NCEA Level 3 Calculus (Differentiation)

10. Parametric Functions

Some curves cannot be described simply with a function; for example, the above track of a particle is too complicated to analyse using any of the techniques which we have studied so far. One strategy which does work is to split the x, y, and z components apart and study them seperately. For example, we can *parameterise* the above curve as:

$$x(t) = e^{-t}\cos(10t)$$

$$y(t) = e^{-t}\sin(10t)$$

$$z(t) = e^{-t}.$$

For a simper example, consider the unit circle $x^2+y^2=1$. By recalling the definitions of the trigonometric functions, we can parameterise the circle as $(x,y)=(\cos\theta,\sin\theta)$ for $0\leq\theta<2\pi$. Then $\frac{\mathrm{d}y}{\mathrm{d}t}=-\cos\theta=-x$ and $\frac{\mathrm{d}x}{\mathrm{d}t}=\sin\theta=y$, so by the chain rule $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}t}\cdot\frac{\mathrm{d}t}{\mathrm{d}x}=-\frac{x}{y}$ — a much simpler calculation than taking the derivative of the square root required by working directly with the circle formula.

In general, we have

$$d\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x}$$

In order to find the second derivative, we replace y with $\frac{dy}{dx}$:

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d} \frac{\mathrm{d} y}{\mathrm{d} x}}{\mathrm{d} x} = \left(\frac{\mathrm{d}}{\mathrm{d} t} \, \frac{\mathrm{d} y}{\mathrm{d} x}\right) \cdot \frac{\mathrm{d} t}{\mathrm{d} x} \; .$$

Questions

- 1. $\boxed{\mathtt{M}}$ In each case find $\frac{\mathrm{d}y}{\mathrm{d}x}$.
 - (a) $x = t \sin t, y = t^2 + t$
 - (b) $x = 2 \sec \theta, y = 3 \tan \theta$
 - (c) $x = \cos \theta, y = \cos 3\theta$
 - (d) $x = e^{\sin \theta}, y = e^{\cos \theta}$
- 2. A Find the equation of the chord joining the two points t=2 and t=4 on the curve $(x,y)=(2t-3,t^3+6)$.
- 3. $\boxed{\mathsf{M}}$ Determine the point(s) of intersection of the curves γ and δ :

$$\gamma: t \mapsto (t^2 - 2, t - 1)$$
$$\delta: t \mapsto (t, 2/t)$$

- 4. (a) M If y = 2t and $x = 4t^2$ define a curve, what is the gradient $\frac{dy}{dx}$ in terms of t?
 - (b) E Show that this curve is a parabola.
- 5. M A curve has parametric equations $x = t^2 + 1$ and $y = t^3 + 2$. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- 6. M Find the equation of the tangent to the curve $t \mapsto (2x^2 + 1, t^3 1)$ at t = 2.
- 7. E If $t \mapsto (x, y)$ is a parametric curve, find an expression for $\frac{d^3y}{dx^3}$ analogous to that found for the second derivative.
- 8. S A curve, called a witch of Maria Agnesi, consists of all possible positions of the point P in the diagram below. Show that the curve is given by $(x, y) = (2a \cot \theta, 2a \sin^2 \theta)$ and find the derivative $\frac{dy}{dx}$.

- 9. A particle moves through space over time; the position of the particle at time t is given by $(3 \sin t, 2 \cos t)$ $(0 \le t < 2\pi)$.
 - (a) A What is the component of the acceleration of the particle in the x direction at $t = \pi/4$?
 - (b) $\boxed{\mathtt{A}}$ At what times is the particle stationary in the x direction?
 - (c) M Is the particle ever momentarily totally stationary?

- 10. E Find the rightmost point on the curve $x = t t^6$, $y = e^t$.
- 11. **E** For which values of t is the curve $x = \cos 2t$, $y = 3\cos t$ concave up?
- 12. Show that the curve $\gamma: t \mapsto (\cos t, \sin t \cos t)$ has two tangents at (0,0) and find their equations.
- 13. Scholarship 2000: The piriform is the curve defined by the equation $16y^2 = x^3(8-x)$ where $x \ge 0$.
 - (a) Show that

$$\begin{cases} x = 4(1 + \sin \theta) \\ y = 4(1 + \sin \theta) \cos \theta. \end{cases}$$

are parametric equations for the piriform.

(b) Find $\frac{dy}{dx}$ in terms of θ , and show that $\theta = \frac{\pi}{6}$ is a stationary point of the curve.