FMCG Supply Chain & Inventory Optimization

Project Overview

Objective:

To build a **data-driven solution** for FMCG companies that optimizes inventory, procurement, and logistics operations by leveraging **data analysis**, **forecasting**, **and recommendations**.

Key Goals:

- Analyze historical sales, inventory, procurement, and logistics data
- Identify performance metrics via KPIs
- Forecast future demand per SKU
- Generate actionable reorder recommendations
- Suggest suppliers and transport modes based on urgency, cost, and lead time

Datasets

This project uses **four key datasets** that cover sales, inventory, procurement, and logistics. Each dataset plays a vital role in building the optimization and forecasting model.

1. Sales Dataset (sales.csv)

- Contains historical sales data for each SKU.
- Helps in demand forecasting and KPI tracking.

Key Columns:

- sku_id → Unique product identifier
- o date → Transaction date
- sales_value → Sales amount/value on that day

2. Inventory Dataset (inventory.csv)

- Represents stock levels for each SKU.
- Used to calculate stock turnover and reorder points.

• Key Columns:

- sku_id → Unique product identifier
- opening_stock → Stock at the beginning of the period
- closing_stock → Stock at the end of the period

• Derived Metric:

```
o avg_daily_stock = (opening_stock + closing_stock) / 2
```

3. Procurement Dataset (procurement.csv)

- Provides details about suppliers and lead times.
- Crucial for calculating reorder points and supplier performance.

• Key Columns:

- \circ sku_id \rightarrow Unique product identifier
- \circ supplier \rightarrow Supplier name or ID
- lead_time_days → Delivery lead time in days

4. Logistics Dataset (logistics.csv)

- Captures data about transportation modes, costs, and delivery times.
- Supports cost optimization and transport mode recommendations.

Key Columns:

- \circ transport_mode \rightarrow e.g., Road, Rail, Air
- \circ cost \rightarrow Transport cost for the trip
- o distance_km → Distance covered in kilometers
- o delivery_time_days → Average delivery duration

Derived Metric:

```
o cost_per_km = cost / distance_km
```

Data Preprocessing & EDA

Steps Performed:

- 1. Checked for missing values and duplicates
- 2. Converted date columns to datetime format
- 3. Normalized categorical variables where necessary (e.g., transport mode)
- 4. Computed new metrics:
 - Average stock per SKU
 - Cost per km for transport
 - Average lead time per supplier

Visualizations:

- Bar charts for average inventory per SKU
- Horizontal bar charts for average lead time per supplier
- Bar charts for average logistics cost per km by mode
- Delivery time comparisons by transport mode

Insights:

- Identified SKUs with high inventory or stockouts risk
- Suppliers with long lead times
- Transport modes with high cost vs delivery time trade-off

Key Performance Indicators (KPIs)

To evaluate supply chain efficiency, the following KPIs were calculated:

- Total Sales → Overall revenue from all SKUs (sum(sales_value))
- Avg Inventory per SKU → Average stock level across SKUs (mean(avg_daily_stock))
- Stockout Risk → Identified SKUs with stock below safety threshold (avg_daily_stock < reorder_point)
- Avg Lead Time → Supplier efficiency (mean(lead_time_days))
- Avg Delivery Time → Logistics performance (mean(delivery_time_days))
- Avg Cost per KM → Transportation cost efficiency (mean(cost_per_km))

Forecasting

- Method: Time-series forecasting using Facebook Prophet.
- Objective: Forecast sales per SKU for the next 30 days.

• Steps Taken:

- Grouped sales data by SKU & date.
- Renamed columns for Prophet: ds (date), y (sales).
- Trained Prophet model per SKU.
- Generated future dataframe for 30 days.
- Plotted forecasts with confidence intervals.

• Output:

- Line charts of predicted sales per SKU.
- Aggregate demand predictions for all SKUs.

Reorder Point & Recommendations

• Steps Taken:

- 1. Merged forecasted demand, inventory, and supplier lead times.
- 2. Calculated reorder point for each SKU.
- 3. Checked if current stock < reorder point \rightarrow order needed.
- 4. Recommended order quantity = reorder point current stock.

Sample Output Table:

SKU	Supplier	Avg	Stoc	Lead	Reorder	Order	Order
ID		Demand	k	Time	Point	Qty	Needed
SKU_1	Supplier_ A	40	120	5	240	120	Yes

Transport Mode Recommendation

- Rule-Based Approach:
 - High urgency (stockout risk) → fastest mode (Air)
 - Low urgency → cheapest mode (Rail/Road)
- Advanced Option: Scoring-based optimization balancing cost vs. delivery time using weighted scores.

Sample Output:

SKU ID Urgency Transport Mode

SKU_1 High Air

SKU_2 Low Rail

Interactive Dashboard

- Features:
 - Sidebar navigation: Home, KPI Dashboard, Forecasting, Recommendations
 - KPI cards with metrics like Total Sales, Avg Inventory, Lead Time
 - o Interactive charts (bar, line, pie) for sales & logistics analysis
 - Recommendations table with urgency highlighting
 - Option to download results as CSV
- Visual Enhancements:
 - Color-coded KPIs
 - Filters for SKU, Supplier, Date Range

Tools & Libraries

- Python Libraries: pandas, numpy, matplotlib, seaborn
- Dashboard/UI: Streamlit
- Environment: Jupyter Notebook / Google Colab / PyCharm

Conclusion

This project delivers a decision-support system for FMCG supply chain management, enabling:

- Accurate demand forecasting
- Reorder point calculation to minimize stockouts
- Supplier and transport mode optimization
- Interactive dashboards for real-time insights

Impact:

- Improved operational efficiency
- Reduced overstock and understock costs
- Data-driven decision-making for procurement & logistics

Links:

• Google Colab Analysis: Colab Notebook

Live UI: Web LinkGithub: Check Here