

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КАФЕДРА СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ

Лабораторная работа №5

по дисциплине: «Методы машинного обучения»

Студент	Ваганов Даниил Дмитриевич	
Группа	ИУ5-24М	
Название	Обучение на основе временных различий	
Студент		Ваганов Д.Д.
Преподаватель	подпись, дата	фамилия, и.о. Гапанюк Ю.Е.
	подпись, дата	фамилия, и.о.
Оценка		

ЗАДАНИЕ

1. На основе рассмотренного на лекции примера реализуйте следующие алгоритмы: SARSA Q-обучение Двойное Q-обучение для любой среды обучения с подкреплением (кроме рассмотренной на лекции среды Тоу Text / Frozen Lake) из библиотеки Gym (или аналогичной библиотеки).

Выполнение лабораторной работы

Для реализации была выбрана среда Taxi-v3 из библиотеки Gym.

По документации: 500 состояний – 5*5 карта, 4 возможных локации точки выхода, 5 состояний пассажира (4 выхода и в такси).

6 действий – 4 движения и взять/высадить пассажира.

Из 500 состояний в рамках 1 итерации достижимо 400 – исключаются состояния, где пассажир там же, где и здание.

Программа:

```
import gym
import numpy as np
import matplotlib.pyplot as plt
from pprint import pprint
import pandas as pd
from gym.envs.toy_text.taxi import TaxiEnv
def print_full(x):
  pd.set_option('display.max_rows', len(x))
 print(x)
  pd.reset_option('display.max_rows')
''' Класс, эмулирующий работу агента '''
class PolicyIterationAgent:
 def __init__(self, env):
    self.env = env
   # Пространство состояний
    self.observation_dim = 500
    # Массив действий в соответствии с документацией self.actions_variants =
np.array([0,1,2,3,4,5])
    # Задание стратегии (политики)
    self.policy_probs = np.full((self.observation_dim, len(self.actions_variants)),
0.16666666) # Начальные значения для v(s)
    self.state_values = np.zeros(shape=(self.observation_dim))
    # Начальные значения параметров
    self.maxNumberOfIterations = 1000
    self.theta=1e-6
    self.gamma=0.99
  ''' Вывод матриц стратегии '''
  def print_policy(self):
    '''Вывод матриц стратегии '''
    if self.policy_probs[0][0] != 0.16666666: #np.set_printoptions(threshold=np.inf) x
= TaxiEnv()
      pos = {0:'R', 1:'G',2:'Y', 3:'B', 4:'T'}
      print('''
+----+
|R: | : :G|
1 : 1 : 1
1::::
| \ | \ | \ | \ | \ | \ |
```

```
|Y| : |B: |
      print('cocтoяние: x,y,пассажир,назначение')
      print('Стратегия:')
      for i in range(len(self.policy_probs)):
        t_x, t_y, passeng, dest = x.decode(i)
        print((t_x,t_y,pos[passeng],pos[dest]), self.policy_probs[i])
#np.set_printoptions(threshold=False)
   else:
      print('Стратегия:')
      pprint(self.policy_probs)
  def policy_evaluation(self):
    '''Оценивание стратегии'''
    # Предыдущее значение функции ценности valueFunctionVector = self.state_values
    for iterations in range(self.maxNumberOfIterations):
      # Новое значение функции ценности
      valueFunctionVectorNextIteration=np.zeros(shape=(self.observation_dim))
      # Цикл по состояниям
      for state in range(self.observation_dim):
        # Вероятности действий
        action probabilities = self.policy probs[state] # Цикл по действиям
        outerSum=0
        for action, prob in enumerate(action_probabilities):
          innerSum=0
          # Цикл по вероятностям действий
          for probability, next_state, reward, isTerminalState in
self.env.P[state][action]:
innerSum=innerSum+probability*(reward+self.gamma*self.state_values[next_state])
            outerSum=outerSum+self.policy probs[state][action]*innerSum
            valueFunctionVectorNextIteration[state]=outerSum
            if(np.max(np.abs(valueFunctionVectorNextIteration-
valueFunctionVector))<self.theta):</pre>
              # Проверка сходимости алгоритма
              valueFunctionVector=valueFunctionVectorNextIteration
            valueFunctionVector=valueFunctionVectorNextIteration
          return valueFunctionVector
  def policy_improvement(self):
    '''Улучшение стратегии'''
    qvaluesMatrix=np.zeros((self.observation_dim, len(self.actions_variants)))
    improvedPolicy=np.zeros((self.observation_dim, len(self.actions_variants))) # Цикл
по состояниям
    for state in range(self.observation_dim):
      for action in range(len(self.actions_variants)):
        for probability, next_state, reward, isTerminalState in
self.env.P[state][action]:
qvaluesMatrix[state,action]=qvaluesMatrix[state,action]+probability*(reward+self.gamma
*self.state_values[next_state])
```

```
# Находим лучшие индексы
        bestActionIndex=np.where(qvaluesMatrix[state,:]==np.max(qvaluesMatrix
[state,:]))
        # Обновление стратегии
        improvedPolicy[state,bestActionIndex]=1/np.size(bestActionIndex)
    return improvedPolicy
  def policy_iteration(self, cnt):
    '''Основная реализация алгоритма '''
    policy_stable = False
    for i in range(1, cnt+1):
      self.state_values = self.policy_evaluation()
      self.policy_probs = self.policy_improvement()
    print(f'Алгоритм выполнился за {i} шагов.')
  def play_agent(agent):
    env2 = gym.make('Taxi-v3', render_mode='human')
    state = env2.reset()[0]
    done = False
    while not done:
      p = agent.policy_probs[state]
      if isinstance(p, np.ndarray):
        action = np.random.choice(len(agent.actions_variants), p=p)
      else:
        action = p
      next_state, reward, terminated, truncated, _ = env2.step(action)
      env2.render()
      state = next state
      if terminated or truncated:
        done = True
def main():
 # Создание среды
 env = gym.make('Taxi-v3')
 env.reset()
 # Обучение агента
  agent = PolicyIterationAgent(env)
  agent.print policy()
  agent.policy_iteration(1000)
  agent.print_policy()
# Проигрывание сцены для обученного агента
  play_agent(agent)
if __name__ == '__main__':
 main()
```

Результаты выполнения

Награда по этапам SARSA

Q-матрица SARSA

```
Вывод Q-матрицы для алгоритма
                              SARSA
                0.
[[ 0.
                             0.
                                          0.
                                                       0.
 [ -6.59510594 -1.96007596
                             -6.99278993
                                          -3.69658561
                                                       7.74183855
  -12.12066264]
 [ 2.13952829
                1.89041573
                             1.13819875
                                          3.13294
                                                       13.03717386
   -4.96973917]
  4.91965448 14.53492432
                             4.65312868
                                         -1.16372383
                                                      -2.90301868
   -5.06439372]
 [ -8.56123083 -4.78752598 -8.43412478 -8.38525565 -13.8541778
  -13.16174878]
```

Награды по этапам Q-обучение

Q-матрица Q-обучения

Награды по этапам dQ-обучение

Конечное состояние

Метод SARSA оказался самым быстрым, 2000 итераций в сек. Против 1900 и 1700 итераций в Q и dQ обучении. Вероятно, это связано с $\max()$ в Q и появлением промахов кэша в dQ.