Обучение с учителем: Регуляризация в линейных моделях. Метод Ближайших Соседей (KNN)

Екатерина Кондратьева

Регрессия:

МНК функция потерь:

RSS(
$$\beta$$
) = $\sum_{i=1}^{N} (y_i - f(x_i))^2$
 = $\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2$.

N—number of samples

p—number of independent variables or features

x—feature

y—actual target or dependent variable

f(x)—estimated target

 β —coefficient or weight corresponding to each feature or independent var.

Регрессия

Fig 2: Gradient Descent on axes of β1 and β2

Регуляризация

Для улучшения обобщающей способности получающейся модели, то есть уменьшения эффекта переобучения, на практике часто рассматривается логистическая регрессия с регуляризацией.

https://docplayer.ru/41305484-Lekciya-2-obobshchennye-lineynye-modeli-regulyarizaciya-obucheniya.html

https://github.com/esokolov/ml-course-hse/blob/master/2018-fall/lecture-notes/lecture03-linregr.pdf

лекции https://www.youtube.com/watch?v=Kloz_aa1ed4

Переобучение (data leakage)

Здесь theta (θ) - β

L1 Norm or Lasso Regression

L1 Norm is of the form $|\beta 1| + |\beta 2|$.

Modified Cost function for L1 Regularization is as follows:

$$\hat{\beta}^{\text{lasso}} = \underset{\beta}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

L2 Norm or Ridge Regression

L2 Norm is Euclidean distance norm of the form $|\beta 1|^2 + |\beta 2|^2$.

$$\hat{\beta}^{\text{ridge}} = \underset{\beta}{\operatorname{argmin}} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Метод k Ближайших Соседей

Метод k ближайших соседей

Метод k ближайших соседей

Часто метрики дистанции используются для снижения размерности: https://www.stat.berkeley.edu/~bickel/mldim.pdf

Вопросы для самопроверки:

- Почему L1-регуляризация производит отбор признаков?
- Почему коэффициент регуляризации нельзя подбирать по обучающей выборке?
- Почему категориальные признаки нельзя закодировать натуральными числами? Что такое one-hot encoding?
- Разница МАЕ и MSE. Почему MSE чувствительно к выбросам?
- Что такое кросс-валидация, чем она лучше использования отложенной выборки?

Источники:

- 1. https://github.com/esokolov/ml-course-hse/
- 2. https://chrisalbon.com/
- 3. https://github.com/Slinkolgor/express_ml