
Programme n°10

ELECTROCINETIQUE

EL2 Les circuits linéaires

Cours et exercices

EL3 Les circuits linéaires du premier ordre

Cours et exercices

EL4 Régime transitoire du second ordre (Cours uniquement)

- Observation Circuit électrique
 - Conclusion
- Mise en équation
- Cas général
- Cas particulier où R = 0Ω
- Forme canonique (introduction du facteur de qualité)
- Résolution
- Recherche générale
- Cas où Q <1/2

Attention cette année les oscillateurs mécaniques n'ont pas été vus

7. Oscillateurs amortis	
Circuit RLC série et oscillateur mécanique amorti	Mettre en évidence la similitude des
par frottement visqueux.	comportements des oscillateurs mécanique et
	électronique.
	Réaliser l'acquisition d'un régime transitoire du
	deuxième ordre et analyser ses caractéristiques.
	Analysis and a sales of a sum following the sales of a
	Analyser, sur des relevés expérimentaux, l'évolution
	de la forme des régimes transitoires en fonction des paramètres caractéristiques.
	parametres caracteristiques.
	Prévoir l'évolution du système à partir de
	considérations énergétiques.
	,
	Prévoir l'évolution du système en utilisant un portrait
	de phase fourni.
	Carira aqua farma canonique l'équation différentialle
	Écrire sous forme canonique l'équation différentielle afin d'identifier la pulsation propre et le facteur de
	qualité.
	qualito.

ATOMISTIQUE

AT5 Les forces intermoléculaires (Cours uniquement)

- Interactions électrostatiques Interactions entre deux ions
 - Interactions entre un ion et un dipôle
- Interactions de Van der Waals
- Interactions entre molécules polaires
- Interactions entre molécules polaires et non polaires
 - → Moment dipolaire induit, polarisabilité
 - → Interaction de Debye
- Interaction de dispersion
- Interaction totale : interaction de Van der Waals
- · La liaison hydrogène
- Effet des différentes interactions intermoléculaires
- Résumé des interactions
- Température de fusion ou d'ébullition
- Conséquence sur la densité des liquides

Forces intermoléculaires	
Interactions de van der Waals.	Lier qualitativement la valeur plus ou moins grande
Liaison hydrogène.	des forces intermoléculaires à la polarité et la
Ordres de grandeur énergétiques.	polarisabilité des molécules.
	Prévoir ou interpréter les propriétés physiques de
	corps purs par l'existence d'interactions de van der
	Waals ou de liaisons hydrogène intermoléculaires.

AT6 Les solvants moléculaires (Cours uniquement) ◆ Interaction de solvatation - Mises en solution d'une espèce neutre ◆ Classification des solvants - Propriétés des solvants

- Solubilité, miscibilité

	, ,
Les solvants moléculaires	
Grandeurs caractéristiques : moment dipolaire,	Interpréter la miscibilité ou la non-miscibilité de
permittivité relative.	deux solvants.
Solvants protogènes (protiques).	Justifier ou proposer le choix d'un solvant
Mise en solution d'une espèce chimique	adapté à la dissolution d'une espèce donnée, à
moléculaire ou ionique.	la réalisation d'une extraction et aux principes
·	de la Chimie Verte.

<u>TP</u>

La lunette astronomique Mesure de résistances