Supplementary meterial

A Bayesian nonparametric procedure for comparing algorithms

1. Proof of Theorem 1

A probability measure sampled from the posterior DP (9) has the following form:

$$P = w_0 P_0 + \sum_{j=1}^n w_j \delta_{\mathbf{X}_j},$$

with $P_0 \sim Dp(s, \alpha^*)$. Let us consider $E[R(X_m)]$ w.r.t. P, we have that

$$E[R(X_i)] = w_0 R_{m0} + \sum_{j=1}^n w_j R_{mj} = w_0 R_{m0} + \mathbf{R}_m^T \mathbf{w},$$

where $R_{m0} = \int \sum_{k=1}^{m-1} I_{\{X_m > X_k\}}(\mathbf{X}) dP_0(\mathbf{X}), \ R_{mj} = \sum_{k=1}^{m-1} I_{\{X_{mj} > X_{kj}\}} + 1$ and $\mathbf{R}_m^T = [R_{m1}, \dots, R_{mn}].$ Assuming $P_0 = \alpha^* = \delta_{\mathbf{x}}$, we have that $R_{m0} = \int \sum_{k=1}^{m-1} I_{\{X_m > X_k\}}(\mathbf{X}) d\alpha^*(\mathbf{X})$. By defining the vector $\mathbf{R}_0 = [R_{1l}, \dots, R_{m0}]^T$ and the matrix \mathbf{R} whose rows are the vectors \mathbf{R}_m^T , we obtain (15).

Since the weights are Dirichlet distributed $(w_0, \mathbf{w}^T) \sim Dir(s, 1, 1, \dots, 1)$, it follows that

$$\mathcal{E}\left[E[R(X_1),\ldots,R(X_m)]^T\right] = E_{Dir}[w_0\mathbf{R}_0 + \mathbf{R}\mathbf{w}]$$

where the r.h.s. expected value is taken w.r.t. the Dirichlet distribution above. From $E_{Dir}[w_0] = s/(s+n)$ and $E_{Dir}[w_i] = 1/(s+n)$ for i>0, we obtain the mean vector $\boldsymbol{\mu}$ in (16). The covariance matrix can be obtained in a similar way by computing $E_{Dir}[w_0^2]$, $E_{Dir}[\mathbf{w}^T w_0]$, $E_{Dir}[\mathbf{w}\mathbf{w}^T]$ etc..

2. Proof of Theorem 2

From (13) we can write

$$\mathcal{P}\left[P(X_{2} > X_{1}) + \frac{1}{2}P(X_{2} = X_{1}) > \frac{1}{2}\right]$$

$$= P_{Dir}\left[w_{0}\left(P_{0}(X_{2} > X_{1}) + \frac{1}{2}P_{0}(X_{2} = X_{1})\right) + \sum_{i=1}^{n} w_{i}H(X_{2i} - X_{1i}) > \frac{1}{2}\right]$$

$$= P_{Dir}\left[\frac{w_{0}}{2} + \sum_{i=1}^{n} w_{i}H(X_{2i} - X_{1i}) > \frac{1}{2}\right],$$
(1)

where we have used the fact that $\alpha^* = \delta_{X_1 = X_2}$ and thus $P_0(X_2 = X_1) = 1$. By denoting with $\theta_t = w_0 + w_0$

 $\sum_{i=1}^n w_i I_{\{X_{2i}=X_{1i}\}}, \ \theta_g = \sum_{i=1}^n w_i I_{\{X_{2i}>X_{1i}\}} \ \text{and} \ \theta_l = 1-\theta_t-\theta_g, \ \text{and considering a partition of the space} \ \mathbb{X} \ \text{of the form} \ B_0 = \{(X_2,X_1): X_2=X_1\}, \ B_g = \{(X_2,X_1): X_2>X_1\} \ \text{and} \ B_l = \{(X_2,X_1): X_2< X_1\} \ \text{it can easily be verified that} \ \boldsymbol{\theta} = (\theta_t,\theta_g,\theta_l) \ \text{has a Dirichlet distribution} \ \text{with parameters} \ (s+n_t,n_g,n-n_t-n_g). \ \text{Then we have}$

$$P_{Dir} \left[\frac{w_0}{2} + \sum_{i=1}^{n} w_i H(X_{2i} - X_{1i}) > \frac{1}{2} \right]$$

$$= P_{Dir} \left[\frac{1}{2} \left(w_0 + \sum_{i=1}^{n} w_i I_{\{X_{2i} = X_{1i}\}} \right) + \sum_{i=1}^{n} w_i I_{\{X_{2i} > X_{1i}\}} > \frac{1}{2} \right]$$

$$= \int I_{\{0.5\theta_t + \theta_g > 0.5\}}(\boldsymbol{\theta})$$

$$Dir(\boldsymbol{\theta}; s + n_t, n_g, n - n_t - n_g) d\theta_t d\theta_g$$

$$= K_1 \int_{0}^{1} d\theta_t \int_{0.5(1-\theta_t)}^{1} \theta_t^{s+n_t-1} \theta_g^{n_g-1}$$

$$(1 - \theta_t - \theta_g)^{n-n_t-n_g-1} d\theta_g,$$
(2)

where $K_1 = \frac{\Gamma(n+s)}{\Gamma(s+n_t)\Gamma(n_g)\Gamma(n-n_t-n_g)}$. By the change of variables $\theta_g' = \frac{\theta_g}{1-\theta_t}$ we obtain

$$P_{Dir} \left[\frac{w_0}{2} + \sum_{i=1}^{n} w_i H(X_{2i} - X_{1i}) > \frac{1}{2} \right]$$

$$= K_1 \int_{0}^{1} \theta_t^{s+n_t-1} (1 - \theta_t)^{n-n_t-1} d\theta_t$$

$$\int_{0.5}^{1} (\theta_g')^{n_g-1} (1 - \theta_g')^{n-n_t-n_g-1} d\theta_g'$$

$$= K_1 K_2 K_3 \int_{0.5}^{1} Beta(\theta; n_g, n - n_t - n_g) d\theta,$$
(3)

where $K_2=rac{\Gamma(n-n_t)\Gamma(s+n_t)}{\Gamma(s+n)}$ and $K_3=rac{\Gamma(n_g)\Gamma(n-n_t-n_g)}{\Gamma(n)}$. This proves the theorem, since $K_1K_2K_3=1$.

3. Matrix of the ranks of Example 1

Table 1 gives the ranks in n=30 datasets of the four algorithms in Example 1.

Supplementay	material -	- Bavesian	nonparametric	comparisons

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32																																
33 34 35																		ns in														
36 37	$\frac{X_1}{X_2}$	3	4 3 2	3 2	3 2	3 2	3 4 2	3 4 2	3 4 2	3 4 2	3 4 2	2 3	2 3	2 3	2 3	2 3	3 2 4	3 2 4	3 2 4	3 2 4	3 2 4	3 4	3 4	2 4 3	2 4 3	3	4 3 1	3 4 1	3 4 1	4 2 1	3 2 1	-
8 9 .0	X_3 X_4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	3	4	-
1 2																																
3 4																																
5																																
7 8 9																																
)																																
1																																
3 1																																
5																																
7 8																																
)																																
1 2																																
3																																