4.2: Exponential Functions

Supplementary Notes

$$f(x) = a^x \qquad (a > 0, a \neq 1)$$

where a is a real number. Below are the graphs of f both for 0 < a < 1 and a > 1.

The graph of f has the following properties

• domain: $(-\infty, \infty)$

• range: $(0, \infty)$

• y-intercept: 1

• horizontal asymptote: y = 0 (x-axis)

• $\begin{cases} \text{ increasing} & \text{if } a > 1\\ \text{ decreasing} & \text{if } 0 < a < 1 \end{cases}$

Below are laws of exponents and rules for transforming graphs of exponential functions, some of which are review from Section 3.2

1

Laws of Exponents			
$a^s \cdot a^t = a^{s+t}$	$(a^s)^t = a^{s \cdot t}$	$(a \cdot b)^s = a^s \cdot b^s$	
$a^{-s} = \frac{1}{a^s} = \left(\frac{1}{a}\right)^s$	$1^{s} = 1$	$a^0 = 1$	

Reflection To obtain the graph of $-a^{x} ext{ reflect the graph of } a^{x} ext{ about the } x\text{-axis}$ $a^{-x} ext{ reflect the graph of } a^{x} ext{ about the } y\text{-axis}$

Translation			
For $h, k > 0$, to obtain the graph of			
$a^x + k$	translate the graph of a^x	upward k units	
	translate the graph of a^x	downward k units	
a^{x-h}	translate the graph of a^x	rightward h units	
a^{x+h}	translate the graph of a^x	leftward h units	

Reflection and Translation For h, k > 0, to obtain the graph of $-a^x + k$ reflect the graph of a^x about the x-axis then translate the graph of $-a^x$ upward k units $-a^x - k$ reflect the graph of a^x about the x-axis then translate the graph of $-a^x$ downward k units a^{-x-h} translate the graph of a^x rightward h units then reflect the graph of a^{x-h} about the y - axis a^{-x+h} translate the graph of a^x leftward h units then reflect the graph of a^{x+h} about the y - axis

Exercises

1. Select the graph of $y = -b^x$, b > 1.

2. Select the graph of $y = a^{-(1+x)}$, 1 < a.

3. Select the graph of $y = 1 - a^x$, 0 < a < 1.

4. Select the graph of $y = -(\frac{1}{a})^x, \ 0 < a < 1.$

