Turing Machines

Introduction and Motivation

In this lecture we introduce *Turing Machines* and discuss some of their properties.

Turing Machines

- A **Turing Machine** is a finite state machine augmented with an infinite tape.
- The tape head can go in both directions. It can read and write from/to any cell of the semi-infinite tape.
- Once the TM reaches an accept (reject resp.) state it accepts (rejects resp.) immediately.

Schematic of a Turing Machine

The tape head can go in both directions. It can read and write from/to any cell of the semi-infinite tape. The _ symbol marks the input's end.

TM – A Formal Definition

- A **Turing Machine** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:
- 1. *Q* is a finite set called the *states*.
- 2. Σ is the *input alphabet* not containing the *blank symbol*, _ .
- 3. Γ is the *tape alphabet*, $\subseteq \Gamma$ and $\Sigma \subseteq \Gamma$.
- 4. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$ is the *transition function*.
- 5. $q_0 \in Q$ is the **start state**.

TM – A Formal Definition

- A **Turing Machine** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where:
- 6. $q_{accept} \in Q$ is the *accept state*, and
- 7. $q_{reject} \in Q$ is the **reject state**, where $q_{reject} \neq q_{accept}$

The Transition Function - Domain

Let M be a Turing machine defined by $(Q,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject})$. At any given time M is in some state, $q\in Q$, and its head is on some tape square containing some tape symbol $\gamma\in\Gamma$. The transition function $\delta:Q\times\Gamma\to Q\times\Gamma\times\{L,R\}$, depends on the machine state q and on the tape symbol γ .

The Transition Function - Range

The range of the transition function are triples of the type (q', γ', d) , where q' is M's next state, γ' is the symbol written on the tape cell over which the head was at the beginning of the transition (namely γ is replaced with γ') and $d \in \{L, R\}$ is the direction towards which the tape head has made a step.

Turing machine – A Computation

Computation of M always starts at state q_0 , and the input is on the leftmost n cells where n is the input's length. The tape's head is over the tape's cell 0 – the leftmost cell.

Computation of M ends either when it reaches $q_{accept} \in Q$ - this is an **Accepting Computation**. Or when it reaches $q_{reject} \in Q$ - this is a **Rejecting Computation**.

Configurations

- A configuration of a Turing machine M is a concise description M's state and tape contents. It is written as C=uqv and its meaning is:
- 1. The state of M is q.
- 2. The content of M's tape is uv, where u resides on the leftmost part of the tape.
- 3. The head of M resides over the leftmost (first) symbol of v.
- 4. The tape cells past the end of v hold blanks.

Configurations

Configuration C_1 of M yields Configuration C_2 , if M can legally go from C_1 to C_2 in a single step. For example: Assume that $a,b,c\in\Gamma$, $u,v\in\Gamma^*$, and $q_i,q_j\in Q$. We say that uaq_ibv yields uq_jacv , if $\delta(q_i,b)=(q_j,c,L)$, for a leftward movement of the head.

for a rightward movement of the head.

We say that uaq_ibv yields $uacq_iv$, if $\delta(q_i,b)=(q_i,c,R)$,

Configurations – Special Cases

Configuration q_ibv yields q_jcv if the head is at the beginning of the tape and the transition is **left-moving**, because the head cannot go off the left-hand end of the tape.

Configuration uaq_i is equivalent to uaq_{i-} because the empty part of the tape is always filled out with blanks.

Computations

The **start** Configuration of M on input w is q_0w , which indicates that M is at its initial state, q_0 , it's head is on the first cell of its tape and the tape's content is the input w.

Any configuration in which of M reaches state q_{accept} , is an **accepting configuration**.

Any configuration in which M reaches state q_{reject} , is a **rejecting configuration**.

Computations

Accepting and rejecting configurations are *halting* configurations.

- A TM M accepts word w if there exists a computation (a sequence of configurations) of M, $C_1, C_2, ..., C_k$ satisfying:
- 1. $C_1 = q_0 w$ is the starting state of M on input w.
- 2. For each $i, 1 \le i < k$, C_i yields C_{i+1} , and
- 3. C_k is an accepting configuration.

Computation Outcomes

- A Computation of a Turing machine M may result in three different **outcomes**:
- 1. M may accept By halting in q_{accept} .
- 2. M may **reject** By halting in q_{reject} .
- 3. *M* may *loop* By not halting **for ever**.

Note: When M is running, it is not clear whether it is **looping**. Meaning M may stop eventually but nobody can tell.

Turing Recognizers

The collection of strings that M accepts is **the** language of M, or the language recognized by M, denoted L(M).

A language is *Turing Recognizable* (or *recursively enumerable*) if there exists a Turing machine that recognizes it.

Turing Deciders

Since it is hard to tell whether a running machine is *looping*, we prefer machines that halt on *all inputs*. These machines are called *deciders*.

A decider that recognizes a language L is said to decide L.

A language is *Turing decidable* (or *recursive*) if there exists a Turing machine that decides it.

An Example

Consider the language $L = \{0^{2^n} | n \ge 0\}$ containing strings of 0-s whose length is an integral power of 2.

The language L is neither regular nor CFL.

In the next slide we present a high level description of TM M_2 to decide L. The description format follows the textbook.

An Example

 M_2 = "On input string w:

- 1. Sweep the tape left to right, crossing every second 0.
- 2. If in stage 1 the tape has a single 0, accept.
- 3. If in stage 1 the tape has an odd number of 0-s greater than 1, reject.
- 4. Return the head to the left-hand end of the tape.
- 5. Go to stage 1. "

Explanation

 M_2 works as follows:

Each iteration of stage 1 cuts the number of 0-s in half. As it sweeps across its tape on stage 1 it "calculates" whether the number of 0-s it sees is odd or even. If the number of 0-s is odd and greater than 1, the input length cannot be a power of 2, so it rejects. If the number of 0-s is 1, the input length is a power of 2 and it accepts.

An Example

In the following slide the transition function of M_2 is presented.

Note:
$$\Sigma = \{0\}$$
, $\Gamma = \{0, x, _\}$.

Consider the language $L = \{w \# w | w \in \{0,1\}^*\}$.

A simple method to check whether a string w is in L is: Read the first character of w, store it, and mark it off. Then scan w until the character # is found, if the first character past # is equal to the stored character, cross it and go back to the last crossed character, On the tape's beginning.

Repeat this procedure until all the string w is scanned. If an unexpected character is found, reject. Otherwise, accept.

In the next slide we present a high level description of TM M_1 to decide L. The description format follows the text book.

 M_1 = "On input string w:

- 1. Store the leftmost symbol on the tape and cross it out by writing x.
- 2. Go right past #, if # not found, reject.
- 3. compare the leftmost non x symbol to the stored symbol. If not equal, **reject**.
- 4. Cross out the compared symbol. Return the head to the left-hand end of the tape.
- 5. Go to stage 1. "

In the following slide the transition function of M_2 is presented.

Note:

- 1. $\Sigma = \{0,1,\#\}$, $\Gamma = \{0,1,\#,x,_\}$.
- 2. In this description, state q_{reject} and all its incoming transitions are omitted. Wherever there is a missing transition, it goes to q_{reject} .

Note: states q_2 and q_4 "store" the bit 0, while states q_3 and q_5 "store" the bit 1. In other words: These two segments are identical, but when they **merge** each segment uses the value it stored.