Due Monday 03/29/2021 (at the beginning of class)

- 1. What kind of equilibrium stability (stable (in the sense of Lyapunov), or AS, or GAS) if any, is exhibited by the state representation of
 - (a) The $\frac{1}{s^2}$ plant with no input, i.e., $\dot{x}_1 = x_2$, $\dot{x}_2 = 0$.
 - (b) The magnetically suspended ball: $\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = \frac{-c\,\bar{u}^2}{m\,x_1^2} + g \end{cases} \text{ with } \bar{u} = \sqrt{\frac{mg}{c}\,Y} = \text{const.}$
- 2. A frequently used model in chemistry for the study of reaction dynamics is the Morse oscillator. The equations for the unforced Morse oscillator are given by

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -\mu \left(e^{-x_1} - e^{-2x_1} \right)$

- (a) Find the equilibrium points of the system.
- (b) Investigate their stability properties.
- 3. Consider the system:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -g(k_1x_1 + k_2x_2), \quad k_1, k_2 > 0$

where the nonlinearity $g(\cdot)$ is such that

$$g(y) y > 0, \quad \forall y \neq 0$$

$$\lim_{|y| \to \infty} \int_0^y g(\xi) \, d\xi = +\infty$$

- (a) Using an appropriate Lyapunov function, show that the equilibrium x=0 is globally asymptotically stable.
- (b) Show that the saturation function $\operatorname{sat}(y) = \operatorname{sign}(y) \min\{1, |y|\}$ satisfies the above assumptions for $g(\cdot)$. What is the exact form of your Lyapunov function for this saturation non-linearity?
- (c) Parts (a) and (b) imply that a double integrator with a saturating actuator

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \operatorname{sat}(u)$$

can be stabilized with the state-feedback controller $u = -k_1x_1 - k_2x_2$. Design k_1 and k_2 to place the eigenvalues of the linearization at $-1 \pm j$ and simulate the resulting closed-loop system both with, and without, saturation. Compare the resulting trajectories. (Please provide plots of $x_1(t)$ and $x_2(t)$ rather than phase portraits.)

4. Khalil, Problem 4.14; see attached.

Lity

- (a) Show that $V(x) \to \infty$ as $||x|| \to \infty$ along the lines $x_1 = 0$ or $x_2 = 0$.
- (b) Show that V(x) is not radially unbounded.
- **4.10 (Krasovskii's Method)** Consider the system $\dot{x} = f(x)$ with f(0) = 0. Assume that f(x) is continuously differentiable and its Jacobian $[\partial f/\partial x]$ satisfies

$$P\left[\frac{\partial f}{\partial x}(x)\right] + \left[\frac{\partial f}{\partial x}(x)\right]^T P \le -I, \quad \forall \ x \in \mathbb{R}^n, \quad \text{where } P = P^T > 0$$

(a) Using the representation $f(x) = \int_0^1 \frac{\partial f}{\partial x}(\sigma x) x \ d\sigma$, show that

$$x^T P f(x) + f^T(x) P x \le -x^T x, \quad \forall \ x \in \mathbb{R}^n$$

- (b) Show that $V(x) = f^T(x)Pf(x)$ is positive definite for all $x \in \mathbb{R}^n$ and radially unbounded.
- (c) Show that the origin is globally asymptotically stable.
- **4.11** Using Theorem 4.3, prove Lyapunov's first instability theorem: For the system (4.1), if a continuously differentiable function $V_1(x)$ can be found in a neighborhood of the origin such that $V_1(0) = 0$, and \dot{V}_1 along the trajectories of the system is positive definite, but V_1 itself is not negative definite or negative semidefinite arbitrarily near the origin, then the origin is unstable.
- **4.12** Using Theorem 4.3, prove Lyapunov's second instability theorem: For the system (4.1), if in a neighborhood D of the origin, a continuously differentiable function $V_1(x)$ exists such that $V_1(0) = 0$ and \dot{V}_1 along the trajectories of the system is of the form $\dot{V}_1 = \lambda V_1 + W(x)$ where $\lambda > 0$ and $W(x) \geq 0$ in D, and if $V_1(x)$ is not negative definite or negative semidefinite arbitrarily near the origin, then the origin is unstable.
- 4.13 For each of the following systems, show that the origin is unstable:

(1)
$$\dot{x}_1 = x_1^3 + x_1^2 x_2, \qquad \dot{x}_2 = -x_2 + x_2^2 + x_1 x_2 - x_1^3$$

(2)
$$\dot{x}_1 = -x_1^3 + x_2, \qquad \dot{x}_2 = x_1^6 - x_2^3$$

Hint: In part (2), show that $\Gamma = \{0 \le x_1 \le 1\} \cap \{x_2 \ge x_1^3\} \cap \{x_2 \le x_1^2\}$ is a nonempty positively invariant set, and investigate the behavior of the trajectories inside Γ .

4.14 Consider the system

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = -g(x_1)(x_1 + x_2)$$

where g is locally Lipschitz and $g(y) \geq 1$ for all $y \in R$. Verify that $V(x) = \int_0^{x_1} yg(y) \ dy + x_1x_2 + x_2^2$ is positive definite for all $x \in R^2$ and radially unbounded, and use it to show that the equilibrium point x = 0 is globally asymptotically stable.