Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering	V		
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory			
Academic Year	2025–2026 (Odd)	Batch: 2023–2028	Due date: 25-07-25	

Experiment 2

Linear Regression for Loan Amount Prediction

Aim

To apply Linear Regression for predicting the sanctioned loan amount using the given dataset. The model performance is assessed with cross-validation, error metrics, and visualization techniques.

Libraries Used

- pandas, numpy
- matplotlib, seaborn
- sklearn.linear_model.LinearRegression
- \bullet sklearn.model_selection.StratifiedKFold
- sklearn.metrics (MAE, MSE, RMSE, R²)
- sklearn.preprocessing (LabelEncoder, StandardScaler)

Theoretical Description of the Algorithm

Cross-Validation Strategy

We employed a stratified 5-fold cross-validation setup. This ensured each fold retained a balanced target distribution, reducing bias and improving reliability of evaluation.

Data Preparation

Irrelevant attributes (Customer ID, Property ID, Name) were dropped. Missing values were imputed (mean for numerical and mode for categorical), ensuring a clean dataset.

Feature Engineering

Derived features included:

- Loan-to-Income Ratio
- Total Expenses-to-Income Ratio
- Loan-to-Value (LTV) Category

These enhanced interpretability and credit risk analysis.

Encoding and Scaling

Categorical features were label-encoded. Numerical features were standardized using StandardScaler for uniform scaling.

Model Training and Evaluation

A Linear Regression model was trained and evaluated with error metrics (MAE, MSE, RMSE, R^2 , Adjusted R^2) and plots (Actual vs Predicted, Residuals, Feature Coefficients).

Complete Python Code

```
# -*- coding: utf-8 -*-
"""ml_lab_2.ipvnb
Automatically generated by Colab.
Original file is located at
   https://colab.research.google.com/drive/1hIn1DxB_VGEDuJ80TAcpPE1Jldj33K9I
from google.colab import files
import pandas as pd
# Upload the train dataset
uploaded = files.upload()
# Read the train dataset
df = pd.read_csv('train.csv')
# Check first few rows
df.head()
# Check missing values
print("Before filling missing values:")
print(df.isnull().sum())
# Fill missing numerical values with mean
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
for col in numeric_cols:
    df[col] = df[col].fillna(df[col].mean())
# Fill missing categorical values with mode
```

```
categorical_cols = df.select_dtypes(include=['object']).columns
for col in categorical_cols:
    if df[col].isnull().any():
        df[col] = df[col].fillna(df[col].mode()[0])
# Verify no missing values remain
print("\nAfter filling missing values:")
print(df.isnull().sum())
# Display first few rows to check
df.head()
"""feature engineering"""
unnecessary_columns = ['Customer ID', 'Name', 'Property ID']
df.drop(columns=unnecessary_columns, inplace=True)
# Convert required columns to numeric
df['Loan Amount Request (USD)'] = pd.to_numeric(df['Loan Amount Request (USD)'],
   errors='coerce')
df['Property Price'] = pd.to_numeric(df['Property Price'], errors='coerce')
df['Income (USD)'] = pd.to_numeric(df['Income (USD)'], errors='coerce')
df['Current Loan Expenses (USD)'] = pd.to_numeric(df['Current Loan Expenses (USD)'
   ], errors='coerce')
# 1. LTV Risk Category
def ltv_risk_category(row):
    loan_amount = row['Loan Amount Request (USD)']
    property_price = row['Property Price']
    if pd.isna(loan_amount) or pd.isna(property_price) or property_price == 0:
       return 'Unknown'
    ltv = loan_amount / property_price
    if ltv >= 0.9:
       return 'Very High'
    elif ltv >= 0.75:
       return 'High'
    elif ltv >= 0.6:
       return 'Moderate'
    else:
       return 'Low'
df['LTV_Risk'] = df.apply(ltv_risk_category, axis=1)
# 2. Loan-to-Income Ratio
df['Loan_to_Income'] = df['Loan Amount Request (USD)'] / (df['Income (USD)'] + 1e
   -5)
# 3. Total Expenses-to-Income Ratio
df['Total_Expenses_to_Income'] = df['Current Loan Expenses (USD)'] / (df['Income (
   USD)'] + 1e-5)
# Preview dataset
df.head()
from sklearn.preprocessing import LabelEncoder
label_encoders = {}
for col in df.select_dtypes(include=['object']).columns:
    df[col] = df[col].astype(str)
    le = LabelEncoder()
```

```
df[col] = le.fit_transform(df[col])
    label encoders[col] = le
df.head()
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
features = df.drop('Loan Sanction Amount (USD)', axis=1)
fs = scaler.fit_transform(features)
fs = pd.DataFrame(fs, columns=features.columns)
fs['Loan Sanction Amount (USD)'] = df['Loan Sanction Amount (USD)']
fs.head()
"""EDA"""
print("Dataset shape:", fs.shape)
print("\nData types:\n", fs.dtypes)
fs.head()
fs.describe()
"""Visualizations"""
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(8,5))
sns.histplot(fs['Loan Sanction Amount (USD)'], kde=True, bins=30)
plt.title('Distribution of Loan Sanction Amount (USD)')
plt.show()
plt.figure(figsize=(15,10))
for i, col in enumerate(fs.columns.drop('Loan Sanction Amount (USD)'), 1):
    plt.subplot(5, 5, i)
    sns.histplot(fs[col], kde=True)
    plt.title(col)
    plt.tight_layout()
plt.show()
plt.figure(figsize=(12,10))
corr = fs.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Scaled Features and Target')
plt.show()
"""Model Training and Cross-Validation"""
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
X = fs.drop('Loan Sanction Amount (USD)', axis=1)
y = fs['Loan Sanction Amount (USD)']
X = pd.get_dummies(X, drop_first=True)
y_binned = pd.qcut(y, q=5, labels=False, duplicates='drop')
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
mae_scores, mse_scores, rmse_scores, r2_scores, adj_r2_scores = [], [], [], []
results, fold = [], 1
```

```
def adjusted_r2(r2, n, k):
    return 1 - (1 - r2) * (n - 1) / (n - k - 1)
saved = False
for train_idx, val_idx in skf.split(X, y_binned):
    X_train_fold, X_val_fold = X.iloc[train_idx], X.iloc[val_idx]
    y_train_fold, y_val_fold = y.iloc[train_idx], y.iloc[val_idx]
    if not saved:
        X_train, y_train, X_val, y_val = X_train_fold, y_train_fold, X_val_fold,
           y_val_fold
        saved = True
    model = LinearRegression()
    model.fit(X_train_fold, y_train_fold)
    y_pred = model.predict(X_val_fold)
   mae = mean_absolute_error(y_val_fold, y_pred)
   mse = mean_squared_error(y_val_fold, y_pred)
    rmse = np.sqrt(mse)
    r2 = r2_score(y_val_fold, y_pred)
    adj_r2 = adjusted_r2(r2, X_val_fold.shape[0], X_val_fold.shape[1])
    mae_scores.append(mae); mse_scores.append(mse); rmse_scores.append(rmse)
    r2_scores.append(r2); adj_r2_scores.append(adj_r2)
    results.append([f"Fold {fold}", mae, mse, rmse, r2, adj_r2])
    fold += 1
results.append(["Average", np.mean(mae_scores), np.mean(mse_scores),
                np.mean(rmse_scores), np.mean(r2_scores), np.mean(adj_r2_scores)])
cv_results_df = pd.DataFrame(results, columns=["Fold","MAE","MSE","RMSE","R ","
   Adj R "])
print(cv_results_df)
"""Plots"""
plt.figure(figsize=(8,6))
sns.scatterplot(x=y_val, y=model.predict(X_val))
plt.xlabel("Actual Loan Amount")
plt.ylabel("Predicted Loan Amount")
plt.title("Actual vs Predicted Loan Amount")
plt.plot([y_val.min(), y_val.max()], [y_val.min(), y_val.max()], color='red',
   linestyle='--')
plt.grid(True)
plt.tight_layout()
plt.show()
residuals = y_val - model.predict(X_val)
plt.figure(figsize=(8,6))
sns.scatterplot(x=model.predict(X_val), y=residuals)
plt.axhline(0, color='red', linestyle='--')
plt.xlabel("Predicted Loan Amount")
plt.ylabel("Residuals")
plt.title("Residual Plot")
plt.grid(True)
plt.tight_layout()
plt.show()
```

```
numerical_cols = ['Income (USD)','Loan Amount Request (USD)','Age','Current Loan
   Expenses (USD)']
plt.figure(figsize=(14,8))
for i, col in enumerate(numerical_cols, 1):
    plt.subplot(2, 2, i)
    sns.boxplot(y=fs[col])
    plt.title(f'Boxplot of {col}')
    plt.tight_layout()
plt.show()
model = LinearRegression()
model.fit(X_train, y_train)
coefficients = pd.Series(model.coef_, index=X_train.columns)
plt.figure(figsize=(10,6))
coefficients.sort_values().plot(kind='barh', color='skyblue')
plt.title('Feature Coefficients from Linear Regression')
plt.xlabel('Coefficient Value')
plt.ylabel('Features')
plt.grid(True)
plt.tight_layout()
plt.show()
```

Screenshots of Output

Figure 1: Feature Distribution Visualization

Figure 2: Correlation Heatmap

Figure 3: Actual vs Predicted Loan Amount

Figure 4: Residual Plot

Results and Discussions

Cross-Validation Metrics

Fold	MAE	MSE	RMSE	R^2 Score	Adj. R ² Score
1	21855.65	9.77×10^{8}	31254.23	0.5738	0.5722
2	21883.08	9.78×10^{8}	31275.97	0.5830	0.5814
3	21608.39	9.60×10^{8}	30987.54	0.5681	0.5664
4	21668.17	9.67×10^{8}	31094.08	0.5834	0.5818
5	21957.28	1.19×10^{9}	34491.73	0.4855	0.4835
Average	21794.51	1.01×10^{9}	31820.71	0.5588	0.5571

Table 1: Cross-validation results with Adjusted R^2

Summary of Results

Description	Student's Result		
Dataset Size	$50,000 \text{ rows} \times 25 \text{ columns}$		
CV Strategy	5-Fold Stratified		
Model Used	Linear Regression		
Avg. MAE	21,794.51 USD		
Avg. RMSE	31,820.71 USD		
\mathbb{R}^2	0.5588		
Adj. \mathbb{R}^2	0.5571		
Most Influential Features	Loan Amount Request, Income,		
	Loan-to-Income Ratio		
Observations	Underestimation for very high loan		
	amounts; mild underfitting		

Table 2: Summary of Loan Prediction Results

Performance Analysis

- Average MAE $\approx 21,795$ USD shows the typical deviation from actual loans.
- RMSE of 31,821 USD indicates slightly higher penalty for large errors.
- $R^2 = 0.56$ shows moderate explanatory power (56% variance explained).
- Adjusted R^2 nearly equal, meaning predictors are not excessive.
- Residual plot shows mild underfitting, especially for extreme values.

Learning Outcomes

- Applied Linear Regression to a financial dataset.
- Learned stratified cross-validation for regression tasks.
- Practiced preprocessing: missing value handling, encoding, scaling.
- Understood evaluation metrics for regression (MAE, MSE, RMSE, \mathbb{R}^2).
- Interpreted residuals and coefficients for model insights.