

Università degli Studi di Padova

Matching models for evacuation and allocation of people in case of disasters and wars

Introduction

- Increasing number of wars and terrorist attacks
- Pilot project for an assignment process for refugee resettlement
- Use artificial intelligence to generate a model for building evacuations

Matching models

Matching model for refugee resettlement

- 6-tuple (C, R, q, P_c, P_r, F)
 - $C = \{c_1, ..., c_m\}$ countries
 - $R = \{r_1, \dots, r_n\}$ refugees
 - $q = \{q_i, ..., q_m\}$
 - $P_c = \{P(c_1), ..., P(c_m)\}$
 - $P_r = \{P(r_1), \dots, P(r_n)\}$
 - $F = \{F(f_1), ..., F(f_l)\}$
 - $n \gg m$

Matching model in case of disaster

- 6-tuple (E, P, q, N_e, N_p, F)
 - $E = \{e_1, ..., e_m\}$ exits
 - $P = \{p_1, ..., p_n\}$ people
 - $q = \{q_i, \dots q_m\}$
 - $N_e = \{N(e_1), ..., N(e_m)\}$
 - $N_p = \{N(p_1), ..., N(p_n)\}$
 - $F = \{F(f_1), ..., F(f_l)\}$
 - $n \gg m$

Matching models in case of war

Case	Model used	Matching pairs	Quote limit	Application description
Mass escapes	Refugee resettlement	People - Countries	Country quote	Redistribution of people to safe countries
War attacks	In case of disaster	People - Exits	Exit quote	Evacuation of people from buildings at risk
War attacks	In case of disaster	People - Bunkers	Bunker quote	Shelter of people towards bunkers

Mechanisms

Matching models as College Admissions Problem and School Choice Problem

- College Admissions Problem: (C, R, q, P)
 - $P = \{P_c, P_r\}$
 - Not admissible for COM
- School Choice Problem: (C, R, P_r, Pri)
 - $Pri = \{P_c\}$
 - Admissible

Machine learning-based Matching

- Use machine learning algorithm to generate a π from P_c
- CRSD: $(F, C, q, \pi, P, \gamma)$
- CRV: $(F, C, q, \pi, \nu, \gamma)$
- The machine learning model π is Admissible for COM because the algorithm used, even if it calculates a wrong value, doesn't cause any death.

Conclusions

- The use of stable matching models like the ones just proposed can help people life a lot:
 - Possibility to realize a general model adaptable to more emergency situations
 - Combine efforts to improve a single model that can be reused for many purposes

