### **VV186 RC8**

Zhu Jing

**UM-SJTU** Joint Institute

2018

### Formal Power Series

3.6.1. Definition. For any complex sequence  $(a_k)$ , the expression

$$\sum_{k=0}^{\infty} a_k z^k$$

is called a (formal) complex power series.

3.6.4. Definition. A formal power series  $\sum a_k z^k$  is said to be *is* (absolutely) convergent at  $z_0 \in \mathbb{C}$  if the series  $\sum_{k=0}^{\infty} a_k z_0^k$  converges (absolutely).

# Radius of Convergence

3.6.6. Definition and Theorem. Let  $\sum a_k z^k$  be a complex power series.

Then there exists a unique number  $\varrho \in [0, \infty]$  such that

- (i)  $\sum a_k z^k$  is absolutely convergent if  $|z| < \varrho$ ,
- (ii)  $\sum a_k z^k$  diverges if  $|z| > \varrho$ .

This number is called the *radius of convergence* of the power series. It is given by *Hadamard's formula*,

$$\varrho = \begin{cases}
\frac{1}{\overline{\lim} \ \sqrt[k]{|a_k|}}, & 0 < \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|} < \infty, \\
0, & \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|} = \infty, \\
\infty, & \overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|} = 0.
\end{cases}$$
(3.6.1)

3.6.7. Remark. No information is given about the convergence of  $\sum a_k z^k$  if  $|z|=\varrho$ . In these cases the series may converge or diverge, depending on the point z.

# Radius of Convergence

3.6.9. Lemma. Let  $\sum a_k z^k$  be a complex power series with radius of convergence  $\varrho$ . Then the series  $\sum k a_k z^{k-1}$  has the same radius of convergence  $\varrho$ .

3.6.10. Lemma. If  $\sum a_k z^k$  is a complex power series with radius of convergence  $\varrho$ , then for any  $R < \varrho$  the series converges uniformly on  $B_R(0) = \{z : |z| < R\}$ .

3.6.11. Corollary. A power series  $\sum_{k=0}^{\infty} a_k x^k$  with radius of convergence  $\varrho$  defines a continuous function

$$f: B_{\varrho}(0) \to \mathbb{C}, \qquad \qquad f(z) = \sum_{k=0}^{\infty} a_k z^k.$$

# Radius of Convergence

3.6.14. Theorem. The real or complex power series  $f(z) := \sum a_k z^k$  with radius of convergence  $\varrho$  defines a differentiable function  $f : B_{\varrho}(0) \to \mathbb{C}$ . Furthermore,

$$f'(z) = \sum k a_k z^{k-1}$$
 (3.6.2)

where the series has the same radius of convergence as f.

### The Exponential Function

#### 3.7.1. Definition. We define the *exponential function*

$$\exp : \mathbb{C} \to \mathbb{C}, \qquad \exp z := \sum_{n=0}^{\infty} \frac{z^n}{n!}. \tag{3.7.1}$$

We similarly define its restriction to the real numbers,

$$\exp \colon \mathbb{R} \to \mathbb{R}, \qquad \exp x := \sum_{n=0}^{\infty} \frac{x^n}{n!}. \tag{3.7.2}$$

Note that exp(0) = 1 from the series representation

$$\exp(0) = 1 + 0 + \frac{0^2}{2!} + \dots = 1.$$



# Taylor expansion of common functions

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + \dots$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n-1} \frac{x^{n}}{n} + \dots$$

$$\arctan x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + \dots$$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} C_{n}^{n} x^{n}$$

#### Initial Value Function

In fact, it turns out that exp is the only function satisfying the *initial* value problem

$$y'(x) = y(x),$$
  $y(0) = 1.$  (3.7.3)

Here the equation on the left is called a *differential equation*; its solution is a function y such that the derivative of y is equal to y. The second equation is called an *initial condition*, because it specifies the value of y at for some  $x_0 \in \mathbb{R}$ .

#### the Euler Number

#### 3.7.3. Definition. The number

$$e := \exp(1)$$

is called the Euler number.

It can be proven that e is irrational and transcendental (not the solution of an algebraic equation). An approximate value is

$$e \approx 2.7182818284590$$

3.7.4. Lemma. The Euler number is the monotonic limit of the sequence in Proposition 3.7.2, i.e.,

$$\left(1+\frac{1}{n}\right)^n\nearrow e$$
 as  $n\to\infty$ .

## the Real Exponents, Logarithm

The exponential function is continuous (even  $C^{\infty}$ ) on  $\mathbb{R}$ , and for rational x coincides with  $e^x$ . We do not yet have a definition for  $e^x$  when x is real, so it is logical to define

$$e^x := \exp x$$
 for  $x \in \mathbb{R}$ 

We say that  $\exp x$  is a **continuous extension** of  $e^x$  to the real numbers. It is automatically the only such extension.

We have seen that the function exp:  $\mathbb{R} \to \mathbb{R}_+$  ( $\mathbb{R}_+ := \{x \in \mathbb{R} : x > 0\}$ ) is increasing and hence bijective. Thus there exists an inverse function, which we call the *(natural) logarithm* and denote by  $\ln : \mathbb{R}_+ \to \mathbb{R}$ .

#### the Euler Relation

We first note that we define

$$e^z := \exp z$$
 for  $z \in \mathbb{C}$ .

We then introduce the well-known trigonometric cosine and sine functions cos, sin:  $\mathbb{R} \to \mathbb{R}$  by

$$\cos(x) := \operatorname{Re} e^{ix} = \frac{e^{ix} + e^{-ix}}{2} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!},$$
  
$$\sin(x) := \operatorname{Im} e^{ix} = \frac{e^{ix} - e^{-ix}}{2i} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}.$$

The equation

$$e^{ix} = \cos(x) + i\sin(x)$$

is sometimes called the Euler relation.

## the Trigonometric Functions

3.8.1. Lemma. Suppose that  $y: \mathbb{R} \to \mathbb{R}$  is twice differentiable and that

$$y'' + y = 0,$$
  $y(0) = 0,$   $y'(0) = 0.$  (3.8.3)

Then y(x) = 0 for all  $x \in \mathbb{R}$ .

3.8.2. Theorem. Suppose that  $y \colon \mathbb{R} \to \mathbb{R}$  is twice differentiable and that for some  $a,b \in \mathbb{R}$ 

$$y'' + y = 0,$$
  $y(0) = a,$   $y'(0) = b.$  (3.8.4)

Then

$$y(x) = a\cos x + b\sin x$$
.



## the Hyperbolic Trigonometric Functions

We conclude this part by introducing a final family of functions, the *hyperbolic trigonometric functions*:

We define the *hyperbolic sine* and *hyperbolic cosine*,  $\sinh$ ,  $\cosh \colon \mathbb{C} \to \mathbb{C}$ , by

$$\sinh(x) := \frac{e^x - e^{-x}}{2}, \qquad \cosh(x) := \frac{e^x + e^{-x}}{2}$$

A comparison with the definition of the sine and cosine functions immediately shows that

$$sinh(ix) = i sin(x),$$
  $cosh(ix) = cos x.$ 

From the definition, we see that

$$\cosh(x) + \sinh(x) = e^x.$$



### Reference

1. VV186 Slide and previous RC Slide