

CI 3 – CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES

Chapitre 2 – Géométrie dans l'espace

EXERCICES D'APPLICATION

D'après ressources de Jean-Pierre Pupier.

Exercice 1

Soit un repère $\Re = (O, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$. On donne les coordonnées dans \Re des points suivants correspondants respectivement à l'origine et à l'extrémité des vecteurs :

- $-\overrightarrow{V_1}$: point $A_1:(2,1,0)$, point $B_1:(3,1,0)$;
- $-\overrightarrow{V_2}$: point $A_2:(1,-3,0)$, point $B_2:(-2,-1,0)$;
- $-\overrightarrow{V_3}$: point $A_3:(1,1,0)$, point $B_3:(3,2,0)$;
- $-\overrightarrow{V_4}$: point $A_4: (-1,2,0)$, point $B_4: (1,1,0)$.

Question 1

Calculer les composantes de chaque vecteur dans la base B associée au repère R.

Question 2

Calculer la norme de chaque vecteur.

Question 3

Calculer la somme de ces quatre vecteurs dans la base B.

Question 4

Écrire les composantes du vecteur unitaire colinéaire à $\overrightarrow{V_2}$ et de même sens dans la base \mathscr{B} .

Question 5

Calculer les produits scalaires $\overrightarrow{V_1} \cdot \overrightarrow{V_2}$ et $\overrightarrow{V_3} \cdot \overrightarrow{V_4}$.

Question 6

Calculer les produits vectoriels $\overrightarrow{V_1} \wedge \overrightarrow{V_2}$ et $\overrightarrow{V_3} \wedge \overrightarrow{V_4}$.

Exercice 2

Question 1

Dessiner le troisième vecteur de la base orthonormée directe $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$.

CI 3 : CIN – Applications Ch. 2 : Géométrie – E

Question 2

Exprimer les produits des vecteurs de base d'une base orthonormée directe.

$$\overrightarrow{x} \cdot \overrightarrow{y} \quad \overrightarrow{x} \wedge \overrightarrow{y} \quad \overrightarrow{y} \cdot \overrightarrow{z} \quad \overrightarrow{y} \wedge \overrightarrow{z} \quad \overrightarrow{x} \cdot \overrightarrow{z} \quad \overrightarrow{x} \wedge \overrightarrow{z}$$

Question 3

Calculer le cosinus puis l'angle
$$\alpha$$
 formé par les vecteurs $\overrightarrow{V_1} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}_{\mathfrak{B}}$ et $\overrightarrow{V_2} = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}_{\mathfrak{B}}$.

Question 4

Question 4

Calculer le sinus puis l'angle
$$\gamma$$
 formé par les vecteurs $\overrightarrow{V_1} = \begin{bmatrix} 1 \\ 4 \\ 8 \end{bmatrix}_{\mathscr{B}}$ et $\overrightarrow{V_2} = \begin{bmatrix} -2 \\ 5 \\ 3 \end{bmatrix}_{\mathscr{B}}$.

Question 5

Calculer l'angle entre $\overrightarrow{V} = 10 \overrightarrow{x} + 8 \overrightarrow{y} + 6 \overrightarrow{z}$ et le vecteur de base \overrightarrow{x} .

Exercice 3

Question 1

Représentez un repère orthonormé $\mathcal{R} = (O, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ en vue orthogonale (\overrightarrow{y}) vertical, \overrightarrow{x} horizontal, \overrightarrow{z} vers «nous»), puis un repère orthonormé $\mathcal{R}_1 = \left(\overrightarrow{O}, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}\right)$ tel que $\alpha = \left(\overrightarrow{x}, \overrightarrow{x_1}\right)$. Mettez un point M tel que $\overrightarrow{OM} = a\overrightarrow{x_1}$ avec a > 0.

Question 2

Exprimer les composantes de \overrightarrow{OM} en projection sur la base \mathscr{B} liée au repère \mathscr{R} .

Question 3

Exprimer $\overrightarrow{z} \wedge \overrightarrow{OM}$. Vous l'exprimerez en projection sur la base \mathscr{B} puis dans \mathscr{B}_1 (utiliser plusieurs méthodes).

Exercice 4

On donne les coordonnées de trois points dans le repère orthonormé $\mathcal{R} = (D, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$:

$$A:(3,2,0)$$
 $B:(0,3,2)$ $C:(2,3,0)$

2

Question 1

Calculez les composantes du vecteur \overrightarrow{V} de norme 1000 colinéaire à \overrightarrow{AB} et de même sens.

Question 2

Calculez le moment au point A du pointeur (D, \overrightarrow{D}) où $\overrightarrow{D} = (200, 300, -100)_{\mathscr{B}}$.

Question 3

Calculez le moment au point E milieu de AB, du pointeur (D, \overrightarrow{D}) .

Question 4

Calculez le moment par rapport à l'axe δ (orienté de A vers B) du pointeur (D, \overrightarrow{D}) .

Exercice 5

Question 1

On note
$$\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}), \mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}), \alpha = (\overrightarrow{x}, \overrightarrow{x_1}), \beta = (\overrightarrow{x_1}, \overrightarrow{V}).$$

Exprimer les composantes scalaires sous formes de colonnes du vecteur \overrightarrow{V} en projection sur la base \mathcal{B}_1 puis sur la base \mathcal{B} et ceci en fonction de la norme de \overrightarrow{V} notée simplement V et des angles orientés α et β .

Question 2

Même question avec $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}), \mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}), \alpha = (\overrightarrow{x}, \overrightarrow{x_1}), \beta = (\overrightarrow{y_1}, \overrightarrow{V}).$

Question 3

Même question avec $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}), \mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}), \alpha = (\overrightarrow{z}, \overrightarrow{V}), \beta = (\overrightarrow{x}, \overrightarrow{x_1}).$

Question 4

Même question avec $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}), \mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y}, \overrightarrow{z_1}), \alpha = (\overrightarrow{z_1}, \overrightarrow{V}), \beta = (\overrightarrow{z}, \overrightarrow{z_1}).$

3

Question 5

Même question avec $\mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}), \mathscr{B}_1 = (\overrightarrow{x}, \overrightarrow{y_1}, \overrightarrow{z_1}), \alpha = (\overrightarrow{x}, \overrightarrow{V}), \beta = (\overrightarrow{z}, \overrightarrow{z_1}).$

Question 6

 $\begin{tabular}{ll} \textit{M\^eme question avec } \mathscr{B} = (\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}), \ \mathscr{B}_1 = (\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z}), \ \alpha = (\overrightarrow{y_1}, \overrightarrow{V}), \ \beta = (\overrightarrow{y}, \overrightarrow{y_1}). \end{tabular}$

