Билет 25

Автор1, ..., Aвтор<math>N

21 июня 2020 г.

Содержание

0.1	Билет 25: Лемма Леоега.	число леоега.	Связь между	компактностью и секвенци-	
	альной компактностью		. .		1

Билет 25 COДЕРЖАНИЕ

0.1. Билет 25: Лемма Лебега. Число Лебега. Связь между компактностью и секвенциальной компактностью.

Лемма. (Лебега)

K - секвенциальный компакт. U_{α} - открытое покрытие K. Тогда $\exists r>0,$ что $\forall x\in K$ $B_{r}(x)$ целиком содержится в некотором U из U_{α} .

r называют **чилом Лебега**.

Доказательство.

Пусть такого r не существует. Значит ни одно r не подходит. Рассмотрим последовательность $r_n=\frac{1}{n}$. И для каждого такого радиуса найдем точку x_n , такую что $B_{r_n}(x_n)$ не покрывается целиком никаким U_{α_i} . Получили последовательность $\{x_n\}$ точек секвенциального компакта. Значит можно выбрать $x_{n_k}: \lim_{k\to\infty} x_{n_k} = a\in K$.

Найдется $\alpha_0: a \in U_{\alpha_0}$. Так как U_{α_0} - открытое, то $\exists \varepsilon > 0: B_{\varepsilon}(a) \subset U_{\alpha_0}$.

Так как a - предел последовательность x_{n_k} , то $\exists N : \forall k \geqslant N \quad \rho(x_{n_k}, a) < \frac{\varepsilon}{2}$. К тому же если $k \geqslant \frac{\varepsilon}{2} \implies n_k \geqslant \frac{\varepsilon}{2} \implies \frac{1}{n_k} \leqslant \frac{\varepsilon}{2}$.

Теперь запишем цепочку вложений.

$$B_{\frac{1}{n_k}}(x_{n_k}) \subset B_{\frac{\varepsilon}{2}}(x_{n_k}) \subset B_{\varepsilon}(a) \subset U_{\alpha_0}$$

- ullet первое включение, потому что $\frac{1}{n_k} \leqslant \frac{\varepsilon}{2}$
- второе включение, потому что $\rho(a,x_{n_k})<rac{arepsilon}{2}$
- третье включение по выбору α_0

Получили, что $B_{\frac{1}{n_k}}(x_{n_k}) \subset U_{\alpha_0}$ - противорчие с тем, как мы выбирали x_{n_k} . Значит нужный r существует.

Теорема 0.1. (связь компактности и секвенциальной компакнтоности)

Компактность тоже самое, что и секвенциальная компактность.

Доказательство.

Доказательство того, что если множество компактно, то оно секвенциально компактно было в предыдущем билете.

Доказываем, что если множество K - секвенциально компактно, то оно компактно. Рассмотрим какое-нибудь открытое покрытие U_{α} . Для этого покрытия и K возьмем r - число Лебега. Теперь рассмотрим другое открытое покрытие K: $\bigcup_{x\in K} B_r(x)$. Чтобы доказать, что K - компакт,

надо найти конечное подпокрытие в U_{α} , для этого найдем конечное подпокрытие из $B_r(x_i)$ и каждый шарик накроем соответсвующим $U_i \implies$ получии коненчное подпокрытие. Осталось найти конечное подпокрытие шариками.

Возьмем $x_1 \in K$ и его шарик $B_r(x_1)$. Пока мы полностью не покроем K будем брать

$$x_i \in K \setminus \bigcup_{j=1}^{i-1} B_r(x_i)$$

Пусть такой процесс не остановился за конечное число шагов. Значит получили последовательность точек $x_n \in K$. Так как K - секвенциальный компкат, то из x_n можно выбрать сходящуюся

Билет 25 COДЕРЖАНИЕ

подпоследовательность x_{n_k} . Но x_{n_k} не является фундаментальной последовательностью, так как $\rho(x_i,x_j)\geqslant r$ (r - размер шариков).

Получили противоречие (так как из сходимости следует фундаментальность), значит процесс остановится за конечное число шагов, значит можно выбрать конечное покрытие из шариков, значит можно выбрать конечное покрытие из U_{α} .