

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	AirTies Wireless Networks
Applicant Address	Gülbahar Mah. Avni Dilligil Sok. Celik Is Merkezi ISTANBUL, 34394 Turkey
FCC ID	Z3WAIR49200
Manufacturer's company	SHENZHEN GONGJIN ELECTRONICS CO.,LTD.
Manufacturer Address	2F/3F/4F Baiying Building,1019#Naihai RD, Nanshan Dist., Shenzhen, Guangdong, CHINA

Product Name	2 Port Gigabit Ethernet 11ac/11n Wireless Router
Brand Name	AirTies
Model No.	Air 4920
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Received Date	Oct. 22, 2014
Final Test Date	May 23, 2015
Submission Type	Original Equipment

Statement

Test result included is only for the IEEE 802.11n, IEEE 802.11b/g and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart C, KDB 558074 D01 v03r02, KDB 662911 D01 v02r01, KDB644545 D01 v01r02.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Note: Using 1.5m table as an alternative was permitted by the FCC per TCBC conference call of Dec. 2, 2014.

Table of Contents

1. VERI	IFICATION OF COMPLIANCE	1
2. SUM	IMARY OF THE TEST RESULT	2
3. GEN	NERAL INFORMATION	
3.1.	Product Details	3
3.2.	Accessories	5
3.3.	Table for Filed Antenna	6
3.4.	Table for Carrier Frequencies	7
3.5.	Table for Test Modes	8
3.6.	Table for Testing Locations	10
3.7.	Table for Supporting Units	10
3.8.	Table for Parameters of Test Software Setting	11
3.9.	EUT Operation during Test	12
3.10.	Duty Cycle	13
3.11.	. Test Configurations	14
4. TEST	RESULT	18
4.1.	AC Power Line Conducted Emissions Measurement	18
4.2.	Maximum Conducted Output Power Measurement	22
4.3.	Power Spectral Density Measurement	26
4.4.	6dB Spectrum Bandwidth Measurement	41
4.5.	Radiated Emissions Measurement	54
4.6.	Emissions Measurement	82
4.7.	Antenna Requirements	111
5. LIST (OF MEASURING EQUIPMENTS	112
6. MEA	ASUREMENT UNCERTAINTY	113
APPENI	DIX A. TEST PHOTOS	A1 ~ A5
APPENI	DIX B. MAXIMUM PERMISSIBLE EXPOSURE	B1 ~ B3
APPENI	DIX C. RADIATED EMISSION CO-LOCATION REPORT	C1 ~ C3

Issued Date

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR552501AA	Rev. 01	Initial issue of report	May 26, 2015

Project No: CB10405195

1. VERIFICATION OF COMPLIANCE

Product Name : 2 Port Gigabit Ethernet 11ac/11n Wireless Router

Brand Name : AirTies

Model No. : Air 4920

Applicant: AirTies Wireless Networks

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Oct. 22, 2014 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 113 Issued Date : May 26, 2015

: 2 of 113

2. SUMMARY OF THE TEST RESULT

Applied Standard: 47 CFR FCC Part 15 Subpart C							
Part	Rule Section	Result	Under Limit				
4.1	15.207	AC Power Line Conducted Emissions	Complies	4.42 dB			
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies	3.15 dB			
4.3	15.247(e)	Power Spectral Density	Complies	6.03 dB			
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-			
4.5	15.247(d)	Radiated Emissions	Complies	0.03 dB			
4.6	15.247(d)	Band Edge Emissions	Complies	0.04 dB			
4.7	15.203	Antenna Requirements	Complies	-			

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n/ac

Items	Description
Product Type	For 2.4GHz Band:WLAN (2TX, 2RX)
	For 5GHz Band:WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	see the below table for IEEE 802.11n/ac
Data Modulation	For 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	For 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n/ac
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Channel Number	For 2.4GHz Band:
	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth
	For 5GHz Band:
	5 for 20MHz bandwidth ; 2 for 40MHz bandwidth ;
	1 for 80MHz bandwidth
Channel Band Width (99%)	For 2.4GHz Band:
	For Non-Beamforming Mode:
	MCS0 (HT20): 17.76 MHz ; MCS0 (HT40): 36.80 MHz
	For 5GHz Band:
	For Beamforming Mode:
	802.11ac MCS0/Nss1 (VHT20): 25.96 MHz ;
	802.11ac MCS0/Nss1 (VHT40): 50.65 MHz ;
	802.11ac MCS0/Nss1 (VHT80): 76.70 MHz
Maximum Conducted Output Power	For 2.4GHz Band:
	For Non-Beamforming Mode:
	MCS0 (HT20): 22.75 dBm; MCS0 (HT40): 16.52 dBm
	For 5GHz Band:
	For Beamforming Mode:
	802.11ac MCS0/Nss1 (VHT20): 26.85 dBm ;
	802.11ac MCS0/Nss1 (VHT40): 26.07 dBm ;
	802.11ac MCS0/Nss1 (VHT80): 24.61 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

 Report Format Version: Rev. 01
 Page No. : 3 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

IEEE 802.11a/b/g

Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	DSSS for IEEE 802.11b; OFDM for IEEE 802.11a/g
Data Modulation	DSSS (BPSK / QPSK / CCK); OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11); OFDM (6/9/12/18/24/36/48/54)
Frequency Range	2400 ~ 2483.5MHz / 5725 ~ 5850MHz
Channel Number	11b/g: 11 ; 11a: 5
Channel Band Width (99%)	For Non-Beamforming Mode:
	11b: 17.76 MHz ; 11g: 17.76 MHz ; 11a: 24.14 MHz
Maximum Conducted Output Power	For Non-Beamforming Mode:
	11b: 24.50 dBm ; 11g: 21.38 dBm ; 11a: 22.29 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description				
Beamforming Function	With beamforming for 802.11 n/ac in 5GHz. □ Without beautiful or solution.	peamforming			

Antenna and Band width

Antenna	Antenna Single (TX)		Two (TX)			Three (TX)			
Band width Mode	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz
IEEE 802.11a	٧	Х	Х	Х	Х	Х	Х	Х	Х
IEEE 802.11b	٧	Х	Х	х	х	х	Х	х	Х
IEEE 802.11g	٧	Х	Х	Х	Х	Х	Х	Х	Х
IEEE 802.11n (2.4GHz)	х	Х	Х	٧	٧	Х	Х	х	Х
IEEE 802.11n (5GHz)	х	Х	Х	Х	Х	Х	٧	٧	Х
IEEE 802.11ac	х	Х	Х	х	Х	х	٧	٧	٧

Report Format Version: Rev. 01 Page No. : 4 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20) (2.4GHz)	2	MC\$0-15
802.11n (HT40) (2.4GHz)	2	MC\$0-15
802.11n (HT20) (5GHz)	3	MC\$0-23
802.11n (HT40) (5GHz)	3	MC\$0-23
802.11ac (VHT20)	3	MCS 0-9/Nss1-3
802.11ac (VHT40)	3	MCS 0-9/Nss1-3
802.11ac (VHT80)	3	MCS 0-9/Nss1-3

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT support VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

Power	Brand	Model	Rating
Adaptor	MOSO	MSP-C1000IC12.0-12B-US	INPUT: 100-240V~50/60Hz, 0.5A max.
Adapter	IVIOSO	1VIST-C10001C12.0-12B-03	OUTPUT: 12.0V, 1A

Report Format Version: Rev. 01 Page No. : 5 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

3.3. Table for Filed Antenna

Ant	Ant. Brand	and Model Name	Antonna Type	Connector	Gain (dBi)	
AIII.	ыша	Woder Name	Antenna Type	Connector	2.4GHz	5GHz
1	-	-	PCB Antenna	N/A	2.5	-
2	Airgain	N2420\$-T-G50U	PIFA Antenna	I-PEX	2.5	-
3	-	-	PCB Antenna	N/A	-	0
4	-	-	PCB Antenna	N/A	-	0
5	-	-	PCB Antenna	N/A	-	0

Note: The EUT has five antennas. There are two antennas for 2.4GHz and three antennas for 5GHz.

<For 2.4GHz band>

For 802.11b/g mode:

Only Chain 1 can be used as transmitting/receiving antenna.

For 802.11n mode:

Both Chain 1 and Chain 2 support transmit and receive functions.

Chain 1 and Chain 2 can transmit and receive signal simultaneously.

<For 5GHz band>

For 802.11a mode:

Only Chain 3 can be used as transmitting/receiving antenna.

For 802.11n/ac mode:

Chain 3, Chain 4 and Chain 5 support transmit and receive functions.

Chain 3, Chain 4 and Chain 5 can transmit and receive signal simultaneously.

 Report Format Version: Rev. 01
 Page No. : 6 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

3.4. Table for Carrier Frequencies

For 2.4GHz Band:

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1 \sim Channel 11.

For 40MHz bandwidth systems, use Channel 3~Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400~2483.5MHz	3	2422 MHz	9	2452 MHz
2400~2463.5IVINZ	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

For 5GHz Band:

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 151, 159.

For 80MHz bandwidth systems, use Channel 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

Report Format Version: Rev. 01 Page No. : 7 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

For 2.4GHz Band:

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	СТХ	-	-	-
Maximum Conducted Output Power	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Power Spectral Density	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Radiated Emissions Below 1GHz	CTX	-	-	-
Radiated Emissions Above 1GHz	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1
Band Edge Emissions	11n HT20	MCS0	1/6/11	1+2
	11n HT40	MCS0	3/6/9	1+2
	11b/CCK	1 Mbps	1/6/11	1
	11g/BPSK	6 Mbps	1/6/11	1

For 5GHz Band:

Test Items	Mode	Data Rate	Channel	Chain	
AC Power Line Conducted Emissions	CTX	-	-	-	
Maximum Conducted Output Power	For Non-Beamfo	rming Mode			
	11a/BPSK	6 Mbps	149/157/165	3	
	For Beamforming Mode				
	11ac VHT20	MCS0/Nss1	149/157/165	3+4+5	
	11ac VHT40	MCS0/Nss1	151/159	3+4+5	
	11ac VHT80	MCS0/Nss1	155	3+4+5	
Power Spectral Density	For Non-Beamfo	rming Mode			
	11a/BPSK	6 Mbps	149/157/165	3	
	For Beamforming	g Mode	•		
	11ac VHT20	MCS0/Nss1	149/157/165	3+4+5	
	11ac VHT40	MCS0/Nss1	151/159	3+4+5	
	11ac VHT80	MCS0/Nss1	155	3+4+5	
6dB Spectrum Bandwidth	For Non-Beamforming Mode				
	11a/BPSK	6 Mbps	149/157/165	3	
	For Beamforming	g Mode	•		
	11ac VHT20	MCS0/Nss1	149/157/165	3+4+5	
	11ac VHT40	MCS0/Nss1	151/159	3+4+5	
	11ac VHT80	MCS0/Nss1	155	3+4+5	
Radiated Emissions Below 1GHz	CTX	-	-	-	
Radiated Emissions Above 1GHz	For Non-Beamfo	rming Mode	•		
	11a/BPSK	6 Mbps	149/157/165	3	
	For Beamforming	g Mode			
	11ac VHT20	MCS0/Nss1	149/157/165	3+4+5	
	11ac VHT40	MCS0/Nss1	151/159	3+4+5	
	11ac VHT80	MCS0/Nss1	155	3+4+5	
Band Edge Emissions	For Non-Beamfo	rming Mode		•	
	11a/BPSK	6 Mbps	149/157/165	3	
	For Beamforming	g Mode		•	
	11ac VHT20	MCS0/Nss1	149/157/165	3+4+5	
	11ac VHT40	MCS0/Nss1	151/159	3+4+5	
	11ac VHT80	MCS0/Nss1	155	3+4+5	

Note 1: VHT20/VHT40 covers HT20/HT40, due to same modulation.

Note 2: There are two modes of EUT, one is beamforming mode, and the other is non-beamforming mode for 802.11n/ac in 5GHz, after evaluating, beamforming mode has been evaluated to be the worst case, so it was selected to test and record in this test report.

Report Format Version: Rev. 01 Page No. : 9 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. CTX + Adapter Max. output power of 5GHz

For Radiated Emission below 1GHz test:

Mode 1. CTX + Adapter Max. output power of 5GHz

For Radiated Emission above 1GHz test:

Mode 1. CTX

For Co-location MPE and Radiated Emission Co-location Test:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to Appendix B) and Radiated Emission Co-location (please refer to Appendix C) tests are added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

	Test Site Location				
Address:	No.8, L	ane 724, Bo-ai St., Jh	ubei City, Hsinchu C	County 302, Taiwan, R.	O.C.
TEL:	886-3-	656-9065			
FAX:	886-3-	656-9085			
Test Site	No.	Site Category	Location	FCC Reg. No.	IC File No.
03CH01	03CH01-CB SAC Hsin Chu 262045 IC 4086D				IC 4086D
CO01-	СВ	Conduction	Hsin Chu	262045	IC 4086D
TH01-0	СВ	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: 03CH01-CB (Below 1G) and TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC

For Test Site No: 03CH01-CB (Above 1G)

For Non-Beamforming Mode:

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC

For Beamforming Mode:

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC
NB	DELL	E4300	DoC
WLAN ac Dongle	Netgear	A6200	PY31220200

Report Format Version: Rev. 01 Page No. : 10 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC

3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

For 2.4GHz Band

For Non-Beamforming Mode:

Power Parameters of IEEE 802.11n MCS0 HT20

Test Software Version		Mtool 2.0.0.7	
Frequency	2412 MHz	2437 MHz	2462 MHz
MCS0 HT20	49	76	49

Power Parameters of IEEE 802.11n MCS0 HT40

Test Software Version		Mtool 2.0.0.7	
Frequency	2422 MHz	2437 MHz	2452 MHz
MCS0 HT40	39	58	43

Power Parameters of IEEE 802.11b/g

Test Software Version		Mtool 2.0.0.7	
Frequency	2412 MHz	2437 MHz	2462 MHz
IEEE 802.11b	72	100	76
IEEE 802.11g	60	83	65

For 5GHz Band

For Non-Beamforming Mode:

Power Parameters of IEEE 802.11a

Test Software Version	Mtool 2.0.0.7			
Frequency	5745 MHz	5785 MHz	5825 MHz	
IEEE 802.11a	88	88	88	

For Beamforming Mode:

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT20

Test Software Version	Mtool 2.0.0.7		
Frequency	5745 MHz	5785 MHz	5825 MHz
MCS0/Nss1 VHT20	88	88	88

Report Format Version: Rev. 01 Page No. : 11 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT40

Test Software Version	Mtool 2.0.0.7		
Frequency	5755 MHz	5795 MHz	
MCS0/Nss1 VHT40	88	88	

Power Parameters of IEEE 802.11ac MCS0/Nss1 VHT80

Test Software Version	Mtool 2.0.0.7
Frequency	5775 MHz
MCS0/Nss1 VHT80	80

3.9. EUT Operation during Test

For Non-Beamforming Mode:

The EUT was programmed to be in continuously transmitting mode.

For Beamforming Mode:

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe" to link with the remote workstation to receive and transmit packet by WLAN ac Dongle and transmit duty cycle no less 98%

Report Format Version: Rev. 01 Page No. : 12 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

3.10. Duty Cycle

For Non-Beamforming Mode:

Band	Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
		(ms)	(ms)	(%)	(dB)	(kHz)
	802.11n MCS0 HT20	1.908	1.944	98.15%	0.08	0.01
2.4G	802.11n MCS0 HT40	0.912	0.964	94.63%	0.24	1.10
2.49	802.11b	1.000	1.000	100.00%	0.00	0.01
	802.11g	2.070	2.100	98.57%	0.06	0.01
5G	802.11a	0.462	0.489	94.43%	0.25	2.17

For Beamforming Mode:

Band	Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
	802.11ac MCS0/Nss1 VHT20	3.838	3.936	97.50%	0.11	0.26
5G	802.11ac MCS0/Nss1 VHT40	4.492	4.660	96.39%	0.16	0.22
	802.11ac MCS0/Nss1 VHT80	5.000	5.456	91.64%	0.38	0.20

 Report Format Version: Rev. 01
 Page No. : 13 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

3.11.2. Radiation Emissions (Below 1G) Test Configuration

Item	Connection	Shielded	Length(m)
1	Power Cable	No	1.5m
2	RJ-45 Cable	No	10m

3.11.3. Radiation Emissions (Above 1G) Test Configuration

For Non-Beamforming Mode

Item	Connection	Shielded	Length(m)
1	Power Cable	No	1.5m
2	RJ-45 Cable	No	10m

 Report Format Version: Rev. 01
 Page No. : 16 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

For Beamforming Mode

Item	Connection	Shielded	Length(m)
1	Power Cable	No	1.5m
2	RJ-45 Cable	No	10m

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

 Report Format Version: Rev. 01
 Page No.
 : 18 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

Report Format Version: Rev. 01 Page No. : 19 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	24°C	Humidity	56%
Test Engineer	Parody Lin	Phase	Line
Configuration	СТХ		

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.16	34.88	-20.50	55.38	24.93	9.93	0.02	LINE	Average
2	0.16	48.27	-17.11	65.38	38.32	9.93	0.02	LINE	QP
3	0.21	24.48	-28.62	53.10	14.53	9.93	0.02	LINE	Average
4	0.21	39.44	-23.66	63.10	29.49	9.93	0.02	LINE	QP
5	0.59	41.45	-4.55	46.00	31.47	9.94	0.04	LINE	Average
6	0.59	47.25	-8.75	56.00	37.27	9.94	0.04	LINE	QP
7	1.76	27.75	-18.25	46.00	17.71	9.98	0.06	LINE	Average
8	1.76	33.10	-22.90	56.00	23.06	9.98	0.06	LINE	QP
9	3.76	24.38	-21.62	46.00	14.29	10.02	0.07	LINE	Average
10	3.76	29.91	-26.09	56.00	19.82	10.02	0.07	LINE	QP
11	8.32	24.63	-25.37	50.00	14.30	10.15	0.18	LINE	Average
12	8.32	29.21	-30.79	60.00	18.88	10.15	0.18	LINE	QP

 Report Format Version: Rev. 01
 Page No. : 20 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	24°C	Humidity	56%
Test Engineer	Parody Lin	Phase	Neutral
Configuration	СТХ		

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.15	34.62	-21.25	55.87	24.82	9.78	0.02	NEUTRAL	Average
2	0.15	49.26	-16.61	65.87	39.46	9.78	0.02	NEUTRAL	QP
3	0.23	23.04	-29.53	52.57	13.22	9.79	0.03	NEUTRAL	Average
4	0.23	38.78	-23.79	62.57	28.96	9.79	0.03	NEUTRAL	QP
5	0.59	41.58	-4.42	46.00	31.74	9.80	0.04	NEUTRAL	Average
6	0.59	46.93	-9.07	56.00	37.09	9.80	0.04	NEUTRAL	QP
7	1.50	25.06	-20.94	46.00	15.17	9.83	0.06	NEUTRAL	Average
8	1.50	31.46	-24.54	56.00	21.57	9.83	0.06	NEUTRAL	QP
9	5.28	23.61	-26.39	50.00	13.59	9.91	0.11	NEUTRAL	Average
10	5.28	29.38	-30.62	60.00	19.36	9.91	0.11	NEUTRAL	QP
11	20.59	21.24	-28.76	50.00	10.78	10.19	0.27	NEUTRAL	Average
12	20.59	26.08	-33.92	60.00	15.62	10.19	0.27	NEUTRAL	QP

Note:

Level = Read Level + LISN Factor + Cable Loss

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter output power.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB 558074 D01 v03r02 section 9.2.3.2 Measurement using a power meter (PM).
- Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions
 Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 22 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.2.7. Test Result of Maximum Conducted Output Power

For Non-Beamforming Mode:

Temperature	26°C	Humidity	63%
Test Engineer	Serway Li	Configurations	IEEE 802.11b/g/n
Test Date	Nov. 28, 2014		

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 HT20

Channel Fraguency		Cond	ducted Power (d	Max. Limit	Dogult	
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
1	2412 MHz	11.20	12.34	14.82	30.00	Complies
6	2437 MHz	18.95	20.41	22.75	30.00	Complies
11	2462 MHz	11.26	11.20	14.24	30.00	Complies

Configuration IEEE 802.11n MCS0 HT40

Channel Frequency		Cond	ducted Power (c	Max. Limit	Result	
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Resuli
3	2422 MHz	8.86	9.23	12.06	30.00	Complies
6	2437 MHz	13.86	13.12	16.52	30.00	Complies
9	2452 MHz	10.25	9.86	13.07	30.00	Complies

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	16.66	30.00	Complies
6	2437 MHz	24.50	30.00	Complies
11	2462 MHz	18.13	30.00	Complies

Configuration IEEE 802.11g / Chain 1

•	•			
Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	13.24	30.00	Complies
6	2437 MHz	21.38	30.00	Complies
11	2462 MHz	14.62	30.00	Complies

: 23 of 113 Page No. FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Temperature	20°C	Humidity	59%
Test Engineer	Mars Lin	Configurations	IEEE 802.11a
Test Date	May 23, 2015		

Configuration IEEE 802.11a / Chain 3

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745 MHz	22.29	30.00	Complies
157	5785 MHz	22.08	30.00	Complies
165	5825 MHz	22.06	30.00	Complies

 Report Format Version: Rev. 01
 Page No.
 : 24 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

For Beamforming Mode:

Temperature	20 ℃	Humidity	59%
Test Engineer	Mars Lin	Configurations	IEEE 802.11 ac
Test Date	May 23, 2015		

For 5GHz Band

Configuration IEEE 802.11ac MCS0/Nss1 VHT20

Channel	Frequency	Conducted Power (dBm)			Max. Limit	Result	
Channel	riequericy	Chain 3	Chain 4	Chain 5	Total	(dBm)	Result
149	5745 MHz	22.06	22.12	22.07	26.85	30.00	Complies
157	5785 MHz	21.38	21.34	22.65	26.61	30.00	Complies
165	5825 MHz	21.24	21.37	22.17	26.38	30.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum\limits_{j=1}^{N_{\text{SNS}}} \left\{ \sum\limits_{k=1}^{N_{\text{SNS}}} g_{j,k} \right\}^2}{N_{\text{ANT}}} \right] = 4.77 \text{dBi} < 6 \text{dBi,So Power Limit} = 30 \text{dBm}$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40

Channel	Fraguenay	(Conducted	Power (dBm)	Max. Limit Result	
Channel	Frequency	Chain 3	Chain 4	Chain 5	Total	(dBm)	Resuli
151	5755 MHz	20.98	20.87	21.95	26.07	30.00	Complies
159	5795 MHz	20.71	20.74	22.03	25.98	30.00	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ext}} \left\{ \sum_{k=1}^{N_{ext}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.77 dBi < 6 dBi, So Power Limit = 30 dBm$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80

Channel	Frequency	Conducted Power (dBm) Max.		Max. Limit	Dogult		
Channel	Frequency	Chain 3	Chain 4	Chain 5	Total	(dBm)	Result
155	5775 MHz	19.63	19.72	20.15	24.61	30.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum\limits_{j=1}^{N_{SN}} \left\{ \sum\limits_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.77 dBi < 6 dBi, So Power Limit = 30 dBm$$

 Report Format Version: Rev. 01
 Page No.
 : 25 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test was performed in accordance with KDB 558074 D01 v03r02 for Performing Compliance
 Measurements on Digital Transmission Systems (DTS) section 10.2 Method PKPSD (peak PSD) and
 KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b)
 Measure and sum spectral maximal across the outputs.
- Use this procedure when the maximum conducted output power in the fundamental emission is
 used to demonstrate compliance. The EUT must be configured to transmit continuously at full power
 over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

 Report Format Version: Rev. 01
 Page No.
 : 26 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No. : 27 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

4.3.7. Test Result of Power Spectral Density

For Non-Beamforming Mode:

Temperature	26℃	Humidity	63%
Test Engineer	Serway Li	Configurations	IEEE 802.11 b/g/n

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 HT20

Channel	Fraguanay	Power I	Power Density (dBm/3kHz) Power Density Limit		Result	
Charine	Frequency	Chain 1	Chain 2	Total	(dBm/3kHz)	Resuli
1	2412 MHz	-13.86	-13.58	-10.71	8.00	Complies
6	2437 MHz	-6.03	-4.3	-2.07	8.00	Complies
11	2462 MHz	-13.81	-12.19	-9.91	8.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{MN}} \left\{ \sum_{k=1}^{N_{MNT}} g_{j,k} \right\}^2}{N_{MNT}} \right] = 5.51 dBi < 6 dBi, So Power Density Limit = 8 dBm/3 kHz$$

Configuration IEEE 802.11n MCS0 HT40

Channel	Eroguepov	Power	Power Density (dBm/3kHz) Power Den		Power Density Limit	Result
Charlie	Frequency	Chain 1	Chain 2	Total	Total (dBm/3kHz)	
3	2422 MHz	-18.63	-18.49	-15.55	8.00	Complies
6	2437 MHz	-14.11	-13.53	-10.80	8.00	Complies
9	2452 MHz	-18.25	-17.88	-15.05	8.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.51 dBi < 6 dBi, So Power Density Limit = 8 dBm/3 kHz$$

 Report Format Version: Rev. 01
 Page No.
 : 28 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	Power Density (dBm/3kHz)	Power Density Limit (dBm/3kHz)	Result
1	2412 MHz	-4.94	8.00	Complies
6	2437 MHz	1.07	8.00	Complies
11	2462 MHz	-4.11	8.00	Complies

Configuration IEEE 802.11g / Chain 1

Channel	Frequency	Power Density (dBm/3kHz)	Power Density Limit (dBm/3kHz)	Result
1	2412 MHz	-10.05	8.00	Complies
6	2437 MHz	-2.75	8.00	Complies
11	2462 MHz	-8.91	8.00	Complies

 Report Format Version: Rev. 01
 Page No. : 29 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	20°C	Humidity	59%
Test Engineer	Mars Lin	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Chain 3

Channel	Frequency	Power Density (dBm/3kHz)	Power Density Limit (dBm/3kHz)	Result
149	5745 MHz	-2.79	8.00	Complies
157	5785 MHz	-1.98	8.00	Complies
165	5825 MHz	-2.22	8.00	Complies

 Report Format Version: Rev. 01
 Page No. : 30 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

For Beamforming Mode:

Temperature	20°C	Humidity	59%
Test Engineer	Mars Lin	Configurations	IEEE 802.11 ac

For 5GHz Band

Configuration IEEE 802.11ac MCS0/Nss1 VHT20

Channel	Frequency	Power Density (dBm/3kHz)				Power Density	Result
		Chain 3	Chain 4	Chain 5	Total	Limit (dBm/3kHz)	KGSUII
149	5745 MHz	-3.73	-3.37	-2.48	1.61	8.00	Complies
157	5785 MHz	-3.53	-1.60	-3.59	1.97	8.00	Complies
165	5825 MHz	-3.38	-3.80	-3.80	1.12	8.00	Complies

Note:
$$DirectionalGain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{ANT}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.77 dBi < 6 dBi, So Power Density Limit = 8 dBm/3 kHz$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT40

Channel	Frequency	Power Density (dBm/3kHz)				Power Density	Result
		Chain 3	Chain 4	Chain 5	Total	Limit (dBm/3kHz)	Kesuli
151	5755 MHz	-6.03	-6.33	-7.25	-1.74	8.00	Complies
159	5795 MHz	-6.94	-7.28	-6.05	-1.95	8.00	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum\limits_{j=1}^{N_{ANT}} \left\{ \sum\limits_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.77 dBi < 6 dBi, So Power Density Limit = 8 dBm/3 kHz$$

Configuration IEEE 802.11ac MCS0/Nss1 VHT80

Channel	Frequency	Power Density (dBm/3kHz)				Power Density	Result
		Chain 3	Chain 4	Chain 5	Total	Limit (dBm/3kHz)	Resuli
155	5775 MHz	-12.02	-11.10	-10.40	-6.35	8.00	Complies

Note:
$$Directional Gain = 10 \cdot log \left[\frac{\sum\limits_{j=1}^{N_{ANT}} \left\{ \sum\limits_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.77 dBi < 6 dBi, So Power Density Limit = 8 dBm/3 kHz$$

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 31 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

For Non-Beamforming Mode:

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1

Date: 22.DEC.2014 17:47:31

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 2

Date: 22.DEC.2014 17:46:56

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 1

Date: 22.DEC.2014 17:52:19

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 2

Date: 22.DEC.2014 17:52:55

Power Density Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1

Date: 22.DEC.2014 17:36:26

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 22.DEC.2014 17:38:47

Power Density Plot on Configuration IEEE 802.11a / 5785 MHz / Chain 3

Date: 23.MAY.2015 20:44:44

For Beamforming Mode:

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5785 MHz / Chain 3

Date: 23.MAY.2015 20:47:58

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5785 MHz / Chain 4

Date: 23.MAY.2015 20:48:15

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5785 MHz / Chain 5

Date: 23.MAY.2015 20:48:32

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Chain 3

Date: 23.MAY.2015 20:51:19

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Chain 4

Date: 23.MAY.2015 20:51:37

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755 MHz / Chain 5

Date: 23.MAY.2015 20:51:58

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Chain 3

Date: 23.MAY.2015 20:57:03

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Chain 4

Date: 23.MAY.2015 20:57:32

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Chain 5

Date: 23.MAY.2015 20:58:04

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

	6dB Spectrum Bandwidth				
Spectrum Parameters	Setting				
Attenuation	Auto				
Span Frequency	> 6dB Bandwidth				
RBW	100kHz				
VBW ≥ 3 x RBW					
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				
	99% Occupied Bandwidth				
Spectrum Parameters	Setting				
Span	1.5 times to 5.0 times the OBW				
RBW	1 % to 5 % of the OBW				
VBW	≥ 3 x RBW				
Detector	Peak				
Trace	Max Hold				

4.4.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB 558074 D01 v03r02 for Performing Compliance Measurements on Digital Transmission Systems (DTS) section 8.0 DTS bandwidth=> 8.1 Option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

 Report Format Version: Rev. 01
 Page No. : 41 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

4.4.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 42 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.4.7. Test Result of 6dB Spectrum Bandwidth

For Non-Beamforming Mode:

Temperature	26°C	Humidity	63%
Test Engineer	Serway Li	Configurations	IEEE 802.11b/g/n

For 2.4GHz Band

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	15.68	17.76	500	Complies
6	2437 MHz	14.16	17.76	500	Complies
11	2462 MHz	12.80	17.76	500	Complies

Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
3	2422 MHz	32.96	36.20	500	Complies
6	2437 MHz	35.20	36.80	500	Complies
9	2452 MHz	30.08	36.40	500	Complies

Configuration IEEE 802.11b / Chain 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	8.00	10.32	500	Complies
6	2437 MHz	9.60	17.76	500	Complies
11	2462 MHz	8.00	10.32	500	Complies

Configuration IEEE 802.11g / Chain 1

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	14.00	16.56	500	Complies
6	2437 MHz	15.04	17.76	500	Complies
11	2462 MHz	13.76	16.65	500	Complies

Report Format Version: Rev. 01 Page No. : 43 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Temperature	20°C	Humidity	59%
Test Engineer	Mars Lin	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Chain 3

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	16.34	23.70	500	Complies
157	5785 MHz	16.34	24.14	500	Complies
165	5825 MHz	16.34	23.27	500	Complies

For Beamforming Mode

Temperature	20°C	Humidity	59%
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac

For 5GHz Band

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Chain 3 + Chain 4 + Chain 5

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	17.56	25.79	500	Complies
157	5785 MHz	17.56	25.96	500	Complies
165	5825 MHz	17.56	25.61	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Chain 3 + Chain 4 + Chain 5

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
151	5755 MHz	36.17	48.48	500	Complies
159	5795 MHz	36.40	50.65	500	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Chain 3 + Chain 4 + Chain 5

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
155	5775 MHz	75.36	76.70	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 45 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

For Non-Beamforming Mode:

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Chain 1 \pm Chain 2

Date: 22.DEC.2014 20:47:09

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCs0 HT20 / 2437 MHz / Chain $1\,+$ Chain $2\,$

Date: 22.DEC.2014 20:32:52

Report Format Version: Rev. 01 Page No. : 46 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2452 MHz / Chain 1 \pm Chain 2

Date: 22.DEC.2014 20:50:07

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCs0 HT40 / 2437 MHz / Chain $1\,+$ Chain $2\,$

Date: 22.DEC.2014 20:34:42

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2462 MHz / Chain 1

Date: 22.DEC.2014 20:41:10

99% Occupied Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1

Date: 22.DEC.2014 20:28:51

Report Format Version: Rev. 01 Page No. : 48 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2462 MHz / Chain 1

Date: 22.DEC.2014 20:43:33

99% Occupied Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 22.DEC.2014 20:30:12

6 dB Bandwidth Plot on Configuration IEEE 802.11a / 5785 MHz / Chain 3

Date: 23.MAY.2015 20:40:15

99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / 5785 MHz / Chain 3

Date: 23.MAY.2015 20:39:32

For Beamforming Mode:

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5785 MHz /

Chain 3 + Chain 4 + Chain 5

Date: 23.MAY.2015 20:34:22

99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / 5785 MHz / Chain 3 + Chain 5

Date: 23.MAY.2015 20:34:54

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5755MHz / Chain 3 + Chain 4 + Chain 5

99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / 5795MHz / Chain 3 + Chain 4 + Chain 5

Date: 23.MAY.2015 20:31:52

Report Format Version: Rev. 01 Page No. : 52 of 113 FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Chain 3 + Chain 5

99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / 5775 MHz / Chain 3 + Chain 5

Date: 23.MAY.2015 20:27:29

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1GHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 54 of 113 FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

 Report Format Version: Rev. 01
 Page No.
 : 55 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

Report Format Version: Rev. 01 Page No. : 57 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	СТХ
Test Date	May 23, 2015		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limit_limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: Rev. 01 Page No. : 58 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	СТХ

Horizontal

	Freq	Level		0∨er Limit						T/Pos	Pol/Phase	Remark
	MHz	dBu∀/m	dBu\//m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	50.37	26.44	40.00	-13.56	43.61	0.84	7.44	25.45	400	65	HORIZONTAL	Peak
2	161.92	27.94	43.50	-15.56	45.59	1.53	9.51	28.69	200	90	HORIZONTAL	Peak
3	500.45	29.18	46.00	-16.82	37.12	2.82	16.92	27.68	150	148	HORIZONTAL	Peak
4	750.71	30.61	46.00	-15.39	35.18	3.53	19.69	27.79	125	216	HORIZONTAL	Peak
5	891.36	31.05	46.00	-14.95	33.54	3.96	20.58	27.03	125	358	HORIZONTAL	Peak
6	1000.00	32.36	54.00	-21.64	33.02	4.21	21.44	26.31	100	234	HORIZONTAL	Peak

Report Format Version: Rev. 01 Page No. : 59 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Vertical

				0∨er						T/Pos		
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Pol/Phase	Remark
	MHz	dBu\//m	dBu√/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	44.55	34.00	40.00	-6.00	48.93	0.79	9.74	25.46	100	128	VERTICAL	Peak
2	50.37	33.12	40.00	-6.88	50.29	0.84	7.44	25.45	100	254	VERTICAL	QP
3	57.16	33.69	40.00	-6.31	53.00	0.88	5.51	25.70	200	94	VERTICAL	Peak
4	82.38	32.15	40.00	-7.85	50.39	1.06	7.13	26.43	200	15	VERTICAL	Peak
5	105.66	30.14	43.50	-13.36	44.91	1.22	11.03	27.02	100	196	VERTICAL	Peak
6	500.45	28.39	46.00	-17.61	36.33	2.82	16.92	27.68	125	69	VERTICAL	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.9. Results for Radiated Emissions (1GHz~10th Harmonic)

For Non-Beamforming Mode:

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang /	Configurations	IEEE 802.11n MCS0 HT20 CH 1 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Dec. 20, 2014		

Horizontal

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu\/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4814.60	33.09	54.00	-20.91	29.08	5.85	33.36	35.20	Average	100	147	HORIZONTAL
2	4827.28	45.43	74.00	-28.57	41.37	5.87	33.39	35.20	Peak	100	147	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		Cm	deg
1 2	4814.64 4814.64							35.20 35.20	Average Peak	100 100	360 VERTICAL 360 VERTICAL

 Report Format Version: Rev. 01
 Page No. : 61 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang/	Configurations	IEEE 802.11n MCS0 HT20 CH 6 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Dec. 20, 2014		

Horizontal

			Limit	0ver	Read	Cable	Antenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	4872.70	37.04	54.00	-16.96	32.84	5.92	33.48	35.20	Average	148	258	HORIZONTAL
2	4878.10	48.95	74.00	-25.05	44.75	5.92	33.48	35.20	Peak	148	258	HORIZONTAL
3	7311.00	55.54	74.00	-18.46	47.33	7.13	36.51	35.43	Peak	112	221	HORIZONTAL
4	7312.50	41.40	54.00	-12.60	33.19	7.13	36.51	35.43	Average	112	221	HORIZONTAL

Vertical

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	4872.88	51.55	74.00	-22.45	47.35	5.92	33.48	35.20	Peak	206	36	VERTICAL
2	4875.68	39.10	54.00	-14.90	34.90	5.92	33.48	35.20	Average	206	36	VERTICAL
3	7312.88	42.36	54.00	-11.64	34.15	7.13	36.51	35.43	Average	112	231	VERTICAL
4	7314.68	56.09	74.00	-17.91	47.88	7.13	36.51	35.43	Peak	112	231	VERTICAL

 Report Format Version: Rev. 01
 Page No. : 62 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	26°C	Humidity	63%				
Test Engineer	Lucas Huang /	Configurations	IEEE 802.11n MCS0 HT20 CH 11 /				
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2				
Test Date	Dec. 20, 2014						

Horizontal

	Freq	Level	Limit Line	0ver Limit						A/Pos		Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	4913.92	45.30	74.00	-28.70	41.01	5.95	33.54	35.20	Peak	100	117	HORIZONTAL
2	4942.56	33.25	54.00	-20.75	28.86	5.98	33.61	35.20	Average	45	117	HORIZONTAL

Vertical

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos Pol/Phase	
	MHz	dBu\//m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	_
1 2	4910.24 4943.68								Peak Average	100 100	348 VERTICAL 348 VERTICAL	

 Report Format Version: Rev. 01
 Page No.
 : 63 of 113

 FCC ID: Z3WAIR49200
 Issued Date
 : May 26, 2015

Temperature	26°C	Humidity	63%			
Toot Engineer	Lucas Huang/	Configurations	IEEE 802.11n MCS0 HT40 CH 3 /			
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2			
Test Date	Dec. 20, 2014					

Horizontal

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4826.96	45.89	74.00	-28.11	41.83	5.87	33.39	35.20	Peak	100	22	HORIZONTAL
2	4846.00	33.20	54.00	-20.80	29.10	5.88	33.42	35.20	Average	100	22	HORIZONTAL

	Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB	 	deg
1 2	4844.32 4852.32								 100 100	357 VERTICAL 357 VERTICAL

Temperature	26°C	Humidity	63%			
Test Engineer	Lucas Huang /	Configurations	IEEE 802.11n MCS0 HT40 CH 6 /			
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2			
Test Date	Dec. 20, 2014					

Horizontal

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu∀	dB	dB/m	dB		- Cm	deg	
1	4865.04	46.04	74.00	-27.96	41.89	5.90	33.45	35.20	Peak	100	343	HORIZONTAL
2	4893.52	33.40	54.00	-20.60	29.16	5.93	33.51	35.20	Average	100	343	HORIZONTAL

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos Pol/Phase	
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4862.40 4881.36								Average Peak	100 100	168 VERTICAL 168 VERTICAL	

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang /	Configurations	IEEE 802.11n MCS0 HT40 CH 9 /
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2
Test Date	Dec. 20, 2014		

Horizontal

	Freq	Level	Limit Line	0ver Limit				_		A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	4892.16	45.76	74.00	-28.24	41.52	5.93	33.51	35.20	Peak	100	115	HORIZONTAL
2	4894.88	33.34	54.00	-20.66	29.10	5.93	33.51	35.20	Average	45	115	HORIZONTAL

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1	4892.00								Average Peak	100	184 VERTICAL

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11b CH 1 / Chain 1
Test Date	Dec. 19, 2014		

Horizontal

	Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4823.87 4823.97								Peak Average	153 153		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line	0ver Limit						A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg
1 2	4823.95 4824.12								Average Peak	101 101	278 VERTICAL 278 VERTICAL

 Report Format Version: Rev. 01
 Page No. : 67 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

: 68 of 113

Temperature	26℃	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11b CH 6 / Chain 1
Test Date	Dec. 19, 2014		

Horizontal

	Enec	Leval		0ver Limit						A/Pos	T/Pos	Pol/Phase
	rreq	rever	Line	CIMIC	rever	LOSS	ractor	ractor	Reliairk			POI/Pliase
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4873.96	49.53	54.00	-4.47	45.33	5.92	33.48	35.20	Average	100	47	HORIZONTAL
2	4874.06	53.77	74.00	-20.23	49.57	5.92	33.48	35.20	Peak	100	47	HORIZONTAL
3	7311.04	50.04	74.00	-23.96	41.83	7.13	36.51	35.43	Peak	120	150	HORIZONTAL
4	7311.74	36.98	54.00	-17.02	28.77	7.13	36.51	35.43	Average	120	150	HORIZONTAL

	Freq	Level		0∨er Limit						A/Pos		Pol/Phase
	MHz	dBu\//m	dBu\//m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	4873.97	53.97	54.00	-0.03	49.77	5.92	33.48	35.20	Average	207	34	VERTICAL
2	4874.03	56.69	74.00	-17.31	52.49	5.92	33.48	35.20	Peak	207	34	VERTICAL
3	7311.68	37.89	54.00	-16.11	29.68	7.13	36.51	35.43	Average	188	337	VERTICAL
4	7311.88	50.21	74.00	-23.79	42.00	7.13	36.51	35.43	Peak	188	337	VERTICAL

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11b CH 11 / Chain 1
Test Date	Dec. 19, 2014		

Horizontal

	Freq	Level	Limit Line	0∨er Limit						A/Pos		Pol/Phase
	MHz	dBu\//m	dBu√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4923.95	48.81	74.00	-25.19	44.46	5.97	33.58	35.20	Peak	100	252	HORIZONTAL
2	4923.97	39.63	54.00	-14.37	35.28	5.97	33.58	35.20	Average	100	252	HORIZONTAL

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos Pol/Phase	
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4923.94 4924.11								Average Peak	116 116	117 VERTICAL	

Temperature	26℃	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11g CH 1 / Chain 1
Test Date	Dec. 20, 2014		

Horizontal

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1 2	4824.13 4825.00								Peak Average	100 100		HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	0∨er Limit					A/Pos		Pol/Phase
	MHz	dBu∀/m	dBu\√/m	dB	dBu∀	dB	dB/m	dB	 cm	deg	
1 2	4823.00 4823.00								 130 130		VERTICAL VERTICAL

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11g CH 6 / Chain 1
Test Date	Dec. 20, 2014		

Horizontal

	Freq	Level		0ver Limit					Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1 2	4843.84 4844.68								Average Peak	100 100		HORIZONTAL HORIZONTAL

Vertical

	Freq	Level	Limit Line							A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	4840.08	46.58	74.00	-27.42	42.48	5.88	33.42	35.20	Peak	100	188	VERTICAL
2	4853.88	33.48	54.00	-20.52	29.33	5.90	33.45	35.20	Average	100	188	VERTICAL

 Report Format Version: Rev. 01
 Page No. : 71 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	26°C	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11g CH 11 / Chain 1
Test Date	Dec. 20, 2014		

Horizontal

	Freq	Level	Limit Line	0∨er Limit						A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	4914.32	33.23	54.00	-20.77	28.94	5.95	33.54	35.20	Average	100	192	HORIZONTAL
2	4924.84	46.08	74.00	-27.92	41.73	5.97	33.58	35.20	Peak	100	192	HORIZONTAL

Vertical

	Freq	Level	Limit Line	Over Limit						A/Pos	T/Pos Pol/Ph	ase
	MHz	dBu\//m	dBu\//m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	4932.60									100	328 ∀ERTIC	
2	4934.00	33.10	54.00	-20.90	28.75	5.97	33.58	35.20	Average	100	328 ∨ERTIC	AL

 Report Format Version: Rev. 01
 Page No. : 72 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11a CH 149 / Chain 3
Test Date	May 14, 2015		

Horizontal

	Freq	Level							Pol/Phase	T/Pos	-	Remark
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11488.96	61.06	74.00	-12.94	45.15	11.03	35.03	39.91	HORIZONTAL	317	167	Peak

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11488.93	62.43	74.00	-11.57	46.53	11.03	35.03	39.90	VERTICAL	241	189	Peak
2	11491.53	47.73	54.00	-6.27	31.82	11.04	35.03	39.90	VERTICAL	241	189	Average

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11a CH 157 / Chain 3
Test Date	May 14, 2015		

Horizontal

	Freq	Level							Pol/Phase	T/Pos	A/Pos Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	Cm
1	11568.44	60.07	74.00	-13.93	44.27	11.07	35.03	39.76	HORIZONTAL	326	155 Peak
2	11570.09	46.54	54.00	-7.46	30.74	11.07	35.03	39.76	HORIZONTAL	326	155 Average

	Freq	Level							Pol/Phase	T/Pos	•	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11568.29	63.11	74.00	-10.89	47.30	11.07	35.03	39.77	VERTICAL	242	227	Peak
2	11569.91	48.27	54.00	-5.73	32.46	11.07	35.03	39.77	VERTICAL	242	227	Average

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11a CH 165 / Chain 3
Test Date	May 14, 2015		

Horizontal

	Freq	Level							Pol/Phase	T/Pos	•	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	CM	
1	11650.03	46.40	54.00	-7.60	30.74	11.10	35.04	39.60	HORIZONTAL	222	175	Average
2	11654.28	60.42	74.00	-13.58	44.77	11.10	35.04	39.59	HORIZONTAL	222	175	Peak

Vertical

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11648.90	62.84	74.00	-11.16	47.15	11.10	35.04	39.63	VERTICAL	232	181	Peak
2	11651.53	47.97	54.00	-6.03	32.34	11.10	35.04	39.57	VERTICAL	232	181	Average

 Report Format Version: Rev. 01
 Page No. : 75 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

For Beamforming Mode:

Temperature	22°C	Humidity	38%				
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac MC\$0/Nss1 VHT20 CH 149 /				
Test Engineer	IVICIS LITI	Configurations	Chain 3 + Chain 4 + Chain 5				
Test Date	May 14, 2015						

Horizontal

Freq	Level							Pol/Phase	T/Pos	•	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL	296 296		Average Peak

Vertical

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11489.60	66.67	74.00	-7.33	50.77	11.03	35.03	39.90	VERTICAL	280	225	Peak
2	11490.50	50.72	54.00	-3.28	34.82	11.03	35.03	39.90	VERTICAL	280	225	Average

 Report Format Version: Rev. 01
 Page No. : 76 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 157 /
lesi Engineei	IVIGIS LITI	Comiguidions	Chain 3 + Chain 4 + Chain 5
Test Date	May 14, 2015		

Horizontal

	Freq	Level							Pol/Phase	T/Pos	A/Pos Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	
1	11569.10	50.65	54.00	-3.35	34.85	11.07	35.03	39.76	HORIZONTAL	203	184 Average
2	11570.50	65.27	74.00	-8.73	49.47	11.07	35.03	39.76	HORIZONTAL	203	184 Peak

Freq	Level			Read Level				Pol/Phase	T/Pos	A/Pos	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
11573.90 11576.70									314 314		Average Peak

: 78 of 113

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165 /
lesi Engineei	IVICIS LITI	Configurations	Chain 3 + Chain 4 + Chain 5
Test Date	May 14, 2015		

Horizontal

Freq	Level							Pol/Phase	T/Pos	•	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL	235 235		Average Peak

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	CM	
1	11648.40	48.24	54.00	-5.76	32.55	11.10	35.04	39.63	VERTICAL	289	218	Average
2	11649.80	62.52	74.00	-11.48	46.83	11.10	35.04	39.63	VERTICAL	289	218	Peak

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 / Chain 3 + Chain 4 + Chain 5
Test Date	May 14, 2015		

Horizontal

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11510.20	66.60	74.00	-7.40	50.71	11.04	35.03	39.88	HORIZONTAL	236	180	Peak
2	11515.90	48.95	54.00	-5.05	33.06	11.05	35.03	39.87	HORIZONTAL	236	180	Average

	Freq	Level		Over Limit					Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	CM	
1	11523.70	46.93	54.00	-7.07	31.08	11.05	35.03	39.83	VERTICAL	224	218	Average
2	11526.00	62.40	74.00	-11.60	46.55	11.05	35.03	39.83	VERTICAL	224	218	Peak

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /
Test Engineer	IVICIS LIN	Configurations	Chain 3 + Chain 4 + Chain 5
Test Date	May 14, 2015		

Horizontal

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11570.10	64.72	74.00	-9.28	48.92	11.07	35.03	39.76	HORIZONTAL	299	188	Peak
2	11575.10	50.13	54.00	-3.87	34.34	11.07	35.03	39.75	HORIZONTAL	299	188	Average

Vertical

	Freq	Level							Pol/Phase	T/Pos	A/Pos	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
1	11590.10	61.05	74.00	-12.95	45.30	11.08	35.03	39.70	VERTICAL	0	176	Peak
2	11598.60	46.63	54.00	-7.37	30.88	11.08	35.03	39.70	VERTICAL	0	176	Average

 Report Format Version: Rev. 01
 Page No. : 80 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Temperature	22°C	Humidity	38%
Test Engineer	Mars Lin	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /
lesi Engineei	IVIGIS LIII	Cornigulations	Chain 3 + Chain 4 + Chain 5
Test Date	May 14, 2015		

Horizontal

Freq	Level							Pol/Phase	T/Pos	•	Remark
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	cm	
								HORIZONTAL HORIZONTAL			Peak Average

Vertical

	Freq	Level							Pol/Phase	T/Pos	•	Remark
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m		deg	CM	
									VERTICAL	231		Average
2	11528.90	58.40	74.00	-15.60	42.55	11.05	35.03	39.83	VERTICAL	231	187	Peak

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 Page No. : 81 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	, , , , , , , , , , , , , , , , , , , ,				
Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3.

For Radiated Out of Band Emission Measurement:

 Test was performed in accordance with KDB 558074 D01 v03r02 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 10.1 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure

Report Format Version: Rev. 01 Page No. : 82 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

For non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

For beamforming mode:

The EUT was programmed to be in beamforming transmitting mode.

Report Format Version: Rev. 01 Page No. : 83 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

4.6.7. Test Result of Band Edge and Fundamental Emissions

For Non-Beamforming Mode:

Temperature	26℃	Humidity	63%			
Test Engineer	Lucas Huang/	Configurations	IEEE 802.11n MCS0 HT20 CH 1, 6, 11 /			
iesi Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2			
Test date	Dec. 19, 2014					

Channel 1

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg
1	2390.00				21.73				Average	102	255 VERTICAL
2	2390.00	68.82	74.00	-5.18	36.68	4.09	28.05	0.00	Peak	102	255 VERTICAL
3	2410.80	97.73			65.53	4.11	28.09	0.00	Average	102	255 VERTICAL
4	2413.20	108.31			76.11	4.11	28.09	0.00	Peak	102	255 ∀ERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	0∨er Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu∖∕	dB	dB/m	dB		cm	deg	
1	2388.60	71.11	74.00	-2.89	38.97	4.09	28.05	0.00	Peak	166	263	VERTICAL
2	2390.00	52.39	54.00	-1.61	20.25	4.09	28.05	0.00	Average	166	263	VERTICAL
3	2436.20	105.68			73.38	4.12	28.18	0.00	Average	166	263	VERTICAL
4	2436.20	116.79			84.49	4.12	28.18	0.00	Peak	166	263	VERTICAL
5	2483.50	53.25	54.00	-0.75	20.83	4.16	28.26	0.00	Average	166	263	VERTICAL
6	2483.80	69.95	74.00	-4.05	37.53	4.16	28.26	0.00	Peak	166	263	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

			Limit	0∨er	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol	/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu∀	dB	dB/m	dB			deg	
1	2461.20	96.43			64.07	4.14	28.22	0.00	Average	135	289 ∨ER	TICAL
2	2463.60	106.94			74.58	4.14	28.22	0.00	Peak	135	289 VER	TICAL
3	2483.50	53.75	54.00	-0.25	21.33	4.16	28.26	0.00	Average	135	289 VER	TICAL
4	2483.80	68.11	74.00	-5.89	35.69	4.16	28.26	0.00	Peak	135	289 VER	TICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	26°C	Humidity	63%			
Tost Engineer	Lucas Huang/	Configurations	IEEE 802.11n MCS0 HT40 CH 3, 6, 9 /			
Test Engineer	Andy Tsai	Configurations	Chain 1 + Chain 2			
Test date	Dec. 20, 2014					

Channel 3

			Limit	0∨er	Read	Cable	Antenna	Preamp		A/Pos	T/Pos
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark		Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg
1	2386.00	53.96	54.00	-0.04	21.82	4.09	28.05	0.00	Average	100	272 VERTICAL
2	2388.80	68.69	74.00	-5.31	36.55	4.09	28.05	0.00	Peak	100	272 VERTICAL
3	2420.80	94.61			62.36	4.12	28.13	0.00	Average	100	272 VERTICAL
4	2423.20	103.92			71.67	4.12	28.13	0.00	Peak	100	272 VERTICAL

Item 3, 4 are the fundamental frequency at 2422 MHz.

Channel 6

			Limit	0∨er	Read	CableA	htenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∨/m	dBu\//m	dB	dBu∨	dB	dB/m	dB			deg	
1	2388.60	53.89	54.00	-0.11	21.75	4.09	28.05	0.00	Average	166	265	VERTICAL
2	2389.80	69.85	74.00	-4.15	37.71	4.09	28.05	0.00	Peak	166	265	VERTICAL
3	2435.80	97.98			65.68	4.12	28.18	0.00	Average	166	265	VERTICAL
4	2438.20	108.25			75.94	4.13	28.18	0.00	Peak	166	265	VERTICAL
5	2483.50	53.60	54.00	-0.40	21.18	4.16	28.26	0.00	Average	166	265	VERTICAL
6	2483.50	68.23	74.00	-5.77	35.81	4.16	28.26	0.00	Peak	166	265	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 9

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	2448.80	104.54			72.23	4.13	28.18	0.00	Peak	137	318	VERTICAL
2	2449.20	94.51			62.20	4.13	28.18	0.00	Average	137	318	VERTICAL
3	2484.00	53.73	54.00	-0.27	21.31	4.16	28.26	0.00	Average	137	318	VERTICAL
4	2488.80	66.84	74.00	-7.16	34.37	4.17	28.30	0.00	Peak	137	318	VERTICAL

Item 1, 2 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Temperature	26℃	Humidity	63%
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11b CH 1, 6, 11 / Chain 1
Test Date	Dec. 19, 2014		

Channel 1

	Freq	Level	Limit Line		Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\//m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1 2	2389.60 2390.00						28.05 28.05		Peak Average	100 100		VERTICAL VERTICAL
3 4	2411.00 2411.20				75.07 71.16		28.09 28.09		Peak Average	100 100		VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	0ver Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	2389.00	51.38	54.00	-2.62	19.24	4.09	28.05	0.00	Average	101	70	VERTICAL
2	2390.00	60.99	74.00	-13.01	28.85	4.09	28.05	0.00	Peak	101	70	VERTICAL
3	2435.40	107.80			75.50	4.12	28.18	0.00	Average	101	70	VERTICAL
4	2436.20	112.03			79.73	4.12	28.18	0.00	Peak	101	70	VERTICAL
5	2483.50	52.53	54.00	-1.47	20.11	4.16	28.26	0.00	Average	101	70	VERTICAL
6	2483.50	62.16	74.00	-11.84	29.74	4.16	28.26	0.00	Peak	101	70	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

			Limit	0ver	Read	CableA	ntenna	Preamp		A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu√/m	dBu\//m	dB	dBu∀	dB	dB/m	dB			deg	
1	2461.20	103.44			71.08	4.14	28.22	0.00	Average	100	111	VERTICAL
2	2463.00	107.42			75.06	4.14	28.22	0.00	Peak	100	111	VERTICAL
3	2483.50	53.18	54.00	-0.82	20.76	4.16	28.26	0.00	Average	100	111	VERTICAL
4	2483.50	61.28	74.00	-12.72	28.86	4.16	28.26	0.00	Peak	100	111	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	26°C	Humidity	63%			
Test Engineer	Lucas Huang / Andy Tsai	Configurations	IEEE 802.11g CH 1, 6, 11 /			
lesi Engineei	Lucus nuarig / Ariay isai	Configurations	Chain 1			
Test Date	Dec. 19, 2014					

Channel 1

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\//m	dBu\√/m	dB	dBu\/	dB	dB/m	dB			deg	
1	2389.40				35.52				Peak	100		VERTICAL
2	2390.00	53.69	54.00	-0.31	21.55	4.09	28.05	0.00	Average	100	85	VERTICAL
3	2410.80	105.64			73.44	4.11	28.09	0.00	Peak	100	85	VERTICAL
4	2411.00	94.66			62.46	4.11	28.09	0.00	Average	100	85	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Free	Level	Limit Line	0ver Limit				Preamp		A/Pos	T/Pos	Pol/Phase
	11.04	LCVCI	Line	Camac	LCVCX	2033	raccor	raccor	Kallar K			roz/riiase
	MHz	dBu√/m	dBu\√/m	dB	dBu√	dB	dB/m	dB		cm	deg	
1	2389.40	70.47	74.00	-3.53	38.33	4.09	28.05	0.00	Peak	100	71	VERTICAL
2	2390.00	53.64	54.00	-0.36	21.50	4.09	28.05	0.00	Average	100	71	VERTICAL
3	2435.80	111.86			79.56	4.12	28.18	0.00	Peak	100	71	VERTICAL
4	2436.20	101.41			69.11	4.12	28.18	0.00	Average	100	71	VERTICAL
5	2483.50	53.54	54.00	-0.46	21.12	4.16	28.26	0.00	Average	100	71	VERTICAL
6	2490.60	68.83	74.00	-5.17	36.36	4.17	28.30	0.00	Peak	100	71	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu\√/m	dBu√/m	dB	dBu∖∕	dB	dB/m	dB			deg	
1	2463.00	96.06			63.70	4.14	28.22	0.00	Average	100	108	VERTICAL
2	2463.00	106.11			73.75	4.14	28.22	0.00	Peak	100	108	VERTICAL
3	2483.80	53.70	54.00	-0.30	21.28	4.16	28.26	0.00	Average	100	108	VERTICAL
4	2485.00	66.64	74.00	-7.36	34.22	4.16	28.26	0.00	Peak	100	108	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Report Format Version: Rev. 01 Page No. : 87 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

For Emission not in Restricted Band

For Non-Beamforming Mode:

Plot on Configuration IEEE 802.11n MCS0 HT20 / Reference Level

Date: 20.DEC.2014 01:19:48

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:20:56

Report Format Version: Rev. 01 Page No. : 88 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 20.DEC.2014 01:21:45

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:22:45

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 2500MHz~26500MHz (down 30dBc)

Date: 20.DEC.2014 01:23:24

Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level

Date: 20.DEC.2014 01:25:48

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:27:36

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 2500MHz~26500MHz (down 30dBc)

Date: 20.DEC.2014 01:28:25

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:29:21

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 2500MHz~26500MHz (down 30dBc)

Date: 20.DEC.2014 01:29:41

Plot on Configuration IEEE 802.11b / Reference Level

Date: 20.DEC.2014 01:03:20

Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:08:48

Plot on Configuration IEEE 802.11b / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 20.DEC.2014 01:07:54

Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:09:11

Plot on Configuration IEEE 802.11b / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)

Date: 20.DEC.2014 01:10:01

Plot on Configuration IEEE 802.11g / Reference Level

Date: 20.DEC.2014 01:11:30

Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:13:52

Plot on Configuration IEEE 802.11g / CH 1 / 2500MHz~26500MHz (down 30dBc)

Date: 20.DEC.2014 01:14:56

Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 20.DEC.2014 01:15:39

Plot on Configuration IEEE 802.11g / CH 11 / 2500MHz \sim 26500MHz (down 30dBc)

Date: 20.DEC.2014 01:16:08

Plot on Configuration IEEE 802.11a / Reference Level

Date: 14 M AY .2015 12:24:13

Plot on Configuration IEEE 802.11a / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 14 M AY .2015 12:27:23

Plot on Configuration IEEE 802.11a / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 14 M AY .2015 12:26:38

Plot on Configuration IEEE 802.11a / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 14 M AY .2015 12:28:03

 Report Format Version: Rev. 01
 Page No. : 101 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015

Plot on Configuration IEEE 802.11a / CH 165 / $5850 MHz \sim 40000 MHz$ (down 30dBc)

Date: 14 M AY .2015 12:28:27

For Beamforming Mode:

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Reference Level

Date: 14.MAY.2015 11:30:07

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 30MHz~5725MHz (down 30dBc)

Date: 14.MAY.2015 11:32:54

Report Format Version: Rev. 01 Page No. : 103 of 113 FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 149 / 5850MHz~40000MHz (down 30dBc)

Date: 14.MAY.2015 11:33:44

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / 30MHz~5725MHz (down 30dBc)

Date: 14.MAY.2015 11:35:14

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / CH 165 / $5850 MHz \sim 40000 MHz$ (down 30dBc)

Date: 14.MAY.2015 11:34:45

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Reference Level

Date: 14.MAY.2015 11:40:33

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 30MHz~5725MHz (down 30dBc)

Date: 14.MAY.2015 11:41:48

Report Format Version: Rev. 01 Page No. : 106 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 151 / 5850MHz~40000MHz (down 30dBc)

Date: 14.MAY.2015 11:42:32

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 30MHz~5725MHz (down 30dBc)

Date: 14.MAY.2015 11:44:45

: 108 of 113

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / CH 159 / 5850MHz~40000MHz (down 30dBc)

Date: 14.MAY.2015 11:43:43

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Reference Level

Date: 14.MAY.2015 11:54:36

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 30MHz~5725MHz (down 30dBc)

Date: 14.MAY.2015 11:55:33

Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / CH 155 / 5850MHz~40000MHz (down 30dBc)

Date: 14.MAY.2015 11:56:17

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01 Page No. : 111 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	CS 30 100355 9kHz ~ 2.75GHz		Apr. 22, 2015	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Dec. 02, 2014	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 02, 2014	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	Dec. 03, 2014	Conduction (CO01-CB)
Software	Audix	E3	5.410e	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 26, 2014	Radiation (03CH01-CB)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Jul. 28, 2014	Radiation (03CH01-CB
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Oct. 28, 2014	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Aug. 22, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02009	1GHz ~ 26.5GHz	Dec. 17, 2014	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 25, 2014	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 06, 2014	Radiation (03CH01-CB)
EMI Test Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8GHz	Jan. 21, 2015	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 15, 2014	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	101026	9kHz~40GHz	Aug. 28, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 15, 2014	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	1126203	300MHz~40GHz	Oct. 06, 2014	Conducted (TH01-CB)
Power Meter	Anritsu	ML2495A	1210004	300MHz~40GHz	Oct. 06, 2014	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

NCR means Non-Calibration required.

Report Format Version: Rev. 01 Page No. : 112 of 113
FCC ID: Z3WAIR49200 Issued Date : May 26, 2015

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

 Report Format Version: Rev. 01
 Page No. : 113 of 113

 FCC ID: Z3WAIR49200
 Issued Date : May 26, 2015