General simulation and output requirements for all test cases

In order to ensure adequate numerical accuracy for each test case and model, a convergence test is required with respect to the applied spatial (lateral/vertical) and temporal discretizations, which are used to generate the intercomparison results. The results of the convergence tests should be briefly summarized in a separate paragraph or document.

The description of the simulations and results need to be as detailed and transparent as possible, in order to arrive at a meaningful interpretation.

Output can be provided in simple CSV, text files or Excel spreadsheets.

• Units

- All output should be provided in units of meters (m) and seconds (sec) if not otherwise indicated.
- Time series for *N* variables
 - ASCII format
 - o space, comma, or tab delimited columns
 - o Column 1: time (sec) followed by simulation time
 - o Column 2 to *N*: model abbreviation and variable name followed by values

Cross sections

- ASCII format
- o Space, comma, or tab delimited columns
- Column 1: *x*-location followed by values; specific locations are provided for the respective test cases
- Column 1: z-location followed by values; specific locations are provided for the respective test cases
- o Column 2 *N*: model abbreviation and variable name followed by values

Maps

- ASCII format
- o Space, comma, or tab delimited columns
- Column 1: *x*-location followed by values; specific locations are provided for the respective test cases
- Column 2: *y*-location followed by values; specific locations are provided for the respective test cases
- o Column 2 *N*: model abbreviation and variable name followed by values

Transects

- ASCII format
- o Space, comma, or tab delimited columns
- Column 1: x-or y-location followed by values; specific locations are provided for the respective test cases
- o Column 2 *N*: model abbreviation and variable name followed by values

Profiles

- ASCII format
- o Space, comma, or tab delimited columns
- Column 1: z-location followed by values; specific locations are provided for the respective test cases
- o Column 2 *N*: model abbreviation and variable name followed by values

Superslab Case (2D cross-section)

Figure 3. Cross-section of the simulation domain (green) including the 1^{st} slab (yellow) and the 2^{nd} slab (red).

Model geometry

Lateral extensions in *x*: 100m

Vertical extension in *z*: 5m below land surface

Lateral resolution, Δx : 1m

Vertical resolution, Δz : 0.05

 1^{st} slab, lateral extension in x: 8 - 50m

 1^{st} slab, lateral extension in z: 5.8 – 6.2m

 2^{nd} slab, lateral extension in x: 40 - 60 m

2nd slab, lateral extension in *z*: 1.3m below the land surface

Boundary conditions

Overland flow: critical depth

Subsurface lateral & bottom: no flow

Subsurface top: overland flow

Initial conditions

Water table 5m below land surface, hydrostatic conditions vertically

Hydraulic parameters - overland flow:

Friction slope in *x*-direction: $S_{f,x} = 0.1$

Friction slope in *y*-direction: $S_{f,y} = 0.0$

Manning's roughness: $n_c = 1.0 \times 10^{-6} \text{ (hour/m}^{1/3)}$

Hydraulic parameters - subsurface

	K_{sat} (m/hour) Porosity, ϕ (-)		Specific storage, S_s (m ⁻¹)	
Domain	10.0	0.1	1.0 x 10 ⁻⁵	
1 st slab	0.025	0.1	1.0 x 10 ⁻⁵	
2 nd slab	0.001	0.1	1.0 x 10 ⁻⁵	

Van Genuchten parameters

	n (-)	α (m ⁻¹)	$ heta_{ m res}$ (-)	θ_{sat} (-)
Domain	2.0	6.0	0.02	0.1
1st slab	3.0	1.0	0.03	0.1
2 nd slab	3.0	1.0	0.03	0.1

Simulation period

Simuation period: 12hours

Time step size: $\Delta t = 0.05$ hours

Rain duration: 2 rs

Rain rate: $q_r = 0.05 \text{ (m/hour)}$

Recession duration: 10hours

<u>Output</u>

- Time series of
 - o Discharge at outlet and downstream end of slab1 and 2
 - Surface storage
 - o Soil storage (p < 0m)
 - o Groundwater storage ($p \ge 0$ m)
 - o Integral of surface soil moisture (top model layer) per unit depth
 - o Profiles of *S* and *p* at t = 1, 2, 4, 8, and 12h at x = 32 and 41m.
- Animations of S and p