Задача 1.1:

проверяющие Сергей Тарасов, Александр Кульков

ответ правильный, но нет процедуры/объяснения того, что делать на k_0 вершинах явно -0.5 балла.

Авторское решение: когда k_0 фиксировано и не является частью входа, задача может быть решена полным перебором за полиномиальное время. В вершинном покрытии и независимом множестве нужно перебирать все подмножества в V размера k_0 (которых $C^{k_0}_{|V|}$, а это полином степени k_0 от |V|), в простом пути нужно перебрать все наборы вершин размера k_0 и проверить, на них найдется простой путь.

Задача 1.2:

проверяющие Даниил Селиханович, Павел Останин, Александр Кульков ответ без обоснования — 0 баллов, правильный ответ и попытка привести пример — 0.5 балла, правильный ответ и пример — 1 балл

Авторское решение: нет, в указанном классе есть и неразрешимые задачи.

Задача 1.3:

проверяющие Даниил Селиханович, Александр Плавин не \mathcal{NP} т.к. сертификат не полиномиален – 0 баллов, \mathcal{NP} т.к. сертификат полиномиален – 0 баллов, замечено, что сертификат не успеет не считаться за время работы MT – 0.2 балла.

Авторское решение: да, верно, т.к. из того, что верификатор R(x,y) работает за полином от |x|, следует, что он не сможет прочитать сертификат целиком, если тот не ограничен некоторым фиксированным полиномом от |x|. Это означает, что указанный верификатор всегда читает кусок слова y, ограниченный некоторым полиномом от |x|, а значит, можно не учитывать остальную часть сертификата, а рассматривать только этот полиномиально ограниченный кусок слова за сертификат. Но тогда мы получаем, в точности определение класса \mathcal{NP} . Следовательно, определение $\widetilde{\mathcal{NP}}$ эквивалентно определению \mathcal{NP} .

Задача 1.4:

проверяющие *Сергей Тарасов*, *Михаил Гончаров* определение сводимости – 0 баллов,

решение вида $w_1 \# w_2 \# \dots \# w_n \# \in (L_1 \#)^* \Leftrightarrow f(w_1) \# f(w_2) \# \dots \# f(w_n) \# \in (L_2 \#)^*$ без обоснования — 1 балл.

Авторское решение для первого варианта: да, верно. Пусть f — функция, сводящая L_1 к L_2 . Тогда рассмотрим функцию g, которая отображает пустое слово в пустое; остальные слова, не заканчивающиеся на # в любое слово не из $(L_2\#)^*$, например в непустое слово, не содержащее на #;

 $g: w_1\# \dots w_n\# \mapsto f(w_1)\# \dots f(w_n)\#$. Тогда слово из $(L_1\#)^*$ будет отображено в слово из $(L_2\#)^*$, а слово не из $(L_1\#)^*$ может или быть непустым и не оканчиваться на #, тогда оно отображается не в $(L_2\#)^*$, или может иметь вид $w_1\# \dots w_n\#$, где хотя бы одно $w_i\notin L_1$ и тогда оно отображается не в L_2 .

Задача 1.5:

проверяющий Александр Плавин

вариант $2 \rightarrow 3$:

«верно, т.к. 2-С $\in \mathcal{P}$ » и тому подобные – 0 баллов,

неполная сводимость – 0.8 балла,

сводимость в обе стороны – 1 балл,

вариант $3 \rightarrow 2$:

 $\overline{\text{неверно без указания мест либо за решение вида <math>\mathcal{NPC} \nleq_p \mathcal{P},$

сводимость не та, т.к. нельзя удалять вершины/литералы – 0.5 балла,

апелляция к $3 - \mathsf{CNF}$ как к $\mathsf{POBHO} - 3 - \mathsf{CNF} - 0.5$ балла,

обратная сводимость – 1 балл.

Авторское решение:

вариант $2 \to 3$: сводимость верная, вариант $3 \to 2$: – это сводимость в другую сторону.

Задача 1.6:

проверяющие Даниил Селиханович, Павел Останин, Александр Кульков ответ без обоснования — 0 баллов, правильный ответ и попытка привести пример — 0.5 балла, правильный ответ и пример — 1 балл.

Авторское решение: Нет. Контрпримером служат $\log x$ и $\log 2x$.

Задача 2:

проверяющий $Александр \ Кульков$ правильное решение без обоснования монотонности/оценки/округления — 2 балла.

Авторское решение одного из вариантов: в данном случае асимптотика глубины дерева вызовов совпадает с асимптотикой T(n). Заметим, что при отбрасывании $\log n$ из аргумента дерево становится длиннее, поэтому $T(n) \leq \log_3 n$. Обратно, при замене $\frac{n}{3} - \log n$ на $\frac{n}{4}$ дерево становится короче, поэтому $T(n) \geq \log_4 n$. Итак, $T(n) = \Theta(\log n)$.

Отбрасывание округления обосновывается монотонностью. Монотонность следует по индукции из рассмотрения рекурренты T(n) = aT(f(n)) + g(n) с монотонными f и g, причем f(n) < n. В нашем случае это выполняется.

Решение остальных вариантов аналогично.

Задача 3:

проверяющий Сергей Шестаков принадлежность $\mathcal{NP}-+0.5$ баллов, корректная сводимость языка из \mathcal{NPC} к данному — +3.5 баллов.

Авторское решение: Да, является. Принадлежность \mathcal{NP} очевидна — сертификатом будут сами циклы. Построим полиномиальную сводимость $HC(1) \leq_P HC(4)$ (сводимость $HC \leq_P HC(8)$ строится аналогично). Сводящая функция по графу G строит граф \tilde{G} следующим образом. Заменим все рёбра графа G по правилу: ребро (u,v) графа G преобразуется в «ромбик» (добавляются 2 вершины u_1 и v_1 вместе с рёбрами (u,u_1) , (u,v_1) , (u_1,v_1) , (v_1,v) , (u_1,v) , а ребро (u,v) отбрасывается). Полученный граф обозначим \tilde{G} . Заметим, что если в исходном графе G существовал гамильтонов цикл, который содержит рёбра (x,y) и (u,v), то в графе \tilde{G} мы можем каждый из «ромбиков» обойти одним из двух способов (например, «ромбик», сгенерированный из ребра (x,y), можно обойти ровно двумя способами: $x-x_1-y_1-y$ или $x-y_1-x_1-y$). В итоге получаем, что в графе \tilde{G} существует хотя бы 2^n гамильтоновых циклов, т.е. он принадлежит HC(4) и HC(8) при $n \geq 3$. Обратно, пусть \tilde{G} принадлежит, скажем, HC(4). Тогда рассмотрим произвольный гамильтонов цикл в нём. Заметим, что «ромбик», соответствующий ребру (x,y) исходного графа, этот цикл может обойти одним из двух способов: $x-x_1-y_1-y$ или $x-y_1-x_1-y$. Следовательно, в исходном графе есть точно такой же гамильтонов цикл, но в котором «ромбики» заменены на соответствующие рёбра, то есть G принадлежит HC(1).

Комментарии проверяющего: задача ожидаемо оказалось сложной, корректную сводимость написали около пятнадцати человек.

Я считал, что принадлежность \mathcal{NP} должна быть указана явно, тем более, что много работ содержали некорректное рассуждения вида «сведём язык Гамильтонов путь/цикл к нашему языку, тем самым докажем, что наш язык \mathcal{NP} -полон». При этом в максимальные полбалла оценивались любые рассуждения или замечания о том, что язык принадлежит \mathcal{NP} — фактически, про это нужно было просто вспомнить.

Теперь сводимость: правильные сводимости делились в основном на два типа.

- 1) Удвоить/размножить одну вершину (подобно конструкции в сводимости гамильтонова цикла к гамильтонову пути), затем на две размноженные вершины навесить что-то, у чего много гамильтоновых путей. Это что-то варьировалось по сложности начиная от клики фиксированного размера до нескольких копий исходного графа, соединённых специфическим образом. Идея следующая: если в графе есть гам. цикл, то есть путь из одной удвоенной вершины в другую. Этот путь замыкается навешиванием причем благодаря наличию в навешенном графе многих путей у конечного графа получается много циклов. Наоборот, если после преобразования получилось много циклов, то доказывается, что цикл делится на два куска: кусок в навешенном графе и кусок в исходном графе с удвоенной вершиной. Последний же влечёт наличия цикла в исходном графе.
- 2) Решение, подобное авторскому: каждое ребро/каждая вершина исходного графа заменялись на некоторый граф (далее гаджет), причем разные рёбра/вершины заменялись на независимые гад-

жеты. Тогда гамильтонов цикл в исходном графе генерировал множество циклов в преобразованном графе за счёт каждого такого гаджета. Обратная сводимость доказывалась благодаря независимости гаджетов — фактически, проход сквозь каждый гаджет в преобразованном графе эквивалентен проходу по ребру/через вершину в исходном графе.

Неправильные сводимости были достаточно разнообразными, однако несколько ошибок повторялись часто.

1) Рассуждение следующего вида: «сведём гамильтонов путь к нашему языку, пусть в исходном графе был гамильтонов цикл, тогда возьмём две смежные в этом цикле вершины ...» Это неверное рассуждение, никакая сводимость не может пользоваться конкретным циклом в гамильтоновом графе – просто потому, что непонятно как именно искать этот цикл. При построении можно пользоваться фактом того, что граф гамильтонов, но не самим гамильтоновым путём – он ведь не дан на вход.

Если подобное рассуждение непонятно, можно представить себе следующее: функция сводимости есть просто полиномиальный алгоритм, который вы должны написать. Как можно реализовать программно «возьмём две смежные в гамильтоновом цикле вершины» даже если вам дано, что где-то в графе гамильтонов цикл присутствует?

Если в качестве ребра бралось произвольное ребро графа, то такая сводимость также некорректна потому, что нет способа «заставить» некий существующий гамильтонов цикл в графе пройти по произвольно выбранному ребру. В качестве примера можно рассмотреть граф

Этот граф гамильтонов, однако никакой гамильтонов цикл (он всего один) не проходит по ребру 1-3.

Совершивших подобную ошибку и одновременно желающих разобраться я призываю решить (аккуратно решить!) две задачи:

- свести Клику к Клике-на-половине-вершин (язык графов, в которых есть клика ровно на половине вершин графа),
- свести гамильтонов путь/цикл к двойному гамильтонову маршруту (язык графов, в которых есть замкнутый маршрут он может дважды проходить по одному ребру, проходящий через все вершины графа ровно по два раза).
- 2) Некорректная сводимость сводимость, верная в одну сторону (чаще всего тривиально верная), но неверная в другую. Эта ошибка была частой, при этом сводимости (и даже то, в какую сторону сводимость верна) крайне разнообразными. Подобное решение оценивалось в 0 баллов по следующей логике: в частичный балл оценивается решение неполное то, которое додумыванием, дописыванием или подобными усилиями можно привести к правильному. Некорректная сводимость не может быть «исправлена» до корректной никак иначе, кроме как полным переписыванием.

Неполный балл из 3.5 за сводимость можно было получить лишь за корректную сводимость, обоснование которой неполно/недописано/неясно – это удалось паре человек.

Типичная ошибка, приводящая к некорректной сводимости, имела вид «пусть в исходном графе не было гамильтонова цикла, тогда в преобразованном цикла и не появится/появится не более одного цикла» — это утверждение не обосновывается и (скорее всего) не является верным.

Типичными контрпримерами, часто помогающими понять суть проблемы, являются:

- граф-путь на n вершинах можно на трёх или четырёх,
- граф «песочные часы» он имеет четыре различных гамильтоновых пути, но не имеет ни одного гамильтонова цикла

Задача 4.1:

проверяющий Павел Останин

выписана система с двумя уравнениями и двумя неизвестными – +1 балл,

представление a_n и b_n очевидными суммами из представления $(1+\sqrt{d})^n$ биномом Ньютона не оценивалось (такую сумму необходимо свернуть),

По техническим причинам в этом пункте задачи результат, выставленный на работе, умножается на 1.5 – т.е. оценивается из максимума в 3 балла

Задача 4.2:

проверяющий Π авел Oстанин решение рекурренты -+1 балл, асимптотика -+1 балл

в некоторых работах выписывались a_n и b_n очевидными суммами из представления $(1+\sqrt{d})^n$ биномом Ньютона, а затем констатировалось совпадение асимптотик $(a_n=\Theta(b_n))$; такой подход оценивался из 1 балла,

несколько студентов после получения системы из двух уравнений с двумя неизвестными последовательностями сразу переходили к производящим функциям, и из них находили a_n и b_n и их асимптотики; в этом случае второй пункт оказывался формально выполненным, а первый — лишь частично: в нём явно требовалось выписать по одному уравнению на каждую из переменных, что проделано не было (хотя это легко можно сделать, найдя явный вид a_n и b_n в виде сумм экспонент: известны оба корня характеристического уравнения). Такой подход оценивался из половины баллов за 4(i) и полных баллов за 4(i).

Авторское решение:

(*i*) С одной стороны, $(1+\sqrt{3})^{n+1}=a_{n+1}+\sqrt{3}b_{n+1}$, а с другой можем использовать сведения о коэффициентах в случае степени на 1 меньше и получить $(1+\sqrt{3})^n(1+\sqrt{3})=(a_n+\sqrt{3}b_n)(1+\sqrt{3})=(a_n+3b_n)+\sqrt{3}(a_n+b_n)$. Отсюда имеем систему вида: $\begin{cases} a_{n+1}=a_n+3b_n;\\ b_{n+1}=a_n+b_n. \end{cases}$ Заметим теперь, что из первого уравнения $b_n=\frac{1}{3}(a_{n+1}-a_n)$, а тогда подстановка во второе

Заметим теперь, что из первого уравнения $b_n = \frac{1}{3}(a_{n+1} - a_n)$, а тогда подстановка во второе уравнение даст одно уравнение только для a_n : $\frac{1}{3}(a_{n+2} - a_{n+1}) = a_n + \frac{1}{3}(a_{n+1} - a_n)$, откуда $a_{n+2} - 2a_{n+1} - 2a_n = 0$.

Аналогично, из второго уравнения $a_n = b_{n+1} - b_n$, а значит, $(b_{n+2} - b_{n+1}) = (b_{n+1} - b_n) + 3b_n$, откуда $b_{n+2} - 2b_{n+1} - 2b_n = 0$. Рекуррентные уравнения для последовательностей (без учёта начальных условий) совпали.

(ii) Полученные рекуррентные уравнения можно решить явно, вычислив по малым n соответствующие начальные условия. Пойдем другим путём. Заметим, что $(1-\sqrt{3})^n=a_n-\sqrt{3}b_n$, а поэтому достаточно сложить это равенство с исходным для получения $a_n=\frac{1}{2}(1-\sqrt{3})^n+\frac{1}{2}(1+\sqrt{3})^n$. Аналогично, вычитанием из первого уравнения второго найдем $b_n=\frac{1}{2\sqrt{3}}(1+\sqrt{3})^n-\frac{1}{2\sqrt{3}}(1-\sqrt{3})^n$.

Ясно, что $a_n = \Theta(b_n)$.

Решение второго варианта аналогично первому: (i) $\begin{cases} a_{n+1}=a_n+5b_n;\\ b_{n+1}=a_n+b_n. \end{cases}$ Итого $a_{n+2}-2a_{n+1}-4a_n=0,\,b_{n+2}-2b_{n+1}-4b_n=0.$ (ii) $a_n=\frac{1}{2}(1-\sqrt{5})^n+\frac{1}{2}(1+\sqrt{5})^n,\,b_n=\frac{1}{2\sqrt{5}}(1+\sqrt{5})^n-\frac{1}{2\sqrt{5}}(1-\sqrt{5})^n.$

(ii)
$$a_n = \frac{1}{2}(1-\sqrt{5})^n + \frac{1}{2}(1+\sqrt{5})^n$$
, $b_n = \frac{1}{2\sqrt{5}}(1+\sqrt{5})^n - \frac{1}{2\sqrt{5}}(1-\sqrt{5})^n$

Как и в первом варианте, $a_n = \Theta(b_n)$.

Задача 5.1:

проверяющие Александр Иванов, Александр Кульков

идеи вида «найдём первую единицу, применим любой шаблон, повторим» — 0 баллов,

сформулирована идея обнулять по одному биту и сделана попытка получить подобное как комбинацию конкретных шаблонов – до 1 балла,

показано, как получить одну единицу – 2 балла.

Задача 5.2:

проверяющие Александр Иванов, Александр Кульков правильный ответ -+1 балл,

обоснование ответа -+1 балл.

Задача 5.3:

проверяющие Александр Иванов, Александр Кульков

сведение к СЛАУ без уточнений какую именно систему решаем или без надлежащего обоснования корректности – 1-2 балла.

Авторское решение.

1. Научимся получать b=1. Если мы можем получить его, то можем получить любой другой шаблон.

Один из вариантов:

- (а) Применим шаблон 1 0000 1 0000 1 0000 1 0000 1 к позиции 1
- (b) Применим шаблоны 11111 в следующем порядке:
 - i. $1[0000\ 1]0000\ 1\ 0000\ 1\ 0000\ 1 \to 1[1111\ 0]0000\ 1\ 0000\ 1\ 0000\ 1$
 - ii. 1 1111[0 0000]1 0000 1 0000 1 \rightarrow 1 1111[1 1111]1 0000 1 0000 1
 - iii. 1 1111 1 1111 1[0000 1]0000 1 \rightarrow 1 1111 1 1111 1[1111 0]0000 1
 - iv. 1 1111 1 1111 1 1111[0 0000]1 \rightarrow 1 1111 1 1111 1 1111[1 1111]1
- (с) В итоге получим на ленте 21 единиц подряд. Ещё 4 раза приложим шаблон 11111, чтобы занулить все, кроме первой.
- 2. Сдвигу шаблона на k соответствует умножение на x^k , а композиции шаблонов соответствует сумме многочленов:

$$A(x) = x^{j_1} A_{i_1}(x) + x^{j_2} A_{i_2}(x) + \dots + x^{j_n} A_{i_n}(x)$$

3. Согласно прошлому пункту если первый шаблон представлен многочленом $A_1(x)$, а применяли мы его в позициях j_1, \ldots, j_n , то строка, полученная на ленте будет соответствовать следующему многочлену:

$$(x^{j_1} + \dots + x^{j_n})A_1(x) = P_1(x)A_1(x)$$

Соответственно, если мы используем различные шаблоны, их композиция может быть представлена в виде:

$$P_1(x)A_1(x) + \cdots + P_m(x)A_m(x) = B(x)$$

Здесь $P_k(x)$ — «позиционный» многочлен шаблона k, который состоит из слагаемых вида x^j , где j — позиция приложения шаблона a_k . Как и в случае с числами, такое уравнение будет разрешимо тогда и только тогда, когда многочлен-образец B(x) делится на наибольший общий делитель многочленов-шаблонов $A_k(x)$. Обоснование: Можно поочерёдно выводить из рассмотрения пары шаблонов $A_1(x)$ и $A_2(x)$, заменяя их шаблоном $G(x) = \gcd(A_1, A_2)$, так как с одной стороны он может быть получен как линейная комбинация A_1 и A_2 алгоритмом Евклида, а с другой любой многочлен вида $B_1(x)A_1(x) + B_2(x)A_2(x)$ делится на G(x) и может быть представлен в виде $B_3(x)G(x)$.

Задача 6.1:

проверяющий Эдуард Горбунов

оценены вероятности того, что будет сделано $\geqslant k$ итераций, либо показано, что такая ситуация возможна — 1 балл

Задача 6.2:

проверяющий Эдуард Горбунов

ситуация, когда строго не объяснено, что все перестановки равновероятны – 1 балл, показано, что получается случайная перестановка с вероятностью 1/n! – 2 балла

Задача 6.3:

проверяющий Эдуард Горбунов получена рекуррента на мат. ожидание – 1 балл, правильные рассуждения, но технические детали пропущены – 3 балла

Авторское решение:

- (i) Для любого k>0 есть ненулевая вероятность, что алгоритм проработает хотя бы k шагов. Следовательно, искомый супремум равен ∞ .
- (ii) Результатом работы процедуры является массив C[1..n], который является случайной перестановкой массива A[1..n]. Нужно доказать, что вероятность каждой из перестановок исходного массива равна $\frac{1}{n!}$. Зафиксируем некоторую перестановку $A[\sigma(1)], A[\sigma(2)], \ldots, A[\sigma(n)]$ (здесь $\sigma(i)$ индекс i-го массива A в указанной перестановке). Когда i=1, нам подходит только один вариант, при котором в строчке 6 генерируется $j=\sigma(1)$. Вероятность этого события (обозначим его B_1) равна $\frac{1}{n}$. Далее счётчик i увеличивается на единицу. Рассмотрим первый момент времени, когда выполняется строчка 6 и i=k>1, считая, что первые k-1 элемент массива C соответствуют выбранной перестановке массива A. Нам подходят только такие исходы: в строчке 6 случайный генератор возвращает l раз $(l=0,1,2,\ldots)$ подряд индекс из $\{\sigma(1),\ldots,\sigma(k-1)\}$ (обозначим это событие через $A_{k,l}$; отметим, что при этом индекс i не будет меняться), а в (l+1)-й раз возвращает $\sigma(k)$ (событие B_k). Вероятность такого события (обозначим его B_k)

равна
$$\sum_{l=0}^{\infty} \underbrace{\left(\frac{k-1}{n}\right)^l}_{\text{вер-ть } A_{k,l}} \underbrace{\frac{1}{n}}_{\text{вер-ть } B_k} = \frac{1}{1-\frac{k-1}{n}} \frac{1}{n} = \frac{1}{n-k+1}$$
. Заметим, что вероятность события B_k имеет

ровно такой же вид и в случае k=1. Получаем, что вероятность нужной нам перестановки

равна произведению вероятностей событий B_k для $k=1,2,\ldots,n,$ т.е. $\frac{1}{n!}$, что и требовалось доказать.

(ііі) Рассмотрим случайные величины: T — число вызовов функции RAND в строчке 6 и T_k — число вызовов функции RAND в строчке 6 при i=k. Заметим, что $T=\sum_{k=1}^n T_k$. Пользуясь линейностью математического ожидания, получаем $\mathbf{E}[T]=\mathbf{E}\left[\sum_{k=1}^n T_k\right]=\sum_{k=1}^n \mathbf{E}[T_k]$. Найдём $\mathbf{E}[T_k]$. Заметим, что $T_1\equiv 1$, а значит, $\mathbf{E}[T_1]=1$. Пусть k>1, $A'_{k,l}$ — событие, при котором l раз подряд при исполнении строчки 6 при i=k сгенерировались индексы j, для которых $B[j]=\mathrm{TRUE}$, а в (l+1)-й раз сгенерировался j, для которого $B[j]=\mathrm{FALSE}$. Тогда получаем

$$\mathbf{E}[T_k] = \sum_{l=0}^{\infty} (l+1) \underbrace{\left(\frac{k-1}{n}\right)^l \left(1 - \frac{k-1}{n}\right)}_{\text{вер-ть } A'_{k,l}} = \frac{1}{\left(1 - \frac{k-1}{n}\right)^2} \left(1 - \frac{k-1}{n}\right) = \frac{1}{1 - \frac{k-1}{n}} = \frac{n}{n-k+1},$$

что согласуется с полученным ранее $\mathbf{E}[T_1] = 1$. Следовательно,

$$\mathbf{E}[T] = \sum_{k=1}^{n} \frac{n}{n-k+1} = n \left(\ln n + \gamma + O\left(\frac{1}{n}\right) \right) = n \ln n + \gamma n + O(1) = \Theta(n \log n),$$