

Держапольский Юрий Витальевич

Содержание

1	Задание 1 (1.13в)		2
	1.1	Постановка	2
	1.2	Решение	2
2	Задание 2 (5.10)		
	2.1	Постановка	3
	2.2	Решение	3
3	Задание 3 (10.3в)		
	3.1	Постановка	4
	3.2	Решение	4
4	Задание 4 (8.26д)		6
	4.1	Постановка	6
	12	Рошонио	6

1. Задание 1 (1.13в)

1.1. Постановка

В множестве X всевозможных последовательностей натуральных чисел для элементов $x=\{\xi_k\}_{k=1}^{\infty}, \quad y=\{\eta_k\}_{k=1}^{\infty}$ обозначим через $k_0(x,y)$ наименьший индекс, при котором $\xi_k\neq\eta_k$. Доказать, что если $\rho(x,y)\neq\rho(y,z)$, то $\rho(x,z)=\max\{\rho(x,y),\rho(y,z)\}.$

1.2. Решение

Также имеем, что $\rho(x, z) \le \max\{\rho(x, y), \rho(y, z)\}$ и

$$\rho(x,y) = \begin{cases} 0, & x = y, \\ 1 + \frac{1}{k_0(x,y)}, & x \neq y. \end{cases}$$

1. Пусть $x \neq y, y = z$, тогда

$$\rho(x,y) \le \max\{\rho(x,y), \rho(y,y)\} = \max\{\rho(x,y), 0\} = \rho(x,y)$$

2. Пусть $x \neq y \neq z$, тогда без ограничения общности запишем эти элементы так:

$$x = (\dots, x_{k-1}, x_k, x_{k+1}, \dots, x_{n-1}, x_n, x_{n+1}, \dots),$$

$$y = (\dots, x_{k-1}, x_k, x_{k+1}, \dots, x_{n-1}, y_n, y_{n+1}, \dots),$$

$$z = (\dots, x_{k-1}, z_k, z_{k+1}, \dots, z_{n-1}, z_n, z_{n+1}, \dots),$$

Откуда наглядно имеем: $k_0(x,z)=k_0(y,z)=k_0\leq k_0(x,y)=k_1$. Т.к. по условию $\rho(x,y)\neq\rho(y,z)$, то мы не можем находить $\rho(x,y)$, т.к. $\rho(x,z)=\rho(y,z)$. Окончательно имеем:

$$1 + \frac{1}{k_0} \le \max\left\{1 + \frac{1}{k_1}, 1 + \frac{1}{k_0}\right\} = 1 + \frac{1}{k_0}.$$

Что и требовалось доказать.

2. Задание 2 (5.10)

2.1. Постановка

Пусть вещественная функция f дифференцируема на \mathbb{R} . Доказать, что f – сжимающее отображение в пространстве $\langle \mathbb{R}, \rho_{|\cdot|} \rangle$ тогда и только тогда, когда существует $\alpha \in [0,1)$ такое, что $|f'(x)| \leq \alpha$ для всех $x \in \mathbb{R}$.

2.2. Решение

 $(\Rightarrow)\ f$ — дифференцируемая функция, сжимающее отображение в пространстве $\mathbb R$ с нормой $\rho(x,y)=|x-y|$. Т.е. $\exists \alpha\in[0,1): \rho\left(f(x),f(y)\right)\leq \alpha\cdot\rho(x,y)\ \forall x,y\in\mathbb R$. По формуле конечных приращений $\rho\left(f(x),f(y)\right)=|f(x)-f(y)|\leq |f'(\xi)|\cdot|x-y|=|f'(\xi)|\cdot\rho(x,y),\xi\in[x,y]\subset\mathbb R$. Пусть $\alpha=\sup_{\xi\in\mathbb R}|f'(\xi)|\in[0,1)$, откуда следует, что $|f'(x)|\leq \alpha\ \forall x\in\mathbb R$, что и требовалось доказать.

 (\Leftarrow) f — дифференцируемая функция в \mathbb{R} с нормой $\rho(x,y)=|x-y|$ и $\exists \alpha \in [0,1): |f'(x)| \leq \alpha \ \forall x \in \mathbb{R}$. По формуле конечных приращений $\rho\left(f(x),f(y)\right)=|f(x)-f(y)| \leq |f'(\xi)|\cdot |x-y|=|f'(\xi)|\cdot \rho(x,y), \xi \in [x,y] \subset \mathbb{R}$. Функция f будет сжимающим отображением, если $|f'(\xi)|<1,\ \forall \xi \in \mathbb{R}$. Но $|f'(x)|\leq \alpha < 1\ \forall x \in \mathbb{R}$, что и требовалось доказать.

3. Задание 3 (10.3в)

3.1. Постановка

В пространстве $X=L^p\left[0,\frac{\pi}{2}\right], 1< p<\infty$ вычислить норму функционала $f(x)=\int_0^{\frac{\pi}{2}}\sin^3s\cdot\cos s\cdot x(s)\,ds.$

3.2. Решение

Оценим норму функционала сверху.

$$|f(x)| = \left| \int_0^{\frac{\pi}{2}} \sin^3 s \cdot \cos s \cdot x(s) \, ds \right| \stackrel{(1)}{\leq} \int_0^{\frac{\pi}{2}} \left| \sin^3 s \cdot \cos s \cdot x(s) \right| \, ds \stackrel{(2)}{\leq}$$

$$\leq \max_{s \in \left[0, \frac{\pi}{2}\right]} \left| \sin^3 s \cdot \cos s \right| \int_0^{\frac{\pi}{2}} |1 \cdot x(s)| \, ds \stackrel{(3)}{\leq}$$

$$\leq \frac{3\sqrt{3}}{16} \left(\int_0^{\frac{\pi}{2}} 1^q \, ds \right)^{\frac{1}{q}} \left(\int_0^{\frac{\pi}{2}} |x(s)|^p s \, ds \right)^{\frac{1}{p}} = \frac{3\sqrt{3}}{16} \left(\frac{\pi}{2} \right)^{\frac{1}{q}} ||x||_{L^p}$$

Значит, $||f|| \leq \frac{3\sqrt{3}}{16} \left(\frac{\pi}{2}\right)^{\frac{1}{q}}$. Проверим достижимость нормы.

Неравенство (1) становится равенством, когда x(s) имеет постоянный знак на интервале.

- (2) когда $\sin^3 s \cdot \cos s$ является константой, что не верно.
- (3) достигается при $x(s) \equiv const.$

$$\stackrel{(2)}{\leq} \left(\int_0^{\frac{\pi}{2}} \left| \sin^3 s \cdot \cos s \right|^q \, ds \right)^{\frac{1}{q}} \left(\int_0^{\frac{\pi}{2}} |x(s)|^p s \, ds \right)^{\frac{1}{p}} \leq \frac{3\sqrt{3}}{16} ||x||_{L^p}$$

Известно выражение для Бета-функции:

$$B(x,y) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1} t \cdot \cos^{2y-1} t \, dt.$$

Отсюда следует, что

$$k_{q} = \left(\int_{0}^{\frac{\pi}{2}} \sin^{3q} s \cdot \cos^{q} s \, ds\right)^{\frac{1}{q}} = \left(\frac{1}{2}B\left(\frac{3q}{2} + \frac{1}{2}, \frac{q}{2} + \frac{1}{2}\right)\right)^{\frac{1}{q}} =$$

$$= \left(0.5 \cdot \frac{\Gamma\left(\frac{1}{2} + \frac{3q}{2}\right)\Gamma\left(\frac{1}{2} + \frac{q}{2}\right)}{\Gamma\left(1 + 2q\right)}\right)^{\frac{1}{q}} = \left(0.5 \cdot \frac{(3q - 1)!!}{2^{\frac{3q}{2}}} \frac{(q - 1)!!}{2^{\frac{q}{2}}} \frac{\pi}{(2q)!}\right)^{\frac{1}{q}}$$

$$= \frac{1}{4}\left(\frac{\pi}{2}\right)^{\frac{1}{q}}\left(\frac{(3q - 1)!!(q - 1)!!}{(2q)!}\right)^{\frac{1}{q}} = \dots$$

...

$$k_q \stackrel{q \to \infty}{\sim} \frac{3\sqrt{3}}{16} \left(\frac{\pi}{2}\right)^{\frac{1}{q}}$$

Значит, что $||f|| \leq \frac{3\sqrt{3}}{16} \left(\frac{\pi}{2}\right)^{\frac{1}{q}}$. Проверим достижимость нормы. Неравенство (1) выполняется, если x(s) имеет постоянный знак. Неравенство Гёльдера (2) выполняется, если

$$x(s) = C|\sin^3 s \cdot \cos s|^{q-1} \operatorname{sign}(\sin^3 s \cdot \cos s) = C \cdot \sin^{3q-3} s \cdot \cos^{q-1} s$$

4. Задание 4 (8.26д)

4.1. Постановка

В пространстве $L^2[0,1]$ найти M^\perp , если M — множество функций из пространства $L^2[0,1]$, которые равны нулю почти всюду на отрезке $\left[0,\frac{1}{2}\right]$.

4.2. Решение

$$M = \left\{ f \in L^2[0,1] : f(t) \stackrel{\text{п.в.}}{=} 0, t \in \left[0, \frac{1}{2}\right] \right\}$$
. Пусть:

$$f \in M : f(t) = \begin{cases} 0^* (\pi.\mathbf{B}.), & t \in \left[0, \frac{1}{2}\right], \\ f_2(t) \in L^2 \left[\frac{1}{2}, 1\right], & t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

$$g \in M^{\perp} : g(t) = \begin{cases} g_1(t) \in L^2 \left[0, \frac{1}{2}\right], & t \in \left[0, \frac{1}{2}\right], \\ g_2(t) \in L^2 \left[\frac{1}{2}, 1\right], & t \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Тогда:

$$(f,g) = \int_0^1 f(t) \cdot g(t) \, dt = \int_0^{\frac{1}{2}} 0^* \cdot g_1(t) \, dt + \int_{\frac{1}{2}}^1 f_2(t) \cdot g_2(t) \, dt =$$
$$= \int_{\frac{1}{2}}^1 f_2(t) \cdot g_2(t) \, dt = 0.$$

В силу произвольности $f_2(t)$ необходимо, чтобы $g_2(t)=0^*$. Тогда,

$$M^{\perp} = \left\{ g \in L^2[0,1] : g(t) \stackrel{\text{\tiny fi.B.}}{=} 0, t \in \left[\frac{1}{2}, 1\right] \right\}$$