Temporal performance analysis

Step 1: initialization

From desired initial chamber pressure and OF ratio, the code computes R_i^0 , $\dot{m}_{
m ox}^0$ and $C^*_{
m guess}.$ The code does not care about outer radius and the user should check that it is always greater than the inner radius.

Step 2: solve

Then, the input for the temporal analysis is a profile $\dot{m}_{
m ox}^i$. The sequence of operations are:

- 1. Get R_i^{i+1} using a basic forward Euler
- 2. Get \dot{R}_i^{i+1} , $\dot{m}_{
 m fuel}^{i+1}$ and ${
 m O/F}^{i+1}$ 3. Get $p_c^{i+1}=C^{*,i}\dot{m}^{i+1}/A_t$ (lagged C^*)
- 4. Recompute γ and $C^{*,i+1}$ from p_c^{i+1} , $\mathrm{O}/\mathrm{F}^{i+1}$
- 5. Get C_F from p_c^{i+1} and γ
- 6. Get $T^{i+1}=p_c^{i+1}A_tC_F$

 $C^*_{
m guess}$ is used for the inialization following the same procedure.