

Application

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dv/dt and di/dt Capability
- RoHS Compliant Containing no Lead, no Bromide and no Halogen

DirectFET® N-Channel Power MOSFET

V _{DSS}	40V
R _{DS(on)} typ.	1.1mΩ
max	1.4mΩ
I _D	198A

Door next womber	Deekens Tyne	Standard Pack		Oudenskie Deut Nousken
Base part number	Раскаде туре	Form	Quantity	Orderable Part Number
IRF7946TRPbF	DirectFET MX	Tape and Reel	4800	IRF7946TRPbF

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 10V	198	
$I_D @ T_C = 100^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	125	Α
I _{DM}	Pulsed Drain Current ①	793	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	96	W
	Linear Derating Factor	0.77	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
T_J	Operating Junction and	-55 to + 150	°C
T_{STG}	Storage Temperature Range)

Avalanche Characteristics

E _{AS (Thermally limited)}	Single Pulse Avalanche Energy ②	85	m l
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy	200	mJ
I_{AR}	Avalanche Current ①	Soo Fig 15 16 220 22h	Α
E _{AR}	Repetitive Avalanche Energy ①	See Fig.15,16, 22a, 22b	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JA}$	Junction-to-Ambient		45	
$R_{ heta JA}$	Junction-to-Ambient ⑤	12.5		
$R_{\theta JA}$	Junction-to-Ambient ❷	20		°C/W
$R_{ heta JC}$	Junction-to-Case 4 ®		1.3	
$R_{\theta JA-PCB}$	Junction-to-PCB Mounted	1.0		

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40				V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I _D = 1.0mA①
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.1	1.4		V _{GS} = 10V, I _D = 90A ④
			1.7		mΩ	V _{GS} = 6.0V, I _D = 72A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$
	Danier to Common London Commont			1.0	^	V _{DS} = 40V, V _{GS} = 0V
IDSS	Drain-to-Source Leakage Current			150	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R_G	Internal Gate Resistance		0.67		Ω	

Notes:

- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- Used double sided cooling , mounting pad with large heatsink.
- $\ensuremath{\mathbf{0}}$ TC measured with thermocouple mounted to top (Drain) of part.

 Surface mounted on 1 in. square Cu board (still air).

Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	91			S	$V_{DS} = 10V, I_{D} = 90A$
Q_g	Total Gate Charge		141	212		I _D = 90A
Q_{gs}	Gate-to-Source Charge		36		nC	V _{DS} =20V
Q_{gd}	Gate-to-Drain ("Miller") Charge		44		IIC	V _{GS} = 10V ④
Q_{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		97			
$t_{d(on)}$	Turn-On Delay Time		20			$V_{DD} = 20V$
t _r	Rise Time		49		200	I _D = 30A
$t_{d(off)}$	Turn-Off Delay Time		54		ns	$R_G = 2.7\Omega$
t _f	Fall Time		41			V _{GS} = 10V ④
C _{iss}	Input Capacitance		6852			$V_{GS} = 0V$
Coss	Output Capacitance		1046			V _{DS} = 25V
C_{rss}	Reverse Transfer Capacitance		735		pF	f = 1.0MHz
Coss eff. (ER)	Effective Output Capacitance (Energy Related)		1307			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V $
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)		1465			V_{GS} = 0V, V_{DS} = 0V to 32V \odot

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			96		MOSFET symbol
	(Body Diode)			90	_	showing the
I _{SM}	Pulsed Source Current			793	Α	integral reverse
	(Body Diode) ①			793		p-n junction diode.
V_{SD}	Diode Forward Voltage		0.75	1.2	٧	$T_J = 25^{\circ}C, I_S = 90A, V_{GS} = 0V$
dv/dt	Peak Diode Recovery ③		1.6		V/ns	$T_J = 150^{\circ}C, I_S = 90A, V_{DS} = 40V$
t _{rr}	Reverse Recovery Time		49			$T_J = 25^{\circ} C V_R = 34V,$
			50		ns	$T_J = 125^{\circ}C$ $I_F = 90A$
Q_{rr}	Reverse Recovery Charge		74		200	$T_J = 25^{\circ}C$ di/dt = 100A/µs 4
			73		nC	T _J = 125°C
I_{RRM}	Reverse Recovery Current		2.6		Α	T _J = 25°C

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Limited by T_J max, starting T_J = 25°C, L = 0.021mH, R_G = 50 Ω , I_{AS} = 90A, V_{GS} =10V.
- ③ $I_{SD} \le 90A$, di/dt ≤ 1135A/µs, $V_{DD} \le V(BR)DSS$, $T_{J} \le 150$ °C.
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- © C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- ⑥ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note # AN-994. http://www.irf.com/technical-info/appnotes/an-994.pdf
- R_θ is measured at T_J approximately 90°C.
- \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50 Ω , I_{AS} = 20A, V_{GS} =10V.

Fig 3. Typical Output Characteristics

Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

Fig 4. Typical Output Characteristics

Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 9. Typical Source-Drain Diode Forward Voltage

Fig 11. Drain-to-Source Breakdown Voltage

Fig 10. Maximum Safe Operating Area

Fig 12. Typical Coss Stored Energy

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 15. Avalanche Current vs. Pulse Width

Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every
- 2. Safe operation in Avalanche is allowed as long as T_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav f

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13)

PD (ave) = 1/2 (1.3·BV· I_{av}) = $\Delta T/Z_{thJC}$

 $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

 $E_{AS (AR)} = P_{D (ave)} t_{av}$

Fig 17. Threshold Voltage vs. Temperature

Fig 18. Typical Recovery Current vs. dif/dt

Fig 19. Typical Recovery Current vs. dif/dt

Fig 21. Typical Stored Charge vs. dif/dt

Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 23a. Unclamped Inductive Test Circuit

Fig 24a. Switching Time Test Circuit

Fig 25a. Gate Charge Test Circuit

Fig 23b. Unclamped Inductive Waveforms

Fig 24b. Switching Time Waveforms

Fig 25b. Gate Charge Waveform

DirectFET® Board Footprint, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Outline Dimension, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DIMENSIONS						
	MET	TRIC	IMPE	RIAL		
CODE	MIN	MAX	MIN	MAX		
Α	6.25	6.35	0.246	0.250		
В	4.80	5.05	0.189	0.199		
С	3.85	3.95	0.152	0.156		
D	0.35	0.45	0.014	0.018		
Е	0.68	0.72	0.027	0.028		
F	0.68	0.72	0.027	0.028		
G	1.38	1.42	0.054	0.056		
Н	0.80	0.84	0.031	0.033		
J	0.38	0.42	0.015	0.017		
K	0.88	1.02	0.035	0.040		
L	2.28	2.42	0.090	0.095		
М	0.59	0.70	0.023	0.028		
R	0.03	0.08	0.001	0.003		
Р	0.08	0.17	0.003	0.007		

Dimensions are shown in millimeters (inches)

DirectFET® Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel. quantity is 4800 parts. (ordered as IRF7946PBF).

REEL DIMENSIONS						
	STANDA	RD OPTION	ON(QTY 4	800)		
	М	ETRIC	IMF	PERIAL		
CODE	MIN	MAX	MIN	MAX		
Α	330.0	N.C	12.992	N.C		
В	20.2	N.C	0.795	N.C		
С	12.8	13.2	0.504	0.520		
D	1.5	N.C	0.059	N.C		
Е	100.0	N.C	3.937	N.C		
F	N.C	18.4	N.C	0.724		
G	12.4	14.4	0.488	0.567		
Н	11.9	15.4	0.469	0.606		

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS						
	MET	TRIC	IMPE	RIAL		
CODE	MIN	MAX	MIN	MAX		
Α	7.90	8.10	0.311	0.319		
В	3.90	4.10	0.154	0.161		
С	11.90	12.30	0.469	0.484		
D	5.45	5.55	0.215	0.219		
E	5.10	5.30	0.201	0.209		
F	6.50	6.70	0.256	0.264		
G	1.50	N.C	0.059	N.C		
Н	1.50	1.60	0.059	0.063		

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Consumer ^{† †} (per JEDEC JESD47F ^{††} guidelines)				
Moisture Sensitivity Level	DFET 1.5	MSL1 (per JEDEC J-STD-020D ^{††)}			
RoHS Compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments
05/07/2014	 Updated data sheet based on corporate template. Updated Qual level from "MSL3" to "MSL1" on page12. Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #264).
05/30/2014	 Remove IRF7946TR1PBF quantity= 1000 from ordering table on page1. Remove continuous drain current package limt=90A from Absolute Maximum table-on page2.
11/25/2014	 Updated E_{AS (L =1mH)} = 200mJ on page 2 Updated note 10 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, RG = 50Ω, I_{AS} = 20A, V_{GS} =10V". on page 3 Updated RθJA from "60°C/W" to "45°C/W" on page 2
09/09/2015	 Removed package limit "90A" and updated Fig.2 & Fig.10 on page1 and page 5. Removed note1 and rename all notes on page 3. Corrected typo dv/dt test condition from "T_J=175°C" to "T_J= 150°C" on page 3.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.