

Computer Vision

Introduction

Discord Link in Description

Course / Tutorial Overview

- Basics of Image Processing
 - Color Models
 - Noise and Smoothing
 - Histograms
 - Geometric Operations
- Binary Image Processing
 - Thresholding
 - Mathematical Morphology
 - Connectivity
- 3D Vision
 - Camera Model
 - Epipolar Geometry
 - o 3D Position with stereo vision

- Edge Image Processing
 - Edge Detection
 - Contour Following
 - Hough Transform
- Features
 - Moravec, Harris, FAST
 - SIFT
- Recognition
 - Hough
 - SIFT
 - Template and Chamfer Matching
 - Robust Object Detection

What is Computer Vision?

- Computer Vision is about understanding images
 - Greyscale, Color or Multi-spectral
 - Snapshots or video sequences
 - Static or moving camera
 - Static or dynamic scene
 - Calibrated / un-calibrated camera
- Computer Vision aims to extract useful information from images
 - Inspection purposes
 - Analysis purposes
 - Control purposes

Motivation for Computer Vision

Pinhole Model for Cameras

$$\begin{bmatrix} i. w \\ j. w \\ w \end{bmatrix} = \begin{bmatrix} f_i & 0 & c_i \\ 0 & f_j & c_j \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- Image Plane
- Focal Length
- Location of the optical centre

Camera Specifications

- Sensor type
 - CMOS/CDD
- Sensor Size (d)
- Resolution (pixels)
- Lens Focal Length (f)
- Lens Aperture Range

$$FOV = \frac{d \cdot WD}{f}$$

Images and Pixels

- Continuous 2D Functions
 - o (i,j) or (column,row) or (x,y)
- Discrete Representation
 - Sample
 - Quantise
- Number of Samples
 - Wasted time and computati
- Resolution
 - Quantisation typically 8 bits

Quantisation - Code Example

Color Models - Color vs Grayscale

- Luminance only
 - Simple representation
 - Humans can understand
- Color images
 - Multiple channels for colors
 - More complex to process
- Different Color Models
 - CMY Images
 - YUV Images
 - HLS Images
 - HSV Images

Typically operations on grayscale and representation on color images

