Практическое занятие 3

РАСЧЕТ АМПЛИТУДЫ ПУЛЬСИРУЮЩЕГО МОМЕНТА В АД ПРИ НЕСИНУСОИДАЛЬНОМ НАПРЯЖЕНИЯ В СЭЭС

Постановка задачи. Широкое внедрение статических преобразователей частоты для регулируемого по частоте электропривода переменного тока, широтно-импульсных регуляторов частоты, других нелинейных потребителей приводит к появлению высших гармоник напряжения в сетях переменного тока. Эти составляющие оказывают значительное влияние на вибрацию АД. Точность расчета пульсирующего момента во многом определяется уровнем исходных данных, в частности, комплексными амплитудами гармонических составляющих фазного напряжения. Здесь рассмотрим только упрощенный расчет при условии, что в СЭЭС фазовый сдвиг между двумя соседними высшими гармониками в каждой паре (5 – 7, 11 – 13...) незначителен и взаимное влияние высших гармоник между собой можно не учитывать.

Исходные данные. Гармонические составляющие фазного напряжения питания, В: U_1 , U_5 , U_7 , U_{11} , U_{13} , U_{17} , U_{19} ; гармонические составляющие фазного тока, А: I_1 , I_5 , I_7 , I_{11} , I_{13} , I_{17} , I_{19} ; индуктивные сопротивления упрощенной схемы замещения АД для высших гармоник или данные для их расчета, x_{rt} , x_{st} , Ом; частота угловая напряжения питания ω_1 , рад/с; число пар полюсов p.

Требуется найти. Амплитуды пульсирующих моментов при несинусоидальности напряжения питания $M, H \cdot M$, на соответствующих частотах:

$$\omega_6 = 6\omega_1, \ M_{6\omega_1}; \ \omega_{12} = 12\omega_1, \ M_{12\omega_1}; \ \omega_{18} = 18\omega_1, \ M_{18\omega_1}.$$

Алгоритм расчета. Рассмотрим приближенный расчет амплитуды пульсирующих моментов для высших гармоник напряжения для упрощенной схемы замещения АД (рис. 5.1). На схеме использованы следующие обозначения:

• q' – кратность высшей гармоники напряжения (тока);

$$q' = |q|; q = 1, -5, 7, -11, 13, -17, 19;$$

- $\beta = \frac{\omega_1}{2\pi 50}$ относительная частота основной гармоники напряжения;
- Z_q полное номинальное сопротивление схемы замещения АД:

$$Z_q = jq'\beta (x_{st} - x_{rt}); q = 1, -5, 7, -11, 13, -17, 19; Z_{6k\pm 1} = |Z_q|;$$

• x_{st} , x_{rt} — индуктивные сопротивления рассеяния обмоток статора и ротора соответственно, Ом.

Puc. 5.1

Приближенный расчет. $\omega_{6k} = 6k\omega_1, k = 1, 2, 3.$

$$\begin{split} M_{6k\omega_{1}} &= \frac{3pU_{1}}{\omega_{1}} \left(\frac{U_{5}}{Z_{5}} - \frac{U_{7}}{Z_{7}} \right) = \frac{3pU_{1}}{\omega_{1}} \left(I_{5} - I_{7} \right); \\ M_{12\omega_{1}} &= \frac{3pU_{1}}{\omega_{1}} \left(\frac{U_{11}}{Z_{11}} - \frac{U_{13}}{Z_{13}} \right) = \frac{3pU_{1}}{\omega_{1}} \left(I_{11} - I_{13} \right); \\ M_{18\omega_{1}} &= \frac{3pU_{1}}{\omega_{1}} \left(\frac{U_{17}}{Z_{17}} - \frac{U_{19}}{Z_{19}} \right) = \frac{3pU_{1}}{\omega_{1}} \left(I_{17} - I_{19} \right). \end{split}$$

Или в общем виде можно записать:

$$M_{6k\omega_1} = \frac{3pU_1}{\omega_1} \left(\frac{U_{6k-1}}{Z_{6k-1}} - \frac{U_{6k+1}}{Z_{6k+1}} \right) = \frac{3pU_1}{\omega_1} \left(I_{6k-1} - I_{6k+1} \right),$$

где Z_{6k-1} , Z_{6k+1} — комплексное сопротивление упрощенной схемы замещения АД для высших гармоник 6k-1 и 6k+1 соответственно, Ом.

Например, для приближенного расчета:

$$U_1 = 220 \text{ B}; \quad U_5 = 44 \text{ B}; \quad U_7 = 31,4 \text{ B}; \quad U_{11} = 20 \text{ B}; \quad U_{13} = 16,9 \text{ B}; \quad U_{17} = 13,1 \text{ B};$$
 $U_{19} = 7,8 \text{ B}; \quad f_1 = 50 \text{ Гц}; \quad x_{st} = 2,8 \text{ Ом}; \quad x_{rt} = 3,45 \text{ Ом}.$

Вычислим:

$$\beta = \frac{2\pi 50}{2\pi 50} = 1; \ \left| Z_q \right| = \left| q \right| (2,0+3,45) = \left| q \right| 6,25 \text{ Om};$$

$$Z_5 = 5 \cdot 6,25 = 31,25 \text{ Om}; \ Z_7 = 7 \cdot 6,45 = 43,75 \text{ Om}; \ Z_{11} = 11 \cdot 6,25 = 68,75 \text{ Om}; \ Z_{13} = 13 \cdot 6,25 = 81,25 \text{ Om}; \ Z_{17} = 17 \cdot 6,25 = 106,2 \text{ Om}; \ Z_{19} = 19 \cdot 6,25 = 118,7 \text{ Om}.$$

$$\begin{split} M_{6k\omega_1} &= \frac{3 \cdot 2 \cdot 220}{2\pi 50} \left(\frac{44}{31,25} - \frac{31,4}{43,75} \right) = 2,9 \; \mathrm{H \cdot m}; \\ M_{12\omega_1} &= \frac{3 \cdot 2 \cdot 220}{2\pi 50} \left(\frac{20}{68,75} - \frac{16,9}{81,25} \right) = 0,34 \; \mathrm{H \cdot m}; \\ M_{18\omega_1} &= \frac{3 \cdot 2 \cdot 220}{2\pi 50} \left(\frac{13,1}{106,25} - \frac{7,8}{118,75} \right) = 0,24 \; \mathrm{H \cdot m}. \end{split}$$

Таблица 5.1

Величина	Вариант								
	2	3	4	5	6	7	8	9	10
U_1 , B	220	220	220	220	220	220	220	220	220
U_5 , B	38	35	43	42	41	40	44	41	39
U_7 , B	27	29	31	30	28	26	30	30	28
<i>U</i> ₁₁ , B	18	19	21	21	19	18	21	20	19
<i>U</i> ₁₃ , B	15	16	18	18	18	15	17	16	15
<i>U</i> ₁₇ , B	12	12	13	12	11	13	14	12	11
U ₁₉ , B	7	7	7	6	7	7	7	6	6
<i>f</i> , Гц	50	50	50	50	50	50	50	50	50
p	2	2	2	2	2	2	2	2	2
x_{st} , Ом	2,7	2,8	2,7	2,8	2,9	2,7	2,8	2,7	2,7
x_{rt} , Ом	3,5	3,5	3,5	3,4	3,5	3,4	3,5	3,5	3,4

Значения гармонических составляющих фазного тока, индуктивные сопротивления рассеяния обмоток статора и ротора, частота и число пар полюсов приведены в табл. 5.1.