

Proyecto Parcial Métodos Numéricos

Luis Adrián Carmona Villalobos A01748395

01 de noviembre de 2021

1 Introducción

Abstract

Existen diversos métodos para resolver un sistema de ecuaciones lineales. Su elección depende de la propia complejidad del sistema, o sea, del número de ecuaciones, número de incógnitas, componentes que conforman al sistema, y en general, de los atributos del sistema en consideración.

Muchos fenómenos del desempeño profesional de ingeniería se plantean como ecuaciones y sistemas de ecuaciones con más de tres ecuaciones y tres incógnitas, de aquí la importancia, primero, de hacer el modelo matemático representativo del fenómeno, y después, tomar la decisión del método numérico más adecuado para alcanzar la solución y su interpretación.

2 Descripcion del problema a resolver

Una compañía de electrónica produce transistores, resistencias y chips de computadora. Para crear un transistor se requiere de cuatro unidades de cobre, una de zinc y dos de vidrio.

Cada resistor requiere de tres unidades de cobre, tres de zinc y una unidad de vidrio. Cada chip de computadora requiere de dos, una y tres unidades de materiales, respectivamente. Los suministros de materiales varian cada semana por lo que se requiere determinar producción diferente cada semana.

3 Resultados

De acuerdo con el inciso a. la configuración del sistema de ecuaciones que modela la situación sobre la producción de transistores (x), resistencias (y) y chips (z) que se debe fabricar en esa semana, se presenta a continuación:

$$4x+3y+2z=960$$

 $x+3y+z=510$
 $2x+y+3z=610$

X+3y+z= 510 Se tiene disponible de cobre, para esa semana, 960 unidades. Además, se sabe de antemano que para cada x, se requieren de cuatro unidades, para cada y, tres unidades y para cada z, dos unidades 2x+y+3z=610 Una situación similar ocurre con las 510 unidades de zinc y las 610 unidades de cobre. En la diagonal principal han quedado los coeficientes dominantes, los de mayor valor absoluto.

Vidrio V		2 1		3										
Cobre C Zinc Z		1	3	1			2	119.99798	1.0	99.99865	3	89.99813	609.98902	
		4	3	2			1	119.99798	3.0	99.99865	1	89.99813	509.99208	
Producto Recursos		Transistores T	nsistores T Resistencias R				COMPROBACIÓN 4 119.99798 3.0 99.99865 2 89.99813 959.9							
_nips=	Z						204	119.99798	99.99865	09.99813	0.00003	0.00003	0.00004	
cesistencia Chips=	-						284	119.99798	99.99865	89.99813	0.00003	0.00003	0.0000	
Resistencias: v							283	120.00210	100.00140	90.00194	0.00004	0.00003	0.0000	
ransistore	e- u						282	119.99782	99.99855	89.99798	0.00004	0.00003	0.0000	
							281	120.00227	100.00151	90.00210	0.00004	0.00003	0.0000	
ntuacion	INO DOMINA	AINTE					280	120.00245	99.99843	89.99782	0.00004	0.00003	0.0000	
Situacion	NO DOMINA	MITE					278	119.99745	100 00163	89.99765 90.00226	0.00004	0.00003	0.0000	
riia 5	suma valore	s restantes				3	277	120.00265 119.99745	100.00177 99.99830	90.00245	0.00005	0.00004	0.0000	
-ila 2 -ila 3	suma valore					3	276	119.99725	99.99816	89.99746	0.00005	0.00004	0.0000	
Fila 1 Fila 2	suma valore					5	275 276	120.00286	100.00191	90.00264	0.00005	0.00004	0.000	
						-	274	119.99702	99.99802	89.99725	0.00005	0.00004	0.000	
ila 3	Valor inicial					3	273	120.00309	100.00206	90.00286	0.00005	0.00004	0.000	
ila 2	Valor inicial					3	272	119.99679	99.99786	89.99703	0.00005	0.00004	0.000	
ila 1	Valor inicial					4	271	120.00334	100.00223	90.00309	0.00006	0.00005	0.000	
							270	119.99653	99.99768	89.99679	0.00006	0.00005	0.0000	
diagonal dominante							269	120.00361	100.00241	90.00334	0.00006	0.00005	0.0000	
	s que la matri	z sea					268	119.99625	99.99750	89.99653	0.00006	0.00005	0.0000	
							267	120.00390	100.00260	90.00361	0.00007	0.00005	0.0000	
	2 x	1 y	3 z	=		610	266	119.99594	99.99730	89.99625	0.00007	0.00006	0.0000	
	1 x	3 y	1 z	=		510	265	120.00422	100.00281	90.00390	0.00007	0.00006	0.000	
	4 x	3 y	2 z	=		960	264	119.99562	99.99708	89.99595	0.00007	0.00006	0.000	
Sistema a solucionar						b	263	120.00456	100.00304	90.00421	0.00008	0.00006	0.000	

Figure 1: Jacobi Excel

Mientras que aproximadamente en la iteración 16 ya se había logrado el resultado en Gauss Seidel, en el método de Jacobi aún se requieren de más iteraciones, hasta la iteracion 284 el error es aceptable, se tendrian con cada iteracion son milesimas lo que baja el error. Los resultados que satisfacen al sistema son:

Transistores X=120 Resistencias Y=100 Chips Z=90

Para

4 Conclusiones

Para los transistores se requieren 120 componentes, para las resistencias 100 piezas y para los chips 90. Estos resultados satisfacen la corrida de producción indicada.

Proyecto Parcial Métodos Numéricos

Figure 2: jacobi matlab

Figure 3: seidel matlab

El resolver los metodos a traves de sistemas de ecuaciones ya sean lineales o no, existen diferentes metodos de solución, de los cuales algunos son mas eficientes que otros dependiendo de las variables, matrices que se formen y si son lineales o no lineales.

Figure 4: cramer matlab y excel

istema a so	lucionar															
4	x	3	у	2	Z	=	960									
	x	3	у	1	Z	=	510		No. Iter	x	у	Z	err x	err y	err z	
2	x	1	у	3	Z	=	610		0	0	0	0	x			
									1	240	90	13.33333333				
Verificamos que la matriz sea		sea							2	165.8333333	110.2777778	56.01851852	0.447236181	0.183879093	0.761983471	
iagonal dominante									3	129.2824074	108.2330247	81.06738683	0.282721576	0.018892137	0.308988229	
									4	118.2915381	103.547025	89.95663294	0.092913403	0.045254798	0.098817017	
ila 1	Valor inicial						4		5	117.3614148	100.8939841	91.46106213	0.007925291	0.026295333	0.016448849	
ila 2	Valor inicial						3		6	118.5989809	99.97998567	90.9406842	0.01043488	0.009141814	0.005722169	
ila 3	Valor inicial						3		7	119.5446686	99.83821572	90.35748233	0.007910748	0.001419997	0.006454384	
									8	119.942597	99.89997354	90.07161079	0.003317657	0.000618197	0.003173825	
Fila 1 suma valores restantes					5		9	120.0392145	99.96305825	89.98617095	0.000804882	0.00063108	0.000949477			
Fila 2 suma valores restantes						2		10	120.0346208	99.99306941	89.97922964	3.82691E-05	0.000300132	7.71434E-05		
ila 3	suma valores	restantes					3		11	120.0155831	100.0017291	89.98903489	0.000158627	8.65952E-05	0.00010896	
									12	120.0041857	100.0022598	89.99645624	9.49748E-05	5.30698E-06	8.24627E-05	
Situacion									13	120.000077	100.0011556	89.99956345	3.42392E-05	1.1042E-05	3.45247E-05	
	NO DOMINA	NTE							14	119.9993516	100.0003617	90.00031172	6.0454E-06	7.93919E-06	8.31408E-06	
									15	119.9995729	100.0000385	90.00027191	1.84423E-06	3.23192E-06	4.42297E-07	
									16	119.9998352	99.9999643	90.00012177	2.18582E-06	7.41636E-07	1.66826E-06	
										x	У		Z			
								Comp. ec1	4	119.9998352	3	99.9999643	2	90.00012177	=	959.9994772
								Comp. ec2	1	119.9998352	3	99.9999643	1	90.00012177	=	509.9998499
								Comp. ec3	2	119.9998352	1	99.9999643	3	90.00012177	=	610

Figure 5: Seidel Excel