- _ les valeurs propres de Hp(x*) pernettent d'affiner la nature de xx
 - \star Si O est valeur propre ($o \in Sp(Hg(x^*))$), on dit que x^* est en point <u>degénére</u>

 Dans ce cas, on ne peut pas concluse directement (besoin des derivées d'ordre Supérieur à 2) $EX: f: x \mapsto x^3$ et $f: x \mapsto x^4$, toutes deux en o
 - A Si Hg(x*) est définie positive (Sp(Hg(x*)) $\subset \mathbb{R}^+_{x} \iff h^T Hg(x*)h > 0 \forall h \in \mathbb{R}^n Hof)$, alors x^+ est un minimum local
 - Si $H_g(x^*)$ est définie négative ($Sp(H_g(x^*)) \subset \mathbb{R}_x^+ \iff h^\top H_g(x^*) h < 0 \ \forall h \in \mathbb{R}^n Hof)$, alors x^* est un maximum local
 - * Si Hg(x*) a des valeurs propres positives et regalives, x est en point selle

Caracterisation au second ordre de la convexité

Soit $f: \mathbb{R}^n \subseteq \mathbb{R}$ 2-fois différentiable. Alors f est convexe si et seulement si sa matrice hessienne Hg(x) est seulement si seulement

Qu'un point citique de f soit dégénéré ou pas n'a pas d'incidence pour une fonction convexe: c'est nécéssairement un minimum global