Билет 24

Aвтор1, ..., AвторN

20 июня 2020 г.

Содержание

0.1	вилет 24: Секвенциальная компактность. Компактность и предельные точки. Се-	
	квенциальная компактность компакта	1

Билет 24 COДЕРЖАНИЕ

0.1. Билет 24: Секвенциальная компактность. Компактность и предельные точки. Секвенциальная компактность компакта.

Определение 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство.

 $K \subset X$ называется секвенциально компактным, если из любой последовательности точек из K можно выбрать подпоследовательность сходящуюся к точке из K.

Теорема 0.1.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $K \subset X$ секвенциально компактно.

Тогда всякое бесконечное множество точек из K имеет хотя-бы одну предельную точку в K.

Доказательство.

Выберем последовательность x_n из этого подмножества, $x_n \in K$, значит можем выбрать сходящуюся подпоследовательность, а сходится она может только к предельной точке.

Теорема 0.2.

Пусть $\langle X, \rho \rangle$ - метрическое пространство, $K \subset X$ - компакт.

Тогда K секвенциально компактно.

Доказательство.

Пусть $x_n \in K$ - последовательность. $D = \{x_n\}$ (множество элементов).

Eсли D конечно, то какая-то точка встречается в последовательности бесконечное количество раз, выберем подпоследовательность состояющую только из этой точки, она сходится.

Заметим, что в D обязательно есть предельная точка:

Пусть нету. Тогда $D=D\cup\varnothing=D\cup D'=\operatorname{Cl} D\implies D$ замкнуто. Замкнутое подмножество компакт - компакт.

Так-как $\forall n$ x_n не предельная в D, можем выбрать r_n , такие, что $\mathring{B_{r_n}}(x_n) \cap D = \varnothing \implies B_{r_n}(x_n) \cap D = \{x_n\}.$

Покроем D такими шарами. Каждый шар покрывает ровно одну точку и точек бесконечно \implies нельзя выбрать конечное покрытие. Противоречие.

Значит, $\exists a \in D'$.

Возьмём произвольную точку из последовательности x_{n_1} . Пусть $r_k := \min\{\frac{1}{k}, \min_{n \le k}\{x_n\}\}$.

Будем брать x_{n_k} как произвольную точку из $\mathring{B}_{r_{k-1}}(a)$. Так-как он ближе к a чем все предыдущие, $n_k > n_{k-1}$, значит получится подпоследовательность.

При этом,
$$\rho(x_{n_k}, a) < \frac{1}{k-1} \implies \lim_{k \to \infty} x_{n_k} = a$$
. При этом, $D \subset K \implies \operatorname{Cl} D \subset \operatorname{Cl} K = K$. А $a \in D' \subset \operatorname{Cl} D \subset K \implies a \in K$.