Supplementary information for "Identification of network topology variations based on spectral entropy"

Housheng Su, Dan Chen, Gui-Jun Pan, Zhigang Zeng, Fellow, IEEE

1

Fig. S1: The entropy of email temporal networks. (a) The entropy S_e of $G(t_i)$, i=0,1,2,3. (b) The entropy S_d of $G(t_i)$. (c) The entropy S_e of $G(t_{i+1})-G(t_i)$, i=0,1,2. (d) The entropy S_d of $G(t_{i+1})-G(t_i)$.

Fig. S2: Collaboration network netscience and four randomized models. From left to right are 0k randomized graph, 1k randomized graph, 2k randomized graph, 2.1k randomized graph, and original network, respectively.

TABLE S1: The second line shows the entropy S_b of the email temporal network $G(t_i)$, i = 0, 1, 2, 3. The fourth line shows the entropy S_b of the network $G(t_{i+1}) - G(t_i)$, i = 0, 1, 2.

S_b/log_2N	$G(t_0)$	$G(t_1)$	$G(t_2)$	$G(t_3)$
Fig. 9(a)	0.8135	0.8938	0.9179	0.9318
S_b/log_2N	$G(t_0)$	$G(t_1) - G(t_0)$	$G(t_2) - G(t_1)$	$G(t_3) - G(t_2)$
Fig. 9(b)	0.8135	0.8312	0.8144	0.7992

Fig. S3: (a) Shows the entropy S_e of the email temporal network and their randomized models. (b) Shows the entropy S_d of the email temporal network and their randomized models. (c) Shows the entropy S_e of the netscience network and their randomized models. (d) Shows the entropy S_d of the netscience network and their randomized models.

TABLE S2: The second line shows the entropy S_b of the email temporal network and their randomized models. The third line shows the entropy S_b of the netscience network and their randomized models.

S_b/log_2N	dk0.0	dk1.0	dk2.0	dk2.1	original network
email	0.9338	0.9338	0.9334	0.9325	0.9318
netscience	0.9427	0.9429	0.9424	0.9395	0.9385

Fig. S4: The D_{JS} values as a function of rewiring probability P_{rew} for Watts and Strogatz's small-world network, where D_{JS} represents the difference between K-regular and WS small-world networks. (a) Based on the spectral entropy DD, dissimilarity values $D_{JS}(\rho_d||\sigma_d)$ between K-regular and WS small-world networks. (b) Dissimilarity values $D_{JS}(\rho_e||\sigma_e)$ between K-regular and WS small-world networks based on entropy EE. The network size is N=100, $\langle k \rangle=4$, all the results are averaged over 100 independent realizations.