Machine Learning Diagnostic Workflow

BMI701 Introduction of Biomedical Informatics Lab Session 9

Wei-Hung Weng November 30, 2016

HMS DBMI — MGH LCS

Machine Learning

- Optimize a performance criterion using example data or past experience
- Mathematically speaking: given data X, we want to learn a function mapping f(X) for certain purpose
- $f(x) = a \text{ label } y \rightarrow \text{ classification}$
- $f(x) = a \text{ set } Y \text{ in } X \to \text{clustering}$
- $f(x) = p(x) \rightarrow \text{distribution estimation}$
- ML techniques tell us how to produce high quality f(x), given certain objective and evaluation metrics

Courtesy by Prof SD Lin (NTU)

Machine Learning Three Steps

- 1. Modeling
 - function, features, parameters
- 2. Goodness of Function
 - Loss function
 - Gradient descent, learning rate, SGD
 - Local/global optima
- 3. Pick the 'Best' Function
 - Bias/variance trade-off
 - Overfitting (complex model)
 - Training/testing error
 - Regularization
 - Why My Machine Learning Models Fail (meaning prediction accuracy is low)?

Checkpoint 1: ML Task?

- Are you sure Machine Learning is the best solution for your task?
- Too simple
 - Simple mapping: single word translation
 - Writing rules
- Too hard
 - X and y are independent

Checkpoint 2: What Kind of ML Scenario?

- Supervised: regression (real value), classification (categorical), structured learning
 - Classification: linear, non-linear (deep learning, SVM, decision tree, kNN)
 - Binary: spam
 - Multiclass: document classification
 - Multilabel learning
 - Structured learning: voice recognition, face recognition
- Semi-supervised
 - Active learning

Checkpoint 2: What Kind of ML Scenario?

- Unsupervised: learning without teacher
 - Clustering, distribution learning, pattern learning, Bayesian, association rule, probabilistic graphical model
 - Machine reading, drawing
- Reinforcement: learning from critics
 - RL is a decision making process with states/actions/rewards
 - Goal is to find an optimal policy to guide the decision
 - AlphaGo = supervised + reinforcement
- Transfer learning, online learning, ...

Machine Learning Cheat Sheet

Machine Learning Cheat Sheet

Peekaboo

Checkpoint 3: Proper Model?

- Size of data
 - Small \rightarrow linear model
 - ullet Large o linear or non-linear
- Sparsity of data
 - ullet Sparse o more tricks
 - ullet Dense o light algorithm to save memory and computing power
- Balance of data
 - ullet Imbalanced o weighting for minority class
- Quality of data (noise, missing values, ...)
 - \bullet Use different loss function. e.g. 0/1 loss or L2 are more robust to noise than hinge loss or exponential loss

Checkpoint 4: Enough Data?

- Draw a learning curve
- The performance metric should converge if the data is sufficient

Checkpoint 5: Model too Complicated?

- Draw model complexity / loss function curve
- Training and validation (testing) error

Checkpoint 6: Quality of Features?

- Feature engineering is the best strategy to improve performance
- Domain knowledge, human judgment
- If you don't know, then add it
- Algorithms can help you see whether it is useful or not
- χ^2 filtering, LASSO, elastic net, ...
- Different encoding, combined features, ...

Checkpoint 7: Correct Evaluation?

- Metrics
 - Accuracy is not always the best way
 - AUC
 - Precision, recall, F1 score
- Training, validation, testing
 - Cross-validation
 - Validation set for learning hyperparameter of your model!

FAQ

- I have a lot of unlabeled data
 - Find expert to label them
 - Semi-supervised learning
 - Transfer learning: from other domains
 - Active learning: actively select a subset unlabeled data for expert (oracle) to annotate
- How to avoid overfitting?
 - Occam's Razor
 - Regularization: reduce the complexity
- How to boost the performance?
 - Feature engineering
 - Model combination (if they are different)

Practical Machine Learning

- R package
 - caret, e1071, randomforest, rpart, ...
 - Demo
- Python
 - scikit-learn, gensim, theano, tensorflow

Summary

Contact

- Github repository
- ckbjimmy@gmail.com
- Linkedin