Dropout: A simple way to prevent neural networks from overfitting

Srivastava, Nitish, et al.

Abstract

Overfitting is a serious problem in Deep neural nets with a large number of parameters. -> **Dropout** is a technique for addressing this problem

Dropout

The key idea is to randomly drop units from the neural network during training.

- -> This prevents units from co-adapting too much.
- -> During training, dropout samples from an exponential number of different thinned networks.
- -> At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights.
- → This significantly reduces overfitting and gives major improvements over other regularization methods.

Many methods for reducing overfitting

- 1. Stopping the training as soon as performance on a validation set starts to get worse.
- 2. Introducing weight penalties of various kinds such as L1 and L2 regularization
- 3. Soft weight sharing

With unlimited computation, the best way to **regularize** a fixed-sized model is to average the predictions of all possible settings of the parameters, weighting each setting by its posterior probability given the training data.

- Quite well for simple or small models
- → But we would like to approach the performance of the Bayesian gold standard using considerably less computation
- → Approximating an equally weighted geometric mean of the predictions of an exponential number of learned models that share parameters.

Model combination

Nearly always improves the performance of ML, but expensive (with large NN)

- Combining several models is most helpful when..
- 1. They have different architecture
- 2. They are trained on different data
- → Even if one was able to train many different large networks, using them all at test time is infeasible in applications (long response time)

Addressing both issues (overfitting, model combination) -> **Dropout**

- It prevents overfitting and provides a way of approximately combining exponentially many different NN architectures efficiently.
- Dropout = dropping out units in NN
- The choice of which units to drop is random
- → Each unit is retained with a fixed probability **p** independent of other units

Applying dropout to a NN amounts to sampling a **thinned network** from it. The thinned network consists of all the units that survived dropout NN with n units -> collection of 2^n possible thinned NNs (parameters : $O(n^2)$)

At **test time**, it is not feasible to explicitly average the predictions from exponentially many thinned models. -> **approximate averaging method**

- Using a single neural net at test time without dropout
- If a unit is retained with probability p during training, the outgoing weights of that unit are multiplied by p at test time

Model description

$$\begin{array}{lll} z_i^{(l+1)} & = & \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)}, \\ y_i^{(l+1)} & = & f(z_i^{(l+1)}), \end{array}$$

Feed forward of standard NN

$$r_j^{(l)} \sim \text{Bernoulli}(p),$$
 $\widetilde{\mathbf{y}}^{(l)} = \mathbf{r}^{(l)} * \mathbf{y}^{(l)},$
 $z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \widetilde{\mathbf{y}}^l + b_i^{(l+1)},$
 $y_i^{(l+1)} = f(z_i^{(l+1)}).$

Feed forward with dropout

L: # hidden layers

I : index of the hidden layers

z: input vector

y: output vector

W: weight vector

b: bias vector

f: activation function

Model description

L:# hidden layers

I : index of the hidden layers

z : input vector

y : output vector

W: weight vector

b: bias vector

f: activation function

Learning Dropout Nets

Backpropagation

- Forward and backpropagation for that training case are done only on this thinned network.
- The gradients for each parameter are **averaged over** the training cases in each mini-batch.
- momentum, annealed learning rate, L2 weight decay are useful for dropout NN

Max-norm regularization

- Useful for dropout constraining the norm of the incoming weight vector at each hidden unit to be upper bounded by a fixed constant **c** (hyperparameter)
- If W represents the vector of weights incident on any hidden unit, the NN was optimized under the constraint $||W||_2 \le c$
- → This constraint was imposed during optimization by projecting W onto the surface of a ball of radius c, whenever W went out of it.

Learning Dropout Nets

Unsupervised Training

NN can be pretrained using stacks of RBM or autoencoders, DBM

- The weights obtained from pretraining should be scaled up by a factor of 1/p
- -> This makes sure that for each unit, the expected output from it under random dropout will be the **same** as the output during pretraining.
- The stochastic nature of dropout might wipe out the information in the pretrained weights -> **choose learning rates smaller**

Experimental Results

Data Set	Domain	Dimensionality	Training Set	Test Set
MNIST	Vision	$784 (28 \times 28 \text{ grayscale})$	60K	10K
SVHN	Vision	$3072 (32 \times 32 \text{ color})$	600K	26K
CIFAR-10/100	Vision	$3072 (32 \times 32 \text{ color})$	60K	10K
ImageNet (ILSVRC-2012)	Vision	$65536 (256 \times 256 \text{ color})$	1.2M	150K
TIMIT	Speech	2520 (120-dim, 21 frames)	1.1M frames	58K frames
Reuters-RCV1	Text	2000	200K	200K
Alternative Splicing	Genetics	1014	2932	733

Dataset

Results

Effect on Features

It is apparent that the features shown in (a) have co-adapted in order to produce good reconstruction

Effect on Sparsity

The activations of the hidden units become sparse.

Effect on Dropout rate

The effect of varying the hyperparameter p, n : # of neurons in hidden layer

- (1) Keeping n fixed -> evaluating train, test error
- \rightarrow It becomes flat when $0.4 \le p \le 0.8$

- (2) Keeping pn fixed -> evaluating train, test error
- → Errors for small values of p has reduced by a lot compared to (1)

Optimal value 0.5, 0.6

Effect on Data Set size

