Appendix

A. Model Implementation and Training Details

Parameter Matrices Here we give the details of the parameter matrices introduced in rationalizer, instance selector, and inference model.

5

6

7

10

11

12

13

14

15

16

17

18 19

20

In **Rationalizer:** The two parameter matrices, \mathbf{W}_1 in Eq.1 and \mathbf{W}_2 in softmax layer are randomly initialized with the dimensions of 768×768 and 2×2304 , respectively.

In **Instance Selector** and **Inference:** With the state representations of the RoBERTa_{base} model, we use the representation of the first token (denoted as \mathbf{h}_0) as the corresponding input sequence representation. Then linear transformations and the Tanh activation are applied via $\text{Tanh}(\mathbf{U}_1\mathbf{h}_0)\mathbf{U}_2$, where \mathbf{U}_1 and \mathbf{U}_2 are parameter matrices with the dimensions of 768×768 and 768×3 , respectively.

Training Hyper-parameters . In Table 1, we present all hyper-parameters customized (encoder model, batch size, learning rate, and number of training epochs) for finetuning all the pre-trained models in LIREx. All other hyperparameters (e.g. dropout rates, max sequence length, etc.) are kept the same with the default setting of the pre-trained encoders.

	Encoder	Batch	Learning rate	Epochs
$R(\cdot)$	RoBERTa _{base}	32	1e-5	10
$G(\cdot)$	$GPT2_{medium}$	1	2e-5	2
$S(\cdot)$	$RoBERTa_{base}$	64	2e-5	3
$Infer(\cdot)$	$RoBERTa_{\mathrm{base}}$	64	2e-5	3

Table 1: Training hyper-parameters for each LIREx component. $R(\cdot)$, $G(\cdot)$, $S(\cdot)$, and Infer(\cdot) represent the rationalizer, NLE generator, instance selector, and inference model, respectively.

- Software and Library Our code is implemented in Pytorch http://pytorch.org and the encoders are leveraged from the pre-trained models in http://huggingface.co.
- Hard Device All experiments are done on a single NVidia
 Tesla V100 GPU with 16GB memory. We also report that,

Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

for a smaller GPU (GeForce GTX 1080ti with 11GB memory), $R(\cdot)$, $S(\cdot)$, and $Infer(\cdot)$ can be trained without doing any modifications, and $G(\cdot)$ needs to be changed to $GPT2_{\rm small}$.

27

28

29

30

31

32

B. Standard Deviations of LIREx Performance

In Table 2, we present the standard deviations of the LIREx models used in the paper.

	Mean	Std Dev
LIREx _{base}	92.15	0.05
$LIREx_{expl-max}$	89.95	0.05
$LIREx_{expl-prob}$	90.10	0.05
$LIREx_{all-max}$	92.15	0.04
$LIREx_{all-prob}$	92.22	0.03

Table 2: Means and standard deviations of the LIREx performance on SNLI development set. The scores for each model are calculated based on five random runs.