PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 6 (Feb 28 – Mar 7)

- 1 (5+10+10) Find Galois groups for the following polynomials f over \mathbb{Q} :
 - 1) $(t^2-3)(t^2+1)$
 - 2) $t^4 t^2 + 1$
 - 3) $t^4 2$
- **2** (10+10) 1) Find $Gal_{\mathbb{F}_3(t^2)}(\mathbb{F}_3(t))$.
 - 2) Find $Gal_{\mathbb{F}_2(t^2)}(\mathbb{F}_2(t))$.
- 3 (10+5) (a) Let K-M-L be a field extension and L:K is a normal extension. Prove that L:M is also a normal extension
 - (b) Give an example of three fields K, M, L such that [L:K]=4 and [M:K]=[L:M]=2 (hence K-M and M-L are normal extensions) but L:K is not a normal extension.
- **4** (10) Let L: K be a splitting field extension for a non–constant polynomial $f \in K[t]$. Prove that $|Gal_L(K)|$ divides $(\deg f)!$.
- **5** (15+20) a) Let $f = t^3 + t + 1 \in \mathbb{F}_2[t]$. Prove that $\operatorname{Gal}_{\mathbb{F}_2}(f)$ is isomorphic to \mathbb{Z}_3 .
 - b) Let $f = t^3 + t^2 + 1 \in \mathbb{F}_2[t]$. Prove that $Gal_{\mathbb{F}_2}(f)$ is isomorphic to S_3 .