Netzwerke

Inhaltsverzeichnis

1	Kapitel 1					
	1.1 DNS - Domain Name System					
	Kapitel 2 2.1 Ethernet	3				
	Kapitel 3 3.1 ARP - Address Resolution Protocol					

1 Kapitel 1

1.1 DNS - Domain Name System

Ein Domain Name System nimmt Internetadressen wie 'facebook.com' und liefert dessen IP-Adresse, damit Rechenr sich damit verbinden können. Wobei 'com' eine TLD (Top Level Domain) ist. Man unterscheidet TLDs wie folgt:

- **gTLD** (auch: genericTLDs, allgemeine TLD) Diese werden wieder in 2 Untergruppen aufgeteilt:
 - **sTLD** (auch: sponsored TLD) Diese TLD werden nur an Websiten vergeben, welche bestimmte Forderungen erfüllen. '.gov'
 - uTLD (auch: unsponsered TLD) TLD werden ohne Vorgaben vergeben. '.com, .xyz'
- ccTLD (auch: country-codeTLD) TLD die zeigen aus welchem Land die Website kommt. '.de oder .us'

Beim Beispiel von facebook.com nennt man das .facebook eine Second-Level Domain, würde da noch www. stehen wäre das die Third-Level Doamin, Es können (quasi) beliebig viele Subdomains eingeführt werden. Die niedrigste Subdomain heißt hierbei Lowest-Level Domain.

Eine FQDN (Fully Qualieified Domain Name) setzt sich aus TopLevelDomain, Lowest-LevelDomain und mindestens einer Domain dazwischen zusammem.

1.2 LAN - Local Area Network

Das LAN vernetzt Geräte auf einen bestimmten (o.a. begrenzten Bereich) Normalerweise ein Haus im privaten Gebrauch oder ein Firmen-Campus etc. Dabei sind die Geräte ständig miteinander verbunden.

2 Kapitel 2

2.1 Ethernet

Jede Netzwerkkarte hat eine eigene MAC-Adresse, die benutzt wird damit Rechner sich gegenseitig Nachrichten schicken können. Die Nachrichten bei Etherent werden auch Frames, Package und Header genannt

¹Eigentlich ist der Punkt rechts von der Domain. Bei der TTL wird der Punkt meistens weggelassen. Richtig heißt es beispielsweise 'com.'

3 Kapitel 3

3.1 ARP - Address Resolution Protocol

ARP wird verwendet, wenn ein Computer oder Router ein Paket an ein Gerät im eigenen Netz senden will, aber nur die Ziel-IP-Adresse kennt. Er schickt dann ein Ethernet II Frame mit dem Typ-Feld 0x608 an die Broadcast-Adresse FF-FF-FF-FF-FF. Wenn der gesuchte Rechner das Paket empfängt, antwortet er mit seiner MAC-Adresse.

1	2	3	4				
Hardware Type			Protocol Type				
HLEN	PLEN		Operation				
Sender Hardware Address Byte 0-3							
Sender Hardware Address Byte 4-5 Sender Internet Address Byte 0-1							
Sender Internet Address Byte 2-3 Target Hardware Address Byte							
Target Hardware Address Byte 2-5							
Target Internet Adress Byte 0-3							

Die einzelnen Felder bedeuten dabei:

Hardware Type beschreibt, über welches Mittel kommuniziert wird. Ethernet bedeutet dabei 1.

Protocol Type Mit welchem Protokoll soll später kommuniziert werden? Das gleiche wie bei Ethernet II, also 0x800 für IP.

HLEN beschreibt, wie lange eine Hardware-Adresse ist. Ist bei Ethernet immer 6.

PLEN beschreibt, wie lange eine Protokoll-Adresse ist. Ist bei IPv4 immer 4.

Operation Was wird gerade ausgeführt? 1 für Request, 2 für Response

Sender Hardware Address ist die MAC-Adresse des Senders

Sender Internet Address ist die IP-Adresse des Senders

Target Hardware Address ist die MAC-Adresse des Empfängers

Target Internet Address ist die IP-Adresse des Enpfängers.

Die gesuchten Felder werden mit Nullen gefüllt. Mit "reverse ARP" kann ein Computer, der über das Netzwerk gebootet wurde, die IP-Adresse zu seiner eigenen MAC-Adresse erfragen. Dazu ist allerdings ein Server nötig.

3.2 ICMP - Internet Control Message Protocol

ICMP-Pakete sind in IP-Pakete eingepackt (Protocol-Feld wird auf 1 gesetzt). Es wird unter anderem verwendet, um die Erreichbarkeit von Systemen im Internet zu testen (ping), Netzwerkfehler zu erkennen und um bei Zeitüberschreitungen benachrichtigt zu werden.

1	2	3	4	
Type	Code		Checksum	

Die gültigen Werte für das Type-Feld sind:

- **0:** Echo Reply (bei ping)
- **3:** Destination unreachable (der Sender wird benachrichtigt, wenn das Ziel nicht erreichbar ist). Die Gründe dafür können im Code-Feld stehen
 - **0**: net unreachable
 - 1: host unreachable
 - 2: protocol unreachable
 - 3: port unreachable
 - 4: Fragmentation needed and DF set
 - **5:** source route failed (der Sender hat eine Route im IP-Header angegeben, die nicht funktioniert hat)
- 4: Source Quench (der Empfänger bittet den Sender, weniger Pakete zu senden)
- 5: Redirect (Wird von Routern verwendet, um die Netzwerkroute zu beeinflussen)
- 8: Echo (bei ping)
- 11: Time exceeded (TTL wurde unterschritten)
- 12: Parameter Problem, ungültiger IP Header
- 13: Timestamp (für Zeit-Synchronisierung)
- 14: Timestamp Reply (für Zeit-Synchronisierung)

Durch das Code-Feld können zusätzliche Informationen mitgegeben werden, z.B. warum die Verbindung gescheitert ist.