## Hand in Friday, March 15.

1. Suppose that X and Y are topological spaces, that  $A \subset X$ , and that f and g are continuous maps from X to Y that satisfy, for all  $x \in A$ , f(x) = g(x). If Y is Hausdorff, show that, for all z in the closure of A, f(z) = g(z).

Proof. Assume X and Y are topological spaces, that  $A \subset X$ , and that f and g are continuous maps from X to Y that satisfy, for all  $x \in A$ , f(x) = g(x). Assuming Y is Hausdorff and that there there exists some point z in the closure of A where  $f(z) \neq g(z)$ . Then as Y is Hausdorff we have two neighborhoods  $U_f$  of f(z) and  $U_g$  of g(z) where  $U_f \cap U_g = \emptyset$ . As f, g are continuous we have that  $f^{-1}(U_f)$  and  $g^{-1}(U_g)$  are both open. We have that  $z \in f^{-1}(U_f) \cap g^{-1}(U_g)$  but we have that z is a limit point as if  $z \in A$  then that would be an immediate contraction on  $f(z) \neq g(z)$  hence we have  $A \cap f^{-1}(U_f) \cap g^{-1}(U_g) \setminus \{z\} \neq \emptyset$  hence we have for some  $a \in A \cap f^{-1}(U_f) \cap g^{-1}(U_g) \setminus \{z\}$  then we have a neighborhood  $U_a$  of a with  $U_a \subset f^{-1}(U_f) \cap g^{-1}(U_g)$  hence we have  $f(a) \in U_f \cap U_g$  which contradicts  $U_f$  and  $U_g$  being disjoint.

**2.** Let  $f: X_1 \to Y_1$  and  $g: X_2 \to Y_2$  be continuous maps between topological spaces. Give the products  $X_1 \times X_2$  and  $Y_1 \times Y_2$  their product topologies. Show that the map  $H: X_1 \times X_2 \to Y_1 \times Y_2$  defined by  $H((x_1, x_2)) = (f(x_1), g(x_2))$  is continuous.

Proof. Assume that  $f: X_1 \to Y_1$  and  $g: X_2 \to Y_2$  are continuous maps between topological spaces. Assume we have  $X_1 \times X_2$  and  $Y_1 \times Y_2$  with their product topologies with the map  $H: X_1 \times X_2 \to Y_1 \times Y_2$  where  $H((x_1, x_2)) = (f(x_1), g(x_2))$ . Then consider an arbitrary basis element  $U_1 \times U_2 \subset Y_1 \times Y_2$  then we have by the definition of product topology that  $U_1$  is open in  $Y_1$  and  $U_2$  is open in  $Y_2$  and as f, g are continuous we have  $f^{-1}(U_1)$  and  $g^{-1}(U_2)$  are open hence  $f^{-1}(U_1) \times g^{-1}(U_2)$  is open in  $X_1 \times X_2$  this implies  $H^{-1}(U_1 \times U_2) = f^{-1}(U_1) \times g^{-1}(U_2)$  is open which shows that H is continuous.

**3.** An injective (one-to-one) continuous map  $f: X \to Y$  between topological spaces is a bijection from X to the image f(X). Give f(X) the subspace topology induced by Y's topology. We call such an f an imbedding if it is a homeomorphism from X to f(X).

In this context, let Y be  $X \times X$  with the product topology. Let  $x_0$  be an arbitrary element of X.

**a.** Show that  $f: X \to X \times X$  defined by  $f(x) = (x, x_0)$  is an imbedding.

Proof. Assume that  $f: X \to X \times X$  is a map defined by  $f(x) = (x, x_0)$  where  $x_0$  is an arbitrary element of X. Suppose  $x, y \in X$  with f(x) = f(y) then we have  $(x, x_0) = (y, x_0)$  hence x = y which shows that f is injective. Let  $U_1 \times U_2 \subset f(X)$  be an arbitrary basis element. Then as  $f(X) = X \times \{x_0\}$  we get that  $U_2 = \{x_0\}$  additionally from the definition of subspace topology we get  $U_1 = X \cap U_3$  where  $U_3$  is some open set in X hence  $U_1$  is also open. As  $f^{-1}(U_1 \times U_2) = U_1$  we have  $f^{-1}(U_1 \times U_2)$  is open. Hence f is continuous. We have  $f^{-1}: f(X) \to X$  where  $f^{-1}(x,y) = x$  is a bijection as we have shown that f is injective and it is surjective with its own range. So we just need to show that  $f^{-1}$  is continuous. Given an arbitrary basis element U of X. We have that  $(f^{-1})^{-1} = f$  hence  $f(U) = U \times \{x_0\}$  and as  $U \times \{x_0\} = f(X) \cap (U \times X)$  and  $U \times X$  is open in the product topology we get  $U \times \{x_0\}$  is open in the subspace topology hence which shows that  $f^{-1}$  is continuous which implies f is a homeomorphism which shows that f is an imbedding.

**b.** Show that  $g: X \to X \times X$  defined by g(x) = (x, x) is an imbedding.

Proof. Let  $g: X \to X \times X$  be defined by g(x) = (x, x). Let  $x, y \in X$  be two elements with g(x) = g(y) then (x, x) = (y, y) which implies x = y hence g is injective. Now let  $U_1 \times U_2 \subset g(X)$  be an open set. Then we have  $U_1 \times U_2 = \{(x, x) : x \in X\} \cap A \times B$  for some open sets A, B in X which implies  $U_1 \times U_2 = \{(x, x) : x \in A \cap B\}$ . Then  $g^{-1}(U_1 \times U_2) = A \cap B$  and as A, B are open we get  $A \cap B$  is open which shows that g is continuous.

Let the map  $g^{-1}:g(X)\to X$  be defined by  $g^{-1}(x,x)=x$  we have already shown g is injective and as g is surjective with its own range we have that  $g^{-1}$  is a bijection. Let  $U\subset X$  be an open set then we have  $(g^{-1})^{-1}=g$  hence  $(g^{-1})^{-1}(U)=g(U)=\{(x,x):x\in U\}$ . As  $\{(x,x):x\in U\}=(U\times U)\cap g(X)$  we get  $\{(x,x):x\in U\}$  is open in the subspace topology hence  $g^{-1}$  is continuous which implies that g is an imbedding.

**4.** Suppose that  $h: X \to Y$  is a homeomorphism of topological spaces. If Z is any other topological space and if  $g: Y \to Z$  is a continuous map, we know that the composition  $g \circ h$  is a continuous map from X to Z. Show that every continuous map  $f: X \to Z$  arises this way, i.e. for any continuous  $f: X \to Z$ , there exists a continuous  $G: Y \to Z$  for which  $f = G \circ h$ .

5. a. Show that a linearly ordered set with the order topology is Hausdorff.

**b.** Suppose that X is a topological space. Show that X is Hausdorff if and only if the diagonal subset  $\{(x,x):x\in X\}$  of the product  $X\times X$  is a closed subset of the product. Assume here that the topology on  $X\times X$  is the product topology.

**6.** text p. 111-112, problem 8.