

Mid-Semester Examination Semester 2, 2016

SIGNAL PROCESSING

ENGN2228

Writing period: 90 Minutes duration
Study period: 10 Minutes duration
Permitted materials: One single sided A4 page of handwritten notes and Calculator

20 multiple-choice questions, for a total of 45 marks
3 problems, for a total of 30 marks
Contribution to Final Assessment: 20%

- Write your multiple-choice answers on the answer sheet provided and place it inside the script book.
- Write your 3 problem answers in the script book provided.
- For multiple-choice questions Q1-Q14, there is NO negative marking, each correct answer scores the number of marks indicated in the question and a no answer scores 0 marks.
- For multiple-choice questions Q15-Q20, a correct answer scores 3 marks, an incorrect answer scores -1 (that is, minus 1) mark and a no answer scores 0 marks.
- At the end of the exam, hand in the exam question sheets as well as the script book and the multiple-choice answers sheet.

Formulas

Complex Numbers and Complex Exponentials

$$\begin{array}{ll} j = \sqrt{-1} & e^{j\pi n} = (-1)^n \\ j^2 = -1 & e^{-j\pi n} = (-1)^n \\ \frac{1}{j} = -j & e^{j2\pi n} = 1 \\ e^{j\theta} = \cos(\theta) + j\sin(\theta) & e^{-j2\pi n} = 1 \\ \cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2} & \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \end{array}$$

Trigonometric Identities

$$\sin(\theta) = \cos\left(\theta - \frac{\pi}{2}\right) \qquad \cos(\theta) = \sin\left(\theta + \frac{\pi}{2}\right) \\
\sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \qquad \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \\
\sin^3(\theta) = \frac{3\sin(\theta) - \sin(3\theta)}{4} \qquad \cos^3(\theta) = \frac{3\cos(\theta) + \cos(3\theta)}{4}$$

Geometric series

If α is a complex number then the following relationships hold:

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=-k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=-k}^{\infty} \alpha^n = \alpha^{-k} \left(\frac{\alpha}{\alpha-1}\right) \quad |\alpha| > 1$$

$$\sum_{n=-k}^{N-1} \alpha^n = \begin{cases} N & \alpha = 1, \\ \frac{1-\alpha^N}{1-\alpha} & \alpha \neq 1 \end{cases}$$

$$\sum_{n=-k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=-k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

$$\sum_{n=-k}^{\infty} \alpha^n = \frac{\alpha^k}{1-\alpha} \quad |\alpha| < 1$$

Integration

Notation

- CT means continuous time, and DT means discrete time,
- A system being LTI means the system is linear and time-invariant
- The binary operator \star denotes convolution for both CT and DT.
- The unit sample delta signal is given by

$$\delta[n] \triangleq \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

• $\delta(t)$ represents the unit impulse and satisfies

$$x(t) \star \delta(t - t_0) = x(t - t_0)$$

- \overline{z} denotes the complex conjugate of z
- u[n] represents the unit step function, given by

$$u[n] \triangleq \begin{cases} 1 & n \geqslant 0 \\ 0 & else \end{cases}$$

Question 1 (1 mark)

What is the polar form representation of the complex number $(1 - j\sqrt{3})^3$?

- a. $8e^{-\pi}$
- b. $2e^{j\pi}$
- c. $8e^{j\frac{\pi}{3}}$
- d. $2e^{-j\frac{\pi}{3}}$
- e. $8e^{-j\pi}$

Solution: $(1 - j\sqrt{3})^3 = (2e^{-j\pi/3})^3 = 8e^{-j\pi}$. (28 students got it wrong)

Question 2 (2 marks)

What is the rectangular form representation of the sum $\sum_{n=0}^{9} e^{\frac{j\pi n}{2}}$? (Hint: select and use the appropriate identity from the list of formulas provided)

a.
$$1+j$$

- $\mathbf{b.} \ \ 1-j$
- c. -(1+j)
- d.10
- e. j.

Solution: $\sum_{n=0}^{9} e^{\frac{j\pi n}{2}} = \frac{1 - e^{\frac{j\pi 10}{2}}}{1 - e^{\frac{j\pi}{2}}} = 1 + j$. (35 students got it wrong)

Question 3 (1 mark)

What is the fundamental period of DT signal $x[n] = \sin(n/16)$?

- **a.** 16
- b. 16π
- c.32
- d. 32π
- e. It is not periodic and has no fundamental period.

Solution: $N = \frac{2\pi m}{\frac{1}{16}} = 32\pi m$. The intrinsic period of sin is irrational, which implies n would need to be irrational. It needs to be an integer. (23 students got it wrong)

Question 4 (3 marks)

For CT signals, which of the following statements is false:

- a. A CT signal which is periodic with period 2π is also periodic with period 4π .
- b. The sum of two periodic CT signals of different periods is always periodic.
- c. A CT signal that is not periodic is referred to as an aperiodic signal.
- d. The sum of two non-periodic CT signals is never periodic.
- e. The sum of a periodic CT signal and a non-periodic CT signal is never periodic.

Solution: Counter-example for b = If one periodic CT signal has period 1 and another CT signal has period $\sqrt{2}$ then their sum is not periodic because the periods are not rationally related.

Counter-example for d (posted by students on wattle) = For the sum of two non-periodic CT signals: their non-periodic parts may cancel under summation leaving a periodic signal. For example, consider $e^{-x} + (\sin(x) - e^{-x})$. Both terms are non periodic but their sum is $\sin(x)$ which is periodic.

Counter-example for e (posted by students on wattle) = If we consider $x(t) = \sin(t) + \sin(\pi t)$ (not periodic) and $y(t) = -\sin(\pi t)$ (periodic). Their sum is $x(t) + y(t) = \sin(t)$ which is periodic.

(20 students got it wrong)

Question 5 (2 marks)

What is the fundamental period, N, of the DT signal $x[n] = (-j)^n + \cos(\pi n/3) + \cos(2\pi n/15)$?

- a. 15
- b. 30
- c. 45
- **d.** 60
- e. 360

Solution: $(-j)^n = e^{-\frac{j\pi n}{2}}$ has period 4 (samples 1, -j, -14, j repeat), $\cos(\pi n/3)$ has period $6 = 2 \times 3$, and $\cos(2\pi n/15)$ has period $15 = 3 \times 5$. The lowest common multiple is $4 \times 3 \times 5 = 60$, so x[n+60] = x[n]. (50 students got it wrong)

Figure 1: CT Periodic Signal x(t) with Fundamental Period T=4. One period has been shaded.

- t < 2.5 or t > 6
- (a) CT signal x(t) which can be taken as zero when (b) CT signal y(t) which can be taken as zero when t < 0 or t > 3.5

Figure 2: CT signals x(t) and y(t), which are related through an affine transformation.

Question 6 (2 marks)

The average power of a periodic signal x(t) over a period T is given by

$$\frac{1}{T} \int_0^T \left(x(t) \right)^2 dt = \sum_{k=-\infty}^\infty |a_k|^2$$

What is the average power per period of the signal, x(t), shown in Figure 1?

- a. -1/4
- b. 0

Solution: Answer (a) is impossible because power must be non-negative. Answer (b) is also not sane given the signal is non-zero. To choose between (c), (d) and (e), do integration in the time domain

$$\left(\int_0^2 t^2 dt + 1 \times 2^2\right)/4 = \left(2^3/3 + 4\right)/4 = 5/3$$

(55 students got it wrong)

Question 7 (2 marks)

Two CT signals x(t) and y(t) are related through a transformation of their independent variables and are shown in Figure 2. Which of the following choices is correct?

a.
$$y(t) = x(t-5)$$

- b. y(t) = x(5-t)c. y(t) = x(t+5)
- d. y(t) = x(-5-t)
- e. y(t) = x(t-3)

Solution: The max is around x(4) = y(1) and the min is around x(5) = y(0) from the figures, and only the correct answer agrees with these equalities. (13 students got it wrong)

Figure 3: Signal x[n] and system response h[n], output signal is $y[n] = h[n] \star x[n]$

Question 8 (1 mark)

For x[n] shown in Figure 3(a), which of the following is correct?

a.
$$x[n] = -\delta[n+1]$$

b.
$$x[n] = -\delta[n-1]$$

c.
$$x[n] = -1$$

d.
$$x[n] = +1$$

$$e. x[n+1] = \delta[n]$$

Solution: For n = -1, the value should be 1. For n = 0 the value should be 0. (3 students got it wrong)

Question 9 (3 marks)

For x[n] and h[n], shown in Figure 3(a) and Figure 3(b), what is $y[n] = h[n] \star x[n]$?

a.
$$y[n] = \delta[n]$$

a.
$$y[n] = \delta[n]$$

b. $y[n] = -\delta[n-1] - \delta[n+1]$

$$\mathrm{c.}\ y[n] = -2\delta[n]$$

$$\mathrm{d.}\ y[n] = -\delta[n-2]$$

$$\mathrm{e.}\ y[n] = \delta[n-2]$$

Solution: $y[n] = h[n] \star x[n] = (-\delta[n-1]) \star (-\delta[n+1]) = \delta[(n+1)-1] = \delta[n]$. (20 students got it wrong)

Question 10 (2 marks)

What is the DT convolution, $y[n] = x[n] \star h[n]$, of the two signals $x[n] = \delta[n] + \delta[n - 1]$ 2] and $h[n] = 2\delta[n-3]$?

a.
$$y[n] = \delta[n] + \delta[n-2] + 2\delta[n-3]$$

a.
$$y[n] = \delta[n] + \delta[n-2] + 2\delta[n-3]$$

b. $y[n] = 2\delta[n-3] + 2\delta[n-5]$
c. $y[n] = 2\delta[n+3] + 2\delta[n+1]$

c.
$$y[n] = 2\delta[n+3] + 2\delta[n+1]$$

d.
$$y[n] = 2\delta[n] + 2\delta[n-2]$$

e. None of the above.

Solution: h[n] as a system delays x[n] by 3 and amplifies by 2. (L10-L12: Convolving a signal with an impulse shifts the signal to the location of the impulse). (14 students got it wrong)

Question 11 (2 marks)

The equation for a LTI system with input x[n] and output y[n] is given by

$$y[n] = 0.5x[n] - 0.3x[n-1] + 0.1x[n-2].$$

What is the impulse response h[n] such that $y[n] = x[n] \star h[n]$?

a.
$$h[n] = 0.5 \, \delta[n] - 0.3 \, \delta[n-1] + 0.1 \, \delta[n-2].$$

b. $h[n] = 0.1 \, \delta[n] - 0.3 \, \delta[n-1] + 0.5 \, \delta[n-2].$

b.
$$h[n] = 0.1 \, \delta[n] - 0.3 \, \delta[n-1] + 0.5 \, \delta[n-2].$$

c.
$$h[n] = 0.5 \delta[n] - 0.3 \delta[n+1] + 0.1 \delta[n+2]$$
.

d.
$$h[n] = 0.1 \, \delta[n] - 0.3 \, \delta[n+1] + 0.5 \, \delta[n+2].$$

e.
$$h[n] = 0.5 \delta[n-2] - 0.3 \delta[n-1] + 0.5 \delta[n]$$
.

Solution: Just read it off the difference equation coefficients when $x[n] = \delta[n]$. (6 students got it wrong)

Question 12 (2 marks)

What is the even part of $\delta(t)$?

- e. $0.5\delta(t)$

Solution: An odd signal is zero at 0 and so $\delta(t)$ is even. Alternatively, if you start with rectangular waveform, which is even, and take the limit, then in the limit $\delta(t)$ is even. Alternatively, $\delta(-t) = \delta(t)$ and so $0.5\delta(t) + 0.5\delta(-t) = \delta(t)$. (35 students got it wrong)

Question 13 (3 marks)

Let $\delta(t)$ be the CT unit impulse function. Which of the following is false?

a.
$$x(t) \delta(t-t_0) = x(t_0)$$

a.
$$x(t) \, \delta(t - t_0) = x(t_0)$$

b. $\int_{-1}^{1} \delta(t) \, dt = 1$

$$c. \int_{-\infty}^{\infty} \delta(t-1) dt = 1$$

d.
$$\int_{-1}^{1} \delta(t-2) dt = 0$$

$$\mathbf{e.} \ \delta(t) \star x(t) \star \delta(t) = x(t)$$

Solution: The first one needs to be $x(t) \delta(t-t_0) = x(t_0) \delta(t-t_0)$ (the correct expression for pointwise multiplication with impulse) When $t \neq t_0$ then $x(t_0) \delta(t - t_0) = 0 \neq x(t_0)$. And when $t = t_0$ the LHS is ∞ and the RHS is $x(t_0)$.(35 students got it wrong)

Question 14 (1 mark)

Consider the series/cascade connection of the two CT LTI systems $h_1(t)$ and $h_2(t)$ with input x(t) and output y(t) as shown in Figure 4. Which of the following statements is false?

Figure 4: Series/cascade connection of two CT LTI systems.

$$\begin{aligned} &\text{a. }y(t)=x(t)\star h_1(t)\star h_2(t)\\ &\text{b. }y(t)=x(t)\star h_2(t)\star h_1(t)\\ &\text{c. }y(t)=h_1(t)\star x(t)\star h_2(t)\\ &\text{d. }y(t)=h_1(t)\star \delta(t)\star x(t)\star \delta(t)\star h_2(t)\\ &\text{e. }y(t)=x(t)\star \left(h_1(t)h_2(t)\right) \end{aligned}$$

Solution: From L11. $h_1(t)h_2(t)$ is wrong whereas $h_1(t)\star h_2(t)$ would be ok. Convolution with $\delta(t)$ does nothing. (23 students got it wrong)

For Q15-Q20, a correct answer scores 3 marks, an incorrect answer scores -1 (that is, minus 1) mark and a no answer scores 0 marks.

Question 15 (3 marks)

Which is true about the following DT system:

$$y[n] = 3x[n] + 5^{-n}x[n+1],$$

where x[n] is the input signal and y[n] is the output signal?

- a. Linear, time-invariant and causal
- b. Non-linear, time-invariant and causal
- c. Linear, time-varying and causal
- d. Non-linear, time-varying and causal
- e. Linear, time-invariant and non-causal
- f. Non-linear, time-invariant and non-causal
- g. Linear, time-varying and non-causal
- h. Non-linear, time-varying and non-causal

Solution: This DT system is linear; the 5^{-n} makes it time-varying and y[n] requires future x[n+1], which make is non-causal. (38 students got it wrong; 3 did not attempt)

Question 16 (3 marks)

Which is true about the following DT system:

$$y[n] = x[n-1]x[n],$$

where x[n] is the input signal and y[n] is the output signal:

- a. Linear, time-invariant and causal
- b. Non-linear, time-invariant and causal
- c. Linear, time-varying and causal
- d. Non-linear, time-varying and causal
- e. Linear, time-invariant and non-causal
- f. Non-linear, time-invariant and non-causal
- g. Linear, time-varying and non-causal
- h. Non-linear, time-varying and non-causal

Solution: x[n-1] makes it causal. Nonlinear: $2x[n] \to 4y[n]$. It is time-invariant. (32 students got it wrong; 5 did not attempt)

Question 17 (3 marks)

Consider the DT system with input signal x[n] and output signal y[n] given by

$$y[n] = \overline{x[n-1]}$$
 (complex conjugate)

Which of the following sets of properties holds for this system?

(The signals in question can be complex-valued.)

- a. Linear, time-invariant and causal
- b. Non-linear, time-invariant and causal
- c. Linear, time-varying and causal
- ${\tt d}$. Non-linear, time-varying and causal
- e. Linear, time-invariant and non-causal
- f. Non-linear, time-invariant and non-causal
- g. Linear, time-varying and non-causal
- h. Non-linear, time-varying and non-causal

Solution: It is **non-linear** because it doesn't scale properly with complex-valued scalars. See also example 1.19 in textbook.

It is time-invariant and requires old inputs, so is causal. (55 students got it wrong; 29 did not attempt)

Question 18 (3 marks)

Consider the CT system with input signal x(t) and output signal y(t) given by

$$y(t) = x(t^2)$$

Which of the following sets of properties holds for this system?

- a. Linear, time-invariant and causal
- b. Non-linear, time-invariant and causal
- c. Linear, time-varying and causal
- d. Non-linear, time-varying and causal
- e. Linear, time-invariant and non-causal
- f. Non-linear, time-invariant and non-causal
- g. Linear, time-varying and non-causal
- h. Non-linear, time-varying and non-causal

Solution: The example for y(4) = x(16) shows it is **non-causal**.

Similarly, if it were time-invariant then we should have y(0+4) = x(0+4) given y(0) = x(0). But that is not the case, so it is **time-varying**.

It is actually **linear** (apply the definition): Let $y_1(t) = x_1(t^2)$ and $y_2(t) = x_2(t^2)$, and form

$$x_3(t) = \alpha_1 x_1(t) + \alpha_2 x_2(t),$$

then

$$y_3(t) = x_3(t^2)$$

= $\alpha_1 x_1(t^2) + \alpha_2 x_2(t^2)$
= $\alpha_1 y_1(t) + \alpha_2 y_2(t)$

and Bob's your uncle. (52 students got it wrong; 3 did not attempt)

Question 19 (3 marks)

Consider the DT system with input signal x[n] and output signal y[n] given by

$$y[n] = \sum_{k=1}^{9} x[k]$$

Which of the following sets of properties holds for this system?

(Note that there is no typo in this system equation. There is no n on the right-hand side.)

- a. Linear, time-invariant and causal
- b. Non-linear, time-invariant and causal
- c. Linear, time-varying and causal
- d. Non-linear, time-varying and causal
- e. Linear, time-invariant and non-causal
- f. Non-linear, time-invariant and non-causal
- g. Linear, time-varying and non-causal
- h. Non-linear, time-varying and non-causal

Solution: It is linear.

It is **time-varying**, because for n > 10 it acts in a non-causal way and for $n \le 9$ it acts in a casual way.

Considering y[0] (that is, for n=0) then the use of future inputs, x[1] through to x[9], makes it non-causal.(65 students got it wrong; 7 did not attempt)

Question 20 (3 marks)

Consider the CT system with input signal x(t) and output signal y(t) given by

$$y(t) = \int_{-\infty}^{t/3} x(\tau) \, d\tau$$

Which of the following sets of properties holds for this system?

- a. Linear, time-invariant and causal
- b. Non-linear, time-invariant and causal
- c. Linear, time-varying and causal
- d. Non-linear, time-varying and causal
- e. Linear, time-invariant and non-causal
- f. Non-linear, time-invariant and non-causal
- g. Linear, time-varying and non-causal
- h. Non-linear, time-varying and non-causal

Solution: y(-30) needs x(t) up to t = -10 and so is **non-causal**.

It is **linear** because integration is linear.

It is **time-varying**, because for negative t it acts in a non-causal way and for positive t it acts in a casual way. (58 students got it wrong; 12 did not attempt)

(end of multiple choice questions)

(start of problem questions)

Problem 1

Consider a discrete-time system with input x[n] and output y[n] related by

$$y[n] = \sum_{k=n-n_0}^{n+n_0} x[k],$$

where n_0 is a finite positive integer.

(a) [4 marks] Use a mathematical-checking procedure, showing all steps, to determine whether the system is linear or nonlinear.

Solution: Consider two arbitrary inputs $x_1[n]$ and $x_2[n]$.

$$x_1[n] \to y_1[n] = \sum_{k=n-n_0}^{n+n_0} x_1[k]$$

$$x_2[n] \to y_2[n] = \sum_{k=n-n_0}^{n+n_0} x_2[k]$$

Let $x_3[n]$ be a linear combination of $x_1[n]$ and $x_2[n]$. That is

$$x_3[n] = ax_1[n] + bx_2[n]$$

where a and b are arbitrary scalars. If $x_3[n]$ is the input to the given system, then the corresponding output $y_3[n]$ is

$$y_3[n] = \sum_{k=n-n_0}^{n+n_0} x_3[k]$$

$$= \sum_{k=n-n_0}^{n+n_0} (ax_1[k] + bx_2[k])$$

$$= a \sum_{k=n-n_0}^{n+n_0} x_1[k] + b \sum_{k=n-n_0}^{n+n_0} x_2[k]$$

$$= ay_1[n] + by_2[n]$$

Therefore, the system is **linear**.

(b) [6 marks] Use a mathematical-checking procedure, showing all steps, to determine whether the system is time-invariant or time-varying.

Solution: Consider an arbitrary input $x_1[n]$. Let

$$y_1[n] = \sum_{k=0}^{n-n_0} x_1[k]$$

be the corresponding output. Consider a second input $x_2[n]$ obtained by shifting $x_1[n]$ in time:

$$x_2[n] = x_1[n - n_1]$$

The corresponding output to this input is

$$y_2[n] = \sum_{k=n-n_0}^{n+n_0} x_2[k] = \sum_{k=n-n_0}^{n+n_0} x_1[k-n_1] = \sum_{k=n-n_1-n_0}^{n-n_1+n_0} x_1[k]$$

Also note that

$$y_1[n-n_1] = \sum_{k=n-n_1-n_0}^{n-n_1+n_0} x_1[k]$$

Therefore,

$$y_2[n] = y_1[n - n_1]$$

This implies that the system is time-invariant. Average mark was 6.5/10

Problem 2

(a) [10 marks] Compute the convolution y[n] = x[n] * h[n] when $x[n] = 3^n \ u[3-n]$ and h[n] = u[n-2].

Now, we have two cases. Either $n-2 \ge 3$ or n-2 < 3.

For $n-2 \ge 3 \Rightarrow n \ge 5$

$$y[n] = \sum_{k=-\infty}^{3} x[k]h[n-k]$$
$$= \sum_{k=-\infty}^{3} 3^{k} = 3^{3} \left(\frac{3}{3-1}\right) = \frac{81}{2}$$

For $n-2 < 3 \Rightarrow n < 5$

$$y[n] = \sum_{k=-\infty}^{n-2} 3^k$$
$$= 3^{n-2} \left(\frac{3}{3-1}\right) = \frac{3}{2} \cdot 3^{n-2} = \frac{3^{n-1}}{2}$$

Finally, we have

$$y[n] = \begin{cases} \frac{3^{n-1}}{2} \left(\text{or } \frac{3^n}{6} \right) & n < 5 \\ \frac{81}{2} & n \ge 5 \end{cases}$$

Problem 3

Consider the LTI system initially at rest and described by the difference equation

$$y[n] - \frac{1}{4}y[n-2] = x[n] + 2x[n-1].$$

(a) [3 marks] Draw the direct form I implementation of the given LTI system.

(b) [7 marks] Find the impulse response of this system by solving the difference equation recursively or otherwise.

Solution: Let $x[n] = \delta[n]$, then $y[n] \to h[n]$. Then from the given difference equation,

$$h[n] = \frac{1}{4}h[n-2] + \delta[n] + 2\delta[n-1]$$

Calculating h[n] for different values of n,

$$h[0] = \frac{1}{4}h[-2] + \delta[0] + 2\delta[-1] = 1$$

$$h[1] = \frac{1}{4}h[-1] + \delta[1] + 2\delta[0] = 2$$

$$h[2] = \frac{1}{4}h[0] = \frac{1}{4}$$

$$h[3] = \frac{1}{4}h[1] = \frac{1}{4} \cdot 2 = \frac{1}{2}$$

$$h[4] = \frac{1}{4}h[2] = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$

$$h[5] = \frac{1}{4}h[3] = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}$$

$$h[6] = \frac{1}{4}h[4] = \frac{1}{4} \cdot \frac{1}{16} = \frac{1}{64}$$

Following on the recursion for h[n], we have

$$h[n] = \begin{cases} \frac{1}{2^n} \text{ or } \left(\frac{1}{2}\right)^n \text{ or } \left(\frac{1}{4}\right)^{n/2} \text{ or } 2^{-n} & n = 0, 2, 4, \dots \\ \frac{1}{2^{n-2}} \text{ or } \left(\frac{1}{2}\right)^{n-2} \text{ or } 2\left(\frac{1}{2}\right)^{n-1} \text{ or } 2\left(\frac{1}{4}\right)^{(n-1)/2} \text{ or } 2^{-n+2} & n = 1, 3, 5, \dots \end{cases}$$

Average mark was 6.6/10

(start of problem questions)

Question	Points	Score
1	1	
2	2	
3	1	
4	3	
5	2	
6	2	
7	2	
8	1	
9	3	
10	2	
11	2	
12	2	
13	3	
14	1	
15	3	
16	3	
17	3	
18	3	
19	3	
20	3	
21	10	
22	10	
23	10	
Total:	75	