Работа 2.4.1

Определение теплоты испарения жидкости

Мыздриков Иван Б06-401

11 марта 2025 г.

Цель работы

- 1. Измерение давления насыщенного пара жидкости при разной температуре
- 2. Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

Теоретическая справка

Уравнение Клапейрона-Клаузиуса

Запишем уравнение для свободной энергии Гиббса и дифференциал из 1 и 2 начал термодинамики

$$G = U + PV - TS$$

$$dG = -SdT + VdP$$

Отсюда следует, что если в термодинамической системе не изменяется давление и температура, то потенциал Гиббса так же остается неизменным.

Пусть система состоит из фаз 1 и 2, массы которых равны m_1 и m_2 соответственно. Удельные термодинамические потенциалы обозначим $\gamma_1(P,T)$ и $\gamma_2(P,T)$. Тогда

$$G = \gamma_1(P, T)m_1 + \gamma_2(P, T)m_2$$

При фазовом переходе давление и температура не меняются, поэтому не меняется и G, и $\gamma_1(P,T)$, и $\gamma_2(P,T)$ из условия равновесия. Меняются лишь массы. При этом общая масса всей системы не меняется. Из всего вышеперечсисленного следует, что

$$dm_1 + dm_2 = 0$$

$$dG = 0 = \gamma_1 dm_1 + \gamma_2 dm_2$$

$$\gamma_1(P,T) = \gamma_1(P,T)$$

Отсюда получается, что условие равновесия фаз эквивалентно условию равновесия их удельных потенциалов Γ иббса. Отсюда получаем

$$d\gamma_1(P,T) = -s_1 dT + v_1 dP = d\gamma_2(P,T) = -s_2 dT + v_1 dP$$

$$d\gamma_1 = d\gamma_2 \Rightarrow$$

$$\frac{dP}{dT} = \frac{s_2 - s_1}{v_2 - v_1}$$

при T=const имеем, что

$$s_2 - s_1 = \frac{q}{T}$$

$$\frac{dP}{dT} = \frac{q}{T(v_2 - v_1)}$$

Поскольку в данной работе температура далека от критической, то газ можно считать идеальным и можно пренебреч v_1 по сравнению с v_2 , то есть

$$v_2 = \frac{RT}{P}$$
$$q = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)}$$

Экспериментальная установка

Рис. 1: Схема установки

Здесь блок A - нагревательный элемент, блок B - исследуемый сосуд и C - измерительный микроскоп.

Ход работы

1. Измеряем высоту столба ртути в монометрах при повышении температуры, затем находим разность и по ним считаем разность давлений.

2. Проводим те же измерения при понижении температуры. Все данные записываем в таблицу.

T, C	σ_T, K, mm	$\Delta h, mm$	σ_h, mm	р, Па	$\sigma_p, \Pi a$
20.03	0.1	37.67	0.1	5025.78	133.42
22.28	0.1	43.2	0.1	5763.57	133.42
23.11	0.1	45.67	0.1	6093.11	133.42
24.15	0.1	49.1	0.1	6550.73	133.42
25.14	0.1	51.93	0.1	6928.29	133.42
26.15	0.1	54.87	0.1	7320.54	133.42
27.18	0.1	58.43	0.1	7795.5	133.42
28.13	0.1	62.72	0.1	8367.85	133.42
29.13	0.1	66.23	0.1	8836.14	133.42
30.19	0.1	67.75	0.1	9038.93	133.42
30.12	0.1	70.39	0.1	9391.15	133.42
31.19	0.1	73.97	0.1	9868.78	133.42
32.14	0.1	78.86	0.1	10521.19	133.42
33.11	0.1	84.03	0.1	11210.95	133.42
34.18	0.1	86.6	0.1	11553.83	133.42
35.14	0.1	94.62	0.1	12623.82	133.42
36.17	0.1	96.61	0.1	12889.32	133.42
37.24	0.1	104.48	0.1	13939.3	133.42
38.17	0.1	109.15	0.1	14562.36	133.42
39.13	0.1	115.6	0.1	15422.89	133.42

Таблица 1: P от T при нагреве

T, C	σ_T, K, mm	$\Delta h, mm$	σ_h, mm	р, Па	$\sigma_p, \Pi a$
37.9	0.1	108.64	0.1	14494.31	133.42
37.0	0.1	104.35	0.1	13921.96	133.42
35.9	0.1	98.31	0.1	13116.13	133.42
35.0	0.1	93.9	0.1	12527.76	133.42
34.0	0.1	88.0	0.1	11740.61	133.42
32.9	0.1	83.7	0.1	11166.92	133.42
31.9	0.1	78.7	0.1	10499.84	133.42
30.9	0.1	74.5	0.1	9939.49	133.42
29.9	0.1	74.5	0.1	9939.49	133.42
29.0	0.1	67.0	0.1	8938.87	133.42
28.0	0.1	64.0	0.1	8538.62	133.42
27.0	0.1	60.0	0.1	8004.96	133.42
26.0	0.1	56.4	0.1	7524.66	133.42
25.0	0.1	53.2	0.1	7097.73	133.42
24.0	0.1	50.0	0.1	6670.8	133.42
23.0	0.1	46.8	0.1	6243.87	133.42
21.88	0.1	42.43	0.1	5660.84	133.42
21.0	0.1	38.41	0.1	5124.51	133.42
20.0	0.1	37.9	0.1	5056.47	133.42

Таблица 2: P от T при охлаждении

- 3. Строим график в координатах 1/T и $\ln P$.
- 4. Вычисляем L по первому графику.

$\frac{d(\ln P)}{d(1/T)}, K$	$\sigma_{d(\ln P)/d(1/T)}, K$	L, Дж/моль	$\sigma_L,$ Дж/моль	L, Дж/г	$\sigma_L,$ Дж/ Γ
-5355	100	44551	1000	968.5	20

Таблица 3: Результаты полученные из первого графика

Рис. 2: График зависимости $\ln P$ от 1/T

- 5. Строим график в координатах T и P.
- 6. Вычислим L по второму графику, например вблизи точки T=302K. Для этого построим касательную в данной точке, найдем v_2 по формуле $v_2=\frac{RT}{\mu P}$ и далее из формулы

$$\frac{dP}{dT} = \frac{L}{T(v_2 - v_1)}$$

Принебрегая v_1 по сравнению с v_2 мы получим

$$L \approx \frac{dP}{dT} \cdot T \cdot v_2$$

$dfracdPdT, \Pi a/K$	$\sigma_{dP/dT}, \Pi a/K$	$v_2, m^3/$ моль	L , Дж/ Γ	$\sigma_L,$ Дж/ Γ
565	30	2000	932	60

Таблица 4: Результаты для второго графика

7. Сравнивая полученные результаты можно сделать вывод, что нахождение по первому графику более точное, нежели по второму. Исходя из таблицы мы видим, что

Рис. 3: График зависимости P от T

наши результаты довольно точно совпадают с табличными, то есть с $L=920\mbox{Дж/r}$ при T=302K