Game Probability

Dice, Cards, and Random Numbers

John M. Quick

History of Probability

Knucklebones

Casting Lots

Lotteries

Cards in Europe

Cardano, 1501-76

Galileo, 1613-23

Pascal and Fermat, 1654

"The direct cause of the new contributions to probability theory was some questions on games of chance from Antoine Gombaud, Chevalier de Mere, to Blaise Pascal in 1654."

Hald, A History of Probability and Statistics, 1990, p. 42

"Two players, A and B, agree to play a series of fair games until one of them has won a specified number of games, s, say. For some accidental reason, the play is stopped when A has won s_1 and B s_2 games, s_1 and s_2 being smaller than s. How should the stakes be divided?"

Hald, A History of Probability and Statistics, 1990, p. 35

Player A $s_1 = 4$

$$s_1 = 4$$

Player B $s_2 = 1$

$$S_2 = 7$$

Challenge

How would you solve the problem of points?

$$s = 10, s_1 = 4, s_2 = 1$$

Discuss with a partner.

Basic Probability

"Objective, statistical, or aleatory probabilities are used for describing properties of random mechanisms or experiments, such as games of chance, and for describing chance events in populations, such as the chance of a male birth or the chance of dying at a certain age."

Hald, A History of Probability and Statistics, 1990, p. 28

Probability (P) of Event (A)

Will Not Occur

P(A) = 0 or 0%

Will Occur

P(A) = 1 or 100%

Probability

P(A)

Complement 1 - P(A)

$$1 - P(A)$$

Simple

$$P(A) = \frac{\kappa}{n}$$

- k = Number of target outcomes
- n = Number of all possible outcomes

Intersection (AND)

$$P(A \cap B) = P(A) \cdot P(B)$$
$$P(A \cap B) = P(A) \cdot P(B|A)$$

- $P(A \cap B) = Probability of A and B$ \cap = Intersection symbol, "and"
- P(B|A) = P(B) given A occurred, for dependent events

$$P(5 \cap 3) = \frac{1}{8} \cdot \frac{1}{8} = \frac{1}{64}$$

Possible Values

Union (OR)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(X) = Probability of A or B$$

 $U = Union symbol, "or"$

$$P(A \cap B) = 0$$
 for mutually – exclusive events

$$P(\le 4 \cup Even) = \frac{4}{8} + \frac{4}{8} - \frac{2}{8} = \frac{3}{4}$$

Possible Values

Challenge

Roll 2d12. Answer these questions.

- 1. Should $P(A \cap B) > P(A \cup B)$? Why?
- **2.** What is $P(4 \cap 9)$?
- 3. What is P(3 ∪ 11)?
- 4. What is P(4|9)?
- 5. What is P(<11 or Odd)?

Combinatorics

Ordered

Unordered

			V	Vit	th
Re	pla	ce	m	e	nt

Ordered sampling with replacement

Unordered sampling with replacement

Without Replacement

Permutation

Combination

Ordered

Unordered

With Replacement

Draw any 5 lottery numbers 1-9, the winning sequence must match exactly Draw any 5 lottery numbers 1-9, the winning numbers must be present

Replacement

Draw 5 unique Without lottery numbers 1-9, winning sequence must match exactly

Draw 5 unique lottery numbers 1-9, winning numbers must be present

Challenge

All else equal, rank the 4 sampling methods from highest to lowest in terms of how many valid possibilities they yield.

Which lottery is easiest to win?

Ordered Unordered With 59,049 1,287 Replacement Without 15,120 126 Replacement

Ordered Sampling With Replacement

$$X = n^k$$

X = total possibilities

n = total number of objects

k = number of selected objects

How many different sets of 4 cards can we draw?

3 sets of the <u>same 4 cards in 3 different positions</u> = 3

Notice duplicates within sets

Unordered Sampling With Replacement

$$X = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$$

X = total possibilities

n = total number of objects

k = number of selected objects

How many different sets of 4 cards can we draw?

3 sets of the <u>same 4 cards</u> in 3 different positions = 1

Notice duplicates within sets

Permutation

Ordered Sampling Without Replacement

$$P_{n,k} = \frac{n!}{(n-k)!}$$

 $P_{n,k}$ = total possibilities

n = total number of objects

k = number of selected objects

How many different sets of 4 cards can we draw?

3 sets of the <u>same 4 cards in 3 different positions</u> = 3

Notice no duplicates within sets

Combination

Unordered Sampling Without Replacement

$$C_{n,k} = \frac{n!}{k!(n-k)!}$$

 $C_{n,k}$ = total possibilities n = total number of objects

k = number of selected objects

How many different sets of 4 cards can we draw?

3 sets of the <u>same 4 cards</u> in 3 different positions = 1

Notice no duplicates within sets

Ordered

Unordered

With Replacement

$$X = n^k$$

$$X = \frac{(n+k-1)!}{k!(n-1)!}$$

Without Replacement

$$P_{n,k} = \frac{n!}{(n-k)!}$$

$$C_{n,k} = \frac{n!}{k!(n-k)!}$$

How many sets of 4 cards can we draw from a 52-card deck?

Solve the problem using each sampling method.

Law of Large Numbers

50%

40%

30%

50%

40%

30%

50%

40%

30%

20%

Distributions

Why use a flat distribution?

What is the difference between 1d4, 1d6, and 1d20?

Why use a curve distribution?

What happens as we add dice?

Bonus Challenge

How many SSR do you expect to get after 50, 100, and 200 pulls?

How many pulls do you need to almost guarantee an SSR?

How many pulls do you need to guarantee an SSR?

References

Hald, Anders. *A History of Probability and Statistics and Their Applications before 1750.* Hoboken: John Wiley & Sons, 1990.