Вероятностные пространства

Говорят, что конечное множество Ω является конечным вероятностным пространством, если для любого его подмножества $A \subset \Omega$ задана его вероятность P(A) и выполняются следующие условия:

- $P(\varnothing) = 0, P(\Omega) = 1.$
- Для любого $A \subset \Omega$ верно $P(A) \geqslant 0$.
- Для любых $A, B \subset \Omega$ верно $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Элементы $\omega \in \Omega$ принято называть элементарными исходами, а подмножества $\Omega-$ события A и B называются независимыми, если $P(A\cap B)=P(A)\cdot P(B)$.

Задача 1. Придумайте вероятностные пространства для задач 1 (про 2 монеты) и 3 (про 3 коробки с одним призом) из затравочного листка.

Задача 2. A и B независимы. Докажите что A и $\overline{B} = \Omega \backslash B$ независимы.

Задача 3. Кинули два игральных кубика. Независимы ли следующие события:

- а) «на первом выпала тройка» и «выпавшая сумма чётна»;
- б) «на первом выпала тройка» и «выпавшая сумма больше 6».

Если $P(B) \neq 0$, то условной вероятностью события A при условии события B называется число $P(A|B) = P(A \cap B)/P(B)$.

Задача 4. Пусть $P(B) \neq 0$, тогда A и B независимы $\Leftrightarrow P(A) = P(A|B)$.

Задача 5 (формула Байеса). Проверьте что $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$.

Вероятностные пространства

Говорят, что конечное множество Ω является конечным вероятностным пространством, если для любого его подмножества $A \subset \Omega$ задана его вероятность P(A) и выполняются следующие условия:

- \bullet $P(\varnothing) = 0, P(\Omega) = 1.$
- Для любого $A \subset \Omega$ верно $P(A) \geqslant 0$.
- Для любых $A, B \subset \Omega$ верно $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

Элементы $\omega \in \Omega$ принято называть элементарными исходами, а подмножества $\Omega-$ событиями. События A и B называются независимыми, если $P(A\cap B)=P(A)\cdot P(B)$.

Задача 1. Придумайте вероятностные пространства для задач 1 (про 2 монеты) и 3 (про 3 коробки с одним призом) из затравочного листка.

Задача 2. *А* и *B* независимы. Докажите что *A* и $\overline{B} = \Omega \backslash B$ независимы.

Задача 3. Кинули два игральных кубика. Независимы ли следующие события:

- а) «на первом выпала тройка» и «выпавшая сумма чётна»;
- б) «на первом выпала тройка» и «выпавшая сумма больше 6».

Если $P(B) \neq 0$, то условной вероятностью события A при условии события B называется число $P(A|B) = P(A \cap B)/P(B)$.

Задача 4. Пусть $P(B) \neq 0$, тогда A и B независимы $\Leftrightarrow P(A) = P(A|B)$.

Задача 5 (формула Байеса). Проверьте что $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$.