MSDS 6372 Project 2

House Prices: Advanced Regression Techniques

Evangelos Giakoumakis

Introduction:

The Boston Housing Data Set is a collection of data from approximately 500 US census reports in the Boston area. In order to attempt to predict home sale prices in various neighborhoods, multiple linear regression will be used determine which home features are related to sale price and whether the square footage of the home is related to the sale price.

The data used for this analysis is the Ames Housing dataset, compiled by Dean De Cock as an alternative to, and subset of, the standard Boston Housing Data Set. The Ames Housing dataset includes only residential sales from Ames between 2006 and 2010. Information collected about these residential sales includes dimensions of various parts of the home, lot size and dwelling square footage, and quantifying variables about the number of specific rooms in the homes.

The Century 21 office in Ames, IA, would like to determine whether the final sale price of homes in their sales area is related to the size of the living area of the home. To analyze the information, home sales in all neighborhoods of interest from 2006 to 2010 were gathered and various models where created.

Data Description:

Below is a list of all variables present in the dataset with a brief description of each. We will be using 2 datasets (a training and a testing) that hold 1460 and 1459 observations respectively. There is a total of 81 variables with 43 categorical and 38 quantitative. Our dependent variable is SalePrice.

MSSubClass: Identifies the type of dwelling involved in the sale. **MSZoning**: Identifies the general zoning classification of the sale.

LotFrontage: Linear feet of street connected to property

LotArea: Lot size in square feet

Street: Type of road access to property Alley: Type of alley access to property LotShape: General shape of property LandContour: Flatness of the property Utilities: Type of utilities available

LotConfig: Lot configuration **LandSlope**: Slope of property

Neighborhood: Physical locations within Ames city limits

Condition1: Proximity to various conditions

Condition2: Proximity to various conditions (if more than one is present)

BldgType: Type of dwelling **HouseStyle**: Style of dwelling

OverallQual: Rates the overall material and finish of the house

OverallCond: Rates the overall condition of the house

YearBuilt: Original construction date

YearRemodAdd: Remodel date (same as construction date if no remodeling or additions)

RoofStyle: Type of roof **RoofMatl**: Roof material

Exterior1st: Exterior covering on house

Exterior2nd: Exterior covering on house (if more than one material)

MasVnrType: Masonry veneer type

MasVnrArea: Masonry veneer area in square feet

ExterQual: Evaluates the quality of the material on the exterior

ExterCond: Evaluates the present condition of the material on the exterior

Foundation: Type of foundation

BsmtQual: Evaluates the height of the basement

BsmtExposure: Refers to walkout or garden level walls

BsmtFinType1: Rating of basement finished area

BsmtFinSF1: Type 1 finished square feet

BsmtFinType2: Rating of basement finished area (if multiple types)

BsmtFinSF2: Type 2 finished square feet

BsmtUnfSF: Unfinished square feet of basement area **TotalBsmtSF**: Total square feet of basement area

Heating: Type of heating

HeatingQC: Heating quality and condition

CentralAir: Central air conditioning

1stFirSF: First Floor square feet **2ndFirSF**: Second floor square feet

LowQualFinSF: Low quality finished square feet (all floors) **GrLivArea**: Above grade (ground) living area square feet

BsmtFullBath: Basement full bathrooms **BsmtHalfBath**: Basement half bathrooms **FullBath**: Full bathrooms above grade **HalfBath**: Half baths above grade

Bedroom: Bedrooms above grade (does NOT include basement bedrooms)

Kitchen: Kitchens above grade **KitchenQual**: Kitchen quality

TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)

Functional: Home functionality (Assume typical unless deductions are warranted)

Fireplaces: Number of fireplaces **FireplaceQu**: Fireplace quality

GarageType: Garage location

GarageYrBlt: Year garage was built

GarageFinish: Interior finish of the garage **GarageCars**: Size of garage in car capacity **GarageArea**: Size of garage in square feet

GarageQual: Garage quality **GarageCond**: Garage condition **PavedDrive**: Paved driveway

WoodDeckSF: Wood deck area in square feet OpenPorchSF: Open porch area in square feet EnclosedPorch: Enclosed porch area in square feet 3SsnPorch: Three season porch area in square feet ScreenPorch: Screen porch area in square feet

PoolArea: Pool area in square feet

PoolQC: Pool quality **Fence**: Fence quality

MiscFeature: Miscellaneous feature not covered in other categories

MiscVal: \$Value of miscellaneous feature

MoSold: Month Sold (MM) YrSold: Year Sold (YYYY) SaleType: Type of sale

SaleCondition: Condition of sale

SalePrice: Final price the unit was sold

Exploratory Data Analysis:

Initially data was imported in SAS workspace and a visual check was performed. Nothing stood out so continued with missing value exploration. The following table shows missing values detected and applied solution.

Variable Name	Missing Values	Solution
MasVnrArea	23	Impute with zero
BsmtFinSF1	1	Impute with zero
BsmtFinSF2	1	Impute with zero
BsmtUnfSF	1	Impute with zero
TotalBsmtSF	1	Impute with zero
BsmtFullBath	2	Impute with zero
BsmtHalfBath	2	Impute with zero
		Impute with (Min-
GarageYrBlt	159	1)
GarageCars	1	Impute with zero
GarageArea	1	Impute with zero

After investigating it was decided to drop the following variables since they did not contribute greatly to our predictive model: BsmtFinSF2, LowQualFinSF, BsmtHalfBath, 3SnPorch, ScreenPorch, MiscVal. Before creating our model, all assumptions for multiple linear regression must be checked:

- Multivariate Normality (normal distribution of residuals)
- No Multicollinearity (no high correlation between variables)
- Homoscedasticity (variance of error terms is similar across variables)

Most of the data is in good shape; however, some parameters appear to be right skewed and some left so different transformations were applied:

LotArea - max limiting to 99th percentile, min limiting to 0.01 and log transformation applied.

MasVnrArea – min limiting to 0.01 and various transformations applied but none helped.

BsmtFinSF1 – min limiting to 0.01 and various transformations applied but none helped.

TotalBsmtSF – max limiting to 99th percentile applied.

1stFirSF – min limiting to 0.01 and log transformation applied.

2ndFlrSF – min limiting to 0.01 and log transformation applied.

WoodDeckSF – min limiting to 0.01 and various transformations applied but none helped.

OpenPorchSF – min limiting to 0.01 and various transformations applied but none helped.

EnclosedPorch – transformation to binary categorical variable applied.

PoolArea – transformation to binary categorical variable applied.

Detailed information and histograms found on appendix.

Multiple Linear Regression:

What we are trying to accomplish is to improve our previous multiple linear regression analysis to predict house sale price for the company "Century 21" located in Ames, Iowa.

We decide to include models using forward selection, stepwise selection as well as LASSO. Criteria for selecting our best model were AIC, BIC, Adj R2 and CVPress.

The histogram seems to be normally distributed, and the scatterplot of residuals shows a normal variance with minimal clustering. The Q-Q plot shows that the data appears linear and fits the line well. From the Crooks D chart there appear to be a couple of outliers, however, since this data has already been filtered down to only residential sales the decision was made to keep these outliers and proceed.

For the final model using forward selection, we have an intercept of -425,922 for the sale price and parameter estimate of 79,219 for the log-transformed square footage of the homes:

$$sale\ price = -425,922 + 79,219\ln(square\ footage)$$

When the square footage is 1, the sale price would be -\$425,922. Multiplying the square footage by e will increase the sale price by \$79,219. More practically, a home with 1,000 square feet of living area is expected to have a sale price of \$121,303. The price would increase by approximately \$79,219 when the living area is multiplied by e (approximately 2.718).

In conclusion, it does appear that the living area of the home in square feet has a correlation to the ultimate sale price of the home. The larger area available for living space, the greater the sale price is expected to be.

To build a predictive model for sales prices of homes in *all* neighborhoods of Ames, IA, three regression models (forward selection, stepwise selection, and LASSO) were created. A brief summary of the three models can be seen below:

Predictive Model	Adjusted R ²	AIC	Kaggle Score
Forward selection	0.9510	29933	0.15031
Stepwise selection	0.9427	28459	0.15423
LASSO	0.7141	32408	0.22931

The forward selection and stepwise selection models were created using all variables, two interactions maximum, single hierarchy, and random CVMETHOD. The LASSO selection used all variables, two interactions maximum with still single hierarchy and random SBC.

Root MSE	17554	Root MSE	18882	Root MSE	42480
Dependent Mean	180615	Dependent Mean	185182	Dependent Mean	180615
R-Square	0.9544	R-Square	0.9465	R-Square	0.7141
Adj R-Sq	0.9510	Adj R-Sq	0.9427	•	
AIC	29933	Adj K-sq		Adj R-Sq	0.7129
AICC	29949	AIC	28459	AIC	32408
PRESS	5.075129E11	AICC	28472	AICC	32408
SBC	29018	SBC	27561	SBC	30991

Forward selection | Stepwise elimination | LASSO selection

Reviewing our three models revealed that the forward selection model seemed to be the most appropriate of the bunch, as it has the highest adjusted \mathbb{R}^2 and the lowest CV press and SBC as well as AIC.

Certain variables were removed from the model that were found to be irrelevant to the sale price of the homes: Alley, Building Style, Exterior Quality, LowQualFinSF, BsmtHalfBath, Screen Porch, and Misc Feature.

Overall, the most predictive model of the three described above is the forward model. It granted us the following Kaggle score. This model can be used to predict future sale prices of homes in Ames, Iowa, based on the many varied features and sizes of the home. For more details on the analysis please refer to appendix.

Principal Components Analysis:

For PCA we will use quantitative continuous variables from the data set which have at least some correlation with sale price (Pearson Correlation Coefficient more than 0.1) because otherwise, these variables would add mostly a noise. Also, we should notice, those component loadings will not extend to sale price prediction beyond provided data sets because they are built on them. The same loadings on principle components, as produced on this data sets will never appear on subsequent data sets. If we want to extend our model to other sets, we would have to create linear combinations from the features identified by principal components.

We will use transformed variables because PCA is also sensitive to outliers. PCA is sensitive to variance, so for PCA calculation, we'll use standardized variables. We want to choose enough components to explain about 90% of data. According to scree-plots and eigenvalues of the correlation matrix, we need 18 principal components. Scree plot has an elbow at about 13 components after which variance explained declines very slowly, but these 13 components are not enough so we decided to include 18.

This is the variance explained by each of the 18 principle components.

							8tan	dardized 8	oring Coef	Noients								
	Factor1	Factor2	Factor3	Factor4	Factor6	Factor8	Factor7	Factor8	Factor9	Factor10	Factor11	Factor12	Factor13	Factor14	Factor16	Factor18	Factor17	Factor18
ld	-0.00149	-0.00130	0.00506	0.00146	0.02672	-0.03847	0.04294	-0.02717	0.04544	-0.06726	-0.04488	0.05355	0.04696	-0.08212	0.51075	-0.41550	0.16138	0.29896
M88ubClass	-0.00540	-0.04004	0.03907	-0.12869	-0.03868	-0.02946	0.03232	0.04402	0.13881	0.02304	-0.04770	0.32783	0.04708	0.21557	-0.06477	0.05113	-0.03525	-0.12990
LotArea	0.02179	0.02964	0.06992	0.07463	0.05327	0.02958	-0.04469	-0.07370	-0.09389	-0.02637	-0.08262	-0.20372	-0.12062	-0.19526	-0.08701	0.00179	-0.10981	-0.22003
OveraliQual	0.06565	-0.03254	-0.00371	-0.01802	0.01250	0.00035	0.01257	0.06848	-0.0337B	0.06134	0.14049	0.03481	0.09567	0.08416	0.08303	0.08889	-0.09014	-0.01116
OverallCond	-0.02190	0.01120	0.05690	0.02819	0.00833	0.07357	0.00667	-0.03096	-0.13492	0.04822	0.12626	-0.15213	0.24057	0.24596	0.13280	0.07664	0.43627	0.23367
YearBuilt	0.05568	-0.00520	-0.09851	-0.11553	0.03914	0.04572	0.02625	0.05965	0.00712	-0.01612	0.00038	0.02384	0.01799	-0.19427	0.05499	0.03615	-0.13275	-0.08778
YearRemodAdd	0.04708	-0.02398	-0.05051	-0.11553 -0.08083	0.08812	0.04851	0.03481	0.00004	-0.00712	0.06621	0.13163	-0.01149	0.20517	-0.00885	0.00400	0.11278	0.12306	0.05619
MacVnrArea	0.09357	-0.00755	0.05218	-0.02946	-0.5466B	0.04270	-0.12331	0.39509	0.18202	0.10166		-0.26196	-0.16812	-0.02926	-0.08346	-0.03172	0.12306	0.06662
											-0.06619							
BsmtFin 8F1	0.14051	0.32412	0.08746	0.02221	-0.16082	-0.08804	0.17951	-0.06008	-0.16219	-0.01094	0.09896	0.25249	0.12683	-0.05556	0.02054	-0.02437	-0.15163	-0.08868
BsmtFin 8F2	0.01668	0.12202	0.06245	0.12860	0.42649	0.29023	-0.44199	0.41865	0.47174	-0.08750	0.02666	0.06942	0.03209	-0.04239	0.02743	0.10907	0.02442	0.05148
BsmtUnf8F	0.11227	-0.15091	-0.27285	0.39034	-0.02645	-0.03131	0.10920	0.21999	-0.13059	0.06654	0.07466	0.21682	0.12990	0.04547	-0.03291	-0.08887	-0.13534	-0.08420
TotalBsmt8F	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
1stFir8F	0.10481	0.00738	0.08937	0.16949	-0.00198	-0.02428	0.00580	0.01609	-0.03350	-0.01781	-0.04909	0.19169	0.11109	0.04197	-0.01282	0.04062	-0.02528	0.05029
2ndFir8F	0.06758	-0.15514	0.28874	-0.03957	0.02695	-0.03816	-0.02925	0.01119	-0.04531	0.00839	0.01357	0.07176	0.09481	-0.00583	0.00829	0.04296	-0.08165	0.02866
LowQualFin8F	0.00184	-0.01455	0.04209	0.02279	0.05123	-0.01393	0.05650	-0.03213	0.02097	-0.03225	0.00164	-0.06853	0.02696	0.42830	-0.47713	0.06626	0.00755	0.08856
GrLIvArea	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
BemtFullBath	0.04767	0.25632	0.07648	-0.12276	0.11672	-0.24796	-0.10425	0.00069	-0.02075	0.03652	0.00189	0.13208	-0.01659	0.04002	-0.08094	-0.03280	0.01645	0.0784
BomtHalfBath	-0.00729	0.02520	0.07346	0.03740	-0.18958	0.73002	0.19083	-0.35352	0.16194	0.01106	0.23108	0.19560	0.04494	-0.06502	-0.06499	-0.14619	-0.08076	-0.06652
FullBath	0.05362	-0.06946	0.01825	-0.01377	0.03834	-0.00471	0.00140	-0.01766	0.00347	-0.00817	-0.04780	0.16434	0.09099	-0.12406	0.01459	0.09937	-0.00250	0.01987
HalfBath	0.01983	-0.06316	0.10632	-0.10464	0.01376	0.02360	-0.04045	0.07763	-0.04276	-0.03826	0.07472	-0.09192	-0.00770	-0.03291	0.02045	-0.05730	-0.14312	-0.07900
RedroomAhvGr	0.01572	-0.06975	0.12940	0.05601	-0.00268	0.01398	-0.04159	J0 03929	JD 02554	-0.06791	-0.15431	0.05349	0.05539	-0.18182	0.01803	-0.03494	0.01616	0.12908
KitohenAbvGr	-0.00459	-0.02078	0.02748	0.03272	-0.05556	-0.06646	-0.03089	-0.14529	0.15466	-0.10604	-0.78688	0.31697	0.02400	-0.00152	-0.11393	0.04736	0.22026	-0.08434
TotRmsAbvGrd	0.04566	-0.02076	0.13075	0.03272	0.00000	-0.02154	-0.03083	-0.04148	-0.02365	-0.03776	-0.10885	0.10394	0.02400	-0.03908	-0.11333	0.00992	0.22026	0.05526
					0.00220												0.02000	
Fireplaces	0.03647	0.00995	0.08478	0.04609	-0.00447	0.02397	-0.01444	0.07157	-0.11682	0.01425	0.05548	-0.00654	-0.02357	0.17443	0.12022	0.02478	-0.23544	-0.12393
GarageYrBit	0.11163	-0.04600	-0.20659	-0.23439	0.14924	0.04558	0.04375	-0.05104	0.11892	0.03569	0.03423	-0.03661	0.08353	-0.19579	0.01959	0.07305	-0.09409	-0.09864
GarageCars	0.13332	-0.05395	-0.05623	-0.04739	0.02866	-0.05930	-0.08657	-0.35585	0.29393	-0.04533	-0.03077	-0.21080	-0.07290	0.22992	0.07578	-0.02932	0.01094	0.02462
GarageArea	0.13194	-0.01277	-0.04380	-0.00955	0.03367	-0.09135	-0.04765	-0.37971	0.31678	-0.06218	0.00920	-0.31049	-0.09591	0.22821	-0.01772	-0.08844	0.16123	0.06329
WoodDeok 8F	0.03064	0.01723	0.02301	-0.02482	0.10221	0.11397	0.00003	0.02056	-0.13464	0.36017	-0.21661	-0.00508	-0.12241	0.10784	-0.05283	-0.10045	0.11921	0.01516
OpenPorch 8F	0.03396	-0.02048	0.02433	-0.01087	0.08434	-0.00265	0.01987	0.06565	-0.11126	-0.18613	0.24177	0.11602	-0.23807	-0.03840	-0.23571	-0.20164	0.32601	0.02687
EnclosedPorch	-0.01904	-0.00770	0.06675	0.08855	-0.00922	-0.13491	-0.02345	-0.07307	0.17804	0.28990	0.29092	0.05598	-0.03769	-0.08261	0.00777	0.00241	-0.01711	-0.04835
38snPoroh	0.00355	0.00388	-0.01046	0.00701	-0.02618	0.02292	0.01450	-0.03900	-0.04361	-0.04380	0.04318	-0.05856	0.10744	-0.19813	-0.15398	0.58934	-0.01496	0.41780
8oreenPoroh	0.00506	0.00972	0.04039	0.02962	-0.01149	0.03352	-0.01115	0.09489	-0.02347	-0.22057	0.05452	-0.09145	0.10061	0.42619	0.19928	-0.03285	-0.16256	-0.18102
PoolArea	0.00952	0.01552	0.07280	0.03089	0.10300	-0.02616	0.40223	0.14201	0.16976	-0.00053	-0.06367	-0.10167	-0.01907	-0.04460	0.01309	0.02711	0.02680	0.03772
MisoVal	-0.00264	0.00243	0.01636	0.01193	0.01173	-0.00277	0.02051	-0.00864	-0.02618	-0.01540	-0.01142	-0.04696	0.14018	-0.06964	0.17422	0.29593	0.49836	-0.64422
Mo 8old	0.00366	-0.00990	0.00342	0.00816	0.00503	0.02729	-0.01179	-0.04177	-0.06033	-0.02173	-0.00321	0.13938	-0.40735	0.15501	0.37772	0.35853	0.03918	0.20293
Yr8old	-0.00240	0.01294	-0.00607	-0.01207	0.00096	-0.01995	-0.07197	0.02475	-0.01086	0.06060	-0.03431	-0.06039	0.53409	-0.06446	-0.13118	-0.21038	0.05061	0.10356
8alePrice	0.07263	-0.00726	0.03921	0.00744	0.01125	0.00550	-0.01647	0.01374	-0.05536	0.03708	0.08262	-0.03180	0.07324	0.05133	0.06665	0.05516	-0.05476	0.00396
Imp MasVnrArea	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_MacviriArea	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_BsmtFin8F1																		
Imp_BsmtFIn8F2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_BsmtUnf8F	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_BsmtFullBath	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_BsmtHalfBath	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_GarageCars	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Imp_GarageArea	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Trof_LotArea	0.03174	0.02207	0.07569	0.12183	0.06476	0.01898	-0.05551	-0.13200	-0.11711	-0.05335	-0.07226	-0.27658	-0.10840	-0.20924	-0.02860	-0.03282	-0.01940	-0.06120
Trof_MacVnrArea	0.04451	0.00379	-0.01189	-0.02928	-0.23513	0.03706	-0.04095	0.18265	0.08216	0.03530	-0.04262	-0.05902	-0.07826	-0.05182	-0.01324	0.00020	0.13107	0.0600
Trof_BombFin 8F1	0.01392	0.13156	0.06250	-0.06698	-0.05312	0.02137	-0.01797	-0.00642	-0.02681	-0.03919	0.05351	0.06045	0.05911	-0.04929	0.01984	0.02717	-0.00194	0.0195
Trof_TotalBomt 8F	0.06278	0.05239	-0.04729	0.10994	-0.00936	0.00302	0.00249	0.06805	-0.03669	0.00776	0.04870	0.12381	0.06336	0.00513	0.00581	-0.01010	-0.06865	-0.0362
Trof_1ctFir8F	0.05879	0.04888	-0.01904	0.14293	-0.00522	0.00016	-0.00937	-0.00971	-0.02177	-0.02411	-0.05068	0.12132	0.04617	0.02585	0.00899	0.02317	0.01259	0.03562
Trof_2ndFir8F	0.00312	-0.10950	0.16437	-0.08579	0.01555	-0.02153	-0.02303	0.00995	-0.03507	0.02117	0.03739	0.01507	0.03133	-0.02579	0.02489	0.00405	-0.07483	-0.0047
Tref WoodDeck 8F	0.00312	0.00686	-0.00257	-0.08579	0.01555	0.11689	0.02303	0.00566	-0.03507 -0.12553	0.02117	-0.20107	0.01507	-0.10396	0.11111	-0.02734	-0.05014	0.07785	0.0103
Tref OpenPorch 8F	0.03082	-0.0316B	-0.00257	-0.04066	0.09012	0.00797	0.00722	0.05403	-0.12553	-0.13191	0.22782	0.11327	-0.10396 -0.19681	-0.09313	-0.02734	-0.05014	0.07785	0.0235
Trsf_EnolosedPorch	-0.02512	-0.00945	0.05739	0.09092	-0.01849	-0.14220	-0.04810	-0.07070	0.15360	0.29190	0.28268	0.04552	-0.03858	-0.07817	0.02763	0.00668	0.00224	-0.04925
Trof_PoolArea	0.01057	0.01730	0.07606	0.03237	0.09963	-0.02866	0.40242	0.13967	0.17176	-0.00378	-0.05680	-0.09657	-0.01088	-0.04312	0.00726	0.02845	0.01727	0.0286

In our model selection, we will include the most useful categorical variables and principal components 1 through 18.

We will use the custom method to choose a model. At this model, we took principle components which have the correlation with the sale price at least of 0.05 and then deleted them according to the least statistical significance. This way we came to the principal components chosen by stepwise model. And in the custom model, we included variables, which were chosen the most by others selection methods.

			The GL Dependent		ocedure ile: Sale	-		
Source		DF	Sum of So	quares	Me	an Squar	e F Valu	e Pr>
Model		54	7.8379048E12		145	145146381829		5 <.000
Error	1405		1.3700067E12		975	975093747.94		
Corrected To	tal	1459	9.20791	13E12	2			
	R-Sq	uare	Coeff Var	Roo	t MSE	SalePrio	ce Mean	
	0.851	1214	17.25972	312	26.49	1	80921.2	
Source		DF	Type	SS	Mean	Square	F Value	Pr > F
Prin1		1	6.6942533	E12	6.6942	2533E12	6865.24	<.0001
Prin2		1	95061880	085	9506	1880085	97.49	<.0001
Prin3		1	12861591	699	1286	1591699	13.19	0.0003
Prin4		1	141956836	492	141956	8836492	145.58	<.0001
Prin5		1	134692051	317	134692	2051317	138.13	<.0001
Prin6		1	10577708	729	1057	7708729	10.85	0.0010
Prin7		1	59292423	032	59292	2423032	60.81	<.0001
Prin8		1	14039730	616	14039	9730616	14.40	0.0002
Prin9		1	7935911.3	594	79359	11.3594	0.01	0.9281
Prin10		1	616029734	43.4	61602	97343.4	6.32	0.0121
Prin11		1	108711238	850	10871	1238650	111.49	<.0001
Prin12		1	3060076	111	306	0076111	3.14	0.0787
Prin13		1	87845104	584	8784	5104584	90.09	<.0001
Prin14		1	187681878	3.91	18768	1878.91	0.19	0.6609
Prin15		1	37118804	598	37118	8804598	38.07	<.0001
Prin16		1	225024484	42.3	22502	44842.3	2.31	0.1290
Prin17		1	7211673.1	619	72116	73.1619	0.01	0.9315
Prin18		1	564087090	07.6	56408	70907.6	5.78	0.0163
Neighborh	ood	24	296097005	952	1233	7375248	12.65	<.0001
KitchenQu	al	3	118197719	816	39399	9239939	40.41	<.0001
Foundation	n	5	5271181	323	10542	36264.6	1.08	0.3689
HeatingQC		4	46137023	11.6	11534	25577.9	1.18	0.3165

It appears that our model is valid. It doesn't have high influential points (Cook's D below 0.04) and there are no points that have high leverage and high influence. The residuals are normally distributed with heavy left tail and form random cloud against the regression line. If our purpose is the prediction of sale price of the houses in test data set, then our custom model has good predictive power, the loadings in this model have the correlation with the sale price and this model neither overfits nor underfits the data plus has good predictive power.

Linear Discriminant Analysis:

Here we will use a classification algorithm to predict foundation of the houses in our test data set using the training data set.

Assumptions that must be met:

- Multivariate normal distribution
- Outliers sensitivity

It is hard to check multivariate normality given such a huge number of variables in the data set. We created variance-covariance matrices to check this assumption, which is necessary for levels of foundation with a few observations. Those matrices can be found in appendix. We decided to use only variables which don't have a lot of zero values and which don't look suspicious on the variance-covariance matrices.

The final set of variables for classification is MSSubClass, OverallQual, OverallCond, YearBuilt, YearRemodAdd, BsmtFinSF1, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, 1st1FlrSF, 2nd2FlrSF, GrLivArea, BedroomAbvGr, KitchenAbvGr, Fireplaces, GarageYrBlt, GarageCars, GarageArea with priors for types of foundation "BrkTil" is 0.1018, "CBlock" is 0.4416, "PConc" is 0.4337, "Slab" is 0.0165, "Stone" is 0.0043 and "Wood" is 0.0022, which we have taken from the percentage of certain type of foundation in the train data set.

The test of homogeneity of within covariance matrices show that our matrices have homogeneity, so we will proceed with LDA. Only stone and wood types of foundation don't have enough observation for CLT to work, so we expect to have higher misclassification rates for these types of foundations.

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.PCAPRED Cross-validation Summary using Quadratic Discriminant Function

From Foundation	BrkTil	CBlock	PConc	Slab	Stone	Wood	Total
BrkTil	238 85.61	34 12.23	3 1.08	3 1.08	0.00	0.00	278 100.00
CBlock	102 8.81	910 78.58	128 11.05	18 1.55	0.00	0.00	1158
PConc	76 5.99	119 9.38	1069 84.31	2 0.16	0.00	2 0.16	1288
Slab	0.00	0.00	1 2.50	39 97.50	0.00	0.00	100.00
Stone	9 90.00	1 10.00	0.00	0.00	0.00	0.00	100.00
Wood	0.00	1 20.00	4 80.00	0.00	0.00	0.00	100.00
Total	425 15.40	1065 38.60	1205 43.68	62 2.25	0.00	0.07	2759 100.00
Priors	0.10179	0.44156	0.43386	0.0165	0.0043	0.0022	

	Error Count Estimates for Foundation												
	BrkTil	CBlock	PConc	Slab	Stone	Wood	Total						
Rate	0.1439	0.2142	0.1589	0.0250	1.0000	1.0000	0.1842						
Priors	0.1018	0.4416	0.4337	0.0165	0.0043	0.0022							

This confusion matrix shows the misclassification rate is 18.4%.

Conclusion:

In this paper we tried to predict the selling price of houses using Multiple Linear Regression and Principal Component Analysis (PCA). Multiple linear regression is a good choice when we know the underling structure of the data and when we have more observations than explanatory variables or when the explanatory variables are correlated with each other. Principal Components Analysis is great for this data set, because of its volume. It proved to have high predictive power, however, for it to be used beyond the scope of our test data set we will need to interpret the principle components and make linear combinations of the features.

With Linear Discriminant Analysis we were able to classify a foundation type in the test data set.

Appendix

Analysis

```
/* Project 2 SAS Code */

/* Import train data-set */
FILENAME REFFILE '/home/egiakoumakis0/sasuser.v94/Stat 2/Project2/train data
project 2.csv';
```

```
PROC IMPORT DATAFILE=REFFILE
      DBMS=CSV
      OUT=WORK.TRAINHOUSING;
     GETNAMES=YES;
RUN;
/* Import test data set */
FILENAME REFFILE '/home/egiakoumakis0/sasuser.v94/Stat 2/Project2/test data
project 2.csv';
PROC IMPORT DATAFILE=REFFILE
     DBMS=CSV
     OUT=WORK.TESTHOUSING;
     GETNAMES=YES;
RUN;
/* Add empty SalePrice column */
data WORK. TESTHOUSING;
set WORK.TESTHOUSING;
SalePrice = .;
/* Combine Datasets */
data house;
set WORK.TRAINHOUSING WORK.TESTHOUSING;
/* create a format to group missing and nonmissing */
proc format;
value $missfmt ' '='Missing' other='Not Missing';
value missfmt . ='Missing' other='Not Missing';
run;
/* check columns for missing and nonmissing values */
proc freq data=house;
format _CHAR_ \ missfmt.; /* apply format for the duration of this PROC */
tables _CHAR_ / missing missprint nocum nopercent;
format NUMERIC missfmt.;
tables NUMERIC / missing missprint nocum nopercent;
run;
proc means data=house mean std min p25 median p75 max p5 p95 p99 maxdec=1;
run;
/* Data Imputes */
data imp house;
set house;
/*Impute MasVnrArea with 0 if no value present */
Imp MasVnrArea = MasVnrArea;
if Imp MasVnrArea = . then Imp MasVnrArea = 0;
/*Impute GarageYrBlt with (Min-1) if no value present */
Imp GarageYrBlt = GarageYrBlt;
if Imp GarageYrBlt = . then Imp GarageYrBlt = 1899;
/*Impute LotFrontage with 0 if no value present */
Imp LotFrontage = LotFrontage;
if Imp LotFrontage EQ 'NA' THEN Imp LotFrontage = 0;
```

```
/*Impute BsmtFinSF1 with 0 if no value present */
Imp BsmtFinSF1 = BsmtFinSF1;
if Imp BsmtFinSF1 EQ 'NA' THEN Imp BsmtFinSF1 = 0;
/*Impute BsmtFinSF2 with 0 if no value present */
Imp BsmtFinSF2 = BsmtFinSF2;
if Imp BsmtFinSF2 EQ 'NA' THEN Imp BsmtFinSF2 = 0;
/*Impute BsmtUnfSF with 0 if no value present */
Imp BsmtUnfSF = BsmtUnfSF;
if Imp BsmtUnfSF EQ 'NA' THEN Imp BsmtUnfSF = 0;
/*Impute BsmtFullBath with 0 if no value present */
Imp BsmtFullBath = BsmtFullBath;
if Imp BsmtFullBath EQ 'NA' THEN Imp BsmtFullBath = 0;
/*Impute BsmtHalfBath with 0 if no value present */
Imp BsmtHalfBath = BsmtHalfBath;
if Imp BsmtHalfBath EQ 'NA' THEN Imp BsmtHalfBath = 0;
/*Impute GarageCars with 0 if no value present */
Imp GarageCars = GarageCars;
if Imp GarageCars EQ 'NA' THEN Imp GarageCars = 0;
/*Impute GarageArea with 0 if no value present */
Imp GarageArea = GarageArea;
if Imp GarageArea EQ 'NA' THEN Imp GarageArea = 0;
*if SalePrice = . then SalePrice = 0;
run;
proc univariate data=imp house noprint plots;
histogram;
run;
/* Data Transformations */
data trsfm imp house;
set imp house;
/*Transform LotArea limit to 99th percentile */
Trsf LotArea = LotArea;
if Trsf LotArea >= 40000 then Trsf LotArea = 40000;
if Trsf LotArea = 0 then Trsf LotArea = 0.01;
Trsf LotArea = log(Trsf LotArea);
if Imp MasVnrArea = 0 then Imp MasVnrArea = 0.01;
Trsf MasVnrArea = log(Imp MasVnrArea); *not use;
if Imp BsmtFinSF1 = 0 then Imp BsmtFinSF1 = 0.01;
Trsf BsmtFinSF1 = log(Imp BsmtFinSF1); *not use;
Trsf TotalBsmtSF = TotalBsmtSF;
if Trsf TotalBsmtSF >= 3000 then Trsf TotalBsmtSF = 3000;
if "1stFlrSF"n = 0 then "1stFlrSF"n = 0.01;
Trsf 1stFlrSF = log("1stFlrSF"n);
if "2ndFlrSF"n = 0 then "2ndFlrSF"n = 0.01;
Trsf 2ndFlrSF = log("2ndFlrSF"n); *not use;
if WoodDeckSF = 0 then WoodDeckSF = 0.01;
Trsf WoodDeckSF = log(WoodDeckSF); *not use;
if OpenPorchSF = 0 then OpenPorchSF = 0.01;
```

```
Trsf OpenPorchSF = log(OpenPorchSF); *not use;
Trsf EnclosedPorch = EnclosedPorch;
if Trsf EnclosedPorch > 0 then Trsf EnclosedPorch = 1;
Trsf PoolArea = PoolArea;
if Trsf PoolArea > 0 then Trsf PoolArea = 1;
run;
proc univariate data=trsfm imp house noprint plots;
histogram;
run;
/* MDA*/
/* New selection */
proc glmselect data = trsfm imp house;
class MSZoning Imp LotFrontage Street Alley LotShape LandContour Utilities
LotConfig LandSlope Neighborhood Condition1
Condition2 BldgType HouseStyle RoofStyle RoofMatl Exterior1st Exterior2nd
MasVnrType ExterQual ExterCond Foundation
BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinType2 Heating HeatingQC
CentralAir Electrical KitchenQual Functional
FireplaceQu GarageType GarageFinish GarageQual GarageCond PavedDrive PoolQC
Fence MiscFeature SaleType SaleCondition;
model SalePrice = MSSubClass | MSZoning | Imp LotFrontage | Trsf LotArea |
Street | LotShape | LandContour | Utilities | LotConfig
| LandSlope | Neighborhood | Condition1 | Condition2 | BldgType | HouseStyle
| OverallQual | OverallCond | YearBuilt | YearRemodAdd
| RoofStyle | RoofMatl | Exterior1st | Exterior2nd | MasVnrType |
Imp MasVnrArea | ExterQual | ExterCond | Foundation | BsmtQual | BsmtCond
| BsmtExposure | BsmtFinType1 | Imp BsmtFinSF1 | BsmtFinType2 |
Imp BsmtFinSF2 | Imp BsmtUnfSF | Trsf TotalBsmtSF | Heating | HeatingQC |
CentralAir
| Electrical | Trsf 1stFlrSF | "2ndFlrSF"n | LowQualFinSF | GrLivArea |
Imp BsmtFullBath | Imp BsmtHalfBath | FullBath | HalfBath | BedroomAbvGr
| KitchenAbvGr | KitchenQual | TotRmsAbvGrd | Functional | Fireplaces |
FireplaceQu | GarageType | GarageFinish
| Imp GarageCars | Imp GarageArea | GarageQual | GarageCond | PavedDrive |
WoodDeckSF | OpenPorchSF | Trsf EnclosedPorch | "3SsnPorch"n | ScreenPorch
| Trsf PoolArea | PoolQC | Fence | MiscVal | MoSold | YrSold | SaleType |
SaleCondition | Imp GarageYrBlt @2
/ selection=backward(choose=BIC) showpvalues;
output out = results new p = Predict;
run;
/* Custom selection */
proc glmselect data = trsfm imp house;
class MSZoning LotFrontage Street Alley LotShape LandContour Utilities
LotConfig LandSlope Neighborhood Condition1
Condition2 BldgType HouseStyle RoofStyle RoofMatl Exterior1st Exterior2nd
MasVnrType ExterQual ExterCond Foundation
BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinType2 Heating HeatingQC
CentralAir Electrical KitchenQual Functional
FireplaceQu GarageType GarageFinish GarageQual GarageCond PavedDrive PoolQC
Fence MiscFeature SaleType SaleCondition;
```

```
model SalePrice = MSSubClass | MSZoning | LotFrontage | LotArea | Street |
LotShape | LandContour | Utilities | LotConfig
| LandSlope | Neighborhood | Condition1 | Condition2 | BldgType | HouseStyle
| OverallQual | OverallCond | YearBuilt | YearRemodAdd
| RoofStyle | RoofMatl | Exterior1st | Exterior2nd | MasVnrType | MasVnrArea
| ExterQual | ExterCond | Foundation | BsmtQual | BsmtCond
| BsmtExposure | BsmtFinType1 | BsmtFinSF1 | BsmtFinType2 | BsmtFinSF2 |
BsmtUnfSF | TotalBsmtSF | Heating | HeatingQC | CentralAir
| Electrical | "1stFlrSF"n | "2ndFlrSF"n | LowQualFinSF | GrLivArea |
BsmtFullBath | BsmtHalfBath | FullBath | HalfBath | BedroomAbvGr
| KitchenAbvGr | KitchenQual | TotRmsAbvGrd | Functional | Fireplaces |
FireplaceQu | GarageType | GarageFinish
| GarageCars | GarageArea | GarageQual | GarageCond | PavedDrive |
WoodDeckSF | OpenPorchSF | EnclosedPorch | "3SsnPorch"n | ScreenPorch
| PoolArea | PoolQC | Fence | MiscVal | MoSold | YrSold | SaleType |
SaleCondition @2
/ selection=forward(choose=PRESS) showpvalues;
output out = results cus p = Predict;
run;
/* Make results Kaggle friendly and fix prediction issues */
data results final;
set results cus;
if Predict > 0 then SalePrice = Round(Predict);
if Predict < 0 then SalePrice = 160000; /* Mean = 180000 */
keep Id SalePrice;
where Id > 1460;
/* Stepwise selection using all variables */
proc glmselect data = trsfm imp house;
class MSZoning LotFrontage Street Alley LotShape LandContour Utilities
LotConfig LandSlope Neighborhood Condition1
Condition2 HouseStyle RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType
ExterCond Foundation
BsmtQual BsmtExposure BsmtFinType1 BsmtFinType2 Heating HeatingQC CentralAir
Electrical KitchenOual Functional
FireplaceQu GarageType GarageFinish GarageQual GarageCond PavedDrive PoolQC
Fence MiscFeature SaleType SaleCondition;
model SalePrice = MSSubClass | MSZoning | LotFrontage | LotArea | Street |
Alley | LotShape | LandContour | Utilities | LotConfig
| LandSlope | Neighborhood | Condition1 | Condition2 | HouseStyle |
OverallQual | OverallCond | YearBuilt | YearRemodAdd
| RoofStyle | RoofMatl | Exterior1st | Exterior2nd | MasVnrType | MasVnrArea
| ExterCond | Foundation | BsmtQual
| BsmtExposure | BsmtFinType1 | BsmtFinSF1 | BsmtFinType2 | BsmtFinSF2 |
BsmtUnfSF | TotalBsmtSF | Heating | HeatingQC | CentralAir
| Electrical | "1stFlrSF"n | "2ndFlrSF"n | LowQualFinSF | GrLivArea |
BsmtFullBath | BsmtHalfBath | HalfBath | BedroomAbvGr
| KitchenAbvGr | KitchenQual | TotRmsAbvGrd | Functional | Fireplaces |
FireplaceQu | GarageType | GarageYrBlt | GarageFinish
| GarageCars | GarageArea | GarageQual | GarageCond | PavedDrive |
WoodDeckSF | OpenPorchSF | EnclosedPorch | "3SsnPorch"n | ScreenPorch
| PoolArea | PoolOC | Fence | MiscFeature | MiscVal | MoSold | YrSold |
SaleType | SaleCondition @2
/ selection=stepwise(choose=AIC) hierarchy=single showpvalues
cvmethod=random(2);
```

```
output out = results step p = Predict;
run;
/* Make results Kaggle friendly and fix prediction issues */
data results final;
set results step;
if Predict > 0 then SalePrice = Round(Predict);
if Predict < 0 then SalePrice = 160000; /* Mean = 180000 */
keep Id SalePrice;
where Id > 1460;
/* LASSO selection */
proc glmselect data = trsfm imp house;
class MSZoning LotFrontage Street Alley LotShape LandContour Utilities
LotConfig LandSlope Neighborhood Condition1
Condition2 BldgType HouseStyle RoofStyle RoofMatl Exterior1st Exterior2nd
MasVnrType ExterQual ExterCond Foundation
BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinType2 Heating HeatingQC
CentralAir Electrical KitchenQual Functional
FireplaceQu GarageType GarageFinish GarageQual GarageCond PavedDrive PoolQC
Fence MiscFeature SaleType SaleCondition;
model SalePrice = MSSubClass | MSZoning | LotFrontage | LotArea | Street |
LotShape | LandContour | Utilities | LotConfig
| LandSlope | Neighborhood | Condition1 | Condition2 | BldgType | HouseStyle
| OverallQual | OverallCond | YearBuilt | YearRemodAdd
| RoofStyle | RoofMatl | Exterior1st | Exterior2nd | MasVnrType | MasVnrArea
| ExterQual | ExterCond | Foundation | BsmtQual | BsmtCond
| BsmtExposure | BsmtFinType1 | BsmtFinSF1 | BsmtFinType2 | BsmtFinSF2 |
BsmtUnfSF | TotalBsmtSF | Heating | HeatingQC | CentralAir
| Electrical | "1stFlrSF"n | "2ndFlrSF"n | LowQualFinSF | GrLivArea |
BsmtFullBath | BsmtHalfBath | FullBath | HalfBath | BedroomAbvGr
| KitchenAbvGr | KitchenQual | TotRmsAbvGrd | Functional | Fireplaces |
FireplaceQu | GarageType | GarageFinish
| GarageCars | GarageArea | GarageQual | GarageCond | PavedDrive |
WoodDeckSF | OpenPorchSF | EnclosedPorch | "3SsnPorch"n | ScreenPorch
| PoolArea | PoolQC | Fence | MiscVal | MoSold | YrSold | SaleType |
SaleCondition @2
/ selection=lasso showpvalues;
output out = results las p = Predict;
run;
/* Make results Kaggle friendly and fix prediction issues */
data results final;
set results las;
if Predict > 0 then SalePrice = Round(Predict);
if Predict < 0 then SalePrice = 160000; /* Mean = 180000 */
keep Id SalePrice;
where Id > 1460;
/* PCA */
proc princomp data=trsfm imp house plots=all out=pcaPred;
var LotArea OverallOual OverallCond YearBuilt YearRemodAdd BsmtFinSF1
BsmtUnfSF TotalBsmtSF Trsf 1stFlrSF
```

```
"2ndFlrSF"n GrLivArea Fireplaces GarageCars BedroomAbvGr KitchenAbvGr
Imp GarageYrBlt GarageArea Imp MasVnrArea;
run;
proc corr data=pcaPred;
var SalePrice prin1-prin11;
run;
proc corr data=pcaPred;
var SalePrice prin11-prin18;
run;
proc glm data=pcaPred plots=diagnostics;
class Neighborhood KitchenQual Foundation HeatingQC;
model SalePrice=Prin1-Prin18 Neighborhood KitchenQual Foundation
HeatingQC /solution;
output out=results ov p=Predict;
run;
data results final;
set results ov;
if Predict > 0 then SalePrice = Round(Predict);
if Predict < 0 then SalePrice = 160000; /* Mean = 180000 */
keep Id SalePrice;
where Id > 1460;
/* LDA */
proc sort data=pcaPred;
by foundation;
run; proc
sgscatter data = pcaPred;
by Foundation;
matrix MSSubClass LotArea OverallQual OverallCond
YearBuilt/ ellipse=(type = mean alpha = .05);
run;
proc sqscatter data = pcaPred;
by Foundation; matrix YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2
BsmtUnfSF TotalBsmtSF/ ellipse=(type = mean alpha = .05);
run;
proc sgscatter data = pcaPred;
by Foundation; matrix "1stFlrSF"n "2ndFlrSF"n LowQualFinSF GrLivArea
BsmtFullBath
BsmtHalfBath/ ellipse=(type = mean alpha = .05);
proc sqscatter data = pcaPred;
by Foundation; matrix FullBath HalfBath BedroomAbvGr KitchenAbvGr
TotRmsAbvGrd
Fireplaces/ ellipse=(type = mean alpha = .05);
proc sgscatter data = pcaPred;
by Foundation; matrix GarageYrBlt GarageCars GarageArea WoodDeckSF
OpenPorchSF
EnclosedPorch/ ellipse=(type = mean alpha = .05);
run;
proc sgscatter data = pcaPred;
```

```
by Foundation; matrix Ssn3Porch ScreenPorch PoolArea MiscVal MoSold YrSold
SalePrice/ ellipse=(type = mean alpha = .05);
proc discrim data=pcaPred pool=test;
class Foundation;
var MSSubClass LotArea OverallQual OverallCond YearBuilt YearRemodAdd
MasVnrArea
BsmtFinSF1 BsmtFinSF2 BsmtUnfSF TotalBsmtSF "1stFlrSF"n "2ndFlrSF"n
LowOualFinSF GrLivArea BsmtFullBath
BsmtHalfBath FullBath HalfBath BedroomAbvGr KitchenAbvGr TotRmsAbvGrd
Fireplaces GarageYrBlt
GarageCars GarageArea WoodDeckSF OpenPorchSF EnclosedPorch "3SsnPorch"n
ScreenPorch PoolArea
MiscVal MoSold YrSold SalePrice;
data testFixLDA;
set test;
if TotalBsmtSF=. then TotalBsmtSF=0;
if BsmtFullBath=. then BsmtFullBath=0;
if BsmtHalfBath=. then BsmtHalfBath=0;
if GarageCars=. then GarageCars=0;
if GarageArea=. then GarageArea=0;
if MasVnrArea=. then MasVnrArea=0;
if BsmtFinSF1=. then BsmtFinSF1=0;
if BsmtFinSF2=. then BsmtFinSF2=0;
if BsmtUnfSF=. then BsmtUnfSF=0;
if LotFrontage=. then LotFrontage=0;
if GarageYrBlt=. then GarageYrBlt=YearBuilt;
if LotFrontage=0 then LotFrontage=0.01;
if MasVnrArea=0 then MasVnrArea=0.01;
if BsmtFinSF1=0 then BsmtFinSF1=0.01;
if BsmtFinSF2=0 then BsmtFinSF2=0.01;
if BsmtUnfSF=0 then BsmtUnfSF=0.01;
if TotalBsmtSF=0 then TotalBsmtSF=0.01;
if GarageArea=0 then GarageArea=0.01;
if OpenPorchSF=0 then OpenPorchSF=0.01;
if WoodDeckSF=0 then WoodDeckSF=0.01;
MSSubClass=MSSubClass**(-0.25);
LotArea=LotArea**0.5;
YearBuilt=YearBuilt**3;
MasVnrArea=MasVnrArea**(-0.25);
BsmtFinSF2=BsmtFinSF2**(-0.75);
BsmtUnfSF=BsmtUnfSF**0.5;
GrLivArea=GrLivArea**0.25;
GarageYrBlt=GarageYrBlt**3;
WoodDeckSF=log(WoodDeckSF);
OpenPorchSF=log(OpenPorchSF);
run;
proc discrim data=pcaPred pool=test crossvalidate;
class Foundation; var MSSubClass OverallOual OverallCond YearBuilt
YearRemodAdd
BsmtFinSF1 BsmtFinSF2 BsmtUnfSF TotalBsmtSF "1stFlrSF"n "2ndFlrSF"n
BedroomAbvGr KitchenAbvGr Fireplaces GarageYrBlt GarageCars GarageArea;
```

```
priors "BrkTil"=.1018 "CBlock" = .4416 "PConc" = .4337 "Slab" = .0165
"Stone"=0.0043 "Wood"=0.0022;
run;

data predFound;
set pcaPred;
drop Foundation;
run;
```

The GLMSELECT Procedure

	Forw	ard Selection	Summary		
Step	Effect Entered	Number Effects In	Number Parms In	SBC	PRESS
0	Intercept	1	1	32785.7557	9.13385E12
- 1	GrLivArea*Neighborho	2	26	30743.5053	2.12485E12
2	OverallQu*BsmtExposu	3	31	30304.8297	1.57253E12
3	BsmtFinSF*LandContou	4	35	30076.7664	1.34228E12
4	GarageCar*KitchenQua	5	39	29867.1899	1.14277E12
5	OverallCo*TotalBsmt\$	6	40	29723.9471	1.05679E12
6	LandConto*SaleCondit	7	57	29593.8342	9.51937E11
7	OverallQua*GrLivArea	8	58	29373.8827	8.72002E11
8	LotArea*BldgType	9	63	29325.4189	8.41813E11
9	PoolArea*BsmtExposur	10	66	29279.5857	6.82493E11
10	YearBuilt*BsmtFinSF1	11	67	29211.5184	6.48194E11
11	BsmtUnfSF*ScreenPorc	12	68	29181.2618	6.33672E11
12	BsmtFinSF1*BsmtQual	13	71	29148.9301	6.11588E11
13	YearBuilt*YearRemodA	14	72	29112.2476	5.95716E11
14	OverallCo*Fireplaces	15	73	29093.9224	5.85637E11
15	LotArea*Fireplaces	16	74	29085.4805	5.78295E11
16	BsmtFinSF*BsmtFullBa	17	75	29080.0862	5.74591E11
17	MasVnrArea*2ndFlrSF	18	76	29074.5561	5.72307E11
18	FullBath*GarageArea	19	77	29071.3956	5.69856E11
19	GrLivArea*HalfBath	20	78	29063.8876	5.63708E11
20	KitchenAb*GarageCars	21	79	29080.0212	5.60781E11
21	BsmtFinSF*BedroomAbv	22	80	29056.4349	5.5964E11
22	BsmtFinSF*TotRmsAbvG	23	81	29043.7121	5.57151E11
23	GarageCars*PoolArea	24	82	29041.9795	5.51303E11
24	MasVnrAre*BsmtHalfBa	25	83	29039.4669	5.51297E11
25	MasVnrAre*MasVnrType	26	87	29035.5456	5.41381E11
26	BsmtUnfSF*OpenPorchS	27	88	29032.7939	5.38807E11
27	BsmtUnfSF*WoodDeckSF	28	89	29031.5982	5.38374E11
28	OverallCo*EnclosedPo	29	90	29030.0573	5.34624E11
29	OverallCon*BsmtUnfSF	30	91	29028.5508	5.32628E11
30	BsmtFullB*EnclosedPo	31	92	29027.7754	5.29185E11
31	MSZoning	32	96	29027.5327	5.2094E11
32	YearBuilt*GrLivArea	33	97	29026.1748	5.19852E11
33	OverallCo*KitchenAbv	34	98	29026.1122	5.18371E11
34	BsmtUnf\$F*TotRmsAbvG	35	99	29024.2629	5.16537E11
35	BsmtUnfSF*KitchenAbv	38	100	29023.7395	5.14908E11
36	OverallQu*TotRmsAbvG	37	101	29019.7024	5.11019E11
37	LowQualFi*ScreenPorc	38	102	29017.7439*	5.07513E11*
	* Opt	timal Value o	f Criterion		

Selection stopped at a local minimum of the SBC criterion.

The GLMSELECT Procedure

	1	Stepwise Selectio				
Step	Effect Entered	Effect Removed	Number Effects In	Number Parms In	AIC	\$B
0	Intercept		1	1	32291.6565	30923.879
- 1	OveraliQual		2	2	30973.8333	29611.279
2	GrLIvArea		3	3	30596.7313	29239.401
3	Neighborhood		4	27	30266.4067	29034.435
4	GrLlvArea*Neighborho		5	51	29858.6027	28751.990
5	BemtFin SF1		6	52	29606.7962	28505.407
6	2ndFir8F		7	53	29495.6841	28399.518
7	KitchenQual		8	56	29406.4123	28325.916
8	BamtExposure		9	60	29339.9316	28280.329
9	MSSubClass		10	61	29285.1652	28230.786
10	OverallCond		11	62	29244.9020	28195.746
11	YearBuilt		12	63	29192.0509	28148.118
12	RoofMatl		13	70	29119.9653	28112.596
13	LotArea		14	71	29081.3375	28079.191
14	OverallQu*BemtFin \$F1		15	72	29044.4170	28047.49
15	OverallCon*GrLIvArea		16	73	29010.4402	28018.74
16	SaleCondition		17	78	28954.1373	27988.55
17	RoofMati*SaleConditi		18	82	28884.5082	27939.81
18	Condition2		19	89	28821.8580	27913.73
19	BemtFin SF*Condition2		20	92	28765.3492	27872.89
20	OverallQua*GrLIvArea		21	93	28668.9610	27781.72
21		GrLlvArea*Neighborho	20	69	28737.3898	27724.79
22		OverallCon*GrLIvArea	19	68	28735.9360	27718.12
23	TotalBamtSF		20	69	28702.7161	27690.12
24		2ndFlr8F	19	68	28700.7581	27682.94
25	TotalBamt*SaleCondit		20	72	28644.1167	27647.19
26	GarageCare		21	73	28623.8244	27632.12
27	ScreenPorch		22	74	28607.2577	27620.78
28	OverallQu*TotalBamt\$		23	75	28591.7241	27610.47
29	GrLIvArea*BemtExposu		24	79	28563.8823	27603.52
30	KitchenAbvGr		25	80	28553.2578	27598.12
31	GrLlvArea*GarageCara		26	81	28544.0360	27594.12
32	OpenPorch SF		27	82	28535.1265	27590.43
33	Fireplaces		28	83	28527.0847	27587.61
34	LotArea*Fireplaces		29	84	28512.8918	27578.64
35	YearBuilt*BemtFin \$F1		30	85	28503.0382	27574.01
36		OverallQu*BamtFin \$F1	29	84	28507.5614	27573.31
37	LotArea*OverallQual		30	85	28497.9168	27568.89
38		MS SubClass	29	84	28500.2340	27565.99
39	M\$Zoning		30	88	28476.4806	27563.13
40	OverallCo*Fireplaces		31	89	28470.2457	27562.11
41	CentralAir		32	90	28464.1387	27561.23
42	BemtFullBath		33	91	28458.5386*	27560.858

Selection stopped at a local minimum of the SBC criterion.

The GLMSELECT Procedure

	Effect	Effect	Number	
Step	Entered	Removed	Effects In	SBC
0	Intercept		1	32765.7557
- 1	OverallQua*GrLivArea		2	32548.4104
2	OverallQu*GarageCars		3	31794.6456
3	OverallQual*1stFIr\$F		4	31370.3923
4	OverallQua*YearBuilt		5	31069.9778
5	TotalBsmtSF*PoolQC_NA		6	31006.5948
6	TotalBsmtSF*Condition1_Norm		7	30991.2351

Selection stopped at a local minimum of the SBC criterion.

Variable	Mean	Std Dev	Minimum	25th Pctl	Median	75th Pctl	Maximum	5th Pctl	95th Pctl	99th Pct
ld	1460.0	842.8	1.0	730.0	1460.0	2190.0	2919.0	146.0	2774.0	2890.
MSSubClass	57.1	42.5	20.0	20.0	50.0	70.0	190.0	20.0	160.0	190.
LotArea	10168.1	7887.0	1300.0	7476.0	9453.0	11577.0	215245.0	3182.0	17169.0	33120.
OverallQual	6.1	1.4	1.0	5.0	6.0	7.0	10.0	4.0	8.0	10.
OverallCond	5.6	1.1	1.0	5.0	5.0	6.0	9.0	4.0	8.0	9.
YearBuilt	1971.3	30.3	1872.0	1953.0	1973.0	2001.0	2010.0	1915.0	2007.0	2008.
YearRemodAdd	1984.3	20.9	1950.0	1985.0	1993.0	2004.0	2010.0	1950.0	2007.0	2009.
MasVnrArea	102.2	179.3	0.0	0.0	0.0	164.0	1600.0	0.0	468.0	772.
BsmtFinSF1	441.4	455.6	0.0	0.0	388.5	733.0	5844.0	0.0	1274.0	1636.
BsmtFinSF2	49.6	169.2	0.0	0.0	0.0	0.0	1526.0	0.0	435.0	875.
BsmtUnfSF	560.8	439.5	0.0	220.0	487.0	806.0	2336.0	0.0	1480.0	1777.
TotalBsmtSF	1051.8	440.8	0.0	793.0	989.5	1302.0	6110.0	451.0	1777.0	2200.
1stFIrSF	1159.6	392.4	334.0	876.0	1082.0	1388.0	5095.0	665.0	1831.0	2290.
2ndFlrSF	336.5	428.7	0.0	0.0	0.0	704.0	2085.0	0.0	1133.0	1402.
LowQualFinSF	4.7	46.4	0.0	0.0	0.0	0.0	1084.0	0.0	0.0	158.
GrLivArea	1500.8	506.1	334.0	1126.0	1444.0	1744.0	5842.0	861.0	2488.0	2944.
BsmtFullBath	0.4	0.5	0.0	0.0	0.0	1.0	3.0	0.0	1.0	2.
BsmtHalfBath	0.1	0.2	0.0	0.0	0.0	0.0	2.0	0.0	1.0	1.
FullBath	1.6	0.6	0.0	1.0	2.0	2.0	4.0	1.0	2.0	3.0
HalfBath	0.4	0.5	0.0	0.0	0.0	1.0	2.0	0.0	1.0	1.
BedroomAbvGr	2.9	0.8	0.0	2.0	3.0	3.0	8.0	2.0	4.0	5.0
KitchenAbvGr	1.0	0.2	0.0	1.0	1.0	1.0	3.0	1.0	1.0	2.
TotRmsAbvGrd	6.5	1.6	2.0	5.0	6.0	7.0	15.0	4.0	9.0	11.
Fireplaces	0.6	0.6	0.0	0.0	1.0	1.0	4.0	0.0	2.0	2.
GarageYrBlt	1978.1	25.6	1895.0	1980.0	1979.0	2002.0	2207.0	1928.0	2007.0	2009.
GarageCars	1.8	0.8	0.0	1.0	2.0	2.0	5.0	0.0	3.0	3.0
GarageArea	472.9	215.4	0.0	320.0	480.0	576.0	1488.0	0.0	857.0	1020.
WoodDeckSF	93.7	128.5	0.0	0.0	0.0	168.0	1424.0	0.0	328.0	501.
OpenPorchSF	47.5	67.6	0.0	0.0	26.0	70.0	742.0	0.0	184.0	285.
EnclosedPorch	23.1	64.2	0.0	0.0	0.0	0.0	1012.0	0.0	176.0	284.
3SsnPorch	2.6	25.2	0.0	0.0	0.0	0.0	508.0	0.0	0.0	144.
ScreenPorch	16.1	56.2	0.0	0.0	0.0	0.0	576.0	0.0	161.0	280.
PoolArea	2.3	35.7	0.0	0.0	0.0	0.0	800.0	0.0	0.0	0.
MiscVal	50.8	587.4	0.0	0.0	0.0	0.0	17000.0	0.0	0.0	1000.
MoSold	6.2	2.7	1.0	4.0	6.0	8.0	12.0	2.0	11.0	12.
YrSold	2007.8	1.3	2008.0	2007.0	2008.0	2009.0	2010.0	2008.0	2010.0	2010.
SalePrice	180921.2	79442.5	34900.0	129950.0	163000.0	214000.0	755000.0	88000.0	327000.0	448281.

The DISCRIM Procedure

	Gener	alized Squar	ed Distance t	to Foundation	ı	
From Foundation	BrkTil	CBlock	PConc	Slab	Stone	Wood
BrkTil	79.28407	84.93631	85.54303	413850197	21789493	577875838
CBlock	88.99603	76.67014	77.79196	547706153	134508420	288805383
PConc	121.15666	88.29509	73.18215	824158816	392578031	165033092
Slab	126.91313	104.49402	166.70354	28.08952	132483119	697533184
Stone	81.94057	97.55344	97.05731	384445598	-24.41060	655436936
Wood	127.06458	88.73381	79.10913	538089703	516319649	-108.55165

The DISCRIM Procedure

Total Sample Size	2759	DF Total	2758
Variables	17	DF Within Classes	2753
Classes	6	DF Between Classes	5

Number of Observations Read	2919
Number of Observations Used	2759

Class Level Information						
Foundation	Variable Name	Frequency	Weight	Proportion	Prior Probability	
BrkTil	BrkTil	278	278.0000	0.100761	0.101790	
CBlock	CBlock	1158	1158	0.419717	0.441558	
PConc	PConc	1268	1268	0.459587	0.433857	
Slab	Slab	40	40.0000	0.014498	0.016498	
Stone	Stone	10	10.0000	0.003825	0.004300	
Wood	Wood	5	5.0000	0.001812	0.002200	

Within Covariance Matrix Information				
Foundation	Covariance Matrix Rank	Natural Log of the Determinant of the Covariance Matrix		
BrkTil	16	74.71438		
CBlock	16	75.03524		
PConc	16	71.51114		
Slab	13	19.88053		
Stone	9	-35.30908		
Wood	4	-120.79045		
Pooled	16	75.89413		

