KME272 - Assesment 1.1

[2024-08-02 Fri 21:46]

Contents

1	$\mathbf{Q}1$																			1
	1.1	(i)																		1
	1.2	(ii)																		1
	1.3	(iii)																		2
	1.4	(iv)																		2
	1.5	(v)																		2

1 Q1

1.1 (i)

$$2x^{2} - 150x = 0$$
$$x(2x - 150) = 0$$
$$x = 0 \text{ or } 2x - 150 = 0$$
$$x = 0 \text{ or } x = 75$$

1.2 (ii)

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-150 \pm \sqrt{150^2 - 4 \cdot 2 \cdot 3}}{2 \cdot 2}$$

$$x = 74.97999466 \text{ or } 20.00533618 \cdot 10^3$$

1.3 (iii)

digits of precision	$b^2 - 4ac$	$\sqrt{b^2 - 4ac}$	$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$
1	40000	200	0
2	22000	150	0.0
3	22500	150	0.00
4	22480	149.9	0.02500
5	22476	149.92	0.020000
6	22476	149.920	0.0200000

Calculation for two digits of precision with rounding up:

$$\begin{vmatrix} =b^{2} - 4ac \\ =150^{2} - 4 \cdot 2 \cdot 3 \\ =22476 \\ =22000 \end{vmatrix} = \begin{vmatrix} =\sqrt{b^{2} - 4ac} \\ =\sqrt{22000} \\ =148.324 \\ =150 \end{vmatrix} = \begin{vmatrix} x_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a} \\ x_{2} = \frac{150 - 150}{2 \cdot 2} \\ x_{2} = 0 \\ x_{2} = 0.0 \end{vmatrix}$$

1.4 (iv)

Catastrophic occurs when two numbers are closes to one another and are subtracted, resulting in a small number. So, for (4) to be accurate and (3) inaccurate we must have the value of -4ac being small relative to b^2 and b < 0 to get $-b+\sqrt{b^2-4ac} \approx -b+b$ and $-b-\sqrt{b^2-4ac} \approx -b-b \approx -2b$. And for (3) to be accurate and (4) inaccurate we must have the same situation, but b>0, as it would lead to $b-\sqrt{b^2-4ac} \approx b-b$ and $b+\sqrt{b^2-4ac} \approx b+b \approx 2b$.

$1.5 \quad (v)$

digits of precision	$x_1 = \frac{(-b + \sqrt{b^2 - 4ac})}{2a}$	$x_2 = \frac{c}{ax_1}$
1	100	0.02
2	75	0.020
3	75.0	0.0200
4	74.97	0.02001
5	74.980	0.020005
6	74.9800	0.0200053