

ÉPREUVE EXTERNE COMMUNE

ERP2 CEID

MATHÉMATIQUES

LIVRET 1

Nom :	
Prénom :	
Classe :	ŀ
N° d'ordre :	

../16

12

ENCADRE chaque nombre par deux entiers consécutifs.

QUESTION

/3

COMPARE les deux expressions en utilisant les symboles < , > ou =.

QUESTION 3

/4

CALCULE en écrivant des étapes si tu en as besoin.

$$(35-50) \cdot (-2) =$$

$$(-7) \cdot (-6) =$$

CALCULE en écrivant des étapes si tu en as besoin.

Si ta réponse est une fraction, écris-la sous forme irréductible.

$$\frac{9}{4} - \frac{5}{8} + \frac{3}{16} =$$

$$\frac{-8}{4} \cdot \frac{-5}{18} \cdot \frac{9}{10} =$$

QUESTION 5

/:

ENTOURE, pour chaque expression, celle qui lui correspond.

$$\frac{1}{8}$$

$$\frac{15}{5}$$

ÉPREUVE EXTERNE COMMUNE

ERP2 CEID

MATHÉMATIQUES

LIVRET 2

Nom :	 	
Prénom :		
Classe : _	 	
N° d'ordre		

.../36

/4

Une enquête a été menée auprès de 60 familles afin de déterminer le nombre d'enfants par famille.

Voici le tableau des résultats

Nombre d'enfants	1	2	3	4	5	6
Nombre de familles	8	22	16	8	4	2

CONSTRUIS un histogramme ou un diagramme en bâtonnets représentant le nombre de familles en fonction du nombre d'enfants.

JUSTIFIE que la moitié des familles a au moins 3 enfants.

/4

Voici un histogramme représentant les résultats des élèves à un examen.

Toutes les notes sont des valeurs entières de 1 à 20.

30 élèves ont réussi cet examen pour lequel il fallait obtenir une note supérieure ou égale à 10.

DÉTERMINE le nombre d'élèves qui ont obtenu 9/20. **ÉCRIS** tout ton raisonnement et tous tes calculs.

/3

DÉTERMINE la valeur de x pour que le périmètre de ce triangle égale 50.

ÉCRIS tous tes calculs.

QUESTION 9

12

Si
$$a = -3$$
, $b = 2$ et $c = -1$

CALCULE la valeur numérique des expressions suivantes.

$$a^2 - c =$$

$$2b + ac =$$

COMPLÈTE le tableau suivant.

	Écriture décimale	Notation scientifique
Taille d'un virus	m	2,5 . 10-8 m
Épaisseur d'un cheveu	0,000 020 8 m	m
Diamètre de la Terre à l'équateur	m	1,275 6 . 107 m

QUESTION

/

COCHE, dans chaque cas, la proposition correcte.

La notation scientifique de 0,0075 est

- \Box 7,5 × 10³
- \Box 0,75 × 10⁻²
- \Box 7,5 × 10⁻³
- \Box 75 × 10⁻⁴

La notation scientifique de 1 243 000 est

- \Box 1,243 × 10³
- \Box 1,243 × 10⁶
- \Box 1 243 × 10³
- \Box 1,243 × 10⁻⁶

/4

À l'entrainement, trois cyclistes font des tours d'un étang.

Jean effectue un tour en 9 minutes, Eva en 10 minutes et Philippe en 15 minutes.

Ils ont commencé leur entrainement au même endroit et en même temps à 14h15.

DÉTERMINE l'heure à laquelle ils vont se retrouver à nouveau ensemble à leur point de départ.

ÉCRIS ton raisonnement et tous tes calculs.

$$|AE| = 4$$

$$|DE| = 3$$

$$|CD| = 5.5$$

Le parallélogramme ABCD ci-dessous est tracé à main levée.

CONSTRUIS le parallélogramme ABCD en vraie grandeur en prenant 1 cm comme unité de longueur.

RÉSOUS les équations suivantes en écrivant les étapes.

$$3x - 2 = 13 + 17x$$

$$2 - (x - 3) = 6x$$

$$\frac{4}{5}x - 8 = -1$$

QUESTION 5

12

ÉCRIS l'expression littérale de

• l'opposé du cube d'un nombre n :

■ la somme de 1 et du triple d'un nombre n :

ÉPREUVE EXTERNE COMMUNE

ERP2 CEID

MATHÉMATIQUES

LIVRET 3

Nom :	
Prénom :	
Classe :	/35
N° d'ordre :	

12

COMPLÈTE.

L'inverse de 4 est égal à _____

L'opposé de $-\frac{3}{2}$ est égal à _____

QUESTION

/3

HACHURE le tiers du quart de ce rectangle.

		\neg
l		

DÉTERMINE la fraction du rectangle qui n'est pas hachurée.

COMPLÈTE.

Le tiers du quart de ce rectangle est aussi égal à la moitié du de ce rectangle.

QUESTION 6

/3

X	у
10	
6	9
	-12

COMPLÈTE le tableau de proportionnalité directe.

DÉTERMINE le coefficient de cette proportionnalité.

Dans une école secondaire, on a relevé les moyens de déplacement utilisés par 150 élèves pour se rendre à l'école et la ponctualité de leur arrivée.

DÉTERMINE le nombre d'élèves qui se déplacent en utilisant les transports en commun (métro, bus, train).
DÉTERMINE le pourcentage d'élèves arrivés à l'heure parmi ceux qui viennent en voiture.
DÉTERMINE le pourcentage d'élèves qui se déplacent en bus.
DÉTERMINE le nombre d'élèves qui arrivent en retard en utilisant le train.

/6

EFFECTUE.

$$t^3 + 4t^3 =$$

$$x - (y - 2) =$$

QUESTION 2

1:

EFFECTUE les produits remarquables.

$$(2x - 3y)^2 =$$

$$(3m-4) \cdot (3m+4) =$$

12

Tous les angles des figures ci-dessous sont droits.

Parmi les quatre expressions algébriques, une seule ne représente pas l'aire de la figure.

COCHE cette expression intruse.

$$\Box (y-x) \cdot y + (y-x) \cdot x$$

$$\Box (y-x)^2$$

$$\Box (y-x) \cdot (y+x)$$

$$\Box y^2 - x^2$$

Parmi les quatre expressions algébriques, une seule ne représente pas l'aire de la figure.

COCHE cette expression intruse.

$$\Box \ (-a+b)\cdot (a+b)$$

$$\Box b^2 - a^2$$

$$\Box$$
 $ab \cdot (b-a)$

$$\Box$$
 $(b-a) \cdot a + b \cdot (b-a)$

SITUE le point P de coordonnées (1; -4).

ÉCRIS les coordonnées du point H.

Coordonnées de H : (_____ ; ____)

Parmi les points A, B, C, D, E, F, G, H, L,

- **DÉTERMINE** les points qui ont la même ordonnée :
- DÉTERMINE les points qui ont une abscisse comprise entre -3 et 1 : _____

/2

ACDF et ABEF sont des rectangles.

DÉTERMINE une expression algébrique correspondant à

- l'aire de ACDF : _____
- l'aire de BDE:

QUESTION 25

/5

Dans un triangle isocèle, l'amplitude de l'angle au sommet vaut le triple de l'amplitude d'un angle de la base.

DÉTERMINE l'amplitude des angles de ce triangle.

ÉCRIS ton raisonnement et tous tes calculs.

/2

CONSTRUIS l'image *A'B'C'* du triangle *ABC* par la symétrie orthogonale d'axe d.

