第 16 章 电解质溶液

一、概念题
1、电解质溶液的活度主要决定于离子间的静电相互作用。 (对、错)
2、离子活度主要依赖于离子强度而与离子的本性无关。 (对、错)
3 、试分别写出 $\mathrm{ZnSO_4}$ 的离子平均质量摩尔浓度 b_\pm 、离子平均活度 a_\pm 与 $\mathrm{ZnSO_4}$ 的质量
摩尔浓度 b 的关系。
4 、 25 时,质量摩尔浓度 $b=0.10\mathrm{mol\cdot kg^{-1}}$ 的 $\mathrm{CaCl_2}$ 水溶液,其 $\gamma_{\pm}=0.518$,则其离子平
均活度 a_{\pm} =。
5、电导率和摩尔电导率何者与电解质的基本单元的取法有关。。摩尔电导率
6、在用希托夫法测定迁移数的实验中,按照某极区对某种离子进行物料衡算。若该极区
的电极反应产生这种离子,则物料衡算式为。
7、强电解质溶液的摩尔电导率随浓度的增大而减小,这是因为。
8, $\Lambda_{\rm m}({\rm CuSO_4})$ $\Lambda_{\rm m}(\frac{1}{2}{\rm CuSO_4})_{\rm o}$ (>, =, <)
9 、对于无限稀释的强电解质溶液, $\Lambda_{ m m}^{\circ}$ 与 $\lambda_{\scriptscriptstyle +}^{\circ}$ 、 $\lambda_{\scriptscriptstyle -}^{\circ}$ 之间的关系为。
二、溶液中含有1.00×10 ⁻³ mol·kg ⁻¹ 的 HCl 及9.00×10 ⁻⁴ mol·kg ⁻¹ 的 KCl,试求该溶液的
离子强度。若溶液中只含有 1.00×10^{-3} mol·kg ⁻¹ 的 HCl,离子强度又是多少?
両」強反。石冶成下八百百1.00×10 mor kg mincr, 両」強反又定シン:
三、25 时, $0.10 ext{mol} \cdot ext{dm}^{-3}$ KCl 溶液的电导率 $\kappa = 1.289 ext{S} \cdot ext{m}^{-1}$ 。将该溶液放入一电导池
中,测得 25 时的电阻为 24.36 Ω 。若在同一电导池中放入 $0.01\mathrm{mol}\cdot\mathrm{dm}^{-3}$ 的醋酸溶液,测得
25 时的电阻为 $1982~\Omega$ 。试求醋酸溶液的摩尔电导率。(设水的电导率略去不计)

四、已知 25 时浓度为 $0.1 mol \cdot kg^{-1}$ 的 K_2SO_4 溶液的 $\gamma_{\pm}=0.43$ 。 试求电解质作为整体的

活度 $a_{\text{K}_2\text{SO}_4}$ 及离子平均活度 $a_{\text{\pm}}$ 。