Greither unit undex

Giacomo Borin

Università di Trento

15 aprile 2021

Introduzione

In questo lavoro ho rielaborato l'articolo:

Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: *Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996.*Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk

Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in SIGNE

Introduzione

In questo lavoro ho rielaborato l'articolo:

Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996. Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk

Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in SDQL

Introduzione

In questo lavoro ho rielaborato l'articolo:

Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996. Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk

Completando i prerequisiti richiesti per la comprensione e implementando alcuni calcoli in STOPE

Section 1

Prereqisiti

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibil

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibili

Primo oggetto di interesse: E_K

- ζ_n l'n-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibili

Primo oggetto di interesse: E_K

- ζ_n l'*n*-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_K=O_K^*$, cioè l'insieme degli elementi invertibili

Primo oggetto di interesse: E_K

- ζ_n l'n-esima radice ciclotomica (con $n \not\equiv 2 \mod 4$)
- $K = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$
- $O_K = \mathbb{Z}[\zeta_n + \zeta_n^{-1}]$
- ullet $E_{\mathcal{K}}=O_{\mathcal{K}}^*$, cioè l'insieme degli elementi invertibili

• $\zeta_n + \zeta_n^{-1}$ è reale:

$$\overline{\zeta_n + \zeta_n^{-1}} = \overline{\zeta_n} + \overline{\zeta_n}^{-1} = \zeta_n^{-1} + \zeta_n$$

• L'indice $[\mathbb{Q}(\zeta_n):K]$ vale 2, ed è quindi minimale. Il suo polinomio minimo è:

$$f(x) = (x - \zeta)(x - \zeta^{-1}) = x^2 - (\zeta + \zeta^{-1})x + 1$$

• $\zeta_n + \zeta_n^{-1}$ è reale:

$$\overline{\zeta_n + \zeta_n^{-1}} = \overline{\zeta_n} + \overline{\zeta_n}^{-1} = \zeta_n^{-1} + \zeta_n$$

• L'indice $[\mathbb{Q}(\zeta_n) : K]$ vale 2, ed è quindi minimale. Il suo polinomio minimo è:

$$f(x) = (x - \zeta)(x - \zeta^{-1}) = x^2 - (\zeta + \zeta^{-1})x + 1$$

• $\zeta_n + \zeta_n^{-1}$ è reale:

$$\overline{\zeta_n + \zeta_n^{-1}} = \overline{\zeta_n} + \overline{\zeta_n}^{-1} = \zeta_n^{-1} + \zeta_n$$

• L'indice $[\mathbb{Q}(\zeta_n) : K]$ vale 2, ed è quindi minimale. Il suo polinomio minimo è:

$$f(x) = (x - \zeta)(x - \zeta^{-1}) = x^2 - (\zeta + \zeta^{-1})x + 1$$

• Un sottocampo con queste caratteristiche è unico:

• Un sottocampo con queste caratteristiche è unico:

Proposizione

Il gruppo di Galois di K è isomorfo a $\mathbb{Z}_n^*/\{\pm 1\}$

D'ora in poi indicheremo $G_0:=\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ e $G:=\operatorname{Gal}(K/\mathbb{Q})$

Proposizione

Il gruppo di Galois di K è isomorfo a $\mathbb{Z}_n^*/\{\pm 1\}$

D'ora in poi indicheremo $G_0 := \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ e $G := \operatorname{Gal}(K/\mathbb{Q})$

Il numero delle classi

Definizione

Se $\mathbb K$ è un campo numerico possiamo definire l'**ideal class group** come il quoziente $\mathcal F_{\mathbb K}/\mathcal P_{\mathbb K}$ dove:

 $\mathcal{F}_{\mathbb{K}}$ è il gruppo degli ideali frazionari non nulli di $O_{\mathbb{K}}$,

 $\mathcal{P}_{\mathbb{K}}$ è il gruppo degli ideali principali

Si può mostrare che questo gruppo è finito e definiamo il **numero delle** classi come:

$$h_K = |\mathcal{F}_{\mathbb{K}}/\mathcal{P}_{\mathbb{K}}|$$

Il numero delle classi

Definizione

Se \mathbb{K} è un campo numerico possiamo definire l'**ideal class group** come il quoziente $\mathcal{F}_{\mathbb{K}}/\mathcal{P}_{\mathbb{K}}$ dove:

 $\mathcal{F}_{\mathbb{K}}$ è il gruppo degli ideali frazionari non nulli di $O_{\mathbb{K}}$,

 $\mathcal{P}_{\mathbb{K}}$ è il gruppo degli ideali principali

Si può mostrare che questo gruppo è finito e definiamo il **numero delle** classi come:

$$h_K = |\mathcal{F}_{\mathbb{K}}/\mathcal{P}_{\mathbb{K}}|$$

Unità circolari

Se considero il gruppo generato da $\{-1,\zeta,\,1-\zeta^a \text{ for } a=1,...,n-1\}$ e lo interseco con E_K ottengo il gruppo delle **unità circolari**

Sinnot ha mostrato che esiste $a \in \mathbb{Z}$ tale che:

$$[E_K:C_K]=2^ak_K$$

Unità circolari

Se considero il gruppo generato da $\{-1,\zeta,\,1-\zeta^a \text{ for } a=1,...,n-1\}$ e lo interseco con E_K ottengo il gruppo delle **unità circolari**

Sinnot ha mostrato che esiste $a \in \mathbb{Z}$ tale che:

$$[E_K:C_K]=2^ak_K$$

Obbiettivo dell'articolo

Costruire esplicitamente un gruppo C' con indice $[E_K : C']$ finito che sia ottimale

Caratteri di Dirichlet

Definizione

Dato un gruppo X e un campo $\mathbb F$ un carattere di Dirchlet è un omomorfismo di gruppi $\chi:X\to\mathbb F^*$

Possiamo anche usare l'isomorfismo $G_0 \simeq \mathbb{Z}_n^*$ e definire χ come omomorfismo di anelli da \mathbb{Z}_n in \mathbb{C} (con χ nulla sugli elementi invertibili)

Il 'periodo' di un caratte è detto conduttore (in inglese ${\bf conductor})$ e si indica con f_χ

Caratteri di Dirichlet

Definizione

Dato un gruppo X e un campo $\mathbb F$ un carattere di Dirchlet è un omomorfismo di gruppi $\chi:X\to\mathbb F^*$

Possiamo anche usare l'isomorfismo $G_0 \simeq \mathbb{Z}_n^*$ e definire χ come omomorfismo di anelli da \mathbb{Z}_n in \mathbb{C} (con χ nulla sugli elementi invertibili)

Il 'periodo' di un caratte è detto conduttore (in inglese ${\bf conductor})$ e si indica con f_χ

Caratteri di Dirichlet

Definizione

Dato un gruppo X e un campo $\mathbb F$ un carattere di Dirchlet è un omomorfismo di gruppi $\chi:X\to\mathbb F^*$

Possiamo anche usare l'isomorfismo $G_0 \simeq \mathbb{Z}_n^*$ e definire χ come omomorfismo di anelli da \mathbb{Z}_n in \mathbb{C} (con χ nulla sugli elementi invertibili)

Il 'periodo' di un caratte è detto conduttore (in inglese ${\bf conductor}$) e si indica con f_χ

Definizione

Dati un gruppo moltiplicativo X e un anello R possiamo definire l'anello gruppale R[X] come l'R-modulo libero con base X, sul quale definiamo un operazione di moltiplicazione inducendola da quella di X

Nel nostro caso useremo $\mathbb{Z}[G_0]$ e $\mathbb{Z}[G]$, sui quali possiamo sempre esterndere il carattere χ (perchè definito sulla base)

Definizione

Dati un gruppo moltiplicativo X e un anello R possiamo definire l'anello gruppale R[X] come l'R-modulo libero con base X, sul quale definiamo un operazione di moltiplicazione inducendola da quella di X

Nel nostro caso useremo $\mathbb{Z}[G_0]$ e $\mathbb{Z}[G]$, sui quali possiamo sempre esterndere il carattere χ (perchè definito sulla base)

Notazione

Dati $z \in \mathbb{Q}(\zeta)$ e $f \in \mathbb{Z}[G_0]$ è ben definita la nutazione esponenziale x^f , infatti dati $g \in G_0$ abbiamo una buona definizione per $z^g = g(z)$ e

Notazione

Dati $z \in \mathbb{Q}(\zeta)$ e $f \in \mathbb{Z}[G_0]$ è ben definita la nutazione esponenziale x^f , infatti dati $g \in G_0$ abbiamo una buona definizione per $z^g = g(z)$ e $z^{g_1+g_2} = z^{g_1}z^{g_2}$

Section 2

La costruzione di Greither

La funzione β

Dato $n = p_1^{e_1} \cdots p_s^{e_s}$ definiamo:

- $S = \{1, ..., n\}$
- $\mathcal{P}_S = \{I \mid I \subsetneq S\}$
- $n_I = \prod_{i \in I} p_i^{e_i}$

Consideriamo una funzione

$$\beta: \mathcal{P}_S \to \mathbb{Z}[G_0]$$

che utilizzeremo per costruire il sottogruppo cercato.

Definizione

 β si dice moltiplicativa se $\beta(\emptyset)=1$ e dati I,J con intersezione vuota abbiamo $\beta(I\cup J)=\beta(I)\beta(J)$.

La funzione β

Dato $n = p_1^{e_1} \cdots p_s^{e_s}$ definiamo:

- $S = \{1, ..., n\}$
- $\mathcal{P}_S = \{I \mid I \subsetneq S\}$
- $n_I = \prod_{i \in I} p_i^{e_i}$

Consideriamo una funzione

$$\beta: \mathcal{P}_{\mathcal{S}} \to \mathbb{Z}[G_0]$$

che utilizzeremo per costruire il sottogruppo cercato.

Definizione

 β si dice moltiplicativa se $\beta(\emptyset)=1$ e dati I,J con intersezione vuota abbiamo $\beta(I\cup J)=\beta(I)\beta(J)$.

La funzione β

Dato $n = p_1^{e_1} \cdots p_s^{e_s}$ definiamo:

- $S = \{1, ..., n\}$
- $\mathcal{P}_S = \{I \mid I \subsetneq S\}$
- $n_I = \prod_{i \in I} p_i^{e_i}$

Consideriamo una funzione

$$\beta: \mathcal{P}_{\mathcal{S}} \to \mathbb{Z}[G_0]$$

che utilizzeremo per costruire il sottogruppo cercato.

Definizione

 β si dice moltiplicativa se $\beta(\emptyset) = 1$ e dati I, J con intersezione vuota abbiamo $\beta(I \cup J) = \beta(I)\beta(J)$.

Le unità di Greither

Definiamo ora, per ogni $a \in (1, n/2)$ coprimo con n l'unità reale:

$$\xi_{\mathsf{a}}(\beta) := \zeta^{d_{\mathsf{a}}(\beta)} \frac{\sigma_{\mathsf{a}}(z(\beta))}{z(\beta)} \mathsf{con} \ d_{\mathsf{a}}(\beta) = (1-a)\frac{t}{2}$$

dove abbiamo che

- $z_l := 1 \zeta^{n_l}$
- $z(\beta) := \prod_{i \in I} z_I^{\beta(I)}$
- $\sigma_a(\zeta) = \zeta^a$

Il gruppo di Greither

 C_{β} è il gruppo generato da:

$$-1 \ {\sf e} \ \xi_{\sf a}(\beta) \ {\sf per} \ 1 < {\sf a} < {\sf n}/2 \ {\sf e} \ ({\sf a},{\sf n}) = 1$$

Per l'indice useremo la notazione

$$[E_K:C_\beta]=h_Ki_\beta$$

Il gruppo di Greither

 C_{β} è il gruppo generato da:

$$-1 \ {\sf e} \ \xi_{\sf a}(\beta) \ {\sf per} \ 1 < {\sf a} < {\sf n}/2 \ {\sf e} \ ({\sf a},{\sf n}) = 1$$

Per l'indice useremo la notazione

$$[E_K:C_\beta]=h_Ki_\beta$$

Buona definizione di C_{β}

Possiamo limitarci a definire β su $\mathbb{Z}[G]$ e poi considerare un sollevamento (in inglese lift)

Lemma

Se due funzioni β_1 e β_2 coincidono su $\mathbb{Q}(\zeta_{n/n_I})^a$ per ogni $I \in \mathcal{P}_S$ allora le unità $\xi_a(\beta)$ sono uniche a meno del segno

$$^{a}\zeta_{n/n_{l}}=\zeta_{n}^{n_{l}}$$

Buona definizione di C_{β}

Possiamo limitarci a definire β su $\mathbb{Z}[G]$ e poi considerare un sollevamento (in inglese lift)

Lemma

Se due funzioni β_1 e β_2 coincidono su $\mathbb{Q}(\zeta_{n/n_l})^a$ per ogni $I \in \mathcal{P}_S$ allora le unità $\xi_a(\beta)$ sono uniche a meno del segno

$$^{a}\zeta_{n/n_{I}}=\zeta_{n}^{n_{I}}$$

Teorema

Data una funzione $\beta: \mathcal{P}_S \to \mathbb{Z}[G]$ segue che

$$i_{\beta} = \prod_{\substack{\chi \neq 1 \\ pari}} \left(\sum_{\substack{I \in \mathcal{P}_{\mathcal{S}} \\ (f_{\chi}, n_{I}) = 1}} \phi(n_{I}) \cdot \chi(\beta(I)) \cdot \prod_{i \notin I} (1 - \chi^{-1}(p_{i})) \right)$$
(1)

Dove abbiamo che

- \bullet ϕ è la funzione di Eulero
- χ si dice *pari* se $\chi(-1) = 1$
- Con χ^{-1} si intende il carattere che vale $1/\chi$ sugli elementi invertibili

Teorema

Data una funzione $\beta: \mathcal{P}_S \to \mathbb{Z}[G]$ segue che

$$i_{\beta} = \prod_{\substack{\chi \neq 1 \\ pari}} \left(\sum_{\substack{I \in \mathcal{P}_{\mathcal{S}} \\ (f_{\chi}, n_{I}) = 1}} \phi(n_{I}) \cdot \chi(\beta(I)) \cdot \prod_{i \notin I} (1 - \chi^{-1}(p_{i})) \right)$$
(1)

Dove abbiamo che:

- ullet ϕ è la funzione di Eulero
- χ si dice *pari* se $\chi(-1) = 1$
- \bullet Con χ^{-1} si intende il carattere che vale $1/\chi$ sugli elementi invertibili

Dato un campo numerico L consideriamo un insieme di unità indipendenti $\{\epsilon_1,...,\epsilon_r\}\subset L$ e siano $\{\sigma_1,...,\sigma_{r+1}\}$ le sue immersioni (embedding) in $\mathbb R$ o $\mathbb C$. Poniamo δ_j uguale a 1 se σ_j è reale e a 2 altrimenti. Allora il suo **regolatore** è definito come

$$R_L(\epsilon_1, ..., \epsilon_r) = |\det(\delta_i \log |\epsilon_j^{\sigma_i}|)_{1 \le i, j \le r}|$$

Lemma

Dati i gruppi $A \subset B$ di indice finito e generati da unità indipendenti di L vale che:

$$[B:A] = \frac{R_L(\epsilon_1, ..., \epsilon_r)}{R_L(\mu_1, ..., \mu_r)}$$

Dato un campo numerico L consideriamo un insieme di unità indipendenti $\{\epsilon_1,...,\epsilon_r\}\subset L$ e siano $\{\sigma_1,...,\sigma_{r+1}\}$ le sue immersioni (embedding) in $\mathbb R$ o $\mathbb C$. Poniamo δ_j uguale a 1 se σ_j è reale e a 2 altrimenti. Allora il suo **regolatore** è definito come

$$R_L(\epsilon_1, ..., \epsilon_r) = |\det(\delta_i \log |\epsilon_j^{\sigma_i}|)_{1 \le i, j \le r}|$$

Lemma

Dati i gruppi $A \subset B$ di indice finito e generati da unità indipendenti di L vale che:

$$[B:A] = \frac{R_L(\epsilon_1, ..., \epsilon_r)}{R_L(\mu_1, ..., \mu_r)}$$
 (2)

Usando l'ultimo lemma possiamo vedere che per dimostrare il teorema basta mostrare che

$$R(\xi_a(\beta)) = \pm R_K h_K A$$

con (a, n) = 1, 1 < a < n/2 e A è la parte destra dell'equazione 1.

Inoltre poi si procede (in modo molto tecnico) come nel capitolo 8 di [4] e usando:

Formula

$$\sum_{(a,n)=1} \chi^{-1}(a) \log |z^{\sigma_a \gamma}| = \chi(\gamma) \sum_{(a,n)=1} \chi^{-1}(a) \log |z^{\sigma_a}|$$
 (3)

Usando l'ultimo lemma possiamo vedere che per dimostrare il teorema basta mostrare che

$$R(\xi_a(\beta)) = \pm R_K h_K A$$

con (a, n) = 1, 1 < a < n/2 e A è la parte destra dell'equazione 1. Inoltre poi si procede (in modo molto tecnico) come nel capitolo 8 di [4] e usando:

Formula

$$\sum_{(a,n)=1} \chi^{-1}(a) \log |z^{\sigma_a \gamma}| = \chi(\gamma) \sum_{(a,n)=1} \chi^{-1}(a) \log |z^{\sigma_a}|$$
 (3)

Indice per β moltiplicativa

Teorema

Se assumiamo che $\beta: \mathcal{P}_S \to \mathbb{Z}[G]$ sia moltiplicativa abbiamo che:

$$i_{\beta} = \prod_{\substack{\chi \neq 1 \\ pari}} \left(\prod_{\substack{p_i \nmid f_{\chi} \\ pari}} \left(\phi(p_i^{e_i}) \cdot \chi(\beta(i)) + 1 - \chi^{-1}(p_i) \right) \right) \tag{4}$$

Dove $\beta(i)$ indica $\beta(\{i\})$

L'indice di Ramachandra

Se poniamo β costante ad 1 otteniamo l'indice delle unità per Ramachandra da [2]:

$$[E_{K}:C_{R}] = h_{K} \cdot \prod_{\substack{\chi \neq 1 \text{ even}}} \left(\prod_{p_{i} \nmid f_{\chi}} \left(\phi(p_{i}^{e_{i}}) + 1 - \chi(p_{i}) \right) \right)$$
 (5)

Dove C_R è il gruppo generato da -1 e le unità della forma

$$\xi_a := \zeta^{d_a} \prod_{I \in \mathcal{P}_S} \frac{1 - \zeta^{an_I}}{1 - \zeta^{n_I}} \text{ con } d_a = \frac{1}{2} (1 - a) \sum_{I \in \mathcal{P}_S} n_I$$

Bibliografia

- Cornelius Greither. "Improving Ramachandra's and Levesque's unit index". English. In: Number theory. Fifth conference of the Canadian Number Theory Association, Ottawa, Ontario, Canada, August 17–22, 1996. Providence, RI: American Mathematical Society, 1999, pp. 111–120. ISBN: 0-8218-0964-4/pbk.
- K. Ramachandra. "On the units of cyclotomic fields". English. In: *Acta Arith.* 12 (1966), pp. 165–173. ISSN: 0065-1036; 1730-6264/e.
- W. Sinnott. On the Stickelberger ideal and the circular units of an abelian field. English. Theorie des nombres, Semin. Delange-Pisot-Poitou, Paris 1979-80, Prog. Math. 12, 277-286 (1981). 1981.
- Lawrence C. Washington. *Introduction to cyclotomic fields*. English. Vol. 83. Springer, New York, NY, 1982.