

07-Apr-2022

Thad Domick Genesee County WWS 9290 Farrand Rd Montrose, MI 48457

Re: ARTP Biosolids Work Order: 22030506

Dear Thad,

ALS Environmental received 1 sample on 04-Mar-2022 11:00 PM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental - Holland and for only the analyses requested.

Sample results are compliant with industry accepted practices and Quality Control results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 24.

If you have any questions regarding this report, please feel free to contact me:

ADDRESS: 3352 128th Avenue, Holland, MI, USA PHONE: +1 (616) 399-6070 FAX: +1 (616) 399-6185

Sincerely,

Jodi Blouw

Electronically approved by: Chad Whelton

Jodi Blouw

Report of Laboratory Analysis

Certificate No: MN 026-999-449

ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 為

ALS Group, USA

Date: 07-Apr-22

Client: Genesee County WWS

22030506

Project: ARTP Biosolids

Work Order:

Work Order Sample Summary

<u>Lab Samp ID Client Sample ID</u> <u>Matrix Tag Number Collection Date Date Received Hold</u>

22030506-01 ARTP Biosolids Tank 3 Sludge 3/3/2022 10:30 3/4/2022 23:00

ALS Group, USA

Client: Genesee County WWS

Project: ARTP Biosolids
Work Order: 22030506

Case Narrative

The attached "Sample Receipt Checklist" documents the date of receipt, status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. A copy of the laboratory's scope of accreditation is available upon request.

Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

Any flags on MS/MSD samples not addressed in this narrative are unrelated to samples in this report.

With the following exceptions, all sample analyses achieved analytical criteria.

Batch 193928, Method D7968-17a, Sample ARTP Biosolids Tank 3 (22030506-01A): The Continuing Calibration Verification did not meet acceptance criteria with high bias, however, the sample results were non-detect for the following analytes: 8:2-FTS

Batch 193928, Method D7968-17a, Sample ARTP Biosolids Tank 3 (22030506-01A): Surrogate high due to matrix interference. See attached QC report.

Batch 193928, Method D7968-17a, Sample ARTP Biosolids Tank 3 (22030506-01A): One or more surrogate recoveries were below the lower control limits. The sample results may be biased low. See attached QC report.

Batch 193928, Method D7968-17a, Sample LCS1-193928: The LCS recovery was above the upper control limit. All sample results in the batch were non-detect. No qualification is necessary for this analyte: PFDS

Batch 193928, Method D7968-17a, Sample LCS1-193928: The LCS recovery was within acceptance criteria, but recovered below the MDL and does not show on the final report. No qualification necessary. Raw data available upon request: PFOS, PFPeS

Batch 193928, Method D7968-17a, Sample LCS3-193928: The LCS recovery was above the

Project: ARTP Biosolids Case Narrative

Work Order: 22030506

upper control limit. All sample results in the batch were non-detect. No qualification is necessary for this analyte: PFDA

Batch 193928, Method D7968-17a, Sample LCS3-193928: The LCS recovery was within acceptance criteria, but recovered below the MDL and does not show on the final report. No qualification necessary. Raw data available upon request: HFPO-DA

Batch 193928, Method D7968-17a, Sample LCS3-193928: The LCS recovery was within acceptance criteria, but recovered below the MDL and does not show on the final report. No qualification necessary. Raw data available upon request: HFPODA

Batch 193928, Method D7968-17a, Sample LCSD2-193928: The RPD between the LCS2 and LCSD2 was outside of the control limit. The sample results should be considered estimated for this analyte: PFNS

Date: 07-Apr-22 ALS Group, USA

Client: Genesee County WWS QUALIFIERS,

ARTP Biosolids Project: ACRONYMS, UNITS WorkOrder: 22030506

Qualifier Description Value exceeds Regulatory Limit ** Estimated Value a Analyte is non-accredited B Analyte detected in the associated Method Blank above the Reporting Limit Е Value above quantitation range Н Analyzed outside of Holding Time Hr BOD/CBOD - Sample was reset outside Hold Time, value should be considered estimated. Analyte is present at an estimated concentration between the MDL and Report Limit J Analyte accreditation is not offered n ND Not Detected at the Reporting Limit O Sample amount is > 4 times amount spiked P Dual Column results percent difference > 40% R RPD above laboratory control limit S Spike Recovery outside laboratory control limits U Analyzed but not detected above the MDL X Analyte was detected in the Method Blank between the MDL and Reporting Limit, sample results may exhibit background or reagent contamination at the observed level. Acronym Description Method Duplicate DUP LCS Laboratory Control Sample LCSD Laboratory Control Sample Duplicate LOD Limit of Detection (see MDL) LOQ Limit of Quantitation (see PQL) MBLK Method Blank MDL Method Detection Limit MS Matrix Spike MSD Matrix Spike Duplicate **PQL** Practical Quantitation Limit RPD Relative Percent Difference TDL Target Detection Limit TNTC Too Numerous To Count

SW-846 Update III **Units Reported** Description

ASTM

EPA

APHA Standard Methods

% of sample Percent of Sample

A

D Е

SW

ALS Group, USA

Client: Genesee County WWS

Project:ARTP BiosolidsWork Order:22030506Sample ID:ARTP Biosolids Tank 3Lab ID:22030506-01Collection Date:3/3/2022 10:30 AMMatrix:SLUDGE

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
PFAS BY LC-MS-MS		Met	hod: D7968-1 7	Ά	Prep: D7968	3-17a / 3/31/22	Analyst: AK
Perfluorobutanoic Acid (PFBA)	U		1,300	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluoropentanoic Acid (PFPeA)	1,100	J	500	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorohexanoic Acid (PFHxA)	1,800	J	460	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluoroheptanoic Acid (PFHpA)	U		500	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorooctanoic Acid (PFOA)	530	J	340	750	ng/Kg-dry	1	4/7/2022 04:04
Perfluorononanoic Acid (PFNA)	U		380	750	ng/Kg-dry	1	4/7/2022 04:04
Perfluorodecanoic Acid (PFDA)	U		580	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluoroundecanoic Acid (PFUnA)	U		640	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorododecanoic Acid (PFDoA)	U		790	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorotridecanoic Acid (PFTriA)	U		850	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorotetradecanoic Acid (PFTeA)	U		1,200	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorobutanesulfonic Acid (PFBS)	U		500	750	ng/Kg-dry	1	4/7/2022 04:04
Perfluoropentanesulfonic Acid (PFPeS)	U		410	750	ng/Kg-dry	1	4/7/2022 04:04
Perfluorohexanesulfonic Acid (PFHxS)	U		720	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluoroheptanesulfonic Acid (PFHpS)	U		650	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorooctanesulfonic Acid (PFOS)	U		310	750	ng/Kg-dry	1	4/7/2022 04:04
Perfluorononanesulfonic Acid (PFNS)	U		650	3,800	ng/Kg-dry	1	4/7/2022 04:04
Perfluorodecanesulfonic Acid (PFDS)	U		390	750	ng/Kg-dry	1	4/7/2022 04:04
Fluorotelomer Sulphonic Acid 4:2 (FtS 4:2)	U		850	3,800	ng/Kg-dry	1	4/7/2022 04:04
Fluorotelomer Sulphonic Acid 6:2 (FtS 6:2)	U		1,400	3,800	ng/Kg-dry	1	4/7/2022 04:04
Fluorotelomer Sulphonic Acid 8:2 (FtS 8:2)	U		1,800	3,800	ng/Kg-dry	1	4/5/2022 15:45
Perfluorooctanesulfonamide (PFOSA)	U		250	750	ng/Kg-dry	1	4/7/2022 04:04
N- Ethylperfluorooctanesulfonamidoacetic Acid	U		1,500	3,800	ng/Kg-dry	1	4/7/2022 04:04
N-	U		920	3,800	ng/Kg-dry	1	4/7/2022 04:04
Methylperfluorooctanesulfonamidoaceti c Acid				,	0 0 7		
11CI-Pf3OUdS	U		310	750	ng/Kg-dry	1	4/7/2022 04:04
4,8-Dioxa-3H-perfluorononanoic Acid (DONA)	U		180	750	ng/Kg-dry	1	4/7/2022 04:04
9CI-PF3ONS	U		140	750	ng/Kg-dry	1	4/7/2022 04:04
Hexafluoropropylene oxide dimer acid (HFPO-DA)	U		3,000	3,800	ng/Kg-dry	1	4/7/2022 04:04
Surr: 13C4-PFBA	64.7			50-130	%REC	1	4/7/2022 04:04
Surr: 13C5-PFPeA	54.7			50-130	%REC	1	4/7/2022 04:04
Surr: 13C2-PFHxA	61.6			50-130	%REC	1	4/7/2022 04:04
Surr: 13C4-PFHpA	60.6			50-130	%REC	1	4/7/2022 04:04

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 07-Apr-22

ALS Group, USA

Client: Genesee County WWS

Project:ARTP BiosolidsWork Order:22030506Sample ID:ARTP Biosolids Tank 3Lab ID:22030506-01Collection Date:3/3/2022 10:30 AMMatrix:SLUDGE

Analyses	Result	Qual	MDL	Report Limit	Units	Dilution Factor	Date Analyzed
Surr: 13C4-PFOA	54.2	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C5-PFNA	52.3	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C2-PFDA	41.4	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C2-PFUnA	40.4	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C2-PFDoA	11.4	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C2-PFTeA	0	S		50-130	%REC	1	4/7/2022 04:04
Surr: 13C3-PFBS	48.8	S		50-130	%REC	1	4/7/2022 04:04
Surr: 1802-PFHxS	49.5	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C4-PFOS	35.7	S		70-130	%REC	1	4/7/2022 04:04
Surr: 13C2-FtS 4:2	100			50-130	%REC	1	4/7/2022 04:04
Surr: 13C2-FtS 6:2	91.1			50-130	%REC	1	4/7/2022 04:04
Surr: 13C2-FtS 8:2	29.5	S		50-130	%REC	1	4/7/2022 04:04
Surr: 13C8-FOSA	34.2	S		50-130	%REC	1	4/7/2022 04:04
Surr: d3-N-MeFOSAA	34.9	S		50-130	%REC	1	4/7/2022 04:04
Surr: d5-N-EtFOSAA	36.7	S		50-130	%REC	1	4/7/2022 04:04
Surr: 13C3-HFPO-DA	54.8			50-130	%REC	1	4/7/2022 04:04
MOISTURE		Meth	od: SW3550 0				Analyst: ALG
Moisture	97		0.10	0.10	% of sample	1	3/8/2022 12:38

Note: See Qualifiers page for a list of qualifiers and their definitions.

Date: 07-Apr-22

Date: 07-Apr-22

QC BATCH REPORT

Client: Genesee County WWS

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 192797 Instrument ID LCMS1 Method: E537 Mod

Batch ID: 192797	Instrument ID	LCMS1		ivietno	d: E537 Mo	1					
MS Sam	ple ID: 2203044	9-02A MS				Units: µg/k	(g	Analysis	Date: 3/1	0/2022 04	:07 AM
Client ID:		Run ID	: LCMS1	_220309C	S	eqNo: 823	3543	Prep Date: 3/8/	2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Fluorotelomer Sulphonic A	cid 4·2 (FtS	5.997	0.99	3.699	0	162	62-145	0			s
Fluorotelomer Sulphonic A	•	37.11	0.99	3.754	32.07	134	64-140	0			0
Fluorotelomer Sulphonic A	•	6.272	0.99	3.794	0	165	65-137	0			S
Fluorotelomer Sulphonic A	,	6.756	0.99	3.818	0	177	40-160	0			S
Perfluorobutanesulfonic Ac	•	5.415	0.99	3.501	0.4104	143	72-128	0			s
Perfluorobutanoic Acid (PF	·BA)	13.97	0.99	3.96	6.46	190	71-135	0			S
Perfluorodecanesulfonic A	cid (PFDS)	5.387	0.99	3.818	0	141	59-134	0			S
Perfluorodecanoic Acid (PI	FDA)	5.973	0.99	3.96	0	151	69-133	0			S
Perfluorododecanesulfonio	Acid (PFDc	4.873	0.99	3.834	0	127	69-134	0			
Perfluorododecanoic Acid	(PFDoA)	5.198	0.99	3.96	0	131	69-135	0			
Perfluoroheptanesulfonic A	cid (PFHpS	3.33	0.99	3.77	0.1011	85.6	70-132	0			
Perfluoroheptanoic Acid (P	FHpA)	17.98	0.99	3.96	10.05	200	71-131	0			S
Perfluorohexadecanoic Ac	d (PFHxDA	7.33	0.99	3.96	0.2305	179	70-130	0			S
Perfluorohexanesulfonic A	cid (PFHxS)	5.585	0.99	3.604	0.8576	131	67-130	0			S
Perfluorohexanoic Acid (Pl	FHxA)	38.87	0.99	3.96	24.7	358	70-132	0			SO
Perfluorononanesulfonic A	cid (PFNS)	5.064	0.99	3.802	0	133	69-125	0			S
Perfluorononanoic Acid (Pl	FNA)	5.875	0.99	3.96	0.3121	140	72-129	0			S
Perfluorooctadecanoic Aci	d (PFODA)	6.965	0.99	3.96	0.01699	175	70-130	0			S
Perfluorooctanesulfonamid	e (PFOSA)	4.855	0.99	3.96	0	123	67-137	0			
Perfluorooctanesulfonic Ac	id (PFOS)	5.138	0.99	3.675	0.1016	137	68-136	0			S
Perfluorooctanoic Acid (PF	OA)	5.759	0.99	3.96	0.2964	138	69-133	0			S
Perfluoropentanesulfonic A	cid (PFPeS	3.574	0.99	3.715	0.1621	91.8	73-123	0			
Perfluorotetradecanoic Aci	d (PFTeA)	5.378	0.99	3.96	0.03648	135	69-133	0			S
Perfluorotridecanoic Acid (PFTriA)	7.048	0.99	3.96	0	178	66-139	0			S
Perfluoroundecanoic Acid	(PFUnA)	5.303	0.99	3.96	0.04767	133	64-136	0			
N-ethylperfluoro-1-octanes	ulfonamide	5.987	0.99	3.96	0.0199	151	70-130	0			S
N-Ethylperfluorooctanesulf	onamidoac€	7.191	0.99	3.96	0	182	61-139	0			S
N-Ethylperfluorooctanesulf	onamidoeth	5.856	0.99	3.96	0	148	70-130	0			S
N-methylperfluoro-1-octan	esulfonamid	4.227	0.99	3.96	0	107	70-130	0			
N-Methylperfluorooctanesu	ılfonamidoa	4.981	0.99	3.96	0.05845	124	63-144	0			
N-Methylperfluorooctanesu	ılfonamidoe	4.931	0.99	3.96	0	125	68-141	0			
4,8-Dioxa-3H-perfluoronon	anoic Acid (4.66	0.99	3.731	0.007461	125	70-130	0			
11CI-Pf3OUdS		4.831	0.99	3.731	0	130	70-130	0			
9CI-PF3ONS		4.757	0.99	3.691	0.003731	129	70-130	0			
Surr: 13C2-FtS 4:2		12.63	0	18.5	0	68.3	50-150	0			
Surr: 13C2-FtS 6:2		14.52	0	18.81	0	77.2	50-150	0			
Surr: 13C2-FtS 8:2		13.33	0	18.97	0	70.3	50-150	0			
Surr: 13C2-PFDA		14.24	0	19.8	0	71.9	50-150	0			
Surr: 13C2-PFDoA		22.89	0	19.8	0	116	50-150	0			
Surr: 13C2-PFHxA		13.78	0	19.8	0	69.6	50-150	0			
Surr: 13C2-PFHxDA		14.87	0	19.8	0	75.1	50-150	0			

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 22030506
Project: ARTP Biosolids

QC BATCH REPORT

Batch ID: 192797	Instrument ID LCMS1		Method	E537 Mod			
Surr: 13C2-PFTeA	16.04	0	19.8	0	81	50-150	0
Surr: 13C2-PFUnA	13.14	0	19.8	0	66.3	50-150	0
Surr: 13C3-HFPO-DA	13.31	0	19.8	0	67.2	50-150	0
Surr: 13C3-PFBS	13.78	0	18.42	0	74.8	50-150	0
Surr: 13C4-PFBA	15.03	0	19.8	0	75.9	50-150	0
Surr: 13C4-PFHpA	17.71	0	19.8	0	89.4	50-150	0
Surr: 13C4-PFOA	18.13	0	19.8	0	91.6	50-150	0
Surr: 13C4-PFOS	15.28	0	18.91	0	80.8	50-150	0
Surr: 13C5-PFNA	15.42	0	19.8	0	77.9	50-150	0
Surr: 13C5-PFPeA	13.19	0	19.8	0	66.6	50-150	0
Surr: 13C8-FOSA	17.95	0	19.8	0	90.6	50-150	0
Surr: 18O2-PFHxS	19.48	0	18.71	0	104	50-150	0
Surr: d5-N-EtFOSA	14.68	0	19.8	0	74.1	50-150	0
Surr: d5-N-EtFOSAA	13.89	0	19.8	0	70.1	50-150	0
Surr: d9-N-EtFOSE	14.4	0	19.8	0	72.7	50-150	0
Surr: d3-N-MeFOSA	15.69	0	19.8	0	79.2	50-150	0
Surr: d3-N-MeFOSAA	16.16	0	19.8	0	81.6	50-150	0
Surr: d7-N-MeFOSE	16.64	0	19.8	0	84	50-150	0

The following samples were analyzed in this batch:

22030506-01A

Work Order: 22030506
Project: ARTP Biosolids

QC BATCH REPORT

Batch ID: 193928	Instrument ID L	CMS1		Method	: D7968	-17a	1					
MBLK1	Sample ID: MBLK1-1	193928-1939	28			ι	Jnits: ng/k	K g	Analy	sis Date: 4/5	/2022 02:5	5 PM
Client ID:		Run ID	: LCMS1	_220405A		Se	qNo: 830 2	2187	Prep Date: 3	/31/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluorotelomer Sulpho	onic Acid 8:2 (FtS	U	120	0		0	0			0		
Surr: 13C2-PFTeA	1	272.9	0	400		0	68.2	50-130		0		

MBLK2 Sampl	imple ID: MBLK2-193928-193928					Units: ng/Kg			Analysis Date: 4/5/2022 03:12 PM			
Client ID:		Run ID	LCMS1	_220405A		Se	qNo: 8302	189	Prep Date: 3/3	1/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluorotelomer Sulphonic Acid	d 8:2 (FtS	U	120	0		0	0		()		
Surr: 13C2-PFTeA		241.4	0	400		0	60.3	50-130	()		

Client: Genesee County WWS

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928 Instrument ID LCMS1 Method: D7968-17a

MBLK1	Sample ID: MBLK1-	193928-1939	28			Units: ng/Kg			Analysis Date: 4/7/2022 03:14 AM			
Client ID:		Run ID	: LCMS1	_220406B		Se	qNo: 830	3999	Prep Date: 3/3	1/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Perfluorobutanoi	ic Acid (PERA)	U	120	0		0	0		(<u> </u>		
	oic Acid (PFPeA)	U	120	0		0	0		(
Perfluorohexano		U	120	0		0	0		(
	oic Acid (PFHpA)	U	120	0		0	0		(
Perfluorooctanoi	, , ,	U	25	0		0	0		(
Perfluorononano	,	U	25	0		0	0		(
Perfluorodecano		U	120	0		0	0		()		
	noic Acid (PFUnA)	U	120	0		0	0		()		
	noic Acid (PFDoA)	U	120	0		0	0		()		
	noic Acid (PFTriA)	U	120	0		0	0		()		
	canoic Acid (PFTeA)	U	120	0		0	0		()		
	sulfonic Acid (PFBS)	U	25	0		0	0		()		
	esulfonic Acid (PFPeS	U	25	0		0	0		()		
·	sulfonic Acid (PFHxS)	U	120	0		0	0		()		
Perfluoroheptane	esulfonic Acid (PFHpS	U	120	0		0	0		()		
Perfluorooctanes	sulfonic Acid (PFOS)	U	25	0		0	0		()		
Perfluorononane	esulfonic Acid (PFNS)	U	120	0		0	0		()		
Perfluorodecane	sulfonic Acid (PFDS)	U	25	0		0	0		()		
Fluorotelomer Su	ulphonic Acid 4:2 (FtS	U	120	0		0	0		()		
	ulphonic Acid 6:2 (FtS	U	120	0		0	0		()		
	sulfonamide (PFOSA)	U	25	0		0	0		()		
N-Ethylperfluoro	octanesulfonamidoace	U	120	0		0	0		()		
N-Methylperfluor	ooctanesulfonamidoa	U	120	0		0	0		()		
11CI-Pf3OUdS		U	25	0		0	0		()		
4,8-Dioxa-3H-pe	rfluorononanoic Acid (U	25	0		0	0		()		
9CI-PF3ONS		U	25	0		0	0		()		
Hexafluoropropy	lene oxide dimer acid	U	120	0		0	0		()		
Surr: 13C4-PF	=BA	404.2	0	400		0	101	50-130	()		
Surr: 13C5-PF	-PeA	381.3	0	400		0	95.3	50-130	()		
Surr: 13C2-PF	=HxA	398.3	0	400		0	99.6	50-130	()		
Surr: 13C4-PF	- НрА	341.7	0	400		0	85.4	50-130	()		
Surr: 13C4-PF	=OA	381.6	0	400		0	95. <i>4</i>	70-130	()		
Surr: 13C5-PF	=NA	421.7	0	400	-	0	105	70-130	()	-	
Surr: 13C2-PF	=DA	365.1	0	400		0	91.3	70-130	()		
Surr: 13C2-PF	=UnA	452.4	0	400		0	113	70-130	()		
Surr: 13C2-PF	=DoA	407.2	0	400		0	102	70-130	()		
Surr: 13C3-PF	-BS	355.9	0	400		0	89	50-130	()		
Surr: 1802-PF	=HxS	335.4	0	378		0	88.7	70-130	()		
Surr: 13C4-PF	os	360.4	0	383		0	94.1	70-130	()		
Surr: 13C2-Ft	S 4:2	282	0	373		0	75.6	50-130	()		
Surr: 13C2-Ft	S 6:2	309.5	0	380		0	81.5	50-130	()		
Surr: 13C2-Ft	S 8:2	380.1	0	383		0	99.2	50-130	()		

Work Order: 22030506
Project: ARTP Biosolids

OC :	BAT	CH	REP	ORT
------	-----	----	-----	-----

Batch ID: 193928	Instrument ID LCMS1		Method:	D7968-17a				
Surr: 13C8-FOSA	387	0	400	0	96.8	50-130	0	
Surr: d3-N-MeFOSAA	455.2	0	400	0	114	50-130	0	
Surr: d5-N-EtFOSAA	459.3	0	400	0	115	50-130	0	
Surr: 13C3-HFPO-DA	321.2	0	400	0	80.3	50-130	0	

Client: Genesee County WWS

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928 Instrument ID LCMS1 Method: D7968-17a

MBLK2	Sample ID: MBLK2-	193928-1939	28			U	Inits: ng/k	(g	Analysi	s Date: 4/7	/2022 03:	31 AM
Client ID:		Run ID	: LCMS1	_220406B		Sec	qNo: 830 4	4001	Prep Date: 3/3	1/2022	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
Perfluorobutanoic Aci	d (PFBA)	U	120	0		0	0		С)		
Perfluoropentanoic Ad	cid (PFPeA)	U	120	0		0	0		C)		
Perfluorohexanoic Ac	id (PFHxA)	U	120	0		0	0		C)		
Perfluoroheptanoic Ad	cid (PFHpA)	U	120	0		0	0		C)		
Perfluorooctanoic Aci	d (PFOA)	U	25	0		0	0		C)		
Perfluorononanoic Ac	id (PFNA)	U	25	0		0	0		C)		
Perfluorodecanoic Ac	id (PFDA)	U	120	0		0	0		C)		
Perfluoroundecanoic	Acid (PFUnA)	U	120	0		0	0		C)		
Perfluorododecanoic	Acid (PFDoA)	U	120	0		0	0		C)		
Perfluorotridecanoic A	Acid (PFTriA)	U	120	0		0	0		C)		
Perfluorotetradecanoi	c Acid (PFTeA)	U	120	0		0	0		C)		
Perfluorobutanesulfor	nic Acid (PFBS)	U	25	0		0	0		C)		
Perfluoropentanesulfo	onic Acid (PFPeS	U	25	0		0	0		C)		
Perfluorohexanesulfo	nic Acid (PFHxS)	U	120	0		0	0		C)		
Perfluoroheptanesulfo	onic Acid (PFHpS	U	120	0		0	0		C)		
Perfluorooctanesulfor	nic Acid (PFOS)	U	25	0		0	0		C)		
Perfluorononanesulfo	nic Acid (PFNS)	U	120	0		0	0		C)		
Perfluorodecanesulfo	nic Acid (PFDS)	U	25	0		0	0		C)		
Fluorotelomer Sulpho	nic Acid 4:2 (FtS	U	120	0		0	0		C)		
Fluorotelomer Sulpho	•	U	120	0		0	0		C)		
Perfluorooctanesulfor		U	25	0		0	0		C)		
N-Ethylperfluorooctan	esulfonamidoace	U	120	0		0	0		C)		
N-Methylperfluoroocta	anesulfonamidoa	U	120	0		0	0		C)		
11CI-Pf3OUdS		U	25	0		0	0		C)		
4,8-Dioxa-3H-perfluor	ononanoic Acid (U	25	0		0	0		C			
9CI-PF3ONS		U	25	0		0	0		C)		
Hexafluoropropylene	oxide dimer acid	U	120	0		0	0		C			
Surr: 13C4-PFBA		317.7	0	400		0	79.4	50-130	C			
Surr: 13C5-PFPeA		317.4	0	400		0	79.4	50-130	C			
Surr: 13C2-PFHxA		343.4	0	400		0	85.9	50-130	C)		
Surr: 13C4-PFHpA		319.6	0	400		0	79.9	50-130				
Surr: 13C4-PFOA		320.9	0	400		0	80.2	70-130)		
Surr: 13C5-PFNA		342.2	0	400		0	85.5	70-130				
Surr: 13C2-PFDA		349.7	0	400		0	87.4	70-130				
Surr: 13C2-PFUnA		357	0	400		0	89.3	70-130				
Surr: 13C2-PFDoA		323.2	0	400		0	80.8	70-130				
Surr: 13C3-PFBS		312.4	0	400		0	78.1	50-130				
Surr: 18O2-PFHxS		290.6	0	378		0	76.9	70-130	C			
Surr: 13C4-PFOS		288	0	383		0	75.2	70-130	C			
Surr: 13C2-FtS 4:2		268	0	373		0	71.8	50-130				
Surr: 13C2-FtS 6:2		216.9	0	380		0	57.1	50-130				
Surr: 13C2-FtS 8:2		279.5	0	383		0	73	50-130	C)		

Work Order: 22030506
Project: ARTP Biosolids

QC BATCH REP	ORT
--------------	------------

Batch ID: 193928	Instrument ID LCMS1		Method:	D7968-17a				
Surr: 13C8-FOSA	319.8	0	400	0	79.9	50-130	0	
Surr: d3-N-MeFOSAA	351.5	0	400	0	87.9	50-130	0	
Surr: d5-N-EtFOSAA	286.8	0	400	0	71.7	50-130	0	
Surr: 13C3-HFPO-DA	343.7	0	400	0	85.9	50-130	0	

LCSD2 San	ple ID: LCSD2-19	3928-19392	!8			ι	Jnits: ng/k	(g	Analysis	Date: 4/5/	2022 04:10	0 PM
Client ID:		Run ID	: LCMS1	_220405A		Se	qNo: 830 2	2195	Prep Date: 3/31	/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluorononanesulfonic A	cid (PFNS)	390.9	120	480		0	81.4	70-130	544.7	32.9	30	R
Fluorotelomer Sulphonic A	cid 6:2 (FtS	354.1	120	474		0	74.7	70-130	339.7	4.16	30	
Fluorotelomer Sulphonic A	cid 8:2 (FtS	523.8	120	479		0	109	70-130	564.1	7.4	30	

Client: Genesee County WWS

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928 Instrument ID LCMS1 Method: D7968-17a

LCSD2	Sample ID: LCSD2-	193928-19392	28			U	Inits: ng/k	(g	Analysis	Date: 4/7/	2022 03:5	6 AM
Client ID:		Run ID	: LCMS1	_220406B		Se	qNo: 830 4	1004	Prep Date: 3/31	/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Perfluorobutanoic A	cid (PFBA)	405.2	120	500		0	81	50-130	387.8	4.4	30	
Perfluoropentanoic	,	475.2	120	500		0	95	70-130	396.5	18.1	30	
Perfluorohexanoic A	,	428.1	120	500		0	85.6	50-130	349.9	20.1	30	
Perfluoroheptanoic	,	400.5	120	500		0	80.1	50-130	387	3.43	30	
Perfluorooctanoic A	` ' '	389.9	25	500		0	78	70-130	400.1	2.56	30	
Perfluorononanoic A	,	410.8	25	500		0	82.2	70-130	424.6	3.29	30	
Perfluorodecanoic A	` '	466.4	120	500		0	93.3	70-130	441.2	5.55	30	
Perfluoroundecanoid	, ,	470.1	120	500		0	94	70-130	439.1	6.83	30	
Perfluorododecanoio	,	410	120	500		0	82	70-130	377.4	8.28	30	
Perfluorotridecanoic	,	555.8	120	500		0	111	70-130	534.1	3.98	30	
Perfluorotetradecan	,	531.5	120	500		0	106	70-130	492.1	7.71	30	
Perfluorobutanesulfo	, ,	335.2	25	442		0	75.8	70-130	322.4	3.87	30	
Perfluoropentanesul	,	348.5	25	469		0	74.3	70-130	411.1	16.5	30	
Perfluorohexanesulf	•	339.7	120	455		0	74.7	70-130	338.2	0.455	30	
Perfluoroheptanesul	,	366.2	120	476		0	76.9	70-130	356.7	2.63	30	
Perfluorooctanesulfo	, ,	341.3	25	464		0	73.5	70-130	385.3	12.1	30	
Perfluorodecanesulf	, ,	347.1	25 25	482		0	73.3 72	70-130	397.6	13.6	30	
	, ,	419	120	467		0	89.7	70-130	423.8	1.14	30	
Fluorotelomer Sulph Perfluorooctanesulfo	·	365.6	25	500		0	73.1	70-130	375.3	2.6	30	
	` '	419.8	120	500		0	84	70-130	431.4	2.73	30	
N-Ethylperfluoroocta		381.8										
N-Methylperfluorood	ctanesulionamidoa	393.4	120	500		0	76.4	70-130	406	6.13	30	
11CI-Pf3OUdS		379.3	25	471		0	83.5	70-130	426.5	8.08	30	
4,8-Dioxa-3H-perflu	orononanoic Acid (25	471		0	80.5	70-130	394.2	3.87	30	
9CI-PF3ONS		403.4 357.7	25	466		0	86.6	70-130	387.7	3.97	30	
Hexafluoropropylene			120	500		0	71.5	50-130	352.7	1.42	30	
Surr: 13C4-PFBA		312.5	0	400		0	78.1	50-130	330	5.45	30	
Surr: 13C5-PFPe		324.8	0	400		0	81.2	50-130	329.2	1.33	30	
Surr: 13C2-PFHx		318	0	400		0	79.5	50-130	283.5	11.5	30	
Surr: 13C4-PFHp		296.1	0	400		0	74	50-130	277	6.66	30	
Surr: 13C4-PFOA		306.3	0	400		0	76.6	70-130	328.9	7.12	30	
Surr: 13C5-PFNA		322.5	0	400		0	80.6	70-130		5.58	30	
Surr: 13C2-PFDA		353.8	0	400		0	88.4	70-130		0.95	30	
Surr: 13C2-PFUn		416.5	0	400		0	104	70-130		7.09	30	
Surr: 13C2-PFDo		444.9	0	400		0	111	70-130		4.98	30	
Surr: 13C2-PFTe		376.3	0	400		0	94.1	50-130		1.87		
Surr: 13C3-PFBS		274.2	0	400		0	68.6	50-130		9.13	30	
Surr: 1802-PFHx		299.3	0	378		0	79.2	70-130		4.15	30	
Surr: 13C4-PFOS	3	281.1	0	383		0	73.4	70-130	324	14.2	30	
Surr: 13C2-FtS 4:	:2	247.4	0	373		0	66.3	50-130	266.5	7.42	30	
Surr: 13C2-FtS 6:	:2	291.4	0	380		0	76.7	50-130	253.4	13.9	30	
Surr: 13C2-FtS 8:	:2	293.7	0	383		0	76.7	50-130	234.3	22.5	30	
Surr: 13C8-FOSA	1	323.2	0	400		0	80.8	50-130	329.8	2.04	30	

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928	Instrument ID LCMS1		Method	D7968-17a						
Surr: d3-N-MeFOSAA	348.4	0	400	0	87.1	50-130	374.3	7.16	30	
Surr: d5-N-EtFOSAA	338.6	0	400	0	84.7	50-130	350.8	3.55	30	
Surr: 13C3-HFPO-DA	327.6	0	400	0	81.9	50-130	331.8	1.27	30	

LCS1	Sample ID: LCS1-19392	8-193928				U	Jnits: ng/K	(g	Analys	sis Date: 4/5 /	2022 03:04	4 PM
Client ID:		Run ID:	LCMS1_	_220405A		Se	qNo: 8302	188	Prep Date: 3/3	31/2022	DF: 1	
Analyte	į	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluorononanoic A	Acid (PFNA)	28.18	25	25		0	113	35-150		0		

OI: 1 ID							Jnits: ng/K	-0	,		/2022 03:2	7 73111
Client ID:		Run ID	: LCMS1	_220406B		Se	eqNo: 830 4	1000	Prep Date: 3/31	/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluorooctanoic Acid (PFO	A)	22.65	25	25		0	90.6	35-150	0			J
Perfluorobutanesulfonic Acid	(PFBS)	26.9	25	22		0	122	35-150	0			
Perfluoropentanesulfonic Aci	d (PFPeS	27.31	25	23.5		0	116	35-150	0			
Perfluorooctanesulfonic Acid	(PFOS)	22.3	25	23		0	97	35-150	0			J
Perfluorodecanesulfonic Acid	d (PFDS)	28.2	25	24		0	118	35-150	0			
Perfluorooctanesulfonamide	(PFOSA)	18.21	25	25		0	72.9	35-150	0			J
11CI-Pf3OUdS		16.71	25	23.5		0	71.1	35-150	0			J
4,8-Dioxa-3H-perfluorononan	noic Acid (14.68	25	23.5		0	62.5	35-150	0			J
9CI-PF3ONS		26.18	25	23		0	114	35-150	0			
Surr: 13C4-PFBA		319.9	0	400		0	80	50-130	0			
Surr: 13C5-PFPeA		318.9	0	400		0	79.7	50-130	0			
Surr: 13C2-PFHxA		327.9	0	400		0	82	50-130	0			
Surr: 13C4-PFHpA		332.7	0	400		0	83.2	50-130	0			
Surr: 13C4-PFOA		331	0	400		0	82.7	70-130	0			
Surr: 13C5-PFNA		320.8	0	400		0	80.2	70-130	0			
Surr: 13C2-PFDA		335.9	0	400		0	84	70-130	0			
Surr: 13C2-PFUnA		406	0	400		0	102	70-130	0			
Surr: 13C2-PFDoA		398.7	0	400		0	99.7	70-130	0			
Surr: 13C2-PFTeA		233.2	0	400		0	58.3	50-130	0			
Surr: 13C3-PFBS		287.5	0	400		0	71.9	50-130	0			
Surr: 1802-PFHxS		285.7	0	378		0	75.6	70-130	0			
Surr: 13C4-PFOS		338.7	0	383		0	88.4	70-130	0			
Surr: 13C2-FtS 4:2		240.1	0	373		0	64.4	50-130	0			
Surr: 13C2-FtS 6:2		238.5	0	380		0	62.8	50-130	0			
Surr: 13C2-FtS 8:2		220.7	0	383		0	57.6	50-130	0			
Surr: 13C8-FOSA		334.6	0	400		0	83.6	50-130	0			
Surr: d3-N-MeFOSAA		408.2	0	400		0	102	50-130	0			
Surr: d5-N-EtFOSAA		406.7	0	400		0	102	50-130	0			
Surr: 13C3-HFPO-DA		356.3	0	400		0	89.1	50-130	0			

Work Order: 22030506
Project: ARTP Biosolids

QC BATCH REPORT

Batch ID: 193928	Instrument ID L	.CMS1		Method	d: D7968	-17a	ı					
LCS2	Sample ID: LCS2-19	3928-193928				ι	Jnits: ng/k	(g	Analy	sis Date: 4/5	/2022 04:0	2 PM
Client ID:		Run ID	: LCMS1	_220405A		Se	eqNo: 830 2	2194	Prep Date: 3	31/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluorononanesulfo	onic Acid (PFNS)	544.7	120	480		0	113	70-130		0		
Fluorotelomer Sulpho	onic Acid 6:2 (FtS	339.7	120	474		0	71.7	70-130		0		
Fluorotelomer Sulpho	onic Acid 8:2 (FtS	564.1	120	479		0	118	70-130	·	0		

Client: Genesee County WWS

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928 Instrument ID LCMS1 Method: D7968-17a

LCS2 Sa	mple ID: LCS2-19	93928-193928				U	Inits: ng/k	(g	Analysi	s Date: 4/7	/2022 03:4	48 AM
Client ID:		Run ID	LCMS1	_220406B			qNo: 830 4		Prep Date: 3/3	1/2022	DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qua
Perfluorobutanoic Acid (F	PFBA)	387.8	120	500		0	77.6	50-130	C)		
Perfluoropentanoic Acid (PFPeA)	396.5	120	500		0	79.3	70-130	C)		
Perfluorohexanoic Acid (I	PFHxA)	349.9	120	500		0	70	50-130	C)		
Perfluoroheptanoic Acid (PFHpA)	387	120	500		0	77.4	50-130	C)		
Perfluorooctanoic Acid (F	PFOA)	400.1	25	500		0	80	70-130	C)		
Perfluorononanoic Acid (l	PFNA)	424.6	25	500		0	84.9	70-130	C)		
Perfluorodecanoic Acid (F	PFDA)	441.2	120	500		0	88.2	70-130	C)		
Perfluoroundecanoic Acid	d (PFUnA)	439.1	120	500		0	87.8	70-130	C)		
Perfluorododecanoic Acid	d (PFDoA)	377.4	120	500		0	75.5	70-130	C)		
Perfluorotridecanoic Acid	(PFTriA)	534.1	120	500		0	107	70-130	C)		
Perfluorotetradecanoic A	cid (PFTeA)	492.1	120	500		0	98.4	70-130	C)		
Perfluorobutanesulfonic A	Acid (PFBS)	322.4	25	442		0	72.9	70-130	C)		
Perfluoropentanesulfonic	Acid (PFPeS	411.1	25	469		0	87.7	70-130	C)		
Perfluorohexanesulfonic	Acid (PFHxS)	338.2	120	455		0	74.3	70-130	C)		
Perfluoroheptanesulfonic	Acid (PFHpS	356.7	120	476		0	74.9	70-130	C)		
Perfluorooctanesulfonic <i>A</i>	Acid (PFOS)	385.3	25	464		0	83	70-130	C)		
Perfluorodecanesulfonic	Acid (PFDS)	397.6	25	482		0	82.5	70-130	C)		
Fluorotelomer Sulphonic	Acid 4:2 (FtS	423.8	120	467		0	90.8	70-130	C)		
Perfluorooctanesulfonam	ide (PFOSA)	375.3	25	500		0	75.1	70-130	C)		
N-Ethylperfluorooctanesu	lfonamidoac€	431.4	120	500		0	86.3	70-130	C)		
N-Methylperfluorooctane:	sulfonamidoa	406	120	500		0	81.2	70-130	C)		
11CI-Pf3OUdS		426.5	25	471		0	90.5	70-130	C)		
4,8-Dioxa-3H-perfluorono	nanoic Acid (394.2	25	471		0	83.7	70-130	C)		
9CI-PF3ONS		387.7	25	466		0	83.2	70-130	C)		
Hexafluoropropylene oxid	le dimer acid	352.7	120	500		0	70.5	50-130	C)		
Surr: 13C4-PFBA		330	0	400		0	82.5	50-130	C)		
Surr: 13C5-PFPeA		329.2	0	400		0	82.3	50-130	C)		
Surr: 13C2-PFHxA		283.5	0	400		0	70.9	50-130	C)		
Surr: 13C4-PFHpA		277	0	400		0	69.2	50-130	C)		
Surr: 13C4-PFOA		328.9	0	400		0	82.2	70-130	C)		
Surr: 13C5-PFNA		341	0	400		0	85.2	70-130	C)		
Surr: 13C2-PFDA		350.4	0	400		0	87.6	70-130	C)		
Surr: 13C2-PFUnA		447.2	0	400		0	112	70-130	()		
Surr: 13C2-PFDoA		467.6	0	400		0	117	70-130	C)		
Surr: 13C2-PFTeA		383.4	0	400		0	95.9	50-130	()		
Surr: 13C3-PFBS		300.5	0	400		0	75.1	50-130	()		
Surr: 1802-PFHxS		312	0	378		0	82.5	70-130	C)		
Surr: 13C4-PFOS		324	0	383		0	84.6	70-130	C)		
Surr: 13C2-FtS 4:2		266.5	0	373		0	71.4	50-130	C)		
Surr: 13C2-FtS 6:2		253.4	0	380		0	66.7	50-130	C)		
Surr: 13C2-FtS 8:2		234.3	0	383		0	61.2	50-130	C)		
Surr: 13C8-FOSA		329.8	0	400		0	82.5	50-130	C)		

Note: See Qualifiers Page for a list of Qualifiers and their explanation.

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928	Instrument ID LCMS1		Method:	D7968-17a			
Surr: d3-N-MeFOSAA	374.3	0	400	0	93.6	50-130	0
Surr: d5-N-EtFOSAA	350.8	0	400	0	87.7	50-130	0
Surr: 13C3-HFPO-DA	331.8	0	400	0	82.9	50-130	0

LCS3 Sample ID: LCS3-19	3928-193928				ι	Jnits: ng/k	(g	Analysi	s Date: 4/5 /	/2022 03:2	0 PM
Client ID:	Run ID	: LCMS1	_220405A		Se	qNo: 830 2	2190	Prep Date: 3/3	1/2022	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluorotelomer Sulphonic Acid 8:2 (FtS Surr: 13C2-PFUnA	119.3 <i>465</i> .9	120 0	120 <i>400</i>		0	99.4 116	35-150 70-130	•			J

LCS3	Sample ID: LCS3-19392	28-193928				U	nits: ng/K	(g	Analy	ysis Date: 4/5 /	2022 03:54	4 PM
Client ID:		Run ID:	LCMS1	_220405A		Sec	qNo: 8302	2193	Prep Date: 3	3/31/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Fluorotelomer Sulph	onic Acid 8:2 (FtS	119.7	120	120		0	99.7	35-150		0		J

Client: Genesee County WWS

Work Order: 22030506
Project: ARTP Biosolids

Batch ID: 193928 Instrument ID LCMS1 Method: D7968-17a

LCS3	Sample ID: LCS3-19	93928-193928				U	Inits: ng/k	(g	Analysis	Date: 4/7	/2022 03:3	39 AM
Client ID:		Run ID	: LCMS1	_220406B		Sec	qNo: 830 4	4002	Prep Date: 3/31	1/2022	DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Perfluorobutanoic	Acid (PERA)	90.9	120	125		0	72.7	35-150	0			J
Perfluoropentanoio	,	99.7	120	125		0	79.8	35-150	0			J
Perfluorohexanoic	,	92.64	120	125		0	74.1	35-150	0			J.
Perfluoroheptanoio	,	89.41	120	125		0	71.5	35-150	0			J
Perfluorooctanoic	, , ,	86.2	25	125		0	69	35-150	0			ŭ
Perfluorononanoic	,	84.78	25	125		0	67.8	35-150	0			
Perfluorodecanoic	,	121.4	120	125		0	97.1	35-150	0			
Perfluoroundecand	,	109.9	120	125		0	87.9	35-150	0			J
Perfluorododecano		63.51	120	125		0	50.8	35-150	0			J
Perfluorotridecano	,	94.31	120	125		0	75.4	35-150	0			J
	noic Acid (PFTeA)	59.15	120	125		0	47.3	35-150				J
	Ilfonic Acid (PFBS)	89.84	25	110		0	81.7	35-150				
Perfluoropentanes	sulfonic Acid (PFPeS	69.04	25	118		0	58.5	35-150	0			
·	ulfonic Acid (PFHxS)	54.67	120	115		0	47.5	35-150	0			J
Perfluoroheptanes	sulfonic Acid (PFHpS	69.4	120	120		0	57.8	35-150	0			J
Perfluorooctanesu	Ifonic Acid (PFOS)	74.64	25	115		0	64.9	35-150	0			
Perfluorononanesı	ulfonic Acid (PFNS)	90.07	120	120		0	75.1	35-150	0			J
Perfluorodecanesı	ulfonic Acid (PFDS)	91.82	25	120		0	76.5	35-150	0			
Fluorotelomer Sulp	phonic Acid 4:2 (FtS	98	120	118		0	83	35-150	0			J
Fluorotelomer Sulp	phonic Acid 6:2 (FtS	84.24	120	118		0	71.4	35-150	0			J
Perfluorooctanesu	Ifonamide (PFOSA)	79.66	25	125		0	63.7	35-150	0			
N-Ethylperfluorooc	ctanesulfonamidoace	93.91	120	125		0	75.1	35-150	0			J
N-Methylperfluoro	octanesulfonamidoa	48.13	120	125		0	38.5	35-150	0			J
11CI-Pf3OUdS		79.69	25	118		0	67.5	35-150	0			
4,8-Dioxa-3H-perfl	luorononanoic Acid (74.99	25	118		0	63.5	35-150	0			
9CI-PF3ONS		79.99	25	118		0	67.8	35-150	0			
Hexafluoropropyle	ne oxide dimer acid	U	120	125		0	0	35-150	0			S
Surr: 13C4-PFB	3A	301.5	0	400		0	75.4	50-130	0			
Surr: 13C5-PFP	PeA	320.8	0	400		0	80.2	50-130	0			
Surr: 13C2-PFH	łxA	326.1	0	400		0	81.5	50-130	0			
Surr: 13C4-PFH	lpA	282.3	0	400		0	70.6	50-130	0			
Surr: 13C4-PFC	DA .	313.4	0	400		0	78.4	70-130	0			
Surr: 13C5-PFN	IA	330.8	0	400		0	82.7	70-130	0			
Surr: 13C2-PFD	DA .	323	0	400		0	80.8	70-130	0			
Surr: 13C2-PFU	InA	381.9	0	400		0	95.5	70-130	0			
Surr: 13C2-PFD	DoA .	373.5	0	400		0	93.4	70-130	0			
Surr: 13C2-PFT	¯eA	264.7	0	400		0	66.2	50-130	0			
Surr: 13C3-PFB	BS	286.1	0	400		0	71.5	50-130	0			
Surr: 1802-PFH	1xS	311	0	378		0	82.3	70-130	0			
Surr: 13C4-PFC	OS .	298.4	0	383		0	77.9	70-130	0			
Surr: 13C2-FtS	4:2	212.4	0	373		0	56.9	50-130	0			
Surr: 13C2-FtS	6:2	266.2	0	380		0	70.1	50-130	0			

Work Order: 22030506
Project: ARTP Biosolids

OC :	BAT	CH	REP	ORT
------	-----	----	-----	-----

Batch ID: 193928	Instrument ID LCMS1		Method:	D7968-17a				
Surr: 13C2-FtS 8:2	244.6	0	383	0	63.9	50-130	0	
Surr: 13C8-FOSA	317	0	400	0	79.2	50-130	0	
Surr: d3-N-MeFOSAA	274.2	0	400	0	68.5	50-130	0	
Surr: d5-N-EtFOSAA	352.5	0	400	0	88.1	50-130	0	
Surr: 13C3-HFPO-DA	317.6	0	400	0	79.4	50-130	0	

The following samples were analyzed in this batch:

22030506-01A

Work Order: 22030506
Project: ARTP Biosolids

QC BATCH REPORT

Batch ID: R339568	Instrument ID MO	IST		Metho	d: SW355	50C							
MBLK	Sample ID: WBLKS-R3	39568				Units: % of sample			Analysis Date: 3/8/2022 12:38 PM				
Client ID:		Run ID	MOIST	_220308A		Sec	SeqNo: 8226102		Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		U	0.10										
LCS	Sample ID: LCS-R3395	68					nits: % o f	f sample	Analysis	/2022 12:38 PM			
Client ID:		Run ID	: MOIST	_220308A		Sec	qNo: 822 0	6101	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		99.98	0.10	100		0	100	98-102	0				
DUP	Sample ID: 22030474- 0	mple ID: 22030474-01A DUP					nits: % o	f sample	Date: 3/8/	oate: 3/8/2022 12:38 PM			
Client ID:		Run ID	: MOIST	_220308A		Sec	qNo: 822 0	6092	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		19.95	0.10	0		0	0	0-0	20.42	2.33	10		
DUP	Sample ID: 22030496- 0	1A DUP				U	nits: % o	f sample	Analysis	Date: 3/8/	2022 12:3	8 PM	
Client ID:		Run ID	MOIST	_220308A		Sec	qNo: 822 0	6098	Prep Date:		DF: 1		
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua	
Moisture		97.04	0.10	0		0	0	0-0	97.02	0.0206	10		
The following samp	les were analyzed in thi	s batch:	22	2030506-01	4						:		

Chain of Custody Form

Page __1___ of ___1_

22030506

GENESEECO: Genesee County Water & Waste Services
Project: ARTP Biosolids

and COC Form have been submitted to ALS.

				l Star	ALS Project Manager:														
	Custo	mer Information		Pro	ect Inform	ation			P	arame	ter/M	etho	d Req	uest	or An	alysis			
P	urchase Order	2022-00040006	Project N	ame AR	TP Biosolids			A P	FAS 28										
	Work Order		Project Num	iber				В											
C	ompany Name	Genesee County Water and Waste Se	Bill To Comp	any Gei	nesee County	Water and V	Vaste Service	C											
S	end Report To	Thad Domick	Invoice A	ttn. Kin	berly Gazso			D											
	Address		Addı	ess															
		9290 Farrand Road		461	4610 Beecher Road														
	City/State/Zip	Montrose, MI 48457	City/State		Flint, MI 48532			G											
	Phone	(810) 232-7662						H:											
	Fax	(810) 232-3280		Fax (81	(810) 732-9773			2232											
E	-Mail Address	domick@gcdcwws.com				Tanana	1	J							**********	17.7.7.7.7		T	
No.	•	Sample Description	Date	Time	Matrix	Pres. Key Numbers	# Bottles	Α	В	С	Đ	E	F	G	H	ı	J	Hold	
1	ARTP Biosolids	Tank 3	3/3/2022	10:30am	SL	8	3	х											
2																			
3																			
4									1									\vdash	
											-					-		1	
5									+		_		í.						
6																		\vdash	
7																		\perp	
8																			
9																			
10			2																
Samp	ler(s): Please P	rint & Sign	Ship	ment Met	hod: Req	uired Turna	round Time:	(Check i	Вох)		Other			Re	sults D	ue Date	:		
Brent	Pittenger	THE TOP	3			10 Wk Days	5 Wk Days	3 Wk I	Days	2 W	k Days	2·	4 Hour						
Relinq	aished by:	Date:	Time:	Received by	1/1	/	Date:	Time:	Notes:	Me	tals lis	t: as, c	cd, cr, c	u, pb,	hg, mo	, ni, se,	ag, zn		
	Pittenger	3/4/22	07001	- Ym	W		3-4-22	0859	2			****							
Relinquished by: Date: Time: Recei			Received by	(Laboratory):		Date:	Time:	ALS C	and the second second	Coole		Packa	ge: (C	Check B	ox Belo	w)			
Min ful 3-4-22 1700 Q.			Q2	/	2300 ALS Cooler			Temp	-	Level II: Standard QC Level II			Level III	: Raw D	ata				
Logge	by (Laboratory):	Date:	Time:	Checked by	(Laboratory):		R 4,82 TRRP LRC				TRRP Le	vel IV							
	The state of the s	3/7/22	0910						100	12.5			Level IV:	SW846	Methods/	CLP like			
		3/1/00	0110					010	1000		i de		Other: _			-			
Pres	ervative Key	1-HCI 2-HNO ₃ 3-H ₂	SO ₄ 4-Na	aOH :	5-Na ₂ S ₂ O ₃	6-NaHS	O ₄ 7-Otl	ner i	8- 4°C	No	te: An	y chan	ges mu	st be ir	nade in v	vriting o	nce sa	mples	

Client Name: GENESEECO

Sample Receipt Checklist

Date/Time Received:

04-Mar-22 23:00

Work Order: 220	ork Order: <u>22030506</u>				Received b	y: <u>L'</u>	YS		
Checklist completed	ecklist completed by Lydia Sweet esignature		07-Mar-22	<u> </u>	Reviewed by:	Julian Joh	nson		ar-22
	<u>Sludge</u> <u>Courier</u>	l				J			
Shipping container/	cooler in good condition?		Yes	✓	No 🗌	Not Present			
Custody seals intac	ct on shipping container/coole	?	Yes		No 🗌	Not Present			
Custody seals intac	ct on sample bottles?		Yes		No 🗌	Not Present			
Chain of custody pr	resent?		Yes	~	No 🗌				
Chain of custody si	gned when relinquished and r	eceived?	Yes	✓	No 🗌				
Chain of custody ag	grees with sample labels?		Yes	✓	No 🗌				
Samples in proper o	container/bottle?		Yes	✓	No 🗌				
Sample containers	intact?		Yes	✓	No 🗌				
Sufficient sample v	olume for indicated test?		Yes	✓	No 🗌				
All samples receive	ed within holding time?		Yes	✓	No 🗌				
Container/Temp Bla	ank temperature in complianc	e?	Yes	✓	No 🗌				
Sample(s) received	d on ice?		Yes	✓	No 🗌				
Temperature(s)/The	ermometer(s):		4.8/4.8	<u>ic</u>		IR1]	
Cooler(s)/Kit(s):			0/7/00	20.0	10.04.444				
Date/Time sample(: Water - VOA vials h	s) sent to storage: have zero headspace?		3/7/202 Yes	22 9:	12:31 AM No	No VOA vials su	ubmitted	✓	
Water - pH accepta			Yes		No 🗌	N/A			
pH adjusted?			Yes		No 🗌	N/A			
pH adjusted by:			_						
Login Notes:									
Client Contacted:	ent Contacted: Date Contacted:				Person	Contacted:			
Contacted By:		Regarding:							
								1	
Comments:									
								1	
CorrectiveAction:									
	i .							000	