ProofNet NL Statements

Zhangir Azerbayev

Summer 2022

df 1

chapter 1

section 1

- 15: Prove that $(a_1a_2 \dots a_n)^{-1} = a_n^{-1}a_{n-1}^{-1} \dots a_1^{-1}$ for all $a_1, a_2, \dots, a_n \in G$. 16: Let x be an element of G. Prove that $x^2 = 1$ if and only if x|x| is either 1
- 17: Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.
- 18: Let x and y be elements of G. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.
- 20: For x an element in G show that x and x^{-1} have the same order.
- 22a: If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$.
- 22b: Deduce that |ab| = |ba| for all $a, b \in G$.
- 25: Prove that if $x^2 = 1$ for all $x \in G$ then G is abelian.
- 29: Prove that $A \times B$ is an abelian group if and only if both A and B are abelian.
- 34: If x is an element of infinite order in G, prove that the elements $x^n, n \in \mathbb{Z}$ are all distinct.

section 3

8: Prove that if $\Omega = \{1, 2, 3, ...\}$ then S_{Ω} is an infinite group

section 6

- 4: Prove that the multiplicative groups $\mathbb{R} \{0\}$ and $\mathbb{C} \{0\}$ are not isomorphic.
- 11: Let A and B be groups. Prove that $A \times B \cong B \times A$.
- 12: Let A and B be groups. Prove that $A \times B \cong B \times A$.
- 17: Let G be any group. Prove that the map from G to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if G is abelian.
- 23: Let G be a finite group which possesses an automorphism σ such that $\sigma(g) = g$ if and only if g = 1. If σ^2 is the identity map from G to G, prove that G is abelian

section 7

5: 6: