Plane motion of pin connected rigid bodies

	ryws
_	<u> </u>
	γ _χ ¹ γ _y ¹ γ _χ ² γ _y ²
	$\overline{OP}_1 = \overline{P}^1$, $\overline{P_1P_2} = \overline{P}^2$
✓	Pz1 Py1
-	
at s	F_{χ^0} , F_{y^0} , F_{χ^0} , F_{y^0}
of C	x , y , Z , y
bodies	M _{1 2} M ₂
	M_1 , M_2 , I_1 , I_2

with $\{q_1\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ Initial condition $\{q_1\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_2\}$ $\{q_3\}$ $\{q_4\}$ $\{q_4\}$

Similarly it can be shown that
$$\begin{cases} \frac{\hat{k}^2}{2} \\ \frac$$

Velocity of centre of mans

$$\overline{v}^{2} = \omega_{1} \overline{k}' \times \left(P_{z}^{1} \overline{i}' + P_{y}^{1} \overline{j}' \right) \\
+ \omega_{2} \overline{k}^{2} \times \left(Y_{z}^{2} \overline{i}^{2} + Y_{y}^{2} \overline{j}^{2} \right)$$

3 pin jointed bodies

$$\begin{bmatrix}
\nu_{x}'^{0} & \nu_{y}'^{0} & \nu_{z}^{2} & \nu_{y}^{2} & \nu_{x}^{3} & \nu_{y}^{3} \\
= [S_{r}'][S_{10}] [S_{r}'][S_{10}] [S_{r}'][S_{10}]$$

$$= [O] [S_{r}'][S_{20}] [S_{r}^{2}][S_{20}]$$

$$[O] [S_{r}][S_{30}]$$

Partial velocity

٢,,	/pd] = [Twq]	[S ₁] [S ₁₀]	[50] [510]	[Sp'][S ₁₀]
L V Pd		٥	[Sr ²][S ₂₀]	$[S_p^2][S_{20}]$
	۵		[S _r ³][S ₃₀]	

3×6

Body 1

Body 2 $\frac{\partial}{\partial \dot{q}} = \frac{\partial \dot{q}}{\partial \dot{q}} = \frac{\partial \dot{q}}{\partial$

Partial angular relocity

or 2 bodies

$$\left[\begin{array}{cc} \frac{\partial \omega_1}{\partial q_2} & \frac{\partial \omega_2}{\partial q_2} \end{array}\right] = Se cond row of [Wpd]$$

For 3 bodies connected as shown

<u>_</u>	Body 1	Body 2	Body3	
- i pe			4	
Γ i.i. 1	·	· ·	·	
[Wpd] =	0	1	1	
3/1				_
7 042	0	0	1	
12 da				

Acceleration of centre of mass

- Vector cross product in matrix notation akx (rzi + ryj) $\omega \left[-\gamma_{y} \right]$ = [cz cy] 5i($\omega k \times \{\omega k \times (r_z \hat{i} + r_y \hat{j})\}$ wk x (c22 + cys) [cx y] [w] { i ω [Sr] [ω] 5² ?

acd vector of cm of body 1

$$\bar{a}' = a_{x0}\hat{i}_{0} + a_{y0}\hat{j}_{0}$$

$$= [a'_{x0} a'_{y0}] \left\{\hat{j}_{0}\right\}$$

$$= \omega_{1}\hat{k}' \times (\omega_{1}\hat{k}' \times \bar{r}') + \lambda_{1}\hat{k}' \times \bar{r}'$$

$$= \omega_{1} \left[-r_{y'} r_{x'}\right] \left\{\hat{i}_{0}\right\}$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{1} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{2} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{2} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{2} \left[-r_{y'} r_{x'}\right] \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right] + \alpha_{1} \left[\hat{i}_{0}\right] \left[\hat{i}_{0}\right]$$

$$+ \alpha_{2} \left[-r_{y'} r_{x'}\right]$$

If there are 3 connected bodies

	1 0	<u> </u>	3	
Lax	o dyo axo ayo axo ayo] =			
			1 145	<u>✓</u>
<i>ω</i> ,	ω, ω, I	[5,1][w][5,0]	[Sp] [w] [S	[Sp][w][Sn]
	- 13]	[0]	[St] [w] [5	[Sp] [St] [S10]
7 8 3	_			1 1/2 2 2 2 1
		[0]	[0]	[52][53][530]]
			3×6	
			1	1
+ L4	$\swarrow_2 \swarrow_3$	[FS_175101	[Sp] [S10]	[5,1][5,6]
_ ,	2 3 3			
1	×3	[0]	[S _r ²] [S ₂₀]	[Sp][S20]
		1	r 1	503150 1
		[0]	[0]	$\left[S_{r}^{3}\right]\left[S_{30}\right]$

3 x 6

$$V_{pd}(1,1) \left\{ F(1) + F_{in}(1) \right\} + V_{pd}(1,2) \left\{ F(2) + F_{in}(2) \right\}$$

$$+ V_{pd}(1,3) \left\{ F(3) + F_{in}(3) \right\} + V_{pd}(1,4) \left\{ F(4) + F_{in}(4,1) \right\}$$

$$+ W_{pd}(1,1) \left\{ M(1) + M_{in}(1) \right\}$$

$$+ W_{pd}(1,2) \left\{ M(2) + M_{in}(2,1) \right\} = 0 \longrightarrow E_{qn}(1)$$

$$V_{pd}(2,1) \left\{ F(1) + F_{in}(1) \right\} + V_{pd}(2,2) \left\{ F(2) + F_{in}(2,1) \right\}$$

$$+ V_{pd}(2,3) \left\{ F(3) + F_{in}(3) \right\} + V_{pd}(2,4) \left\{ F(4) + F_{in}(4,1) \right\}$$

$$+ W_{pd}(2,1) \left\{ M(1) + M_{in}(1) \right\}$$

$$+ W_{pd}(2,2) \left\{ M(2) + M_{in}(2,1) \right\} = 0 \longrightarrow F_{qn}(2)$$

Inputs	
	Egn generated
Υ_{χ^1} Υ_{y^1} Υ_{χ^2} Υ_{y^2}	59,7
	with {4,2
P21 Py1	0 1
•	5416 8 5416
F ₂ o, F _y o, F ₂ o, F _y o	39,1 2 31,1
	V2J C V2J
M_1 o M_2	Initial condition
ha 14 7 7	
M_1 , M_2 , I_1 , I_2	29,2 2 29, } at t=0
	· L

$$\begin{bmatrix} V_{pd} \end{bmatrix} \begin{pmatrix} F_{x^0} \\ F_{y^0} \end{pmatrix} + \begin{bmatrix} W_{pd} \end{bmatrix} \begin{pmatrix} M_1 \\ M_2 \end{pmatrix}$$

$$\begin{bmatrix} V_{pd} \\ F_{x^0} \\ F_{y^0} \end{pmatrix} + \begin{bmatrix} W_{pd} \end{bmatrix} \begin{pmatrix} M_{in} \\ M_2 \end{pmatrix} = \begin{cases} 0 \\ 0 \end{cases}$$

$$\begin{bmatrix} V_{pd} \\ F_{inx^0} \\ F_{inx^0} \\ F_{iny^0} \end{pmatrix}$$

$$\begin{cases} f_{ext} \\ - \begin{bmatrix} V_{pd} \end{bmatrix} \begin{bmatrix} A_1 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} + \begin{bmatrix} W_{pd} \end{bmatrix} \begin{bmatrix} A_3 \end{bmatrix}^T \end{bmatrix} \begin{pmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{cases} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} V_{pd} \end{bmatrix} \begin{bmatrix} A_2 \end{bmatrix} + \begin{bmatrix} W_{pd} \end{bmatrix} \begin{bmatrix} A_3 \end{bmatrix}^T \end{bmatrix} \begin{pmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{cases} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} W_{pd} \end{bmatrix} \begin{bmatrix} A_2 \end{bmatrix} + \begin{bmatrix} W_{pd} \end{bmatrix} \begin{bmatrix} A_3 \end{bmatrix}^T \end{bmatrix} \begin{pmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{cases} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} W_{pd} \end{bmatrix} \begin{bmatrix} A_2 \end{bmatrix} + \begin{bmatrix} W_{pd} \end{bmatrix} \begin{bmatrix} A_3 \end{bmatrix}^T \end{bmatrix} \begin{pmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{cases} 0 \\ 0 \end{bmatrix}$$

$$[M] \begin{cases} \frac{4}{1} \\ \frac{4}{2} \end{cases} = \begin{cases} f(q_1, q_2, \frac{6}{1}, \frac{6}{12}, \frac{1}{12}) \end{cases}$$

$$\{f\} = \{f_{ext}\} - [V_{pd}][A_1]^{\mathsf{T}} \{\hat{q}_1\}$$

$$[M] = \left([V_{pd}] [A_2]^T + [W_{pd}] [A_3]^T \right)$$

Ref: Farid Amirouche

Fundamentals of multibody dynamics

— Theory & applications