Problem 1.1 (Complex power series)

Find the disk of convergence for the following complex power series

- a) $\sum_{n=0}^{\infty} n(n+1)(z-2i)^n$
- b) $\sum_{n=1}^{\infty} 2^n (z+i-3)^{2n}$

Problem 1.2 (Euler's formula, powers and roots)

- a) Express the number $\sqrt{2}e^{5i\pi/4}$ in x+iy form.
- b) Express the number $\frac{(1+i)^{48}}{(\sqrt{3}-i)^{25}}$ in x+iy form.
- c) Find all values of the root $(8i\sqrt{3} 8)^{1/4}$.
- d) Show that the sum of the three cube roots of 8 is zero. Then show that the sum of the n nth roots of any complex number is zero.

Problem 1.3 (Elementary functions)

In a)-c), use the definitions of $\sin z, \cos z, \sinh z$, and $\cosh z$ in terms of exponential functions to show that

- a) $\int_0^{2\pi} \sin^2(4x) dx = \pi$.
- b) $\sin 2z = 2\sin z \cos z$.
- c) $\cosh^2 z \sinh^2 z = 1$.
- d) Find the x + iy form of $\sin\left(i\ln\frac{1-i}{1+i}\right)$.
- e) Find the x + iy form of $(-e)^{i\pi}$.
- f) Show that $\tanh^{-1} z = \frac{1}{2} \ln \frac{1+z}{1-z}$

Extra problem (Voluntary but recommended)

Problem 2.17.30 in Boas