Amdahl's Law, Comparing Performance

Amdahl's Law

Speedup due to enhancement E:

```
Speedup(E) = ExTime w/o E Performance w/ E

ExTime w/ E Performance w/o E
```

Suppose that enhancement **E** accelerates a fraction **Fraction**_{enhanced} of the task by a factor of **Speedup**_{enhanced} and the remainder of the task is unaffected.

What are the new execution time and the overall speedup due to the enhancement?

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

Amdahl's Law

```
ExTime<sub>new</sub> = ExTime<sub>old</sub> *

\[ \begin{align*} (1 - Fraction_{enhanced}) + Fraction_{enhanced} \\ Speedup_{enhanced} \end{align*} \]

Speedup<sub>overall</sub> = \frac{ExTime_{old}}{ExTime_{new}} = \frac{1}{(1 - Fraction_{enhanced}) + Fraction_{enhanced}} \]

\[ \begin{align*} Speedup_{enhanced} \\ Speedup_{enhanced} \]
```

Example of Amdahl's Law

Floating point instructions improved to run 2X; but only 10% of the time was spent on these instructions

```
ExTime<sub>new</sub> =

Speedup<sub>overall</sub> =

Computer Org. & Machine Language Dr. Castañeda 4
```

Example of Amdahl's Law

Floating point instructions improved to run 2X; but only 10% of the time was spent on these instructions

$$\begin{aligned} \text{ExTime}_{\text{new}} &= \text{ExTime}_{\text{old}} \ * \ (0.9 + 0.1/2) \\ &= 0.95 \ * \ \text{ExTime}_{\text{old}} \end{aligned}$$

$$\text{Speedup}_{\text{overall}} &= \frac{\text{ExTime}_{\text{old}}}{\text{ExTime}_{\text{new}}} = \frac{1}{0.95} = 1.053$$

The new machine is 5.3% faster for this mix of instructions

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

5

Comparing/Summarizing Performance

* **Arithmetic mean** – average of execution time that tracks total execution time

* *Harmonic mean* – average of execution expressed as a rate that tracks total execution time

$$\frac{n}{\sum_{i=1}^{n} 1/\text{time}_{i}}$$

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

6

Comparing/Summarizing Performance

* Weighted arithmetic mean – uses a weighting factor in attaining the arithmetic mean

```
\sum_{i=1}^{n} \textbf{weight}_i ~ \textbf{time}_i ~ \text{where } \textbf{weight}_i \text{ is the relative} \\ \text{frequency of program i in the} \\ \text{workload of } \textbf{n} \text{ programs}
```

* Weighted harmonic mean – uses a weighting factor to attain performance as a rate of the harmonic mean

$$\frac{1}{\sum\limits_{i=1}^{n} \mathsf{weight}_i \; / \; \mathsf{time}_i}$$

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

7

Comparing/Summarizing Performance

* **Normalized Geometric mean** – execution times normalized to a reference machine and then taken as an average

$$\left[\prod_{i=1}^{n} \mathbf{execution} \ \mathbf{time} \ \mathbf{ratio_{i}}\right]^{1/n}$$

where **execution time ratio**_i is the execution time of program **i** after it has been normalized to a reference machine

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

8

Comparing/Summarizing Performance

In order to obtain equal time weightings, $\mathbf{w_i}$, on a machine with $\mathtt{time_i}$ we can use the following formula:

$$w_{i} = \frac{1}{\text{time}_{i} * \sum_{k=1}^{n} 1/\text{time}_{k}}$$

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

9

Comparing/Summarizing Performance

		Computer A	Computer B	Computer C	
	P1	30	20	75	
	P2	47	25	60	
	P3	78	95	55	
	P4	90	80	50	
	P5	130	40	100	
AM		75.00	52.00	68.00	
HM		57.98	36.22	63.95	

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

10

Comparing/Summarizing Performance

	Computer A	Computer B	Computer C
	•	•	•
P1	30	20	75
P2	47	25	60
P3	78	95	55
P4	90	80	50
P5	130	40	100
WAM	58.00	36.24	63.94
WHM	45.11	27.64	60.80

Note: The "weights" used to calculate the WAM and WHM were obtained by using the formula on slide 9. These respective weights are shown in the next slide.

Computer Org. & Machine Language COSC 2325

Dr. Castañeda

11

Comparing/Summarizing Performance

	Computer A	Computer B	Compu	ter C
P1 P2 P3 P4 P5	30 47 78 90 130	20 25 95 80 40	75 60 55 50 100	
w1 w2 w3 w4 w5	0.3867 0.2468 0.1487 0.1289 0.0892	0.3623 0.2899 0.0763 0.0906 0.1812	0.1705 0.2131 0.2325 0.2558 0.1279	weights calculated by formula on slide 9
Computer Org. & Machine Language COSC 2325		Dr. Castañeda		12

