МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А.И. ГЕРЦЕНА»

Направление подготовки

09.03.01 – Информатика и вычислительная техника

Профиль «Технологии разработки программного обеспечения»

Лабораторная работа №6 часть 1

«Проверка статистических гипотез»

Работу выполнили студенты 2 курса 2-1 группы:

Зухир Амира

Крючкова Анастасия

Стецук Максим

Каргаполов Денис

СОДЕРЖАНИЕ

Отчет Зухир Амиры	3
Отчет Крючковой Анастасии	6
Отчет Стецук Максима	9
Отчет Каргаполова Дениса	12

Проверка статистических гипотез часть 1

Цель лабораторной работы: проверить статистическую гипотезу о нормальном законе распределения данных, приведенных в решаемой задаче.

Оборудование: ПК, табличный процессор Excel.

Использованные формулы:

Математическое ожидание:

$$\bar{x} = \frac{\sum x_i n_i}{n}$$

Среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{1}{n}\Sigma(x_i - \pi)^2 \cdot n_i}$$

Теоретическая вероятность рі:

$$p_i = \Phi_{(u_i+1)} - \Phi_{(u_i)}, (i = 1,2,...,k),$$

где:

$$u_i = \frac{x_i - \bar{x}}{\sigma}, \quad \Phi(u_i) = \frac{1}{\sqrt{2\pi}} \int_0^{u_i} e^{-\frac{t^2}{2}} dt$$

Значения функции Ф были взяты по таблице.

Задача из лекции:

Результаты исследований прочности на сжатие (CBX) - 200 образцов бетонапредставлены в вида сгруппированного статистического ряда:

Интервалы прочности кг/см^2	Среднее значение интервала, Хі	Частота, ni
190 - 200	195	10
200 - 210	205	26
210 - 220	215	56
220 - 230	225	64
230 - 240	235	30
240 - 250	245	14

n = 200

Проверить нулевую гипотезу о нормальном з-не распределения прочности образцов бетона на сжатие. Уровень значимости $\alpha = 0.001$

Интерва изменен наблюдае значений	ния Рмых	Частоты ni	Нормированны е интервалы [Ui;Ui+1]	Pi = [Φ(Ui+1) - Φ(Ui)]	nPi	(ni - nPi)^2	((ni - nPi)^2)/(nPi)
190 - 20	00	10	(-∞; -1,7)	0,045	8,9	1,17	0,13
200 - 21	10	26	[-1,7; -0,89]	0,142	28,4	5,86	0,21
210 - 22	20	56	[-0,89; -0,08]	0,281	56,3	0,08	0,00
220 - 23	30	64	[-0,08; 0,73]	0,299	59,8	17,31	0,29
230 - 24	40	30	[0,73; 1,54]	0,171	34,2	17,47	0,51
240 - 25	50	14	[1,54; +∞)	0,062	12,4	2,69	0,22
Σ		200		1,0	200		1,36
α		0,001					
Xcn		221					

α	0,001	
Хср	221	
б	12,328828	
V = k - r - 1		
V	3	

U1	-2,51	Φ(U1)	-0,5
U2	-1,7	Φ(U2)	-0,4554
U3	-0,89	Φ(U3)	-0,3133
U4	-0,08	Φ(U4)	-0,0319
U5	0,73	Φ(U5)	0,2673
U6	1,54	Φ(U6)	0,4382
U7	2,35	Φ(U7)	0,5

$$x^2_{pacq.} = 1,36$$

$$x^2_{\text{ kp.}} = 16,366$$

Гипотезу принимаем т.к. хи расчётное меньше хи критического

Задача 1:

Из нормальной генеральной совокупности с известной дисперсией $\sigma^2=3.2$ извлечена выборка объёма n=25 и по ней найдена выборочная средняя $\bar{\chi}_{\epsilon}=19.3$. Требуется на уровне значимости 0,01 проверить нулевую гипотезу H_0 : a=20 против конкурирующей гипотезы H_1 : a=19.

б^2	3,2
n	25
Хср	19,3
α	0,01

H0: a=	20
H1: a=	19

Значит левосторонняя критическая область

Ф(Uкр)	0,49
Икр	2,33

Инабл	-1,96

-1,96>-2,33 : значит нулевая гипотеза принимается.

Задача 2:

По результатам n=5 измерений температуры в печи найдено $\bar{\chi}_e=256^{\circ}C$. Предполагается, что ошибка измерения есть нормальная случайная величина с $\mathcal{T}=6^{\circ}C$. Проверить на уровне значимости $\alpha=0.05$ гипотезу $H_0: a=250^{\circ}C$ против конкурирующей гипотезы $H_1: a>250^{\circ}C$.

б	6
n	5
Хср	256
α	0,05

H0: a=	250
H1: a=	>250

Значит правосторонняя критическая область

Ф(Икр)	0,45
Икр	1,645

Uнабл	2,24
-------	------

Проверка статистических гипотез часть 1

Цель лабораторной работы: проверить статистическую гипотезу о нормальном законе распределения данных, приведенных в решаемой задаче.

Оборудование: ПК, табличный процессор Excel.

Использованные формулы:

Математическое ожидание:

$$\bar{x} = \frac{\sum x_i n_i}{n}$$

Среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{1}{n}\Sigma(x_i - \pi)^2 \cdot n_i}$$

Теоретическая вероятность рі:

$$p_i = \Phi_{(u_i+1)} - \Phi_{(u_i)}, (i = 1,2,...,k),$$

где:

$$u_i = \frac{x_i - \bar{x}}{\sigma}, \quad \Phi(u_i) = \frac{1}{\sqrt{2\pi}} \int_0^{u_i} e^{-\frac{t^2}{2}} dt$$

Значения функции Ф были взяты по таблице.

Задача из лекции:

Результаты исследований прочности на сжатие (CBX) - 200 образцов бетонапредставлены в вида сгруппированного статистического ряда:

Интервалы прочности кг/см^2	Среднее значение интервала, Хі	Частота, ni
190 - 200	195	10
200 - 210	205	26
210 - 220	215	56
220 - 230	225	64
230 - 240	235	30
240 - 250	245	14

n = 200

Проверить нулевую гипотезу о нормальном з-не распределения прочности образцов бетона на сжатие. Уровень значимости $\alpha=0.001$

Интерва изменен наблюдае	ния	Частоты ni	Нормированны е интервалы [Ui;Ui+1]	Pi = [Φ(Ui+1) - Φ(Ui)]	nPi	(ni - nPi)^2	((ni - nPi)^2)/(nPi)
значений	св Х		[01,01+1]	- Φ(σι)]			
190 - 20	00	10	(-∞; -1,7)	0,045	8,9	1,17	0,13
200 - 22	10	26	[-1,7; -0,89]	0,142	28,4	5,86	0,21
210 - 22	20	56	[-0,89; -0,08]	0,281	56,3	0,08	0,00
220 - 23	30	64	[-0,08; 0,73]	0,299	59,8	17,31	0,29
230 - 24	40	30	[0,73; 1,54]	0,171	34,2	17,47	0,51
240 - 25	50	14	[1,54; +∞)	0,062	12,4	2,69	0,22
Σ		200		1,0	200		1,36
α		0,001					
Хср		221					

α	0,001	
Хср	221	
б	12,328828	
V = k - r - 1		
V	3	

U1	-2,51	Φ(U1)	-0,5
U2	-1,7	Φ(U2)	-0,4554
U3	-0,89	Φ(U3)	-0,3133
U4	-0,08	Φ(U4)	-0,0319
U5	0,73	Φ(U5)	0,2673
U6	1,54	Φ(U6)	0,4382
U7	2,35	Φ(U7)	0,5

$$x^2_{pacq.} = 1,36$$

$$x^2_{\text{ kp.}} = 16,366$$

Гипотезу принимаем т.к. хи расчётное меньше хи критического

Задача 1:

Из нормальной генеральной совокупности с известной дисперсией $\sigma^2=3.2$ извлечена выборка объёма n=25 и по ней найдена выборочная средняя $\bar{\chi}_e=19.3$. Требуется на уровне значимости 0,01 проверить нулевую гипотезу $H_0: a=20$ против конкурирующей гипотезы $H_1: a=19$.

б^2	3,2
n	25
Хср	19,3
α	0,01

H0: a=	20
H1: a=	19

Значит левосторонняя критическая область

Ф(Uкр)	0,49
Икр	2,33

Инабл	-1,96

-1,96>-2,33 : значит нулевая гипотеза принимается.

Задача 2:

По результатам n=5 измерений температуры в печи найдено $\bar{\chi}_e=256^{\circ}C$. Предполагается, что ошибка измерения есть нормальная случайная величина с $\mathcal{T}=6^{\circ}C$. Проверить на уровне значимости $\alpha=0.05$ гипотезу $H_0: a=250^{\circ}C$ против конкурирующей гипотезы $H_1: a>250^{\circ}C$.

б	6
n	5
Хср	256
α	0,05

H0: a=	250
H1: a=	>250

Значит правосторонняя критическая область

Ф(Икр)	0,45
Икр	1,645

Инабл	2,24
-------	------

Проверка статистических гипотез часть 1

Цель лабораторной работы: проверить статистическую гипотезу о нормальном законе распределения данных, приведенных в решаемой задаче.

Оборудование: ПК, табличный процессор Excel.

Использованные формулы:

Математическое ожидание:

$$\bar{x} = \frac{\sum x_i n_i}{n}$$

Среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{1}{n}\Sigma(x_i - \pi)^2 \cdot n_i}$$

Теоретическая вероятность рі:

$$p_i = \Phi_{(u_i+1)} - \Phi_{(u_i)}, (i = 1,2,...,k),$$

где:

$$u_i = \frac{x_i - \bar{x}}{\sigma}, \quad \Phi(u_i) = \frac{1}{\sqrt{2\pi}} \int_0^{u_i} e^{-\frac{t^2}{2}} dt$$

Значения функции Ф были взяты по таблице.

Задача из лекции:

Результаты исследований прочности на сжатие (CBX) - 200 образцов бетонапредставлены в вида сгруппированного статистического ряда:

Интервалы прочности кг/см^2	Среднее значение интервала, Xi	Частота, ni
190 - 200	195	10
200 - 210	205	26
210 - 220	215	56
220 - 230	225	64
230 - 240	235	30
240 - 250	245	14

n = 200

Проверить нулевую гипотезу о нормальном з-не распределения прочности образцов бетона на сжатие. Уровень значимости $\alpha = 0.001$

Интерва изменен наблюдае значений	ния Риму	Частоты ni	Нормированны е интервалы [Ui;Ui+1]	Pi = [Φ(Ui+1) - Φ(Ui)]	nPi	(ni - nPi)^2	((ni - nPi)^2)/(nPi)
190 - 20	00	10	(-∞; -1,7)	0,045	8,9	1,17	0,13
200 - 22	10	26	[-1,7; -0,89]	0,142	28,4	5,86	0,21
210 - 22	20	56	[-0,89; -0,08]	0,281	56,3	0,08	0,00
220 - 23	30	64	[-0,08; 0,73]	0,299	59,8	17,31	0,29
230 - 24	40	30	[0,73; 1,54]	0,171	34,2	17,47	0,51
240 - 25	50	14	[1,54; +∞)	0,062	12,4	2,69	0,22
Σ		200		1,0	200		1,36
α		0,001		•			
Хср		221					

α	0,001	
Хср	221	
б	12,328828	
V = k - r - 1		
V	3	

U1	-2,51	Φ(U1)	-0,5
U2	-1,7	Φ(U2)	-0,4554
U3	-0,89	Φ(U3)	-0,3133
U4	-0,08	Φ(U4)	-0,0319
U5	0,73	Φ(U5)	0,2673
U6	1,54	Ф(U6)	0,4382
U7	2,35	Φ(U7)	0,5

$$x^2_{pacq.} = 1,36$$

$$x^2_{\text{ kp.}} = 16,366$$

Гипотезу принимаем т.к. хи расчётное меньше хи критического

Задача 1:

Из нормальной генеральной совокупности с известной дисперсией $\sigma^2=3.2$ извлечена выборка объёма n=25 и по ней найдена выборочная средняя $\bar{\chi}_{\epsilon}=19.3$. Требуется на уровне значимости 0,01 проверить нулевую гипотезу H_0 : a=20 против конкурирующей гипотезы H_1 : a=19.

б^2	3,2
n	25
Хср	19,3
α	0,01

H0: a=	20
H1: a=	19

Значит левосторонняя критическая область

Ф(Uкр)	0,49
Икр	2,33

Uнабл	-1,96

-1,96>-2,33 : значит нулевая гипотеза принимается.

Задача 2:

По результатам n=5 измерений температуры в печи найдено $\bar{\chi}_e=256^{\circ}C$. Предполагается, что ошибка измерения есть нормальная случайная величина с $\mathcal{T}=6^{\circ}C$. Проверить на уровне значимости $\alpha=0.05$ гипотезу $H_0: a=250^{\circ}C$ против конкурирующей гипотезы $H_1: a>250^{\circ}C$.

б	6
n	5
Хср	256
α	0,05

H0: a=	250
H1: a=	>250

Значит правосторонняя критическая область

Ф(Икр)	0,45
Икр	1,645

Uнабл :	2,24
---------	------

Проверка статистических гипотез часть 1

Цель лабораторной работы: проверить статистическую гипотезу о нормальном законе распределения данных, приведенных в решаемой задаче.

Оборудование: ПК, табличный процессор Excel.

Использованные формулы:

Математическое ожидание:

$$\bar{x} = \frac{\sum x_i n_i}{n}$$

Среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{1}{n}\Sigma(x_i - \pi)^2 \cdot n_i}$$

Теоретическая вероятность рі:

$$p_i = \Phi_{(u_i+1)} - \Phi_{(u_i)}, (i = 1,2,...,k),$$

где:

$$u_i = \frac{x_i - \bar{x}}{\sigma}, \quad \Phi(u_i) = \frac{1}{\sqrt{2\pi}} \int_0^{u_i} e^{-\frac{t^2}{2}} dt$$

Значения функции Ф были взяты по таблице.

Задача из лекции:

Результаты исследований прочности на сжатие (CBX) - 200 образцов бетонапредставлены в вида сгруппированного статистического ряда:

Интервалы прочности кг/см^2	Среднее значение интервала, Хі	Частота, ni
190 - 200	195	10
200 - 210	205	26
210 - 220	215	56
220 - 230	225	64
230 - 240	235	30
240 - 250	245	14

n = 200

Проверить нулевую гипотезу о нормальном з-не распределения прочности образцов бетона на сжатие. Уровень значимости $\alpha=0.001$

Интерва изменен наблюдае значений	ния Рмых	Частоты ni	Нормированны е интервалы [Ui;Ui+1]	Pi = [Φ(Ui+1) - Φ(Ui)]	nPi	(ni - nPi)^2	((ni - nPi)^2)/(nPi)
190 - 20	00	10	(-∞; -1,7)	0,045	8,9	1,17	0,13
200 - 21	10	26	[-1,7; -0,89]	0,142	28,4	5,86	0,21
210 - 22	20	56	[-0,89; -0,08]	0,281	56,3	0,08	0,00
220 - 23	30	64	[-0,08; 0,73]	0,299	59,8	17,31	0,29
230 - 24	40	30	[0,73; 1,54]	0,171	34,2	17,47	0,51
240 - 25	50	14	[1,54; +∞)	0,062	12,4	2,69	0,22
Σ		200		1,0	200		1,36
α		0,001					
Vcn		221					

α	0,001	
Хср	221	
б	12,328828	
V = k - r - 1		
V	3	

U1	-2,51	Φ(U1)	-0,5
U2	-1,7	Φ(U2)	-0,4554
U3	-0,89	Φ(U3)	-0,3133
U4	-0,08	Φ(U4)	-0,0319
U5	0,73	Φ(U5)	0,2673
U6	1,54	Φ(U6)	0,4382
U7	2,35	Φ(U7)	0,5

$$x^2_{pacq.} = 1,36$$

$$x^2_{KP.} = 16,366$$

Гипотезу принимаем т.к. хи расчётное меньше хи критического

Задача 1:

Из нормальной генеральной совокупности с известной дисперсией $\sigma^2=3.2$ извлечена выборка объёма n=25 и по ней найдена выборочная средняя $\bar{x}_e=19.3$. Требуется на уровне значимости 0,01 проверить нулевую гипотезу H_0 : a=20 против конкурирующей гипотезы H_1 : a=19.

б^2	3,2
n	25
Хср	19,3
α	0,01

H0: a=	20
H1: a=	19

Значит левосторонняя критическая область

Ф(Uкр)	0,49
Икр	2,33

Инабл	-1,96

-1,96>-2,33 : значит нулевая гипотеза принимается.

Задача 2:

По результатам n=5 измерений температуры в печи найдено $\bar{x}_e=256^{\circ}C$. Предполагается, что ошибка измерения есть нормальная случайная величина с $\mathcal{O}=6^{\circ}C$. Проверить на уровне значимости $\alpha=0.05$ гипотезу $H_0: \alpha=250^{\circ}C$ против конкурирующей гипотезы $H_1: \alpha>250^{\circ}C$.

б	6
n	5
Хср	256
α	0,05

H0: a=	250
H1: a=	>250

Значит правосторонняя критическая область

Ф(Икр)	0,45
Икр	1,645

Uнабл	2,24