Digital Integrated Circuits Inverter

YuZhuo Fu

CMOS Inverter

- At a glance
- Static behavior
- Dynamic behavior
- Power, Energy, and Energy Delay
- Perspective tech.

Dynamic Power Consumption

- (dis)charge process
 - C_L is charged through pMOS on-resistance
 - C_L is discharged through nMOS on-resistance
- Power distribution
 - Charge processing: One part of Supply power is dissipated in the pMOS transistor, another part is dissipated in the charge C_L
 - Discharge processing:all dissipated in the nMOS transistor

Precise measure of dynamic power consumption

$$E_{V_{dd}} = \int_{0}^{\infty} i_{V_{dd}}(t) V_{dd} dt = V_{dd} \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} dt$$

$$= C_{L} V_{dd} \int_{0}^{V_{dd}} dv_{out} = C_{L} V_{dd}^{2}$$

$$V_{out} E_{C} = \int_{0}^{\infty} i_{V_{dd}}(t) v_{out} dt = \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} v_{out} dt$$

$$= C_{L} \int_{0}^{V_{dd}} v_{out} dv_{out} = \frac{C_{L} V_{dd}^{2}}{2}$$

Output voltages and supply current during (dis)charge of C_L

- Energy dissipation is independent of the size
- Power consumption is dependent of device switching number.

Power and Energy Figures of Merit

- Power consumption in Watts
 - determines battery life in hours
- Peak power
 - determines power ground wiring designs
 - sets packaging limits
 - impacts signal noise margin and reliability analysis
- Energy efficiency in Joules
 - rate at which power is consumed over time
- Energy = power * delay
 - Joules = Watts * seconds
 - lower energy number means less power to perform a computation at the same frequency

Power versus Energy

PDP and EDP

- Power-delay product (PDP) = $P_{av} * t_p = (C_L V_{DD}^2)/2$
 - PDP is the average energy consumed per switching event (Watts * sec = Joule)
 - lower power design could simply be a slower design
- Energy-delay product (EDP) = PDP * t_p = P_{av} * t_p²
 - EDP is the average energy consumed multiplied by the computation time required
 - takes into account that one can trade increased delay for lower energy/operation(e.g.,via supply voltage scaling that increases delay,but decreases energy consumption)

PDP and EDP

Vdd (V) allows one to understand tradeoffs better

Understanding Tradeoffs

■ Which design is the "best" (fastest, coolest, both) ?

Where Does Power Go in CMOS?

- Dynamic Power Consumption
 - Charging and Discharging Capacitors
- Short Circuit Currents
 - Short Circuit Path between Supply Rails during Switching
- Leakage
 - Leaking diodes and transistors

CMOS Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} + V_{DD} I_{leakage} 1/f_{clock}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

$$P = C_{L} V_{DD}^{2} f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f + V_{DD} I_{leakage}$$

Dynamic power

Short-circuit power

Leakage power

Lowering Dynamic Power

Capacitance: Function of fan-out, wire length, transistor sizes Supply Voltage:
Has been dropping with
successive generations

 $P_{dyn} = C_L V_{DD}^2 P_{0\rightarrow 1} f$

Activity factor: How often, on average, do wires switch? Clock frequency: Increasing...

Transistor Sizing for Minimum Energy

- Goal: Minimize Energy of whole circuit
 - Design parameters: f and V_{DD}
 - $t_p \le t_{pref}$ of circuit with f=1 and $V_{DD} = V_{ref}$

$$t_{p} = t_{p0} \left(\left(1 + \frac{f}{\gamma} \right) + \left(1 + \frac{F}{f \gamma} \right) \right) \quad I_{DSAT} = k' \frac{W}{L} \left(V_{GT} V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right)$$

$$t_{p0} \propto rac{V_{DD}}{V_{DD} - V_{TE}}$$

$$t_{pLH} = \ln(2)R_{eqn}C = 0.69 * \frac{3V_{DD}}{4I_{DSATn}} (1 - \lambda V_{DD})C_{L}$$

Digital IC

14

Transistor Sizing (2)

• Performance Constraint (γ =1)

$$\frac{t_{p}}{t_{pref}} = \frac{t_{p0}}{t_{p0ref}} \frac{\left(2 + f + \frac{F}{f}\right)}{\left(3 + F\right)} = \frac{V_{DD}}{V_{ref}} \frac{V_{ref} - V_{TE}}{V_{DD} - V_{TE}} \frac{\left(2 + f + \frac{F}{f}\right)}{\left(3 + F\right)} = 1$$

Energy for single Transition

$$E = V_{DD}^{2} C_{g1} [(1+\gamma)(1+f)+F]$$

$$\frac{E}{E_{ref}} = \left(\frac{V_{DD}}{V_{ref}}\right)^{2} \left(\frac{2+2f+F}{4+F}\right)$$

Transistor Sizing (3)

Short Circuit Power Consumption

Finite slope of the input signal causes a direct current path between V_{DD} and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting.

Short Circuit power consumption

Energy of ever switch activity

$$E_{dp} = V_{dd} \frac{I_{peak}}{2} t_{rise} + V_{dd} \frac{I_{peak}}{2} t_{fi}$$

Average power

$$P_{dp} = \frac{t_{rise} + t_{fall}}{2} V_{dd} I_{peak} f$$

Short circuit occupy no more than 20% of dynamic power

$$t_{sc} = \frac{V_{DD} - 2V_T}{V_{DD}} t_s \approx \frac{V_{DD} - 2V_T}{V_{DD}} \times \frac{t_{r(f)}}{0.8}$$

Digital IC

An example

- Assume rise/fall time both are 300ps
- Short circuit power:

$$300ps\times5V\times0.14mA=0.21pJ$$

Dynamic power
 30pF × 5V × 5V=0.75pJ

Impact of C₁ on P_{sc}

Large capacitive load

Small capacitive load

Output fall time significantly Output fall time substantially larger than input rise time. smaller than the input rise time.

I_{peak} as a Function of C_L

When load capacitance is small, I_{peak} is large.

Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering.

500 psec input slope

Digital IC

.global gnd .subckt inv a y vdd1 N=4 P=8 M1 y a gnd gnd NMOS W=N L=2 + AS=N+5 PS='2*N+10' AD='N+5' PD='2*N+10' M2 y a vdd1 vdd1 PMOS W='2*N' L=2 + AS='P+5' PS='2*P+10' AD='P+5' PD='2*P+10' .ends *simulation netlist vdd1 vdd1 gnd 'SUPPLY' vdd2 vdd2 gnd 'SUPPLY' vin a gnd PULSE 0 'SUPPLY' Ops 100ps 100ps 40000ps 84000ps *shape input waveform X1 a b vdd1 inv N=2 *reshape input waveform X2 b c vdd1 inv N=2**2*device under test x3 c d vdd1 inv N=8 *load x4 d e vdd2 inv N=H**4 *load on load x5 e f vdd1 inv N=8 X6 f h vdd1 inv N=4*1000

P_{sc} as a Function of Rise/Fall Times

When load capacitance is small $(t_{sin}/t_{sout} > 2 \text{ for } V_{DD} > 2V) \text{ the power is dominated by } P_{sc}$

If $V_{DD} < V_{Tn} + |V_{Tp}|$ then P_{sc} is eliminated since both devices are never on at the same time.

 $W/L_p = 1.125 \ \mu m/0.25 \ \mu m$ $W/L_n = 0.375 \ \mu m/0.25 \ \mu m$ $C_t = 30 \ fF$

normalized wrt zero input rise-time dissipation

Switching power

CMOS inverter

FIGURE 5.5 Inverter switching voltage, current, power, and energy

Power Testing

🗐 inverter - 记事本 文件(F) 编辑(E) 格式(O) 查看(V) 帮助(H) * cmos.sp .option node *.option list .probe I(*) V(*) Acutorio de la compressión del compressión de la Parameters and models ************************ .param SUPPLY=0.7 .option scale=16n .param N1=3 .include '../LIB/16nm HP.pm' .temp 70 .option post | Acadesical colocios | colocios Simulation netlist 'SUPPLY' Vdd. vdd gnd PULSE(0 'SUPPLY' Ops 50ps 50ps 800ps 1950ps Vin gnd M 1 NMOS ₩=4 L=2 gnd gnd У a M2 vdd vdd PMOS ₩=N1*3 *C1 y a 1f * Stimulus **Application of the properties of the proper *. tran 100p 10n *.plot i(v) * sweep N1 2 30 2 .tran 10p 5n *sweep supply 0.2 1.5 0.1 .MEASÛRE ÎRAN tdlav TRIG V(a) VAL = 'SUPPLY/2' RISE = 1 TARG V(v) VAL = 'SUPPLY/2' FALL = 1 . end

Digital IC

26

Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

All increase exponentially with temperature!

TSMC Processes Leakage and V_T

	CL018 G	CL018 LP	CL018 ULP	CL018 HS	CL015 HS	CL013 HS
V_{dd}	1.8 V	1.8 V	1.8 V	2 V	1.5 V	1.2 V
T _{ox} (effective)	42 Å	42 Å	42 Å	42 Å	29 Å	24 Å
L _{gate}	0.16 μm	0.16 μm	0.18 μm	0.13 μm	0.11 μm	0.08 μm
I _{DSat} (n/p) (μΑ/μm)	600/260	500/180	320/130	780/360	860/370	920/400
I _{off} (leakage) (ρΑ/μm)	20	1.60	0.15	300	1,800	13,00
V _{Tn}	0.42 V	0.63 V	0.73 V	0.40 V	0.29 V	0.25 V
FET Perf. (GHz)	30	22	14	43	52	80

Principles for Power Reduction

- Prime choice: Reduce voltage!
 - Recent years have seen an acceleration in supply voltage reduction
 - Design at very low voltages still open question
- Reduce switching activity
- Reduce physical capacitance
 - Device Sizing: for F=20
 - f_{opt} (energy)=3.53, f_{opt} (performance)=4.47

Digital IC 30

Review: Energy & Power Equations

$$E = C_{L} V_{DD}^{2} P_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} + V_{DD} I_{leakage} 1/f_{clock}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

$$P = C_{L} V_{DD}^{2} f_{0\rightarrow 1} + t_{sc} V_{DD} I_{peak} f + V_{DD} I_{leakage}$$

Dynamic power decreasing relatively)

Short-circuit power (~90% today and (~8% today and decreasing absolutely)

Leakage power (~2% today and increasing)

CMOS Inverter

- At a glance
- Static behavior
- Dynamic behavior
- Power, Energy, and Energy Delay
- Perspective tech.

Technology Evolution

International Technology Roadmap for Semiconductors

Year of Introduction	1999	2000	2001	2004	2008	2011	2014
Technology node [nm]	180		130	90	60	40	30
Supply [V]	1.5-1.8	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.3-0.6
Wiring levels	6-7	6-7	7	8	9	9-10	10
Max frequency [GHz],Local-Global	1.2	1.6-1.4	2.1-1.6	3.5-2	7.1-2.5	11-3	14.9 -3.6
Max mP power [W]	90	106	130	160	171	177	186
Bat. power [W]	1.4	1.7	2.0	2.4	2.1	2.3	2.5

Node years: 2007/65nm, 2010/45nm, 2013/33nm, 2016/23nm

Technology Scaling Models

- Full scaling(constant electrical)
 - Ideal model –dimensions and voltage scale together by the same factor S
- Fixed voltage scaling
 - Most common model until recently- only dimensions scale, voltages remain constant
- General scaling
 - Most realistic for today's situation-voltages and dimensions scale with different factors

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD} , V_{T}		1/S	1/ U	1
N _{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
$\mathrm{C}_{\mathbf{L}}$	CoxWL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{av}	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$C_L V^2 / t_p$	1/S ²	S/U ³	S
PDP	C_LV^2	1/S ³	1/SU ²	1/S

Difference between long and short channels

$$I_{Dsat} = \frac{k_n'}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

$$I_{D}|_{V_{DS}=V_{DSAT}} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DSAT} - \frac{V_{DSAT}^{2}}{2} \right]$$

$$= v_{sat} C_{ox} W (V_{GT} - \frac{V_{DSAT}}{2})$$

Transistor Scaling (velocity-saturated devices)

_	Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling
•	W , L , t_{ox}		1/S	1/S	1/S
_	V_{DD} V_{T}		1/S	1/U	1
_	$N_{ extit{SUB}}$	V/W_{depl}^{2}	S	S^2/U	S^2
$\sqrt{}$	Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$
_	$C_{ m ox}$	$1/t_{\rm ox}$	S	S	S
_	$C_{\it gate}$	$C_{ox}WL$	1/S	1/S	1/S
_	k_n , k_p	$C_{ m ox}W/L$	S	S	S
_	I_{sat}	$C_{ox}WV$	1/S	1/U	1
_	Current Density	I _{sat} /Area	S	S^2/U	S^2
_	Ron	V/I _{sat}	1	1	1
$\sqrt{}$	Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S
$\sqrt{}$	P	$I_{sat}V$	$1/S^2$	$1/U^2$	1
_	Power Density	P/Area	1	S^2/U^2	S^2

summary

- CMOS at a glance
- CMOS static behavior
 - VTC, noise margin, threshold voltage
- CMOS dynamic behavior
 - Capacitance mosaic, delay
 - Ratio pMOS/nMOS:3.5,2.4,1.6
 - Optimizing inverter sizing
- Power
 - Power mosaic
 - Optimizing dynamic power
 - Short power consideration

Digital IC