Arithmétique dans \mathbb{Z}

(École Normale Supérieure)

Définition : Divisibilité

Définition

Soient $a,b\in\mathbb{Z}$. On dit que b divise a et on note b|a s'il existe $q\in\mathbb{Z}$ tel que

$$a = bq$$
.

Exemples

• 7|21; 6|48; a est pair si et seulement si 2|a.

- 7|21; 6|48; a est pair si et seulement si 2|a.
- Pour tout $a \in \mathbb{Z}$, on a a|0 et aussi 1|a.

- 7|21; 6|48; a est pair si et seulement si 2|a.
- Pour tout $a \in \mathbb{Z}$, on a a|0 et aussi 1|a.
- Si a|1, alors a = +1 ou a = -1.

- 7|21; 6|48; a est pair si et seulement si 2|a.
- Pour tout $a \in \mathbb{Z}$, on a a|0 et aussi 1|a.
- Si a|1, alors a = +1 ou a = -1.
- $(a|b \text{ et } b|a) \implies b = \pm a$.

- 7|21; 6|48; a est pair si et seulement si 2|a.
- Pour tout $a \in \mathbb{Z}$, on a a|0 et aussi 1|a.
- Si a|1, alors a = +1 ou a = -1.
- $(a|b \text{ et } b|a) \implies b = \pm a.$
- $(a|b \text{ et } b|c) \implies a|c.$

- 7|21; 6|48; a est pair si et seulement si 2|a.
- Pour tout $a \in \mathbb{Z}$, on a a|0 et aussi 1|a.
- Si a|1, alors a = +1 ou a = -1.
- $(a|b \text{ et } b|a) \implies b = \pm a.$
- $(a|b \text{ et } b|c) \implies a|c.$
- $(a|b \text{ et } a|c) \implies a|(b+c).$

Théorème : Division euclidienne

Théorème

Soit $a \in \mathbb{Z}$ et $b \in \mathbb{N} \setminus \{0\}$. Il existe des entiers $q, r \in \mathbb{Z}$ tels que :

$$a = bq + r$$
 et $0 \le r < b$.

De plus, q et r sont uniques.

Démonstration : Existence

Existence. On peut supposer $a \ge 0$ pour simplifier. Soit

$$N = \{ n \in \mathbb{N} \mid bn \le a \}.$$

C'est un ensemble non vide car $n=0\in N$. De plus N est toujours majoré, donc il admet un plus grand élément noté $q=\max N$.

Alors $qb \le a$ car $q \in N$, et (q+1)b > a car $q+1 \notin N$. Donc :

$$qb \le a < (q+1)b = qb + b.$$

Démonstration : Existence

Existence. On peut supposer $a \ge 0$ pour simplifier. Soit

$$N = \{n \in \mathbb{N} \mid bn \leq a\}.$$

C'est un ensemble non vide car $n=0\in N$. De plus N est toujours majoré, donc il admet un plus grand élément noté $q=\max N$.

Alors $qb \le a$ car $q \in N$, et (q+1)b > a car $q+1 \notin N$. Donc :

$$qb \leq a < (q+1)b = qb + b.$$

On définit alors r = a - qb. Ce r vérifie :

$$0 \le r = a - qb < b.$$

Démonstration : Unicité

Unicité. Supposons que q, r et q', r' soient deux entiers vérifiant les conditions du théorème. On a :

$$a = bq + r = bq' + r'.$$

Ainsi:

$$b(q-q')=r'-r.$$

Démonstration : Unicité

Unicité. Supposons que q, r et q', r' soient deux entiers vérifiant les conditions du théorème. On a :

$$a = bq + r = bq' + r'.$$

Ainsi:

$$b(q-q')=r'-r.$$

D'autre part, $0 \le r' < b$ et $0 \le r < b$, donc -b < r' - r < b. En substituant r' - r = b(q - q'), on obtient :

$$-b < b(q-q') < b.$$

En divisant par b > 0, on a :

$$-1 < q - q' < 1.$$

Comme q-q' est un entier, la seule possibilité est q-q'=0, donc q=q'. En revenant à r'-r=b(q-q'), on obtient maintenant r=r'.

Définition : PGCD

Définition

Soient $a, b \in \mathbb{Z}$ deux entiers, non tous les deux nuls. Le plus grand entier qui divise à la fois a et b s'appelle le **plus grand diviseur commun** de a et b, et se note $\operatorname{pgcd}(a, b)$.

Exemples

Exemples

• pgcd(21, 14) = 7, pgcd(12, 32) = 4, pgcd(21, 26) = 1.

Exemples

- pgcd(21, 14) = 7, pgcd(12, 32) = 4, pgcd(21, 26) = 1.
- $\operatorname{pgcd}(a, ka) = a$, pour tout $k \in \mathbb{Z}$ et a > 0.

Exemples

- pgcd(21, 14) = 7, pgcd(12, 32) = 4, pgcd(21, 26) = 1.
- $\operatorname{pgcd}(a, ka) = a$, pour tout $k \in \mathbb{Z}$ et a > 0.
- Cas particuliers. Pour tout a > 0:

$$\operatorname{pgcd}(a,0) = a$$
 et $\operatorname{pgcd}(a,1) = 1$.

Lemme: Algorithme d'Euclide

Lemme

Soient $a, b \in \mathbb{N}^*$. Écrivons la division euclidienne a = bq + r. Alors :

$$\operatorname{pgcd}(a,b) = \operatorname{pgcd}(b,r).$$

En fait, on a même $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(b,a-qb)$ pour tout $q \in \mathbb{Z}$. Mais pour optimiser l'algorithme d'Euclide, on applique le lemme avec q, le quotient.

Démonstration du lemme

Démonstration. Nous allons montrer que les diviseurs de a et de b sont exactement les mêmes que les diviseurs de b et r. Cela impliquera le résultat, car les plus grands diviseurs seront bien sûr les mêmes.

• Soit d un diviseur de a et de b. Alors d divise b, donc aussi bq.

Démonstration du lemme

Démonstration. Nous allons montrer que les diviseurs de a et de b sont exactement les mêmes que les diviseurs de b et r. Cela impliquera le résultat, car les plus grands diviseurs seront bien sûr les mêmes.

- Soit d un diviseur de a et de b. Alors d divise b, donc aussi bq.
- De plus, d divise a, donc d divise a bq = r.

Démonstration du lemme

Démonstration. Nous allons montrer que les diviseurs de a et de b sont exactement les mêmes que les diviseurs de b et r. Cela impliquera le résultat, car les plus grands diviseurs seront bien sûr les mêmes.

- Soit d un diviseur de a et de b. Alors d divise b, donc aussi bq.
- De plus, d divise a, donc d divise a bq = r.
- Soit d un diviseur de b et de r. Alors d divise aussi bq + r = a.

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b. Étapes de l'algorithme :

• Division de a par b: $a = bq_1 + r_1$.

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b. Étapes de l'algorithme :

- Division de a par b: $a = bq_1 + r_1$.
 - Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$.

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b. Étapes de l'algorithme :

- Division de a par b: $a = bq_1 + r_1$.
 - Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$.
 - Sinon, on continue avec b et r_1 :

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b.

- Division de a par b: $a = bq_1 + r_1$.
 - Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$.
 - Sinon, on continue avec b et r_1 :
- $b = r_1q_2 + r_2$, $pgcd(a, b) = pgcd(b, r_1) = pgcd(r_1, r_2)$.

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b.

- Division de a par b: $a = bq_1 + r_1$.
 - Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$.
 - Sinon, on continue avec b et r_1 :
- $b = r_1q_2 + r_2$, $pgcd(a, b) = pgcd(b, r_1) = pgcd(r_1, r_2)$.
- $r_1 = r_2q_3 + r_3$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_2, r_3)$.

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b.

- Division de a par b: $a = bq_1 + r_1$.
 - Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$.
 - Sinon, on continue avec b et r_1 :
- $b = r_1q_2 + r_2$, $pgcd(a, b) = pgcd(b, r_1) = pgcd(r_1, r_2)$.
- $r_1 = r_2q_3 + r_3$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_2, r_3)$.
- ...
- $r_{k-2} = r_{k-1}q_k + r_k$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_{k-1}, r_k)$.

On souhaite calculer le $\operatorname{pgcd}(a,b)$ avec $a,b\in\mathbb{N}^*$. Supposons a>b.

- Division de a par b: $a = bq_1 + r_1$.
 - Si $r_1 = 0$, alors $\operatorname{pgcd}(a, b) = b$.
 - Sinon, on continue avec b et r_1 :
- $b = r_1q_2 + r_2$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r_1) = \operatorname{pgcd}(r_1, r_2)$.
- $r_1 = r_2q_3 + r_3$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_2, r_3)$.
- . . .
- $r_{k-2} = r_{k-1}q_k + r_k$, $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_{k-1}, r_k)$.
- $r_{k-1} = r_k q_k + 0$, alors $pgcd(a, b) = pgcd(r_k, 0) = r_k$.

Conclusion : À chaque étape, $0 \le r_{i+1} < r_i$, donc l'algorithme se termine car les restes forment une suite strictement décroissante d'entiers positifs ou nuls :

$$b > r_1 > r_2 > \cdots > 0.$$

Exemple 4 : Calcul du PGCD

Calculons le pgcd(600, 124):

$$600 = 124 \times 4 + 104,$$

$$124 = 104 \times 1 + 20,$$

$$104 = 20 \times 5 + 4,$$

$$20 = 4 \times 5 + 0.$$

Ainsi:

$$pgcd(600, 124) = 4.$$

Définition et exemple

Définition

Deux entiers a et b sont premiers entre eux si pgcd(a, b) = 1.

Exemple

Pour tout $a \in \mathbb{Z}$, a et a + 1 sont premiers entre eux.

Démonstration

- Soit d un diviseur commun à a et a + 1.
- Alors d divise aussi a + 1 a, donc d divise 1.
- Ainsi, $d = \pm 1$, et le plus grand diviseur de a et a + 1 est 1.

$$\therefore \operatorname{pgcd}(a, a+1) = 1.$$

Réduction au cas de nombres premiers entre eux

Remarque

Si deux entiers a et b ne sont pas premiers entre eux, on peut se ramener à un cas équivalent en divisant par leur pgcd

Exemple Pour deux entiers quelconques $a, b \in \mathbb{Z}$, notons $d = \operatorname{pgcd}(a, b)$. On peut écrire :

$$a = a_0 d$$
 et $b = b_0 d$,

avec $a_0, b_0 \in \mathbb{Z}$ et $\operatorname{pgcd}(a_0, b_0) = 1$.

Utilité : Cette décomposition est souvent utilisée pour simplifier les calculs impliquant deux entiers.

Théorème de Bézout

Théorème de Bézout

Soient $a, b \in \mathbb{Z}$. Il existe des entiers $u, v \in \mathbb{Z}$ tels que :

$$au + bv = \operatorname{pgcd}(a, b).$$

Théorème de Bézout

Théorème de Bézout

Soient $a, b \in \mathbb{Z}$. Il existe des entiers $u, v \in \mathbb{Z}$ tels que :

$$au + bv = \operatorname{pgcd}(a, b).$$

Remarques

- La preuve découle de l'algorithme d'Euclide.
- Les entiers *u*, *v* ne sont pas uniques.
- Ils sont appelés *coefficients de Bézout* et s'obtiennent en "remontant " l'algorithme d'Euclide.

Exemple : Calcul des coefficients de Bézout

Exemple

Calculons les coefficients de Bézout pour a = 600 et b = 124. Nous reprenons les calculs pour trouver pgcd(600, 124) = 4.

Exemple : Calcul des coefficients de Bézout

Exemple

Calculons les coefficients de Bézout pour a=600 et b=124. Nous reprenons les calculs pour trouver $\operatorname{pgcd}(600,124)=4$.

Algorithme d'Euclide

$$600 = 124 \times 4 + 104,$$

$$124 = 104 \times 1 + 20,$$

$$104 = 20 \times 5 + 4,$$

$$20 = 4 \times 5 + 0.$$

Exemple : Calcul des coefficients de Bézout

remontée (droite)

$$4 = 104 - 20 \times 5,$$

$$4 = 104 - (124 - 104 \times 1) \times 5,$$

$$4 = 124 \times (-5) + 104 \times 6,$$

$$4 = 600 \times 6 + 124 \times (-29),$$

Ainsi, pour u = 6 et v = -29, on a :

$$600 \times 6 + 124 \times (-29) = 4.$$

Corollaire

Si $d \mid a$ et $d \mid b$, alors $d \mid \operatorname{pgcd}(a, b)$.

Corollaire

Si $d \mid a$ et $d \mid b$, alors $d \mid \operatorname{pgcd}(a, b)$.

Exemple

$$4 \mid 16$$
 et $4 \mid 24$ donc $4 \mid \operatorname{pgcd}(16, 24) = 8$.

Démonstration

- Par hypothèse, $d \mid au$ et $d \mid bv$.
- Donc $d \mid (au + bv)$.
- Par le théorème de Bézout, $au + bv = \operatorname{pgcd}(a, b)$.
- Ainsi, $d \mid \operatorname{pgcd}(a, b)$.

Corollaire 2 : Nombres premiers entre eux

Corollaire

Soient $a, b \in \mathbb{Z}$. a et b sont premiers entre eux si et seulement s'il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = 1$$
.

Démonstration

• **Sens** \Rightarrow : Si a et b sont premiers entre eux, alors par le théorème de Bézout, il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = \operatorname{pgcd}(a, b) = 1.$$

Démonstration

• **Sens** \Rightarrow : Si a et b sont premiers entre eux, alors par le théorème de Bézout, il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = \operatorname{pgcd}(a, b) = 1.$$

- **Sens** \Leftarrow : Supposons qu'il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1.
 - Comme $pgcd(a, b) \mid a$, on a $pgcd(a, b) \mid au$.
 - De même, $pgcd(a, b) \mid bv$.
 - Ainsi, pgcd(a, b) | (au + bv) = 1.
 - Donc pgcd(a, b) = 1, ce qui montre que a et b sont premiers entre eux.

Lemme de Gauss

Lemme de Gauss

Soient
$$a,b,c\in\mathbb{Z}$$
. Si $a\mid bc$ et $\operatorname{pgcd}(a,b)=1$, alors :

$$a \mid c$$
.

Lemme de Gauss

Lemme de Gauss

Soient $a,b,c\in\mathbb{Z}$. Si $a\mid bc$ et pgcd(a,b)=1, alors :

 $a \mid c$.

Exemple

Si 4 | $7 \cdot c$ et comme 4 et 7 sont premiers entre eux (pgcd(4,7) = 1), alors :

4 | c.

Hypothèse: pgcd(a, b) = 1, donc il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = 1$$
.

Hypothèse: pgcd(a, b) = 1, donc il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = 1$$
.

En multipliant cette égalité par c, on obtient :

$$acu + bcv = c$$
.

Hypothèse : pgcd(a, b) = 1, donc il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = 1$$
.

En multipliant cette égalité par c, on obtient :

$$acu + bcv = c$$
.

- Par hypothèse, $a \mid bcv$ car $a \mid bc$,
- De même, a | acu.

Hypothèse: pgcd(a, b) = 1, donc il existe $u, v \in \mathbb{Z}$ tels que :

$$au + bv = 1$$
.

En multipliant cette égalité par c, on obtient :

$$acu + bcv = c$$
.

- Par hypothèse, a | bcv car a | bc,
- De même, a | acu.

Puisque $a \mid acu$ et $a \mid bcv$, donc $a \mid (acu + bcv)$ et par suite

Équations ax + by = c

Proposition

Considérons l'équation :

$$ax + by = c$$
 (E)

où $a, b, c \in \mathbb{Z}$.

Équations ax + by = c

Proposition

Considérons l'équation :

$$ax + by = c$$
 (E)

où $a, b, c \in \mathbb{Z}$.

• L'équation (E) possède des solutions $(x, y) \in \mathbb{Z}^2$ si et seulement si $pgcd(a, b) \mid c$.

Équations ax + by = c

Proposition

Considérons l'équation :

$$ax + by = c$$
 (E)

où $a, b, c \in \mathbb{Z}$.

- **1** L'équation (E) possède des solutions (x, y) $\in \mathbb{Z}^2$ si et seulement si $pgcd(a, b) \mid c$.
- ② Si $pgcd(a, b) \mid c$, alors il existe une infinité de solutions entières qui sont exactement de la forme :

$$(x,y)=(x_0+\alpha k,y_0+\beta k),$$

où $x_0, y_0, \alpha, \beta \in \mathbb{Z}$ sont fixés, et $k \in \mathbb{Z}$.

4 D > 4 A > 4 B > 4 B > B 900

Première étape : Y a-t-il des solutions ? Utilisons l'algorithme d'Euclide pour calculer pgcd(161, 368).

$$368 = 161 \times 2 + 46,$$

 $161 = 46 \times 3 + 23,$
 $46 = 23 \times 2 + 0.$

Donc, pgcd(161, 368) = 23. Comme $115 = 5 \times 23$, on a bien $pgcd(161, 368) \mid 115$. Par le théorème de Bézout, l'équation (E) admet des solutions entières.

Deuxième étape : Trouver une solution particulière. On utilise la remontée de l'algorithme d'Euclide pour calculer les coefficients de Bézout.

$$23 = 161 - 3 \times 46,$$

$$23 = 161 - 3 \times (368 - 2 \times 161),$$

$$23 = 7 \times 161 - 3 \times 368.$$

Donc, une solution particulière est $x_0 = 7$ et $y_0 = -3$.

Troisième étape: Recherche de toutes les solutions Trouver toutes les solutions entières de 161x + 368y = 115. Soit $(x, y) \in \mathbb{Z}^2$ une solution de (E).

Troisième étape: Recherche de toutes les solutions Trouver toutes les solutions entières de 161x + 368y = 115. Soit $(x, y) \in \mathbb{Z}^2$ une solution de (E).

Méthode: Partons de deux solutions (x_0, y_0) et (x, y). On a :

$$161x + 368y = 115$$
 et $161x_0 + 368y_0 = 115$.

Troisième étape: Recherche de toutes les solutions Trouver toutes les solutions entières de 161x + 368y = 115. Soit $(x, y) \in \mathbb{Z}^2$ une solution de (E).

Méthode : Partons de deux solutions (x_0, y_0) et (x, y). On a :

$$161x + 368y = 115$$
 et $161x_0 + 368y_0 = 115$.

En soustrayant les deux égalités :

$$161(x - x_0) + 368(y - y_0) = 0.$$

Factorisons par le pgcd(161, 368) = 23:

$$23 \cdot 7 \cdot (x - x_0) + 23 \cdot 16 \cdot (y - y_0) = 0.$$

Factorisons par le pgcd(161, 368) = 23:

$$23 \cdot 7 \cdot (x - x_0) + 23 \cdot 16 \cdot (y - y_0) = 0.$$

En divisant par 23 :

$$7(x-x_0) = -16(y-y_0).$$
 (*)

Factorisons par le pgcd(161, 368) = 23:

$$23 \cdot 7 \cdot (x - x_0) + 23 \cdot 16 \cdot (y - y_0) = 0.$$

En divisant par 23 :

$$7(x-x_0) = -16(y-y_0).$$
 (*)

Comme pgcd(7,16) = 1, en appliquant le lemme de Gauss, on aura $7 \mid (y - y_0)$.

Factorisons par le pgcd(161, 368) = 23:

$$23 \cdot 7 \cdot (x - x_0) + 23 \cdot 16 \cdot (y - y_0) = 0.$$

En divisant par 23:

$$7(x-x_0) = -16(y-y_0).$$
 (*)

Comme pgcd(7,16)=1, en appliquant le lemme de Gauss, on aura $7\mid (y-y_0)$. Il existe donc $k\in\mathbb{Z}$ tel que :

$$y - y_0 = 7k$$
.

Substitution dans (*). En remplaçant $y - y_0 = 7k$ dans (*), on obtient :

$$7(x-x_0)=-16\cdot 7k.$$

Substitution dans (*). En remplaçant $y - y_0 = 7k$ dans (*), on obtient :

$$7(x-x_0)=-16\cdot 7k.$$

En simplifiant par 7 :

$$x-x_0=-16k.$$

Substitution dans (*). En remplaçant $y - y_0 = 7k$ dans (*), on obtient :

$$7(x-x_0)=-16\cdot 7k.$$

En simplifiant par 7:

$$x - x_0 = -16k$$
.

Solutions générales : Les solutions entières sont donc de la forme :

$$(x, y) = (x_0 - 16k, y_0 + 7k), k \in \mathbb{Z}.$$

Autrement dit , puisque $(x_0, y_0) = (35, -16)$, alors

$$(x,y) = (35-16k, -15+7k), k \in \mathbb{Z}.$$

Vérification : Prenez une valeur de k au hasard et vérifiez que (x, y) satisfait 161x + 368y = 115.

Vérification : Prenez une valeur de k au hasard et vérifiez que (x, y)satisfait 161x + 368y = 115.

Conclusion : Toutes les solutions de 161x + 368y = 115 sont données par

$$(x,y) = (35-16k, -15+7k), k \in \mathbb{Z}.$$

Congruences : Définition et propriétés

Définition

Soit n > 2 un entier. On dit que a est **congru** à b modulo n, si n divise b - a. On note alors :

$$a \equiv b \pmod{n}$$
.

Une autre formulation équivalente est :

$$a \equiv b \pmod{n} \iff \exists k \in \mathbb{Z}, \ a = b + kn.$$

Remarque

$$n \mid a \iff a \equiv 0 \pmod{n}$$
.

- La relation " congru modulo n " est une **relation d'équivalence** :
 - Réflexivité : $a \equiv a \pmod{n}$,
 - Symétrie : Si $a \equiv b \pmod{n}$, alors $b \equiv a \pmod{n}$,
 - Transitivité : Si $a \equiv b \pmod{n}$ et $b \equiv c \pmod{n}$, alors $a \equiv c \pmod{n}$.

• Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a+c\equiv b+d\ (\mathrm{mod}\ n).$$

• Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a + c \equiv b + d \pmod{n}$$
.

• Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a \cdot c \equiv b \cdot d \pmod{n}$$
.

• Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a + c \equiv b + d \pmod{n}$$
.

• Si $a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$, alors

$$a \cdot c \equiv b \cdot d \pmod{n}$$
.

• Si $a \equiv b \pmod{n}$, alors pour tout k > 0:

$$a^k \equiv b^k \pmod{n}$$
.

Exemples des congruences

• $15 \equiv 1 \pmod{7}$,

Exemples des congruences

- $15 \equiv 1 \pmod{7}$,
- $72 \equiv 2 \pmod{7}$,
- $3 \equiv -11 \pmod{7}$,
- $5x + 8 \equiv 3 \pmod{5}$ pour tout $x \in \mathbb{Z}$.

Équation de congruence : $ax \equiv b \pmod{n}$

Proposition

Soient $a \in \mathbb{Z}^*$, $b \in \mathbb{Z}$, et n > 2. Considérons l'équation $ax \equiv b \pmod{n}$, où $x \in \mathbb{Z}$.

1 Il existe des solutions si et seulement si $pgcd(a, n) \mid b$.

Équation de congruence : $ax \equiv b \pmod{n}$

Proposition

Soient $a \in \mathbb{Z}^*$, $b \in \mathbb{Z}$, et n > 2. Considérons l'équation $ax \equiv b \pmod{n}$, où $x \in \mathbb{Z}$.

- **1** Il existe des solutions si et seulement si $pgcd(a, n) \mid b$.
- 2 Les solutions sont de la forme :

$$x = x_0 + \ell \cdot \frac{n}{\operatorname{pgcd}(a, n)}, \quad \ell \in \mathbb{Z},$$

où x_0 est une solution particulière. Il existe donc pgcd(a, n) classes de solutions.

Étape 1 : Vérification de l'existence des solutions.

• Calculons pgcd(9, 24) avec l'algorithme d'Euclide :

$$24 = 2 \times 9 + 6$$

$$9 = 1 \times 6 + 3$$

$$6 = 2 \times 3 + 0$$
.

Étape 1 : Vérification de l'existence des solutions.

• Calculons pgcd(9, 24) avec l'algorithme d'Euclide :

$$24 = 2 \times 9 + 6$$

$$9 = 1 \times 6 + 3$$

$$6 = 2 \times 3 + 0$$
.

• Ainsi, pgcd(9, 24) = 3, et comme $3 \mid 6$, l'équation admet des solutions.

Étape 2 : Réduction de l'équation.

• L'équation $9x \equiv 6 \pmod{24}$ équivaut à :

$$9x - 24k = 6$$
, ou encore $3x - 8k = 2$.

Étape 2 : Réduction de l'équation.

• L'équation $9x \equiv 6 \pmod{24}$ équivaut à :

$$9x - 24k = 6$$
, ou encore $3x - 8k = 2$.

En divisant par le pgcd, on simplifie l'équation.

Étape 3 : Trouver une solution particulière.

• Par inspection, une solution particulière est $x_0 = 6$, $k_0 = 2$.

Étape 4 : Écrire les solutions générales.

• Si (x, k) est une solution, alors par soustraction :

$$3(x-x_0)-8(k-k_0)=0.$$

Étape 4 : Écrire les solutions générales.

• Si (x, k) est une solution, alors par soustraction :

$$3(x-x_0)-8(k-k_0)=0.$$

• D'après le lemme de Gauss, 8 $3(x - x_0)$ et comme pgcd(3, 8) = 1 alors

$$x = x_0 + 8\ell$$
, $\ell \in \mathbb{Z}$.

Étape 4 : Écrire les solutions générales.

• Si (x, k) est une solution, alors par soustraction :

$$3(x-x_0)-8(k-k_0)=0.$$

• D'après le lemme de Gauss, 8 $3(x - x_0)$ et comme pgcd(3, 8) = 1 alors

$$x = x_0 + 8\ell, \quad \ell \in \mathbb{Z}.$$

• Les solutions sont donc de la forme $x = 6 + 8\ell$.

Étape 5 : Regrouper les solutions en classes modulo 24.

• Les solutions $x = 6 + 8\ell$ peuvent être exprimées sous forme de 3 classes modulo 24

$$x_1 = 6 + 24m$$
, $x_2 = 14 + 24m$, $x_3 = 22 + 24m$, $m \in \mathbb{Z}$.

Autrement dit

$$\bar{x_1} = \bar{6}, \, \bar{x_2} = \bar{14}, \, \bar{x_3} = \bar{22}.$$

Petit théorème de Fermat

Théorème: Petit théorème de Fermat

Si p est un nombre premier et $a \in \mathbb{Z}$, alors :

$$a^p \equiv a \pmod{p}$$
.

Petit théorème de Fermat

Théorème: Petit théorème de Fermat

Si p est un nombre premier et $a \in \mathbb{Z}$, alors :

$$a^p \equiv a \pmod{p}$$
.

Corollaire

Si p ne divise pas a, alors :

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemme

Si
$$1 \le k \le p-1$$
, alors :

$$\binom{p}{k} \equiv 0 \; (\bmod \; p).$$

Lemme

Si $1 \le k \le p-1$, alors :

$$\binom{p}{k} \equiv 0 \; (\bmod \; p).$$

Démonstration

• Par définition :

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

Lemme

Si $1 \le k \le p-1$, alors :

$$\binom{p}{k} \equiv 0 \; (\bmod \; p).$$

Démonstration

Par définition :

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

• Ainsi, $p! = k!(p-k)!\binom{p}{k}$, et donc $p \mid \binom{p}{k}$ si $p \mid p!$.

Lemme

Si $1 \le k \le p-1$, alors :

$$\binom{p}{k} \equiv 0 \; (\bmod \; p).$$

Démonstration

Par définition :

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

- Ainsi, $p! = k!(p-k)!\binom{p}{k}$, et donc $p \mid \binom{p}{k}$ si $p \mid p!$.
- Comme $1 \le k \le p-1$, k! et (p-k)! ne contiennent aucun facteur divisible par p.

Lemme

Si $1 \le k \le p-1$, alors :

$$\binom{p}{k} \equiv 0 \; (\bmod \; p).$$

Démonstration

Par définition :

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

- Ainsi, $p! = k!(p-k)!\binom{p}{k}$, et donc $p \mid \binom{p}{k}$ si $p \mid p!$.
- Comme $1 \le k \le p-1$, k! et (p-k)! ne contiennent aucun facteur divisible par p.
- Par le lemme d'Euclide, on conclut que $p \mid \binom{p}{k}$, d'où $\binom{p}{k} \equiv 0 \pmod{p}$.

Preuve : Par récurrence sur a > 0.

• Cas de base : Si a = 0, alors :

$$0^p \equiv 0 \; (\bmod \; p).$$

Preuve : Par récurrence sur a > 0.

• Cas de base : Si a = 0, alors :

$$0^p \equiv 0 \pmod{p}$$
.

• Hypothèse de récurrence Supposons que pour un a > 0, on ait :

$$a^p \equiv a \pmod{p}$$
.

Preuve : Par récurrence sur a > 0.

• Cas de base : Si a = 0, alors :

$$0^p \equiv 0 \; (\bmod \; p).$$

• Hypothèse de récurrence Supposons que pour un a > 0, on ait :

$$a^p \equiv a \pmod{p}$$
.

• Étape de récurrence Calculons $(a+1)^p$ à l'aide de la formule du binôme de Newton :

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \cdots + \binom{p}{p-1}a + 1.$$

Preuve : Par récurrence sur a > 0.

• Cas de base : Si a = 0, alors :

$$0^p \equiv 0 \; (\bmod \; p).$$

• Hypothèse de récurrence Supposons que pour un a > 0, on ait :

$$a^p \equiv a \pmod{p}$$
.

• Étape de récurrence Calculons $(a+1)^p$ à l'aide de la formule du binôme de Newton :

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \cdots + \binom{p}{p-1}a + 1.$$

• Par le lemme précédent, $\binom{p}{k} \equiv 0 \pmod{p}$ pour $1 \le k \le p-1$, donc :

$$(a+1)^p \equiv a^p + 1 \pmod{p}.$$

Preuve : Par récurrence sur a > 0.

• Cas de base : Si a = 0, alors :

$$0^p \equiv 0 \; (\bmod \; p).$$

• Hypothèse de récurrence Supposons que pour un a > 0, on ait :

$$a^p \equiv a \pmod{p}$$
.

• Étape de récurrence Calculons $(a+1)^p$ à l'aide de la formule du binôme de Newton :

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \cdots + \binom{p}{p-1}a + 1.$$

• Par le lemme précédent, $\binom{p}{k} \equiv 0 \pmod{p}$ pour $1 \le k \le p-1$, donc :

$$(a+1)^p \equiv a^p + 1 \pmod{p}.$$

Conclusion du Petit théorème de Fermat

Conclusion Par récurrence, nous avons prouvé que pour tout $a \in \mathbb{Z}$ et tout nombre premier p:

$$a^p \equiv a \pmod{p}$$
.

Conclusion du Petit théorème de Fermat

Conclusion Par récurrence, nous avons prouvé que pour tout $a \in \mathbb{Z}$ et tout nombre premier p:

$$a^p \equiv a \pmod{p}$$
.

Corollaire: Si $p \nmid a$, alors:

$$a^{p-1} \equiv 1 \pmod{p}.$$