Evaluation of Set Class Similarity Measures for Tonal Analysis

Nicholas Harley
SMC Master Thesis Presentation

Supervisor: Agustín Martorell

Outline

- Introduction (explanation of the title)
- Objectives
- Methodology
 - Tonal Analysis
 - PC-set theory
 - Similarity Measures
 - Segmentation
- Visualisation
 - 3 techniques
- Analysis tool
- Conclusions

Introduction

- Tonal Analysis
 - Model/describe tonal contents of music
 - look for patterns
- Pitch Class Set Theory
 - appropriate tool for descriptive modelling
- Similarity Measures
 - fundamental part of music
 - important for perception and visualisation

Objectives

- Present a philosophy/methodology for study of tonality
- Develop visualisation techniques for interpreting data from music descriptions
- Demonstrate the analytical potential of similarity measures

Tonal Analysis

- 1. Describe/model
 - Describe what?
 - "The Musical Surface" (mid-level representation)
 - Describe how?
 - Systematically
- 2. Find Patterns
 - Visualise data
 - Retrieve/augment traditional musicology

PC-Set Theory

- What?
 - Tool for describing the musical surface
 - Pitches as numbers
 - Equivalence relations
- Why?
 - mid-level description
 - systematic
 - perceptually relevant

PC Set Theory

- Basics
 - pitch class
 - pc set
 - set class
 - set class similarity

SC Similarity Measures

- What?
 - Theoretical models of similarity
 - Many different models and approaches
- Why?
 - Musical similarity
 - Visualisation

SC Similarity Measures

- Total Measures
 - Subset vector based
 - Consider subsets of all sizes
 - 6 total measures
 - Values for common chord comparisons (example plot)
 - what to look for?

Pitch Class Set Analysis

- Basic principle
 - segment describe visualise
- Not much has been done
- Class Scape (A. Martorell)

Segmentation

- Why is it important?
- Two segmentation policies
 - 1. Systematic (A. Martorell)
 - capture complete SC contents
 - 2. Sliding window
 - for "tuning-in" to a certain timescale
 - for visualisation

Segmentation

- Complete SC contents example (Bach WTC MIDI)
 - class matrix
 - class vector
 - average SC segment length
 - average cardinality segment length
- Example plots

- Distance Plot
- Autocorrelation
- Self-similarity matrix

Distance Plot

- What? Distance time series from comparison set
- Why? Visualise how the tonal content of the music change in time
- How?
 - segmentation selection
 - comparison set selection
- Example plot
- Peaks/interpretation
- Recurring patterns

Autocorrelation

- What? Autocorrelation of the distance plot
- Why? Peaks indicate repetitions in distance plot
- Example plot
- Peaks/interpretation

Self-similarity matrix

- What? Each segment compared to every other
- Why? Discover repetitions in time series
- Example plot
- Interpretation

Analysis Tool

- What?
 - Interactive tool, integrating all techniques
- Why?
 - Many factors/parameters to consider
 - Exploration of the data is necessary
 - Compare use techniques together
- Demo

Conclusions

- pc set theory:
 - a suitable descriptive tool
 - limitations
- similarity measures
 - analytical potential
 - limitations
- visualisation techniques
 - what information can they recover (musicological / intuition)
- Analysis tool
- Systematic mid-level descriptions are a starting point for many applications