Test of Tehama Wireless TW-201

To: FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TEHA03-U1 Rev A

Test of Tehama Wireless TW-201

To FCC 47 CFR Part15.247 & IC RSS-210

Test Report Serial No.: TEHA03-U1 Rev A

This report supersedes: None

Manufacturer: Tehama Wireless

654A Natoma Street

San Francisco

California 94103, USA

Product Function: 915 MHz FHSS

Copy No: pdf Issue Date: 31st January 2012

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

440 Boulder Court, Suite 200 Pleasanton, CA 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306

www.micomlabs.com

CERTIFICATE #2381.01

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 3 of 69

This page has been left intentionally blank

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 4 of 69

TABLE OF CONTENTS

AC	CREDITATION & LISTINGS	5
	RECOGNITION	
	PRODUCT CERTIFICATION	
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	10
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	11
	3.1. Technical Details	11
	3.2. Scope of Test Program	12
	3.3. Equipment Model(s) and Serial Number(s)	16
	3.4. Antenna Details	16
	3.5. Cabling and I/O Ports	
	3.6. Test Configurations	
	3.7. Equipment Modifications	17
	3.8. Deviations from the Test Standard	
4.	3.9. Subcontracted Testing or Third Party Data TEST SUMMARY	
5.	TEST RESULTS	
	5.1. Device Characteristics	
	5.1.1. 20 dB Bandwidth	
	5.1.2. Transmitter Channels - Channel Spacing	30
	5.1.3. Transmitter Channels	
	5.1.4. Output Power	
	5.1.5. Maximum Permissible Exposure	
	5.1.6. Conducted Spurious Emissions Transmitter	
	5.1.8. Radiated Emissions	
	5.1.9. AC Wireline Conducted Emissions (150 kHz – 30 MHz)	
6.	PHOTOGRAPHS	
	6.1. General Measurement Test Set-Up	
	6.2. Radiated Emissions >1 GHz	
	6.3. Radiated Emissions <1 GHz	67
	TEST FOLIPMENT DETAILS	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 5 of 69

ACCREDITATION & LISTINGS

MiCOM Labs, Inc. an accredited laboratory complies with the international standard BS EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 14th day of April 2010.

President & CEO
For the Accreditation Council
Certificate Number 2381.01
Valid to March 31, 2012
Revised January 20, 2012

For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 6 of 69

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	TCB	-	Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	Listing #: 4143A
Japan	MIC	CAB	APEC MRA 2	210
'	VCCI			No. 2959
Europe European Commission		NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Ministry of Information and Korea Communication Radio Research Laboratory (RRL)		CAB	APEC MRA 1	US0159
Singapore Infocomm Development Authority (IDA)		CAB	APEC MRA 1	050159
Taiwan Taiwan National Communications Commission (NCC) Bureau of Standards, Metrolog and Inspection (BSMI)		CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Phase II – recognition for both product testing and certification

N/A – Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

^{**}EU MRA - European Union Mutual Recognition Agreement.

^{**}NB - Notified Body

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 7 of 69

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

World Class Accreditation

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA for technical competence as a

Product Certification Body

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC Guide 65:1996

General requirements for bodies operating product certification systems. This accreditation demonstrates technical competence for a defined scope and the operation of a quality management system for a Telecommunications Certification Body (TCB) meeting FCC (U.S.), Japan (MIC), and IC (Canada) requirements.

Presented this 24th day of June 2010.

President & CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to January 31, 2012

Revised September 2, 2011

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

<u>United States of America – Telecommunication Certification Body (TCB)</u>

TCB Identifier – US0159

Industry Canada – Certification Body

CAB Identifier - US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB)

RCB Identifier - 210

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 8 of 69

DOCUMENT HISTORY

	Document History				
Revision	Date	Comments			
Draft					
Rev A	31 st January 2012	Initial Release			

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 9 of 69

1. TEST RESULT CERTIFICATE

Manufacturer: Tehama Wireless Tested By: MiCOM Labs, Inc.

654A Natoma Street 440 Boulder Court

San Francisco Suite 200
California 94103, USA Pleasanton

California, 94566, USA

EUT: 915 MHz FHSS Telephone: +1 925 462 0304

Model: TW-201 Fax: +1 925 462 0306

S/N: Not Available

Test Date(s): 13th April - 5th October 2011 Website: www.micomlabs.com

STANDARD(S) TEST RESULTS

FCC 47 CFR Part15.247 & IC RSS-210 EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

TIFICATE #2381.01

ACCREDITED

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 10 of 69

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.247	2007	Code of Federal Regulations
(ii)	Industry Canada RSS-210	Issue 7 June 2007	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands)
(iii)	Industry Canada RSS-Gen	Issue 2 June 2007	General Requirements and Information for the Certification of Radiocommunication Equipment.
(iv)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 11 of 69

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of the Tehama Wireless TW-201 to FCC Part
	15.247 and Industry Canada RSS-210 regulations for
	Frequency Hopping operation.
Applicant:	Tehama Wireless
	654A Natoma Street
	San Francisco
	California 94103, USA
Manufacturer:	As Applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	440 Boulder Court, Suite 200
Took was and make was a surveyle and	Pleasanton, California 94566 USA
Test report reference number:	TEHA03-U1 Rev A
Standard(s) applied:	FCC 47 CFR Part15.247 & IC RSS-210
Date EUT received:	13 th April 2011
Dates of test (from - to): No of Units Tested:	13th April - 5th October 2011 One
Type of Equipment: Manufacturers Trade Name:	915 MHz Frequency Hopping Access Point
Mandiacturers Trade Name. Model:	CP501
Location for use:	Indoor
Declared Frequency Range(s):	902 - 928 MHz
Type of Modulation:	FSK
Declared Nominal Output Power:	+30 dBm
EUT Modes of Operation:	FHSS
Number of Channels:	60
Transmit/Receive Operation:	Transceiver Simplex
Rated Input Voltage and Current:	+6 Vdc, 1.7A
Operating Temperature Range:	0°C to +60°C
ITU Emission Designator:	304KF1D
Long Term Frequency Stability:	+/-20ppm
EUT Dimensions (L x W x H):	5.25 x 5 x 2 inches
EUT Weight :	8 oz
Primary function of equipment:	Access Point

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 12 of 69

3.2. **Scope of Test Program**

The scope of the test program was to testing on the Tehama Wireless TW-201 in the frequency ranges 902 - 928 MHz against FCC 47 CFR Part 15.247 and Industry Canada RSS-210 specifications for radiated and conducted emissions for intentional radiators. The intentional radiator was tested in a simulated typical installation to demonstrate compliance with the stated standards.

Device is a frequency hopper which utilizes 60 hopping channels.

Tehama Wireless TW-201

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 13 of 69

Tehama Wireless Front TW-201

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 14 of 69

Tehama Wireless RF Port TW-201

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 15 of 69

Tehama Wireless Underside TW-201

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 16 of 69

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	915 Frequency Hopper	Tehama Wireless	TW-201	None Available

3.4. Antenna Details

The following is a description of the EUT antennas.

• Manufacturer Pulse, Model No.: W1063, OMNI-Directional 3 dBi Gain

3.5. Cabling and I/O Ports

Number and type of I/O ports

- 1. RF Port Reverse Polarized SMA
- 2. Ethernet RJ-45
- 3. Power Jack
- 4. Miniature USB

3.6. Test Configurations

Test configurations

Operating Channel	Frequencies (MHz)
0	903.0
30	914.9
59	926.0

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 17 of 69

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

The following tests were performed by a MiCOM Labs approved test facility;-

1. NONE

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 18 of 69

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(a)(1) A8.1	20 dB BW	20 dB BW	Conducted	Complies	5.1.1
15.247(a)(1) A8.1	Transmitter Channels	Channel Spacing	Conducted	Complies	5.1.2
15.247(a)(1) A8.1	Transmitter Channels	Number of Channels	Conducted	Complies	5.1.3.1
		Channel Occupancy	Conducted	Complies	5.1.3.2
15.247(b)(2) A8.4	Output Power	Transmit Power	Conducted	Complies	5.1.4
15.247(i) 5.5	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Conducted	Complies	5.1.5
15.247(d) A8.5	Conducted Spurious Emissions	Band Edge	Conducted	Complies	5.1.6
		Spurious Emissions Transmitter (1 to 10 GHz)	Conducted	Complies	
§7.2.3		Standby	Conducted	Complies	5.1.7

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 19 of 69

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.247, Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.247(d)	Radiated Emissions	Transmitter	Radiated	Complies	5.1.8.1
15.205	above 1 GHz				
15.209					
A8.5					
2.2					
2.6					
4.9					
15.247(d)	Radiated		Radiated	Complies	5.1.9
15.205	Emissions below 1 GHz				
15.209	Delow 1 GHZ				
A8.5					
2.2					
2.6					
15.207	Conducted	AC Wireline	Conducted	Not applicable	5.1.10
7.2.2		Conducted Emissions		dc powered	

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 - Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 20 of 69

5. TEST RESULTS

5.1. Device Characteristics

5.1.1. 20 dB Bandwidth

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The 20 dB bandwidth is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for 20 dB bandwidth test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 21 of 69

Test Results for 20 dB Bandwidth

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS - 33 KHZ BANDWIDTH

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)
0	903.0	152.305	
30	914.9	151.303	<500
59	926.0	151.303	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 22 of 69

CH 0 903.0 MHz 20 dB Bandwidth 33 kHz BW

Date: 12.APR.2011 14:45:35

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 23 of 69

CH 30 914.9 MHz 20 dB Bandwidth 33 kHz BW

Date: 12.APR.2011 14:48:04

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 24 of 69

CH 59 926.0 MHz 20 dB Bandwidth 33 kHz BW

Date: 12.APR.2011 14:50:13

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 25 of 69

TABLE OF RESULTS - 100 KHZ BANDWIDTH

Channel #	Center Frequency (MHz)	20 dB Bandwidth (kHz)	Specification (kHz)
0	903.0	303.607	
30	914.9	303.607	<500
59	926.0	302.104	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 26 of 69

CH 0 903.0 MHz 20 dB Bandwidth 100 kHz BW

Date: 12.APR.2011 14:58:12

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 27 of 69

CH 30 914.9 MHz 20 dB Bandwidth 100 kHz BW

Date: 12.APR.2011 14:55:57

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 28 of 69

CH 59 926.0 MHz 20 dB Bandwidth 100 kHz BW

Date: 12.APR.2011 14:53:40

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 29 of 69

Specification

Limits

FCC §15.247 (a)(1) Industry Canada RSS-210 §8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Measurement Uncertainty for Spectrum Measurement

1110a0a10111011t a11001ta111ty ===:0.1 aB	Measurement uncertainty	±2.81 dB
---	-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117
instruction WI-03 'Measurement of RF	
Spectrum Mask'	

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 30 of 69

5.1.2. Transmitter Channels - Channel Spacing

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §8.1(2)

Test Procedure

The channel spacing is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Measurement set up for Channel Spacing Test

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 31 of 69

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS - 33 kHz

Channel(s)	Channel Spacing (KHz)	Specification
36 - 37	178.958	Greater than maximum 20 dB Bandwidth

Maximum 20 dB bandwidth = 126.25 kHz

Channel Spacing for CH 36 - CH 37

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 32 of 69

Specification for Channel Spacing

Limits

FCC §15.247 (a)(1)

Industry Canada RSS-210 §A8.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 33 of 69

5.1.3. <u>Transmitter Channels</u>

5.1.3.1. Number of Channels

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Test Procedure

The number of channels and channel occupancy is measured with a spectrum analyzer connected to the antenna terminal, while the EUT is operating in transmission mode at the appropriate center frequency and modulation.

Test Measurement Set up

Test set up to measure the number of channels and channel occupancy

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 34 of 69

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Number of Channels	Specification
60	At least 25 hopping channels

Number of Transmission Channels

Date: 12.AFR.2011 13.34.39

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 35 of 69

5.1.3.2. Channel Occupancy

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Channel Dwell Time

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Dwell Time (single channel) (mSecs)
30	914.9	258.5

Channel dwell time Ch 914.9 MHz

Date: 13.APR.2011 10:13:47

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 36 of 69

Channel Occupancy

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Channel Occupancy within 10 Second Period (mSecs)
30	914.9	258.5

Channel Occupancy 914.9 MHz

Date: 13.APR.2011 10:29:39

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 37 of 69

Specification for Number of Channels and Channel Occupancy

Limits

FCC, Part 15 Subpart C §15.247(a)(1) Industry Canada RSS-210 §A8.1

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Laboratory Uncertainty for Frequency Measurements

Measurement uncertainty	±0.86ppm
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work	0078, 0134, 0158, 0184, 0193, 0250,
instruction WI-02 'Frequency Measurement"	0252 0310, 0312.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 38 of 69

5.1.4. Output Power

FCC, Part 15 Subpart C §15.247(b)(2) Industry Canada RSS-210 §A8.4

Test Procedure

The transmitter terminal of EUT was set for CW (continuous wave) operation and connected to the input of the power meter which was calibrated to measure power. The value of measured power including antenna cable loss was reported.

Test Measurement Set up

Measurement set up for Transmitter Output Power

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 39 of 69

Measurement Results for Output Power

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Power (dBm)
0	903.0	+26.64
30	914.9	+26.58
59	926.0	+26.34

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 40 of 69

Specification

Limits

FCC, Part 15 Subpart C §15.247 (b)(2) The maximum output power of the intentional radiator shall not exceed the following:

(2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Industry Canada RSS-210 §A8.4

For frequency hopping systems operating in the 902 - 928 MHz band, the maximum peak conducted power output power is not to succeed 1.0 W if the hopset uses 50 or more hopping channels and 0.25 W if the hopset uses less than 50 hopping channels.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-01 'Measuring RF Output Power'	0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 41 of 69

5.1.5. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.247(i) Industry Canada RSS-Gen §5.5

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/ $(4\pi d^2)$

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 ^ (G (dBi)/10)$

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

Antenna Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) @ 20cm mW/cm ²
3.0	2.0	+26.64	461.3	0.184

*Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§15.247(i) Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines.

FCC §1.1310 Limit = f/1500 mW/cm² from 1.310 Table 1

RSS-Gen §5.5 Before equipment certification is granted, the applicable requirements of RSS-102 shall be met.

Laboratory Measurement Uncertainty for Power Measurements

	Measurement uncertainty	±1.33 dB
--	-------------------------	----------

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 42 of 69

5.1.6. Conducted Spurious Emissions Transmitter

FCC, Part 15 Subpart C §15.247(d) Industry Canada RSS-210 §A8.5

Test Procedure

Conducted emissions were measured at a limit of 20 dB below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Emissions at the band edge were measured and recorded. Measurements were made while EUT was operating in transmit mode of operation at the appropriate center frequency.

Test Measurement Set up

Band-edge measurement test configuration

Measurement Results of Conducted Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 43 of 69

Conducted Band-Edge Results

TABLE OF RESULTS

Channel #	Center Frequency (MHz)	Band-edge Frequency (MHz)	Limit (dBm)	Amplitude @ Band-edge (dBm)	Margin (dB)
0	903.0	902.0	+8.46	-27.71	-36.17
59	926.0	928.0	+7.78	-28.34	-36.12

Conducted Spurious Emissions at the 902 MHz Lower Band Edge

Date: 12.APR.2011 16:09:06

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 44 of 69

Conducted Spurious Emissions at the 928 MHz Upper Band Edge

Date: 12.APR.2011 16:17:49

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 45 of 69

Spurious Emissions (1-10 GHz)

Conducted spurious emissions (1-10 GHz) are provided indicated by the following matrix. Measurements were performed with the transmitter tuned to the channel closest to the bandedge being measured. All emissions were maximized during measurement. Limits which were derived from the band-edge measurements provided below are drawn on each plot.

TABLE OF RESULTS

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
903.0	30	10,000	-19.73	+7.71	-27.44

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions Channel 903 MHz - 30 MHz to 10,000 MHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 46 of 69

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
914.9	30	10,000	-20.89	+7.71	-28.60

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions Channel 914.9 MHz - 30 MHz to 10,000 MHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 47 of 69

Channel Centre Frequency (MHz)	Start Frequency (MHz)	Stop Frequency (MHz)	Maximum Emission Observed (dBm)	Limit (dBm)	Margin (dB)
926.0	30	10,000	-20.77	+6.80	-27.57

The emission breaking the limit line is the carrier.

Conducted Transmitter Spurious Emissions Channel 926 MHz - 30 MHz to 10,000 MHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 48 of 69

Specification

Limits Band-Edge

Lower Limit Band-edge	Upper Limit Band-edge	Limit below highest level of desired power
902 MHz	928 MHz	≥ 20 dB

FCC, Part 15 Subpart C §15.247(d)

Industry Canada RSS-210 §A.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 49 of 69

5.1.7. Conducted Receiver Spurious Emissions

Industry Canada RSS-Gen §7.2.3

Test Procedure

Conducted Stand-By emissions were measured on the device on the mid channel. The EUT was placed in Stand-By mode and emissions were measured 30 MHz – 7 GHz.

Test Measurement Set up

Stand-By spurious emissions test configuration

Measurement Results of Stand -By Spurious Emissions

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 50 of 69

Receiver Conducted Spurious Emissions 0.03 – 10 GHz

914.9 MHz Receiver Conducted Emissions 30 MHz - 1 GHz

Date: 12.APR.2011 19:32:54

No emissions were observed breaking the limit.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 51 of 69

914.9 MHz Receiver Conducted Emissions 1 – 10 GHz

No emissions were observed breaking the limit.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 52 of 69

Specification

Antenna Conducted Measurement Industry Canada RSS-Gen §7.2.3

If the device has a detachable antenna of known antenna impedance, then the antenna conducted method is permitted in lieu of a radiated measurement.

Receiver spurious emissions at any discrete frequency shall not exceed 2 nanowatts (-57 dBm) in the band 30-1000 MHz, or 5 nanowatts (-53 dBm) above 1 GHz.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-05 'Measurement of Spurious Emissions'	0287, 0158, 0193, 0252, 0313, 0314, 0070, 0116, 0117.

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 53 of 69

5.1.8. Radiated Emissions

FCC, Part 15 Subpart C §15.247(d) 15.205; 15.209 Industry Canada RSS-210 §A8.5, §2.2, §2.6 Industry Canada RSS-Gen §4.7

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 54 of 69

Radiated Emission Measurement Setup - Above 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 55 of 69

Radiated Emission Measurement Setup - Below 1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 56 of 69

Client declared Time Averaged Duty Cycle Correction Factor

Maximum transmit time within 100mS period

Transmit Time: 15.04mS

Correction Factor: 20 * Log (15.04/100) = -16.46 dB Corrected Value = Measured Value (dB) – 16.46 (dB)

Level (dBµV/m) = Raw + Cable Loss + AF + Correction Factor

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 57 of 69

5.1.8.1. Radiated Spurious Emissions

Test Freq.	903 MHz (Ch 0)	Engineer	GMH
Variant	TW-201	Temp (°C)	
Freq. Range	1 - 10 GHz	Rel. Hum.(%)	
Power Setting	Max Pwr = 1	Press. (mBars)	
Antenna	Pulse Engineering W1063	Duty Cycle (%)	
Test Notes 1	Product as previously tested		
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
1793.587	83.6	2.6	-13.2	73.0	Peak [Scan]	V					Pass	NRB
2695.39078	75.5	3.2	-11.2	67.5	Peak [Scan]	V	100	0	54	3.0*	Pass	RB
3615.230	72.6	3.7	-11.3	65.0	Peak [Scan]	Н	100	0	54	-5.5*	Pass	RB
9044.088	60.6	6.2	-4.1	62.7	Peak [Scan]	V	100	0	54	-7.8*	Pass	RB
7222.445	56.6	5.4	-5.6	56.4	Peak [Scan]	V					Pass	NRB
4517.034	60.9	4.2	-10.1	54.9	Peak [Scan]	V	100	0	54	-15.6*	Pass	RB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

^{*}Corrected using -16.46 dB duty cycle correction factor

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 58 of 69

Test Freq.	915 MHz	Engineer	GMH
Variant	TW-201	Temp (°C)	
Freq. Range	1 - 10 GHz	Rel. Hum.(%)	
Power Setting	Max Pwr = 1	Press. (mBars)	
Antenna	Pulse Engineering W1063	Duty Cycle (%)	
Test Notes 1	Product as previously tested		
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1829.659	81.5	2.6	-12.9	71.2	Peak [Scan]	Н					Pass	NRB
2731.46293	77.2	3.2	-11.4	69.0	Peak [Scan]	Н	200	0	54	-1.46*	Pass	RB
3651.303	71.8	3.7	-11.3	64.2	Peak [Scan]	Н	100	0	54	-6.26*	Pass	RB
9152.305	55.9	6.2	-3.9	58.3	Peak [Scan]	V	100	0	54	-12.16*	Pass	RB
6410.822	59.1	5.1	-7.3	56.9	Peak [Scan]	V					Pass	NRB
5490.982	59.8	4.6	-9.2	55.3	Peak [Scan]	V					Pass	NRB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

^{*}Corrected using -16.46 dB duty cycle correction factor

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 59 of 69

Test Freq.	926.0 MHz	Engineer	GMH
Variant	TW-201	Temp (°C)	
Freq. Range	1 - 10 GHz	Rel. Hum.(%)	
Power Setting	Max Pwr = 1	Press. (mBars)	
Antenna	Pulse Engineering W1063	Duty Cycle (%)	
Test Notes 1	Product as previously tested		
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
1847.695	77.8	2.7	-12.8	67.7	Peak [Scan]	V					Pass	NRB
2767.53507	75.5	3.2	-11.5	67.2	Peak [Scan]	V					Pass	NRB
3705.411	68.4	3.7	-11.1	61.1	Peak [Scan]	Н	100	0	54	-9.36*	Pass	RB
6482.966	59.8	5.1	-7.1	57.8	Peak [Scan]	V					Pass	NRB
9260.521	54.6	6.2	-3.6	57.2	Peak [Scan]	V					Pass	NRB
5563.126	59.2	4.7	-9.1	54.8	Peak [Scan]	V					Pass	NRB

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

RB = Restricted Band (15.209 Limits); NRB = Non Restricted Band, Limit is 20dB below fundamental peak

*Corrected using -16.46 dB duty cycle correction factor

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 60 of 69

5.1.8.2. Radiated Emissions below 1 GHz

Radiated Spurious Emissions

rtaaratoa opari	das Elliissions									
Test Fr	cq. Channel 0	Engineer	SB							
Vari	nt Digital Emissions	Temp (°C)	31							
Freq. Rar	ge 30 MHz - 1000 MHz	Rel. Hum.(%)	33							
Power Sett	ng Default	Press. (mBars)	996							
Anter	na External									
Test Note	ferrite on AC/DC adapter cable at EUT port;	ferrite on AC/DC adapter cable at EUT port; BIN A1 #0431173951								
Test Note	2									

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
499.980	49.6	6.0	-12.4	43.2	Quasi Max	Н	182	346	46	-2.8	Pass	
49.982	55.4	3.7	-22.7	36.4	Quasi Max	V	98	227	40	-3.6	Pass	
264.390	55.6	5.0	-17.5	43.1	Quasi Max	Н	105	6	46	-2.9	Pass	
702.339	42.8	6.7	-9.7	39.8	Quasi Max	Н	116	105	46	-6.2	Pass	
904.749	52.8	7.3	-7.2	53.0	Peak [Scan]	V						Fund
751.182	43.5	6.9	-8.9	41.5	Peak [Scan]	Н	100	0	46	-4.5	Pass	
661.764	44.6	6.6	-10.1	41.0	Peak [Scan]	V	100	0	46	-5.0	Pass	
550.962	46.5	6.3	-11.8	40.9	Peak [Scan]	Н	200	0	46	-5.1	Pass	
850.321	40.8	7.2	-7.8	40.2	Peak [Scan]	Н	100	0	46	-5.8	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 61 of 69

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 3 meters, shall not exceed the following:

§15.109 (b) Limit Matrix Class A digital device

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	49.5	3
88-216	150	54.0	3
216-960	200	57.0	3
Above 960	500	60.0	3

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used		
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0287, 0335, 0338, 0158, 0134, 0304, 0311, 0315, 0310, 0312, 0341		

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 62 of 69

5.1.9. AC Wireline Conducted Emissions (150 kHz - 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Radio Parameters:

Transmit Power = Maximum Power

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 63 of 69

Test Freq.	N/A	Engineer	SB	
Variant	AC Line Emissions	Temp (°C)	31	
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	33	
Power Setting	Default	Press. (mBars)	996	
Antenna	External			
Test Notes 1	ferrite on AC/DC adapter cable at EUT port; BIN A1 #0431173951			
Test Notes 2				

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.171	51.8	9.9	0.1	61.8	Quasi Peak	Neutral	79	-17.2	Pass	
0.171	43.0	9.9	0.1	53.0	Average	Neutral	66	-13.0	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 64 of 69

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Traceability

Method	Test Equipment Used
Measurements were made per Sanmina work instruction	0190, 0193

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 65 of 69

6. PHOTOGRAPHS

6.1. General Measurement Test Set-Up

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 66 of 69

6.2. Radiated Emissions >1 GHz

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 67 of 69

6.3. <u>ac Wireline Emissions</u>

To: FCC 47 CFR Part15.247 & IC RSS-210

Serial #: TEHA03-U1 Rev A Issue Date: 31st January 2012

Page: 68 of 69

7. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #
0070	Power Meter	Hewlett Packard	437B	3125U11552
0116	Power Sensor	Hewlett Packard	8485A	3318A19694
0117	Power Sensor	Hewlett Packard	8487D	3318A00371
0158	Barometer /Thermometer	Control Co.	4196	E2844
0184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52
0190	LISN	Rhode & Schwarz	ESH3Z5	836679/006
0223	Power Meter	Hewlett Packard	HP EPM-442A	US37480256
0251	K-Cable	Megaphase	Sucoflex 104	Unknown
0252	K-Cable	Megaphase	Sucoflex 104	Unknown
0253	K-Cable	Megaphase	Sucoflex 104	Unknown
0256	K-Cable	Megaphase	Sucoflex 104	Unknown
0271	Amplifier	1 to 26.5 GHz	MiCOM	
0287	EMI Receiver	Rhode & Schwarz	ESIB 40	100201
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002
0310	2m SMA Cable	Micro-Coax	UFA210A-0-0787- 3G03G0	209089-001
0312	3m SMA Cable	Micro-Coax	UFA210A-1-1181- 3G0300	209092-001
0313	Coupler	Hewlett Packard	86205A	3140A01285
0314	30 dB N-Type Attenuator	ARRA	N944-30	1623
0335	Horn Antenna	The Electro-Mechanics Company	3117	00066580
0337	Amplifier	30 MHz – 3 GHz	MiCOM	
0338	Antenna (30M-3GHz)	Sunol Sciences	JB3	A052907
0341	902-928 MHz Notch Filter	EWT	EWT-14-0199	H1
0363	Switch	MiCOM Labs		

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304

Fax: 1.925.462.0306 www.micomlabs.com