PHYS 122 Electromagnetism Equations

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 15 March 2021

Table of Contents

- PHYS 122 Electromagnetism Equations
 - Warning
 - o Table of Contents
 - Electrical Charge and Electric Field
 - Gauss's Law
 - Electric field of uniform *spherical* charge distributions
 - Electric field of uniform *cylindrical* charge distributions
 - Electric field of uniform *planar* charge distributions
 - Electric Potential
 - Capacitance and Dielectrics
 - O Current, Resistance, and emf
 - O Direct-Current (DC) Circuits
 - Circuit analysis
 - Ohm's law and power
 - R-C circuit
 - Magnetic Force and Motion
 - Magnetic interactions of charged particles
 - Magnetic interactions of current-carrying conductor
 - Magnetic flux and other effects
 - Magnetic Field
 - Magnetic field of *linear* conductors
 - Magnetic field of *circular* conductors
 - Changing Magnetic Field (Induction)
 - O Changing Electric Field
 - o Alternating-Current (AC) Circuits
 - O Special Relativity
 - Appendix: List of Constants

Electrical Charge and Electric Field

Quantity	Unit	Definition
Electrical field (point charge)	$rac{ m N/C}{ m (V/m)}$	$ec{E_s} = rac{ec{F}_0}{q_0} = rac{1}{4\piarepsilon_0}rac{q}{r^2}\hat{r}$
Linear charge density	$\mathrm{C/m}$	$\lambda = rac{dQ}{dl}$
Surface charge density	$\mathrm{C/m^2}$	$\sigma = rac{dQ}{dA}$
Volume charge density	$\mathrm{C/m^3}$	$ ho = rac{dQ}{dV}$
Electric dipole moment	$\mathbf{C}\cdot\mathbf{m}$	$ec{p}=qec{d}$
(direction from - to +)	$C \cdot m$	p = qa
Induced dipole moment	$\mathbf{C}\cdot\mathbf{m}$	$ec{p}=lphaec{E}$
(direction from - to +)		

Description	Equations
Coulomb's law	$F=rac{1}{4\piarepsilon_0}rac{q_1q_2}{r^2}\hat{r}$
Force on test charge by an electric field	${ec F}_0 = q_0 {ec E}$
Superposition of electric forces	$ec{F} = \sum_i ec{F}_i$
Superposition of electric fields	$ec{E} = \sum_i ec{E}_i$
Torque on an electric dipole in an uniform electrical field	$ec{ au} = ec{p} imes ec{E}$
Potential energy of an electric dipole in an uniform electric field	$U = - ec{p} \cdot ec{E}$
Electric field of test charge on x axis caused by dipole at origin oriented in + y direction	$egin{aligned} E_x &= 0 \ E_y &= -rac{kp}{\ x\ ^3} \end{aligned}$
Electric field of test charge on y axis caused by dipole at origin oriented in + y direction	$egin{aligned} E_x &= 0 \ E_y &= rac{2kp}{\ y\ ^3} \end{aligned}$

Gauss's Law

Quantity	Unit	Definition
Electric flux through a surface	$rac{\mathrm{N}\cdot\mathrm{m}^2/\mathrm{C}}{\mathrm{(V}\cdot\mathrm{m})}$	$\Phi_E = \int ec{E} \cdot dec{A}$

Description	Equations
Electric flux of a uniform electric field	$\Phi_E = ec{E} \cdot ec{A}$
Electric flux of a nonuniform electric field	$\Phi_E = \int ec{E} \cdot dec{A} = \int E \cos heta \; dA$
Gauss's law Electric flux through a closed surface	$\Phi_E = \oint ec{E} \cdot dec{A} = \oint E \cos heta \ dA = rac{Q}{arepsilon_0}$

Electric field of uniform spherical charge distributions

- charged = uniformly charged throughout (insulating)
- conducting = charge only on surface

Charge Distribution	Point in Electric Field	Electric Field Magnitude
Point charge	-	$E=rac{1}{4\piarepsilon_0}rac{q}{r^2}$
Solid conducting sphere Hollow charged sphere	Outside sphere, $r>R$	$E=rac{1}{4\piarepsilon_0}rac{q}{r^2}$
Solid conducting sphere Hollow charged sphere	Inside sphere, $r < R$	E = 0
Solid charged sphere	Outside sphere, $r>R$	$E=rac{1}{4\piarepsilon_0}rac{q}{r^2}$
Solid charged sphere	Inside sphere, $r < R$	$E=rac{1}{4\piarepsilon_0}rac{r}{R^3}q$

Electric field of uniform cylindrical charge distributions

Charge Distribution	Point in Electric Field	Electric Field Magnitude
∞ wire/rod	-	$E=rac{1}{2\piarepsilon_0}rac{\lambda}{r}=rac{2k\lambda}{r}$
∞ solid conducting cylinder ∞ hallow charged cylinder	Outside cylinder, $r>R$	$E=rac{1}{2\piarepsilon_0}rac{\lambda}{r}=rac{2k\lambda}{r}$

Charge Distribution	Point in Electric Field	Electric Field Magnitude
∞ solid conducting cylinder ∞ hallow charged cylinder	Inside cylinder, $r < R$	E = 0
∞ solid charged cylinder	Outside cylinder, $r>R$	$E=rac{1}{2\piarepsilon_0}rac{\lambda}{r}=rac{2k\lambda}{r}$
∞ solid charged cylinder	Inside cylinder, $r < R$	$E=rac{1}{2\piarepsilon_0}rac{r}{R^2}\lambda=rac{2k\lambda r}{R^2}$

Electric field of uniform *planar* charge distributions

Charge Distribution	Point in Electric Field	Electric Field Magnitude
∞ charged sheet/plate	-	$E=rac{\sigma}{2arepsilon_0}$
∞ conducting sheet/plate	-	$E=rac{\sigma}{arepsilon_0}=rac{q}{2arepsilon_0 A}$ (q spreads at each surface)
Two oppositely charged conducting plates	Between plates	$E=rac{\sigma}{arepsilon_0}$
Charged conductor	At surface	$E=rac{\sigma}{arepsilon_0}$

Electric Potential

Quantity	Unit	Definition
Electric potential energy (point charge) $(choose\ U=0\ at\ \infty)$	J	$U=rac{1}{4\piarepsilon_0}rac{q_sq_0}{r}$
Electric potential $({\sf point\ charge})$ $({\sf choose\ }V=0\ {\sf at\ }\infty)$	$ m V \ (J/C)$	$V=rac{U}{q_0}=rac{1}{4\piarepsilon_0}rac{q_s}{r}$

Description	Equations
Electric potential energy of a test charge due to many source charges	$U=rac{q_0}{4\piarepsilon_0}\sum_irac{q_i}{r_i}$
Total electric potential energy of all source charges	$U=rac{1}{4\piarepsilon_0}\sum\limits_{i< j}rac{q_iq_j}{r_{ij}}$
Electric potential due to many source charges	$V=rac{1}{4\piarepsilon_0}\sum_irac{q_i}{r_i}$
Electric potential due to continuous distribution of charges	$V=rac{1}{4\piarepsilon_0}\intrac{dq}{r}$
Electric potential and potential energy of point charges	$U=q_2V_1$
Work by electric force and electric field	$W_{a o b} = \int_a^b ec F \cdot dec l = q \int_a^b ec E \cdot dec l$
Work by electric force on a closed path	$W_{a o b o a}=q\ointec{E}\cdot dec{l}=0$
Work by electric force and change in potential energy	$W_{a ightarrow b} = -\Delta U$
Potential difference	$V_{ab}=V_b-V_a$
Potential difference between terminals of battery	$V_{ m batt}=V_{-+}=V_+-V$
Potential difference and work, potential energy difference	$V_{ab}=rac{\Delta U}{q_0}=-rac{W_{a ightarrow b}}{q_0}$
Potential difference and electric field	$V_{ab} = -\int_a^b ec{E} \cdot dec{l} = -\int E \cos heta \; dl$

Description Equations

$$E = -\nabla V$$
 Electric field and potential gradient
$$= \left\langle -\frac{\partial V}{\partial x}, -\frac{\partial V}{\partial y}, -\frac{\partial V}{\partial z} \right\rangle$$

Capacitance and Dielectrics

Quantity	Unit	Definition
Capacitance (in vacuum)	${ m F} \ ({ m C/V}={ m C^2/J})$	$C=rac{Q}{V_{-+}}=rac{Q}{V_+-V}$
Electric energy density (in vacuum)	$\mathrm{J/m^3}$	$u=rac{U}{Ad}=rac{1}{2}arepsilon_0 E^2$

Description	Equations
Capacitance of a parallel-plate capacitor in vacuum	$C=rac{Q}{V_{-+}}=arepsilon_0rac{A}{d}$
Potential energy stored in a charged capacitor (define $U_{ m uncharged}\equiv 0)$	$U=rac{Q^2}{2C}=rac{1}{2}CV^2=rac{1}{2}QV$
Electric energy density in vacuum	$u=rac{U}{Ad}=rac{1}{2}arepsilon_0 E^2$
Dielectric constant	$\kappa = rac{C}{C_0} = rac{V_0}{V} = rac{E_0}{E}$
Induced surface charge density on a dielectric in an isolated capacitor	$egin{aligned} \sigma_{ m induced} &= \sigma_{ m bound} \ \sigma_0 &= \sigma_{ m free} \ \sigma_{ m induced} &= \sigma_0 \left(1 - rac{1}{\kappa} ight) \end{aligned}$
Permittivity of a dielectric	$arepsilon=\kappaarepsilon_0$
Capacitance of a parallel-plate capacitor with dielectric between plates	$C=\kappa C_0=\kappa arepsilon_0rac{A}{d}=arepsilonrac{A}{d}$
Electric energy density in a dielectric	$u=rac{1}{2}\kappaarepsilon_0E^2=rac{1}{2}arepsilon E^2$
Gauss's law in dielectrics	$\oint ec{E} \cdot dec{A} = rac{q_{ m free,enc}}{\kappa arepsilon_0}$

Current, Resistance, and emf

Quantity	Unit	Definition
Current	${ m A} \ m (C/s)$	$I=rac{dQ}{dt}$
Current density (per unit cross-section area)	$ m A/m^2$	$ec{J} = nqec{v}_d \ J = rac{I}{A} = n q v_d$
Conductivity (intrinsic to a material)	$(\Omega \cdot ext{m})^{-1} \ ext{A}/(ext{V} \cdot ext{m})$	$\sigma=rac{J}{E}$
Resistivity (intrinsic to a material)	$\Omega \cdot \mathbf{m}$	$ ho = rac{E}{J}$
Resistance	Ω	$R=rac{V}{I}=rac{ ho L}{A}=rac{L}{\sigma A}$

Description	Equations
-------------	-----------

Drift velocity of charge carrier $ec{v}_d = -rac{qec{E}}{m} au$

Description	Equations
Current and conductor properties	ai
Current density (per unit cross-section area)	$ec{J}=nqec{v}_d \ J=rac{I}{A}=n q v_d=rac{nq^2 au}{m_q}E$
Conductivity (intrinsic to a material)	$\sigma = rac{J}{E} = rac{nq^2 au}{m_q}$
Temperature dependence of resistivity	$\rho(T) = \rho_0(1 + \alpha(T-T_0))$
Temperature dependence of resistance	$R(T)=R_0(1+\alpha(T-T_0))$

Direct-Current (DC) Circuits

Circuit analysis

Description	Equations
Circuit elements in series $ Q , I$ - Equal V, R - Add C - Reciprocal	$ Q = Q_1 = = Q_i $ $I = I_1 = = I_i$ $V = \sum_i V_i$ $R = \sum_i R_i$ $\frac{1}{C} = \sum_i \frac{1}{C_i}$
Circuit elements in parallel V - Equal Q,I,C - Add R - Reciprocal	$egin{aligned} V &= V_1 = = V_i \ Q &= \sum_i Q_i \ I &= \sum_i I_i \ C &= \sum_i C_i \ rac{1}{R} &= \sum_i rac{1}{R_i} \end{aligned}$
Algebra of reciprocal values of two elements	$rac{1}{A}=rac{1}{A_1}+rac{1}{A_2}\Rightarrow A=rac{A_1A_2}{A_1+A_2}$
Kirchhoff's junction rule (conservation of charge)	$\sum I = 0$
Kirchhoff's loop rule (conservation of energy)	$\sum V=0$
Battery $(- o +)$	$+\mathcal{E}$
Resistor (along reference direction)	-IR
Capacitor $(- o +)$	$+rac{q(t)}{C}$

Ohm's law and power

Description	Equations
Ohm's law	V = IR
Potential difference of source with internal resistance	$V_{-+}={\cal E}-Ir=IR$
Current of source with internal resistance	$I = rac{\mathcal{E}}{R+r}$
Power delivered to or extracted from a circuit element	P = IV
Power delivered to a resistor (Note: both I and V depend on R)	$P=IV=I^2R=rac{V^2}{R}$
Power output of a source	$P=I\mathcal{E}=IV+I^2r=I^2(R+r)$

R-C circuit

Description	Equations
Time constant	au=RC
Charge when charging capacitors	$egin{aligned} q(t) \ &= C \mathcal{E}(1-e^{-t/RC}) = Q_f(1-e^{-t/RC}) \end{aligned}$
Current when charging capacitors	$i(t) = rac{\mathcal{E}}{R} e^{-t/RC} = I_0 e^{-t/RC}$
Charge when discharging capacitors	$q(t)=Q_0e^{-t/RC}$
Current when discharging capacitors	$i(t)=-rac{Q_0}{RC}e^{-t/RC}=I_0e^{-t/RC}$
Power of battery in R-C circuit	$P=i{\cal E}=i^2R+rac{iq}{C}$
Total energy stored in capacitor	$U=rac{1}{2}QV=rac{1}{2}Q_f\mathcal{E}$

Magnetic Force and Motion

Quantity	Unit	Definition
Magnetic force	N	$ec{F} = qec{v} imesec{B} = q vB\sin heta$
Magnetic flux through a surface	${ m Wb} \ ({ m T}\cdot{ m m}^2)$	$\Phi_B = \int ec{B} \cdot dec{A}$
Magnetic dipole moment (direction from S to N)	$rac{{ m A}\cdot{ m m}^2}{{ m J/T}}$	$ec{\mu} = I ec{A}$

Magnetic interactions of charged particles

Description	Equations
Magnetic force on a charged particle	$ec{F} = qec{v} imesec{B} = q vB\sin heta$
Radius of a circular orbit in a magnetic field (charge where $v\perp B$)	$R=rac{mv}{ q B}$
Angular speed (frequency) of circular motion	$\omega = 2\pi f = rac{2\pi}{T} = rac{ q B}{m}$
	$f=rac{1}{T}=rac{\omega}{2\pi}=rac{ q B}{2\pi m}$
Period of circular motion	$T=rac{1}{f}=rac{2\pi}{\omega}=rac{2\pi m}{ q B}$
Velocity selector	$v = rac{E}{B}$
Thompson's experiment	$egin{aligned} v &= \sqrt{rac{2qV}{m}} \ rac{q}{m} &= rac{E^2}{2VB^2} \end{aligned}$
Mass spectrometers	$m=rac{ q B^2R}{E}$

Magnetic interactions of current-carrying conductor

Description	Equations
Magnetic force on a straight wire segment	$ec{F} = I ec{l} imes ec{B}$
Magnetic force on an infinitesimal wire segment	$dec{F} = I \; dec{l} imes ec{B}$
Magnetic dipole moment	$ec{\mu} = I ec{A}$
Magnetic torque on a current loop	$ec{ au}=ec{\mu} imesec{B}=IAB\sin heta$
Magnetic torque on a solenoid	$ec{ au} = Nec{\mu} imesec{B} = NIAB\sin heta$

Description Equations

Potential energy for a magnetic dipole in B

 $U=-\vec{\mu}\cdot\vec{B}=-\mu B\cos\theta$

Magnetic flux and other effects

Description	Equations
Magnetic flux through a surface	$\Phi_B = \int ec{B} \cdot dec{A}$
Gauss's law for magnetism	$\oint ec{B} \cdot dec{A} = 0$
Electromagnetic (Lorentz) force	$ec{F} = q(ec{E} + ec{v} imes ec{B})$
Hall effect	$nq=rac{-J_x B_y}{E_z}$

Magnetic Field

Quantity	Unit	Definition
Magnetic field	$egin{array}{l} \mathrm{T} \\ \mathrm{N/(A\cdot m)} \\ \mathrm{1G} = 10^{-4}\mathrm{T} \end{array}$	$ec{B}=rac{\mu_0}{4\pi}\intrac{Idec{l} imes\hat{r}}{r^2}$

Description	Equations
Ampere's law	$\oint ec{B} \cdot dec{l} = \mu_0 I$
Magnetic field of a point charge	$ec{B}=rac{\mu_0}{4\pi}rac{qec{v} imes\hat{r}}{r^2}$
Biot-Savart law Magnetic field of infinitesimal length of wire	$dec{B}=rac{\mu_0}{4\pi}rac{Idec{l} imes\hat{r}}{r^2}$
Force on two ∞ parallel wires per unit length	$egin{aligned} ec{F} &= q ec{v} imes ec{B} \ rac{F}{l} &= rac{\mu_0 I_1 I_2}{2\pi d} \end{aligned}$
Force on two moving charges	$ec{F} = Iec{l} imes ec{B} \ ec{F}_{1 o 2} = rac{\mu_0}{4\pi} rac{q_1q_2}{r} ec{v}_2 imes ec{v}_1 imes \hat{r}$

Magnetic field of *linear* conductors

Conductor Form	Magnetic Field Magnitude
∞ straight wire	$B=rac{\mu_0 I}{2\pi r}$
∞ current-conducting plane	$B=rac{1}{2}\mu_0 K$

Magnetic field of circular conductors

Conductor Form	Magnetic Field Magnitude
On the axis of circular wire loop	$B_x = rac{\mu_0 I R^2}{2 (x^2 + R^2)^{3/2}}$
On the axis of N circular wire loops	$B_x = rac{N \mu_0 I R^2}{2 (x^2 + R^2)^{3/2}} = rac{\mu_0 \mu}{2 \pi (x^2 + R^2)^{3/2}}$
At the center of N circular wire loops	$B_x = rac{N \mu_0 I}{2a}$
At the center of a circular arc	$B=rac{\mu_0 I heta}{4\pi r}$
Inside cylindrical conductor	$B = rac{\mu_0 I}{2\pi} rac{r}{R^2} ~~(r < R)$

Conductor Form	Magnetic Field Magnitude
Outside cylindrical conductor	$B=rac{\mu_0 I}{2\pi r} \ \left(r>R ight)$
Inside ∞ solenoid	$B=N\mu_0 I$
Inside finite length solenoid	$B=rac{N\mu_0I}{l}$
Inside toroid	$B=rac{N\mu_0I}{2\pi r}$

Changing Magnetic Field (Induction)

Quantity	Unit	Definition	
Inductance	${ m H} \ { m V\cdot s/A}$	$L=rac{\Phi_B}{i}$	

Description	Equations
Faraday's law	ar c
Motional emf	$\mathcal{E} = \oint (ec{v} imes ec{B}) \cdot dec{l} \ \mathcal{E} = vBl$
Faraday's law for stationary integration path (Induced electric field and magnetic flux)	$\oint ec{E} \cdot dec{l} = -rac{d\Phi_B}{dt}$
Inductance of a solenoid	$L=rac{\mu_0 N^2 A}{l}$
Inductance as amount of change in current associated with change in magnetic flux	$\mathcal{E} = -Lrac{di}{dt} \ rac{d\Phi_B}{dt} = Lrac{di}{dt}$
Magnetic potential energy	$U=rac{1}{2}LI^2$
Magnetic energy density	$u = \frac{1}{2} \frac{B^2}{\mu_0}$

Changing Electric Field

Description	Equations
Conduction current	$i_C = rac{dq}{dt} = arepsilon_0 rac{d\Phi_E}{dt}$
Displacement current	$i_D = arepsilon_0 rac{d\Phi_E}{dt}$
Maxwell-Ampere's law	$egin{aligned} \oint ec{B} \cdot dec{l} &= \mu_0 (i_C + i_D) \ &= \mu_0 i_C + \mu_0 arepsilon_0 rac{d\Phi_E}{dt} \end{aligned}$
Magnetic field inside a circular capacitor	$egin{aligned} B &= rac{\mu_0 I r}{2\pi R^2} \ (r < R) \ B &= rac{\mu_0 I}{2\pi R} \ (r \geq R) \end{aligned}$
Maxwell's Equations	$egin{aligned} \oint ec{E} \cdot dec{A} &= rac{Q}{arepsilon_0} \ \oint ec{B} \cdot dec{A} &= 0 \ \oint ec{E} \cdot dec{l} &= -rac{d\Phi_B}{dt} \ \oint ec{B} \cdot dec{l} &= \mu_0 \left(i_C + arepsilon_0 rac{d\Phi_E}{dt} ight) \end{aligned}$
Maxwell's equation in empty free space	$egin{aligned} \oint ec{E} \cdot dec{A} &= 0 \ \oint ec{B} \cdot dec{A} &= 0 \ \oint ec{E} \cdot dec{l} &= -rac{d\Phi_B}{dt} \ \oint ec{B} \cdot dec{l} &= \mu_0 arepsilon_0 rac{d\Phi_E}{dt} \end{aligned}$

Alternating-Current (AC) Circuits

Quantity	Unit	Definition	
Capacitive reactance	Ω	$X_C = rac{1}{\omega C}$	
Inductive reactance	Ω	$X_L=\omega L$	
Impedance	Ω	$Z = rac{{{{\cal E}_{ m max}}}}{I}$	

Description	Equations
AC source in AC circuit	${\cal E}={\cal E}_{ m max}\sin(\omega t)$
Angular frequency of oscillation	$\omega=2\pi f$
Resistor in AC circuit (i and v in phase)	$egin{aligned} v_R &= {\cal E}_{ m max} \sin(\omega t) \ i &= I \sin(\omega t) \ V_R &= IR \end{aligned}$
Capacitor in AC circuit (i leads v by 90 deg)	$egin{aligned} v_C &= \mathcal{E}_{ ext{max}} \sin(\omega t) \ i &= I \sin(\omega t + 90^\circ) \ V_C &= I X_C = rac{I}{\omega C} \end{aligned}$
Inductor in AC circuit (i lags v by 90 deg)	$egin{aligned} v_L &= {\cal E}_{ m max} \sin(\omega t) \ i &= I \sin(\omega t - 90^\circ) \ V_L &= I X_L = I \omega L \end{aligned}$
RC series AC circuit	$Z_{RC} = \sqrt{R^2 + 1/(\omega C)^2} \ an \phi = -rac{V_C}{V_R} = -rac{1}{\omega RC}$
RLC series AC circuit	$Z_{RLC} = \sqrt{R^2 + (\omega L - 1/\omega C)^2} \ an\phi = rac{V_L - V_C}{V_R} = rac{\omega L - 1/\omega C}{R}$
RC filters	$V_C = V_R$ $\omega_{ m cutoff} = rac{1}{RC}$ High pass measures R Low pass measures C
RL filters	$V_R = V_L \ \omega_{ m cutoff} = rac{R}{L} \ m High \ pass \ measures \ L \ m Low \ pass \ measures \ R$
Trigonometric identities	$\sin \theta = \cos(\frac{\pi}{2} - \theta)$ $\cos \theta = \sin(\frac{\pi}{2} - \theta)$ $\sin(-\theta) = -\sin \theta$ $\cos(-\theta) = \cos \theta$

Special Relativity

Description	Equations
Lorentz factor	$\gamma = rac{1}{\sqrt{1-v^2/c^2}}$
Time dilation	$\Delta t_v = \gamma \Delta t_{ m proper}$
Length contraction	$l_v = rac{l_{ ext{proper}}}{\gamma}$
Space-time interval	$s^2=(c\Delta t)^2-(\Delta x)^2$
Lorentz transformation	$x' = \gamma(x-ut) \ y' = y$

Description	Equations
	z'=z
	$t'=\gamma(t-ux/c^2)$
	$v_x'=rac{v_x-u}{1-uv_x/c^2}$
Relativistic inertia	$m_v = \gamma m$
Relativistic momentum	$p=\gamma mv$
Relativistic kinetic energy	$K=(\gamma-1)mc^2$
Internal (rest) energy	$E_{ m int}=mc^2$
Total energy	$E = K + E_{ m int} \ E^2 = (mc^2)^2 + (pc)^2$

Appendix: List of Constants

Quantity	Value
Coulomb constant	$k=8.99 imes10^9~\mathrm{N\cdot m^2/C^2}$
Electric constant	$arepsilon_0 = 8.85 imes 10^{-12} \ \mathrm{F/m}$
Magnetic constant	$\mu_0 = 1.26 imes 10^{-6} \ { m H/m}$
Elementary charge	$q_e = 1.60 imes 10^{-19} \; ext{C}$
Mass of electron	$m_e=9.11 imes10^{-31}~\mathrm{kg}$
Speed of light in vacuum	$c=3.00 imes10^8~\mathrm{m/s}$