MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 1 Afternoon: Basic Exercises

Miscellaneous exercises from lecture

- 1. a) Compute H_s^{-1} , and show that \underline{H}_s is self-dual. Confirm that $\underline{H}_s^2 = \underline{H}_s(v + v^{-1})$.
 - b) Compute H_{st}^{-1} in terms of the standard basis. Given $w \in W$, for which $y \in W$ can there be a non-zero coefficient of H_y in the expression for H_w^{-1} ? In the expression for $\overline{H_w}$? In the expression for $\omega(H_w)$?
 - c) Prove the uniqueness of the KL basis.
 - d) Find a formula for $H_w \underline{H}_s$.
 - e) Extrapolate the construction from lecture into a proof of the existence of the KL basis. $Kazhdan-Lusztig\ basis$
- **2.** Let $W = S_4$, with $S = \{s_1, s_2, s_3\}$ as above.
 - a) Consider the reduced expression $s_1s_2s_1s_3s_2s_1$ for the longest element w_0 . Use the inductive algorithm to compute the KL basis element \underline{H}_{w_0} . Along the way, you will compute the KL basis elements \underline{H}_1 , \underline{H}_{s_1} , $\underline{H}_{s_1s_2}$, $\underline{H}_{s_1s_2s_1}$, etcetera.
 - b) Repeat the calculation for the reduced expression $s_2s_3s_1s_2s_3s_1$. What is different this time? What non-trivial KL polynomials have you found?
 - c) Repeat the calculation for the reduced expression $s_1s_3s_2s_1s_3s_2$. You should now be able to deduce \underline{H}_w for all $w \in W$.
- **3.** Let (W, S) be a dihedral Coxeter group. That is

$$W = \langle s, t \mid s^2 = t^2 = (st)^{m_{st}} = e \rangle$$

where $e \in W$ is the identity, and $m_{st} \in \{2, 3, 4, ..., \infty\}$. Given $0 \le m \le m_{st}$ write st(m) for the product stst... where m terms appear, and similarly for ts(m). For example st(0) = e, ts(1) = t, st(2) = st, ts(3) = tst etc.

- a) Draw the Bruhat graph of W. Distinguish between the cases $m_{st} < \infty$ and $m_{st} = \infty$.
- b) Use the inductive algorithm to compute $\underline{H}_{st(m)}$ for $m \leq m_{st}$. Along the way, for $1 \leq m < m_{st}$ find an explicit formula for the products

$$\underline{H}_{s}\underline{H}_{st(m)}, \ \underline{H}_{s}\underline{H}_{ts(m)}, \ \underline{H}_{t}\underline{H}_{ts(m)}$$
 and $\underline{H}_{t}\underline{H}_{st(m)}$

in terms of the Kazhdan-Lusztig basis. (Hint: Calculate the first few cases and then use induction. Use caution with small m.)

- c) Conclude that $h_{x,y} = v^{\ell(y) \ell(x)}$ for all $x \leq y \in W$.
- d) Using the formulas above, one can find an algebraic expression for $\underline{H}_{st(m)}$ in terms of \underline{H}_s and \underline{H}_t , when $m \leq m_{st}$. For example, when m = 2 one has $\underline{H}_{st} = \underline{H}_s\underline{H}_t$, and when $m = 3 \leq m_{st}$ one has $\underline{H}_{sts} = \underline{H}_s\underline{H}_t\underline{H}_s \underline{H}_s$. Find similar expressions when m = 4, 5, 6. Can you find a reasonable way to compute the coefficients which appear?

Remark. When m_{st} is finite, the longest element $w_0 = st(m_{st}) = ts(m_{st})$ has two reduced expressions, from which one will get two distinct algebraic expressions for \underline{H}_{w_0} in terms of \underline{H}_s and \underline{H}_t . Setting these expressions equal gives a relation in the Hecke algebra amongst Kazhdan–Lusztig generators, analogous to the braid relation for the standard generators.

- 4. a) Use the Deodhar defect formula to compute $\underline{H_sH_sH_s}$ in the standard basis.
 - b) Let s, t, u denote three distinct simple reflections. Use the Deodhar defect formula to compute $\underline{H}_s\underline{H}_t\underline{H}_u$. Is this product equal to \underline{H}_{stu} ?
 - c) Let s and t be distinct simple reflections. What is $\varepsilon(\underline{H_sH_tH_s})$?
 - d) Let $\{s, t, u, v\}$ be the simple reflections in type D_4 , where s, u, v all commute. Compute the product $\underline{H}(\underline{w})$ for the reduced expression $\underline{w} = suvtsuv$. (Hint: there are 2^7 subexpressions, which is a lot. However, for each given element x < w, there are not many subexpressions for x. There is a lot of symmetry, so the number of x one must examine is relatively small.)
- **5.** Compute the pairing $(\underline{H}_s \underline{H}_t \underline{H}_s, \underline{H}_s)$ in two different ways.
 - a) Use biadjunction and the quadratic relation to express this pairing in terms of $\varepsilon(\underline{H_t}\underline{H_s})$.
 - b) Use the Deodhar defect formula on both sides, and the "false orthogonality" of the standard basis (see the supplemental exercises).