语言模型

刘挺 哈工大信息检索研究室 2004年春

大纲

- 概述
- 参数估计
- 基本平滑算法
- 其它平滑算法

噪声通道模型

• 原型

通道 (增加噪声)

- 模型: 出错的概率
- 举例: p(0|1)=0.3, p(1|1)=0.7, p(1|0)=0.4, p(0|0)=0.6
- 任务是:
 - 已知带有噪声的输出
 - 想知道输入是什么(也称为: Decoding)

噪声通道的应用

- OCR
 - 文本**→**打印(引入噪声), 扫描**→**图像
- 手写识别
 - 文本→神经肌肉(引入噪声),扫描→图像
- 语音识别
 - 文本→朗读(引入噪声) →声学波形
- 机器翻译
 - 目标语言→翻译(引入噪声) →源语言
- 其它: 词性标注
 - 词性序列**→**选择词形**→**文本

噪声通道: 黄金规则

- 适用于OCR, 手写识别, 语音识别, 机器翻译, 词性标注等各个问题
- 贝叶斯公式: P(A|B)=P(B|A)P(A)/P(B)
- $A_{best} = argmax_A P(B|A)P(A)$
- P(B|A)是声学/图像/翻译等模型
 - 在不同领域用不同的术语来描述
- P(A)是语言模型

什么是语言模型(Language Model)

- 语言模型是用来计算一个句子的概率的概率 模型
 - 例如: P(w₁,w₂,...,w_n)
- 语言模型的用途
 - 决定哪一个词序列的可能性更大
 - 已知若干个词,预测下一个词
- 应用
 - 语音识别
 - 机器翻译
 - 上下文敏感的拼写检查

应用于语音识别

- 有的词序列听起来很像,但并不都是正确的句子
 - 例子1:
 - I went to a party. √
 - Eye went two a bar tea.
 - 例子2:
 - 你现在在干什么? ✓
 - 你西安载感什么?

应用于机器翻译

- 给定一个汉语句子
 - 例如: 王刚出现在电视上。
 - 英文译文:
 - Wang Gang appeared in TV.
 - In Wang Gang appeared TV.
 - Wang Gang appeared on TV. √

应用于拼写检查

- 举例
 - 汉语
 - 我自己知道 ✓
 - 我自己知道
 - 英语
 - Wang Gang appeared on TV. √
 - Wang Gang appeared of TV.

参数估计

完美的语言模型

- 对于词序列 $W=w_1, w_2, ..., w_n$
- 如何计算p(W)?
- 根据链式规则: $p(W)=p(w_1)p(w_2|w_1)...p(w_n|w_1,...,w_{n-1})$
- 即使对于很小的n,上面的理想公式也 很难计算,因为参数太多

马尔科夫链

- 有限的记忆能力
 - 不考虑太"老"的历史
 - 只记住前k个词 $w_1,...,w_k$
 - 称为k阶马尔科夫近似
- $p(W) = \prod_{i=1...d} p(w_i | w_{i-k}, ..., w_{i-1}), d = |W|$

N元语言模型

• n-1阶马尔科夫近似称为n元语言模型(LM, Language Model)

$$- p(W) = \prod_{i=1...d} p(w_i | w_{i-n+1}, ..., w_{i-1}), d = |W|$$

• n越大,需要估计的参数越多,假设词汇量为20,000

模型	需要的参数数量
0阶(一元Unigram)	20,000
1阶(二元bigram)	20,000*19,999 = 400 million
2阶(三元trigram)	20,000 ² *19,999 = 8 trillion
3阶(四元four-gram)	20,000 ³ *19,999 = 1.6*10 ¹⁷

语言模型的讨论

- n多大?
 - 理论上讲, 越大越好
 - 经验值: 3, trigram用的最多
 - four-gram需要太多的参数,很难估计了
- 目前一般直接计算词形,不进行语言学处理,如形态还原等
- 可靠性(Reliability)和可区别性(Discrimination)成反比,需要折中
 - n越大,区别力越大; n越小,可靠性越高

可靠性和区别性

- 可靠性(Reliability)和可区别性(discrimination)
- 为了有效地推导一个特征,我们希望通过模型的其它特征来预测它,把这些特征分成等 价类便于我们预测新的数据。
- 分类特征越多,对未知分布的目标特征的预测就更精确,即有较好的可区别性,但是这样对每一个分类其实例就较少,统计的数据就不可靠,所以在划分等价类时要在可靠性和可区别性之间找一个折衷点。

长度问题

- $\forall n; \sum_{w \in O} n \ p(w) = 1 \Rightarrow$
- $\sum_{n=1...\infty} \sum_{w \in \Omega} n \ p(w) >> 1 \ (\rightarrow \infty)$
- 我们试图对所有的词序列建立模型
 - 对于固定长度的任务,没有问题,n一旦固定,累 计和为1
 - 比如Tagging, 手写识别等
 - 对于变长的任务,需要对比较短的巨资进行折扣
- 一般模型
 - 对于长度为n的词序列
 - P'(w)= $\lambda_n p(w)$, $\sum_{n=1...\infty} \lambda_n = 1$
 - $\sum_{n=1,...\infty} \sum_{w \in \Omega} n p'(w) = 1$
 - 从数据中估计λ_n

参数估计

- 参数: 用来计算p(w|h)的数值
- 从数据中得到
- 数据准备
 - 去掉格式符号
 - 定义词的边界
 - 定义句子边界(插入<s>和</s>等记号)
 - 字母的大小写(保留、忽略或者智能识别)
 - 数字(保留、替换为<num>等)

最大似然估计

- 最大似然估计MLE
 - 是对训练数据的最佳估计
- 从训练数据T中获得Trigrams
 - 统计T中三个词连续出现的次数 $C_3(w_{i-2},w_{i-1},w_i)$
 - 统计T中两个词连续出现的次数 $C_2(w_{i-2},w_{i-1})$
- $p_{MLE}(w_i|w_{i-2},w_{i-1}) = C_3(w_{i-2},w_{i-1},w_i) / C_2(w_{i-2},w_{i-1})$

MLE不适合用于NLP

- MLE选择的参数使训练语料具有最高的概率,它没有浪费任何概率在于没有出现的现象中
- 但是MLE通常是不适合NLP的统计语言推导的,因为数据稀疏,如果一个为0,会向下传播...
- 一个例子说明数据稀疏: 从IBM Laser Patent Text语料中1.5 Million 的词进行训练,在同一语料中的测试文本中,新出现23%的trigram tokens.

举例1

- p(z|xy)=?
- 假设训练语料为:

... xya ...; ... xyd ...; ... xyd ...

xyz没有出现过

- 我们能够说:
 - -p(a|xy)=1/3, p(d|xy)=2/3, p(z|xy)=0/3
- 不能,因为xyz可能是一个常见的组合, 但在现有的训练集中不应有的缺失了

分析

- 被除数越小,越不可靠
 - 1/3可能太高, 100/300可能是对的
- 除数越小,越不可靠
 - 1/300可能太高, 100/30000可能是对的

字符语言模型

- 使用单独的字符而不是词
- 使用相同的公式和方法
- 可以考虑使用4-gram, 5-gram, 因为数 据比较充足
- 对交叉语言的比较很有用
- 基于字和基于词的交叉熵的换算关系
 - $-H_S(p_c) = H_S(p_w) / 句子S中的平均词长$

举例2

• 训练数据:

- < s0 > < s > He can buy you the can of soda < / s >
- Unigram: (8 words in vocabulary)
 - $p_1(He) = p_1(buy) = p_1 (you) = p_1 (the) = p_1(of) = p_1(soda) = .125, p_1(can) = .25$
- Bigram:
 - $p_2(He|<s>) = 1$, $p_2(can|He) = 1$, $p_2(buy|can) = .5$, $p_2(of|can) = .5$, $p_2(you|buy) = 1$,...
- Trigram:
 - $p_3(He|<s0>,<s>) = 1$, $p_3(can|<s>,He) = 1$, $p_3(buy|He,can) = 1$, $p_3(of|the,can) = 1$, ..., $p_3(</s>|of,soda) = 1$.
- Entropy: $H(p_1) = 2.75$, $H(p_2) = 1$, $H(p_3) = 0$

交叉熵

- 交叉熵
 - $-S = \langle s0 \rangle \langle s \rangle$ It was the greatest buy of all $\langle s \rangle$
- $H_S(p_1) = H_S(p_2) = H_S(p_3) = \infty$,原因是:
 - 所有的unigrams除了p₁(the), p₁(buy), and p₁(of) 都是
 - 所有bigram的概率都是 0.
 - 所有trigram的概率都是 0.
- 我们希望使每个概率都是非零的

零概率问题

- 原始的Trigram模型估计
 - 一定会有很多概率为0的情况
 - 因为参数空间太大, trigram:8T, 而数据只有1G
 - 哪些参数真的应该是0呢?
 - 理想情况是: 最低频的trigram也应该出现几次,以便把它的概率和其它trigram的概率区别开来
 - 但是理想情况不会发生,到底需要多少数据,我们不知道
 - 我们必须去除概率为0的情况
 - 包括: p(w|h)=0, 或者p(h)=0

为什么我们需要非零的概率?

- 避免无穷大的交叉熵
 - 当测试数据中出现了一个在训练数据中没有出现过的事件,就会发生H(p)=∞的情况
- 使系统更健壮
 - 低频的估计值
 - 更加细腻(detailed), 但相对来说很少出现
 - 高频的估计值
 - 更可靠但是不够细腻

基本平滑算法

避免零概率:数据平滑

- $p'(w) \approx p(w)$, 但 $p'(w) \neq 0$
- 对一些p(w)>0,生成p'(w)<p(w)

$$\sum_{w \in discounted} (p(w) - p'(w)) = D$$

- 分配D给所有概率为0的w: p'(w)>p(w)=0
 - 可能对于概率值较低的词也作调整
- 可能有些w: p'(w)=p(w)
- 务必确保 $\sum_{w \in \Omega} p'(w) = 1$
- 有许多数据平滑的方法

折扣discounting

- 回退Back-off
 - 如果n-gram的值为零,则用n-1 gram来计算
- 平滑Smoothing
 - 将MLE方法与其它方向相混合,保证没有0 概率的值

加1平滑

- 最简单,但不是真的能用
 - T:训练数据,V:词表,w:词

预测 p'(w|h)=(c(h,w)+1)/(c(h)+|V|)

特别:非条件分布时p'(w)=(c(w)+1)/(|T|+|V|)

- 问题: 经常会|V|>c(h), 甚至|V|>>c(h)
- 举例: T: <s>what is it what is small? |T|=8
 - $V=\{\text{what,is,it,small,?,<s>,flying,birds,are,a,bird,.}\}, |V|=12$
 - p(it)=0.125, p(what)=0.25, p(.)=0, p(what is it?)= $0.25^2*0.125^2\approx0.001$ p(it is flying.)= $0.125*0.25*0^2=0$
 - p'(it)=0.1, p'(what)=0.15,p'(.)=0.05, p'(what is it?)=0.15 2 *0.1 2 \approx 0.0002 p'(it is flying.)=0.1 2 0.15 2 0.0004

Add one举例

Vocabulary Size (V) = 10,543

$$P_{+1}(\text{not|they,do}) = \frac{C(they,do,not)+1}{C(they,do)+10,543} = \frac{8}{22+10,543} = 0.000757$$

$$P_{+1}(\text{offer|they,do}) = \frac{C(they,do,like)+1}{C(they,do)+10,543} = \frac{1}{22+10,543} = 0.0000947$$

$$P_{+1}(\text{have|they,do}) = \frac{C(they,do,have)}{C(they,do)+10,543} = \frac{3}{22+10,543} = 0.000284$$

小于1平滑

- 加入λ系数
 - -T:训练数据,V:词表,w: 词 预测 p'(w|h)=(c(h,w)+ λ)/(c(h)+ λ |V|), λ <1 特别:非条件分布时p'(w)=(c(w)+ λ)/(|T|+ λ |V|)
- 举例: T: <s>what is it what is small? |T|=8
 - $V=\{\text{what,is,it,small,?,<s>,flying,birds,are,a,bird,.}\}, |V|=12$
 - p(it)=0.125, p(what)=0.25, p(.)=0, p(what is it?)=0.25 2 *0.125 2 \approx 0.001 p(it is flying.)=0.125 2 0.25 2 0.20
 - \Re $\lambda = 0.1$
 - p'(it)=0.12, p'(what)=0.23,p'(.)=0.01,
 - p'(what is it?)= $0.23^2*0.12^2 \approx 0.0007$ p'(it is flying.)= $0.12*0.23*0.01^2 \approx 0.000003$

Good-Turing

- 适用于评估大规模的数据
 - 相似点:

 $p_r(w) = (c(w)+1)*N(c(w)+1)/(|T|*N(c(w))),$

其中: N(c)是数目为c的词的数量

特别:对于训练集中没有出现的词, c(w)=0

 $p_r(w)=N(1)/(|T|*N(0))$

- 有利于数量少的词语(<5-10, 但N(c)较大)

• "调富济贫"
$$\sum_{w} p'(w) = 1$$

- 归一化(可以得到

Good-Turing: 举例

- 例如: 记住: p_r(w)=(c(w)+1)*N(c(w)+1)/(|T|*N(c(w)))
 - $T: \langle s \rangle$ what is it what is small? |T|=8
 - V={what,is,it,small,?,<s>,flying,birds,are,a,bird,.}, |V|=12 p(it)=0.125,p(what)=0.25,p(.)=0,p(what is it?)=0.25 2 *0.125 2 *0.001 p(it is flying.)=0.125 2 0.25 2 0.001
 - 重新计算(N(0)=6,N(1)=4,N(2)=2,N(i)=0 当 i>2): $P_r(it)=(1+1)*N(1+1)/(8*N(1))=2*2/(8*4)=0.125$ $P_r(what)=(2+1)*N(2+1)/(8*N(2))=3*0/(8*2)=0: keep orig. p(what)$ $P_r(.)=(0+1)*N(0+1)/(8*N(0))=1*4/(8*6)\approx 0.083$
 - 归一化(除以 1.5= $\sum_{w \in |V|} p_r(w)$)并计算 $p'(it) \approx 0.08$, $p'(what) \approx 0.17$, $p'(.) \approx 0.06$ $p'(what is it?)=0175^2*0.08^2\approx0.0002$ $p'(it is flying.) \approx 0.08*0.17*0.06^2\approx0.00004$

典型n-gram语言模型的平滑

- $\Re \exists (\lambda_0, \lambda_1, \lambda_2, \lambda_3)$: $p_{\lambda}(w_i | w_{i-2}, w_{i-1}) = \lambda_3 p_3(w_i | w_{i-2}, w_{i-1}) + \lambda_2 p_2(w_i | w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 / |V|$
- 归一化:

$$\lambda_{i} > 0, \sum_{i=0..n} \lambda_{i} = 1$$
 就可以了 ($\lambda_{0} = \sum_{i=1..n} \lambda_{i}$) (n=3)

- 极大似然估计
 - 固定p3,p2,p1和|V|,根据训练数据确定参数
 - 再寻找一组 $\{\lambda_i\}$ 使得交叉熵达到最小 (使数据的概率达到最大):

$$-(1/|D|)\sum_{i=1..|D|}\log_2(p_{\lambda}(w_i|h_i))$$

Held-out Data

- 使用什么数据?
 - 试用训练数据T: 但是我们总会得到 λ 3=1
 - 为什么?
 - 在向量 λ 上最小化 $H_T(p'(\lambda)), p'(\lambda) = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0/|V|$
 - 记住 $H_T(p'_{\lambda})=H(p_{3T})+D(p_{3T}||p'_{\lambda})$; (p_{3T} fixed→H(p3T) fixed, best)
 - 满足 $D(p_{3T}||p'|_{\lambda})=0$ 的 $p'|_{\lambda}$ 可以使得 $H_T(p'|_{\lambda})$ 达到最小
 - 解是p_{3T}(因为D(p||p)=0)
 - If $\lambda_3 = 1$,必有p' $\lambda = 1*p_{3T} + 0*p_{2T} + 0*p_{1T} + 0/|V| = p_{3T}$
- 所以:不要采用训练数据来估计 λ!
 - 必须留出部分训练数据(Held out data, H)
 - 剩下的数据为真实原始的训练数据(training data,<u>T</u>)
 - 测试数据 S (例如为了比较): 仍然是不同的数据!

公式

• 重复: 在 λ 上最小化 $-(1/|H|)\sum_{i=1..|H|}\log_2(p_{\lambda}(w_i|h_i))$

$$p_{\lambda}(w_{i} | w_{i-2}, w_{i-1}) = \lambda_{3} p_{3}(w_{i} | w_{i-2}, w_{i-1}) + \lambda_{2} p_{2}(w_{i} | w_{i-1}) + \lambda_{1} p_{1}(w_{i}) + \lambda_{0} / |V|$$

• λ的期望数值: j=0..3

$$c(\lambda_{j}) = \sum_{i=1..|H|} (\lambda_{j} p_{j}(w_{i} | h_{i}) / p_{\lambda}'(w_{i} | h_{i}))$$

• "Next λ ": j=0...3

$$\lambda_{j,next} = c(\lambda_j) / \sum_{k=0,3} (c(\lambda_k))$$

EM平滑算法

- 1、从某些 λ 开始,如 $\lambda_j > 0$,所有 $j \in 0...3$ 2、计算每个 λ_j 的期望数值 3、采用"Next λ "公式计算的 λ_j 新集合
 - 4、返回2、除非遇到终止条件

终止条件为: λ收敛 简单设定一个ε,当step3中对每个j都有 |λ_i-λ_{i,next}|<ε 时终止

简单实例

- 原始分布 (unigram, 对均匀分布平滑) $p(a)=0.25,p(b)=0.5,p(\alpha)=1/64,\alpha \in \{c..r\}$,剩下的s,t,u,v,w,x,y,z均为0
- Heldout数据: baby; 采用一个 λ 的集合(λ 1:unigram, λ 0:均匀分布)
- \mathcal{H} \mathcal{H}
 - $c(\lambda_1)=0.5*0.5/0.27+0.5*0.25/0.14+0.5*0.5/0.27+0.5*0/0.2=2.72$ $c(\lambda_0)=0.5*0.04/0.27+0.5*0.04/0.14+0.5*0.04/0.27+0.5*0.04/0.02=1.28$ 归一化: $\lambda_{1,next}=0.68$, $\lambda_{0,next}=0.32$
- 返回step2(重新计算 p'_{λ} ,然后 $c(\lambda_1)$,…)。结束结束条件为当前的 λ 与前一组 λ 相差很小(比如,<0.01)

其它平滑算法

线性插值

• 在简单线性插值中,权值仅仅是一个数,我们可以定一个更通用的和powerful的模型,其系数值是历史的函数,通用线性插值的形式是:

$$P_{li}(w \mid h) = \sum_{i=1}^{k} \lambda_i(h) P_i(w \mid h)$$

$$0 \le \lambda_i(h) \le 1$$
 $\sum_i \lambda_i(h) = 1$

线性插值

- "桶"平滑
 - 根据历史频率信息,采用几个λ向量代替一个
 - 例如: h=(micrograms,per) 我们可以得到
 - λ (h)=(0.999,0.0009,0.00009,0.00001) (因为"cubic"是唯一可以紧随的词语)
 - 事实上:不存在一个单独集合对应每个历史数据,但是可以对应近似的历史数据:
 - λ(b(h)),其中b: V²→N (对应三元模型)
 - **b**根据可靠性来区分历史数据(频率信息)

"桶"平滑算法

- 利用held out数据确定"桶"函数
 - 预先设定需要的数量,如1000个桶
 - 计算1个桶中的历史频率总数 f_{max}(b)
 - 根据最高频bigram逐渐填满所有桶,使得频率总和不超过f_{max}(b)(可能会略微超过1000个桶)
- 根据桶数平分held out数据
- 对各个桶及其数据应用以上算法

绝对折扣

Absolute discounting

• 对所有的非0 MLE频率减一个较小的常数,把获得的频率分不到不出现的事件上。

$$C(w_1...w_n) = r$$

$$P_{abs}(w_1...w_n) = \begin{cases} (r - \delta)/N & if \quad r > 0 \\ \frac{(B - N_0)\delta}{N_0 N} & otherwise \end{cases}$$

线性折扣 linear discounting

• 非0的乘一个系数,把获得的概率分不到不出现的事件上

$$C(w_1...w_n) = r$$

$$P(w_1...w_n) = \begin{cases} (1-\alpha)r/N & if \quad r > 0\\ \alpha/N_0 & otherwise \end{cases}$$

Katz's 回退方法 Back-off

• Katz的n-gram回退模型通过前面短一些的历史对当前n-gram进行估计。估计式如下:

$$P_{bo}(w_{i} \mid w_{i-n+1}..w_{i-1}) = \begin{cases} (1 - d_{w_{i-n+1}..w_{i-1}}) \frac{C(w_{i-n+1}..w_{i})}{C(w_{i-n+1}..w_{i-1})} & if \ C(w_{i-n+1}..w_{i}) > k \\ \alpha_{w_{i-n+1}..w_{i-1}} P_{bo}(w_{i} \mid w_{i-n+2}..w_{i-1}) & otherwise \end{cases}$$

划分等价类的其它方法

- Stemming
 - Computer
 - Computing
 - Compute
 - **–**
- 语义类Class-based LM
 - 时间类
 - 人名类
 - 地点类
 - 机构名类
 - _

对语言模型进行评价

- 最佳方法:
 - 将语言模型用于某一个应用中,例如拼写 检查、机器翻译等
- 混乱度(Perplexity):
 - 给测试集赋予较高的概率值的语言模型较 好

$$Perplexity = \left[\prod_{i=1}^{n} P(w_i \mid w_{1:i-1})\right]^{-\frac{1}{n}}$$