

BAB 4
ADALINE MADALINE DAN
PERCEPTRON

Bab pada Jaringan Syaraf Tiruan

- BAB I Pendahuluan
- BAB 2 Komponen-komponen Jaringan Syaraf Tiruan.
- BAB 3 Neuron McCulloch Pitts dan Hebb
- BAB 4 Adaline, Madaline, Perceptron
- BAB 5 Delta Learning Rule
- BAB 6 Backpropagation
- BAB 7 Counter Propagation
- BAB 8 Kohonen Self Organizing
- BAB 9 Radial Basis Network
- BAB 10 Learing Vector Quantization
- BAB I I Jaringan Elman dan Hopfield

Referensi

 Jong Jek Siang, Drs, MSc "Jaringan syaraf tiruan dan pemogramannya menggunakan MATLAB." 2005

ADALINE

(Adaptive Linear Neuron)

- Ditemukan oleh : Widrow & Hoff (1960)
- Perbedaan dg Perceptron :
 Cara memodifikasi bobot dg aturan delta (atau disebut : Least Mean Square)
- Fungsi Aktivasi yang dipakai : fungsi identitas →
 net = Σ x_i w_i + b
 y = f(net)
- Error = (t f(net))² (Error dibuat hingga minimum)
- $\Delta w_i = a (t-y)x_i$ dg a = bil positif kecil (0,1)

Algoritma Pelatihan ADALINE

- Inisialisasi bobot dan bias (umumnya wi = b = 0).
 Tentukan a , umumnya diberi nilai kecil (0,1)
 Tentukan toleransi kesalahan
- Selama max(∆w_i) > batas toleransi, lakukan :
 - Set aktivasi unit masukan x; =s; (i=1, ..., n)
 - Hitung respon unit keluaran net = Σ x_i w_i + b Y= f(net) = net
 - Perbaiki bobot pola yang salah (y ≠ t) sbb.:
 w_i (baru) = w_i (lama) + a (t-y) xi
 b (baru) = b (lama) + a (t-y)

Setelah Pelatihan Selesai

- Inisialisasi semua bobot dan bias, dg bobot dan bias hasil pelatihan
- Untuk setiap input masukan bipolar x, lakukan :
 - Set aktivasi unit masukan xi=si (i=1, ..., n)
 - Hitung net vektor keluaran
- Kenakan fungsi aktivasi

$$f(net) = \begin{cases} 1 & \text{jika net } \ge 0 \\ -1 & \text{jika net } \le 0 \end{cases}$$

Contoh: Gunakan Model ADALINE untuk mengenali pola fungsi logika "AND" dg masukan target bipolar

V	/lasukan	Target		
x1	x2	t		
1	1	1		
1	-1	-1		
-1	1	-1		
-1	-1	-1		

Gunakan batas toleransi = 0,05 dan a =0,1

Penyelesaian

a =0,1, maka perubahan bobot =
$$\Delta wi = 0,1(t-(f(net))xi=0,1(t-y)xi$$
y = $f(net)$ = net

Masukan							Perubahan Bobot			Bobot Baru		
(x ₁	X ₂	1)	t	net	f(net)	t-y	(Δw_1)	Δw_2	Δb)	(W ₁	\mathbf{W}_{2}	bias)
Inisialisasi						(0	0	0)				
(1	1	1)	1	0	0	1	(0,1	0,1	0,1)	(0,1	0,1	0,1)
(1	-1	1)	-1	0,1	0,1	-1,1	(-0,11)	0,11	-0,11)	(-0,01)	0,21	-0,01
(-1	1	1)	-1	0,21	0,21	-1,21	(0,12)	-0,12	-0,12)	(0,11)	0,09	-0,13)
												-0,2)

Maks(△ wi)=0,07 karena > toleransi, maka dilanjutkan dengan epoch kedua

Mas	suka	in					Peruba	han Bo	obot	В	obot B	art
(X ₁	X ₂	1)	t	net	f(net)	t-y	(Δw_1)	Δw_2	Δb)	(W ₁	W ₂	bia
-				Inisia	alisasi				1	(0,18	0,16	-0,2)
(1	1	1)	1	0,14	0,14	0,86	(0,09	0,09	0,09)	(0,26	0,24	-0,11)
(1	-1	1)	-1	-0,09	-0,09	-0,91	(-0,09)	0,09	-0,09)	(0,17	0,33	-0,2)
(-1	1	1)	-1	-0,04	0,04	-0,96	(0,1)	-0,1	-0,1)	(0,27)	0,24	-0,3)
(-1	-1	1)	-1	-0,8	-0,8	-0,2	(0,02	0,02	-0,02)	(0,29)	0,26	-0,32)

Maks(△ wi)=0,02 jadi < toleransi, maka iterasi dihentika

w1=0,29, w2=0,26 dan b=-0,32 Merupakan bobot yang digunakan untuk pengenalan polanya

Mas	sukan	net	У
x1	x2		
1	1	0,23	1
1	-1	-0,29	-1
-1	1	-0,35	-1
-1	-1	-0,87	-1

Keluaran jaringan tepat sama dengan target. Jadi pola dapat dikenali dengan sempurna menggunakan bobot hasil perkalian

LATIHAN

Ulangi soal tersebut dengan a =0,2

MADALINE

(Many ADALINE)

- Gabungan beberapa adaline, terdapat 1 hidden layer Contoh MADALINE dengan 2 input, 2 hidden neuron, 1 output

- Hidden unit akan meningkatkan kapabilitas komputasi dibanding adaline, meski pelatihan lebih kompleks.
- Madaline awal (Widrow, Hoff, 1960) hanya memodifikasi bobot dari unit input. Pada Modifikasi madaline (Widrow, Winter, Baxter, 1987) memodifikasi semua bobot.

Algoritma Pelatihan MADALINE Input dan target Bipolar

- Inisialisasi semua bobot dan bias dg bilangan acak kecil
- Inisialisasi laju pemahaman dg bilangan kecil
- Selama perubahan bobot > toleransi atau jumlah epoch belum melebihi batas yang ditentukan, lakukan :
 - Set Aktivasi masukan : xi = si untuk semua i
 - Hitung net input untuk setiap hidden unit dg fungsi aktivasi bipolar
 - Tentukan keluaran jaringan
 - Hitung Error dan tentukan perubahan bobot