En los Ejercicios 5 a 8, dibujar los vectores dados \mathbf{v} y \mathbf{w} . En el mismo dibujo, trazar los vectores $-\mathbf{v}$, \mathbf{v} + \mathbf{w} y \mathbf{v} - \mathbf{w} .

5.
$$\mathbf{v} = (2,1) \ y \ \mathbf{w} = (1,2)$$

6.
$$\mathbf{v} = (0, 4) \ \mathbf{v} \ \mathbf{w} = (2, -1)$$

7.
$$\mathbf{v} = (2, 3, -6) \ \mathbf{v} \ \mathbf{w} = (-1, 1, 1)$$

8.
$$\mathbf{v} = (2, 1, 3) \ \mathbf{v} \ \mathbf{w} = (-2, 0, -1)$$

9. Sean
$$\mathbf{v} = 2\mathbf{i} + \mathbf{j}$$
 y $\mathbf{w} = \mathbf{i} + 2\mathbf{j}$. Dibujar \mathbf{v} , \mathbf{w} , $\mathbf{v} + \mathbf{w}$, $2\mathbf{w}$, y $\mathbf{v} - \mathbf{w}$ en el plano.

10. Dibujar
$$(1, -2, 3)$$
 y $(-\frac{1}{3}, \frac{2}{3}, -1)$. ¿Por qué estos vectores apuntan en sentidos opuestos?

11. ¿Qué restricciones deben tener x, y y z para que la terna (x, y, z) represente un punto sobre el eje y? ¿Y sobre el eje z? ¿Y en el plano xz? ¿Y en el plano yz?

12.(a) Generalizar la construcción geométrica de la Figura 1.1.7 para demostrar que si
$$\mathbf{v}_1 = (x, y, z)$$
 y $\mathbf{v}_2 = (x', y', z')$, entonces $\mathbf{v}_1 + \mathbf{v}_2 = (x + x', y + y', z + z')$.

(b) Utilizando un argumento basado en triángulos semejantes, demostrar que $\alpha \mathbf{v} = (\alpha x, \alpha y, \alpha z)$ cuando $\mathbf{v} = (x, y, z)$.

En los Ejercicios 13 a 19, utilice la notación vectorial, de conjuntos o ambas para describir los puntos indicados en las configuraciones dadas.

13. Plano definido por
$$\mathbf{v}_1 = (2,7,0)$$
 y $\mathbf{v}_2 = (0,2,7)$.

14. Plano definido por
$$\mathbf{v}_1 = (3, -1, 1)$$
 y $\mathbf{v}_2 = (0, 3, 4)$.

15. Recta que pasa por
$$(-1, -1, -1)$$
 en la dirección de **j**.

16. Recta que pasa por
$$(0, 2, 1)$$
 en la dirección de $2\mathbf{i} - \mathbf{k}$.

17. Recta que pasa por
$$(-1, -1, -1)$$
 y $(1, -1, 2)$.

18. Recta que pasa por
$$(-5,0,4)$$
 y $(6,-3,2)$.

20. Demostrar que
$$l_1(t) = (1,2,3) + t(1,0,-2)$$
 y $l_2(t) = (2,2,1) + t(-2,0,4)$ parametrizan la misma recta.

21. ¿Se encuentran los puntos
$$(2, 3, -4), (2, 1, -1)$$
 y $(2, 7, -10)$ sobre la misma recta?

22. Sean
$$\mathbf{u} = (1, 2), \mathbf{v} = (-3, 4)$$
 y $\mathbf{w} = (5, 0)$:

(a) Dibujar estos vectores en
$$\mathbb{R}^2$$
.

(b) Determinar los escalares
$$\lambda_1$$
 y λ_2 tales que $\mathbf{w} = \lambda_1 \mathbf{u} + \lambda_2 \mathbf{v}$.

23. Sean
$$A, B y C$$
 los vértices de un triángulo. Determinar $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$.

24. Determinar los puntos de intersección de la recta
$$x = 3 + 2t, y = 7 + 8t, z = -2 + t$$
, es decir, $\mathbf{l}(t) = (3 + 2t, 7 + 8t, -2 + t)$, con los planos coordenados.

25. Demostrar que no existen puntos
$$(x, y, z)$$
 que satisfagan $2x - 3y + z - 2 = 0$ y estén sobre la recta $\mathbf{v} = (2, -2, -1) + t(1, 1, 1)$.

26. Demostrar que todos los puntos de la recta
$$\mathbf{v}=(1,-1,2)+t(2,3,1)$$
 satisfacen la ecuación $5x-3y-z-6=0$.

27. Determinar si las rectas
$$x = 3t+2, y = t-1, z = 6t+1$$
 y $x = 3s-1, y = s-2, z = s$ se intersecan.

28. ¿Se intersecan las rectas
$$(x, y, z) = (t + 4, 4t + 5, t - 2)$$
 y $(x, y, z) = (2s + 3, s + 1, 2s - 3)$?

En los Ejercicios 29 a 31, utilizar métodos vectoriales para describir las configuraciones dadas.

30. Los puntos interiores del paralelogramo que tiene un vértice en (x_0, y_0, z_0) y cuyos lados se ex-

tienden desde dicho vértice, teniendo el mismo tamaño y sentido que los vectores \mathbf{a} y \mathbf{b} .

31. El plano determinado por los puntos (x_0, y_0, z_0) , (x_1, y_1, z_1) y (x_2, y_2, z_2) .