APRENDIZAJE REFORZADO CLASE 1

Julián Martínez

EL CONTENIDO DE ESTE CURSO FUE DESARROLLADO EN GRAN PARTE CON LA AYUDA DE JAVIER KREINER

MARCO DEL PROBLEMA

S_t estado del mundo

Acción

La acción afecta el ambiente/estado!

DIFERENCIAS CON OTROS PARADIGMAS DE ML, RL VS APRENDIZATE SUPERVISADO

- No viene dado un dataset con inputs y targets
- No hay un 'supervisor', o sea input y targets, hay una señal de recompensa
- El feedback **se recibe con retraso**, no es instantáneo
- Las decisiones son secuenciales, los datos no son i.i.d.
- Las acciones del agente **modifican** los datos que va recibiendo (el ambiente).

EJEMPLOS (EN CADA UNO DE ESTOS ¿RECOMPENSA, ACCIONES, OBSERVACIONES?)

- Un jugador de ajedrez, Teg, go, Backgammon, etc.
- `Un helicóptero debe realizar piruetas
- Diseñar landing page para maximizar retención
- Tratamiento médico personalizado
- Administración de una cartera de acciones
- Robots
- Asistentes de navegación

ALGUNAS DE LAS COMPLICACIONES

APRENDO DE LA EXPERIENCIA!

LOS POSIBLES ESTADOS DEL SISTEMA SON MUUUCHOS! EXPLORACIÓN VS EXPLOTACIÓN

VIDEOS DE ALGUNOS EJEMPLOS

arquero robotico:

- robot humanoide:
 https://www.youtube.com/watch?v=No-JwwPbSLA

 helicoptero: https://www.youtube.com/watch?v=0JL04JJjocc

 blockout: https://www.youtube.com/watch?v=eG1Ed8PTJ18

 space invaders:
 https://www.youtube.com/watch?v=W2CAghUiofY
 - https://www.youtube.com/watch?v=CIF2SBVY-J0

ÉXITOS

- TD-Gammon (1992)
- Atari Games (DQN, 2015)
- AlphaGo(2015/2016)/AlphaGo Zero(2017)/AlphaZero(2017)
- Dota 2 (2018)
- Starcraft 2 (2019)
- Manipulación Robótica (2018) (https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html)

El campo no ha hecho un impacto económico significativo aún, pero está comenzando a ser usado en diferentes industrias (grandes oportunidades). Tal vez el problema más importante: necesita ingentes cantidades de datos. Leer

https://www.oreilly.com/ideas/practical-applications-of-reinforcement-learning-in-industry

COMPAÑÍAS UTILIZANDO APRENDIZAJE REFORZADO

- Deepmind: AlphaGo, AlphaZero, Atari Games, https://deepmind.com/
- Trading algoritmico: Hihedge, https://pit.ai/
- Ambientes de cultivo controlables: Optimal Labs: http://optimal.ag/
- Aprendizaje de robots/vehículos autónomos: https://covariant.ai/,
 https://www.osaro.com/,
 https://www.fanuc.com/
- Análisis de datos: http://intelligentlayer.com/
- Chatbots: https://rasa.com/

REPASO DE PROBABILIDAD Y PROCESOS DE MARKOV

BAYES

$$P(A|B) = P(B|A) \frac{P(A)}{P(B)}$$

Ejemplo Tiro un dido y despiés tiro un moneda
tentes veces como el resultido del dido.

$$D = \#$$
 dido ; $M\% = \#$ de curs
Obs: $M \mid D = d \mid N \mid Bin \left(d, \frac{1}{2} \right)$
 $P(D = 5 \mid M = 3) \stackrel{?}{=} P(M = 3 \mid D = 5) \cdot P(D = 5)$
 $P(M = 3)$
 $= \frac{\binom{5}{3} \binom{1}{2}^3 \binom{1}{2}^5 \cdot \binom{3}{2}}{\binom{1}{2}^5 \cdot \binom{3}{2}} \times \frac{1}{6}$
 $P(M = 3)$

FÓRMULA DE PROBABILIDAD TOTAL

$$P(M=3) = \sum_{d=1}^{6} P(M=3|D=d) P(D=d)$$

$$= \sum_{d=3}^{6} {\binom{d}{3}} {\binom{1}{2}}^{*} {\binom{1}{6}}^{*}$$

$$= \sum_{d=3}^{6} {\binom{d}{3}} {\binom{1}{2}}^{*} {\binom{1}{6}}^{*}$$

ESPERANZA CONDICIONAL

$$E[X] = \sum_{x} P(X=x)$$

$$P_{B}(A) := P(A|B) \text{ es un probabilidad}$$

$$P_{X|Y=y} = \frac{P(X=x,Y=y)}{P(Y=y)} = \frac{P_{XY}(x,y)}{P_{Y}(y)} \text{ y est fijo!}$$

$$X|Y=y \text{ of } P_{X|Y=y} \text{ if the una ESPERANDA!}$$

$$E[X|Y=y] = \sum_{x} x P_{X|Y=y}$$

VOLVIENDO AL EJEMPLO

$$E[M|D=3] = \sum_{m=0}^{3} m P_{M}(n) = \sum_{m=0}^{3} {\binom{3}{m}} {\binom{\frac{1}{2}}{m}}^{m}$$

ESPERANZA DE LA ESPERANZA

EJEMPLO DE CADENA DE MARKOV

OTRO EJEMPLO: REPAIR SHOP

$$S_{n+1} = (X_{n-1})^{+} + Z_{n+1}$$

$$P(X_{n+1} = j | X_{n=i}) = P(j = (i-i)^{+} + Z_{n+1})$$

$$P(Z=k)=a_k$$
; $K\geqslant 0$

$$P=\begin{pmatrix} a_0 & a_1 & ... \\ a_0 & a_1 & ... \\ 0 & 0 & 0 & ... \\ 0 & 0 & 0 & ... \end{pmatrix}$$

CONSTRUCCIÓN PARA ESPACIO DE ESTADOS FINITO

DISTRIBUCIÓN INVARIANTE DE UNA CADENA DE MARKOV

$$P_{\gamma}(X_{1}=x) = \gamma(x) \qquad \forall x \in S$$
ie; $\sum_{y} \gamma(y) P(X_{1}=x|X_{0}=y) = \gamma(x)$

$$\sum_{y} \gamma(y) P(y,x) = \gamma(x)$$

$$A(3) = A(1)$$

$$A(2) << A(1)$$
Pres recube mucho!
(2)

IRREDUCIBILIDAD

ommunication: · i -> j (j zoccessible from i) if $\exists k/p_{ij}^{k}>0$. · i () (both ere eccessible from both) P is irreducible if i i ij ij ij is

DEFINICIÓN DE RECURRENTE / TRANSIENTE

$$T_i = \inf \left\{ N \geqslant 1 ; X_n = i \right\}$$
 $i \in E$ recurrent $P_i \left(T_i \angle \infty \right) = 1$

positive recurrent $E_i \left[T_i \right] \angle \infty$

then swent $P_i \left(T_i \angle \infty \right) \angle 1$

TEOREMA ERGÓDICO PARA CADENAS DE MARKOV (BRÉMAUD)

THM 4.1 ERGODIC THM	
{Xn}, irreducible, positive recurrent	MC
Y Winited dist . Pr-as	
=) lu \(\sum_f(\times_n)\) \(\xi_1\) \(\frac{f(\times_n)}{h}\)	
k→∞ ⁿ⁼¹ =	
Σ. η(ι) t	(i)

EJEMPLO DEL ESTUDIANTE

Tomado de los slides de David Silver

EJERCICIO 1.1 - ESTUDIANTE - PYTHON

Usando el código hacer los siguientes ejercicios:

- 1. simular 100 episodios del estudiante
- 2. calcular un estimado del tiempo de visita de cada estado
- 3. calcular un estimado de la longitud media de la cadena

EJERCICIO 1.2 - MC SIMPLE CON REWARD - PAPEL Y PYTHON

Calcular esto de manera analítica y vía

$$E[g(S_1,S_2)]$$

PROCESOS MARKOVIANOS DE DECISIÓN

PROCESOS MARKOVIANOS DE DECISIÓN - INGREDIENTES

POLÍTICA
$$\pi(a|s) = P(A_t = a | S_t = s)$$

 $P^{a}_{s,s'} := P(S_{t+1} = s' | S_{t} = s, A_{t} = a)$

ila POLÍTICA ÓPTIMA? FACTOR DE DESCUENTO
$$G_{t} = R_{t+1} + 7R_{t+2} + 7^{2}R_{t+3} + \dots$$

$$= R_{t+1} + 7G_{t+1} \qquad \text{RETORNO}$$

REWARD HYPOTHESIS

That all of what we mean by goals and purposes can be well thought of as the maximization of the expected value of the cumulative sum of a received scalar signal (called reward).

EPISODIC TASK VS CONTINUING TASK

EJEMPLO DEL ROBOT

$$\Gamma(s,a,s') = \mathbb{E}\left[R_{t+1} \middle| S_{t}=s, A_{t}=a, S_{t+1}=s'\right]$$

Tomado de los slides del libro de Sutton

EJEMPLO MÁS COMPLEJO - ALQUILER DE AUTOS

- Dos terminales, A y B.
- Un máximo de 20 autos por terminal.
- Puedo mover máximo en cada noche 5 autos de una términal a otra. Cada auto cuesta 2\$ moverlo.
- La cantidad de autos demandados en cada una de las terminales sigue una distribución de Poisson de medias 3 y 4 respectivamente.
- La cantidad de autos *retornados* en cada una de las terminales sigue una distribución de Poisson de medias 2 y 3 respectivamente.
- Cada auto alquilado da una ganancia de 10\$.
- Si alguna de las dos terminales se queda sin autos se acaba el negocio.

EJERCICIO 1.3 - RATA 5.14 - PAPEL

- 5.13 Una rata está atrapada en un laberinto. Inicialmente puede elegir una de tres sendas. Si elige la primera se perderá en el laberinto y luego de 12 minutos volverá a su posición inicial; si elige la segunda volverá a su posición inicial luego de 14 minutos; si elige la tercera saldrá del laberinto luego de 9 minutos. En cada intento, la rata elige con igual probabilidad cualquiera de las tres sendas. Calcular la esperanza del tiempo que demora en salir del laberinto.
- 5.14 Una rata está atrapada en un laberinto. Inicialmente elige al azar una de tres sendas. Cada vez que vuelve a su posición inicial elige al azar entre las dos sendas que no eligió la vez anterior. Por la primera senda, retorna a la posición inicial en 8 horas, por la segunda retorna a la posición inicial en 13 horas, por la tercera sale del laberinto en 5 horas. Calcular la esperanza del tiempo que tardará en salir del laberinto.

INTRODUCCIÓN A OPENAI GYM

- Introducción General
- Para que "jueguen": Mountain
- Ejemplo del Robot (Batería)

INTRODUCCIÓN A OPENAI GYM

- ¿Cómo instalarlo? ubuntu 18.04, Python, jupyter, open ai gym
 - Linux:
 - sudo apt-get update
 - sudo apt-get install python3 python3-pip ipython3 python3-fontconfig
 - sudo apt-get install libglu1-mesa-dev freeglut3-dev mesa-common-dev python-opengl
 - pip3 install numpy pandas matplotlib jupyter gym
 - Windows:
 - Virtual Box:
 - instalar ubuntu 16.04 y usar el instructivo de la parte de Linux
 - WSL:(inspirado en https://github.com/openai/gym/issues/11#issuecomment-242950165)
 - instalar Windows Subsystem for Linux (WSL): https://docs.microsoft.com/en-us/windows/wsl/install-win10
 - instalar ubuntu 16.04 LTS para WSL yendo a Microsoft Store (barra de búsqueda de Windows) y buscando Ubuntu
 16.04
 - correr una consola WSL (buscar Ubuntu en la barra de búsqueda de Windows)
 - realizar los mismos pasos que en el instructivo de linux en esa consola
 - instalar vcXsrv/xming;
 - correr vcXsrv (elegir one large window); tipear en la consola de comandos de WSL: export DISPLAY=:0
 - Correr jupyter: jupyter notebook --no-browser
 - Google colab: ir a google colab, https://colab.research.google.com/notebooks/welcome.ipynb#recent=true, elegir la solapa Github y buscar en https://github.com/javkrei/aprendizaje-reforzado-austral

LECTURAS RECOMENDADAS

- AlphaGo paper: https://ai.google/research/pubs/pub44806
- Brief Survey of Deep RL: https://arxiv.org/pdf/1708.05866.pdf
- Sutton capítulo 1 para una introducción, capítulo 16 para aplicaciones, 14 y 15 para relación con psicología y neurociencia.