Data Scientist RoadMap

1. Foundational Knowledge: – 🧰 Mathematics: ├─ 📐 Linear Algebra ├─ 📈 Calculus └─ ۞ Probability and Statistics – 💻 Programming: ├ 🤼 Python: ├─ Syntax and Basic Concepts ├─ 🗧 Data Structures ├─ 🖫 Control Structures ├─ 🖋 Functions ├─ 🏗 Object-Oriented Programming □ R (optional, based on preference) 2. Data Manipulation and Visualization: ├─ 🕺 Data Manipulation: ├─ I Numpy (Python) ├─ 🧭 Pandas (Python) └─ 🖸 Dplyr (R) └─ 📊 Data Visualization: ├─ ☑ Matplotlib (Puthon) ├─ 🥝 Seaborn (Python) ├─ 📊 qqplot2 (R) └─ 📊 Interactive Visualization Tools

├─ 3. Exploratory Data Analysis (EDA) and Preprocessing: Exploratory Data Analysis Techniques ├─ 🛠 Feature Engineering ├─ 🖋 Data Cleaning ├─ ♦ Handling Missing Data ├─ № Data Scaling and Normalization ☐ ☐ Outlier Detection and Treatment ─ 4. Machine Learning: ├─ 🗑 Supervised Learning: ├─ **Regression:** ├─ ☑ Linear Regression - Polynomial Regression - Regularization Techniques └─ 📊 Classification: ├─ 📶 Logistic Regression ├─ @ k-Nearest Neighbors (k-NN) ├─ ☑ Support Vector Machines (SVM) ├─ 🧶 Decision Trees

└─ 💋 Gradient Boosting

By: Waleed Mousa

		└─ 😈 Unsupervised Leαrning:
		├─ Clustering:
		├─ □ K-means
		— 🔘 DBSCAN
		— 🦣 Hierarchical Clustering
		└─ Dimensionality Reduction:
		├── № Principal Component Analysis (PCA)
		├─ 🔕 t-Distributed Stochastic Neighbor Embedding (t-
SNE)	
		├─ 🎮 Linear Discriminant Analysis (LDA)
		└─ ↔ Association Rule Learning
	<u> </u>	■ Reinforcement Learning
	<u></u>	₹ Model Evaluation and Validation:
		├── Cross-validation
		├─ ⑩ Hyperparameter Tuning
		- Model Selection Techniques
		└─ <mark> </mark> Evaluation Metrics

□ 5. Deep Learning: ├─ 🧼 Neural Networks: ├─ ◎ Perceptron └─ ∅ Multi-Layer Perceptron (MLP) – 脑 Convolutional Neural Networks (CNNs): ├─ 🔤 Image Classification ├─ 🔍 Object Detection ├─ 🔀 Recurrent Neural Networks (RNNs): ├─ ∑ Sequence-to-Sequence Models ├─ 🗧 Text Classification ├── 🔀 Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU): ├─ \overline \o Language Modeling └── ☑ Generative Adversarial Networks (GANs): - Image Synthesis ├─ 锅 Style Transfer

└─ 🖸 Data Augmentation

```
⊢ 6. Advanced Topics:
   ├─ 📜 Natural Language Processing (NLP):
       ├─ 📝 Text Preprocessing
       ├── 🏻 Recurrent Neural Networks for NLP
       └─ 💋 Transformer Models (e.g., BERT, GPT)
   ├─ 🄀 Time Series Analysis:
       ├─ N Time Series Decomposition
       ├─ X Autoregressive Integrated Moving Average (ARIMA)
       ├─ 🐎 Seasonal ARIMA (SARIMA)
       - Exponential Smoothing Methods
      └─ Prophet
     – 🎯 Recommender Systems:
       ├─ ♥ Collaborative Filtering
       - E Content-Based Filtering
       ├─ 🗱 Matrix Factorization
       └─ ♥ Hybrid Methods
    — 🥟 Causal Inference:
       ├─ 👉 Experimental Design
       — 🔎 Observational Studies
       - OPPOPERSITY Score Matching
       └── \ Instrumental Variable Analysis
   Advanced Deep Learning:
       - Advanced Architectures (e.g., Transformers, GPT models)
       — Generative Models (e.g., VAEs, flow-based models)
       └─ 🤛 Advanced Techniques for NLP and Computer Vision
                                                   By: Waleed Mousa
```


─ 8. Data Visualization and Reporting: ├─ 📊 Dashboarding Tools: - II Tableau ├─ 📊 Dash (Python) └─ 📊 Shiny (R) ├─ □ Storytelling with Data Effective Communication → 9. Domain Knowledge and Soft Skills: - Industry-specific Knowledge ├─ 🗱 Problem-solving ├─ 💬 Communication Skills ├─ 🧭 Time Management L **2** Teamwork 10. Ethical Considerations and Bias in Data Science: - Fairness in Machine Learning - Bias Detection and Mitigation └─ A Privacy and Data Security 11. Deployment and Productionization: ├─ 💋 Model Deployment Techniques ├─ 👛 Containerization (e.q., Docker) ├─ 降 Model Serving and APIs Scalability and Performance Optimization

By: Waleed Mousa

\vdash	12.	Continuous Learning and Staying Updated:
	<u> </u>	⊕ Online Courses and Tutorials
		■ Books and Research Papers
		■ Blogs and Podcasts
		Conferences and Workshops
	L	Networking and Community Engagement
<u></u>	13.	Recommended Resources:
	<u> </u>	E Online Courses:
		— <u>Coursera - Data Science Specialization</u>
		— edX - Data Science MicroMasters Program
		L— <u>Kaggle Courses</u>
	<u> </u>	■ Books:
		— "Python for Data Analysis" by Wes McKinney
<u>by</u>	<u>Aurél</u>	— <u>"Hands-On Machine Learning with Scikit-Learn and TensorFlow"</u> <u>ien Géron</u>
<u>Cou</u>	ırvill	"Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron
	<u></u>	YouTube Channels:
		— <u>Sentdex</u>
		— Data School
		— <u>3Blue1Brown</u>
		— PyData

L__ <u>StatQuest with Josh Starmer</u>

By: Waleed Mousa