

FACULTY OF APPLIED SCIENCE

MATH2021-1 HIGH-DIMENSIONAL STATISTICS

Project 1 : Exploratory Data Analysis

Teacher: Gentiane HAESBROECK

 $\begin{array}{c} Group: \\ Romain\ LAMBERMONT \\ Arthur\ LOUIS \end{array}$

Master in Data Science October 26, 2022

Contents

1	\mathbf{Pre}	esentation of the data	1
	1.1	Discussion on the data	1
	1.2	Link between the variables	1
2	Info	ormation about missing data	2
3	Exp	oloratory data analysis	3
	3.1	Statistical analysis	3
	3.2	Correlation structure of the data	6
	3.3	Outlying observations using Mahalanobis distance	7
4	Cor	rrelation analysis with data reduction	7
	4.1	Choice between PCA and t-SNE	7
	4.2	2D plot of the data	8
$\mathbf{L}_{\mathbf{i}}$	\mathbf{st}	of Figures	
	1		2
	2		2
	3	v	5
	4	Correlation matrix	6
	5		6
	6	Scree plot of the PCA	7
	7	2D plot of the data	8
Li	\mathbf{st}	of Tables	
	1	Summary statistics	4

1 Presentation of the data

1.1 Discussion on the data

The data we used in this project is a subset of the data collected by the ENEA (National Agency for New Technologies, Energy and Sustainable Economic Development) alonside a road in a polluted area of Italy. This dataset is available on the UCI repository¹. The data was harvested using a multicensor device and reference analyzers. The data was collected between March 2004 and February 2005.

There are 5 couples of variables in the dataset, each couple is composed of a variable measured by the reference analyzer and the corresponding variable measured by the multicensor device. The values represent the hourly average concentration of each variable. In addition to the variables couples, we have 3 other variables representing the temperature and the humidity (both relative and absolute). The different values are stored in the following columns of our dataset:

- CO(GT): concentration of CO in the air (in mg/m³)
- PT08.S1(C0): average sensor response (nominally CO targeted)
- NMHC(GT): concentration of non-methane hydrocarbons in the air (in $\mu g/m^3$)
- C6H6(GT): concentration of benzene in the air (in $\mu g/m^3$)
- PT08.S2(NMHC): average sensor response (nominally NMHC targeted)
- NOx(GT): concentration of NOx in the air (in parts per billion)
- PT08.S3(NOx): average sensor response (nominally NOx targeted)
- NO2(GT) : concentration of NO₂ in the air (in $\mu g/m^3$)
- PT08.S4(NO2): average sensor response (nominally NO₂ targeted)
- PT08.S5(03): average sensor response (nominally O₃ targeted)
- T : temperature (in °C)
- RH: relative humidity (in %)
- AH: absolute humidity

On top of that, we created a binary indicator per variable measured by the reference analyzers which is equal to 1 when the measured value is above the median of the variable and 0 otherwise. The binary values are stored in the following columns:

- HIGH_CO: binary indicator for CO (above/under median)
- HIGH_NMHC: binary indicator for NMHC (above/under median)
- HIGH_C6H6: binary indicator for benzene (above/under median)
- HIGH_NOx: binary indicator for NOx (above/under median)
- HIGH_NO2: binary indicator for NO2 (above/under median)

1.2 Link between the variables

The values for each couple are obviously going to be quite correlated, as they are measuring the same thing. Furthermore, the values for the binary indicators are going to be highly correlated with the values of the corresponding measurements from the reference analyzers (as the binary indicator is equal to 1 when the value is above the median and 0 otherwise).

¹https://archive.ics.uci.edu/ml/datasets/air+quality

2 Information about missing data

We have a total of 2.1% of missing values but this number is overestimated because the binary indicators are taken into account. The real ratio is 1.7% without this indicators. The missing values are due to hardware problems related to the measuring instruments and to the fact that the data was collected in a real environment.

Figure 1: Missing data

Figure 2: Missing data heatmap

To handle the missing values we will use for the rest of the project the complete case strategy. Indeed,

replacing missing data by the mean would not be a good idea because it would change the correlation structure of the data which is important for the next steps. We only have 33 lines with missing values so we can afford to remove them keeping the ratio $\frac{n}{p} > 5$ as we have a total of 163 lines and 21 variables, we keep 7.8 > 5.

Using the two figures here above we can see that the missing values are not randomly distributed. Indeed, when there's a failure on the CO sensor, the NOx and NO_2 sensors are also failing a little bit after. We can also see that when the NOx sensor is failing, the NO_2 sensor is also failing, this is quite logical because NO_2 is a kind of NOx. Around the 175th observation, we can see the non methane hydrocarbons sensor failing and never quite coming to its original state. All these observations are confirmed by the second figure as the NMHC measure is the most missing well over the CO sensor or the couple NOx/NO_2 which is failling the same number of times.

3 Exploratory data analysis

3.1 Statistical analysis

	n	mean	sd	median	trimmed	mad
CO(GT)	191	2.748691	1.596801	2.50	2.560784	1.33434
PT08.S1(CO)	200	1339.000000	255.446559	1332.50	1328.356250	233.50950
NMHC(GT)	183	160.158470	139.745774	122.00	138.448980	118.60800
C6H6(GT)	200	12.254000	8.274006	11.05	11.318750	7.33887
PT08.S2(NMHC)	200	1016.950000	281.940276	1017.50	1005.556250	278.72880
NOx(GT)	191	175.842932	94.999980	161.00	168.830065	85.99080
PT08.S3(NOx)	200	1003.195000	278.431170	945.00	976.950000	234.99210
NO2(GT)	191	115.612565	34.357971	119.00	116.549020	35.58240
PT08.S4(NO2)9	200	1671.040000	305.901187	1622.50	1641.750000	237.21600

	min	max	range	skew	kurtosis	se
CO(GT)	0.5	8.1	7.6	1.0755547	0.9704424	0.1155405
PT08.S1(CO)	831.0	2040.0	1209.0	0.3506958	-0.0955406	18.0627994
NMHC(GT)	7.0	685.0	678.0	1.3200143	1.4422105	10.3303049
C6H6(GT)	1.0	39.2	38.2	1.0086394	0.8567735	0.5850606
PT08.S2(NMHC)	501.0	1754.0	1253.0	0.3211184	-0.3339212	19.9361881
NOx(GT)	16.0	478.0	462.0	0.6699740	-0.0263597	6.8739573
PT08.S3(NOx)	537.0	1918.0	1381.0	0.9745243	0.9172654	19.6880569
NO2(GT)	28.0	194.0	166.0	-0.2179968	-0.4405303	2.4860555
PT08.S4(NO2)	1134.0	2679.0	1545.0	0.9116828	0.7869557	21.6304804

	n	mean	sd	median	trimmed	mad
PT08.S5(O3)	200	1233.2450000	389.2906253	1204.5000	1222.0375000	384.734700
T	200	15.1965000	5.5702402	14.3000	14.8068750	5.189100
RH	200	49.8030000	15.1352426	53.9000	50.6387500	15.270780
AH	200	0.8085450	0.1059962	0.8125	0.8092338	0.104375
HIGH_CO	191	0.7225131	0.4489355	1.0000	0.7777778	0.000000
HIGH_NMHC	183	0.9945355	0.0739221	1.0000	1.0000000	0.000000
HIGH_C6H6	200	0.6500000	0.4781665	1.0000	0.6875000	0.000000
HIGH_NOx	191	0.9947644	0.0723575	1.0000	1.0000000	0.000000
HIGH_NO2	191	0.5968586	0.4918179	1.0000	0.6209150	0.000000

	min	max	range	skew	kurtosis	se
PT08.S5(O3)	384.0000	2359.0000	1975.0000	0.2942286	-0.1157893	27.5270041
Т	6.1000	29.3000	23.2000	0.6005822	-0.4670720	0.3938755
RH	14.9000	81.1000	66.2000	-0.4375140	-0.8600569	1.0702233
AH	0.5237	1.0945	0.5708	0.0279583	-0.2727186	0.0074951
HIGH_CO	0.0000	1.0000	1.0000	-0.9861019	-1.0329289	0.0324838
HIGH_NMHC	0.0000	1.0000	1.0000	-13.3067908	176.0326973	0.0054645
HIGH_C6H6	0.0000	1.0000	1.0000	-0.6242595	-1.6183168	0.0338115
HIGH_NOx	0.0000	1.0000	1.0000	-13.6039602	184.0313314	0.0052356
HIGH_NO2	0.0000	1.0000	1.0000	-0.3918179	-1.8561145	0.0355867

	n	mean	sd	median	trimmed	mad
HIGH_T	200	0.275	0.4476348	0.0	0.21875	0.0000
HIGH_RH	200	0.495	0.5012296	0.0	0.49375	0.0000
HIGH AH	200	0.500	0.5012547	0.5	0.50000	0.7413

	min	max	range	skew	kurtosis	se
HIGH_T	0	1	1	1.0002574	-1.004432	0.0316526
HIGH_RH	0	1	1	0.0198512	-2.009579	0.0354423
HIGH_AH	0	1	1	0.0000000	-2.009975	0.0354441

Table 1: Summary statistics

Figure 3: Summary of the data

3.2 Correlation structure of the data

Figure 4: Correlation matrix

Figure 5: Scatter matrix

3.3 Outlying observations using Mahalanobis distance

4 Correlation analysis with data reduction

4.1 Choice between PCA and t-SNE

By looking at the matrix plot, we can see that a lot of variables are correlated. We can exclude from our analysis the 3 colomns: T, RH and AH because there are the less correlated

We decided to use PCA for the correlation analysis because it is a deterministic algorithm and we can reproduce the same results. We know that PCA is not the best algorithm in general but in our case, our data are very correlate so this method work really well in our case. A very good thing with PCA is that there isn't any hyperparameter to tune the algorithm is so much more easy to use than t-SNE.

Figure 6: Scree plot of the PCA

4.2 2D plot of the data

Figure 7: 2D plot of the data