Многочлены Чебышёва

Определение 1.

- **1.** Пусть $T_n(x) = \cos(n\arccos x)$. а) Найдите T_n при n = 0, 1, 2, 3.
- б) Докажите, что $T_{n+1}(x) = 2T_n(x) T_{n-1}(x)$.
- в) Докажите, что $T_n(x)$ многочлен степени n и найдите его старший коэффициент. Выведите рекуррентную формулу.
- г) Найдите все его корни и экстремумы.
- **2.** Докажите, что $T_n(x)$ при чётных n является чётной функцией, а при нечётных нечётной.

Определение 2. Многочлен $T_n(x)$ называется многочленом Чебышёва.

Определение 3. Величина $\max_{x \in [a,b]} |f(x)|$ называется уклонением от нуля многочлена f(x) на отрезке [a,b].

- **3.** а) Найдите уклонение многочлена Чебышёва на отрезке [-1;1].
- б) Докажите, что $\max_{x \in [-1,1]} |f(x)| \ge \frac{1}{2^{n-1}}$.
- в) Докажите, что если $\max_{x \in [-1,1]} |f(x)| = \frac{1}{2^{n-1}}$, то $f(x) = \frac{1}{2^{n-1}} T_n(x)$.

Замечание. Таким образом, многочлен $\frac{1}{2^{n-1}}T_n(x)$ является наименее уклоняющимся от нуля среди всех унитарных многочленов степени n.

- **4.** а) Докажите, что $T_m(T_n(x)) = T_n(T_m(x))$.
- б) Пусть $z \in \mathbb{C}$, |z| = 1. Вычислите $T_n\left(\frac{z+z^{-1}}{2}\right)$.
- в) Найдите $T_n(\sin \alpha)$.
- **5.** Докажите, что $P_n(x) = 2T_n(\frac{x}{2})$ также является многочленом с целыми коэффициентами.
- а) Докажите, что если $\alpha \in \mathbb{Q}$ и $\cos(\alpha \pi) \in \mathbb{Q}$, то $\cos(\alpha \pi) \in \{0, \pm 1, \pm \frac{1}{2}\}$.
- б) Докажите, что при n>4 не существует правильного n-угольника с вершинами в узлах клечатой сетки.
- **6.** Известно, что $\sin \alpha = 3/5$. Докажите, что $\sin 25\alpha$ имеет вид $\frac{n}{5^{25}}$, где n- целое, не делящееся на 5.