(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年9 月29 日 (29.09.2005)

PCT

(10) 国際公開番号 WO 2005/090421 A1

- (51) 国際特許分類⁷: **C08F 220/10**, C08L 33/04, C09D 4/00, 133/04, 163/00, G02B 1/10, 5/23, G02C 7/10
- (21) 国際出願番号: PCT/JP2005/003939
- (22) 国際出願日: 2005年3月8日(08.03.2005)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ: 特願2004-082994 2004年3月22日(22.03.2004)
- (71) 出願人(米国を除く全ての指定国について): HOYA 株式会社(HOYA CORPORATION)[JP/JP]; 〒1618525 東京都新宿区中落合 2 丁目 7 番 5 号 Tokyo (JP).
- (72) 発明者: および
- (75) 発明者/出願人 (米国についてのみ): 太田 宏 (OTA, Hiroshi) [JP/JP]; 〒1618525 東京都新宿区中落合 2 丁目 7番 5号 HOYA株式会社内 Tokyo (JP). 新出 謙一 (SHINDE, Ken-ichi) [JP/JP]; 〒1618525 東京都新宿区中落合 2 丁目 7番 5 号 HOYA株式会社内 Tokyo (JP).
- (74) 代理人: 大谷 保 (OHTANI, Tamotsu); 〒1050001 東京 都港区虎ノ門三丁目 2 5 番 2 号 ブリヂストン虎ノ 門ビル 6 階 大谷特許事務所 Tokyo (JP).

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (54) Title: CURABLE COMPOSITION AND OPTICAL MEMBER USING SAME
- (54) 発明の名称: 硬化性組成物及びそれを用いた光学部材
- (57) Abstract: A curable composition containing (1) a radically polymerizable monomer, (2) an organosilicon compound having an epoxy group at one end, (3) an amine compound, (4) a photochromic compound and (5) a photopolymerization initiator is disclosed wherein the organosilicon compound (2) having an epoxy group at one end is a compound having a silanol group or a compound having a group which forms a silanol group through hydrolysis. Also disclosed is an optical member having a photochromic coating layer which is formed by applying and curing the above-described curable composition on an optical substrate. This optical member has good adhesion between the optical substrate and the photochromic coating layer.
- (57)要約: 本発明は、(1)ラジカル重合性単量体、(2)片末端にエポキシ基を有する有機ケイ素化合物、 (3)アミン化合物、(4)フォトクロミック化合物、及び(5)光重合開始剤の成分を含み、前記(2)の片末 「端にエポキシ基を有する有機ケイ素化合物が、シラノール基を有する化合物、または加水分解によりシラノール基 を生成する基を有する化合物である硬化性組成物、並びに、硬化性組成物を光学基板上に塗布硬化して形成されて なるフォトクロミック被膜層を有する光学部材であり、光学基板との密着性に優れるフォトクロミック被膜層を有 する光学部材及びそれに用いる硬化性組成物を提供する。

明細書

硬化性組成物及びそれを用いた光学部材

技術分野

[0001] 本発明は硬化性組成物及びそれを利用した光学部材に関し、特に、光学基板との 密着性に優れるフォトクロミック被膜層を有する光学部材及びそれに用いる硬化性組 成物に関するものである。

背景技術

[0002] フォトクロミックとは、ある化合物に太陽光など、紫外線を含む光に反応して速やかに色が変わり、紫外線が無い状態下に移動すると元の色(無色状態)に戻る可逆作用であり、プラスチック眼鏡レンズにおいて利用されている。

このフォトクロミック性を有するプラスチック眼鏡レンズの製法としては、フォトクロミック性を有しないレンズ表面にフォトクロミック化合物を含浸させる方法、レンズ表面にフォトクミック性を有するプライマー層、ハードコーティング層を設ける方法、あるいはモノマーにフォトクロミック化合物を溶解させ、それを重合させることにより、直接フォトクロミックレンズを得る方法が提案され、特にコーティング法は様々の既存プラスチックレンズに応用可能であることから、近年注目されている。

特許文献1には、ラジカル重合性単量体中にフォトクロミック化合物を溶解させたものをレンズ表面に塗布し、紫外線硬化する手法が提案されている。このラジカル重合性単量体には基材との密着性を得るためにシラノール基または加水分解によりシラノール基を生成する基を有するラジカル重合性単量体を使用しているが、十分な密着力を得るためにはフォトクロミック層処理前のプラスチックレンズの前処理が煩雑になると同時に、基材に対して安定した密着性を得ることが困難である。

また、基材ーフォトクロミック層間の密着性を確保するために、プライマー処理を行う 方法も提案されているが、工程が煩雑になり、成膜時間も長時間要することが懸念さ れる。

特許文献1:国際公開WO03/011967号公報

発明の開示

発明が解決しようとする課題

[0003] 本発明は、前記の課題を解決するためになされたもので、光学基板との密着性に 優れるフォトクロミック被膜層を有する光学部材及びそれに用いる硬化性組成物を提 供することを目的とする。

課題を解決するための手段

- [0004] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、下記(1)〜(5)の成分及び配合比の組成物を用いることにより前記の目的を達成することを見出し、本発明を完成したものである。
- [0005] すなわち、本発明は、
 - (1)ラジカル重合性単量体、
 - (2) 片末端にエポキシ基を有する有機ケイ素化合物、
 - (3)アミン化合物、
 - (4)フォトクロミック化合物、及び
 - (5) 光重合開始剤

の成分を含み、前記(2)の片末端にエポキシ基を有する有機ケイ素化合物が、シラノール基を有する化合物、または加水分解によりシラノール基を生成する基を有する 化合物である硬化性組成物、並びに、硬化性組成物を光学基板上に塗布硬化して 形成されてなるフォトクロミック被膜層を有する光学部材を提供するものである。

発明の効果

[0006] 本発明の光学部材は、フォトクロミック被膜層を有し、この被膜層は光学基板との密着性に優れている。また、本発明の硬化性組成物は、各種光学基板との密着性に優れたフォトクロミック被膜層の原料となる組成物として適している。

発明を実施するための最良の形態

- [0007] 以下、本発明について詳細に説明する。 本発明の硬化性組成物は、下記(1)~(5)の成分を含むものである。
 - (1)ラジカル重合性単量体、
 - (2) 片末端にエポキシ基を有する有機ケイ素化合物、

- (3)アミン化合物、
- (4)フォトクロミック化合物、及び
- (5) 光重合開始剤
- [0008] 以下、各成分について説明する。

本発明の硬化性組成物において、成分(1)であるラジカル重合性単量体は特に限定されず、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基、スチリル基等のラジカル重合性基を有する公知の化合物がなんら制限なく使用できる。これらのなかでも、入手のし易さ、硬化性の良さから(メタ)アクリロイル基または(メタ)アクリロイルオキシ基をラジカル重合性基として有する化合物が好ましい。

なお、前記(メタ)アクリロイルは、アクリロイルとメタクリロイルの両方を示す。

硬化後の耐溶剤性や硬度、耐熱性等の硬化体特性、あるいは発色濃度や退色速度等のフォトクロミック特性を良好なものとするため、ラジカル重合性単量体としては、単独重合体のLスケールロックウェル硬度が60以上を示すもの(以下、高硬度モノマーと称す場合がある)と、同じく単独重合体のLスケールロックウェル硬度が40以下を示すもの(以下、低硬度モノマーと称す場合がある)を併用することがより好ましい。

Lスケールロックウェル硬度とは、JIS-B7726に従って測定される硬度を意味する。 各モノマーの単独重合体についてこの測定を行うことにより、前記硬度条件を満足するかどうかを簡単に判断することができる。具体的には、モノマーを重合させて厚さ2mmの硬化体を得、これを25℃の室内で1日保持した後にロックウェル硬度計を用いて、Lスケールロックウェル硬度を測定することにより容易に確認することができる。

[0009] また、前記Lスケールロックウェル硬度の測定に供する重合体は、仕込んだ単量体の有す重合性基の90%以上が重合する条件で注型重合して得たものである。このような条件で重合された硬化体のLスケールロックウェル硬度は、ほぼ一定の値として測定される。

前記高硬度モノマーは、硬化後の硬化体の耐溶剤性、硬度、耐熱性等を向上させる効果を有する。これらの効果をより効果的なものとするためには、単独重合体のLスケールロックウェル硬度が65~130を示すラジカル重合性単量体が好ましい。

このような高硬度モノマーは、通常2~15個、好ましくは2~6個のラジカル重合性基

WO 2005/090421 4 PCT/JP2005/003939

を有する化合物であり、好ましい具体例としては、下記一般式(1)〜(5)で表される化合物が挙げられる。

[0010] [化1]

$$R^{15} \left(CH_{2}O + \left(CH_{2}CH - O + \left(CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}C + CH_{2}CH_{2}C + CH_{2}C + CH_{2$$

(式中、 R^{13} は水素原子またはメチル基であり、 R^{14} は水素原子、メチル基またはエチル基であり、 R^{15} は3~6価の有機基であり、fは0~3の整数、fは0~3の整数、gは3~6の整数である。)

[0011] [化2]

(式中、R¹⁶は水素原子またはメチル基であり、Bは3価の有機基であり、Dは2価の有機基であり、hは1~10の整数である。)

[0012] [化3]

$$H_{2}C = C - C - C - C + \frac{H_{2}}{C} + \frac{H_{2}}{C} - C - C + \frac{H_{2}}{C} + \frac{H_{2}}{$$

(式中、R¹⁷は水素原子またはメチル基であり、R¹⁸は水素原子、メチル基、エチル基またはヒドロキシル基であり、Eは環状の基を含む2価の有機基であり、iおよびjは、i+jの平均値が0~6となる正の整数である。)

WO 2005/090421 5 PCT/JP2005/003939

[0013] [化4]

(式中、R¹⁹は水素原子またはメチル基であり、Fは側鎖を有していてもよい主鎖炭素数2~9のアルキレン基である。)

[0014] [化5]

(式中、R²⁰は水素原子、メチル基またはエチル基であり、kは1~6の整数である。)

[0015] 前記一般式(1)〜(4)における、R¹³〜R¹⁹は、いずれも水素原子またはメチル基であるため、一般式(1)〜(4)で示される化合物は2〜6個の(メタ)アクリロイルオキシ基を有する化合物である

前記一般式(1)におけるR¹⁴は水素原子またはメチル基、エチル基である。

一般式(1)におけるR¹⁵は3~6価の有機基である。この有機基は特に限定されるものではなく、また、その主鎖中に、エステル結合、エーテル結合、アミド結合、チオエーテル結合、スルホニル結合、ウレタン結合等の炭素一炭素結合以外の結合を含んでいてもよい。単独重合体のLスケールロックウェル硬度が60以上を示すためには、R¹⁵は、好ましくは炭素数1~30の有機基であり、より好ましくはエーテル結合および/またはウレタン結合を含んでいてもよい炭素数1~15の有機基である。

また、fおよびf'は各々独立に0~3の整数である。また、Lスケールロックウェル硬度を60以上とするためには、fおよびf'の合計が0~3であることが好ましい。

[0016] 前記一般式(1)で示される高硬度モノマーの具体例としては、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタントリアクリレト、トリメチロールブロパントリメタクリレート、テトラメチロールメタンテトラメタアクリレート、テトラメチロールメタンテトラアクリレート

、トリメチロールプロパントリエチレングリコールトリメタクリレート、トリメチロールプロパントリエチレングリコールトリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、エトキシ化ペンタエリスリトールトリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールへキサアクリレート、ウレタンオリゴマーテトラアクリレート、ウレタンオリゴマーへキサメタクリレート、ウレタンオリゴマーへキサアクリレート、カプロラクトン変性ジペンタエリスリトールへキサアクリレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。

[0017] 前記一般式(2)におけるBは3価の有機基であり、Dは2価の有機基である。このBおよびDは特に限定されるものではなく、その主鎖中に、エステル結合、エーテル結合、アミド結合、チオエーテル結合、スルホニル結合、ウレタン結合等の炭素一炭素結合以外の結合を含んでいてもよい。単独重合体のLスケールロックウェル硬度が60以上であるためには、Bは炭素数3~10の直鎖または分枝状の炭化水素から誘導される有機基であると好ましく、Dは炭素数1~10の直鎖または分枝状の脂肪族炭化水素、または炭素数6~10の芳香族炭化水素から誘導される有機基である。

また単独重合体のLスケールロックウェル硬度を60以上とするために、hは1~10の整数であり、好ましくは1~6の整数である。

前記一般式(2)で示される高硬度モノマーの具体的としては、分子量2,500~3,500 の4官能ポリエステルオリゴマー(ダイセルユーシービー社、EB80等)、分子量6,000~8,000の4官能ポリエステルオリゴマー(ダイセルユーシービー社、EB450等)、分子量45,000~55,000の6官能ポリエステルオリゴマー(ダイセルユーシービー社、EB1830等)、分子量10,000の4官能ポリエステルオリゴマー(第一工業製薬社、GX8488B等)等が挙げられる。

[0018] 前記一般式(3)におけるR¹⁸は水素原子、メチル基、エチル基またはヒドロキシル基である。また式(3)におけるEは環状の基を含む2価の有機基である。この有機基は環状の基を含むものであれば特に限定されるものではなく、また、その主鎖中に、エステル結合、エーテル結合、アミド結合、チオエーテル結合、スルホニル結合、ウレタン結合等の炭素-炭素結合以外の結合を含んでいてもよい。Eに含まれる環状の基と

しては、ベンゼン環、シクロヘキサン環、アダマンタン環あるいは以下に示す環状の 基等が挙げられる。

[化6]

[0019] Eに含まれる環状の基はベンゼン環であることが好ましく、さらにEは下記式、 [化7]

$$G^{(R^{21})_{j}}$$

(Gは、酸素原子、硫黄原子、 $-S(O_2)$ ー、-C(O)ー、 $-CH_2$ ー、-CH=CHー、 $-C(CH_3)$ ー および $-C(CH_3)$ (C_{6-5})ーから選ばれるいずれかの基であり、 R^{21} および R^{22} は各々独立に炭素数1~4のアルキル基またはハロゲン原子であり、 R^{21} 1および R^{22} 1な各々独立に0~4の整数である。)

で示される基であるとより好ましく、最も好ましいEは下記式、

[化8]

で示される基である。

[0020] 前記一般式(3)中、iおよびjは、i+jの平均値が0~6となる正の整数である。なお、式 (3)で示される化合物は、iおよびjの双方が0である場合を除き、通常iおよびjの異なる 複数の化合物の混合物として得られる。それらの単離は困難であるため、iおよびjはi +jの平均値で示される。i+jの平均値は2~6であることがより好ましい。

一般式(3)で示される高硬度モノマーの具体的としては、ビスフェノールAジメタクリレート、2,2-ビス(4-メタクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(3,5-ジ

ブロモー4ーメタクリロイルオキシエトキシフェニル)プロパン等が挙げられる。

[0021] 前記一般式(4)におけるR¹⁹は水素原子またはメチル基であり、Fは側鎖を有していてもよい主鎖炭素数2〜9のアルキレン基である。この主鎖炭素数2〜9のアルキレン基としては、エチレン基、プロピレン基、トリメチレン基、ブチレン基、ネオペンチレン基、ヘキシレン基、ノニリレン基等が例示される。

一般式(4)で示される高硬度モノマーの具体的としては、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブチレングリコールジメタクリレート、1,9-ノニレングリコールジメタクリレート、ネオペンチレングリコールジメタクリレート、ネオペンチレングリコールジアクリレート等が挙げられる。

[0022] 前記一般式(5)におけるR²⁰は水素原子、メチル基またはエチル基であり、kは2~6 の整数であり、好ましくはkは3または4である。

一般式(5)で示される高硬度モノマーの具体的としては、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、テトラプロピレングリコールジメタクリレート等が挙げられる。

なお、前記一般式(1) 〜(5)で示される化合物でも、置換基の組み合わせによっては 単独重合体のLスケールロックウェル硬度が60未満のものがあるが、その場合には、 これらの化合物は後述する低硬度モノマーまたは中硬度モノマに分類される。

また、前記一般式(1)〜(5)で示されない高硬度モノマーもあり、その代表的化合物としては、ビスフェノールAジグリシジルメタクリレート、エチレングリコールビスグリシジルメタクリレート、グリシジルメタクリレート等が挙げられる。

[0023] また、前記低硬度モノマーは、硬化体を強靭なものとし、またフォトクロミック化合物 の退色速度を向上させる効果を有する。

このような低硬度モノマーとしては、下記一般式(6)

[化9]

(式中、 R^{23} は水素原子またはメチル基であり、 R^{24} および R^{25} は各々独立に水素原子、メチル基またはエチル基であり、Zは酸素原子または硫黄原子であり、mは R^{23} が水素原子の場合は1~70の整数であり、 R^{23} がメチル基の場合は7~70の整数でありそしてm'は0~70の整数である。)

[0024] または下記一般式(7)、

[化10]

(式中、R²⁶は水素原子またはメチル基であり、R²⁷およびR²⁸は各々独立に水素原子、メチル基、エチル基またはヒドロキシル基であり、Iは環状の基を含む2価の有機基であり、i'およびj'は、i'+j'の平均値が8~40となる整数である。)
で示される2官能モノマーや、下記一般式(8)、

[0025] [化11]

$$H_{2}C = C - C - Z + C - C - Z + C - C - Z +$$

(式中、R²⁹は水素原子またはメチル基であり、R³⁰およびR³¹は各々独立に水素原子、メチル基またはエチル基であり、R³²は水素原子、炭素数1~25のアルキル基、アルケニル基、アルコキシアルキル基またはハロアルキル基、炭素数6~25のアリール基、あるいは炭素数2~25の(メタ)アクリロイル基以外のアシル基であり、Zは酸素原子または硫黄原子であり、m"はR²⁹が水素原子の場合は1~70の整数であり、R²⁹がメチル基の場合は4~70の整数であり、m"は0~70の整数である。)

[0026] または下記一般式(9)、

[化12]

(式中、 R^{33} は水素原子またはメチル基であり、 R^{34} は R^{33} が水素原子の場合には炭素数 1-20のアルキル基であり、 R^{33} がメチル基の場合には炭素数8-40のアルキル基である。)

で示される単官能のモノマーが例示される。

[0027] 前記一般式(6)〜(9)において、R²³、R²⁶、R²⁹およびR³³は水素原子またはメチル基である。すなわち、低硬度モノマーは重合性基として、通常2個以下の(メタ)アクリロイルオキシ基または(メタ)アクリロイルチオ基を有する。

前記一般式(6)におけるR²⁴およびR²⁵は各々独立に水素原子、メチル基またはエチル基であり、Zは酸素原子または硫黄原子である。

一般式(6)においては、R²³が水素原子の場合、すなわち重合性基としてアクリロイルオキシ基またはアクリロイルチオ基を有する場合には、mは1~70の整数であり、一方、R²³がメチル基である場合、すなわち重合性基としてメタクリロイルオキシ基またはメタクリロイルチオ基を有する場合には、mは7~70の整数である。また、m'は0~70の整数である。

一般式(6)で示される低硬度モノマーの具体的としては、トリアルキレングリコールジアクリレート、テトラアルキレングリコールジアクリレート、ノニルアルキレングリコールジアクリレート、ノニルアルキレングリコールジ(アクリレート、ノニルアルキレングリコールジ(メタ)アタリレート類が挙げられる。

[0028] 前記一般式(7)におけるR²⁶は水素原子、メチル基またはエチル基である。

また、Iは環状の基を含む2価の有機基である。このIとしては前記式(3)に含まれる 環状の基であるEとして例示されたものと同様である。式(7)におけるi'およびj'は、i'+j'の平均値が8~40となる整数、好ましくは9~30となる整数である。このi'およびj'も前記した式(3)におけるiおよびjと同様の理由で通常は平均値で示される。

一般式(7)で示される低硬度モノマーの具体的としては、平均分子量776の2,2-ビス (4-アクリロイルオキシポリエチレングリコールフェニル)プロパン等を挙げることができる。

[0029] 前記一般式(8)におけるR²⁹は水素原子またはメチル基であり、R³⁰およびR³¹は各々 独立に水素原子、メチル基またはエチル基である。R³²は水素原子、炭素数1~25の アルキル基、アルケニル基、アルコキシアルキル基またはハロアルキル基、炭素数6 -25のアリール基、あるいは炭素数2-25のアクリロイル基以外のアシル基である。

炭素数1~25のアルキル基またはアルケニル基としては、メチル基、エチル基、プロピル基、ノニル基等が挙げられる。また、これらアルキル基またはアルケニル基は直鎖状でも分枝状でもよく、さらには、ハロゲン原子、ヒドロキシル基、アリール基、エポキシ基等の置換基で置換されていてもよい。

炭素数1-25のアルコキシアルキル基としては、メトキシブチル基、エトキシブチル 基、ブトキシブチル基、メトキシノニル基等が挙げられる。

炭素数6~25のアリール基としては、フェニル基、トルイル基、アントラニル基、オク チルフェニル基等が挙げられる。(メタ)アクリロイル基以外のアシル基としては、アセ チル基、プロピオニル基、ブチリル基、バレリル基、オレイル基等が挙げられる。

一般式(8)におけるm"は、R²⁹が水素原子の場合、すなわちアクリロイルオキシ基またはアクリロイルチオ基を重合性基として有する場合には1~70の整数であり、R²⁹がメチル基の場合、すなわちメタクリロイルオキシ基またはメタクリロイルチオ基を重合性基として有する場合にはm"は4~70の整数であり、またm"は0~70の整数である。

[0030] 一般式(8)で示される低硬度モノマーの具体的としては、平均分子量526のポリエチレングリコールメタアクリレート、平均分子量360のポリエチレングリコールメタアクリレート、平均分子量475のメチルエテルポリエチレングリコールメタアクリレート、平均分子量375のポリプロピレングリコールメタアクリレート、平均分子量375のポリプロピレングリコールメタアクリレート、平均分子量622のポリプロピレンメタアクリレート、平均分子星620のメチルエーテルポリプロピレングリコールメタアクリレート、平均分子星620のメチルエーテルポリプロピレングリコールメタアクリレート、平均分子量566のポリテトラメチレングリコールメタアクリレート、平均分子量566のポリテトラメチレングリコールメタアクリレート、平均分子量610のノニルエーテルポリエチレングリコールメタクリレート、平均分子量640のメチルエーテルポリエチレングリコールメタクリレート、平均分子量640のメチルエーテルポリエチレングリコールメタクリレート、平均分子量640のメチルエーテルポリエチレングリコールメタクリレート等のポリアルキレングリコール(メタ)アタリレート等が挙げられる。

[0031] 前記一般式(9)におけるR33は水素原子またはメチル基であり、R33が水素原子の場

合には、R³⁴は炭素数1~20のアルキル基であり、R³³がメチル基の場合には、R³⁴は炭素数8~40のアルキル基である。これらアルキル基は直鎖状でも分枝状でもよく、ハロゲン原子、ヒドロキシル基、アルコキシル基、アシル基、エポキシ基等の置換基で置換されていてもよい。

一般式(9)で示される低硬度モノマーの具体的としては、ステアリルメタクリレート、ラウリルメタアクリレート、エチルヘキシルメタクリレート、メチルアクリレート、エチルアタリレート、ブチルアタリレート、ラウリルアクリレート等を挙げることができる。

これら式(6) 〜(9)で表される低硬度モノマーの中でも、平均分子量475のメチルエテルポリエチレングリコールメタアクリレート、平均分子量1,000のメチルエーテルポリエチレングリコールメタアクリレート、トリアルキレングリコールジアクリレート、テトラアルキレングリコールジアクリレート、メチルアクリレート、メチルアクリレート、メチルアクリレート、ボチルアクリレート、ブチルアクリレート、ラウリルアクリレートが特に好ましい。前記式(6)〜(9)で示される化合物でも、置換基の組み合わせによっては単独重合体のLスケールロックウェル硬度が40以上を示すものがあるが、その場合には、これらの化合物は前述した高硬度モノマーまたは後述する中硬度モノマーに分類される。

[0032] 前記高硬度モノマーでも低硬度モノマーでもないモノマー、すなわち、単独硬化体のLスケールロックウェル硬度が40を超え60未満を示すモノマー(中硬度モノマーと称す場合がある)として、例えば、平均分子量650のポリテトラメチレングリコールジメタアクリレート、平均分子量1,400のポリテトラメチレングリコールジメタアクリレート、ビス(2ーメタクリロイルオキシエチルチオエチル)スルフィド等の2官能(メタ)アタリレート;ジアリルフタレート、ジアリルイソフタレート、酒石酸ジアリル、エポキシこはく酸ジアリル、ジアリルフマレート、クロレンド酸ジアリル、ヘキサフタル酸ジアリル、アリルジグリコールカーボネート等の多価アリル化合物;1,2ービス(メタクリロイルチオ)エタン、ビス(2ーアクリロイルチオエチル)エーテル、1,4ービス(メタクリロイルチオメチル)ベンゼン等の多価チオアクリル酸および多価チオメタクリル酸エステル化合物;アクリル酸、メタクリル酸、メタクリル酸、無水マレイン酸等の不飽和カルボン酸;メタクリル酸メチル、メタクリル酸ブチル、メタクリル酸ベンジル、メタクリル酸フェニル、2ーヒドロキシエチルメタクリレート、メタクリル酸ビフェニル等のアクリル酸およびメタクリル酸エステル化合物;フマル酸ジエチル

、フマル酸ジフェニル等のフマル酸エステル化合物;メチルチオアクリレート、ベンジルチオアクリレート、ベンジルチオメタクリレート等のチオアクリル酸およびチオメタクリル酸エステル化合物;スチレン、クロロスチレン、メチルスチレン、ビニルナフタレン、αーメチルスチレンダイマー、ブロモスチレン、ジビニルベンゼン、ビニルピロリドン等のビニル化合物;オレイルメタクリレート、ネロールメタクリレート、ゲラニオールメタクリレート、リナロールメタクリレート、ファルネソールメタクリレート等の分子中に不飽和結合を有する炭化水素鎖の炭素数が6~25の(メタ)アタリレートなどのラジカル重合性単官能単量体等が挙げられる。

- [0033] これらの中硬度モノマーを使用することも可能であり、前記高硬度モノマー、低硬度モノマーおよび中硬度モノマーは適宜混合して使用できる。硬化性組成物の硬化体の耐溶剤性や硬度、耐熱性等の硬化体特性、あるいは発色濃度や退色速度等のフォトクロミック特性のバランスを良好なものとするため、前記ラジカル重合性単量体中、低硬度モノマーは5~70重量%、高硬度モノマーは5~95重量%であることが好ましい。さらに、配合される高硬度モノマーとして、ラジカル重合性基を3つ以上有する単量体が、その他のラジカル重合性単量体中少なくとも5重量%以上配合されていることが特に好ましい。
- [0034] 本発明におけるラジカル重合性単量体中には、上記の様に硬度により分類されたモノマーとは別に、分子中にすくなくとも一つのエポキシ基と少なくとも一つのラジカル重合性基を有するラジカル重合性単量体(以下、単にエポキシ系モノマーと称す場合がある)が、さらに配合されていることが好ましい。このエポキシモノマーはその構造により、単独硬化体のLスケールロック硬度が60以上を示すものもあれば、40以下を示すものもある。単独重合体の硬度で分類すると、硬度に応じ高硬度モノマー、低硬度モノマー、中硬度モノマーのいずれかに分類されることになる。

このエポキシ系モノマーを、本発明におけるラジカル重合性単量体の成分として使用することにより、フォトクロミック化合物の耐久性をより向上させることができ、さらにフォトクロミック被膜層の密着性が向上する。

このようなエポキシ系モノマーとしては公知の化合物を使用できるが、ラジカル重合性基として(メタ)アクリロイルオキシ基を有す化合物が好ましい。

このようなエポキシ系モノマーは、通常以下の式(10)で表される。

[0035] [化13]

 ${ {\rm | 式中、R}^{35}$ および ${\rm R}^{38}$ は各々独立に水素原子またはメチル基であり、 ${\rm R}^{36}$ および ${\rm R}^{37}$ は各々独立に炭素数 ${\rm 1 - 4}$ のアルキレン基、または、 ${\rm 下記式}$

[化14]

(G'は、酸素原子、硫黄原子、 $-S(O_2)$ ー、-C(O)ー、 $-CH_2$ ー、-CH=CHー、 $-C(CH_3)_2$ ー および $-C(CH_3)(C_1)_2$ ーから選ばれるいずれかの基であり、 R^{39} および R^{40} は各々独立に に 炭素数1~4のアルキル基またはハロゲン原子であり、1"および1"は各々独立に 0~4の整数である。)で示される基である。1

[0036] 前記R³⁶およびR³⁷で示される炭素数1~4のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、ブチレン差等が挙げられる。またこれらアルキレン基は、ヒドロキシル基、ハロゲン原子等で置換されていてもよい。

また、R³⁶および/またはR³⁷が下記式

[化15]

で表される基の場合、G'は、酸素原子、硫黄原子、一C(O)ー、C(O)ー、C(O)ー、C(O)ー、C(O)0・

各々独立に0〜4の整数である。上記式で表される基としては、下記式 [化16]

で示される基であることが最も好ましい。

[0037] 一般式(10)で示されるエポキシ系モノマーの具体的としては、グリシジルアクリレート、グリシジルメタクリレート、βーメチルグリシジルメタクリレート、ビスフェノールΑーモノグリシジルエーテルーメタクリレート、4ーグリシジルオキシメタクリレート、3ー(グリシジルー2ーオキシエトキシ)ー2ーヒドロキシプロピルメタクリレート、3ー(グリシジルオキシー1ーイソプロピルオキシ)ー2ーヒドロキシプロピルアクリレート、3ーグリシジルオキシー2ーヒドロキシプロピルオキシ)ー2ーヒドロキシプロピルアクリレート、平均分子量540のグリシジルオキシポリエチレングリコールメタアクリレート等が挙げられる。これらの中でもグリシジルアクリレート、グリシジルメタクリレートおよび平均分子量40のグリシジルオキシポリエチレングリコールメタアクリレートが特に好ましい。

これらエポキシ系モノマーの配合割合は、ラジカル重合性単量体中、通常0.01〜30 重量%であり、0.1〜20重量%であるのが好適である。

[0038] 本発明の硬化性組成物においては、成分(2)の片末端にエポキシ基を有する有機 ケイ素化合物を配合することにより、硬化性組成物を塗布硬化したフォトクロミック被 膜層の基板に対する安定した密着性を付与することができる。

成分(2)の有機ケイ素化合物は、シラノール基を有する化合物、または加水分解によりシラノール基を生成する基を有する化合物であって、例えば、下記一般式(I)で表される有機ケイ素化合物またはその加水分解物が挙げられる。

$$(R^{81})_a (R^{83})_b Si(OR^{82})_{4-(a+b)} \cdots (I)$$

(式中、R⁸¹はエポキシ基を有する有機基、R⁸²は炭素数1〜4のアルキル基、炭素数1〜4のアシル基または炭素数6〜10のアリール基、R⁸³は炭素数1〜6のアルキル基または炭素数6〜10のアリール基、aは1の整数、bは0または1の整数を示す。)

[0039] 前記R⁸¹のエポキシ基を有する有機基としては、例えば、エポキシ基、グリシドキシ基

(α-グリシドキシ基、β-グリシドキシ基、γ-グリシドキシ基、δ-グリシドキシ基等)、 3、4-エポキシシクロヘキシル基等が挙げられる。

前記R⁸²の炭素数1〜4のアルキル基としては、例えば、直鎖または分岐のメチル基 、エチル基、プロピル基、ブチル基等が挙げられる。

前記R⁸²の炭素数1〜4のアシル基としては、例えば、アセチル基、プロピオニル基、オレイル基、ベンゾイル基等が挙げられる。

前記R⁸²の炭素数6~10のアリール基としては、例えば、フェニル基、キシリル基、トリル基等が挙げられる。

前記R⁸³の炭素数1〜4のアルキル基としては、例えば、直鎖または分岐のメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。 前記R⁸³の炭素数6〜10のアリール基としては、例えば、フェニル基、キシリル基、トリル基等が挙げられる。

[0040] 前記一般式(I)で表される化合物の具体例としては、グリシドキシメチルトリエトキシ シラン、αーグリシドキシエチルトリエトキシシラン、βーグリシドキシエチルトリメトキシシ ラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシ ラン、αーグリシドキシプロピルトリエトキシシラン、βーグリシドキシプロピルトリメトキシ シラン、βーグリシドキシプロピルトリエトキシシラン、γーグリシドキシプロピルトリメトキ シシラン、ヮーグリシドキシプロピルトリエトキシシラン、ヮーグリシドキシプロピルトリプロ ポキシシラン、y ーグリシドキシプロピルトリブトキシシラン、y ーグリシドキシプロピルト リフェノキシシラン、 α ーグリシドキシブチルトリメトキシシラン、 α ーグリシドキシブチルト リエトキシシラン、βーグリシドキシブチルトリメトキシシラン、βーグリシドキシブチルトリ エトキシシラン、ヮーグリシドキシブチルトリメトキシシラン、ヮーグリシドキシブチルトリ エトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリ エトキシシラン、(3、4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3、4-エポ キシシクロヘキシル)メチルトリエトキシシラン、β-(3、4-エポキシシクロヘキシル)エ チルトリメトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリエトキシシラン 、 β -(3、4-エポキシシクロヘキシル)エチルトリプロポキシシラン、 β -(3、4-エポキ シシクロヘキシル)エチルトリブトキシシラン、β-(3、4-エポキシシクロヘキシル)エ

チルトリフェノキシシラン、γー(3、4ーエポキシシクロヘキシル)プロピルトリメトキシシ ラン、 γ -(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、 δ -(3,4-エ ポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3、4-エポキシシクロヘキシル) ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチ μ レメチルジエトキシシラン、 α -グリシドキシエチルメチルジメトキシシラン、 α -グリシ ドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、 β - グリシドキシエチルメチルジエトキシシラン、 α - グリシドキシプロピルメチルジメト キシシラン、 α -グリシドキシプロピルメチルジエトキシシラン、 β -グリシドキシプロピ ルメチルジメトキシシラン、β-グリシドキシプロピルメチルジエトキシシラン、γ-グリシ ドキシプロピルメチルジメトキシシラン、γーグリシドキシプロピルメチルジエトキシシラ ン、ッーグリシドキシプロピルメチルジプロポキシシラン、ッーグリシドキシプロピルメチ ルジブトキシシラン、γ ーグリシドキシプロピルメチルジフェノキシシラン、γ ーグリシド キシプロピルエチルジメトキシシラン、ヶーグリシドキシプロピルエチルジエトキシシラ ン、ヮーグリシドキシプロピルビニルジメトキシシラン、ヮーグリシドキシプロピルビニル ジエトキシシラン、yーグリシドキシプロピルフェニルジメトキシシラン、yーグリシドキシ プロピルフェニルジエトキシシラン等が挙げられ、v-グリシドキシプロピルトリメトキシ シラン、ヮーグリシドキシプロピルトリエトキシシラン、ヮーグリシドキシプロピルトリプロ ポキシシラン、γーグリシドキシプロピルトリブトキシシラン、γーグリシドキシプロピルメ チルジエトキシシラン、γーグリシドキシプロピルエチルジメトキシシラン、γーグリシド キシプロピルエチルジエトキシシラン

成分(2)の有機ケイ素化合物の硬化性組成物全量に対する配合量としては、ラジカル単量体100重量部に対して、通常1.0~15重量部であり、3.0~10重量部であると好ましい。

[0041] 本発明の硬化性組成物には、成分(3)としてアミン化合物が配合される。アミン化合物を配合することにより、本発明の硬化性組成物をコーティング材として用いた場合に、前記硬化性組成物の硬化体よりなるフォトクロミック被膜層と光学基板との密着性を大きく向上させることができる。

が好ましい。

本発明に用いられる成分(3)のアミン化合物としては、前記ラジカル重合性単量体の縮合、または付加触媒として機能する塩基性の化合物であれば、公知のアミン化合物が何ら制限なく使用できる。

[0042] 本発明におけるアミン化合物として必要な機能を発揮しないアミン化合物としては、 例えば下記基

[化17]

(上記基中、R⁰¹は水素原子およびアルキル基であり、R⁰²、R⁰³、R⁰⁴およびR⁰⁵は、それぞれ同一もしくは異なるアルキル基である)

で表されるアミノ基のみをアミノ基として有するヒンダードアミン化合物が挙げられる。
[0043] 本発明で使用できるアミン化合物の具体例としては、トリエタノールアミン、Nーメチルジエタノールアミン、トリイソプロパノールアミン、4,4-ジメチルアミノベンゾフェノン、ジアザピシクロオクタン等の非重合性低分子系アミン化合物、N,N-ジメチルアミノエチルメタアクリレート、N,N-ジエチルアミノエチルメタアクリレート等の重合性基を有するアミン化合物、n-(ヒドロキシエチル)-N-メチルアミノプロピルトリメトキシシラン、ジメトキシフェニルー2ーピペリジノエトキシシラン、N,N-ジエチルアミノメチルトリメチルシラン、(N,N-ジエチルー3-アミノプロピル)トリメトキシシラン等のシリル基を有するアミン化合物が挙げられる。

これらのアミノ化合物の中でも、密着性向上の観点より、水酸基を有するもの、ラジ カル重合性基として(メタ)アクリロイルオキシ基を有するもの、あるいは加水分解により シラノール基を生成可能な基を有するアミン化合物が好ましい。

[0044] 例えば、下記一般式(11)

[化18]

{式中、R⁰⁶は水素原子あるいは炭素数1~4の直鎖状のアルキル基であり、R⁰⁷は水酸基、(メタ)アクリロイルオキシ基または加水分解によりシラノール基を生成可能な基であり、R⁰⁸は水素原子、炭素数1~6のアルキル基、水酸基、(メタ)アクリロイルオキシ基または加水分解によりシラノール基を生成可能な基であり、A'は炭素数2~6のアルキレン基、A'はR⁰⁸が水素原子またはアルキル基の場合には炭素数1~6のアルキレン基、R⁰⁸が水酸基、(メタ)アクリロイルオキシ基または加水分解によりシラノール基を生成可能な基である場合には炭素数2~6のアルキレン基を示す。}

で示されるアミン化合物が、塩基性が強く、密着性向上効果の高いアミン化合物としてより好適である。

[0045] 一般式(11)中のR⁰⁷およびR⁰⁸における、加水分解によりシラノール基を生成可能な基とは、前記有機ケイ素化合物の説明で記載した基と同義である。

これらアミン化合物は単独もしくは数種混合して使用することができ、成分(3)のアミン化合物の配合量としては、ラジカル重合性単量体100重量部に対して0.01~20重量部であり、0.1~10重量部であると好ましい。

[0046] 本発明の硬化性組成物で用いられる成分(4)のフォトクロミック化合物としては、公知のものを使用することができ、例えば、フルギミド化合物、スピロオキサジン化合物、クロメン化合物等のフォトクロミック化合物が挙げられ、本発明においては、これらのフォトクロミック化合物を特に制限なく使用することができる。

前記フルギミド化合物、スピロオキサジン化合物およびクロメン化合物としては、例えば、特開平2-28154号公報、特開昭62-288830号公報、WO94/22850号明細書、WO96/14596号明細書などに記載されている化合物が好適に使用できる。

また、優れたフォトクロミック性を有する化合物として、例えば、特開2001-114775号公報、特開2001-031670号公報、特開2001-011067号公報、特開2001-011066号公報、特開2000-347346号公報、特開2000-34476号公報、特開2000-3044761号公報

、特開2000-327676号公報、特開2000-327675号公報、特開2000-256347号公報、特開2000-229976号公報、特開2000-229975号公報、特開2000-229974号公報、特開2000-229973号公報、特開2000-229972号公報、特開2000-219687号公報、特開2000-219686号公報、特開2000-219685号公報、特開平11-322739号公報、特開平11-286484号公報、特開平11-279171号公報、特開平10-298176号公報、特開平09-218301号公報、特開平09-124645号公報、特開平08-295690号公報、特開平08-176139号公報、特開平08-157467号公報等に開示された化合物も好適に使用することができる。

- [0047] これらフォトクロミック化合物の中でも、クロメン系フォトクロミック化合物は、フォトクロミック特性の耐久性が他のフォトクロミック化合物に比べ高く、さらにフォトクロミック特性の発色濃度および退色速度の向上が他のフォトクロミック化合物に比べて特に大きいため特に好適に使用することができる。さらに、これらクロメン系フォトクロミック化合物中でもその分子量が540以上の化合物は、本発明によるフォトクロミック特性の発色濃度および退色速度の向上が他のクロメン系フォトクロミック化合物に比べて特に大きいため好適に使用することができる。
- [0048] さらに、その発色濃度、退色速度、耐久性等の各種フォトクロミック特性が特に良好なクロメン化合物としては、下記一般式(12)で表されるものが好ましい。 「化19]

$$(R^{45})_0$$
 R^{44} R^{43} ... (12)

[0049] {式中、下記一般式(13) [化20]

で示される基は、置換もしくは非置換の芳香族炭化水素基、または置換もしくは非置換の不飽和複素環基であり、

R⁴³、R⁴⁴およびR⁴⁵は、それぞれ独立に、水素原子、アルキル基、アルコキシル基、アラルコキシ基、アミノ基、置換アミノ基、シアノ基、置換もしくは非置換のアリール基、ハロゲン原子、アラルキル基、ヒドロキシル基、置換もしくは非置換のアルキニル基、窒素原子をヘテロ原子として有し該窒素原子とピラン環もしくは前記式(13)で示される基の環とが結合する置換もしくは非置換の複素環基、または該複素原基に芳香族炭化水素環もしくは芳香族複素環が縮合した縮合複素環基であり、oは0~6の整数であり、

[0050] R^{41} および R^{42} は、それぞれ独立に、下記一般式(14)、

[化21]

$$-\left(c = \overset{\mathsf{H}}{\underset{\mathsf{R}^{47}}{}}\right)_{\mathsf{p}} \mathsf{R}^{46} \qquad \cdots \quad (14)$$

(式中、 R^{46} は、置換もしくは非置換のアリール基、または置換もしくは非置換のヘテロアリール基であり、 R^{47} は、水素原子、アルキル基、またはハロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはハロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはハロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはハロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはハロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはハロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはパロゲン原子であり、 R^{47} は、水素原子、アルキル基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基であり、 R^{47} は、水素原子、アルキル基、またはパロゲン原子であり、 R^{47} は、水素原子、アルキル基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基、または置換もしくは非置換のヘテロアリール基であり、 R^{47} は、水素原子、アルキル基、または配換もしくは非置換のヘテロアリール基であり、 R^{47} は、水素原子、アルキル基、またはパロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはパロゲン原子であり、 R^{47} は、水素原子、アルキル基、またはパロゲン原子であり、 R^{47} は、 R^{47}

[化22]

$$-\left(-C \equiv C \xrightarrow{p'} R^{48} \quad \cdots \quad (15)\right)$$

(式中、R⁴⁸は、置換もしくは非置換のアリール基、または置換もしくは非置換のヘテロアリール基であり、p'は1~3の整数である。)で示される基、置換もしくは非置換のアリール基、置換もしくは非置換のヘテロアリール基、またはアルキル基であるか、あるいはR⁴¹とR⁴²とが一緒になって、脂肪族炭化水素環もしくは芳香族炭化水素環を構成していてもよい。]

なお、前記一般式(14)、(15)、前記 R^{41} および R^{42} にて説明した置換アリール基および

置換へテロアリール基における慣換基としては、前記 R^{43} 〜 R^{44} と同様の基が挙げられる。

[0051] 前記一般式(12)で示されるクロメン化合物のなかでも、発色濃度、退色速度等のフォトクロミック特性および耐久性の点から、下記一般式(16)〜(21)で示される化合物が特に好適である。

[化23]

$$(R^{52})_{q'}$$
 ... (16)

(式中、R⁴⁹、R⁵⁰はそれぞれ前記一般式(12)で述べたR⁴¹およびR⁴²と同様であり、R⁵¹、R ⁵²は前記式(12)で述べたR⁴⁵と同様であり、qおよびq'はそれぞれ1〜2の整数である。)
[0052] [化24]

$$\begin{pmatrix} R^{56} \end{pmatrix}_{r} \qquad \cdots \qquad (17)$$

$$\begin{pmatrix} R^{55} \end{pmatrix}_{r}$$

 ${式中のR^{53},R^{54}$ は前記一般式(12)で述べた R^{41} および R^{42} と同様であり、 R^{55},R^{56} は前記式(12)で述べた R^{45} と同様であり、Lは下記式、

[化25]

$$\frac{\left(\stackrel{H}{C} = \stackrel{H}{C} \right)_{s}}{\left(\stackrel{C}{C} + \frac{1}{2} \right)_{s'}} , \quad \left(\stackrel{P}{C} + \frac{1}{2} \right)_{s'}} , \quad \left(\stackrel{P}{C} + \frac{1}{2} \right)_{s'}}{\left(\stackrel{R}{C} + \frac{1}{2} \right)_{s''}} , \quad \left(\stackrel{P}{C} + \frac{1}{2} \right)_{s''}} , \quad \left(\stackrel{P}{C} + \frac{1}{2} \right)_{s''}$$

(上記式中、Pは、酸素原子または硫黄原子であり、R⁵⁷は、炭素数1〜6のアルキレン 基であり、s、s'およびs''は、いずれも1〜4の整数である。)で示されるいずれかの基で あり、rおよびr'は各々独立に1または2である。}

[0053] [化26]

$$R^{61}$$
 R^{60}
 R^{59}
 R^{59}
 R^{62}
 R^{62}

(式中、 R^{58} 、 R^{59} は前記式(12)で述べた R^{41} および R^{42} と同様であり、 R^{60} 、 R^{61} および R^{62} は前記式(12)で述べた R^{45} と同様であり、Vは1または2である。)

[0054] [化27]

$$(R^{66})_{w'}$$

$$(R^{66})_{w}$$

$$(R^{66})_{w}$$

$$(R^{66})_{w}$$

$$(19)$$

(式中、 R^{63} 、 R^{64} は前記式(12)で述べた R^{41} および R^{42} と同様であり、 R^{65} および R^{66} は前記式(12)で述べた R^{45} と同様であり、wおよびw'は各々独立に1または2である。)

[0055] [化28]

$$\begin{pmatrix}
R^{71}
\end{pmatrix}_{x}$$

$$R^{70}$$

$$R^{68}$$

$$\begin{pmatrix}
R^{72}
\end{pmatrix}_{x'}$$
... (20)

(式中、 R^{67} 、 R^{68} は前記式(12)で述べた R^{41} および R^{42} と同様であり、 R^{69} 、 R^{70} 、 R^{71} および R^{72} は、前記式(12)で述べた R^{45} と同様であり、xおよびx'は各々独立に1または2である。)

[0056] [化29]

$$(R^{76})_y$$
 Q $(R^{75})_y$ "

 $(R^{75})_y$... (21)

(式中、R⁷³、R⁷⁴は前記式(12)で述べたR⁴¹およびR⁴²と同様であり、R⁷⁵、R⁷⁶ およびR⁷⁷ は、前記式(12)で述べたR⁴⁵と同様であり、

[化30]

は、少なくとも1つの置換基を有してもよい脂肪族炭化水素環であり、y、y'およびy" は各々独立に1または2である。]

[0057] 上記一般式(16)~(21)で示されるクロメン化合物の中でも、下記構造のクロメン化合物が特に好ましい。

[化31]

WO 2005/090421 25 PCT/JP2005/003939

- [0058] これらフォトクロミック化合物は適切な発色色調を発現させるため、複数の種類のものを適宜混合して使用することができ、成分(4)のフォトクロミック化合物の硬化性組成物全量に対する配合量としては、ラジカル重合性単量体100重量部に対して、通常0.01~20重量部であり、0.1~10重量部であると好ましい。
- [0059] 本発明の硬化性組成物には、成分(5)として光重合開始剤が配合される。本発明で用いる光重合開始剤としては、特に限定されないが、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ベンゾフェノール、アセトフェノン、4,4'-ジクロロベンゾフェノン、ジエトキシアセトフェノン、2-ヒドロキシー2-メチルー1-フェニルプロパンー1-オン、ベンジルメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシー2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2

ーイソプロピルチオオキサントン、ビス(2,6ージメトキシベンゾイルー2,4,4ートリメチルーペンチルフォスフィンオキサイド、ビス(2,4,6ートリメチルベンゾイル)ーフェニルフォシフィンオキサイド、2,4,6ートリメチルベンゾイルジフェニルーフォスフィンオキサイド、2ーベンジルー2ージメチルアミノー1ー(4ーモルホリノフェニル)ーブタノンー1等が挙げられ、1ーヒドロキシシクロヘキシルフェニルケトン、2ーイソプロピルチオオキサントン、ビス(2,6ージメトキシベンゾイル)ー2,4,4ートリメチルーペンチルフォスフィンオキサイド、ビス(2,4,6ートリメチルベンゾイル)ーフェニルフォシフィンオキサイド、2,4,6ートリメチルベンゾイルジフェニルーフォスフィンオキサイドが好ましい。

これら光重合開始剤は、複数の種類のものを適宜混合して使用することができ、成分(5)の光重合開始剤の硬化性組成物全量に対する配合量としては、ラジカル重合性単量体100重量部に対して、通常0.01~5重量部であり、0.1~1重量部であると好ましい。

[0060] また、本発明の硬化性組成物を光重合以外の方法で硬化させる場合には、例えば、熱重合開始剤として、ベンゾイルパーオキサイド、pークロロベンゾイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、アセチルパーオキサイド等のジアシルパーオキサイド;tーブチルパーオキシー2ーエチルへキサノエート、tーブチルパーオキシジカーボネート、クミルパーオキシネオデカネート、tーブチルパーオキシジカーボネート、クミルパーオキシネオデカネート、tーブチルパーオキシンガーボネート、ジー2ーエチルへキシルパーオキシジカーボネート、ジー2ーエチルへキシルパーオキシジカーボネート、ジーsecーブチルオキシカーボネート等のパーカーボネート類;2,2'ーアゾビスイソプチロニトリル、2,2'ーアゾビス(4ージメチルバレロニトリル)、2,2'ーアゾビス(2ーメチルブチロニトリル)、1,1'ーアゾビス(シクロへキサンー1ーカーボニトリル)等のアゾ化合物等挙げられる。

これら熱重合開始剤の使用量は、重合条件や開始剤の種類、重合性単量体の種類や組成によって異なるが、通常、全重合性単量体100重量部に対して0.01~10重量部の範囲で用いるのが好適である。上記熱重合開始剤は単独で用いてもよいし、複数を混合して用いてもよい。

[0061] さらに、本発明の硬化性組成物には、フォトクロミック化合物の耐久性の向上、発色 速度の向上、退色速度の向上や成形性の向上のために、さらに界面活性剤、酸化 防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤、離型剤、着色防止剤、帯電防止剤、蛍光染料、染料、顔料、香料、可塑剤等の添加剤を添加しても良い.

添加するこれら添加剤としては、公知の化合物が何ら制限なく使用される。

前記界面活性剤としては、ノニオン系、アニオン系、カチオン系の何れも使用できるが、重合性単量体への溶解性からノニオン系界面活性剤を用いるのが好ましい。好適に使用できるノニオン系界面活性剤を具体的に挙げると、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、プロピレングリコール・ペンタエリスリトール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリコール脂肪酸エステル、ポリオキシエチレングリコール脂肪酸エステル、ポリオキシエチレングリコール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンフルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルフェニルホルムアルデビド縮合物、単一鎖ポリオキシエチレンアルキルエーテル・エーテル・エーテル等を挙げることができる。界面活性剤の使用に当たっては、2種以上を混合して使用しても良い。界面活性剤の添加量は、重合性単量体100重量部に対し、0.1~20重量部の範囲が好ましい。

[0062] また、酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤としては、ヒンダードアミン光安定剤、ヒンダードフェノール酸化防止剤、フェノール系ラジカル補足剤、イオウ系酸化防止剤、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物等を好適に使用できる。これら酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤は、2種以上を混合して使用してもよい。さらにこれらの非重合性化合物の使用に当たっては、界面活性剤と酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤を併用してもよい。これら酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線の収剤を併用してもよい。これら酸化防止剤、ラジカル補足剤、紫外線安定剤、紫外線吸収剤の添加量は、全重合性単量体100重量部に対し、0.001~20重量部の範囲が好ましい。

前記安定剤の中でも、本発明の硬化性組成物を、途布して使用する場合、特に有

用な安定剤として、本発明の硬化性組成物を硬化させる際のフォトクロミック化合物の劣化防止、あるいはその硬化体の耐久性向上の観点より、ヒンダードアミン光安定剤が挙げられる。ヒンダードアミン光安定剤としては、前述したアミン化合物から除かれる化合物として記載したヒンダードアミン化合物として定義した化合物であれば、公知の化合物が何ら制限なく用いることができる。その中でも、塗布用に用いる場合、特に、フォトクロミック化合物の劣化防止効果を発現する化合物としては、ビス(1,2,2,6,6ーペンタメチルー4ーピペリジル)セバケート、旭電化工業(株)製アデカスタブLA-52、LA-62、LA-77、LA-82等を挙げることができる。その添加量としては、全重合性単量体100重量部に対し、0.001〜20重量部の範囲であればよいが、塗布して用いる場合には、0.1〜10重量部の範囲が好ましく、より好適には、1〜10重量部の範囲で用いればよい。

- [0063] また、本発明の硬化性組成物においては、成膜時の均一性を向上させるために、 界面活性剤、レベリング剤等を含有させることが好ましく、特にレベリング性を有する シリコーン系・フッ素系レベリング剤を添加することが好ましい。その添加量としては、 特に限定されないが、硬化性組成物全量に対し、通常0.01~1.0重量%であり、好ま しくは0.05~0.5重量%の範囲が好ましい。
- [0064] 本発明の硬化性組成物の調製方法は特に限定されず、所定量の各成分を秤取り 混合することにより行うことができる。なお、各成分の添加順序は特に限定されず全て の成分を同時に添加してもよいし、モノマー成分のみを予め混合し、重合させる直前 にフォトクロミック化合物や他の添加剤を添加・混合してもよい。

本発明の硬化性組成物は、その25℃での粘度が20~500cpであると好ましく、50~300cpであるのがより好ましく、60~200cpであるのが特に好ましい。

この粘度範囲とすることにより、後述するフォトクロミック被膜層の厚さを10~100 μ m と厚めに調整することが容易となり、十分にフォトクロミック特性を発揮させることが可能となる。

[0065] 次に、本発明の光学部材について説明する。

本発明の光学部材は、硬化性組成物を光学基板上に塗布硬化して形成されてなるフォトクロミック被膜層を有する。

本発明の光学部材に用いる光学基板としては合成樹脂基板が挙げられ、例えば、メチルメタクリレートと一種以上の他のモノマーとの共重合体、ジエチレングリコールビスアリルカーボネートと一種以上の他のモノマーとの共重合体、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、不飽和ポリエステル、ポリエチレンテレフタレート、ポリウレタン、ポリチオウレタン、エンーチオール反応を利用したスルフィド樹脂、硫黄を含むビニル重合体等が挙げられるが、これらに限定されるものではない。

また、本発明の光学部材に用いる光学基板としては、プラスチックレンズ基材であると好ましく、眼鏡用プラスチックレンズ基材であるとさらに好ましい。

[0066] 本発明の硬化性組成物を光学基板上へ塗布する方法としては、例えば、ディッピング法、スピン法、スプレー法等が通常行われる方法として適用されるが、組成物の粘性、面精度の面からスピンコート法が好ましい。

また、前記硬化性組成物を光学基板上へ塗布する前に、酸、アルカリ、各種有機溶媒による化学的処理、プラズマ、紫外線、オゾン等による物理的処理、各種洗剤を用いる洗剤処理を行うことによって光学基板とフォトクロミック被膜層の密着性等を向上させることができる。

[0067] 本発明の硬化性組成物を硬化させてフォトクロミック被膜層を得る方法は特に限定されず、用いるラジカル重合性単量体の種類に応じた公知の重合方法を採用することができる。 重合開始手段としては、熱、もしくは紫外線、α線、β線、γ線等の照射あるいは両者の併用によって行うことができ、好ましくは紫外線を照射し、硬化させた後、さらに加熱硬化させることが好ましい。

前記紫外線による硬化に用いる光源としては公知の光源を何ら制限無く用いることができ、具体例としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、キセノンランプ、カーボンアーク、殺菌灯、無電極ランプ等が挙げられる。

また、光照射時間は紫外線重合開始剤の種類、吸収波長、感度、さらには所望のフォトクロミック被膜層の膜厚等によって適宜決めることができる。

本発明においては、フォトクロミック被膜層の膜厚は、発色時の濃度、耐久性及び耐熱性、及び膜の均一性を考慮すると、 $10 \, \mu$ m~ $100 \, \mu$ mであると好ましく、 $20 \, \mu$ m~ $50 \, \mu$ mであるとさらに好ましい。

[0068] また、本発明の光学部材は、前記フォトクロミック被膜層上に、ハードコート層が形成されてなると好ましく、このハードコート層上に、反射防止膜が形成されてなるとさらに好ましい。

このハードコート層の材料としては、特に限定されず、公知の有機ケイ素化合物及び金属酸化物コロイド粒子よりなるコーティング組成物を使用することができる。

前記有機ケイ素化合物としては、例えば(II)で表される有機ケイ素化合物またはその加水分解物が挙げられる。

$$(R^{91})_{a'}(R^{93})_{b'}Si(OR^{92})_{4-(a'+b')}$$
 ··· (II)

(式中、R⁹¹は、グリシドキシ基、エポキシ基、ビニル基、メタアクリルオキシ基、アクリルオキシ基、メルカプト基、アミノ基、フェニル基等を有する有機基、R⁹²は炭素数1~4のアルキル基、炭素数1~4のアシル基または炭素数6~10のアリール基、R⁹³は炭素数1~6のアルキル基または炭素数6~10のアリール基、a'およびb'はそれぞれ0または1の整数を示す。)

[0069] 前記R⁹²の炭素数1〜4のアルキル基としては、例えば、直鎖または分岐のメチル基 、エチル基、プロピル基、ブチル基等が挙げられる。

前記R⁹²の炭素数1〜4のアシル基としては、例えば、アセチル基、プロピオニル基、 オレイル基、ベンゾイル基等が挙げられる。

前記R⁹²の炭素数6~10のアリール基としては、例えば、フェニル基、キシリル基、トリル基等が挙げられる。

前記R⁹³の炭素数1〜4のアルキル基としては、例えば、直鎖または分岐のメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。

前記R⁹³の炭素数6~10のアリール基としては、例えば、フェニル基、キシリル基、トリル基等が挙げられる。

[0070] 前記一般式(II)で表される化合物の具体例としては、メチルシリケート、エチルシリケート、nープロピルシリケート、iープロピルシリケート、nーブチルシリケート、secーブチルシリケート、tーブチルシリケーテトラアセトキシシラン、メチルトリメトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリフ

ェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、 グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α*ー*グリシド キシエチルトリエトキシシラン、βーグリシドキシエチルトリメトキシシラン、βーグリシドキ シエチルトリエトキシシラン、αーグリシドキシプロピルトリメトキシシラン、αーグリシドキ シプロピルトリエトキシシラン、βーグリシドキシプロピルトリメトキシシラン、βーグリシド キシプロピルトリエトキシシラン、ソーグリシドキシプロピルトリメトキシシラン、ソーグリシ ドキシプロピルトリエトキシシラン、ャーグリシドキシプロピルトリプロポキシシラン、ャー グリシドキシプロピルトリブトキシシラン、γーグリシドキシプロピルトリフェノキシシラン、 β - β -ッーグリシドキシブチルトリメトキシシラン、ッーグリシドキシブチルトリエトキシシラン、 δ - δ -3、4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3、4-エポキシシクロヘキシ μ)メチルトリエトキシシラン、 β –(3、4–エポキシシクロヘキシル)エチルトリメトキシシ ラン、 $\beta-(3,4-x$ エポキシシクロヘキシル) エチルトリエトキシシラン、 $\beta-(3,4-x$ ポ キシシクロヘキシル)エチルトリプロポキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3、4-エポキシシクロヘキシル)エチルトリフェノキシ シラン、ヮー(3、4ーエポキシシクロヘキシル)プロピルトリメトキシシラン、ヮー(3、4ー エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3、4-エポキシシクロヘキ シル)ブチルトリメトキシシラン、δー(3、4ーエポキシシクロヘキシル)ブチルトリエトキ シシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキ シシラン、αーグリシドキシエチルメチルジメトキシシラン、αーグリシドキシエチルメチ ルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシ エチルメチルジエトキシシラン、αーグリシドキシプロピルメチルジメトキシシラン、αー グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキ シシラン、βーグリシドキシプロピルメチルジエトキシシラン、γーグリシドキシプロピル メチルジメトキシシラン、ヶーグリシドキシプロピルメチルジエトキシシラン、ヶーグリシド キシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシ

ラン、γーグリシドキシプロピルメチルジフェノキシシラン、γーグリシドキシプロピルエ チルジメトキシシラン、γーグリシドキシプロピルエチルジエトキシシラン、γーグリシド キシプロピルビニルジメトキシシラン、ヮーグリシドキシプロピルビニルジエトキシシラン 、ヶーグリシドキシプロピルフェニルジメトキシシラン、ヶーグリシドキシプロピルフェニ ルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメト キシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリ メトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、ソークロロプ ロピルトリメトキシシラン、ソークロロプロピルトリエトキシシラン、ソークロロプロピルトリア セトキシシラン、3、3、3ートリフルオロプロピルトリメトキシシラン、γーメタクリルオキシ プロピルトリメトキシシラン、ソーメルカプトプロピルトリメトキシシラン、ソーメルカプトプ ロピルトリエトキシシラン、βーシアノエチルトリエトキシシラン、クロロメチルトリメトキシ シラン、クロロメチルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリメ トキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-ア ミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリエトキ シシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ジメチル ジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニル メチルジエトキシシラン、ソークロロプロピルメチルジメトキシシラン、ソークロロプロピル メチルジエトキシシラン、ジメチルジアセトキシシラン、ソーメタクリルオキシプロピルメ チルジメトキシシラン、ャーメタクリルオキシプロピルメチルジエトキシシラン、ャーメル カプトプロピルメチルジメトキシシラン、γーメルカプトプロピルメチルジエトキシシラン 、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン等が挙げられる。

前記金属酸化物コロイド粒子としては、例えば、酸化タングステン(WO₃)、酸化亜鉛(ZnO)、酸化ケイ素(SiO₂)、酸化アルミニウム(Al₂O₃)、酸化チタニウム(TiO₂)、酸化ジルコニウム(ZrO₂)、酸化スズ(SnO₂)、酸化ベリリウム(BeO)、酸化アンチモン(Sb₂O₃)等が挙げられ、単独又は2種以上を併用することができる。

また前記反射防止膜の材質及び形成方法は特には限定されず、公知の従来より知られている無機酸化物によるなる単層、多層膜を使用することができる。

この無機酸化物としては、例えば、二酸化ケイ素(SiO₂)、酸化ジルコニウム(ZrO₂)、

酸化アルミニウム(Al_2O_3)、酸化ニオブ (Nb_2O_3)、酸化イットリウム(Y_2O_3)等が挙げられる。

実施例

[0071] 以下、本発明を実施例を用いてより具体的に説明するが、本発明はこれらの実施例 に限定されるものではない。諸物性は以下に示す方法により測定した。

なお、各実施例および比較例における光学部材は、以下に示す試験方法により諸 物性を測定した。

(1) 耐擦傷性試験

プラスチックレンズの表面にスチールウール(規格#0000、日本スチールウール社製)にて1kgf/cm²でプラスチック表面を擦って傷のつき難さを目視にて判定した。判定基準は以下の通りとした。

- A. 強く擦っても殆ど傷がつかない
- B. 強く擦るとかなり傷がつく
- C. プラスチック基板と同等の傷がつく

(2)密着性試験

1mm間隔で100目クロスカットし、粘着テープ(商品名;セロテープ、ニチバン(株))を強く貼り付け急速に剥がし、硬化被膜の剥離の有無を調べた。全く剥がれないものは100/100、全て剥がれたものは0/100として表記した。

(3)外観

暗室内蛍光灯下にて目視判定を行った。曇りがないものを良好と判定した。

[0072] 実施例1

(i)フォトクロミックコーティング液の調製

プラスチック製容器にトリメチロールプロパントリメタクリレート20重量部、BPEオリゴマー(2,2-ビス(4-メタクリロイルオキシポリエトキシフェニル)プロパン)35重量部、EB6A(ポリエステルオリゴマーへキサアクリレート)10重量部、平均分子量532のポリエチレングリコールジアクリレート10重量部、グリシジルメタクリレート10重量部からなるラジカル重合性単量体100重量部に、フォトクロミック色素として下記クロメン1を3重量部、酸化防止剤LS765(ビス(1,2,2,6,6ーペンタメチルー4ーピペリジル)セバケート、メチル

(1,2,2,6,6ーペンタメチルー4ーピペリジル)セバケート)を5重量部、紫外線重合開始剤としてCGI-184(1ーヒドロキシシクロヘキシルフェニルケトン)を0.4重量部及びCGI403(ビス(2,6ージメトキシベンゾイルー2,4,4ートリメチルペンチルフォスフィンオキサイド)を0.1重量部添加して十分に攪拌混合を行った組成物に、エポキシ基を含有する有機ケイ素化合物としてγーグリシドキシプロピルトリメトキシシラン(信越化学工業(株)製KBM403)6.4重量部を攪拌しながら滴下した。十分に攪拌した後、Nーメチルジエタノールアミン1.4重量部を秤量滴下し、さらに十分に攪拌混合を行った。その後、さらにシリコーン系レベリング剤Y-7006(ポリオキシアルキレン・ジメチルポリシロキサンコポリマー:日本ユニカー(株)製)を0.1重量部添加混合した後、自転公転方式攪拌脱泡装置((株)シンキー AR-250)にて2分間脱泡することで、フォトクロミック性を有する硬化性組成物を得た。

[0073] [化32]

クロメン1

[0074] (ii)フォトクロミック被膜層の形成

プラスチックレンズ基材としてポリチオウレタン (HOYA(株)製 商品名EYAS 中心肉厚2.0mm厚)を60℃、10重量%の水酸化ナトリウム水溶液にて5分間浸漬処理して十分に純水洗浄、乾燥を行った後、(i)で調製された硬化性組成物を用いて、スピンコート法で基材凸面側のコーティングを行った。この処理レンズを窒素雰囲気中(酸素濃度500ppm以下)にて、フュージョン製UVランプ(Dバルブ)波長405nmの紫外線積算光量で1800mJ/cm²(100mW/cm²,3分)照射し、さらに、110℃、60分間硬化を行い、フォトクロミック被膜層を有するプラスチックレンズレンズを得た。

(iii) ハードコーティング液の調製

マグネティックスターラーを備えたガラス製の容器に水分散コロイダルシリカ(固形分40重量%、平均粒子径15ミリミクロン)141重量部を加え撹拌しながら、酢酸30重量部を添加し、充分に混合攪拌を行った。その後、γーグリシドキシプロピルトリメトキシシラン(信越化学工業(株)製)74重量部を滴下し、5℃で24時間攪拌を行った。次に、プロピレングリコールモノメチルエーテル100重量部、イソプロピルアルコール150重量部、さらにシリコーン系界面活性剤0.2重量部、硬化剤としてアルミニウムアセチルアセトネート7.5重量部を加え、充分に撹拌した後濾過を行ってハードコーティング液を調製した。

(iv)ハードコート層の形成

前記(ii)で得られたフォトクロミック被膜層を有するプラスチックレンズレンズを60℃、10重量%の水酸化ナトリウム水溶液にて5分間浸漬処理して十分に純水洗浄/乾燥を行った後、前記(iii)で調製されたハードコーティング組成物を用いて、ディッピング法(引き上げ速度20cm/分)でコーティングを行い、110℃、60分加熱硬化することでハードコート層を形成した。得られたハードコート層を有するプラスチックレンズについて前記(1)〜(3)を評価した結果を表1に示した。

(v) 反射防止膜の形成

前記(iv) で得られたハードコート層を有するプラスチックレンズ上に、以下に示す反射防止膜を施した。ハードコート層を有するプラスチックレンズを蒸着機に入れ、排気しながら85℃に加熱し、 2.67×10^{-3} Paまで排気した後、電子ビーム加熱法にて原料を蒸着させてSiO₂およびZrO₂の積層構造($\lambda/4-\lambda/2-\lambda/4;\lambda$ は波長)からなる反射防止膜を形成した。得られたハードコート層および反射防止膜を有するプラスチックレンズについて前記(1)および(2)を評価した結果を表1に示した。

[0075] 実施例2

実施例1の(i)フォトクロミックコーティング液の調製で用いた、有機ケイ素化合物と してγ-グリシドキシプロピルトリメトキシシランの代わりに、γ-グリシドキシプロピルトリ エトキシシランを用いた以外は全て実施例1と同様にして、ハードコート層を有するプ ラスチックレンズを製造して前記(1)~(3)を評価し、ハードコート層および反射防止 膜を有するプラスチックレンズを製造して前記(1)および(2)を評価した。それらの結果を表1に示した。

[0076] 実施例3

実施例1の(i)フォトクロミックコーティング液の調製で用いた、有機ケイ素化合物として γ - グリシドキシプロピルトリメトキシシランの代わりに、 γ - グリシドキシプロピルメ チルジエトキシシランを用いた以外は全て実施例1と同様にして、ハードコート層を有するプラスチックレンズを製造して前記(1)~(3)を評価し、ハードコート層および反射防止膜を有するプラスチックレンズを製造して前記(1)および(2)を評価した。それらの結果を表1に示した。

[0077] 実施例4

実施例1の(ii)フォトクロミック被膜層の形成で用いたプラスチックレンズ基材としてポリチオウレタンの代わりに、ジエチレングリコールビスアリルカーボネート(HOYA(株)製商品名HL中心肉厚2.0mm厚)を用いた以外は全て実施例1と同様にしてハードコート層を有するプラスチックレンズを製造して前記(1)〜(3)を評価し、ハードコート層および反射防止膜を有するプラスチックレンズを製造して前記(1)および(2)を評価した。それらの結果を表1に示した。

[0078] 比較例1

実施例1の(i)フォトクロミックコーティング液の調製で用いた、有機ケイ素化合物として γ - グリシドキシプロピルトリメトキシシランの代わりに、 γ - メタクリロイルオキシプロピルトリメトキシシランを用いた以外は全て実施例1と同様にして、ハードコート層を有するプラスチックレンズを製造して前記(1)~(3)を評価し、ハードコート層および反射防止膜を有するプラスチックレンズを製造して前記(1)および(2)を評価した。それらの結果を表1に示した。

[0079] 比較例2

実施例1の(i)フォトクロミックコーティング液の調製で用いた、有機ケイ素化合物として γ - グリシドキシプロピルトリメトキシシランの代わりに、 γ - メタクリロキシプロピルトリメトキシシランを用い、(ii)フォトクロミック被膜層の形成で用いたプラスチックレンズ基材としてポリチオウレタンの代わりに、ジエチレングリコールビスアリルカーボネート

(HOYA(株)製 商品名HL 中心肉厚2.0mm厚)を用いた以外は全て実施例1と同様にして、ハードコート層を有するプラスチックレンズを製造して前記(1)~(3)を評価し、ハードコート層および反射防止膜を有するプラスチックレンズを製造して前記(1)および(2)を評価した。それらの結果を表1に示した。

[0080] 比較例3

実施例1の(i)フォトクロミックコーティング液の調製で用いた、有機ケイ素化合物として γ - グリシドキシプロピルトリメトキシシランを使用しない以外は全て実施例1と同様にして、ハードコート層を有するプラスチックレンズを製造して前記(1) ~ (3)を評価し、ハードコート層および反射防止膜を有するプラスチックレンズを製造して前記(1)および(2)を評価した。それらの結果を表1に示した。

[0081] [表1]

表 1							
	プラス チックレ ンざ###	有機ケイ素化合物	ハードコート層を有する レンズ		ハードコート層お よび反射防止膜を 有するレンズ		
	ンズ基材		耐擦傷性	密着性	外観	耐擦傷性	密着性
実施例1	EYAS	γ-グリシドキシプロピ ルトリメトキシシラン	Α	100/100	良好	A	100/100
実施例2	EYAS	γ-グリシドキシプロピ ルトリエトキシシラン	Α	100/100	良好	A	100/100
実施例3	EYAS	y-グリシドキシプロピ ルメチルジエトキシシラ ン	А	100/100	良好	Α	100/100
実施例4	HL	γ-グリシドキシプロピ ルトリメトキシシラン	A	100/100	良好	A	100/100
比較例1	EYAS	γ-メタクリロイルオキ シプロピルトリメトキシ シラン	A	50/100	良好	A	50/100
比較例2	HL	y-メタクリロイルオキ シプロピルトリメトキシ シラン	A	0/100	良好	A	0/100
比較例3	EYAS	_	Α	0/100	良好	Α	0/100

[0082] 表1に示したように、(1)〜(5)成分を含む実施例1〜4のプラスチックレンズのフォトクロミック被膜層は、プラスチックレンズ基材に対し優れた密着性を有しているのに対し、エポキシ基を有していない有機ケイ素化合物を用いた比較例1〜3のプラスチックレンズは、密着性が劣っている。

産業上の利用可能性

[0083] 本発明の光学部材は、フォトクロミック被膜層を有し、この被膜層は光学基板との密着性に優れている。また、本発明の硬化性組成物は、各種光学基板との密着性に優れたフォトクロミック被膜層の原料となる組成物として適している。

請求の範囲

- [1] (1)ラジカル重合性単量体、
 - (2) 片末端にエポキシ基を有する有機ケイ素化合物、
 - (3)アミン化合物、
 - (4)フォトクロミック化合物、及び
 - (5) 光重合開始剤

の成分を含み、前記(2)の片末端にエポキシ基を有する有機ケイ素化合物が、シラノ ール基を有する化合物、または加水分解によりシラノール基を生成する基を有する 化合物である硬化性組成物。

- [2] (1)ラジカル重合性単量体 100重量部に対して、
 - (2) 片末端にエポキシ基を有する有機ケイ素化合物 1.0~15重量部、
 - (3)アミン化合物 0.01~20重量部、
 - (4)フォトクロミック化合物 0.01〜20重量部、及び
 - (5) 光重合開始剤 0.01~5重量部
 - の成分を含む請求項1に記載の硬化性組成物。
- [3] 前記(1)ラジカル重合性単量体が、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、アリル基及びスチリル基から選ばれる少なくとも一種類のラジカル重合性基を有する請求項1又は2に記載の硬化性組成物。
- [4] 前記(1)ラジカル重合性単量体が、アクリロイル基、メタクリロイル基、アクリロイルオキシ基及びメタクリロイルオキシ基から選ばれる少なくとも一種類のラジカル重合性基を有する請求項1又は2に記載の硬化性組成物。
- [5] 前記(2)有機ケイ素化合物が、下記一般式(I)で表される有機ケイ素化合物又はその加水分解物である請求項1又は2に記載の硬化性組成物。

$$(R^{81})_a (R^{83})_b Si(OR^{82})_{4-(a+b)} \cdots (I)$$

(式中、 R^{81} はエポキシ基を有する有機基、 R^{82} は炭素数1~4のアルキル基、炭素数1~4のアシル基又は炭素数6~10のアリール基、 R^{83} は炭素数1~6のアルキル基又は炭素数1~100のアリール基、100のアリール基、100のアリール基、100の変数、100の変数を示す。)

[6] 前記R⁸¹のエポキシ基を有する有機基が、エポキシ基、グリシドキシ基又は3、4-エ

ポキシシクロヘキシル基である請求項5に記載の硬化性組成物。

WO 2005/090421

[7] 前記(3)アミン化合物が、トリエタノールアミン、Nーメチルジエタノールアミン、トリイソ プロパノールアミン、4,4ージメチルアミノベンゾフェノン、ジアザピシクロオクタンの非 重合性低分子系アミン化合物、N,Nージメチルアミノエチルメタアクリレート、N,Nージエ チルアミノエチルメタアクリレートの重合性基を有するアミン化合物及びnー(ヒドロキシエチル)ーNーメチルアミノプロピルトリメトキシシラン、ジメトキシフェニルー2ーピペリジノエトキシシラン、N,Nージエチルアミノメチルトリメチルシラン、(N,Nージエチルー3ーアミノプロピル)トリメトキシシランのシリル基を有するアミン化合物から選ばれる少なくとも一種類である請求項1又は2に記載の硬化性組成物。

40

PCT/JP2005/003939

- [8] 請求項1又は2に記載の硬化性組成物を光学基板上に塗布硬化して形成されてなるフォトクロミック被膜層を有する光学部材。
- [9] 前記フォトクロミック被膜層上にハードコート層が形成されてなる請求項8に記載の 光学部材。
- [10] 前記ハードコート層上に反射防止膜が形成されてなる請求項9に記載の光学部材
- [11] 前記光学基板が、プラスチックレンズ基材である請求項8に記載の光学部材。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/003939

		PCT/JP2	2005/003939		
	CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C08F220/10, C08L33/04, C09D4/00, 133/04, 163/00, G02B1/10, 5/23, G02C7/10				
According to Int	According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SE					
Minimum docum Int.Cl ⁷	nentation searched (classification system followed by classification syste	ssification symbols) 00, 133/04, 163/00, G02	B1/10, 5/23,		
Jitsuyo Kokai J:	itsuyo Shinan Koho 1971-2005 To	tsuyo Shinan Toroku Koho roku Jitsuyo Shinan Koho	1996-2005 1994-2005		
Electronic data b	ase consulted during the international search (name of d	lata base and, where practicable, search to	erms used)		
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT		T		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
A	& KR 2004023682 A & BR	Corp.), 1433814 A1 200211428 A 2004/220292 A1	1-11		
A	JP 2003-128713 A (Tokuyama Cook May, 2003 (08.05.03), Claims (Family: none)	orp.),	1-11		
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.			
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date		date and not in conflict with the applic the principle or theory underlying the "X" document of particular relevance; the considered novel or cannot be consi	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive		
cited to esta special reaso "O" document re "P" document p	which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other on (as specified) oferring to an oral disclosure, use, exhibition or other means ablished prior to the international filing date but later than date claimed	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
23 May,	d completion of the international search , 2005 (23.05.05)	Date of mailing of the international sea 14 June, 2005 (14.	*		
	ng address of the ISA/ se Patent Office	Authorized officer			
Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2005/003939

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	JP 2003-98302 A (NOF Corp.), 03 April, 2003 (03.04.03), Claims & WO 2003/27728 A1 & JP 2004-75938 A & JP 2004-78054 A & AU 2002332283 A1	1-11
A	& WO 2003/27728 A1	1-11

国際調査報告

発明の属する分野の分類(国際特許分類(IPC)) Α. Int.Cl.7 C08F220/10, C08L33/04, C09D4/00, 133/04, 163/00, G02B1/10, 5/23, G02C7/10

В. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7 C08F220/10, C08L33/04, C09D4/00, 133/04, 163/00, G02B1/10, 5/23, G02C7/10

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号			
A	WO 2003/011967 A1 (株式会社トクヤマ)2003.02.13,特許請求の範囲 & TW 552271 A & EP 1433814 A1 & KR 2004023682 A & BR 200211428 A & AU 2002242974 A1 & US 2004/220292 A1	1–11			
A	& CN 1533413 A JP 2003-128713 A (株式会社トクヤマ)2003.05.08, 特許請求の範囲 (ファミリーなし)	1–11			

▼ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって もの
- 「E」国際出願目前の出願または特許であるが、国際出願目 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

- の日の後に公表された文献
- 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日

23.05.2005

国際調査報告の発送日

14.6.2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

8930

佐々木 秀次

電話番号 03-3581-1101 内線 3457

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2003-98302 A (日本油脂株式会社)2003.04.03,特許請求の範囲 & WO 2003/27728 A1 & JP 2004-75938 A & JP 2004-78054 A & AU 2002332283 A1	1-11
A	WO 2001/005854 A1 (株式会社トクヤマ)2001.01.25, 特許請求の範囲 & AU 200060193 A & EP 1130038 A1	1-11
		÷
		,