tfp.bijectors.Log

See Nightly

<u>View</u>

<u>source (https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijon L90)</u>

<u>GitHub</u>

Compute Y = log(X). This is Invert(Exp()).

Inherits From: <u>Invert</u> (https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors/Invert), <u>AutoCompositeTensorBijector</u>

(https://www.tensorflow.org/probability/api_docs/python/tfp/bijectors/AutoCompositeTensorBijector)

```
tfp.bijectors.Log(
    validate_args=False, name='log'
)
```

Args	
bijector	Bijector instance.
validate_args	Python boo1 indicating whether arguments should be checked for correctness.
parameters	Locals dict captured by subclass constructor, to be used for copy/slice re-instantiation operators.
name	Python str, name given to ops managed by this object.
Attributes	
bijector	

forward_min_event_ndims Returns the minimal number of dimensions bijector.forward operates on.

dtype

	Multipart bijectors return structured ndims , which indicates the expected structure of their inputs. Some multipart bijectors, notably Composites, may return structures of None .
graph_parents	Returns this Bijector 's graph_parents as a Python list.
has_static_min_event_ ndims	Returns True if the bijector has statically-known min_event_ndims. (deprecated)
	Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2021-08-01. Instructions for updating: min_event_ndims is now static for all bijectors; this property is no longer needed.
inverse_min_event_ndims	Returns the minimal number of dimensions bijector.inverse operates on. Multipart bijectors return structured event_ndims, which indicates the expected structure of their outputs. Some multipart bijectors, notably Composites, may return structures of None.
is_constant_jacobian	Returns true iff the Jacobian matrix is not a function of x.
	Note: Jacobian matrix is either constant for both forward and inverse or neither.
name	Returns the string name of this Bijector .
name_scope	Returns a tf.name_scope (https://www.tensorflow.org/api_docs/python/tf/name_scope) instance for this class.
non_trainable_variables	Sequence of non-trainable variables owned by this module and its submodules.
	Note : this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.
parameters	Dictionary of parameters used to instantiate this Bijector .

submodules

Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

```
>>> a = tf.Module()
>>> b = tf.Module()
>>> c = tf.Module()
>>> a.b = b
>>> b.c = c
>>> list(a.submodules) == [b, c]
True
>>> list(b.submodules) == [c]
True
>>> list(c.submodules) == []
True
```

trainable_variables

Sequence of trainable variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

validate_args

Returns True if Tensor arguments will be validated.

variables

Sequence of variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

Attributes

bijector

dtype

forward_min_event_ndims

Returns the minimal number of dimensions bijector.forward operates on

	Multipart bijectors return structured ndims , which indicates the expected structure of their inputs. Some multipart bijectors, notably Composites, may return structures of None .
graph_parents	Returns this Bijector 's graph_parents as a Python list.
has_static_min_event_ ndims	Returns True if the bijector has statically-known min_event_ndims. (deprecated)
	Warning: THIS FUNCTION IS DEPRECATED. It will be removed after 2021-08-01. Instructions for updating: min_event_ndims is now static for all bijectors; this property is no longer needed.
inverse_min_event_ndims	Returns the minimal number of dimensions bijector.inverse operates on. Multipart bijectors return structured event_ndims, which indicates the expected structure of their outputs. Some multipart bijectors, notably Composites, may return structures of None.
is_constant_jacobian	Returns true iff the Jacobian matrix is not a function of x.
	Note: Jacobian matrix is either constant for both forward and inverse or neither.
name	Returns the string name of this Bijector .
name_scope	Returns a tf.name_scope (https://www.tensorflow.org/api_docs/python/tf/name_scope) instance for this class.
non_trainable_variables	Sequence of non-trainable variables owned by this module and its submodules.
	Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.
parameters	Dictionary of parameters used to instantiate this Bijector .

submodules

Sequence of all sub-modules.

Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on).

```
>>> a = tf.Module()
>>> b = tf.Module()
>>> c = tf.Module()
>>> a.b = b
>>> b.c = c
>>> list(a.submodules) == [b, c]
True
>>> list(b.submodules) == [c]
True
>>> list(c.submodules) == []
True
```

trainable_variables

Sequence of trainable variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

validate_args

Returns True if Tensor arguments will be validated.

variables

Sequence of variables owned by this module and its submodules.

Note: this method uses reflection to find variables on the current instance and submodules. For performance reasons you may wish to cache the result of calling this method if you don't expect the return value to change.

Methods

forward

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L116-L117)

```
forward(
    x, **kwargs
)
```

Returns the forward Bijector evaluation, i.e., X = g(Y).

Args	
x	Tensor (structure). The input to the 'forward' evaluation.
name	The name to give this op.
**kwargs	Named arguments forwarded to subclass implementation.
Returns	
Tensor (structure).	
Raises	
TypeError	if self.dtype is specified and x.dtype is not self.dtype.
NotImplementedError	if _forward is not implemented.

${\tt forward_dtype}$

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L128-L129)

```
forward_dtype(
          dtype=bijector_lib.UNSPECIFIED, **kwargs
)
```

Returns the dtype returned by forward for the provided input.

forward_event_ndims

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L137-L138)

```
forward_event_ndims(
    event_ndims, **kwargs
)
```

Returns the number of event dimensions produced by forward.

forward_event_shape

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L89-L90)

```
forward_event_shape(
          input_shape
)
```

Shape of a single sample from a single batch as a TensorShape.

Same meaning as forward_event_shape_tensor. May be only partially defined.

Args

input_shape

TensorShape (structure) indicating event-portion shape passed into

forward function.

Returns

forward_event_shape_tenso TensorShape (structure) indicating event-portion shape after applying forward. Possibly unknown.

forward_event_shape_tensor

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L92-L93)

```
forward_event_shape_tensor(
    input_shape
)
```

Shape of a single sample from a single batch as an int32 1D Tensor.

Args	
input_shape	Tensor, int32 vector (structure) indicating event-portion shape passed into forward function.
name	name to give to the op

Returns

forward_log_det_jacobian

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L125-L126)

```
forward_log_det_jacobian(
    x, event_ndims=None, **kwargs
)
```

Returns both the forward_log_det_jacobian.

x Tensor (structure). The input to the 'forward' Jacobian determinant evaluation. event_ndims Optional number of dimensions in the probabilistic events being transformed; this must be greater than or equal to self.forward_min_event_ndims. If event_ndims is specified, the log Jacobian determinant is summed to produce a scalar log-determinant for each event. Otherwise (if event_ndims is None), no

reduction is performed. Multipart bijectors require structured event_ndims, such that the batch rank rank(y[i]) - event_ndims[i] is the same for all elements i of the structured input. In most cases (with the exception of tfb.JointMap) they further require that event_ndims[i] - self.inverse_min_event_ndims[i] is the same for all elements i of the structured input. Default value: None (equivalent to self.forward_min_event_ndims).

And the second s	
**kwargs Named arguments forwarded to subclass implementation.	

Returns

Tensor (structure), if this bijector is injective. If not injective this is not implemented.

Raises

TypeError	if y 's dtype is incompatible with the expected output dtype.
NotImplementedError	if neither _forward_log_det_jacobian nor {_inverse, _inverse_log_det_jacobian} are implemented, or this is a non-injective bijector.
ValueError	if the value of event_ndims is not valid for this bijector.

inverse

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L119-L120)

```
inverse(
    y, **kwargs
)
```

Returns the inverse Bijector evaluation, i.e., $X = g^{-1}(Y)$.

Args

y Tensor (structure). The input to the 'inverse' evaluation.

name	The name to give this op.
**kwargs	Named arguments forwarded to subclass implementation.

Returns

Tensor (structure), if this bijector is injective. If not injective, returns the k-tuple containing the unique k points $(x1, \ldots, xk)$ such that g(xi) = y.

Raises

TypeError	if y 's structured dtype is incompatible with the expected output dtype.
NotImplementedError	if _inverse is not implemented.

inverse_dtype

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L131-L132)

Returns the dtype returned by inverse for the provided input.

inverse_event_ndims

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L134-L135)

```
inverse_event_ndims(
     event_ndims, **kwargs
)
```

Returns the number of event dimensions produced by inverse.

inverse_event_shape

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L95-L96)

```
inverse_event_shape(
        output_shape
)
```

Shape of a single sample from a single batch as a TensorShape.

Same meaning as inverse_event_shape_tensor. May be only partially defined.

Args

output_shape

TensorShape (structure) indicating event-portion shape passed into **inverse** function.

Returns

inverse_event_shape_tensor

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L98-L99)

```
inverse_event_shape_tensor(
    output_shape
)
```

Shape of a single sample from a single batch as an int32 1D Tensor.

Args

output_shape

Tensor, int32 vector (structure) indicating event-portion shape passed into inverse function.

name	name to give to the op

Returns

inverse_log_det_jacobian

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/invert.py#L122-L123)

```
inverse_log_det_jacobian(
    y, event_ndims=None, **kwargs
)
```

Returns the (log o det o Jacobian o inverse)(y).

Mathematically, returns: log(det(dX/dY))(Y). (Recall that: $X=g^{-1}(Y)$.)

Note that forward_log_det_jacobian is the negative of this function, evaluated at g^{-1} (y).

Args	
------	--

у	Tensor (structure). The input to the 'inverse' Jacobian determinant evaluation.
event_ndims	Optional number of dimensions in the probabilistic events being transformed; this must be greater than or equal to self.inverse_min_event_ndims. If event_ndims is specified, the log Jacobian determinant is summed to produce a scalar log-determinant for each event. Otherwise (if event_ndims is None), no reduction is performed. Multipart bijectors require structured event_ndims, such that the batch rank rank(y[i]) - event_ndims[i] is the same for all elements i of the structured input. In most cases (with the exception of tfb.JointMap) they further require that event_ndims[i] - self.inverse_min_event_ndims[i] is the same for all elements i of the structured input. Default value: None (equivalent to

self.inverse_min_event_ndims).

name	The name to give this op.
**kwargs	Named arguments forwarded to subclass implementation.
Returns	
ildj	Tensor , if this bijector is injective. If not injective, returns the tuple of local log det Jacobians, $log(det(Dg_i^{-1}_{-1}(y)))$, where g_i is the restriction of g to the ith partition Di .
Raises	
TypeError	if x's dtype is incompatible with the expected inverse-dtype.
NotImplementedError	if _inverse_log_det_jacobian is not implemented.
ValueError	if the value of event_ndims is not valid for this bijector.

parameter_properties

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/bijector.py#L1077-L1096)

```
@classmethod
parameter_properties(
          dtype=tf.float32
)
```

Returns a dict mapping constructor arg names to property annotations.

This dict should include an entry for each of the bijector's Tensor-valued constructor arguments.

Args	
dtype	Optional float dtype to assume for continuous-valued parameters. Some constraining bijectors require advance knowledge of the dtype because certain constants (e.g., tfb.Softplus.low) must be instantiated with the same dtype as the values to be transformed.

Returns

with_name_scope

```
@classmethod
with_name_scope(
    method
)
```

Decorator to automatically enter the module name scope.

```
>>> class MyModule(tf.Module):
... @tf.Module.with_name_scope
... def __call__(self, x):
... if not hasattr(self, 'w'):
... self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))
... return tf.matmul(x, self.w)
```

Using the above module would produce tf.Variable

 $(https://www.tensorflow.org/api_docs/python/tf/Variable) s \ and \ \underline{tf.Tensor}$

(https://www.tensorflow.org/api_docs/python/tf/Tensor)s whose names included the module name:

```
>>> mod = MyModule()
>>> mod(tf.ones([1, 2]))
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>
>>> mod.w
<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,
numpy=..., dtype=float32)>
```

Args

method

The method to wrap.

Returns

The original method wrapped such that it enters the module's name scope.

__call__

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/bijector.py#L859-L944)

```
__call__(
    value, name=None, **kwargs
)
```

Applies or composes the Bijector, depending on input type.

This is a convenience function which applies the Bijector instance in three different ways, depending on the input:

- 1. If the input is a tfd.Distribution instance, return tfd.TransformedDistribution(distribution=input, bijector=self).
- 2. If the input is a tfb.Bijector instance, return tfb.Chain([self, input]).
- 3. Otherwise, return self.forward(input)

A	r	g	S

value	A tfd.Distribution, tfb.Bijector, or a (structure of) Tensor.
name	Python str name given to ops created by this function.
**kwargs	Additional keyword arguments passed into the created tfd.TransformedDistribution, tfb.Bijector, or self.forward.

Returns

composition	A tfd.TransformedDistribution if the input was a
	tfd.Distribution, a tfb.Chain if the input was a
	tfb.Bijector, or a (structure of) Tensor computed by
	self.forward.

Examples

```
sigmoid = tfb.Reciprocal()(
    tfb.Shift(shift=1.)(
      tfb.Exp()(
        tfb.Scale(scale=-1.))))
# ==> `tfb.Chain([
#
          tfb.Reciprocal(),
#
          tfb.Shift(shift=1.),
#
          tfb.Exp(),
          tfb.Scale(scale=-1.),
#
#
       ])` # ie, `tfb.Sigmoid()`
log_normal = tfb.Exp()(tfd.Normal(0, 1))
# ==> `tfd.TransformedDistribution(tfd.Normal(0, 1), tfb.Exp())`
tfb.Exp()([-1., 0., 1.])
\# ==> tf.exp([-1., 0., 1.])
```

__eq__

View source

(https://github.com/tensorflow/probability/blob/v0.13.0/tensorflow_probability/python/bijectors/bijector.py#L818-L849)

Return self==value.

Except as otherwise noted, the content of this page is licensed under the <u>Creative Commons Attribution 4.0</u>
<u>License</u> (https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the <u>Apache 2.0 License</u> (https://www.apache.org/licenses/LICENSE-2.0). For details, see the <u>Google Developers Site Policies</u> (https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2021-08-26 UTC.