# chapter 5 Performance Analysis

2021/6/27

# Regret Analysis

- A player chooses an action  $\theta^{(t)} \in K$  every t period, where K is a feasible set of actions.
- ullet The cost function  $f^{(t)}$  determines the cost  $f^{(t)}(\theta^{(t)})$  for action  $\theta^{(t)}$ .
- The player decides his action based on the strategy.

# Regret Analysis

- How does the player choose an action which minimizes a total cost  $\sum f^{(t)}(\theta^{(t)})$ ?
- Can the cost function be minimized even if it is not unknown?
- We introduce a regret about the strategy.

## definition (Regret)

The difference between the total cost of an action based on a strategy A and the total cost of the optimal strategy  $\theta^*$  is defined as the regret Regret(A) of strategy A.

$$Regret(A) = \Sigma_{t=1}^T f^{(t)}(\theta^{(t)}) - \Sigma_{t=1}^T f^{(t)}(\theta^*)$$

# Regret Analysis

### Regret analysis in online learning

- Let action be the parameter of the online learner  $\pmb{\theta}^{(t)} \in \mathbb{R}^m$  given the training data  $(\pmb{x}^{(t)}, y^{(t)})$ .
- Let the cost function be a loss function  $f^{(t)} = (\boldsymbol{x}^{(t)}, y^{(t)}, \boldsymbol{\theta})$ .
- In this case, the optimal strategy is the strategy that chooses the action that minimizes the cost function for all training data.

### Follow the Leader

 At first, We consider strategy for choosing action that minimizes the total cost to date.

$$\pmb{\theta}^{(t)} = \operatorname*{arg\ min}_{\pmb{\theta} \in K} \Sigma_{i=1}^{t-1} f^{(t)}(\pmb{\theta})$$

This strategy is called Follow the Leader (FTL).

### Follow the Leader

- However, there are cases where FTL doesn't work.
- $\bullet$  Consider action  $\theta \in [-1,1]$  and cost function  $f^{(t)}(\theta) = (1/2)(-1)^t \theta.$
- In this case, the action goes back and forth between -1 and 1 except for the first, as  $\theta^{(1)}=0, \theta^{(2)}=-1, \theta^{(2)}=1,....$
- The cost function is 1/2 except for the first, as  $f^{(1)}(\theta^{(1)})=0, f^{(2)}(\theta^{(2)})=1/2, f^{(3)}(\theta^{(3)})=1/2,....$

## Follow the Leader

- On the other hand, The optimal strategy is  $\theta=0$  and the total cost of it is 0.
- Therefore, FTL regret in this case doesn't approach 0.
- We have to expand FTL.

Regularized Follow the Leader (RFTL)

$$\boldsymbol{\theta}^{(t)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} \eta \Sigma_{i=1}^{t-1} f^{(t)}(\boldsymbol{\theta}) + R(\boldsymbol{\theta})$$

- Let  $R(\theta)$  be convex regularization function. Let  $\eta \geq 0$  be parameter that determines the degree of regularization.
- When choosing the first action, the cost function is not presented, so action is determined only by the regularization term.

$$\boldsymbol{\theta}^{(1)} = \operatorname*{arg\ min}_{\boldsymbol{\theta} \in K} R(\boldsymbol{\theta})$$

• We introduce lemma and definitions to derive RFTL regret.

#### lemma

For any vector  $\mathbf{u} \in K$ , the following holds.

$$\Sigma_{t=1}^T \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq \Sigma_{t=1}^T \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{t+1}) + \frac{1}{\eta} \left\{ R(\boldsymbol{u}) - R(\boldsymbol{\theta}^{(1)}) \right\} \tag{1}$$

#### Proof.

For simplicity, let us assume that  ${\pmb f}^{(0)}=\frac{1}{\eta}R({\pmb \theta})$  and the algorithm starts at t=0.

$$\Sigma_{t=0}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}) = \Sigma_{t=1}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}) + \frac{1}{\eta} R(\boldsymbol{\theta})$$

In this time, the lemma can be expressed as following.

$$\boldsymbol{\Sigma}_{t=0}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \leq \boldsymbol{\Sigma}_{t=0}^{T} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)})$$

#### Proof.

At t=0, by definition,  $\boldsymbol{\theta}^{(1)}=\arg\min_{\boldsymbol{\theta}}R(\boldsymbol{\theta})$  and  $\boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(1)})\leq \boldsymbol{f}^{(0)}(\boldsymbol{u})$  holds. therefore,

$$\boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(0)}) - \boldsymbol{f}^{(0)}(\boldsymbol{u}) \leq \boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(0)}) - \boldsymbol{f}^{(0)}(\boldsymbol{\theta}^{(1)})$$



#### Proof.

At t>0, assume that lemma holds for t=T. In this time,

$$\boldsymbol{\theta}^{(T+2)} = \arg\min_{\boldsymbol{\theta}} \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta})$$
 (2)

$$\boldsymbol{\theta}^{(T+1)} = \arg\min_{\boldsymbol{\theta}} \Sigma_{t=0}^{T} \boldsymbol{f}^{(t)}(\boldsymbol{\theta})$$
 (3)



#### Proof.

Using equation (2) and (3),

$$\begin{split} & \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)T}(\boldsymbol{\theta}^{(t)} - \boldsymbol{u}) \\ & \leq \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(T+2)}) \\ & = \Sigma_{t=0}^{T}(\boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(T+2)})) + \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+1)}) - \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+2)}) \\ & \leq \Sigma_{t=0}^{T}(\boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(T+1)})) + \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+1)}) - \boldsymbol{f}^{(T+1)}(\boldsymbol{\theta}^{(T+2)}) \\ & = \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)}) - \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t+1)}) \\ & = \Sigma_{t=0}^{T+1} \boldsymbol{f}^{(t)}(\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}) \end{split}$$

### definition (norm based on positive semi-definite matrix)

We define  $\|x\|_A = \sqrt{x^T A x}$  as the norm of vector x based on positive semi-definite matrix A.

We also define  $\|x\|_{A^{-1}} = \|x\|_A^*$  as a dual norm.

 In this time, from generalized Cauchy-Schwarz inequality, the following holds.

$$oldsymbol{x}^Toldsymbol{y} \leq \|oldsymbol{x}\|_{oldsymbol{A}}\|oldsymbol{y}\|_{oldsymbol{A}}^*$$

### definition (norm of cost function)

A norm of cost function measured by the regularization function is difined as

$$\lambda = \max_{t, \pmb{\theta} \in K} \pmb{f}^{(t)T} \{ \nabla^2 R(\pmb{\theta}) \}^{-1} \pmb{f}^{(t)}$$

### definition (diameter of feasible area)

A diameter measured by the regularization function is defined as

$$D = \max_{\pmb{\theta} \in K} R(\pmb{\theta}) - R(\pmb{\theta}^{(1)})$$

## theorem (regret of RFTL)

RFTL achives the following regret for any vector  $\mathbf{u} \in K$ .

$$Regret(A) = \Sigma_{t=1}^T \pmb{f}^{(t)T}(\pmb{\theta}^{(t)} - \pmb{u}) \leq 2\sqrt{2\lambda DT}$$

#### Proof.

At first, we define  $\Phi$  as following.

$$\Phi^{(t)}(\pmb{\theta}) = \eta \Sigma_{i=1}^t f^{(i)}(\pmb{\theta}) + R(\pmb{\theta})$$

By Taylor expansion of  $\Phi^{(t)}$  around  $\boldsymbol{\theta}^{(t+1)}$  and using intermediate value theorem, we can show following.

$$\begin{split} \Phi^{(t)}(\boldsymbol{\theta}^{(t)}) &= \Phi^{(t)}(\boldsymbol{\theta}^{(t+1)}) + (\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)})^T \nabla \Phi^{(t)}(\boldsymbol{\theta}^{(t+1)}) \\ &+ \frac{1}{2} \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}\|_{\boldsymbol{z}^{(t)}}^2 \\ &\geq \Phi^{(t)}(\boldsymbol{\theta}^{(t+1)}) + \frac{1}{2} \|\boldsymbol{\theta}^{(t)} - \boldsymbol{\theta}^{(t+1)}\|_{\boldsymbol{z}^{(t)}}^2 \end{split}$$

#### Proof.

Here, from intermediate value theorem,  $\mathbf{z}^{(t)} \in [\mathbf{\theta}^{(t+1)}, \mathbf{\theta}^{(t)}]$ This inequality holds because  $\mathbf{\theta}^{(t)}$  achieves the minimum value of  $\Phi^{(t)}$ .