Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 4

1. (a) Consider

$$\left| x^2 \cos \frac{1}{x} - 0 \right| \le |x|^2$$

$$< \epsilon \text{ iff } |x| < \sqrt{\epsilon}$$

Choose $\delta = \sqrt{\epsilon}$, then for $|x - 0| < \delta$, $\left| x^2 \cos \frac{1}{x} - 0 \right| < \epsilon$.

$$\Rightarrow \lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right) = 0.$$

(b) Consider

$$|x^2 - a^2| = |x - a||x + a| = |x - a||x - a + 2a| \le |x - a|(|x - a| + |2a|)$$

 $< \delta(\delta + 2a)$ whenever $|x - a| < \delta$

Choose $\delta > 0$ such that $\delta(2a + \delta) = \epsilon$, then for $|x - a| < \delta$, $|x^2 - a^2| < \epsilon$.

$$\Rightarrow \lim_{x \to a} x^2 = a^2.$$

(c) Consider

$$|x^{2} + 5x + 4 - 28| = |x^{2} + 5x - 24| = |(x+8)(x-3)| = |x-3||x-3+11|$$

$$\leq |x-3|(|x-3|+11)| < \delta(\delta+11) \text{ whenever } |x-3| < \delta.$$

Choose $\delta > 0$ such that $\delta(\delta + 11) = \epsilon$, then for $|x - 3| < \delta$, $|x^2 + 5x + 4 - 28| < \epsilon$.

$$\Rightarrow \lim_{x \to 3} (x^2 + 5x + 4) = 28.$$

- 2. (a) Choose $\{x_n = \frac{1}{n\pi}\}$, then $x_n \to 0$, but $\cos\left(\frac{1}{x_n}\right) = (-1)^n$ does not converge.
 - (b) Choose $\{x_n = \frac{1}{n}\}$, then $x_n \to 0$, but $f(x_n) = n \to \infty$.
 - (c) Choose $\left\{x_n = \frac{1}{(n\pi)^k} + a\right\}$ and $\left\{y_n = \frac{1}{(2n\pi + \frac{\pi}{2})^k} + a\right\}$, then $x_n, y_n \to a$ but $f(x_n) \to 0$ and $f(y_n) \to 1$.

3. Let $f(x) = x^{179} + \frac{163}{1 + x^2 + \sin^2 x} - 119 \ \forall \ x \in \mathbb{R}$.

Then, $f: \mathbb{R} \to \mathbb{R}$ is continuous and f(-2) < 0 and f(0) > 0. So, by using intermediate value theorem, there exists $c \in (-2,0)$ such that f(c) = 0.

i.e.,
$$c^{179} + \frac{163}{1 + c^2 + \sin^2 c} = 119.$$

- 4. (a) $f(x) \equiv x^5 3x^2 + 1$, $x \in [0, 1]$, f(0) = 1, f(1) = -1 and f is continuous. Now apply IVT.
 - (b) $f(0) = -1, f(\frac{\pi}{2}) = 2, f$ is continuous. Now apply IVT.
- 5. (a) Let f(x) = x if x is rational, and f(x) = 0 if x is irrational. Then f is continuous only at x = 0.
 - (b) Constant function, polynomial function, cosine function are continuous everywhere.