5. LÖSUNGEN 85

LÖSUNG 25. Welche Elemente sind in Menge A:

$$A = (\{x \in \mathbb{R} | x^2 < 25\} \cup [-12, 3)) \cap (\mathbb{Z} \backslash \mathbb{N})$$

Die Ungleichung $x^2 < 25$ ist erfüllt für |x| < 5, also $x \in (-5,5)$. Damit ist $(-5,5) \cup [-12,3) = [-12,5)$. Auf der rechten Seite ist $\mathbb{Z} \setminus \mathbb{N} = \{x \in \mathbb{Z} \mid x < 1\} = \{0,-1,-2,-3,\ldots\}$. Der Schnitt beider Mengen ist damit

$$A = \{-12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0\}.$$

 $L\ddot{o}sung$ 26. Finden Sie eine einfachere Beschreibung für die Menge A:

$$A = \{x \in \mathbb{Z} | |x - 4| < 7\} \cap (\{x \in \mathbb{Z} | \exists y \in \mathbb{N} : x = y^2\} \triangle (-\infty, 1])$$

Auf der linken Seite ist |x-4| < 7 gerade (-3,11), darin sind die ganzen Zahlen $\{-2,-1,\ldots,8,9,10\}$. Auf der rechten Seite wird ist die symmetrische Differenz der Menge der Quadratzahlen $\{1,4,9,16,\ldots\}$ zu $(-\infty,1]$ gesucht, und das ist $(-\infty,1)\cup\{4,9,16,\ldots\}$. Der Schnitt der beiden Seiten ergibt

$$A = \{-2, -1, 0, 4, 9\}.$$

LÖSUNG 27. Vereinfachen Sie diesen Ausdruck für Mengen A, B und C:

$$A \cup ((A \backslash B) \cap (A \backslash ((C \backslash B) \cup C)))$$

Mit $(C \backslash B) \cup C = C$ ist

$$A \cup ((A \backslash B) \cap (A \backslash ((C \backslash B) \cup C))) = A \cup ((A \backslash B) \cap (A \backslash C))$$
 Hinweis
$$= A \cup (A \backslash (B \cup C))$$
 De Morgan
$$= A$$
 Hinweis

Zu zeigen bleibt: $C = C \cup (C \setminus B)$.

 \subseteq :

Gegeben ist: $x \in C$

Zu zeigen ist: $x \in C \cup (C \setminus B)$

Da $x \in C$ ist $x \in C \cup (C \backslash B)$.

⊇:

Gegeben ist: $x \in C \cup (C \backslash B)$

Zu zeigen ist: $x \in C$

Ist $x \in C \cup (C \backslash B)$, so gibt es zwei Fälle:

- (1) Ist $x \in C$, so ist die Konklusion erfüllt.
- (2) Ist $x \in (C \setminus B)$, so ist $x \in C$ und $x \notin B$. Die erste Aussage erfüllt die Konklusion.

LÖSUNG 28. Vereinfachen Sie diesen Ausdruck für Mengen A, B und C:

$$(A \backslash B) \cup ((B \backslash A) \cup C) \cup ((A \cup C) \cap (B \cup C))$$

86 5. LÖSUNGEN

Es bleibt zu zeigen, dass $(A \backslash B) \cup (A \cap B) \cup (B \backslash A) = A \cup B$:

⊆:

Gegeben ist: $x \in (A \backslash B) \cup (A \cap B) \cup (B \backslash A)$

Zu zeigen ist: $x \in A \cup B$

Ist $x \in (A \backslash B) \cup (A \cap B) \cup (B \backslash A) = A \cup B$, so gibt es drei Fälle:

- (1) Ist $x \in A \backslash B$, so ist $x \in A \subseteq A \cup B$ und damit $x \in A \cup B$.
- (2) Ist $x \in A \cap B$, so ist $x \in A \cup B$, da $A \cap B \subseteq A \cup B$.
- (3) Ist $x \in B \setminus A$, so ist $x \in B \subseteq A \cup B$ und damit $x \in A \cup B$.

⊇:

Gegeben ist: $x \in A \cup B$

Zu zeigen ist: $x \in (A \backslash B) \cup (A \cap B) \cup (B \backslash A)$

Es gibt drei Fälle:

- (1) Ist $x \in A$ und $x \notin B$, so ist $x \in A \setminus B \subseteq (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$.
- (2) Ist $x \in A$ und $x \in B$, so ist $x \in A \cap B \subseteq (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$.
- (3) Ist $x \notin A$ und $x \in B$, so ist $x \in B \setminus A \subseteq (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$.

LÖSUNG 29. Ist C eine Partition der Menge $A = \{1, 2, 3\}$?

$$C = (\mathcal{P}(A) \backslash \mathcal{P}(A \backslash \{1\}))$$

Es ist

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

$$\mathcal{P}(A \setminus \{1\}) = \mathcal{P}(\{2, 3\}) = \{\emptyset, \{2\}, \{3\}, \{2, 3\}\}$$

Damit ist die Differenz

$$C = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$$

und da die Mengen paarweise einen Schnitt haben, kann es keine Partition sein.

LÖSUNG 30. Seien $A = \{1, 4, 3\}$ und $B = \{2, 3, 4\}$. Bestimmen Sie $|\mathcal{P}(A) \triangle \mathcal{P}(B)|$.

Es ist

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{3\}, \{4\}, \{1, 3\}, \{1, 4\}, \{3, 4\}, \{1, 3, 4\}\}\}$$

$$\mathcal{P}(B) = \{\emptyset, \{2\}, \{3\}, \{4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{2, 3, 4\}\}\}$$

und damit ist die Kardinalität der symmetrischen Differenz

$$|\mathcal{P}(A) \triangle \mathcal{P}(B)| = |\{\{1\}, \{2\}, \{1,3\}, \{2,3\}, \{1,4\}, \{2,4\}, \{1,3,4\}, \{2,3,4\}\}\}| = 8.$$

5. LÖSUNGEN 87

LÖSUNG 31. Auf der Menge $M = \mathbb{Z} \times \mathbb{N}$ sei die Relation R definiert durch

$$(a,b) R(c,d) \Leftrightarrow a \cdot d = b \cdot c$$
.

Welche Eigenschaften hat sie?

Analyse der verschiedenen Eigenschaften:

Symmetrie: Seien $(x,y), (u,v) \in \mathbb{Z} \times \mathbb{N}$ mit (x,y) R(u,v), also $x \cdot v = y \cdot u$. Gilt jetzt (u,v) R(x,y), also $u \cdot y = v \cdot x$? Ja, denn $u \cdot y = y \cdot u$ und $v \cdot x = x \cdot v$. Die Relation ist symmetrisch.

Antisymmetrie: Nein, sie ist nicht antisymmetrisch, denn (2,1) R (4,2) und (4,2) R (2,1), während $(4,2) \neq (2,1)$.

Reflexivität: Sei $(x,y) \in \mathbb{Z} \times \mathbb{N}$. Dann ist $x \cdot y = x \cdot y$, also ist (x,y) R(x,y). Die Relation ist reflexiv.

Transitivität: Seien (a,b) R (c,d) und (c,d) R (e,f). Dann sind $a \cdot d = b \cdot c$ und $c \cdot f = d \cdot e$. Gilt dann auch $a \cdot f = b \cdot e$?

$$(a \cdot f) \cdot d = (a \cdot d) \cdot f = b \cdot (c \cdot f) = b \cdot (d \cdot e) = (b \cdot e) \cdot d$$

Da $d \in \mathbb{N}$ gilt daher $a \cdot f = b \cdot e$, also auch (a,b) R(e,f) und die Relation ist transitiv. Linearität: Nein, es gilt weder (1,2) R(3,4) noch (3,4) R(1,2).

Diese Relation ist eine Äquivalenzrelation. Es ist die Äquivalenz gleicher Brüche

$$\frac{a}{b} = \frac{c}{d} \iff a \cdot d = b \cdot c$$
.

LÖSUNG 32. Welche Eigenschaften hat die Relation $x \mid y$ für x teilt y auf den natürlichen Zahlen? Analyse der verschiedenen Eigenschaften:

Symmetrie: Sei $a, b \in \mathbb{N}$ mit a|b. Gilt dann auch b|a? Sei a=2 und b=4, dann gilt 2|4 aber nicht 4|2. Sie ist nicht symmetrisch.

Antisymmetrie: Seien $a,b\in\mathbb{N}$ mit a|b und b|a. Es gibt also $p,q\in\mathbb{N}$, dass $a\cdot p=b$ und $b\cdot q=a$. Also ist $a=b\cdot q=a\cdot p\cdot q$. Also sind $p\cdot q=1$ und da beide natürliche Zahlen sind, ist p=q=1 und daher a=b. Die Relation ist antisymmetrisch.

Reflexivität: Sei $a \in \mathbb{N}$. Dann gilt a|a, da $a = a \cdot 1$. Die Relation ist reflexiv.

Transitivität: Seien $a,b,c\in\mathbb{N}$ mit a|b und b|c. Dann gibt es $p,q\in\mathbb{N}$ mit $a\cdot p=b$ und $b\cdot q=c$. Dann ist aber auch $a\cdot p\cdot q=b\cdot q=c$. Also gilt a|c und die Relation ist transitiv.

Linearität: Nein, sie ist nicht linear, da weder 2|3 noch 3|2 gilt.

LÖSUNG 33. Auf der Menge $M = \{1, 2, 3, 4\}$ sei die Relation

$$R = \{ (1,1), (1,3), (2,2), (3,1), (3,3), (4,4) \}$$

gegeben. Zeigen Sie, dass R eine Äquivalenzrelation ist, bestimmen Sie die Äquivalenzklasse $[3]_R$ und stellen Sie die Quotientenmenge M/R auf.

Zu zeigen sind die folgenden Eigenschaften:

Reflexivität: Für alle $x \in M$ soll $(x,x) \in R$ sein: Es ist $\{ (1,1), (2,2), (3,3), (4,4) \} \subseteq R$, ist also erfüllt.

Symmetrie: Für alle $x, y \in M$ mit $(x, y) \in R$ ist $(y, x) \in R$. Sei $x \neq y$ (sonst siehe Reflexivität), dann bleibt nur $(1, 3) \in R$ und tatsächlich ist $(3, 1) \in R$ und umgekehrt, ist also erfüllt.

88 5. LÖSUNGEN

Transitivität: Sei $x,y,z\in M$ mit $(x,y)\in R$ und $(y,z)\in R$. Ist x=y oder y=z oder x=z, so ist (x,z) erfüllt. Für $x\neq y,\ y\neq z,\ x\neq z$ gibt es in R keine weitere Fälle. Also ist die Bedingung erfüllt.

Damit ist R eine Äquivalenzrelation. Die Äquivalenzklasse von 3 ist: $[3]_R = \{3,1\}$. Die weiteren Äquivalenzklassen sind: $[2]_R = \{2\}$ und $[4]_R = \{4\}$. Die Quotientenmenge lautet daher:

$$M/R = \{ [2]_R, [3]_R, [4]_R \} = \{ \{2\}, \{3,1\}, \{4\} \}$$

LÖSUNG 34. Auf der Menge $M = \{1, 2, 3, 4\}$ sei die Relation

$$R = \{ (1,4), (1,1), (3,2), (2,2), (4,4), (3,3), (4,1), (2,3) \}$$

gegeben. Zeigen Sie, dass R eine Äquivalenzrelation ist, bestimmen Sie die Äquivalenzklasse $[2]_R$ und stellen Sie die Quotientenmenge M/R auf.

Zu zeigen sind die folgenden Eigenschaften:

Reflexivität: Für alle $x \in M$ soll $(x,x) \in R$ sein: Es ist $\{\ (1,1),(2,2),(3,3),(4,4)\ \} \subseteq R$, ist also erfüllt.

Symmetrie: Für alle $x,y\in M$ mit $(x,y)\in R$ ist $(y,x)\in R$. Sei $x\neq y$ (sonst siehe Reflexivität), dann bleibt $(1,4)\in R$ und tatsächlich ist $(4,1)\in R$ und umgekehrt, und $(3,2)\in R$ und $(2,3)\in R$ und umgekehrt, ist also erfüllt.

Transitivität: Sei $x,y,z\in M$ mit $(x,y)\in R$ und $(y,z)\in R$. Ist x=y oder y=z oder x=z, so ist (x,z) erfüllt. Für $x\neq y,\ y\neq z,\ x\neq z$ gibt es in R keine weitere Fälle. Also ist die Bedingung erfüllt.

Damit ist R eine Äquivalenzrelation. Die Äquivalenzklasse von 2 ist: $[2]_R = \{2,3\}$. Die weitere Äquivalenzklasse ist: $[1]_R = \{1,4\}$. Die Quotientenmenge lautet daher:

$$M/R = \{ [1]_R, [2]_R \} = \{ \{1,4\}, \{2,3\} \}$$