SPECIFICA ARCHITETTURALE

SWEVEN TEAM

swe7.team@gmail.com

INFORMAZIONI	SUL	DOCUMENTO
--------------	-----	-----------

Versione	0.0.0
Uso	Esterno
Destinatari	Gruppo Sweven Team
	Prof. Tullio Vardanega
	Prof. Riccardo Cardin
	Azienda Imola Informatica
Stato	in lavorazione
Redattori	
Verificatori	
Approvatori	

Sintesi

Specifica architetturale e delle tecnologie per la realizzazione del $Chatbot_G$.

Diario delle modifiche

Versione	Data	Descrizione	Ruolo	Autore	Verificatore
	2022-08-22	Scrittura \$2.2 e \$2.3	Progettista	Irene Benetazzo	
	2022-08-09	Scrittura \$3	Progettista	Irene Benetazzo	
	2022-08-08	Scrittura \$1	Amministratore	Irene Benetazzo	
	2022-07-21	Creazione docu- mento	Amministratore	Irene Benetazzo	

Indice

1	Intro	oduzioi	ne	4
	1.1	Scopo	del Documento	4
	1.2	Scopo	del Capitolato	4
	1.3	Glossa	urio	4
	1.4	Riferin	nenti	4
		1.4.1	Normativi	4
		1.4.2	Informativi	4
2	Arch	itettur	ra	5
	2.1	Client		5
	2.2	Server		5
		2.2.1	Chatterbot	5
		2.2.2	State	5
		2.2.3	Statement_State	5
		2.2.4	Statement	5
		2.2.5	LogicAdapter	5
		2.2.6	Request	5
		2.2.7	Login	6
		2.2.8	Logout	6
		2.2.9	Activity	6
		2.2.10	Gate	6
		2.2.11	Project Creation	6
		2.2.12	Presence	6
	2.3	API Re	est	6
3	Tecn	ologie		7
0	3.1	•		7
	3.1		Python	7
		3.1.1	3.1.1.1 Chatterbot	7
		3.1.2	API Rest Imola Informatica	7
	3.2			7
	3.4	3.2.1		7
			React	7
		3.2.2	HTML	
		3.2.3	CSS	7
		3.2.4	Flask	7
		< / -	ADI ACCAMINAL	

1 Introduzione

1.1 Scopo del Documento

La Specifica Architetturale ha lo scopo di descrivere le scelte architetturali e tecnologiche attuate per la realizzazione del $Chatbot_G$.

1.2 Scopo del Capitolato

Lo scopo di tale progetto è quello di sviluppare un Chatbot che interfacciandosi con software aziendali spesso complessi e dispersivi, semplifichi i compiti che i dipendenti devono svolgere. In particolare vengono individuate le seguenti operazioni:

- Tracciamento della presenza in sede (EMT_G)
- Rendiconto attività svolte quotidianamente (EMT_G)
- Apertura del cancello aziendale (MQTT_G)
- · Creazione di una riunione in un servizio esterno
- Servizio di ricerca documentale (CMIS_G)
- Creazione e tracciamento di bug (**Redmine**_G)

1.3 Glossario

Per assicurare la massima fruibilità e leggibilità del documento, il team SWEven ha deciso di creare un documento denominato *Glossario* il cui scopo sarà quello di contenere le definizioni dei termini ambigui o specifici del progetto. Sarà possibile riconoscere i termini presenti al suo interno in quanto terminanti con la lettera *G* posta come pedice della parola stessa.

1.4 Riferimenti

1.4.1 Normativi

• Norme di Progetto *v1.0.0*

1.4.2 Informativi

- Capitolato di appalto C1 BOT4ME
- Slide del corso Diagrammi dei casi d'uso
- Slide del corso Diagrammi di sequenza
- Slide del corso I pattern architetturali

2 Architettura

L'architettura del prodotto è suddivisa tra Client e Server, inoltre si utilizzano le API $Rest_G$ messe a disposizione dall'azienda Imola Informatica. —IMG unica, mentre se è separata Client e Server vanno messe dentro relativa sezione —

2.1 Client

2.2 Server

2.2.1 Chatterbot

classe della libreria esterna scritta in Python_G

2.2.2 State

classe che è la generalizzazione di tutti i vari stati e come dato privato si salva l'attuale stato corrente e pubblicamente dispone anche di un metodo per aggiungere informazioni necessarie per completare la richiesta in corso.

State_Null sottoclasse aggiuntiva di *State* che comprende il caso di uno stato vuoto, una possibile causa può essere quando l'utente non è autenticato.

2.2.3 Statement State

classe che fa da intermediario tra lo State e lo Statement. Come unico campo privato ha l' $Api-Key_G$ che certifica se l'utente è autenticato e la rende visibile pubblicamente tramite una funzione get.

2.2.4 Statement

classe che viene fornita come dipendenza della libreria $Chatterbot_G$ e ha il compito di memorizzare i dati e viaggia tra il Client, LogicAdapter e Server.

2.2.5 LogicAdapter

classe astratta base per tutte le classi adapter derivate, una per ogni funzionalità, dispone dei due metodi base di cui verrà fatto l' $overriding_G$:

- can_process: metodo booleano che controlla tutte le varie condizioni e se tutto okay fa procedere il metodo *process*.
- process: controlla ed elabora tutti i dati forniti così da produrre una risposta.

2.2.6 Request

generalizzazione di tutte le varie request distinte per funzionalità. Interfaccia che riceve i dati pronti verificandone la completezza e in base all'adapter invia la richiesta $HTTP_G$ alle API $Rest_G$ di Imola per interagire con i loro servizi e soddisfare la richiesta dell'utente.

2.2.7 Login

2.2.8 Logout

2.2.9 Activity

classi *Adapter_Activity*, *State_Activity* e *Request_Activity* per la funzionalità di consuntivare le ore dedicate ad un progetto compreso le eventuali ore di viaggio.

2.2.10 Gate

classi Adapter Gate, State Gate e Request Gate per la funzionalità di apertura cancello

2.2.11 Project_Creation

classi Adapter_Project_Creation, State_Project_Creation e Request_Project_Creation

2.2.12 Presence

classi *Adapter_Presence*, *State_Presence* e *Request_Presence* per la funzionalità di registrazione della presenza

2.3 API Rest

Un'API REST è un'interfaccia di programmazione delle applicazioni conforme ai vincoli dello stile architetturale REST, che consente l'interazione con servizi web RESTful.

Il termine REST è l'acronimo di REpresentational State Transfer. REST è un insieme di vincoli architetturali, non un protocollo né uno standard. Quando una richiesta client viene inviata tramite un'API RESTful, questa trasferisce al richiedente o all'endpoint uno stato rappresentativo della risorsa. L'informazione viene consegnata in HTTP in un formato JSON, HTML, Python o txt.

3 Tecnologie

3.1 Server

3.1.1 Python

Linguaggio di programmazione ad alto livello, adatto alla programmazione orientata agli oggetti. E' stato utilizzato per sviluppare il back-end insieme alla libreria esterna Chatterbot.

3.1.1.1 Chatterbot Libreria esterna in $Python_G$ che utilizza algoritmi di intelligenza artificiale per trovare la migliore risposta per emulare il comportamento di un $chatbot_G$ nel server. Grazie alla sua flessibilità si sono implementati degli adapter che modellano e gestiscono le varie richieste dell'utente.

Durante l'esecuzione Chatterbot crea in automatico dei file dall'estensione SQL_G

3.1.2 API Rest Imola Informatica

L'azienda ha fornito delle API $Rest_G$ che permettono al $chatbot_G$ di interagire con i loro sistemi aziendali.

3.2 Client

3.2.1 React

React è una libreria JavaScript per costruire l'interfaccia utente caratterizzata dal fatto che è dichiarativa, efficiente e flessibile. E' stato utilizzato per creare l'applicazione lato client.

3.2.2 HTML

Linguaggio di markup, in standard W3C, per documenti visualizzabili attraverso un web browser

3.2.3 CSS

Linguaggio di formattazione per i documenti HTML.

3.2.4 Flask

Framework Python per lo sviluppo di applicazioni web. Flask contiene tutte le classi e le funzioni necessarie per la costruzione di una web app, e ha agevolato l'organizzazione e la gestione del $chatbot_G$

3.2.5 API AssemblyAI

L'API deve essere integrata con React e permette di tradurre automaticamente l'audio in testo.