UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

GEOMETRÍA DIFERENCIAL I

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Quinto o sexto

CLAVE: **0246**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Álgebra Lineal I, Cálculo Diferencial e Integral IV, Ecuaciones Diferenciales I, Introducción a la Geometría Avanzada. SERIACIÓN INDICATIVA SUBSECUENTE: Geometría Diferencial II, Geometría Riemanniana I, Geometría Sumatoria.

OBJETIVO(S): Que el estudiante conozca los conceptos fundamentales de esta rama de la geometría, como los de curva y superficie diferenciables, los de geometría intrínseca y extrínseca de una superficie, el de curvatura de una superficie, así como los principales resultados para la geometría local y global de una superficie.

NUM. HORAS	UNIDADES TEMÁTICAS
15	1. Curvas en \mathbb{R}^3 .
	1.1 Conceptos básicos: Curvas parametrizadas; curvas diferenciables;
	curvas regulares. Longitud de arco como parámetro natural.
	1.2 Curvatura y torsión; fórmulas de Frenet-Serret.
	1.3 Teorema Fundamental de la Teoría Local de Curvas. Forma
	canónica local. Círculo osculador.
	1.4 Ejemplos de curvas: curvas planas; curvatura con signo. Cur-
	vas en dimensiones superiores. Curvas definidas por una ecuación
	$F(x,y) = 0$, curvas definidas por $F(x,y,y',y'',\ldots) = 0$.
	1.5 Temas optativos en selección y profundidad: Curvas cerradas.
	Teorema de la Curva de Jordan. Índice de un punto respecto a una
	curva. Teorema de la rotación de la tangente. Teorema de la Des-
	igualdad Isoperimétrica. Teorema de los Cuatro Vértices. Clasifica-
	ción topológica de curvas diferenciables.

30	2. Superficies en \mathbb{R}^3 .
	2.1 Superficie regular en \mathbb{R}^3 y variedad diferenciable de dimensión 2.
	Enunciado del Teorema de Whitney. Sistemas de coordenadas loca-
	les. Superficie como gráfica local; ejemplos. Superficie como imagen
	inversa de un valor regular; ejemplos. Teorema del Rango.
	2.2 Funciones diferenciables en una superficie y aplicaciones diferen-
	ciables entre superficies; ejemplos. Teorema de la Función Inversa.
	Plano tangente a una superficie en un punto. Vectores tangentes como
	derivaciones de funciones.
	2.3 La primera forma fundamental. Orientabilidad. Teorema de Cla-
	sificación de Superficies (enunciado). Área.
30	3. La Aplicación de Gauss.
	3.1 Definición de la Aplicación de Gauss. El grado de la Aplicación
	de Gauss. Curvatura normal y curvatura geodésica. Direcciones prin-
	cipales, direcciones asintóticas.
	3.2 Curvatura gaussiana. Curvatura media. Teorema Egregio y geo-
	metría intrínseca. Esfera osculatriz.
	3.3 Fórmulas de Mainardi-Codazzi. Teorema Fundamental de la
	Teoría Local de Superficies.
	3.4 Campos tangentes. Derivada covariante. Geodésicas. Curvas in-
	tegrales con potencial y ecuaciones de la Relatividad General.
5	4. El teorema de Gauss-Bonnet y sus consecuencias.
	4.1 Se hará una presentación descriptiva de este tema con la intención
	de motivar al alumno a continuar en el estudio de esta rama.

BIBLIOGRAFÍA BÁSICA:

- 1. Do Carmo, M. P. Differential Geometry of Curves and Surfaces in \mathbb{R}^3 , New Jersey: Prentice Hall, 1976. (Trad. Óscar Palmas, México: Vínculos Matemáticos 183, 185, 193, 194, 197, Facultad de Ciencias, UNAM, 1991.)
- 2. Hilbert, D., Cohn Vossen, S., *Geometry and the Imagination*, México: Vínculos Matemáticos No. 150, Facultad de Ciencias, UNAM, 2000.
- 3. O'Neill, B., Elementary Differential Geometry, San Diego: Academic Press, 1997.
- 4. Pogorelov, A. V., Geometría Diferencial, Moscú: MIR, 1977.

BIBLIOGRAFÍA COMPLEMENTARIA:

- 1. Arnold, V. I., *Mathematical Methods of Classical Mechanics*, New York: Springer-Verlag, 1989.
- 2. Landau, L. D., Mecánica, Barcelona: Reverté, 1978.
- 3. Milnor, J. W., Morse Theory, Princeton: Princeton University Press, 1963.
- 4. Misner, C. W., Thorn, K. S., Wheeller, J. A., *Gravitation*, San Francisco: W. H. Freeman, 1973.
- 5. O'Neill, B., Semi-riemannian Geometry with Applications to Relativity, New York: Academic, 1983.
- 6. Spivak. M. A., A Comprehensive Introduction to Differential Geometry, Texas: Publish or Perish, 1999.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.