Clustering: Models and Algorithms

Shikui Tu
Shanghai Jiao Tong University
2021-03-01

Outline

- Clustering
 - K-mean clustering, hierarchical clustering
- Adaptive learning (online learning)
 - CL, FSCL, RPCL
- Gaussian Mixture Models (GMM)

Expectation-Maximization (EM) for maximum likelihood

What is clustering?

例子: 不同类型的癌细胞会各自聚在一起

物以类聚

Clustering analysis of COVID-19 virus

Lancet, January 29, 2020 https://doi.org/10.1016/S0140-6736(20)30251-8

Figure 3: Phylogenetic analysis of full-length genomes of 2019-nCoV and representative viruses of the genus Betacoronavirus 2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus.

How to represent a cluster

• 例如:将每个人的身高记下来

但是,如果只能记一个身高数值...

How to define error?

Square distance:

$$\|\boldsymbol{\mu} - \boldsymbol{x}_1\|^2 + \|\boldsymbol{\mu} - \boldsymbol{x}_2\|^2 + \|\boldsymbol{\mu} - \boldsymbol{x}_3\|^2$$

可以证明: 当μ是所有数据点的均值时,平方距离和最小

Clustering the data

We have the following data:

We want to cluster the data into two clusters (red and blue)

How?

Minimize the sum of square distances J

minimize
$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

 $r_{nk} = 1$ if and only if data point \mathbf{x}_n is assigned to cluster k; otherwise $r_{nk} = 0$.

$$k = 1, 2$$
; $K = 2$ clusters

$$n = 1, ..., N;$$

N: the total number of points.

We need to calculate $\{r_{nk}\}$ and $\{\mu_k\}$.

If we know r_{n1} , r_{n2} for all n=1,...,N

Since the points have been assigned to cluster 1 or cluster 2, we calculate

 μ_1 = mean of the points in cluster 1

 μ_2 = mean of the points in cluster 2

Or formally

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

We call it the M Step.

If we know μ_{1} , μ_{2}

We should assign point \mathbf{x}_n to cluster 1, because

$$||\mathbf{x}_n - \boldsymbol{\mu}_1||^2 < ||\mathbf{x}_n - \boldsymbol{\mu}_2||^2$$

Then,
$$r_{n1} = 1$$
 $r_{n2} = 0$

Or formally

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \ 0 & ext{otherwise}. \end{cases}$$

We call it the **E Step**

Initialization

Given $\mu_{l_1} \mu_2$, calculate r_{nl} , r_{n2} for all $n=1,\ldots,N$

Equal distance line

E Step

Assign the points to the nearest cluster:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \ 0 & ext{otherwise.} \end{cases}$$

Given r_{n1} , r_{n2} , calculate μ_{1} , μ_{2}

M Step

Calculate the means of the points in each cluster:

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

Given μ_{1} , μ_{2} , calculate r_{n1} , r_{n2} for all n=1,...,N

E Step

Assign the points to the nearest cluster:

$$r_{nk} = egin{cases} 1 & ext{if } k = rg \min_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \ 0 & ext{otherwise.} \end{cases}$$

Given r_{n1} , r_{n2} , calculate μ_{1} , μ_{2}

M Step

Calculate the means of the points in each cluster:

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

K均值法小结

- 初始化均值点 $\mu_1,...,\mu_k$
- 迭代如下
 - -把每个数据点按照就近原则分配给相应的 μ_i
 - -把µi更新为所分配的数据点的均值
- 迭代停止,如果聚类分配不变

```
Initialize m{m}_i, i=1,\ldots,k, for example, to k random m{x}^t Repeat For all m{x}^t \in \mathcal{X} b_i^t \leftarrow \begin{cases} 1 & \text{if } \| m{x}^t - m{m}_i \| = \min_j \| m{x}^t - m{m}_j \| \\ 0 & \text{otherwise} \end{cases} For all m{m}_i, i=1,\ldots,k m{m}_i \leftarrow \sum_t b_i^t m{x}^t / \sum_t b_i^t Until m{m}_i converge
```

Basic ingredients

Model or structure

Objective function

Algorithm

Convergence

Questions

How many possible assignments for K-mean clustering?

 Can K-mean algorithm always converge? Why?

Possible limitations of K-mean clustering?

Outline

- Clustering
 - K-mean clustering, hierarchical clustering
- Adaptive learning (online learning)
 - CL, FSCL, RPCL
- Gaussian Mixture Models (GMM)

Expectation-Maximization (EM) for maximum likelihood

Hierarchical Clustering

- Agglomerative clustering
- A very simple procedure:
 - Assign each data point into its own group
 - Repeat: look for the two closest groups and merge them into one group
 - Stop when all the data points are merged into a single cluster

Hierarchical Clustering

- *k*-means clustering requires
 - -k
 - Positions of initial centers
 - A distance measure between points (e.g. Euclidean distance)
- Hierarchical clustering requires a <u>measure of</u> distance between <u>groups</u> of data points

Distance Measure

- Distance between data points a and b:
 - -d(a,b)
- Group A and B
 - Single-linkage

$$d(A,B) = \min_{a \in A, b \in B} d(a,b)$$

Complete-linkage

$$d(A,B) = \max_{a \in A, b \in B} d(a,b)$$

Average-linkage

$$d(A,B) = \frac{\sum_{a \in A, b \in B} d(a,b)}{|A| \cdot |B|}$$

Dendrogram

THE LANCET, January 29, 2020

CDC China

Figure 3: Phylogenetic analysis of full-length genomes of 2019-nCoV and representative viruses of the genus Betacoronavirus 2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus.

Outline

- Clustering
 - K-mean clustering, hierarchical clustering
- Adaptive learning (online learning)
 - CL, FSCL, RPCL
- Gaussian Mixture Models (GMM)

Expectation-Maximization (EM) for maximum likelihood

From batch to adaptive

Given a batch of data points

Data points come one by one:

Competitive learning

Data points come one by one:

$$\varepsilon_t(\theta_j) = \|x_t - m_j\|^2$$

$$p_{j,t} = \begin{cases} 1, & \text{if } j = c, \\ 0, & \text{otherwise;} \end{cases}$$
$$c = arg \ min_j \varepsilon_t(\theta_j).$$

$$m_j^{new} = m_j^{old} + \eta p_{j,t}(x_t - m_j^{old}).$$

- (a) m_1 is the winner
- (b) m_2 is the winner

When starting with "bad initializations"

A four-cluster case

frequency sensitive competitive learning (FSCL) [Ahalt et al., 1990]

The idea is to penalize the frequent winners:

$$\varepsilon_t(\theta_j) = \alpha_j ||x_t - m_j||^2$$

FSCL is not good when there are extra centers

When k is pre-assigned to 5. the frequency sensitive mechanism also brings the extra one into data to disturb the correct locations of others

Rival penalized competitive learning (RPCL) (Xu, Krzyzak, & Oja, 1992, 1993)

The RPCL differs from FSCL by implementing $p_{i,t}$ as follows:

$$p_{j,t} = \begin{cases} 1, & \text{if } j = c, \\ -\gamma, & \text{if } j = r, \\ 0, & \text{otherwise,} \end{cases} \begin{cases} c = arg \ min_j \varepsilon_t(\theta_j), \\ r = arg \ min_{j \neq c} \varepsilon_t(\theta_j), \end{cases}$$

where γ approximately takes a number between 0.05 and 0.1 for controlling the penalizing strength.

Rival penalized mechanism makes extra agents driven far away.

Questions

 Are competitive learning (CL) and Kmean equivalent?

 Could you come up with new algorithms to tackle the "bad initialization" problem of competitive learning (or K-mean)?

p p

 Can you design a K-mean version of RPCL?

Thank you!

Matrix derivatives

$$\left[\frac{\partial \mathbf{x}}{\partial y}\right]_i = \frac{\partial x_i}{\partial y} \qquad \left[\frac{\partial x}{\partial \mathbf{y}}\right]_i = \frac{\partial x}{\partial y_i} \qquad \left[\frac{\partial \mathbf{x}}{\partial \mathbf{y}}\right]_{ij} = \frac{\partial x_i}{\partial y_j}$$

$$\frac{\partial \mathbf{x}^T \mathbf{a}}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a} \tag{69}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{b}^T \tag{70}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{b}}{\partial \mathbf{X}} = \mathbf{b} \mathbf{a}^T \tag{71}$$

$$\frac{\partial \mathbf{a}^T \mathbf{X} \mathbf{a}}{\partial \mathbf{X}} = \frac{\partial \mathbf{a}^T \mathbf{X}^T \mathbf{a}}{\partial \mathbf{X}} = \mathbf{a} \mathbf{a}^T$$
 (72)

$$\frac{\partial \det(\mathbf{X})}{\partial \mathbf{X}} = \det(\mathbf{X})(\mathbf{X}^{-1})^T \tag{49}$$

$$\frac{\partial \mathbf{Y}^{-1}}{\partial x} = -\mathbf{Y}^{-1} \frac{\partial \mathbf{Y}}{\partial x} \mathbf{Y}^{-1} \tag{59}$$