Podstawowe wielkości fizyczne, Siły i ich źródła, Podstawy teorii względności, Praca i energia

- 1. Czy 10⁻⁹ sekundy to:
 - (a) 1 milisekunda (b) 1 mikrosekunda (c) 1 nanosekunda (d) 1 megasekunda
- 2. Nie jest możliwy jednoczesny bardzo dokładny pomiar pędu i położenia cząstek. Wynika to z: (a) braku odpowiednich technik pomiarowych (b) efektów kwantowych (c) braku odpowiedniej teorii
- 3. Wypisać 4 fundamentalne oddziaływania, które są źródłem wszystkich sił. **Grawitacyjne, jądrowe słabe, jądrowe silne, elektromagnetyczne**
- 4. Które z oddziaływań fundamentalnych powoduje występowanie siły tarcia pomiędzy stykającymi się powierzchniami dwóch ciał?
- (a) grawitacyjne

(b) elektromagnetyczne

- (c) jądrowe silne
- (d) jądrowe słabe
- 5. Które z oddziaływań fundamentalnych powoduje występowanie sił wiążących atomy w cząsteczki chemiczne?

(a)grawitacyjne

(b)elektromagnetyczne

(c)jądrowe silne

(d)jadrowe słabe

6. Cząsteczkami przenoszącymi oddziaływania elektromagnetyczne są:

(a)gluton **(b) foton** (c)bozony pośrednie W+ i W- , (d) grawiton

- 7. Na poniższym wykresie czasoprzestrzennym zaznaczyć dwa ct różne zdarzenia A i B takie, że w układzie (x,t) zdarzenie A i zdarzenie B zaszły jednocześnie(tA=tB) zaś układzie (x',t') zdarzenie A zaszło wcześniej niż zdarzenie B (tA'<tB').
- 8. Na poniższym wykresie czasoprzestrzennym zaznaczyć dwa różne zdarzenia A i B takie, że w układzie (x,t) zdarzenie A zaszło po zdarzeniu B(tA>tB) zaś w układzie(x',t') zdarzenie A i zdarzenie B były jednocześnie(tA'=tB')
- 9. Na wykresie czasoprzestrzennym zaznaczyć dwa różne zdarzenia _ A i B takie, że w układzie (x', ct') zdarzenie A zaszło jednocześnie ze zdarzeniem B zaś w układzie (x,ct) zdarzenie A zaszło wcześniej niż zdarzenie B(tA'=tB' oraz tA<tB).

Info: jeżeli dwa zdarzenia zachodzą w tym samym czasie, są one równoległe do osi x lub x' (zależnie od układu)

10. Podaj przyczynę, dlaczego III prawo Dynamiki Newtona ("akcji i reakcji") nie jest zawsze spełnione w mechanice relatywistycznej:

Nie jest ona zawsze spełniona ponieważ zakłada, że oddziaływania rozchodzą się z nieskończoną prędkością. W rzeczywistości rozprzestrzeniają się ze skończoną prędkością i np. zmiana położenia jednego ciała wywoła zmianę kierunku działania siły na drugie ciało po czasie związanym z dotarciem odpowiedniego bozonu.

11. Zgodnie z zasadami mechaniki relatywistycznej wymiary podłużne obiektu w układzie poruszającym się wraz ze wzrostem prędkości ulegają

(a)wydłużeniu (b) skróceniu (c) pozostają niezmienione

12. Zgodnie z zasadami mechaniki relatywistycznej czas trwania zjawiska w układzie poruszającym się wraz ze wzrostem prędkości ulega:

Wydłużeniu

13. Zgodnie z zasadami mechaniki relatywistycznej czas trwania zjawiska w układzie własnym(w którym to zjawisko zachodzi) jest

(a) dłuższy niż

(b) krótszy niż

(c) taki sam

jak pomiar czasu trwania tego zjawiska w układzie poruszającym się względem układu własnego.

- 14. Zgodnie z zasadami mechaniki relatywistycznej rozmiary przedmiotu w układzie własnym (w którym ten przedmiot jest nieruchomy) są
 - a. dłuższe niż
 - b. krótsze niż
 - c. takie same jak

w układzie poruszającym się względem układu własnego.

15. Czy w przypadku relatywistycznym przyśpieszenie zawsze jest równe do działającej siły?

Nie, ponieważ przyśpieszenie zależy też od masy poruszającego się obiektu

- 16. Zasada zachowania pędu wynika z własności symetrii przestrzeni:
 - a. jednorodności ze względu na przesunięcie (translację)
 - b. jednorodności ze względu na upływ czasu
 - c. jednorodności ze względu na obrót (izotropowości przestrzeni)
 - d. jednorodności rozkładu masy w przestrzeni
- 17. Zasada zachowania energii wynika z własności symetrii przestrzeni:
 - (b) jednorodności ze względu upływ czasu.
- 18. Podać wzór na energię kinetyczną cząstki o masie spoczynkowej m poruszającej się z prędkością v (w przypadku relatywistycznym)

$$E_k = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} - mc^2$$

19. Energia cząstki o masie spoczynkowej m, poruszającej się z prędkością v w przypadku relatywistycznym wynosi:

(b)
$$E = \frac{m c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$$

20. Podać wzór na dylatację czasu w układzie poruszającym się z prędkością v względem układu odniesienia.

$$t' = \frac{t}{\sqrt{1 - \frac{V_0^2}{c^2}}}$$

21. Pęd cząstki o masie spoczynkowej m, poruszającej się z prędkością v w przypadku relatywistycznym wynosi:

(b)
$$p = \frac{m v}{\sqrt{1 - \frac{v^2}{c^2}}}$$

22. Na ciało o masie spoczynkowej m działa stała siła F. Na poniższym wykresie zaznaczyć jak się zmienia prędkość tego ciała w funkcji czasu w przypadku relatywistycznym.

23. Siła odpychania się dwóch atomów F w funkcji odległości pomiędzy nimi r ma postać: (a)

Ruch falowy, Interferencja światła, Światło w ośrodkach materialnych, Światłowody

24. Jaką długość ma fala elektromagnetyczna o częstotliwości 100 MHz (prędkość światła wynosi c= 3 * 10^8 m/s)

$$\lambda = \frac{c}{v}$$
 $\lambda = \frac{3 \cdot 10^{-8} \frac{m}{s}}{10^{-8} \frac{1}{s}} = 3 m$

25. Jaką długość ma fala elektromagnetyczna o częstotliwości 10 MHz? (prędkość światła wynosi c= 3 * 10^8 m/s)

$$\lambda = \frac{c}{v}$$
 $\lambda = \frac{3 \cdot 10^{-8} \frac{m}{s}}{10^{-7} \frac{1}{s}} = 30 \text{ m}$

26. Jaką długość ma fala elektromagnetyczna o częstotliwości 10 GHz? (prędkość światła wynosi c= 3 * 10^8 m/s)

$$\lambda = \frac{c}{v}$$
 $\lambda = \frac{3 \cdot 10^{-8} \frac{m}{s}}{10^{-10} \frac{1}{s}} = 0,03 m$

27. Jaką częstotliwość ma fala elektromagnetyczna, która w ośrodku o współczynniku załamania n=1,5 ma długość λ = 2cm (prędkość światła wynosi c= 3 * 10^8 m/s)

$$\lambda = \frac{\frac{c}{n}}{v} \Rightarrow v = \frac{c}{n*\lambda}$$
 $v = \frac{3*10^8 \frac{m}{s}}{1,5*2cm} = 10^{10} \frac{1}{s} = 10GHz$

28. Napisać zależność między kątem padania i kątem załamania fali na granicy dwóch ośrodków oraz zaznaczyć na rysunku użyte symbole.

$$n_1 \cdot \sin \alpha = n_2 \cdot \sin \beta$$

29. Podać wzór na wartość kąta granicznego całkowitego wewnętrznego odbicia α_{GR} na granicy pomiędzy ośrodkami o współczynnikach załamania n_1 i n_2 .

$$\alpha_{gr} = \arcsin\left(\frac{n_2}{n_1}\right)$$

$$\frac{\partial^{-2} f}{\partial |x|^2} - \frac{1}{|v|^2} \frac{\partial^{-2} f}{\partial |t|^2} = 0$$
. Czy v jest prędkością fali względem :

30. Równanie falowe ma postać

(a) źródła wytwarzającego falę?

(b) ośrodka, w którym się fala porusza?

(c) mierzącego prędkość? Obserwatora

$$\frac{\partial^2}{\partial z^2} f = \frac{1}{v^2} \cdot \frac{\partial^2}{\partial t^2}$$

- 31. Równanie falowe ∂z^2 v^2 ∂t^2 opisuje falę rozchodzącą się z prędkością kierunkach:
 - (a) w kierunku osi z, (b) w kierunku przeciwnym do osi z (c) w obu kierunkach
- 32. W wyniku interferencji dwóch spójnych fal o jednakowych natężeniach równych I, powstała fala o natężeniu 3I. Jaka jest różnica faz między nimi?

$$I = I_1 + I_2 + 2 * \sqrt{I_1 * I_2} * \cos(\phi_1 - \phi_2)$$

$$3I = I + I + 2 * \sqrt{I * I} * \cos(\phi_1 - \phi_2)$$

$$I = 2I * \cos(\phi_1 - \phi_2) \Rightarrow \cos(\phi_1 - \phi_2) = \frac{1}{2} \Rightarrow \phi_1 - \phi_2 = \frac{\pi}{3}$$

33. Dwie spójne fale mają jednakowe natężenia równe I. Ile wynosi natężenie sumaryczne w miejscu, w którym fale mają względną różnicę faz równą π /4 (45°)?

$$I = I_1 + I_2 + 2 * \sqrt{I_1 * I_2} * \cos(\phi_1 - \phi_2)$$

$$X = I + I + 2 * \sqrt{I * I} * \cos(\frac{\pi}{4})$$

$$X = 2I + I\sqrt{2}$$

34. Jaką w przybliżeniu długość fali i jaką częstotliwość ma światło w środku zakresu widzialnego?

Długość fali: $\lambda \in (0.38 \mu m ; 0.76 \mu m)$

Częstotliwość: $v = 10^15 Hz$

- 35. Fala harmoniczna opisywana równaniem: $f=A\cos(\omega t-kx)$ ma prędkość fazową równą: (a) $v=k/\omega$, (b) $v=-k/\omega$
- (c) $v = \omega/k$

(d) $v=-\omega/k$.

- 36. Światło jest falą elektromagnetyczną, w której wektory pola elektrycznego oraz magnetycznego są: (c) wzajemnie prostopadłe i prostopadłe do kierunku rozchodzenia się fali.
- 37. Dyfrakcja światła powoduje, że na granicy przesłony fala ulega **(b) ugięciu.**
- 38. Współczynnik załamania światła określa

(b) stosunek prędkości światła w próżni do prędkości fazowej w ośrodku

(c) kąt padania światła na ośrodek

(d) zakrzywienie promieni w ośrodku

39. Interferencja dwóch fal nie jest widoczna, gdy obie fale:

(a) mają różne amplitudy

(b) nie są spójne

(c) poruszają się względem siebie pod pewnym kątem (d)nie są falami elektromagnetycznymi

40. Dwie fale są spójne, gdy

(a) są współliniowe

(b) interferują ze sobą

(c) ich natężenia się sumują

(d) rozchodzą się w tym samym kierunku.

41. Promieniowanie laserowe jest wynikiem emisji

(a) spontanicznej

(b) wymuszonej

(c) termicznej

(d) kontrolowanej.

42. Współczynnik załamania światła określa

(a) barwę ośrodka

(b) stosunek prędkości światła w próżni do prędkości fazowej w ośrodku

(c) kat padania światła na ośrodek

(d) zakrzywienie promieni w ośrodku.

43. Wydłużenie czasu trwania impulsów rozchodzących się w światłowodach spowodowane jest:

(a) dyfrakcją

(b) dyssypacją

(c) dyspersją.

44. Hologram jest zapisem fali świetnej odbitej od obiektu zawierającym informację o

(a) natężeniu światła

(b) długości fali

(c) barwie obiektu

(d) fazie fali świetlnej

(e) prędkości fazowej.

45. Dyspersja ośrodka określa zależność współczynnika załamania światła od

(a) prędkości fazowe

(b) częstotliwości fali

(c) gęstości ośrodka

(d) temperatury.

46. Przy zapisywaniu hologramu wykorzystuje się lasery, gdyż potrzebne jest źródło światła

(a) spójnego

(b) o dużej mocy

(c) trudne do podrobienia

(d) o wysokim kontraście.

47. Prędkość rozchodzenia się impulsów jest związana z

(a) prędkością fazową

(b) prędkością grupową (c) prędkością szczytową (d) urojoną składową prędkości fazowej.

48. Całkowite wewnętrzne odbicie zachodzi, gdy światło pada na ośrodek:

(a) o większym współczynniku załamania

(b) o mniejszym współczynniku załamania

pod kątem:

(A) większym

(B) mniejszym (C) równym

kątowi granicznemu.

49. Stosowane w telekomunikacji światłowody są jednomodowe a nie wielomodowe po to, aby przesyłany impuls światła

(a) miał większą energię

(b) był monochromatyczny

(c) ulegał mniejszemu wydłużeniu.

50. Płaszcz światłowodu ma współczynnik załamania

(a) większy

(b) mniejszy

(c) taki sam

jak współczynnik załamania rdzenia.

51. Rdzeń światłowodu ma współczynnik załamania

(a) większy

(b) niniejszy

(c) taki sam jak

współczynnik załamania otaczającego rdzeń płaszcza.

52. W telekomunikacji światłowodami przesyłana jest fala elektromagnetyczna o długości dobranej ze wzgledu na

(a) najmniejszą tłumienność

- (b) najbardziej efektywne źródła światła i detektory
- (c) możliwość modulacji powyżej 10 GHz
- (d) łatwość produkcji światłowodów dla tej długości fali.
- 53. W telekomunikacji światłowodami przesyłana jest fala elektromagnetyczna o długości:

(a) 150 nm(ultrafiolet)

(b) 550 nm (światło widzialne)

(c) 1,5 µm (podczerwień)

54. W typowych światłowodach jednomodowych stosowanych w telekomunikacji światło traci około 99% energii w wyniku strat po przebyciu odległości rzędu

(a) 1 km

(b) 10 km

(c) 100 km

(d) 1000 km

55. Co jest głównym źródłem strat w światłowodach telekomunikacyjnych?

różnice faz w falach, gdy maja rożne fazy fale wygaszają sie co powoduje wypływanie ich energii na zewnątrz światłowodu.