CNN Tutorial

정승환 2018.07.07

About Me

2002.02 ~ 2009.01

2015.09 ~ current Machine Learning cell, SK Telecom

2013.08 ~ 2015.08 Consulting DA, Deliotte Consulting

2011.07 ~ 2013.07 Entrue Consulting, LG CNS

2011.02 ~ 2011.06 컨버전스 지식센터, 한국 생산성 본부(KPC)

2009.02 ~ 2011.02 M.A in Industrial Engineering, KAIST

B.A in Industrial Engineering, Hanyang Univ.

About Me

2015.09 ~ current	Data 문식 기인 Targeting 고도와 당인 AutoML 알고리즘 수립 및 운영 Structure Data 기준 Deep learning 적용 및 운영
2014.03 ~ 2014.09	SSG.com 애널리틱스 프로젝트 ● 진성고객 산출 ● 가격 정책 고도화 방안

Data 보서 기바 Targeting 기다히 바아

2013.11 ~ 2014.11 KBO 프로야구 일정 수립(2014년, 2015년 적용)

LGD 분석 CoE(Center of Excellence) 와 분석 PJT 수행

2012.04 ~ 2013.06 • Early Warning 고도화 시스템 제안

• IT 모바일 수요 예측

SPM(Service Part Management) 적확도 향상 방안

3

CNN 주요 특징

- 각 레이어의 입출력 데이터의 형상 유지
- 이미지의 공간 정보를 유지하면서 인접 이미지와의 특징을 효 과적으로 인식
- 복수의 필터로 이미지의 특징 추출 및 학습
- 추출한 이미지의 특징을 모으고 강화하는 Pooling 레이어
- 필터를 공유 파라미터로 사용하기 때문에, 일반 인공 신경망과 비교하여 학습 파라미터가 매우 적음

CNN 주요 개념

- Convolution
- Channel
- Filter(=Kernel)
- Stride
- Padding

- 연속 변수 -

$$y(t) = (x * w)(t)$$

$$= \int_{-\infty}^{\infty} x(a)w(t-a)da$$

- 이산 변수 -

$$y[n] = \sum_{a=-\infty}^{\infty} x[a]w[n-a]$$

Convolution?

- 이산 변수 -

w 함수를 n만큼 평행이동 시 킨 함수와 x 함수와의 곱한 값 을 x 축에 대해 전부 더한 값 들의 집합

$$y[n] = \sum_{a=-\infty}^{\infty} x[a]w[n-a]$$

$$x[a]w[a]$$
 $x[a]w[-a]$ $x[a]w[-a]$ $x[a]w[-a]$ $x[a]w[-a]$

https://m.blog.naver.com/PostView.nhn?blogId=sw4r&logNo=220904800372&proxyReferer=https%3A%2F%2Fwww.g conde com%2F

$$y[i,j] = (x * w)[i,j]$$

$$=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m-i,n-j]w[m,n]$$

1 _{×1}	1,0	1,	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	O _{×0}	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Channel

RED Channel

Green Channel Blue Channel

Filters

2	2	4	4	0
80	60	10	7	10
4	10	80	10	20
12	24	10	8	20
22	42	20	10	10

Images

3 * 3 filters

80X0.4 + 4X0.2X10 = 40

Χ

Strides

stride = 1

Padding

Pooling

Activation Map

12	20	30	0
8	12	2	0
34	70	37	7
112	100	22	12

Max Pooling

Average Pooling

CNN Process

CNN Output size

- 입력 데이터 높이: H
- 입력 데이터 폭: W
- 필터 높이: FH
- 필터 폭: FW
- Strid 크기: S
- 패딩 사이즈: P

$$OutputHeight = OH = rac{(H + 2P - FH)}{S} + 1$$
 $OutputWeight = OW = rac{(W + 2P - FW)}{S} + 1$

CNN Output size

$$Output Height = OH = rac{(H + 2P - FH)}{S} + 1$$
 $Output Weight = OW = rac{(W + 2P - FW)}{S} + 1$

Example

● 32 X 32 이미지에 kernel_size = 3, stride=1 padding =1 인 경우

$$= (32 + 2*1 - 3)/1 + 1 = 32$$

Transposed CNN

CNN을 역으로 적용함

- 일반적으로 CNN은 이미지의 size를 줄여가는 형태로 진행
- input data 보다 이미지의 크기를 크게 할 때 적용

CNN

https://github.com/vdumoulin/conv_arithmetic

Thanks!

Any questions?

