Final: STAT 570

Philip Pham

December 8, 2018

Consider the failure time data in Table 1.

1. We describe a simple model for these data. Let p (0) denote the weekly failure probability, i.e., the probability of failure during any week, and <math>T the random variable describing the week at which failure occurred. Then T may be modeled as a geometric random variable:

$$\mathbb{P}(T = t \mid p) = \begin{cases} p(1-p)^{t-1}, & t = 1, 2, \dots; \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

Let Y_t represent the number of components that fail in week t, t = 1, 2, ..., N, and Y_{N+1} the number of components that have not failed by week N.

(a) Show that the likelihood function is

$$L(p) = \left[(1-p)^N \right]^{Y_{N+1}} \prod_{t=1}^N \left[p (1-p)^{t-1} \right]^{Y_t}.$$
 (2)

Solution: An individual component's failure week has distribution Geometric (p). The probability that a single component fails in week t is the probability that it survived t-1 weeks and failed on week t, which is $p(1-p)^{t-1}$. There are Y_t such components, which gives us the factors for $t=1,2,\ldots,N$. The probability that a component fails at a later date is

$$(1-p)^N \sum_{k=1}^{\infty} p (1-p)^{k-1} = (1-p)^N \frac{p}{1-(1-p)} = (1-p)^N,$$

which gives us the remaining factor. There are Y_{N+1} remaining components, so

$$L(p) = \left\{ \prod_{t=1}^{N} \left[p (1-p)^{t-1} \right]^{Y_t} \right\} \times \left[(1-p)^N \right]^{Y_{N+1}}.$$

(b) Find an expression for the MLE \hat{p} .

Solution: The score function is

$$S(p) = \frac{\partial}{\partial p} \log L(p)$$

$$= \frac{\partial}{\partial p} \left[NY_{N+1} \log (1-p) + \sum_{t=1}^{N} Y_t (\log p + (t-1) \log (1-p)) \right]$$

$$= -\frac{NY_{N+1}}{1-p} + \sum_{t=1}^{N} Y_t \left(\frac{1}{p} - \frac{t-1}{1-p} \right) = -\frac{NY_{N+1}}{1-p} + \sum_{t=1}^{N} Y_t \frac{1-pt}{p(1-p)}. \quad (3)$$

Solving for $S(\hat{p}) = 0$, we find the MLE:

$$\hat{p}\left(NY_{N+1} + \sum_{t=1}^{N} tY_{t}\right) = \sum_{t=1}^{N} Y_{t} \implies \boxed{\hat{p} = \frac{\sum_{t=1}^{N} Y_{t}}{NY_{N+1} + \sum_{t=1}^{N} tY_{t}}}.$$
(4)

(c) Find the form of the observed information and hence the asymptotic variance of the maximum likelihood estimate (MLE).

Solution: Using Equation 3, the expected observed information is

$$I(p) = \mathbb{E}\left[-\frac{\partial}{\partial p}S(p) \mid p\right]$$

$$= \frac{N\mathbb{E}\left[Y_{N+1} \mid p\right]}{(1-p)^2} + \sum_{t=1}^{N} \mathbb{E}\left[Y_t \mid p\right] \left(\frac{1}{p^2} + \frac{t-1}{(1-p)^2}\right)$$

$$= n\frac{N(1-p)^N}{(1-p)^2} + np\sum_{t=1}^{N} (1-p)^{t-1} \left(\frac{1}{p^2} + \frac{t-1}{(1-p)^2}\right)$$

$$= n\left[\frac{(1-p)^N}{(1-p)^2} + \frac{1-(1-p)^N}{p^2} + \frac{(1-p)-(1-p)^N}{p(1-p)^2}\right]$$

$$= \left[n\frac{1-(1-p)^N}{p^2(1-p)}, \right]$$
(5)

where $n = Y_{N+1} + \sum_{t=1}^{N} Y_t$.

From Equation 5, the asymptotic variance of \hat{p} is

$$\operatorname{var}(\hat{p}) \approx \operatorname{var}(\hat{p}) = I(\hat{p})^{-1} = \frac{1}{n} \times \frac{\hat{p}^2 (1 - \hat{p})}{1 - (1 - \hat{p})^N}$$
 (6)

by asymptotic normality of the MLE.

(d) For the data in Table 1, calculate the MLE, \hat{p} . the variance of \hat{p} , and an asymptotic 95% confidence interval for p.

Solution: The MLE can be calculated with Equation 4 to be $\hat{p} = 0.354717$. The variance can be found with Equation 6 to be $\hat{var}(\hat{p}) = 0.00016828$. If Φ is the cumulative distribution function for a standard normal, we can

If Φ is the cumulative distribution function for a standard normal, we cause asymptotic normality to find the 95% confidence interval as

$$\left[\hat{p} + \Phi^{-1}(0.025)\sqrt{\hat{\text{var}}(\hat{p})}, \hat{p} + \Phi^{-1}(0.975)\sqrt{\hat{\text{var}}(\hat{p})}\right] = \left[[0.32929, 0.38014].\right]$$

(e) We now consider a Bayesian analysis. The conjugate prior for p is a beta distribution, Beta (a,b). State the form of the posterior with this choice. Give the form of the posterior mean and write as a weighted combination of the MLE and the prior mean.

Solution: By Bayes' rule, we know the posterior density is proportional to the likelihood times the prior. From Equation 2, we'll have

$$L(p) \times \left[p^{a-1} (1-p)^{b-1} \right] = p^{a-1} (1-p)^{b+NY_{N+1}-1} \prod_{t=1}^{N} \left[p (1-p)^{t-1} \right]^{Y_t}$$
$$= p^{a+\sum_{t=1}^{N} Y_{t}-1} (1-p)^{b+\sum_{t=1}^{N} (t-1)Y_{t}+NY_{N+1}-1}$$

whose form we recognize as the integrand of beta function, so the posterior also has beta distribution, that is,

$$p \mid Y_1, Y_2, \dots, Y_{N+1} \sim \text{Beta}\left(a + \sum_{t=1}^{N} Y_t, b + \sum_{t=1}^{N} (t-1)Y_t + NY_{N+1}\right)$$
$$= \frac{\Gamma(a'+b')}{\Gamma(a')\Gamma(b')} p^{a'-1} \left(1 - p\right)^{b'-1}, \tag{7}$$

where $a' = a + \sum_{t=1}^{N} Y_t$ and $b' = b + \sum_{t=1}^{N} (t-1)Y_t + NY_{N+1}$. The posterior mean takes the form

$$\mathbb{E}[p \mid Y_1, Y_2, \dots, Y_{N+1}] = \frac{a'}{a' + b'}$$

$$= \frac{a + \sum_{t=1}^{N} Y_t}{a + b + \sum_{t=1}^{N} t Y_t + N Y_{N+1}}.$$
(8)

We have that the prior mean is $p_{\text{prior}} = \frac{a}{a+b}$. Equation 8 can be rewritten as

$$\frac{(a+b) p_{\text{prior}} + \left(\sum_{t=1}^{N} tY_t + NY_{N+1}\right) \hat{p}}{a+b+\sum_{t=1}^{N} tY_t + NY_{N+1}},$$
(9)

so the posterior mean is a convex combination of the prior mean and MLE.

(f) Suppose we wish to fix the parameters of the prior, a and b, so that the mean is μ and the prior standard deviation is σ . Obtain expressions for a and b in terms of μ and σ^2 .

Solution: It is well known that the mean and variance of the Beta (a, b) distribution are $\frac{a}{a+b}$ and $\frac{ab}{(a+b)^2(a+b+1)}$, respectively. Solving equations

$$\frac{a}{a+b} = \mu$$
$$\frac{ab}{(a+b)^2(a+b+1)} = \sigma^2,$$

we find that

$$a = \mu \left[\frac{\mu \left(1 - \mu \right)}{\sigma^2} - 1 \right] \tag{10}$$

$$b = (1 - \mu) \left[\frac{\mu (1 - \mu)}{\sigma^2} - 1 \right]. \tag{11}$$

(g) For the data in Table 1, assume we wish to have a beta prior with $\mu=0.2$ and $\sigma=0.08$. State the posterior for the prior corresponding to this choice and evaluate the posterior mean. Simulate samples from the posterior distribution. Provide a histogram representation of the posterior distribution and calculate the 5%, 50% and 95% points of the posterior distribution.

Solution:

Time (weeks), i	Failures, y_i	Temperature, x_i
1	210	24.0
2	108	26.0
3	58	24.0
4	40	26.0
5	17	25.0
6	10	22.0
7	7	23.0
8	6	20.0
9	5	21.0
10	4	18.0
11	2	17.0
12	3	20.0
> 12	15	

Table 1: Time until failure for n=485 components, along with average weekly temperature.