

Probability Mass Functions for discrete random variables

Recap

X

 Ω

 \rightarrow

R

Function

Domain

Range

(Random Variable)

(Could be a

subset of R)

Distribution of a random variable

An assignment of probabilities to all possible values that a

discrete RV can take

(can be tedious even in simple cases)

7 5/34

Px(x) =

Can PMF be specified compactly

Recap

X	P(X = x)		
2	1/36		
3	2/36		
4	3/36		
5	4/36		
6	5/36		
7	6/36		
8	5/36		
9	4/36		
10	3/36		
11	2/36		
12	1/36		

	P(X = x)	X	
	1/36	If x = 2	
	2/36	If x = 3	
	3/36	If x = 4	
	4/36	If x = 5	
	5/36	If x = 6	
	6/36	If x = 7	
	5/36	If x = 8	
	4/36	If x = 9	
	3/36	If x = 10	
	2/36	If x = 11	
	1/36	If x = 12	
•			

(can be tedious when x can take on a large value)

Can PMF be specified compactly?

P: Probability of heads

X: Random variable indicating the number of tosses after which you observe the first heads

An assignment of probabilities to all possible values that a discrete RV can take

$$R_x = \{1, 2, 3, 4, 5, 6, \dots \dots \dots \dots \infty\}$$

$$Px(x) =$$

$$Px(x) = (1-P)^{(x-1)} * P$$

Compact

Easy to compute

No enumeration needed

	\mathcal{L}
9	0
V	•

lf	X	=	1	
lf	X	=	2	
lf	X	=	3	
lf	X	=	4	
lf	X	=	5	
lf	X	=	6	
lf	X	=	7	
lf	X	=	8	
lf	Х	=	9	
				_

If $x = \infty$

$$Px(x) = (1-P)^{(x-1)'}*P$$

122 -(1-0-5) * 0.5

Can PMF be specified compactly?

P: Probability of heads

X: Random variable indicating the number of tosses after which you observe the first heads

$$R_x = \{1, 2, 3, 4, 5, 6, \dots \dots \dots \dots \infty\}$$

$$Px(x) = (1-P)^{(x-1)'} * P$$

How did we arrive at the above formula?

Is it a valid PMF (satisfying properties of a PMF)

What is the intuition behind it?

For now, the important point is:

(We will return back to this questions latter)

It is desirable to have the entire distribution be specified by one or few parameters

Why is this important?

The entire distribution can be specified by some parameters

Cat? Dog? Owl? Lion?

$$Px(x) = f(x)$$

A very complex function whose parameters are learnt from data

Bernoulli Distribution

Experiments with only two outcomes?

Out come: {Positive, Negative}

Bernoulli Trials

Outcome: {Pass, Fail}

Outcome: {Hit, Flop}

Outcome: {Spam, Ham}

Outcome: {Approved, Denied}

Bernoulli Distribution

Bernoulli Distribution?

 Ω : Failure, Success

 $X: \Omega: \rightarrow \{0, 1\}$

Bernoulli Random Variable

A: event that the outcome is success

Let
$$P(A) = P(success) = P$$

$$Px(1) = P = 0.5$$

$$Px(0) = 1 - P$$
 $= (1-P)^{(1-x)}$

Bernoulli Trials

Bernoulli distribution

strong (138) P= 1/E

Bernoulli Distribution

s Bernoulli distribution a valid distribution?

 Ω : Failure Success

$$X: \Omega: \rightarrow \{0, 1\}$$

Bernoulli Random Variable

$$\Sigma_{x \in \{0,1\}} Px(x) = Px(0) + Px(1)$$

$$= (1-P) + P = 1$$

Repeat a Bernoulli trial n times

..... n number of times

(Success / failure in one trail does not affect the outcome of other trails)

Identical:

(Probability of success 'P' in each trial is the same)

What is the probability of k successes in n trails? $(k \in [0,n])$

Binomial Distribution (Examples)

..... n number of times

Each ball bearing produced in a given factory is independently non defective with probability p

If you select n ball bearings what is the probability that k of them will be defective?

What is the probability of k successes in n trails? $(k \in [0,n])$

Binomial Distribution (Examples)

..... n number of times

The probability that a customer purchases something from yoru website is P

Assumption 1: Customers are identical (economic strata, interests, needs, etc)

Assumption 2: Customers are independent (one's decision does not influence another)

What is the probability of k out of n customers will purchase something?

Binomial Distribution (Examples)

..... n number of times

Marketing Agency: The probability that a customer opens your email is P

Assumption 1: Customers are identical

Assumption 2: Customers are independent

If you send n emails what is probability that the customer will open at least one of them?

Binomial Distribution

HNT9 HMT

How many different outcomes can we have if we repeat a Bernoulli trail n times?

..... n number of times

S, F

n

(sequence of length n from a given set of 2 objects)

 $= 2^n$ outcomes

Binomial Distribution

Example:
$$n = 3$$
, $k = 1$
 $H = Success$
 $T = Fail$

A = {HTT, THT, TTH}

$$P_{x}(1) = P(A)$$
 $P_{x}(1) \neq P(A) = P({HTT}) + P({THT}) + P({TTH})$
 $P({HTT}) = p (1-p) (1-p)$
 $P({THT}) = (1-p) p (1-p)$
 $P({TTH}) = (1-p) (1-p) p$
 $P_{x}(1) = P(A) = 3(1-p)^{2} p$

Binomial Distribution

..... n number of times

Example:
$$n = 3, k = 1$$

$$A = \{ HTT, THT, TTH \}$$

$$P_{x}(1) = P(A) = 3(1-p)^{2} p$$

3 trials and 1 success
= 3 choose
$$1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$=3(1-p)^{(3-1)}p^1$$

$$= \begin{pmatrix} 3 \\ 1 \end{pmatrix} (1-p)^{(3-1)} p^{1}$$

Binomial Distribution

..... n number of times

Example:
$$n = 3$$
, $k = 2$

$$B = \{HTH, HHT, THH\}$$

 $P_{\chi}(2) = P(B) = 3(1-p)p^2$

=
$$3(1-p)^{(3-2)}p^2$$

$$= \binom{3}{2} (1-p)^{(3-2)} p^2$$

3 trials and 2 success

= 3 choose
$$2 = {3 \choose 2}$$

Binomial Distribution

each terms will have the factor p^k

each terms will have the factor $(1-p)^{(n-k)}$

Observations

n trials and k success

 $\binom{n}{k}$ favourable outcomes

each of the k success occur independently with a probability p

each of the n – k failures occur independently with a probability 1 – p

$$P_{x}(k) = {n \choose k} p^{k} (1-p)^{(n-k)}$$

Parameters: p, n

The entire distribution is full specified once the value of p and n are known

Binomial Distribution **Example1: Social distancing**

Suppose 10% of your colleagues from workplace are infected with COVID - 19 but are asymptomatic (hence come to office as usual)

Suppose you come in close proximity of 50 of your colleagues. What is the probability of you getting infected

$$n = 50, p = 0.1$$

P(getting infected) = P(at least one success)
=
$$1 - P(0 \text{ successes})$$

= $1 - P_x(0)$
= $1 - {50 \choose 0} p^0 (1-p)^{(50)}$ = $1 - 1*1*0.9^{(50)} = 0.995$
= $1 - 1*1*0.9^{(10)} = 0.6513$
= $1 - 1*1*0.98^{(10)} = 0.1829$, P change to 2%

Binomial Distribution Example2: Mac Users

100

Suppose 10% of students in your class use Mac book, If you select 25 students at random

- a) what is the probability that exactly 3 of them are using Mac book?
- b) what is the probability that between 2 to 6 of them are using Mac book?
- C) How would the above probabilities change if instead of 10%, 90% were using Mac book?
- a) n = 25, p = 0.1 and k = 3
- b) n = 25, p = 0.1 and $k = \{2,3,4,5,6\}$
- c) n = 25, p = 0.9, 0.5

Binomial Distribution Example2: Mac Users

Suppose 10% of students in your class use Mac book, If you select 25 students at random

a)
$$n = 25$$
, $p = 0.1$ and $k = 3$

b)
$$n = 25$$
, $p = 0.1$ and $k = \{2,3,4,5,6\}$

c)
$$n = 25, p = 0.9, p = 0.5$$

```
import seaborn as sb
import numpy as np
from scipy.stats import binom

x = np.arange(0,25)
n = 25
p = 0.1

dist = binom(n, p)
ax = sb.barplot(x = x, y = dist.pmf(x))
```


Binom

Suppo If you

a)
$$n = 25$$
, $p = 0.1$ an

b)
$$n = 25, p = 0.1 an$$

c) n = 25, p = 0.9, p

import seaborn as
import numpy as r
from scipy.stats

$$x = np.arange(0,2)$$

n = 25

$$p = 0.9$$

dist = binom(n, p)
ax = sb.barplot(x = x, y = dist.pmf(x))

Is Binomial Distribution a valid distribution?

$$p_x(x) \ge 0$$

$$P_x(k) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

$$\sum_{i=0}^{n} p_{\chi}(i) = 1 ?$$

$$= p_{x}(0) + p_{x}(1) + p_{x}(2) + \dots + p_{x}(n)$$

$$= \binom{n}{0} \ p^0 \ (1-p)^{(n-0)} \ + \binom{n}{1} \ p^1 \ (1-p)^{(n-1)} + \binom{n}{2} \ p^2 \ (1-p)^{(n-2)} + \cdots \dots \dots + \binom{n}{n} \ p^n \ (1-p)^{(n-n)}$$

$$(a+b)^n = \binom{n}{\theta} a^0 b^n + \binom{n}{1} a^1 b^{n-1} + \binom{n}{2} a^2 b^{n-2} \dots \dots + \binom{n}{n} a^n b^0$$

on the left hand side if
$$(a = p, b = 1 - p)$$
 then
$$= (P+1-P)^n = 1^n = 1$$

Relation between Binomial and Bernoulli

Bernoulli distribution is a special case of Binomial distribution