

 $C = (\operatorname{clock} + PL)'$

When PL = 0, $C = (\operatorname{clock})'$. Hence complete circuit diagram act as negative edge triggered, even though the flip-flops are positive edge triggered. When, PL = 1, C = 0. Hence no change in output A.

6.6 First stage of register:

6.7 First stage of register:

Note that y = x if Q = 0, and y = x' if Q = 1. Q is set on the first 1 from x. Note that $x \oplus 0 = x$, and $x \oplus 1 = x'$.

6.13

6.17

Present State	Next State		
$Q_A Q_B Q_C$	$Q_{\rm A} Q_{\rm B} Q_{\rm C}$	$D_{ m A}D_{ m B}D_{ m C}$	$D_{\rm A} = \Sigma(3, 4, 5, 6)$
0 0 0	0 0 1	0 0 1	$D_{\rm B} = \Sigma(1, 2, 5, 6)$
0 0 1	0 1 0	0 1 0	$D_{\rm c} = \Sigma(0, 2, 4, 6)$
0 1 0	0 1 1	0 1 1	S
0 1 1	1 0 0	1 0 0	$D_{\rm A} = Q_{\rm A} \oplus Q_{\rm B} \oplus Q_{\rm C}$
1 0 0	1 0 1	1 0 1	$D_{\rm B} = Q_{\rm B} \bigoplus Q_{\rm C}$
1 0 1	1 1 0	1 1 0	$D_{\rm C} = Q'_{\rm C}$
1 1 0	1 1 1	1 1 1	
1 1 1	0 0 0	0 0 0	

6.18

When up = down = 1 the circuit counts up.

6.24

1	Present	Next	El:	<i>c</i> 1 :		
	state	state	Flip-flop i		-	
	ABC	ABC	T_{A}	T_B	T_{C}	
	000	001	0	0	1	
	001	011	0	1	0	
	010	XXX	X	X	X	
	011	111	1	1	0	
	100	000	1	1	0	
	101	XXX	X	X	X	
	110	100	0	1	0	
	111	110	0	0	1	

Present state	Next state	Flip-flop inputs					
ABC	ABC	$J_{_{A}}$	K_A	$J_{\scriptscriptstyle B}$	K_B	J_{C}	K_C
000	001	0	X	0	X	1	X
001	010	0	X	1	X	X	1
010	011	0	X	X	0	1	X
011	100	1	X	X	1	X	1
100	100	X	X	0	0	1	X
101	110	X	X	1	X	X	1
110	000	X	X	X	1	0	X
111	XXX	X	X	X	X	X	X

6.29 (a) The 8 valid states are in Fig. 6.18(b), with the sequence: 0, 8, 12, 14, 15, 7, 3, 1, 0, ... The 8 unused states and their next states are shown below:

State	Next state		All invalid
ABCE	ABCE		states
0000	1001	9 🖍	
0100	1010	10	
0101	0010	2	
0110	1011	11	
1001	0100	4	
1010	1101	13	
1011	0101	5	
1101	0110	6	

(b) Modification: $D_C = (A + C)B$.

The valid states are the same as in (a). The unused states have the following sequences: $2 \rightarrow 9 \rightarrow 4 \rightarrow 8$ and $10 \rightarrow 13 \rightarrow 6 \rightarrow 11 \rightarrow 5 \rightarrow 0$. The final states, 0 and 8, are valid.