Référentiel d'observation

Un référentiel définit une référence par rapport à laquelle on détermine la position d'un point dans l'espace

Référentiel du laboratoire

Origine et axes fixes par rapport à la pièce

Référentiel terrestre

Origine au centre de la Terre

les axes pointent vers des points fixes à la surface de la Terre

Référentiel géocentrique

Origine au centre de la Terre

les axes pointent vers des étoiles lointaines

Référentiel Héliocentrique

Origine au centre de la Soleil

les axes pointent vers des étoiles lointaines

$\vec{v} = \frac{\mathrm{d} \, \overrightarrow{OM}}{}$

Vecteur accélération $d^2 \overrightarrow{OM}$ $\mathrm{d}\,\vec{v}$

Repère de Frenet

Systèmes de coordonnéees

Coordonnées cartésiennes

$$\overrightarrow{v} = \dot{x}\overrightarrow{e}_x + \dot{y}\overrightarrow{e}_y + \dot{z}\overrightarrow{e}_z$$

accélération
$$\overrightarrow{d} = \ddot{x}\vec{e}_x + \ddot{y}\vec{e}_y + \ddot{z}\vec{e}_z$$

déplacement élémentaire $d\overrightarrow{OM} = dx \overrightarrow{e}_x + dy \overrightarrow{e}_y + dz \overrightarrow{e}_z$

Cinématique

Exemples de mouvements ponctuels

$$\overrightarrow{OM} = r \overrightarrow{e}_r + z \overrightarrow{e}_z$$

vitesse $\vec{v} = \dot{r}\vec{e}_r + r\dot{\theta}\vec{e}_\theta + \dot{z}\vec{e}_z$

 $\vec{a} = (\ddot{r} - r\dot{\theta}^2)\vec{e}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\vec{e}_\theta + \ddot{z}\vec{e}_z$

déplacement élémentaire $d\overrightarrow{OM} = dr \overrightarrow{e}_r + r d\theta \overrightarrow{e}_\theta + dz \overrightarrow{e}_z$

Coordonnées sphériques

$$\overrightarrow{OM} = r \overrightarrow{e}_r$$

 $d\overrightarrow{OM} = dr \overrightarrow{e}_r + rd\theta \overrightarrow{e}_\theta + r\sin(\theta)d\varphi \overrightarrow{e}_\varphi$

Mouvement circulaire

Accélération normale, perpendiculaire à la trajectoire, vers l'intérieur du virage.

Accélération tangentielle, due à la variation de la norme du vecteur vitesse.

Mouvement d'accélération constante

Mouvement dans le plan (x,y) d'accélération En coordonnées cartésiennes, on a : $\ddot{x}\vec{e}_x + \ddot{y}\vec{e}_y = a\vec{e}_y$ Soit en projetant sur \vec{e}_x et \vec{e}_y \longleftarrow Étape importante!

$$\begin{cases} \ddot{x} = 0 \\ \ddot{y} = a \end{cases} \begin{cases} \dot{x} = K_1 = v_{0x} \\ \dot{y} = at + K_2 = at + v_{0y} \end{cases}$$

$$\begin{cases} x(t) = v_{0x}t + K_3 = v_{0x}t + x_0 \\ y(t) = \frac{1}{2}at^2 + v_{0y}t + K_4 = \frac{1}{2}at^2 + v_{0y}t + y_0 \end{cases}$$