MA2101S Homework 3

Qi Ji A0167793L

12th February 2018

- **1.** Let K be a *finite* field, and let q := |K| denote the number of elements in K. Let V be a K-vector space of dimension $n \ge 1$.
 - (a) Show that the number of ordered K-bases of V is $(q^n 1)(q^n q) \cdots (q^n q^{n-1})$.

Claim. Let $A = \{v_1, \dots, v_r\} \subseteq V$ be a linearly-independent set, then $|\operatorname{span}(A)| = q^r$.

Proof of claim. span(A) is a r-dimensional K-subspace of V, so span(A) \cong K^r. Since $|K^r| = q^r$, $|\operatorname{span}(A)| = q^r$.

Proof. Since $\dim_K V = n$, $V \cong K^n$. Therefore $|V| = |K^n| = q^n$. Now count the number of ways to choose ordered K-bases of V, by constructing a linearly independent array, similarly to the proof of existence of basis (for finite-dimensional vector spaces).

- Start by choosing any vector $v_1 \in V \setminus \{0_V\}$, by claim, $|\{0_V\}| = |\operatorname{span}(\emptyset)| = q^0 = 1$, so $|V \setminus \{0_V\}| = q^n 1$, we have $(q^n 1)$ ways to choose v_1 .
- Then choose $v_2 \in V \setminus \text{span}(\{v_1\})$. Since $\text{span}(\{v_1\}) \subseteq V$ and $|\text{span}(\{v_1\})| = q^1$, $|V \setminus \text{span}(\{v_1\})| = q^n q$. There are $(q^n q)$ ways to choose v_2 .
- Generally, for $i \in \{1, ..., n\}$, we choose $v_i \in V \setminus \text{span}(\{v_1, ..., v_{i-1}\})$, from claim,

$$|\operatorname{span}(\{v_1,\ldots,v_{i-1}\})|=q^{i-1},$$

and as span($\{v_1,\ldots,v_{i-1}\}$) $\subseteq V$, $|V\setminus \text{span}(\{v_1,\ldots,v_{i-1}\})|=q^n-q^{i-1}$, and we have (q^n-q^{i-1}) ways to choose the *i*-th vector.

When algorithm halts after n iterations, by construction, we obtain n linearly-independent vectors in V, by well-definedness of dimension, (v_1, \ldots, v_n) is an ordered basis for V. Then reexamining the algorithm, by multiplication principle of counting, there are

$$\prod_{i=1}^{n} (q^n - q^{i-1})$$

ways to choose an ordered K-basis for V, which evaluates to the expression given.

(b) Deduce that $(q^n-1)(q^n-q)\cdots(q^n-q^{n-1})$ is divisible by n! by determining the number of (unordered) K-bases of V.

Proof. Let $a \in \mathbb{N}$ be the number of (unordered) K-bases for V. Given an arbitrary unordered basis of V, there are $(\dim_K V)! = n!$ ways to arrange them to get ordered bases of V. Then by multiplication principle, $a \cdot n! = |\{ \text{ ordered } K\text{-bases for } V \}|$, therefore $n! | (q^n - 1)(q^n - q) \cdots (q^n - q^{n-1})$

2. Consider the field $\mathbb R$ as a vector space over $\mathbb Q$. Show that $\dim_{\mathbb Q} \mathbb R$ is not finite.

Proof. Suppose (for a contradiction) \mathbb{R} as a \mathbb{Q} -vector space is finite dimensional, that is $\exists n \in \mathbb{N}$. dim $\mathbb{Q} \mathbb{R} = n$, then we have the isomorphism that $\mathbb{R} \cong \mathbb{Q}^n$. From elementary set theory, we know $\mathbb{Q} \cong \mathbb{N}$ and that a finite product of countable sets is countable. We can hence conclude that $|\mathbb{Q}^n| = \aleph_0$, but we have $|\mathbb{R}| = |\mathbb{Q}^n| = \aleph_0$, which contradicts Cantor's Theorem. \square

3. Consider \mathbb{C} as a 2-dimensional \mathbb{R} -vector space, and let $T \in \operatorname{End}_{\mathbb{R}}(\mathbb{C})$ be an \mathbb{R} -linear operator on \mathbb{C} . (T is an \mathbb{R} -linear map $\mathbb{C} \to \mathbb{C}$.)

(a) Let $[T]_{\mathcal{B}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2(\mathbb{R})$ denote the matrix over \mathbb{R} associated to T with respect to the ordered basis $\mathcal{B} = (1, i)$ of \mathbb{C} . Show that T is \mathbb{C} -linear if and only if one has d = a and c = -b in the entries of $[T]_{\mathcal{B}}$.

Proof. From definition of $[T]_{\mathcal{B}}$, T is an \mathbb{R} -linear map defined on the basis \mathcal{B} as

$$T: \mathbb{C} \to \mathbb{C};$$

 $1 \mapsto a + ci;$
 $i \mapsto b + di.$

Suppose T is \mathbb{C} -linear, then in particular take $i \in \mathbb{C}$,

$$i \cdot T(1) = T(1 \cdot i)$$
$$i(a + ci) = b + di$$
$$-c + ai = b + di$$

Since $\mathcal{B} = (1, i)$ is an \mathbb{R} -basis for \mathbb{C} , by uniqueness of vector representation, we have b = -c and a = d in \mathbb{R} .

Conversely suppose a = d and c = -b in $[T]_{\mathcal{B}}$, then

$$[T]_{\mathcal{B}} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

which means T is the \mathbb{R} -linear map defined on the ordered basis \mathcal{B} as

$$T: \mathbb{C} \to \mathbb{C};$$

 $1 \mapsto a - bi;$
 $i \mapsto b + ai.$

Since T is \mathbb{R} -linear, then for $v, w \in \mathbb{C}$, T(v+w) = T(v) + T(w) (linear under vector additon). To show T is \mathbb{C} -linear, it remains to show T is \mathbb{C} -linear under scalar multiplication, that is for $v \in \mathbb{C}$, $r \in \mathbb{C}$, show that $r \cdot T(v) = T(r \cdot v)$. Let $x_1, x_2, y_1, y_2 \in \mathbb{R}$ such that $v = x_1 + y_1i$ and $r = x_2 + y_2i$. Using \mathbb{R} -linearity of T, compute $r \cdot T(v)$,

$$r \cdot T(v) = r (x_1 T(1) + y_1 T(i))$$

$$= r (x_1 (a - bi) + y_1 (b + ai))$$

$$= (x_2 + y_2 i) ((ax_1 + by_1) + (ay_1 - bx_1)i)$$

$$= (ax_1 x_2 - ay_1 y_2 + bx_1 y_2 + by_1 x_2)$$

$$+ (ax_1 y_2 + ay_1 x_2 - bx_1 x_2 + by_1 y_2)i$$

Now compute $T(r \cdot v)$,

$$r \cdot v = (x_2 + y_2 i)(x_1 + y_1 i)$$

$$= (x_1 x_2 - y_1 y_2) + (x_1 y_2 + x_2 y_1) i$$

$$T(r \cdot v) = (x_1 x_2 - y_1 y_2) T(1) + (x_1 y_2 + x_2 y_1) T(i)$$

$$= (x_1 x_2 - y_1 y_2)(a - bi) + (x_1 y_2 + x_2 y_1)(b + ai)$$

$$= ax_1 x_2 - ay_1 y_2 + bx_1 y_2 + bx_2 y_1$$

$$+ (-bx_1 x_2 + by_1 y_2 + ax_2 y_1 + ax_1 y_2) i$$

It can be verified that $r \cdot T(v) = T(r \cdot v)$. Hence T is C-linear.

(b) Show that there exist complex numbers $\lambda, \mu \in \mathbb{C}$ such that for any $z \in \mathbb{C}$, one has

$$T(z) = \lambda z + \mu \overline{z}$$
 in \mathbb{C} ,

and give explicit expressions of λ and μ in terms of T(1) and T(i). Deduce that T is \mathbb{C} -linear if and only if $\mu = 0$.

Solution. T(1) and T(i) are vectors in $\mathbb C$ determined by T. Firstly, we solve for $\lambda, \mu \in \mathbb C$ satisfying the following linear system,

$$\lambda + \mu = T(1)
\lambda i - \mu i = T(i)$$
(3.1)

Solving this system in \mathbb{C} ,

$$\left(\begin{array}{cc|c} 1 & 1 & T(1) \\ i & -i & T(i) \end{array}\right) \xrightarrow{\text{Gauss-Jordan}} \left(\begin{array}{cc|c} 1 & 0 & \frac{T(1)-iT(i)}{2} \\ 0 & 1 & \frac{T(1)+iT(i)}{2} \end{array}\right)$$

So we have now a solution to (3.1)

$$\lambda = \frac{T(1) - iT(i)}{2}; \quad \mu = \frac{T(1) + iT(i)}{2}.$$

Since $T(1), T(i) \in \mathbb{C}$, we have the existence of $\lambda, \mu \in \mathbb{C}$ satisfying the system of equations in (3.1). Then for any $z \in \mathbb{C}$, by \mathbb{R} -linearity of T, let $a, b \in \mathbb{R}$ such that z = a + bi,

$$T(z) = T(a + bi)$$

$$= aT(1) + bT(i)$$

$$= a(\lambda + \mu) + b(\lambda - \mu)i$$

$$= \lambda(a + bi) + \mu(a - bi)$$

$$= \lambda z + \mu \overline{z}$$

Deduce that T is \mathbb{C} -linear if and only if $\mu = 0$.

Proof. Suppose T is \mathbb{C} -linear, then

$$i \cdot T(i) = T(i \cdot i)$$

$$i(\lambda i - \mu i) = T(-1) = -T(1)$$

$$-\lambda + \mu = -\lambda - \mu$$

$$\mu = -\mu$$

$$\mu = 0$$

Conversely suppose $\mu=0$, then we have $T(z)=\lambda z$. Since T is already \mathbb{R} -linear, it is linear under vector addition. To show \mathbb{C} -linearity, it remains to show linearity under scalar multiplication. For any $y,z\in\mathbb{C}$,

$$y \cdot T(z) = y \cdot \lambda z$$
$$= \lambda \cdot (yz)$$
$$= T(yz)$$

This completes the proof.

- 4. Keep the notation as in the previous problem.
 - (a) Show that T is an \mathbb{R} -isomorphism if and only if $\lambda \overline{\lambda} \neq \mu \overline{\mu}$.

Proof. Suppose T is an \mathbb{R} -isomorphism, and suppose (for a contradiction) $\lambda \overline{\lambda} = \mu \overline{\mu}$, then

$$T(\overline{\lambda}) = \lambda \overline{\lambda} + \mu \lambda$$
$$T(\mu) = \lambda \mu + \mu \overline{\mu}$$
$$T(\overline{\lambda} - \mu) = 0$$

By injectivity of T, $\overline{\lambda} = \mu$. Let $a, b \in \mathbb{R}$ such that

$$\lambda = a + bi$$
$$\mu = a - bi$$

Then from 3 (b), T sends the basis vectors in $\mathcal{B} = (1, i)$ to

$$T(1) = \lambda + \mu$$

$$= a + bi + a - bi$$

$$= 2a$$

$$T(i) = (\lambda - \mu)i$$

$$= (a + bi - a + bi)i$$

$$= -2b$$

This contradicts with T being an \mathbb{R} -isomorphism, as T(1) and T(i) are \mathbb{R} -linearly dependent in \mathbb{C} . Hence if T is an \mathbb{R} -isomorphism, $\lambda \overline{\lambda} \neq \mu \overline{\mu}$.

To prove the converse implication, I shall prove the contrapositive. Suppose $T: \mathbb{C} \to \mathbb{C}$ is not an \mathbb{R} -isomorphism, then $\operatorname{rank}(T) < \dim_{\mathbb{R}} \mathbb{C} = 2$. Then consider the matrix representation of T with respect to the ordered basis $\mathfrak{B} = (1,i)$ of \mathbb{C} . Let $a,b,c,d \in \mathbb{R}$ such that

$$[T]_{\mathcal{B}} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{M}_2(\mathbb{R}).$$

As rank $(T) \leq 1$, T(1) and T(i) are linearly dependent, so $\exists \alpha, \beta \in \mathbb{R}$, not all 0, such that

$$\alpha(a+ci) = \beta(b+di) \tag{4.1}$$

Then by uniqueness of vector representation with respect to basis \mathcal{B} , we have $\alpha a = \beta b$ and $\alpha c = \beta d$, so $\alpha \beta a d = \alpha \beta b c$. Then either

$$\alpha\beta = 0 \text{ or } ad = bc. \tag{4.2}$$

From 3 (b), we have explicit expressions for λ and μ in terms of T(1) and T(i),

$$\begin{split} \lambda &= \frac{T(1) - iT(i)}{2} \\ &= \frac{(a+ci) - (bi-d)}{2} \\ &= \frac{(a+d) + (c-b)i}{2} \\ \mu &= \frac{T(1) + iT(i)}{2} \\ &= \frac{(a+ci) + (bi-d)}{2} \\ &= \frac{(a-d) + (c+b)i}{2} \end{split}$$

Case $\alpha=0$, then from (4.1), as $\beta\neq 0$, T(i)=b+di=0, so $\lambda=\mu=\frac{T(1)}{2}$, which gives the equality $\lambda\overline{\lambda}=\mu\overline{\mu}$. Case $\beta=0$, then similarly from (4.1), because $\alpha\neq 0$, T(1)=a+ci=0, then we have $\lambda=-\mu$, which gives the equality $\lambda\overline{\lambda}=\mu\overline{\mu}$.

Case ad = bc, proceed to compute $\lambda \overline{\lambda}$ and $\mu \overline{\mu}$, we obtain

$$\lambda \overline{\lambda} = \frac{1}{4} \left((a+d)^2 + (c-b)^2 \right)$$

$$= \frac{1}{4} \left(a^2 + 2ad + d^2 + b^2 - 2bc + c^2 \right)$$

$$\mu \overline{\mu} = \frac{1}{4} \left((a-d)^2 + (c+b)^2 \right)$$

$$= \frac{1}{4} \left(a^2 - 2ad + d^2 + b^2 + 2bc + c^2 \right)$$

Substituting (4.2) into the expressions above gives us that $\lambda \overline{\lambda} = \mu \overline{\mu}$. Taking the contrapositive, we get the implication that that if $\lambda \overline{\lambda} \neq \mu \overline{\mu}$, T is an \mathbb{R} -isomorphism.

(b) Show that |T(z)| = |z| for any $z \in \mathbb{C}$ (i.e. T is an isometric isomorphism of normed \mathbb{R} -vector spaces) if and only if $\lambda \mu = 0$ and $|\lambda + \mu| = 1$

Proof. Suppose |T(z)| = |z|, then because of isometric property, T has a trivial kernel. Recall that T has property for any $z \in \mathbb{C}$, $T(z) = \lambda z + \mu \overline{z}$. In addition, because T is an endomorphism with a trivial kernel, and \mathbb{C} is finite-dimensional, by rank-nullity theorem, T is an isomorphism. Using the isometric property, evaluate T(1),

$$1 = |T(1)| = |\lambda + \mu|$$
.

It remains to show that $\lambda \mu = 0$.

Now suppose for a contradiction $\lambda \mu \neq 0$, that is, both $\lambda \neq 0$ and $\mu \neq 0$. Let $\alpha, \beta \in (-\pi, \pi]$ such that

$$\lambda = |\lambda| e^{i\alpha}$$
$$\mu = |\mu| e^{i\beta}$$

Let $z \in \mathbb{C}$ such that $z = e^{i\theta}$ where $\theta = \frac{\beta - \alpha}{2}$ (i.e. z is the number on the unit circle with argument $\frac{\beta - \alpha}{2}$), clear that |z| = 1, now compute T(z),

$$T(z) = T(e^{i\theta})$$

$$= |\lambda| e^{i\alpha} e^{i\theta} + |\mu| e^{i\beta} e^{-i\theta}$$

$$= |\lambda| e^{i(\alpha+\theta)} + |\mu| e^{i(\beta-\theta)}$$

$$= |\lambda| e^{i(\alpha+\beta)/2} + |\mu| e^{i(\beta+\alpha)/2}$$

In triangle inequality, for both numbers non-zero, equality holds if and only if the two numbers have the same argument. Now make use of this result while measuring distance,

$$\begin{split} |T(z)| &= \left| |\lambda| \, e^{i(\alpha+\beta)/2} + |\mu| \, e^{i(\beta+\alpha)/2} \right| \\ 1 &= \left| |\lambda| \, e^{i(\alpha+\beta)/2} \right| + \left| |\mu| \, e^{i(\beta+\alpha)/2} \right| \\ &= |\lambda| + |\mu| \end{split}$$

We have $|\lambda + \mu| = |\lambda| + |\mu| = 1$, which means $Arg(\lambda) = Arg(\mu) = \alpha = \beta$. Now take any $z' = e^{i\phi} \in \mathbb{C}$ where ϕ is not a multiple of π , clear that |z'| = 1,

$$\begin{split} T(z') &= T(e^{i\phi}) \\ &= |\lambda| \, e^{i\alpha} e^{i\phi} + |\mu| \, e^{i\alpha} e^{-i\phi} \\ &= |\lambda| \, e^{i(\alpha+\phi)} + |\mu| \, e^{i(\alpha-\phi)} \end{split}$$

Now due to our selection of z',

$$\alpha + \phi \neq \alpha - \phi \pmod{(-\pi, \pi]}$$

so $\operatorname{Arg}(e^{i(\alpha+\phi)}) \neq \operatorname{Arg}(e^{i(\alpha-\phi)})$, then equality does not hold in triangle inequality, so we have

$$\begin{split} |T(z')| &= 1 = \left| |\lambda| \, e^{i(\alpha + \phi)} + |\mu| \, e^{i(\alpha - \phi)} \right| < \left| |\lambda| \, e^{i(\alpha + \phi)} \right| + \left| |\mu| \, e^{i(\alpha - \phi)} \right| \\ &1 = \left| |\lambda| \, e^{i(\alpha + \phi)} + |\mu| \, e^{i(\alpha - \phi)} \right| < |\lambda| + |\mu| = 1 \end{split}$$

which is a contradiction. Hence $\lambda \mu = 0$.

Conversely suppose $\lambda\mu=0$ and $|\lambda+\mu|=1$, then $\lambda=0$ or $\mu=0$. Case $\lambda=0,\,|\mu|=1,$ then

$$T(z) = \mu \overline{z}$$
$$|T(z)| = |\mu \overline{z}| = |z|$$

Case $\mu = 0$, $|\lambda| = 1$, then similarly

$$T(z) = \lambda z$$
$$|T(z)| = |\lambda z| = |z|$$

Which completes the proof.

- **5.** Let K be a field and let V be a K-vector space. Let $T \in \operatorname{End}_K(V)$ be a K-linear endomorphism of V. Recall that $T^2 = T \circ T \in \operatorname{End}_K(V)$ denotes the composite of T with itself.
 - (a) Show that $Ker(T) = Ker(T^2)$ if and only if $Ker(T) \cap Im(T) = \{0\}$.

Proof. Suppose $\operatorname{Ker}(T) = \operatorname{Ker}(T^2)$, then take any $y \in \operatorname{Ker}(T) \cap \operatorname{Im}(T)$, then $\exists x \in V. \ T(x) = y$ and T(y) = 0, therefore $(T \circ T)(x) = 0$ which means $x \in \operatorname{Ker}(T^2)$, then by assumption, $x \in \operatorname{Ker}(T)$ which means y = T(x) = 0. Therefore $\operatorname{Ker}(T) \cap \operatorname{Im}(T) \subseteq \{0\}$. As the reverse containment is trivial (T(0) = 0), $\operatorname{Ker}(T) \cap \operatorname{Im}(T) = \{0\}$.

Conversely suppose $\operatorname{Ker}(T) \cap \operatorname{Im}(T) = \{0\}$. Trivially, take $x \in \operatorname{Ker}(T)$, since T(x) = 0, $T^2(x) = T(T(x)) = T(0) = 0$ which gives us $\operatorname{Ker}(T) \subseteq \operatorname{Ker}(T^2)$. On the other hand, take $x \in \operatorname{Ker}(T^2)$, so T(T(x)) = 0. We can now see that $T(x) \in \operatorname{Ker}(T)$ and $T(x) \in \operatorname{Im}(T)$, then $T(x) \in \operatorname{Ker}(T) \cap \operatorname{Im}(T)$ and by hypothesis, T(x) = 0, this means $x \in \operatorname{Ker}(T)$, therefore $\operatorname{Ker}(T) \supseteq \operatorname{Ker}(T^2)$. This completes the proof that $\operatorname{Ker}(T) = \operatorname{Ker}(T^2)$.

(b) Show that $\text{Im}(T) = \text{Im}(T^2)$ if and only if V = Ker(T) + Im(T).

Proof. Suppose $\text{Im}(T) = \text{Im}(T^2)$, take any arbitrary $v \in V$, then clearly $T(v) \in \text{Im}(T) = \text{Im}(T^2)$. So $\exists a \in V$. $T^2(a) = T(v)$. Now by linearity

$$T(T(a)) = T(v)$$

$$T(v) - T(T(a)) = 0$$

$$T(v - T(a)) = 0$$

$$v - T(a) \in \text{Ker}(T)$$

Then $\exists k \in \text{Ker}(T)$. v - T(a) = k, so v = k + T(a). Since for any arbitrary $v \in V$, there exists $k \in \text{Ker}(T)$, $T(a) \in \text{Im}(T)$, such that v = k + T(a), V = Ker(T) + Im(T).

Conversely suppose $V = \operatorname{Ker}(T) + \operatorname{Im}(T)$. Trivially, $\operatorname{Im}(T) \supseteq \operatorname{Im}(T^2)$, as take $y \in \operatorname{Im}(T^2)$, then $\exists x \in V. \ T^2(x) = y$, then as $T(x) \in V$ such that T(T(x)) = y, $y \in \operatorname{Im}(T)$.

Now take any $y \in \text{Im}(T)$, then $\exists x \in V$. T(x) = y. As V = Ker(T) + Im(T), $\exists k \in \text{Ker}(T), v \in V$. x = k + T(v). Then

$$y = T(x) = T(k + T(v))$$
$$= T^{2}(v)$$

which implies $y \in \text{Im}(T^2)$, so $\text{Im}(T) \subseteq \text{Im}(T^2)$. Therefore $\text{Im}(T) = \text{Im}(T^2)$.

6. Let K be a field and let V be a K-vector space, of finite dimension $n := \dim_K(V)$ over K. Let $T \in \operatorname{End}_K(V)$ be a K-linear endomorphism of V. Suppose there exists a vector $v \in V$ such that

$$T(v), T^2(v), \dots, T^n(v)$$
 is a basis for V .

Show that

$$v, T(v), \ldots, T^{n-1}(v)$$
 is also a basis for V ,

and that T is invertible as a K-linear endomorphism on V.

Proof. Let $\mathcal{B} := (T(v), T^2(v), \dots, T^n(V))$, be an ordered basis for V. Then consider the equation

$$d_1v + d_2T(v) + \dots + d_nT^{n-1}(v) = 0$$
(6.1)

where $d_1, \ldots, d_n \in K$. Then by linearity of T.

$$T(d_1v + d_2T(v) + \dots + d_nT^{n-1}(v)) = T(0)$$

$$d_1T(v) + d_2T^2(v) + \dots + d_nT^n(v) = 0$$

and as \mathcal{B} is a basis for V, we have $d_1 = \cdots = d_n = 0$, so $\mathcal{C} := (v, T(v), \dots, T^{n-1}(v))$ is a linearly-independent list. Then as length(\mathcal{C}) = dim_K(V) = n, by well-definedness of dimension, \mathcal{C} is also a (ordered) basis for V.

To show that T is invertible, it suffices to define a linear map $U \in \operatorname{End}_K(V)$ such that $TU = UT = \operatorname{id}_V$. Proceed by defining a linear map $U: V \to V$ on the basis \mathcal{B} as

$$T(v) \mapsto v$$

$$T^{2}(v) \mapsto T(v)$$

$$\dots$$

$$T^{n}(v) \mapsto T^{n-1}(v)$$

Then for any $w \in V$, as \mathcal{C} is a basis for $V, \exists c_1, \ldots, c_n \in K$ such that

$$w = \sum_{i=1}^{n} c_i T^{i-1}(v)$$

$$T(w) = \sum_{i=1}^{n} c_i T^{i}(v)$$

$$(UT)(w) = \sum_{i=1}^{n} c_i T^{i-1}(v)$$

so $UT = \mathrm{id}_V$. Similarly for any $w \in V$, as \mathcal{B} is also a basis for $V, \exists c_0, \ldots, c_{n-1} \in K$ such that

$$w = \sum_{i=0}^{n-1} c_i T^{i+1}(v)$$

$$U(w) = \sum_{i=0}^{n-1} c_i T^i(v)$$

$$(TU)(w) = \sum_{i=0}^{n-1} c_i T^{i+1}(v)$$

so $TU = id_V$. Therefore T is invertible.