Exercise 1.29

Nolan Hauck

Last updated Monday 13th May, 2024 at 11:09

Let E be a Lebesgue measurable set.

- **a.** If $E \subset N$ where N is the nonmeasurable set described in §1.1, then m(E) = 0.
- **b.** If m(E) > 0 then E contains a non-measurable set. (It suffices to assume $E \subset [0,1]$. In the notation of $\S 1.1$, $E = \bigcup_{r \in R} E \cap N_r$.)

Solution. a. Let $E_r = E \cap N_r$ for each $r \in R = \mathbb{Q} \cap [0,1)$. Then since $N_r = ((N \cap [0,1-r)) + r) \cup ((N \cap [1-r,1)) + (r-1))$ and Theorem 1.21 says m is translation invariant,

$$m(E_r) = m(E \cap N \cap [0, 1 - r)) + m(E \cap N \cap [1 - r, 1)) = m(E \cap N) = m(E)$$
 (1)

for each $r \in R$. Note also by Theorem 1.21 that E_r is measurable since $E \cap N = E$ is measurable, [0, 1 - r) and [1 - r, 1) are measurable, and translating measurable sets yields measurable sets, so this computation is valid. Then since [0, 1) is the disjoint union of the N_r , E is the disjoint union of the E_r ($E = E \cap [0, 1)$). So we have

$$m(E) = m\left(\bigcup_{r \in R} E_r\right) = \sum_{r \in R} m(E_r) = \sum_{r \in R} m(E).$$
(2)

The only way this makes sense is if $m(E) = \infty$ or m(E) = 0. However, $E \subseteq [0,1)$, so $m(E) \le 1$, i.e. m(E) = 0.

b. First suppose the conclusion is true for $E\subseteq [0,1]$. Now let F be a measurable set in \mathbb{R} . Then $\mathbb{R}=\bigcup_{n\in\mathbb{Z}}[n,n+1)$ as a disjoint union, so $F=F\cap\mathbb{R}=\bigcup_{n\in\mathbb{Z}}F\cap[n,n+1)$ is also a disjoint union. If $m(F)=\sum_{n\in\mathbb{Z}}m(F\cap[n,n+1))>0$, then there exists $n\in\mathbb{Z}$ so that $F\cap[n,n+1)>0$. Then if $G=(F\cap[n,n+1))-n$, then $G\subseteq [0,1]$ with m(G)=m(F) (by Theorem 1.21), so G contains a non-measurable set. So it is sufficient to consider $E\subset [0,1]$.

Suppose m(E) > 0 and suppose for contradiction that F is measurable for all $F \subseteq E$. Then in the notation of §1.1, the N_r and disjoint and $E \cap N_r \subseteq E \implies N_r$ is measurable for all r. Also recall that if μ is a translation invariant measure on \mathcal{M} , then $\mu(N_r) = \mu(N)$ for all $r \in R$. But m satisfies these requirements, so

$$m(E) = m(E \cap [0,1]) = m(\bigcup_{r \in R} E \cap N_r) = \sum_{r \in R} m(E \cap N_r) = \sum_{r \in R} m(E \cap N).$$
 (3)

As above, this only makes sense if $m(E) = \infty$ or if m(E) = 0, so we have drawn a contradiction, and there must be a non-measurable set contained in E.