MANDATORY ASSIGNMENT - MAT-INF4300

JOHAN ÅMDAL ELIASSEN

1. Problem 1

a. Assume $u \in C^3(\mathbb{R}^n \times (0, \infty))$ solves $u_t - \Delta u = 0$. Let $u_{\lambda}(x, t) = u(\lambda x, \lambda^2 t), \lambda \in \mathbb{R}$.

Then $(u_{\lambda})_t(x,t) = \lambda^2 u_t(\lambda x, \lambda^2 x)$, and $(u_{\lambda})_{x_i,x_i}(x,t) = \lambda^2 u_{x_i,x_i}(\lambda x, \lambda^2 t)$, and so

$$(1.1) \qquad ((u_{\lambda})_t - \Delta u_{\lambda})(x,t) = \lambda^2 (u_t(\lambda x, \lambda^2 t) - \Delta u(\lambda x, \lambda^2 t)) = 0.$$

b. Let $v(x,t) = x \cdot Du(x,t) + 2tu_t(x,t)$.

(I am assuming now that u is three times continuously differentiable, not just two).

Differentiating $(x, t, \lambda) \mapsto u_{\lambda}(x, t)$ with regards to λ gives $x \cdot Du(\lambda x, \lambda^2 t) + 2t\lambda u(\lambda x, \lambda^2 t) =: w(x, t, \lambda)$; we then have v(x, t) = w(x, t, 1).

Since $(x, t, \lambda) \mapsto u_{\lambda}(x, t)$ solves the heat equation for all $\lambda \in \mathbb{R}$, so does $w(x, t, \lambda)$ for all $\lambda \in \mathbb{R}$, and in particular, for $\lambda = 1$. Thus v solves the heat equation.

Slightly more written out, continuity of the derivatives of u_{λ} allows us to interchange the order of differentiation, and so,

$$v_t - \Delta v = \left(\left(\frac{\partial u_{\lambda}}{\partial \lambda} \right)_t - \Delta \left(\frac{\partial u_{\lambda}}{\partial \lambda} \right) \right) \Big|_{\lambda=1} = \left. \frac{\partial}{\partial \lambda} \left((u_{\lambda})_t - \Delta u_{\lambda} \right) \right|_{\lambda=1} = 0.$$

c. Let $\eta: \mathbb{R} \to \mathbb{R}$ be convex and twice continuously differentiable, let u solve the heat equation, and set $v(x,t) := \eta(u)$. Then

(1.3)
$$v_t = \frac{\partial u}{\partial t} \eta'(u) = u_t \eta'(u),$$

(1.4)
$$v_{x_i} = \frac{\partial u}{\partial x_i} \eta'(u) = u_{x_i} \eta'(u),$$

(1.5)
$$v_{x_i x_i} = u_{x_i}^2 \eta''(u) + u_{x_i x_i} \eta'(u).$$

Hence $v_t - \Delta v = \eta'(u)(u_t - \Delta u) - \eta''(u)|Du|^2 = -\eta''(u)|Du|^2 \le 0$ because $\eta''(u) \ge 0$.

2. Problem 2

Problem:

(*)
$$\begin{cases} u_t - \Delta u + cu = f, & (x,t) \in \mathbb{R}^n \times (0,\infty), \\ u(x,0) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$

for $c \in \mathbb{R}$, $f \in C_c^{2,1}(\mathbb{R}^n \times [0,\infty))$, $u_0 \in C_c(\mathbb{R}^n)$.

a. Assume there exists a v satisfying

(**)
$$\begin{cases} v_t - \Delta v = e^{ct} f, & (x,t) \in \mathbb{R}^n \times (0,\infty), \\ v(x,0) = u_0(x), & x \in \mathbb{R}^n, \end{cases}$$

Then for $w := e^{-ct}v$ we have

(2.1)
$$w_t = e^{-ct}(-cv + v_t),$$

$$(2.2) \Delta w = e^{-ct} \Delta v.$$

And so

$$(2.3) w_t - \Delta w + cw = e^{-ct}(-cv + v_t - \Delta v + cv) = e^{-ct}(v_t - \Delta v) = f,$$

so w satisfies the first half of (*).

A solution of (**) is

(2.4)
$$v(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t)u_0(x) dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)e^{cs}f(y,s) ds$$
.

This is valid because f and u_0 have compact support.

Hence, an explicit formula for u satisfying (*) is

(2.5)

$$u(x,t) = e^{-ct} \left(\int_{\mathbb{R}^n} \Phi(x-y,t) u_0(x) \, \mathrm{d}y + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) e^{cs} f(y,s) \, \mathrm{d}s \right).$$

It remains to verify:

- (1) that u really is in $C^{2,1}(\mathbb{R}^n \times (0,\infty))$,
- (2) that u really does satisfy $u_t \Delta u + cu = f$, and
- (3) that $u(x,t) \to u_0(x_0)$ whenever $(x,t) \to (x_0,0)$.
- (1). Since $v \in C^{2,1}(\mathbb{R}^n \times (0,\infty))$ and u is a product of a smooth function with v, it follows that u is also a member of $C^{2,1}(\mathbb{R}^n \times (0,\infty))$.
- (2). Write u as

$$u(x,t) = e^{-ct} \left(\int_{\mathbb{R}^n} \Phi(x - y, t) u_0(x) \, dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x - y, t - s) e^{cs} f(y, s) \, ds \right)$$

=: $e^{-ct} (I(x, t) + J(x, t))$.

Then, from Theorem 1 on pp. 47 in Evans, I satisfies the homogenous heat equation; additionally, $I(x,t) \to u_0(x_0)$ as $x \to x_0$, $t \downarrow 0$ for $x_0 \in \mathbb{R}^n$. Likewise, from Theorem 2 on pp. 50 in Evans, J satisfies $J_t - \Delta J = e^{ct} f$. Additionally, $J(x,t) \to 0$ as $x \to x_0$, $t \downarrow 0$ for $x_0 \in \mathbb{R}^n$.

I omit any direct verification, as the calculations involved would necessarily just mirror those in the book.

Hence, we confirm

$$u_{t} = e^{-ct}(-c(I+J) + (I_{t}+J_{t})),$$

$$\Delta u = e^{-ct}(\Delta I + \Delta J),$$

$$u_{t} - \Delta u + cu = e^{-ct}(-c(I+J) + (I_{t}-\Delta I) + (J_{t}-\Delta J) + c(I+J)) = f.$$

(3). Again writing $u = e^{-ct}(I+J)$, for any $\epsilon > 0$, we may pick (x,t) with t > 0 s.t. $|I(x,t)| < \epsilon/3$ and $|J(x,t) - u_0(x)| < \epsilon/3$ and finally so that $1 - e^{-ct} < \epsilon/3/(|u_0(x_0)| + \epsilon/3)$.

$$|u(x,t) - u_0(x)| = |e^{-ct}I(x,t) + (e^{-ct}J(x,t) - u_0(x_0)|$$

$$\leq |e^{-ct}I(x,t) - u_0(x_0)| + e^{-ct}|J(x,t)|.$$

Since $e^{-ct} = 1 - \delta$ for some $\delta > 0$, this can be written

$$(\cdots) = |(1 - \delta)I(x, t) - u_0(x_0)| + e^{-ct}|J(x, t)|$$

$$\leq |I(x, t) - u_0(x_0)| + \delta|I(x, t)| + |J(x, t)|.$$

Now by choice of (x, t), $\delta = 1 - e^{-ct} < \epsilon/3/(|u_0(x_0)| + \epsilon/3)$, and $|I(x, t)| < |u_0(x, t)| + \epsilon/3$). Thus, finally,

$$<\epsilon/3+\delta(|u_0(x_0)|+\epsilon/3)+\epsilon/3<\epsilon/3+\epsilon/3+\epsilon/3=\epsilon$$
 .

b. Note I failed to get the energy bound that was asked for, but I stand by my computations, and the result I got is more than sufficient.

Assume $f \equiv 0$, and that $u \to 0$ as $x \to \infty$. Now proceeding in the reverse direction, let $v := e^{ct}u$. Then as seen, v satisfies the homogenous heat equation, and so it is smooth; hence u is also smooth, and we can differentiate under the integral.

Define the energy E(t) by

(2.6)
$$E(t) = ||u(\cdot,t)||_{L^2(\mathbb{R}^n)} = \int_{\mathbb{R}^n} u(x,t)^2 \, \mathrm{d}x.$$

Then

(2.7)
$$E'(t) = \int_{\mathbb{R}^n} 2uu_t \, \mathrm{d}x = \int_{\mathbb{R}^n} -2cu^2 \, \mathrm{d}x + \int_{\mathbb{R}^n} u\Delta t \, \mathrm{d}x,$$

whence, integrating the last term by parts, we otbain

$$(2.8) (...) = \int_{\mathbb{R}^n} -2cu^2 dx - \int_{\mathbb{R}^n} |Du|^2 dx = -2cE(t) - \int_{\mathbb{R}^n} |Du|^2 dx \le -2cE(t).$$

This implies that $2cE(t) + E'(t) \leq 0$, and so, by Grönwall's inequality, $E(t) \leq e^{-2ct} E(0) = e^{-2ct} ||u_0||_{L^2(\mathbb{R}^n)}$.

Assuming we have two solutions u_1, u_2 of (*) satisfying $u \to 0$ as $|x| \to \infty$, we let $w := u_1 - u_2$, $E_w := ||w||_{L^2(\mathbb{R}^n)}$. Then w satisfies

(2.9)
$$\begin{cases} w(x,t) = 0, & (x,t) \in \mathbb{R}^n \times (0,\infty), \\ w(x,0) = 0, & x \in \mathbb{R}^n. \end{cases}$$

As has been shown, this implies $0 \le E_w(t) \le e^{-2ct} E_w(0) = 0$, so $w \equiv 0$; hence $u_1 \equiv u_2$, as was to be shown.

3. Problem 3

(***)
$$\begin{cases} u_t - \Delta u = -u^3, & (x,t) \in \Omega \times (0,\infty), \\ u(x,) = u_0(x), & x \in \mathbb{R}^n, \\ u(x,t) = 0, & (x,t) \in \partial\Omega \times (0,\infty). \end{cases}$$

with $\Omega \subset \mathbb{R}^n$ is open and bounded, u_0 continuous.

Assume there exists a twice continuously differentiable u satisfying (***). Then as before, let

(3.1)
$$E(t) := ||u(\cdot, t)||_{L^2(\Omega)} = \int_{\Omega} u^2 \, \mathrm{d}x.$$

Justifying that I can differentiate under the integral sign is a bit finicky: let $v := u^2$ for simplicity of notation. Then v_t exists on Ω and is bounded wrt x, $||v_t(\cdot,t)||_{L^{\infty}(\Omega)} < \infty$. Fix $t \in (0,\infty)$, and $\epsilon > 0$ s.t. $t - \epsilon > 0$. Let $M = ||v||_{L^{\infty}(\Omega \times (t - \epsilon, t + \epsilon)} < \infty$. Then the function g(x) = M is summable, and dominates v for all $(x,t) \in \Omega \times (t - \epsilon, t + \epsilon)$.

Take some sequence $\{t_n\}_{n\in\mathbb{N}}$ s.t. $t_n\to t$ and $|t_n-t|<\epsilon$. Then for $n\in\mathbb{N}$, by the mean value theorem,

(3.2)
$$\frac{v(x,t_n) - v(x,t)}{t_n - t} = \frac{\partial v(x,\zeta_n)}{\partial t} \le M,$$

for some $\zeta_n \in (t_n, t)$.

Thus the sequence of functions $\{w_n\}_{n\in\mathbb{N}}:=\frac{v(x,t_n)-v(x,t)}{t_n-t}$ is dominated by the summable function g(x), and so by the Dominated Convergence Theorem,

(3.3)
$$\lim_{n \to \infty} \int_{\Omega} w_n(x,t) dx = \int_{\Omega} \lim_{n \to \infty} w_n(x,t) dx = \int_{\Omega} v_t(x,t) dx.$$

Since this holds for any such sequence, for any $t \in (0, \infty)$, we are free to differentiate $v = u^2$ under the integral sign.

Phew. Now, let's finally do that.

$$(3.4) \quad E'(t) = \int_{\Omega} 2uu_t \, \mathrm{d}x = \int_{\Omega} 2u(\Delta u - u^3) \, \mathrm{d}x = \int_{\Omega} 2u\Delta u \, \mathrm{d}x - \int_{\Omega} 2u^4 \, \mathrm{d}x .$$

Now integrate the first by parts and use that $u \equiv 0$ on $\partial\Omega$ to obtain

(3.5)
$$(\cdots) = -\int_{\Omega} |Du|^2 + 2u^4 \, \mathrm{d}x \le 0,.$$

Hence E(t) is a nonincreasing function, and so $E(t) \leq E(0) = ||u_0||_{L^2(\Omega)}$. \square

4. Problem 4

Let $\Omega \subset \mathbb{R}^n$ be bounded and open. Then the task is to show that the Hölder space $C^{0,\gamma}(\Omega)$ with exponent $\gamma \in [0,1)$ is a Banach space.

The space is equipped with the norm $||\cdot||_{C^{0,\gamma}(\overline{\Omega})}$ given by

First, I verify that the γ 'th Hölder seminorm is indeed a seminorm—then it follows that the $\gamma'th$ Hölder norm is a norm.

The two properties

 $[u]_{C^{0,\gamma}(\overline{\Omega})} \geq 0 \text{ and } [\lambda u]_{C^{0,\gamma}(\overline{\Omega})} = |\lambda|[u]_{C^{0,\gamma}(\overline{\Omega})} \text{ are trivial}.$

For the triangle inequality, we have

$$(4.2) \qquad [u+v]_{C^{0,\gamma}(\overline{\Omega})} = \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y}} \left\{ \left| \frac{u(x) - u(y)}{|x-y|^{\gamma}} + \frac{v(x) - v(y)}{|x-y|^{\gamma}} \right| \right\},$$

but since

$$(4.3) \qquad \left| \frac{u(x) - u(y)}{|x - y|^{\gamma}} + \frac{v(x) - v(y)}{|x - y|^{\gamma}} \right| \le \frac{|u(x) - u(y)|}{|x - y|^{\gamma}} + \frac{|v(x) - v(y)|}{|x - y|^{\gamma}}$$

for all $x, y \in \overline{\Omega}, x \neq y$, the same goes for its supremum.

Hence $[\cdot]_{C^{0,\gamma}(\overline{\Omega})}$ is a seminorm as was to be shown.

Now, let $\{u_n\}_{n\in\mathbb{N}}\subset C^{0,\gamma}$ be a Cauchy sequence. Then necessarily it is also a Cauchy sequence in the supremum norm $||\cdot||_{C(\overline{\Omega})}$. Since $(C(\overline{\Omega}), ||\cdot||_{C(\overline{\Omega})})$ is complete, there then exists a continuous u s.t. $u_n \to u$ in the supremum norm.

Choose $N \in \mathbb{N}$ s.t. $||u-u_n||_{C(\overline{\Omega})} < \epsilon/2$ and $[u_n-u_m]_{C^{0,\gamma}(\overline{\Omega})} < \epsilon/2$ for all $n, m \in \mathbb{N}$. Then for all $x, y \in \Omega$, $x \neq y$,

$$\left| \frac{u_m(x) - u_m(y) + u_n(y) - u_n(x)}{|x - y|^{\gamma}} \right| < \epsilon/2,$$

and so because $u_m \to u$ pointwise,

$$\left| \frac{u(x) - u(y) + u_n(y) - u_n(x)}{|x - y|^{\gamma}} \right| = \lim_{m \to \infty} \left| \frac{u_m(x) - u_m(y) + u_n(y) - u_n(x)}{|x - y|^{\gamma}} \right| < \epsilon/2,$$

since the above holds for all $m \geq N$. Hence $[u - u_n]_{C^{0,\gamma}(\overline{\Omega})} \leq \epsilon/2$, and so we have $||u - u_n||_{C^{0,\gamma}(\overline{\Omega})} < \epsilon$.

It remains to show that $||u||_{C^{0,\gamma}(\overline{\Omega})} < \infty$. But $||u||_{C^{(\overline{\Omega})}} < \infty$, and

$$(4.6) \ [u]_{C^{0,\gamma}(\overline{\Omega})} = [u - u_n + u_n]_{C^{0,\gamma}(\overline{\Omega})} \le [u - u_n]_{C^{0,\gamma}(\overline{\Omega})} + [u_n]_{C^{0,\gamma}(\overline{\Omega})} < \infty,$$

for some u_n satisfying $[u-u_n]_{C^{0,\gamma}(\overline{\Omega})} < \infty$.

This completes the proof.

5. Problem 5

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with a C^1 boundary. Let V strictly contain Ω .

The task is to show that there exists a bounded linear operator

$$(5.1) E: W^{1,\infty}(\Omega) \to W^{1,\infty}(\mathbb{R}^n)$$

satisfying, for all $w \in W^{1,\infty}(\Omega)$

- (1) Eu = u for almost all $x \in \Omega$.
- (2) $\operatorname{spt}(Eu) \subset V$,
- (3) $||Eu||_{W^{1,\infty}(\mathbb{R}^n)} \leq C||u||_{W^{1,\infty}(\Omega)}$, for some C not depending on u.

Note I believe for the case $p = \infty$, the procedure outlined in Evans for $u \in C^1(\Omega)$ (pp 268-270) will more or less hold directly, so I will roughly follow the book. Where I feel it is obvious, I will then simply refer to the book for the sake of brevity.

Now, let $u \in W^{1,\infty}$, and as in the book, assume $\partial\Omega$ is flat near x_0 , lying in the plane $x_n = 0$.

Then there exists an open ball $B(x_0, r)$, which I split into

$$B^{+} := B \cap \{x_n \ge 0\} \subset \overline{\Omega},$$

$$B^{-} := B \cap \{x_n < 0\} \subset R^n \setminus \overline{\Omega}.$$

Set \overline{u} to be

(5.2)

$$\overline{u}(x) = \begin{cases} u(x), & x \in B^+, \\ -3u(x_1, x_2, \dots, x_{n-1}, -x_n) + 4u(x_1, x_2, \dots, x_{n-1}, -\frac{x_n}{2}), & x \in B^-. \end{cases}$$

Moreover, define $\{v_j\}_{j=1}^n$ to be

(5.3)

$$v_{j}(x) = \begin{cases} u_{x_{j}}(x), & x \in B^{+}, \\ 3u_{x_{j}}(x_{1}, x_{2}, \dots, x_{n-1}, -x_{n}) + 4u_{x_{j}}(x_{1}, x_{2}, \dots, x_{n-1}, -\frac{x_{n}}{2}), & x \in B^{-}, j \neq n, \\ 3u_{x_{n}}(x_{1}, x_{2}, \dots, x_{n-1}, -x_{n}) - 2u_{x_{n}}(x_{1}, x_{2}, \dots, x_{n-1}, -\frac{x_{n}}{2}), & x \in B^{-}, j \neq n, \end{cases}$$

for $j=1,\dots,n$. Then the next step is to verify that v_j is a weak derivative of \overline{u} in B. Let $\phi \in C_c^{\infty}(B)$. For ease of notation, let $x'=x_1,x_2,\dots,x_{n-1}$. Then for j=n,

$$\int_{B} \phi_{x_n} \overline{u} dx = \int_{B^+} \phi_{x_n} \overline{u} dx + \int_{B^-} \phi_{x_n} \overline{u} dx$$

$$= \int_{B^+} \phi_{x_n} u dx$$

$$+ \int_{B^+} \phi_{x_n} (x', -x_n) - 3u(x', x_n) + 4u(x', \frac{x_n}{2}) dx.$$

 $^{^1{\}rm The~text~says}$ "V strictly larger than Ω "–this is the only interpretation I can make sense of.

It is now safe to integrate by parts. Obtain

$$(\cdots) = \int_{x_n=0}^{\infty} \phi u \, Ds(x) - \int_{B^+} \phi u_{x_n} \, dx$$

$$+ \int_{x_n=0}^{\infty} \phi(-3u + 4u) \, Ds(x) - \int_{B^+} \phi(x', -x_n) (3u_{x_n}(x', x_n) + 2u_{x_n}(x', \frac{x_n}{2})) \, dx$$

$$= -\int_{B^+} \phi u_{x_n} \, dx - \int_{B^-} \phi(3u_{x_n}(x', -x_n) - 2u_{x_n}(x', \frac{-x_n}{2})) \, dx$$

$$= \int_{B} \phi v \, dx \, .$$

The cases $1 \leq j \leq n$ are similar and omitted. Hence, for any multiindex α with $|\alpha| = 1$, letting $D^{\alpha}u = v_{\alpha}$, we have $\int_{B} D^{\alpha}\phi \, \overline{u} \, \mathrm{d}x = \int_{B} D^{\alpha}\overline{u} \, \phi \, \mathrm{d}x$. As in the book, it is clear that $||\overline{u}B||_{C^{0,\gamma}(\overline{S})}C||u||_{C^{0,\gamma}(\overline{B^{+}})}$.

The rest of the proof now goes exactly as in the book, so the esteemed reader may skip the rest: if $\partial\Omega$ is not flat near x_0 , use a C^1 homeomorphism to straighten it out, then exploit compactness of $\partial\Omega$ to cover it with a finite number, say N, of open sets W_i in which to obtain extensions u_i of u. Let $u_0 = u$, choose W_0 such that $\bigcup_{i=0}^N W_i = \Omega$, and let $\{\zeta_i\}_{i=0}^N$ form an associated partition of unity. Finally, let $v = \sum_{i=0}^N \zeta_i u_i$. Then $||v||_{C^{0,\gamma}(\overline{\Omega})} \leq C||u||_{C^{0,\gamma}(\overline{\Omega})}$ for some C > 0, and we may define E as the linear map mapping u to v.

6. Problem 6

Let $u: \mathbb{R}^3 \to \mathbb{R}$ be given by

(6.1)
$$u(x) := |x - x_0|^{\alpha}, \qquad x \in B(x_0; 1) =: \Omega.$$

for some $\alpha > 0$. For $x \neq 0$, we have $u_{x_i} = -\alpha x_i |x - x_0|^{-\alpha - 2}$, and so

(6.2)
$$|Du| = |\alpha||x - x_0|^{-\alpha - 1}.$$

For the notion of a weak derivative to make sense, we require that $\int_{\Omega} \phi_{x_i} u dx = \int_{\Omega} u_{x_i} \phi : dx$ for a test function ϕ , j = 1, 2, 3. Let $0 < \epsilon < 1$, and compute

(6.3)
$$\int_{\Omega \setminus B(x_0, \epsilon)} \phi_{x_i} u \, dx = - \int_{\Omega \setminus B(x_0, \epsilon)} \phi u_{x_i} \, dx + \int_{\partial B(x_0, \epsilon)} \phi u \nu^i m box dS(x) ,$$

 ν denoting the inward pointing unit normal. We have

(6.4)
$$\left| \int_{\partial B(x_0,\epsilon)} \phi u \nu^i dS(x) \right| \le ||\phi||_{L^{\infty}(\Omega)} \int_{\partial B(x_0,\epsilon)} \epsilon^{-\alpha} dS(x) \le C \epsilon^{2-\alpha} \to 0$$

as $\epsilon \to 0$ so long as $\alpha < 2$.

For a bound on $||Du||_{W^{1,2}(\Omega)}$, we have

(6.5)
$$\int_{\Omega} |Du|^2 dx = \alpha^2 \int_{\Omega} |x - x_0|^{-2\alpha - 2} dx = \alpha^2 4\pi \int_{0}^{1} r^{-2\alpha} dr = \alpha^2 4\pi \frac{1}{1 - 2\alpha}$$

which is finite iff $\alpha < 1/2$. This is consistent with the result in the book, pp. 260.