OWL Web Ontology Language

Contenido

- Limitaciones del poder expresivo de RDFs
- OWL2: Introducción
- Conceptos Básicos de OWL
- Sintaxis DL, OWL, Manchester
- Lenguaje OWL
 - Clases
 - Propiedades: Object Properties, Data Properties
 - Individuos

RDF/RDFS

- RDF: Triples para hacer afirmaciones sobre recursos.
- RDFS extiende RDF con un "esquema de vocabulario".

```
e.j.:
```

- Class, Property
- type, subClassOf, subPropertyOf
- range, domain

Limitaciones de RDFS

- RDFS es demasiado débil para describir los recursos con suficiente detalle:
 - Sin restricciones localizadas de rango y dominio
 - No se puede decir que el rango de tieneHijo sea persona cuando se aplica a personas y elefantes cuando se aplica a elefantes
 - Sin restricciones de existencia / cardinalidad.
 - No se puede decir que todas las instancias de persona tengan una madre que también sea una persona, o que las personas tengan exactamente 2 padres

Limitaciones de RDFS

- Sin propiedades transitivas, inversas o simétricas.
 - No se puede decir que esParteDe es una propiedad transitiva, que tieneParte es el inverso de esParteDe o que dos propiedades son simétricas
- No desigual/igualdad
 - No se puede decir que una clase/instancia es igual a otra clase/instancia
 - No se puede decir que las clases/instancias son definitivamente diferentes/desunidas..
- No combinación de clases
 - No se puede decir que una clase sea la unión, intersección, etc. de otras clases

OWL2: Introducción

- OWL2 es la versión actual de Web
 Ontology Language y una
 recomendación desde Octubre 2009
- La versión previa de OWL (OWL 1) llegó a ser una recomendación en 2004.
- Toda la documentación sobre OWL2 puede ser encontrado en

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

Ontology Web Language -- OWL

- Tres especies de OWL
 - OWL Lite es el lenguaje más simple (+ fácil de implementar/menos expresivo)
 - OWL DL (+ más expresivo)
 - OWL Full es una unión de sintaxis OWL y RDF
- OWL permite mayor expresividad que RDF-S.

Conceptos Básicos de OWL

- Suposición Mundo Abierto (Open-world assumption)
- Suposición Nombre Único (Unique Named Assumption)

... Suposición Mundo Abierto

Suposición Mundo Cerrado	Suposición Mundo Abierto
todo lo que no sabemos es falso	todo lo que no sabemos es indefinido
Se sabe que la base de conocimiento está completa	Ningún agente u observador tiene conocimiento completo
BaseDatos, Prolog, etc.	Ontologías, LD, etc

... Suposición Mundo Abierto

Ejemplo

- "Mauricio es un ciudadano de USA."
 Bajo una CWA, la respuesta es **no**.
 Bajo una OWA, la respuesta es **no lo sé**.
- asuma que la siguiente afirmación es verdadera:
 - "una persona solo puede ser ciudadano de un país".
 - Agregue la siguiente declaración: "Mauricio es un ciudadano de Ecuador".

... Suposición Mundo Abierto

Sistema Mundo Cerrado (CWA), **error**Una persona solo puede ser ciudadano de un país y asumimos que Estados Unidos y Ecuador son países diferentes.

Sistema Mundo Abierto (OWA), en lugar de generar un error, inferiría una nueva declaración.

La lógica es la siguiente: "Si una persona solo puede ser ciudadano de un país, y si Mauricio es ciudadano de EE.UU. y Ecuador, entonces EE.UU. y Ecuador deben ser lo mismo".

... Suposición Nombre Único

- En el caso de CWA, asumimos que USA y Ecuador son países diferentes.
- Con OWA, esto no se asume.
- Esto es lo que se llama Suposición de Nombre Único (UNA).

Los sistemas CWA tienen UNA. Los sistemas OWA no tienen UNA

Suposición Nombre Único (UNA)

:Pedro :padreDe :Julia, :María .

- La intuición dice: dos niños.
- Sin embargo, también podría tener tres o más (o también solo uno)

Ejemplos

Animal	Puede volar?
Pinguino	No
Tiburón	No
Colibrí	Si

Pueden los cerdos volar?

CWA? No

OWA? No lo sé

Animal	Puede volar?
Pinguino	No
Tiburón	No
Colibrí	Si

Cerdo → Animal y (tiene extremidades solo piernas)

Pueden cerdos volar?

CWA? No

OWA? No lo sé

Time	Activity	Speaker	
09:00	Welcome	Jessie Kennedy	
9:10	Data webs: new visions for research	David Shotton	
9:40	Closed World Assumption	Chris Date	
10:25	Open World Assumption	Nick Drummond	
10:40-11:00	Tea/Coffee		
11:00	The Semantic Gap between Databases and Ontologies	Catherine Dolbear	
11:30	Nullogy	Chris Date	

Hay un conferencista a la hora del café/te?

CWA? No

OWA? No lo sé a menos que un espacio en blanco se interprete como "Actividad y no (Conferencista)"

Sintaxis - DL, OWL, Manchester

Manahastar

Protégé usa la sintaxis Manchester

DL	OVVL	Manchester
Т	owl:Thing	owl:Thing
\perp	owl:Nothing	owl:Nothing
Concepto	Class	Class
Rol	Object property	Object property
$\neg C$	ObjectComplementOf(C)	not C
$C \sqcup D$	ObjectUnionOf(C D)	C or D
$C\sqcap D$	ObjectIntersectionOf(C D)	C and D
∃r.C	ObjectSomeValuesFrom(r C)	r some C
∀r.C	ObjectAllValuesFrom(r C)	r only C
$(\geq n r.C)$	ObjectMinCardinality(n r C)	r min n C
$(\leq n r.C)$	ObjectMaxCardinality(n r C)	r max n C
(= n r.C)	ObjectExactCardinality(n r C)	r exactly n C

 $\bigcirc \backslash \backslash \backslash \backslash$

https://www.w3.org/TR/owl2-manchester-syntax/