201C, Spring '16, Thomases Homework 1

- 1. If f and g are measurable functions on Ω , then $||fg||_1 \leq ||f||_1 ||g||_{\infty}$. If $f \in L^1$ and $g \in L^{\infty}$, then $||fg||_1 = ||f||_1 ||g||_{\infty}$ if and only if $|g(x)| = ||g||_{\infty}$ a.e. on the set where $f(x) \neq 0$.
- 2. $||f_n f||_{\infty} \to 0$ iff there exists a measurable set E such that $\mu(E^c) = 0$ and $f_n \to f$ uniformly on E.

We say $\{f_n\}$ converges in measure to f if for every $\epsilon > 0$,

$$\mu(\lbrace x : |f_n(x) - f(x)| \ge \epsilon \rbrace) \to 0 \text{ as } n \to \infty.$$

- 3. If $||f_n f||_p \to 0$ $(p < \infty)$ then $f_n \to f$ in measure, and hence some subsequence converges to f a.e. On the other hand if $f_n \to f$ in measure and $|f_n| \le g \in L^p$ for all n $(p < \infty)$ then $||f_n f||_p \to 0$.
- 4. If $f_n, f \in L^p$ $(p < \infty)$ and $f_n \to f$ point-wise a.e., then $||f_n f||_p \to 0$ iff $||f_n||_p \to ||f||_p$.
- 5. Suppose $0 . Then <math>L^p \not\subset L^q$ iff Ω contains sets of arbitrarily small positive measure, and $L^q \not\subset L^p$ iff Ω contains sets of arbitrarily large finite measure. [Hint: for the "if" inplication: in the first case there is a disjoint sequence $\{E_n\}$ with $0 < \mu(E_n) \le 2^{-n}$, and in the second case there is a disjoint sequence $\{E_n\}$ with $1 \le \mu(E_n) < \infty$. Consider $f = \sum a_n \chi_{E_n}$ for suitable constants a_n .]
- 6. If $f \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some q then $f \in L^{p}(\Omega)$ for all p > q and

$$||f||_{\infty} = \lim_{n \to \infty} ||f||_p.$$

- 7. Prove that when $\infty \geq r \geq q \geq 1$, $f \in L^r(\Omega) \cap L^q(\Omega) \Rightarrow f \in L^p(\Omega)$ for all $r \geq p \geq q$.
- 8. Prove that a strongly convergent sequence in $L^p(\mathbb{R}^n)$ is also a Cauchy sequence.
- 9. Give three different examples of ways for a sequence $f_k \in L^p(\mathbb{R}^n)$ to converge weakly to zero, but not converge strongly to anything. Verify your claims for these examples.