

Лабораторная работа №5

по дисциплине: Системы искусственного интеллекта

Вариант: <u>15</u>

Выполнил: Неграш Андрей, Р33301

Преподаватель: Кугаевских Александр Владимирович

Задание

Цель: решить задачу многоклассовой классификации, используя в качестве тренировочного набора данных - набор данных MNIST, содержащий образы рукописных цифр.

- 1. Используйте метод главных компонент для набора данных MNIST (train dataset объема 60000). Определите, какое минимальное количество главных компонент необходимо использовать, чтобы доля объясненной дисперсии превышала 0.80+номер_в_списке%10.
- 2. Построить график зависимости доли объясненной дисперсии от количества используемых ГК.
- 3. Введите количество верно классифицированных объектов класса номер_в_списке%9 для тестовых данных.
- 4. Введите вероятность отнесения 5 любых изображений из тестового набора к назначенному классу
- 5. Определите Accuracy, Precision, Recall or F1 для обученной модели
- 6. Сделайте вывод про обученную модель

Выполнение

График зависимости доли объясненной дисперсии:

Матрица ошибок (confusion matrix):

[[:	1022	0	32	11	4	92	22	13	4	6]
[1	1258	16	27	8	2	14	8	16	3]
[21	12	921	30	42	13	59	21	36	20]
[30	7	58	916	15	81	15	16	89	8]
[3	9	22	7	894	10	26	11	55	150]
[123	6	59	193	30	463	45	27	79	53]
[27	7	61	23	21	40	963	4	9	18]
[21	23	19	2	30	11	8	1046	20	50]
[21	7	71	116	6	52	11	7	836	44]
[12	29	22	41	320	62	27	114	67	498]]

```
# количество объектов класса 2 отнесенных ко 2 классу
# second 2 -> count of predicted 2s
cl = 15 \% 9
print(cl)
m confusion[cl][cl]
963
from random import sample
indexes = sample(range(len(X test)), k=5)
print(indexes)
test objects = [X test transf[i] for i in indexes]
for number, proba in zip(indexes, clf.predict proba(test objects)):
print(f"Image #{number}:class={y pred[number]},proba={round(max(proba), 4)}")
[5594, 5041, 7644, 6059, 2842]
Image #5594: class=5, proba=0.3143
Image #5041: class=9, proba=0.5371
Image #7644: class=6, proba=0.7081
Image #6059: class=9, proba=0.509
Image #2842: class=4, proba=0.3397
```

Accuracy, Precision, Recall or F1:

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

T		· · · · · · · · · · · · · · · · · · ·	-, <u>-,</u> ,,	
	precision	recall	f1-score	support
0	0.80	0.85	0.82	1206
1	0.93	0.93	0.93	1353
2	0.72	0.78	0.75	1175
3	0.67	0.74	0.70	1235
4	0.65	0.75	0.70	1187
5	0.56	0.43	0.49	1078
6	0.81	0.82	0.82	1173
7	0.83	0.85	0.84	1230
8	0.69	0.71	0.70	1171
9	0.59	0.42	0.49	1192
_		3		
accuracy			0.73	12000
macro avg	0.72	0.73	0.72	12000
weighted avg	0.73	0.73	0.73	12000

Вывод

В ходе данной лабораторной работы мне нужно было решить задачу многоклассовой классификации, используя в качестве тренировочного набора данных - набор данных MNIST, содержащий образы рукописных цифр.