ex find C_{-1} for $f(z) = ze^{iz^{-1}}$ $f(z) = z \left[1 + \frac{1}{z} + \frac{1}{z!} \cdot \frac{1}{z^{2}} + \dots + \frac{1}{n!} \cdot \frac{1}{z^{n}} + \dots \right] = \frac{1}{n!} \cdot \frac{1}{z^{n-1}}$ $C_{-1} : \frac{1}{z!} \cdot \frac{1}{z} \quad \text{residue} : \frac{1}{z}$ Definition: $C_{-1} = \frac{pes}{z^{2}} \cdot f(z)$ Theorem: If f(z) = h(z), g, h: analytic in $0 \le 1z - z \cdot l \le s$ $h(z_{-1}) = 0 \quad h'(z_{-1}) \neq 0$ $f(z_{-1}) = 0 \quad h'(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1}) + \dots \quad (Taylor series for h(z_{-1}))$ $f(z_{-1}) = 0 \quad f(z_{-1}) \quad f(z_{-1$

 $f(z) = \frac{f(z_0)}{f(z_0)} \cdot \frac{1}{z_0} + (n_0 n_0 - n_0 + n_$

Theorem: If zo: mth order pole of f(z), useful when $C_{-1} = 2 \rightarrow 2$, $(m-1)! \frac{d^{m-1}}{dz^{m-1}} \left[(z-z_0)^m f(z) \right]$ m=1 or Z

Residue Theorem

If f(z) has isolated singularities at $z_1, z_2, ..., z_n$ and is analytic elsewhere, then $\oint_{c} f(z) dz = 2\pi i \sum_{z=Z_k} f(z)$ (c encloses all these points counterclock mise)

C'=C+C,+Cz+...+Ck
by Cauchy Integral Theorem,

\$ \(\frac{1}{2} \rightarrow \

.. f (2)dz = [f, + f, + f,]f(2)dz

$$\oint_{C} f(z) dz = \sum_{k=1}^{n} \oint_{E_{R}} f(z) dz = \text{isolated singularities}$$

$$2\pi i \text{Res} f(z)$$

$$= 2\pi i \text{Res} f(z)$$

$$= 2\pi i \text{Res} f(z)$$

f, f(z)dz = Σ 2π; pes (z)