Полиноми на една променлива. Алгоритъм за деление с остатък.

Ако F е някакво поле, то знаем, че полином на една променлива с коефициенти от F е израз от вида

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

за естествено число $n \in \mathbb{N}$ и $a_i \in F$ за $i = 0, 1, \dots, n$.

Сега ще дадем по-формална и обобщена дефиниция на понятието полином,която същевременно разглежда множествотот от полиномите на една променлива като алгебричната структура пръстен.

Нека A е комутативен пръстен с единица. Разглеждаме наредени редици от вида (a_0, a_1, a_2, \dots) , където $a_i \in A$ за $i = 0, 1, 2, \dots$, в които само краен брой елементи a_i са различни от 0_A . Такива редици ще наричаме финитни. Означаваме с B множеството от всички финитни редици и в него дефинираме операции + и \cdot по следните правила: ако $a = (a_0, a_1, a_2, \dots), b = (b_0, b_1, b_2, \dots) \in B$, то $a + b = (a_0 + b_0, a_1 + b_1, \dots)$ и $ab = (c_0, c_1, c_2, \dots)$, където $c_0 = a_0b_0, c_1 = a_0b_1 + a_1b_0, c_2 = a_0b_2 + a_1b_1 + a_2b_0, \dots, c_i = a_0b_i + a_1b_{i-1} + \dots + a_{i-1}b_1 + a_ib_0, \dots$ за $i = 0, 1, 2, \dots$ Очевидно редиците a + b и ab също са финитни и принадлежат на множеството B. И така, относно тези операции B се превръща в комутативен пръстен с единица. Нулевият елемент на B е редицата $(0_A, 0_A, \dots)$, асоциативността и комутативността на операцията + са очевидни, а асоциативността и комутативността на операцията + се проверяват директно, единичният елемент на пръстена е редицата $(1_A, 0_A, 0_A, \dots)$.

Подмножеството

$$B_0 = \{(a, 0_A, 0_A, \dots) \mid a \in A\}$$

е подпръстен на B, а изображението, което извършва съпоставянето $(a, 0_A, 0_A, \dots) \mapsto a$ е изоморфизъм на пръстените B_0 и A (т.е. $B_0 \cong A$). По този начин може да отъждествим елементът $(a, 0_A, 0_A, \dots) = u$ да считаме, че А е подпръстен на В. Въвеждаме специални означения за някои от елементите на B, а именно $x = (0_A, 1_A, 0_A, 0_A, \dots), x^2 = x.x =$ $(0_A,0_A,1_A,0_A,0_A,\dots)$ и така нататък $x^k=(\underbrace{0_A,0_A,\dots,0_A}_{t},1_A,0_A,\dots)$. Нека $a\in A$. Тогава имаме $ax^k=(a,0_A,0_A,\dots)\cdot\underbrace{(0_A,\overset{\circ}0_A,\dots,0_A,}_k,1_A,0_A,\dots)=$

$$(\underbrace{0_A,0_A,\ldots,0_A}_k,a,0_A,\ldots).$$

Нека $f \in B$ е такъв, че $f \neq 0_B = (0_A, 0_A, \dots)$. Тогава съществува поне един елемент от редицата $f = (f_0, f_1, \dots, f_n, \dots)$, който е ненулев. Нека n е най-голямото число, за което $f_n \neq 0_A$. Ясно е, че n е цяло неотрицателно число. Съгласно операциите + и · и означенията, които въведохме, можем да запишем $f = (f_0, 0_A, 0_A, \dots) + (0_A, f_1, 0_A, \dots) + \dots +$ $(0_A + \dots + 0_A, f_n, 0_A, \dots) = f_0 + f_1 x + f_2 x^2 + \dots + f_n x^n$. По този начин

получаваме еднозначен запис за всеки от елементите на B.

Така полученият пръстен B се нарича $np\sigma cmeh$ на полиномите на $e\partial Ha$ променлива x с коефициенти от A и се означава с A[x]. Елементите $f = f(x) \in B$ се наричат полиноми с коефициенти от A или още полиноми над A. Както видяхме, всеки полином $f(x) \in A[x], f(x) \neq 0_B$ се записва еднозначно като $f(x) = f_0 + f_1 x + f_2 x^2 + \dots + f_n x^n$, където $f_i \in A$ за $i = 1, 2, ..., n, f_n \neq 0_A$ и n е цяло неотрицателно число.

Оттук нататък стандартният начин за записване на полином ще бъде

$$f = f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n,$$

където $a_i \in A$ за $i = 0, 1, \dots, n, a_0 \neq 0_A$ и n е цяло неотрицателно число. Елементът a_0 се нарича *старши коефициент на полинома* f, а елементът a_n се нарича *свободен член на полинома* f. Числото n се нарича cmenenна полинома f и се бележи $\deg f = n$. В случай, че $f = 0_{A[x]}$ е нулевият полином, то дефинираме $\deg f = -\infty$.

Отсега нататък ще считаме, че пръстенът A ще бъде известен и ще записваме 0 вместо 0_A . По същият начин ще записваме и нулевият полином на A[x], а именно 0 вместо $0_{A[x]}$. Разлика е лесно да се направи според контекста.

Нека $f = a_0 x^n + \dots + a_n$, $a_0 \neq 0$ и $g = b_0 x^m + \dots + b_m$, $b_0 \neq 0$ са два полинома. На базата на въведените операции за събиране и умножение на полиноми е лесно да се съобрази, че $\deg(f+g) = \max\{n,m\}$. Полиномът fg има старши едночлен $a_0 b_0 x^{m+n}$ и следователно $\deg(fg) \leq m+n$. Ако пръстенът A е област, то $a_0 b_0 \neq 0$ и тогава $\deg(fg) = m+n = \deg f + \deg g$.

Нека $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n \in A[x]$, а $\alpha \in A$. Елементът $f(\alpha) = a_0 \alpha^n + a_1 \alpha^{n-1} + \dots + a_{n-1} \alpha + a_n \in A$ ще наричаме *стойност* на полинома f при $x = \alpha$. По този начин всеки полином $f(x) \in A[x]$ определя функция

$$f: A \longrightarrow A$$
.

Ако f(x)=g(x), то е ясно, че $f(\alpha)=g(\alpha)$ за $\forall \alpha \in A$ и в такъв случай функциите $f:A\longrightarrow A$ и $g:A\longrightarrow A$ съвпадат. Обратното обаче не е вярно. Например в пръстена $A=\mathbb{Z}_p$, където p е просто число разглеждаме полиномите $f(x)=x^p$ и g(x)=x. За всеки елемент $\overline{k}\in\mathbb{Z}_p$ е изпълнено, че $f(\overline{k})=\overline{k}^p=\overline{k}$ според теоремата на Ферма и също $g(\overline{k})=\overline{k}$. По този начин $f:\mathbb{Z}_p\longrightarrow \mathbb{Z}_p$ и $g:\mathbb{Z}_p\longrightarrow \mathbb{Z}_p$ съвпадат като функции, но $f(x)\neq g(x)$.

Ако A е област и $f(x), g(x) \in A[x]$ са два полинома със степени, ненадминаващи n и ако $f(a)i) = g(a_i)$ за n+1 различни елемента $a_1, a_2, \ldots, a_{n+1} \in A$, то f(x) = g(x). Оттук следва, че ако A е безкрайна област и $f: A \longrightarrow A$ и $g: A \longrightarrow A$ съвпадат като функции, то обезателно f(x) = g(x).

Предстои да докажем теоремата за деление с частно и остатък на полиноми, която е аналог на теоремата за деление с частно и остатък на цели числа.

Теорема. Нека F е поле. За всеки два полинома $f(x), g(x) \in F[x], g(x) \neq 0$ съществуват единствни полиноми $q(x) \in F[x]$, наречен частно и $r(x) \in F[x]$, наречен остатък, такива че е изпълнено

$$f(x) = q(x)g(x) + r(x)$$

 $u \deg r < \deg g$.

Доказателство. Съществуване: нека $f(x) = a_o x^n + \dots + a_n$, $g(x) = b_0 x^m + \dots + b_m$. Ако $\deg f < \deg g$, то $f = 0 \cdot g + f$, т.е. r(x) = f(x) и q(x) = 0 и всичко е изпълнено. Нека сега $\deg f \geq \deg g$. За определеност $\deg f = n$, $\deg g = m$ (т.е. $a_0 \neq 0$, $b_0 \neq 0$) и $n \geq m$. Ще проведем индукция по степента на полинома f. Основа на индукцията -n = 0. Т.к. $n \geq m$, то тогава и m = 0 и имаме, че $f(x) = a_0$, $g(x) = b_0$. Тогава полагаме $q(x) = a_0$

 $\frac{a_0}{b_0}$ и r(x)=0 и получаваме, че $f=q\cdot g+r$. При това $\deg r=-\infty<0=\deg g$. Индукционното предположение е, че това твърдение е изпълнено за всички естествени числа по-малки от n. Индукционна стъпка – ще докажем, че то е вярно и за n. Раглеждаме полинома $a_0b_0^{-1}x^{n-m}\cdot g$. Той има старши едночлен $a_0b_0^{-1}x^{n-m}b_0x^m=a_0x^n$, който съвпада със старшия едночлен на f(x). Разглеждаме полинома $f_1=f-a_0b_0^{-1}x^{n-m}\cdot g$. Ясно е, че $f_1\in F[x]$, а от казаното по-горе следва, че $\deg f_1< n$. От индукционото предположение, приложено за f_1 и g следва, че съществуват полиноми $q_1,r_1\in F[x]$, такива че $f_1=q_1\cdot g+r_1$ и $\deg r_1<\deg g$. Сега $f=f_1+a_0b_0^{-1}x^{n-m}\cdot g=q_1\cdot g+r_1+a_0b_0^{-1}x^{n-m}\cdot g=(q_1+a_0b_0^{-1}x^{n-m})\cdot g+r_1$. Означаваме $q=q_1+a_0b_0^{-1}x^{n-m}$ и $r=r_1$ и тогава е изпълнено, че $f=q\cdot g+r$ с $\deg g$. Принципът на математическата индукция доказва твърдението.

Единственост: нека $q,r\in F[x]$ са такива, че $f=q\cdot g+r$ и $\deg r<\deg g$. Нека предположим, че $q',r'\in F[x]$ също са такива, че $f=q'\cdot g+r'$ и $\deg r'<\deg g$. Това ни дава, че

$$qg + r = q'g + r',$$
$$(q - q')g = r' - r.$$

Ако допуснем, че $q \neq q'$, то това би означавало, че $q-q' \neq 0$, т.е. $\deg(q-q') \geq 0$ и $\deg[g(q-q')] = \deg g + \deg(q-q') \geq \deg g$. От друга страна обаче $\deg r < \deg g$ и $\deg r' < \deg g$ дават, че $\deg(r'-r) < \deg g$. Сега горните равенства водят до противоречието

$$\deg g \leq \deg[(q-q')g] = \deg(r'-r) < \deg g,$$

т.е. $\deg g < \deg g$. Тогава остава да е вярно, че q' = q и r - r' = (q' - q)g = 0, което означава, че и r' = r. Така единствеността е доказана.

Забележка: от доказателството следва, че теоремата е в сила и ако вместо поле F се вземе област A (т.е. $f,g\in A[x]$) и $b_0\neq 0_A$ е обратим елемент. Например при $A=\mathbb{Z}$ и $b_0=\pm 1$ теоремата е в сила и получаваме, че $q,r\in \mathbb{Z}[x]$.

Твърдение 1. Ако F е поле, в пръстена F[x] всеки идеал е главен.

Доказателство. Нека $I \leq F[x]$. Ако $I = \{0\}$, то просто I = (0). Нека $I \neq \{0\}$ и нека $d \in I$ е такъв, че е ненулев и от най-ниска степен в

I. Щом $d \in I$ и $I \subseteq F[x]$, то $(g) = \{hd \mid h \in F[x]\} \subseteq I.$ Да вземем произволен полином $f \in I.$ При деление на f на d с частно q и остатък r, такива че $q, r \in F[x]$, $\deg r < \deg d$, получаваме, че f = qd + r. Но $f \in I$ и $qd \in (d) \subseteq I$ дават, че трябва и $r \in I.$ По този начинполучихме, че $r \in I$ и $\deg r < \deg d$. Ако допуснем, че $r \neq 0$, то веднага получаваме противоречие с минималността на d. Следователно r = 0 и f = qd. Но това означава, че $f \in (d)$ за произволен полином $f \in I$ т.е. $I \subseteq (d)$. Така достигаме до факта, че I = (d), което означава, че I е главен идеал с пораждащ d.