Task 1. Will the conversion to BCNF be dependency preserving in any case? Proof your statement and give a reasoning for choosing BCNF design.

There are some situations where BCNF is not dependency preserving

Example:

Relation dept advisor(s ID, dept name, i ID)

Functional dependencies F = {s_ID, dept_name -> i_ID, i_ID -> dept_name}

In i_ID -> dept_name: dept_name depends on i_ID, but i_ID is not a super key

Any other decomposition of dept_advisor will not include all the attributes in, thus, BCNF cannot be dependency preserving in any case.

Task 2. Given table in 1NF, convert to 3NF if PK is UnitID:

UnitID	StudentID	Date	Tutor ID	Topic	Room	Grade	Book	TutEmail
U1	St1	23.02.03	Tut1	GMT	629	4.7	Deumlich	tut1@fhbb.ch
U2	St1	18.11.02	Tut3	Gln	631	5.1	Zehnder	tut3@fhbb.ch
U1	St4	23.02.03	Tut1	GMT	629	4.3	Deumlich	tut1@fhbb.ch
U5	St2	05.05.03	Tut3	PhF	632	4.9	Dümmlers	tut3@fhbb.ch
U4	St2	04.07.03	Tut5	AVQ	621	5.0	SwissTopo	tut5@fhbb.ch

TutorID	TutEmail
Tut1	tut1@fhbb.ch
Tut3	tut3@fhbb.ch
Tut5	tut5@fhbb.ch

Topic	Book
GMT	Deumlich
Gln	Zehnder
PhF	Dümmlers
AVQ	SwissTopo

<u>UnitID</u>	StudentID	Grade
U1	St1	4.7
U2	St1	5.1
U1	St4	4.3
U5	St2	4.9
U4	St2	5.0

<u>UnitID</u>	Date	TutorID	Topic	Room
U1	23.02.03	Tut1	GMT	629
U2	18.11.02	Tut3	Gln	631
U4	04.07.03	Tut5	AVQ	621
U5	05.05.03	Tut3	PhF	632

Task 3. Given table in 1NF, convert to 2NF if PK is {ProjectName, ProjectManager}, use decomposition:

ProjectName	ProjectManager	Position	Budget	TeamSize
Project1	Manager1	СТО	1 kk \$	15
Project2	Manager2	CTO2	1.5 kk \$	12

<u>ProjectName</u>	<u>ProjectManager</u>	Position
Project1	Manager1	СТО
Project2	Manager2	CTO2

<u>ProjectName</u>	Budget	TeamSize
Project1	1 kk \$	15
Project2	1.5 kk \$	12

Task 4. Given table, convert to 3NF if PK is Group, use decomposition:

Faculties have a number of specialities, each speciality consists of a set of particular groups.

Group	Faculty	Speciality
g1	f1	s1
g2	f2	s2

Group	Specialty	Specialty	Facutly
g1	s1	s1	f1
g2	s2	s2	f2

Task 5. Given table, convert to BCNF if PK is {ProjectID, Department}, use decomposition:

Curator depends on projectID and related departments, teamSize directly relates to project and related departments, ProjectGroupsNumber depends on TeamSize.

ProjectID	Department	Curator	TeamSize	ProjectGroupsNumber
p1	d1	e1	100	5
p2	d2	e2	120	6

<u>ProjectID</u>	<u>Department</u>
p1	d1
p2	d2

<u>ProjectID</u>	Curator	TeamSize
p1	e1	100
p2	e2	120

<u>TeamSize</u>	ProjectGroupsNumber
100	5
120	6

Task 6. List the three design goals for relational databases, and explain why each is desirable. Give an example of both desirable and undesirable types of decompositions.

- 1. BCNF
- 2. Lossless join
- 3. Dependency preservation

Desirable type: Lossless decomposition

Lossless decomposition of a relation R into relations R1, R2 such that if we perform natural join of relation R1 and R2, it will return the original relation R

Undesirable type: Lossy decomposition

It's impossible to return to the original relation R from R1 and R2