CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	205	All
Examination	Date	Duration
Midterm Test	21 October, 2017	$1\ \mathrm{h}\ 30\ \mathrm{min}$
Special	Only approved calculators are allowed	
Instructions:	Show all your work for full marks	

1. (6+5 marks):

(a) Write the sigma notation formula for the *left* Riemann sum L_n of the function $f(x) = (1+x)^2$ on the interval [-1,2] using n subintervals of equal length. Use that formula to calculate the integral $\int_{-1}^{2} f(x) dx$ as the limit of L_n at $n \to \infty$.

(Reminder:
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
, and $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.)

- (b) Graph the function f(x) = |x 3| 1, and use it to evaluate the integral $\int_{-2}^{4} f(x) dx$ in terms of area.
- **2.** (5 marks): Use the Fundamental Theorem of Calculus to find the derivative F'(x) of $F(x) = x^2 + \int_{-2x}^{2x} [3 + \sin(t^2)] dt$.
- 3. (10 marks): Calculate the following indefinite integrals

(a)
$$\int \frac{x}{x^2 - 3x + 2} dx$$
 (b)
$$\int \cos^4(x) dx$$

- **4.** (6 marks): Find the antiderivative F(t) of $f(t) = \ln^2(x)$ such that F(1) = 0.
- 5. (12 marks): Evaluate the following definite integrals (do not approximate):

(a)
$$\int_{0}^{\ln 4} \frac{e^x}{e^{2x} + 16} dx$$
 (b) $\int_{0}^{3} x^2 \sqrt{1 + x} dx$

6. (6 marks): Sketch the graphs of the functions y = |x| - 2 and $y = 4 - x^2$, and find the area of the region enclosed by these graphs.

Bonus. (3 marks): Calculate the definite integral $\int_{-\pi}^{\pi} \frac{\sin x}{1+x^2} dx$.