Valence-driven decimation for lossless transmission

October 2022 ENSEEIHT Younes Boutiyarzist, Pierre Barroso, Amar Meddahi, Fabio Pereira

Outline

- Paper Overview
- Key concepts
- Algorithm
- Challenges
- Results
- Conclusion
- References

Paper Overview

Informations:

- Title: Progressive Compression for Lossless Transmission of Triangle Meshes
- In: SIGGRAPH 2001
- Authors: Pierre Alliez and Mathieu Desbrun

Key contributions:

- 3-step iterative encoding (Non-deterministic decimating conquest, retriangulation, cleaning conquest)
- Geometry encoding

Results:

- VRML 3D model down to 1.7% of its size for a 10-bit quantization (2.3% for a 12-bit quantization)
- Very progressive reconstruction

Key concepts

Triangles Meshes

Importance of Low Valence Vertices

Algorithm

Step 1: Decimating Conquest (valence ≤ 6)

Algorithm

Step 2: Adaptive Retriangulation

Algorithm

Step 3: Cleaning Conquest (valence = 3)

Issues / Robustness : topology

- Good topology required
- No "hourglasses"
- Only one object (eg., suzanne)
- Closed models (stanford bunny)

Issues: during implementation

Double-sided faces

Issues: during implementation

• Double-sided edges

Results: Algorithm

Initial

Final

Results: Algorithm

12

Results: Progressive Transmission

Conclusion

Pros

- Very Progressive
- Efficient

Cons

- Complex implementation
- Robustness

References

 Alliez et al., Progressive Compression for Lossless Transmission of Triangle Meshes, SIGGRAPH 2001