

VN5770AKP-E

Quad smart power solid state relay for complete H-bridge configurations

Features

Туре	R _{DS(on)}	I _{OUT} (typ)	V _{CC}
VN5770AKP-E	280 m $Ω^{(1)}$	8.5 A	36 V

- 1. Total resistance of one side in bridge configuration
- ECOPACK®: lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- General features
 - Inrush current management by active power limitation on the high-side switches
 - Very low standby current
 - Very low electromagnetic susceptibility
 - Compliance with European directive 2002/95/EC
- Protection
 - High-side drivers undervoltage shutdown
 - Overvoltage clamp
 - Output current limitation
 - High and low-side overtemperature shutdown
 - Short circuit protection
 - ESD protection
- Diagnostic functions
 - Proportional load current sense
 - Thermal shutdown indication on both the high and low-side switches

Applications

- DC motor driving in full or half bridge configuration
- All types of resistive, inductive and capacitive loads

Description

The VN5770AKP-E is a device formed by three monolithic chips housed in a standard SO-28 package: a double high-side and two low-side switches. The double high-side is made using STMicroelectronics® VIPower® M0-5 technology, while the low-side switches are fully protected VIPower M0-3 OMNIFET II. This device is suitable to drive a DC motor in a bridge configuration as well as to be used as a quad switch for any low voltage application.

The dual high-side switches integrate built in non latching thermal shutdown with thermal hysteresis. An output current limiter protects the device in overload condition. In case of long overload duration, the device limits the dissipated power to a safe level up to thermal shutdown intervention. An analog current sense pin delivers a current proportional to the load current (according to a known ratio) and indicates overtemperature shutdown of the relevant high-side switch through a voltage flag.

The low-side switches have built in non latching thermal shutdown with thermal hysteresis, linear current limitation and overvoltage clamping.

Fault feedback for overtemperature shutdown of the low-side switch is indicated by the relevant input pin current consumption going up to the fault sink current flag. Contents VN5770AKP-E

Contents

1	Bloc	k diagram and pin descriptions5
2	Abso	olute maximum ratings7
	2.1	Absolute maximum ratings
3	Elec	trical characteristics9
	3.1	Electrical characteristics for dual high-side switch 9
	3.2	Electrical characteristics curves for dual high-side switch
	3.3	Electrical characteristics for low-side switches
	3.4	Electrical characteristics curves for low-side switches
4	Appl	ication information
	4.1	Maximum demagnetization energy (V _{CC} = 13.5 V)
5	Pack	kage and thermal data24
	5.1	SO-28 thermal data
6	Pack	kage and packing information
	6.1	ECOPACK® packages
	6.2	SO-28 package information
	6.3	SO-28 packing information
7	Orde	er codes 32
8	Revi	sion history

VN5770AKP-E List of tables

List of tables

l able 1.	Pin descriptions	5
Table 2.	Thermal data	6
Table 3.	Dual high-side switch	7
Table 4.	Low-side switch	8
Table 5.	Power section	9
Table 6.	Switching (VCC = 13 V)	9
Table 7.	Logic input	. 10
Table 8.	Protection and diagnostics	. 10
Table 9.	Current sense (8V <vcc<16v)< td=""><td>. 11</td></vcc<16v)<>	. 11
Table 10.	Truth table	. 12
Table 11.	Off	. 15
Table 12.	On	. 15
Table 13.	Dynamic (T _i = 25°C, unless otherwise specified)	. 15
Table 14.	Switching (T _j = 25 °C, unless otherwise specified)	. 15
Table 15.	Source drain diode	. 16
Table 16.	Protection and diagnostics (-40 °C < Tj < 150 °C, unless otherwise specified)	. 16
Table 17.	Thermal calculations in clockwise and anti-clockwise operation in steady-state mode	
Table 18.	Thermal resistances definitions	. 25
Table 19.	Single pulse thermal impedance definitions	. 26
Table 20.	Thermal calculations in transient mode	. 26
Table 21.	Thermal parameters	. 28
Table 22.	SO-28 mechanical data	. 29
Table 23.	Device summary	. 32
Table 24.	Document revision history	. 33

List of figures VN5770AKP-E

List of figures

Figure 1.	Block diagram	
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Switching time waveforms	11
Figure 4.	Output voltage drop limitation	12
Figure 5.	Current sense delay characteristics	12
Figure 6.	Off-state output current	13
Figure 7.	High level input current	13
Figure 8.	Input clamp voltage	13
Figure 9.	Input low level	13
Figure 10.	Input high level	13
Figure 11.	Input hysteresis voltage	13
Figure 12.	On-state resistance vs T _{case}	14
Figure 13.	On-state resistance vs V _{CC} .	14
Figure 14.	Undervoltage shutdown	14
Figure 15.	Turn-on voltage slope	14
Figure 16.	I _{LIMH} vs T _{case}	14
Figure 17.	Turn-off voltage slope	14
Figure 18.	Static drain source on resistance	
Figure 19.	Derating curve	17
Figure 20.	Transconductance	
Figure 21.	Transfer characteristics	
Figure 22.	Input voltage vs input charge	
Figure 23.	Capacitance variations	
Figure 24.	Output characteristics	
Figure 25.	Step response current limit	
Figure 26.	Source-drain diode forward characteristics	18
Figure 27.	Static drain-source on resistance vs I _D	18
Figure 28.	Static drain-source on resistance vs input voltage (part 1)	18
Figure 29.	Static drain-source on resistance vs input voltage (part 2)	
Figure 30.	Normalized input threshold voltage vs temperature	
Figure 31.	Normalized on resistance vs temperature	
Figure 32.	Current limit vs junction temperature	
Figure 33.	Typical application schematic	
Figure 34.	Recommended motor operation	
Figure 35.	Waveforms	
Figure 36.	Maximum turn off current versus load inductance	
Figure 37.	SO-28 PC board	
Figure 38.	Chipset configuration	
Figure 39.	Auto and mutual Rthj-amb vs PCB copper area in open box free air condition	
Figure 40.	SO-28 HSD thermal impedance junction ambient single pulse	
Figure 41.	SO-28 LSD thermal impedance junction ambient single pulse	
Figure 42.	Thermal fitting model of an H-bridge in SO-28	
Figure 43.	SO-28 package dimensions	
Figure 44.	SO-28 tube shipment (no suffix)	
Figure 45.	Tape and reel shipment (suffix "TR")	31

1 Block diagram and pin descriptions

Figure 1. **Block diagram** Vcc Vcc clamp Undervoltage GND Clamp 1 SOURCE1 INPUT1 Driver 1 Clamp 2 Current limiter 1 INPUT2 Driver 2 Logic SOURCE2 Vds limiter 1 Current limiter 2 Overtemp. 1 Power limitation VDS limiter 2 Overtemp. 2 Power limitation IDS1 C.SENSE Overvoltage IDS2 DRAIN3 Clamp Gate INPUT3 SOURCE3 Linear Current Limiter Over Temperature Overvoltage DRAIN4 Clamp Gate Control INPUT4 SOURCE4 Linear Current Over Limiter Temperature

Table 1. Pin descriptions

No	Name	Function
1, 3, 25, 28	DRAIN 3	Drain of switch 3 (low-side switch)
2	INPUT 3	Input of switch 3 (low-side switch)
4, 11	N.C.	Not connected

GAPGCFT00544

Table 1. Pin descriptions (continued)

No	Name	Function
5, 10, 19, 24	V _{CC}	Drain of switches 1 and 2 (high-side switches) and power supply voltage
6	GND	Ground of switches 1 and 2 (high-side switches)
7	INPUT 1	Input of switch 1 (high-side switches)
8	INPUT 2	Input of switch 2 (high-side switch)
9	CURRENT SENSE	Analog current sense pin, it delivers a current proportional to the load current
12, 14, 15, 18	DRAIN 4	Drain of switch 4 (low-side switch)
13	INPUT 4	Input of switch 4 (low-side switch)
16, 17	SOURCE 4	Source of switch 4 (low-side switch)
20, 21	SOURCE 2	Source of switch 2 (high-side switch)
22, 23	SOURCE 1	Source of switch 1 (high-side switch)
26, 27	SOURCE 3	Source of switch 3 (low-side switch)

Figure 2. Configuration diagram (top view)

Table 2. Thermal data

Symbol	Parameter	Max value	Unit
R _{thj-case}	Thermal resistance junction-lead (high-side switch)	10	°C/W
R _{thj-case}	Thermal resistance junction-lead (low-side switch)	7	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	See Figure 39	°C/W

2 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* and *Table 4* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in *Section 2.1: Absolute maximum ratings* for extended periods may affect device reliability.

2.1 Absolute maximum ratings

Table 3. Dual high-side switch

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse DC supply voltage	0.3	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	DC output current	Internally limited	Α
-I _{OUT}	Reverse DC output current	-12	Α
I _{IN}	DC input current	-1 to 10	mA
I _{CSD}	DC current sense disable input current	-1 to 10	mA
V _{CSENSE}	Current sense maximum voltage	V _{CC} -41 +V _{CC}	V V
E _{MAX}	Maximum switching energy (single pulse) (L = 3.7 mH; R_L = 0 Ω ; V_{bat} = 13.5 V; T_{jstart} = 150 °C; I_{OUT} = I_{limL} (Typ.))	32	mJ
V _{ESD}	Electrostatic discharge (Human Body Model: R = 1.5 KΩ; C = 100 pF) - INPUT - CURRENT SENSE - OUTPUT - V _{CC}	4000 2000 5000 5000	V V V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	°C

Table 4. Low-side switch

Symbol	Parameter	Value	Unit
V_{DSn}	Drain-source voltage (V _{INn} = 0 V)	Internally clamped	V
V _{INn}	Input voltage	Internally clamped	V
I _{INn}	Input current	+/-20	mA
R _{IN MINn}	Minimum input series impedance	220	Ω
I _{Dn}	Drain current	Internally limited	Α
I _{Rn}	Reverse DC output current	-12	Α
V _{ESD1}	Electrostatic discharge (R = 1.5 K Ω , C = 100 pF)	4000	V
V _{ESD2}	Electrostatic discharge on output pins only (R = 330 Ω , C = 150 pF)	16500	V
P _{tot}	Total dissipation at T _c = 25 °C	4	W
T _j	Operating junction temperature	Internally limited	°C
T _c	Case operating temperature	Internally limited	°C
T _{stg}	Storage temperature	-55 to 150	°C

3 Electrical characteristics

3.1 Electrical characteristics for dual high-side switch

Values specified in this section are for 8 V < V_{CC} < 36 V; -40 °C < T_j < 150 °C, unless otherwise specified (for each channel).

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4.5	13	36	V
V _{USD}	Undervoltage shutdown			3.5	4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
		I _{OUT} = 3 A; T _j = 25 °C		160		mΩ
R _{ON}	On-state resistance	I _{OUT} = 3 A; T _j = 150 °C			320	mΩ
		$I_{OUT} = 3 \text{ A}; V_{CC} = 5 \text{ V}; T_j = 25 ^{\circ}\text{C}$			210	mΩ
V _{clamp}	Clamp Voltage	I _S = 20 mA	41	46	52	V
	Supply current	Off-state; $V_{CC} = 13 \text{ V}$; $T_j = 25 \text{ °C}$; $V_{IN} = V_{OUT} = V_{SENSE} = 0 \text{ V}$		2 ⁽¹⁾	5 ⁽¹⁾	μΑ
I _S		On-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = 5 \text{ V}$; $I_{OUT} = 0 \text{ A}$		3	6	mA
	Off-state output current ⁽²⁾	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$	0		3	μΑ
I _{L(off)}		$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125 \text{ °C}$	0		5	μΑ
V _F	Output - V _{CC} diode voltage ⁽²⁾	-I _{OUT} = 3 A; T _j = 150 °C			0.7	V

^{1.} PowerMOS leakage included

Table 6. Switching $(V_{CC} = 13 \text{ V})$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 4.3 \Omega \text{ (see Figure 3)}$	_	15	_	μS
t _{d(off)}	Turn-off delay time	$R_L = 4.3 \Omega \text{ (see Figure 3)}$	_	10		μS
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	$R_L = 4.3 \Omega$	_	See Figure 15		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$R_L = 4.3 \Omega$	_	See Figure 17	_	V/µs
W _{ON}	Switching energy losses during twon	$R_L = 4.3 \Omega$ (see <i>Figure 3</i>)	_	0.16		mJ
W _{OFF}	Switching energy losses during twoff	$R_L = 4.3 \Omega$ (see <i>Figure 3</i>)	_	0.08		mJ

^{2.} For each channel

Table 7. Logic input

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{IH}	Input high level voltage		2.1			٧
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.25			٧
V	Input clamp voltage	I _{IN} = 1 mA	5.5		7	V
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V

Table 8. Protection and diagnostics⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC Short circuit current	V _{CC} = 13 V	6	8.5	12	Α
l _{limH}	DC Short circuit current	5 V < V _{CC} < 36 V			12	Α
I _{limL}	Short circuit current during thermal cycling	V _{CC} = 13 V; T _R < T _j < T _{TSD}		3.5		Α
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		T _{RS} + 1	T _{RS} + 5		°C
T _{RS}	Thermal reset of STATUS		135			°C
T _{HYST}	Thermal hysteresis $(T_{TSD}-T_R)$			7		°C
V_{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 1 A; V _{IN} = 0; L = 20 mH	V _{CC} -41	V _{CC} -46	V _{CC} -52	٧
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.03 A; T _j = -40 °C to 150 °C (see <i>Figure 4</i>)		25		mV

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles

Table 9. Current sense (8V<V_{CC}<16V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Κ ₀	I _{OUT} /I _{SENSE}	$I_{OUT} = 0.08 \text{ A};$ $V_{SENSE} = 0.5 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	1266	1900	3100	
К ₁	I _{OUT} /I _{SENSE}	$I_{OUT} = 0.35 \text{ A}; V_{SENSE} = 0.5V;$ $T_j = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$ $T_j = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	840 980	1360 1360	2000 1740	
K ₂	I _{OUT} /I _{SENSE}	$I_{OUT} = 3A; V_{SENSE} = 4V;$ $T_j = -40^{\circ}C \text{ to } 150^{\circ}C$	1200	1270	1350	
К ₃	I _{OUT} /I _{SENSE}	$I_{OUT} = 4A; V_{SENSE} = 4V;$ $T_j = -40$ °C to 150°C	1200	1270	1350	
1	Analog sense current	$I_{OUT} = 0A; V_{SENSE} = 0V;$ $V_{IN} = 0V; T_j = -40$ °C to 150°C	0		1	μА
I _{SENSE0}	Analog sense current	$I_{OUT} = 0A; V_{SENSE} = 0V;$ $V_{IN} = 5V; T_j = -40$ °C to 150°C	0		2	μА
V _{SENSE}	Max analog sense output voltage	$I_{OUT} = 5A; R_{SENSE} = 3.9K\Omega$	5			٧
V _{SENSEH}	Analog sense output voltage in overtemperature condition	$V_{CC} = 13V; R_{SENSE} = 3.9K\Omega$		9		٧
I _{SENSEH}	Analog sense output current in overtemperature condition	V _{CC} = 13V		8		mA
t _{DSENSE2H}	Delay response time from rising edge of INPUT pin	V _{SENSE} <4V; 0.35A <i<sub>out<5A; I_{SENSE} = 90% of I_{SENSE max} (see <i>Figure 5</i>)</i<sub>		70	300	μS
t _{DSENSE2L}	Delay response time from falling edge of INPUT pin	V _{SENSE} <4V; 0.35A <i<sub>out<5A; I_{SENSE} = 10% of I_{SENSE max} (see <i>Figure 5</i>)</i<sub>		100	250	μS

Figure 3. Switching time waveforms

Figure 4. Output voltage drop limitation

Table 10. Truth table

Conditions	Input	Output	Sense
Normal aparation	L	L	0
Normal operation	Н	Н	Nominal
Overtemperature	L	L	0
Overtemperature	Н	L	V_{SENSEH}
Undervoltage	L	L	0
Officervoltage	Н	L	0
Short circuit to GND	L	L	0
Short clicuit to GND	Н	L	0
Chart aircuit to V	L	Н	0
Short circuit to V _{CC}	Н	Н	< Nominal
Negative output voltage clamp	L	L	0

Figure 5. Current sense delay characteristics

3.2 Electrical characteristics curves for dual high-side switch

Figure 6. Off-state output current

50 75

100 125

150 175

GAPGCFT00547

Figure 7. High level input current

Figure 8. Input clamp voltage

-50

Figure 9. Input low level

Figure 10. Input high level

Figure 11. Input hysteresis voltage

Electrical characteristics VN5770AKP-E

Figure 12. On-state resistance vs T_{case}

Figure 13. On-state resistance vs V_{CC}

Figure 14. Undervoltage shutdown

Figure 15. Turn-on voltage slope

Figure 16. I_{LIMH} vs T_{case}

Figure 17. Turn-off voltage slope

577

3.3 Electrical characteristics for low-side switches

Values specified in this section are for -40 $^{\circ}\text{C}$ < T_{j} < 150 $^{\circ}\text{C},$ unless otherwise specified

Table 11. Off

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CLAMP}	Drain-source clamp voltage	V _{IN} = 0 V; I _D = 1.5 A	40	45	55	٧
V _{CLTH}	Drain-source clamp threshold voltage	V _{IN} = 0 V; I _D = 2 mA	36			٧
V _{INTH}	Input threshold voltage	$V_{DS} = V_{IN}$; $I_D = 1 \text{ mA}$	0.5		2.5	V
I _{ISS}	Supply current from input pin	V _{DS} = 0 V; V _{IN} = 5 V		100	150	μΑ
V	Input-source clamp	I _{IN} = 1 mA	6	6.8	8	V
V _{INCL}	voltage	I _{IN} = -1 mA	-1.0		-0.3	V
	Zero input voltage	$V_{DS} = 13 \text{ V}; V_{IN} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$			30	μΑ
I _{DSS}	drain current (V _{IN} = 0V)	V _{DS} = 25 V; V _{IN} = 0 V			75	μΑ

Table 12. On

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
B-ac	Static drain-source on	$V_{IN} = 5 \text{ V}; I_D = 3 \text{ A}; T_j = 25 ^{\circ}\text{C}$	1		120	mΩ
R _{DS(on)}	resistance	V _{IN} = 5 V; I _D = 3 A	_		240	mΩ

Table 13. Dynamic (T_i = 25°C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
9 _{fs}	Forward transconductance	V _{DD} = 13 V; I _D = 1.5 A	_	2.5	_	S
C _{OSS}	Output capacitance	$V_{DS} = 13 \text{ V; } f = 1 \text{ MHz; } V_{IN} = 0 \text{ V}$	_	150	_	pF

Table 14. Switching ($T_j = 25$ °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{d(on)}	Turn-on delay time		_	200	400	ns
t _r	Rise time	$V_{DD} = 15 \text{ V}; I_D = 3 \text{ A}; V_{qen} = 5 \text{ V};$	_	1.2	2.5	μs
t _{d(off)}	Turn-off delay time	$R_{gen} = R_{IN MINn} = 220 \tilde{\Omega}$	_	600	1350	ns
t _f	Fall time		_	400	1000	ns
t _{d(on)}	Turn-on delay time		_	0.80	2.5	μs
t _r	Rise time	V _{DD} = 15 V; I _D = 3 A	_	3.7	7.5	μs
t _{d(off)}	Turn-off delay time	$V_{gen} = 5 \text{ V}; R_{gen} = 2.2 \text{ K}\Omega$	_	2.6	7.5	μs
t _f	Fall time		_	2.3	7.0	μs

Electrical characteristics VN5770AKP-E

Table 14. Switching (T_i = 25 °C, unless otherwise specified) (continued)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
(dl/dt) _{on}	Turn-on current slope	V_{DD} = 15 V; I_D = 3 A; V_{gen} = 5 V; R_{gen} = $R_{IN\ MINn}$ = 220 Ω	l	3.0		A/µs
Qi	Total input charge	$V_{DD} = 12 \text{ V; } I_{D} = 3 \text{ A; } V_{IN} = 5 \text{ V;}$ $I_{gen} = 2.13 \text{ mA}$		9.0		nC

Table 15. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 1.5 \text{ A}; V_{IN} = 0 \text{ V}$		0.8		V
t _{rr}	Reverse recovery time		_	400		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 1.5 A; dI/dt = 12 A/ms; V _{DD} = 30 V; L = 200 μH	l	200	1	nC
I _{RRM}	Reverse recovery current		_	1.0		Α

^{1.} Pulsed: pulse duration = $300\mu s$, duty cycle 1.5%

Table 16. Protection and diagnostics (-40 $^{\circ}$ C < T $_{\rm j}$ < 150 $^{\circ}$ C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{lim}	Drain current limit $V_{IN} = 5 \text{ V}; V_{DS} = 13 \text{ V}$		6	8.5	12	Α
t _{dlim}	Step response current limit	$V_{N} = 5 \text{ V} \cdot V_{DO} = 13 \text{ V}$				μs
T _{jsh}	Overtemperature shutdown		150	175	200	ů
T _{jrs}	Overtemperature reset		135			°C
I _{gf}	Fault sink current	$V_{IN} = 5 \text{ V}; V_{DS} = 13 \text{ V}; T_j = T_{jsh}$	10	15	20	mA
E _{as}	Single pulse avalanche energy	Starting T_j = 25 °C; V_{DD} = 24 V; V_{IN} = 5 V; R_{gen} = $R_{IN~MINn}$ = 220 Ω ; L = 24 mH	100			mJ

3.4 Electrical characteristics curves for low-side switches

Figure 18. Static drain source on resistance

Figure 19. Derating curve

Figure 20. Transconductance

Figure 21. Transfer characteristics

Input voltage vs input charge Figure 23. Capacitance variations Figure 22.

Electrical characteristics VN5770AKP-E

Figure 24. Output characteristics

Figure 25. Step response current limit

Figure 26. Source-drain diode forward characteristics

Figure 27. Static drain-source on resistance vs I_D

Figure 28. Static drain-source on resistance vs input voltage (part 1)

Figure 29. Static drain-source on resistance vs input voltage (part 2)

Figure 30. Normalized input threshold voltage vs temperature

Figure 31. Normalized on resistance vs temperature

Figure 32. Current limit vs junction temperature

Application information 4

Figure 33. Typical application schematic

Note:

Mostly motor bridge drivers use a reverse battery protection diode (D) inside supply rail. This diode prevents a reverse current flow back to Vbatt in case the bridge gets disabled via the logic inputs while motor inductance still carries energy. In order to prevent a hazardous overvoltage at circuit supply terminal (Vcc), a blocking capacitor (C) is needed to limit the voltage overshoot. As basic orientation, 50µF per 1A load current in recommended. In alternative, also a Zener protection (Z) is suitable. Even if a reverse polarity diode is not present, it is recommended to use a capacitor or zener at Vcc because a similar problem appears in case supply terminal of the module has intermittent electrical contact to the battery or gets disconnected while motor is operating.

Figure 34. Recommended motor operation

Figure 35. Waveforms

4.1 Maximum demagnetization energy ($V_{cc} = 13.5 \text{ V}$)

Figure 36. Maximum turn off current versus load inductance

5 Package and thermal data

5.1 SO-28 thermal data

Figure 37. SO-28 PC board

Figure 38. Chipset configuration

Figure 39. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition

Table 17. Thermal calculations in clockwise and anti-clockwise operation in steady-state mode

HS ₁	HS ₂	LS ₃	LS ₄	T _{jHS12}	T _{jLS3}	T _{jLS4}
ON	OFF	OFF	ON	$\begin{aligned} &P_{dHS1} \times R_{thHS} + P_{dLS4} \times \\ &R_{thHSLS} + T_{amb} \end{aligned}$	$\begin{array}{c} P_{dHS1} \times R_{thHSLS} + \\ P_{dLS4} \times R_{thLSLS} + T_{amb} \end{array}$	P _{dHS1} x R _{thHSLS} + P _{dLS4} x R _{thLS} + T _{amb}
OFF	ON	ON	OFF	$\begin{aligned} & P_{\text{dHS2}} \text{ x } R_{\text{thHS}} + P_{\text{dLS3}} \text{ x} \\ & R_{\text{thHSLS}} + T_{\text{amb}} \end{aligned}$	P _{dHS2} x R _{thHSLS} + P _{dLS3} x R _{thLS} + T _{amb}	$\begin{aligned} & P_{\text{dHS2}} \times R_{\text{thHSLS}} + \\ & P_{\text{dLS3}} \times R_{\text{thLSLS}} + T_{\text{amb}} \end{aligned}$

Table 18. Thermal resistances definitions⁽¹⁾

$R_{thHS} = R_{thHS1} = R_{thHS2}$	High-side chip thermal resistance junction to ambient $(HS_1 \text{ or } HS_2 \text{ in } ON\text{-state})$
$R_{thLS} = R_{thLS3} = R_{thLS4}$	Low-side chip thermal resistance junction to ambient
$\mathbf{R_{thHSLS}} = \mathbf{R_{thHS1LS4}} = \mathbf{R_{thHS2LS3}}$	Mutual thermal resistance junction to ambient between high-side and low-side chips
R _{thLSLS} = R _{thLS3LS4}	Mutual thermal resistance junction to ambient between low-side chips

1. Values dependent on PCB heatsink area

Table 19. Single pulse thermal impedance definitions⁽¹⁾

Z _{thHS}	High-side chip thermal impedance junction to ambient
$Z_{thLS} = Z_{thLS3} = Z_{thLS4}$	Low-side chip thermal impedance junction to ambient
$Z_{thHSLS} = Z_{thHS12LS3} = Z_{thHS12LS4}$	Mutual thermal impedance junction to ambient between high-side and low-side chips
Z _{thLSLS} = Z _{thLS3LS4}	Mutual thermal impedance junction to ambient between low-side chips

^{1.} values dependent on PCB heatsink area

Table 20. Thermal calculations in transient mode⁽¹⁾

T _{jHS12}	$Z_{thHS} \times P_{dHS12} + Z_{thHSLS} \times (P_{dLS3} + P_{dLS4}) + T_{amb}$
T _{jLS3}	$Z_{thHSLS} \times P_{dHS12} + Z_{thLS} \times P_{dLS3} + Z_{thLSLS} \times P_{dLS4} + T_{amb}$
T _{jLS4}	Z _{thHSLS} x P _{dHS12} + Z _{thLSLS} x P _{dLS3} + Z _{thLS} x P _{dLS4} + T _{amb}

^{1.} Calculation is valid in any dynamic operating condition. Pd values set by user.

Figure 41. SO-28 LSD thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where} \quad \delta &= t_p / T \end{split}$$

Figure 42. Thermal fitting model of an H-bridge in SO-28

577

Table 21. Thermal parameters⁽¹⁾

Area/island (cm ²)	Footprint	1	2	6
R1 = R7 (°C/W)	1			
R2 = R8 (°C/W)	1.8			
R3 = R11 = R17 (°C/W)	3.5			
R4 (°C/W)	13.5			
R5 = R13 = R19 (°C/W)	10.5			
R6 = R14 = R20 (°C/W)	62.28	52.28	44.28	32.28
R9 = R15 (°C/W)	0.24			
R10 = R16 (°C/W)	1.2			
R12 (°C/W)	15.2			
R18 (°C/W)	15.5			
R21 = R22 = R23 (°C/W)	150			
R24 (°C/W)	150	52.28	44.28	32.28
C1 = C7 (W·s/°C)	0.0008			
C2 = C8 (W·s/°C)	0.001			
C3 = C11 = C17 (W·s/°C)	0.008			
C5 = C13 = C19 (W·s/°C)	0.2			
C6 = C14 = C20 (W·s/°C)	1.6	1.61	1.7	3.25
C9 = C15 (W·s/°C)	0.00015			
C10 = C16 (W·s/°C)	0.0005			

^{1.} A blank space means that the value is the same as the previous one.

6 Package and packing information

6.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

6.2 SO-28 package information

Table 22. SO-28 mechanical data

Symbol	Millimeters			
	Min	Тур	Max	
Α			2.65	
a1	0.10		0.30	
b	0.35		0.49	
b1	0.23		0.32	
С		0.50		
c1		45° (typ.)		
D	17.7		18.1	
E	10.00		10.65	
е		1.27		
e3		16.51		
F	7.40		7.60	
L	0.40		1.27	
S		8° (max.)		

Figure 43. SO-28 package dimensions

6.3 SO-28 packing information

Figure 44. SO-28 tube shipment (no suffix)

Figure 45. Tape and reel shipment (suffix "TR")

Order codes VN5770AKP-E

7 Order codes

Table 23. Device summary

Package	Order	codes
rackage	Tube	Tape and reel
SO-28	VN5770AKP-E	VN5770AKPTR-E

VN5770AKP-E Revision history

8 Revision history

Table 24. Document revision history

Date	Revision	Changes
11-Nov-2010	1	Initial release.
04-Jan-2012	2	Table 9: Current sense (8V <vcc<16v) -="" k<sub="">0 values modified</vcc<16v)>
20-Feb-2012	3	Update Figure 2: Configuration diagram (top view) and Figure 33: Typical application schematic

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

