V

Додаткові розділи функціонального аналізу

Частина V: Зміст

23 Топологія, що породжена сім'єю відображень 23.1 Топологія, у якій задані функції неперервні	133 134
24 Тихоновський добуток і тихоновська топологія	135
24.1 Декартів добуток як множина функцій	
24.2 Тихоновська топологія і фільтри	
24.4 Література	
25 Основні відомості про топологічні векторні простори	139
25 Основні відомості про топологічні векторні простори 25.1 Простір із неперервними операціями	
	139
25.1 Простір із неперервними операціями	139 139
25.1 Простір із неперервними операціями	139 139 140
25.1 Простір із неперервними операціями 25.2 Поглинаючі та урівноважені множини 25.3 Узгодженість та віддільність 25.4 Література	139 139 140
25.1 Простір із неперервними операціями 25.2 Поглинаючі та урівноважені множини 25.3 Узгодженість та віддільність 25.4 Література 26 Повнота, передкомпактність, компактність	139 139 140 140
25.1 Простір із неперервними операціями 25.2 Поглинаючі та урівноважені множини 25.3 Узгодженість та віддільність 25.4 Література	139 139 140 140 141
25.1 Простір із неперервними операціями 25.2 Поглинаючі та урівноважені множини 25.3 Узгодженість та віддільність 25.4 Література 26 Повнота, передкомпактність, компактність 26.1 Фільтр Коші	139 139 140 140 141 141
25.1 Простір із неперервними операціями 25.2 Поглинаючі та урівноважені множини 25.3 Узгодженість та віддільність 25.4 Література 26 Повнота, передкомпактність, компактність 26.1 Фільтр Коші 26.2 Повнота і фільтри	139 139 140 141 141 141

23 Топологія, що породжена сім'єю відображень

§23.1 Топологія, у якій задані функції неперервні

Нехай на множині X задано сім'я відображень F, де відображення $f \in F$ діють у топологічні простори f(X), які, взагалі кажучи, можуть бути різними. Для будьякої точки $x \in X$, будь-якого скінченного сім'ї відображень $\{f_k\}_{k=1}^n \subset F$ і відкритих околів V_k точок $f_k(x)$ в просторі $f_k(X)$ визначимо множини

$$U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x) = \bigcap_{k=1}^n f_k^{-1}(V_k).$$

Як відомо, якщо для кожної точки $x \in X$ задане непорожнє сім'я підмножин U_x , що має такі властивості:

- 1. якщо $U \in U_x$, то $x \in U$;
- 2. якщо $U_1, U_2 \in U_x$, то існує таке $U_3 \in U_x$, що $U_3 \subset U_1 \cap U_2$;
- 3. якщо $U \in U_x$ і $y \in U$, то існує така множина $V \in U_y$, що $V \subset U$,

то існує топологія au на X, для якої сім'ї U_x будуть базами околів відповідних точок.

Таким чином, на X існує топологія, для якої множини $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ утворюють базу околів точки x при всіх точках $x \in X$. Позначимо цю топологію як $\sigma(X,F)$. Зокрема, околами точок $x \in X$ в топології $\sigma(X,F)$ будуть всі множини $f^{-1}(V)$, де $f \in F$, а V — окіл точки f(x) в топологічному просторі f(X). Отже, усі відображення сім'ї F є неперервними в топології $\sigma(X,F)$.

Теорема 23.1

 $\sigma(X,F)$ — найслабкіша топологія серед усіх топологій на X, в яких усі відображення сім'ї F є неперервними.

Доведення. Нехай τ — довільна топологія, в якій усі відображення сім'ї F є неперервними. Доведемо, що будь-яка множина $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ є околом точки x в топології τ . Звідси випливатиме, що $\tau \succ \sigma(X,F)$. За умовою, усі відображення $f_k: X \to F_k(X)$ є неперервними в топології τ . Отже, $f_k^{-1}(V_k)$ — це відкриті околи точки x в топології τ . Відкритим околом буде і скінченний перетин $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ таких множин.

Означення 23.1. Топологія $\sigma(X, F)$ називається топологією, породженою сім'єю відображень F, або слабкішою топологією, в якій усі відображення сім'ї F є неперереними.

§23.2 Породжена топологія і віддільність

Означення 23.2. Кажуть, що сім'я відображень F **розділяє** точки множини X, якщо $\forall x_1, x_2 \in X, x_1 \neq x_2, \exists f \in F : f(x_1) \neq f(x_2).$

Теорема 23.2

Нехай усі простори f(X), $f \in F$ є хаусдорфовими. Для того щоб топологія $\sigma(X,F)$ була віддільною за Хаусдорфом необхідно і достатнью, щоб сім'я відображень F розділяла точки множини X.

Доведення. Достатність. Припустимо, що сім'я відображень F розділяє точки множини X. Тоді

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \quad \exists f \in F : \quad f(x_1) \neq f(x_2).$$

Оскільки f(X) — хаусдорфів простір, існують околи V_1, V_2 точок $f(x_1)$ і $f(x_2)$ відповідно. Множини $f^{-1}(V_1)$ і $f^{-1}(V_2)$ є шуканими околами в топології $\sigma(X, F)$, що розділяють точки x_1 і x_2 .

Необхідність. Нехай сім'я відображень F не розділяє точок множини X. Тоді

$$\exists x_1, x_2 \in X, x_1 \neq x_2 \quad \forall f \in F: \quad f(x_1) = f(x_2).$$

Візьмемо довільний окіл $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x_1)$ точки x_1 в топології $\sigma(X,F)$. Оскільки $f_k(x_1)=f_k(x_2)$ для всіх $k=1,2,\ldots,n$, то й точка x_2 лежить у тому ж околі $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x_1)$. Отже, в топології $\sigma(X,F)$, не виконується навіть аксіома про віддільність, а не лише властивість Хаусдорфа.

§23.3 Породжена топологія і фільтри

Теорема 23.3

Для того щоб фільтр \mathfrak{F} на X збігався в топології $\sigma(X,F)$ до елемента x, необхідно і достатньо, щоб умова $\lim_{\mathfrak{F}} f = f(x)$ виконувалася для всіх $f \in F$.

Доведення. **Необхідність.** З огляду на неперервність усіх $f \in F$ в $\sigma(X, F)$, необхідність випливає з теореми 3.3.

Достатність. Нехай $\lim_{\mathfrak{F}} f = f(x)$ для всіх $f \in F$. Доведемо, що будь-який окіл $U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x)$ є елементом фільтра \mathfrak{F} . За умовою, $\lim_{\mathfrak{F}} f_k = f_k(x)$, отже $f_k^{-1}(V_k) \in \mathfrak{F}$ для усіх $k=1,2,\ldots,n$. Оскільки фільтр є замкненим відносно скінченого перетину елементів

$$U_{n,\{f_k\}_{k=1}^n,\{V_k\}_{k=1}^n}(x) = \bigcap_{k=1}^n f_k^{-1}(V_k) \in \mathfrak{F}.$$

§23.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 492–495).

24 Тихоновський добуток і тихоновська топологія

§24.1 Декартів добуток як множина функцій

Нехай Γ — не обов'язково скінченна індексна множина, кожному елементу γ якої поставлено у відповідність деяку множину X_{γ} .

Означення 24.1. Декартовим добутком множин X_{γ} по $\gamma \in \Gamma$ називається множина $\prod_{\gamma \in \Gamma} X_{\gamma}$, яка складається із усіх таких функцій $x : \Gamma \to \bigcup_{\gamma \in \Gamma} X_{\gamma}$, що $\forall \gamma \in \Gamma$ $x(\gamma) \in X_{\gamma}$.

Зауваження 24.1 — У частковому випадку, коли $\forall \gamma \in \Gamma \ X_{\gamma} = X$, добуток складається з усіх функцій $x : \Gamma \to X$ і називається декартовим степенем X^{Γ} .

Приклад 24.1

Простір Фреше — добуток $\prod_{n\in\mathbb{N}} X_n$, де $X_n = \mathbb{R}$. Отже, простір Фреше є степенем $\mathbb{R}^{\mathbb{N}} = \mathbb{R}^{\aleph_0}$, елементами якого є зліченні послідовності $x = \{x_n\}_{n=1}^{\infty}$ дійсних чисел x_n .

Приклад 24.2

Гільбертів куб — добуток $\prod_{n\in\mathbb{N}} X_n$, де $X_n=I=[0,1]$, тобто це простір I^{\aleph_0} .

Приклад 24.3

Тихоновський куб — добуток $\prod_{\gamma\in\Gamma}X_\gamma$, де # $\Gamma=\nu$, а $X_\gamma=I=[0,1]$, тобто це простір I^ν .

Приклад 24.4

Канторів дисконтинуум ваги ν — добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$, де $\#\Gamma = \nu$, а множини $X_{\gamma} = D = \{0,1\}$ (проста двокрапка), тобто це простір D^{ν} .

§24.2 Проектори, тихоновська топологія і добуток

Означення 24.2. Відображення $P_{\alpha}: \prod_{\gamma \in \Gamma} X_{\gamma} \to X_{\alpha}$, що діє за правилом $P_{\alpha}(x) = x_{\alpha}, \forall \alpha \in \Gamma$, називається координатним проектором.

Означення 24.3. Нехай $X_{\gamma},\ \gamma\in\Gamma$ — топологічні простори. Тихоновською топологією на $\prod_{\gamma\in\Gamma}X_{\gamma}$ називається найслабкіша з топологій, в якій усі координатні проектори $P_{\alpha}(x),\ \alpha\in\Gamma$ є неперервними.

Означення 24.4. Декартів добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$, наділений тихоновською топологією, називається **тихоновським добутком**.

Зауваження 24.2 — Очевидно, що координатні проектори розділяють точки добутку, тому за теорем. 23.2 тихоновський добуток хаусдорфових просторів є віддільним за Хаусдорфом.

Означення 24.5. Нехай K — скінчений набір індексів з Γ . Добуток $A = \prod_{\gamma \in \Gamma} A_{\gamma}$, де $A_{\gamma} = X_{\gamma}$ при $\gamma \notin K$, і $A_{\gamma} \subset X_{\gamma}$ при $\gamma \in K$ і A_{γ} — відкриті множини в топологіях τ_{γ} , називається відкритою циліндричною множиною з основою $\prod_{\gamma \in K} A_{\gamma}$.

Запишемо тихоновську топологію як топологію, що породжена сім'єю відображень. Нехай $x\in\prod_{\gamma\in\Gamma}X_\gamma,\, K\subset\Gamma$ — скінченна множина індексів, $V_\gamma\subset X_\gamma,\, \gamma\in K$ — околи точок x_γ . Введемо позначення

$$U_{K,\{V_{\gamma}\}_{\gamma\in K}}(x) = \left\{\gamma \in \prod_{\gamma\in\Gamma} X_{\gamma} : \gamma_{\alpha} \in V_{\alpha}, \forall \alpha \in K\right\}.$$

Зауваження 24.3 — Множина $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ є відкритим циліндричним околом точки x з основою $\prod_{\gamma\in K}V_\gamma$.

Теорема 24.1 (про базу околів точки в тихоновській топології)

Множини $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ утворюють у тихоновській топології базу околів точки x.

Вправа 24.1. Перевірте властивості бази.

 \square оведення. . . .

§24.3 Тихоновська топологія і фільтри

Теорема 24.2 (критерій збіжності в тихоновському добутку)

Фільтр \mathfrak{F} на $\prod_{\gamma\in\Gamma}X_{\gamma}$ збігається в тихоновській топології до елемента $x=\{x_{\gamma}\}_{\gamma\in\Gamma}$ тоді і тільки тоді, коли $x_{\gamma}=\lim_{\mathfrak{F}}P_{\gamma},\,\forall\gamma\in\Gamma.$

Доведення. **Необхідність.** Оскільки координатні проектори на $\prod_{\gamma \in \Gamma} X_{\gamma}$ є неперервними і $x = \lim \mathfrak{F}$, то за теорем. 20.3 $\lim_{\mathfrak{F}} P_{\gamma} = P_{\gamma}(x) = x_{\gamma}$.

Достатність. Покажемо, що будь-який окіл V точки x належить фільтру \mathfrak{F} . З огляду на те, що $\forall A \in \mathfrak{F}$ $A \subset B \subset X \implies B \in \mathfrak{F}$, достатньо розглянути відкритий циліндричний окіл точки x, який міститься в V. Отже, розглянемо відкритий циліндричний окіл $U = \prod_{\gamma \in \Gamma} V_{\gamma}$ точки x з основою $\prod_{\gamma \in K} V_{\gamma}$, тобто $U_{K,\{V_{\gamma}\}_{\gamma \in K}}(x)$.

Оскільки $\forall \gamma_0 \in K$ множина V_{γ_0} є околом точки x_{γ_0} в просторі X_{γ_0} і $\lim_{\mathfrak{F}} P_{\gamma_0} = x_{\gamma_0}$, то існує множина $A \in \mathfrak{F}$ така, що $P_{\gamma_0}(A) \subset V_{\gamma_0}$, отже, $A \subset P_{\gamma_0}^{-1}(V_{\gamma_0})$, тому $P_{\gamma_0}^{-1}(V_{\gamma_0}) \in \mathfrak{F}$. Таким чином, $\forall \gamma \in K$ $P_{\gamma}^{-1}(V_{\gamma}) \in \mathfrak{F}$. Оскільки множина K є скінченою, то $\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V - \gamma) \in \mathfrak{F}$.

Оскільки

$$\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V_{\gamma}) \subset U_{K,\{V_{\gamma}\}_{\gamma \in K}}(x),$$

а $U_{K,\{V_\gamma\}_{\gamma\in K}}(x)$ утворюють в $\prod_{\gamma\in\Gamma}X_\gamma$ базу околів точки x (теорем. 24.1), то

$$\bigcap_{\gamma \in K} P_{\gamma}^{-1}(V_{\gamma}) \subset U, \quad \forall U \in \Omega_x.$$

Тому, за четвертою аксіомою фільтра $U \in \mathfrak{F}$.

Зауваження 24.4 — Із теорем. 24.1 випливає, що послідовність $x_n = \{x_{n,\gamma}\}_{\gamma \in \Gamma}$ точок добутку $\prod_{\gamma \in \Gamma} X_{\gamma}$ топологічних просторів збігається до точки x тоді і лише тоді, коли для кожного $\gamma_0 \in \Gamma$ послідовність $\{x_{\gamma_0,n}\}$ збігається в просторі X_{γ_0} до точки x_{γ_0} .

Інакше кажучи, збіжність в тихоновській топології є покоординатною.

Теорема 24.3 (теорема Тихонова про добуток компактів)

Тихоновський добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$ будь-якої сім'ї непорожніх топологічних просторів $X_{\gamma}, \gamma \in \Gamma$ є компактним тоді і лише тоді, коли усі X_{γ} є компактними.

Доведення. **Необхідність.** Нехай $X_{\gamma}, \gamma \in \Gamma$ — довільна сім'я непорожніх просторів і їх тихоновський добуток $\prod_{\gamma \in \Gamma} X_{\gamma}$ є компактним. Оскільки кожна множина $X_{\gamma}, \gamma \in \Gamma$ є образом компактного простору $\prod_{\gamma \in \Gamma} X_{\gamma}$, отриманим за допомогою неперервного відображення $P_{\gamma}: X \to X_{\gamma}$, то простори $X_{\gamma}, \gamma \in \Gamma$ є компактними (неперервний образ компактного простору є компактним простором).

Достатність. За критерієм компактності в термінах фільтрів, для того щоб простір був компактним, необхідно і достатньо, щоб кожний ультрафільтр на X збігався. Нехай $\mathfrak A$ — ультрафільтр на $\prod_{\gamma\in\Gamma}X_{\gamma}$. Оскільки $X_{\gamma},\ \gamma\in\Gamma$ — компактні топологічні простори, то за критерієм компактності в термінах фільтрів $\forall \gamma\in\Gamma\ \exists y_{\gamma}=\lim_{\mathfrak A}P_{\gamma}$. Оскільки P_{γ} — неперервні відображення, то за теорем. 24.2 $y=\{y_{\gamma}\}_{\gamma\in\Gamma}=\lim_{\mathfrak A}\mathfrak A$. \square

§24.4 Література

- [1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 492–495).
- [2] **Александрян Р. А.**, Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 120–126, 230–234).

25 Основні відомості про топологічні векторні простори

§25.1 Простір із неперервними операціями

Означення 25.1. Лінійний простір X (дійсний чи комплексний) із заданою на ньому топологією τ називається **топологічним векторним простором** (ТВП), якщо топологія τ так погоджена з лінійною структурою, що відображення суми елементів і множення скаляра на елемент є неперервними по сукупності змінних.

Розпишемо означення докладніше. Нехай X — топологічний векторний простір. Розглянемо функції $+: X \times X \to X$ і $\cdot: \mathbb{R} \times X \to X$. Узгодження топології лінійною структурою означає, что функції + і \cdot є неперервними як функції двох змінних.

Теорема 25.1

Нехай U — відкрита множина у просторі X. Тоді

- 1. для будь-якого $x \in X$ множина U + x є відкритою
- 2. для будь-якого $\lambda \neq 0$ множина λU є відкритою.

Доведення. Зафіксуємо $x_2 = -x$ і скористаємося неперервністю функції $+(x_1, x_2) = x_1 + x_2$ по першій змінній при фіксованій другій змінній. Отже, функція $f(x_1) = x_1 - x$ є неперервною по x_1 , а U + x є прообразом відкритої множини U під дією функції f. Отже, множина U + x є відкритою.

Друга властивість виводиться так само, але з використанням неперервності функції $q(x) = \lambda^{-1}x$.

З теореми випливає, що околи будь-якого елемента $x \in X$ є множинами вигляду U + x, де U — околи нуля. Відповідно, топологія τ однозначно визначається системою \Re_0 околів нуля. Тому інші властивості топології τ будуть формулюватися через околи нуля. Далі через S_r позначатимемо множину $S_r = \{\lambda \in \mathbb{R} : |\lambda| \leq r\}$.

§25.2 Поглинаючі та урівноважені множини

Означення 25.2. Підмножина A лінійного простору X називається поглинаючою, якщо для будь-якого $x \in X$ існує таке $n \in \mathbb{N}$, що $x \in tA$ для будь-якого t > n.

Означення 25.3. Підмножина $A \subset X$ називається **урівноваженою**, якщо для будь-якого скаляра $\lambda \in S_1$ виконане включення $\lambda A \subset A$.

Теорема 25.2

Властивості системи \Re_0 околів нуля топологічного векторного простору X:

- 1. Будь-який окіл нуля є поглинаючою множиною.
- 2. Довільний окіл нуля містить урівноважений окіл нуля.
- 3. Для кожного околу $U \in \mathfrak{R}_0$ існує урівноважений окіл $V \in \mathfrak{R}_0$ з $V + V \subset U$.

Доведення.

- 1. Зафіксуємо $x \in X$ і скористаємося неперервністю функції $f(\lambda) = \lambda x$. Оскільки f(0) = 0, неперервність у точці $\lambda = 0$ означає, що для будь-якого $U \in \mathfrak{R}_0$ існує таке $\varepsilon > 0$, що $\lambda x \in U$ для будь-якого $\lambda \in S_{\varepsilon}$. Увівши позначення $t = \lambda^{-1}$, одержимо, що $x \in tU$ для будь-якого $t \geq \varepsilon^{-1}$.
- 2. Нехай $U \in \mathfrak{R}_0$. Через неперервність у точці (0,0) функції $\cdot (\lambda, x) = \lambda x$, існує таке $\varepsilon > 0$ і такий окіл $W \in \mathfrak{R}_0$, що $\lambda x \in U$ для будь-якого $\lambda \in S_{\varepsilon}$ і будь-якого $x \in W$.

Покладемо $V = \bigcup_{\lambda \in S_{\varepsilon}} \lambda W$. Покажемо, що множина $V \supset U$ і є шуканаий урівноваженаий окіл нуля. З одного боку, $V \supset W$, отже, $V \in \mathfrak{R}_0$. З іншого боку, для будь-якого $\lambda_0 \in S_1$ маємо $\lambda_0 S_{\varepsilon} \subset S_{\varepsilon}$, отже,

$$\lambda_0 V = \bigcup_{\lambda \in S_{\varepsilon}} \lambda_0 \lambda W = \bigcup_{\mu \in \lambda_0 S_{\varepsilon}} \mu W \subset \bigcup_{\mu \in S_{\varepsilon}} \mu W = V,$$

чим доведена урівноваженість околу V.

3. Через неперервність у точці (0,0) функції $+(x_1,x_2)=x_1+x_2$, для будь-якого околу $U\in\mathfrak{R}_0$ існують околи $V_1,V_2\in\mathfrak{R}_0$ з $V_1+V_2\subset U$. Шуканий урівноважений окіл нуля V виберемо за пунктом 2 так, щоб V містився в околі $V_1\cap V_2$.

§25.3 Узгодженість та віддільність

Теорема 25.3

Нехай система \mathfrak{R}_0 околів нуля топології τ на лінійному просторі X підкоряється умовам теорем. 25.2, і для будь-якої точки $x \in X$ система околів \mathfrak{R}_x цієї точки отримується паралельним переносом \mathfrak{R}_0 на вектор x. Тоді топологія τ узгоджується з лінійною структурою.

Зауваження 25.1 — Через урівноваженість умову $V+V\subset U$ пункту 3 теорем. 25.2 можна записувати у вигляді $V-V\subset U$.

Теорема 25.4

Для віддільності за Хаусдорфом топологічного векторного простору X необхідно і достатнью, щоб система \mathfrak{R}_0 околів нуля підкорялася такій умові: для будь-якого $x \neq 0$ існує окіл $U \in \mathfrak{R}_0$, що не містить точку x.

Доведення. Нехай $x \neq y$. Тоді $x - y \neq 0$ та існує окіл $U \in \mathfrak{R}_0$, який не містить x - y. Виберемо такий окіл $V \in \mathfrak{R}_0$, що $V - V \subset U$. Тоді околи x + V і y + V не перетинаються: якщо існує точка z, яка лежить одночасно в x + V і y + V, то $z - x \in V$, $z - y \in V$ і $x - y = (z - y) - (z - x) \in V - V \subset U$.

§25.4 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 497-499).

26 Повнота, передкомпактність, компактність

§26.1 Фільтр Коші

Означення 26.1. Фільтр \mathfrak{F} у топологічному векторному просторі X називається фільтром Коші, якщо для будьякого околу нуля U існує такий елемент $A \in F$, що $A - A \subset U$. Такий елемент A називається малим порядку U.

Теорема 26.1

Якщо фільтр \mathfrak{F} має границю, то \mathfrak{F} — фільтр Коші.

Доведення. Нехай $\lim \mathfrak{F} = x$ і $U \in \mathfrak{R}_0$. Виберемо $V \in \mathfrak{R}_0$ з $V - V \subset U$. За теоремою 1.1 (п.1) існує такий елемент $A \in \mathfrak{F}$, що $A \subset x + V$ Отже,

$$A - A \subset (x + V) - (x + V) \subset V - V \subset U.$$

Теорема 26.2

Нехай \mathfrak{F} — фільтр Коші на ТВП X і x — гранична точка \mathfrak{F} . Тоді $\lim \mathfrak{F} = x$.

Доведення. Нехай x+U — довільний окіл точки x, де $U\in\mathfrak{R}_0$. Виберемо окіл $V\in\mathfrak{R}_0$ з $V+V\subset U$ і множину $A\in F$, малу порядку $V\colon A-A\subset V$. За означенням граничної точки, множини A і x+V перетинаються, тобто існує $y\in A\cap (x+V)$. Тоді

$$x + U \supset x + V + V \supset y + V \supset y + A - A \supset y + A - y = A.$$

Таким чином, окіл x+U містить елемент фільтра \mathfrak{F} , отже, $x+U \in F$.

§26.2 Повнота і фільтри

Означення 26.2. Множина A у ТВП X називається **повною**, якщо будь-який фільтр Коші на X, що містить A як елемент, має границю, що належить A.

Зауваження 26.1 — Зокрема, топологічний векторний простір X називається повним, якщо будь-який фільтр Коші в X має границю.

Теорема 26.3

Нехай X — підпростір топологічного векторного простору E і $A\subset X$ — повна в X підмножина. Тоді A є повною як підмножина простору E.

Доведення. Нехай \mathfrak{F} — фільтр Коші на E, що містить A як елемент. Тоді, зокрема $X \in \mathfrak{F}$, то слід \mathfrak{F}_X фільтра \mathfrak{F} на X є фільтром. Легко бачити, що \mathfrak{F}_X — це фільтр Коші на X, що містить A як елемент. Отже, через повноту A у X фільтр \mathfrak{F}_X має в X границю $a \in A$. Ця ж точка a буде границею фільтра \mathfrak{F} в E.

Теорема 26.4

Повна підмножина A хаусдорфового ТВП X є замкнутою.

Зауваження 26.2 — Зокрема, якщо підпростір хаусдорфового ТВП є повним в індукованій топології, то цей підпростір є замкнутим.

§26.3 Передкомпактність і компактність

Доведення. Нехай точка $x \in X$ належить замиканню множини A. Нам потрібно довести, що $x \in A$. Розглянемо сімейство $\mathfrak D$ усіх перетинів виду $(x+U) \cap A$, де $U \in \mathfrak R_0$. Усі такі перетини не порожні, і $\mathfrak D$ задовольняє усі аксіоми бази фільтра. Фільтр $\mathfrak F$, породжений базою $\mathfrak D$, мажорує фільтр $\mathfrak R_x$ усіх околів точки x, отже, $x = \lim \mathfrak F$. Зокрема, $\mathfrak F$ — це фільтр Коші. За побудовою, наша повна множина A є елементом фільтра $\mathfrak F$; отже, відповідно до означення, фільтр $\mathfrak F$ має границю в A. Через єдиність границі $x \in A$, що і було потрібно довести.

Означення 26.3. Множина A у ТВП X називається **передкомпактом**, якщо для будь-якого околу нуля U існує така скінченна множина $B \subset X$, що $A \subset U + B$. Така множина B називається, за аналогією з ε -сіттю, U-сіттю множини A.

Теорема 26.5

Щоб підмножина A хаусдорфового ТВП X була компактом, необхідно і достатью, щоб A була одночасно передкомпактом і повною множиною в X.

§26.4 Поглинання і обмеженість

Означення 26.4. Нехай X — топологічний векторний простір. Будемо говорити, що окіл нуля $U \in \mathfrak{R}_0$ поглинає множину $A \subset X$, якщо існує таке число N > 0, що $A \subset tU$ для будь-якого $t \geq N$.

Означення 26.5. Множина $A \subset X$ називається **обмеженою**, якщо вона поглинається кожним околом нуля.

Теорема 26.6

Властивості обмежених підмножин топологічного векторного простору X:

- 1. Нехай $A\subset X$ обмежена множина. Тоді для будьякого околу $U\in\mathfrak{R}_0$ існує таке число N>0, що $A\subset tU$ для будь-якого $t\geq N$.
- 2. Об'єднання скінченної кількості обмежених множин обмежене.
- 3. Будь-яка скінченна множина є обмеженою.
- 4. Будь-який передкомпакт у X є обмеженим.

Доведення.

1. Нехай $V \in \Omega_0$ — врівноважений окіл, що міститься в U за теорем. 25.2 (п. 2). Виберемо таке число N>0, що $A\subset NV$. Тоді для будь-якого $t\geq N$ маємо

$$A \subset NV = t(Nt^{-1}V) \subset tV \subset tU.$$

2. Нехай A_1, A_2, \ldots, A_n — обмежені множини, U — окіл нуля. За пунктом 1)

$$\forall A_k \quad \exists N_k : \quad \forall t \ge N \quad A_k \subset tU.$$

Покладемо $N=\max_k N_k,\ k=1,2,\ldots,n.$ Тоді $\forall t\geq N$ усі включення $A_k\subset tU$ виконуються одночасно, тобто $\bigcup_{k=1}^n A_k\subset tU.$

- 3. Одноточкова множина є обмеженою, оскільки окіл нуля є поглинаючою множиною. Отже, за попереднім пунктом, будь-яка скінченна множина як скінченне об'єднання одноточкових множин є обмеженою.
- 4. Нехай A передкомпакт в X, U окіл нуля. Виберемо врівноважений окіл $V \in \Omega_0$, такий що $V + V \subset U$. За означенням передкомпакта, існує така скінченна множина $B \subset X$, що $A \subset B + V$. Відповідно до попереднього пункту, можна знайти такий коефіцієнт N > 0, що $B \subset NV$. Тоді

$$A \subset B + V \subset NV + V \subset N(V + V) \subset NU.$$

§26.5 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 502–504).