Exercice 1. - La distance SNCF

On considère l'application $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_+$ définie par $d(X,Y) = ||X - Y||_2$ ou $||X||_2 + ||Y||_2$, selon que X et Y sont (linéairement) dépendants ou non.

- a) Montrer que d est une distance sur \mathbb{R}^2 . Est-elle bornée? Dérive-t-elle d'une norme?
- b) Trouver les boules $B_d(X,1)$ et $B_d(X,2)$, pour X=(1,0).
- c) Montrer que la topologie associée à d est strictement plus fine que la topologie usuelle de \mathbb{R}^2 .
- d) Soit $z_0 \neq 0$, montrer que l'application $z \mapsto z + z_0$ n'est pas continue pour cette topologie.

Exercice 2. Topologie de Zariski

1. Soit k un corps algébriquement clos et n un entier strictement positif. Pour tout $E \subset k[X_1, \dots, X_n]$ on note

$$Z(E) = \{(x_1, \dots, x_n) \in k^n ; P(x_1, \dots, x_n) = 0 \forall P \in E\}.$$

Montrer que l'ensemble des complémentaires de Z(E), $E \subset k[X_1, \ldots, X_n]$ est une topologie sur k^n . Montrer que tous les ouverts non-vides de cette topologie sont denses. Cette topologie est-elle séparée?

2. Soit A un anneau commutatif unitaire. On note Spec A l'ensemble des idéaux premiers de A. Pour tout idéal $\mathfrak a$ de A on vote $V(\mathfrak a)$ l'ensemble des idéaux premiers de A contenant $\mathfrak a$. Montrer que les complémentaires des $V(\mathfrak a)$ forment une topologie sur Spec A. Montrer que $\{(0)\}$ est un ouvert dense de Spec $\mathbb Z$.

Exercice 3. Topologie p-adique On dit qu'une norme sur un corps est ultramétrique si elle vérifie $|x+y| \le \max(|x|,|y|)$.

- 1. Sur \mathbb{Q} on définit la norme p-adique pour p un entier premier par $|p^v \frac{a}{b}|_p = p^{-v}$ si $p \nmid ab$. Montrer qu'il s'agit d'une norme ultramétrique.
- 2. Montrer que, sur un corps muni d'une norme ultramétrique complète, une série converge si et seulement si son terme général tend vers 0.
- 3. Pour la topologie définie par cette distance, quels sont les ouverts de \mathbb{Z} ?

Exercice 4. Soient E_1 et E_2 deux espaces vectoriels normés.

- 1. La topologie produit sur $E_1 \times E_2$ est-elle normée? Si oui donner une (des) normes définissant cette topologie.
- 2. Soit F un troisième espace vectoriel normé. Soit $f: E_1 \times E_2 \to F$ une application bilinéaire. À quelle condition f est-elle continue?
- 3. Montrer que les opérations d'addition et de multiplication par un scalaire sont continues de $E_1 \times E_1$, resp. $\mathbb{R} \times E_1$, dans E_1 .
- 4. Montrer que la topologie produit sur $\mathbb{R} \times \mathbb{R}$ est la topologie de \mathbb{R}^2 muni de la distance induite par la norme $|(x,y)|_{\infty} = \sup\{|x|,|y|\}$.

Exercice 5. Soit (X, d) un espace métrique.

- 1) Montrer que tout ouvert de X est réunion dénombrable de fermés.
- **2)** Soient $A, B \subset X$ deux fermés disjoints non vides de X. Prouver qu'il existe deux ouverts disjoints U et V tels que $A \subset U$ et $B \subset V$.

Exercice 6. Soit A une partie d'un espace topologique séparable X. L'espace topologique A (avec la topologie induite) est-il séparable? Que se passe-t-il si on suppose que X est métrique?

Exercice 7. Soit X un espace topologique. On dit qu'une application $f: X \to \mathbb{R}$ présente un minimum local en un point $a \in X$ s'il existe un voisinage V de a tel que $f(a) \leq f(x)$ pour tout x dans V. Un minimum local est dit strict si f(a) < f(x) pour tout x dans $V - \{a\}$. On suppose que la topologie de X admet une base dénombrable.

- 1. Montrer que l'ensemble A des points $a \in X$ où f présente un minimum local strict est dénombrable.
- **2.** Soit B l'ensemble des points $a \in X$ où f présente un minimum local, montrer que f(B) est dénombrable.

Exercice 8. – Graphe et continuité

- 1) Soit E un espace topologique. On définit la diagonale $\Delta = \{(x,x)|x \in E\}$ de $E \times E$. Prouver que E est séparé si et seulement si Δ est fermé dans $E \times E$.
- **2)** Soit E et F deux espaces topologiques (F séparé), $f: E \to F$ et son graphe $\Gamma = \{(x, f(x)) | x \in E\} \subset E \times F$. Montrer que, si f est continue, alors Γ est fermé dans $E \times F$ (et la réciproque?).

Exercice 9. Soit K l'espace

$$\{0,1\}^{\mathbb{N}}$$

muni de la topologie produit. Montrer que K est homéomorphe à $K^{\mathbb{N}}$ (où $K^{\mathbb{N}}$ est lui-même muni de la topologie produit).