

Goal: predict the 3-D "tertiary structure" given the "primary structure" of amino acids

The physics of protein folding are complex

It took 100 days for the purpose-built supercomputer *Anton* to simulate 100 milliseconds of folding

Empirical data reveals information on emergent folding structure

Probabilistic methods dominate all aspects of the folding problem

Hidden Markov models for multiple sequence alignment

Monte Carlo minimization of empirical potentials

these are a few applications... there are many more

Molecular Dynamics simulations are used to construct Markov State Models of protein states

Modified k-means clustering discretizes conformations into microstates

Lumping function **L** assigns macrostates to microstates

Macrostate transition matrix **T**

Microstate emission matrix **O**

Testing the Markov assumption on the macrostate transition matrix T

Leaving time test

The time to leave state *i* should follow a geometric distribution with parameter *Tii*

Eigenvalue decay test

Eigenvalues $(A) = \lambda$ Eigenvalues $(A^t) = \lambda^t$ $\implies \lambda \sim \text{Exponential}$

The non-unity eigenvalues of T_{Δ} should follow an exponential distribution w.r.t. the time step Δ

Dirichlet prior on the space of transition matrices satisfying detailed balance $C_i = \begin{bmatrix} 0 & 20 & 2 \end{bmatrix} \qquad P_i = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \qquad \mu_i = C_i + P_i$

$$C_i = \begin{bmatrix} 0 & 20 & 2 \end{bmatrix}$$

$$P_i = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\mu_i = C_i + P_i$$

Naive MLE on Ci

$$T_i = \text{Multinoulli}(\frac{\{C_{ij}\}}{\sum_j C_{ij}})$$
 $T_i = \text{Dirichlet}(\mu_i)$ $T_{ij} = \text{Multinoulli}(\frac{C_{ij} + C_{ji}}{\frac{|C_i|}{|T_i|} + \frac{|C_j|}{|T_i|}})$

$$T_i = \text{Dirichlet}(\mu_i)$$

MLE With Detailed Balance
$$C_{ij} = \text{Multinoulli}\left(\frac{C_{ij} + C_{ji}}{|C_i|}\right)$$

Dirichlet Prior With Detailed Balance

 $T_{ij} = \text{Very complicated!}$

Adaptive sampling cuts computations by 99%

$$\lim_{|\mu| \to \infty} \text{Dirichlet}(\mu) \to \text{MVN}(m = \frac{\mu}{|\mu|}, \Sigma = \frac{|\mu|\mu - \mu\mu^T}{|\mu|(|\mu| + 1)})$$

An MVN allows us to estimate the variance of a metric with respect to our uncertainty around the transition probabilities of a particular state. We focus our simulations on these variance-enhancing states.

Warm your room this winter by donating your spare computer time to computational biology projects

Protein Folding, Design, and Docking

Leading tertiary structure prediction software on CPU

GPU-based molecular dynamics experiments for protein folding

There are also computational astronomy and math projects, if you prefer those