TERMODINÁMICA

Ejercicio del Tema 5

Nombre		Grupo	s A-B-	-C-D-	-F-G
--------	--	-------	--------	-------	------

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La figura adjunta representa una bomba de calor basada en un ciclo Brayton inverso. El compresor (C) y la turbina (T) son adiabáticos, con rendimientos isentrópicos de 80 % y 85 % respectivamente. El fluido de trabajo es aire (R = 287 J/kg·K) que sale del disipador DIS (3) a 30 °C y del calentador CAL (6) a -15 °C. Las presiones de entrada (1) y salida (2) del compresor son 30 bar y 65 bar, respectivamente. La temperatura del aire en el punto (3) está 15 °C por encima de la del punto (1). La instalación aporta 70 MW a un foco caliente a temperatura $T_C = 20$ °C y toma calor del ambiente, considerado un foco térmico a -5 °C.

Se desprecian las pérdidas de presión en intercambiadores y conductos.

Determinar:

- a) COP del ciclo.
- b) Eficiencia exergética del ciclo.
- c) Exergía destruida en el regenerador.
- d) Diagrama de Sankey (sin indicaciones numéricas) del volumen de control señalado en la figura.

Tabla del aire como gas ideal

Т	u	h	s ⁰	Pr	T	u	h	s ⁰	Pr
[°C]	[kJ/kg]	[kJ/kg]	[kJ/kg⋅K]	[-]	[ºC]	[kJ/kg]	[kJ/kg]	s∘ [kJ/kg⋅K]	[-]
								_	
-75	-53,69	3,189	-0,32191	0,32579	25	17,93	103,5	0,087938	1,3585
-73	-52,26	5,194	-0,31184	0,33742	27	19,36	105,5	0,094657	1,3907
-71	-50,82	7,199	-0,30187	0,34934	29	20,8	107,5	0,10134	1,4234
-69	-49,39	9,203	-0,29200	0,36156	31	22,23	109,5	0,10798	1,4568
-67	-47,96	11,21	-0,28223	0,37408	33	23,67	111,5	0,11458	1,4906
-65	-46,53	13,21	-0,27255	0,38691	35	25,11	113,6	0,12114	1,5251
-63	-45,1	15,22	-0,26297	0,40005	37	26,54	115,6	0,12765	1,5601
-61	-43,67	17,22	-0,25347	0,41351	39	27,98	117,6	0,13412	1,5956
-59	-42,24	19,23	-0,24406	0,42729	41	29,42	119,6	0,14055	1,6318
-57	-40,81	21,23	-0,23474	0,44139	43	30,85	121,6	0,14694	1,6685
-55	-39,38	23,24	-0,22551	0,45582	45	32,29	123,6	0,15329	1,7058
-53	-37,95	25,24	-0,21636	0,47058	47	33,73	125,6	0,15960	1,7438
-51	-36,52	27,25	-0,20729	0,48568	49	35,17	127,6	0,16587	1,7823
-49	-35,08	29,25	-0,19831	0,50113	51	36,6	129,6	0,17210	1,8214
-47	-33,65	31,26	-0,18940	0,51692	53	38,04	131,7	0,17830	1,8611
-45	-32,22	33,26	-0,18057	0,53307	55	39,48	133,7	0,18445	1,9015
-43	-30,79	35,27	-0,17182	0,54957	57	40,92	135,7	0,19057	1,9424
-41	-29,36	37,27	-0,16315	0,56644	59	42,36	137,7	0,19666	1,9840
-39	-27,93	39,28	-0,15454	0,58367	61	43,8	139,7	0,20270	2,0263
-37	-26,5	41,29	-0,14602	0,60127	63	45,24	141,7	0,20871	2,0692
-35	-25,07	43,29	-0,13756	0,61925	65	46,68	143,7	0,21469	2,1127
-33	-23,63	45,3	-0,12917	0,63761	67	48,12	145,8	0,22063	2,1569
-31	-22,2	47,3	-0,12085	0,65636	69	49,56	147,8	0,22653	2,2017
-29	-20,77	49,31	-0,11260	0,67550	71	51	149,8	0,23241	2,2472
-27	-19,34	51,31	-0,10442	0,69503	73	52,44	151,8	0,23824	2,2934
-25	-17,91	53,32	-0,096306	0,71496	75	53,88	153,8	0,24405	2,3402
-23	-16,47	55,33	-0,088254	0,73530	77	55,33	155,8	0,24982	2,3878
-21	-15,04	57,33	-0,080266	0,75605	79	56,77	157,8	0,25556	2,4360
-19	-13,61	59,34	-0,072341	0,77722	81	58,21	159,9	0,26127	2,4849
-17	-12,18	61,34	-0,064478	0,79881	83	59,65	161,9	0,26695	2,5346
-15	-10,75	63,35	-0,056675	0,82082	85	61,1	163,9	0,27259	2,5849
-13	-9,314	65,36	-0,048932	0,84326	87	62,54	165,9	0,27821	2,6360
-11	-7,881	67,36	-0,041248	0,86614	89	63,98	167,9	0,28379	2,6878
-9	-6,448	69,37	-0,033622	0,88946	91	65,43	170	0,28934	2,7403
-7	-5,016	71,38	-0,026054	0,91323	93	66,87	172	0,29487	2,7935
-5	-3,583	73,38	-0,020034	0,93745	95	68,32	174	0,30036	2,8475
-3	-2,15	75,38	-0,010341	0,96212	97	69,76	174	0,30583	2,9023
-1	-0,7166	77,4	-0,0036811	0,98726	99	71,21	178	0,30303	2,9578
1	0,7166	79,41	0,0036678	1,0129	101	72,66	180	0,31127	3,0140
3	2,15	81,41	0,010964	1,0129	103	74,1	182,1	0,31008	3,0711
5	3,584	83,42	0,010904	1,0655	105	75,55	184,1	0,32741	3,1289
7									
	5,017	85,43	0,025400	1,0925	107	77	186,1	0,33274	3,1875
9	6,451	87,44	0,032542	1,1201	109	78,45	188,1	0,33803	3,2469
11	7,885	89,45	0,039634	1,1481	111	79,9	190,2	0,34331	3,3070
13	9,319	91,45	0,046677	1,1766	113	81,34	192,2	0,34855	3,3680
15	10,75	93,46	0,053671	1,2056	115	82,79	194,2	0,35377	3,4298
17	12,19	95,47	0,060617	1,2351	117	84,24	196,2	0,35896	3,4925
19	13,62	97,48	0,067517	1,2652	119	85,69	198,3	0,36413	3,5559
21	15,06	99,49	0,074369	1,2958	121	87,15	200,3	0,36927	3,6202
23	16,49	101,5	0,081176	1,3269	123	88,6	202,3	0,37439	3,6853

$$T_{1} = T_{3} - K = 15^{\circ}C \qquad \frac{65}{30} = \frac{Pres}{1,2056} \rightarrow Pres = 2,61213$$

$$h_{1} = 93,46 \text{ kJ/kJ}$$

$$Pres = 164,97 + \frac{11}{12}$$

$$Q8 = \frac{164,97 - 93,46}{12} \rightarrow h_{2} = 182,84 \text{ kJ}$$

Dirpodur

Rogenerador

Royenerador
$$h_3 + h_6 = h_4 + h_1$$

$$h_7 = h_4 = 78, 39 \text{ KJ/ky}$$

$$h_6 = 63,35 \text{ KJ/ky}$$

$$h_6 = 63,35 \text{ KJ/ky}$$

Turbicuo

$$\frac{30}{65} = \frac{Prrs}{0.999849} - Prrs = 0.46149$$

$$hrrs = 24.01 kJ/ky$$

$$0.85 = 32.17 kJ/ky$$

$$0.85 = 78.39 - 24.01$$

$$\frac{9c}{\cos^2 - \frac{9c}{\omega_{c} - \omega_{T}}} = \frac{74.34}{89.38 - 46.22} = \frac{1.722}{1.722}$$

b)
$$\frac{1,722}{\text{Gr}_{max}} = \frac{coP}{coP_{max}} = \frac{1,722}{293 - 268}$$

bomba de color operando ente 2 four, riendo mo de elles el ambiente

c) in Δ_3 + in Δ_1 + squar = in Δ_4 + in Δ_1 $s_{yen} = in(\Delta_4 - \Delta_3) + in(\Delta_1 - \Delta_6)$ En aubor innements de Δ_1 Au Herre $\Delta_2 = 0$.

 $\Delta_{i}^{\circ} = 0.073671 \text{ kJ/kg-k}$ $\Delta_{i}^{\circ} = -0.076675$ " $\Delta_{i}^{\circ} = -0.076675$ " $\Delta_{i}^{\circ} = -0.076675$ "

 $70-10^{3} = w(h_{3}-h_{2}) \rightarrow w = 941.62 \text{ kg/d}$ 5yeu = 941.62 [(-0.00006 - 0.10466) + (0.053671 + 0.056675)] $= 5^{2}9755 \text{ kW/K}$

I Ray = To. Sqen = 1419,74 KW

 $\frac{\dot{\Psi}_{3}}{A_{0}=0} \qquad \qquad \dot{\Psi}_{i}$

TERMODINÁMICA

Ejercicio del Tema 5

Nombre Gr	rupo	Е
-----------	------	---

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La figura adjunta representa un ciclo Brayton de potencia. El compresor (C) y la turbina (T) son adiabáticos, con rendimientos isentrópicos de 80 % y 90 % respectivamente. El fluido de trabajo es aire (R = $287 \text{ J/kg} \cdot \text{K}$) que entra al compresor (1) a 35 °C y 30 bar, saliendo del mismo a 50 bar. El aire entra en la turbina (4) a 850 °C. La temperatura del punto (6) es 15 °C mayor que la del punto (2). La potencia producida por el alternador (supuesto ideal) es de 300 MW.

El ciclo recibe calor en el calentador CAL procedente de un foco a 900 °C y disipa calor al ambiente (foco térmico a 25 °C) a través del prerrefrigerador (PR). Se desprecian las pérdidas de presión en intercambiadores y conductos.

Determinar:

- a) Rendimiento del ciclo.
- b) Exergía destruida por irreversibilidades internas en el ciclo.
- c) Eficiencia exergética del compresor.
- d) Diagrama de Sankey (sin indicaciones numéricas) del volumen de control señalado en la figura.

Tabla del aire como gas ideal

Т	u	h	s ⁰	Pr	T	u	h	s ⁰	Pr
[ºC]	[kJ/kg]	[kJ/kg]	[kJ/kg·K]	[-]	[ºC]	[kJ/kg]	 [kJ/kg]	[kJ/kg·K]	[-]
0	0	78,4	0,0000	1,0000	700	541,4	820,7	1,3286	102,38
5	3,584	83,42	0,018208	1,0655	705	545,6	826,4	1,3344	102,38
10	7,168	88,44	0,036094	1,1340	710	549,9	832,1	1,3402	106,61
15	10,75	93,46	0,053671	1,1340	715	554,1	837,8	1,3460	108,78
20	14,34	98,48			720	558,4	843,5	1,3517	110,98
25			0,070949	1,2804					
30	17,93	103,5	0,087938	1,3585	725	562,7	849,2	1,3574	113,21
	21,52	108,5	0,10467	1,4400	730	566,9	854,9	1,3631	115,48
35	25,11	113,6	0,12114	1,5251	735	571,2	860,6	1,3688	117,79
40	28,7	118,6	0,13734	1,6136	740	575,5	866,3	1,3745	120,13
45	32,29	123,6	0,15329	1,7058	745	579,8	872	1,3801	122,51
50	35,89	128,6	0,16899	1,8018	750	584,1	877,7	1,3857	124,92
55	39,48	133,7	0,18445	1,9015	755	588,4	883,5	1,3913	127,37
60	43,08	138,7	0,19968	2,0051	760	592,7	889,2	1,3968	129,87
65	46,68	143,7	0,21469	2,1127	765	597	894,9	1,4024	132,39
70	50,28	148,8	0,22947	2,2244	770	601,3	900,7	1,4079	134,96
75	53,88	153,8	0,24405	2,3402	775	605,6	906,4	1,4134	137,57
80	57,49	158,9	0,25842	2,4604	780	609,9	912,2	1,4188	140,22
85	61,1	163,9	0,27259	2,5849	785	614,2	917,9	1,4243	142,90
90	64,71	168,9	0,28657	2,7139	790	618,5	923,7	1,4297	145,63
95	68,32	174	0,30036	2,8475	795	622,9	929,5	1,4351	148,40
100	71,93	179	0,31397	2,9858	800	627,2	935,2	1,4405	151,21
105	75,55	184,1	0,32741	3,1289	805	631,5	941	1,4459	154,06
110	79,17	189,1	0,34067	3,2769	810	635,9	946,8	1,4512	156,95
115	82,79	194,2	0,35377	3,4298	815	640,2	952,6	1,4565	159,89
120	86,42	199,3	0,36671	3,5880	820	644,6	958,3	1,4618	162,87
125	90,05	204,3	0,37948	3,7513	825	648,9	964,1	1,4671	165,90
130	93,68	209,4	0,39211	3,9200	830	653,3	969,9	1,4724	168,96
135	97,32	214,5	0,40459	4,0941	835	657,7	975,7	1,4776	172,08
140	101	219,5	0,41692	4,2739	840	662	981,5	1,4828	175,24
145	104,6	224,6	0,42911	4,4593	845	666,4	987,3	1,4880	178,44
150	108,2	229,7	0,44117	4,6506	850	670,8	993,1	1,4932	181,69
155	111,9	234,8	0,45309	4,8478	855	675,1	999	1,4984	184,99
160	115,5	239,9	0,46488	5,0511	860	679,5	1005	1,5035	188,33
165	119,2	245	0,47654	5,2606	865	683,9	1011	1,5086	191,72
170	122,9	250,1	0,48808	5,4765	870	688,3	1016	1,5138	195,16
175	126,5	255,2	0,49950	5,6987	875	692,7	1022	1,5188	198,65
180	130,2	260,3	0,51081	5,9276	880	697,1	1028	1,5239	202,19
185	133,9	265,4	0,52200	6,1632	885	701,5	1034	1,5290	205,77
190	137,5	270,5	0,53307	6,4057	890	705,9	1040	1,5340	209,41
195	141,2	275,6	0,54404	6,6552	895	710,3	1046	1,5390	213,10
200	144,9	280,7	0,55490	6,9118	900	714,7	1051	1,5440	216,84
205	148,6	285,8	0,56565	7,1757	905	719,2	1057	1,5490	220,63
210	152,3	291	0,57631	7,4470	910	723,6	1063	1,5539	224,47
215	156	296,1	0,58686	7,7259	915	728	1069	1,5589	228,37
220	159,7	301,2	0,59732	8,0126	920	732,4	1075	1,5638	232,32
225	163,4	306,4	0,60768	8,3071	925	736,9	1081	1,5687	236,32
230	167,1	311,5	0,61794	8,6096	930	741,3	1087	1,5736	240,38
235	170,8	316,7	0,62812	8,9203	935	745,8	1093	1,5784	244,49
240	174,5	321,8	0,63821	9,2393	940	750,2	1098	1,5833	248,66
245	178,3	327	0,64821	9,5669	945	754,6	1104	1,5881	252,88

a) Compressor

$$h_1 = 113.6 \text{ KJ/KJ}$$
 $\frac{50}{30} = \frac{Pres}{1.7251}$
 $h_{75} = 162.17 \text{ KJ/KJ}$

$$0.8 = \frac{162.17 - 113.6}{h_2 - 113.6} \rightarrow h_2 = 174.31 \text{ KJ/ky}$$

$$T_2 = 95'31'C$$

Turbicue

$$h_{4} = 993, 1 \text{ KJ/ky} \qquad \frac{30}{50} = \frac{109,01}{181,69}$$

$$h_{7} = 181,69$$

$$h_{7} = 838, 40 \frac{\text{KJ}}{\text{Ky}}$$

$$0.9 = \frac{993,1 - h_{7}}{993,1 - 838,40} \rightarrow h_{7} = 853,87 \text{ KJ/ky}$$

Rogenerador

Royenerador
$$h_{8} = 189,41 \text{ kJ/ky} \quad (T_{6} = T_{2} + 15 = 110,3°C)$$

$$h_{8} = 189,41 \text{ kJ/ky} \quad (T_{6} = T_{2} + 15 = 110,3°C)$$

$$h_{3} - 174,31 = 873,87 - 189,41$$

$$h_{3} = 838,77 \text{ kJ/ky}$$

adentodor

b)
$$\frac{\dot{Q}c}{\overline{T}_{34}} + \dot{S}_{9}^{iut} = \frac{\dot{Q}o}{\overline{T}_{61}} \Rightarrow \dot{S}_{9}^{iut} = \frac{\dot{Q}o}{\overline{T}_{61}} - \frac{\dot{Q}c}{\overline{T}_{3h}} =$$

$$=\frac{in\left(h_{6}-h_{1}\right)}{\frac{h_{6}-h_{1}}{J_{6}-J_{1}}}=in\left[\left(h_{6}-J_{1}\right)-\left(h_{4}-h_{3}\right)\right]}{\frac{h_{4}-h_{3}}{J_{4}-J_{3}}}$$

En ambos As se tiene Sp=0.

$$\Delta_{i}^{0} = 0.12114 \text{ kJ/ky-K}$$

$$\Delta_{i}^{0} = 0.12114 \text{ kJ/ky-K}$$

$$\Delta_{6}^{0} = 0.34146 \text{ kJ/ky-K}$$

$$\Delta_{6}^{0} = 0.34146 \text{ kJ/ky-K}$$

$$\Delta_{6}^{0} = 0.34146 \text{ kJ/ky-K}$$

$$300-10^{7} = ui (WT - WC) - wi = 3820,000 = 84,36 MW$$

 $Syen = 283,0742 kw/k; [jint = To. Syen = 84,36 MW]$

c)
$$\sin \Delta_1 + \overline{Sgun} = \sin \Delta_2 \Rightarrow \overline{Sgen} = \sin (\Delta_2 - \Delta_1)$$

$$\sin 3_1 + 59 \text{cm} = \frac{1}{2} = \frac{1}{2}$$
 $\sin 3_1 + \frac{1}{2} = \frac{1}{2}$

$$-0.287 \left[\left(\frac{30}{30} \right) \right] = 127,83 \text{ kW/K}$$

$$= 231.95 MW$$

$$= 231.95 - 38.09$$

$$= 231.95 - 38.09$$

$$= 83.58 %$$