Пусть теперь ξ – СВНТ. Не известна плотность ее распределения $f_{\xi}(x)$. Для оценки плотности распределения по выборке $\xi_1, \xi_2, \ldots, \xi_n$ сделаем следующее:

- разобьем область значений случайной величины ξ на интервалы длины h_i (i=1,2,...,s);
- найдем x_i^* середины i-го интервала;
- подсчитаем число V_i число элементов в выборке, попавших в i-ый интервал;
- вычислим значение $f_n(x_i^*) = \frac{V_i}{nh_i}$, являющееся оценкой плотности распределения случайной величины в точке x_i^* .

Определение. Фигура, составленная из прямоугольников с основаниями h_i (i=1,2,...,s) и высотами $\frac{\mathbf{V}_i}{nh_i}$, называется **ГИСТОГРАММОЙ.**

Определение. Эмпирической функцией распределения назовем функцию распределения *CBДT*, принимающей значения середин выбранных интервалов (x_i^*) с вероятностям, равными $\frac{\mathsf{V}_i}{n}$.

Пример. Пусть имеется выборка объема 100 из генеральной совокупности с теоретической плотностью распределения $f_{\xi}(x)$. Результаты измерений занесены в таблицу:

№	Границы интервала	Середина интервала	Число элементов,	a (*) V:
интервала	(x_i, x_{i+1})	r*	попавших в интервал	$f_n(x_i^*) = \frac{1}{n}$
i	(*;**;+1)	λ_i	${f v}_i$	nh_i
1	(0, 2)	1	20	0,1
2	(2, 4)	3	50	0,25
3	(4, 6)	5	30	0,15

Гистограмма

Эмпирическая функция распределения

§2. Точечные оценки параметров распределений.

Смысл точечной оценки: исследуемая величина считается приближенно равной вычисляемому значению.

Определение. Пусть $\xi_1, \xi_2, ..., \xi_n$ – наблюдаемые значения случайной величины ξ .

•
$$\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$$
 – выборочное среднее случайной величины ξ .

•
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (\xi_i - \overline{\xi})^2$$
 – выборочная дисперсия.

•
$$s_1^2 = \frac{1}{n-1} \sum_{i=1}^n (\xi_i - \overline{\xi})^2$$
 – исправленная выборочная дисперсия.

Замечание. По своей сути, точечные оценки случайной величины сами являются случайными величинами, но в статистических расчетах вместо случайных величин подставляют их числовые значения. Для выборочного среднего принято обозначение $\overline{X}_{\rm R}$.

Типы точечных оценок.

Пусть ξ_i – случайная величина, представляющая результат i-го испытания величины ξ, a – оцениваемый параметр, \widetilde{a} – его точечная оценка. Тогда эта оценка является функцией от случайных величин $\xi_1, \xi_2, \ldots, \xi_n$, то есть $\widetilde{a} = \phi(\xi_1, \xi_2, \ldots, \xi_n)$.

Определение. Точечная оценка \tilde{a} называется состоятельной, если $\forall \varepsilon > 0$ $\lim_{n \to \infty} P(|a - \varphi(\xi_1, \xi_2, ..., \xi_n)| < \varepsilon) = 1$, в этом случае говорят, что точечная оценка \tilde{a} сходится к оцениваемому параметру по вероятности.

Определение. Точечная оценка \tilde{a} называется **несмещенной**, если ее математическое ожидание равно оцениваемому параметру, то есть $\mathbf{M}\tilde{a}=a$.

Определение. Точечная оценка \widetilde{a} называется эффективной, если ее дисперсия минимальна.

Справедлива следующая теорема.

Теорема 1. Выборочное среднее $\overline{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ — состоятельная несмещенная оценка математического ожидания. В случае, когда случайная величина ξ подчинена нормальному закону распределения, то эта оценка является также эффективной.

Теорема 2. Выборочная дисперсия $s^2 = \frac{1}{n} \sum_{i=1}^n (\xi_i - \overline{\xi})^2$ – состоятельная оценка дисперсии $\mathbf{D}\xi$, которая, однако, не является несмещенной. Исправленная выборочная дисперсия $s_1^2 = \frac{1}{n-1} \sum_{i=1}^n (\xi_i - \overline{\xi})^2$ является состоятельной несмещенной оценкой дисперсии.

Замечание. Легко заметить, что $s_1^2 = \frac{n}{n-1} s^2$, $\frac{n}{n-1} \underset{n \to \infty}{\longrightarrow} 1$, и при больших объемах выборки $s_1^2 \approx s_1$. При малых значениях n лучше брать исправленную дисперсию s_1^2 .

§3. Интервальные оценки параметров распределений.

Смысл интервальной оценки: исследуемая величина с заданной вероятностью попадает в данный интервал.

Пусть ξ — случайная величина, подчиняющаяся нормальному закону $N(a,\sigma)$. Неизвестная плотность распределения имеет вид: $f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$, при этом неизвестны именно параметры распределения. Пусть ξ_i — случайная величина, представляющая результат i-го испытания величины ξ , тогда $\mathbf{M}\xi_i = a$, $\mathbf{D}\xi_i = \sigma^2$. Можно доказать, что выборочное среднее $\overline{\xi} = \frac{1}{n}\sum_{i=1}^n \xi_i$ также является нормально распределенной случайной величиной с числовыми характеристиками $\mathbf{M}\overline{\xi} = a$, $\mathbf{D}\overline{\xi} = \frac{\sigma^2}{n}$. То есть выборочное среднее подчиняется закону $N\!\left(a,\frac{\sigma}{\sqrt{n}}\right)$.

Рассмотрим вероятность того, что выборочное среднее, как нормальная случайная величина отклоняется от своего математического ожидания на некоторую величину $\delta > 0$.

$$P(|\overline{\xi} - a| < \delta) = P(a - \delta < \overline{\xi} < a + \delta) = \Phi\left(\frac{a + \delta - a}{\sqrt{\mathbf{D}\overline{\xi}}}\right) - \Phi\left(\frac{a - \delta - a}{\sqrt{\mathbf{D}\overline{\xi}}}\right) = 2\Phi\left(\frac{\delta\sqrt{n}}{\sigma}\right). (*)$$

Обозначим
$$t = \frac{\delta\sqrt{n}}{\sigma}$$
, тогда $P(|\overline{\xi} - a| < \delta) = 2\Phi(t)$.

Вероятность $2\Phi(t)$ называют доверительной вероятностью. Обычно считают, что $2\Phi(t) \approx 1$, или $2\Phi(t) = 1 - \alpha$, где α – достаточно маленькое положительное число, называемое уровнем значимости.

Доверительный интервал – интервал, который с заданной доверительной вероятностью покрывает оцениваемый параметр.

Пусть известен параметр σ , а искомым параметром является a. $t = \frac{\delta \sqrt{n}}{\sigma} \Rightarrow \delta = \frac{\sigma t}{\sqrt{n}}$, а тогда, если раскрыть модуль в выражении (*) по-другому, получим:

$$P(\overline{\xi} - \delta < a < \overline{\xi} + \delta) = P(a \in (\overline{\xi} - \delta, \overline{\xi} + \delta)) = 2\Phi(t) = 1 - \alpha.$$

Интервал $\left(\overline{\xi}-\delta,\overline{\xi}+\delta\right)$ является доверительным интервалом. Для нахождения числа δ нужно по таблице функции Лапласа найти такое значение t , для которого $\Phi(t)=\frac{1-\alpha}{2}$.

Замечание. Если параметр σ также не известен, то можно заменить, используя исправленную дисперсию, то есть $\sigma \approx \sqrt{s_1^2}$.

§4. Статистическая проверка гипотезы о характере распределения. Критерий Пирсона (критерий χ^2).

Пусть $\xi_1,\xi_2,...,\xi_n$ – выборка из генеральной совокупности с теоретической функцией распределения $F_\xi(x)$. Выдвигаем гипотезу H_0 : выборка $\xi_1,\xi_2,...,\xi_n$ соответствует случайной величине с теоретической функцией распределения $F_0(x)$. $F_0(x)$ – некоторая конкретная функция. Для проверки гипотезы H_0 используем критерий Пирсона.

- 1. Найдем размах выборки и выберем подходящий отрезок, в котором принимает значения случайная величина. Этот отрезок разобьем на r интервалов $\Delta_1, \Delta_2, ..., \Delta_r, \Delta_i = (a_i, a_{i+1}).$
- 2. Найдем вероятность попадания случайной величины, распределенной по закону $F_0(x)$ в каждый из этих интервалов. $p_i = P(\xi \in \Delta_i) = F_0(a_{i+1}) F_0(a_i) = \int\limits_{a_i}^{a_{i+1}} f_0(x) dx$.
- 3. Пусть V_i число элементов в выборке, которые попали в Δ_i (эмпирическая частота). Число значений случайной величины, попавшей в интервал Δ_i случайная величина, подчиняющаяся биномиальному закону с параметрами n число испытаний (число измерений случайной величины) и p_i вероятность успеха (вероятность попадания в нужный интервал). Математическое ожидание случайной величины, распределенной по данному биномиальному закону, равно np_i . Это число np_i суть ожидаемая (теоретическая) частота.

- 4. За меру отклонения распределения выборки от гипотетического принимается величина $\chi_{_{\rm B}}^2$ («хи квадрат выборочное»), $\chi_{_{\rm B}}^2 = \sum_{i=1}^r \frac{\left({\rm v}_i n p_i \right)^2}{n p_i}$. Пирсон доказал, что в случае справедливости гипотезы H_0 распределение случайной величины $\chi_{_{\rm B}}^2$ при $n \to \infty$ сходится к известному распределению χ^2 ((«хи квадрат») с r-1 степенями свободы.
- 5. Зададим уровень значимости α . Обычно $\alpha=0{,}05$. По таблице распределений χ^2 с r-1 степенями свободы находим такое значение $\chi^2_{\alpha,r-1}$, что $P(\chi^2>\chi^2_{\alpha,r-1})=\alpha$.
- 6. По имеющейся выборке вычисляем значение $\chi_{_{\rm B}}^2$. Если окажется, что $\chi_{_{\rm B}}^2 > \chi_{_{\alpha,r-1}}^2$, то такое отклонение считается значимым, и мы с уровнем значимости α отвергаем гипотезу $H_{_0}$, то есть с вероятностью 95% эта гипотеза не является верной. Если же $\chi_{_{\rm B}}^2 \leq \chi_{_{\alpha,r-1}}^2$, то гипотеза принимается на уровне значимости α .

Важные замечания.

- В приложениях интервалы Δ_i выбираются так, чтобы число элементов в каждом из них было не очень малым, то есть чтобы теоретическая частота $np_i \ge 5$.
- Интервалы Δ_i не обязательно должны быть одинаковой длины.
- Если распределение зависит от неизвестных параметров, то вероятности p_i попадания в интервалы Δ_i вычисляем, заменяя эти параметры достаточно хорошими точечными оценками. В этом случае число степеней свободы будет равно r-l-1, где r- число интервалов, оставшихся после объединения, l- число неизвестных параметров распределения.

Далее вы можете увидеть статистическую проверку гипотезы о распределении баллов за первый коллоквиум по теории вероятностей студентов 2 курса (2012 год).

