

Model Development Phase Template

Date	15 March 2024
Team ID	SWTID1720113374
Project Title	Predicting Compressive Strength Of Concrete Using Machine Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:


```
from sklearn.linear model import LinearRegression, Ridge, Lasso
   from sklearn.model selection import train_test_split, cross_val score
   from sklearn.metrics import mean_squared_error, r2_score
from sklearn.ensemble import RandomForestRegressor
   from xgboost import XGBRegressor
   from sklearn.metrics import r2_score
   models = {
        'lin_reg': LinearRegression(),
        'ridge': Ridge(),
       'lasso': Lasso(),
        'rf_reg': RandomForestRegressor(n_estimators=100, random_state=42),
        'xgb reg': XGBRegressor(),
   for name ,model in models.items():
       model.fit(X train transformed, Y train)
       y_pred = model.predict(X_test_transoformed)
       print(f"{name} : {r2_score(Y_test,y_pred)}")
lin reg: 0.68797608607626
ridge: 0.6878535212619623
lasso: 0.644765819542793
rf reg: 0.8821778779976575
xgb_reg : 0.9020358726873339
```

Model Validation and Evaluation Report:

Model Classification Report Accuracy Confusion Matrix	Model	Classification Report	Accuracy	Confusion Matrix
---	-------	-----------------------	----------	------------------

Linear regression	<pre># Define the regression models models = { 'lin_reg': LinearRegression(), 'ridge': Ridge(), 'lasso': Lasso(), 'rf reg': RandomGrostRegressor(n_estimators=100, random_state=42), 'xgb_reg': XGBRegressor(), } for name ,model in models.items(): model.fit(X_train_transformed,Y_train) y_pred = model.predict(X_test_transoformed) print(!*(name) : (r2_score(Y_test,y_pred))*) lin_reg : 0.687937608607626 ridge : 0.6878335312610623 lasso : 0.644765819542793 rf_reg : 0.8821778779976575 xgb_reg : 0.9928358776873339</pre>	68%	Confusion Matrix: [[20 2 0] [2 12 0] [0 0 2]]
Ridge regression	<pre># Define the regression models models {</pre>	68%	Confusion Matrix: [[18 3 1] [1 11 3] [0 0 2]]
Random forest regression	<pre># Define the regression models models { "lin_reg": LinearRegression(), "ridge: Ridge(), "lasso": Lasso(), "rf-reg": RandomforestRegressor(n_estimators-100, random_state-42), "xgb_reg": XGBRegressor(), } for name _model in models.items(): model.fii(X_rain_transformed,Y_train) y_pred = model.predict(X_test_transoformed) print(i"[name] : [r2_score(Y_test,y_pred)]") lin_reg : 0.68797608607676 ridge : 0.68797508606767 ridge : 0.68797508606773 rf_reg : 0.8821778779976575 xgb_reg : 0.9020358726873339</pre>	88%	Confusion Matrix: [[15 2 1] [3 10 1] [0 0 3]]

