תרגילים:

ו. קבעו את הסימן של הביטוי הנמצא בדטרמיננט:

$$a_{14}a_{31}a_{23}a_{42}a_{65}a_{56}$$
 .\(\text{\Sigma}\) $a_{32}a_{14}a_{43}a_{66}a_{51}a_{25}$.\(\text{\K}\) $a_{n1}a_{n-1,2}a_{n-2,3}...a_{1n}$.\(\text{\Sigma}\)

יהיה חיובי $a_{31}a_{1i}a_{24}a_{47}a_{7k}a_{63}a_{55}$ על היה חיובי אור ז. בדטרמיננט מסדר 7.

5. תכונות של דטרמיננטים

בסעיף זה נביא תכונות של הדטרמיננט המקלות במקרים מסויימים על חישובו.

משפט 1: אם כל האיברים בשורה (עמודה) אחת של מטריצה הם אפסים, אזי הדטרמיננט שלה שווה לאפס.

הוכחה: בכל אחד מהמחוברים $a_{1i_1}a_{2i_2}\cdots a_{ni_n}$ של הדטרמיננט מופיע איבר משורת (עמודת) האפט ולכן כל הסכום שווה לאפס.

משפט 2: דטרמיננט של מטריצה משולשת עליונה (תחתונה) שווה למכפלת האיברים האלכסוניים.

הוכחה: תהי $A=(a_{ij})_{ij=1}^n$ מטריצה משולשת עליונה, כלומר כל האיברים הוכחה: תהי $A=(a_{ij})_{ij=1}^n$ מרחת לאלכסון הראשי שווים לאפס. $a_{ij}=0$ כאשר $a_{ij}=0$ מכאן נובע בנוסחה מתחת לאלכסון הראשי שווים לאפס. $a_{ij}=0$ מופיע כגורם איבר $a_{ij}=0$ שבכל המחוברים פרט ל $a_{ij}=0$ משווים לאפס. כיוון ש $a_{ij}=0$ ולכן הם שווים לאפס. כיוון ש $a_{ij}=0$ משולשת המשפט עבור מטריצה משולשת תחתונה.

משפט 3: תהינה A ו-B שתי מטריצות מסדר השונות זו מזו רק באיברים B -ו A משפט 3: תהינה גינה אוי $a_{ij}=b_{ij}$; $i\neq k$, i,j=1,2,...,n בלבד, כלומר גינות בשורה אוי

(1)
$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} + b_{kn} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

הוכחה: נוכיח את (1) באינדוקציה. לדטרמיננטים מסדר 1, הנוסחה (1) מיידית. נניח שהיא נכונה עבור דטרמיננטים מסדר (n – 1).