Ponto Crítico

Definição

Seja $f: D \subset \mathbb{R}^2 \to \mathbb{R}$. Dizemos que $(x_0, y_0) \in D$ é um ponto crítico (ou estacionário) se

- $f_x(x_0, y_0) = 0$ e $f_y(x_0, y_0) = 0$;
- Ou se uma das derivadas parciais não existir.

Exemplos:

- Encontrar os pontos críticos de $f(x, y) = x^2 + y^2 2x 6y + 14$
- 2 Encontrar os pontos críticos de $f(x,y) = \sqrt{x^2 + y^2}$

Os pontos criticos de uma função são classificados como:

- Máximo que pode ser interpretado como o topo de uma montanha;
- Mínimo que pode ser interpretado como o fundo de um vale;
- Ponto de Sela que pode ser interpretado como a sela de um cavalo.

Definição

Uma função $f:D\subset\mathbb{R}^2\to\mathbb{R}$ tem:

- Um máximo relativo ou máximo local em (x_0, y_0) se $f(x) \le f(x_0, y_0), \quad \forall (x, y)$ próximo de (x_0, y_0)
- Um máximo global em (x_0, y_0) se

$$f(x) \le f(x_0, y_0), \quad \forall (x, y) \in D.$$

Definição

Uma função $f:D\subset\mathbb{R}^2\to\mathbb{R}$ tem:

• Um mínimo relativo ou mínimo local em (x_0, y_0) se

$$f(x_0, y_0) \le f(x, y)$$
, $\forall (x, y)$ próximo de (x_0, y_0)

• Um mínimo global em (x_0, y_0) se

$$f(x_0, y_0) \le f(x, y), \quad \forall (x, y) \in D.$$

Exemplos:

$$f(x,y) = x^2 + y^2 - 2x - 6y + 14$$

2
$$f(x,y) = \sqrt{x^2 + y^2}$$

3
$$f(x, y) = 4 - x^2 - y^2$$

Teorema

Se f possui um máximo ou mínimo local em (x_0, y_0) e as derivadas parciais de primeira ordem de f existem, então $f_x(x_0, y_0) = 0$ e $f_y(x_0, y_0) = 0$.

Exemplos:

$$f(x,y) = x^2 + y^2 - 2x - 6y + 14$$

2
$$f(x,y) = \sqrt{x^2 + y^2}$$

3
$$f(x, y) = 4 - x^2 - y^2$$

Pontos de Sela

Encontre os valores extremos de $f(x, y) = y^2 - x^2$.

Obs: O teorema anterior garante apenas que se o ponto for de mínimo ou máximo local então $f_x(x_0,y_0)=0$ e $f_y(x_0,y_0)=0$. Já ter $f_x(x_0,y_0)=0$ e $f_y(x_0,y_0)=0$ não garante que o ponto seja um ponto extremo, como vimos no exemplo acima.

Pontos de Sela

- **1** Encontre os valores extremos de f(x, y) = xy.
- ② Encontre os valores extremos de $f(x,y) = x^2y^2$.

A Matriz Hessiana

Teorema

Se as derivadas parciais mistas de segunda ordem de uma função f são contínuas, então:

$$\frac{\partial}{\partial x}\frac{\partial f}{\partial y} = \frac{\partial}{\partial y}\frac{\partial f}{\partial x}.$$

Definição

A matriz 2×2 com as derivas parciais de segunda ordem de uma função de 2 variáveis é chamada **Matriz Hessiana** e denotada por H(x,y):

$$H(x,y) = \begin{bmatrix} f_{xx}(x,y) & f_{xy}(x,y) \\ f_{yx}(x,y) & f_{yy}(x,y) \end{bmatrix}$$

Exemplos

Calcule o vetor gradiente e a matriz Hessiana de cada função abaixo:

- 2 $f(x,y) = x^2y^2$;
- $(x,y) = y^2 x^2;$
- $(x,y) = x^2 + y^2 2x 6y + 14;$
- $(x,y) = 4 x^2 y^2.$

- Bianchini, Waldecir. Aprendendo Cálculo de várias variáveis: http://www.im.ufrj.br/waldecir/calculo2/calculo2.pdf
- Lima, Paulo. Cálculo de várias variáveis:

 http://www.mat.ufmg.br/ead/acervo/livros/Calculo_
 de_varias_variaveis.pdf
- Plotar gráficos e regiões:
 https://www.wolframalpha.com/examples/
 PlottingAndGraphics.html
 Software para computador: Geogebra
- 🖬 Stewart, James. Cálculo, Volume II
- 🔋 Anton, Howard. Cálculo, Volume II