19387: Clase 2

Modelo ricardiano (autarquía)

Emmanuel Anguiano Otoño 2025

Prólogo

¿Por qué comercian los países?

• Teorías viejas:

- Ricardo: Diferencias en la tecnología de los países (Ventaja compartiva).
- Hecksher-Ohlin: La especialización depende de las diferencias en dotaciones de factores productivos.

• Teorías nuevas:

- Armington: Las personas prefieren consumir bienes extranjeros.
- o Competencia monopolística: Gusto por la variedad (Paul Krugman).
- Economías de escala: Es más barato producir todo en un solo país (Melitz).

Ventaja comparativa

- El modelo ricardiano del comercio utiliza los conceptos de **ventaja comparativa** y **costo de oportunidad**.
- El **costo de oportunidad** de producir un bien mide el costo de renunciar a producir otra cosa con los mismos recursos.

Modelo ricardiano (1 factor)

Supuestos del modelo

- 1. Mercados (bienes y factores): Competencia perfecta.
- 2. El factor trabajo es homogéneo y no específico (sectores).
- 3. Los trabajadores pueden moverse libremente entre sectores en los mercados domésticos pero **no hay migración**.
- 4. La producción de los bienes requiere cantidades distintas de trabajo:
 - Un solo factor.
 - El **producto marginal del trabajo** es constante.
- 5. No existen barreras al comercio ni costos de transacción.
- 6. La tecnología es constante en cada país.
- 7. Las dotaciones de factores son fijas (\bar{L}).

Configuración del modelo

- Imagina 2 países: **Doméstico** y **Extranjero**.
- Cada país puede producir dos bienes: botellas de vino (x) y queso (y).
- La oferta de trabajo en cada país es fija:
 - \circ $ar{m{L}}$ para el país doméstico y $ar{m{L}}$ para el extranjero.
- Definamos:
 - \circ l_x : la cantidad de trabajo **necesaria** para elaborar una botella de **vino**.
 - \circ l_y : la cantidad de trabajo **necesaria** para elaborar un pieza de **queso**.

Modelo para el país doméstico

• El conjunto de producción **Doméstico** y la posible asignación total de trabajadores en cada país se representa por:

$$0 \circ l_x x + l_y y \leq ar{L} + l_y y$$

 Para encontrar la Frontera de Posibilidades de Producción (FPP) supongamos que la oferta y demanda de trabajo son iguales:

$$\circ \ l_x x + l_y y = L$$

- $ullet y = rac{L}{l_y} rac{l_x}{l_y} x$
- intercepto en y: $\frac{L}{l_y}$ (producción máxima en y).
- intercepto en x: $\frac{L}{l_x}$ (producción máxima en x).

Modelo para el país doméstico

Entendiendo el intercambio

- Pendiente de la FPP: Tasa Marginal de Transformación (TMT).
- La TMT es la tasa a la que el mercado (doméstico) valora el intercambio entre los bienes x e y.
- El **precio relativo** de x (en términos de y) o, el costo de oportunidad de x

Ventaja absoluta y comparativa (Autarquía)

Ventaja absoluta (Adam Smith)

 Decimos que un país tiene ventaja absoulta si requiere de menos trabajadores para producir (una unidad) de un bien.

• Ejemplo:

- \circ Si $l_x < l_x$, entonces el país doméstico tiene una ventaja absoluta en producir x.
- o Si $l_y > l_y$, entonces el país **extranjero** tiene una ventaja absoluta en producir y.

Ventaja comparativa (Ricardo)

 Un país tiene ventaja comparativa en producir un bien, si el costo de oportunidad de producir dicho bien es menor en comparación con el de otros países.

• Ejemplo:

- \circ Si $\frac{l_x}{l_y} < \frac{l_x}{l_y}$, entonces el país **doméstico** tiene ventaja comparativa en producir x.
- \circ Si $\frac{l_x}{l_y} > \frac{l_x}{l_y}$, entonces el país **extranjero** tiene ventaja comparativa en producir y.

Ideas sobre la ventaja comparativa

- ullet Pendiente de la FPP = Costo de oportunidad del bien x (cantidad de y que se entrega por 1 de x)
- Si los países tienen diferentes pendientes en sus FPP, tienen diferentes costos de oportunidad (¡Comerciar!).
- Un país con pendiente más suave (menor magnitud) tiene un menor costo de oportunidad de x (o un mayor costo de y), lo que implica una ventaja comparativa en x.
- Un país con pendiente más pronunciada (mayor magnitud) tiene un mayor costo de oportunidad de x (o un menor costo de y), lo que implica una ventaja comparativa en y.

Ejemplo en autarquía

Ejemplo modelo ricardiano (1-factor)

Ejemplo. Supongamos lo siguiente:

- El país **doméstico** tiene 100 trabajadores.
 - Requiere 1 trabajador para producir x.
 - Requiere 2 trabajadores para producir y
- El país **extranjero** tiene 100 trabajadores.
 - Requiere 1 trabajador para producir x.
 - Requiere 4 trabajadores para producir y

- 1. Para cada país, encuentra la ecuación de su FPP y grafícala.
- 2. ¿Qué país tiene **ventaja absoluta** en producir x e y?
- 3. ¿Qué país tiene **ventaja comparativa** en producir x e y?

Solución

Doméstico:

$$egin{aligned} l_x x + l_y y &= L \ 1x + 2y &= 100 \ 2y &= 100 - x \ y &= 50 - 0.5x \end{aligned}$$

Extranjero:

$$egin{aligned} l_x x + l_y y &= L \ 1x + 4y &= 100 \ 4y &= 100 - x \ y &= 25 - 0.25x \end{aligned}$$

Ventaja comparativa y precios relativos

de autarquía

- Hasta ahora suponemos que los países están en **autarquía**, es decir que no comercian entre sí.
- Para encontrar la ventaja comparativa para cada país, necesitamos calcular su costo de oportunidad de producir cada bien en cada país (i.e. precio relativo en autarquía)
- Un país con un **precio relativo de autarquía más bajo** tiene una ventaja comparativa en producir dicho bien.

Ejemplo: Ventaja comparativa

Doméstico:

- Precio relativo de autarquía de x: 0.5y [Pendiente de la FPP].
- Precio relativo de autarquía de *y*: 2*x*

Extranjero:

- Precio relativo de autarquía de x: 0.25y [Pendiente de la FPP].
- Precio relativo de autarquía de *y*: 4*x*

Ejemplo: Ventaja comparativa

Precios relativos de autarquía (Costos de oportunidad)

- El país Doméstico tiene ventaja comparativa en producir y
- El Extranjero tiene ventaja comparativa en producir x

Precios relativos de autarquía (Costos de oportunidad)

- Supongamos que ahora los países se abren para comerciar entre sí.
- Hasta aquí, hemos considerado los precios relativos en autarquía.
- Procedamos a ver que sucede con los precios relativos cuando los países se abren al comercio internacional.

Ejemplo con comercio internacional

Precios relativos de autarquía (Costos de oportunidad)

Aquí vamos a omitir algunos detalles importantes:

- Ricardo supone una teoría del valor-trabajo y que el producto marginal del trabajo es constante.
- ullet Hasta ahora no hemos dicho nada del PmgL para simplificar el análisis.
- También estamos en un intercambio directo (trueque) de bienes; aquí no hay dinero.

Precios relativos de autarquía (Costos de oportunidad)

• Doméstico:

- \circ Comprar imes si $p_x < 0.5 y$
- \circ Vender y si $p_y>2x$
- El precio de autarquía de y:
 - En país Doméstico: 2x
 - En Extranjero: 4x
- El país Doméstico puede exportar el bieny al Extranjero y vender a un precio ¡más alto!
 - Todo L en país Doméstico se moverá a la industria (que paga salarios más altos) elaborando el bien y

Precios relativos de autarquía (Costos de oportunidad)

- El país Extranjero :
 - $\circ~$ Venderá ${
 m x}$ si $p_x>0.25y$
 - \circ Comprará y si $p_y < 4x$
- El precio de autarquía de x:
 - En país Doméstico: 0.5y
 - En el Extranjero: 0.25y
- El país Extranjero puede exportar x al país doméstico y vender a un precio ¡más alto!
 - Todo L en el Extranjero se moverá a la industria que elabora x (paga salarios más altos)

Precios relativos de autarquía (Costos de oportunidad)

Posible rango de **precios relativos mundiales**:

$$0.25y < p_x < 0.5y$$
 $2x < p_y < 4x$

Ejemplo: Especialización

Doméstico

El país **Doméstico** se especializará en producir únicamente el bien **y** en el punto A

Extranjero

El **Extranjero** se especializará en producir únicamente el bien x en el punto A'.

Ajuste en precios debido al comercio

- El país **Doméstico** exportará el bien $y \implies$ vende *menos* $y \in p_y$ en **Doméstico** $y \in p_y \in p_y$ en **Doméstico**
- Cuando el bien y llega al país **Extranjero** \Longrightarrow existe $m\acute{a}s$ y en el mercado **Extranjero** $\Longrightarrow \downarrow p_u$ en el **Extranjero**
- El país Extranjero exportará más de x \Longrightarrow se vende menos x en el Extranjero \Longrightarrow $\uparrow p_x$ en el Extranjero
- Cuando x llega al país **Doméstico** \Longrightarrow existe $m\acute{a}s$ x en el país **Doméstico** \Longrightarrow $\downarrow p_x$ en **Doméstico**

Equilibrio con comercio internacional: Precios relativos mundiales

Precios relativos mundiales

• En el **equilibrio con comercio internacional**, los precios relativos se ajustarán hasta **igualarse** entre ambos países:

$$rac{p_x^\star}{p_y^\star} = rac{p_x}{p_y} = rac{p_x'}{p_y'}$$

• Debe ubicarse dentro de un rango que sea aceptable para ambas partes:

$$0.25y < p_x < 0.5y \ 2x < p_y < 4x$$

• Supongamos que el precio relativo mundial se fija en:

$$rac{p_x^\star}{p_y^\star}=0.4y$$

Precios relativos mundiales

Doméstico

Extranjero

El precio relativo mundial de x: $rac{p_x^\star}{p_y^\star} = 0.4 y$

Ambos países enfrentan la misma **tasa de cambio internacional** con pendiente =-0.4

Triangulos comerciales

Doméstico

El país Doméstico exportará 20y al Extranjero

Extranjero

Triángulos comerciales

Doméstico

El país Doméstico exporta 20y a Extranjero

Extranjero

El país Extranjero exporta 50x al país Doméstico

Triángulos comerciales

Comercio a lo largo del **tipo de cambio mundial** (precios relativos mundiales) desde los puntos de especialización (A y A') hasta los puntos de consumo (B y B'), ¡más allá de las FPP!

Formalización del modelo ricardiano

Introducción

Supuestos básico del modelo

- Dos bienes, dos países.
- Un factor de producción (\bar{L}).
- Diferencias en tecnología: costo relativo del trabajo (PmgL).

¿Qué nos hace falta?

- No hemos especificado las preferencias (Demanda por cada bien).
- 🔹 Derivar el equilibrio algebráico del modelo (¡Hasta ahora solo fue gráfico! 📈)
- Separar el problema del consumidor y el del productor.

Solución de modelos competitivos

- 1. Especificar agentes: Consumidores, productores, ocasionalmente gobierno.
- 2. Definir el problema de optimización para cada agente.
- 3. Establecer restricciones globales. Vaciado de los mercados.
- 4. Resolver el equilibrio competitivo.

¿Qué es un equilibrio competitivo?

• Precios y asignaciones tales que todos los agentes estén satisfechos con sus elecciones, dadas las elecciones de los otros agentes.

Preferencias del consumidor

- La literatura sobre las preferencias es amplia. Aquí vamos a ignorar como se definen y suponemos una forma funcional específica para la función de utilidad.
- Para los consumidores:
 - ∘ Mayor nivel de utilidad (ordinal) = Mejor 👍
 - o Mismo nivel de utilidad = Indiferente 🙄

Propiedades de las funciones de utilidad

- Monótonas: Más de todo es mejor que menos de todo.
- Transitivas: A es mejor que B y B es mejor que C \implies A es mejor que C.
- Completas: Es posible calcular el valor de la función de utilidad para todas las asignaciones posibles.

Ejemplo: Función de utilidad

Supongamos que existen dos bienes: c_1 es el bien de consumo 1, c_2 es el bien de consumo 2.

• Función de utilidad de tipo Cobb-Douglas:

$$U(c_1,c_2)=(c_1)^{\theta_1}(c_2)^{\theta_2}$$

Supongamos que $heta_1= heta_2=0.5$. ¿Cuál será la elección óptima del consumidor $(c_1,c_2)=(1,2)$ ó (1.5,1.5)?

$$U(1,2) = (1)^{0.5} imes (2)^{0.5} pprox 1.41 \ U(1.5,1.5) = (1.5)^{0.5} imes (1.5)^{0.5} pprox 1.5$$

 $U(1.5,1.5) > U(1,2) \implies$ el consumidor prefiere la segunda asignación.

Ejemplo: Función de utilidad

Supongamos que existen dos bienes: c_1 es el bien de consumo 1, c_2 es el bien de consumo 2.

• Función de utilidad de tipo Cobb-Douglas:

$$U(c_1,c_2)=(c_1)^{\theta_1}(c_2)^{\theta_2}$$

Importante: La utilidad no tiene unidades naturales. Nos importa la utilidad relativa

- Las transformaciones que preservan el orden se consideran funciones de utilidad equivalentes.
- Transformaciones comunes que preservan el orden: Adición, multiplicación, potencia, logaritmos, etc.

Ejemplo: Tomar logaritmos a función de utilidad

$$ilde{U}(c_1,c_2) = heta_1 \log c_1 + heta_2 \log c_2$$

Problema del consumidor

El problema del consumidor consiste en maximizar su función de utilidad sujeto a una restricción presupuestal.

Restricción presupuestal

- Sin esta restricción los consumidores quisieran consumir una cantidad infinita de todo.
- La restricción presupuestaria forza a que el gasto del consumidor sea menor a su ingreso.
- En los modelos estáticos suponemos que **no** existen los préstamos ni el ahorro.

Gasto de consumo: suma de los gastos (= precio \times cantidad) de todos los bienes.

Fuentes de ingreso: Ingreso laboral (salario × trabajo ofertado (horas)).

Otras fuentes potenciales: renta del capital, ganancias de las empresas, impuestos del gobierno.

Problema del consumidor

Dados los precios p_1, p_2, w , el consumidor elegirá consumir c_1, c_2 para **Maximizar su** utilidad:

$$egin{array}{ll} \max \limits_{c_1,c_2} & U(c_1,c_2) \ & ext{sujeto a} & p_1c_1+p_2c_2 \leq wL \end{array}$$

Adicionalmente, utilizamos una restricción de no-negatividad:

$$c_1 \geq 0; c_2 \geq 0$$

En adelante, omitiremos esta restricción por simplicidad.

Problema del consumidor

Dados los precios p_1, p_2, w , el consumidor elegirá consumir c_1, c_2 para Maximizar su utilidad:

$$egin{array}{ll} \max \limits_{c_1,c_2} & U(c_1,c_2) \ & ext{sujeto a} & p_1c_1+p_2c_2 \leq wL \end{array}$$

Nota 1: Al resolver el problema debemos suponer una forma funcional para la función de utilidad.

Nota 2: Los consumidores no eligen como asignar su fuerza de trabajo entre el bien 1 y el 2. Simplemente ofrecen su fuerza de trabajo.

Las empresas que contratan la mano de obra determinan la cantidad de trabajadores en cada sector (los salarios deben igualarse en ambas industrias).

Problema de las empresas

En el modelo ricardiano suponemos que las empresas son **perfectamente competitivas**.

• Esto significa que no hay ganancias extraordinarias y que las empresas no tienen poder de mercado (tomadoras de precio).

Suponemos que todas las empresas de un mismo país tienen la misma tecnología de producción para un bien determinado:

- Normalmente suponemos rendimientos constantes a escala (RCE): duplicar insumos ⇒ duplicar productos.
- La tecnología de producción es diferente entre bienes, no entre empresas.
- Por simplicidad, suponemos que las empresas producen un solo bien.

Funciones de producción

- Las funciones de producción especifican como se transforman los insumos en productos.
- Ejemplo de la función de producción de tipo Cobb-Douglas:

$$Y = f(K, L) = AK^{\theta}L^{1- heta}$$

Donde Y es la producción, f(K,L) es la función de producción, A es la PTF, K es capital y L es trabajo. $\theta \in [0,1]$.

Por ahora, supongamos que solo existe el factor trabajo. Caso especial cuando heta=0.

$$y_m=z_mL_m$$

Donde y_m es la producción del bien m, l_m es la cantidad de trabajo utilizada para producir el bien m, y z_m es la productividad del trabajo.

Recordatorio: $a_m = \frac{1}{z_m}$ (costo laboral unitario es recíproco de la productividad)

Importante: La producción tiene unidades naturales. No se utilizan transformaciones

Problema de optimización de las

empresas

Las empresas **maximizan sus beneficios**. Los beneficios son iguales a las ganancias menos los costos.

La empresa que produce el bien m resuelve:

$$egin{array}{ll} \max & p_m y_m - w_m l_m \ & & ext{sujeto a} & y_m = rac{1}{a_m} l_m \end{array}$$

(No hay beneficios en equilibrio, pero es irrelevante para el problema de la empresa en este momento)

Condición de vaciado de mercados

La última parte del problema es especificar las condiciones de vaciado de los mercados.

Vaciado del mercado de trabajo: Demanda de trabajo = Oferta de trabajo (en cada país).

$$egin{aligned} l_1^D + l_2^D &= ar{L^D} \ l_1^E + l_2^E &= ar{L^E} \end{aligned}$$

Vaciado del mercado de bienes: La producción de cada producto = consumo de cada producto.

Importante: Esta condición cambia dependiendo de modelo en autarquía o libre comercio.

Vaciado de mercados: Autarquía

En autarquía, el vaciado de los mercados domésticos implica que se consuma todo lo que se produce a nivel local:

$$c_1^D = y_1^D \ c_2^D = y_2^D$$

Lo que suceda en el extranjero es irrelevante para el equilibrio doméstico.

Vaciado de mercados: Libre comercio

En libre comercio, los países no necesariamente consumen únicamente lo que producen:

$$egin{aligned} c_1^D + c_1^E &= y_1^D + y_1^E \ c_2^D + c_2^F &= y_2^D + y_2^E \end{aligned}$$

- Los países expanden sus posibilidades de consumo mediante el intercambio.
- Mantenemos el supuesto de que todo lo que se produce se consume.

Definición del equilibrio

La solución de los problemas de optimización nos llevará a los precios de equilibrio p_1, p_2 , salarios w_D, w_E , y asignaciones $C^i, Y^i_{i \in [D,E]}$ tales que:

- 1. Los consumidores maximizan su utilidad 💆
- 2. Las empresas maximizan sus beneficios 🧥
- 3. Los mercados se vacían.

Variables exógenas vs endógenas

Cuando trabajamos con modelos es importante que distingamos claramente la diferencia entre las variables exógenas y endógenas.

- Las variables **exógenas** son parámetros que se determinan por fuera del modelo.
 - o Parámetros sobre la productividad, preferencias, oferta de trabajo.
- Las variables **endógenas** son parámetros que se determinan por el modelo en equilibrio:
 - Salarios y precios, asignaciones de trabajo y consumo entre industrias/bienes.
 - Resultados de equilibrio para las variables endógenas dependen de los parámetros exógenos. Lo contrario no es verdad.
 - \circ Parámetros exógenos \neq arbitrarios. Pueden estimarse usando datos.

Solución de equilibrio: Problema del consumidor

Solución: Problema del consumidor

El consumidor debe resolver el siguiente problema de optimización:

$$egin{array}{ll} \max_{c_1,c_2} & U(c_1,c_2) = heta_1 \log c_1 + heta_2 \log c_2 \ & ext{sujeto a} & p_1c_1 + p_2c_2 = wL \end{array}$$

- Este problema de optimización con restricciones puede resolverse utilizando el **método lagrangiano**.
- Buscamos la curva de indiferencia (CI) que es tangente a la recta presupuestaria.
- Las CI están dadas por la siguiente función:

$$c_2 = \exp[(U - heta_1 \log c_1)/ heta_2]$$

Problema del consumidor: Gráficamente

Método lagrangiano

Si queremos maximizar la función f(x,y) sujeto a g(x,y)=0, el Lagrangiano es:

$$\mathcal{L}(x,y,\lambda) = f(x,y) + \lambda g(x,y)$$

Donde λ se define como el **multiplicador lagrangiano**.

Podemos resolver el problema de maximización encontrando los valores de x, y, λ que resuelvan el siguiente sistema de Condiciones de Primer Orden (CPO):

$$egin{aligned} rac{\partial \mathcal{L}(x,y,\lambda)}{\partial x} &= 0 \ rac{\partial \mathcal{L}(x,y,\lambda)}{\partial y} &= 0 \ rac{\partial \mathcal{L}(x,y,\lambda)}{\partial \lambda} &= 0 \end{aligned}$$

Método lagrangiano

Si queremos maximizar la función f(x,y) sujeto a g(x,y)=0, el Lagrangiano es:

$$\mathcal{L}(x,y,\lambda) = f(x,y) + \lambda g(x,y)$$

Donde λ se define como el **multiplicador lagrangiano**.

Podemos resolver el problema de maximización encontrando los valores de x, y, λ que resuelvan el siguiente sistema de Condiciones de Primer Orden (CPO):

$$egin{aligned} rac{\partial \mathcal{L}(x,y,\lambda)}{\partial x} &= 0 \implies rac{\partial f(x,y)}{\partial x} + \lambda rac{\partial g(x,y)}{\partial x} = 0 \ rac{\partial \mathcal{L}(x,y,\lambda)}{\partial y} &= 0 \implies rac{\partial f(x,y)}{\partial y} + \lambda rac{\partial g(x,y)}{\partial y} = 0 \ rac{\partial \mathcal{L}(x,y,\lambda)}{\partial \lambda} &= 0 \implies g(x,y) = 0 \end{aligned}$$

Solución al problema del consumidor

El Lagrangiano del problema del consumidor es:

$$\mathcal{L}(c_1,c_2,\lambda) = heta_1 \log c_1 + heta_2 \log c_2 + \lambda (wL - p_1c_1 - p_2c_2)$$

Las CPO quedan de la siguiente forma:

$$egin{aligned} [c_1] &= rac{\partial \mathcal{L}(c_1,c_2,\lambda)}{\partial c_1} = 0 \implies rac{\partial (heta_1 \log c_1 + heta_2 \log c_2)}{\partial c_1} + \lambda rac{\partial (wL - p_1c_1 - p_2c_2)}{\partial c_1} = 0 \ \ [c_2] &= rac{\partial \mathcal{L}(c_1,c_2,\lambda)}{\partial c_2} = 0 \implies rac{\partial (heta_1 \log c_1 + heta_2 \log c_2)}{\partial c_2} + \lambda rac{\partial (wL - p_1c_1 - p_2c_2)}{\partial c_2} = 0 \ \ [\lambda] &= rac{\partial \mathcal{L}(c_1,c_2,\lambda)}{\partial \lambda} = 0 \implies wL - p_1c_1 - p_2c_2 = 0 \end{aligned}$$

Solución al problema del consumidor

El Lagrangiano del problema del consumidor es:

$$\mathcal{L}(c_1,c_2,\lambda) = heta_1 \log c_1 + heta_2 \log c_2 + \lambda (wL-p_1c_1-p_2c_2)$$

Las CPO quedan de la siguiente forma:

$$egin{aligned} [c_1] &= rac{\partial \mathcal{L}(c_1,c_2,\lambda)}{\partial c_1} = 0 \implies rac{ heta_1}{c_1} - \lambda p_1 = 0 \ &[c_2] &= rac{\partial \mathcal{L}(c_1,c_2,\lambda)}{\partial c_2} = 0 \implies rac{ heta_2}{c_2} - \lambda p_2 = 0 \ &[\lambda] &= rac{\partial \mathcal{L}(c_1,c_2,\lambda)}{\partial \lambda} = 0 \implies wL - p_1c_1 - p_2c_2 = 0 \end{aligned}$$

- ullet Tenemos un sistema de tres ecuaciones con tres incognitas c_1,c_2,λ
- El sistema está identificado, podemos encontrar una solución única.
- Nota: Para una solución única, no podemos tener que una ecuación sea una combinación de las otras dos.

Resolviendo el sistema de ecuaciones

Podemos reordenar el sistema de ecuaciones de la siguiente forma:

$$egin{aligned} rac{ heta_1}{c_1} &= \lambda p_1 \ rac{ heta_2}{c_2} &= \lambda p_2 \ wL &= p_1c_1 + p_2c_2 \end{aligned}$$

Utilizando las primeras dos CPO, podemos encontrar el consumo relativo (λ desaparece):

$$rac{\left(rac{ heta_1}{c_1}
ight)}{\left(rac{ heta_2}{c_2}
ight)} = rac{\lambda p_1}{\lambda p_2} \implies rac{ heta_1 c_2}{ heta_2 c_1} = rac{p_1}{p_2} \implies c_2 = rac{ heta_2 p_1}{ heta_1 p_2} c_1$$

Solución al sistema de ecuaciones

Tomando las productividades relativas

$$c_2=rac{ heta_2p_1}{ heta_1p_2}c_1$$

Combinando la ecuación anterior con la recta presupuestaria tenemos que:

$$egin{aligned} m{wL} = m{p_1}m{c_1} + m{p_2}\left(rac{ heta_2p_1}{ heta_1p_2}m{c_1}
ight) \implies m{wL} = m{p_1}m{c_1} + \left(rac{ heta_2}{ heta_1}m{p_1}m{c_1}
ight) \end{aligned}$$

Reordenando para c_1 tenemos:

$$c_1 = rac{wL}{p_1}igg(rac{ heta_1}{ heta_1+ heta_2}igg)$$

Podemos hacer algo parecido para encontrar c_2 .

Solucion al problema del consumidor

$$c_1 = rac{wL}{p_1}igg(rac{ heta_1}{ heta_1+ heta_2}igg) \ c_2 = rac{wL}{p_2}igg(rac{ heta_2}{ heta_1+ heta_2}igg)$$

Nota: Las preferencias de tipo Cobb-Douglas implican que los gastos son constantes y proporcionales en ambos bienes:

$$rac{p_1c_1}{wL}=\left(rac{ heta_1}{ heta_1+ heta_2}
ight)$$

• El consumo del bien 1 no depende del precio del bien 2

Las empresas que producen m resuelven:

$$egin{array}{ll} \max & p_m y_m - w_m l_m \ & [y_m, l_m] \end{array} \ ext{sujeto a} \ \ \ y_m = rac{1}{a_m} l_m \end{array}$$

Aquí no necesitamos un Lagrangiano:

- Sustituimos la función de producción en lugar de la producción en el problema de optimización.
- ullet Hacemos esto porque sabemos $l_m \implies$ sabemos y_m .
- Si hacemos el Lagrangiano llegamos al mismo resultado.

Las empresas que producen m resuelven:

$$egin{array}{l} \max & p_m \left(rac{1}{a_m}l_m
ight) - w_m l_m \ & ext{sujeto a} & y_m = rac{1}{a_m}l_m \end{array}$$

Tomando la primera derivada parcial (CPO):

$$[l_m] = rac{\partial \left(p_m \left(rac{1}{a_m} l_m
ight) - w_m l_m
ight)}{\partial l_m} = 0 \implies rac{\widehat{p_m}}{a_m} = rac{\operatorname{Costo\ marginal}}{w}$$

Importante: Esto solo funciona para soluciones interiores ($l_m > 0$). Necesitamos más información para una solución de esquina ($l_m = 0$)].

Solución interior

• Si $l_m>0$ debemos tener que $rac{p_m}{a_m}=oldsymbol{w}$ en equilibrio.

Solución de esquina

- Las empresas no escogen precios. ¿Qué pasa si $\frac{p_m}{a_m} < w$?
 - \circ Las empresas no producirán m en equilibrio.
 - \circ Sea $\pi_m(l_m)$ la función que representa los beneficios de la empresa m cuando utiliza l_m unidades de trabajo:

$$\pi_m(l_m) = \overbrace{\left(rac{p_m}{a_m} - w
ight)}^{ ext{Negativo}} l_m$$

; maximizada en $\pi_m(0)=0$

Solución interior

• Si $l_m>0$ debemos tener que $\frac{p_m}{a_m}=w$ en equilibrio.

Solución de esquina

- Las empresas no escogen precios. ¿Qué pasa si $\frac{p_m}{a_m} > w$?
 - Nunca sucederá en equilibrio

$$\pi_m(l_m) = \overbrace{\left(rac{p_m}{a_m} - w
ight)}^{ ext{Positivo}} l_m$$

; maximizada en $\pi_m(\infty) = \infty$

• Las empresaas producirán infinitamente y los precios nunca se ajustarán.

Solución de equilibrio

Incognitas de equilibrio: precios $\{p_1,p_2\}$, salarios $\{w_1,w_2\}$, y asignaciones $\{c,l,y\}_{i\in\{D,E\}}$

Ecuaciones de equilibrio:

• Optimización del consumo en cada país, i=D,E

$$c_1^i=rac{w^iL^i}{p_1}igg(rac{ heta_1}{ heta_1+ heta_2}igg)\,; c_2^i=rac{w^iL^i}{p_2}igg(rac{ heta_2}{ heta_1+ heta_2}igg)$$

ullet Optimización de la producción en cada país i=D,E, para cada bien, m=1,2

$$rac{p_m}{a_m^i}, ext{ si } l_m^i > 0$$

Con función de producción: $y_m^i = rac{1}{a_m} l_m^i$

• Los mercados de trabajo y bienes se vacían.

Solución del equilibrio en autarquía

Solución del modelo en autarquía

Para encontrar la solución de equilibrio en autarquía debemos encontrar los precios $\{p_1, p_2\}$, salarios $\{w\}$ y asignaciones, $\{c_1, c_2, l_1, l_2; y_1, y_2\}$ tales que:

• Las condiciones de optimización de los consumidores se mantengan:

$$c_1=rac{wL}{p_1}igg(rac{ heta_1}{ heta_1+ heta_2}igg)\,; c_2=rac{wL}{p_2}igg(rac{ heta_2}{ heta_1+ heta_2}igg)$$

• Las empresas optimicen la producción de los bienes m=1,2:

$$rac{p_m}{a_m}=w, ext{ si } l_m>0$$

• Los mercados se vacían: $l_1+l_2=L$ y $c_1=y_1,c_2=y_2$

Solución del equilibrio (autarquía)

Paso 1: Utilizar la condición de vaciado de mercado de bienes $(y_m = c_m)$ y los precios de equilibrio $(w = p_m/a_m)$ de las empresas en la ecuación de los consumidores.

$$oldsymbol{y_1} = rac{(p_1/a_1)L}{p_1}igg(rac{ heta_1}{ heta_1+ heta_2}igg); oldsymbol{y_2} = rac{(p_2/a_2)L}{p_2}igg(rac{ heta_2}{ heta_1+ heta_2}igg).$$

Haciendo un poco de algebra (precios) encontramos las asignaciones para los bienes:

$$y_1=rac{1}{a_1}L\left(rac{ heta_1}{ heta_1+ heta_2}
ight); y_2=rac{1}{a_2}L\left(rac{ heta_2}{ heta_1+ heta_2}
ight).$$

Solución del equilibrio (autarquía)

Paso 2: Insertar la asignación de bienes en la **función de producción** para encontrar la demanda de trabajo:

$$l_m = a_m \left(rac{1}{a_1} L\left(rac{ heta_1}{ heta_1 + heta_2}
ight)
ight) \implies l_m = L\left(rac{ heta_1}{ heta_1 + heta_2}
ight), m = 1, 2$$

Paso 3: Cuando calculamos los **precios**, solo importan los precios **relativos**. Ya conocemos los precios relativos (bienes respecto al salario) de las CPO:

$$rac{p_m}{w}=a_m, m=1,2$$

Terminamos. No necesitamos saber w, toda vez que w/w=1. Normalmente normalizamos w=1 para ordenar los resultados

$$w=1, p_1=a_1, p_2=a_2$$

Equilibrio en autarquía

- Hasta aquí hemos aprendido a resolver el modelo más sencillo.
- Aprendimos algunas cosas sobre los supuestos del modelo:
 - o Preferencias Cobb-Douglas \implies proporción constante en el gasto. La asignación de trabajo no depende de la productividad del bien.
 - \circ Solo importan los **precios relativos**. Reducimos los objetos a encontrar en el equilibrio al normalizar w=1.
 - Ley de Walras (de forma general): en los modelos de equilibrio general, si se cumplen todas las restricciones de equilibrio menos una, entonces la última se cumple automáticamente.
 - Nota que no hemos utilizado la condición de vaciado del mercado de trabajo.
 - o Podemos sustituir el vaciado del mercado por otra condición y llegamos al mismo resultado.

Solución del equilibrio en libre comercio

Solución del equilibrio: Libre comercio

- El cambio más importante está en la condición de vaciado de los mercados.
- Existen múltiples resultados potenciales (un país se especializa, ambos se especializan)
- Dos supuestos hacen las cosas más sencillas:
 - 1. Supongamos que $a_1^D/a_2^D < a_1^E/a_2^E$. El país **doméstico** tiene ventaja comparativa en producir el Bien 1.
 - 2. Supongamos que en el equilibrio existe especialización completa.

¿Cómo sabemos que el segundo supuesto se cumple? **No sabemos**. Podemos utilizar este supuesto y revisar si funciona.

• Si el supuesto no es válido vamos a encontrar valores negativos en precios o cantidades.

Discusión sobre los supuestos

- En economía, es muy importante entender los supuestos de cada modelo que estudiemos.
- ¿Qué otros supuestos estamos haciendo y por qué?
 - Los países tienen las mismas preferencias.
 - Se producen y consumen únicamente dos bienes.
 - Existen solo dos países.
- ¿Por qué lo hacemos?
 - Hace la notación y el álgebra más sencilla.
 - o Cada país tiene el mismo conjunto relativo de bienes de consumo.