Examen Parcial (A)

15 de novembre de 2004

1. Un sistema transmet una successió de símbols binaris $x_1x_2x_3...$

En la modalitat A: $P(x_1 = 1) = \frac{1}{3}$. Si $x_n = 1$, x_{n+1} pren valors 0, 1 equiprobables mentres que si $x_n = 0$, x_{n+1} val 1 amb probabilitat $\frac{3}{4}$.

En la modalitat B: Els símbols són independents amb valors 0, 1 equiprobables.

- (a) Tirem una moneda justa per elegir la modalitat. Si el segon símbol és un 0, quina és la probabilitat que estem en la modalitat B?
- (b) En la modalitat A, quina és la funció de probabilitat del tercer símbol?
- (c) En la modalitat B, sigui M el nombre de uns en els 10 primers símbols, i N el nombre de uns seguits en la primera aparició del valor 1. Què valen els valors mitjans d'aquestes variables?
- (d) En la modalitat A. Sigui $p_n = P(x_n = 1)$. Trobeu una relació entre p_n i p_{n-1} . Què val el límit quan $n \to \infty$ de p_n ?
- 2. Considerem una variable aleatòria contínua X amb $\Omega_X = [0,a]$ i funció de densitat $f_X(x) = K(a-x)$ per 0 < x < a.
 - (a) Calculeu la constant K, l'esperança E[X], la variància V[X], i els moments m_n .
 - (b) Fixeu a=2. Calculeu la funció de densitat de $Y=\sqrt{X}$.
 - (c) Fixeu a=3. Calculeu la funció de distribució de X.
 - (d) També pel cas a=3. Calculeu i dibuixeu la funció de distribució de Z=g(X) on

$$g(x) = \begin{cases} 1 - x & \text{si } x \le 1 \\ 0 & \text{si } 1 < x < 2 \\ x - 2 & \text{si } x \ge 2 \end{cases}$$

(e) Calculeu l'esperança de la variable Z de l'anterior apartat.

JUSTIFIQUEU TOTES LES RESPOSTES!!