ИЗПИТ

по Математически анализ, специалност "Приложна математика" 14 април 2009г.

Име:...... Фак.номер:.....

- 1. Нека A е произволно подмножество на \mathbb{R}^n . Дайте дефиниция на ∂A (контура на A). Докажете, че ∂A е затворено множество.
- 2. Дефинирайте риманов интеграл от ограничената функция $f: \Delta \to \mathbb{R}$ (тук Δ е паралелотоп в \mathbb{R}^n) чрез суми на Дарбу. Докажете, че f е интегруема точно тогава, когато за всеки две положителни числа ε и η съществува подразделяне $\Pi = \{\Delta_i\}_{i=1}^{i_0}$ на Δ такова, че

$$\sum_{M_i - m_i > \eta} \mu(\Delta_i) < \varepsilon$$

където $M_i = \sup\{f(x) : x \in \Delta_i\}$ и $m_i = \inf\{f(x) : x \in \Delta_i\}$.

3. Представете тройния интеграл

$$\int \int \int_K f(x, y, z) \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

като повторен по два начина: с двукратен външен интеграл и еднократен вътрешен и с еднократен външен интеграл и двукратен вътрешен. Тук f е непрекъсната функция, дефинирана върху тялото

$$K = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4, x^2 + y^2 \le z\}.$$

- 4. Нека $f: K \longrightarrow \mathbb{R}$ е непрекъсната функция, дефинирана в компактното множество $K \subset \mathbb{R}^2$. Докажете, че графиката на f е пренебрежимо множество в \mathbb{R}^3 .
- 5. Дайте дефиниция на потенциал на векторно поле. Пресметнете потенциала на гравитационното поле

$$F(x) = -\frac{x}{\|x\|^3}, \ x \neq (0, 0, 0).$$

- 6. Нека Ω е отворен правоъгълник в \mathbb{R}^2 и нека $F = (F_1, F_2)$ е гладко векторно поле, дефинирано в Ω , което удовлетворява необходимото условие за потенциалност. Напишете в явен вид формула за потенциал за F в Ω и докажете, че фунцията, дефинирана с така написаната формула, наистина е потенциал за даденото векторно поле.
- 7. Намерете координатите на центъра на масите на хомогенна материална полусфера с радиус R и център в началото на координатната система.
- 8. Формулирайте теоремата на Гаус-Остроградски. Докажете с нейна помощ закона на Архимед.