

the coordinates after basis transformation

then
$$X = (u_1, u_1) \cdot u_1 = (u_1, u_2)$$
 $= \sum_{i=1}^{d} (u_i^T x) \cdot u_i = (u_1, u_2) \cdot (u_2^T x)$

we want $x_{km} = \sum_{i=1}^{m} \beta_{ki} \cdot u_i$

Sit $x_{km} = \sum_{i=1}^{m} \beta_{ki} \cdot u_i$

Port 1 $x_{km} = \sum_{i=1}^{m} \beta_{ki} \cdot u_i$
 $x_{km} = \beta_{k$

$$\Rightarrow f_{\times}(x) = \frac{1}{\sqrt{2\pi}6} \exp\left\{-\frac{1}{2}\left(\frac{x \cdot M}{6}\right)^{2}\right\}$$

-> what will happen if we Standardize
$$X$$
? $Z = \frac{X-M}{6}$

$$\left(\begin{array}{c}
\text{of course,} \\
\text{Var[X]} = 0
\end{array}\right)$$

$$\Rightarrow P(Z \leq Z)$$

$$= P(X \leq 62+M)$$

$$\Rightarrow \begin{cases} f_{Z}(z) = \frac{dP(Z \leq z)}{dz} \\ = 6 \cdot f_{X}(6z+M) \\ = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}z^{2}\right\}$$

1) Consider [XI,..., Xn ~ N(0,1) XI,..., Xn mutually independent

$$P_{\chi_1,...,\chi_n}$$
 $(\chi_1,...,\chi_n) = \frac{1}{1} \frac{1}{\sqrt{2\kappa}} \exp\left(-\frac{\chi_1^2}{2}\right)$

=
$$(2\pi)^{-\frac{\Lambda}{2}} \exp\left(-\frac{1}{2} \times^{T} \times\right)$$

from theorem,
$$\exists B \in \mathbb{R}^{n \times n}$$
 invertible, s.t. $Z = B^{-1}(X - M)$

$$Z \sim \mathcal{N}(Q, I_n)$$

$$\Rightarrow P_{X}(X_{1},...,X_{n}) \xrightarrow{Z = B^{-1}(X - M)} P_{Z}(Z_{1},...,Z_{n}) \cdot \left| de + \left(\frac{\partial Z}{\partial X}\right) \right|$$

$$= (2\pi)^{-\frac{n}{2}} exp \left\{ -\frac{1}{2} (X - M)^{T} (BB^{T})^{-1} (X - M)^{T} (BB^{T})^{T} (BB^{T})$$

$$= (2\pi)^{-\frac{n}{2}} \left| \det(BBT) \right|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x-\mu)^{T} (BBT)^{-1} (x-\mu)^{S} \right\}$$

$$\text{Moreover, since } Z = \mathbb{E}[(x-\mu)(x-\mu)^{T}]$$

$$= \mathbb{E}[BZZ^{T}B^{T}]$$

$$= B \mathbb{E}[ZZ^{T}]B^{T}$$

$$= BB^{T}$$

$$= BB^{T}$$

$$\Rightarrow P_{X}(x_{1}...,x_{n}) = (2\pi)^{-\frac{n}{2}} \left| \det(Z) \right|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (x-\mu)^{T} Z^{T} (x-\mu)^{S} \right\}$$

if
$$P_{X}(X_{1},...,X_{m}) \equiv C$$
 (contour graph)
then $(X-M)^{T} E^{T}(X-M) = C'$ holds for some C'

Assume |2| >0

then
$$\mathbb{Z} = \mathbb{Q} \wedge \mathbb{Q}^{T}$$
, $\wedge > 0$ (since \mathbb{Z} symmetric, PD)

$$\Rightarrow (X-M)^{T} \mathbb{Z}^{-1} (X-M)$$

$$= (X-M)^{T} \mathbb{Q} \wedge \mathbb{Q}^{-1} \mathbb{Q}^{T} (X-M)$$

$$= [\mathbb{Q}^{T}(X-M)]^{T} \wedge \mathbb{Q}^{T} [\mathbb{Q}^{T}(X-M)]$$

$$= \left[\left(Q \Lambda^{-\frac{1}{2}} \right)^{T} \left(X - M \right) \right]^{T} \left[\left(Q \Lambda^{-\frac{1}{2}} \right)^{T} \left(X - M \right) \right] = C'$$
define $P = \left(Q \Lambda^{-\frac{1}{2}} \right)^{T} \left(X - M \right)$ $M \longrightarrow \text{expectation vector}$

$$\boxed{P \text{ Tagram}}$$

