AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ENG. PHYSICS & MATH. DEPARTMENT Electronics and Communications Engineering Program Junior Students.

Mid Term Examination

IVIId Terrii Examination			
Spring 2022	Exam Time: 60 minutes.		
PHM212s: Complex, Special Functions and Numerical Analysis			
The Exam Consists of <u>THREE Questions</u> in <u>THREE Pages</u> . Answer All Questions	Total Marks: 20 Marks		
General Instructions:	•		
Please read the examination paper carefully.			

- Be sure to solve each question in its paper (you can use the back).
- Programmable & Graphical Calculators are NOT Allowed.

Question no. 1 (6 marks)		
a) Use the Gamma function to evaluate the following integral:	b) Evaluate $\int_{-\infty}^{\infty} \frac{x^4}{1+x^6} dx \text{ using the Gamma}$	
$\int_{0}^{1} x^{4/3} \ln^{3} x \ dx$ [3 Marks]	function. [3 Marks]	

<u>Question no. 2 (7 marks)</u>	
a) Find and classify the singularities of the	B) Solve in terms of Bessel functions the following
following differential equation:	differential equation:
	2 "
$(x-x^2)^2y''+3 x y'+(1-x^2)y=0$	$x^2y'' + xy' + (x^3 - 4)y = 0$
[3 Marks]	[4 Marks]

Question no. 3 (7 marks)

Find two linearly independent solutions in powers of " \boldsymbol{x} " for the following differential equations:

$$(3-x^2)y''-xy'+9y=0$$

Best Wishes, Dr. Makram Roshdy, Dr. Betty Nagy.