[94]:	<pre>import os import numpy as np</pre>
	<pre>import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn_pandas import DataFrameMapper from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import SelectKBest from sklearn.model_selection import train_test_split</pre>
	from sklearn.decomposition import PCA from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn import metrics from sklearn.pipeline import Pipeline from sklearn import preprocessing from sklearn2pmml.decoration import ContinuousDomain from sklearn2pmml.pipeline import PMMLPipeline import
	CS422 - Laura Pereda Abstract Within this project, I discovered a couple of things that changed my perspective of this field. First, the difference between feature selection and feature extraction. Apparently, feature selection keeps a subset of the original features while feature extraction creates new ones. I was under the assumption that PCA fell under feature selection, since it combined features. But there is a little more to it than just combining features, PCA uses the original features to create linear combinations and showcases them as new features. I'm glad I understood this a little better. Second, the data preprocessing step is a lot of work. But it's very much necessary and efficient. I only knew and understood of a few ways remove some features, but even then my model kept overfitting. That's one thing I wwant to change in the future. I want to discovery different techniques, understand, and utilize them correctly, so that I can create a decent model.
	Overview Just to clarify, I am by far no expert within this field so I do not expect some grand discovery from this project. I will give it my best shot to show that I at least understand the basic procedure by attempting to analyzing this given data. Problem Statement In this case, the main objective of this project will be to demonstrate my ability to successfully use the following methods to analyze this data: clustering. I also hope to not produce a overfitting model. Proposed Methodology First, I like to understand the data a little bit better. I plan on plotting some features against each other to see if I can find anything interesting. If I find anything interesting, I'll probably do a little more digging into those features but I'm not sure how I will do so. After that, probably do some PCA (find optimal #) & clustering (find optimal K).
[2]: t[2]:	# Load the data into dataframe df = pd.read_csv('data_public.csv') df.head() A B C D E F G H I J K 0 31.628960 -4.925617 29.828238 -5.572780 20.129709 7.072373 19.335662 27.283873 9.375416 15.336531 34.086952 -3.84531 1 -24.878420 -12.140354 -0.638120 6.712182 -18.044057 -12.485812 -5.060765 -23.392410 -9.336210 6.583095 -2.530664 -3.62641 2 -25.711262 -16.540789 7.450853 4.941910 -18.273375 -13.062138 -7.082651 -17.443779 -8.103270 8.345905 -1.319908 -1.23468 3 27.837458 -2.436980 29.479857 -3.360867 14.997228 10.254915 10.530714 27.082219 9.254091 26.860616 29.592860 -2.92667 4 30.520663 -5.017300 24.798154 -4.668743 19.697230 12.570798 13.141632 31.598069 12.120745 16.478925 25.257392 -2.13382 By using .describe(), I can find out more informatio about the data. I noticed that the min and max for each feature isn't that far apart. All the 15 features have a min within the negatives, and max in the positives, meaning they don't stray too far from one another. It's clear that out
[3]: t[3]:	data is continous rather discrete. df . describe ()
[4]: t[4]:	To check for any missing values, I can utilize isnull.sum() as shown below. The results indiciates that there are no null values present with the dataframe, so we can proceed with the rest of the setup. That also means we don't need to use the impurt in the pipeline. df.isnull().sum() A
[5]: t[5]:	X = df.drop("Class", axis=1) X.head() A B C D E F G H I J K 0 31.628960 -4.925617 29.828238 -5.572780 20.129709 7.072373 19.335662 27.283873 9.375416 15.336531 34.086952 -3.84531 1 -24.878420 -12.140354 -0.638120 6.712182 -18.044057 -12.485812 -5.060765 -23.392410 -9.336210 6.583095 -2.530664 -3.62641 2 -25.711262 -16.540789 7.450853 4.941910 -18.273375 -13.062138 -7.082651 -17.443779 -8.103270 8.345905 -1.319908 -1.234683 27.837458 -2.436980 29.479857 -3.360867 14.997228 10.254915 10.530714 27.082219 9.254091 26.860616 29.592860 -2.926674 30.520663 -5.017300 24.798154 -4.668743 19.697230 12.570798 13.141632 31.598069 12.120745 16.478925 25.257392 -2.13382
[25]:	Class 0 3 1 2 2 2 3 3 4 3 # Separate the data into training and testing phase X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=5) # I like to print out the shape so I have a visual on where the split was even though I know it's 80% 0% print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) (1199995, 15) (1199995, 1) (5, 15) (5, 1)
[54]: [54]:	data_train = pd.concat([X_train, y_train], axis=1) A B C D E F G H I J K 703460 -16.668633 -8.823453 2.559284 4.126992 -13.945149 -17.526316 -3.834420 -18.515908 -9.691521 6.135504 -7.204068 646156 35.821345 -3.333565 24.797855 -4.226158 17.127418 6.022154 12.771228 28.954804 10.755967 13.841780 27.385722 1010897 -1.743889 -4.241633 0.121739 -13.386470 6.531828 -12.814552 -1.459781 7.736287 19.077114 -8.284421 18.555958 1092410 -29.000685 -7.261088 -1.133360 5.561130 -17.404403 -14.957096 -6.758390 -21.576426 -9.807917 7.727962 -2.456276 884807 -25.323372 -10.506172 -0.923759 4.589215 -14.658295 -19.884686 -4.654261 -19.436890 -7.990335 2.489883 -3.279403
[27]: [27]: [28]:	A B C D E F G H I J X K 385153 30.472732 -3.039760 31.340854 -4.250525 14.571341 10.103703 13.842134 32.263647 6.819868 19.611562 24.746749 -5.202063 31.577337 -3.084033 36.268876 -5.624455 18.316076 10.057686 9.068687 25.037621 8.613654 24.223687 24.656072 -2.98585 -21.329938 -11.174371 2.453868 4.630809 -17.318560 -15.618316 -2.079955 -16.252201 -8.371267 6.429870 -3.576415 -2.99668 -24.095838 -11.107850 2.040168 2.462325 -15.101625 -13.302976 -5.445206 -18.735208 -10.308651 5.137424 -4.534060 -6.308090 -23.943703 -8.574425 -0.889020 1.138379 -13.594472 -19.096730 -5.605757 -20.206233 -8.342746 2.811668 -2.522169 -7.009995, 16) (5, 16) To get a better understanding of my data, I decided to plot the features against each other to see if anything interesting showed up. Since there is too much data (over 90,000 rows), I thought it be best to plot in sizes of 100, 1000, & 10000 to get a decent visual. plt.figure(figsize=(20, 10)) plt.subplot(1,3,1) plt.subplot(1,3,1) plt.subplot(data_train['A'].head(100), data_train['B'].head(100), "go")
	<pre>plt.title("100 Pts") plt.subplot(1,3,2) plt.plot(data_train['A'].head(1000), data_train['B'].head(1000), "go") plt.title("1000 Pts") plt.subplot(1,3,3) plt.plot(data_train['A'].head(10000), data_train['B'].head(10000), "go") plt.title("10000 Pts") plt.show()</pre> 100 Pts 1000 Pts 1000 Pts
[30]:	<pre>I was surprised by how these two features showed 3 distinct clusters and decided to plot each feature with the others to see if this discover maintained consistent. I won't go through all the features here since it takes too much space, but I did provided an additional file with the plots. So for this official report, I'll only showcase a few of the plots by skipping a few. features = data_train.columns[:-1] for i in range(0, len(features), 5): for j in range(1, len(features), 5): if i != j: plt.figure(figsize=(40, 40)) plt.subplot(3,3,1) plt.plot(data_train[features[i]].head(100), data_train[features[j]].head(100), "go") plt.xlabel(features[i]) plt.title("100 Pts") plt.subplot(3,3,2) plt.plot(data_train[features[i]].head(1000), data_train[features[j]].head(1000), "go") plt.xlabel(features[j]) plt.ylabel(features[j]) plt.ylabel(features[j]) plt.title("1000 Pts") plt.subplot(3,3,3)</pre>
	<pre>pit.subplot(3,3,3) plt.plot(data_train[features[i]].head(10000), data_train[features[j]].head(10000), "go") plt.xlabel(features[i]) plt.ylabel(features[j]) plt.title("10000 Pts") plt.show()</pre>
	200 Pts 100 Pts
	-13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19
	3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	-10 -10 -10 -10 -10 -10 -10 -10 -10 -10
	-13 -13 -14 -15 -15 -16 -17 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19
	100 Pts 1000 Pts 1000 Pts 1000 Pts 1000 Pts
[13]:	After plotting all the features against each other, I found out that there was some consistency with clustering. Majority of the features wou show clusters of three, but there were a few features that would only produce two clusters. After examining these plots, I also noticed that the same features would cause these distortions that deviated from forming three clusters. The feature 'L' & 'B' specifically, would either create only two clusters or form just one cluster. I'm not quite sure what this could indicate or what I can do with this information, but it is worth noting. But by analyzing these plots, I decided to try out cluster analysis. Before I do this, however, I thought it best to perform a a PCA to remove some of these features and condense the data. Handling 15 features is really challenging. But first, I need to scale the data. By following the guide shown in this link: https://towardsdatascience.com/pca-using-python-scikit-learn-e653f8989e60 , I was able to accomplish this.
[13]: [14]:	X_train_values = X_train.values X_train_scaled = scaler.fit_transform(X_train_values) df_scaled = pd.DataFrame(X_train_scaled, columns = ['A','B','C','D','E','F','G','H','I','J','K','L','N','O']) df_scaled.head() A B C D E F G H I J J K L 0 -0.705946 -0.727654 -0.809002 1.030200 -0.897121 -0.633427 -0.571403 -1.004366 -0.992190 0.104853 -0.997748 -2.139430 -1.1 1 1.360370 0.430663 1.334581 -0.613811 1.390930 0.957360 1.243693 1.558836 0.911236 0.863865 1.335837 -0.244874 0.5 2 -0.789735 -0.365444 -0.474368 1.106226 -1.151263 -0.994855 -0.820983 -0.823763 -0.985012 0.005674 -0.798199 0.412683 -1.0 3 1.406593 0.509518 1.119844 -0.532543 1.146859 1.326494 1.270793 1.162312 0.521607 1.299689 1.324194 0.826479 0.7 4 1.368131 0.419343 1.536061 -0.280084 1.452523 1.390090 0.759096 1.525827 0.647941 1.253366 1.073693 -1.164246 0.9 Since I do not know the most optimal number of components for this data (my guess is 3 from the clusters produced above), it is best to fout throught the available functionality of PCA. The PCA that is create prioritizes finding the optimal # of components to ensure that 95% the variance is captured from the original data. # Create pca with 95% variance
[15]:	<pre>pca = PCA(0.95) pca.fit_transform(df_scaled) print("The optimal number of components to maintain 95% variance:") print(pca.n_components_) The optimal number of components to maintain 95% variance: 3 print("The explained variance ratio:") print(pca.explained_variance_ratio_) The explained variance ratio: [0.72354161 0.20137715 0.0328774] Now that I was sure about the optimal number of components (3), I needed to find the features that correlated with the number of components, which is flashback to our first homework assignment. This also provides me with the opportunity to do some feature selection.</pre>
[31]:	through variance. From https://elitedatascience.com/dimensionality-reduction-algorithms#feature-selection , if the variance is small, mean that values are not changing, then they generally do not contribute as much to the data. However, it was at this point that I discovered that PCA did not fall under feature selection, which indicated that even if I performed PCA of this dataset, the model that I produce could be overfit. So I thought it was best to return to the original features and see if I can find any correlation between them. I thought using the provided function by pandas was enough (df.corr()), but thanks to this fellow programmer, I was able to showcase the features with the highest correlation. Here is the link to the source code: https://stackoverflow.com/questions/17778394/list-highest-correlation-pairs-from-a-large-correlation-matrix-in-pandas print ("Correlation Matrix") print (X_train.corr('pearson')) def get_redundant_pairs(df): '''Get diagonal and lower triangular pairs of correlation matrix''' pairs_to_drop = set() cols = df.columns for i in range(0, df.shape[1]): for j in range(0, i+1):
	<pre>pairs_to_drop.add((cols[i], cols[j])) return pairs_to_drop def get_top_abs_correlations(df, n=5): au_corr = df.corr().abs().unstack() labels_to_drop = get_redundant_pairs(df) au_corr = au_corr.drop(labels=labels_to_drop).sort_values(ascending=False) return au_corr[0:n] print("Top Absolute Correlations") print(get_top_abs_correlations(X_train, 10)) Correlation Matrix A B C D E F G \ A 1.000000 0.615548 0.936634 -0.600179 0.948101 0.947082 0.942632 B 0.615548 1.000000 0.415180 -0.858711 0.767007 0.460580 0.510753 C 0.936634 0.415180 1.000000 -0.373441 0.828049 0.950687 0.925007 D -0.600179 -0.858711 -0.373441 1.000000 -0.780575 -0.424752 -0.483618</pre>
	E 0.948101 0.767007 0.828049 -0.780575 1.000000 0.854437 0.872560 F 0.947082 0.460580 0.950687 -0.424752 0.854437 1.000000 0.927823 G 0.942632 0.510753 0.925007 -0.483618 0.872560 0.927823 1.000000 H 0.969398 0.7221639 0.871911 -0.725558 0.980159 0.893113 0.903660 I 0.682772 0.882238 0.463040 -0.945224 0.848049 0.512732 0.567594 J 0.476973 -0.225111 0.663282 0.316794 0.237623 0.619682 0.551364 K 0.937914 0.756810 0.819920 -0.769963 0.973023 0.845982 0.863587 L -0.018618 0.411432 -0.188375 -0.479590 0.160389 -0.149281 -0.095621 M 0.810354 0.867732 0.622090 -0.913398 0.930816 0.664406 0.706781 N 0.878335 0.822308 0.722007 -0.852911 0.959121 0.756938 0.787874 O 0.834502 0.855073 0.656168 -0.895972 0.942294 0.696162 0.734968 H I J J K L M N N A 0.969398 0.682772 0.476973 0.937914 -0.018618 0.810354 0.878335 B 0.721639 0.882238 -0.225111 0.756810 0.411432 0.867732 0.822308 C 0.871911 0.463040 0.663282 0.819920 -0.188375 0.622090 0.722007 D -0.725558 -0.945224 0.316794 -0.769963 -0.479590 0.913398 -0.852911 E 0.980159 0.848049 0.237623 0.973023 0.160389 0.930816 0.959121 F 0.893118 0.512732 0.619682 0.845982 -0.149281 0.664406 0.756938 G 0.993660 0.567594 0.551364 0.863587 -0.095621 0.706781 0.787874 H 1.000000 0.798706 0.321144 0.969105 0.100801 0.8897426 0.939458 I 0.798706 1.000000 -0.241596 0.836810 0.449424 0.956823 0.907872
	J 0.321144 -0.241596 1.000000 0.237606 -0.537780 -0.062194 0.080316 K 0.969105 0.836810 0.237606 1.000000 0.156562 0.919103 0.947472 L 0.100801 0.449424 -0.537780 0.156562 1.000000 0.351550 0.261720 M 0.897426 0.956823 -0.062194 0.919103 0.351550 1.000000 0.959350 N 0.939458 0.907872 0.080316 0.947472 0.261720 0.959350 1.000000 O 0.913338 0.943269 -0.016033 0.930663 0.323335 0.975470 0.962598 O A 0.834502 B 0.855073 C 0.656168 D -0.895972 E 0.942294 F 0.696162 G 0.734968 H 0.913338 I 0.943269 J -0.016033 K 0.930663 L 0.323335
	M 0.975470 N 0.962598 O 1.000000 Top Absolute Correlations E H 0.980159 M O 0.975470 E K 0.973023 A H 0.969398 H K 0.969105 N O 0.962598 M N 0.959350 E N 0.9599121 I M 0.956823 C F 0.950687 dtype: float64
[32]: [33]:	<pre>plt.plot(K, Sum_of_squared_distances, 'bx-') plt.xlabel('k') plt.ylabel('Sum_of_squared_distances') plt.title('Elbow Method For Optimal k')</pre>
	Plt.title('Elbow Method For Optimal k') plt.show() Elbow Method For Optimal k Supplies to the show of the show o
[62]:	<pre>pipeline = PMMLPipeline([</pre>
[63]:	Because of this, I'm going to try removing these features one at a time and then test them through a pipeline to see if there is an decreas the homogeneity score. # Dropping the following pairs: # to drop = [['E', 'H'] # to_keep = ['A', 'B', 'C', 'D', 'F', 'G', 'I', 'J', 'K', 'L', 'M', 'N', 'O'] to_keep = X_train.columns.drop(['E', 'H']).values pipelinel = PMMLPipeline([
[64]:	params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return NoneFutureWarning) Homogeneity_score: 1.0 I was very surprised to see that the homegenity score remained the same after removing the highest pair of correlating features. Because removing one pair did not make much of a difference, I thought it would be best to also remove the second highest pair & test the pipeline again. # Dropping the following pairs: # to_drop = [['E', 'H'], ['M', 'O'] # to_keep = ['A', 'B', 'C', 'D', 'F', 'G', 'I', 'J', 'K', 'L', 'N'] to_keep = X_train.columns.drop(['E', 'H', 'M', 'O']).values pipeline2 = PMMLPipeline([
[65]:	PCA(n_components=3)), ('cluster', KMeans(n_clusters=3))]) pipeline2.fit(X_train, y_train) results = pipeline2.predict(X_test) actual = np.concatenate(y_test.values) print("Homogeneity_score:", metrics.homogeneity_score(actual, results)) C:\Users\dokur\Anaconda3\lib\site-packages\sklearn\base.py:197: FutureWarning: From version 0.24, get params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Pre viously it would return None. FutureWarning) Homogeneity_score: 1.0 It still did not reduce the homogeneity_score, so I'll also remove the third pair. But since the third pair consist of a feature previously removed, I guess I'll just be removing 'K'. # Dropping the following pairs: # to_drop = [('E', 'H'), ['M', 'O'), ['E', 'K'] # to_keep = ['A', 'B', 'C', 'D', 'F', 'G', 'I', 'J', 'L', 'N'] to_keep = X_train.columns.drop(['E', 'H', 'M', 'O', 'K']).values pipeline3 = PMMLPipeline([('mapper',
	<pre>('mapper', DataFrameMapper([</pre>
	<pre>print("Top Absolute Correlations") print(get_top_abs_correlations(X_train, 10)) Top Absolute Correlations E</pre>
,1]:	<pre>to_keep = X_train.columns.drop(['E', 'H', 'M', 'O', 'K', 'A', 'N', 'I', 'C', 'F']).values pipeline4 = PMMLPipeline([</pre>
[78]:	Homogeneity_score: 1.0 Now I'm more concerned that I'm doing something wrong with the pipeline. I've already removed 10 features and the homogeneity_score hasn't been reduced. Maybe I didn't actually go to far? Since the PCA showed that three features were enough to capture the variability of the original data, I'm going to remove the 12 features. print("Top Absolute Correlations") print(get_top_abs_correlations(X_train, 30)) Top Absolute Correlations E H
	H K 0.969105 N O 0.962598 M N 0.959350 E N 0.959121 I M 0.956823 C F 0.950687 A E 0.948101 K N 0.947472 A F 0.947082 D I 0.945224 I O 0.943269 A G 0.942632 E O 0.942294 H N 0.939458 A K 0.937914 C 0.9336634 E M 0.930816 K O 0.9308663 F G 0.927823
	K O 0.930663

In [80]:	<pre>to_keep = X_train.columns.drop(['E', 'H', 'M', 'O', 'K', 'A', 'N', 'I', 'C', 'F', 'D', 'G']).values pipeline5 = PMMLPipeline([('mapper',</pre>
In [136]:	<pre>C:\Users\dokur\Anaconda3\lib\site-packages\sklearn\base.py:197: FutureWarning: From version 0.24, get params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Pre viously it would return None. FutureWarning) Homogeneity_score: 1.0 to_keep = X_train.columns.drop(['E', 'H', 'M', 'O', 'K', 'A', 'N', 'I', 'C', 'F', 'D', 'G']).values pipeline6 = PMMLPipeline([</pre>
	pipeline6.fit(X_train, y_train) results = pipeline6.predict(X_test) actual = np.concatenate(y_test.values) print("Homogeneity_score:", metrics.homogeneity_score(actual, results)) Homogeneity_score: 1.0 At this point, I'm not really sure what else I can do to not overfit the model. I know there must be more to the data pre-processing stage that I can do but I'm not so sure I'm capable of completeing and understanding it. Since there is nothing more than I can really do, I'll just call it quits for now. Maybe some day I'll be angry enough at myself that I'll proceed to torture myself even more to accomplish my original goal of this project.
<pre>In [129]: Out[129]: In [104]: Out[104]:</pre>	A B C D E F G H I J J K L 0 31.628960 -4.925617 29.828238 -5.572780 20.129709 7.072373 19.335662 27.283873 9.375416 15.336531 34.086952 -3.845316 1 -24.878420 -12.140354 -0.638120 6.712182 -18.044057 -12.485812 -5.060765 -23.392410 -9.336210 6.583095 -2.530664 -3.626419 2 -25.711262 -16.540789 7.450853 4.941910 -18.273375 -13.062138 -7.082651 -17.443779 -8.103270 8.345905 -1.319908 -1.234682 3 27.837458 -2.436980 29.479857 -3.360867 14.997228 10.254915 10.530714 27.082219 9.254091 26.860616 29.592860 -2.926678 4 30.520663 -5.017300 24.798154 -4.668743 19.697230 12.570798 13.141632 31.598069 12.120745 16.478925 25.257392 -2.133821
	invalid_value_replacement=None,
In [102]:	<pre>from sk12onnx.common.data_types import FloatTensorType from sk12onnx import convert_sklearn input_types = dict([(x, FloatTensorType([None, 1])) for x in df.columns.values]) model_onnx = convert_sklearn(pipeline6, 'pipeline_project_onnx', initial_types=list(input_types.items ())) with open("projectpipeline.onnx", "wb") as f: f.write(model_onnx.SerializeToString()) MissingShapeCalculator</pre>
	<pre>5 input_types = dict([(x, FloatTensorType([None, 1])) for x in df.columns.values]) 6> 7 model_onnx = convert_sklearn(pipeline6, 'pipeline_project_onnx', initial_types=list(input_typ es.items())) 8 9 with open("projectpipeline.onnx", "wb") as f: ~\Anaconda3\lib\site-packages\skl2onnx\convert.py in convert_sklearn(model, name, initial_types, doc_string, target_opset, custom_conversion_functions, custom_shape_calculators, custom_parsers, options, dtype, intermediate) 132 133 # Infer variable shapes> 134 topology.compile() 135 136 # Convert our Topology object into ONNX. The outcome is an ONNX model.</pre>
	<pre>~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in compile(self) 842</pre>
	<pre>~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in infer_types(self)</pre>
In [105]:	<pre>by sklearn-onnx, you may raise an issue to https://github.com/onnx/sklearn-onnx/issues to get the converter implemented or even contribute to the project. If the model is a custom model, a new converter must be implemented. Examples can be found in the gallery. # Create final pipeline that doesn't include DataFrameMapper finalPipeline = PMMLPipeline([('scaler', StandardScaler()), ('pca', PCA(n_components=3)), ('cluster', KMeans(n_clusters=3))]) final_pipeline.fit(df, df['Class']) C:\Users\dokur\Anaconda3\lib\site-packages\sklearn\base.py:197: FutureWarning: From version 0.24, get</pre>
Out[105]:	_params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Pre viously it would return None. FutureWarning) Pipeline(memory=None,
In [107]:	<pre>from skl2onnx.common.data_types import FloatTensorType from skl2onnx import convert_sklearn input_types = dict([(x, FloatTensorType([None, 1])) for x in df.columns.values]) model_onnx = convert_sklearn(finalPipeline, 'pipeline_project_onnx', initial_types=list(input_types.it ems())) with open("projectpipeline.onnx", "wb") as f: f.write(model_onnx.SerializeToString())</pre>
	AttributeError (ipython-input-107-f65d03e78864> in <module> 4 input_types = dict([(x, FloatTensorType([None, 1])) for x in df.columns.values]) > 6 model_onnx = convert_sklearn(finalPipeline, 'pipeline_project_onnx', initial_types=list(input_types.items())) 8 with open("projectpipeline.onnx", "wb") as f: ~\Anaconda3\lib\site-packages\skl2onnx\convert.py in convert_sklearn(model, name, initial_types, doc_string, target_opset, custom_conversion_functions, custom_shape_calculators, custom_parsers, options, dtype, intermediate) 132 133 # Infer variable shapes</module>
	> 134 topology.compile() 135 136 # Convert our Topology object into ONNX. The outcome is an ONNX model. ~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in compile(self) 842 selfresolve_duplicates() 843 selffix_shapes() > 844 selfinfer_all_types() 845 selfcheck_structure() 846 ~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in _infer_all_types(self) 695 shape_calc(operator) 696 else: > 697 operator.infer types()
	<pre>698 699 def _resolve_duplicates(self): ~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in infer_types(self) 218</pre>
In [133]:	> 35
Out[133]:	pca_df = pd.DataFrame(data=pca_ds, columns=['PC1', 'PC2', 'PC3']) pca_df.head() PC1
Out[140]:	<pre>finalPipeline2 = PMMLPipeline([('cluster', KMeans(n_clusters=3))]) finalPipeline2.fit(pca_df, df['Class']) C:\Users\dokur\Anaconda3\lib\site-packages\sklearn\base.py:197: FutureWarning: From version 0.24, get params will raise an AttributeError if a parameter cannot be retrieved as an instance attribute. Pre viously it would return None. FutureWarning) PMMLPipeline(steps=[('cluster', KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,</pre>
In [142]:	<pre>from skl2onnx.common.data_types import FloatTensorType from skl2onnx import convert_sklearn input_types = dict([(x, FloatTensorType([None, 1])) for x in pca_df.columns.values]) model_onnx = convert_sklearn(finalPipeline2, 'pipeline_project_onnx', initial_types=list(input_types.items())) with open("projectpipeline.onnx", "wb") as f: f.write(model_onnx.SerializeToString()) RuntimeError</pre>
	> 6 model_onnx = convert_sklearn(finalPipeline2, 'pipeline_project_onnx', initial_types=list(inpu t_types.items()))
	<pre>~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in compile(self) 842</pre>
	<pre>~\Anaconda3\lib\site-packages\skl2onnx\common_topology.py in infer_types(self)</pre>
	Conclusion I tried to create an onnx file, but it kept popping error after error, so the best I can do is turn in this .ipynb. Anyway, for this project, I thought I had a solid plan for the data pre-processing section, but it seems like what I did was not enough. Even after removing over 12 features, the I kept overfitting the model. Maybe if I had more knowledge in feature selection techniques I would have been able to properly complete my objective. I thought for sure I was on the right track with clustering since the data looked as if it was heading in that direction, but perhaps I was wrong. If I ever return to this data file, I'll for sure try using other methods, like decision tree. I guess the original sample with the decision tree was meant to guide us in that direction, but like I said, I really beleived the data was pushing for clusters.
In []:	I have to admit though, I had just a tiny bit of fun. At first, it was very confusing and scary since I didn't know where to start or what the examples files were even doing. But after doing some bit of research and looking at other examples, I really felt as if I was able to understand what was going on. Or at least to some degree. Writing out my thought process also helped. References https://elitedatascience.com/dimensionality-reduction-algorithms#feature-selection https://stackoverflow.com/questions/17778394/list-highest-correlation-pairs-from-a-large-correlation-matrix-in-pandas https://blog.cambridgespark.com/how-to-determine-the-optimal-number-of-clusters-for-k-means-clustering-14f27070048f