Задача 1. Колко решения има задачата?

1.1.
$$\begin{cases} y' = (y+1)e^{x^2-1} \\ y(0) = 1 \end{cases}$$
1.2.
$$\begin{cases} (y')^2 + xy' + y = 0 \\ y(1) = 1 \end{cases}$$
1.3.
$$\begin{cases} y'' + 2y' - 3y = 0 \\ y(0) = 3 \end{cases}$$
1.4.
$$\begin{cases} (y')^2 + xy' - y = 0 \\ y(2) = 1 \end{cases}$$
1.5.
$$\begin{cases} y'' + 9y = 0 \\ y(0) = 0, \ y'(\frac{\pi}{2}) = 0 \end{cases}$$
1.6.
$$\begin{cases} y'' + 9y = 0 \\ y(0) = 0, \ y'(\pi) = 0 \end{cases}$$

Решение:

1.1. Имаме линейно диференциално уравнение от първи ред с едно начално условие - задача на Коши. Следователно имаме единствено решение дефинирано там където са дефинирани коефициентите на уравнението, т.е. в цялото \mathbb{R} . За уравнението $y'=ye^{x^2-1}+e^{x^2-1}$ имаме, че $a(x)=b(x)=e^{x^2-1}$, които са непрекъснати в \mathbb{R} . $y(x)=e^{\int a(x)dx}\bigg(c+\int b(x)e^{-\int a(x)dx}\bigg)$. Имаме една степен на

свобода - това е произволната константа c и едно начално условие, от което ще намерим тази константа еднозначно. Решението ще е единствено.

1.2. Ще проверим каква точка е (1,1) за уравнението.

 $D(x,y) = x^2 - 4y \Rightarrow D(1,1) = -3 < 0$. Следователно в околност на тази точка няма как да разрешим уравнението относно y'. Нито едно решение не минава през тачи точка.

- 1.3. Имаме линейно уравнение с постоянни коефициенти. Характеристичния полином на уравнението е $P(\lambda)=\lambda^2+2\lambda-3$. Корените на $P(\lambda)=0$ са $\lambda_1=-3$ и $\lambda_1=1$. Следователно ФСР:= $\{e^{-3x},e^x\}$. Тогава $y(x)=c_1$. $e^{-3x}+c_2$. e^x . Т.е. имаме две степени на свобода произволните константи c_1 и c_2 и едно начално условие. Чрез него ще урпеем да изразим едната константа чрез другата и така ще останем с една степен на свобода. Следователно уравнението има безбройно много решения.
- 1.4. Аналогично на 1.2.. но за точката (2,1) и дескриминантата $D(x,y)=x^2+4y \Rightarrow D(2,1)=8>0$. Следователно задачата ще се сведе до две линейни уравнения от първи ред с едно условие, т.е. ще имаме точно две решения.
- 1.5. Задача на Щурм-Лиувил. Имаме два варианта:
- 9-ката е собствена стойност и задачата има безбройно много решения
- 9-ката не е собствена стойност и задачата има единствено нулевото решение Собствените стоиности имат вида

$$\lambda_k = \left(\frac{2k+1}{2L}\pi\right) \stackrel{L=\frac{\pi}{2}}{=} \left(2k+1\right)^2$$
, където $k \in \mathbb{N}_0$. $\lambda_1 = 9 \Rightarrow$ има безброино много решения.

1.6. Аналогично на 1.6. $\lambda_k = \left(\frac{2k+1}{2L}\pi\right) \stackrel{L=\pi}{=} \left(k+\frac{1}{2}\right)^2$. 9-ката няма как да бъде

представена в този вид, следователно няма да бъде от спектъра уравнението (от собствените стоиности) и ще имаме единствено нулевото решение.