

22 - 25 SEPTEMBER 2024

Melbourne, Australia

/whois @beLarge

A cyber security architecture enthusiast, infrastructure tourist and "cyber hype guy"

- Principal Cyber Security Architect at B Large
- Worked in IT and OT in Network & System Engineering and Cyber Security roles for over 15 years
- CPEng (ITEE) and RPEQ (IT&E)
- Chair of Information, Telecommunications and Electronics
 Engineering (ITEE) Queensland Branch of Engineers Australia
- President Queensland Professional Engineers Sub-Division of Professionals Engineers & Proud member of Professionals Australia (PA)
- Bach Eng (Telecomms) QUT First Class Honours and Master Business (Applied Finance) with Distinction QUT

Agenda

- An Introduction to ESA and the SABSA Framework
- Aligning SABSA with System Engineering Processes
- 3. Worked Example of OT Cloud SCADA
- 4. Further Resources & Summary
- 5. Q&A

INTRODUCTION OF ENTERPRISE SECURITY ARCHITECTURE AND THE SABSA FRAMEWORK

TYPES OF ARCHITECTURE

Term	Definition
cyber security architecture	How cybersecurity practices and controls are structured and implemented to maintain the confidentiality, integrity, and availability of the organization's assets and services.
enterprise architecture	The design and description of an enterprise's entire set of IT and OT assets: how they are configured, how they are integrated, how they interface to the external environment at the enterprise's boundary, how they are operated to support the enterprise mission, and how they contribute to the enterprise's overall security posture.

ENTERPRISE SECURITY ARCHITECTURE & SECURITY SOLUTION ARCHITECTURE

Enterprise Security Architecture

- Defines the enterprise wide security artefacts such as:
 - Architectural Principles
 - Attributes Modelling (SABSA)
 - Domain Model
 - Trust Models
 - Pattern Repositories
- Run the Architectural Review Board (ARB)
- Should work with the business to define security strategy and justification

Solution Architecture (Security)

- Focuses on producing solution designs that address cyber security requirements as per the enterprise methodology
- A key pivot role between the whole of enterprise and delivering projects
- Are most likely aligned to projects

Some good material in NIST NICE (https://www.nist.gov/itl/applied-cybersecurity/nice/nice-framework-resource-center)

Worker Roles Enterprise Architect (SP-ARC-001) and Security Architect (SP-ARC-002)

OVERVIEW OF SABSA

- SABSA has its origins as the Enterprise Security Architecture for the SWIFT IP Payments Network
- Business Aligned, Top Down and Deliberate, not just best practice
- Focus on Attributes which are security goals/objectives/requirements
- Two Way Traceability

The SABSA Matrix also provides two-way traceability:

 Completeness: has every business requirement been met? The layers and matrix allow you to trace every requirement through to the components that provide a solution.

Business Justification: is every component of the architecture needed? When someone questions 'Why are
we doing it this way?' the rationale is plain by tracing back to the business requirements that drive the
specific solution.

SABSA MATRIX

	ASSETS	MOTIVATION	PROCESS	PEOPLE	LOCATION	TIME
	(What)	(Why)	(How)	(Who)	(Where)	(When)
CONTEXTUAL	Business	Business	Business The Bu	ısiness Viewss	Business	Business Time
ARCHITECTURE	Decisions	Risk	Process	Governance	Geography	Dependence
CONCEPTUAL	Business Knowledge	Risk Management	Strategies for Project	hitect's View	Domain	Time Management
ARCHITECTURE	& Risk Strategy	Objectives	Assurance	Responsibilities	Framework	Framework
LOGICAL	Information	Risk Management	Process MapThe Des	signer's View	Domain	Calendar &
ARCHITECURE	Assets	Policies	Services	Framework	Maps	Timetable
PHYSICAL ARCHITECTURE	Data Assets	Risk Management Practices	Process The Bu Mechanisms	uilder's Viewerface	ICT Infrastructure	Process Schedule
COMPONENT ARCHITECTURE	ICT Components	Risk Management Tools & Standards	Process Tools & Trade Standards	Personnel Momt, eperson's View Tools & Standards	Locator Tools & Standards	Step Timing & Sequencing Tools
SERVICE MGMT	Service Delivery	Operational Risk	Process Delivery	e Manager's View	Management of	Time & Performance
ARCHITECTURE	Management	Management	Management	Management	Environment	Management

WHY 6 LAYERS?

SABSA MATRIX (CONT.)

Table 3: SABSA MATRIX

	ASSETS (What)	MOTIVATION (Why)	PROCESS (How)	PEOPLE (Who)	LOCATIO	ON (Where)
	Business Decisions	Business Risk	Business Processes	Business Governance	Business	Geography
ARCHITECURE	Taxonomy of Business Assets, including Goals & Objectives	Opportunities & Threats Inventory	Inventory of Operational Processes	Organisational Structure & the Extended Enterprise	Building	tory of gs, Sites, tories,
	Business Knowledge & Risk Strategy	Risk Management Objectives	Strategies for Process Assurance	Roles & Responsibilities	Domain	
CONCEPTUAL ARCHITECTURE	Business Attributes Profile	Enablement & Control Objectives; Policy Architecture	Process Mapping Framework; Architectural Strategies for ICT	Owners, Custodians and Users; Service Providers & Customers	Securi Con Frai	
	Information Assets	Risk Management Policies	Process Maps & Services	Entity & Trust Framework	Dom	
LOGICAL ARCHITECTURE	Inventory of Information Assets	Domain Policies	Information Flows; Functional Transformations; Service Oriented Architecture	Entity Schema; Trust Models; Privilege Profiles	Domain Inter assoc inte	CONTEX ARCHITE
	Data Assets	Risk Management Practices	Process Mechanisms	Human Interface	ICT Inf	
PHYSICAL ARCHITECTURE	Data Dictionary & Data Inventory	Risk Management Rules & Procedures	Applications; Middleware; Systems; Security Mechanisms	User Interface to ICT Systems; Access Control Systems	Host I L: & N	ARCHITE(
	ICT Components	Risk Management Tools & Standards	Process Tools & Standards	Personnel Man'ment Tools & Standards	Locate Sta	
COMPONENT ARCHITECTURE	ICT Products, including Data Repositories and Processors	Risk Analysis Tools; Risk Registers; Risk Monitoring and Reporting Tools	Tools and Protocols for Process Delivery	Identities; Job Descriptions; Roles; Functions; Actions & Access Control Lists	Nodes, and oth	LOGIC ARCHITE
eepy//ee	Service Delivery Management	Operational Risk Management	Process Delivery Management	Personnel Management	Mana Envi	
SERVICE MANAGEMENT ARCHITECTURE	Assurance of Operational Continuity & Excellence	Risk Assessment; Risk Monitoring & Reporting; Risk Treatment	Management & Support of Systems, Applications & Services	Account Provisioning; User Support Management	Mana Buildir Plat Ne	PHYSIC ARCHITEC

Table 4	CADCA	SERVICE	MANIAC	CMENT	MATRIX	(Alianod	with ITII	2
Table 4:	SABSA	SERVILE	MANAG		MAIRIX	(Allanea	WITH IIIL	.VJ

TIME (When)
Business Time

Dependence

Time dependencies

of business

	ASSETS (What)	MOTIVATION (Why)	PROCESS (How)	PEOPLE (Who)	LOCATION (Where)	TIME (When)
	Service Delivery Management	Operational Risk Management	Process Delivery Management	Personnel Management	Management of Environment	Time & Performance Management
	The		above is a repeat of La exploded overlay of hor	,	A Matrix. each of these other Lay	vers
	Business Driver Development	Business Risk Assessment	Service Management	Relationship Management	Point-of-Supply Management	Performance Management
CONTEXTUAL ARCHITECURE	Business Benchmarking & Identification of Business Drivers	Analysis of Internal & External Risk Factors	Managing Service Capabilities for Providing Value to Customers	Managing Service Providers & Service Customers; Contract Man'ment	Demand Man'ment; Service Supply, Deployment & Consumption	Defining Business- Driven Performance Targets
	Proxy Asset Development	Developing ORM Objectives	Service Delivery Planning	Service Management Roles	Service Portfolio	Service Level Definition
CONCEPTUAL ARCHITECTURE	Defining Business Attributes Profile with Performance Criteria, KPIs & KRIs	Risk Analysis on Business Attributes Proxy Assets	SLA Planning; BCP; Financial Planning & ROI; Transition Planning	Defining Roles, Responsibilities, Liabilities & Cultural Values	Planning & Maintaining the Service Catalogue	Managing Service Performance Criteria and Targets
	Asset Management	Policy Management	Service Delivery Management	Service Customer Support	Service Catalogue Management	Evaluation Management
LOGICAL ARCHITECTURE	Knowledge Management; Release & Deployment Management; Test & Validation Management	Policy Development; Policy Compliance Auditing	SLA Management; Supplier Management; BCM; Cost Management; Transition Management	Access Management; User Privileges, Account Administration & Provisioning	Configuration Management; Capacity Planning; Availability Management	Monitoring & Reporting Performance against KPIs and KRIs
PHYSICAL	Asset Security & Protection	Operational Risk Data Collection	Operations Management	User Support	Service Resources Protection	Service Performance Data Collection
ARCHITECTURE	Change Management; Software & Data Integrity Protection	Operational Risk Management Architecture	Job Scheduling; Incident & Event Management; Disaster Recovery	Service Desk; Problem Man'ment; Request Man'ment	Physical & Environmental Security Management	Systems and Service Monitoring Architecture
	Tool Protection	ORM Tools	Tool Deployment	Personnel Deployment	Security Management Tools	Service Monitoring Tools
COMPONENT ARCHITECTURE	Product & Tool Security & Integrity; Product & Tool Maintenance	ORM Analysis, Monitoring and Reporting Tools & Display Systems	Product & Tool Selection and Procurement; Project Management	Recruitment Process Disciplinary Process Training & Awareness Tools	Products & Tools for Managing Physical & Logical Security of Installations	Service Analysis, Monitoring and Reporting Tools & Display Systems

ATTRIBUTES

- SABSA defines an attribute as "A normalised, measurable, incontext definition of what is important"
- There were originally 85 defined and organised into 7 categories
- Architects are encouraged to create new ones for their projects, and there is a SABSA Institute working group

Figure 4: The SABSA Taxonomy of ICT Business Attributes

EXAMPLE ATTRIBUTES

Business	Attribute explanation	Metric	Suggested
attribute		type	measurement approach
Supportable	The system should be capable of being supported in terms of both the users and the operations staff, so that all types of problems and operational difficulties can be resolved.	Hard	Fault-tracking system providing measurements of MTBF, MTTR (mean time to repair), and maximum time to repair, with targets for each parameter

Operational attributes. These attributes describe the ease and effectiveness with which the business system and its services can be operated.

Available	The information and services provided by the system should be available according to the requirements specified in the service-level agreement (SLA).	Hard	As specified in the SLA
Continuous	The system should offer "continuous service." The exact definition of this phrase will always be subject to a SLA.	Hard	Percentage up-time correlated versus scheduled and/or unscheduled downtime, or MTBF, or MTTR
Detectable	Important events must be detected and reported.	Hard	Functional testing

ATTRIBUTES (CONT.)

- They are however a very smart abstraction of cyber security requirements management
- It provides a simple label for a complex interaction of security requirements to achieve a business goal
- It can be used to highlight the impact of an emerging business driver on the enterprise's ability to exploit an opportunity or manage a risk
- It uses the language of the stakeholder to make it relevant to the audience
- It can cascade, interact and even disrupt other requirements

MULTI TIER ATTRIBUTES

BALANCED RISK MANAGEMENT

DOMAIN MODELS

- A domain is defined as "A set of elements, area of knowledge or activity, subject to a common (security) dominion of a single accountable authority"
- Can have Sub Domains, Peer Domains, External Domains

SABSA LIFE CYCLE

Figure 2: The SABSA Development Process

BONUS SLIDE -SABSA & TOGAF INTEGRATION

 TSI & Open Group White Paper that describes how to integrate SABASA and TOGAF

Figure 16: Overview of Security-Related Artifacts in the TOGAF ADM

ALIGNING SABSA TO SYSTEM ENGINEERING

ALIGNING SABSA ATTRIBUTES WITH REQUIREMENTS ENGINEERING

- A critical interface activity between System Engineering and Security Architects is Requirements Management
- Use existing SE artifacts such as:
 - Business Needs and Requirements (BNR)
 - Stakeholder Needs and Requirements (SNR)
 - System Requirements Specification (SySR)
- I suggest using SABSA Attributes as a "category" group for Requirements in Requirements Management tool and use as a Traceability Tool

USING DOMAIN MODELS TO MANAGE RISK TREATMENT

- The domain model clearly articulates the Policy Authority
- The domain model can also be used to understand risk dependencies and risk interactions for sub domains
 - Treating a risk in one domain may adversely impact risks in other domains for example a trade off financial risks may incur physical safety risks
- SE Context Diagrams are a useful reference for Domain Modelling

USING LOGICAL LAYER AS THE DEMARCATION OF SE AND CYBER SECURITY

- The Contextual and Conceptual Layers demonstrate the what and intent
- The logical and below is the how
- Similar to Functional and Physical demarcation in System Engineering

WORKED EXAMPLE

CLOUD SCADA SYSTEM

SCENARIO BACKGROUND

- The project is to build a Cloud hosted SCADA platform for a small water utility (WaterCo)
- The utility currently does not have a SCADA system but relies on manual operation of dispersed assets
- NCSC Cloud SCADA guidance (https://www.ncsc.gov.uk/collection/operational-technology/cloud-hosted-scada)

SCENARIO APPROACH

- ✓ Definite Attributes Hierarchy
- ✓ Understand Domain Model
- ✓ Identify and Manage Cyber Security Risks

ATTRIBUTE HIERARCHY

- Example Attributes
 - Reliable
 - Supportable
 - Cost-Effective
 - Legacy-Sensitive
- New Attributes
 - Sovereign
 - Safety

EXAMPLE DOMAIN MODEL

DEFINE RISK SCENARIOS

- Risks that Impact Integrity of Control
- Risks that impact availability of control
- Risks of unauthorised access to systems
- Use the attributes profile to prioritise
- NIST 800-82 R3 Appendix C is an awesome pick list of threats and vulnerabilities

Table 13. Threats to OT

Type of Threat Source	Description	Characteristics
ADVERSARIAL - Bot network operators - Criminal groups - Hackers/hacktivists - Insiders - Nations - Terrorists	Individuals, groups, organizations, or nation-states that seek to exploit the organization's dependence on cyber resources (e.g., information in electronic form, information and communications technologies, and the communications and information-handling capabilities provided by those technologies)	Capability, Intent, Targeting
ACCIDENTAL - User - Privileged user or administrator	Erroneous actions taken by individuals in the course of executing their everyday responsibilities (e.g., operator accidentally typing 100 instead of 10 as a set point; engineer making a change in the production environment while thinking that they are in the development environment)	Range of effects

Table 15. Architecture and design vulnerabilities and predisposing conditions

Vulnerability	Description
Inadequate incorporation of	Incorporating security into the OT architecture and design must start with
security into architecture and	a budget and schedule designated for OT. The architectures must address
design	the identification and authorization of users, access control mechanism,
	network topologies, and system configuration and integrity mechanisms.
Inadequate management of change	The network infrastructure within the OT environment has often been
that allows insecure architecture to	developed and modified based on business and operational requirements
evolve	with little consideration for the potential security impacts of the changes.
	Over time, security gaps may have been inadvertently introduced within
	the infrastructure. Without remediation, these gaps may represent
	backdoors into the OT.
	Sensors and controllers that were historically simple devices are now often manufactured as intelligent devices. In some cases, sensors and controllers
	may be replaced with IIoT devices that allow direct internet connections.
	Security should be incorporated into change management for all OT
	devices, not just traditional IT components.
No security perimeter defined	If the OT does not have a security perimeter clearly defined, it is not
Two security permieter defined	possible to ensure that the necessary security controls are deployed and
	configured properly. This can lead to unauthorized access to systems and
	data, as well as other problems.
Control networks used for non-	Control and non-control traffic have different requirements, such as
control traffic	determinism and reliability. Having both types of traffic on a single
	network creates challenges for meeting the requirements of control traffic.
	For example, non-control traffic could inadvertently consume resources
	that control traffic needs, causing disruptions in OT functions.
Control network services	When IT services such as a Domain Name System (DNS) and Dynamic
dependent on a non-control	Host Configuration Protocol (DHCP) are used by control networks, they
network	are often implemented in the IT network. This causes the OT network to
	become dependent on the IT network, which may not have the reliability
In-dtt	and availability requirements needed by OT.
Inadequate collection of event data	Forensic analysis depends on the collection and retention of sufficient
history	data. Without proper and accurate data collection, it may be impossible to determine what caused a security incident to occur. Incidents might go
	unnoticed, leading to additional damage and/or disruption. Regular
	security monitoring is also needed to identify problems with security
	controls, such as misconfigurations and failures.
	Event data for an OT environment could include physical process data,

FURTHER RESOURCES & SUMMARY

FURTHER RESOURCES

- SABSA White Paper (W100)
- Enterprise Security Architecture
 A Business- Driven Approach
- Practical Cyber Security Architecture
- Join The SABSA Institute
 - Webinar SABSA Architecture in Mission Critical
 System Engineering Projects Alex Parkinson
- Join SABSA World Australia

SUMMARY

- Understand the difference between Enterprise Security Architecture (ESA) and Security Solution Architecture
- Understand the key features of SABSA
 - The SABSA Matrix
 - SABSA Attributes
 - Domain Modelling
- Understand the key Interaction of System Engineering and ESA
 - Use of Attributes to align Requirements Engineering & Requirements Management
 - Use of Doman Models to understand Risk Treatment Authority
 - Using The Logical Layer as the Demarcation of SE and Security Solution Architecture Teams

THANK YOU, QUESTIONS?

https://linkedin.com/in/blargeau

https://github.com/beLarge

bruce@blarge.io