1. tonoi株式会社 会社概要

tonoi株式会社

設立: 2015年2月2日

代表取締役:戀川光央

資本金:1000万円

東京都千代田区五番町2-14

カーサ五番町 101号 https://tonoi.co.jp

<ミッション>

- ネット社会の宿直
- より住みよいインターネットを目指して

<ビジョン>

• 生データを集めずにAIアプリが流通するデータ 循環社会を構築する

<事業内容>

- 次世代IT処理基盤 Hybrid Computing 開発事業
- インターネット等を利用したサービスの企画 設計運用等
- ソフトウェア受託開発事業

代表取締役・戀川光央 (略歴)

Xbox 通信プロトコル発明・特許保有

- PlayStationなどが本特許を引用
- 後のLINE、Zoomなどの通話プロトコル

相互接続性ラボを13年間維持・主催

- 130社以上のキャリア・ISPなどと相互運用試験
- 30社以上の通信機器ベンダーと相互運用試験

他、技術経営修士、フランス留学、論文受賞、書籍・雑誌連載など

2. 主要メンバー (Our Team)

<u>戀川 光央</u> [代表取締役]

'94~ Nihon Silicon Graphics SE 雑誌連載、出版など複数

'02 MS Xbox 基盤特許

'07 地デジ暗号化Microsoft社長賞

'13 東京理科大学 MOT

フランス Biz School

'14 IPv6普及 CEDEC優秀賞

'15 tonoi株式会社 設立

林伸彦 [取締役]

業務執行取締役 管理・会計税務 担当 '10-15 あずさ監査法人 会計監査・上場支援

'15 林戦略会計税務事務所 代表

'16 MIT-VFJ 理事 就任

'17 MIT-VFI 副理事長 就任

高橋 弘至

API開発担当 ㈱Shinonome CTO '16 Compiler Engineer @Scala Native

'16 ㈱Shinonome 創業
'18 tonoi㈱ 技術部主任研究員

橋田 浩一

東京大学大学院 情報理工学系研究科 ソーシャル ICT 研究センター 新融合サービス ICT 分野 教授 自律分散協調、ストレージ研究

小倉豪放 [社外取締役]

クライアント設計開発担当 コア特許共同発明者

'94-01 Virtua Fighter2開発 @SEGA '01-07 Xbox Math Library 開発 @Microsoft

'09(㈱フィジオス創業

'13 ㈱フィジオス Google売却

'12~ ㈱ディー・エヌ・エー 在籍

ハード設計

青木 良好 [社外取締役] ハード開発・販売先開拓担当 創業時協力メンバー

'94-06 ASIC/FPGA設計 @NEC '06-12日立ハイテクエンジュアリング・サービュス'12-16 (株)システム開発研究所'16~ アト・ハ・ンストシステムズ・(株) 在籍

谷口 賢吾

企画室 室長 ヒ・ジ・ネス・プ・レークスルー大学院大学講師 '98 (株)大前・アント・アンシェーツ 参画 '02 (株)ビ・ジ・ネス・プ・レークスルー 執行役員 '06~ BBT大学院大学講師 兼任 '08 (株)クリエナレッジ 設立 '18フューチャリズム(株)設立

Partner

<u>株式会社Shinonome</u> ソフト開発

組込開発 <u>アドバンストシステムズ</u> <u>株式会社</u>

7

3. 当社の考えるデータ・AIの利活用上の課題

ジャンボデータとビッグデータの違い

ジャンボデータ処理の課題

ジャンボデータ

- •ひとかたまりの大きな データ
- •自動運転、AI処理など
- •スパコン:専用ハード に集中化して高速化

ビッグデータ

- •小さなデータの集合
- •気象予報、検索、流通 など
- •クラウド:汎用ハード に分散化して高速化

非構造化

- データに紛れ込む機密情報
- 大きすぎてクラウドに転送困難

再現不可

- 現象が再現しづらくデータ再取得が困難
- 解析後に気づくデータ不足

実社会でのジャンボデータ

もの づくり

amazongo

バック エンド

フィー ルド 高コスト

- AIと組込み双方の技術者が必要
- 専用環境が必要

4. 当社の考える課題解決策

解決・実現方法および当社のコア技術

解決策

ジャンボデータを 採取場所(エッジ)に 保存し「移動させない」

実現方法

データ保存場所の 「影像」を 処理場所(クラウド)に映す

クラウドとエッジをシームレスにつなげる Hybrid Computing (HC) のコア技術

集めないデータ In Storage Processing

新しいデータ位置計算方法 PCT、TW特許出願済み

クラウドビルド AOT Compiler

新しいAOTコンパイラ技術 PCT、TW特許出願済み

様々な環境対応 Heterogeneous 分散エージェントを守る 暗号技術

当社コア技術・Hybrid Computingの実装イメージ

5. 当社技術とAmazon IoT、組込み開発との比較

		当社技術 Hybrid Computing	Amazon IoT	組込みエッジ開発
	クラウドリソース	Web UI, Storage, AI	Web UI, Storage, AI, GPU	Web UI, Storage, AI
	クラウド維持費	\circ	×	\circ
	クラウドアプリ	OSS	Amazon Lambda	OSS
	エッジアプリ	n/a	Docker, FreeRTOS	Ubuntu, Windows, etc
	アプリ開発費	0	\triangle	×
	配布単位	Binary Image	Docker, Binary Image	Docker, Binary Image
	配布方法	HC独自	Greenglass	手動
	サポートコスト	0	\triangle	×
	エッジOS	Ubuntu	Ubuntu, FreeRTOS	Ubuntu, Windows, etc
	導入コスト	\triangle	0	×
	演算力	クラウド + エッジ	クラウド	エッジ
	データ転送	少ない	多い	少ない

6. システム受託開発メニュー

①分散型画像処理(AI) システム開発

画像データを撮影場所から移動させずに、AIの再学習・更新を行うシステムを開発します

・クラウドへの生データ転送不要・機密情報の流出を防止

②後付け型高速画像検索 (AI) システム開発

大容量ストレージ機器に、画像 検索エージェント(ソフト)を 送り込むシステムを開発します

事前学習(タグ付け等)なしで 高速画像検索が可能

③AIのリモートメンテナンス システム開発

リモート(遠隔)で、AIや制御 ロジックの生成・更新を行うシ ステムを開発します

- •技術者の開発負担を低減
- •現場への出張コストを削減

7. 実績・取組中の案件のご紹介

導入済み実績

契約締結済み・交渉中

・ AI開発ベンダー

HCをサービスへ組み込み実装 次の案件へ向けて交渉中

\$19 2019年11月 @Denver, USA 出展 協賛企業

キヤノン(株):4Kデータ、機材の提供

• **世界的企業** : FPGA基盤の提供

Sler企業 : 次世代AI構想の共同展示

• **北陸電力(株)** : AI素材データの提供

• **有限会社ラド**:AI素材データの提供

NTT東日本(株)GPUクラウドファームの無償提供共同研究の契約締結済JARECにて共同研究を先行紹介

・ <u>システムハウス</u>HCを採用した**新製品を2件企画中**

Sler企業 自社BlogでHC技術を紹介2020/4月リリース目標で協議中

8. 開発ご依頼の流れ

以下フローのお見積もり仮定まで無料にて承りますので、お気軽にお問い合わせください ※各工程に要する日数はご依頼内容によって異なります

