Jay Patel CS 331 HW #4 Professor Oliver

Q1.

Using induction on k.

[Base Case]

Lets prove that there are k = 3 states. We can tell that G has total of 3 states so then G' will have 2 states.

If we take out one state from G then G' will consist of one transition from q_{start} to q_{accept} this will accept all the strings that are noticed in the language. Since both accept the same language we can tell that they are equivalent.

[Induction Step]

If the proof is true for k-1 states, every time we try to remove one state, we take out and replace with a regular expression that is similar to it which will then allow G' to accept the corresponding language. We can tell that G' will remain the same if and only if R contains the transition strings in states like $q_1, q_2, q_3, q_4 \dots q_k$ So, if G accepts a state then G' will also accept the same state as well as it will accept the regular expression if and only if $k \ge 3$

Convert DFA M to an equivalent G'NFA

From 2-3-1 → ba

From 2-3-2 → bb

From 2-3-t \rightarrow b \in = b

So for the new one, the DFA,

From 1-2 -> a U b

From 1-t → ∈

From 2-1 \rightarrow 2

From 2-1 → t

From combining we get,

 $\in U(a \cup b)(a \cup bb \cup ba(a \cup b))^* * (b \cup ba)$

So, the regular expression of the language,

 $L(M) M is \in U(a U b)(a U bb U ba)(a U b))^* * (b U ba)$

For every path that starts in 1 and ends in either 3 or 1 are accept states of DFA

Proposition 1: DFA M = $(Q, \Sigma, \delta, q_0, F)$ and any $q \in Q \& w \in \Sigma *, 1^{\hat{}} \delta m(q, \omega) = 1$ Applying induction on |w|

[Base Case] Prove when $w \in \Sigma 0$ Thus by definition $w \to m$, $q \in T$ m q_0 If and only if $q_0 = q$ So, $1^{\delta}m(q, w) = |\{q\}| = 1$

[Induction Step] Every $q \in Q$ and $w \in \Sigma *$ such that |w| < i, $1^{\delta}m(q, w)| = 1$ ai $\in \Sigma$ Take $u = a_i \dots a_{i-1} \ q \ w \longrightarrow m \ q0$ If there are $r_0, r_1 \dots r_i$ and $\delta \ (r_j, r_{j+1})$ Consider, r_{i-1} such that $q \ u \rightarrow m$ r_{i-1} and $\delta \ (r_{i-1}) = q_0$

By using induction hypotheses, $| \wedge \delta m (q, u) | = 1$ There is a unique r_{i-1} such that $q u \rightarrow m r_{i-1}$ So, $| \wedge \delta m (q, w) | = 1$ a. $L = \{www|w \in \{0,1\} *\}$ is non regular $\}$

At first, we assume that L is regular

Choose $x = 0^p 10^p 10^p$ where P is the number of states.

According to pumping lemma x can be written as u,v,w with $|v| \ge 1$ so that u v^m w is also in L so that $|uv| \le P$

So uv must have 0's

Hence we can tell that it does not satisfy any of the pumping lemma condition

b. $L = \{0^n 1^m 0^n | m. n \ge 0\}$

Choose $x = 0^p 10^p$

According to the pumping lemma $x \in L$ and |x| > p, so we can write it as x = xvz

Using pumping lemma's 2^{nd} condition we can tell that x and y must have 0s Using pumping lemma's 1^{st} condition we get $y = 0^k$ for some k > 0 Using pumping lemma's 3^{rd} condition we can take the string L

Hence, xy^0z should be in L. But it isn't so there is a contradiction, therefore L is not correct.

c. $L = \{w | w \in \{0,1\} * is not a palindrome\}$

Choose $x = 0^p 10^p 10^p 1$

After breaking the string in three different groups and associate them in xy and z we get x = xyz

- 1. $xy^1z \in L$ for $l \ge 0$
- 2. $|y| \ge 0$
- 3. $|xy| \le p$

using pumping lemma's $1^{\rm st}$ condition, we can tell that, all 0s contains x by p using pumping lemma's $3^{\rm rd}$ condition, and y are made up only 0's by p Hence Z has all the 0's with 10^p10^p1 using pumping lemma's $2^{\rm nd}$ condition, y has at least one 0. using the first condition we get that there is contradiction. Hence we can tell that L is not regular.