CS315: DATABASE SYSTEMS NORMALIZATION THEORY

Arnab Bhattacharya

arnabb@cse.iitk.ac.in

Computer Science and Engineering, Indian Institute of Technology, Kanpur http://web.cse.iitk.ac.in/~cs315/

2nd semester, 2018-19 Mon 12:00-13:15, Tue 9:00-10:15

• Central question: how to design a "good" database?

- Central question: how to design a "good" database?
- Two ways of answering it: informally and formally

- Central question: how to design a "good" database?
- Two ways of answering it: informally and formally
- Informal
 - Schemas should represent distinct entities
 - Little or no redundancy in storage
 - No modification anomaly
 - Less number of or no null values
 - No spurious tuple

- Central question: how to design a "good" database?
- Two ways of answering it: informally and formally
- Informal
 - Schemas should represent distinct entities
 - Little or no redundancy in storage
 - No modification anomaly
 - Less number of or no null values
 - No spurious tuple
- Normalization theory answers in the formal manner

• Consider the following schema: (roll, name, courseid, title)

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students
- Insert anomaly
 - Admitting a student immediately requires a course and vice versa

- Consider the following schema: (roll, name, courseid, title)
- Update anomaly
 - Changing title of a course causes updates to many students
- Insert anomaly
 - Admitting a student immediately requires a course and vice versa
- Delete anomaly
 - Deleting a course may delete all the corresponding students

Lossless Decomposition

- Must preserve losslessness of the corresponding join
- Lossy decomposition

y aec	omposi	lion			
•		roll	name	batch	
Suppose		1	AB	2011	is decomposed into
		2	AB	2012	is decomposed into
		3	CD	2014	
roll	name		name	batch	
1	AB	_	AB	2011	- whose isin produces
2	AB	and	AB	2012	whose join produces
3	CD		CD	2014	

Lossless Decomposition

- Must preserve losslessness of the corresponding join
- Lossy decomposition

sy de	comp	os	ition			
				name	batch	
Suppose		1	AB	2011	io decomposed into	
		2	AB	2012	is decomposed into	
			3	CD	2014	
rol	roll name		·	name	batch	
1	1 AB 2 AB		AB	2011	— 	
2		and	AB	2012	whose join produces	
3		CD		CD	2014	
	rol	r	name	batch		
	1		AB	2011	_	
	1		AB	2012	with two spurious tuples	vo anurious tuntos
2 2			AB	2011	WILLI LW	o spurious tupies
			AB	2012		
	3		CD	2014		

Lossless Decomposition

- Must preserve losslessness of the corresponding join
- Lossy decomposition

sy aec	ompo	sition				
		roll	name	batch		
Suppose		1	AB	2011	io docomposed into	
		e 2	AB	2012	is decomposed into	
		3	CD	2014		
roll	nan	ne	name	batch		
1 2 3	AE	3	AB	2011	— 	
	AE	and	AB	2012	whose join produces	
	C)	CD	2014		
	roll	name	batch	_		
	1	AB	2011			
	1	AB	2012	savith tsa	vo anurious tuntos	
	2	AB	2011	with two spurious tuples		
	2	AB	2012			
	3	CD	2014			
+		f atia.				

Try to preserve functional dependencies

Functional Dependencies

- Functional dependencies (FDs) are constraints derived from the meaning of and relationships among attributes
- A set of attributes X functionally determines Y, denoted by $X \to Y$, if the value of X determines a *unique* value of Y
 - roll → name
- For any two tuples t_1 and t_2 in any *legal* instance of r(R), if $t_1.X = t_2.X$ then $t_1.Y = t_2.Y$
- A FD $X \to Y$ is trivial if it is satisfied for all instances of a relation
 - Y ⊂ X

Functional Dependencies

- Functional dependencies (FDs) are constraints derived from the meaning of and relationships among attributes
- A set of attributes X functionally determines Y, denoted by X → Y, if the value of X determines a unique value of Y
 roll → name
- For any two tuples t_1 and t_2 in any *legal* instance of r(R), if $t_1.X = t_2.X$ then $t_1.Y = t_2.Y$
- A FD X → Y is trivial if it is satisfied for all instances of a relation
 Y ⊂ X
- A candidate key functionally determines all attributes

Functional Dependencies

- Functional dependencies (FDs) are constraints derived from the meaning of and relationships among attributes
- A set of attributes X functionally determines Y, denoted by X → Y, if the value of X determines a unique value of Y
 roll → name
- For any two tuples t_1 and t_2 in any *legal* instance of r(R), if $t_1.X = t_2.X$ then $t_1.Y = t_2.Y$
- A FD X → Y is trivial if it is satisfied for all instances of a relation
 Y ⊆ X
- A candidate key functionally determines all attributes
- Functional dependencies and keys define normal forms for relations
- Normal forms are formal measures of how "good" a database design is

Armstrong's Axioms

- Given a set of FDs, additional FDs can be inferred using Armstrong's inference rules or Armstrong's axioms
 - **1** Reflexive: If $Y \subseteq X$, then $X \to Y$
 - 2 Augmentation: If $X \to Y$, then $X, Z \to Y, Z$
 - **3** Transitive: If $X \to Y$ and $Y \to Z$, then $X \to Z$

Armstrong's Axioms

- Given a set of FDs, additional FDs can be inferred using Armstrong's inference rules or Armstrong's axioms
 - **1** Reflexive: If $Y \subseteq X$, then $X \to Y$
 - 2 Augmentation: If $X \to Y$, then $X, Z \to Y, Z$
 - **1** Transitive: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These rules are
 - Sound: Any other rule derived from these holds
 - Complete: Any rule which holds can be derived from these

Armstrong's Axioms

- Given a set of FDs, additional FDs can be inferred using Armstrong's inference rules or Armstrong's axioms
 - **1** Reflexive: If $Y \subseteq X$, then $X \to Y$
 - 2 Augmentation: If $X \to Y$, then $X, Z \to Y, Z$
 - **1** Transitive: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- These rules are
 - Sound: Any other rule derived from these holds
 - Complete: Any rule which holds can be derived from these
- Other inferred rules
 - **1** Decomposition: If $X \to Y, Z$, then $X \to Y$ and $X \to Z$
 - **1** Union: If $X \to Y$ and $X \to Z$, then $X \to Y, Z$
 - **1** Pseudotransitivity: If $X \to Y$ and $W, Y \to Z$, then $W, X \to Z$

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺
- F covers G if every FD in G can be inferred from F
- F covers G if $G^+ \subseteq F^+$

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺
- F covers G if every FD in G can be inferred from F
- F covers G if $G^+ \subseteq F^+$
- Two sets of FDs F and G are equivalent if every FD in F can be inferred from G and vice versa
- F and G are equivalent if $F^+ = G^+$
- F and G are equivalent if F covers G and G covers F

- Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X using F⁺
- F covers G if every FD in G can be inferred from F
- F covers G if $G^+ \subseteq F^+$
- Two sets of FDs F and G are equivalent if every FD in F can be inferred from G and vice versa
- F and G are equivalent if $F^+ = G^+$
- F and G are equivalent if F covers G and G covers F
- A set of FDs is minimal if
 - Every FD in F has only a single attribute in RHS
 - Any $G \subset F$ is not equivalent to F
 - Any $F (X \rightarrow A) \cup (Y \rightarrow A)$ where $Y \subset X$ is not equivalent to F
- Every set of FD has at least one equivalent minimal set

Normal Forms

- The process of decomposing relations into smaller relations that conform to certain norms is called normalization
- Keys and FDs of a relation determine which normal form a relation is in
- Different normal forms
 - 1NF: based on attributes only
 - 2NF, 3NF, BCNF: based on keys and FDs
 - 4NF: based on keys and multi-valued dependencies (MVDs)
 - 5NF or PJNF: based on keys and join dependencies
 - DKNF: based on all constraints

- A relation is in 1NF if
 - Every attribute must be atomic

- A relation is in 1NF if
 - Every attribute must be atomic
- Phone numbers are not atomic

- A relation is in 1NF if
 - Every attribute must be atomic
- Phone numbers are not atomic
- Values like "CS315" may not be considered atomic

- A relation is in 1NF if
 - Every attribute must be atomic
- Phone numbers are not atomic
- Values like "CS315" may not be considered atomic

ld	Name	Phones	-
1	Α	{3, 4}	should be
2	В	{5 }	_

- A relation is in 1NF if
 - Every attribute must be atomic
- Phone numbers are not atomic
- Values like "CS315" may not be considered atomic

Id	Name	Phones	-
1	Α	{3, 4}	should be
_2	В	{5}	_
		(-)	-

-	<u>ld</u>	Name	Phone
	1	Α	3
	1	Α	4
	2	В	5

Nested Relations

Nested relations should be decomposed

-			Cours	е	-
	Roll	Name	Courseld	Title	-
	1	Α	1	30	should be broken into
	1	Α	2	20	Should be broken into
	2	В	2	25	
	2	В	3	10	

Nested Relations

Nested relations should be decomposed

		Cours	se	_	•	
Roll	Name	Courseld	Title	_		
1	Α	1 30		should be broken into		
1	Α	2	20	SHOULD DE	broken into	
2	В	2	25			
2	В	3	10			
		_	Roll	Courseld	Titlo	

			Roll	Courseld	Title
Roll	Name		1	1	30
1	Α	and	1	2	20
2	В		2	2	25
		_	2	3	10

Prime Attribute, Full and Transitive FD

- A prime attribute must be a member of some candidate key
 - Example: roll
- A non-prime attribute is not a member of any candidate key
 - Example: gender

Prime Attribute, Full and Transitive FD

- A prime attribute must be a member of some candidate key
 - Example: roll
- A non-prime attribute is not a member of any candidate key
 - Example: gender
- A FD X → Y is a full functional dependency if the FD does not hold when any attribute from X is removed
 - Example: (roll, courseid) → (grade)
- It is a partial functional dependency otherwise
 - (roll, gender) → (name)

Prime Attribute, Full and Transitive FD

- A prime attribute must be a member of some candidate key
 - Example: roll
- A non-prime attribute is not a member of any candidate key
 - Example: gender
- A FD X → Y is a full functional dependency if the FD does not hold when any attribute from X is removed
 - Example: (roll, courseid) → (grade)
- It is a partial functional dependency otherwise
 - (roll, gender) → (name)
- A FD X → Y is a transitive functional dependency if it can be derived from two FDs X → Z and Z → Y
 - Example: (roll) → (title) since (roll) → (courseid) and (courseid) → (title) hold
- It is non-transitive otherwise
 - Example: (roll) → (name)

Second Normal Form (2NF)

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key

Second Normal Form (2NF)

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key
- Consider (<u>Id</u>, <u>ProjId</u>, Hrs, Name, ProjName) with FDs: (Id, ProjId) → (<u>Hrs</u>); (Id) → (Name); (ProjId) → (ProjName)

Second Normal Form (2NF)

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key
- Consider (<u>Id</u>, Projld, Hrs, Name, ProjName) with FDs: (Id, Projld) → (Hrs); (Id) → (Name); (Projld) → (ProjName)
- It is not in 2NF since (Name) depends partially on (Id, Projld)
- After 2NF normalization,

Second Normal Form (2NF)

- A relation is in 2NF if
 - Every non-prime attribute is fully functionally dependent on every candidate key
- Alternatively, every attribute should either be
 - In a candidate key or
 - Depend fully on every candidate key
- Consider (<u>Id</u>, Projld, Hrs, Name, ProjName) with FDs: (Id, Projld) → (Hrs); (Id) → (Name); (Projld) → (ProjName)
- It is not in 2NF since (Name) depends partially on (Id, ProjId)
- After 2NF normalization,
 - (Id, Projld, Hrs) with FD: (Id, Projld) → (Hrs)
 - (Id, Name) with FD: (Id) → (Name)
 - (Projld, ProjName) with FD: (Projld) → (ProjName)

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y − X is prime
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y X is prime
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Consider (<u>Id</u>, Name, ProjId, ProjName) with FDs: (Id) → (Name, ProjId); (ProjId) → (ProjName)

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y − X is prime
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Consider (<u>Id</u>, Name, ProjId, ProjName) with FDs: (Id) → (Name, ProjId); (ProjId) → (ProjName)
- It is not in 3NF since (ProjName) depends transitively on (Id) through (ProjId)
- After 3NF normalization,

- A relation is in 3NF if
 - It is in 2NF, and
 - No non-prime attribute is transitively functionally dependent on the candidate keys
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey, or
 - Every attribute in Y − X is prime
- Alternatively, every non-prime attribute should be
 - Fully functionally dependent on every key, and
 - Non-transitively dependent on every key
- Consider (<u>Id</u>, Name, ProjId, ProjName) with FDs:
 (Id) → (Name, ProjId); (ProjId) → (ProjName)
- It is not in 3NF since (ProjName) depends transitively on (Id) through (ProjId)
- After 3NF normalization,
 - (\underline{Id} , Name, ProjId) with FD: (\underline{Id}) \rightarrow (Name, ProjId)
 - (ProjId, ProjName) with FD: (ProjId) → (ProjName)

- Informally
 - 1NF: All attributes depend on the key

- Informally
 - 1NF: All attributes depend on the key
 - 2NF: All attributes depend on the whole key

- Informally
 - 1NF: All attributes depend on the key
 - 2NF: All attributes depend on the whole key
 - 3NF: All attributes depend on nothing but the key

- Informally
 - 1NF: All attributes depend on the key
 - 2NF: All attributes depend on the whole key
 - 3NF: All attributes depend on nothing but the key
- Tests
 - 1NF: The relation should have no multivalued attributes or nested relations

- Informally
 - 1NF: All attributes depend on the key
 - 2NF: All attributes depend on the whole key
 - 3NF: All attributes depend on nothing but the key
- Tests
 - 1NF: The relation should have no multivalued attributes or nested relations
 - 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key

- Informally
 - 1NF: All attributes depend on the key
 - 2NF: All attributes depend on the whole key
 - 3NF: All attributes depend on nothing but the key
- Tests
 - 1NF: The relation should have no multivalued attributes or nested relations
 - 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key
 - 3NF: The relation should not have a nonkey attribute functionally determined by a set of nonkey attributes

- Informally
 - 1NF: All attributes depend on the key
 - 2NF: All attributes depend on the whole key
 - 3NF: All attributes depend on nothing but the key
- Tests
 - 1NF: The relation should have no multivalued attributes or nested relations
 - 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key
 - 3NF: The relation should not have a nonkey attribute functionally determined by a set of nonkey attributes
- Remedies
 - 1NF: Form new relations for each multi-valued attribute or nested relation

Informally

- 1NF: All attributes depend on the key
- 2NF: All attributes depend on the whole key
- 3NF: All attributes depend on nothing but the key

Tests

- 1NF: The relation should have no multivalued attributes or nested relations
- 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key
- 3NF: The relation should not have a nonkey attribute functionally determined by a set of nonkey attributes

Remedies

- 1NF: Form new relations for each multi-valued attribute or nested relation
- 2NF: Decompose and set up a relation for each partial key with its dependent(s); retain the primary key and attributes fully dependent on it

Informally

- 1NF: All attributes depend on the key
- 2NF: All attributes depend on the whole key
- 3NF: All attributes depend on nothing but the key

Tests

- 1NF: The relation should have no multivalued attributes or nested relations
- 2NF: For a relation where candidate key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the candidate key
- 3NF: The relation should not have a nonkey attribute functionally determined by a set of nonkey attributes

Remedies

- 1NF: Form new relations for each multi-valued attribute or nested relation
- 2NF: Decompose and set up a relation for each partial key with its dependent(s); retain the primary key and attributes fully dependent on it
- 3NF: Decompose and set up a relation for each nonkey attribute

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) \rightarrow (Price)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) \rightarrow (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) \rightarrow (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)
- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) → (Price)
- $L_2 = (\underline{\text{Dist}}, \text{Rate}) \text{ with FD}$:
 - (Dist) → (Rate)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) → (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)
- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) → (Price)
- $L_2 = (\underline{\text{Dist}}, \text{Rate}) \text{ with FD}$:
 - (Dist) → (Rate)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)

- $L = (\underline{Id}, Dist, Lot, Area, Price, Rate)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price, Rate)
 - (Dist, Lot) → (Id, Area, Price, Rate)
 - (Dist) → (Rate)
 - (Area) → (Price)
- L is not in 2NF because (Rate) depends partially on (Dist)
- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) → (Price)
- $L_2 = (\underline{\text{Dist}}, \text{Rate}) \text{ with FD}$:
 - (Dist) → (Rate)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)
- L₂ is in 2NF and in 3NF

Example (contd.)

- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) → (Id, Area, Price)
 - (Area) → (Price)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)

Example (contd.)

- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) \rightarrow (Id, Area, Price)
 - (Area) \rightarrow (Price)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)
- $L_{11} = (\underline{Id}, Dist, Lot, Area)$ with FDs:
 - (Id) → (Dist, Lot, Area)
 - (Dist, Lot) → (Id, Area)
- $L_{12} = (\underline{\text{Area}}, \text{Price}) \text{ with FD}$:
 - (Area) \rightarrow (Price)

Example (contd.)

- $L_1 = (\underline{Id}, Dist, Lot, Area, Price)$ with FDs:
 - (Id) → (Dist, Lot, Area, Price)
 - (Dist, Lot) \rightarrow (Id, Area, Price)
 - (Area) \rightarrow (Price)
- L₁ is in 2NF but not 3NF because (Price) depends on (Id) through (Area)
- $L_{11} = (\underline{Id}, Dist, Lot, Area)$ with FDs:
 - (Id) → (Dist, Lot, Area)
 - (Dist, Lot) → (Id, Area)
- $L_{12} = (\underline{\text{Area}}, \text{Price}) \text{ with FD}$:
 - (Area) \rightarrow (Price)
- L₁₁ and L₁₂ are in 3NF

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- BCNF can lose FDs

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- BCNF can lose FDs
- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Consider (\underline{Id} , Dist, Lot, Area) with FDs: (Id) \rightarrow (Dist, Lot, Area); (Dist, Lot) \rightarrow (Id, Area); (Area) \rightarrow (Dist)

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- BCNF can lose FDs
- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Consider (<u>Id</u>, Dist, Lot, Area) with FDs:
 (Id) → (Dist, Lot, Area); (Dist, Lot) → (Id, Area); (Area) → (Dist)
- It is not in BCNF since (Area) is not a superkey although (Area) → (Dist) holds
- After BCNF normalization,

- A relation is in BCNF
 - If $X \to Y$ is a non-trivial FD, then X is a superkey of R
- Alternatively, for every FD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- BCNF can lose FDs
- Every BCNF relation is in 3NF
- Good design ensures that every relation is at least in 3NF (if not BCNF)
- Consider ($\underline{\sf Id}$, Dist, Lot, Area) with FDs: (Id) \rightarrow (Dist, Lot, Area); (Dist, Lot) \rightarrow (Id, Area); (Area) \rightarrow (Dist)
- It is not in BCNF since (Area) is not a superkey although (Area) → (Dist) holds
- After BCNF normalization,
 - (<u>Id</u>, Lot, Area) with FD: (Id) → (Dist, Lot, Area)
 - (Dist, Area) with FD: (Area) → (Dist)
 - Loses (Dist, Lot) → (Id, Area)

- Informally
 - BCNF: Every attribute depends on only the key

- Informally
 - BCNF: Every attribute depends on only the key
- Test
 - BCNF: The relation should not have an attribute functionally determined by a set of nonkey attributes

- Informally
 - BCNF: Every attribute depends on only the key
- Test
 - BCNF: The relation should not have an attribute functionally determined by a set of nonkey attributes
- Remedy
 - BCNF: Decompose and set up a relation for each nonkey attribute with attributes functionally dependent on it

- BCNF decomposition is not always possible
- (town, state, dist) with FDs: (town, state) → (dist); (dist) → (state)

town	state	dist
iit	up	east
iit	wb	mdp
prayag	up	east
prayag	wb	dinaj
kanpur	up	center
lucknow	up	west

- BCNF decomposition is not always possible
- (town, state, dist) with FDs: (town, state) → (dist); (dist) → (state)

town	state	dist
iit	up	east
iit	wb	mdp
prayag	up	east
prayag	wb	dinaj
kanpur	up	center
lucknow	up	west

• According to rule, decomposed into (state, dist) and (town, state)

- BCNF decomposition is not always possible
- (town, state, dist) with FDs:
 (town, state) → (dist); (dist) → (state)

town	state	dist
iit	up	east
iit	wb	mdp
prayag	up	east
prayag	wb	dinaj
kanpur	up	center
lucknow	up	west

- According to rule, decomposed into (state, dist) and (town, state)
- However, the decomposition is not lossless

- BCNF decomposition is not always possible
- (town, state, dist) with FDs: (town, state) → (dist); (dist) → (state)

town	state	dist
iit	up	east
iit	wb	mdp
prayag	up	east
prayag	wb	dinaj
kanpur	up	center
lucknow	up	west

- According to rule, decomposed into (state, <u>dist</u>) and (<u>town</u>, <u>state</u>)
- However, the decomposition is not lossless
- Also, (town, state) and (town, dist) is lossy
- Only (town, dist) and (state, dist) is lossless
- Losslessness must be preserved

Anomalies with BCNF

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

Anomalies with BCNF

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

course	teacher	book
db	ab	fdb
db	ab	dbm
db	sg	fdb
db	sg	dbm
nt	rm	ntb
nt	rm	usc
nt	ab	ntb
nt	ab	usc

Anomalies with BCNF

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

course	teacher	book
db	ab	fdb
db	ab	dbm
db	sg	fdb
db	sg	dbm
nt	rm	ntb
nt	rm	usc
nt	ab	ntb
nt	ab	usc

- Modification anomalies are still there
 - Inserting a new teacher for db requires two tuples

Anomalies with BCNF

- Consider (<u>course</u>, <u>teacher</u>, <u>book</u>)
 - (c, t, b): t can teach c, and b is a textbook for c
- No other FD
- Therefore, relation is in BCNF

course	teacher	book	
db	ab	fdb	
db	ab	dbm	
db	sg	fdb	
db	sg	dbm	
nt	rm	ntb	
nt	rm	usc	
nt	ab	ntb	
nt	ab	usc	

- Modification anomalies are still there
 - Inserting a new teacher for db requires two tuples
- Better design if (course, teacher) and (course, book)

Multi-valued dependency (MVD)

- A multi-valued dependency (MVD) X woheadrightarrow Y holds for a relation schema R if for all *legal* relations r(R), if for a pair of tuples t_1 and t_2 , $t_1.X = t_2.X$, then there exists another pair of tuples t_3 and t_4
 - $t_1.X = t_2.X = t_3.X = t_4.X$
 - $t_3.Y = t_1.Y$
 - $t_3.R Y X = t_2.R Y X$
 - $t_4.Y = t_2.Y$
 - $t_4.R Y X = t_1.R Y X$

	Χ	Υ	R - Y - X
t_1	а	b	С
t_2	а	d	е
t ₂ t ₃	a a a a	b	е
t_4	а	d	С

- Example: (course) → (teacher) in (course, teacher, book)
 - If (db, ab, fdb) and (db, sg, dbm) exist, then (db, ab, dbm) and (db, sg, fdb) must exist
 - Otherwise, ab has something to do with fdb

• $X \rightarrow Y$ implies $X \rightarrow R - Y - X$

- $X \rightarrow Y$ implies $X \rightarrow R Y X$
- R = (X, Y, Z)
- X → Y, and by symmetry, X → Z
- Then, decomposition into (X, Y) and (X, Z) will be lossless
- For any relation $r = \Pi_{X,Y}(r) \bowtie \Pi_{X,Z}(r)$

- $X \rightarrow Y$ implies $X \rightarrow R Y X$
- $R = (\underline{X}, \underline{Y}, \underline{Z})$
- X → Y, and by symmetry, X → Z
- Then, decomposition into (X, Y) and (X, Z) will be lossless
- For any relation $r = \Pi_{X,Y}(r) \bowtie \Pi_{X,Z}(r)$
- A MVD $X \rightarrow Y$ on R is trivial if either $Y \subseteq X$ or $R = X \cup Y$
- It is non-trivial otherwise

- $X \rightarrow Y$ implies $X \rightarrow R Y X$
- $R = (\underline{X}, \underline{Y}, \underline{Z})$
- X → Y, and by symmetry, X → Z
- Then, decomposition into (X, Y) and (X, Z) will be lossless
- For any relation $r = \Pi_{X,Y}(r) \bowtie \Pi_{X,Z}(r)$
- A MVD $X \rightarrow Y$ on R is trivial if either $Y \subseteq X$ or $R = X \cup Y$
- It is non-trivial otherwise
- Closure of a set of MVDs is the set of all MVDs that can be inferred using the following rules

- A relation is in 4NF
 - If $X \rightarrow Y$ is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey

- A relation is in 4NF
 - If $X \rightarrow Y$ is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course → book

- A relation is in 4NF
 - If $X \rightarrow Y$ is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD X → Y, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course --> book
- It is not in 4NF since (course) is not a superkey
- After 4NF normalization,

- A relation is in 4NF
 - If $X \rightarrow Y$ is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course --> book
- It is not in 4NF since (course) is not a superkey
- After 4NF normalization,
 - (course, book) with trivial MVD: (course) → (book)
 - (course, teacher) with trivial MVD: (course) → (teacher)
- Decompose R with X → Y into (X,Y) and (X,R-Y-X)

- A relation is in 4NF
 - If $X \rightarrow Y$ is a non-trivial MVD, then X is a superkey of R
- Alternatively, for every MVD $X \rightarrow Y$, either
 - It is trivial, or
 - X is a superkey
- Every 4NF relation is in BCNF
- Consider (course, teacher, book) with MVD: course --> book
- It is not in 4NF since (course) is not a superkey
- After 4NF normalization,
 - (course, book) with trivial MVD: (course) → (book)
 - (course, teacher) with trivial MVD: (course) → (teacher)
- Decompose R with X → Y into (X,Y) and (X,R-Y-X)
- Good design ensures that every relation is in 3NF or BCNF

Join dependency (JD)

- General way of decomposing a relation into multi-way joins
- A join dependency (JD) $(R_1, ..., R_n)$ holds for a relation schema R if for all *legal* relations r(R), $\bowtie_{i=1}^n (\Pi_{R_i}(r)) = r$
- A JD is trivial if one of R_i is R itself

Salesman	Brand	Product
J	Α	V
J	Α	В
W	R	Р
W	R	V
W	R	В
W	Α	V
W	Α	В

- Suppose, the following rule holds: If S sells products of brand B and if S sells product type P, then S must sell product type P of brand B (assuming B makes P)
- This means that $(S,B) \bowtie (B,P) \bowtie (P,S)$ is equal to (S,B,P)

Join dependency (JD)

- General way of decomposing a relation into multi-way joins
- A join dependency (JD) $(R_1, ..., R_n)$ holds for a relation schema R if for all *legal* relations r(R), $\bowtie_{i=1}^n (\Pi_{R_i}(r)) = r$
- A JD is trivial if one of R_i is R itself

Salesman	Brand	Product
J	Α	V
J	Α	В
W	R	Р
W	R	V
W	R	В
W	Α	V
W	Α	В

- Suppose, the following rule holds: If S sells products of brand B and if S sells product type P, then S must sell product type P of brand B (assuming B makes P)
- This means that $(S,B) \bowtie (B,P) \bowtie (P,S)$ is equal to (S,B,P)
- A MVD is a special case of JD with n = 2

Fifth normal form (5NF) or Project-Join normal form (PJNF)

- A relation is in 5NF
 - If $(R_1, ..., R_n)$ is a non-trivial JD, then every R_i is a superkey of R

Fifth normal form (5NF) or Project-Join normal form (PJNF)

- A relation is in 5NF
 - If $(R_1, ..., R_n)$ is a non-trivial JD, then every R_i is a superkey of R
- Consider that J starts selling brand R's products
- Insertion anomaly since multiple tuples need to be inserted

Fifth normal form (5NF) or Project-Join normal form (PJNF)

- A relation is in 5NF
 - If $(R_1, ..., R_n)$ is a non-trivial JD, then every R_i is a superkey of R
- Consider that J starts selling brand R's products
- Insertion anomaly since multiple tuples need to be inserted
- Better design if broken into three relations (B,P), (S,B), and (P,S)

Brand	Product			Product	Salesman
Α	V	Salesman	Brand	V	J
Α	В	J	Α	В	J
R	Р	W	R	Р	W
R	V	W	Α	V	W
R	В		ı	В	W

Now, insertion requires only one tuple (J, R) in (Salesman, Brand)

Domain-Key normal form (DKNF)

- A relation schema is in domain-key normal form (DKNF) if all constraints and relations that should hold can be enforced simply by domain constraints and key constraints
- Ideal normal form
- Mostly theoretical
- Once a relation is in DKNF, there is no anomaly and FDs and MVDs need not be checked any more