Кузнец Антон 26/05/2023

Задание 1

С $\frac{W}{2}$ до W окно изменяется линейно за время T. Средняя пропускная способность $X=\frac{3}{4}W$. $w(t)=\frac{W}{2}+\alpha t,\ \ t\in[0,T].$

$$\frac{W}{2} + \alpha T = W$$

$$T = \frac{W}{2\alpha} = \frac{3 \cdot W \cdot 4}{4 \cdot 3 \cdot 2 \cdot \alpha} = \frac{2X}{3\alpha}$$

Задание 2

a.
$$\frac{4S}{R} > \frac{S}{R} + RTT > \frac{2S}{R}$$

После отправки первого сегмента мы будем честно ждать RTT, прежде чем отправить 2 сегмента.

Заметим так же, что после отправки двух сегментов будет небольшое время простоя, когда мы ничего не отправляем, т.к. $\frac{S}{R}+RTT>\frac{2S}{R}$. Простой составит $RTT-\frac{S}{R}$. Дальше сегменты будут отправляться подряд без простоев между отправками. Далее оставшиеся 12 пакетов будут оптправляться без задержек. Итого суммарное время: $\frac{14S}{R}+4RTT$.

6. $\frac{S}{R} + RTT > \frac{4S}{R}$ Аналогично предыдущему пункту, где была задержка перед отправкой 4-го сегмента, теперь добавится простой перед отправкой 8-го сегмента. Простой составит $RTT - \frac{3S}{R}$. Итого суммарное время: $\frac{11S}{R} + 5RTT$.

в. $\frac{S}{R>RTT}$. Простой будет только после отправки первого сегмента. Остальные 14 пакетов будут отпраляться подряд. Итого суммарное время: $\frac{15S}{R}+3RTT$.

Задание 3

Окно перегрузки будет увеличиваться с $\frac{W}{2}$ до W за $\log_{1+\alpha} 2$ итераций. За это время мы успеем отправить $\frac{W}{2}(\sum_{i=0}^{\log_{1+\alpha} 2} (1+\alpha)^i) = \frac{W}{2} \frac{(1+\alpha)^{(\log_{1+\alpha} 2)+1}-1}{\alpha} = \frac{W(2\alpha+1)}{2\alpha}$.

$$L = \frac{1}{\frac{W(2\alpha+1)}{2\alpha}} = \frac{2\alpha}{W(2\alpha+1)}$$