Homework 4

Dec. 03, 2021

NOTE: Homework 4 is due Dec. 10, 2021.

1. Let $\boldsymbol{X}=(X_1,\cdots,X_n)$ be a random sample of size n=15 from a normal distribution $N(\mu,\sigma^2)$, and the observed values are:

3.0, 2.7, 2.9, 2.8, 3.1, 2.6, 2.5, 2.8, 2.4, 2.9, 2.7, 2.6, 3.2, 3.0, 2.8

- (i) Construct a 95% confidence interval for μ when $\sigma = 0.23$.
- (ii) Construct a 95% confidence interval for μ when σ is unknown.
- (iii) Construct a 95% confidence interval for σ^2 when $\mu = 2.85$.
- (iv) Construct a 95% confidence interval for σ^2 when μ is unknown.
- (v) Suppose that both μ and σ are unknown. Let $\theta = \mu^2$, derive the moment estimate and MLE for θ .
- 2. Let $X = (X_1, \dots, X_n)$ be a random sample from a distribution with unknown (finite) mean μ and known (finite) variance σ^2 , and suppose that n is large. Then:
 - (i) Construct a confidence interval for μ with confidence level approximately $1-\alpha$.
 - (ii) Provide the form of the interval in part (i) for n = 100, $\sigma = 1$, and $\alpha = 0.05$.
 - (iii) Refer to part (i) and suppose that $\sigma = 1$ and $\alpha = 0.05$. Then determine the sample size n, so that the length of the confidence interval is less than 0.1.
 - (iv) Show that the length of the interval in part (i) tends to 0 in probability as $n \to \infty$, for any σ and α .
- 3. Let $X = (X_1, \dots, X_n)$ be a random sample from a distribution with unknown (finite) mean μ and unknown (finite) variance σ^2 , and suppose that n is large. Then:
 - (i) Construct a confidence interval for μ with confidence level approximately 1α .
 - (ii) Provide the form of the interval in part (i) for n = 100, $\alpha = 0.05$.
 - (iii) Show that the length of the interval in part (i) tends to 0 in probability as $n \to \infty$.
- 4. Consider the data set "data.csv". There are 1475 houses which have central air-conditioner (Central_Air = Y) and 123 houses which don't have air-conditioner (Central_Air = N). Compare the mean SalePrice and the variance of SalePrice of the houses with central air-conditioner (Central_Air = Y) and those without central air-conditioner (Central_Air = N). In particular, let X_1, \dots, X_{1475} denote the SalePrice of the houses with central air-conditioner and suppose that they are i.i.d. r.v.'s. Let Y_1, \dots, Y_{123} denote the SalePrice of the houses without central air-conditioner and suppose that they are i.i.d. r.v.'s too. Suppose that X_i 's and Y_i 's are independent.
 - (i) Suppose that X_i i.i.d. $\sim N(\mu_1, \sigma^2)$, Y_j i.i.d. $\sim N(\mu_2, \sigma^2)$, $\sigma = 79400$. Construct a 95% confidence interval for $\mu_1 \mu_2$.

- (ii) Suppose that X_i i.i.d. $\sim N(\mu_1, \sigma^2), Y_j$ i.i.d. $\sim N(\mu_2, \sigma^2), \sigma$ is unknown. Construct a 95% confidence interval for $\mu_1 \mu_2$.
- (iii) Suppose that X_i i.i.d. $\sim N(\mu_1, \sigma_1^2), Y_j$ i.i.d. $\sim N(\mu_2, \sigma_2^2), \sigma_1^2 \neq \sigma_2^2$ are unknown. Construct a 95% confidence interval for σ_1/σ_2 .
- (iv) Refer to part (iii), construct approximately 95% confidence intervals for $\mu_1 \mu_2$ by using central limit theory.