Matemática Computacional I **Método da Bissecção**

Prof.: Felipe C. Minuzzi

Se $f: [a,b] \to \mathbb{R}$, y = f(x), é uma função contínua tal que $f(a) \cdot f(b) < 0$, então existe $x^* \in (a,b)$ tal que $f(x^*) = 0$.

Como
$$f(x_m).f(b) < 0$$

$$f(a).f(x_m) < 0$$
 ou $f(x_m).f(b) < 0$

Como $f(x_m).f(b) < 0$

$$f(a).f(x_m) < 0$$
 ou $f(x_m).f(b) < 0$

$$f(a).f(x_m) < 0$$
 ou $f(x_m).f(b) < 0$

$$\operatorname{Como} f(a).f(x_m) < 0$$

$$\operatorname{Como} f(a).f(x_m) < 0$$

$$\operatorname{Como} f(a).f(x_m) < 0$$

Continuamos o processo até que $\left| \frac{x_i - x_{i-1}}{x_i} \right| < \varepsilon$

Método da Bissecção - Algoritmo

- 1. Determinar um intervalo inicial [a, b] contendo uma única raíz de f;
- 2. Calcular o ponto médio $x_m = \frac{b+a}{2}$.
- 3. Se $|b-a| > \epsilon$ ou $\frac{|x_i-x_{i-1}|}{|x_i|} > \epsilon$ segue, senão, assumir $\overline{x} \approx x_m$ e parar;
- 4. Se $f(x_m) = 0$, então, a raiz \overline{x} é o próprio x_m ;
- 5. Se $f(a) \cdot f(x_m) < 0$ fazemos $b = x_m$, senão fazemos $a = x_m$ e voltamos ao passo 2;