Gas Pipeline Monitoring System for Hospitals

Ricky Charles, Yuvaraj, Rakesh Kumar, Shyam Sundar

Abstract

Internet of Things (IoT) is the networking of 'things' by which physical things can communicate with the help of sensors, electronics, software, and connectivity. These systems do not require any human interaction. Internet of Things aim towards making life simpler by automating every small task around us. As much is IoT helping in automating tasks, the benefits of IoT can also be extended for enhancing the existing safety standards. Safety plays a major role in today's world and it is necessary that good safety systems are to be implemented in places of education and work. This work modifies the existing safety model installed in industries and this system can also be used in homes and offices. The traditional Gas Leakage Detector Systems though have great precision, fail to acknowledge a few factors in the field of alerting the people about the leakage. Therefore, we have used the IoT technology to make a Gas Leakage Detector for society which having Smart Alerting techniques involving sending text message to the concerned authority and an ability performing data analytics on sensor readings.

Introduction

The Internet of Things is an emerging topic of technical, social, and economic significance. Consumer products, durable goods, cars and trucks, industrial and utility components, sensors, and other everyday objects are being combined with Internet connectivity and powerful data analytic capabilities that promise to transform the way we work, live, and play. Projections for the impact of IoT on the Internet and economy are impressive, with some anticipating as many as 100 billion connected IoT devices and a global economic impact of more than \$11 trillion by 2025. The Internet of Things (IoT) is an important topic in technology industry, policy, and engineering circles. This technology is embodied in a wide spectrum of networked products, systems, and sensors, which take advantage of advancements in computing power, electronics miniaturization, and network interconnections to offer new capabilities. The large-scale implementation of IoT devices promises to transform many aspects of the way we live. For consumers, new IoT products like Internet-enabled appliances, home automation components, energy management devices are moving us toward a vision of the "smart home", offering more security and energy efficiency. IoT systems like

networked vehicles, intelligent traffic systems, and sensors embedded in roads and bridges move us closer to the idea of "smart cities", which help minimize congestion and energy consumption. IoT technology offers the possibility to transform agriculture, industry, and energy production and distribution by increasing the availability of information along the value chain of production using networked sensors.

Literature survey

A number of reviews on the subject of gas leakage detection techniques were done in the past either as part of research papers/technical reports on a certain leak detection method and other gas related subjects. A.Mahalingam, r. T. Naayagi, n. E. Mastorakis; they introduce design and implementation of an economic gas leakage detector. They gave the formulation of many problems in previous gas leakage detectors. They said that several standards have been formulated for the design of a gas leakage detection system such as IEEE, BS 5730, and IEC. For this work, the recommended UK safety standards have been adopted. The proposed alarm system is mainly meant to detect LPG leakage, which is most commonly used in residential and commercial premises. The system detects not only the presence of gas (gas leak), but also the amount of leakage in the air, and accordingly raises an appropriate audio-visual alarm. The objective of the system is to detect LPG gases such as propane and butane. The allowed UK level for butane is 600 ppm above which it is considered to be of high level and poses a danger. The proposed system ensures a continuous monitoring of the gas levels. If the gas level increases above the normal threshold level of 400 ppm butane (LPG), the system starts to issue early warning alarms at 100ms interval, which implies low level gas leakage. If the leakage level increases to 575 ppm of butane (LPG), the system activates high severity audio alarms at 50 MS intervals warning the occupants to run to safety.

Prof. M.Amsaveni, A.Anurupa, R.S.Anu Preetha, C.Malarvizhi, M.Gunasekaran; they told in their research paper on "GSM based LPG leakage detection and controlling system" the leakage of LPG gas is detected by the MQ-6 gas sensor. Its analog output is given to the microcontroller. It consists of predefined instruction set. Based on this, the exhaust fan is switched on. So, the concentration of gas inside the room gets decreased. Then, the stepper motor is rotated thus closing the knob of the cylinder. Because of this process, the leakage of gas is stopped. The relay is switched to off the power supply of the house. The buzzer produces an alarm to indicate the gas leakage. Then, the user is alerted by SMS through the GSM module. They proposed their methodology that the system takes an automatic control action after the detection of 0.001% of LPG leakage. This automatic control action provides a mechanical handle for closing the valve. We are increasing the security for human by means of a relay which will shut down the electric power to the house. Also, by using GSM, we are sending an alert message to the users and a buzzer is provided for alerting the neighbors about the leakage.

B. B. Did paye, Prof. S. K. Nanda; in this paper they told about their research on leakage detection and review of "Automated unified system for LPG using microcontroller and GSM module". Their paper proposed an advance and innovative approach for LPG leakage detection, prevention and automatic booking for refill. In advance, the system provides the automatic controlling of LPG regulator also if leakage is detected the system will automatically turn off the main switch of power supply. Hence it helps to avoid the explosion and blast.

Srinivasan, Leela, Jeya bharathi, Kirthik,Rajasree; in this research paper they told about gas leakage detection and control. In this paper, the gas leakage resulting into fatal inferno has become a serious problem in household and other areas where household gas is handled and used. It alerts the subscriber through the alarm and the status display besides turning off the gas supply valve as a primary safety measure.

Conclusion

In this paper we use IOT technology for enhancing the existing safety standards. While making this prototype has been to bring a revolution in the field of safety against the leakage of harmful and toxic gases in environment and hence nullify any major or minor hazard being caused due to them. We have used the IOT technology to make a Gas Leakage Detector for society which having Smart Alerting techniques involving sending text message to the concerned authority and an ability performing data analytics on sensor. This system will be able to detect the gas in environment using the gas sensors. This will prevent form the major harmful problem.