學 东 理 I 大 岁 复 变 函 数 与 积 分 变 换 作 业 (第 3 册)

班级	学号	姓名	任课教师	
クエンス	7 7	XL-11	11 11 17 17 17	

第五次作业

教学内容: 3.1 复变函数积分概念 3.2 柯西积分定理

- 1. 计算积分 $\int_{C} \mathbf{Re} \, z dz$, 其中积分路径 C 为:
- (1) 从原点到1+i的直线段;
- (2) 从原点到点1的直线段,以及连接由点1到1+i的直线段所组成的折线。

(1)
$$Z(t) = (1+i)t$$
, Re $Z(t) = t$.

$$\int_{C} Re \, z dz = \int_{0}^{1} t \, (1+i) \, dt = \frac{1+i}{2}$$
(2) $Z(t) = t$, $Z_{2}(t) = 1+it$.

$$\int_{\mathcal{C}} \operatorname{Re} z \, dz = \int_{0}^{1} t \, dt + \int_{0}^{1} \hat{t} \, dt = \frac{1}{2} + \hat{t}$$

2. 计算积分 $\int_C (x-y+ix^2) dz$, 其中 C 为从原点到 1+i 的直线段。

$$dx = dy$$
, $\int_{C} (x-y+2x^{2}) dx = \int_{0}^{1} (x-y+2x^{2}) (dx+2dy)$
= $\int_{0}^{1} 2x^{2} (1+2) dx = \frac{1}{3}$

3. 计算积分 $\int_C e^z dz$, 其中C为从 0 到 1 再到 1+i 的折线

$$Z_{1}(t) = t$$
, $Z_{2}(t) = 1+it$,
 $\int_{C} e^{2} dz = \int_{0}^{1} e^{t} dt + \int_{0}^{1} e^{1+it} dt$
 $= e^{-1} + e^{1+it} |_{0}^{1}$
 $= e^{(1+i)} - 1$

4. 计算积分 $\oint_C |z| \bar{z} dz$, 其中 C 由直线段 $-1 \le x \le 1, y = 0$ 及上半单位圆周组成的正向闭曲

$$\mathcal{G}_{C}[z] = (-1,0) \rightarrow (1,0). \quad (z = \frac{1}{\sqrt{2}})$$

$$\mathcal{G}_{C}[z] = dz = \int_{C_{1}} |z| = dz + \int_{C_{2}} |z| = dz + \int_{C_{2}} |z| = \cos \theta + i \sin \theta.$$

$$= \int_{C_{1}} |x| \times dx + \int_{0}^{\pi} (\cos \theta - i \sin \theta) (-\sin \theta + i \cos \theta) d\theta.$$

$$= 0 + \int_{0}^{\pi} i \sin^{2}\theta + \cos^{2}\theta) d\theta = \pi i.$$

5. 设函数 f(z) 在单连通域D内解析,C 为D内任何一条正向简单闭曲线,问

$$\oint_{c} \operatorname{Re}[f(z)]dz = \oint_{c} \operatorname{Im}[f(z)]dz = 0$$

是否成立,如果成立,给出证明;如果不成立,举例说明。

$$\frac{1}{12}\int_{0}^{12} = \overline{\xi} = e^{-i\theta} \int_{0}^{12} \operatorname{Re} f(1) dx = \int_{0}^{12} \cos \theta \left(-\sin \theta + i\cos \theta\right) d\theta$$

$$= \cos \theta - i\sin \theta$$

$$= -\frac{1}{2}\int_{0}^{2\pi} \sin 2\theta d\theta + i \int_{0}^{2\pi} \cos^{2}\theta d\theta.$$

$$= 0 + i \int_{0}^{2\pi} + 0 = \int_{0}^{2\pi} -\sin^{2}\theta + i \int_{0}^{2\pi} -i\sin^{2}\theta.$$

$$= \pi + i \left(\frac{1}{4} \cdot \theta\right) = \pi.$$

- 6. 观察得出下列积分的值,并说明理由。
- (1) $\oint_{|z|=1.5} e^{z}(z^{2}+1)dz=0;$

(2)
$$\int_{|z|=1.5} \frac{3z+5}{z^2+2z+3} dz$$
 ; = $\int_{|z|=1.5} \frac{3z+5}{|z|+1)^2+2}$.
高成为 $z=-1-\sqrt{2}i$ 不在 区域内.
i 解析, 原式 = 0

(3) $\int_{|z|=r} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$ $\ln(1+z) \frac{1}{z} \ln(1+z)dz \quad 0 < r < 1$

$$\frac{1}{\cos z} = \frac{1}{e^{iz} + e^{-iz}} = \frac{2}{e^{iz} + e^{-iz}} = \frac{1}{(1 + e^{-iz})} = \frac{$$

7. 沿下列指定曲线的正向计算积分
$$\int_{C} \frac{dz}{z(z^{2}+1)} dz$$
: $\overline{A}(\tilde{x}, \tilde{x}) = 0$. $\overline{Z} = \pm i$

(1) $C:|z| = \frac{1}{2};$

(2) $\overline{Z}(z) = 0$ $\overline{Z}(z) = 0$

$$\int_{C} \frac{dz}{z(z^{2}+1)} = \int_{C} \frac{1}{z} dz = \int_{0}^{2\pi} 2e^{-2i\theta} dz = \int_{0}^{2\pi} i d\theta = 2\pi i d\theta$$

$$\int_{C} \frac{dz}{z(z^{2}+1)} = -\frac{1}{z} \int_{C} \frac{dz}{z+\lambda} = -\frac{1}{z}(2\pi\lambda) = -\pi\lambda.$$

8. 设 f(z) 在单连通区域D内解析,且不为零,C为D内任何一条简单光滑闭曲线,判断积

$$f(z)$$
 dz 是否为零? 说明理由。

「なんながまり、
 $f(z)$ db = $f(z)$ df db (こ) なんがまり、
は $f(z)$ たり なんがらい。
な $f(z)$ なんがらい。

9. 设区域D为右半平面,z为D内的圆周|z|=1上的任意一点,用在D内的任意一条曲线

C连接原点与z,证明:

$$Re\left[\int_{0}^{z} \frac{d\xi}{1+\xi^{2}}\right] = \frac{\pi}{4}$$
 $Re\left[\int_{0}^{\xi} \frac{1}{1+\xi^{2}} + \frac{1}{3-\lambda} d\xi\right] = \frac{\pi}{4}$ $Re\left[\int_{0}^{\xi} \frac{d\xi}{1+\xi^{2}}\right] = \frac{\pi}{4}$

10. 计算下列积分:

(1)
$$\int_{-\pi}^{\pi} \sin^2 z dz :$$

$$= \frac{1}{2} - \frac{1}{4} \sin^2 z dz :$$

$$= \frac{1}{4} \sin^2 z dz :$$

(4)
$$\int_{L} (z^{2} + 7z + 1) dz$$
, $L \ni z_{1} = 1 \ni 1 = 1 - i \text{ obsigh}$

$$Z^{2} + 7z + 1 \text{ party}, \quad [2]_{1} = \int_{1}^{1 - i} (z^{2} + 7z + 1) dz$$

$$= \frac{1}{3} z^{3} + \frac{1}{2} z^{2} + 2 \Big|_{1}^{1 - i} = \frac{2\sqrt{2}}{3} (-1 - i) + 7 (-i) + 1 - i$$

$$= -\frac{2\sqrt{2}}{3} - \frac{2}{6} - (8 + \frac{2\sqrt{2}}{3}) \Big|_{1}^{1 - i} = \frac{2\sqrt{2}}{3} \Big|_{1}^{1 - i} = \frac{2$$

第六次作业

教学内容: 3.3 复合闭路定理 3.4 柯西积分公式

1. 设 C 为正向椭圆
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$
, 定义 $f(z) = \oint_C \frac{\zeta^2 - \zeta + 2}{\zeta - z} d\zeta$, z 不在 C 上, 求 $f(1), f'(i), f''(-i)$. $f(0) = \oint_C \frac{\zeta^2 - \zeta + 2}{\zeta - z} d\zeta$ = 2Th $\zeta = 2$ Th $\zeta = 2$ T

2. 沿指定曲线的正向计算下列各积分。

(1)
$$\oint_C \frac{e^z}{z-2} dz$$
, $C:|z-2|=1$; $f(z)$, $f(z)$, $f(z)$ $f(z)$. $f(z)$ $f(z)$

(2)
$$\oint_{C} \frac{\cos \pi z}{(z-1)^{5}} dz$$
, $C:|z|=r>1$;
 $\cos \pi z = \pi z$ $\pi z = \pi z$

(3)
$$\oint_C \frac{\sin z}{(z - \frac{\pi}{2})^2} dz$$
, $C: |z| = 2$
Sin $2 |\overline{z}| = 2\pi i \omega_1 = 2\pi i \omega_2$

3. 计算积分

3.
$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{\sin \frac{\pi}{4} z dz}{\sqrt{2}}, \quad C: |z| = 2$$

$$= \int_{C} \frac{\sin \frac{\pi}{4} z dz}{2(2x-1)} dz - \int_{C} \frac{\sin \frac{\pi}{4} z}{2(2x+1)} dz$$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) dz$$

$$\frac{1}{8^{2}+1} = \frac{A}{2+1} + \frac{A}{2-1} = \frac{A}{2}$$

$$\frac{1}{2^{2}+1} = \frac{A}{2+1} + \frac{A}{2-1} = \frac{A}{2}$$

$$\frac{1}{2} = \frac{e^{iz}}{z^{2}+1} dz, \quad C:|z-2i| = \frac{3}{2}: \quad \overrightarrow{A} = 0$$

$$= \int_{C} \frac{e^{iz}}{2(8-1)} dz - \int_{C} \frac{e^{iz}}{2(2+1)} dz \cdot Z = 0$$

$$= 0 - 2\pi i \cdot \frac{e}{2}$$

$$= -\pi i \cdot e$$

$$(4) \oint_{C} \frac{dz}{(z^{2}+4)(z^{2}+1)} dz, \quad C:|z| = \frac{3}{2};$$

$$= \frac{1}{3} \left(\oint_{C} \frac{d8}{2^{2}+1} - \oint_{C} \frac{d8}{2^{2}+1} \right).$$

$$= \frac{1}{6} \left(\oint_{C} \frac{d2}{2^{2}+1} - \oint_{C} \frac{d8}{2^{2}+1} \right).$$

$$= 0.$$

4. 设f(z)在区域D内解析,C 为D内的任意一条正向简单闭曲线,证明:对在区域D内但不

在C上的任意一点
$$z_0$$
 有等式:
$$\oint_C \frac{f'(z)}{z - z_0} dz = \oint_C \frac{f(z)}{(z - z_0)^2} dz$$
 成立。
$$\oint \frac{f'(z)}{z - z_0} dz = 2\pi i \int_C f(z_0).$$

5. 设f(z)在 $|z| \le 1$ 上解析且f(0) = 1,试求: $\frac{1}{2\pi i} \oint_{|z|=1} \left[2 \pm \left(z + \frac{1}{z}\right) \right] \frac{f(z)}{z} dz$ 。

$$= \frac{1}{2\pi i} \int_{|z|=1}^{\infty} \frac{[2z \pm (z^2+1)]f(z)}{z^2-0} dz$$

$$= \pm \int_{2\pi}^{2\pi} \int_{|z|=1}^{2\pi} \left[\frac{2f(z)}{z} \pm \frac{(z^{2}+1)f(z)}{z^{2}} \right] dz$$

$$=2f(0)\pm \left[\left[7^{2}+1\right) f(8) \right] / \left[8=0\right]$$

部分习题参考答案:

第五次作业

1. (1)
$$\frac{i+1}{2}$$
; (2) $\frac{1}{2}+i$

$$2.\frac{i-1}{3};$$

$$3.e^{1+i}-1;$$

- 4. πi ;
- 5. 未必成立
- 6. (1) 0; (2) 0. (3) 0; (4) 0.
- 7. $(1) 2\pi i$; $(2) -\pi i$
- 8. 等于零。

10. (1)
$$(\pi - \frac{1}{2} \operatorname{sh} 2\pi)i$$
; (2) $\frac{-1}{8} (\frac{\pi^2}{4} + 3 \ln^2 2) + \frac{i\pi}{8} \ln 2$ (3) $-2 \cosh 1$ (4) $-\frac{9}{2} - \frac{26}{3}i$

第六次作业

1.
$$f(1) = 4\pi i$$
; $f'(i) = -2\pi(2+i)$; $f''(-i) = 4\pi i$;

2. (1)
$$2\pi e^2 i$$
; (2) $\frac{-\pi^5 i}{12}$; (3) 0.

3. (1)
$$\sqrt{2}\pi i$$
; (2) $\frac{\pi}{e}$; (3) $\frac{\pi i}{a}$; (4) 0.;

5.
$$2 \pm f'(0)$$
.