Connecting Constrained Constructor Patterns and Matching Logic

Xiaohong Chen¹, Dorel Lucanu², Grigore Rosu¹

¹University of Illinois at Urbana-Champaign, USA

²Alexandru Ioan Cuza University of Iasi, Romania

{xc3,grosu}@illinois.edu; dlucanu@info.uaic.ro

Introduction

- Jose Meseguer: "I strongly conjecture that there is a deep connection between matching logic and the constrained constructor patterns. It would be great to better understand the details of such a connection."
- A constrained constructor pattern is a pair $u \mid \varphi$ consisting of
 - a constructor term u
 - a constraint φ (quantifier-free FOL formula)
- A matching logic unifies the FOL syntax of formulas and terms, allowing us to build formulas called **patterns** that are matched by elements.
 - E.g., $\varphi_1 \wedge \varphi_2$ is matched by those matching φ_1 and φ_2 .
- Main idea: Constrained constructor pattern $u \mid \varphi$ is the same as the pattern $u \land \varphi$.

Challenges and Contributions

- How to define the OS spec $(\Sigma, E \cup B)$ using a matching logic theory?
- How to capture the canonical term model of the OS spec?
- Is $u \mid \varphi$ the same as matching logic pattern $u \land \varphi$? To what extends?
 - Semantically, $||u|| \varphi || = \exists \vec{x} . (u \land \varphi)$ is the set of terms u where φ holds.
- This semantic equivalence reduces properties of constrained constructor patterns into matching logic theorems and/or metatheorems.

Challenges and Contributions

- Studying the relation between constrained constructor patterns and matching logic has a mutual benefit:
 - Matching logic can benefit from borrowing the computationally efficient reasoning modulo axioms.
 - The theory of constrained constructor patterns can get more expressiveness from its formalization in matching logic.
- We use an example (Sieve of Eratosthenes) to present matching logic and its connection with constrained patterns in an intuitive way.

Source: https://www.pinterest.com/pin/46161964910653601/ by Robert Butterfield

In constrained constructor patterns:

- configurations: $cfg(l_1, l_2) \mid primes?(l_1) \land sorted?(l_2) \land lt?(l_1, l_2)$
- transition: $cfg(l_1, cons(k, l_2)) \Rightarrow cfg(cons(k, l_1), removeMult(l_2, k))$
- sorts and subsorting: Int, List
- constructors: *nil*, *cons*
- defined functions/predicates: removeMult, primes?, sorted?, lt?,
- subsumption (for rewriting, defined at the meta-level) $\|\operatorname{cfg}(l_1,l_2) \mid \operatorname{primes?}(l_1) \land \operatorname{sorted?}(l_2) \land \operatorname{lt?}(l_1,l_2) \land l_2 \neq \operatorname{nil}\| \subseteq \|\operatorname{cfg}(l_1,\operatorname{cons}(k,l_2))\|$
- unification/conjunction (for narrowing, defined at the meta-level) $\|\mathrm{cfg}(l_1,l_2) \mid primes?(l_1) \land sorted?(l_2) \land lt?(l_1,l_2)\| \cap \|\mathrm{cfg}(l_1,cons(k,l_2))\|$

In matching logic:

- Formulas are called patterns
- A pattern is matched by a set of elements.
- Conjunction=Intersection, Disjunction=Union, Negation=Complement, etc.
- Definedness (matched by at least one element) and totality (matched by all elements):
 - $[\varphi]$ is total iff φ is defined; otherwise, it is empty.
 - $[\varphi]$ is total iff φ is total; otherwise, it is empty.
- Membership and inclusion are expressed by patterns:
 - $x \in \varphi \equiv [x \land \varphi]$
 - $\varphi_1 \subseteq \varphi_2 \equiv [\varphi_1 \rightarrow \varphi_2]$

 $\varphi_1 \wedge \varphi_2$

 $\varphi_1 \lor \varphi_2$

 $\varphi_1 \to \varphi_2$

- Sorts are (matching logic) symbols satisfying proper axioms:
 - $Int \in Sort, List \in Sort$
 - $x: Int \equiv x \land (x \in [Int])$
- Functions/predicates are symbols satisfying proper axioms:
 - $\exists l. nil = l$
 - $\forall n: Int. l': List. \exists l. conc(n, l') = l$
- Constructors: "no-junk no-confusion".
 - $[List] = \mu L.nil \lor \exists n: Int. \exists l: List.cons(n, l)$ "inductive principle"
 - $cons(n_1, l_1) = cons(n_2, l_2) \rightarrow n_1 = n_2 \land l_1 = l_2$
- Constrained constructor pattern $||u|| \varphi|| \equiv \exists \vec{x}. (u \land \varphi)$
- Subsumption expressed by a pattern: $\|\operatorname{cfg}(l_1, l_2) \mid \operatorname{primes}?(l_1) \land \operatorname{sorted}?(l_2) \land \operatorname{lt}?(l_1, l_2) \land l_2 \neq \operatorname{nil}\| \subseteq \|\operatorname{cfg}(l_1, \operatorname{cons}(k, l_2))\|$

Quick Overview: Constrained Constructor Patterns

- An order-sorted signature $\Sigma = (S, \leq, F)$, where $F = \Omega \cup \Delta$.
 - Ω : the set of constructors.
 - Δ : the set of defined functions.
- An order-sorted (equational) theory $(\Sigma, B \cup E)$.
 - B: the set of basic axioms like associativity, commutativity, etc.
 - E: the set of other axioms, often oriented as rewrite rules, written \vec{E} .
- $u \mid \varphi$, where $u \in T_{\Omega}(X)$ is a constructor (with variables in X).
- $||u|| \varphi || = \{canf(u\rho) \mid \rho: X \to T_{\Omega}, C_{\Sigma/E,B} \vDash \varphi \rho \}$

Constrained Constructor Patterns

Matching Logic Patterns

- Matching logic signature Σ is a set of symbols.
- Matching logic patterns:
 - $\varphi ::= \sigma \in \Sigma \mid x \mid X \mid \varphi_1 \varphi_2 \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x. \varphi \mid \mu X. \varphi$
 - x: element variable ranging over elements (like FOL variables).
 - X: set variable ranging over sets (like propositional variables in modal logic).
 - $\varphi_1\varphi_2$: application (left associative).
 - \perp and $\varphi_1 \rightarrow \varphi_2$: propositional connectives (others can be derived).
 - $\exists x. \varphi$: FOL-quantification.
 - $\mu X. \varphi$: least fixpoint (like in modal μ -calculus).
- Example: $\exists x. cons(x, cons(x, l))$

Matching Logic Pattern Semantics

- Matching logic has a pattern matching semantics.
- $\llbracket \varphi \rrbracket$ is the set of elements that match φ .
- Symbol interpretation $\sigma_M \subseteq M$.
- Application interpretation $app_M: M \times M \to \mathcal{P}(M)$
- Given valuation ρ with $\rho(x) \in M$ and $\rho(M) \subseteq M$:
- $[x]_{\rho} = {\rho(x)}$
- $[X]_{\rho} = \rho(X)$
- $\llbracket \sigma \rrbracket_{\rho} = \sigma_M \subseteq M$
- $\llbracket \varphi_1 \varphi_2 \rrbracket_{\rho} =$ $\bigcup_{a_1 \in \llbracket \varphi_1 \rrbracket_{\rho}, a_2 \in \llbracket \varphi_2 \rrbracket_{\rho}} app_M(a_1, a_2)$

- $\llbracket \bot \rrbracket_{\rho} = \emptyset$
- $\llbracket \varphi_1 \to \varphi_2 \rrbracket_{\rho} = M \setminus (\llbracket \varphi_1 \rrbracket_{\rho} \setminus \llbracket \varphi_2 \rrbracket_{\rho})$
- $[\exists x. \varphi]_{\rho} = \bigcup_{a \in M} [\![\varphi]\!]_{\rho[a/x]}$
- $\llbracket \mu X. \varphi \rrbracket_{\rho} = \mathbf{lfp} (\lambda A \mapsto \llbracket \varphi \rrbracket_{\rho[A/X]})$

Defining OSA in Matching Logic

	Order-Sorted Algebra	Matching Logic
Signature	$\Sigma = (S, \leq, F)$	$\Sigma^{ML} = \{ [_], [_], Sort \} \cup S \cup F$
Axioms	OSA metalanguage	ML axioms
		$s \in Sort$
	$s \in S$	$\exists y. s = y$
		$[s] \neq \bot$
	$s \leq s'$	$\llbracket s \rrbracket \subseteq \llbracket s' \rrbracket$
	$f \in F_{s_1s_n,s}$	$f: s_1 \times \cdots \times s_n \to s$
	x:s (sorted variable)	$x \in [s]$
Terms	t	$t^{\sf ML}$
	$f(t_1,\ldots,t_n)$	$f t_1 \cdots t_n$
Sentences	φ	$arphi^{ML}$
	$ \{x_1,\ldots,x_n\} $ = variables in φ	$x_1 \in \llbracket s_1 \rrbracket \land \dots \land x_n \in \llbracket s_n \rrbracket \rightarrow (\varphi = \top)$
Model	A	$M \equiv A^{ML}$
	$f_A: A_{s_1} \times \cdots A_{s_n} \to A_s$	$f_M a_1 \cdots a_n = \{f_A(a_1, \dots, a_n)\}$
	$f_A(a_1,\ldots,a_n)$	$\int_{A}^{A} u_1 \cdots u_n = \int_{A}^{A} (u_1, \dots, u_n) f$

Fig. 1. Given an order-sorted signature $\Sigma = (S, \leq, F)$ and a Σ -OSA A, we derive a ML signature Σ^{ML} and a corresponding Σ^{ML} -model $M \equiv A^{\mathsf{ML}}$.

Constrained Constructor Pattern Subsumption: A Matching Logic View

- Question: Whether $[\![u\mid\varphi]\!]\subseteq\bigcup_{i\in I}[\![v_i\mid\psi_i]\!]?$
- The answer is given by $(E_{\Omega} \cup B_{\Omega})$ -matching:
- $C_{\Sigma,B,E} \models \varphi \rightarrow \bigvee_{(i,\beta) \in MATCH(u,\{v_i \mid i \in I\})} \psi_i \beta$
- We can put the above result as an internal theorem in matching logic.

Theorem 2. The following holds:
$$C_{\Sigma/E,B}^{\mathsf{ML}} \models \left(\exists \overline{x} : \overline{s}.\ u^{\mathsf{ML}} \land \varphi^{\mathsf{ML}}\right) \subseteq \left(\bigvee_{i \in I} \exists \overline{y_i} : \overline{s_i}.\ v_i^{\mathsf{ML}} \land \psi_i^{\mathsf{ML}}\right) \leftrightarrow \left(\varphi^{\mathsf{ML}} \rightarrow \bigvee_{(i,\beta) \in \mathsf{MATCH}(u,\{v_i|i \in I\})} (\psi_i^{\mathsf{ML}} \land \beta^{\mathsf{ML}})\right)$$

Conclusion

- We establish the relationship between two approaches that formalize state predicates of distributed systems:
 - constrained constructor patterns
 - matching logic
- There is a mutual benefit:
 - Matching logic can benefit from borrowing the computationally efficient reasoning modulo axioms.
 - The theory of constrained constructor patterns can get more expressiveness from its formalization as a fragment of matching logic.