Random processes

É. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic

square stochastic process Stationarity Power spectral measure

Filtering

Bibliography

Primer on random processes MG3416–Advanced Structural Acoustics – Lecture #1 part A

 $^{1} \rm Information$ Processing and Systems Dept. ONERA, France

²Mechanical and Environmental Engineering Dept. CentraleSupélec, France

September 22, 2021

Outline

Random processes

E. Savi

Probability Space Probability triplet Random variable

Meansquare

process
Stationarity
Power
spectral
measure

Filtering

Bibliography

1 Probability Space

- Probability triplet
- Random variable
- Stochastic process

2 Mean-square stochastic process

- Stationarity
- Power spectral measure
- Mean-square derivation
- 3 Filtering

Outline

Random processes

E. Savii

Probability Space

Probabilit; triplet Random variable Stochastic process

meansquare

process
Stationarity
Power
spectral
measure

Filtering

Bibliography

1 Probability Space

- Probability triplet
- Random variable
- Stochastic process
- 2 Mean-square stochastic process
 - Stationarity
 - Power spectral measure
 - Mean-square derivation
- 3 Filtering

Probability space Formal definition

Random processes

E. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

Mean-square stochastic process
Stationarity Power spectral measure

Filtering

- We model a real-world process, or "experiment", or "system", consisting of states occurring randomly.
- It is mathematically represented by a triplet (Ω, \mathcal{F}, P) of which elements are ultimately specified by the modeler:
 - Ω is the set of outcomes, or sample space, or universe, constituted by the states of the causes which influence the states of the system;
 - \mathcal{F} is a σ -algebra, *i.e.* a set of all the events the modeler considers. An event is a set of zero or more outcomes, thus it is a subset of the sample space;
 - P is a function returning an event's probability, or a probability measure.

Probability space σ -algebra

Random processes

É. Savi

Frobability
Space
Probability
triplet
Random
variable
Stochastic
process

Meansquare stochasti

process
Stationarity
Power
spectral
measure
Mean-square
derivation

Filtering

Bibliography

Definition

A collection \mathcal{F} of subsets of Ω is a σ -algebra, or σ -field, if:

- If $\{a_n\}_{n=1,2,...}$ is an arbitrary countable family of events in \mathcal{F} , then $\bigcup_{n\in\mathbb{N}} a_n \in \mathcal{F}$.
 - **Example #1**: a fair coin, $\Omega = \{1, 2\}$. Then the σ-algebra $\mathcal{F} = 2^{\Omega} = \{\emptyset, \{1\}, \{2\}, \Omega\}$ contains $2^2 = 4$ events.
- **Example #2**: a fair die, $\Omega = \{1, 2, 3, 4, 5, 6\}$. Then the σ-algebra $\mathcal{F} = 2^{\Omega} = \{\emptyset, \{1\}, \{2\}, ... \{6\}, \{1, 2\}, \{3, 4\}, \{5, 6\}, \{1, 3\}, ... \{1, 3, 5\}, \{2, 4, 6\}, \{1, 3, 4, 5\}, ..., \Omega\}$ contains $2^6 = 64$ events.
- Example #3: a fair die, $\Omega = \{1, 2, 3, 4, 5, 6\}$. The sets $\mathcal{F} = \{\emptyset, \{2, 4, 6\}, \{1, 3, 5\}, \Omega\}, \mathcal{F} = \{\emptyset, \{2, 5\}, \{1, 3, 4, 6\}, \Omega\}...$ are also suitable σ -algebras.

Random processes

É. Savir

Probability
Space
Probability
triplet
Random
variable
Stochastic

Meansquare

Process
Stationarity
Power
spectral
measure
Mean-square

Filtering

Bibliography

Definition

A probability measure is a positive, bounded measure the total mass of which is 1: $P(\Omega) = 1$.

I A positive measure m is a function $m: \Omega \to [0, +\infty]$ s.t. for countably many disjoint events $\{a_n\}_{n=1,2,...} \in \mathcal{F}$, $\bigcap a_n = \emptyset$, $\bigcup a_n \in \mathcal{F}$, then

$$m\left(\bigcup_{n}a_{n}\right)=\sum_{n}m(a_{n});$$

- 2 It is bounded if $m(\Omega) < +\infty$;
- **3** It is a probability measure if $m(\Omega) = 1$.

Random variable Definitions

Random processes

É. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

square stochastic process Stationarity Power spectral measure Mean-squar

Filtering

Bibliography

Definition

A random variable is a measurable function $X : \Omega \to \Omega'$ which maps a combination of outcomes from a sample space Ω to a combination of consequences in a state space Ω' .

Definition

A function $f: \Omega \to \Omega'$ is measurable if $\forall a' \in \Omega'$, $f^{-1}(a')$ is measurable in $\Omega: \forall a' \in \mathcal{F}'$, $f^{-1}(a') \in \mathcal{F}$, where \mathcal{F} , \mathcal{F}' are σ -algebras defined on Ω , Ω' respectively.

- **Example #1**: let Ω be the sample space describing the real-world system "tossing a fair coin": $\Omega = \{\text{"temperature"}, \text{"pressure"}, \text{"initial position"}, \text{"initial speed"}, etc.\}$. Then $\Omega' = \{1, 2\}$.
- **Example #2:** let Ω be the sample space describing a real-world system "roll of dice": $\Omega = \{$ "temperature", "pressure", "initial position", "initial speed", etc. $\}$. Then $\Omega' = \{1, 2, 3, 4, 5, 6\}$.

Random variable Causality principle

Random processes

É. Savi

Probability Space Probability triplet Random variable Stochastic

Meansquare stochastic process

process
Stationarity
Power
spectral
measure
Mean-square
derivation

Filtering

Bibliography

■ Let $X : \Omega \to \Omega'$ be a random variable, then Ω' is endowed with the σ -algebra \mathcal{F}' and the probability measure P' inherited from \mathcal{F} and P by the causality principle:

$$\forall a' \in \mathcal{F}', \quad P'(a') = P(X^{-1}(a')).$$

P' is now the probability measure of X on Ω' .

- The original sample space Ω (the system and its environment in the foregoing examples) is often suppressed, since it is mathematically hard to describe.
- **Examples**: The possible values of the random variable "coin toss" or "dice roll" are then treated as a sample space Ω' constituted by numerical quantities—which is easier to deal with.

Stochastic process Definition and terminology

Random processes

E. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

Mean-square stochastic process Stationarity Power spectral measure Mean-squar derivation

Filtering

Bibliography

Definition

A stochastic process $X: T \to \mathbb{R}^n$ is a function from T into the set of random variables defined on (Ω, \mathcal{F}, P) with values in $\mathbb{R}^n \equiv \Omega'$. $(X_t, t \in T)$ is a collection of random variables with values in \mathbb{R}^n . Therefore:

- If $t \in T$ is frozen: X_t is a random variable defined on (Ω, \mathcal{F}, P) with values in \mathbb{R}^n ;
- If $a \in \Omega$ is frozen: $t \mapsto X_t(a) = x(t)$ is a trajectory, or a sample path;
- If both $t \in T$ and $a \in \Omega$ are frozen: $a, t \mapsto X_t(a)$ is an outcome, or a realization, of the random variable X_t .

Stochastic process

Random processes

É. Savi

Probability

Probability triplet Random variable Stochastic process

Mean-square stochastic process Stationarit Power spectral measure Mean-squa

Filtering

Stochastic process Remarks

Random

È. Sav

Probability Space Probability triplet Random variable Stochastic process

Meansquare stochast

process
Stationarity
Power
spectral
measure
Mean-square

Filtering

- $(X_t, t \in T)$ is called "the stochastic process defined on (Ω, \mathcal{F}, P) , indexed on T, with values in \mathbb{R}^n ".
- The indexation set T could be any set, countable or not, bounded or not, etc.
- However we will only consider the real line $T = \mathbb{R}$ in the subsequent lectures, since t will be a time.
- **Examples**: earthquake, wind, turbulence, swell, ocean surge... can be modeled by stochastic processes, where $\Omega = \{\text{"the states of the environment"}\}$ is very difficult to figure out, but $\Omega' = \{\text{"vectors of }\mathbb{R}^3\text{"}\}$ is much easier to handle.

Stochastic process Probability law

Random processes

É. Savi

Probability
Space
Probability
triplet
Random
variable
Stockastic

Meansquare stochastic process Stationarity Power spectral measure Mean-square

Filtering

Bibliography

■ For $t \in \mathbb{R}$ fixed, X_t is a \mathbb{R}^n -valued random variable defined on (Ω, \mathcal{F}, P) , of which probability law P_X is parameterized by t and defined by:

$$P_{\mathbf{X}}(B;t) = P'(\mathbf{X}_t \in B)$$

= $P(\mathbf{X}_t^{-1}(B) \in \mathcal{F}), \quad \forall B \in \mathcal{F}'.$

- The most common choice for the σ -algebra \mathcal{F}' is the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ —the one generated by the collection of all open sets in \mathbb{R}^n .
- The distribution function $F_{\mathbf{X}}(\mathbf{x};t): \mathbb{R}^n \to [0,1]$:

$$P_{\mathbf{X}}(d\mathbf{x};t) = dF_{\mathbf{X}}(\mathbf{x};t),$$

$$F_{\mathbf{X}}(\mathbf{x};t) = P'(\mathbf{X}_t \in]-\infty, x_1] \times \cdots \times]-\infty, x_n]).$$

Random processes

É. Savi

Probability Space Probability triplet Random variable Stochastic process

Meansquare
stochastic
process
Stationarity
Power
spectral
measure
Mean-squar

Filtering

Bibliography

Joint probability laws: The two-fold probability measure $P_{XY}(\mathbf{d}x\mathbf{d}y;t,t') = \mathbf{d}F_{XY}(x,y;t,t')$ with:

$$F_{\boldsymbol{XY}}(\boldsymbol{x}, \boldsymbol{y}; t, t') = P'(\boldsymbol{X}_t \in] - \infty, x_1] \times \cdots \times] - \infty, x_n]$$

and $\boldsymbol{Y}_{t'} \in] - \infty, y_1] \times \cdots \times] - \infty, y_n]).$

■ Marginal probability laws: Let I be the set of all finite, unordered parts of \mathbb{R} of the form $I \ni i = \{t_1, t_2, \dots t_k\}$. Let $X^{(i)} = (X_{t_1}, X_{t_2}, \dots X_{t_k})$ be the $\mathbb{R}^{n \times k}$ -valued random variable constructed from the part i, then the collection of marginal probability laws of the process $(X_t, t \in \mathbb{R})$ is $\{P_{\mathbf{X}^{(i)}}(\mathrm{d}\mathbf{x}_1\mathrm{d}\mathbf{x}_2\cdots\mathrm{d}\mathbf{x}_k), i \in I\}$.

Filtering

Bibliography

Definition

 $(X_t, t \in \mathbb{R})$ is a second-order stochastic process if:

$$\mathbb{E}\{\|\boldsymbol{X}_t\|^2\} < +\infty, \quad \forall t \in \mathbb{R},$$

where
$$\|\boldsymbol{x}\| = \sqrt{\sum_{j=1}^{n} x_j^2}$$
 and $\mathbb{E}\{f(\boldsymbol{X}_t)\} = \int_{\mathbb{R}^n} f(\boldsymbol{x}) P_{\boldsymbol{X}}(\mathrm{d}\boldsymbol{x};t)$.

- The set $L^2(\Omega, \mathbb{R}^n)$ of \mathbb{R}^n -valued second-order random variables defined on (Ω, \mathcal{F}, P) is an Hilbert space, with the scalar product $((X, Y))_2 = \mathbb{E}\{(X, Y)\}$ and the norm $\|X\| = \sqrt{((X, X))_2} = \sqrt{\mathbb{E}\{\|X\|^2\}}$.
- Interests: the same as for $L^2(\mathbb{R}^n)$! (separability, uniform convexity).

Random processes

E. Savii

Probability Space Probability triplet Random variable Stochastic process

square stochastic process Stationarit Power spectral

Filtering

Bibliography

Definition

Let $(X_t, t \in \mathbb{R})$ be a \mathbb{R}^n -valued, <u>second-order</u> stochastic process defined on (Ω, \mathcal{F}, P) and indexed on \mathbb{R} .

Its mean function $\mu_X : \mathbb{R} \to \mathbb{R}^n$ is:

$$\mu_{\boldsymbol{X}}(t) = \int_{\mathbb{R}^n} \boldsymbol{x} P_{\boldsymbol{X}}(\mathrm{d}\boldsymbol{x};t) = \mathbb{E}\{\boldsymbol{X}_t\}.$$

The process is centered if $\mu_{\mathbf{X}}(t) = \mathbf{0}$, $\forall t \in \mathbb{R}$.

■ Its auto-correlation function $R_X : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{n \times n}$ is:

$$\boldsymbol{R}_{\boldsymbol{X}}(t,t') = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \boldsymbol{x} \otimes \boldsymbol{y} P_{\boldsymbol{X}\boldsymbol{X}}(\mathrm{d}\boldsymbol{x} \mathrm{d}\boldsymbol{y};t,t') = \mathbb{E}\{\boldsymbol{X}_t \otimes \boldsymbol{X}_{t'}\}.$$

Outline

Random processes

É. Savir

Probability Space

Probability triplet Random variable Stochastic process

Meansquare stochastic

stochasti process

Stationarity
Power
spectral
measure
Mean-square
derivation

Filtering

- 1 Probability Space
 - Probability triplet
 - Random variable
 - Stochastic process
- 2 Mean-square stochastic process
 - Stationarity
 - Power spectral measure
 - Mean-square derivation
- 3 Filtering

Mean-square stochastic process Definitions

Random

È. Savii

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

Meansquare stochastic process

Stationarity
Power
spectral
measure
Mean-square
derivation

Filtering

Bibliography

Definition

Let $(X_t, t \in \mathbb{R})$ be a \mathbb{R}^n -valued stochastic process defined on (Ω, \mathcal{F}, P) and indexed on \mathbb{R} . It is:

- stationary if $\forall u \in \mathbb{R}$, $(\boldsymbol{X}_{t+u}, t \in \mathbb{R})$ and $(\boldsymbol{X}_t, t \in \mathbb{R})$ have the same marginal probability laws;
- mean-square stationary if it is second-order, $\mu_{X}(t) = \mu_{X}$ (independent of time), and $R_{X}(t,t') = R_{X}(t-t')$.
- If $(X_t, t \in \mathbb{R})$ is stationary then $P_X(dx; t) = P_X(dx)$ (independent of time) and $P_{XX}(dxdy; t, t') = P_{XX}(dxdy; t t')$.
- Stationary ⇒ mean-square stationary, but the reverse is not true.

Mean-square stochastic process Stationarity

Random processes

Stationary v.s. non-stationary processes.

Mean-square stochastic process Spectral measure

Random processes

E. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

Mean-square stochastic process Stationarity Power spectral measure Mean-squar derivation

Filtering

Bibliography

- Data: $(X_t, t \in \mathbb{R})$ a \mathbb{R}^n -valued, second-order stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary.
- **Hypothesis**: $t \mapsto R_X(t)$ is continuous on \mathbb{R} .

Theorem (Bochner)

Then there exists an Hermitian, positive, and bounded measure $\mathbf{M}_{\mathbf{X}} \in \mathbb{C}^{n \times n}$, called the spectral measure of the \mathbb{R}^n -valued stochastic process $(\mathbf{X}_t, t \in \mathbb{R})$, s.t.:

$$\mathbf{R}_{\mathbf{X}}(t) = \int_{\mathbb{R}} e^{\mathrm{i}\omega t} \mathbf{M}_{\mathbf{X}} (\mathrm{d}\omega).$$

Mean-square stochastic process Power spectral density

Random processes

È. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

Meansquare
stochastic
process
Stationarity
Power
spectral
measure
Mean-squar

Filtering

Bibliography

Definition

The spectral density S_X is the density of the spectral measure M_X if it exists:

$$M_{X}(d\omega) = S_{X}(\omega)d\omega$$
.

- It is Hermitian, positive, and integrable (since $M_X(\mathbb{R}) < +\infty$). Then $\lim_{t \to +\infty} R_X(t) = 0$ (as the Fourier transform of an integrable function).
- A necessary condition: $\mu_X = 0$.
- A sufficient condition: $\lim R_X(t) = 0$.
- Let $B \subseteq \mathbb{R}$, $B \mapsto \operatorname{Tr} \boldsymbol{M}_{\boldsymbol{X}}^{[t]} \stackrel{\to}{\to} ^{\infty}$ is the power spectral measure on B, and if $\boldsymbol{S}_{\boldsymbol{X}}$ exists, $\omega \mapsto \operatorname{Tr} \boldsymbol{S}_{\boldsymbol{X}}(\omega)$ is the power spectral density (PSD) of the process.

Mean-square stochastic process Mean-square derivative

Random

È. Savi

Probability Space Probability triplet Random variable Stochastic process

square stochastic process Stationarity Power spectral measure

derivation Filtering

Bibliography

Mean-square

■ Data: $(X_t, t \in \mathbb{R})$ a \mathbb{R}^n -valued, second-order stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} .

Definition

Let $t \in \mathbb{R}$, $(\boldsymbol{X}_t, t \in \mathbb{R})$ is mean-square derivable at t iff the sequence of random variables $\boldsymbol{X}_h = \frac{1}{h}(\boldsymbol{X}_{t+h} - \boldsymbol{X}_t)$ converges in $L^2(\Omega, \mathbb{R}^n)$ as $h \to 0$. That limit is denoted by $\dot{\boldsymbol{X}}_t$ s.t.:

$$\lim_{h\to 0} \|\mathbf{X}_h - \dot{\mathbf{X}}_t\| = 0.$$

Mean-square stochastic process

Second-order properties of the derivative

Random processes

E. Savi

Probability Space Probability triplet Random variable Stockers

Mean-square stochastic process Stationarity Power spectral measure Mean-square

derivation Filtering

- A sufficient condition: $\frac{\partial^2 \mathbf{R}_{\mathbf{X}}}{\partial t \partial t'}$ exists for all (t, t') in $\mathbb{R} \times \mathbb{R}$.
- Then $(\dot{\boldsymbol{X}}_t, t \in \mathbb{R})$ is a \mathbb{R}^n -valued, second-order stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} . In addition:

$$\mu_{\dot{\boldsymbol{X}}}(t) = \frac{\mathrm{d}\boldsymbol{\mu}_{\boldsymbol{X}}}{\mathrm{d}t}(t),$$

$$\boldsymbol{R}_{\dot{\boldsymbol{X}}}(t,t') = \frac{\partial^2 \boldsymbol{R}_{\boldsymbol{X}}}{\partial t \partial t'}(t,t'),$$

$$\boldsymbol{R}_{\boldsymbol{X}\dot{\boldsymbol{X}}}(t,t') = \mathbb{E}\{\boldsymbol{X}_t \otimes \dot{\boldsymbol{X}}_{t'}\} = \frac{\partial \boldsymbol{R}_{\boldsymbol{X}}}{\partial t'}(t,t'),$$

$$\boldsymbol{R}_{\dot{\boldsymbol{X}}\boldsymbol{X}}(t,t') = \mathbb{E}\{\dot{\boldsymbol{X}}_t \otimes \boldsymbol{X}_{t'}\} = \frac{\partial \boldsymbol{R}_{\boldsymbol{X}}}{\partial t}(t,t').$$

Mean-square stochastic process Derivative of a mean-square stationary process

Random processes

E. Savi

Probability Space Probability triplet Random variable Stochastic process

Mean-square stochastic process Stationarity Power spectral measure Mean-square

derivation Filtering

Bibliography

• A necessary and sufficient condition:

$$\int_{\mathbb{R}} \omega^2 \operatorname{tr} \boldsymbol{M}_{\boldsymbol{X}}(\mathrm{d}\omega) < +\infty.$$

■ Then $(\dot{\boldsymbol{X}}_t, t \in \mathbb{R})$ is a \mathbb{R}^n -valued, second-order stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary. In addition:

$$\begin{split} \boldsymbol{\mu}_{\dot{\boldsymbol{X}}}(t) &= \boldsymbol{0}\,,\\ \boldsymbol{R}_{\dot{\boldsymbol{X}}}(t) &= -\frac{\mathrm{d}^2\boldsymbol{R}_{\boldsymbol{X}}}{\mathrm{d}t^2}(t)\,,\\ \boldsymbol{R}_{\dot{\boldsymbol{X}}\boldsymbol{X}}(t) &= \frac{\mathrm{d}\boldsymbol{R}_{\boldsymbol{X}}}{\mathrm{d}t}(t) = -\boldsymbol{R}_{\boldsymbol{X}\dot{\boldsymbol{X}}}(t)\,,\\ \boldsymbol{M}_{\dot{\boldsymbol{X}}}(\mathrm{d}\omega) &= \omega^2\boldsymbol{M}_{\boldsymbol{X}}(\mathrm{d}\omega)\,. \end{split}$$

Outline

Random processes

É. Savi

Probability Space

Probabilit triplet Random variable Stochastic process

Meansquare

stochastic process Stationari

Stationarity
Power
spectral
measure
Mean-square
derivation

Filtering

Bibliography

1 Probability Space

- Probability triplet
- Random variable
- Stochastic process

2 Mean-square stochastic process

- Stationarity
- Power spectral measure
- Mean-square derivation
- 3 Filtering

Filtering of a stochastic process Linear filter

Random processes

E. Savi

Probability Space Probability triplet Random

Probability triplet Random variable Stochastic process

square stochastic process Stationarity Power spectral

Filtering

Bibliography

■ A linear convolution filter:

$$\boldsymbol{y}(t) = \int_{\mathbb{R}} h(t-\tau) \boldsymbol{x}(\tau) d\tau$$

where:

- $t \mapsto h(t)$ is the impulse response function in $\mathbb{R}^{m \times n}$;
- $\omega \mapsto \hat{\mathbb{h}}(\omega) = \int_{\mathbb{R}} e^{-i\omega t} \mathbb{h}(t) dt$ is the frequency response function;
- $p \mapsto \mathbb{H}(p) = \int_{-\infty}^{+\infty} e^{-pt} \, \mathbb{h}(t) \, \mathrm{d}t, \, p \in \mathbb{D}_{\mathbb{H}} \subset \mathbb{C}$, is the transfer function.

Random

Filtering

- Data: $(X_t, t \in \mathbb{R})$ a \mathbb{R}^m -valued, second-order stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary.
- If $t \mapsto h(t)$ is integrable or square integrable, then $(Y_t, t \in \mathbb{R})$ is a \mathbb{R}^n -valued, second-order stochastic process defined on (Ω, \mathcal{F}, P) , indexed on \mathbb{R} , and mean-square stationary s.t.:

$$\boldsymbol{\mu}_{\boldsymbol{Y}} = \widehat{\mathbb{h}}(0)\boldsymbol{\mu}_{\boldsymbol{X}},$$

$$\boldsymbol{R}_{\boldsymbol{Y}}(t) = \iint_{\mathbb{R} \times \mathbb{R}} \mathbb{h}(\tau)\boldsymbol{R}_{\boldsymbol{X}}(t+\tau'-\tau)\mathbb{h}(\tau')^{\mathsf{T}} \,\mathrm{d}\tau \mathrm{d}\tau',$$

$$\boldsymbol{R}_{\boldsymbol{Y}}(t) = \widehat{\mathbb{h}}(t)\boldsymbol{M}_{\boldsymbol{X}}(t+\tau'-\tau)\hat{\mathbb{h}}(\tau')^{\mathsf{T}} \,\mathrm{d}\tau \mathrm{d}\tau',$$

$$\mathbf{M}_{\mathbf{Y}}(\mathrm{d}\omega) = \hat{\mathbb{h}}(\omega)\mathbf{M}_{\mathbf{X}}(\mathrm{d}\omega)\hat{\mathbb{h}}^*(\omega).$$

Further reading...

Random

É. Savi

Probability
Space
Probability
triplet
Random
variable
Stochastic
process

square stochastic process Stationarity Power spectral measure Mean-squar derivation

Filtering

- H. Kobayashi, B. L. Mark, W. Turin: Probability, Random Processes, and Statistical Analysis. Cambridge University Press, Cambridge (2012);
- P. Krée & C. Soize: Mathematics of Random Phenomena: Random Vibrations of Mechanical Structures, Reidel Publishing Co., Dordrecht (1986);
- C. Soize: Méthodes Mathématiques en Analyse du Signal, Masson, Paris (1993);
- J. J. Shynk: Probability, Random Variables and Random Processes. Theory and Signal Processing Applications. Wiley, Hoboken NJ (2013);
- T.T. Soong & M. Grigoriu: Random Vibration of Mechanical and Structural Systems, Prentice Hall, Upper Saddle River NJ (1993).