

2020 SPRING TECHNICAL MEETING WESTERN STATES SECTION OF THE COMBUSTION INSTITUTE Stanford University – Stanford, CA

Monday, 23 March 2020

7:30 – 4:00 Registration

7:30 – 8:00 Continental Breakfast

8:00 – 8:15 Welcome Address

Welcome Remarks:

8:15 – 9:15 Plenary Lecturer: Michael Gollner, U.C. Berkeley The Dynamic Behavior of Fires: from Wildfires to Fire Whirls

9:15 - 9:25	Transition to Morning Sessions		
	Fires I	Laminar Flames/Detonations	Chemical Kinetics I
9:25 – 9:45	1A01: Burning rate of porous fuel beds: Axisymmetric versus line fire S. McAllister USDA Forest Service	1B01: Statistics of cellularly unstable expanding laminar flame Z. Liu ¹ , V.R. Unni ² , S. Chaudhuri ³ , C.K. Law ¹ , A. Saha ² ¹ Princeton University ² University of California San Diego ³ University of Toronto	1C01: Computational design of sensitized combustion chemistry experiments C. Ising, P. Rodriguez, D. Lopez, J. Santner California State University
9:45 – 10:05	1A02: The effect of species and moisture content on flaming emissions from various vegetative fuels P. Garg ¹ , T. Roche ² , J. Matz ³ , M. Eden ³ , J. Oakes ³ , C. Bellini ³ , M.J. Gollner ¹ ¹ University of California Berkeley ² University of Maryland ³ Northeastern University	1B02: Extinction of premixed flames with oscillating strain rates A. Potnis ¹ , V.R. Unni ¹ , C.K. Law ² , A. Saha ¹ ¹ University of California San Diego ² Princeton University	1C02: Embedded error Bayesian calibration of thermal decomposition of organic composites A.L. Frankell, R.M. Keedy, B.C. Houchens, E.B. Wagman, S.N. Scott Sandia National Laboratories
10:05 – 10:25	1A03: Influence of particle size on self- sustained smoldering A.H. Ross, D.L. Blunck Oregon State University	1B03: Diluent and spark-delay effects on flame stability in shock-tube flame speed experiments A.J. Susa, A.M. Ferris, R.K. Hanson Stanford University	1C03: When models fail: Resolving the low temperature oxidation kinetics of tetrahydrofuran K.S. Lockwood, N.J. Labbe University of Colorado Boulder

	Fires I	Laminar Flames/Detonations	Chemical Kinetics I
10:25 – 10:45	1A04: Wind effects on smoldering behavior of simulated wildland fuels J. Cobian-Iñiguez ¹ , H. Xiong ^{1,2} , C. Fernandez-Pello ¹ , M. Gollner ¹ , S. Stephens ¹ , M. Finney ³ ¹ University of California Berkeley ² University of Science and Technology of China ³ USDA Forest Service	1B04: Detonation limit behaviors of methane and natural gas X. Shi, J. Crane, H. Wang Stanford University	1C04: First and second O ₂ addition in low-temperature cyclopentane oxidation A.L. Dewyer, J. Zádor, L. Sheps Sandia National Laboratories
10:45 – 11:05	1A05: Effect of fuel bed properties on ignition by firebrands D. Bean, D.L. Blunck Oregon State University	1B05: Geometric modeling of detonation cellular propagation J. Crane, X. Shi, H. Wang Stanford University	1C05: Competitive oxidation of methane/ethylene fuel mixtures discerned by multi-isotopologue laser absorption spectroscopy D.I. Pineda, F.A. Bendana, R.M. Spearrin University of California Los Angeles
11:05 – 11:20	BREAK		
	Fires II	Laminar Flames	Biomass/Gasification
11:20 – 11:40	1A06: Sensitivity and uncertainty analysis on the dual-thermocouple technique for turbulent flame temperature measurements X. Ren ^{1,2} , D. Zeng ³ , Y. Wang ³ , G. Xiong ³ , G. Agarwal ³ , M.J. Gollner ^{1,2} ¹ University of Maryland ² University of California Berkeley ³ FM Global	1B06: Effect of hydrogen enrichment on hydrocarbon edge flames A. Felden, L. Esclapez, M. Day Lawrence Berkeley National Laboratory	1C06: X-ray absorption tomography measurements of solid fuel combustion in wildfire conditions E. Boigné, M. Ihme Stanford University
11:40 – 12:00	1A07: Comparison of experimental results with theoretical predictions of inclined laminar flame characteristics R.S.P. Hakes ^{1,2} , W. Coenen ³ , A.L. Sánchez ² , M.J. Gollner ⁴ , F.A. Williams ² ¹ University of Maryland ² University of California San Diego ⁴ University of California Berkeley ³ Universidad Carlos III de Madrid	1B07: On numerical computations of structures of nonpremixed flames D. Shanmugasundaram ¹ , K. Narayanaswamy ¹ , L. Badiali ² , R. Khare ³ , K. Seshadri ² ¹ Indian Institute of Technology Madras ² University of California San Diego ³ Karlsruhe Institute of Technology	1C07: Ash effects on biomass char gasification rates R. Wu, J. Beutler, L. Baxter Brigham Young University

	Fires II	Laminar Flames	Biomass/Gasification
12:00 – 12:20	1A08: Effect of reduced ambient oxygen concentration and flow velocity on flame spread over simulated electrical wires L. Gagnon ¹ , C. Fernandez-Pello ¹ , V.P. Carey ¹ , Y. Konno ² , O. Fujita ² ¹ University of California Berkeley ² Hokkaido University	1B08: Water-vapor addition into a methane diffusion flame B. Esquivias, YC. Chien, M. Vicariotto, D. Dunn-Rankin University of California Irvine	1C08: Bayesian decision theory for operational optimization of a biomass boiler J.C. Parra-Alvarez ¹ , O. Diaz-Ibarra ¹ , S. Smith ¹ , L. Marshall ² , S. Harding ¹ , J. Thornock ¹ , J. Spinti ¹ , P. Smith ¹ ¹ University of Utah ² Ontario Power Generation
12:20 – 12:40	1A09: Efficient simulations of propagating fires using adaptive mesh refinement C. Lapointe, N.T. Wimer, J.F. Glusman, A.S. Makowiecki, P. Sardana, J.W. Daily, G.B. Rieker, P.E. Hamlington University of Colorado Boulder	1B09: Laminar flame dynamics of multi-port fuel jets under acoustic forcing A. Vargas, J. Guerrero, A.R. Karagozian University of California Los Angeles	1C09: Developing a high fidelity simulation of a biomass boiler O. Diaz ¹ , J.C. Parra-Alvarez ¹ , S. Harding ¹ , L. Marshall ² , S. Smith ^{1,3} , J. Thornock ^{1,3} , M. Hradisky ¹ , J. Spinti ^{1,3} , P. Smith ^{1,3} Institute for Clean and Secure Energy Ontario Power Generation Juniversity of Utah
12:40 – 13:40	LUNCH –		
	Fires III	Turbulent Flames I	Chemical Kinetics II
13:40 – 14:00	1A10: Upward flame spread over thin fabrics in normoxic atmospheres M. Thomsen ¹ , C. Fernandez-Pello ¹ , D.L. Urban ² , G.A. Ruff ² ¹ University of California Berkeley ² NASA Glenn Research Center	1B10: Data-driven assignment of combustion submodels for large-eddy simulation W.T. Chung ¹ , A.A. Mishra ¹ , N. Perakis ^{1,2} , M. Ihme ¹ Stanford University Technical University of Munich	1C10: Impact of pyrolysis species measurement uncertainties on the prediction accuracy of HyChem reaction model – A case study on Jet A R. Xu, H. Wang Stanford University
14:00 - 14:20	1A11: The use of fire resistant fabric to quantify firebrand production from trees S. Adusumilli, T. Hudson, N. Gardner, D. Blunck Oregon State University	1B11: Reduced-order thermochemical state manifolds with co-optimized linear embeddings and nonlinear mappings B.A. Perry, M.T. Henry de Frahan, S. Yellapantula, R.W. Grout National Renewable Energy Laboratory	1C11: Heat release from oxidation of aliphatic hydrocarbon groups and their effects on the piecewise characteristics and spontaneous combustion tendency of coal T. Xu, J. Qi, X. Li, Y. Wu Shanghai Maritime University
14:20 - 14:40	1A12: Downward flame spread rate over PMMA cylinders under external radiant heating A. Rodriguez ¹ , M. Thomsen ¹ , C. Fernandez-Pello ¹ , M. Gollner ¹ , S. Olson ² , P. Ferkul ² ¹ University of California Berkeley ² NASA Glenn Research Center	1B12: A framework for experiment-based turbulent combustion modeling R. Ranade, T. Echekki North Carolina State University	1C12: Thermodynamic properties of key intermediates in the combustion of methyl methacrylate G. Blanquart, J. Rabinovitch California Institute of Technology

	Fires III	Turbulent Flames I	Chemical Kinetics II
14:40 - 15:00	1A13: An experimental study on flame spread over vertical corrugated cardboard: Influence of grain orientation H. Xiong ^{1,2} , L. Hu ¹ ¹ University of Science and Technology of China ² University of California Berkeley	1B13: Diluent gas effects on turbulent consumption speed of Jet-A J.M. Bonebrake, D.L. Blunck Oregon State University	1C13: On the possible coexistence of two different regimes of metal particle combustion I. Altman ¹ , A. Demko ¹ , K. Hill ¹ , M. Pantoya ² ¹ Naval Air Warfare Center ² Texas Tech University
15:00 - 15:20	1A14: Assessing fire toxicant formation in solid fuel combustion using laser absorption tomography D.I. Pineda ¹ , J.L. Urban ² , R.M. Spearrin ¹ ¹ University of California Los Angeles ² Worcester Polytechnic University	1B14: Error/cost-controlled Pareto-efficient combustion modeling as a multiple-choice knapsack problem Q. Douasbin, M. Ihme Stanford University	1C14: Kinetic modeling of NO emission for synthetic natural gas at high pressure: Transport parameter-dependent speciation analysis F. Alam Exponent Inc.
15:20 - 15:35	BREAK -		
	Fires/Soot	Turbulent Flames II	Chemical Kinetics III
15:35 - 15:55	1A15: Fire whirls in microgravity M.R. Jones ¹ , S.B. Hariharan ^{1,2} , M.J. Gollner ² , V.M. Valletta ³ , L. Ogorzaly ³ , E. Neumann ³ , P. Ferkul ³ , S. Olson ³ , E.S. Oran ⁴ ¹ University of Maryland ² University of California Berkeley ³ NASA Glenn Research Center ⁴ Texas A&M University	1B15: Evolution of local statistics for premixed turbulent Bunsen flames Y. Weng ¹ , A. Potnis ¹ , V.R. Unni ¹ , S. Chaudhuri ² , A. Saha ¹ ¹ University of California San Diego ² University of Toronto	1C15: Systematic reduction and validation of a 96 species n-decane mechanism under engine-relevant conditions G. Xiao Wuhan University of Science and Technology
15:55 - 16:15	1A16: Effect of enclosure dimensions on formation of laboratory-scale fire whirls J. Dowling ¹ , S.B. Hariharan ^{1.5} , E.S. Oran ² , T. Xu ^{1.3} , A. Stoppel ^{1.4} , M.J. Gollner ⁵ ¹ University of Maryland ² Texas A&M University ³ Shanghai Maritime University ⁴ University of Applied Sciences, Düsseldorf ⁵ University of California Berkeley	1B16: Compressibility effects in subsonic turbulent premixed flames G. Beardsell, G. Blanquart California Institute of Technology	1C16: Development of error-controlled compact mechanisms using reduction and optimization G. Litrico, K. Puduppakkam, C. Naik, E. Meeks ANSYS Inc.

	Fires/Soot	Turbulent Flames II	Chemical Kinetics III
16:15 - 16:35	1A17: HOMO-LUMO gaps of transition-metal-doped polycyclic aromatic hydrocarbons N. Kateris, R. Xu, H. Wang Stanford University	1B17: Turbulent combustion behaviour of premixed ammonia/hydrogen/nitrogen-air flames at different equivalence ratios M. Rieth ¹ , A. Gruber ² , J.H. Chen ¹ ¹ Sandia National Laboratories ² SINTEF Energy Research	1C17: Reaction-diffusion manifolds (REDIMs) reduced chemistry for the CH4 counter-flow diffusion flames under oxygenenriched MILD condition C. Wu ¹ , C. Yu ¹ , U. Maas ¹ , Y. Sun ² ¹ Karlsruhe Institute of Technology ² Beijing Institute of Technology
16:35 - 16:55	1A18: Role of cyclopenta-ring and H atom in polycyclic aromatic hydrocarbon dimerization at high temperatures R. Xu, C. Liu, H. Wang Stanford University	1B18: Round jet diffusion flames under transverse acoustic forcing M.A. Plascencia ¹ , M. Roa ² , A.R. Karagozian ¹ , D.G. Talley ² ¹ University of California Los Angeles ² Air Force Research Laboratory	1C18: A neural-network-based response surface method for reaction model optimization and uncertainty minimization Y. Zhang ¹ , R. Xu ¹ , G. Smith ² , H. Wang ¹ Stanford University SRI International
16:55 - 17:15	1A19: A ring-additivity method for benzenoid PAH property estimation C.J. Pope Cabrillo College	1B19: Combustion studies of MMA/GOx for a hybrid rocket motor C. Dhandapani, G. Blanquart, J. Rabinovitch California Institute of Technology	1C19: A hybrid ODE integration approach for chemical kinetics based on stiffness P.E. Lorson, K.E. Niemeyer Oregon State University
17:15 - 17:35	1A20: Pyrolysis of sagebrush M. Kier, D. Blunck, C. Hagen Oregon State University		
18:00	Reception –		

Tuesday, 24 March 2020

7:30 – 12:00 Registration:

7:30 – 8:00 Breakfast:

8:00 – 8:05 Opening Remarks and Announcement: 8:05 – 9:05 Plenary Lecture: Nicole Labbe, University of Colorado at Boulder

9:05 – 9:15	Transition to Morning Sessions		
	Nanomaterials/Soot	Environmental/Reactions/Sprays	Engines
9:15 – 9:35	2A01: Implementation of a SpraySyn system for standardized spray flame synthesis studies H.R. Fernández, S. Dasappa, J. Camacho San Diego State University	2B01: A dispersion model for multi-component reacting flows O.B. Shende, A. Mani Stanford University	2C01: Group 2 UAS engine performance testing using SAE AS6971 draft standard S. Scott, J. Benbrook, C. Hagen Oregon State University
9:35 – 9:55	2A02: Computational fluid dynamics modeling of flame spray pyrolysis for nanoparticle synthesis D. Dasgupta, P. Pal, R. Torelli, S. Som Argonne National Laboratory	2B02: Gas appliances operating on hydrogen/natural gas mixtures and comparison with electrical counterparts Y. Zhao, V. McDonell, S. Samuelsen University of California Irvine	2C02: In-cylinder optical diagnostics of pre-chamber spark ignition systems for highefficiency natural gas engines R. Rajasegar ¹ , Y. Niki ^{1,2} , J.M.G. Oliver ^{1,3} , Z. Li ¹ , D. Carpenter ^{1,4} , M.P.B. Musuclus ¹ ¹ Sandia National Laboratories ² National Maritime Research Institute ³ Universitat Politècnica de València ⁴ University of South Carolina
9:55 – 10:15	2A03: Synthesis of manganese oxide nanoparticles in premixed stagnation flames S. Dasappa ^{1,2} , J. Camacho ¹ ¹ San Diego State University ² University of California San Diego	2B03: Effect of SO ₂ on Cu-Mn oxide's reactivity with CH ₄ in chemical looping combustion T. Barua, B. Padak University of California Irvine	2C03: Pre-ignition detection and damage mitigation in a spark-ignited engine E. Singh, R. Dibble King Abdullah University of Science and Technology
10:15 – 10:35	2A04: Carbon nanoparticle production through hydrocarbon pyrolysis experimentation and modeling N. Bauer, F. Miller San Diego State University	2B04: Non-premixed reactive volatilization reactor for catalytic partial oxidation of ethanol Y. Lin, W.F. Northrop University of Minnesota	2C04: Direct numerical simulation of multi-injection at low-temperature compression ignition engine conditions M. Rieth ¹ , M. Day ² , E. Motheau ² , CB. Kweon ³ , J. Temme ³ , T. Lu ⁴ , L. Pickett ¹ , J.H. Chen ¹ ¹ Sandia National Laboratories ² Lawrence Berkeley National Laboratory ³ CCDC Army Research Laboratory ⁴ University of Connecticut

	Nanomaterials/Soot	Environmental/Reactions/Sprays	Engines
10:35 – 10:55	2A05: Size-resolved modeling of optical absorption of small soot particles K. Wan, X. Shi, H. Wang Stanford University	2B05: Analysis of spray and gaseous fields in the Cambridge burner near lean blow-out D. Mohaddes, M. Ihme Stanford University	2C05: Influences of parametric variations on Spray A flames using high-Speed formaldehyde planar LIF and schlieren H.S. Sim ¹ , N. Maes ¹ , L.M. Pickett ¹ , S.A. Skeen ² ¹ Sandia National Laboratories ² Dixie State University
10:55 – 11:10		BREAK	
	Microcombustion/New Concepts	Diagnostics	Engines/Numerics
11:10 – 11:30	2A06: Analyzing OH*, CH*, and C2* chemiluminescence of bifurcating FREI propane-air flames in a micro flow reactor M.E. Baumgardner, J. Harvey Gonzaga University	2B06: Synchrotron-based measurement of aluminum interaction with melt layer of solid propellants at motoring conditions A.R. Demko ¹ , K. Hill ¹ , E. Ismael ¹ , A. Kastengren ² ¹ Naval Air Warfare Center ² Argonne National Laboratory	2C06: Numerical investigation of a dual-stage off-gas burner to support an SOFC/GT hybrid power system operating at elevated temperature and pressure conditions D. Jaimes, V. McDonell, S. Samuelsen University of California Irvine
11:30 – 11:50	2A07: Design and optimization of micro- combustor for portable charging applications D. Dasgupta ¹ , V. Stelmakh ² , D. Longman ¹ , S. Som ¹ ¹ Argonne National Laboratory ² Mesodyne, Inc.	2B07: Analysis of noisy radiometer data from ISS reduced gravity droplet combustion experiments S. Das, B.D. Shaw University of California Davis	2C07: Reactor network analysis of a piloted model gas turbine combustor with hydrogen mixed natural gas C. Hernandez, V. McDonell University of California Irvine
11:50 – 12:10	2A08: Ignition mechanism of low- temperature transient plasma S. Biswas ¹ , I. Ekoto ¹ , R. Scarcelli ² ¹ Sandia National Laboratories ² Argonne National Laboratory	2B08: Mid-IR laser absorption diagnostic for shock tube measurements of temperature in high-concentration experiments S. Clees, V. Boddapati, R. Choudhary, R.K. Hanson Stanford University	2C08: Modeling transition to thermoacoustic instability in laminar combustors in a framework of synchronization Y. Weng ¹ , V.R. Unni ¹ , R.I. Sujith ² , A. Saha ¹ ¹ University of California San Diego ² Indian Institute of Technology Madras

	Microcombustion/New Concepts	Diagnostics	Engines/Numerics
12:10 – 12:30	2A09: Predicting bio-jet properties using a tree-based pipeline optimization tool A.E. Comesana ¹ , T. Huntington ¹ , M. Mayer ² , K. Niemeyer ² , V.H. Rapp ¹ ¹ Lawrence Berkeley National Laboratory ² Oregon State University	2B09: A time-resolved gas chromatography sampling diagnostic for species measurements in extended test-time shock tube experiments A.M. Ferris, D.F. Davidson, R.K. Hanson Stanford University	2C09: Data-driven selection of stiff chemistry ODE solver in operator-splitting schemes S. Lapointe, S. Mondal, R.A. Whitesides Lawrence Livermore National Laboratory
12:30 – 12:50	2A10: Infrared measurements of forward heat conduction during simulated microgravity flame spread in the narrow channel apparatus M. Berry ¹ , F. Miller ¹ , S. Olson ² , I. Wichman ³ ¹ San Diego State University ² NASA Glenn Research Center ³ Michigan State University		2C10: Challenges in predicting fuel properties with machine learning M.A. Mayer ¹ , A. Comesana ² , T. Huntington ² , V.H. Rapp ² , K.E. Niemeyer ¹ ¹ Oregon State University ² Lawrence Berkeley National Laboratory
12:50	Adjourn		
1:15	SLAC Tour		