

AUTONOMOUS NAVIGATION

Robot Motion Planning Autonomous Motion Generation

A * algorithm

[http://www.policyalmanac.org/games/aStarTutorial.htm] $start \rightarrow n \quad n \rightarrow qoal$

Path with shortest cost, f(n)=g(n)+h(n)

Robot Motion Planning Autonomous Motion Generation

State Space & Search Problem

- Search Tree
- Each state, Node
- Connection between states, Link
- Start State
- Goal State

Tower of Hanoi

State space in Hanoi Tower

Autonomous Navigation

Adaptive Monte Carlo Localization

- https://en.wikipedia.org/wiki/Monte_Carlo_lo calization
- http://wiki.ros.org/amcl
- B) Autonomous Navigation of a Known Map with TurtleBot
 - http://wiki.ros.org/turtlebot_navigation/Tutorials/ indigo/Autonomously%20navigate%20in%20a%20 known%20map

Autonomous Navigation [Robot]

- 1. Bring up
 - \$ roslaunch jupiterobot_bringup jupiterobot_bringup.launch
- 2. Launch AMCL with scanned map
 - [RGB-D] \$ roslaunch jupiterobot_navigation amcl_demo.launch map_file:=/home/mustar/catkin_ws/maps/test1.yaml
 - [Lidar] \$ roslaunch jupiterobot_navigation rplidar_amcl_demo.launch map_file:=/home/mustar/catkin_ws/maps/test1.yaml
- 3. Use RViz for navigation visualization
 - \$ roslaunch turtlebot_rviz_launchers view_navigation.launch
- 4. Set robot current position in RViz
 - Click the "2D Pose Estimate" button
 - Click and drag on the map for the current robot location and orientation
- 5. Send a navigation goal with RViz
 - Click the "2D Nav Goal" button
 - Click and drag on the map for the goal location and orientation

Autonomous Navigation [Robot]

- C) Source code implementation
 - Node
 - /rc-home-edu-learn-ros/rchomeedu_navigation/scripts/navigation.py
 - Navigation target: Location A
 - 1. Bring up
 - \$ roslaunch jupiterobot_bringup jupiterobot_bringup.launch
 - 2. Launch AMCL with scanned map
 - [RGB-D] \$ roslaunch jupiterobot_navigation amcl_demo.launch map file:=/home/mustar/catkin ws/maps/test1.yaml
 - [Lidar] \$ roslaunch jupiterobot_navigation rplidar_amcl_demo.launch map_file:=/home/mustar/catkin_ws/maps/test1.yaml
 - 3. Use RViz for navigation visualization
 - \$ roslaunch turtlebot_rviz_launchers view_navigation.launch
 - 4. Determine and update the coordinate of the goal location
 - Click the "Publish Point" button and move the cursor to a desired goal location on map (do not click on the map)
 - Record the first two numbers (x, y) on the bottom left corner of RViz window
 - Update the numbers (x, y) as "Location A" in /rc-home-edu-learnros/rchomeedu_navigation/scripts/navigation.py
 - 5. Launch the navigation code
 - \$ roslaunch rchomeedu_navigation navigation.launch
 - Set robot current position with "2D Pose Estimate"

Jupiter Robot in Gazebo [Simulation]

- Launch robot in virtual world
 - \$ roslaunch jupiterobot_gazebo jupiterobot_world.launch world_file:=/home/mustar/catkin_ws/worlds/Jupiter_Robot _Office.world
- Simulation model parameters
 - stacks: h (hexagon plates), c (circular plates) | default h
 - lasers: n (none), r (rplidar), h (hokuyo) | default r
 - arms: n (none), 5 (5 DOF arm), 7 (7 DOF arm) | default 5
 - heads: n (none), 1 (1 DOF head), 2 (2 DOF head) | default 1

Navigation: Autonomous Navigation [Simulation]

- 1. Launch AMCL with scanned map
 - \$ roslaunch jupiterobot_gazebo amcl_demo.launch map_file:=/home/mustar/catkin_ws/maps/JupiterOfficeSim.yaml
- 2. Use RViz for navigation visualization
 - \$ roslaunch turtlebot_rviz_launchers view_navigation.launch
- 3. Set robot current position in RViz
 - Click the "2D Pose Estimate" button
 - Click and drag on the map for the current robot location and orientation
- 4. Send a navigation goal with RViz
 - Click the "2D Nav Goal" button
 - Click and drag on the map for the goal location and orientation

Navigation: Autonomous Navigation [Simulation]

- C) Source code implementation
 - Node
 - /rc-home-edu-learn-ros/rchomeedu_navigation/scripts/navigation.py
 - · Navigation target: Location A
 - 1. Launch AMCL with scanned map
 - \$ roslaunch jupiterobot_gazebo amcl_demo.launch map_file:=/home/mustar/catkin_ws/maps/JupiterOfficeSim.yaml
 - Use RViz for navigation visualization
 - \$ roslaunch turtlebot_rviz_launchers view_navigation.launch
 - 3. Determine and update the coordinate of the goal location
 - Click the "Publish Point" button and move the cursor to a desired goal location on map (do not click on the map)
 - Record the first two numbers (x, y) on the bottom left corner of RViz window
 - Update the numbers (x, y) as "Location A" in /rc-home-edu-learn-ros/rchomeedu navigation/scripts/navigation.py
 - 4. Launch the navigation code
 - \$ roslaunch rchomeedu_navigation navigation.launch
 - Set robot current position with "2D Pose Estimate"

Autonomous Vehicle

[https://www.youtube.com/watch?v=tiwVMrTLUWg]

Exercise: Waypoints Navigation

- 1. SLAM map building
- 2. Determine waypoints at key locations
 - Location examples: Kitchen, living room, bedroom, dining room.
- 3. Autonomous waypoints navigation
 - Send the goal location command by speech