

 $\begin{cases} \frac{\omega_1}{\|\mathbf{w}_1\|} & \frac{\omega_2}{\|\mathbf{w}_2\|} \end{cases} \text{ is an orthonormal basis of } V$

 $\left\{\frac{1}{12}\begin{pmatrix}1\\1\end{pmatrix}, \frac{1}{8}\begin{pmatrix}-2\\2\end{pmatrix}, \frac{1}{5}\begin{pmatrix}0\\9\end{pmatrix}\right\}$ orthonormal basis of \mathbb{R}^3 .

Malies in Rax m=n

Examples

A rotates

AV

A

W

W

w is invariant under A

AW = W

(A not sym, so only 1 EVE)

A strectles V = 2V

Def: If a vector $w \in \mathbb{R}^n \setminus \{0\}$ fulfills $Aw = \lambda w$ for some $\lambda \in \mathbb{R}$, then w is called an eigenvector and λ an eigenvalue.

We can rewrite
$$Aw = Aw$$
 $\Rightarrow Aw - \lambda w = 0 \iff (A - \lambda Id_n)w = 0$
 $\Rightarrow (A - \lambda Id_n)$ is NOT invertible

 $\Rightarrow \det(A - \lambda Id_n) = 0$
 $= \int_{a}^{b} (A - \lambda Id_n) = 0$

Def: A is symm. \Rightarrow $A = A^T$. $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} / \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}_{\frac{1}{2}}$

When choosing the correct system of coord. There is symm making only stretches.

Then (spectral thrm): Let $A \in \mathbb{R}^{n_{x_{1}}}$ be symm. Then

A has only real EV_{k} and F_{k} be symm. Then F_{k} F_{k}

Moreover, if $AV_{i} = \lambda_{i}V_{i}$ and $V := \begin{bmatrix} V_{1} & \cdots & V_{n} \end{bmatrix}$, then $A = V \begin{pmatrix} \lambda_{1} & \cdots & \lambda_{N} \end{pmatrix} V^{T} \begin{pmatrix} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \lambda_{3} & 0 \\ 0 & 0 & 0 & \lambda_{4} \end{pmatrix} = \operatorname{diag}(\lambda_{1}, \dots, \lambda_{N})$

Proof: $f_A(t) := det(A - t Id_n)$ charact. payr. x^2+1 has

has not least one (complex) zero in C.

where product in $C': \langle a,b \rangle_C := \overline{a}^T \cdot b$ $a = \langle a_1,..., a_n \rangle$, $a_i = a_{ij}^1 + i a_{ij}^2$

 $a = (a_1, ..., a_n), \quad a_i = a_i + i a_i$ $b = (b_1, ..., b_n), \quad b_i = b_i^1 + i b_i^2$ $\Rightarrow \langle a_1 b_2 \rangle = \sum_{i=1}^{n} \overline{a_i} b_i = \sum_{i=1}^{n} (a_i^1 - i a_i^2)(b_i^1 + i b_i^2)$

Step 1 We show: Ill EVa are real.

Case 1 0 is the ONLY zero of f_A {EVe of $AJ = Jeer(A) \leftarrow find o.n.b. for Jeer(A)$. Case 2 there is $\lambda \neq 0$ with $f_A(\lambda) = 0$. $\lambda \in \mathbb{C}$ Then $\exists \ \tilde{V} \neq 0$ with $A\tilde{V} = \lambda \tilde{V}$

Define $V:=\frac{\tilde{V}}{\|\tilde{V}\|}$. Then Shill $AV=\lambda V$ & $\|V\|^2=1^2$. In particular =1

$$\lambda = \lambda \angle V_1 V_7 = \angle V_1 \lambda V_7 = \angle V_1 \lambda V_7$$

$$= V^{\top}(AV) = V^{\top}(AV) = \angle AV_1 V_7 = \lambda \angle V_1 V_7 = \lambda$$

$$= 1$$

As $\lambda = \overline{\lambda}$, if follows $\lambda \in \mathbb{R}$.

Hence, all EVa of A are real.

Step 2 Find v1: Either v or iv is real-valued, call it v1.

Step 3 Find V2:

Define $U := (R \cdot y)^{\perp} = \{w \in R^n : \langle w, t v_1 \rangle = 0 \text{ Here} \}$ In particular, for $t = \lambda$: $O = \langle w, \lambda v_1 \rangle = \langle w, Av_1 \rangle$ A = AT & no complex numbers

Hence, $(Aw) \perp V_1 \longrightarrow (Aw) \in U$. We can define $A|_{\mathcal{U}} : \mathcal{U} \longrightarrow \mathcal{U}$ and do the

Same argument as before: find EVA V_2 of $A|_{\mathcal{U}}$ with $||V_2|| = 1$ and observe as $V_2 \in \mathcal{U} = (RV_1)^{\perp}$: $(LV_1, V_2)^{\perp} = 0$

Stop 4 Conclude.

Do his n times, i.e. define Uz:= (RV1+RV2)

Mow: what if
$$M \neq N$$
? (1 2 3) symm does not $A = M \cdot (V_1, V_2) = \delta_{ij}$.

Now: what if $M \neq N$? (1 2 3) symm does not $A = M \cdot (V_1, V_2) = \delta_{ij}$.

What are $M_1 \cdot V_1 \cdot \sigma_1$? Itous to compute them?

Idea: $A \sim (V_1 \cdot V_2) \cdot V_2$ [whatever that means)

Observe $A^T \cdot A \in \mathbb{R}^{N \times N}$ always symm $A \cdot A^T = A^T A$

Specked than \Rightarrow find an EVE $\{V_1, \dots, V_N\} \cdot O_1 \cdot A^T A$

with $EVa \cdot \{\lambda_2, \dots, \lambda_N\}$.

Observe $\lambda_i = \lambda_i \cdot \langle V_i, V_i \rangle = \langle V_{i_1} \cdot (\Lambda T A) \cdot V_i \rangle = \langle A \cdot V_i \cdot (A \cdot V_i) \cdot (A \cdot V_i)$

Define $U_i := \lambda_i^{-1/2} (AV_i)$ for $i \le r$ They are orthogonal as $(U_i, u_j) = (\lambda_i \lambda_j)^{-1/2} < AV_i, AV_j > = (\lambda_i \lambda_j)^{-1/2} < V_i, (ATA)V_j > = (\lambda$

As spanfun, und clm(A) & same din it is an ont. Denote $\sigma_i := \sigma_i$. Then

And thus, as matices $U := [U_1, ..., U_r]$, $V := [V_1, ..., V_r]$ we have $A = U \ge V^T$ Conserved Singular values

singular value decompostion

Thm: (Sing decan) let $A \in \mathbb{R}^{m \times n}$ and r := rk(A). Then $\exists \mathcal{U} \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$ with $U^TU = id_r = V^TV$ s.t. $A = U(T_1, \sigma_r)V^T$ for unique number $\sigma_{1, \dots}, \sigma_r > 0$.

Moreover, $\{Im(A) = Im(V)\}$ and if $\{\sigma_i\}_i$ are pairwise distinct, $\{Im(A^T) = Im(V)\}$

up to the sign of there columns.

END of the LECTURE

Proof: Existence & $\{Im(A) = Im(N)\}$ is done above.

Assume it is not unique: $A = U(\overline{S}_1 \cdot \overline{S}_1) V \overline{V}_1$ $= \widetilde{U}(\overline{S}_1 \cdot \overline{S}_1) V \overline{V}_1$ Then $AAT = U \subseteq V \overline{V} V \subseteq U \overline{V}_1 = U \subseteq U \overline{V}_1$ $AAT = \widetilde{U} \subseteq V \overline{V} V \subseteq U \overline{V}_1 = \widetilde{U} \cong U \subseteq U \overline{V}_1$ Denote $U = [u_1, ..., u_n]$ $\widetilde{U} = [\widetilde{U}_1, ..., u_n]$ Then $(AAT) U_1 = \overline{S}_1^2 U_1 = \overline{S}_1^2 U_1 = \overline{S}_1^2 \overline{V}_1 = \overline{S}$

and hus the eigenspace is 10 to the EVe is unique (I).