algoritmi e strutture di dati

ricorsione, iterazione e complessità *m.patrignani*

043-ricorsione-e-complessita-03

copyright @2015 patrignani@dia.uniroma3.it

nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

043-ricorsione-e-complessita-03

copyright ©2015 patrignani@dia.uniroma3.it

sommario

- ricorsione ed iterazione
- formule di ricorrenza
 - teorema dell'esperto
- strategie algoritmiche
 - algoritmi greedy
 - algoritmi divide et impera
- richiami su algoritmi di ordinamento
 - selection sort
 - merge sort

043-ricorsione-e-complessita-03

copyright @2015 patrignani@dia.uniroma3.it

effetti di una chiamata a funzione

```
SUM-OF-FACT(n)

1. sum = 0

2. for i = 0 to n

3. sum = sum + FACT(i)

4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT (3)

istruzione	3
variabile sum	0
variabile i	0

effetti di una chiamata a funzione

SUM-OF-FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACI	[(n)
5.	f = 1
6.	for i = 2 to n
7.	f = f * i
8. :	return f

FACT(0)	
istruzione	5
variabile f	1
variabile i	

SUM-OF-FACT(3)	
istruzione	3
variabile sum	0
variabile i	0

```
SUM-OF-FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
3	
0	
0	

effetti di una chiamata a funzione

SUM-OF-FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

```
FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	3
variabile sum	1
variabile i	0

```
SUM-OF-FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7.     f = f * i
8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	2
variabile sum	1
variabile i	1

effetti di una chiamata a funzione

SUM-OF-FACT (n) 1. sum = 0**2. for** i = 0 **to** nsum = sum + FACT(i) 4. return sum

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FAC	CT (n)
5.	f = 1
6.	for i = 2 to n
7.	f = f * i
8.	return f

FACT (1)	
istruzione	8
variabile f	1
variabile i	2

SUM-OF-FACT(3)	
istruzione	3
variabile sum	1
variabile i	1

effetti di una chiamata a funzione

FACT(n)

```
SUM-OF-FACT (n)
1. sum = 0
2. for i = 0 to n
    sum = sum + FACT(i)
4. return sum
```

```
• supponiamo di eseguire
```

- SUM-OF-FACT(3) • seguiamo l'evoluzione
- dello stack dei record di attivazione

	• •
5.	f = 1
6.	for i = 2 to n
7.	f = f * i
8.	return f

SUM-OF-FACT(3)	
istruzione	3
variabile sum	2
variabile i	1

effetti di una chiamata a funzione

SUM-OF-FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

- FACT (n)
 5. f = 1
 6. for i = 2 to n
 7. f = f * i
 8. return f
- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	2
variabile sum	2
variabile i	2

```
SUM-OF-FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT (3)	
istruzione	3
variabile sum	2
variabile i	2

effetti di una chiamata a funzione

SUM-OF-FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

```
FACT(n)

5. f = 1

6. for i = 2 to n

7. f = f * i

8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	3
variabile sum	4
variabile i	2

```
SUM-OF-FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7.     f = f * i
8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	2
variabile sum	4
variabile i	3

effetti di una chiamata a funzione

SUM-OF-FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FAC	CT (n)
5.	f = 1
6.	for i = 2 to n
7.	f = f * i
8.	return f

FACT(3)	
8	
6	
4	

SUM-OF-FACT(3)	
istruzione	3
variabile sum	4
variabile i	3

```
SUM-OF-FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT(n)

5. f = 1

6. for i = 2 to n

7. f = f * i

8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	3
variabile sum	10
variabile i	3

effetti di una chiamata a funzione

SUM-OF-FACT(n) 1. sum = 0 2. for i = 0 to n 3. sum = sum + FACT(i) 4. return sum

```
FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	2
variabile sum	10
variabile i	4

```
SUM-OF-FACT(n)
1. sum = 0
2. for i = 0 to n
3.     sum = sum + FACT(i)
4. return sum
```

```
FACT (n)
5. f = 1
6. for i = 2 to n
7. f = f * i
8. return f
```

- supponiamo di eseguire SUM-OF-FACT(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

SUM-OF-FACT(3)	
istruzione	4
variabile sum	10
variabile i	4

funzioni ricorsive

```
FACT (n)

5. f = 1

6. for i = 2 to n

7. f = f * i

8. return f
```

```
FACT-RIC(n)
1. if n == 0
2.  f = 1
3. else
4.  f = n * FACT-RIC(n-1)
5. return f
```

- abbiamo già visto che l'algoritmo iterativo FACT per il calcolo del fattoriale ha complessità $\Theta(n)$
- il calcolo del fattoriale può essere facilmente realizzato anche tramite un algoritmo ricorsivo

043-ricorsione-e-complessita-03

copyright @2015 patrignani@dia.uniroma3.it

esecuzione di funzioni ricorsive

```
FACT-RIC(n)
1. if n == 0
2.    f = 1
3. else
4.    f = n * FACT-RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

istruzione 4
variabile f 0

043-ricorsione-e-complessita-03

copyright ©2015 patrignani@dia.uniroma3.it

esecuzione di funzioni ricorsive

```
FACT-RIC(n)
1. if n == 0
2. f = 1
3. else
4. f = n * FACT-RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT-RIC(2)

istruzione	4
variabile f	0

FACT-RIC(3)

istruzione	4
variabile f	0

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

esecuzione di funzioni ricorsive

FACT-RIC(n) 1. if n == 0 2. f = 13. else 4. f = n * FACT-RIC(n-1)5. return f

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT-RIC(1)

istruzione	4
variabile f	0

FACT-RIC(2)

istruzione	4
variabile f	0

FACT-RIC(3)

istruzione	4
variabile f	0

043-ricorsione-e-complessita-03

copyright @2015 patrignani@dia.uniroma3.it

esecuzione di funzioni ricorsive

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT-RIC(0)	
istruzione	
variabile f	1
FACT-RIC(1)	

FACT-RIC(1)	
istruzione	4
variabile f	0

FACT-RIC(2)	
istruzione	4
variabile f	0

FACT-RIC(3)	
istruzione	4
variabile f	0
•	

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

esecuzione di funzioni ricorsive

```
FACT-RIC(n)
1. if n == 0
2.    f = 1
3. else
4.    f = n * FACT-RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

istruzione 4
variabile f 0

istruzione 4
variabile f 0

esecuzione di funzioni ricorsive

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT-RIC(2)	
istruzione	4
variabile f	2

istruzione 4
variabile f 0

043-ricorsione-e-complessita-03

copyright ©2015 patrignani@dia.uniroma3.it

esecuzione di funzioni ricorsive

```
FACT-RIC(n)
1. if n == 0
2.    f = 1
3. else
4.    f = n * FACT-RIC(n-1)
5. return f
```

- supponiamo di eseguire FACT-RIC(3)
- seguiamo l'evoluzione dello stack dei record di attivazione

FACT-RIC (3)

istruzione 4

variabile f 6

043-ricorsione-e-complessita-03

copyright ©2015 patrignani@dia.uniroma3.it

costo di FACT-RIC

```
FACT-RIC(n)
1. if n == 0
2.  f = 1
3. else
4.  f = n * FACT-RIC(n-1)
5. return f
```

$$T(0) = \Theta(1)$$

$$T(n) = T(n-1) + \Theta(1)$$

- il costo di FACT-RIC(n) è
 - $-\Theta(1)$ quando n è zero
 - pari al costo di FACT-RIC(n-1) + $\Theta(1)$ negli altri casi

043-ricorsione-e-complessita-03 copyri

copyright @2015 patrignani@dia.uniroma3.it

formule di ricorrenza

- equazioni o disequazioni che descrivono una funzione in termini del suo valore su input più piccoli
 - prevedono sempre dei casi base e dei casi induttivi
- esempi

$$T(n) = \begin{cases} a & \text{per } n = 0 \\ T(n-1) + g(n) & \text{per } n > 0 \end{cases}$$

$$T(n) = \begin{cases} a & \text{per } n = 0 \text{ o } n = 1 \\ 2T(n/2) + f(n) & \text{per } n > 1 \end{cases}$$

formule di ricorrenza

- le soluzioni delle formule di ricorrenza non sempre sono facili da trovare
- quando esprimono delle complessità asintotiche talvolta i casi base vengono omessi
 - se T(n) esprime il tempo di esecuzione di un algoritmo, T(n) è sempre $\Theta(1)$ per n piccolo
- esempio

$$T(n) = 2T(n/2) + \Theta(n)$$

• è sottointeso che $T(n) = \Theta(1)$ per n = 0 e n = 1

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

soluzione di una equazione di ricorrenza

• dimostriamo che l'equazione di ricorrenza

$$T(n) = \begin{cases} a & \text{per } n = 0 \\ T(n-1) + g(n) & \text{per } n > 0 \end{cases}$$

• ammette come soluzione

$$T(n) = a + \sum_{k=1}^{n} g(k)$$

 per dimostrarlo sostituiamo la soluzione proposta a destra e sinistra dell'equazione di ricorrenza

verifica della correttezza della soluzione

• caso base per n=0

$$T(n=0) = a + \sum_{k=1}^{0} g(k) = a + 0 = a$$
 (verificato)

• caso induttivo

so induttivo
so che
$$T(n-1) = a + \sum_{k=1}^{n-1} g(k)$$
 (ipotesi induttiva)

$$T(n) = T(n-1) + g(n)$$
 (dalla definizione)

$$T(n) = a + \sum_{k=1}^{n-1} g(k) + g(n)$$

$$T(n) = a + \sum_{k=1}^{n} g(k)$$
 (verificato)

complessità di FACT-RIC

• sappiamo che FACT-RIC ha complessità

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \\ T(n-1) + \Theta(1) & \text{per } n > 0 \end{cases}$$

• sappiamo che l'equazione di ricorrenza

$$T(n) = \begin{cases} a & \text{per } n = 0 \\ T(n-1) + g(n) & \text{per } n > 0 \end{cases}$$

- ammette come soluzione $T(n) = a + \sum_{k=1}^{n} g(k)$
- la complessità di FACT-RIC è dunque

$$T(n) = \Theta(1) + \sum_{k=1}^{n} \Theta(1) = \Theta(n)$$

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

algoritmi ricorsivi per l'ordinamento

- richiameremo due algoritmi di ordinamento
 - selection sort
 - merge sort
- calcoleremo la loro complessità tramite delle equazioni di ricorrenza
- ciò ci consentirà di considerare due tecniche algoritmiche diverse
 - tecnica greedy
 - tecnica divide et impera

gli algoritmi greedy

• gli algoritmi greedy (golosi) costruiscono una soluzione scegliendo sempre l'alternativa che al momento sembra più appetibile

copyright @2015 patrignani@dia.uniroma3.it

algoritmo selection sort

- utilizza una tecnica greedy per ordinare un array
- strategia generale
 - seleziona l'elemento più piccolo e mettilo al primo posto

12475386

043-ricorsione-e-complessita-03

copyright @2015 patrignani@dia.uniroma3.it

versione iterativa SELECTION-ITER

```
SELECTION-ITER (A)
1. for i = 0 to A.length-2
     2.
3.
     for j = i + 1 to A.length-1
                              > scorro l'array
        if A[j] < A[min]
                              D devo aggiornare min
4.
        then min = j
6.
     temp = A[i]
                           > scambio A[i] con A[min]
7.
     A[i] = A[min]
     A[min] = temp
```

- i valori dell'input non modificano il numero delle iterazioni del ciclo esterno e del ciclo interno
 - quindi il caso migliore, il caso peggiore ed il caso medio hanno la stessa complessità

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

complessità del SELECTION-ITER

- l'algoritmo esegue O(n) cicli esterni e O(n) cicli interni dunque SELECTION-ITER ha complessità $O(n^2)$
- la riga 4 viene eseguita (n-1)+(n-2)+...+1 = [n(n-1)]/2 volte dunque SELECTION-ITER ha complessità $\Omega(n^2)$
- il tempo di esecuzione dell'algoritmo è $\Theta(n^2)$

versione ricorsiva SELECTION-RIC

```
    ▷ ordina A da i a A.length-1

SELECTION-RIC (A, i)
1. if i < A.length-1
               Daltrimenti è già ordinato
    3.
    if A[j] < A[min]
      then min = j
   temp = A[i]
                   > scambio A[i] con A[min]
  A[i] = A[min]
   A[min] = temp
9.
    SELECTION-RIC (A, i+1)
```

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

complessità di SELECTION-RIC

• possiamo scrivere la seguente equazione di ricorrenza, in cui *n* è il numero degli elementi di A ancora da ordinare

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 1 \\ T(n-1) + \Theta(n) & \text{per } n > 0 \end{cases}$$

• la complessità di SELECTION-RIC è dunque

$$T(n) = \Theta(1) + \sum_{k=1}^{n} \Theta(k) = \Theta(n^{2})$$

la tecnica divide et impera

- detta anche "divide and conquer"
- consiste nel suddividere il problema in diversi sottoproblemi
 - i sottoproblemi sono dello stesso tipo del problema originale
 - ma di dimensioni più piccole
 - i sottoproblemi possono essere risolti in maniera ricorsiva
 - suddividendoli a loro volta
 - caso base
 - quando i sottoproblemi sono di dimensioni ridottissime la loro soluzione è banale

ricorsione del divide et impera

- a ciascun passo della ricorsione
 - divide
 - l'istanza corrente viene divisa in due o più istanze più piccole
 - impera
 - l'algoritmo viene lanciato sulle istanze più piccole
 - combina
 - le soluzioni delle istanze più piccole vengono utilizzate per produrre una soluzione dell'istanza corrente

043-ricorsione-e-complessita-03

copyright @2015 patrignani@dia.uniroma3.it

merge sort

- osservazione elementare
 - due sequenze ordinate possono essere fuse in un'unica sequenza ordinata molto facilmente
- un possibile algoritmo
 - dividere la sequenza di input in due sottosequenze
 - ordinare le due sottosequenze
 - tramite lo stesso merge sort
 - fondere le due sottosequenze ordinate
- caso base
 - un array di un solo elemento è ordinato per definizione

043-ricorsione-e-complessita-03

copyright ©2015 patrignani@dia.uniroma3.it

fusione (continua)

```
...(dalla slide precedente)...
10.i = 0
                 D iteratore per array L
11. \dot{j} = 0
                 D iteratore per array R
12. for k = p to r
    if L[i] \leq R[j] then
13.
          A[k] = L[i]
                           D pesco da L
14.
          i = i + 1
15.
16.
      else
17.
          A[k] = R[j]
                           D pesco da R
18.
          j = j + 1
```

- il confronto con "

 " sulla riga 13 garantisce la stabilità dell'algoritmo
 - se L[i]=R[j] allora L[i] ha la precedenza

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

l'algoritmo MERGE-SORT

• l'algoritmo MERGE-SORT esegue la parte "divide", risolve i sottoproblemi ed esegue la parte "combine"

• all'inizio della computazione lanciamo

tempo di esecuzione di merge sort

- calcoliamo il costo T(n) di esecuzione del merge sort su un'istanza con n elementi
 - per comodità assumiamo che n sia una potenza di 2, in modo che la divisione produca sempre sottoarray con lo stesso numero di elementi
- caso base
 - costo $\Theta(1)$
- divide
 - calcolo di n/2: costo $D(n) = \Theta(1)$
- impera
 - ogni sottoproblema ha dimensione n/2
 - i sottoproblemi sono 2
 - costo: $2 \cdot T(n/2)$
- · combina
 - l'algoritmo MERGE ha costo lineare: $C(n) = \Theta(n)$

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.it

tempo di esecuzione di merge sort

complessivamente

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \text{ o } n = 1\\ 2 \cdot T(n/2) + D(n) + C(n) & \text{per } n > 1 \end{cases}$$

• poiché $D(n) + C(n) = \Theta(1) + \Theta(n) = \Theta(n)$ si ha

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \text{ o } n = 1 \\ 2 \cdot T(n/2) + \Theta(n) & \text{per } n > 1 \end{cases}$$

• dimostreremo che questa particolare equazione di ricorrenza ammette come soluzione

$$T(n) = \Theta(n \log n)$$

 $043\mbox{-ricorsione-e-complessita-03} \qquad \mbox{copyright @2015 patrignani@dia.uniroma3.it}$

master theorem

- siano $a, b \ge 1$ e sia $p(n^k)$ un polinomio di grado k
- il master theorem considera l'equazione di ricorrenza seguente

$$T(n) = \begin{cases} \Theta(1) & \text{per } n = 0 \\ a \cdot T(n/b) + p(n^k) & \text{per } n > 0 \end{cases}$$

- si dimostra (noi non lo dimostriamo) che tale equazione di ricorrenza ammette le soluzioni seguenti
 - se $a < b^k$ allora $T(n) = \Theta(n^k)$
 - se $a = b^k$ allora $T(n) = \Theta(n^k \log n)$
 - se $a > b^k$ allora $T(n) = \Theta(n \log_b a)$

043-ricorsione-e-complessita-03 copyright ©2015 patrignani@dia.uniroma3.i

esempi di applicazione del master theorem

- T(n) = 9T(n/3) + n
 - abbiamo: a = 9; b = 3; $p(n^k) = n$; k = 1
 - quindi $a > b^k$
 - $\operatorname{si} \operatorname{ha} T(n) = \Theta(n^{\log_b a}) = \Theta(n^{\log_3 9}) = \Theta(n^2)$
- T(n) = T(2n/3) + 1
 - abbiamo: a = 1; b = 3/2; $p(n^k) = 1$; k = 0
 - quindi $a = b^k$
 - $\sin ha T(n) = \Theta(n^k \log n) = \Theta(n^0 \log n) = \Theta(\log n)$

complessità del merge sort

• la complessità del merge sort è data dalla formula di ricorrenza

$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

- applichiamo il teorema dell'esperto
 - abbiamo: a = 2; b = 2; $p(n^k) = n$; k = 1
 - quindi $a = b^k$
 - $\operatorname{si} \operatorname{ha} T(n) = \Theta(n^k \log n) = \Theta(n \log n)$

043-ricorsione-e-complessita-03

copyright ©2015 patrignani@dia.uniroma3.it

