Theorems and Proofs II

Previous Lecture

- Axioms and theorems
- Rules of inference for quantified statements

Rule of Universal Specification (cntd)

If an open statement becomes true for all values of the universe, then it is true for each specific individual value from that universe

Example

Premises:	$\forall x (P(x) -$	$\rightarrow Q(x)),$	P(Socrates)
	\ \ \ /	`\ ///	\

Step	Reason	
1. $\forall x (P(x) \rightarrow Q(x)),$	premise	
2. $P(Socrates) \rightarrow Q(Socrates)$,	rule of universal specification	
3. P(Socrates)	premise	
4 Q(Socrates)	modus ponens	

Rule of Universal Generalization

Let us prove a theorem:

If
$$2x - 6 = 0$$
 then $x = 3$.

Proof

Take any number c such that 2c - 6 = 0. Then 2c = 6, and, finally c = 3. As c is an arbitrary number this proves the theorem. Q.E.D

- Look at the first and the last steps.
 - In the first step instead of the variable we start to consider its generic value, that is a value that does not have any specific property that may not have any other value in the universe
 - In the last step having proved the statement for the generic value we conclude that the universal statement is also true

Rule of Universal Generalization (cntd)

- If an open statement P(x) is proved to be true when x is assigned by any arbitrary chosen (generic) value from the universe, then the statement $\forall x P(x)$ is also true.
- Example: ``If 2x 6 = 0 then x = 3."
- Notation: P(x) ``2x 6 = 0", Q(x) ``2x = 6", R(x) ``x = 3"
- Premises: $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))$
- Conclusion: $\forall x (P(x) \rightarrow R(x)),$

Ston

Sieh	11605011
1. $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))$	premises
2. $P(c) \rightarrow Q(c)$, $Q(c) \rightarrow R(c)$,	rule of univ. specification
3. $P(c) \rightarrow R(c)$	rule of syllogism
4. $\forall x (P(x) \rightarrow Q(x))$	rule of univ. generalization

Daggan

Existential Rules

Rule of Existential Specification.

If $\exists x P(x)$ is true in a given universe, then there is value a in this universe with P(a) true.

Rule of Existential Generalization.

If P(a) is true for some value a in a given universe, then $\exists x P(x)$ is true in this universe.

Methods of Proving – Direct Proofs

Direct proofs are used when we need to proof statements like

$$\forall x (P(x) \rightarrow Q(x))$$

Main steps

Our goal is to prove that $P(a) \rightarrow Q(a)$ is a tautology for a generic value a.

- 1. Assume that P(a) is true
- 2. Using axioms, previous theorems etc. prove that Q(a) is true
- 3. Conclude that $P(a) \rightarrow Q(a)$ is true
- 4. Use the rule of universal generalization to infer

$$\forall x (P(x) \rightarrow Q(x))$$

Methods of Proving – Direct Proofs

- Example: ``If 2x 6 = 0 then x = 3."
- Notation: P(x) 2x 6 = 0, Q(x) 2x = 6, R(x) x = 3
- Need to prove: $\forall x (P(x) \rightarrow R(x))$
- Previous knowledge: $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))$

Step	Reason assumption	
1. P(c)		
1. $\forall x (P(x) \rightarrow Q(x)), \forall x (Q(x) \rightarrow R(x))$	premises	
2. $P(c) \rightarrow Q(c)$, $Q(c) \rightarrow R(c)$,	rule of univ. specification	
3. R(c)	Modus Ponens	
4. $\forall x (P(x) \rightarrow R(x))$	rule of univ. generalization	

Example

■ Theorem. Everyone who studies more knows less.

Example

- **Proof.** Everyone who studies more knows less.
- lacksquare S(x) x studies more M(x) x knows more

F(x) x forgets more L(x) x knows less

- Premises: $\forall x (S(x) \rightarrow M(x)), \ \forall x (M(x) \rightarrow F(x)), \ \forall x (F(x) \rightarrow L(x))$
- Theorem: $\forall x (S(x) \rightarrow L(x))$

Step

Reason

1. S(c)

assumption

- 2. $\forall x (S(x) \rightarrow M(x)), \forall x (M(x) \rightarrow F(x)), \forall x (F(x) \rightarrow L(x))$ premises
- 3. $S(c) \rightarrow M(c), M(c) \rightarrow F(c), F(c) \rightarrow L(c)$

rule of univ. spec.

4. L(c)

Modus Ponens

5. $\forall x (S(x) \rightarrow L(x))$

rule of univ. gen.

Methods of Proving – Proof by Contraposition

- Sometimes direct proofs do not work
- **D**efinition: n is even if and only if there is k such that n=2k
- Prove that if 3n + 2 is even, then n is also even That is $\forall x (E(3x + 2) \rightarrow E(x))$
- Let us try the direct approach:

 As for the generic value n the number 3n + 2 is even, for some k we have 3n + 2 = 2k. Therefore 3n = 2(k + 1).

 Now what?
- What if instead of $\forall x (E(3x + 2) \rightarrow E(x))$ we prove the contrapositive, $\forall x (\neg E(x) \rightarrow \neg E(3x + 2))$?

Methods of Proving – Proof by Contraposition (cntd)

- So assume that n is odd, that is there is k such that n=2k+1.
- Then $3n + 2 = 3 \cdot (2k + 1) + 2 = 6k + 5 = 2(3k + 2) + 1$. That is 3n + 2 is odd.
- We have proved that $\neg E(3n + 2)$ is true, and therefore the contraposition $\forall x (\neg E(x) \rightarrow \neg E(3x + 2))$ is true.

Finally, we conclude that the theorem $\forall x (E(3x + 2) \rightarrow E(x))$ is also true.

Methods of Proving – Proof by Contraposition (cntd)

Main steps

Our goal is to prove that $P(a) \rightarrow Q(a)$ is a tautology for a generic value a.

Instead we prove the contrapositive $\neg Q(a) \rightarrow \neg P(a)$

- 1. Assume that $\neg Q(a)$ is true
- 2. Using axioms, previous theorems etc. prove that $\neg P(a)$ is true
- 3. Conclude that $\neg Q(a) \rightarrow \neg P(a)$ is true
- 4. Conclude that $P(a) \rightarrow Q(a)$ is true
- 5. Use the rule of universal generalization to infer

$$\forall x (P(x) \rightarrow Q(x))$$

Methods of Proving – Proof by Contradiction

Proofs by contradiction use the Rule of Contradiction

$$\frac{\neg p \to F}{\cdots}$$

$$\therefore p$$

- Can be used to prove statements of any form
- Main steps
 - 1. Assume $\neg p$.
 - 2. Using axioms, previous theorems etc. infer a contradiction
 - 3. Conclude p.
- Usually the contradiction has the form $\exists x (Q(x) \land \neg Q(x))$

Example

- **Definition**: a barber is called **strict** if he shaves those and only those who do not shave themselves.
- Theorem. There is no strict barber.(All barbers are not strict.)
- Proof.
- Assume the contrary: a strict barber c exists
- Does he shave himself?
- If no $(\neg q)$, then by the definition he must shave himself (q)
- If yes (q), then by definition he must not (¬q)
- Either way we have q ∧ ¬q, a contradiction
- We conclude that a strict barber does not exist

Example (cntd)

Another Example

- Definition: a real number is said to be rational if it can be represented as a fraction $\frac{a}{b}$ where a,b are integers
- lacktriangle Prove that $\sqrt{2}$ is irrational
- Proof

Suppose that $\sqrt{2}$ is rational, that is there are integers a,b such that $\sqrt{2} = \frac{a}{}$.

We may assume that a,b have no common divisor.

Squaring we obtain $a^2 = 2b^2$.

Since a^2 is even, a is also even, hence a = 2c for some c.

Therefore $2b^2 = 4c^2$, and so $b^2 = 2c^2$.

Hence b is even.

We get that a and b have a common factor – 2. A contradiction.

Pythagoras

"Number is the ruler of forms and ideas, and the cause of gods and demons"

numbers = rational numbers

 $\sqrt{2}$ does not belong to this world

Proving Existential Statements

- How to prove $\exists x P(x)$.
- Constructive proofs: find or construct a value a such that P(a) is true.

Prove that there is a grey car...

My car is grey!

Pure proofs of existence:

Assume that $\forall x \neg P(x)$.

Using axioms, previous theorems etc. infer a contradiction

Thus, this is a proof by contradiction.

Homework

Exercises from the Book:

No. 5, 9, 11, 13, 15, 17 (page 116-117)