

Análisis de Seguridad y Pruebas de Penetración

Introducción

Introducción

- La seguridad informática es un pilar esencial en la era digital.
- Se requieren enfoques proactivos:
 - Análisis de seguridad
 - Pruebas de penetración (Pentesting)
- Objetivo: detectar vulnerabilidades antes que los atacantes.

¿Qué es el Análisis de Seguridad?

¿Qué es el Análisis de Seguridad?

- - Identificar vulnerabilidades
 - Medir nivel actual de seguridad
 - Cumplir normas como ISO/IEC 27001 y NIST
 - Emitir recomendaciones técnicas

¿Qué son las Pruebas de Penetración?

¿Qué son las Pruebas de Penetración?

- Simulación autorizada de ataques reales Objetivos:
 - Detectar vulnerabilidades explotables
 - Evaluar detección y respuesta organizacional
 - Validar controles de seguridad existentes

Fases del Pentesting (Modelo OWASP/PTES)

Fases del Pentesting (Modelo OWASP/PTES)

- 1. Reconocimiento (OSINT)
- 1. Escaneo (Scan activo)
- 1. Explotación (Ataques controlados)
- 1. Mantenimiento del acceso (Persistencia)
- 1. Informe y remediación

Fase 1 – Reconocimiento

Fase 1 – Reconocimiento

- Recopilación pasiva de información pública herramientas:
 - Google Hacking
 - Shodan
 - WHOIS
 - LinkedIn
- Objetivo: descubrir vectores de ataque sin alertar al objetivo

Fase 2 – Escaneo

Fase 2 – Escaneo

- Evaluación activa de puertos y servicios Herramientas:
 - Nmap
 - Nessus
 - OpenVAS
 - Burp Suite
- @ Resultado: mapa técnico de vulnerabilidades potenciales

Fase 3 – Explotación

Fase 3 – Explotación

- Uso real de exploits para demostrar el impacto
- Herramientas:
 - Metasploit
 - Sqlmap
 - Hydra
- Importancia: confirmar amenazas reales, no teóricas

Fase 4 – Mantenimiento del Acceso

Fase 4 – Mantenimiento del Acceso

- 🤍 Simula cómo un atacante mantendría presencia
- 💼 Técnicas:
 - Backdoors
 - Shells persistentes
 - Rootkits
- Objetivo: evaluar respuesta y monitoreo interno

Fase 5 – Informe y Remediación

Fase 5 – Informe y Remediación

- Creación de un informe profesional Debe incluir:
 - Vulnerabilidades halladas
 - Reproducción del ataque
 - Severidad (CVSS)
 - Recomendaciones técnicas

Consideraciones Éticas y Legales

Consideraciones Éticas y Legales

- Requiere autorización escrita Principios clave:
 - Confidencialidad
 - Integridad de la información recolectada
 - Cumplimiento normativo (GDPR, CFAA, etc.)

Entornos Controlados

Entornos Controlados

- Pruebas deben realizarse en laboratorios o entornos duplicados Maria Beneficios:
 - Evita afectación productiva
 - Reproduce ataques sin riesgo real
 - Mejora precisión en resultados

Conclusión

Conclusión

- 🧠 El análisis de seguridad y pentesting son claves para:
 - Fortalecer defensas
 - Prevenir incidentes
 - Cumplir normativas
 - Construir una postura de ciberseguridad sólida y sostenible

Energiza!