PATRÍCIO TORRES COSTA E LUCIANE SOBRAL E SILVA

MÉTODOS NUMÉRICOS PARA ZEROS DE FUNÇÕES

AÇAILÂNDIA 2009

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA

MÉTODOS NUMÉRICOS PARA ZEROS DE FUNÇÕES

Proposta de dissertação submetida à
Universidade Federal de Santa Catarina
como parte dos requisitos para a
obtenção do grau de Especialista em Matemática

PATRÍCIO TORRES COSTA E LUCIANE SOBRAL E SILVA

Açailândia, Junho de 2009

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS

Departamento de Matemática

Curso de Especialização em Matemática-Formação de Professor na modalidade a distância

"Métodos Numéricos para zeros de funções"

Monografia submetida a Comissão de avaliação do Curso de Especialização em Matemática-Formação do professor em cumprimento parcial para a obtenção do título de Especialista em Matemática.

APROVADA PELA COMISSÃO EXAMINADORA em 18/06/2009

Dr. Mário César Zambaldi (CFM/UFSC - Orientador)

Dr. Márcio Rodolfo Fernandes (CFM/UFSC - Examinador)

Dr. Fermin S. V. Bazan (CFM/UFSC - Examinador)

Dra. Neri Terezinha Both Carvalho

Coordenadora do Curso de Especialização em Matemática-Formação de Professor

Florianópolis, Santa Catarina, junho de 2009.

Este trabalho é dedicado à todos que estão sofrendo com as enchentes em nosso estado.

AGRADECIMENTOS

Agradecemos a todos aqueles que, de alguma forma tornaram possível a realização deste trabalho.

Aos nossos colegas, pela colaboração e participação na recolha dos dados.

À meu orientador, Doutor Mário César Zambaldi, pela disponibilidade, por todo o apoio, sugestões e conselhos úteis.

À nossas famílias e amigos, que nos ajudaram e deram força para chegar ao fim desta caminhada.

A todos,

Muito obrigado.

Resumo da Dissertao apresentada à UFSC como parte dos requisitos necessários para a obtenção do grau de especilaista em Matemtica.

MÉTODOS NUMÉRICOS PARA ZEROS DE FUNÇÕES

Patrício Torres Costa Luciane Sobral e Silva

Junho / 2009

Orientador: Mário César Zambaldi, Dr.

Palavras-chave: Métodos Iterativos, Newton, secante, bisseção, falsa posição.

Número de Páginas: 35

Resumo

Esta dissertação tem como principal objetivo estudar as aproximações para funções não lineares, mostrando os vários métodos iterativos para resolução das mesmas assim como, suas vantagens e desvantagens. No primeiro capítulo, partimos do conceito do polinômio de Taylor, que nada mais é uma forma de aproximação de funções num ponto pré-estabelecido, com o intuito de revisar conhecimentos básicos necessários ao capítulo dois.

No segundo capítulo foram estudados quatro métodos numéricos, suas convergências e seus critérios de paradas, sua aplicabilidade e com o auxílio de um software matemático, encontramos valores aproximados para as raízes das equações.

A análise realizada das informações recolhidas permitiram comparar estes métodos afim de encontrar o melhor para cada situação.

SUMÁRIO

1	INTR	RODUÇ	ÃO	1
2	CON	СЕІТО	S BÁSICOS	2
	2.1	Teoren	na de Bolzano	2
	2.2	Polinô	mio de Taylor	3
3	MÉT	ODOS	ITERATIVOS PARA SE OBTER ZEROS REAIS DE FUNÇÕES	7
	3.1	Métod	o da Bisecção	7
		3.1.1	Algoritmo	9
		3.1.2	Estudo da convergência	10
		3.1.3	Critério de Parada	11
		3.1.4	Estimativa do número de iterações	11
		3.1.5	Observações finais	12
	3.2	Métod	o da Falsa Posição	12
		3.2.1	Algoritimo	14
		3.2.2	Estudo da Convergência	14
		3.2.3	Critério de Parada	15
		3.2.4	Considerações Finais	15
	3.3	Métod	o de Newton	15
		3.3.1	Algoritimo	17
		3.3.2	Estudo da convergência	18
		3.3.3	Critérios de parada	20

	3.3.4	Conside	erações	Finais	• • •	• •	• •	• •		•	• •	•	•	• •	• •	: •	•	• • •	. 20
3.4	Métod	lo da Seca	inte									•					•		20
	3.4.1	Algoriti	mo														•		. 22
	3.4.2	Estudo	da Conv	ergênd	cia .							•							. 22
•	3.4.3	Critério	s de par	ada .				•. •				•							23
	3.4.4	Conside	erações l	Finais													•		23
4 CON	/IPARA	ÇÃO EN	TRE O	S MÉ	FOD	OS				•			•				• •	. 	24
4.1	Exemp	olo 1											•				•	. . .	25
4.2	Exemp	olo 2																. 	25
4.3	Exemp	olo 3														•	•		26
4.4	Exemp	olo 4															•		26
5 CON	ICLUS Ó	ĎES								•			•				• (29
			*																
Referê	ncias .	• • • • •				• •				•			•	• •			• •	· • •	30
Anexo	A – VC I	N-Visual	Cálculo	Num	érico	• •	• •	• •		•		•	•	• •	• •		•		31
A.1	Interfa	ice do pro	grama .										•			•		. . .	31
Anexo	B – Mét	odo de N	ewton p	oara si	stema	as de	e eg	ua	çõe	s n	ão	line	eare	es					33

1 INTRODUÇÃO

A resolução de equações é uma atividade realizada desde a antiguidade. A história da matemática registra que na Mesopotâmia já se usava técnicas algébricas e aproximações de raízes. As equações lineares e quadráticas foram resolvidas pelos Gregos através de métodos geométricos e por métodos mais aritméticos pelos Hindus e Árabes. No século XVI os Italianos resolveram, analiticamente, as equações cúbicas e quadráticas. A tentativa de obter uma fórmula para resolver a equações de grau cinco, foi encerrada no século XIX, quando Evaristo Galois demonstrou que era impossível a dedução de uma fórmula que envolvesse somente operações elementares para as equações polinomiais de grau maior ou igual a cinco. Entre a resolução das equações cúbicas e o estabelecimento da impossibilidade de resolução geral das equações de grau maior ou igual a cinco, muitos métodos de resolução de equações ou de obtenção de uma raiz aproximada foram desenvolvidos, entre eles tem-se o método da bisseção, o método da falsa posição, o método das secantes e o método Newton.

Nesse trabalho fazemos um estudo e aplicação destes métodos. Mostramos suas principais vantagens e desvantagens, assim quando os comparamos por meio de exemplos.

2 CONCEITOS BÁSICOS

2.1 Teorema de Bolzano

Pretendemos neste capítulo relembrar alguns conceitos básicos, que irão facilitar a compreensão dos metodos numericos apresentados nos proximos capitulos. Vamos começar pelo teorema de Bolzano, pois através deles podemos determinar um intervalo da função onde existe raiz e a partir dos métodos iterativos, encontrar uma aproximação para essa raiz.

O teorema de Bolzano estabelece que, se tivermos uma função f, contínua num intervalo a, b, e se f(a).f(b) < 0, então existe pelo menos uma raíz nesse intervalo.

Demonstração:

Seja p(x) = 0, uma equação polinomial com coeficientes reais.

Dados $\alpha \in]a,b[$, então $a < \alpha < b$,

$$(a-\alpha)(b-\alpha) < 0 =$$

$$\begin{cases} a-\alpha < 0 \\ b-\alpha > 0. \end{cases}$$

Calculando o produto P(a)P(b) encontramos

$$P(a)P(b) = [a_n(a-\alpha_1)(a-\alpha_2)\dots(a-\alpha_n)]a_n(b-\alpha_1)(b-\alpha_2)\dots(b-\alpha_n)].$$

$$P(a)P(b) = a_n^2[(a - \alpha_1)(b - \alpha_1)][(a - \alpha_2)(b - \alpha_2)] \dots [(a - \alpha_n)(b - \alpha_n)]$$

Assim:

$$a_n^2 > 0$$
.

Existem n fatores do tipo $(a - \alpha_n)(b - \alpha_n)$ em que α_n é a raíz da equação dada.

Os únicos fatores negativos são os que correspondem as raízes $P(\alpha) = 0$ internas ao intervalo a, b, o que nos permite concluir que;

Quando (f(a).f(b) < 0), existe um número ímpar de fatores negativos do tipo $(a - \alpha_n)(b - \alpha_n)$ e, portanto exste um número ímpar de raízes reais da equação P(x) = 0 que são internas ao intervalo [a,b[.

Exemplo

Seja a função f(x) = xln(x) - 3. Podemos calcular o valor de f(x) para valores arbitrários

de x, como mostrado na tabela abaixo:

x	1	2	3	4
f(x)	-3,2	-1,81	0,10	2,36

Tabela 1: Estimativa intervalo das raízes, por Bolzano

Pelo teorema de Bolzano, concluímos que existe pelo menos uma raiz real no intervalo [2,3].

2.2 Polinômio de Taylor

A maioria das funções f não podem ser avaliada de maneiras simples. Por exemplo, f(x) = cos(x), trata-se de uma função trigonométrica relativamente simples, mas sem o auxilio de uma calculadora ou um computador fica de certa forma complicado tratar dessa função. Para avaliar tais expressões usamos outras funções que são semelhantes à original e são mais fáceis de se trabalhar. A classe mais comum de aproximar funções são os polinômios, pois além de serem fáceis de se trabalhar normalmente são um meio eficiente de aproximações das funções originais. Entre os polinômios o mais usado é o polinômio de Taylor, pois ele é comparativamente fácil de construir, e é frequentemente um primeiro passo para obtenção de aproximações mais eficientes, além de ser importante em várias outras áreas da Matemática.

Por definição, f é definida no intervalo J e k vezes derivável no ponto $a \in J$. O Polinômio de Taylor de ordem k da função f no ponto a é o polinômio $p(x) = a_0 + a_1x + a_1x^2 + \ldots + a_kx^k$ (de grau $\leq k$) cujas derivadas de ordem $\leq n$ no ponto x = 0 coincidem com as derivadas de mesma ordem de f no ponto a, ou seja, $p_i(0) = f_i(a)$, $i = 0, 1, \ldots, k$. Portanto o polinômio de Taylor de ordem k da função f no ponto a é:

$$p(x) = f(a) + f'(a)x + \frac{f''(a)}{2!}x^2 + \dots + \frac{f^{(k)}(a)}{k!}x^k$$

Considere por exemplo, $f(x) = e^x$. O Polinômio de Taylor é construído para imitar o comportamento dessa função em algum ponto x = a. O resultado será aproximadamente igual a f(x), nos pontos x perto de a.

Vamos construir o polinômio de Taylor, no ponto x = 0, este tem de satisfazer as duas condições abaixo

$$p_1(a) = f(a)$$

$$p_1'(a) = f'(a)$$

Substituindo os valores no Polinômio de Taylor, encontramos

Figura 1: Aproximação linear de Taylor

Analisando o gráfico, fica fácil observar que a função representada pela reta pontilhada é $p_1(x) = 1 + x$, e que ela se comporta igual a função $f(x) = e^x$ no ponto x = 0, ou seja, é a aproximação linear para a função $f(x) = e^x$. Para encontrar tal função usamos o polinômio de Taylor apenas até seu valor linear determinado pela fórmula

$$p_1(x) = f(a) + (x-a)f'(a).$$

O gráfico de $p_1(x)$ é tangente ao gráfico de f(x) em x = a.

Caso quisessemos encontrar uma aproximação quadrática para a mesma função f, teríamos que substituir os valores de $f(x) = e^x$ no polinômio de Taylor até sua derivada segunda,

$$p_2(x) = f(a) + (x - a)f'(a) + \frac{1}{2}(x - a)^2 f''(a)$$

obedecendo as condições abaixo

$$p_2(a) = f(a)$$

$$p_2'(a) = f'(a)$$

$$p"_2(a) = f"(a)$$

O que nos levaria à função

$$p_2(x) = 1 + x + \frac{1}{2}x^2$$

Figura 2: Aproximação quadrática do polinômio de Taylor

A figura acima é uma extensão da figura 1, em que o gráfico do meio representa a aproximação quadrática do polinômio de Taylor para a função $f(x) = e^x$, no ponto x = 0.

Exemplo. Considere f(x) = log(x) no ponto a = 1. Temos que f(1) = log(1) = 0, podemos calcular várias aproximações de Taylor para a função dada. Substituindo no polinômio de Taylor, temos:

$$p(x) = 0 + (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 + \dots + (-1)^{k-1}\frac{1}{k}(x-1)^k$$

O gráfico abaixo mostra aproximações da função y = log(x) usando o polinômio de Taylor, Note que todas as funções coincidem no ponto x = 1, onde determinamos que seriam nossas aproximações.

Figura 3: Aproximações da função y = log(x)

3 MÉTODOS ITERATIVOS PARA SE OBTER ZEROS REAIS DE FUNÇÕES

Existe um grande número de métodos numéricos que são processos iterativos. Como o próprio nome já diz esses processos se caracterizam pela repetição de uma determinada operação. A ideia nesse tipo de processo é repetir um determinado cálculo várias vezes, obtendose a cada repetição ou iteração um resultado mais preciso que aquele obtido na iteração anterior. E, a cada iteração utiliza-se o resultado da iteração anterior como parâmetro de entrada para o cálculo seguinte.

Alguns aspectos comuns a qualquer processo iterativo, são:

- 1. Estimativa inicial: como um processo iterativo se caracteriza pela utilização do resultado da iteração anterior para o cálculo seguinte, a fim de se iniciar um processo iterativo, é preciso que se tenha uma estimativa inicial do resultado do problema. Essa estimativa pode ser conseguida de diferentes formas, conforme o problema que se deseja resolver;
- 2. Convergência: a fim de se obter um resultado próximo do resultado real, é preciso que a cada passo ou iteração, o resultado esteja mais próximo daquele esperado, isto é, é necessário que o método convirja para o resultado real. Essa convergência nem sempre está garantida em um processo numérico. Portanto, é muito importante se estar atento a isso e realizar a verificação da convergência do método para um determinado problema antes de tentar resolvê-lo;
- 3. Critério de Parada: obviamente não podemos repetir um processo numérico infinitamente. É preciso pará-lo em um determinado instante. Para isso, devemos utilizar um certo critério, que vai depender do problema a ser resolvido e da precisão que precisamos obter na solução. O critério adotado para parar as iterações de um processo numérico é chamado de critério de parada. Para encontrarmos as raízes ou zeros de uma função iremos utilizar métodos numéricos iterativos. Como já mencionado, o primeiro passo para se resolver um processo iterativo corresponde a obtenção de uma estimativa inicial para o resultado do problema.

3.1 Método da Bisecção

Suponha f(x) continua num intervalo (a,b) e

$$f(a) \cdot f(b) < 0$$

Como a função muda de sinal no intervalo (a,b), então ela tem pelo menos uma raiz α nesse intervalo. O procedimento numérico mais simples para achar uma raiz é dividir o intervalo (a,b) repetidamente para a metade, mantendo o meio em qual a função muda de sinal. Este procedimento é chamado de método da bisseção.

Supondo um intervalo (a,b), que satisfaça o que foi colocado anteriormente, e uma tolerância de erro $\varepsilon > 0$. As iterações são realizadas da seguinte forma:

- 1. Defina c = (a+b)/2.
- 2. Se $b-c \le \varepsilon$, então ja aceitamos c como raíz e paramos com as iterações.
- 3. Se $f(b) \cdot f(c) \le 0$, faça a = c.

Caso contrário faça b = c, e volte ao passo 1.

O intervalo (a,b) é dividido pela metade cada vez que fizermos o passo 1 ao 3. A condição 2 será satisfeita eventualmente, e com isso a condição $(\alpha - c) \le \varepsilon$ será satisfeita.

Exemplo: Calcular a raiz da função f(x) = xlog(x) - 1 no intervalo [2,3], com $\varepsilon = 0,001$

$$x_0 = \frac{2+3}{2} = 2,5 =$$

$$\begin{cases} f(2) < 0 \\ f(3) > 0 \\ f(2,5) < 0 \end{cases}$$

logo o intervalo se restringe a [2,5;3], pois $f(3) \cdot f(2,5) \le 0$, fazendo a nova iteração obtemos

$$x_1 = \frac{2,5+3}{2} = 2,75 = \begin{cases} f(2,5) < 0 \\ f(3) > 0 \\ f(2,75) < 0 \end{cases}$$

Repetindo esse processo, ao final de 10 iterações chegaremos a raiz, da função que é $\alpha = 2,5061816$.

3.1.1 Algoritmo

1. Dados iniciais:

X inicial (A) = 1

X inicial (B) = 2

Precisão 0,001

2. Função

$$x^6 - x - 1$$

3. Calcular

Terminado o processo, teremos um intervalo [1,2] que contém a raíz tal que $(a-b)<\varepsilon$ e uma aproximação X para a raiz exata.

$$f(x) = x^6 - x - 1 = 0,1,2$$
 $\varepsilon = 0,001$

k	а	b	С	erro	f(c)
1	1,0000	2,0000	1,5000	0,5000	8,8906
2	1,0000	1,5000	1,2500	0,2500	1,5647
3	1,0000	1,2500	1,1250	0,1250	-0,0977
4	1,1250	1,2500	1,1875	0,0625	0,6167
5	1,1250	1,1875	1,1562	0,0312	0,2333
6	1,1250	1,1562	1,1406	0,0156	0,0616
7	1,1250	1,1406	1,1328	0,0078	-0,0196
8	1,1328	1,1406	1,1367	0,0039	0,0206
9	1,1328	1,1367	1,1348	0,0020	0,0004
10	1,1328	1,1348	1,1338	0,00098	-0,0096

Tabela 2: Iterações método da bisseção

Repare pela tabela que a raiz encontrada foi c=1,1338, e que o critério de parada $b-c=0,00098 < \varepsilon$, ou seja menor que a tolerância estabelecida.

3.1.2 Estudo da convergência

Suponhamos f(x) contínua no intervalo [a,b] e que $f(a) \cdot f(b) < 0$, é intuitivo que o método da bisseção vai gerar uma sequência para x_k que converge para a raiz.

No entanto a prova analítica requer algumas considerações, suponhamos que $[a_0,b_0]$ seja o intervalo inicial e que a raíz α seja única no mesmo intervalo. O método da bisecção gera três sequências:

 (a_k) : não-decrescente e limitada superiormente por b_0 ; então $\exists r \in \text{aos reais tal que}$:

$$\lim_{k\to\infty}a_k=r$$

 (b_k) : não-crescente e limitada inferiormente por a_0 ; então \exists s \in aos reais tal que:

$$\lim_{k\to\infty}b_k=s$$

 (x_k) : onde $(x_k = a_k + b_k/2)$, temos $a_k < x_k < b_k, \forall k$.

A amplitude de cada intervalo gerado é a metade do intervalo anterior.

Assim, \forall k:

$$b_k - a_k = \frac{b_0 - a_0}{2^k}$$

Então:

$$\lim_{k\to\infty}b_k-a_k=\lim_{k\to\infty}\frac{b_0-a_0}{2^k}=0$$

$$\lim_{k\to\infty}b_k-\lim_{k\to\infty}a_k=0\Rightarrow\lim_{k\to\infty}b_0=\lim_{k\to\infty}a_0,$$

Então r = s.

Seja t = r = s o limite das duas sequências, então

$$\lim_{k\to\infty}x_k=t.$$

Resta provar que t é a raíz da função, ou seja, f(t) = 0.

Em cada iteração k temos $f(a_k) \cdot f(b_k) < 0$. Então,

$$0 \ge \lim_{k \to \infty} f(a_k) f(b_k) = \lim_{k \to \infty} f(a_k) \lim_{k \to \infty} f(b_k) = f(\lim_{k \to \infty} a_k) f(\lim_{k \to \infty} b_k) =$$
$$f(r) f(s) = f(t) f(t) = [f(t)]^2.$$

Assim, $0 \ge [f(t)]^2 \ge 0$, onde f(t) = 0.

Portanto $\lim_{k\to\infty} x_k = t$ e t é zero da função.

Concluímos, que o método da bisseção gera uma sequência convergente sempre que que f for contínua em [a,b] com $f(a) \cdot f(b) < 0$.

3.1.3 Critério de Parada

O processo iterativo é finalizado quando se obtém um intervalo cujo tamanho é menor ou igual à precisão estabelecida e, então, qualquer ponto nele contido pode ser tomado como uma estimativa para a raiz; ou quando for atingido um número máximo de iterações estabelecido.

3.1.4 Estimativa do número de iterações

Dada uma precisão ε e um intervalo inicial [a,b], é possível saber, quantas iterações serão feitas pelo método da bisecção até que se obtenha $b-a < \varepsilon$, usando o algoritmo da bisecção. Vimos que:

$$b_1 - a_1 = \frac{b_0 - a_0}{2}$$

$$b_2 - a_2 = \frac{b_0 - a_0}{4}$$

$$b_3 - a_3 = \frac{b_0 - a_0}{8}$$

$$\vdots$$

$$b_k - a_k = \frac{b_0 - a_0}{2^k}$$

$$\frac{b_0 - a_0}{2^k} < \varepsilon$$

$$2^k < \frac{b_0 - a_0}{\varepsilon}$$

$$k \cdot \log(2) > \log(b_0 - a_0) - \log(\varepsilon)$$

Fazendo $b_k - a_k < \varepsilon$

$$k > \frac{\log(b_0 - a_0) - \log(\varepsilon)}{\log(2)}.$$

Portanto se k satisfaz a relação acima, ao final da iteração k teremos o intervalo[a,b] que contém a raiz ε , tal que $\forall x \in [a,b] \Rightarrow |x-\varepsilon| \le b-a < \varepsilon$.

Por exemplo, se desejarmos encontrar o α , o zero da função $f(x) = x^2 + x - 6$ que está no intervalo (1,2), com precisão $\varepsilon = 10^{-2}$, devemos efetuar

$$k > \frac{log(2-1) - log(10^{-2})}{log(2)} = \frac{2}{0,3010} = 6,64 \Rightarrow k = 7 iterações.$$

3.1.5 Observações finais

Há várias vantagens do método da bisecção. A principal é que o método sempre converge, além disso o erro é diminuído pela metade a cada nova iteração.

Conforme foi demonstrado, o método da bisecção gera uma sequência convergente, ou seja, sempre será possível obter um intervalo que contenha a raiz da equação em estudo, sendo que o comprimento deste intervalo final satisfaz a precisão requerida.

As iterações envolvem cálculos simples.

A principal desvantagem do método da bisecção é que geralmente converge mais lentamente que a maioria dos outros métodos. Se a função f tem derivadas contínuas, outros métodos são normalmente mais rápidos. Esses métodos podem não convergir, porém quando convergem sempre são muito mais rápidos que o da bisecção.

3.2 Método da Falsa Posição

Queremos encontrar a raiz de uma função f, ou seja, encontrar o α na qual $f(\alpha)$ mais se aproxime de zero. Precisamos, primeiro, localizar a raiz, ou seja, definir o intervalo onde ela se encontra:

Suponha a raiz entre a e b.

Uma vez definido o intervalo, traçamos uma reta que passe por a e b. Esta reta irá cortar o eixo X em um ponto, c, que é uma aproximação da raiz:

Para calcular a próxima aproximação, d, iremos utilizar c, e um dos outros pontos: b ou a.

Figura 4: Gráfico Falsa Posição

Devemos escolher o ponto x_k de modo que $f(x_3).f(x_k) < 0$ (ou seja, um está acima do eixo X e o outro, abaixo).

Observando o gráfico, é fácil perceber que a interseção da reta que passa por f(c) e f(a) com o eixo X está bastante próxima da raiz que estamos procurando.

Figura 5: Gráfico Falsa Posição

No caso do método da bisseção, c é a média aritmética entre a e b. Em vez de tomar a média aritmética o método da posição falsa toma a média aritmética ponderada entre dois pontos b e a com pesos |f(b)| e |f(a)|, respectivamente:

$$x = \frac{a|f(b)| + b|f(a)|}{|f(b)| + |f(a)|} = \frac{af(b) - bf(a)}{f(b) - f(a)}.$$

Este é o método da posição falsa.

3.2.1 Algoritimo

1. Dados iniciais:

$$X \text{ inicall } (A) = 1$$

$$X \text{ inicial } (B) = 1,5$$

Precisão 0,001

2. Função

$$x^6 - x - 1$$

3. Calcular

$$f(x) = x^6 - x - 1 = 0$$
, em $[a; b] = [1; 1, 5]$ e $\varepsilon < 0,001$.

\overline{k}	a	f(a)	b	f(b)	\boldsymbol{x}	f(x)	erro
1	1	-1	1,5	8,890625	1,0505529	-0,70621759	
2	1,0505529	-0,70621759	1,5	8,890625	1,0836271	-0,4645069	0,033074152
3	1,0836271	-0,4645069	1,5	8,890625	1,1043011	-0,29077004	0,020674011
4	1,1043011	-0,29077004	1,5	8,890625	1,1168327	-0,17626564	0,01253158
5	1,1168327	-0,17626564	1,5	8,890625	1,1242817	-0,10474955	0,0074489963
6	1,1242817	-0,10474955	1,5	8,890625	1,1286568	-0,061509186	0,0043751739
7	1,1286568	-0,061509186	1,5	8,890625	1,1312083	-0,035863539	0,0025514604
8	1,1312083	-0,035863539	1,5	8,890625	1,13269	-0,020824074	0,0014816773
9	1,13269	-0,020824074	1,5	8,890625	1,1335483	-0,012062298	0,00085832183

Tabela 3: Iterações método da Posição Falsa

Caso tivéssemos escolhido o intervalo [1,2], como no método da bisseção, teríamos gerado 22 iterações, ou seja, iria convergir muito lentamente.

3.2.2 Estudo da Convergência

A idéia usada para provar a convergência do Método da Posição Falsa é a mesma utilizada na no método da bisseção, ou seja, usando sequências (a_k) , (x_k) e (b_k) . Vamos analisar aqui a convergência geométrica do método da Posição Falsa.

Analisando o gráfico da convergência fica fácil perceber de maneira intuitiva que o método da posição falsa sempre convergirá.

Figura 6: convergencia geométrica falsa posição

3.2.3 Critério de Parada

O processo iterativo é finalizado quando se obtém x_k , k = 0, 1, 2, ...; tal que $|f(x_k)|$ seja menor ou igual a uma precisão estabelecida e, então, x_k é tomado como uma estimativa para a raiz; ou quando for atingido um número máximo de iterações estabelecido.

3.2.4 Considerações Finais

O Método da Falsa Posição é um excelente método quando o intervalo escolhido para a raiz é pouco preciso. Em último caso podemos simplesmente escolher dois pontos x que tenham f(x) de sinais opostos e aplicar o método.

Em contra-partida, sua convergência é lenta.

3.3 Método de Newton

Considere o gráfico y = f(x) mostrado abaixo. em que x_0 é uma estimativa da raiz. Para melhorar essa estimativa, traçamos a reta tangente ao gráfico no ponto $(x_0, f(x_0))$. Se x_0 for próximo da raiz, esta reta deveria ser quase coincidente com o gráfico de y = f(x), então a raiz da reta se aproxima da raiz da função f(x).

Considerando o declive da da reta tangente à função f(x), nós sabemos que o cálculo do declive da reta no ponto $(X_0, f(x_0))$ é f'(x). Podemos também calcular o declive através da forma:

Figura 7: Gráfico método de Newton

$$\frac{f(x_0)-0}{x_0-x_1},$$

que é a diferença nas coordenas do eixo das ordenas pela diferença das coordenadas no eixo das abcissas, que se trata da própria derivada.

$$f'(x_0) = \frac{f(x_0)}{x_0 - x_1}.$$

Isolando o x_1 obtemos:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Nesse caso x_1 , é um valor melhorado de x_0 para a raíz da função. Este procedimento pode ser repetido obtendo um novo valor estimado

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Repetindo este processo, chegamos a uma sucessão de número $x_1, x_2, x_3, ... x_k$, que nos permitirão chegar ao zero da função, e eles podem ser definidos pela fórmula geral.

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0, 1, 2, \dots$$

A idéia do método de Newton é que, se a tangente aproxima a curva, então sua interseção com o eixo x aproxima o ponto de interseção da curva com esse eixo, isto é, o ponto x em que f(x) = 0.

Exemplo: Consideremos a equação $x^3 + x - 3$, e $x_0 = 1, 5$.

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} = x - \frac{x^3 + x - 3}{3x^2 + 1}$$

Temos,

$$x_1 = 1.5 - \frac{1.875}{7.75} = 1.2580645$$

$$x_2 = 1,2580645 - \frac{0,24923635}{5,748179} = 1,2147053$$

$$x_3 = 1,2147053 - \frac{0,0070140387}{5,4265271} = 1,2134128$$

$$x_4 = 1,2134128 - \frac{6,0859794E - 6}{5,4171118} = 1,2134117$$

A raíz encontrada foi $\alpha = 1,2134117$.

3.3.1 Algoritimo

Resolver a equação $f(x) = x^6 - x + 1 = 0$.

Primeiro encontramos a derivada da função que é $f'(x) = 6x^5 - 1$

A fórmula utilizada foi a seguinte:

$$x_{k+1} = x_k - \frac{x_k^6 - x_k - 1}{6x^5 - 1}$$

k	x_k	$f(x_k)$	$f'(x_k)$	$x_k - x_{k-1}$
1	1,5	8,890625	44,5625	
2	1,300490884	2,537264143	21,31967215	0,199509116
3	1,181480416	0,538458584	12,81286882	0,119010467
4	1,13945559	0,049235251	10,52492924	0,042024826
5	1,134777625	0,000550324	10,29028931	0,004677965
6	1,134724145	7,11E-08		5,35E-05

Tabela 4: Tabela de iterações do método de Newton

Usando $x_0 = 1,5$. os resultados são mostrados na tabela acima. A raiz da função é $\alpha = 1,134724138$. O método de Newton pode convergir lentamente no inicio, mas no decorrer das iterações a velocidade de convergência aumenta, como é mostrado na tabela.

3.3.2 Estudo da convergência

Dados $f: I \to \Re$, possui derivada segunda contínua f": $I \to \Re$, com $f'(x) \neq 0$ para todo $x \in int I$, então cada ponto $\alpha \in int I$, onde $f(\alpha) = 0$ tem uma vizinhança $J = [\alpha - \delta, \alpha + \delta]$, tal que começando com qualquer valor inicial $x_0 \in J$, a sequência de pontos $x_{n+1} = N(x_k)$ converge para α

$$N(x_k) = x - \frac{f(x)}{f'(x)}$$

A derivada $N'(x) = f(x)f''(x)/f'(x)^2$ se anula no ponto $x = \alpha$. Tendo que N'(x) é contínua, se fixarmos arbitrariamente $k \in (0,1)$ obteremos $\delta > 0$ tal que $J = [\alpha - \delta, \alpha + \delta] \subset I$ e $N'(x) \le k < 1$ para todo $x \in J$. Afirmamos que $x \in J \Rightarrow N(x) \in J$. De fato $x \in J \Rightarrow |N(x) - N(a)| \le k|x - a| \le |x - a| \le \delta \Rightarrow N(x) \in J$. Portanto $N: J \to J$ é uma contração. Logo a sequência $x_1 = N(x_0)$, $x_{n+1} = N(x_n)$ converge para o único ponto fixo $\alpha \in J$ da contração N. Isto demonstra que o método de Newton é convergente, desde que assuma x_0 próximos da raiz.

A função acima não converge porquê o x_0 estipulado, não está próximo da raiz. Outra vantagem do método de Newton é que ele converge quadraticamente, vejamos a demonstração abaixo:

De [2], obtemos que se f(c) = 0 e existem $\delta > 0$ e k > 0, tais que

$$\left| \frac{f(x)f''(x)}{f'(x)^2} \right| \le k < 1, \forall x \in [c - \delta, c + \delta],$$

Figura 8: Exemplo de uma função que não converge

então o método de Newton gera uma sequência (x_n) , com $\frac{\lim}{x\to\infty}x_n=c$. Ainda de [2], temos que o método de Newton é muit bom se existem A, B, $\delta > o$, tais que

$$|f''(x)| \le Ae |f'(x)| \ge B, \forall x \in [c - \delta, c + \delta]$$

então

$$|x_n - c| \le \frac{A}{2B}|x_n - c|^2$$

que é chamada de convergência quadrática. Quando $|x_n - c| < 1$ o quadrado $|x_n - c|^2$ é muito menor. o que exibe a rapidez de convergência no método de Newton.

Exemplo: Resolvendo a equação $f(x) = x^2 - 8$, com $x_0 = 2$.

 $x_0 = 2$

 $x_1 = 3$

 $x_3 = 2,82843137254901961$

 $x_4 = 2,82842712474937982$

 $x_5 = 2,8284271247461901$

Os dígitos sublinhados são os dígitos decimais corretos de cada valor obtido.

Observamos que esses dígitos corretos começam a surgir após x_3 e a partir deles a quantidade de dígitos corretos praticamente quadruplica. Isto se deve ao fato do Método de Newton 3.4 Método da Secante 20

ter convergência quadrática.

3.3.3 Critérios de parada

O processo iterativo é finalizado quando é obtido x_k tal que $|x_k - x_{k-1}|$ ou $|f(x_k)|$ é menor ou igual a uma precisão estabelecida e, então, x_k é tomado como uma estimativa para a raiz; ou quando for atingido o número máximo de iterações estabelecido.

3.3.4 Considerações Finais

Uma das vantagens do método de Newton é que ele converge quadraticamente, ou seja, de maneira muito rápida, mas desde que sejam obedecidas certas condições.

A desvantagem é que temos que escolher um ponto x_0 , próximo da raiz, se não, a sequência pode não convergir, e também o cálculo do método de Newton pode tornar-se complicado, devido ao fato da necessidade de se conhecer a derivada da função. Uma solução para isso é fazer uma aproximação desse método, excluindo a necessidade de se calcular a derivada da função, essa aproximação nada mais é do que o método da secante que veremos a seguir.

3.4 Método da Secante

O Método de Newton consiste em aproximar o gráfico y = f(x), com uma reta tangente e usar a raiz dessa reta como aproximação para a raiz da função f(x). Desta perspectiva outras retas também conduzirão a uma aproximação direta para a raiz de f(x). Uma dessas maneiras é o método da secante.

Assumindo duas aproximações iniciais para a raiz da função, que denotaremos por x_0 e x_1 , eles podem acontecer em lados opostos do gráfico como na figura 9. Os dois pontos $(x_0, f(x_0))$ determinam uma linha reta que chamamos de linha da secante. Esta linha é uma aproximação ao gráfico de f(x). e o valor x_2 é uma aproximação de α .

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{0 - f(x_1)}{(x_2 - x_1)}$$

Isolando o x_2 , obtemos

$$x_2 = x_1 - f(x_1) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

3.4 Método da Secante 21

Figura 9: Esquema método Secante, com $x_0 < \alpha < x_1$

Uma vez que encontramos x_2 , tornamos x_0 desnecessário e usando x_1 e x_2 como um novo conjunto de valores aproximados para α , podemos encontrar x_3 , que é um valor melhorado para a raiz; e este processo pode ser continuado indefinidamente. Assim obtemos a fórmula genérica

$$x_{k+1} = x_k - f(x_k) \cdot \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}, k \ge 1$$

Este é o método da secante. Ele é conhecido como método de dois pontos, desde que são necessários dois valores aproximados para obtermos um valor aperfeiçoado. O método da bisseção também é um método de dois pontos, mas o método da secante quase sempre convergirá mais rapidamente que o da bisecção.

Exemplo: Consideremos a expressão $f(x) \equiv x^2 + x - 6 = 0$ no intervalo $x_0 = 1,5$ e $x_1 = 1,7$.

$$x_2 = 1,7 - (-1,41) \left[\frac{1,7 - 1,5}{(-1,41) - (-2,25)} \right] = 2,03571$$

$$x_3 = 2,03571 - 0,17982 \left[\frac{2,03571 - 1,7}{0,17982 - (-1,41)} \right] = 1,99774$$

3.4 Método da Secante 22

$$x_4 = 1,99774 - (-0,01131) \left[\frac{1,99774 - 2,03571}{(-0,01131) - (0,17982)} \right] = 1,99999$$

Observamos que o método da secante requer dois valores iniciais, e não há nenhuma necessidade de calcular qualquer derivada tornando o cálculo mais simples que feito pelo método de Newton, necessitando apenas o cálculo de uma nova função a cada iteração.

3.4.1 Algoritimo

1. Dados iniciais:

$$X zero (x0) = 1,5$$

$$X um (x1) = 1,7$$

Precisão 0,001

2. Função

$$x^6 - x - 1$$

3. Calcular

$$f(x) = x^6 - x - 1 = 0$$
, em [a; b]=[1,5;1,7] e $\varepsilon < 0.001$

k	x_{k+1}	x_k	x	$f(x_k)$	erro
1	1,7	1,5	1,3582822	3,9214352	ada
2	1,5	1,3582822	1,2464457	1,5036307	0,11183
3	1,3582822	1,2464457	1,1768946	0,48031261	0,0695510
4	1,2464457	1,1768946	1,1442496	0,10027591	0,0326450
5	1,1768946	1,1442496	1,1356359	0,0094005294	0,0086136
6	1,1442496	1,1356359	1,1347449	0,00021321763	0,00089103

Tabela 5: Tabela de iterações do método a Secante

3.4.2 Estudo da Convergência

A convergência no Método da Secante se dá da mesma forma que no método de Newton, pois este é uma aproximação do método de Newton.

A convergência não é de ordem quadrática, mas sim da ordem superlinear, representada pela proporção áurea,

$$\alpha = \frac{1+\sqrt{5}}{2} \approx 1,618$$

Esse resultado só vale sob certas condições técnicas; a saber, f deve ser duas vezes continuamente diferenciável e a raiz em questão deve ser simples (isto é, não deve ser uma raiz múltipla).

Se os valores iniciais não estiverem próximos da raiz, não se pode garantir que o método das secantes convirja.

3.4.3 Critérios de parada

O critério de parada para este método é o mesmo de Newton, já que este método é uma aproximação do método de Newton. O processo iterativo é finalizado quando é obtido x_k tal que $|x_k - x_{k-1}|$ ou $|f(x_k)|$ é menor ou igual a uma precisão estabelecida e, então, x_k é tomado como uma estimativa para a raiz; ou quando for atingido o número máximo de iterações estabelecido.

3.4.4 Considerações Finais

A principal vantagem do método da secante é a não necessidade de se calcular a derivada da função, tornando assim o processo iterativo mais simples

Uma desvantagem é que se os valores iniciais escolhidos forem muito próximos, estes podem não convergir, e também sua convergência se dá de maneira mais lenta que a do método de Newton, já que sua convergência é super linear enquanto a de Newton é quadrática.

4 COMPARAÇÃO ENTRE OS MÉTODOS

Finalizando este trabalho realizaremos alguns testes com o objetivo de comparar os vários métodos.

Esta comparação leva em conta vários critérios entre os quais: garantias de convergência, rapidez de convergência, esforço computacional.

Conforme foi constatado no estudo teórico os métodos da Bisecção e da Posição Falsa têm convergência garantida desde que a função seja contínua no intervalo [a,b] e que f(a)f(b) < 0. Os métodos de Newton e da Secante tem condições mais restritivas à convergência. Porém uma vez que as condições de convergência sejam satisfeitas, os dois últimos convergem mais rápido que os dois primeiros.

O esforço computacional é medido, pelo número de operações efetuadas a cada iteração, da complexidade destas operações, do número de deduções lógicas e do número de iterações.

Percebemos então que é muito difícil tirar conclusões a respeito da eficiência computacional de um método, pois, por exemplo, o método da bisecção efetua cálculos mais simples que o método de Newton, no entanto, o número de iterações do método da bisecção geralmente é maior que o do método de Newton.

Caso a convergência esteja assegurada, a ordem de convergência fosse alta e os cálculos de iterações fossem simples, o método de Newton é o mais indicado, sempre que ficar claro as condições de convergência e que o cálculo de f'(x) não seja muito trabalhoso. Nos caso em que é muito elaborado obter ou avaliar f'(x), é aconselhável usar o método da secante, uma vez que esse é o método que converge mais rapidamente, entre os outros dois métodos.

Outro detalhe é o critério de parada, pois se o objetivo for reduzir o intervalo que contém a raiz, não se deve utilizar o método da posição falsa, pois este pode não atingir a precisão estipulada, nem secante ou Newton, que trabalha exclusivamente com aproximações para a raiz.

Após estas considerações, concluímos que a escolha do método está diretamente relacionada com o comportamento da função no intervalo que contém a raiz, as dificuldades em calcular f'(x), entre outras.

4.1 Exemplo 1.

$$f(x) = x^3 - x - 1$$
, com [1,2] e $\varepsilon = 10^{-6}$

Figura 10: Exemplo 1, Comparação entre métodos

-	Dados iniciais	x	f(x)	erro	Nº de iterações
Bisseção	[1,2]	1,324718	2,209495E-6	2,879637E-6	21
Falsa Posição	[1,2]	1,324715	-1,087390E-5	2,614434E-6	17
Newton	$x_0 = 1$	1,324718	1,8233E-7	1,092171E-6	7
Secante	[0, 1/2]	1,324718	1,417347E-9	1,221868E-6	8

Tabela 6: Exemplo 1, Comparação entre métodos

4.2 Exemplo 2.

$$f(x) = x^2 - x - 1$$
, com [1,3] e $\varepsilon = 10^{-6}$

	Dados iniciais	x	f(x)	erro	Nº de Iterações
Bisseção	[1;2,5]	2	2,384186000E-06	7,152561000E-07	20
Falsa Posição	[1;2,5]	2	-2,479001000E-06	8,548295000E-08	42
Newton	$x_0 = 1$	2	5,820766000E-09	5,820766000E-10	4
Secante	$x_0 = 1 \text{ e } x_1 = 1,2$	2	-4,230246000E-08	9,798250000E-06	5

Tabela 7: Exemplo 2, Comparação entre métodos

Figura 11: Exemplo 2, Comparação entre métodos

4.3 Exemplo 3.

Figura 12: Exemplo 3, comparação entre métodos

	Dados iniciais	x	f(x)	erro	Nº de Iterações
Bisseção	[2,3]	2,506184413	1,2573E-08	5,9605E-08	24
Falsa Posição	[2,3]	2,50618403	-9,9419E-08	0,49381442	5
Newton	$x_0 = 2,5$	2,50618415	4,6566E-10	3,9879E-6	2
Secante	$x_0 = 2,3 \text{ e } x_1 = 2,7$	2,50618418	2,9337E-08	8,0561E-05	3

Tabela 8: Exemplo 3, Comparação entre métodos

4.4 Exemplo **4.**

Como já foi mostrado na parte teórica deste trabalho, o método de Newton pode não convergir se o ponto x_0 escolhido não for próximo da raiz, uma solução para isso é diminuir o intervalo estudado através do método da bisecção, para determinar um melhor valor para x_0 .

(2.18, -0.67)

Figura 13: Exemplo 4, Comparação entre os métodos

Ou seja a função tem raiz 1 como raiz dupla e 1,5 como raiz simples.

Aplicando o método da bisseção no intervalo de [0,5;2]

iterações	x ₀	x ₁	X	f(x)	erro
1	0,5	2	1,25	-0,01563	0,015625
2	1,25	2	1,625	0,048828	0,048828
3	1,25	1,625	1,4375	-0,01196	0,011963
4	1,4375	1,625	1,53125	0,00882	0,00882

Tabela 9: Exemplo 4, método da bisseção

Encontramos ao final de 4 iterações a raiz 1,53125, isso porquê o método da bisecção exclui as raízes duplas, mas podemos perceber ainda que não é uma aproximação muito exata da raiz. Se quiséssemos uma aproximação mais próxima, o teríamos que diminuir o erro, e então teríamos um número muito grande de iterações.

Para resolver esse problema precisamos restringir o intervalo da função, o que já foi feito pelo método da bisecção. Vamos restringir esse intervalo ao ponto médio do ultimo intervalo mostrado na tabela acima [1,4375;1,625] que é $x_0 = 1,5312$.

Aplicando esse valor inicial ao método de Newton encontramos agora

Agora encontramos um valor realmente da raiz $\alpha = 1,50000001$, ao todo foram necessárias

iterações	x_0	f(x)	f'(x)	erro
1	1,53120000	0,00880381	0,31532032	0,00880381
2	1,50327978	0,00083074	0,25659184	0,00083074
3	1,50004220	0,00001055	0,25008440	0,00001055
4	1,50000001	0,00000000		0,00000000

Tabela 10: Exemplo 4, método de Newton

8 iterações, caso tivéssemos feito pelo método da bisseção seriam necessárias 24 iterações.

5 CONCLUSÕES

Neste trabalho, desenvolvemos um estudo numérico do problema de obter zeros de funções. Estudamos vários métodos iterativos entre eles alguns que não usam derivadas como o métodos da secante e posição falsa. Em problemas com várias variáveis estes métodos podem ser muito úteis, pois embora percam um pouco da velocidade de convergência, suas iterações são mais econômicas. Embora o método da bisecção também não use derivadas, sua convergência é lenta e, em geral, não é muito utilizado. A vantagem deste método é que ele apresenta convergência a partir de qualquer ponto inicial, o que nem sempre acontece com os outros métodos que estudamos. Assim podemos cogitar que uma boa estratégia seria combinar o método da bisecção com os outros métodos quando estes últimos falham a partir de algum ponto inicial desfavorável.

Muito interessante também foi a abordagem dos métodos numéricos e o entendimento da importância da programação e implementação dos métodos cuja elaboração envolveu conceitos além dos vistos nas disciplinas do curso de Licenciatura em Matemática.

O texto usa uma linguagem simples que pode ser utilizado por alunos do curso assim como por aqueles que gostam das aplicações dos conceitos fundamentais do cálculo e estejam interessados em aprofundar seus conhecimentos em métodos numéricos

Finalmente, e como comentário pessoal, o presente trabalho foi muito importante como complementação da nossa formação, sendo uma experiência valiosa no desenvolvimento de um trabalho autônomo.

REFERÊNCIAS

- BURDEN, R. L.; FAIRES, J. D. Numerical Methods. PWS Publishing Company- 1993.
- ATKINSON K. Elementay Numerical Analysis. John Wiley Sons-2nd .ed., New York, 1993
- STRANG G. Introduction to applied Mathematics, Wellesley-Cambridge Press, Wellesley, Massachusetts 1986.
- CHENEY, C. C.Introduction to Approximation Theory. McGraw Hill, NY, 1996.
- Gratzer G. Math into Latex Birkhauser Springer 2000..
- DENNIS, J. E. jr.; SCHNABEL, R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM Philadelphia, 1996.
- LUENBERGER, D. G. Introduction to Linear and Nonlinear Programming. Addison Wesley Publishing Company. Massachusetts, USA, 1973.
- SPIVAK M. Calculus. 3rd. Edition. Publish or Perish, Houston 1994.
- PÄRT-ENANDER, E.; SJÖBERG, A. The Matlab Handbook 5. Addison Wesley, Harlow UK, 1999.

ANEXO A – VCN-VISUAL CÁLCULO NUMÉRICO

O software usado neste trabalho para o cálculo dos processos iterativos é o Visual Cálculo Numérico, também chamado de VCN, é um programa que oferece mais de 100 opções de cálculo para estudantes e profissionais de engenharia, computação, matemática ou qualquer curso da área de Exatas.

VCN implementa opções de Tabelamento de Funções (Algoritmos de Parser); Erros e Representação Numérica; Operadores Numéricos (Diferenças Finitas Ascendente, Descendente e Central); Interpolação e Extrapolação Numérica; Derivação Numérica; Integração Numérica; Equações Diferenciais; Matrizes e Sistemas Lineares; Cálculo de Raízes e Zero de Funções; Sistemas não Lineares; Ajuste de Curvas; Aproximações de Funções; Otimização (Programação Linear, Inteira e etc.).

Visual Cálculo Numérico é um programa gratuito para os estudantes.

A.1 Interface do programa

As figura abaixo mostram a interface do programa utilizado para calcular a função $f(x) = x^3 - 5x^2 + x + 3$, no intervalo [-1,0] $\varepsilon = 10^{-3}$ com o método da Bisecção, e $x_0 = -2,44$ e $\varepsilon = 10^{-4}$ no método de Newton.

Fica fácil perceber que o software é bastante intuitivo. A raíz encontrada foi -0.6455078125 e ao todo foram efetuadas 10 iterações no método da Bisseção com um erro de 0.0009765625 e 6 iterações no método de Newton com erro de 0.68002196430668611E - 6.

Figura 14: Interface VCN, Método da Bisseção

Figura 15: Interface VCN, Método de Newton

ANEXO B – MÉTODO DE NEWTON PARA SISTEMAS DE EQUAÇÕES NÃO LINEARES

Vamos considerar problemas de mais variáveis discutindo o método de Newton para sistemas de equações não-lineares. Vamos começar derivando o método de Newton para sistemas de equações não-lineares, discutindo suas principais características

O problema mais simples estudado aqui é a solução de um sistema de equações nãolineares:

dada
$$F: \mathbb{R}^n \to \mathbb{R}^n$$
, encontrar $x_* \in \mathbb{R}^n$ tal que $F(x_*) = 0$ (B.1)

onde F é contínua e diferenciável.

Agora vamos derivar o método de Newton para o problema (B.1).

O método de Newton para o problema (B.1) novamente é derivado encontrando a raiz de uma aproximação linear de F na estimativa corrente x_k . Esta aproximação á criada usando as mesmas técnicas do problema de uma variável. Como

$$F(x_k + p) = F(x_k) + \int_{x_k}^{x_k + p} J(z) dz.$$
 (B.2)

aproximamos a integral em (B.2) pelo termo linear $J(x_k)p$ temos

$$M_k(x_k+p) = F(x_k) + J(x_k)p.$$

Agora basta resolver para o passo p^N que faz $M_k(x_k + p^N) = 0$, resultando na iteração de Newton para (B.1).

$$J(x_k)p^N = -F(x_k),$$

$$x_{k+1} = x_k + p^N.$$
 (B.3)

Como não esperamos que x_{k+1} se iguale a x_* , mas que seja uma estimativa melhor do que x_k , fazemos da iteração de Newton (B.3) um algoritmo, aplicando-a iterativamente a partir de uma estimativa inicial x_0 .

Método de Newton para Sistemas de Equações Não-Lineares

Dada $F: \mathbb{R}^n \to \mathbb{R}^n$ contínua diferenciável e dado $x_0 \in \mathbb{R}^n$: em cada iteração k, resolver

$$J(x_k)p_k = -F(x_k),$$

$$x_{k+1} = x_k + p_k.$$

Com exemplo vamos considerar uma iteração para:

$$F(x) = \begin{bmatrix} x_1 + x_2 - 3 \\ x_1^2 + x_2^2 - 9 \end{bmatrix}$$

que tem raízes $(3,0)^T$ e $(0,3)^T$, e seja $x_0 = (1,5)^T$. Então as duas primeiras iterações do Método de Newton são:

$$J(x_0)p_0 = -F(x_0):$$
 $\begin{bmatrix} 1 & 1 \\ 2 & 10 \end{bmatrix} p_0 = -\begin{bmatrix} 3 \\ 17 \end{bmatrix}, \quad p_0 = \begin{bmatrix} -\frac{13}{8} \\ -\frac{11}{8} \end{bmatrix},$

$$x_1 = x_0 + p_0 = (-0.625, 3.625)^T,$$

$$J(x_1)p_1 = -F(x_1): \qquad \begin{bmatrix} 1 & 1 \\ -\frac{5}{4} & \frac{29}{4} \end{bmatrix} p_1 = -\begin{bmatrix} 0 \\ \frac{145}{32} \end{bmatrix}, \qquad p_1 = \begin{bmatrix} \frac{145}{272} \\ \frac{-145}{272} \end{bmatrix},$$

$$x_2 = x_1 + p_1 \simeq (-0.092, 3.092)^T$$
.

O método de Newton parece estar operando bem neste exemplo, x_2 já está bem próximo da raiz $(0,3)^T$. Esta é a maior vantagem do método de Newton: se x_0 é suficientemente próximo de uma solução. É interessante notar também que se qualquer função componente de F é linear,

cada iteração do método de Newton será uma solução dessas equações, já que os modelos lineares que o método irá usar será sempre exato para essas funções. Por exemplo, f_1 é linear no exemplo dado acima, e

$$f_1(x_1) = f_1(x_2) = f_1(x_3) = \dots = 0.$$

Por outro lado, o método de Newton não irá convergir bem começando com estimativas iniciais ruins, como já acontecia nos problemas de uma variável. Por exemplo,

$$F(x) = \left[\begin{array}{c} e^{x_1} - 1 \\ e^{x_2} - 1 \end{array} \right]$$

onde
$$x_* = (0,0)^T$$
 e $x_0 = (-10, -10)^T$, temos

$$x_1 = (-11 + e^{10}, -11 + e^{10})^T$$

$$\simeq (2.2 \times 10^4, 2.2 \times 10^4)^T,$$

que não é um passo muito bom! Portanto as características da convergência do método de Newton indicam como usá-lo no caso de mais dimensões: sempre vamos querer usá-lo pelo menos nas iterações finais de qualquer algoritmo não-linear para tomar vantagem da sua rápida convergência local.

Porém, devemos ter em mente dois problemas fundamentais na implementação do Algoritmo 1. Primeiro, o Jacobiano de F pode não ser analiticamente disponível. Isto ocorre geralmente em aplicações reais - por exemplo, quando F não é dada de forma analítica. Daí, aproximar $J(x_k)$. Isso é feito generalizando o método da secante, visto anteriormente. Segundo, $J(x_k)$ pode ser singular ou mal-condicionada, e então o sistema linear $J(x_k)p_k = -F(x_k)$ não pode ser resolvido seguramente para o passo x_k .