Math 131B: Homework 2

Owen Jones

4/21/2023

Problem 1. Exercise 1.3.1

Next, suppose $E = Y \cap K$ for some $K \subseteq X$ which is closed in X. Then, $X \setminus K$ is open in X. In the previous part of the proof, we noted that $Y \cap (X \setminus K) = Y \setminus (Y \cap K)$, and because $(X \setminus K)$ is open, $Y \setminus (Y \cap K)$ is reletively open with respect to Y by proposition 1.3.4 a). As we've shown previously $Y \setminus (Y \cap K) = Y \setminus E$, so E must be relatively closed with respect to Y.

Hence, E is relatively closed with respect to Y if and only if $E = K \cap Y$ for some set $K \subseteq X$ which is closed in X.

QED

Problem 2. Exercise 1.4.4

Let $\epsilon>0$. Because the sequence $(x^{(n)})_{n=m}^{\infty}$ is a Cauchy sequence in (X,d), there exists an $N\geq m$ such that $d(x^{(j)},x^{(k)})<\frac{\epsilon}{2}$ for all $j,k\geq N$. Because the subsequence $(x^{(n_i)})_{i=1}^{\infty}$ converges to x_0 , there exists $n_l\geq N$ where $l\geq 1$ s.t $d(x^{(n_l)},x_0)<\frac{\epsilon}{2}$. It follows that because $n_l\geq N$, $d(x^{(n_l)},x^{(k)})<\frac{\epsilon}{2}$ for any $k\geq N$. By the triangle innequality, if $n\geq N$, then $d(x^{(n)},x_0)\leq d(x^{(n)},x^{(n_l)})+d(x_0,x^{(n_l)})<2\cdot\frac{\epsilon}{2}=\epsilon$. Hence, the sequence $(x^{(n)})_{n=m}^{\infty}$ converges to x_0 .

QED

Problem 3. Exercise 1.4.7

- a) Let $x_0 \in \overline{Y}$. It follows there exists a sequence $(x^{(n)})_{n=m}^{\infty}$ in Y s.t $\lim_{n \to \infty} d_{|YxY}(x^{(n)}, x_0) = 0$. Because $(x^{(n)})_{n=m}^{\infty}$ is convergent, it must be Cauchy. note: To prove Lemma 1.4.7, suppose $(x^{(n)})_{n=m}^{\infty}$ converges to x_0 . For $\epsilon > 0$, choose N large enough s.t for any $j, k \ge N$, $d(x^{(j)}, x_0) < \frac{\epsilon}{2}$ and $d(x^{(k)}, x_0) < \frac{\epsilon}{2}$. By the triangle innequality, $d(x^{(k)}, x^{(j)}) \le d(x^{(k)}, x_0) + d(x^{(j)}, x_0) < 2 \cdot \frac{\epsilon}{2} = \epsilon$. Hence, $(x^{(n)})_{n=m}^{\infty}$ is Cauchy. Because Y is complete, any Cauchy sequence in Y must be convergent in Y. Thus, $x_0 \in Y \Rightarrow \overline{Y} \subseteq Y$. Because $Y \subseteq X \Rightarrow Y \subseteq \overline{Y}$. Thus, $Y = \overline{Y}$, so Y is closed in X.
 - QED
- b) Let $(x^{(n)})_{n=m}^{\infty}$ be a Cauchy sequence in Y. Because (X,d) is a complete metric space and $Y \subseteq X$, the Cauchy sequence $(x^{(n)})_{n=m}^{\infty}$ must converge to some point we will call x_0 in X. Since there exists a sequence $(x^{(n)})_{n=m}^{\infty}$ in Y that converges to x_0 , x_0 must be adherent to Y. Because Y is

closed in X, x_0 is an element of Y. Since $(x^{(n)})_{n=m}^{\infty}$ is an arbitrary Cauchy sequence in Y that is convergent in Y, the subspace (Y, d|YxY) is complete. QED

Problem 4. Exercise 1.5.12

a) Let $(x^{(n)})_{n=m}^{\infty}$ be a Cauchy sequence in X. Thus, there exists $N \geq m$ s.t for all $j,k \geq N$, $d_{disc}(x^{(k)},x^{(j)}) < 1$. Because $d_{disc}(x^{(k)},x^{(j)}) < 1$, $x^{(k)}$ must be equal to $x^{(j)}$. Let $\epsilon > 0$. If $n \geq N$, $d_{disc}(x^{(n)},x^{(N)}) = 0 < \epsilon$. Because $x^{(N)}$ is an element of X, $(x^{(n)})_{n=m}^{\infty}$ is a convergent sequence in X.

QED

- b) X is compact iff X is finite.
 - (\Rightarrow) X is compact if any open cover $X\subseteq\bigcup_{\alpha\in I}V_{\alpha}$ can be reduced to a finite collection of subsets

that still covers X. Suppose $\bigcup_{\alpha \in I} V_{\alpha}$ is a collection of open balls of radius less than 1. Thus, $\bigcup_{\alpha \in I} V_{\alpha}$

is a collection of singleton subsets. It follows $\bigcup_{\alpha \in I} V_{\alpha}$ can only be reduced to a finite $F \subseteq I$ if there

are finitely many $x \in X$. If there are infinitely many $x \in X$, you'd need infinitely many singleton subsets to cover X.

 (\Leftarrow) Suppose X is finite. If $X \subseteq \bigcup_{\alpha \in I} V_{\alpha}$ then for each $x \in X \ \exists \alpha \in I \ \text{s.t.} \ x \in V_{\alpha}$. Labeling each

element of X $\{x_1, x_2, ..., x_n\}$ with corresponding $\{\alpha_1, \alpha_2, ..., \alpha_n\}$, we can create a finite $F \subseteq I$ where $F = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ and $\bigcup_{\alpha \in F} V_\alpha$ still covers X. Thus, X is compact. QED

Problem 5. Exercise 1.5.15

Assume to the contrary $\cap_{\alpha \in I} K_{\alpha} = \emptyset$. Because $(K_{\alpha})_{\alpha} \in I$ is a collection of closed sets in X, $(K_{\alpha}^{c})_{\alpha} \in I$ is a collection of open sets in X. Because $\cap_{\alpha \in I} K_{\alpha} = \emptyset$, it follows that $\cup_{\alpha \in I} K_{\alpha}^{c} = X$. Thus, $\cup_{\alpha \in I} K_{\alpha}^{c}$ is an open cover for X. By the compactness of X, there exists a finite subset $F \subseteq I$ s.t $\cup_{\alpha \in F} K_{\alpha}^{c} = X$. Therefore $\cap_{\alpha \in F} K_{\alpha} = \emptyset$ which is a contradiction by the property that any finite subcollection of I has a non-empty intersection. Thus, $\cap_{\alpha \in I} K_{\alpha} \neq \emptyset$.

QED

Problem 6. Additional problem

a) Let $(x^{(n)})_{n=1}^{\infty}$ denote the sequence $x^{(n)} = \frac{1}{n}$ in E. Let $k \ge 1$ be arbitrary and $\epsilon > 0$. If ϵ is small enough s.t $\epsilon < \frac{1}{k}$, there exists $N > \frac{k}{1-\epsilon k}$ s.t if $n \ge N$, $d(x^{(n)}, \frac{1}{k}) > \frac{1}{k} - \frac{1-\epsilon k}{k} = \epsilon$. Thus, for any k there exists ϵ sufficiently small s.t the set $\{x^{(n)}: d(x^{(n)}, \frac{1}{k}) < \epsilon\}$ is finite. Hence, $(x^{(n)})_{n=1}^{\infty}$ doesn't have a subsequential limit.

QED

b) Let $(x^{(n)})_{n=m}^{\infty}$ be a sequence in $E \cup \{0\}$. If $(x^{(n)})_{n=m}^{\infty}$ converges to 0, then $(x^{(n)})_{n=m}^{\infty}$ has a subsequential limit. If not, for some $\epsilon > 0$, there exists $n \ge N$ for every $N \ge m$ s.t $d(x^{(n)}, 0) \ge \epsilon$. It follows there exist infinitely many n where $d(x^{(n)}, 0) \ge \epsilon$. However there exist only finitely many $k \in E \cup \{0\}$ s.t $\epsilon \le k$, so for all but finitely many points in $E \cup \{0\}$ are contained in $B(0, \epsilon)$. Thus, we are distributing infinitely many terms of the sequence $(x^{(n)})_{n=m}^{\infty}$ among finitely many points in $(E \cup \{0\}) \setminus B(0, \epsilon)$. By the pigeonhole principle, there exists at least one $k \in (E \cup \{0\}) \setminus B(0, \epsilon)$ that is a subsequential limit. Moreover, for each $\epsilon > 0$ and $N \ge m$, there exists $n \ge N$ s.t $d(x^{(n)}, k) < \epsilon$. Hence, $(x^{(n)})_{n=m}^{\infty}$ must have a subsequential limit. QED