CHAPTER 7: TRIANGLES

EXERCISE 7.3

- 1. **ABC** is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.
- **2.** In Fig.7.4, **D** and **E** are the points on side **BC** of a \triangle **ABC** such that **BD** = **CE** and **AD** = **AE**. Show that \triangle **ABD** $\cong \triangle$ **ACE**.

Figure 1: 7.4

3. CDE is an equilateral triangle formed on a side CD of a square ABCD (Fig.7.5). Show that \triangle ADE $\cong \triangle$ BCE.

Figure 2: 7.5

4. In Fig.7.6, BA \perp AC, DE \perp DF such that BA = DE and BF = EC. Show that \triangle ABC $\cong \triangle$ DEF.

Figure 3: 7.6

- 5. **Q** is a point on the side **SR** of \triangle **PSR** such that **PQ** = **PR**. Prove that **PS** > **PQ**.
- **6. S** is any point on side **QR** of a \triangle **PQR**. Show that **PQ** + **QR** + **RP** > **2PS**.
- 7. **D** is any point on side **AC** of a \triangle **ABC** with **AB** = **AC**. Show that **CD** < **BD**.
- 8. In Fig.7.7, $\mathbf{l} \| \mathbf{m}$ an \mathbf{M} is the mid-point of a line segment \mathbf{AB} . Show that \mathbf{M} is also the mid-point of any line segment \mathbf{CD} , having its end points on \mathbf{l} and \mathbf{m} , respectively.

Figure 4: 7.7

- 9. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that $\angle MOC = \angle ABC$.
- 10. Bisectors of the $\angle B$ and $\angle C$ of an isosceles triangle ABC with AB = AC intersect each other at O. Show that the external angle adjacent to $\angle ABC$ is equal to $\angle BOC$.

11. In Fig.7.8, **AD** is the bisector of \angle **BAC**. Prove that **AB** > **BD**.

Figure 5: 7.8