

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Exercícios - II^a Unidade

Espaços Vetoriais e Subespaços: Operações, Bases

Coordenadas, Matriz mudança de Base, Ortogonalidade

Professora: Isamara

Data: 13/04/2021

Considere os seguintes subespaços de \mathbb{R}^3 :

$$\mathcal{W}_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + z = 0\}$$
 e

$$W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0 \text{ e } z = 0\}.$$

Determine os subconjuntos definidos abaixo e verifique se são subespaços vetoriais do \mathbb{R}^3 :

- (a) $W_1 \cap W_2$,
- (b) $\mathcal{W}_1 \cup \mathcal{W}_2$,
- (c) $\mathcal{W}_1 + \mathcal{W}_2$.

Considere os seguintes subespaços de $\mathcal{P}_2(\mathbb{R})$:

$$\mathcal{W}_1=\{
ho(t)\in\mathcal{P}_2(\mathbb{R})\mid a_0=a_1\},$$

$$\mathcal{W}_2 = \{ p(t) \in \mathcal{P}_2(\mathbb{R}) \mid a_2 = 0 \}.$$

Determine os subconjuntos e verifique se são subespaços vetoriais do $\mathcal{P}_2(\mathbb{R})$:

- (a) $W_1 \cap W_2$,
- (b) $\mathcal{W}_1 \cup \mathcal{W}_2$,
- (c) $W_1 + W_2$.

Considere o seguinte subespaço de \mathbb{R}^4 : $\mathcal{W}_1 = \{(x,y,z,w) \in \mathbb{R}^4 \mid x+y=0\}$ e $\mathcal{W}_2 = \{(x,y,z,w) \in \mathbb{R}^4 \mid z+w=0\}$. Determine os subconjuntos e verifique se são subespaços vetoriais do \mathbb{R}^4 :

- (a) $\mathcal{W}_1 \cap \mathcal{W}_2$,
- (b) $\mathcal{W}_1 \cup \mathcal{W}_2$,
- (c) $W_1 + W_2$.

Verifique se $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$.

- (a) Considere os seguintes subespaços de \mathbb{R}^3 : $\mathcal{W}_1 = \{(x, y, z) \in \mathbb{R}^3/x + z = 0\}$ e $\mathcal{W}_2 = \{(x, y, z) \in \mathbb{R}^3/x + y = 0 \text{ e } z = 0\}$. $\mathbb{R}^3 = \mathcal{W}_1 \oplus \mathcal{W}_2$?.
- (b) Considere os seguintes subespaços de $\mathcal{P}_2(\mathbb{R})$: $\mathcal{W}_1 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) \mid a_0 = a_1\},$ $\mathcal{W}_2 = \{p(t) \in \mathcal{P}_2(\mathbb{R}) \mid a_2 = 0\}.$ $\mathcal{P}_2(\mathbb{R}) = \mathcal{W}_1 \oplus \mathcal{W}_2$?.

Exercício.5

Considere o seguinte subespaço de \mathbb{R}^4 :

$$\mathcal{W} = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y = 0 \text{ e } z + w = 0\}.$$

Determine um conjunto de geradores para o subespaço $\mathcal{W}.$

Exercício.6

Considere o seguinte subespaço de $\mathcal{M}_2(\mathbb{C})$:

$$\mathcal{W} = \{A \in \mathcal{M}_2(\mathbb{C}) \mid a_{ij} = 0; \forall i \neq j\}.$$

Determine um conjunto de geradores para o subespaço $\mathcal{W}.$

Exercício.7

Considere o seguinte subespaço de $\mathcal{P}_3(\mathbb{C})$:

$$\mathcal{W}=\{\rho(t)\in\mathcal{P}_3(\mathbb{C})\mid a_0=a_3=0\}.$$

Determine um conjunto de geradores para o subespaço $\mathcal{W}.$

Exercício.8

Considere o seguinte subespaço de $\mathcal{P}_3(\mathbb{R})$: $\mathcal{W} = \{p(t) \in \mathcal{P}_3(\mathbb{R})/a_0 + 3a_2 = 0\}$. Determine um conjunto de geradores para o subespaço \mathcal{W} .

Exercício.9

Considere os seguintes subespaços vetoriais de \mathbb{R}^3 : $\mathcal{W}_1 = \{(x, y, z) \in \mathbb{R}^3 / 2x - 4y + 6z = 0\}$; $\mathcal{W}_2 = [(1,0,1),(1,1,3)]$. Determine um conjunto de geradores para cada um dos subespaços: $\mathcal{W}_1 \cap \mathcal{W}_2, \mathcal{W}_1 + \mathcal{W}_2$

```
Considerando os seguintes subespaços de \mathbb{R}^4:
W_1 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y - z + w = 0 \text{ e } z - w = 0\};
W_2 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z = 0\}.
Determine uma base para cada um dos seguintes subespaços de \mathbb{R}^4:
\mathcal{W}_1, \mathcal{W}_2, \mathcal{W}_1 \cap \mathcal{W}_2, \mathcal{W}_1 + \mathcal{W}_2.
```

Subespacos Vetoriais - Base

Exercício.11

Seja W o subespaço de \mathbb{R}^4 gerado pelos vetores de $S = \{(1,0,1,2), (2,-1,1,3), (-1,1,0,-1)\} \subset \mathbb{R}^4.$ Determine uma base para \mathbb{R}^4 contendo uma base do subespaço \mathcal{W} .

Considere o sistema linear homogêneo

$$\begin{cases} 2x + 4y + z &= 0\\ x + y + 2z &= 0\\ x + 3y - z &= 0 \end{cases}$$

- 1. Mostre que o conjunto solução $\mathcal S$ é um subespaço vetorial de $\mathbb R^3$ e determine uma base para esse subespaço.
- 2. Dado o subespaço vetorial $\mathcal{W} = \{(x, y, z) \in \mathbb{R}^3 / x y + z = 0\}$, determine o subespaço $\mathcal{W} \cap \mathcal{S}$ e uma base para esse subespaço.
- 3. Determine o subespaço vetorial W + S e uma base para esse subespaço.

Sejam o espaço vetorial $\mathcal{V} = \mathbb{R}^3$ e, $\mathcal{W}_1 = [(-1, 1, -1), (1, 2, 1)], \mathcal{W}_2 = [(2, 2, 1), (1, 1, -1)]$ subespacos de \mathcal{V} .

- 1. Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
- 2. Determine a dimensão dos subespacos: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
- 3. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$?

Exercício.13

Sejam o espaço vetorial $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ e, $\mathcal{W}_1 = [e_2 - e_4, e_1 + e_2 + e_3]$, $\mathcal{W}_2 = [e_1, e_2 + e_3]$ subespaços de \mathcal{V} .

- 1. Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
- 2. Determine a dimensão dos subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
- 3. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$?

Sejam o espaço vetorial $\mathcal{V}=\mathcal{P}_2(\mathbb{R})$ e, $\mathcal{W}_1=[e_1+e_2+e_3]$, $\mathcal{W}_2=[e_1,e_2-e_3]$ subespaços de \mathcal{V} .

- 1. Identifique uma base para os subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
- 2. Determine a dimensão dos subespaços: $W_1, W_2, W_1 \cap W_2$, e $W_1 + W_2$.
- 3. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$?

Seja \mathbb{C}^2 um espaco vetorial sobre um corpo \mathbb{K} .

- 1. Verifique se o conjunto $S = \{(1-i,i),(2,-1+i)\} \subset \mathbb{C}^2$, é uma base para \mathbb{C}^2 sobre $\mathcal{K} = \mathbb{C}$.
- 2. Verifique se o conjunto $S = \{(1-i,i),(2,-1+i)\} \subset \mathbb{C}^2$, é uma base para \mathbb{C}^2 sobre $\mathcal{K} = \mathbb{R}$.

Subespaços Vetoriais

Exercício.17 - Base e Dimensão

Sejam os seguintes subespaços de \mathbb{R}^3 : $\mathcal{W}_1 = [(1,0,0)], \mathcal{W}_2 = [(1,1,0),(0,1,1)]$. Verifique se $\mathbb{R}^3 = \mathcal{W}_1 \oplus \mathcal{W}_2$.

Subespaços Vetoriais

Exercício.18 - Base e Dimensão

Considere o espaço vetorial real \mathbb{R}^4 . Determine uma base para este espaço contendo elementos do conjunto $S = \{(1, 0, -2, 2), (1, 2, -2, 1)\}.$

Subespacos Vetoriais - Operações

Exercício.19

Considere o seguinte subespaço de \mathbb{R}^4 : $\mathcal{W}_1 = \{(x, y, z, w) \in \mathbb{R}^4 | x + y = 0 \text{ e } z + w = 0\}$. Determine um subespaço W_2 de \mathbb{R}^4 tal que $\mathbb{R}^4 = W_1 \oplus W_2$.

Considere o espaco vetorial \mathbb{C}^3 sobre o corpo \mathbb{K} . Determine uma base para \mathbb{C}^3 nos itens abaixo:

- 1. Considere $\mathbb{K} = \mathbb{C}$, e os elementos do conjunto $\mathcal{S} = \{(1,0,-2),(1,2,1)\}.$
- 2. Considere $\mathbb{K} = \mathbb{R}$, e os elementos do conjunto $\mathcal{S} = \{(1,0,-2),(1,2,1),(0,0,i)\}.$

sem respostas

Subespaços Vetoriais - Base e Dimensão

Exercício.21

Sejam \mathcal{V} um espaço vetorial real, com $dim(\mathcal{V}) = 9$, \mathcal{W}_1 e \mathcal{W}_2 subespaços de \mathcal{V} tais que $dim(\mathcal{W}_1) = 6 \text{ e } dim(\mathcal{W}_2) = 5.$ Mostre que $2 \leq dim(\mathcal{W}_1 \cap \mathcal{W}_2) \leq 5$.

Subespaços Vetoriais - Base e Dimensão

Exercício.22

Determine os valores de $a \in \mathbb{R}$ de modo que o conjunto $S = \{(a, 1, 0), (1, a, 1), (0, 1, a)\}$ seja uma base para o espaço vetorial \mathbb{R}^3 .

Subespaços Vetoriais - Base e Dimensão

Exercício.23

Considere os seguintes subespaços vetoriais de $\mathcal{P}_2(\mathbb{R})$:

$$\mathcal{W}_1=\{p(t)=a+bt+ct^2\in\mathcal{P}_2(\mathbb{R})/a-2c=0\}$$
 e $\mathcal{W}_2=[1-t,t-t^2]$. Determine uma base para o subespaço $\mathcal{W}_1\cap\mathcal{W}_2$ e a $\dim(\mathcal{W}_1+\mathcal{W}_2)$.

Seia $\mathcal{V} = \mathbb{R}^4$ e seiam \mathcal{W}_1 e \mathcal{W}_2 subespacos vetoriais de \mathcal{V} : tais que. $W_1 = \{ u = (x, y, z, w) \in \mathbb{R}^4 \mid x + z = y \text{ e } w = 0 \}; \text{ e, } W_2 = [e_1, 3e_3 + e_4].$ (Responda os itens abaixo justificando suas respostas.)

- (a) Verifique se $W_1 \cup W_2$ é um subespaco vetorial do \mathbb{R}^4 .
- (b) Determine uma base e a dimensão para os seguintes subespaços: $W_1 \cap W_2$ e $W_1 + W_2$.
- (c) Verifique se $\mathbb{R}^4 = \mathcal{W}_1 \oplus \mathcal{W}_2$.
- (d) Determine um subespaco \mathcal{W} tal que $\mathbb{R}^4 = \mathcal{W}_1 \oplus \mathcal{W}$.

Subespaços Vetoriais - Base e Coordenadas

Exercício.25

Considere o espaço vetorial real \mathbb{R}^3 e a base $\beta_{\mathbb{R}^3} = \{(1,1,1)(1,0,1),(1,0,-1)\}.$ Determine as coordenadas do vetor $u=(3,1,6)\in\mathbb{R}^3$ com relação à base $\beta_{\mathbb{R}^3}$.

Subespaços Vetoriais - Base e Coordenadas

Exercício.26

Seja
$$\beta_{\mathcal{P}_2(\mathbb{R})} = \{1, 1+t, 1+t^2\}$$
 uma base ordenada do espaço vetorial real $\mathcal{P}_2(\mathbb{R})$. Determine as coordenadas do vetor $p(t) = 2+4t+t^2$ em relação à base $\beta_{\mathcal{P}_2(\mathbb{R})}$.

Subespaços Vetoriais - Base e Coordenadas

Exercício.27

Considere o espaço vetorial real $\mathcal{M}_2(\mathbb{R})$ com a base ordenada $\beta_{\mathcal{M}_2(\mathbb{R})} = \{e_1 + e_2 + e_3, e_1 + e_2 + e_4, e_1 + e_3 + e_4, e_2 + e_3 + e_4\}.$ Determine o vetor de coordenadas $[A]_{\beta_{\mathcal{M}_2(\mathbb{R})}}$ da matriz $A \in \mathcal{M}_2(\mathbb{R})$ dada por:

$$A = \left(\begin{array}{cc} 4 & 6 \\ 5 & 6 \end{array}\right).$$

Sejam o espaço vetorial \mathbb{R}^4 , e as seguintes bases ordenadas: $\beta_{\mathbb{R}^4} = \{e_1 + 2e_2, -e_4, e_1, 2e_3\}$ e, $\beta'_{\mathbb{R}^4}$ a base canônica.

- (a) Determine a MATRIZ MUDANÇA DA BASE $eta_{\mathbb{R}^4}'$ para a base $eta_{\mathbb{R}^4}$: $[I]_{eta_{\mathbb{R}^4}}^{eta_{\mathbb{R}^4}}$:
- (b) Determine a MATRIZ DAS COORDENADAS do vetor $v=3e_1+e_2-4e_4\in\mathbb{R}^4$ em relação à base $\beta_{\mathbb{R}^4}$, utilizando a matriz $[I]_{\beta_{\mathbb{R}^4}}^{\beta_{\mathbb{R}^4}'}$.

Sejam o espaço vetorial $\mathcal{P}_3(\mathbb{R})$ de dimensão finita, e as bases ordenadas:

$$\beta_{\mathcal{P}_3(\mathbb{R})} = \{1+2t, -t^3, 1, 2t^2\} = \{e_1+2e_2, -e_4, e_1, 2e_3\}; \quad \text{e} \quad \beta_{\mathcal{P}_3(\mathbb{R})}' \text{ a base canônica}.$$

- (a) Determine a MATRIZ MUDANÇA DA BASE $\beta'_{\mathcal{P}_3(\mathbb{R})}$ para a base $\beta_{\mathcal{P}_3(\mathbb{R})}$: $[I]^{\beta'_{\mathcal{P}_3(\mathbb{R})}}_{\beta_{\mathcal{P}_3(\mathbb{R})}}$.
- (b) Determine a MATRIZ DAS COORDENADAS do vetor $p(t)=3+t-4t^3\in\mathcal{P}_3(\mathbb{R})$ em relação à base $\beta_{\mathcal{P}_3(\mathbb{R})}$, utilizando a matriz $[I]_{\beta_{\mathcal{P}_3(\mathbb{R})}}^{\beta'_{\mathcal{P}_3(\mathbb{R})}}$.

Sejam $\beta_{\mathcal{P}_2(\mathbb{R})}=\{t,1+t,1-t^2\}$ e $\gamma_{\mathcal{P}_2(\mathbb{R})}=\{e_1,e_2,e_3\}$ bases ordenadas do espaço vetorial $\mathcal{P}_2(\mathbb{R})$. Seja $p(t)=2+4t+t^2\in\mathcal{P}_2(\mathbb{R})$. Determine $[p(t)]_{\beta_{\mathcal{P}_2(\mathbb{R})}}$ e $[p(t)]_{\gamma_{\mathcal{P}_2(\mathbb{R})}}$ usando as matrizes mudança de base: $[I]_{\gamma}^{\beta}$ e $[I]_{\beta}^{\gamma}$.

Considere a matriz mudança de base
$$[I]^{\gamma}_{\beta}=\left(egin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{array}
ight)$$
. Encontre:

(a)
$$[v]_{\beta}$$
 onde $[v]_{\gamma}=\left(\begin{array}{c} -1\\2\\3\end{array}\right)$ (b) $[v]_{\gamma}$ onde $[v]_{\beta}=\left(\begin{array}{c} 1\\1\\-4\end{array}\right)$

Seja $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaço vetorial de dimensão finita e; sejam $\mathcal{W}_1 = [e_1 + e_4, 3e_2]$ e $\mathcal{W}_2 = [2e_1 - e_3]$ subespacos vetoriais de \mathcal{V} . (Responda os itens abaixo justificando suas respostas.)

- (a) Determine uma base ordenada $\beta_{\mathcal{M}_2(\mathbb{R})}$, diferente da base canônica, para o espaço vetorial $\mathcal{M}_2(\mathbb{R})$; utilizando uma base do subespaço $\mathcal{W}_1 + \mathcal{W}_2$.
- (b) Ache a matriz mudança da base canônica do $\mathcal{M}_2(\mathbb{R})$ para a base $\beta_{\mathcal{M}_2(\mathbb{R})}$ encontrada no item (a).
- Determine as coordenadas do vetor $u=e_1+3e_2-e_3+4e_4=\left[\begin{array}{cc}1&3\\-1&4\end{array}\right]\in\mathcal{M}_2(\mathbb{R})$ em relação à base $\beta_{\mathcal{M}_2(\mathbb{R})}$ utilizando a matriz do item (b).

Seja \mathcal{V} um espaco vetorial qualquer de dimensão finita sobre um corpo \mathbb{K} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespacos vetoriais de \mathcal{V} .

Verifique se as afirmações abaixo são verdadeiras ou falsas.

- $W_1 \cap W_2$ é subespaco vetorial de V se, e somente se, $W_1 \cap W_2 = W_1$ ou $W_1 \cap W_2 = W_2$
- $\mathcal{W}_1 + \mathcal{W}_2$ é subespaço vetorial de \mathcal{V} se, e somente se, $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou $\mathcal{W}_2 \subseteq \mathcal{W}_1$
- Se $\mathcal V$ é um espaco vetorial então está definida em $\mathcal V$ a soma e a multiplicação entre seus vetores, satisfazendo às propriedades: comutatividade, associatividade, elemento neutro e elemento simétrico.
- O próprio espaço vetorial \mathcal{V} e o subespaço $\{\emptyset\}$ são os chamados subespaços vetoriais triviais de V

Seja $\mathcal{V}=\mathbb{R}^2$ um espaco vetorial de dimensão finita sobre o corpo \mathbb{R} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespacos vetoriais de \mathcal{V} : tais que $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$.

Verifique se as afirmações abaixo são verdadeiras ou falsas.

- () $\beta_{W_1 \cap W_2} = \{0\} \ e \ \mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$
- () $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$
- () $\mathcal{W}_1 \oplus \mathcal{W}_2$ e $dim(\mathcal{W}_1 + \mathcal{W}_2) = dim(\mathcal{V})$
- () $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $dim(\mathcal{W}_1) + dim(\mathcal{W}_2) = dim(\mathcal{V})$

Seia $\mathcal{V}=\mathbb{R}^4$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{R} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; então, $\mathcal{W}_1 \cup \mathcal{W}_2$ é subespaço vetorial de \mathcal{V} se, e somente se,

- (a) $\mathcal{W}_1 \cup \mathcal{W}_2 = \mathcal{W}_1 \cap \mathcal{W}_2$
- (b) $\mathcal{W}_1 \cup \mathcal{W}_2 = \mathcal{W}_1 + \mathcal{W}_2$
- (c) $dim(W_1) + dim(W_2) = dim(V)$
- (d) $\mathcal{W}_1 \cup \mathcal{W}_2 = \mathcal{V}$
- (e) N.R.A.

Seja $\mathcal{V}=\mathbb{C}^2$ um espaço vetorial de dimensão finita sobre o corpo \mathbb{C} e sejam \mathcal{W}_1 e \mathcal{W}_2

- (a) $\beta_{W_1 \cap W_2} = \{0\} \in \mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$
- (b) $\mathcal{W}_1 \cap \mathcal{W}_2 = \emptyset$ e $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$
- (c) $W_1 \oplus W_2$ e $dim(W_1 + W_2) = dim(V)$
- (d) $W_1 \cap W_2 = \emptyset$ e $dim(W_1) + dim(W_2) = dim(V)$

subespaços vetoriais de \mathcal{V} ; tais que $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$. Então,

(e) N.R.A.

Seja \mathcal{V} um espaço vetorial qualquer de dimensão finita sobre um corpo \mathbb{K} e sejam \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} ; tais que $dim(\mathcal{W}_1) = 2$ e $dim(\mathcal{W}_2) = 3$. Então, podemos afirmar que

- (a) $dim(\mathcal{W}_1 \cup \mathcal{W}_2) = 5$
- (b) $0 < dim(W_1 \cap W_2) < 2$
- (c) $\mathcal{W}_1 \subset \mathcal{W}_2$
- (d) $5 \leq dim(\mathcal{W}_1 + \mathcal{W}_2) \leq dim(\mathcal{V})$
- (e) N.R.A.

Seia $\mathcal{V}=\mathbb{R}^2$ um espaço vetorial de dimensão finita munido de produto interno e; seja $\mathcal{W} = [e_1 - e_2]$ subespaço vetorial de \mathcal{V} .

- Determine uma base ordenada $\beta_{\mathbb{R}^2}$, utilizando uma base do subespaço \mathcal{W} .
- Determine uma base ortonormal $\beta_{\mathbb{R}^2}^*$ para \mathbb{R}^2 a partir da base $\beta_{\mathbb{R}^2}$.
- (c) Determine as coordenadas do vetor $u=e_1-2e_2$ em relação à base $\beta_{m_2}^*$.

Seia $\mathcal{V}=\mathbb{R}^3$ um espaço vetorial de dimensão finita munido de produto interno e; seja $\mathcal{W}_1 = [e_1, e_2 - e_3]$ subespaço vetorial de \mathcal{V} .

- Determine uma base ordenada $\beta_{\mathbb{R}^3}$, utilizando uma base do subespaço \mathcal{W}_1 .
- Determine uma base ortonormal $\beta_{\mathbb{R}^3}^*$ para \mathbb{R}^3 a partir da base $\beta_{\mathbb{R}^3}$.
- (c) Determine as coordenadas do vetor $u = e_1 2e_2 + 3e_3$ em relação à base $\beta_{\mathbb{D}^3}^*$.

Seja $\mathcal{V}=\mathbb{R}^4$ um espaço vetorial de dimensão finita munido de produto interno e; seja $\mathcal{W} = [e_1 + e_4, 3e_2]$ um subespaço vetorial de \mathcal{V} .

- Determine uma base ordenada $\beta_{\mathbb{R}^4}$, utilizando uma base do subespaço \mathcal{W} .
- Determine uma base ortonormal $\beta_{\mathbb{R}^4}^*$ para \mathbb{R}^4 a partir da base $\beta_{\mathbb{R}^4}$.
- (c) Determine as coordenadas do vetor $u=e_1-3e_3+2e_4$ em relação à base $\beta_{\mathbb{D}^4}^*$.

Seja $\mathcal{V}=\mathbb{R}^4$ um espaço vetorial de dimensão finita munido de produto interno e; sejam $\mathcal{W}_1 = [e_1 + e_4, 3e_2]$ e $\mathcal{W}_2 = [2e_1 - e_3]$ subespaços vetoriais de \mathcal{V} .

- Determine uma base ordenada $\beta_{\mathbb{R}^4}$, utilizando uma base do subespaço $\mathcal{W}_1 + \mathcal{W}_2$.
- Determine uma base ortonormal $\beta_{\mathbb{R}^4}^*$ para \mathbb{R}^4 a partir da base $\beta_{\mathbb{R}^4}$.
- (c) Determine as coordenadas do vetor $u=e_1+3e_2-e_3+4e_4$ em relação à base β_{m4}^* .