,然后发送给位置环去执行。

先确定特殊功能是否为位置模式。(特殊功能为3时,是速度模式,如果是速度模式,要改成0)如果是速度模式需要改为位置模式,指令如下:

1.特殊功能 发送 0

传输方向	ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x06	x FF 06 19 01 00 00
接收	0x00FF	数据帧	标准帧	0x06	x 01 06 19 01 00 00

FF: 主机地址

01: 从机地址

06: 写功能码

19: 寄存器地址为 0x19 (特殊功能)

01: 数据长度为1

00 00: 写入数据为 0

2.参数保存 发送 1

传输方向	ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x06	x FF 06 14 01 01 00
接收	0x00FF	数据帧	标准帧	0x06	x 01 06 14 01 01 00

FF: 主机地址

01: 从机地址

06: 写功能码

19: 寄存器地址为 0x14 (参数保存标志)

01: 数据长度为1

01 00: 写入数据为 1

轮廓位置模式:是通过驱动器内部产品加减速曲线。参数设置完以后,就可以通过 PLC 或者单片机,或者自己设计的上位机软件发位置命令。发位置命令过程如下:

首先先设置需要的目标速度和加速度。目标转速地址为 0x2(查看寄存器表格),加速度地址为 0x3. 例如需要速度 1000rpm(16 进制为 0x03E8),加速度为 10000RPM/S(16 进制为 0x2710)。

传输方向	ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 02 02 E8 03 10 27
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 02 02 E8 03 10 27

FF: 主机地址 01: 从机地址

06: 写功能码

02: 寄存器地址为 0x2 (目标转速)

02: 数据长度为 2

E8 03 (低位在前): 写入 0x2 地址寄存器的数据为 0x03E8 (十进制为 1000)

10 27 (低位在前): 写入 0x3 地址寄存器的数据为 0x2710 (十进制为 10000)

发增量位置(增量位置的含义是,发送的数据即为电机需要向前或者向后走的位置)。例如需要向前走一圈(电机编码器为15位绝对值编码器,一圈脉冲数即为32768)。增量位置寄存器地址为0x0C指令如下:

传输方	句 ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 0C 02 00 80 00 00
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 0C 02 0E 37 00 00

FF: 主机地址

01: 从机地址

06: 写功能码

0C: 寄存器地址为 0xC (增量位置)

02: 数据长度为 2

00 80 00 00 (低位在前): 写入 0xC 和 0xD 地址寄存器的数据为 0x0000 8000 (十进制为 32768)

0E 37 00 00 (低位在前): 返回的当前位置数据为 0x0000 370E

例如需要向前后一圈(电机编码器为 15 位绝对值编码器,一圈脉冲数即为 32768) 反转即为-32768 的二进制计算方法如下: 32768 的二进制为 00 00 80 00 (高位在前) 。(注: 0= FF FF FF FF +1)

-32768 即为 0 - 00 00 80 00 =FF FF FF FF - 00 00 80 00 +1=FF FF 7F FF +1 = FF FF 80 00

传输方	向 ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 0C 02 00 80 FF FF
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 0C 02 0E 37 00 00

FF: 主机地址

01: 从机地址

06: 写功能码

0C: 寄存器地址为 0xC (增量位置)

02: 数据长度为 2

00 80 FF FF (低位在前): 写入 0xC 和 0xD 地址寄存器的数据为 0xFFFF 8000 (十进制为-32768)

0E 37 00 00 (低位在前): 返回的当前位置数据为 0x0000 370E

发绝对位置(绝对位置的含义是,绝对位置清 0 或者自动找原点后的时候定义位置为 0,绝对位置就是走到新发的位置,如第一次发 32768 为走到电机 360°的位置,第二次发已经走到了 32768 的位置,再发相同命令电机不走,再发 16384 就会反转半圈,发绝对位置,就是需要走到那个位置,和增量位置不同,增量位置是再当前位置的基础上往前或者往后走。)绝对位置地址为 0x16。

例如需要电机走到2圈位置(电机一圈脉冲数32768,两圈即为65536)

传输方	句 ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 16 02 00 00 01 00
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 16 02 0E 37 00 00

FF: 主机地址 01: 从机地址 06: 写功能码

0C: 寄存器地址为 0x16 (绝对位置)

02: 数据长度为 2

00 00 01 00 (低位在前): 写入 0xC 和 0xD 地址寄存器的数据为 0x0010 0000 (十进制为 32768)

0E 37 00 00 (低位在前): 返回的当前位置数据为 0x0000 370E

例如需要电机走回原点(当电子齿轮分子为0的时候,发送0为清除当前位置,所以走回原点发送1,此时一个脉冲并不会影响精度)

传输方	向 ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 16 02 01 00 00 00
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 16 02 11 37 00 00

注:控制电机只需要先发送需要的位置(尽量用绝对位置指令,因为可以重复发多次,依然是走到相同位置),然后通过返回绝对位置对比是否走到设置位置(注意判断的时候需要允许+-10的误差),来判断是否执行下一条指令。或者可以通过接 PF 信号,走到位后,驱动器会给出一个光耦输出的开关量信号。

b: 位置模式(轮廓位置模式)控制过程

轮廓位置模式只需要先设置需要的加速度和速度,再发送需要走到的绝对位置,或者增量位置。

(1) 目标速度设置 1000,加速度设置 10000。(具体指令含义见详解)

传输方向	ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 02 02 E8 03 10 27
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 02 02 E8 03 10 27

(2) 绝对位置发送 32768

传输方向	句 ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 16 02 00 00 01 00
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 16 02 0E 37 00 00

(3) 绝对位置发送 1

传输方向	i ID号	帧类型	帧格式	长度	数据
发送	0x0001	数据帧	标准帧	0x08	x FF 06 16 02 00 00 01 00
接收	0x00FF	数据帧	标准帧	0x08	x 01 06 16 02 0E 37 00 00

(4)不断重复发需要走到的绝对位置即可。判断是否到位,可以通过读取绝对位置与发送的绝对位置比对, 判断是否走到。(注意电机根据位置 KP 大小不同,会允许一定脉冲数的误差)。

c: 位置模式(周期同步位置模式)多个电机同步控制过程(电机积累减速脉冲)

周期同步位置模式(Cyclic synchronous position mode),与轮廓位置模式(Profile Position Mode)不同,其轨迹发生器位于控制器端,而非驱动器内。在该模式下,控制器只需要周期性的下发目标位置即可(与位置插补模式的原理相类似)。

周期同步位置模式,电机加速度预先设置到 60000,可以通过提供的上位机软件修改并保存。如果是 3 台电机先预先设置为不同地址(例如分别为地址 1,地址 2,地址 3)。周期同步位置模式的目标转速为限制最大转速,所以预先设置为电机的最大转速(例如 1500RPM)。

同步周期为 2ms,现在假设我们需要电机运行速度为 600rpm,那我们计算出 2ms 内电机需要走过的脉冲数,计算方法如下:

 $(600R/MIN) / 60 = 10R/S_{\odot}$

(10R/S) / 500 = 0.02R/(2ms) (备注: 1 秒除以 500 = 2ms)

0.02/(2ms) * 32768 = 655.36 P/(2ms)(备注: 电机一圈脉冲数为 32768)

所以每 2ms 向电机的绝对位置发送 655 的增量电机即以 600RPM 运行。启动的加速度和停止的减速曲线也是由控制器生成,计算出每 2ms 需要增加的位置,然后分别向电机写入,再写入同步信号。

前期准备过程:

- (1) 预先通过提供的上位机软件, modbus 使能 发送 1 (使能通信)
- (2) 电子齿轮分子 发送 0 (电子齿轮分子保存为 0 后,下次重新上电, modbus 使能默认为 1)。
- (3) 电机加速度 发送 20000 (电机加速度不能为 60000, 60000 为无滞后模式)。
- (4) 参数保存标准 发送 1 (保存后参数下次上电会生效)
- (5) 重新上电。

实际控制过程:

- (1)分别向 3 台电机的 Can 通信同步控制字(寄存器地址 0x1c)写入 1(使能 CAN 同步控制)。
- (2) 分别读取 3 台电机的绝对位置(寄存器地址 0x16 0x17)。
- (3)分别写 3 台电机的绝对位置缓存(参考 主机写绝对位置缓存, 2ms 通信插补模式 格式)写入 2ms 需要走过的脉冲数(注意第一次要先读取当前绝对位置,再把需要走的增量脉冲数加到当前绝对位置再发送)。
 - (4) 重复步骤(3)

d: 位置模式(周期同步位置模式)多个电机同步控制过程(电机无滞后)

此模式区别于上一种周期同步位置模式,差异在于,电机内部不积累减速脉冲,实时根据主控给的脉冲量实时跟随。此模式要求主控给出 10Khz 50%占空比的同步信号输入电机 PU 端口,用于同步主控与电机的时钟,所以这个 10KHZ 最好是由主控的定制器产生。CAN 通信依然是每个 2MS 给出这 2ms 电机需要走过的位置(对应的脉冲数)。具体计算方法如前一条。

电机参数准备:

- (1) 预先通过提供的上位机软件, modbus 使能 发送 1 (使能通信)
- (2) 电机加速度 发送 60000 (电机加速度 60000 为无滞后模式)。
- (3) 特殊功能 发送 9 (使能 PU 引脚输入 10K 同步信号)
- (5) 参数保存标准 发送 1 (保存后参数下次上电会生效)
- (6) 重新上电。

实际控制过程:

- (1) 分别向 3 台电机的 Can 通信同步控制字(寄存器地址 0x1c)写入 1(使能 CAN 同步控制)。
- (2) 分别读取 3 台电机的绝对位置(寄存器地址 0x16 0x17)。
- (3)分别写 3 台电机的绝对位置缓存(参考 主机写绝对位置缓存, 2ms 通信插补模式 格式)写入 2ms 需要走过的脉冲数(注意第一次要先读取当前绝对位置,再把需要走的增量脉冲数加到当前绝对位置再发送)。
 - (4) 重复步骤(3)

5. 通信错误代码

从机应答(错误代码)					
仲裁段	控制段		数据段		
CAN 标识符(主机地址)	DLC(数据段长度)	从机地址	功能码	错误代码	
0xFF	0x03	0x01	0x90	0x00	

错误代码	报警原因	报警处理
0x02	非法地址	读取或者写入地址超过了最大地址
0x03	非法功能码	功能码只有 0x3 和 0x6
0x04	非法数据长度	最多一次只能写入两个 16 位的数
0x05	2ms 通信插补频率过高	2ms 发送一个插补绝对位置

Modbus 读取: 此栏可设定驱动器的地址,读取驱动器数据的周期,和是否读取。

Modbus 发送: 此栏用于修改驱动器参数,首先选定参数类型,再设定好参数数据,然后点发送即可。

6. 修改波特率

修改波特率可以通过我们提供的上位机软件发送,也可以使用其他 USBCAN 发送。具体要按如下步骤发送:

A. Modbus 使能(地址 0) 发送 1

B. 电机加速度(地址 3) 发送 803 (备注 803:1M 802:500K 801:250K 800:125K)

C. 弱磁角度(地址4) 发送 129D. Modbus 使能(地址0) 发送 506

重新上电后生效

注意: 不需要发参数保存,因为这个是改内部参数。只需要严格按上面步骤发送。