CSCI 570 - Fall 2021 - HW 2

Due September 9th

1 Graded Problems

1. What is the worst-case runtime performance of the procedure below?

```
\begin{array}{l} c=0\\ i=n\\ \textbf{while}\ i>1\ \textbf{do}\\ \textbf{for}\ j=1\ \textbf{to}\ i\ \textbf{do}\\ c=c+1\\ \textbf{end}\ \textbf{for}\\ i=\text{floor}(i/2)\\ \textbf{end}\ \textbf{while}\\ \textbf{return}\ c \end{array}
```

- 2. Arrange these functions under the O notation using only = (equivalent) or \subset (strict subset of):
 - (a) $2^{\log n}$
 - (b) 2^{3n}
 - (c) $n^{n \log n}$
 - (d) $\log n$
 - (e) $n \log (n^2)$
 - (f) n^{n^2}
 - (g) $\log(\log(n^n))$

E.g. for the function $n, n + 1, n^2$, the answer should be

$$O(n+1) = O(n) \subset O(n^2).$$

- 3. Given functions f_1, f_2, g_1, g_2 such that $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
 - (a) $f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$
 - (b) $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$
 - (c) $f_1(n)^2 = O(g_1(n)^2)$
 - (d) $\log_2 f_1(n) = O(\log_2 g_1(n))$
- 4. Given an undirected graph G with n nodes and m edges, design an O(m+n) algorithm to detect whether G contains a cycle. Your algorithm should output a cycle if G contains one.

2 Practice Problems

- 1. Solve Kleinberg and Tardos, Chapter 2, Exercise 6.
- 2. Solve Kleinberg and Tardos, Chapter 3, Exercise 6.