

Website
LinkedIn
mmamu003@ucr.edu

Md Abdullah Al Mamun

3rd Year Ph.D. Student in CS at UC Riverside

Advised by: <u>Prof. Nael Abu-Ghazaleh</u>

Primary Research Area:

- Generative AI
- Secure AI Systems
- Privacy/Security of ML & LLM
- Federated Learning

Recent Research projects:

- ML models as storage channels and their (mis-)applications
- Bypassing guardrails in LLM

Defense

Overview

Defense Category: Training time -> Alignment -> Unlearning

Overview

Penalizes the model when it generates responses that are similar to the undesirable outputs

Methodology

Gradient Ascent (GA)

• Update the model by following the opposite direction of the gradient of the loss function

Methodology

Gradient Ascent (GA)

Update the model by following the opposite direction of the gradient of the loss function

Mismatch

• Introduces data that is intentionally unrelated or mismatched with the original prompts

Results:

Method	Harmful rate on Unseen harmful Prompts (↓)	leak Rate on Unseen Extraction Attempts (↓)	Hallucination rate on Unseen Misleading (In-dist) Question (↓)
original	51.5%	81%	45.5%
Fine Tuning	52.5%	81%	43.5%
GA	1%	0%	8.5%
GA + Mismatch	3%	1%	8.5%

Table 1: Experiment results for Llama-2 (7B)

Defense: Perplexity (PPL) Based Detection

Metric	Vicuna-7B	Falcon-7B- Inst.	Guanaco-7B	ChatGLM-6B	MPT-7B- Chat
Attack Success Rate	0.79	0.7	0.96	0.04	0.12
PPL Passed (↓)	0.00	0.00	0.00	0.01	0.00
PPL Window Passed (↓)	0.00	0.00	0.00	0.00	0.00

Table 2: Both basic perplexity and windowed perplexity easily detect all adversarial prompts generated by the optimizer, while letting all prompts in the AdvBench dataset through.

• Drops benign user queries for many normal instructions from AlpacaEval.

Certifying LLM Safety against Adversarial Prompting

Methodology

Erase: Removes tokens one by one from the original prompt P

Certifying LLM Safety against Adversarial Prompting

Methodology

• Check: If any of these sequences are harmful, the original prompt P is identified as harmful.

Defense Category: Inference time -> Filtering -> Input Preprocessing

SmoothLLM: A randomized defense

Figure 2: Examples of insert, swap, and patch perturbations (pink)

Attack

P = Goal String

P' = Goal string with adversarial suffix

R = Jailbroken Response

Figure 3: (Left) An undefended LLM (cyan) takes an attacked prompt P as input and returns a response R. (Right) SMOOTHLLM (yellow), which acts as a wrapper around any LLM, comprises a perturbation step (pink), wherein N copies of the input prompt are perturbed, and an aggregation step (green), wherein the outputs corresponding to the perturbed copies are aggregated.

Results

• At q = 10%, the ASR for swap perturbations falls below 1%.

Figure 4: The dashed lines (red) denote the ASRs for suffixes generated by GCG on the AdvBench dataset for Vicuna and LLama2.

UC RIVERSIDE

Thank You!

Q & A

https://llm-vulnerability.github.io/

