Bayes rule (recap): let A, B be random events

Pr(A1B) = Pr(A1B), assuming Pr(B)>0

Pr(B) = Pr(BIA). Pr(A)
= Pr(BIA). Pr(A)

Pr(B n (A UAe))

Pr((B n A) U(B n Ae) Pr(BNA). Pr(A)

Pr(BNA) + Pr(BNAe)

BNA and

BNA are disjoin = Pr(BIA). Pr(A) Pr(BIA). Pr(A) + Pr(BIA). Pr(A)

Bayes rule updates Pr(A) (prior knowledge) with Pr(BIA) (experimental data"); to get Pr(AIB) (posterior probability / knowledge / information,

Pr(X=x): prior prob. of [X=x]

MLE: Intuition via Bayes Rule I

p(Y=Y|X=x): model for experimental data

$$Pr(X=x|Y=y) = \frac{Pr(X=x,Y=y)}{Pr(Y=y)}$$

$$\text{posterior prob. } [X=x] = \frac{Pr(Y=y,X=x)}{\sum_{t\in\mathcal{X}} Pr(Y=y,X=t)} \text{ the like lihood}$$
when the experimental
$$= \frac{Pr(Y=y|X=x)Pr(X=x)}{\sum_{t\in\mathcal{X}} Pr(Y=y|X=t)Pr(X=t)}.$$

Flip a coin 100 times independently with the probability of success X; observe Y=y successes (e.g., y=67).

Game against the Nature: Mature chooses & (prob. of success in comflip) from prior distribution. Statistican observes the event [Y=y], Goal: deduce the value of X that Mature

 $\frac{\mathbf{Q}}{X}$. What is your best guess about the true probability of success $\frac{\mathbf{Q}}{X}$, given that you observed y successes?

MLE: Intuition via Bayes Rule II

Flip a coin 100 times independently with the probability of success X; observe Y = y successes (e.g., y = 67). Suppose X is a rv such that Pr(X=i/100)=1/101 for $i=0,1,\ldots,100$.

 \mathbf{Q} : What is the most likely value of X, given that you observed y

likely a priorije Lywant to maximize this expression wit & e [0,1].

Priorije Lywant to maximum likelihood estimator-value

Priorije Lywant to maximum likelihood estimator-value

of x that maximizes the likelihood. Principle of Maximum Likelihood Estimation: discrete rvs Let x_1, x_2, \ldots, x_n be the observed values of iid rvs X_1, X_2, \ldots, X_n .

When the X_i 's are discrete rvs,

$$Pr(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n Pr(X_i = x_i) = \prod_{i=1}^n f(x_i | \theta) > 0$$

is the probability of observing the vector of outcomes $[x_1, x_2, \ldots, x_n]$.

Since the events of high probability are more likely to occur than the events of low probability, and the event $[X_1 = x_1, \ldots, X_n = x_n]$ has occurred, it is sensible to estimate the unknown parameter θ using the value $\widehat{\theta}(x_1, \ldots, x_n)$ that makes $P(X_1 = x_1, \ldots, X_n = x_n | \theta)$ as high as possible.

Principle of ML Estimation: continuous rvs

Let x_1, x_2, \ldots, x_n be the observed values of iid rvs X_1, X_2, \ldots, X_n .

When the X_i 's are continuous rvs, $Pr(\bigcap_{i=1}^n [X_i = x_i] | \theta) = 0$. However, in this case

$$\prod_{i=1}^{n} f(x_i|\theta) \approx \frac{Pr(\bigcap_{i=1}^{n} \left[x_i - \delta/2 \le X_i \le x_i + \delta/2\right]|\theta)}{\delta^n} > 0.$$

Hence maximization of $\prod_{i=1}^n f(x_i|\theta)$ wrt θ is equivalent to maximization wrt θ the probability of the event that $\bigcap_{i=1}^n \{X_i \in [x_i - \delta/2, x_i + \delta/2]\}.$

Method of ML Estimation: Preliminaries

<u>Likelihood function</u> is the joint probability density or mass function of the data, treated as a function of θ , i.e.,

$$L(\theta|x_1,\ldots,x_n)=\prod_{i=1}^n f(x_i|\theta).$$

Notice that, in $L(\theta|x_1,\ldots,x_n)$, θ is the variable, and the sample $[x_1,\ldots,x_n]$ is treated as fixed.

Recall that in the pdf/pmf, θ is held fixed, and the x_i 's vary. For convenience, $L(\theta|x_1,\ldots,x_n)$ will be abbreviated as $L(\theta)$.

<u>Log-likelihood function</u> is $l(\theta) = \log L(\theta)$. Here, \log is typically taken to be the natural logarithm, \ln .

Example: Write down the likelihood and log-likelihood functions when X_1, \ldots, X_n are iid Bernoulli(p) rvs.

MLE: Procedure

Step 1: Write down the likelihood as a function of the parameter (vector) θ .

Step 2: Write down the log-likelihood as a function of the parameter (vector) θ , call it $l(\theta)$.

Step 3: Maximize the log-likelihood function with respect to θ . Often, but not always, this amounts to

Step 3a: solving for θ the score equation

$$S(\theta) = \frac{\partial l(\theta)}{\partial \theta} = 0.$$

Step 3b: if $\widehat{\theta}$ is the solution, checking that $\widehat{\theta}$ is indeed the maximizer of $l(\theta)$. Often, this amounts to checking that

$$\left. \frac{\partial^2 l(\theta)}{\partial \theta^2} \right|_{\theta = \widehat{\theta}} < 0.$$

Point and Interval Estimation: Some Motivation; I

In point estimation, the goal is to find an estimator $\widehat{\theta}_n$ for θ that has nice properties such as low MSE, low bias and consistency: $\Pr(|\widehat{\theta}_n - \theta| \leq \delta)$ is large.

However, no matter how large n is, usually $\Pr(\widehat{\theta}_n = \theta) = 0$, e.g., when $\widehat{\theta}_n$ is a continuous rv.

Suppose instead of "hitting" θ exactly, we constructed a random set (e.g., a <u>confidence interval</u>)

$$[L(X_1,\ldots,X_n|\alpha),U(X_1,\ldots,X_n|\alpha)]$$

such that

$$\Pr\left(\theta \in [L(X_1, \dots, X_n | \alpha), U(X_1, \dots, X_n | \alpha)]\right) = 1 - \alpha.$$

Here, α is some small number, e.g., 0.05 or 0.01.

Point and Interval Estimation: Some Motivation; II

Ingredients of the Confidence Intervals (CIs)

- ightharpoonup L: lower bound, U: upper bound.
- ▶ 1α : <u>confidence coefficient</u> ≡ probability of coverage ≡ level of the CI.
- ightharpoonup If L and U are both finite, [L,U] is called a 2-sided interval.
- If |L| or U (but not both) is infinity, the CI is called one-sided. If $L=-\infty$, then the CI is called left-sided. If $U=\infty$, then the CI is called right-sided.
- ▶ Note that $[L(X_1, ..., X_n | \alpha), U(X_1, ..., X_n | \alpha)]$ is a random interval; this is an <u>interval estimatOR</u> of θ .
- When $(X_1, \ldots, X_n) = (x_1, \ldots, x_n)$, $[L(x_1, \ldots, x_n | \alpha), U(x_1, \ldots, x_n | \alpha)]$ is the <u>interval estimatE</u> of θ (a particular realization of the random interval estimator).

Large-sample justification of a level $(1-\alpha)$ Cl Let $X_{i,j}$ for $i=1,\ldots,m$ and $j=1,\ldots,n$ be iid from F_{θ} . Let $L_i=L\left(X_{i,1},X_{i,2},\ldots,X_{i,n}\right)$ and $U_i=U\left(X_{i,1},X_{i,2},\ldots,X_{i,n}\right)$.

Write the $X_{i,j}$'s in a matrix and compute $[L_i, U_i]$ for each row:

$$egin{bmatrix} X_{1,1} & X_{1,2} & \cdots & X_{1,n} \ X_{2,1} & X_{2,2} & \cdots & X_{2,n} \ dots & dots & \ddots & dots \ X_{m,1} & X_{m,2} & \cdots & X_{m,n} \end{bmatrix}$$

Interpretation: If the "experiment" (X_1,X_2,\ldots,X_n) is independently replicated m times and the CI is computed each time, then the frequency of coverage $\frac{S_m}{m}$ of θ by the random intervals $[L_1,U_1],\ldots,[L_m,U_m]$ tends to $1-\alpha$ as $m\to\infty$.