Introduction

Reading:

"The world of database systems" chapter of the textbook.

Weekly schedule

- Two hours of lecture recording.
 - Watch beforehand.
- One hour of lectorial
 - Participate discussions.
- Two hours of practical class.
- Read the main text and references (details on the next slide).

Main text

- J. Ullman and J. Widom. A First Course in Database Systems. 3rd. Ed. Pearson Education.
- E-book and hard copies available via the Library.
 - <u>http://www1.rmit.edu.au/library</u> → search for "A first course in database systems"

Communication

- Course Homepage:
 - <u>http://canvas.rmit.edu.au</u> → Database Concepts ISYS1057.
- First point of communication. Visit regularly!
 - Announcements
 - Discussion forum Ask questions here! Read discussions here!
- Emails:
 - xiuzhen.zhang@rmit.edu.au (Xiuzhen (Jenny) Zhang, lecturer)

4

Communication ...

What essential information is missing in the following email from a student?

Good Afternoon,

I would like to know if there is any inconvenience in changing my group session. I am currently after lecture session and I would like to assist to session on Thursday from 12:30 to 2:30.

George

Communication ...

Essential Information to include in an email:

- Only use your RMIT student email
- Subject line: course code + description
- Content: your student No, your name, course code, and tute group (if needed)

Assessments

- Assessment 1: Assignment. 10 marks. Due in Week 5.
- Assessment 2: In-class exercise. 30 marks. Due in Week 8.
- Assessment 3: Assignment. 20 marks. Due in Week 11.
- Assessment 4: Project (milestone 1 due in Week 5). 40 marks. Due in Week 13.

The world of data

Data is generated every second, all over the world.

- The Web: homepages, Facebook Twitter,
- Mobiles and Sensors,
- Scientific and medical data: satellites,
- Enterprise information systems.

8

Data management

- Management of data, of different types, is behind almost everything you do on the Web.
 - Google: Web pages, images, maps
 - Amazon: books and other products
 - Facebook: homepage, images, friendship, posts
 - RMIT: library, student administration, course management, timetable.
 - Digital libraries: Lynda.com

Data Management.

The database system

 A database system is for efficiently and effectively managing and using data.

11

Database system dimensions

- Users, roles and security
- Databases
- A database programming language
- Transactions and concurrency control

Let us look at each topic in details.

Users

- There are multiple users for a database and they have different roles and privileges:
 - Database Administrator (DBA): full control of the database
 --- create and define database schemas, grant privileges
 to other users.
 - Database developers: manage/control his/her own database.
 - End users/data operators: only retrieve or update information in some parts of the database.

Users ...

Databases

A database is a collection of data managed by a Database Management System (DBMS).

Schema + Data files.

Databases: data models

- A data model is a language for describing data or information. The description generally consists of three parts:
 - Structure of the data, or data structure.
 - Operations on the data.
 - Constraints on the data
- Popular data models:
 - The relational model for structured data, including object-relational extensions.
 - The semi-structured data model, including XML and related standards.

Databases: Schema

- A description of data in the database. The description can use data models at different levels.
 - The Entity Relationship (ER) model.
 - The Relational model.
- Constraints for data integrity.

The Schema -- example

Real world:

- Information: Student records should have student ID, name, contact phone number, and address.
- Constraints:
 - Each student should be identified by Student No Each student record must have the student No information.
 - No two students can have the same student ID --Each student should have a unique student ID.

The Schema --- example

ER model:

Relation schema:
 Student(<u>studentNo</u>, name, phone, address)

19

Databases: data

- Data files on hard disks of computers.
 - The files are managed by a DBMS (on top of some file system).
- How to access the data?
 - Via the programming language (SQL) provided by the DBMS.
 - Data (and the meta-data) can be read, retrieved and updated.

Databases: Metadata

- Metadata (sometimes called data dictionary) is data describing the database, which may include:
 - Schema definition
 - Index to speed up query processing
 - Data types
 - Constraints on data
 - User information and privileges

Database programming Language --- SQL

- SQL -- Structured Query Language --- is not only a query language:
 - Data Definition Language (DDL)
 - Define database schema
 - Data Query Language (DQL)
 - Query the database to extract information
 - Data Manipulation Language (DML)
 - Update the database insertion/deletion/update.

SQL ...

- Database programming language SQL is declarative --you tell the system what problem to solve.
 - Short programs.
 - System optimization.
- Most other programming languages are procedural --you tell the system how to solve the problem.
 - Long programs.
 - User optimization.

SQL ...

- Given a list of records for students (student ID, name, address...) enrolled in ISYS1055/1057, calculate how many students are there in total?
- In SQL:
 - select count(studentID) from Student;
- In C: read files, data structure, loop structure, output.
 - Example program on the next slide.

```
#include <stdio.h>
#include <stdlib.h>
int main(void)
   FILE *fp;
   int i, isquared;
   /* open the file */
   fp = fopen("results.dat", "r");
   if (fp == NULL) {
      printf("I couldn't open results.dat for reading.\n");
      exit(0);
   while (fscanf(fp, "%d,%d\n", &i, &isquared) == 2)
      printf("i: %d, isquared: %d\n", i, isquared);
   /* close the file */
   fclose(fp);
   return 0;
```

Transactions and Concurrency Control

Many users operate the same database concurrently:

- Many students are booking tute classes on a timetable database.
- Many people book flight tickets online.

Transactions

- Operations on databases (DDL/DML/DQL) are organized into transactions – an atomic unit that must finish in whole or nothing happens at all. No partial effect on the database.
 - A transaction comprises several operations of READ and WRITE on databases.
- The execution of transactions should be durable --- the effect of any completed transaction is permanent, even if system failure happens.
 - By way of logging.

The ACID properties of transactions

- Atomicity the all-or-nothing execution of transactions
- Consistency a transaction brings a database from one consistent state to another. In other words, meeting consistency constraints like balance can not be negative after a transaction.
- Isolation -- each transaction must appear to execute as if no other transactions are executing at the same time.
- Durability effect of a transaction is must never be lost, once transaction complete.

Transaction processing

Concurrency control

Concurrency control allows multiple users
 --- transactions from each user are executed in "isolation".

Transactions: Commit and Rollback

- The "Commit" and "Rollback" command in SQL.
- Example:

```
select* from movies; // show content of the Movie table.

delete from movies where mvID=2; // updates to the Movie table.

select* from movies; // show content of the Movie table.

rollback; // rollback the changes.
```

Starting the SQL Developer application starts a new session. When the application
is killed (not when you close a connection), if there are updates to the database, you
are asked whether to "commit the changes" or "rollback changes".

The DBMS

A DBMS typically has three parts:

- Storage management: how secondary storage (hard disks) is used effectively to store and access data.
- Query processing: how to execute (SQL) queries
- Transaction management: how to support transactions with the ACID properties.

DBMS Examples

33

What will you learn in this course?

- Basic database concepts
- Design of databases
 - Design of the ER diagram
 - Design of the relational database schema
- Database programming
 - SQL programming

Software

SQLite studio. Download and install on your machine.

https://sqlitestudio.pl

 Tutors will help you set up these software in your first practical class in Week 2.

Summary

- Databases and database schema
- DBMS vs. file systems
 - Components of a DBMS
- Database systems and relational database systems
 - Sometimes databases and database systems are used interchangeably.
- The database programming language
 - DDL, DQL, DML
- Transactions and the ACID properties