PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

SEGUNDO SEMESTRE DE 2022

MAT1107 - Introducción al Cálculo

Solución Examen

1. Encontrar el coeficiente de x^n en $(1+x)^{2n}$.

Solución. Usando el teorema del binomio

$$(1+x)^{2n} = \sum_{k=0}^{2n} {2n \choose k} 1^{2n-k} \cdot x^k = \sum_{k=0}^{2n} {2n \choose k} x^k$$

El coeficiente x^n se obtiene cuando k = n. Entonces el coeficiente que acompaña a x^n es

$$\binom{2n}{n} = \frac{(2n)!}{n! \cdot n!} \, .$$

Puntaje Pregunta 1.

- 3 puntos por usar el teorema del binomio.
- 3 puntos por obtener el coeficiente.

2. Calcule
$$\sum_{k=1}^{n} \frac{3^{k+1}}{4^k}$$
.

Solución. Tenemos que

$$\sum_{k=1}^{n} \frac{3^{k+1}}{4^k} = \sum_{k=1}^{n} 3 \frac{3^k}{4^k} = 3 \sum_{k=1}^{n} \left(\frac{3}{4}\right)^k$$

Tomando $r = \frac{3}{4}$ se ve que

$$3\sum_{k=1}^{n} \left(\frac{3}{4}\right)^{k} = 3\sum_{k=1}^{n} r^{k} = 3\left[\left[\sum_{k=0}^{n} r^{k}\right] - 1\right] = 3\left[\frac{1 - r^{n+1}}{1 - r} - 1\right]$$
$$= 3\left[\frac{1 - \left(\frac{3}{4}\right)^{n+1}}{\frac{1}{4}} - 1\right] = 3\left[4 - 4\left(\frac{3}{4}\right)^{n+1} - 1\right]$$
$$= 9 - 12\left(\frac{3}{4}\right)^{n+1}.$$

Puntaje Pregunta 2.

- 3 puntos por obtener que la suma es igual a $S = 3\sum_{k=1}^{n} \left(\frac{3}{4}\right)^{k}$.
- 3 puntos por calcular la suma.

3. Calcule
$$\lim_{n \to \infty} \left(\frac{n^4}{n^3 - 1} - \frac{n^3}{n^2 + n + 1} \right)$$
.

Solución. Tenemos que

$$\frac{n^4}{n^3 - 1} - \frac{n^3}{n^2 + n + 1} = \frac{n^4(n^2 + n + 1) - n^3(n^3 - 1)}{(n^3 - 1)(n^2 + n + 1)}$$
$$= \frac{n^6 + n^5 + n^4 - n^6 + n^3}{n^5 + n^4 + n^3 - n^2 - n - 1}$$
$$= \frac{n^5 + n^4 + n^4}{n^5 + n^4 + n^3 - n^2 - n - 1}$$

Amplificando por $1/n^5$ vemos que

$$\lim_{n \to \infty} \frac{n^5 + n^4 + n^4}{n^5 + n^4 + n^3 - n^2 - n - 1} = \lim_{n \to \infty} \frac{n^5 + n^4 + n^4}{n^5 + n^4 + n^3 - n^2 - n - 1} \cdot \frac{\frac{1}{n^5}}{\frac{1}{n^5}}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{1}{n} + \frac{1}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2} - \frac{1}{n^3} - \frac{1}{n^4} - \frac{1}{n^5}} = 1$$

Puntaje Pregunta 3.

- 3 puntos por realizar la diferencia y obtener que $\frac{n^4}{n^3-1} \frac{n^3}{n^2+n+1} = \frac{n^5+n^4+n^4}{n^5+n^4+n^3-n^2-n-1}$
- 3 puntos por calcular el límite.

4. Sea a_n una sucesión que satisface la siguiente desigualdad

$$\frac{6\sqrt{n}}{\sqrt{n}+1} \leqslant a_n \leqslant \frac{12n-2}{2n}$$

para todo $n \in \mathbb{N}$. Calcule $\lim_{n \to \infty} \frac{1}{a_n}$.

Solución. Notemos que

$$\lim_{n \to \infty} \frac{6\sqrt{n}}{\sqrt{n+1}} \lim_{n \to \infty} \frac{6\sqrt{n}}{\sqrt{n+1}} \cdot \frac{\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{6}{1 + \frac{1}{\sqrt{n}}} = 6$$

En virtud del teorema del Sandwich obtenemos que $\lim_{n\to\infty} a_n = 6$ y usando el álgebra de límites:

$$\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\lim_{n \to \infty} a_n} = \frac{1}{6} .$$

Puntaje Pregunta 4.

- 2 puntos por obtener los límites de la cota inferior y superior.
- 2 puntos por usar el teorema del sandwich y concluir que el límite de la sucesión es 6.
- 2 puntos por usar el álgebra de límites y concluir que el límite pedido es 1/6.

5. Considere la sucesión definida por:

$$a_1 = 3$$
, $a_{n+1} = \frac{1+a_n}{2}$.

- a) Pruebe por inducción que $(\forall n \in \mathbb{N})(a_n > 1)$
- b) Pruebe por inducción que $(\forall n \in \mathbb{N})(a_{n+1} < a_n)$
- c) Pruebe que a_n es convergente y encuentre su límite.

Solución.

a) Definimos la fórmula proposicional P(n): $a_n > 1$. Entonces, se tiene que

$$P(k)$$
 : $a_k > 1$
 $P(k+1)$: $a_{k+1} > 1$

- Caso base: P.D: $a_1 > 1$. En efecto, $a_1 = 3$ lo cual es mayor que 1.
- Paso inductivo: Supongamos que P(k) es verdadero. P.D: P(k+1) es verdadero. En efecto, usando la definición recursiva vemos que

$$a_{k+1} = \frac{1+a_k}{2} > \frac{1+1}{2} = 1$$

en donde la desigualdad es consecuencia de la hipótesis inductiva.

Por el principio de inducción matemático concluimos que P(n) es verdadero para todo $n \in \mathbb{N}$.

b) Definimos la fórmula proposicional Q(n): $a_{n+1} < a_n$. Entonces, se tiene que

$$Q(k)$$
 : $a_{k+1} < a_k$
 $Q(k+1)$: $a_{k+2} < a_{k+1}$

■ Caso base: P.D: P(1) es verdadero o equivalentemete que $a_2 < a_1$. En efecto, por la definición recursiva

$$a_2 = \frac{1+a_1}{2} = \frac{1+3}{2} = 2 < a_1 = 3$$
.

■ Paso inductivo: Supongamos que P(k) es verdadero. P.D: P(k+1) es verdadero. En efecto, usando la definición recursiva vemos que

$$a_{k+2} = \frac{1 + a_{k+1}}{2} < \frac{1 + a_k}{2} = a_{k+1}$$

en donde la desigualdad es consecuencia de la hipótesis inductiva.

Por el principio de inducción matemático concluimos que Q(n) es verdadero para todo $n \in \mathbb{N}$.

c) Como $\{a_n\}$ esta acotada inferiormente (inciso (a)) y es monótona decreciente (inciso (b)) concluimos que la sucesión es convergente. Sea $L = \lim_{n \to \infty} a_n$. Haciendo $n \to \infty$ en la fórmula recursiva se obtiene

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1 + a_n}{2} \iff \lim_{n \to \infty} a_{n+1} = \frac{1 + \lim_{n \to \infty} a_n}{2}$$

$$\iff L = \frac{1 + L}{2}$$

$$\iff 2L = 1 + L$$

$$\iff L = 1.$$

Puntaje Pregunta 5.

- 2 puntos por demostrar que la sucesión es acotada inferiormente.
- 2 puntos por demostrar que la sucesión es monótona decreciente.
- 2 puntos por concluir que el límite existe y vale 1.

6. Use el hecho de que $\lim_{n\to\infty}\ln(n)=+\infty$ para verificar que

$$\lim_{n \to \infty} \left(\frac{\ln(n+1)}{\ln(n)} - 1 \right) = 0.$$

Solución. Notemos que

$$\frac{\ln(n+1)}{\ln(n)} - 1 = \frac{\ln(n+1) - \ln(n)}{\ln(n)}$$

$$= \frac{\ln\left(\frac{n+1}{n}\right)}{\ln(n)}$$

$$= \ln\left(1 + \frac{1}{n}\right) \cdot \frac{1}{\ln(n)}$$

Como $\lim_{n\to\infty} \ln(n) = +\infty$ entonces $\lim_{n\to\infty} \frac{1}{\ln(n)} = 0$ y usando paso al límite obtenemos

$$\begin{split} \lim_{n \to \infty} \left(\frac{\ln(n+1)}{\ln(n)} - 1 \right) &= \lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right) \cdot \frac{1}{\ln(n)} \\ &= \left(\lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right) \right) \cdot \left(\lim_{n \to \infty} \frac{1}{\ln(n)} \right) \\ &= \ln\left(1 + \lim_{n \to \infty} \frac{1}{n}\right) \cdot \left(\lim_{n \to \infty} \frac{1}{\ln(n)} \right) \\ &= \ln(1) \cdot 0 = 0 \end{split}$$

Puntaje Pregunta 6.

- 2 puntos por realizar la resta y obtener que $\frac{\ln(n+1)}{\ln(n)} 1 = \ln\left(1 + \frac{1}{n}\right) \cdot \frac{1}{\ln(n)}$.
- 2 puntos por concluir que $\lim_{n\to\infty} \frac{1}{\ln(n)} = 0$.
- $\blacksquare \ 2$ puntos por concluir que $\lim_{n\to\infty} \ln\left(1+\frac{1}{n}\right) = \ln(1) = 0.$