September 24, 2019

Let L be a language specified by a regular expression $r=(a\cup ab)^*$. The task is to find a regular expression for \overline{L} , the complement of L. The alphabet Σ is $\{a,b\}$.

Method

We design an NFA for r, convert the NFA to a DFA, flip the accepting and non-accepting states to take the complement and then generate the regular expression of this DFA.

Obtaining the NFA

An NFA for the given example is:

$$N_1 = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_0\})$$

where δ is defined as :

		ε	a	b
q_0)	$\{q_1\}$		
q	1		$\{q_2\}$	
$ q_2 $	2	$\{q_0\}$		$\{q_3\}$
q	3	$\{q_0\}$		

Figure 1: NFA for R

Now observe the ε closures of all states in fig 1:

$$\varepsilon(q_0) = \{q_0, q_1\}
\varepsilon(q_1) = \{q_1\}
\varepsilon(q_2) = \{q_0, q_1, q_2\}
\varepsilon(q_3) = \{q_0, q_1, q_3\}$$
(1)

Constructing the DFA

We obtain the DFA by the subset construction method. The states are

ICSI 509

September 24, 2019

$$d_{0} = \{q_{0}, q_{1}\},\$$

$$d_{1} = \{q_{0}, q_{1}, q_{2}\},\$$

$$d_{2} = \{q_{0}, q_{1}, q_{3}\}\$$

$$d_{3} = \emptyset$$
(2)

$$D_1 = (\{d_0, d_1, d_2, d_3\}, \{a, b\}, \delta, d_0, \{d_0, d_1, d_2\})$$

where δ is defined as:

	a	b
d_0	d_1	d_3
d_1	d_1	d_2
d_2	d_1	d_3
d_3	d_3	d_3

Figure 2: DFA D_1

We can find the complement of the DFA drawn above by flipping the accepting to non-accepting states and vice-versa. This gives us the DFA in Fig 3

$$D_1' = (\{d_0', d_1', d_2', d_3'\}, \{a, b\}, \delta, d_0', \{d_3'\})$$

where δ is defined as:

	a	b
d_0'	d_1'	d_3'
d_1'	d_1'	d_2'
d_2'	d_1'	d_3'
d_3^{\prime}	d_3'	d_3'

ICSI 509 2

September 24, 2019

Figure 3: Complemented DFA D'_1

Obtaining the RegEx

From the DFA in Fig:3, we can obtain the following Equations

$$X_1 = aX_2 \cup bX_4 \tag{3}$$

$$X_2 = aX_2 \cup bX_3 \tag{4}$$

$$X_3 = aX_2 \cup bX_4 \tag{5}$$

$$X_4 = (a \cup b)X_4 \cup \varepsilon \tag{6}$$

We need to find the regular expression for X_1 .

Applying Arden's lemma on equation 6, we obtain:

$$X_4 = (a \cup b)^* \tag{7}$$

By Arden's lemma, eq:5 and the Distributive Law we can transform eq:4:

$$X_2 = aX_2 \cup baX_2 \cup bbX_4$$

$$X_2 = (a \cup ba)^*bbX_4$$
(8)

Now substituting for X_2 and X_4 we obtain:

$$X_1 = a(a \cup ba)^* bb(a \cup b)^* \cup b(a \cup b)^*$$
(9)

Hence the regular expression for \overline{L} is $a(a \cup ba)^*bb(a \cup b)^* \cup b(a \cup b)^*$

ICSI 509