Zadania do deklaracji (poniedziałek)

W weekend dodam tutaj 4 zadania do deklaracji na przyszły tydzień.

Zadanie 4 Wyznaczyć z definicji różniczkę funkcji $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = xy + x^3$, w punkcie (1,1).

Zadanie 5 Znajdź wszystkie pochodne cząstkowe następujących funkcji:

•
$$f(x,y) = x^3 + y^3 - 3axy$$

•
$$f(x,y) = \sqrt{x^2 - y^2}$$

•
$$f(x,y) = \frac{y}{x}$$

•
$$f(x,y) = x^y$$

Zadanie 6 Wykazać, że funkcja $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{gdy } (x,y) \neq (0,0) \\ 0, & \text{gdy } (x,y) = (0,0) \end{cases}$$

jest ciągła. Wyznaczyć jej pochodne cząstkowe funkcji f w każdym punkcie $(x,y) \in \mathbb{R}^2$ i pochodne kierunkowe w punkcie (0,0). Zbadać różniczkowalność funkcji f w każdym punkcie jej dziedziny.

Zadanie 7 Zbadać różniczkowalność funkcji $f: \mathbb{R}^2 \to \mathbb{R}$ oraz $g: \mathbb{R}^2 \to \mathbb{R}$ określonych wzorami

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & \text{gdy } (x,y) \neq (0,0) \\ 0, & \text{gdy } (x,y) = (0,0) \end{cases} \quad g(x,y) = \begin{cases} \frac{x^4 + y^4}{x^2 + y^2}, & \text{gdy } (x,y) \neq (0,0) \\ 0, & \text{gdy } (x,y) = (0,0) \end{cases}.$$

Zadanie 8 Nich $f: \mathbb{R} \times [0, 2\pi] \to \mathbb{R}^2$ będzie określona wzorem

$$f(r,\phi) = (r\cos\phi, r\sin\phi)$$
.

Znajdź macierz Jakobiego tego przekształcenia oraz oblicz jakobian (wyznacznik macierzy jakobiego)

Zadanie 9 Pole trapezu o podstawach a oraz b i wysokości h jest dane wzorem $S(a,b,h) = \frac{a+b}{2}h$. Oblicz $\frac{\partial S}{\partial a}, \frac{\partial S}{\partial b}, \frac{\partial S}{\partial h}$ i używając rysunku pokaż ich geometryczną interpretacje.

1

Zadanie 10 Oblicz 1.02^{3.01}