

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

October 31, November 1, 2023

Recap: Data Mining Process

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters)
 left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains an individual point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative approach (bottom-up)

- Initialization: Each sample is a cluster
- Iteration:
 - Merge two clusters which are most similar to each other
 - Until all samples are merged into a single cluster

Divisive Approaches (top-down)

- Initialization: All samples stay in one cluster
- Iteration:
 - Select a cluster and split it into two sub clusters
 - Until each leaf cluster contains only one object

Dendrogram

Agglomerative Clustering Algorithm

Key Idea: Successively merge closest clusters

Basic algorithm

- Compute the proximity matrix
- Let each data point be a cluster
- Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
- Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Steps 1 and 2

• Start with clusters of individual points and a proximity matrix

Step3: Intermediate Situation

After some merging steps, we have some clusters

Step 4

• We want to merge the two closest clusters (C2 and C5) and update the

proximity matrix.

Proximity Matrix

Step 5

• The question is "How do we update the proximity matrix?"

How to Define Inter-Cluster Distance

	p 1	p2	рЗ	p4	p 5	<u> </u>
p1						
p2						_
p3						_
p4						_
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	рЗ	p4	p 5	<u> </u>
р1						
p2						
рЗ						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	р5	<u>.</u> .
p1						
p2						
p2 p3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	р1	p2	р3	p4	p 5	<u>.</u> .
p1						
p2						
p2 p3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

	p1	p2	р3	p4	p 5	<u>.</u> .
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

MIN or Single Link

- Proximity of two clusters is based on the two closest points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph
- Example:

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Nested Clusters

Dendrogram

Strength of MIN

Can handle non-elliptical shapes

Limitations of MIN

MAX or Complete Linkage

- Proximity of two clusters is based on the two most distant points in the different clusters
 - Determined by all pairs of points in the two clusters

Distance Matrix:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
р6	0.23	0.25	0.11	0.22	0.39	0.00

Strength of MAX

Less susceptible to noise

Limitations of MAX

- Tends to break large clusters
- Biased towards globular clusters

Time and Space Requirements

- $O(N^2)$ space since it uses the proximity matrix.
 - N is the number of points.

- $O(N^3)$ time in many cases.
 - There are N steps and at each step the size, $O(N^2)$ proximity matrix must be updated and searched.
 - Complexity can be reduced to $O(N^2 \log(N))$ time with some cleverness

Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and irregular shapes
 - Breaking large clusters