COUNTABILITY, METRIZABILITY, INTRO TO HOMOTOPY

COLTON GRAINGER (TOPOLOGY MATH 6210)

6. ASSIGNMENT DUE 2018-11-02

6.1. **[1, No. 30.4].** Every compact metrizable space X has a countable basis.¹

Date: 2018-10-29. Compiled: 2018-11-02.

¹Hint: let \mathcal{A}_n be a finite covering of X by 1/n-balls

1

6.2.	[1, No. 30.6].	The lower limit topology \mathbf{R}_ℓ	is not metrizable.	The ordered square ${ m I}_o^2$	is not metrizable.

6.3. **[1, No. 30.13].** If X has a countable dense subset, every collection of disjoint open sets in X is countable.

6.4. **[1, No. 31.5].** If Y is Hausdorff and $f,g:X\to Y$ are continuous maps, then $\{x:f(x)=g(x)\}$ is closed in X.

4

6.5. **[1, No. 31.6].** If X is normal, and $p: X \to Y$ is a closed continuous surjective map, then Y is normal.²

 $^{^{2}\}text{Hint: if }U\text{ is an open set containing }p^{-1}(\{y\})\text{, there's a neighborhood }W\text{ of }y\text{ such that }p^{-1}(W)\subset U.$

- 6.6. **[1, No. 51.3].** Let [X,Y] denote the set of homotopy classes of maps of X into Y. A space X is said to be *contractible* if the identity map $i_X \colon X \to X$ is nulhomotopic.
 - (a) The interval I and the real line ${\bf R}$ are both contractible.
 - (b) A contractible space is path connected.
 - (c) If Y is contractible, then for any X, the set [X, Y] has a single element.
 - (d) If X is contractible and Y is path connected, then [X,Y] has a single element.

6.7. **[1, No. 52.4].** Let $A \subset X$; suppose $r: X \to A$ is a continuous map such that $r(\alpha) = \alpha$ for each $\alpha \in A$. The map r is called a retraction of X onto A. If $\alpha_0 \in A$, then $r_*: \pi_1(X, \alpha_0) \to \pi_1(A, \alpha_0)$ is surjective.

REFERENCES

[1] J. R. Munkres, *Topology*, 2nd ed. Hardcover; Prentice Hall, Inc., 2000 [Online]. Available: http://www.worldcat.org/isbn/0131816292