Linear Regression

- Regression focuses on the relationship between an outcome and its input variables.
 - Provides an estimate of the outcome based on the input values.
 - Models how changes in the input variables affect the outcome.
- The outcome can be continuous or discrete.
- Possible use cases:
 - Estimate the lifetime value (LTV) of a customer and understand what influences LTV.
 - Estimate the probability that a loan will default and understand what leads to default.
- > approaches: linear regression and logistic regression

Linear Regression

- > Used to estimate a continuous value as a linear function of other variables
 - Income as a function of years of education, age, and gender
 - House sales price as function of area, number of bedrooms/bathrooms, and lot size
- Outcome variable is continuous.
- Input variables can be continuous or discrete.
- Model Output:
 - A set of estimated **coefficients** that indicate the relative impact of each input variable on the outcome
 - A linear expression for estimating the outcome as a function of input variables

Linear Regression other examples

- Banks assess the risk of home-loan Applicants based on their:
 - > age,
 - income,
 - > expenses,
 - occupation,
 - number of dependents,
 - Personal status
 - total credit limit, etc.

Regression Line

Regression Line, exampleHeight Vs. Weight

Use Cases

- Linear regression is often used in business, government and other scenarios
- Some common practical application
 - Real Estate: A simple linear regression analysis can be used to model residential home prices as a function of the home's living area. Such a model helps set or evaluate the list price of home on the market.
 - **Demand forecasting**: Business and government can use linear regression models to predict demand for goods and services. For instance, a chain restaurant can predict the quantity of food that customer ask for based on the weather, the day of the week, the time, etc.
 - Medical: A linear regression model can be used to analyze the effect of a proposed radiation treatment on tumor size. Input variables might include duration of a single radiation treatment, frequency of radiation treatment, and patient attributes such as age and weight.

Regression analysis

- Linear Regression is a predictive analytical technique used to model the relationship between several input variables (X) and a continuous outcome variable (Y)
 - The input variable are known as independent variables and the outcome variable is known as a dependent variable
- The aim is to establish a linear relationship (a mathematical formula) between the independent/predictor variables (X) and the outcome/dependent variable (Y), so that, we can use this formula to estimate the value of the response Y, when only the predictors (Xs) values are known.

- Suppose that we got **java1** and **java2** scores from the previous term for five students:
- Let's see if we can build a model to predict, what score that a new student can score based on her mark in java1?

	<u>Java1</u>	<u>Java2</u>
Noura	95	85
> Asma	85	95
Fatima	80	70
Salma	70	65
Hind	60	70

	Java1 (predictor)	Java2 (respon	se)
Noura	95	85	
Asma	85	95	
Fatima	80	70	
Salma	70	65	
Hind	60	70	

We want to build a linear model such that:

$$Y = c0 + c1*x1$$

- Y represents the predicted mark for Java2
- > x1: Java1
- > c0 and c1 are coefficients

Lets use R to Plot these values:

Regression

Java1
$$<$$
- c(95, 85, 80, 70, 60)

$$Java2 <- c(85, 95, 70, 65, 70)$$

plot(Java2, Java1)

we use lm() to build a linear regression model in R

```
Call: Im(formula = Java2 ~ Java1)
Coefficients:
```

Intercept: 26.7808 (This is co)

Java1: 0.6438 (This is c1)

According to the equation:

$$Y = c0 + c1*x1$$

Java2 = 26.7808 + 0.6438*Java1

Java2 = 26.7808 + 0.6438*Java1

If Mariam scored 80 in Java1, what probably she can get in Java2?

Predict what score a student can get in Java2 if she got 80 in Java1

We can do it in R:

(java2_ <- fit\$coefficients[[1]] + fit\$coefficients[[2]]*80)

Is it 78.28?

Marks in Java1 : {95, 85, 80, 70, 60, 80, 75, 90, 88}

Marks in Java2 : {85, 95, 70, 65, 70, 78, 72, 88, 91}

Marks in swEng: {82, 89, 70, 72, 75, 77, 75, 89, 89}

Activity

- Use linear regression to build a model to predict score in Software Engineering (swEng)
- ► Plot the marks in 3D
- Very good source for 3D plot:
- https://www.r-bloggers.com/getting-fancy-with-3-d-scatterplots/

```
# 1. read marks
Java1 <- c(95, 85, 80, 70, 60, 80, 75, 90, 88)
Java2 \le c(85, 95, 70, 65, 70, 78, 72, 88, 91)
swEng \le c(82, 89, 70, 72, 75, 77, 75, 89, 89)
#2. plot
library(scatterplot3d)
scatterplot3d(Java1, # x axis
                Java2, # y axis
                swEng, #z axis
                main="3-D Scatterplot Example 1")
```



```
# 3. predict the mark in software engineering based on the marks in java1 and java2
fit2 <- lm(swEng ~ Java1 + Java2)
fit2
```

```
# 4. visualize the model library(visreg) visreg(fit2)
```


- Linear regression is demonstrated below with function lm() on the Australian CPI (Consumer Price Index) data, which are quarterly CPIs from 2008 to 2010
- At first, the data is created and plotted.
- In the code below, an x-axis is added manually with function axis(), where las=3 makes text vertical.

A consumer price index (CPI) measures changes in the price level of a market basket of consumer goods and services purchased by households.

```
# each year 4 quarters
```

rep() function replicates values

```
year < -rep(2008:2010, each=4)
```

quarter <- rep(1:4, 3) # 3 years / 4 Q

We then check the correlation between CPI and the other variables, year and quarter.

```
cor(year,cpi)
[1] 0.9096316
```

cor(quarter,cpi) [1] 0.3738028

- Then a linear regression model is built with function **lm()** on the above data:
 - Predictors: year and quarter
 - Response: CPI

```
fit <- lm(cpi ~ year + quarter)
fit
```

With the generated linear model in the previous slide, CPI is calculated as:

$$cpi = c0 + c1*year + c2*quarter$$

where c0, c1 and c2 are coefficients from model fit. Therefore, the CPIs in 2011 can be get as follows.

(cpi2011 <- fit\$coefficients[[1]] + fit\$coefficients[[2]]*2011 + fit\$coefficients[[3]]*(1:4))

Predict new inputs

```
data2011 <- data.frame(year=2011, quarter=1:4)
cpi2011 <- predict(fit, newdata=data2011)
```

- Returning to the *Income* example, in addition to the variables age and education, the person's gender, female or male, is considered an input variable. The following code reads a comma-separated-value (CSV) file of 400 people's incomes, ages, years of education, and gender. The first 10 rows are displayed:
- income_input = read.csv("c:/R Codes/Ch6/income.csv")
- income_input[1:10,]

- Each person in the sample has been assigned an identification number, *ID*. *Income* is expressed in thousands of dollars. (For example, 113 denotes \$113,000.)
- As described earlier, *Age* and *Education* are expressed in years. For *Gender*, a 0 denotes male and a 1 denotes female.
- A summary of the imported data
- summary(income_input)

- Using the linear model function, lm(), in R, the income model can be applied to the data as follows:
- results <- lm(Income~Age + Education + Gender, income_input)</p>
- summary(results)
- The following R code provides the modified model results:
- results2 <- lm(Income ~ Age + Education, income_input)</p>
- summary(results2)