18.C06 Problem Set 7

A Julia notebook (. ipynb) version of this file is available on the 18.C06 Canvas site (https://canvas.mit.edu/courses/27395/assignments) under "Assignments".

Due Friday Nov. 8 at **11am**; 10% penalty if it is turned in within 24 hours, and after that late psets will not be accepted. Submit in PDF format: a decent-quality scan/image of any handwritten solutions (e.g. get a scanner app on your phone or use a tablet), and a PDF printout of your Jupyter notebook showing your code and (clearly labeled) results.

TO GENERATE A PDF OF YOUR JUPYTER NOTEBOOK: From the *File* pull-down menu, select *Save and Export Notebook As*, and then select the *HTML* format (not PDF). Then open the downloaded HTML file with your favorite browser, and use the browser's *Print* function to generate the PDF file.

Problem 1 (5+5 points)

Suppose that A is a 3×3 real-symmetric matrix. (Recall from class that such a matrix has real eigenvalues and orthogonal eigenvectors.) Suppose its eigenvalues are $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = -2$, and corresponding eigenvectors are x_1, x_2, x_3 . You are given that $x_1 = [1, 0, 1]$ (denoting a column vector ala Julia).

- (a) Give an approximate solution at t=100 to $\frac{dx}{dt}=Ax$ for x(0)=[1,1,0]. (Give a specific quantitative vector, even if the vector is very big or very small; an answer like " ≈ 0 " or " $\approx \infty$ " is not acceptable.)
- **(b)** If $x_2 = [0, 1, 0]$, give a possible x_3 . (You should *not* use these x_2, x_3 to solve part (a).)

Problem 2 (5+5 points)

In class, we saw that eigenvectors of distinct eigenvalues must be orthogonal for a real-symmetric (or Hermitian) matrix. In fact, there is a related orthogonality relationship for *arbitrary* diagonalizable matrices between the *left and right* eigenvectors.

- (a) For an arbitrary diagonalizable real matrix $A = X\Lambda X^{-1}$, derive a relationship between eigenvectors y_1, \ldots, y_m of A^T (the "left eigenvectors" of A) and the rows or columns of X^{-1} .
- **(b)** Using the left eigenvectors y_k from (c), what must be the value of dot products $y_k^T x_j$ between these left eigenvectors and the ordinary ("right") eigenvectors x_j (the columns of X). Consider both k=j and $k\neq j$.

Problem 3 (5 points)

Suppose that a 3x3 real-symmetric matrix A has orthonormal eigenvectors q_1, q_2, q_3 and corresponding eigenvalues $\lambda_1=-2,\,\lambda_2=3,\,\lambda_3=0.$ Give a compact SVD $\hat{U}\hat{\Sigma}\hat{V}^T$ of A(express the matrix entries in terms of these vectors and values).

Problem 4 (5+5)

Let A be an $m \times m$ positive semidefinite (PSD) matrix. In analyzing the "heavy-ball" accelerated gradient descent in this course notebook

(https://nbviewer.org/github/mitmath/18065/blob/main/notes/Quadratic-Gradient-

Descent.ipynb), we blueuced the problem to finding the eigenvalues of the $2m \times 2m$ matrix:

$$M = \begin{pmatrix} (1+\beta)I - \alpha A & -\beta I \\ I & 0 \end{pmatrix},$$

where I is the $m \times m$ identity matrix, and $\alpha > 0$ and $\beta \geq 0$ are real numbers. Suppose that Ahas orthonormal eigenvectors q_1, \ldots, q_m with corresponding (real, positive) eigenvalues $\lambda_1,\ldots,\lambda_m$.

(a) For each eigenvector q_k of A with eigenvalue λ_k , consider the 2×2 matrix:

$$M_k = \begin{pmatrix} (1+\beta) - \alpha \lambda_k & -\beta \\ 1 & 0 \end{pmatrix}.$$

Let $y=\left(egin{array}{c} y_1 \\ v_2 \end{array}
ight)\in\mathbb{R}^2$ be an eigenvector of M_k with eigenvalue λ , i.e., $M_ky=\lambda y$. Define $x \in \mathbb{R}^{2m}$ by: $x = \begin{pmatrix} y_1 q_k \\ y_1 q_k \end{pmatrix}$.

Show that $Mx = \lambda x$; that is, x is an eigenvector of M with eigenvalue λ . Since M_k has two eigenvectors y for each λ_k , you can construct two linearly independent eigenvectors x from each q_k . Hence, you can obtain all 2m eigenvalues of M by solving m of these 2×2 eigenvalue problems.## Problem 4 (5+5)

(b) In class, it was claimed that the optimal choices of α and β (which minimize the magnitude of the dominant eigenvalue of M) are:

$$\alpha = \left(\frac{2}{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}}\right)^2, \qquad \beta = \left(\frac{\sqrt{\lambda_{\max}} - \sqrt{\lambda_{\min}}}{\sqrt{\lambda_{\max}} + \sqrt{\lambda_{\min}}}\right)^2,$$

where λ_{\min} and λ_{\max} are the smallest and largest eigenvalues of A, respectively.

Show that for this choice of lpha and eta, the matrix M_k has a complex conjugate pair of eigenvalues for any λ_k in the interval $\lambda_{\min} < \lambda_k < \lambda_{\max}$, and argue (hint: use the determinant) that the modulus of all these eigenvalues is exactly $\sqrt{\beta}$. For the sake of

Problem 5 (5+5+5+5 points)

Suppose we have an underdetermined linear system Ax = b, where A is a $m \times n$ matrix, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$. We assume that A has full row rank and m < n, so that there are infinitely many solutions to this system. We have studied before how to compute the minimum norm solution to this problem,

$$\min_{x} \|x\|^2$$

whose solution is $x_{\star} = A^+ b$ (or simply A \ b in Julia).

This question explores what happens when we perform gradient descent on the objective $\min_x f(x) = ||Ax - b||^2$. The following picture is helpful to keep in mind while solving this problem.

- (a) Show that for any x, the gradient step $\nabla f(x)$ lies in $C(A^T)$.
- **(b)** Show that the minimum-norm solution x_{\star} to the problem is achieved at the intersection of the set $\{x \in \mathbb{R}^m \mid Ax = b\}$ and the subspace $C(A^T)$, and this intersection is unique.
- (c) Find a necessary and sufficient condition that a point $x_0 \in \mathbb{R}^m$ must satisfy so that gradient descent starting at x_0 converges to the min-norm solution.
- (d) Implement gradient descent (with a fixed stepsize α is fine ... doesn't need to be optimal, just small enough to converge) for this problem in Julia, try it on a random A = randn(10,20) matrix and a random b = randn(10), starting from an initial guess x =

zeros(20). (Why does this satisfy (c)?) Plot the error $||x - x_{\star}||/||x_{\star}||$ (norm(x - xstar) / norm(xstar)) on a semilogy scale as a function of the iteration number, where xstar = A \ b is the exact solution, and verify that the process is converging.

```
In [5]: using LinearAlgebra
        using Random
        using PyPlot
        Random.seed!(0)
        A = randn(10, 20)
        b = randn(10)
        x = zeros(20)
        xstar = A \ b
        \alpha = 0.01
        max iters = 1000
        tolerance = 1e-6
        errors = []
        for iter in 1:max_iters
            gradient = A' * (A * x - b)
            x -= \alpha * gradient
             relative_error = norm(x - xstar) / norm(xstar)
             push!(errors, relative_error)
             if relative_error < tolerance</pre>
                 println("Converged after $iter iterations.")
                 break
            end
        end
        PyPlot.plot(errors)
        PyPlot.yscale("log")
        PyPlot.xlabel("Iteration")
        PyPlot.ylabel("Relative Error")
        PyPlot.title("Gradient Descent Convergence")
        # PyPlot.show()
```

Converged after 410 iterations.

Out[5]: PyObject Text(0.5, 1.0, 'Gradient Descent Convergence')

The initial guess x=0 satisfies the condition in c because the zero vector exists in all subspaces.