

NEUKRON: Constant-Size Lossy Compression of Sparse Reorderable **Matrices and Tensors**

Taehyung Kwon*

Jihoon Ko*

Jinhong Jung

Kijung Shin

Sparse matrices from Web applications

Publication 1

Publication 2

Publication 3

Publication 4

Publication 4

Authors

Friendship in Social Media

 2
 2
 2

 2
 0
 1
 0
 1

 1
 0
 1
 0
 0

 2
 0
 1
 0
 0

 1
 0
 0
 0

Counting Clicks on Ads By Search Engine

	AD	AD	AD	AD
9	5	1	0	0
2	0	1	0	2
3	0	1	0	0
4	0	1	0	3

Publication Records from Academic Databases

	1	2	3	4
Q A	0	0	1	0
Oβ	1	0	1	0
ာ ပ	0	1	1	0
O	1	1	1	1

Real-world sparse matrices are large-scale

- Real-world sparse matrices often containing billions of rows or columns
 - ⇒ requires heavy memory or network I/O usage
 - ⇒ compressing these large sparse matrices is important!

Our goal: constant-size compression

- Given: a sparse and reorderable matrix $A \in \mathbb{R}^{N \times M}$ / a constant k = O(1)
- Find: a model Θ whose size is at most k
- To minimize: the approximation error $\|A-\widetilde{A}_{\mathbf{\Theta}}\|_F^2$

Experiments

Overview of Neukron

 Recurrent Neural Network: having a constant number of parameters but also expressive power

Introduction

Reordering: extract and exploit structural patterns for better compression

Model of NEUKRON

• Encode the position in a sequence by recursively dividing the input matrix

- Feed the sequence to LSTM to compute seed matrices
- Approximate the entry by multiplying the outputs of the LSTM cells

Order optimization

- Many real-world sparse matrices are reorderable
 - ⇒ Exploit structural patterns for compression!

	1	2	3	4			3	2	1	4						
A	0	0	1	0			1	1	1	1						
B	1	0	1	0	→	B	1	0	1	0	→			\otimes		1
e	0	1	1	0		e c	1	1	0	0		_1	0		1	O
B	1	1	1	1		A	1	0	0	0						

Order optimization

• Step 1. Find similar pairs of slices using Min-Hashing

• Step 2. Exchange slices with the neighboring slices when loss decreases

Overall training procedure

Iterative update until convergence

Model optimization

Experimental settings

• 10 real-world datasets: 6 sparse matrices and 4 sparse tensors (up to 233M non-zeros)

• 9 SOTA competitors

Experimental settings

- 10 real-world datasets: 6 sparse matrices and 4 sparse tensors
- 9 SOTA competitors
 - Factorization-based matrix compression
 - T-SVD, CMD, CUR
 - Co-clustering-based matrix compression
 - ACCAMS, bACCAMS
 - Kronecker product-based matrix compression
 - KronFit
 - Factorization-based tensor compression
 - CP, Tucker
 - Lossless tensor compression
 - CSF (Compressed Sparse Fiber)

NEUKRON is compact and accurate

- The outputs of Neukron are up to 5 orders of magnitude smaller
- The approximation error was up to 10.1X smaller in the outputs of NEUKRON

Neukron is scalable

Compression by Neukron scaled linearly with the number of non-zeros

Ablation Study

- All components of NEUKRON are effective
 - the variants of Neukron with missing components (Neukron-H, -A, -F, -I) were outperformed by the original Neukron, equipped with all components

Conclusion

• We propose Neukron, a lossy compression algorithm for reorderable and sparse matrices and tensors

Code and datasets are available at https://github.com/kbrother/NeuKron

NEUKRON: Constant-Size Lossy Compression of Sparse Reorderable **Matrices and Tensors**

Taehyung Kwon*

Jihoon Ko*

Jinhong Jung

Kijung Shin