Discrete 2 (Chapter 7)

Noti ghal Qabel Waqt l-Ezami

Juan Scerri

B.Sc. (Hons)(Melit.) Computing Science and Mathematics (Second Year)

April 7, 2023

1 Relations

Totality: $r \in X \leftrightarrow Y$ is said to be total iff $total(r) \stackrel{df}{=} \forall x \in X, \exists y \in Y \cdot (x, y) \in r$ it true.

Functionality: $r \in X \leftrightarrow Y$ is said to be functional iff

functional $(r) \stackrel{\text{df}}{=} \forall y_1, y_2 \in Y, \forall x \in X \cdot (x, y_1) \in r \land (x, y_2) \Rightarrow y_1 = y_2$ is true.

Surjectivity: $r \in X \leftrightarrow Y$ is said to be surjective iff surjective $(r) \stackrel{\text{df}}{=} \forall y \in Y, \exists x \in X \cdot (x, y) \in r$ is true.

Injectivity: $r \in X \leftrightarrow Y$ is said to be injective iff

injective $(r) \stackrel{\text{df}}{=} \forall x_1, x_2 \in X, \forall y \in Y \cdot (x_1, y) \in r \land (x_2, y) \Rightarrow x_1 = x_2 \text{ is true.}$

Set of Functional Relations: $X \to Y \stackrel{\text{df}}{=} \{r \in X \leftrightarrow Y : \text{functional}(r)\}.$

2 Multisets

2.1 Definitions

Set of Multisets Over $X: \mathbb{M} X \stackrel{\text{df}}{=} \{r \in X \to \mathbb{N} : \text{total}(r)\}.$

Empty Multiset: $\square \stackrel{\text{df}}{=} \lambda x \in X \cdot 0$.

Multiset Element Of: $x \in T \stackrel{\text{df}}{=} T(x) > 0$

Multiset Subset: $T \sqsubseteq S \stackrel{\text{df}}{=} \forall x \in X \cdot T(x) \leq S(x)$.

Multiset Equality: $T \stackrel{\text{mst}}{=} S \stackrel{\text{df}}{=} \forall x \in X \cdot T(x) = S(x)$.

Multiset Union: $T \sqcup S \stackrel{\text{df}}{=} \lambda x \in X \cdot T(x) + S(x)$.

Multiset Intersection: $T \sqcap S \stackrel{\text{df}}{=} \lambda x \in X \cdot \min(\{T(x), S(x)\}).$

2.2 Theorems

Theorem 7.4: $T \sqcup S \stackrel{\text{mst}}{=} S \sqcup T$.

Theorem 7.6: $T \sqcap S \sqsubseteq T \sqcup S$.

2.3 Exercises

Exercise 7.1: $T \sqsubseteq T$ (reflexive) and $T \sqsubseteq R \land R \sqsubseteq S \Rightarrow T \sqsubseteq S$ (transitive).

Exercise 7.3: $T \sqcap T \stackrel{\text{mst}}{=} T$ (idempotent), $T \sqcap S \stackrel{\text{mst}}{=} S \sqcap T$ (commutative) and $(T \sqcap S) \sqcap R \stackrel{\text{mst}}{=} T \sqcap (S \sqcap R)$ (associative).

Exercise 7.4: $(T \sqcup S) \sqcup R \stackrel{\text{mst}}{=} T \sqcup (S \sqcup R)$ (associative).

Exercise 7.5: $T - S \stackrel{\text{df}}{=} \lambda x \in X \cdot \max(\{0, T(x) - S(x)\})$ (multiset difference), $T - T \stackrel{\text{mst}}{=} \not\square$ and $T - \not\square \stackrel{\text{mst}}{=} T$.

3 Sequences

3.1 Definitions

Finite Subsets of \mathbb{N} : upto $(N) \stackrel{\text{df}}{=} \{ n \in \mathbb{N} : n < N \} = \{ 0, 1, \dots, N-1 \}.$

Set of Sequences Over X: seq $X = \{s_X \in \mathbb{N} \to X : \exists N \in \mathbb{N} \cdot \text{dom}(s_X) = \text{upto}(N)\}.$

Empty Sequence: $\langle \rangle \stackrel{\text{df}}{=} \lambda n \in \mathbb{N} \cdot \text{undefined}.$

Head of a Sequence: head(s_X) $\stackrel{\text{df}}{=} s_X(0)$.

Tail of a Sequence: $tail(s_X) \stackrel{\text{df}}{=} \lambda n \in \mathbb{N} \cdot s_X(n+1)$.

Cons Operator:

$$cons(x, s_X) \stackrel{\text{df}}{=} \lambda n \in \mathbb{N} \cdot \begin{cases} x & \text{if } n = 0 \\ s_X(n-1) & \text{otherwise} \end{cases}.$$

Length of a Sequence:

$$\operatorname{len}(s_X) \stackrel{\mathrm{df}}{=} \begin{cases} 0 & \text{if } s_X \stackrel{\mathrm{seq}}{=} \langle \rangle \\ 1 + \operatorname{len}(\operatorname{tail}(s_X)) & \text{otherwise} \end{cases}$$
$$= \lambda \, n \in \mathbb{N} \cdot \begin{cases} 0 & \text{if } s_X \stackrel{\mathrm{seq}}{=} \langle \rangle \\ 1 + \max(\operatorname{dom}(s_X)) & \text{otherwise} \end{cases}.$$

Last Element of a Sequence: $last(s_X) \stackrel{\text{df}}{=} s_X(len(s_X) - 1)$.

Sum of a Sequence of Natural Numbers:

$$\operatorname{sum}(s_{\mathbb{N}}) \stackrel{\operatorname{df}}{=} \begin{cases} 0 & \text{if } s_{\mathbb{N}} \stackrel{\operatorname{seq}}{=} \langle \rangle \\ \operatorname{head}(s_{\mathbb{N}}) + \operatorname{sum}(\operatorname{tail}(s_{\mathbb{N}})) & \text{otherwise} \end{cases}.$$

Sequence Concatenation:

$$t_X ++ s_X \stackrel{\mathrm{df}}{=} \begin{cases} s_X & \text{if } t_X \stackrel{\mathrm{seq}}{=} \langle \rangle \\ \operatorname{cons}(\operatorname{head}(t_X), \operatorname{tail}(t_X) ++ s_X) & \text{otherwise} \end{cases}$$
$$= \lambda \, n \in \mathbb{N} \cdot \begin{cases} t_X(n) & \text{if } n \in \operatorname{dom}(t_X) \\ s_X(n - \operatorname{len}(t_X)) & \text{otherwise} \end{cases}.$$

Prefix of a Sequence: $t_X \leq_p s_X \stackrel{\text{df}}{=} \exists r_X \in \text{seq } X \cdot t_X +\!\!\!\!+ r_X \stackrel{\text{seq}}{=} s_X.$

Suffix of a Sequence: $t_X \preceq_s s_X \stackrel{\text{df}}{=} \exists r_X \in \text{seq } X \cdot r_X + + t_X \stackrel{\text{seq}}{=} s_X$.

Exact Subsequence: $t_X \leq s_X \stackrel{\text{df}}{=} \exists r_{1_X}, r_{2_X} \in \text{seq } X \cdot r_{1_X} + t_X + t_X + t_X \stackrel{\text{seq}}{=} s_X.$

3.2 Exercises

Exercise 7.7: $len(s_X) = 1 \Rightarrow head(s_X) = last(s_X)$.

Exercise 7.8: $x \leq s_X \stackrel{\text{df}}{=} \exists n \in \mathbb{N} \cdot n \in \text{dom}(s_X) \land s_X(n) = x$.

Exercise 7.9:

$$\operatorname{sorted}(s_X) \stackrel{\mathrm{df}}{=} \begin{cases} \mathbf{True} & \text{if } \operatorname{len}(s_X) \leq 1 \\ \operatorname{head}(s_X) \leq_X \operatorname{head}(\operatorname{tail}(s_X)) \wedge \operatorname{sorted}(\operatorname{tail}(s_X)) & \text{otherwise} \end{cases}$$

Exercise 7.10: items $\stackrel{\text{df}}{=} \lambda s_X \in \text{seq } X \cdot (\lambda x \in X \cdot \#\{n \in \mathbb{N} : s_X(n) = x\}).$

Exercise 7.11: sorts $\stackrel{\text{df}}{=} \{(s_X, s_X') \in \text{seq } X \times \text{seq } X : \text{items}(s_X) \stackrel{\text{mst}}{=} \text{items}(s_X') \land \text{sorted}(s_X) \}.$ Hence, $(s_X, s_X') \in \text{sorts}$ iff s_X is a sorted version of s_X' .

Exercise 7.12: $s_X \stackrel{\text{seq}}{=} s_X' \stackrel{\text{df}}{=} \operatorname{len}(s_X) = \operatorname{len}(s_X') \land \forall n \in \mathbb{N} \cdot n \in \operatorname{upto}(\operatorname{len}(s_X)) \Rightarrow s_X(n) = s_X'(n).$

Exercise 7.13:

(i)
$$\operatorname{reverse}(s_X) \stackrel{\text{df}}{=} \begin{cases} s_X & \text{if } \operatorname{len}(s_X) \leq 1 \\ \operatorname{reverse}(\operatorname{tail}(s_X)) ++ \operatorname{cons}(\operatorname{head}(s_X), \langle \rangle) & \text{otherwise} \end{cases}$$
.

(ii) reverse
$$(s_X) \stackrel{\text{df}}{=} \lambda n \in \mathbb{N} \cdot s_X(\text{len}(s_X) - (n+1)).$$

4 Graph Theory

4.1 Definitions

Directed Multigraph: G is said to be a directed multigraph iff G = (V, L, E) where $E \subseteq V \times L \times V$.

A Clique in $G: V' \subseteq V$ is said to be a clique iff $\operatorname{clique}(V') \stackrel{\text{df}}{=} \forall v, v' \in V' \cdot v \neq v' \Rightarrow (\exists l \in L \cdot (v, l, v') \in E)$ is true.

A Walk in $G: s_V \in V$ is said to be a walk iff $\operatorname{walk}(s_V) \stackrel{\text{df}}{=} \forall n \in \mathbb{N} \cdot n \in \operatorname{upto}(\operatorname{len}(s_V) - 1) \Rightarrow (\exists l \in L \cdot (s_V(n), l, s_V(n+1) \in E))$ is true.

Set of Walks in G: walks $(G) \stackrel{\text{df}}{=} \{s_V \in \text{seq } V : \text{walk}(s_V)\}.$

A Cycle in $G: s_V \in V$ is said to be a cycle iff $\operatorname{cycle}(s_V) \stackrel{\mathrm{df}}{=} \operatorname{walk}(s_V) \wedge \operatorname{head}(s_V) = \operatorname{last}(s_V)$ is true.

Set of Cycles in G: $\operatorname{cycles}(G) \stackrel{\mathrm{df}}{=} \{ s_V \in \operatorname{seq} V : \operatorname{cycle}(s_V) \}.$

Directed Acyclic Graph (DAG): G is said to be a DAG iff $dag(G) \stackrel{df}{=} cycles(G) = \emptyset$ is true.

Set of Predecessors of v: predecessors $(v) \stackrel{\text{df}}{=} \{v' \in V : \exists l \in L \cdot (v', l, v) \in E\}.$

Set of Vertices Reachable from v:

reachable(v) $\stackrel{\text{df}}{=} \{ v' \in V : \exists s_V \in \text{seq } V \cdot \text{walk}(s_V) \land \text{head}(s_V) = v \land \text{last}(s_V) = v' \}.$

Tree: G is said to be a tree iff $\operatorname{tree}(G) \stackrel{\mathrm{df}}{=} (\forall v \in V \cdot \# \operatorname{predecessors}(v) \leq 1) \land (\exists_1 v \in V \cdot \# \operatorname{predecessors}(v) = 0) \land (\forall v \in V \cdot \# \operatorname{predecessors}(v) = 0 \Rightarrow \operatorname{reachable}(v) = V)$ is true.

A Label Walk in $G: s_L \in \text{seq } L$ is said to be a label walk iff $\exists s_V \in \text{seq } V \cdot \text{labelwalk}(s_L, s_V) \stackrel{\text{df}}{=} \text{walk}(s_V) \wedge \text{len}(s_V) = \text{len}(s_L) + 1 \wedge (\forall n \in \mathbb{N} \cdot n \in \text{upto}(\text{len}(s_V) - 1) \Rightarrow (s_V(n), s_L(n), s_V(n + 1)) \in E)$ is true.

Set of Label Walks in G: labelwalks $(G) \stackrel{\text{df}}{=} \{(s_L, s_V) \in \text{seq } L \times \text{seq } V : \text{labelwalk}(s_L, s_V)\}.$

Travelling Salesman Problem (TSP): Let $G = (V, \mathbb{N}, E)$ and suppose a buget B, is the following predicate true? $\exists (s_L, s_V) \in \text{labelwalks}(G) \cdot \text{ran}(s_V) = V \land \text{sum}(s_L) \leq B$.

Boolean Satisfiability Problem (SAT): Consider the following boolean expression:

$$(P \lor Q \lor R)$$

$$\land (\neg P \lor \neg R)$$

$$\land (P \lor R \lor \neg Q)$$

Vertices on the same level e.g. P_1 and Q_1 are not connected. Additionally, complementary vertices e.g. P_1 and $\neg P_2$ are not connected.

Finding a clique corresponds to a solution of the boolean expression.