

소 순차 자료구조와 선형 리스트

❖ 순차 자료구조의 개념

- 구현할 자료들을 논리적 순서로 메모리에 연속 저장하는 구현 방식
- 논리적인 순서와 물리적인 순서가 항상 일치해야 함
- C 프로그래밍에서 순차 자료구조의 구현 방식 제공하는 프로그램 기 법은 배열

표 3-1 순차 자료구조와 연결 자료구조의 비교

구분	순차자료구조	연결 자료구조
메모리 저장 방식	메모리의 저장 시작 위치부터 빈자리 없이 자료를 순서 대로 연속하여 저장한다. 논리적인 순서와 물리적인 순서 가 일치하는 구현 방식이다.	메모리에 저장된 물리적 위치나 물리적 순서와 상관없이, 링크에 의해 논리적인 순서를 표현하는 구현 방식이다.
연산 특징	삽입·삭제 연산을 해도 빈지리 없이 자료가 순서대로 연속하여 저장된다. 변경된 논리적인 순서와 저장된 물리적인 순서가 일치한다.	삽입·삭제 연산을 하여 논리적인 순서가 변경되어도, 링크 정보만 변경되고 물리적 순서는 변경되지 않는다.
프로그램 기법	배열을 이용한 구현	포인터를 이용한 구현

❖ 선형 리스트의 표현

■ 리스트 : 자료를 구조화하는 가장 기본적인 방법은 나열하는 것

표 3-2 리스트 예

동창 이름	좋아하는 음식	오늘 할 일
상원	김치찌개	운동
상범	닭 볶음 탕	자료구조 스터디
수영	된장찌개	과제 제출
현정	잡채	동아리 공연 연습

❖ 선형 리스트Linear List

- 순서 리스트^{Ordered List}
- 자료들 간에 순서를 갖는 리스트

표 3-3 선형 리스트 예

동창 이름		좋(좋아하는 음식		오늘 할 일		
1	상원	1	김치찌개		1	운동	
2	상범	2	닭 볶음 탕		2	자료구조 스터디	
3	수영	3	된장찌개		3	과제 제출	
4	현정	4	잡채		4	동아리 공연 연습	

- 리스트의 표현 형식

리스트 이름 = (원소 1, 원소 2, …, 원소 n)

동창 = (상원, 상범, 수영, 현정)

(a) 리스트 표현 형식

그림 3-1 리스트 표현 형식과 예

(b) 리스트 표현 예

공백 리스트 이름 = ()

그림 3-2 공백 리스트 형식

❖ 선형 리스트의 저장

- 순차 방식으로 구현하는 선형 순차 리스트(선형 리스트)
 - 순차 자료구조는 원소를 논리적인 순서대로 메모리에 연속하여 저장
- 연결 방식으로 구현하는 선형 연결 리스트(연결 리스트)

그림 3-3 선형 리스트의 메모리 저장 구조 예

그림 3-4 선형 리스트에서 원소의 위치

❖ 선형 리스트에서 원소 삽입

선형리스트 중간에 원소가 삽입되면, 그 이후의 원소들은 한 자리씩
 자리를 뒤로 이동하여 물리적 순서를 논리적 순서와 일치시킴

그림 3-5 새치기 전과 후의 위치와 순서 변화

- 원소 삽입 방법
 - ① 원소를 삽입할 <u>빈 자리 만들기</u>
 - ☞ 삽입할 자리 이후의 원소들을 <u>한 자리씩 뒤로 자리 이동</u>
 - ② 준비한 빈 자리에 원소 삽입하기

원소 30 삽입

(b) 원소 삽입 후

그림 3-6 선형 리스트에서의 원소 삽입

- 삽입할 자리를 만들기 위한 자리 이동 횟수
 - (n+1)개의 원소로 이루어진 선형 리스트에서 k번 자리에 원소를 삽입하는 경우 : k번 원소부터 마지막 인덱스 n번 원소까지 (n-k+1)개의 원소를 이동
 - 이동횟수 = n-k+1 = 마지막 원소의 인덱스 삽입할 자리의 인덱스 +1

❖ 선형 리스트에서 원소 삭제

선형리스트 중간에서 원소가 삭제되면, 그 이후의 원소들은 한 자리
 씩 자리를 앞으로 이동하여 물리적 순서를 논리적 순서와 일치시킴

(a) 줄에서 나가기 전

그림 3-7 줄에서 사람이 나간 후의 위치와 순서 변화

(b) 줄에서 나간 후

- 원소 삭제 방법
 - ① 원소 <u>삭제하기</u>
 - ② 삭제한 <u>빈 자리 채우기</u>
 - ☞ 삭제한 자리 이후의 원소들을 <u>한자리씩 앞으로 자리 이동</u>

(b) 원소 삭제 후

그림 3-8 선형 리스트에서의 원소 삭제

- 삭제 후, 빈 자리를 채우기 위한 자리이동 횟수
 - (n+1)개의 원소로 이루어진 선형 리스트에서 k번 자리의 원소를 삭제한 경우 : (k+1)번 원소부터 마지막 n번 원소까지 (n-(k+1)+1)개의 원소를 이동
 - 이동횟수 = n-(k+1)+1 = n-k = 마지막 원소의 인덱스-삭제한 자리의 인덱스

2. 선형 리스트의 구현

❖ 선형 리스트의 구현

- 순차 구조의 배열을 사용
 - 배열 : <인덱스, 원소>의 순서쌍의 집합
 - 배열의 인덱스 : 배열 원소의 순서 표현

2. 선형 리스트의 구현

❖ 1차원 배열을 이용한 선형 리스트 구현

표 3-4 분기별 노트북 판매량 리스트

분기	1/4 분기	2/4 분기	3/4 분기	4/4 분기	
판매량	157	209	251	312	

■ 1차원 배열을 이용한 구현

(a) 분기별 판매량 선형 리스트의 1차원 배열 선언

	[0]	[1]	[2]	[3]
sale	157	209	251	312

(b) 분기별 판매량 선형 리스트의 논리적 구조

그림 3-9 분기별 판매량 선형 리스트 예

(c) 분기별 판매량 선형 리스트의 물리적 구조

3. 선형 리스트의 응용 및 구현

❖ 다항식의 선형 리스트 표현

- 다항식의 개념
 - aX^e 형식의 항들의 합으로 구성된 식
 - a: 계수(coefficient)
 - X : 변수(variable)
 - e: 지수(exponent)
- 다항식의 특징
 - 지수에 따라 내림차순으로 항을 나열
 - 다항식의 차수 : 가장 큰 지수
 - 다항식 항의 최대 개수 = (차수 +1)개

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x^1 + a_0 x^0$$

그림 3-14 n차 다항식 P(x)

3. 다항식의 순차 자료구조 구현

그림 3-15 n차 다항식 P(x)의 순차 자료구조 표현과 예

	[0]	[1]	[2]	[3]	 [997]	[998]	[999]	[1000]
В	3	0	0	0	 0	0	1	4

(a) 1차원 배열을 이용한 순차 자료구조

차수가 1000이므로 크기가 1001인 배열을 사용하는데, 항이 3개 뿐이므로 배열의 원소 중에서 3개만 사용

☞ 998개의 배열 원소에 대한 메모리 공간 낭비

(b) 2차원 배열을 이용한 순차 자료구조

그림 3-16 희소 다항식의 순차 자료구조 표현 예 2:B(x) = 3x¹⁰⁰⁰ + x + 4

3. 다항식의 순차 자료구조 구현

■ 다항식의 덧셈 연산

$$A(x) = 4x^{3} + 3x^{2} + 5x$$

$$B(x) = 3x^{4} + x^{3} + 2x + 1$$

$$C(x) = 3x^{4} + (4+1)x^{3} + 3x^{2} + (5+2)x + 1$$

$$= 3x^{4} + 5x^{3} + 3x^{2} + 7x + 1$$

그림 3-17 다항식의 덧셈 addPoly()

Thank You

