The Edge-Traggerred J.K Flip-Flop:

The functioning of the J-K Flip-flop in idential to that of the S-R flip-flop in the SET, RESET and NO change conditions of operation. The different is that the J.K flip-flop has no invalid states as does the S-R Flip-Flop.

Fig: Logic diagram for a positive edge triggered J-K Flip-Flop.

	Inputs		Output		
J	K	CIK	a	ā	Comments
0	0	1	Q.	Q.	No change
0	1	1	0	1	RESET
1	0	1		ð	SET .
1	1	1	Q.	Q.	Togale

Determine a output if the J-K Flip-Flop in initially RESET

CIK

Toggle Reset Set Ne Toggle Toggle

T Flip-Flop:
A J-k flip-flop commented for toggle operation is sometimes called a T Flip-Flop.

The DFIP-Flap is used to stone a single data both position edge-triggened Flip-Flap atomes data of the Kading edge of the

Hanla

	Joe Ani	puto	Outp	uto	Comments		
19	T	cik	Q	Q	Comments		
	G	l I	Q.	Q.	No change		
	1	1.	Q.	Qo	Toggle mode		

The Edge-Traggered D Flip-Flop

Fig: A positive edge-triggered D Flip-Flop Formed with an S-R Flip-Flop and an innerter.

Truth table for positive edge-triggered D Flip-Flop:

Inp	uto	I Out	outo			
D	CIK	Q	Q	Comments		
1	1		0	Set		
0	1	0	ŀ	Renet		

The DFlip-Flop is used to stone a single data bit position edge-triggered Flip-Flop stones data at the Kading edge of the clock.

Determine a if the 1D Flip-Flop is initially Reset

S-R Flip-flop inputs (S & R)

J-K Flip flop inputs (J & K)

T Flip-flop input (T)

D Flip-Flop input (D)

(S & R, J & K, T, D) all of these inputs are known as synchronous inputs

Flip-Flop with Anynchronous Inputs

PRE and CLR are known as asynchronous inputs for flip-flops. They are active low in nature.

PRE=PRESET=SET Operation, Q=1

CLR=CLEAR= RESET Operation Q=0

Fig: Logic symbol for a J-K Flip-Flop with active Low preset & clear inputs.

* Determine a for the bollowing inputs.

Determine a if the 1D Flip-Flop is initially Reset

S-R Flip-flop inputs (S & R)

J-K Flip flop inputs (J & K)

T Flip-flop input (T)

D Flip-Flop input (D)

(S & R, J & K, T, D) all of these inputs are known as synchronous inputs

Flip-Flop with Anynchronous Inputs

PRE and CLR are known as asynchronous inputs for flip-flops. They are active low in nature.

PRE=PRESET=SET Operation, Q=1

CLR=CLEAR= RESET Operation Q=0

Fig: Logic symbol for a J-K Flip-Flop with active

Determine the output Q for the positive edge triggered J-K flip-flop, if it is initially at reset condition. Here the PRE and CLR are asynchronous active low preset and clear operation respectively.

MASTER SLAVE FLIP-FLOPS

Fig: Logie diagram for a master slave J-k Flip-Flop.

treuth	table: J K clk			Outputa a			
4	J	K	clk	Q	Q	Comments	
	0	0	TL	Qo	Q.	No change	
	O	1	IL	0	1	Reset	
	Ni	0		7 1 1-1;	0	Set ya should	
	1	l lugh	TL (1-43)	ā.	Q.	Toggle	

- a) Data transfermed to the output at the negative edge of the clock pulse
- b) Data transferred to the output at the positive edge of the clock

Fig: Pulse triggered/master slave Flip-Flop.

D type edge traggered Flip-Flop without pulse transition detector.

Fig: Dtype positive edge triggered Flip-Flop Truth-table of SR latch

5	R	Q	CP	DS	R	Gal	G	
0	1	1	0	0 1	1	200	-10	
1	0	0						
0	0	Invalid	1	0->11	0	0	- 1	
Lale	ota oti	NC	lallallag	1	1 Noed	agolff-g	0	