April 6th, 2020 ENM251 Notes

1 April 6th, 2020

1.1 Sturm-Liouville

Definition 1.1. An ODE of the form:

$$\frac{d}{dx}(s(x)\phi'(x)) + q(x)\phi(x) + \lambda w(x)\phi(x) = 0, \alpha < x < \beta.$$

along with the boundary conditions:

$$c_1\phi(\alpha) + c_2\phi'(\alpha) = 0.$$

$$d_1\phi(\beta) + d_2\phi'(\beta) = 0.$$

is called a **regular Sturm Liouville Problem** (denoted RSLP) if the following conditions hold.

- 1. s(x), s'(x), q(x), w(x) are all continuous functions in the open interval $\alpha < x < \beta$
- 2. s(x) > 0 and w(x) > 0 for all $\alpha < x < \beta$
- 3. $c_1^2 + c_2^2 > 0$ and $d_1^2 + d_2^2 > 0$, i.e. can't have both c_1 and c_2 equal zero, same for d_1, d_2
- 4. The λ occurs only in the ODE as indicated by $\lambda w(x)\phi(x)$.

Recall that any linear 2nd order homogeneous ODE of the form:

$$a_2(x)\phi''(x) + a_1(x)\phi'(x) + a_0(x)\phi(x) + \lambda b(x)\phi(x) = 0.$$

can be placed in the form:

$$\frac{d}{dx}\left(s(x)\phi'(x)\right) + q(x)\phi(x) + \lambda w(x)\phi(x) = 0, \alpha < x < \beta.$$

by setting

$$s(x) = e^{\int \frac{a_1(x)}{a_2(x)} dx}.$$
$$q(x) = \frac{a_0(x)s(x)}{a_2(x)}.$$
$$w(x) = \frac{b(x)s(x)}{a_2(x)}.$$

Example 1.2

Consider:

$$x\phi''(x) + 2x\phi(x) + \phi(x) +_{\lambda} x^{2}\phi(x) = 0, \quad 0 < x < 1.$$

we have:

$$s(x) = e^{\int \frac{2x}{x}} dx = e^{2x}.$$
$$q(x) = \frac{1}{x}e^{2x}.$$
$$w(x) = \frac{x^2}{x}e^{2x} = xe^{2x}.$$

Meaning that the equation can be written in the form of:

$$\frac{d}{dx} \left(e^{2x} \phi'(x) \right) + \frac{1}{x} e^{2x} \phi(x) + \lambda x e^{2x} \phi(x) = 0, 0 < x < 1.$$

Remark 1.3 — The form above is called the **self-adjoint form**.

1.2 Properties of Regular Sturm-Liouville Problems

• There exist an infinite number of λ 's that lead to non-zero solutions $\phi(x)$ to the ODE and boundary conditions. These λ 's which can be ordered from smallest to largest are called the **eigenvalues** of the RSLP. Moreover

$$\lim_{n\to\infty}\lambda_n=+\infty.$$

This means if you solve a RLSP and found that $\lambda_n = \frac{n}{n+1}$ then there is a problem, since $\lim_{n\to\infty} \frac{n}{n+1} = 1 \neq +\infty$.

• If these λ 's are ordered and if the non-zero functions $\phi_n(x)$ satisfy:

$$\frac{d}{dx}(s(x)\phi'_n(x)) + q(x)\phi_n(x) + \lambda_n\omega(x)\phi_n(x) = 0.$$

and it satisfies the boundary conditions, then $\phi_n(x)$ is called the eigenfunction associated with the eigenvalue λ_n and $\phi_n(x)$ goes through zero exactly n-1 times in the open interval $\alpha < x < \beta$. As such $\phi_1(x)$ does not go though zero, $\phi_2(x)$ goes through zero once, and so on.

$$\phi_m \cdot \phi_n = \begin{cases} 0, n \neq m \\ > 0, n = m \end{cases}.$$

where

$$f \cdot g = \int_{\alpha}^{\beta} f(x)g(x)w(x) \ dx.$$

In other words there is a dot product that can be defined on the functions ϕ_n .

• The set of eigenfunctions

$$\{\phi_1(x),\phi_2(x),\ldots\}.$$

is called a complete set of basic functions so that if f(x) is any piecewise continuous function in the interval $\alpha < x < \beta$, then we may expand f(x) as:

$$f(x) = \sum_{n=1}^{\infty} a_n \phi_n(x).$$

with

$$a_n = \frac{\phi_n \cdot f}{\phi_n \cdot \phi_n}.$$

moreover, the sum converges to:

$$\frac{f(x^+) + f(x^-)}{2}.$$

Where:

$$f(a^{+)}) = \lim_{x \to a^{+}} f(x)$$
 $f(a^{-}) = \lim_{x \to a^{-}} f(x)$.

Note that piecewise continuous means that there can only be a finite number of hole or jump discontinuities but not essential discontinuities.

Remark 1.4 — This means that the regular Sturm Liouville series will fill in all of the hole discontinuities and where there is a jump discontinuity, it will converge to the midpoint of the jump.

Definition 1.5. A function f(x) is called piecewise continuous in a finite interval $\alpha < x < \beta$ is it has at most a finite number of hole or jumps in $\alpha < x < \beta$.

Example 1.6

Consider:

$$\phi''(x) + \lambda \phi(x) = 0, 0 < x < 1.$$

$$\phi(0) = 1 \quad \phi(1) = 0.$$

Thus we have:

$$s(x) = e^{\int \frac{0}{1} dx} = 1.$$

$$q(x) = \frac{(0)(1)}{1} = 0.$$

$$w(x) = \frac{(1)(1)}{1} = 1.$$

Note that this is a RSLP. To solve this problem, notice that this is a problem with constant coefficients, giving us:

$$\phi(x) = \begin{cases} A \cosh(x\sqrt{-\lambda}) + B \sinh(x\sqrt{-\lambda}), \lambda < 0 \\ A + Bx, \lambda = 0 \\ A \cos(x\sqrt{\lambda}) + B \sin(x\sqrt{\lambda}), \lambda > 0 \end{cases}$$

If we consider $\lambda < 0$, because of the boundary conditions, we get A = 0, and B = 0, meaning that $\lambda < 0$ gives us $\phi(x) = 0$, meaning that there are no negative eigenvalues.

For $\lambda = 0$, we have:

$$\phi(x) = A = 0 \implies \phi(x) = Bx.$$

$$\phi(1) = B = 0 \implies \phi(x) = 0.$$

meaning that zero is not an eigenvalue.

For $\lambda > 0$, we have:

$$\phi(0) = A = 0 \implies \phi(x) = B\sin(x\sqrt{\lambda}).$$

$$\phi(1) = B\sin(x\sqrt{\lambda}) \implies \sqrt{\lambda} = n\pi \implies \lambda = (n\pi)^2 = \lambda_n.$$

Note that we will always get a multiplicative constant when we try to calculate ϕ_n , thus we can set $B_n = 1$ giving us:

$$\phi_n(x) = \sin(n\pi x).$$

Remark 1.7 — Note that for the above example, $\phi_1(x) = \sin(\pi x)$ does not go through zero on the open interval between 0 and 1. Similarly $\phi_2(x) = \sin(2\pi x)$ goes through zero once at $x = \frac{1}{2}$, etc.