Assignment #10

Recursion

Write *recursive* definitions for each of the following Python functions, and for each function, include a clear and concise comment to describe its purpose. Use only the Python topics covered so far in class.

1. Power(x, n)

The number 'x' raised to the power of the non-negative integer 'n'

(do not use the Python operator '**' here)

```
Power( 2, 4 ) \Rightarrow 16

Power( -2, 3 ) \Rightarrow -8

Power( 7, 0 ) \Rightarrow 1

Power( 0, 0 ) \Rightarrow 1 (differs from mathematical definition)

Power( 0, 3 ) \Rightarrow 0

Power( 1.5, 2 ) \Rightarrow 2.25
```

2. Range(lo, hi)

The list of integers from the integer 'lo' (inclusive) up to the integer 'hi' (exclusive) (do not use the builtin Python function 'range' here)

```
Range(3, 7) \Rightarrow [3, 4, 5, 6]
Range(3, 4) \Rightarrow [3]
Range(3, 3) \Rightarrow []
Range(3, 1) \Rightarrow []
```

DigitCount(n)

The number of digits in the non-negative integer 'n'

(recall that in Python, for example, 278 // 10 = 27)

```
DigitCount( 278 ) \Rightarrow 3
DigitCount( 4 ) \Rightarrow 1
```

4. Groups(s, k)

The list of strings of all groups of 'k' elements from string 's', where $0 \le k \le len(s)$, and where elements in these strings occur in the same order as in 's'

```
Groups( "abcde", 2 ) \Rightarrow [ "ab", "ac", "ad", "ae", "bc", "bd", "be", "cd", "ce", "de" ] 
Groups( "abcde", 1 ) \Rightarrow [ "a", "b", "c", "d", "e" ] 
Groups( "abcde", 0 ) \Rightarrow [ "" ] 
Groups( "abcde", 5 ) \Rightarrow [ "abcde" ]
```

Program Submission:

Store the function definitions in a file named 'a10.py', and turn it in for grading by typing: submit-cs1117 a10.py

Due Date: Fri Nov 20, 11:00am