### **APPENDIX**

## A. The visualization of APPM and AMOS2022

Fig.A1 displayed the APPM visualization results of head and neck small organs. Fig.A2 showed the APPM visualization results of abdominal small organs. APPM contained anatomical prior information such as the relative position, size, and shape of organs. The brighter a position in the APPM, the greater the probability that the voxel in that position in the training data set belonged to the foreground category.



Fig. A1. The APPM of head and neck small organs.



Fig. A2. The APPM of abdominal small organs.



Fig. A3. Visualizations of segmentation results of the MHL-Net on AMOS2022 dataset.

The axial plane visualization results of abdominal multiorgan segmentation were shown in Fig.A3. From the visualization results, although under-segmentation and oversegmentation, the proposed method could accurately locate and segment all organs and had transferability.

### B. Statistical validation

1) Ablation Study: As for the MDCA module, taking the method without the MDCA module as the benchmark, the difference between the proposed method and other methods was verified. From table B1, when the MDCA was added to the encoder and decoder, the difference between the methods was not significant ( $p \ge 0.050$ ). Only when the MDCA module was added to the skip connection, the segmentation results of some organs were improved significantly (p<0.050).

Table B2 summarized the p-values of the small organ DSC with different SlocNet inputs. The SlocNet with the original input image was the benchmark. Both the MsegNet prediction segmentation and APPM were important for improving the DSC. But when the prediction segmentation and APPM were combined, the p-values were smaller, and the difference was more significant.

TABLE B1
P-VALUES OF THE DSC OF HNOAR SEGMENTATION WITH MSEGNET
IN FIVE CASES.

| Positions<br>\HNOAR | BS      | OC    | LON   | RON   | LPG   | RPG     | LSG   | RSG   |
|---------------------|---------|-------|-------|-------|-------|---------|-------|-------|
| Without<br>MDCA     | \       | \     | \     | \     | \     | \       | \     | \     |
| Encoder             | 0.053   | 0.160 | 0.094 | 0.105 | 0.051 | 0.050   | 0.052 | 0.058 |
| Decoder             | 0.054   | 0.178 | 0.131 | 0.137 | 0.055 | 0.060   | 0.059 | 0.057 |
| Encoder<br>+decoder | 0.050   | 0.099 | 0.094 | 0.010 | 0.056 | 0.058   | 0.052 | 0.053 |
| Skip connection     | < 0.010 | 0.086 | 0.083 | 0.084 | 0.010 | < 0.010 | 0.012 | 0.011 |

### **TABLE B2**

P-VALUES OF THE DSC OF SMALL ORGANS SEGMENTED BY SSEGNET WHEN SLOCNET USED DIFFERENT INPUT IMAGES FOR LOCALIZATION.

| Input Image \HNOAR       | OC    | LON   | RON   |
|--------------------------|-------|-------|-------|
| Origin input image       | \     | \     | \     |
| With prediction          | 0.044 | 0.047 | 0.043 |
| With APPM                | 0.042 | 0.045 | 0.044 |
| With prediction and APPM | 0.013 | 0.011 | 0.014 |

# TABLE B3 P-VALUES OF THE DSC AND HD95 OF SMALL ORGANS SEGMENTED BY SSEGNET UNDER DIFFERENT CONDITIONS.

| HNOAR \Conditions | SsegNo | et   | Withou | t APPM | Without BCA |       |  |
|-------------------|--------|------|--------|--------|-------------|-------|--|
| Metrics           | DSC    | HD95 | DSC    | HD95   | DSC         | HD95  |  |
| OC                | \      | \    | 0.019  | 0.013  | 0.020       | 0.014 |  |
| LON               | V.     | Ϊ.   | 0.021  | 0.015  | 0.019       | 0.019 |  |
| RON               | \      | \    | 0.017  | 0.010  | 0.022       | 0.018 |  |

Table **B3** conducted statistical verification of DSC and HD95. With the SsegNet as the benchmark, the p-values of the method without APPM and without BCA were all smaller than 0.050, which indicated that the APPM and the BCA were significantly important for segmenting HNOAR.

2) Comparison Study: Taking the proposed method as the benchmark, the method was combined with other comparison methods in pairs one after another for statistical verification, and the results were summarized in table B4-B9. The statistical analysis results showed that the segmentation performance of

MHL-Net was significantly improved compared with other comparison methods for most organs (p<0.050). Only the segmentation performance of the method of Liang et al [1]., Gao et al [2]., Lei et al [9]., and Wang et al. [33] had no significant difference from the proposed method for a few organs.

TABLE B4
P-VALUES OF THE DSC BETWEEN THE PROPOSED METHOD AND THE SOTA METHODS ON THE HNCPC DATASET.

| Methods<br>\HNOAR | BS      | OC      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | 0.017   | < 0.010 | 0.020   | 0.011   | 0.015   | < 0.010 | 0.035   | < 0.010 |
| Huang [3]         | < 0.010 | 0.011   | 0.019   | 0.014   | 0.017   | 0.021   | < 0.010 | < 0.010 |
| Gao [2]           | 0.015   | 0.032   | 0.033   | 0.026   | 0.040   | 0.013   | 0.019   | 0.024   |
| Liang [1]         | 0.072   | 0.023   | 0.025   | 0.030   | 0.063   | 0.038   | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | < 0.010 | 0.031   | 0.012   | < 0.010 | 0.011   | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | < 0.010 | < 0.010 | < 0.010 | 0.010   | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       | \       |

**TABLE B5** 

P-VALUES OF THE HD95 BETWEEN THE PROPOSED METHOD AND THE SOTA METHODS ON THE HNCPC DATASET.

| Methods<br>\HNOAR | BS      | OC      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.021   | < 0.010 |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.022   |
| Gao [2]           | < 0.010 | 0.023   | 0.016   | 0.010   | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Liang [1]         | < 0.010 | < 0.010 | 0.038   | 0.031   | < 0.010 | < 0.010 | 0.014   | < 0.010 |
| Lei [9]           | < 0.010 | 0.025   | 0.025   | 0.027   | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | 0.022   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | 0.019   | 0.031   | 0.041   | 0.039   | < 0.010 | 0.020   | 0.023   | 0.019   |
| Wang [34]         | < 0.010 | 0.023   | 0.025   | < 0.010 | < 0.010 | 0.019   | 0.020   | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       | \       |

TABLE B6
P-VALUES OF THE DSC BETWEEN THE PROPOSED METHOD AND THE SOTA METHODS ON THE PDDCA DATASET.

| Methods<br>\HNOAR | BS      | OC      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | 0.011   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.017   | < 0.010 |
| Huang [3]         | < 0.010 | 0.015   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Gao [2]           | 0.013   | 0.022   | 0.017   | 0.025   | 0.021   | 0.028   | 0.033   | 0.041   |
| Liang [1]         | 0.069   | 0.019   | 0.011   | 0.019   | 0.082   | 0.032   | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | < 0.010 | 0.029   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | < 0.010 | < 0.010 | < 0.010 | 0.010   | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       | \       |

3) Generalization Study: Based on the proposed method, the statistical validation results were summarized in table B10-B13. Both the proposed method and the comparative methods have a certain generalization ability and can segment organs well on external datasets. In addition, the proposed method made full use of the anatomical prior knowledge by extracting the basic features of each organ, which further improved the robustness of the model. For the same external data set, the segmentation results of MHL-Net were better on the whole, which showed that this method mined the essential features of images and had a stronger generalization ability (p<0.050).

TABLE B7

P-VALUES OF THE HD95 BETWEEN THE PROPOSED METHOD AND THE SOTA METHODS ON THE PDDCA DATASET.

| Methods<br>\HNOAR | BS      | OC      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Gao [2]           | < 0.010 | 0.029   | 0.031   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Liang [1]         | < 0.010 | < 0.010 | 0.020   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | < 0.010 | 0.018   | 0.027   | < 0.010 | 0.022   | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | 0.020   | < 0.010 | 0.035   | 0.029   | 0.037   | < 0.010 | 0.015   |
| Wang [33]         | 0.018   | 0.023   | 0.028   | 0.030   | < 0.010 | 0.028   | 0.012   | 0.011   |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | 0.033   | 0.021   | 0.031   | 0.029   | 0.017   |
| ours              | \       | \       | \       | \       | \       | \       | \       | \       |

#### TABLE B8

P-VALUES OF THE DSC BETWEEN THE PROPOSED METHOD AND THE SOTA METHODS ON THE HNCSC DATASET.

| Methods<br>\HNOAR | BS      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | 0.020   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.047   | < 0.010 |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.010   | < 0.010 | 0.016   |
| Gao [2]           | 0.015   | 0.025   | 0.017   | 0.029   | 0.027   | 0.051   | 0.019   |
| Liang [1]         | 0.019   | 0.014   | 0.031   | 0.021   | 0.024   | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | 0.011   | < 0.010 | < 0.010 | 0.011   | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.013   |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       |

## TABLE B9

P-VALUES OF THE HD95 BETWEEN THE PROPOSED METHOD AND THE SOTA METHODS ON THE HNCSC DATASET.

| Methods<br>\HNOAR | BS      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.010   | < 0.010 |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Gao [2]           | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Liang [1]         | < 0.010 | 0.071   | < 0.010 | < 0.010 | < 0.010 | 0.011   | < 0.010 |
| Lei [9]           | < 0.010 | 0.077   | 0.052   | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | 0.035   | 0.014   | 0.017   | 0.019   |
| Wang [33]         | 0.022   | 0.082   | < 0.010 | < 0.010 | 0.019   | 0.020   | 0.021   |
| Wang [34]         | < 0.010 | 0.021   | < 0.010 | 0.038   | 0.015   | 0.016   | 0.014   |
| ours              | \       | \       | \       | \       | \       | \       | \       |

### TABLE B10

P-values of the DSC on the PDDCA dataset with the HNCPC MODELS.

| Methods<br>\HNOAR | BS      | OC      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.035   | < 0.010 |
| Huang [3]         | < 0.010 | 0.012   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.049   | < 0.010 |
| Gao [2]           | < 0.010 | 0.019   | 0.045   | 0.013   | < 0.010 | < 0.010 | 0.031   | < 0.010 |
| Liang [1]         | 0.019   | 0.016   | < 0.010 | 0.011   | 0.024   | 0.051   | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | < 0.010 | 0.041   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       | \       |

TABLE B11

P-VALUES OF THE HD95 ON THE PDDCA DATASET WITH THE HNCPC MODELS.

| Methods<br>\HNOAR | BS      | OC      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Gao [2]           | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Liang [1]         | < 0.010 | < 0.010 | 0.025   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | 0.019   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       | \       |

TABLE B12

P-VALUES OF THE DSC ON THE HNCSC DATASET WITH THE HNCPC MODELS.

| Methods<br>\HNOAR | BS      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | 0.016   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.040   | 0.013   |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | 0.015   |
| Gao [2]           | 0.011   | 0.019   | 0.017   | 0.015   | 0.010   | 0.035   | 0.023   |
| Liang [1]         | 0.014   | < 0.010 | < 0.010 | 0.021   | < 0.010 | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | 0.077   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       |

TABLE B13

P-VALUES OF THE HD95 ON THE HNCSC DATASET WITH THE HNCPC MODELS.

| Methods<br>\HNOAR | BS      | LON     | RON     | LPG     | RPG     | LSG     | RSG     |
|-------------------|---------|---------|---------|---------|---------|---------|---------|
| Tang [25]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Huang [3]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Gao [2]           | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Liang [1]         | < 0.010 | 0.043   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Lei [9]           | < 0.010 | 0.025   | 0.021   | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Dai [13]          | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [33]         | 0.023   | 0.020   | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| Wang [34]         | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 | < 0.010 |
| ours              | \       | \       | \       | \       | \       | \       | \       |