Lezione 6 Geometria I

Federico De Sisti 2024-03-13

Equivalenza per affinità 1

Definizione 1

Equivalenza per affinità Due sottoinsiemi $F, F' \subseteq A$ spazio affine, si dicono affinamente equivalenti se esiste $f \in Aff(A)$ tale che f(F) = F'Definiamo anche una proprietà affine se è equivalente per affinità

Proposizione 1

Se $f \in Aff(A)$ e F un sottospazio affine di A di dimensione k, allora f(F) \grave{e} un sottospazio affine di dimensione k

Dimostrazione

F = p + W dim(W) = k Sia φ la parte lineare di f, che è un omomorfismo $\varphi:V\to V.$

Poniamo F' = f(p) + W' dove $W' = \varphi(W)$ Chiaramente, $dim(W') = dim(\varphi(W)) = k$ $risulta\ f(F) = F'$

$$Q \in F$$
 $\overrightarrow{f(P)f(Q)} = \varphi(\overrightarrow{PQ}) \in \varphi(W) = W'.$

e dato che $\overrightarrow{PQ} \in W \Rightarrow f(F) \subseteq F'$ Viceversa, dato $R \in F$

$$\overrightarrow{Pf^{-1}(R)} = \varphi^{-1}(\overrightarrow{f(P)R}) \in W \Rightarrow f^{-}1(R) \in F, R \in f(F).$$

dunque $F \subseteq f(F)$

Teorema 1

Sia (A, V, +) uno spazio affine di dimensione n e siano $\{p_0, \ldots, p_n\}$, $\{a_0,\ldots,a_n\}$ due (n+1)-ple di punti indipendenti. Allora esiste un'unica affinità $f \in Aff(A)$ tale che $f(p_i) = q_i, 0 \le i \le n$

Dimostrazione

Per ipotesi $\{\overline{p_0p_1},\ldots,\overline{p_0p_n}\},\{\overline{q_0q_1},\ldots,\overline{q_0q_n} \text{ Sono basi di } V, \text{ dunque esiste un }$ unico operatore lineare $\varphi \in GL(V)$ tale che $\varphi(\overline{p_0p_i} = \overline{q_0q_i})$ $1 \le i \le n$

Pongo
$$f(p) = q_0 + \varphi(\overrightarrow{p_0p})$$

$$f(p_i) = q_0 + \varphi(\overrightarrow{p_0p_i} = q_0 + \overrightarrow{q_0q_i} = q_i$$

$$f \ \grave{e} \ chiaramente \ biettiva \ \overrightarrow{f(p)f(p')} = \overrightarrow{q_0f(p)} - \overrightarrow{q_0f(p')} = \varphi(\overrightarrow{p_0p'}) - \varphi(\overrightarrow{p_0p}) =$$

$$= \varphi(\overrightarrow{p_0p'} - \overrightarrow{p_0p}) = \varphi(pp')$$

L'unicità di f segue da quella di φ e dal fatto che $f(p_0)=q_0$ (un'affinità è determinata dalla parte lineare e dall'immagine di un punto.

Esempio

Determino $f \in Aff(\mathbb{A}^2)$ t.c.

$$f\left(\begin{smallmatrix}2\\1\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\2\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}-1\\-1\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\1\end{smallmatrix}\right), \quad f\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right) = \left(\begin{smallmatrix}2\\-1\end{smallmatrix}\right).$$
$$\{\overrightarrow{p_0p_1}, \overrightarrow{p_0p_2}\} \to \{\overrightarrow{q_0q_1}, \overrightarrow{q_0q_2}\}$$

 $\varphi(\overrightarrow{p_0p_1}) = \overrightarrow{q_0q_1}, \varphi(\overrightarrow{p_0p_2}) = \overrightarrow{q_0q_2}$

Cercherò quindi $\varphi \in GL(V)$ tale che

$$\varphi\begin{pmatrix} -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad \varphi\begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$P = \left\{ \begin{pmatrix} -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \end{pmatrix} \right\} \quad \varepsilon\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

$$[\varphi]_B^\varepsilon = \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix} \qquad [Id]_B^\varepsilon = \begin{pmatrix} -3 & -2 \\ -2 & 0 \end{pmatrix}$$

$$[\varphi]_\varepsilon^\varepsilon = [\varphi]_B^\varepsilon [Id]_\varepsilon^B = [\varphi]_B^\varepsilon [Id]_B^\varepsilon - 1 =$$

$$= \begin{pmatrix} 0 & 1 \\ -1 & -3 \end{pmatrix} \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{4} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{3}{4} \\ \frac{3}{2} & -\frac{7}{4} \end{pmatrix}$$

$$f\left(\frac{x_1}{x_2}\right) = \left(\frac{1}{2}\right) + \left(\frac{-\frac{1}{2}}{\frac{3}{2}}\right) \left(\frac{x_1}{x_2-\frac{7}{4}}\right)$$
$$f\left(\frac{x_1}{x_2}\right) = \left(\frac{1}{2}\right) + \left(\frac{-\frac{1}{2}}{\frac{3}{2}}\right) \left(\frac{x_1-2}{x_2-1}\right)$$
$$f(p) = q_0 + \varphi(\overrightarrow{p_0p})$$

$$f\left(\begin{smallmatrix} x_1\\ x_2 \end{smallmatrix}\right) = \left(\begin{smallmatrix} \frac{9}{4}\\ \frac{11}{4} \end{smallmatrix}\right) + \left(\begin{smallmatrix} -\frac{1}{2} & \frac{3}{4}\\ \frac{3}{2} & -\frac{7}{4} \end{smallmatrix}\right) \left(\begin{smallmatrix} x_1\\ x_2 \end{smallmatrix}\right) = \left(t_V \circ L_A\right) \left(\begin{smallmatrix} x_1\\ x_2 \end{smallmatrix}\right) \quad v = \left(\begin{smallmatrix} \frac{9}{4}\\ \frac{11}{4} \end{smallmatrix}\right)$$

Corollario

(A, V, +) spazio affine di dimensione n

- 1. per ogni $1 \le k \le n+1$ due qualsiasi k-uple di punti sono affinamente equivalenti
- 2. Due sottospazi affini sono affinamente equivalenti se e solo se hanno al stessa dimensione

Dimostrazione

1. Se $\{p_0, \ldots, p_{k-1}\}$, $\{q_0, \ldots, q_{k-1}\}$ sono le k-ple date, completiamole a (n+1)-ple di punti indipendenti $\{p_0, \ldots, p_n\}$, $\{q_0, \ldots, q_n\}$ e usiamo il teorema 2. Abbiamo già visto che un'affinità preserva la dimensione dei sottospazi.

Viceversa, se S,S' sono sottospazi affini della stessa dimensione k, possiamo trovare k+1 punti indipendenti in S, e k+1 punti indipendenti in S' tali che

$$S = \overrightarrow{p_0, \dots, p_k}, \quad S' = \overrightarrow{q_0, \dots, q_n}.$$

Per la parte 1, esiste un'affinità che manda P_i in q_i , $0 \le i \le k$, dunque

$$f(S) = S'$$
.

2 Proiezioni e Simmetrie

Definizione 2 (Proiezioni e Simmetrie)

In (A, V, +) Sia L un sottospazio affine, L = P + WSia U un complementare di W in V, ovvero $V = W \bigoplus U$

$$\pi_W^U(w+u) = w \qquad \qquad \pi_W^U: V \to V$$

$$\sigma_W^U(w+u) = w - u \qquad \sigma_W^U: V \to V$$

$$p_L^U(x) = p + \pi_W^U(\overrightarrow{px})$$
 proiezione su L parallela a U

$$s_L^U(x) = p + \sigma_W^U(\overrightarrow{px})$$
 simmetria di asse L e direzione U