CE043 - GAMLSS Por que GAMLSS?

Taconeli, C.A.; Silva, J.P

01 de agosto, $2020\,$

Conteúdo

- Introdução
- 2 Exemplo Modelagem dos preços de aluguel de imóveis
- 3 Modelo linear
- 4 Modelo linear generalizado
- 5 Modelo generalizado aditivo
- 6 Modelo generalizado aditivo duplo
- 🕜 Modelo generalizado aditivo para locação, escala e forma
- 8 Resumindo
- 9 Próximos passos

GAMLSS

GAMLSS (Generalized additive models for location, scale and shape) configura uma família de modelos de regressão (semi) paramétricos, contemplando uma grande variedade de distribuições, e em que qualquer parâmetro da distribuição pode ser modelado em função de covariáveis.

GAMLSS

GAMLSS (Generalized additive models for location, scale and shape) configura uma família de modelos de regressão (semi) paramétricos, contemplando uma grande variedade de distribuições, e em que qualquer parâmetro da distribuição pode ser modelado em função de covariáveis.

• Modelar dados com dispersão não constante, diferentes níveis de assimetria e curtose, relações não lineares...

GAMLSS

GAMLSS (Generalized additive models for location, scale and shape) configura uma família de modelos de regressão (semi) paramétricos, contemplando uma grande variedade de distribuições, e em que qualquer parâmetro da distribuição pode ser modelado em função de covariáveis.

- Modelar dados com dispersão não constante, diferentes níveis de assimetria e curtose, relações não lineares...
- O pacote gamlss e pacotes complementares permitem ajustar modelos da classe GAMLSS para diferentes tipos e estruturas de dados.

• Motivação baseada em dados de preços de aluguel de imóveis em Munique, 1980 (data set rent, pacote gamlss).

• Motivação baseada em dados de preços de aluguel de imóveis em Munique, 1980 (data set rent, pacote gamlss).

• Vamos explorar, de maneira preliminar, recursos computacionais implementados na biblioteca gamlss do R.

• Motivação baseada em dados de preços de aluguel de imóveis em Munique, 1980 (data set rent, pacote gamlss).

• Vamos explorar, de maneira preliminar, recursos computacionais implementados na biblioteca gamlss do R.

• Vamos ajustar uma sequência de modelos com nível crescente de complexidade, partindo de uma regressão linear.

• Motivação baseada em dados de preços de aluguel de imóveis em Munique, 1980 (data set rent, pacote gamlss).

• Vamos explorar, de maneira preliminar, recursos computacionais implementados na biblioteca gamlss do R.

• Vamos ajustar uma sequência de modelos com nível crescente de complexidade, partindo de uma regressão linear.

• Os scripts em R estão disponíveis na página da disciplina.

Exemplo - Modelagem dos preços de aluguel de imóveis

• Dados de 1969 imóveis disponíveis para locação em nove variáveis, das quais cinco serão usadas na análise:

- Dados de 1969 imóveis disponíveis para locação em nove variáveis, das quais cinco serão usadas na análise:
 - R: valor de aluguel (em Marcos alemães) descontado o custo utilitário do imóvel;

- Dados de 1969 imóveis disponíveis para locação em nove variáveis, das quais cinco serão usadas na análise:
 - R: valor de aluguel (em Marcos alemães) descontado o custo utilitário do imóvel;
 - Fl: Área construída, em metros quadrados;

- Dados de 1969 imóveis disponíveis para locação em nove variáveis, das quais cinco serão usadas na análise:
 - R: valor de aluguel (em Marcos alemães) descontado o custo utilitário do imóvel;
 - Fl: Área construída, em metros quadrados;
 - A: Ano de construção;

- Dados de 1969 imóveis disponíveis para locação em nove variáveis, das quais cinco serão usadas na análise:
 - R: valor de aluguel (em Marcos alemães) descontado o custo utilitário do imóvel;
 - Fl: Área construída, em metros quadrados;
 - A: Ano de construção;
 - H: Fator com dois níveis, (0) para imóveis com aquecimento central e (1) para os que não tem;

- Dados de 1969 imóveis disponíveis para locação em nove variáveis, das quais cinco serão usadas na análise:
 - R: valor de aluguel (em Marcos alemães) descontado o custo utilitário do imóvel;
 - Fl: Área construída, em metros quadrados;
 - A: Ano de construção;
 - H: Fator com dois níveis, (0) para imóveis com aquecimento central e (1) para os que não tem;
 - loc: Fator com três níveis, (1) se a localização do imóvel é classificada como abaixo da média, (2) na média e (3) acima da média.

Análise exploratória

Figura 1: Gráficos para o valor de aluguel vs variáveis explicativas.

Alguns achados

• Não linearidade da relação entre a variável resposta e alguma(s) variáveis explicativas;

Alguns achados

• Não linearidade da relação entre a variável resposta e alguma(s) variáveis explicativas;

 A variância dos valores de aluguel não é constante para diferentes valores das variáveis explicativas;

Alguns achados

• Não linearidade da relação entre a variável resposta e alguma(s) variáveis explicativas;

 A variância dos valores de aluguel não é constante para diferentes valores das variáveis explicativas;

• Distribuição dos valores de aluguel é assimétrica, e o nível de assimetria aparentemente varia conforme os valores das variáveis explicativas.

Modelo linear

• Para o modelo de regressão linear assumimos que a variável resposta, condicional aos valores das covariáveis, tem distribuição normal.

• Para o modelo de regressão linear assumimos que a variável resposta, condicional aos valores das covariáveis, tem distribuição normal.

 A média da distribuição pode ser expressa como uma combinação linear de covariáveis e parâmetros associados.

• Para o modelo de regressão linear assumimos que a variável resposta, condicional aos valores das covariáveis, tem distribuição normal.

• A média da distribuição pode ser expressa como uma combinação linear de covariáveis e parâmetros associados.

• A variância, no entanto, é assumida constante, para quaisquer valores das covariáveis sob estudo.

Figura 2: Ilustração de modelo de regressão linear com uma covariável $\boldsymbol{x}.$

• Considere y a variável resposta e $x_1, x_2, ..., x_r$ um conjunto de r covariáveis avaliados em uma amostra de tamanho n.

• Considere y a variável resposta e $x_1, x_2, ..., x_r$ um conjunto de r covariáveis avaliados em uma amostra de tamanho n.

• O modelo de regressão linear fica definido por:

• Considere y a variável resposta e $x_1, x_2, ..., x_r$ um conjunto de r covariáveis avaliados em uma amostra de tamanho n.

• O modelo de regressão linear fica definido por:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_r x_{ir} + \epsilon_i,$$

com $\epsilon_i \stackrel{ind}{\sim} N(0, \sigma^2)$, para i = 1, 2, ..., n.

 O modelo de regressão linear pode ser representado na forma matricial por:

$$y = X\beta + \epsilon$$
,

onde $\mathbf{y} = (y_1, ..., y_n)'$ é o vetor de respostas, \mathbf{X} é a matriz do modelo $n \times p$ (p = r + 1), $\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_r)'$ é o vetor de parâmetros de regressão e $\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, ..., \epsilon_n)'$ o vetor de erros.

 O modelo de regressão linear pode ser representado na forma matricial por:

$$y = X\beta + \epsilon$$
,

onde $\mathbf{y} = (y_1, ..., y_n)'$ é o vetor de respostas, \mathbf{X} é a matriz do modelo $n \times p \ (p = r + 1), \ \boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_r)'$ é o vetor de parâmetros de regressão e $\boldsymbol{\epsilon} = (\epsilon_1, \epsilon_2, ..., \epsilon_n)'$ o vetor de erros.

• Uma forma equivalente (e mais flexível) de representar o modelo de regressão linear é a seguinte:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} N(\mu_{\boldsymbol{x}}, \sigma^2),$$

onde $\mu_x = \beta_0 + \beta_1 x_1 + ... + \beta_r x_r$.

• O método de mínimos quadrados é usado na estimação dos parâmetros do modelo $(\beta's)$.

- O método de mínimos quadrados é usado na estimação dos parâmetros do modelo $(\beta's)$.
- O estimador de mínimos quadrados de β é o vetor $\hat{\beta}$ que minimiza a soma de quadrados dos erros, dada por:

- O método de mínimos quadrados é usado na estimação dos parâmetros do modelo $(\beta's)$.
- O estimador de mínimos quadrados de β é o vetor $\hat{\beta}$ que minimiza a soma de quadrados dos erros, dada por:

$$SQE(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

- O método de mínimos quadrados é usado na estimação dos parâmetros do modelo $(\beta's)$.
- O estimador de mínimos quadrados de β é o vetor $\hat{\beta}$ que minimiza a soma de quadrados dos erros, dada por:

$$SQE(\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})'(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}).$$

 \bullet O vetor $\hat{\pmb{\beta}}$ pode ser obtido de forma analítica, resultando em:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X'X})^{-1}\boldsymbol{X'y}.$$

• Sob a especificação do modelo de regressão linear, o estimador de mínimos quadrados é também o estimador de máxima verossimilhança de β .

• Sob a especificação do modelo de regressão linear, o estimador de mínimos quadrados é também o estimador de máxima verossimilhança de β .

• O estimador de máxima verossimilhança de σ^2 é dado por:

$$\hat{\sigma}^2 = \frac{SQ_{Res}}{n} = \frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})}{n}$$

• Sob a especificação do modelo de regressão linear, o estimador de mínimos quadrados é também o estimador de máxima verossimilhança de β .

• O estimador de máxima verossimilhança de σ^2 é dado por:

$$\hat{\sigma}^2 = \frac{SQ_{Res}}{n} = \frac{(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\hat{\boldsymbol{\beta}})}{n}$$

• Voltando à análise dos dados de aluguéis de imóveis, o seguinte modelo de regressão linear é proposto:

$$y|\boldsymbol{x} \sim Normal(\mu_{\boldsymbol{x}}, \sigma^2),$$

• Voltando à análise dos dados de aluguéis de imóveis, o seguinte modelo de regressão linear é proposto:

$$y|\boldsymbol{x} \sim Normal(\mu_{\boldsymbol{x}}, \sigma^2),$$

em que

$$\mu_x = \beta_0 + \beta_1 \times Fl + \beta_2 \times A + \beta_3 \times I(H = 1) + \beta_4 \times I(loc = 2) + \beta_5 \times I(loc = 3),$$

sendo $I(\cdot)$ é a função indicadora, tal que, por exemplo, I(H=1)=1 para os imóveis sem aquecimento central e I(H=1)=0 para os imóveis com aquecimento central.

• O modelo de regressão linear ajustado tem a seguinte expressão:

$$\hat{\mu}_x = -2775.04 + 8.84 \times Fl + 1.48 \times A - 204.76 \times I(H=1) + 134.05 \times I(loc=2) + 209.58 \times I(loc=3).$$

• O modelo de regressão linear ajustado tem a seguinte expressão:

$$\begin{split} \hat{\mu}_{x} = & -2775.04 + 8.84 \times Fl + 1.48 \times A - 204.76 \times I(H=1) \\ & + 134.05 \times I(loc=2) + 209.58 \times I(loc=3). \end{split}$$

• Além disso:

$$log(\hat{\sigma}) = 5.73165,$$

tal que $\hat{\sigma} = 308.48$.

• Modelos lineares generalizados configuram extensões dos modelos de regressão linear, tendo como diferenciais:

- Modelos lineares generalizados configuram extensões dos modelos de regressão linear, tendo como diferenciais:
 - Permitem modelar respostas com distribuição pertencente à família exponencial;

- Modelos lineares generalizados configuram extensões dos modelos de regressão linear, tendo como diferenciais:
 - Permitem modelar respostas com distribuição pertencente à família exponencial;
 - A relação entre a média de y e as covariáveis é linearizada por meio de uma função de ligação monotônica $g(\cdot)$;

- Modelos lineares generalizados configuram extensões dos modelos de regressão linear, tendo como diferenciais:
 - Permitem modelar respostas com distribuição pertencente à família exponencial;
 - A relação entre a média de y e as covariáveis é linearizada por meio de uma função de ligação monotônica $g(\cdot)$;
 - A estimação dos parâmetros do modelo se dá por um algoritmo de mínimos quadrados ponderados iterativamente.

Figura 3: Ilustração de modelo de regressão com resposta gama e função de ligação logarítmica.

• Uma variável aleatória y tem distribuição pertencente à família exponencial se sua função (densidade) de probabilidade puder ser expressa na seguinte forma:

$$f(y; \mu, \phi) = exp\left\{\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right\},$$

em que θ e ϕ são parâmetros canônico e de dispersão, respectivamente.

• Uma variável aleatória y tem distribuição pertencente à família exponencial se sua função (densidade) de probabilidade puder ser expressa na seguinte forma:

$$f(y; \mu, \phi) = exp\left\{\frac{y\theta - b(\theta)}{\phi} + c(y, \phi)\right\},$$

em que θ e ϕ são parâmetros canônico e de dispersão, respectivamente.

• A média e a variância de y são dadas, repsectivamente, por $E(y) = b'(\theta)$ e $Var(y) = \phi V(\mu)$, onde $V(\mu) = b''[\theta(\mu)]$ é a chamada $função\ de\ variância$.

 Dentre as principais distribuições contempladas pela teoria de MLG estão:

 Dentre as principais distribuições contempladas pela teoria de MLG estão:

• Normal: $V(\mu) = 1$;

 Dentre as principais distribuições contempladas pela teoria de MLG estão:

- Normal: $V(\mu) = 1$;
- Binomial: $V(\mu) = \mu(1 \mu);$

- Dentre as principais distribuições contempladas pela teoria de MLG estão:
 - Normal: $V(\mu) = 1$;
 - Binomial: $V(\mu) = \mu(1 \mu);$
 - Poisson: $V(\mu) = \mu$;

- Dentre as principais distribuições contempladas pela teoria de MLG estão:
 - Normal: $V(\mu) = 1$;
 - Binomial: $V(\mu) = \mu(1 \mu);$
 - Poisson: $V(\mu) = \mu$;
 - Gama: $V(\mu) = \mu^2$;

- Dentre as principais distribuições contempladas pela teoria de MLG estão:
 - Normal: $V(\mu) = 1$;
 - Binomial: $V(\mu) = \mu(1 \mu);$
 - Poisson: $V(\mu) = \mu$;
 - Gama: $V(\mu) = \mu^2$;
 - Normal inversa: $V(\mu) = \mu^3$.

• Um modelo linear generalizado pode ser representado, genericamente, da seguinte forma:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} f(\mu_{\boldsymbol{x}}, \phi),$$

em que $f(\cdot)$ denota uma particular distribuição da família exponencial, ϕ é o parâmetro de dispersão e

$$g(\mu_x) = \beta_0 + \beta_1 x_1 + \dots + \beta_r x_r.$$

• Na aplicação dos dados sobre os valores de aluguel de imóveis, vamos considerar a distribuição gama, que é uma alternativa para a modelagem de dados contínuos assimétricos.

- Na aplicação dos dados sobre os valores de aluguel de imóveis, vamos considerar a distribuição gama, que é uma alternativa para a modelagem de dados contínuos assimétricos.
- Uma variável aleatória com distribuição gama de média μ e parâmetro de dispersão ϕ tem a função densidade de probabilidade dada por:

$$f(y;\mu,\phi) = \frac{y^{\frac{1}{\phi}-1}exp\left(-\frac{y}{\phi\mu}\right)}{\left(\phi\mu\right)^{1/\phi}\Gamma(1/\phi)}, \quad y>0, \mu>0, \phi>0.$$

- Na aplicação dos dados sobre os valores de aluguel de imóveis, vamos considerar a distribuição gama, que é uma alternativa para a modelagem de dados contínuos assimétricos.
- Uma variável aleatória com distribuição gama de média μ e parâmetro de dispersão ϕ tem a função densidade de probabilidade dada por:

$$f(y;\mu,\phi) = \frac{y^{\frac{1}{\phi}-1}exp\left(-\frac{y}{\phi\mu}\right)}{\left(\phi\mu\right)^{1/\phi}\Gamma(1/\phi)}, \quad y > 0, \mu > 0, \phi > 0.$$

• No pacote gamlss a distribuição gama é especificada pela média μ e por um parâmetro de escala $\sigma = \sqrt{\phi}$.

• Como $\mu > 0$, vamos usar a função de ligação logarítmica na análise dos valores dos imóveis, de forma que o modelo a ser ajustado fica especificado por:

• Como $\mu > 0$, vamos usar a função de ligação logarítmica na análise dos valores dos imóveis, de forma que o modelo a ser ajustado fica especificado por:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} \operatorname{gama}(\mu_{\boldsymbol{x}}, \sigma), \quad y > 0, \mu > 0, \sigma > 0,$$

• Como $\mu > 0$, vamos usar a função de ligação logarítmica na análise dos valores dos imóveis, de forma que o modelo a ser ajustado fica especificado por:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} \operatorname{gama}(\mu_{\boldsymbol{x}}, \sigma), \quad y > 0, \mu > 0, \sigma > 0,$$

com

$$\log(\mu_x) = \beta_0 + \beta_1 \times Fl + \beta_2 \times A + \beta_3 \times I(H=1) + \beta_4 \times I(loc=2) + \beta_5 \times I(loc=3).$$

• O ajuste do modelo linear generalizado com resposta gama resulta em $y|x \sim \text{gama}(\hat{\mu}_x, \hat{\sigma})$, tal que:

$$\log(\hat{\mu}_x) = 2.8649 + 0.0106 \times Fl + 0.0015 \times A - 0.3001 \times I(H = 1) + 0.1907 \times I(loc = 2) + 0.2641 \times I(loc = 3),$$

• O ajuste do modelo linear generalizado com resposta gama resulta em $y|x \sim \text{gama}(\hat{\mu}_x, \hat{\sigma})$, tal que:

$$\log(\hat{\mu}_x) = 2.8649 + 0.0106 \times Fl + 0.0015 \times A - 0.3001 \times I(H = 1) + 0.1907 \times I(loc = 2) + 0.2641 \times I(loc = 3),$$

com

$$log(\hat{\sigma}) = -0.9822,$$

e, consequentemente, $\hat{\sigma} = 0.3745$.

 Modelos aditivos são mais flexíveis do que modelos totalmente paramétricos, permitindo lidar com relações não lineares entre covariáveis e a resposta.

- Modelos aditivos são mais flexíveis do que modelos totalmente paramétricos, permitindo lidar com relações não lineares entre covariáveis e a resposta.
- Os efeitos das covariáveis são inseridos ao preditor por meio de funções suaves, que podem ser interpretados usando gráficos apropriados.

- Modelos aditivos são mais flexíveis do que modelos totalmente paramétricos, permitindo lidar com relações não lineares entre covariáveis e a resposta.
- Os efeitos das covariáveis são inseridos ao preditor por meio de funções suaves, que podem ser interpretados usando gráficos apropriados.
- O pacote gamlss oferece diferentes alternativas de funções suaves a serem usadas em modelos aditivos.

- Modelos aditivos são mais flexíveis do que modelos totalmente paramétricos, permitindo lidar com relações não lineares entre covariáveis e a resposta.
- Os efeitos das covariáveis são inseridos ao preditor por meio de funções suaves, que podem ser interpretados usando gráficos apropriados.
- O pacote gamlss oferece diferentes alternativas de funções suaves a serem usadas em modelos aditivos.
- Na aplicação referente aos preços de aluguel vamos considerar a inclusão de suavizadores para os efeitos de área e de ano de construção do imóvel.

Figura 4: Modelo de regressão com resposta gama e suavizador para a covariável.

 Modelos generalizados aditivos configuram extensões dos MLGs em que o efeito de ao menos uma das covariáveis é incorporado ao preditor linear através de uma função suavizadora (não paramétrica).

- Modelos generalizados aditivos configuram extensões dos MLGs em que o efeito de ao menos uma das covariáveis é incorporado ao preditor linear através de uma função suavizadora (não paramétrica).
- Um modelo generalizado aditivo pode ser representado, de forma geral, por:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} f(\mu_{\boldsymbol{x}}, \phi),$$

onde

$$g(\mu_{\boldsymbol{x}}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_j x_j + \ldots + s_{j+1}(x_{j+1}) + \ldots + s_r(x_r),$$

em que s_k é uma função suave não paramétrica aplicada à covariável $x_k,\,k=j+1,...,r.$

 O modelo generalizado aditivo a ser ajustado aos dados de preços de aluguel, considerando resposta gama, é especificado da seguinte forma:

$$y|x \stackrel{ind}{\sim} \text{gama}(\mu_x, \sigma), \quad y > 0, \mu > 0, \sigma > 0,$$

 O modelo generalizado aditivo a ser ajustado aos dados de preços de aluguel, considerando resposta gama, é especificado da seguinte forma:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} \operatorname{gama}(\mu_{\boldsymbol{x}}, \sigma), \quad y > 0, \mu > 0, \sigma > 0,$$

com

$$\log(\mu_x) = \beta_0 + s_1(Fl) + s_2(A) + \beta_1 \times I(H = 1) + \beta_2 \times I(loc = 2) + \beta_3 \times I(loc = 3),$$

em que s_1 e s_2 são suavizadores não paramétricos aplicados às variáveis Fl e A, respectivamente.

• O modelo ajustado fica dado por:

$$\log(\hat{\mu}_x) = 3.0851 + s_1(Fl) + s_2(A) - 0.3008 \times I(H = 1) + 0.1887 \times I(loc = 2) + 0.2720 \times I(loc = 3),$$

• O modelo ajustado fica dado por:

$$\log(\hat{\mu}_x) = 3.0851 + s_1(Fl) + s_2(A) - 0.3008 \times I(H = 1) + 0.1887 \times I(loc = 2) + 0.2720 \times I(loc = 3),$$

com

$$log(\hat{\sigma}) = -1.0019,$$

tal que $\hat{\sigma} = 0.33672$.

 Até o momento consideramos apenas modelos em que a média (parâmetro de locação) da distribuição varia conforme os valores das covariáveis.

 Até o momento consideramos apenas modelos em que a média (parâmetro de locação) da distribuição varia conforme os valores das covariáveis.

 Modelos mais gerais permitem incluir covariáveis também na modelagem de outros parâmetros da distribuição (por exemplo, para o parâmetro de escala).

 Até o momento consideramos apenas modelos em que a média (parâmetro de locação) da distribuição varia conforme os valores das covariáveis.

- Modelos mais gerais permitem incluir covariáveis também na modelagem de outros parâmetros da distribuição (por exemplo, para o parâmetro de escala).
- Para a distribuição gama, por exemplo, temos que $Var(y) = \sigma^2 \mu^2$, ou seja, $\sigma = \sqrt{Var(y)}/\mu$ é o coeficiente de variação de y.

 Até o momento consideramos apenas modelos em que a média (parâmetro de locação) da distribuição varia conforme os valores das covariáveis.

- Modelos mais gerais permitem incluir covariáveis também na modelagem de outros parâmetros da distribuição (por exemplo, para o parâmetro de escala).
- Para a distribuição gama, por exemplo, temos que $Var(y) = \sigma^2 \mu^2$, ou seja, $\sigma = \sqrt{Var(y)}/\mu$ é o coeficiente de variação de y.
- \bullet Neste caso, podemos modelar também σ em função de covariáveis.

Figura 5: Distribuição normal com média e variância dependentes de uma covariável $\boldsymbol{x}.$

• Uma formulação geral para o modelo, neste caso, seria:

$$y|x \stackrel{ind}{\sim} D(\mu_x, \sigma_x),$$

onde

$$g_1(\mu_x) = \beta_{10} + \beta_{11}x_1 + \dots + \beta_{1j_1}x_{j_1} + \dots + s_{j_1+1}(x_{j_1+1}) + \dots + s_{r_1}(x_{r_1})$$

$$g_2(\sigma_x) = \beta_{20} + \beta_{21}x_1 + \dots + \beta_{2j_2}x_{j_2} + \dots + s_{j_2+1}(x_{j_2+1}) + \dots + s_{r_2}(x_{r_2}),$$

• Uma formulação geral para o modelo, neste caso, seria:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} D(\mu_{\boldsymbol{x}}, \sigma_{\boldsymbol{x}}),$$

onde

$$g_1(\mu_x) = \beta_{10} + \beta_{11}x_1 + \dots + \beta_{1j_1}x_{j_1} + \dots + s_{j_1+1}(x_{j_1+1}) + \dots + s_{r_1}(x_{r_1})$$

$$g_2(\sigma_x) = \beta_{20} + \beta_{21}x_1 + \dots + \beta_{2j_2}x_{j_2} + \dots + s_{j_2+1}(x_{j_2+1}) + \dots + s_{r_2}(x_{r_2}),$$

em que D representa alguma distribuição de probabilidades tal que dois de seus parâmetros (μ e σ) são funções de covariáveis.

• Vamos retomar a análise dos dados de preços de aluguel com o ajuste de modelos com resposta gama e normal inversa, inserindo covariáveis também na modelagem do parâmetro de escala.

- Vamos retomar a análise dos dados de preços de aluguel com o ajuste de modelos com resposta gama e normal inversa, inserindo covariáveis também na modelagem do parâmetro de escala.
- Em ambos os casos vamos considerar função de ligação logarítmica tanto para μ quanto para σ , produzindo os seguintes modelos:

- Vamos retomar a análise dos dados de preços de aluguel com o ajuste de modelos com resposta gama e normal inversa, inserindo covariáveis também na modelagem do parâmetro de escala.
- Em ambos os casos vamos considerar função de ligação logarítmica tanto para μ quanto para σ , produzindo os seguintes modelos:

$$\log(\mu_x) = \beta_{10} + s_{11}(Fl) + s_{12}(A) + \beta_{11} \times I(H = 1) + \beta_{12} \times I(loc = 2) + \beta_{13} \times I(loc = 3),$$

e

$$\log(\sigma_x) = \beta_{20} + s_{21}(Fl) + s_{22}(A) + \beta_{21} \times I(H = 1) + \beta_{22} \times I(loc = 2) + \beta_{23} \times I(loc = 3).$$

• O modelo ajustado com resposta gama (que produziu menor AIC do que com resposta normal inversa) é o seguinte:

$$\log(\hat{\mu}_x) = 2.8844 + s_{11}(Fl) + s_{12}(A) - 0.2918 \times I(H = 1) + 0.1938 \times I(loc = 2) + 0.2734 \times I(loc = 3),$$

com

$$log(\hat{\sigma}_x) = 5.9225 + s_{21}(Fl) + s_{22}(A) + 0.0659 \times I(H = 1) -0.1166 \times I(loc = 2) - 0.1702 \times I(loc = 3).$$

• Os modelos considerados anteriormente baseiam-se na inclusão de covariáveis nos preditores dos parâmetros de locação e escala (apenas no caso do generalizado aditivo duplo) da distribução.

• Os modelos considerados anteriormente baseiam-se na inclusão de covariáveis nos preditores dos parâmetros de locação e escala (apenas no caso do generalizado aditivo duplo) da distribução.

• Em GAMLSS, distribuições com até quatro parâmetros podem ter cada um deles modelados em função de covariáveis.

• Os modelos considerados anteriormente baseiam-se na inclusão de covariáveis nos preditores dos parâmetros de locação e escala (apenas no caso do generalizado aditivo duplo) da distribução.

• Em GAMLSS, distribuições com até quatro parâmetros podem ter cada um deles modelados em função de covariáveis.

• Desta forma, propriedades como assimetria, curtose, excesso ou escassez de zeros podem ser explicadas em função de covariáveis.

Figura 6: Distribuição com locação, dispersão e forma dependentes de x.

• Um modelo generalizado aditivo para locação, escala e forma é definido, de forma geral, por:

$$y|\mathbf{x} \stackrel{ind}{\sim} D(\mu_{\mathbf{x}}, \sigma_{\mathbf{x}}, \nu_{\mathbf{x}}, \tau_{\mathbf{x}}),$$

onde

$$g_{1}(\mu_{x}) = \beta_{10} + \beta_{11}x_{1} + \dots + \beta_{1j_{1}}x_{j_{1}} + \dots + s_{j_{1}+1}(x_{j_{1}+1}) + \dots + s_{r_{1}}(x_{r_{1}})$$

$$g_{2}(\sigma_{x}) = \beta_{20} + \beta_{21}x_{1} + \dots + \beta_{2j_{2}}x_{j_{2}} + \dots + s_{j_{2}+1}(x_{j_{2}+1}) + \dots + s_{r_{2}}(x_{r_{2}})$$

$$g_{3}(\nu_{x}) = \beta_{30} + \beta_{31}x_{1} + \dots + \beta_{3j_{3}}x_{j_{3}} + \dots + s_{j_{3}+1}(x_{j_{3}+1}) + \dots + s_{r_{3}}(x_{r_{3}}),$$

$$g_{4}(\tau_{x}) = \beta_{40} + \beta_{41}x_{1} + \dots + \beta_{4j_{4}}x_{j_{4}} + \dots + s_{j_{4}+1}(x_{j_{4}+1}) + \dots + s_{r_{4}}(x_{r_{4}})$$

em que $D(\mu, \sigma, \nu, \tau)$ é uma distribuição de quatro parâmetros e ν e τ são parâmetros de forma.

 O pacote gamlss dispõe de dezenas de distribuições implementadas. Além disso:

- O pacote gamlss dispõe de dezenas de distribuições implementadas. Além disso:
 - É possível ao usuário implementar novas distribuições;

- O pacote gamlss dispõe de dezenas de distribuições implementadas. Além disso:
 - É possível ao usuário implementar novas distribuições;
 - Versões truncadas ou censuradas podem ser definidas a partir das distribuições originais;

- O pacote gamlss dispõe de dezenas de distribuições implementadas. Além disso:
 - É possível ao usuário implementar novas distribuições;
 - Versões truncadas ou censuradas podem ser definidas a partir das distribuições originais;
 - Pode-se criar novas distribuições a partir de misturas das distribuições originais;

- O pacote gamlss dispõe de dezenas de distribuições implementadas. Além disso:
 - É possível ao usuário implementar novas distribuições;
 - Versões truncadas ou censuradas podem ser definidas a partir das distribuições originais;
 - Pode-se criar novas distribuições a partir de misturas das distribuições originais;
 - Distribuições discretas podem ser criadas a partir de distribuições originalmente contínuas;

- O pacote gamlss dispõe de dezenas de distribuições implementadas. Além disso:
 - É possível ao usuário implementar novas distribuições;
 - Versões truncadas ou censuradas podem ser definidas a partir das distribuições originais;
 - Pode-se criar novas distribuições a partir de misturas das distribuições originais;
 - Distribuições discretas podem ser criadas a partir de distribuições originalmente contínuas;
 - Distribuições com suporte nos intervalos $(0, \infty)$ ou (0, 1) podem ser geradas a partir de variáveis com suporte no intervalo $(-\infty, \infty)$.

• Termos aditivos podem ser adicionados ao modelo de diferentes formas, usando, por exemplo:

- Termos aditivos podem ser adicionados ao modelo de diferentes formas, usando, por exemplo:
 - Penalized B-splines (P-splines);
 - Monotone P-splines;
 - Cycle P-splines;
 - Varying coefficient P-splynes;
 - Cubic smoothing P-splynes;
 - Loess curve fitting;
 - Fractional polynomials;
 - Random effects:
 - Ridge regression;
 - Nonlinear parametric fits.

 A estimação dos parâmetros em gamlss baseia-se no método de máxima verossimilhança penalizada.

 A estimação dos parâmetros em gamlss baseia-se no método de máxima verossimilhança penalizada.

• Dois algoritmos estão implementados em gamlss para o ajuste dos modelos: CG (Cole e Green) e RS (Rigby e Stasinopoulos), que podem ainda ser usados de forma combinada.

• Dando sequência à análise dos dados de preços de aluguel, vamos considerar, como alternativa à distribuição gama, a distribuição Box-Cox Cole e Green (BCCGo).

- Dando sequência à análise dos dados de preços de aluguel, vamos considerar, como alternativa à distribuição gama, a distribuição Box-Cox Cole e Green (BCCGo).
- A distribuição BCCGo tem três parâmetros $(\mu, \sigma e \tau)$, sendo τ um parâmetro de forma.

- Dando sequência à análise dos dados de preços de aluguel, vamos considerar, como alternativa à distribuição gama, a distribuição Box-Cox Cole e Green (BCCGo).
- A distribuição BCCGo tem três parâmetros $(\mu, \sigma e \tau)$, sendo τ um parâmetro de forma.
- Cada um dos parâmetros pode ou não ser modelado em função de covariáveis. Além disso, diferentes conjuntos de covariáveis podem ser incluídos para cada parâmetro.

- Dando sequência à análise dos dados de preços de aluguel, vamos considerar, como alternativa à distribuição gama, a distribuição Box-Cox Cole e Green (BCCGo).
- A distribuição BCCGo tem três parâmetros (μ , σ e τ), sendo τ um parâmetro de forma.
- Cada um dos parâmetros pode ou não ser modelado em função de covariáveis. Além disso, diferentes conjuntos de covariáveis podem ser incluídos para cada parâmetro.
- Modelos com diferentes especificações (distribuições, termos aditivos, covariáveis...) podem ter seus ajustes comparados usando o critério de informação de Akaike (AIC) ou Akaike generalizado (GAIC), dentre outros.

• No modelo especificado para esta análise, todas as covariáveis foram incluídas na modelagem dos três parâmetros $(\mu, \sigma \in \nu)$.

• No modelo especificado para esta análise, todas as covariáveis foram incluídas na modelagem dos três parâmetros $(\mu, \sigma \in \nu)$.

• Como funções de ligação para cada parâmetro adotou-se o padrão do pacote gamlss para a BCCGo (log, log e identidade para μ , σ e ν , respectivamente).

• No modelo especificado para esta análise, todas as covariáveis foram incluídas na modelagem dos três parâmetros $(\mu, \sigma \in \nu)$.

• Como funções de ligação para cada parâmetro adotou-se o padrão do pacote gamlss para a BCCGo (log, log e identidade para μ , σ e ν , respectivamente).

• Novamente, funções suaves foram incorporadas para as variáveis Fl e A.

• O modelo proposto é o seguinte:

$$y|x \stackrel{ind}{\sim} BCCGo(\mu_x, \sigma_x, \nu_x),$$

• O modelo proposto é o seguinte:

$$y|x \stackrel{ind}{\sim} BCCGo(\mu_x, \sigma_x, \nu_x),$$

onde

$$\log(\mu_x) = \beta_{10} + s_{11}(Fl) + s_{12}(A) + \beta_{11} \times I(H = 1) + \beta_{12} \times I(loc = 2) + \beta_{13} \times I(loc = 3),$$

• O modelo proposto é o seguinte:

$$y|\boldsymbol{x} \stackrel{ind}{\sim} BCCGo(\mu_{\boldsymbol{x}}, \sigma_{\boldsymbol{x}}, \nu_{\boldsymbol{x}}),$$

onde

$$\log(\mu_x) = \beta_{10} + s_{11}(Fl) + s_{12}(A) + \beta_{11} \times I(H = 1) + \beta_{12} \times I(loc = 2) + \beta_{13} \times I(loc = 3),$$

$$\log(\sigma_x) = \beta_{20} + s_{21}(Fl) + s_{22}(A) + \beta_{21} \times I(H = 1) + \beta_{22} \times I(loc = 2) + \beta_{23} \times I(loc = 3),$$

• O modelo proposto é o seguinte:

$$y|x \stackrel{ind}{\sim} BCCGo(\mu_x, \sigma_x, \nu_x),$$

onde

$$\log(\mu_x) = \beta_{10} + s_{11}(Fl) + s_{12}(A) + \beta_{11} \times I(H = 1) + \beta_{12} \times I(loc = 2) + \beta_{13} \times I(loc = 3),$$

$$\log(\sigma_x) = \beta_{20} + s_{21}(Fl) + s_{22}(A) + \beta_{21} \times I(H = 1) + \beta_{22} \times I(loc = 2) + \beta_{23} \times I(loc = 3),$$

$$\nu_x = \beta_{30} + s_{31}(Fl) + s_{32}(A) + \beta_{31} \times I(H = 1) + \beta_{32} \times I(loc = 2) + \beta_{33} \times I(loc = 3).$$

• Como resultado temos o seguinte modelo ajustado:

$$\log(\hat{\mu}_x) = 2.0285 + s_{11}(Fl) + s_{12}(A) - 0.3213 \times I(H = 1) + 0.1853 \times I(loc = 2) + 0.2742 \times I(loc = 3),$$

• Como resultado temos o seguinte modelo ajustado:

$$\log(\hat{\mu}_x) = 2.0285 + s_{11}(Fl) + s_{12}(A) - 0.3213 \times I(H = 1) + 0.1853 \times I(loc = 2) + 0.2742 \times I(loc = 3),$$

$$\log(\hat{\sigma}_x) = 6.6534 + s_{21}(Fl) + s_{22}(A) + 0.0819 \times I(H = 1) - 0.0851 \times I(loc = 2) - 0.1410 \times I(loc = 3),$$

• Como resultado temos o seguinte modelo ajustado:

$$\log(\hat{\mu}_x) = 2.0285 + s_{11}(Fl) + s_{12}(A) - 0.3213 \times I(H = 1) + 0.1853 \times I(loc = 2) + 0.2742 \times I(loc = 3),$$

$$\log(\hat{\sigma}_x) = 6.6534 + s_{21}(Fl) + s_{22}(A) + 0.0819 \times I(H = 1) - 0.0851 \times I(loc = 2) - 0.1410 \times I(loc = 3),$$

$$\hat{\nu}_x = -3.1601 + s_{31}(Fl) + s_{32}(A) - 0.2866 \times I(H=1) - 0.1711 \times I(loc=2) - 0.0845 \times I(loc=3).$$

Resumindo

• GAMLSS configura uma metodologia flexível para análise de regressão;

- GAMLSS configura uma metodologia flexível para análise de regressão;
- Permite especificar diversas distribuições de probabilidades para a variável resposta;

- GAMLSS configura uma metodologia flexível para análise de regressão;
- Permite especificar diversas distribuições de probabilidades para a variável resposta;
- Todos os parâmetros da distribuição podem ser modelados em função de covariáveis;

- GAMLSS configura uma metodologia flexível para análise de regressão;
- Permite especificar diversas distribuições de probabilidades para a variável resposta;
- Todos os parâmetros da distribuição podem ser modelados em função de covariáveis;
- Diferentes tipos de termos aditivos podem ser incluídos nos preditores de cada parâmetro;

- GAMLSS configura uma metodologia flexível para análise de regressão;
- Permite especificar diversas distribuições de probabilidades para a variável resposta;
- Todos os parâmetros da distribuição podem ser modelados em função de covariáveis;
- Diferentes tipos de termos aditivos podem ser incluídos nos preditores de cada parâmetro;
- GAMLSS estende diversas outras metodologias (como LM, GLM e GAM) permitindo modelar dados com super-dispersão, excesso de zeros, diferentes níveis de assimetria e curtose...

 \bullet Inferência em gamlss

• Inferência em gamlss

Estimação por máxima verossimilhança penalizada;

• Inferência em gamlss

- Estimação por máxima verossimilhança penalizada;
- Breve apresentação dos algoritmos de estimação;

• Inferência em gamlss

- Estimação por máxima verossimilhança penalizada;
- Breve apresentação dos algoritmos de estimação;
- Intervalos de confiança e testes de hipóteses;

• Inferência em gamlss

- Estimação por máxima verossimilhança penalizada;
- Breve apresentação dos algoritmos de estimação;
- Intervalos de confiança e testes de hipóteses;
- Predição.