Solving for orbital elements given observations in 6-d phase space

Logan Pearce

1. Introduction

This document describes the method and equations I used for adopting the methodology of OFTI to make use of 3-d velocities for fitting for orbital elements.

If the two components of a binary system are resolved in Gaia, we can make use of Gaia's astrometric observations of RA/Dec and proper motion in RA/Dec as constraints for fitting orbital elements. If Gaia also obtained radial velocities for both bodies (or if they're been attained independently), then that gives a 5th measurement, leaving only one unconstrained phase space measurement of Z position. If accelerations have been measured for any coordinate, then this provides even more constraints, and allows Z to be removed as a free parameter.

The orbital elements are: a (semi-major axis) [and thus T (period - derived from Kepler's 3rd law)], t_0 (time of periastron passage), e (eccentricity), i (inclination), ω (argument of periastron - angle from ascending node to periapse), and Ω (longitude of periastron - angle of location of ascending node from reference direction). (Note - other sybmols are often used from these variables [for example, P rather than T for period]. I will be using the symbols as they are defined in Seager (2010) for consistency).

These formulae are taken from the book *Exoplanets* (Seager (2010)), Part 1: Keplerian Orbits and Dynamics of Exoplanets, by C.D. Murray and A.C.M. Correia (Murray & Correia 2010).

2. Derivation of equations for positions, velocities, and accelerations given orbital elements

For fitting orbits to stellar binaries in Gaia, we reduce the two-body system to the relative motion of one mass-less point particle around a central object of mass equal to the total system mass. Taking the central body of a 2-body Keplerian orbit to be at the origin of the 3-d cartesian coordinate system, the position of the orbiting body is given by the coordinates (X,Y,Z), where +X is the reference direction, equal to +Declination in the on-sky coordinates. +Y is the +RA direction, and +Z is the line of sight direction towards the observer. This is the coordinate system presented in Murray & Correia (2010), from which we base our derivation.

2.1. Positions

Murray & Correia (2010) eqns 53, 54, and 55 derives the following formulae for projecting orbital elements onto the plane of the sky:

$$X = r[\cos\Omega\cos(\omega + f) - \sin\Omega\sin(\omega + f)\cos i] \tag{1}$$

$$Y = r[\sin\Omega\cos(\omega + f) - \cos\Omega\sin(\omega + f)\cos i] \tag{2}$$

$$Z = r\sin(\omega + f)\sin i \tag{3}$$

+X and +Y correspond to the observed $+\Delta Dec$ $(\Delta \delta)$ and $+\Delta RA$ $(\Delta \alpha)$ respectively between the orbiting body and central object. In this system +Z is defined **towards the observer** (contrary to radial velocity convention).

r is the radius of the orbiting body in the orbital plane, and is given as:

$$r = \frac{a(1 - e^2)}{1 + e\cos f} \tag{4}$$

f is the true anomaly and is given by solving Kepler's equation at the observation date (for Gaia DR2 this is 2015.5):

$$M = \frac{2\pi}{T} \left(Date - t_o \right) \tag{5}$$

$$g(E) = E - e\sin E - M \tag{6}$$

which is a transcendental equation which must be solved numerically (such as Newton-Raphson method). [T is derived from Kepler's 3rd law as $T = \sqrt{\frac{4\pi^2 a^3}{\mu}}$, where $\mu = G(m_1 + m_2)$.] The true anomaly then is given by:

$$f = 2 \arctan\left(\sqrt{\frac{1+e}{1-e}}\tan\frac{E}{2}\right) \tag{7}$$

2.2. Velocities

Murray & Correia (2010) derives in eqn 63 the formula for velocity in the Z direction as:

$$\dot{Z} = \dot{r}\sin(\omega + f)\sin i + r\dot{f}\cos(\omega + f)\sin i \tag{8}$$

which is the time derivative of Z. In the equations above, only r and f vary with time. This corresponds to the observed radial velocity.

Taking the time derivative of X and Y we obtain the velocity in the X and Y direction, which corresponds to proper motion in the Dec and RA directions respectively (μ_{δ} and μ_{α}).

$$\dot{X} = \dot{r} \left[\cos \Omega \cos(\omega + f) - \sin \Omega \sin(\omega + f) \cos i \right] + r\dot{f} \left[-\cos \Omega \sin(\omega + f) - \sin \Omega \cos(\omega + f) \cos i \right]$$
(9)

$$\dot{Y} = \dot{r} \left[\sin \Omega \cos(\omega + f) + \cos \Omega \sin(\omega + f) \cos i \right] + r \dot{f} \left[-\sin \Omega \sin(\omega + f) + \cos \Omega \cos(\omega + f) \cos i \right]$$
(10)

Thus equations (1)-(3) and (8)-(10) form the 6-dimensional phase space of position and velocity in three dimensions.

 \dot{r} and $r\dot{f}$ are the time rate of change of separation and angular distance from the focus of the ellipse (the central body). Eqns (31) and (32) in Murray & Correia (2010) define \dot{r} and $r\dot{f}$ in terms of a, e, and f:

$$\dot{r} = \frac{na}{\sqrt{1 - e^2}} e \sin f \tag{11}$$

$$r\dot{f} = \frac{na}{\sqrt{1 - e^2}} \left(1 + e\cos f \right) \tag{12}$$

Where $n = \frac{2\pi}{T}$.

And our final position and velocity equations become:

$$X = \frac{a(1 - e^2)}{1 + e\cos f}(\cos\Omega\cos(\omega + f) - \sin\Omega\sin(\omega + f)\cos i) = \Delta\delta$$
 (13)

$$Y = \frac{a(1 - e^2)}{1 + e\cos f} (\sin \Omega \cos(\omega + f) - \cos \Omega \sin(\omega + f) \cos i) = \Delta \alpha$$
 (14)

$$Z = \frac{a(1 - e^2)}{1 + e\cos f}\sin(\omega + f)\sin i \tag{15}$$

$$\dot{X} = \frac{na}{\sqrt{1 - e^2}} \left[e \sin f(\cos \Omega \cos(\omega + f) - \sin \Omega \sin(\omega + f) \cos i) + (1 + e \cos f)(-\cos \Omega \sin(\omega + f) - \sin \Omega \cos(\omega + f) \cos i) \right] = \mu_{\delta}$$
(16)

$$\dot{Y} = \frac{na}{\sqrt{1 - e^2}} \left[e \sin f (\sin \Omega \cos(\omega + f) + \cos \Omega \sin(\omega + f) \cos i) + (1 + e \cos f) (-\sin \Omega \sin(\omega + f) + \cos \Omega \cos(\omega + f) \cos i) \right] = \mu_{\alpha}$$
(17)

$$\dot{Z} = \frac{na}{\sqrt{1 - e^2}} \left[e \sin f \sin(\omega + f) \sin i + \left(1 + e \cos f \right) \cos(\omega + f) \sin i \right] = RV \tag{18}$$

2.3. Accelerations

Beginning with eqns (8)-(10), we derive the second time derivative for X,Y, and Z position as

$$\ddot{X} = (\ddot{r} - r\dot{f}^2) \left[\cos \Omega \cos(\omega + f) - \sin \Omega \sin(\omega + f \cos i) + (-2\dot{r}\dot{f} - r\ddot{f}) \left[\cos \Omega \sin(\omega + f) + \sin \Omega \cos(\omega + f) \cos i \right] \right]$$
(19)

$$\ddot{Y} = (\ddot{r} - r\dot{f}^2) \left[\sin \Omega \cos(\omega + f) + \cos \Omega \sin(\omega + f) \cos i \right] + (2\dot{r}\dot{f} + r\ddot{f}) \left[\sin \Omega \sin(\omega + f) + \cos \Omega \cos(\omega + f) \cos i \right]$$
(20)

$$\ddot{Z} = \sin i \left[\left(\ddot{r} - r \dot{f}^2 \right) \sin \left(\omega + f \right) + \left(2 \dot{r} \dot{f} + r \ddot{f} \right) \cos \left(\omega + f \right) \right]$$
 (21)

Murray & Correia (2010) do not derive expressions for \ddot{r} or \ddot{f} . As f depends on E, which varies with time, and is a transcendental, this gets messy quickly. Fortunately

Klioner (2016) has a lovely discussion of the two-body problem, and while they do not derive what we need directly, we can make use of their work to assemble needed expressions.

Klioner (2016) gives two helpful expressions for \dot{E} :

$$\dot{E} = \frac{n}{1 - e\cos E} \tag{22}$$

$$\dot{E} = \frac{an}{r} = \frac{n(1 + e\cos f)}{1 - e^2} \tag{23}$$

Thus we derive from (22):

$$\ddot{E} = \frac{-n e \sin E}{(1 - e \cos E)^2} \dot{E} = \frac{n^2 e}{(1 - e \cos E)^2} \frac{\sin f}{\sqrt{1 - e^2}}$$
(24)

Or from (23):

$$\ddot{E} = \frac{-n \ e \ \sin f}{1 - e^2} \ \dot{f} \tag{25}$$

Reverse-engineering (12), we get that

$$\dot{f} = \frac{n\sqrt{1 - e^2}}{(1 - e\cos E)^2} = \dot{E}\frac{\sqrt{1 - e^2}}{1 - e\cos E} = \dot{E}\frac{\sin f}{\sin E}$$
 (26)

where $\sin f = \frac{\sqrt{1-e^2}\sin E}{1-e\cos E}$. Which is kind of a nice result.

We can write r in a more derivative-friendly way as $r = a (1 - e \cos E)$, and thus:

$$\dot{r} = a \ e \ \sin E \ \dot{E} \tag{27}$$

$$\ddot{r} = a e \cos E \, \dot{E}^2 + a e \sin E \, \ddot{E} \tag{28}$$

And from (26) we get:

$$\ddot{f} = \ddot{E} \, \frac{\sqrt{1 - e^2}}{1 - e \cos E} + \dot{E}^2 \, \frac{e\sqrt{1 - e^2} \sin E}{(1 - e \cos E)^2} \tag{29}$$

which reduces to:

$$\ddot{f} = \ddot{E} \frac{\sin f}{\sin E} + \dot{E}^2 \frac{e \sin f}{1 - e \cos E} \tag{30}$$

And now we have all the pieces for computing \ddot{X} , \ddot{Y} , and \ddot{Z} .

REFERENCES

Klioner, S. A. 2016, arXiv e-prints, arXiv:1609.00915

Murray, C. D., & Correia, A. C. M. 2010, Keplerian Orbits and Dynamics of Exoplanets, ed. S. Seager, 15–23

Seager, S. 2010, Exoplanets

This preprint was prepared with the AAS IATEX macros v5.2.