

Step 2: Draw Bode plot of RP(jw). Observe
the phase margin and gain crossover frequency. Ipm = 10.2° at Uge = 11.2 rad/s
epm = 10.2° at Uge = 11.2 rad/s
Set wm = wgc
Set wm = wgc We need to add Ipm - Ipm = 45°-10.2° = 34.8°
= 34.8°
=> Pmax = 34.8°
Step 3: Design equations
$\Delta = 1 + \sin(\theta_{\text{max}}) - 2 \text{ (c}$
$K = \frac{1 + \sin(\phi_{\text{max}})}{1 - \sin(\phi_{\text{max}})} = 3.66$
$\omega_{m} = 1 \omega_{m} = 0.0467$
V = K
F = 66.13
Step 4: Simulate the design $C(s) = 241.9 (s+5.85)$
C + 21 42 .
St 21.43 A Bero Closer to In axis
tero Closer to In axis
THEN SOLE [CAOL CONTROLLE!]
I get Epm = 45° at wgc=11.1 rad/s.
J ' J -
Remark: We've designed a lag and a lead

Controller to meet the same specs.
Lag: Epm 245°, wgc = 1.7 rad/s Lead: Epm = 45°, wgc = 11.1 rad/s
-the lead controller gives a higher wgc (≈ closed - loop wbw) so closed-loop system will be faster
-the lead controller will use more control effort.
Procedure for Lead Design C(s) = K KTs+1 Ts+1
Specs: (a) Form and (b) one of: (i) steady-state tracking (ii) desired wge
1. Let k= KJX
(i) Use FUT to pick (s.t. (P(s)) meets spec (i) in s.s. Boost the gain by 10dB to account for magnitude distortion.
(ti) Pick R s.t. KPG) has desired wgc 2. Draw Bode plot of RPG; w) 3. Find wgc and Ipm. Set wm=wgc.

x, 71, 0< x2 < 1 In(s)				
1.0	d			
1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	> /			
7, 1,50				
X 0 0 X				
TAI				

•