Graph Based Geometric Data Analysis

Xingzi Xu

Montana State University | Department of Mathematical Sciences http://www.math.montana.edu | xingzi.xu@ecat1.montana.edu

Logan, UT | 2020-10-10

1/15

Introduction

Background from Convex Geometry

$$\int \chi(A_r^N \cap B_\rho(x)) dx$$
$$S = A + P * \rho + \chi * \pi * \rho^2$$

Samples from Triangle

$$\int \chi(A_r^N \cap B_\rho(x)) dx$$
$$S = A + P * \rho + \chi * \pi * \rho^2$$

$$S = A + P * \rho + \chi * \pi * \rho^2$$

Curse of Intersections

$$\int \chi(A_r^N \cap B_\rho(x)) dx = \sum \int \chi(B_r(x_i) \cap B_\rho(x)) dx -$$

$$\sum \sum \int \chi(B_r(x_i) \cap B_r(x_j) \cap B_\rho(x)) dx + \dots - \dots$$

Acceleration Process

- Classify intersections with inductive method
- Calculate each type of intersections with artificial neural network instead of pixel counting
- Add or Subtract to get total intersection

Background for Inductive Method

- Simplex
- Simplicial Complex

Inductive Method

• 0-simplex: Point Cloud

• 1-simplex: Neighborhood

• 2-simplex: Add all common neighbors of 1-simplex

• k+1-simplex: Add all common neighbors of k-simplex

Artificial Neural Network

ANN: Build models with multiple coefficients efficiently

Sanity Check from 1-simplicial complex

$$S = r^2 * sin^{-1} \left(\frac{\sqrt{r^2 - \frac{d^2}{4}}}{r} \right) - d * \sqrt{r^2 - \frac{d^2}{4}}$$

Example Training Process for 2-simplex

- Input:
- ullet d₁ between point 1 and point 2, scaled by radius of virtual ball
- \bullet d_2 between point 2 and point 3, scaled by radius of virtual ball
- d_3 between point 3 and point 1, scaled by radius of virtual ball
- Inflation width ϵ , scaled by radius of virtual ball
- Output:
- Intersection area of 2-simplex

Logan, UT | 2020-10-10

Complete Algorithm

Preliminary Results

Figure: (a) Binary shapes (left) and sampling (right). (b) Volume with multiplicity, from 20 repeated shape-samplings, 625 points each, with fixed r=3 and $\rho=1\dots 20$. (c) Recovered coefficients of 20 replicates per shape (boxplots); composite estimate (green asterisk), and approximate ground truth (black circle). Coefficients a_2 , a_1 , and a_0 capture shape-specific Euler–Poincaré characteristic, perimeter, and area, resp.

Potential applications

Algorithm has applications on pattern recognition.

Figure: Geometric data analysis is performed on three types of gestures. Red corresponds to the ok gesture, black corresponds to the palm gesture, and cyan corresponds to the thumb gesture.

Acknowledgements

Thank you!

Support from:

- Undergraduate Scholars Program
- Simons Foundation Collaboration for Mathematicians # 586942