61) Conceitue e diferencie as seguintes subáreas: (i) computação gráfica, (ii) processamento de imagens, (iii) visão computacional e (iv) processamento de dados. Dê um exemplo de aplicação para cada uma dessas subáreas. (1,5)

.02) Como as informações visuais usadas em uma cena podem ser classificadas? Liste e explique cada uma das classificações possíveis. **(1,0)**

03) O que é interrupção de contorno (oclusão)? Como este conceito ajuda a estimar a distância de um objeto? Faça um desenho para explicar. (1,0)

04) Conceitue e diferencie representação raster e vetorial, bem como rasterização de vetorização. (1,0)

05) Apresente a árvore necessária para representar o sólido abaixo corretamente usando representação por decomposição de *octrees*. **(1,5)**

nodo não terminal nodo terminal vazio

nodo terminal preenchido

06) Explique a diferença entre geometria e topologia. (1,0)

07) Mostre como calcular a característica de Euler mora os seguintes sólidos: (2,0)

- (a) cubo
- (b) cilindro.
- (c) esfera
- (d) toro
- (e) faixa de Mobius.

Agrupe os sólidos acima por topologia.

08) Como os dados são armazenados em estrutura de dados baseadas em vértices? Explique também para estruturas de dados com base em arestas. **(1,0)**

Um anônimo do IF

,--,--[]=[]-

----(Respostas que achei:)-----

(i)Computação gráfica:

É a área da computação destinada à geração de imagens em geral — em forma de representação de dados e informação, ou em forma de recriação do mundo real.

A Computação Gráfica reúne um conjunto de técnicas que permitem a geração de imagens a partir de modelos computacionais de objetos reais, objetos imaginários ou de dados quaisquer coletados por equipamentos na natureza.

-(Exemplo de aplicação): Ela pode possuir uma infinidade de aplicações para diversas áreas, desde a própria informática, ao produzir interfaces gráficas para software, sistemas operacionais e sites na Internet, quanto para produzir animações e jogos

(ii)Processamento de imagens:

Link para pesquisar: http://www.dpi.inpe.br/spring/teoria/realce/realce.htm
Link para pesquisar-02: <a href="https://universidadedatecnologia.com.br/computacao-grafica-processamento-de-imagens-visao-computacional-cia/#:~:text=Os%20filtros%20do%20app%20Instagram,objetos%20na%20imagem%20e%20outros.

As técnicas voltadas para a análise de dados multidimensionais, adquiridos por diversos tipos de sensores recebem o nome de processamento digital de imagens, ou seja, é a manipulação de uma imagem por computador de modo onde a entrada e a saída do processo são imagens.

Usa-se para melhorar o aspecto visual de certas feições estruturais para o analista humano e para fornecer outros subsídios para a sua interpretação, inclusive gerando produtos que possam ser posteriormente submetidos a outros processamentos.

-(Exemplo de aplicação): Inclui diversas áreas como a análise de recursos naturais e meteorologia por meio de imagens de satélites; transmissão digital de sinais de televisão ou fac-símile; análise de imagens biomédicas; análise de imagens metalográficas e de fibras vegetais; obtenção de imagens médicas por ultra-som, radiação nuclear ou técnicas de tomografia computadorizada; aplicações em automação industrial envolvendo o uso de sensores visuais em robôs.

(iii) Visão computacional:

Link para pesquisar-01: https://blogbrasil.comstor.com/o-que-e-visao-computacional

Link para pesquisar-02:

http://www.cbpf.br/cat/pdsi/visao/index.html#:~:text=Vis%C3%A3o%20Computacional%3A%20%C3%89%20toda%20vez,maquina%20dedicada%20ao%20%22reconhecimento%22.

É toda vez que partimos de uma "imagem" e nos preocupamos em extrair a informação nela presente, exatamente com é realizado pelo ser humano em

seu complexo Sistema Visual. O Objetivo principal desta área é construir a maquina dedicada ao "reconhecimento".

-(Exemplo de aplicação): As aplicações da visão computacional vão da medicina à robótica industrial. Na medicina, o processamento de imagens de microscopia, de radiografia, de angioplastia, de ultrassonografia, de tomografia e de ressonância magnética visa fornecer diagnósticos mais preciso sobre os pacientes. Na indústria, a visão computacional busca fornecer qualidade e cálculo de posição e orientação de detalhes para um braço robótico, por exemplo.

(iv)Processamento de dados:

Link para pesquisar-01: https://www.certifiquei.com.br/processamento-dados/ Link para pesquisar-02: https://pt.wikipedia.org/wiki/Processamento_de_dados# Link para pesquisar-03: http://www.ic.uff.br/~aconci/Aula1-2019-2.pdf Link para pesquisar-04: https://pt.slideshare.net/leiladb/processamento-dos-dados

É uma série de atividades ordenadamente realizadas, que resultará em uma espécie de arranjo de informações, pois no início da atividade é feita a coleta de informações, ou dados, que passam por uma organização onde no final será passada para o usuário o dado pertinente a sua busca.

Processamento de dados é a coleta, compilação, organização e disposição de informações específicas presentes em um banco de dados. Ou seja, quando um usuário acessa o banco e faz uma pesquisa específica, ele se utiliza do processamento de dados.

-(Exemplo de aplicação): É justamente através desse processo que se possibilita a utilização de sistemas empresariais, redes sociais e internet em geral.

É através do processamento de dados mecanizado que muitas empresas conseguem melhores resultados, justamente pela qualidade das informações obtidas. A saber, a informação fidedigna está fundamentada nesses cinco pontos:

Integridade;

Confidencialidade;

Confiabilidade;

Irrefutabilidade:

Disponibilidade.

02)

Links pra pesquisar:

https://www.google.com/search?q=Como+as+informa%C3%A7%C3%B5es+visuais+podem+ser+usadas+numa+cena%3F+Computa%C3%A7%C3%A3o+gr%C3%A1fica&ei=TZ2UYL28HOPW5OUPt7KVgAl&oq=Como+as+informa%C3%A7%C3%B5es+visuais+podem+ser+usadas+numa+cena%3F+Computa%C3%A7%C3%A3o+gr%C3%A1fica&gs_lcp=Cgdnd3Mtd2l6EAM6BwgAEEcQsAM6BQghEKABOgcIIRAKEKABUNfzAVizqgJg7qsCaARwAngAgAHcBogB_C-

SAQgyLTIxLjYtMZgBAKABAaoBB2d3cy13aXrIAQjAAQE&sclient=gws-wiz&ved=0ahUKEwj9lv3purbwAhVjK7kGHTdZBSAQ4dUDCA4&uact=5

https://www.google.com/search?q=Como+as+informa%C3%A7%C3%B5es+visuais+podem+ser+usadas+numa+cena%3F&oq=Como+as+informa%C3%A7%C3%B5es+visuais+podem+ser+usadas+numa+cena%3F&aqs=chrome..69i57j33i160.11720j1j7&sourceid=chrome&ie=UTF-8

(Link - PRINCIPAL): http://www.ic.uff.br/~aconci/CG-Aula2-2017.pdf

Há três categorias de informações visuais usadas na formação de uma imagem:

- monoculares,
- as ligadas ao movimento dos olhos (ou oculo motoras);
- estereoscópicas.

Informações Monoculares

- Provenientes de apenas um dos olhos (monocular) são inerentes à imagem formada na retina.
- São também chamadas de informações estáticas de profundidade (static depth cues) ou informações de profundidade da imagem (pictorial depth cues).

Informações Visuais Óculo Motoras

- Os olhos ao verem alguma cena são mantidos em constante movimento por meio de um conjunto de sete músculos diferentes.
- As informações visuais oculares motoras são as fornecidas pelo movimento destes músculos.
- Há dois tipos de informações nessa categoria:
- a acomodação e a convergência.
- Uma classe destes músculos (chamada músculo ciliar) é
 responsável por focar os raios luminosos na retina (fundo do olho),
 mudando a curvatura e a espessura do cristalino (uma estrutura
 transparente e elástica que junto com a córnea funciona como uma
 lente).
- Os músculos ciliares estão na porção anterior dos olhos, de onde partem ligamentos suspensores que prendem o cristalino.
- Com a atividade do músculo ciliar a curvatura e espessura do cristalino podem ser modificadas, permitindo o foco em longe ou perto.

Informações Visuais Estereoscópicas

- A estereoscopia ou visão binocular decorre de termos nossos olhos posicionados na frente, praticamente na mesma direção e não em direção oposta como ocorre com muitos animais, que por isso têm um campo visual muito maior que o nosso (até 360 graus).
- Ela nos da a noção do tridimensional.
- Com os olhos na mesma direção, mas em pontos diferentes cada olho vê uma cena com uma leve diferença.
- Isto pode ser conscientizado por uma experiência bem simples: ponha seu dedo indicador na vertical, na frente do nariz, até um palmo de distância e leia esse texto, com apenas um dos olhos de cada vez, você deixara em cada caso de ver uma parte distinta do texto e terá visões diferentes.

3%A7%C3%A3o+gr%C3%A1fica+o+que+%C3%A9+oclus%C3%A3o%3F&gs_lcp=Cgdnd 3Mtd2l6EAM6CAgAELEDEIMBOg4lABCxAxCDARDHARCjAjolCC4QsQMQgwE6AgguOg slABCxAxDHARCjAjoCCAA6BwgAEEMQiwM6BQgAEIsDOgslABCxAxCDARCLAzoECAA QQzoFCAAQsQM6CAgAEMcBEK8BOgglABCxAxDJA1CYwApYi_4KYLSAC2gCcAJ4AlAB-QelAdFPkgEMMi0zMi4yLjluNy0xmAEAoAEBqgEHZ3dzLXdperABALgBAsABAQ&sclient =gws-wiz&ved=0ahUKEwj9lv3purbwAhVjK7kGHTdZBSAQ4dUDCA4&uact=5

(Link - PRINCIPAL): http://www.ic.uff.br/~aconci/CG-Aula2-2017.pdf
(Link - PRINCIPAL-02): https://bnho/CGII/PDFs/Aula3-Visao3D.pdf
(Link - PRINCIPAL-03): https://daybsonpaisante.wordpress.com/2018/09/20/introducao-a-computacao-grafica/

Oclusão

- A oclusão pode fornecer uma informação da posição relativa dos objetos.
- Este fenômeno, também chamado de interposição ou interrupção de contorno, é descrito com a obstrução da visão de um objeto por um outro que está mais próximo do observador e sobre uma mesma direção de visão.
- Se um objeto esconde partes do outro, achamos que ele esta mais próximo.

Também chamado de interposição ou interrupção de contorno;

É a obstrução da visão de um objeto por um outro que está mais próximo do observador e sobre uma mesma direção de visão;

Quando um objeto A obscurece um objeto B, o cérebro sabe que este objeto A está mais próximo do que o objeto B, em relação ao observador.

Figura 3.1- Geração de uma imagem em perspectiva

3.1.2 Interposição

Responsável pela informação da posição relativa dos objetos, este fenômeno, também chamado de *oclusão* ou *interrupção de contorno*, é descrito com a obstrução da visão de um objeto por um outro que está mais próximo do observador e sobre uma mesma direção de visão. Assim, quando um objeto A obscurece um objeto B, o cérebro sabe que este objeto A está mais próximo do que o objeto B, em relação ao observador.

04)

Links pra pesquisar:

https://www.google.com/search?q=computa%C3%A7%C3%A3o+gr%C3%A1fica+rast eriza%C3%A7%C3%A3o+raster+e+vetorial&ei=aJ6UYI7FDP2x5OUP-

c2lyAU&oq=computa%C3%A7%C3%A3o+gr%C3%A1fica+rasteriza%C3%A7%C3%A3o+raster+e+vetorial&gs_lcp=Cgdnd3Mtd2l6EANQwYgCWKi5AmCGvwJoAXAAeACAAaMDiAG7PZIBCDItMzAuMC4xmAEAoAEBqgEHZ3dzLXdpesABAQ&sclient=gws-wiz&ved=0ahUKEwiOmebwu7bwAhX9GLkGHflmCVkQ4dUDCA4&uact=5

https://www.google.com/search?q=computa%C3%A7%C3%A3o+gr%C3%A1fica+rasteriza%C3%A7%C3%A3o+de+vetoriza%C3%A7%C3%A3o&ei=kp6UYJ7ZL5vC5OUPupWj2Al&oq=computa%C3%A7%C3%A3o+gr%C3%A1fica+rasteriza%C3%A7%C3%A3o+de+vetoriza%C3%A7%C3%A3o&gs_lcp=Cgdnd3Mtd2l6EAM6BwgAEEcQsANQzYwDWP2gA2DvpANoAXACeACAAewGiAHXJJIBCDItMTYuNi0xmAEAoAEBqgEHZ3dzLXdpesgBCMABAQ&sclient=gws-

wiz&ved=0ahUKEwie6oyFvLbwAhUbIbkGHbrKCCsQ4dUDCA4&uact=5

Link-01: http://www.quoos.com.br/index.php/cursos/desenhista-de-topografia/cartografia/sensoriamento-remoto/fundamentos-da-imagem-digital/37-as-diferenca-entre-imagem-raster-e-imagem-vetor

Link-02: https://www.logaster.com.br/blog/vector-and-

<u>raster/#:~:text=Uma%20imagem%20raster%20ir%C3%A1%20ocupar,vetor%20%C3%</u> A9%20um%20pouco%20diferente.

Link-03: https://developers-br.googleblog.com/2018/12/como-funciona-o-formato-de-imagem.html

1- Em computação gráfica, uma imagem **raster** ou gráfico de bitmap é uma matriz¹ de pontos, que representa geralmente uma grade retangular de pixel ou pontos de cor, que podem ser visualizados por meio de um monitor, papel ou mesmo no seu celular.

2- Gráficos **vetoriais** são geometrias simples como **pontos, linhas**, curvas e formas (**polígonos**). São todas baseadas em expressões matemáticas, para representar as imagens na computação gráfica. Cada elemento possui pontos com uma posição definida sobre eixos **X** e **Y** do plano de trabalho e também podem receber um atributo para uma cor, forma, uma espessura e um preenchimento.

Rasterização x Vetorização:

Rasterização vs. vetorização

A maioria dos formatos de imagem (png, jpeg, bmp, gif, webp, etc.) são rasterizados. Isso significa que eles descrevem a imagem como uma grade fixa de pixels. Sendo assim, são definidos em uma resolução específica e não conseguem *entender* informações sobre seu conteúdo, apenas a cor de cada pixel. Gráficos vetoriais, no entanto, *descrevem* a imagem como uma série de formas definidas em um tamanho de tela abstrato.

https://www.google.com/search?q=representa%C3%A7%C3%A3o+por+decomposi%C3%A7%C3%A3o+de+octrees&ei=Xp-

UYKjPJefW5OUPodGHwAM&oq=representa%C3%A7%C3%A3o+por+decomposi%C3
%A7%C3%A3o+de+octrees&gs_lcp=Cgdnd3Mtd2l6EAMyBQghEKABOgUIABCxAzoICC
4QsQMQgwE6CwgAELEDEMcBEKMCOgIIADoOCAAQsQMQgwEQxwEQowI6CAgAELE
DEIMBOgQIABBDOg0IABCxAxDHARCjAhBDOgcIABCxAxBDOgUILhCxAzoKCAAQsQM
QgwEQQzoGCAAQFhAeOggIABAWEAoQHjoHCCEQChCgAToICCEQFhAdEB5QrdYCWJ
GfA2CjoQNoBHAAeACAAd4CiAHtWJIBBjItNDMuMpgBAKABAaoBB2d3cy13aXqwAQD
AAQE&sclient=gws-

wiz&ved=0ahUKEwio9qXmvLbwAhVnK7kGHaHoATgQ4dUDCA4&uact=5

Link-01:

https://www.inf.pucrs.br/pinho/CG/Aulas/Modelagem/Modelagem3D.htm#:~:text=Considerada%20um%20caso%20particular%20da,de%20igual%20tamanho(OCTANTES).

*Resposta:

06)

Links pra pesquisar:

https://www.google.com/search?q=computa%C3%A7%C3%A3o+gr%C3%A1fica+geometria+e+topologia+diferen%C3%A7a&ei=yp6UYPmZBPrO5OUPioy74Ag&oq=computa%C3%A7%C3%A3o+gr%C3%A1fica+geometria+e+topologia+diferen%C3%A7a&gs_lcp=Cgdnd3Mtd2l6EAM6BwgAEEcQsANQxfYCWLOtA2CCrwNoAnACeAGAAZADiAGkR5IBCDltMzEuMy4xmAEAoAEBqgEHZ3dzLXdpesgBCMABAQ&sclient=gws-wiz&ved=0ahUKEwj5prufvLbwAhV6J7kGHQrGDowQ4dUDCA4&uact=5

Link-01

https://pt.wikipedia.org/wiki/Topologia_(matem%C3%A1tica)#:~:text=Topologia%2 0(do%20grego%20topos%2C%20%22,como%20uma%20extens%C3%A3o%20da%20g eometria.

Link-02:

https://queconceito.com.br/topologia#:~:text=A%20topologia%20%C3%A9%20um% 20dos,analisa%20as%20possibilidades%20das%20figuras.

Link-03:

https://conceito.de/geometria

Link-04:

https://ambscience.com/topologia-o-que-e-e-aplicacoes/

Link-05:

https://queconceito.com.br/topologia#:~:text=A%20topologia%20%C3%A9%20um%20dos,analisa%20as%20possibilidades%20das%20figuras.

Link-O que é topologia: https://www.youtube.com/watch?v=CmTLjO7mvqg

Ou seja, define-se um conjunto de vértices no espaço (geometria) e como esses vértices devem ser ligados para formarem polígonos fechados, chamados de face (topologia), que podem ser triângulos ou quadrados. *A geometria é o ramo das matemáticas que se consagra ao estudo das propriedades e das medidas das figuras no espaço ou no **plano. No seu **desenvolvimento**, a geometria usa noções tais como pontos, rectas, planos e curvas, entre outras.

*A topologia é uma ciência matemática que se refere diretamente à geometria. Ela estuda os tipos e propriedades de superfícies ou espaços por meio da análise de suas deformações, torções e alongamento de objetos.

07)

Links pra pesquisar:

https://www.google.com/search?q=caracter%C3%ADstica+de+euler+computa%C3%A7%C3%A3o+gr%C3%A1fica&ei=A5-UYK-

ADrrA5OUP3KGv0AU&oq=caracter%C3%ADstica+de+euler+computa%C3%A7%C3%A
3o+gr%C3%A1fica&gs_lcp=Cgdnd3Mtd2l6EAM6CAgAELEDEIMBOg4lABCxAxCDARDH
ARCjAjoICC4QsQMQgwE6AgguOgslABCxAxDHARCjAjoECAAQQzoKCAAQsQMQgwEQ
QzoICAAQxwEQowI6BQguELEDOgUIABCxAzoCCAA6CAgAEMcBEK8BOgQIABADOgcIA
BCxAxBDOgcILhCxAxBDOgslABCxAxDHARCvAToICAAQsQMQiwM6BQgAEIsDOgYIAB
AWEB46CAgAEBYQChAeOggIIRAWEB0QHjoECCEQFVCugQJYy9ICYLzTAmgBcAJ4AIAB
oAKIAcVSkgEEMi00M5gBAKABAaoBB2d3cy13aXq4AQLAAQE&sclient=gwswiz&ved=0ahUKEwjvjdy6vLbwAhU6ILkGHdzQC1oQ4dUDCA4&uact=5

Todas as respostas nesse pdf:

https://repositorio.unesp.br/bitstream/handle/11449/92420/gisoldi_dv_me_rcla.pd f;jsessionid=1D33C2329CD23235891E1E7FD4D46EEF?sequence=1

Links pra pesquisar:

https://www.google.com/search?q=computa%C3%A7%C3%A3o+gr%C3%A1fica+estrutura+de+dados+baseadas+em+v%C3%A9rtices&ei=MJ-

UYKaZLO3A5OUP77OcwA4&oq=computa%C3%A7%C3%A3o+gr%C3%A1fica+estrutura+de+d ados+baseadas+em+v%C3%A9rtices&gs_lcp=Cgdnd3Mtd2l6EAM6BwgAEEcQsANQ8o4CWN7 VAmDy1gJoAXACeACAAZoCiAGsUJIBBDItNDKYAQCgAQGqAQdnd3Mtd2l6yAElwAEB&sclient =gws-wiz&ved=0ahUKEwim8bTQvLbwAhVtlLkGHe8ZB-gQ4dUDCA4&uact=5

Respostas aqui>>> Link-01: http://www.ic.uff.br/~aconci/CG-Aula3-2017.pdf

Estrutura de dados baseada em Vértice

vertex	coordinates
v_1	$x_1 \ y_1 \ z_1$
v_2	$x_2 y_2 z_2$
v_3	$x_3 y_3 z_3$
v_4	$x_4 y_4 z_4$
v ₅	x_5 y_5 z_5
v_6	$x_6 \ y_6 \ z_6$
v ₇	x7 y7 z7
v_8	$x_8 y_8 z_8$

face	vertices				
f_1	v_1	v_2	v_3	v_4	
f_2	v_6	v_2	v_1	v5	
f_3	27	v_3	v_2	v_6	
f_4	v_8	v_4	v_3	27	
f_5	บร	v_1	v_4	v ₈	
f_6	v_8	v_7	v_6	v_5	

os vértices limites das faces devem ser descritos sempre no mesmo sentido horário (ou anti-horário) do exterior do objeto, para todas as faces.

Estrutura de Dados Baseada em Arestas ou lados

Na estrutura de dados baseada em arestas além das listas de coordenadas de vértices e definição das faces, tem-se uma lista que identifica cada aresta e seus vértices limitantes.

