## DENTAL HEALTH CLASSIFICATION USING CNNs

By SAI TEJA PERUMALLA
B00115297





### Problem Statement & Solution



- Manually analyzing dental Xrays is time-consuming and prone to errors.
- Dentists require automated tools to detect cavities, fillings, implants, and impacted teeth.
- A deep learning-based CNN model that classifies X-ray images into dental categories.
- This solution provides fast, accurate, and automated analysis, assisting dentists in diagnostics.



#### **Dataset & Model**

https://www.kaggle.com/code/banddani el/dental-x-rays-classification-test-f1score-0-72

## Dataset consists of four categories :

- Cavities
- Fillings
- Implants
- Impacted Tooth

Model: A Custom CNN and a Transfer Learning model





## Model Comparisons and Observations



| Feature                 | V1 (Baseline) | V2 (Initial Training) | V3 (Improvements) | V4 (Fine-Tuned) | VGG - 16            | VGG - 16<br>(Fine - Tuned) |
|-------------------------|---------------|-----------------------|-------------------|-----------------|---------------------|----------------------------|
| Number of Conv Layers   | 2 Conv Layers | 3 Conv Layers         | 4 Conv Layers     | 4 Conv Layers   | 13(Pre-<br>trained) | 13(Partially<br>Unfrozen)  |
| Batch Normalization     | No            | No                    | Yes               | Yes             | No                  | No                         |
| Dropout Rate            | 0.5           | 0.5                   | 0.6               | 0.5             | 0.5                 | 0.5                        |
| Batch Size              | 32            | 32                    | 16                | 32              | 32                  | 32                         |
| Fully Connected Neurons | 128           | 256                   | 128               | 160             | 128                 | 128                        |
| Learning Rate           | 0.001         | 0.0005                | 0.0003            | 0.00003         | 0.0001              | 0.00003                    |
| Data Augmentation       | No            | Yes                   | Yes               | Yes (More)      | Yes                 | Yes                        |
| Final Training Accuracy | 36.77%        | 44.16%                | 44.52%            | 76.60%          | 58.56%              | 62%                        |
| Final Test Accuracy     | 33.34%        | 44.12%                | 45.14%            | 66.21%          | 57.84%              | 82.99%                     |

## **Key Observations**



#### **Architecture Design**

#### Custom CNNs (V1-V4):

- Built from scratch with gradually deeper architectures (from 2 to 4 convolutional layers).
- Fully controlled layer configuration: Conv2D, MaxPooling, Dropout, Dense layers.
- Model depth manually adjusted across versions.

#### Transfer Learning (V5–V6):

- Based on VGG16, a proven architecture trained on ImageNet.
- Started with frozen layers (V5), and fine-tuned deeper layers (V6).
- Rich pretrained features gave a strong head start in learning.

## **Key Observations**



#### **Learning Capability**

#### **Custom CNNs:**

 Needed heavy data augmentation to generalize.

 Required trial-and-error for hyperparameter tuning.

Limited feature learning capacity without large datasets

#### **Transfer Models:**

- Pretrained on millions of images → already captured low-level to high-level features.
- Fine-tuning allowed adaptation to our dental dataset, boosting performance.
- Required less augmentation due to generalizable patterns in pretrained layers.





# Thank You For Your Time & Attention



Open for Queries, Feedback and Discussions