Boomerang and Slide-Rotational Analysis of the SM3 Hash Function

Aleksandar Kircanski¹, Yanzhao Shen², Gaoli Wang^{2†}, Amr Youssef¹

1: Concordia University, Montréal, Canada

2: Donghua University, Shanghai, China

†: State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing, China

Selected Areas in Cryptography (SAC) 2012 Windsor, Canada

August, 2012

Motivation

- ► SM3: a new hash function standardized in China
- ▶ Design: Xiaoyun Wang et al.
- Belongs to the SHA family

Overview

- SM3 hash specification
- A boomerang distnguisher for step-reduced SM3
- Slide-rotational property of SM3-XOR
- Future work and conclusions

SM3 hash: context

December 2007:

- Chinese National Cryptographic Administration Bureau releases a TCM
- To be used within the Trusted Computing framework in China
- Specified:
 - SMS4 block cipher
 - ► SM2 assymetric algorithm
 - SM3: a new cryptographic hash function

October 2011

IETF RFC is published detailing SM3

SM3 hash: specification

- Merkle-Damgård design
- 256-bit state and 512-bit message block are compressed to 256 bits.
- Belongs to the SHA family of hash functions (comparable to SHA-2).
- Compression function: 64 steps

Previous work: Zou *et al.*, ICISC 2011: Preimage for 30 step of SM3: computational complexity $\approx 2^{249}$ compression function calls, memory 2^{16}

Overview of the step function:

- Two words updated: A and E
- ► Operations: + mod 2³², ⊕, rotation, logical functions
- ► Two expanded message words fed to the step function

$$FF(X,Y,Z) = \begin{cases} X \oplus Y \oplus Z, & 0 \le i \le 15, \\ MAJ(X,Y,Z) & 16 \le i \le 63, \end{cases}$$

$$GG(X,Y,Z) = \begin{cases} X \oplus Y \oplus Z, & 0 \le i \le 15, \\ IF(X,Y,Z) & 16 \le i \le 63. \end{cases}$$

 P_0 is defined as: $P_0(X) = X \oplus (X \ll 9) \oplus (X \ll 17)$

- ▶ Constant used in step i: T_i ≪ i
- ► However, T_i is fixed in steps $j \in \{0, ..., 15\}$ and also in $j \in \{16, ..., 63\}$

Only two hard-coded constants used.

Operations: only \oplus , \ll . Maximal tap distance: 4. Here,

$$P_1(X) = X \oplus (X \ll 15) \oplus (X \ll 23).$$

The starting message $w_i = m_i$, i = 0, ... 15 is expanded to

$$w_i, i = 0, \dots 67$$

and then

$$w'_{i} = w_{i} \oplus w_{i+4}, i = 0, \dots 63$$

Comparison with SHA-2

- SM3: 2 instead of 1 message words are fed to the step function
- Maximal distances between taps in the message expansion, SM3: 4, SHA-2: 8
- ▶ In message expansion, SM3 uses only + in F_2^{32} (whereas SHA-2 uses + both in $Z_{2^{32}}$ and F_2^{32})
- ► SM3 step function: 8 mod 2³² additions, as opposed to 7 such additions in the case of SHA-2.

Boomerang distinguishers for hash functions

Goal: distinguish the compression function from a random function.

Definition: zero-sum

A 4-zero-sum for f is a quartet x_0 , x_1 , x_2 , x_3 s.t.

$$x_0 \oplus x_1 \oplus x_2 \oplus x_3 = 0$$

$$f(x_0) \oplus f(x_1) \oplus f(x_2) \oplus f(x_3) = 0$$

- Used to distinguish Keccak-f permutation (Aumasson, Meier) CHES 2009
- ► Goal: find $\{x_0, x_1, x_2, x_3\}$ faster than generically

Best known generic algorithm: $2^{n/2}$, n is the f output size Query complexity: $2^{n/3}$

Boomerang distinguishers for hash functions

Using boomerang attack to generate zero-sums was proposed in 2011 independently by:

- ▶ Biryukov and Nikolić in the context of BLAKE (2011)
- ► Mendel and Lamberger in the context of SHA-256 (2011)

Zero-sums can be seen as second-order collisions.

Definition

A second-order collision for f is a pair (a_1, a_2) together with x such that

$$f(x \oplus a_1 \oplus a_2) \oplus f(x \oplus a_1) \oplus f(x \oplus a_2) \oplus f(x) = 0$$

Definition: zero-sum

Def: A 4-zero-sum for is a quartet x_0 , x_1 , x_2 , x_3 s.t.

$$x_0 \oplus x_1 \oplus x_2 \oplus x_3 = 0$$

$$f(x_0) \oplus f(x_1) \oplus f(x_2) \oplus f(x_3) = 0$$

Definition: second-order collision

A second-order collision for f is a pair (a_1, a_2) together with x such that

$$f(x \oplus a_1 \oplus a_2) \oplus f(x \oplus a_1) \oplus f(x \oplus a_2) \oplus f(x) = 0$$

Equivalent notions, e.g., set $x = x_0$, $a_1 = x_0 \oplus x_1$, $a_2 = x_0 \oplus x_2$.

Start-from-the-middle boomerang approach:

- ▶ Represent E as $E = E_1 \circ E_0$
- Fix related-key differentials

$$(\delta, \delta_{\mathsf{K}}) \to \alpha$$

 $(\Delta, \Delta_{\mathsf{K}}) \to \beta$

for E_0^{-1} and E_1 .

- Set up:
 - a quartet of keys/messages
 - a quartet of middle states
- ► Starting from (*X*, *X**, *Y*, *Y**)
- ➤ Compute backward: obtain (P, P*, Q, Q*)
- ► Compute forward: obtain (*C*, *C**, *D*, *D**)

Verify whether

$$C \oplus C^* = D \oplus D^*$$

 $P \oplus Q = P^* \oplus Q^*$.

If yes, a zero-sum for the encryption in Davis Meyer mode is found:

$$P \oplus Q \oplus P^* \oplus Q^* = 0$$

 $(C \oplus P) \oplus (C^* \oplus P^*) \oplus$
 $(D \oplus Q) \oplus (D^* \oplus Q^*) = 0$

If a zero-sum can be found in less than $2^{n/2}$, the compression function can be distinguished from random.

Two main steps:

- Get a zero-sum property for the middle steps
- (2) Add steps at the top and the bottom(1) and (2) can sometimes be done
- independently. ► Step (1)
 - Use message modification to find one zero-sum for middle steps
 - Augment the result using auxiliary differentials (Leurent and Roy, CT-RSA 2012)
 - Step (2): satisfy randomly

33-step boomerang distinguisher

- ► The backward direction from step 16 to step 1 holds with probability 2⁻⁶⁹
- ► The forward direction from step 16 to step 33 holds with probability 2⁻⁷⁰
- Previously set A₁₆ to H₁₆, 33-step boomerang distinguisher holds with probability 2⁻⁸²
- ▶ Using the message modification, 33-step boomerang distinguisher holds with probability 2⁻⁴¹
- Using the amplified differential characteristics, 33-step boomerang distinguisher holds with probability 2^{-32.4}

A 33-step SM3 zero-sum example

Message								
M _X	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
$M_{\chi'}$	00000000	00000000	80000000	00000000	00000000	00000000	00000000	00000000
_ ^	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000
M _Y	04001c00	02800080	08582838	5000a050	80858283	00080000	68000800	00000800
	00000000	7010b050	08080010	00000000	0008000	28000800	00000000	00000000
M _Y /	04001c00	02800080	88582838	5000a050	80858283	000080000	68000800	00000800
· ·	00000000	7010b050	08080010	00000000	0008000	28000800	00000000	00000000
Chaining Value								
IV _X	274e6355	3333edb0	14f1b3d9	7be58154	d969d138	bb60c21a	ff5909df	e92dce5d
IV _X ,	274e6355	3373edb0	94f1b3d9	fba58154	d969d138	bb60d21a	7f5909df	692dde5d
IVY	28b7b4d8	fe5f1155	93973138	c10d3808	32d4319b	dc8de94e	ef594319	8ef80fe1
IV _V	28b7b4d8	fe1f1155	13973138	414d3808	32d4319b	dc8df94e	6f594319	0ef81fe1
H _X	52793642	8017615c	fbf548ba	8b05cf67	dcb79a73	e1035e10	2caefeae	701d22d9
H _X ,	772427a1	b2064c80	0dd79a89	2a809122	8bc2413f	8dd6b954	bad8867b	06c59c18
HŶ	987f3286	c017e19c	fbf548ba	8b05cf67	dabd9677	e1035e10	2caefeae	701d22d9
H _V ,	bd222365	f206cc40	0dd79a89	2a809122	8dc84d3b	8dd6b954	bad8867b	06c59c18

34/35-step boomerang distinguisher

- Add 1 step after 33-step, we can get a 34-step boomerang distinguisher with probability 2^{−(32.4+20.7)} = 2^{−53.1}
- ► Add 2 steps after 33-step, we can get a 35-step boomerang distinguisher with probability $2^{-(32.4+20.7+2\times32)} = 2^{-117.1}$

Comparison to the SHA-256 boomerang distinguisher

- A similar method for SHA-256: 47 steps (Asiacrypt 2011)
- SM3 allows passing less steps mainly due to:
 - Maximal distance between taps in the message exp., SM3:
 4, SHA-2: 8
 - ► SM3: Two messages on distance 4 fed to the registers in each step in SM3

Slide-Rotational Property of SM3-XOR

Constants used in step i:

- ▶ $i \in \{0, ..., 15\}$: 0x79cc4519 $\ll i$
- ▶ $i \in \{16, ..., 63\}$: $0x7a879d8a \iff i$,

Does this introduce some "regularity" in the SM3 compression function?

Observation 1

Constants used in steps j and j + 1 are *rotational*, for all steps except for step j = 15.

Observation 2

All the operations except modular addition in the SM3 step function preserve rotational property with probability 1.

Instead of SM3, we look into SM3-XOR:

- ▶ addition mod 2³² replaced by ⊕
- ► FF; and GG; are left as is.

Since constants used in steps j and j+1 are rotational, it makes sense to introduce *sliding*. Setup a slide-rotational pair of messages (w, w^*)

$$w_{i+1}^* = w_i \lll 1, w_{i+1}^{'*} = w_i' \lll 1$$

Also, a slide-rotational pair of registers $(A, ..., H), (A^*, ..., H^*)$:

$$A_{i+1}^* = A_i \iff 1, B_{i+1}^* = B_i \iff 1, \dots, H_{i+1}^* = H_i \iff 1$$
 (1)

For every $i \neq 15$, (1) will be preserved for i + 1 with probability 1.

In steps i = 0, ...14 and 16,62, the rotational property is satisfied with probability 1.

To bypass the middle step problem, one starts from step 15, constructs a rotational pair for this step and then propagates forward and backward.

Result

Instant generation of "rotational" input-output pairs for SM3-XOR.

A^1, B^1, \dots, H^1	0x565060b7 0x125d5655 0x285c7653 0xeaf5fe1e
А,В,,П	0xda8bd7dd 0xb8bb1904 0x43bcaf18 0x7cf88895
	0x8f450bbd 0x4a0c9922 0x73dd44f8 0x9eceaaf8
l 14/1 14/1	0x33b13e20 0xb59d9c33 0x6b5a5f23 0xc0d2b468
W_0^1, \ldots, W_{15}^1	0x7a9a1e16 0xaff62878 0x3fbb01f4 0x75278787
	0xac0b849e 0x498f3045 0x62687c15 0xd3498eb
A^2, B^2, \ldots, H^2	0x24baacaa 0x53285c76 0xd5ebfc3d 0xdf1ee2a6
A^-, B^-, \ldots, H^-	0x71763209 0x2bc610ef 0xf9f11112a 0xffeb86a4
	0x7efa7542 0x1e8a177b 0x94193244 0xe7ba89f0
14/2 14/2	0x3d9d55f1 0x67627c40 0x6b3b3867 0xd6b4be46
W_0^2, \ldots, W_{15}^2	0x81a568d1 0xf5343c2c 0x5fec50f1 0x7f7603e8
	0xea4f0f0e 0x5817093d 0x931e608a 0xc4d0f82a

Figure: SM3-XOR slide-rotational pair example

If instead of SM3-XOR, the SM3 compression function is considered:

- a probabilistic slide-rotational property
- one step preserves the rotational property with $\approx (p_1)^8 = 2^{-11.320}$.

Similar property does not exist for the SHA-2-XOR

Yoshida *et al.*, SAC 2005: 31-step SHA-2-XOR was shown to exhibit non-randomness ⇒ attack on 32-step SHACAL-2-XOR)

Conclusions

- SM3 appears to be more resistant to boomerang distinguishers than SHA-2
- Unlike SHA2-XOR, SM3-XOR admits a simple slide-rotational property
- No real impact on the SM3 security

Future work

- Extend the boomerang distinguisher to more steps by adding steps in the middle
- Explore the slide-rotational property present in SM3

Thank you