Math 540 Homework 6 Stephen Cornelius

- 1. Let V be a vector space and $V_j < V, j = 1, ..., k$ subspaces.
 - (a) **Definition:** We say that V is a direct sum (denoted $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$) of the subspaces V_j if every $v \in V$ can be written uniquely as $v = v_1 + v_2 + \cdots + v_k$ with $v_j \in V_j$.
 - (b) Proof. $(1 \implies 2)$: Let V be the direct sum of the subspaces V_j . Then for any $v \in V$, there exist unique $v_j \in V_j$ such that $v = v_1 + v_2 + \cdots + v_k$. Define the projectors $P_j : V \to V_j$ by $P_j(v) = v_j$. Then we have

$$(P_1 + P_2 + \dots + P_k)(v) = P_1(v) + P_2(v) + \dots + P_k(v) = v_1 + v_2 + \dots + v_k = v$$

so $Id_V = P_1 + P_2 + \cdots + P_k$. Furthermore, for $i \neq j$, we have

$$P_i(P_i(v)) = P_i(v_i) = 0,$$

since $v_j \in V_j$ and P_i projects onto V_i . Thus, $P_i \circ P_j = 0$ for $i \neq j$.

 $(2 \implies 1)$: Now suppose there exist projectors P_i on the subspaces V_i such that $Id_V = P_1 + P_2 + \cdots + P_k$ and $P_i \circ P_j = 0$ for $i \neq j$. For any $v \in V$, we can write

$$v = Id_V(v) = (P_1 + P_2 + \dots + P_k)(v) = P_1(v) + P_2(v) + \dots + P_k(v).$$

Since each $P_i(v) \in V_i$, this expresses v as a sum of elements from the subspaces V_i . To show uniqueness, suppose

$$v = v_1 + v_2 + \dots + v_k = w_1 + w_2 + \dots + w_k$$

with $v_i, w_i \in V_i$. Applying P_i to both sides, we get

$$P_i(v) = P_i(v_1 + \dots + v_k) = v_i,$$

and similarly

$$P_i(v) = P_i(w_1 + \dots + w_k) = w_i.$$

Hence, $v_j = w_j$ for all j, proving uniqueness. Therefore, $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$.

(c) Proof. (1 \Longrightarrow 2): Suppose $V = \bigoplus_{\lambda \in \operatorname{spec}(T)} V_{\lambda}$. For each eigenvalue λ , define the projector $P_{\lambda}: V \to V_{\lambda}$ by projecting onto the eigenspace V_{λ} . Then, by the direct sum property, we have

$$Id_V = \sum_{\lambda \in \operatorname{spec}(T)} P_{\lambda},$$

and for $\lambda \neq \mu$, $P_{\lambda} \circ P_{\mu} = 0$. Furthermore, for any $v \in V$,

$$T(v) = T\left(\sum_{\lambda} P_{\lambda}(v)\right) = \sum_{\lambda} T(P_{\lambda}(v)) = \sum_{\lambda} \lambda P_{\lambda}(v),$$

so

$$T = \sum_{\lambda} \lambda P_{\lambda}.$$

 $(2 \implies 1)$: Now suppose there exist projectors P_{λ} satisfying the given conditions. For any $v \in V$, we can write

$$v = Id_V(v) = \sum_{\lambda} P_{\lambda}(v).$$

Each $P_{\lambda}(v) \in V_{\lambda}$, so this expresses v as a sum of elements from the eigenspaces. To show uniqueness, suppose

$$v = v_{\lambda_1} + v_{\lambda_2} + \dots + v_{\lambda_k} = w_{\lambda_1} + w_{\lambda_2} + \dots + w_{\lambda_k},$$

with $v_{\lambda_i}, w_{\lambda_i} \in V_{\lambda_i}$. Applying P_{μ} to both sides, we get

$$P_{\mu}(v) = P_{\mu}(v_{\lambda_1} + \dots + v_{\lambda_k}) = v_{\mu},$$

and similarly

$$P_{\mu}(v) = P_{\mu}(w_{\lambda_1} + \dots + w_{\lambda_k}) = w_{\mu}.$$

Hence, $v_{\mu} = w_{\mu}$ for all μ , proving uniqueness. Therefore, $V = \bigoplus_{\lambda \in \operatorname{spec}(T)} V_{\lambda}$. Moreover, for each $\mu \in \operatorname{spec}(T)$, we can express P_{μ} as

$$P_{\mu} = \prod_{\substack{\lambda \in \text{spec}(T) \\ \lambda \neq \mu}} \left(\frac{T - \lambda \cdot Id}{\mu - \lambda} \right),$$

which follows from the properties of the projectors and the definition of the eigenspaces.

- 2. Let \mathbb{F} be a field.
 - (a) **Definition:** The ring $\mathbb{F}[X]$ of polynomials with coefficients in \mathbb{F} is the set of all expressions of the form

$$p(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0,$$

where $n \ge 0$, $a_i \in \mathbb{F}$, and X is an indeterminate. Addition and multiplication are defined in the usual way for polynomials.

(b) *Proof.* To show that $\dim(\mathbb{F}[X])$ is infinite, we need to demonstrate that there is no finite basis for the vector space $\mathbb{F}[X]$. Consider the set of monomials $\{1, X, X^2, X^3, \ldots\}$. This set is linearly independent because no finite linear combination of these monomials can equal zero unless all coefficients are zero.

Furthermore, any polynomial in $\mathbb{F}[X]$ can be expressed as a finite linear combination of these monomials. Since we can find infinitely many linearly independent vectors (the monomials), it follows that the dimension of $\mathbb{F}[X]$ is infinite.

- (c) Proof. Let R be a ring and R[X] the ring of polynomials with coefficients in R.
 - i. Let $f, g \in R[X]$ with $\deg(f) = m$ and $\deg(g) = n$. Then we can write

$$f = a_m X^m + a_{m-1} X^{m-1} + \dots + a_0,$$

$$q = b_n X^n + b_{n-1} X^{n-1} + \dots + b_0$$

where $a_m, b_n \neq 0$. The product fg is given by

$$fq = (a_m X^m + \cdots)(b_n X^n + \cdots) = a_m b_n X^{m+n} + (\text{lower degree terms}).$$

If the characteristic of R is such that $a_m b_n \neq 0$, then $\deg(fg) = m + n$. However, if $a_m b_n = 0$, then the highest degree term may cancel out, leading to $\deg(fg) < m + n$. Thus, we have

$$\deg(fg) \le \deg(f) + \deg(g).$$

In an integral $a_m \times b_n = 0$ implies that either $a_m = 0$ or $b_n = 0$ by definition, which contradicts our assumption. Therefore, in an integral domain, we have equality:

$$\deg(fg) = \deg(f) + \deg(g).$$

ii. Let $f, g \in R[X]$ with $\deg(f) = m$ and $\deg(g) = n$. Without loss of generality, assume $m \ge n$. Then we can write

$$f = a_m X^m + a_{m-1} X^{m-1} + \dots + a_0,$$

$$g = b_n X^n + b_{n-1} X^{n-1} + \dots + b_0,$$

The sum f + g is given by

$$f + g = (a_m X^m + \dots) + (b_n X^n + \dots)$$
$$= a_m X^m + \dots + b_n X^n + \dots$$

If $a_m + b_n \neq 0$, then $\deg(f + g) = m$. If $a_m + b_n = 0$, then the highest degree term cancels out, and we need to consider the next highest degree terms. In any case, we have $\deg(f+g) \leq \max(\deg(f), \deg(g))$, as desired.

3. Let $\varphi: R \to S$ be a homomorphism of rings.

- (a) **Definition:** The kernel of a ring homomorphism $\varphi : R \to S$ is defined as $\ker(\varphi) = \{a \in R \mid \varphi(a) = 0\}.$
- (b) Proof. To show that φ is injective if and only if $\ker(\varphi) = \{0\}$, we proceed as follows: (\Longrightarrow) Suppose φ is injective. Then for any $a \in \ker(\varphi)$, we have $\varphi(a) = 0$. Since φ is injective, the only element that maps to 0 in S is 0 itself. Therefore, a = 0, and thus $\ker(\varphi) = \{0\}$. (\Longleftrightarrow) Now suppose $\ker(\varphi) = \{0\}$. To show that φ is injective, let $a, b \in R$ such that $\varphi(a) = \varphi(b)$. Then,

$$\varphi(a) - \varphi(b) = 0 \implies \varphi(a - b) = 0.$$

Since $a - b \in \ker(\varphi)$ and $\ker(\varphi) = \{0\}$, it follows that a - b = 0, or equivalently, a = b. Thus, φ is injective.

Therefore, we conclude that φ is injective if and only if $\ker(\varphi) = \{0\}$.

- 4. Suppose R is a ring.
 - (a) **Definition:** A ring R is said to be a ring with unit (or unital ring) if there exists an element $1_R \in R$ such that for all $a \in R$, we have $1_R \cdot a = a \cdot 1_R = a$.
 - (b) *Proof.* Suppose that $a \in R$ is invertible. Suppose, for a contradiction, that there exist $b, c \in R$ inverses for a with $b \neq c$. Then we have that

$$1_{R} = a \cdot b$$

$$\implies c \cdot 1_{R} = c \cdot (a \cdot b)$$

$$c = (c \cdot a) \cdot b$$

$$c = 1_{R} \cdot b$$

$$\implies c = b$$

a contradiction as we assumed that $b \neq c$. Therefore we have that for $a \in R$ invertible there exists a unique inverse.

(c) The invertible elements of \mathbb{Z}_{12} will be all of the elements that are coprime to 12. These elements are 1, 5, 7, and 11. Thus, the invertible elements in the ring \mathbb{Z}_{12} are $\{1, 5, 7, 11\}$. The inverses are as follows:

Element	Inverse
1	1
5	5
7	7
11	11

- 5. Let $\varphi: R \to S$ be a homomorphism of rings.
 - (a) **Definition:** A subset $R' \subseteq R$ is called a subring of R if R' is itself a ring under the operations of addition and multiplication defined on R and is nonempty.
 - (b) *Proof.* First we show that $\text{Im}(\varphi)$ is a subring of S. To do this we will show that for any $x, y \in \text{Im}(\varphi)$, $x y \in \text{Im}(\varphi)$ and $xy \in \text{Im}(\varphi)$.

Let $x, y \in \text{Im}(\varphi)$. Then there exist $a, b \in R$ such that $\varphi(a) = x$ and $\varphi(b) = y$. We have that

$$x-y=\varphi(a)-\varphi(b) \quad \stackrel{\varphi \text{ is homomorphism}}{=} \quad \varphi(a-b) \in \operatorname{Im}(\varphi),$$

and

$$xy = \varphi(a)\varphi(b) \quad \stackrel{\varphi \text{ is homomorphism}}{=} \quad \varphi(ab) \in \operatorname{Im}(\varphi).$$

Thus, $\text{Im}(\varphi)$ is closed under subtraction and multiplication, and since it is nonempty (it contains $\varphi(0_R) = 0_S$), it is a subring of S.

Next, we show that $ker(\varphi)$ is a subring of R. Recall that

$$\ker(\varphi) = \{ a \in R \mid \varphi(a) = 0_S \}.$$

Let $a, b \in \ker(\varphi)$. Then

$$\varphi(a-b) = \varphi(a) - \varphi(b) = 0_S - 0_S = 0_S,$$

so $a - b \in \ker(\varphi)$. Also,

$$\varphi(ab) = \varphi(a)\varphi(b) = 0_S \cdot 0_S = 0_S,$$

so $ab \in \ker(\varphi)$. Since $\ker(\varphi)$ contains 0_R and is closed under subtraction and multiplication, it is a subring of R.