Exercice N°1: @ réseau 193.24.1.0 et 2 sous-réseaux.

a) 2 bits à emprunter de l'adresse machine.

 $2^{n} - 2 \ge 2$, n: le minimum, 2: nbr de sous-réseaux

b) masque de sous-réseau : ce réseau est de classe C. Structure de l'adresse :

. N . N .S H 11111111.111111111.111111111.11000000 255 . 255 . 255 . 192

c) On aura 2⁶-2=62 adresses possibles pour chaque sous-réseau. On enlève toujours l'@ 000000 réservée à l'@ du sous-réseau;

et l'@ 111111 réservée à l'@de diffusion dans le sous-réseau.

 $2^{6} - 2 = 62$, 6: nbr de bits de la partie machine, 2: @ réseau + @broadcast

d) intervalle des adresses dans le 1^{er} sous-réseau utilisable :

S	Н	décimal	@IP
01	000000	64	193.24.1.64
01	000001	65	193.24.1.65
•••	•••	•••	•••
01	111111	127	193.24.1.127

Donc l'intervalle des adresses (càd toutes les adresses) dans le 1^{er} sousréseau utilisable : de 193.24.1.64 à 193.24.1.127

e) intervalle des adresses **utilisables** dans le 2^{ème} sous-réseau utilisable :

S	Н	décimal	@IP
10	000000	128	193.24.1.128
10	000001	129	193.24.1.129
•••	•••	•••	•••
10	111111	191	193.24.1.191

Donc l'intervalle des adresses **utilisables** (attention pas toutes les adresses) dans le 2^{ème} sous-réseau utilisable : de 193.24.1.129 à 193.24.1.190

f) Nombre d'@ sont perdues en raison du subnetting.

On perd la 1ère et la dernière @ de sous-réseau. Soit $00 \left\{ 2^6 = 64 \right\}$ 01 10 $11 \left\{ 2^6 = 64 \right\}$

$$\begin{array}{c|c}
01 \\
10 \\
11 \left\{ 2^6 = 64 \right.
\end{array}$$

Donc 64x2=128@

Aussi au niveau de chaque sous-réseau on perd 2@ donc 4@ pour les 2 s/r. Au total on perd donc 128+4= **132@perdues**

Exercice N°2: @ réseau 200.93.105.0 et 29 sous-réseaux.

- on peut avoir 2^5 -2=30 S/R a) Avec | 5 bits
- b) Il reste 8-5=3bits pour les stations, donc 2^3 -2= 6 machines par S/R N.N.N.S

3

c) Intervalle des adresses utilisables dans le 1^{er} sous-réseau utilisable :

S	Н	décimal	@IP
00001	000	8	200.93.105.8
00001	001	9	200.93.105.9
•••	•••	•••	•••
00001	111	15	200.93.105.15

Les adresses **utilisables** se trouvant dans le 1^{er} sous-réseau utilisable sont dans l'intervalle 200.93.105.9 à 200.93.105.14

d) Pour le S/R n°10:

S	Н	décimal	@IP	
01010	000	80	200.93.105.80	\rightarrow @ de ce S/R
01010	001	81	200.93.105.81	2 22 22 23 24
•••	•••	•••	•••	
01010	111	87	200.93.105.87	\rightarrow @ de diffusion
				de ce S/R

Les adresses **utilisables** se trouvant dans le 10^{ème} sous-réseau sont dans l'intervalle

e) @perdues : On perd le 1^{er} et le dernier S/R $00000 \ 2^3 = 8$

 $11110 \ 2^3 = 8$ $1111112^3 = 8$

Donc $2^3x3=24$ @ perdues On perd aussi (@S/R+@Diffusion) dans chacun des 29 S/R restants càd 29x2=58 @

Au total on perd donc 58+24= **82** @

Exercice N°3: Pour l'adresse 145.245.45.225:

- 1. Le premier octet de l'adresse donne en binaire $\underline{10}010001$. Les deux premiers bits nous indiquent qu'il s'agit d'une *classe B*.
- 2. Le masque par défaut d'une classe B est : 255.255.0.0 (/16). Nous aurons en binaire : 11111111.11111111.00000000.00000000.
- 3. Pour trouver l'adresse réseau par défaut, nous allons appliquer le masque réseau par défaut à l'adresse IP au travers d'une fonction "et". Nous aurons : 145.245.0.0.
- 4. Pour obtenir 60 subdivisions du réseau, nous devons augmenter le masque réseau de 6 bits. En effet, 2⁶ donne 64 qui est le plus petit exposant de 2 supérieur à 60. Le masque de sous-réseau sera donc 255.255.252.0 (/22). Nous aurons en binaire : 11111111.11111111.11111100.000000000.
- 5. Pour trouver l'adresse de sous-réseau, nous allons appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "et". Nous aurons : *145.245.44.0*. Pour trouver le numéro du sous-réseau, nous allons uniquement considérer les bits dédiés sous-réseau de l'adresse IP. Nous aurons : *11*.
- 6. Pour trouver le numéro de machine dans le sous-réseau, nous allons uniquement considérer les bits dédiés à la machine de l'adresse IP. Nous aurons : 481.
- 7. Pour déterminer les adresses des sous-réseaux, nous allons faire varier les 6 bits de sous-réseau de 000000 à 111111. Dans chaque sous-réseau, pour déterminer toutes les adresses utilisables, nous allons faire varier les 10 bits de machine de 0000000001 à 111111110. Nous aurons :

Adresse réseau : 1 ^{ère} adresse utilisable : Dernière adresse utilisable :			
145.245.0.0	[145.245.0.1	145.245.3.254]	
145.245.4.0	145.245.4.1	145.245.7.254	
145.245.8.0	145.245.8.1	145.245.11.254	

Pour l'adresse 202.2.48.149 :

- 1. Le premier octet de l'adresse donne en binaire $\underline{110}$ 01010. Les trois premiers bits nous indiquent qu'il s'agit d'une *classe C*.
- 2. Le masque par défaut d'une classe C est : 255.255.255.0 (/24). Nous aurons en binaire : 11111111 .11111111 .00000000.
- 3. Pour trouver l'adresse réseau par défaut, nous allons appliquer le masque réseau par défaut à l'adresse IP au travers d'une fonction "et". Nous aurons : 202.2.48.0.
- 4. Pour obtenir 15 subdivisions du réseau, nous devons augmenter le masque réseau de 4 bits. En effet, 2⁴ donne 16 qui est le plus petit exposant de 2 supérieur à 15. Le masque de sous-réseau sera donc 255.255.255.240 (/28). Nous aurons en binaire : 11111111.111111111.111111111.11110000.
- 5. Pour trouver l'adresse de sous-réseau, nous allons appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "et". Nous aurons : 202.2.48.144. Pour trouver le numéro du sous-réseau, nous allons uniquement considérer les bits dédiés sous-réseau de l'adresse IP. Nous aurons : 9.
- 6. Pour trouver le numéro de machine dans le sous-réseau, nous allons uniquement considérer les bits dédiés à la machine de l'adresse IP. Nous aurons : 5.
- 7. Pour déterminer les adresses des sous-réseaux, nous allons faire varier les 4 bits de sous-réseau de 0000 à 1111. Dans chaque sous-réseau, pour déterminer toutes les

adresses utilisables, nous allons faire varier les 4 bits de machine de 0001 à 1110. Nous aurons :

Adresse réseau : 1	ère adresse utilisable : 1	Dernière adresse utilisable :
202.2.48.0	202.2.48.1	202.2.48.14
202.2.48.16	202.2.48.17	202.2.48.30
202.2.48.32	202.2.48.33	202.2.48.46

Pour l'adresse 97.124.36.142 :

- 1. Le premier octet de l'adresse donne en binaire $\underline{0}1100001$. Le premier bit nous indique qu'il s'agit d'une *classe A*.
- 3. Pour trouver l'adresse réseau par défaut, nous allons appliquer le masque réseau par défaut à l'adresse IP au travers d'une fonction "et". Nous aurons : 97.0.0.0.
- 4. Pour obtenir 200 subdivisions du réseau, nous devons augmenter le masque réseau de 8 bits. En effet, 2⁸ donne 256 qui est le plus petit exposant de 2 supérieur à 200. Le masque de sous-réseau sera donc 255.255.0.0 (/16). Nous aurons en binaire : 11111111.111111111.000000000.000000000.
- 5. Pour trouver l'adresse de sous-réseau, nous allons appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "et". Nous aurons : 97.124.0.0. Pour trouver le numéro du sous-réseau, nous allons uniquement considérer les bits dédiés sous-réseau de l'adresse IP. Nous aurons : 124.
- 6. Pour trouver le numéro de machine dans le sous-réseau, nous allons uniquement considérer les bits dédiés à la machine de l'adresse IP. Nous aurons : 9358.

Adresse réseau : 1ère adresse utilisable : Dernière adresse utilisable :			
97.0.0.0	97.0.0.1	97.0.255.254	
97.1.0.0	97.1.0.1	97.1.255.254	
97.2.0.0	97.2.0.1	97.2.255.254	

Exercice N°4:

- 1. Le premier octet de l'adresse donne en binaire $\underline{10}101100$. Les deux premiers bits nous indiquent qu'il s'agit d'une *classe B*.
- 2. Le masque par défaut d'une classe B est : 255.255.0.0 (/16). Nous aurons en binaire : 11111111.111111111.00000000.000000000.
- 3. Pour trouver l'adresse réseau par défaut, nous allons appliquer le masque réseau par défaut à l'adresse IP au travers d'une fonction "et". Nous aurons : 172.24.0.0.
- 4. Pour obtenir 200 machines dans le sous-réseau, nous devons avoir 8 bits dédiés aux machines. En effet, 2⁸ donne 256 qui est le plus petit exposant de 2 supérieur à 200. Nous devrons donc avoir 32 bits 8 bits soit 24 bits pour le masque de sous-réseau.

- 5. Pour trouver l'adresse de sous-réseau, nous allons appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "et". Nous aurons : 172.24.245.0. Pour trouver le numéro du sous-réseau, nous allons uniquement considérer les bits dédiés sous-réseau de l'adresse IP. Nous aurons : 245.
- 6. Pour trouver le numéro de machine dans le sous-réseau, nous allons uniquement considérer les bits dédiés à la machine de l'adresse IP. Nous aurons : 25.
- 7. Pour déterminer les adresses des sous-réseaux, nous allons faire varier les 8 bits de sous-réseau de 00000000 à 11111111. Dans chaque sous-réseau, pour déterminer toutes les adresses utilisables, nous allons faire varier les 8 bits de machine de 00000001 à 11111110. Nous aurons :

Adresse réseau : 1 ^{ère} adresse utilisable : Dernière adresse utilisable :			
172.24.0.0	172.24.0.1	172.24.0.254	
172.24.1.0	172.24.1.1	172.24.1.254	
172.24.2.0	172.24.2.1	172.24.2.254	

Pour l'adresse 212.122.148.49 :

- 1. Le premier octet de l'adresse donne en binaire $\underline{110}10100$. Les trois premiers bits nous indiquent qu'il s'agit d'une *classe C*.
- 3. Pour trouver l'adresse réseau par défaut, nous allons appliquer le masque réseau par défaut à l'adresse IP au travers d'une fonction "et". Nous aurons : 212.122.148.0.
- 4. Pour obtenir 20 machines dans le sous-réseau, nous devons avoir 5 bits dédiés aux machines. En effet, 2⁵ donne 32 qui est le plus petit exposant de 2 supérieur à 20. Nous devrons donc avoir 32 bits 5 bits soit 27 bits pour le masque de sous-réseau. Le masque de sous-réseau sera donc 255.255.255.224 (/27). Nous aurons en binaire : 11111111.11111111.111111111.11100000.
- 5. Pour trouver l'adresse de sous-réseau, nous allons appliquer le masque de sous-réseau à l'adresse IP au travers d'une fonction "et". Nous aurons : 212.122.148.32. Pour trouver le numéro du sous-réseau, nous allons uniquement considérer les bits dédiés sous-réseau de l'adresse IP. Nous aurons : 1.
- 6. Pour trouver le numéro de machine dans le sous-réseau, nous allons uniquement considérer les bits dédiés à la machine de l'adresse IP. Nous aurons : 17.
- 7. Pour déterminer les adresses des sous-réseaux, nous allons faire varier les 3 bits de sous-réseau de 000 à 111. Dans chaque sous-réseau, pour déterminer toutes les adresses utilisables, nous allons faire varier les 5 bits de machine de 00001 à 11110. Nous aurons :

Adresse réseau : 1ère adresse utilisable : Dernière adresse utilisable :		
212.122.148.0	212.122.148.1	212.122.148.30
212.122.148.32	212.122.148.33	212.122.148.62
212.122.148.64	212.122.148.65	212.122.148.94