Chemins spécifiques pour la classification dans les réseaux de neurones profonds

Bouzidi Belkacem - Dadi Mélissa Elhouiti Chakib - Kezzoul Massili Zeroual Ramzi

Université de Montpellier

29 mai 2021

Introduction

Les réseaux de neurones profonds Le jeu de données Problèmatique Solution proposée

- Organisation
- Analyse des données
- 4 Développement de l'architecture
- 6 Analyse des résultats

Les réseaux de neurones profonds

MNIST

Problèmatique

Boite noire

Les réseaux de neurones semblent s'appliquent à la manière d'une boite noire. Aucune information n'est fournie sur ce qui les a conduits à atteindre leurs prédictions.

Objectifs

L'objectif est de comprendre le fonctionnement interne d'un réseau de neurones et de repérer des signatures d'activation de neurones en variant les données.

5 / 35

Questions qu'on se posent

Par exemple, si on entraîne un modèle à reconnaître des images de 1 et de 7

- À partir de quelle couche le modèle change de comportement pour reconnaître une image?
- Les signatures des images de 7, sont-elles différentes de ceux des 1?
- ▶ Si on passe une image de 3 au modèle, à quoi va ressembler sa signature?

Solution proposée

- Construire des réseaux de neurones.
- Récupérer, pour chaque donnée, la sortie des couches cachées.
- Extraire les signatures grâce à des algorithmes de clustering.
- ▶ Réaliser une interface de visualisation en utilisant différentes techniques.
- Analyser les résultats et répondre aux questions.

- Introduction
- Organisation
- Analyse des données
- ① Développement de l'architecture
- 6 Analyse des résultats

Organisation du projet

- Introduction
- Organisation
- 3 Analyse des données

Découpage des données Prétraitement

- 4 Développement de l'architecture
- 6 Analyse des résultats

Découpage des données

Prétraitement

- Introduction
- Organisation
- Analyse des données
- 4 Développement de l'architecture

Technologies utilisées Modèle d'apprentissage Signature et Clustering Interface de visualisation

6 Analyse des résultats

Jupyter notebook

Tensorflow, Keras

hemins spécifiques
Développement de l'architecture
Technologies utilisées

Voilà

Modèle d'apprentissage

Types de réseau

Les types de réseau diffèrent par plusieurs paramètres :

- la topologie des connexions entre les neurones;
- la fonction d'agrégation utilisée;
- et bien d'autres paramètres.

Réseau de neurones à convolution

Signature

Définition

Soit un réseau à N couches cachées, La signature S d'une image qui travesent ce réseau, se définit ainsi : $S = (H_1, ..., H_N)$, avec H_i est le vecteur contenant les valeurs de chaque neurone de la couche i.

Clustering

K-means

K-means est algorithme de *clustering*. Il prend en paramètres les données et un certain K donnée par l'utilisateur, puis construit K clusters qui regroupent les données qui sont proches (en terme de distance euclidienne).

Score Silhouette

Choisir un K

Par contre, l'algorithme ne permet pas de trouver tout seul un K optimal. Mais il existe une méthode qui calcul la performance d'un *clustering*. La méthode *Silhouette*.

Score Silhouette

Concrétement, cette méthode consiste à calculer pour un clustering, la moyenne du score *Silhouette* de chaque point. $s(i) = \frac{b(i) - a(i)}{\max(a(i),b(i))}$.

Avec a(i) est la mesure de la similarité du point i avec son cluster et b(i) le mesure de dissemblance du point i par rapport aux autres clusters.

Interface de visualisation

UMAP

Interface de visualisation

Diagramme de Sankey

Site web et Voilà

- Introduction
- Organisation
- Analyse des données
- 4 Développement de l'architecture
- **6** Analyse des résultats

Réponses aux questions Conclusion

Résultat

Afin d'illuster les résultats obtenu, nous prenons un exemple oû on entraine un modèle à deux couches cachées à reconnaitre des images de 1 et de 7.

Résultats

Changement de comportement

Notre modèle arrive, dès la première couche cachée, à reconnaître une image.

Différence de signatures

On observe que les signatures des 1 sont majoritairement différentes de celles des 7. Sauf pour quelques rares exceptions.

Figure – Les images de 7 ressemblant à des 1

Insertion d'anomalies

Figure - Insertion d'images de 4

Insertion d'anomalies

Figure - Insertion d'images de 3

Conclusion

Soit n attributs de A_1 à A_n . On cherche à entraîner un modèle à classifier ces données en deux classes C_1 et C_2 . Le modèle peut détecter des similarités entre les objets sur un attribut A_i qui indique qu'il existe peut-être une corrélation, mais pas forcément une causalité, avec les deux classes C_1 et C_2 . Ce qui mènera notre modèle à de possibles mauvaises classifications sur des données qu'il n'a jamais vues.

Chemins spécifiques

Analyse des résultats

Conclusion

Merci pour votre attention.

