NMOS Characterization: Threshold Voltage, Transconductance, and Output Resistance

Jatin Kumar, Dept. of Electrical Engineering, IIT-Bombay

Introduction

This experiment aims to estimate the threshold voltage (V_T) , transconductance (g_m) , and output resistance (r_o) of an NMOS transistor by analyzing its I-V characteristics in the linear and saturation regions. Additionally, the body effect is studied by varying the substrate bias V_{SB} .

1 Part I: Transfer Characteristics in the Linear Region

Objective

Estimate the threshold voltage (V_T) and transconductance (g_m) in the linear region by plotting I_D vs V_{GS} with $V_{DS}=200\,\mathrm{mV}$.

Procedure and Data

The gate-source voltage V_{GS} was varied from 0 to 3 V while keeping V_{DS} = 200 mV. The resulting drain current I_D is recorded as follows:

Table 1: Measured I_D vs V_{GS} for $V_{DS}=200\,\mathrm{mV}$

V_{GS} (V)	$I_D (\mu A)$
0.5	0
0.7	0
0.9	0.5
1.1	5
1.3	20
1.5	40
1.7	60
1.9	80
2.1	100
2.3	120
2.5	140
2.7	160
2.9	180
3.0	190

Calculation of Threshold Voltage (V_T)

Using the linear portion of the plot, we select two points: $(V_{GS1}=1.1\,\mathrm{V},I_{D1}=5\,\mu A)$ and $(V_{GS2}=2.3\,\mathrm{V},I_{D2}=120\,\mu A)$. The slope m is calculated as:

$$m = \frac{I_{D2} - I_{D1}}{V_{GS2} - V_{GS1}} = \frac{120 - 5}{2.3 - 1.1} = 95 \,\mu A/V$$

The threshold voltage V_T is found by extrapolating the linear region:

$$V_T = V_{GS1} - \frac{I_{D1}}{m} = 1.1 - \frac{5}{95} \approx 1.05 \text{ V}$$

Calculation of Transconductance (g_m)

The transconductance g_m is given by the slope of the I_D vs V_{GS} curve:

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = m = 95 \,\mu A/V$$

Results for Linear Region

• Transconductance g_m : $95 \,\mu A/V$

2 Part II: Transfer Characteristics in the Saturation Region

Objective

Estimate the threshold voltage (V_T) and transconductance (g_m) in the saturation region by plotting I_D vs V_{GS} with $V_{DS} = 3$ V.

Procedure and Data

The gate-source voltage V_{GS} was varied from 0 to 3 V while keeping $V_{DS}=3$ V. The resulting drain current I_D is shown below:

Table 2: Measured I_D vs V_{GS} for $V_{DS} = 3$ V

$\overline{V_{GS}}$ (V)	$I_D (\mu A)$
0.5	0
0.7	0
0.9	1
1.1	10
1.3	40
1.5	100
1.7	200
1.9	300
2.1	400
2.3	500
2.5	600
2.7	700
2.9	800
3.0	850

Calculation of Threshold Voltage (V_T)

Using points from the linear region of the square root of the data:

$$m' = \frac{\sqrt{I_{D2}} - \sqrt{I_{D1}}}{V_{GS2} - V_{GS1}} = \frac{\sqrt{500} - \sqrt{10}}{2.3 - 1.1} \approx 16 \,\mu A^{0.5} / V$$

The threshold voltage is:

$$V_T = V_{GS1} - \frac{\sqrt{I_{D1}}}{m'} = 1.1 - \frac{3.16}{16} \approx 0.90 \,\text{V}$$

Calculation of Transconductance (g_m)

In saturation, transconductance g_m is calculated as:

$$g_m = \frac{2I_D}{V_{GS} - V_T}$$

For $V_{GS} = 1.9 \,\text{V}, I_D = 300 \,\mu A$:

$$g_m = \frac{600}{1.0} = 600 \,\mu A/V$$

Results for Saturation Region

• Threshold Voltage V_T : 0.9 V

• Transconductance g_m : $600 \,\mu A/V$

3 Part III: Drain Characteristics

Objective

Plot I_D vs V_{DS} for $V_{GS} = 1.5, 2.5, 3.5 \,\mathrm{V}$ and determine the output resistance r_o .

Procedure and Data

The drain-source voltage V_{DS} was varied from 0 to 5 V for three different gate-source voltages $V_{GS} = 1.5, 2.5, 3.5$ V.

Results

The output resistance r_o is calculated for $V_{GS}=3.5\,\mathrm{V}$ in the saturation region:

$$r_o = \frac{1}{\frac{1220 - 1150}{5 - 3.5}} = \frac{1}{46.67} \approx 21.4 \, k\Omega$$

4 Part IV: Body Effect

Objective

Study the body effect by measuring the threshold voltage for different substrate biases V_{SB} .

Results

The body effect coefficient γ is calculated using:

$$V_T = V_{T0} + \gamma \sqrt{V_{SB}}$$

For $V_T=1.3\,\mathrm{V}$ and $V_{SB}=3\,\mathrm{V},$ with $V_{T0}=1\,\mathrm{V}:$

$$\gamma = \frac{1.3 - 1}{\sqrt{3}} \approx 0.173 \, V^{0.5}$$

Summary of Results

- Threshold Voltage (V_T) :
 - Linear Region: 1.05 V
 - Saturation Region: 0.9 V
- Transconductance (g_m) :
 - Linear Region: $95 \,\mu A/V$
 - Saturation Region: $600 \,\mu A/V$
- Output Resistance r_o : $21.4 k\Omega$
- Body Effect Coefficient γ : 0.173 $V^{0.5}$