

Practica Parciales (P1 y P2)

1er fecha 2025 redic

Parte A:

- 1) G
- 2) F
- 3) E
- 4) C
- 5) G? A B C son correctas
- 6) E
- 7) E
- 8) F
- 9) C
- 10) G

Parte B)

1)

1er 2025 B)																		
Proceso	Llegada	CPU	I/O (r,I,d)	0	1	2	3	4	5	6	7	8	9	10	11	12	TR	TE
P1	0	5	(R1,2,3)	>1	2	R1	R1	R1				3	4	5<			11	6
P2	0	5	(R2,3,2)	>		1	2	3	R2	R2					4	5<	13	8
P3	3	3	-					>	1	2	3<						4	1
RR Q=3			Queue	1	2	3	1	2									9,3	5

el 3 llega en el instante 3 lo puse mal pero es indiferente

2)

- A) Beneficia a procesos CPU bound ya que si terminan su quantum los beneficia mandandolos a la cola de mayor prioridad, en cambio los I/O Bound tienden a salir antes del fin de su rafaga de Quantum y en este algoritmo serian perjudicados
- B) Si puede producir inanacion ya que los procesos que no terminan su quantum y van a la cola de menor prioridad pueden quedarse esperando indefinidamente si todos los procesos consecuentes siempre terminan su quantum

3)

Pagina	Marco
0	16
1	13
2	9
3	2
4	0

Marco	Inicio-Fin
0	0-2047
2	4096-6143
9	18432-20479
13	26624-28671
16	32768-34815

a) 5120

Nro Pagina: 5120 DIV 2048 = 2

Desplazamiento: 5120 MOD 2048 =1024

Direccion: 18432 + 1024 = 19456

b) 3242

Nro Pagina: 3242 DIV 2048 = 1

Desplazamiento: 3242 MOD 2048 =1194

Direccion: 26624 + 1194 = 27818

c) 1578

Nro Pagina: 1578 DIV 2048 = 0

Desplazamiento: 1578 MOD 2048 =1578

Direccion: 32768 + 1578 = 34346

d) 2048

Nro Pagina: 2048 DIV 2048 = 1

Desplazamiento: 2048 MOD 2048 = 0

Direccion: 32768 + 0 = 32768

e) 8191

Nro Pagina: 8191 DIV 2048 = 3

Desplazamiento: 8191 MOD 2048 = 2047

Direccion: 4096 + 2047 = 6143

4)

a) 2^32 es el tamanio maximo de un proceso

b) 2^32/1024(2^10) es la cantidad de paginas (2^22)

c) (2^32/1024) * 2 es el tamanio maximo de la tabla de paginas (2^23)

d) $(2^30 \times 16(2^4))/1024$ es la cantidad de marcos (2^24)

e) 5450/1024 = 6 paginas

f) 2^32/ 2^10 (2^21)

Parte C:

- 1) Falso, aplicaciones o servicios pueden estar en modo usuario
- 2) Falso, todo sistema operativo gestiona dispositivos de entrada salida y los atiende junto con ayuda del HW
- 3) Verdadero, la systemcall es el unico medio por el cual un usuario puede generar una interrupcion forzada para que se le brinde algun servicio
- 4) Falso, el PCB si tiene informacion sobre la ubicacion de memoria con punteros
- 5) Falso, el PCB se encuentra en el espacio de memoria del SO en un lugar aparte
- 6) Verdadero, gastan su rafaga y abandonan por su propia cuenta el CPU

- 7) Falso, la MMU no se encarga de asignar memoria principal sino que se encarga de traducir direcciones logicas a fisicas
- 8) Falso, solo ocurre en esquemas de particiones fijas, donde un proceso puede dejar espacio imposible de utilizar ya que es mas pequeño que la pagina que lo contiene
- 9) Falso, los sgmentos no son de igual tamaño
- 10) Falso, esta en espera de un evento que lo haga pasar de Waiting a Ready para pelear por CPU denuevo