

SEQUENCE LISTING

<110> Cahoon, Rebecca E
Miao, Gou-Hau
Powell, Wayne

<120> Plant Farnesyltransferases

<130> BB-1240

<140> 09/786,675

<141>

<150> 60/099,521

<151> 1998-09-08

<160> 23

<170> Microsoft Office 97

<210> 1

<211> 1426

<212> DNA

<213> Zea mays

<400> 1

gcacgagaca ggcgaattac ttaagctatt tgtattcgga tctgatccaa ccctgggtgg 60
cagctggact catcgcccat ggagcacact aagtcaaggcc ccagcagttg gccagaactg 120
gccgacgtgg tgccggtgcc gcaggacat gggcttagcc ctgtgggtgc catcgccstat 180
cgagatgact ttctgtgaggt catggattac ttccggcccc tctacccac cggtgagcga 240
agccctcgcg ctctccgcct caccgcccgg gccatcgagc tcaaccccg caactacact 300
gtctggcatt tccggcgcct tattctggag tcactagatt ttgatttact agaggagatg 360
aaatttgtcg aaaaaattgc tgaatgcaat ccaaaaaatt accaaatctg gcaccataag 420
agatggcttg ctgagaaaatt aggaccttgtt attgcaaaca aagagcatga attcacaatg 480
aagatacttg ctattgtgc aaaaaattat catgcttggt ctcataggca gtgggttctt 540
caagcgttgg ggggatggga gactgaatta gaatactgtg accacttact taaggaagac 600
gtcttcataa attcagcttg gaatcagaga tacttttta taacaagatc accatttctt 660
ggtggccttg cgccaatgcg tgattcagaa gttagactaca caattgaagc tattcttagca 720
aacgctcaga atgaaagccc ctggaggatc ctcaagggtc tatacaaggg tgagaataac 780
ctgctagtag aggacgagcg catctctgtt gtttgttca aggtcctgaa gaatgattgg 840
acttgtgtat ttgcttttag tttgctgctc gatcttctct gcactgggtt gcagccttca 900
gatgaactta ggtccactct tgaaacaata aggagctccc atcctgaaac cgccgatgat 960
gatcctgcag ccgcgtttt ctgtatccctg cagaaaatgtg atcccctgcg ggtaaattat 1020
tggcttggt tcaaggacac tctttctcag atctcatgac ttcacatggg ttcacccctt 1080
gtccgcgtg gtccggcctc tgtgagatag acatgtttt gatagttca ttggacaccc 1140
aaacagagcg gacagagtgt atggctgcta ccttctccgt gactgaaagc agtgcttgc 1200
acgattttgt ttagaaaaat ttgtgagtt tactgctcca aacaacacct tatgcaaccca 1260
tatttgaata ttccacatgt aagcttgaat ccaggtgtt ttgttaatgt attacaattg 1320
ccatgggagc ctaaatgaga cccataatca cttccactag agtcggaaga ccgtgtcgag 1380
cagttcactc atatggtcac ttaaagcaaa aaaaaaaaaa aaaaaaa 1426

<210> 2

<211> 326

<212> PRT

<213> Zea mays

<400> 2

Met Glu His Thr Lys Ser Gly Pro Ser Ser Trp Pro Glu Leu Ala Asp
1 5 10 15

Val Val Pro Val Pro Gln Asp Asp Gly Pro Ser Pro Val Val Ser Ile

20

25

30

Ala Tyr Arg Asp Asp Phe Arg Glu Val Met Asp Tyr Phe Arg Ala Leu
 35 40 45

Tyr Leu Thr Gly Glu Arg Ser Pro Arg Ala Leu Arg Leu Thr Ala Glu
 50 55 60

Ala Ile Glu Leu Asn Pro Gly Asn Tyr Thr Val Trp His Phe Arg Arg
 65 70 75 80

Leu Ile Leu Glu Ser Leu Asp Phe Asp Leu Leu Glu Glu Met Lys Phe
 85 90 95

Val Glu Lys Ile Ala Glu Cys Asn Pro Lys Asn Tyr Gln Ile Trp His
 100 105 110

His Lys Arg Trp Leu Ala Glu Lys Leu Gly Pro Gly Ile Ala Asn Lys
 115 120 125

Glu His Glu Phe Thr Met Lys Ile Leu Ala Ile Asp Ala Lys Asn Tyr
 130 135 140

His Ala Trp Ser His Arg Gln Trp Val Leu Gln Ala Leu Gly Gly Trp
 145 150 155 160

Glu Thr Glu Leu Glu Tyr Cys Asp His Leu Leu Lys Glu Asp Val Phe
 165 170 175

Asn Asn Ser Ala Trp Asn Gln Arg Tyr Phe Val Ile Thr Arg Ser Pro
 180 185 190

Phe Leu Gly Gly Leu Ala Ala Met Arg Asp Ser Glu Val Asp Tyr Thr
 195 200 205

Ile Glu Ala Ile Leu Ala Asn Ala Gln Asn Glu Ser Pro Trp Arg Tyr
 210 215 220

Leu Lys Gly Leu Tyr Lys Gly Glu Asn Asn Leu Leu Val Glu Asp Glu
 225 230 235 240

Arg Ile Ser Ala Val Cys Phe Lys Val Leu Lys Asn Asp Trp Thr Cys
 245 250 255

Val Phe Ala Leu Ser Leu Leu Asp Leu Leu Cys Thr Gly Leu Gln
 260 265 270

Pro Ser Asp Glu Leu Arg Ser Thr Leu Glu Thr Ile Arg Ser Ser His
 275 280 285

Pro Glu Thr Ala Asp Asp Pro Ala Ala Val Cys Cys Ile Leu
 290 295 300

Gln Lys Cys Asp Pro Leu Arg Val Asn Tyr Trp Ser Trp Phe Lys Asp
 305 310 315 320

Thr Leu Ser Gln Ile Ser
 325

<210> 3
 <211> 1218

<212> DNA

<213> Oryza sativa

<400> 3

gcacgagggtt ctaacgccgc cgccgcccggc gccgtctccg cagaatctga tcgatggcgc 60
cgtcgtcgac gtcgtcggag ggtgcctccg acgagtggtt gccaccacgc cggcggccgg 120
agctggcggc cgtggccccgtt gtgacgcagg acgacggggcc ccaccccggtt gtggccatcg 180
cctaccggga cgagttccgc gaggtcatgg actacttccg cgccctctac ttgcggccggc 240
agcgcagcgt ccgcgcctc cacctcacccg ccgaggtcat cgacctaatt cccggcaact 300
acacgggtgtg gcattttagg cgtcttggtt tagaggcact ggatgctgat ctgcgtgagg 360
aaatggattt tggggaccga attgctgaat gtaacccaaa aaattatcaa atctggcatc 420
acaagagatg gcttgcggag aaattaggac cagatattgc aaataaaagag cacgaattta 480
caaggaagat actttctatg gatgctaaaa attaccatgc ttggtctcat aggcaactggg 540
ttcttcaagc actgggtggg tggggagactg aactacagta ttgcaaccag ctgcttgagg 600
aagacgtctt caataattca gcttggaaatc agagataacct tctaataaca agttcaccac 660
ttcttggagg ccttgcagca atgcgtgact cggaagtggg ttacacagtt ggggctattc 720
tggctaaccctc tcagaatgaa agcccccggg gatacctcaa aggccgttac aagggtgaaa 780
ataacttgct gatggctgat gagcgcacatc ctgatgtttt tctcaaggcctt ctgaaacatg 840
attcgacactg cgtatttgc ttgagcttgc tgctcgatct tcttcaaaatt ggtttacaac 900
cttcagatga actcaaaagga actatcgaag caataaaagaa ctctgatcct gaagcagatg 960
aagcagtaga tgctgatctt gcgactgcaaa tctgctcaat attgcagaga tgtgatcccc 1020
tgccggataaaa ttactgggtcc tgggtacagga ccacttattt tctcaaaacc tgaagcatgc 1080
agtggcctcc atgagggtcat aatggagata tcttctatct tcgtgtgatt ctgggcgtt 1140
aggtagccttag ctacatttgt tatgaacttt ctttggcat aactgatcac tgatattact 1200
ccaatattgtt gttctaaa 1218

<210> 4

<211> 339

<212> PRT

<213> Oryza sativa

<400> 4

Met Ala Pro Ser Ser Thr Ser Ser Glu Gly Ala Ser Asp Glu Trp Leu
1 5 10 15

Pro Pro Ser Arg Arg Pro Glu Leu Ala Asp Val Val Pro Val Thr Gln
20 25 30

Asp Asp Gly Pro His Pro Val Val Ala Ile Ala Tyr Arg Asp Glu Phe
35 40 45

Arg Glu Val Met Asp Tyr Phe Arg Ala Leu Tyr Phe Ala Gly Glu Arg
50 55 60

Ser Val Arg Ala Leu His Leu Thr Ala Glu Val Ile Asp Leu Asn Pro
65 70 75 80

Gly Asn Tyr Thr Val Trp His Phe Arg Arg Leu Val Leu Glu Ala Leu
85 90 95

Asp Ala Asp Leu Arg Glu Glu Met Asp Phe Val Asp Arg Ile Ala Glu
100 105 110

Cys Asn Pro Lys Asn Tyr Gln Ile Trp His His Lys Arg Trp Leu Ala
115 120 125

Glu Lys Leu Gly Pro Asp Ile Ala Asn Lys Glu His Glu Phe Thr Arg
130 135 140

Lys Ile Leu Ser Met Asp Ala Lys Asn Tyr His Ala Trp Ser His Arg
145 150 155 160

Gln Trp Val Leu Gln Ala Leu Gly Gly Trp Glu Thr Glu Leu Gln Tyr
 165 170 175
 Cys Asn Gln Leu Leu Glu Glu Asp Val Phe Asn Asn Ser Ala Trp Asn
 180 185 190
 Gln Arg Tyr Leu Val Ile Thr Ser Ser Pro Leu Leu Gly Gly Leu Ala
 195 200 205
 Ala Met Arg Asp Ser Glu Val Asp Tyr Thr Val Gly Ala Ile Leu Ala
 210 215 220
 Asn Pro Gln Asn Glu Ser Pro Trp Arg Tyr Leu Lys Gly Leu Tyr Lys
 225 230 235 240
 Gly Glu Asn Asn Leu Leu Met Ala Asp Glu Arg Ile Ser Asp Val Cys
 245 250 255
 Leu Lys Val Leu Lys His Asp Ser Thr Cys Val Phe Ala Leu Ser Leu
 260 265 270
 Leu Leu Asp Leu Leu Gln Ile Gly Leu Gln Pro Ser Asp Glu Leu Lys
 275 280 285
 Gly Thr Ile Glu Ala Ile Lys Asn Ser Asp Pro Glu Ala Asp Glu Ala
 290 295 300
 Val Asp Ala Asp Leu Ala Thr Ala Ile Cys Ser Ile Leu Gln Arg Cys
 305 310 315 320
 Asp Pro Leu Arg Ile Asn Tyr Trp Ser Trp Tyr Arg Thr Thr Ile Ser
 325 330 335
 Ser Gln Thr

<210> 5
 <211> 1261
 <212> DNA
 <213> Glycine max

<400> 5
 gcacgaggat taacgaagga tgaaatctgg gtctagcgaa ggagaagagg tgcagcaacg 60
 cgtgccgtt agggagagag tggagtggtc agatgtact ccgttccctc aaaacgacgg 120
 ccctaaccct gtcgttccga tccagtagcac tgaagagttt tccgaagttt tgattactt 180
 tcgcgcgtt tacctcaccg atgaacgctc ccctcgcc ctcgcctca cagccgaagc 240
 cgttcaattt aactccggca actacactgt gtggcatttc cgacgggtgt tacttgagtc 300
 gctaaaagtc gacttgaacg atgaactgga ttttgtggag cgtatggccg ctggaaattc 360
 taaaaattat cagatgtggc atcatagacg atgggttgcc gagaagtttag gtcctgaagc 420
 tagaaaacaat gagctcgagt tcacaaaaaa gataactgtcc gttgatgcca aacattatca 480
 tgcattggct catagacagt gggctttca aacacttagga ggatgggaag atgaacttaa 540
 ttattgcaca gaactactta aagaagacat ttttaacaat tctgcttggaa atcagagata 600
 ttttgtcata acaagggtctc ctttcttggg gggctaaaaa gctatggagag agtctgaagt 660
 gctttacacc attgaagcca ttatagccctt ccctgaaaaat gaaagctcggt ggagatatct 720
 acgaggactt tataaagggtg aaactacttc atgggttaaat gatcctcaag tttcttcagt 780
 atgcttaaag attttgagaa ctaagagcaa ctacgtttt gctcttagca ctattttaga 840
 tcttatatgc tttggttatc accaaatga agacattaga gatgccattt acgccttaaa 900
 gaccgcagat atggataaac aagatttga tgatgtatgaa aaaggggaac aacaaaattt 960
 aaatatacgca cgaatattt gttctatcctt aaaaacaagtt gatccaatta gaaccaacta 1020
 ttggatttgg cgcaagagca gacttcctct atcagcttag taaccaaagt aattaaaggg 1080

caactctgtg ttatgtgtaa cctagtttat tgaaactgga tttttattta ttattatattt 1140
ttatgtgtc atgtatctgt ttgtgcaaat ttatctttt gtcatgccat tactggcatt 1200
tgagtgtaaag gattgaaagc catgcagaat aagaaattta agttttttt tccgttgaaa 1260
a 1261

<210> 6
<211> 346
<212> PRT
<213> Glycine max

<400> 6
Met Glu Ser Gly Ser Ser Glu Gly Glu Glu Val Gln Gln Arg Val Pro
1 5 10 15

Leu Arg Glu Arg Val Glu Trp Ser Asp Val Thr Pro Val Pro Gln Asn
20 25 30

Asp Gly Pro Asn Pro Val Val Pro Ile Gln Tyr Thr Glu Glu Phe Ser
35 40 45

Glu Val Met Asp Tyr Phe Arg Ala Val Tyr Leu Thr Asp Glu Arg Ser
50 55 60

Pro Arg Ala Leu Ala Leu Thr Ala Glu Ala Val Gln Phe Asn Ser Gly
65 70 75 80

Asn Tyr Thr Val Trp His Phe Arg Arg Leu Leu Leu Glu Ser Leu Lys
85 90 95

Val Asp Leu Asn Asp Glu Leu Asp Phe Val Glu Arg Met Ala Ala Gly
100 105 110

Asn Ser Lys Asn Tyr Gln Met Trp His His Arg Arg Trp Val Ala Glu
115 120 125

Lys Leu Gly Pro Glu Ala Arg Asn Asn Glu Leu Glu Phe Thr Lys Lys
130 135 140

Ile Leu Ser Val Asp Ala Lys His Tyr His Ala Trp Ser His Arg Gln
145 150 155 160

Trp Ala Leu Gln Thr Leu Gly Gly Trp Glu Asp Glu Leu Asn Tyr Cys
165 170 175

Thr Glu Leu Leu Lys Glu Asp Ile Phe Asn Asn Ser Ala Trp Asn Gln
180 185 190

Arg Tyr Phe Val Ile Thr Arg Ser Pro Phe Leu Gly Gly Leu Lys Ala
195 200 205

Met Arg Glu Ser Glu Val Leu Tyr Thr Ile Glu Ala Ile Ile Ala Tyr
210 215 220

Pro Glu Asn Glu Ser Ser Trp Arg Tyr Leu Arg Gly Leu Tyr Lys Gly
225 230 235 240

Glu Thr Thr Ser Trp Val Asn Asp Pro Gln Val Ser Ser Val Cys Leu
245 250 255

Lys Ile Leu Arg Thr Lys Ser Asn Tyr Val Phe Ala Leu Ser Thr Ile
260 265 270

Leu Asp Leu Ile Cys Phe Gly Tyr Gln Pro Asn Glu Asp Ile Arg Asp
275 280 285

Ala Ile Asp Ala Leu Lys Thr Ala Asp Met Asp Lys Gln Asp Leu Asp
290 295 300

Asp Asp Glu Lys Gly Glu Gln Gln Asn Leu Asn Ile Ala Arg Asn Ile
305 310 315 320

Cys Ser Ile Leu Lys Gln Val Asp Pro Ile Arg Thr Asn Tyr Trp Ile
325 330 335

Trp Arg Lys Ser Arg Leu Pro Leu Ser Ala
340 345

<210> 7

<211> 1333

<212> DNA

<213> Glycine max

<400> 7

gcacgagctt gcgtgtggag tgaagaagat taacgaagga tggaatctgg gtctagcgaa 60
ggagaagagg tgcagcaacg cgtgccgtt agggagagag tggagtggtc agatgttact 120
ccggttcctc aaaacgacgg ccctaaccct gtcgttccga tccagtagcac tgaagagttt 180
tccgaagttt tggattactt tcgcgcgtt tacctcaccg atgaacgctc ccctcgcc 240
ctcgctctca cagccgaagc cggtcaattc aactccggca actacactgt gtggcatttc 300
cgacgggtgt tacttgagtc gctaaaagtc gacttgaacg atgaacttggaa gtttgtggag 360
cgatggcccg ctggaaattt taaaaattat cagatgttgtt gtgatgctt gctctgctt 420
ttttccata ctttgcata tagacgtatgg gttggcgaga agtttaggtcc tgaagctaga 480
aacaatgagc tcgagttcac caaaaagata ctgtccgtt atgccaaca ttatcatgca 540
tggtctcata gacagtggc tcttcaaaca cttaggaggat gggaaagatga acttaattat 600
tgcacagaac tacttaaaga agacattttt aacaattctt ctttggatca gagatattttt 660
gtcataacaa ggtctccccc cttggggggc ctaaaagcta tgagagatgc tgaagtgc 720
tacaccattt aagccattttt agcctaccct gaaaatgaaa gctcgtggag atatctacga 780
ggactttata aaggtgaaac tacttcatgg gtaaatgatc ctcaagtttc ttcatgtatgc 840
ttaaagattt tgagaactaa gagcaactac gtgttgctt ttagcactat ttttagatctt 900
atatgcattt gttatcaacc aaatgaagac attagagatg ccattgacgc cttaaagacc 960
gcagatatgg ataaaacaaga tttagatgtt gatgagaaag gggacaaca aaatttaaat 1020
atagcacgaa atatttttc tatcctaaaa caagttgatc caattagaac caactattgg 1080
atttggcgca agagcagact tcctctatca gcttagtaac caaagtaattt aaaggcaac 1140
tctgtgttat gtgtaaccta gtttattgaa actggatgtt tatttattat tattttttat 1200
gttgcattgt atctgtttgt gcaaattttt cttttgtca tgccattact ggcatttgag 1260
tgtaaggatt gaaagccatg cagaataaga aatttaagtt ttttttccg ttgaaaaaaaaa 1320
aaaaaaaaaaa aaa 1333

<210> 8

<211> 358

<212> PRT

<213> Glycine max

<400> 8

Met Glu Ser Gly Ser Ser Glu Gly Glu Glu Val Gln Gln Arg Val Pro
1 5 10 15

Leu Arg Glu Arg Val Glu Trp Ser Asp Val Thr Pro Val Pro Gln Asn
20 25 30

Asp Gly Pro Asn Pro Val Val Pro Ile Gln Tyr Thr Glu Glu Phe Ser
35 40 45

Glu Val Met Asp Tyr Phe Arg Ala Val Tyr Leu Thr Asp Glu Arg Ser
 50 55 60

Pro Arg Ala Leu Ala Leu Thr Ala Glu Ala Val Gln Phe Asn Ser Gly
 65 70 75 80

Asn Tyr Thr Val Trp His Phe Arg Arg Leu Leu Leu Glu Ser Leu Lys
 85 90 95

Val Asp Leu Asn Asp Glu Leu Glu Phe Val Glu Arg Met Ala Ala Gly
 100 105 110

Asn Ser Lys Asn Tyr Gln Met Trp Cys Asp Ala Leu Leu Cys Ser Phe
 115 120 125

Phe His Thr Leu His His Arg Arg Trp Val Ala Glu Lys Leu Gly Pro
 130 135 140

Glu Ala Arg Asn Asn Glu Leu Glu Phe Thr Lys Lys Ile Leu Ser Val
 145 150 155 160

Asp Ala Lys His Tyr His Ala Trp Ser His Arg Gln Trp Ala Leu Gln
 165 170 175

Thr Leu Gly Gly Trp Glu Asp Glu Leu Asn Tyr Cys Thr Glu Leu Leu
 180 185 190

Lys Glu Asp Ile Phe Asn Asn Ser Ala Trp Asn Gln Arg Tyr Phe Val
 195 200 205

Ile Thr Arg Ser Pro Phe Leu Gly Gly Leu Lys Ala Met Arg Glu Ser
 210 215 220

Glu Val Leu Tyr Thr Ile Glu Ala Ile Ile Ala Tyr Pro Glu Asn Glu
 225 230 235 240

Ser Ser Trp Arg Tyr Leu Arg Gly Leu Tyr Lys Gly Glu Thr Thr Ser
 245 250 255

Trp Val Asn Asp Pro Gln Val Ser Ser Val Cys Leu Lys Ile Leu Arg
 260 265 270

Thr Lys Ser Asn Tyr Val Phe Ala Leu Ser Thr Ile Leu Asp Leu Ile
 275 280 285

Cys Phe Gly Tyr Gln Pro Asn Glu Asp Ile Arg Asp Ala Ile Asp Ala
 290 295 300

Leu Lys Thr Ala Asp Met Asp Lys Gln Asp Leu Asp Asp Asp Glu Lys
 305 310 315 320

Gly Glu Gln Gln Asn Leu Asn Ile Ala Arg Asn Ile Cys Ser Ile Leu
 325 330 335

Lys Gln Val Asp Pro Ile Arg Thr Asn Tyr Trp Ile Trp Arg Lys Ser
 340 345 350

Arg Leu Pro Leu Ser Ala
 355

<210> 9

```
<211> 1339  
<212> DNA  
<213> Triticum aestivum
```

<210> 10
<211> 309
<212> PRT
<213> *Triticum aestivum*

<400> 10
Asp Val Ala Pro Leu Pro Gln Ala Asp Gly Pro Cys Pro Val Val Ser
1 5 10 15

Ile Ala Tyr Arg Gly Asp Phe Arg Glu Val Met Asp Tyr Phe Arg Ala
20 25 30

Leu Tyr Ala Ala Gly Glu Arg Ser Pro Arg Ala Leu Arg Leu Thr Ala
35 40 45

Asp Ala Ile His Leu Asn Pro Gly Asn Tyr Thr Val Trp His Phe Arg
50 55 60

Arg Val Val Leu Glu Ala Leu Asp Ala Asp Leu Leu Leu Glu Met His
65 70 75 80

Phe Val Asp Gln Ile Ala Glu Ser Asn Pro Lys Asn Tyr Gln Val Trp
85 90 95

His His Lys Arg Trp Leu Ala Glu Lys Ile Gly Pro Asp Ala Ala Asn
100 105 110

Ser Glu His Asp Phe Thr Arg Lys Ile Leu Ala Met Asp Ala Lys Asn
115 120 125

Tyr His Ala Trp Ser His Arg Gln Trp Val Leu Gln Ala Leu Gly Gly
130 135 140

Trp Glu Ser Glu Leu Gln Tyr Cys Asn Gln Leu Leu Glu Glu Asp Val
145 150 155 160
Phe Asn Asn Ser Ala Trp Asn Gln Arg Tyr Leu Val Val Thr Arg Ser
165 170 175
Pro Ile Leu Gly Gly Leu Ala Ala Met Arg Asp Ser Glu Val Val Asp Tyr
180 185 190
Thr Val Glu Ala Ile Met Val Asn Pro Gln Asn Glu Ser Pro Trp Arg
195 200 205
Tyr Leu Arg Gly Leu Tyr Lys Asp Asp Asn Asn Leu Leu Val Ala Asp
210 215 220
Asn Arg Ile Ser Asp Ala Cys Leu Lys Val Leu Asn Lys Asp Trp Thr
225 230 235 240
Cys Val Phe Ala Leu Ser Phe Leu Leu Asp Leu Leu Arg Met Gly Leu
245 250 255
Gln Pro Ser Asn Glu Leu Lys Gly Thr Ile Glu Ala Met Glu Asn Ser
260 265 270
Asp Pro Glu Thr Gly His Ala Asp Ile Ala Val Ala Val Cys Ser Ile
275 280 285
Leu Gln Lys Cys Asp Pro Leu Arg Ile Asn Tyr Trp Ser Trp Tyr Gln
290 295 300
Thr Thr Leu Ser Ser
305
<210> 11
<211> 1359
<212> DNA
<213> Zea mays
<400> 11
atggacccct ccccgccagtc gacgccgccc accggagacg acccggcagc ggcggccggat 1
cccgacccatc cgaggctcac ggtgacgcag gtggagcaga tgaaggtgga ggcggccggat 1
ggcgacatct accgctccct ctccggggcc gcgcggcaaca cggaaatccat catgctagag 1
ctgtggcggt atcagcatat cgagtatctg acgcctgggc tgaggcataat gggaccagcc 2
tttcatgttc tagatgccaat tcgccttgg ctatgctact ggatgggtca tccacttgct 2
ttgctgatg aagcacttga tgatgatctt gagaatgata tcatacgactt cttagctcga 3
tgtcagata aagatggtgg atatagtggt ggacctggac agttgcctca cctagctacg 4
acttatgctg ctgtaaataac acttgtgaca atagggagcga aaagagcatt gtcataatc 4
aatagggca acctgtacaa ttttatgctg cagatgaaag atgtatcagg tgctttcaga 5
atgcatgatg gtggcgaaat tgatgtccgt gcttcctaca ccgctatatac gggtgccagc 6
cttgtgaata ttcttgatt taaaactggca aaaggtgttag gcgactacat agcaagatgt 6
caaacttatg aaggtggat tgctggggag ctttatgctg aagcacatgg tgggtataaca 7
ttctgtggat tggctgctt gatctgtt aatgaggcag agaaaagttga cttgcctagt 7
ttgattggct ggggtggctt tcgtcaagga gtggaatgcg gatttcaagg acgaactaat 8
aaattgttg atgggtgcta ctcctttgg cagggagctg ccattgctt cacacaaaag 9
ttaattacga ttgttgataaa gcaattgaag tcctcgtatt cctgcaaaaag gccatcagg 9
gaggatgcct gcagcaccag ttcatatggg tgcaccgcga aaaagtcttc ctctgctgtg 1
gactatgcga agtttgatt tgattttata caacagagca accaaattgg cccactcttc 1
cataacattg ccctgcaaca atacatccta ctttgttctc aggtactaga gggaggctt 1
agggataaagc ctggaaagaa cagagatcac tatcattcat gctactgcct cagtgccctc 1
gcagttagcc agtacagtgc catgactgat actggttcgt gcccattacc tcagcatgtg 1

cttggaccgt actctaattt gctggagcca atccatccac tctacaatgt tgccttagat 1320
 aagtaccata caggctatga gttcttctca gaagagtga 1359

<210> 12
 <211> 452
 <212> PRT
 <213> Zea mays

<400> 12
 Met Asp Pro Ser Pro Gln Ser Thr Pro Pro Thr Gly Asp Asp Pro Ala
 1 5 10 15

Ala Ala Ala Asp Pro Asp Leu Pro Arg Leu Thr Val Thr Gln Val Glu
 20 25 30

Gln Met Lys Val Glu Ala Arg Val Gly Asp Ile Tyr Arg Ser Leu Phe
 35 40 45

Gly Ala Ala Pro Asn Thr Lys Ser Ile Met Leu Glu Leu Trp Arg Asp
 50 55 60

Gln His Ile Glu Tyr Leu Thr Pro Gly Leu Arg His Met Gly Pro Ala
 65 70 75 80

Phe His Val Leu Asp Ala Asn Arg Pro Trp Leu Cys Tyr Trp Met Val
 85 90 95

His Pro Leu Ala Leu Leu Asp Glu Ala Leu Asp Asp Asp Leu Glu Asn
 100 105 110

Asp Ile Ile Asp Phe Leu Ala Arg Cys Gln Asp Lys Asp Gly Gly Tyr
 115 120 125

Ser Gly Gly Pro Gly Gln Leu Pro His Leu Ala Thr Thr Tyr Ala Ala
 130 135 140

Val Asn Thr Leu Val Thr Ile Gly Ser Glu Arg Ala Leu Ser Ser Ile
 145 150 155 160

Asn Arg Gly Asn Leu Tyr Asn Phe Met Leu Gln Met Lys Asp Val Ser
 165 170 175

Gly Ala Phe Arg Met His Asp Gly Gly Glu Ile Asp Val Arg Ala Ser
 180 185 190

Tyr Thr Ala Ile Ser Val Ala Ser Leu Val Asn Ile Leu Asp Phe Lys
 195 200 205

Leu Ala Lys Gly Val Gly Asp Tyr Ile Ala Arg Cys Gln Thr Tyr Glu
 210 215 220

Gly Gly Ile Ala Gly Glu Pro Tyr Ala Glu Ala His Gly Gly Tyr Thr
 225 230 235 240

Phe Cys Gly Leu Ala Ala Leu Ile Leu Asn Glu Ala Glu Lys Val
 245 250 255

Asp Leu Pro Ser Leu Ile Gly Trp Val Ala Phe Arg Gln Gly Val Glu
 260 265 270

Cys Gly Phe Gln Gly Arg Thr Asn Lys Leu Val Asp Gly Cys Tyr Ser

275

280

285

Phe Trp Gln Gly Ala Ala Ile Ala Phe Thr Gln Lys Leu Ile Thr Ile
290 295 300

290

295

300

Val Asp Lys Gln Leu Lys Ser Ser Tyr Ser Cys Lys Arg Pro Ser Gly
305 310 315 320

Val

Lys

Cys

Gly

Glu Asp Ala Cys Ser Thr Ser Ser Tyr Gly Cys Thr Ala Lys Lys Ser
 325 330 335

Ser Ser Ala Val Asp Tyr Ala Lys Phe Gly Phe Asp Phe Ile Gln Gln
340 345 350

Ser Asn Gln Ile Gly Pro Leu Phe His Asn Ile Ala Leu Gln Gln Tyr
355 360 365

Ile Leu Leu Cys Ser Gln Val Leu Glu Gly Gly Leu Arg Asp Lys Pro
370 375 380

Gly Lys Asn Arg Asp His Tyr His Ser Cys Tyr Cys Leu Ser Gly Leu
385 390 395 400

Ala Val Ser Gln Tyr Ser Ala Met Thr Asp Thr Gly Ser Cys Pro Leu
405 410 415

Pro Gln His Val Leu Gly Pro Tyr Ser Asn Leu Leu Glu Pro Ile His
420 425 430

Pro Leu Tyr Asn Val Val Leu Asp Lys Tyr His Thr Ala Tyr Glu Phe
435 440 445

Phe Ser Glu Glu
450

<210> 13
<211> 1031
<212> DNA
<213> Oryza sativa

<400> 13
gcacgagggc gtagccgcct ttccgtgaga tccccgcggc tgcaagcgagc tcgcaggccc 60
ccgccttcgg cggccggcggac caccgcgccc atggacccccc cctcgccggcc gccgcccggc 120
ccatatccctc ctgctgctgc tgagggcggt ccggcagcgat agccaggc cgctgagctg 180
ccccggctga ctgtgacgca ggtggagcag atgaagggtgg aggcgaaggt gggcggaaatc 240
taccgcgtcc tcttcggcaa cgccggccaaac gccaattttcc tcatagtttaga gctgtggcgt 300
gagcagcatg tttagtattt gacgagaggg ctgaaaacatc ttggaccaag cttccatgtg 360
ctcgatgcca atcgaccttg gctgtgtac tggattttc atgcacttgc tctgttggat 420
gaaataacctg acgatgttga ggatgatatt gtggacttct tatctcgatg tcaggacaaa 480
gatggtggtt atggcggagg acctggacag ttgcctcatc tcgctacaac ttatgctgct 540
gtaaaatcac ttgttaactat agggagtgaa agggcactat catcggtaaa cagggacaac 600
ctgtacaagt tcatacgatc gatgaaagat acatcgggag ctttcagaat gcatgatggt 660
ggtaaatag atgttcgtgc tagctatact gcaatatcggttgcgcct tggtaacatt 720
cttgcgtgtt aactagcaaa aggtgttggaa aattacataa caagggtgtca aacctatgaa 780
ggtgtgcattt ctggggaaacc gtatgtgaa gctcatggtg ggtacacttt ttgtggcgt 840
gctacgtatgtatcgtttaa cgaagtggac aaacttgatt tggctagctt gattggctgg 900
gtggcatttc gccaaggagt ggaatgtgga tttcaaggac gaactaataa attgggttcat 960
ggttgtact ccttttggca gggagctgctt cttgtttttaa ctgttcaccg cgtggcggcc 1020
actgccaac g 1031

<210> 14

<211> 313
<212> PRT
<213> Oryza sativa

<400> 14
Met Asp Pro Pro Ser Pro Pro Pro Pro Pro Tyr Pro Pro Ala Ala
1 5 10 15
Ala Glu Gly Gly Pro Ala Ala Asp Ser Gln Ala Ala Glu Leu Pro Arg
20 25 30
Leu Thr Val Thr Gln Val Glu Gln Met Lys Val Glu Ala Lys Val Gly
35 40 45
Glu Ile Tyr Arg Val Leu Phe Gly Asn Ala Pro Asn Ala Asn Ser Leu
50 55 60
Met-Leu Glu Leu Trp Arg Glu Gln His Val Glu Tyr Leu Thr Arg Gly
65 70 75 80
Leu Lys His Leu Gly Pro Ser Phe His Val Leu Asp Ala Asn Arg Pro
85 90 95
Trp Leu Cys Tyr Trp Ile Ile His Ala Leu Ala Leu Asp Glu Ile
100 105 110
Pro Asp Asp Val Glu Asp Asp Ile Val Asp Phe Leu Ser Arg Cys Gln
115 120 125
Asp Lys Asp Gly Gly Tyr Gly Gly Pro Gly Gln Leu Pro His Leu
130 135 140
Ala Thr Thr Tyr Ala Ala Val Asn Thr Leu Val Thr Ile Gly Ser Glu
145 150 155 160
Arg Ala Leu Ser Ser Val Asn Arg Asp Asn Leu Tyr Lys Phe Met Leu
165 170 175
Arg Met Lys Asp Thr Ser Gly Ala Phe Arg Met His Asp Gly Gly Glu
180 185 190
Ile Asp Val Arg Ala Ser Tyr Thr Ala Ile Ser Val Ala Ser Leu Val
195 200 205
Asn Ile Leu Asp Gly Glu Leu Ala Lys Gly Val Gly Asn Tyr Ile Thr
210 215 220
Arg Cys Gln Thr Tyr Glu Gly Gly Ile Ala Gly Glu Pro Tyr Ala Glu
225 230 235 240
Ala His Gly Gly Tyr Thr Phe Cys Gly Leu Ala Thr Met Ile Leu Leu
245 250 255
Asn Glu Val Asp Lys Leu Asp Leu Ala Ser Leu Ile Gly Trp Val Ala
260 265 270
Phe Arg Gln Gly Val Glu Cys Gly Phe Gln Gly Arg Thr Asn Lys Leu
275 280 285
Val Asp Gly Cys Tyr Ser Phe Trp Gln Gly Ala Ala Leu Ala Leu Thr
290 295 300

Val His Arg Val Ala Pro Thr Ala Lys
305 310

<210> 15
<211> 1504
<212> DNA
<213> Glycine max

<400> 15
gcacgaggac aaatccgccc cgcggccgc cgtgtccgac ggtgagtc aa cgtgagcaat 60
ggatggtaga gtgcgcagggt tttcagattt accaactctt cgccaccatt cctcgcaacg 120
cccaaaccct catgttggag cttcaacgcg ataatcacat gcagtatgtc tccaaaggcc 180
ttcgccatct cagttccgca ttttccggtt tggacgctaa tcgaccctgg ctctgctact 240
ggatcttcca ctccattgtc ttgtcgggag aatccgtcga tgatgaactc gaagataacg 300
ctatcgattt tcttaaccgt tgccaggatc cgaatgggtt atatgccggg ggaccaggcc 360
agatgcctca tattgccaca acttatgtcgt ctgttaattt acttattact ttgggtgggt 420
agaaaatccct ggcataatt aatagagata aactgtatgg gtttctgccc cgatgaagc 480
aaccaaattgg tggattcagg atgcattgt aaggtgaaat tgatgtcga gcttgctaca 540
ctgccatttc tggttgcagaat gtttgaaca ttttggatga tgagctgatc cagaatgtt 600
gagactacat tataagctgt caaacatatg agggtggcat tgctgggtgag cctgggtctg 660
aggctcatgg tgggtacacc ttttggatgat tagtacaat gattctgatt ggtgagggtt 720
atcaatttgc tctgcctcga ttagttgact ggggttgtt ccgacaaggta aaggaatgtg 780
gattccaggg gagaacaaat aaactgggtt atggatgcta ttccctttgg cagggagggt 840
ctgttgcattt attgcaaaaga ttatcttcta ttatcaacaa acagatggaa gagacatcac 900
agattttgc ggtatctt gatatgttcaaaagaaat ttggatgga acctctagtc 960
atgcacatg ccgtgggtgag catgaaggca ccagtgaatc cagttcatct gattttaaaa 1020
atattgccta taaatttattt aatgagtgtt gggcacaaga accactttt cacagtattt 1080
ctttacagca atatatttctc ttatgtgcac aggagcaaga ggggtggactg agagacaaac 1140
cgggttaaacg tagagatcat tatcacacat gttactgtt aagtggactc tcattgtgcc 1200
agtatagttt gtcaaaagcac ccagattctc caccactgcc taatcttagt ttagggccct 1260
actctaattt ctttagaaacca atccaccccc tctttatgt tgcattggaa cgatatcggt 1320
aagctcatga attcttctt actgagtcgtt gaccactgtt tttagctacc aacaacttta 1380
tttgtataat gtaaaataaa ttcatggaa catataaatg taaaacagca ttggattaaa 1440
aaaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaa 1504

<210> 16
<211> 429
<212> PRT
<213> Glycine max

<400> 16
Met Val Glu Ser Gln Val Phe Gln Ile Tyr Gln Leu Phe Ala Thr Ile
1 5 10 15

Pro Arg Asn Ala Gln Thr Leu Met Leu Glu Leu Gln Arg Asp Asn His
20 25 30

Met Gln Tyr Val Ser Lys Gly Leu Arg His Leu Ser Ser Ala Phe Ser
35 40 45

Val Leu Asp Ala Asn Arg Pro Trp Leu Cys Tyr Trp Ile Phe His Ser
50 55 60

Ile Ala Leu Ser Gly Glu Ser Val Asp Asp Glu Leu Glu Asp Asn Ala
65 70 75 80

Ile Asp Phe Leu Asn Arg Cys Gln Asp Pro Asn Gly Gly Tyr Ala Gly
85 90 95

Gly Pro Gly Gln Met Pro His Ile Ala Thr Thr Tyr Ala Ala Val Asn
 100 105 110
 Ser Leu Ile Thr Leu Gly Gly Glu Lys Ser Leu Ala Ser Ile Asn Arg
 115 120 125
 Asp Lys Leu Tyr Gly Phe Leu Arg Arg Met Lys Gln Pro Asn Gly Gly
 130 135 140
 Phe Arg Met His Asp Glu Gly Glu Ile Asp Val Arg Ala Cys Tyr Thr
 145 150 155 160
 Ala Ile Ser Val Ala Ser Val Leu Asn Ile Leu Asp Asp Glu Leu Ile
 165 170 175
 Gln Asn Val Gly Asp Tyr Ile Ile Ser Cys Gln Thr Tyr Glu Gly Gly
 180 185 190
 Ile Ala Gly Glu Pro Gly Ser Glu Ala His Gly Gly Tyr Thr Phe Cys
 195 200 205
 Gly Leu Ala Thr Met Ile Leu Ile Gly Glu Val Asn His Leu Asp Leu
 210 215 220
 Pro Arg Leu Val Asp Trp Val Val Phe Arg Gln Gly Lys Glu Cys Gly
 225 230 235 240
 Phe Gln Gly Arg Thr Asn Lys Leu Val Asp Gly Cys Tyr Ser Phe Trp
 245 250 255
 Gln Gly Gly Ala Val Ala Leu Leu Gln Arg Leu Ser Ser Ile Ile Asn
 260 265 270
 Lys Gln Met Glu Glu Thr Ser Gln Ile Phe Ala Val Ser Tyr Val Ser
 275 280 285
 Glu Ala Lys Glu Ser Leu Asp Gly Thr Ser Ser His Ala Thr Cys Arg
 290 295 300
 Gly Glu His Glu Gly Thr Ser Glu Ser Ser Ser Asp Phe Lys Asn
 305 310 315 320
 Ile Ala Tyr Lys Phe Ile Asn Glu Trp Arg Ala Gln Glu Pro Leu Phe
 325 330 335
 His Ser Ile Ala Leu Gln Gln Tyr Ile Leu Leu Cys Ala Gln Glu Gln
 340 345 350
 Glu Gly Gly Leu Arg Asp Lys Pro Gly Lys Arg Arg Asp His Tyr His
 355 360 365
 Thr Cys Tyr Cys Leu Ser Gly Leu Ser Leu Cys Gln Tyr Ser Trp Ser
 370 375 380
 Lys His Pro Asp Ser Pro Pro Leu Pro Asn Leu Val Leu Gly Pro Tyr
 385 390 395 400
 Ser Asn Leu Leu Glu Pro Ile His Pro Leu Phe Asn Val Val Leu Gly
 405 410 415
 Arg Tyr Arg Glu Ala His Glu Phe Phe Phe Thr Glu Ser

420

425

<210> 17
<211> 533
<212> DNA
<213> Glycine max

<220>
<221> unsure
<222> (499)
<223> n = A, C, G or T

<220>
<221> unsure
<222> (525)
<223> n = A, C, G or T

<400> 17

gagagagata cgaatccggc ggccggcgcca ccgtgtccga cggtgagtca acgggaccag 60
tggatggtag agtcgcagg tttcagatt taccaactct ttgccaccat tcctggcagc 120
gcccaaaacc tcatgttaga gctgcaacgc gataatcaca tgcaatgtatct ctccaaaggc 180
ctacgccatc tcagttccgc gtttctgtc ttggacgcta atcgaccctg gctctgttac 240
tggatcttcc attccattgc tttgctggga gaatccgtcg acgacgaact cgaagataac 300
actatcgatt ttcttaaccg ttgcccaggat ccgaatggtg gatatgctgg gggaccaggc 360
cagatgcctc acattgccac aacatatgtc gcagttata cacttattac tttgggttgt 420
cagaaatcct ggcatcaatt aataggtgag ataaactgtta tgggtttctg cggccgatga 480
agcaatcaa tggggggant caagatgcat gatgaaagga gaaanttgat gtc 533

<210> 18
<211> 141
<212> PRT
<213> Glycine max

<400> 18

Asp Thr Asn Pro Ala Ala Ala Pro Pro Cys Pro Thr Val Ser Gln Arg
1 5 10 15

Asp Gln Trp Met Val Glu Ser Gln Val Phe Gln Ile Tyr Gln Leu Phe
20 25 30

Ala Thr Ile Pro Gly Ser Ala Gln Asn Leu Met Leu Glu Leu Gln Arg
35 40 45

Asp Asn His Met Gln Tyr Leu Ser Lys Gly Leu Arg His Leu Ser Ser
50 55 60

Ala Phe Ser Val Leu Asp Ala Asn Arg Pro Trp Leu Cys Tyr Trp Ile
65 70 75 80

Phe His Ser Ile Ala Leu Leu Gly Glu Ser Val Asp Asp Glu Leu Glu
85 90 95

Asp Asn Thr Ile Asp Phe Leu Asn Arg Cys Gln Asp Pro Asn Gly Gly
100 105 110

Tyr Ala Gly Gly Pro Gly Gln Met Pro His Ile Ala Thr Thr Tyr Ala
115 120 125

Ala Val Asn Thr Leu Ile Thr Leu Gly Gly Gln Lys Ser
130 135 140

<210> 19
 <211> 333
 <212> PRT
 <213> Pisum sativum

<400> 19
 Met Ala Gly Asn Ile Glu Val Glu Glu Asp Asp Arg Val Pro Leu Arg
 1 5 10 15

Leu Arg Pro Glu Trp Ser Asp Val Thr Pro Ile Pro Gln Asp Asp Gly
 20 25 30

Pro Ser Pro Val Val Pro Ile Asn Tyr Ser Glu Glu Phe Ser Glu Val
 35 40 45

Met Asp Tyr Phe Arg Ala Val Tyr Phe Ala Lys Glu Leu Ser Ser Arg
 50 55 60

Ala Leu Ala Leu Thr Ala Glu Ala Ile Gly Leu Asn Ala Gly Asn Tyr
 65 70 75 80

Thr Val Trp His Phe Arg Arg Leu Leu Leu Glu Ser Leu Lys Val Asp
 85 90 95

Leu His Val Glu Arg Glu Phe Val Glu Arg Val Ala Ser Gly Asn Ser
 100 105 110

Lys Asn Tyr Gln Ile Trp His His Arg Arg Trp Val Ala Glu Lys Leu
 115 120 125

Gly Pro Glu Ala Arg Asn Ser Glu Leu Glu Phe Thr Lys Lys Ile Leu
 130 135 140

Ser Val Asp Ala Lys His Tyr His Ala Trp Ser His Arg Gln Trp Val
 145 150 155 160

Leu Gln Asn Leu Gly Gly Trp Glu Asp Glu Leu Ser Tyr Cys Ser Glu
 165 170 175

Leu Leu Ala Glu Asp Ile Phe Asn Asn Ser Ala Trp Asn Gln Arg Tyr
 180 185 190

Phe Val Ile Thr Arg Ser Pro Val Leu Gly Gly Leu Lys Ala Met Arg
 195 200 205

Glu Ser Glu Val Leu Phe Thr Val Glu Ala Ile Ile Ser Tyr Pro Glu
 210 215 220

Asn Glu Ser Ser Trp Arg Tyr Leu Arg Gly Leu Phe Lys Asp Glu Ser
 225 230 235 240

Thr Leu Tyr Val Asn Asp Ala Gln Val Ser Ser Leu Cys Leu Lys Ile
 245 250 255

Leu Lys Thr Lys Ser Asn Tyr Leu Phe Ala Leu Ser Thr Leu Leu Asp
 260 265 270

Leu Ser Ala Ser Val Ile Gln Pro Asn Glu Asp Phe Arg Asp Ala Ile
 275 280 285

Glu Ala Leu Arg Leu Gln Ile Leu Ile Lys Gln Asp Ser Asp Ile Ala

290	295	300	
Ile Thr Ile Cys Ser Ile Leu Glu Gln Val Asp Pro Ile Arg Val Asn 305	310	315	320
Tyr Trp Val Trp Arg Lys Ser Arg Leu Pro Gln Ala Ala 325	330		
<210> 20			
<211> 326			
<212> PRT			
<213> Arabidopsis thaliana			
<400> 20			
Met Asn Phe Asp Glu Thr Val Pro Leu Ser Gln Arg Leu Glu Trp Ser 1	5	10	15
Asp Val Val Pro Leu Thr Gln Asp Asp Gly Pro Asn Pro Val Val Pro 20	25	30	
Ile Ala Tyr Lys Glu Glu Phe Arg Glu Thr Met Asp Tyr Phe Arg Ala 35	40	45	
Ile Tyr Phe Ser Asp Glu Arg Ser Pro Arg Ala Leu Arg Leu Thr Glu 50	55	60	
Glu Thr Leu Leu Leu Asn Ser Gly Asn Tyr Thr Val Trp His Phe Arg 65	70	75	80
Arg Leu Val Leu Glu Ala Leu Asn His Asp Leu Phe Glu Glu Leu Glu 85	90	95	
Phe Ile Glu Arg Ile Ala Glu Asp Asn Ser Lys Asn Tyr Gln Leu Trp 100	105	110	
His His Arg Arg Trp Val Ala Glu Lys Leu Gly Pro Asp Val Ala Gly 115	120	125	
Arg Glu Leu Glu Phe Thr Arg Arg Val Leu Ser Leu Asp Ala Lys His 130	135	140	
Tyr His Ala Trp Ser His Arg Gln Trp Thr Leu Arg Ala Leu Gly Gly 145	150	155	160
Trp Glu Asp Glu Leu Asp Tyr Cys His Glu Leu Leu Glu Ala Asp Val 165	170	175	
Phe Asn Asn Ser Ala Trp Asn Gln Arg Tyr Tyr Val Ile Thr Gln Ser 180	185	190	
Pro Leu Leu Gly Gly Leu Glu Ala Met Arg Glu Ser Glu Val Ser Tyr 195	200	205	
Thr Ile Lys Ala Ile Leu Thr Asn Pro Ala Asn Glu Ser Ser Trp Arg 210	215	220	
Tyr Leu Lys Ala Leu Tyr Lys Asp Asp Lys Glu Ser Trp Ile Ser Asp 225	230	235	240
Pro Ser Val Ser Ser Val Cys Leu Asn Val Leu Ser Arg Thr Asp Cys 245	250	255	

Phe His Gly Phe Ala Leu Ser Thr Leu Leu Asp Leu Leu Cys Asp Gly
 260 265 270

 Leu Arg Pro Thr Asn Glu His Lys Asp Ser Val Arg Ala Leu Ala Asn
 275 280 285

 Glu Glu Pro Glu Thr Asn Leu Ala Asn Leu Val Cys Thr Ile Leu Gly
 290 295 300

 Arg Val Asp Pro Ile Arg Ala Asn Tyr Trp Ala Trp Arg Lys Ser Lys
 305 310 315 320

 Ile Thr Val Ala Ala Ile
 325

 <210> 21
 <211> 470
 <212> PRT
 <213> Lycopersicon esculentum

 <400> 21
 Met Glu Ser Arg Lys Val Thr Lys Thr Leu Glu Asp Gln Trp Val Val
 1 5 10 15

 Glu Arg Arg Val Arg Glu Ile Tyr Asp Tyr Phe Tyr Ser Ile Ser Pro
 20 25 30

 Asn Ser Pro Ser Asp Leu Ile Glu Ile Glu Arg Asp Lys His Phe Gly
 35 40 45

 Tyr Leu Ser Gln Gly Leu Arg Lys Leu Gly Pro Ser Phe Ser Val Leu
 50 55 60

 Asp Ala Ser Arg Pro Trp Leu Cys Tyr Trp Thr Leu His Ser Ile Ala
 65 70 75 80

 Leu Leu Gly Glu Ser Ile Gly Lys Leu Glu Asn Asp Ala Ile Asp
 85 90 95

 Phe Leu Thr Arg Cys Gln Asp Lys Asp Gly Gly Tyr Gly Gly Pro
 100 105 110

 Gly Gln Met Pro His Leu Ala Thr Thr Tyr Ala Ala Val Asn Ser Leu
 115 120 125

 Ile Thr Leu Gly Lys Pro Glu Ala Leu Ser Ser Ile Asn Arg Glu Lys
 130 135 140

 Leu Tyr Thr Phe Leu Leu Arg Met Lys Asp Ala Ser Gly Gly Phe Arg
 145 150 155 160

 Met His Asp Gly Gly Glu Val Asp Val Arg Ala Cys Tyr Thr Ala Ile
 165 170 175

 Ser Val Ala Asn Ile Leu Asn Ile Val Asp Asp Glu Leu Ile His Gly
 180 185 190

 Val Gly Asn Tyr Ile Leu Ser Cys Gln Thr Tyr Glu Gly Gly Ile Ala
 195 200 205

Gly Glu Pro Gly Ser Glu Ala His Gly Gly Tyr Thr Phe Cys Gly Leu
 210 215 220
 Ala Ala Met Ile Leu Ile Asn Glu Val Asp Arg Leu Asp Leu Pro Gly
 225 230 235 240
 Leu Ile Asp Trp Val Val Phe Arg Gln Gly Val Glu Gly Gly Phe Gln
 245 250 255
 Gly Arg Thr Asn Lys Leu Val Asp Gly Cys Tyr Ser Phe Trp Gln Gly
 260 265 270
 Ala Val Val Phe Leu Ile Gln Arg Leu Asn Leu Ile Val His Glu Gln
 275 280 285
 Leu Gly Leu Ser Asn Asp Leu Ser Thr Glu Ser Ala Asp Asp Ser Ser
 290 295 300
 Glu Ser Glu Leu Ser Asp Glu Glu Glu His Leu Glu Gly Ile Ser Ser
 305 310 315 320
 His Val Gln Asp Thr Phe Pro Leu Gly Gln Ala Gly Ala Cys Gln Glu
 325 330 335
 Asn Ala Ser His Ser Pro Lys Ile Ala Asp Thr Gly Tyr Glu Phe Ile
 340 345 350
 Asn Arg Pro Ile Ala Met Arg Pro Leu Phe Asp Ser Met Tyr Leu Gln
 355 360 365
 Gln Tyr Val Leu Leu Cys Ser Gln Ile Glu Val Gly Gly Phe Arg Asp
 370 375 380
 Lys Pro Gly Lys Gly Arg Asp Tyr Tyr His Thr Cys Tyr Cys Leu Ser
 385 390 395 400
 Gly Leu Ser Ile Ala Gln Tyr Ser Trp Thr Asp Glu Ala Asp Ser Thr
 405 410 415
 Pro Leu Pro Arg Asp Val Phe Gly Pro Tyr Ser Lys Cys Leu Leu Glu
 420 425 430
 Gln Val His Pro Leu Phe Asn Val Val Leu Asp Arg Tyr Tyr Glu Ala
 435 440 445
 Arg Glu Tyr Ser Gln Ala Cys Glu Thr Val Ser Pro Leu Ser Leu Ala
 450 455 460
 Pro Thr Phe Ser Glu Thr
 465 470
 <210> 22
 <211> 419
 <212> PRT
 <213> Pisum sativum
 <400> 22
 Met Glu Ala Ser Thr Ala Ala Glu Thr Pro Thr Pro Thr Val Ser Gln
 1 5 10 15
 Arg Asp Gln Trp Ile Val Glu Ser Gln Val Phe His Ile Tyr Gln Leu

20

25

30

Phe	Ala	Asn	Ile	Pro	Pro	Asn	Ala	Gln	Ser	Ile	Ile	Arg	Pro	Trp	Leu
35															45
Cys	Tyr	Trp	Ile	Ile	His	Ser	Ile	Ala	Leu	Leu	Gly	Glu	Ser	Ile	Asp
50															60
Asp	Asp	Leu	Glu	Asp	Asn	Thr	Val	Asp	Phe	Leu	Asn	Arg	Cys	Gln	Asp
65															80
Pro	Asn	Gly	Gly	Tyr	Ala	Gly	Gly	Pro	Gly	Gln	Met	Pro	His	Leu	Ala
															85
85															90
Thr	Thr	Tyr	Ala	Ala	Val	Asn	Thr	Leu	Ile	Thr	Leu	Gly	Gly	Glu	Lys
100															110
105															
Ser	Leu	Ala	Ser	Ile	Asn	Arg	Asn	Lys	Leu	Tyr	Gly	Phe	Met	Arg	Arg
115															125
120															
Met	Lys	Gln	Pro	Asn	Gly	Gly	Phe	Arg	Met	His	Asp	Glu	Gly	Glu	Ile
130															140
135															
Asp	Val	Arg	Ala	Cys	Tyr	Thr	Ala	Ile	Ser	Val	Ala	Ser	Val	Leu	Asn
145															155
150															160
Ile	Leu	Asp	Asp	Glu	Leu	Ile	Lys	Asn	Val	Gly	Asp	Phe	Ile	Leu	Ser
															165
165															170
															175
Cys	Gln	Thr	Tyr	Glu	Gly	Gly	Leu	Ala	Gly	Glu	Pro	Gly	Ser	Glu	Ala
															180
180															185
															190
His	Gly	Gly	Tyr	Thr	Phe	Cys	Gly	Leu	Ala	Ala	Met	Ile	Leu	Ile	Gly
															195
195															200
															205
Glu	Val	Asn	Arg	Leu	Asp	Leu	Pro	Arg	Leu	Leu	Asp	Trp	Val	Val	Phe
															210
210															215
															220
Arg	Gln	Gly	Lys	Glu	Cys	Gly	Phe	Gln	Gly	Arg	Thr	Asn	Lys	Leu	Val
225															230
															235
															240
Asp	Gly	Cys	Tyr	Ser	Phe	Trp	Gln	Gly	Gly	Ala	Val	Ala	Leu	Leu	Gln
															245
245															250
															255
Arg	Leu	His	Ser	Ile	Ile	Asp	Glu	Gln	Met	Ala	Glu	Ala	Ser	Gln	Phe
															260
260															265
															270
Val	Thr	Val	Ser	Asp	Ala	Pro	Glu	Glu	Lys	Glu	Cys	Leu	Asp	Gly	Thr
															275
275															280
															285
Ser	Ser	His	Ala	Thr	Ser	His	Ile	Arg	His	Glu	Gly	Met	Asn	Glu	Ser
															290
290															295
															300
Cys	Ser	Ser	Asp	Val	Lys	Asn	Ile	Gly	Tyr	Asn	Phe	Ile	Ser	Glu	Trp
305															310
															315
															320
Arg	Gln	Ser	Glu	Pro	Leu	Phe	His	Ser	Ile	Ala	Leu	Gln	Gln	Tyr	Ile
															325
325															330
															335
Leu	Leu	Cys	Ser	Gln	Glu	Gln	Asp	Gly	Gly	Leu	Arg	Asp	Lys	Pro	Gly
															340
340															345
															350

Lys Arg Arg Asp His Tyr His Ser Cys Tyr Cys Leu Ser Gly Leu Ser
 355 360 365

 Leu Cys Gln Tyr Ser Trp Ser Lys Arg Pro Asp Ser Pro Pro Leu Pro
 370 375 380

 Lys Val Val Met Gly Pro Tyr Ser Asn Leu Leu Glu Pro Ile His Pro
 385 390 395 400

 Leu Phe Asn Val Val Leu Asp Arg Tyr Arg Glu Ala His Glu Phe Phe
 405 410 415

 Ser Gln Leu

 <210> 23
 <211> 419
 <212> PRT
 <213> Pisum sativum

 <400> 23
 Met Glu Ala Ser Thr Ala Ala Glu Thr Pro Thr Pro Thr Val Ser Gln
 1 5 10 15

 Arg Asp Gln Trp Ile Val Glu Ser Gln Val Phe His Ile Tyr Gln Leu
 20 25 30

 Phe Ala Asn Ile Pro Pro Asn Ala Gln Ser Ile Ile Arg Pro Trp Leu
 35 40 45

 Cys Tyr Trp Ile Ile His Ser Ile Ala Leu Leu Gly Glu Ser Ile Asp
 50 55 60

 Asp Asp Leu Glu Asp Asn Thr Val Asp Phe Leu Asn Arg Cys Gln Asp
 65 70 75 80

 Pro Asn Gly Gly Tyr Ala Gly Gly Pro Gly Gln Met Pro His Leu Ala
 85 90 95

 Thr Thr Tyr Ala Ala Val Asn Thr Leu Ile Thr Leu Gly Gly Glu Lys
 100 105 110

 Ser Leu Ala Ser Ile Asn Arg Asn Lys Leu Tyr Gly Phe Met Arg Arg
 115 120 125

 Met Lys Gln Pro Asn Gly Gly Phe Arg Met His Asp Glu Gly Glu Ile
 130 135 140

 Asp Val Arg Ala Cys Tyr Thr Ala Ile Ser Val Ala Ser Val Leu Asn
 145 150 155 160

 Ile Leu Asp Asp Glu Leu Ile Lys Asn Val Gly Asp Phe Ile Leu Ser
 165 170 175

 Cys Gln Thr Tyr Glu Gly Gly Leu Ala Gly Glu Pro Gly Ser Glu Ala
 180 185 190

 His Gly Gly Tyr Thr Phe Cys Gly Leu Ala Ala Met Ile Leu Ile Gly
 195 200 205

Glu Val Asn Arg Leu Asp Leu Pro Arg Leu Leu Asp Trp Val Val Phe
210 215 220

Arg Gln Gly Lys Glu Cys Gly Phe Gln Gly Arg Thr Asn Lys Leu Val
225 230 235 240

Asp Gly Cys Tyr Ser Phe Trp Gln Gly Gly Ala Val Ala Leu Leu Gln
245 250 255

Arg Leu His Ser Ile Ile Asp Glu Gln Met Ala Glu Ala Ser Gln Phe
260 265 270

Val Thr Val Ser Asp Ala Pro Glu Glu Lys Glu Cys Leu Asp Gly Thr
275 280 285

Ser Ser His Ala Thr Ser His Ile Arg His Glu Gly Met Asn Glu Ser
290 295 300

Cys Ser Ser Asp Val Lys Asn Ile Gly Tyr Asn Phe Ile Ser Glu Trp
305 310 315 320

Arg Gln Ser Glu Pro Leu Phe His Ser Ile Ala Leu Gln Gln Tyr Ile
325 330 335

Leu Leu Cys Ser Gln Glu Gln Asp Gly Gly Leu Arg Asp Lys Pro Gly
340 345 350

Lys Arg Arg Asp His Tyr His Ser Cys Tyr Cys Leu Ser Gly Leu Ser
355 360 365

Leu Cys Gln Tyr Ser Trp Ser Lys Arg Pro Asp Ser Pro Pro Leu Pro
370 375 380

Lys Val Val Met Gly Pro Tyr Ser Asn Leu Leu Glu Pro Ile His Pro
385 390 395 400

Leu Phe Asn Val Val Leu Asp Arg Tyr Arg Glu Ala His Glu Phe Phe
405 410 415

Ser Gln Leu