

Medidas de associação II

> Felipe Figueiredo

Medidas de associação II

Correlação e Regressão Linear Simples

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Tipos de variáveis envolvidas

- Considere duas amostras X e Y, de dados numéricos contínuos.
- Vamos representar os dados em pares ordenados (x,y) onde:
 - X: variável independente (ou variável explanatória)
 - Y: variável dependente (ou variável resposta)

Medidas de associação I

Felipe Figueiredo

Sumário

- Associação entre duas variáveis
- Covariância entre duas amostras
- Coeficiente de correlação de Pearson
- Regressão Linear Simples
 - Modelos estatísticos
 - Coeficiente de Determinação r²
- Interpretação
- Causalidade
- Resumo

Medidas de associação

Medidas de

associação II

Felipe

Figueiredo

Medidas de associação II

Felipe Figueiredo

Associação

Regressão

• Como definir (e mensurar!) o grau de associação entre duas variáveis aleatórias (VAs)?

- Se uma VA é dependente de outra, é razoável assumir que isso possa ser observável por estatísticas sumárias
- Como resumir esta informação em uma única grandeza numérica?

Medidas de associação

- INTO
- Medidas de associação II
- Felipe Figueiredo

Correlação
Associação
Covariância

Pearson
Regressão

Causalidade

D - -----

 Quando uma associação é forte, podemos identificá-la subjetivamente

- Para isto, analisamos o gráfico de dispersão dos pares (x,y)
- Um gráfico deste tipo é feito simplesmente plotando os pontos no plano cartesiano

Medidas de associação II Felipe Figueiredo Correlação Associação Covardarda Pearson Regressão Interpretação Causalidade Resumo (c) Perfect positive correlation between x and y (Fonte: Triola)

Variância

INTO

Medidas de associação I

Felipe Figueiredo

Correlação
Associação
Covariância

Regressão

Causalidade

Resumo

 Relembrando: a variância (assim como o desvio-padrão) é uma medida da dispersão da amostra

- Medida sumária que resume o quanto os dados se desviam da média
- Podemos usar um raciocínio análogo para comparar quanto uma amostra se desvia em relação à outra

Covariância entre duas amostras

Medidas de associação I

Felipe Figueiredo

Correlação
Associação
Covariância

Regressão

Interpretação

Causalidade

Resumo

Correlação

Definition

A correlação é a associação estatística entre duas variáveis.

Para medir essa associação, calculamos o coeficiente de correlação *r*.

Medidas de associação II

Felipe Figueiredo

Correlação Associação Covariância

Regressão

Interpretação

Causalidad

Coeficiente de correlação

Definition

Definition

igual a zero!

O coeficiente de correlação r é a medida da direção e força da associação entre duas variáveis.

A covariância entre duas variáveis X e Y é uma medida de

• Obs: duas variáveis independentes tem covariância

quanto ambas variam juntas (uma em relação à outra).

Propriedades:

- É um número entre −1 e 1.
- Mede a associação linear entre duas variáveis.
 - Diretamente proporcional, inversamente proporcional, ou ausência de proporcionalidade.

INTO

Medidas de associação II

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Regressão

interpretação

Coeficiente de correlação

- Medidas de associação II

Felipe Figueiredo

- O coeficiente de correlação de Pearson é a covariância normalizada
- Pode ser calculado para populações (ρ) ou amostras (r)
- População

amostra

$$\rho = \frac{\mathsf{Cov}(\mathsf{X},\mathsf{Y})}{\sigma_{\mathsf{X}} \times \sigma_{\mathsf{Y}}}$$

• Utilizando uma fórmula semelhante, encontramos o coeficiente r para uma amostra

Se tivéssemos os dados de toda a população,

• Na prática, só podemos calcular a estatística r da

• Utilizamos r como estimador para ρ , e testamos a

poderíamos calcular o parâmetro ρ

significância estatística da forma usual

Medidas de associação I

Felipe Figueiredo

Correlação

Medidas de associação II

> Felipe Figueiredo

Associação Pearson

Exemplo

Example

Pesquisadores queriam entender por que a insulina varia tanto entre indivíduos. Imaginaram que a composição lipídica das células do músculo afetam a sensibilidade do músculo para a insulina. Para isto, eles injetaram insulina em 13 jovens adultos, e determinaram quanta glicose eles precisariam injetar nos sujeitos para manter o nível de glicose sanguínea constante. A quantidade de glicose injetada para manter o nível sanguíneo constante é, então, uma medida da sensibilidade à insulina.

Uma forte associação positiva corresponde a uma

Uma forte associação negativa corresponde a uma

A ausência de associação corresponde a uma

correlação próxima de 1.

correlação próxima de -1.

correlação próxima de 0.

(Fonte: Motulsky, 1995)

Medidas de associação II

Felipe Figueiredo

Pearson

Exemplo

Medidas de associação II

Felipe Figueiredo

Correlação
Associação
Covariância

Regressão

Caucalidada

Causalidade

Resumo

Example

Os pesquisadores fizeram uma pequena biópsia nos músculos para aferir a fração de ácidos graxos poliinsaturados que tem entre 20 e 22 carbonos (%C20-22). Como variável resposta, mediram o índice de sensibilidade à insulina.

Valores tabelados a seguir.

Exemplo

Medidas de associação II

Felipe Figueiredo

Correlação Associação Covariância

Regressão

Interpretaçã

Resumo

Table 17.1. Correlation Between %C20–22 and Insulin Sensitivity

% C20–22 Polyunsaturated Fatty Acids	Insulin Sensitivity (mg/m²/min)
17.9	250
18.3	220
18.3	145
18.4	115
18.4	230
20.2	200
20.3	330
21.8	400
21.9	370
22.1	260
23.1	270
24.2	530
24.4	375

Exemplo: Diagrama de dispersão dos dados

Obs: na verdade, r = 0.77.

Medidas de associação II

Felipe Figueiredo

Correlação Associação Covariância

Interpretação

interpretação

Resumo

Exemplo

- O tamanho da amostra foi n = 13
- Consultamos o valor crítico de r na tabela a seguir
- Testamos a H_0 que não há relação entre as variáveis na população ($H_0: \rho = 0$).

Medidas de associação II

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Regressão

Interpretação

Caucalidado

Exemplo

Medidas de associação I

Felipe Figueiredo

Correlação
Associação
Covariância

Regressão

Causalidade

Resumo

Resumo

Exemplo

Medidas de associação II

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Regressão

Interpretação

Causalidade

Resumo

•	O valor	crítico da	tabela	para	uma	amostra	de	tamanl	ho
	13 é <i>r_c</i>	= 0.553							

- A correlação calculada para esta amostra foi r = 0.77
- Como a correlação é maior que o valor crítico, a relação é estatisticamente significativa
- Conclusão: há evidências para rejeitar a H₀ que não há relação entre as variáveis.

Exemplo

 Pode-se também calcular o p-valor para o coeficiente de correlação r.

Critical Values of the

Pearson Correlation

 $\alpha = .01$

.999

.959

.917

.875

.834

.798

.765

.735

.708

.684

.661

.641

.623

.606

.590

Coefficient r

 $\alpha = .05$

.878

.811

.754

.707

.666

.632

.602

.553

.532

.514

.497

.482

.468

TABLE A-6

5

10

11

12

13

15

16

17

18

- Para este exemplo, teríamos p = 0.0021.
- Interpretação: se não houver relação entre as variáveis (H₀), existe apenas 0.21% de chance de observamos uma correlação tão forte com um estudo deste tamanho

Medidas de associação II

Felipe Figueiredo

Associação
Covariância
Pearson

Regressão

Interpretação

Daa.....

Exemplo

Por que as duas variáveis são tão correlacionadas? Considere 4 possibilidades:

- o conteúdo lipídico das membranas determina a sensibilidade à insulina
- 2 A sensibilidade à insulina de alguma forma afeta o conteúdo lipídico
- 3 tanto o conteúdo lipídico quanto a sensibilidade à insulina estão sob o efeito de algum outro fator (talvez algum hormônio)
- 4 as duas variáveis não são correlacionads na população, e a estimativa observada nessa amostra é mera coincidência

Medidas de associação II

Felipe Figueiredo

Correlação
Associação
Covariância
Pearson

Regressão

Interpretação

Interpretando o r

tipo I)!

- INTO
- Medidas de associação II

Felipe Figueiredo

Correlação Associação Covariância

Regressão

Causalidade

o p-valor indica quão rara é essa coincidência

Nunca devemos ignorar a última possibilidade (erro

 neste caso, em apenas 0.21% dos experimentos não haveria uma correlação real, e estaríamos cometendo um erro de interpretação

s de

- Relembrando: calculamos a variância de uma amostra para saber a dispersão dos dados
- Sua interpretação é confusa, portanto preferimos usar o desvio-padrão
- No caso do r é o contrário: a interpretação de r² é mais simples
- Obs: o valor r² também é chamado coeficiente de determinação, como veremos a seguir.

Elevando o r ao quadrado

Medidas de associação II

> Felipe Figueiredo

Associação Covariância Pearson

Regressao

Interpretação

Causalidade

Resumo

Interpretando o r^2

- No exemplo anterior, $r^2 = 0.59$
- no caso, 59% da variabilidade da tolerância à insulina pode ser explicada pelo conteúdo lipídico
- Ou seja: conhecer o conteúdo lipídico permite explicar 59% da variância na sensibilidade à insulina
- Isto deixa 41% da variância que pode ser explicada por outros fatores ou erros de medição
- E este valor (r²) também é utilizado na Regressão!

Medidas de associação II

Felipe Figueiredo

Correlação Associação Covariância

Regressão

Interpretação

Causalidade

Resumo

Modelos estatísticos

Modelos servem para:

- representar de forma simplificada fenômenos, experimentos, dados, etc;
- possibilitar análise em cenários controlados, menos complexos que a realidade;
- extrapolar resultados e conclusões.

Medidas de associação II

Felipe Figueiredo

Correlação Regressão

Interpretação

Causalidade

Modelos estatísticos

(extrapolação)

Ao ajustar um modelo aos dados, podemos:

• fazer predições dentro do intervalo observado para

dados que não foram obtidos (interpolação)

• fazer predições fora do intervalo observado

Medidas de associação II

Felipe Figueiredo

Reta de regressão

Medidas de associação II

> Felipe Figueiredo

Definition

Uma reta de regressão (também chamada de reta de melhor ajuste) é a reta para a qual a soma dos erros quadráticos dos resíduos é o mínimo.

- É a reta que melhor se ajusta aos dados
- Minimiza os resíduos

Resíduos

Medidas de associação I

Felipe Figueiredo

Definition

Resíduos são a distância entre o dado observado e a reta estimada (modelo).

Elementos da reta de regressão

$$\hat{y} = ax + b$$

- No caso da reta regressora:
 - y é a variável dependente
 - x é a variável independente
 - a é a inclinação
 - *b* é o intercepto
- Assim, o objetivo da análise de regressão é encontrar os valores a e b

Medidas de associação II

Felipe Figueiredo

Modelos estatísticos

Análise de Regressão

Medidas de associação II

> Felipe Figueiredo

Para determinar a inclinação e o intercepto, usamos:

- as médias de X e Y
- as variâncias de X e Y
- o coeficiente de correlação r entre X e Y
- o tamanho da amostra n
- ... e algumas operações entre estes termos

Coeficiente de Determinação r^2

Medidas de associação I

Felipe Figueiredo

Definition

O coeficiente de determinação r^2 é a relação da variação explicada com a variação total.

$$r^2 = rac{ ext{variação explicada}}{ ext{variação total}}$$

• Lembrando: r^2 é o quadrado de r!

Análise de Regressão

associação II

Felipe Figueiredo

• A qualidade do ajuste do modelo de regressão é determinado pelo coeficiente de determinação r²

• Qual é a porcentagem da variação dos dados pode ser

• Como r está sempre entre -1 e 1, r² está sempre entre

• O coeficiente r^2 é a fração da variância que é

Example scatter plot with

regression line fitted

Coeficiente de Determinação r^2

explicada pela reta regressora?

compartilhada entre X e Y.

0 e 1.

Medidas de associação II

Felipe Figueiredo

Coeficiente de Determinação r^2

- INTO
- Medidas de associação II
- Felipe Figueiredo

Correlação

Regressão

Modelos estatísticos

lidade

• Por que?

Cuidado!

• Além disso, $r^2 < |r|$

Compare os seguintes números entre 0 e 1:

$$\frac{1}{2} e \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow \frac{1}{4} \leq \frac{1}{2}$$

$$\frac{1}{3} e \left(\frac{1}{3}\right)^2 = \frac{1}{9} \Rightarrow \frac{1}{9} \leq \frac{1}{3}$$

- Duas variáveis podem parecer correlacionadas pois
- Ex: em alguns países a mortalidade infantil é negativamente correlacionada com o número de telefones per capita

são influenciadas por uma terceira variável

- Mas comprar mais telefones não vai salvar crianças!
- Explicação alternativa: a melhoria da condições financeiras pode afetar ambas as variáveis

Medidas de associação II

Felipe Figueiredo

Correlação

Interpretação

Resumo

Interpretação

Medidas de associação I

Felipe Figueiredo

Correlação

Interpretação

Ozorzelielesie

Jausalidade S

- Se a correlação é 0, então X e Y não variam juntos (independentes)
- Se a correlação é positiva, então quando uma aumenta, a outra aumenta em proporção direta (linear)
- Se a correlação é negativa, então quando uma aumenta, a outra diminui em proporção inversa (linear)

Causa x efeito

negativa)

Medidas de associação II

Felipe Figueiredo

Correlação

Interpretação

Causalidade

Resumo

variáveis, maior será o módulo da correlação.

• Se as variáveis não são relacionadas, a correlação será nula.

• Se há uma relação de causalidade entre as duas

variáveis, a correlação será não nula (positiva ou

Quanto maior for a relação de dependência entre as

Causalidade?

- INTO
- Medidas de associação II
- Felipe Figueiredo

Regressão

Causalidade

Resumo

- Mas não podemos inverter a afirmativa lógica do slide anterior!
- Isto é, ao observar uma forte correlação, gostaríamos de concluir que uma variável causa este efeito na outra
- Infelizmente isto não é possível!
- Lembre-se: a significância do teste indica a probabilidade de se cometer um erro do tipo I (falso positivo).

Repita várias vezes mentalmente

Correlação não implica em causalidade.

INTO

Medidas de

associação II

Felipe Figueiredo

Correlação Regressão

Interpretação

Causalidade Resumo

Exemplo

Produção de mel x Prisões por posse de maconha

Correlação: -0.933389

(Fonte: Spurious correlations)

Exemplo

24857.14

23142.86

21428.57

INTO

Medidas de associação II Felipe Figueiredo

Correlação Regressão

Interpretação

Causalidade

2008

2009

Correlação: 0.992082

(Fonte: Spurious correlations)

US spending on science, space, and technology

Gasto com C&T (EUA) x Suicídios por enforcamento

Exemplo

Afogamentos em piscina x Filmes com Nicholas Cage Number people who drowned by falling into a swimming-pool Number of films Niclas Cage appeared in 117.5 117.5 105 11999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Correlação: 0.666004

(Fonte: Spurious correlations)

Medidas de associação II Felipe Figueiredo

Correlação Regressão

Causalidade

Causa e efeito

Ao encontrar uma forte correlação, deve-se sempre se perguntar:

- Há uma relação direta de causa e efeito entre as variáveis? (X causa Y?)
- 2 Há uma relação inversa de causa e efeito entre as variáveis? (Y causa X?)
- Sé possível que a relação entre as variáveis possa ser causada por uma terceira variável (ou mais) que não foi analisada?
- é possível que a relação entre duas variáveis seja uma coincidência?

Medidas de associação II

Felipe Figueiredo

Correlação

Regressão

Causalidade

Resumo

Medidas de associação II

Felipe Figueiredo

Correlação

. log. codao

interpretação

Oausanuaue

- É necessário investigar a relação entre as variáveis!
- O que pode explicar a relação observada?
- Qual proporção (porcentagem) da variabilidade pode ser explicada pelas variáveis analisadas?
- Quão bem a reta regressora se ajusta aos dados?