

# A COMPARATIVE STUDY OF SELECTED MACHINE LEARNING METHODS FOR PREDICTING HOUSING PRICES

TOMORROW TRUST

KWANELE N. MNISI (18164049)
DEPARTMENT OF STATISTICS: UNIVERSITY OF PRETORIA

#### ABSTRACT

Buying or selling a house is one of the most significant financial transactions that most people undertake in their lifetime. For this reason, it is crucial to have an accurate understanding of the value of a property, whether you are a buyer looking to make a wise investment, or a seller seeking to maximize your profit. The study:

- Compares Random Forest, Support Vector Regression, and XGBoost, focusing on their predictive performance.
- It employs both internal (within techniques) and external (between techniques) comparisons.

The findings were that XGBoost performs the best, especially with feature selection. The study empha-

sizes the importance of feature selection in enhancing model performance.



## PERFORMANCE EVALUATION

|                                  | $R^2$ | MSE        | RMSE  | $\overline{MAE}$ |
|----------------------------------|-------|------------|-------|------------------|
| Random Forest                    |       |            |       |                  |
| Full model                       | 61%   | 1831068162 | 42790 | 29625            |
| Reduced Model                    | 62%   | 1776790450 | 42152 | 29317            |
| <b>Support Vector Regression</b> |       |            |       |                  |
| Full model                       | 89%   | 539307729  | 23223 | 15064            |
| Reduced model                    | 90%   | 466041744  | 21588 | 13945            |
| XGBoost                          |       |            |       |                  |
| Full model                       | 92%   | 413918676  | 20345 | 13115            |
| Reduced model                    | 92%   | 394419635  | 19860 | 13045            |

#### THEORETICAL COMPARISONS OF THE THREE SELECTED TECHNIQUES

| Aspect                   | Random Forest                                                                             | Support Vector Regression                                                                                 | XGBoost                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Handling of missing data | Can handle missing data                                                                   | Needs preprocessing for missing data                                                                      | Can handle missing data                                                                                   |
| Handling of outliers     | Relatively robust to outliers                                                             | Sensitive to outliers, especially when using the epsilon parameter in SVR. Preprocessing is often needed. | Robust to outliers due to ensemble learning and regularization. Extreme outliers may have limited impact. |
| Numerical<br>Data        | Can handle categorical features<br>by encoding them. Works well<br>with mixed data types. | Requires numerical data or extensive preprocessing (e.g., one-hot encoding).                              | Requires numerical data but can handle mixed data types with appropriate encoding.                        |
| Overfitting              | Less prone to overfitting                                                                 | May require regularization                                                                                | Needs hyperparameter tuning for control                                                                   |
| Computational complexity | Can be computationally expensive                                                          | Can be computationally expensive                                                                          | Efficient and scalable                                                                                    |
| Used R<br>packages       | RandomForest                                                                              | Kernlab, Caret                                                                                            | xgboost                                                                                                   |
| Feature selection        | Provides variable importance                                                              | Require separate feature selection                                                                        | Provides variable importance                                                                              |

## PERFORMANCE VISUALS OF THE LOW VS THE HIGH PERFORMING MODELS



#### CORRELATION PLOT



## TOP 40 IMPORTANT FEATURES



## CONCLUSION

- Employing a 70:30 train-test data split on the Ames Housing dataset, this study demonstrated that selecting the top 40 features significantly enhances model performance, highlighting the importance of feature selection. Across all three techniques utilized for property sale price prediction, "Overall Quality" and "Ground Living Area" consistently emerged as the two most crucial features.
- However, the study acknowledges limitations due to the use of an outdated 2010 dataset, which lacks contemporary factors like transportation access and energy efficiency, along with essential economic indicators influencing housing prices. Nevertheless, it underscores the effectiveness of machine learning techniques, notably XGBoost, in accurately predicting house prices.

#### REFERENCES

- [1] A. CUTLER, D. R. CUTLER, AND J. R. STEVENS, *Random forests*, Ensemble Machine Learning: Methods and Applications, (2012), pp. 157–175.
- [2] H. DRUCKER, C. J. BURGES, L. KAUFMAN, A. SMOLA, AND V. VAPNIK, Support vector regression machines, Advances in Neural Information Processing Systems, 9 (1996), pp. 155–161.