Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

1. dolgozat

Véletlen kísérletek, események valószínűsége

Definíció. Egy véletlen kísérlet lehetséges eredményeit **kimeneteleknek** nevezzük. A kísérlet kimeneteleinek a halmaza az **eseménytér**. Jele: Ω .

Definíció. Eseményeknek nevezzük a kísérlet aktuális kimeneteléhez kapcsolódó állításokat. Azt mondjuk, hogy egy esemény **bekövetkezik**, ha a kísérlet aktuális végrehajtásakor olyan kimenetelt kapunk, melyre ez az állítás igaz. Egy adott kísérlet esetén a hozzá kapcsolódó összes esemény halmazát **eseményalgebrának** nevezzük. Jele: \mathcal{A} . Két nevezetes esemény:

- Egy eseményt **biztos eseménynek** nevezük, ha a kísérlet minden lehetséges kimenetele esetén bekövetkezik.
- Egy eseményt **lehetetlen eseménynek** nevezük, ha a kísérletnek nincs olyan kimenetele, melyre ez az esemény bekövetkezne.

Definíció. Legy A_1, A_2, \ldots tetszőleges esemény. Azt mondjuk, hogy ezek az események **páronként kizáróak** avagy **páronként diszjunktak**, ha bármely kettőt kiválasztva azoknak üres a metszete. A kizáró események közül legfeljebb egy következhet be egyszerre, hiszen nincs olyan kimenetel, melyet két vagy több esemény is tartalmazna.

Definíció. Azt mondjuk, hogy a B esemény **maga után vonja** az A eseményt, ha $B \subseteq A$, tehát B minden eleme az A halmaznak is eleme. Ez azt jelenti, hogy ha a B esemény bekövetkezik, akkor az A esemény is feltétlenül bekövetkezik.

Definíció. Azt mondjuk, hogy egy $P: \mathcal{A} \to [0,1]$ függvény valószínűség vagy valószínűségi mérték az eseményalgebrán, ha teljesíti az alábbi két tulajdonságot:

- A biztos esemény valószínűsége $P(\Omega) = 1$.
- Additivitás: Ha A_1, A_2, \ldots páronként kizáró eseményeknek egy véges vagy végtelen sorozata, akkor az egyesítésük valószínűsége

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

Tehát a valószínűségi mérték egy olyan függvény, mely az eseményekhez 0 és 1 közötti számokat rendel hozzá. Az A eseményhez rendelt P(A) értéket úgy nevezzük, hogy az A valószínűsége.

Definíció. Az (Ω, \mathcal{A}, P) hármast **valószínűségi mezőnek** hívjuk. A véletlen kísérleteket mindig egy megfelelően konstruált valószínűségi mezővel írjuk le. Az Ω alaphalmaz a kísérlet kimeneteleinek a halmaza (eseménytér), a \mathcal{A} eseményalgebra a vizsgált események rendszere, és végül a P függvény mondja meg az egyes események valószínűségét.

Tétel. A valószínűség általános tulajdonságai:

- A lehetetlen esemény valószínűsége: $P(\emptyset) = 0$.
- A komplementer esemény valószínűsége: $P(\overline{A}) = 1 P(A)$.
- **Kivonási szabály**: tetszőleges A és B esemény mellett $P(A \setminus B) = P(A) P(A \cap B)$. Speciálisan, ha B maga után vonja az A eseményt, akkor $P(A \setminus B) = P(A) P(B)$.
- Monotonitás: ha B maga után vonja az A eseményt, akkor $P(B) \leq P(A)$.

Komplementer esemény

Kivonási szabály

Monotonitás

• Szubadditivitás: Ha A_1, A_2, \ldots tetszőleges eseményeknek egy véges vagy végtelen sorozata, akkor

$$P(A_1 \cup A_2 \cup \cdots) \le P(A_1) + P(A_2) + \cdots$$

• Két esemény uniójának a valószínűsége: tetszőleges A és B esemény mellett

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

 $\bullet\,$ Három esemény uniójának a valószínűsége: tetszőleges $A,\,B$ és C esemény mellett

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Szubadditivitás

Két esemény uniója

Három esemény uniója

• Poincaré-formula avagy szitaformula: tetszőleges A_1, \ldots, A_n események mellett

$$P(A_1 \cup \dots \cup A_n) = \sum_{k=1}^n (-1)^{k+1} \sum_{\substack{1 \le i_1 < \dots < i_k \le n \\ \text{k\"{u}l\"{o}nb\"{o}z\~{o} eg\'{e}szek}}} P(A_{i_1} \cap \dots \cap A_{i_k})$$

A Poincaré-formula részletesebben:

$$P(A_1 \cup \cdots \cup A_n) = P(A_1) + \cdots + P(A_n)$$
 – ketteses metszetek valószínűsége + hármas metszetek valószínűsége – négyes metszetek valószínűsége :
$$\pm P(A_1 \cap \cdots \cap A_n)$$

Diszkrét és geometriai valószínűségi mezők

Definíció. Azt mondjuk, hogy egy (Ω, \mathcal{A}, P) valószínűségi mező **diszkrét valószínűségi** mező, ha a kísérletnek csak megszámlálható sok lehetséges értéke van, tehát a kísérlet lehetséges kimenetelei egy véges vagy végtelen sorozatot alkotnak.

Definíció. Azt mondjuk, hogy egy (Ω, \mathcal{A}, P) valószínűségi mező klasszikus valószínűségi mező, ha az eseménytérnek csak véges sok eleme van van, és minden kimenetelnek azonos a valószínűsége.

Tétel. Klasszikus valószínűségi mezőn egy tetszőleges A esemény valószínűsége

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{kedvező kimenetelek száma}}{\text{összes kimenetel száma}}.$$

Definíció. Azt mondjuk, hogy egy (Ω, \mathcal{A}, P) valószínűségi mező **geometriai valószínűségi mező**, ha rendelkezik az alábbi tulajdonságokkal:

- Az Ω eseménytér egy olyan geometriai alakzat, melynek a mértéke: $0 < \mu(\Omega) < \infty$.
- Egyenletességi hipotézis: Az események valószínűsége egyenesen arányos az események mértékével. Tehát, minden $A\subseteq\Omega$ eseményre

$$P(A) = \frac{\mu(A)}{\mu(\Omega)} = \frac{\text{kedvező hosszúság/terület/térfogat}}{\text{összes hosszúság/terület/térfogat}}$$

Feltételes valószínűség és események függetlensége

Definíció. Tegyük fel, hogy P(B) > 0. Ekkor az A eseménynek a B eseményre vett **feltételes valószínűsége** $P(A|B) = P(A \cap B)/P(B)$. A feltételes valószínűség megmutatja, hogy mennyi az A esemény valószínűsége, ha tudjuk, hogy B bekövetkezik.

Tétel. Legyen B pozitív valószínűségű esemény. Ekkor a B eseményre vett feltételes valószínűség valószínűségi mérték. Ebből következik, hogy a feltételes valószínűségre teljesülnek a valószínűség általános tulajdonságai.

Tétel (Láncszabály, szorzási szabály). Legyenek A_1, \ldots, A_n olyan események, melyekre $P(A_1 \cap \cdots \cap A_n) > 0$. Ekkor

$$P(A_1 \cap \cdots \cap A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid A_1 \cap \cdots \cap A_{n-1}).$$

Tétel (Bayes-formula). Legyen A és B pozitív valószínűségi esemény. Ekkor

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}.$$

Definíció. Azt mondjuk, hogy a B_1, \ldots, B_n események **teljes eseményrendszert** alkotnak, ha teljesítik az alábbi tulajdonságokat:

- páronként diszjunktak, tehát tetszőleges $i \neq j$ esetén $B_i \cap B_j = \emptyset$;
- együttesen lefedik az eseményteret: $B_1 \cup \cdots \cup B_n = \Omega$.

Tétel (Teljes valószínűség tétele). Legyen B_1, \ldots, B_n pozitív valószínűségű eseményekből álló teljes eseményrendszer. Ekkor egy tetszőleges A esemény valószínűsége

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i) = P(A|B_1)P(B_1) + \dots + P(A|B_n)P(B_n).$$

Definíció. Legyen A és B két tetszőleges esemény. Azt mondjuk, hogy a két esemény független egymástól, ha $P(A \cap B) = P(A)P(B)$.

Tétel (A függetlenség ekvivalens definíciói). Ha A és B pozitív valószínűségű esemény, akkor az alábbiak ekvivalensek:

- A és B független egymástól.
- $\bullet \ P(A|B) = P(A).$
- P(B|A) = P(B).

Definíció (Kettőnél több esemény függetlensége). Az A_1, A_2, \ldots események **páronként** függetlenek, ha tetszőleges A_i és A_j különböző eseményeket kiválasztva ezek függetlenek egymástól, tehát $P(A_i \cap A_j) = P(A_i)P(A_j)$. Az A_1, A_2, \ldots események (teljesen) függetlenek, ha közülük tetszőleges sok és különböző A_{i_1}, \ldots, A_{i_n} eseményt kiválasztva

$$P(A_{i_1} \cap \cdots \cap A_{i_n}) = P(A_{i_1}) \cdots P(A_{i_n}).$$

Tétel (A kétfajta függetlenség kapcsolata). A teljes függetlenségből következik a páronkénti függetlenség, de a páronkénti függetlenségből nem következik a teljes függetlenség.

2. dolgozat

Valószínűségi változók

Definíció. Egy ξ valószínűségi változó **eloszlásfüggvénye** az az $F_{\xi}: \mathbb{R} \to [0, 1]$ függvény, mely a következő formulával van definiálva: $F_{\xi}(t) = P(\xi < t), t \in \mathbb{R}$.

Tétel (Az eloszlásfüggvények általános tulajdonságai). Egy $F: \mathbb{R} \to [0,1]$ függvény pontosan akkor eloszlásfüggvény, ha teljesülnek az alábbi tulajdonságok:

- F monoton növekvő;
- $\lim_{t\to-\infty} F(t) = 0$ és $\lim_{t\to\infty} F(t) = 1$;
- F mindenhol balról folytonos.

Tétel. Legyen ξ tetszőleges valószínűségi változó, és legyen F_{ξ} az eloszlásfüggvénye.

- Tetszőleges $-\infty \le a < b \le +\infty$ számok esetén $P(a \le \xi < b) = F_{\xi}(b) F_{\xi}(a)$.
- Tetszőleges a valós szám esetén az F_{ξ} függvény pontosan akkorát ugrik az a pontban, mint amekkora a $P(\xi = a)$ valószínűség.

Definíció. Egy ξ valószínűségi változó **diszkrét**, ha az értékkészlete megszámlálható: $R_{\xi} = \{x_1, x_2, \dots\}$. A ξ diszkrét valószínűségi változó **eloszlása** vagy **valószínűségeloszlása** a lehetséges értékek valószínűségei: $p_{x_k} = P(\xi = x_k), x_k \in R_{\xi}$. Egy ξ diszkrét változó várható értéke:

$$E(\xi) = \sum_{x \in R_{\xi}} x P(\xi = x) = x_1 P(\xi = x_1) + x_2 P(\xi = x_2) + \cdots$$

Tétel (A valószínűségeloszlások tulajdonságai). Egy p_0, p_1, \ldots sorozatot pontosan akkor egy valószínűségi változó eloszlása, ha teljesül az alábbi két feltétel:

- a sorozat elemei nemnegatívak, tehát $p_n \ge 0$ minden n esetén;
- a sorozat elemeinek az összege 1, tehát $p_0 + p_1 + \cdots = 1$.

Definíció. Egy ξ valószínűségi változó **folytonos eloszlású**, ha létezik olyan $f_{\xi} : \mathbb{R} \to \mathbb{R}$ függvény, hogy tetszőleges y valós szám esetén

$$F_{\xi}(y) = \int_{-\infty}^{y} f_{\xi}(x) dx.$$

Ekkor az f_{ξ} függvényt a ξ változó **sűrűségfüggvényének** nevezzük, és a változó **várható** értéke

$$E(\xi) = \int_{-\infty}^{\infty} x f_{\xi}(x) dx.$$

Tétel. Ha ξ folytonos változó, akkor az eloszlásfüggvénye mindehol folytonos és $f_{\xi} = F'_{\xi}$. A folytonosságból következik, hogy tetszőleges $-\infty \le a \le b \le +\infty$ esetén $P(\xi = a) = 0$ és $P(a \le \xi \le b) = \int_a^b f_{\xi}(x) dx$.

Tétel (A sűrűségfüggvények tulajdonságai). Egy $f : \mathbb{R} \to \mathbb{R}$ függvény pontosan akkor egy ξ folytonos valószínűségi változó sűrűségfüggvénye, ha teljesíti az alábbi két feltételt:

- $f(x) \ge 0$ minden x valós szám esetén;
- $\int_{-\infty}^{\infty} f(x) dx = 1$, tehát a függvény görbéje alatti teljes terület 1.

Definíció. Legyen ξ olyan valószínűségi változó, melynek véges a várható értéke. Ekkor a ξ változó **varianciája** vagy **szórásnégyzete**

$$Var(\xi) = D^{2}(\xi) = E([\xi - E(\xi)]^{2})$$

A változó **szórása** a variancia négyzetgyöke: $D(\xi) = \sqrt{\operatorname{Var}(\xi)}$. A szórás azt mutatja meg, hogy mennyi a változónak a várható értéktől való átlagos eltérése. Az $E(\xi^2)$ várható értéket a ξ **második momentumának** nevezzük.

Tétel (A szórás meghatározása). Ha ξ olyan változó, melynek véges a második momentuma, akkor $Var(\xi) = E(\xi^2) - (E(\xi))^2$.

Tétel. Legyen ξ diszkrét vagy folytonos valószínűségi változó, és legyen $h: \mathbb{R} \to \mathbb{R}$ egy tetszőleges függvény. Ekkor a $h(\xi)$ transzformált változó várható értéke az alábbi módon határozható meg:

Ha ξ diszkrét, akkor

$$E(h(\xi)) = \sum_{x \in R_{\xi}} h(x)P(\xi = x) = h(x_1)P(\xi = x_1) + h(x_2)P(\xi = x_2) + \cdots$$

Például $h(x) = x^2$ esetén $E(\xi^2) = \sum_{x \in R_\xi} x^2 P(\xi = x)$.

• Ha ξ folytonos és f_ξ a sűrűségfüggvénye, akkor

$$E(h(\xi)) = \int_{-\infty}^{\infty} h(x) f_{\xi}(x) dx.$$

Például $h(x) = x^2$ esetén $E(\xi^2) = \int_{-\infty}^{\infty} x^2 f_{\xi}(x) dx$.

Tétel. Legyen ξ_1, \ldots, ξ_m tetszőleges valószínűségi változó, és tekintsünk a_1, \ldots, a_m, b valós számokat. Ekkor teljesülnek az alábbi azonosságok.

• A változók összegének a várható értéke:

$$E(a_1\xi_1 + \dots + a_m\xi_m + b) = a_1E(\xi_1) + \dots + a_mE(\xi_m) + b.$$

 \bullet A változók összegének a varianciája: ha ξ_1,\dots,ξ_m független, akkor

$$D^{2}(a_{1}\xi_{1}+\cdots+a_{m}\xi_{m}+b)=a_{1}^{2}D^{2}(\xi_{1})+\cdots+a_{m}^{2}D^{2}(\xi_{m}).$$

A valószínűségszámítás legfontosabb törvényei

Definíció (Standardizálás). Legyen η olyan valószínűségi változó, melynek véges a szórása. Ekkor η standardizáltja a következő változó: $(\eta - E(\eta))/D(\eta)$.

Tétel. Ha az η változó normális eloszlást követ, akkor a standardizáltja standard normális eloszlású változó.

Tétel (A 3σ -szabály). Legyen η normális eloszlású változó tetszőleges μ várható értékkel és σ szórással. Ekkor

$$P(\mu - \sigma \le \eta \le \mu + \sigma) \approx 68\%, \qquad P(\mu - 2\sigma \le \eta \le \mu + 2\sigma) \approx 95\%,$$

 $P(\mu - 3\sigma \le \eta \le \mu + 3\sigma) \approx 99,75\%.$

Tétel (de Moivre–Laplace-tétel). Ha ξ binomiális eloszlású változó n és p paraméterrel, akkor tetszőleges a és b számok esetén

$$P\left(a \le \frac{\xi - np}{\sqrt{np(1-p)}} \le b\right) \to \Phi(b) - \Phi(a), \quad n \to \infty.$$

Következmény. Az előző tétel feltételei mellett η legyen normális eloszlású valószínűségi változó $\mu = np$ és $\sigma = \sqrt{np(1-p)}$ paraméterrel. Ekkor

$$P(a \le \xi \le b) \approx P(a \le \eta \le b)$$
.

Tétel (Centrális határeloszlás-tétel, CHT). Legyen ξ_1, ξ_2, \ldots független és azonos eloszlású változó véges és pozitív szórással. Ekkor tetszőleges a < b valós számok esetén

$$P\left(a \le \frac{(\xi_1 + \dots + \xi_n) - nE(\xi_1)}{\sqrt{n}D(\xi_1)} \le b\right) \to \Phi(b) - \Phi(a), \qquad n \to \infty.$$

Következmény. Az előző tétel feltételei mellett η legyen normális eloszlású valószínűségi változó $\mu = nE(\xi_1)$ és $\sigma = \sqrt{n}D(\xi_1)$ paraméterrel. Ekkor

$$P(a \le \xi_1 + \dots + \xi_n \le b) \approx P(a \le \eta \le b)$$
.

Tétel (A nagy számok Kolmogorov-féle törvénye). Legyen ξ_1, ξ_2, \ldots független és azonos eloszlású valószínűségi változó véges várható értékkel. Ekkor

$$\frac{\xi_1 + \dots + \xi_n}{n} \to E(\xi_1), \qquad n \to \infty,$$

tehát a változók számtani átlaga konvergál a közös várható értékhez.

Tétel (A nagy számok Borel-féle törvénye). Legyen A egy tetszőleges esemény, és jelölje $k_n(A)$ az A bekövetkezési gyakoriságát n végrehajtás után. Ekkor $k_n(A)/n \to P(A)$ amint $n \to \infty$, tehát a relatív gyakoriság konvergál az esemény valószínűségéhez.

3. dolgozat

A kovariancia és a korreláció tulajdonságai

Definíció. Legyen ξ és η olyan valószínűségi változó, melynek véges a szórása. Ekkor a két változó **kovarianciája**:

$$Cov(\xi, \eta) = E([\xi - E(\xi)][\eta - E(\eta)])$$

A két változó korrelációja vagy korrelációs együtthatója:

$$r(\xi, \eta) = \frac{\text{Cov}(\xi, \eta)}{D(\xi)D(\eta)}$$

Ha $r(\xi, \eta) = 0$, akkor azt mondjuk, hogy a két változó **korrelálatlan**.

Tétel (A kovariancia és a korreláció tulajdonságai). Legyen ξ és η olyan valószínűségi változó, melynek véges a szórása.

- Szimmetria: $Cov(\xi, \eta) = Cov(\eta, \xi)$ és $r(\xi, \eta) = r(\eta, \xi)$.
- Egy változónak az önmagával vett kovarianciája: $Cov(\xi, \xi) = Var(\xi)$.
- A korrelációs együttható értéke mindig a [-1, 1] intervallumba esik.
- Ha a ξ és az η változó független, akkor ez a két változó korrelálatlan is, tehát $r(\xi,\eta)=0$. Ennek az állításnak a megfordítása nem igaz, tehát a korrelálatlanságból általában még nem következik a függetlenség.
- \bullet Tetszőleges a és b valós számok esetén

$$D^{2}(a\xi + b\eta) = a^{2}D^{2}(\xi) + b^{2}D^{2}(\eta) + 2abD(\xi)D(\eta)r(\xi, \eta).$$

Matematika statisztika

Definíció. Legyenek ξ_1, \ldots, ξ_n egy ξ háttérváltozó független megfigyelései. A ξ_1, \ldots, ξ_n változókat n-elemű **statisztikai mintának** nevezzük.

Definíció. Legyen ξ_1, \ldots, ξ_n statisztikai mintának a ξ háttérváltozóra, és legyen θ a ξ változónak egy ismeretlen paramétere.

- A θ paraméternek a minta alapján számolt $\hat{\theta}_n$ becslését **pontbecslésnek** nevezzük. A pontbecslés **erősen konzisztens**, ha 1 valószínűséggel $\hat{\theta}_n \to \theta$, amint $n \to \infty$.
- A mintából számolt $[a_n, b_n]$ intervallumot 1α megbízhatóságú **konfidencia intervallumnak** nevezzük, ha $P(\theta \in [a_n, b_n]) = 1 \alpha$.

Tétel. Az alapstatisztikák erősen konzisztens becslések, tehát $n \to \infty$ esetén 1 valószínűséggel teljesülnek az alábbi konvergenciák:

- Empirikus várható érték: $E_n(\xi) \to E(\xi)$.
- Korrigálatlan és korrigált empirikus variancia: $V_n(\xi) \to \text{Var}(\xi)$, $V_n^*(\xi) \to \text{Var}(\xi)$.
- Korrigálatlan és korrigált empirikus szórás: $D_n(\xi) \to D(\xi), D_n^*(\xi) \to D(\xi)$.
- Empirikus kovariancia és korreláció: $C_n(\xi, \eta) \to \text{Cov}(\xi, \eta), r_n(\xi, \eta) \to r(\xi, \eta).$

Definíció. Legyen ξ_1, \ldots, ξ_n statisztikai minta a ξ háttérváltozóra. A mintából számolt **empirikus eloszlásfüggvény** az

$$F_n: \mathbb{R} \to [0,1], \qquad F_n(x) = \frac{k_{x,n}}{n}, \qquad x \in \mathbb{R},$$

függvény, ahol $k_{x,n}$ az x-nél kisebb mintaelemek száma.

Tétel (A matematikai statisztika alaptétele). Az empirikus eloszlásfüggvény egyenletesen erősen konzisztens becslése az F_{ξ} elméleti eloszlásfüggvénynek:

$$\sup_{x \in \mathbb{R}} |F_n(x) - F_{\xi}(x)| \to 0, \qquad n \to \infty.$$

Definíció. Legyen x_1, \ldots, x_n statisztikai minta a ξ háttérváltozóra, és legyen θ a ξ változónak egy paramétere. Ekkor a **likelihood függvény** a következő függvény:

$$L(\theta) = \begin{cases} P(\xi = x_1) \cdot P(\xi = x_2) \cdot \dots \cdot P(\xi = x_n), & \text{ha } \xi \text{ diszkrét változó}, \\ f_{\xi}(x_1) \cdot f_{\xi}(x_2) \cdot \dots \cdot f_{\xi}(x_n), & \text{ha } \xi \text{ folytonos változó}. \end{cases}$$

A θ paraméter **maximum likelihood becslése** a likelihood függvény maximumhelye, amennyiben a maximumhely létezik.

Tétel (A hipotézisvizsgálat menete). Egy H_0 nullhipotézis tesztelése során az alábbi lépéseket hajtjuk végre:

- 1. A minta alapján kiszámoljuk a megfelelő s próbastatisztika értékét.
- 2. Meghatározzuk az s_{α} kritikus értéket.
- 3. Pontosan akkor fogadjuk el a nullhipotézist, ha $|s| \leq s_{\alpha}$.

Definíció. A hipotézisvizsgálat során **elsőfajú hibát** vétünk, ha elvetünk egy igaz null-hipotézist. Az elsőfajú hiba valószínűségét α jelöli, és ezt a valószínűséget **szignifikancia szintnek** is nevezzük:

$$\alpha = P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ igaz}).$$

A hipotézisvizsgálat során **másodfajú hibát** vétünk, ha elfogadunk egy hamis null-hipotézist. A másodfajú hiba valószínűségét β jelöli:

$$\beta = P(\text{elfogadjuk } H_0\text{-t} \mid H_0 \text{ hamis}).$$

A **próba ereje** $1-\beta$, ami annak a valószínűsége, hogy elvetünk egy hamis nullhipotézist:

$$1 - \beta = P(\text{elvetj\"uk } H_0\text{-t} \mid H_0 \text{ hamis}).$$