$$\mathbf{x} = \lambda_{1} \left[\begin{bmatrix} 1, 2, -1, 2 \end{bmatrix} + \lambda_{2} \left[1, 2, 1, 1 \right] + \lambda_{3} \left[2, 3, 0, -1 \right] + \\
+ \lambda_{1} \left[7, 3, -1, 0 \right] \\
= \left[2, 3, 2, 10 \right] = \left[\lambda_{1} + \lambda_{2} + 2\lambda_{3} + \lambda_{4}, 2\lambda_{4} + 2\lambda_{2} + 3\lambda_{3} + 3\lambda_{4}, \right] \\
- \lambda_{1} + \lambda_{2} - \lambda_{4}, 2\lambda_{1} + 4\lambda_{2} - \lambda_{3} \right]$$

$$= \sum_{1} \lambda_{1} + \lambda_{2} + 2\lambda_{3} + \lambda_{4} = 2$$

$$= \sum_{1} \lambda_{1} + \lambda_{2} + 2\lambda_{2} + 3\lambda_{3} + 3\lambda_{4} = 3$$

$$- \lambda_{1} + \lambda_{2} - \lambda_{4} = 2$$

$$= \lambda_{3} + \lambda_{4} + 2\lambda_{3} + \lambda_{4} = 2$$

$$= \lambda_{4} + \lambda_{2} - \lambda_{4} = 2$$

$$= \lambda_{4} + \lambda_{2} - \lambda_{4} = 2$$

$$= \lambda_{2} + \lambda_{2} - \lambda_{4} = 2$$

$$= \lambda_{3} + \lambda_{4} = 2$$

$$| \lambda_1 + \lambda_2 + 4 - 2\lambda_2 + \lambda_4 = 2$$

$$| 2\lambda_1 + 2\lambda_2 + 6 - 3\lambda_2 + 3\lambda_4 = 3$$

$$- \lambda_1 + \lambda_2 - \lambda_4 = 2$$

$$| 2\lambda_1 + 4\lambda_2 - 2 + \lambda_2 = 10$$

=)
$$\lambda_1 = 1$$
 =) $\lambda_3 = 0$
 $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 0$, $\lambda_4 = -1$

=) coordonatele lui × în baza b sunt

× = $[b_1 2 b_1 0, -b_3]$

3. 2.42

 $v = [v_1, v_2, v_3]$
 $v_1 = (a, 1, 1), v_2 = (1, a, 1), v_3 = (1, 1, a)$
 v este bază a lui \mathbb{R}^3 , dim $\mathbb{R}^3 = 3$

T. alt verif. < $b_0 v > = \mathbb{R}^3$ este suficientă

Fie $b = \begin{pmatrix} 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$

det $b = \begin{pmatrix} a & 1 & 1 \\ 1 & 1 & a \end{pmatrix}$

det $b = \begin{pmatrix} a & 1 & 1 \\ 1 & 1 & a \end{pmatrix}$
 $b = a^3 - 3a + 2 = 0$
 $b = a^3 - 2a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$

Al $b = a^3 - 3a + 2 = 0$