SemenovVlAl 25012025-105019

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=0.88\text{-}0.32\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать undexc выбранной точки.

$\mathbf{2}$ Задание 2

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.2	0.685	105.0	1.697	22.5	0.132	42.0	0.217	-89.9
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.4	0.700	101.2	1.584	18.4	0.139	40.2	0.217	-96.2
3.5	0.708	99.4	1.531	16.1	0.142	39.4	0.218	-99.3
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7
3.7	0.719	96.1	1.441	12.7	0.148	37.3	0.217	-106.1
3.8	0.724	94.5	1.398	10.9	0.151	36.3	0.218	-109.5
3.9	0.731	92.9	1.357	9.0	0.154	35.4	0.220	-112.8
4.0	0.738	91.4	1.317	6.9	0.157	34.5	0.222	-116.1
4.1	0.742	89.9	1.279	5.3	0.159	33.5	0.223	-119.5
4.2	0.748	88.4	1.242	3.6	0.162	32.5	0.225	-122.8

и частоты $f_{\text{H}}=3.3~\Gamma\Gamma$ ц, $f_{\text{B}}=4~\Gamma\Gamma$ ц. **Найти** модуль s_{21} в дB на частоте f_{B} .

- 1) -13.1 дБ
- 2) -16.1 дБ
- 3) -2.6 дБ
- 4) 2.4 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.541	158.9	4.991	69.9	0.059	56.3	0.265	-45.4
1.5	0.555	149.0	4.004	61.8	0.071	55.3	0.255	-49.1
1.8	0.572	139.6	3.324	54.4	0.083	53.4	0.247	-54.4
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.240	-60.3
2.4	0.608	123.1	2.474	40.6	0.106	48.4	0.232	-67.2
2.7	0.633	116.1	2.181	33.9	0.116	45.6	0.224	-74.8
3.0	0.655	109.7	1.948	27.5	0.126	42.9	0.217	-83.1
3.3	0.674	103.8	1.757	21.9	0.135	40.0	0.212	-92.2
3.6	0.696	98.3	1.592	15.8	0.144	37.3	0.211	-101.7

и частоты $f_{\scriptscriptstyle \rm H}=1.2$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=3.3$ $\Gamma\overline{\Gamma}$ ц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \rm B}$.

- 1) 13.5 дБ
- 2) 11.5 дБ
- 3) 26.9 дБ
- 4) 5.8 дБ

Задан двухполюсник на рисунке 2, причём R1 = 40.92 Ом.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.7	0.588	141.1	3.289	55.7	0.078	55.5	0.250	-52.1
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
1.9	0.598	135.5	2.940	50.9	0.086	53.9	0.245	-55.7
2.0	0.602	132.6	2.781	48.5	0.090	53.2	0.244	-57.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.2	0.616	127.5	2.526	43.8	0.098	51.5	0.238	-62.4
2.3	0.622	124.8	2.418	41.6	0.101	50.6	0.236	-64.8
2.4	0.629	122.1	2.313	39.3	0.105	49.7	0.234	-67.3
2.5	0.637	119.8	2.216	37.1	0.109	48.7	0.231	-69.8
2.6	0.647	117.5	2.122	34.8	0.112	47.8	0.229	-72.4
2.7	0.653	115.2	2.038	32.5	0.116	46.7	0.227	-75.2

и частоты $f_{\rm H}=1.9$ ГГц, $f_{\rm B}=2.5$ ГГц. **Найти** неравномерность усиления в полосе $f_{\rm H}...f_{\rm B}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 2.5 дБ
- 2) 1 дБ
- 3) 4.2 дБ
- 4) 1.2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 5), соответствующую s_{11} на частоте 2 $\Gamma\Gamma$ ц.

Рисунок 5 – Кривые s_{11} и s_{22}

- 1) A
- 2) B

- 3) C 4) D