1 - Introducción

En el área de datos de <u>Nubimetrics</u> tenemos múltiples desafíos. Los principales son: disponibilizar la información de manera coherente, consumible y rápida a las diferentes áreas que lo requieren.

Para poder cubrir las responsabilidades de un perfil semi senior pensamos que deberías poder tener un entendimiento básico sobre el manejo de APIS; conocer ciertas operaciones sobre diferentes tipos de datos y la realización de transformaciones a través de código a las fuentes de datos existentes.

Te queremos proponer un trabajo sobre las APIs de Mercado Libre, la deserialización de un json, el manejo de un csv y la realización de 3 operaciones sobre los DataFrames.

Forma de Entrega: link a <u>Github</u> con el código más un <u>documento de Google Drive</u> con la propuesta de solución.

Te pedimos que antes de arrancar con los desafíos leas las preguntas frecuentes <u>hasta el</u> final

2 - Desafíos

Desafío 1: Mail

Enviar un mail con el lenguaje a utilizar: desafio@nubimetrics.com

Desafío 2: Interactuar con la API de Mercado Libre

Nos interesa que puedas hacer lo siguiente:

- Ir a la documentación de developers de Mercado Libre: Developers Mercadolibre
- Descargar la información en formato JSON de un Request.
- Almacenar ese JSON en una carpeta llamada con el siguiente patrón: NombreApi+Formato+año+mes. Por ejemplo: searchjson202008

Ejemplo de URL de la API: Ingresando al siguiente link que te lleva a la categoría MLA1000 podrás notar que esta API devuelve como resultado todos los productos ofertados en la categoría con nombre: <u>Electrónica, Audio y Video</u>.

Si bien los resultados vienen paginados solo nos interesa que bajes el json del primer offset. Si necesitan más información sobre esta API pueden consultar la documentación de Mercado Libre

Desafío 3: Deserializar un JSON

Nos interesa que puedas hacer lo siguiente:

- Ingresar a la carpeta Input Ejemplos
 - o En ese lugar vas a encontrar el json: sellers.json
- Lee la información en un DataFrame.
- Seleccioná solamente los siguientes que hacen referencia a:
 - o Id del site
 - o Id del seller
 - o Nickname del seller
 - o Puntos del seller

El dataframe resultante debe ser como este:

+	+		+
	erId sellerN		sellerPoints
+	+		+
MPE 29873	34964 MARIELA	TAQUIRE	2
MPE 18304	49329 MURO870	9951	-3
MPE 94592	2189 ILLARYP	ERU	-2
MPE 52013	33997 ISABELL	ADELPOZO	1
MPE 68496	64436 PHM0174	7353	0
MPE 68507	79498 MELISSA	SUSANAARVALOSANTAY	A 0
MPE 64606	68761 YOMIDEL	GADOSNCHEZ	0
MPE 68531	10649 DONATIL	DONATILDECORREATIM	OTECO 0
MPE 68541	19864 VANESSA	URNER	0
MPE 28567	74870 ERICKLO	PEZUSMSYA	2
MPE 68527	75449 DANIELA	RUIZRIDRIGUES	0
MPE 48893	3023 MARCELA	SUSAN	1
MPE 60333	31827 COVA103	1117	0
MPE 20526	64135 GOBR728	3790	1
MPE 58027	79940 LORDVEN	CEDOR	0
MPE 30083	34652 DANIELA	HILARIORAMOS	0
MPE 27032	22958 JHONANT	HONYCAYLLAHUAMALAS	QU 0
MPE 68455	54092 OSORIOC	OLQUIJESSMIGUEL	0
MPE 64416	66286 GOEL150	4737	0
MPE 68544	49106 ISABELS	NCHEZMEDINA	0
+	+		+

- Guardá la información deserializada en un archivo CSV con el siguiente patrón:
 - o Sitio/Mes/Año/dia/**SEGMENTO**/(archivo).csv.
 - Ejemplo MPE/2020/08/28/positivo/[NoImporta].csv

Tené en cuenta que tenés que encontrar la forma de dividir los sellers por los puntos:

Positivos: PositivoCero puntos: CeroNegativos: Negativo

• Bonus:

Opción 1: Spark/Scala + IntelliJOpción 2: Pyspark + Pycharm

Desafío 4: Parseo de un Array de Structs en un dataframe

Nos interesa que puedas hacer lo siguiente:

- Ingresar a la carpeta Input Ejemplos
 - o En ese lugar vas a encontrar el json: MPE1004.json
- Lee la información en un DataFrame.
- Generes un Dataframe que tenga la siguiente estructura:
 - o rowld
 - o itemId
 - soldQuantity
 - availableQuantity

El Dataframe resultante debe ser como el siguiente:

+	+	+	++
rowId	itemId	soldQuantity	availableQuantity
+	+	+	++
1	MPE433108265	6	9
2	MPE434382765	6	3
3	MPE433853177	13	17
4	MPE419883282	15	18
5	MPE431714651	15	1
6	MPE438492919	0	100
7	MPE429448587	0	50
8	MPE439307195	0	3
9	MPE439307251	0	3
10	MPE437503507	0	10
11	MPE438828260	0	3
12	MPE439307426	0	3
13	MPE440306037	0	1
14	MPE439307206	0	3
15	MPE431446248	2	23
16	MPE439307250	0	3
17	MPE439510012	0	1
18	MPE439307317	0	3
19	MPE439307286	0	3
20	MPE439307385	0	3
21	MPE440131689	0	7
22	MPE432990777	1	5
23	MPE440389411	1	9
24	MPE421767433	4	11
25	MPE432990779	0	1
126	MPE432439269	2	1
27	MPE431410374	0	1
28	MPE430002527	1	1
129	MPE432990781	0	1
130	MPE432202936	0	10
31	MPE428549066	0	5

32	MPE428549082 1	4	
33	MPE433933924 1	1	
134	MPE432291284 2	1	
35	MPE432728801 1	1	
136	MPE433252062 2	1	
37	MPE436649728 0	100	
38	MPE427140390 10	2	
139	MPE433046443 0	999	
+	-+	-+	+

Desafío 5: Agregar las visitas al DataFrame con datos de ventas.

- Utilizando el DataFrame generado en el desafío 4 (Parseo de un Array de Structs en un dataframe) Seleccionar:
 - o itemId
 - soldQuantity
- Ingresar a la carpeta Input Ejemplos
 - o En ese lugar vas a encontrar el csv: visits.csv
- Lee la información en un DataFrame.
- Generar un nuevo DataFrame utilizando el deserializado y <u>visits.csv</u> El Join realizado por itemId. El DataFrame resultante debe tener los siguientes campos:
 - o itemId
 - soldQuantity
 - o visit
- Filtrar los elementos sin ventas.

El Dataframe resultante debe ser como el siguiente:

+	+	+
itemId soldQuant	ity v	/isits
+	+-	+
MPE433108265	6	203
MPE434382765	6	170
MPE433853177	3	1034
MPE419883282	15	1772
MPE431714651	15	33
MPE431446248	2	2242
MPE432990777	1	426
MPE440389411	1	158
MPE421767433	4	746
MPE432439269	2	42
MPE430002527	1	60
MPE428549082	1	352
MPE433933924	1	49
MPE432291284	2	6
MPE432728801	1	68
MPE433252062	2	92
MPE427140390	10	81
+	+	+

Desafío 6: Agregar métricas a un DataFrame.

Utilizando el DataFrame generado en el **desafío 5** (Agregar las visitas al DataFrame con datos de ventas):

- Generar una columna con la tasa de conversión (ventas/Visitas)
- Generar un ranking por la tasa de conversión. Mejor tasa de conversión mejor posición en el ranking.

El Dataframe resultante debe ser como el siguiente:

+	+	+	++	+
itemId	soldQuantity	visits	conversionRate	conversionRanking
+		+	++	
MPE431714651				·
MPE432291284	2	6	0.3333	2
MPE427140390	10	81	0.1235	3
MPE432439269	2	42	0.0476	4
MPE434382765	6	170	0.0353	5
MPE433108265	6	203	0.0296	6
MPE433252062	2	92	0.0217	7
MPE433933924	1	4 9	0.0204	8
MPE430002527	1	60	0.0167	9
MPE432728801	1	68	0.0147	10
MPE419883282	15	1772	0.0085	11
MPE440389411	1	158	0.0063	12
MPE421767433	4	746	0.0054	13
MPE433853177	3	1034	0.0029	14
MPE428549082	1	352	0.0028	15
MPE432990777	1	426	0.0023	16
MPE431446248	2	2242	9.0E-4	17
+	·	+	++	+

Desafío 7: Porcentaje de Stock

Tomando el DataFrame generado en el **desafío 4** (Parseo de un Array de Structs en un dataframe):

- Seleccionar los campos:
 - o itemId
 - availableQuantity
- Generar un DataFrame donde se calcule el porcentaje que tiene cada uno de esos ítems en el total.

El Dataframe resultante debe ser como el siguiente:

+	+	++
itemId	availableQuantity	stockPercentage
+	+	++
MPE433046443	999	70.3
MPE438492919	100	7.04
MPE436649728	100	7.04
MPE429448587	50	3.52

MPE431446248 23	11.62	
MPE419883282 18	11.27	
MPE433853177 17	11.2	
MPE421767433 11	0.77	
MPE432202936 10	10.7	
MPE437503507 10	10.7	
MPE440389411 9	10.63	
MPE433108265 9	10.63	
MPE440131689 7	0.49	
MPE428549066 5	0.35	
MPE432990777 5	0.35	
MPE428549082 4	10.28	
MPE438828260 3	0.21	
MPE439307317 3	0.21	
MPE439307426 3	0.21	
MPE439307206 3	0.21	
MPE439307286 3	0.21	
MPE434382765 3	0.21	
MPE439307251 3	0.21	
MPE439307250 3	0.21	
MPE439307385 3	0.21	
MPE439307195 3	0.21	
MPE427140390 2	0.14	
MPE431714651 1	0.07	
MPE432439269 1	0.07	
MPE440306037 1	0.07	
MPE431410374 1	0.07	
MPE439510012 1	0.07	
MPE430002527 1	0.07	
MPE433933924 1	0.07	
MPE432990779 1	0.07	-
MPE432990781 1	0.07	
MPE432291284 1	0.07	
MPE432728801 1	0.07	-
MPE433252062 1	0.07	-
+	+	+

Desafío 8: Paths 1

El objetivo del desafío es que podamos ver el desarrollo de una función. La cual, recibiendo un conjunto de strings devuelva una Lista de elementos que agrupe desde el primer día del mes hasta la fecha ingresada como parámetros inclusive. Por lo tanto, el objetivo será generar una función Path que devuelva **paths hasta el día solicitado**. El formato de la url es ficticio. Podés usar por ejemplo:

```
"https://importantdata@location/"+year+"/"+month+"/"+day+"/"
```

Ejemplo de la función en **Scala**:

```
def generateMonthlyPathList(year: String, month:String, day:String):
```

```
List[String] = {
    //Implementación de tu solución
}
```

Ejemplo de la función en Python:

```
def generateMonthlyPathList(year, month, day):
    #Implementación de tu solución
    return
```

Un ejemplo de resultado. Llamada a la función:

```
generateMonthlyPathList("2021", "05", "17")
```

Resultado si imprimo a cada string en una línea:

```
https://importantdata@location/2021/05/01/
https://importantdata@location/2021/05/02/
https://importantdata@location/2021/05/03/
https://importantdata@location/2021/05/04/
https://importantdata@location/2021/05/05/
https://importantdata@location/2021/05/06/
https://importantdata@location/2021/05/07/
https://importantdata@location/2021/05/08/
https://importantdata@location/2021/05/09/
https://importantdata@location/2021/05/10/
https://importantdata@location/2021/05/11/
https://importantdata@location/2021/05/12/
https://importantdata@location/2021/05/13/
https://importantdata@location/2021/05/14/
https://importantdata@location/2021/05/15/
https://importantdata@location/2021/05/16/
https://importantdata@location/2021/05/17/
```

Desafío 9: Paths 2

El objetivo del desafío es que podamos ver el desarrollo de una función. La cual, recibiendo un string para el día y un entero para la cantidad de días anteriores devuelva una Lista de elementos que agrupe desde el día pasado como parámetro hasta los n días anteriores. Por lo tanto, el objetivo será generar una función Path que devuelva paths para **N** días corridos. El formato de la url es ficticio. Podés usar por ejemplo:

```
"https://importantdata@location/"+year+"/"+month+"/"+day+"/"
```

Ejemplo de la función en **Scala**:

```
def generateLastDaysPaths(date: String, days:Int): List[String] = {
   //Implementación de tu solución
}
```

Ejemplo de la función en Python:

```
def generateLastDaysPaths(date, days):
#Implementación de tu solución
return
```

Un ejemplo de resultado. Llamada a la función: "20210410", 10

```
generateLastDaysPaths("20210410", 10)
```

Resultado si imprimo cada path de la lista en una línea:

```
https://importantdata@location/2021/04/01/https://importantdata@location/2021/04/02/https://importantdata@location/2021/04/03/https://importantdata@location/2021/04/04/https://importantdata@location/2021/04/05/https://importantdata@location/2021/04/06/https://importantdata@location/2021/04/07/https://importantdata@location/2021/04/08/https://importantdata@location/2021/04/09/https://importantdata@location/2021/04/10/
```

Desafío 10: Restaurar BBDD

Restaurar la base de datos **AdventureWorks2014.bak** que se encuentra en el sitio oficial de microsoft AdventureWorks sample databases

Una vez restaurada en tu cliente de base de datos deberías verla de una forma similar a esta:

Desafío 11: SQL 1

Generar un listado con el promedio del tax Rate por país. Las tablas que se utilizaron para realizar el resultado de la consulta son las siguientes: [Sales].[SalesTaxRate] y [Person].[StateProvince]

El resultado debería ser similar al siguiente:

	country_region_code	average_taxRate
1	AU	10.00
2	CA	8.4333
3	DE	16.00
4	FR	19.60
5	GB	17.50
6	US	7.405

Desafío 12: SQL 2

Generar un listado en el que se pueda ver la **tasa de cambio** y la **tasa impositiva** por país. Sólo se deberán mostrar los países que la posean. Las métricas deberán estar redondeadas a 2 decimales. El currency rate debe ser el máximo para cada país. Recordá que sólo se deben mostrar aquellos resultados que tengan tanto tasa de cambio como tasa impositiva. Las tablas que intervienen son las siguientes:

- [Sales].[SalesTaxRate]
- [Person].[StateProvince]
- [Sales].[CountryRegionCurrency]

- [Person].[CountryRegion]
- [Sales].[CurrencyRate]
- [Sales].[Currency]

Y el resultado debe ser similar al siguiente:

ш '	(Cours Em Mess	ayes		
	country_name	currency_name	currency_rate	average_tax_rate
1	Australia	Australian Dollar	2.09	10.00
2	Canada	Canadian Dollar	1.62	8.43
3	France	EURO	1.21	19.60
4	France	French Franc	7.37	19.60
5	Germany	Deutsche Mark	2.20	16.00
6	Germany	EURO	1.21	16.00
7	United Kingdom	United Kingdom Pound	0.73	17.50
8	United States	US Dollar	1.00	7.41

3 - Preguntas Frecuentes

1. ¿Puedo usar el lenguaje y/o framework que quiera?

Tenés que usar **Spark** para la resolución del problema.

2. ¿Cómo lo envío?

Link a <u>Github</u> con el código más un <u>documento de Google Drive</u> con la propuesta de solución.

3. ¿Tengo que hacerlos todos?

Idealmente si, pero nos interesa ver cómo resolviste lo que hayas llegado a hacer.

4. ¿Dónde me puedo comunicar si tengo dudas?

Si tenés una duda podés preguntar en: desafio@nubimetrics.com

5. ¿De verdad tengo que mandar el mail que se indica en el **desafío** 1?

No. No envíes el mail del desafío 1, era para sacarte una sonrisa en éste momento. De hecho podés hacerlo en más de un lenguaje.