Dokumentacja techniczna

Podnośnik samochodowy zrealizowany na siłownikach pneumatycznych

Dawid Sobczak Maja Zelmanowska Jan Lorkiewicz

Projekt zaliczeniowy Elementy i Urządzenia Automatyki

Wydział Automatyki Robotyki i Elektrotechniki Politechnika Poznańska $\frac{2020}{2021}$

Rysunek podglądowy

Podwójny nożycowy układ podnośnika

Spis treści

1	Informacje ogólne				
	1.1 Ostrz	zeżenia o zagrożeniach	1		
	1.2 Ogra	niczenie odpowiedzialności	1		
	1.3 Włas	sność intelektualna	1		
2	Opis inst	alacji	2		
	2.1 Przez	znaczenie	2		
	2.2 Struk	ktura instalacji	2		
	2.3 Scher	mat układu podnośnika - wymiary	3		
		elementów składających się na urządzenie			
	2.5 Dane	e techniczne	5		
		da prawidłowego rozłożenia ciężaru			
	2.7 Ukłac	d blokady mechaniczno-pneumatycznej	6		
3	Schemat	elektryczny	7		
4	Schemat	pneumatyczny	7		
5	Schemat	blokowy	8		
6	Schemat	połączeń sterownika PLC	9		
7	Kosztory	rs	10		

1 Informacje ogólne

Ten dokument zawiera wszystkie informacje potrzebne w celu zapoznania się ze strukturą mechaniczną, instalacją sterującą oraz wykonawczą podnośnika.

Dokument zawiera również ważne informacje oraz wytyczne regulujące prawidłową instlację oraz użytkowania produktu.

Zawarte są również niezbędne ostrzeżenia o występujących zagrożeniach w instalacji oraz instrukcje dotyczące prawidłowego użytkowania produktu w celu ich uniknięcia.

1.1 Ostrzeżenia o zagrożeniach

W celu uniknięcia **śmierci** bądź **kalectwa** mogącego wyniknąć z przygniecenia osoby przez podnośnik lub obiekty/pojazdy podnoszone należy bezwzględnie zastosować się do wymienionych niżej zasad:

- Zabrania się przebywania osób bezpośrednio pod ponośnikiem w trakcie unoszenia/ opuszczania, bądź innej operacji, w której układ blokady mechanicznej jest zwolniony.
- Pod podnośnikiem można przebywać tylko i wyłącznie przy zablokowanym układzie podnośnika.
- Zabrania się unoszenia pojazdów wykraczających masą poza dopuszczalną nośność podnośnika.
- Zaleca się zasilanie układu podnośnika powietrzem o minimalnej wartości ciśnienia wynoszącej 8bar. Mniejsze wartości mogą wpłynąć na możliwości nośne układu.

1.2 Ograniczenie odpowiedzialności

Nie przestrzeganie zasad oraz nie stosowanie się do wytycznych wymienionych w dokumencie zwalnia z odpowiedzialności producenta produktu w przypadku wynikłych szkód lub uszkodzeń.

1.3 Własność intelektualna

Tekst, rysunki, zdjęcia i inne ilustracje są chronione prawem autorskim i intelektualnym, dokument jest własnością autorów projektu.

2 Opis instalacji

2.1 Przeznaczenie

Podnośnik został zaprojektowany z myślą o instalacji w warsztatach oraz garażach wykorzystujących instalację pneumatyczną jako zasób energii wykorzystywanej przy obsłudze narzędzi. Podnośnik stworzony z myślą o zabudowie pod posadzkowej. Instalacja całego zespołu podnośnika składa się z dwóch układów, po jednym na każdą stronę potencjalnie unoszoengo pojazdu.

2.2 Struktura instalacji

Zestaw nożycowego podnośnika samochodowego składa się z dwóch osobnych podnośników, po jednym na stronę podnoszonego pojazdu.

Podnoszony pojazd oparty jest na płytach, które połączone są z bazą podnośnika przy pomocy zestawu ramion.

Pojazd jest w pełni podniesiony w przypadku, gdy główny siłownik pneumatyczny osiągnie wysuw oznaczający długość roboczą.

Za główny układ zabezpieczający zestaw przed ewentulanym, niekontrolowanym upadkiem odpowiada specjana mechaniczna zapadka, która odpowiada również za blokadę podnośnika w wybranej pozycji, tzw. tryb parkowania, odciążający główny siłownik.

2.4 Opis elementów składających się na urządzenie

Numer	Opis
1	Platforma podłoża używana do mocowania nożyc
2	Ramię nożycowego systemu podnoszenia
3	Ramiona podwojne na których mocowany zostaje sysytem zapadek bezpieczeństwa wraz z siłownikami
	pneumatycznymi (głównym oraz blokady)
4	Łączenie obrotowe
5	Łączenie obrotowe
6	Platforma
7	Ramię łączące platformy
8	Ruchoma górna część sysytemu blokady
9	Podstawa blokady, system zapadek bezpieczeństwa na podnośniku, ten system zabezpiecza podnośnik
	przed niekontrolowanym upadkiem.
10	Łączenie obrotowe
11	Siłownik pneumatyczny główny (podnoszenie i opuszczanie rampy)
12	Siłownik pneumatyczny blokady (podnoszenie i opuszczanie zapadek bezpieczeństwa)
13	Łączenie obrotowe

2.5 Dane techniczne

Właściwość	Wartość		
Udźwig podnośnika	2800 kg		
Waga pustego podnośnika	około 840 kg		
Czas podnoszenia	około 10 sek.		
Czas opuszczania	około 30 sek.		
Maksymalna wysokość (od ziemi)	2700 mm		
Maksymalna wysokość (od poziomu zabudowy podposadzkowej)	1800 mm		
Minimalna wysokość (pozycja spoczynkowa)	900 mm		
Długość rampy	2000 mm		
Szerokość rampy	1000 mm		
Odległość między rampami	1000 mm		
Podnoszenie/opuszczanie	pneumatyczne (2 siłowniki)		
Pneumatyczne połączenie systemu zasilania	6 bar		
Zasilanie operacyjne układu blokady	2 bar		
Minimalny rozstaw między osiami	1530 mm		
Układy bezpieczeństwa			
Mechaniczny układ bezpieczeństwa	tak		
Wyłącznik bezpieczeństwa	tak		
Wyłączniki krańcowe podnośnika	tak		
Czujniki krańcowe układu blokady	tak		

2.6 Zasada prawidłowego rozłożenia ciężaru

Podnoszony pojazd powinien zostać prawidłowo ustawiony, przyjmując niewielki błąd symetrii tego ustawienia. W przypadku różnic w rozłożeniu masy, specjany sterownik będzie odpoiwednio dobierać ciśnienie tak aby pojazd został uniesiony równo. Dodatkowe zabezpieczenie stanowi belka łącząca oba układy podnośnika.

2.7 Układ blokady mechaniczno-pneumatycznej

3 Schemat elektryczny

4 Schemat pneumatyczny

5 Schemat blokowy

6 Schemat połączeń sterownika PLC

Wejścia binarne:

- Styk A1 Wyłącznik krańcowy siłownika blokady nr $1\,$
- Styk A2 Wyłącznik krańcowy siłownika blokady nr $2\,$
- Styk A3 Wyłącznik krańcowy nr 1 siłownika głównego nr 1
- Styk A4 Wyłącznik krańcowy nr1siłownika głównego nr2
- Styk A5 Wyłącznik krańcowy nr 2 siłownika głównego nr 1
- Styk A6 Wyłącznik krańcowy nr2siłownika głównego nr2 Wejścia analogowe:
- P1 Przetwornik wagowy nr 1
- ${\bf P}2$ Przetwornik wagowy nr2
- P3 Przetwornik ciśnienia

Wyjście analogowe:

Z1 - Zawór zmiany ciśnienia

7 Kosztorys

Element	Nazwa modelu	Liczba	Cena
Wyłącznik krańcowy	ME-8104	6	10,00 zł
Zawór zmiany cisnienia	ZD-KOST-XX	1	30,00 zł
PLC	6ES7214-1HG40-0XB0	1	1249,84 zł
Moduł wejscia dodatkowego AI"	1 AI - 6ES7231-4HA30-0XB0	1	214,34 zł
Moduł wyjścia dodatkowego AQ"	1 AO - 6ES7232-4HA30-0XB0	1	323,78 zł
Przetwornik wagowy	WWANA 4-20	2	750,00 zł
Tensometr	KPZ 502E-3	1	199,00 zł
Przetwornik ciśnienia	WIKA A-10	1	389,13 zł
Siłownik pneumatyczny główny	CZ D80 600 mm	2	836,97 zł
Siłownik pneumatyczny blokady	ISO6431 / 15552 PSE fi 32 100mm	2	214,88 zł
Ręczny filtr spustowy	DG/ATS-AAD.003 3/8ĄTS	1	50,00 zł
Regulator ciśnienia powietrza	AK00489	1	30,00 zł
Manometr	RF 50 AFRISO	3	20,00 zł
Zawór 2/n	VNP206-24VAC	1	200,00 zł
Zawór 3/n	L322-08S	3	230,00 zł
Zawór 5/n	HF14510	1	520,00 zł
sprężynowy zawór zwrotny	RV-2280-010	1	30,00 zł
Elektrozawór	25ZN1MZF	5	280,00 zł
Przełącznik zapadkowy	PH1447 PEHA D 624/2	2	37, 00 zł
Styk NO	m ZB2/XB2/GB2/LAY5 - BE101	7	3,00 zł
Styk NZ	E-NC ETI 004771501	2	5,00 zł
Przekażnik	MP-0787 24V 80/60A	4	20,00 zł
Przetwornica AC-DC 230V/24V	TO220-7C	1	42,00 zł
Okablowanie	-	-	200,00 zł
*Częci na zamównienie	-	-	800,00 zł
Robocizna			2000,00 zł
		suma	10 350,65 zł

^{*}metalowe części składowe podnosnika które do naszego projektu musiałyby być zrobione dokładnie pod wymiar np. platforma lub ramię nożycowego systemu podnoszenia