print("Name: \t\t{}".format(myName)) print("NIM: \t\t{}".format(myNIM)) print("Start: \t\t{}".format(myDate)) print("Device ID: \t{}".format(myDevice)) Name: Christopher Darren NIM: 00000054804 2023-03-02 10:06:53.092746 Start: 48551295-b8a7-11ed-9cd4-f02f74a116e8 Device ID: Dataset yang dipakai: 1. Drug – sumber : https://www.kaggle.com/datasets/prathamtripathi/drug-classification 2. Glass – sumber :https://www.kaggle.com/datasets/prashant111/glass-identification-dataset?select=glass data.csv Hasil kerja Part 1.Data Preprocessing 1.1 import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn import utils 1.2 Import the dataset

TUGAS LAB IF540 MACHINE LEARNING

WEEK 04 : Linear Discriminant Analysis

Semester Ganjil 2022/2023

import datetime

Fill in your name and NIM myName = "Christopher Darren"

> column_c 214 non-null column_d 214 non-null

> column_e 214 non-null

column_f 214 non-null

column_g 214 non-null

column_h 214 non-null

column_i 214 non-null

column_j 214 non-null

column_k 214 non-null

column_a column_b

1.518365

0.003037

1.511150

1.516522

1.517680

1.519157

1.533930

dtypes: float64(9), int64(2)

memory usage: 18.5 KB

count 214.000000 214.000000

61.920648

1.000000

54.250000

160.750000

dataset.isnull().sum()

0

0

0

0

0

0

0

0

0

dataset.dropna(inplace=True)

dataset.fillna(0, inplace=True)

column_a 214 non-null column_b 214 non-null column_c 214 non-null

column_d 214 non-null

column_e 214 non-null

column_f 214 non-null

column_g 214 non-null

column_h 214 non-null

column_i 214 non-null

column_j 214 non-null

In [14]: #dataset_new = dataset.drop('age', axis=1)

#X_ = dataset.iloc[:, :13].values #Y_ = dataset.iloc[:, 13].values

In [17]: # splitting the dataset into train set and test set

from sklearn.model_selection import train_test_split

#are very low if we see the age and estimated salary.

from sklearn.preprocessing import StandardScaler

X_train = sc_X.fit_transform(X_train)

 $X_{\text{test}} = sc_X.transform(X_{\text{test}})$

1.3 Split the dataset for test and train

sc_X = StandardScaler()

2.1 Import the Libraries

import LDA model

2.2 Initialize our model

2.3 Fitting the Model

3.1 Import the Libraries

#,!the help of LDA

3.3 Fitting the Model

Out[24]:

Out[26]:

In [21]: # fitting the LDA model

 $lda = LDA(n_components = 2)$

X_train = lda.transform(X_train)

3.2 Initialize our Logistic Regression model

LogisticRegression(random_state=0)

In [23]: LG=LogisticRegression(random_state=0)

In [24]: # fit the Logistic Regression model LG.fit(X_train,y_train)

4.1 Predict the test set Result

4.2 Confusion Matrix

<AxesSubplot:>

In [26]: # making a confusion metrics

4.3 Visualize our Test Set Result

X_set, y_set = X_test, y_test

plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max())

-5.0 -2.5 0.0

1.2.1 Import the dataset

dataset2.head(5)

Age Sex

23

47

47

28 **4** 61

dataset2.info()

Column

Na_to_K

memory usage: 9.5+ KB

dataset2.describe()

Age

count 200.000000 200.000000 mean 44.315000 16.084485

16.544315

15.000000

45.000000

58.000000

dataset2.isnull().sum()

#checking null

Cholesterol Na_to_K

dtype: int64

In [33]: # displaying the datatypes

display(dataset2.dtypes)

displaying the datatypes display(dataset2.dtypes)

int64

object

object

object

float64

object

int64

object object

object

object

object

def encode_data(feature_name):

mapping_dict = {}

return mapping_dict

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 6 columns):

Cholesterol 200 non-null

Ynew1 = dataset2.iloc[:, 5].values

Age Sex BP Cholesterol Na_to_K Drug

1.3.1 Split the dataset for test and train for drug test

In [37]: # splitting the dataset into train set and test set

dtypes: int64(5), object(1)

In [36]: Xnew1 = dataset2.iloc[:, :5].values

memory usage: 9.5+ KB

1 1

1 1

sc_X = StandardScaler()

2.1.1 Import the Libraries

2.2.1 Initialize our model

initialize the LDA

2.3.1 Fitting the Model

3.1.1 Import the Libraries

#,!the help of LDA

3.3.1 Fitting the Model

4.2.1 Confusion Matrix

In [48]: # making a confusion metrics

4.3 Visualize our Test Set Result

from matplotlib.colors import ListedColormap

 X_{set1} , $y_{\text{set1}} = X_{\text{test1}}$, y_{test1}

plt.xlim(X1drug.min(), X1drug.max()) plt.ylim(X2drug.min(), X2drug.max()) for i, j in enumerate(np.unique(y_set1)):

In [49]: #Visualising the Test set results

plt.xlabel('LD1') plt.ylabel('LD2') plt.legend() plt.show()

> -1 -2 -3

Kesimpulan

In [50]: # Footer

In [52]:

serta train_model.

print("Signed by:")

Signed by: Name:

Time-stamp:

Next step:

myDate = datetime.datetime.now()

print("Name: \t{}".format(myName)) print("NIM: \t{}".format(myNIM))

I certify that this is my own work.

Christopher Darren

00000054804

• choose the following settings:

Page size: One long page Page Orientation: auto Use print stylesheet

Submit your ipython notebook and PDF files

print("Time-stamp:\t{}".format(myDate))

print("I certify that this is my own work.")

2023-03-05 21:36:55.981883

Save the notebook, then convert the notebook to html (by running the next code).

!jupyter nbconvert --to html "./IF540_Kelas EL_00000054804_Christopher Darren_Week04.ipynb" --output-dir="./"

[NbConvertApp] Converting notebook ./IF540_Kelas EL_00000054804_Christopher Darren_Week04.ipynb to html

[NbConvertApp] Writing 736214 bytes to IF540_Kelas EL_00000054804_Christopher Darren_Week04.html

convert the generated html file to PDF using the online tool: https://www.sejda.com/html-to-pdf

Markdown basics https://markdown-guide.readthedocs.io/en/latest/basics.html#

from sklearn.metrics import confusion_matrix

Confusion Metrics for Drug Test

confusion_matrix1=confusion_matrix(y_test1, y_pred1)

[Text(0.5, 1.0, 'Confusion Metrics for Drug Test')]

sns.heatmap(confusion_matrix1, annot=True, cmap="magma").set(title='Confusion Metrics for Drug Test')

- 16 - 14

 $X1drug, X2drug = np.meshgrid(np.arange(start = X_set1[:, 0].min() - 1, stop = X_set1[:, 0].$

 $np.arange(start = X_set1[:, 1].min() - 1, stop = X_set1[:, 1].$

alpha = 0.75, cmap = ListedColormap(('red', 'green', 'blue', 'orange', 'purple')))

plt.contourf(X1drug, X2drug, LG1.predict(np.array([X1drug.ravel(), X2drug.ravel()]).T).reshape(X1drug.shape),

color = ListedColormap(('red', 'green', 'blue', 'orange', 'purple'))(i), label = j)

Berikan simpulan yang dilakukan dari hasil kerja menggunakan algoritma dan 2 dataset yang dipilih. Simpulan bisa berkisar antara (bisa di modifikasi):

- Hasil perbandingan akurasi antara algoritma menurut saya berbeda karena class dataset antara glass dan Drug berbeda.

- Pada week ini saya belajar tentang LDA. LDA merupakan sebuah teknik analisis statistik multivariat yang digunakan untuk memisahkan atau mengklasifikasikan data menjadi dua atau lebih kelompok yang telah ditentukan sebelumnya berdasarkan variabel prediktor yang diukur. di dalam modul ini saya mencoba dataset antara glass dan drug. Selain LDA, saya juga menggunakan Logistic regression, training data supaya bisa melihat hasil dari LDA yang saya sudah buat. Pada akhir dari praktikum ini semua hasilnya dibuat menjadi visualisasi menggunakan scatter plot dengan batas batas class yang sudah diinput pada proses predict

 $\max() + 1$, step = 0.01),

 $\max() + 1, step = 0.01))$

 $plt.scatter(X_set1[y_set1 == j, 0], X_set1[y_set1 == j, 1],$

plt.title('Logistic Regression for drug test (Test set)')

Logistic Regression for drug test (Test set)

LD1

In [46]: y_pred1.shape

(40,)

In [47]: y_test1.shape

Out[44]:

Out[46]:

Out[48]:

In [41]: # fitting the LDA model

 $1da2 = LDA(n_{components} = 2)$

In [39]: # import LDA model

dataset2.info()

Column

Na_to_K

dataset2.head(3)

Age Sex

0

1 2

3

4

1 47

2 47

5 Drug

In [35]:

Out[36]:

Age

Drug

Age Sex

BP

Cholesterol

dtype: object

Cholesterol

dtype: object

Na_to_K

Drug

In [34]: #encoding

Na_to_K

Drug

Age

Sex

31.000000 10.445500

74.000000 38.247000

0

converting 'Weight' and 'Salary' from float to int dataset2['Na_to_K'] = dataset2['Na_to_K'].astype(str)

unique_values = list(dataset2[feature_name].unique())

mapping_dict[unique_values[idx]] = idx

dataset2['Sex'].replace(encode_data('Sex'), inplace = True)

dataset2['Drug'].replace(encode_data('Drug'), inplace = True)

dataset2['Cholesterol'].replace(encode_data('Cholesterol'), inplace = True)

int64

int64

int64

int64

int64

1

In [38]: #feature Feature Scaling is the most important part of data preprocessing. If we see our

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

In [42]: # import the Logistic Regression model from sklearn using the 2 variances with

X_train1, X_test1, y_train1, y_test1 = train_test_split(Xnew1, Ynew1, test_size=0.2, random_state=0)

#dataset then some attribute contains information in Numeric value some value very high andsome

object

dataset2['BP'].replace(encode_data('BP'), inplace = True)

Non-Null Count Dtype

25.355

13.093

10.114

from sklearn.model_selection import train_test_split

#are very low if we see the age and estimated salary.

from sklearn.preprocessing import StandardScaler

X_test1 = lda2.fit_transform(X_test1, y_test1)

from sklearn.linear_model import LogisticRegression

X_train1 = lda2.transform(X_train1)

3.2.1 Initialize our Logistic Regression model

LogisticRegression(random_state=0)

In [43]: LG1=LogisticRegression(random_state=0)

In [44]: # fit the Logistic Regression model LG1.fit(X_train1,y_train1)

4.1.1 Predict the test set Result

In [45]: # predict the Logistic regression model y_pred1=LG1.predict(X_test1)

X_train1 = sc_X.fit_transform(X_train1)

 $X_{\text{test1}} = sc_X.transform(X_{\text{test1}})$

200 non-null

200 non-null

200 non-null

200 non-null

200 non-null

for idx in range(len(unique_values)):

This function takes feature name as a parameter and returns mapping dictionary to replace(or map) categorical data with

Age

Sex

BP

5 Drug

(200, 6)

dataset2.shape

0

1

2

3

4

Out[28]:

In [29]:

In [30]:

Out[30]:

In [31]:

Out[31]:

In [32]:

Out[32]:

Dataset 2 TUGAS MANDIRI

Xnew = dataset2.iloc[:, :5].values Ynew = dataset2.iloc[:, 5].values

HIGH

LOW

LOW

LOW

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 6 columns):

Cholesterol 200 non-null

dtypes: float64(1), int64(1), object(4)

Na_to_K

7.223956

6.269000

13.936500

19.380000

F NORMAL

plt.xlabel('LD1') plt.ylabel('LD2') plt.legend() plt.show()

2

-2

LD2

for i, j in enumerate(np.unique(y_set)):

 $plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],$

2.5 5.0 7.5 10.0 12.5

BP Cholesterol Na_to_K Drug

25.355 DrugY

13.093 drugC

10.114 drugC

7.798 drugX

18.043 DrugY

int64

object

object

object

float64

object

HIGH

HIGH

HIGH

HIGH

HIGH

Non-Null Count Dtype

200 non-null

200 non-null

200 non-null

200 non-null

200 non-null

plt.title('Logistic Regression for Glass_dataset (Test set)')

Logistic Regression for Glass dataset (Test set)

from matplotlib.colors import ListedColormap

In [27]: #Visualising the Test set results

In [25]: # predict the Logistic regression model y_pred=LG.predict(X_test)

X_test = lda.fit_transform(X_test, y_test)

from sklearn.linear_model import LogisticRegression

Part 4. Making a Prediction and Visualize the result

from sklearn.metrics import confusion_matrix confusion_matrix=confusion_matrix(y_test,y_pred)

sns.heatmap(confusion_matrix, annot=True, cmap="YlGnBu")

- 12 - 10

X1, $X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].$ $\max() + 1$, step = 0.01),

max() + 1, step = 0.01))

plt.contourf(X1, X2, LG.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),

• 2 • 3

dataset2 = pd.read_csv(r'D:\SEMESTER 4\IF540 Machine Learning\LAB\week4\drug200.csv')

6 7

 $np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].$

alpha = 0.75, cmap = ListedColormap(('red', 'green', 'blue', 'yellow', 'pink', 'grey', 'cyan')))

color = ListedColormap(('red', 'green', 'blue', 'yellow', 'pink', 'grey', 'cyan'))(i), label = j)

In [20]: # initialize the LDA

10 column_k 214 non-null

dtypes: float64(9), int64(2)

memory usage: 18.5 KB

#dataset_new.head(2)

In [15]: #del dataset['age']

<class 'pandas.core.frame.DataFrame'> RangeIndex: 214 entries, 0 to 213 Data columns (total 11 columns):

Column Non-Null Count Dtype

#dataset['age'] = dataset['age'].astype(int)

#dataset['age'] = pd.to_numeric(dataset['age'])

In [9]: | def clean_dataset(dataset):

In [10]: #get rid of infinite values.

#fill missing values

dataset.describe()

mean 107.500000

50% 107.500000

max 214.000000

dataset.shape

(214, 11)

In [8]: #checking null

column_a

column_b

column_c

column_d

column_e

column_f

column_g

column_h

column_i

column_j

column_k dtype: int64

In [12]: dataset.info()

3

8

In [13]: #converting

min

6

8

In [6]:

Out[6]:

Out[7]:

Out[8]:

In [11]:

float64

float64

float64

float64

float64

float64

float64

column_c column_d column_e

2.684533

1.442408

0.000000

2.115000

3.480000

3.600000

4.490000

assert isinstance(dataset, pd.DataFrame), "dataset needs to be a pd.DataFrame"

indices_to_keep = ~dataset.isin([np.nan, np.inf, -np.inf]).any(axis=1)

return dataset[indices_to_keep].astype(np.float64)

dataset.replace([np.inf, -np.inf], np.nan, inplace=True)

float64

float64

float64

float64

float64

float64

float64

float64

#dataset["age"] = [float(str(i).replace("-", "+", "a+b")) for i in dataset["age"]]

X_train, X_test, y_train, y_test = train_test_split(X,Y, test_size=0.2, random_state=0)

#dataset then some attribute contains information in Numeric value some value very high andsome

In [18]: #feature Feature Scaling is the most important part of data preprocessing. If we see our

Part 2. Building a Linear Discriminant analysis for Dimensionality Reduction

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

In [22]: # import the Logistic Regression model from sklearn using the 2 variances with

int64

214.000000 214.000000 214.000000 214.000000 214.000000

72.650935

0.774546

69.810000

72.280000

72.790000

73.087500

75.410000

1.444907

0.499270

0.290000

1.190000

1.360000

1.630000

3.500000

int64

13.407850

0.816604

10.730000

12.907500

13.300000

13.825000

17.380000

myNIM = "00000054804"

In [2]: myDate = datetime.datetime.now() myDevice = str(uuid.uuid1())

import uuid

Header

In [1]:

X = dataset.iloc[:, :10].values Y = dataset.iloc[:, 10].values dataset.head(5) column_a column_b column_c column_d column_e column_f column_g column_h column_i column_k 1 1.52101 0 13.64 4.49 1.10 71.78 0.06 8.75 0.0 0.0 1 2 1.51761 13.89 3.60 1.36 72.73 0.48 7.83 0.0 0.0 3 1.51618 72.99 13.53 3.55 1.54 0.39 7.78 0.0 0.0 2 1 4 1.51766 13.21 3.69 1.29 72.61 0.57 8.22 0.0 0.0 3.62 5 1.51742 13.27 1.24 73.08 0.55 8.07 1 0.0 0.0 dataset.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 214 entries, 0 to 213 Data columns (total 11 columns): Column Non-Null Count Dtype

column_f column_g column_h

0.497056

0.652192

0.000000

0.122500

0.555000

0.610000

6.210000

In [3]: dataset = pd.read_csv(r'D:\SEMESTER 4\IF540 Machine Learning\LAB\week4\glass_data.csv') In [4]: Out[4]: -----

column_a 214 non-null int64 0 column_b 214 non-null 1

column_i

214.000000

0.175047

0.497219

0.000000

0.000000

0.000000

0.000000

3.150000

8.956963

1.423153

5.430000

8.240000

8.600000

9.172500

16.190000

column_j

0.057009

0.097439

0.000000

0.000000

0.000000

0.100000

0.510000

214.000000 214.000000

column_k

2.780374

2.103739

1.000000

1.000000

2.000000

3.000000

7.000000