STI MEI/MIEBIOM

2022/2023

Practical class #1

- PGP (Pretty Good Privacy)

Cryptographic systems

- Secret-key (symmetric) systems (or conventional)
 - Encryption and decryption is fast
 - It is difficult to distribute secret keys securely
- Public-key systems, or asymmetric
 - Slower than secret-key encryption
 - Address the issue of secret key distribution

Conventional (symmetric) cryptography (confidentiality)

Asymmetric cryptography (confidentiality)

Asymmetric cryptography (encrypting and signing)

Encrypting with PGP

Sender

- Generate a (unique) session key
- Encrypts plaintext with session key
- Encrypts session key with the receiver's public-key
- Send encrypted text + encrypted session key

Receiver

- Uses its private key to decrypt session key
- Decrypts message using session key

Signing with PGP

Sender

- Generates a message digest of the message to transmit
- Encrypts message digest with its private key
- Sends message (may be in clear text) with the encrypted message digest

Receiver

- Generates a message digest of the message received
- Decrypts the received message digest with the sender's public key
- Compares the two

PGP Keyrings

In UNIX systems (Linux, BSD, Mac OS X):

```
cd ~/.gnupg/
pubring.gpg
secring.gpg
trustdb.gpg
```

Validation of keys in the Keyring:

- Manual validation (keys are signed by the Ultimately trusted introducer, e.g. you)
- Automatic validation (PGP keys already contains enough signatures from Marginally trusted introducers)