PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

Vo Tuan Kiet

May 22, 2024

1/26

Point Cloud

- Simplest, only points, no connectivity
- (x,y,z) coordinates, with some features
- Easy to get directly from existing devices

2/26

Vo Tuan Kiet May 22, 2024

Previous Work

Point cloud is converted to other representations before it's fed to a deep neural network

Conversion	Deep Net
Voxelization	3D CNN
Projection/Rendering	2D CNN
Feature extraction	Fully Connected

Question

Can we archive effective feature learning directly on point clouds ?

4/26

Vo Tuan Kiet May 22, 2024

Challenges

 Unordered set as input: Model need to be invariant to N! permutations.

- Interaction among points: Model needs to be able to capture local structures from nearby points, and the combinatorial interactions among local structures.
- Invariance under geometric transformation: Point cloud rotations should not alter classification results.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

5/26

Proposed Structure

- ullet Unordered set as input o Max pooling
- ullet Interaction among points o Global-local feature concatenation
- ullet Invariance under geometric transformation o T-net

6/26

Vo Tuan Kiet May 22, 2024

PointNet

End to end learning for scatterd, unordered point data. Unified framework for various tasks

Vo Tuan Kiet May 22, 2024 7/26

Permutation Invariance : Symetric Function

 Fundamental idea: approximate a general functions defined on a point set by appling a symetric function on transformed elements in the set:

$$f(\lbrace x_1,\ldots,x_n\rbrace)=\gamma\left(\max_{i=1,\ldots,n}h(x_i)\right)$$

• Symetric function : $f(x_1, x_2, ..., x_n) = f(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)}), \quad x_i \in \mathbb{R}^d$

Vo Tuan Kiet May 22, 2024 8 / 26

Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment

PointNet Architecture

10/26

Vo Tuan Kiet May 22, 2024

Max pooling gives order invariance

11 / 26

Vo Tuan Kiet May 22, 2024

Concatenating global-to-local features combines local + global

Vo Tuan Kiet May 22, 2024 12 / 26

info

T-Nets gives invariances by transforming to canonical pose

13 / 26

Vo Tuan Kiet May 22, 2024

Limitations of PointNet

- Does not take into account density variability
- Does not capture both local and global features

Vo Tuan Kiet May 22, 2024 14 / 26

Desired Properties

- Hierarchical feature learning
- Robustness to density changes
- Point feature propagation for set segmentation

May 22, 2024

Vo Tuan Kiet

Architecture choices

- Hierarchical feature learning \rightarrow Set abstraction layer
- Robustness to density changes → Density-adaptive grouping
- ullet Point feature propagation for set segmentation o Distance-based interpolation

16/26

Vo Tuan Kiet May 22, 2024

Hierarchical Feature Learning

Applying PointNet recursively on a nested partitioning of the point set Set abstraction layer:

- Sampling layer: Select centroid with iterative farthest point sampling (FPS)
- Grouping layer: Select group of point for each neighborhood centroid (KNN, ball queries)
- OpintNet layer: Apply small PointNet on each group

Vo Tuan Kiet May 22, 2024 17 / 26

Hierarchical Feature Learning

Hierarchical point set feature learning

Vo Tuan Kiet May 22, 2024 18 / 26

Robustness to density changes

Adaptively group by density

- In high density area, group tightly
- In low density area, group widely

Vo Tuan Kiet May 22, 2024

19 / 26

Propagation For Set Segmentation

Propagate features from subsampled points to the original points.

Inverse distance weight interpolation

$$f^{(j)}(x) = \frac{\sum_{i=1}^{k} w_i(x) f_i^{(j)}}{\sum_{i=1}^{k} w_i(x)} \quad \text{where} \quad w_i(x) = \frac{1}{d(x, x_i)^p}, \quad j = 1, ..., C$$

Vo Tuan Kiet May 22, 2024 20 / 26

Experimental setup: Dataset

PointNet++ was evaluated on four datasets in various domains:

(2D)

(3D models)

(non-rigid 3D models)

ScanNet (3D Indoor Scenes)

Complexity

Vo Tuan Kiet May 22, 2024 21/26

Result: MNIST classification

Method	Error rate (%)
Multi-layer perceptron [24]	1.60
LeNet5 [11]	0.80
Network in Network [13]	0.47
PointNet (vanilla) [20]	1.30
PointNet [20]	0.78
Ours	0.51

Table 1: MNIST digit classification.

Result: ModelNet40 classification

Method	Input	Accuracy (%)
Subvolume [21]	vox	89.2
MVCNN [26] PointNet (vanilla) [20]	img pc	90.1 87.2
PointNet [20]	pc	89.2
Ours Ours (with normal)	pc pc	90.7 91.9

Table 2: ModelNet40 shape classification.

May 22, 2024 23 / 26

Result: Robustness to density changes

Figure: Left: Point cloud with random point dropout. Right: Curve showing advantage of our density adaptive strategy in dealing with non-uniform density. DP means random input dropout during training; otherwise training is on uniformly dense points

Vo Tuan Kiet May 22, 2024 24 / 26

Result: ScanNet40 labeling

Figure 5: Scannet labeling accuracy.

Vo Tuan Kiet

Result: SHREC15 Non-rigid shape classification

	Metric space	Input feature	Accuracy (%)	
DeepGM [14]	-	Intrinsic features	93.03	
	Euclidean	XYZ	60.18	
Ours	Euclidean	Intrinsic features	94.49	
	Non-Euclidean	Intrinsic features	96.09	
Table 2. CHDEC15 Non-wield shape alogation				

Table 3: SHREC15 Non-rigid shape classification.