CS/EE-712: Image Processing

2D DFT and Properties

Prof. Zane Yu
Department of Computer Science
University of Wisconsin, Milwaukee

February 27, 2024

Readings: Chapter 4.6

From Last Lecture

2D Impulse and Sifting Property

2D Fourier Transform in Continuous Domain

2D Sampling Theory and Aliasing Artifacts

2D Discrete Fourier Transform (DFT)

The 2D DFT is defined as:

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)},$$

for
$$u = 0,1,2,...M-1$$
 and $v = 0,1,2,...N-1$

The inverse DFT is defined similarly:

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M + vy/N)},$$

for
$$x = 0,1,2,...M-1$$
 and $y = 0,1,2,...N-1$

2D DFT: Some Properties

Sampling intervals in space and frequency domains

$$\begin{cases} \Delta u = \frac{1}{M\Delta T} \\ \Delta v = \frac{1}{N\Delta Z} \end{cases}$$

Translation

$$f(x,y)e^{j2\pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u-u_0,v-v_0)$$
$$f(x-x_0,y-y_0) \Leftrightarrow F(u,v)e^{-j2\pi(x_0u/M+y_0v/N)}$$

Rotation

Let
$$x = r \cos \theta, y = r \sin \theta, u = \omega \cos \varphi, v = \omega \sin \varphi$$

then $f(r, \theta + \theta_0) \Leftrightarrow F(\omega, \varphi + \theta_0)$

2D DFT: Periodicity Properties

Periodicity

$$F(u,v) = F(u + k_1 M, v) = F(u, v + k_2 N)$$

= $F(u + k_1 M, v + k_2 N)$,

$$f(x,y) = f(x+k_1M, y) = f(x, y+k_2N)$$

= $f(x+k_1M, y+k_2N)$,

Shifting a signal to its corner

$$f(x)(-1)^x \Leftrightarrow F(u - M/2)$$
$$(u_0 = M/2)$$

$$f(x,y)(-1)^{x+y} \Leftrightarrow F(u-M/2,v-N/2)$$

 $(u_0 = M/2, v_0 = N/2)$

 $= M \times N$ data array, F(u, v).

Note that $(-1)^x = e^{j\pi x}$.

$$\Im\{f(x,y)(-1)^x\} = \Im\{f(x,y)e^{j\pi x}\} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)e^{j\pi x}e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

$$= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{j2\pi \frac{xM}{2M}} e^{-j2\pi (\frac{ux}{M} + \frac{vy}{N})} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi [\frac{x}{M} (u - \frac{M}{2}) + \frac{vy}{N}]}$$

$$=F(u-\frac{M}{2},v).$$

2D DFT: Symmetry Properties

- Even (or symmetric) functions: $w_e(x, y) = w_e(-x, -y)$
- Odd (or antisymmetric) functions: $W_o(x, y) = -W_o(-x, -y)$
- Any function can be written as the sum of an even function and an odd function:

$$w(x, y) = w_e(x, y) + w_o(x, y)$$

where

$$\begin{cases} w_e(x, y) = \frac{w(x, y) + w(-x, -y)}{2} \\ w_o(x, y) = \frac{w(x, y) - w(-x, -y)}{2} \end{cases}$$

 In case of DFT, the signals are periodic. Therefore the definitions are slightly different:

$$w_e(x, y) = w_e(M - x, N - y)$$

 $w_o(x, y) = -w_o(M - x, N - y)$

- Some facts:
 - Product of two even or two odd functions is even
 - Product of an even and an odd function is odd
 - If a discrete function is odd, then all its samples sum to zero.
 - Therefore, we have:

$$\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} w_e(x, y) w_o(x, y) = 0$$

- Example I: $f = \{f_0, f_1, f_2, f_3\} = \{2,1,1,1\}$
- It can be verified that this is an even function (M=4)
- In general, an even function with 4 items looks like: {a, b, c, b}
- Example II: $f = \{f_0, f_1, f_2, f_3\} = \{0, -1, 0, 1\}$
- It can be verified that this is an odd function (M=4)
- In general, an odd function with 4 items looks like:

$$\{0, -b, 0, b\}$$

• Example III: this 2D array is odd
$$0 \ 0 \ -1 \ 0 \ 1 \ 0$$

$$0 \quad 0 \quad -1 \quad 0 \quad 1 \quad 0$$

$$0 \quad 0 \quad -2 \quad 0 \quad 2 \quad 0$$

$$0 \quad 0 \quad -1 \quad 0 \quad 1 \quad 0$$

- Some general properties on DFT
 - If f(x, y) is a real function, then its Fourier transform is conjugate symmetric:

$$F^*(u,v) = F(-u,-v)$$

 If f(x, y) is an imaginary function, then its Fourier transform is conjugate antisymmetric:

$$F^*(-u,-v) = -F(u,v)$$

– Proof of the second statement:

$$F*(-u,-v) = \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(-ux/M-vy/N)}\right]^*$$

$$= \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f *(x,y) e^{-j2\pi(ux/M+vy/N)}\right] = -\left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M+vy/N)}\right] = -F(u,v)$$

A summary

	Spatial Domain [†]		Frequency Domain [†]
1)	f(x, y) real	\Leftrightarrow	$F^*(u,v) = F(-u,-v)$
2)	f(x, y) imaginary	\Leftrightarrow	$F^*(-u,-v) = -F(u,v)$
3)	f(x, y) real	\Leftrightarrow	R(u, v) even; $I(u, v)$ odd
4)	f(x, y) imaginary	\Leftrightarrow	R(u, v) odd; $I(u, v)$ even
5)	f(-x, -y) real	\Leftrightarrow	$F^*(u, v)$ complex
6)	f(-x, -y) complex	\Leftrightarrow	F(-u, -v) complex
7)	$f^*(x, y)$ complex	\Leftrightarrow	$F^*(-u-v)$ complex
8)	f(x, y) real and even	\Leftrightarrow	F(u, v) real and even
9)	f(x, y) real and odd	\Leftrightarrow	F(u, v) imaginary and odd
10)	f(x, y) imaginary and even	\Leftrightarrow	F(u, v) imaginary and even
11)	f(x, y) imaginary and odd	\Leftrightarrow	F(u, v) real and odd
12)	f(x, y) complex and even	\Leftrightarrow	F(u, v) complex and even
13)	f(x, y) complex and odd	\Leftrightarrow	F(u, v) complex and odd

[†]Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range [0, M - 1], and y, and v in the range [0, N - 1]. To say that a complex function is even means that its real and imaginary parts are even, and similarly for an odd complex function.

Proof of Property 8

Starting from the DFT definition:

$$F(u,v) = \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)}\right]$$

$$= \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f_r(x,y) e^{-j2\pi(ux/M)} e^{-j2\pi(vy/N)} \right]$$

$$= \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (even)(even - j \cdot odd)(even - j \cdot odd) \right]$$

$$= \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (even)(even \cdot even - 2j \cdot odd \cdot even - odd \cdot odd) \right]$$

$$= \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} even \cdot even - 2j \sum_{x=0}^{M-1} \sum_{y=0}^{M-1} odd \cdot even - \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} even \cdot even = real \& even$$

Proof of Property 6

From the definition of DFT, we can write:

$$\mathfrak{F}{f(-x,-y)} = \left[\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(-x,-y) e^{-j2\pi(ux/M+vy/N)}\right]$$

The periodicity implies that f(-x,-y) = f(M-x,N-y)Let's define m = M-x, n = N-y. then we have:

$$\mathfrak{I}\{f(-x,-y)\} = \left[\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j2\pi(u(M-m)/M+v(N-n)/N)}\right]$$

$$= \left[\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j2\pi(u+v)-j2\pi(-um/M-vn/N)} \right]$$

$$= \left[\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-j2\pi(-um/M-vn/N)} \right] = F(-u,-v)$$