1 Introduction

The motivation of this note is the following fact, used in proving the supporting hyperplane theorem in Bazarra's textbook¹:

Theorem 1 (Bazarra)

Let V be a finite dimensional normed space, C be a nonempty convex set in V, and $\bar{x} \in \text{Bd}(C)$. Then $\exists y_k \notin \text{Cl}(C), k = 1, 2, ... \text{ s.t. } y_k \to \bar{x}$.

The theorem would be trivial if we only require $y_k \notin C, k = 1, 2, \ldots$ By the definition of Bd(C), within any open ball $B(\bar{x}; \epsilon)^2$ there is a point not in C. By reducing ϵ , we get a desired sequence. The theorem will not hold if C is a general set. For example, let $C = B(a; r) - \{a\}$ for some $a \in V$ and r > 0, then $a \in Bd(C)$. Clearly, the theorem does not hold at a. In this example, C is not convex. Thus, we can expect that convexity plays a crucial role in the proof of the theorem.

We assume that the background space is a normed space V throughout this note. Some conclusions further require $\dim V < \infty$. Our goal is to demonstrate the following theorem.

Theorem 2 (Interior of Closure)

 $\dim V < \infty$, C is a convex set in V. Then

$$Int(C) = Int(Cl(C))$$

Then Thm. 1 follows immediately.

Proof (Proof of Thm. 1)

 $\bar{x} \in \text{Bd}(C)$, then $\bar{x} \notin \text{Int}(C) = \text{Int}(\text{Cl}(C))$. Thus, $\exists y_n \in B(\bar{x}; 1/n) \text{ s.t. } y \notin \text{Cl}(C)$. Then $\{y_n\}$ is a desired sequence.

In the following, we first prove Thm. 2 when $Int(C) \neq \emptyset$. Then we consider the case of $Int(C) = \emptyset$.

2 The Case of $Int(C) \neq \emptyset$

For convenience, we introduce the following notations:

Definition 3 Line Segments

Given $x, y \in V$,

$$\begin{split} &(x,y) = \{tx + (1-t)y | t \in (0,1)\} \\ &[x,y] = \{tx + (1-t)y | t \in [0,1]\} \\ &[x,y) = \{tx + (1-t)y | t \in (0,1]\} \\ &(x,y] = \{tx + (1-t)y | t \in [0,1)\} \end{split}$$

The proof of Thm. 2 when $Int(C) \neq is$ based on the following theorem.

Theorem 4 General Line Segment Property

C convex, $x \in \text{Int}(C)$ and $y \in \text{Cl}(C)$. Then $(x,y) \subseteq \text{Int}(C)$, namely

$$tx + (1-t)y \in Int(C) \quad \forall t \in (0,1).$$

¹In the textbook, the background space is \mathbb{R}^n . We discuss the theorem in a normed space.

²An open ball B(x;r) is defined as $B(x;r) = \{y \in V | ||y-x|| < r\}$.

Proof

Let $z = \lambda x + (1 - \lambda)y$. $x \in \text{Int}(C)$, then $\exists B(x; h) \subseteq C$. To show $z \in \text{Int}(C)$, we need to find some $B(z; r) \subseteq C$. For any $z' \in B(z; r)$, we wish it to be a line combination of two points in C, so that $z' \in C$. More specifically, we wish

$$z' = \lambda x' + (1 - \lambda)y'$$

where $x', y' \in C$, $x' \in B(x; h)$, and y' is near y. To ensure $x' \in B(x; h)$, we compute

$$||x' - x|| = ||\frac{z' - (1 - \lambda)y'}{\lambda} - \frac{z - (1 - \lambda)y}{\lambda}||$$

$$= \frac{1}{\lambda}||(z' - z) - (1 - \lambda)(y' - y)|| \le \frac{1}{r}||z' - z|| + \frac{1 - \lambda}{\lambda}||y' - y|| < \frac{r}{\lambda} + \frac{1 - \lambda}{\lambda}\epsilon$$

Then we can choose

$$\frac{r}{\lambda} = \frac{h}{2}$$

Then ||x' - x|| < h because ϵ is arbitrary.

Revert the reasoning gives a proof. $x \in \text{Int}(C)$, then $\exists B(x;h) \subseteq C$. $y \in \text{Cl}(C)$, then $\exists y' \in B(y;\epsilon) \cap C$ where $\epsilon = h\lambda/(2(1-\lambda))$. For any given $\lambda \in (0,1)$, let $r = \lambda h/2$. For any $z' \in B(z;r)$, let

$$x' = \frac{z' - (1 - \lambda)y'}{\lambda}$$

Then

$$\begin{split} \|x'-x\| &= \|\frac{z'-(1-\lambda)y'}{\lambda} - \frac{z-(1-\lambda)y}{\lambda}\| \\ &= \frac{1}{\lambda}\|(z'-z)-(1-\lambda)(y'-y)\| \leq \frac{1}{r}\|z'-z\| + \frac{1-\lambda}{\lambda}\|y'-y\| < \frac{r}{\lambda} + \frac{1-\lambda}{\lambda}\epsilon = h \end{split}$$

which implies $x' \in B(x; h) \subseteq C$. Thus $z' = \lambda x' + (1 - \lambda)y' \in C$ since C is convex.

Now we can prove the theorem.

Theorem 5 The Case of $Int(C) \neq \emptyset$

 $\dim V < \infty$, C is convex nonempty set in V. Then $\operatorname{Int}(C) = \operatorname{Int}(\operatorname{Cl}(C))$.

Proof

Since $C \subseteq \operatorname{Cl}(C)$, we have $\operatorname{Int}(C) \subseteq \operatorname{Int}(\operatorname{Cl}(C))$. Conversely, let $z \in \operatorname{Int}(\operatorname{Cl}(C))$. We show $z \in \operatorname{Int}(C)$. Since $z \in \operatorname{Int}(\operatorname{Cl}(C))$, there is some $B(z;r) \subseteq \operatorname{Cl}(C)$. Our strategy is to find some $x \in \operatorname{Int}(C)$ and $y \in \operatorname{Cl}(C)$ s.t. $z = \lambda x + (1 - \lambda)y$, then $z \in \operatorname{Int}(C)$ due to Thm. 4. Since $\operatorname{Int}(C) \neq \emptyset$, we can find some $x \in \operatorname{Int}(C)$. Then we

can solve for y and choose λ s.t $y \in B(z; r) \subseteq Cl(C)$. Namely

$$y = \frac{z - \lambda x}{1 - \lambda}$$

$$\Rightarrow \|y - z\| = \frac{\lambda}{1 - \lambda} \|z - x\|$$

$$\Rightarrow \|y - z\| < r \to \lambda < \frac{r}{r + \|z - x\|}$$

3 The Case of $Int(C) = \emptyset$

When $Int(C) = \emptyset$, we hope to show $Int(Cl(C)) = \emptyset$. This requires knowledge on affine sets. Especially, we need the following. The details can be found in my notes on optimization on Github.

Theorem 6 Nonempty interior of simplex

 $\dim V = n, x_0, \dots, x_n$ aff idp, $H = \text{Conv}(\{x_0, \dots, x_n\})$. Then $\text{Int}(H) \neq \emptyset$.

Theorem 7 Empty interior

 $\dim V = n$, C convex. Then $\operatorname{Int}(C) = \emptyset \Leftrightarrow \dim \operatorname{Aff}(C) < n$.

Theorem 8 Affine hull of closure

 $\dim V < \infty$, $S \subseteq V$. Then $\mathrm{Aff}(\mathrm{Cl}(S)) = \mathrm{Aff}(S)$.

With these results, we can prove the theorem.

Theorem 9

 $\dim V < \infty$, C convex. Then $\operatorname{Int}(C) = \emptyset \Rightarrow \operatorname{Int}(\operatorname{Cl}(C)) = \emptyset$.

Proof

By Thm. 7 and Thm. 8, $\operatorname{Int}(C) = \emptyset \Rightarrow \dim \operatorname{Aff}(C) < n \Rightarrow \dim \operatorname{Aff}(\operatorname{Cl}(C)) < n \Rightarrow \operatorname{Int}(\operatorname{Cl}(C)) = \emptyset$.