7. Całkowanie numeryczne

Zadanie 1. Oblicz przybliżoną wartość całki za pomocą metod:

(a) Trapezów dla n=3

(b) Parabol dla n=2

(c) $\frac{3}{8}$ Newtona dla n=2

gdzie:

1.

$$\int_{-6}^{6} \frac{x}{x-7} \ dx$$

Metoda trapezów dla n=3

$$h = \frac{b-a}{n} = \frac{6+6}{3} = 4$$

x_i	-6	-2	2	6			
y_i	6	2	2	-6			
	13	9	$-\frac{1}{5}$				
α_i	1	2	2	1			

$$\int_{-6}^{6} \frac{x}{x-7} dx \approx \frac{4}{2} \left(\frac{6}{13} \cdot 1 + \frac{2}{9} \cdot 2 - \frac{2}{5} \cdot 2 - 6 \cdot 1 \right) \approx -11,7880$$

Metoda parabol dla n=2

$$h = \frac{b-a}{2n} = \frac{6-(-6)}{4} = 3$$

x_i	-6	-3	0	3	6			
y_i	6/13	3/10	0	-3/4	-6			
α_i	1	4	2	4	1			

$$\int_{-6}^{6} \frac{x}{x-7} dx \approx \frac{3}{3} \left(\frac{6}{13} \cdot 1 + \frac{3}{10} \cdot 4 + 0 - \frac{3}{4} \cdot 4 - 6 \cdot 1 \right) \approx -7,3385$$

Metoda $\frac{3}{8}$ Newtona dla n=2

$$h = \frac{b-a}{3n} = \frac{12}{6} = 2$$

			010				
x_i	-6	-4	-2	0	2	4	6
y_i	6/13	4/11	2/9	0	-2/5	-4/3	-6
α_i	1	3	3	2	3	3	1

$$\int_{-6}^{6} \frac{x}{x-7} dx \approx \frac{3}{8} \cdot 2\left(\frac{6}{13} \cdot 1 + \frac{4}{11} \cdot 3 + \frac{2}{9} \cdot 3 + 0 - \frac{2}{5} \cdot 3 - \frac{4}{3} \cdot 3 - 6\right) \approx -6,7357$$