Nota: 2,00

Página principal / Minhas disciplinas / TCP2324 / Recursos para estudo / MT1

Iniciada	quarta-feira, 3 de abril de 2024 às 17:00
Estado	Terminada
Terminada	quarta-feira, 3 de abril de 2024 às 17:27
Tempo gasto	27 minutos 46 segundos
Pergunta 1	
Respondida	

Uma função total $f: A \to B$ diz-se injectiva se:

- [®] a. Para todos os $x \in A$ e $x' \in A$ tal que $x \neq x'$ tem-se que $f(x) \neq f(x')$.
- Para todo o $y \in B$ existe $x \in A$ tal que f(x) = y.
- Para todo o $x \in A$ existe $y \in B$ tal que f(x) = y.
- Para todos os $x \in A$ e $x' \in A$ tal que $x \neq x'$ tem-se que f(x) = f(x').

```
Pergunta 2
Respondida
Nota: 2,00
```

Se A é um conjunto contável e B é um conjunto $n\tilde{a}o$ contável, então $B\setminus A$ é (indique a opção com a justificação correcta):

- não contável, pois $B \setminus A \subseteq B$ e B é não contável.
- não contável, pois $B=(B\cap A)\cup (B\setminus A)$ e $B\cap A$ é contável e B é não contável.
- contável, pois $B \setminus A \subseteq A$ e A é contável.
- ontável, pois $B \setminus A \subseteq B$ e B é não contável.

Pergunta **3**Respondida
Nota: 2,00

Considere o alfabeto $\Sigma = \{0,1\}$. Qual das seguintes opções corresponde ao Autómato Finito Determinista sobre Σ que reconhece a linguagem das sequências que acabam num ou mais 0s?

$$S=\{q_0,q_1\},\ s=q_0,\ \Sigma=\{0,1\},\ F=\{q_0\},\ {
m e}$$
 $egin{array}{c|c} \delta&0&1\ \hline q_0&q_1&\bot\ \hline q_1&\bot&q_0 \end{array}$

$$S=\{q_0,q_1\},\ s=q_0,\ \Sigma=\{0,1\},\ F=\{q_1\},\ \mathrm{e}$$
 $egin{array}{c|c} \delta&0&1\ \hline q_0&q_1&q_0\ \hline q_1&q_1&q_0\ \end{array}$

$$S=\{q_0,q_1\},\ s=q_0,\ \Sigma=\{0,1\},\ F=\{q_1\},\ \mathrm{e}$$
 $egin{array}{c|c} \delta&0&1\ \hline q_0&q_1&q_0\ \hline q_1&\bot&q_0 \end{array}$

$$S=\{q_0,q_1\},\ s=q_0,\ \Sigma=\{0,1\},\ F=\{q_0\},\ {
m e}$$
 $egin{array}{c|c} \delta&0&1\ \hline q_0&q_1&q_0\ \hline q_1&q_1&q_0 \end{array}$

Pergunta **4**Respondida
Nota: 2,00

Considere o alfabeto $\Sigma = \{0, 1\}$. Qual das seguintes opções corresponde ao Autómato Finito Determinista sobre Σ que reconhece a linguagem das sequências que contêm pelo menos uma ocorrência da substring 001?

$$S = \{q_0,q_1,q_2\},\ s = q_0,\ \Sigma = \{0,1\},\ F = \{q_1,q_2\},\ {
m e}$$

δ	0	1
q_0	q_1	q_0
q_1	q_2	q_1
q_2	q_1	q_2

Nenhuma das outras opções.

$$S = \{q_0, q_1, q_2, q_3\}, \ s = q_0, \ \Sigma = \{0, 1\}, \ F = \{q_3\}, \ \mathrm{e}$$

$$egin{array}{c|c|c|c|c} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_0 \\ \hline q_1 & q_2 & q_0 \\ \hline q_2 & q_1 & q_3 \\ \hline q_3 & q_0 & q_0 \\ \hline \end{array}$$

$$^{ extstyle 0}$$
 $S = \{q_0, q_1, q_2, q_3\}, \ s = q_0, \ \Sigma = \{0, 1\}, \ F = \{q_3\}, \ ext{e}$

δ	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

Pergunta **5**Respondida

Nota: 2,00

O conjunto $\mathbb{R} \setminus \mathbb{Q}$ dos números irracionais é (escolha a opção com a justificação correcta, se existir):

- contável, pois $\mathbb{R} \setminus \mathbb{Q} \subseteq \mathbb{Q}$ e \mathbb{Q} é contável.
- não contável, pois $\mathbb{R} \setminus \mathbb{Q} \subseteq \mathbb{R}$ e \mathbb{R} não é contável.
- contável, pois $\mathbb{R} \setminus \mathbb{Q} \subseteq \mathbb{R}$ e \mathbb{R} é contável.
- Nenhuma das outras opções.

Pergunta **6**Respondida

Nota: 2,00

Qual é a linguagem reconhecida pelo seguinte Autómato Finito Determinista sobre o alfabeto $\Sigma = \{0\}$?

 $L=\{0^n\mid \exists k(k\in \mathbb{N}\wedge n=3k)\}$

 $L=\{0\}^*\setminus\{0^n\mid \exists k(k\in\mathbb{N}\wedge n=3k)\}$

 $L = \{0^n \mid \exists k (k \in \mathbb{N} \land n = 3k + 1)\}$

 $^{\circ}$ $L=\{0^n\mid \exists k(k\in\mathbb{N}\wedge n=3k+2)\}$

Pergunta **7**Respondida
Nota: 2,00

Se A é um conjunto contável e B é um conjunto não contável, então $A \cap B$ é (indique a opção com a justificação correcta):

- não contável, pois $A \cap B \subseteq B$ e B é não contável.
- contável, pois $A \cap B \subseteq A$ e A é contável.
- contável, pois $A \subseteq A \cap B$ e A é contável.
- "
 não contável, pois $B \subseteq A \cap B$ e B é não contável.

Pergunta **8**Respondida
Nota: 2,00

Qual é a linguagem reconhecida pelo seguinte Autómato Finito Determinista sobre o alfabeto $\Sigma = \{0, 1\}$?

- Nenhuma das outras opções.
- $^{\circ}$ $L=\{0,1\}^*$
- $^{\circ}$ $L=\{0^m1^n\mid m,n\in\mathbb{N}\}\cup\{1^m0^n\mid m,n\in\mathbb{N}\}$
- $^{^{\circ}}$ $L = \{0,1\}^* \setminus (\{0\}^* \cup \{1\}^*)$

Pergunta **9**Respondida
Nota: 2.00

Qual é a linguagem reconhecida pelo Autómato Finito Determinista $M = (S, \Sigma, \delta, s, F)$ com $S = \{q_0, q_1, q_2\}, \Sigma = \{0, 1\}, s = q_0, F = \{q_1, q_2\}, e$

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_2 \\ \hline q_1 & q_2 & q_0 \\ \hline q_2 & q_2 & q_2 \end{array}$$

$$L = \{0,1\}^* \setminus \{(01)^n \mid n \in \mathbb{N}\}$$

L =
$$\{w \in \{0,1\}^* \mid w \text{ acaba em } 01\}$$

$$\stackrel{\circ}{}$$
 $L=\{w\in\{0,1\}^*\mid w \ ext{n\~ao} \ ext{acaba} \ ext{em} \ 01\}$

$$^{\circ}$$
 $L=\{(01)^n\mid n\in\mathbb{N}\}$

Pergunta **10** Respondida

Nota: 2,00

Sejam $f: A \to B \in g: B \to C$ funções totais tais que f é injectiva e g é sobrejectiva. O que podemos concluir sobre a composta $g \circ f$?

- $g \circ f$ é injectiva, mas pode não ser sobrejectiva.
- $g \circ f$ é sobrejectiva, mas pode não ser injectiva.
- Nenhuma das outras opções.
- $g \circ f$ é bijectiva.

Exercícios

Ir para...

MT1-eng ►