

Prepared by:

Alexander Syrcev Alexei Antonov Dmitrii Panfilov Ekaterina Shirimetova Mikhail Rozhdestvenskiy Nikolai Glebov

Submitted to: Potekhin V.V.

Recognition of potholes on a road

Course Work Report:
Corporate Information Systems

Table of contents

02 01 03 Knowledge management Introduction Diagrams Information about our IDEFO, Swimlane and Knowledge base, Rule project, Goal, Tasks, Dataset Use Case diagrams base, SPARQL 06 Results achieved Conclusion Technologies used Backend and frontend, Examples of images Plans for future and and KPI's Demonstration Summarizing

Project Goal

To develop a multi-agents system capable of detecting potholes in real time with a high degree of accuracy and with a sufficiently high processing speed, marking detected potholes as dangerous or relatively safe by their width in the image

Project Tasks

#1	Preparing a dataset	Looking for a dataset and labeling images
#2	Train the YOLOv8 model	Photos and Videos
#3	Develop a Knowledge Base	Knowledge base with consistency checking
#4	Develop API and clients	FastAPI backend + Telegram and Web App
#5	Integration and testing	FastAPI backend + Telegram and Web App

Dataset and Images labeling

Project Diagrams

Gantt Chart

KANBAN Board

Swimlane Diagram

Use Case Diagram

Knowledge Base Rule Base SPARQL

```
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ind:proc0 a classes:Process;
rdfs:label "Recognition of potholes on a road";
rdf:isDefinedBy "Team1";
```

12

13

L4 L5

16

@prefix ind:<URN:inds:>.
@prefix prop:<URN:prop:>.

@prefix classes:<URN:class>.

@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.

prop:hasResource ind:AllResources ;

@prefix owl: <http://www.w3.org/2002/07/owl#> .

prop:hasKPI ind:kpi1 ;
prop:hasKPI ind:kpi2 ;

prop:hasKPI ind:kpi3 ;

prop:hasInput ind:inp00 ;

prop:hasOutput ind:out00 .

KB

RB

```
@prefix ind:<URN:inds:>.
      @prefix prop:<URN:prop:>.
      @prefix classes:<URN:classes:>.
      @prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
5
      @prefix owl: <http://www.w3.org/2002/07/owl#> .
6
7
8
9
      @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
      classes:Process a owl:Class .
      prop:hasKPI a owl:ObjectProperty ;
             a owl:IrreflexiveProperty;
.3
             a owl:AsymmetricProperty .
.5
      prop:hasResource a owl:ObjectProperty ;
             a owl:AsymmetricProperty .
```

SPARQ

```
import rdflib
       import os
       # graph for Rule base
       g_rb = rdflib.Graph()
       RB_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "RB_V3_2.n3")
       g_rb.parse(file=open(RB_path, mode="r"), format="text/n3")
9
       # graph for Knowledge base
10
       g_kb = rdflib.Graph()
11
       KB_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "KB_V3_2.n3")
12
       g_kb.parse(file=open(KB_path, mode="r"), format="text/n3")
13
14
       3 usages
       def rh spard query(condition='owl:opeOf').
```

Key Technologies

Multi-agent API Solution

FastAPI and **Swagger**

Potholes Detection System API OLD OASSA

User Interfaces

UI: Telegram Bot

UI: Web Application

Examples of Output

Example #1

Example #2

KPI's

>6opx

>0.65

Confidence

<500ms

Processing Time

Achived Quality metrics for the YOLOv8

Precision

99,2%

Recall

97,6%

F1 Score

Plans

Future Plans and Developments

Enhancing Model Robustness

Scaling the System

Expanding Functionality

Conclusion

Conclusion

Successful Implementations

Effective Pothole Detection

Real-Time Processing and Feedback

User-Friendly Interface

Challenges and Unsuccessful Attempts

Handling Varied Lighting and Weather Conditions
Scalability Issues

Insights Gained

Importance of Data Quality
Importance of API in Progressive Development
User-Centric Design

Thanks!