3.14.
$$\frac{f_1(x) \cdot f_2(x)}{1 + \min(f_3(x), f_4(x))}.$$

Задание 4. Сходится ли каждая из указанных последовательностей по мере, почти всюду:

4.1.
$$f_n(x) = \sin^n x, x \in \mathbb{R};$$
 4.2. $f_n(x) = x \sin^n x, x \in \mathbb{R};$

4.3.
$$f_n(x) = \frac{n^2 \cos^2 x}{1 + n^2 \cos^2 x}, x \in \mathbb{R}; \quad 4.4. f_n(x) = \frac{n^4 \sin^2 x}{1 + n^4 \sin^4 x}, x \in \mathbb{R};$$

4.5.
$$f_n(x) = \frac{\sin^n x}{2 + \sin^n x}, x \in \mathbb{R}; \quad 4.6. \ f_n(x) = e^{-n^2|x^2 - 4|}, x \in \mathbb{R};$$

4.7.
$$f_n(x) = x^{2n}, x \in [0,1];$$
 4.8. $f_n(x) = x^n - x^{2n}, x \in [0,1];$

4.9.
$$f_n(x) = e^{-nx^2}, x \in \mathbb{R};$$
 4.10. $f_n(x) = \cos^n x, x \in \mathbb{R};$

4.11.
$$f_n(x) = \frac{x^n}{1+x^n}, x \in [0,1];$$
 4.12. $f_n(x) = \frac{nx}{1+n^2x^2}, x \in [0,1];$

4.13.
$$f_n(x) = x^n - x^{n^2}, x \in [0,1];$$
 4.14. $f_n(x) = e^{n(x-1)}, x \in [0,1];$

Тема 4. ИНТЕГРАЛ ЛЕБЕГА, ТЕОРЕМЫ О ПРЕДЕЛЬНОМ ПЕРЕХОДЕ

Определение 8. Числовая измеримая функция $f: X \to \overline{\mathbb{R}}$, заданная на измеримом пространстве (X, Σ, μ) с конечной мерой μ , называется npocmoй, если она принимает конечное или счетное число различных значений.

Теорема 12. Функция $f: X \to \overline{\mathbb{R}}$ является простой тогда и только тогда, когда $X = \coprod_{k=1}^{\infty} A_k$, где множества A_k измеримы и f(x) принимает постоянное значение y_k на множестве A_k , $k = 1, 2, \ldots$

Теорема 13. Для любой измеримой функции $f: X \to \overline{\mathbb{R}}$, заданной на измеримом пространстве (X, Σ, μ) , существует последовательность $\{f_n\}_{n=1}^{\infty}$ простых функций, сходящаяся к f равномерно.

Пусть f(x) – простая функция, принимающая значения y_1, y_2, \ldots , $y_i \neq y_j$ при $i \neq j$. Обозначим через $A_k = \{x: f(x) = y_k\}$, тогда $X = \coprod_{k=1}^{\infty} A_k$.

Определение 9. Простая функция f называется суммируемой относительно меры μ (интегрируемой по Лебегу), если ряд $\sum_{k=1}^{\infty} y_k \mu(A_k)$ сходится абсолютно. Если функция f суммируема, то сумма этого ряда называется интегралом Лебега функции f, т. е.

$$\int_{X} f(x) d\mu = \sum_{k=1}^{\infty} y_k \mu(A_k).$$

Теорема 14. Пусть $X = \coprod_{i=1}^{\infty} B_i$ и пусть на каждом B_i функция f принимает значение c_i . Тогда

$$\int_{X} f(x) d\mu = \sum_{i=1}^{\infty} c_i \mu(B_i),$$

причем функция f интегрируема на X тогда и только тогда, когда ряд сходится абсолютно.

Свойство 7. Пусть $A \subset X$ – измеримое множество. Тогда

$$\int_A \mathrm{d}\mu = \mu(A).$$

Свойство 8. Пусть f,g — суммируемые функции, тогда для любых скаляров $\alpha,\beta\in\mathbb{R}$ суммируемой является функция $\alpha f+\beta g$ и справедливо равенство

$$\int_{X} (\alpha f(x) + \beta g(x)) d\mu = \alpha \int_{X} f(x) d\mu + \beta \int_{X} g(x) d\mu.$$
 (1.1)

Свойство 9. Ограниченная измеримая функция f суммируема на X.

Свойство 10. Пусть f – суммируема и удовлетворяет условию $f(x)\geqslant 0$, тогда

$$\int\limits_X f(x) \, \mathrm{d}\mu \geqslant 0.$$

Свойство 11. Если f_1, f_2 – суммируемые функции и $f_1(x) \geqslant f_2(x)$, то

$$\int_X f_1(x) d\mu \geqslant \int_X f_2(x) d\mu.$$

Свойство 12. Если f – суммируемая функция и $m\leqslant f(x)\leqslant M$, то

$$m\mu(X) \leqslant \int_X f(x) d\mu \leqslant M\mu(X).$$

Свойство 13. Пусть f – измерима, а φ такая суммируемая на X функция, что $|f| \leqslant \varphi$, тогда f также суммируема.

Свойство 14. Если $f_1(x) \leq f(x) \leq f_2(x)$, где f_1, f_2 – суммируемые, а f – измеримая функция, то f будет суммируемой.

Свойство 15. Пусть f — суммируемая функция, а g — ограниченная измеримая функция такая, что $|g(x)|\leqslant c$. Тогда функция $f\cdot g$ суммируема, причем

$$\Big| \int_{X} f g \, \mathrm{d}\mu \Big| \leqslant c \int_{X} |f| \, \mathrm{d}\mu.$$

Свойство 16. Если f суммируема на X, то f суммируема на любом измеримом подмножестве из X и справедливо равенство

$$\int_{A \sqcup B} f(x) d\mu = \int_{A} f(x) d\mu + \int_{B} f(x) d\mu.$$

Свойство 17. Функции f и |f| суммируемы либо не суммируемы одновременно, причем справедлива оценка

$$\left| \int_{X} f \, \mathrm{d}\mu \right| \leqslant \int_{X} |f| \, \mathrm{d}\mu. \tag{1.2}$$

 ${f C}$ войство 18. Если $\mu(A)=0,$ то $\int\limits_A f(x)\,\mathrm{d}\mu=0.$

 ${\bf C}$ войство 19. Если f(x)=0 почти всюду на X, то

$$\int_X f(x) \, \mathrm{d}\mu = 0.$$

Свойство 20. Если f(x) и g(x) суммируемы и равны почти всюду, то

$$\int_{X} f(x) d\mu = \int_{X} g(x) d\mu.$$

 ${f C}$ войство 21. Если $\int\limits_X |f(x)|\,\mathrm{d}\mu=0,$ то f(x)=0 почти всюду на X.

Лемма 3 неравенство Чебышева. Пусть f — суммируема, причем $f(x) \geqslant 0$, c > 0, u пусть $A_c = \{x \colon f(x) \geqslant c\}$. Тогда справедливо неравенство Чебышева

$$\mu(A_c) \leqslant \frac{1}{c} \int_X f(x) \, \mathrm{d}\mu. \tag{1.3}$$

Определение 10. Назовем измеримую функцию f на X существенно ограниченной, если $\exists c > 0$, что $|f(x)| \leq c$ почти всюду на X. Наименьшая из таких констант называется существенной верхней гранью функции f и обозначается $ess \sup |f(x)|$.

Теорема 15 (абсолютная непрерывность интеграла Лебега). Пусть f(x) – суммируемая на множестве A функция. Тогда для любого $\varepsilon > 0$ существует $\delta(\varepsilon) > 0$, что $\left| \int_E f(x) \, \mathrm{d} \mu \right| < \varepsilon$ для всякого измеримого множества $E \subset A$ такого, что $\mu(E) < \delta$.

Теорема 16 (σ -аддитивность интеграла Лебега). Пусть f – суммируемая функция на множестве A и пусть $A = \coprod_{k=1}^{\infty} A_k$, где все A_k – измеримые множества. Тогда f суммируема по каждому A_k и

$$\int_{A} f(x) d\mu = \sum_{k=1}^{\infty} \int_{A_{k}} f(x) d\mu,$$

причем ряд сходится абсолютно.

Теорема 17. Если $A = \coprod_{k=1}^{\infty} A_k$, f суммируема на каждом A_k и ряд $\sum_{k=1}^{\infty} \int_{A_k} |f(x)| \ \mathrm{d}\mu$ сходится, то функция f суммируема на A и

$$\int_{A} f(x) d\mu = \sum_{k=1}^{\infty} \int_{A_k} f(x) d\mu.$$

Теорема 18 (Лебега о мажорированной сходимости).

Пусть (X, Σ, μ) – пространство с конечной мерой. Если последовательность измеримых функций $(f_n)_{n=1}^{\infty}$ сходится почти всюду к функции f(x) и при этом существует суммируемая функция φ , такая что для всех $n \mid f_n \mid \leqslant \varphi$, то f – суммируемая функция u

$$\lim_{n \to \infty} \int_{X} f_n(x) d\mu = \int_{X} \lim_{n \to \infty} f_n(x) d\mu = \int_{X} f(x) d\mu.$$
 (1.4)

Теорема 19 (Беппо Леви). Пусть (X, Σ, μ) – пространство с мерой и $(f_n)_{n=1}^{\infty}$ – монотонно возрастающая последовательность суммируемых функций такая, что существует константа C > 0, что

$$\int_{X} f_n(x) \, \mathrm{d}\mu \leqslant C \, \partial n s \, \sec x \, n \in \mathbb{N}. \tag{1.5}$$

Тогда почти всюду существует конечный предел

- $f(x) = \lim_{n \to \infty} f_n(x);$
- f суммируемая функция;
- $\int_X f(x) d\mu = \lim_{n \to \infty} \int_X f_n(x) d\mu$.

Следствие 6. Пусть $\varphi_n(x)$ – последовательность неотрицательных суммируемых функций и пусть числовой ряд

$$\sum_{n=1}^{\infty} \int_{Y} \varphi_n(x) \, \mathrm{d}\mu \tag{1.6}$$

сходится. Тогда почти всюду на X сходится ряд $\sum_{n=1}^{\infty} \varphi_n(x)$, т. е.

•
$$\varphi(x) = \sum_{n=1}^{\infty} \varphi_n(x);$$

•
$$\int_X \varphi(x) d\mu = \sum_{n=1}^{\infty} \int_X \varphi_n(x) d\mu$$
.

Теорема 20 (Фату). Пусть (X, Σ, μ) – пространство с мерой и $(f_n)_{n=1}^{\infty}$ – последовательность неотрицательных суммируемых функций на множестве X, обладающая свойствами:

- $f_n(x) \to f(x)$ normu всюду на X;
- $\int_{\mathbf{X}} f_n(\mathbf{X}) d\mu \leqslant C$ dar beex $n \in \mathbb{N}$.

Тогда

- f суммируема;
- $\int_X f(x) d\mu \leqslant C$.

Пусть X — пространство с σ -конечной мерой. По определению σ -конечной меры существует неубывающая последовательность измеримых множеств $A_1 \subseteq A_2 \subseteq \ldots$, для которых $\mu(A_n) < +\infty$ для всех $n \in \mathbb{N}$ и $X = \bigcup_{n=1}^{\infty} A_n$.

Определение 11. Измеримая функция f, заданная на множестве с σ -конечной мерой μ , называется cymmupyemoй на X, если она суммируема на каждом A_n и

$$\lim_{n \to \infty} \int_{A_n} f(x) \, \mathrm{d}\mu$$

существует и конечен и не зависит от выбора последовательности A_n . Этот предел называется интегралом Лебега от функции f и обозначается так $\int\limits_X f(x) \,\mathrm{d}\mu$.

Теорема 21. Если для функции, заданной на [a,b], существует собственный интеграл Римана $\int\limits_a^b f(x) \, \mathrm{d} x$, то она интегрируема и по Лебегу и ее интеграл Лебега $\int_{[a;b]} f(x) \, \mathrm{d} \mu$ равен интегралу Римана.

Теорема 22. Для того, чтобы ограниченная на отрезке [a,b] функция, была интегрируема по Риману на этом отрезке, необходимо и достаточно, чтобы множестве ее точек разрыва имело меру нуль.

Теорема 23. Для абсолютной сходимости несобственного интеграла Римана второго рода $\int_a^b f(x) \, \mathrm{d}x = \lim_{n \to \infty} \int_a^{b-1/n} f(x) \, \mathrm{d}x$ необходимо и достаточно, чтобы f была интегрируемой по Лебегу на [a,b]. При выполнении любого из этих условий имеет место равенство

$$\int_{a}^{b} f(x) dx = \int_{[a,b]} f(x) d\mu.$$

Теорема 24. Для абсолютной сходимости несобственного интеграла Римана ервого рода необходимо и достаточно, чтобы функция f была интегрируема по Лебегу на $[a, +\infty)$. При выполнении любого из этих условий имеет место равенство

$$\int_{a}^{+\infty} f(x) dx = \int_{[a,+\infty)} f(x) d\mu.$$

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u M e p 17$. Выяснить, интегрируемы ли по Лебегу на отрезке [0,1] следующие функции:

1.
$$f(x) = (-1)^n n$$
, если $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right[n = 1, 2, ...;$

2.
$$f(x) = sign(sin \frac{\pi}{x}), x \in [0,1].$$

Решение. 1) Функция f(x) является неограниченной, поэтому по Риману она не интегрируема. f измерима, так как принимает счетное число значений на измеримых множествах $A_n = \left[\frac{1}{n+1}, \frac{1}{n}\right)$, и является простой. Для интегрируемости функции f необходимо, чтобы ряд

$$\sum_{n=1}^{\infty} y_n \mu(A_n) = \sum_{n=1}^{\infty} (-1)^n n \mu\left(\left[\frac{1}{n+1}, \frac{1}{n}\right]\right) = \sum_{n=1}^{\infty} \frac{(-1)^n n}{n(n+1)} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$$