VITMO

GaMAC: открытая библиотека для автоматического решения задачи кластеризации на GPU

Усов Иван, Кулин Никита, Муратов Симар parallaxel@yandex.ru, kylin98@list.ru, SYMuratov@itmo.ru

Задача кластеризации

- Unsupervised разбиение × набора данных на непересекающиеся подмножества
- Множество эвристических алгоритмов кластеризации
- Огромное пространство гиперпараметров
- Нет универсальной функции оценки качества разбиений

Существующие реализации

Для задачи кластеризации:

- Scikit-learn (https://scikit-learn.org/stable/modules/clustering.html)
- PyClustering (https://pyclustering.github.io/docs/0.8.2/html/index.html)
- Spark MLLib (https://spark.apache.org/docs/latest/ml-clustering.html)
- CuML (https://docs.rapids.ai/api/cuml/stable/api/#clustering)

Для задач обучения с учителем:

- Auto-Sklearn (https://automl.github.io/auto-sklearn/master/)
- AutoWeka (https://www.automl.org/automl-for-x/tabular-data/autoweka/)
- LightAutoML (https://github.com/sb-ai-lab/LightAutoML)
- FEDOT (https://github.com/aimclub/FEDOT)

Sparkling

Фичи Sparkling:

- Поддержка мультимодальных распределенных данных
- Автоматическая система настройки алгоритмов кластеризации

Ограничения Sparking:

- Страдает производительность на небольших наборах данных
- Сложная процедура развертывания и поддержки окружения
- Небольшой выбор алгоритмов кластеризации и мер качества

GaMAC

Новые фичи в GaMAC:

- Буст производительности за счет реализаций на GPU
- Простое использование на обычной рабочей станции
- Разнообразные алгоритмы кластеризации и меры качества
- Пересмотр подхода к обработке мультимодальных данных
- Система мета-обучения для рекомендации мер качества
- Нормальный CI/CD

Аналоги на GPU

	Кластеризация	Мультимодальность	Мета обучение	AutoML 😄 🗴
GaMAC	+	+	+	+
LAMA GPU	-	-	-	+
cuML	+	-	+	-
	Multi-node	SaaS	CI/CD to cloud	MLOps features
GaMAC	+	+	+	+
LAMA GPU	-	-	-	+
cuML	+	+	+ +	

Перевод на GPU

VITMO

GaMAC GPU Dev

GaMAC sandbox

Сведение мультимодальных данных к табличным //ТМО

Задача: переводим картинки и текст в эмбеддинги для склейки с табличными данными

Гипотезы:

- 1) Каждую модальность кодировать отдельными моделями
- 2) Contrastive image-text модели
- Fusion модели (Image-text to text)

Датасеты:

- **MSCOCO**
- **EMNIST**
- **CIFAR**

Эксперимент:

- Получить эмбеддинги картинки и текста
- Сделать кластеризацию на эмбеддингах
- Посчитать метрики по кластеризации

Кандидаты:

- E5 + ResNet50
- E5 + Swin Transformer
- CLIP-ViT-B
- CLIP-ViT-L/14
- Llama-3.2-11B-Vision (In Progress)

Сведение мультимодальных данных к табличным //ТМО

			calinski		normalized
dataset	method	silhouette	harabasz	davies bouldin	mutual info
EMNIST	clip_b	0.164941	960.231015	2.000735	0.838490
	baseline	0.083806	650.689334	2.633190	0.490402
	swin_e5	0.109977	650.949920	2.339482	0.580193
	clip_l	0.289205	1934.123559	1.520208	0.983215
CIFAR	clip_l	0.317251	191.928211	1.474333	0.993279
	clip_b	0.255371	163.843154	1.747091	0.984153
	baseline	0.031173	48.950943	3.452677	0.533847
	swin_e5	0.054847	41.406548	3.329345	0.804645
мѕсосо	clip_l	0.050994	106.564796	3.801835	-
	clip_b	0.063904	131.452354	3.271781	-
	baseline	0.442548	431.290599	3.677789	-
	swin_e5	0.348317	76.934665	3.258689	-

CLIP модели лучше работают по сравнению с отдельным кодированием

Рекомендация меры качества

Параметры обучения:

- 1000 двумерных представлений наборов данных
- 200-мерное мета-признаковое описание наборов данных
- ≈ 20 внутренних мер качества
- ≈ 100 асессоров для визуальной оценки разбиений
- Построение полного порядка на 15 разбиениях
- Сравнение ранжирования асессора с ранжированием по мере

VİTMO

GaMAC

https://github.com/parallaxel/GaMAC

Sparkling

https://gitlab.com/rainifmo/sparkling

Спасибо за внимание!

ITSMOre than a UNIVERSITY