CHAPTER 14

Exercise 14.1

1. A survey was conducted by a group of students as a part of their environment awareness program, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

Number of Plants	0-2	2-4	4-6	6-8	8-10	10-12	12-14
Number of Houses	1	2	1	5	6	2	3

Which method did you use for finding the mean, and why?

Solution:

In order to find the mean value, we will use direct method because the numerical value of f_i and x_i are small.

Find the midpoint of the given interval using the formula.

Midpoint $(x_i) = (upper limit + lower limit)/2$

No. of plants (Class interval)	No. of houses Frequency (f _i)	Mid-point (x _i)	$f_i x_i$
0-2	1	1	1
2-4	2	3	6
4-6	1	5	5
6-8	5	7	35
8-10	6	9	54
10-12	2	11	22
12-14	3	13	39
	Sum $f_i = 20$		$Sum \ f_i x_i = 162$

The formula to find the mean is:

Mean = $\bar{x} = \sum f_i x_i / \sum f_i$

= 162/20

= 8.1

Therefore, the mean number of plants per house is 8.1

2. Consider the following distribution of daily wages of 50 workers of a factory.

Daily wages (in Rs.)	100-120	120-140	140-160	160-180	180-200
Daily wages (III Ks.)	100-120	120-140	140-100	100-100	100-200

Number of workers	12	14	8	6	10	
-------------------	----	----	---	---	----	--

Find the mean daily wages of the workers of the factory by using an appropriate method.

Solution:

Find the midpoint of the given interval using the formula.

Midpoint $(x_i) = (upper limit + lower limit)/2$

In this case, the value of mid-point (x_i) is very large, so let us assume the mean value, A=150 and class interval is h=20.

So,
$$u_i = (x_i - A)/h = u_i = (x_i - 150)/20$$

Substitute and find the values as follows:

Daily wages (Class interval)	Number of workers frequency (f_i)	Mid-point (x _i)	$u_i = (x_i - 150)/20$	f_iu_i
100-120	12	110	-2	-24
120-140	14	130	-1	-14
140-160	8	150	0	0
160-180	6	170	1	6
180-200	10	190	2	20
Total	Sum $f_i = 50$			Sum $f_i u_i = -12$

So, the formula to find out the mean is:

Mean =
$$\bar{x}$$
 = A + h $\sum f_i u_i / \sum f_i = 150 + (20 \times -12/50) = 150 - 4.8 = 145.20$

Thus, mean daily wage of the workers = Rs. 145.20

3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs 18. Find the missing frequency f.

Daily Pocket Allowance(in c)	11-13	13-15	15-17	17-19	19-21	21-23	23-35
Number of children	7	6	9	13	f	5	4

Solution:

To find out the missing frequency, use the mean formula.

Here, the value of mid-point (x_i) mean $\bar{x} = 18$

Class interval	Number of children (f _i)	Mid-point (x _i)	$f_i \mathbf{x_i}$
11-13	7	12	84
13-15	6	14	84
15-17	9	16	144

17-19	13	18 = A	234
19-21	f	20	20f
21-23	5	22	110
23-25	4	24	96
Total	$f_i = 44 + f$		$Sum \; f_i x_i = 752 + 20f$

The mean formula is

Mean =
$$\bar{x} = \sum f_i x_i / \sum f_i = (752+20f)/(44+f)$$

Now substitute the values and equate to find the missing frequency (f)

$$\Rightarrow 18 = (752 + 20f)/(44 + f)$$

$$\Rightarrow$$
 18(44+f) = (752+20f)

$$\Rightarrow$$
 792+18f = 752+20f

$$\Rightarrow$$
 792+18f = 752+20f

$$\Rightarrow$$
 792 - 752 = 20f - 18f

$$\Rightarrow 40 = 2f$$

$$\Rightarrow f = 20$$

So, the missing frequency, f = 20.

4. Thirty women were examined in a hospital by a doctor and the number of heart beats per minute were recorded and summarized as follows. Find the mean heart beats per minute for these women, choosing a suitable method.

Number of heart beats per minute	65-68	68-71	71-74	74-77	77-80	80-83	83-86
Number of women	2	4	3	8	7	4	2

Solution:

From the given data, let us assume the mean as A = 75.5

 $x_i = (Upper limit + Lower limit)/2$

Class size (h) = 3

Now, find the u_i and f_iu_i as follows:

Class Interval	Number of women (f _i)	Mid-point (x _i)	$u_i = (x_i - 75.5)/h$	f_iu_i
65-68	2	66.5	-3	-6
68-71	4	69.5	-2	-8
71-74	3	72.5	-1	-3
74-77	8	75.5	0	0

77-80	7	78.5	1	7
80-83	4	81.5	3	8
83-86	2	84.5	3	6
	Sum f _i = 30			$Sum \ f_iu_i = 4$

 $Mean = \bar{x} = A + h\sum f_i u_i / \sum f_i$

 $= 75.5 + 3 \times (4/30)$

=75.5 + 4/10

=75.5+0.4

= 75.9

Therefore, the mean heart beats per minute for these women is 75.9

5. In a retail market, fruit vendors were selling mangoes kept in packing boxes. These boxes contained varying number of mangoes. The following was the distribution of mangoes according to the number of boxes.

Number of mangoes	50-52	53-55	56-58	59-61	62-64
Number of boxes	15	110	135	115	25

Find the mean number of mangoes kept in a packing box. Which method of finding the mean did you choose?

Solution:

Since, the given data is not continuous so we add 0.5 to the upper limit and subtract 0.45 from the lower limit as the gap between two intervals are 1

Here, assumed mean (A) = 57

Class size (h) = 3

Here, the step deviation is used because the frequency values are big.

Class Interval	Number of boxes (f _i)	Mid-point (x _i)	$d_i = x_i - A$	$f_i d_i$
49.5-52.5	15	51	-6	90
52.5-55.5	110	54	-3	-330
55.5-58.5	135	57 = A	0	0
58.5-61.5	115	60	3	345
61.5-64.5	25	63	6	150
	Sum f _i = 400			$Sum f_i d_i = 75$

The formula to find out the Mean is:

 $Mean = \bar{x} = A + h \sum f_i d_i / \sum f_i$

$$=57+3(75/400)$$

$$=57+0.1875$$

$$= 57.19$$

Therefore, the mean number of mangoes kept in a packing box is 57.19

6. The table below shows the daily expenditure on food of 25 households in a locality. Find the mean daily expenditure on food by a suitable method.

Daily expenditure(in c)	100-150	150-200	200-250	250-300	300-350
Number of households	4	5	12	2	2

Solution:

Find the midpoint of the given interval using the formula.

Midpoint $(x_i) = (upper limit + lower limit)/2$

Let is assume the mean (A) = 225

Class size (h) = 50

Class Interval	Number of households (f_i)	Mid -point (x_i)	$\begin{array}{c} d_i = x_i - \\ A \end{array}$	$u_i = d_i/50$	f_iu_i
100-150	4	125	-100	-2	-8
150-200	5	175	-50	-1	-5
200-250	12	225	0	0	0
250-300	2	275	50	1	2
300-350	2	325	100	2	4
	$Sum \; f_i = 25$				$\begin{array}{c} Sum \; f_i u_i = \text{-} \\ 7 \end{array}$

 $Mean = \bar{x} = A + h\sum f_i u_i / \sum f_i$

$$=225+50(-7/25)$$

= 225-14

= 211

Therefore, the mean daily expenditure on food is 211

7. To find out the concentration of SO_2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:

Concentration of SO ₂ (in ppm)	Frequency
0.00 - 0.04	4
0.04 - 0.08	9

0.08 - 0.12	9
0.12 - 0.16	2
0.16 - 0.20	4
0.20 - 0.24	2

Find the mean concentration of SO_2 in the air.

Solution:

To find out the mean, first find the midpoint of the given frequencies as follows:

Concentration of SO ₂ (in ppm)	Frequency (f _i)	Mid-point (x _i)	$f_i x_i$
0.00-0.04	4	0.02	0.08
0.04-0.08	9	0.06	0.54
0.08-0.12	9	0.10	0.90
0.12-0.16	2	0.14	0.28
0.16-0.20	4	0.18	0.72
0.20-0.24	2	0.20	0.40
Total	$Sum f_i = 30$		Sum $(f_i x_i) = 2.96$

The formula to find out the mean is

Mean = $\bar{x} = \sum f_i x_i / \sum f_i$

= 2.96/30

= 0.099 ppm

Therefore, the mean concentration of SO_2 in air is 0.099 ppm.

8. A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.

Number of days	0-6	6-10	10-14	14-20	20-28	28-38	38-40
Number of students	11	10	7	4	4	3	1

Solution:

Find the midpoint of the given interval using the formula.

 $Midpoint(x_i) = (upper limit + lower limit)/2$

Class interval	Frequency (f _i)	Mid-point (x _i)	$f_i x_i$
0-6	11	3	33

6-10	10	8	80
10-14	7	12	84
14-20	4	17	68
20-28	4	24	96
28-38	3	33	99
38-40	1	39	39
	$Sum \; f_i = 40$		$Sum \; f_i x_i = 499$

The mean formula is,

Mean = $\bar{x} = \sum f_i x_i / \sum f_i$

=499/40

= 12.48 days

Therefore, the mean number of days a student was absent = 12.48.

9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.

Literacy rate (in %)	45-55	55-65	65-75	75-85	85-98
Number of cities	3	10	11	8	3

Solution:

Find the midpoint of the given interval using the formula.

Midpoint $(x_i) = (upper limit + lower limit)/2$

In this case, the value of mid-point (x_i) is very large, so let us assume the mean value, A = 70 and class interval is h = 10.

So,
$$u_i = (x_i-A)/h = u_i = (x_i-70)/10$$

Substitute and find the values as follows:

Class Interval	Frequency (f _i)	(x _i)	$d_i = x_i - a$	$u_i = d_i/h$	f _i u _i
45-55	3	50	-20	-2	-6
55-65	10	60	-10	-1	-10
65-75	11	70	0	0	0
75-85	8	80	10	1	8
85-95	3	90	20	2	6
	$Sum f_i = 35$				Sum $f_i u_i = -2$

So, Mean =
$$\bar{x}$$
 = A+($\sum f_i u_i / \sum f_i$)×h
= 70+(-2/35)×10
= 69.42

Therefore, the mean literacy part = 69.42

Exercise 14.2

1. The following table shows the ages of the patients admitted in a hospital during a year:

Age (in years)	5-15	15-25	25-35	35-45	45-55	55-65
Number of patients	6	11	21	23	14	5

Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

Solution:

To find out the modal class, let us the consider the class interval with high frequency

Here, the greatest frequency = 23, so the modal class = 35 - 45,

l = 35.

class width (h) = 10,

 $f_{\rm m} = 23$,

 $f_1 = 21$ and $f_2 = 14$

The formula to find the mode is

Mode = $I + [(f_m - f_1)/(2f_m - f_1 - f_2)] \times h$

Substitute the values in the formula, we get

 $Mode = 35 + [(23-21)/(46-21-14)] \times 10$

Mode = 35 + (20/11) = 35 + 1.8

Mode = 36.8 year

So the mode of the given data = 36.8 year

Calculation of Mean:

First find the midpoint using the formula, $x_i = (upper limit + lower limit)/2$

Class Interval	Frequency (f _i)	Mid-point (x _i)	$f_i x_i$
5-15	6	10	60
15-25	11	20	220
25-35	21	30	630
35-45	23	40	920
45-55	14	50	700

55-65	5	60	300
	Sum $f_i = 80$		$Sum \; f_i x_i = 2830$

The mean formula is

Mean = $\bar{x} = \sum f_i x_i / \sum f_i$

=2830/80

= 35.37 years

Therefore, the mean of the given data = 35.37 years

2. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

Lifetime (in hours)	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.

Solution:

From the given data the modal class is 60–80.

l = 60,

The frequencies are:

$$f_m = 61$$
, $f_1 = 52$, $f_2 = 38$ and $h = 20$

The formula to find the mode is

Mode =
$$I + [(f_m - f_1)/(2f_m - f_1 - f_2)] \times h$$

Substitute the values in the formula, we get

Mode =
$$60+[(61-52)/(122-52-38)]\times 20$$

$$Mode = 60 + ((9 \times 20)/32)$$

$$Mode = 60 + (45/8) = 60 + 5.625$$

Therefore, modal lifetime of the components = 65.625 hours.

3. The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure:

Expenditure	Number of families
1000-1500	24
1500-2000	40
2000-2500	33
2500-3000	28

3000-3500	30
3500-4000	22
4000-4500	16
4500-5000	7

Solution:

Given data:

Modal class = 1500-2000,

I = 1500,

Frequencies:

 $f_m = 40 \; f_1 = 24$, $f_2 = 33$ and

h = 500

Mode formula:

Mode = $l + [(f_m - f_1)/(2f_m - f_1 - f_2)] \times h$

Substitute the values in the formula, we get

 $Mode = 1500 + [(40-24)/(80-24-33)] \times 500$

 $Mode = 1500 + ((16 \times 500)/23)$

Mode = 1500 + (8000/23) = 1500 + 347.83

Therefore, modal monthly expenditure of the families = Rupees 1847.83

Calculation for mean:

First find the midpoint using the formula, $x_i = (upper limit + lower limit)/2$

Let us assume a mean, A be 2750

Class Interval	fi	xi	di = xi - a	ui = di/h	fiui
1000-1500	24	1250	-1500	-3	-72
1500-2000	40	1750	-1000	-2	-80
2000-2500	33	2250	-500	-1	-33
2500-3000	28	2750	0	0	0
3000-3500	30	3250	500	1	30
3500-4000	22	3750	1000	2	44
4000-4500	16	4250	1500	3	48
4500-5000	7	4750	2000	4	28

fi = 200	fiui = -35
----------	------------

The formula to calculate the mean,

Mean =
$$\bar{x} = a + (\sum f_i u_i / \sum f_i) \times h$$

Substitute the values in the given formula

$$= 2750 + (-35/200) \times 500$$

- = 2750-87.50
- = 2662.50

So, the mean monthly expenditure of the families = Rupees 2662.50

4. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures

No of Students per teacher	Number of states / U.T
15-20	3
20-25	8
25-30	9
30-35	10
35-40	3
40-45	0
45-50	0
50-55	2

Solution:

Given data:

Modal class = 30 - 35,

I = 30,

Class width (h) = 5,

$$f_m = 10$$
, $f_1 = 9$ and $f_2 = 3$

Mode Formula:

Mode =
$$I + [(f_m - f_1)/(2f_m - f_1 - f_2)] \times h$$

Substitute the values in the given formula

$$Mode = 30 + ((10-9)/(20-9-3)) \times 5$$

$$Mode = 30 + (5/8) = 30 + 0.625$$

$$Mode = 30.625$$

Therefore, the mode of the given data = 30.625

Calculation of mean:

Find the midpoint using the formula, $x_i = (upper limit + lower limit)/2$

Class Interval	Frequency (f _i)	Mid-point (x _i)	$f_i x_i$
15-20	3	17.5	52.5
20-25	8	22.5	180.0
25-30	9	27.5	247.5
30-35	10	32.5	325.0
35-40	3	37.5	112.5
40-45	0	42.5	0
45-50	0	47.5	0
50-55	2	52.5	105.5
	Sum $f_i = 35$		$Sum \ f_i x_i = 1022.5$

Mean = $\bar{x} = \sum f_i x_i / \sum f_i$

=1022.5/35

= 29.2

Therefore, mean = 29.2

5. The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.

Run Scored	Number of Batsman
3000-4000	4
4000-5000	18
5000-6000	9
6000-7000	7
7000-8000	6
8000-9000	3
9000-10000	1
10000-11000	1

Find the mode of the data.

Solution:

Given data:

Modal class = 4000 - 5000,

l = 4000,

class width (h) = 1000,

 $f_m = 18$, $f_1 = 4$ and $f_2 = 9$

Mode Formula:

Mode = $l + [(f_m - f_1)/(2f_m - f_1 - f_2)] \times h$

Substitute the values

 $Mode = 4000 + ((18-4)/(36-4-9)) \times 1000$

Mode = 4000 + (14000/23) = 4000 + 608.695

Mode = 4608.695

Mode = 4608.7 (approximately)

Thus, the mode of the given data is 4608.7 runs

6. A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarized it in the table given below. Find the mode of the data:

Number of cars	Frequency
0-10	7
10-20	14
20-30	13
30-40	12
40-50	20
50-60	11
60-70	15
70-80	8

Solution:

Given Data:

Modal class = 40 - 50, l = 40,

Class width (h) = 10, $f_m = 20$, $f_1 = 12$ and $f_2 = 11$

Mode = $I + [(f_m - f_1)/(2f_m - f_1 - f_2)] \times h$

Substitute the values

$$Mode = 40 + ((20-12)/(40-12-11)) \times 10$$

$$Mode = 40 + (80/17) = 40 + 4.7 = 44.7$$

Thus, the mode of the given data is 44.7 cars

Exercise 14.3

1. The following frequency distribution gives the monthly consumption of an electricity of 68 consumers in a locality. Find the median, mean and mode of the data and compare them.

Monthly consumption(in units)	No. of customers
65-85	4
85-105	5
105-125	13
125-145	20
145-165	14
165-185	8
185-205	4

Solution:

Find the cumulative frequency of the given data as follows:

Class Interval	Frequency	Cumulative frequency
65-85	4	4
85-105	5	9
105-125	13	22
125-145	20	42
145-165	14	56
165-185	8	64
185-205	4	68
	N=68	

From the table, it is observed that, n = 68 and hence n/2=34

Hence, the median class is 125-145 with cumulative frequency = 42

Where,
$$I = 125$$
, $n = 68$, $C_f = 22$, $f = 20$, $h = 20$

Median is calculated as follows:

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

$$=125+((34-22)/20)\times 20$$

$$=125+12=137$$

Therefore, median = 137

To calculate the mode:

Modal class = 125-145,

$$f_1=20$$
, $f_0=13$, $f_2=14$ & $h=20$

Mode formula:

Mode = $l + [(f_1-f_0)/(2f_1-f_0-f_2)] \times h$

 $Mode = 125 + ((20-13)/(40-13-14)) \times 20$

=125+(140/13)

=125+10.77

=135.77

Therefore, mode = 135.77

Calculate the Mean:

Class Interval	$\mathbf{f_i}$	Xi	d _i =x _i -a	$u_i=d_i/h$	f_iu_i
65-85	4	75	-60	-3	-12
85-105	5	95	-40	-2	-10
105-125	13	115	-20	-1	-13
125-145	20	135	0	0	0
145-165	14	155	20	1	14
165-185	8	175	40	2	16
185-205	4	195	60	3	12
	Sum f _i = 68				Sum $\mathbf{f_i u_i} = 7$

$$\bar{x} = a + h \sum f_i u_i / \sum f_i = 135 + 20(7/68)$$

Mean=137.05

In this case, mean, median and mode are more/less equal in this distribution.

2. If the median of a distribution given below is 28.5 then, find the value of x & y.

Class Interval	Frequency
0-10	5
10-20	x

20-30	20
30-40	15
40-50	y
50-60	5
Total	60

Solution:

Given data, n = 60

Median of the given data = 28.5

Where, n/2 = 30

Median class is 20 - 30 with a cumulative frequency = 25 + x

Lower limit of median class, I = 20,

$$C_f = 5 + x$$
,

$$f = 20 \& h = 10$$

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

Substitute the values

$$28.5 = 20 + ((30 - 5 - x)/20) \times 10$$

$$8.5 = (25 - x)/2$$

$$17 = 25 - x$$

Therefore, x = 8

Now, from cumulative frequency, we can identify the value of x + y as follows:

Since,

$$60=5+20+15+5+x+y$$

Now, substitute the value of x, to find y

$$60 = 5 + 20 + 15 + 5 + 8 + y$$

$$y = 60-53$$

$$y = 7$$

Therefore, the value of x = 8 and y = 7.

3. The Life insurance agent found the following data for the distribution of ages of 100 policy holders. Calculate the median age, if policies are given only to the persons whose age is 18 years onwards but less than the 60 years.

Age (in years)	Number of policy holder
Below 20	2

Below 25	6
Below 30	24
Below 35	45
Below 40	78
Below 45	89
Below 50	92
Below 55	98
Below 60	100

Solution:

Class interval	Frequency	Cumulative frequency
15-20	2	2
20-25	4	6
25-30	18	24
30-35	21	45
35-40	33	78
40-45	11	89
45-50	3	92
50-55	6	98
55-60	2	100

Given data: n = 100 and n/2 = 50

Median class = 35-45

Then, I = 35, $c_f = 45$, f = 33 & h = 5

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

Median = $35+((50-45)/33) \times 5$

$$=35+(5/33)5$$

$$= 35.75$$

Therefore, the median age = 35.75 years.

4. The lengths of 40 leaves in a plant are measured correctly to the nearest millimeter, and the data obtained is represented as in the following table:

Length (in mm)	Number of leaves
118-126	3
127-135	5
136-144	9
145-153	12
154-162	5
163-171	4
172-180	2

Find the median length of leaves.

Solution:

Since the data are not continuous reduce 0.5 in the lower limit and add 0.5 in the upper limit.

Class Interval	Frequency	Cumulative frequency
117.5-126.5	3	3
126.5-135.5	5	8
135.5-144.5	9	17
144.5-153.5	12	29
153.5-162.5	5	34
162.5-171.5	4	38
171.5-180.5	2	40

So, the data obtained are:

$$n = 40$$
 and $n/2 = 20$

Median class =
$$144.5 - 153.5$$

then,
$$l = 144.5$$
,

$$cf = 17, f = 12 \& h = 9$$

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

Median =
$$144.5 + ((20-17)/12) \times 9$$

$$= 144.5 + (9/4)$$

= 146.75 mm

Therefore, the median length of the leaves = 146.75 mm.

5. The following table gives the distribution of a life time of 400 neon lamps.

Lifetime (in hours)	Number of lamps
1500-2000	14
2000-2500	56
2500-3000	60
3000-3500	86
3500-4000	74
4000-4500	62
4500-5000	48

Find the median lifetime of a lamp.

Solution:

Class Interval	Frequency	Cumulative
1500-2000	14	14
2000-2500	56	70
2500-3000	60	130
3000-3500	86	216
3500-4000	74	290
4000-4500	62	352
4500-5000	48	400

Data:

$$n = 400 & n/2 = 200$$

$$Median class = 3000 - 3500$$

Therefore,
$$I = 3000$$
, $C_f = 130$,

$$f = 86 \& h = 500$$

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

$$Median = 3000 + ((200-130)/86) \times 500$$

$$=3000 + (35000/86)$$

$$=3000 + 406.97$$

$$= 3406.97$$

Therefore, the median life time of the lamps = 3406.97 hours

6. In this 100 surnames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in English alphabets in the surnames was obtained as follows:

Number of letters	1-4	4-7	7-10	10-13	13-16	16-19
Number of surnames	6	30	40	16	4	4

Determine the number of median letters in the surnames. Find the number of mean letters in the surnames and also, find the size of modal in the surnames.

Solution:

To calculate median:

Class Interval	Frequency	Cumulative Frequency
1-4	6	6
4-7	30	36
7-10	40	76
10-13	16	92
13-16	4	96
16-19	4	100

Given:

$$n = 100 & n/2 = 50$$

Median class =
$$7-10$$

Therefore,
$$I = 7$$
, $C_f = 36$, $f = 40 \& h = 3$

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

Median =
$$7+((50-36)/40) \times 3$$

Median =
$$7+42/40$$

Calculate the Mode:

Modal class =
$$7-10$$
,

Where,
$$I = 7$$
, $f_1 = 40$, $f_0 = 30$, $f_2 = 16 \& h = 3$

Mode =
$$l + \left(\frac{f_{1} - f_{0}}{2f_{1} - f_{0} - f_{2}}\right) \times h$$

 $Mode = 7 + ((40-30)/(2 \times 40-30-16)) \times 3$

=7+(30/34)

= 7.88

Therefore mode = 7.88

Calculate the Mean:

Class Interval	$\mathbf{f_i}$	Xi	f_ix_i
1-4	6	2.5	15
4-7	30	5.5	165
7-10	40	8.5	340
10-13	16	11.5	184
13-16	4	14.5	51
16-19	4	17.5	70
	$Sum f_i = 100$		$Sum \; f_i x_i = 825$

 $Mean = \bar{x} = \sum f_i x_i / \sum f_i$

Mean = 825/100 = 8.25

Therefore, mean = 8.25

7. The distributions of below give a weight of 30 students of a class. Find the median weight of a student.

Weight(in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75
Number of students	2	3	8	6	6	3	2

Solution:

Class Interval	Frequency	Cumulative frequency
40-45	2	2
45-50	3	5
50-55	8	13
55-60	6	19
60-65	6	25

65-70	3	28
70-75	2	30

Given: n = 30 and n/2 = 15

Median class = 55-60

$$l = 55$$
, $C_f = 13$, $f = 6 \& h = 5$

$$Median = l + \left(\frac{\frac{n}{2} - c_f}{f}\right) \times h$$

Median = $55+((15-13)/6)\times 5$

Median=55 + (10/6) = 55+1.666

Median = 56.67

Therefore, the median weight of the students = 56.67

Exercise 14.4

1. The following distribution gives the daily income of 50 workers if a factory. Convert the distribution above to a less than type cumulative frequency distribution and draw its ogive.

Daily income in Rupees	100-120	120-140	140-160	160-180	180-200
Number of workers	12	14	8	6	10

Solution

Convert the given distribution table to a less than type cumulative frequency distribution, and we get

Daily income	Frequency	Cumulative Frequency
Less than 120	12	12
Less than 140	14	26
Less than 160	8	34
Less than 180	6	40
Less than 200	10	50

From the table plot the points corresponding to the ordered pairs such as (120, 12), (140, 26), (160, 34), (180, 40) and (200, 50) on graph paper and the plotted points are joined to get a smooth curve and the obtained curve is known as less than type ogive curve

2.During the medical check-up of 35 students of a class, their weights were recorded as follows:

Weight in kg	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula.

Solution:

From the given data, to represent the table in the form of graph, choose the upper limits of the class intervals are in x-axis and frequencies on y-axis by choosing the convenient scale. Now plot the points corresponding to the ordered pairs given by (38, 0), (40, 3), (42, 5), (44, 9), (46, 14), (48, 28), (50, 32) and (52, 35) on a graph paper an join them to get a smooth curve. The curve obtained is known as less than type ogive.

Locate the point 17.5 on the y-axis and draw a line parallel to the x-axis cutting the curve at a point. From the point, draw a perpendicular line to the x-axis. The intersection point perpendicular to x-axis is the median of the given data. Now, to find the mode by making a table.

Class interval	Number of students(Frequency)	Cumulative Frequency
Less than 38	0	0
Less than 40	3-0=3	3
Less than 42	5-3=2	8
Less than 44	9-5=4	9
Less than 46	14-9=5	14
Less than 48	28-14=14	28
Less than 50	32-28=4	32
Less than 52	35-22=3	35

The class 46 – 48 has the maximum frequency, therefore, this is modal class

Here,
$$l = 46$$
, $h = 2$, $f_1 = 14$, $f_0 = 5$ and $f_2 = 4$

The mode formula is given as:

Now, Mode =

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 46 + 0.95 = 46.95$$

Thus, mode is verified.

3. The following tables gives production yield per hectare of wheat of 100 farms of a village.

Production Yield	50-55	55-60	60-65	65-70	70-75	75-80
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution and draw its ogive.

Solution:

Converting the given distribution to a more than type distribution, we get

Production Yield (kg/ha)	Number of farms
More than or equal to 50	100
More than or equal to 55	100-2 = 98
More than or equal to 60	98-8= 90
More than or equal to 65	90-12=78
More than or equal to 70	78-24=54
More than or equal to 75	54-38 = 16

From the table obtained draw the ogive by plotting the corresponding points where the upper limits in x-axis and the frequencies obtained in the y-axis are (50, 100), (55, 98), (60, 90), (65, 78), (70, 54) and (75, 16) on

this graph paper. The graph obtained is known as more than type ogive curve.

