AGEC5213: ECONOMETRIC METHODS **Spring 2019**

PROBLEM SET NO. 5- due on April 29, 2018

Part I. Autocorrelation test, GLS and MLE (10 points)

Consider a wheat acreage model $\ln(A_1) = \beta_1 + \beta_2 \ln(P_1) + e_1$ where A_1 was area of wheat (in thousands of hectares) sown in Oklahoma in year t and P_t was the price of wheat. This specification was, in fact, a simplification of a slightly more general specification; the price of wheat was measured relative to the price of Barley. Specifically, let

 W_t = price of in year t (dollar/ton), and

 B_t = price of jute in year t (dollar/ton).

The price that was utilized was $P_t = W_t/B_t$. Since barley is the crop which competes with wheat for the use of the land, it is the price of wheat relative to the price of barley that affects farmers' decisions about how much wheat to plant. Data on A_t , W_t and B_t appear in the file, HW5-DATA1.xls

Consider the model

 $ln(A_t) = \beta_1 + \beta_2 ln(W_t) + \beta_3 ln(B_t) + e_t$

Give interpretations for β_2 and β_3 . Show that this model is equivalent to the original model if $\beta_2 = -\beta_3$.

Estimate the model in part (a) using least squares and test for the presence of autocorrelated errors using the DW test at the 5% significance level.

Re-estimate the model assuming the existence of AR(1) errors (GLS). Are there any noticeable changes in the results?

Using the estimation results from (b) and (c), test H_0 : $\beta_2 = -\beta_3$ against H_1 : $\beta_2 \neq -\beta_3$ at the 5% significance level. Do hypothesis test results differ between (b) and (c)?

Predict ln(A) for the next two years assuming that $W_{T+1} = W_{T+2} = 500$ and $B_{T+1} = B_{T+2} = 500$.

Part II. Two-Stage Least Square Estimation (5 points)

YKLPRW

Consider the following production functions as:

$$\ln(Y_t) = \beta_1 + \beta_2 \ln(K_t) + \beta_3 \ln(L_t) + e_{1t}$$
 (1)

$$\ln(K_{t}) = \alpha_{1} + \alpha_{2} \ln(P_{t}) + \alpha_{3} \ln(Y_{t}) + \alpha_{4} \ln(R_{t}) + e_{2t}$$
 (2)

$$\ln(L_{t}) = \lambda_{1} + \lambda_{2} \ln(P_{t}) + \lambda_{3} \ln(Y_{t}) + \lambda_{4} \ln(W_{t}) + e_{3t}$$
(3),

where Y_t , K_t and L_t are output, capital input, and labour input, and P_t , R_t and W_t are corresponding prices. Given that Y_t , K_t and L_t are simultaneously determined by equations (1), (2) and (3), and P_t , R_t and W_t are determined from outside, it seems appropriate to treat the three equations as a simultaneous system where Y_t , K_t and L_t are the endogenous variables and P_t , R_t and W_t are exogenous variables. Data for this example (23 observations) are in the file HW5-DATA2

Y = output

| P = Psice output

| K = Capital input | R = Price of capital input.

| L = labor input | W = psice of labor input.

Is the production function (1) identified?

Find OLS estimates of the production function, and comment the problem of OLS.

Find two stage least squares estimates of β_2 and β_3 . Comment on the results.

Part III. Instrumental Variable/Two-Stage Least Square Estimation (5 points)

Consider a production function for local beer production as:

$$Y_{t} = \beta_{1} + \beta_{2}mgt_{t} + \beta_{3}cap_{t} + \beta_{4}lab_{t} + e_{1t},$$

where y_t is an index of beer output for t-th brewery, taking into account both quantity and quality, mgt_t , is a variable reflecting the efficiency of management, cap_t and lab_t are indices of capital input and labor inputs. Because Kelly cannot get data an management efficiency, mgt_t , she collects data on the number of years of experience on the brewery business $(xpert_t)$ of each brewery manager and uses that variable in place of mgt_t . Data for this example (75 observations) are in the file HW5-DATA3

Estimate the equation using OLS.

(b) Estimate the instrumental variable/2SLS with instruments age, cap, lab, trend, and trend2, and compare the results with OLS results.

Run Hausman test to check on the validity of the instrumental variables.

YKLPRW

P = Psice of capital input. N = Psice of capital input.

y = eadsult K = Capital impult L = dabat impult