9 Assignment (11+1 Points)

Hinweis: Abgabe in {2, 3, 4}-er Gruppen.

Abgabe: 24.06.2017, 23.59

Email: Betreff "[Compsec] Ex 9'

(bitte nur .pdf oder .txt, kein .doc, .jpeg, etc) Source code: bitte inkl. signify Signatur

Exercise 29 (Chinese wall and Bell-La Padula model (4 Points)).

The following composition of objects in the BLP model was derived from a set of objects in the Chinese wall model according to [1]. Sketch the original composition of objects in the Chinese wall model.

1		2		3		4			
&	(A,f)	&	(B,z)	&	(C,t)	&	(D,f)		
0		0		0		0			
5		6		7		8			
&	(A,g)	&	(B,f)	&	(C,e)	&	(D,I)		
0		0		0		0			
9		10		11		12			
&	(A,h)	&	(B,I)	&	(C,p)	&	(D,k)		
0		0		0		0			
13		14		15		16			
&	(A,i)	&	(B,m)	&	(C,q)	&	(D,j)		
0		0		0		0			
(X_0, Y_0)									

[1] David F.C. Brewer and Dr. Michael J. Nash, *The Chinese wall security policy*, IEEE Symposium on Security and Privacy, 1989.

Exercise 30 (Undecidability of the general halting problem **(4 points)**). Consider the representation of a Turing machine as a protection system as discussed in class.

- Specify the missing commands for the head moving right: $\delta(q, X) = (p, Y, R)$
- Given the access matrix below, show the matrix that results after the following two moves:
 - 1. $\delta(q, C) = (p, D, R)$
 - 2. $\delta(p, D) = (s, E, R)$

Α	В	Ů C	D	ϕ	
Α	own				
	В	own			
		C q	own		
			D END		

Exercise 31 (More Hello World (1+2 Points)).

Port your hello world program from exercise 18 to linux for your debian VM. Then consider the following C program:

```
char* hello = "hello world!\n";
typedef void (*fn_ptr)(void);
void bar(void){
  printf("does_not_do_anything\n");
}
void foo(void){
 char buffer[1024];
  fn ptr func = bar;
  if(read(0, buffer, 1024) > 10)
   func = (fn_ptr) buffer;
 func();
}
int main(){
 foo();
  return 0;
}
```

Give an input string that does not crash this program and makes it print hello_world! when compiled (with gcc -g) and run on your debian VM.

Note: You are allowed to disable memory randomization in your debian VM (if needed) using echo 0 | sudo tee /proc/sys/kernel/randomize_va_space.

Exercise 32 (Keeping your systems secure (Bonus: 1 Points)).

Are there any new vulnerabilities for your Debian or OpenBSD system since last week (17.06.2016 at 23.59)? If so: state one, **name the programming mistake**, decide if you are affected or not, and report if there are any known work-arounds or patches.