Kodiranje

Naloga 3.1

Vir oddaja znake abecede $\{a, b, c, d, e, f\}$ z verjetnostmi $\{0.6, 0.12, 0.11, 0.07, 0.06, 0.04\}$. Izračunajte učinkovitost trojiškega Huffmanovega, Shannonovega in Fanojevega koda.

Naloga 3.2

Vir oddaja znake abecede $\{a, e, i, o, u\}$ z verjetnostmi $\{0,22, 0,07, 0,37, 0,09, 0,25, \}$. Dekodirajte sporočilo '1011101', zakodirano z dvojiškim kanoničnim Huffmanovim kodom!

Naloga 3.3

Vir oddaja znake $\{x,y,z\}$ z verjetnostmi $\{0,6,0,3,0,1\}$. Vsak oddani niz znakov se zaključi z znakom z. S katero kodno zamenjavo je predstavljen niz "yxz", zakodiran z binarnim aritmetičnim kodom? Znakom osnovne abecede intervale določite tako, da ima spodnja meja intervala za znak z najnižjo vrednost, zgornja meja intervala za znak x pa najvišjo vrednost.

Naloga 3.4

Vir oddaja znake $\{0, 1, 2\}$ z verjetnostmi $\{0, 2, 0, 4, 0, 4\}$. Sporočilo se vedno zaključi z znakom 0. Kateri niz znakov je v binarnem aritmetičnem kodu predstavljen s kodno zamenjavo '011101'? Pri določanju intervalov za osnovne znake poskrbite, da ima spodnja meja intervala za znak 0 najnižjo vrednost, zgornja meja intervala za znak 2 pa najvišjo.