Υροκ №47

Урок узагальнення до теми «Поняття про класи неорганічних сполук»

Повідомлення мети уроку

Ви зможете:

- повторити фізичні величини, їх позначення та одиниці вимірювання;

- узагальнити вивчений у цій темі навчальний матеріал;

- пересвідчитися, наскільки різноманітними можуть бути обчислення з використанням поняття «кількість речовини», «маса», «молярна маса».

Актуалізація опорних знань

Здійсніть перетворення:

1. Ca \square CaO \rightarrow Ca(OH)₂

2. Mg

 $MgO \rightarrow Mg(OH)_2$

MgCl₂

Поняття про оксиди

Оксиди - складні речовини, які складаються з двох хімічних елементів, один з яких є Оксиген.

Алгоритм складання формули оксиду:

- 1. Записуємо два елементи, символ Оксигену завжди пишеться на другому місці.
- 2. Над символами елементів ставимо валентності.

Поняття про оксиди

Оксиди – це складні речовини, бінарні сполуки.

Загальна формула E_xO_v

Якщо валентність елемента постійна, то в назві оксиду його валентність не вказується. Наприклад:

Na₂O – натрій оксид

ZnŌ - цинк оксид

Якщо валентність змінна, то в назві оксиду після назви елемента вказують значення його валентності римською цифрою в дужках. Наприклад:

 SO_3 — сульфур (VI) оксид Mn_2O_7 — манган (VII) оксид

Номенклатура оксидів

Назва елемента

Валентність (якщо змінна)

Оксид

Дайте назви оксидам

 N_2O_3 K_2O AI_2O_3 CO_2

нітроген (III) оксид

калій оксид

алюміній оксид

карбон (IV) оксид

Фізичні властивості оксидів

За агрегатним станом

Газоподібні

CO₂

NO

SO₂

SO₃

<u>Тверді</u>

 Al_2O_3

BaO

CuO

MgO

<u>Рідкі</u> CI₂O₇

H₂O

Кольорові оксиди:

магній оксид — білий нікол (II) оксид — темно-зелений ферум (III) оксид — бурий нітроген (IV) оксид — бурий газ, "лисячий хвіст" хлор (IV) оксид — зеленкувато-жовтий силіцій (IV) оксид — безбарвний.

Отруйні оксиди арсен (III) оксид карбон (II) оксид чадний газ.

Застосування оксидів

Вода – розчинник, середовище існування.

Сировина для добування металів.

Добування кислот, лугів, солей.

Коштовні камені.

В будівництві.

Поняття про основи

Основи — це сполуки, що складаються з йонів металічного елемента й одного або декількох гідроксид-іонів OH^- .

КОН калій гідроксид

Al(OH)₃ алюміній гідроксид

СиОН купрум (I) гідроксид

 $Cu(OH)_2$ купрум (II) гідроксид

Встановити відповідність

KOH

 $Mg(OH)_2$

Ca(OH)₂

Fe(OH)₃

NaOH

Кальцій гідроксид

Ферум (III)гідроксид

Натрій гідроксид

Магній гідроксид

Калій гідроксид

Фізичні властивості основ

Агрегатний стан: Всі тверді речовини

Колір основ:

Білий — КОН, Голубий- $Cu(OH)_2$ Бурого - $Fe(OH)_3$

NaOH, KOH, LiOH, CsOH.

Cu(OH)₂, Ba(OH)₂, Pb(OH)₂, Fe(OH)₂.

 $AI(OH)_3$, $Fe(OH)_3$.

Кислоти

Кислоти – це складні речовини, що містять атоми Гідрогену та кислотні залишки.

Фізичні властивості кислот

За стандартних умов багато кислот — рідини (H_2SO_4, HNO_3) , але є й тверді кислоти — ортофосфатна H_3PO_4 , метафосфатна HPO_3 , силікатна (драглиста маса) H_2SiO_3 . Всі кислоти важчі за воду. Деякі кислоти леткі (HCl, HNO_3) , вони мають задушливий запах. Майже всі кислоти безбарвні.

Кислоти — їдкі речовини. Особливо небезпечні сульфатна, нітратна та хлоридна кислоти. Вони роз'їдають папір, деревину, тканини. Бризки кислот, що потрапили на шкіру, можуть спричинити хімічний опік. Тому поводитися з кислотами треба обережно. Особливо слід берегти очі. В хімічних лабораторіях під час роботи з кислотами очі захищають окулярами. Якщо бризки кислоти потрапили на шкіру або в очі, їх треба негайно змити великою кількістю води і звернутися до медпункту.

Хімічні властивості кислот

1.Взаємодія кислоти з металами: Кислота+метал№1=метал№2+сіль

2.Взаємодія кислоти з оксидом: Кислота+оксид=сіль+водень

3.Взаємодія кислоти з сіллю: Кислота№1+сіль№1= кислота№2+сіль№2

Кислоти в природі

BCIM

Кислоти постійно присутні навколо нас. Наприклад, дощова вода на перший погляд здається чистою. Насправді в ній є чимало інших речовин. За рахунок розчинення вуглекислого газу з атмосфери вона є розчином вугільної кислоти. Після літньої грози в дощовій воді виявляється ще й азотна кислота. Виверження вулканів і згоряння палива сприяють появі в дощовій і сніговий воді сірчаної кислоти.

Інформаційна хвилинка

Складні речовини із загальною формулою належать до класу солей.

Солі — це електроліти, що дисоціюють з утворенням катіонів металічного елемента й аніонів кислотного залишку, наприклад: $K_2CO_3 = 2K^+ + CO_2^{-3}$.

Усі солі мають твердий агрегатний стан, багато з них добре розчинні у воді, зокрема всі нітрати, усі солі Калію й Натрію.

Кристалогідрати— солі, які містять кристалізаційну воду, наприклад мідний купорос, залізний купорос.

Серед неорганічних сполук за поширеністю у природі солі займають друге місце після оксидів.

Фізичні властивості солей

За агрегатним станом тверді речовини

Мають високу температуру плавлення

Більшість розчинні у воді, деякі малорозчинні і нерозчинні.

Більшість безбарвні, деякі можуть мати характерне забарвлення і запах.

Приклади неорганічних сполук

Топаз

Аквамарин

Родоніт

Нефрит

Запитання та завдання для усного виконання в групі

Дайте визначення оксидів, кислот, основ, солей.

Як називають оксиди, основи, кислоти, солі за сучасною науковою номенклатурою?

Чи є серед оксидів і солей речовини,що перебувають за нормальних умов у газоподібному агрегатному стан?

Назвіть відомі вам класифікації основних класів неорганічних сполук. Наведіть приклади.

Укажіть до якого класу сполук належать речовини, формули яких наведено, назвіть їх за сучасною номенклатурою.

- a) $MnSO_4$, Mn_2O_3 , $MnCl_2$;
- G) CuSO₄, CuCl₂, KCl, CuCO₃;
- в) $Ba(OH)_2$, $Fe(OH)_2$, $Cu(OH)_2$, $Co(OH)_2$.

Пізнавальні завдання для письмового виконання в групі

Зазначте до якого класу неорганічних речовин належать речовини, формули яких наведено нижче. Поясніть, що спільного та чим відрізняється склад речовин у кожній парі.

- a) $Ba(OH)_2$ i $BaCO_3$;
- 6) HNO $_3$ I KNO $_3$;
- в) CuO i CuSO₄;
- r) NaOH I $Ca(OH)_2$;
- д) $MgSO_4$ I K_2SO_4 .

Запам`ятай

<u>Складні речовини утворені атомами різних хімічних</u> елементів:

Домашнє завдання

1. Скласти кросворд до теми.