Expected / Projected / Actual Class Progression

Week 1 - 2/1

- Syllabus
- What's already assigned
- Install
- Questions
- Recording

Week 2 - $2/6 \ 2/8$

- Tuesday's Recording
- Thursday's Recording
- Apple Silicon
- Windows
- Intel Mac get the distro, get QEMU, follow instructions for Windows except use your plain old terminal instead of WSL.
- Binary
- Powers of 2 up to 216
- Signed and Unsigned Integers
- 1's Complement and 2's Complement
- Registers
 - Integer Registers w & x
 - Why Have Registers
 - * Speed of Processors Relative to RAM
 - Up to this point was Tuesday 2/6. Thursday's class follows.
 - Special Registers
 - * Program Counter pc
 - * Stack Pointer sp
 - Floating Point Registers \boldsymbol{h} , s, d, v & q
 - Floating Point Construction

Week $3 - 2/13 \ 2/15$

- Floating Point Registers h, s, d, v & q
 - h are half floats not used much are least significant half of s's
 - s are single precision values least significant half of $\mathrm{d}\ensuremath{^{\prime}}\mathrm{s}$
 - d are double precision values are least significant half of v's
 - v's are a vector of something
 - q's are a single 128 bit value
- Floating Point Construction
 - Floats / Doubles are approximations
 - Normalized scientific notation
 - * Sign
 - * Exponent
 - * Mantissa
 - Single Precision how above are implemented
 - Double Precision how above are implemented
- Why Have Registers (Continued)
 - Steps Needed to Execute an Instruction
 - Pipelined Execution
 - Special Registers (other than the *really* special registers)
 - * Frame Pointer x29
 - * Link Register x30
 - Aside:
 - * Bit fields in C/C++
 - * Unions in C/C++

Week $4 - 2/20 \ 2/22$

Week $5 - 2/27 \ 2/29$

Week $6 - 3/12 \ 3/14$

Week $7 - 3/19 \ 3/21$

Week 8 - $3/26 \ 3/28$

Week 9 - $4/2 \ 4/4$

Week 10 - 4/9 4/11

Week 11 - 4/16 4/18

Week 12 - $4/23 \ 4/25$

Week 13 - 4/30 5/2

Week 14 - 5/7 5/9