$$0 \le \sum x_1 w_1 + b = 1$$

$$0 > \sum x_1 w_1 + b = 0$$

- And functions
- Or functions
- Not functions
- Input(s) = w*1
- W = 0 or 1

(using the above equations (^^^^) vvvvv)

• And gate

• W1 = 1, w2 = 1, b = -2

х	у	result
0	0	0
1	0	0
0	1	0
1	1	1

• Or gate

• W1 = 1, w2 = 1, b = -1

х	у	result
0	0	0
1	0	1
0	1	1
1	1	1

Not gate

• W1 = 0, w2 = -1, b = 0

x	у	result
0	0	1
1	0	0
0	1	0

1	1	0
	1	<u> </u>

х	у	result
0	0	0
1	0	1
0	1	1
1	1	0

- Activation Function
- Heaviside fn is an example of an activation fn
- A **sigmoid function** looks like an 'S' (vvvv)

•

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

- sigmoid equation
- ReLU (Rectified Linear Unit)

