

Classification on Heart Disease Indicators

classification model for identifying high-risk patients

Introduction

- Early heart disease identification may not only be desired by doctors and medical institutions
- Also for others: insurances, medical apps, fitness or nutritionist, individuals conscious about health

 GOAL: Creating model that can help to detect heart disease and raise red flag during initial questionnaire.

Methodology

- Data from Behavioural Risk Factor Surveillance System, conducts annual telephone surveys to gather data on the health status of U.S. residents (initially cleaned by Kamil Pytlak at Kaggle).
- 319k rows of data, 19 columns
- Features: **HeartDisease (target)**, BMI, Smoking, AlcoholDrinking, Stroke, PhysicalHealth, MentalHealth, DiffWalking, Sex, AgeCategory, Race, Diabetic, PhysicalActivity, GenHealth, SleepTime, Asthma, KidneyDisease, SkinCancer

Methodology

- Important problem, 85% recall score, precision score as second priority
- 8% of the target is positive class imbalance undersampling, class weights and threshold adjustment

- Categorical variables into dummies
- Data divided to train/validation/test
- Tuning with RandomizedSearchCV

Results

Results

XGBoost

model: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, enable_categorical=False, eval_metric='rmse', gamma=1.3, gpu_id=-1, importance_type=None, interaction_constraints='', learning_rate=0.04, max_delta_step=0, max_depth=6, min_child_weight=2, missing=nan, monotone_constraints='()', n_estimators=850, n_jobs=6, num parallel tree=1, predictor='auto', random state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=10, subsample=0.5, tree_method='exact', use_label_encoder=False, validate_parameters=1, verbosity=None) accuracy on training set: 0.6510392883116004 accuracy on validation set: 0.49931328787953105 accuracy on test set: 0.8552637064832187 precission: 0.1901651940069151 precission on test set: 0.19358682699599178 recall: 0.862870424171993 recall on test set: 0.8465182378019895 F1: 0.3116474291710388 F1 on test set: 0.31511197319696704

Important features: BMI, DiffWalking, AgeCategory_80 or older, Stroke,
AgeCategory_70-74, Diabetic_Yes, GenHealth_Poor, AgeCategory_65-69

Conclusions/Recommendations

- XGBoost model
- Systematic preventive medical examination to decrease chance of heart decease
- Healthy life style
- Constructed models are ready base for similar search

Future Work

- Deeper **EDA**, searching for feature relations
- Fine tuning of XGBoost
- More data (next year)

Thank you!

Questions?