DELINEAMENTOS E EXPERIMENTAÇÃO

REGRAS GERAIS:

DELINEAMENTO NO MÍNIMO 20 PARCELAS.

GRAU DE LIBERDADE DO RESÍDUO NO MÍNIMO 10

CONCEITO DE BLOCO

- Bloco é um fator interferente.
- É um subconjunto de parcelas uniformes, quanto ao fator interferente.
- A interferência deve ser ADITIVA.
- É um conceito tanto físico como matemático.

CONSEQUÊNCIAS DO CONCEITO

- Bloco não é repetição!
- Bloco pode ser completo ou incompleto.
- Bloco pode ser balanceado ou não.

BLOCO INCOMPLETO

- NÃO POSSUI TODOS TRATAMENTOS
- ◆ MÉDIAS DEVEM SER AJUSTADAS

MÉDIA E MÉDIA AJUSTADA

	BLOCO 1	BLOCO 2	BLOCO 3	MÉDIA	MÉDIA AJUS
TRAT1	20	25	30	25	25
TRAT2		45	50	47.5	45
TRAT3	60	•		60	65

NO CAMPO

- Bloco controla ambiente (controle local).
- Se o ambiente muda, interação GxE, perde aditividade.
- Bloco não pode ser muito grande.
- Bloco tem que estar no plano

DELINEAMENTO DAS PARCELAS NO CAMPO

- Delineamento mais utilizado é o Blocos Casualizados Completos (DBC), com uma repetição de cada material em cada bloco, e com 3 a 6 blocos por local.
- Cada bloco → linhas acompanhando a curva de nível
 - → e todas parcelas devem ser homogêneas para solo, declividade, fertilidade etc.
- Outro bloco: mesma curva de nível ou em curva de nível diferente. Evitar alocar bloco "morro" abaixo.
- Um bloco pode ser diferente de outro.
- Cuidados: Não pode ocorrer interação genótipos x bloco. Evitar solos (ambientes) diferentes.

DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC)

- TODAS PARCELAS SÃO IGUAIS.
- SÓ TEM UM BLOCO.
- SORTEAR TRATAMENTOS E REPETIÇÕES.
- TRATAMENTOS É O QUE INTERESSA, GENÓTIPOS, CULTIVAR, DOSES ETC.

DBC: SORTEIO NO BLOCO

BLOCOS PARALELOS À CURVA DE NÍVEL

ANOVA DO DBC

FONTES DE VARIAÇÃO	GRAUS DE LIBERDADE
BLOCO	5-1=4
GENÓTIPO	4-1=3
RESÍDUO	(5-1)*(4-1)=12
TOTAL	20-1=19

MUITOS TRATAMENTOS

- Blocos, no geral, não devem ter mais que 20 a 30 tratamentos, pois começa aparecer GxE.
- Ou seja, o mesmo tratamento teria respostas diferentes, conforme a posição no bloco,
- ◆ DBC não é um bom delineamento!

ALTERNATIVAS USUAIS DBC

- GRUPOS COM TRATAMENTOS COMUNS.
- BLOCOS AUMENTADOS.
- **LATTICES.**
- BIB

GRUPOS (SETS) COM TRATAMENTOS COMUNS

A, B,C + 1, 2,...20

A, B, C + 1, 2,...20

A, B, C + 21, 22,...40

A, B, C + 21, 22,...40

A, B, C + 41, 42,...60

A, B, C+ 41, 42,...60

ANOVA GRUPOS COM COMUNS

FONTES DE VARIAÇÃO	GRAUS DE LIBERDADE
GRUPOS OU "SETS"	G-1, NO CASO (3-1=2)
BL.(DENTRO DE GR.)	(2-1)+(2-1)+(2-1)
GENÓTIPO(AJUST.)	63-1=62
INT. COMUNS X GR.	(3-1)*(3-1)
RESÍDUO(D.GR.)	22+22+22
TOTAL	138-1=137

BLOCOS AUMENTADOS

A, B,C + 1, 2,...20

A, B, C+ 21, 22,...40

A, B, C+ 41, 42,...60

ANOVA BLOCOS AUMENTADOS

FONTES DE VARIAÇÃO	GRAUS DE LIBERDADE
BLOCO	3-1=2
GENÓTIPO (AJUST.)	63-1=62
RESÍDUO COMUNS	(3-1)*(3-1)=4 (CUIDADO!)
TOTAL	69-1=68

USUAIS PRIORIDADES

- ◆ 1 DBC.
- 2 GRUPOS COM COMUNS.
- ◆ 3 BLOCOS AUMENTADOS.
- ◆ 4 Entre aumentar genótipos à avaliar e aumentar repetições, aumentar genótipos.
- Entre aumentar tamanho da parcela à avaliar e aumentar repetições, aumentar repetições.
- Entre aumentar experimentos em mais locais ou aumentar repetições, aumentar experimentos.

COEFICIENTE DE VARIAÇÃO

Avaliar a uniformidade do experimento coeficiente de variação:

desvio padrão média

- Desvio padrão:
 - mede a variabilidade entre repetições do mesmo material
 - depende da maneira criteriosa de conduzir o experimento e amostrá-lo.
 - serve para avaliar se a coisas estão sendo bem feitas!

EXEMPLO

- \bullet DMS =(TAB) x CV x M / 100.(REP X nAMBI)^{1/2}.
- Tabela 1 mostram os DMS (diferença mínima significativa, no caso, t-LSD 5%) necessários para que um material possa ser considerado superior a outro em termos de produção (TCH), a partir de experimentos conduzidos em blocos casualizados com 4 repetições.

TABELA 1 - Diferença mínima significativa pelo teste T (LSD) para comparar produção de cana em TCH, em função do coeficiente de variação(CV) e da produção média do experimento, em experimento em blocos casualizados com 4 repetições.

Coeficiente	10 genót	ipos em 1 só	ambiente	10 gen	ótipos em 5 a	mbientes
Variação	70 t/ha	80 t/ha	90 t/ha	70 t/ha	80 t/ha	90 t/ha
2 %	2,0	2,3	2,6	0,9	1,0	1,1
5 %	5,0	5,7	6,4	2,1	2,5	2,8
10 %	10,0	11,4	12,9	4,3	4,9	5,5
15%	15,0	17,1	19,3	6,4	7,4	8,3
20 %	20,0	22,9	25,3	8,6	9,8	11,0

EX: CV E TAMANHO DA AMOSTRA experimento com cana

METROS	5	10	15	20
Nº amostras	97	46	32	24
Média (TCH)	108,2	108,6	108,6	108,6
s (obs)	13,45	11,23	10,34	9,30
CV (obs)	12,44	10,34	9,52	8,56

CV E TAMANHO DA AMOSTRA com cana

- No geral, para um cultivar comercial CV esperado para amostras de 2 metros lineares é de até 20-30%
- O CV para m (2 metros lineares) pode ser estimado por CV= 25/(m)⁻²
- Para um CV = 10%, m= $25^2/(10^2)$ = 6 pontos.
- Válido para parcela ou por talhão uniforme

BLUP (BEST LINEAR UNBISIED PREDICTION)

- ◆ DIFERENÇA PREDITA ESPERADA MENOR QUE DIFERENÇAS DE MÉDIAS (É MAIS GENOTÍPICO QUE FENOTÍPICO).
- ◆ VALOR GENÉTICO.
- ORDENAÇÃO DOS GENÓTIPOS.
- FORMA DE ANÁLISE MAIS ATUAL.
- REML/BLUP (SERÁ VISTO ADIANTE).