Доказательство равеносильности ПМИ, ПНЧ и ПСИ

конспект от TheLostDesu

25 сентября 2021 г.

Следующие утверждения равносильны:

- (1) ∏CИ
- (2) ПНЧ
- (3) ПМИ

Докажем то, что из 1го следует 2e. Дано: ПСИ. $(\forall \phi(prog(\phi) \to \forall n\phi(n))$. Доказать, что $\exists (\phi(n) \land \forall m < n \ \phi(m)$.

Пусть $\neg \exists (\phi(n) \land \forall m < n \neg \phi(m))$. Тогда $\forall n (\neg \phi(n) \lor \neg \forall m < n \neg \phi(n))$. Тогда, заменив дизъюнкцию на импликацию, $\forall n (\forall m < n \neg \phi(m) \to \neg \phi(n))$. Но из ПСИ можно сказать, что все натуральные числа имеют свойство не ϕ . Но мы договаривались, что для какого-то натурального числа ϕ выполняется. Так не бывает, получили противоречие. Значит ПНЧ выводится из ПСИ.

Докажем то, что из 2го следует 3е. Дано ПНЧ($\exists (\phi(n) \land \forall m < n \ \phi(m))$). Докажем ПМИ. ($\phi, \phi(0), \forall n(\phi(n) \to \phi(n+1))$, значит $\forall n\phi(n)$))

Пусть $\neg \forall n \phi(n)$. $\Rightarrow \exists m \neg \phi(m)$. По ПНЧ $\exists n (\neg \phi(n) \land \forall m < n \phi(m))$. Воспользуемся тем, что натуральное число - либо 0, либо число вида «натуральное число» + 1.

Если n=0: так не бывает, так как $\phi(n)$ выполняется из посылок.

Но и если $n \neq 0$, то n = m + 1. А по ПНЧ для всех m < n ϕ выполняется. И из дано $\phi(n)$ - выполняется. А мы предположили, что нет. Противоречие. Значит из ПНЧ следует ПМИ.

Докажем то, что из 3го следует 1е. Дано ПМИ($\forall \phi(\phi(0) \land \forall n(\phi(n) \rightarrow \phi(n+1)) \rightarrow \phi)$. и prog(n). Доказать, что $\forall n\phi(n)$.

Введем свойство $\psi(n) = \forall m < n\phi(m)$.

 $\psi(0) = 1(\forall m < 0\phi(m)).$

 $\forall n(\psi(n) \to \psi(n+1))$. А это есть база и шаг мат. индукции. Значит $\psi(n)$ верно. Значит, что ПСИ верен. ЧТД.

Значит, что из ПСИ следует ПНЧ, а из него следует ПМИ, из него сле-

дует ПСИ, значит, что они равносильны.