

SLIDER I

Engenharia de Software EDGE COMPUTING & COMPUTER SYSTEMS

00 - Aula Magna e Orientações

Prof. Airton Y. C. Toyofuku

profairton.toyofuku@fiap.com.br

Apresentação

Airton Toyofuku - Engenheiro, MBA, PMP®

- Gerente de Projetos, certificado pelo PMI®
- Engenheiro Eletrônico
 - FEI de São Bernardo do Campo
- Especialização em Sistemas de Controle e Automação
 - FEI de São Bernardo do Campo
- Especialização em Sistemas Digitais e Eletrônica Embarcada
 - SAE Brasil Sociedade de Engenheiros Automotivos
- MBA em Gestão de Projetos
 - Fundação Getúlio Vargas
- Mestrando em Ciência da Computação Aplicada
 - IPT Instituto de Pesquisas Tecnológicas do Estado de São Paulo
- Mais de 15 anos de experiencia com Sistemas Embarcados e IoT

Agenda

- → Apresentação;
- Conteúdo;
- Checkpoints;
- Datas importantes;
- ➤ Calendário do 2º Semestre;
- Bibliográfia Básica;

Conteúdo

1º Semestre – A parte Hard!

- ✓— Introdução a Computação;
- ✓ Diferença entre Microprocessadores, Microcontroladores e Processadores;
- ✓ Ecossistema Arduino Uno R3;
- ✓ Circuitos Digitais e Analógicos;
- ✓ Uso de sensores e atuadores;
- ✓ Recursos avançados de micrconcontroladores (Interrupções, Timers, Low Power, RTC, WDT);
- ✓ Comunicação entre Hardwares (USART, SPI, I2C);

2º Semestre – A parte Soft!

- ✓ O que é loT?;
- ✓ Comunicação Wireless
- ✓ Protocolos de comunicação;
- ✓ Plataformas Back-End para IoT;
- ✓ Integrações entre os níveis de edge, cloud e dashboards;

Checkpoints

- O que?
 - São 3 PROJETOS baseados no conteúdo dado em sala de aula;
 - A MENOR das 3 notas é DESCARTADA;

Como?

O projeto será em GRUPO e é divide em duas etapas:

Documentação:

- Deve ser commitado no GitHub;
- Deve possuir um **README** descrevendo o projeto, suas dependências, como reproduzi-lo, link para a simulação, link para o video, e licença de uso;
- Deve possuir uma IMAGEM do circuito montado no simulador;
- Dev possuir o CÓDIGO FONTE do projeto;
- O video deve explicar como o projeto foi implementado, quais as dificuldades encontradas e como foram solucionadas;

Hands-on:

O grupo irá montar o projeto em sala de aula e demonstrar o funcionamento para o professor;

Quando?

- Os checkpoints serão divulgados com antecendência e a Documentação deve ser realizada fora do horário de aula;
- O Hands-On será realizado em sala de aula, na data marcada pelo professor;

❖ E a avaliação?

- Será avalido pela clareza na documentação do projeto e pela implementação correta no hands-on.
- O estudante é livre para consultar exemplos e referencias, porém qualquer indicio de cola ou plágio resulta em uma nota

ZERO!

Checkpoints

- Como é dividida a avaliação do checkpoint?
 - Serão 10 pontos por checkpoint:
 - Documentação 5 pontos:
 - ✓ 1 ponto pela clareza e composição do **README**;
 - ✓ 1 ponto pela **Imagem** do circuito montado no simulador;
 - ✓ 1 ponto pelo circuito implementado no Simulador;
 - √ 1 ponto pela clareza e composição do Código Fonte;
 - √ 1 ponto pela clareza do Video explicativo;
 - Hands-ON 5 pontos:
 - ✓ 1 ponto pela organização na montagem do projeto;
 - ✓ 2 pontos pela arguição realizada pelo professor;
 - √ 3 pontos pela demonstração do projeto funcionando;

Datas importantes

28 de Outubro de 2023 - NEXT;

13 de Novembro de 2023 – Kick Off da Global Solutions; 13 a 24 de Novembro – Global Solutions;

23 a 24 de Novembro – Período de Solicitação das Substitutivas;

27 de Novembro a 01 de Dezembro - Aplicação das Substitutívas;

04 a 08 de Dezembro – Aplicação dos Exames;

Calendário 2º Semestre

Aula	Data	Conteúdo	Observações
01	02/08; 07/08; 08/08	Aula 00 – Aula Magna e Orientações Aula 01 – Sistema de Clock, RTC e Watchdog	
02	09/08; 14/08; 15/08	Aula 02 – Padrões de Comunicação	
03	16/08; 21/08; 22/08	Aula 03 – Bootloader e Interrupções	
04	23/08; 28/08; 29/08	Aula 04 – Introdução a Internet das Coisas	
05	30/08; 04/09; 05/09	Aula 05 – WiFi	
06	06/09; 11/09; 12/09	Aula 06 – Protocolo MQTT	
07	13/09; 18/09; 19/09	Aula 07 – Plataformas IoT – Conectores	
08	20/09; 25/09; 26/09	Aula 08 – Plataformas IoT – Conectores	
09	27/09; 02/10; 03/10	Checkpoint 01	
10	04/10; 09/10; 10/10	Aula 09 – Plataformas IoT – Dashboards	
11	11/10; 16/10; 17/10	Aula 10 – Plataformas IoT – Dashboards	
12	18/10; 23/10; 24/10	Preparativo pro Next ?	
13	25/10; 30/10; 31/10	Checkpoint 2	
14	01/11; 06/11; 07/11	Checkpoint 3	

Bibliográfia

Bibliografia			
Básica	TOCCI, Ronald J., WIDMER, Neal S., MOSS, Gregory L. Sistemas Digitais: princípios e aplicações. 11ª ED. São Paulo: Pearson, 2007. TANENBAUM, Andrew S. Organização estruturada de computadores. 6a Ed. São Paulo: Pearson, 2016. STALLINGS, William. Arquitetura e Organização de Computadores. 8ª Ed. 2010.		
Complementar	GIMENEZ, Salvador P. Microcontroladores 8051: teoria do Hardware e do Software: aplicações em controle digital: laboratório e simulação. São Paulo: Pearson, 2002. CAPRON, H. L.; JOHNSON, J. A. Introdução à Informática - 8ª Ed. São Paulo: Pearson, 2008. NILSSON, James W.; RIEDEL, Susan A. Circuitos Elétricos. 10ª ed. São Paulo: Pearson Education do Brasil, 2016.		

Copyright © 2023 Prof. Airton Y. C. Toyofuku

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proibido sem o consentimento formal, por escrito, do Professor (autor).