МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Лабораторная работа 2.2.1

Исследование взаимной диффузии газов

Автор: Григорьев Даниил Б01-407

1 Аннотация

Цель работы: 1) регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов; 2) определение коэффициента диффузии по результатам измерений.

В работе используются: измерительная установка; форвакуумный насос; баллон с газом (гелий); вакуумметр (класс точности 0.4, $\sigma_P=3$); источник питания; магазин сопротивлений; милливольтметр ($\sigma_U=0.01$); компьютер с программой для проведения измерений ($\sigma_t=1$).

2 Теоретические сведения

Закон Фика:

$$j_a = -D\frac{\partial n_a}{\partial x}, j_b = -D\frac{\partial n_b}{\partial x} \tag{1}$$

В опыте: диффузия гелия на стационарном воздухе:

$$D = \frac{1}{3}\lambda\bar{v}, \lambda = \frac{1}{n_0\sigma}, \bar{v} = \sqrt{\frac{8RT}{\pi\mu}}$$
 (2)

В общем случае:

$$D = \frac{1}{3}\lambda\bar{v}, \lambda = \frac{1}{n_{\Sigma}\sigma}, n_{\Sigma} = n_{He} + n_{\scriptscriptstyle B} = \frac{P}{kT}, \bar{v} = \sqrt{\frac{8kT}{\pi\bar{m}}}$$
(3)

Следовательно, $D \sim \frac{1}{p}$

3 Методика измерений

$$V_1 \approx V_2 \equiv V, LS \ll V \Rightarrow n(t)$$
 (4)

Через некоторое время в трубе (рис. 1)

$$j = -D\frac{\partial n}{\partial x} = const, n(x) = \frac{\Delta n}{L}x$$
 (5)

Для сосудов:

$$N_1 = n_1 V, N_2 = n_2 V, \frac{dN_1}{dt} = jS, \frac{dN_2}{dt} = -jS$$
 (6)

$$\frac{(d\Delta n)}{dt} = -\frac{\Delta n}{\tau}, \tau = \frac{1}{D} \frac{VL}{2S} \tag{7}$$

$$\Delta n = \Delta n_0 e^{-\frac{t}{\tau}} \tag{8}$$

Применимость:

$$\tau \gg \tau_{\text{диф}} = \frac{L^2}{2D}, \Rightarrow SL \ll V$$
 (9)

Для теплопроводности (датчики в установке 2)

$$\Delta k = k(n_2) - k(n_1) \approx const \cdot \Delta n \tag{10}$$

Измерение разности теплопроводности с помощью измерения напряжения на гальванометре на мосту: при одной смеси в сосудах - баланс, при разных:

$$U \sim \delta k \sim \Delta n, U = U_0 \cdot e^{-\frac{t}{\tau}} \tag{11}$$

Рис. 1. Схема используемых в измерении сосудов

Рис. 2. Схема используемой в измерении установки

4 Используемое оборудование

Используемое оборудование в работе: измерительная установка, форвакуумный насос, баллон с газом, манометр, источник питания, магазин сопротивлений, компьютер. Схема установки представлена на рис. $1,\,2,\,3,\,4.$

Мост включает в себя датчики теплопроводности, гальванометр и переменное споротивление для балансировки моста.

Рис. 3. Схема используемого в измерении моста

Рис. 4. Схема используемого в измерении дозатора

Таблица 1. Оборудование

Прибор	Точность
Манометр	$\pm 0.01 \; {\rm atm}$
Вольтметр	±1%
Секундомер(встроен в компьютер)	±1 мс

5 Результаты измерений и обработка данных

- 1. Параметры установки:
 - (a) Объём сосудов $V = 775 \pm 10 \; {\rm cm}^3$

- (b) Параметры соединительной трубки: $L/S = 15 \pm 0.1~{\rm cm}^{-1}$
- (c) Атмосферное давление: $P_{atm} = 764$ торр
- 2. Подготовка смеси осуществляется следующим образом:
 - (a) Напуск воздуха до давления P_{Σ} , равное давлению итоговой смеси
 - (b) Балансировка измерительного моста (выставление нуля при однородном воздухе)
 - (c) Напуск гелия в один из сосудов до давления $P_{He} = 0.2 P_{\Sigma}$ (с предварительным откачиванием воздуха)
 - (d) Напуск воздуха в установку до давления $P_{atm}=1.675P_{\Sigma}$ (с предварительной откачкой гелия из соединительных трубок)
 - (e) Установление равного давления в установке путём открытия на время порядка 30-60 секунд обходных кранов сосудов
 - (f) Открытие крана, соединяющих сосуды и измерение зависимости U(t), пока напряжение не упадёт на 30-50% от начального
- 3. Проведём опыт 4 раза для различных значений P_{Σ} . Сводка по опытам представлена в таблице 2

Таблица 2. Параметры измерений

Nº	1	2	3	4
P_{Σ} , Topp	40	80	150	220
P_{He} , Topp	8	16	30	44
P_{atm} , Topp	67	134	251	368
U_0 , мВ	12.23	13.07	13.06	14.18
$P_{\text{точн}}$, торр	40.8	81.6	152.1	222.6

4. Теоретически было получено, что $U(t)=U_0\cdot e^{-\frac{t}{\tau}}, \tau=\frac{1}{D}\frac{VL}{2S}$ Построим график в координатах $\ln\frac{U}{U_0}(t)$, тогда коэффициент наклона

$$k = -\frac{1}{\tau} = 2D \cdot \frac{S}{L} \frac{1}{V} \tag{12}$$

Следовательно

$$D = -k\frac{L}{S}\frac{V}{2} \tag{13}$$

$$\varepsilon_D = \sqrt{\varepsilon_k^2 + \varepsilon_{L/s}^2 + \varepsilon_V^2} \tag{14}$$

$$\varepsilon_k^2 = (\varepsilon_k^{\text{случ}})^2 + (\varepsilon_k^{\text{сист}})^2 \tag{15}$$

$$\varepsilon_k^2 = (\varepsilon_k^{\text{cлуq}})^2 + \varepsilon_t^2 + (\frac{\varepsilon_U}{\ln U/U_0})^2 \tag{16}$$

Примечание: последнее слагаемое является неоднозначным, поэтому, т.к. мультиметр цифровой, вместо него берётся 1%

Рис. 5. Линеаризованные зависимости

5. Все зависимости для наглядности разместим на одном графике:

Воспользуемся МНК для нахождения коэффициента наклона графиков: (учтено, что они проходят через 0)

$$k = \frac{\langle xy \rangle}{\langle x^2 \rangle} = \frac{\langle t \ln(U/U_0) \rangle}{\langle t^2 \rangle}$$
 (17)

$$\sigma_k = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle}{\langle x^2 \rangle} - k^2} = \frac{1}{\sqrt{n}} \sqrt{\frac{\langle \ln(U/U_0)^2 \rangle}{\langle t^2 \rangle} - k^2}$$
 (18)

6. Расчёты представлены в таблице 3. Также в неё включены величины, необходимые для построения графика в следующем пункте.

Таблица 3. Результаты применения МНК

$\mathcal{N}_{ar{0}}$	1	2	3	4
$k, 10^{-3} * 1/c$	-2.121	-1.147	-0.71	-0.48
$\sigma_k, 10^{-6} * 1/c$	1.1	0.4	0.6	0.4
$D, cm^2/c$	12.73	6.89	4.29	2.86
$\sigma_D, \mathrm{cm}^2/\mathrm{c}$	0.17	0.09	0.06	0.04
$1/P, 10^{-3} \text{Topp}^{-1}$	24.5	12.2	6.6	4.5
$\sigma_{1/P}, 10^{-3} \text{Topp}^{-1}$	1.8	0.5	0.13	0.06

7. Построим график $D(\frac{1}{P})$.

Зависимость должна быть линейной, так как в формуле для D $n_0 = \frac{P}{kT}$ находится в

знаменателе.

5 точек мало для уверенного использования МНК, поэтому применим несколько методов анализа данных:

Рис. 6. График $D(\frac{1}{P})$

(a)
$$D_1 = k_D/P_{atm} = \frac{k_D}{764 \text{ ropp}}$$

(b) МНК в предположении
$$y = kx$$
 $k_D = 540 \pm 16 \text{см}^2/\text{c} * \text{торр}$ $D_1 = 0.71 \pm 0.02 \text{см}^2/\text{c}$

(c) МНК в общем случае
$$y=kx+b$$
 $D_0=0.7\pm0.1{\rm cm}^2/{\rm c}$ $k_D=495\pm15{\rm cm}^2/{\rm c}*{\rm topp}$ $D_1=1.3\pm0.1{\rm cm}^2/{\rm c}$

(d) Усреднение коэффициентов:
$$k_D = < D/(1/P) >, \sigma_k = \sqrt{\frac{<(DP -)^2>}{n-1}}$$
 $k_D = 595 \pm 25 \text{cm}^2/\text{c} * \text{торр}$ $D_1 = 0.78 \pm 0.03 \text{cm}^2/\text{c}$

8. Сравним результат с табличным:

при
$$t = 0^{\circ} C$$
 $D_T = 0.62 \text{см}^2/\text{c}$

Оценим поправку D для нахождения значения при $t=20^{o}C$: $D\sim\frac{T}{\sqrt{T}}=\sqrt{T}\implies D_{T}^{`}\approx\sqrt{293/273}D_{T}\approx0.64\mathrm{cm}^{2}/\mathrm{c}$

Усреднение коэффициентов (0.78) и МНК y=kx (0.71) дают достаточно близкие результаты. Отклонение связано как с несовершенством теории, так и малым количеством экспериментальных точек.

9. Оценим длину свободного пробега атомов гелия и сечение столкновений атомов.

$$\lambda_{He} = 3D\sqrt{\frac{\pi\mu_{He}}{8RT}} \approx 3 * 0.0007 \text{m}^2/\text{c}\sqrt{\frac{3.1415 * 0.004 \text{кг/моль}}{8 \cdot 293 \cdot 8.31 \text{Дж/(моль*K)}}}$$
 (19)

$$\lambda_{He} \approx 1.68 \text{MKM}$$
 (20)

$$\sigma_{\text{He-возд}} = \frac{1}{\lambda n_0} = \frac{1}{P/(kT)\lambda} = \frac{kT}{P\lambda}$$
 (21)

$$\sigma_{\text{He-возд}} \approx 2.4 * 10^{-18} \text{M}^2 = 2.4 \text{nm}^2$$
 (22)

6 Выводы

В работе была изучена зависимость коэффициента взаимной диффузии гелия в воздухе от давления: была подтверждена линейность D(1/P).

Коэффициент пропорциональности $k_D \approx 540 \pm 16 \text{cm}^2/\text{c} * \text{торр}.$

Экстраполяция дала значение коэффициента диффузии при атмосферном давлении $D_1 = 0.71 \pm 0.02 \text{cm}^2/\text{c}$, что достаточно близко к табличному значению $0.62 \text{ cm}^2/\text{c}$

Была проведена оценка длины свободного пробега атомов гелия в условиях эксперимента (за коэффициент диффузии при вычислениях взято среднее значение из всего диапазона): $\lambda \approx 1.68$ мкм. Также вычислена эффективная площаль столкновения молекул гелия и воздуха: $\sigma_{\text{He-возд}} = 2.4 \text{nm}^2$