Seminario de Métodos Numéricos Práctica 3: Interpolación e Integración Numérica

Prof. Susana Serna Curso 2018-2019

Abril 2019

Práctica para trabajar en tres sesiones de clase: las que corresponden a las semanas del 1/4, 22/4 y 19/4. Fecha tope de entrega el 5 de Mayo de 2019 a las 8:00. Solamente se admitirán prácticas entregadas a traves del CAMPUS VIRTUAL.

Problema 1

Considerar la interpolación polinómica en la base de Newton con diferencias divididas para la función

$$f(x) = \begin{cases} -1 & \text{si } -1 \le x \le -0.7\\ 1 & \text{si } -0.7 < x \le 0.7\\ -1 & \text{si } 0.7 < x \le 1 \end{cases}$$

usando nodos equidistantes x_i ,

$$x_j = -1 + j\frac{2}{n} \qquad j = 0, \cdots, n$$

para n = 4, 8, 16, 32, (64).

- (a) Estudiar el error máximo que se comete a medida que se aumenta el número de nodos de interpolación. Sugerencia: calcular (y dibujar) $|f(x_k) p(x_k)|$ en cada uno de los casos para los valores $x_k = -0.989 + k \cdot 0.011$ con $k = 0, \dots, 180$ (abcisas en [-1, 1] que no coinciden con los nodos de interpolación).
- (b) Comentar los errores de interpolación.

Problema 2

Considerar la interpolación polinómica en la base de Newton con diferencias divididas para la función

$$f(x) = \frac{1}{1 + 25 x^2}; \qquad x \in [-1, 1]$$

usando nodos equidistantes x_j como en el Problema 1 y nodos de Chebyshev x_j definidos como,

$$x_j = \cos\left(\frac{2j+1}{n+1}\frac{\pi}{2}\right) \qquad j = 0, \dots, n$$

para n = 4, 8, 16, 32, (64).

- (a) Estudiar el error máximo que se comete a medida que se aumenta el número de nodos de interpolación.
- (b) Comentar las diferencias en la interpolación con los diferentes nodos.

Problema 3

Considerar la tabla de valores que corresponden a la función de Bessel de primera especie de orden cero, $J_0(x)$,

x	1.9	2.0	2.1	2.2
$J_0(x)$	0.281818559374385	0.223890779141236	0.166606980331990	0.110362266922174
\overline{x}	2.3	2.4	2.5	2.6
$J_0(x)$	0.055539784445602	0.002507683297244	-0.048383776468198	-0.096804954397038
\overline{x}	2.7	2.8	2.9	3.0
$\overline{J_0(x)}$	-0.142449370046012	-0.185036033364387	-0.224311545791968	-0.260051954901934

Estimar el valor de la abcisa x^* tal que $J_0(x^*) = 0$ mediante interpolación inversa de grados 1, 3 y 5 utilizando polinomios interpoladores en la forma de Newton para cada uno de los siguientes casos:

- (a) interpolando valores positivos de $J_0(x)$ más próximos al cambio de signo de la función.
- (b) interpolando valores negativos de $J_0(x)$ más próximos al cambio de signo de la función.
- (c) interpolando valores de $J_0(x)$ simétricos alrededor del cambio de signo de la función.

Sabiendo que la funcion $J_0(x)$ es estrictamente monótona y derivable, ¿qué resultado está más próximo a la raiz de la función?

Problema 4

Obtener el valor aproximado de la integral

$$\int_0^1 \frac{dx}{1+x^2}$$

por el método de los trapecios y por el método de Simpson dividiendo el intervalo en cuatro partes iguales. Comparar los resultados. Calcular una cota de los errores respectivos.

Problema 5

Obtener el valor aproximado de la integral

$$\int_{1}^{5} \frac{e^{x}}{x} dx$$

por el método de los trapecios dividiendo el intervalo en n partes iguales con n = 4, 8, 16, 32, 64. Calcular una cota de los errores de cuadratua que se espera obtener para cada n.

Problema 6

Calcular mediante la fórmula de Simpson el valor de $\int_1^2 \log(x) dx$ con una precisión de 10^{-2} .

Problema 7

Un automóvil recorre una pista de carreras en 84 segundos. Su velocidad en cada intervalo de 6 segundos se determina mediante una pistola de radar y viene dada en m/sg por la siguiente tabla

0	6	12	18	24	30	36	42	48	54	60	66	72	78	84
37.2	40.2	44.4	40.8	44.1	39.9	36.3	32.7	29.7	25.5	23.4	26.7	31.2	34.8	36.9

Calcular la longitud de la pista.