Instructions:

Subject Code: 2160704

Time:02:30 PM TO 05:00PM

1. Attempt all questions.

Subject Name: Theory of Computation

2. Make suitable assumptions wherever necessary.

1. Figures to the right indicate full marks.

Date:13/11/2017

Total Marks: 70

1

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 2017

0.1 (a) Define one-to-one, onto and bijection function. 03 Check whether the function f: $R^+ \to R$, $f(x) = x^2$ is one to one and onto. 04 **(b)** Explain equivalence relation with example. (c) 07 Write RE for the languages of all Strings that do not end with 01. 03 **Q.2** Give recursive definitions of the extended transition functions, δ^* for DFA and 04 NFA. (c) Using Principle of Mathematical Induction, prove that for every $n \ge 1$ 07 $\sum i = n (n+1) / 2$ OR Prove that $\sqrt{2}$ is Irrational by method of Contradiction 07 Compare FA, NFA and NFA-^ 0.3 03 (a) Draw a FA for following regular language. **(b)** 04 (i) (11+110)*0(0+1)*(10+11)(ii) Design a moore machine to determine residue number 3 for binary number. 07 OR Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form **07** generating $L(G) - \{ \}$ $S \rightarrow aY \mid Ybb \mid Y$ $X \to \land \mid a$ $Y \rightarrow aXY \mid bb \mid XXa$ Define CFG. When is a CFG called an 'ambiguous CFG'? 03 **Q.4** 04 (b) For the language $L = \{ xcx^r \mid x \in \{a,b\}^* \}$ design a PDA(Push Down Automata). Write Kleene's Theorem part-I, Any regular language can be accepted by a **07** finite automation OR Convert following NFA- Λ to NFA 07 $\delta (q, \Lambda)$ $\delta(q, 0)$ $\delta(q, 1)$ q Ó **{B}** $\{A\}$ A Ó В **{D**} **{C**} C Ø Ø {**B**} Ó **{D**} Ø (a) Draw a Turing Machine(TM) to accept Even and odd Palindromes over {a,b}. Q.5 07 Write a short note on Universal Turing Machine. **07** OR Write a Turing Machine to copy strings. 07 Q.5 (a) **(b)** Write a short note on μ -recursive function. 07 *****