Measure Theory

Definition 0.1 (inverse function):

Let $f:X\longrightarrow Y$ be a function. The **inverse function** $f^{-1}:Y\longrightarrow X$ is a function such that $f^{-1}(y\in Y)=x\in X$ if f(x)=y.

Definition 1: inverse function

Definition 0.2 (preimage):

Let $f: X \longrightarrow Y$ be a function. Let $E \subseteq Y$. The **preimage** is the set $f^{-1}(E) = \{x \in X \mid f(x) \in E\}$.

Definition 2: preimage

Definition 0.3 (σ -algebra):

Let X be a set. $\Sigma \subseteq 2^X$ is said a **sigma algebra of X** iff.:

1. $X \in \Sigma$

2. $E \in \Sigma \Longrightarrow X \setminus E \in \Sigma$. close under complement.

3. $\left\{A_n \in \Sigma\right\}_{n=1}^{\infty} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$. close under infinite unions.

Definition 3: σ -algebra

Definition 0.4 (generate σ -algebra):

Let X be a set and $G \subseteq 2^X$. The σ -algebra generated by G, denoted $\sigma_X(G)$, is the smallest σ -algebra such that:

 $G \subseteq \sigma_X(G)$.

2. $\forall \Sigma$ σ -algebra : $G \subseteq \Sigma \Longrightarrow \sigma_X(G) \subseteq \Sigma$. Every other σ -algebra that contains G contains also the generated one, $\sigma_X(G)$.

Definition 4: generate σ -algebra

Definition 0.5 (σ -algebra product):

Let Σ_1 and Σ_2 be σ -algebras on X_1 and X_2 respectively. The **product** σ -algebra denoted $\Sigma_1 \otimes \Sigma_2$ is defined as $\sigma_{X_1 \times X_2}(\{S_1 \times S_2 \mid S_1 \in \Sigma_1, S_2 \in \Sigma_2\})$

Definition 5: σ -algebra product

Definition 0.6 (measurable space):

 (X, Σ) is said **measurable** iff. Σ is a sigma-algebra of X.

Definition 6: measurable space

Definition 0.7 (measure):

Given (X, Σ) measurable space. $\mu : \Sigma \longrightarrow \mathbb{R} \cup \{+\infty, -\infty\}$ is said a **measure** iff.

- 1. $E \in \Sigma \Longrightarrow \mu(E) \ge 0$. positive.
- 2. $\{E_n \in \Sigma\}_{n=1}^{\infty}$ such that $E_i \cap E_j$ for $i \neq j \Longrightarrow \mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. The measure of disjoint sets is is the sum of the measures of each set.

 $\mu(\emptyset) = 0.$

Definition 7: measure

Definition 0.8 (measure space):

 (X, Σ, μ) is said a **measure space** iff. (X, Σ) is a sigma algebra and μ is a measure of (X, Σ) .

Definition 8: measure space

Definition 0.9 (measurable function):

Let (X_1, Σ_1) and (X_2, Σ_2) be a measurable spaces. $f: X_1 \longrightarrow X_2$ is said a **measurable function** iff. $\forall E \in \Sigma_2: f^{-1}(E) \in \Sigma_1$. The preimage of each measurable set is again measurable.

Definition 9: measurable function

Definition 0.10 (pushforward):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. The **pushforwad of \mu under** f is the mapping $f_{\#}\mu: \Sigma_2 \longrightarrow \mathbb{R}_{\geq 0}$ defined as:

$$\forall E \in \Sigma_2: f_\#\mu(E) = \mu\big(f^{-1}(E)\big)$$

Definition 10: pushforward

Proposition 0.1 (pushforward of a measure is a measure):

Let (X_1,Σ_1,μ) be a measure space. Let (X_2,Σ_2) be a measurable space. Let $f:X_1\longrightarrow X_2$ be a measurable function. Then $(X_2,\Sigma_2,f_\#\mu)$ is a measure space.

Proposition 11: pushforward of a measure is a measure

Proof 0.1 (of Proposition 11):

To prove that statement, we need to prove only the axioms of a measure.

- 1. Let $E \in \Sigma_2$, we need to show that $f_{\#}\mu(E) \geq 0$. This is trivial by definition of pushforward and measure.
- Let $[E_n\in \Sigma_2]_{n=1}^\infty$ be a sequence of pairwise disjoint sets. We need to show that: $f_\#\mu\Bigl(\bigcup_{n=1}^\infty E_n\Bigr)=\sum_{n=1}^\infty f_\#\mu(E_n).$ 2.

$$\begin{split} f_{\#}\mu\bigg(\bigcup_{n=1}^{\infty}E_n\bigg) &= \mu\bigg(f^{-1}\bigg(\bigcup_{n=1}^{\infty}E_n\bigg)\bigg) \text{ definition of pushforward} \\ &= \mu\bigg(\bigcup_{n=1}^{\infty}f^{-1}(E_n)\bigg) \\ &= \sum_{n=1}^{\infty}\mu(f^{-1}(E_n)) \text{ definition of measure} \\ &= \sum_{n=1}^{\infty}f_{\#}\mu(E_n) \text{ definition of pushforward} \end{split}$$

We need to show that $\exists E \in \Sigma_1$ such that $f_\#(E) \geq 0$. Let $E' \in \Sigma_1$ such that $\mu(E') \geq 0$ (such E' exists by defintion of measure). Then, f(E') is a set that meets the requirements, that is

$$f_{\#}(f(E')) = \mu(f^{-1}(f(E'))) = \mu(E') \ge 0$$

Proof 12: of Proposition 11

Example 0.1 (pushforward example):

Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu(E) = |E|)$. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Consider the measurable function $f: \mathbb{N} \longrightarrow \mathbb{R}$ such that f(x) = x. Consider pushforward $f_{\#}\mu$:

 $\mathbb{R} \longrightarrow \mathbb{R}_{>0}$. Then $f_{\#}\mu$ is a measure for the measurable space $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ since:

- $\begin{array}{ll} 1. & f_{\#}\mu(E\in\mathcal{B}(\mathbb{R})) = |\{n\in\mathbb{N}\mid n\in E\}| \geq 0.\\ 2. & \text{Let }\{E_n\}_{n=1}^{\infty} \text{ pairwise disjoint, then } f_{\#}\mu\Bigl(\bigcup_{n=1}^{\infty}E_n\Bigr) = \mu\Bigl(f^{-1}\Bigl(\bigcup_{n=1}^{\infty}E_n\Bigr)\Bigr) = \\ & \mu\Bigl(\bigcup_{n=1}^{\infty}f^{-1}(E_n)\Bigr) = \sum_{n=1}^{\infty}\mu\bigl(f^{-1}\bigl(E_n)\bigr) = \sum_{n=1}^{\infty}f_{\#}\mu(E_n).\\ 3. & f_{\#}\mu(\emptyset) = \mu\bigl(f^{-1}(\emptyset)\bigr) = \mu(\emptyset) = 0 \end{array}$

Example 13: pushforward example

TODO: add borel sigma algebra