Frequent Pattern Analysis

Definition

A pattern that occurs **frequently** in a data set

Importance

Disclose an intrinisic and important property of data sets

Types of data or knowledge

- associative pattern
- sequential pattern
- Sub-Grapgh pattern
- Iceberg cube

Main operations

• read / write / point

Other Methods

- closed / max pattern
- compression method
- pruning method
- constraints

Association Rule

概念

• 规则 (Rule):

$$\{x_1,x_2,x_3,\ldots,x_n\} o Y$$

- 可信度 (Confidence) 和最小可信度
 - \circ 购买 $x_1, x_2, \ldots x_n$ 的情况下购买Y的可能性,条件概率
 - \circ Confidence $(A \rightarrow B) = P(B|A)$
- 支持度 (Support) 和最小支持度
 - \circ 同时购买 $x_1,x_2,\ldots x_n$ 和Y的可能性
 - $\circ \ Support(A o B) = P(A \cup B)$
- 频繁项目集

满足最小支持度的项目集

Example for calculate Support & Confidence

$\{ABC, ACD, BCD, ADE, BCE\}$

Rule	Support	Confidence
A -> D	2/5	2/3
C -> A	2/5	2/4
A -> C	2/5	2/3
B & C -> D	1/5	1/3

PS: 注意因果关系

Evolution of AR (Association Rule)

1. AR Model

- 2. Apriori(层次算法产生候选集)
- 3. FP-Growth

Sub Problems of AR

- 1. 依据最小支持度,寻找频繁项目集
- 2. 依据最小可信度,产生关联规则

重要公理

如果一个项目集S是频繁的(项目集S的出现频度大于最小支持度),那么S的任意子集是频繁的

Eg. $\{a,b,c\}$ 其子集 $\{a,b\}$

其逆否命题

如果一个项目集合S是不频繁的,那么它的任何超集是不频繁的

Eg. {a} 其超集 {a,b}

算法

- 分层挖掘(每一层需要对数据做一次扫描)
 我们只需将精力放在大小为2的频繁项目集上
- 2. 对数据做1、2次扫描就找出频繁项目集(利用公理)

<u>Apriori</u>

- 1. self-joining $\boldsymbol{L_k}$
- 2. pruning

Apriori Example (找出频繁集,建立关联规则)

$\{ABC,AC,BCD,DE,ABCD\}$ $(Min_s=2[$ 常忽略分母 $],Min_c$ =80%)

 C_1

item	Freq
A	3
В	3
С	4
D	3
E	1

L_1

item	Freq
A	3
В	3
С	4
D	3

C_2

item	Freq
AB	2
AC	3
AD	1
BC	3
BD	2
CD	2

 L_2

item	Freq
AB	2
AC	3
BC	3
BD	2
CD	2

C_3

item	Freq
ABC	2
BCD	2

L_3

item	Freq
ABC	2
BCD	2

Based on $oldsymbol{L_2}$ We can get

Rule	Confidence
A -> B	2/3
B -> A	2/3
A -> C	1
C -> A	3/4

Based on L_3 We can get

Rule	Confidence
A -> BC	2/3
B -> AC	2/3
C -> AB	2/4
AB -> C	1

算法缺陷:候选集的生成耗费太大

算法改进

- 基于Hash
- 基于Partition
- 基于Sample

Graph Mining

A (sub)graph is *frequent* if its support in a given dataset is no less than a minimum support threshold

Subgraph Explosion Problem