# Investigating Methods of Controlling Algebraic Connectivity

### Part of a Three Project Series

#### **CS 229R: THIS PAPER**

1 Investigating
Methods of
Controlling Algebraic
Connectivity

#### **CS 286**

Dictating Algebraic Connectivity as a Topology in Networked Multi-Agent Systems

#### **EXTENSION**

Using Multi-Path
Routing to Identify
Malicious Agents in
Consensus

### Introduction

#### **Project Motivation & Problem Statement**

Can we enable a system engineer or real-time supervisor to constrain the algebraic connectivity (i.e. Fiedler value) of a mobile multi-agent system by augmenting a flock's network topology?



#### **Project Motivation & Problem Statement**

**Instance:** Given an undirected graph G = (V, E) and a non-negative threshold  $t_1$  and  $t_2$ .

**Question:** Is there a subset  $B \subseteq E$  such that the graph H = (V, E - B) satisfies  $t_1 \le \lambda_2(H) \le t_2$ .



$$\lambda_2 = 5.00$$

$$\lambda_2 = 0.38$$

### **Baseline Results**

#### **Line Formation**



#### **Wedge Formation**



#### **Circle Formation**





Takeaways: A less connected graph converges slower (obviously). Which edges are chosen can significantly affect convergence time.

### Configuration and Result Space Size

#### **Line Formation**



#### **Wedge Formation**



#### **Circle Formation**





### **Control Over Connectivity Reduction**



### **Experimental Studies**

### Deterministic Algorithm

#### Removes an Edge with Min/Max Fiedler Impact

#### **Input:**

G Original Graph

 $\lambda_2'$  Target Fiedler

#### **Output:**

 $\lambda_2(G')$  Reached Fiedler

G' Augmented Graph

#### Flags:

Allow Disconnect
One/Two Sided Bound

```
Function CreateGraph(g, target, runs) do
   return CutEdges(g, target)
end
```

```
Function FindBestEdgeRemoval(graph, edge_set, f_current, target)
do
    options = []
    foreach (u,v) in edge_set do
        f_next, g_next = self.graph_without_edge(graph,u,v)
       // Consider all edges that bring us closer to the target
        if abs(f_next - target) > abs(f_current - target) do
           options.append((f_next, g_next, (u,v)))
       end
    end
    // Can use min for SmallStep or max for BigStep Variation
    dist_to_target = [abs(f - target) for (f,g) in graphs]
    return min(dist_to_target, key=lambda o: o[0], default=null)
end
Function CutEdges(g, target) do
    edge_set = g_edges_as_list(g)
    f_current = CalcFiedler(g)
   while f_current > target do
        res = FindBestEdgeRemoval(g, edge_set, f_current, target)
        if res == null do
           // No valid edges remain to remove
           break
        end
        // Remove edge, update graph, continue
        f_next, g_next, edge = res
        edge_set.remove(edge)
        f_current, g = f_next, g_next
    end
    return f_current, g
end
```

### Results













### Algorithms

**BASELINE** 

**Exhaustive Search** 

**FIRST ROUND** 

**Deterministic-Fiedler** 

SECOND ROUND SECOND ROUND

**Deterministic-Leverage** 

**Deterministic-Gradient** 

**CHOSEN** 

**Randomized-Fiedler** 

### Results













#### \*~11/27 TESTS (N >= 5)

### Results

#### \*LOWERED AMPLIFICATION







**Decision Tree is Expo(E) - Proposed Algorithms are Poly(E)** 

Takeaways: In our simulations, all algorithms had similar performance.

Randomized tends to perform best.

### Randomized Algorithm

#### Removes a Random Valid Edge

```
Input: G Original Graph \lambda_2' Target Fiedler r Amplification Runs Output: \lambda_2(G') Reached Fiedler G' Augmented Graph
```

#### Flags:

Allow Disconnect
One/Two Sided Bound

```
Function CreateGraph(g, target, runs) do
   graphs = []
   For i in range(runs):
       graphs += CutEdges(g, target)
   dist_to_target = [abs(f - target) for (f,g) in graphs]
   return min(dist_to_target, key=function o: o[0])
end
```

```
Function FindValidEdgeRemoval(graph, edge_set, f_current, target)
    edges_considering = copy_of(edge_set)
    while len(edges_considering) do
        u,v = random_edge(edge_set)
        f_next, g_next = self.graph_without_edge(graph,u,v)
        // Take edge if it brings us closer to the target
        if abs(f_next - target) > abs(f_current - target) do
            return f_next, g_next, (u,v)
        end
        edges_considering.remove((u,v))
    end
   // If no edge brought us closer, return null
    return null
Function CutEdges(g, target) do
    edge_set = g_edges_as_list(g)
    f_current = CalcFiedler(g)
    while f_current > target do
        res = FindValidEdgeRemoval(g, edge_set, f_current, target)
        if res == null do
           // No valid edges remain to remove
           break
        end
        // Remove edge, update graph, continue
        f_next, g_next, edge = res
        edge_set.remove(edge)
        f_current, g = f_next, g_next
    end
    return f_current, g
end
```

### Maximum Algebraic Connectivity Augmentation

Damon Mosk-Aoyama. 2008. Maximum algebraic connectivity augmentation is

**Instance:** Given an undirected graph G = (V, E), a non-negative integer k, and a non-negative threshold t.

**Question:** Is there a subset  $A \subseteq E^C$  of size  $|A| \le k$  such that the graph  $H = (V, E \cup A)$  satisfies  $\lambda_2(H) \ge t$ .

- NP:  $\lambda_2(H) \ge t$  verifiable in polynomial time.
- NP-Hard: Reduction from 3-colorability.

### A Harder Version of Our Problem

**Instance:** Given an undirected graph G = (V, E), a subset  $A \subseteq E$ , a nonnegative integer k, and a non-negative threshold  $t_1$  and  $t_2$ .

**Question:** Is there a subset  $B \subseteq (E-A)$  of size  $|B| \ge k$  such that the graph H = (V, E-B) satisfies  $t_1 \le \lambda_2(H) \le t_2$ .

- **NP:**  $\lambda_2(H) \ge t$ ,  $B \subseteq E$ , and  $|B| \ge k$  verifiable in polynomial time.
- ✓ NP-Hard: Reduction from the "maximum algebraic connectivity augmentation problem".

### **Future Works**

- Is the original question we proposed NP-Hard?
- What about reducing weights on graphs?
- What about optimizing the number of removed edges to meet the threshold?
- Can we split a graph into separate components with desired Fiedler values (same or different)?

### Networking and Robotic Applications

**Problem:** Can we enable a system engineer or real-time supervisor to constrain the algebraic connectivity (i.e. Fiedler value) of a mobile multi-agent system by augmenting a flock's network topology?

**Solution:** Selecting and maintaining a subset of edges in a graph as to dictate the final graph's algebraic connectivity (i.e. Fiedler value).

**ENVIRONMENT & LIMITATIONS** 

Reducing
Transmission Noice or
Network Traffic Per
Time Unit

**NETWORK EFFICIENCY** 

More Efficient
Information Distribution
Through Broadcasting
(Rather than Routing)

**CONSENSUS & RESILIENCE** 

Controlling the Speed of Consensus or Identifying Malicious Agents
Through Multi Path
Routing

### Continuing This Line of Work

#### CS 229R: THIS PAPER

InvestigatingMethods ofControlling AlgebraicConnectivity

#### **CS 286**

Dictating Algebraic Connectivity as a Topology in Networked Multi-Agent Systems

#### **EXTENSION**

Using Multi-Path
Routing to Identify
Malicious Agents in
Consensus



## Thank You!

**Any Questions?**