Q1. Feremat's little theorem: 3100 - 45. (1 - 1) 11 - 12.

Theorem .

Charles Akton Somple

If p is a prime and a to mad P, then

Given: 
$$a = 7$$
,  $P = 13$ 

$$a^{P-1} = 7^{12} \mod 13$$

use successive squarting and modular exponentiation:

$$7^{2} = 49 \mod 13 = 10$$
 c from  $5 = 5$   
 $7^{4} = 10^{2} = 100 \mod 13 = 9^{3}$   
 $7^{8} = 50^{2} + 81 \mod 13 = 3$   
 $7^{12} = 7^{4}$ ,  $7^{9} = 9$ ,  $3 = 27 \mod 13 = 17$ 

preored: 712 = 1 mod 7000 for 1.

Q2. Eulers's Totient Function: 02 km (1=5,02.

Foremula: 
$$P_1^{k_1} \cdot P_2^{k_2} \cdot \dots \cdot P_n^{k_n}$$

$$\phi(n) = n \pi \left(1 - \frac{1}{P_i}\right)$$
 Mirza Zisun

$$\phi(35) = 35. (1 - \frac{1}{5}) (1 - \frac{1}{7}) = 35. \frac{1}{5} = \frac{24}{5}$$

$$\phi(45) = 45. (1 - \frac{1}{3}) (1 - \frac{1}{5}) = 45. \frac{2}{3}. \frac{1}{5} = \frac{24}{5}$$

$$\phi(100) = 100. (1 - \frac{1}{2}) (1 - \frac{1}{5}) = 100. \frac{1}{2}. \frac{1}{5}) = 40$$
If  $\gcd(a, n) = 1$ , then
$$e^{\phi(n)} = 1 \mod n$$

Q3. Chinese Remainden Theorem: 300000 000

222 mod 3 or = et born ou - Zisun 2 = 3 mod 4 1 bom out = 12

Step 1: Convent to normal form Notice:

x=-1 mod 3,4,5 \$ x = -1 mod 60 ⇒ x=59 mod 60 realismo 1 tomital somilar 1. To

50, a = 59 mod 60

To prove n= 11 mod 60 is not corcract p PK1. P2

Qy. Preimitive poot modulo 17-3 Preimitive records of preime p = 17 must satisfy 8 # 1 mod 19 unless K = 16 Trey g = 3 01 from of protriging to sometime 3 = 3, 32 = 9 0 34 = 13 x 13 2 3 = 1 mod \$7 9=3 is a primitive report Q5 · Caremichael Number check for 561 561 = 3 x 1,1 x 17 (all primes). inhone Machineriam key gare check if: , a 561-2 = 1 mod 561 for all gcd (a,561) approximation profitor to a contraction of the 2 951151 Q6. Discrete Loganithm: Find & such athatin promonal miles 3x = 13 mod 17 Trey powers of 3 mod 17: 31 = 3 tome no physoin 2. letter-Cosili. Works Zisun

in new Little will the

## Answer, x=4.

## Zisun

Q2. Role in Diffie-Hellman

suses discrete logs for key exchange.

and go ensures security.

> Enables securce shared secreet generation

Q8. Ciphen Companison's

|                | 13/0100            | 11.0                   |                |
|----------------|--------------------|------------------------|----------------|
| Cipher         | Mechanism          | Key space              | vulnercable of |
| Substitution   | Replace<br>Lettens | Larcge                 | yes            |
| Ticansposition | Rearcrange         | Medium                 | Ger Digneria   |
| Playfain       | 2-letter<br>blocks | Langen<br>Than<br>Mono | less           |

Plaintext: HELLO

MAN TO SEE

Substitution : URYYB

Zisun

Transposition: LoHELM (8181 x2)

Playfain Depends on matrix

Qg. Affine Ciphen:

Given:

E(x) = (5x+8.), mod 26

Example :

 $D(3) \rightarrow (5x3+8) \mod 26 = 23 \rightarrow 2$   $E(4) \rightarrow (5x4+8) = 28 \rightarrow 2 \rightarrow 2 \rightarrow 2$   $P(15) \rightarrow (5x15+8) \mod 26 \rightarrow 55 \rightarrow F$   $T(10) \rightarrow (5x10+8) \mod 26 \rightarrow 25 \rightarrow 2$   $O(14) \rightarrow (5x14+8) \mod 26 \rightarrow 0 \rightarrow A$   $F(5) \rightarrow (5x5+8) \mod 26 \rightarrow 7 \rightarrow H$   $F(5) \rightarrow (5x8+8) \mod 26 \rightarrow 7 \rightarrow H$   $F(8) \rightarrow (5x8+8) \mod 26 \rightarrow 12 \rightarrow W$   $C(2) \rightarrow (5x2+8) \mod 26 \rightarrow 18 \rightarrow S$  $T(6) \rightarrow (5x10+8) \mod 26 \rightarrow 25 \rightarrow 2$  M  $\rightarrow$  (5x12+8) mod 26  $\rightarrow$  16  $\rightarrow$  Q

B(1)  $\rightarrow$  (5x1+8) mod 26  $\rightarrow$  13  $\rightarrow$  N

S(18)  $\rightarrow$  (5x18+8) mod 26  $\rightarrow$  20  $\rightarrow$  U

T(19)  $\rightarrow$  (5x19+8) mod 26  $\rightarrow$  25  $\rightarrow$  2

U(20)  $\rightarrow$  (5x20+8) mod 26  $\rightarrow$  4  $\rightarrow$  E

· Final Encrypted Text:

"XCFZAHWSZQNUZE" = ( Zisun

2 pour(8+11×2, €(1.

b) Decryption:

Decreyotion function:

D(y) = a -1 (y-b) mod 26"

n - r

p=8

a-1 = 21 (since 5.21=1 mod 26)

We now revense each letters from Ciphentext "XCFZAHWSZQNUZE":

| Letten    | y     | D(y)= 21 (y-8) mod 26 Decrypted |
|-----------|-------|---------------------------------|
| ×         | 23    | 21x(23-8) = 21x15=325+3 D       |
| C         | 2 1   | 21x(2-8) mod 26 = 4 E           |
| È         | 5     | 24x (5-8) mod 26 = 15 P         |
| 7         | .25   | 21x(25-8) mod 26 = 19. T        |
| A         | . p   | 21×(0-8) mod 26=14 0            |
| #         | 7     | 21x (7-8) mod 26= 5- 1. F       |
| W         | 22    | 21x(22-8) mod 26= 8 I           |
| S tool or | 18    | (21×(18-8), mod 26= 2           |
| 7         | 25    | 21x (25-8) mod 26= 19 T         |
| Q         | 16    | 21x (16-8) mod 26= 12 M         |
| N         | 13    | 21x (13-8) mod 26= 11 B         |
| υ         | 20    | 21x (20-8) mod 26= 18           |
| 5         | 25    | 21×(2578) mod 26= 19 T          |
| £         | 4.1   | 21 x (2578) mod 26= 20 U        |
|           |       |                                 |
| °° Final  | Decre | poted text & DEPTOFICTMBSTU     |

**Zisun** 

Oso. Novel Ciphen

## Zisun

Encryption Process:

- 1. Key Generation Using PRNG
- Using a PRNG with fixed Seed.
- Pattern forz a block of fixed size.
- 2. Substitution:
- > Replace each letter! in the plaintext using shuffled alphabet.
- 3. permutation:
- IDivide the substitution text into books

in the statement to look -

Rearrange characters in each block according to the permutation key.

Example:

Plaintext: "HELLO WORLD" -> Pernove spaces >> "HELLOWORLD"

Substitution: "ITSSGIVGIKSR"

Permutation: "SIICITSFIRUK"

Ciphentext: " SIIGITSGIRVK" ZISUN

Decryption process:

1. Reverse the peremutation using the inverse of the key.

a. Reverse the substitution using the inverse shuffled alphabet.

Recovered plaintext: "HELLOWORLD"

Cryptanalysis (Weaknesses):

- > fræquency analysis possible on Substitution Phase.
- > Fixed block size may leak Patterin.
- > Subsceptible to known plaintext attacks.
- -> Breute-force possible for short messages

