Basic Optimization Algorithms

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics

- Importance of Optimization in machine learning
- How learning differs from optimization
- Challenges in neural network optimization
- Basic Optimization Algorithms
 - 1. Stochastic Gradient Descent
 - 2. Momentum
 - 3. Nesterov Momentum
- Parameter initialization strategies
- Algorithms with adaptive learning rates
- Approximate second-order methods
- Optimization strategies and meta-algorithms

Stochastic Gradient Descent

- We have seen:
 - Gradient descent that follows the gradient of an entire training set downhill
 - This can be accelerated considerably by SGD which follows the gradient of randomly selected minibatches downhill
- SGD and its variants are the most used optimization algorithms for ML in general and deep learning in particular
 - Average gradient on a minibatch is an estimate of the gradient

Following gradient estimate downhill

Algorithm: SGD update at training iteration k

```
Require: Learning rate \epsilon_k.

Require: Initial parameter \boldsymbol{\theta}
while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}
end while
```

- A crucial parameter for Algorithm SGD is the learning rate ε
 - It is necessary to let the learning rate decrease
 - At iteration k it is ε_k

Need for decreasing learning rate

- Batch gradient descent can use a fixed learning rate
 - Since true gradient becomes small and then 0
- SGD has a source of error
 - Random sampling of m training samples
 - Sufficient condition for SGD convergence $\sum_{k=1}^{\infty} \varepsilon_k = \infty$
 - Common to decay learning rate linearly until iteration τ : ε_k =(1- α) ε_0 + $\alpha\varepsilon_{\tau}$ with α = k/τ .
 - After iteration τ , it is common to leave ϵ constant

2. The Momentum method

- SGD is a popular optimization strategy
- But it can be slow
- Momentum method accelerates learning, when:
 - Facing high curvature
 - Small but consistent gradients
 - Noisy gradients
- Algorithm accumulates moving average of past gradients and move in that direction, while exponentially decaying

Momentum definition

- Introduce variable v, or velocity
- It is the direction and speed at which parameters move through parameter space
- Momentum is physics is mass times velocity
- The momentum algorithm assumes unit mass
- A hyperparameter $\alpha \; \epsilon \; [0,\!1)$ determines exponential decay

Momentum update rule

The update rule is given by

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \varepsilon \nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \boldsymbol{\theta}), y^{(i)}) \right)$$

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}$$

- The velocity \boldsymbol{v} accumulates the gradient elements $\nabla_{\boldsymbol{\theta}} \left(\frac{1}{m} \sum_{i=1}^{m} L\left(f(x^{(i)}; \boldsymbol{\theta}\right), y^{(i)} \right)$
- The larger α is relative to ϵ , the more previous gradients affect the current direction
- The SGD algorithm with momentum is next

SGD algorithm with momentum

Stochastic gradient descent with momentum

```
Require: Learning rate \epsilon, momentum parameter \alpha.
```

Require: Initial parameter θ , initial velocity v.

```
while stopping criterion not met do
```

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Compute velocity update: $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}$

Apply update: $\theta \leftarrow \theta + v$

end while

Momentum

SGD without momentum

SGD with momentum

Nesterov Momentum

- A variant of the momentum algorithm
- An accelerated gradient method
- It applies a correction factor to the standard method

```
Require: Learning rate \epsilon, momentum parameter \alpha.

Require: Initial parameter \boldsymbol{\theta}, initial velocity \boldsymbol{v}.

while stopping criterion not met \mathbf{do}

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding labels \boldsymbol{y}^{(i)}.

Apply interim update: \tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v}

Compute gradient (at interim point): \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\tilde{\boldsymbol{\theta}}),\boldsymbol{y}^{(i)})

Compute velocity update: \boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}

end while
```