Linear Probing, hash function: h(k,i)= ((5k + 3) mod 8 + i) mod 8

Insert 41: h(41,0) = 0 -> insert to index 0

Insert 30: h(30,0) = 1 -> insert to index 1

Insert 74: $h(74,0) = 5 \rightarrow \text{insert to index 5}$

Insert 55: h(55,0) = 6 -> insert to index 6

Insert 68: h(68,0) = 7 -> insert to index 7

Insert 39: h(39,0) = 6 (occupied), h(39,1)(collision) = 7 (occupied), h(39,2)(collision)=0 (occupied),

h(39,3)(collision) = 1 (occupied), h(39,4)(collision) = 2 -> insert to index 2

Insert 64: $h(64,0) = 3 \rightarrow insert to index 3$

Insert 72: h(72,0) = 3 (occupied), h(72,1)(collision) = 4 -> insert to index 4

Index	Element
0	41
1	30
2	39
3	64
4	72
5	74
6	55
7	68

Quadratic Probing, hash function: $h(k,i)=(((3k+1) \mod 8) + i^2) \mod 8$

Insert 19: $h(19,0) = 0 \rightarrow insert to index 0$

Insert 29: h(29,0) = 2 -> insert to index 2

Insert 16: h(16,0) = 3 -> insert to index 3

Insert 26: $h(26,0) = 5 \rightarrow \text{insert to index 5}$

Insert 14: h(14,0) = 1 -> insert to index 1

Insert 24: h(24,0) = 3(occupied), h(24,1) = 0(occupied), h(24,2) = 1(occupied), h(24,3) = 6 -> insert 24 to index 6

Insert 13: h(13,0) = 2(occupied), h(13,1) = 3(occupied), h(13,2) = 0(occupied), h(13,3) = 0(occupied)

1(occupied), h(13,4) = 6(occupied), h(13,5) = 7 -> insert to index 7

Insert 27: h(27,0) = 0(occupied), h(27,1) = 1(occupied), h(27,2) = 6(occupied), h(27,3) = 7(occupied), h(27,4) = 4 -> insert to index 4

Index	Element
0	19
1	14
2	29
3	16
4	27
5	26
6	24
7	13

Double Hashing, hash function: $h(k,i) = (((3*k) \mod 8)+i*(((5*k+3) \mod 7)+1)) \mod 8$ Insert 30: $h(30,0) = 2 \rightarrow insert$ to index 2 Insert 14: h(14,0) = 2(occupied), h(14,1) = 6 -> insert to index 6

Insert 40: h(40,0) = 0 -> insert to index 0

Insert 36: $h(36,0) = 4 \rightarrow insert to index 4$

Insert 56: h(56,0) = 0(occupied), h(56,1) = 4(occupied), h(56,2) = 0(occupied), h(56,3) = 4(infinite)

loop), resize the table.

New hash function: $h(k,i) = (((3*k) \mod 8)+i*(((5*k+3) \mod 7)+1)) \mod 16$

Insert 30: $h(30,0) = 2 \rightarrow insert to index 2$

Insert 14: h(14,0) = 2(occupied), h(14,1) = 6 -> insert to index 6

Insert 40: $h(40,0) = 0 \rightarrow insert to index 0$

Insert 36: h(36,0) = 4 -> insert to index 4

Insert 56: h(56,0) = 0(occupied), h(56,1) = 4(occupied), h(56,2) = 8 -> insert to index 8

Insert 75: h(75,0) = 1 -> insert to index 1

Insert 49: $h(49,0) = 3 \rightarrow insert to index 3$

Insert 50: h(50,0) = 6(occupied), h(50,1) = 8(occupied), h(50,2) = 10 -> insert to index 10

Index	Element
0	40
1	75
2	30
3	49
4	36
5	-
6	14
7	-
8	56
9	-
10	50
11	-
12	-
13	-
14	-
15	-

Cuckoo Hashing, hash function: (3*k +1) mod 7 for table 1, (floor(5*k /2) + 3) mod 7 for table 2

Insert 10: h1(10) = 3, insert to index 3 in table 1

Insert 22: h1(22) = 4, insert to index 4 in table 1

Insert 24: h1(24) = 3, 10 is already at 3, replace 10 with 24, h2(10) = 0, insert 10 to index 0 in table 2

Insert 17: h1(17) = 3, 24 is already at 3, replace 24 with 17, h2(24) = 0, replace 10 with 24, h1(10) = 3, replace 17 with 10, h2(17) = 3, insert 17 to index 3 in table 2

Insert 85: h1(85) = 4, 22 is already at 4, replace 22 with 85, h2(22) = 2, insert 22 to index 2 in table 2

Insert 23: h1(23) = 0, insert to 0 in table1

Insert 12: h1(12) = 2, insert to 2 in table1

Insert 46: h1(46) = 6, insert to 6 in table 1

Index	0	1	2	3	4	5	6
	_			_		_	

Table 1	23	-	12	10	85	-	46
Table 2	24	-	22	17	-	-	-