Fernando Lozano

Universidad de los Andes

7 de octubre de 2014

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

• Suponga que existe un kernel:

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

• Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

- Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .
- Más aún, no requerimos conocer el mapeo ϕ , o el espacio \mathcal{H} .

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

- Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .
- Más aún, no requerimos conocer el mapeo ϕ , o el espacio \mathcal{H} .
- ullet De hecho ${\mathcal H}$ puede tener dimensión infinita.

$$k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$$

 $(\mathbf{x}_1, \mathbf{x}_2) \mapsto k(\mathbf{x}_1, \mathbf{x}_2) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$

- Podemos calcular el producto punto $\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}}$ operando en el conjunto original \mathcal{X} .
- Más aún, no requerimos conocer el mapeo ϕ , o el espacio \mathcal{H} .
- \bullet De hecho ${\mathcal H}$ puede tener dimensión infinita.
- Cómo sabemos si una función k(.,.) es un kernel?

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 < \alpha_i < C$$

$$\begin{aligned} & \text{m\'ax} & & \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle_{\mathcal{H}} \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \\ & & 0 \leq \alpha_{i} \leq C \end{aligned}$$

$$\begin{aligned} & \text{máx} & & \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) \\ & \text{sujeto a} & & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ & & 0 \leq \alpha_i \leq C \end{aligned}$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

• Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$sign(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b)$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle w, \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$

máx
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j)$$
sujeto a
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$0 \le \alpha_i \le C$$

- Solución: $\mathbf{w} = \sum_{i=1}^{n} (\alpha_i y_i) \phi(\mathbf{x}_i)$
- Evaluación:

$$\operatorname{sign}(\langle w, \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b) = \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) \langle \boldsymbol{\phi}(\mathbf{x}_{i}), \boldsymbol{\phi}(\mathbf{x}) \rangle_{\mathcal{H}} + b\right)$$
$$= \operatorname{sign}\left(\sum_{i=1}^{n} (\alpha_{i} y_{i}) k(\mathbf{x}_{i}, \mathbf{x}) + b\right)$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel: $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \rangle$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \left\langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \right\rangle$$
$$= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \left\langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \right\rangle$$
$$= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2$$
$$= (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

• Si $\mathcal{X} = \mathbb{R}^2$, $\mathcal{H} = \mathbb{R}^3$, $\phi(\mathbf{x}) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, tenemos el kernel:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

$$\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle_{\mathcal{H}} = \left\langle (x_{i1}^2, \sqrt{2}x_{i1}x_{i2}, x_{i2}^2), (x_{j1}^2, \sqrt{2}x_{j1}x_{j2}, x_{j2}^2) \right\rangle$$

$$= x_{i1}^2 x_{j1}^2 + 2x_{i1}x_{i2}x_{j1}x_{j2} + x_{i2}^2 x_{j2}^2$$

$$= (x_{i1}x_{j1} + x_{i2}x_{j2})^2$$

$$= \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$$

• El mapeo ϕ y el espacio $\mathcal H$ correspondientes a un kernel no son únicos.

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:
 - $\mathcal{H} = \mathbb{R}^4 \text{ y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:
 - $ightharpoonup \mathcal{H} = \mathbb{R}^4 \ \mathrm{y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^2$, podemos tener:
 - $ightharpoonup \mathcal{H} = \mathbb{R}^4 \ \mathrm{y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

$$\mathcal{H} = \mathbb{R}^2$$
 y

$$\phi(\mathbf{x}) = \begin{pmatrix} \frac{x_1^2 - x_2^2}{2x_1 x_2} \\ x_1^2 + x_2^2 \end{pmatrix}$$

- El mapeo ϕ y el espacio \mathcal{H} correspondientes a un kernel no son únicos.
- Por ejemplo, para $\mathcal{X} = \mathbb{R}^2$ y el kernel $k(\mathbf{x}_i, \mathbf{x}_i) = \langle \mathbf{x}_i, \mathbf{x}_i \rangle^2$, podemos tener:
 - $\mathcal{H} = \mathbb{R}^4 \text{ v}$

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1^2 \\ x_1 x_2 \\ x_1 x_2 \\ x_2^2 \end{pmatrix}$$

 $\mathcal{H} = \mathbb{R}^2 \text{ y}$

$$\phi(\mathbf{x}) = \begin{pmatrix} \frac{x_1^2 - x_2^2}{2x_1 x_2} \\ x_1^2 + x_2^2 \end{pmatrix}$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial no homogéneo:

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + c)^d$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial no homogéneo:

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + c)^d$$

• Gaussiano (RBF):

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

• Polinomial:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \langle \mathbf{x}_i, \mathbf{x}_j \rangle^d$$

• Polinomial no homogéneo:

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\langle \mathbf{x}_i, \mathbf{x}_j \rangle + c)^d$$

• Gaussiano (RBF):

$$k(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2}\right)$$

• Sigmoidal:

$$k(\mathbf{x}_i, \mathbf{x}_j) = \tanh\left(a\left\langle \mathbf{x}_i, \mathbf{x}_j \right\rangle + b\right)$$

Dos aproximaciones:

Dos aproximaciones:

• Reproducing Kernel Hilbert Spaces (RKHS)

Dos aproximaciones:

• Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950)

Dos aproximaciones:

- Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950)
- Teorema de Mercer

Cómo sabemos si una función k(.,.) es un kernel?

Dos aproximaciones:

- Reproducing Kernel Hilbert Spaces (RKHS) (Aronszajn, 1950)
- Teorema de Mercer (Mercer, 1911).

RKHS

Definición

Dada una función simétrica $k: \mathcal{X}^2 \to \mathbb{R} \ (k(x_1, x_2) = k(x_2, x_1)) \ y$ $x_1, x_2, \dots, x_n \in \mathcal{X}$, la matriz $n \times n$ con entradas

$$K_{ij} = k(x_i, x_j)$$

se llama la matriz de Gram de k con respecto a x_1, x_2, \ldots, x_n .

RKHS

Definición

Dada una función simétrica $k: \mathcal{X}^2 \to \mathbb{R} \ (k(x_1, x_2) = k(x_2, x_1)) \ y$ $x_1, x_2, \dots, x_n \in \mathcal{X}, \ la \ matriz \ n \times n \ con \ entradas$

$$K_{ij} = k(x_i, x_j)$$

se llama la matriz de Gram de k con respecto a x_1, x_2, \ldots, x_n .

Definición

Una función $k: \mathcal{X}^2 \to \mathbb{R}$ para la cual para todo $n \in \mathbb{N}$, y todo $x_1, x_2, \ldots, x_n \in \mathcal{X}$ resulta en una matriz de Gram positiva semidefinida es un kernel positivo definido (o simplemente un kernel).

• Kernel positivo definido k.

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi\,:\,\mathcal{X} o\mathbb{R}^\mathcal{X}$$

- Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

• Receta:

- Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - **1** Imagen de $\phi \longrightarrow$ espacio vectorial.
 - Producto punto.

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - $lackbox{0}$ Imagen de $\phi \longrightarrow$ espacio vectorial.
 - Producto punto.
 - $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$

- \bullet Kernel positivo definido k.
- Mapeo:

$$\phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$x \mapsto k(.,x).$$

- Receta:
 - $lackbox{0}$ Imagen de $\phi \longrightarrow$ espacio vectorial.
 - 2 Producto punto.
 - $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}}$
 - Ompletar espacio.

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto:

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto: Si $g(.) = \sum_{i=1}^{m} \beta_i k(., x_i')$ definimos:

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto: Si $g(.) = \sum_{i=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x_j')$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto: Si $g(.) = \sum_{i=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x'_j)$$

$$\langle f, g \rangle = \sum_{i=1}^{m} \beta_j \sum_{i=1}^{n} \alpha_i k(x_i, x_j')$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto: Si $g(.) = \sum_{i=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x_j')$$

$$\langle f, g \rangle = \sum_{j=1}^{m} \beta_j \sum_{i=1}^{n} \alpha_i k(x_i, x_j') = \sum_{j=1}^{m} \beta_j f(x_j')$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto: Si $g(.) = \sum_{i=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x_j')$$

$$\langle f, g \rangle = \sum_{j=1}^{m} \beta_j \sum_{i=1}^{n} \alpha_i k(x_i, x_j') = \sum_{j=1}^{m} \beta_j f(x_j') = \sum_{i=1}^{n} \alpha_i g(x_i)$$

$$f(.) = \sum_{i=1}^{n} \alpha_i k(., x_i) \quad n \in \mathbb{N}, \alpha_i \in \mathbb{R}, x_1, \dots \in \mathcal{X}$$

• Producto punto: Si $g(.) = \sum_{i=1}^{m} \beta_i k(., x_i')$ definimos:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x_j')$$

$$\langle f, g \rangle = \sum_{j=1}^{m} \beta_j \sum_{i=1}^{n} \alpha_i k(x_i, x_j') = \sum_{j=1}^{m} \beta_j f(x_j') = \sum_{i=1}^{n} \alpha_i g(x_i)$$

$$\langle k(.,x), f \rangle =$$

$$\langle k(.,x), f \rangle = f(x)$$

$$\langle k(.,x), f \rangle = f(x)$$

У

$$\langle k(.,x), k(.,x') \rangle =$$

$$\langle k(.,x), f \rangle = f(x)$$

У

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

$$\langle k(.,x), f \rangle = f(x)$$

У

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

Esta es la propiedad del Kernel Reproductor.

$$\langle k(.,x), f \rangle = f(x)$$

у

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

Esta es la propiedad del Kernel Reproductor.

• Podemos interpretar $k(x_i, x_j)$ como una matriz de infinitas dimensiones, y k(., x) como una fila de esta matriz.

$$\langle k(.,x), f \rangle = f(x)$$

у

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

Esta es la propiedad del Kernel Reproductor.

- Podemos interpretar $k(x_i, x_j)$ como una matriz de infinitas dimensiones, y k(., x) como una fila de esta matriz.
- Sea $Q \in \mathbb{R}^{n \times n}$ una matriz positiva definida. Podemos definir un producto punto en \mathbb{R}^n :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle_{\mathbf{Q}^{-1}} = \mathbf{x}_i^T \mathbf{Q}^{-1} \mathbf{x}_j$$

$$\langle k(.,x), f \rangle = f(x)$$

у

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

Esta es la propiedad del Kernel Reproductor.

- Podemos interpretar $k(x_i, x_j)$ como una matriz de infinitas dimensiones, y k(., x) como una fila de esta matriz.
- Sea $Q \in \mathbb{R}^{n \times n}$ una matriz positiva definida. Podemos definir un producto punto en \mathbb{R}^n :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle_{\mathbf{Q}^{-1}} = \mathbf{x}_i^T \mathbf{Q}^{-1} \mathbf{x}_j$$

Si $\mathbf{u}_i, \mathbf{u}_j$ son columnas de \mathbf{Q} :

$$\langle k(.,x), f \rangle = f(x)$$

У

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

Esta es la propiedad del Kernel Reproductor.

- Podemos interpretar $k(x_i, x_j)$ como una matriz de infinitas dimensiones, y k(., x) como una fila de esta matriz.
- Sea $Q \in \mathbb{R}^{n \times n}$ una matriz positiva definida. Podemos definir un producto punto en \mathbb{R}^n :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle_{\mathbf{Q}^{-1}} = \mathbf{x}_i^T \mathbf{Q}^{-1} \mathbf{x}_j$$

Si $\mathbf{u}_i, \mathbf{u}_j$ son columnas de \mathbf{Q} :

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle_{\mathbf{Q}^{-1}} =$$

$$\langle k(.,x), f \rangle = f(x)$$

у

$$\langle k(.,x), k(.,x') \rangle = k(x,x')$$

Esta es la propiedad del Kernel Reproductor.

- Podemos interpretar $k(x_i, x_j)$ como una matriz de infinitas dimensiones, y k(., x) como una fila de esta matriz.
- Sea $Q \in \mathbb{R}^{n \times n}$ una matriz positiva definida. Podemos definir un producto punto en \mathbb{R}^n :

$$\langle \mathbf{x}_i, \mathbf{x}_j \rangle_{\mathbf{Q}^{-1}} = \mathbf{x}_i^T \mathbf{Q}^{-1} \mathbf{x}_j$$

Si $\mathbf{u}_i, \mathbf{u}_j$ son columnas de \mathbf{Q} :

$$\langle \mathbf{u}_i, \mathbf{u}_j \rangle_{\mathbf{Q}^{-1}} = q_{ij}$$

$$\langle f,g\rangle = \langle g,f\rangle$$

$$\langle f, g \rangle = \langle g, f \rangle$$

(porque
$$k(x_i, x_j) = k(x_j, x_i)$$
)

Simetría:

$$\langle f, g \rangle = \langle g, f \rangle$$

(porque
$$k(x_i, x_j) = k(x_j, x_i)$$
)

2 Linealidad-

$$\langle f, g \rangle = \langle g, f \rangle$$

(porque
$$k(x_i, x_j) = k(x_j, x_i)$$
)

- 2 Linealidad-
- Ositividad:

$$\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)$$

$$\langle f,g\rangle = \langle g,f\rangle$$

(porque
$$k(x_i, x_j) = k(x_j, x_i)$$
)

- 2 Linealidad-
- Ositividad:

$$\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

y
$$\langle f,f\rangle=0$$
 sólo si $f=0$

Propiedades

Simetría:

$$\langle f,g\rangle = \langle g,f\rangle$$

(porque
$$k(x_i, x_j) = k(x_j, x_i)$$
)

- 2 Linealidad-
- Ositividad:

$$\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

y
$$\langle f, f \rangle = 0$$
 sólo si $f = 0$

 ${\color{red} \bullet}$ Imagen de ${\color{red} \phi}$

 $\bullet \ \text{Imagen de } \phi \longrightarrow \text{espacio vectorial. } \checkmark$

- $\bullet \ \text{Imagen de } \phi \longrightarrow \text{espacio vectorial. } \checkmark$
- 2 Producto punto

- lacktriangledown Imagen de $\phi \longrightarrow$ espacio vectorial. \checkmark
- Producto punto
- $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}} \checkmark$

- lacktriangledown Imagen de $\phi \longrightarrow$ espacio vectorial. \checkmark
- Producto punto
- $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}} \checkmark$
 - ▶ Hasta ahora el espacio \mathcal{H} es un espacio pre-Hilbert.

- Imagen de $\phi \longrightarrow$ espacio vectorial. \checkmark
- Producto punto
- $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}} \checkmark$
 - ▶ Hasta ahora el espacio \mathcal{H} es un espacio pre-Hilbert.
- Completar espacio: añadir puntos límite de secuecias convergentes en la norma $||f|| = \sqrt{\langle f, f \rangle}$.

- lacktriangledown Imagen de $\phi \longrightarrow$ espacio vectorial. \checkmark
- Producto punto
- $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{H}} \checkmark$
 - ▶ Hasta ahora el espacio \mathcal{H} es un espacio pre-Hilbert.
- Completar espacio: añadir puntos límite de secuecias convergentes en la norma $||f|| = \sqrt{\langle f, f \rangle}$.
 - ► Obtenemos espacio de Hilbert llamado Espacio de kernel reproductor.

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$.

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$. \mathcal{H} es un RKHS si existe una función $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ con las siguientes propiedades:

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$. \mathcal{H} es un RKHS si existe una función $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ con las siguientes propiedades:

• k tiene la propiedad de reproducción:

$$\langle k(.,x), f \rangle_{\mathcal{H}} =$$

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$. \mathcal{H} es un RKHS si existe una función $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ con las siguientes propiedades:

• k tiene la propiedad de reproducción:

$$\langle k(.,x), f \rangle_{\mathcal{H}} = f(x) \quad \forall f \in \mathcal{H}$$

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$. \mathcal{H} es un RKHS si existe una función $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ con las siguientes propiedades:

• k tiene la propiedad de reproducción:

$$\langle k(.,x), f \rangle_{\mathcal{H}} = f(x) \quad \forall f \in \mathcal{H}$$

en particular,

$$\left\langle k(.,x),k(.,x')\right\rangle_{\mathcal{H}}=$$

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$. \mathcal{H} es un RKHS si existe una función $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ con las siguientes propiedades:

• k tiene la propiedad de reproducción:

$$\langle k(.,x), f \rangle_{\mathcal{H}} = f(x) \quad \forall f \in \mathcal{H}$$

en particular,

$$\langle k(.,x), k(.,x') \rangle_{\mathcal{H}} = k(x,x')$$

Definición

Sea \mathcal{X} un conjunto no vacío, y \mathcal{H} un espacio de Hilbert de funciones $f: \mathcal{X} \to \mathbb{R}$. \mathcal{H} es un RKHS si existe una función $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ con las siguientes propiedades:

• k tiene la propiedad de reproducción:

$$\langle k(.,x), f \rangle_{\mathcal{H}} = f(x) \quad \forall f \in \mathcal{H}$$

en particular,

$$\langle k(.,x), k(.,x') \rangle_{\mathcal{H}} = k(x,x')$$

• Suponga que tenemos un mapeo

$$\phi\,:\,\mathcal{X} o\mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Suponga que tenemos un mapeo

$$\phi\,:\,\mathcal{X} o\mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Podemos obtener un kernel positivo definido:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

• Suponga que tenemos un mapeo

$$\phi\,:\,\mathcal{X} o\mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Podemos obtener un kernel positivo definido:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

• Suponga que tenemos un mapeo

$$\phi \,:\, \mathcal{X}
ightarrow \mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Podemos obtener un kernel positivo definido:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j)$$

• Suponga que tenemos un mapeo

$$oldsymbol{\phi}\,:\, \mathcal{X}
ightarrow \mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Podemos obtener un kernel positivo definido:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \left\langle \sum_{i=1}^{n} c_i \phi(x_i), \sum_{j=1}^{n} c_j \phi(x_j) \right\rangle_{\mathcal{H}}$$

• Suponga que tenemos un mapeo

$$oldsymbol{\phi}\,:\, \mathcal{X}
ightarrow \mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Podemos obtener un kernel positivo definido:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \left\langle \sum_{i=1}^{n} c_i \phi(x_i), \sum_{j=1}^{n} c_j \phi(x_j) \right\rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} c_i \phi(x_i) \right\|^2$$

• Suponga que tenemos un mapeo

$$\phi: \mathcal{X} \to \mathcal{H}$$

donde \mathcal{H} es un espacio con producto punto.

• Podemos obtener un kernel positivo definido:

$$k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_i c_j k(x_i, x_j) = \left\langle \sum_{i=1}^{n} c_i \phi(x_i), \sum_{j=1}^{n} c_j \phi(x_j) \right\rangle_{\mathcal{H}}$$
$$= \left\| \sum_{i=1}^{n} c_i \phi(x_i) \right\|^2 \ge 0$$

(Mercer,1911) Sea (\mathcal{X},μ) un espacio de medida finito.

7 de octubre de 2014

(Mercer,1911) Sea (\mathcal{X},μ) un espacio de medida finito. Suponga que $k \in L_{\infty}(\mathcal{X}^2)$ es una función real simétrica tal que el operador integral

$$T_k: L_2(\mathcal{X}) \to L_2(\mathcal{X})$$

 $(T_k f)(x) = \int_{\mathcal{X}} k(x, x') f(x') d\mu(x')$

es positivo definido

(Mercer,1911) Sea (\mathcal{X},μ) un espacio de medida finito. Suponga que $k \in L_{\infty}(\mathcal{X}^2)$ es una función real simétrica tal que el operador integral

$$T_k: L_2(\mathcal{X}) \to L_2(\mathcal{X})$$

 $(T_k f)(x) = \int_{\mathcal{X}} k(x, x') f(x') d\mu(x')$

es positivo definido, es decir, para toda $f \in L_2(\mathcal{X})$ tenemos

$$\int_{\mathcal{X}^2} k(x, x') f(x) f(x') d\mu(x) d\mu(x') \ge 0$$

(Mercer,1911) Sea (\mathcal{X},μ) un espacio de medida finito. Suponga que $k \in L_{\infty}(\mathcal{X}^2)$ es una función real simétrica tal que el operador integral

$$T_k: L_2(\mathcal{X}) \to L_2(\mathcal{X})$$

 $(T_k f)(x) = \int_{\mathcal{X}} k(x, x') f(x') d\mu(x')$

es positivo definido, es decir, para toda $f \in L_2(\mathcal{X})$ tenemos

$$\int_{\mathcal{X}^2} k(x, x') f(x) f(x') d\mu(x) d\mu(x') \ge 0$$

Sean $\psi \in L_2(\mathcal{X})$ las funciones propias ortogonales normalizadas de T_k con valores propios $\lambda_j > 0$, ordenados de manera no creciente.

(Mercer,1911) Sea (\mathcal{X},μ) un espacio de medida finito. Suponga que $k \in L_{\infty}(\mathcal{X}^2)$ es una función real simétrica tal que el operador integral

$$T_k: L_2(\mathcal{X}) \to L_2(\mathcal{X})$$

 $(T_k f)(x) = \int_{\mathcal{X}} k(x, x') f(x') d\mu(x')$

es positivo definido, es decir, para toda $f \in L_2(\mathcal{X})$ tenemos

$$\int_{\mathcal{X}^2} k(x, x') f(x) f(x') d\mu(x) d\mu(x') \ge 0$$

Sean $\psi \in L_2(\mathcal{X})$ las funciones propias ortogonales normalizadas de T_k con valores propios $\lambda_j > 0$, ordenados de manera no creciente.

• La secuencia $\{\lambda_j\}_j$ es absolutamente sumable.

- La secuencia $\{\lambda_j\}_j$ es absolutamente sumable.
- ② $k(x,x') = \sum_{j=1}^{N} \psi_j(x)\psi_j(x')$ es válida para casi todo (x,x'). $N \in \mathbb{N}$ o $N = \infty$.

- La secuencia $\{\lambda_j\}_j$ es absolutamente sumable.
- ② $k(x, x') = \sum_{j=1}^{N} \psi_j(x)\psi_j(x')$ es válida para casi todo (x, x'). $N \in \mathbb{N}$ o $N = \infty$. En este último caso la serie converge absolutamente y uniformemente para casi todo (x, x').

- La secuencia $\{\lambda_j\}_j$ es absolutamente sumable.
- ② $k(x, x') = \sum_{j=1}^{N} \psi_j(x)\psi_j(x')$ es válida para casi todo (x, x'). $N \in \mathbb{N}$ o $N = \infty$. En este último caso la serie converge absolutamente y uniformemente para casi todo (x, x').

- La secuencia $\{\lambda_j\}_j$ es absolutamente sumable.
- ② $k(x, x') = \sum_{j=1}^{N} \psi_j(x)\psi_j(x')$ es válida para casi todo (x, x'). $N \in \mathbb{N}$ o $N = \infty$. En este último caso la serie converge absolutamente y uniformemente para casi todo (x, x').
 - Es decir, si el operador integral definido por k es positivo definido, k(x,x') corresponde a un producto punto de secuencias (vectores) en l_2^N . Tenemos $\langle \phi(x), \phi(x') \rangle$ con

- La secuencia $\{\lambda_j\}_j$ es absolutamente sumable.
- ② $k(x, x') = \sum_{j=1}^{N} \psi_j(x)\psi_j(x')$ es válida para casi todo (x, x'). $N \in \mathbb{N}$ o $N = \infty$. En este último caso la serie converge absolutamente y uniformemente para casi todo (x, x').
- Es decir, si el operador integral definido por k es positivo definido, k(x, x') corresponde a un producto punto de secuencias (vectores) en l_2^N . Tenemos $\langle \phi(x), \phi(x') \rangle$ con

$$\phi : \mathcal{X} \to l_2^N$$

$$x \mapsto \begin{bmatrix} \sqrt{\lambda_1} \psi_1(x) & \sqrt{\lambda_2} \psi_2(x) & \dots \end{bmatrix}$$