Greedy Algorithm 貪婪演算法

林劭原老師

- Three useful algorithm design techniques:
- divide-and-conquer approach
- dynamic programming
- greedy method

Greedy Algorithm

- Always makes the choice that looks best at the moment
- makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
- •「貪婪演算法」永遠選擇目前看起來最好的那個選擇。它選擇的是a locally optimal choice,並希望這個 locally optimal choice 能得到 a globally optimal solution。

Greedy Algorithm

- Dynamic programming considers "all possible ways" to derive an optimal solution.
- It uses a tables(s) to avoid re-computing solutions of sub-problems.

Greedy Algorithm

- 小刀: greedy strategy, 大刀: dynamic programming
- For many optimization(優化) problems, the greedy strategy is sufficient to derive an optimal solution and it is not necessary to use dynamic programming.
- 兩種背包問題
- 0-1 knapsack problem:無法用greedy strategy解決,必須dynamic programming
- Fractional knapsack problem: greedy strategy 就能解決

The fractional knapsack problem(可以只取一部份)

- Greedy strategy for fractional knapsack problem
- Among un-chosen items, chose the one with the highest v_i/w_i .
- If $w_i \le$ current capacity of the knapsack, then put all of item i into the knapsack; otherwise, put only the amount of current capacity of item i into the knapsack.
- *Among un-chosen items, chose the one with the highest v_i (does not work)
- *Among un-chosen items, chose the one with the smallest w_i (does not work)

The fractional knapsack problem(可以只取一部份)

• 例:capacity W = 50 pounds.

```
• item weight w_i value v_i v_i/w_i
1 10 pounds $60 6
2 20 pounds $100 5
1 30 pounds $120 4
```

• Optimal solution:60+100+120*2/3

The activity-selection problem (活動挑選問題)

- Let $S = \{a_1, a_2, ..., a_n\}$ be n activities that use a resource.這些活動共用某資源
- Activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i < \infty$
- Activity a_i and a_j are compatible(可匹配的) if $s_i \ge f_j$ or $s_j \ge f_i$
- The activity-selection problem is to select a maximum-size subset of mutually compatible activities. 最多個可互相匹配的工作
- 例如: $S = \{a_1, a_2, a_3, a_4\}$

i	1	2	3	4
s_i	1	3	0	5
f_i	4	5	6	7

• The optimal solution is $\{a_1, a_4\}$ or $\{a_2, a_4\}$.

Greedy strategy for activity-selection problem

- Among un-chosen activities, chose the one with the smallest f_i and compatible to all chosen activities. --- works
- Among un-chosen activities, chose the one with the largest s_i and compatible to all chosen activities. --- works
- Among un-chosen activities, chose the one with the least duration and compatible to all chosen activities. --- does not work
- Among un-chosen activities, chose the one with the least overlap and compatible to all chosen activities. --- does not work

Greedy strategy for activity-selection problem

- Assume that activities in S are ordered such that $f_1 \le f_2 \le \cdots \le f_n$; otherwise sort these activities so that $f_1 \le f_2 \le \cdots \le f_n$.
- Let A be the solution.

```
• 1 n = S.length 
2 A = \{a_1\} // This greedy strategy will always choose a_1 
3 k = 1 
4 for m = 2 to n do 
5 if s_m \ge f_k //a_m is compatible to all the chosen activities 
6 A = AU \{a_m\} 
7 k = m; 
8 return A
```

Greedy strategy for activity-selection problem

- Proof of correctness 很重要!
- To prove the correctness of a greedy algorithm, one can prove that any optimal solution can be modified into a greedy solution without losing the optimality. 證明某個貪婪演算法能得到最佳解的常用方法是:證明任何的最佳解,均可被修改成貪婪演算法的解,不失其最佳性。若是如此,貪婪演算法的解得到的就是最佳解。

- Theorem. This greedy algorithm produces an optimal solution.
- Proof. Note that we assume $f_1 \le f_2 \le \cdots \le f_n$.

Consider an arbitrary optimal solution B.

Order the activities in B by their finish times.

Suppose the first activity in B is a_k .

If k = 1, then B begins with a greedy choice, i.e., with a_1 .

If $k \neq 1$, then let $B' = B - \{a_k\} \cup \{a_1\}$.

Since $f_1 \leq f_k$, all the activities in B' are compatible.

Since |B'| = |B|, B' is an optimal solution that begins with a greedy choice, i.e., with a_1 .

Thus, there exists an optimal solution that begins with a greedy choice, i.e., with $a_1 \cdot$

Once we choose a_1 , the problem reduces to finding an optimal solution of $S' = \{a_i \in$