Кафедра информационной безопасности киберфизических систем

Москва 2024

Криптографические методы защиты информации

Сложные вычислительные задачи

Целочисленная факторизация

Задача целочисленной факторизации

- Сложные теоретико-числовые задачи лежат в основе криптографических алгоритмов с открытым ключом.
- Задача целочисленной факторизации:
 - для данного натурального числа n найти его факторизацию на простые множители, то есть получить представление данного числа в виде $n=p_1^{l_1}p_2^{l_2}\dots p_k^{l_k}$, где p_i попарно различные простые числа, $l_i>1$ натуральные числа для $i=1,\dots,k$.
- Известные криптосистемы:
 - криптосистема RSA;
 - криптосистема Рабина.

р-алгоритм Полларда

Вход: составное число n.

Выход: нетривиальный множитель d числа n.

Шаг 1. Присвоить $a \leftarrow 2$, $b \leftarrow 2$.

Шаг 2. Для i=1,2,... выполнить следующее:

Шаг 2.1. Вычислить:

$$a \leftarrow (a^2 + 1) \mod n$$
,

$$b \leftarrow (b^2 + 1) \mod n$$
,

$$b \leftarrow (b^2 + 1) \mod n$$
.

Шаг 2.2. Вычислить d = HOД(a - b, n).

Шаг 2.3. Если 1 < d < n, то возврат (d);

Шаг 3. Возврат («неудача»).

• Идея ρ -алгоритма Полларда состоит в том, чтобы построить такую последовательность чисел, в которой найдется два соседних числа, имеющих **одинаковый остаток** от деления на некоторый нетривиальный множитель d числа n. Тогда разность этих двух чисел будет делиться на d нацело.

Пример работы р-алгоритма Полларда

Вход: n = 5531563.

Московский институт электроники

и математики им. А.Н. Тихонова

i	а	b	d			
_	2	2	_			
1	5	26	1			
2	26	458330	1			
3	677	4072967	1			
4	458330	1083392	1			
5	5283976	4699821	43			

Вход: $n' = \frac{5531563}{43} = 128641$.

Сложные вычислительные задачи

i	а	b	d				
	2	2	_				
1	5	26	1				
2	26	72407	1				
3	677	85096	1				
4	72407	54264	1				
5	9695	68745	1				
6	85096	71797	1				
7	127327	100856	1				
8	54264	1271	197				

Дискретное логарифмирование

Задача дискретного логарифмирования

- Сложные теоретико-числовые задачи лежат в основе криптографических алгоритмов с открытым ключом.
- Если $G = \langle \alpha \rangle$ конечная мультипликативная циклическая группа порядка n и $\beta \in G$, то дискретным логарифмом β относительно базы α называется единственное целое число $x = \log_{\alpha} \beta$, $0 \le x \le n-1$, такое, что $\beta = \alpha^x$.
- Задача дискретного логарифмирования:
 - для данной конечной циклической группы $G = \langle \alpha \rangle$, |G| = n, образующего α и некоторого элемента $\beta \in G$ найти целое число x, $0 \le x \le n-1$, такое, что $\alpha^x = \beta$.
- Известные криптографические алгоритмы:
 - протокол Диффи-Хеллмана;
 - криптосистема Эль-Гамаля;

Случаи задачи дискретного логарифмирования

- Обобщенная задача дискретного логарифмирования:
 - для данной конечной циклической группы $G = \langle \alpha \rangle$, |G| = n, образующего α и некоторого элемента $\beta \in G$ найти целое число x, $0 \le x \le n-1$, такое, что $\alpha^x = \beta$.
- Задача дискретного логарифмирования:
 - для данного простого числа p , образующего элемента $\alpha \in \mathbb{Z}_p^*$ и некоторого элемента $\beta \in \mathbb{Z}_p^*$ найти целое число x, $0 \le x \le p-2$, такое, что $\alpha^x \equiv \beta \pmod{p}$.

Алгоритм «малый шаг — большой шаг»

образующий α циклической группы G порядка n и $\beta \in G$. Вход:

Выход: дискретный логарифм $x = \log_{\alpha} \beta$.

Шаг 1. Вычислить $m = \lceil \sqrt{n} \rceil$, где $[\dots]$ — округление до ближайшего целого.

Шаг 2. Построить таблицу из двух строк и m столбцов, заполнить ее значениями (j, α^j) , где $j=0,\ldots$, m-1 и упорядочить по второму значению.

Шаг 3. Вычислить α^{-m} и присвоить $\gamma \leftarrow \beta$.

Шаг 4. Для i=0,...,m-1 выполнить следующее:

Шаг 4.1. Проверить является ли γ вторым элементом некоторого столбца построенной таблицы.

Сложные вычислительные задачи

Шаг 4.2. Если $\gamma = \alpha^j$, то возврат (x = im + j)

Шаг 4.3. Присвоить $\gamma \leftarrow \gamma \cdot \alpha^{-m}$.

Пример выполнения алгоритма «малый шаг — большой шаг»

- Задание: найти $\log_5 87$ в группе \mathbb{Z}_{137}^* , если известно, что $\mathbb{Z}_{137}^* = \langle 5 \rangle$.
- War 1. $m = \lceil \sqrt{136} \rceil = \lceil 11,662 \rceil = 12.$
- Шаг 2.

j	0	1	2	3	4	5	6	7	8	9	10	11	j	0	1	6	2	7	8	9	4	11	5	3	10
α^{j}	1	5	25	125	77	111	7	35	38	53	128	92	α^{j}	1	5	7	25	35	38	53	77	92	111	125	128

- War 3. $\alpha^{-12} = 14$, $\gamma \leftarrow 87$.
- Шаг 4.

i	0	1	2	3	4	5	6	7	8	9	10	11
γ	87	122	64	74	77	1	1	1	-	1	1	1

• $x = 4 \cdot 12 + 4 = 52$

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru