Department of Mathematics

National University of Singapore

(2022/23) Semester I MA1521 Calculus for Computing Tutorial 8

- 1. In an electric circuit, the voltage of V volts (V), current of I amperes (A), and resistance of R ohms (Ω) are governed by Ohm's Law: $V = I \times R$.
 - (i) If the resistance is fixed at 15 Ω , how fast is the current increasing with respect to voltage?
 - (ii) If the voltage is fixed at 120 V, how fast is the current increasing with respect to resistance at the instant when resistance is 20Ω ?
 - (iii) If the resistance is slowly increasing as the resistor heats up, how is the current changing at the moment when $R=400\Omega$, $I=0.08\mathrm{A}$, $dV/dt=-0.01~\mathrm{V/s}$ and $dR/dt=0.03~\Omega/\mathrm{s}$?

Ans. (i) ≈ 0.0667 A/V, (ii) decreasing at 0.3 A/ Ω , (iii) decreasing at 3.1 \times 10^{-5} A/s.

2. Find the directional derivative of $f(x,y) = xe^{2y-x}$ at P(-2,-1) in each of the following the directions

(i)
$$\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$
, (ii) $3\mathbf{i} + 4\mathbf{j}$.

Find the direction that gives the *largest possible* directional derivative of f at P.

Ans. (i) $-\sqrt{2}/2$; (ii) -7/5; in the direction of $\nabla f(-2, -1) = f_x(-2, -1)\mathbf{i} + f_y(-2, -1)\mathbf{j} = 3\mathbf{i} - 4\mathbf{j}$.

- 3. Let $f(x, y, z) = \sin(xyz)$ and $P = (\frac{1}{2}, \frac{1}{3}, \pi)$.
 - (i) Find the rate of change of f at P in the direction $\mathbf{u} = \frac{1}{\sqrt{3}}\mathbf{i} \frac{1}{\sqrt{3}}\mathbf{j} + \frac{1}{\sqrt{3}}\mathbf{k}$.
 - (ii) Suppose P moves 0.1 unit along **u** in part (i). How much will the value of f have changed?

Ans. (i) $\frac{1}{12}(1-\pi)$; (ii) decreases by ≈ 0.01785 .

4. Find the local maximum and minimum values and saddle points (if any) of each of the following functions.

(i)
$$f(x,y) = \ln(x^2y) - xy - 2x$$
, where $x > 0$, $y > 0$

- (ii) g(x,y) = xy(1-x-y)
- (iii) $h(x,y) = x^2 + y^2 + x^{-2}y^{-2}$, where $x \neq 0, y \neq 0$

Ans. (i) $f(1/2, 2) = -\ln 2 - 2$ is a local maximum, (ii) (0, 0), (1, 0), (0, 1) are saddle points,

g(1/3,1/3)=1/27 is a local maximum, (iii) $h(\pm 1,\pm 1)=h(\pm 1,\mp 1)=3$ are local minima.

Further Exercises

1. The temperature at a point (x, y) on a plane is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2,3) = 4$ and $T_y(2,3) = 3$. How fast is the temperature (experienced by the bug) rising on the bug's path after 3 seconds?

Ans. $2\mathrm{C}^{\circ}/s$.

- 2. Let $f(x,y,z) = xy^2z^3$ and P = (1,-2,1). Find the rate of change of f at P in the direction $\mathbf{u} = \langle \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$. (That is to find $D_{\mathbf{u}}f(P)$).

 Ans. $\frac{20}{\sqrt{3}}$.
- 3. Let $f(x,y) = \frac{1}{2}\cos(\frac{x}{2}) + \sin(\frac{y}{4})$, where $-6\pi < x < 2\pi, -2\pi < y < 6\pi$. Find all the points at which f has a local maximum, a local minimum or a saddle point.

Ans. f has a local maximum at $(0, 2\pi)$, a saddle point at $(-2\pi, 2\pi)$ and a local maximum at $(-4\pi, 2\pi)$.