

Introduction to Compartmental Modeling

Sarah Bowden, PhD FEE 2017

Objectives

- Students should be able to draw a conceptual compartmental model for any system of interest
- Students should be able to interpret a conceptual compartmental model and translate it into a system of differential equations
- Students should be able to interpret a system of differential equations and work backwards to construct the conceptual compartmental model represented by the equations

Modeling Infectious Diseases

- Infectious disease research has ethical limitations that many other disciplines do not
- Often rely on modeling to explore disease systems

Modeling Infectious Diseases

Infectious disease research has ethical limitations that many other disciplines do not

Often rely on modeling to explore disease systems

Modeling = Representing what we think is happening with MATH DON'T BE AFRAID OF MATH!

How do we make compartmental models?

- Identify PROCESS (e.g., disease transmission) of interest
- Identify COMPARTMENTS (e.g., populations, groups of individuals)
- Identify TRANSITIONS (e.g., how individuals move between compartments)
- Convert conceptual diagram to SYSTEM OF EQUATIONS

Identifying Compartments

• Let's think about the flu. If we were going to model flu transmission, what are some different groups or populations we should be interested in?

Identifying Compartments

• Let's think about the flu. If we were going to model flu transmission, what are some different groups or populations we should be interested in?

• For this example, we'll ignore demography (birth and natural death)

- For this example, we'll ignore demography (birth and natural death)
- How do individuals move from S to I? What is this process called?

- For this example, we'll ignore demography (birth and natural death)
- How do individuals move from S to I? What is this process called? (TRANSMISSION= β)
- How do individuals move from I to R? What is this process called?

- For this example, we'll ignore demography (birth and natural death)
- How do individuals move from S to I? What is this process called? (TRANSMISSION=β)
- How do individuals move from I to R? What is this process called? (RECOVERY= γ)
- Do all individuals move from I to R? What else could happen to them?

- For this example, we'll ignore demography (birth and natural death)
- How do individuals move from S to I? What is this process called? (TRANMISSION= β)
- How do individuals move from I to R? What is this process called? (RECOVERY= γ)
- Do all individuals move from I to R? What else could happen to them? (PATHOGEN-INDUCED MORTALITY/VIRULENCE=μ)
- Can individuals move from S to R? Why or why not?

- For this example, we'll ignore demography (birth and natural death)
- How do individuals move from S to I? What is this process called? (TRANMISSION= β)
- How do individuals move from I to R? What is this process called? (RECOVERY= γ)
- Do all individuals move from I to R? What else could happen to them? (PATHOGEN-INDUCED MORTALITY/VIRULENCE=μ)
- Can individuals move from S to R? Why or why not? (VACCINATION=v)

- Represent as differential equations (ODEs) = change in state variables (compartments) over time
- •Flows in to a compartment are represented as additions in ODE
- •Flows out of a compartment are represented as subtractions

All parameters get multiplied by AT LEAST ONE state variable (compartment)

$$\frac{dS}{dt} = \frac{dI}{dt} = \frac{dR}{dt} = \mathbf{R}$$

$$\mathbf{S} \qquad \qquad \mathbf{I} \qquad \qquad \mathbf{R}$$

Infected

Recovered

Susceptible

$$\frac{dS}{dt} = -\beta SI - \nu S \qquad \qquad \frac{dI}{dt} = \frac{dR}{dt} =$$

$$\frac{dS}{dt} = -\beta SI - \nu S$$

$$\frac{dI}{dt} = \beta SI$$

$$\frac{dR}{dt} =$$

$$\frac{dS}{dt} = -\beta SI - \nu S \qquad \qquad \frac{dI}{dt} = \beta SI - \gamma I - \mu I \qquad \qquad \frac{dR}{dt} =$$

$$\frac{dS}{dt} = -\beta SI - \nu S \qquad \qquad \frac{dI}{dt} = \beta SI - \gamma I - \mu I$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I + \nu S$$

Practical applications: How would we use this model:?

Practical applications: How would we use this model:?

- Estimate the expected number of cases of flu under different vaccination regimes (e.g., no vaccination, 50% coverage, 90% coverage)
- Estimate the transmission rate during a previous flu epidemic

A basic system of equations describing HIV transmission

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dE}{dt} = \beta SI - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \mu I$$

How does this model differ from our previous model for flu? Why? What does the "E" compartment represent?

A basic system of equations describing HIV transmission

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dE}{dt} = \beta SI - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \mu I$$

Step 1: Identify compartments

A basic system of equations describing HIV transmission

$$\frac{dS}{dt} = -\beta SI$$

Step 1: Identify compartments

$$\frac{dE}{dt} = \beta SI - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \mu I$$

Exposed

Infected

A basic system of equations describing HIV transmission

$$\frac{dS}{dt} = -\beta SI$$

Step 1: Identify compartments

$$\frac{dE}{dt} = \beta SI - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \mu I$$

A basic system of equations describing HIV transmission

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dE}{dt} = \beta SI - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \mu I$$

Step 1: Identify compartments

Step 2: Identify transitions

Step 3: Interpret the model in biological terms

Practice: from conceptual model to system of equations

A conceptual model for measles or mumps transmission

Answer: measles/mumps model

Practice: from system of equations to conceptual model

A model describing transmission dynamics of Ebola

$$\frac{dS}{dt} = -\beta SI$$

$$\frac{dE}{dt} = \beta SI - \alpha E$$

$$\frac{dI}{dt} = \alpha E - \nu I - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Answer: Ebola model