This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-239419

(43)Date of publication of application: 30.08.1994

(51)Int.CI.

G06F 15/21

(21)Application number: 05-025750

(71)Applicant: KAO CORP

(22)Date of filing:

15.02.1993

(72)Inventor: ISHIGURO ISAO

HIRAI NOBUO

YAMAGUCHI HIROTO

(54) DELIVERY SCHEDULING APPARATUS

(57)Abstract:

PURPOSE: To speed up the calculation of improving a pattern in determining the sequence of running a delivery vehicle by providing a means for altering the sequence of delivery to few number of destinations included in a circulation route in shortening the total time. CONSTITUTION: An order receiving data input 101 for inputting the kinds and amounts of goods delivered to a plurality of destinations and a data base 102 for housing times taken for starting from the destination and moving between the respective destinations and a time zone in which the delivery to respective destinations is desirably performed as accumulated information are provided. The delivery sequence of every delivery vehicle is calculated from the input information and accumulated information in a CPU 103. While cluster analysis of the destination is then performed, the delivery vehicle is allotted in every analyzed cluster according to the kinds and amounts of delivery goods from the input information and the delivering zone and circulation circuit are determined. Also, when the total time is shortened by altering a portion of the circulation path, the alteration is allowed.

LEGAL STATUS

[Date of request for examination]

12.07.1999

[Date of sending the examiner's decision of rejection]

10.12.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-239419

(43)公開日 平成6年(1994)8月30日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

B 6 5 G 1/137

7456-3F

G06F 15/21

Z 8724-5L

L 8724-5L

審査請求 未請求 請求項の数2 OL (全 9 頁)

(21)出願番号

特願平5-25750

(71)出願人 000000918

花王株式会社

(22)出願日

平成5年(1993)2月15日

東京都中央区日本橋茅場町1丁目14番10号

(72)発明者 石黒 勲

神奈川県横浜市保土ヶ谷区境木本町66-1

-109

(72)発明者 平井 伸郎

東京都大田区南馬込2-18-11

(72)発明者 山口 裕人

千葉県習志野市東習志野 4-13-1

(74)代理人 弁理士 井出 直孝

(54)【発明の名称】 配送スケジューリング装置

(57)【要約】

・【目的】 物品の配送スケジューリング装置において、 演算時間を短縮する。特に、配送パターン作成のための バターン改善演算を速やかに行う。

【構成】 バターン改善のための店交換の店舗数に制限 を加える。さらに、店交換を行ってもパターンに変化の ない店舗の組合せは演算実行を禁止する。

【特許請求の範囲】

【請求項1】 多数の配送先と、との配送先の各々に配 送する商品の種別および数量とが入力情報として与えら れ、配送の出発点および前記多数の配送先についてその 相互間の移動時間と、との配送先の各々について配送を 希望する時間帯とが蓄積情報として与えられ、前記入力 情報および前記蓄積情報から配送車両毎に配送順序を演 算する演算手段を備え、

前記演算手段は、入力情報として与えられた配送先につ いて、蓄積情報を参照してクラスター分析を行う手段 と、この手段により分析されたクラスター毎に入力情報 からその配送商品の種別および数量にしたがって配送車 両を割付け積載量がその配送車両の限度を越えないとき そのクラスターを配送ゾーンとする手段と、その配送ゾ ーン毎に蓄積情報にしたがって巡回路を作成する手段 と、その巡回路について未巡回配送先がないことを確認 する手段と、配送のための総時間を演算する手段と、演 算された配送スケジューリングについて操作により前記 巡回路を一部変更する手段と、演算された配送スケジュ ーリングについて巡回セールスマン問題を解く手段とを 20 備えた配送スケジューリング装置において、

前記変更する手段は、前記巡回路に含まれる少数の配送 先への配送順序の変更を行うことにより前記総時間が短 くなる場合にはその変更を行う手段を含むことを特徴と する配送スケジューリング装置。

【請求項2】 前記変更する手段は、前記巡回路のバタ ーンに変化のない配送順序については前記変更を禁止す る手段を備えた請求項 1 記載の配送スケジューリング装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は物品を配送する車両の運 行順序を決定するために利用する。特に、時刻制約およ び容量制約を満足しながら車両を運行し、物品の配送を する順序を合理的に決定する装置に関する。本発明は同 一出願人による先願(特願平3-112611号、特願 平3-296060号、いずれも本願出願時に未公開) の改良に関する。

[0002]

【従来の技術】近年小売店には計算機を利用した商品管 理システム(POS)が広く普及した。小売店ではPO Sを利用して陳列販売する商品が品切れにならないよう に、その卸売元に商品の数量と配送時刻を指定して注文 する商習慣が行われるようになった。卸売元ではこれに 応えるために、指定する配送時刻にある程度の幅をもた せるように小売店と折衝するとともに、小売店の要求ど おりにしかもできるだけ配送経費を小さくして配送を行 うことが必要になっている。現実には配送の注文に対し て翌日もしくは半日後には、指定時刻の範囲に所望のと おりの商品および数量を配送する取引契約が行われてい 50 が減少される場合は店交換を行い、パターンの改善をは

る。

【0003】商品を配送する卸売元では、どのように発 生するかあらかじめ予測できない要求に対して合理的 に、すなわち配送経費を最も小さくして対応するために プログラム計算機を利用して配送順序を決めることが行 われている。従来からこのために計算機に巡回セールス マン問題(岩波書店:情報科学辞典1990年参照)を 具体的に与え解くことが行われてきた。

【0004】しかし、従来から知られている巡回セール 10 スマン問題およびその解法には、配送先から配送時刻の 指定が行われ、これを条件として満足するように配送を 行うとの思想はない。また、従来の巡回セールスマン問 題およびその解法では、配送先に滞在する時間を変動し ない固定的な時間とすることはできるが、物品の積み降 ろしに要する時間が配送する物品の量に応じて変化する 場合には必ずしも合理的に対応することができない。す なわち、従来の巡回セールスマン問題およびその解法で は現実に発生している要求を合理的に満足するように処 理することができなくなっている。

【0005】さらに、前記配送時刻の指定を条件として 巡回セールスマン問題を解くと、現実にきわめて多数の 場合について演算を実行することが必要になる。このす べての条件について演算を実行し、その得られた解を比 較評価することになると、多大な時間を要して現実的で なくなる。

【0006】この点を改良して、配送先から配送時刻を あるていどの時間幅をもって指定され、配送先に滞在す る時間に変動がある場合にも合理的に対応することがで き、多数の条件についてすべてを実行することなく不要 30 な演算を早めに省略し切り捨てて、短い時間で演算評価 を実行できる配送順序の決定装置を本願出願人は提案し (特願平3-112611号)、さらに、配送車両の状 況と合理的に整合するように配慮することができるよう に、時刻制約および容量制約を同時に満足する条件のも とに配送順序を自動的に生成する装置を提案した(特願 、平3-296060号)。

【0007】図6ないし図9を参照して従来例を説明す る。図6は店配置およびゾーンを示す図である。図7は 従来例の動作を示すフローチャートである。図8は店交 換を示す図である。図9は従来例の店交換手順のフロー チャートである。図6(a)に示すように配送先の店舗 が配置されている。これを店間の距離および受注量の合 計がトラックの容量を越えない条件の下に、図6(b) に示すようなゾーンを生成する。このゾーンから配送パ ターンを作成する。その手順を図7に示す。ゾーンを生 成し(S1)、各ゾーン毎に巡回路パターンを作成する (S2)。近傍ゾーン内の未巡回店を巡回路に挿入し、 バターンの拡張をはかる(S3)。生成された各パター ン間で店舗を交換することにより、配送に要する総時間 3

かる(S4)。各パターンについて巡回セールスマン問題を解き、配送路を決定する(S5)。

【0008】図8に店交換の手順を示す。図8(a)に示す巡回路パターンが図7のパターンの改善(S4)の前の段階のパターンである。とのパターンを基に1店舗の店交換を行ったものが図8(b)に示すパターンである。同様に、2店舗の店交換を行ったものが図8(c)に示すパターンである。以下同様に、3~5店舗の店交換を行ったものが図8(d)~(f)に示すパターンである。このようにして店交換を行ったパターンから配送 10に要する経時間が最短なものが選ばれて、それについての巡回セールスマン問題が解かれる。

【0009】図9に店交換の手順を示す。各パターンが作成されると、とのパターンを構成する店舗どうしに考え得るすべての店交換の組合せが実行される(S1)。すべての組合せが完了すると(S2)、その中から総時間が最短なものが選択される(S3)。

[0010]

【発明が解決しようとする課題】 この配送スケジューリング装置は、配送の実情に合致した配送スケジュールが 20 作成できる優れた装置である。しかし、配送先の数は増加する一方であり、配送出発前にその都度行う配送スケジューリング演算時間もそれに伴い増加の一途をたどっている。この演算時間を増加させる要因の大きな部分を占めるのは、図7に示した店交換によるパターン改善時間である。従来の検索方法ではすべての組合せにわたって、容量制約、時刻制約を満たすかの判断と、走行時間距離等の評価関数、すなわち利得の演算を行っている。そのため、演算時間が膨大なものとなり、小型の計算機で演算させると必要なタイミングにスケジューリングが 30 行えないという問題があった。

【0011】図7に示したパターンは9店舗の例であったが、実際には1万店舗を越える配送先が存在する。これらの店交換によるパターン改善を演算するに要する時間は膨大であり、注文を受けてすぐに配送スケジュールを作成しなければならない実情に沿わないものになりつつある。一つの例として、50店舗が含まれるゾーンが2つ存在する場合の店交換に要する計算回数は、1758276回である。

【0012】本発明は、このような背景に行われたものであり、店交換によるパターン改善を速やかに演算して合理的な結果に至る演算時間を短縮する配送スケジューリング装置を提供することを目的とする。本発明は小型の計算機を利用する配送スケジューリング装置を提供することを目的とする。

[0013]

【課題を解決するための手段】本発明は、多数の配送先と、この配送先の各々に配送する商品の種別および数量とが入力情報として与えられ、配送の出発点および前記多数の配送先についてその相互間の移動時間と、この配 50

送先の各々について配送を希望する時間帯とが蓄積情報 として与えられ、前記入力情報および前記蓄積情報から 配送車両毎に配送順序を演算する演算手段を備え、前記 演算手段は、入力情報として与えられた配送先につい て、蓄積情報を参照してクラスター分析を行う手段と、 **との手段により分析されたクラスター毎に入力情報から** その配送商品の種別および数量にしたがって配送車両を 割付け積載量がその配送車両の限度を越えないときその クラスターを配送ゾーンとする手段と、その配送ゾーン 毎に蓄積情報にしたがって巡回路を作成する手段と、そ の巡回路について未巡回配送先がないことを確認する手 段と、配送のための総時間を演算する手段と、演算され た配送スケジューリングについて操作により前記巡回路 を一部変更する手段と、演算された配送スケジューリン グについて巡回セールスマン問題を解く手段とを備えた 配送スケジューリング装置である。

【0014】 ここで、本発明の特徴とするところは、前記変更する手段は、前記巡回路に含まれる少数の配送先への配送順序の変更を行うことにより前記総時間が短くなる場合にはその変更を行う手段を含むところにある。 【0015】前記変更する手段は、前記巡回路のパターンに変化のない配送順序については前記変更を禁止する手段を備えることが望ましい。

[0016]

【作用】生成された巡回路のパターンに、店交換を施してパターンの改善をはかる場合に、交換する店舗数が少数すなわち1~2店舗であれば演算時間はさほどでもない。経験的なデータから、改善演算が施されたパターンを調べると1~2店舗の店交換によることが多い。したがって、初めから店交換を1~2店舗に制限して改善演算を行うことによる支障はそれほどなく、むしろ演算時間が短縮される効果は大きい。

【0017】さらに、店交換を施しても巡回路のパター ンに変化のない店舗の組合せは演算実行を禁止すること で演算時間を短縮する。

[0018]

【実施例】本発明実施例の構成を図1を参照して説明する。図1は本発明実施例装置のブロック構成図である。【0019】本発明は、多数の配送先と、この配送先の各々に配送する商品の種別および数量とが入力情報として受注データ入力101から与えられ、配送の出発点はび前記多数の配送先についてその相互間の移動時間と、この配送先の各々について配送を希望する時間帯とが蓄積情報としてデータベース102から与えられ、前記入力情報および前記蓄積情報から配送車両毎に配送順序を演算する演算手段をCPU103に備え、このCPU103は、入力情報として与えられた配送先について、蓄積情報を参照してクラスター分析を行う手段と、この手段により分析されたクラスター毎に入力情報からその配送商品の種別および数量にしたがって配送車両を

割付け積載量がその配送車両の限度を越えないときその クラスターを配送ゾーンとする手段と、その配送ゾーン 毎に蓄積情報にしたがって巡回路を作成する手段と、その巡回路について未巡回配送先がないことを確認する手段と、配送のための総時間を演算する手段と、演算された配送スケジューリングについて操作により前記巡回路 の一部を変更する手段と、演算された配送スケジューリングについて巡回セールスマン問題を解く手段とを備えた配送スケジューリング装置である。

【0020】 ことで、本発明の特徴とするところは、前 10 記変更する手段は、前記巡回路に含まれる少数すなわち 1 ないし 2 店舗の配送先への配送順序の変更を行うこと により前記総時間が短くなる場合にはその変更を行う手段を含むところにある。

【0021】次に、図2を参照して本発明実施例の動作を説明する。図2は本発明実施例装置における店交換手順を示すフローチャートである。本発明実施例では1店舗までの制約付で店交換を行う場合を説明する。パターンが生成されると、このパターンを店舗数1店舗までの制約付で店交換の組合せを実行する(S1)。全ての組 20合せが実行されると(S2)、その中から配送に要する総時間が最短なものが選択される(S3)。

[0022]次に、図3および図4を参照して本発明実施例の動作をさらに詳しく説明する。図3は最初に生成されたパターンを示す図である。図4は店交換による組合せの一部を示す図である。図3に示すように、最初の巡回路パターンが生成される。これを基に図4に示すように、店交換が行われるが本発明実施例では店交換の店舗数1店舗までの制約付なので図4の斜線部分までで店交換は終了する。図4には組合せの一部を示している。図4の上段に同一パターンの繰返しがあるが、これは店交換は行っているが、交換してもパターンの形に変化のないパターンである。

【0023】一般に、店交換に要する計算回数は、

(H+2) C2 ×(H+2) C2

ただし、M:パターン1の店舗数

N:パターン2の店舗数

で与えられる。これによれば店交換の店舗数を無制限とすれば、図3に示すパターンではM=N=3なのでその計算回数は、

(,..., C, ×(,..., C, = 100回 である。ところが、店交換する店舗数を1店舗と制限した場合の計算回数は、

 $(2M+1) \times (2N+1)$

で与えられるので、

 $(2 \times 3 + 1) \times (2 \times 3 + 1) = 490$

となる。 これにより、パターン改善演算時間が大幅に短 縮される。

【0024】この計算回数の差は、店舗数が大きければ 隣接しているときには、も 大きいほど顕著に表れる。例えば、M=N=50の場合 50 ないことに着目している。

では、店交換の店舗数を無制限とすれば、(30.21, C2 × (30.22), C2 = 1758276回となる。これに対して、店舗数を1店舗に制限すれば、(2×50+1)×(2×50+1)=10201回となり、計算回数を大幅に減少させることができる。 [0025]次に、図5を参照して図2におけるバターンを店舗数1店舗までの制約付で店交換の組合せを実行する(S1)ときの動作を詳細に説明する。図5は店交換手順を示すフローチャートである。店交換のことは枝交換ともいい、枝交換とは一つのバターンの中の部分列すなわち連続した店舗の組と他のバターンの中の部分列すなわち連続した店舗の組とをこの2つのバターン間で交換するものである。

【0026】 ここで、図3に戻り、枝交換を計算機上で行うために、枝外側店舗i1、i2、j1、j2というものを定義する。すなわち、交換枝のすぐ外側の店舗であって、交換枝をはさむように定義された2つの店舗である。ここで、店舗と称するものには、実際の演算においては配送開始場所および配送終了場所すなわち出発点(DEPOT)を含む。すなわち、パターン1およびパターン2のパターン内店舗数をそれぞれMおよびNとすれば枝交換において考慮すべき店舗数はそれぞれM+2 およびN+2となり、店舗i1およびj1が枝交換開始店舗であり店舗i2およびj2が枝交換終端店舗である。ただし、i1<i2とする。

[0027] この店舗il、i2、jl、j2のil<ii2 < パターン1内の店舗数、jl<j2 < パターン2 内の店舗数の範囲のすべての組合せで検討を施す方式が従来例の方式であり、枝交換開始店舗ilおよびjlをおのおのM+1、N+1の範囲で一つずつ増加させながら枝交換終端店舗i2およびj2をおのおのil+1からM+2、j2+1からN+2の範囲で増加させ、すべての枝交換の組合せを数えあげる。

【0028】これに対して、本発明実施例装置においては、組合せを制限するために枝交換終端店舗i2、j2をおのおのi1+1からi1+2、j2+1からj2+2の範囲で増加させるようにしている。図5における手順BおよびCがこの制限を行っている。この制限によって、組合せは図4に示す斜線部分のみとなる。

40 【0029】また、図5に示したフローチャートには図4に示した同一パターン部分の演算時間を省略する手順Aが含まれている。同一パターン部分を除去するために枝交換開始店舗i1、j1の位置に「1」を加えたものと枝交換終端店舗i2、j2の位置が等しいか否かをパターン更新チャック直前で判断し、等しい場合にはパターン更新チェックを飛び越し、等しくない場合には飛び越さないように構成されている。これは、枝交換開始店舗i1およびj1と枝交換終端店舗i2およびj2とが隣接しているときには、枝交換してもパターンに変化がないことに第目している。

(9:00*1,6:00)

DEPOT

第一のゾーン

(9:00) 7:00)

第ニャゾーン

7

[0030]

【発明の効果】以上説明したように、本発明によれば合理的な結果に速やかに達成するように演算することができる。これにより、はじめて小型の計算機を用いて実用的な時間内に演算が可能になる。

【図面の簡単な説明】

【図1】本発明実施例装置のブロック構成図。

【図2】本発明実施例の店交換手順を示すフローチャー

【図3】最初に生成されたパターンを示す図。

【図4】店交換による組合せをの一部を示す図。

*【図5】店交換手順を示すフローチャート。

【図6】店配置およびゾーンを示す図。

【図7】従来例の動作を示すフローチャート。

【図8】店交換を示す図。

【図9】従来例の店交換手順のフローチャート。

【符号の説明】

101 受注データ入力

102 データベース

103 CPU

10 A、B、C 手順

* i 1 、 i 2 、 j 1 、 j 2 店舗

【図3】 [図2] パターン1 パターン間 店交換開始 店数1店までの DEPOT 店交換の組合せ実行 [図6] 時刻制約 組合世完了したり (8:00* 17:00) (7:00 17:00) (7:00 17:00) (30) YES (8:00 14:00) (10) (10) 775 (7±0° 13±0) 総時間が **S**3 (10) 最短なもの選択 (9:00" 15:00) 超E(10) (7:00 13:00) (9:00 17:00) (7:30° 8:30) (10) DEPOT (出発点) パターン間 店交换終了 ゾーン内の総受注量 6 0 (8:00 1 7:00) ゾーン内の総受注量90 [図4] (7:00-1,7:00) (8:00°1 4:00) (10) (10)

| 日 | パターソ

【図1】

[図7]

[公報種別] 特許法第17条の2の規定による補正の掲載 [部門区分] 第2部門第7区分

【発行日】平成13年1月23日(2001.1.23)

【公開番号】特開平6-239419

【公開日】平成6年8月30日(1994.8.30)

【年通号数】公開特許公報6-2395

【出願番号】特願平5-25750

【国際特許分類第7版】

B65G 1/137 G06F 15/21

[FI]

B65G 1/137

【手続補正書】

[提出日] 平成11年7月12日(1999.7.12)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【請求項 】】 多数の配送先と、この配送先の各々に配送する商品の種別および数量とが入力情報として与えられ、配送の出発点および前記多数の配送先についてその相互間の移動時間と、この配送先の各々について配送を希望する時間帯とが蓄積情報として与えられ、前記入力情報および前記蓄積情報から配送車両毎に配送順序を演算する演算手段を備え、

前記演算手段は、入力情報として与えられた配送先について、蓄積情報を参照してクラスター分析を行う手段と、この手段により分析されたクラスター毎に入力情報からその配送商品の種別および数量にしたがって配送車両を割付け積載量がその配送車両の限度を越えないときそのクラスターを配送ゾーンとする手段と、その配送ゾーン毎に蓄積情報にしたがって巡回路を作成する手段と、配送スケジューリングについて前記巡回路を一部変更する手段と、演算された配送スケジューリングについて巡回セールスマン問題を解く手段とを備えた配送スケジューリング装置において、

前記変更する手段は、前記巡回路に含まれる少数の配送 先への配送順序の変更を行うことにより前記総時間が短 くなる場合にはその変更を行う手段を含むことを特徴と する配送スケジューリング装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0013

【補正方法】変更

【補正内容】

[0013]

【課題を解決するための手段】本発明は、多数の配送先 と、この配送先の各々に配送する商品の種別および数量 とが入力情報として与えられ、配送の出発点および前記 多数の配送先についてその相互間の移動時間と、この配 送先の各々について配送を希望する時間帯とが蓄積情報 として与えられ、前記入力情報および前記蓄積情報から 配送車両毎に配送順序を演算する演算手段を備え、前記 演算手段は、入力情報として与えられた配送先につい て、蓄積情報を参照してクラスター分析を行う手段と、 との手段により分析されたクラスター毎に入力情報から その配送商品の種別および数量にしたがって配送車両を 割付け積載量がその配送車両の限度を越えないときその クラスターを配送ゾーンとする手段と、その配送ゾーン 毎に蓄積情報にしたがって巡回路を作成する手段と、配 送のための総時間を演算する手段と、演算された配送ス ケジューリングについ<u>て前</u>記巡回路を一部変更する手段 と、演算された配送スケジューリングについて巡回セー ルスマン問題を解く手段とを備えた配送スケジューリン グ装置である。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0029

【補正方法】変更

【補正内容】

【0029】また、図5に示したフローチャートには図4に示した同一パターン部分の演算時間を省略する手順Aが含まれている。同一パターン部分を除去するために枝交換開始店舗i1、j1の位置に「1」を加えたものと枝交換終端店舗i2、j2の位置が等しいか否かをパターン更新チェック直前で判断し、等しい場合にはパターン更新チェックを飛び越し、等しくない場合には飛び越さないように構成されている。これは、枝交換開始店

舗ilおよびjlと枝交換終端店舗i2およびj2とが 隣接しているときには、枝交換してもパターンに変化が ないことに着目している。

*【補正対象項目名】図7 【補正方法】変更 【補正内容】

【手続補正4】

【図7】 【補正対象書類名】図面 開始 店間の距離をもとに クラスター分析を行 ~S1 ゾーンの生成 受注量の合計がトラックの容量を越えない クラスターをゾーンとする \$2 سر ゾーン内の店からなる巡回路作成 パターンの生成 (時刻制約を充足) 53 سر 近傍ゾーン内の未巡回店を巡回路に挿入 パターンの拡張 (時刻制約、容量制約を充足) 巡回路に含まれる店の集合を パターンとして取り除く Yes 未巡回店が存在? No 54 یہ パターン間で店を交換することにより、 パターンの改善 総時間が減少する場合、交換 S5 ہے 各パターンに対して、時刻制約付き 配送路の決定 巡回セールスマン問題を解き、配送 路を決定 終了