#### Towards green computing in Erlang<sup>1</sup>

# ERLANG PROGRAMOK ENERGIAFOGYASZTÁSÁNAK VIZSGÁLATA

MÉSZÁROS ÁRON ATTILA NAGY GERGELY



ELTE IK, Programtervező informatikus BSc

Országos Tudományos Diákköri Konferencia 2019. április 17. Budapest

### Bevezetés – Motiváció

- Környezettudatosság
  - > Energiafogyasztás minimalizálása
  - >Számítógépes eszközöknél is
  - >Green computing
- ➤ Miért Erlang?
  - ➤ Népszerűbb nyelvek sok kutatás
    - ➤ C++, Java, Haskell
  - ➤ Erlang
    - > Széleskörűen használt, iparban
    - Még nem volt ilyen kutatás
  - ➤ RefactorErI







#### Bevezetés – Eredmények

- Eszköz energiafogyasztás mérésére
  - >RAPL, rapl-read.c
  - Erlang keretrendszer
  - ▶Python megjelenítő
- Magasabb rendű függvények hatása
- ➤ Lista vagy tömb
- Párhuzamosítás
  - ▶Process pool
  - ➤ Token ring
- 2 konferencián előadás, egy megjelent folyóiratcikk, egy cikk elbírálás alatt

#### Módszertan – Mérés

- Running Average Power Limit (RAPL)
  - **≻Intel**
  - ▶rapl-read.c
  - ≥3 féle módszer
  - ▶4 mérhető domain
- Erlang keretrendszer
  - Kommunikáció
  - Mérni kívánt függvény futtatása
  - Mérési eredmények összegyűjtése



#### Módszertan - Adatfeldolgozás

- Mérési módszertan
  - ▶10 db mérés átlaga
  - Minimális és maximális értékek eldobása
  - >Futási idő mérése
- Vizualizáció
  - Python matplotlib
- Felvett teljesítmény számítása
- ➤ Korreláció számítása energia és idő között
- ➤ Egyéb statisztikák



# Módszertan - Összefoglalás



#### MÉRÉSI SZEMPONTOK

- ➤ Magasabb rendű függvények
  - >map, foldr, foldl, filter, stb.
- Különböző adatszerkezetek
  - **≻**Lista
  - **≻**Tömb
- Párhuzamosítás
  - ➤ Brute force (naiv)
  - Process pool
  - ➤ Folyamatok száma
  - ➤ Üzenetküldés költsége
  - ➤ Magok száma

#### Mért algoritmusok – N királynő

#### ≥5 féle megoldás

- ➤ Lista
  - Magasabb rendű függvények megléte vagy eliminálása
  - > Naiv párhuzamos verzió
- **≻**Tömb
  - ➤ Fix vagy növelhető méret

```
par_map(F, Xs) ->
  Me = self(),
  [spawn(fun() -> Me ! F(X) end) || X<-Xs],
  [receive Res -> Res end || _ <- Xs].</pre>
```

```
lists:flatmap(
fun(Qs) -> solve_list(N,Row+1,Qs) end,
[[{Col,Row}|Queens] || Col <- lists:seq(1,N),legal_list({Col,Row},Queens)]
).

flatmap_nohof(Queens,N,Row) -> flatmap_nohof(Queens,[],N,Row).
flatmap_nohof([],R,_,_) -> R;
flatmap_nohof([H|T],R,N,Row) ->
   flatmap_nohof(T,solve_nohof(N,Row+1,H) ++ R,N,Row).
```

# EREDMÉNYEK – N KIRÁLYNŐ



- Magasabb rendű függvény nélkül hatékonyabb
- ➤ Tömbök kevésbé hatékonyak
- ➤ Naiv párhuzamosítás rossz



#### MÉRT ALGORITMUSOK – RITKA MÁTRIX SZORZÁS

- ➤ Többféle megoldás, hasonlóan az N királynőhöz
- Magasabb rendű függvények használata tömböknél is
- Különbözik a reprezentáció tömbök és listák esetén

```
mxm_array(Rows,Cols) ->
    array:sparse_map(fun(_,Col) ->
        if Col == undefined -> undefined;
            true -> mxv_array(Rows,Col) end end,Cols).

vxv_array_map(Index,Size,_,Row) when Index == Size -> Row;
vxv_array_map(Index,Size,Col,Row) ->
        ElemR = array:get(Index,Row),
        ElemC = array:get(Index,Col),
        if ElemR == undefined -> vxv_array_map(Index+1,Size,Col,Row);
        ElemC == undefined -> vxv_array_map(Index+1,Size,Col,array:set(Index, undefined, Row));
        true -> vxv_array_map(Index+1,Size,Col,array:set(Index, Row))
        end.
```

#### EREDMÉNYEK – RITKA MÁTRIX SZORZÁS



- Magasabb rendű függvények nélkül
  - ➤ Listánál javulás
  - >Tömbnél romlás
- ➤ Nem érdemes tömböt használni, ha sok az ismeretlen elem

#### PÁRHUZAMOSÍTÁSI MÓDSZEREK

- Ritka mátrix szorzás párhuzamosítása
- Cél: hogyan hat a folyamatok száma az energiafogyasztásra?
- ➤ Brute force (naiv) módszer
  - ➤ Ahol map van, ott párhuzamossá tesszük
- Process poolok
  - dispatcher, worker, collector
- Csak a program külső iterációinak párhuzamosítása
  - Kevesebb folyamat jön létre
  - ➤ Egy folyamat több számítást végez

### PÁRHUZAMOSÍTÁSI MÓDSZEREK



- Ha sok a folyamat sok energiát fogyaszt
- Legjobb módszer:
  - Kevés folyamat él egyszerre
  - Kevés létrehozás
  - A folyamatok száma és a magok száma közel van egymáshoz

#### TOKEN RING

- Cél: mi az üzenetküldés költsége?
- Körbe küldjük a folyamatokon az üzenetet
- Minimális a többi számítás
  - ➤ Inkrementálás
  - Newton módszerrel gyökvonás



# ÖSSZEFOGLALÁS

- Erlang programok energiafogyasztásának mérése
- ➤ Komplex algoritmusok
  - ➤N királynő
  - ➤ Ritka mátrix szorzás
- Magasabb rendű függvények vizsgálata
- Különböző adatszerkezetek használata
  - ➤ Lista vagy tömb
- Párhuzamosítási módszerek elemzése
  - Folyamatok számát hatása
  - Üzenetküldések vizsgálata

## Konklúzió

- Eszköz Erlang programok energiafogyasztásának mérésére
- Magasabb rendű függvények eliminálása csökkenti az energiafogyasztást
- Lista vagy tömb
  - A vizsgált problémákra a listák hatékonyabbnak bizonyultak
  - A sok ismeretlem elem ront a tömbökön
- Párhuzamosítás
  - Folyamatok számát érdemes limitálni
    - Logikai magok számához közeli limit
  - Extra üzeneteket küldeni olcsóbb, mint a sok folyamat miatti kontextusváltások költsége

#### **EREDMÉNYEK**

- Megjelent folyóiratcikk
  - ➤ Mészáros, Á. A. & Nagy, G. (2018). Towards Green Computing in Erlang. Studia Universitatis Babeş-Bolyai Informatica, 63(1), pp. 64-79.
- Két konferencián előadás
  - ➤ 12th Joint Conference on Mathematics and Computer Science, 2018
  - ➤ Conference on Software Technology and Cyber Security, 2019
- ➤ Egy cikk elbírálás alatt
  - ➤ Acta Cybernetica

## TOVÁBBI EREDMÉNYEK

- Alapvető, elemi nyelvi konstrukciók vizsgálata
   Lista, map, dictionary adatszerkezetek vizsgálata
- Magasabb rendű függvények hatásának megerősítése
- Különféle párhuzamosítási tervezési minták vizsgálata
  - ▶PI.: taskfarm
- Energiafogyasztást csökkentő refaktorálások implementálása

### **EREDMÉNYEK**

#### KÖSZÖNJÜK A FIGYELMET!

- Megjelent folyóiratcikk
  - ➤ Mészáros, Á. A. & Nagy, G. (2018). Towards Green Computing in Erlang. *Studia Universitatis Babeş-Bolyai Informatica*, 63(1), pp. 64-79.
- Két konferencián előadás
  - ➤ 12th Joint Conference on Mathematics and Computer Science, 2018
  - ➤ Conference on Software Technology and Cyber Security, 2019
- ➤ Egy cikk elbírálás alatt
  - ➤ Acta Cybernetica

# Lehetőség van Inteltől eltérő architektúrán mérni az energiafogyasztást?

- Legújabb rapl-read (2018 szeptember) támogatja az újabb AMD Ryzen processzorok mérését is
- ➤ Tervezzük a mérések megismétlését más architektúrákon is

Milyen hatása van az energiafogyasztásra más fordítóprogramok vagy optimalizálást segítő kapcsolók használatának? Léteznek ilyenek?

- Használt fordító: BEAM
  - bájtkód
- Alapvető optimalizálások vannak, de kapcsoló hozzá nincs
- ➤ HiPe fordító
  - > natív kódot fordít
  - > Hatása:
    - A relatív viszonyok megmaradnak
    - A különbségek mértéke változik

#### A refaktorálások hogyan befolyásolják a kód méretét, karbantarthatóságát?

- Magasabb rendű függvények eliminációja
  - Sok extra kód, átláthatatlan
  - Csak a végleges fordítás előtt lenne érdemes
  - A kódbázisban marad az olvasható, karbantartható kód
- Adatszerkezet váltás
  - ➤ Pl.: proplist → map
  - Megmarad a karbantartható kód
  - Csak hívások lesznek lecserélve

# Mekkora a mérések átlaga, szórása, terjedelme?

# Az N királynő probléma egy megoldásának statisztikai jellemzői

| Bemenet | Átlag  | Szórás  | Medián | Min    | Max    | Terjedelem |
|---------|--------|---------|--------|--------|--------|------------|
| 6       | 0.0041 | 0.00072 | 0.0039 | 0.0034 | 0.0052 | 0.0019     |
| 7       | 0.012  | 0.0016  | 0.011  | 0.0088 | 0.014  | 0.0049     |
| 8       | 0.031  | 0.0023  | 0.031  | 0.028  | 0.034  | 0.0062     |
| 9       | 0.16   | 0.0059  | 0.16   | 0.15   | 0.17   | 0.019      |
| 10      | 0.80   | 0.0099  | 0.80   | 0.79   | 0.82   | 0.035      |
| 11      | 4.42   | 0.016   | 4.43   | 4.40   | 4.44   | 0.047      |
| 12      | 25.50  | 0.16    | 25.46  | 25.28  | 25.73  | 0.45       |

A táblázatban szereplő adatok Jouleban vannak megadva

A funkcionális programozás világában vannak-e próbálkozások a computation offloading kérdéskörrel kapcsolatban?

- ≻CloudI /klaʊdi/
  - popen source, cloud computing platform, Erlangban írva
- Energiafogyasztás szempontjából
  - ➤ Költségmodell
    - Lehet hogy a szerveren jobban lehet párhuzamosítani, így megéri üzenetet küldeni

#### Lehet-e bármilyen formálisabb becslést adni annál, hogy kimérjük az algoritmust?

- Az energiafogyasztás nagyban függhet a vizsgált architektúrától
- Formális becsléshez pontosan ismerni kell az architektúrát
- ➤Inkább érdemes empirikus módszerekkel költségmodellt felállítani

### **EREDMÉNYEK**

#### KÖSZÖNJÜK A FIGYELMET!

- Megjelent folyóiratcikk
  - ➤ Mészáros, Á. A. & Nagy, G. (2018). Towards Green Computing in Erlang. *Studia Universitatis Babeş-Bolyai Informatica*, 63(1), pp. 64-79.
- Két konferencián előadás
  - ➤ 12th Joint Conference on Mathematics and Computer Science, 2018
  - ➤ Conference on Software Technology and Cyber Security, 2019
- ➤ Egy cikk elbírálás alatt
  - > Acta Cybernetica