TRABALHO DA SEGUNDA LISTA 2025.

A TRANSFORMER-BASED APPROACH FOR TRANSLATING NATURAL LANGUAGETO BASH COMMANDS

ARTIGO

Artigo

- A Transformer-based Approach for Translating Natural Language to Bash Commands
- Quchen Fu, Zhongwei Teng, Jules White, Douglas C.
 Schmidt

MATERIAIS E MÉTODOS

Figure 1: The Transformer - model architecture.

MATERIAIS E MÉTODOS

- Comparação do transformer, RNN, BRNN e combinações
- Solução proposta:
 - Uso de 6 camadas de encoder e decoder
- Processo:
 - 1. Pré-processamento dos dados de treinamento
 - 2. Seleção do melhor modelo de arquitetura para a tarefa
 - 3. Elaborar uma abordagem eficaz para determinar qual das muitas traduções possíveis deve ser apresentada ao usuário.
- I. Avaliação: Utilização do Flag Scrore e Utility Score

$$S_F^i(F_{\text{pred}}, F_{\text{ref}}) = \frac{1}{N} \Big(2 \times |F_{\text{pred}} \cap F_{\text{ref}}| - |F_{\text{pred}} \cup F_{\text{ref}}| \Big) \qquad S_U = \sum_{i \in [1,T]} \frac{1}{T} \times \Big(|U_{\text{pred}} = U_{\text{ref}}| \times \frac{1}{2} \Big(1 + S_F^i \Big) - |U_{\text{pred}} \neq U_{\text{ref}}| \Big)$$

RESULTADO

TABLE I
MODEL PERFORMANCE COMPARISON

Encoder	Decoder	Accu. (Para)	Accu.	Train	Inference
Trans.	Trans.	0.509	0.522^{*}	1625	0.126
Trans.	RNN	_	=	-	=
RNN	Trans.	0.448	0.486	1490	0.116
RNN	RNN	0.151	0.336	1151*	0.069
BRNN	Trans.	0.483	0.495	1411	0.120
BRNN	RNN	0.301	0.476	1218	0.065*

RESULTADO

TABLE II
THE NLC2CMD COMPETITION RESULTS

Team	Model	Accuracy	Power	Latency
Magnum	(this paper)	0.532*	682.3	0.709
Hubris	GPT-2	0.513	809.6	14.87
Jb	Clas.+Trans.	0.499	828.9	3.142
AICore	Two-stage Trans.	0.489	596.9*	0.423
Tellina [7]	BRNN (GRU)	0.138	916.1	3.242

RESULTADO

- Aumento de 13,8% (estado da arte atual) para 53,2% de acurácia.
- Demonstra os benefícios da arquitetura transformer.
- Diminuição de tamanho de até 90% com a compressão da arquitetura transformer.
- Uso do Beam Serach criando pesos eurísticos

IMPLEMENTAÇÃO

- Códigos: https://drive.google.com/file/d/IoYFzIom72eD3UniGMI5epM_d2iNDCZeY/view?usp=s haring
- A implementação do transformer encontra-se no arquivo transformer.py
- O arquivo Transformer_Trainner_Kannada.ipynb trata do tratamento dos dados, da inicialização do transformer, do treinamento e teste.