# Implémentez un modèle de scoring

Nathalie MAVEL
Parcours Data Scientist – Projet 7

Soutenance: le vendredi 2022 à

Evaluateur:

# Rappel de la mission

- Mettre en oeuvre un outil de "scoring credit"
- ==> Calculer la probabilité qu'un client rembourse son crédit
- ==> Classifier les probabilités par un accord ou un refus



Etude réalisée à partir des données fournies par la société : <a href="https://www.kaggle.com/c/home-credit-default-risk/data">https://www.kaggle.com/c/home-credit-default-risk/data</a>

- **Dossier git :** Code EDA + modélisation Code Dashboard (streamlit) et de son déploiement (Heroku)
- Note méthodologique



## 1. Présentation des données

- 2. La mise en place de modélisations
- 2.1 Preprocessing
- 2.2 Evaluation
- 2.3 Sélection du modèle
- 3. Présentation du dashbaord
- 4. Conclusion

### 1. Présentation des données

10 fichiers CSV : 2 retenus, application\_train : analyse exploratoire des données, mise en place de la modélisation La target est présente

application\_test : utiliser pour la mise en place du dashboard

La target est absente

- > EDA: utilisations d'un notebook Kaggle (gold, le plus consulté)
  - Application\_train: 307511 individus et 122 colonnes
  - Id client unique
  - Cible très déséquilibrée
  - Transformations des variables catégorielles : label encoder et one hot encoder
  - Conversion de la variable Day\_birth en Age\_Client
  - Détection d'anomalies : Days employment : certains client ont été employé pdt 1000 ans Ajout d'une variable anomalies days of employement



### 1. Présentation des données

- > EDA: utilisations d'un notebook Kaggle (gold)
  - variable d'intérêt (présence de corrélation avec la cible) : ext\_1, ext\_2, ext\_3, DAYS\_BIRTH



### - Features engennerring:

Construction de 35 variables polynomiales en lien avec les variables d'intérêt.

Construction de 4 nouvelles variables métier :

CREDIT\_INCOME\_PERCENT : le pourcentage du montant du crédit par rapport au revenu du client.

ANNUITY\_INCOME\_PERCENT : le pourcentage de l'annuité du prêt par rapport au revenu du client.

CREDIT\_TERM : la durée du paiement en mois (l'annuité étant le montant mensuel dû).

DAYS\_EMPLOYED\_PERCENT: le pourcentage des jours d'emploi par rapport à l'âge du client.

Les modifications ont été réalisé en parallèle sur le fichier application\_train.csv et application\_test.csv

- calculer la probabilité qu'un client rembourse son crédit
- classifier les probabilité par un accord ou un refus

### 2.1 Pre processing

- Imputer les valeurs manquantes
- Transformer les boolens en intégrales,
- Centrer-réduire le jeu de données
- Diviser le jeu de données en 2 : train et test
- Équilibrer les données

Équilibrer les données ==> indispensable pour limiter le sur ou sous apprentissage du modèle Stratégie d' **undersampling** retenue : forte importance du jeu de données qui permet de le diminuer, temps de calcul diminué

==> 19860 individus dans chacune des 2 catégories.

- calculer la probabilité qu'un client rembourse son crédit
- classifier les probabilité par un accord ou un refus

### 2.1 modélisations

- > 3 modèles testés : Regression logistique, le Random forest CLassifier et le LitghGBM
- Grid search CV : sélection des meilleurs hyperparamètres en testant des paramètres aléatoirement (RandomizedSearchCV), Validé par une validation croisée basée sur le score Fbeta score=2
- Entrainement du modèle via .predict\_proba ==> valeur de probabilité
- > définir un seuil qui permet de classer les probabilités en 2 catégories (l'individu va rembourser, ou non)

==> Sélection du score beta F2 maximum. En effet, plus le score F2 est fort, plus les faux négatifs (un faux bon client) sont

faibles.



- calculer la probabilité qu'un client rembourse son crédit
- classifier les probabilité par un accord ou un refus

### 2.2 Evaluation des modèles Sur la partie non undersampler

### Matrice de confusion :





Logistic regression



Random forest

- calculer la probabilité qu'un client rembourse son crédit
- classifier les probabilité par un accord ou un refus

### 2.2 Evaluation des modèles

Matrice de confusion :



- le moins de faux négatifs et faux positifs

**LGBM** 

- Calculer la probabilité qu'un client rembourse son crédit
- Classifier les probabilités par un accord ou un refus

### 2.2 Evaluation des modèles

Courbe ROC :





### Tableau des résultats

Avec ajustement : LGBM présente le meilleur F2\_score

Comportement similaire entre les modèles, accuracy forte, précision plus faible que le recall.

|      | accuracy | precision | recall | f1_score | f2_score | f3_score |
|------|----------|-----------|--------|----------|----------|----------|
| LR   | 0.663    | 0.153     | 0.698  | 0.250    | 0.407    | 0.514    |
| RF   | 0.657    | 0.148     | 0.685  | 0.244    | 0.397    | 0.503    |
| LGBM | 0.660    | 0.158     | 0.738  | 0.260    | 0.425    | 0.539    |
|      |          |           |        |          |          |          |

### 3. Présentation du dashboard

- Dashboard réalisé avec Streamlit, déployé sur Heroku
- > MVP
- https://pretadepenser-may2022.herokuapp.com/



# 4. Conclusion et pistes

- ✓ Mettre en oeuvre un outil de "scoring credit"
- ==> calculer la probabilité qu'un client rembourse son crédit
- ==> classifier les probabilité par un accord ou un refus
- ✓ Mettre en œuvre un dashboard interactif à destination des chargés de clientèle
- ➤ Accorder plus de temps à l'analyse exploratoire
- Sélection des features à confirmer par des équipes métiers
- > Détailler encore plus les hyperparamètres
- Classification multiple
- ➤ Limites éthique et juridique
- D'autres technologies : Utilisation de deep Learning

