CS 519: Scientific Visualization

Tensor Visualization

Eric Shaffer

Some slides adapted Alexandru Telea, Data Visualization Principles and Practice

Tensors

1. What is a tensor?

Describe in terms of principal component analysis

2. Basic tensor visualization

- component visualization
- anisotropy visualization
- major eigenvector visualization

3. Application: Fiber tracking

- basic fiber tracking
- stream tubes
- hyperstreamlines

What is a tensor?

Explanation 1: Dimensionality

scalar: a OD array of values e.g. 1 value

vector: a 1D array of values
 e.g. 3 values

tensor: a 2D matrix of values e.g. 3x3 = 9 values

Explanation 2: Analysis

scalar: magnitude (of some signal at a point in space)

vector: magnitude and direction (of some signal at some point in space)

tensor: variation of magnitude (of some signal at some point in space)

What is a tensor?

Explanation 3: As a function

- scalar: at $\mathbf{x} \in \mathbf{R}^3$, measure some value $\mathbf{s} \in \mathbf{R}$
- vector: at $\mathbf{x} \in \mathbf{R}^3$, measure some magnitude and direction $\mathbf{v} \in \mathbf{R}^3$
- tensor: at $x \in \mathbb{R}^3$ and in a direction $\mathbf{v} \in \mathbb{R}^3$, measure some magnitude $\mathbf{s} \in \mathbb{R}$

Fields

So we have different kinds of fields (i.e. functions of a variable $x \in \mathbb{R}^3$):

Scalar fields $s: \mathbb{R}^3 \to \mathbb{R}$

Vector fields $\mathbf{v}: \mathbf{R}^3 \to \mathbf{R}^3$

Tensor fields $T: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

Tensor Field Examples

Curvature in 1D

- take a curve $c \subseteq \mathbb{R}^3$
- locally, c can be described as a function y = f(x)

- curvature of f $C(x) = \frac{\partial^2 f}{\partial x^2}$ (2nd derivative of f)
- analytically: C(x) = how quickly the normal \mathbf{n}_c changes around x (why? Because the tangent to c is $\partial f/\partial x$ and its change is $\partial^2 f/\partial x^2$)

Curvature in 2D

- take a surface $S \subset \mathbb{R}^3$
- at each $x_0 \in S$
 - take a coordinate system xyz with x,y tangent to S and z along \mathbf{n}_S
 - locally, S can be described as a function z = f(x,y)

How to describe 2D curvature?

- 1D analogy: how quickly the normal \mathbf{n}_S changes around x_0
- problem: we have a surface in which direction to look for change?

We must compute

$$C(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$$

for any direction s

The Curvature Tensor

$$C(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$$

• recall our definition of a tensor $\mathbf{T}: \mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}$? The above is precisely that

Also note that
$$\frac{\partial^2 f}{\partial s^2}(x_0) = \mathbf{s}^T H \mathbf{s}$$
.

where H is the so-called Hessian of f

$$H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

In other words, if we have *H*, we can compute the curvature tensor

- at any point x_0
- in any direction s

The Curvature Tensor

However, there's a problem with the previous definition

- we need to construct local coordinate systems at every point on S
- not obvious how to do that....

General solution:

Describe S as an implicit function (i.e. the zero-level isosurface of a function)

$$S = \{x \in \mathbf{R}^3 | f(x) = 0\}$$
 for a given $f: \mathbf{R}^3 \to \mathbf{R}$

Then, we still have

$$\frac{\partial^2 f}{\partial s^2}(x_0) = \mathbf{s}^T H \mathbf{s} \qquad \text{where H is the 3x3 Hessian matrix } H = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{pmatrix}$$

Conclusion

A curvature tensor is fully described by a 3x3 matrix of 2nd order derivatives

The Diffusion Tensor

- consider an anisotropic material (e.g. tissue in the human brain)
- water diffuses in this tissue
 - strongly along neural fibers
 - weakly across fibers

Actual image of a dissected human brain

Diffusion tensor

 $D(x,s) = \frac{\partial^2 f(x)}{\partial s^2}$ diffusivity at a point x in a direction s

speed of water motion in tissue

The Diffusion Tensor

First visualization try

- compute hessian $H = \{h_{ii}\}$ in \mathbb{R}^3
- select some slice of interest
- visualize all components h_{ij} using e.g. color mapping

Simple, but not very useful

- we get a lot of images (9)...
- we see the tensor is symmetric...
- ...but we don't really care about diffusion along x, y, z axes!

- fix some point x_0 on the surface
- compute $C(x_0,s)$ for all possible tangent directions s at x_0
- denote α = angle of s with local coordinate axis x_0

So we have

$$\frac{\partial^2 f}{\partial s^2} = s^T H s = h_{11} \cos^2 \alpha + (h_{12} + h_{21}) \sin \alpha \cos \alpha + h_{22} \cos^2 \alpha$$

Now, let's look for the values of α for which this function is extremal!

Our curvature (as function of α) is extremal when $\frac{\partial C}{\partial \alpha} = 0$

This is equivalent to a system of equations

$$\begin{cases} h_{11}\cos\alpha + h_{12}\sin\alpha &= \lambda\cos\alpha \\ h_{21}\cos\alpha + h_{22}\sin\alpha &= \lambda\sin\alpha, \end{cases}$$
 which in matrix form is $H\mathbf{s} = \lambda\mathbf{s}$ or $(H - \lambda I)\mathbf{s} = 0$

Since we're looking for the non-trivial solution $s \neq 0$ this means

$$\det(H - \lambda I) = (h_{11} - \lambda)(h_{22} - \lambda) - h_{12}h_{21} = 0$$

Solving the above 2^{nd} order equation in λ yields

• two real values λ_1 , λ_2 eigenvalues (principal values) of tensor

Plugging λ_1 , λ_2 into $H\mathbf{s} = \lambda \mathbf{s}$ yields

• two direction vectors s_1 , s_2 eigenvectors (principal directions) of tensor

Summarizing

- Given a 2x2 tensor, we can compute its principal directions and values
 - directions: those in which tensor has extremal (minimal, maximal) values
 Can be shown that eigendirections are orthogonal to each other
 - values: the actual minimal and maximal values

How about a 3x3 tensor, like the diffusion tensor?

• 3 eigenvalues, 3 eigenvectors (computed similarly, see Sec. 7.1) Say we order eigenvalues (and their vectors) as $\lambda_1 > \lambda_2 > \lambda_3$

 λ_1 , s_1 major eigenvector i.e. direction of strongest diffusion

 λ_2 , s_2 medium eigenvector (no particular meaning)

 λ_3 , s_3 minor eigenvector i.e. direction of weakest diffusion

What if two or more eigenvalues are equal (so we cannot fully order them all)?

a,b) all values ordered: unique eigendirections

c,d) equal eigenvalues: eigendirections not determined (any two orthogonal vectors tangent to surface are valid eigendirections)

How to use PCA for visualization?

Visualize mean diffusivity $\mu = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$

white: strong mean diffusivity

black: weak mean diffusivity

Linear diffusivity

$$c_l = rac{\lambda_1 - \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3}$$

Fractional anisotropy
$$FA = \sqrt{\frac{3}{2}} \frac{\sqrt{\sum_{i=1}^{3} (\lambda_i - \mu)^2}}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}$$
 where $\mu = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)$

where
$$\mu = \frac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3)$$

Relative anisotropy $RA = \sqrt{\frac{3}{2}} \frac{\sqrt{\sum_{i=1}^{3} (\lambda_i - \mu)^2}}{\lambda_1 + \lambda_2 + \lambda_2}$

All above measures estimate how much 'fiber-like' is the current point

(a) c_i linear estimator

(b) fractional anisotropy

white: strong fibers

(c) relative anisotropy

Exploit the directional information in the eigenvectors

- major eigenvector e₁: along the strongest diffusion direction
- for DTI tensors, it thus indicates fiber directions

Directional color coding

- like for vectors (see Module 4)
- use simple colormap

$$R = |\mathbf{e}_1 \cdot \mathbf{x}|,$$

 $G = |\mathbf{e}_1 \cdot \mathbf{y}|,$
 $B = |\mathbf{e}_1 \cdot \mathbf{z}|.$

- use vector glyphs / hedgehogs
- seed only points where
 c₁, FA or RA are large enough
 (other points don't cover fibers)
- OK, but takes training to grasp

Vector PCA

Directional color coding (2nd variant)

- like before, but simply color points by direction
- no glyphs drawn
- no occlusion/clutter
- direction coded only by color less intuitive images

Tensor Glyphs

So far, we only visualized the major eigenvector \mathbf{e}_1

- so we reduced a tensor field to a vector field
- we **threw away** existing information (medium+minor eigenvectors e_2, e_3)

Ellipsoid glyph: Use all eigenvalues + eigenvectors

- orient glyph along eigensystem (e₁,e₂,e₃)
- scale it by eigenvalues (λ₁,λ₂,λ₃)

Tensor Glyphs

Can use other glyph shapes besides ellipsoids

Tensor Glyphs

Zoom-in on brain DT-MRI dataset

- a) ellipsoids
- b) cuboids
- c) cylinders
- d) superquadrics

Superquadrics look arguably most 'natural'

Fiber Tracking

Reuse some other vector visualization methods

- consider major eigenvector field
- trace streamlines
 - seed: in regions with high anisotropy (i.e. where fibers are)

• stop: when anisotropy gets too low (i.e. when we leave fibers)

streamlines, brain overview

stream tubes, brain detail

Hyperstreamlines

Generalize stream tubes

- trace stream tubes in major eigenvector field (like so far)
- use an elliptic cross-section
 - oriented along medium + minor eigenvectors
 - scaled with medium + minor eigenvalues

Tube cross-section shows diffusion across fibers

- Thin, round tubes: we're in a fiber bundle
- Thick, flat tubes: we're in a fiber sheet
- Thick, round tubes: we're exiting a fiber

Tensor Visualization Summary

- fundamentally harder than vector visualization
 - 9 values per point (!)
 - classical vector visualization problems (occlusion, seeding, etc)
- methods
 - reduce tensors to scalars (tensor components, PCA or anisotropies)
 - directional and/or color coding of major eigenvector
 - tensor glyphs
 - streamlines, stream tubes
 - hyperstreamlines