

Group Members

Nilay Sankhe - 24

Yash Pimple - 20

## INTRODUCTION

- The Indian Premier League (IPL) is one of the world's most-watched cricket leagues, known for its high-voltage matches and entertainment.
- With hundreds of matches played every season, analyzing IPL data can provide valuable insights regarding:
  - Top-performing teams and players.
  - Winning patterns based on toss, venue, or team performance.
  - Impact of winning toss on match outcomes.
- The aim of this project is to analyze past IPL seasons and extract meaningful insights from the data that can help understand match patterns, player performance, and team strategies.

## **OBJECTIVES OF THE PROJECT**

The main objectives of conducting this IPL Data Analysis are:

#### 1. Analyze Team Performance:

- Identify which team has been the most consistent performer in different seasons.
- Find which team performs better while batting first or chasing targets.

#### 2. Analyze Player Performance:

- Find the top run-scorers and top wicket-takers in IPL history.
- Identify the players who have won the maximum Player of the Match awards.

#### 3.Impact of Toss on Match Outcome:

- Check if winning the toss has any correlation with winning the match.
- Understand whether batting first or second has a higher chance of winning.

#### 4. Venue Analysis:

- Analyze how match outcomes vary based on different stadiums or venues.
- Identify home ground advantages for specific teams.

#### **5.Predictive Insights:**

- Generate actionable insights for future IPL matches based on historical data.
- Build a base understanding of factors influencing match outcomes.

## DATA COLLECTION

- The data was collected from publicly available sources like:
  - Kaggle Datasets.
  - Official IPL Website (iplt20.com).
  - Cricket API or Web Scraping Methods.
- The dataset primarily contained:
  - Match Details: Team names, match date, venue, winner, result, toss winner, etc.
  - Player Performance Data: Runs scored, wickets taken, strike rates, batting average, etc.
  - Venue Details: Stadium, city, toss decisions, home ground advantage.
- The data was stored in CSV (Comma Separated Values) format, which was later loaded into Python Jupyter Notebook/Colab for analysis.

## DATA CLEANING AND PREPROCESSING

The collected raw data had several inconsistencies that needed to be cleaned before analysis.

Steps Taken for Data Cleaning:

#### 1. Handling Missing Values:

- Several fields like player names, match results, or scores had missing values.
- Used Pandas to fill or drop null values.

#### 2. Removing Duplicates:

- Some matches or player data were repeated in the dataset.
- Used the drop\_duplicates() function to remove them.

#### 3. Standardizing Data:

- Some player names were spelled differently (e.g., M.S. Dhoni, MS Dhoni).
- Standardized them using string operations.

#### 4. Date-Time Conversion:

Converted match date from string to DateTime format for time-based analysis.

#### **5.Data Type Conversion:**

 Converted numerical columns like scores, wickets, and match results to integers/floats for easy analysis.

## EXPLORATORY DATA ANALYSIS (EDA)

Exploratory Data Analysis (EDA) is the process of analyzing and visualizing data to uncover key insights and patterns.

#### A. Team Performance:

- Analyzed the win percentage of teams.
- Found that Mumbai Indians (MI) and Chennai Super Kings (CSK) have the highest winning percentages.

#### B. Toss Impact:

- Analyzed if winning the toss increases the chance of winning.
- Found that teams winning the toss and opting to chase had a slightly higher winning rate.

#### C. Player Performance:

- Identified top run-scorers like Virat Kohli, Rohit Sharma and top wicket-takers like Jasprit Bumrah, Rashid Khan.
- Recognized players with the most Player of the Match awards.

#### D. Venue Analysis:

- Found that home ground advantage plays a crucial role in match outcomes.
- Teams like CSK (at Chennai) and MI (at Wankhede) had higher winning percentages.

# Thankyou Any Questions?