Chapitre V - Dérivation

III - Sens de variation d'une fonction et signe du nombre dérivé

Exercice:

Une entreprise fabrique et commercialise un produit. Sa capacité de production, sur un mois, lui permet de réaliser entre 0 et 13 tonnes de ce produit. On désigne par x le nombre de tonnes de produit fabriqué par l'entreprise en un mois.

Le coût de production, exprimé en milliers d'euros, est donné par :

$$C(x) = x^3 - 15x^2 + 75x.$$

Cette entreprise vend l'intégralité de ce qu'elle produit au prix de 36,75 milliers d'euros la tonne.

La recette, pour x tonnes produites, est notée R(x), exprimée en milliers d'euros. On donne ci-contre la représentation graphique $\mathscr C$ de la fonction C sur l'intervalle $[0\ ;\ 13].$

C est dérivable sur
$$[0; 13]$$
 et pour tout $x \in [0; 13]$, $C'(x) = 3x^2 - 15 \times 2x + 75 = 3x^2 - 30x + 75$.

C est dérivable sur
$$[0; 13]$$
 et pour tout $x \in [0; 13]$, $C'(x) = 3x^2 - 15 \times 2x + 75 = 3x^2 - 30x + 75$. De plus $3(x-5)^2 = 3(x^2-2\times x\times 5+5^2) = 3(x^2-10x+25) = 3x^2-30x+75$.

C est dérivable sur
$$[0\,;\,13]$$
 et pour tout $x\in[0\,;\,13]$, $C'(x)=3x^2-15\times 2x+75=3x^2-30x+75.$ De plus $3(x-5)^2=3(x^2-2\times x\times 5+5^2)=3(x^2-10x+25)=3x^2-30x+75.$ Ainsi $C'(x)=3(x-5)^2$

$$C$$
 est dérivable sur $[0\,;\,13]$ et pour tout $x\in[0\,;\,13]$, $C'(x)=3x^2-15\times 2x+75=3x^2-30x+75.$ De plus $3(x-5)^2=3(x^2-2\times x\times 5+5^2)=3(x^2-10x+25)=3x^2-30x+75.$ Ainsi $C'(x)=3(x-5)^2$ et on en déduit que $C'(x)\geqslant 0$ sur $[0\,;\,13]$.

$$C$$
 est dérivable sur $[0\,;\,13]$ et pour tout $x\in[0\,;\,13],$ $C'(x)=3x^2-15\times 2x+75=3x^2-30x+75.$ De plus
$$3(x-5)^2=3(x^2-2\times x\times 5+5^2)=3(x^2-10x+25)=3x^2-30x+75.$$
 Ainsi $C'(x)=3(x-5)^2$ et on en déduit que $C'(x)\geqslant 0$ sur $[0\,;\,13].$ On en conclut que C est croissante sur $[0\,;\,13].$

(a) Donner l'expression de R(x) en fonction de x et représenter la fonction R dans le même repère que \mathscr{C} .

Chaque tonne est vendue 36,75 milliers d'euros, donc pour x tonnes vendues, la recette en milliers d'euros vaut R(x) = 36,75x.

2.(a) Donner l'expression de R(x) en fonction de x et représenter la fonction R dans le même repère que \mathscr{C} .

Chaque tonne est vendue 36,75 milliers d'euros, donc pour x tonnes vendues, la recette en milliers d'euros vaut R(x)=36,75x.

.(b) Déterminer graphiquement l'intervalle auquel doit appartenir x pour que l'entreprise réalise un bénéfice.

2.(b) Déterminer graphiquement l'intervalle auquel doit appartenir x pour que l'entreprise réalise un bénéfice.

Graphiquement, pour que l'entreprise réalise un bénéfice, il faut qu'elle produise et vende entre 3,2 et 11,7 tonnes.

- 3. Dans cette question, on se propose de déterminer la valeur de x permettant d'obtenir un bénéfice maximum.
- (a) On désigne par B(x) le bénéfice réalisé pour x appartenant à l'intervalle $[0\,;\,13]$.

- 3. Dans cette question, on se propose de déterminer la valeur de x permettant d'obtenir un bénéfice maximum.
- G.(a) On désigne par B(x) le bénéfice réalisé pour x appartenant à l'intervalle [0; 13]. Montrer que $B(x) = -x^3 + 15x^2 - 38,25x$.

3.(a) On désigne par B(x) le bénéfice réalisé pour x appartenant à l'intervalle [0; 13]. Montrer que $B(x) = -x^3 + 15x^2 - 38,25x$.

Bénéfice = Recettes - Coûts

3.(a) On désigne par B(x) le bénéfice réalisé pour x appartenant à l'intervalle [0; 13]. Montrer que $B(x) = -x^3 + 15x^2 - 38.25x$.

Bénéfice = Recettes - Coûts

$$B(x) = 36,75x - (x^3 - 15x^2 + 75x)$$

3.(a) On désigne par B(x) le bénéfice réalisé pour x appartenant à l'intervalle [0; 13]. Montrer que $B(x) = -x^3 + 15x^2 - 38,25x$.

$$\begin{aligned} & \mathsf{B\acute{e}n\acute{e}fice} = \mathsf{Recettes} - \mathsf{Co\^{u}ts} \\ & = 36,75x - (x^3 - 15x^2 + 75x) \\ & = 36,75 - x^3 + 15x - 75x = -x^3 + 15x^2 - 38,25x \end{aligned}$$

3.(b) Calculer B'(x) où B' désigne la dérivée de la fonction B. Montrer que B'(x) = -3(x-8,5)(x-1,5).

On rappelle que $B(x) = -x^3 + 15x^2 - 38,25x$

3.(b) Calculer B'(x) où B' désigne la dérivée de la fonction B. Montrer que B'(x) = -3(x-8,5)(x-1,5).

On rappelle que
$$B(x) = -x^3 + 15x^2 - 38,25x$$

 $B'(x) = -3x^2 + 15 \times 2x - 38,25 = -3x^2 + 30x - 38,25.$

3.(b) Calculer B'(x) où B' désigne la dérivée de la fonction B. Montrer que B'(x) = -3(x-8,5)(x-1,5).

On rappelle que
$$B(x)=-x^3+15x^2-38,25x$$
 $B'(x)=-3x^2+15\times 2x-38,25=-3x^2+30x-38,25.$ De plus $-3(x-8,5)(x-1,5)=-3(x^2-1,5x-8,5x+12,75)$

3.(b) Calculer B'(x) où B' désigne la dérivée de la fonction B. Montrer que B'(x) = -3(x-8,5)(x-1,5).

On rappelle que
$$B(x) = -x^3 + 15x^2 - 38,25x$$

 $B'(x) = -3x^2 + 15 \times 2x - 38,25 = -3x^2 + 30x - 38,25.$
De plus $-3(x-8,5)(x-1,5) = -3(x^2-1,5x-8,5x+12,75)$
 $= -3x^2 + 4,5x + 25,5x - 38,25$
 $= -3x^2 + 30x - 38,25.$
Donc $B'(x) = -3(x-8,5)(x-1,5).$

- **(.(c)** Déterminer le signe de B'(x) pour x appartenant à l'intervalle [0; 13] puis dresser le tableau de variations de la fonction B sur cet intervalle.
 - \rightarrow réponse sur la prochaine diapo...

3.(c) On résout x - 8, 5 = 0 qui donne x = 8, 5 et x - 1, 5 = 0 ce qui donne x = 1, 5.

3.(c) On résout x - 8, 5 = 0 qui donne x = 8, 5 et x - 1, 5 = 0 ce qui donne x = 1, 5.

x	0		1, 5	ó	8,5		13
signe de -3		_		_		_	
signe de $x - 8, 5$		_		_	•	+	
signe de $x-1,5$		_	0	+		_	
signe de $B'(x)$		+	0	_	•	+	

3.(c) On résout x-8, 5=0 qui donne x=8, 5 et x-1, 5=0 ce qui donne x=1, 5.

x	0		1, 5		8, 5		13
signe de -3		_		_		_	
signe de $x - 8, 5$		_		_	0	+	
signe de $x-1,5$		_	0	+		_	
signe de $B'(x)$		+	0	_	0	+	

Ce tableau de signe de $B^\prime(x)$ nous permet de construire le tableau de variations de la fonction B :

3.(c) On résout x-8, 5=0 qui donne x=8, 5 et x-1, 5=0 ce qui donne x=1, 5.

x	0		1,5		8,5		13
signe de -3		_		_		_	
signe de $x - 8, 5$		_		_	0	+	
signe de $x-1,5$		_	0	+		_	
signe de $B'(x)$		+	0	_	ф	+	

Ce tableau de signe de B'(x) nous permet de construire le tableau de variations de la fonction B:

x	0		1, 5		8, 5		13
B'(x)		_	0	+	0	_	
B							

3.(c) On résout x - 8, 5 = 0 qui donne x = 8, 5 et x - 1, 5 = 0 ce qui donne x = 1, 5.

x	0		1,5		8,5		13
signe de -3		_		_		_	
signe de $x - 8, 5$		_		_	•	+	
signe de $x-1,5$		_	Ф	+		_	
signe de $B'(x)$		+	ф	_	•	+	

Ce tableau de signe de B'(x) nous permet de construire le tableau de variations de la fonction B:

	0 .00 .00 .00 .					
x	0	1,5		8, 5		13
B'(x)	_	0	+	0	_	
В				<i>,</i> `		4

3.(c) On résout x - 8, 5 = 0 qui donne x = 8, 5 et x - 1, 5 = 0 ce qui donne x = 1, 5.

x	0		1,5		8,5		13
signe de -3		_		_		_	
signe de $x - 8, 5$		_		_	•	+	
signe de $x-1,5$		_	Ф	+		_	
signe de $B'(x)$		+	ф	_	•	+	

Ce tableau de signe de B'(x) nous permet de construire le tableau de variations de la fonction B:

x	0		1,5		8,5		13
B'(x)		_	0	+	0	_	
В	0		-27		,144,5	-159	, 25

3.(d) Quelle est la valeur de x qui assure un bénéfice maximum? Quelle est alors le bénéfice maximal que peut réaliser cette entreprise?

Le tableau de variation nous permet de répondre à cette question :

\boldsymbol{x}	0	1, 5		8,5		13
B'(x)	_	0	+	0	_	
В	0			144,5	-159	7,25

 ${f B.(d)}$ Quelle est la valeur de x qui assure un bénéfice maximum? Quelle est alors le bénéfice maximal que peut réaliser cette entreprise?

Le tableau de variation nous permet de répondre à cette question :

x	0		1, 5		8,5		13
B'(x)		_	0	+	0	_	
В	0 \	\	_27		, ^{144, 5}	-159	7,25

Le bénéfice est maximal lorsque x=8,5 c'est-à-dire pour 8,5 tonnes produites et vendues et ce bénéfice maximal s'élève à 144 500 \in .