Aufgabe 1

a) Geben Sie ein Beispiel für eine nicht stetige Funktion f über cpo's an.

Idee von Tobi:

Definition der Stetigkeit aus VL: Seinen A und B cpo's

Eine Funktion $f:A\to B$ heißt **stetig**, wenn f(K) eine Kette in B ist und $f(\bigsqcup K)=\bigsqcup f(K)$ für alle $K\subseteq A$ mit K ist Kette in A.

Noch ein Blick auf die Kette:

K ist Kette, wenn zu je zwei $k_1, k_2 \in K$ gilt: $k_1 \sqsubseteq_A k_2$ oder $k_2 \sqsubseteq_A k_1$.

Also der Vorgänger steht mit dem Nachfolger oder der Nachfolger steht mit dem Vorgänger irgendwie in Relation.

Also sowas wie $f(x) = x \mod 2$ mit $x \in \mathbb{N}$ sollte dem Widersprechen, oder?

b) Beweisen Sie, dass die Komposition stetiger Funktionen wieder eine stetige Funktion ergibt. **Idee von Tobi:** na dit is relativ simple im Kopf, aber unklar wie ich es aufschreibe.. Skizze: Seien f und g stetige Funktionen und A,B und C cpo's und der \circ -Operator steht - wie üblich - für die Komposition:

$$f:A\to B$$

$$g:B\to C$$
 also ist
$$f\circ g:(A\to B)\to C=A\to C$$
 ebenfalls stetig!

Aufgabe 2

- a) Zeigen Sie, wie Sie zu gegebenen cpos $D_1,...,D_n$ mit $n\geq 2$ den Bereich der disjunkten Vereinigung $(D_1+...+D_n)$ erklären können, ohne die minimalen Elemente zu verschmelzen.
- b) Definieren Sie folgende Injektions-, Projektions- und Testfunktionen in kanonischer Weise:

$$\begin{array}{ll} in_i:D_i\to (D_1+\ldots+D_n) & \text{ für alle } 1\leq i\leq n\\ out_i:(D_1+\ldots+D_n)\to D_i & \text{ für alle } 1\leq i\leq n\\ is_i:(D_1+\ldots+D_n)\to BOOL_\perp & \text{ für alle } 1\leq i\leq n \end{array}$$

Aufgabe 3

Definieren Sie stetige Erweiterungen der Addition und des Tests auf Gleichheit, so dass diese Operationen total werden auf den cpo's \mathbb{N}_{\perp} und $BOOL_{\perp}$. Diskutieren Sie, ob es mehrere solche Erweiterungen gibt. **Idee von Tobi:** Irgendwie macht das nicht viel Sinn mit dem Bool und der Addition

Es sollen +, = erweitert werden, sodass $(\mathbb{N}_{\perp}, +)$, $(BOOL_{\perp}, +)$ und $(\mathbb{N}_{\perp}, =)$, $(BOOL_{\perp}, =)$ neben relexiv, transitiv und antisymetrisch auch noch total sind.

Soweit ich heraus bekommen habe ist "total werdenëine Umschreibung von Kette bilden.

Aufgabe 4

Seien D_1 und D_2 cpo's und auf $f:D_1\to D_2$ und $d:D_2\to D_1$ stetige Funktionen. Beweisen Sie:

$$fix_{f \circ g} = f(fix_{g \circ f})$$
 und $fix_{g \circ f} = g(fix_{f \circ g})$