SEVerity: Code Injection Attacks against Encrypted Virtual Machines

<u>Mathias Morbitzer</u>, Sergej Proskurin, Martin Radev, Marko Dorfhuber and Erick Quintanar Salas, 27th May 2021

(Menory Confidentiality)

Guest		Host
Physical		Physical
Memory	SLAT	Physical Memory
		-

Use of Non Maskable Interrupts (NMIs)

- Use of Non Maskable Interrupts (NMIs)
- VM executes NMI handler immediately

- Use of Non Maskable Interrupts (NMIs)
- VM executes NMI handler immediately
 - \rightarrow perfect trigger

- Use of Non Maskable Interrupts (NMIs)
- VM executes NMI handler immediately
 - \rightarrow perfect trigger
- Analyze kernel binary to determine location of NMI handler

- Use of Non Maskable Interrupts (NMIs)
- VM executes NMI handler immediately
 → perfect trigger
- Analyze kernel binary to determine location of NMI handler
- KASLR randomizes the kernel's offset in the VM's virtual and physical memory

- Use of Non Maskable Interrupts (NMIs)
- VM executes NMI handler immediately
 → perfect trigger
- Analyze kernel binary to determine location of NMI handler
- KASLR randomizes the kernel's offset in the VM's virtual and physical memory
- Three methods to determine KASLR offset

Guest Host **Physical Physical SLAT Memory** Memory trigger

Guest Host **Physical Physical SLAT** Memory Memory pwx trigger pwx xwq pwx pwx

Guest Host **Physical Physical SLAT** Memory Memory pwtrigger pwpwpwpw-

2 Identifying the payload: virtio without SEV

2 Identifying the payload: virtio without SEV

2 Identifying the payload: virtio without SEV

Attack Overview

Attack Overview

A (still incomplete) timeline on AMD SEV

A (still incomplete) timeline on AMD SEV

A (still incomplete) timeline on AMD SEV

Attack overview with SEV-SNP

Attack overview with SEV-SNP

SEVerity allows to execute arbitrary code in SEV-protected VMs

- SEVerity allows to execute arbitrary code in SEV-protected VMs
 - \rightarrow Using page tracking and SLAT remapping

- SEVerity allows to execute arbitrary code in SEV-protected VMs
 - → Using page tracking and SLAT remapping
- PoC uses Linux & virtio
 - \rightarrow but general concept applies to all guest OS

- SEVerity allows to execute arbitrary code in SEV-protected VMs
 - → Using page tracking and SLAT remapping
- PoC uses Linux & virtio
 - \rightarrow but general concept applies to all guest OS
- SEV and SEV-ES are vulnerable to various attacks

- SEVerity allows to execute arbitrary code in SEV-protected VMs
 This are a set to align and SLAT representing.
 - ightarrow Using page tracking and SLAT remapping
- PoC uses Linux & virtio
 - \rightarrow but general concept applies to all guest OS
- SEV and SEV-ES are vulnerable to various attacks
- SEV-SNP adds integrity protection

- SEVerity allows to execute arbitrary code in SEV-protected VMs
 - → Using page tracking and SLAT remapping
- PoC uses Linux & virtio
 - \rightarrow but general concept applies to all guest OS
- SEV and SEV-ES are vulnerable to various attacks
- SEV-SNP adds integrity protection
 - SEV-SNP capable CPUs available since Q1 2021

- SEVerity allows to execute arbitrary code in SEV-protected VMs
 - → Using page tracking and SLAT remapping
- PoC uses Linux & virtio
 - \rightarrow but general concept applies to all guest OS
- SEV and SEV-ES are vulnerable to various attacks
- SEV-SNP adds integrity protection
 - SEV-SNP capable CPUs available since Q1 2021
 - First software patches also available

Questions?

Photo by Nicole Lawton from FreeImages

