riboSeed: leveraging genomic architecture to assemble across ribosomal regions

Microsoc Postgrad Seminar Series

Nick Waters

May 12, 2017

Department of Microbiology School of Natural Sciences National University of Ireland Galway

Outline

- De Bruijn Graphs and short read assembly
- Shortcoming of Short Read Assembly
- Genome Finishing Strategies
- ∠ Challenges

Short Ready Assembly: Background

de Bruijn Graphs and Eulerian Paths

Source: Compeau2011

Problems

Nature Reviews | Genetics

Source:Chaisson2015

5

Repeated regions cannot be resolved with kmers shorter than the repeat!

Repeated regions cannot be resolved with kmers shorter than the repeat!

 $\boldsymbol{\Omega}$ Plasmids

Prophages

Ribosomes

Is it Hopeless?

Genome Finishing

8

Genome Finishing Tools

Tool	Reference	Method Summary
GapFiller	[Boetzer2012]	utilize paired end reads
GapCloser/IMAGE	[Luo2012], [Tsai2010]	iteratively maps reads to contigs
CloG	[Yang2011]	uses trimmed de novo contigs in hybrid assembly
FGap	[Piro2014,Guizelini2016]	uses BLAST to find potential gap closures
GFinisher	[Guizelini2016]	uses GC-skew to refine assemblies
GapFiller	[Nadalin2012]	uses a hash-based method to produce "long-reads"
CONTIGuator	[Galardini2011]	generates a contig map and PCR primer sets to validate in the lab
Konnector	[Vandervalk2015]	uses a Bloom filter representation of a de Bruijn graph

Possible Solution

Figure: Bridge Reconstruction. Pink fragments are reads. Grey shows the gene of interest with interupted coverage. Orange fragemnt is a pseudoread generated from this situation under the hypothesis that the beige fragment exists but is underrepresented

Repeated regions cannot be resolved with kmers shorter than the repeat!

Transporters

 Ω Plasmids

Prophages

Ribosomes

Repeated regions cannot be resolved with kmers shorter than the repeat!

Prophages

Ribosomes

rDNA

rDNA: ribosomal DNA operon

Conserved within taxa

 \sim Repeated within the genome (1x to >14x)

Hypotheses

- 1. Since the rDNA structure is conserved within taxa, rDNA flanking regions may be conserved
- 2. Regions flanking the rDNA region will be unique within genomes
- 3. If flanking regions are unique, they can be used to build "long reads"

Hypothesis 1: ribosomal Operons

rDNA flanking regions are conserved conserved

rDNA flanking regions are conserved

Hypothesis 2: Flanking Uniqueness

Flanking regions are unique within genome

Hypothesis 3: Long Read Construction

riboSeed

riboSeed

- Automated method for constructing select "long reads" from Illumina data
- Written in python3 and R, wrapping barrnap, SMALT, SPAdes, and samtools
- - 1. Identify rDNA clusters
 - 2. Extracts reads mapping to a cluster
 - 3. Assemble into long reads
 - 4. Repeat (3x default) to extend
 - 5. Submit rDNA long reads to de novo assembly

riboSeed v0.3.06

- ∠ Deals with rDNAs near origin
- Includes depth-of-coverage tool

Does it work?

Benchmarking

- 1. synthetic reads on synthetic genome (7 E. coli Sakai rDNAs separated by 6kb random sequence)
- 2. synthetic reads on real genome
- 3. short reads from hybrid assembly
- 4. GAGE-B datasets

Synthetic reads on synthetic genome

Synthetic reads on real genome

Benchmarking with hybrid assembly

- ∠ Highly accurate reconstruction (3 SNPs per 8000bp)

Challenges

Reference Reliability

Other Challenges

- Data Availability
- ∠ Cross Platform Performance
- Recruiting Beta Testing

Conclusions

Potential Downsides

- 1. Unpredictable
- 2. Single problem/solution
- 3. Biased by reference

The architecture of bacterial genomes can aid assembly

- The architecture of bacterial genomes can aid assembly
- ∠ riboSeed improves assemblies at best

- The architecture of bacterial genomes can aid assembly
- ∠ riboSeed improves assemblies at best
- riboSeed doesn't work on in all cases, but rarely introduces errors

Next Steps

- ∠ Benchmark against GAGE-B
- Benchmark against more hybrid assembly studies
- △ Apply to fungal genomic
- Apply to other conserved regions

Acknowledgments

OÉ Gaillimh NUI Galway

- Fiona Brennan
- Florence Abram
- Matthias Waibel
- Camilla Thorn
- Stephen Nolan

- Leighton Pritchard
- Ashleigh Holmnes

Acknowledgments

- Fiona Brennan
- Florence Abram
- Matthias Waibel
- Camilla Thorn
- Stephen Nolan

- Leighton Pritchard
- Ashleigh Holmnes

Questions?