MATH 411: INTRODUCTION TO ABSTRACT ALGEBRA HOMEWORK #4

TRUNG DANG 33858723

Problem 1

Problem Statement: Describe explicitly an isomorphism of each of the following groups with a subgroup of a symmetric group given by the Cayley Theorem. In other words, for each element of the group, list the corresponding permutation:

- (1) D_3
- (2) \mathbb{Z}_{5}^{*}

Solution. (1) Denote R as the rotation counterclockwise by 120 degrees and S as the symmetry by vertex 1. We have the following multiplication table, If we assign each element

	Id	R	R^2	S	RS	R^2S
Id	Id	R	R^2	S	RS	R^2S
R	R	R^2	Id	RS	R^2S	S
R^2	R^2	Id	R	R^2S	S	RS
S	S	R^2S	RS	Id	R^2	R
RS	RS	S	R^2S	R	Id	R^2
R^2S	R^2S	RS	S	R^2	R	Id

of D_3 to a number from 1 to 6, respectively, then by Cayley Theorem, D_3 is isomorphic to a subgroup of S_6 by the following mapping:

$$Id \mapsto \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$

$$R \mapsto \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 6 & 4 & 5 \end{bmatrix}$$

$$R^2 \mapsto \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 6 & 4 \end{bmatrix}$$

$$S \mapsto \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{bmatrix}$$

$$RS \mapsto \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 4 & 3 & 1 & 2 \end{bmatrix}$$

$$R^2S \mapsto \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 4 & 3 & 1 & 2 \end{bmatrix}$$

1

(2) we have the following multiplication table, So \mathbb{Z}_5^* is isomorphic to a subgroup of S_4 , by a

	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

bijection f that maps:

$$1 \to Id$$

$$2 \rightarrow (1243)$$

$$3 \rightarrow (1342)$$

$$4 \to (14)(23)$$

Problem 2

Problem Statement: Let *G* and *H* be isomorphic groups. Prove the following statements:

- (1) If *G* is abelian then *H* is abelian
- (2) If *G* has *n* elements of order *d* then *H* has *n* elements of order *d*
- *Solution.* (1) If *G* and *H* are isomorphic then there must be a bijection $f: G \to H$ such that $f(x \circ y) = f(x) \cdot f(y)$

Therefore, if *G* is Abelian, then for any $a, b \in H$,

$$a \cdot b = f(f^{-1}(a)) \cdot f(f^{-1}(b))$$

$$= f(f^{-1}(a) \circ f^{-1}(b))$$

$$= f(f^{-1}(b) \circ f^{-1}(a))$$

$$= f(f^{-1}(b)) \cdot f(f^{-1}(a)) = b \cdot a$$

Therefore, *H* is a group and *H* is commutative for all *a*, *b* in *H*. Therefore *H* is abelian.

(2) We will prove that f maps an element of order d from G to an element of order d in H. Indeed, for all element a, $f(a) = f(a \circ e) = f(a) \cdot f(e)$. So f(e) is the identity of H, or f maps identity to identity.

For every
$$g \in G$$
, $ord(g) = d$, then $f(e) = f(\underbrace{g \cdot g \cdot g \cdots g}_{\text{d times}}) = \underbrace{f(g) \cdots f(g)}_{\text{d times}}$

Therefore the order of $f(g)$ is at most d .

Assume that the order of $f(g)$ is $k < d$ instead, then $f(e) = \underbrace{f(g) \cdots f(g)}_{\text{k times}} = f(\underbrace{g \cdot g \cdots g}_{\text{k times}})$,

hence $e = g^k$, or the order of g is at most k < d, which is a contradiction. (2).

From (1) and (2), we can conclude that f maps an element of order d to an element of order d. And since f is a bijection, the number of elements of a specific order d of H and G must be equal

Problem 3

Problem Statement: For each of the following pairs of groups G and H, prove that G is not isomorphic to a subgroup of H.

(1)
$$G = S_3$$
, $H = \mathbb{Z}_{60}$

(2)
$$G = \mathbb{Z}_8, H = S_7$$

(3)
$$G = \mathbb{Z}_8^*, H = \mathbb{Z}_{24}$$

- Solution. (1) Consider the following permutations in S_3 : (12), (23), (31). They are all transpositions and they are of order 2. Therefore, by *Problem 2*, in order for G to be isomorphic to a subgroup of H, then this subgroup must have at least 3 elements of order 2. However, in the entirety of \mathbb{Z}_{60} there is only 1 element of order 2, namely 30. Therefore, G is not isomorphic to any subgroup of H
 - (2) Consider the number 3. The order of 3 in \mathbb{Z}_8 is 8. We will show that all elements of S_7 cannot be of order 8. Indeed, since every permutation can be partitioned into disjoint cycles and the order of a permutation is the L.C.M. of the length of the cycles, we shall list all the possible partitioning here:

PARTITIONING	ORDER
7+0	7
6+1	6
5+2	10
5+1+1	5
4+3	12
4+2+1	4
4+1+1+1	4
3+3+1	3
3+2+2	6
3+2+1+1	6
3+1+1+1+1	3
2+2+2+1	2
2+2+1+1+1	2
2+1+1+1+1+1	2
1+1+1+1+1+1+1	1

Since none of the elements of S_7 has order 8, it can have no subgroup with an element of order 8. So \mathbb{Z}_8 is not isomorphic to a subgroup of H

(3) Consider $3^2 \equiv 5^2 \equiv 7^2 \equiv 1 \mod 8$.

In G, there are at least 3 elements (namely, 3,5,7) of order 2. However, the only element of order 2 in \mathbb{Z}_{24} is 12. Therefore, \mathbb{Z}_{24} cannot have any subgroup with 3 elements of order 2.

Hence, G is not isomorphic to any subgroup of H.

Problem 4

Problem Statement: An element x of a group G is called a square if $x = y^2$ for some $y \in G$. Find all squares in the following groups:

- (1) S_4
- (2) D_{10}
- (3) \mathbb{Z}_{2021}
- Solution. (1) For brevity, the set below is only the lower row of the permutation. For example, I listed the permutation: $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{bmatrix}$ as $\{2,3,4,1\}$. Then, the list of all squares in S_4 is:

```
 \{\{1,2,3,4\},\{1,4,2,3\},\{1,3,4,2\},\{3,1,2,4\},\{3,4,1,2\},\{4,3,2,1\},\{4,1,3,2\},\{2,3,1,4\},\{4,2,1,3\},\{2,1,4,3\},\{2,4,3,1\},\{3,2,4,1\}\}
```

Rationale: This is the code that I used in Wolfram Mathematica to generate the list of all squares of S_4 :

```
perms = Permutations[Range[4]];
squares = PermutationCompose[#, #] & /@ perms;
uniqueSquares = DeleteDuplicates[squares];
uniqueSquares
```

(2) $\{Id, R^2, R^4, R^6, R^8\}$

Rationale: For every rotation by $\frac{k2\pi}{10}$ degrees, its square is the rotation by $\frac{2k2\pi}{10}$. And because 10 is even, 2k is equivalent to some even numbers modulo 10, hence the only rotations that are squares in D_10 are Id, R^2 , R^4 , R^6 , R^8 .

For every reflection, its square is the identity operation.

Therefore, the list of all squares in D_10 is $\{Id, R^2, R^4, R^6, R^8\}$

(3) \mathbb{Z}_{2021}

We will show that every number $k \in \mathbb{Z}_{2021}$ is a square in \mathbb{Z}_{2021} . Indeed, if k is even, that is k = 2s, then $k \equiv 2 \cdot s \mod 2021$. (1) Else, if k = 2s + 1, then $k \equiv 2021 + 2s + 1 \equiv 2(s + 1011)$. But since k = 2s + 1 < 2021, then s < 1010. So s + 1011 < 2021, hence k is a square. (2)

From (1) and (2), every element of \mathbb{Z}_{2021} is a square

Problem 5

Problem Statement: Use Mathematica to draw a histogram of all possible orders in groups

- (1) S_7
- (2) S_8
- (3) S_9

For each of the groups, answer the following questions:

- What is the maximal possible order and how often does it appear?
- What is the most frequent order and how often does it appear?

Merge the PDF file of your Wolfram Cloud code and output with your homework file. In addition, provide a link to your Wolfram Cloud code.

Solution. Link to Wolfram Mathematica Code: https://www.wolframcloud.com/env/tmdang/TrungDangHW4.5.nb

- (1) The maximal order is 12 and it appears 420 times
 - The most frequent order is 6 and it appears 1470
- The maximal order is 15 and it appears 2688 times
 - The most frequent order is 6 and it appears 10640 times
- The maximal order is 20 and it appears 18144 times
 - The most frequent order is 6 and it appears 83160 times

```
In[40]:= perms = Permutations[Range[7]];
    orders = PermutationOrder /@ perms;
    Histogram[orders, {1, 15, 1}, AxesLabel → {"Order", "Count"}]
    perms = Permutations[Range[8]];
    orders = PermutationOrder /@ perms;
    Histogram[orders, {1, 20, 1}, AxesLabel → {"Order", "Count"}]
    perms = Permutations[Range[9]];
    orders = PermutationOrder /@ perms;
    Histogram[orders, {1, 24, 1}, AxesLabel → {"Order", "Count"}]
```

Out[42]=

Out[45]=

Problem 6

Problem Statement: Find all possible types of disjoint cycles decompositions of permutations from the following groups:

- (1) S_5
- (2) S_6
- (3) $D_6 \subset S_6$

For each type, compute the order of a permutation.

Solution. We again note that each permutation can be represented as a product of disjoint cycles (some of which may be of length 1, which preserves the position of the element). Also, note that the order of a permutation is the L.C.M of the lengths of the cycles.

(1) The possible cycle decompositions, an example, and their respective orders are:

Types	Example	Order
5+0	(12345)	5
4+1	(1234)	4
3+2	(123)(45)	6
3+1+1	(123)	3
2+2+1	(12)(34)	2
2+1+1+1	(12)	2
1+1+1+1+1	Id	1

(2) The possible cycle decompositions, an example, and their respective orders are:

Types	Example	Order
6+0	(123456)	6
5+1	(12345)	5
4+2	(1234)(56)	4
4+1+1	(1234)	4
3+3	(123)(456)	3
3+2+1	(123)(45)	6
3+1+1+1	(123)	3
2+2+2	(12)(34)(56)	2
2+2+1+1	(12)(34)	2
2+1+1+1+1	(12)	2
1+1+1+1+1+1	Id	1

- (3) For elements in $D_6 \subset S_6$, there can be only 2 types of cycles decomposition:
 - One cycle of length 6 for some rotation

• 2 cycles of length 2 and 2 "cycles" of length 1 for some reflection

In the first case, all 6 vertices form a cycle, for an order of 6

In the second case, 2 vertices on the axis preserves their positions, and vertices symmetric to the axis swap places with each other, forming 2 transpositions (or 2 cycles of length 2). The cycle decomposition as a whole has an order of 2

Problem 7

Problem Statement: Let G be a group and fix an element $g \in G$. Consider the following functions from G to G.

- (1) x is sent to gx. (this is called a left translation by g)
- (2) x is sent to gxg^{-1} (this is called a conjugation by g)

Prove that one of these functions is always an isomorphism but another is an isomorphism only if g = e

Solution. We will prove that (2) is an isomorphism regardless of g but (1) is an isomorphism only if g = e.

Indeed, we first show that both (1) and (2) are bijections from G to G. In fact, let f(x) = gx.

Assume f(x) = f(y) for some x, y, then left multiply both sides by g^{-1} we have $g^{-1}gx = g^{-1}gy$, thus x = y.

Furthermore, $x = g(g^{-1}x), \forall x \in G$.

Therefore, $f: G \rightarrow G$ is a bijection.

Similarly, let $h(x) = gxg^{-1}$.

Assume h(x) = h(y) for some x, y, Then, $g^{-1}h(x)g = g^{-1}h(y)g$ yields x = y.

Also, $x = g^{-1}xg$, $\forall x \in G$.

Therefore, $h: G \rightarrow G$ is a bijection.

Now, assume that f is an isomorphism. That means, $\forall x, y \in G$:

$$f(x \cdot y) = f(x) \cdot f(y)$$

, or

$$gxy = gxgy$$

$$\Rightarrow g^{-1}gxy = g^{-1}gxgy$$

$$\Rightarrow xy = xgy$$

$$\Rightarrow xyy^{-1} = xgyy^{-1}$$

$$\Rightarrow x = xg$$

$$\Rightarrow g = e$$

Reversely, if g = e then f(x) = gx is the identity function, and therefore is an isomorphism. Meanwhile,

$$h(x \cdot y) = gxyg^{-1}$$

$$= gxeyg^{-1}$$

$$= gxg^{-1}gyg^{-1}$$

$$= (gxg^{-1})(gyg^{-1})$$

$$= h(x) \cdot h(y)$$

Therefore, h is an isomorphism regardless of g.

In conclusion, (2) is always an isomorphism but (1) is an isomorphism only if g = e