import numpy as np
import pandas as pd

1、引入pandas

生成创建一个6*4的正数数据集

data2 = pd. DataFrame(np. random. rand(6, 4), columns=list('ABCD'))
data2

	A	В	C	D
0	0.268960	0.944233	0.564392	0.241277
1	0.739152	0.786348	0.108528	0.062371
2	0.777080	0.272329	0.986666	0.559934
3	0.234701	0.300360	0.667984	0.946984
4	0.807806	0.979275	0.793605	0.172620
5	0.753253	0.046280	0.403574	0.417993

A

0 0.249433

1 1.048593

2 -0.170596

2、创建数据集

先创建一个时间索引 dates = pd. date_range('20170101', periods=6)

再创建一个6*4的数据

df = pd. DataFrame (np. random. randn(6, 4), index=dates, columns=list('ABCD'))

	A	В	С	D
2017-01-01	-0.188280	-0.512786	-1.507800	1.020410
2017-01-02	-1.699451	0.580669	1.000826	0.719016
2017-01-03	0.412229	-1.902585	-1.260546	1.153787
2017-01-04	0.679351	0.633701	0.500856	-0.771894
2017-01-05	-0.383847	0.676279	0.548778	-0.117328
2017-01-06	0.036585	0.429563	-1.769048	-0.351982

创建数据集

df2 = pd. DataFrame ({'A':np. random. randn(3)})
print df2

另一种用字典创建数据的方法

df3 = pd. DataFrame({'A':pd. Timestamp('20170101'), 'B':np. random. randn(3)})
print df3

A B
0 2017-01-01 -0.364829
1 2017-01-01 -0.487836
2 2017-01-01 1.686728

4、另一种字典创建数据的方法

3、使用字典来创建数据

datetime64[ns] float64 dtype: object

1、使用dtypes来查看各行的数据格式

查看数据框中所有的数据 df3

	A	В
0	2017-01-01	-0.545882
1	2017-01-01	-0.033721
2	2017-01-01	-0.388657

2、查看数据框中所有的数据

使用head查看指定的前几行数据(不指定时默认是前5行) df. head (3)

	A	В	С	D
2017-01-01	0.688066	0.819346	0.342965	1.730475
2017-01-02	0.033230	0.599854	-1.477205	-0.237258
2017-01-03	1.996590	-1.916290	0.429490	1.007327

3、使用head查看前几行数据(默认是前5行)

使用tail查看后指定的后几行数据(默认是5行) df. tail(3)

	A	В	С	D
2017-01-04	0.198526	0.286079	1.907239	1.415250
2017-01-05	0.976051	-0.874763	0.236659	0.452393
2017-01-06	0.987277	0.104625	-2.007644	1.041692

4、使用tai1查看后5行数据

DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',

查看数据框的索引

'2017-01-05', '2017-01-06'], dtype='datetime64[ns]', freq='D')

5、查看数据框的索引

使用columns查看列名

df. columns

df. index

Index([u'A', u'B', u'C', u'D'], dtype='object')

6、用columns查看列名

查看数据

array([[0.68806638, 0.81934586, 0.34296473, 1.73047519], [0.0332296 , 0.5998538 , -1.47720515, -0.237258], [1.99659048, -1.91628982, 0.42948988, 1.00732749], [0.19852554, 0.28607882, 1.90723864, 1.41525027], [0.97605102, -0.87476293, 0.23665913, 0.45239314],

[0.98727715, 0.10462485, -2.00764438, 1.04169165]])

用values查看数据值

df. values

7、用values查看数据值

	A	В	С	D
count	6.000000	6.000000	6.000000	6.000000
mean	0.813290	-0.163525	-0.094750	0.901647
std	0.701295	1.039315	1.425101	0.704338
min	0.033230	-1.916290	-2.007644	-0.237258
25%	0.320911	-0.629916	-1.048739	0.591127
50%	0.832059	0.195352	0.289812	1.024510
75%	0.984471	0.521410	0.407859	1.321861
max	1.996590	0.819346	1.907239	1.730475

用describe查看描述性统计 df. describe()

8、用describe查看描述性统计

2017-01-01 00:00:00 2017-01-02 00:00:00 2017-01-03 00:00:00 2017-01-04 00:00:00 2017-01-05 00:00:00 2017-01-06 00:00:00 A 0.688066 0.033230 .996590 0.198526 0.976051 0.987277 B 0.819346 0.599854 -1.916290 0.286079 -0.874763 0.104625 C 0.342965 -1.477205 0.429490 1.907239 0.236659 2.007644 D 1.730475 1.415250 0.452393 1.041692 -0.2372581.007327

用T转置,即行列转换 df. T

9、用T转置,即行列转换

	A	В	С	D
2017-01-06	0.987277	0.104625	-2.007644	1.041692
2017-01-02	0.033230	0.599854	-1.477205	-0.237258
2017-01-05	0.976051	-0.874763	0.236659	0.452393
2017-01-01	0.688066	0.819346	0.342965	1.730475
2017-01-03	1.996590	-1.916290	0.429490	1.007327
2017-01-04	0.198526	0.286079	1.907239	1.415250

用到sort_values对数据进行排序 df. sort_values (by='C')

10、用sort_values对数据进行排序

2017-01-01 0.688066 2017-01-02 0.0332302017-01-03 1.996590 2017-01-04 0.198526 # 选择A列的数据进行操作 2017-01-05 0.976051 df['A'] 2017-01-06 0.987277

1、选择A列的数据进行操作

使用数组的切片操作得到行数据 df[1:3]

	A	В	С	D
2017-01-02	0.03323	0.599854	-1.477205	-0.237258
2017-01-03	1.99659	-1.916290	0.429490	1.007327

2、使用数组的切片操作得到行数据

使用行标签来指定输出的行(列不限定, 行限定) df['20170102':'20170104']

	A	В	С	D
2017-01-02	0.033230	0.599854	-1.477205	-0.237258
2017-01-03	1.996590	-1.916290	0.429490	1.007327
2017-01-04	0.198526	0.286079	1.907239	1.415250

3、使用行标签来指定输出的行(列不限定,行限定)

使用1oc方法选择多列数据(列不限定, 行限定) df. loc[dates[0]:dates[2],:]

	A	В	С	D
2017-01-01	0.688066	0.819346	0.342965	1.730475
2017-01-02	0.033230	0.599854	-1.477205	-0.237258
2017-01-03	1.996590	-1.916290	0.429490	1.007327

4、使用1oc方法选择多列数据(列不限定,行限定)

	В	С	D
2017-01-01	0.819346	0.342965	1.730475
2017-01-02	0.599854	-1.477205	-0.237258
2017-01-03	-1.916290	0.429490	1.007327
2017-01-04	0.286079	1.907239	1.415250
2017-01-05	-0.874763	0.236659	0.452393
2017-01-06	0.104625	-2.007644	1.041692

使用1oc方法选择多列数据(行不限定, 列限定) df. loc[:, 'B':'D']

5、使用1oc方法选择多列数据(行不限定,列限定)

	В	D
2017-01-01	0.819346	1.730475
2017-01-02	0.599854	-0.237258
2017-01-03	-1.916290	1.007327

6、使用1oc方法选择多列数据(行列都限定,且列只要指定的某些)

0.688066 0.819346 # 使用1oc方法选择某行数据(如第一行) 0.342965 df. loc[dates[0]] 1.730475

7、使用1oc方法选择某行数据(如第一行)

使用loc方法只选择某一个数据,可以指定行和列 df. loc[dates[0], 'B']

df. loc[dates[0]:dates[2], ['B', 'D']]

0.81934585546715122

8、使用1oc方法只选择某一个数据,可以指定行和列

at方法专门用于获取某个值

df.at[dates[0],'B']

0.81934585546715122

9、at方法专门用于获取某个值

数据选择

使用iloc方法提取第四行数据,得到的返回值是一个series 数据

1.658872 -0.250281-0.531258

使用1oc方法选择多列数据(行列都限定,且列只要指定的某些)

10、使用iloc方法提取第四行数据

df.iloc[3]

-0.091432

返回4-5行, 2-3列数据 df. iloc[3:5, 1:3]

df. iloc[1, 1]

2017-01-04 -0.250281 2017-01-05 0.123437 -1.455018

11、返回4-5行, 2-3列数据

提取不连续行和列的数, 如2, 4, 6行的B列和D列 df. iloc[[1, 3, 5], [1, 3]]

2017-01-02 -0.449626 -2.183514 2017-01-04 -0.250281 -0.091432 2017-01-06 -0.319806 0.200287

12、提取不连续行和列的数,如2,4,6行的B列和D列

提取某一行或某几行数据, 保证所有列都在(提取所有行的某些列类似) df.iloc[1:3,:]

C 2017-01-02 -0.813571 -0.449626 -0.548597 -2.183514 2017-01-03 -1.704362 0.218734 -1.052347 0.369618

13、提取某一行或某几行数据,保证所有列都在

提取某个值, 如第二行第二列

-0. 44962649890028467

14、提取某个值,如第二行第二列

iat是专门提取某个数的方法,它的效率高更高 df. iat[1, 1]

15、iat是专门提取某个数的方法,它的效率高更高

-0. 44962649890028467

SHAPEGO	STATISTICS.	6 th	B. 1 - 26-36	Chief Cac No	CAL 995 295
# reso	CSV /I II II	取csv文	F. 250	母业有	的媒体

df4 = pd. read_csv('C:/Users/Administrator/Desktop/Rong360_credit_forecasting/train/user_info.csv', encoding='gbk')

#显示前3行数据

df4. head (3)

	ID	gender	job	edu	marriage	family_type
0	2583	2	2	2	1	1
1	34764	1	2	3	3	1
2	9554	1	2	4	2	2

读取CSV文件

read_excel()方法读取Excel文件为DataFrame

excel_content = pd. read_excel(r'C:/Users/Administrator/Desktop/user_info.xlsx', encoding='gbk')
excel_content

	性别	edu	age
0	1	1	16
1	2	2	27
2	5	1	34

读取Excel文件

read_table()函数读取. dat文件

content = pd. read_table(r'C:/Users/Administrator/Desktop/user_info.dat', encoding='gbk')
content

我爱Python!

读取和保存

读取.dat文件

保存为CSV文件

DataFrame可以使用to_csv方法方便地导出到csv文件中

excel_content.to_csv(r'C:/Users/Administrator/Desktop/user_info.csv', encoding='utf-8', index=False)

	A	В	С	D
2017-01-03	-1.704362	0.218734	-1.052347	0.369618
2017-01-05	0.687470	0.123437	-1.455018	0.240838
2017-01-06	-0.461552	-0.319806	0.252722	0.200287

筛选D列数据中大于0的行 df [df. D>0]

1、筛选D列数据中大于0的行

使用&符号可以实现多条件筛选(比如筛选出D列中大于0且C列中小于0的所有行) df[(df. D>0)&(df. C<0)]

	A	В	С	D
2017-01-03	-1.704362	0.218734	-1.052347	0.369618
2017-01-05	0.687470	0.123437	-1.455018	0.240838

2、使用&符号可以实现多条件筛选

3、使用 符号可以实现多条件筛选

使用/符号可以实现多条件筛选(比如筛选出D列中大于0或C列中大于0的所有行)df[(df. D>0)|(df. C>0)]

,	A	В	С	D
2017-01-01	0.426529	0.193027	0.090471	-0.472144
2017-01-03	-1.704362	0.218734	-1.052347	0.369618
2017-01-05	0.687470	0.123437	-1.455018	0.240838
2017-01-06	-0.461552	-0.319806	0.252722	0.200287

筛选数据

我们也可以先限定我们需要的列或行,然后将其他行作为筛选条件 df [['A','C']] [(df. B>0) & (df. D>0)] 行,然后将其他行作为筛选条件

	A	С
2017-01-03	-1.704362	-1.052347
2017-01-05	0.687470	-1.455018

使用isin方法来筛选特定的值,把要筛选的值写到一个

5、使用isin方法来筛选特定的值,把要筛选的值写到一个列表里

使用isin方法来筛选特定的值, 把要筛选的值写到一个列表里 goal_list = [0.369618, 0.200287, 0.240838] df['D'].isin(goal_list)

2017-01-01 False 2017-01-02 False 2017-01-03 False 2017-01-04 False 2017-01-05 False 2017-01-06 False

	A	В	С	D
2017-01-01	-1.074422	0.260438	0.247010	-0.751180
2017-01-02	1.422712	1.080154	1.022007	-1.535193
2017-01-03	-0.212700	-0.252385	-0.757682	1.264396
2017-01-04	-1.200412	0.795977	0.580242	-0.891465
2017-01-05	-0.817875	0.986500	-1.249263	2.026642
2017-01-06	1.245176	0.887597	1.482469	-1.186458

0、原数据

df

在df数据中增加一列

df['E'] = pd. Series(np. random. randn(6), index=df. index)
df

	A	В	С	D	E
2017-01-01	-1.074422	0.260438	0.247010	-0.751180	-1.628038
2017-01-02	1.422712	1.080154	1.022007	-1.535193	-1.008447
2017-01-03	-0.212700	-0.252385	-0.757682	1.264396	0.816551
2017-01-04	-1.200412	0.795977	0.580242	-0.891465	0.516260
2017-01-05	-0.817875	0.986500	-1.249263	2.026642	0.014172
2017-01-06	1.245176	0.887597	1.482469	-1.186458	-1.342964

1、增加列

还可以插入一列数据到任意位置,如第2列 df.insert(1, 'a', np. random. randn(6)) df

	A	a	В	С	D	E
2017-01-01	-1.074422	1.003573	0.260438	0.247010	-0.751180	-1.628038
2017-01-02	1.422712	-0.654633	1.080154	1.022007	-1.535193	-1.008447
2017-01-03	-0.212700	1.799204	-0.252385	-0.757682	1.264396	0.816551
2017-01-04	-1.200412	0.472393	0.795977	0.580242	-0.891465	0.516260
2017-01-05	-0.817875	-0.812925	0.986500	-1.249263	2.026642	0.014172
2017-01-06	1.245176	1.807374	0.887597	1.482469	-1.186458	-1.342964

增加和删除

В C D E 2017-01-01 -1.074422 0.260438 0.247010 -0.751180 -1.628038 2017-01-02 1.422712 1.080154 1.022007 -1.535193 -1.008447 2017-01-03 -0.212700 -0.252385 1.264396 0.816551 -0.757682 2017-01-04 -1.200412 0.795977 0.580242 -0.891465 0.516260 2017-01-05 -0.817875 0.986500 -1.249263 2.026642 0.014172 2017-01-06 1.245176 0.887597 1.482469 -1.186458 -1.342964

永久删除一列数据用del del df['a'] df

 2017-01-01
 -1.074422
 0.260438
 0.247010

 2017-01-02
 1.422712
 1.080154
 1.022007

 2017-01-03
 -0.212700
 -0.252385
 -0.757682

 2017-01-04
 -1.200412
 0.795977
 0.580242

 2017-01-05
 -0.817875
 0.986500
 -1.249263

 2017-01-06
 1.245176
 0.887597
 1.482469

B

2、删除列

用drop不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据 df9 = df. drop(['D', 'E'], axis=1)

	A	В	С	D	E
2017-01-01	-1.074422	0.260438	0.247010	-0.751180	-1.628038
2017-01-02	1.422712	1.080154	1.022007	-1.535193	-1.008447
2017-01-03	-0.212700	-0.252385	-0.757682	1.264396	0.816551
2017-01-04	-1.200412	0.795977	0.580242	-0.891465	0.516260
2017-01-05	-0.817875	0.986500	-1.249263	2.026642	0.014172
2017-01-06	1.245176	0.887597	1.482469	-1.186458	-1.342964

可以看到df仍然没有改变 df # 读取数据

df5 = pd. read_csv('C:/Users/Administrator/Desktop/Rong360_credit_forecasting/train/bill_detail.csv', encoding='gbk')

显示前3行数据

df5. head(3)

1、读取数据

	ID	bill_time	bank_id	amount_of_pre_bill	account_of_repay	credit_card_capacity	bill_balance	min_repay
0	3150	5926182226	14	20.416610	18.851841	21.580708	19.754017	19.372499
1	3150	5926182246	6	20.701662	19.579708	21.000890	19.904695	18.771018
2	3150	5926182267	16	19.193763	19.193763	19.460445	19.290633	16.294952

计数统计

```
# 统计银行id任1到16之间的数量 9
df6 = df5[df5['bank_id']<17] 5
id_count = df6['bank_id']. value_counts() 1
id_count 12
```

2、统计银行id在1到16之间的数量

```
# 统计amount_of_pre_bill的点数
df7 = df6['amount_of_pre_bill']
df7. sum()
```

3、统计amount_of_pre_bill的总数

33370373, 327058665

首先以ID列进行分组, 使用grouped. first ()打印出来的为每一组的第一行数据, head ()显示前5行 group_ID = df5. groupby('ID')

group_ID. first().head(3)

	bill_time	bank_id	amount_of_pre_bill	account_of_repay	credit_card_capacity	bill_balance
ID						2
2	0	4	17.389606	17.389606	19.460445	16.656269
3	0	2	18.371030	19.495329	18.361833	18.325511
4	5894225007	7	16.791567	0.000000	19.460445	16.854184

1、groupby()实现分组

以两列以上进行分组,groupby参数为一个列表 group_id = df5. groupby(['ID', 'bank_id']) group_id.first().head()

		bill_time	amount_of_pre_bill	account_of_repay	credit_card_capacity	bill_balance
ID	bank_id					
	4	0	17.389606	17.389606	19.460445	16.656269
2	9	5910282927	20.210676	19.484314	19.971271	18.503332
	16	5908250547	21.580308	21.600903	0.000000	21.578907
3	2	0	18.371030	19.495329	18.361833	18.325511
4	3	5894272767	0.000000	0.000000	20.441274	18.772836

amount_of_pre_bill account_of_repay credit_card_capacity bill_balance ID bank id 47322120516 108.590843 110.127042 176.165657 167.369954 23657746668 79.698032 79.885084 74.339122 74.119572 59192890830 172.445595 166.921073 172.645664 215.567977 3 2 36.733542 37.160348 36.723666 36.696541 4 3 286.177836 82759309458 0.000000 0.000000 276.793989

groupby. aggregate () 实现数据分组计算 df5. groupby(['ID', 'bank_id']). aggregate(np. sum). head()

2、aggregate()实现数据分组计算

3、size()查看各组数据量

数据分组

count	6.000000	6.000000	6.000000	6.000000
mean	-0.106253	0.626380	0.220797	-0.178876
std	1.167593	0.517443	1.047104	1.458594
min	-1.200412	-0.252385	-1.249263	-1.535193
25%	-1.010285	0.394323	-0.506509	-1.112710
50%	-0.515287	0.841787	0.413626	-0.821322
75%	0.880707	0.961774	0.911565	0.760502
max	1.422712	1.080154	1.482469	2.026642

В

C

D

describe()方法对各组数据进行描述性统计 df. describe()

4、describe()对各组数据进行描述性统计

将读取的CSV文件内容df5按银行id进行排序 df8 = df5. groupby ('bank_id') # 计算各组数据的总数、平均数、标准差 df8. agg([np. sum, np. mean, np. std]). head(3)

用size()方法返回各组数据量

df6. size(). head(8)

	ID			bill_time			
	sum	mean	std	sum	mean	std	
bank_id							
1	86439920	25120.581226	14833.499135	561895090725	163294126	9.692482e+08	
2	3023938231	25862.646622	16441.065768	539447088500488	4613695239	2.448435e+09	
3	5277649807	27811.502685	15814.808398	925879022790042	4879082142	2.243280e+09	

A

3 rows × 42 columns

也可以只选择某列进行统计,如只对amount_of_pre_bill项进行统计

	sum	mean	std
bank_id			
1	9.185189e+03	2.669337	6.329477
2	1.802219e+06	15.413722	10.367568
3	5.463976e+04	0.287934	2 468761

5、agg分组多种计算

df8['amount_of_pre_bill']. agg([np. sum, np. mean, np. std]). head(3)

	标准差	均值	总计
bank_id			
1	6.329477	2.669337	9.185189e+03
2	10.367568	15.413722	1.802219e+06
3	2 468761	0.287934	5 463976e+04

假如我们需要定制显示的标题可以如此设置

df8['amount_of_pre_bill']. agg(['总计':np. sum, '均值':np. mean, '标准差':np. std]). head(3)

ID overdue
0 1 0
1 2 0
2 3 0
3 4 1
4 5 0

读取数据源over_due.csv文件

import pandas as pd

over_due = pd. read_csv("C:/Users/Administrator/Desktop/Rong360_credit_forecasting/train/over_due.csv")
over_due.head()

读取数据源 user_info.csv文件

user_info = pd.read_csv("C:/Users/Administrator/Desktop/Rong360_credit_forecasting/train/user_info.csv")
user_info.head()

	ID	gender	job	edu	marriage	family_type
0	2583	2	2	2	1	1
1	34764	1	2	3	3	1
2	9554	1	2	4	2	2
3	6720	1	2	3	3	2
4	29165	1	2	4	1	4

1、排序sort_walues(by=' ')

将数据表按ID号进行排序

over_due2 = over_due. sort_values(by='ID')
user_info2 = user_info. sort_values(by='ID')
user_info2. head()

	ID	gender	job	edu	marriage	family_type
134	1	1	2	3	1	3
213	2	1	2	3	2	1
370	3	1	4	4	1	4
397	4	1	4	4	3	2
499	5	1	2	2	3	1

pandas提供了一个类似于关系数据库的连接join操作的方法merage

#将over_due和user_info两张表按ID列进行合并,当遇到某行ID不一样时,以右边(即over_due)为基准

data_train = pd.merge(user_info2, over_due2, how='right', on='ID')
data_train.head()

	ID	gender	job	edu	marriage	family_type	overdue
0	1.0	1.0	2.0	3.0	1.0	3.0	0
1	2.0	1.0	2.0	3.0	2.0	1.0	0
2	3.0	1.0	4.0	4.0	1.0	4.0	0
3	4.0	1.0	4.0	4.0	3.0	2.0	1
4	5.0	1.0	2.0	2.0	3.0	1.0	0

2、合并--merge ()

排序与合并

import numpy as np

创建数据集df1(3*4)

df1 = pd. DataFrame(np. random. rand(3, 4), columns=['A', 'B', 'C', 'D'])
df1

	Α	В	С	D
0	0.931738	0.176487	0.366165	0.187267
1	0.231919	0.322953	0.116273	0.283859
2	0.509275	0.320339	0.937341	0.346943

创建数据集df2(2*4)

df2 = pd. DataFrame (np. random. rand (2, 4), columns=['B', 'D', 'A', 'E'])

df

	В	D	A	E
0	0.127387	0.299934	0.596534	0.472561
1	0.651947	0.353489	0.092125	0.963692

直接使用concat,默认按列索引进行拼接 # 缺失的部分直接用NaN填充

pd. concat ([df1, df2])

	A	Р	C	D	-
0	0.931738	0.176487	0.366165	0.187267	NaN
1	0.231919	0.322953	0.116273	0.283859	NaN
2	0.509275	0.320339	0.937341	0.346943	NaN
0	0.596534	0.127387	NaN	0.299934	0.472561
1	0.092125	0.651947	NaN	0.353489	0.963692

3、合并--concat ()

直接使用concat, 默认按列索引进行拼接

缺失的部分直接用NaN填充

行索引忽略之前的重新生成

pd. concat([df1, df2], ignore_index=True)

	A	В	C	D	E
0	0.931738	0.176487	0.366165	0.187267	NaN
1	0.231919	0.322953	0.116273	0.283859	NaN
2	0.509275	0.320339	0.937341	0.346943	NaN
3	0.596534	0.127387	NaN	0.299934	0.472561
4	0.092125	0.651947	NaN	0.353489	0.963692

指定axis=1,表示按行索引进行拼接

同样缺失部分用NaN填充

pd. concat([df1, df2], axis=1)

	A	В	С	D	В	D	A	E
0	0.931738	0.176487	0.366165	0.187267	0.127387	0.299934	0.596534	0.47256
1	0.231919	0.322953	0.116273	0.283859	0.651947	0.353489	0.092125	0.963692
2	0.509275	0.320339	0.937341	0.346943	NaN	NaN	NaN	NaN

指定axis=1,表示按行索引进行拼接

同样缺失部分用NaN填充

列索引忽略之前的重新生成

pd. concat([df1, df2], axis=1, ignore_index=True)

	0	1	2	3	4	5	6	7
0	0.931738	0.176487	0.366165	0.187267	0.127387	0.299934	0.596534	0.472561
1	0.231919	0.322953	0.116273	0.283859	0.651947	0.353489	0.092125	0.963692
2	0.509275	0.320339	0.937341	0.346943	NaN	NaN	NaN	NaN

X Y
0 0.398123 -1.047429
1 -1.271065 1.690244
2 0.420676 -2.323342
3 -0.331538 0.555148
4 1.254394 0.643024

A

生成数据源

data = pd. DataFrame(np. random. randn(100, 2), columns=list('XY'))
data.head()

1、散点图

绘制散点图

plt = data.plot(kind='scatter', x='X', y='Y').get_figure()
plt.savefig('C:/Users/Administrator/Desktop/plot.png')

0 0.268960 0.944233 0.564392 0.241277 1 0.739152 0.786348 0.108528 0.062371 2 0.777080 0.272329 0.986666 0.559934 3 0.234701 0.300360 0.667984 0.946984 4 0.807806 0.979275 0.793605 0.172620

5 0.753253 0.046280 0.403574 0.417993

D

生成创建一个6*4的正数数据集

data2 = pd. DataFrame(np. random. rand(6, 4), columns=list('ABCD'))
data2

绘制柱状图

plt2 = data2.plot(kind='bar').get_figure()
plt2.savefig('C:/Users/Administrator/Desktop/plot2.png')

可视化操作

2、柱状图

绘制堆积直方图

plt3 = data2.plot(kind='bar', stacked=True).get_figure()
plt3.savefig('C:/Users/Administrator/Desktop/plot3.png')

3 2 1 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0

箱形图用于显示数据的一些基本的统计量: 中位数、平均数、四分位数等

import matplotlib.pyplot as plt

data2. boxplot()

plt. savefig('C:/Users/Administrator/Desktop/plot5.png')

箱形图用于显示数据的一些基本的统计量: 中位数、平均数、四分位数等

import matplotlib.pyplot as plt

data2. boxplot()

plt. savefig('C:/Users/Administrator/Desktop/plot5.png')

```
В
                  # 生成字符串
                  s = pd. Series(list('ABCDE'))
                                               3
                                                  D
                  print s
1、生成字符串
                       # 将字符串转化为小写
                       s. str. lower()
                                           A
2、字符串大小写转换
                       # 转化为大写
                       s. str. upper()
                     # 获取字符串长度
                     s. str. len()
3、获取字符串长度
                                                                            [A]
                                                                            [B]
                                                                            [C]
                                     # 切割字符串,将字符串转换为list
                                                                            [D]
                                     s. str. split()
                                                                            [E]
4、切割字符串,将字符串转换为list
                                                               A
                               # 获取字符串中的第一个字符
                               s. str. get (0)
5、获取字符串中的第一个字符
                 # 替换字符串(replace的第一个参数是正则表达式,第二个参数是要替换成的字符串。)
                 s. str. replace ('A', 'a')
6、替换字符串
                                                                   True
                 # 字符串匹配
                                                                  False
                 s2 = pd. Series(['al', 'Al', 'Bl', 'a2c', np. nan])
                                                                  False
                 pattern = r'[a-z][0-9]'
                                                                   True
                 print s2. str. contains (pattern)
                                                               4
                                                                    NaN
                                                                 0
                                                                      True
                                                                     False
                                                                     False
                 # 们可以使用na参数来规定出现NaN数据的时候匹配成True 还是False
                                                                      True
                 print s2. str. contains (pattern, na=False)
                                                                     False
6、字符串匹配
                                                      True
                                                     False
                                                     False
                 # match方法可以严格匹配字符串
                                                      True
                 s2. str. match (pattern, na=False)
                                                     False
                                                                   False
                                                                    True
                                                                   False
                         # 用startswith判断是否以某个字母开头
                                                                   False
                         s2. str. startswith('A', na=False)
                                                                   False
                                                                           False
                                                                           False
7、判断字符串开头结尾
                                                                           False
                         # 类似可以用endswith判断字符串是否以某某结尾
                                                                            True
                         s2. str. endswith ('c', na=False)
```

False

字符串操作

```
# 用read_sql从sqlite数据库中读取数据
import sqlite3
con = sqlite3.connect('user_information.sqlite')
sql = 'select * from user_information LIMIT 3'
df = pd.read_sql(sql,con)
```

1、用read_sql从sqlite数据库中读取数据

2、用index_col参数来规定将那一列数据设置为index

使用index_col 参数来规定将那一列数据设置为index df = pd. read_sql(sql, con, index_col='id')

3、可以设置多个index,只要将index_col的值设置为列表

可以设置多个index, 只要将index_col的值设置为列表 df = pd. read_sql(sql, con, index_col=['id', 'bank_id'])

数据库操作

删除数据库中的某个表 con. execute('DROP TABLE IF EXISTS user_information')

4、删除数据库中的某个表

将df保存到数据库中的user_information表 pd. io. sql. write_sql(df,'user_information', con)

5、将df保存到数据库中的user_information表

假设我们使用的是MySQL数据库, 同样可以 import MySQLdb con = MySQLdb.connect(host='localhost',db='databasename')

6、假设我们使用的是MySQL数据库,同样可以

一个矩阵或者向量减去一个常数,那么通常是矩阵中的每一个元素减去这个常数,这就是广播

```
# 一个矩阵或者向量减去一个常数,那么通常是矩阵中的每一个元素减去这个常数,这就是广播
# 通过参数axis可指定广播的维度, axis=1 或者axis= 'column' 这两种写法是相同的
row = df. ix[1]
# 将df中每一行与row做减法
df. sub(row, axis='columns')
```

广播

	A	В	С	D	E
2017-01-01	-2.497134	-0.819716	-0.774996	0.784014	-0.619590
2017-01-02	0.000000	0.000000	0.000000	0.000000	0.000000
2017-01-03	-1.635412	-1.332539	-1.779688	2.799590	1.824998
2017-01-04	-2.623123	-0.284177	-0.441765	0.643729	1.524707
2017-01-05	-2.240586	-0.093654	-2.271269	3.561835	1.022619
2017-01-06	-0.177536	-0.192557	0.460463	0.348735	-0.334517