DRAFT (SEPTEMBER 21)

Formulas for use on STATS 2141 tests and exams

Chapter 2

$$P_r^n = n(n-1)(n-2)...(n-r+1) = \frac{n!}{(n-r)!}$$

$$\frac{n!}{n_1! n_2! \dots n_r!}$$

Combinations

The number of combinations, subsets of r elements that can be selected from a set of n elements, is denoted as $\binom{n}{r}$ or $\binom{n}{r}$ and

$$C_r^n = \binom{n}{r} = \frac{n!}{r!(n-r)!} \tag{2.4}$$

Multiplication Rule

$$P(A \cap B) = P(B \mid A)P(A) = P(A \mid B)P(B)$$
 (2.10)

Total Probability Rule (Multiple Events)

Assume E_1, E_2, \dots, E_k are k mutually exclusive and exhaustive sets. Then

$$P(B) = P(B \cap E_1) + P(B \cap E_2) + \dots + P(B \cap E_k)$$

= $P(B \mid E_1)P(E_1) + P(B \mid E_2)P(E_2) + \dots + P(B \mid E_k)P(E_k)$ (2.12)

Bayes' Theorem

If E_1, E_2, \dots, E_k are k mutually exclusive and exhaustive events and B is any event,

$$P(E_1 \mid B) = \frac{P(B \mid E_1)P(E_1)}{P(B \mid E_1)P(E_1) + P(B \mid E_2)P(E_2) + \dots + P(B \mid E_k)P(E_k)}$$
(2.16)

for P(B) > 0

Chapter 3

$$\mu = E(X) = \sum_{x} x f(x)$$

$$\sigma^2 = V(X) = E[(X - \mu)^2] = \sum_x (x - \mu)^2 f(x) = \sum_x x^2 f(x) - \mu^2$$

Discrete Uniform Distribution

A random variable X has a **discrete uniform distribution** if each of the n values in its range, x_1, x_2, \ldots, x_n , has equal probability. Then

$$f(x_i) = \frac{1}{n} \tag{3.5}$$

Mean and Variance

Suppose that *X* is a discrete uniform random variable on the consecutive integers a, a + 1, a + 2, ..., b, for $a \le b$. The mean of *X* is

$$\mu = E(X) = \frac{b+a}{2}$$

The variance of X is

$$\sigma^2 = \frac{(b-a+1)^2 - 1}{12} \tag{3.6}$$

Geometric Distribution

In a series of Bernoulli trials (independent trials with constant probability p of a success), the random variable X that equals the number of trials until the first success is a **geometric** random variable with parameter 0 and

$$f(x) = (1-p)^{x-1}p$$
 $x = 1, 2, ...$ (3.9)

Mean and Variance

If X is a geometric random variable with parameter p,

$$\mu = E(X) = 1/p$$
 and $\sigma^2 = V(X) = (1 - p)/p^2$ (3.10)

Negative Binomial Distribution

In a series of Bernoulli trials (independent trials with constant probability p of a success), the random variable X that equals the number of trials until r successes occur is a **negative binomial random variable** with parameters 0 and <math>r = 1, 2, 3, ..., and

$$f(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r \qquad x = r, r+1, r+2, \dots$$
 (3.11)

Mean and Variance

If X is a negative binomial random variable with parameters p and r,

$$\mu = E(X) = r/p$$
 and $\sigma^2 = V(X) = r(1-p)/p^2$ (3.12)

Hypergeometric Distribution

A set of *N* objects contains

K objects classified as successes

N - K objects classified as failures

A sample of size n objects is selected randomly (without replacement) from the N objects where $K \le N$ and $n \le N$.

The random variable X that equals the number of successes in the sample is a **hyper-geometric random variable** and

$$f(x) = \frac{\binom{K}{x} \binom{N - K}{n - x}}{\binom{N}{n}} \qquad x = \max\{0, n + K - N\} \text{ to } \min\{K, n\}$$
(3.13)

Mean and Variance

If X is a hypergeometric random variable with parameters N, K, and n, then

$$\mu = E(X) = np$$
 and $\sigma^2 = V(X) = np(1-p)\left(\frac{N-n}{N-1}\right)$ (3.14)

where p = K/N.

Poisson Distribution

The random variable X that equals the number of events in a Poisson process is a **Poisson** random variable with parameter $0 < \lambda$, and

$$f(x) = \frac{e^{-\lambda T} (\lambda T)^x}{x!} x = 0, 1, 2, \dots$$

Mean and Variance

If X is a Poisson random variable over an interval of length T with parameter λ , then

$$\mu = E(X) = \lambda T$$
 and $\sigma^2 = V(X) = \lambda T$ (3.16)

Chapter 4

Probability Density Function

For a continuous random variable X, a **probability density function** is a function such that

(1)
$$f(x) \ge 0$$

$$(2) \int_{-\infty}^{\infty} f(x) \, dx = 1$$

(3)
$$P(a \le X \le b) = \int_a^b f(x) dx = \text{area under } f(x) \text{ from } a \text{ to } b \text{ for any } a \text{ and } b$$
 (4.1)

Cumulative Distribution Function

The **cumulative distribution function** of a continuous random variable *X* is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du \tag{4.3}$$

for $-\infty < x < \infty$.

Probability Density Function from the Cumulative Distribution Function

Given F(x),

$$f(x) = \frac{dF(x)}{dx}$$

as long as the derivative exists.

Mean and Variance

Suppose that X is a continuous random variable with probability density function f(x). The **mean** or **expected value** of X, denoted as μ or E(X), is

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx \tag{4.4}$$

The **variance** of *X*, denoted as V(X) or σ^2 , is

$$\sigma^{2} = V(X) = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = \int_{-\infty}^{\infty} x^{2} f(x) dx - \mu^{2}$$

The **standard deviation** of *X* is $\sigma = \sqrt{\sigma^2}$.

Continuous Uniform Distribution

A continuous random variable X with probability density function

$$f(x) = 1/(b-a), \quad a \le x \le b$$
 (4.6)

is a continuous uniform random variable.

Mean and Variance

If *X* is a continuous uniform random variable over $a \le x \le b$,

$$\mu = E(X) = \frac{a+b}{2}$$
 and $\sigma^2 = V(X) = \frac{(b-a)^2}{12}$ (4.7)

Normal Distribution

A random variable X with probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$$
 (4.8)

is a **normal random variable** with parameters μ where $-\infty < \mu < \infty$ and $\sigma > 0$. Also,

$$E(X) = \mu \quad \text{and} \quad V(X) = \sigma^2 \tag{4.9}$$

and the notation $N(\mu, \sigma^2)$ is used to denote the distribution.

Normal Approximation to the Binomial Distribution

If X is a binomial random variable with parameters n and p,

$$Z = \frac{X - np}{\sqrt{np(1 - p)}}\tag{4.12}$$

is approximately a standard normal random variable. To approximate a binomial probability with a normal distribution, a **continuity correction** is applied as follows:

$$P(X \le x) = P(X \le x + 0.5) \approx P\left(Z \le \frac{x + 0.5 - np}{\sqrt{np(1 - p)}}\right)$$

and

$$P(x \le X) = P(x - 0.5 \le X) \approx P\left(\frac{x - 0.5 - np}{\sqrt{np(1 - p)}} \le Z\right)$$

The approximation is good for np > 5 and n(1 - p) > 5.

Normal Approximation to the Poisson Distribution

If *X* is a Poisson random variable with $E(X) = \lambda$ and $V(X) = \lambda$,

$$Z = \frac{X - \lambda}{\sqrt{\lambda}} \tag{4.13}$$

is approximately a standard normal random variable. The same continuity correction used for the binomial distribution can also be applied. The approximation is good for

$$\lambda > 5$$

Exponential Distribution

The random variable X that equals the distance between successive events from a Poisson process with mean number of events $\lambda > 0$ per unit interval is an **exponential random variable** with parameter λ . The probability density function of X is

$$f(x) = \lambda e^{-\lambda x}$$
 for $0 \le x < \infty$ (4.14)

Mean and Variance

If the random variable X has an exponential distribution with parameter λ ,

$$\mu = E(X) = \frac{1}{\lambda}$$
 and $\sigma^2 = V(X) = \frac{1}{\lambda^2}$ (4.15)