Número: _____ Curso: ____ Nome: _____

A primeira parte do teste é constituida por 5 questões de escolha múltipla.

Nas questões 1 a 5 assinale com "x" a resposta correcta.

Cada resposta correcta vale 1.5 valores. Respostas em branco valem 0 valores.

Se responder erradamente ou de forma ambígua ser-lhe-á atribuída uma cotação negativa correspondente a 0.2 valores.

Se a soma das cotações da escolha múltipla for negativa, será atribuído 0 valores à escolha múltipla.

Classificação			
EM -			
TOTAL-			

1. Considere a seguinte função tabelada, onde α e β são constantes reais:

x_i	-1	0	1	2
$f(x_i)$	1	α	0	β

Para que o polinómio interpolador da função em todos os pontos da tabela tenha <u>exactamente grau 3</u>, é necessário que:

- \Box a) $\beta = 1 3\alpha$
- \square **b**) $\beta \neq 1 \alpha$
- $\mathbf{k} \mid \mathbf{c}$) $\beta \neq 1 3\alpha$
- 2. Considere $I = \int_{-1}^{1} f(x) dx$ a seguinte tabela para f(x), onde $a \in b$ são constantes reais:

x_i	-1	-0.5	0	0.5	1
$f(x_i)$	a	2	-4	3	b

Sabendo que o valor aproximado para I pela regra de Simpson simples é igual a 4, o valor aproximado para I pela regra de Simpson composta será igual a:

- \square a) $\frac{28}{3}$
- \Box b) $\frac{14}{3}$
- $\mathbf{x} \mathbf{c}$) $\frac{20}{3}$
- □ d) 5

(V.S.F.F)

- 3. Seja $I = \int_3^5 f(x) dx$, em que $|f''(x)| \le \frac{1}{5}$, $\forall x \in [3,5]$ e seja $\widehat{I} = \frac{9}{4}$ a aproximação de I, dada pela regra do ponto médio simples. Indique qual dos seguintes intervalos podemos garantir que contem de certeza o valor de I. Considere nos calculos 3 casas decimais convenientemente arredondadas.
 - \mathbf{X} a) $I \in [2.183, 2.317]$
 - \sqcap **b)** $I \in [2.250, 2.317]$
 - \Box **c**) $I \in [2.183, 2.250]$
 - \Box d) $I \in [2.233, 2.267]$
- 4. O número de condição duma função f(x), calculado no ponto x é dado por $C_{f(x)} = \left| \frac{xf'(x)}{f(x)} \right|$, $f(x) \neq 0$.

 Considere a função $f(x) = \frac{1}{\ln(x)}$, então f(x) é uma função:
 - \square a) Mal condicionada para valores de $x \in]0, 0.1]$
 - [X] b) Mal condicionada para valores de $x \in [0.99, 1.01]$
 - \Box c) Bem condicionada para valores de $x \in \mathbb{R}$
 - \square d) Mal condicionada para valores de x muito elevados
- 5. Considere os nodos $x_0 = 0$, $x_1 = 1$, $x_2 = 2$ e $x_3 = 3$. Seja $p_2(x)$ o polinómio de Lagrange de grau ≤ 2 da duma função f nos nodos x_0 , x_1 , x_2 . Seja $q_2(x)$ o polinómio de Newton com diferenças divididas de grau ≤ 2 da mesma função nos nodos x_1 , x_2 , x_3 . Seja $m_2(x)$ o polinómio de grau ≤ 2 dado pelo método dos minimos quadrados para função f em todos os nodos e seja por fim S(x) o spline cúbico interpolador de f em todos os nodos.

Verifica-se sempre:

$$\bigcap$$
 a) $p_2(1) = q_2(1) = m_2(1) = S(1)$

$$\bigcap$$
 b) $m_2(3) = S(3) e p_2(2) = q_2(2)$

$$[\mathbf{x}] \mathbf{c}) p_2(0) = S(0) e q_2(3) = S(3)$$

$$\sqcap \mathbf{d}) \ q_2(2) \neq m_2(2)$$

A segunda parte do teste é constituida por 3 grupos de questões. Cada resposta deverá estar convenientemente justificada.

Cotações: Questão 6: 4.5 valores; Questão 7: 6 valores; Questão 8: 2 valores

6. Considere a seguinte tabela com valores de uma função f:

x_i	-1	1	2
$f(x_i)$	0	c	3

- a) Determine c de forma a que m(x) = x+1 seja o polinómio de grau ≤ 1 dado pelo método dos mínimos quadrados.
- b) Utilizando o valor obtido em a) para c, determine $p_2(x)$ o polinómio de grau ≤ 2 interpolador de f(x) nos pontos da tabela.
- c) Utilizando o valor obtido em a) para c, diga qual o valor obtido para o erro quadrático. Que pode concluir?

7. Considere o integral $I = \int_{-3}^{3} f(x) dx$ e a seguinte tabela com valores de uma função f:

x_i	-3	-2	-1	0	1	2	3
$f(x_i)$	-15.03	-8.35	-2.34	0	-2.34	-8.35	-15.03

- a) Determine um valor aproximado \hat{I}_{PM} de I pela regra do ponto médio com n=3 aplicações da regra.
- b) Determine um valor aproximado \hat{I}_T de I pela regra dos trapezios com h=6.
- c) Determine um valor aproximado \hat{I}_S pela regra de Simpson aos pontos da tabela de forma a obter a melhor aproximação possível para I.
- d) Sabendo que $f''(x) = x^2 \frac{121}{25}$, quantas vezes teria de aplicar a regra do ponto médio para obter uma aproximação com pelo menos 2 casas decimais significativas?

8. Seja S a função definida por

$$S(x) = \begin{cases} ax^3 + bx^2 + \frac{5}{3}x - 1, & -1 \le x < 0\\ -2ax^3 + bx^2 + \frac{5}{3}x - 1, & 0 \le x < 1\\ ax^3 - 2bx^2 + \frac{41}{3}x - 5, & 1 \le x \le 2 \end{cases}$$

e que passa nos pontos $(-1,y_0)$, $(0,y_1)$ $(1,y_2)$, $(2,y_3)$. Determine as contantes reais a, b de forma a que S(x) seja spline cúbico interpolador e diga se S(x) pode ser um spline natural?

Questão 1 21 -1 0 1 2 f(xi) 1 x 0 B tabela de deferenças divoide das $\begin{array}{c|c}
0 & x > \alpha - 1 \\
1 & 0 > -\alpha \\
2 & 0 > P
\end{array}$ $\begin{array}{c|c}
-2x+1 \\
3+x + 2x-1 \\
2x3
\end{array}
= \begin{array}{c|c}
6+3x-1 \\
6
\end{array}$ $p_{3(x)} = 1 + (n+1)(n-1) + (n+1)x(-x+\frac{1}{2}) + (n+1)x(x-1)(\frac{n+3x-1}{6})$ Para que p3(x) tenha exactamente gram 3, B+3x-1 +0 (=) (3 \$ 1-3 × Questão 2 Is1= 4 Simpson Simples $f_{5,1} = \frac{1}{3} \left(f(-1) + 4 f(0) + f(1) \right) = \frac{1}{3} (a - 16 + b) = \frac{a+b-16}{3}$ $\frac{a + b - 16}{a} = 4$ (=) a + b = 28Rega de Simpson Composta => n=2 | h= = $T_{5,2} = \frac{1/2}{3} (f(-1) + 4(f(-0.5) + f(0.5)) + 2f(-0.5) + f(-1))$ $= \frac{1}{6}(a + 4(2+3) - 2x4 + b) = \frac{1}{6}(12 + a + b)$ = $4(12+28) = \frac{20}{3}$

Question 3

$$I = \int_{1}^{8} \left| x \right| \left|$$

Condicionada para set [0.99, 1.01]

Question 6

$$x_i - 1 - 1 = 2$$
 $f(x_i) = 0 = 3$

Question 6

 $x_i - 1 = 1 = 2$
 $f(x_i) = 0 = 3$
 $f(x_i) = 2 = 3$
 $f(x_i) = 3 = 3$
 $f($

Question 7

-15.03 -8.35 -2.34 0 -2.34 -8.35 -15.03

I =
$$\int f(x) dx$$

Q

Region do ponto arectro composta Com n=3 = h= $\frac{3-14}{3}$ = 2

 $\int f(x) dx$

I = $\int f(x) dx$

Q

Phy3 = $(-8.35+0-8.35) \times 2 = -33.4$

D

Region dos trapezios Com h=6 = h=6 => n=1

 $\int f(x) = \frac{6}{2}(-15.03-15.03) = -90.18$

Q

C) Region de Simpson aos pontos da tabela

 $f(x) = \frac{6}{2} = \frac{6}{2} = \frac{1}{2\times3} = 1$
 $f(x) = \frac{1}{3}(-15.03+4(-8.35+0-8.35)+2(-2.34-2.34)-15.03) = -35-41$

Q

Q

Physical de Simpson aos pontos da tabela

 $f(x) = \frac{1}{2} = \frac{$

Es n > 93.33...

Seriam nicessárias n=94 aplicações da regra do ponto medio.

Questão 8 2 $S(x) = \begin{cases} ax^3 + bx^2 + \frac{1}{3}x - 1 & 1 - 1 \le x \le 0 \\ -2ax^3 + bx^2 + \frac{1}{3}x - 1 & 1 = 0 \le x \le 1 \end{cases}$ $ax^3 - 2b + x^2 + 41 x - 5)$ $1 \le x \le 2$ - Se passa pelo ponto J (-1,40), (0,41), (1,42), (2,42), não e necessário umpor as condições de unterpolação So ha que impor a continuidade de 5,5'e5" Continuidade de S(x) So(0) = Sn(0) (=) -1=-1 PV $S_1(1) = S_2(1) = -2a+b+5/3-1 = a-2b+41/3-5$ (E) -39+3b= 34 Continuidade de S'(x) 1 16 8 40 $S'(x) = \begin{cases} 3ax^2 + 2bx + \frac{5}{3} \\ -6ax^2 + 2bx + \frac{5}{3} \end{cases}$ 16x < 0 0 < x < 1 $3ax^2 - 4bx + \frac{41}{3}$ 11 < x < 0 1 < x < 1S((0) = S((0) =) 5/3 = 5/3 PV $S_{1}(1) = S_{2}(1) \in -60126+\frac{5}{3} = 30-46+\frac{41}{3}$ (=) $-9a+6b=\frac{36}{2}$ Continuidade de S''(x) $S^{11}(x) = \begin{cases} 6ax + 2b \\ -12ax + 2b \end{cases}$ $1 \le 2 \le 0$ [6ax-4b] 1 4 x 62 S''(0) = S''(0) (=) 2b=2b PV $S_{1}^{1}(1) = S_{2}^{1}(1) = -12a + 2b = 6a - 4b$ = -18a + 6b = 0Ficamos então com o sistema de equações lineares $\begin{cases} -3a + 3b = \frac{24}{3} \\ -9a + 6b = \frac{36}{3} \end{cases} = 4/3$

-18 a + 6b = 6 24 = 24 PV