```
In [13]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
In [14]:
         x=np.array([95,85,80,70,60])
         y=np.array([85,95,70,65,70])
         model=np.polyfit(x,y,1)
In [15]:
In [17]:
         model
         array([ 0.64383562, 26.78082192])
Out[17]:
         predict=np.poly1d(model)
In [18]:
         predict(65)
In [19]:
         68.63013698630137
Out[19]:
         y_pred=predict(x)
In [20]:
In [21]:
         y_pred
         array([87.94520548, 81.50684932, 78.28767123, 71.84931507, 65.4109589])
Out[21]:
In [23]:
         from sklearn.metrics import r2_score
In [24]:
         r2_score(y,y_pred)
         0.4803218090889326
Out[24]:
In [27]:
         y_line=model[1]+model[0]*x
         plt.plot(x,y_line,c='r')
         plt.scatter(x,y_pred)
         plt.scatter(x,y,c='r')
         plt.show()
```


In [28]: data=pd.read_csv("/home/student/Desktop/Boston.csv")

In [29]: data.head(9)

Out[29]:	Uni	named: 0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
	0	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
	1	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
	2	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
	3	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
	4	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
	5	6	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
	6	7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
	7	8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1
	8	9	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5

```
data['crim']
In [30]:
                 0.00632
Out[30]:
                 0.02731
          2
                 0.02729
          3
                 0.03237
          4
                 0.06905
          501
                 0.06263
          502
                 0.04527
          503
                 0.06076
          504
                 0.10959
          505
                 0.04741
          Name: crim, Length: 506, dtype: float64
```

```
In [31]: data.isnull().sum()
         Unnamed: 0
Out[31]:
         crim
                        0
         zn
                        0
         indus
                        0
                        0
         chas
         nox
                        0
         rm
                        0
                        0
         age
         dis
                        0
                        0
         rad
                        0
         tax
                        0
         ptratio
         black
                        0
         lstat
                        0
                        0
         medv
         dtype: int64
In [33]: x=data.drop(['crim'], axis=1)
         y=data['crim']
In [34]: from sklearn.model_selection import train_test_split
          xtrain, xtest, ytrain, ytest=train_test_split(x, y, test_size=0.2)
In [37]: import sklearn
          from sklearn.linear_model import LinearRegression
          lm=LinearRegression()
         model=lm.fit(xtrain,ytrain)
In [38]: ytrain_pred=lm.predict(xtrain)
         ytest_pred=lm.predict(xtest)
In [39]:
         data=(ytrain_pred,ytrain)
          data=(ytest_pred,ytest)
         plt.scatter(ytrain,ytrain_pred,c='blue',marker='o',label='Training data')
In [44]:
          plt.scatter(ytest,ytest_pred,c='red',marker='p',label='Test data')
          plt.xlabel('True values')
          plt.ylabel('Predicted')
          plt.title("True value vs Predicted value")
          plt.legend(loc='lower right')
          plt.plot()
          plt.show()
```


In []: