강좌**_1**

강좌_2

img_show.py

img_show_gray.py

img_write.py

video_play.py

video_cam.py

video_play_fps.py

FPS: 24.000000, Delay: 41ms

video_cam_resize.py

Original width: 640, height:480 Resized width: 320, height:240

video_cam_take_pic.py

video_cam_rec.py

blank_img.py

blank_500. jpg

line.py

draw_rect.py

draw_poly.py

draw_circle.py

Plain

Simplex SimpleX

Complex Small

Complex Complex Triplex

Script Simplex Script Complex

Plain Italic

Complex Italic

win.py

event_key.py

event_mouse_circle.py

event_mouse_circle_flag.py

event_trackbar.py

강좌_3

np_img.py

```
<class 'numpy.ndarray'>
3
(500, 500, 3)
750000
uint8
1
```

np_create_array.py

```
[1 2 3 4] int64 (4,)

[[1 2 3 4]

[5 6 7 8]] int64 (2, 4)

[1. 2. 3.14 4. ] float64 (4,)

[1. 2. 3. 4.] float64 (4,)
```

np_create_size.py

np_create_like.py

```
[[202 181 190]
[202 181 190]
[201 180 189]
...
[199 178 187]
[200 179 188]
[200 179 188]]

[[201 180 189]
[202 181 190]
[201 180 189]
...
[201 180 189]
[202 181 190]
[202 181 190]
[202 181 190]
[200 179 188]]] (293, 406, 3) uint8
```

np_create_arange.py

```
(5,)
int64
(3,)
float64
```

np_dtype.py

```
[0 1 2 3 4 5 6 7 8 9] int64
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float32
[0 1 2 3 4 5 6 7 8 9] uint8
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.] float64
```

np_reshape.py

```
[45 46 47 48 49]
[50 51 52 53 54]
[55 56 57 58 59]
[60 61 62 63 64]
[65 66 67 68 69]
[70 71 72 73 74]
[75 76 77 78 79]
[80 81 82 83 84]
[85 86 87 88 89]
[90 91 92 93 94]
[95 96 97 98 99]] (20, 5)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23] (24,)
[[0 5]
[1 6]
[2 7]
[3 8]
[4 9]]
```

np_broadcat.py

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

np_scalar_operation.py

```
[0 1 2 3 4]

[5 6 7 8 9]

[-2 -1 0 1 2]

[0 2 4 6 8]

[0. 0.5 1. 1.5 2. ]

[25 36 49 64 81]

[ True True True True True]
```

np_index.py

```
5

[[ 0 1 2]

[ 3 4 5]

[ 6 7 8]

[ 9 10 11]]
```

np_gray.py

np_bgr.py

plt_plot.py

plt_simple.py

plt_color.py

plt_style.py

plt_subplot.py

plt_imshow.py

plt_imgshow_rgb.py

plt_imshow_subplot.py

강좌**_4**

roi.py

roi_copy.py

roi_crop_mouse.py

roi_select_img.py

rgba.py

bgr2gray.py

bgr2hsv.py

```
red: [[[ 0 255 255]]]
green: [[[ 60 255 255]]]
blue [[[120 255 255]]]
yellow [[[ 30 255 255]]]
```

bgr2yuv.py

```
dark: [[[ 0 128 128]]]
middle: [[[127 128 128]]]
bright [[[255 128 128]]]
```

threshold.py

threshold_flag.py

threshold_otsu.py

otsu threshold: 111.6

threshold_adpted.py

arithmatic.py

```
[[ 44 150]] [[255 150]]
[[100 206]] [[100 0]]
[[144 100]] [[255 100]]
[[66.666666667 16.66666667]] [[67 17]]
```

blending_simple.py

blending_alpha.py

blending_alpha_trackbar.py

bitwise.py

bitwise_masking.py

bitwise_masking2.py

diff_absolute.py

addition_rgba_mask.py

hsv_color_mask.py

chromakey.py

seamlessclone.py

histo_gray.py

histo_rgb.py

histo_normalize.py

histo_equalize.py

histo_equalize_yuv.py

histo_clahe.py

histo_2d.py

histo_backproject.py

histo_compare.py

workshop_two_face.py

workshop_cctv_motion_sensor.py

threshold_flag_cvshow.py

thresholds.py

강좌_5

translate.py

scale_matrix.py

scale_resize.py

rotate_matrix.py

rotate_getmatrix.py

getAffine.py

perspective.py

perspective_scan.py

triangle_affine.py

remap_flip.py

remap_sin_cos.py

remap_lens.py

remap_barrel.py

undistort_barrel.py

workshop_mosaic.py

workshop_liquify_tool.py

workhop_distotion_camera.py

강좌_6

blur_avg_kernel.py

blur_avg_api.py

blur_gaussian.py

blur_median.py

blur_bilateral.py

edge_differential.py

edge_roberts.py

edge_prewitt.py

edge_sobel.py

edge_scharr.py

edge_laplacian.py

edge_canny.py

morph_erode.py

morph_dilate.py

morph_open_close.py

morph_gradient.py

morph_hat.py

pyramid_gaussian.py

pyramid_laplacian.py

workshop_mosic2.py

workshop_painting_cam.py

workshop_painting_cam_add_debugging.py

강좌_7

cntr_find.py

cntr_hierarchy.py

cntr_moment.py

cntr_bound_fit.py

```
<class 'numoy.ndarray'> (332, 1, 2) int32
<ipython-input-25-f3c50df768dc>:22 DeprecationWarning: 'np.int0' is a deprecated alias for 'np.intp'. (Deprecated NumFy 1.24)
box = np.int0(box) # 참수로 변환
<ipython-input-25-f3c50df768dc>:40: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will cv2.line(img. (0, int(0-x*(vy/vx) + y)), (cols-1, int((cols-x)*(vy/vx) + y)), #
```

cntr_approximate.py

cntr_convexhull.py

cntr_matchShape.py

hough_line.py

hough_lineP.py

hough_circle.py

distanceTrans.py

connected_label.py

flood_fill.py

watershed.py

grabcut.py

mean_shift.py

workshop_shape.py

workshop_paper_scan.py

workshop_coin_count.py

강좌_8

avg_hash.py

리스트 내포

join

```
y join

[16] a = ','
print(a.join('abcd'))

a,b,c,d

[17] print('a'.join('abcd'))

aabacad

[18] print(''.join('abcd'))

abcd
```

tolist

avg_hash_matching.py

template_matching.py

corner_harris.py

corner_goodFeature.py

kpt_gftt.py

kpt_fast.py

kpt_blob.py

kpt_blob_param.py

desc_sift.py

desc_surf.py

error

desc_orb.py

match_bf_sift.py

match_bf_surf.py

error

match_bf_orb.py

match_flann_sift.py

match_flann_surf.py
error

match_flann_orb.py

match_good.py

match_good_knn.py

match_homography.py

match_homography_accuracy.py

match_camera.py

track_bgsub_mog.py

track_bgsub_mog2.py

track_opticallLK.py

track_optical_farneback.py

track_meanshift_cam.py

track_camsifht_cam.py

track_trackingAPI.py

workshop_panorama.py

workshop_booksearcher.py

No matched book cover found.

강좌_9

k-means_random.py

k-means_color.py

k-means_handwritten.py

kNN_random.py

kNN_movie.py

kNN_mnist.py

```
K:1, Accuracy :95.40%(477/500)
K:2, Accuracy :94.40%(472/500)
K:3, Accuracy :95.00%(475/500)
K:4, Accuracy :94.40%(472/500)
K:5, Accuracy :94.20%(471/500)
K:6, Accuracy :94.20%(471/500)
K:7, Accuracy :94.40%(472/500)
K:8, Accuracy :93.60%(468/500)
K:9, Accuracy :93.40%(467/500)
K:10, Accuracy :93.00%(465/500)
```

kNN_handwritten.py

svm_random.py

svm_random.xml

svm_mnist_hog_train.py

```
SVM training started...train data: (50, 90, 324)
SVM training complete. 17.75 Min
Accuracy: 98.80%
```

svm_handwritten.py

svm_hog_pedestrian.py

bow_plane_bike_train.py

```
Adding descriptor to BORTrainer...

airplanes 800/800(100.00x)

Motorbikes 756/790(100.00x)

Adding descriptor completed...

Starting Dictionary clustering(50)... It will take several time...

Dictionary Clustering completed...(dictionary shape: (50, 128)

Compute histogram training set...(100.00x)

Sym training...

sym training...

sym training completed.

Training Elapsed: 00:07:20

Adduracy(Self)

airplanes: 95.12 x

Notorbikes: 95.74 x
```

bow_plane_bike_test.py

haar_face.py

haar_face_cam.py

lbp_face1_collect.py

lbp_face2_train.py

Collecting train data set:

path:../faces/a_1, 400files
Starting LBP Model training...
Model trained successfully!

lbp_face3_recognize.py

workshop_face_mosaic.py

workshop_hannibal_mask.py

workhop_face_distotion_camera.py

