Predicting Missing Ratings

Fictitious Case Study: MovieReviews.com

Key Facts (5ws)

- MovieReview.com has a database of 600 users reviewing a minimum of 20 reviews per user.
 - **600 users**, each wrote > **20 reviews (**static) (9,177 **Movies**)
- Interested in improving their current recommender system that provides recommendations by popularity:
 - **Recommender system** = User Preferences & Associations
 - Dataset: Movie, User, Review
 - 100,00/Movies x 600/Users x 20/MinReviews

- We don't have a cold start problem.
- User data is rich (600 Users/ min 20 Movies)
- The data is someone sparse and not dense.

- Hypothesis:
 - Improve current model from 2% CTR to 15% CTR to the shopping cart

Dataset Overview

- **Movie IDs** 9,717
- **User Ids** 610
- **Rating**: 0.5 5.0
- **Total Ratings**: 100,856
- Ratings per user: Min 20

Predicting Rating

	?	2	?	3	$1 \setminus$	Vivian
I	1	5	1	4	?	Joe B.
	?	4	?	?	?	Alphonso
	2	3	?	5	1	Joe M
	2	?	4	?	3	Ammar
	?	1	4	5	? /	Marisa

Model Results

- Our recommendation system accurately predicted a user's preference for an item
- 77% accuracy in user-item preference

```
\begin{pmatrix} ? & 2 & ? & 3 & 1 \\ 1 & 5 & 1 & 4 & ? \\ ? & 4 & ? & ? & ? \\ 2 & 3 & ? & 5 & 1 \\ 2 & ? & 4 & ? & 3 \\ ? & 1 & 4 & 5 & ? \end{pmatrix}
```


How?

R

X

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
IF1						
IF2						

V

Example:

```
Titanic = 20% Action + 0% Comedy + 70% Romance + ... Joe M = 15% Action + 0% Comedy + 80% Romance + ... Joe B = 10% Action + 80% Comedy + 5% Romance + ...
```

Problems with RSs?

- 1. **Implementation** will lose users
- 2. **Sparsity** in data
- 3. Cold start
- 4. **Low correlation** to others
- Algorithmic
 Development not worth time/money

We recommending adopting the following functionality to your website:

- 1. Adding features to website for seamless feedback.
- 2. Upgrading your Recommender System.

Improve RS and prevent errors No Include Sparcity Genres Web Rating Cold start Feedback Collaborative + Content Filtering System

Improvements, Next Steps

Thank You!

Questions?

Rating distribution

User distribution

