Санкт-Петербургский Политехнический Университет Петра Великого Физико-механический институт

Отчет по лабораторной работе №1 по математической статистике

Студент: Клыков Александр Юрьевич

Группа: 5030102/20101

Преподаватель: Баженов Александр Николаевич

Санкт-Петербург 2025 год

1 Задание

1.1 Задание 1

Для 4 распределений: Нормальное распределение N(x,0,1) Распределение Коши C(x,0,1) Распределение Пуассона P(k,10) Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$ Сгенерировать выборки размером 20, 100 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.

1.2 Задание 2

Сгенерировать выборки размером 20, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: , medx, z_Q . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \bar{z}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = -\bar{z}^2$$

Представить полученные данные в виде таблиц. Пояснение

$$z_Q = \frac{z_{\frac{1}{4}} + z_{\frac{3}{4}}}{2}$$

2 Формулы

2.1 Функции распределения

Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Распределение Коши

$$C(x,0,1) = \frac{1}{\pi(1+x^2)}$$

Распределение Пуассона

$$P(k) = \frac{10^k e^{-10}}{k!}$$

Равномерное распределение

$$U(x,-\sqrt{3},\sqrt{3}) = \left\{ \begin{array}{ll} \frac{1}{2\sqrt{3}} & \text{если } -\sqrt{3} \leq x \leq \sqrt{3}, \\ 0 & \text{иначе.} \end{array} \right.$$

3 Результаты моделирования

3.1 Графики гистограмм и плотностей распределения

На рисунках ниже приведены гистограммы и графики теоретических плотностей распределений (или дискретных вероятностей для распределения Пуассона) для выборок объёмов 10, 50 и 1000.

Рис. 1: Нормальное распределение

Рис. 2: Распределение Коши

Рис. 3: Распределение Пуассона

Рис. 4: Равномерное распределение

3.2 Таблицы характеристик положения

В таблицах представлены значения математических ожиданий и дисперсий характеристик положения для 1000 выборок каждого объёма:

Таблица 1: Нормальное распределение

Размер выборки	Характеристика	E(z)	D(z)	
10	Среднее	0.0011	0.1067	
10	Медиана	0.0001	0.1515	
10	z_Q	0.0050	0.1211	
100	Среднее	-0.0048	0.0097	
100	Медиана	-0.0055	0.0139	
100	z_Q	-0.0049	0.0111	
1000	Среднее	-0.0001	0.0009	
1000	Медиана	-0.0001	0.0016	
1000	z_Q	-0.0004	0.0012	

Таблица 2: Распределение Коши

Размер выборки	Характеристика	E(z)	D(z)
10	Среднее	15.0919	206235.4461
10	Медиана	0.0110	0.3098
10	z_Q	0.0224	0.8343
100	Среднее	-0.5052	2084.3794
100	Медиана	-0.0014	0.0253
100	z_Q	-0.0066	0.0533
1000	Среднее	-0.1640	315.9009
1000	Медиана	0.0004	0.0024
1000	z_Q	0.0014	0.0052

Таблица 3: Распределение Пуассона

Размер выборки	Характеристика	E(z)	D(z)
10	Среднее	9.9983	0.9931
10	Медиана	9.8200	1.4626
10	z_Q	9.9054	1.1499
100	Среднее	10.0088	0.0977
100	Медиана	9.8640	0.2035
100	z_Q	9.9242	0.1385
1000	Среднее	9.9990	0.0098
1000	Медиана	9.9955	0.0042
1000	z_Q	9.9939	0.0030

Таблица 4: Равномерное распределение

Размер выборки	Характеристика	E(z)	D(z)
10	Среднее	0.0033	0.0980
10	Медиана	-0.0054	0.2299
10	z_Q	0.0060	0.1330
100	Среднее	-0.0032	0.0096
100	Медиана	-0.0060	0.0291
100	z_Q	-0.0039	0.0146
1000	Среднее	-0.0018	0.0010
1000	Медиана	-0.0047	0.0030
1000	z_Q	-0.0011	0.0014

4 Выводы

В ходе выполнения лабораторной работы были построены гистограммы и графики плотности распределений на выборках различного объёма (10, 50, 1000) для четырёх распределений: Коши, нормального, Пуассона и равномерного.

Также было проведено статистическое исследование каждого распределения. Для выборок указанных размеров были вычислены три характеристики положения: выборочное среднее M[X], медиана med x и полусумма квартилей z_Q . Каждая характеристика рассчитывалась на 1000 выборках, что позволило найти её математическое ожидание E(z) и дисперсию D(z).

На основе полученных результатов можно сделать следующие выводы:

• При увеличении размера выборки форма гистограммы и плотность

распределения становятся всё ближе к теоретической. Особенно ярко это проявляется в нормальном и равномерном распределениях.

- Для распределения Коши наблюдаются очень сильные выбросы. Среднее значение нестабильно и имеет огромную дисперсию даже при больших объёмах выборки, в отличие от медианы и z_Q , которые остаются устойчивыми.
- Для распределения Пуассона и равномерного распределения все характеристики уже при малых объёмах дают приближение к теоретическим значениям, и с ростом выборки становятся практически точными.
- Среднее значение является наименее устойчивой характеристикой при наличии выбросов. Особенно это видно в распределении Коши, где среднее искажено экстремальными значениями, в то время как медиана и z_Q демонстрируют устойчивость.
- Медиана чувствительна к форме распределения: в распределении Коши она лучшая оценка центра, в нормальном и равномерном почти совпадает со средним, в Пуассоне немного смещена, но стабилизируется с увеличением размера выборки.