Simple arithmetic in Lean

It can be quite tricky to manipulate formulas in Lean. This cheat sheet should give you and overview of the most important cases.

Note: We are using Lean 4 now, so all the tactics need to be written in brackets. E.g., rw [add_comm]

Got	Want	Tactic	What is the rule?
a+b	b+a	rw add_comm	commutativity
a+b+c	a+(b+c)	rw add_assoc	associativity
a+b+c	a+c+b	rw add_assoc	higher commutativity
		rw add_comm b c	
		rw \l add_assoc	
a-b	a+(-b)	rw sub_eq_add_neg	subtraction = negative addition
a-a	0	rw sub_self	number - itself = 0
a-b	(-b) + a	rw sub_eq_add_neg	negative commutativity
		rw add_comm	
a-b-c	a-(b+c)	rw sub_sub	negative associativity
a-b+c	a-(b-c)	rw sub_add	negative associativity
a+b-c	a+(b-c)	rw add_sub	negative associativity
(-(-a))	а	rw neg_neg	negative negative = positive
a*b	b*a	rw mul_comm	commutativity
a*b*c	a*(b*c)	rw mul_assoc	associativity
a*b*c	a*c*b	rw mul_assoc	higher commutativity
		rw mul_comm b c	
		rw \I mul_assoc	
a/b	a*b^-1	rw div_eq_mul_inv	division = inverse multiplication
a*a^-1	1	rw mul_inv_cancel	number * inverse = 1
		(you also need to	
		prove that a =/= 0)	
(a*b)^-1	a^-1 * b^-1	rw mul_inv	
There is als	o stuff like div_div, div_	mul and mul_div, but I r	ecommend you always work with inverses
(a^-1)^-1	a	rw inv_inv	inv inv = number
a*(b+c)	a*b + a*c	rw mul_add	distribuity
(a+b)*c	a*c + b*c	rw add_mul	distribuity
a*(b-c)	a*b - a*c	rw mul_sub	distribuity
(a-b)*c	a*c - b*c	rw sub_mul	distribuity
a-b = 0	a = b	rw sub_eq_zero	when is subtraction zero?
a*b = 0	a = 0 \or b = 0	rw mul_eq_zero	when is multiplication zero?
(a+b)^2	a^2 + 2*a*b + b^2	rw add_sq	binomial formulas
(a-b)^2	a^2 - 2*a*b + b^2	rw sub_sq	binomial formulas
a^2 - b^2	(a+b)*(a-b)	rw sq_sub_sq	binomial formulas