MATRICES

1. If A and B are 2 rowed square matrices such that

A + B =
$$\begin{bmatrix} 4 & -3 \\ 1 & 6 \end{bmatrix}$$
 and (A - B) = $\begin{bmatrix} -2 & -1 \\ 5 & 2 \end{bmatrix}$ then AB = ?

(a)
$$\begin{bmatrix} -7 & 5 \\ 1 & -5 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 7 & -5 \\ 1 & 5 \end{bmatrix}$$

$$(c) \begin{bmatrix} 7 & -1 \\ 5 & -5 \end{bmatrix}$$

(a)
$$\begin{bmatrix} -7 & 5 \\ 1 & -5 \end{bmatrix}$$
 (b) $\begin{bmatrix} 7 & -5 \\ 1 & 5 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & -1 \\ 5 & -5 \end{bmatrix}$ (d) $\begin{bmatrix} 7 & -1 \\ -5 & 5 \end{bmatrix}$

2. If $\begin{vmatrix} 3 & -2 \\ 5 & 6 \end{vmatrix} + 2A = \begin{vmatrix} 5 & 6 \\ -7 & 10 \end{vmatrix}$ then A = ?

(a)
$$\begin{bmatrix} 1 & 3 \\ -5 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 5 \\ -3 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 4 \\ -6 & 2 \end{bmatrix}$

(b)
$$\begin{bmatrix} -1 & 5 \\ -3 & 4 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 4 \\ -6 & 2 \end{bmatrix}$$

- (d) none of these
- 3. If $A = \begin{bmatrix} 2 & 0 \\ -3 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -3 \\ -6 & 2 \end{bmatrix}$ are such that 4A + 3X = 5B then X = ?

(a)
$$\begin{bmatrix} 4 & -5 \\ -6 & 2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 4 & -5 \\ -6 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 & 5 \\ -6 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} -4 & 5 \\ 6 & -2 \end{bmatrix}$ (d) none of these

$$(c) \begin{bmatrix} -4 & 5 \\ 6 & -2 \end{bmatrix}$$

- 4 If $(A 2B) = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$ and $(2A 3B) = \begin{bmatrix} -2 & 2 \\ 3 & -3 \end{bmatrix}$ then B = ?

(a)
$$\begin{bmatrix} 6 & -4 \\ -3 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} -4 & 6 \\ -3 & -3 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix}$ (d) none of these

$$(c) \begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix}$$

- 5. If $(2A B) = \begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix}$ and (2B + A) = -2 & 1 & -7 then A?

(a)
$$\begin{bmatrix} -3 & 2 & 1 \\ 2 & 1 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 2 & -1 \\ 2 & -1 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix}$ (d) none of these

(c)
$$\begin{bmatrix} 3 & -2 & 1 \\ -2 & 1 & -1 \end{bmatrix}$$

6. If $2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$ then

(a)
$$(x=-2, y=8)$$

(b)
$$(x=, y=-8)$$

(c)
$$(x=3,y=-6)$$

(b)
$$(x=, y=-8)$$
 (c) $(x=3,y=-6)$ (d) $(x=-3,y=6)$

- 7. If $\begin{vmatrix} x & -y & 2x & -y \\ 2x & +z & 3x & +w \end{vmatrix} \begin{vmatrix} -1 & 0 \\ 5 & 13 \end{vmatrix}$ then

 - (a) z=3, w=4 (b) z=4, w=3
 - (c) z=1, w=-2 (d) z=2, w=-1

- 8. If $\begin{vmatrix} x & y \\ 3y & x \end{vmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{5} \end{bmatrix}$ then

- (a)x=1,y=2 (b) x=2,y=1 (c) x=1,y-1 (d) none of these
- If the matrix $A = \begin{bmatrix} 3-2x & x+1 \\ 2 & 4 \end{bmatrix}$ is singular then x=?
 - (a)0

- (c)-1
- (d)-2

- 10. If $A_{\alpha} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ then $(A_{\alpha})^2 = ?$
 - (a) $\begin{bmatrix} \cos^2 \alpha & \sin^2 \alpha \\ -\sin^2 \alpha & \cos^2 \alpha \end{bmatrix}$ (b) $\begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{bmatrix}$
 - (c) $\begin{bmatrix} 2\cos\alpha & 2\sin\alpha \\ -\sin\alpha & 2\cos\alpha \end{bmatrix}$ (d) none of these
- 11. If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ be such that $A + A^{-1} = I$, then $\alpha = ?$

 - (a) π (b) $\frac{\pi}{3}$ (c) π
- (d) $\frac{2\pi}{3}$
- 12. If $A = \begin{bmatrix} 1 & k & 3 \\ 3 & k & -2 \\ 2 & 3 & -4 \end{bmatrix}$ is singular then k = ?

 - (a) $\frac{16}{2}$ (b) $\frac{34}{5}$ (c) $\frac{33}{2}$
- (d) none of these

- 13. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then adj A = ?

- (a) $\begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ (b) $\begin{bmatrix} -d & b \\ c & -a \end{bmatrix}$ (c) $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ (d) $\begin{bmatrix} -d & -b \\ c & a \end{bmatrix}$

14.	If $A = \begin{bmatrix} 2x \\ x \end{bmatrix}$	$\begin{bmatrix} 0 \\ x \end{bmatrix}$ and $A^{-1} =$	$\begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$ the	n x = ?						
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) -2						
15.	If A and B a	re square ma	trices of the	same order the	en (A + B) (A-	B) =?				
	(a) $(A^2 - B^2)$	(b) $A^2 +$	AB – BA – B	2 (c) $A^{2} - AB$	$+ BA - B^2$	(d) none of thes	e			
16.	If A and B are square matrices of the same order then $(A + B)^2 = ?$									
	(a) $A^2 + 2A$ (d) none of		(b) $A^2 +$	$AB + BA + B^2$	(c) A ²	+ 2BA + B ²				
17.	If A and B are square matrices of the same order then $(A - B)^2 = ?$									
	(a) $A^2 - 2AB$	$B + B^2$	(b) A ² - AE	$B - BA + B^2$	(c) $A^2 - 2$	$BA + B^2$				
	(d) none of these									
18.	If A and B are symmetric matrices of the same order then (AB $-$ BA) is always									
	(a) a symme	etric matrix	(b) a skev	v-symmetric ma	atrix (c) a ze	ero matrix				
	(d) an identity matrix									
19.	Matrices A and B are inverses of each other only when									
	(a) $AB = BA$	(b) AB =	BA = O (c) AB = O, BA	=I (d) A	B = BA = I				
20.	For square matrices A and B of the same order, we have adj (AB) = ?									
	(a) (adj A) (adj B) (b) (adj B) (adj A) (c) <i>AB</i>	(d) no	one of these				
21.	If A is a 3-rowed square matrix and $ A = 4$ then adj (adj A) = ?									
	(a) 4A	(b) 16A	(c)	64A	(d) no	ne of these				
22.	If A is a 3-rowed square matrix and $ A = 5$ then $ adjA = ?$									
	(a) 5	(b) 25	(0	c) 125	(d) none	of these				
23.	For any two matrices A and B,									
	(a) AB = BA is always true (b) AB = BA is never true									
	(c) sometimes $AB = BA$ and sometimes $AB \neq BA$									
	(d) wheneve	(d) whenever AB exists, then BA exists								

24.	If A $\begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$	$= \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} $ the	en A = ?						
	(a) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$	(b)	1 1 -1 1	(c)	$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	(d) none of these			
25.	If A is an invertible square matrix then $ A^{-1} = ?$								
	(a) A	(b) $\frac{1}{ A }$	(c) 1	(d) 0					
26.	If A and B are	and B are invertible matrices of the same order then(AB) ⁻¹ =?							
	(a) $(A^1 \times B^{-1})$		(b) (A x B	¹) (C	c) (A ⁻¹ x B)	(d) $(B^{-1} \times A^{-1})$			
27.	If A and B are	e two nonzei	o square ma	atrices of the	e same orde	r such that AB =0then			
	(a) $ A = 0$ or $ A $	B = 0 (b)	A = 0 and $ A $	B = 0 (c)	$ A \neq 0$ and $ $	$B \neq 0$ (d) none of these			
28.	If A is a square matrix such that $ A \neq 0$ and $A^2 - A + 2I = 0$ then $A^{-1} = ?$								
	(a) (I –A)	(b) (I +	- A)	(c) $\frac{1}{2}$ (I –A	N)	(d) $\frac{1}{2}$ (I +A)			
29.	If $A = \begin{bmatrix} 1 & \lambda \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$ is not in	vertible then	λ=?					
	(a) 2	(b) 1	(c) -1	(d) 0					
30.	If $A = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$	$\begin{bmatrix} -\sin\theta\\\cos\theta \end{bmatrix}$ then	$A^{-1} = ?$						
	(a) A	(b)-A		(c) ad	jΑ	(d)-adjA			
33.	If A is singular then A (ad) A) = ?								
	(a) a unit ma	trix	(b) a null m	ıatrix	(c) a sym	metric matrix			
	(d) none of t	hese							
34.	For any 2-row	ved square	matrix A, if	A (adj A) =	$\begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix}$ then	n the value of $\left A\right $ is			
	(a) 0	(b) 8	(c) 64	4	(d) 4				

- 35. If $A = \begin{bmatrix} -2 & 3 \\ 1 & 1 \end{bmatrix}$ then $|A^{-1}| = ?$

 - (a) -5 (b) $\frac{-1}{5}$ (c) $\frac{1}{25}$ (d) 25
- If $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$ and $A^2 + xI = yA$ then the values of x and y are 36.
 - (a) x = 6, y = 6 (b) x = 8, y = 8 (c) x = 5, y = 8 (d) x = 6, y = 8

- If matrices A and B anti commutative then 37.
 - (a) AB = BA
- (b) AB = -BA (c) $(AB) = (BA)^{-1}$ (d) none of these

- If $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ then adj A = ?
 - (a) $\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 2 \\ 3 & -5 \end{bmatrix}$ (d) none of these
- If $A = \begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$ and B is a square matrix of order 2 such that AB = I then B = ?
 - (a) $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$
- (b) $\begin{vmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{vmatrix}$ (c) $\begin{bmatrix} \frac{1}{2} & \frac{2}{3} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ (d) none of these
- If A and B are invertible square matrices of the same order then $(AB)^{-1}$ = ? 40.
 - (a) AB^{-1}
- (b) A⁻¹ B

- (c) $A^{-1} B^{-1}$ (d) $B^{-1} A^{-1}$

- If $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$, then $A^{-1} = ?$
 - (a) $\begin{vmatrix} \frac{3}{7} & \frac{-1}{7} \\ \frac{1}{2} & \frac{2}{2} \end{vmatrix}$ (b) $\begin{vmatrix} \frac{3}{7} & \frac{1}{7} \\ \frac{-1}{2} & \frac{2}{2} \end{vmatrix}$ (c) $\begin{vmatrix} \frac{1}{7} & \frac{1}{7} \\ \frac{1}{2} & \frac{2}{2} \end{vmatrix}$
- (d) none of these

42. If
$$|A| = 3$$
 and $A^{-1} = \begin{bmatrix} 3 & -1 \\ -5 & \frac{2}{3} \end{bmatrix}$ then adj $A = ?$

(a)
$$\begin{bmatrix} 9 & 3 \\ -5 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 9 & -3 \\ -5 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -9 & 3 \\ 5 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} 9 & -3 \\ 5 & -2 \end{bmatrix}$

(c)
$$\begin{bmatrix} -9 & 3 \\ 5 & -2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 9 & -3 \\ 5 & -2 \end{bmatrix}$$

43. If A is an invertible matrix and
$$A^{-1} = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 then $A = ?$

(a)
$$\begin{bmatrix} 6 & -4 \\ -5 & 3 \end{bmatrix}$$
 (b) $\begin{bmatrix} \frac{1}{3} & \frac{1}{4} \\ \frac{1}{5} & \frac{1}{6} \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 2 \\ \frac{5}{2} & -3 \\ \frac{2}{2} \end{bmatrix}$ (d) none of these

$$(c) \begin{bmatrix} -3 & 2 \\ \frac{5}{2} & -3 \\ 2 \end{bmatrix}$$

44. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$$
 and $f(x) = 2x^2 - 4x + 5$ then $f(A) = ?$

(a)
$$\begin{bmatrix} 19 & -32 \\ -16 & 51 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 19 & -32 \\ -16 & 51 \end{bmatrix}$$
 (b) $\begin{bmatrix} 19 & -16 \\ -32 & 51 \end{bmatrix}$ (c) $\begin{bmatrix} 19 & -11 \\ -27 & 51 \end{bmatrix}$ (d) none of these

(c)
$$\begin{bmatrix} 19 & -11 \\ -27 & 51 \end{bmatrix}$$

45. If
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 then $A^2 - 4A = ?$

- (a) 1
- (b) 51
- (c) 31

(d) 0

46. If A is a 2 rowed square matrix and
$$|A| = 6$$
 then A-adj A =

(a)
$$\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{1}{6} \end{bmatrix}$

(d) none of these

47. If A is an invertible square matrix and k is a non-negative real number Then
$$(kA)^{-1} = ?$$

(a) K . A⁻¹ (b)
$$\left[\frac{1}{k}\right]$$
 . A⁻¹

(d) none of these

48. If
$$A = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 0 & -2 \\ -2 & -1 & 2 \end{bmatrix}$$
 then $A^{-1} = ?$

(a)
$$\begin{bmatrix} 2 & 9 & -8 \\ -2 & 8 & 7 \\ -1 & 5 & -4 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 2 & 9 & -8 \\ -2 & 8 & 7 \\ -1 & 5 & -4 \end{bmatrix}$$
 (b) $\begin{bmatrix} -2 & 9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & 4 \end{bmatrix}$

(c)
$$\begin{bmatrix} -2 & -9 & -8 \\ 2 & 8 & 7 \\ -1 & -5 & -4 \end{bmatrix}$$

(d) none of these

- If A is a square matrix then $(A + A^{.})$ is 49.
 - (a) a null matrix (b) an identity matrix
 - (c) asymmetric matrix
- (d) a skew-symmetric matrix
- 50. If A is a square matrix then $(A - A^{-})$ is
 - (a) a null matrix

(b) an identity matrix

(c) a symmetric matrix

- (d) a skew-symmetric matrix
- If A is a 3-rowed square matrix and [3A[=k|A] then k=? 51.
 - (a) 3
- (b) 9
- (c) 27
- (d) 1
- 52. Which one of the following is a scalar matrix?

(a)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & 0 \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} -8 & 0 \\ 0 & -8 \end{bmatrix}$

$$(c) \begin{bmatrix} -8 & 0 \\ 0 & -8 \end{bmatrix}$$

(d) none of these

53. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and $B - \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = (A^2 + B^2)$ then

(a)
$$a = 2$$
, $b = -3$

(a)
$$a = 2$$
, $b = -3$ (b) $a = -2$, $b = 3$ (c) $a = 1$, $b = 4$ (d) none of these

(c)
$$a = 1$$
, $b = 4$

54. If
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$
, then (adj A) $A =$

(a)
$$\begin{bmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{5} \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & 0 \\ 0 - 5 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 5 & 0 \\ 0 - 5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

MATRIX: ANSWERS

1.	b	2.	С	3.	а	4.	b	5.	d	6.	d	
7.	b	8.	С	9.	С	10.	а	11.	а	12.	d	
13.	а	14.	d	15.	d	16.	b	17.	b	18.	d	
19.	а	20.	d	21.	b	22.	С	23.	С	24.	b	
25.	d	26.	а	27	С	28.	а	29.	b	30.	а	
31.	С	32.	С	33.	С	34.	b	35.	d	36.	В	
37.	а	38.	b	39.	а	40.	d	41.	С	42.	d	
43.	С	44.	b	45.	b	46.	С	47.	С	48.	С	
49.	а	50.	b	51.	b	52.	b	53.	d	54.	d	