Review

LINEAR AND LOGISTIC REGRESSION

A Visual Perspective

Linear Regression

Compute Error: $y - \hat{y}$

Logistic Regression

Compute Error: $y - \hat{y}$

Softmax

- ☐ Recall that sigmoid produces a number between 0 and 1
 - The sum of probabilities of an email being either spam or not spam is 1.0
- □Softmax extends this idea into a multi-class world.
 - It assigns a probability to each class in a multi-class problem and the probabilities across classes add up to 1.0
 - Works only when each example is a member of only one class.
 - If this is not true, rely on multiple logistic regression (oVr, oVo) i.e., multilabel classification

Generalizing Logistic Regression

- \square For multiple classes (#classes > 2), we can generalize logistic regression to **Softmax regression**
 - One-of-c classes
 - E.g., 4 classes (0, 1, 2, 4)

 \square Softmax converts these C raw scores to probabilities that sum to 1.0

Softmax Activation Function

$$z = wx + b$$

$$S(z)_i = \frac{e^{z_i}}{\sum_{j=1}^C e^{z_j}}$$

$$S(z)_i = \frac{e^{z_i}}{e^{z_1}, +e^{z_2}, \dots, +e^{z_C}}$$

Note: For 2 classes, the softmax is identical to sigmoid.

$$S(z)_1 = \frac{e^{z_1}}{e^{z_1}, e^{z_2}} = \sigma(z)$$

$$S(z)_2 = \frac{e^{z_2}}{e^{z_1}, e^{z_2}} = 1 - \sigma(z)$$

Softmax Activation Function

$$z = wx + b$$

$$S(z)_i = \frac{e^{z_i}}{\sum_{j=1}^C e^{z_j}}$$

$$S(z)_i = \frac{e^{z_i}}{e^{z_1}, +e^{z_2}, \dots, +e^{z_C}}$$

How softmax helps in computing loss?

Softmax

Hardmax

0

0

Softmax: A Visual Perspective

Compute Error

Softmax Decision Boundaries

Loss Function

Actual labels are one-hot-encoded.
$$\rightarrow y = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\hat{y} = \begin{bmatrix} 0.3 \\ 0.2 \\ 0.1 \\ 0.4 \end{bmatrix}$

$$Loss(y, \hat{y}) = -\sum_{j=1}^{C} y_j log \hat{y}_j$$

$$Loss(y, \hat{y}) = -(0.\log \hat{y}_1 + 1.\log \hat{y}_2 + 0.\log \hat{y}_3 + 0.\log \hat{y}_4)$$
$$Loss(y, \hat{y}) = -(1.\log \hat{y}_2) = -\log \hat{y}_2$$

$$J(y,\hat{y}) = \frac{1}{m} \sum_{i=1}^{m} Loss(y,\hat{y})$$

Use gradient descent to adjust weights once you have cost.

Other Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

One Hot Encoding (aka categorical encoding)

x_1	x_2	y
5	9	0
6	8	0
1	2	1
11	12	2

y One Hot Encoded
[1, 0, 0]
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

$$Loss(y, \hat{y}) = -\sum_{j=1}^{C} y_j log \hat{y}_j$$

$$J(y,\hat{y}) = \frac{1}{m} \sum_{i=1}^{m} Loss(y,\hat{y})$$

Assignment 3 – Task 3

- ☐ Implement Linear regression for your age prediction dataset using TensorFlow and train on your training split.
- Implement Multi-class classification using softmax logistic regression for emotion recognition labels in your dataset using TensorFlow. Train on your training split.
- ☐ Use appropriate loss functions and activation functions.
- ☐ Train both models for 50 epochs.
- Use checkpointing to save the model on the epoch where your model has minimum loss based on the test split.
- □ Compute performance metrics for both above trained models on test split.

Book Reading

- ☐ Murphy Chapter 8
- □Jurafsky Chapter 5, Chapter 4