Arbres

© N. Brauner, 2019, M. Stehlik 2020

Plan

Arbres et forêts

2 Arbre enraciné

3 Arbres couvrant de poids minimum

Plan

Arbres et forêts

2 Arbre enraciné

3 Arbres couvrant de poids minimum

Graphe acyclique

G acyclique : ne contient pas de cycle

Quelles composantes connexes du graphe suivant sont acycliques?

Graphe acyclique

Un graphe acyclique ${\it G}$ à ${\it n}$ sommets possède au plus ${\it n}-1$ arêtes.

5

Graphe acyclique

Un graphe acyclique G à n sommets possède au plus n-1 arêtes.

Preuve par induction sur le nombre de sommets du graphe.

- Si G est d'ordre 1, il ne possède aucune arête. \checkmark
- Supposons la propriété vraie à l'ordre n et établissons-la à l'ordre n+1. Soit G=(V,E) acyclique à n+1 sommets.
- On sait que (cours précédent) si un graphe est acyclique, alors il possède un sommet, noté x, de degré au plus 1.
- Soit G' = (V', E') le graphe d'ordre n tel que $V' = V \setminus \{x\}$ et E' est égal à E privé de l'arête incidente à x si elle existe.
- Le graphe G' est sans cycle, donc, par l'hypothèse d'induction, il possède au plus n-1 arêtes.
- Or d(x) < 2 impose que E diffère de E' par au plus une arête.
 Donc |E| est inférieure à n. ✓

Forêt : graphe acyclique.

Arbre: graphe acyclique connexe

Dessins de Invitation to mathematics de Matoušek et Nešetřil

Forêt : graphe acyclique.

Arbre: graphe acyclique connexe

Dessins de Invitation to mathematics de Matoušek et Nešetřil

Chaque "bout" (composante connexe) de la forêt est un arbre. . .

Quelques questions pour comprendre

- A quelle condition un arbre est-il un graphe complet?
- A quelle condition un cycle est-il un graphe complet?
- Si on retire une arête à un cycle, qu'obtient-on?
- Un arbre peut-il être Eulérien?
- Un arbre peut-il être Hamiltonien?
- Quels arbres contiennent une chaîne Eulérienne?

Un premier lemme

Si e est une arête d'un cycle C d'un graphe connexe G, alors G-e est connexe.

 $\forall x, y \in V(G)$, il existe une xy-chaine P car G est connexe. Si $e \notin E(P)$, alors P est une xy-chaine dans G - e. Si $e \in E(P)$ alors en remplaçant dans P l'arête e par la chaine C - e on obtient une xy-chaine P' dans G - e. G - e est donc connexe.

Caractérisations d'un Arbre

Jamais deux sans trois

Soit T, un graphe d'ordre n. Deux des propriétés suivantes impliquent la troisième.

- T est connexe
- 2 T a n-1 arêtes
- T est acyclique

- $(1) + (3) \Rightarrow (2)$
 - T connexe $\Rightarrow T$ a au moins n-1 arêtes
 - T acyclique $\Rightarrow T$ a au plus n-1 arêtes

•
$$(1) + (3) \Rightarrow (2)$$

- T connexe $\Rightarrow T$ a au moins n-1 arêtes
- T acyclique \Rightarrow T a au plus n-1 arêtes

•
$$(1) + (2) \Rightarrow (3)$$

- Soit C un cycle de T.
- Si on enlève une arête de C, T reste connexe à n-2 arêtes. X

- $(1) + (3) \Rightarrow (2)$
 - T connexe $\Rightarrow T$ a au moins n-1 arêtes
 - T acyclique $\Rightarrow T$ a au plus n-1 arêtes
- $(1) + (2) \Rightarrow (3)$
 - Soit C un cycle de T.
 - Si on enlève une arête de C, T reste connexe à n-2 arêtes. X
- $(2) + (3) \Rightarrow (1)$
 - Soit c le nombre de composantes connexes de T
 - Chaque composante connexe C_i de T a v_i sommets et $v_i 1$ arêtes (connexe et acyclique)
 - On a donc $\sum_i (v_i 1) = \sum_i v_i c = n c$
 - et $\sum_{i} (v_i 1) = n 1$ (par (2))
 - D'où c = 1 et donc T connexe.

Autres caractérisations d'un arbre

Les trois propositions suivantes sont équivalentes

- T est un arbre
- connexe minimal : la suppression de toute arête le déconnecte
- acyclique maximal : l'ajout de toute arête crée un cycle

Soit T = (V, E) un arbre

- Arbre ⇒ Connexe minimal
 - T arbre $\Rightarrow |E| = n 1$
 - T auquel on enlève une arête a n-2 arêtes donc il ne peut pas être connexe.
 - ullet Donc la suppression de n'importe quelle arête déconnecte T.

Soit T = (V, E) un arbre

- Arbre ⇒ Connexe minimal
 - T arbre $\Rightarrow |E| = n 1$
 - T auquel on enlève une arête a n-2 arêtes donc il ne peut pas être connexe.
 - ullet Donc la suppression de n'importe quelle arête déconnecte ${\cal T}.$
- Arbre ⇒ Acyclique maximal
 - Soient x et y deux sommets de T tels que $xy \notin E$.
 - T est connexe donc il existe dans T une chaîne C de x à y
 - C est d'extrémités x et y et il ne contient pas l'arête xy
 - Donc C auquel on ajoute xy est un cycle
 - Donc l'ajout de n'importe quelle arête crée un cycle

- Connexe minimal ⇒ Arbre
 - Soit T connexe minimal.
 - Si *T* contient un cycle, la suppression d'une arête de ce cycle ne peut pas le rendre non connexe. Donc *T* est acyclique.
 - T est acyclique et connexe $\Rightarrow T$ est un arbre.

- Connexe minimal ⇒ Arbre
 - Soit T connexe minimal.
 - Si *T* contient un cycle, la suppression d'une arête de ce cycle ne peut pas le rendre non connexe. Donc *T* est acyclique.
 - T est acyclique et connexe $\Rightarrow T$ est un arbre.
- Acyclique maximal ⇒ Arbre
 - Supposons T = (V, E) acyclique maximal
 - si T est non connexe alors, il existe x et y deux sommets de T tels qu'il n'y a pas dans T de chaîne de x à y (en particulier xy ∉ E).
 - Donc l'ajout de l'arête xy à T ne crée pas de cycle : contradiction avec l'hypothèse acyclique maximal
 - Donc T est connexe et acyclique \Rightarrow T est un arbre.

Théorème

Soit G acyclique ayant au moins une arête, alors G possède un sommet de degré 1.

Théorème

Soit G acyclique ayant au moins une arête, alors G possède un sommet de degré 1.

C'est (à un détail près) la contraposée de la propriété vue dans le cours précédent :

Si dans un graphe G tout sommet est de degré supérieur ou égal à 2, alors G possède au moins un cycle.

Sur le même principe que la recherche d'un cycle :

Vérification de Cheminement_Arbre(i)

- tout s'exécute correctement
 - Comme le graphe possède au moins une arête, *i* et *j* sont bien définis avant le **tant que**.
 - Dans la boucle, comme d(j) > 1, k est bien défini

Vérification de Cheminement Arbre(i)

- tout s'exécute correctement
 - Comme le graphe possède au moins une arête, *i* et *j* sont bien définis avant le **tant que**.
 - Dans la boucle, comme d(j) > 1, k est bien défini
- 2 en un nombre fini d'étapes
 - Les sommets visités forment une chaîne.
 - Il n'y a pas d'aller-retour le long d'une arête
 - Si un sommet est visité deux fois et qu'il n'y a pas d'aller retour le long d'une arête alors on obtient un cycle
 - acyclique \Rightarrow un sommet n'est jamais visité deux fois

Vérification de Cheminement Arbre(i)

- tout s'exécute correctement
 - Comme le graphe possède au moins une arête, *i* et *j* sont bien définis avant le **tant que**.
 - Dans la boucle, comme d(j) > 1, k est bien défini
- en un nombre fini d'étapes
 - Les sommets visités forment une chaîne.
 - Il n'y a pas d'aller-retour le long d'une arête
 - Si un sommet est visité deux fois et qu'il n'y a pas d'aller retour le long d'une arête alors on obtient un cycle
 - acyclique \Rightarrow un sommet n'est jamais visité deux fois
- 3 en cas d'arrêt, on obtient l'objet souhaité
 - sortie du tant que avec d(j) = 1

Vérification de Cheminement Arbre(i)

- 1 tout s'exécute correctement
 - Comme le graphe possède au moins une arête, *i* et *j* sont bien définis avant le **tant que**.
 - Dans la boucle, comme d(j) > 1, k est bien défini
- en un nombre fini d'étapes
 - Les sommets visités forment une chaîne.
 - Il n'y a pas d'aller-retour le long d'une arête
 - Si un sommet est visité deux fois et qu'il n'y a pas d'aller retour le long d'une arête alors on obtient un cycle
 - acyclique ⇒ un sommet n'est jamais visité deux fois
- 3 en cas d'arrêt, on obtient l'objet souhaité
 - sortie du tant que avec d(j) = 1

Remarque : Cheminement Arbre(i) ne retourne pas i

Théorème

Soit G acyclique ayant au moins une arête, alors G admet au moins deux sommets de degré 1.

Théorème

Soit G acyclique ayant au moins une arête, alors G admet au moins deux sommets de degré 1.

preuve par récurrence sur le nombre de sommets du graphe.

- H(n): soit G acyclique à n sommets et au moins une arête.
 Alors, G admet au moins deux sommets de degré 1.
- Cas de base n = 2: graphe composé d'une arête. \checkmark
- supposons H(n) vraie au rang $n \ge 2$. On veut montrer que H(n+1) est vraie.
- Soit G graphe acyclique d'ordre n+1 avec au moins une arête.
- Par le lemme précédent, on sait que G contient un sommet x tel que d(x) = 1. Soit $yx \in E$ l'arête incidente à x.

- Considérons $G' = (V/\{x\}, E/\{xy\})$
- G' est acyclique et G' a n sommets.
- Si G' n'a pas d'arête. Alors, y, le voisin de x est de degré 1. ✓
- Si G' a au moins une arête, alors, on peut appliquer H(n). Donc G' a au moins deux sommets de degré 1.
- Dans ce cas, au moins un de ces sommets n'est pas y. Donc G
 a au moins deux sommets de degré 1. ✓

Une autre preuve

- Soit C = (V', E') une composante connexe de G.
- $\sum_{v \in V'} d(v) = 2|E'| = 2|V'| 2$ (C acyclique)
- Comme il n'y a pas de sommet de degré 0 dans C (graphe connexe), il existe au moins deux sommets qui ont un degré égal à 1.

Une autre preuve

- Soit C = (V', E') une composante connexe de G.
- $\sum_{v \in V'} d(v) = 2|E'| = 2|V'| 2$ (C acyclique)
- Comme il n'y a pas de sommet de degré 0 dans C (graphe connexe), il existe au moins deux sommets qui ont un degré égal à 1.

Encore une autre preuve

- Soit x, un sommet de G avec $d(x) \ge 1$.
- Soit y =Cheminement Arbre(x).
- Soit z = Cheminement Arbre(y).
- On a $y \neq z$ et d(y) = d(z) = 1

Peut-on aller plus loin?

Est-il vrai que G acyclique avec au moins une arête \Rightarrow il existe au moins 3 sommets de degré 1?

Peut-on aller plus loin?

Est-il vrai que G acyclique avec au moins une arête \Rightarrow il existe au moins 3 sommets de degré 1?

non : une chaîne élémentaire

$$d(x) = 1$$

- Dans G quelconque : sommet pendant
- Dans G arbre : feuille

A quoi ça sert de savoir ça?

Les deux assertions suivantes sont équivalentes pour un graphe G = (V, E) et un sommet pendant $v \in V$:

- G est un arbre.
- $G' = (V \setminus \{v\}, E' \setminus \{xv\})$ est un arbre.

avec $xv \in E$

Encore une caractérisation des arbres

G est un arbre si et seulement si il existe une chaîne élémentaire unique entre chaque paire de sommets de G

preuve?

Certificat

Arbres et forêts 00000000000000000000

> Question oui/non avec certificat: Est-ce que le graphe G est un arbre?

Certificat

Arbres et forêts

000000000000000000000

Question oui/non avec certificat:

Est-ce que le graphe G est un arbre?

oui : le nombre d'arêtes et le nombre de composantes connexes

Certificat

000000000000000000000

Arbres et forêts

Question oui/non avec certificat :

Est-ce que le graphe G est un arbre?

oui : le nombre d'arêtes et le nombre de composantes connexes

non : un cycle ou un $S \subsetneq V$ avec 1 cocycle $(S) = \emptyset$

Certificat

Question oui/non avec certificat :

Est-ce que le graphe G est un arbre?

oui : le nombre d'arêtes et le nombre de composantes connexes

$$non$$
: un cycle ou un $S \subsetneq V$ avec 1 $cocycle(S) = \emptyset$

autre oui : ordre $v_1, v_2, ... v_n$ sur les sommets du graphe tels que

- $G_i = (V_i, E_i)$ i = 1, 2...n
- $G_1 = G$,
- $G_{i+1} = (V_i \setminus \{v_i\}, E_i \setminus \{xv_i\})$ où v_i est une feuille de G_i et x est l'unique voisin de v_i dans G_i

Plan

1 Arbres et forêts

2 Arbre enraciné

3 Arbres couvrant de poids minimum

Arbre enraciné

Arbre enraciné ou Arborescence

Souvent, pour manipuler un arbre, nous particularisons un sommet du graphe que nous appelons racine (notée r).

Le choix d'une racine revient dans un certain sens à orienter l'arbre, la racine apparaissant comme l'ancêtre commun à la manière d'un arbre généalogique. Le vocabulaire de la théorie des graphes s'en inspire directement : on parle de fils, de père, de frère...

Arbre enraciné

Pour un arbre T de racine r

- Le père d'un sommet x est l'unique voisin de x sur le chemin de la racine à x. La racine r est le seul sommet sans père.
- Les fils d'un sommet x sont les voisins de x autres que son père.
- Une feuille est un sommet sans fils. Les feuilles sont de degré
 1.
- La hauteur h(T) de l'arbre T est la longueur de la plus longue chaîne de la racine à une feuille.

On retrouve ce que l'on avait vu au Cours Magistral numéro 2.

Plan

Arbres et forêts

Arbre enraciné

3 Arbres couvrant de poids minimum

T est un arbre couvrant de G si

- V(T) = V(G) et
- $E(T) \subset E(G)$ et
- T est un arbre.

[spanning tree]

- Donnez une condition nécessaire et suffisante pour qu'un graphe *G* admette un arbre couvrant.
- Dans un graphe G d'ordre n, une chaîne élémentaire de longueur n-1 est-elle un arbre couvrant?
- Dans un graphe G d'ordre n, un arbre avec n-1 arêtes est-il forcément couvrant?

Tout graphe connexe contient un arbre couvrant

Algorithme 2 : Arbre couvrant en déconstruisant

Données : G = (V, E) connexe

Résultat : G' = (V, F) un arbre couvrant de G

F = E

tant que G' = (V, F) contient un cycle faire | soit C un cycle de G' et soit e une arête de C| $F \leftarrow F \setminus \{e\}$

retourner G'=(V,F)

Arbres et forêts

Montrer que cet algorithme renvoie bien un arbre couvrant de G.

tout s'exécute correctement

- 1 tout s'exécute correctement
- en un nombre fini d'étapes

- 1 tout s'exécute correctement
- en un nombre fini d'étapes
 - A chaque étape, la cardinalité de F diminue
- en cas d'arrêt, on obtient l'objet souhaité

- 1 tout s'exécute correctement
- 2 en un nombre fini d'étapes
 - A chaque étape, la cardinalité de F diminue
- en cas d'arrêt, on obtient l'objet souhaité
 - l'instruction dans le tant que ne déconnecte pas le graphe
 - A la sortie du tant que, le graphe est sans cycle

Tout graphe connexe contient un arbre couvrant

```
Algorithme 3 : Arbre couvrant en construisant

Données : G = (V, E) connexe

Résultat : G' = (V, F) un arbre couvrant de G

F = \emptyset

tant que G' = (V, F) n'est pas connexe faire

soit e une arête de E qui relie deux composantes connexes de G'

F \leftarrow F \cup \{e\}

retourner G' = (V, F)
```

Montrer que cet algorithme renvoie bien un arbre couvrant de G.

1 tout s'exécute correctement

- 1 tout s'exécute correctement
- en un nombre fini d'étapes

- 1 tout s'exécute correctement
- en un nombre fini d'étapes
 - A chaque étape, la cardinalité de F augmente et $F \subseteq E$
- en cas d'arrêt, on obtient l'objet souhaité

- 1 tout s'exécute correctement
- 2 en un nombre fini d'étapes
 - A chaque étape, la cardinalité de F augmente et $F \subseteq E$
- en cas d'arrêt, on obtient l'objet souhaité
 - l'instruction dans le tant que ne crée pas de cycle
 - A la sortie du tant que, le graphe est connexe

Un **graphe pondéré** G=(V,E,w) est un graphe G=(V,E) muni d'une fonction de poids sur les arêtes : $w:E\to\mathbb{R}^+$ [weighted graph]

Arbre couvrant : les arêtes de l'arbre sont des arêtes de G. Les sommets de l'arbres sont exactement les sommets de G.

Poids d'un arbre = somme des poids de ses arêtes

Le problème

Soit G = (V, E, w) un graphe pondéré. Trouver un arbre couvrant de G de poids minimum.

[Minimum Spanning Tree (MST)]

Applications

- Relier les composants sur un circuit électronique pour les mettre au même potentiel (minimiser la longueur totale des fils utilisé)
- Création d'un Réseau d'interconnexion électrique entre villes

Algorithme glouton : fait le meilleur choix au moment où il le fait (on ne revient pas sur un choix)

On va construire l'arbre couvrant petit à petit, en s'assurant à chaque étape qu'il reste

- couvrant sans cycle (algorithme de Kruskal)
- connexe sans cycle (algorithme de Prim)

Algorithme de Kruskal

```
Algorithme 4 : Algorithme de Kruskal
```

```
Données : G = (V, E, w)

Résultat : T = (V, F) un MST de G

trier les arêtes de E par poids croissants : w(e_1) \leq w(e_2)...w(e_m)

F = \emptyset

pour i = 1 à |E| faire

|Si|' ajout de e_i à F ne crée pas de cycle alors

|F \leftarrow F \cup \{e_i\}|

retourner T = (V, F)
```


Arbre couvrant de poids 1+2+3+5+7=18, c'est l'arbre couvrant de poids minimum renvoyé par l'algorithme de Kruskal (cf détails slide suivant).

Problème : comment détecter efficacement les cycles?

Problème : comment détecter efficacement les cycles? Cycle si e relie deux sommets qui sont déjà dans la même composante connexe.

Problème : comment détecter efficacement les cycles? Cycle si e relie deux sommets qui sont déjà dans la même composante connexe.

Structure de données pour gérer les composantes connexes d'un graphe : **Union-Find**

Permet de gérer les partitions d'un ensemble

- construire une partition initiale sur un ensemble d'éléments
- fusionner (unir) deux classes de la partition
- savoir si deux éléments sont dans la même classe

Union-Find

Pour cela, il faut choisir un représentant de chaque classe qui permet d'identifier la classe entière.

Les services

- Construire une partition qui pour chaque élément x crée la classe {x}.
- find(x) qui renvoie le représentant de la classe contenant x.
- union(x, y) qui fusionne les classes contenant x et y.
 Les paramètres x et y doivent être dans des classes différentes.

Structure Union Find

- stocker chaque classe comme un arbre enraciné dans lequel chaque nœud contient une référence vers son nœud parent.
- Le représentant de chaque classe est alors le nœud racine de l'arbre correspondant.
- la racine est le seul nœud qui pointe sur lui même

Structure de données Union-Find

 $1_0 \quad 2_0 \quad 3_0 \quad 4_0 \quad 5_0 \quad 6_0$

Arbre enraciné

Kruskal avec Union-Find: exemple

Structure de données Union-Find

 $1_0 \quad 2_0 \quad 3_0 \quad \boxed{4_0 \quad 5_0 \quad 6_0}$

$$1_0 \ 2_0 \ 3_0 \ \stackrel{5}{\cancel{4}}^{5_1} \ 6_0$$

Arbre enraciné

Kruskal avec Union-Find: exemple

Kruskal avec Union-Find

L'efficacité de la détection de cycle lors de l'ajout d'une arête uv dépend maintenant de l'efficacité à trouver le représentant de la composante connexe de u et celle de v, c'est-à-dire remonter jusqu'à leurs racines dans le Union-Find : il faut maîtriser la hauteur de nos arbres.

- rank(x) est en fait la hauteur de la sous-arborescence de racine r
- $\forall x \in V$, si rank(x) = k alors le sous-arbre de racine x a au moins 2^k sommets (preuve par récurrence sur k)
- donc $rank(x) \leq log_2 n$

Preuve Union-Find

Si rank(r) = k alors le sous-arbre de racine r a au moins 2^k sommets.

Par récurrence sur k. k=0: au moins 1 sommet, ok. Hérédité. Soit $k\geq 1$ et r tel que rank(r)=k+1. Montrons que le sous-arbre de racine r a au moins 2^{k+1} sommets. Examinons le moment où le rang de r est passé de k à k+1: c'était lors d'un appel de union(x,y) où les deux représentants $r=r_y$ et r' se sont trouvés de même rang k, et r est devenu le parent de r'. Par hypothèse de récurrence, r et r' contenaient chacun dans leur arbre au moins 2^k sommets, donc après l'union r contient dans son arbre la somme des deux soit au moins $2^k+2^k=2^{k+1}$ sommets.

Algorithme de Kruskal avec Union-Find

Algorithme 5 : Algorithme de Kruskal avec union-find

```
Données : G = (V, E, w)
```

Résultat : T = (V, F) un MST de G

trier les arêtes de E par poids croissants : $w(x_1y_1) \le w(x_2y_2)...$

$$F = \emptyset$$

Construire une partition sur V

pour i = 1 à |E| faire

Si
$$find(x_i) \neq find(y_i)$$

$$F \leftarrow F \cup \{x_i y_i\}$$

union (x_i, y_i)

retourner T = (V, F)

Une vision plus générale : augmenter un MST

Méthode générique qui maintient la propriété : l'ensemble A d'arêtes est un sous-ensemble d'un MST

A chaque itération, on ajoute une arête e à A qui maintient la propriété

Arbres et forêts

Arbres couvrants de poids minimum

Comment trouver une telle arête?

- **coupe** S : partition de V en $(S, V \setminus S)$
- coupe *S* **respecte** l'ensemble d'arêtes *A* si aucune arête de *A* n'appartient au co-cycle de *S*
- e est une arête légère qui traverse une coupe S si
 - e appartient au co-cycle de S et
 - e est de plus petit poids parmi les arêtes du co-cycle de S

Comment trouver une telle arête?

- coupe S: partition de V en $(S, V \setminus S)$
- coupe S respecte l'ensemble d'arêtes A si aucune arête de A n'appartient au co-cycle de S
- ullet e est une arête légère qui traverse une coupe S si
 - e appartient au co-cycle de S et
 - e est de plus petit poids parmi les arêtes du co-cycle de S

Soit A un sous-ensemble de E inclus dans un MST de G et soit $(S, V \setminus S)$ une coupe qui respecte A et soit e une arête légère de cette coupe. Alors, $A \cup \{e\}$ est inclus dans un MST de G.

Soit A un sous-ensemble de E inclus dans un MST de G et soit $(S, V \setminus S)$ une coupe qui respecte A et soit uv une arête légère de cette coupe. Alors, $A \cup \{uv\}$ est inclus dans un MST de G.

- Soit T un MST qui contient A.
- Si T ne contient pas uv alors $T \cup \{uv\}$ contient un cycle C
- Dans T, il y a un chemin de u à v donc C contient une arête e' ≠ uv qui appartient au co-cycle de S.
- uv est une arête légère qui traverse S donc $w(uv) \leq w(e')$
- Soit $T' = T \cup \{uv\} \setminus \{e'\}$.
- On a $w(T') = w(T) w(e') + w(uv) \le w(T)$.
- Comme T est un MST, T' est aussi un MST.
- Donc T' est un MST qui contient A et uv.

```
Algorithme 6: MST générique
```

Données : G = (V, E, w) connexe

Résultat : $G_A = (V, A)$ un MST de G

$$A = \emptyset$$

tant que $G_A = (V, A)$ n'est pas connexe faire soit S une coupe qui respecte A soit e une arête légère qui traverse S

$$A \leftarrow A \cup \{e\}$$

retourner $G_A = (V, A)$

- 1 tout s'exécute correctement
 - Dans la boucle, G_A n'est pas connexe, donc S existe
 - G connexe donc e existe

- tout s'exécute correctement
 - Dans la boucle, G_A n'est pas connexe, donc S existe
 - G connexe donc e existe
- 2 en un nombre fini d'étapes

- 1 tout s'exécute correctement
 - Dans la boucle, G_A n'est pas connexe, donc S existe
 - G connexe donc e existe
- 2 en un nombre fini d'étapes
 - A chaque étape, la cardinalité de A augmente et $A \subseteq E$
- en cas d'arrêt, on obtient l'objet souhaité

- tout s'exécute correctement
 - Dans la boucle, G_A n'est pas connexe, donc S existe
 - G connexe donc e existe
- en un nombre fini d'étapes
 - A chaque étape, la cardinalité de A augmente et $A \subseteq E$
- en cas d'arrêt, on obtient l'objet souhaité
 - Dans la boucle A reste inclus dans un MST (propriété)
 - Donc à la sortie du **tant que**, G_A est connexe, couvrant et inclus dans un MST
 - Donc G_A est un MST

- 1 tout s'exécute correctement
 - Dans la boucle, G_A n'est pas connexe, donc S existe
 - G connexe donc e existe
- 2 en un nombre fini d'étapes
 - A chaque étape, la cardinalité de A augmente et $A \subseteq E$
- en cas d'arrêt, on obtient l'objet souhaité
 - Dans la boucle A reste inclus dans un MST (propriété)
 - Donc à la sortie du tant que, G_A est connexe, couvrant et inclus dans un MST
 - Donc G_A est un MST

Et si G n'est pas connexe?

Les algorithmes

- Kruskal
 - graphe $G_A = (V, A)$ couvrant sans cycle,
 - arête valide = arête de plus petit poids qui connecte deux composantes connexes de G_A
- Prim
 - A connexe sans cycle
 - arête valide = arête la plus légère entre les sommets couverts par A et les sommets non couverts par A

Et si on cherche un arbre couvrant de poids maximum?

Soit H un arbre couvrant de c-cout maximum \Leftrightarrow de (-c)-cout minimum \Leftrightarrow de (C-c)-cout minimum où $C=\max\{c(e):e\in E(G)\}.$