Metrische Räume

Metrischer Raum: Sei X eine Menge. Eine Metrik auf X ist eine Abbildung $d: X \times X \to [0, \infty]$ mit

- 1. $\forall x, y \in X : d(x, y) = d(y, x)$
- 2. $\forall x, y, z \in X : d(x, z) \le d(x, y) + d(y, z)$
- 3. $\forall x \in X : d(x, x) = 0$
- 4. $\forall x, y \in X : d(x, y) = 0 \Rightarrow x = y$

Das Paar (X, d) ist ein metrischer Raum.

Cauchy-Folge: Sei (X, d) ein metrischer Raum. Eine Folge $(a_n)_{n \in \mathbb{N}}$ in X heißt Cauchy-Folge

$$\Leftrightarrow \forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \geq N : d(a_n, a_m) < \varepsilon$$

offen, abgeschlossen: Sei (X, d) ein metrischer Raum.

 $U \subseteq X$ heißt offen

$$\Leftrightarrow \forall x \in U : \exists s > 0 : B(x,s) \subseteq U.$$

 $A \subseteq X$ heißt abgeschlossen

$$\Leftrightarrow X \setminus A$$
 offen.

Satz: Sei (X, d) ein metrischer Raum. $A \subseteq X$ abgeschlossen

$$\Leftrightarrow \forall (a_n)_{n\in\mathbb{N}} \text{ in } A: a_n \to a \text{ in } X \Rightarrow x \in A$$

vollständig: Sei (X, d) ein metrischer Raum. X heißt vollständig

 \Leftrightarrow jede Cauchy-Folge in X konvergiert.

Stetigkeit

Stetigkeit: Seien (X,d) und (Y,e) metrische Räume, $f:X\to Y,\ a\in X.$ Dann ist f stetig in a

$$\Leftrightarrow \forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in X : d(a, x) < \delta \Rightarrow e(f(a), f(x)) < \varepsilon.$$

$$\Leftrightarrow \forall \varepsilon > 0 : \exists \delta > 0 : f(B_X(a, \delta)) \subseteq B_Y(f(a), \varepsilon).$$

Satz: Zwischenwertsatz Seien $a, b \in \mathbb{R}, a < b, f : [a, b] \to \mathbb{R}$ stetig. Dann gilt:

$$\forall A \in \mathbb{R} : f(a) \leq A \leq f(b) \text{ oder } f(b) \leq A \leq f(a) \Rightarrow \exists x \in [a,b] : f(x) = A$$

Folgenkompakt: Sei (X, d) ein metrischer Raum. X heißt folgenkompakt

 \Leftrightarrow Jede Folge in X besitzt eine konvergente Teilfolge.

Lipschitz-Stetigkeit und gleichmäßige Stetigkeit: Seien (X,d) und (Y,e) metrische Räume, $f:X\to Y,\,a\in X.$ Dann heißt f gleichmäßig stetig

$$\Leftrightarrow \forall \varepsilon > 0 : \exists \delta > 0 : \forall x, x' \in X : d(x, x') < \delta \Rightarrow e(f(x), f(x')) < \varepsilon.$$

Lipschitz-stetig

$$\Leftrightarrow \exists L > 0 : \forall x, x' \in X : e(f(x), f(x')) < L \cdot d(x, x').$$

Differentation

Differenzierbar: Sei $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$, $x \in D$. f heißt in x differezierbar

$$\Leftrightarrow \exists f'(x) := \lim_{\xi \to x, \xi \in D \setminus \{x\}} \frac{f(\xi) - f(x)}{\xi - x}.$$

Satz: von Rolle Sei $a < b, f : [a, b] \to \mathbb{R}$ stetig, f(a) = f(b) = 0, f in (a, b) differenzierbar. Dann gilt:

$$\exists x \in (a,b) : f'(x) = 0.$$

Satz: Mittelwertsatz Sei $a < b, f : [a, b] \to \mathbb{R}$ stetig, f in (a, b) differenzierbar. Dann gilt:

$$\exists x \in (a,b) : f'(x) = \frac{f(b) - f(a)}{b - a}.$$

Topologie

Inneres, Abschluß, Rand: Sei (X, d) ein metrischer Raum. $Y \subseteq X$. Dann ist das Innere von Y gleich

$$\dot{Y}(=\mathrm{int}(Y)) = \{x \in Y \mid \exists \varepsilon > 0 : B(x,\varepsilon) \subseteq Y\}.$$

der Abschluss von Y gleich

$$\overline{Y}(=\operatorname{cl}(Y)) = \{x \in X \mid \forall r > 0 : B(x,r) \cap Y \neq \emptyset\}.$$

der Rand von Y gleich

$$\partial(Y) = \overline{Y} \setminus \dot{Y}.$$

Kompaktheit: X heißt kompakt

 \Leftrightarrow zu jeder offenen Überdeckung $\mathcal S$ von X gibt es $\mathcal F\subseteq\mathcal S,\,\mathcal F$ endlich, sodass $\bigcup\mathcal F=X.$

Satz: Kompaktheit und Folgenkompaktheit Sei (X,d) ein metrischer Raum. Dann sind äquivalent:

- 1. X ist kompakt.
- $2. \ X$ ist folgenkompakt (i.e. jede Folge besitzt eine konvergente Teilfolge).