# Guiding CDCL SAT Search via Random Exploration amid Conflict Depression

Md Solimul Chowdhury Martin Müller Jia-Huai You

Department of Computing Science, The University of Alberta.

February 4, 2020

## Outline

- Introduction
- 2 Background
- 3 Empirical Observations
- Proposed Framework
- 6 Empirical Evaluation
- 6 Analysis
- Conclusions and Future Work

#### Introduction

- Boolean Satisfiability (SAT)
  - Given a SAT formula, determine assignments of the variables to satisfy a boolean formula, if one exists. Otherwise, unsatisfiable ....
    - A toy example:



- However, SAT solving is **NP-Complete**  $\rightarrow$  Intractable, in general.
- ullet Modern SAT solvers o Conflict Directed Clause Learning (CDCL).
  - Applications in many practical domains: Hardware design verification, Software testing, encryption, planning ..

#### Contributions

#### In this work, we present

- **Contribution 1:** An empirical investigation of the CDCL SAT solving process to obtain insights on its conflict generation pattern.
- Contribution 2: A CDCL algorithmic extension, based on the obtained insights.
  - Employs random exploration, which is novel for CDCL SAT solving!
- Contribution 3: An extensive evaluation.

## Background: How does a CDCL SAT solver works?

Performs a backjumping tree-search to determine satisfiabilty.



• **Restarts frequently**: abandons the current partial assignment and starts the search from the scratch.

## Background: Importance of Fast Conflict Generation

- Conflict Generation at a fast rate is crucial for CDCL SAT solvers.
- ullet Conflict  $\longrightarrow$  Clause learning  $\longrightarrow$  Pruning  $\longrightarrow$  Faster Solving.
- CDCL branching heuristics are conflict-greedy.
  - Example:

Variable State Independent Decaying Sum (VSIDS) Learning Rate Based (LRB)

- based on look-back principle
- selection priority is based on recent conflict involvements.
- intuition: such selection will generate more conflicts.
- CDCL branching heuristics generate conflicts at a fast rate.
  - On average, 1 conflict in 2 decisions. (Liang 2017 et. al.)

### Notions and Definitions

- We formulate two novel notions:
  - Conflict Depression: Sequence of one or more consecutive decisions with no conflict.
  - Conflict Burst: Sequence of one or more consecutive decisions with at least one conflict.



- Some Measures:
  - Decision Rate: number of decisions per restart.
  - CD phase Rate: number of CD phases per restarts.
  - Average CD phase Length

## Contribution 1: CD phases with VSIDS

- We study CD phases with VSIDS.
  - CDCL solver: Glucose (uses VSIDS exclusively).
  - 750 maintrack instances from SAT-2017, 2018.
- Observations:
  - 1: CD phases occur frequently with VSIDS. (left)
  - 2: For many instances, avg. CD phase length are high! (right)





## Propagation Depression during a CD phase

- During a CD phase, VSIDS decisions are ineffective to create conflicts and only create truth value propagation.
  - But, how much propagation ?

#### Observation 3:

- Propagtions in a CD phase is 10 times lower than Propagations in a CB phase.
  - $\longrightarrow$  During a CD phase, VSIDS branching decisions **go through a propagation depression** as well !

### Bursts of Conflict Generation

- Observation 4: On average,
  - Only 25% of the decisions produce at least one conflict.
    - Some of which produces more than one conflicts. How many of them?
  - 61% of the total conflict producing decisions, produces more than one conflict.
- Conflict Burst (CB) phases are short, but conflict intense.
  - Many conflicts within a short span of consecutive decisions.

# Summary of Empirical Observations

- The typical search behavior contains
  - shorter but conflict intense CB phases,
  - which is followed by longer CD phases,
    - where the search does not find any conflicts

# Contribution 2: Random Exploration amid CD phases

- Can we do better amid a CD phase? VSIDS variable re-ranking?
- Formulated an exploration based CDCL framework named expSAT.
- Main Idea: Amid a substantial CD phase, with a non-zero probability ,
  - perform exploration episodes to identify conflict friendly variables.
  - Exploration Episode: a fixed number of random walks, with a fixed number of steps per walk.



- expVSIDS: VSIDS+exploration score.
  - Selects the variable that maximizes the combined score.

## Contribution 3: Empirical Evaluation

- Implemented expSAT on top of 4 CDCL solvers:
  - **glucose 4.2.1** (gLCM)
  - MapleCOMSPS (MplCOMSPS)
  - Maple\_CM (MplCM)
  - MapleLCMDist\_ChronoBT (MpICBT)
- Two test sets:
  - Competition Benches: 750 maintrack instances from SAT-2017 and 2018.
    - Time Out: 5,000 seconds
  - **SATCoin Benches**: 52 hard SATCoin benchmark instances generated by an instance generator submitted for SAT Competition 2018.
    - Time Out: 36,000 secs

## **Experimental Results**

• Competition Benches Results: **Good-to-Strong** gains.

| Solver<br>Name | Solved by<br>Baseline | Solved by expSAT Extension | PAR2<br>Score<br>Decrement |
|----------------|-----------------------|----------------------------|----------------------------|
| gLCM           | 372                   | 379 (+7)                   | 1.59%                      |
| MpICOMSPS      | 412                   | 428 (+16)                  | 7.52%                      |
| MpICM          | 442                   | 443 (+1)                   | 0.3%                       |
| MplCBT         | 442                   | 451 (+9)                   | 2.88%                      |

• Results with <u>SATCoin Benches</u>: **Very Strong** gains

| Solver<br>Name | Solved by<br>Baseline | Solved by expSAT Extension |
|----------------|-----------------------|----------------------------|
| gLCM           | 7                     | 12 (+5)                    |
| MpICOMSPS      | 4                     | 13 (+9)                    |
| MpICM          | 1                     | 10 (+9)                    |
| MpICBT         | 41                    | 43 (+2)                    |

## paramAdapt: Exploration Parameter Adaptation

#### paramAdapt

- During the course of the expSAT search, it dynamically controls
  - frequency of exploration episodes,
  - how much exploration to perform in an exploration episode.

#### • Experiments:

- Repeated the same experiments with both test sets.
- paramAdapt implemented on top of our expSAT solvers.

#### Results:

- Compared adaptive version with non-adaptive version.
  - mixed performance over SATComp Benches.
  - outstanding gains over SATCoin Benches!
    - Biggest improvement: baseline: 1, it's adaptive extension: 23!

# Analysis of the Solving Efficiency

- Analyze the experimental data for glucose and eGLCM (non-adaptive) to reveal further insights.
- Observation for conflict efficiency: In general,
  - Better solver for a subset of a problem is more conflict efficient.
    - Produces conflict at a fast rate, from which high quality clauses are learned.
- Observation for average CD phase Length: In general,
  - Better solver for a subset of a problem reduces average CD phase length.
  - exploration helps a solver to escape from CD phases expeditiously.

#### Conclusions and Future Work

#### Conclusions:

- Showed that VSIDS frequently undergoes the pathological phase of CD, in which branching decisions are ineffective.
- To combat CD phases, we proposed expSAT that performs random exploration in the SAT search space.
- Empirically showed the effectiveness of the expSAT approach.

#### • Future Work:

- Integrate expSAT to LRB based systems.
- Study exploration as in expSAT to guide polarity selection, e.g., by extending the phase-saving heuristic.
- Identify characteristics of SAT domains which influence the effectiveness of exploration.