Policy Evaluation

Summary: Policy Evaluation

Marius Lindauer

Winter Term 2021

Bias/Variance of Model-free Policy Evaluation Algorithms

- \blacktriangleright Return G_t is an unbiased estimate of $V^\pi(s_t)$
- \blacktriangleright TD target $[r_t + \gamma V^\pi(s_{t+1})]$ is biased estimate of $V^\pi(s)$
- lacksquare But often TD much lower variance than a single return G_t
 - MC: Return function of multi-step sequence of random actions, states & rewards
 - ▶ TD target only has one random action, reward and next state

Bias/Variance of Model-free Policy Evaluation Algorithms

- \blacktriangleright Return G_t is an unbiased estimate of $V^\pi(s_t)$
- \blacktriangleright TD target $[r_t + \gamma V^\pi(s_{t+1})]$ is biased estimate of $V^\pi(s)$
- lacksquare But often TD much lower variance than a single return G_t
 - ► MC: Return function of multi-step sequence of random actions, states & rewards
 - ▶ TD target only has one random action, reward and next state
- ► MC:
 - Unbiased (for first visit MC)
 - High variance
 - Consistent (converges to true) even with function approximation

Bias/Variance of Model-free Policy Evaluation Algorithms

- \blacktriangleright Return G_t is an unbiased estimate of $V^\pi(s_t)$
- \blacktriangleright TD target $[r_t + \gamma V^\pi(s_{t+1})]$ is biased estimate of $V^\pi(s)$
- lacksquare But often TD much lower variance than a single return G_t
 - ► MC: Return function of multi-step sequence of random actions, states & rewards
 - ▶ TD target only has one random action, reward and next state
- ► MC:
 - Unbiased (for first visit MC)
 - ► High variance
 - Consistent (converges to true) even with function approximation
- ► TD
 - Some bias
 - Lower variance
 - ► TD(0) converges to true value with tabular representation
 - ▶ TD(0) does not always converge with function approximation

AB Example [Sutton & Barto, 2018]

- ▶ Two states A, B with $\gamma = 1$
- ► Given 8 episodes of experience:
 - A, 0, B, 0
 - \triangleright B,1 (observed 6 times)
 - ▶ B, 0
- ► Under batch (offline) solution for this finite set of observations, what do MC and TD(0) converge to?
- Imagine run TD updates over data infinite number of times?

AB Example [Sutton & Barto, 2018]

- ► Given 8 episodes of experience:
 - ► A, 0, B, 0
 - ightharpoonup B, 1 (observed 6 times)
 - ▶ B, 0
- ► For *B*:
 - ▶ MC: $V(B) = \frac{6}{8} = 0.75$
 - ▶ TD: $V(B) = \frac{6}{8} = 0.75$

AB Example [Sutton & Barto, 2018]

- ► Given 8 episodes of experience:
 - ► A, 0, B, 0
 - \triangleright B,1 (observed 6 times)
 - ▶ B, 0
- ► For *B*:
 - ► MC: $V(B) = \frac{6}{8} = 0.75$
 - ▶ TD: $V(B) = \frac{6}{8} = 0.75$
- ► For *A*:
 - ▶ MC: only one episode with $A \rightsquigarrow V(A) = 0$
 - ▶ TD: bootstraps from $V(B) \rightsquigarrow V(A) = 0.75$

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s))$$

- → Monte Carlo in batch setting converges to minimal MSE (mean squared error)
- \rightarrow TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates

Efficiency

- ▶ Data efficiency & Computational efficiency
- In simplest TD, use (s,a,r,s^\prime) once to update V(s)
 - ightharpoonup O(1) operation per update
 - ▶ In an episode of length L, O(L)
- ▶ In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD in non-Markov domains
- ► TD can exploit Markov structure ~> leveraging this is helpful

Summary: Policy Evaluation

Estimating the expected return of a particular policy if don't have access to true MDP models. Example: evaluating average purchases per session of new product recommendation system

- Dynamic Programming
- ► Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
- Temporal Difference (TD)
- Metrics to evaluate and compare algorithms
 - Robustness to Markov assumption
 - Bias/variance characteristics
 - Data efficiency
 - Computational efficiency