

INTRO TO CRYPTOGRAPHY

Traditional goal of cryptography: Secure communication via insecure channels.

Assignment Project Exam Help

https://tutorcs.com

Bob

Eve

listening to the channel

SOLUTION

Properties we need:

- Alice can compute E efficiently
- Eve doesn't learn $m{m}$ from $m{c}$ efficiently
- Pob can compute $m{D}$ efficiently

PRIVATE-KEY CRYPTOGRAPHY

- Solution before 1980:

 - Message *m* viewed as a binary string
 Assignment Project Exam Help
 Alice and Bob share a secret key *K* (as long as *m*)
 - To encrypt, Alice sends bitwise hope stripestores.com
 - Example:

WeChat1 toutbods

K = 101100101

c = 110110000

- ullet To decrypt, Bob computes bitwise XOR of K and c (You should check that this gets you back m.)
- Problems:
 - Key distribution: need keys as long as messages
 - Keys get used up after a transmission, need different keys for every pair of communicators

PUBLIC-KEY CRYPTOGRAPHY

- Bob publishes his public key!
- Alice encrypts message using this key.
- Eve cannot decrypt efficiently Assignment Project Exam Heist
- But Bob knows a private and secret key and can!
- Mathematically: Bob has a public key P_B and a WeChat: cstutors secret key S_{B}
 - Bob publishes P_{R}
 - Alice encrypts m as $c = E(m, P_B)$
 - Bob decrypts as $m = D(c, S_R)$
- Requires that Eve cannot decrypt C

PUBLIC-KEY CRYPTOGRAPHY (CONTINUED)

ullet Pairs of functions (E,D) that work in the Bob's Bob's private key above way are called one Avayi traptoent Project Exam Heist functions: $\bullet \ \, \text{One-way: easy to compute } E \ \, \frac{https://tutorcs.\text{$^{\text{time right}}$}}{\text{and hard to invert}}$ Alice data • Trapdoor: knowing a secret maker it cstutoffs invert Alice's Alice's encrypted encrypted data for data for Bob

PUBLIC-KEY CRYPTOGRAPHY - BENEFITS

- Like using a phone book to send someone a secret message!
- Essential for eCommerce and Acceptant projecte want to perpunicate securely with strangers.
- Opens up possibilities for other secure transcription of the secure transcription of
 - Signatures on documents WeChat: cstutorcs
 - Several parties jointly computing a function without learning each other's inputs

RSA CRYPTOSYSTEM

ullet Bob picks two primes p and q. N=pq

• Bob picks an encryption exponent e and publishes (e,N) as his public key. Assignment Project Example 1.

• Quantity (p-1)(q-1) is important and denoted $\varphi(N)$. It is called the "Euler Library / tutorcs.co Function."

• Bob chooses e such that $\gcd(e, \varphi(N)) = 1$ cstutores

ullet Using extended \gcd , Bob finds decryption exponent d such that

$$de = 1 \mod \varphi(N)$$

• (d, p, q) is Bob's private key

Shamir, Rivest, and Adleman

