NOIP 模拟赛

时间: 2019 年 8 月 2 日 08:30 ~ 12:00

题目名称	树上路径	泳池	空之轨迹
题目类型	传统型	传统型	传统型
目录	phantasm	skylines	kiseki
可执行文件名	phantasm	skylines	kiseki
输入文件名	phantasm.in	skylines.in	kiseki.in
输出文件名	phantasm.out	skylines.out	kiseki.out
每个测试点时限	2.5 秒	1.0 秒	1.0 秒
内存限制	256 MB	256 MB	256 MiB
子任务数目	20	10	20
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	phantasm.cpp	skylines.cpp	kiseki.cpp
对于 C 语言	phantasm.c	skylines.c	kiseki.c
对于 Pascal 语言	phantasm.pas	skylines.pas	kiseki.pas

编译选项

对于 C++ 语言	-lm
对于 C 语言	-lm
对于 Pascal 语言	

树上路径 (phantasm)

【题目背景】

Akari 是一个普通的初中生。

【题目描述】

Akari 的学校的校门前生长着一排 n 棵树,从西向东依次编号为 $1 \sim n$ 。相邻两棵树间的距离都是 1。

Akari 上课的教学楼恰好在树 1 旁,所以每个课间,Akari 都很想走出教室,上树活动。Akari 会依次经过 m 棵树,从树 1 一路向东跳到树 n。临近上课时,Akari 会再次上树,经过 m 棵树从树 n 一路向西跳到树 1 ,准备上课。由于 Akari 睡眠很充足,Akari 每次跳跃至少会移动 k 的距离,因此 Akari 在上树前需要合理规划她的跳跃路线。我们称每次上树过程中 Akari 跳过的全部 m 棵树(包含树 1 和树 n)的集合为一条树上路径。

Akari 喜欢按不同的顺序观察各种树木,因此她每次上树时选择的树上路径不会与之前选择过的重复。这意味着,Akari 不会选择之前的课间选过的树上路径,且在从树n 跳回树1 时,也不会沿这次跳到树n 的树上路径原路返回。

如果一次课间开始时,Akari 找不到符合条件的树上路径,那么她从此会放弃上树活动,开始专心学习。如果一次课间即将即将结束时,Akari 还在树n 且找不到符合条件的树上路径回到树1,她就会十分沮丧,选择逃课。

请你帮助 Akari 判断, 她是否会在某个课间选择逃课。

【输入格式】

从文件 phantasm.in 中读入数据。

每个测试点可能包含多组数据。第一行一个正整数 T,表示数据组数。

每组数据包括一行三个正整数 n, m, k, 含义见题目描述。

【输出格式】

输出到文件 phantasm.out 中。

对于每组数据,输出一行一个字符串。如果 Akari 会逃课,输出 Yes ,否则输出 No 。 请注意输出字符串的大小写。

【样例 1 输入】

3

10 3 2

5 3 1

15 5 3

【样例 1 输出】

No

Yes

No

【样例1解释】

第一组数据中,除了起点和终点外,合法的树上路径只能经过 3,4,5,6,7,8 这 6 棵树,所以合法的树上路径只有 6 种,经过 3 个课间后 Akari 就会停止上树活动。

第二组数据中, 合法的树上路径有 3 种, Akari 会在第 2 个课间结束时逃课。

第三组数据中,合法的树上路径有10种。

【样例 2 输入】

4

15 4 3

15 4 4

15 5 3

16 3 7

【样例 2 输出】

Yes

No

No

No

【样例 3】

见选手目录下的 phantasm/phantasm3.in 与 phantasm/phantasm3.ans。

【子任务】

测试点	n	m	k	T
1	≤ 10	≤ 10	≤ 10	≤ 10
2	. 16	~ 16	- 16	
3	≤ 16	≤ 16	≤ 16	
4				$\leq 10^2$
5	≤ 18	≤ 18	≤ 18	
6				
7		≤ 5,000	≤ 1	
8	≤ 5,000	≤ 3	≤ 5,000	$\leq 5,000$
9		≤ 5,000	≤ 2	
10	≤ 200		< 200	≤ 200
11		< 200		
12		≤ 200	≤ 200	
13				< 5.000
14				≤ 5,000
15				
16	≤ 5,000	≤ 5,000	≤ 5,000	
17				
18				$\leq 2 \times 10^6$
19	≤ 10 ⁹	≤ 10 ⁹	. 100	
20			≤ 10 ⁹	

对于所有数据, $2 \le n, m \le 10^9, 1 \le k \le 10^9, 0 \le T \le 2 \times 10^6$,保证第一个课间 Akari 从树 1 跳到树 n 的符合条件的树上路径存在。

【提示】

本题的输入数据可能很大,请避免使用过于缓慢的读入方式。

泳池 (skylines)

【题目背景】

小 A 是个爱玩的女孩子。

暑假终于到了,小 A 决定请她的朋友们来游泳,她打算先在她家的私人海滩外圈一块长方形的海域作为游泳场。然而大海里有着各种各样的危险,有些地方水太深,有些地方有带毒的水母出没。她想让圈出来的这一块海域都是安全的。

【题目描述】

小 A 的城市里有 n 座工厂,编号分别为 $1 \sim n$ 。工厂间连有 n-1 条**双向**管道,形成一个无向**连通**图,其中每条管道都有一定的长度,连接在两座不同的工厂间。

每座工厂都装有废水处理设施,工厂i的蓄水量记为 c_i 。由于工厂规模有限,工厂产生的废水必须经由管道输送到**另**一座工厂进行处理。

工厂 u 将废水输送到工厂 v 处理时,所需的**运输成本**等于无向图中 u,v 间最短路径的长度,并且会产生 c_u – c_v 的**额外成本**(可能为负)。总成本等于运输成本与额外成本的和。

为了降低污染,在接下来的 q 天内,每一天只有一座工厂会产生废水。你需要确定这座工厂将废水输送到哪一座工厂进行处理,可使得总成本最小。由于选择可能不唯一,你只需输出最小的总成本。

【输入格式】

从文件 skylines.in 中读入数据。

第一行一个正整数 n。

第二行 n 个正整数 c_i 。

下接 n-1 行,每行三个正整数 u,v,w,表示一条双向管道两端工厂的编号及长度。

第 n+2 行一个正整数 q。

下接 q 行,每行一个正整数 x,表示这一天进行生产的工厂的编号。

【输出格式】

输出到文件 skylines.out 中。

输出 q 行,每行一个整数,表示这一天总成本的最小值。

【样例 1 输入】

5

7 7 6 9 9

2 5 5

2 3 1

4 1 1

1 2 2

- 4
- 2
- 5
- 3
- 4

【样例1输出】

- 1
- 7
- 0
- 3

【样例1解释】

- 第1天, 工厂2输送到工厂4是一种最优方案, 成本为3+(-2)=1。
- 第2天, 工厂5输送到工厂2是一种最优方案, 成本为5+2=7。
- 第 3 天, 工厂 3 输送到工厂 2 是一种最优方案, 成本为 1 + (-1) = 0。
- 第 4 天,工厂 4 输送到工厂 1 是一种最优方案,成本为 1+2=3。

【样例 2】

见选手目录下的 skylines/skylines2.in 与 skylines/skylines2.ans。

【样例 3】

见选手目录下的 *skylines/skylines3.in* 与 *skylines/skylines3.ans*。

【样例 4】

见选手目录下的 *skylines/skylines4.in* 与 *skylines/skylines4.ans*。

【子任务】

测试点	n,q	链
1	≤ 10	否
2	≤ 200	
3		Ħ
4	≤ 2,000	是
5		不
6		否
7	$\leq 2 \times 10^5$	是
8		定
9		否
10		

对于表格中"链"为"是"的数据,保证所有管道满足 v=u+1 且以 u 递增的顺序输入。对于所有数据, $2 \le n \le 2 \times 10^5, 1 \le q \le 2 \times 10^5, 1 \le u, v, x \le n, 1 \le w \le 5000, 1 \le c_i \le 10^8$ 。

空之轨迹(kiseki)

【题目背景】

七曜历 1150 年前后,爱普斯泰恩博士发明了导力器,由此,一场席卷塞姆利亚大陆的能源革命——导力革命开始了,它使得大陆进入了空前的发展阶段。另一方面,很多国家为了开发拥有导力力量的兵器而展开激烈的争夺,拥有霸权成为很多国家的意图。在这个错综复杂的时代里,大陆陷入了混乱之中。这个时代,有一个生存于列强罅缝中的独立小国——利贝尔。以利贝尔为舞台的起点,主人公艾丝蒂尔和约修亚将在冒险旅途上遇到各色各样的人物,以成为正式游击士为目标的她,揭开了故事的序幕。以新的世界、新的角色来描述新的故事,这就是开拓时代的物语——空之轨迹。

【题目描述】

Iri 近日沉迷游戏《英雄传说 VI 空之轨迹》。该游戏共有 n 个章节,第 i 章中有 a_i 次战斗。当 第 i 章通关后,游戏会自动存档,然后自动进入第 i+1 章,且不允许回到之前的章节(除非读档)。

由于 Iri 的游戏设备年久失修,这天早上 Iri 进入游戏时,发现他的所有存档都消失了,只留下初始的一个序章存档(加载后会开始第 1 章)。不幸的是,游戏的章节切换系统也出现了 Bug,在每一章结束的自动存档之后,游戏会从已有的所有存档(包括序章存档)中等概率随机选取一个加载。由于 Iri 的耐心与精力有限,加载序章存档后,他只会连续玩 m 个章节,然后更换新的设备。需要注意的是,游戏的存档系统没有损坏,即当第 i 章结束后的自动存档被加载后,一定会开始第 i+1 章。

现在 Iri 想知道,这 m 章内能进行的战斗总次数的期望值。Iri 觉得这个问题太简单了,所以就把它交给了你。由于 Iri 的游戏技术同样出神人化,你可以认为所有章节他都会一次通关。

【输入格式】

从文件 kiseki.in 中读人数据。 第一行包含两个正整数 n,m. 第二行 n 个非负整数 a_i .

【输出格式】

输出到文件 kiseki.out 中。

输出一行一个整数,表示 Iri 进行的战斗总次数的期望值在模 998244353 意义下的值。 即设答案化为最简分式后的形式为 $\frac{a}{b}$,其中 a 和 b 互质,输出整数 x 使得 $bx \equiv a \pmod{998244353}$ 且 $0 \le x < 998244353$ 。可以证明这样的整数 x 是唯一的。

【样例 1 输入】

3 2

1 2 1

【样例1输出】

499122179

【样例1解释】

答案是 $\frac{5}{2}$ 。由于 499122179×2 mod 998244353 = 5,所以你输出 499122179。

【样例 2 输入】

3 3

5 5 1

【样例 2 输出】

332748132

【样例3输入】

15 10

2 8 6 3 2 6 3 5 9 2 3 4 5 1 6

【样例3输出】

653958763

【样例 4】

见选手目录下的 kiseki/kiseki4.in 与 kiseki/kiseki4.ans。

【子任务】

测试点	n	m	性质 1
1	≤ 10	≤ 10	
2		≥ 10	
3			否
4			首
5		≤ 11	
6			
7			
8		≤ 21	是
9		≥ ∠1	在
10			
11	≤ 10 ⁵		
12	≥ 10°	≤ 18	
13		≥ 10	
14			
15			否
16			首
17		≤ 21	
18		≥ ∠1	
19			
20			

对于具有性质 1 的数据,保证所有的 a_i 都相等。 对于所有数据,保证 $1 \le m \le 21, m \le n \le 10^5, 0 \le a_i \le 10$.

【提示】

 $x^{p-1} \equiv 1 \pmod{p}$, 其中 p 是质数, x 是 [1,p) 上的整数。