Rebanking CCGbank for Improved NP Interpretation

Matthew Honnibal

June 23, 2010

Motivating Examples

Introduction

CCG/HPSG/LFG/LTAG/etc promise semantic transparency:

```
Google acquired YouTube \rightarrow acquire(G, Y)
                                                       (1)
```

YouTube was acquired by Google
$$\rightarrow$$
 acquire(G, Y) (2)

Youtube, which Google acquired
$$\rightarrow$$
 acquire(G, Y) (3)

Google decided to acquire YouTube
$$\rightarrow$$
 acquire(G, Y) (4)

But what counts as surface variation?

```
Google's acquisition of YouTube \rightarrow ?? (5)
```

Google's decision to acquire YouTube
$$\rightarrow$$
 ?? (6)

Google has to make a decision about acquiring YouTube
$$\rightarrow$$
 ?? (7)

Introduction

• The project: Produce a CCG treebank that's as good as one we'd produce if we started from scratch.

- The process: Design analyses, then use existing Penn Treebank annotations to reform CCGbank.
- The point: Test semantic transparency against independent semantic annotations; use the corpus to improve CCG parsers and realisers.

- Each word is assigned a lexical category and a logical form.
- Grammatical rules may only concatenate logical forms and bind variables.

$$\frac{\text{Google}}{NP_{G}} = \frac{\text{acquired}}{(S \setminus NP_{y})/NP_{z}} = \frac{\text{YouTube}}{NP_{Y}}$$

$$\frac{\text{acquire(y, z)}}{S \setminus NP_{y}} > \frac{\text{acquire(y, YouTube)}}{S}$$

$$\frac{S}{\text{acquire(Google, YouTube)}}$$

Deverbal Nouns in CCGbank

$$\frac{\overline{\text{Google}}}{NP_{G}} \frac{\text{'s}}{(NP_{y}/N_{y}) \backslash NP_{z}} \stackrel{\text{acquisition}}{\sim} \frac{\text{of}}{NP_{y} \backslash NP_{y}} \frac{\text{YouTube}}{NP_{y}} > \frac{NP_{y} \backslash NP_{y}}{NP_{y} \backslash NP_{y}} > \frac{NP_{y} \backslash NP_{y}}{NP_{y}} > \frac{NP_{y} \backslash NP_{y}}{NP_{y} \backslash NP_{y}} > \frac{NP_{y} \backslash NP_{y}}{NP_{y}} > \frac{NP_{y} \backslash NP_{y}}{NP_{y}} > \frac{NP_{y} \backslash NP_{y}}{NP_{y}} > \frac{NP_{y} \backslash NP$$

- CCGbank's analysis is derived from the Penn Treebank.
- Offers no support for nominal predicates: they do not subcategorise for their argument structures.

Our Analysis of Deverbal Nouns

NP Semantics

$$\frac{\text{Google}}{NP_{\textbf{Google}}} \frac{\text{'s}}{(NP_y/(N_y/PP_z)) \backslash NP_z} \frac{\text{acquisition}}{(N/PP_y)/PP_z} \frac{\text{of}}{PP_y/NP_y} \frac{\text{YouTube}}{NP_{\textbf{YouTube}}} \\ \frac{NP_y/(N_y/PP_{\textbf{Google}})}{NP_y/(N_y/PP_{\textbf{Google}})} < \frac{PP_{\textbf{YouTube}}}{N/PP_y} > \\ \frac{NP_{\textbf{acquisition}}}{\text{acquire}(y, \text{ YouTube})} > \\ \frac{NP_{\textbf{acquisition}}}{\text{acquire}(Google, \text{ YouTube})}$$

Deverbal nouns passing long-range dependencies

$$\frac{\text{G.}}{NP} \frac{\text{'s}}{(NP_y/(N_y/PP_z)_y) \setminus NP_z} \frac{\text{decision}}{(N/PP_y)/(S[to]_z \setminus NP_y)_z} \frac{\text{to acquire}}{(S[to] \setminus NP_y)/NP_z} \frac{\text{Yolder}}{NP_y/(N_y/PP_{Google})} \times \frac{\frac{\text{decision}}{(N/PP_y)/(S[to]_z \setminus NP_y)_z}}{\frac{\text{decide}(y, z)}{(S[to] \setminus NP_y)}} \frac{\frac{\text{Yolder}}{NP_y/(N_y/PP_{Google})}}{\frac{N/PP_y}{\text{decide}(y, acquire}) \wedge \text{acquire}(y, Y.)} \times \frac{NP}{\text{decide}(Google, acquire}) \wedge \text{acquire}(Google, Y.)}$$

THE UNIVERSITY OF SYDNEY

- Implementation relied on NomBank, a predicate-argument annotation layer for the Penn Treebank
- Updating CCG trees intelligently is non-trivial, because label changes must be propagated down the tree
- 34,345 adnominal prepositional phrases converted to complements
- 18,919 left as adjuncts
- Most complementy preposition: of, 99.1% of occurrences as complement
- Most adjuncty preposition: in, 59.1% of occurrences as adjunct

Merging Previous Changes

- NP bracketing from Dave Vadas's PhD e.g. Crude (oil prices) vs (Crude oil) prices
- Punctuation normalisation and quote restoration from Daniel Tse's honours
- Propbank complement/adjunct distinctions from a paper early in my PhD
- Verb particle constructions from James Constable's honours thesis,
 - e.g. he made up his mind vs. the parts are made up the river

Restrictive vs. Non-restrictive Adnominals

all	staff	on	casual	contracts		
$\overline{NP/NP}$		$(\overline{\mathit{NP} \backslash \mathit{NP}) / \mathit{NP}}$	$\overline{N/N}$	N		
	-> ⊤ <i>NP</i>			>		
				NP >T		
		Λ	$IP \setminus NP$	>		
		NP				
>						

THE UNIVERSITY OF SYDNEY

Restrictive vs. Non-restrictive Adnominals

THE UNIVERSITY OF

SYDNEY

Matthew Honnibal Rebanking June 23, 2010

Partitive Constructions

Four of our members
$$\frac{NP}{NP} \frac{(NP_y \backslash NP_y)/NP_z}{(NP_y \backslash NP_y)/NP_z} \frac{NP_y / N_y}{NP_{\text{members}}} > \frac{(NP_y \backslash NP_y)_{\text{of}}}{NP_{\text{Four}}} < \frac{NP_{\text{members}}}{NP_{\text{members}}} > \frac{(NP_y \backslash NP_y)_{\text{of}}}{NP_{\text{members}}} < \frac{(NP_y \backslash NP_y)_{\text{of}}}{NP_{\text{of}}} < \frac{(NP_y \backslash NP_y)_{\text{$$

Partitive Constructions

Extent of the Changes

THE UNIVERSITY OF

Corpus	L. Deps	U. Deps	Cats
+NP brackets	97.2	97.7	98.5
+Quotes	97.2	97.7	98.5
+Propbank	93.0	94.9	96.7
+Particles	92.5	94.8	96.2
+Restrictivity	79.5	94.4	90.6
+Part. Gen.	76.1	90.1	90.4
$+NP\ Pred\text{-}Arg$	70.6	83.3	84.8

Table: Effect of the changes on CCGbank, by percentage of dependencies and categories left unchanged in Section 00.

Matthew Honnibal Rebanking June 23, 2010

13

Parsing Results

	wsj 00		wsj 23			
Corpus	lf	uf	Cat	lf	uf	Cat
CCGbank	87.2	92.9	94.1	87.7	93.0	94.4
+NP brackets	86.9	92.8	93.8	87.3	92.8	93.9
+Quotes	86.8	92.7	93.9	87.1	92.6	94.0
+Propbank	86.7	92.6	94.0	87.0	92.6	94.0
+Particles	86.4	92.5	93.8	86.8	92.6	93.8
+NP rebanking	84.2	91.2	91.9	84.7	91.3	92.2

Table: Parser evaluation on the rebanked corpora.

Intersection Evaluation

Corpus	Rebanked		CCGbank	
	lf	uf	lf	uf
+NP brackets	86.45	92.36	86.52	92.35
+Quotes	86.57	92.40	86.52	92.35
+Propbank	87.76	92.96	87.74	92.99
+Particles	87.50	92.77	87.67	92.93
+NP Rebanking	87.23	92.71	88.02	93.51

Table: Comparison of parsers trained on CCGbank and the rebanked corpora, using dependencies that occur in both.

Replacing the pipeline

THE UNIVERSITY OF

- Research in computational linguistics is resource driven.
- The standard resource configuration suggests a pipeline: POS tagger \rightarrow NE tagger \rightarrow parser \rightarrow semantic role labeller
- What we're trying to do is integrate the resources, and thereby integrate the tasks.
- Powerful linguistic representations (i.e. CCG) are central to our strategy.

Matthew Honnibal Rebanking June 23, 2010

Conclusion

THE UNIVERSITY OF

- New and improved CCGbank including all previous updates
- Incorporation of SRL information from NomBank and PropBank into CCGbank
- New analyses to allow transparent interface between grammar and SRL-semantics
- 29.4% of dependencies in CCGbank updated
- Parsing remains feasible with the new, fine-grained resource

Matthew Honnibal Rebanking June 23, 2010