

PROBABILISTIC LINEAR MODEL

Why

We want to estimate the weights of a linear function.¹

Definition

The probabilistic linear model; linear model; linear regression

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space. We have n precepts in \mathbf{R}^d . So let $a^1, \ldots, a^n \in \mathbf{R}^d$ with data matrix $A \in \mathbf{R}^{n \times d}$. We are modeling a relation between \mathbf{R}^d and \mathbf{R} .

Let $x: \Omega \to \mathbb{R}^d$ and $e: \Omega \to \mathbb{R}^n$ be independent random vectors with zero mean and covariances given by Σ_x and Σ_e , respectively. For each $\omega \in \Omega$, define the map $f: \Omega \to (\mathbb{R}^d \to \mathbb{R})$ by $f(\omega)(a) = \sum_j a_j^i x_j(\omega) + e_i(\omega)$.

We call x the signal. We call e the noise. This class of models assumes the signal and noise are independent.

Define
$$y: \Omega \to \mathbb{R}^n$$
 by $y(\omega) = Ax(\omega) + e(\omega)$. So, $y = Ax + e$.

This is also called bayesian linear regression or the bayesian analysis of the linear model, in reference to the distribution on x.

Mean and variance

Proposition 1.
$$E(y) = A E(x) + E(w)^2$$

¹Future editions will include this.

²By linearity. Full account in future editions.

 $\textbf{Proposition 2. } \mathbf{cov}((x,y)) = A \operatorname{cov}(x) A^\top + \operatorname{cov} e^3$

³Full account in future editions.

