CS188 Section 9: Bayes Sampling

October 25th, 2017

Inference on Bayes Net

Inference given Joint Distribution

You'll be asked to calculate P(Query | evidence). How?

- Enumeration (never really covered in discussion, but it's not hard)
- Variable Elimination (just earlier)
- Sampling (approximate)

Inference By Enumeration

Goal: Find P(Query | Evidence)

Given:

Evidence: $E_1 = e_1, E_2 = e_2, ... E_k = e_k$

Query variable(s): Q

Hidden variables: $H_1, H_2, ... H_R$ (all the extraneous random vars in the Bayes Net)

- 1. Compute full JPT via Bayes Net and parent equation
- 2. Select entries consistent with evidence to get P(Query, Evidence, Hidden)
- 3. Sum out (a.k.a. marginalize) all of H_i for P(Query, Evidence)
- 4. Normalize to get P(Query | Evidence)

Inference By Variable Elimination

Goal: Find P(Query | Evidence)

Given:

Evidence: $E_1 = e_1, E_2 = e_2, ... E_k = e_k$

Query variable(s): Q

Hidden variables: $H_1, H_2, ... H_R$ (all the extraneous random vars in the Bayes Net)

Let factors = tables

- 1. Initially, each CPT is a factor.
 - a. For each factor, select entries matching evidence.
- 2. Eliminate hidden variables:
 - a. While hidden_variables not empty:
 - i. New factor = Pick H, Join all factors with H, Sum out H
- 3. Normalize to get P(Query | Evidence)

Why eliminate?

You don't want to compute the full JPT like done in step one of enumeration. We eliminate as much as we can early so we never loop over a huge table.

Inference on Bayes Net: Sampling

Sampling

As used in Prior Sampling

(and Rejection Sampling)

Generate Samples from Bayes Net

We want to sample from the Joint Distribution, but we have a Bayes Net, not the actual JPT.

To sample from the JPT:

- Starting with roots of the Bayes Net, you'll sample from the marginal distributions.
- Then you'll sample from the selected CPT of children given parents
 - (on the sample you drew for the parents)

Sample Being Generated = (?, ?, ?)

Sample from:

P(T)

T =	Р	\rightarrow got +t
+t	0.5	y got n
-t	0.5	

Sample Being Generated = (+t, ?, ?)

Fix parents, then sample from:

Sample Being Generated = (+t, -v, ?)

Fix parents, then sample from:

Generate one Sample = (+t, -v, +w)

In Prior Sampling, we always keep the sample.

In Rejection Sampling, we might reject the sample.

Prior and Rejection Sampling

Approximate Inference: Prior Sampling

Main Idea

- Generate samples normally n times.
- Treat these as the sample space and compute probabilities.
 - P(X = +x) = # Samples where X = +x (divided by) Total # of Samples

For **inference**, you want to compute a conditional query **P(A|-b)**

- P(+a| -b) =
 - # Samples where A=+a and B = -b (divided by) # of Sample where B = -b
- P(-a| -b) =
 - # Samples where A=-a and B = -b (divided by) # of Sample where B = -b
- a post-sampling rejection of samples that don't match B = -b

Approximate Inference: Rejection Sampling

- For **inference**, want to compute some conditional query **P(A | -b)**
- Same as Prior Sampling, but throw away all samples that don't match the evidence +b during the sample generation--- as opposed to after you generated samples.

Implications:

- Can't stop sampling until you've gotten n samples that match your evidence
- Can only compute queries of the given evidence (you threw away everything else!)

Likelihood Weighting

Likelihood Weighting > Rejection Sampling

Want to find: P(A | -b)

- **Problem:** If evidence occurs with low likelihood, you'll waste a lot of time generating samples just to throw them away.
- **Solution:** Fix the evidence as "seen", sample, then account for the likelihood of having seen the evidence, given the sample you saw. Treat weighted samples as the sample space.

```
evidence = \{E_i = e_1, E_2 = e_2, ...\}

weight(sample) = \prod_i P(e_i \mid parents(e_i))
```

where $parents(e_i)$ is the sample values of $parents(E_i)$

Likelihood Weighting

Want to find: P(A | -b)

- 1. Generate samples, fixing evidence (**B = -b**) when we are required to sample it
- 2. Give weights to the samples (probability that had you not fixed the evidence, the evidence would have been realized)
- 3. Consider the weighted samples to be your sample space
 - a. Analogy is that the samples were weighted 1 in rejection sampling
 - Now, you sum the weights instead of counting the number of samples

Likelihood Weighting: Example for P(A|-b)

$$evidence = \{E_i = e_1, E_2 = e_2, ...\}$$

 $weight(sample) = \prod_i P(e_i \mid parents(e_i))$

where $parents(e_i)$ is the sample values of $parents(E_i)$

Sample 1

Weight = $P(-b \mid -c, +a)$

Sample 2

Weight = $P(-b \mid +c, +a)$

When we generate a sample, we still sample the Bayes Net from **top down**:

- 1. Sample regularly for everything upstream of the evidence.
 - a. Note that because our evidence is ignored, things upstream are unaffected by it
- 2. When you encounter an evidence variable, **DON'T SAMPLE**
 - a. Fix the evidence (i.e. $E_i = +e_i$) instead of sampling.
 - b. If we had truly sampled, the **likelihood of evidence** being the fixed value is dependent on the sampled upstream, specifically parent, variables
- 3. Anything downstream of \mathbf{E}_{i} is sampled as regular.
 - a. Note this means that because we fixed $E_i = +e_i$, things downstream are affected by it.
- 4. Once you have a sample, we **weight our sample** on the likelihood of actually having seen it (i.e. **weight** = $P(E_i = +e_i \mid sampled parents of E_i)$) because we didn't truly sample.

Say we want to know P(W|-v)
Sample Being Generated = (?, ?, ?)

First, sample from:

T =	Р	→ got +1
+t	0.5	
-t	0.5	

Say we want to know P(W|-v)
Sample Being Generated = (+t, ?, ?)

Instead of sampling from P(V | +t), **fix V = -v**:

P(V +t)		
V =	Р	
+V	0.9	
-V	0.1	

Because we didn't actually sample, the likelihood of the sample actually occurring is the **weight**

Say we want to know P(W|-v)Sample Being Generated = (+t, -v, ?)

Continue, so next sample from:

Say we want to know P(W|-v)

Generated one Sample = (+t, -v, +w)

Likelihood weight = $P(V = -v \mid +t) = 0.1$

Likelihood Weighting: Important Stuff

- We're fixing evidence because we don't want to waste even a little bit of energy creating a sample that we would reject
- Because we ignore evidence until we encounter it during the sampling process, upstream variables are **NOT** affected by the evidence we fix
- In fact, we allow the sampling of upstream variables to determine the weights of our sample. Weight = P(Evidence | Sampled Upstream)
 - Could be having samples with low weight being overwhelmed by samples with high weight
 - In other words, super low (relative to other samples) weighted samples are basically "rejected"
 - INEFFICIENT!!!! If only we had account for evidence before sampling upstream variables.

Gibbs Sampling

Gibbs Sampling > Likelihood Weighting

Question: Does knowing the outcome of a child node affect the sampling of a parent node?

Yes, Gibbs Sampling tries to account for this so that we don't generate samples with upstream variables that would give the sample low weight.

Gibbs Sampling

Idea: Always sample **conditioned on everything (not just parents)**. That means we have to completely ditch the basic sampling method

How?

- 1. Start somewhere
- 2. Pick one part to change
- 3. Change it conditioned on everything else in the sample (parents, children, siblings, everything)
- 4. This is a new sample
- 5. Repeat