Chapter 4

QUANTUM MECHANICS

• OBJECTIVES:

- To learn the application of Schrödinger equation to a bound particle and to learn the quantized nature of the bound particle, its expectation values and physical significance.
- To understand the tunneling behavior of a particle incident on a potential barrier.
- To understand the behavior of quantum oscillator.

An Interpretation of Quantum Mechanics

For an electromagnetic radiation, the probability of finding a photon per unit volume is related to the amplitude E of the electric field as

$$\frac{\text{PROBABILIT Y}}{V} \propto E^2$$

Similarly

 ψ = wave function of a particle

- = amplitude of the de Broglie wave
- = probability amplitude

Time dependent wave function for a system:

$$\Psi(\mathbf{r}_i,t) = \psi(\mathbf{r}_i) e^{-i\omega t}$$

 \mathbf{r}_{j} is the position vector of the \mathbf{j}^{TH} particle in the system.

 ψ contains all the information about the particle

- $\psi \rightarrow \text{imaginary entity}$
 - → no physical significance

PROBABILITY DENSITY = $|\psi|^2$

- $|\psi|^2 \rightarrow \text{real and positive}$
 - → relative probability per unit volume that the particle will be found at any given point in the volume

$$P_{ab} = \int_{a}^{b} |\psi|^2 dx$$

= area under the probability density curve from a to b.

Normalization condition:

$$\int_{0}^{\infty} |\psi|^{2} dx = 1$$

Mathematical features of a physically reasonable wave function $\psi(x)$ for a system:

- (i) $\psi(x)$ may be a complex function or a real function, depending on the system;
- (ii) $\psi(x)$, must be finite, continuous and single valued everywhere;
- (iii) The space derivatives of ψ , must be finite, continuous and single valued everywhere;
- (iv) ψ must be normalizable.

- Measurable quantities of the particle (energy, momentum, etc) can be derived from ψ
- $\langle x \rangle$ = expectation value of x (i.e. the average position at which one expects to find the particle after many measurements)

$$\langle \mathbf{x} \rangle \equiv \int_{-\infty}^{\infty} \psi^* \mathbf{x} \ \psi \ d\mathbf{x}$$

• The expectation value of any function f(x) associated with the particle is

$$\langle f(x) \rangle \equiv \int_{-\infty}^{\infty} \psi^* f(x) \psi dx$$

Time independent Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U\psi = E\psi$$

for a particle of mass m confined to moving along x axis and interacting with its environment through a potential energy function U(x) and E = total energy of the system (particle and its environment)

Particle in an Infinite Potential Well (Particle in a "Box")

$$U(x) = o$$
, for $o < x < L$,
 $U(x) = \infty$, for $x < o$, $x > L$
 $U(x) = \infty$, for $x < o$, $x > L$ [here $\psi(x) = o$]
In $o < x < L$, $U = o$, the Schrödinger equation is

(a)

$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2}E\psi = 0$$

$$\frac{d^2 \Psi}{dx^2} = -k^2 \Psi$$
, where $k = \frac{\sqrt{2m E}}{\hbar}$

 $\psi(x) = A \sin(kx) + B \cos(kx)$ where A and B are constants

At
$$x = o$$
, $\psi = o$ So, $o = A \sin o + B \cos o$ or $B = o$,

At
$$x = L$$
, $\psi = o$,

$$o = A \sin(kL) + B \cos(kL) = A \sin(kL) + o$$
,

since $A \neq o$, $\sin(kL) = o$.

$$\therefore$$
 k L = n π ; (n = 1, 2, 3,)

$$k = \frac{2\pi}{\lambda} = \frac{n\pi}{L}$$
 or $L = n\left(\frac{\lambda}{2}\right)$

$$k = \frac{\sqrt{2mE}}{\hbar}, \quad \therefore \quad k L = \frac{\sqrt{2mE}}{\hbar}L = n\pi$$

Each value of the integer n corresponds to a quantized energy value, E_n , where

$$E_n = \left(\frac{h^2}{8 \text{ m L}^2}\right) n^2$$
 $n = 1, 2, 3 \dots$
The lowest allowed energy $(n = 1)$, $E_1 = \frac{h^2}{8 \text{ m L}^2}$

E₁ is the ground state energy for the particle in a box

Excited states \rightarrow n = 2, 3, 4, ····

Energies: $E_n \rightarrow 4E_1, 9E_1, 16E_1, \cdots$

To find the constant A, apply normalization condition

$$\int_{-\infty}^{\infty} |\psi|^2 dx = 1 \quad \text{or} \quad \int_{0}^{L} A^2 \left[sin \left(\frac{n \pi x}{L} \right) \right]^2 dx = 1$$

$$A^{2}\int_{0}^{L} \frac{1}{2} \left[1 - \cos\left(\frac{2n\pi x}{L}\right)\right] dx = 1$$

Solving we get
$$A = \sqrt{\frac{2}{I}}$$

WAVE FUNCTION
$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin(\frac{n \pi x}{L})$$

PROBABILITY DENSITY
$$P_n(x) = \frac{2}{L} \sin^2(\frac{n \pi x}{L})$$

Sketch of (a) wave function, (b) Probability density for a particle in potential well of infinite height

A Particle in a Potential Well of Finite Height

A particle is trapped in the well. The total energy E of the particle-well system is less than U

$$U(x) = o$$
, $o < x < L$,
 $U(x) = U$, $x < o$, $x > L$

- Particle energy E < U; classically the particle is permanently bound in the potential well.
- However, according to quantum mechanics, a finite probability exists that the particle can be found outside the well even if E < U.
- The Schrödinger equation outside the finite well in regions I and III is:

$$\frac{d^2\psi}{dx^2} = \frac{2m}{\hbar^2} (U - E)\psi = C^2 \psi \qquad \text{where} \quad C^2 = \frac{2m}{\hbar^2} (U - E)$$

General solution of the above equation is

$$\psi(x) = A e^{Cx} + B e^{-Cx}$$

In region I, B = o;

 $\psi_I = A e^{Cx}$

for x < 0

In region III, A = 0;

$$\psi_{III} = B e^{-C x}$$
 for $x > L$

In region II,

$$\frac{d^2\psi_{\parallel}}{dx^2} + \underbrace{\left(\frac{2m}{\hbar^2} E\right)}\psi_{\parallel} = 0$$

$$\psi_{\parallel}$$
 = F sin kx + G cos kx

A, B, F, G values can be obtained by applying boundary conditions.

$$\frac{d\psi_{I}}{dx}\bigg|_{x=0} = \frac{d\psi_{II}}{dx}\bigg|_{x=0}$$

$$\begin{vmatrix} \psi_{II}(L) = \psi_{III}(L) \\ \frac{d\psi_{II}}{dx} \Big|_{x=L} = \frac{d\psi_{III}}{dx} \Big|_{x=L}$$

WAVE FUNCTIONS

PROBABILITY DENSITIES

Tunneling Through a Potential Energy Barrier

- Consider a particle of energy E approaching a potential barrier of height U, (E < U).
- Since E<U, classically the regions II and III shown in the figure are forbidden to the particle incident from left.

- But according to quantum mechanics, all regions are accessible to the particle, regardless of its energy.
- An approximate expression for the transmission coefficient, when T << 1 is

$$T \approx e^{-2CL}$$
, where $C = \frac{\sqrt{2 m (U-E)}}{\hbar}$

• Since the particles must be either reflected or transmitted:

$$R + T = 1$$

The Simple Harmonic Oscillator

- Consider a particle that is subject to a linear restoring force F = -kx, where k is a constant and x is the position of the particle relative to equilibrium (at equilibrium position x=o).
- Classically, the potential energy of the system is,

$$U = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$$

where the angular frequency of vibration is $\omega = \sqrt{k/m}$.

• The total energy E of the system is,

$$E = Kinetic Energy + Potential Energy = K + U = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2A^2$$

where A is the amplitude of motion.

• A quantum mechanical model for simple harmonic oscillator can be obtained by substituting $U = \frac{1}{2}m\omega^2x^2$ in Schrödinger equation:

$$-\frac{\hbar^2}{2m}\frac{d^2}{\psi dx^2} + \frac{1}{2}m\omega^2 x^2 \psi = E\psi$$

• The solution for the above equation is

$$\psi = Be^{-Cx^2}$$

where $C = m\omega/2\hbar$ and $E = \frac{1}{2}\hbar\omega$.

• Energy of a state is given by

$$E_n = (n + \frac{1}{2})\hbar\omega; \qquad n = 0, 1, 2$$

• The state n=0 corresponds to the ground state, whose energy is $E_0 = \frac{1}{2}\hbar\omega$

