MACM 201 Homework 10 (Quiz Nov. 27)

Textbook problems:

Section	Question
12.1	2
12.1	8
12.1	12

Instructor quesions:

- 1. Prove that a tree T = (V, E) with $|V| \ge 2$ has exactly two leaf vertices if and only if it is a path.
- 2. Prove that a connected graph G = (V, E) with $|V| \ge 3$ has at least three vertices v so that G v is connected unless G is a path. Hint: consider a spanning tree.
- 3. Prove by induction that for every tree T = (V, E) there is a function $f : E \to \{-1, 1\}$ with the property that for every vertex $v \in V$ with incident edges e_1, e_2, \ldots, e_k we have $|f(e_1) + f(e_2) + \ldots + f(e_k)| \leq 1$

Orienting a graph. Let G = (V, E) be a graph (not a multigraph). To orient G, we turn this graph into a directed graph by replacing each edge $\{u, v\}$ with the directed edge (u, v) or (v, u) (i.e. we orient this edge so that it goes from u to v or vice-versa).

Degree in directed graphs. If D = (V, E) is a directed graph and $v \in V$, the *outdegree* of v, denoted $\deg^+(v)$ is the number of edges in D that are incident with v but directed away from it. Similarly the *indegree* of v, denoted $\deg^-(v)$ is the number of edges incident with v but directed toward it.

- 4. Prove by induction that every tree T = (V, E) has an orientation with the property that every vertex $v \in V$ satisfies $|\deg^+(v) \deg^-(v)| \le 1$
- 5. Prove that every graph G = (V, E) has an orientation with the property that every vertex $v \in V$ satisfies $|\deg^+(v) \deg^-(v)| \le 1$. Hint: use induction on |E| and the previous problem. What can you do when G has a cycle C?