NeuralNet 101

3. Logistic Regression

We have a problem..

We have a problem..

What is Logistic Regression?

Estimating the relationship in multi variable data with Logistic function

What is Logistic Regression?

Estimating the relationship in multi variable data with Logistic function

But it used to predict discontinuous data (0,1)

Logistic Regression

Logistic Regression

When do we use Logistic Regression?

https://youtu.be/UlyH4d0H-JE

Logistic Function

- Bernoulli Distribution

$$\log \frac{p}{1-p} = WX + b$$

Logistic Function

$$p = f(x) = \frac{1}{1 + e^{-(WX + b)}}$$

Error Function - MSE?

$$L(w,b) = \frac{1}{2m} \sum_{i=0}^{m} (f(x_i) - y_i)^2$$

$$l(b, W) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

$$L(b, W) = \log(l(b, W)) = \log(\prod_{i=1}^{\infty} p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i})$$

$$L(b, W) = \sum_{i=1}^{n} y_i \log(p(x_i)) + (1 - y_i) \log(1 - p(x_i))$$

$$p = \frac{1}{1 + e^{-(WX + b)}}$$

$$L(b, W) = \sum_{i=1}^{n} -\log(1 + e^{X_i \cdot W_i + b_i}) + \sum_{i=1}^{n} y_i (X_i \cdot W_i + b_i)$$

Gradient Descent (Last Lecture)

$$x_{n+1} = x_n - \alpha f'(x_n)$$

Differential

$$\frac{\partial}{\partial W}L(b,W) = -\sum_{i=1}^{n} \frac{1}{1 + e^{X_i \cdot W_i + b_i}} e^{X_i \cdot W_i + b_i} X_i + \sum_{i=1}^{n} y_i X_i$$

Differential

$$\frac{\partial}{\partial W}L(b,W) = \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-(X_i \cdot W_i + b_i)}})X_i$$

Gradient Descent (Last Lecture)

$$w_{n+1} = w_n - \alpha \sum_{i=1}^{n} (y_i - \frac{1}{1 + e^{-(X_i \cdot W_i + b_i)}}) X_i$$

Logistic regression

https://youtu.be/SE6250Gwzol

Lab Session

vlab-kaist/NN101_23S/lab/week3