VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

Department of Computer Science and Engineering

Smart Farmer-IOT Enabled Smart Farming Application IBM NALAIYATHIRAN

SPRINT DELIVERY – 4

TITLE	Smart Farmer-IOT Enabled Smart Farming Application
DOMAIN NAME	INTERNET OF THINGS
TEAM ID	PNT2022TMID54280
LEADER NAME	JEEVITHRA J
TEAM MEMBER NAME	SIRINITHI S HINDHUJA K S KANIMOZHI K
MENTOR NAME	GNANAMURUGAN S

Receiving commands from IBM cloud using Python program import time import

sys

import ibmiotf.application

import ibmiotf.device import random

```
"orgId": "", u4ovmu
"typeId": "NodeMCU",
"deviceId": "12345"
"token": "12345678"
# Initialize GPIO def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
status=cmd.data['command']
                                if status=="motoron": print
("motor is on")
                  elif status == "motoroff":
                                             print ("motor is
off")
    print ("please send proper command")
try:
                deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken} deviceCli =
ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e: print("Caught exception connecting
      device: %s" %
str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of type
"greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110) Humid=random.randint(60,100)
Mois=random. Randint(20,120) data = { 'temp'
  : temp, 'Humid': Humid,
'Mois': Mois}
    #print data
                  def myOnPublishCallback(
):
               print ("Published Temperature = %s C" % temp, "Humidity = %s %%"
```

#Provide your IBM Watson Device Credentials

%Humid, "Moisture =%s deg c" % Mois "to IBM Watson") success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,on_publish=myOnPublishCallback) if not success: print("Not connected to IoTF")

time.sleep(10) deviceCli.commandCallback = myCommandCallback # Disconnect the device and application from the cloud deviceCli.disconnect()

```
*SMARTFARMER.PY - C:\Users\Priya\AppData\Local\Programs\Python\Python311\SMARTFARMER.PY (3.11.0)*
File Edit Format Run Options Window Help
import time
import sys
import ibmio.application
import ibmiotf.device
import random
#provide your IBM Watson Device Credentials
organization = "ck2tfo"
deviceType = "NodeMLIC"
deviceID = "1234"
authMethod = "token"
authToken = "87654321"
#Initialize GPIO
def mvCommandCallback(cmd):
   print("message received from IBM Iot Platform: %s" %cmd.data['command'])
   m=cmd.data['command']
   if (m=="motoron"):
       print("motor is switched on")
   elif (m=="motoroff"):
       print("motor is switched OFF")
   else :
print("please send proper command")
    deviceoptions = ("org": organization, "type":deviceType, "id":deviceId, "auth-method":authme
   devicecli = ibmiotf.device.client(deviceoptions)
#.....
```


Flow Chart

Observations & Results

Temperature

Humidity

Moisture

Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

Disadvantages:

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

Conclusion

Thus the objective of the project to implement an IOT system in order to help farmers to control and monitor their farms has been implemented successfully.