

Solid-State LiDAR Sensor

Features

- Full frame rate up to 35 fps
- Field of View: 76° x 32°, resolution: 160 x 60
- Support 16 groups of user defined region of interest settings. Each group supports multiple user defined regions
- Various communication interfaces, support USB, RS-232 and optocoupler isolated GPIO.
- Support GPIO synchronized measurement.
- Measuring range up to 12m
- Centimeter point cloud accuracy
- Excellent ambient light suppression capability
- Embedded anti-interference algorithm, support multiple LiDAR simultaneous operation
- Total solid structure, industrial IP67 protection
- Support Normal mode, Simple-HDR mode, Auto-HDR mode and Super-HDR mode, with good scene adaptability.

Applications

- Robotics & AGV (obstacle avoidance, SLAM applications)
- Drones collision avoidance and hovering
- Industrial safety area protection and proximity detection
- Safety surveillance
- 3D movement recognition
- 3D modeling

Description

HPS-3D160 is a new generation high-performance solid-state LiDAR sensor based on time-of-fight (ToF) principle. Equipped with optimized lighting system and low distortion infrared optical lens, measurable distance up to 12m on 90% reflective white targets. Flexible user defined region of interest (ROI) function, Simple-HDR, Auto-HDR, and Super-HDR modes, make HPS-3D160 suitable for various applications.

HPS-3D160 integrates high-power 850nm infrared VCSEL emitters and high-photosensitive CMOS. Embedded high-performance processor, advanced data processing, filtering and compensation algorithms, enable very stable and simultaneous measure data output. Full solid structure, industrial IP67 protection design and sturdy aviation aluminum housing enable the HPS-3D160 to be used in complex environments.

Ordering information

Class1 laser product.

Laser classification measurement according to IEC60825-1: 2014.

C ∈ F© RoHS

Overview

1.1 Technical specification

Parameter	Values	Unit
Size	78 (L) x 40 (W) x 30 (H)	mm
Weight	110 *1	g
Power supply	9 ~ 12	٧
Maximum power consumption	6	W
Quiescent power consumption	0.7	W
Storage temperature	-40 ~ 85	Ç
Operating temperature	-10 ~ 55	°C
Infrared VCSEL emitter	850	nm
Emitting angle	76 (Horizontal) x 32 (Vertical)	0
Maximum measurable distance	12 *2	m
Minimum measurable distance	0.25	m
Maximum output frame rate	35 *3	fps
Output data	Depth, average distance, signal strength, quantity	-
	of weak signal pixels, quantity of saturated pixels, maximum distance, minimum distance	
Operating mode	Normal mode, Auto-HDR mode Super-HDR	-
	mode, Simple-HDR mode	
Power-on initialization time	1500	ms
Interface	Option: USB or RS232	-
Optocoupler isolated I/O	Input x 1, output x 1	-
Cable length	200	cm

Note: *1 Not include cable

^{*2} Tested on a 90% reflectance white target

^{*3} The frame rate will be higher if the ROI is defined.

1.2 Dimensions and cable definitions

HPS-3D160 front view

HPS-3D160 left view

Cable color	Signal	Signal	Description	Remark
	name	type		
Red	VCC	Power	Power, connect to DC +9 ~ 12V	The product with
Black	GND	GND	Power ground	different
Blue	OUT	I/O	Optocoupler isolated output terminal	communication
Blue/White	IN	I/O	Optocoupler isolated input terminal	interface has
Purple/White	COM	I/O	Optocoupler isolated COM terminal	different definition
Purple	GND	Digital	Signal ground	for DATA+ and
Orange	DATA+	Digital	USB D+ / RS-232 TX	DATA- terminals.
Orange/white	DATA-	Digital	USB D- / RS-232 RX	
Shield layer	SHIELD	_	Cable shield layer, internal part connects to	
			product outer shell	

2.1 Communication interface

HPS-3D160 can communicate with host through USB or RS232 interface, and HPS-3D160 also equipped with 3 optocoupler isolated input terminals and 3 optocoupler isolated output terminals, which are convenient to connect with PLC or relay.

2.2 USB and RS232 communication protocol

2.2.1 Communication protocol

Each command consists of 2 header bytes, 1 message length byte, 1 command byte, 1 device address byte, parameter field, 2 CRC16-CCITT bytes; Every returned data consists 2 header bytes, 2 message length bytes, 1 device address byte, 1 RID byte (Returned ID, normally same as command byte), data field, 2 CRC16-CCITT bytes, 2 message end bytes. Command packet and returned data packet are little endian, that is, the lower memory address stores the lower byte.

2.2.2 Multi-sensor support

Each sensor has a programmable device address (Default address is 0x00, broadcast address is 0xFF), user can change it to enable multi sensors work on a same bus.

2.2.3 Command data packet is defined as the following table:

Byte No.	Description
0	0xF5, Header 1
1	0x0A, Header 2
2	Length byte, indicates the number of bytes starting from byte No.3
3	Command byte
4	Device address, specify the target device. Default address: 0x00,
4	broadcast address: 0xFF
N	Parameter field
5+N	CRC16 Low byte
5+N+1	CRC16 High byte

Note: The CRC calculation starts from byte No.3 to N.

Returned data packet is defined as the following table:

Byte No.	Description	
0	0xF5, Header 1	
1	0x5F, Header 2	
2	Low byte of remaining valid data length	
3	High byte of remaining valid data length	
4	Device address	
5	Returned packet type ID (RID)	
N	Data field	
6+N	CRC16 Low byte	
6+N+1	CRC16 High byte	
6+N+2	0x5F, Message end 1	
6+N+3	0xF5, Message end 2	

Note: The CRC calculation starts from byte No.4 to N.

Command #1 Read sensor device address

This command is used to read sensor device address.

Byte No.	Value	Description	
0	0xF5	Header 1	
1	0x0A	Header 2	
2	0x05	Message length	
3	0xBA	Command byte	
4	0xFF	Broadcast address	
5	0x02	Fixed parameter	
6	0x1F	CRC16 Low byte	
7	0xD6	CRC16 High byte	

Returned data :

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of message length		Low byte of message length
3	High byte of message length		High byte of message length
4	Device address		Currently responding device address
5	RID	0xBA	Returned packet type ID (RID)
6	Device address		Currently responding device address
7	CRC16 LSB		CRC16 Low byte
8	CRC16 MSB		CRC16 High byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #2 Set sensor device address

This command is used to set sensor device address, the new address will be valid immediately.

Byte No.	Value	Description
0	0xF5	Header 1
1	0x0A	Header 2
2	0x06	Message length
3	0xBA	Command byte
4	Target device address	Target device address (0x00 ~ 0xFE)
5	0x01	Fixed parameter
6	0x00 ~ 0xFE	New device address
7		CRC16 Low byte
8		CRC16 High byte

Returned data:

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of	0x07	Low buts of massage length
2	message length	UXU1	Low byte of message length
3	High byte of	0x00	High byte of message length
3	message length	UXUU	
4	Device address		Currently responding device address (old address)
5	RID	0xBA	Returned packet type ID (RID)
6	Confirmation byte		0x01: Succeed, 0x00: Fail
7	CRC16 LSB		CRC16 Low byte
8	CRC16 MSB		CRC16 High byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #3 Read sensor hardware version number.

This command is used to read sensor hardware version number.

Byte No.	Value	Description			
0	0xF5	Header 1			
1	0x0A	Header 2			
2	0x04	Message length			
3	0xA0	Command byte			
4	Target device	Target device address 0x00 × 0xEE			
4	address	Target device address, 0x00 ~ 0xFE			
5		CRC16 Low byte			
6		CRC16 High byte			

Returned data:

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of	0x0C	Low buts of massage length
	message length	UXUC	Low byte of message length
3	High byte of	0,,00	Lligh byte of manage length
J	message length	0x00	High byte of message length
4	Device address		Currently responding device address
5	RID	0xA0	Returned packet type ID (RID)
6	Year	,,,,,,	
7	Month		Evernley 2019, 00, 10 V/1, 2 Day/2
8	Day		Example: 2018-09-19 V1.3 Rev3
9	Main version		[6]: 0x12, [7]: 0x09, [8]: 0x13, [9]: 0x01, [10]: 0x03, [11]: 0x03
10	Minor version		[11]. 0x03
11	Revisions		
12	CRC16 LSB		CRC 16 Low byte
13	CRC16 MSB		CRC 16 High byte
14	Message end 1	0x5F	Message end 1
15	Message end 2	0xF5	Message end 2

Command #4 Read sensor serial number

This command is used to read sensor serial number, each sensor has a unique serial number.

Byte No.	Value	Description	
0	0xF5	Header 1	
1	0x0A	Header 2	
2	0x05	Message length	
3	0xA1	Command byte	
4	Target device address	Target device address, 0x00 ~ 0xFE	
5	0x02	Fixed parameter	
6		CRC16 Low byte	
7		CRC16 High byte	

Returned data :

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of	0x44	Low byte of message length
	message length	0,44	Low byte of message length
3	High byte of	0x00	High byte of message length
3	message length	UXUU	Trigit byte of friessage length
4	Device address		Currently responding device address
5	RID	0xa0	Returned packet type ID (RID)
			ASCII string, end up with'\0' (ASCII value is 0)
			Example: HPS-3D160-U-1810130
6~67	Sensor serial	ASCII	[6]: 'H', [7]: 'P', [8]: 'S', [9]: '-', [10]: '3', [11]: 'D', [12]: '1',
0.307	number	string	[13]: '6', [14]: '0', [15]: '-', [16]: 'U', [17]: '-', [18]: '1', [19]:
			'8', [20]: 1, [21]: '0', [22]: '1', [23]: '3', [24]: '0', [25]: '\0'
			Other bytes can be neglected.
68	CRC16 LSB		CRC16 Low byte
69	CRC16 MSB		CRC16 High byte
70	Message end 1	0x5F	Message end 1
71	Message end 2	0xF5	Message end 2

Command #5 Set sensor working mode

This command can set sensor's working mode.

Byte No.	Value	Description		
0	0xF5	Header 1		
1	0x0A	Header 2		
2	0x06	Message length		
3	0xA3	Command byte		
4	Target device address	Target device address, 0x00 ~ 0xFE		
5	0x01	Fixed parameter		
6		0x00: Standby mode, 0x01: Single measurement mode, 0x02: Continuous measurement mode		
7		CRC16 Low byte		
8		CRC16 High byte		

Returned data:

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of message length	0x07	Low byte of message length
3	High byte of message length	0x00	High byte of message length
4	Device address		Currently responding device address

5	RID	0xA3	Returned packet type ID (RID)
6	Confirmation byte		0x01: Succeed, 0x00: Fail
7	CRC16 LSB		CRC16 Low byte
8	CRC16 MSB		CRC16 High byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #6 Select the group of user defined region of interest (ROI)

This command is used to select the ROI group. User can define 16 groups of ROI settings, and each group supports 30 ROIs.

Byte No.	Value	Description		
0	0xF5	Header 1		
1	0x0A	Header 2		
2	0x06	Message length		
3	0xAC	Command byte		
4	Target device address	Target device address, 0x00 ~ 0xFE		
5	0xA9	Fixed parameter		
6	0x00 ~ 0x0F	ROI group ID		
7		CRC16 Low byte		
8		CRC16 High byte		

Returned data:

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of message length	0x07	Low byte of message length
3	High byte of message length	0x00	High byte of message length
4	device address		Currently responding device address
5	RID	0xAC	Returned packet type ID (RID)
6	Confirmation byte		0x01: Succeed, 0x00: Fail
7	CRC16 LSB		CRC16 Low byte
8	CRC16 MSB		CRC16 High byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

Command #7 Read current ROI group ID

This command is used to read the ROI group ID number.

Byte No.	Value	Description
0	0xF5	Header 1
1	0x0A	Header 2
2	0x05	Message length
3	0xAC	Command byte

4	Target device address	Target device address, 0x00 ~ 0xFE	
5	0xAA	Fixed parameter	
6		CRC16 Low byte	
7		CRC16 High byte	

Returned data:

Byte No.	Name	Value	Description
0	Header 1	0xF5	Header 1
1	Header 2	0x5F	Header 2
2	Low byte of	0x07	Low byte of message length
	message length	0.07	Low byte of message length
3	High byte of	0x00	High byte of message length
3	message length	0.000	Thigh byte of message length
4	Device address		Currently responding device address
5	RID	0xAC	Returned packet type ID (RID)
6	ROI group ID	0x00 ~ 0x0F	Region of interest (ROI) group ID
7	CRC16 LSB		CRC16 Low byte
8	CRC16 MSB		CRC16 High byte
9	Message end 1	0x5F	Message end 1
10	Message end 2	0xF5	Message end 2

2.2.4 Decoding of packet data

There are 4 types of data packet:

1. Complete data packet of full frame: Consists of the critical measurement data and full frame depth data. It is suitable for applications that require depth data for secondary development. The requirement of data processing capability for terminal devices is higher. The packet data is defined as follows:

Header	Message	Device	RID	Measure data	CRC16 value	Message end
	length	address				

Among these, detailed format for measuring data segment is as followed:

Byte No.	Name	Value	Description
0~1	Dummy	Arbitrary value	Those bytes can be neglected
2	Average distance	Low byte	Average distance of full frame, unit: mm
3	Average distance	High byte	Average distance of full frame, unit. min
4	Effective signal	Low byte	Effective signal strength, this value has no unit
5	strength	High byte	Effective signal strength, this value has no unit
6	Average signal	Low byte	Average signal strength of full frame, this value has no unit, specified definition is: Average signal strength < 150: Weak signal
7	strength	High byte	150 <= Average signal strength <= 800: Signal good Average signal strength > 800: Signal too high
8	Number of weak	Low byte	Number of weak signal pixels
9	signal pixels	High byte	Number of weak Signal pixers
10	Number of	Low byte	Number of saturated pixels

11	saturated pixels	High byte	
12	Maximum	Low byte	Maximum distance of full frame, if this value is
13	distance	High byte	0, it indicates invalid data
14	Minimum	Low byte	Minimum distance of full frame, if the value is
15	distance value	High byte	65535, it indicates invalid data
16		Lowest byte	
17	Data frame	Low byte	Data frame counter, used for confirming data
18	counter	High byte	transmission, and check whether frame is lost
19		Highest byte	
20 ~ 23	Reserved bytes		Reserved bytes
19200 bytes	Depth data	2 bytes / pixel, lower byte data is stored in lower byte	Data is arranged as: Pixel 1Pixel 160 Pixel 161Pixel 320
		in lower byte	Pixel 9440Pixel 9600

2. Simplified data packet of full frame: Only critical measurement data are included. It is suitable for applications that require only critical measurement data of full frame, it requires less data processing capability and communication band width for terminal devices. The packet data is defined as follows:

Byte No.	Name	Value	Description
0 ~ 1	Dummy	Arbitrary value	Those bytes can be neglected
2	Average	Low byte	Average distance of full frame, unit: mm
3	distance	High byte	Average distance of full frame, unit. Inin
4	Effective signal	Low byte	Effective signal strength, this value has no unit
5	strength	High byte	Effective signal strength, this value has no unit
6	Average signal	Low byte	Average signal strength of full frame, this value has no unit, specified definition is: Average signal strength < 150: Weak signal
7	strength	High byte	150 <= Average signal strength <= 800: Signal good Average signal strength > 800: Signal too high
8	Number of	Low byte	
9	weak signal pixels	High byte	Number of weak signal pixels
10	Number of	Low byte	
11	saturated pixels	High byte	Number of saturated pixels
12	Maximum	Low byte	Maximum distance of full frame, if this value is 0,
13	distance value	High byte	it indicates invalid data
14	Minimum	Low byte	Minimum distance of full frame, if the value is
15	distance value	High byte	65535, it indicates invalid data
16	Data frame	Lowest byte	Data frame counter used for confirming data
17	counter	Low byte	Data frame counter, used for confirming data
18	Counter	High byte	transmission, and check whether frame is lost

19		Highest byte	
20 ~ 23	Reserved bytes		Reserved bytes

3. Complete data packet of ROI: Consists of the critical measurement data and depth data of ROI. It is suitable for applications that only require a specific ROI information in the perspective. The requirement for data processing capability of the terminal device is moderate. The packet data is defined as follows:

Heade	Magaga	Device	RI	ROI	ROI	ROI	CRC1	Messag
r	Messag e length	addres	L KI	informatio	measurin	 measurin	6	e end
'	e lengui	S		n	g data 1	 g data N		e enu

Among these, detailed format for ROI information segment is as followed:

Byte No.	Name	Value	Description
0	Number of enabled ROI	0x00~0x07	The number of enabled ROI
1	Group ID of ROI	0x00~0x0F	Current group ID of ROI
2		Lowest byte	
3	Data frama sountar	Low byte	Data frame counter, used for confirming data
4	Data frame counter	High byte	transmission, and check whether frame is lost
5		Highest byte	
6 ~ 23	Reserved bytes		Reserved bytes

Detailed format for ROI measuring data segment is as followed:

Byte No.	Name	Value	Description
0	ROIID	Low byte	ID number current region of interest
1	KOHD	High byte	To flumber current region of interest
2	Upper left corner X	Low byte	Upper left corner X coordinate of current
3	coordinate of ROI	High byte	region of interest
4	Upper left corner Y	Low byte	Upper left corner Y coordinate of current
5	coordinate of ROI	High byte	region of interest
6	Lower right corner X	Low byte	Lower right corner X coordinate of current
7	coordinate of ROI	High byte	region of interest
8	Lower right corner Y	Low byte	Lower right corner Y coordinate of current
9	coordinate of ROI	High byte	region of interest
10	Average signal	Low byte	Average signal strength of ROI, this value has no unit, the larger value corresponds to higher reflected signal strength, specified definition is:
	strength	High byte	Average signal strength < 150: Weak signal 150 <= Average signal strength <= 800: Signal good Average signal strength > 800: Signal too high
12	Effective signal	Low byte	Effective signal strength, this value has no
13	strength	High byte	unit

ii reciiiologi	00 00., Etd.		111 0 00 100
14	Average distance	Low byte	Average distance of DOL write race
15	Average distance	High byte	Average distance of ROI, unit: mm
16	Maximum diatana	Low byte	Maximum distance of ROI, if this value is 0,
17	Maximum distance	High byte	it indicates invalid data
18	Minimum distance	Low byte	Minimum distance of ROI, if the value is
19	Willimum distance	High byte	65535, it indicates invalid data
20	Number of saturated	Low byte	Number of saturated pixels
21	pixels	High byte	Number of Saturated pixels
22	Threshold comparison	Low byte	Bit0 ~ Bit2: threshold 0, threshold 1 and threshold 2, the corresponding bit will be
23	result	High byte	automatically set 1 or 0 when alarm triggered or alarm released Bit3 ~ Bit15: reserved
24	X coordinate of	Low byte	X coordinate of maximum distance pixel in
25	maximum distance pixel	High byte	ROI
26	Y coordinate of maximum distance	Low byte	Y coordinate of maximum distance pixel in
27	pixel	High byte	ROI
28	X coordinate of	Low byte	X coordinate of minimum distance pixel in
29	minimum distance pixel	High byte	ROI
30	Y coordinate of	Low byte	Y coordinate of minimum distance pixel in
31	minimum distance pixel	High byte	ROI
	Depth data	2 bytes / pixel, lower byte data is stored in lower byte	The initial data is the first pixel on left upper corner, remaining data outputs in line order.

4. Simplified data packet of ROI: Only critical measurement data of ROI are included. It requires lowest data processing capability and communication band width for terminal devices. The packet data is defined as follows:

Header	Message	Device	RID	ROI	ROI	ROI	CRC16	Message
	length	address		information	measuring	 measuring		end
					data 1	data N		

Among these, detailed format for ROI information segment is as followed:

	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
Byte No.	Name	Value	Description				
0	Number of	0,00-0,07	The number of enabled DOI				
0	enabled ROI	0x00~0x07	The number of enabled ROI				
1	Group ID of ROI	0x00~0x0F	Current group ID of ROI				
2	Data frame	Lowest byte	Data frame counter, used for confirming data				
3	counter	Low byte	transmission, and check whether frame is lost				

4		High byte	
5		Highest byte	
6 ~ 23	Reserved bytes		Reserved bytes

Detailed format for ROI measuring data segment is as followed:

Byte No.	Name	Value	Description
0	ROLID	Low byte	ID number current region of interest
1	KOLID	High byte	ID number current region of interest
2	Average signal	Low byte	Average signal strength of ROI, this value has no unit, the larger value corresponds to higher reflected signal strength, specified definition is: Average signal strength < 150: Weak signal
3	strength	High byte	150 <= Average signal strength <= 800: Signal good Average signal strength > 800: Signal too high
4	Effective signal	Low byte	Effective signal strength, this value has no unit
5	strength	High byte	Lifective signal strength, this value has no unit
6	Average distance	Low byte	Average distance of DOL units man
7	Average distance	High byte	Average distance of ROI, unit: mm
8	Maximum	Low byte	Maximum distance of ROI, if this value is 0, it
9	distance	High byte	indicates invalid data
10	Minimum	Low byte	Minimum distance of ROI, if the value is 65535, it
11	distance	High byte	indicates invalid data
12	Number of	Low byte	Number of acturated pixels
13	saturated pixels	High byte	Number of saturated pixels
14	Threshold	Low byte	Bit0 ~ Bit2: threshold 0, threshold 1 and threshold 2, the corresponding bit will be automatically set 1
15	comparison result	High byte	or 0 when alarm triggered or alarm released Bit3 ~ Bit15: reserved
16	X coordinate of maximum	Low byte	X coordinate of maximum distance pixel in ROI
17	distance pixel	High byte	A coordinate of maximum distance pixel in NOI
18	Y coordinate of	Low byte	
19	maximum distance pixel	High byte	Y coordinate of maximum distance pixel in ROI
20	X coordinate of	Low byte	
21	minimum distance pixel	High byte	X coordinate of minimum distance pixel in ROI
22	Y coordinate of	Low byte	V coordinate of minimum distance vival in DOI
23	minimum distance pixel High b		Y coordinate of minimum distance pixel in ROI
24 ~ 32	Reserved bytes		Reserved bytes

Packet information

Туре	HPS-3D160
Dimension	78 (L) x 40 (W) x 30 (H)
Weight	110g / unit
	(not include cable)
Packet box	183 (L) x 173 (W) x 66 (H)
	1 pcs / box

Revision history

Date	Revision	Description
2018/10/15	1.0	Initial version.
2018/11/16	1.1	Corrected CRC initial value (0 -> 0xffff).

Appendix

};

CRC16's C language complementation

```
static const USIGN16 crc16 tab[] = {
    0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
    0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
    0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
    0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
    0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
    0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
    0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
    0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
    0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
    0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
    0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
    Oxdbfd, Oxcbdc, Oxfbbf, Oxeb9e, Ox9b79, Ox8b58, Oxbb3b, Oxab1a,
    0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
    Oxedae, Oxfd8f, Oxcdec, Oxddcd, Oxad2a, Oxbd0b, Ox8d68, Ox9d49,
    0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
    Oxff9f, Oxefbe, Oxdfdd, Oxcffc, Oxbf1b, Oxaf3a, Ox9f59, Ox8f78,
    0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
    0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
    0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
    0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
    0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
    0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
    0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
    0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
    0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
    0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
    0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
    0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
    Oxfd2e, Oxed0f, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, Ox9de8, Ox8dc9,
    0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
    Oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba, Ox8fd9, Ox9ff8,
    0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
/*-----*/
// @USIGN16 Calc_CRC16(const USIGN8 *buf, const int len)
// @brief Calculate 2 bytes 16 bit CRC check value
// @param buf- Data buffer pointer to be calculated
// @param len- Data length to be calculated
// @return 16bit CRC check value
```

Note:

The SDK is available, please contact sales@hypersen.com for more information.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Hypersen Technologies Co., Ltd. reserve the right to make changes, corrections, enhancements, modifications, and improvements to Hypersen products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on Hypersen products before placing orders. Hypersen products are sold pursuant to Hypersen's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of Hypersen products and Hypersen assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by Hypersen herein.

Resale of Hypersen products with provisions different from the information set forth herein shall void any warranty granted by Hypersen for such product.

Hypersen and the Hypersen logo are trademarks of Hypersen. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 Hypersen Technologies Co., Ltd. – All rights reserved