Instituto Superior Técnico

Instrumentação Suportada por Computadores Pessoais

Lab. 4 - Human body temperature measurement

Relatório

Nome:	Número:
Estela Ferreira	72874
Rodrigo Capeleiro	76089
Rafael Bento	73572
João Benedito	82141

Dezembro, 2016

Conteúdo

1	Introdução	1
2	Sensor NTC	2
3	Circuito implementado	3
4	Anexos	4

1 Introdução

Este trabalho tem como objetivo realizar a medição da temperatura corporal. Para a realização da medição da temperatura será utilizado um sensor de temperatura denominado por NTC Negative Temperature Coefficient e um microcontrolador baseado na plataforma Arduino, sendo este o Arduino Uno.

Na realização deste trabalho terão de ser cumpridos os seguintes objetivos:

- A gama total de medição de temperatura deve estar contida no intervalo [30°C; 45°C]. Sendo este o intervalo considerado normal para a temperatura do corpo humano;
- A resolução do valor de temperatura deve ser optimizado para obter valores de temperatura o mais próximo possível do valor real;
- Apresentação da gama total de medição de temperatura do sensor NTC utilizado.

2 Sensor NTC

Nesta secção será descrito o funcionamento do sensor bem como a implentação do mesmo no circuito com o microcontrolador baseado na plataforma arduino.

O sensor NTC consiste num sensor térmico na qual a variação de temeratura traduz-se num valor de resistência que por sua vez é inversamente proporcional à variação da temperatura, daí ser denominada por Negative Temperature coefficient. Este sensor é considerado um termístor.

Figura 2.1: Aspecto físico de um termístor NTC.

Este sensor possui uma variação de resistência, como mancionado anteriormente. Para a escolha do sensor tem de se verificar na folha de especificações a gama de medições de temperatura que o sensor possibilita e a tolerância do sensor. Em seguida, escolhe-se o valor da resistência para o valor de referência para 25°C consoante a tolerância do sensor.

Para a integração do sensor num circuito, elabora-se um circuito divisor resistivo com o sensor e a resistência que estabelece o valor de referência para 25°C, como representa a Figura 2.2

Figura 2.2: Divisor resistivo com o sensor e a resistência que estabelece o valor de referência para 25°C.

Para a obtenção de um valor de temperatura exacto é necessário obdecer a alguns parametros impostos pelo sensor, sendo estes as constantes A_1 , B_1 [k^{-1}], C_1 [k^{-2}] e D_1 [k^{-3}]. Após se ter obtido o valor dos parametros mencionados recorre-se á equação 2.1 na qual serão utilizados os valores dos parametros.

$$T[{}^{o}C] = \frac{1}{A_1 + B_1 * \ln \frac{R}{R_{ref}} + C_1 * \ln^2 \frac{R}{R_{ref}} + D_1 * \ln^3 \frac{R}{R_{ref}}} - 273.15$$
 (2.1)

É de notar que é subtraído à equação 273.15 para a converção da temperatura de Kelvin para graus centígrados.

3 Circuito implementado

4 Anexos

ANEXOS

Código Implementado

```
#include <stdint.h>
2 #include <math.h>
4 #define R_REF 12129.0
5 #define A1 3.354016e-3
6 #define B1 2.569850e-4
7 #define C1 2.620131e-6
8 #define D1 6.383091e-8
10 #define AVERAGES 3000
void setup() {
    Serial.begin(9600);
13
14 }
void loop()
17
     double thermistor_r_sum = 0.0;
18
19
      \begin{array}{lll} & \text{for} \; (\; \text{uint} \; 16 \; \text{-t} & \text{i} = \! 0; \; \; \text{i} \! < \! \! \text{AVERAGES}; \; \; \text{i} + \! +) \; \; \{ \end{array}
       uint16_t reading = analogRead(0);
21
        /* Small value readings are caused by erros */
        if (reading < 63 || reading = 1023) {
24
          continue;
26
        \begin{array}{lll} \textbf{double} & \texttt{thermistor\_r} = \texttt{R\_REF} * (1023/(\textbf{double}) \texttt{reading} & -1); \end{array}
        thermistor_r_sum += thermistor_r;
     }
29
     double r_avg = thermistor_r_sum / AVERAGES;
31
     double log_calc = log(r_avg / R_REF);
32
     double temperature = 1 / (A1 + B1 * log_calc + C1 * pow(log_calc , 2) + D1 * pow(log_calc , 3)) - 275.15;
34
      Serial.println(temperature);
35
36 }
```


www.vishay.com

Vishay BCcomponents

NTC Thermistors, Radial Leaded, Standard Precision

QUICK REFERENCE DATA									
PARAMETER	VALUE	UNIT							
Resistance value at 25 °C	3.3 to 470K	Ω							
Tolerance on R ₂₅ -value	± 2; ± 3; ± 5	%							
B _{25/85} -value	2880 to 4570	K							
Tolerance on B _{25/85} -value	± 0.5 to ± 3	%							
Operating temperature range:									
At zero power dissipation; continuously	- 40 to + 125	°C							
At zero power dissipation; for short periods	≤ 150								
Response time (in oil)	≈ 1.2	s							
Thermal time constant τ (for information only)	15	s							
Dissipation factor δ (for information only)	7 8.5 (for R_{25} -value \leq 680 Ω)	mW/K							
Maximum power dissipation at 55 °C	500	mW							
Climatic category (LCT/UCT/days)	40/125/56								
Weight	≈ 0.3	g							

FEATURES

- Accuracy over a wide temperature range
- · High stability over a long life
- Excellent price/performance ratio
- UL recognized, file E148885
- Material categorization:
 For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

 Temperature measurement, sensing and control, temperature compensation in industrial and consumer electronics

DESCRIPTION

These thermistors have a negative temperature coefficient. The device consists of a chip with two solid copper tin plated leads. It is grey lacquered and color coded, but not insulated.

PACKAGING

The thermistors are packed in bulk or tape on reel; see code numbers and relevant packaging quantities.

DESIGN-IN SUPPORT

For complete Curve Computation, visit: www.vishay.com/resistors-non-linear/curve-computation-list/

MARKING

The thermistors are marked with colored bands; see dimensions drawing and "Electrical data and ordering information".

MOUNTING

By soldering in any position. Not intended for potted applications.

ELEC.	ELECTRICAL DATA AND ORDERING INFORMATION											
R ₂₅	B _{25/85} -VALUE		UL APPROVED	SAP MATERIAL NUMBER	OLD 12NC CODE	COLOR CODE (3)						
(Ω)	(K) (± %) (Y/N)		(Y/N)	NTCLE100E3B0/T1/T2 (2)	2381 640 3/4/6 ⁽¹⁾	I	ll ll	Ш				
3.3	2880	3	N	338*B0	*338	Orange	Orange	Gold				
4.7	2880	3	N	478*B0	*478	Yellow	Violet	Gold				
6.8	2880	3	N	688*B0	*688	Blue	Grey	Gold				
10	2990 3 N		N	109*B0	*109	Brown	Black	Black				
15	3041	3	N	159*B0	*159	Brown	Green	Black				
22	3136	3	N	229*B0	*229	Red	Red	Black				
33	3390	3	Υ	339*B0	*339	Orange		Black				
47	3390	3	Y	479*B0	*479	Yellow	Violet	Black				
68	3390	3	Y	689*B0	*689	Blue	Grey	Black				
100	3560	1.5	Υ	101*B0	*101	Brown	Black	Brown				
150	3560	1.5	Y	151*B0	*151	Brown	Green	Brown				
220	3560	1.5	Υ	221*B0	*221	Red	Red	Brown				
330	3560	1.5	Y	331*B0	*331	Orange	Orange	Brown				

Revision: 24-Aug-12 1 Document Number: 29049

www.vishay.com

Vishay BCcomponents

ELECTRICAL DATA AND ORDERING INFORMATION										
R ₂₅	B _{25/85} -	VALUE	UL APPROVED	SAP MATERIAL NUMBER	OLD 12NC CODE	co	COLOR CODE (3)			
(Ω)	(K)	(± %)	(Y/N)	NTCLE100E3B0/T1/T2 (2)	2381 640 3/4/6 (1)	I	l II	l III		
470	3560	1.5	Υ	471*B0	*471	Yellow	Violet	Brown		
680	3560	1.5	Υ	681*B0	*681	Blue	Grey	Brown		
1000	3528	0.5	Υ	102*B0	*102	Brown	Black	Red		
1500	3528	0.5	Υ	152*B0	*152	Brown	Green	Red		
2000	3528	0.5	Υ	202*B0	*202	Red	Black	Red		
2200	3977	0.75	Y	222*B0	*222	Red	Red	Red		
2700	3977	0.75	Υ	272*B0	*272	Red	violet	Red		
3300	3977	0.75	Y	332*B0	*332	Orange	Orange	Red		
4700	3977	0.75	Y	472*B0	*472	Yellow	Violet	Red		
5000	3977	0.75	Y	502*B0	*502	Green	Black	Red		
6800	3977	0.75	Υ	682*B0	*682	Blue	Grey	Red		
10 000	3977	0.75	Y	103*B0	*103	Brown	Black	Orange		
12 000	3740	2	Υ	123*B0	*123	Brown	Red	Orange		
15 000	3740	2	Υ	153*B0	*153	Brown	Green	Orange		
22 000	3740	2	Υ	223*B0	*223	Red	Red	Orange		
33 000	4090	1.5	Υ	333*B0	*333	Orange	Orange	Orange		
47 000	4090	1.5	Υ	473*B0	*473	Yellow	Violet	Orange		
50 000	4190	1.5	Y	503*B0	*503	Green	Black	Orange		
68 000	4190	1.5	Υ	683*B0	*683	Blue	Grey	Orange		
100 000	4190	1.5	Y	104*B0	*104	Brown	Black	Yellow		
150 000	4370	2.5	Y	154*B0	*154	Brown	Green	Yellow		
220 000	4370	2.5	Υ	224*B0	*224	Red	Red	Yellow		
330 000	4570	1.5	N	334*B0	*334	Orange	Orange	Yellow		
470 000	4570	1.5	N	474*B0	*474	Yellow	Violet	Yellow		

Notes

- (1) Replace * in 12NC by 3 for 5 %, 6 for 3 %, 4 for 2 %
 (2) Replace * in SAP by J for 5 %, H for 3 %, G for 2 %
 (3) For R₂₅ ± 2 % band IV is red, ± 3 % band IV is orange, ± 5 % band IV is gold

DIMENSIONS in millimeters

DERATING AND TEMPERATURE TOLERANCES

Note

Zero power is considered as measuring power max. 1 % of max. power.

PHYSICAL DIMENSIONS FOR RELEVANT TYPE (all dimensions in millimeters)										
R ₂₅ -VALUE	B _{MAX} .	d	H ₁				0	-		
A25-VALUE			MIN.	MAX.	H _{2 MAX} .	L	-	T _{MAX.}		
$3.3~\Omega$ to $220~\Omega$	5.0	0.6 ± 0.06	1.0	4.0	6.0	24 ± 1.5	2.54	4.0		
330 Ω to 470 k Ω	3.3 ± 0.5	0.6 ± 0.06	1.0	3.0	6.0	24 ± 1.5	2.54	3.0		

www.vishay.com

Vishay BCcomponents

RT VALUE AND TOLERANCE

These thermistors have a narrow tolerance on the B-value, the result of which provides a very small tolerance on the nominal resistance value over a wide temperature range. For this reason the usual graphs of R = f(T) are replaced by Resistance Values at Intermediate Temperatures Tables. together with a formula to calculate the characteristics with a high precision.

FORMULAE TO DETERMINE NOMINAL **RESISTANCE VALUES**

The resistance values at intermediate temperatures, or the operating temperature values, can be calculated using the following interpolation laws (extended "Steinhart and Hart"):

$$R_{(T)} = R_{ref} \times e^{(A+B/T+C/T^2+D/T^3)}$$
 (1)

$$R_{(T)} = R_{\text{ref}} \times e^{(A+B/T+C/T^2+D/T^3)}$$
(1)

$$T_{(R)} = \left(A_1 + B_1 \ln \frac{R}{R_{\text{ref}}} + C_1 \ln^2 \frac{R}{R_{\text{ref}}} + D_1 \ln^3 \frac{R}{R_{\text{ref}}}\right)^{-1}$$
(2)

where:

A, B, C, D, A_1 , B_1 , C_1 and D_1 are constant values depending on the material concerned; see table below.

 $R_{\text{ref.}}$ is the resistance value at a reference temperature (in this event 25 °C, $R_{ref.} = R_{25}$).

T is the temperature in K.

Formulae numbered and are interchangeable with an error of max. 0.005 $^{\circ}\text{C}$ in the range 25 $^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$ and max. 0.015 °C in the range - 40 °C to + 25 °C.

DETERMINATION OF THE RESISTANCE/TEMPERATURE DEVIATION FROM NOMINAL VALUE

The total resistance deviation is obtained by combining the "R25-tolerance" and the "resistance deviation due to B-tolerance".

When:

 $X = R_{25}$ -tolerance

Y = resistance deviation due to B-tolerance

Z = complete resistance deviation,
then: Z =
$$\left[\left(1 + \frac{X}{100}\right) \times \left(1 + \frac{Y}{100}\right) - 1\right] \times 100 \% \text{ or } Z \approx X + Y$$

TCR = temperature coefficient

 ΔT = temperature deviation,

then: $\Delta T = \frac{Z}{TCR}$ The temperature tolerances are plotted in the graphs on the previous page.

Example: at 0 °C, assume X = 5 %, Y = 0.89 % and TCR = 5.08 %/K (see table), then:

$$Z = \left\{ \left[1 + \frac{5}{100} \right] \times \left[1 + \frac{0.89}{100} \right] - 1 \right\} \times 100\%$$

=
$$\{1.05 \times 1.0089 - 1\} \times 100 \% = 5.9345 \% (\approx 5.93 \%)$$

$$\Delta T = \frac{Z}{TCR} = \frac{5.93}{5.08} = 1.167 \, ^{\circ}C \, (\approx 1.17 \, ^{\circ}C)$$

A NTC with a R_{25} -value of 10 k Ω has a value of 32.56 k Ω between - 1.17 °C and + 1.17 °C.

PARAMETER FOR DETERMINING NOMINAL RESISTANCE VALUES											
NUMBER	B _{25/85} (K)	NAME	TOL. B (%)	Α	В (K)	C (K²)	D (K ³)	A ₁	B ₁ (K ⁻¹)	C₁ (K ⁻²)	D ₁ (K ⁻³)
1	2880	Mat O. with Bn = 2880K	3	- 9.094	2251.74	229098	- 2.744820E+07	3.354016E-03	3.495020E-04	2.095959E-06	4.260615E-07
2	2990	Mat P. with Bn = 3990K	3	-10.2296	2887.62	132336	- 2.5 0 2510E+ 0 7	3.354016E-03	3.415560E-04	4.955455E-06	4.364236E-07
3	3041	Mat Q. with Bn = 3041K	3	-11.1334	3658.73	- 102895	5.166520E+05	3.354016E-03	3.349290E-04	3.683843E-06	7.050455E-07
4	3136	Mat R. with Bn = 3136K	3	- 12.4493	4702.74	- 402687	3.196830E+07	3.354016E-03	3.243880E-04	2.658012E-06	- 2.701560E-07
5	3390	Mat S. with Bn = 3390K	3	- 12.6814	4391.97	- 232807	1.509643E+07	3.354016E-03	2.993410E-04	2.135133E-06	- 5.672000E-09
6	3528 ⁽¹⁾	Mat I. with	0.5	- 12.0596	3687.667	- 7617.13	- 5.914730E+06	3.354016E-03	2.909670E-04	1.632136E-06	7.192200E-08
6	3528 ⁽²⁾	Bn = 3528K	0.5	-21.0704	11903.95	- 2504699	2.470338E+08	3.354016E-03	2.933908E-04	3.494314E-06	- 7.712690E-07
7	3560	Mat H. with Bn = 3560K	1.5	- 13.0723	4190.574	- 47158.4	- 1.199256E+07	3.354016E-03	2.884193E-04	4.118032E-06	1.786790E-07
8	3740	Mat B. with Bn = 3740K	2	- 13.8973	4557.725	- 98275	- 7.522357E+06	3.354016E-03	2.744032E-04	3.666944E-06	1.375492E-07
9	3977	Mat A. with Bn =3977K	0.75	- 14.6337	4791.842	- 115334	- 3.730535E+06	3.354016E-03	2.569850E-04	2.620131E-06	6.383091E-08
10	4090	Mat C. with Bn = 4090K	1.5	- 15.5322	5229.973	- 160451	- 5.414091E+06	3.354016E-03	2.519107E-04	3.510939E-06	1.105179E-07
11	4190	Mat D. with Bn = 4190K	1.5	- 16.0349	5459.339	- 191141	- 3.328322E+06	3.354016E-03	2.460382E-04	3.405377E-06	1.034240E-07
12	4370	Mat E. with Bn = 4370K	2.5	- 16.8717	5759.15	- 194267	- 6.869149E+06	3.354016E-03	2.367720E-04	3.585140E-06	1.255349E-07
13	4570	Mat F. with Bn = 4570K	1.5	- 17.6439	6022.726	- 203157	- 7.183526E+06	3.354016E-03	2.264097E-04	3.278184E-06	1.097628E-07

(1) Temperature < 25 °C
 (2) Temperature ≥ 25 °C