linear stuff

- 1. Let U, W be subspaces of a vector space V. Recall the definition of direct sum: We say that $V = U \oplus W$ if every vector $v \in V$ can be expressed as a sum v = u + w of vectors $u \in U, w \in W$ in a unique way. Prove that the following are equivalent.
- a) $V = U \oplus W$
- b) V = U + W and $U \cap W = \{0\}$ (this is often used as an alternate definition of the direct sum).
- c) $\dim V = \dim U + \dim W$ and V = U + W
- d) dim $V = \dim U + \dim W$ and $U \cap W = \{0\}$
- e) If u_1, \dots, u_m is a basis for U and w_1, \dots, w_n is a basis for W, then $u_1, \dots, u_m, w_1, \dots, w_n$ is a basis for V.

2. Suppose that V is finite-dimensional, and $T \in \mathcal{L}(V)$. Show that T is a scalar multiple of the identity if and only if TS = ST for every $S \in \mathcal{L}(V)$.