Signali i sustavi

Drugi međuispit (grupa A) - 12. svibnja 2008.

1. Kontinuirani signal ima spektar koji je jednak nuli za sve kružne frekvencije osim onih iz intervala $\omega \in \langle -10\pi, -\pi \rangle \cup$ $\langle \pi, 10\pi \rangle$. Kojom frekvencijom moramo otipkati signal ako želimo da rekonstrukcija temeljem dobivenih uzoraka bude moguća? Odaberite najmanju frekvenciju otipkavanja tako da ne dođe do preklapanja spektra (eng. aliasing).

a) $f_s > 0$ b) $f_s > 5$ c) $f_s > 5\pi$ d) $f_s > 10\pi$ e) $f_s > 10$

Zadan je periodički niz pravokutnih impulsa. Trajanje impulsa je T_0 , a period signala je $T_p > T_0$. Može li se taj signal otipkati tako da ne dođe do preklapanje spektra (eng. aliasing)? Ako da, kolika mora biti frekvencija otipkavanja?

a) Može, $f > \frac{2}{T_0}$. **b)** Može, $f > \frac{2}{T_p}$. **c)** Može, $f > \frac{2}{T_0 + T_p}$. **d)** Može, $f > \max(\frac{2}{T_0}, \frac{2}{T_p})$.

Promatramo diskretni periodični signal zadan osnovnim periodom $x(n) = \begin{cases} |n|, & |n| \leq 2 \\ 0, & n = 3 \end{cases}$. Nulti član vremenski diskretnog Fourierovog reda (DTFS) toga signala je:

a) $X_0 = 1$ b) $X_0 = -\frac{1}{6}$ c) $X_0 = -\frac{1}{2}$ d) $X_0 = \frac{1}{2}$ e) $X_0 = -1$

Kontinuirani signal čiji spektar je $X(j\Omega) = \begin{cases} 1, & -1 < \Omega < 1 \\ 0, & \text{inače} \end{cases}$ je otipkan uz period otipkavanja $T = \pi$. Vrijednost spektra diskretnog signala $X(e^{j\omega})$ za $\omega = \frac{\pi}{2}$ je:

a) 0 b) $\frac{1}{\pi}$ c) $\frac{2}{\pi}$ d) $\frac{3}{\pi}$ e) $\frac{4}{\pi}$

5. Kolika je vrijednost DFT transformacije u četiri točke signala $x(n) = \{\underline{0}, 1, 0, 0\}$ za k = 3?

- Promatramo diskretnu kompleksnu eksponencijalu konačne duljine N opisanu izrazom $x(n) = \begin{cases} e^{j\Omega_0 n}, & 0 \le n < N-1 \\ 0, & \text{inače} \end{cases}$. Za transformacije X[k] = DFT[x(n)] i $X(e^{j\omega}) = DTFT[x(n)]$ vrijedi:

a) $X[k] = X(e^{j\omega})$ za $\omega = 2\pi \frac{k}{N-1}$ b) $X[k] = X(e^{j\omega})$ za $\omega = 2\pi \frac{k}{N}$ c) $X[k] = X(e^{j\omega})$ za $\omega = 2\pi \frac{k}{N+1}$ d) $X[N-k] = X(e^{j\omega})$ za $\omega = 2\pi \frac{k}{N-1}$

7. Neka su $u_1(t)$ i $u_2(t)$ ulazi u sustav S i neka su α i β neki brojevi. Definiciju linearnosti možemo pisati:

a) $\exists \alpha, \beta : S(\alpha u_1(t) + \beta u_2(t)) = \alpha S(u_1(t)) + \beta S(u_2(t))$ b) $\exists \alpha, \beta : S(u_1(\alpha t) + u_2(\beta t)) = \alpha S(u_1(t)) + \beta S(u_2(t))$ c) $\forall \alpha, \beta : S(\alpha u_1(t) + \beta u_2(t)) = \alpha S(u_1(t)) + \beta S(u_2(t))$ d) $\forall \alpha, \beta : S(u_1(\alpha t) + u_2(\beta t)) = \alpha S(u_1(t)) + \beta S(u_2(t))$ e) $\forall \alpha, \beta : S(u_1(\alpha t_1 + \beta t_2) + u_2(\alpha t_1 + \beta t_2)) = \alpha S(u_1(t_1)) + \beta S(u_2(t_2))$

Odziv na jedinični skok $u(t) = \mu(t)$ kontinuiranog LTI sustava je $y(t) = (1-t)\mu(t)$. Koliki je odziv na pobudu u(t) = t $\mu(t) - \mu(t - 2008)$?

 $\mathbf{a)} \ \ y(t) = \begin{cases} 0, & t < 0 \\ 1 - t, & 0 \le t < 2008 \\ -2007, & \text{inače} \end{cases} \qquad \mathbf{b)} \ \ y(t) = \begin{cases} 0, & t < 0 \\ 1 - t, & 0 \le t < 2008 \\ -2008, & \text{inače} \end{cases} \qquad \mathbf{c)} \ \ y(t) = \begin{cases} 0, & t < 0 \\ 1 - t, & 0 \le t < 2008 \\ 2008, & \text{inače} \end{cases}$ $\mathbf{d)} \ \ y(t) = \begin{cases} 0, & t < 0 \\ t - 1, & 0 \le t < 2008 \\ -2007, & \text{inače} \end{cases} \qquad \mathbf{e)} \ \ y(t) = \begin{cases} 0, & t < 0 \\ 1 - t, & 0 \le t < 2007 \\ -2008, & \text{inače} \end{cases}$

Neka je y(t) odziv sustava S na pobudu u(t), dakle y(t) = S(u(t)), te neka je $T \in \mathbb{R}$. Za sustav S kažemo da je vremenski nepromjenjiv ako za svaku pobudu vrijedi:

a) $\forall T: S(u(t-T)) = y(t-T)$ **b)** $\forall T: S(u(t-T)) = y(t+T)$ **c)** $\exists T: S(u(t-T)) = y(t-T)$ **d)** $\exists T: S(u(t-T)) = y(t+T)$ **e)** $\exists T: S(u(t+T)) = y(t+T)$

10. Zadan je sustav $y(n) = \sum_{k=-\infty}^{n} u(k)$. Taj sustav je:

a) bezmemorijski i linearan d) linearan i vremenski promjenjiv

b) nelinearan i memorijski c) linearan i vremenski nepromjenjiv

e) bezmemorijski i vremenski nepromjenjiv

11	Zadan	je sustav	u(n) –	$-\sum^n$	(k)	Tai	sustav i	ie.
TT.	Ladan	je sustav	y(n) =	$\rightarrow u_{n-0} u$	(K).	1a	Sustav	le:

- a) bezmemorijski i linearan b) nelinearan i memorijski c) linearan i vremenski nepromjenjiv
- d) linearan i vremenski promjenjiv e) bezmemorijski i vremenski nepromjenjiv
- 12. Zadan je LTI sustav opisan matricama $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$. Koliko iznosi odziv nepobuđenog sustava za $n \ge 0$ uz početne uvjete $\mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$? Uputa: raspišite $A^n = A \cdot A \cdot A \cdot A$ i računajte $A \cdot A$, $A \cdot A \cdot A$ itd.
 - **a)** 0 **b)** 1 **c)** n **d)** 1+n **e)** 2+n
- 13. Zadan je LTI sustav opisan matricama $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 1 & 1 \end{bmatrix}$ i $\mathbf{D} = \begin{bmatrix} 1 \end{bmatrix}$. Ukoliko su početni uvjeti $\mathbf{x}(0) = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$ pronađite prve dvije vrijednosti u(0) i u(1) ulaznog signala tako da se sustav u koraku dva nađe u stanju $\mathbf{x}(2) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$.
 - a) $u(0) = -x_1 2x_2$, $u(1) = x_1 + x_2$ b) $u(0) = -2x_1 2x_2$, u(1) = 0 c) $u(0) = -x_1$, $u(1) = -x_2$ d) $u(0) = -2x_1$, $u(1) = -x_2$, $u(1) = -x_1$, $u(1) = -x_2$
- 14. Ako je impulsni odziv diskretnog LTI sustava $h(n) = \begin{cases} 1, & n = 0 \\ 2, & n = 2 \\ 0, & \text{inače} \end{cases}$ diferencijska jednadžba koja opisuje taj sustav je:
 - **a)** y(n) = u(n) + 2u(n-2) **b)** y(n) = u(n-2) + 2u(n) **c)** y(n) + y(n-2) = u(n) **d)** y(n-2) + 2y(n) = u(n) **e)** y(n) + 2y(n-2) = u(n) + 2u(n-2)
- **15.** Nadite odziv kontinuiranog LTI sustava s impulsnim odzivom $h(t) = \begin{cases} 1, & 0 < t < 1 \\ 0, & \text{inače} \end{cases}$ na pobudu $u(t) = \begin{cases} 1, & 1 < t < 2 \\ 0, & \text{inače} \end{cases}$
- **16.** Konvolucija $(x(t) + y(t) * \delta(t+2)) * \delta(t-1)$ je:
 - **a)** $x(t-1) \cdot \mu(t)$ **b)** y(t-1) + x(t+1) **c)** x(t-1) **d)** x(t+1) + y(t+3) **e)** x(t-1) + y(t+1)
- 17. Promatramo diskretni LTI sustav opisan diferencijskom jednadžbom y(n) 6y(n-1) + 8y(n-2) = 4u(n). Ako je pobuda $u(n) = (1-3n) \mu(n)$ onda je odziv mirnog sustava:
 - a) $y(n) = (-12 4n) \mu(n)$ b) $y(n) = 4 \cdot 2^n \mu(n)$ c) $y(n) = 20 \cdot 2^n \mu(n)$ d) $y(n) = (16 \cdot 2^n 4n 12) \mu(n)$ e) $y(n) = (20 \cdot 2^n 4n 12) \mu(n)$
- 18. Promatramo diskretni LTI sustav opisan diferencijskom jednadžbom y(n) 6y(n-1) + 8y(n-2) = 4u(n). Ako je pobuda $u(n) = (1-3n) \mu(n)$ i ako su početni uvjeti y(-1) = 2 i y(-2) = 1 onda je prisilni odziv sustava:
 - a) $y(n) = (-12 4n) \mu(n)$ b) $y(n) = 4 \cdot 2^n \mu(n)$ c) $y(n) = 20 \cdot 2^n \mu(n)$ d) $y(n) = (16 \cdot 2^n 4n 12) \mu(n)$ e) $y(n) = (20 \cdot 2^n 4n 12) \mu(n)$
- 19. Promatramo diskretni LTI sustav opisan diferencijskom jednadžbom y(n) 6y(n-1) + 8y(n-2) = 4u(n). Ako su početni uvjeti y(-1) = 2 i y(-2) = 1 onda je odziv nepobuđenog sustava:
 - a) $y(n) = (4 \cdot 2^n + 4 \cdot 4^n) \mu(n)$ b) $y(n) = 4 \cdot 2^n \mu(n)$ c) $y(n) = 20 \cdot 2^n \mu(n)$ d) $y(n) = (16 \cdot 2^n 4n 12) \mu(n)$ e) $y(n) = (20 \cdot 2^n 4n 12) \mu(n)$
- **20.** Promatramo diskretni LTI sustav opisan diferencijskom jednadžbom y(n) 6y(n-1) + 8y(n-2) = 4u(n). Ako je pobuda $u(n) = (1-3n) \mu(n)$ i ako su početni uvjeti y(-1) = 2 i y(-2) = 1 onda je totalni odziv sustava:
 - a) $y(n) = (-12 4n) \mu(n)$ b) $y(n) = 4 \cdot 2^n \mu(n)$ c) $y(n) = 20 \cdot 2^n \mu(n)$ d) $y(n) = (16 \cdot 2^n 4n 12) \mu(n)$ e) $y(n) = (20 \cdot 2^n 4n 12) \mu(n)$