Linear Regression - Project

```
In [2]:
        import pandas as pd
        import numpy as np
        import seaborn as sb
        import matplotlib.pyplot as plt
        %matplotlib inline
In [3]:
        customers= pd.read_csv('Ecommerce Customers')
```

Check the head of customers, and check out its info() and describe() methods.

In [4]: customers.head()

Out[4]:

	Email	Address	Avatar	Avg. Session Length	Time on App	Tir W€
0	mstephenson@fernandez.com	835 Frank Tunnel\nWrightmouth, MI 82180-9605	Violet	34.497268	12.655651	39.5
1	hduke@hotmail.com	4547 Archer Common\nDiazchester, CA 06566-8576	DarkGreen	31.926272	11.109461	37.20
2	pallen@yahoo.com	24645 Valerie Unions Suite 582\nCobbborough, D	Bisque	33.000915	11.330278	37.1 ⁻
3	riverarebecca@gmail.com	1414 David Throughway\nPort Jason, OH 22070-1220	SaddleBrown	34.305557	13.717514	36.72
4	mstephens@davidson- herman.com	14023 Rodriguez Passage\nPort Jacobville, PR 3	MediumAquaMarine	33.330673	12.795189	37.50

```
In [5]: | customers.describe()
```

Out[5]:

	Avg. Session Length	Time on App	Time on Website	Length of Membership	Yearly Amount Spent
count	500.000000	500.000000	500.000000	500.000000	500.000000
mean	33.053194	12.052488	37.060445	3.533462	499.314038
std	0.992563	0.994216	1.010489	0.999278	79.314782
min	29.532429	8.508152	33.913847	0.269901	256.670582
25%	32.341822	11.388153	36.349257	2.930450	445.038277
50%	33.082008	11.983231	37.069367	3.533975	498.887875
75%	33.711985	12.753850	37.716432	4.126502	549.313828
max	36.139662	15.126994	40.005182	6.922689	765.518462

In [6]: customers.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):
Email
                        500 non-null object
Address
                        500 non-null object
Avatar
                        500 non-null object
Avg. Session Length
                        500 non-null float64
                        500 non-null float64
Time on App
Time on Website
                        500 non-null float64
Length of Membership
                        500 non-null float64
Yearly Amount Spent
                        500 non-null float64
dtypes: float64(5), object(3)
memory usage: 31.3+ KB
```

Exploratory Data Analysis

Let's explore the data!

In [7]: sb.jointplot(x='Time on Website',y='Yearly Amount Spent',data=customers)

Out[7]: <seaborn.axisgrid.JointGrid at 0x122128f28>

In [8]: sb.jointplot(x='Time on App',y='Yearly Amount Spent',data=customers)

Out[8]: <seaborn.axisgrid.JointGrid at 0x1240a5208>

^{**} jointplot to create a 2D hex bin plot comparing Time on App and Length of Membership.**

sb.jointplot(x='Time on App',y='Length of Membership',data=customers,kind='

Out[9]: <seaborn.axisgrid.JointGrid at 0x12622df60>

Let's explore these types of relationships across the entire data set.

sb.pairplot(customers)

Out[10]: <seaborn.axisgrid.PairGrid at 0x1267918d0>

Based off this plot what looks to be the most correlated feature with Yearly Amount Spent is Length of membership

```
sb.lmplot(x='Length of Membership',y='Yearly Amount Spent',data=customers)
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x12754d358>

Training and Testing Data

Now that we've explored the data a bit, let's go ahead and split the data into training and testing sets. ** Set a variable X equal to the numerical features of the customers and a variable y equal to the "Yearly Amount Spent" column. **

```
In [12]:
         customers.columns
Out[12]: Index(['Email', 'Address', 'Avatar', 'Avg. Session Length', 'Time on Ap
          p',
                 'Time on Website', 'Length of Membership', 'Yearly Amount Spent'],
                dtype='object')
In [13]:
          x= customers[['Avg. Session Length', 'Time on App',
                  'Time on Website', 'Length of Membership']]
In [14]:
          y= customers['Yearly Amount Spent']
          ** Using model_selection.train_test_split from sklearn to split the data into training and testing
          sets.**
          from sklearn.model selection import train test split
In [15]:
         X train, X test, y train, y test = train test split(x, y, test size=0.3, ra
In [16]:
```

Training the Model

Now its time to train our model on our training data!

```
In [17]:
         from sklearn.linear_model import LinearRegression
```

Create an instance of a LinearRegression() model named Im.

```
In [18]:
         lm= LinearRegression()
```

** Train/fit Im on the training data.**

```
In [19]:
         lm.fit(X_train,y_train)
```

Out[19]: LinearRegression(copy X=True, fit_intercept=True, n_jobs=None, normalize=False)

Print out the coefficients of the model

```
In [20]:
         lm.coef_
Out[20]: array([25.98154972, 38.59015875, 0.19040528, 61.27909654])
```

Predicting Test Data

Now that we have fit our model, let's evaluate its performance by predicting off the test values!

```
In [22]:
         predicted=lm.predict(X test)
In [23]:
         sb.scatterplot(y_test,predicted)
```

Out[23]: <matplotlib.axes. subplots.AxesSubplot at 0x1294d5470>

Evaluating the Model

Let's evaluate our model performance by calculating the residual sum of squares and (R^2).

Mean Absolute Error, Mean Squared Error, and the Root Mean Squared Error

```
In [24]:
         from sklearn import metrics
In [25]:
         print("MAE:",metrics.mean_absolute_error(y_test,predicted))
         print("MSE:", metrics.mean_squared_error(y_test, predicted))
         print("RMSE:",np.sqrt(metrics.mean_squared_error(y_test,predicted)))
         MAE: 7.2281486534308295
         MSE: 79.8130516509743
         RMSE: 8.933815066978626
```

Residuals

Plot a histogram of the residuals

```
In [26]:
        sb.distplot((y_test-predicted))
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x12ae95908>
          0.04
```


Conclusion

We still want to figure out the answer to the original question, do we focus our efforst on mobile app or website development? Or maybe that doesn't even really matter, and Membership Time is what is really important. Let's see if we can interpret the coefficients at all to get an idea.

```
In [28]:
         x.columns
Out[28]: Index(['Avg. Session Length', 'Time on App', 'Time on Website',
                 'Length of Membership'],
               dtype='object')
```

```
pd.DataFrame(lm.coef_,x.columns, columns=['Coeffeicient'])
In [33]:
Out[33]:
                                Coeffeicient
                                  25.981550
              Avg. Session Length
                                  38.590159
                    Time on App
                 Time on Website
                                   0.190405
                                  61.279097
            Length of Membership
```

Do you think the company should focus more on their mobile app or on their website?

Membership time has more influence on a users yearly spending but also the focus towards improving mobile app should also be increased. Putting efforts on website is not going to help but focus towards membership time of a user and the mobile application should be more.