CB N° 9 - SURFACES -

Exercice 1

Déterminer une équation cartésienne du cylindre ayant pour directrice la courbe Γ définie par

$$\Gamma: \left\{ \begin{array}{l} 2x^2 - y^2 + z^2 = 0 \\ 2x + 3y - z = 0 \end{array} \right. \text{ et dont les génératrices sont dirigées par } \vec{u} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

On note Σ le cylindre recherché.

$$M(x,y,z) \in \Sigma \quad \Leftrightarrow \quad \exists t \in \mathbb{R}, M + t\vec{u} \in \Gamma \Leftrightarrow \exists t \in \mathbb{R}, \left\{ \begin{array}{l} 2(x+t)^2 - (y+t)^2 + z^2 = 0 \\ 2(x+t) + 3(y+t) - z = 0 \end{array} \right.$$

$$\Leftrightarrow \quad 2\left(x + \frac{-2x - 3y + z}{5}\right)^2 - \left(y + \frac{-2x - 3y + z}{5}\right) + z^2 = 0$$

On en déduit une équation de Σ :

$$7x^2 + 7y^2 + 13z^2 - 14xy + 8xz - 4yz = 0$$

Exercice 2

Déterminer une équation cartésienne de la surface de révolution obtenue par la rotation de la courbe

Déterminer une équation cartésienne de la surface de révolution obtenue par l
$$C \text{ définie par } C: \left\{ \begin{array}{l} x(t) = \cos^2(t) \\ y(t) = \sin^2(t) \\ z(t) = t \end{array} \right. \text{, autour de l'axe } \Delta \text{ défini par } \Delta: \left\{ \begin{array}{l} x = y \\ y = z \end{array} \right.$$
 On note Σ la surface recherchée.

La droite Δ passe par l'origine du repère et elle est dirigée par le vecteur $\vec{v} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$M(x,y,z) \in \Sigma \quad \Leftrightarrow \quad \exists M_0 \in C, \begin{cases} \overrightarrow{M_0 M}. \overrightarrow{v} = 0 \\ OM_0 = OM \end{cases} \quad \Leftrightarrow \exists t \in \mathbb{R}, \begin{cases} ((x - \cos^2 t) + (y - \sin^2 t) + z - t = 0 \\ x^2 + y^2 + z^2 = \cos^4 t + \sin^4 t + t^2 \end{cases}$$
$$\Leftrightarrow \quad \exists t \in \mathbb{R}, \begin{cases} t = x + y + z - 1 \\ x^2 + y^2 + z^2 = \cos^4 t + \sin^4 t + t^2 \end{cases}$$

On en déduit une équation de Σ :

$$\cos^4(x+y+z-1) + \sin^4(x+y+z-1) + 2xy + 2xz + 2yz - 2x - 2y - 2z + 1 = 0$$

Exercice 3

On considère la surface Σ d'équation cartésienne

$$x^3 - 3x^2y + 2xy + z - 1 = 0$$

1. Montrer que Σ est une surface réglée.

Une représentation paramétrique de
$$\Sigma$$
 est : $(t,\lambda) \mapsto \begin{cases} x(t,\lambda) = t \\ y(t,\lambda) = \lambda \\ z(t,\lambda) = 1 - t^3 + \lambda(3t^2 - 2t) \end{cases}$
On reconnait un paramétrage de surface réglée, de la forme $(t,\lambda) \mapsto \varphi(t) + \lambda m(t)$,

Spé PT B Page 1 sur 2

où
$$\varphi: t \mapsto \left\{ \begin{array}{ll} t \\ 0 \\ 1 - t^3 \end{array} \right.$$
 et $m: t \mapsto \left\{ \begin{array}{ll} 0 \\ 1 \\ 3t^2 - 2t \end{array} \right.$

Remarque : On peut également remarquer que Σ est la réunion pour $t \in \mathbb{R}$ des droites admettant pour système d'équations cartésiennes : $\begin{cases} x = t \\ (-3t^2 + 2t)y + z + t^3 - 1 = 0 \end{cases}$.

2. Justifier que le point A de coordonnées (1,1,1) est un point régulier de Σ , et déterminer une équation cartésienne du plan tangent à Σ en A.

On note
$$F(x, y, z) = x^3 - 3x^2y + 2xy + z - 1$$
. On a $F(A) = 0$, donc $A \in \Sigma$.
 F est une fonction polynomiale en (x, y, z) , et on a : $\overrightarrow{\operatorname{Grad}}F(x, y, z) = \begin{pmatrix} 3x^2 - 6xy + 2y \\ -3x^2 + 2x \\ 1 \end{pmatrix}$.

Ainsi
$$\overrightarrow{\operatorname{Grad}} F(A) = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \neq \overrightarrow{0}$$
 donc A est un point régulier de Σ .

Une équation cartésienne du plan tangent à Σ en A est donnée par $\overrightarrow{\mathrm{Grad}}F(A)\cdot\overrightarrow{AM}=0$. D'où :

$$x + y - z - 1 = 0$$

 ${\rm Sp\acute{e}\; PT\; B} \qquad \qquad {\rm Page\; 2\; sur\; 2}$