Teorema di Cauchy

enunciato

Se f(x) e g(x) sono funzioni:

- continue nell'intervallo chiuso e limitato [a, b]
- derivabili nei punti interni dell'intervallo (a, b)
- e inoltre $g'(c) \neq 0$ in ogni punto interno dell'intervallo (a, b)

allora esiste almeno un punto c interno all'intervallo (a, b) tale che:

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

il teorema è detto degli **incrementi finiti** e si può enunciare anche dicendo: se le funzioni f(x) e g(x) verificano le ipotesi indicate, in un opportuno punto \mathbf{c} dell'intervallo (a,b) il rapporto tra le rispettive derivate in \mathbf{c} è uguale al rapporto tra gli **incrementi** delle funzioni calcolate agli estremi a e b dell'intervallo [a,b]

dimostrazione

Consideriamo la funzione ausiliaria $\varphi(x)$ tale che $\varphi(x) = [f(b) - f(a)] \cdot g(x) - [g(b) - g(a)] \cdot f(x)$

Osserviamo che:

- f(x) e g(x) sono per ipotesi funzioni continue in [a,b] e derivabili nei punti interni di (a,b)
- [f(b) f(a)] e [g(b) g(a)] sono costanti e quindi sono continue e derivabili in tutto \mathcal{R}

Verifichiamo che $\varphi(x)$ soddisfa le tre ipotesi del teorema di Rolle:

- 1. $\varphi(x)$ è continua in [a, b] perché è una combinazione lineare di funzioni continue in [a, b]
- 2. $\varphi(x)$ è derivabile nei punti interni di (a,b) perché è una combinazione lineare di funzioni derivabili in (a,b)
- 3. calcoliamo $\varphi(a)$ e $\varphi(b)$ cioè:

$$\varphi(a) = [f(b) - f(a)] \cdot g(a) - [g(b) - g(a)] \cdot f(a) = f(b) \cdot g(a) - f(a) \cdot g(b)$$

$$\varphi(b) = [f(b) - f(a)] \cdot g(a) - [g(b) - g(a)] \cdot f(a) = f(b) \cdot g(a) - f(a) \cdot g(b)$$
quindi $\varphi(a) = \varphi(b)$

Applichiamo il teorema di Rolle alla funzione $\varphi(x)$ si ha che:	esiste almeno un punto c interno all'intervallo (a, b) tale che $oldsymbol{arphi}'(c)=0$
Calcoliamo la derivata prima di $\varphi(x)$:	$\varphi'(x) = [f(b) - f(a)] \cdot g'(x) - [g(b) - g(a)] \cdot f'(x)$
Calcoliamo la derivata di $\varphi(x)$ nel punto c e poniamola uguale a zero:	$\varphi'(c) = [f(b) - f(a)] \cdot g'(c) - [g(b) - g(a)] \cdot f'(c) = 0$
Il che significa:	$[f(b) - f(a)] \cdot g'(c) - [g(b) - g(a)] \cdot f'(c) = 0$
Portiamo il primo termine al secondo membro e cambiamo il segno ad entrambi i membri:	$[g(b) - g(a)] \cdot f'(c) = [f(b) - f(a)] \cdot g'(c)$
Dividendo entrambi i membri per: $[g(b) - g(a)] \cdot g'(c)$ si ottiene la tesi del teorema.	$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$