Monte Carlo módszerek

2019. március 11.

Álvéletlen számok generálása

Álvéletlen számsorozat

- determinisztikus algoritmus által előállított számok
- statisztikai tulajdonságai alapján mégis véletlenszerűnek tűnik
- a számsort "véletlen" helyről indítjuk, pl. rendszeridő alapján inicializáljuk (seed)

Statisztikailag véletlenszerű számsorozat

a számsor autokorrelációja bármilyen hosszon zérus

$$R_k = \langle x_i x_{i+k} \rangle \to 0$$

- ilyet nagyon nehéz gyártani
- léteznek hardveres random szám generátorok is, de lassúak

Jó és rossz véletlen számok

DILBERT By Scott Adams

Az álvéletlen számok a kriptográfiában is nagyon fontosak

- egy rossz véletlenszám generátor könnyen törhetővé teszi a módszert
- mára már hosszú lista létezik a rossz algoritmusokról

Az integrál Monte-Carlo közelítése

Alapegyenlet:

$$\int_{V} f(x) dx \approx V \langle f \rangle \pm \sqrt{\frac{\langle f^{2} \rangle - \langle f \rangle^{2}}{N}}$$
$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_{i}) \qquad x_{i} \in V$$

Vagyis

- ▶ az integrált értékét a V integrálási tartomány térfogatának és a függvény átlagértékének szorzataként írjuk fel
- az átlagot N mintavételezéssel közelítjük
- ightharpoonup a hiba mindössze $1/\sqrt{N}$ -nel csökken

A Monte-Carlo integrálás menete

Az integrálandó f függvény értékét minden pontban ki tudjuk számolni

- ightharpoonup véletlenszerűen generálunk egy x_i pontot a V integrálási tartományon belül
- x_i választása V-ből egyenletes eloszlással!
- meghatározzuk f(x_i) értékét
- az így kapott értékeket kiátlagoljuk

Esetleg lehet nézni, hogy hogyan csökken a hiba

- egy idő után egyre kevésbé fluktuál az átlag
- \blacktriangleright ha a változás több lépés után is egy ϵ alatt van, akkor megállhatunk

Monte Carlo integrálás tulajdonságai

A Monte Carlo implementálása egyszerű, de vannak problémái

- pontatlan
- lassan konvergál
- kis tartományon nagyokat változó függvényekkel nem boldogul

Csak akkor jó, ha a következők fennállnak:

- az eredménynek nem kell nagyon pontosnak lennie
- néhány % eltérés a valódi értéktől még elfogadható
- ▶ könnyű a *V* tartományon belüli random *x_i*-ket előállítani

Figyelem: V-ből egyenletes eloszlással kell húzni!

Feladat: integráljuk az f(x, y) függvényt az egységkörön belül.

Hogyan húzunk x és y random számokat?

- polár koordinátákat generálunk?
- random $x \in [-1, 1]$ -hez olyan y-t generálunk, ami biztosan a körön belül van?

Egyik sem lesz jó, mert nem kapunk egyenletes eloszlást!

Véletlen számok adott eloszlással

Az álvéletlenszám-generátorok egyenletes eloszlással generálnak számokat

Adott egy p(x) valószínűségi eloszlásfüggvény

 olyan véletlen számokat szeretnénk, mely megfelel a p(x) eloszlásnak

Két fő algorimus

- Ha p(x) kumulált eloszlásának inverze ismert: inverzeloszlás-módszert
- ► Ha p(x) kumulált eloszlása nem invertálható: elfogadás-elvetés módszer

Inverzeloszlás-módszer

Elfogadás-elvetés módszer

- húzunk egy x véletlenszámot p(x) értelmezési tartományából
- húzunk egy y véletlenszámot 0 és 1 között
- mindkettőt egyenletes eloszlással
- ▶ ha y < p(x), akkor megtartjuk x-et
- különben eldobjuk x-et, és újra húzunk

Jé! Ez a függvény alatti terület közelítésére is jó lesz!

Random minta választása bonyolult tartományból

A Monte Carlo integráláshoz kell:

- ismerni a V integrálási tartomány térfogatát
- random vektorokat választani *V*-ből

Téglatestek esetén ez utóbbi egyszerű

- D darab véletlen számot generálunk, ahol D a dimenzió
- csak egy jó álvéletlenszám-generátor kell hozzá
- lehetőleg nagyon kicsi legyen az álvéletlen számok autokorrelációja

Bonyolult tartomány esetén

- ▶ nem közvetlenül tartományba eső pontot generálni
- ▶ ilyenkor fedjük le a tartományt egy téglatesttel
- peneráljunk pontokat a téglatesten belül
- nézzük meg, hogy a pont belül esik-e az integrálási tartományon
- ▶ ez utóbbit gyorsan el kell tudni dönteni
- ha kívül esik, akkor a pontot egyszerűen eldobjuk

További bonyodalom: V térfogata nem ismert

Ha az integrálási tartomány térfogata sem ismert

- a D dimenziós integrálási tartományt foglaljuk be egy téglatestbe
- ehhez jól meg kell becsülni a tartomány határait
- a téglatest térfogatát ismerjük: T
- generáljunk pontokat a téglatesten belül
- egy pontot elfogadunk, ha az V-ne belül esik
- az ismeretlen térfogat a pontok elfogadási valószínűségével arányos:

$$V = \frac{\text{\#elfogadott pontok}}{\text{\#\"osszes pont}} \cdot T$$

Az elfogadás-elvetés módszer problémái

Ha az eloszlásfüggvény nagyon "éles"

- \triangleright pl. Gauss nagyon kis σ -val
- a húzott számokat majdnem mindig el fogjuk dobni

Egy dimenzióban

- léteznek ún. adaptív elfogadás-elvetés módszerek
- ightharpoonup a p(x) eloszlást valami invertálható függvénnyel majoráljuk

Több dimenzióban

- \triangleright p(x) direkt mintavételezése bonyolult
- szokásos megoldás: Metropolis–Hastings-algoritmus

A Metropolis-Hastings-algoritmus

Módszer egy sok elemű random minta generálására tetszőleges p(x), általában többváltozós eloszlásfüggvény alapján

- \triangleright p(x) nem feltétlen normált, de integrálható
- \triangleright p(x) tetszőleges x-re kiszámolható

Ez egy ún. Markov-lánc Monte Carlo módszer

- ightharpoonup a random minta egy $x_1, x_2, ..., x_i$ sorozatként áll elő
- ▶ a minta $N \to \infty$ esetben megközelíti a p(x) eloszlást
- ightharpoonup az x_i számsorozat autokorrelációja lehetőleg ightarrow 0

Gyakori felhasználás

- minták generálása bonyolult eloszlásokból
- pl. bayesi statisztika eloszlásfüggvényei bonyolult analitikus függvények szorzataiként állnak elő

A Metropolis–Hastings-algoritmus

Kiindulás:

ightharpoonup tetszőleges x_0 random vektorból, melyre p(x) értelmezett

Iterációs lépés:

- generálunk egy r random vektort (D random szám)
- ▶ tekintjükaz $x_{i+1} = x_i + r$ vektort
- ► ha $p(x_{i+1}) \ge p(x_i)$: a lépést elfogadjuk és x_{i+1} része lesz a mintának
- ▶ ha $p(x_{i+1}) < p(x_i)$:
 a lépést $\frac{p(x_{i+1})}{p(x_i)}$ valószínűséggel fogadjuk el

A Metropolis-Hastings-algoritmus tulajdonságai

Burn-in

- random vektorból indulunk
- innen az algoritmus gyorsan megindul az eloszlás maximuma irányába
- viszont a mintasorozat kezdeti jópár elemét így is el kell dobni

Autokorrelációk lecsökkentése

- az autokorrelációk általában nagyobb, mert közeli pontokba lépünk
- la el kell dobni a generált minta minden k. elemét

χ^2 illesztés Metropolis–Hastings-algoritmussal

Eddig csak lineáris χ^2 illesztést néztünk

- mit lehet tenni, ha az illesztendő modell nem vezet lineáris problémára?
- \blacktriangleright általános esetben a χ^2 az illesztendő paraméterek függvénye: $\chi^2=\chi^2({\it a})$
- tekintsük $\exp(-\chi^2(a))$ -t egy (normálatlan) eloszlásnak
- ightharpoonup generáljunk egy random a_i mintasorozatot $\exp(-\chi^2(a))$ szerint
- használjuk a Metropolis-Hastings algoritmust

Az így kapott a_i minta hisztogramjai jól jellemzik az illesztett paramétereket

- Gauss-eloszlás a legvalószínűbb érték körül
- Az eloszlás szórása jellemzi az illeszés hibáját
- kovarianciák is látszanak

χ^2 illesztés: paraméterek kovarianciája

χ^2 illesztés: paraméterek hisztogramja

