

Analysis of Variance Approach

The basic idea of ANOVA is to attributing variation in the data to different sources.

- In regression, the variation in the observations Y_i is attributed to:
- ANOVA is performed through:
 - Partitioning sums of squares;
 - Partitioning degrees of freedoms;

Partition of Total Deviations

Total deviations: Difference between Y_i and the sample mean Y:

$$Y_i - \overline{Y}, \quad i = 1, \cdots, n.7$$

 Total deviations can be decomposed into the sum of two terms:

i.e., the deviation of observed value around the fitted regression line – and the deviation of fitted value from the mean.

Figure: Partition of total deviation.

FIGURE 2.7 Illustration of Partitioning of Total Deviations $Y_i - \bar{Y}$ —Toluca Company Example (not drawn to scale; only observations Y_1 and Y_2 are shown).

From Applied Linear Statistical Models by Kutner, Nachtsheim, Neter and Li

Decomposition of Total Variation

Sum of Squares

Total sum of squares (SSTO):

This is the variation of the observed Yis around their sample mean.

• Error sum of squares (SSE):

This is the variation of the observed Y_i s around the fitted regression line.

• Regression sum of squares (SSR):

This is the variation of the fitted values around the sample mean. The the regression slope and the dispersion in X_i s, the larger is SSR.

- SSR = SSTO SSE is the effect of X in the variation in Y through linear regression.
 In other words, SSR is the in
- In other words, SSR is the predicting Y by utilizing the predictor X through a linear regression model.
 What is ¹/_n ∑ⁿ_{i-1} Ȳ_i?

Expected Values of SS

Mean squares (MS): = S\$ / df(\$S)

$$MSE = \frac{SSE}{d.f.(SSE)} = \frac{SSE}{n-2}, \qquad MSR = \frac{SSR}{d.f.(SSR)} = \frac{SSR}{1}.$$

Expected values of MS:

$$E(MSE) = \sigma^2, \qquad E(MSR) = \sigma^2 + \beta_1^2 \sum_{j=1}^n (X_j - \overline{X})^2.$$

F Test

•
$$H_0: \beta_1 = 0$$
 versus $H_a: \beta_1 \neq 0$.

$$F^* = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/(n-2)}$$

- F^* fluctuates around $1 + \frac{\beta_1^2 \sum_{i=1}^n (X_i + \overline{X})^2}{\sigma^2}$.
- A large value of F* means evidence against H₀.
- Null distribution of F*:

$$F^* \sim F_{1,n-2}$$
.

Notes: Use the fact that if $Z_1 \sim \chi^2_{(df_1)}$, $Z_2 \sim \chi^2_{(df_2)}$ and Z_1, Z_2 independent, then $\frac{Z_1/df_1}{Z_2/df_2} \sim F_{df_1,df_2}$.

• Decision rule at level α :

reject
$$H_0$$
 if $F^* > F(1-\alpha; 1, n-2)$,

where $F(1-\alpha; 1, n-2)$ is the $(1-\alpha)$ -percentile of the $F_{1,n-2}$ distribution.

- In simple linear regression, the *F*-test is equivalent to the *t*-test for testing $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$.

 Check the following.
 - $F^* = (T^*)^2$ where $T^* = \frac{\hat{\beta}_1}{s(\hat{\beta}_1)}$ is the T-statistic.
 - $F(1-\alpha;1,n-2) = t^2(1-\alpha/2;n-2).$

ANOVA Table

ΔΝΙ	AVC	table	∍ f∩	r ci	mn	ا ما	ine	ar r	ലവ	'AC	sior											
/ \ \ \	J V/ (labit	, 10	1 31	ΠΡ	IC 1	1110	ui i	cgi	CO	5101	١.										
	urce Variation			SS					d.f.				MS=S	SS/d.f				F*				
Re	gression	S	SR =	$\sum_{i=1}^{n}$	$(\widehat{Y}_i -$	<u>Y</u>) ²			SSR)				ISR =				F* =	MSR	/MSE	_		
Err Tot		SS	SE = TO =	$\sum_{i=1}^{n}$ $\sum_{i=1}^{n}$	(Y _i – . (Y _i –	$(\overline{Y}_i)^2$	d.		SE) = TO) =			MSE MSTC	S = S							_		
								_			-				`					_		
													4	□ ▶	4 🗗	⊢ ∢	≣ ⊦	∢ ∄	F	Ē.	ળવ	e

Heights

$$n = 928, \ \overline{X} = 68.31578, \ \overline{Y} = 68.08227, \ \sum_{i} X_{i}^{2} = 4334058, \ \sum_{i} Y_{i}^{2} = 4307355, \ \sum_{i} X_{i} Y_{i} = 4318152, \ \hat{\beta}_{1} = 0.637, \ \hat{\beta}_{0} = 24.54.$$

$$SSTO = \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2} = \sum_{i=1}^{n} Y_{i}^{2} - n(\overline{Y})^{2}$$

$$= 4307355 - 928 \times 68.08227^{2} = 5893.$$

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_{i} - \overline{Y})^{2} = \hat{\beta}_{1}^{2} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= 0.637^{2} \times \left[4334058 - 928 \times 68.31578^{2} \right] = 1234.$$

$$SSE = SSTO - SSR = 4659.$$

4 D > 4 B > 4 E > 4 E > 9 Q C

Heights (Cont'd)

	Source			S	S			d.f.			MS	=SS/d	l.f.			F*			
	of Vari	ation																	
	Regre	ssion	1 '	SSR =				(SSR				? = 1:		F*	= MS	R/M	SE =	245	-
	Error			SSE =	= 465	9	d.f.(SSE)	= 92	6	MSI	= 5	.03						
	Total		5	STO	= 589	93	d.f.(SSTO) = 92	7	MST	O = 0	5.36						-

- Test whether there is a linear association between parent's height and child's height. Use significance level $\alpha = 0.01$.
- $F(0.99; 1, 926) = 6.66 < F^* = 245$, so reject $H_0: \beta_1 = 0$ and conclude that there is a significant linear association between parent's height and child's height.
- Recall $T^* = 15.66$, t(0.995; 926) = 2.58 and check:

$$15.66^2 = 245, \quad 2.58^2 = 6.66.$$

Coefficient of Determination R^2

 R² is a descriptive measure for linear association between X and Y:

$$R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

- R² is the of the variation in Y by explaining Y using X through a linear regression model.
- Heights.

$$R^2 = \frac{1234}{5893} = 0.209.$$

20% of variation in child's height may be "explained" by

Properties of R^2

• If all observations Y s fall on one straight line, then

The predictor variable X accounts for

observations Y_i s.

If the fitted regression line is horizontal, i.e., $\hat{\beta}_1 = 0$, then

in the

• If the fitted regression line is florizontal, i.e., $p_1 = 0$, then

- The predictor variable X is in explaining the variation in the observations Y_is.
- There is linear association between X and Y in the data.

Adjusted Coefficient of Determination R_a^2

A modified measure for degree of linear association between X and Y:

$$R_a^2 = 1 - \frac{MSE}{MSTO} = 1 - \frac{n-1}{n-2} \frac{SSE}{SSTO}$$
.

 $R_a^2 = 1 - \frac{927}{926} \times \frac{4659}{5893} = 0.2085.$

- $R_a^2 \le R^2$.
- Heights.

