UE19CS251

DESIGN AND ANALYSIS OF ALGORITHMS

Unit 5: Limitations of Algorithmic Power and Coping with the Limitations

All Pairs Shortest Path (Floyd's Algorithm)
PES University

Outline

Concepts covered

- All Pairs Shortest Path (Floyd's Algorithm)
 - Definition
 - Algorithm
 - Example

1 Problem Definition

- Given an undirected or directed graph, with weighted edges, find the shortest path between every pair of vertices
 - Dijkstra's algorithm found shortest paths from given vertex to remaining n-1 vertices $(\Theta(n)$ paths)
 - Current problem is to find the shortest path between every pair of vertices $(\Theta(n^2)$ paths)
- Solution approach is similar to the transitive closure approach: Compute transitive closure via sequence of $n \times n$ matrices $R^{(0)}, \ldots, R^{(k)}, \ldots, R^{(n)}$ where $R^{(k)}[i,j] = 1$ iff there is nontrivial path from i to j with only first k vertices allowed as intermediate vertices
- Compute all pairs shortest paths via sequence of $n \times n$ matrices $D^{(0)}, \ldots, D^{(k)}, \ldots, D^{(n)}$ where $D^{(k)}[i,j]$ is the shortest path from i to j with only first k vertices allowed as intermediate vertices

2 Example

 $\bullet\;$ Example of all pairs shortest paths:

3 Algorithm

```
Transitive Closure (Floyd's Algorithm)
 1: procedure FLOYD(()A[1...n,1...n])
       ▷ Input: Weight matrix A of a graph with no negative length cycles
 2:
 3:
       ▷ Output: Distance matrix of shortest paths
       D \leftarrow \bar{W}
 4:
       for k \leftarrow 1 to n do
 5:
           for i \leftarrow 1 to n do
 6:
 7:
               for j \leftarrow 1 to n do
                   D[i,j] \leftarrow \min(D[i,j], D[i,k] + D[k,j])
 8:
 9:
       return D
```

• Complexity: $\Theta(n^3)$

4 Example

5 Think About It

- Give an example of a graph with negative weights for which Floyd's algorithm does not yield the correct result
- Enhance Floyd's algorithm so that shortest paths themselves, not just their lengths, can be found