CLAIM AMENDMENTS

```
    (currently amended) A diode-pumped laser apparatus

1
     for generating a visible power beam, of the type the laser
2
     apparatus comprising:
3
               a linear miniaturized laser cavity [[(72) 5]] having
     crystals and a length that does not exceed the sum of ten times the
5
     sum of the lengths of the crystals; comprising at least the
6
     following optical elements (30,33,36,10,20): -
7
               reflecting means a plurality of reflectors [[(30;33;36)]]
8
     that are highly reflective at a fundamental wavelength of a laser
9
     beam [[(52)]] generated by said cavities the laser cavity [[(72)]],
10
     at least one of said reflecting means reflectors [[(30)]] being
11
     traversed by a pumping beam, (54), at least one of said reflecting
12
     means (36) being and reflecting at said fundamental wavelength and
13
     a second harmonic wavelength [[(51)]] with respect to said
14
     fundamental wavelength, and at least one of said reflecting means
15
     (33) being highly transmissive at said second harmonic [[(51)]] of
16
     said fundamental wavelength; [[-]]
17
                an active material [[(10)]] with linear polarized
18
     emission and with a gain configuration with small thermal
19
     aberration for [[the]] cavity mode, said active material [[(10)]]
20
     being able to generate said laser beam [[(52)]] at [[a]] the
21
     fundamental wavelength; [[-]]
22
```

a nonlinear crystal [[(20),]] inside said cavity (72);

- characterized in that: said nonlinear crystal (20) is and able to
 generate a second harmonic [[(51)]] of said fundamental wavelength
 by critical type I phase matching; and and that said cavity (72) is
 associated to
- thermostating means <u>associated with the cavity</u>

 (45;41;42,43;44) for temperature locking said cavity, the

 reflectors, the active material, and the nonlinear crystal (72) and

 its optical elements (30,33,36,10,20).
- 2. (currently amended) The [[an]] apparatus as claimed in claim 1, characterized in that wherein said cavity [[(72)]] and the optical means (30,33,36,10,20) which elements it comprises are selected provided to minimis minimize optical losses.
- 3. (currently amended) [[An]] The apparatus as claimed in claim 1, characterized in that said wherein optical losses at said fundamental wavelength are less than 2%.
- 4. (currently amended) The [[An]] apparatus as claimed in claim 1, characterized in that said wherein optical losses at said fundamental wavelength due to thermal aberration are less than 1%.

- 5. (currently amended) The [[An]] apparatus as claimed in claim 1, characterized in that wherein the active material [[(10)]] is a crystal of Nd:GdVO₄.
- 6. (currently amended) The [[An]] apparatus as claimed in claim 1, characterized in that wherein the active material [[(10)]] is a crystal of Nd:YLF.
- 7. (currently amended) <u>The [[An]]</u> apparatus as claimed in claim 1, characterized in that wherein the active material [[(10)]] is a crystal of Nd:YVO₄.
- 8. (currently amended) <u>The [[An]]</u> apparatus as claimed in claim 5, characterized in that wherein the nonlinear crystal is LBO.
- 9. (currently amended) The [[An]] apparatus as claimed in claim 5, characterized in that wherein the nonlinear crystal is YCOB or GdCOB.
- 10. (currently amended) The [[An]] apparatus as claimed
 2 in claim 1, characterized in that wherein said visible beam (51) is
 3 a beam is at the limit of diffraction [[,]] or TEM_{0,0}.

2

3

4

5

- 11. (currently amended) The [[An]] apparatus as claimed
 2 in claim 1, characterized in that wherein the pumping beam [[(54)]]
 3 is absorbed in two successive passes through the active material
 4 [[(10)]].
- 1 12. (currently amended) The apparatus as claimed in claim 1, characterized in that wherein said thermostating means (45;41;42,43;44) for temperature locking said cavity, the reflector, the active material, and the nonlinear crystal (72) and its optical elements comprise a mechanical structure (45;41;42,43;44) associated [[to]] with said cavity [[(72)]].
- 13. (currently amended) The apparatus as claimed in
 2 claim 12, characterized in that wherein said mechanical structure
 3 comprise a structural base [[(45)]], and elements for supporting
 4 the optics (41;42,43;44).
 - 14. (currently amended) <u>The</u> apparatus as claimed in claim 12 , characterized in that wherein said structural base [[(45)]] and elements supporting the optics (41;42,43;44) are made of copper or other heat conducting material and associated <u>are</u> in thermal contact with each other.

2

3

4

5

- 15. (currently amended) <u>The [[An]]</u> apparatus as claimed in claim 12, characterized in that wherein the temperature of the structural base [[(45)]] is regulated by means of an active system.
- 16. (currently amended) The [[An]] apparatus as claimed
 2 in claim 12 wherein characterized %: in that said mechanical
 3 structure (45;41;42,43;44) has the shape of a container, containing
 4 said cavity [[(72)]] in sealed way.
- 1 17. (currently amended) The apparatus as claimed in
 2 claim 1, characterized in that wherein said thermostating means
 3 (45;41;42,43;44) comprise an additional autonomous heat-regulating
 4 device to stabilize the temperature of the nonlinear crystal
 5 [[(20)]] in autonomous and more precise way than the other elements
 6 of the cavity.
 - 18. (currently amended) The apparatus as claimed in claim 1, characterized in that wherein the reflecting means reflectors (30;33;36) are at least in part obtained by means of formed by reflecting depositions on the laser crystal [[(10)]] [[and/]] or on the nonlinear crystal [[(20)]].

2

3

4

5

- 19. (currently amended) A method for generating a 1 visible laser beam in a laser cavity [[(72)]] of the type whereby a 2 nonlinear crystal [[(20)]] is inserted into said laser cavity 3 [[(72)]] to obtain said visible laser beam [[(51)]] through a second harmonic generation operation, characterized in that it 5 comprises the following operations the method comprising the steps 6 of: [[-]] 7 selecting a nonlinear crystal [[(20)]] cut for critical 8 type I phase matching; [[-]] 9 aligning said nonlinear crystal [[(20)]] at a temperature 10 predetermined by [[the]] a thermostating means [[(45)]] associated 11 [[to]] with said cavity [[(72)]] obtaining the phase matching 12 condition; [[-]] 13 optimizing the conversion into second harmonic with 14 additional small temperature adjustments around the predetermined 15 value. 16
 - 20. (currently amended) The method as claimed in claim 19, characterized in that wherein the temperature regulation operation occurs in negative feedback, detecting [[the]] an actual-value signal of a sensor positioned in proximity to the nonlinear crystal.

- 21. (currently amended) The [[A]] method as claimed in claim 19, characterized in that it further comprises the operations further comprising the steps of: [[-]]

 reducing [[the]] walk-off of the fundamental laser beam [[(52)]] operating on the dimension of the cavity mode inside the nonlinear crystal [[(20)]], in order to contain [[the]] a walk-off angle inside the divergence of the beam; [[-]]

 selecting the length of the nonlinear crystal as a function of the desired focusing.
- 22. (new) The apparatus according to claim 1 wherein the active material is arranged to keep the aberration losses at less than 2%.