

1901
K8

Kreikenbaum

Ash Analysis of Foods

Chemistry

B. S.

1901

Digitized by the Internet Archive
in 2013

<http://archive.org/details/ashanalysisoffoo00krei>

2/20
187

UNIVERSITY
UNIVERSITY OF ILLINOIS
LIBRARIES

THE ASH ANALYSIS OF FOODS

BY ADOLPH KREIKENBAUM

THESIS

FOR THE

Degree of Bachelor of Science in Chemistry

IN THE

College of Science

University of Illinois

9

1901

UNIVERSITY OF ILLINOIS

May 31st, 1901

THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY

Adolph Kreikenbaum under Dr. Grindley
ENTITLED The ash analysis of Foods

IS APPROVED BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE

OF D.S. in Chemistry

Arthur W. Palmer
HEAD OF DEPARTMENT OF Chemistry.

The Ash Analysis of Foods.

One of the most common questions of the day is that of Pure Foods. It agitates state legislatures and busies the chemists. The wholesale adulteration of foods has led to strict laws, which are designed to protect the consumer from the deceit of unscrupulous manufacturers.

Chemical analyses are generally necessary to enforce these laws, for, without them it is difficult to distinguish the genuine from the adulterated article. Yet even there the chemical analyses often fail, because the manufactured substance may give results close to those of the genuine. The most conspicuous example of this class is maple syrup. The amount of sugar

before and after inversion -
the determination usually
made. Now an article may
be manufactured which can
contain just about the re-
quired amount of sugar
as found by the polariscope
in the genuine article and
composed of dextro rotatory
or laevo rotatory as the case
may be. Then also the
essential oil which was
isolated within the last few
years is added to give it
the much valued flavor
and the maple syrup is
ready for the market.

The various condiments
are most frequently
adulterated by worthless
additions and the unsus-
pecting consumer robbed
of his money, and some
times of his health. Vine-
gar is another substance
commonly adulterated.

In these and in others the
organic analyses have often
failed to indicate whether
the substances were genu-
ine or not. An article
in the Journal of the
American Chemical Society
entitled, "Cider Vinegar: Its
Solids and Fats," by R. E.
Doolittle and W. A. New-
ton drew my attention to a
possible indicator for a
new method. These men
had determined the min-
eral constituents of sam-
ples of pure cider vinegar,
apple pomace and spur-
ious vinegars. In these
instances some of the
mineral constituents of
the spurious substances
varied considerably from
the amount in the pure
cider vinegar.

Again a report in
the Bulletin of the Connect

out Experimentation showed that out of forty one samples of maple syrup obtained in twenty two cities, seven only deviated from the average result, while the rest were apparently alike that the genuine could not be distinguished from the adulterated, though there is reason to believe that the article is much adulterated. On passing the genuine it was unable to find any deterioration upon additional years outside of the one contained above stated. Therefore, resolved to test its value. This I did by using a genuine white vinegar and a white wine vinegar, a genuine maple syrup known to be such and

one obtained from a city grocery and labeled "milled
cayenne"; then a sample of
ground pepper and can-
naron. The latter com-
pared with unground sam-
ples of pepper and cayenne.
The unground samples
were obtained from a
whole sale house in Chicago
and were samples from
different countries. Samples
from different countries were
taken as it was thought
that the difference of the
ground in different countries
would vary the mineral
constituent.

The method of analysis
used was that described in
Bulletin 46, U. S. Department
of Agriculture, Division of
Chemistry for each anal-
ysis.

By glancing over the tabulated results of the analyses, comparisons can easily be made. Thus is white wine vinegar and also a pure cider vinegar. These results bear out the words of Woolittle and Hess. The high per cent of tannin in vinegar would indicate the use of that substance in its manufacture. As might be expected the amount of fuligineous acid is much greater in the cider vinegar than in the white wine vinegar.

Syrup is a canned article obtained from a city grocery and labeled maple syrup while syrup is a sample of maple syrup known to be genuine. There are no very marked differences here. Contrary to expectations syrup has a much higher per cent of

phosphoric acid. The chlorine also is considerably higher in syrup 6, while the flask of syrup 5 is much lighter. As only one sample of the ground sample syrup was analyzed no definite statement can be made.

Even if results were nearly alike in a number of samples of the pure syrup, the method would be too unpractical for use, for too much time is consumed obtaining the ash, as the following off the glass necessitates much watching and the burning down of the charred glass is a tedious operation.

Pepper 6 is a sample of ground pepper obtained from a blocky, pepper 8 ungrounded specimen and pepper 1 ungrounded long pepper. Most of the constituents of the ground pepper vary con-

sensibly from the amount
in the ground. The only
constituents reasonably close
are P₂O₅ and N.O. The N.O.
of the ground pepper and of
the Tellicherry agree closely,
but that of the long pepper is
far from them. The amounts
of phosphoric acid and sulphuric
acid in all three are wide apart. The
lime, magnesia and sulphuric acid
of the Tellicherry
and Singapore peppers are
very close, while that of the
ground is quite different.

It would seem that a
possible indicator may be
found in the lime, magnesia
and sulphuric acid, and a
little more work might be
done to test the matter fur-
ther. There is not the objection
to the method here so with
the syrup for the pepper is
readily burned to ash, and
will do no watching.

A glance at the analysis on columns shows plainly that the results vary too much to be of any value as indicators. The three unground samples of common sand, which at Lagoon, Belgrave and Carlton Woods respectively do not agree. They agree however places in pairs but the third again is far off. The unground common sand however shows results fully different from the others. Such that is due to the large amount of sand which was plainly used as a stabilizer and being present in the ash to the amount of thirty seven per cent as compared to one to two per cent in the unground.

Getting from the work here done and from the results obtained it would seem that the ash analysis

could not be used as an indicator between genuine and adulterated foods, as the ash content in samples of the genuine varies considerably, so that no definite amount can be set down as an indicator for the pure stuff. The only place where the method seems to work is in the case of the vinegar, where the results obtained bear out the work of Doolittle and Hess. The most that can be said of the investigation is that it shows negative results.

"Approved"

H. S. Grundley,

Associate Professor of Chemistry,

May 30th. 1901.

UNIVERSITY OF ILLINOIS-URBANA

3 0112 086855084