Microsatellite Instability Classification by NGS

Microsatellite Instability

- Characterized by the "spontaneous loss or gain of nucleotides from repetitive DNA tracts"
 - Caused by defective mismatch repair
- Is a diagnostic phenotype for certain cancer types with clinical implications
 - Actionable marker for immune-checkpoint-blockade therapy

(Hause et al. 2016)

Sample

- 602 BAM/BAI files from patients in TCGA
 - 241 Colon/Rectal/Colorectal Adenocarcinoma
 - 361 Uterine Endometrial Carcinoma
- Annotated with MSI-PCR result
 - MSS
 - MSI-L, MSI-H
- 27 representative loci gathered from literature

Repeat Identification

Repeat Identification

- Flanking regions
 - 7 bases long
 - Long enough to be unique, identifiable
 - Short enough to maximize usable reads
 - Immediately adjacent to the mononucleotide repeat

Repeat Identification

- Scan and find flanking regions
 - Ordered search
 - Brute-force fuzzy matching
 - Mismatch allowance = 2
- Validation: filter
 - Baseline = 90%
 - Modified for some loci

MSI Calling

- Binary classifier
 - Simplification of MSI-H and MSI-L
- Optimization
 - Accuracy
 - Sensitivity
 - Specificity
- Locus-based calls
 - More common in literature
- Overall MSI call based on all 27 loci

Machine Learning Approach

- TensorFlow
 - Python API developed by Google
- Minimize error in linear function, apply sigmoid curve to calculate p(MSI)
- Simplification
 - 5 loci with high number of BAMs with reads available, good depth at the loci

Datasets

- All files
 - 602 BAM files with MSS, MSI-L or MSI-H annotation
 - 241 COAD-READ, 361 UCEC
 - 212 MSI, 390 MSS
- Mode training set
 - Randomly generated set of 100 BAM files with MSS status to generate mode length
 - 43 COAD-READ, 57 UCEC
 - 0 MSI, 100 MSS

Datasets (continued)

Training Set

- 300 BAM files of mixed status to train the model
 - 118 COAD-READ, 182 UCEC
 - 130 MSI, 170 MSS

Validation Set

- 100 BAM files of mixed status to validate the model
 - 44 COAD-READ, 56 UCEC
 - 40 MSI, 60 MSS

Test Set

- 102 remaining BAM files of mixed status to test the model
 - 36 COAD-READ, 66 UCEC
 - 42 MSI, 60 MSS

Datasets (continued)

- Randomly generated sets
 - Representative of both cancer types
- Low coverage problem
 - Low coverage at certain loci excludes some files from some locus analyses
 - Actual size of datasets vary based on individual BAM coverage at any given locus

MSI Calling - Features

- Number of lengths
 - [11, 12, 11, 13, 14] = 4
- Distance from mode
 - Average distance from MSS sample mode of all reads
- Standard deviation
- Average Length

Locus-Based Calling

- Generate ML model for each locus individually
 - Weight for each feature, bias
 - Sigmoid activation function to generate a probability (0, 1)
- Choose loci with highest AUC
 - Exclude those that have no reads in many BAM files
 - Try different combinations of loci
- Determine MSI status based on number of loci with 'MSI' call

Locus-Based Calling (continued)

- Loci examined
 - BAT-26
 - MSI-07
 - MSI-09
 - H-06
 - MSI-06
 - MSI-04
 - HSPH1-T17

- Threshold: 0.500000
- Min no. loci: 3
- Total files: 93
- Correct predictions: 78
 - True pos: 24
 - True neg: 54
 - False pos: 2
 - False neg: 13
- Accuracy: 0.838710
- Sensitivity: 0.648649
- Specificity: 0.964286

Probability-Based Calling

- Generate ML model for each locus individually
 - As before
- Choose loci with highest AUC
 - As before
- Determine MSI status based on average p(MSI) across loci examined

Probability-Based Calling (example)

- BAM file: TCGA-00-0000
 - BAT-26
 - p(MSI) = 0.998
 - MSI-07
 - p(MSI) = 0.488
 - MSI-09
 - p(MSI) = 0.478
 - H-06
 - p(MSI) = 0.499
 - MSI-06
 - p(MSI) = 0.898
 - MSI-04
 - p(MSI) = 0.978
 - HSPH1-T17
 - p(MSI) = 0.408

- Locus-based call: MSS
 - 3 MSI, 4 MSS
- Probability-based call: MSI
 - Avg p(MSI): 0.678

Probability-Based Calling (continued)

- Loci examined
 - BAT-26
 - MSI-07
 - MSI-09
 - H-06
 - MSI-06
 - MSI-04
 - HSPH1-T17

- Threshold: 0.500000
- Min no. loci: 3
- Total files: 93
- Correct predictions: 78
 - True pos: 23
 - True neg: 55
 - False pos: 1
 - False neg: 14
- Accuracy: 0.838710
- Sensitivity: 0.621622
- Specificity: 0.982143

Probability-Based Calling (continued)

- Problem: some loci may be more indicative of MSI status than others
 - Need weights assigned to each locus individually

A Bigger ML Problem

- Solution: instead of individually looking at one locus with m features, consider all n loci with all m features at once
 - Machine learning problem in n x m dimensions
- Exclude loci with too few usable files

Computational Cost

- 21 loci x 4 features each
 - 84-dimension model
- L1 regularization
 - Drives weights of non-influential features to 0
 - Minimizes the number of features that contribute to the model

Machine Learning v2 - Sets

- Training Set
 - 124 MSI, 142 MSS
- Validation Set
 - 33 MSI, 52 MSS

Machine Learning v2 - Results

Machine Learning v2 - Test Set

- Loci examined
 - MSI-11
 - MSI-14
 - H-10
 - HSPH1-T17
 - BAT-26
 - BAT-25
 - MSI-04
 - MSI-06
 - MSI-07
 - MSI-01
 - MSI-03
 - MSI-09
 - H-09
 - H-08
 - H-01
 - H-03
 - H-02
 - H-04
 - H-07
 - H-06
 - H-05

- Threshold: 0.500000
- Total files: 85
- Correct predictions: 73
 - True pos: 27
 - True neg: 46
 - False pos: 6
 - False neg: 6
- Accuracy: 0.858824
- Sensitivity: 0.818182
- Specificity: 0.884615

Machine Learning v2 - Test Set

- Loci examined
 - MSI-11
 - MSI-14
 - H-10
 - HSPH1-T17
 - BAT-26
 - BAT-25
 - MSI-04
 - MSI-06
 - MSI-07
 - MSI-01
 - MSI-03
 - MSI-09
 - H-09
 - H-08
 - H-01
 - H-03
 - H-02
 - H-04
 - H-07
 - H-06
 - H-05

- Upper threshold: 0.550000
- Lower threshold: 0.450000
- Total files: 85
- Indeterminate files: 9
- Predictions: 76
- Correct predictions: 67
 - True pos: 25
 - True neg: 42
 - False pos: 3
 - False neg: 6
- Accuracy: 0.881579
- Sensitivity: 0.806452
- Specificity: 0.933333
- Indeterminate: 10%

Summary

- Maximum accuracy of 88% on test set
 - 10% labeled as 'Indeterminate'
- Machine learning using all loci and all features is most:
 - Accurate
 - Sensitive/Specific

Further Investigations

- Add a label for 'MSI-L' and 'MSI-H'
- Research clinical relevance of MSI diagnosis
 - Fine-tune parameters to favor either false positives or false negatives
- Add features
 - Earth mover distance
- Regularization
 - L2 regularization
 - Penalizes any weight that is too large, drives weights asymptotically to 0
 - L1 regularization
 - Penalizes total weight of all features, drives non-informative weights to 0

Further Investigations (continued)

- Get more BAM files
 - Training, validation and test sets are stale
 - Get BAM files with better coverage for more accurate results, better prediction
- Make a more complex model
 - Synthetic features
 - Feature crosses
 - Neural Nets
 - More complex models require additional samples to train, validate and test