Segmentation des clients d'un site e-commerce

OpenClassrooms Data Scientist. Projet 5

Serge Davister Mai 2023

Pour cette mission, Olist a fourni une base de données anonymisée comportant des informations sur l'historique de commandes, les produits achetés, les commentaires de satisfaction, et la localisation des clients depuis janvier 2017

Chargement et nettoyage des jeux de données

Il y a 9 tables.

1. Clients:

Les clients :

Il n'y a pas de valeurs nulles dans la table.

Le customer_id sera utilisé lors des jointures. C'est un identifiant unique attribué à chaque commande customer_unique_id: identifiant client

2. Géolocations

```
geolocation_zip_code_prefix 1000163 non-null int64
geolocation_lat 1000163 non-null float64
geolocation_lng 1000163 non-null float64
geolocation_city 1000163 non-null object
geolocation_state 1000163 non-null object
```

la géolocalisation:

Pas de valeurs nulles mais il y avait des doublons qui ont été supprimés 261.831 doublons

On peut utiliser zip_code_prefix pour jointure avec la table customers.

Je vais prendre une moyenne des variables latitude et longitude en groupant par geolocation_zip_code_prefix

3. Articles:

order_id	98666
order_item_id	21
product_id	32951
seller_id	3095
shipping_limit_date	93318
price	5968
freight_value	6999

order_id : Identifiant unique de la commande order_item_id : Identifiant des produits d'une même commande product_id : Identifiant unique du produit seller_id : Identifiant unique du vendeur price : Prix de la ligne de commande freight_value : Coût du fret

Chargement et nettoyage des jeux de données (suite)

4. Articles:

order_id 103886 non-null object
payment_sequential 103886 non-null int64
payment_type 103886 non-null object
payment_installments 103886 non-null int64
payment_value 103886 non-null float64

order_id : identifiant de la commande

payment_type : moyen de paiement utilisé (voucher =coupon prépayé et boleto = moyen de paiement en espèces très utilisé au Brésil] payment_sequential : séquence de paiement (une ligne par type de paiement)

payment_installments : Nombre de versements

payment_value : valeur du paiement

5. Avis clients:

review id 99224 non-null object order id object 99224 non-null review score 99224 non-null int64 review comment title 11568 non-null object review comment message obiect 40977 on-null review creation date 99224 non-null object review answer timestamp 99224 non-null object review_id 98410
order_id 98679
review_score 75
review_comment_title 4528
review_comment_message 36160
review_creation_date 636
review_answer_timestamp 98248

6. Commandes:

order_id 99441
customer_id 99441
order_status 99441
order_purchase_timestamp 99441
order_approved_at 99281
order_delivered_carrier_date order_delivered_customer_date order_estimated_delivery_date

99441 non-null obiect 99441 non-null obiect 99441 non-null obiect 99441 non null obiect 99281 non-null obiect 97658 non-null obiect 96476 non-nu1/1 object 99441 non-mull obiect order_id
customer_id
order_status
order_purchase_timestamp
order_approved_at
order_delivered_carrier_date
order_delivered_customer_date
order_estimated_delivery_date

order_id: identifiant commande
customer_id: identifiant client unique attribué à chaque commande
order_status: status de la commande
order_purchase_timestamp: date et heure de commande
order_approved_at: date et heure d'approbation
order_delivered_carrier_date: date et heure prise en charge par le transporteur
order_delivered_customer_date: date et heure commande livrée
order_estimated_delivery_date: date estimée de livraison chez le client

Il y a 1637 valeurs manquantes dans order_delivered_carrier_date

Chargement et nettoyage des jeux de données (suite)

7. Produits:

```
product id
                            2951 non-null object
product category name
                            32341 non-null object
product name lenght
                           32341 non-null float64
product description lenght
                           32341 non-null float64
product photos atv
                           32341 non-null float64
product weight g
                           32949 non-null float64
product length cm
                           32949 non-null float64
                           32949 non-null float64
product height cm
product width cm
                            32949 non-null float64
```


il y a des produits qui n'ont ni catégorie, ni nom , ni description , ni photo mais qui ont des dimensions , des poids. Il y a également 2 produits sans dimensions ni poids. Nous les conservons et complétons les valeurs manquantes par "n.d" (non disponible)

- 8. Vendeurs: ce jeu de données ne sera pas pris en compte car l'étude porte sur les clients
- 9. Traduction des catégories: Cette table ne sera pas utilisée car j'ai conservé les catégories dans la langue du client.

Jointure des jeux de données customers et orders

```
customers_orders = customers.merge(orders, on='customer_id',how='inner')
```

Je conserve uniquement les commandes livrées (status == 'delivered' & 'order_delivered_customer_date'. NotNull)

```
# supprimer colonnes non conservées pour la suite
list_to_del=['order_status','order_approved_at','order_delivered_carrier_date','order_estimated_delivery_date']
customers_orders.drop(columns=list_to_del,inplace=True)
```

```
les variables contenant des dates
order_purchase_timestamp']=pd.to_datetime(customers_orders['order_purchase_timestamp'].astype('datetime64[ns]'))
order_delivered_customer_date']=pd.to_datetime(customers_orders['order_delivered_customer_date'].astype('datetime64[ns]'))
```

Jointure du dataset obtenu avec la table items

```
items_=customers_orders.merge(items, on='order_id',how='inner')
# colonnes non conservées
list_to_del=['seller_id','shipping_limit_date']
items_.drop(columns=list_to_del,inplace=True)
```

Jointure du dataset obtenu avec la table payments

Nous allons ajouter une colonne qui comptera le nombre de moyens de paiement différents utilisés pour le réglement de la commande et une colonne qui totalisera le nombre d'échéances de la commande

Jointure du dataset obtenu avec la table reviews

Je vais ajouter une variable qui indiquera si la commande a été commentée(oui =True et non =False) et une variable qui donnera le score moyen de la commande.

Jointure du dataset obtenu avec la table products

```
customer id
                              110171 non-null object
customer unique id
                              110171 non-null object
customer zip code prefix
                               110171 non-null int64
customer city
                               110171 non-null object
customer state
                               110171 non-null object
order id
                               110171 non-null object
order purchase timestamp
                               110171 non-null datetime64[ns]
order delivered customer date 110171 non-null datetime64[ns]
order item id
                               110171 non-null int64
product id
                               110171 non-null object
price
                               110171 non-null float64
freight value
                               110171 non-null float64
payment sequential nbre
                               110171 non-null int64
payment installments sum
                               110171 non-null int64
note
                               110171 non-null bool
score
                               109344 non-null float64
                               110171 non-null
product category name
                                               object
product name lenght
                               110171 non-null float64
product description lenght
                               110171 non-null float64
product photos gty
                               110171 non-null float64
product weight g
                               110171 non-null float64
product length cm
                               110171 non-null float64
product height cm
                               110171 non-null float64
product width cm
                               110171 non-null float64
```

EDA

Les commandes

1	order	s_da	y.des	scrib	e()
count	61	1.000	9000		
mean	18	0.31	2602		
std	10	3.69	2019		
min		1.000	9000		
25%	11	0.000	9999		
50%	16	7.000	9000		
75%	24	3.50	9999		
max	134	5.000	9000		

Les commandes

Les commandes

2.1 calcul de la récence

le temps écoulé depuis le dernier achat

customer_unique_id	last_purchase_date	recency
bdf478f5500348f03aff62121	2018-08-29 14:52:00	C

71658	c45221bb4573f66bdd4daf43fe2d4b3b	2018-08-28 19:27:43	0
20005	36a5c01d940c382346247b3e6c485c2d	2018-08-28 22:51:54	0
61029	a712a430955027da5bc257a10073a390	2018-08-28 21:56:30	0

fb7e29c65321441231990afc201c1b14 2018-08-28 19:32:05

2.3 Calcul du montant

b701bebl

nous pouvons calculer le montant des achats des clients chez Olist

```
1  m_ = df.groupby(by='customer_unique_id', as_index=False)['price'].sum()
2  m_.columns = ['customer_unique_id', 'monetary_value']
3  m .sort values(by='monetary_value',ascending=False).head()
```

	customer_unique_id	monetary_value
3724	0a0a92112bd4c708ca5fde585afaa872	13440.0
79617	da122df9eeddfedc1dc1f5349a1a690c	7388.0
43161	763c8b1c9c68a0229c42c9fc6f662b93	7160.0
80444	dc4802a71eae9be1dd28f5d788ceb526	6735.0
25431	459bef486812aa25204be022145caa62	6729.0

2.2 Calcul de la fréquence

Nous pouvons calculer la fréquence des achats des clients

```
f = df.groupby(
    by=['customer_unique_id'], as_index=False)['order_id'].count()

f_.columns = ['customer_unique_id', 'frequency']

f .sort values(by='frequency',ascending=False).head()
```

	customer_unique_id	frequency
73112	c8460e4251689ba205045f3ea17884a1	24
25304	4546caea018ad8c692964e3382debd19	21
71552	c402f431464c72e27330a67f7b94d4fb	20
38573	698e1cf81d01a3d389d96145f7fa6df8	20
5622	0f5ac8d5c31de21d2f25e24be15bbffb	18

2.4 dataframe RFM

je vais fusionner les dataframes

```
rfm_ = r_.merge(f_, on='customer_unique_id').merge(m_,on='customer_unique_id')\
drop(columns='last_purchase_date')
rfm_.head()
```

	customer_unique_id	recency	frequency	monetary_value
0	0000366f3b9a7992bf8c76cfdf3221e2	111	1	129.90
1	0000b849f77a49e4a4ce2b2a4ca5be3f	114	1	18.90
2	0000f46a3911fa3c0805444483337064	536	1	69.00
3	0000f6ccb0745a6a4b88665a16c9f078	320	1	25.99
4	0004aac84e0df4da2b147fca70cf8255	287	1	180.00

Les distributions RFM

	recency	frequency	monetary_value
count	93336.000000	93336.000000	93336.000000
mean	236.899792	1.180370	141.622134
std	152.545336	0.620885	215.714177
min	0.000000	1.000000	0.850000
25%	113.000000	1.00000	47.650000
50%	218.000000	1.000000	89.700000
75%	345.000000	1.000000	154.712500
max	694.000000	24.000000	13440.000000

Le nombre de clients avec une commande unique est de 87.56 %. La majorité des clients du dataset a un achat unique, cela va influencer la segmentation.

Les segments clients

	customer_unique_id	recency	frequency	monetary_value	r_rank_norm	f_rank_norm	m_rank_norm	tot_rank	R	F	M	RFM	RFM_score
20532	381917c1951b8e044dd51544f465db6d	526	1	31.00	4.338205	43.782678	14.843683	21.0	1	1	1	111	1.0
5923	1019ed18792a025e05472c55766c34a0	428	1	24.90	13.962946	43.782678	8.742072	22.0	1	1	1	111	1.0
19731	35e32af235030874a6b6ccf5f328e8ac	420	1	35.99	14.820728	43.782678	17.867704	25.0	1	1	1	111	1.0
13581	25126926be8dbdb3264285caa7d0c40c	438	1	39.90	13.066051	43.782678	20.240850	26.0	1	1	1	111	1.0
19788	36023a7f667578e554e3a308c9d17598	449	1	39.90	11.800540	43.782678	20.240850	25.0	1	1	1	111	1.0

Les ventes, chiffre d'affaires et tendance

Evolution des ventes par segmentation client

Répartition des ventes par segmentation client et par état

Le traitement des commandes

df['traitement']=(df['order_delivered_customer_date']-df['order_purchase_timestamp'])/timedelta(days=1)

	coun	t	1101	71.0
	mean			12.0
	std			9.0
i	min			1.0
	25%			7.0
ı	50%		:	10.0
	75%		:	16.0
	max		2:	10.0

Les moyens de paiement et avis client

109344.000000 count 4.081614 mean std 1.347328 min 1.000000 25% 4.000000 50% 5.000000 75% 5.000000 5.000000 max

En moyenne plus le temps de traitement est court plus la note est élevée

```
110171 non-null object
   customer id
   customer unique id
                                  110171 non-null object
   customer zip code prefix
                                  110171 non-null int64
   customer city
                                  110171 non-null object
   customer state
                                  110171 non-null
                                                  object
   order id
                                  110171 non-null object
   order purchase timestamp
                                  110171 non-null datetime64[ns]
   order delivered customer date 110171 non-null datetime64[ns]
   order item id
                                  110171 non-null int64
   product id
                                  110171 non-null
                                                  obiect
   price
                                  110171 non-null float64
   freight value
                                  110171 non-null float64
   payment sequential nbre
                                  110171 non-null int64
   payment installments sum
                                  110171 non-null
                                                  int64
                                  1101/1 non-null
   note
                                                  bool
                                  109344 nop hull
   score
                                                  float64
   product category name
                                  110171 non-null object
   product name lenght
                                  110171 non-null float64
   product description lenght
                                  110171 non-null float64
   product photos qty
                                  110171 non-null float64
   product weight g
                                  110171 non-null float64
   product length cm
                                  110171 non-null float64
   product height cm
                                  110171 non-null float64
   product width cm
                                  110171 non-null float64
   date
                                  110171 non-null
                                                  obiect
25
   mois
                                  110171 non-null int64
   annee
                                  110171 non-null int64
   mois an
                                  110171 non-null period[M]
   plage horaire
                                  110171 non-null object
   traitement
                                  110171 non-null
                                                  float64
                                  110171 non-null int64
   recency
   frequency
                                  110171 non-null int64
   monetary value
                                  110171 non-null float64
                                  110171 non-null int32
34 RFM score
                                  110171 non-null float64
35 client segment
                                  110171 non-null object
```

```
list to del=['customer city','customer state',"order purchase timestamp",
            order delivered customer date', "order item id", "product id", "product name lenght"
             "product description lenght", "product photos qty", "product weight g",
             'product length cm', 'product height cm', 'product width cm', 'date', 'mois', 'annee',
             'mois an', 'plage horaire', "client segment"
data.drop(columns=list_to_del,inplace=True)
jointure pour récupérer les coordonnées moyennes des villes
data=pd.merge(data, geos.iloc[:,0:3],how="left",
            left on="customer zip code prefix", right on="geolocation zip code prefix")
 Pour exploiter au mieux les données je vais calculer la distance
 Haversine entre le siège de Olist et l'état où réside le client (latitude et
 longitude movenne)
 # Olist geolocalisation
 olist lat = -25.430182
 olist lon = -49.292507
```

imputer les valeurs manquantes de score avec la valeur médian

Création du dataset de travail


```
df cust.info()
kclass 'pandas.core.frame.DataFrame'>
Int64Index: 93082 entries, 0 to 93335
Data columns (total 13 columns):
    Column
                              Non-Null Count
                                             Dtvpe
    customer unique id
                              93082 non-null
                                             object
    nb commandes
                                             int64
                              93082 non-null
    total price
                              93082 non-null
                                             float64
    total freight cost
                              93082 non-null
                                             float64
    payment sequential nbre
                              93082 non-null float64
     payment_installments_sum
                              93082 non-null
                                             float64
    score
                              93082 non-null
                                             float64
    traitement
                              93082 non-null float64
    RFM score
                              93082 non-null
                                             float64
    recency
                              93082 non-null
                                             int64
    frequency
                              93082 non-null
                                             int64
    monetary value
                              93082 non-null
                                             float64
    harvesine_distance 93082 non-null float64
dtypes: float64(9), int64(3), object(1)
memory usage: 9.9+ MB
```

Il y a deux corrélations parfaites entre frequency et nb_commandes et entre monetary_value et total_price. Je vais enlever nb_commandes et total_price

```
#Transformation en array Numpy
df.set_index('customer_unique_id', inplace=True)
X = df.values
X.shape
(93082, 10)
```

1. standardisation des données de grandeurs très différentes.

```
std_scale = StandardScaler().fit(X)
X_scaled = std_scale.transform(X)
```

2. initier algorithme kmeans

```
# initialiser kmeans avec k=2
kmeans = KMeans( n_clusters=2,n_init=10,random_state=42)
kmeans.fit(X_scaled)
kmeans.predict(X_scaled) # ou kmeans.labels_
# calcule silhouette score
kmeans_silhouette = silhouette_score(
    X_scaled, kmeans.labels_
).round(2)
```

3. définir valeur de k : il faut un k idéalement entre 3 et 8 (segmentation clients) et avec un silhouette score important

3.1 méthode du coude

```
# liste Inertia pour stocker les valeurs pour chaque k
inertia = []
dict_kmeans = {}
for k in range(1, 12):
    kmeans = KMeans(n_clusters=k, **kmeans_kwargs,)
    kmeans.fit(X_scaled)
    inertia.append(kmeans.inertia_)
    dict_kmeans[k] = kmeans
```

Il y a un point idéal où la courbe commence à se plier, connue sous le nom de point de coude . La valeur x de ce point est considérée comme un compromis raisonnable entre l'erreur et le nombre de grappes. Ici il y a un point légèrement marqué à k=4, k=6 et k=8

3.2 coéfficient de silhouette

C'est une mesure de la cohésion et de la séparation des clusters. Il quantifie à quel point un point de données s'intègre dans son cluster attribué en fonction de deux facteurs : la proximité du point de données avec d'autres points du cluster et la distance entre le point de données et les points d'autres clusters. Les valeurs du coefficient de silhouette sont comprises entre -1 et 1. Des nombres plus grands indiquent que les échantillons sont plus proches de leurs grappes

qu'ils ne le sont des autres grappes.

```
# A list holds the silhouette coefficients for each k
silhouette_coefficients = []
# Start at 2 clusters for silhouette coefficient
for k in range(2, 11):
    kmeans = KMeans(n_clusters=k, **kmeans_kwargs)
    kmeans.fit(X_scaled)
    score = silhouette_score(X_scaled, kmeans.labels_)
    silhouette coefficients.append(score)
```

SSE est maximum pour k = 9.

3.3 ElbowVisualizer et SilhouetteElbowVisualizer : 2 outils de la librairie sklearn

```
numerical_features
numerical_features

scaler = StandardScaler()|
preprocessor = ColumnTransformer([
    ('scaler', scaler, numerical_features)])

kmeans_visualizer = Pipeline([
    ("preprocessor", preprocessor),
    ("kelbowvisualizer", KElbowVisualizer(KMeans(random_state=42,n_init=10),K=(4,12)))])
kmeans_visualizer.fit(df)
kmeans_visualizer.named_steps['kelbowvisualizer'].show()

Distortion Score Elbow for KMeans Clustering
```



```
model_6clust = KMeans(n_clusters = 6, random_state=42,n_init=10)

sil_visualizer = SilhouetteVisualizer(model_6clust)
sil_visualizer.fit(df)
sil_visualizer.show()
```


Les 6 clusters ont un score de silhouette supérieur au score global.

Les scores sont compris entre 0.5 et 0.7.

Le nombre de clusters est k = 6

K-means avec k = 6

Groupe	total_freight_cost	payment_sequential_nbre	payment_installments_sum	score	traitement	RFM_score	recency	frequency	monetary_value
0	19.863947	1.025272	2.804719	4.654801	9.321732	3.456931	125.186623	1.122142	127.759660
1	78.048836	1.033975	5.644925	3.873239	13.081874	4.075254	222.942618	2.619645	612.534864
2	16.626502	1.032147	k=6)552763	4.582886	10.762490	2.260906	366.976970	1.046060	87.943920
3	33.778078	1.037513	.453472	4.125798	20.981891	2.963899	250.802133	1.073683	142.291460
4	21.828050	1.031438	2.959590	1.547904	20.792706	3.064269	230.861387	1.185882	124.580226
5	24.816142	6.126312	6.424869	4.192913	12.946152	2.824803	274.925197	1.177165	127.768031

K-means avec k = 5

Groupe	total_freight_cost	payment_sequential_nbre	payment_installments_sum	score	traitement	RFM_score	recency	frequency	monetary_value
0	21.759697	1.040533	2.957060	1.548433	20.785350	3.061407	230.939577	1.184283	124.016818
1	76.880371	1.070311	11439	3.890207	13.044719		222.815784	2.583986	602.685104
2	19.746957	1.030130	K=5	4.655561	9.320704	3.449675	125.178603	1.119298	126.375058
3	16.638372	1.054978	2.584621	4.582475	10.767613	2.259249	368.012040	1.046066	88.111161
4	33.695677	1.050105	3.447955	4.122834	21.000908	2.962378	250.780400	1.073200	141.903717

Comparaison des groupes K-Means

K-means avec dataset réduit (RFM+score) et k=5

	Groupe	recency	frequency	monetary_value	score
0	0	392.335445	1.085057	113.660441	4.643583
1	1	122.248347	1.083143	112.323805	4.707761
2	2	229.275373	3.864678	280.577235	3.613600
3	3	229.709236	1.158146	122.734143	1.758624
4	4	234.913066	1.194942	1199.895748	4.173165

groupe 0 : "Low customers" client occasionnels.Très satisfaits mais n'ont plus achetés depuis 1 an? Prévoir une relance avec offre promotionnelle -10% à durée limitée. L'achat pour un montant minimum au cours du trimestre déclenche la ristourne

groupe 1 : " Medium Value customer" envoyer folder offre promotionnelle jusqu'à 20% sur série articles de saison

groupe 2 : "High Value Customers" Clients réguliers Prévoir offre promotionnelle avec frais livraison réduite ou gratuite sur toute commande d'un montant minimum (à définir) passée dans les 2 mois

groupe 3 : "Lost ou nearly-lost customers" Prévoir action pour comprendre leur insatisfaction et relancer en proposant produit équivalent avec réduction et/ou meilleurs délais de livraison

groupe 4 : "Top customers" clients réguliers avec panier important. Prévoir une relance avec offre promotionnelle sur articles/catégories les plus vendus à ces clients

Application de l'algorithme DBSCAN (Density-based spatial clustering of applications with noise

Contrairement au clustering k-means, DBSCAN ne nécessite pas de spécifier initialement le nombre de clusters.

Cependant, DBSCAN nécessite deux paramètres, à savoir. le rayon des voisinages pour un point de données donné p (ε) et le nombre minimum de points de données dans un ε-voisinage donné pour former des grappes Pour réduire le temps de calcul je travaille sur un sampling de 10000 échantillons..

On veut déterminer l'epsilon qui donne un nombre de clusters acceptable(k compris entre 4 et 8 pour une segmentation clients), un nombre réduit de points "outliers" et un silhouette score moyen élevé.

```
eps value is 2.6
{0, 1, 2, 3, 4, -1}
For eps value =2.6 the average silhouette score is: 0.56
Estimated no. of clusters: 6 Estimated no. of noise points: 108

eps value is 2.7
{0, 1, 2, 3, 4, -1}
For eps value =2.7 the average silhouette score is: 0.56
Estimated no. of clusters: 6 Estimated no. of noise points: 99
```

Un eps de 2.7 et un min_samples = 3 nous donne un silhouette score moyen de 0.56 avec 6 clusters et 99 outliers. Nous allons faire varier le nombre de min_samples

Application de l'algorithme DBSCAN (Density-based spatial clustering of applications with noise

```
range min samples=np.arange(1,11,1)
for n in range min samples:
   print('min samples value is '+str(round(n,1)))
   db=DBSCAN(eps=2.7,min samples=n).fit(X scaled)
   labels=db.labels
   silhouette avg=silhouette score(X_scaled,labels)
   no clusters = len(np.unique(labels) )
   no noise = np.sum(np.arrav(labels) == -1, axis=0)
   core samples mask=np.zeros like(db.labels ,dtype=bool)
   core samples mask[db.core sample indices ]=True
   #print(set(labels))
   print("For min samples value ="+str(round(n,1)),"
          'estimated no. of clusters: %d' % no clusters,' ',
          'estimated no. of noise points: %d' % no noise)
   print('The average silhouette score is :',round(silhouette avg,2))
   print(' ')
```

```
min_samples value is 2
For min_samples value =2 estimated no. of clusters: 11 estimated no. of noise points: 89
The average silhouette score is : 0.55

min_samples value is 3
For min_samples value =3 estimated no. of clusters: 6
The average silhouette score is : 0.56

min_samples value is 4
For min_samples value =4 estimated no. of clusters: 4 estimated no. of noise points: 108
The average silhouette score is : 0.59
```

Pour un eps = 2.7:

la valeur de min_samples = 3 donne un silhouette score = 0.56 avec 5 clusters et 99 outliers. Je conserve min_samples = 3 pour la suite

Un cluster est de taille très différente et compte 98,8 % des échantillons.La clustérisation avec DBSCAN donne des groupes très disproportionnés en terme de population qui s'imbriquent les uns dans les autres et ne sont pas exploitables dans un cadre professionnel de segmentation clients).

Analyse en composantes principales ACP

```
acp_in=data.copy()
# suppression des colonnes non numériques
X=acp_in.select_dtypes(np.number)
#Je vais standardiser() centrer et réduire) mes données
std_scale = preprocessing.StandardScaler().fit(X)
X_scaled = std_scale.transform(X)
pca = PCA()
pca.fit(X_scaled)
```


	Dimension	Variance expliquée	% variance expliquée	% cum. var. expliquée
0	dim1	2.321389	23.2	23.2
1	dim2	1.599629	16.0	39.2
2	dim3	1.209306	12.1	51.3
3	dim4	1.057975	10.6	61.9
4	dim5	0.992654	9.9	71.8
5	dim6	0.919358	9.2	81.0
6	dim7	0.654409	6.5	87.5
7	dim8	0.541722	5.4	93.0
8	dim9	0.413283	4.1	97.1
9	dim10	0.290382	2.9	100.0

Analyse en composantes principales ACP

	total_freight_cost	payment_sequential_nbre	payment_installments_sum	score	traitement	RFM_score	recency	frequency	monetary_value	harves
posante incipale										
PC1	0.507966	0.017265	0.287752	-0.139876	0.141777	0.467448	-0.183205	0.394086	0.428416	
PC2	0.113495	0.053120	0.083576	-0.335021	0.569166	-0.359031	0.455483	-0.087654	0.002285	
PC3	0.112739	0.256790	0.405579	0.394023	-0.327480	-0.250166	0.546283	0.085595	0.313674	
PC4	-0.237136	0.517518	0.419266	0.105515	0.106120	0.162324	-0.328703	-0.536834	0.065629	
PC5	-0.074173	0.633524	-0.039234	-0.535580	0.009327	0.000251	0.041928	0.275424	-0.146924	
PC6	0.258440	0.484430	-0.420749	0.419049	-0.050716	-0.035233	-0.062347	0.267555	-0.291425	
PC7	0.081267	0.162312	-0.597682	0.041335	0.152332	-0.030337	0.007372	-0.320153	0.667185	
PC8	-0.047931	-0.013480	0.093367	0.484467	0.711447	0.101978	0.001569	0.143239	-0.152093	
PC9	0.727274	-0.021220	0.112894	-0.042586	-0.033465	-0.356372	-0.270188	-0.354359	-0.233423	
PC10	-0.223661	-0.010566	0.112607	0.033604	0.065602	-0.651226	-0.523256	0.381400	0.290667	

Analyse en composantes principales ACP

	total_freight_cost	payment_sequential_nbre	payment_installments_sum	score	traitement	RFM_score	recency	frequency	monetary_value
Composante Principale									
PC1	0.507966	0.017265	0.287752	-0.139876	0.141777	0.467448	-0 183205	0.394086	0.428416
PC2	0.113495	0.053120	0.083576	-0.335021	0.569166	-0.359031	0.455483	-0.087654	0.002285
PC3	0.112739	0.256790	0.405579	0.394023	-0.327480	-0.250166	0.546283	0.085595	0.313674
PC4	-0.237136	0.517518	0.419266	0.105515	0.106120	0.162324	-0.328703	-0.536834	0.065629
PC5	-0.074173	0.633524	-0.039234	-0.535580	0.009327	0.000251	0.041928	0.275424	-0.146924

On constate que la composante principale 1 est fortement influencée par le coût du transport et le RFM score.

Analyse en composantes principales ACP avec variables RFM et score

recency frequency monetary_value score

	Dimension	Variance expliquée	% variance expliquée	% cum. var. expliquée
0	PC1	1.231665	30.8	30.8
1	PC2	1.002243	25.1	55.8
2	PC3	0.970743	24.3	80.1
3	PC4	0.795393	19.9	100.0

Analyse en composantes principales ACP avec variables RFM et score

	recency	frequency	monetary_value	score
Composante Principale				
PC1	-0.024583	0.682739	0.614777	-0.394098
PC2	-0.968510	0.038530	0.069701	0.235895
PC3	0.242679	0.073625	0.469934	0.845487
PC4	-0.049914	-0.725922	0.629566	-0.272382

<u>Conclusions</u> Actions Marketing ciblées client

- fidéliser les nouveaux clients en proposant des bons de réduction valables 3 mois après le 1 er achat.
- proposer une réduction sur les produits/catégories les plus achetés par les clients fidèles.
- réduire ou offrir les frais de transport dès la 3eme commande passée endéans les 6 mois ou dès que le panier total a dépassé un seuil fixé endéans les 6 mois pour l'ensemble de la clientèle.
- proposer de meilleurs services de livraison pour réduire le temps de traitement de la commande qui a un impact très important sur la note de satisfaction client.
- proposer des produits de substitution aux clients mécontents
- lancer enquête de satisfaction afin de collecter des données pertinentes

Actions Marketing en interne

- actualisation trimestrielle de la segmentation clients (algorithme k-means avec variables RFM + score)
- recherche d'autres transporteurs, création de centres de distribution locaux,.. pour réduire le temps de traitement
- étude ciblée « produits » pour en mesure de réagir en proposant des produits équivalents aux clients non satisfaits.
- Intégrer dans l'analyse (ou collecter plus de données) telles que l'âge, le sexe , la composition de famille , les hobbies ou centres d'intérêts , le type de résidence principale, la présence d'animal de compagnie ...des clients afin de cibler davantage leurs besoins .