Classification Model

classification

- Predict: Category from input variables
- Goal: Match model outputs to targets (desired outputs)

Classification (single dimension Input)

Linear Classifier

Nonlinear Classifier (Logistic / Sigmoid)

Classification (Multi-dimension Inputs)

Linear Classifier

Nonlinear Classifier (Logistic / Sigmoid)

Supervised vs Unsupervised Model

Supervised	Unsupervised
Classification	Clustering
 known number of classes 	 unknown number of classes
• based on a training set	• no prior knowledge
 used to classify future observations 	• used to understand (explore) data

Supervised Classification

Single Node MODEL

- kNN (k-Nearest Neighbor)
- Logistic Regression
- Support Vector Machine

Multi-Node Model

- Neural Networks (Deep Networks)
- Convolutional Neural Network
- Recurrent Neural Network
 - Long Short Term Memory (LSTM)

SINGLE NODE MODEL

Logistic regression vs SVM

- Hyperplane Mapping through
 - Model Kernel
- Decision Making through
 - Hypothesis Function
 - Activation Function

- Hyperplane Mapping through
 - Kernel (K)
 - Linear kernel
 - Nonlinear kernel
 - Gaussian
 - Radial Basis Function (RBF)
 - Polynomial

- Hyperplane Mapping through
 - Kernel (K)

Model Kernel: Hyperplane Mapping

Logistic Regression

Sigmoid / Logistic Kernel Function

$$K(X) = \theta^T X = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Support Vector Machine (SVM)

Class Partition Kernels: Linear / Non-Linear

$$K(X) = exp\left(-\gamma \|x_i - x_j\|^2\right)$$

SVC: kernels

Gaussian kernel

$$K(x_i, x_j) = exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$

Gaussian radial basis function (RBF)

$$K(x_i, x_j) = exp\left(-\gamma \|x_i - x_j\|^2\right)$$

Polynomial kernel

$$K(x_i, x_j) = (x_i x_j)^d$$

Sigmoid kernel

$$K(x_i, x_j) = tanh(\alpha x_i^T x_j + c)$$

- Hyperplane Mapping through
 - Kernel (K)
- Decision Making though
 - Hypothesis function
 - Activation function
 - $h_{\theta}(K(X))$

Model Kernel: Decision Making

Logistic Regression

Sigmoid / Logistic Kernel Function

$$K(X) = \theta^{T} X = \theta_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + \dots + \theta_{n} x_{n}$$

$$h_{\theta}(K(X)) = \sigma(\theta^{T} X) = \frac{1}{1 + \exp(\theta^{T} X)}$$

$$= \frac{1}{1 + \exp(\theta_{1} x_{1} + \theta_{2} x_{2} + \theta_{3} x_{3} + b)}$$

Support Vector Machine (SVM)

Class Partition Kernels: Linear / Non-Linear

$$h_{\theta}(K(X)) = W^T K(X) - b = \theta^T K(X)$$

Soft Margin

Model Kernel: Decision Making

Logistic Regression

Sigmoid / Logistic Kernel Function

$$P(y = 1|x) = h_{\theta}(K(X)) = \sigma(\theta^{T}X)$$

$$P(y = 0|x) = 1 - P(y = 1|x)$$

$$\hat{y} = \begin{cases} 1, & P(y = 1|x) \ge P(y = 0|x) \\ 0, & Otherwise \end{cases}$$

Support Vector Machine (SVM)

Class Partition Kernels: Linear / Non-Linear

$$h_{\theta}(K(X)) = \theta^T K(X)$$

Soft Margin

$$\hat{y} = \begin{cases} 1, & h_{\theta} \ge 0 \\ 0, & Otherwise \end{cases}$$

Best Optimizing hyperplane parameters $(\theta_0, \theta_1, ..., \theta_N \text{ & kernel paprmeter})$

Why do we need to tune these parameters?

Hyperplane Parameter (θ_i) Optimization

$$L(x,y) = \sum_{i=1}^{n} (y_i - h_{\theta}(x_i))^2$$

- Regression Loss Function: Error Function
 - Normally use L2 distance between
 - y: real output / desired output / ground truth
 - $h_{\theta}(K(X))$: Hyperplane decision of kernel (K)

Hyperplane Parameter (θ_i) Optimization

- Classification Loss Function:
 - distance measure
 - Dot product between y and $h_{\theta}(K(X))$
 - $y \cdot h_{\theta}$

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic
		Regression
Loss function	Hinge loss	Log-loss
Kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of learned model	Linear model from "Margin"	Probability Distribution

Hyperplane Parameter (θ_i) Optimization

- Classification Loss Function:
 - distance measure
 - Dot product between y and $h_{\theta}(K(X))$
 - $y \cdot h_{\theta} = y \cdot z$

What's the difference between SVMs and Logistic Regression? (Revisited)

	SVMs	Logistic
		Regression
Loss function	Hinge loss	Log-loss

$$\ell(y, z) = \max(0, 1 - yz)$$

$$\ell_{\log}(y,z) = \ln(1+e^{-yz})$$

Hyperplane Parameter (θ_i) Optimization

$$\ell(y,z) = \max\left(0,1-yz\right)$$

$$\ell_{\mathrm{log}}(y,z) = \ln(1+e^{-yz})$$

Optimizing on training data only
It is possible to cause overfitted
Not understand general inputs

ML: Single Node Processor (Logistic)

Loss function with regularization

$$L(x,y) + \lambda$$
 (Regularization)

Regularization Control (λ)

C=1/λ

ML: Single Node Processor

Hyperplane Parameter Optimization

Logistic Regression

Hard Margin

- Tuning Optimization Parameter:
 - C: Regularization factor on
 - weight magnitude
 - Kernel parameter
 - Linear -> No parameter

Support Vector Machine (SVM)

Soft Margin

- Tuning Optimization Parameter:
 - C: Regularization factor on
 - Soft margin (Slag variable)
 - Kernel parameter
 - Linear -> no parameter
 - RBF -> γ: gamma
 - Polynomial -: d: polynomial degree

ML: Single Node Processor (Logistic)

Loss function with regularization

$$\ell_{\mathrm{log}}(y,z) = \ln(1+e^{-yz})$$

$$L(x,y) \equiv \sum_{i=1}^{n} (y_i - h_{\theta}(x_i))^2 + \lambda \sum_{i=1}^{n} \theta_i^2$$

C in Logistic

C=1/λ

Large C: less λ -> may be overfitted Less C: Large λ -> may be underfitted

Regularization on Weight Magnitude

L1 Regularization

$$\ell_{\log}(y,z) = \ln(1+e^{-yz})$$
 + $\lambda \sum_{i=1}^n | heta_i|$

L2 Regularization

$$\ell_{\mathrm{log}}(y,z) = \ln(1+e^{-yz})$$

ML: Single Node Processor (Logistic)

Loss function with regularization

$$\ell_{\log}(y,z) = \ln(1+e^{-yz}) + \lambda \sum_{i=1}^n heta_i^2$$

C in Logistic

C=1/λ

Large C: less λ -> may be overfitted Less C: Large λ -> may be underfitted

Loss function with regularization

$$\ell(y,z) = \max\left(0,1-yz
ight) + C\sum_{i}^{N} oldsymbol{\xi}_{i}$$

• L1 Regularization

C

Large C: may be overfitted Less C: may be underfitted

Loss function with regularization

L1 Regularization

$$\ell(y,z) = \max\left(0,1-yz
ight) + C\sum_{i}^{N} \xi_{i}$$

C in SVM

Large C: may be overfitted Less C: may be underfitted

Loss function with regularization

• L1 Regularization

$$\ell(y,z) = \max\left(0,1-yz
ight) + C\sum_{i}^{N} \xi_{i}$$

Large C: may be overfitted Less C: may be underfitted

Loss function with regularization

• L1 Regularization

$$\ell(y,z) = \max\left(0,1-yz
ight) + C\sum_{i}^{N} \xi_{i}$$

$$h_{\theta}(X) = exp\left(-\gamma \|x_i - C_j\|^2\right)$$

Gamma (γ) in SVM

Large γ : may be overfitted Less γ : may be underfitted

SVC: Tuning parameters (Gamma)

- General C parameters
 - Default: C=1
 - For large values of C,
 - choose a smaller-margin hyperplane if that hyperplane does a better job of getting all the training points classified correctly.
 - a very small value of C,
 - look for a larger-margin separating hyperplane, even if that hyperplane misclassifies more points.

SVC: Tuning parameters (Gamma)

- Gamma parameters
 - Kernel coefficient for 'rbf', 'poly' and 'sigmoid'
 - Higher the value of gamma,
 - try to exact fit the as per training data set
 - i.e. generalization error and cause overfitting problem.
 - Default: 'auto' = 1/n_features
 - 'scale' = 1 / (n_features * X.var())

SVC: Tuning parameters (Degree)

- Degree parameters
 - Kernel coefficient for 'poly'
 - Higher the value of gamma,
 - try to exact fit the as per training data set
 - i.e. generalization error and cause over-fitting problem.

Default: degree=3

SVM Classification (SVC)

- from sklearn.model_selection import train_test_split
 - X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
- from sklearn.svm import SVC
 - svclassifier = SVC(kernel='kernel_name', parameters)
 - svclassifier = SVC(kernel='rbf', C=100, gamma=0.01)
 - svclassifier.fit(X_train, y_train)
 - y_pred = svclassifier.predict(X_test)
- cv = define cross validation you want to use with cross validation parameters
- C_range = [0.01, 0.1, 10, 100]
- gamma_range = [0.001, 0.01, 0.1]
- param_grid = dict(gamma=gamma_range, C=C_range)
- grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
- grid.fit(X, y)

Multi-class Classification

multi-class Classification

- Normally Logistic and SVC is only a binary classifier:
 - that is, it can only classify two classes at a time.
- Therefore, in order to classify multiple classes (more than two)
 - it has to train two or more binary classifiers
- Multi-class classification
 - "one-vs-one" approach
 - "one-vs-all" approach

Multi-class SVM training 'one-vs-one'

- Assume n_class as n different classes
- Two pairs of classes are selected at a time and a binary classifier trained for them.
 - If n_class is the number of classes,
 - then n_class * (n_class 1) / 2 classifiers are constructed and
 - each one trains data from two classes.
 - During the classification phases
 - all the binary classifiers are tested.
 - The class with the most votes wins.

Multi-class SVM training 'one-vs-all'

- train one classifier per class
 - n_class -> total n classifiers.
 - Ground truth = class ith
 - Class label ith -> positive
 - The rest -> negative
 - Generic SVM might not work,
 - but still there are some workarounds.