ARYAMAN MISHRA

19BCE1027

LAB 05

Implementation

attach(hsb2)

library(lattice)

hsb2\$ses.f = factor(hsb2\$ses, labels=c("low", "middle", "high"))

colors = c("red", "yellow", "green", "violet", "orange","blue", "pink", "cyan")

barchart(~write, hsb2,col=colors)

histogram(~write, hsb2,col=colors)

histogram(~write | ses.f, hsb2,col=colors)

densityplot(~socst, hsb2,col=colors)

densityplot(~socst | ses.f, hsb2,col=colors)

qqmath(~write, hsb2,col=colors)

qqmath(~write | ses.f, hsb2,col=colors)

bwplot(~math, hsb2,col=colors)

bwplot(ses.f~math, hsb2,col=colors)

xyplot(write~math, hsb2,col=colors)

xyplot(write~math | ses.f, hsb2,col=colors)

splom(~subset[, 1:4])

Scatter Plot Matrix

splom(~subset[, 1:3] | subset[, 5])

reg <- Im(write~math+socst+ses.f, hsb2)
par(mfrow=c(3,2))
plot(reg, which=1:2,col=colors)
plot(reg, which=3:4,col=colors)</pre>

plot(reg, which=5:6,col=colors)

detach(hsb2)

CONCLUSION:ALL COMMAND HAVE BEEN UCCESFULLY EXECUTED AND PLOTTED IN RSTUDIOS.