

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задание 5_3_1 »

С тудент группы	ИКБО-13-21	Черномуров С.А.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«»2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	7
Описание алгоритма	12
Блок-схема алгоритма	18
Код программы	23
Тестирование	27
ЗАКЛЮЧЕНИЕ	28
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	29

введение

Постановка задачи

Полиморфизм в иерархии классов

Описать четыре класса которые последовательно наследуют друг друга, с номерами классов 1, 2, 3, 4. В каждом классе реализовать виртуальный метод с открытым доступом и одинаковым именем. Метод вычисляет значение многочлена степени номера класса и возвращает полученный результат. Коэффициенты и переменная многочлена целочисленные.

В основной функции реализовать алгоритм, в котором использовать один указатель на объект класса. Алгоритм:

- 1. Объявление указателя на объект класса.
- 2. Объявление четырех целочисленных переменных a1, a2, a3 a4, которые соответствуют коэффициентам многочлена (a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x).
- 3. Объявление целочисленной переменной х, которая соответствует <u>переменной</u> многочлена.
- 4. Ввод значения переменных а1, а2, а3 а4.
- 5. Создание объекта класса 4 посредством параметризированного конструктора, передав в качестве аргументов a1, a2, a3 a4. Обеспечить передачу необходимых коэффициентов объектам согласно наследственности классов.

6. Начало цикла

- 1. Реализовать ввод значения переменной х.
- 2. Если значение х равно нулю, то завершить цикл.
- 3. Иначе, реализовать ввод значения номера класса.
- 4. Согласно номеру класса вызвать метод вычисления многочлена посредством объекта, который соответствует номеру класса и

результат вывести.

7. Конец цикла.

Описание входных данных

Первая строка:

«целое число, значение a1»«целое число, значение a2»«целое число, значение a3»«целое число, значение a4»

Начиная со второй строки, построчно: «целое число, значение х»«целое число, номер класса»

Описание выходных данных

Первая строка:

a1 = «целое число» a2 = «целое число» a3 = «целое число» a4 = «целое число»

Наименование коэффициента отделяется от предыдущего целого числа четырьмя пробелами.

 Co
 второй
 строки
 и
 далее
 построчно:

 Class «номер класса»
 F(«значение переменной х») = «значение многочлена»

Фрагменту « F(» предшествует 4 пробела

Метод решения

Для решения задачи используются:

- Объекты стандартных потоков ввода и вывода cin и cout соответственно. Используются для ввода с клавиатуры и вывода на экран.
- Оператор цикла с предусловием while. Используется для множественного выполнения алгоритма программы.
- Условный оператор if .. else. Используется для выбора вызываемого метода и форматирования вывода.
- Объект obj класса Cl4. Используется для создания объекта.
- Объекты классов Cl1, Cl2, Cl3.
- Класс Cl1:
 - Свойства/поля:
 - Поле:
 - Наименование а1;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
 - Методы:
 - Метод Polynomial:
 - Функционал параметризированный метод, вычисляющий значение многочлена первой степени от переданного в него значения и возвращающий полученный результат.
- Класс Cl2:
 - Свойства/поля:
 - Поле:
 - Наименование a1;

- Тип целочисленный;
- Модификатор доступа защищенный.
- Поле:
 - Наименование а2;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
- Методы:
 - Метод Polynomial:
 - Функционал параметризированный метод, вычисляющий значение многочлена второй степени от переданного в него значения и возвращающий полученный результат.

• Класс Cl3:

- Свойства/поля:
 - Поле:
 - Наименование а1;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
 - Поле:
 - Наименование а2;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
 - Поле:
 - Наименование а3;
 - Тип целочисленный;
 - Модификатор доступа защищенный.

• Методы:

- Метод Polynomial:
 - Функционал параметризированный метод, вычисляющий значение многочлена третьей степени от переданного в него значения и возвращающий полученный результат.

• Класс Cl4:

- Свойства/поля:
 - Поле:
 - Наименование а1;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
 - Поле:
 - Наименование а2;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
 - Поле:
 - Наименование а3;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
 - Поле:
 - Наименование а4;
 - Тип целочисленный;
 - Модификатор доступа защищенный.
- Методы:
 - Метод Cl4:
 - Функционал параметризированный конструктор, принимающий в себя четыре числовых значения -

коэффициентов многочлена и присваивающий их соответствующим полям всех классов.

• Метод Polynomial:

• Функционал - параметризированный метод, вычисляющий значение многочлена четвертой степени от переданного в него значения и возвращающий полученный результат.

Иерархия наследования:

No	Имя класса	Классы-наследники	Модификатор доступа при наследовании	Описание	Номер	Комментарий
1	Cl1			Класс 1, является головным для класса 2, объекты класса содержат поля для вычисления многочлена первой степени		
		Cl2	public		2	
2	Cl2			Класс 2, является головным для класса 3, объекты класса содержат поля для		

				вычисления многочлена второй		
				степени		
		Cl3	public		3	
				Класс 3,		
				является		
				головным		
				для класса		
				4, объекты		
				класса		
3	Cl3			содержат		
				поля для		
				вычисления		
				многочлена		
				третьей		
				степени		
		Cl4	public		4	
				Класс 4,		
				является		
				дочерним		
				для класса		
				3, объекты		
4	Cl4			класса		
4	C14			содержат		
				поля для		
				вычисления		
				многочлена		
				четвертой		
				степени		

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: Основной алгоритм программы

Параметры: Отсутствуют

Возвращаемое значение: Целочисленный тип данных - код возврата

Алгоритм функции представлен в таблице 2.

Таблица 2. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление указателя obj на объект класса Cl4	2	
2		Объявление целочисленных переменных a1, a2, a3, a4, x	3	
3		Считывание с клавиатуры значений переменных a1, a2, a3, a4	4	
4		Вывод на экран "a1 = ", a1, "	5	
5		Вывод на экран "a2 = ", a2, "	6	
6		Вывод на экран "а3 = ", а3, "	7	
7		Вывод на экран "a4 = ", a4 с последующим переносом на новую строку	8	

8		Динамическое создание объекта обј класса Cl4 путем вызова параметризированного конструктора с целочисленными параметрами a1, a2, a3, a4 Объявление целочисленной	9	
9		переменной с инициализацией flag=0	10	
10	Логическое значение "Истина"	Считывание с клавиатуры значения переменной х	11	Цикл выполняется, пока не будет прерван вручную
10			Ø	Выход из цикла (не произойдет до вызова оператора break)
	Значение х не равно нулю	Объявление целочисленной переменной cl_num	12	
11		Вызов оператора break	Ø	Ручное прекращение выполнения цикла
12		Считывание с клавиатуры значения переменной cl_num	13	
13	Значение flag не равно нулю	Вывод на экран переноса на новую строку	14	
			14	
14		Вывод на экран "Class ", cl_num, " "	15	
15		Вывод на экран "F(", x, ") =	16	
16	Значение cl_num pавно 1	Вывод на экран значения, возвращенного методом Polynomial с параметром х объекта класса Cl1	20	

			17
17	Значение cl_num pавно 2	Вывод на экран значения, возвращенного методом Polynomial с параметром х объекта класса Cl2	20
			18
18	Значение cl_num pавно 3	Вывод на экран значения, возвращенного методом Polynomial с параметром х объекта класса Cl3	20
			19
19	Значение cl_num pавно 4	Вывод на экран значения, возвращенного методом Polynomial с параметром х объекта obj класса Cl4	20
			20
20		Инкрементирование flag	10

Класс объекта: Cl1

Модификатор доступа: public

Метод: Polynomial

Функционал: Параметризированный метод, вычисляющий значение многочлена первой степени от переданного в него значения и возвращающий полученный результат

Параметры: Целочисленный параметр ${\bf x}$

Возвращаемое значение: Целочисленный тип данных - значение многочлена первой степени

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Polynomial класса Cl1

No	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения а1*х	Ø	

Класс объекта: Cl2

Модификатор доступа: public

Метод: Polynomial

Функционал: Параметризированный метод, вычисляющий значение многочлена второй степени от переданного в него значения и возвращающий полученный результат

Параметры: Целочисленный параметр х

Возвращаемое значение: Целочисленный тип данных - значение многочлена второй степени

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода Polynomial класса Cl2

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения a1*x + a2*x*x	Ø	

Класс объекта: С13

Модификатор доступа: public

Метод: Polynomial

Функционал: Параметризированный метод, вычисляющий значение многочлена третьей степени от переданного в него значения и возвращающий полученный результат

Параметры: Целочисленный параметр х

Возвращаемое значение: Целочисленный тип данных - значение многочлена третьей степени

Алгоритм метода представлен в таблице 5.

Таблица 5. Алгоритм метода Polynomial класса Cl3

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения a1*x + a2*x*x + a3*x*x*x	Ø	

Класс объекта: Cl4

Модификатор доступа: public

Метод: Polynomial

Функционал: Параметризированный метод, вычисляющий значение многочлена четвертой степени от переданного в него значения и возвращающий полученный результат

Параметры: Целочисленный параметр х

Возвращаемое значение: Целочисленный тип данных - значение многочлена четвертой степени

Алгоритм метода представлен в таблице 6.

Таблица 6. Алгоритм метода Polynomial класса Cl4

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возврат методом значения а1*х	Ø	

	+ a2*x*x + a3*x*x*x +	
	a4*x*x*x*x	

Конструктор класса: Cl4

Модификатор доступа: public

Функционал: Параметризированный конструктор, принимающий в себя четыре числовых значения - коэффициентов многочлена и присваивающий их соответствующим полям всех классов.

Параметры: Целочисленные параметры а1, а2, а3, а4

Алгоритм конструктора представлен в таблице 7.

Таблица 7. Алгоритм конструктора класса Cl4

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение целочисленным полям a1 классов Cl1, Cl2, Cl3, Cl4 значения a1	2	
2		Присвоение целочисленным полям a2 классов Cl2, Cl3, Cl4 значения a2	3	
3		Присвоение целочисленным полям а3 классов Cl3, Cl4 значения а3	4	
4		Присвоение целочисленному полю a4 класса Cl4 значения a4	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Рис. 3. Блок-схема алгоритма.

Рис. 4. Блок-схема алгоритма.

Рис. 5. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл Cl1.cpp

```
#include <iostream>
using namespace std;

#include "Cl1.h"

int Cl1 :: Polynomial(int x){
                return a1*x;
}
```

Файл Cl1.h

Файл Cl2.cpp

Файл Cl2.h

Файл Cl3.cpp

```
#include <iostream>
using namespace std;

#include "Cl3.h"

int Cl3 :: Polynomial(int x){
          return a1*x + a2*x*x + a3*x*x*x;
}
```

Файл Cl3.h

Файл Cl4.cpp

```
#include <iostream>
using namespace std;
#include "Cl4.h"
Cl4 :: Cl4(int a1, int a2, int a3, int a4){
        Cl1 :: a1 = a1;
        C12 :: a1 = a1;
        Cl3 :: a1 = a1;
        Cl4 :: a1 = a1;
        C12 :: a2 = a2;
        C13 :: a2 = a2;
        C14 :: a2 = a2;
        C13 :: a3 = a3;
        C14 :: a3 = a3;
        C14 :: a4 = a4;
}
int Cl4 :: Polynomial(int x){
        return a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x;
}
```

Файл Cl4.h

```
#ifndef CL4_H
#define CL4_H

#include "Cl3.h"
class Cl4 : public Cl3{
    protected:
        int a1;
        int a2;
        int a3;
        int a4;
    public:
        Cl4(int a1, int a2, int a3, int a4);
        virtual int Polynomial(int x) override;
};
#endif
```

Файл main.cpp

```
#include <iostream>
using namespace std;
#include "Cl1.h"
#include "Cl2.h"
```

```
#include "Cl3.h"
#include "Cl4.h"
int main(){
        C14* obj;
        int a1, a2, a3, a4, x;
        cin >> a1 >> a2 >> a3 >> a4;
        cout << "a1 = " << a1 << "
        cout << "a2 = " << a2 << "
        cout << "a3 = " << a3 << "
        cout << "a4 = " << a4 << "\n";
        obj = new Cl4(a1, a2, a3, a4);
        int flag = 0;
        while (true){
                cin >> x;
                if (x != 0) {
                        int cl_num;
                        cin >> cl_num;
                        if (flag != 0) cout << "\n";
                        cout << "Class " << cl_num << "
                        cout << "F( " << x << " ) = ";
                        if (cl_num == 1) cout << obj->Cl1 :: Polynomial(x);
                        else
                        if (cl_num == 2) cout << obj->Cl2 :: Polynomial(x);
                        else
                        if (cl_num == 3) cout << obj->Cl3 :: Polynomial(x);
                        if (cl_num == 4) cout << obj->Polynomial(x);
                else break;
                flag++;
        return 0;
}
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
1111111213140	a1 = 1 a2 = 1 a3 = 1 a4 = 1 Class 1 F(1) = 1 Class 2 F(1) = 2 Class 3 F(1) = 3 Class 4 F(1) = 4	` ,
4321142332410	Class 4 F(1) = 10 Class 3	a1 = 4 a2 = 3 a3 = 2 a4 = 1 Class 4 F(1) = 10 Class 3 F(2) = 36 Class 2 F(3) = 39 Class 1 F(4) = 16

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).