PANC: Projeto e Análise de Algoritmos

Aula 10: Algoritmos de Ordenação I - Inserção: Ordenação Direta, Binária e Shell Sort

Breno Lisi Romano

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

Sumário

- Introdução
- Algoritmos de Ordenação por Inserção:
 - Ordenação Direta (Insertion Sort)
 - Ordenação Binária
 - Shell Sort
- Exemplos Práticos

Introdução (1)

- Em diversas aplicações, os dados devem ser armazenados obedecendo uma determinada ordem
- Alguns algoritmos podem explorar a ordenação dos dados para operar de maneira mais eficiente, do ponto de vista de desempenho computacional
- Para obtermos os dados ordenados, temos basicamente duas alternativas:
 - Inserimos os elementos na estrutura de dados respeitando a ordenação (dizemos que a ordenação é garantida por construção)
 - A partir de um conjunto de dados já criado, aplicamos um algoritmo para ordenar seus elementos

Introdução (2)

- Devido ao seu uso muito frequente, é importante ter à disposição algoritmos de ordenação (sorting) eficientes tanto em termos de tempo (devem ser rápidos) como em termos de espaço (devem ocupar pouca memória durante a execução) → Complexidade
- Vamos descrever os algoritmos de ordenação considerando o seguinte cenário:
 - a entrada é um array cujos elementos precisam ser ordenados
 - a saída é o mesmo array com seus elementos na ordem especificada
 - o espaço que pode ser utilizado é apenas o espaço do próprio array
- Portanto, vamos discutir ordenação de arrays, mas a lógica é aplicada a qualquer outra estrutura de dados

Introdução (3)

- Existem três grupos de algoritmos diferentes de ordenação e outros algoritmos que não pertencem a nenhum destes grupos:
 - Métodos de Ordenação por Inserção
 - Direta
 - Binária
 - Shell Sort
 - Métodos de Ordenação por Troca
 - Bubble Sort
 - Shake Sort
 - Comb Sort
 - Quick Sort
 - Métodos de Ordenação por Seleção
 - Select Sort
 - Heap Sort
 - Outros Métodos de Ordenação
 - Merge Sort
 - Radix Sort

Introdução (4)

- Antes de aprendermos sobre os algoritmos de ordenação, vamos pensar como ficaria o algoritmo para ordenar 3 variáveis: x, y e z
- Por exemplo:
 - Desordenado (x=10, y=30, z=20)
 - Ordenado (Imprime 10, 20, 30)
 - Desordenado (x=30, y=20, z=10)
 - Ordenado (Imprime 10, 20, 30)
 - Desordenado (x=20, y=10, z=30)
 - Ordenado (Imprime 10, 20, 30)
 - Desordenado (x=10, y=20, z=30)
 - Ordenado (Imprime 10, 20, 30)

```
void OrdenaTresVariaveis(int x, int y, int z)
  //x eh o menor
   if((x \le y) & (x \le z)) 
       if(y \le z) printf("\n Ord = \%d \%d \%d \%d\n", x, y, z);
                 printf("\n Ord = \%d \%d \%d\n", x, z, y);
       else
  //y eh o menor
   if((y \le x) & (y \le z)) 
       if(x \le z) printf("\n Ord = \%d \%d \%d \%d\n", y, x, z);
                 printf("\n Ord = \%d \%d \%d\n", y, z, x);
       else
  //z eh o menor
   if((z \le x) & (z \le y)) 
       if(x \le y) printf("\n Ord = \%d \%d \%d \%d\n", z, x, y);
       else
                 printf("\n Ord = \%d \%d \%d\n", z, y, x);
```


Problema: Ordenação

Problema de Ordenação:

Ordenar uma sequência de números de maneira não decrescente

Entrada:

■ Uma sequência de n números <a₁, a₂, a₃, . . . , a₀>

Saída:

Uma permutação <a'₁, a'₂, a'₃, . . . , a'ո> da sequência de entrada, tal que a'₁ ≤ a'₂ ≤ a'₃ ≤ . . . ≤ a'n

Problema: Ordenação - Exemplos

Números de Registros em uma Biblioteca

Pacotes do FedEx

Jogo de Cartas

Contatos do Celular

Casas de Hogwarts - Chapéu Seletor

Detalhando...

ALGORITMOS DE ORDENAÇÃO POR INSERÇÃO

Ordenação Direta, Binária e Shell Sort

Introdução: Ordenação por Inserção

- Métodos caracterizados pelo princípio no qual se divide o array em dois segmentos, sendo um já ordenado e o outro a ser ordenado
 - Primeiro segmento formado por apenas um elemento → considerado ordenado
 - Segundo segmento contém n-1 elementos restantes
- A partir disto, iterações são desenvolvidas sendo que, em cada uma delas, um elemento do segmento não ordenado é transferido para o segmento ordenado, na sua posição correta
- Métodos de Ordenação por Inserção
 - Direta (Insertion Sort)
 - Binária
 - Shell Sort

Ordenação por Inserção: Ilustração (1)

	1	2	3	4	5	6
(f)	1	2	3	4	5	6

Ordenação por Inserção: Lógica (2)

- A ordenação por inserção é caracterizada pelo princípio no qual se divide o array em dois segmentos: um já ordenado e o outro não ordenado
- Inicialmente, o primeiro segmento é formado apenas por um elemento (já considerado ordenado)
- O segundo segmento contém n-1 elementos restantes não ordenados
- O progresso se desenvolve em n-1 interações sendo que, em cada uma delas, um elemento do segmento não ordenado é transferido para o primeiro segmento, e inserido na posição correta em relação aos demais elementos já existentes

Ordenação por Inserção: Lógica (3)

- Veja os passos utilizados para se ordenar valores pelo método da inserção direta:
 - 1. Considere o primeiro elemento como pertencente ao segmento ordenado S1
 - 2. Considere os demais elementos como pertencentes ao segmento desordenado S2
 - 3. Toma-se um dos elementos não ordenados do segmento S2, a partir do primeiro, e localiza-se a sua posição relativa correta em S1
 - 4. A cada comparação realizada entre o elemento do segmento S2 e os que já estão no segmento S1, podemos obter um dos seguintes resultados:
 - O elemento a ser inserido é menor do que aquele com o qual se está comparando. Neste caso, este é movido uma posição para a direita, deixando vaga a posição que anteriormente ocupava
 - O elemento a ser inserido é maior ou igual àquele que se está comparando. Neste caso, fazemos a inserção do elemento na posição vaga, a qual corresponde à sua posição correta no segmento S1
 - Se o elemento a ser inserido é maior que todos do segmento S1, a inserção corresponde a deixá-lo na posição que já ocupava em S2
 - Após cada inserção, a fronteira entre os dois segmentos é deslocado uma posição para a direita, indicando, com isto, que o segmento ordenado ganhou um elemento e o não ordenado perdeu um
 - 5. O processo prossegue até que todos os elementos de S2 tenham sido transferidos para S1

Ordenação por Inserção: Exemplo (4)

Exemplo Ilustrativo:

i	0	1	2	3	4	5
Vet[i]	60	30	40	50	90	80
	S1			S2	4	7

Primeira Iteração:

i	0	1	2	3	4	5
Vet[i]	60	<u>30</u>	40	50	90	80
	S 1			S2		

i	0	1	2	3	4	5
Vet[i]	30	60	<u>40</u>	50	90	80
	S 1			S2		

Ordenação por Inserção: Exemplo (5)

Seg	unda	Itera	cão:
			3

i	0	1	2	3	4	5
Vet[i]	30	40	60	<u>50</u>	90	80
~	S1			S2	AT MAN	

Terceira Iteração:

i	0	1	2	3	4	5
Vet[i]	30	40	50	60	<u>90</u>	80
	S1				S	32

Quarta Iteração:

i	0	1	2	3	4	5
Vet[i]	30	40	50	60	90	<u>80</u>
	S1					S2

Quinta Iteração:

i	0	1	2	3	4	5
Vet[i]	30	40	50	60	80	90

Ordenação por Inserção: Mais um Exemplo (6)

Segundo Exemplo Ilustrativo:

i	0	1	2	3	4	5	6	7
Vet[i]	44	55	12	42	94	18	06	67

Solução:

i	0	1	2	3	4	5	6	7	Iteração
Vet[i]	44	<u>55</u>	12	42	94	18	06	67	-
Vet[i]	44	55	<u>12</u>	42	94	18	06	67	1
Vet[i]	12	44	55	<u>42</u>	94	18	06	67	2
Vet[i]	12	42	44	55	<u>94</u>	18	06	67	3
Vet[i]	12	42	44	55	94	<u>18</u>	06	67	4
Vet[i]	12	18	42	44	55	94	<u>06</u>	67	5
Vet[i]	06	12	18	42	44	55	94	<u>67</u>	6
Vet[i]	06	12	18	42	44	55	67	94	7

Ordenação por Inserção: Pseudocódigo (7)

```
ORDENA

1  para j \leftarrow 2 até n faça

2   chave \leftarrow A[j]

3  \triangleright Insere A[j] no subvetor ordenado A[1..j-1]

4   i \leftarrow j-1

5  enquanto i \ge 1 e A[i] > chave faça

6  A[i+1] \leftarrow A[i]

7  i \leftarrow i-1

8  A[i+1] \leftarrow chave
```


Ordenação por Inserção: Complexidade de Tempo (8)

OF	RDENA	Custo	# execuções
1 p	ara j ← 2 até n faça	<i>C</i> ₁	?
2	$chave \leftarrow A[j]$	c_2	?
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0	?
4	$i \leftarrow j - 1$	<i>C</i> ₄	?
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	C 5	?
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	?
7	$i \leftarrow i - 1$	C 7	?
8	$A[i+1] \leftarrow chave$	<i>C</i> ₈	?

- A constante **c**_k representa o **custo (tempo)** de cada execução da linha **k**
- Denote por t_j o número de vezes que o teste no laço enquanto
 (linha 5) é feito para aquele valor de j

Ordenação por Inserção: Complexidade de Tempo (9)

OF	RDENA	Custo	Vezes
1 p	oara j ← 2 até n faça	C ₁	n
2	$chave \leftarrow A[j]$	<i>C</i> ₂	<i>n</i> − 1
3	⊳ Insere A[j] em A[1j – 1]	0	<i>n</i> − 1
4	$i \leftarrow j - 1$	C_4	<i>n</i> − 1
5	enquanto $i \ge 1$ e $A[i] > chave$ faça	C 5	$\sum_{j=2}^{n} t_j$
6	$A[i+1] \leftarrow A[i]$	<i>c</i> ₆	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C 7	$\sum_{i=2}^{n} (t_i - 1)$
8	$A[i+1] \leftarrow chave$	<i>c</i> ₈	<i>n</i> – 1

- A constante **c**_k representa o **custo (tempo)** de cada execução da linha **k**
- Denote por t_j o número de vezes que o teste no laço enquanto (linha 5) é feito para aquele valor de j

Ordenação por Inserção: Complexidade de Tempo (10)

- Tempo de Execução Total T(n) da Ordenação por Inserção:
 - Soma dos tempos de execução de cada uma das linhas do algoritmo, ou seja:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Como se vê, entradas de tamanho igual (i.e., mesmo valor de n), podem apresentar tempos de execução diferentes já que o valor de T(n) depende dos valores dos t_i

Ordenação por Inserção: Complexidade de Tempo (11)

- T(n) no Melhor Caso da Ordenação por Inserção:
 - O array já está ordenado
 - Para j = 2, ..., n temos A[i] ≤ chave na linha 5 quando i=j-1. Assim, t_j = 1 para j = 2, ..., n

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$

- Este tempo de execução é da forma an + b para constantes a e b que dependem apenas dos c_i.
- Portanto, no **melhor caso**, o T(n) é uma **função linear**

Ordenação por Inserção: Complexidade de Tempo (12)

- T(n) no Pior Caso da Ordenação por Inserção:
 - O array está em ordem decrescente
 - Para inserir a chave em A[1 ... j−1], temos que compará-la com todos os elementos neste sub(array). Assim, t_i = j para j = 2, ..., n
 - Lembrem-se que:

Soma dos Termos de uma P.A Finita

$$s_n = \frac{(a_1 + a_n).n}{2}$$

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1$$

$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

Ordenação por Inserção: Complexidade de Tempo (13)

T(n) no Pior Caso da Ordenação por Inserção:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} j + c_6 \sum_{j=2}^{n} (j-1) + c_7 \sum_{j=2}^{n} (j-1) + c_8 (n-1)$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right)$$

$$+ c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8)$$

- Este tempo de execução é da forma an² + bn + c, onde a, b e c são constantes que dependem apenas dos c_i.
- Portanto, no pior caso, o T(n) é uma função quadrática

Ordenação por Inserção: Análise da Complexidade

- Principais pontos a se destacar:
 - É de simples implementação, leitura e manutenção
 - In-place: apenas requer uma quantidade constante de O(1) espaço de memória adicional
 - Estável: Não muda a ordem relativa de elementos com valores iguais
 - Útil para pequenas entradas
 - É um bom método quando se desejar adicionar poucos elementos em um arquivo já ordenado, pois seu custo é linear
 - É o método a ser utilizado quando o arquivo está "quase" ordenado
 - Alto custo de movimentação de elementos no array
- Análise da Complexidade do Algoritmo:
 - Pior Caso:
 - T(n): O(n²)
 - Justificativa: Array está em ordem decrescente
 - Melhor Caso:
 - T(n): O(n)
 - Justificativa: Array já encontra-se ordenado

Ordenação por Inserção: Implementação 01 (14)

```
/*InsertionSort01(): Função que ordena um array
considerando o método de ordenação por inserção */
void InsertionSort01(int Vet[])
  int i, j, chave;
 for(j = 1; j < n; j + +)
   chave = Vet[i];
   i = j - 1;
   while ((i \ge 0) \&\& (Vet[i] \ge chave))
           Vet[i+1] = Vet[i];
           i = i - 1:
    Vet[i+1] = chave;
```

j: índice do segmento ordenadoi: índice para encontrar a posição de inserçãochave: elemento chave analisado

Ordenação por Inserção: Implementação 01 (15)

```
/*InsertionSort02(): Função que ordena um array considerando o método de ordenação por
  inserção */
void InsertionSort(int Vet[])
  int i, j, aux;
  for(i=1; i < n; i++) 
    for(j=i; j>0; j--){
       if(Vet[j] < Vet[j-1]) {
          aux = Vet[j-1];
          Vet[j-1] = Vet[j];
          Vet[j] = aux;
```

i: índice do segmento ordenado

j: índice do segmento não ordenado

variável auxiliar para troca

Met. Ord. Inserção: Ordenação Binária (1)

 O algoritmo de inserção direta é facilmente aperfeiçoado, observando-se o segmento S1. Portanto, pode-se utilizar um método mais rápido para determinar o ponto correto de inserção

Busca Binária:

 Considere o array a seguir, com oito valores, e a sua divisão inicial em dois segmentos S1 (ordenado) e S2 (desordenado):

i	0	1	2	3	4	5	6	7
Vet[i]	06	12	18	42	55	67	<u>30</u>	11
	1					1		
	L					R		

 Podemos, então, efetuar a busca de um dado valor x no S1. Observe que o segmento S1 está indicado pelos limites L e R, inferior e superior, respectivamente. As operações objetivam buscar a posição do ponto de inserção mais rapidamente

Met. Ord. Inserção: Ordenação Binária (2)

Encontrar a posição que x = 30 deve ser inserido no Segmento S1

L	R	m
0	6	3
0	3	1
2	3	2
3	3	-

x deve ser inserido na posição de R ou L (iguais). Ou seja, x deve ser inserido na posição 3.

Os demais passos do algoritmo, obviamente, não se modificam em sua essência.
 Desloca-se todos para direita, e insere 30 na posição 3, ficando:

	,							
i	0	1	2	3	4	5	6	7
Vet[i]	06	12	18	<u>30</u>	42	55	67	11

Met. Ord. Inserção: Ordenação Binária (3)

//Busca Binária L = 0; R = i; while (L < R) { m = piso(L + R)/2; if (x >= Vet[m]) L = m+1; else R = m; }

Encontrar a posição que x = 11 deve ser inserido no Segmento S1

L	R	m
0	7	3
0	3	1
0	1	0
1	1	-

x deve ser inserido na posição de R ou L (iguais). Ou seja, x deve ser inserido na posição 1.

Desloca todos para direita, e insere 11 na posição 1, ficando:

i	0	1	2	3	4	5	6	7
Vet[i]	06	<u>11</u>	12	18	30	42	55	67

Met. Ord. Inserção: Ordenação Binária (4)

```
/*OrdenaBinaria(): Insere os numeros em ordem no Vet[] por pesquisa binaria. */
void OrdenaBinaria(int Vet[])
   //Variaveis Locais
 int i, j;
 int m, x;
 int L, R;
  for(i=1; i < N; i++)
   x = Vet[i];
   //Busca do ponto R, para insercao de x
   L = 0;
   R = i;
                                                                    Entender of Functionamento é
Nais Importante due Decorar o
   while (L < R)
     m = (L + R)/2;
     if (x \ge Vet[m]) L = m+1;
      else R = m;
   //Fazendo a Movimentacao para a Insercao no ponto R
   for(j=i; j>L; j=j-1)
       Vet[j] = Vet[j-1];
   //Inserindo x na posicao de R de Vet[]
    Vet[R] = x;
```


Ordenação por Ordenação Binária: Análise da Complexidade

- Principais pontos a se destacar:
 - A posição correta para inserção é encontrada quando a condição L = R é satisfeita
 - Sabemos que o número de comparações necessárias para localizar a posição de um elemento utilizando-se do algoritmo de Busca Binária para um array com i elementos é lg i
 - Para a Ordenação Binária, as operações são repetidas para valores de i variando de i= (n-1), (n-2), (n-3), ..., 3, 2, 1 (L=R)
- Análise da Complexidade do Algoritmo:
 - Considerando as comparações:
 - $T(n) = \sum_{i=1}^{n-1} \lg i = \lg 1 + \lg 2 + \lg 3 + \dots + \lg(n-1) = \lg(n-1)!$
 - Existe uma melhora, mas em relação a apenas o número de comparações e não movimentações

Met. Ord. Inserção: Shell Sort (1)

- Refinamento do Inserção Direta proposto por D. L. Shell
- A diferença é a quantidade de segmentos do array utilizados para o processo de ordenação, por este motivo o método é também conhecido como incrementos decrescentes
- Algoritmo:
 - 1. Dividir o array em k segmentos S₁, S₂,, S_k, de tal forma que cada um dos segmentos S_i, i = 1,2,...,k possua aproximadamente n/i elementos
 - 1. Segmento S1: Vet[0], Vet[0+i], Vet[0+2i], ...
 - 2. Segmento S2: Vet[1], Vet[1+i], Vet[1+2i], ...
 - 3.
 - 4. Segmento Sk: Vet[k-1], Vet[k-1+i], Vet[k-1+2i], ...
 - Em cada passo i, realiza-se uma ordenação isolada de cada segmento, usando a inserção direta
 - 3. Repete-se o processo no término de cada passo, alterando o valor do incremento i para metade do valor anterior, até a execução de um certo passo com incremento i=1
- O valor do incremento i deve ser uma potência inteira de 2. Logo, o valor inicial é dado por 2^{np}, sendo np fornecido pelo usuário. Para np=3, temos:
 - Passo 1: $i = 2^{np} = 2^3 = 8$ segmentos
 - Passo 2: $i = 2^{np-1} = 2^2 = 4$ segmentos
 - Passo 3: $i = 2^{np-2} = 2^1 = 2$ segmentos
 - Passo 4: $i = 2^{np-3} = 2^0 = 1$ segmento

Met. Ord. Inserção: Shell Sort (2)

- Considere o seguinte array desordenado e o valor de np = 2. Logo, teremos de efetuar os seguintes passos:
 - Passo 1: $i = 2^{np} = 2^2 = 4$ segmentos
 - Passo 2: $i = 2^{np-1} = 2^1 = 2$ segmentos
 - Passo 3: $i = 2^{np-2} = 2^0 = 1$ segmento

į	0	1	2	3	4	5	6	7	8	9	10	11
Vet[i]	17	24	42	15	21	22	47	37	52	43	27	12

Passo 01: $i = 2^{np} = 2^2 = 4$ segmentos

ī	0	1	2	3	4	5	6	7	8	9	10	11
Vet[i]	17	22	27	12	21	24	42	15	52	43	47	37

Met. Ord. Inserção: Shell Sort (3)

i	0	1	2	3	4	5	6	7	8	9	10	11
Vet[i]	17	22	27	12	21	24	42	15	52	43	47	37

Passo 02: $i = 2^{np-1} = 2^1 = 2$ segmentos

S2	1	3	5	7	9	11
	22	12	24	15	43	37

S1	0	2	4	6	8	10
	17	21	27	42	47	52

S2	1	3	5	7	9	11
	12	15	22	24	37	43

i	0	1	2	3	4	5	6	7	8	9	10	11
Vet[i]	17	12	21	15	27	22	42	24	47	37	52	43

Met. Ord. Inserção: Shell Sort (4)

	i	0	1	2	3	4	5	6	7	8	9	10	11
\	/et[i]	17	12	21	15	27	22	42	24	47	37	52	43

Passo 03: $i = 2^{np-2} = 2^0 = 1$ segmento

Neste último passo, os elementos já estão próximos de suas reais posições, o que leva a um número menor de trocas.

i	0	1	2	3	4	5	6	7	8	9	10	11
Vet[i]	12	15	17	21	22	22	24	37	42	43	47	52

Met. Ord. Inserção: Shell Sort (5)

```
/*OrdenaShellSort(): Insere os numeros em ordem no Vet[] pelo metodo de insercao
              através de incrementos decrescentes*/
void OrdenaShellSort(int Vet[], int Inc, int SegCorrente)
  //Variaveis Locais
                                                      //Chamada da Função
 int i, j, x, k;
                                                      Np = 2;
                                                      for(i=Np; i>=0; i--)
  for(i=(SegCorrente+Inc); i<N; i+=Inc)
                                                                   Inc = (int)pow(2.0, i);
                                                                   for(SegCorrente=0; SegCorrente<Inc; SegCorrente++)</pre>
    k = SegCorrente;
                                                                                 OrdenaShellSort(Vet, Inc, SegCorrente);
   i = i - Inc;
   x = Vet[i];
                                                                  Entender of Lincionamento é
Nais Importante, que Decorar o
   while((j>=SegCorrente)&&(k==SegCorrente))
     if(x < Vet[i])
       Vet[j+Inc] = Vet[j];
       i = i-Inc;
      else k=j+Inc;
    Vet[k] = x;
```


Met. Ord. Inserção: Shell Sort (6)

 Considere o seguinte vetor desordenado e o valor de np = 2. Simular a ordenação para o vetor abaixo.

Vetor Desordenado:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Vet[i]	26	17	8	15	17	3	7	52	48	19	59	69	67	95	0

Passo 1: $i = 2^{np} = 2^2 = 4$ segmentos

- **S1** = Vet[0], Vet[4], Vet[8], Vet[12]
- **S2** = Vet[1], Vet[5], Vet[9], Vet[13]
- **S3** = Vet[2], Vet[6], Vet[10], Vet[14]
- **S4** = Vet[3], Vet[7], Vet[11]

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Vet[i]	17	3	0	15	26	17	7	52	48	19	8	69	67	95	59

Met. Ord. Inserção: Shell Sort (7)

Passo 2: $i = 2^{np-1} = 2^1 = 2$ segmentos

S1 = Vet[0], Vet[2], Vet[4], Vet[6], Vet[8], Vet[10], Vet[12], Vet[14]

S2 = Vet[1], Vet[3], Vet[5], Vet[7], Vet[9], Vet[11], Vet[13]

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Vet[i]	0	3	7	15	8	17	17	19	26	52	48	69	59	95	67

Passo 3: $i = 2^{np-2} = 2^0 = 1$ segmento

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Vet[i]	0	3	7	8	15	17	17	19	26	48	52	59	67	69	95

Ordenação por Shell Sort: Análise da Complexidade

- Principais pontos a se destacar:
 - A complexidade do algoritmo ainda não é conhecida
 - Ninguém foi capaz de encontrar uma fórmula fechada para a sua função de complexidade
 - A Análise contém alguns problemas matemáticos difíceis
 - Exemplo: escolher a sequência de incrementos (adotamos um padrão mas poderia ser qualquer sequencia)
 - É uma boa opção para arrays de tamanho moderado, com implementação simples
 - Não é estável
- Análise da Complexidade do Algoritmo:
 - Conjecturas referentes ao número de comparações para a sequência de Knuth:
 - Conjectura 1: O(n^{1,25})
 - Conjectura 2: O(n (lg n)²)

Simuladores de Funcionamento

- Simuladores do Funcionamento de Alguns Algoritmos de Ordenação:
 - USFCA: https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
 - VisualGo: https://visualgo.net/pt/sorting?slide=1

PANC: Projeto e Análise de Algoritmos

Aula 10: Algoritmos de Ordenação I - Inserção: Ordenação Direta, Binária e Shell Sort

Breno Lisi Romano

Dúvidas???

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

