Années Préparatoires : 2ème année. SABIL

Analyse Numérique : TD 1

1 Montrer que l'équation (E) admet une unique solution l dans l'intervalle [0, 1].

- **Exercice 1**: On considère l'équation $2x + e^x 3 = 0$ (E) sur l'intervalle [0, 1].
- 2. Trouver le nombre d'itérations nécessaires pour estimer l à une tolérance $\varepsilon=10^{-11}$ en
- utilisant la méthode de dichotomie
- 3. Trouver une valeur approchée de l avec deux décimales exactes.

Exercice 2 : Méthode de la corde

Soit f une fonction définie sur un intervalle [a,b] et admet un zéro dans [a,b]. Soit $x_0 \in [a,b]$ et soit $(x_n)_n$ la suite définie par : $\forall n \in \mathbb{N}, \, x_{n+1} = x_n - \frac{f(x_n)}{q}$ (1) avec $q = \frac{f(b) - f(a)}{b - a}, \, q \neq 0$.

- 1. Donner une représentation graphique de la suite $(x_n)_{n=1}$ 2. Ecrire (1) sous forme $x_{n+1} = g(x_n)$ en exprimant g en fonction de f.
- 3. Si f est dérivable, donner une condition suffisante pour que $(x_n)_n$ converge sur [a,b],
- 4. Soit f de classe C^1 . Montrer que sous la condition suffisante précédente, la convergence est linéaire si $f'(\lim_{n\to+\infty} x_n) \neq q$.

Exercice 3: On considère l'équation $f(x) = x^2 - a = 0$ où a est un nombre positif.

Montrer en initialisant convenablement que la suite $(x_n)_n$ définie par la méthode de Newton converge vers \sqrt{a} .

Exercice 4 : Soit f une fonction de classe \mathbb{C}^2 définie sur un intervalle [a,b]. On note par l une solution de f(x) = 0. On note par $(x_n)_n$ la suite définie par une méthode d'approximation et par $e_n = l - x_n$ l'erreur à l'itération $n \in \mathbb{N}$.

- 1. En utilisant la méthode de Newton, montrer que $\forall n \in \mathbb{N}, \exists \zeta_n \in [a,b]$ tel que $e_{n+1} = -\frac{f''(\zeta_n)}{2f'(\tau_n)}e_n^2$.
- 2. En utilisant la méthode de Lagrange, montrer que $\forall n \in \mathbb{N}, \exists \delta_n, \tau_n \in [a,b]$ tel que $e_{n+1} = -\frac{f''(\delta_n)}{2f'(\tau_n)}e_ne_{n-1}.$

Exercice 5

- 1. On considère la fonction $g_1(x) = x x^3$ sur l'intervalle [-1, 1]. Montrer que pour tout x_0 dans [-1,1] la suite définie par la méthode de point fixe converge vers 0.
- 2. On considère la fonction $g_2(x)=x+x^3$ sur $\mathbb R$. Montrer que pour tout $x_0\neq 0$ la suite définie par la méthode de point fixe diverge.

Ecole Nationale des Sciences Appliques ENSA de Tanger Années Préparatoires : 2ème année. SABIL

Exercice 6: On considère la fonction $f(x) = \tan(x) - 1$.

- 1. Montrer que l'équation f(x) = 0 admet l'unique solution $l = \frac{\pi}{2}$ dans l'intervalle $[0, \frac{\pi}{2}]$.
- 2. On suppose que $x_0 \in [0, \pi/4]$. Montrer que la suite $(x_n)_n$ définie par la méthode de Newton converge vers la solution exacte de f(x) = 0.
- 3. Montrer que l'erreur est de même ordre que $|f(x_n)|$.

Exercice 7: Soit $f(x) = \frac{x-1}{x} - e^{-x}$ une fonction définie sur \mathbb{R}^* .

- 1. En traçant le graphe de f trouver le nombre de zéros de l'équation f(x)=0 et encadrer chaque racine par deux entiers successifs.
- 2. on considère la fonction $g(x)=1+xe^{-x}$. Etudier la convergence de la suite définie par la méthode de point de fixe vers un zéro de f. Préciser le choix de x_0 dans le cas de convergence.

Ecole Nationale des Sciences Appliquées ENSA de Tanger

Années Préparatoires : 2ème année. SABIL

Analyse Numérique : TD 2

Exercice 1 : On donne 4 valeurs d'une fonction f définie sur [1,4].

$$f(1) = -1$$
, $f(2) = 5$, $f(3) = 2$, $f(4) = 1$.

- 1. En utilisant la base de Lagrange, trouver le polynôme de $\mathbb{K}_1[X]$ qui interpole f sur le support $\{1,2\}$. Donner une valeur approchée de f(1.5).
- 2. En utilisant la base de Lagrange, trouver le polynôme de $\mathbb{K}_2[X]$ qui interpole f sur le support $\{1,2,3,4\}$. Donner une valeur approchée de f(1.5).
- Traiter ces deux questions en utilisant le forme de Newton (les différences divisées) à la place de la forme de Lagrange.
- 4. Comparer les deux méthodes et conclure.

Exercice 2 : D'après le cours, l'expression des différences divisées est données par

$$\forall k \in \{0, \dots, n\}, \qquad f[x_0, x_1, \dots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0}^k (x_i - x_j)}$$
(1)

Calculer la complexité $T_{1,n}$ de (1) et la comparer avec celle de l'algorithme pyramidal vu en cours pour calculer $f[x_0,x_1,\ldots,x_k],\ k=0,\ldots,n$ (Ne tenir compte que des opérations élémentaires (produit, somme)). Conclure.

Exercice 3 : Soient les points $x_0=-4$ et $x_1=-2$ et $x_2=0$ et f une fonction telle que : $f(x_0)=256, \, f(x_1)=16$ et $f(x_2)=0$.

- 1. Calculer le polynôme de Lagrange qui interpole f sur le support x_0, x_1, x_2 et donner sa valeur en 1.
- 2. Dresser le tableau des différences divisées et calculer le polynôme de Newton qui interpole f sur le support x_0, x_1, x_2 et donner sa valeur en 1 et en 3.
- 3. Dresser le tableau correspondant à l'algorithme de Aitken pour calculer la valeur en 1 et en 3 du polynôme qui interpole f sur le support x_0, x_1, x_2 .
- 4. Reprendre les questions précédentes en ajoutant $x_3=2$ et $f(x_3)=16$.
- 5. Reprendre les questions précédentes en ajoutant $x_4=4$ et $f(x_4)=256$.

Exercice 4: Soient $n \in \mathbb{N}^*$ et f une fonction de \mathbb{R} dans \mathbb{R} de classe C^3 sur l'intervalle [a,b]. $\forall i \in \{0,\ldots,n\}$, on pose $x_i = a + ih$ avec $h = \frac{b-a}{a}$.

- 1. $\forall i \in \{0,\dots,n-1\}$, on note $p_{i,1}$ le polynôme de $\mathbb{K}_1[X]$ qui interpole f sur le support $\{x_i, x_{i+1}\}.$
 - (a) Exprimer l'erreur $e_{i,1}(x) = f(x) p_{i,1}(x)$ pour $x \in [x_i, x_{i+1}]$.
 - (b) Majorer $|e_{i,1}(x)|$ indépendamment de i.
 - (c) Soit $\varepsilon>0$. Déduire de la question précédente un seuil maximal h_{max} du pas hgarantissant une précision $\leq \varepsilon$
- (d) Application numérique : Calculer h_{max} pour $a=1,\,b=3,\,f(x)=e^x,\,\varepsilon\in\{10^{-4},10^{-2}\}.$
- 2. Travail libre : Faire la même chose en utilisant une interpolation quadratique par morceaux : $\forall i \in \{0, \dots, n-2\},$ on considère $p_{i,2}$ le polynôme de $\mathbb{K}_2[X]$ qui interpole f sur le support $\{x_i, x_{i+1}, x_{i+2}\}.$

Exercice 5 : Trouver en utilisant la méthode de Hermite l'équation de la courbe qui passe par A=(0,0) et B=(4,2) et qui est tangente aux droites y=0 et y=2 en A et B respectivement.

Ecole Nationale des Sciences Appliquées ENSA de Tanger

Années Préparatoires : 2ème année. SABIL Analyse Numérique : TD 3

Exercice 1 : Soit $f:[0,1] \longrightarrow \mathbb{R}, f(x)=x^2$

- 1. Donner une approximation de $\int_0^1 f(x)dx$ en utilisant les méthodes de rectangle, point milieu, trapèze et Simpson.
- 2. Donner une majoration de la valeur absolue de l'erreur pour chaque méthode.

Exercice 2 : Soient $f:[a,b]\longrightarrow \mathbb{R}$ de classe C^4 et x_0,x_1,\ldots,x_n des points de [a,b] tels que $x_{i+1}-x_i=h=\frac{b-a}{n}$ pour $i=0,\ldots,n-1$.

- Déterminer le pas maximal h_{max} correspondant à chaque méthode suivante : rectangles composés, points milieu composés, trapèzes composés, simpson composés pour avoir une précision ≤ ε οù ε ∈ ℝ^{*}₊.
- 2. En déduire le nombre minimal de sous-intervalles $[x_i,x_{i+1}]$ correspondant à chaque méthode pour avoir une précision $\leq \varepsilon$.
- 3. Application : $f(x) = e^x \ a = 1, b = 3, \epsilon = 10^{-4}$.

Exercice 3:

- 1. En utilisant le support $\{0, 0.5, 1\}$ donner une approximation de la dérivée f' en 0 et en 0.5.
- 2. Calculer l'erreur en 0 et en 0.5.
- 3. Faire la même chose pour f".

Exercice 4 : On considère les points : $\{x_0, x_1, x_2\}$ tels que $x_{i+1} - x_i = h, \ i = 0, 1$.

1

- 1. Montrer que si $x=x_0$ alors : $f'(x) \approx \frac{-3f(x)+4f(x+h)-f(x+2h)}{2h}$ et que l'erreur de dérivation $e_{diff,2} = \frac{h^2}{2}f^{(3)}(t)$ avec $t \in]x, x+2h[$.
- 2. Montrer que si $x = x_1$ alors : $f'(x) \approx \frac{f(x+h) f(x-h)}{2h}$ et que l'erreur de dérivation $e_{diff,2} = -\frac{h^2}{6}f^{(3)}(t)$ avec $t \in]x h, x + h[$.
- II) Faites la même chose pour f". (C.à.d Trouver l'approximation de f" en x_0 et x_1 ainsi que l'erreur).

Ecole Nationale des Sciences Appliquées ENSA de Tanger Années Préparatoires : 2ème année. SABIL

Analyse Numérique : TD 4

Exercice 1 : Soit
$$(P)$$
:
$$\begin{cases} y' = f(t, y(t)) = t + y(t) & t \in [0, 1] \\ y(0) = y_0 \in \mathbb{R} \end{cases}$$

- 1. Montrer que (P) admet une solution unique de classe $C^1([0,1])$.
- 2. Calculer les 3 premières itérations établies par le schéma d'Euler explicite en utilisant un pas h=1/10 et $y_0=1$.
- Etudier la stabilité et la consistance (ordre de consistance) et ensuite la convergence de ce schéma.
- 4. Cas général : Soit f de classe $C^2([a,b] \times \mathbb{R})$ et vérifiant la condition de Lipschitz % à la 2ème variable et uniformément % à la 1ère. Montrer que le schéma d'Euler explicite converge et d'ordre 1.
- 5. Refaire la même chose en utilisant le schéma de Runge-Kutta2.

Exercice 2: Soit le système linéaire suivant :
$$Ax = b$$
 où $A = \begin{pmatrix} 2 & 1 & -2 \\ 4 & 5 & -3 \\ -2 & 5 & 3 \end{pmatrix}$ et $b = \begin{pmatrix} 1 \\ 6 \\ 6 \end{pmatrix}$

- 1. Montrer que ce système admet une solution unique.
- 2. Résoudre ce système en utilisant les méthodes de Gauss, LU et Gauss-Jordan.

Exercice 3 : Soit M_k une matrice triangulaire inférieure avec des 1 sur la diagonale, et telle que tous les éléments sous la diagonale soient nuls sauf ceux situés sur la colonne k:

Déterminer l'inverse de M_k . Calculer le produit : $\prod_{i=1}^{n} M_k$.

Exercice 4: Résoudre le système Ax = b en utilisant la factorisation de Cholesky, où :

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \text{ et } b = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$$

TBA: (Analyse numerique) Exols f(x)= 2x+e2-8 17 On montre que (E): 22+E2-3 admet une unique solution l dans [0,4]. Considerant of (x) = 2x+ex-3 [=+ on a Von > mg | 2n-fles E=10" 1 ME= 36 On a glo)=1-3=-200 at f(1)= e-10 3/ Rappels at bo = b Aono \$(0). \$(1) < 0 or fest 2n+1 = an+bn continue sur [0, 1] done flato admet une solution dam DID acce (au) et (b) définice pars Arickment wissente d'on! Si fland. flbn) 20 alors Drautse part, on a f (21) = 2+esc ann=an et bn+1=2n Sinon ann= on et bons= bon My renierté de la solution. 12n-81 < 102 n +91 2/ D'après + (witherte de dichetoris |xn- 2| & 6-a aloss pour avoir 1x1-1/2E, an bn il suffit d'avoir $\frac{b-a}{2^{n+1}} \ge E$ $\Rightarrow b-a < E < e^{n+1}$ 1 015 1 0,75 - 0951 1,918 0,617 In(b-a) < In(E2 mt) 1/2 0,75 0,625-0,351 0,617 0,118 In (b-a) < In (E)+ (n+1) ln2 3 1/2 0,625 0,565 -0351 0,617 0,118 lu (b-a) - lu (E) = (m+1) lu 2 4 0,5625 0,625 0,59375-0,118 0, 118 0,001 $\ln\left(\frac{b-a}{\varepsilon}\right) = (n+1) \ln(2)$ $\ln 1 = \frac{\ln\left(\frac{b-a}{\varepsilon}\right)}{\ln 2}$ 5 0,59175 0,625 0,60375-0,0071 0, 118 0,008

Done do subtion approché avec 2 décimale exacte est
$$\ell=0,60$$
 $|\infty_{n+1}-\infty_n| \leq |0|^2$
 $|\infty_n-\infty_n| \leq |0|^2$

Exote dethicolor de Neuton

Fig.

Des de Taylor à l'ordre 2

de f en α_1 .

The Ea, bit to (α_1) to (α_2) to (α_3) to (α_4) to (α_4)

on aura en = g(an Considerant (2n) to 2m- g(2n) on retilise la methode du pt fixe Kappel Methode du pt fixe ales in I st desirable, a strate Pour duscher I, la sol de flat discusse aush et alors cons on election of to flat to sight in he conclut suffi @ et @g em la solut de f(2)=0 sua a pt fixe peut whilese le the cond out de a qu'en trouve comme limite de es or et fixe) pour avoires de (xn) qui est définie par I to donne # 1 Soit of de C' Montions en de 12mm = g(2m) relisant 03 que la ev est Ka: 9 est choisie to, les conste du lineaire Rappel: Vidre de ci the de pt fixe event validates An dit que la ev d'une mitro Rappel Les condit du this condité suff de ev de la suithande de (en) were it et dordrep 20. avec en = x - xn ta In suppose que HOSKE 1 tog Si p = 1 alors la cu est liveris aloss (su) , qui est define pas 20 E [9,6] dappels cours the ordine de en de 12mi = 9(2) pt fixe and gila, b) - laib er vers l'unique et fixe de q de classe on , ME MAR tog An a g(x) = 2 raduct un unique of fixe (CETA) Si la mettode de pt sixe ev als Les condit sufficientes de cu cont l'ordre de ev=m ser

, starti on me pout pers relitizer es de ev de pt fixe alors pr mg free E tous partie question, on suppose que [-1; 1]: (20) a definir par seny= les constituous @ et @ sont satisfaita g(u) as vers O. On procede alors (2m) definic par comme ceci 1 Const: 20 € [0, 1], on a 2 -20= No donnée dans [a-b] EV vers ? X141 = 9(2n) g(sep) - 20 = - 203 50 done 14 & 20 alors a après the de lordre de ev Hypothète de securence: On suppose de pt fixe, que en < en et en 30 et on Dide de er=1 es g(l)+0 monke que en e 5 ×n+1 € 1 - \$(R) +0 € f(R)+9 On a rentz - xnr1 = g(xn+1) - 2n+1 done la ev est lucaire «si [(1)+9 = - xni & O al après lyp seever done sen+2 = en+1 EX5 TO1 In & an & xn & - & no & A Rappel; The de C.S ser locate de (20 € [0; 1]) 2 st fixe (C.S) done Of entish => 052ny-2ny Th: CS ev locale de pt fixe => 2m+2 >0 & Soit q: [aib] -> [aib] de c1 A où 24+2 5 2n+1 2t 2n+2 20 5 each un voternage v(l) de l'ta Have V(R) la suite (2n) , définie le (2n) , let an 20 par sean = g(sen) co ver (mique 2) (sen In Cr vers & · pt fixe de q don U'(e) mass = g (lim (xu)) 1) Do a g(2) - x-23 sur [1;1] => l=g(1) => l=0 ily: O est of fixe de gy las 2. 20 6 Es; 0] . On one part pers reflier le la ct a De la su façon et par recurrence, a locale of fixe car gi(a)= 1-32 en ma (seal on 1 et majorce par 0 =) g(0)=1 done on a par la alors (xn)n ev ven l=g(e) > lo andito (g(8) (1)

Polynome d'auterpolation & ell + rest [1, s] (Ru) es On calcule of about bola, tola, 2) Travail personnel la (2); la (2) EX 6 sera fait en cours ou Travail pello. demarques to et y catalles en (1) chificults de la et la en al cas & TD 2 End On a 4 valeurs d'une fonct on 14 a pas le m suppost. f(3)=2) f(4)=1 - x3-gx2+262-24 1/ On considère le support (1,4). Trever le pôlymème de l'inter-4(a) - 11 (2-2j) - (2-1)(2-3)(a-4) 1=0 (2;-2g) (2-1) (2-5) (2-4) polation on base de Longrange. 23-8xe+194-11 Le suppost 12, 24 . On commence par esteuler les la et la Rappel Si(x) = 1 2-2 (2-1)(x-2/x-8) x3-6x2+112-6 done le polysième d'interpolation de mer le support ano, my P(x) = = = ((2) ((2) Rappel P(x) = Z f(xi)fi(x) Dans metre cas; Pr (1) = f(2) f(2) + f(4) f(6) = f(20)-6(2) + f(2)-4,(2) + f(2) f(2) = f(1) b(x)+ f(2) h(x) + flasily(2) P (x) = 6x-4 - 23-9x+26x-24+5xx-8x+8x-1 * labour approchie de f(15) - (x - +x+14x -8)+ x-6x+12-61 \$(1,5) = P(1,6) = 2

D'après le pours: f'and fort po De la m fajon (A faire). 1 Enje 1 & 16-a) Mg 2º methode Il faut diriver le poly d'interpolate de f construct à partir de (à faire) (1/2) = P'(2) (A faire) | | Emile | < R 4 (b-a) M4 2º/ L'ereur; D'agrès le cours al esseur de dérivation (n=2) 2) Nore minimal de « intervalle; h= b-a () m=b-a 6/2= x= 9,5 Ediff, 2 = - 12 - {(3)(E) [E = [0,1] Pau chy méthode en jumplace par houx correspondant. 3% Laire. f(20) a -3 f(20) + | f(21) - f(2)

Analyse numerique => (2n) -> 1 solut de f(a)=0 TDA 2) 3) 4) du th ex sort virifics 3° cass 20= (a =) evident e/e to e Jojant un -leta 5 Chaix de 20 1 car & xo E] Va; + xo [on Exa. (TDA) Mélhorde de la Corde pottert \$(20) \$ (20) = 2(20-a)) \ m & m; xn+= xn - \$(2n) . Alors of après le th es ev avec q = f(b)-f(a) Newton, en a: (201) er veu I l'unique soft I Representation graphique de 3(x)=0 Soit (D) la divite qui passe peu e-a-d f(8)=0 () 1= Vq (2n, f(xn)) et de pente q abres : (D): y= q(x-qn) + f(2n) 2º cas 3ì 20 €]0; Va[. On mg tm>1 2m3 Va (b) n(0x), e-a-d y=0 (=) q(x-en) + f(xn)=0 (Axo < Va) On a $x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{(x_n - \sqrt{a})^2 \sqrt{1}}{2x_n} \iff x = x_n - \frac{1}{2}(x_n) = x_{n+1}$ = = 2n - la - (2n - ta) > 0 car Done 2non est l'interection de (D) avec (OX) en montre facilement par recomme - spee 4, 70 4 1, 70 De plus, on mg (2m)m> 2 sent 2 g(6). VEn effet 2mi- 2n = - 2n2-9 50 ANXA * Xen) mg 2 est s Par correquent (xn) mx est > a star sun I at minore par Va

Lieux approache at
$$\{(a, b)\}$$
.

Also describe to perform a discontinuo $\{(a_1, a_2, a_3) = \{(a_1, a_2, a_3)$

= (-4-8)×16-(-2-3)×256--584