02-01 Recherche des plus proches voisins

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE ET SERVICES AUX ENTREPRISES

- 1. Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

- 1. Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

 Commençons par un exemple: vous êtes présentement en train de lire un article sur le soccer ...

 Commençons par un exemple: vous êtes présentement en train de lire un article sur le soccer ...

 Commençons par un exemple: vous êtes présentement en train de lire un article sur le soccer ...

 Commençons par un exemple: vous êtes présentement en train de lire un article sur le soccer ...

Comment chercher parmi tous les documents disponibles ?

Comment mesurer la similarité ?

Articles aimilaires

- 1. Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

Recherche 1-NN

 Ci-dessous, est représenté l'espace de tous les documents organisés par similarité du texte

Recherche 1-NN

On calcul de la distance vers tous les documents

Recherche 1-NN

Identification du plus proche voisin

Recherche k-NN

Identification d'un ensemble de plus proches voisins

k-NN: comparaison supervisé / non supervisé

Apprentissage supervisé

Apprentissage non supervisé

- Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

Algorithme 1-NN: notations

■ Entrée:

- Document "query": x_q
- Corpus de documents: x₁, x₂, ..., x_M

■ Sortie:

- Document le plus similaire: x^{NN}
- Formellement, nous cherchons le document x_i ayant la distance minimale avec x_a

$$x^{NN} = \min_{x_i} distance(x_q, x_i)$$

Algorithme 1-NN: pseudo-code

```
Initialiser Dist2NN = \infty, x^{NN} = \varnothing

Itérer sur tous les documents x_1, x_2, ..., x_M:

Calculer la distance \delta entre x_q et x_i

Si \delta < Dist2NN

x^{NN} = x_i
Dist2NN = \delta
```

Retourner le document le plus similaire x^{NN} (document du corpus le plus proche de x_a)

- 1. Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

Algorithme k-NN

Entrée:

- Document "query": x_a
- \circ Corpus de documents: $x_1, x_2, ..., x_M$

Sortie:

Liste des k documents les plus similaires: $X^{NN} = \{x^{NN1}, x^{NN2}, ..., x^{NNk}\}$

Formellement, nous cherchons tous les documents x, tels que

$$\forall \mathbf{x}_i \notin \mathbf{X}^{\mathrm{NN}}$$
, distance $(\mathbf{x}_q, \mathbf{x}_i) \ge \max_{\mathbf{X}_i^{\mathrm{NNj}}, j=1...,k}$ distance $(\mathbf{x}_q, \mathbf{x}^{\mathrm{NNj}})$

Algorithme k-NN

```
Initialiser Dist2kNN = sort(\delta1, \delta2, ..., \deltak)
Itérer sur tous les documents de k+1 à M: \timesk+1, ..., xM:
    Calculer la distance \delta entre xq et xi
    Si \delta < Dist2kNN[k]
         Trouver j tel que \delta > Dist2kNN[j-1] et \delta < Dist2kNN[j]
         Retirer le document le plus loin et déplacer les autres
         Dist2kNN[j+1:k] = Dist2kNN[j:k-1]
         Dist2kNN[i] = \delta
```

Retourne les k documents les plus similaires

Trier les k premiers documents selon leur distance au document "query"

Algorithme k-NN

```
Initialiser Dist2kNN = sort(\delta1, \delta2, ..., \deltak)
Itérer sur tous les documents de k+1 à M: xk+1, ..., xM:
    Calculer la distance \delta entre xq et xi
    Si \delta < Dist2kNN[k]
         Trouver j tel que \delta > Dist2kNN[j-1] et \delta < Dist2kNN[j]
         Retirer le document le plus loin et déplacer les autres
         Dist2kNN[j+1:k] = Dist2kNN[j:k-1]
         Dist2kNN[i] = \delta
```

Retourne les k documents les plus similaires

Insertion du document

20

- Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

NearestNeighbors (scikit-learn 0.24.2)

Algorithme de recherche

Nombre de voisins

Métrique de distance

Rayon de recherche

- 1. Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

Questions ouvertes

- Comment représenter les documents ? $\stackrel{\blacksquare}{=}$ → x_q
- Quelle mesure utiliser pour calculer la distance entre les documents ? δ = **distance** (x_i, x_q)

- Recherche de documents
- 2. Recherche des plus proches voisins
- 3. Algorithme 1-NN (exhaustif / brute-force)
- 4. Algorithme k-NN (exhaustif / brute-force)
- 5. k-NN avec scikit-learn
- 6. Questions ouvertes
- 7. Lectures et références

Lectures et références

[1] Machine Learning: Clustering and Retrieval - Emily Fox & Carlos Guestrin - University of Washington