egral, giving

ystem response

table (Table 2.1) niently determine of integration. For using pair 4 (with astrates the utility

TABLE 2.1 Convolution Table

No.	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t) = x_2(t) * x_1(t)$
1	x(t)	$\delta(t-T)$	x(t-T)
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$
3	u(t)	u(t)	tu(t)
4	$e^{\lambda_1 t} u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t) \qquad \lambda_1 \neq \lambda_2$
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$
7	$t^N u(t)$	$e^{\lambda t}u(t)$	$\frac{N! e^{\lambda t}}{\lambda^{N+1}} u(t) - \sum_{k=0}^{N} \frac{N! t^{N-k}}{\lambda^{k+1} (N-k)!} u(t)$
8	$t^{M}u(t)$	$t^N u(t)$	$\frac{M!N!}{(M+N+1)!}t^{M+N+1}u(t)$
9	$te^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_2 t} - e^{\lambda_1 t} + (\lambda_1 - \lambda_2) t e^{\lambda_1 t}}{(\lambda_1 - \lambda_2)^2} u(t)$
.0	$t^M e^{\lambda t} u(t)$	$t^N e^{\lambda t} u(t)$	$\frac{M!N!}{(N+M+1)!}t^{M+N+1}e^{\lambda t}u(t)$
.1	$t^M e^{\lambda_1 t} u(t)$	$t^N e^{\lambda_2 t} u(t)$	$\sum_{k=0}^{M} \frac{(-1)^{k} M! (N+k)! t^{M-k} e^{\lambda_{1} t}}{k! (M-k)! (\lambda_{1}-\lambda_{2})^{N+k+1}} u(t)$
	$\lambda_1 eq \lambda_2$		$+\sum_{k=0}^{N}\frac{(-1)^{k}N!(M+k)!t^{N-k}e^{\lambda_{2}t}}{k!(N-k)!(\lambda_{2}-\lambda_{1})^{M+k+1}}u(t)$
2	$e^{-\alpha t}\cos{(\beta t+\theta)}u(t)$	$e^{\lambda t}u(t)$	$\frac{\cos\left(\theta-\phi\right)e^{\lambda t}-e^{-\alpha t}\cos\left(\beta t+\theta-\phi\right)}{\sqrt{(\alpha+\lambda)^2+\beta^2}}u(t)$
			$\phi = \tan^{-1}[-\beta/(\alpha + \lambda)]$
3	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} u(t) + e^{\lambda_2 t} u(-t)}{\lambda_2 - \lambda_1} \text{Re } \lambda_2 > \text{Re } \lambda_1$
1	$e^{\lambda_{\parallel}t}u(-t)$	$e^{\lambda_2 t}u(-t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_2 - \lambda_1} u(-t)$