kd education academy (9582701166)

STD 11 Science chemistry Total Marks: 480 Time: 5 Hour

kd700+ neet target ch-5 thermodynamics and thermochemistry

[480] * Chemistry

1. Match List-*I* with List-*II*.

List $-I$ (Process)	List $-II$ (Conditions)
A. Isothermal process	I. No heat exchange
B. Isochoric process	II. Carried out at constant temperature
C. Isobaric process	III. Carried out at constant volume
D. Adiabatic process	IV. Carried out at constant pressure

Choose the correct answer from the options given below:

(A)
$$A - IV, B - II, C - III, D - I$$

(B)
$$A-I, B-II, C-III, D-IV$$

(C)
$$A-II, B-III, C-IV, D-I$$
 (D) $A-IV, B-III, C-II, D-I$

(D)
$$A-IV, B-III, C-II, D-II$$

Ans.: (A) Isothermal process \Rightarrow Temperature is constant throughout the process

- (B) Isochoric process \Rightarrow Volume is constant throughout the process
- (C) Isobaric process \Rightarrow Pressure is constant throughout the process
- (D) Adiabatic process \Rightarrow No exchange of heat (q) between system and surrounding
- 2. The work done during reversible isothermal expansion of one mole of hydrogen gas at 25°C from pressure of 20atmosphereto10atmosphere is

(Given
$$R=2.0\mathrm{calK}^{-1}\;\mathrm{mol}^{-1}$$
)

(A)
$$-413.14$$
 calories (B) 413.14 calories

Ans.: a

$$W_{
m rev,\,iso} = -2.303 nRT \log rac{P_i}{P_f}$$

$$=-2.303 imes1 imes2 imes298 imes\log 2$$

$$=-2.303 imes1 imes2 imes298 imes0.3$$

$$=-413.14$$
 calories

3. Which amongst the following options is the correct relation between change in enthalpy and change in internal energy?

(A)
$$\Delta H + \Delta U = \Delta n R$$

(B)
$$\Delta H = \Delta U - \Delta n_9 RT$$

(C)
$$\Delta H = \Delta U + \Delta n_g RT$$

(D)
$$\Delta H - \Delta U = -\Delta nRT$$

Ans.: c

Correct relation between change in enthalpy and change in internal energy is $\Delta H = \Delta U + \Delta n_a RT$

4. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A: In equation $\Delta_r G = -nFE_{\text{cell}}$ value of $\Delta_r G$ depends on n.

Reasons $R: E_{cell}$ is an intensive property and $\Delta_r G$ is an extensive property. In the light of the above statements, choose the correct answer from the options given below

- (A) A is false but R is true
- (B) Both A and R are true and R is the correct explanation of A
- (C) Both A and R are true and R is NOT the correct explanation of A
- (D) A is true but R is false

Ans.: b

The value of $\Delta_r G$ depends on n value as per the equation $\Delta_r G = -nFE_{\mathrm{cell}}$ Where Eis the emf of the cell and nF is the amount of charge passed.

So, assertion statement is correct

Ecell is an intensive property while $\Delta_r G$ is an extensive thermodynamic property So, reason is correct but not explaining the assertion

5. Which of the following p-V curve represents maximum work done?

(A)

(B)

(C)

Ans.: a

In P-V graph area under the curve represent magnitude of work.

As it is maximum in graph-1

6. Which one among the following is the correct option for right relationship between C_P and C_V for one mole of ideal gas?

(A)
$$C_P + C_V = R$$
 (B) $C_P - C_V = R$ (C) $C_P = RC_V$ (D) $C_V = RC_P$

(B)
$$C_P - C_V = R$$

(C)
$$C_P = RC_V$$

(D)
$$C_V = RC_P$$

Ans.: b

$$C_P - C_V = R$$

7. If for a certain reaction $\Delta_r H$ is $30 \ kJ \ mol^{-1}$ at $450 \ K$, the value of $\Delta_r S$ (in $JK^{-1}mol^{-1}$) for which the same reaction will be spontaneous at the same temperature is

Page 2

(A) - 70

(B) 70

Ans.: b

For spontaneous reaction, $\Delta_r G$ must be less than zero.

So,
$$\Delta_r G = \Delta_r H - T \Delta_r S < 0$$

or,
$$\Delta_r S > rac{\Delta_r H}{T}$$

$$> \frac{30,000}{450} = 66.67J$$

 \therefore For reaction to be spontaneous, the value of $\Delta_r S$ must be greater than 66.67 J

- 8. In which case change in entropy is negative?
 - (A) Evaporation of water
 - (B) Expansion of a gas at constant temperature
 - (C) Sublimation of solid to gas
 - (D) $2H(g)
 ightarrow H_2(g)$

Ans.: d

$$2H(g) o H_2(g)$$

Due to bond formation, entropy decreases

9. Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure

 $AB
ightarrow ext{Isothermal expansion}$

 $AC
ightarrow ext{Adiabatic expansion}$

Which of the following options is not correct?

(A) $\Delta S_{
m isothermal} \, > \Delta S_{
m adiabatic}$

(B) $T_A = T_B$

(C) $W_{isothermal} > \mathrm{W_{adiabatic}}$

(D) $T_{\mathrm{C}} > T_{\mathrm{A}}$

Ans.: d

In adiabatic expansion cooling effect will take place, T_C will be less then T_A in adiabatic expansion

$$\mathbf{q}=0~\Delta\mathbf{U}=\mathbf{W}$$

$$W_{pv}<0$$

$$\Delta U < 0$$

$$nC_{vm}\Delta T<0$$

$$\Delta T < 0$$

$$T_{\rm C}-T_{\rm A}<0$$

$$\mathrm{T_c} < \mathrm{T_A}$$

Formation of CO₂ from carbon and dioxygen gas can be represented as:

13. Ratio of C_p and C_v of a gas X is 1.4, the number of atom of the gas 'X' present

 $m C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} \quad \Delta_f H = -393.5 \; kJ \, mol^{-1}$

Heat released on formation of 35.2 g CO₂

Ans.: (a) $\frac{C_P}{C_V}=1.4$ so, given gas is diatomic

in 11.2 litres of it at NTP will be

 $11.2 L = 3.01 \times 10^{23}$ molecules

Heat released on formation of $44~{
m g~CO_2} = -393.5~{
m kJ\,mol^{-1}}$

(B) 1.2×10^{23}

(B) $-630 \, kJ$

(C) 3.01×10^{23}

(D) 2.01×10^{23} Page 4

(D) None of the above

(A) $+315 \, kJ$

(C) $-3.15 \, kJ$

(1 mole = 44 g)

 $=rac{-393.5 ext{ kJ mol}^{-1}}{44 ext{ g}} imes 35.2 ext{ g}$

 $= -314.8 \text{ kJ mol}^{-1}$

(A) 6.02×10^{23}

Ans.: d

∴ No. of atoms =	$=3.01 imes 10^{23} imes 2 = 6.023$:	$ imes 10^{23}$ atoms	
and pressure ar	e mixed. The ratio of sp	atomic gases at same inition	(C_p/C_v) will be
(A) 1	(B) 2	(C) 1.67	(D) 1.5
Ans. : (d) $C_v = rac{3}{2}I$	$RT;\; C_p=rac{5}{2}RT$ for mono	atomic gas	
-	RT for diatomic gas		
		$rac{RT+rac{5}{2}RT}{2}$ and $C_p=rac{rac{5}{2}RT+rac{7}{2}RT}{2}$	
Therefore, C_p/C_q	2101) '
	1 <i>M NaOH</i> solution an sulting solution will be	d $10ml$ of $10NH_2SO_4$ solu	tion are mixed
(A) Alkaline	(B) Acidic	(C) Strongly acidic	(D) Neutral
Ans. : (d) For Na $N_1V_1=100ml imes 1$ $N_2V_2=10ml imes 10$ Hence, $N_1V_1=N$	$N=100ml(N){\sf For}H_2SO$ $N=100ml(N)$	04,	
16. If		$C+O_2 ightarrow$	$CO_2 + 94.2kcal$
$H_2 + rac{1}{2}O_2 ightarrow H_2 C_2$ heat of methan		$+CO_2+2H_2O+210.8kcal$ the	en the possible
(A) 47.3	(B) 20	(C) 45.9	(D) -47.3
Ans. : (b) $C+O_2$	$ ightarrow ~CO_2 + 94.2~Kcal. \ldots .$		
On multiplication $C+2H_2+2O_2 ightarrow 0$	$O+68.3~Kcal(ii)$ n of eq. (ii) by 2 and that $CO_2+2H_2O+230.8~Kcal$ eq. (iii) by following eq. (iii) by following eq. $(2+2H_2O+210.8~Kcal.)$ where $CAH=20~Kcal.$	$l\;(iii)$	
17. The enthalpy of	fusion of ice per mole.	kJ	
(A) 18	(B) 8	(C) 80	(D) 6
Ans. : d The molar entha	lpy of fusion for ice at ($0^{\circ}C$ has an accepted value (of $+6.01kJ/mol$.
18. The mutual hea	t of neutralisation of 4	10gm of $NaOH$ and $60gm$	CH_3COOH will
(A) 56.1 <i>kcal</i>		(B) Less than $56.1kcal$	
(C) More than 5	6.1kcal	(D) 13.7 kcal	Page 5
Ans. : (b)Heat oweak acid reacts		than $56.1Kcal$ when a str	ong base and a

(A) -212.9 (B) -136.8 (C) -304.3 (D) -105.2 Ans.: (a)Find ΔH for $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O_{(q)}$. 20. A solution of $500ml$ of $0.2M$ KOH and $500ml$ of $0.2M$ HCl is mixed and stirred; the rise in temperature is T_1 . The experiment is repeated using $250ml$ each of solution, the temperature raised is T_2 . Which of the following is true (A) $T_1 = T_2$ (B) $T_1 = 2T_2$ (C) $T_1 = 4T_2$ (D) $T_2 = 9T_1$ Ans.: (a)Suppose heat evolved in 1st case is Q_1 and that in the IInd case it is Q_2 . Then $Q_2 = \frac{1}{2}Q_1$. But $Q_1 = 1000T_1$ and $Q_2 = 500T_2$ $\therefore 500T_2 = \frac{1}{2} \times 1000T_1$ i.e. $T_2 = T_1$. 21. If $H^+ + OH^- \rightarrow H_2O^- 13.7kcal$, then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by base will bekcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = $13.7kcal$. 22. Heat of neutralisation for the given reaction $NaOH^+ + HCl \rightarrow NaCl^+ + H_2O^-$ is $57.1kJmol^{-1}$. What will be the heat released when $0.25mole$ of $NaOH$ is titrated against $0.25mole$ of HCl^- kJ mol^{-1} . (C) 14.3 (D) 28.6 Ans.: (c) $57.1 \times 0.25 = 14.3kJmol^{-1}$. 23. In the combustion of $2.0gm$ of methane $25kcal$ heat is liberated, heat of combustion of methane would be, kcal (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_1 = 12 + 4 = 16$ \therefore On the combustion of $16.0gm = \frac{25\times16}{2} = 200kcal$ \therefore On the combustion of HF and HCl^- are $-161kJ^-$ and $-92kJ^-$ respectively. Which of the following statements is incorrect (A) HCl^- is more stable than HCl^- Ans.: (a) HF is more stable than HCl^-			and $CH_4(g)$ are $-94.0,-$ of methane is $kcal$	68.4 and $-17.9kcal$
20. A solution of $500ml$ of $0.2MKOH$ and $500ml$ of $0.2MHCl$ is mixed and stirred; the rise in temperature is T_1 . The experiment is repeated using $250ml$ each of solution, the temperature raised is T_2 . Which of the following is true (A) $T_1=T_2$ (B) $T_1=2T_2$ (C) $T_1=4T_2$ (D) $T_2=9T_1$ Ans. : (a)Suppose heat evolved in Ist case is Q_1 and that in the IInd case it is Q_2 . Then $Q_2=\frac{1}{2}Q_1$. But $Q_1=1000T_1$ and $Q_2=500T_2$ $500T_2=\frac{1}{2}\times1000T_1$ and $Q_2=500T_2$ $500T_2=\frac{1}{2}\times1000T_1$ i.e. $T_2=T_1$. 21. If $H=OH\to H_2O=13.7kcal$, then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by base will bekcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans. : (a)If acid or base or both are strong, heat of neutralization $=13.7kcal$. 22. Heat of neutralisation for the given reaction. $NaOH+HCl\to NaCl+H_2O$ is $57.1kJmol^{-1}$. What will be the heat released when $0.25mole$ of $NaOH$ is titrated against $0.25mole$ of HCl $kJmol^{-1}$ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans. : (c) $57.1\times0.25=14.3kJmol^{-1}$. 23. In the combustion of $2.0gm$ of methane $25kcal$ heat is liberated, heat of combustion of methane would be $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans. : (b) $CH_1+2O_2\to CO_2+2H_2O$ Molecular weight of $CH_4=12+4=16$ On the combustion of $16.0gm=\frac{2n\times16}{2}=200kcal$ Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl	(A) -212.9	(B) -136.8	(C) -304.3	(D) -105.2
the rise in temperature is T_1 . The experiment is repeated using $250ml$ each of solution, the temperature raised is T_2 . Which of the following is true (A) $T_1=T_2$ (B) $T_1=2T_2$ (C) $T_1=4T_2$ (D) $T_2=9T_1$ Ans.: (a)Suppose heat evolved in Ist case is Q_1 and that in the IInd case it is Q_2 . Then $Q_2=\frac{1}{2}Q_1$. But $Q_1=1000T_1$ and $Q_2=500T_2$ $500T_2=\frac{1}{2}\times1000T_1$ i.e. $T_2=T_1$. 21. If $H^++OH^-\to H_2O-13.7kcal$, then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by base will bekcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = $13.7kcal$. 22. Heat of neutralisation for the given reaction $NaOH+HCl\to NaCl+H_2O$ is $57.1kJmol^{-1}$. What will be the heat released when $0.25mole$ of $NaOH$ is titrated against $0.25mole$ of HCl $kJmol^{-1}$. (C) 14.3 (D) 28.6 Ans.: (c) $57.1\times0.25-14.3kJmol^{-1}$. 23. In the combustion of $2.0gm$ of methane $25kcal$ heat is liberated, heat of combustion of methane would be, $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4+2O_2\to CO_2+2H_2O$ Molecular weight of $CH_4=12+4=16$ On the combustion of $16,0gm=\frac{25\times18}{2}=200kcal$. 24. Enthalpy of formation of HF and HCl are $-161kJ$ and $-92kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl	Ans. : (a)Find ΔH f	or $CH_4 + 2O_2 ightarrow CO_2$	$_2+2H_2O_{(g)}$.	
Ans.: (a)Suppose heat evolved in Ist case is Q_1 and that in the IInd case it is Q_2 . Then $Q_2 = \frac{1}{2}Q_1$. But $Q_1 = 1000T_1$ and $Q_2 = 500T_2$ $\therefore 500 T_2 = \frac{1}{2} \times 1000 T_1$ i. c. $T_2 = T_1$. 21. If $H^+ + OH^- \rightarrow H_2O + 13.7 kcal$, then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by base will bekcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = 13.7 $ kcal$. 22. Heat of neutralisation for the given reaction $NaOH + HCl \rightarrow NaCl + H_2O$ is $57.1 kJ mol^{-1}$. What will be the heat released when $0.25 mole$ of $NaOH$ is titrated against $0.25 mole$ of HCl $kJ mol^{-1}$ (C) 14.3 (D) 28.6 Ans.: (c) $57.1 \times 0.25 = 14.3 kJ mol^{-1}$. 23. In the combustion of $2.0 gm$ of methane $25 kcal$ heat is liberated, heat of combustion of methane would be $ kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ \therefore On the combustion of $16.0 gm = \frac{25.16}{2} = 200 kcal$ \therefore On the combustion of $16.0 gm = \frac{25.16}{2} = 200 kcal$ \therefore On the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl .	the rise in temper solution, the temp	rature is $T_1.$ The exertain erature raised is T_2	speriment is repeated u . Which of the following	sing $250ml$ each of is true
Then $Q_2 = \frac{1}{2}Q_1$. But $Q_1 = 1000 T_1$ and $Q_2 = 500 T_2$ $\therefore 500 T_2 = \frac{1}{2} \times 1000 T_1$ i.e. $T_2 = T_1$. 21. If $H^+ + OH^- \rightarrow H_2O + 13.7 kcal$, then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by base will be,kcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = 13.7 $ kcal$. 22. Heat of neutralisation for the given reaction $NaOH + HCl \rightarrow NaCl + H_2O$ is $57.1 kJ mol^{-1}$. What will be the heat released when $0.25 mole$ of $NaOH$ is titrated against $0.25 mole$ of HCl $kJ mol^{-1}$ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c)57.1 $\times 0.25 = 14.3 kJ mol^{-1}$. 23. In the combustion of $2.0 gm$ of methane $25 kcal$ heat is liberated, heat of combustion of methane would be $ kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ \therefore On the combustion of $2.0 gm$ of methane $= 25.0 kcal$ \therefore On the combustion of $16.0 gm = \frac{25.16}{2} = 200 kcal$. 24. Enthalpy of formation of HF and HCl are $-161 kJ$ and $-92 kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl .				
$∴ 500 \ T_2 = \frac{1}{2} \times 1000 \ T_1 \ i.e. \ T_2 = T_1 \ .$ 21. If $H^+ + OH^- \rightarrow H_2O + 13.7 \ kcal$, then the heat of neutralization for complete neutralization of one mole of H_2SO_4 by base will bekcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = 13.7 \ kcal. 22. Heat of neutralisation for the given reaction $NaOH + HCl \rightarrow NaCl + H_2O$ is $57.1 \ kJ \ mol^{-1}$. What will be the heat released when $0.25 \ mole$ of $NaOH$ is titrated against $0.25 \ mole$ of HCl $kJ \ mol^{-1}$ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c) $57.1 \times 0.25 = 14.3 \ kJ \ mol^{-1}$. 23. In the combustion of $2.0 \ gm$ of methane $25 \ kcal$ heat is liberated, heat of combustion of methane would be, $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ ∴ On the combustion of $2.0 \ gm$ of methane $= 25.0 \ kcal$ ∴ On the combustion of $16.0 \ gm = \frac{25.18}{2} = 200 \ kcal$ 24. Enthalpy of formation of HF and HCl are $= 161 \ kJ$ and $= 92 \ kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl		heat evolved in Ist	case is Q_1 and that in t	the IInd case it is $Q_2.$
 21. If H⁺ + OH⁻ → H₂O + 13.7 kcal , then the heat of neutralization for complete neutralization of one mole of H₂SO₄ by base will bekcal (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = 13.7 kcal. 22. Heat of neutralisation for the given reaction NaOH + HCl → NaCl + H₂O is 57.1 kJ mol⁻¹. What will be the heat released when 0.25 mole of NaOH is titrated against 0.25 mole of HClkJ mol⁻¹ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c)57.1 × 0.25 = 14.3 kJ mol⁻¹. 23. In the combustion of 2.0 gm of methane 25 kcal heat is liberated, heat of combustion of methane would bekcal (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b)CH₄ + 2O₂ → CO₂ + 2H₂O Molecular weight of CH₄ = 12 + 4 = 16 ∴ On the combustion of 16.0 gm = 25×16/2 = 200 kcal. 24. Enthalpy of formation of HF and HCl are −161 kJ and −92 kJ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl. 	-	d $Q_2=500T_2$	2	
neutralization of one mole of H_2SO_4 by base will be $kcal$ (A) 13.7 (B) 27.4 (C) 6.85 (D) 3.425 Ans.: (a)If acid or base or both are strong, heat of neutralization = $13.7\ kcal$. 22. Heat of neutralisation for the given reaction $NaOH + HCl \rightarrow NaCl + H_2O$ is $57.1\ kJ\ mol^{-1}$. What will be the heat released when $0.25\ mole$ of $NaOH$ is titrated against $0.25\ mole$ of HCl $kJ\ mol^{-1}$ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c) $57.1 \times 0.25 = 14.3\ kJ\ mol^{-1}$. 23. In the combustion of $2.0\ gm$ of methane $25\ kcal$ heat is liberated, heat of combustion of methane would be $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ \therefore On the combustion of $2.0\ gm$ of methane $= 25.0\ kcal$ \therefore On the combustion of $16.0\ gm = \frac{25 \times 16}{2} = 200\ kcal$. 24. Enthalpy of formation of HF and HCl are $-161\ kJ$ and $-92\ kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl	$\therefore 500 \ T_2 = \frac{1}{2} \times 1000$	$T_1 i.e. T_2 = T_1 .$		
 Ans.: (a)If acid or base or both are strong, heat of neutralization = 13.7 kcal. 22. Heat of neutralisation for the given reaction NaOH + HCl → NaCl + H₂O is 57.1 kJ mol⁻¹. What will be the heat released when 0.25 mole of NaOH is titrated against 0.25 mole of HClkJ mol⁻¹ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c)57.1 × 0.25 = 14.3 kJ mol⁻¹. 23. In the combustion of 2.0 gm of methane 25 kcal heat is liberated, heat of combustion of methane would bekcal (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b)CH₄ + 2O₂ → CO₂ + 2H₂O Molecular weight of CH₄ = 12 + 4 = 16 ∴ On the combustion of 2.0 gm of methane = 25.0 kcal ∴ On the combustion of 16.0 gm = 25×16/2 = 200 kcal. 24. Enthalpy of formation of HF and HCl are −161 kJ and −92 kJ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl. 				ation for complete
22. Heat of neutralisation for the given reaction $NaOH + HCl \rightarrow NaCl + H_2O$ is $57.1kJmol^{-1}$. What will be the heat released when $0.25mole$ of $NaOH$ is titrated against $0.25mole$ of HCl $kJmol^{-1}$ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c) $57.1 \times 0.25 = 14.3kJmol^{-1}$. 23. In the combustion of $2.0gm$ of methane $25kcal$ heat is liberated, heat of combustion of methane would be $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ \therefore On the combustion of $2.0gm$ of methane $= 25.0kcal$ \therefore On the combustion of $16.0gm = \frac{25 \times 16}{2} = 200kcal$. 24. Enthalpy of formation of HF and HCl are $-161kJ$ and $-92kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl	(A) 13.7	(B) 27.4	(C) 6.85	(D) 3.425
$57.1 kJ mol^{-1}$. What will be the heat released when $0.25 mole$ of $NaOH$ is titrated against $0.25 mole$ of HCl $kJ mol^{-1}$ (A) 22.5 (B) 57.1 (C) 14.3 (D) 28.6 Ans.: (c) $57.1 \times 0.25 = 14.3 kJ mol^{-1}$. 23. In the combustion of $2.0 gm$ of methane $25 kcal$ heat is liberated, heat of combustion of methane would be $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ \therefore On the combustion of $2.0 gm$ of methane $= 25.0 kcal$ \therefore On the combustion of $16.0 gm = \frac{25 \times 16}{2} = 200 kcal$. 24. Enthalpy of formation of HF and HCl are $-161 kJ$ and $-92 kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl	Ans. : (a)If acid or l	oase or both are str	rong, heat of neutralizat	$ion = 13.7 \; \mathit{kcal}.$
 23. In the combustion of 2.0 gm of methane 25 kcal heat is liberated, heat of combustion of methane would bekcal (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b)CH₄ + 2O₂ → CO₂ + 2H₂O Molecular weight of CH₄ = 12 + 4 = 16 ∴ On the combustion of 2.0 gm of methane = 25.0 kcal ∴ On the combustion of 16.0 gm = 25×16/2 = 200 kcal. 24. Enthalpy of formation of HF and HCl are -161 kJ and -92 kJ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl.	$57.1kJmol^{-1}$. Wha against $0.25mole$ o	t will be the heat ref HCl kJ mol^{-1} (B) 57.1	eleased when $0.25mole$ (of $NaOH$ is titrated
combustion of methane would be $kcal$ (A) 100 (B) 200 (C) 300 (D) 400 Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ \therefore On the combustion of $2.0~gm$ of methane $= 25.0~kcal$ \therefore On the combustion of $16.0~gm = \frac{25 \times 16}{2} = 200~kcal$. 24. Enthalpy of formation of HF and HCl are $-161~kJ$ and $-92~kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl			othana 25 km hoat is	liberated beat of
Ans.: (b) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Molecular weight of $CH_4 = 12 + 4 = 16$ ∴ On the combustion of $2.0~gm$ of methane $= 25.0~kcal$ ∴ On the combustion of $16.0~gm = \frac{25 \times 16}{2} = 200~kcal$. 24. Enthalpy of formation of HF and HCl are $-161~kJ$ and $-92~kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl			. 7	ilberated, fleat of
Molecular weight of $CH_4=12+4=16$ \therefore On the combustion of $2.0~gm$ of methane $=25.0~kcal$ \therefore On the combustion of $16.0~gm=\frac{25\times16}{2}=200~kcal$. 24. Enthalpy of formation of HF and HCl are $-161~kJ$ and $-92~kJ$ respectively. Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl .	(A) 100	(B) 200	(C) 300	(D) 400
Which of the following statements is incorrect (A) HCl is more stable than HF (B) HF and HCl are exothermic compounds (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl .	Molecular weight o ∴ On the combusti	of $CH_4=12+4=16$ on of $2.0\;gm$ of met		
(C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl .	24. Enthalpy of formal Which of the follow	ation of HF and D wing statements is i	HCl are $-161kJ$ and $-$	– $92kJ$ respectively.
hydrogen (C) The affinity of fluorine to hydrogen is greater than the affinity of chlorine to hydrogen (D) HF is more stable than HCl Ans.: (a) HF is more stable than HCl .	(B) HF and HCl a	re exothermic comp	oounds	Daga C
Ans. : (a) HF is more stable than HCl .	•	fluorine to hydroge	n is greater than the aff	inity of chlorine to
	(D) HF is more st	able than HCl		
25. The heat of reaction at constant pressure is given by	Ans.: (a) HF is mo	re stable than HCl .		
	25. The heat of reaction	on at constant pres	sure is given by	

=28kq

Weight of oxygen required for the Complete combustion of 28kg ethylene =96kg

 \therefore Weight of oxygen required for the combustion of 2.8kg ethylene.

$$=rac{96 imes 2.8}{28}=9.6kg$$

32. The heat of combustion of carbon to CO_2 is $-393.5\,kJ/mol$. The heat released upon formation of $35.2\,g$ of CO_2 from carbon and oxygen gas iskJ

(A)
$$+315$$

(B)
$$-31.5$$

(C)
$$-315$$

(D)
$$+31.5$$

Ans.: (c) $C+O_2 o CO_2$ $\Delta H=-393.5\,KJ/mol$

 $44\,gm$ of CO_2 form by which heat released

$$= -393.5 \, kJ$$

 $\therefore 1\,gm$ of CO_2 form by which heat released $=-rac{393.5}{44}$

 $\therefore 35.2 \, gm$ (given) of CO_2 form by which heat released

$$=-rac{393.5}{44} imes35.2\ =-315\,kJ$$

33. If the heat of formation of CO_2 is $-393\,kJ$. The amount of heat evolved in the formation of $0.156\,kg$ of CO_2 is....kJ

(A)
$$-1357.9$$

(B)
$$-1275.9$$

(C)
$$-1572$$

(D)
$$-1165.5$$

Ans.: (c)Heat of formation of a substance is the heat exchanged when one mole of that substance is formed by its constituent elements.

Heat evolved when 1 mole $(44 g) CO_2$ is formed = 393 kJ

- \therefore Heat evolved when $0.156\,Kg\,(156\,g)$ is formed $=rac{393 imes156}{44}$
- $\therefore \Delta H$ for the process $= 1572 \, kJ = -1572.0 \, kJ$

34. The bond dissociation energies of gaseous H_2 , Cl_2 and HCl are 104,58 and $103\,kcal$ respectively. The enthalpy of formation of HCl gas would be....kcal

(A)
$$-44$$

(C)
$$-22$$

Ans.: (c)Aim: $\frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl$

$$\Delta H = \sum B.E._{(Products)} - \sum B.E._{(Reactants)}$$

$$= B.E.(HCl) - \left[\frac{1}{2}B.E.(H_2) + \frac{1}{2}B.E.(Cl_2) \right]$$

$$=-103-\left[\frac{1}{2}(-104)+\frac{1}{2}(-58)\right]$$

$$= -103 - (\, -52 - 29 \,) = -22 \, \mathit{kcal} \; .$$

35. The H-H bond energy is $430\,kJ$ mol and Cl-Cl bond energy is $240\,kJ\,mol^{-1}$. ΔH for HCl is $-90\,kJ$. The H-Cl bond energy is about.... $kJ\,mol^{-1}$

Page 8

(A) 180

(B) 360

(C) 213

(D) 425

Ans.: (d) $\frac{1}{2}H_2 + \frac{1}{2}Cl_2 \rightarrow HCl, \ \Delta H = -90\,KJ$

$$\therefore \Delta H = \frac{1}{2}E_{H-H} + \frac{1}{2}E_{Cl-Cl}$$

or
$$-90=rac{1}{2} imes430+rac{1}{2} imes240-E_{HCl}$$

$$\therefore E_{H-Cl} = 425 \, kJ \, mol^{-1}.$$

36. If enthalpies of methane and ethane are respectively 320 and 360 calories then the bond energy of C-C bond is.....calories

 $X = -20.6 - 8.8 = -29.4 \,\mathrm{kJ}$

45.	Calculate the $N-N$ b	ond energy in N_2H_4 from	om given bond enthalp	y data.
	$arepsilon_{N-H} = 393kJ/mole$			
	$arepsilon_{H-H} = 436kJ/mole \ \Delta H_{vap}[N_2H_4(l)] = 18kJ$	·/molo		
		, more $H_3(g):\Delta H=-142kJ/m$	ole	
	kJ/mole	$113(g) \cdot \Delta \Pi = 142 no / m$		
	(A) 210	(B) 190	(C) 180	(D) 150
	Ans. : (B) 190			
46.	The enthalpy change	for the reaction, $H_2(q)$	$+C_2H_4(q) ightarrow C_2H_6(q)$ i	5 $kcal\ mol^{-1}$
			$e_{C-H} = 103, e_{C-H} = 99, e_{C-H}$	
	$[e_{C=C} = 145 kcal mol^{-1}]$			-
	(A) −10	(B) +10	(C) -30	(D) $+30$
	Ans.: c			
	$\Delta H = -[1e_{C-C}+6e_{C-H}]$	$+[1e_{ m H-H}+1e_{ m C=C}+4e_{ m C-J}]$		
47.	The enthalpy change	for the reaction, C_2H_6	(g) ightarrow 2C(g) + 6H(g) is X	(kJ). The bond
	energy of $C-H$ bond	l is :-		
	(A) $\frac{X}{2}$	(B) $\frac{X}{3}$	(C) $\frac{X}{6}$	(D) Data insufficient
	Ans.: d			
	$C_2H_6 \rightarrow 1(C-C) + 6(C$	- H)		
	$C-C o ext{Not given}$			
	$\mathrm{C}-\mathrm{H} o cannot be de$	termined		
48.	The enthalpy of neutr			·
		ation of water is -285.8	4~kJ/mol . The enthalpy	y of formation
	of hydroxyl ion is k		(C) 220 F2	(D) +114.9
	(A) +228.52	(B) -114.26	(C) -228.52	(D) +114.2
	Ans.: c	- 00		
	$H^+(aq) + OH^-(aq) \longrightarrow H$	$\mathrm{H}_2\mathrm{O}(l)$		
	$\Delta H^\circ = -57.32\mathrm{kJ/mol}$			Page 11
	$\Delta H_{2} = \Delta H_{2}^{\circ} (H_{2}O) - [\Delta H_{2}O]$	$\mathrm{H}_f^\circ\mathrm{H}^+(\mathrm{aq}) + \Delta\mathrm{H}_f^\circ(\mathrm{OH})(\mathrm{aq})$)]	
19	The heat evolved in	•	-	the following
75.	equation	the combastion of	methane is given by	the rollowing
	$CH_4(g) + 2O_2(g) o CO$	$_{2}(g)+2H_{2}O(l);$		
	$\Delta H = -890.3kJ$			
	How many grams of	methane would be req	uired to produce 445.1	5kJ of heat of
	combustiong			
	(A) 4	(B) 8	(C) 12	(D) 16

Ans.: b

 $89.03\,\mathrm{kJ}$ heat librate by $=1\,\mathrm{mol}$

1 kJ heat librate by $= \frac{1}{890.3} \ mol$

 $445.15\,\mathrm{kJ}$ heat liberate by $=\frac{445.15}{890.3}\,\mathrm{mol}$

- 50. The molar enthalpies of combustion of $C_2H_2(g), C(graphite)$ and $H_2(g)$ are -1300, -394, and $-286\,KJ\,mol^{-1}$, respectively. The standard enthalpy of formation of $C_2H_2(g)$ is $kJ\,mol^{-1}$
 - (A) -226
- (B) -626
- (C) 226

(D) 626

Ans.: a

$$\mathrm{C_2H_2(g)} + rac{3}{2}\mathrm{O_2(g)} \longrightarrow 2\mathrm{CO_2} + \mathrm{H_2O}$$

$$\Delta \mathrm{H} = 2 imes \Delta \mathrm{H_{C}} + \Delta \mathrm{H_{H_{2}O}} - \Delta \mathrm{H_{C_{2}H_{2}}}$$

$$=2\times(-394)+(-286)-(-1300)$$

- $= +226\,\mathrm{kJ}\,\mathrm{mol}^{-1}$
- 51. With the help of following data, find out the change in heat content for the reaction.....kJ

$$C_2H_4(g)+H_2(g) o C_2H_6(g)$$

Bond	Bond energy (kJ)	
C-H	413	
C-C	348	
C = C	610	
H-H	436	
(4)		

(A) -128

(B) +128

(C) +256

(D) -256

Ans.: (A) -128

- 52. The heat of combustion of ethylene $C_2H_4(g)$ is $-1420\,kJ/mole$. The number of litres of C_2H_4 at NTP that would evolve $355\,kJ$ on combustion is
 - (A) 2.8

(B) 8.4

(C) 5.6

(D) 11.2

Page 12

Ans.: c

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O \quad \Delta H = 1420 \, kJ/mole$$

 $1420\,kJ$ energy is released by $1\,mole$ of ethylene.

Given; heat evolved = $355 \, kJ$

- \therefore No. of Liter $=rac{355}{1420} imes 22.4\,lt$
- $= 5.6 \, liter$
- 53. The bond enthalpies of H_2 , X_2 and HX are in the ratio of 2:1:2. If the enthalpy for formation of HX is $-50\,kJ\,mol^{-1}$, the bond enthalpy of H_2 is $kJ\,mol^{-1}$
 - (A) 200

(B) 400

(C) 100

(D) 300

Ans.: (A) 200

Ans. : $H^+(aq)OH^-(aq) + OH^-(aq) o H_2o(l)$

so
$$\Delta H^\circ = -57.3 = -285.5 - \Delta_f^\circ (H+aq) - \Delta H_f^\circ (OH^-)$$

SO, $\Delta H_f^o(OH^-aq) = -228.2\,kJ/mol$

- 59. If combustion of 4g of CH_4 liberates $2.5\,kcal$ of heat, the heat of combustion of CH_4 iskcal
 - (A) -20
- (B) -10
- (C) 2.5

(D) -5

Ans.: a

 $\Delta; H = 2.5 \times 164 = -10kcalmol$

- 60. Heat of neutralisation of NaOH and HCl is $-57.46\,kJ/eq$. Then heat of ionisation of water in kJ/mol is
 - (A) -57.46
- (B) +57.46
- (C) -114.92
- (D) +114.92

Ans.: b

$$\Delta H_{heat} = -\Delta H_{ionisation} = H_2 O = +57.46 \ KJ/eq.$$

61. What is the activation energy for the reverse of this reaction?

$$N_2O_4(g)\,
ightarrow\,2NO_2(g)$$

Data for the given reaction is

$$\Delta H = +54\,kJ$$
 and $E_a = +57.2\,kJ$

.....kJ

(A) -54

(B) +3.2

(C) +60.2

(D) +111.2

Ans.: b

For endothermic reactions:

$$E_b = E_f - \Delta H$$

$$=57.2-54kL$$

$$=3.2kL$$

Page 14

62. With the help of following data, find out the change in heat content for the reaction

$$C_2H_4(g)+H_2(g) o C_2H_6(g)$$

.....k.J

Bond	Bond energy (kJ)
C-H	413
C-C	348
C = C	610
H-H	436

(A) -128

(B) +128

(C) +256

(D) -256

Ans.: (A) -128

$$\frac{1}{2}N_2 + \frac{1}{2}O_2 \longrightarrow NO; \Delta H = 90kJ... \text{ (ii)}$$
 Then multiply second equation with 4 and first equation with 2 .
$$2N_2 + O_2 \longrightarrow 2N_2O; \Delta H = 2 \times 28kJ.... \text{ (iii)}$$

$$2N_2 + 2O_2 \longrightarrow 4NO; \Delta H = 4 \times 90kJ... \text{ (iv)}$$
 Now substract third equation from fourth equation.
$$2N_2O + O_2 \longrightarrow 4NO; \Delta H = 304kJ$$
 Thus, the enthalpy of formation and enthalpy of solution of $HCl(g)$ is $304kJ$.

68. If the enthalpy of the reaction $2N_2O(g) + O_2(g) \longrightarrow 4NO(g)$ is $304kJ$.

68. If the enthalpy of formation and enthalpy of solution of $HCl(g)$ are $-92.3\,kJ/mol$ and $-75.14\,kJ/mol$ respectively then find enthalpy of formation of $Cl^-(aq)$ [Assume $\Delta H_{f(H^+)} = 0$] kJ/mol (C) 17.16 (D) None of these Ans.: b
$$\frac{1}{2}H_{2(g)} + \frac{1}{2}Cl_{2(g)} \longrightarrow HCl_{(g)}$$

$$HCl_{(g)} + aq \longrightarrow H^+_{(aq)} + Cl^-_{(aq)}$$

$$\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \longrightarrow H^+_{(g)} + Cl^-_{(g)}$$
 of water is $-285.5\,kJ\,mol^{-1}$. if enthalpy of neutralisation of monoacidic strong base is $-57.3\,kJ\,mol^{-1}$, ΔH^+_g of OH^- ion will be.... $kJ\,mol^{-1}$ (A) -228.2 (B) 228.5 (C) 114.5 (D) -114.5 Ans.: a
$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O \quad \Delta H_1 = -285.5$$

$$H_2O \longrightarrow H^+ \cap H \quad \Delta H_2 = +57.3$$

$$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H^+(aq) + OH(aq) \cdot \Delta H = \Delta H_1 + \Delta H_2$$
 Page 16

70. $1\,mole\ of\ H_2SO_4$ is mixed with $2\,mole\ of\ NaOH$. The heat evolved will be (A) $57.3\,kJ$ (D) cannot be predicted Ans.: b
$$According\ to\ reaction, 1\,mole\ H_2SO_4$$
 completely neutralised by 2 mole of $NaOH$ As we know, Gram equivalent = no. of moles \times Valency factor Valency factor of $H_2SO_4 = 2$

Therefore, Gram equivalent of $H_2SO_4 = 1 \times 2 = 2$

As we know, Heat evolved in the neutralisation of 1gm eq. of strong acid = 57.3kJ Heat evolved in neutralisation of 2gm eq. of strong acid = $(57.3 \times 2)kJ$ Hence the heat evolved will be $2 \times 57.3kJ$.

71. If the bond energies of H—H, Br—Br and H—Br are 433, 192 and $364\,kJ\,mol^{-1}$ respectively, ΔH^o for the reaction $H_{2(q)}+Br_{2(q)}\to 2HBr_{(q)}$ is.....kJ

- (A) -261
- (B) +103
- (C) +261
- (D) -103

Ans.: d

$$\Delta H = \sum (\Delta_{B.E.} H)_{Reactants} - \sum (\Delta_{B.E.} H) Prod$$

(B)

(C)

(D)

Ans.: (a)For a pure substance T_A and T_B represent the same temperature. Hence A is a correct choice.

- 78. The entropy values (in JK^{-1} mol^{-1}) of $H_{2(g)}=130.6, Cl_{2(g)}=223.0$ and $HCl_{(g)}=186.7$ at $298\,K$ and $1\,atm$ pressure. Then entropy change for the reaction $H_{2(g)}+Cl_{2(g)}\to 2HCl_{(g)}$ is :-
 - (A) +540.3
- (B) +727.3
- (C) -166.9
- (D) +19.8

Ans.: d

$$egin{aligned} \Delta \mathrm{S}^\circ &= 2 \mathrm{S}^\circ_{\mathrm{HCl}} - \left(\mathrm{S}^\circ_{\mathrm{H_2}} + \mathrm{S}^\circ_{\mathrm{Cl_2}}
ight) \ &= 2 imes 186.7 - \left(130.6 + 223.0
ight) = 19.8 \ \ \mathrm{JK}^{-1} \, \mathrm{mol}^- \end{aligned}$$

Page 18

- 79. The heat of vaporisation and heat of fusion of H_2O are $540\,cal/g$ and $80\,cal/g$. The ratio of $\frac{\Delta_S vap}{\Delta_S fusion}$ for water is :-
 - (A) 6.75

- (B) 9.23
- (C) 4.94
- (D) 0.2

Ans.: c

$$\Delta S_v = rac{\Delta H_v}{B \cdot pt} = rac{540}{373}; \Delta S_f = rac{\Delta H_f}{F \cdot pt} = rac{80}{273}; \ dots = rac{\Delta S_v}{\Delta S_f} = rac{540}{373} imes rac{273}{80} = 4.94$$

80. For a cell,

 $4B(s)+3O_{2}\left(g
ight)
ightarrow2B_{2}O_{3}\left(g
ight)$; $E_{cell}^{o}=1.433\ volt$ What is molar entropy (in J/K) of oxygen gas

Given $\left(\Delta_f H^o
ight)_{B_2O_3}\left(g
ight) = -840\,rac{\mathit{KJ}}{\mathit{mol}}$

$$(S_m^o)_{B_2O_3}\left(g
ight)=280J/K-mol$$

$$(S_m^o)_B \ \ (s) = 10\,J/K-mol$$

- (A) 0.1963
- (B) 1.963
- (C) 15.03
- (D) 150.3

Ans.: (D) 150.3

81. Which of the following reaction has positive entropy change?

(A)
$$N_2(g) + 3H_2(g) \to 2NH_3(g)$$

(B)
$$H_2O(s) o H_2O(l)$$

(C)
$$C_{graphite} o C_{diamond}$$

(D)
$$CO_2(g) + H_2O(l)
ightarrow H_2CO_3(aq)$$

Ans.: b

$$S_{solid} < S_{liquid}$$

$$\Delta S = +ve$$

- 82. The enthalpy change for transition of liquid water to steam is $3.73\,KJ\,mol^{-1}$ at $373\,K$. Find ΔS in $J/mol\,K$
 - (A) 100

(B) 10

(C) 1000

(D) None of the above

Ans.: b

$$\Delta S = rac{\Delta H_{vap}}{T}$$

- 83. Melting point of a solid is xK and its latent heat of fusion is $600 \, cal \, mol^{-1}$. The entropy change for fusion of $1 \, mol$ solid is $2 \, cal \, mol^{-1} \, K^{-1}$. The value of x will be.....K
 - (A) 100

(B) 200

(C) 300

(D) 400

Ans. : c

$$rac{\Delta_{ ext{frusea}}\, ext{H}^{ ext{e}}}{ ext{T}_{ ext{mp}}} = \Delta_{ ext{fivison}} \; ext{S}^{\ominus}$$

$$\frac{600}{T} = 2$$

$$T = 300 \, \mathrm{K}$$

- 84. The ΔH and ΔS for a reaction at one atmospheric pressure are $+30.558\,kJ$ and $0.066\,kJ\,k^{-1}$ respectively. The temperature at which the free energy change will be zero and below of this temperature the nature of reaction would be
 - (A) 483 K, spontaneous

(B) 443 K, non-spontaneous

(C) 443 K, spontaneous

(D) 463 K, non-spontaneous

Ans. : (d) $\Delta G = \Delta H - T\Delta S$

$$0 = +30.558 - T \times 0.066$$
 [

or
$$T=rac{30.558}{0.066}=463\,K$$

If $(dG)_{T,P} = 0$ sign ' = ' mean. If is reversible process

- 85. For a reaction $\Delta H=9.08\,kJ\,mol^{-1}$ and $\Delta S=35.7\,JK^{-1}mol^{-1}$ Which of the following statements is correct for the reaction
 - (A) Reversible and Isothermal
 - (B) Reversible and Exothermic
 - (C) Spontaneous and Endothermic

(D) Spontaneous and Exothermic

Ans.: (c) ΔH and ΔS both are +ve for spontaneous change, and $\Delta H=+ve$ for endothermic reaction.

- 86. Which of the following is not a correct statement?
 - (A) When ΔG is negative, the process is spontaneous
 - (B) When ΔG is zero, the process is in a state of equilibrium
 - (C) When ΔG is positive, the process is non-spontaneous
 - (D) None of these

Ans.: (d)All are the correct statements.

87. Values of ΔH and ΔS for five different reactions are given below. On the basis of these values predict which one of these will be spontaneous at all tempeature

Reaction	$\Delta H(KJ \ mol^{-1})$	$\Delta S(JK^{-1} \ mol^{-1})$
I	+98.0	+14.8
II	-55.5	-84.6
III	+28.3	-17.0
IV	-40.5	+24.6
V	+34.7	0.0

- (A) Reaction I
- (B) Reaction II
- (C) Reaction III (D) Reaction IV

Ans.: (d) A spontaneous process is accompanied by decrease in enthalpy and increase in entropy means ΔH is negative and ΔS is positive.

- 88. For reaction $Ag_2O(s) \rightarrow 2Ag(s) + (1/2)O_2(g)$ the value of $\Delta H = 30.56 \ kJ \ mol^{-1}$ and $\Delta S = 0.066 \; kJK^{-1} \, mol^{-1}$. Temperature at which free energy change for reaction will be zero, is K
 - (A) 373

- (B) 413
- (C) 463

(D) 493

Ans.: (c) $\Delta G = \Delta H - T\Delta S$

 $\Delta G = 0$ at equilibrium

 $\therefore \Delta H = T\Delta S$ or $30.56 = T \times 0.066$

T = 463 K.

89. The enthalpies of combustion of S(s) and $H_2(g)$ are -300 and -290 kcal mol^{-1} . Given $SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l)$

 $\Delta H = -130 \ kcal \ mol^{-1}$

$$SO_2(g) + 1/2O_2(g) \to SO_3(g)$$

 $\Delta H = -100 \; kcal \; mol^{-1}$

the enthalpy of formation of $H_2SO_4(l)$ would be $kcal \ mol^{-1}$

- (A) -300
- (B) -130
- (C) -820
- (D) -560

Ans.: (C) -820

$$\Delta S = \left[\left(n_{HCl} imes S_{HCl}
ight) - \left[\left(n_{H_2} imes S_{H_2}
ight) + \left(n_{Cl_2} imes S_{Cl_2}
ight)
ight]$$

$$\Delta S = [2 \times 60 + -[1 \times 60 + (1 \times 40)] = 20JK^{-1}$$

$$\Delta G = \Delta H - T\Delta S$$

 $\Delta G = \text{Gibbs free energy} = \text{zero at equilibrium}$

$$\Delta H=$$
 enthalpy change $=+30~kJ=30000~J$

$$\Delta S={
m entropy\ change}=20\ J/K$$

$$\Delta H = T \Delta S$$
 at eqm

$$30000J = T \times 20 \ J/K$$

$$T = 1500 \ K$$

94. For the reaction at $300 \, K$

$$A(g) + B(g) \rightarrow C(g)$$
 $\Delta U = -3 \, Kcal$

$$\Delta S = -10 \, cal/K$$

value of ΔG will becal

(A)
$$-600$$

(B)
$$-6600$$

(C)
$$-6000$$

(D)
$$-60$$

Ans.: a

Correct option (A) 600 cal

Explanation:

$$A(g) + B(g) \rightarrow C$$

$$\Delta E = -3kCal$$

$$\Delta H = \Delta E + \Delta_{nq} R$$

$$=-3-\frac{1\times1.987\times300}{1000}$$

$$\Delta H = -3.60$$

$$\Delta H = \Delta H - T \Delta S$$

$$=-3.5+rac{300 imes-10}{1000}0.6kcal$$

$$\Rightarrow 600cal$$

95. The maximum work done in expnading $16\,g\,O_2$ isothermally at $300\,K$ and occupying a volume $5\,dm^3$ until the volume becomes $25\,dm^3$ is

(A)
$$-2.01 \times 10^3 J$$

(B)
$$2.01 \times 10^{-3} J$$

(C)
$$+2.81 imes 10^3~J$$

(D)
$$+2.01 \times 10^{-6} J$$

Ans.: a

$$K = rac{10^{-14}}{55.5}$$

$$\Delta G^o = -RT \ln K = -8.314 imes 298 \, \ell n \, rac{10^{-14}}{55.5}$$

96. Consider the following reaction

$$C_6H_6(l) + rac{15}{2}O_2(g)
ightarrow 6\,CO_2(g) + 3H_2O\left(g
ight)$$

Signs of $\Delta H,\,\Delta S$ and ΔG for the above reaction will be

(A)
$$+, -, +$$

(B)
$$-, +, -$$

(C)
$$-, +, +$$

(D)
$$+, +, -$$

Ans.: b

$$C_6H_6(l)+rac{15}{2}O_2(g)\longrightarrow 6CO_2(g)+3H_2O(g)$$

Gaseous moles in reactant 7.5

Gareous moles in product = 9.

•	Δna	= 9	-7.5	= +1.5
•	<u> — 109</u>	_ 0	1.0	- 11.6

 \therefore As Δng is tive $\therefore \Delta s$ its positive.

It is a combustion reaction (exothermic reaction)

$$\therefore \Delta H$$
 is -ive.

$$\Delta G_G = \underbrace{\Delta H}_{(-)} - T \underbrace{\Delta S}_{(+)}$$

As T (temperature is positine)

- \therefore ΔG becomes negative.
- 97. Which of the following relation is incorrect

(A)
$$Kp = \left(rac{e}{RT}
ight)^{\Delta G^o}$$

(B)
$$Kp = e^{-\frac{\Delta G}{RT}}$$

(C)
$$\Delta G^o = -2.303\,RT\log Kp$$

(B)
$$Kp=e^{-rac{\Delta G^o}{RT}}$$
 (D) $\log K_{eq}=rac{-\Delta G^o}{2.303~RT}$

Ans.: (A)
$$Kp = \left(rac{e}{RT}
ight)^{\Delta G^o}$$

98. For the fuel cell reaction

$$2H_2(q)+O_2(q)
ightarrow 2H_2O(l)$$

$$2H_2(g)+O_2(g)
ightarrow 2H_2O(l)$$
 ; $\Delta_f H^o_{298}(H_2O(l))=-285.5\, kJ/mol$

What is ΔS_{298}^o for the given fuel cell reaction ?

Given
$$: O_2(g) + 4H^+(aq) + 4e^-
ightarrow 2H_2O(l) \quad E^o = 1.23\,V$$

(A)
$$-0.322 \, J/K$$

(B)
$$-0.635 \, kJ/K$$

(C)
$$3.51 \, kJ/K$$

(D)
$$-0.322 \, kJ/K$$

Ans.: d

$$2H_2(g)+O_2(g) o 2H_2O(l)$$

$$\Delta H$$
 for
this reaction $=285.5 imes 2 rac{kj}{mol}$

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G^o = -2.303 RT \ln K(i)$$

$$E^{o} = \frac{.06}{n} \ln K$$
 (ii)

using these 2 equations we will get the ΔG^o value.

so
$$\Delta G^o = 2.303RT imes 82$$

$$\Delta G = \Delta H - T\Delta S$$

$$2.303RT \times 82 = 2.85 \times 2 - 298\Delta S$$

$$\Delta S = -0.322 \, rac{kj}{mol}$$

- 99. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be Joules
 - (A) infinite
- (B) 3

(C) 9

(D) 0

Ans.: d

since the ideal gas expands spontaneously into vacuum, $P_{ext} = 0$, hence work done is also zero.

- 100. During an isothermal expansion of an ideal gas its
 - (A) Internal energy increases
 - (B) Enthalpy decreases
 - (C) Enthalpy remains unaffected

(D) Enthalpy reduces to zero

Ans.: (c)During isothermal expansion of ideal gas, $\Delta T = 0$

$$\Delta H = \Delta E + P\Delta V = \Delta E + nR\Delta T = 0 + 0 = 0$$
.

101. 1 mole of a diatomic is heated through isochoric process from $300\,K$ to $500\,K$. The entropy is :

(A) 10.61

(B) 38.26

(C) 20.05

(D) 30

Ans.: a

The entropy for a system can be calculated as:

$$\Delta S = n C_v \ln rac{T_2}{T_1} + n R \ln rac{V_2}{V_1} \cdot \cdots \cdot (I)$$

The volume remains zero for isochoric process.

For diatomic gas;

$$C_v = \frac{5R}{2}$$

Substitute all the values in the expression (I).

$$\Delta S = 1 imes rac{5R}{2} \ln rac{500}{300} \ = rac{5}{2} imes 8.314 imes 0.5108$$

= 10.61 J

102. Enthalpy of combustion of CH_4, C_2H_6 and C_3H_8 are -210.8, -368.4 and $-526.2\,k\,cal\,mol^{-1}$ respectively. Enthalpy of combustion of hexane can be predicted as...... $k\,cal\,mol^{-1}$

(A) -840

(B) -684

(C) -1000

(D) none of these

Ans.: c

$$egin{aligned} \Delta H_c(C_2H_6) - \Delta H_c(CH_4) \ &= -368.2 - (-210.8) = -157.4 \end{aligned}$$

$$\Delta H_c(C_3H_8) - \Delta H_c(C_2H_6)$$

= -526.2 - (-368.4) = -157.8

Thus, average

$$\Delta H_c(-CH_2) = \frac{157.4 + 157.8}{2}$$

$$= -157.6\,k\,cal\,mol^{-1}$$

Then,

$$\Delta H_c(C_6 H_{14}) = \Delta H_c(C_3 H_8) + 3\Delta H_c(-C H_2)$$

$$= -526.2 + 3(-157.6) = -999 \, k \, cal \, mol^{-1}$$

103. ΔS_{surr} for an exothermic reaction is

- (A) always positive
- (B) always negative
- (C) zero
- (D) may be positive or negative

Ans.: d

Heat is released in an exothermic process which increases the entropy of

surroundings. When entropy of the system is positive, overall entropy change is also positive. In some exothermic reactions, entropy of system may decrease.

104. ΔH_{fusion} of a substance is 'x' and ΔH_{vap} is 'y', then $\Delta H_{sublimation}$ will be

(A)
$$x+y$$

(B)
$$x-y$$

(C)
$$x/y$$

(D)
$$y/x$$

Ans.: a

Solid
$$\xrightarrow{\Delta H_{fusion}}$$
 Liquid $\xrightarrow{\Delta H_{vap}}$ Vapours ΔH_{Sub}

So using Hess law, we get $\Delta H_{sub} = \Delta H_{fus} + \Delta H_{vap} = x + y$

105. The heat of neutralisation of a strong acid and a strong alkali is $57.0\,kJ\,mol^{-1}$. The heat released when $0.5\,mole$ of HNO_3 solution is mixed with $0.2\,mole$ of KOH is.....kJ

Ans. : (b) 0.2 mole will neutralize 0.2 mole of HNO_3 , heat evolved $= 57 \times 0.2 = 11.4 \, kJ$.

106. Assertion: During an adiabatic process, heat energy is not exchanged between system and its surroundings.

Reason : The temperature of a gas increases when it undergoes an adiabatic expansion.

- (A) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
- (B) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
- (C) If the Assertion is correct but Reason is incorrect.
- (D) If both the Assertion and Reason are incorrect.

Ans.: c

The temperature of a gas decreases when it undergoes adiabatic expansion.

107. Assertion: Mass and volume are extensive properties.

Reason: Mass / volume is also an extensive parameter.

- (A) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
- (B) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
- (C) If the Assertion is correct but Reason is incorrect.
- (D) If both the Assertion and Reason are incorrect.

Ans.: c

The properties of a system which depend upon quantity of matter contained in it are called extensive properties, e.g., mass, volume, heat capacity etc. But mass /

volume = density is an intensive property as density does not depend upon quantity of matter in a system.

- 108. The internal energy of a substance
 - (A) Increases with increase in temperature
 - (B) Decreases with increase in temperature
 - (C) Can be calculated by the relation $E=mc^2$
 - (D) Remains unaffected with change in temperature

Ans.: (a) ΔE increases with temperature.

- 109. Which of the following is not a state function
 - (A) Internal energy
- (B) Enthalpy
- (C) Work
- (D) Entropy

Ans.: (c)Work is not a state function as during a process its value depends on the path followed. The value of enthalpy, internal energy and entropy depends on the state and not on the path followed to get that state, hence these are state functions.

- 110. In thermodynamics, a process is called reversible when
 - (A) Surroundings and system change into each other
 - (B) There is no boundary between system and surroundings
 - (C) The surroundings are always in equilibrium with the system
 - (D) The system changes into the surroundings spontaneously

Ans.: (c)Thermodynamics is a reversible process in which surroundings are always equilibrium with system.

- 111. Work done during isothermal expansion of one mole of 1 mole of an ideal gas from $10 \ atm$ to 1 atm at $300 \ K$ is......cal (Gas constant = 2)
 - (A) 938.8
- (B) 1138.8
- (C) 1381.8
- (D) 1581.8

Ans.: (c)
$$-W = +2.303 \, nRT \, log \, \frac{p_1}{p_2}$$

$$-W = 2.303 \times 1 \times 2 \times 300 \;\; log \; \frac{10}{1} = 1381.8 \, cal.$$

112. Assertion: Entropy of ice is less than water.

Reason: Ice has cage like structure.

- (A) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
- (B) If both Assertion and Reason are correct but Reason is not a correct explanation of the Assertion.
- (C) If the Assertion is correct but Reason is incorrect.
- (D) If both the Assertion and Reason are incorrect.

Ans.: b

Entropy is defined as the extent of randomness in a system. When a substance is heated, its randomness and hence entropy increases. Thus entropy of ice is less

than water because of lesser molecular motion in ice. It is also true that ice has an open cage like structure.

- 113. Hess law is applicable for the determination of heat of
 - (A) Reaction
- (B) Formation
- (C) Transition
- (D) All of these

Ans.: b

It's obvious.

- 114. In an endothermic reaction, the value of ΔH is
 - (A) Zero
- (B) Positive
- (C) Negative
- (D) Constant

Ans.: (b) $\Delta H = +ve$ for endothermic reaction.

- 115. The enthalpy change of a reaction does not depend on
 - (A) The state of reactants and products
 - (B) Nature of reactants and products
 - (C) Different intermediate reaction
 - (D) Initial and final enthalpy change of a reaction

Ans.: c

Enthalpy change is a state function so it does not depend on the path taken by the reaction. it depends only on the difference of final and initial values of enthalpy change.

- 116. A well stoppered thermos flask contains some ice cubes. This is an example of a
 - (A) Closed system

(B) Open system

(C) Isolated system

(D) Non-thermodynamic system

Ans.: (c)In isolated system neither exchange of matter nor exchange of energy is possible with surroundings.

117. A schematic plot of versus inverse of temperature for a reaction is shown below The reaction must be

- (A) Exothermic
- (B) Endothermic
- (C) One with negligible enthalpy change
- (D) Highly spontaneous at ordinary temperature

Ans.: a

It's obvious.

Ans.: (b)
$$XY \rightarrow X_{(g)} + Y_{(g)}$$
 $\Delta H = +a \ kJ/mole$ (i)

$$X_2
ightarrow 2X$$
; $\Delta H = +a~kJ/mole$

$$\dots (ii)$$

$$Y_2
ightarrow 2Y$$
; $\Delta H = +0.5\,a\;kJ/mole$

$$\frac{1}{2} \times (ii) + \frac{1}{2} \times (iii)$$
 - (i) , gives

$$\Delta H = \left(+ rac{a}{2} + rac{0.5}{2} a - a
ight) \; kJ/mole$$

$$+rac{a}{2}+rac{0.5a}{2}-a=-200$$

$$a = 800$$

119. If at $298\,K$ the bond energies of $C-H,\,C-C,\,\,C=C$ and H-H bonds are respectively 414,347,615 and $435\,kJ$ mol^{-1} , the value of enthalpy change for the reaction

$$H_2C=CH_2(g)+H_2(g)
ightarrow H_3C-CH_3(g)$$
 at $298\,K$ will be kJ

(A)
$$+250$$

(B)
$$-250$$

$$(C) +125$$

(D)
$$-125$$

Ans.: (d)
$$CH_2 = CH_{2(q)} + H_{2(q)} \rightarrow H_3C - CH_{3(q)}$$

$$414 \times 4 = 1656 \ 414 \times 6 = 2484$$

$$615 \times 1 = 615$$
 $347 \times 1 = \frac{347}{2831}$

$$435 \times 1 = \frac{435}{2706}$$

$$\Delta H = 2706 - 2831 = -125 \, kJ$$

120. The heat of hydrogenation for 3 -methylbutene and 2 -pentene are $-30\,kcal/mol$ and $-28\,kcal/mol$ respectively. The heats of combustion of 2 -methylbutane and pentane are - $784\,kcal/mol$ and $-782\,kcal/mol$ respectively. All the values are given under standard conditions. Taking into account that combustion of both alkanes give the same products, what is ΔH (in kcal/mol) for the following reaction under same conditions ?

(A) 0

(B)
$$-4$$

(C)
$$-2$$

(D) 2

Ans.: b

$$\Delta H_1=-30~kcal/mol$$
 , $\Delta H_2=(-784+782)~kcal/mol$, $\Delta H_3=28~kcal/mol$ $\Rightarrow \Delta H_1+\Delta H_2+\Delta H_3=-4~kcal/mol$

Isomerisation
via combustion
step-2 (ΔH₂)

Dehydrogenation Step-3 (ΔH₂)

----- Believe in your potential: You possess a unique set of talents and abilities -----