CMPE 212 Principles of Digital Design

Lecture 13

Quine-McCluskey Algorithm

March 7, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

Previous Lecture:

- → Extended K-map procedure

 (Multi-output optimization, map-entered variable)
- → Other circuit performance considerations (fan-in limitations, timing hazards issues and countermeasures)

☐ This Lecture

- → The Quine-McCluskey algorithm
- → Tabular multi-output optimization
- → Petrick's algorithm

Conclusion

□ Summary

- → Extended K-map procedure (Multi-output optimization, map-entered variable)
- → Other circuit performance considerations

 (fan-in limitations, timing hazards issues and countermeasures)
- → The Quine-McCluskey algorithm (successive reduction, table of choices, Coverage process)
- → Petrick's algorithm (Coverage expression, prime implicants selection)
- - → Modular Combinational Logic

Reading assignment: Sections 3.9 – 3.10 in the textbook

Design Optimization

- ☐ Quality of combinational circuit design is measured using following metrics:
 - ➤ <u>Gate counts</u>: fewer gates require smaller area and cost less
 - Propagation delay: time for the output to become available after applying input. This time depends on transistor-level gate implementation
 - Gate fan-in: large gate fan-in can lead to increased gate counts and propagation delay (by using multi-level of gates)
 - > Gate fan-out: large gate fan-out may mandate logic replication
- ☐ In many cases the canonical sum-of-products or product-of-sums forms are not minimal in terms in their number and size
- ☐ Since a smaller Boolean equation translates to a lower gate input count in the target circuit, reduction of the equation is an important consideration when circuit complexity is an issue
- ☐ Three methods for reducing Boolean equations are considered:
 - > Algebraic reduction
 - ➤ Karnaugh map (K-map) reduction
 - ➤ Tabular reduction (Quine-McCluskey)

Quine-McCluskey Tabular Minimization Method

- W. V. Quine, "The Problem of Simplifying Truth Functions," American Mathematical Monthly, vol. 59, no. 10, pp. 521-531, October 1952.
- E. J. McCluskey, "Minimization of Boolean Functions," *Bell System Technical Journal*, vol. 35, no. 11, pp. 1417-1444, November 1956.

Willard V. O. Quine 1908 – 2000

Edward J. McCluskey born 1929, currently at Stanford

Tabular (Quine-McCluskey) Reduction

- The tabular method successively forms Boolean cross products among groups of terms that differ in one variable and then uses the smallest set of reduced terms
- ☐ Tabular reduction is systematic
 - → can be performed on a computer
- ☐ Tabular reduction begins by grouping minterms for which *F* is nonzero according to the number of 1's in each minterm
- Don't cares are considered to be nonzero

A	В	C	D	F
0	0	0	0	d
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	d
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	d
				I

Initial setup

A	B	C	D	
0	0	0	0	
0	0	0	1	-
0	0	1	1	-
0	1	0	1	
0	1	1	0	
1	0	1	0	_
0	1	1	1	-
1	0	1	1	
1	1	0	1	-
1	1	1	1	

Tabular Reduction (Cont.)

- ☐ The next step forms a consensus (the logical form of a cross product) between each pair of adjacent groups for all terms that differ in only one variable
- □ Common variables are removed between a couple of terms and replaced by a " "
- ☐ A term can be used multiple times against the terms of the adjacent group
- ☐ Every term is included in the reduction is marked by a check
- ☐ Terms that are not covered are marked by '*' and correspond to prime implicants (may not be essential though)

Initial setup

After first reduction

A	B	C	D	
0	0	0	0	
0	0	0	1	
0	0	1	1	
0	1	0	1	$\sqrt{}$
0	1	1	0	$\sqrt{}$
1	0	1	0	$\sqrt{}$
0	1	1	1	$\sqrt{}$
1	0	1	1	$\sqrt{}$
1	1	0	1	$\sqrt{}$
1	1	1	1	$\sqrt{}$

A	В	C	D	
0	0	0	_	
0	0	_	1	
0	_	0	1	
0	_	1	1	
	0	1	1	
0	1	_	1	
_	1	0	1	
0	1	1	_	
1	0	1	_	
_	1	1	1	-
1	_	1	1	
1	1		1	

Tabular Reduction (Cont.)

Initial setup

A	В	C	D	
0	0	0	0	$\sqrt{}$
0	0	0	1	$\sqrt{}$
0	0	1	1	$\sqrt{}$
0	1	0	1	$\sqrt{}$
0	1	1	0	$\sqrt{}$
1	0	1	0	$\sqrt{}$
0	1	1	1	$\sqrt{}$
1	0	1	1	$\sqrt{}$
1	1	0	1	$\sqrt{}$
1	1	1	1	$\sqrt{}$

After first reduction

After second reduction

- ☐ The consensus process is repeated using reduced tables
- ☐ The "_" has to be matched before a reduction can be made
- □ Process continue till no further reduction is possible

* Slide is courtesy of M. Murdocca and V. Heuring

Table of Choice

- The prime implicants form a set that completely covers the function, although not necessarily minimally.
- ☐ A table of choice is used to obtain a minimal cover set
- □ A single check in a column means that only one prime implicant covers the minterm → becomes essential (must be picked)

 True entries

* Slide is courtesy of M. Murdocca and V. Heuring

Reduced Table of Choice

☐ In a reduced table of choice, the essential prime implicants and the minterms they cover are removed, producing the eligible set

Eligible	Minterms		
Set	0001	0011	
X 000_	1		
Y 01	$\sqrt{}$	\checkmark	
Z 11		√	

$$F = \overline{A}BC + A\overline{B}C + BD + \overline{A}D$$

Minimized Circuit

Q-M Tabular Minimization Algorithm

- Begin with minterms:
 - Step 1: Tabulate minterms in groups of increasing number of true variables (including don't care entries)
 - Step 2: Conduct linear searches to identify all prime implicants
 - Step 3: Tabulate Pl's vs. minterms to identify EPl's.
 - Step 4: Tabulate non-essential Pl's vs. minterms not covered by EPl's. Select minimum number of Pl's to cover all minterms.
- MSOP contains all EPI's and selected non-EPI's.
- Step 4 can be performed by modeling the selection as integer linear program (solved by MATLAB or any other tool)
- Minimizes functions with many variables; however suffers exponential growth of complexity w.r.t the number of inputs
- Can be implemented in software

 tool based logic reduction

Coverage Process (Step 4)

- Rule #1: Identify the columns that have only one entry, which would correspond to EPI, then remove all columns covered by that row
- Rule #2: Remove any row "i" that is fully covered by another row "j" since "j" covers all the minterms covered by "i"
- Rule #3: Remove any column "i" that fully cover another column "j" since any row that covers the minterm "j" will cover "i"
- Rule #4: In case there is no EPI, one PI is picked at random to get the coverage process
- Coverage can be performed by modeling the PI selection as Integer linear program (and solved by MATLAB or any other tool)
 - \triangleright Define integer {0,1} variables, $x_k = 1$, select PI_k ;
 - Constraints are imposed to cover all minterms

Objective minimize $\sum_{k} x_{k}$

Example: Coverage Process

Pl₂ covered by Pl₃ and Pl₆ by Pl₅

No EPI (cyclic) → Pick one at random

_							
		m ₂	n	14	m ₅	n	16
	Pl ₃	Х)	(
	PI_4)	()	(
	Pl ₅)	(X		
y -							

m₆ covers m₂ and m₄ covers m₅

		m ₂	m ₄	m ₅	m ₆
/	Pl ₃	X			Х
	PI ₄		Х		Х
/	PI ₅		Χ	X	

Pl₃ and Pl₅ are essential

Pertick's Algorithm

- Follow the steps 1-3 of QM algorithm without any change
- Identify all EPIs and remove the corresponding rows and columns (same like QM algorithm)
- Determine optimal set of non-essential PIs for full coverage and least cost:
 - a) For each minterm (column) m_i write a sum (OR) of all PIs that cover m_i (indicating that any of these PIs can cover m_i)
 - b) Form the product (AND) of all minterms in the table (modeling the coverage as a Boolean expression)
- Convert the formed POS to SOP using to distributive axiom and simplify the expression (recursion!!)
- Select the cover with the least cost, i.e., number of PIs and number of literals in the PIs

$$C = (PI_2 + PI_3) (PI_4 + PI_5) (PI_5 + PI_6) (PI_3 + PI_4)$$

$$C = (PI_3 + PI_2 PI_4) (PI_5 + PI_4 PI_6)$$

$$C = PI_3 PI_5 + PI_3 PI_4 PI_6 + PI_2 PI_4 PI_5 + PI_2 PI_4 PI_6$$

	m ₂	m ₄	m ₅	m ₆
Pl ₂	X			
Pl ₃	Х			Х
Pl ₄		Х		Х
Pl ₅		Х	Х	
Pl ₆			Х	

System with Multiple Output

$$f_{\alpha}(A,B,C,D) = \sum m(0,2,7,10) + d(12,15), \quad f_{\beta}(A,B,C,D) = \sum m(2,4,5) + d(6,7,8,10)$$
$$f_{\gamma}(A,B,C,D) = \sum m(2,7,8) + d(0,5,13)$$

Minterm	List (ABCD)	Flags	mark
0	0000	αγ	
2	0010	αβγ	
4	0100	β	
8	1000	βγ	
5	0101	βγ	
6	0110	β	
10	1010	αβ	
12	1100	α	
7	0111	αβγ	_
13	1101	γ	
15	1111	α	

List (ABCD)	Flags	mark
	,	
	,	

List (ABCD)	Flags	mark
	-	

- 1) Affix a flag to identify function
- 2) Combine 2 minterms if they have common flags (which will be kept to next stage)
- 3) Check off a minterm if all flags are kept in next stage

System with Multiple Output

$$f_{\alpha}(A,B,C,D) = \sum_{\alpha} m(0,2,7,10) + d(12,15), \quad f_{\beta}(A,B,C,D) = \sum_{\alpha} m(2,4,5) + d(6,7,8,10)$$

$$f_{\gamma}(A, B, C, D) = \sum m(2,7,8) + d(0,5,13)$$

•			
Minterm	List (ABCD)	Flags	mark
0	0000	αγ	✓
2	0010	αβγ	PI ₁₀
4	0100	β	✓
8	1000	βγ	Pl ₁₁
5	0101	βγ	✓
6	0110	β	✓
10	1010	αβ	✓
12	1100	α	PI ₁₂
7	0111	αβγ	PI ₁₃
13	1101	γ	✓
15	1111	α	✓

List (ABCD)	Flags	mark
00-0	αγ	Pl ₂
-000	γ	PI ₃
0-10	β	PI ₄
-010	αβ	PI ₅
010-	β	✓
01-0	β	✓
10-0	β	PI ₆
01-1	βγ	PI ₇
-101	γ	PI ₈
011-	β	✓
-111	α	PI ₉

List (ABCD)	Flags	mark
01	β	PI ₁

- Identify all prime impicants
- Apply the coverage process

Coverage Process

				f	α			1	f	3		1	\mathbf{f}_{γ}		
		(2	7	1	0	2	4	.	5	2	7	8	
PI_1	β								Ć	3	X	1.			
/Pl ₂	αγ	Q)	X								X			
Pl ₃	γ													X	
PI ₄	β							X							
PI ₅	αβ			X		(3)	¥				T			
PI ₆	β			i				i				i			
PI ₇	βγ			i			П	i			X	i	X		
PI ₈	γ			!											
Pl ₉	α				X							1.			
PI ₁₀	αβγ			k				k	П			X			
PI ₁₁	βγ			-:			П		П			:		X	
PI ₁₂	α						П		П			ŀ			
PI ₁₃	αβγ				X		П		П			l	X		
						•		-			$\overline{}$				

$$f_{\alpha} = \sum m(0,2,7,10) + d(12,15)$$

$$f_{\beta} = \sum m(2,4,5) + d(6,7,8,10)$$

$$f_{\gamma} = \sum m(2,7,8) + d(0,5,13)$$

		f_{α}	f_{γ}	
		7	7	8
PI ₃	γ			X
PI ₇	βγ		X	
Pl ₉	α	X		
PI ₁₁	βγ			X
✓ PI ₁₃	αβγ	X	X	

$$f_{\alpha} = PI_2 + PI_5 + PI_{13}$$

$$f_{\beta} = PI_1 + PI_5$$

$$f_{\gamma} = PI_2 + PI_3 + PI_{13}$$

Conclusion

- □ Summary
 - → The Quine-McCluskey algorithm (successive reduction, table of choices, Coverage process)
 - → Petrick's algorithm (Coverage expression, prime implicants selection)
 - □ Next Lecture
 - → Modular Combinational Logic

Reading assignment: Sections 3.9 – 3.10 in the textbook