

Calculus 1 Workbook

Tangent and normal lines

TANGENT LINES

■ 1. Find the equation of the tangent line to the graph of the equation at $(1/2,\pi)$.

$$f(x) = 4 \arctan 2x$$

■ 2. Find the equation of the tangent line to the graph of the equation at (-1, -9).

$$g(x) = x^3 - 2x^2 + x - 5$$

■ 3. Find the equation of the tangent line to the graph of the equation at (0, -4).

$$h(x) = -4e^{-x} + 3x$$

 \blacksquare 4. Find the equation of the tangent line to the graph of the equation at (1,1).

$$f(x) = -6x^4 + 4x^3 - 3x^2 + 5x + 1$$

VALUE THAT MAKES TWO TANGENT LINES PARALLEL

- 1. Find the value of a such that the tangent lines to $f(x) = 2x^3 + 2$ at x = a and x = a + 1 are parallel.
- 2. Find the value of a such that the tangent lines to $g(x) = x^3 + x^2 + 7$ at x = a and x = a + 1 are parallel.
- 3. Find the value of a such that the tangent lines to $h(x) = \tan^{-1} x$ at x = a and x = a + 1 are parallel.
- 4. Find the value of a such that the tangent lines to $f(x) = 4x^3 6x + 7$ at x = a and x = a + 1 are parallel.
- 5. Find the value of a such that the tangent lines to $g(x) = (x-2)^3 + x^2 + 3$ at x = a and x = a + 1 are parallel.
- 6. Find the approximate value of a, rounded to the nearest hundredth, such that the tangent lines to $h(x) = e^x 3x^2$ at x = a and x = a + 1 are parallel.

VALUES THAT MAKE THE FUNCTION DIFFERENTIABLE

 \blacksquare 1. What value of a and b will make the function differentiable?

$$f(x) = \begin{cases} x^2 & x \le 3\\ ax - b & x > 3 \end{cases}$$

■ 2. What value of a and b will make the function differentiable?

$$g(x) = \begin{cases} ax + b & x \le -1 \\ bx^2 - 1 & x > -1 \end{cases}$$

 \blacksquare 3. What value of a and b will make the function differentiable?

$$h(x) = \begin{cases} ax^3 & x \le 2\\ x^2 - b & x > 2 \end{cases}$$

 \blacksquare 4. What value of a and b will make the function differentiable?

$$f(x) = \begin{cases} 3 - x & x \le 1\\ ax^2 - bx & x > 1 \end{cases}$$

 \blacksquare 5. What value of a and b will make the function differentiable?

$$g(x) = \begin{cases} x^3 & x \le 1\\ a(x-2)^2 - b & x > 1 \end{cases}$$

 \blacksquare 6. What value of a and b will make the function differentiable?

$$h(x) = \begin{cases} ax^2 + b & x \le 3\\ bx + 4 & x > 3 \end{cases}$$

NORMAL LINES

- 1. Find the equation of the normal line to the graph of $f(x) = 5x^4 + 3e^x$ at (0,3).
- 2. Find the equation of the normal line to the graph of $g(x) = \ln e^{4x} + 2x^3$ at (2,24).
- 3. Find the equation of the normal line to the graph of $h(x) = 5 \cos x + 5 \sin x$ at $(\pi/2,5)$.
- 4. Find the equation of the normal line to the graph of $f(x) = 7x^3 + 2x^2 5x + 9$ at (2,63).
- 5. Find the equation of the normal line to the graph of $g(x) = 5\sqrt{x^2 14x + 49}$ at (2,25).

AVERAGE RATE OF CHANGE

■ 1. Find the average rate of change of the function over the interval [4,9].

$$f(x) = \frac{5\sqrt{x} - 2}{3}$$

■ 2. Find the average rate of change of the function over the interval [16,25].

$$g(x) = \frac{2x - 8}{\sqrt{x - 2}}$$

 \blacksquare 3. Find the average rate of change of the function over the interval [0,4].

$$h(x) = \frac{x^3 - 8}{x^2 - 4x - 5}$$

W W W . KRISTAKING MATH. COM