

Text to Speech

Калиновский И.А. Just AI, к.т.н.

Синтез речи на основе DNN

Фонетическое членение речи

Непрерывный поток звучащей речи является структурированным, он членится на разные по объему отрезки, фонетические единицы, которые образуют иерархическую систему.

Сегодня светит солнце, но дует ветер.

синтагмы	сегодня светит солнце	но дует ветер
слова	сегодня светит солнце	но дует ветер
слоги	се-го-дня све-тит сол-нце	но ду-ет ве-тер
фонемы	s'/i ₁ -v/o ₀ -d'/n'/a ₄ s/v'/e ₀ -t'/i ₄ /t s/o ₀ -n/c/y ₄	$n/o_1 \mid d/u_0$ - $j/i_4/t \mid v'/e_0$ - $t'/i_4/r$

Лингвистический процессор

Как собрать для русского языка?

Нормализовать текст: https://github.com/snakers4/russian-stt-text-normalization

Разбить на предложения: https://natasha.github.io/razdel

Построить транскрипцию: https://github.com/nsu-ai/russiang2p

Спектр речевого сигнала

«Ботиночки свои мальчиковые, сорокового размера, начищал до блеска и любил гулять по берегу.»

Как подготовить аудиофичи?

Где взять датасет?

RUSLAN (22000 семплов, 44КГц, PCM16): https://ruslan-corpus.github.io

OPEN STT: https://github.com/snakers4/open_stt

Другие: https://github.com/coqui-ai/open-speech-corpora

Извлечь аудио с субтитрами из YouTube

Разметить аудиокниги

Записать в студии

Как оценивать качество?

С привлечением слушателей:

- MOS: https://en.wikipedia.org/wiki/Mean_opinion_score
- MUSHRA: https://en.wikipedia.org/wiki/MUSHRA

Автоматические методы:

- ASR
- PESQ: https://en.wikipedia.org/wiki/Perceptual_Evaluation_of_Speech_Quality
- Neural MOS prediction: https://arxiv.org/pdf/2007.08267.pdf

Классификация моделей

По архитектуре:

Авторегрессионные

- обучение и инференс
- только инференс

Параллельные

По типу блоков:

Рекурентные

Сверточные

Трансформеры

По типу входных фичей:

Текст

Лингвистические признаки

Мел-спектр

Длительности фонем

Пич (F_0)

Энергия

Tacotron2, 2018

Location Sensitive Attention

$$e_{i,j} = w^T \tanh(Ws_{i-1} + Vh_j + b)$$

h — выходы текстового энкодера, s — состояние декодера

$$f_i = F * \alpha_{i-1}$$

 $f_i = F * lpha_{i-1}$ на предыдущем шаге

$$e_{i,j} = w^T \tanh(W s_{i-1} + V h_j + U f_{i,j} + b)$$

Losses

 L_{1} или L_{2} на спектр

BCE на Stop Token

Как быть, если нет вокодера под рукой?

```
Griffin-Lim phase reconstruction
Algorithm
                                                                                                                        with
\mathbf{STFT}_{\alpha,\beta}
Input: |\mathbf{X}^{[0]}| \in \mathbb{R}^{\alpha N \times T}, where T is total frame number
Output: \hat{x}(t)
    initial random phase \mathbf{\Phi} \in \mathbb{R}^{\alpha N \times T}
     \mathbf{X}^{[1]} = |\mathbf{X}^{[0]}| \odot \mathbf{\Phi}
    x^{[1]}(t) = \mathbf{iSTFT}_{\alpha,\beta} \left[ \mathbf{X}^{[1]} \right]
     for i = 1 : I - 1 do
         \mathbf{Y}^{[i]} = \mathbf{STFT}_{\alpha,\beta} \left[ x^{[i]}(t) \right]
         \mathbf{X}^{[i+1]} = |\mathbf{X}^{[0]}| \odot \exp\left\{j \angle \mathbf{Y}^{[i]}\right\}x^{[i+1]}(t) = \mathbf{iSTFT}_{\alpha,\beta} \left[\mathbf{X}^{[i+1]}\right]
     end for
     return \hat{x}(t) = x^{[I]}(t)
```

Tacotron2, 2018

Достоинства:

- Высокое качество речи
- Проверена работоспособность для множества языков
- Возможен синтез в реальном времени на CPU, в т.ч. в режиме стриминга

Недостатки:

- Нестабильный синтез (пропуск слов, безостановочная генерация)
- Деградация качества при увеличении длины высказывания
- Слабые возможности по управлению речью
- Медленная сходимость
- Медленное обучение и инференс (на GPU)

Как улучшить стабильность?

Удалить длинные паузы

Добавить пунктуацию как дополнительный вход в модель

Использовать монотонное внимание:

- Forward Attention: https://arxiv.org/pdf/1807.06736.pdf
- Monotonic Chunkwise Attention: https://arxiv.org/pdf/1712.05382.pdf
- Location-Relative Attention: https://arxiv.org/pdf/1910.10288.pdf

CTC-loss

Forward Attention

Algorithm 1 Forward Attention

Initialize:

$$\hat{\alpha}_0(1) \leftarrow 1$$

$$\hat{\alpha}_0(n) \leftarrow 0, n = 2, ..., N$$
for $t = 1$ to T do
$$y_t(n) \leftarrow Attend(\boldsymbol{x}, \boldsymbol{q}_t)$$

$$\hat{\alpha}_t'(n) \leftarrow (\hat{\alpha}_{t-1}(n) + \hat{\alpha}_{t-1}(n-1))y_t(n)$$

$$\hat{\alpha}_t(n) \leftarrow \hat{\alpha}_t'(n) \Big/ \sum_{m=1}^N \hat{\alpha}_t'(m)$$

$$\boldsymbol{c}_t \leftarrow \sum_{n=1}^N \hat{\alpha}_t(n) \boldsymbol{x}_n$$
end for

Как ускорить сходимость?

Семплировать в батч спектры равной длины

Применять Guided Attention Loss (https://arxiv.org/pdf/1710.08969.pdf)

Заполнять паузы несколькими символами

Как ускорить обучение?

Увеличить hop

Предсказывать несколько фреймов за шаг

FastSpeech, 2019

- (a) Feed-Forward Transformer
- (b) FFT Block
- (c) Length Regulator
- (d) Duration Predictor

Scaled Dot-Product Attention, Self Attention

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

Где взять фонемное выравнивание?

Обучить такотрон

Montreal Forced Aligner (https://github.com/pettarin/forced-alignment-tools)

Tacotron2

FastSpeech

Достоинства:

- Высокое качество речи, но требуется тонкая настройка
- Возможен синтез в реальном времени на GPU
- Управление темпом речи их коробки

Недостатки:

- Зависимость от длины предложения
- Квадратичная сложность вычислений и потребления памяти

Как использовать аналогичную идею в Tacotron2?

ForwardTacotron, 2019

Forward Tacotron

Length Regulator with Duration Predictor

ForwardTacotron

Достоинства:

- Высокое качество речи, сопоставимое с такотроном
- Быстрый инференс на GPU
- Управление темпом речи из коробки
- Работает с текстом любой длины

Недостатки:

- Медленное обучение
- Может зажевывать короткие фонемы

FastSpeech2, 2020

Как подсчитать pitch?

PyWORLD: https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder

REAPER: https://github.com/google/REAPER

CREPE: https://github.com/maxrmorrison/torchcrepe

Glow-TTS, 2020

(a) An abstract diagram of the training procedure.

(b) An abstract diagram of the inference procedure.

Multispeaker TTS

Как кодировать спикеров?

Индексы

Обучаемые эмбеддинги

Bio-эмбеддинги (https://github.com/resemble-ai/Resemblyzer)

Global Style Tokens

Scaled Dot-Product Attention, Self Attention

what we want to obtain with regularisation

SSML-разметка

Speech Synthesis Markup Language (https://www.w3.org/TR/speech-synthesis11)

```
Я отойду на минутку. <break time="5000"/> Вы еще здесь?

<say-as stress="2"> Перепрофилирование </say-as>

<say-as interpret-as="telephone">2222230</say-as>

<pr
```

Спасибо за внимание!