Cheat Sheet: Standardavvik og Gjennomsnitt

Introduksjon

Dette dokumentet gir en rask oversikt over hvordan man regner ut gjennomsnitt (μ) og standardavvik (σ og s), med eksempler og forklaringer.

1. Gjennomsnitt (μ)

Formel for populasjonsgjennomsnitt:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

Eksempel:

Tall: 5, 7, 9, 4, 10

$$\mu = \frac{5+7+9+4+10}{5} = \frac{35}{5} = 7$$

Forklaring:

Gjennomsnittet μ forteller hva verdiene i datasettet i snitt ligger på. Det er et mål på sentraltendens og brukes ofte i statistikk.

2. Standardavvik for populasjon (σ)

Formel:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2} \tag{2}$$

Eksempel:

Tall: 2, 4, 4, 4, 5, 5, 7, 9 Gjennomsnitt $\mu = 5$

$$\sigma = \sqrt{\frac{1}{8} \left[(2-5)^2 + (4-5)^2 + \dots + (9-5)^2 \right]}$$
$$= \sqrt{4} = 2$$

Forklaring:

Standardavviket σ måler spredningen i hele populasjonen, altså hvor mye dataene varierer rundt gjennomsnittet μ .

3. Standardavvik for utvalg (s)

Formel:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (3)

Eksempel:

Tall: 4, 8, 6, 5, 3 Gjennomsnitt $\bar{x} = 5.2$

$$s = \sqrt{\frac{1}{4} \left[(4 - 5.2)^2 + (8 - 5.2)^2 + \dots + (3 - 5.2)^2 \right]}$$

$$\approx \sqrt{3.7} \approx 1.92$$

Forklaring:

Utvalgsstandardavvik s brukes når vi kun har et utvalg og ikke hele populasjonen. n-1 brukes i nevneren som en korreksjon (Bessels korreksjon) for å få et mer nøyaktig estimat.