

BLAST OFF!

Mid-Term Progress Report

ABOUT THE PROJECT

We aim to study and understand how and why rockets were invented, their structural aspects, the different kinds of launch vehicles (multi-stage/based on payload), how they're propelled by the engine, what sort of fuel-oxidiser combinations are used, orbital mechanics and so on.

TIMELINE

Session 2
Basic Structure of
Rocket

Coordinate Systems

Traditional and
Unconventional
methods of propulsion

WEEK 1

Early attempts at rockets

The Space Race

Modern era rockets

History of Rockets

Goddard's Rocket V2 Rocket Apollo 11 Starship

Structural Anatomy of Rockets

Fairings and stability

Dynamic Pressure

Structural System of Rockets

- Consists of payload, cylindrical body, fairings and control fins.
- Frame is made up of strong, but lightweight materials such as aluminum or titanium
- Thermal protection system used to protect from excessive heat caused due to friction.
- Fins are attached to the bottom for stability during the flight.
- Rocket boosters are made up of high density materials that have high strength and heat absorption capacity.

Rocket Fairings

- Enclosure of the uppermost stage of a rocket, i.e. the payload
- comprised of materials such as carbon fibre or ceramics like carbides.
- Protects the rocket and payload from noise and high frequency vibrations
- Fairing is typically a cone cylinder combination, due to aerodynamic considerations.

NASA's Parker Solar Probe

First ever Reusable fairing by SPACEX

Dynamic Pressure and Max Q

The Dynamic Pressure can be thought of as the kinetic energy density of the air with respect to the vehicle.

Dynamic pressure, q, is defined mathematically as

$$q=rac{1}{2}\,
ho\,v^2$$

... where ρ is the local air density, and ν is the vehicle's velocity

As rocket rises, the density of air decreases while speed increases thereby forming a maxima at a point called as

WEEK 2

A Primitive mathematical model

Specific Impulse

Staging - Series and Parallel

Mathematical model

Used the basic definition of linear momentum and its derivative and dynamics of variable mass system to analyse the dynamics of a rocket in a gravity free space.

Specific Impulse

Learnt the meaning of specific impulse and understood what is its relevance, how it is a measure of the efficiency of a rocket system

$$\triangle u = V_{eq} \ln \left(\frac{mt}{me} \right) = V_{eq} \ln MR = lsp g_o \ln MR$$

Staging - Series and Parallel

A process where different sections of the rocket fire and then detach so that the spaceship can penetrate the atmosphere and reach the space.

ALT-AZ Coordinate System

RA-DEC Coordinate System

COORDINATE SYSTEMS

1) ALT-AZ

- The sky is considered as a dome around the observer.
- Altitude-The angular distance above the horizon
- Azimuth-The angular distance measured east from north and parallel to the horizon.

2) RA-DEC

- Right Ascension-Angle from the vernal equinox.
- Declination-angular distance above the celestial equator

SSTO (single stage to orbit)

SSTO is stage in which vehicle reaches orbit from surface using only propellants and fluids without expending tanks, engines etc.

Calculations regarding SSTO

$$\Delta v = Isp x g_o x In[M_o/M_f]$$

$$\lambda$$
(structural Coeff) = $M_{rocket} / (M_{pay} + M_{rocket})$

Isp =Specific Impulse

g_o = Standard Gravity

Mo = Initial Mass of Rocket

Mf = Final Mass of Rocket after reaching the orbit

 $\Delta v = Change$ in velocity

RE-ENTRY

Guided

Rocket lands at particular point with particular speed and can be controlled whale landing

Rocket lands in wide region and can't be controlled while its landing

Unguided

Heat Shield

Insulation Blanket

Used where heat is less than 649 degrees

Insulation tiles

Can withstand temp. Upto 1260 degrees

Used where temp >1260 degree

Will be used in some advanced rockets like starship

ASSIGNMENT - I

Concepts Learnt:

- Curve-Fitting using the method of least squares and used it to determine the best fit ellipse passing through given points.
- Calculating the least distance of a star from earth using parametric coordinates of the trajectory
- 3. Calculated the velocity of a rocket at any general time t and determine the maximum altitude attained by the rocket
- Employed the concepts of classical mechanics to solve one problem related with spaceships thrust and so on.

WEEK 3

Liquid Propellants

Mono-propellants

Solid Rocket Boosters(SRB)

IDEA OF PROPULSION

"Throw out as much as mass from the nozzle at maximum velocity possible"

High mass flow rate => High chamber pressure => High exhaust velocity.

LIQUID PROPELLANTS

PETROLEUM BASED

- > Refined from crude oil and a mixture of hydrocarbons(RP1 widely used).
- > used with an oxidiser.
- > produce a Sooty Exhaust but is cheap.

<u>CRYOGENS</u>

- \succ uses (LH2) as the fuel & (LO2) as the oxidize
- > environment friendly.
- >difficult to store over long periods.

HYPERGOLS

- > ignite spontaneously on contact with each other and require no ignition source.
- > easy start and restart capability make them ideal for spacecraft maneuvering systems.
- ≻Can be used as an igniter.

MONOPROPELLANTS

- > Using single propellant which are pressure pumped.
- > Simple in design(most reliable).
- > Will require Catalysis.
- > Usually used in RCS

SOLID PROPELLANTS

Solid Rocket Booster (SRB)

- > SRB in Shuttle produced 12,000 kN of thrust.
- > "DOUBLE" the power of a single F1 rocket engine
- They can't be switched off once they have been fired.

Components

Nozzle

Outlet of the exhaust gases

Plumbing

It is the cycle of fuel in the engine to generate power

Turbopumps

The purpose of a turbopump is to produce a high-pressure fluid for feeding a combustion chamber or other use.

Combustion Chamber

As the name suggests!!

Combustion Chamber

It is the chamber where the combustion of the fuel takes place to produce the exhaust.

It has two parts Casing

Nozzle

It is directly connected to the combustion chamber and the all the exhaust gases are expelled through this. The velocity of exhaust gases increases although the area of nozzle increases

ASSIGNMENT - II

Concepts Learnt:

- 1. Relation between various parameters related to rocket like wet mass, payload mass, etc.
- 2. Calculating the displacement and velocity of the rocket at a general time
- 3. Solved problems related to SSTO t
- 4. Calculating the payload to fuel ratio which is necessary for optimisation and increasing the efficiency of the process

THANK YOU

"Cosmos is within us!"