

MPEG

DASH

Dynamic Adaptive Streaming over HTTP

목차

- 1) DASH 란?
- 2) 서비스 구조
- 3) MPD 란?
- 4) 상세 동작
- **5) HLS** 와비교
- 6) 구현 예시

1) DASH 란?

DASH는 HTTP 를 사용한 적응형 동적 스트리밍이다.

사용자가 자신이 원하는 품질로

[VOD 또는 라이브 스트리밍 서비스]를

이용받을수있도록하는프로토콜

1) DASH 란?

Adaptive HTTP Streaming 방식으로의 변화

1) DASH 란?

Web 표준 방식으로 접근성 향상

WANGEL

HTTP를 이용한 Dash Service

Dash Basic Service Flow

Dash Server 순서도

Dash Specific Service Flow

MPD 는 미디어 스트림의 메타 데이터 파일이다. (Media Presentation Description)


```
<?xml version="1.0" encoding="utf-8"?>
<MPD xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
                  xmlns="urn:mpeg:dash:schema:mpd:2011"
                 xmlns:xlink="http://www.w3.org/1999/xlink"
                 xsi:schemaLocation="urn:mpeg:DASH:schema:MPD:2011 http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-DASH_schema_1
                  profiles="urn:mpeg:dash:profile:isoff-live:2011"
                  type="dynamic"
                 minimumUpdatePeriod="PT500S"
                  availabilityStartTime="2022-03-13T23:57:24.755Z"
                 publishTime="2022-03-13T23:58:07.387Z"
                  timeShiftBufferDepth="PT19.9S"
                 maxSegmentDuration="PT4.0S"
                 minBufferTime="PT0.0S">
                  <Pre><Pre>rogramInformation>
                  </ProgramInformation>
                  <ServiceDescription id="0">
                                    <Latency target="3000"/>
                  </ServiceDescription>
                  <Period id="0" start="PT0.0S">
                                    <AdaptationSet id="0" contentType="audio" startWithSAP="1" segmentAlignment="true" bitstreamSwitching="true">
                                                      <Resync dT="23220" type="0"/>
                                                      <Representation id="0" mimeType="audio/mp4" codecs="mp4a.40.2" bandwidth="192000" audioSamplingRate="44100"</pre>
                                                                        <AudioChannelConfiguration schemeIdUri="urn:mpeg:dash:23003:3:audio_channel_configuration:2011" value</p>
                                                                        <ProducerReferenceTime id="0" inband="true" type="captured" wallClockTime="2022-03-13T23:57:24.755Z</pre>
                                                                                           <UTCTiming schemeIdUri="urn:mpeg:dash:utc:http-xsdate:2014" value="https://time.akamai.com/</pre>
                                                                        </ProducerReferenceTime>
                                                                         <Resync dT="23220" type="1"/>

    SegmentTemplate timescale="1000000" duration="4000000" availabilityTimeOffset="3.977" availabilityTimeOffset="3.977"
                                                                        </SegmentTemplate>
                                                      </Representation>
                                    </AdaptationSet>
                  </Period>
                  <UTCTiming schemeIdUr1="urn:mpeg:dash:utc:http-xsdate:2014" value="https://time.akama1.com/?iso"/>
 </MPD>
```


MPD 상위 계층

MPD 하위 계층: 비디오

Adaptation Set

미디어 스트림 종류 (비디오)

Representation

품질에 따른 미디어 정의 (코덱, 화질, 대역폭 등) (ex. Video: 640x320, 2M)

Representation

품질에 따른 미디어 정의 (화질, 대역폭 등) (ex. Video: 1280x720, 3M)

SegmentTemplate

미디어 스트림 정보 (Timescale, 재생 시간, 미디어 URL 등)

SegmentTimeline

미디어 세그먼트들에 대한 재생 시간 정보

WANGEL

MPD 하위 계층: 오디오

Adaptation Set

미디어 스트림 종류 (오디오)

Representation

품질에 따른 미디어 정의 (샘플링레이트, 대역폭 등) (ex. Audio: 44100, 128K)

SegmentTemplate

미디어 스트림 정보 (Timescale, 재생 시간, 미디어 URL 등)

SegmentTimeline

미디어 세그먼트들에 대한 재생 시간 정보

MPD 상위 계층의 핵심 필드 설명

MPD	profiles	- VOD 또는 Live 스트림에 해당하는 DASH Profile 을 정의 각 미디어 유형에 따라 MPD 정의에 필요한 필드에 대한 정보를 명시 > [urn:mpeg:dash:profile:isoff-live:2011] 프로파일이 주로 사용된다.		
	type	- 미디어 스트리밍 유형 > static: VOD > 세그먼트들에 대한 정보가 고정되어 있다. > dynamic: Live > 새로운 세그먼트들에 대한 정보가 계속해서 업데이트된다.		
	minimumUpdatePeriod	- 클라이언트가 MPD 를 업데이트 하기 위한 최소 시간 간격 을 의미		
	availabilityStartTime	- Dynamic type 일 때, MPD 타임라인의 영점 을 정의한다. 인코더에서 발생한 Wall clock 에 따른 redundancy 를 최대한으로 줄이기 위해, UTC Time (영국을 기준(UTC+0:00)으로 각 지역의 시차를 규정한 시간) 을 기준 으로, 인코더와 디코더와의 시간 기준을 맞추어서 미디어 스트림을 동기화하도록 하기 위한 UTC Time 정의		
	publishTime	- MPD 가 생성된 시각 을 정의. Wall clock 으로 정의 (즉, DASH 서버에서 MPD 를 생성한 후의 시각)		

MPD 하위 계층의 핵심 필드 설명

	timescale	- 미디어 세그먼트 재생 시간 간격 을 정의한다 해당 시간 간격 주기를 통해 클라이언트가 세그먼트를 재생한다.
Segment Template	duration	- 미디어 세그먼트 재생 시간 을 정의한다 클라이언트는 이 재생 시간까지 해당 미디어 세그먼트를 재생한다.
	availability Time Offset	- 클라이언트로 하여금 미리 다음 미디어 세그먼트를 다운받을 수 있는 시간 을 정의한다. - 보통 duration 보다 적은 시간으로 정의되고, preprocessing signal 역할을 한다.

MPD 하위 계층의 핵심 필드 설명

Segment Timeline	\$: 특정 미디어 세그먼트에 대한 타임라인 정의	t	 미디어 청크 시작 시간 (첫 번째 미디어 세그먼트의 상대적인 시작 시간) [availabilityStartTime] 시간에서 0 μS 이후부터 재생한다는 의미
		d	- [t] 시간에서 어느 시간(μS) 만큼 재생해야하는지에 대한 시간 정의 (미디어 세그먼트 하나당 재생 시간)
		r	- 동일한 [d] 시간을 갖는 미디어 세그먼트들이 존재하면, MPD Redundancy 를 줄이기 위해 명시된 중복된 S 필드 카운트

MPD 상위 계층의 핵심 필드 예시

```
<?xml version="1.0" encoding="utf-8"?>
<MPD
   profiles="urn:mpeg:dash:profile:isoff-live:2011"
  type="dynamic"
   minimumUpdatePeriod="PT500S"
   availabilityStartTime="2022-02-25T02:52:14.304Z"
   publishTime="2022-02-25T02:52:32.688Z"
```


MPD 하위 계층의 핵심 필드 예시 (SegmentTemplate)

MPD 하위 계층의 핵심 필드 예시 (SegmentTimeline)

```
<Representation id="0" mimeType="video/mp4" . . . >
   <SegmentTemplate . . . >
      <SegmentTimeline>
         <S t="0" d="76800" r="41" />
      <SegmentTimeline>
   </SegmentTemplate>
</Representation>
```


미디어 스트림과 MPD 가 생성된 시각을 모두 MPD 에 기록한다.

SegmentTemplate 에는 미디어 세그먼트에 대한 시간 정보가 명시되어 있다.

MPD 에 명시된 미디어 세그먼트 파일 정보와 시간 정보를 통해서 미디어 세그먼트를 재생한다.

SegmentTemplate 에는 미디어 세그먼트에 대한 시간 정보가 명시되어 있다.

MPD 에 명시된 미디어 세그먼트 파일 정보와 시간 정보를 통해서 미디어 세그먼트를 재생한다.

5) HLS 와 비교

구분	HLS	DASH
제조사	Apple	MPEG
호환성	제약 없음	MSE 사용 플랫폼만 사용 가능 (IOS 는 MSE 지원 안함)
통신 프로토콜	HTTP	HTTP
지원 코덱	비디오 : H.264, H.265 오디오 : AAC, Dolby	제약 없음
암호화	AES-128 (https://www.dacast.com/blog/hls-encryption-for-video/)	CENC (https://docs.unified-streaming.com/documentation/drm/common-encryption)
Low Latency HLS (LL-HLS) 고도화 with CMAF (Comon Media Application Format)		Low Latency DASH (LL-DASH) with CMAF

6) 구현 예시

[UDASH] 와 [URTMP_SERVER] 를 이용한 시뮬레이션

감사합니다.

[REFERENCE]

- 1. HLS vs DASH > https://meetup.toast.com/posts/131
- 2. HLS > https://yoooonghyun.gitbook.io/documents/multimedia/overview/hls
- 3. HLS > https://datatracker.ietf.org/doc/html/rfc8216
- 4. RTMP > https://cdmana.com/2021/04/20210429181340831F.html
- 5. RTMP > https://drive.google.com/file/d/oBx-jA7MdEVHIZ3dmblRoR3JkUTg/view? resourcekey=o-Cz7EXmSVJo1NR-a2893YJA
- 6. DASH > https://dgo87.tistory.com/85
- 7. DASH > https://mpeg.chiariglione.org/standards/mpeg-dash
- 8. DASH > https://bitmovin.com/dynamic-adaptive-streaming-http-mpeg-dash/
- 9. MSE > https://yethor.tistory.com/11