IC CHARACTERSTICS

- Fan Out
- Propagation Delay
- Noise Margin
- Power Dissipation

Power Dissipation (PD)

Expressed in Milliwatts

• PD=
$$V_{CC} * I_{CC}$$

•
$$I_{CC}(avg)=(I_{CCH}+I_{CCL})/2$$

Number Systems and Codes

Decimal Positional System (Base 10 or radix 10)

Binary Positional System (Base 2 or radix 2)

Example

Decimal Example

$$346.17_{10} = (3 \times 10^{2}) + (4 \times 10^{1}) + (6 \times 10^{9}) + (1 \times 10^{-1}) + (7 \times 10^{-2})$$
$$= 300 + 40 + 6 + 0.1 + 0.07$$

Binary Example

1101 .01
$$_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{9} + 0 \times 2^{-1} + 1 \times 2^{-2}$$

= 8 + 4 + 0 + 1 + 0 + .25
= 13.25 $_{10}$

Diminished Radix Complement
 Number N in base r having n digits
 (r-1)'s complement = (rⁿ -1) - N

Radix Complement

Number N in base r having n digits

(r)'s complement = $(r^n - N)$

Ex: base 2: 2's complement, 1's complement

base10: 10's compliment, 9's compliment

Some possible binary codes are illustrated below.

Decimal digits	BCD (8421)	Excess-3	84-2-1	2421	Bi-quinary (5043210)
0	0000	0011	0000	0000	0100001
1	0001	0100	0111	0001	0100010
2	0010	0101	0110	0010	0100100
3	0011	0110	0101	0011	0101000
4	0100	0111	0100	0100	0110000
5	0101	1000	1011	1011	1000001
6	0110	1001	1010	1100	1000010
7	0111	1010	1001	1101	1000100
8	1000	1011	1000	1110	1001000
9	1001	1100	1111	1111	1010000

The Reflected Code
The advantage of the reflected code
over pure binary numbers is that a
number in the reflected code changes by
only one bit as it proceeds from one
number to the next. The reflected code
is also known as the *Gray* code.

Generation of Gray Codes:

an n-bits code is generated by reflecting the (n-1)-bit code.

Reflected Code	Decimal Equivalent
0000	0
0001	1
0011	2
0010	2
0110	4
0111	5
0101	6
0100	7
1100	8
1101	9
1111	10
1110	11
1010	12
1011	13
1001	14
1000	15

Four-bit reflected code

- Boolean expressions must be evaluated with the following order of operator precedence
 - parentheses
 - NOT
 - AND
 - OR

Example:

$$F = (A(\overline{C} + \overline{B}\overline{D}) + \overline{B}\overline{\overline{C}})\overline{\overline{E}}$$

$$F = \left(A(\overline{C} + \overline{B}\overline{D}) + \overline{B}\overline{\overline{C}}\right)\overline{\overline{E}}$$

$$X + 0 = X$$

$$X + 1 = 1$$

$$X + X = X$$

$$X + X' = 1$$

$$(X')' = X$$

$$X + Y = Y + X$$

$$X + (Y + Z) = (X + Y) + Z$$
 $X(YZ) = (XY)Z$

$$X(Y+Z) = XY + XZ$$

$$X + XY = X$$

$$X + X'Y = X + Y$$

$$(X + Y)' = X'Y'$$

$$XY + X'Z + YZ$$

= $XY + X'Z$

$$X \cdot 1 = X$$

$$X \cdot 0 = 0$$

$$X \cdot X = X$$

$$X \cdot X' = 0$$

XY = YX

$$X(YZ) = (XY)Z$$

$$X + YZ = (X + Y)(X + Z)$$

$$X(X+Y) = X$$

$$X(X' + Y) = XY$$

$$(XY)' = X' + Y'$$

$$(X+Y)(X'+Z)(Y+Z)$$
$$= (X+Y)(X'+Z)$$

Identity

Example: Simplify the following expression

$$F = BC + B\overline{C} + BA$$

Simplification

$$F = B(C + \overline{C}) + BA$$

$$F = B \cdot 1 + BA$$

$$F = B(1+A)$$

$$F = B$$

Example: Simplify the following expression

$$F = A + \overline{A}B + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}\overline{D}E$$

Example: Simplify the following expression

$$F = A + \overline{A}B + \overline{A}BC + \overline{A}B\overline{C}D + \overline{A}B\overline{C}DE$$

Simplification

$$F = A + \overline{A}(B + \overline{B}C + \overline{B}\overline{C}D + \overline{B}\overline{C}\overline{D}E)$$

$$F = A + B + \overline{B}C + \overline{B}\overline{C}D + \overline{B}\overline{C}\overline{D}E$$

$$F = A + B + \overline{B}(C + \overline{C}D + \overline{C}\overline{D}E)$$

$$F = A + B + C + \overline{C}D + \overline{C}\overline{D}E$$

$$F = A + B + C + \overline{C}(D + \overline{D}E)$$

$$F = A + B + C + D + \overline{D}E$$

$$F = A + B + C + D + E$$

Complementing a truth table

- The complement of a function should output 0 when the original function outputs 1, and vice versa.
- In a truth table, we can just exchange 0 and 1 in the output column.
 - On the left is a truth table for f(x,y,z) = (x + y')z + x'.
 - On the right is the table for the complement of f, denoted f'(x,y,z).

Х	у	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Х	у	z	f'(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Complementing an expression

 To complement an expression, you can use DeMorgan's Laws to keep "pushing" the NOT operator inwards, all the way to the literals.

- Another clever method of complementing an expression is to take the dual of the expression, and then complement each literal.
 - The dual of (x + y')z + x' is (xy' + z) x'.
 - Complementing each literal yields (x'y + z') x.
 - So $f'(x,y,z) = (x'y + z') \cdot x$.

Complement of a Function.

$$\mathbf{F} = \mathbf{x'yz'} + \mathbf{x'y'z}$$

Complement of a Function.

$$\mathbf{F} = \mathbf{x'yz'} + \mathbf{x'y'z}$$

dual of F is (x'+y+z')(x'+y'+z) complement each literal

$$-(x+y'+z)(x+y+z') = F'$$

Sum of products expressions

- There are many equivalent ways to write a function, but some forms turn out to be more useful than others.
- A sum of products or SOP expression consists of:
 - One or more terms summed (OR'ed) together.
 - Each of those terms is a product of literals.

$$f(x, y, z) = y' + x'yz' + xz$$

Sum of products expressions

- There are many equivalent ways to write a function, but some forms turn out to be more useful than others.
- A sum of products or SOP expression consists of:
 - One or more terms summed (OR'ed) together.
 - Each of those terms is a product of literals.

$$f(x, y, z) = y' + x'yz' + xz$$

Sum of products expressions can be implemented with two-level circuits.

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n input variables has 2ⁿ possible minterms.

Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n input variables has 2ⁿ possible minterms.
- For instance, a three-variable function f(x,y,z) has 8 possible minterms:

Each minterm is true for exactly one combination of inputs.

Minterm	True when	Shorthand
x'y'z'	xyz = 000	m_0
x'y'z	xyz = 001	m ₁
x'y z'	xyz = 010	m ₂
x'y z	xyz = 011	m_3
x y'z'	xyz = 100	m_4
x y'z	xyz = 101	m ₅
xyz'	xyz = 110	m ₆
хуz	xyz = 111	m ₇

Sum of minterms expressions

- A sum of minterms is a special kind of sum of products.
- Every function can be written as a unique sum of minterms expression.
- A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is 1.

Sum of minterms expressions

- A sum of minterms is a special kind of sum of products.
- Every function can be written as a unique sum of minterms expression.
- A truth table for a function can be rewritten as a sum of minterms just by finding the table rows where the function output is 1.

Χ	у	Z	C(x,y,z)	C'(x,y,z)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$C = x'yz + xy'z + xyz' + xyz$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \sum m(3,5,6,7)$$

$$C' = x'y'z' + x'y'z + x'yz' + xy'z'$$

$$= m_0 + m_1 + m_2 + m_4$$

$$= \sum m(0,1,2,4)$$

C' contains all the minterms not in C, and vice versa.

Product of sums expressions

- As you might expect, we can work with the duals of these ideas too.
- A product of sums or POS consists of:
 - One or more terms multiplied (AND'ed) together.
 - Each of those terms is a sum of literals.

$$g(x, y, z) = y'(x' + y + z')(x + z)$$

Products of sums can also be implemented with two-level circuits.

Maxterms

- A maxterm is a sum of literals where each input variable appears once.
- A function with n input variables has 2ⁿ possible maxterms.
- For instance, a function with three variables x, y and z has 8 possible maxterms:

$$x + y + z$$
 $x + y + z'$ $x + y' + z$ $x + y' + z'$
 $x' + y + z$ $x' + y + z'$ $x' + y' + z$ $x' + y' + z'$

Each maxterm is false for exactly one combination of inputs.

Maxterm	False when	Shorthand
x + y + z	xyz = 000	Mo
x + y + z'	xyz = 001	M_1
x + y'+ z	xyz = 010	M_2
x + y'+ z'	xyz = 011	M_3
x'+ y + z	xyz = 100	M_4
x'+ y + z'	xyz = 101	M_5
x'+ y'+ z	xyz = 110	M_6
x'+ y'+ z'	xyz = 111	M_7

Product of maxterms expressions

- Every function can also be written as a unique product of maxterms.
- A truth table for a function can be rewritten as a product of maxterms just by finding the table rows where the function output is 0.

Χ	у	Z	C(x,y,z)	C'(x,y,z)
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	0

$$C = (x + y + z)(x + y + z')$$

$$(x + y' + z)(x' + y + z)$$

$$= M_0 M_1 M_2 M_4$$

$$= \prod M(0,1,2,4)$$

$$C' = (x + y' + z')(x' + y + z')$$

$$(x' + y' + z)(x' + y' + z')$$

$$= M_3 M_5 M_6 M_7$$

$$= \prod M(3,5,6,7)$$

C' contains all the maxterms not in C, and vice versa.

- Now we've seen two different ways to write the function C, as a sum of minterms Σm(3,5,6,7) and as a product of maxterms ΠM(0,1,2,4).
- Notice the product term includes maxterm numbers whose corresponding minterms do not appear in the sum expression.

Χ	у	Z	C(x,y,z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$C = x'yz + xy'z + xyz' + xyz$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \sum m(3,5,6,7)$$

$$C = (x + y + z)(x + y + z')$$

$$(x + y' + z)(x' + y + z)$$

$$= M_0 M_1 M_2 M_4$$

$$= \prod M(0,1,2,4)$$

The relationship

Every minterm m_i is the complement of its corresponding maxterm M_i.

Minterm	True when
(m ₀) x'y'z'	xyz = 000
(m ₁) x'y'z	xyz = 001
(m ₂) x'y z'	xyz = 010
(m ₃) x'y z	xyz = 011
(m ₄) x y'z'	xyz = 100
(m ₅) x y'z	xyz = 101
(m ₆) x y z'	xyz = 110
(m ₇) x y z	xyz = 111

М	axterm	False when
(M_0)	x + y + z	xyz = 000
(M_1)	x + y + z'	xyz = 001
(M_2)	x + y'+ z	xyz = 010
(M_3)	x + y'+ z'	xyz = 011
(M_4)	x'+ y + z	xyz = 100
(M_5)	x'+ y + z'	xyz = 101
(M_6)	x'+ y'+ z	xyz = 110
(M_7)	x'+ y'+ z'	xyz = 111

• For example, m_4 ' = M_4 because (xy'z')' = x' + y + z.

Converting between standard forms

We can convert sums of minterms to products of maxterms algebraically.

```
C' = \sum m(0,1,2,4)  [ C' contains the minterms not in C ] = m_0 + m_1 + m_2 + m_4 [ C')' = (m_0 + m_1 + m_2 + m_4)' [ complementing both sides ] C = m_0' m_1' m_2' m_4'  [ DeMorgan's law ] = M_0 M_1 M_2 M_4  [ from the previous page ] = \prod M(0,1,2,4)
```

 The easy way is to replace minterms with maxterms, using the maxterm numbers that do not appear in the sum of minterms.

$$C = \sum m(3,5,6,7)$$

= $\prod M(0,1,2,4)$

Example

$$\begin{aligned} \mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) &= \mathbf{A}\mathbf{B} + \overline{\mathbf{B}}(\overline{\mathbf{A}} + \overline{\mathbf{C}}) = \mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}} + \overline{\mathbf{B}}\overline{\mathbf{C}} \\ &= \mathbf{A}\mathbf{B}(\mathbf{C} + \overline{\mathbf{C}}) + \overline{\mathbf{A}}\overline{\mathbf{B}}(\mathbf{C} + \overline{\mathbf{C}}) + (\mathbf{A} + \overline{\mathbf{A}})\overline{\mathbf{B}}\overline{\mathbf{C}} \\ &= \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} \\ &= \sum m(0, 1, 4, 6, 7) \end{aligned}$$

Α	В	С	F	
0	0	0	1 -4 0	
0	0	1	1 1	Minterms listed as
Ō	1	0	0	
0	1	1	0	1s in Truth Table
1	0	0	1 4	
1	0	1	0	
1	1	0	1 6	
1	1	1	1 7	

- Canonical Form
 - Boolean Expression expressed in sum of minterms or product of maxterms

Standard form

$$\mathbf{F1} = \mathbf{y'} + \mathbf{xy} + \mathbf{x'yz'}$$

• F = (AB + CD)(A'B'+C'D')