Level 2

11

Let U be the subspace V spanned by all characteristic vectors of T. Then U=V, i.e.m the characteristic vectors of T span the whole space.

111 U^{\perp} is T-invariant.

112 Every nonzero T-invariant subspace of V contains a characteristic vector of T.

Proof. To prove U=V we prove the equivalent statement $U^{\perp}=\{0\}$. This in turn will follow from 111 and 112. Since U^{\perp} cannot contain a characteristic vector of T (this would contradict $U\cap U^{\perp}=\{0\}$), we must have $U^{\perp}=\{0\}$, hence U=V.