EE 4211 Computer Vision

Lecture 2B: Image enhancement (Spatial)

Semester A, 2020-2021

Spatial Domain Topics

- Point processing Gray values change without any knowledge of its surroundings (Part I)
 - Log, power-law, piecewise linear
 - Histogram Equalization
- Neighborhood processing (filtering) Gray values change depending on the gray values in a small neighborhood of pixels around the given pixel (Part I)
 - Smoothing filters
 - Median filters
 - Sharpening

Spatial Filtering

- Basics of Spatial Filtering
- Smoothing Spatial Filters
 - Averaging filters, Order-Statistics filters
- Sharpening Spatial Filters
 - Laplacian filters, Sobel filter
- Combining Spatial Enhancement Methods

Linear Spatial Filtering

- g(x,y) = T[f(x,y)]
 - f(x,y): input image
 - g(x,y): output image
 - T: an operator on f defined over some neighborhood of (x,y)
- A spatial filter consists of
 - a neighborhood, and
 - a predefined operation

The Spatial Filtering Process

 Repeated for every pixel in the original image to generate the filtered image

Spatial Filtering: Equation Form

Filtering can be given in equation form by

$$g(x, y) = \sum_{s=-at=-b}^{a} \sum_{t=-b}^{b} w(s, t) f(x+s, y+t)$$

Spatial Filtering

- Basics of Spatial Filtering
- Smoothing Spatial Filters
 - Averaging filters, Order-Statistics filters
- Sharpening Spatial Filters
 - Laplacian filters, High-boost filters
- Combining Spatial Enhancement Methods

Smoothing Spatial Filters

- Smoothing filters are used for blurring and for noise reduction
- Blurring is used in preprocessing steps, such as
 - Removal of small details from an image prior to object extraction
 - Bridging of small gaps in lines or curves
- Noise Reduction can be accomplished by blurring with linear or non-linear filters

Spatial Smoothing Linear Filters

- Smoothing : One of the simplest spatial filtering operations
- Replace each pixel by the average of pixels in a square window surrounding this pixel
 - Especially useful in removing noise from images
 - Also useful for highlighting gross information

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Simple Averaging Filter

Average Filtering Process

Examples

- Original image size 500x500 pixels
- Results of smoothing with averaging filter masks of size n=3, 5, 9, 15, 35, respectively

Weighted Smoothing Filters

- Instead of averaging all the pixel values in the window, this filter gives the closer-by pixels higher weighting, and faraway pixels lower weighting.
- Reduce value of coefficients as a function of increasing distance from the origin
- An attempt to reduce blurring in the smoothing process

1/ ₁₆	² / ₁₆	1/ ₁₆	
² / ₁₆	4/ ₁₆	² / ₁₆	
1/16	² / ₁₆	1/ ₁₆	

Examples to blur

Examples to remove noise

 By smoothing the original image, we get rid of lots of the finer detail which leaves only the gross features for thresholding

Order-Statistics Filters

- Non-linear filters
- Response is based on ordering (ranking) the pixels
 contained in the image area encompassed by the filter
- Example:
 - median filter, max filter, min filter

Median Filters

Obtained by **sorting** all pixels in the analysis window in increasing or decreasing order of amplitudes and **picking the middle value** if the number of pixels is odd, or the average of the two values in middle if the number of pixels is even.

$$g(x,y) = median\{f(x-n,y-m),(n,m) \in N\}$$

- Popularly used for certain types of random noise (impulse noise, salt and pepper noise)
 - Excellent noise-reduction capabilities
 - Less blurring effect that linear smoothing filters of similar size

2D Median Filtering Example

Filtering is often used to remove noise from images

Averaging Filter vs. Median Filter Example

Filtering is often used to remove noise from images

Sometimes a median filter works better than an averaging

filter

Spatial Filtering

- Basics of Spatial Filtering
- Smoothing Spatial Filters
 - Averaging filters, Order-Statistics filters
- Sharpening Spatial Filters
 - Laplacian filters, Sobel filter
- Combining Spatial Enhancement Methods

Sharpening Spatial Filters

- Smoothing filters remove fine detail
- Sharpening spatial filters seek to highlight fine detail
 - Remove blurring from images
 - Highlight edges
- Sharpening filters are based on spatial differentiation

Spatial Differentiation

- Differentiation measures the rate of change of a function
- Let's consider a simple 1 dimensional example

1st Derivative

The formula for the 1st derivative of a function is as follows:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

It's just the difference between subsequent values and measures the rate of change of the function

2nd Derivative

The derivatives of a function is as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1) + f(x-1) - 2f(x)$$

 Simply takes into account the values both before and after the current value

Using Second Derivatives for Image Enhancement

- The 2nd derivative is more useful for image enhancement than the 1st derivative
 - Stronger response to fine detail
 - Simpler implementation
- The first sharpening filter we will look at is the Laplacian
 - Isotropic
 - One of the simplest sharpening filters

The Laplacian

The Laplacian is defined as follows:

$$\nabla^2 f = \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y}$$

where the partial 2nd order derivative in the x direction is defined as follows:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

and in the y direction as follows:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

The Laplacian Operator

So, the Laplacian can be given as follows:

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) - 4f(x,y)]$$

We can easily build a filter based on this

0	1	0
1	-4	1
0	1	0

Laplacian Mask

This Laplacian mask is implemented differently by incorporating the diagonal directions. The center value is now -8.

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

The Laplacian Filter Example

 Applying the Laplacian filter to an image we get a new image that highlights edges and other discontinuities

But That Is Not Very Enhanced!

- The result of a Laplacian filtering is not an enhanced image
- We have to do more work in order to get our final image
- Subtract the Laplacian result from the original image to generate our final sharpened enhanced image

$$g(x, y) = f(x, y) - \nabla^2 f$$

Laplacian Filtered Image Scaled for Display

Laplacian Image Enhancement

 In the final sharpened image, edges and fine detail are much more obvious

Simplified Image Enhancement

The entire enhancement can be combined into a single filtering operation

$$g(x,y) = f(x,y) - \nabla^2 f$$

$$= f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$= 5f(x,y) - f(x+1,y) - f(x-1,y)$$

$$-f(x,y+1) - f(x,y-1)$$

Simplified Image Enhancement

 This gives us a new filter which does the whole job for us in one step

Variants On The Simple Laplacian

There are lots of slightly different versions of the Laplacian that can be used:

Comparison of Two Laplacians

First Derivatives: Gradient Operator

First derivatives are implemented using the magnitude of the gradient

$$\nabla f = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \qquad \nabla f = mag(\nabla f) = [G_x^2 + G_y^2]^{\frac{1}{2}}$$

$$= \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{\frac{1}{2}}$$
Approximation:
$$\nabla f \approx |G_x| + |G_y|$$

Gradient Mask

On the basis of a first-order derivative of a 2-D function f(x,y), the simplest approximation of the gradient mask: 2x2

$$G_x = (z_8 - z_5)$$
 and $G_y = (z_6 - z_5)$

$$\nabla f = [G_x^2 + G_y^2]^{\frac{1}{2}} = [(z_8 - z_5)^2 + (z_6 - z_5)^2]^{\frac{1}{2}}$$

$$\nabla f \approx |z_8 - z_5| + |z_6 - z_5|$$

\boldsymbol{Z}_1	Z_2	Z_3
Z_4	Z_5	Z_6
Z_7	Z_8	Z_9

Gradient Mask

Roberts 2x2 cross-gradient operators [1965]

$$G_x = (z_9 - z_5)$$
 and $G_y = (z_8 - z_6)$

$$\nabla f = [G_x^2 + G_y^2]^{\frac{1}{2}} = [(z_9 - z_5)^2 + (z_8 - z_6)^2]^{\frac{1}{2}}$$

$$\nabla f \approx |z_9 - z_5| + |z_8 - z_6|$$

\boldsymbol{z}_1	Z_2	Z_3
Z_4	Z_5	Z_6
Z_7	Z_8	Z_9

-1	0	0	-1
0	1	1	0

Gradient Mask

Sobel operators, 3x3

$$G_{x} = (z_{7} + 2z_{8} + z_{9}) - (z_{1} + 2z_{2} + z_{3})$$

$$G_{y} = (z_{3} + 2z_{6} + z_{9}) - (z_{1} + 2z_{4} + z_{7})$$

$$\nabla f \approx |G_{x}| + |G_{y}|$$

Z_1	Z_2	Z_3
Z_4	Z_5	Z_6
Z_7	Z_8	Z_9

The weight value 2 is to achieve smoothing by giving more important to the center point

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Example

Combining Spatial Enhancement Methods

- Successful image enhancement is typically not achieved using a single operation
- Rather we combine a range of techniques in order to achieve a final result
- This example will focus on enhancing the bone scan to the right

Example: Combining Spatial Enhancement Methods

- Target: To sharpen the original image and bring out more skeletal detail
- Problems:
 - Narrow dynamic range of gray level
 - High noise content makes image difficult to enhance

Example: Combining Spatial Enhancement Methods

Solution:

- Laplacian to highlight fine details
- Gradient to enhance prominent edges
- Gray level transformation to increase the dynamic range of gray levels

Combining Spatial Enhancement Methods I

Combining Spatial Enhancement Methods II

