

Group 2 Final Project

Evan John Gonnerman Connor L Yates Jiongcheng Luo Yeang Kong Zheng

Exploration Problem:

Problem:

- Unknown map
- Unknown global position

Solution:

- SLAM (Simultaneous Localization and Mapping)
- Laser scan running gmapping returns occupancy grid
- Navigation running nav_bundle yields navigation commands

Packages:

- Gmapping:
 - Output → Occupancy grid with values -1, 0-100
 - -1 Value = Cell has not been seen
 - 0 Value = Cell has been verified as free
 - 100 Value = Cell has been verified as occupied
- Nav_bundle:
 - Output → Odometry data, velocity control
 - Use odometry to track position
 - Use Twist commands to yield linear/angular velocities

-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1
-1	30	60	70	50	92	-1
-1	10	20	45	12	80	-1
100	0.5	0	0	0	15	100
100	0	0	0	0	0	100
100	0	0		0	0	100

Laser scan example

World image example

Occupancy grid example

Steps:

Scripts:

- Waypoint Selection:
 - Waypoints will be selected as free cells adjacent to unknowns cells
 - Cell value of 0 adjacent to cell value of -1
 - Waypoint x-y sent to path planning script
- Path Planning:
 - Utilizes A* as path planning algorithm
 - Takes current position and waypoint
- Navigation:
 - Takes current location → Moves to vertex of path planning
 - Current location = Based off odometry data
 - Velocity command sent to base_link_goal

Success:

- Waypoint Selection:
 - Runs frontier based search for viable waypoint
 - Publishes and subscribes with A* path planning algorithm
- A* Path Planning Algorithm:
 - For given current location and goal location plans path
 - Outputs set of vertices
- Navigation:
 - Moves from current x, y location to vertex from A* path plan
 - Publishes and subscribes to A* path planning

Problems:

- Communication:
 - Talking between nodes presented multiple challenges
 - Time-stamped data types vs. boolean/float/point data types
 - Calling of time synchronized functions
- Bringing the whole package together:
 - Issues arose when different messages were passed
 - Hard coding vs. variable messages

Oregon State

Who Did What?

- Connor Yates
 - Frontier Waypoint Selection Algorithm
 - ROS Master
- Jiongcheng Luo
 - A* Path Planning Algorithm
- Evan Gonnerman
 - Navigation Algorithm
 - Slides/Presentation
- Kong Zheng Yeang
 - Slides/Presentation

Summary:

- Abilities:
 - Could hard code waypoints for robot to travel to in worlds
 - Could hard code A* to plan a path based off of known position and goal
 - Could pick viable waypoint with frontier based search algorithm
 - Could talk between all scripts/topics
- With More Time:
 - Rewrite callback function for path planning
 - Address issues in communication between nodes

Questions?

