LP 21 Induction électromagnétique

Hugo

Agrégation 2019

Contents

	0.1	Introduction	2	
1	1.1	ce électromagnétique (f.e.m) Cadre de l'étude		
2	\mathbf{Ind}	uction de Lorentz	2	
	2.1	f.e.m	2	
	2.2	Couplage électromagnétique - rail de Laplace	3	
3	Ind	uction de Neumann	3	
	3.1	f.e.m	3	
	3.2	Courants de Foucault	3	
		Coefficients d'inductance		
	4.1	Auto-induction	3	
		Inductance mutuelle		

Prérequis

Equations de Maxwell Magnéto et électro-statique

0.1 Introduction

petite intro historique plus expérience : création d'un courant induit avec une bobine et un aimant. Énoncé de la loi de Faraday + illustration avec expérience similaire.

Ce cours est notamment l'occasion de donner des applications de l'électrostatique.

1 Force électromagnétique (f.e.m)

1.1 Cadre de l'étude

On se place dans l'ARQS.

$$\vec{\nabla}\vec{E} = \vec{0} \tag{1}$$

$$\vec{\nabla} \times \vec{E} = -\frac{\vec{\partial B}}{\partial t} \tag{2}$$

$$\vec{\nabla}\vec{B} = \vec{0} \tag{3}$$

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} \tag{4}$$

Expression des champs en fonction des potentiels.

On établit la puissance P qui communique la vitesse v_q à la particule q.

$$P = \int_{\mathcal{C}} \frac{\vec{F} \cdot d\vec{l}}{q} I \tag{5}$$

$$e = \frac{P}{q} \tag{6}$$

1.2 Champ électromoteur

On peut exprimer e en fonction de deux termes

$$e = \int_{\mathcal{C}} \vec{E} \cdot d\vec{l} + \int_{\mathcal{C}} \vec{v}_q \times \vec{B} \cdot d\vec{l} = -\int_{\mathcal{C}} \frac{\partial \vec{A}}{\partial t} \cdot d\vec{l} + \int_{\mathcal{C}} \vec{v}_q \times \vec{B} \cdot d\vec{l}$$
 (7)

$$= \int_{\mathcal{C}} \vec{E}_m \cdot \vec{dl} \tag{8}$$

2 Induction de Lorentz

2.1 f.e.m

On considèrera ici uniquement des circuits filiformes.

 \vec{B} uniforme donc la dérivée de \vec{A} par rapport au temps est nulle. On en déduit

$$e = -\frac{d\Phi}{dt} \tag{9}$$

2.2 Couplage électromagnétique - rail de Laplace

Présentation de l'expérience du rail de Laplace et illustration par une manip en direct. Calcul de \vec{E}_m et ensuite de e. On peut aussi calculer Φ et en déduire à nouveau e=-Blv. Explications et analogie avec le moteur à courant continu.

3 Induction de Neumann

3.1 f.e.m

on a ici $v \times B = 0$. On en déduit :

$$e = \int_{\mathcal{C}} \frac{-\partial \vec{A}}{\partial t} \cdot d\vec{l} = \dots = -\frac{d\Phi}{dt}$$
 (10)

avec Φ le flux de B à travers la surface associée à \mathcal{C} .

3.2 Courants de Foucault

 $\Phi = BS = B_0 \cos(\omega t)\pi r^2 \Rightarrow e = \frac{-d\Phi}{dt} = B_0\pi r^2\omega\sin(\omega t).$ Pour une spire on trouve après calcul l'expression de j : $j = \frac{B_0}{2}\gamma r\omega\sin(\omega t)$. Ordre de grandeur pour le cuivre $\frac{dT}{dt} \simeq 10K.s^{-1}$. Analogie avce les plaques à induction.

4 Coefficients d'inductance

4.1 Auto-induction

Explication du phénomène et petit schéma de principe. Cas d'un circuit isolé : $\vec{B} = 0$ et existence d'un courant I. On a

$$\Phi_p = \int \int_S \vec{B}_p . d\vec{S} = LI \tag{11}$$

Où L est l'inductance propre.

4.2 Inductance mutuelle

Cas où l'on a deux circuits :

$$\Phi_p 12 = M_{12} I_1$$

$$\Phi_p 21 = M_{21} I_2$$

 $\dot{M}_{21} = M12 = M$: coefficient d'induction mutuelle.

$$e_1 = -\frac{d\Phi_{tot}}{dt}$$
 et $\Phi_{tot} = \Phi_p p_1 + \Phi_p p_2$

On en déduit e_1 et e_2 puis V_1 et V_2 , et ainsi, sachant que $L_i = L_0 N_i^2$ et considérant un couplage idéal à savoir $M = \sqrt{L_1 L_2}$ on peut calculer le rapport

$$\frac{V_1}{V_2} = \frac{N_2}{N_1} \tag{12}$$

Questions

Pourquoi a t-on $M = \sqrt{L_1 L_2}$ dans al dernière partie?

Pourquoi a t-on $L_i = L_0 N_i^2$?

Que se passe t-il lorsque l'on ajoute deux inductances en série ? dépend du couplage magnétique : $L_{tot} = L_1 + L_2 + M$.

Quelle est l'énergie stockée dans une bobine ?

Y a t'il d'autres exemples d'application que ceux cités ? Freinage par induction (ex : tramway).

Quelles sont les limites de ce freinage? Peut il arrêter un véhicule seul? Très efficace à grande vitesse mais va devenir inefficace lorsque la vitesse va diminuer.

Pour les plaques à induction : quelle est la fréquence utilisée ? Comment modifie t-on les 50 Hz du secteur pour utiliser les plaques du coup ? En utilisant des composants non linéaires : ex AO en multiplieur, on multiplie le signal par lui même \Rightarrow f \rightarrow 2f.

Qu'est ce qui lie les inductions de Lorentz et de Neumann ? Un changement de référentiel, qui va modifier les équations de \vec{E} et \vec{B} .

Les potentiels des champs énoncés ici sont ils uniques ?

→ transformation de jauge.

Qu'est ce que l'ARQS ? les équations établies ici sont elles alors toujours valables en dehors de ce régime ?

Quelle est l'orientation du \vec{dS} pour une boucle donnée selon \vec{dl} ? Et donc si e est négatif comment est i ?

Pour un contour donné, peut on prendre ensuite n'importe quelle autre surface ? Et si oui pourquoi ?

Car $\operatorname{div} \vec{B} = 0$: B est à flux conservatif.

Lorsqu'on a un effet joule : quelle est la puissance volumique donnée aux charges ? $P = \vec{j}.\vec{E}.$

Densité volumique des forces de Laplace?

Remarques

Attention on ne voit pas ici le lien avec Maxwell-Faraday : $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$. Modifier le début : on arrive pas à bien voir la manip, introduction trop sophistiquée. ne pas donner les équations de maxwell en pré-requis car $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ est le centre de la leçon : doit être commenté.

Il faut mettre la notion de flux ϕ plus en valeur, notamment pour la petite expérience.

On peut aussi partir de l'expérience pour établir $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$.

Discuter plus la physique.

Message essentiel de la leçon : l'induction c'est $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (ou $e = -\frac{d\Phi}{dt}$).

Il faut être capable d'expliquer en quelques phrases le choix de plan effectué.