

FCC TEST REPORT for Shenzhen Vsky Industries Co., Ltd.

Bluetooth speaker Model No.: A8, A8-A, A8-B, A8-C

Prepared for : Shenzhen Vsky Industries Co., Ltd.

Address : 2/F, No.4 Building, Hongfa Jiateli Hi-Tech Park, Shiyan

Sub-district, Baoan District, Shenzhen, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : R011411219E

Date of Test : Nov. 13~ Dec. 05, 2014

Date of Report : Dec. 08, 2014

TABLE OF CONTENT

Description

Page Test Report 1. GENERAL INFORMATION 4 3.5. Test Procedure 8 4. FCC PART 15.247 REQUIREMENTS FOR DSSS & OFDM MODULATION 11 4.6. Radiated Emissions 33 5. ANTENNA APPLICATION.......44 5.2 Result. 44 APPENDIX I (EXTERNAL PHOTOS).......47 APPENDIX II (INTERNAL PHOTOS)......51

TEST REPORT

Applicant : Shenzhen Vsky Industries Co., Ltd.

Manufacturer : Shenzhen Vsky Industries Co., Ltd.

EUT : Bluetooth speaker

Model No. : A8, A8-A, A8-B, A8-C

Serial No. : N.A.
Trade Mark : N.A.

Rating : DC 5V, 1000mA

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.247

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test:	Nov. 13~ Dec. 05, 2014
Prepared by :	kelso zhang
	(Tested Engineer / Kebo Zhang)
Reviewer:	Amy Ding
<u> </u>	(Project Manager / Amy Ding)
Approved & Authorized Signer:	Ton Chen
· · · · · · · · · · · · · · · · · · ·	(Manager / Tom Chen)

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Bluetooth speaker

Model Number : A8, A8-A, A8-B, A8-C

(Note: All samples are the same except the model number and

colour, so we prepare "A8" for test only.)

Test Power Supply: DC 5V Via Adapter AC 120V, 60Hz/

DC 5V(With DC 3.7V Battery inside)

Frequency : 2402~2480MHz

Modulation : GFSK

Channel Spacing : 2MHz

Number of

Channels

: 40

Antenna Type : PCB Trace Antenna

Antenna

: PCB Antenna: 8 dBi

Specification

Applicant : Shenzhen Vsky Industries Co., Ltd.

Address : 2/F, No.4 Building, Hongfa Jiateli Hi-Tech Park, Shiyan Sub-district,

Baoan District, Shenzhen, China

Manufacturer : Shenzhen Vsky Industries Co., Ltd.

Address : 2/F, No.4 Building, Hongfa Jiateli Hi-Tech Park, Shiyan Sub-district,

Baoan District, Shenzhen, China

Factory : Shenzhen Vsky Industries Co., Ltd.

Address : 2/F, No.4 Building, Hongfa Jiateli Hi-Tech Park, Shiyan Sub-district,

Baoan District, Shenzhen, China

Date of receipt : Nov. 13, 2014

Date of Test : Nov. 13~ Dec. 05, 2014

1.2. Auxiliary Equipment Used during Test

Adapter : Power Supply

Model:MX12L3-0502000V

Input: AC 100-240V, 50-60Hz, 0.35A

Output: DC 5V, 2A

CE, FCC

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS - LAB Code: L3503

Shenzhen Anbotek Compliance Laboratory Limited., Laboratory has been assessed and in compliance with CNAS/CL01: 2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

FCC-Registration No.: 752021

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 752021, July 10, 2013.

IC-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited., EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 8058A, February 22, 2013.

Test Location

All Emissions tests were performed at

Shenzhen Anbotek Compliance Laboratory Limited. at 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road, Nanshan District, Shenzhen, Guangdong, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.3dB

Conduction Uncertainty : Uc = 3.4dB

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4: 2009 and FCC Part 15, Paragraph 15.247.

2.1. Summary of Test Results

The EUT has been tested according to the following specifications:

Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.107, 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15, Paragraph 15.247(b)(1)	Peak Output Power	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(2)	6dB Bandwidth	PASS	Complies
FCC Part 15, Paragraph 15.247(c)	100kHz Bandwidth of Frequency Band Edges	PASS	Complies
FCC Part 15, Paragraph 15.209(a)(f)	Spurious Emission	PASS	Complies
FCC Part 15, Paragraph 15.247(a)(1)	Frequency Separation	1	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Number of Hopping Frequency	-	N/A
FCC Part 15, Paragraph 15.247(a)(1)(iii)	Time of Occupancy	-	N/A
FCC Part 15, Paragraph 15.247(c)	Peak Power Density	PASS	Complies

2.2. Description of Test Modes

The EUT has been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel Low(2402MHz), Channel Middle(2440MHz) and Channel High(2480MHz) are chosen for the final testing.

3. Conducted Emission Test

3.1. Block Diagram of Test Setu

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging to adapter) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2003 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Test equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1.	Two-Line	Rohde & Schwarz	ENV216	100055	Apr. 22, 2014	1 Year	
	V-network	Ronde & Senwarz	LIVV210	100055	71p1. 22, 2014	1 1 Cai	
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Apr. 22, 2014	1 Year	
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Apr. 22, 2014	1 Year	

3.7. Power Line Conducted Emission Measurement Results **PASS.**

The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room
Operating Condition: Charging to adapter

Test Specification: DC 5V Via Adapter AC 120V, 60Hz

Comment: Live Line

Tem:25℃ Hum:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

MEASUREMENT RESULT: "011411219101_fin"

11/18/2014	11:36AM						
Frequency		Transd		_	Detector	Line	PE
MH2	z dBµV	dB	dΒμV	dB			
0.361500	30.00	20.1	59	28.7	OP	L1	GND
0.447000		20.1			~		
		20.1	57	19.1	QP	L1	GND
1.288000	27.60	20.2	56	28.4	QP	L1	GND
3.043000	27.30	20.4	56	28.7	QP	L1	GND
5.770000	22.30	20.5	60	37.7	QP	L1	GND
26.807500	11.20	20.9	60	48.8	QP	L1	GND

MEASUREMENT RESULT: "011411219101 fin2"

11/18/2014 : Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.339000 0.447000 1.288000 2.876500 5.774500 27.590500	13.60 23.90 15.10 15.10 11.10 6.40	20.1 20.1 20.2 20.4 20.5	49 47 46 46 50	35.6 23.0 30.9 30.9 38.9 43.6	AV AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND GND

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room Operating Condition: Charging to adapter

Test Specification: DC 5V Via Adapter AC 120V, 60Hz

Comment: Neutral Line

Tem:25°C Hum:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

Short Description: 150K-30M Disturbance Voltages

MEASUREMENT RESULT: "011411219102_fin"

11/18/2014	11:39AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBuV	dB	dBuV	dB			
0.361500	32.20	20.1	59	26.5	OP	N	GND
0.447000		20.1	57	15.5	~	N	GND
0.447000	41.40	20.1	57	15.5	QP	IA	GND
1.229500	29.40	20.2	56	26.6	QP	N	GND
2.863000	32.40	20.4	56	23.6	QP	N	GND
5.185000	27.50	20.5	60	32.5	QP	N	GND
12.754000	13.00	20.7	60	47.0	QP	N	GND

MEASUREMENT RESULT: "011411219102 fin2"

11/18/2014 11	l:39AM						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
11112	α2μ.		az _p ,				
0.222000	23.10	20.1	53	29.6	AV	N	GND
0.357000	26.40	20.1	49	22.4	AV	N	GND
0.442500	34.30	20.1	47	12.7	AV	N	GND
1.310500	21.40	20.2	46	24.6	AV	N	GND
2.863000	22.50	20.4	46	23.5	AV	N	GND
5.653000	17.00	20.5	50	33.0	AV	N	GND

4. FCC Part 15.247 Requirements for DSSS & OFDM Modulation

4.1. Test Setup

4.2. 6dB Bandwidth

a. Limit

For the direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz.

b. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW = 100kHz, $VBW \ge 3*RBW = 300kHz$,

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

c. Test Setup See 4.1

d. Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 08, 2014	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 08, 2014	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 22, 2014	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 04, 2014	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 24, 2014	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Aug. 08, 2014	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

e. Test Results

Pass.

f. Test Data

Channel	Frequency	Bandwidth	Limit	Results
Chamilei	(MHz)	(kHz)	(kHz)	Results
Low	2402	610.00		Pass
Mid	2440	610.00	>500	Pass
High	2480	610.00		Pass

Test Plots See the following page.

4.3. Maximum Peak output power test

a. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt (30dBm).
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antenna of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

b. Configuration of Measurement

c. Test Procedure

This test was according the kDB 558074 9.1.2:

- 1. This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.
- 2. Set the RBW ≥DTS bandwidth.
- 3. Set the VBW≥3*RBW.
- 4. Set the span $\geq 3*RBW$.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use peak marker function to determine the peak amplitude level.

d. Test Equipment

Same as the equipment listed in 4.2.

e. Test Results

Pass.

g. Test Data

Channel Frequency		Maximum transmit power	Li	mit	Result
Chamilei	(MHz)	(dBm)	(dBm)	(watts)	Result
Low	2402	-12.88			Pass
Mid	2440	-13.04	28	0.63	Pass
High	2480	-13.65			Pass

Note:

The antenna gain is 8dBi which is greater than 6dBi, according to the FCC rules, the limit reduced as follows:

Antenna Gain: 8dBi- 6dBi= 2dBi

Limit: 30dBm- 2= 28dBm=0.63W

4.4. Band Edges Measurement

a. Limit

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

According to KDB 558074, section 11:

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:⁷

- a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).
- b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).
- c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.⁸

b. Test Procedure

- 1. Conducted Method:
- 1) Set RBW=100kHz, VBW=300kHz
- 2) Detector=peak
- 3) Sweep time= auto
- 4) Trace mode=max hold.
- 2. Radiated Method: (If applicable)
- 1) The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set both RBW and VBW of spectrum analyzer to 100kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT. If pass then set Spectrum Analyzer as below:

For below 1GHz:

The resolution bandwidth and video bandwidth of test receiver/ spectrum analyzer is 120kHz.

Detector: Quasi-Peak

For above 1GHz Peak measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and video bandwidth is 3MHz.

Detector: Peak

For above 1GHz average measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and the video bandwidth is 1kHz.

Detector: Peak

5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Results

Pass.

e. Test Plots

See the following page.

CH Low (The PPSD result in 100kHz is -10.20dBm)

CH High (The PPSD result in 100kHz is -10.92dBm)

2402MHz

Horizontal-PEAK:

Horizontal-AV:

2402MHz Vertical-PEAK:

Vertical-AV:

2480MHz Horizontal-PEAK:

Horizontal-AV:

2480MHz

Vertical-AV:

4.5. Peak Power Spectral Density

a. Limit

- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

b. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as: RBW = 3kHz, VBW = 10kHz, Span = 1.5xOBW, Sweep=500s
- 3. In addition to the second point, re-set the spectrum analyzer as: RBW = 100kHz, VBW = 300kHz, Span = 1.5xOBW, Sweep=500s, the test results are used for conducted bandedge limit.
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

c. Test Equipment

Same as the equipment listed in 4.2.

d. Test Setup

See 3.1

e. Test Results

Pass

f. Test Data

Please refer to the following data.

g. Test Plot See the following pages

Test Data

Channel	Frequency	PPSD	Σ PPSD	Limit	Result
Chamie	(MHz)	(dBm/3KHz)	(dBm/3KHz)	(dBm)	Kesuit
Low	2402	-20.88	-	6.00	Pass
Mid	2440	-20.71	-	6.00	Pass
High	2480	-22.23	_	6.00	Pass

Channel	Frequency (MHz)	PPSD (dBm/100KHz)	Σ PPSD (dBm/100KHz)	Result
Low	2402	-9.97	-	Pass
Mid	2440	-10.92	-	Pass
High	2480	-9.67	-	Pass

3KHz

CH Low

4.6. Radiated Emissions

4.6.1.1. Test Limits (< 30 MHz)

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meter)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

4.6.1.2. Test Limits (\geq 30 MHz)

FIELD STRENGTH		S15.209	
of Harmonics		30 - 88 MHz	40 dBuV/m
		88 - 216 MHz	43.5
		216 - 960 MHz	46
54 dBμV/m @3m		ABOVE 960 MHz	54dBuV/m
	of Harmonics	of Harmonics	of Harmonics 30 - 88 MHz 88 - 216 MHz 216 - 960 MHz

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 08, 2014	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 08, 2014	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 22, 2014	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Apr. 04, 2014	1 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 24, 2014	1 Year
6.	Pre-amplifier	SONOMA	310N	186860	Aug. 08, 2014	1 Year
7.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

4.6.2. Test Configuration:

4.6.2.1. 9k to 30MHz emissions:

4.6.2.2. 30M to 1G emissions:

4.6.2.3. 1G to 40G emissions:

4.6.3. Test Procedure

- 1) The EUT is placed on a turntable, which is 0.8m above the ground plane. The EUT is tested in 9*6*6 Chamber.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set both RBW and VBW of spectrum analyzer to 100kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT. If pass then set Spectrum Analyzer as below:

For below 1GHz:

The resolution bandwidth and video bandwidth of test receiver/ spectrum analyzer is 120kHz.

Detector: Quasi-Peak

For above 1GHz Peak measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and video bandwidth is 3MHz

Detector: Peak

For above 1GHz average measurement:

The resolution bandwidth of test receiver/ spectrum analyzer is 1MHz and the video bandwidth is 1kHz.

Detector: Peak

5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

The test results are listed in Section 4.6.4.

4.6.4. Test Results

The EUT was tested on (Charging to adapter, BT Mode) modes, only the worst data of (Charging to adapter) are attached in the following pages.

Job No.: 011411219E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: DC 5V Via Adapter AC 120V, 60Hz

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: Charging to adapter Distance: 3m

Standard: (RE)FCC PART15 C _3m Power Source: DC 5V Via Adapter AC 120V, 60Hz

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Test Mode: Charging to adapter Distance: 3m

Job No.: 011411219E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 2402MHz Distance: 3m

Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 2402MHz Distance: 3m

Job No.: 011411219E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 2440MHz Distance: 3m

Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 2440MHz Distance: 3m

Job No.: 011411219E Polarization: Horizontal

Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 2480MHz Distance: 3m

Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Note: 2480MHz Distance: 3m

5. ANTENNA APPLICATION

5.1. Antenna requirement

The EUT'S antenna is met the requirement of FCC part 15C section 15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

5.2. Result

The EUT's antenna used a PCB antenna which is permanently attached, The antenna's gain is 8dBi

and meets the requirement.

6. PHOTOGRAPH

6.1. Photo of Conducted Emission Measurement

6.2. Photo of Radiation Emission Test

APPENDIX I (EXTERNAL PHOTOS)

Figure 1
The EUT-Overall View

Figure 2
The EUT-Top View

Figure 4
The EUT-Front View

Figure 6
The EUT-Left View

Figure 7
The EUT-Right View

Figure 8
The EUT-Port View

APPENDIX III (INTERNAL PHOTOS)

Figure 9
The EUT-Inside View

Figure 10
The EUT-Inside View

Figure 12 PCB of the EUT-Front View

Figure 14
PCB of the EUT-Front View

