Métodos Matemáticos da Física 2019/20 Teste 1 27/03/2020 auto-avaliação

Esta correção do teste inclui as pontuações das respostas em valores percentuais, isto é, somando 100 pontos percentuais em cada questão. A nota obtém-se somando as classificações das questões de acordo com os valores:

- 1) 10 valores
- 2) 5 valores
- 3) 5 valores

Métodos Matemáticos da Física

2019/20

Teste 1 - auto-avaliação

27-03-2020

1.a) Encontre pelo método de separação de variáveis funções u(t,x) que satisfazem a equação de difusão, e funções u(t,x) que satisfazem a equação de Schrödinger,

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} , \qquad \frac{\partial u}{\partial t} = \frac{i \hbar}{2m} \frac{\partial^2 u}{\partial x^2} .$$

b) Determine a solução da equação de difusão que obedece à condição inicial u(0, x) = y(x), onde

$$y(x) = a \cos(kx) + b \sin(2kx)$$
, $a, b, k \in \mathbb{R}$.

- c) Determine a solução da equação de Schrödinger que obedece à condição inicial u(0,x)=y(x), com y(x) definida acima.
- d) Caracterize a dependência no tempo das soluções da equação de difusão e da equação de Schrödinger encontradas nas alíneas b) e c).
- **2.a)** Determine os valores próprios e as funções próprias, y(x), do operador segunda derivada, d^2/dx^2 , definidas no domínio, $x \in [-\ell, \ell]$, e sujeitas às condições fronteira, $y(\ell) = y'(-\ell)$, $y'(\ell) = y'(-\ell)$.
- b) Explique se os valores próprios são ou não degenerados.
- **3.** Num espaço vectorial bidimensional os vectores da base têm os seguintes produtos internos:

$$\langle e_1|e_1\rangle = 2$$
, $\langle e_1|e_2\rangle = 0$, $\langle e_2|e_2\rangle = 3$.

a) Os produtos internos de um dado vector, $u = \sum_n u_n e_n$, com os vectores da base são dados por:

$$\langle e_n|u\rangle = \frac{1}{n+1}$$
, $n=1,2$.

Determine o vector u e as suas componentes, u_n .

b) Calcule os produtos internos, $\langle u|u\rangle$, $\langle v|v\rangle$, $\langle u|v\rangle$, $\langle v|u\rangle$, onde $v=e_1+i\,e_2$.

```
Metodos Matemáticos da Física - 2019/20
                 teste 1 27/3/2020
               \frac{2n}{2t} = 2^2 \frac{3^2n}{2n^2}, \quad \frac{2n}{2t} = \frac{i\hbar}{2m} \frac{3^2n}{3n^2}
             u(t,x) = f(t) \sim (x)
5 . In = f'(t) Na)
              22/2 = f(t) N (x)
5 · difusat f'(t) \sim (\alpha) = \alpha^2 f(t) \sim (\alpha)

f(t) \sim (\alpha) = \alpha^2 f(t) \sim (\alpha)

f(t) \sim (\alpha)

f(t) \sim (\alpha)

f(t) \sim (\alpha)
2 · \begin{cases} v(\alpha) = \lambda v(\pi) \\ f'(t) = \lambda^2 A f(t) \end{cases}

1 · \lambda_t = \lambda^2 A
        V(x1 = e, e + c2 e - 42
 5 \cdot f(t) = e^{x^2 \lambda t} = e^{xy_1 t}
          u(t,x) = e^{xyzt} N(x) = e^{xyzt} \left( e_1 e^{\mu x} + c_2 e^{-\mu x} \right)
5. Lehrödinger fitt = it N'(n)
       Soul(a) = 2 N(x)
 2. |f'(t)| = |A_t f(t)|

2. |A_t| = |A_t f(t)|
       V(n) = c_1 = hx + c_2 = hx
\int (t) = e^{i\frac{\pi}{2n}} h^2 t
5. M(t, x) = e it n2t (c, e t c2e - ux)
```

25 b) $M(0,x) = a \cos(kx) + b \sin(2kx)$ a, b, k ETR $\mathcal{U}(0, x) = \sqrt{1}(x) + \sqrt{2}(x)$ $v_1(x) = a \cos(kx)$ $v_1''(x) = -k^2 v_1(x)$ Apr 2 = k2) 5 . $u_1(t,n) = e^{-x^2k^2t}$ e' solvep de ey. difuses e $M_1(0,X) = N_1(X)$ 3. $N_2(n) = b \sin(2kn)$ $N_2^{H}(x) = -4k^2 N_2(n)$ (1=1=-4k2) · · μlnep de eg. difusas μ ll₂(2, <math>χ) = ν₂(χ) 1/2(t/x) = e -42/kt N2(x) 2 . Entas, a condiço inicial M(0, N) = Vy (N) + V2 (N) condut a $M(t,x) = M_1(t,x) + M_2(t,x)$ prique a eq. de difusat e' linear $M(t, x) = ae \frac{-x^2k^2t}{\cos(kx)} + be \frac{-4x^2k^2t}{\sin(2kx)}$ 5+5 . 15 () Schrödinger $=\frac{i\hbar}{2m}k^2t$ $M_1(t,n) = 2\frac{i\hbar}{2m}4k^2t$ $M_2(t,n) = 2\frac{i\hbar}{2m}4k^2t$ $N_2(n)$ solnep em My (0, x) = Ny (x) 5 a 4 (0,7)= N2 (4) utt, x/= a e 2m cos(kx) + b e it 4k2t

zm (2kx)

sen (2kx) 5+5 • m(t, n) $\xrightarrow{t \to \infty}$ 0 difusat mlt(n) sulante, posiódica de fregnencia $w = \frac{t_1}{2m} k^2$ 25d). 5 •

85 a)

(2)
$$x \in [-l, l]$$
,

(3) $y''(x) = \lambda y(x)$ função próprios

 $y(l) = y(-l)$
 $y'(l) = y'(-l)$

(4) $y'(l) = y'(-l)$

(5) $y'(x) = \mu (c_1 e^{\mu x} - c_2 e^{-\mu x})$

(6) $y'(l) = y'(-l)$

(7) $y'(l) = y'(-l)$

(8) $y'(l) = y'(-l)$

(9) $y'(l) = y'(-l)$

(10) $y'(l) = y'(-l)$

(11) $y'(l) = y'(-l)$

(12) $y'(l) = y'(-l)$

(13) $y'(l) = y'(-l)$

(14) $y'(l) = y'(-l)$

(15) $y'(l) = y'(-l)$

(16) $y'(l) = y'(-l)$

(17) $y'(l) = y'(-l)$

(18) $y'(l) = y(-l)$

(19) $y'(l) = y(-l)$

(19) $y'(l) = y(-l)$

(10) $y'(l) = y(-l)$

(11) $y'(l) = y(-l)$

(12) $y'(l) = y(-l)$

(13) $y'(l) = y(-l)$

(14) $y'(l) = y(-l)$

(15) $y'(l) = y(-l)$

(16) $y'(l) = y(-l)$

(17) $y'(l) = y(-l)$

(18) $y'(l) = y(-l)$

(19) $y'(l) = y(-l)$

(19) $y'(l) = y(-l)$

(10) $y'(l) = y(-l)$

(11) $y'(l) = y(-l)$

(12) $y'(l) = y(-l)$

(13) $y'(l) = y(-l)$

(14) $y'(l) = y(-l)$

(15) $y'(l) = y(-l)$

(16) $y'(l) = y(-l)$

(17) $y'(l) = y(-l)$

(18) $y'(l) = y(-l)$

(19) $y'(l) = y(-l)$

(10) $y'(l) = y'(-l)$

(

funça propria, y(1) = 1.

(3)
$$(e_{1}|e_{1}) = 2$$
, $(e_{1}|e_{2}) = 0$, $(e_{2}|e_{2}) = 3$
 $M = \sum_{m} u_{m} e_{m}$, $(e_{m}|u) = \frac{1}{m+1}$
 $(e_{1}|w) = (e_{1}|\sum_{m} u_{m} e_{m}) = \sum_{m} u_{m} (e_{1}|e_{m}) = u_{1} (e_{1}|e_{1})$
 $(e_{1}) = (e_{1}|u) = u_{m} (e_{m}|e_{m})$ from $e_{m} e_{m} = u_{1} (e_{1}|e_{1})$
 $u_{m} = \frac{(e_{m}|u)}{(e_{1}|e_{m})}$
10 $u_{1} = \frac{1/2}{(e_{1}|e_{1})} = \frac{1}{4}$
10 $u_{2} = \frac{4/3}{(e_{2}|e_{2})} = \frac{1}{9}$
10 $u_{3} = u_{1} e_{3} = u_{1} e_{3}$
10 $u_{4} = u_{1} e_{4} + u_{3} e_{2} = \frac{1}{4} e_{1} + \frac{1}{9} e_{2}$
 $u_{5} = u_{1} e_{1} = u_{1} e_{2}$
10 $u_{5} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3}$
10 $u_{5} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3}$
10 $u_{5} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3}$
10 $u_{5} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3}$
10 $u_{5} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3} = u_{1} e_{3}$
10 $u_{5} = u_{1} e_{3} =$

(V/N) = (N/N)* como e' desido