

Department of Psychiatry and Behavioral Sciences

Machine Learning for Neuroimaging

Autumn 2023

Session 5 – 10/10/2023 Basics for statistical analysis

Today...

Assignment

- Writing assignment (due on 10/24)
- Reading assignment
- Office hours (please send emails to schedule place/time)

Data Science in Neuroimaging

History of Hypothesis Testing

Early 20th century

Karl Pearson

William Sealy Gosset (aka *Student*)

Ronald Fisher

Pearson:

- Chi-squared test
- Standard deviation
- Correlation

Student:

- t-distribution Fisher:
- Null hypothesis
- Significant test
- Exact test
- ANOVA

Hypothesis Testing – A Formal Recipe

- A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis.
 - Choose a test statistic and set a null hypothesis
 - The effect investigated by the analysis does not occur
 - Derive the null distribution
 - Distribution of possible results under the null hypothesis
 - Select a significance level
 - Decide to either reject the null hypothesis or not to reject it
 - Compare the actual observed result to the null distribution

An "Engineering" Solution: Permutation Test

- Two groups of samples
 - 5 control samples: (51, 41, 51, 71, 42)
 - 4 treatment samples: (58, 69, 64, 55)
 - Question: is there a difference between groups?
 - (58+69+64+55)/4 (51+41+51+71+42)/5 = 10.3 < --- Observed mean difference!
- If there is no group difference (null hypothesis), can I observe 10.3 just by chance?
- Random Permutation:
 - Control (51, 41, 55, 51, 64), Treatment (58, 42, 69, 71)
 - (58+42+69+71)/4 (51+41+55+51+64)/5 = 7.6
 - Control (69, 64, 51, 71, 42), Treatment (58, 55, 51, 41)
 - (58+55+51+41)/4 (69+64+51+71+42)/5 = -8.15
 - **–**

Non-parametric test

Permutation test

- Build null distribution via permutation
 - 1. Randomly re-group the data into n and m samples
 - 2. Compute the mean difference from regrouped data
 - 3. Repeat K times
- Compare actual mean difference with null distribution (p= the # permuted mean difference is larger than the original mean difference / K)
- Reject null hypothesis: p=0.001 < 0.05
- Cannot reject: p=0.2 > 0.05

Hypothesis Testing

- Assuming population follows a <u>parametric distribution</u>
- Testing hypotheses about population parameters

Yes

Parametric tests

t-test

F-test

Z-test

•••

No

Nonparametric tests

Chi-squared test *U*-test

Permutation test

• • •

Hypothesis Testing

- Assuming population follows a <u>parametric distribution</u>
- Testing hypotheses about <u>population parameters</u>

Yes

Parametric tests

t-test

F-test

Z-test

•••

Today...

Two-Sample t-test: Student's t-distribution

- t-distribution plays a critical role in estimating the mean of a normally distributed population in situations where the population's standard deviation is unknown.
 - $-\{X_1,...,X_n\}$ and $\{Y_1,...,Y_m\}$ are independently and identically drawn from a **Gaussian distribution**
 - Null hypothesis: the mean difference $\bar{X} \bar{Y} = 0$
 - Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\bar{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i$, $S^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{n+m-2}$ be the sample mean and the unbiased sample variance $(s_X^2 = \frac{\sum_i (X_i \bar{X})^2}{n-1}, s_Y^2 = \frac{\sum_i (Y_i \bar{Y})^2}{m-1})$
 - Construct t-statistic $t = \frac{\bar{X} \bar{Y}}{S*\sqrt{\frac{1}{n} + \frac{1}{m}}}$
 - t follows a Student's t-distribution with n + m 2 degrees of freedom
 - Compute p-value based on observed t-value

Two-sample *t*-test

Group 1	Age 30	Group 2	Age 40	Null distribution of DOF n+m-2
Participant 1	3	Participant 1	3	$t = \frac{\overline{X_1} - \overline{X_2}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \frac{1}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} = \frac{1}{S_p \frac{$
Participant 2	2.7	Participant 2	2.7	$t = \frac{1}{c} \left[\frac{1}{1 + 1} \sim \frac{1}{c} \right]$
		Participant 3	2.2	$5p\sqrt{n^+m}$
Participant n	2.5			S
				30 yo 40 yo
		Participant m	2.5	Null hypothesis: $\overline{X_1} - \overline{X_2} = 0$
	▼			
Observ	$ u$ ed $\overline{X_1}$ \overline{X}	K_2 S_p		

Example: One sample *t*-test

	Age 30
Participant 1	3
Participant 2	2.7
Participant 3	2.2
Participant n	2.5

Example: One sample *t*-test

	Age 30	Age 40
Participant 1	3	2.6
Participant 2	2.7	2.5
Participant 3	2.2	2.3
Participant n	2.5	2.4

Growth X
-0.4
-0.2
0.1
-0.1

One-Sample t-test: Student's t-distribution

- $X_1, ..., X_n$ are independently and identically drawn from a Gaussian distribution
- Null hypothesis: the mean of that Gaussian is μ
- Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ be the sample mean and the unbiased sample variance
- Construct t-statistic $t = \frac{\bar{X} \mu}{S/\sqrt{n}}$
- t follows a Student's t-distribution with n-1 degrees of freedom
- Compute p-value based on observed t-value

Example: One sample *t*-test

	Age 30	Age 40
Participant 1	3	2.6
Participant 2	2.7	2.5
Participant 3	2.2	2.3
Participant n	2.5	2.4

Observed t-value
$$t = \frac{\bar{X} - 0}{S/\sqrt{n}}$$

Pitfall of *p*-values

- Correct: probability of obtaining the observed results under the null hypothesis
- Incorrect: probability of the null hypothesis being wrong

What are paired vs unpaired *t*-tests?

- Reading assignment 1
 - Find out what paired and unpaired t-tests are, and how they are related to one-sample and two-sample t-tests.
 - What are one-tailed and two-tailed p-values (you have to use this concept in the assignment)?

Slope of a regression line

• Fitting the linear regression model $Y = \alpha + \beta X + \epsilon$ Question: whether there is a linear relationship?

- Null hypothesis: $\beta = 0$ (there is no correlation between X, Y)
- Null distribution:
 - Let $\hat{\beta}$ be the least-squares estimator $\hat{\beta} = (X^TX)^{-1}X^TY$
 - $-\frac{\widehat{\beta}}{SE_{\widehat{\beta}}} \sim t$ -distribution with DOF n-2

Pearson Correlation

- Very similar concept/computation as the slope test
- β of the standardized X, Y equals the correlation coefficient

All these tests are General Linear Models (GLM)!

$$Y = \alpha + \beta X + \epsilon$$

$$\uparrow$$
Continuous

$$Y = \alpha + \beta X + \epsilon$$

$$\uparrow$$

$$\{0,1\}$$

Test this linear coefficient!

Multivariate Linear Regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 \dots + \epsilon$$

$$\downarrow \text{ age } \downarrow \text{ sex } \downarrow \text{ race } \downarrow \text{ race}$$

$$p_1 \qquad p_2 \qquad p_3 \qquad p_4$$

Other Popular Test Statistics

- Reading assignment 2
 - Find out what Z-test and F-test are and when those tests are preferred over t-tests

Today...

Confounding Variables

Confounder as a Covariate in GLM

 A covariate is an independent variable that can influence the outcome of a given statistical trial, but which is not of direct interest.

$$\begin{cases} 0,1 \rbrace \\ \downarrow \\ Y = \beta_0 + \beta_{age} age + \beta_D D + \epsilon \\ \uparrow \\ t\text{-test on } \beta_D \end{cases}$$

Compute Correct Group Differences by Residualization

- Compute disease effect by removing the aging effect.
 - Subtract $\beta_{age}age$ from raw measurements

$$Y = \beta_0 + \beta_{age} age + \beta_D D + \epsilon$$

$$\hat{Y} = Y - \beta_{age} age$$

Compute Correct Group Differences by Residualization

- Compute disease effect by removing the aging effect.
 - Subtract $\beta_{age}age$ from raw measurements
 - Adjust 'reference point' to \overline{age}

$$Y = \beta_0 + \beta_{age}age + \beta_D D + \epsilon$$

$$\hat{Y} = Y - \beta_{age} age + \beta_{age} \overline{age}$$

Compute Correct Group Differences by Residualization

- Compute disease effect by removing the aging effect.
 - Subtract $\beta_{age}age$ from raw measurements
 - Adjust 'reference point' to \overline{age}
 - Use boxplot to visualize \hat{Y}

Adeli et al., Chained Regularization for Identifying Brain Patterns Specific to HIV Infection, NeuroImage, 2018

Interaction in GLM

 An interaction effect occurs when the effect of one variable depends on the value of another variable

$$Y = \beta_0 + \beta_{age} age + \beta_D D + \epsilon$$

$$Y = \beta_0 + \beta_{age} age + (\beta_D + \beta_{age_D} age) * D + \epsilon$$

$$The \ disease \ effect \ varies \ with \ age$$

$$Y = \beta_0 + \beta_{age} age + \beta_D D + \beta_{age_D} age * D + \epsilon$$

$$Whether \ there \ is \ an \ overall \ disease \ effect$$

$$Whether \ there \ is \ the \ disease \ effect \ interacts \ with \ age$$

Today...

Hypothesis Testing

- Assuming population follows a <u>parametric distribution</u>
- Testing hypotheses about <u>population parameters</u>

What if the samples do not follow normal distribution?

Nonparametric tests
Chi-squared test
U-test
Permutation test

Non-parametric test

Permutation test

- Build null distribution via permutation
 - 1. Randomly re-group the data into n and m samples
 - 2. Compute the mean difference from regrouped data
 - 3. Repeat K times
- Compare actual mean difference with null distribution (p= the # permuted mean difference is larger than the original mean difference / K)

Advantage

- Application to any test statistic
- No assumptions on data distribution

Disadvantage

- Time consuming
- Minimum p = 1/K

Non-parametric test

- Reading assignment 3
 - Find out what Mann-Whitney U test and Spearman's Correlation are.

Chi-squared Test

Example: Test a whether a coin is fair

	Head	Tail	Total
Observed	65	35	100 → Contingency table
Expected	50	50	

- Chi-squared test is used to determine whether the expected frequencies in a contingency table differ from observed frequencies.
 - N samples classified into K classes with the ith class having X_i samples (observed frequency)
 - Null hypothesis: observed frequency follows expected frequency $\{M_i\}$
 - Null Distribution:
 - $X^2 = \sum_{i=1}^K \frac{(X_i M_i)^2}{M_i}$
 - Follows a Chi-squared distribution of DOF k
 - Compute p-value from observed X^2

Chi-squared Test

Example: Test a whether a coin is fair

	Head	Tail
Expected	50	50

	Head	Tail	Total	
Observed	65	35	100	Marginal frequency

- X² follows a Chi-squared distribution of DOF k
 k = # of independent cells given marginal frequency
- Observed $X^2 = \frac{(65-50)^2}{50} + \frac{(35-50)^2}{50} = 9$

Chi-squared Test: Another Example

- Frequencies of male and female being right-handed or left-handed
- Null Hypothesis: the frequency of handedness is the same across sexes
 - Translation: $\{X_{ij}\}$ follow expected frequency $\{M_{ij}\}$
 - How to compute $\{M_{ij}\}$?

Contingency Table

	Right-handed	Left-handed
Male	43	9
Female	44	4

Chi-squared Test: Another Example

- Null Hypothesis: the frequency of handedness is the same across sexes
 - Compute expected frequencies from marginal frequencies!
 - There are 100 samples, with 52% males and 87% overall right-handed rate.

- Expected
$$m_{11} = 100 * \frac{52}{100} * \frac{87}{100} = 45.24$$

DOF = # of independent cells given marginal frequency

Expected Frequency

	Right-handed	Left-handed	Total
Male	?		52
Female			48
Total	87	13	

Contingency Table

	Right-handed	Left-handed	Total
Male	43	9	52
Female	44	4	48
Total	87	13	100

Marginal frequencies

Chi-squared Test: Another Example

- Null Hypothesis: the frequency of handedness is the same across sexes
 - Compute observed $X^2 = \sum \sum \frac{(X_{ij} M_{ij})^2}{M_{ij}}$
 - DOF = # of independent cells given marginal frequency = (2-1) * (2-1) = 1

Contingency Table

	Right-handed	Left-handed	Total
Male	43	9	52
Female	44	4	48
Total	87	13	
	Marginal frequencies		

Other statistics related to Chi-squared tests

- Reading assignment 4
 - Find out what Binomial test and Fisher's Exact test are

Today...

Pitfall of *p*-values

p-hacking and reproducibility crisis

M. Baker, 1500 scientists lift the lid on reproducibility, Nature, 2016

WE FOUND NO

LINK BETWEEN

BEANS AND ACNE

PINK JELLY

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN SALMON JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05)

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN BLACK JEILY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY (P>0.05).

BEANS AND ACNE

Multiple Comparisons

Multiple Comparisons

One false positive every 20 tests

Push to a more stringent threshold

Bonferroni Correction

- α of a single test: probability of falsely rejecting a true null hypothesis
- FWER (familywise error rate): probability of rejecting at least one true null hypothesis among a family of true hypotheses.
- Assume we have m null hypotheses to be tested, with m_0 null hypotheses are true (m_0 unknown)
 - Rejects the null hypothesis for each $p_{\rm i} \leq \frac{\alpha}{m}$

$$ext{FWER} = P\left\{igcup_{i=1}^{m_0}\left(p_i \leq rac{lpha}{m}
ight)
ight\} \leq \sum_{i=1}^{m_0}\left\{P\left(p_i \leq rac{lpha}{m}
ight)
ight\} = m_0rac{lpha}{m} \leq lpha.$$

- Disadvantage: too conservative (high Type-II error rate) when m is large

Other Correction Procedures

- Reading assignment 5
 - Find out what false discovery rate (FDR) and Benjamini–Hochberg procedure are

Voxel-wise Correction

Build a null distribution of cluster size via random field theory or permutation testing

Eklund et al., Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates, PNAS, 2016

Limitations of Hypothesis Testing

- Population-level conclusion
- Require a hypothesis beforehand
- Large # of "independent" tests

Assignment

- Due on 10/24
 - P1, P2: write calculation steps, equations, etc.
 - P3: source code with results, comments, visualization, description of what you did (easiest in Jupyter notebook)

Thank you!

