INFO 905 - Machine Learning Prix des maisons

Votre rendu se fera à l'aide d'un notebook jupyter.

L'objectif est du TP est de prédire le prix des maisons, sur un jeu de données californien.

Données et environnement

1. Installez python, vérifiez que votre version est supérieur à la version 3.

```
pip3 --version
```

2. Installez les modules nécessaires au différents TPs :

```
\verb|pip3| install --upgrade | \verb|jupyter matplotlib| | \verb|numpy pandas | \verb|scipy scikit-learn | six| \\
```

- 3. Récupérez et décompressez l'archive housing.csv.
- 4. Lancer un notebook jupyter:

```
jupyter notebook monfichier.ipynb
```

Exploration des données

Via la librairie Pandas, utilisez les fonctions read_csv, head, info, value_counts, describe, count, mean, min, max,... pour regarder les données.

Combien y a-t-il de variables? Quel est leur type? Y a-t-il des données manquantes?

Jeu de test/validation

Séparez vos données en 2 jeux de données : l'un servira de jeu de test, l'autre de jeu de validation, en utilisant train test split de sklearn.

Visualisation des données et recherche de corrélations

- 1. Proposez une visualisation de vos données, en explorant la fonction plot de la librairie pandas.
- 2. Quelle semble être la vairalbe la plue corrélée au prix des maison (via la fonction corr)?

Préparation des données

- 1. Séparez les variables explicatives de la variable à expliquer (drop et copy).
- 2. Remédiez au manque de données, au choix : en supprimant les lignes correspondants (dropna), en supprimant la variable (drop), ou en mettant une valeur par défaut (fillna).
- 3. Gérez la variable qualitative : en regardant les classes LabelEncoder et OneHotEncoder, et la méthode fit transform.
- 4. Pour que les algorithmes de Machine Learning fonctionne, il faut en général recalibrez les variables pour qu'elles soient dans les mêmes échelles. Recalibrez-les via le *min-max scaling* ou la *normalization*. expliquez ces deux transformations.

Selection et entrainement de modèle

Régression linéaire

Grâce à la classe *LinearRegression* de *sklearn*, faites une prédiction du prix des maisons. Vous aurez besoin des fonctions *fit*, *predict* et *mean_squared_error*.

Que pensez-vous de cette prédiction?

Arbre de décision

Grâce à la classe *DecisionTreeRegressor* de *sklearn*, faites une prédiction du prix des maisons. Vous aurez besoin des fonctions *fit*, *predict* et *mean_squared_error*. Que pensez-vous de cette prédiction?

Forêts Aléatoires

Grâce à la classe RandomForestRegressor de sklearn, faites une prédiction du prix des maisons. Vous aurez besoin des fonctions fit, predict et $mean_squared_error$. Que pensez-vous de cette prédiction?

Recherche d'un modèle

Utilisez les classes GridSearchCV et RandomizedSearchCV pour sélectionner le meilleur modèle.