Rockchip RK809 Datasheet

Revision 2.4 Jan.2024

Revision History

Date	Revision	Description
2024-01-02	2.3.1	1, Update the Absolute Maximum Ratings description of the SWx 2, Add the RC filter circuit for SW4/SW5 in Typical Application Diagrams 3, Update Address description of the Register Description 4, Update the time of power on description 5, Update the PWRON Description of the Pinout Number Order 6, Update the Description of the PWRON_STS 7, Modify the battery Description in the Feature 8, Update the Description of the SCL clock frequency and Register 0xF4 9, Update part description of Electrical Characteristics
2023-03-17	2.3	1, Add the RC oscillator and start up sequence information of DC Characteristics
2022-11-14	2.2	1, Update power sequence description of the RK809-7A 2, Update the Description of the Reg38 3, Update the detail Description of the Power down 4, Update the Power on Description of the VDC 5, Update power sequence description of the RK809-7 6, Add the MSL and lead finish information
2022-03-13	2.1	1, Update the description of RK809-1A ,RK809-5A,RK809-6A
2021-12-27	2.0	1, Update the description of RK809-7
2021-12-02	1.9	1, Update power sequence description for SWOUT1 and SWOUT2 of RK809-6 2, Update power on description of the EXT_EN
2021-11-23	1.8	1, Update power sequence description for default voltage of the OFF channel 2, Update the Electrical Characteristics Table 3, Update the description of RegF0<7> 4, Update the description of RK809-6 5, Update BUCKn_ILPK and BUCKn_ILVL information
2020-10-14	1.7	Update VB_OK and RK809-5 description, figure description, note of SLEEP pin active, Power Sequence Description
2020-02-26	1.6	Add Functional Block Diagram
2019-10-09	1.5	Update register description
2019-06-18	1.4	Update the header
2019-02-15	1.3	Add more detail description.
2018-12-29	1.2	RK809_1 LDO1 power up sequence modification
2018-08-28	1.1	Spec change @ power up sequence
2018-04-02	1.0	Initial release

Table of Content

	of Content	
_	Index	
	Indexnty Disclaimer	
	er 1 Introduction	
1.1	Overview	
1.2	Feature	
1.3	Block Diagram	
1.4	Typical Application Diagrams	
Chapte	er 2 Package information	13
2.1	Ordering information	13
2.2	Top Marking	13
2.3	MSL Information	
2.4	Lead Finish/Pin Material Information	16
2.5	Dimension	
2.6	Pin Assignment	
2.7	Pinout Number Order	
Chapte	er 3 Electrical Characteristics	20
3.1	Absolute Maximum Ratings	20
3.2	Recommended Operating Conditions	
3.3	DC Characteristics	20
Chapte	er 4 Function Description	28
4.1	Top State Machine	28
4.1.	1 State Machine Description	28
4.1.	2 Power on Description	28
4.1.	3 Power down Description	29
4.1.	4 Reset Description	30
4.1.	5 Power Sequence Description	32
4.1.	6 Sleep Description	39
4.2	Power Channels	39
4.2.	1 Buck Description	39
4.2.	2 LDO Description	43
4.3	Battery Gas Gauge	43
4.4	Audio System	45
4.4.	1 General Description	45
4.4.	2 Audio Recording Path Description	45
4.4.	3 Head-Phone Path Description	46
	4 Speaker Path Description	
4.4.	5 I2S Description	48
4.4.	6 RC Oscillator Description	48

4.5	Others	48
4.5.1	1 Real Time Clock (RTC) Description	48
Chapte	er 5 Register Description	49
	Register Summary	
5.2	Register Description	54
Chapte	er 6 Thermal Management	126
6.1	Overview	126
6.2	Package Thermal Characteristics	126

Figure Index

Fig.	1-1 RK809 Functional Block Diagram	10
Fig.	1-2 RK809 Typical Application Diagram for no battery	11
Fig.	1-3 RK809 Typical Application Diagram for two battery	12
	2-1 Pin Assignment QFN7x7-68(Pitch=0.35mm)	
	3-1 QFN687mm X 7mm	
Fig.	4-1 State Machine	28
Fig.	4-2 Press "PWRON" key to turn on the PMIC	28
Fig.	4-3 VDC voltage Rising-edge to turn on the PMIC	29
Fig.	4-4 Long press "PWRON" key to turn off the PMIC	29
Fig.	4-5 VCC under-voltage to turn off the PMIC	30
Fig.	4-6 Long press "PWRON" key to restart the PMIC	31
Fig.	4-7 VCC under-voltage to restart the PMIC	32
	4-8 BUCK1 load transient rising edge	
Fig.	4-9 BUCK1 load transient falling edge	40
Fig.	4-10 BUCK1 load transient rising edge 2	41
	4-11 BUCK1 load transient falling edge 2	
	4-12 BUCK1 efficiency curve when different input voltage	
Fig.	4-13 BUCK2 efficiency curve when different input voltage	42
Fig.	4-14 BUCK3 efficiency curve when different input voltage	42
Fig.	4-15 BUCK4 efficiency curve when different input voltage	42
Fig.	4-16 BUCK5 efficiency curve when different input voltage, Vout=3.3V	43
	4-17 Gas gauge architecture	
Fig.	4-18 Current ADC Relative Error Curve	44
Fig.	4-19 Voltage ADC Relative Error Curve	45
Fig.	4-20 Audio system architecture	45
	4-21 Audio recording path THD+N ratio at differential mode	
_	4-22 Head-phone path THD+N ratio	47
Fia.	4-23 Speaker path THD+N ratio	48

Table Index

Table 4-1 RK809-1 Power up/down sequence	32
Table 4-2 RK809-2 Power up/down sequence	
Table 4-3 RK809-3 Power up/down sequence	
Table 4-4 RK809-5 Power up/down sequence	
Table 4-5 RK809-6 Power up/down sequence	
Table 4-6 RK809-7 Power up/down sequence	
Table 4-7 RK809-1A Power up/down sequence	
Table 4-8 RK809-5A Power up/down sequence	
Table 4-9 RK809-6A Power up/down sequence	38
Table 4-10 RK809-7A Power up/down sequence	
Table 6-1 Thermal Resistance Characteristics	126

Warranty Disclaimer

Copyright © 2023 Rockchip Electronics Co., Ltd. All rights reserved.

No part of this document may be reproduced, transmitted or used in any form or by any means without the written prior consent of Rockchip Electronics Co., Ltd.

Trademark

Rockchip is a registered trademark of Rockchip Electronics Co., Ltd. in the People's Republic of China and other countries/areas. Other brands, product names mentioned in this document are the property of their respective owners.

Disclaimer

Rockchip Electronics Co., Ltd. ("Rockchip") may make changes to any information in this document at any time without any prior notice.

Information in this document is provided just as a reference or typical applications. All or part of product features described in this document may not be within the purchase scope or the usage scope, and may be subject to the third party licensing requirements. All statements, information in this document is provided "AS IS" without warranties of any kind, either express or implied. Actual performance of Rockchip products may vary in different applications. Third party licenses maybe required to use some features supported by Rockchip products. Customers shall be solely and exclusively responsible to obtain all appropriately required third party licenses prior to its such use. Should customers use the features supported by Rockchip products without any required third party license, customers shall indemnify and hold Rockchip and its subsidiaries, affiliates as well as distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of any claim associated with such unauthorized use. Rockchip products are not intended for use in military, airplane, medical devices, lifesaving or life sustaining applications ("Unintended Uses"). Customers shall take any and all actions to ensure using Rockchip products in a lawful manner and shall be liable for Unintended Uses.

Chapter 1 Introduction

1.1 Overview

The RK809 is a complex power-management integrated circuit (PMIC) integrated CODEC for multi-core system applications powered by an external power supply. The RK809 can provide a complete power management solution with very few external components.

The RK809 provides five fast load transient synchronous step-down converters. The device also contains 9 LDO regulators, two switches and a battery fuel gauge. Power-up/power-down controller is configurable and can support any customized power-up/power-down sequences (OTP based). A real-time clock (RTC) is also integrated to provide a 32.768-kHz output buffer, and real time function. The RK809 supports 32.768-kHz clock generation based on a crystal oscillator. It also includes Audio CODEC, real ground Head phone driver and ClassD driver.

The RK809 integrates four channels step-down DC-DC converters. All of them adopt ripple base control to achieve very fast load transient response. Meanwhile, all of them can dynamically adjust the output voltage, as required by the processor based on the processor's operation status so as to maximize the system efficiency. The output voltages of most channels can be configured through the I2C interface. The inputs of all channels have soft start function, which greatly reduces the inrush current at the startup. 2.5MHz switching frequency and good control method decrease the external inductance and capacitance. The RK809 also integrate a peak current mode control high efficiency buck converter, maximum current up to 2.5A, it's usually used to power LDOs.

The RK809 integrates nine channels LDO regulators. The LDO3 is high PSRR (75dB @1Khz) high accuracy low drop-out regulator. The inputs of all LDO regulators could be decrease to 2V for high convert efficiency. The output voltages of all LDO regulators can be configured through the I2C interface.

A "battery fuel gauge" is integrated in the RK809. Using the proprietary algorithms and the sensed battery current and voltage, the gauge can accurately calculate the battery capacity based on the charging/discharging characteristics of the battery preloaded in the system. The gauge then sends the battery capacity information to the processor through the I2C interface.

The RK809 also integrates complete audio system. The single end or differential mode Micro-phone can be connected to RK809 through two AC-couple capacitors. 24-bits ADC and gain adjustable PGA would convert the micro-phone signal to digital signal. The sound recording path has very low THD (-75dB @1KHz@580mV source). 24 bits DAC would convert digital signal to analog signal, and Class-AB driver adopt real-ground structure for Head-phone application, has very low THD (-90dB @1KHz@-3dBFS source). Meanwhile, Class-D driver integrated for speaker application. The speaker and head-phone can be used at the same time. I2S interface is integrated to communicate with processor.

The RK809 is available in a QFN68 7.0 mm x 7.0 mm package, with a 0.35-mm pin pitch.

1.2 Feature

- Input range: 2.7V 5.5V
- Low standby current of 35uA
- Power channels:
 - ◆ BUCK1: 0.5V~2.4V, 2.5A max, very fast transient response
 ◆ BUCK2: 0.5V~2.4V, 2.5A max, very fast transient response
 - ◆ BUCK3: 0.5V~2.4V (or resistor divider), 1.5A max, very fast transient response
 - ♦ BUCK4: 0.5V~3.4V, 1.5A max, very fast transient response
 - ♦ BUCK5: 1.5V~3.6V, 2.5 A max, fast transient response
 - ◆ LDO1~LDO2,LDO4~LDO9: 0.6V~3.4V, 400mA max
 - ◆ LDO3: high PSRR (75dB @ 1KHz), 0.6V~3.4V, 100mA max
 - ♦ Switch1: 2.1 A max, Rdson=90mΩ
 - Switch2: 2.1 A max, Rdson=100mΩ
 - ◆ OTP Programmable power up/down sequences and voltage
- Accurate battery fuel gauge with two separate battery voltage and current ADC
 - 16 bits ADC for battery voltage
 - ◆ 16 bits ADC for battery current sense
 - ◆ OCV algorithm combine with Coulom-counter algorithm
- Real time clock (RTC)
- Audio System
 - Audio codec: 24bits for both ADC and DAC
 - Support single end or differential mode Micro-phone input
 - Support real ground class-AB PA to drive Head-phone, 320hm Load
 - Support class-D PA to drive speaker, 1.3W
 - Support I2S as the digital signal interface for both DAC and ADC
 - ◆ Support programmable digital and analog gains
 - ♦ Sample rate: 48KHz~192KHz
 - Integrates internal PLL
 - Support PDM mode(external input PCLK)
- Package:7mmx7mm QFN68

1.3 Block Diagram

Note: 1. The detail audio block diagram is shown at chapter "4.4 Audio System".

2. The I2S interface is internal pull high to VLDO4.

Fig. 1-1 RK809 Functional Block Diagram

1.4 Typical Application Diagrams

Fig. 1-2 RK809 Typical Application Diagram for no battery

Fig. 1-3 RK809 Typical Application Diagram for two battery

Chapter 2 Package information

2.1 Ordering information

Orderable Device	RoHS status	Package	Package Detail
RK809-1	RoHS	QFN68 (7X7)	2000 pcs/ tape, 5 tapes/box, by reel
RK809-2	RoHS	QFN68 (7X7)	2000 pcs/ tape, 5 tapes/box, by reel
RK809-3	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel
RK809-5	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel
RK809-6	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel
RK809-7	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel
RK809-1A	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel
RK809-5A	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel
RK809-6A	RoHS	QFN68 (7X7)	2000 pcs/ tape,5 tapes/box, by reel

2.2 Top Marking

2.3 MSL Information

Moisture sensitivity Level: MSL3

2.4 Lead Finish/Pin Material Information

Lead Finish/Pin Material: Sn

2.5 Dimension

Fig. 2-1 QFN687mm X 7mm

DESCRIPTION	SYMBOL	MILLIMETER			
DESCRIPTION	STWIBUL	MIN	NOM	MAX	
TOTAL THICKNESS	Α	0.70	0.75	0.80	
STAND OFF	A1	0	0.035	0.05	
MOLD THICKNESS	A2	-	0.55	0.57	
MATERIAL THICKNESS	A3	-	0.203 _{REF}	-	
PACKAGE SIZE	D	-	7 _{BSC}	-	
PACKAGE SIZE	Е	-	7 _{BSC}	-	
EP SIZE	D1	5.39	5.49	5.59	
EF SIZE	E1	5.39	5.49	5.59	
LEAD LENGTH	L	0.30	0.4	0.50	
LEAD PITCH	е	0.35 _{BSC}			
LEAD WIDTH	b	0.1	0.15	0.2	
LEAD OSITION OFFSET	aaa	0.07			
LEAD COPLANARITY	bbb	0.08			
PACKAGE EDGE PROFILE	ccc	0.10			
MOLD FLATNESS	ddd	0.10			
EP POSITION OFFSET	eee	0.10			
	fff		0.05	_	

Note:

- 1. Coplanarity applies to leads, corner leads and die attach pad.
- 2. Dimension b applies to metalized terminal and is measured between 0.15mm and 0.30mm from the

terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension b should not be measure in that radius area.

2.6 Pin Assignment

Fig. 2-2 Pin Assignment QFN7x7-68(Pitch=0.35mm)

2.7 Pinout Number Order

PIN NO	PIN NAME	PIN DESCRIPTION
1	SCL	I2C clock input
2	SDA	I2C data input and output
3	LD07	LDO7 output
4	VCC7	Power supply of LDO7/8/9
5	LDO8	LDO8 output
6	LDO9	LDO9 output
7	INT	Interrupt request pin, open drain
8	FB2	Output feedback voltage of buck2
9	SW2	Switching node of buck2
10	VCC2	Power supply of buck2
11	VCC1	Power supply of buck1
12	SW1	Switching node of buck1
13	FB1	Output feedback voltage of buck1
14	LRCLK	The I2S framing clock
15	BCLK	The I2S bit clock
16	MCLK	The I2S main clock input pin
17	SDI	The I2S DAC input data
18	SDO/PDMDATA	The I2S ADC output data/PDM Data for the DSADC
19	PDMCLK	PDM CLK for the DSADC OUTPUT
20	LDO3	LDO3 output
21	LDO2	LDO2 output
22	VCC5	Power supply of LDO1/2/3
23	LDO1	LDO1 output

PIN NO	PIN NAME	PIN DESCRIPTION
24	VCC3	Power supply of buck3
25	SW3	Switching node of buck3
26	VBUCK3	Output voltage of buck3
27	FB3	Output feedback voltage of buck3
28	LDO4	LDO4 output
29	LDO5	LDO5 output
30	VCC6	Power supply of LDO4/5/6
31	LDO6	LDO6 output
32	SPKP_OUT	Positive speaker driver output
33	VCC_SPK_HP	Power supply for speaker and charger pump
34	SPKN_OUT	Negative speaker driver output.
35	VCC_CPVSS	Negative power supply for the headphone
36	CPN	Negative switching node of the charger pump
37	CPP	Positive switching node of the charger pump.
38	VCC_CPVDD	Positive power supply for the headphone
39	HPL_OUT	Left channel output of the headphone
40	HP_SNS	Reference ground for the headphone
41	HPR_OUT	Right channel output of the headphone
42	MICIN	Negative input of the Microphone
43	MICIP	Positive input of the Microphone
44	VCC_1P8A	Power supply for internal 1.8V analog circuit
45	VCC_RTC	Power supply filter
46	VREF	Internal reference voltage
47	GNDREF	Reference ground
48	VCC_1P8D	Power supply for internal 1.8V digital circuit
49	SLEEP	Sleep mode control input
50	XIN	32.768KHz crystal oscillator input
51	XOUT	32.768KHz crystal oscillator output
52	PWRON	Power on key input, active low, internal 35k($\pm 15\%$) resistor
		pull high to VCC_RTC
53	SW5	Switching node of BUCK5
54	VCC9	Power supply of buck5 and SWOUT1
55	SWOUT1	Power switch out 1
56	BATDIV	Divided voltage of positive battery
57	VCC8	Power supply of SWOUT2
58	SWOUT2	Power switch out 2
59	FB5	Output feedback voltage of buck5
60	EXT_EN	Enable Signal for external high voltage BUCK
61	VDC	If it exceeds 0.55V for the first time, it will start the
		PMIC(rising edge triggering start). And it is connected to the divider of external power supply generally.
62	SNSP	Bat charging and discharging sense current positive pin
63	SNSN	Bat charging and discharging sense current negative pin
64	FB4	Output feedback voltage of buck4
65	SW4	Switching node of buck4
66	VCC4	Power supply of buck4
67	RESETB	Reset pin after power on, active low
68	CLK32K	32.768KHz clock output, open drain
Exposed	Exposed	Ground
pad	ground	

Chapter 3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Parameter	Min	Max	Units
Voltage range on pins SWOUTx, VCC1~9,VCC_RTC,VCC_SPK_HP,LDOx, FBx,VBUCK3,SPKP_OUT,SPKN_OUT	-0.3	6.5	V
Voltage range on pins SWx	-0.3(-2V for <20ns and -3.5V for <10ns)	6.5(7V for <20ns)	V
Voltage range on pin CLK32K,RESETB, SLEEP,SCL,SDA,INT,PWRON,XIN,XOUT, VDC,EXT_EN	-0.3	6.5V	V
Voltage range on pins LRCLK,BCLK,MCLK,SDI,SDO/PDMCLK	-0.3	6.5V	V
Voltage range on pins SNSP,SNSN,VREF,VCC_1P8D,VCC_1P8A,MIC1N,MIC1P, BATDIV	-0.2	1.98	V
Voltage range on pins HP_SNS,HPR_OUT,HPL_OUT	-2.8	2.8	V
Voltage range on pins VCC_CPVDD,CPP	-0.3	2.8	V
Voltage range on pins VCC_CPVSS,CPN	-2.8	0.3	V
Storage temperature range, T _S	-40	150	°C
Operating temperature range, T _J	-40	125	°C
Maximum Soldering Temperature, T _{SOLDER}		300	°C

Note:

Exposure to the conditions exceeded absolute maximum ratings may cause the permanent damages and affect the reliability and safety of both device and systems using the device. The functional operations cannot be guaranteed beyond specified values in the recommended conditions.

3.2 Recommended Operating Conditions

Parameter	Min	Max	Units
Voltage range on pins SWOUTx, VCC1~9,VCC_RTC,VCC_SPK_HP,LDOx, BATDIV, FBx,VBUCK3,SPKP_OUT,SPKN_OUT	-0.3	5.5	V
Voltage range on pin CLK32K,RESETB, SLEEP,SCL,SDA,INT,PWRON,XIN,XOUT, VDC,EXT_EN	-0.3	5.5	V
Voltage range on pins LRCLK,BCLK,MCLK,SDI,SDO/PDMCLK	-0.3	5.5	V
Voltage range on pins SNSP,SNSN,VREF,VCC_1P8D,VCC_1P8A,MIC1N,MIC1P	-0.2	1.98	V
Voltage range on pins HP_SNS,HPR_OUT,HPL_OUT	-2.7	2.7	V
Voltage range on pins VCC_CPVDD,CPP	-0.3	2.7	V
Voltage range on pins VCC_CPVSS,CPN	-2.7	0.3	V
Power Dissipation		2	W

3.3 DC Characteristics

Test conditions: VCC9=5.0V,TA=25°C for typical values, unless otherwise noted.

PARAMETERS	SYMBOL	N	lote	MIN	TYP	MAX	UNIT
Power dissipation							
Shut down Current	Isd				35	40	uA
Power on current 1: All bucks, LDOs, ADC power on, Null load	Iq1				1.9		mA
Power on current 2: buck1/buck4, LDO1/ldo2 power on, Null load	Iq2				0.65		mA
Power on and sleep current: buck1/buck4, LDO1/ldo2 power on, low power mode, sleep mode, Null load	Isleep				0.19		mA
System Characterist	ics				*		
			VB_OK_SEL[1:0] =0b01	2.744	2.8	2.856	V
VB_OK threshold, the VCC9 voltage should be		2.8V~3.6V by	VB_OK_SEL[1:0] =0b00	2.94	3.0	3.06	V
higher than it to power on the PMIC.	Vok	OTP programmed	VB_OK_SEL[1:0] =0b10	3.332	3.4	3.468	V
		•	VB_OK_SEL[1:0] =0b11	3.546	3.6	3.654	V
VB_UV threshold, when		2.7V~3.4V	VB_UV_SEL[2:0] =0b000	2.646	2.7	2.754	V
the VCC9 voltage is lower than it, The PMIC	Vuv	by I2C programmed . Typical is	VB_UV_SEL[2:0] =0b011	2.94	3.0	3.06	V
would be shutdown.		2.7V.	VB_UV_SEL[2:0] =0b111	3.332	.332 3.4	3.468	V
VB_LO threshold, when the VCC9 voltage is		2.8V~3.5V by I2C	VB_LO_SEL[2:0] = 0b000	2.744	2.8	2.856	V
lower than it, The PMIC would be shut down or	Vlo	programmed . Typical is	VB_LO_SEL[2:0] = 0b100	3.136	3.2	3.264	V
interrupt happen.		3.2V.	VB_LO_SEL[2:0] = 0b111	3.43	3.5	3.57	V
VB_OV threshold, when the VCC9 voltage is higher than it, The PMIC would be shutdown.	Vov	X		5.8	6	6.2	V
TSD threshold, when the temperature is higher		140/160℃ by I2C	TSD_TEMP=0b0	135	140	145	$^{\circ}\!\mathbb{C}$
than it, The PMIC would be shutdown.	Tsd	programmed . Typical is 160° C.	TSD_TEMP=0b1	155	160	165	$^{\circ}$
		85~115℃ by	HOTDIE_TEMP[1 :0]=0b00	80	85	90	$^{\circ}$
T warning threshold, when the temperature is	Twa	I2C programmed	HOTDIE_TEMP[1 :0]=0b01	90	95	100	$^{\circ}$ C
higher than it, interrupt happen.	TVVG	. Typical is 115℃.	HOTDIE_TEMP[1 :0]= 0b10	100	105	110	$^{\circ}$
			HOTDIE_TEMP[1 :0]= 0b11	110	115	120	$^{\circ}\!\mathbb{C}$
	I2C	programmed	PWRON_LP_OFF _TIME[1:0]=0b0 0		6		S
Long press PWRON key time			PWRON_LP_OFF _TIME[1:0]=0b0 1		8		S
			PWRON_LP_OFF _TIME[1:0]=0b1 0		10		S
			PWRON_LP_OFF		12		S

PARAMETERS	SYMBOL	Note		MIN	TYP	MAX	UNIT
			_TIME[1:0]=0b1 1				
Short press PWRON key time	Tst	100ms/500m s by I2C programmed and OTP	PWRON_ON_TIM E=0b0		500		ms
	150	programed. Typical is 500ms.	PWRON_ON_TIM E=0b1		100		ms

Test conditions: VCCx=5.0V,TA=25°C for typical values, unless otherwise noted.

PARAMETERS	SYMBOL	Note	MIN	TYP	MAX	UNIT
BUCK1: Fast load tra	nsient res	ponse step-down converte	r			
Input supply voltage range	Vcc1		2.7		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vfb1	0.5V~2.4V by I2C programmed. Typical is 1.0V. Step=12.5mV(0.5V~1.5V) Step=100mV(1.5V~2.4V)	0.98	1.0	1.02	V
Load Transient Response L=0.47uH, Cout=32uF.	Vdrop1	0.25A to 2.5A, 0.5A/uS, Vout=1V		20		mV
Rated output current	Imax1		2.5			Α
Switching Frequency when CCM mode	Fsw1	Vin-Vout>1.5V	2.25	2.5	2.75	MHz
Conversion Efficiency (Vin=4.2V,Vout=1V)		lout=2A		75 82		
(VIII-4.2V, VOUL-TV)		lout=1A lout=0.3A		85		%
BUCK2: Fast load tra	nsient res	ponse step-down converte	<u> </u>			
Input supply voltage range	Vcc2	ponse step down contents	2.7		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vfb2	0.5V~2.4V by I2C programmed. Typical is 1.0V. Step=12.5mV(0.5V~1.5V) Step=100mV(1.5V~2.4V)	0.98	1.0	1.02	V
Load Transient Response L=0.47uH, Cout=32uF.	Vdrop2	0.25A to 2.5A, 0.5A/uS, Vout=1V		20		mV
Rated output current	Imax2		2.5			Α
Switching Frequency when CCM mode	Fsw2	Vin-Vout>1.5V	2.25	2.5	2.75	MHz
Conversion Efficiency		lout=2A		75		
(Vin=4.2V,Vout=1V)		lout=1A		82		%
		lout=0.3A		85		
BUCK3: Fast load tra	nsient res	ponse step-down converte			<u>I</u>	
Input supply voltage range	Vcc3	·	2.7		5.5	V
Feedback Voltage, Default	Vfb3	Selection of external resistor divider	0.784	0.8	0.816	V
Output Voltage Accuracy @ all load @ all input voltage range	Vbuck3	If internal divide mode selected: 0.5V~2.4V by I2C programmed. Typical is 1.25V. Step=12.5mV (0.5V~1.5V) Step=100mV (1.5V~2.4V)	1.225	1.25	1.275	V
Load Transient Response L=0.47uH, Cout=22uF.	Vdrop3	0.15A to 1.5A, 0.5A/uS, Vout=1.25V		17		mV
Rated output current	Imax3		1.5			Α
Switching Frequency when CCM mode	Fsw3	Vin-Vout>1.5V	2.25	2.5	2.75	MHz
Conversion Efficiency (Vin=4.2V,Vout=1.25V)		Iout=1A		82		%
•		Iout=0.3A		83		,,

PARAMETERS	SYMBOL	Note	MIN	TYP	MAX	UNIT
BUCK4: Fast load tra	ansient res	ponse step-down converte	r	•	•	
Input supply voltage range	Vcc4		2.7		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vfb4	0.5V~3.4V by I2C programmed. Typical is 3V. Step=12.5mV (0.5V~1.5V) Step=100mV (1.5V~3.4V)	2.94	3	3.06	V
Load Transient Response L=0.47uH, Cout=22uF.	Vdrop4	0.15A to 1.5A, 0.5A/uS, Vout=3V		22		mV
Rated output current	Imax4		1.5			Α
Switching Frequency when CCM mode	Fsw4	Vin-Vout>1.5V	2.25	2.5	2.75	MHz
Conversion Efficiency, (Vin=4.2V,Vout=3V)		Iout=1A Iout=0.3A		92 93 ♦		%
		100t-0.5A		93		70
LDO1	1		T			
Input supply voltage range	Vcc5		2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vldo1	0.6V~3.4V by I2C programmed. Typical is 1V. Step=25mV	0.98	1	1.02	V
Rated output current	Imaxl1	Vcc5- Vldo1>0.4V	400			mA
·	IIIIaxii	Vcc5- Vldo1>0.2V	200	_		mA
PSRR@ 1KHz		Vin rms=200mV		65		dB
PSRR@ 10KHz		Vin rms=200mV		60		dB
LDO2	 			1	ı	
Input supply voltage range	Vcc5		2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vldo2	0.6V~3.4V by I2C programmed. Typical is 1.8V. Step=25mV	1.764	1.8	1.836	V
Rated output current	Imaxl2	Vcc5- Vldo2>0.4V	400			mA
•	IIIIaxiz	Vcc5- Vldo2>0.2V	200			mA
PSRR@ 1KHz		Vin rms=200mV		65		dB
PSRR@ 10KHz	10	Vin rms=200mV		60		dB
LDO3: High PSRR LD	00			1	ı	
Input supply voltage range	Vcc5		2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vldo3	0.6V~3.4V by I2C programmed. Typical is 1V. Step=25mV	0.98	1	1.02	V
Rated output current	Imaxl3	Vcc5- Vldo3>0.4V	100			mA
	IIIIdxi3	Vcc5- Vldo3>0.2V	50			mA
PSRR@ 1KHz PSRR@ 10KHz		Vin rms=200mV Vin rms=200mV		75 70		dB dB
LDO4		VIII IIII5=200IIIV		70		uБ
Input supply voltage range	Vcc6		2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vldo4	0.6V~3.4V by I2C programmed. Typical is 3V. Step=25mV	2.94	3	3.06	V
Rated output current	Imaxl4	Vcc6- Vldo4>0.4V	400			mA
•	IIIIdAIT	Vcc6- Vldo4>0.2V	200	25		mA
PSRR@ 1KHz PSRR@ 10KHz		Vin rms=200mV Vin rms=200mV		65 60		dB dB
	1	VIII 11113-200111V		00		uБ
LDO5 Input supply voltage	Vcc6		2		5.5	V
range Output Voltage Accuracy @ all load @ all input voltage	VIdo5	0.6V~3.4V by I2C programmed. Typical is 3V.	2.94	3		V
range		Step=25mV		٥	3.06	-
Rated output current	Imaxl5	Vcc6- Vldo5>0.4V	400			mA

PARAMETERS	SYMBOL	No		MIN	TYP	MAX	UNIT
		Vcc6- Vldo5>0.2	V	200			mA
PSRR@ 1KHz		Vin rms=200mV			65		dB
PSRR@ 10KHz		Vin rms=200mV			60		dB
LDO6							
Input supply voltage range	Vcc6			2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage	Vldo6	0.6V~3.4V by I2 Typical is 3V.	C programmed.	2.94	3	3.06	V
range	- 16	Step=25mV Vcc6- Vldo6>0.4	V	400			mA
Rated output current	Imaxl6	Vcc6- Vldo6>0.2		200			mA
PSRR@ 1KHz		Vin rms=200mV			65		dB
PSRR@ 10KHz		Vin rms=200mV			60		dB
LDO7							
Input supply voltage range	Vcc7			2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vldo7	0.6V~3.4V by I2 Typical is 2.8V. Step=25mV	C programmed.	2.744	2.8	2.856	V
Dated autout august	Impaul7	Vcc7- Vldo7>0.4	V		400		mA
Rated output current	Imaxl7	Vcc7- Vldo7>0.2	V		200		mA
PSRR@ 1KHz		Vin rms=200mV			65		dB
PSRR@ 10KHz		Vin rms=200mV			60		dB
LDO8							
Input supply voltage range	Vcc7			2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vldo8	0.6V~3.4V by I2 Typical is 1.8V. Step=25mV	C programmed.	1.764	1.8	1.836	V
	T10	Vcc7- Vldo8>0.4	V	400			mA
Rated output current	Imaxl8	Vcc7- Vldo8>0.2	V	200			mA
PSRR@ 1KHz		Vin rms=200mV			65		dB
PSRR@ 10KHz		Vin rms=200mV			60		dB
LDO9							
Input supply voltage range	Vcc7			2		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	VIdo9	0.6V~3.4V by I2 Typical is 1.5V. Step=25mV	C programmed.	1.47	1.5	1.53	V
		Vcc7- Vldo9>0.4	V	400			mA
Rated output current	Imaxl9	Vcc7- Vldo9>0.2		200			mA
PSRR@ 1KHz		Vin rms=200mV			65		dB
PSRR@ 10KHz		Vin rms=200mV			60		dB
BUCK5: High efficier	ncy step-do	wn converter					
Input supply voltage range	Vcc9			2.7		5.5	V
Output Voltage Accuracy @ all load @ all input voltage range	Vfb5	1.5V~3.6V by I2 Typical is 3.3V.	C programmed.	3.234	3.3	3.366	V
Load Transient Response L=0.47uH, Cout=44uF.	Vdrop5	0.25A to 2.5A, 0.5A	/uS, Vout=3V			40	mV
Rated output current	Imax5			2.5			Α
Switching Frequency when CCM mode	Fsw5	Vin-Vout>1.5V		1.8	2	2.2	MHz
		Iout=2A			90		
Conversion Efficiency, (Vin=4.2V,Vout=3.3V)		Iout=0.3A			92		%
Swicth1	•	•					
Input supply voltage	Vcc9			2.7		5	V
range Rdson					90		mΩ
Rated output current	Imax6	1A~2.1A by	SW1_ILIM[1:0]= 0b00	1	30		A

PARAMETERS	SYMBOL	No	te	MIN	TYP	MAX	UNIT
		I2C programmed.	SW1_ILIM[1:0]= 0b01	1.5			Α
		Typical is 2.1A.	SW1_ILIM[1:0]= 0b10	1.8			Α
			SW1_ILIM[1:0]= 0b11	2.1			Α
Swicth2							
Input supply voltage range of Boost	Vcc8			2.7		5	V
Rdson					100	120	mΩ
			SW2_ILIM[1:0]= 0b00	1			Α
Dated autout aussaut	I 7	1A~2.1A by I2C	SW2_ILIM[1:0]= 0b01	1.5			А
Rated output current I	Imax7	programmed. Typical is 2.1A.	SW2_ILIM[1:0]= 0b10	1.8	*		Α
			SW2_ILIM[1:0]= 0b11	2.1			Α

Test conditions: VCC9=5V, BAT_DIV=1.0V, TA=25°C for typical values, unless otherwise noted.

A/D CONVERTER						
Voltage measuring ADC resolution				16		bits
Voltage measuring ADC accuracy			-0.5%		+0.5%	%
Range of SWOUT1 voltage measurement			1		6	V
Range of BAT_DIV voltage measurement			0		1.2	V
Range of SWOUT2 voltage measurement			1		6	V
Range of TS voltage measurement	* ()		0		1.2	V
Current measuring ADC resolution		MSB is sign bit		16		bits
Current measuring ADC accuracy		ABS(Ibat)>0.2A	-0.5%		+0.5%	%
Range of Current ADC measurement		SNSP/SNSN sense resistor=10mOhm	-5.625		5.625	Α
Coulom-counter range				32		bits
Coulom-counter accuracy		ABS(Ibat)>0.2A	-1		+1	%

Test conditions: VCC_SPK=5V, VCC9=5.0V, TA=25°C for typical values, unless otherwise noted.

PARAMETERS	SYMBOL	Note	MIN	TYP	MAX	UNIT
ClassD Audio PA						
Input supply voltage range	Vccspk	VCC_SPK_HP	2.7		5.5	V
THD+N		1KHz, Po=0.4Wrms, VCC_SPK_HP =3.8V		0.1		%
RMS Power		8 ohm load, VCC_SPK_HP =3.8V, THD+N=1%		700		mW
		8 ohm load, VCC SPK HP		1100		mW

PARAMETERS	SYMBOL	Note	MIN	TYP	MAX	UNIT
		=5V, THD+N=1%				
		8 ohm load,				
		VCC_SPK_HP		1300		mW
		=5V,		1300		
		THD+N=10%				
		217Hz,				
PSRR		VCC_SPK_HP =200mVpk-		65		dB
		pk+3.8V,				
		VCC_SPK_HP				
Output Offset Voltage		=3.8V	- 15		+ 15	mV
		VCC_SPK_HP				
Noise Level		=3.8V 0dB Gain,		100	· ·	uV
		8ohm, A-weighted				
		VCC_SPK_HP				
Efficiency		=3.8V,0.4W,8ohm		88		%
		with 68uH, 1KHz				
Ouisesent summent		No load,				^
Quiescent current		VCC_SPK_HP =3.8		4		mA
DAC to Head phone outputs		-3.0			Y	
		RL=32ohm		0.5		Vrms
Full scale output level		RL=300ohm		0.8		Vrms
		A-weighted		0.0		V11113
		RL=32ohm, -				
Signal to Noise Ratio	SNR	60dBFS,		97		dB
		Fs=48KHz				
		A-weighted				
Total Harmonic Distortion +	THD+N	RL=32ohm -	>	-75		dB
Noise	IIIDTN	3dBFS		-/3		ub
		Fs=48KHz				
Micro-phone to ADC stereo i	nput			Τ		1
Full sale input voltage				0.8		Vrms
Input common voltage	V_{COMN}			0.9		V
		A-weighted, -				
SNR		60dBFS,Fs=48KH		88		dB
		Z				
<u> </u>		A-weighted				
THD+N		997Hz -3dBFS		-75		dB
		Differential input				
		signal, Fs=48KHz				

Test conditions: BAT=4.0V, TA=25°C for typical values, unless otherwise noted.

PARAMETERS	SYMBOL	Note	MIN	TYP	MAX	UNIT		
I2C interface (7bits I2C add	I2C interface (7bits I2C address is 0x20)							
SCL clock frequency	f _{SCL}				400	KHz		
LOGIC INPUT								
Input LOW-Level Voltage	$V_{\rm IL}$				0.4	V		
Input HIGH-Level Voltage: LRCLK,BCLK,MCLK,SDI,PDMCL K	V _{IH1}		VLDO4* 0.7		VCC_RT C	V		
Input HIGH-Level Voltage: SCL,SDA,SLEEP,PWRON,TS/GPI O,GATE/GPIO,RESETB	V _{IH2}		VCC_1P 8D*0.7		VCC_RT C	V		
LOGIC OUTPUT								
LOW-Level Output Voltage, 3.0 mA sink current	V _{OL}				0.4	V		
HIGH-Level Output Voltage, 3.0 mA source current:	V _{OH1}		VLDO4- 0.4		VLDO4	V		

PARAMETERS	SYMBOL	Note	MIN	TYP	MAX	UNIT		
LRCLK,BCLK,SDO/PDMDATA								
HIGH-Level Output Voltage, 3.0 mA source current: TS/GPIO,GATE/GPIO	V _{OH2}		VCC_RT C-0.4		VCC_RT	٧		
INTERNAL RC CLOCK	INTERNAL RC CLOCK							
The frequency of RC oscillator is 32.768 kHz			-20%		+20%			
START UP SEQUE								
2mS intervals between the channels to start up			-20%		+20%			
OPEN DRAIN OUTPUT PI	N							
CLK32K,RESETB,INT,SDA								

Chapter 4 Function Description

4.1 Top State Machine

4.1.1 State Machine Description

Fig. 4-1 State Machine

The RK809 state machine shown as above. The state shift by "power on", "power down", "reset", "active to sleep" and "sleep to active".

4.1.2 Power on Description

There are three kinds of method to power on the PMIC.

Note that: When EXT_EN rising edge comes, the voltage of VCC9 must be higher than VB_OK threshold during 1.5mS.

1. Press "PWRON" key

Fig. 4-2 Press "PWRON" key to turn on the PMIC

(a) N(N<50Ms) is the capacitor charging time of VREF and other preparation time. When the PMIC powered by VCC9 which voltage is higher than "VB_OK" threshold, keeping low level at "PWRON" pin for 500/100mS would turn on the PMIC. The "PWRON" pin de-bounce time (500mS/100mS) can be adjusted by I2C.

All the power channels start up at the default output voltages with a preset power up sequence, which has 2mS intervals between the channels. When the power up process is done, the RESETB turns to high logic level to inform the processor that all the power rails are up and stable.

2. RTC Alarm

When the PMIC powered by VCC9 which voltage is higher than "VB_OK" threshold (typical 3.4V), Setting RTC alarm would turn on the PMIC. The power on sequence is the same with the first one.

For example, set RTC alarm registers: 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C. And then set register 0x0F=2FH.

3. VDC voltage Rising-edge

When the PMIC powered by VCC9/VCC8, and then VDC plug in for 140mS, the PMIC would be turn on. The power on sequence shown as below.

Fig. 4-3 VDC voltage Rising-edge to turn on the PMIC

(a) N(N<50Ms) is the capacitor charging time of VREF and other preparation time.

4.1.3 Power down Description

There are 7 kinds of method to power down the PMIC.

1. Long press "PWRON" key

Fig. 4-4 Long press "PWRON" key to turn off the PMIC

(a) N(N<50Ms) is the capacitor charging time of VREF and other preparation time.

When the PMIC work in the "ON" state or "SLEEP" state, Writing register bit 0xF7<6>="0", and then keeping low level at "PWRON" pin for 6/8/10/12S would turn off the PMIC. The "PWRON" pin de-bounce time (6/8/10/12S) can be adjusted by I2C.

When power down enable, The RESETB pin would be pulled low to reset the processor.

And then 2ms later, the power channels start to be turned off at the same time.

2. Write shutdown Register

When the PMIC work in the "ON" state or "SLEEP" state, writing register bit 0xF4<0>="1" would turn off the PMIC. The power off sequence is the same with the first one.

3. SYS over-voltage

When the PMIC work in the "ON" state or "SLEEP" state, if VCCRTC /VCC9 higher than 6V, the PMIC would be turn off. The power off sequence is the same with the first one.

4. SYS under-voltage

When the PMIC work in the "ON" state or "SLEEP" state, if VCCRTC/VCC9 lower than VB_UV threshold (typical 2.7V) for 2mS, the PMIC would be turn off. For safe attention, the buck converter would be shut down immediately when detect VB_UV.

Fig. 4-5 VCC under-voltage to turn off the PMIC

This would lead to processor system halted. So, Writing register bit 0xC6<5>="1" can fix this issue. The detail sequence will be found in "reset Description" chapter.

5. SYS low-voltage

When the PMIC work in the "ON" state or "SLEEP" state, if VCCRTC /VCC9 lower than VB_LO threshold (typical 3.2V) for 2mS and Register bit 0XF1<3>="0", the PMIC would be turn off. The power off sequence is the same with the first one.

6. SLEEP pin active

When the PMIC work in the "ON" state or "SLEEP" state, if Register bit 0XF4<4:3>="10", and "SLEEP" pin active (the polarity can be programmed by Register bit 0XF4<5>), the PMIC would be turn off. The power off sequence is the same with the first one.

7. TSD protection

When the PMIC work in the "ON" state or "SLEEP" state, if the temperature is higher than TSD threshold (typical 160 degree), the PMIC would be turn off. The power off sequence is the same with the first one.

4.1.4 Reset Description

There are 4 kinds of method to reset the PMIC. If register bits 0xF4<7:6>="00", reset function means restart PMIC. If register bits 0xF4<7:6>="01", reset function means reset registers, all channels of power would be reset to default state.

1. Long press "PWRON" key

Fig. 4-6 Long press "PWRON" key to restart the PMIC

When the PMIC work in the "ON" state or "SLEEP" state, Writing register bit 0xF7<6>="1", and then keeping low level at "PWRON" pin for 6/8/10/12S would restart the PMIC. The "PWRON" pin de-bounce time (6/8/10/12S) can be adjusted by I2C.

Note: If the VCC9 voltage is lower than VB_OK threshold, the PMIC would be shut down but restart.

2. SLEEP pin active

When the PMIC work in the "ON" state or "SLEEP" state, if Register bit 0XF4<4:3>="11", and "SLEEP" pin active (the polarity can be programmed by Register bit 0XF4<5>), the PMIC would restart. The restart sequence is the same with the first one.

Note: If the VCC8/VCC9 voltage is lower than VB_OK threshold, the PMIC would be shut down but restart.

Note: It should delay about 66uS after changing the "SLEEP" pin active each time.

3. RESETB pin pull low

When the PMIC work in the "ON" state or "SLEEP" state, if "RESETB" pin is pull down, the PMIC would restart immediately. The restart sequence is the same with the first one.

Note: If the VCC9 voltage is lower than VB_OK threshold, the PMIC would be shut down but restart.

4. SYS under-voltage

When the PMIC work in the "ON" state or "SLEEP" state, if VCC8/VCC9 lower than VB_UV threshold (typical 2.7V) for 2mS, the PMIC would be turn off. But if register bit 0xC6<5>="1", the "RESET" pin would be pull down when VB_UV happen. So, the PMIC would restart

Note: If the VCC9 voltage is lower than VB_OK threshold, the PMIC would be shut down but restart.

Note: Users must NOT set register bits 0xF4<7:6>="01" at this case.

Fig. 4-7 VCC under-voltage to restart the PMIC

4.1.5 Power Sequence Description

			RK	809-1
	Range of output voltage	Maximum output current	Default voltage	Start up
BUCK1	0.5V-2.4V	2.5A	1.1V	2
BUCK2	0.5V-2.4V	2.5A	1.1V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	4
BUCK4	0.5V-3.4V	1.5A	3.0V	5
LDO1	0.6V-3.4V	400mA	1.0V	2
LDO2	0.6V-3.4V	400mA	1.8V	3
LDO3	0.6V-3.4V	100mA	1.0V	2
LDO4	0.6V-3.4V	400mA	3.0V	5
LDO5	0.6V-3.4V	400mA	3.0V	5
LDO6	0.6V-3.4V	400mA	3.0V	5
LDO7	0.6V-3.4V	400mA	0.6V	OFF
LDO8	0.6V-3.4V	400mA	0.6V	OFF
LDO9	0.6V-3.4V	400mA	0.6V	OFF
BUCK5	1.5V-3.6V	2.5A	3.3V	1
SWOUT1				OFF
SWOUT2				OFF
VB_OK	2.8V-3.6V	х	2.8V	х

Table 4-1 RK809-1 Power up/down sequence(x:BUCK3 voltage determined by external divided resistor; LDO3 start up later than LDO1 for about 200uS), Short press PWRON key time is 100ms.

			RK809-2		
	Range of output voltage	Maximum output current	Default voltage	Start up sequence	
BUCK1	0.5V-2.4V	2.5A	0.8V	2	
BUCK2	0.5V-2.4V	2.5A	0.8V	2	
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	3	
BUCK4	0.5V-3.4V	1.5A	3.3V	4	
LDO1	0.6V-3.4V	400mA	0.8V	2	
LDO2	0.6V-3.4V	400mA	1.8V	3	
LDO3	0.6V-3.4V	100mA	0.8V	2	
LDO4	0.6V-3.4V	400mA	1.8V	3	
LDO5	0.6V-3.4V	400mA	0.6V	OFF	
LDO6	0.6V-3.4V	400mA	0.6V	OFF	
LDO7	0.6V-3.4V	400mA	0.6V	OFF	
LDO8	0.6V-3.4V	400mA	3.3V	4	
LDO9	0.6V-3.4V	400mA	3.3V	4	
BUCK5	1.5V-3.6V	2.5A	3.3V	1	
SWOUT1	* ()			OFF	
SWOUT2				4	
VB_OK	2.8V-3.6V	х	2.8V	х	

Table 4-2 RK809-2 Power up/down sequence(x:BUCK3 voltage determined by external divided resistor; LD03 start up later than LD01 for about 200uS) ,Short press PWRON key time is 100ms.

			RK809-3	
70	Range of output voltage	Maximum output current	Default voltage	Start up sequence
BUCK1	0.5V-2.4V	2.5A	0.9V	2
BUCK2	0.5V-2.4V	2.5A	0.9V	4
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	3
BUCK4	0.5V-3.4V	1.5A	3.3V	5
LDO1	0.6V-3.4V	400mA	0.9V	2
LDO2	0.6V-3.4V	400mA	1.8V	3

			RK809-3	
	Range of output voltage	Maximum output current	Default voltage	Start up sequence
LDO3	0.6V-3.4V	100mA	0.9V	2
LDO4	0.6V-3.4V	400mA	1.8V	3
LDO5	0.6V-3.4V	400mA	0.6V	OFF
LDO6	0.6V-3.4V	400mA	1.5V	3
LDO7	0.6V-3.4V	400mA	3.0V	5
LDO8	0.6V-3.4V	400mA	3.3V	5
LDO9	0.6V-3.4V	400mA	3.3V	5
BUCK5	1.5V-3.6V	2.5A	3.3V	1
SWOUT1				OFF
SWOUT2				5
VB_OK	2.8V-3.6V	Х	2.8V	Х

Table 4-3 RK809-3 Power up/down sequence(x:BUCK3 voltage determined by external divided resistor; LD03 start up later than LD01 for about 200uS) ,Short press PWRON key time is 100ms.

			RK809-5	
	Range of output	Maximum output	Default	Start up
	voltage	current	voltage	sequence
BUCK1	0.5V-2.4V	2.5A	0.9V	1
BUCK2	0.5V-2.4V	2.5A	0.9V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	3
BUCK4	0.5V-3.4V	1.5A	0.5V	OFF
BUCK5	1.5V-3.6V	2.5A	1.8V	2
LDO1	0.6V-3.4V	400mA	0.6V	OFF
LDO2	0.6V-3.4V	400mA	0.9V	1
LDO3	0.6V-3.4V	100mA	0.9V	1
LDO4	0.6V-3.4V	400mA	0.6V	OFF
LDO5	0.6V-3.4V	400mA	3.3V	4
LDO6	0.6V-3.4V	400mA	3.3V	2
LDO7	0.6V-3.4V	400mA	1.8V	2
LDO8	0.6V-3.4V	400mA	1.8V	2

			RK809-5	
	Range of output voltage	Maximum output current	Default voltage	Start up sequence
LDO9	0.6V-3.4V	400mA	0.6V	OFF
SWOUT1			3.3V	4
SWOUT2			3.3V	4
VB_OK	2.8V-3.6V	Х	3.0V	Х

Table 4-4 RK809-5 Power up/down sequence(x:BUCK3 voltage determined by external divided resistor;LDO3 start up later than LDO2 for about 200uS), Short press PWRON key time is 100ms.

			RK80	09-6
	Range of output voltage	Maximum output current	Default voltage	Start up sequence
BUCK1	0.5V-2.4V	2.5A	0.9V	2
BUCK2	0.5V-2.4V	2.5A	0.9V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	4
BUCK4	0.5V-3.4V	1.5A	3.3V	5
BUCK5	1.5V-3.6V	2.5A	3.3V	1
LDO1	0.6V-3.4V	400mA	0.9V	2
LDO2	0.6V-3.4V	400mA	1.8V	3
LDO3	0.6V-3.4V	100mA	0.9V	2
LDO4	0.6V-3.4V	400mA	3.3V	5
LDO5	0.6V-3.4V	400mA	3.3V	5
LDO6	0.6V-3.4V	400mA	3.3V	5
LDO7	0.6V-3.4V	400mA	0.6V	OFF
LDO8	0.6V-3.4V	400mA	0.6V	OFF
LDO9	0.6V-3.4V	400mA	0.6V	OFF
SWOUT1				OFF
SWOUT2				OFF
VB_OK	2.8V-3.6V	X	3.0V	10

Table 4-5 RK809-6 Power up/down sequence(x:BUCK3 voltage determined by external divided resistor; LDO3 start up later than LDO1 for about 200uS) ,Short press PWRON key time is 100ms.

			RK80)9-7
	Range of output	Maximum output	Default	Start up
	voltage	current	voltage	sequence
BUCK1	0.5V-2.4V	2.5A	0.8V	3
BUCK2	0.5V-2.4V	2.5A	0.8V	3
D. L. G. K.	X(external divided resistor)	1.5A 1.8V		1
BUCK3	Or 0.5V-2.4v(internal divided resistor)			
BUCK4	0.5V-3.4V	1.5A	1.8V	1
BUCK5	1.5V-3.6V	2.5A	3.3V	1
LDO1	0.6V-3.4V	400mA	0.8V	2
LDO2	0.6V-3.4V	400mA	1.8V	4
LDO3	0.6V-3.4V	100mA	0.6V	4
LDO4	0.6V-3.4V	400mA	1.8V	5
LDO5	0.6V-3.4V	400mA	0.8V	4
LDO6	0.6V-3.4V	400mA	1.8V	5
LDO7	0.6V-3.4V	400mA	3.3V	4
LDO8	0.6V-3.4V	400mA	2.8V	5
LDO9	0.6V-3.4V	400mA	3.3V	5
SWOUT1				OFF
SWOUT2				OFF
VB_OK	2.8V-3.6V	х	2.8V	10

Table 4-6 RK809-7 Power up/down sequence(x:BUCK3 voltage determined by external divided resistor;) ,Short press PWRON key time is 100ms.

			RK809-1A	
3	Range of output voltage	Maximum output current	Default voltage	Start up sequence
BUCK1	0.5V-2.4V	2.5A	1.1V	2
BUCK2	0.5V-2.4V	2.5A	1.1V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	x	4
BUCK4	0.5V-3.4V	1.5A	3.0V	5
LDO1	0.6V-3.4V	400mA	1.0V	2

			RK809-	1A
	Range of output voltage	Maximum output current	Default voltage	Start up sequence
LDO2	0.6V-3.4V	400mA	1.8V	3
LDO3	0.6V-3.4V	100mA	1.0V	2
LDO4	0.6V-3.4V	400mA	3.0V	5
LDO5	0.6V-3.4V	400mA	3.0V	5
LDO6	0.6V-3.4V	400mA	3.0V	5
LDO7	0.6V-3.4V	400mA	0.6V	OFF
LDO8	0.6V-3.4V	400mA	0.6V	OFF
LDO9	0.6V-3.4V	400mA	0.6V	OFF
BUCK5	1.5V-3.6V	2.5A	3.3V	1
SWOUT1		C		OFF
SWOUT2				OFF
VB_OK	2.8V-3.6V	х	2.8V	Х

 $Table 4-7\ RK809-1A\ Power\ up/down\ sequence (x:BUCK3\ voltage\ determined\ by\ external\ divided\ resistor;\ LDO3\ start\ up\ later\ than\ LDO1\ for\ about\ 200uS\)\ , Short\ press\ PWRON\ key\ time\ is\ 100ms.$

		RK80)9-5A	
	Range of output	Maximum output	Default	Start up
	voltage	current	voltage	sequence
BUCK1	0.5V-2.4V	2.5A	0.9V	1
BUCK2	0.5V-2.4V	2.5A	0.9V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	x	3
BUCK4	0.5V-3.4V	1.5A	0.5V	OFF
BUCK5	1.5V-3.6V	2.5A	1.8V	2
LDO1	0.6V-3.4V	400mA	0.6V	OFF
LDO2	0.6V-3.4V	400mA	0.9V	1
LDO3	0.6V-3.4V	100mA	0.9V	1
LDO4	0.6V-3.4V	400mA	0.6V	OFF
LDO5	0.6V-3.4V	400mA	3.3V	4
LDO6	0.6V-3.4V	400mA	3.3V	2
LDO7	0.6V-3.4V	400mA	1.8V	2

			RK80	9-5A
	Range of output voltage	Maximum output current	Default voltage	Start up sequence
LDO8	0.6V-3.4V	400mA	1.8V	2
LDO9	0.6V-3.4V	400mA	0.6V	OFF
SWOUT1			3.3V	4
SWOUT2			3.3V	4
VB_OK	2.8V-3.6V	Х	3.0V	x

Table 4-8 RK809-5A Power up/down sequence(x:BUCK3 voltage determined by external divided resistor;LDO3 start up later than LDO2 for about 200uS) ,Short press PWRON key time is 100ms.

		RK80	9-6A	
	Range of output voltage	Maximum output current	Default voltage	Start up sequence
BUCK1	0.5V-2.4V	2.5A	0.9V	2
BUCK2	0.5V-2.4V	2.5A	0.9V	2
BUCK3	X(external divided resistor) Or 0.5V-2.4v(internal divided resistor)	1.5A	х	4
BUCK4	0.5V-3.4V	1.5A	3.3V	5
BUCK5	1.5V-3.6V	2.5A	3.3V	1
LDO1	0.6V-3.4V	400mA	0.9V	2
LDO2	0.6V-3.4V	400mA	1.8V	3
LDO3	0.6V-3.4V	100mA	0.9V	2
LDO4	0.6V-3.4V	400mA	3.3V	5
LDO5	0.6V-3.4V	400mA	3.3V	5
LDO6	0.6V-3.4V	400mA	3.3V	5
LDO7	0.6V-3.4V	400mA	0.6V	OFF
LDO8	0.6V-3.4V	400mA	0.6V	OFF
LDO9	0.6V-3.4V	400mA	0.6V	OFF
SWOUT1				OFF
SWOUT2				OFF
VB_OK	2.8V-3.6V	Х	3.0V	10

Table 4-9 RK809-6A Power up/down sequence (x:BUCK3 voltage determined by external divided resistor; LD03 start up later than LD01 for about 200 μ S), Short press PWRON key time is 100 μ S.

			RK80	9-7A
	Range of output	Maximum output	Default	Start up
	voltage	current	voltage	sequence
BUCK1	0.5V-2.4V	2.5A	0.9V	1
BUCK2	0.5V-2.4V	2.5A	0.9V	2
	X(external divided			
DLICKS	resistor)	1.54	V	2
BUCK3	Or 0.5V-2.4v(internal	1.5A	X	3
	divided resistor)			
BUCK4	0.5V-3.4V	1.5A	0.5V	OFF
BUCK5	1.5V-3.6V	2.5A	3.3V	1
LDO1	0.6V-3.4V	400mA	0.6V	OFF
LDO2	0.6V-3.4V	400mA	0.9V	1
LDO3	0.6V-3.4V	100mA	0.6V	OFF
LDO4	0.6V-3.4V	400mA	0.6V	OFF
LDO5	0.6V-3.4V	400mA	0.6V	OFF
LDO6	0.6V-3.4V	400mA	3.3V	2
LDO7	0.6V-3.4V	400mA	1.8V	2
LDO8	0.6V-3.4V	400mA	1.8V	2
LDO9	0.6V-3.4V	400mA	0.6V	OFF
SWOUT1				OFF
SWOUT2				4
VB_OK	2.8V-3.6V	Х	2.8V	9

Table 4-10 RK809-7A Power up/down sequence(x:BUCK3 voltage determined by external divided resistor) ,Short press PWRON key time is 100ms.

4.1.6 Sleep Description

The RK809 could be set to SLEEP mode by two kinds of way.

- 1. Register bits 0xF4<4:3>="01", and then Register bit 0xF4<1>="1".
- 2. Register bits 0xF4<4:3>="01", and then "SLEEP" pin active (the polarity can be programmed by Register bit 0XF4<5>)

When sleep mode, the power dissipation of RK809M would be decreased. Writing register bits 0xB9<4:0>="11111", 0xB9<7>="1", 0xF3<3>="1", 0xE3<7>="1" would be decrease quiescent current further.

4.2 Power Channels

4.2.1 Buck Description

The RK809 provides four high current synchronous buck converters, which deliver up to

3A, 3A, 1.5A and 1.5A, respectively. An enhanced COT architecture is used, which improves the transient response significantly. 2.5MHz switching frequency and good control method decrease the external inductance and capacitance. All output voltages can be adjusted dynamically during operation through DVS (Dynamic Voltage Scaling), which guarantees a linear and gradual voltage ramping up and down. A complete set of protection functions, such as short circuit protection, is implemented in the buck converters too.

For example, the BUCK1: Vout=1V, Vin=4V, L=0.47uH, Cout=32uF. Load Current transient from 0.01A to 3A, the current slew rate is 3A/uS (using MOSFET transition). The output voltage drop when load current rising edge is about **38mV**, that is very good characteristics. The other bucks has the same architecture with BUCK1, so they have the

same load transient response characteristics.

Fig. 4-8 BUCK1 load transient rising edge

Fig. 4-9 BUCK1 load transient falling edge

If decreasing inductance to 0.33uH and increasing output capacitance to 44uF, the load transient response characteristics would be better.

Fig. 4-11 BUCK1 load transient falling edge 2

Meanwhile, bucks converters have good efficiency characteristics. The test data shown as below. All channels of buck output voltage set to default.

Fig. 4-12 BUCK1 efficiency curve when different input voltage

Fig. 4-13 BUCK2 efficiency curve when different input voltage

Fig. 4-14 BUCK3 efficiency curve when different input voltage

Fig. 4-15 BUCK4 efficiency curve when different input voltage

The RK809 also integrates a buck5, adopt peak current mode control, which has good performance in load transient response and efficiency.

Fig. 4-16 BUCK5 efficiency curve when different input voltage, Vout=3.3V

4.2.2 LDO Description

The RK809 also integrates nine LDOs, with 8 LDOs (LDO1, LDO2, LDO4~LDO9) capable of providing up to 400mA and one LDO3 providing maximum 100mA. The LDO3 is a low noise, high PSRR (75dB) LDO. All channels of LDO output capacitance could be 1.0uF that decreases the system cost. The parameters such as output voltage in the different operating modes can be adjusted through the $\rm I^2C$ interface.

4.3 Battery Gas Gauge

The RK809M provides an accurate battery fuel gauge. A 16-bits battery voltage ADC and a 16-bits battery current ADC are integrated in the RK809M to collect the information on the battery, such as battery voltage, etc. Using the proprietary algorithms and the information collected by the ADC, the battery fuel gauge can accurately calculate the battery capacity based on the charging/discharging characteristics of the battery preloaded in the system. The gauge then sends the battery capacity information to the processor through the $\rm I^2C$ interface.

Fig. 4-17 Gas gauge architecture

The gas gauge accuracy determined by ADC accuracy, the ADC accuracy test data shown as below:

Fig. 4-18 Current ADC Relative Error Curve

Fig. 4-19 Voltage ADC Relative Error Curve

4.4 Audio System

4.4.1 General Description

The RK809 integrates a high performance 24 bits ADC and a high performance 24 bits DAC. The audio recording path is composed of MIC_PGA and audio ADC. DAC would convert digital signal to analog signal, and Class-AB driver adopt real-ground structure for Head-phone application, has very low THD (-90dB @1KHz@-3dBFS source). Meanwhile, Class-D driver integrated for speaker application. The speaker and head-phone can be used at the same time. I2S interface is integrated to communicate with processor.

Fig. 4-20 Audio system architecture

4.4.2 Audio Recording Path Description

The RK809 integrate complete audio recording path solution. Users should set registers as below to configure audio recording path. For example, sample rate is 48K, MCLK=12.288MHz.

- 1. Enable I2S: 0x30=02H, 0x15=FFH.
- 2. Enable reference: 0x17=40H.
- 3. Setup PLL: 0x42=04H, 0x43=58H, 0x44=2DH, 0x45=0C, 0x46=A5H, 0x47=00H.
- 4. Setup sample rate: 0x1E=02H.
- 5. Setup I2S: 0x48=35H, 0x4D=00H, 0x4E=17H, 0x4F=80H.
- 6. Enable ADC: 0x15=F0H, 0x18=08H.
- 7. Enable Micro-phone: 0x27=80H (for differential mode MIC); Or 0x27=00H (for single end mode MIC).

The audio recording path THD+N ratio test data shown as below: typical case is - 75dB.

Fig. 4-21 Audio recording path THD+N ratio at differential mode

4.4.3 Head-Phone Path Description

The RK809 integrates a stereo output and with cap-free type headphone amplifier. It doesn't need to connect external capacitance, and can connect to earphone device directly.

Users should set registers as below to configure Head-phone path. For example, sample rate is 48K, MCLK=12.288MHz.

- 1. Enable I2S: 0x30=02H, 0x15=FFH.
- 2. Enable reference: 0x17=40H.
- 3. Setup PLL: 0x42=04H, 0x43=58H, 0x44=2DH, 0x45=0C, 0x46=A5H, 0x47=00H.
- 4. Setup sample rate: 0x35=02H.
- 5. Setup I2S: 0x48=00H, 0x49=00H, 0x4A=00H, 0x4B=17H, 0x4C=20H.
- 6. Enable DAC: 0x15=0FH, 0x2F=04H.
- 7. Enable Head-phone: 0x3F=11H, 0x3D=80H.

The Head-phone path THD+N ratio test data shown as below: typical case is -88dB.

Fig. 4-22 Head-phone path THD+N ratio

4.4.4 Speaker Path Description

The RK809 integrates a high efficiency stereo Class-D type amplifier capable of delivering 1.3W of power on an 80hm BTL load from a 5V power supply. It integrates over-current protection.

Users should set registers as below to configure Speaker path. For example, sample rate is 48K, MCLK=12.288MHz.

- 1. Enable I2S: 0x30=02H, 0x15=FFH.
- 2. Enable reference: 0x17=40H.
- 3. Setup PLL: 0x42=04H, 0x43=58H, 0x44=2DH, 0x45=0C, 0x46=A5H, 0x47=00H.
- 4. Setup sample rate: 0x35=02H.
- 5. Setup I2S: 0x48=00H, 0x49=00H, 0x4A=00H, 0x4B=17H, 0x4C=20H.
- 6. Enable DAC: 0x15=0FH, 0x2F=03H.
- 7. Enable Class D: 0x38=10H, 0x40=A5H.

The Speaker path THD+N ratio test data shown as below: typical case is -62dB.

Fig. 4-23 Speaker path THD+N ratio

4.4.5 I2S Description

The RK809 supports I2S for the digital audio data interface. The I2S/PCM audio digital interface is used to input data to a stereo DAC or output data from a stereo ADC. The I2S/PCM audio interface can be configured to Master mode or Slave mode. In Master Mode, BCLK and LRCLK are configured as output, but MCLK is fixed as input. In Slave Mode, BCLK and LRCLK are configured as input, and the MCLK is still as input.

4.4.6 RC Oscillator Description

The RK809 integrates an RC oscillator. If the external crystal oscillator is not connected, the chip will be driven by the internal RC oscillator. Without external crystal oscillator, the system costs can be saved, but the RTC and the fuel gauge will be inaccurate.

4.5 Others

4.5.1 Real Time Clock (RTC) Description

The RK809 integrates a crystal oscillator buffer and a real time clock (RTC). The buffer works with an external 32.768 kHz crystal oscillator. With the RTC function, the PMIC provides second/minute/hour/day/month/year information, alarm wake up as well as time calibration. The RK809 provides one channel of 32.768 kHz clocks with open drain outputs, where it is default on and is controlled through I²C interface.

Chapter 5 Register Description

5.1 Register Summary

Name	Offset	Size	Reset Value	Description
RTC_SECONDS	0x0000	В	0x00	
RTC_MINUTES	0x0001	В	0x00	
RTC_HOURS	0x0002	В	0x09	
RTC_DAYS	0x0003	В	0x04	
RTC_MONTHS	0x0004	В	0x08	
RTC_YEARS	0x0005	В	0x17	
RTC_WEEKS	0x0006	В	0x05	
RTC_ALARM_SECONDS	0x0007	В	0x00	
RTC_ALARM_MINUTES	0x0008	В	0x00	
RTC_ALARM_HOURS	0x0009	В	0x00	
RTC_ALARM_DAYS	0x000a	В	0x01	
RTC_ALARM_MONTHS	0x000b	В	0x01	
RTC_ALARM_YEARS	0x000c	В	0x00	
RTC_RTC_CTRL	0x000d	В	0x00	
RTC_RTC_STATUS	0x000e	В	0x82	
RTC_RTC_INT	0x000f	В	0x00	
RTC_RTC_COMP_LSB	0x0010	В	0x00	
RTC_RTC_COMP_MSB	0x0011	В	0x00	
CODEC_DTOP_VUCTL	0x0012	В	0x03	
CODEC_DTOP_VUCTIME	0x0013	В	0x00	
CODEC_DTOP_LPT_SRST	0x0014	В	0x00	
CODEC_DTOP_DIGEN_CLKE	0x0015	В	0x00	
CODEC_AREF_RTCFG0	0x0016	В	0x00	
CODEC_AREF_RTCFG1	0x0017	В	0x06	
CODEC_AADC_CFG0	0x0018	В	0xc8	
CODEC_DADC_VOLL	0x001a	В	0x00	
CODEC_DADC_VOLR	0x001b	В	0x00	
CODEC_DADC_SR_ACL0	0x001e	В	0x00	
CODEC_DADC_ALC1	0x001f	В	0x00	
CODEC_DADC_ALC2	0x0020	В	0x00	
CODEC_DADC_NG	0x0021	В	0x00	
CODEC_DADC_HPF	0x0022	В	0x00	
CODEC_DADC_RVOLL	0x0023	В	0xff	
CODEC_DADC_RVOLR	0x0024	В	0xff	
CODEC_AMIC_CFG0	0x0027	В	0x70	
CODEC_AMIC_CFG1	0x0028	В	0x00	
CODEC_DMIC_PGA_GAIN	0x0029	В	0x66	
CODEC_DMIC_LMT1	0x002a	В	0x00	
CODEC_DMIC_LMT2	0x002b	В	0x00	
CODEC_DMIC_NG1	0x002c	В	0x00	

Name	Offset	Size	Reset Value	Description
CODEC_DMIC_NG2	0x002d	В	0x00	
CODEC_ADAC_CFG1	0x002f	В	0x07	
CODEC_DDAC_POPD_DACST	0x0030	В	0x82	
CODEC_DDAC_VOLL	0x0031	В	0x00	
CODEC_DDAC_VOLR	0x0032	В	0x00	
CODEC_DDAC_SR_LMT0	0x0035	В	0x00	
CODEC_DDAC_LMT1	0x0036	В	0x00	
CODEC_DDAC_LMT2	0x0037	В	0x00	
CODEC_DDAC_MUTE_MIXCTL	0x0038	В	0xa0	
CODEC_DDAC_RVOLL	0x0039	В	0xff	
CODEC_DDAC_RVOLR	0x003a	В	0xff	
CODEC_AHP_ANTIO	0x003b	В	0x00	
CODEC_AHP_ANTI1	0x003c	В	0x00	
CODEC_AHP_CFG0	0x003d	В	0xe0	
CODEC_AHP_CFG1	0x003e	В	0x1f	
CODEC_AHP_CP	0x003f	В	0x09	
CODEC_ACLASSD_CFG1	0x0040	В	0x69	
CODEC_ACLASSD_CFG2	0x0041	В	0x44	
CODEC_APLL_CFG0	0x0042	В	0x04	
CODEC_APLL_CFG1	0x0043	В	0x00	
CODEC_APLL_CFG2	0x0044	В	0x30	
CODEC_APLL_CFG3	0x0045	В	0x19	
CODEC_APLL_CFG4	0x0046	В	0x65	
CODEC_APLL_CFG5	0x0047	В	0x01	
CODEC_DI2S_CKM	0x0048	В	0x01	
CODEC_DI2S_RSD	0x0049	В	0x00	
CODEC_DI2S_RXCR1	0x004a	В	0x00	
CODEC_DI2S_RXCR2	0x004b	В	0x17	
CODEC_DI2S_RXCMD_TSD	0x004c	В	0x00	
CODEC_DI2S_TXCR1	0x004d	В	0x00	
CODEC_DI2S_TXCR2	0x004e	В	0x17	
CODEC_DI2S_TXCR3_TXCMD	0x004f	В	0x00	
gas_gauge_ADC_CONFIG0	0x0050	В	0x8c	
gas_gauge_ADC_CONFIG1	0x0055	В	0x30	
gas_gauge_GG_CON	0x0056	В	0x44	
gas_gauge_GG_STS	0x0057	В	0x00	
gas_gauge_RELAX_THRE_H	0x0058	В	0x00	
gas_gauge_RELAX_THRE_L	0x0059	В	0x60	
gas_gauge_RELAX_VOL1_H	0x005a	В	0x00	
gas_gauge_RELAX_VOL1_L	0x005b	В	0x00	
gas_gauge_RELAX_VOL2_H	0x005c	В	0x00	
gas_gauge_RELAX_VOL2_L	0x005d	В	0x00	
gas_gauge_RELAX_CUR1_H	0x005e	В	0x00	
gas_gauge_RELAX_CUR1_L	0x005f	В	0x00	

Name	Offset	Size	Reset Value	Description
gas_gauge_RELAX_CUR2_H	0x0060	В	0x00	
gas_gauge_RELAX_CUR2_L	0x0061	В	0x00	
gas_gauge_OCV_THRE_VOL	0x0062	В	0x00	
gas_gauge_OCV_VOL_H	0x0063	В	0x00	
gas_gauge_OCV_VOL_L	0x0064	В	0x00	
gas_gauge_OCV_VOL0_H	0x0065	В	0x00	
gas_gauge_OCV_VOL0_L	0x0066	В	0x00	
gas_gauge_OCV_CUR_H	0x0067	В	0x00	
gas_gauge_OCV_CUR_L	0x0068	В	0x00	
gas_gauge_OCV_CUR0_H	0x0069	В	0x00	
gas_gauge_OCV_CUR0_L	0x006a	В	0x00	
gas_gauge_PWRON_VOL_H	0x006b	В	0x00	
gas_gauge_PWRON_VOL_L	0x006c	В	0x00	
gas_gauge_PWRON_CUR_H	0x006d	В	0x00	
gas_gauge_PWRON_CUR_L	0x006e	В	0x00	
gas_gauge_OFF_CNT	0x006f	В	0x00	
gas_gauge_Q_INIT_H3	0x0070	В	0x00	
gas_gauge_Q_INIT_H2	0x0071	В	0x00	
gas_gauge_Q_INIT_L1	0x0072	В	0x00	
gas_gauge_Q_INIT_L0	0x0073	В	0x00	
gas_gauge_Q_PRES_H3	0x0074	В	0x00	
gas_gauge_Q_PRES_H2	0x0075	В	0x00	
gas_gauge_Q_PRES_L1	0x0076	В	0x00	
gas_gauge_Q_PRES_L0	0x0077	В	0x00	
gas_gauge_BAT_VOL_H	0x0078	В	0x00	
gas_gauge_BAT_VOL_L	0x0079	В	0x00	
gas_gauge_BAT_CUR_H	0x007a	В	0x00	
gas_gauge_BAT_CUR	0x007b	В	0x00	
gas_gauge_SW2_VOL_H	0x007e	В	0x00	
gas_gauge_SW2_VOL_L	0x007f	В	0x00	
gas_gauge_SW1_VOL_H	0x0080	В	0x00	
gas_gauge_SW1_VOL_L	0x0081	В	0x00	
gas_gauge_Q_MAX_H3	0x0082	В	0x00	
gas_gauge_Q_MAX_H2	0x0083	В	0x00	
gas_gauge_Q_MAX_L1	0x0084	В	0x00	
gas_gauge_Q_MAX_L0	0x0085	В	0x00	
gas_gauge_Q_TERM_H3	0x0086	В	0x00	
gas_gauge_Q_TERM_H2	0x0087	В	0x00	
gas_gauge_Q_TERM_L1	0x0088	В	0x00	
gas_gauge_Q_TERM_L0	0x0089	В	0x00	
gas_gauge_Q_OCV_H3	0x008a	В	0x00	
gas_gauge_Q_OCV_H2	0x008b	В	0x00	
gas_gauge_Q_OCV_L1	0x008c	В	0x00	
gas_gauge_Q_OCV_L0	0x008d	В	0x00	

Name	Offset	Size	Reset Value	Description
gas_gauge_OCV_CNT	0x008e	В	0x00	
gas_gauge_SLEEP_CON_SAMP_CU	0×000f	В	0,400	
R_H	0x008f	D	0x00	
gas_gauge_SLEEP_CON_SAMP_CU	0x0090	В	0x60	
R	0.0030	D	0.00	
gas_gauge_CAL_OFFSET_H	0x0091	В	0x7f	
gas_gauge_CAL_OFFSET_L	0x0092	В	0xff	
gas_gauge_VCALIB0_H	0x0093	В	0x00	
gas_gauge_VCALIB0_L	0x0094	В	0x00	
gas_gauge_VCALIB1_H	0x0095	В	0x00	
gas_gauge_VCALIB1_L	0x0096	В	0x00	
gas_gauge_IOFFSET_H	0x0097	В	0x00	
gas_gauge_IOFFSET_L	0x0098	В	0x00	
gas_gauge_BAT_R0	0x0099	В	0x00	
gas_gauge_BAT_R1	0x009a	В	0x00	
gas_gauge_BAT_R2	0x009b	В	0x00	
gas_gauge_BAT_R3	0x009c	В	0x00	
gas_gauge_DATA0	0x009d	В	0x00	
gas_gauge_DATA1	0x009e	В	0x00	
gas_gauge_DATA2	0x009f	В	0x00	
gas_gauge_DATA3	0x00a0	В	0x00	
gas_gauge_DATA4	0x00a1	В	0x00	
gas_gauge_DATA5	0x00a2	В	0x00	
gas_gauge_DATA6	0x00a3	В	0x00	
gas_gauge_DATA7	0x00a4	В	0x00	
gas_gauge_DATA8	0x00a5	В	0x00	
gas_gauge_DATA9	0x00a6	В	0x00	
gas_gauge_DATA10	0x00a7	В	0x00	
gas_gauge_DATA11	0x00a8	В	0x00	
gas_gauge_VOL_ADC_B3	0x00a9	В	0x00	
gas_gauge_VOL_ADC_B2	0x00aa	В	0x00	
gas_gauge_VOL_ADC_B1	0x00ab	В	0x00	
gas_gauge_VOL_ADC_B_7_0	0x00ac	В	0x00	
gas_gauge_CUR_ADC_K3	0x00ad	В	0x00	
gas_gauge_CUR_ADC_K2	0x00ae	В	0x00	
gas_gauge_CUR_ADC_K1	0x00af	В	0x00	
gas_gauge_CUR_ADC_K0	0x00b0	В	0x00	
PMIC_POWER_EN0	0x00b1	В	OTP	
PMIC_POWER_EN1	0x00b2	В	OTP	
PMIC_POWER_EN2	0x00b3	В	OTP	
PMIC_POWER_EN3	0x00b4	В	ОТР	
PMIC_POWER_SLP_EN0	0x00b5	В	ОТР	
PMIC_POWER_SLP_EN1	0x00b6	В	ОТР	
PMIC_POWER_DISCHRG_EN0	0x00b7	В	0xff	

Name	Offset	Size	Reset Value	Description
PMIC_POWER_DISCHRG_EN1	0x00b8	В	0xff	
PMIC_POWER_CONFIG	0x00b9	В	0x00	
PMIC_BUCK1_CONFIG	0x00ba	В	0x64	
PMIC_BUCK1_ON_VSEL	0x00bb	В	OTP	
PMIC_BUCK1_SLP_VSEL	0x00bc	В	OTP	
PMIC_BUCK2_CONFIG	0x00bd	В	0x64	
PMIC_BUCK2_ON_VSEL	0x00be	В	ОТР	
PMIC_BUCK2_SLP_VSEL	0x00bf	В	OTP	
PMIC_BUCK3_CONFIG	0x00c0	В	0x64	
PMIC_BUCK3_ON_VSEL	0x00c1	В	ОТР	* * * * * * * * * * * * * * * * * * *
PMIC_BUCK3_SLP_VSEL	0x00c2	В	ОТР	
PMIC_BUCK4_CONFIG	0x00c3	В	0x64	
PMIC_BUCK4_ON_VSEL	0x00c4	В	ОТР	
PMIC_BUCK4_SLP_VSEL	0x00c5	В	ОТР	
PMIC_BUCK4_CMIN	0x00c6	В	0x04	
PMIC_LDO1_ON_VSEL	0x00cc	В	OTP	
PMIC_LDO1_SLP_VSEL	0x00cd	В	OTP	
PMIC_LDO2_ON_VSEL	0x00ce	В	OTP	
PMIC_LDO2_SLP_VSEL	0x00cf	В	OTP	
PMIC_LDO3_ON_VSEL	0x00d0	В	OTP	
PMIC_LDO3_SLP_VSEL	0x00d1	В	ОТР	
PMIC_LDO4_ON_VSEL	0x00d2	В	ОТР	
PMIC_LDO4_SLP_VSEL	0x00d3	В	ОТР	
PMIC_LDO5_ON_VSEL	0x00d4	В	ОТР	
PMIC_LDO5_SLP_VSEL	0x00d5	В	ОТР	
PMIC_LDO6_ON_VSEL	0x00d6	В	ОТР	
PMIC_LDO6_SLP_VSEL	0x00d7	В	ОТР	
PMIC_LDO7_ON_VSEL	0x00d8	В	ОТР	
PMIC_LDO7_SLP_VSEL	0x00d9	В	ОТР	
PMIC_LDO8_ON_VSEL	0x00da	В	OTP	
PMIC_LDO8_SLP_VSEL	0x00db	В	ОТР	
PMIC_LDO9_ON_VSEL	0x00dc	В	ОТР	
PMIC_LDO9_SLP_VSEL	0x00dd	В	ОТР	
PMIC_BUCK5_SW1_CONFIG0	0x00de	В	ОТР	
PMIC_BUCK5_CONFIG1	0x00df	В	ОТР	
PMIC_CHIP_NAME	0x00ed	В	0x80	
PMIC_CHIP_VER	0x00ee	В	0x92	
PMIC_OTP_VER	0x00ef	В	0x00	
PMIC_SYS_STS	0x00f0	В	0x00	
PMIC_SYS_CFG0	0x00f1	В	0x8C	
PMIC_SYS_CFG1	0x00f2	В	0x80	
PMIC_SYS_CFG2	0x00f3	В	0x00	
PMIC_SYS_CFG3	0x00f4	В	0x20	
PMIC_ON_SOURCE	0x00f5	В	0x00	

Name	Offset	Size	Reset Value	Description
PMIC_OFF_SOURCE	0x00f6	В	0x00	
PMIC_PWRON_KEY	0x00f7	В	0x06	
PMIC_INT_STS0	0x00f8	В	0x00	
PMIC_INT_MSK0	0x00f9	В	0x00	
PMIC_INT_STS1	0x00fa	В	0x00	
PMIC_INT_MSK1	0x00fb	В	0x00	
PMIC_INT_STS2	0x00fc	В	0x00	
PMIC_INT_MSK2	0x00fd	В	0x00	
PMIC_GPIO_INT_CONFIG	0x00fe	В	0x22	

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

5.2 Register Description

RTC_SECONDS Address: (0x0000)

Bit	Attr	Reset Value	Description
			RESV
7	RW	0x0	
			Reserved
			SEC1
6:4	RW	0x0	Set the second digit of the RTC seconds (0-
			5)
2.0	DW	0.40	SEC0
3:0	RW	0x0	Set the first digit of the RTC seconds (0-9)

RTC_MINUTES Address: (0x0001)

Bit	Attr	Reset Value	Description
	DW	0x0	RESV
/	RW		Reserved
			MIN1
6:4	RW	0x0	Set the second digit of the RTC minutes (0-
			5)
3:0	RW	0x0	MINO
			Set the first digit of the RTC minutes (0-9)

RTC_HOURS

Address: (0x0002)

Bit	Attr	Reset Value	Description
_	RW	00	АМРМ
/	KVV	0×0	Only used in PM-AM mode, 1: PM. 0:AM
C	DW	0x0	RESV
6	RW		Reserved
F 4	DW	00	HOUR1
5:4	RW	0×0	Set the second digit of the RTC hours
3:0	RW	/ 0x9	HOUR0
			Set the first digit of the RTC hours

RTC_DAYS

Address: (0x0003)

Bit	Attr	Reset Value	Description
7.6	RW	10x0	RESV
7:6			Reserved
5:4	DW	00	DAY1
5.4	RW	0x0	Set the second digit of the RTC days
3:0	RW	10x4	DAY0
			Set the first digit of the RTC days

RTC_MONTHS

Address: (0x0004)

Bit	Attr	Reset Value	Description
7:5 RW	DW	10x0	RESV
	KVV		Reserved
4	DW	00	MONTH1
4	RW	0×0	Set the second digit of the RTC months
3:0	RW	10x8	MONTH0
			Set the first digit of the RTC months

RTC_YEARS
Address: (0x0005)

Bit	Attr	Reset Value	Description
7.4	DW	0x1	YEAR1
7:4	RW		Set the second digit of the RTC years
3:0 RW	DW	0.47	YEAR0
	RW	0x7	Set the first digit of the RTC years

RTC_WEEKS

Address: (0x0006)

Bit	Attr	Reset Value	Description
7:3	RW	0x00	RESV
			Reserved
2:0	RW	0x5	WEEK
			Set the second digit of the RTC weeks

RTC_ALARM_SECONDS

Address: (0x0007)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	KVV		Reserved
			ALARM_SEC1
6:4	RW	0x0	Set the second digit of the RTC alarm
			seconds
3:0	RW	0x0	ALARM_SEC0
			Set the first digit of the RTC alarm seconds

RTC_ALARM_MINUTES

Address: (0x0008)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	KVV		Reserved
			ALARM_MIN1
6:4	RW	0x0	Set the second digit of the RTC alarm minutes
3:0	RW	0×0	ALARM_MIN0 Set the first digit of the RTC alarm minutes

RTC_ALARM_HOURS

Address: (0x0009)

Bit	Attr	Reset Value	Description
			ALARM_PM_AM
7	RW	0x0	Set alarm PM or AM: only used in PM-AM
			mode, 1: PM. 0:AM
6	DW	0×0	RESV
6	RW		Reserved
5:4	DW 00	RW 0x0	ALARM_HOUR1
5:4	KVV		Set the second digit of the RTC alarm hours
3:0	RW	0x0	ALARM_HOUR0
			Set the first digit of the RTC alarm hours

RTC_ALARM_DAYS

Address: (0x000a)

Bit	Attr	Reset Value	Description
			RESV
7:6	RW	0x0	
			Reserved
- 4	DW	00	ALARM_DAY1
5:4	RW	0x0	Set the second digit of the RTC alarm days
3:0	DW	V 0×1	ALARM_DAY0
	RW		Set the first digit of the RTC alarm days

RTC_ALARM_MONTHS

Address: (0x000b)

Bit	Attr	Reset Value	Description
7	RW	0.40	RESV
7:5	KVV	0x0	Reserved
			ALARM_MONTH1
4	RW	0×0	Set the second digit of the RTC alarm months
3:0	RW	/ 0x1	ALARM_MONTH0
	IV V V		Set the first digit of the RTC alarm months

RTC_ALARM_YEARS

Address: (0x000c)

Bit	Attr	Reset Value	Description
7.4	RW	0x 0	ALARM_YEAR1
7:4			Set the second digit of the RTC alarm years
3:0	RW	0×0	ALARM_YEAR0
			Set the first digit of the RTC alarm years

RTC_RTC_CTRL

Address: (0x000d)

Bit	Attr	Reset Value	Description
			RTC_READ_SEL
7	RW	0x0	0: Read access directly to dynamic registers
			1: Read access to static shadowed registers
6	RW	0x0	GET_TIME
			Rising transition of this register transferred
			dynamic registers into static shadowed
			registers.

Bit	Attr	Reset Value	Description
			SET_32_COUNTER
			1: set the 32-kHz counter with COMP_REG
5	RW	0x0	value.
			Note: It must only be used when the RTC is
			frozen.
4	RW	0×0	RESV
7	IXVV	UXU	Reserved
		0x0	AMPM_MODE
3	RW		0: 24 hours mode. 1: 12 hours mode (PM-
			AM mode)
			AUTO_COMP
2	RW	0x0	0: No auto compensation. 1: Auto
			compensation enabled
			ROUND_30S
1	RW	0×0	When "1" is written, the time is rounded to
1	IXVV		the closest minute in next second.
			Note: self cleared after rounding (Auto Clr)
0	RW		STOP_RTC
		0×0	1: RTC is frozen 0: RTC is running.
			Note: RTC_time can only be changed during
			RTC frozen.

RTC_RTC_STATUS Address: (0x000e)

Bit	Attr	Reset Value	Description
			POWER_UP
7	W1C	0x1	POWER_UP is set by a reset, is cleared by
			writing "1" in this bit.
			ALARM
4			Indicates that an alarm interrupt has been
6	W1C	0×0	generated.
	WIC	UXU	Note: The alarm interrupt keeps its low level,
			until the micro-controller write "1" in the
			ALARM bit
5	W1C	0×0	EVENT_1D
3	WIC		One day has occurred
4	W1C	0x0	EVENT_1H
7			One hour has occurred
3	W1C	/1C 0x0	EVENT_1M
3	WIC		One minute has occurred
2	W1C	0x0	EVENT_1S
2	WIC		One second has occurred

Bit	Attr	Reset Value	Description
4		I()X I	RUN
	RO		0: RTC is frozen. 1: RTC is running.
1			Note: This bit shows the real state of the
			RTC.
0	RW	0x0	RESV
			Reserved

RTC_RTC_INT

Address: (0x000f)

Bit	Attr	Reset Value	Description
7:6	RW	0x0	RESV
7.0	KVV	UXU	Reserved
5	RW	0x0	RESV
5	IXVV	0.00	Reserved
			INT_SLEEP_MASK_EN
4	RW	0x0	1: Mask periodic interrupt while the device is
-	IXVV	UXU	in SLEEP mode
			0: Normal mode, no interrupt masked.
			INT_ALARM_EN
			Enable one interrupt when the alarm value is
3	RW	0x0	reached
			1: Enable
			0: Disable
			INT_TIMER_EN
2	RW	RW 0x0	1: Enable periodic interrupt; 0: disable
			periodic interrupt
			EVERY
1:0	RW	<i>N</i> 0×0	00: every second; 01: every minute; 10:
			every hour; 11: every day

RTC_RTC_COMP_LSB

Address: (0x0010)

Bit	Attr	Reset Value	Description
		0×00	RTC_COMP_LSB
7:0	RW		This register contains the number of 32-kHz
7:0	KVV		periods to be added into the 32KHz counter
			every hour [LSB]

RTC_RTC_COMP_MSB Address: (0x0011)

Bit	Attr	Reset Value	Description
7:0	RW	0×00	RTC_COMP_MSB
			This register contains the number of 32-kHz
			periods to be added into the 32KHz counter
			every hour [MSB]

CODEC_DTOP_VUCTL Address: (0x0012)

Bit	Attr	Reset Value	Description
			ADC_BYPS
7	RW	0x0	ADC volume control bypass
/	KVV	UXU	0:ADC volume control enable
			1: ADC volume control bypass
			DAC_BYPS
6	RW	0x0	0:DAC volume control enable
			1:DAC volume control bypass
			ADCFade
5	RW	0x0	ADC Fade: ADC volume adjust mode
3	KVV	UXU	0:update to new volume immediately;
			1:update volume as ADCZDT field describes;
			DACFade
4	RW	0×0	DAC Fade: DAC volume adjust mode
4	KVV	UXU	0:update to new volume immediately;
			1:update volume as DACZDT field describes;
3:2	RW	0x0	RESV
3:2	KVV	UXU	Reserved
			ADCZDT
			ADC cross zero detect enable. It works when
			ADC_BYPS is 0 and ADC_FADE is 1.
			0:volume adjusts every sample
1	RW	0x1	1:volume adjusts only when audio waveform
			crosses zero or volume-control time-limit
			condition meets;
			Note: All codec register reset by 'RST'or
			power down.
			DACZDT
			DAC cross zero detect enable. It works when
			DAC_BYPS is 0 and DAC_FADE is 1.
0		0x1	0:volume adjusts every sample
	RW		1:volume adjusts only when audio waveform
			crosses zero or volume-control time-limit
			condition meets;
			Note: All codec register reset by 'RST'or
			power down.

CODEC_DTOP_VUCTIME Address: (0x0013)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	VUCT VUCT: volume control time limit, valid only in fade cross zero mode Time limit = VUCT *(1/sample rate) Unit: LRCLK

CODEC_DTOP_LPT_SRST

Address: (0x0014)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	FCVV	UXU	Reserved
			SRST
6	RW	0x0	soft reset, write 1 to reset
			read 1: resetting 0: not resetting
5	RW	0×0	LP_DET LP_DET: low power detected, valid when DAC automatically power-on and power- down enabled 0:not detected; 1:low power detected;
4:0	RW	0x00	LPT LPT: low power detect threshold:power(2,LPT)

CODEC_DTOP_DIGEN_CLKE

Address: (0x0015)

Bit	Attr	Reset Value	Description
			ADC_CKE
7	RW	0x0	ADC clock enable
			1:enable; 0:disable;
			I2STX_CKE
6	RW	0x0	I2S Tx channel clock enable
			1:enable; 0:disable;
			ADC_EN
5	RW	0x0	Digital adc channel enable
			1:enable; 0:disable;
			I2STX_EN
4	RW	0x0	I2S Tx channel enable
			1:enable; 0:disable;
			DAC_CKE
3	RW	0x0	DAC clock enable
			1:enable; 0:disable;
			I2SRX_CKE
2	RW	0x0	I2S Rx channel clock enable
			1:enable; 0:disable;
			DAC_EN
1	RW	0x0	Digital dac channel enable
			1:enable; 0:disable;
			I2SRX_EN
0	RW	0x0	I2S Rx channel enable
			1:enable; 0:disable;

CODEC_AREF_RTCFG1 Address: (0x0017)

Bit	Attr	Reset Value	Description
7	RW	0x0	Internal used, don't over write.
6	RW	0×0	LDO1P8A_EN_CODEC Enable the LDO 1P8A, default don't setup. For sleep used only. 0:not effect 1:enable
5	RW	0x0	REF_ADC_SEL Select the ADC reference voltage 0: 1.2V 1: 1.5V
4:3	RW	0x0	VAG_SEL Select the VAG voltage 00:0.9V 01:0.72V 10:1.08V 11:1.26V
2	RW	0×1	PWD_IBIAS Power down the ibias block in REF_TOP 0:IBIAS block power on 1:IBIAS block power down
1	RW	0×1	PWD_VAG_BUF Power down the Vag buffer in REF_TOP 0:Vag buffer block power on 1:Vag buffer block power down
0	RW	0x0	RESV Reserved

CODEC_AADC_CFG0 Address: (0x0018)

Bit	Attr	Reset Value	Description
7	RW	0x1	ADC_L_PWD Power down ADC left channel 0: ADC left channel power on 1: ADC left channel power down
6	RW	0x1	ADC_R_PWD Power down ADC right channel 0: ADC right channel power on 1: ADC right channel power down
5	RW	0×0	ADC_CLK_EDGE_SEL Select the ADC output data and clock edge relationship 0: using the ADC falling edge to send the ADC data 1: using the ADC rising edge to send the ADC data
4	RW	0x0	RESV Reserved
3	RW	0×1	ADC_DITH_OFF Disable the dither function of ADC 0: enable the ADC dither 1:disable the ADC dither

Bit	Attr	Reset Value	Description
2:0	RW	0x0	ADC_DITH_SEL Select the dither frequency of ADC 000: 1/50 of ADC clock 001: 1/33 of ADC clock 010: 1/20 of ADC clock 011: 1/15 of ADC clock 100: 1/10 of ADC clock 101: 1/8 of ADC clock

CODEC_DADC_VOLL Address: (0x001a)

Bit	Attr	Reset Value	Description
7:0	RW	0×00	ADCLV ADC path L-channel Digital Volume Register 0db~-95db, 0.375db/step 8'h0: 0db 8'h1:-0.375db 8'h2:-0.75db 8'h3:-1.125db 8'hff:-95db

CODEC_DADC_VOLR Address: (0x001b)

Bit	Attr	Reset Value	Description
7:0	RW	0×00	ADCRV ADC path R-channel Digital Volume Register 0db~-95db, 0.375db/step 8'h0: 0db 8'h1:-0.375db
			8'h2:-0.75db 8'h3:-1.125db 8'hff:-95db

CODEC_DADC_SR_ACL0 Address: (0x001e)

Bit	Attr	Reset Value	Description
7	RW	0x0	ALCL ALC L-channel enable: automatic level control enable for ADC left channel 0: disable 1:enable
6	RW	0x0	ALCR ALC R-channel enable: automatic level control enable for ADC right channel 0: disable 1:enable

Bit	Attr	Reset Value	Description
			ADC_LV_POL
5	RW	0x0	ADC path L-channel Digital Volume polarity
			0:negative gain; 1:postive gain
			ADC_RV_POL
4	RW	0x0	ADC path R-channel Digital Volume polarity
			0:negative gain; 1:postive gain
3	RW	0x0	RESV
3	KVV	UXU	Reserved
			ADCSRT
		0x0	ADC sample rate times:
			sample rate = 8k/11.025k/12k *
2:0	RW		power(2,ADCSRT)
			note that sample rate
			base(8K/11.025K/12K) is decided by PLL
			configuration.

CODEC_DADC_ALC1 Address: (0x001f)

Bit	Attr	Reset Value	Description
			ALCARATE
7:4	RW	0x0	ALC attack rate =sample
			rate/(8*power(2,ALCARATE))
			ALCRRATE
3:0	RW	0x0	ALC Release rate=sample
			rate/(8*power(2,ALCRRATE))

CODEC_DADC_ALC2 Address: (0x0020)

Bit	Attr	Reset Value	Description
7	RO	0x0	NGVALID: noise gate valid status
6:4	RW	0×0	0:not in NG status;1: now in NG status; ALCMAX The highest threshold of ALC; 000~100:0db~-12db,3db/step; 101~111:-18db~-30db,6db/step;
3	RW	0x0	RESV Reserved
2:0	RW	0x0	ALCMIN The lowest threshold of ALC; 000~100:0db~-12db,3db/step; 101~111:-18db~-30db,6db/step;

CODEC_DADC_NG Address: (0x0021)

Bit	Attr	Reset Value	Description
7	RW	0x0	NGCHL: noise gate channel 0,individual channel(or); 1,both channel(and);

Bit	Attr	Reset Value	Description
			NGEN: noise gate enable
6	RW	0x0	0,Noise gate Disable;
			1,Noise gate enable;
			NGBOOST: noise gate boost
5	RW	0x0	0,Normal noise gate;
			1,Boost noise gate;
			NGGATE: noise gate threshold
4:2	RW	0x0	$NGBOOST = 0: 000 \sim 111(-63 \sim -84,3 db/step)$
			$NGBOOST = 1: 000 \sim 111(-33 \sim -54,3 db/step)$
			NGDLY: noise gate delay
1:0	RW	0x0	The delay time before the noise gate attacks
			00~11:2048~4096~8192~16384 samples

CODEC_DADC_HPF Address: (0x0022)

Bit	Attr	Reset Value	Description
7	RW	0x0	HPFL: high pass filter enable for left channel 0:high pass filter for left channel is disabled 1: high pass filter for left channel is enabled
6	RW	0x0	HPFR: high pass filter enable for right channel 0:high pass filter for right channel is disabled 1: high pass filter for right channel is enabled
5:4	RW	0x0	HPF_CF: high pass filter configure register 00:3.79Hz; 01:60Hz; 02:243Hz; 03:493Hz
3:0	RW	0x0	RESV Reserved

CODEC_DADC_RVOLL Address: (0x0023)

В	it	Attr	Reset Value	Description
7	:0	RO		ADCRLV ADC internal gain of left ch

CODEC_DADC_RVOLR Address: (0x0024)

Bit	Attr	Reset Value	Description
7.0	DO	0xff	ADCRRV
7:0	RO	UXII	ADC internal gain of right ch

CODEC_AMIC_CFG0 Address: (0x0027)

Bit	Attr	Reset Value	Description
			MIC_DIFF_EN
7	RW	0x0	Enable differential mic mode
			0:disable 1:enable

Bit	Attr	Reset Value	Description
			PWD_MIC
6	RW	0x1	MIC Power Down
١٥	KVV	OXI	0: MIC block power on
			1: MIC block power down
			PWD_PGA_L
5	RW	0x1	PGA_L Power Down
]	KVV	OXI	0:PGA_L block power on
			1:PGA_L block power down
			PWD_PGA_R
4	RW	0x1	PGA_R Power Down
-	IXVV	0.7.1	0:PGA_R block power on
			1:PGA_R block power down
			MIC_L_BOOST
3:2	RW	0x0	Select the gain of left mic input signal
			00:0dB, 01:10dB 10:20dB 11:30dB
			MIC_R_BOOST
1:0	RW	0x0	Select the gain of right mic input signal
			00:0dB, 01:10dB 10:20dB 11:30dB

CODEC_AMIC_CFG1 Address: (0x0028)

Bit	Attr	Reset Value	Description
			PGA_L_IN_SEL
7	RW	0x0	PGA L-channel input select
/	KVV	0.00	0: Positive end of Mic amplifier output
			1:internal reference voltage
			PGA_R_IN_SEL
6	RW	0x0	PGA R-channel input select
O	KVV	UXU	0: Negative end of Mic amplifier output
			1:internal reference voltage
			MIC_CHOP_EN
5	RW	0x0	Enable the chopping function of MIC
			0:disable 1:enable
			PGA_CHOP_EN
4	RW	0x0	Enable the chopping function of PGA
			0:disable 1:enable
3:2	RW	00	MIC_CHOP_SEL
3.2	KVV	0x0	00:200k, 01:400k, 10:800k, 11:Reserved
1:0	DW	0×0	PGA_CHOP_SEL
1.0	RW		00:200k, 01:400k, 10:800k, 11:Reserved

CODEC_DMIC_PGA_GAIN Address: (0x0029)

Bit	Attr	Reset Value	Description
7:4	RW	0x6	PGA_L_GAIN Change the gain of PGA block, the value changed from -18dB to 27dB. 0000:-18db; 1111:27db, 3db/step
3:0	RW	0x6	PGA_R_GAIN Change the gain of PGA block, the value changed from -18dB to 27dB. 0000: -18db; 1111:27db, 3db/step

CODEC_DMIC_LMT1 Address: (0x002a)

Bit	Attr	Reset Value	Description
			PGA_LMT_EN
7	RW	0x0	PGA gain limiter enable
			0:disable 1:enable
			MAX_PGA_LMT
6:4	RW	0x0	The highest threshold of LIMITER;
0.4	KVV	UXU	000~100:0db~-12db,3db/step;
			101~111:-18db~-30db,6db/step;
2	DW	0x0	RESV
3	RW	UXU	Reserved
2.0	RW	00	MIN_PGA_LMT
2:0	KVV	0x0	The lowest threshold of LIMITER

CODEC_DMIC_LMT2 Address: (0x002b)

Bit	Attr	Reset Value	Description
7:4	RW	0x0	ATK_RATE_PGA_LMT LIMITER Attack rate=(power(2,ATK_RATE_PGA_LMT)*(8*clk 1x)) Clk1x is such as 4.096Mhz,5.6448Mhz,6.144Mhz
3:0	RW	0x0	RLS_RATE_PGA_LMT LIMITER Release rate=(power(2,RLS_RATE_PGA_LMT)*(8*clk 1x)) Clk1x is such as 4.096Mhz,5.6448Mhz,6.144Mhz

CODEC_DMIC_NG1 Address: (0x002c)

Bit	Attr	Reset Value	Description		
7	RW	0x0	NGCHL_LI		
1	KVV	UXU	0:individual channel; 1:both channel;		
6	RW	0x0	NGEN_LI		
U	IC VV	UXU	0:Noise gate Disable; 1:Noise gate enable;		
Е	DW	0.40	NGBOOST_LI		
5	RW	0x0	0:Normal noise gate; 1: Boost noise gate;		
	RW		NGGATE_LI		
			NGBOOST_LI = 0: 000~111(-63~-		
4:2		0x0	84,3db/step)		
			NGBOOST_LI = 1: 000~111(-33~-		
			54,3db/step)		
		0×0	NGDLY_LI		
1:0	RW		The delay time before the noise gate attacks		
1.0	KVV		00~11:2048~4096~8192~16384, unit:		
			(clk1x * 8)		

CODEC_DMIC_NG2 Address: (0x002d)

Bit	Attr	Reset Value	Description
7.1	RO	0x00	RESV
7:1			Reserved
0	DO	0.40	NGVALID_LI
U	RO	0x0	Noise gate valid status

CODEC_ADAC_CFG1 Address: (0x002f)

Bit	Attr	Reset Value	Description
7	RW	0x0	DOUBLE_DACIBIAS
<i>'</i>	KVV	UXU	double DAC internal current resource
			INC_DAC_SWITCH
6	RW	0x0	increase the DAC internal switch signal
			control time
5	RW	0x0	STOP_DAC_RSTB
J	IVV	0.00	stop the RSTB clock
4	RW	0x0	STOP_DAC_SWITCH
	IXVV	0.00	stop the switch clock in DAC
			PWD_DACIBIAS
			power down the DAC internal current
3	RW	0x0	resource
			0: DACIBIAS powerup
			1: DACIBIAS powerdown
			PWD_DACD
2	RW	0x1	Class D DAC power down
_			0: Class D DAC power up
		*	1: Class D DAC power down
		0x1	PWD_DACL
1	RW		L channel DAC power down
			0: L channel DAC power up
			1: L channel DAC power down
		0×1	PWD_DACR
0	RW		R channel DAC power down
			0: R channel DAC power up
		,	1: R channel DAC power down

CODEC_DDAC_POPD_DACST Address: (0x0030)

Bit	Attr	Reset Value	Description
			ATCTRL
7	RW	0x1	auto-control power on and power down
/	KVV	UXI	0: automatic power control is disabled
			1: automatic power control is enabled
6	RW	0x0	RESV
O			Reserved
	RW	0x0	SMTPO
5			smart power on
			0:smart power on is disabled
			1:smart power on is enabled

Bit	Attr	Reset Value	Description	
			SMTPD	
4	RW	0x0	smart power down	
-	I NV	UXU	0:smart power down is disabled	
			1:smart power down is enabled	
3:2	RW	0x0	RESV	
3.2	KVV	UXU	Reserved	
			DAC_MTST	
1	RO	0x1	DAC mute status	
1	KO	OXI	0:DAC is not in mute status	
			1:DAC is in mute status	
			DAC_PWRST	
0	RO	0×0	DAC power status	
٥	KU	UXU	0:DAC is powered down	* • • • • • • • • • • • • • • • • • • •
			1:DAC is powered on	

CODEC_DDAC_VOLL Address: (0x0031)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DACLV DAC path L-channel Digital Volume Register - 1.125db~-95db,0.375db/step 0~2 are not allowed to use, and only use 3~255

CODEC_DDAC_VOLR Address: (0x0032)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DACRV DAC path R-channel Digital Volume Register -1.125db~-95db,0.375db/step 0~2 are not allowed to use, and only use 3~255

CODEC_DDAC_SR_LMT0 Address: (0x0035)

Bit	Attr	Reset Value	Description
			LIMEN
7	RW	0x0	LIMITER enable;
			0:disable 1:enable
6	RW	0x0	LIMCHL
O	KVV		0:(left+right)/2 1:independent
_	RW	0x0	DAC_LV_POL
5	KVV		0: negative gain; 1:postive gain
4	DW	0x0	DAC_RV_POL
4	RW		0: negative gain; 1:postive gain
2	DW	W 0x0	RESV
3	RW		Reserved

Bit	Attr	Reset Value	Description
2:0	RW	111711	DACSRT
			DAC sample rate times
			sample rate = 8k/11.025k/12k *
			power(2,DACSRT)

CODEC_DDAC_LMT1 Address: (0x0036)

Bit	Attr	Reset Value	Description
			LIMRRATE
7:4	RW	0x0	LIMITER Release rate=
			8*power(2,LIMRRATE) samples
			LIMARATE
3:0	RW	0x0	LIMITER attack rate=8*power(2,LIMARATE)
			samples

CODEC_DDAC_LMT2 Address: $(0x0\overline{037})$

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	KVV	UXU	Reserved
			LIMMAX
6:4	RW	0x0	The highest threshold of LIMITER;
0.4	KVV	UXU	000~100:0db~-12db,3db/step;
			101~111:-18db~-30db,6db/step;
2	D.W	W 0x0	RESV
3 KVV	KVV		Reserved
2:0	RW	0x0	LIMMIN
2.0	2:0 RW	W UXU	The lowest threshold of LIMITER;

CODEC_DDAC_MUTE_MIXCTL Address: (0x0038)

Bit	Attr	Reset Value	Description
7	RW	0x1	DAC_D_HPF
/	KVV	UXI	0:disable HPF;1:enable HPF;
6:5	RW	0x1	DAC_D_HPF_CF
0.5	TX V V	OXI	00:80HZ; 01:100HZ; 02:120HZ; 03:140HZ
4	RW	0x0	CLASS_D_MODE
4	KVV	UXU	1:CLASS D mode, 0:L/R mode
3	RW	0x0	CLASSD_MODE_L_SEL
3	KVV	UXU	0: MIX L and R; 1: L
2	RW	0x0	RESV
۷	Z KVV		Reserved
1	RW	0x0	MIX_ON
1	KVV		0:mixer disable;1: Reserved;
			DACMT
0	RW	0x0	DAC mute enable
			0:DAC mute is disabled
			1:DAC mute is enable

CODEC_DDAC_RVOLL Address: (0x0039)

Bit	Attr	Reset Value	Description
7:0	D.C	0.466	DACRLV
7.0	RO	0xff	DAC internal gain of left ch

CODEC_DDAC_RVOLR Address: (0x003a)

Bit	Attr	Reset Value	Description	
7:0	DО	0xff	DACRRV	
7:0	RO	UXII	DAC internal gain of right ch	

CODEC_AHP_ANTIO Address: (0x003b)

Bit	Attr	Reset Value	Description
7.5	DW	W 0x0	RESV
7:5	RW		Reserved
4.0	DW	0,400	STEP_CTRL
4:0	RW	0x00	STEP_CTRL for HP power on

CODEC_AHP_ANTI1 Address: (0x003c)

Bit	Attr	Reset Value	Description
7.5	DW	0x0	RESV
7:5	RW		Reserved
4:0 RV	DW	0x00	VOUT_CTRL
	KVV		VOUT_CTRL for HP power on

CODEC_AHP_CFG0 Address: (0x003d)

Bit	Attr	Reset Value	Description
			PWD_SOSTAGE
7	RW	0x1	power down the HP SOSTAGE
			0:power up 1:power down
			PWD_HP_OSTAGE
6	RW	0x1	power down the HP OSTAGE
			0:power up 1:power down
			PWD_HP_BUF
5	RW	0x1	power down the HP pre amp stage
			0:power up 1:power down
			INC_HP_AMP
4:3	RW	0x0	increase the HP amplitude from 3dB to 9dB,
			00:0db 01:3db 10:6db 11: 9db
			HP_2STAGE_EN
2	RW	0x0	Power down the HP two stage opamp
			0:disable 1:enable

Bit	Attr	Reset Value	Description
			HP_IBIAS_SEL
1:0	RW	0x0	HP BIAS current select
			00:100% 01:150% 10:200% 11:50%

CODEC_AHP_CFG1 Address: (0x003e)

Bit	Attr	Reset Value	Description
7:5	RW	0x0	RESV
	IK VV		Reserved
			HP_ANTIPOP_EN
4	RW	0x1	enable the HP antipop function
			0:disable 1:enable
3:0	RW	0xf	HP_ANTIPOP_BIT
			control the HP antipop gain from -15dB to
			0dB
			0000: 0dB
			0001:-1dB
			0010:-2dB
			1111:-15dB

CODEC_AHP_CP Address: (0x003f)

Bit	Attr	Reset Value	Description
7:6	RW	0x0	RESV
7.0	LVV	UXU	Reserved
			HP_CP_CLK_SEL
5	RW	0x0	0: CLK select for head phone charge pump
			1MHz□:500KHz
			HP_CP_EN
4	RW	0x0	HP charge pump enable.
			0:disable 1:enable
			HP_CP_ENDIS_LDO
3	RW	0x1	HP charge pump discharge Ido enable
			0:disable 1:enable
			HP_CP_HIMAXB
2	RW	0x0	HP charge pump max current:
			0:500mA,1:750mA
			HP_CP_VSEL
1:0	RW	0x1	HP charge pump voltage select:
			00:2.1V,01:2.3V३ :2.5V,11:2.7V

CODEC_ACLASSD_CFG1 Address: (0x0040)

Bit	Attr	Reset Value	Description
			CLASSD_EN
7	RW	0x0	CLASS D enable
			0:disable 1:enable

Bit	Attr	Reset Value	Description
			CLASSD_MUTE_EN
6	RW	0x1	CLASS D mute_ramp function enable
			0:disable 1:enable
			CLASSD_SSC_EN
5	RW	0x1	CLASS D Spread-Spectrum enable
			0:disable 1:enable
			CLASSD_SSC_SEL
4	RW	0x0	CLASS D Spread-Spectrum steps select
			0: 8 steps 1:16 step
2.2	DW/	0.42	CLASSD_MUTE_RATE
3:2	RW	0x2	00:0ms;01:16ms;10:32ms;11:64ms
1.0	DW/	0.41	CLASSD_SW_RATE
1:0	RW	/ 0x1	00:2.5ns;01:5ns;10:7.5ns;11:10ns

CODEC_ACLASSD_CFG2 Address: (0x0041)

Bit	Attr	Reset Value	Description
7	RO	0x0	CLASSD_OCP_STS IF this bit is high, it need to restart CLASS D.
6:4	RW	0x4	CLASSD_OCPP CLASS D PFET OCP Select 000: 0.5A 001: 0.625A 010: 0.75A 011: 0.875A 100:1A (Default) 101: 1.125A 110: 1.25A 111: 1.375A
3	RO	0x0	CLASSD_MUTE_DONE When class d mute finished, this bit will be set high.
2:0	RW	0x4	CLASSD_OCPN CLASS D NFET OCP Select 000: 0.5A 001: 0.625A 010: 0.75A 011: 0.875A 100:1A (Default) 101: 1.125A 110: 1.25A 111: 1.375A

CODEC_APLL_CFG0 Address: (0x0042)

Bit	Attr	Reset Value	Description
7:4	RW	0x0	RESV
7.4	TVV	UXU	Reserved
			PLL_CLKIN_SEL
3	RW	0x0	the PLL input clock select, 0->main clk
			1->main clk/2
			PLL_OUTDIV_EN
2	RW	0x1	enable PLL VCO output clock divide
			0:disable 1:enable
1:0	RW	V 0x0	PLL_VCO_BANDSEL
1.0	KVV	UXU	PLL VCO working band select

CODEC_APLL_CFG1 Address: (0x0043)

Bit	Attr	Reset Value	Description
7.6	RW	0x0	PLL_RES_SEL
7:6	KVV	UXU	PLL filter resistor value select
5:3	RW	0x0	PLL_CUR_SEL
5:3	KVV	UXU	PLL charge-pump working current select
			PLL_POSDIV_L3
2:0	RW	0x0	PLL feedback clock divide value select low 3
			bits

CODEC_APLL_CFG2 Address: (0x0044)

Bit	Attr	Reset Value	Description
7:0	RW	0x30	PLL_POSDIV_H8 PLL feedback clock divide value select high 8 bits

CODEC_APLL_CFG3 Address: (0x0045)

Bit	Attr	Reset Value	Description
7:0	RW	1/1 / 1/4	PLL_PREDIV_BIT PLL input clock pre-divide value select

CODEC_APLL_CFG4 Address: (0x0046)

Bit	Attr	Reset Value	Description
7:4	RW	0x6	PLL_OUTDIV PLL VCO output clock divide value select outdiv<3:2>: 00-> divide 5 01-> divide 10 10-> divide 3 11-> divide 6 outdiv<1:0>: 00-> divide 3 01-> divide 1 10-> divide 2 11-> divide 1"
3:0	RW	0x5	PLL_CLK_DIV PLL divided ratio of PLL_HIGH_clk, 0000->divded 1 and 1111->divided 15

CODEC_APLL_CFG5 Address: (0x0047)

Bit	Attr	Reset Value	Description
7:3	RW	0x00	RESV
7.3	FCVV	UXUU	Reserved
			PLL_RESET
2	RW	0x0	reset the total PLL register
			0:release reset 1:set reset
			PLL_TEST
1	RW	0x0	check the PLL internal VCO control voltage
			0:disable 1:enable

Bit	Attr	Reset Value	Description
	RW	IUVI	PLL_PWD
			pll power down
U			0: PLL power up
			1:PLL power down

CODEC_DI2S_CKM Address: (0x0048)

Bit	Attr	Reset Value	Description
7:4	RW	0.40	SCK_DIV
7:4	KVV	0x0	F(mclk2x)/F(sclk) - 1
			PDM_EN
3	RW	0x0	I2S SDO output delta-sigma ADC 1bit data.
			0:disable; 1:enable.
			SCK_EN
2	RW	0x0	i2ssclk clock enable, active in master mode.
			0:disable 1:enable
			SCK_P
1	RW	0x0	sclk polarity
1	KVV	UXU	0: normal
			1:inverted
			I2S_TX_MST
0	RW	0x1	I2S TX module as
			0: slave mode 1: master mode

CODEC_DI2S_RSD Address: (0x0049)

Bit	Attr	Reset Value	Description
7:4	RW	0x0	RESV
7.4	IT VV	UXU	Reserved
2	RW	0.0	PDM_LR_SEL
3	KVV	0x0	0: L; 1: R
		0x0	SCKD_RX
2:1	RW		sclk divider for rxlrck generator
2.1	RVV		00:64 01:128 10:256(01 valid only if Irclk<=
			96k, 10 valid only if Irclk<= 48k)
		0x0	RXRL_P
0	RW		I2S Rx Irck polarity
U			0: normal
			1:inverted

CODEC_DI2S_RXCR1 Address: (0x004a)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	FCVV		Reserved
			TFS_RX
6	RW	0x0	Rx transfer mode selector:
			0: I2S 1:PCM

Bit	Attr	Reset Value	Description
			PBM_RX
5:4	RW	0x0	Rx PCM bus mode:
3.4	IK VV	UXU	00: delay0 01:delay1
			10: delay2 11:delay3
			IBM_RX
3:2	RW	0x0	Rx I2S bus mode:
			00: normal 01:left 10:right
			EXRL_RX
1	RW	0x0	Rx exchange right/left channel for rx
1	IK VV	UXU	0: normal
			1:exchange right and left channel
0	DW	0.0	LSB_RX
0	RW	0x0	0: LSB 1:MSB

CODEC_DI2S_RXCR2 Address: (0x004b)

Bit	Attr	Reset Value	Description
7:5	RW	0x0	RESV
			Reserved
	RW	0×17	VDW_RX
4:0			valid date width
4.0			0x17: 24 bits data width; 0x0F: 16 bits data
			width; others: reserved

CODEC_DI2S_RXCMD_TSD

Address: (0x004c)

Bit	Attr	Reset Value	Description
7:6	RW	0x0	RESV
7.0	KVV	UXU	Reserved
			RXS
5	RW	0x0	rx transfer start
			0: rx stop 1:rx start
4	RW	0x0	RXC
4	KVV	UXU	rx transfer clear, high active
3	RW	0x0	RESV
3	KVV		Reserved
			SCKD_TX
2:1	RW	0x0	sclk divider for txlrck generator
2.1	I KVV		00:64 01:128 10:256(01 valid only if lrclk<=
			96k, 10 valid only if Irclk<= 48k)
			TXRL_P
0	RW	0x0	I2S Txlrck polarity
			0:normal 1:inverted

CODEC_DI2S_TXCR1 Address: (0x004d)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	IK VV	UXU	Reserved

Rev 2.4

Bit	Attr	Reset Value	Description
			TFS_TX
6	RW	0x0	Tx transfer mode selector:
			0: I2S 1:PCM
			PBM_TX
5:4	RW	0x0	Tx PCM bus mode:
3.4	KVV	UXU	00: delay0 01: delay1
			10: delay2
			IBM_TX
3:2	RW	0x0	Tx I2S bus mode:
			00: normal 01:left 10:right
			EXRL_TX
1	RW	0x0	Tx exchange right/left channel for TX
1	KVV	UXU	0: normal
			1:exchange right and left channel
	RW	0x0	LSB_TX
0	IK VV		0: LSB 1:MSB

CODEC_DI2S_TXCR2 Address: (0x004e)

Bit	Attr	Reset Value	Description
7:5	RW	10×0	RESV
7:5	KVV		Reserved
		0x17	VDW_TX
4:0	RW		valid date width
	KVV		0x17: 24 bits data width; 0x0F: 16 bits data
			width; others: reserved

CODEC_DI2S_TXCR3_TXCMD

Address: (0x004f)

Bit	Attr	Reset Value	Description
		0x0	TXS
7	RW		tx transfer start
			0: tx stop 1:tx start
6	RW	0x0	TXC
0	KVV		tx transfer clear, high active
			RCNT_TX
5:0	RW	0x00	right justified counter for I2S right justified
			slave mode only

gas_gauge_ADC_CONFIG0 Address: (0x0050)

Bit	Attr	Reset Value	Description
7	RW	0x1	GG_EN GG_EN: Gasgauge module enable bit 0:disable 1: enable
6	RW	0×0	SW1_VOL_ADC_EN SW1_VOL_ADC_EN: if GG_EN=0, then the ADC of SWOUT1 voltage controlled by the bit 0:disable 1:enable

Bit	Attr	Reset Value	Description
5	RW	0x0	RESV
			RESV: Reserve SW2_VOL_ADC_EN
4	RW	0x0	SW2_VOL_ADC_EN: if GG_EN=0, the ADC of SWOUT2 voltage by the bit
			0:disable 1:enable
			BAT_VOL_ADC_EN
3	RW	0x1	BAT_VOL_ADC_EN: if GG_EN=0, then the
			ADC of BATDIV voltage controlled by the bit 0:disable 1:enable
			BAT CUR ADC EN
2	RW	0×1	BAT_CUR_ADC_EN: if GG_EN=0, then the ADC of BAT current controlled by the bit 0:disable 1:enable
1	RW	0x0	RESV RESV: Reserve
0	RW	0x0	ADC_SLP_RATE ADC_SLP_RATE: the ADC sample rate: 0:512; 1:1024

gas_gauge_ADC_CONFIG1
Address: (0x0055)

Bit	Attr	Reset Value	Description
7	RC	0x0	VOL_CUR_CALIB_UPD VOL_CUR_CALIB_UPD: The voltage ADC and current ADC calibration finished status 0:not finished 1:finished (Write "1" to clear)
6	RW	0x0	RESV RESV: Reserve
5:4	RW	0x3	RESV RESV: Reserve
3	RW	0x0	RESV RESV: Reserve
2	RW	0x0	RESV RESV: Reserve
1:0	RW	0x0	RLX_CUR_FILTER RLX_CUR_FILTER: Relax mode enter threshold filter. 00:4S; 01:1S; 10:2S; 11:8S;

gas_gauge_GG_CON Address: (0x0056)

Bit	Attr	Reset Value	Description
			RLX_SPT
			RLX_SPT: relax mode voltage sampling
7:6	RW	0x1	interval time
			T_RELAX: Relax mode enter and quit time
			00:8min 01:16min 10:32min 11:48min

Bit	Attr	Reset Value	Description
5:4	RW	0x0	ADC_OFF_CAL_INTERV ADC_OFF_CAL_INTERV<1:0>: ADC offset calibration interval time 00:8min 01:16min 10:32min 11:48min
3:2	RW	0x1	FRAME_SMP_INTERV FRAME_SMP_INTERV<1:0>:Data frame sample interval in the sleep state(Unit:S) 00:0S 01:1S 10:2S 11:3S
1	RW	0x0	VOL_OUT_MOD VOL_OUT_MOD: Voltage output mode 0:Average Voltage 1:Instant Voltage
0	RW	0x0	CUR_OUT_MOD CUR_OUT_MOD: Current output mode 0:Average Current 1:Instant Current

gas_gauge_GG_STS Address: (0x0057)

Bit	Attr	Reset Value	Description
7	RO	0x0	OCV_STS OCV_STS: OCV mode status. 1: ocv mode; 0: null ocv mode.
6	RO	0x0	TERM_UPD TERM_UPD: Flag bit for Q_TERM update 0: NOT 1:YES
5	RW	0×0	QMAX_UPD_SOFT QMAX_UPD_SOFT: software Flag bit for QMAX update 0: NOT 1:YES
4	RO	0x0	BAT_CON BAT_CON: battery first connection, edge trigger 0:NOT 1:YES
3	RO	0x0	RELAX_VOL1_UPD RELAX_VOL1_UPD: battery voltage1 updated in relax status 0:NOT 1:YES
2	RO	0x0	RELAX_VOL2_UPD RELAX_VOL2_UPD: battery voltage2 updated in relax status 0:NOT 1:YES
1	RO	0x0	RELAX_STS RELAX_STS: battery coming into relax status 0:NOT 1:YES
0	RO	0x0	OCV_UPD OCV_UPD: Flag bit for OCV update 0: NOT 1:YES

gas_gauge_RELAX_THRE_H
Address: (0x0058)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	RELAX_THRE_CUR RELAX_THRE_CUR: relax mode threshold
			current set. <15:8>

gas_gauge_RELAX_THRE_L

Address: (0x0059)

Bit	Attr	Reset Value	Description
7:0	RW		RELAX_THRE_CUR RELAX_THRE_CUR: relax mode threshold current set. <7:0>

 $gas_gauge_RELAX_VOL1_H$

Address: (0x005a)

Bit	Attr	Reset Value	Description
7:0	RO		RELAX_VOL1_H RELAX_VOL1_H<15:8>: relax 1st mode voltage

gas_gauge_RELAX_VOL1_L

Address: (0x005b)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	RELAX_VOL1_L RELAX_VOL1_L<7:0>: relax 1st mode voltage

gas_gauge_RELAX_VOL2_H

Address: (0x005c)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	RELAX_VOL2 RELAX_VOL2<15:8>: relax 2nd mode voltage

gas_gauge_RELAX_VOL2_L

Address: (0x005d)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	RELAX_VOL2 RELAX_VOL2<7:0>: relax 2nd mode voltage

gas_gauge_RELAX_CUR1_H

Address: (0x005e)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	RELAX_CUR1 RELAX_CUR1<15:8>:relax 1st mode current

gas_gauge_RELAX_CUR1_L

Address: (0x005f)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	RELAX_CUR1 RELAX_CUR1<7:0>: relax 1st mode current

gas_gauge_RELAX_CUR2_H

Address: (0x0060)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	RELAX_CUR2 RELAX_CUR2<15:8>: relax 2nd mode current

gas_gauge_RELAX_CUR2_L

Address: (0x0061)

Bit	Attr	Reset Value	Description
7:0	RO	[[][[][]]	RELAX_CUR2 RELAX_CUR2<7:0>: relax 2nd mode current

gas_gauge_OCV_THRE_VOL

Address: (0x0062)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	OCV_THRE_VOL OCV_THRE_VOL:OCV mode threshold. 00:0.5mV; 01:1mV; 02:1.5mVFF:127.5mV

 $gas_gauge_OCV_VOL_H$

Address: (0x0063)

Bit	Attr	Reset Value	Description
7:0	RO	1(1)(1(1)	OCV_VOL_REG OCV_VOL_REG<15:8>: OCV voltage

gas_gauge_OCV_VOL_L Address: (0x0064)

Bit	Attr	Reset Value	Description
7:0	RO	10700	OCV_VOL_REG OCV_VOL_REG<7:0>:OCV voltage

gas_gauge_OCV_VOL0_H Address: (0x0065)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	OCV_VOL0_REG OCV_VOL0_REG<15:8>:OCV voltage 0

gas_gauge_OCV_VOL0_L

Address: (0x0066)

Bit	Attr	Reset Value	Description
7:0	RO	RO 0x00	OCV_VOLO_REG
	1		OCV_VOL0_REG<7:0>:OCV voltage 0

 $gas_gauge_OCV_CUR_H$

Address: (0x0067)

Bit	Attr	Reset Value	Description
7:0	RO	1(1)(1(1)	OCV_CUR_REG OCV_CUR_REG<15:8>:OCV current

gas_gauge_OCV_CUR_L Address: (0x0068)

E	3it	Attr	Reset Value	Description
-	7:0	RO	10700	OCV_CUR_REG OCV_CUR_REG<7:0>:OCV current

gas_gauge_OCV_CUR0_H

Address: (0x0069)

Bit	Attr	Reset Value	Description
7:0	RO	[[][[][]	OCV_CUR0_REG OCV_CUR0_REG<15:8>: OCV current 0

gas_gauge_OCV_CUR0_L

Address: (0x006a)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	OCV_CUR0_REG OCV_CUR0_REG<7:0>: OCV current 0

 $gas_gauge_PWRON_VOL_H$

Address: (0x006b)

Bit	Attr	Reset Value	Description
7:0	RO		PWRON_VOL_REG PWRON_VOL_REG<15:8>: power on bat voltage

 $gas_gauge_PWRON_VOL_L$

Address: (0x006c)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	PWRON_VOL_REG PWRON_VOL_REG<7:0>: power on bat voltage

 $gas_gauge_PWRON_CUR_H$

Address: (0x006d)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	PWRON_CUR_REG PWRON_CUR_REG<15:8>: power on bat current

gas_gauge_PWRON_CUR_L

Address: (0x006e)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	PWRON_CUR_REG PWRON_CUR_REG<7:0>: power on bat current

gas_gauge_OFF_CNT
Address: (0x006f)

Bit	Attr	Reset Value	Description	
7:0	RW	1(1\(\sigma(1)(1)\)	OFF_CNT OFF_CNT<7:0>: power off time	

gas_gauge_Q_INIT_H3 Address: (0x0070)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_INIT Q_INIT<31:24>:power off time

gas_gauge_Q_INIT_H2 Address: (0x0071)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_INIT Q_INIT<23:16>:power off time

gas_gauge_Q_INIT_L1 Address: (0x0072)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_INIT Q_INIT<15:8>:power off time

gas_gauge_Q_INIT_L0 Address: (0x0073)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_INIT Q_INIT<7:0>:power off time

gas_gauge_Q_PRES_H3 Address: (0x0074)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_PRES Q_PRES<31:24>:Coulomp value

gas_gauge_Q_PRES_H2 Address: (0x0075)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_PRES Q_PRES<23:16>:Coulomp value

gas_gauge_Q_PRES_L1 Address: (0x0076)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_PRES Q_PRES<15:8>:Coulomp value

gas_gauge_Q_PRES_L0 Address: (0x0077)

Bit	Attr	Reset Value	Description	
7:0	RO	0x00	Q_PRES Q_PRES<7:0>:Coulomp	value

gas_gauge_BAT_VOL_H Address: (0x0078)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	BAT_VOL BAT_VOL<15:8>: batdiv voltage

gas_gauge_BAT_VOL_L Address: (0x0079)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	BAT_VOL BAT_VOL<7:0>:batdiv voltage

gas_gauge_BAT_CUR_H Address: (0x007a)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	BAT_CUR BAT_CUR<15:8>:battery current

gas_gauge_BAT_CUR Address: (0x007b)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	BAT_CUR BAT_CUR<7:0>:BAT_CUR: battery current

gas_gauge_SW2_VOL_H Address: (0x007e)

Bit	Attr	Reset Value	Description
7:0	RO		SWOUT2_VOL SWOUT2_VOL<15:8>: SWOUT2 voltage value

gas_gauge_SW2_VOL_L Address: (0x007f)

Bit	Attr	Reset Value	Description
		♦	SWOUT2_VOL
7:0	RO	0x00	SWOUT2_VOL<7:0>: SWOUT2 voltage
			value

gas_gauge_SW1_VOL_H Address: (0x0080)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	SWOUT1_VOL SWOUT1_VOL<15:8>: SWOUT1 voltage value

gas_gauge_SW1_VOL_L Address: (0x0081)

Bit	Attr	Reset Value	Description
7:0	RO		SWOUT1_VOL SWOUT1_VOL<7:0>: SWOUT1 voltage value

gas_gauge_Q_MAX_H3

Address: (0x0082)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_MAX Q_MAX<31:24>: Qmax value

gas_gauge_Q_MAX_H2 Address: (0x0083)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_MAX Q_MAX<23:16>: Qmax value

gas_gauge_Q_MAX_L1 Address: (0x0084)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_MAX Q_MAX<15:8>: Qmax value

gas_gauge_Q_MAX_L0 Address: (0x0085)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	Q_MAX Q_MAX<7:0>: Qmax value

gas_gauge_Q_TERM_H3 Address: (0x0086)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_TERM Q_TERM<31:24>: charge terminal Coulomp value

gas_gauge_Q_TERM_H2 Address: (0x0087)

Bit	Attr	Reset Value	Description
			Q_TERM
7:0	RO	0x00	Q_TERM<23:16>: charge terminal Coulomp
			value

gas_gauge_Q_TERM_L1 Address: (0x0088)

Bit	Attr	Reset Value	Description
7:0	RO		Q_TERM Q_TERM<15:8>: charge terminal Coulomp value

gas_gauge_Q_TERM_L0

Address: (0x0089)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_TERM Q_TERM<7:0>: charge terminal Coulomp value

gas_gauge_Q_OCV_H3 Address: (0x008a)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_OCV Q_OCV<31:24>:OCV update Coulomp value

gas_gauge_Q_OCV_H2 Address: (0x008b)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_OCV Q_OCV<23:16>:OCV update Coulomp value

gas_gauge_Q_OCV_L1 Address: (0x008c)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_OCV Q_OCV<15:8>:OCV update Coulomp value

gas_gauge_Q_OCV_L0 Address: (0x008d)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	Q_OCV Q_OCV<7:0>:OCV update Coulomp value

gas_gauge_OCV_CNT Address: (0x008e)

Bit	Attr	Reset Value	Description
7:0	RW	1(1)(1(1)	OCV_CNT OCV_CNT<7:0>: two OCV time interval

gas_gauge_SLEEP_CON_SAMP_CUR_H

Address: (0x008f)

Bit	Attr	Reset Value	Description
7:0	RW	0×00	SLEEP_CON_SAMP_CUR SLEEP_CON_SAMP_CUR<15:8>:SLEEP mode, When the current is greater than the set value, it is sampled once again, until it is less than the set value, and the value is updated to the RELAX register

gas_gauge_SLEEP_CON_SAMP_CUR

Address: (0x0090)

Bit	Attr	Reset Value	Description
7:0	RW	0x60	SLEEP_CON_SAMP_CUR SLEEP_CON_SAMP_CUR<7:0>: SLEEP mode, When the current is greater than the set value, it is sampled once again, until it is less than the set value, and the value is updated to the RELAX register

 $gas_gauge_CAL_OFFSET_H$

Address: (0x0091)

Bit	Attr	Reset Value	Description
7:0	RW	0x7f	CAL_OFFSET_REG CAL_OFFSET_REG<15:8>: PCB current offset value high bit

gas_gauge_CAL_OFFSET_L Address: (0x0092)

Bit	Attr	Reset Value	Description
7:0	RW		CAL_OFFSET_REG CAL_OFFSET_REG<7:0>: PCB current offset value low bit

gas_gauge_VCALIB0_H Address: (0x0093)

Bit	Attr	Reset Value	Description
			VCALIB0
7:0	RO	0x00	VCALIB0<15:8>:Voltage0 offset value for AP
			to calculate offset error and gain error

gas_gauge_VCALIB0_L Address: (0x0094)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	VCALIB0 VCALIB0<7:0>:Voltage0 offset value for AP to calculate offset error and gain error

gas_gauge_VCALIB1_H Address: (0x0095)

Bit	Attr	Reset Value	Description
			VCALIB1
7:0	RO	0x00	VCALIB1<15:8>:Voltage1 offset value for AP
			to calculate offset error and gain error

gas_gauge_VCALIB1_L Address: (0x0096)

Bit	Attr	Reset Value	Description
7:0	RO	0x00	VCALIB1 VCALIB1<7:0>:Voltage1 offset value for AP
7.0	KO	0.000	to calculate offset error and gain error

gas_gauge_IOFFSET_H Address: (0x0097)

Bit	Attr	Reset Value	Description
			IOFFSET
7:0	RO	0x00	IOFFSET<15:8>:Current offset value
			calculated

gas_gauge_IOFFSET_L Address: (0x0098)

Bit	Attr	Reset Value	Description
7:0	RO		IOFFSET IOFFSET<7:0>:Current offset value calculated

gas_gauge_BAT_R0 Address: (0x0099)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	BAT_R0 BAT_R0<7:0>:BAT resistance

gas_gauge_BAT_R1 Address: (0x009a)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	BAT_R1 BAT_R1<7:0>:BAT resistance

gas_gauge_BAT_R2
Address: (0x009b)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	BAT_R2 BAT_R2<7:0>:BAT resistance

gas_gauge_BAT_R3
Address: (0x009c)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	BAT_R3 BAT_R3<7:0>:BAT resistance

gas_gauge_DATA0
Address: (0x009d)

Bit	Attr	Reset Value	Description	
7:0	RW	0x00	DATA DATA<7:0>:data for AP	

gas_gauge_DATA1
Address: (0x009e)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA2
Address: (0x009f)

Bit	Attr	Reset Value	Description
7.0	DW	0,,00	DATA
7:0	RW	0x00	DATA<7:0>:data for AP

gas_gauge_DATA3 Address: (0x00a0)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA4
Address: (0x00a1)

Bit	Attr	Reset Value	Description
7:0	DW	0,400	DATA
7.0	RW	0x00	DATA<7:0>:data for AP

gas_gauge_DATA5 Address: (0x00a2)

Bit	Attr	Reset Value	Description
7:0 RW	DW	1(1\(\nabla(1)(1)	DATA
	KVV		DATA<7:0>:data for AP

gas_gauge_DATA6
Address: (0x00a3)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA7
Address: (0x00a4)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA8
Address: (0x00a5)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA9
Address: (0x00a6)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA10
Address: (0x00a7)

Bit	Attr	Reset Value	Description
7:0	RW	0x00	DATA DATA<7:0>:data for AP

gas_gauge_DATA11 Address: (0x00a8)

Bit	Attr	Reset Value	Description
7:0	DW	0,,00	DATA
7:0	RW	0x00	DATA<7:0>:data for AP

gas_gauge_VOL_ADC_B3

Address: (0x00a9)

Bit	Attr	Reset Value	Description
			VOL_ADC_B
7:0	RO	OTP	VOL_ADC_B<31:24>:
			default: OTP

gas_gauge_VOL_ADC_B2

Address: (0x00aa) Register0000 Abstract

Bit	Attr	Reset Value	Description
7:0	RO	ОТР	VOL_ADC_B VOL_ADC_B<23:16> default: OTP

gas_gauge_VOL_ADC_B1

Address: (0x00ab) Register0000 Abstract

Bit	Attr	Reset Value	Description
7:0	RO	ОТР	VOL_ADC_B VOL_ADC_B<15:8> default: OTP

gas_gauge_VOL_ADC_B_7_0

Address: (0x00ac) Register0000 Abstract

Bit	Attr	Reset Value	Description
7:0	RO	ОТР	VOL_ADC_B0 VOL_ADC_B<7:0> default: OTP

gas_gauge_CUR_ADC_K3

Address: (0x00ad)

Bit	Attr	Reset Value	Description
7:0	RO	ОТР	CUR_ADC_K CUR_ADC_K<31:24>
' ' '		011	default: OTP

gas_gauge_CUR_ADC_K2

Address: (0x00ae)

Bit	Attr	Reset Value	Description
7:0	RO	ОТР	CUR_ADC_K CUR_ADC_K<23:16> default: OTP

gas_gauge_CUR_ADC_K1

Address: (0x00af)

Bit	Attr	Reset Value	Description
			CUR_ADC_K
7:0	RO	OTP	CUR_ADC_K<15:8>
			default: OTP

gas_gauge_CUR_ADC_K0

Address: (0x00b0)

Bit	Attr	Reset Value	Description
			CUR_ADC_K0
7:0	RO	OTP	CUR_ADC_K<7:0>
			default: OTP

PMIC_POWER_EN0

Address: (0x00b1)

Bit	Attr	Reset Value	Description
			BUCK4_EN_MASK
			BUCK4_EN_MASK: MUST write them to "1" if
7	RW	0×0	want to change corresponding BUCK4_EN
/	KVV	0.00	bit, The BUCK4_EN_MASK bits should be
			clear when BUCK4_EN bits have been
			written.
			BUCK3_EN_MASK
			BUCK3_EN_MASK: MUST write them to "1" if
6	RW	0×0	want to change corresponding BUCK3_EN
O	KVV	0.00	bit, The BUCK3_EN_MASK bits should be
			clear when BUCK3_EN bits have been
			written.
		0×0	BUCK2_EN_MASK
			BUCK2_EN_MASK: MUST write them to "1" if
5	RW		want to change corresponding BUCK2_EN
5			bit, The BUCK2_EN_MASK bits should be
			clear when BUCK2_EN bits have been
			written.
			BUCK1_EN_MASK
		0x0	BUCK1_EN_MASK: MUST write them to "1" if
4	RW		want to change corresponding BUCK1_EN
7	IXVV		bit, The BUCK1_EN_MASK bits should be
			clear when BUCK1_EN bits have been
			written.
			BUCK4_EN
			BUCK4_EN: BUCK4 enable in active mode
3	RW	ОТР	1, Enable
	KVV	OTP	0, Disable
			the default value is set by otp
			reset by power down or RST.

Bit	Attr	Reset Value	Description
			BUCK3_EN
			BUCK3_EN: BUCK3 enable in active mode
2	RW	ОТР	1, Enable
2	KVV	OTP	0, Disable
			the default value is set by otp
			reset by power down or RST.
		ОТР	BUCK2_EN
	RW		BUCK2_EN: BUCK2 enable in active mode
1			1, Enable
-			0, Disable
			the default value is set by otp
			reset by power down or RST.
		ОТР	BUCK1_EN
			BUCK1_EN: BUCK1 enable in active mode
0	RW		1, Enable
U	KVV		0, Disable
			the default value is set by otp
			reset by power down or RST.

PMIC_POWER_EN1 Address: (0x00b2)

Bit	Attr	Reset Value	Description
			LDO4_EN_MASK
			LDO4_EN_MASK: MUST write them to "1" if
7	RW	0x0	want to change corresponding LDO4_EN
			bit, The LDO4_EN_MASK bits should be
			clear when LDO4_EN bits have been written.
			LDO3_EN_MASK
			LDO3_EN_MASK: MUST write them to "1" if
6	RW	0x0	want to change corresponding LDO3_EN
			bit, The LDO3_EN_MASK bits should be
			clear when LDO3_EN bits have been written.
			LDO2_EN_MASK
			LDO2_EN_MASK: MUST write them to "1" if
5	RW	0x0	want to change corresponding LDO2_EN
			bit, The LDO2_EN_MASK bits should be
			clear when LDO2_EN bits have been written.
			LDO1_EN_MASK
			LDO1_EN_MASK: MUST write them to "1" if
4	RW	0x0	want to change corresponding LDO1_EN
			bit, The LDO1_EN_MASK bits should be
			clear when LDO1_EN bits have been written.

Bit	Attr	Reset Value	Description
			LDO4_EN
			LDO4_EN: LDO4 enable in active mode
3	RW	ОТР	1, Enable
3	INVV		0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO3_EN
			LDO3_EN: LDO3 enable in active mode
2	RW	ОТР	1, Enable
_			0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO2_EN
	RW		LDO2_EN: LDO2 enable in active mode
1		ОТР	1, Enable
			0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO1_EN
			LDO1_EN: LDO1 enable in active mode
0	RW	ОТР	1, Enable
			0, Disable
			the default value is set by otp
			reset by power down or RST.

PMIC_POWER_EN2 Address: (0x00b3)

Bit	Attr	Reset Value	Description
			LDO8_EN_MASK
			LDO8_EN_MASK: MUST write them to "1" if
7	RW	0x0	want to change corresponding LDO8_EN
			bit, The LDO8_EN_MASK bits should be
			clear when LDO8_EN bits have been written.
			LDO7_EN_MASK
			LDO7_EN_MASK: MUST write them to "1" if
6	RW	0x0	want to change corresponding LDO7_EN
			bit, The LDO7_EN_MASK bits should be
			clear when LDO7_EN bits have been written.
			LDO6_EN_MASK
			LDO6_EN_MASK: MUST write them to "1" if
5	RW	0x0	want to change corresponding LDO6_EN
			bit, The LDO6_EN_MASK bits should be
			clear when LDO6_EN bits have been written.

Bit	Attr	Reset Value	Description
			LDO5_EN_MASK
			LDO5_EN_MASK: MUST write them to "1" if
4	RW	0x0	want to change corresponding LDO5_EN
			bit, The LDO5_EN_MASK bits should be
			clear when LDO5_EN bits have been written.
			LDO8_EN
			LDO8_EN: LDO8 enable in active mode
3	RW	ОТР	1, Enable
	IXVV		0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO7_EN
	RW	ОТР	LDO7_EN: LDO7 enable in active mode
2			1, Enable
_	IXVV		0, Disable
			the default value is set by otp
			reset by power down or RST.
		W OTP	LDO6_EN
			LDO6_EN: LDO6 enable in active mode
1	RW		1, Enable
_	IXVV		0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO5_EN
			LDO5_EN: LDO5 enable in active mode
0	RW	ОТР	1, Enable
		VOIP	0, Disable
			the default value is set by otp
			reset by power down or RST.

PMIC_POWER_EN3 Address: (0x00b4)

Bit	Attr	Reset Value	Description
			SW2_EN_MASK
			SW2_EN _MASK : MUST write them to "1" if
7	RW	0x0	want to change corresponding SW2_EN bit,
			The SW2_EN_MASK bits should be clear
			when SW2_EN bits have been written.
			SW1_EN_MASK
			SW1_EN _MASK : MUST write them to "1" if
6	RW	0x0	want to change corresponding SW1_EN bit,
			The SW1_EN_MASK bits should be clear
			when SW1_EN bits have been written.

Bit	Attr	Reset Value	Description
			BUCK5_EN_MASK
			BUCK5_EN _MASK: MUST write them to "1"
_	DW	0.40	if want to change corresponding BUCK5_EN
5	RW	0x0	bit, The BUCK5_EN_MASK bits should be
			clear when BUCK5_EN bits have been
			written.
			LDO9_EN_MASK
			LDO9_EN_MASK: MUST write them to "1" if
4	RW	0x0	want to change corresponding LDO9_EN
			bit, The LDO9_EN_MASK bits should be
			clear when LDO9_EN bits have been written.
			SW2_EN
			SW2_EN : SWOUT2 enable in active mode
3	RW	ОТР	1, Enable
	KVV	OTP	0, Disable
			the default value is set by otp.
			reset by power down or RST.
			SW1_EN
			SW1_EN : SWOUT1 enable in active mode
2	RW	ОТР	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.
			BUCK5_EN
			BUCK5_EN: BUCK5 enable in active mode
1	RW	OTP	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.
			LDO9_EN
	RW		LDO9_EN: LDO9 enable in active mode
0		ОТР	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.

PMIC_POWER_SLP_EN0 Address: (0x00b5)

Bit	Attr	Reset Value	Description
			SW2_SLP_EN
			SW2_SLP_EN: SWOUT2 enable in SLEEP
			mode
7	RW	OTP	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.
			SW1_SLP_EN
			SW1_SLP_EN: SWOUT1 enable in SLEEP
			mode
6	RW	OTP	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.
			BUCK5_SLP_EN
			BUCK5_SLP_EN: BUCK5 enable in SLEEP
			mode
5	RW	ОТР	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.
			LDO9_SLP_EN
			LDO9_SLP_EN: LDO9 enable in SLEEP mode
4	RW	ОТР	1, Enable
			0, Disable
		4.0	the default value is set by otp.
			reset by power down or RST.
			BUCK4_SLP_EN
			Field0000 Abstract
			BUCK4_SLP_EN: BUCK4 enable in SLEEP
3	RW	RW OTP	mode
			1, Enable
			0, Disable
			the default value is set by OTP.
			reset by power down or RST.
			BUCK3_SLP_EN
			BUCK3_SLP_EN: BUCK3 enable in SLEEP
			mode
2	RW	OTP	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.

Bit	Attr	Reset Value	Description
			BUCK2_SLP_EN
			BUCK2_SLP_EN: BUCK2 enable in SLEEP
			mode
1	RW	ОТР	1, Enable
			0, Disable
			the default value is set by otp.
			reset by power down or RST.
			BUCK1_SLP_EN
			BUCK1_SLP_EN: BUCK1 enable in SLEEP
			mode
0	RW	ОТР	1, Enable
			0, Disable
			the default value is set by OTP.
			reset by power down or RST.

PMIC_POWER_SLP_EN1 Address: (0x00b6)

Bit	Attr	Reset Value	Description
			LDO8_SLP_EN
			LDO8_SLP_EN: LDO8 enable in SLEEP mode
7	RW	ОТР	1, Enable
			0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO7_SLP_EN
			LDO7_SLP_EN: LDO7 enable in SLEEP mode
6	RW	OTP	1, Enable
			0, Disable
			the default value is set by otp
-			reset by power down or RST.
			LDO6_SLP_EN
	RW		LDO6_SLP_EN: LDO6 enable in SLEEP mode
5		W OTP	1, Enable
			0, Disable
			the default value is set by otp
			reset by power down or RST.
Ĭ		ОТР	LDO5_SLP_EN
4	RW		LDO5_SLP_EN: LDO5 enable in SLEEP mode
			1, Enable
			0, Disable the default value is set by otp
			, .
			reset by power down or RST.

RK809 Datasheet

Bit	Attr	Reset Value	Description
			LDO4_SLP_EN
			LDO4_SLP_EN: LDO4 enable in SLEEP mode
3	RW	ОТР	1, Enable
3	KVV	OTF	0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO3_SLP_EN
			LDO3_SLP_EN: LDO3 enable in SLEEP mode
2	RW	ОТР	1, Enable
2	IXVV	OTF	0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO2_SLP_EN
	RW		LDO2_SLP_EN: LDO2 enable in SLEEP mode
1		ОТР	1, Enable
_			0, Disable
			the default value is set by otp
			reset by power down or RST.
			LDO1_SLP_EN
			LDO1_SLP_EN: LDO1 enable in SLEEP mode
0	RW	ОТР	1, Enable
			0, Disable
			the default value is set by otp
			reset by power down or RST.

PMIC_POWER_DISCHRG_EN0 Address: (0x00b7)

Bit	Attr	Reset Value	Description
			SW2_DISCHG_EN
7	RW	0×1	SW2_DISCHG_EN: SWOUT2 discharge
/	KVV	UXI	enable when the channel is off
			0: Disable 1:enable
			SW1_DISCHG_EN
6	RW	0×1	SW1_DISCHG_EN: SWOUT1 discharge
0	KVV	UXI	enable when the channel is off
			0: Disable 1:enable
		0x1	BUCK5_DISCHG_EN
5	RW		BUCK5_DISCHG_EN: BUCK5 discharge
3			enable when the channel is off
			0: Disable 1:enable
		0x1	LDO9_DISCHG_EN
4	RW		LDO9_DISCHG_EN: LDO9 discharge enable
	KW		when the channel is off
			0: Disable 1:enable

Bit	Attr	Reset Value	Description
		0×1	BUCK4_DISCHG_EN
3	RW		BUCK4_DISCHG_EN: BUCK4 discharge
3	IK VV	OXI	enable when the channel is off
			0: Disable 1:enable
			BUCK3_DISCHG_EN
2	RW	0×1	BUCK3_DISCHG_EN: BUCK3 discharge
2	KVV		enable when the channel is off
			0: Disable 1:enable
		W 0x1	BUCK2_DISCHG_EN
1	RW		BUCK2_DISCHG_EN: BUCK2 discharge
1			enable when the channel is off
			0: Disable 1:enable
0	RW	RW 0x1	BUCK1_DISCHG_EN
			BUCK1_DISCHG_EN: BUCK1 discharge
			enable when the channel is off
			0: Disable 1:enable

PMIC_POWER_DISCHRG_EN1 Address: (0x00b8)

Bit	Attr	Reset Value	Description
			LDO8_DISCHG_EN
7	RW	0×1	LDO8_DISCHG_EN: LDO8 discharge enable
/	KVV	UXI	when the channel is off
			0: Disable 1:enable:
			LDO7_DISCHG_EN
6	RW	0×1	LDO7_DISCHG_EN: LDO7 discharge enable
	IX V V	OXI	when the channel is off
			0: Disable 1:enable:
			LDO6_DISCHG_EN
5	RW	0x1	LDO6_DISCHG_EN: LDO6 discharge enable
	KVV		when the channel is off
			0: Disable 1:enable:
	RW		LDO5_DISCHG_EN
4		0×1	LDO5_DISCHG_EN: LDO5 discharge enable
7		UXI	when the channel is off
			0: Disable 1:enable:
			LDO4_DISCHG_EN
3	RW	0×1	LDO4_DISCHG_EN: LDO4 discharge enable
	IX V V	OXI	when the channel is off
			0: Disable 1:enable:
2	RW	0x1	LDO3_DISCHG_EN
			LDO3_DISCHG_EN: LDO3 discharge enable
_			when the channel is off
			0: Disable 1:enable:

Bit	Attr	Reset Value	Description
	RW	0x1	LDO2_DISCHG_EN
1			LDO2_DISCHG_EN: LDO2 discharge enable
1			when the channel is off
			0: Disable 1:enable:
	RW	0x1	LDO1_DISCHG_EN
0			LDO1_DISCHG_EN: LDO1 discharge enable
			when the channel is off
			0: Disable 1:enable

PMIC_POWER_CONFIG

Address: (0x00b9)

Bit	Attr	Reset Value	Description
			LDO_SLP_LP_EN
7	DW	0.40	LDO_SLP_LP_EN: Low power function enable
7	RW	0x0	bit of LDO
			0: disable 1:enable
			BUCK3_FB_RES
6	RW	0×0	BUKC3_FB_RES: BUCK3 feedback select
0	KVV	OXO	0: select external feedback resistor; 1: select
			internal feedback resistor
			BUCK_3VLDO_BYPASS_EN
5	RW	0×0	BUCK_3VLDO_BYPASS_EN:1:3V LDO disable
	IXVV	0.00	and short to VDD enable bit
			0: disable 1:enable
		0x0	BUCK_3VLDO_LP_EN
4	RW		BUCK_3VLDO_LP_EN: Low power function
-	KVV		enable bit of 3VLDO
			0: disable 1:enable
	RW		BUCK4_LP_EN
3		0×0	BUCK4_LP_EN: Low power function enable
		UXU	bit of BUCK4
			0: disable 1:enable
		0x0	BUCK3_LP_EN
2	RW		BUCK3_LP_EN: Low power function enable
2	IXVV		bit of BUCK3
			0: disable 1:enable
			BUCK2_LP_EN
1	RW	0×0	BUCK2_LP_EN: Low power function enable
	IXVV	UXU	bit of BUCK2
			0: disable 1:enable
			BUCK1_LP_EN
0	RW	0×0	BUCK1_LP_EN: Low power function enable
			bit of BUCK1
			0: disable 1:enable

PMIC_BUCK1_CONFIG Address: (0x00ba)

Bit	Attr	Reset Value	Description
7:6	RW	0×1	BUCK1_RATE BUCK1_RATE<1:0>: BUCK1 voltage change rate after DVS 00: 3mV/uS; 01: 6.3mV/uS; 10:12.5mV/uS; 11: 25mV/uS reset by power down or RST.
5:3	RW	0x4	BUCK1_ILPK BUCK1_ILPK<2:0>: BUCK1 peak current limit select, MUST linkage adjustment with the BUCK1_ ILPK <2:0>(write the same code) 000:2A 010:2.25A 010:2.5A 011:2.75A 100:3A 110:3.25A 110:3.5A 111:3.75A reset by power down or RST.
2:0	RW	0x4	BUCK1_ILVL BUCK1_ILVL<2:0>: BUCK1 valley current limit select, linkage adjustment with the BUCK1_ ILVL <2:0>(write the same code) 000:2A 010:2.25A 010:2.5A 011:2.75A 100:3A 101:3.25A 110:3.5A 111:3.75A reset by power down or RST.

PMIC_BUCK1_ON_VSEL Address: (0x00bb)

Bit	Attr	Reset Value	Description
7	RW	0×0	BUCK1_ON_FPWM BUCK1_ON_FPWM: BUCK1 Forced PWM mode selection 1, Forced PWM mode in active mode; 0, PWM/PFM auto change mode reset by power down or RST.
	7		BUCK1_ON_VSEL BUCK1_ON_VSEL<6:0>: BUCK1 active mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V
6:0	RW	ОТР	1010000:1.5V 1010001:1.6V 1010010:1.7V 1011000:2.3V 1011001~111111:2.4V the default value is set by otp reset by power down or RST.

PMIC_BUCK1_SLP_VSEL Address: (0x00bc)

Bit	Attr	Reset Value	Description
7	RW	0×0	BUCK1_SLP_FPWM BUCK1_SLP_FPWM: 1, Forced PWM mode in sleep mode. 0, PWM/PFM auto change mode. reset by power down or RST.
6:0	RW	ОТР	BUCK1_SLP_VSEL BUCK1_SLP_VSEL<6:0>: BUCK1 SLEEP mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V 1010000:1.5V 1010001:1.6V 1010010:1.7V 1011000:2.3V 1011001~1111111:2.4V the default value is set byotp reset by power down or RST.

PMIC_BUCK2_CONFIG Address: (0x00bd)

Bit	Attr	Reset Value	Description
7:6	RW	0x1	BUCK2_RATE BUCK2_RATE<1:0>: BUCK2 voltage change rate after DVS 00: 3mV/uS; 01: 6.3mV/uS; 10:12.5mV/uS; 11: 25mV/uS reset by power down or RST.
5:3	RW	0×4	BUCK2_ILPK BUCK2_ILPK<2:0>: BUCK2 peak current limit select, MUST linkage adjustment with the BUCK2_ ILPK <2:0>(write the same code) 000:2A 010:2.25A 010:2.5A 011:2.75A 100:3A 101:3.25A 110:3.5A 111:3.75A reset by power down or RST.
2:0	RW	0×4	BUCK2_ILVL BUCK2_ILVL<2:0>: BUCK2 valley current limit select, linkage adjustment with the BUCK2_ ILVL <2:0>(write the same code) 000:2A 010:2.25A 010:2.5A 011:2.75A 100:3A 101:3.25A 110:3.5A 111:3.75A reset by power down or RST.

PMIC_BUCK2_ON_VSEL Address: (0x00be)

Bit	Attr	Reset Value	Description
7	RW	0x0	BUCK2_ON_FPWM BUCK2_ON_FPWM: BUCK2 Forced PWM mode selection 1, Forced PWM mode in active mode; 0, PWM/PFM auto change mode reset by power down or RST.
6:0	RW	ОТР	BUCK2_ON_VSEL BUCK2_ON_VSEL<6:0>: BUCK2 active mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V 1010000:1.5V 1010001:1.6V 1010010:1.7V 1011000:2.3V 1011001~111111:2.4V the default value is set by otp reset by power down or RST.

PMIC_BUCK2_SLP_VSEL Address: (0x00bf)

Bit	Attr	Reset Value	Description
	7 100.	10000 10.00	BUCK2 SLP FPWM
			BUCK2 SLP FPWM:
7	RW	0x0	1, Forced PWM mode in sleep mode.
			0, PWM/PFM auto change mode.
			reset by power down or RST.
			BUCK2_SLP_VSEL
			BUCK2_SLP_VSEL<6:0>: BUCK2 SLEEP
			mode voltage select
			000000:0.5V
			0000001:0.5125V
			0000010:0.525V
6:0	RW	OTP	1010000:1.5V
			1010001:1.6V
			1010010:1.7V
			1011000:2.3V
			1011001~1111111:2.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_BUCK3_CONFIG Address: (0x00c0)

Bit	Attr	Reset Value	Description
7:6	RW	0x1	BUCK3_RATE BUCK3_RATE<1:0>: BUCK3 voltage change rate after DVS 00: 3mV/uS; 01: 6.3mV/uS; 10:12.5mV/uS; 11: 25mV/uS reset by power down or RST.
5:3	RW	0x4	BUCK3_ILPK BUCK3_ILPK<2:0>: BUCK3 peak current limit select, MUST linkage adjustment with the BUCK3_ ILPK <2:0>(write the same code) 000:1A 010:1.25A 010:1.5A 011:1.75A 100:2A 101:2.25A 110:2.5A 111:2.75A reset by power down or RST.
2:0	RW	0x4	BUCK3_ILVL BUCK3_ILVL<2:0>: BUCK3 valley current limit select, linkage adjustment with the BUCK3_ ILVL <2:0>(write the same code) 000:1A 010:1.25A 010:1.5A 011:1.75A 100:2A 110:2.25A 110:2.5A 111:2.75A reset by power down or RST.

PMIC_BUCK3_ON_VSEL Address: (0x00c1)

Attr	Reset Value	Description
RW	0x0	BUCK3_ON_FPWM BUCK3_ON_FPWM: BUCK3 Forced PWM mode selection 1, Forced PWM mode in active mode; 0, PWM/PFM auto change mode reset by power down or RST.
		BUCK3_ON_VSEL BUCK3_ON_VSEL<6:0>: BUCK3 active mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V
RW	ОТР	1010000:1.5V 1010001:1.6V 1010010:1.7V 1011000:2.3V 1011001~1111111:2.4V the default value is set by otp
	RW	RW 0x0

PMIC_BUCK3_SLP_VSEL Address: (0x00c2)

Bit	Attr	Reset Value	Description
7	RW	0x0	BUCK3_SLP_FPWM BUCK3_SLP_FPWM: 1, Forced PWM mode in sleep mode. 0, PWM/PFM auto change mode. reset by power down or RST.
6:0	RW	ОТР	BUCK3_SLP_VSEL BUCK3_SLP_VSEL<6:0>: BUCK3 SLEEP mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V 1010000:1.5V 1010001:1.6V 1010010:1.7V 1011000:2.3V 1011001~111111:2.4V the default value is set by otp reset by power down or RST.

PMIC_BUCK4_CONFIG Address: (0x00c3)

Bit	Attr	Reset Value	Description
7:6	RW	0×1	BUCK4_RATE BUCK4_RATE<1:0>: BUCK4 voltage change rate after DVS 00: 3mV/uS; 01: 6.3mV/uS; 10:12.5mV/uS; 11: 25mV/uS reset by power down or RST.
5:3	RW	0×4	BUCK4_ILPK BUCK4_ILPK BUCK4_ILPK<2:0>: BUCK4 peak current limit select, MUST linkage adjustment with the BUCK4_ ILPK <2:0>(write the same code) 000:1A 010:1.25A 010:1.5A 011:1.75A 100:2A 101:2.25A 110:2.5A 111:2.75A reset by power down or RST.
2:0	RW	0×4	BUCK4_ILVL BUCK4_ILVL<2:0>: BUCK4 valley current limit select, linkage adjustment with the BUCK4_ ILVL <2:0>(write the same code) 000:1A 010:1.25A 010:1.5A 011:1.75A 100:2A 101:2.25A 110:2.5A 111:2.75A reset by power down or RST.

PMIC_BUCK4_ON_VSEL Address: (0x00c4)

Bit	Attr	Reset Value	Description
7	RW	0x0	BUCK4_ON_FPWM BUCK4_ON_FPWM: BUCK4 Forced PWM mode selection 1, Forced PWM mode in active mode; 0, PWM/PFM auto change mode reset by power down or RST.
6:0	RW	ОТР	BUCK4_ON_VSEL BUCK4_ON_VSEL<6:0>: BUCK4 active mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V 1010000:1.5V 1010001:1.6V 1010010:1.7V 1100011~111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_BUCK4_SLP_VSEL Address: (0x00c5)

Bit	Attr	Reset Value	Description
7	RW	0x0	BUCK4_SLP_FPWM BUCK4_SLP_FPWM: 1, Forced PWM mode in sleep mode. 0, PWM/PFM auto change mode.
			reset by power down or RST.
	. (BUCK4_SLP_VSEL BUCK4_SLP_VSEL<6:0>: BUCK4 SLEEP mode voltage select 0000000:0.5V 0000001:0.5125V 0000010:0.525V
6:0	RW	OTP	1010000:1.5V 1010001:1.6V 1010010:1.7V 1100011~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_BUCK4_CMIN Address: (0x00c6)

Bit	Attr	Reset Value	Description
7	RW	0x0	SYSUV_DLY_SEL SYSUV_DLY_SEL: Sys under voltage delay time selection 0: 5uS 1:50uS

Bit	Attr	Reset Value	Description
6	RW	0×0	LDO3_UVSD_EN LDO3_UVSD_EN: SYSUV to shutdown the LDO3 function 0:Disable 1:enable
5	RW	0×0	SYSUV_TRIG_RESETB_EN SYSUV_TRIG_RESETB_EN:SYSUV to trigger restart the PMIC function 0:Disable 1:enable
4	RW	0×0	I2S_RX_MST I2S RX module as master mode(1)/slave mode(0) reset by power down or RST.
3	RW	0×0	BUCK4_CMIN_EN BUCK4_CMIN_EN:BUCK4 min Current limit enable 1, Enable 0, Disable reset by power down or RST.
2:1	RW	0x2	BUCK4_CMIN_SEL BUCK4_CMIN_SEL<2:1>: BUCK4 min Current limit select reset by power down or RST. 00:200mA 01:300mA 10:400mA 11:500mA
0	RW	0x0	RESV RESV: Reserve

PMIC_LDO1_ON_VSEL Address: (0x00cc)

Bit	Attr	Reset Value	Description
7	RW	0x0	LDO1_IMAX LDO1_IMAX:LDO1 current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.
6:0	RW	ОТР	LDO1_ON_VSEL LDO1_ON_VSEL: LDO1 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO1_SLP_VSEL Address: (0x00cd)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
		OXO	RESV:Reserve

Bit	Attr	Reset Value	Description
6:0	RW	ОТР	LDO1_SLP_VSEL LDO1_SLP_VSEL:LDO1 SLEEP mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO2_ON_VSEL Address: (0x00ce)

Bit	Attr	Reset Value	Description
7	RW	0x0	LDO2_IMAX LDO2_IMAX:LDO2 current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.
6:0	RW	ОТР	LDO2_ON_VSEL LDO2_ON_VSEL: LDO2 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO2_SLP_VSEL Address: (0x00cf)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
	KVV	UXU	RESV:Reserve
			LDO2_SLP_VSEL
			LDO2_SLP_VSEL:LDO2 SLEEP mode voltage
			select, 0.6V~3.4V(step=25mV)
			000000:0.6V
6:0	RW	ОТР	0000001:0.625V
0.0	KVV	OTF	0000010:0.65V
			11110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO3_ON_VSEL Address: (0x00d0)

Bit	Attr	Reset Value	Description
7	RW	0x0	LDO3_IMAX LDO3_IMAX:LDO3 current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.
6:0	RW	ОТР	LDO3_ON_VSEL LDO3_ON_VSEL: LDO3 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO3_SLP_VSEL Address: (0x00d1)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV:Reserve
6:0	RW	ОТР	LDO3_SLP_VSEL LDO3_SLP_VSEL:LDO3 SLEEP mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO4_ON_VSEL Address: (0x00d2)

Bit	Attr	Reset Value	Description
7	RW	0x0	LDO4_IMAX LDO4_IMAX:LDO4 current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.
6:0	RW	ОТР	LDO4_ON_VSEL LDO4_ON_VSEL: LDO4 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO4_SLP_VSEL Address: (0x00d3)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	KVV	UXU	RESV:Reserve
			LDO4_SLP_VSEL
			LDO4_SLP_VSEL:LDO4 SLEEP mode voltage
			select, 0.6V~3.4V(step=25mV)
			0000000:0.6V
6:0	RW	ОТР	0000001:0.625V
0:0	KVV	OTP	0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO5_ON_VSEL Address: (0x00d4)

Bit	Attr	Reset Value	Description
7	RW	0x0	LDO5_IMAX LDO5_IMAX:LDO5current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.
6:0	RW	ОТР	LDO5_ON_VSEL LDO5_ON_VSEL: LDO5 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO5_SLP_VSEL Address: (0x00d5)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
			RESV:Reserve
			LDO5_SLP_VSEL
			LDO5_SLP_VSEL:LDO5 SLEEP mode
			voltage select, 0.6V~3.4V(step=25mV)
			000000:0.6V
6:0	RW	OTP	0000001:0.625V
0.0	KVV	OTP	0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO6_ON_VSEL Address: (0x00d6)

Bit	Attr	Reset Value	Description
7	RW	0x0	LDO6_IMAX LDO6_IMAX:LDO6 current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.
6:0	RW	ОТР	LDO6_ON_VSEL LDO6_ON_VSEL: LDO6 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V 1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO6_SLP_VSEL Address: (0x00d7)

Bit	Attr	Reset Value	Description
7	RW	0x0	RESV
/	KVV	UXU	RESV:Reserve
			LDO6_SLP_VSEL
			LDO6_SLP_VSEL:LDO6 SLEEP mode voltage
		ОТР	select, 0.6V~3.4V(step=25mV)
			0000000:0.6V
6:0	RW		0000001:0.625V
	KVV		0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO7_ON_VSEL Address: (0x00d8)

Bit	Attr	Reset Value	Description
7	RW	0×0	LDO7_IMAX Field0000 Abstract LDO7_IMAX:LDO7 current limit setting 0: normal, 1: 130% of nominal value reset by power down or RST.

Bit	Attr	Reset Value	Description
6:0	RW	ОТР	LDO7_ON_VSEL LDO7_ON_VSEL: LDO7 active mode voltage select, 0.6V~3.4V(step=25mV) 0000000:0.6V 0000001:0.625V 0000010:0.65V
			1110000~1111111:3.4V the default value is set by otp reset by power down or RST.

PMIC_LDO7_SLP_VSEL Address: (0x00d9)

Bit	Attr	Reset Value	Description
7	RW	00	RESV
/	KVV	0x0	RESV:Reserve
			LDO7_SLP_VSEL
		ОТР	LDO7_SLP_VSEL:LDO7 SLEEP mode voltage
			select, 0.6V~3.4V(step=25mV)
			0000000:0.6V
6:0	RW		0000001:0.625V
	IK VV		0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO8_ON_VSEL

Address: (0x00da)

Bit	Attr	Reset Value	Description
,			LDO8_IMAX
			LDO8_IMAX:LDO8 current limit setting
7	RW	0x0	0: normal,
			1: 130% of nominal value
			reset by power down or RST.
			LDO8_ON_VSEL
			LDO8_ON_VSEL: LDO8 active mode voltage
			select, 0.6V~3.4V(step=25mV)
			0000000:0.6V
6:0	RW	OTP	0000001:0.625V
0.0	KVV	OTP	0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO8_SLP_VSEL

Address: (0x00db)

Bit	Attr	Reset Value	Description
7	RW	0.40	RESV
/	KVV	0x0	RESV:Reserve
			LDO8_SLP_VSEL
			LDO8_SLP_VSEL:LDO8 SLEEP mode voltage
	RW	ОТР	select, 0.6V~3.4V(step=25mV)
			0000000:0.6V
C - O			0000001:0.625V
6:0			0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO9_ON_VSEL

Address: (0x00dc)

Bit	Attr	Reset Value	Description
			LDO9_IMAX
			LDO9_IMAX:LDO9 current limit setting
7	RW	0x0	0: normal,
			1: 130% of nominal value
			reset by power down or RST.
	RW OTP	LDO9_ON_VSEL	
		W OTP	LDO9_ON_VSEL: LDO9 active mode voltage
			select, 0.6V~3.4V(step=25mV)
			0000000:0.6V
C.O			0000001:0.625V
6:0	KVV		0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_LDO9_SLP_VSEL

Address: (0x00dd)

Bit	Attr	Reset Value	Description
7	7	00	RESV
'	RW	0x0	RESV:Reserve

Bit	Attr	Reset Value	Description
			LDO9_SLP_VSEL
			LDO9_SLP_VSEL:LDO9 SLEEP mode voltage
			select, 0.6V~3.4V(step=25mV)
	DW	O.T.D.	000000:0.6V
C.O			0000001:0.625V
6:0	RW	OTP	0000010:0.65V
			1110000~1111111:3.4V
			the default value is set by otp
			reset by power down or RST.

PMIC_BUCK5_SW1_CONFIG0

Address: (0x00de)

Bit	Attr	Reset Value	Description
			SW1_ILIM
7:6	RW	0x0	SW1_ILIM: SWOUT1 current limit selection
7.0	KVV	0.00	00: 1A 01:1.5A 10:1.8A 11: 2.1A
			reset by power down or RST.
5	RW	0x0	RESV
5	IXVV	0.00	Reserved
		0x1	BUCK5_ILMAX
			BUCK5_ILMAX:BUCK5 inductor peak current
4:3	RW		setting
			00:2.5A 01:3A 10:4A 11:4.5A
			reset by power down or RST.
			BUCK5_ON_VSEL
		RW OTP	BUCK5_ON_VSEL:BUCK5 active mode
			voltage select.
2:0	RW		000: 1.5V; 001: 1.8V; 010: 2.0V; 011: 2.2V
			100: 2.8V; 101: 3.0V; 110: 3.3V; 111: 3.6V
			the default value is set by otp
			reset by power down or RST.

PMIC_BUCK5_CONFIG1

Address: (0x00df)

Bit	Attr	Reset Value	Description
7.6	RW	10x1	RESV
7:6			Reserved
		0x2	SW2_ILIM
	RW		SW2_ILIM<2:0>: SWOUT2 current limit
5:3			select
			000: 1A 001:1.5A 010:1.8A 011: 2.1A
			1xx: 2.1A

Bit	Attr	Reset Value	Description
			BUCK5_SLP_VSEL
			BUCK5_SLP_VSEL:BUCK5 SLEEP mode
			voltage select.
2:0	RW	ОТР	000: 1.5V; 001: 1.8V; 010: 2.0V; 011: 2.2V
			100: 2.8V; 101: 3.0V; 110: 3.3V; 111: 3.6V
			the default value is set by otp
			reset by power down or RST.

PMIC_CHIP_NAME

Address: (0x00ed)

Bit	Attr	Reset Value	Description
			CHIP_NAME
7:0	RO	0x80	CHIP_NAME:CHIP name code<11:4>.default
			80

PMIC_CHIP_VER

Address: (0x00ee)

Bit	Attr	Reset Value	Description
			CHIP_NAME
7:4	RO	0x9	CHIP_NAME:CHIP name code<3:0>.default
			9
2.0	D.O.	0.42	RESV
3:0	RO	0x2	RESV: Reserve

PMIC_OTP_VER

Address: (0x00ef)

Bit	Attr	Reset Value	Description
		0×0	LDO1P8A_VSEL
7:6	RW		LDO1P8A_VSEL: VCC_1P8A voltage select
			00: 1.8V 01: 1.6V 10: 1.9V 11:2.0V
5:4	D.O.	00	RESV
514	RO	0x0	RESV: Reserve
			OTP_VER
3:0	RO	ОТР	OTP_VER: OTP revize version.
			default OTP.

PMIC_SYS_STS Address: (0x00f0)

Bit	Attr	Reset Value	Description
			PWRON_STS
			PWRON_STS: PWRON key status
7	RO	0x0	1: PWRON not press 0:PWRON button
			pressed
			reset by power down or RST
			PLUG_IN_STS
			PLUG_IN_STS: USB plug-in event
6	RO	0x0	occurs(VDC>0.55V)
			0: no USB plug in
			1: USB plugged in
			VCC9_UV_STS
5	RO	0x0	VCC9_UV_STS: VCC9 under voltage lockout
			status
			VCC9_LO_STS
4	RO	0x0	VCC9_LO_STS: VCC9 low voltage status
•		o x o	0: VCC9>VB_LO_SEL
			1: VCC9 <vb_lo_sel< td=""></vb_lo_sel<>
3	RO	0x0	HOTDIE_STS
		O X O	HOTDIE_STS: Hot-die warning
2	RO	0x0	TSD_STS
_	11.0	OXO	TSD_STS: Thermal shut down
1	RO	0x0	RESV
_	NO	UXU	RESV: Reserve
0	DO.	0,40	VCC9_OV_STS
U	KU	RO 0x0	VCC9_OV_STS: VCC9 over voltage status bit

PMIC_SYS_CFG0 Address: (0x00f1)

Bit	Attr	Reset Value	Description
7	RW	0x1	VCC9_OV_EN VCC9_OV_EN: VCC9 over voltage function enable 0:disable 1:enable
6:4	RW	0×0	VCC9_UV_SEL VCC9_UV_SEL:VCC9 shut down voltage select, 2.7V~3.4V, step=100mV 000:2.7V; 001:2.8V; 010:2.9V; 011:3.0V 100:3.1V; 101:3.2V; 110:3.3V; 111:3.4V reset by power down or RST
3	RW	0x1	VCC9_LO_ACT VCC9_LO_ACT: VCC9 low voltage action 0: shut down system 1: insert interrupt reset by power down or RST
2:0	RW	0x4	VCC9_LO_SEL VCC9_LO_SEL: VCC9 low voltage threshold,2.8V~3.5V, step=100mV 000:2.8V; 001:2.9V; 010:3.0V; 011:3.1V 100:3.2V; 101:3.3V; 110:3.4V; 111:3.5V reset by power down or RST

PMIC_SYS_CFG1 Address: (0x00f2)

Bit	Attr	Reset Value	Description
7	RW	0×1	CLK32KOUT_EN CLK32KOUT_EN: CLK32K output is enable 1. enable
			0. disable reset by power down or RST
6	RW	0×0	TSD_TEMP TSD_TEMP: Thermal shutdown temperature threshold 0: 140℃; 1: 160℃ reset by power down or RST
5:4	RW	0×0	HOTDIE_TEMP HOTDIE_TEMP: Hot-die temperature threshold 00:85℃ 01:95℃ 10:105℃ 11:115℃ reset by power down or RST
3	RW	0×0	VCC9_OV_SD_EN VCC9_OV_SD_EN: Shut down the BUCK1~5 mosfet if the VCC9 OV happens 0:Disable 1:Enable
2	RW	0x0	VCC9_OV_SD_TIME VCC9_OV_SD_TIME: VCC9 OV comparator delay time selection 0: 8uS 1:30uS
1	RW	0x0	RESV RESV: Reserve
0	RW	0x0	RESV RESV: Reserve

PMIC_SYS_CFG2 Address: (0x00f3)

Bit	Attr	Reset Value	Description
7	RW	0x0	ADC_PHASE ADC_PHASE: ADC phase select 0: normal 1: reverse
6	RW	0x1	BUCK5_CLK_SEL BUCK5_CLK_SEL: BUCK5 clock select 0:1Meg 1:2Meg
5	RW	0x0	HK_BG_SUP_SEL HK_BG_SUP_SEL: house keeping band gap supply select 0:VCCRTC 1: Internal LDO
4	RW	0x0	HK_REF_RES_SEL HK_REF_RES_SEL: house keeping reference filter resistor select 0:100% 1:200%

Bit	Attr	Reset Value	Description
3	RW	0x0	HK_REF_LP_EN HK_REF_LP_EN: house keeping reference lower power enable 1. enable 0. disable
2	RW	0x0	RESV RESV: Reserve
1	RW	0x0	VCC9_UV_PRE_DLY VCC9_UV_PRE_DLY: VCC9 under voltage delay time select 0:1.5uS 1:5uS
0	RW	0×0	RESV RESV: Reserve

PMIC_SYS_CFG3 Address: (0x00f4)

Note: Do not operate the F4 register consecutively, two operations on the F4 register must include at least one register read between operations, and delay 2ms.

Bit	Attr	Reset Value	Description
			RST_FUN: reset function selection:
			00: Restart the PMU.
7:6	RW	0x0	01: reset DCDC and LDO. (Do not use this
			mode when SLEEP.)
			1x: Do not use.
			SLP_POL
			SLP_POL: SLEEP pin polarity
5	RW	0x1	0:active low
			1:active high
			reset by power down or RST
			SLP_FUN
			SLP_FUN: SLEEP PIN function selection:
4:3	RW	0×0	00: not effect; 01: sleep function;
4.3	RW		10:shutdown function; 11:restart pmu
			function.
			reset by power down or RST
			DEV_RST
			DEV_RST: Write 1 will 'RST' the device.
2	RW	0x0	Note: 'RST' is not only a reset source, but a
			special function defined by 'RST_FUN'
			reset by power down or RST
			DEV SLP
1	RW	0x0	DEV_SLP: Write 1 will go to SLEEP state.
			reset by power down or RST
			DEV_OFF
0	RW	0x0	DEV_OFF: Write 1 will shutdown the device.
			reset by power down or RST

PMIC_ON_SOURCE Address: (0x00f5)

Bit	Attr	Reset Value	Description
7	RO	0x0	ON_PWRON ON_PWRON: PRESS PWRON to turn on PMU reset by power down or RST, and load this bit after reset.
6	RO	0x0	ON_PLUG_IN ON_PLUG_IN:USB PLUG IN to turn on PMU reset by power down or RST
5	RO	0x0	ON_RTC ON_RTC:RTC timer to turn on PMU reset by power down or RST
4	RO	0x0	RESTART_RESETB RESTART_RESETB:PULL LOW the RESETB PIN to restart the PMU reset by power down or RST
3	RO	0×0	RESTART_PWRON_LP RESTART_PWRON_LP:Long press PWRON to restart the PMU reset by power down or RST
2	RO	0×0	RESTART_SLP RESTART_SLP:SLEEP PIN ACTIVE to restart the PMU reset by power down or RST
1	RW	0×0	RESTART_DEV_RST RESTART_DEV_RST: I2C write DEV_RST to restart PMU reset by power down or RST
0	RO	0x0	RESV RESV: Reserve

PMIC_OFF_SOURCE Address: (0x00f6)

Bit	Attr	Reset Value	Description
7	RO	0x0	OFF_SLP OFF_SLP: SLEEP PIN ACTIVE to turn off PMU reset by power down or RST, and load this bit after reset.
6	RO	0×0	OFF_VCC9_OV OFF_VCC9_OV:VCC9 OV to turn off PMU reset by power down or RST, and load this bit after reset.
5	RO	0×0	OFF_TSD OFF_TSD:TSD to turn off PMU reset by power down or RST, and load this bit after reset.
4	RO	0×0	OFF_VCC9_UV OFF_VCC9_UV: VCC9 UV to turn off PMU reset by power down or RST, and load this bit after reset.
3	RO	0x0	OFF_DEV_OFF OFF_DEV_OFF:I2C write DEV_OFF to turn off PMU reset by power down or RST, and load this bit after reset.

Bit	Attr	Reset Value	Description
2	RO	0x0	OFF_PWRON_LP OFF_PWRON_LP: long press PWRON to turn off PMU reset by power down or RST, and load this bit after reset.
1	RO	0×0	RESV RESV: Reserve
0	RO	0x0	OFF_VCC9_LO OFF_VCC9_LO:VCC9 Low (if VCC9_LO_ACT=0)to turn off PMU reset by power down or RST, and load this bit after reset.

PMIC_PWRON_KEY Address: (0x00f7)

Bit	Attr	Reset Value	Description
			PWRON_ON_TIME
7	RW	OTP	PWRON_ON_TIME:0:500mS; 1:100mS
			default OTP.
			PWRON_LP_ACT
6	RW	0×0	PWRON_LP_ACT: PWRON long press act
O	IK V V	0.00	0: turn off
			1: turn off and then restart
			PWRON_LP_OFF_TIME
5:4	RW	0x0	PWRON_LP_OFF_TIME: PWRON long press
3.4	IXVV	0.00	time:
			00: 6s, 01: 8s, 10: 10s, 11: 12s
		0x1	PWRON_LP_TM
3:2	RW		PWRON_LP_TM_SEL<1:0>:PWRON long
5.2	IXVV		press interrupt time selection:
			00: 0.5S 01:1S 10:1.5S 11:2S
		0x2	PWRON_DB_SEL
1:0	RW		PWRON_DB_SEL<1:0>:PWRON interrupt
1.0	1244		debounce time selection:
			00: 32uS 01:10mS 10:20mS 11:40mS

PMIC_INT_STS0 Address: (0x00f8)

Bit	Attr	Reset Value	Description
			VCC9_LO_INT
7	W1C	0x0	VCC9_LO_INT: VCC9 under voltage alarm
,	****	ONO	event interrupt status.
			reset by power down or RST.
			RTC_PERIOD_INT
6	W1C	0.40	RTC_PERIOD_INT: RTC period event
6	W1C	0x0	interrupt.
			reset by power down or RST.
			RTC_ALARM_INT
5	W1C	0x0	RTC_ALARM_INT: RTC alarm event interrupt.
			reset by power down or RST.

Bit	Attr	Reset Value	Description	
4	W1C	0×0	HOTDIE_INT HOTDIE_INT: Hot die event interrupt status. reset by power down or RST.	
3	W1C	0×0	PWRON_LP_INT PWRON_LP_INT: PWRON PIN long press event interrupt status. reset by power down or RST.	
2	W1C	0×0	PWRON_INT PWRON_INT: PWRON event interrupt status. reset by power down or RST.	
1	W1C	0×0	PWRON_RISE_INT PWRON_RISE_INT:PWRON rising event interrupt reset by power down or RST.	
0	W1C	0x0	PWRON_FALL_INT PWRON_FALL_INT:PWRON falling event interrupt reset by power down or RST.	

PMIC_INT_MSK0 Address: (0x00f9)

Bit	Attr	Reset Value	Description
			VB_LO_IM
7	RW	0x0	VB_LO_IM: Battery under voltage alarm
			event interrupt mask reset by power down or RST.
			RTC PERIOD IM
			RTC_PERIOD_IM: RTC period event interrupt
6	RW	0x0	mask
			reset by power down or RST.
			RTC_ALARM_IM
5	RW	0x0	RTC_ALARM_IM: RTC alarm event interrupt
3	KVV	UXU	mask
			reset by power down or RST.
		0×0	HOTDIE_IM
4	RW		HOTDIE_IM: Hot die event interrupt mask
			reset by power down or RST.
			PWRON_LP_IM
3	RW	0x0	PWRON_LP_IM: PWRON PIN long press
			event interrupt mask
			reset by power down or RST. PWRON IM
2	RW	0x0	PWRON_IM:PWRON event interrupt mask
_	I XVV		reset by power down or RST.
			PWRON RISE INT IM
_	DVA		PWRON_RISE_INT_IM:PWRON rising event
1	RW	0x0	interrupt mask
			reset by power down or RST.
			PWRON_FALL_INT_IM
0	RW	0x0	PWRON_FALL_INT_IM:PWRON falling event
	1244		interrupt mask
			reset by power down or RST.

PMIC_INT_STS1 Address: (0x00fa)

Bit	Attr	Reset Value	Description
7:2	W1C	0x0	RESV
7.2	WIC		RESV: Reserve
	W1C	0x0	PLUG_OUT_INT
1			PLUG_OUT_INT: USB plug out event
1			interrupt
			reset by power down or RST.
		/1C 0x0	PLUG_IN_INT
0	W1C		PLUG_IN_INT: USB plug in event interrupt
			reset by power down or RST.

PMIC_INT_MSK1 Address: (0x00fb)

Bit	Attr	Reset Value	Description
7:2	RW	0x0	RESV
7.2	KVV	UXU	RESV: Reserve
			PLUG_OUT_INT_IM
1	RW	0x0	PLUG_OUT_INT_IM: USB plug out event
1	KVV	UXU	interrupt mask
			reset by power down or RST.
			PLUG_IN_INT_IM
	RW	0×0	PLUG_IN_INT_IM: USB plug in event
O	KVV		interrupt mask
			reset by power down or RST.

PMIC_INT_STS2 Address: (0x00fc)

Bit	Attr	Reset Value	Description
7:6	RC	0×0	RESV
7.0	KC .	UXU	RESV: Reserve
			CLASSD_OCP_INT
5	W1C	0x0	CLASSD_OCP_INT:CLASS D OCP interrupt.
			reset by power down or RST.
			CLASSD_MUTE_DONE
4	W1C	0x0	CLASSD_MUTE_DONE_INT:CLASSD_MUTE_D
7	WIC	OXO	ONE interrupt.
			reset by power down or RST.
	W1C	0×0	CODEC_PO_INT
3			CODEC_PO_INT: CODEC ANTI-POP DAC
3			SMART POWER ON DONE interrupt.
			reset by power down or RST.
			CODEC_PD_INT
2	W1C	0×0	CODEC_PD_INT: CODEC ANTI-POP DAC
			SMART POWER OFF DONE interrupt.
			reset by power down or RST.

Bit	Attr	Reset Value	Description
1:0	W1C	0×0	RESV
1.0	WIC	UXU	RESV: Reserve

PMIC_INT_MSK2 Address: (0x00fd)

Bit	Attr	Reset Value	Description
7:6	RW	0x0	RESV
7.0	KVV	UXU	RESV: Reserve
			CLASSD_OCP_INT_IM
5	RW	0×0	CLASSD_OCP_INT_IM:CLASS D OCP
	IXVV	0.00	interrupt mask.
			reset by power down or RST.
			CLASSD_MUTE_DONE_IM
4	RW	0×0	CLASSD_MUTE_DONE_IM:CLASSD_MUTE_D
1	KVV	UXU	ONE interrupt mask.
			reset by power down or RST.
			CODEC_PO_INT_IM
3	RW	0×0	CODEC_PO_INT_IM:CODEC ANTI-POP DAC
3	FCVV	UXU	SMART POWER ON DONE interrupt mask.
			reset by power down or RST.
			CODEC_PD_INT_IM
2	DW	00	CODEC_PD_INT_IM:CODEC ANTI-POP DAC
2	RW	0x0	SMART POWER OFF DONE interrupt mask.
			reset by power down or RST.
1:0	RW	0×0	RESV
1.0	FCVV	0x0	RESV: Reserve

PMIC_GPIO_INT_CONFIG Address: (0x00fe)

Bit	Attr	Reset Value	Description
7:2	DW	0x0	RESV
7.2	RW	UXU	RESV: Reserve
,			INT_POL
			INT_POL: INT pin polarity
1	RW	0x1	0: active low
			1: active high
			reset by power down or RST.
			INT_FC_EN
		0×0	INT_FC_EN: interrupt watchdog function
0	RW		enable
U	KVV		0:disable
			1:enable
			reset by power down or RST.

Chapter 6 Thermal Management

6.1 Overview

For reliability and operability concerns, the absolute maximum junction temperature of RK809 has to be below 125° C.

Depending on the thermal mechanical design (Smartphone, Tablet, Personal Navigation Device, etc), the system thermal management software and worst case thermal applications, the junction temperature might be exposed to higher values than those specified above.

Therefore, it is recommended to perform thermal simulations at device level (Smartphone, Tablet, Personal Navigation Device, etc) with the measured power of the worst case UC of the device.

6.2 Package Thermal Characteristics

Table 6-1 provides the thermal resistance characteristics for the package used on this device.

Table 6-1 Thermal Resistance Characteristics

PACKAGE (QFN7X7-68)	POWER(W)	$ heta_{JA}(^{\circ}\mathbb{C}/W)$	$ heta_{JB}(^{\circ}C/W)$	$\theta_{JC}(^{\circ}C/W)$
RK809	2	21.99	12	6.58

Note: The testing PCB is based on 4 layers, $114mm \times 76 mm$, 1.6mm thickness, Ambient temperature is $85^{\circ}C$.