Unit 3 - The Periodic Table, Electron Configuration, &Periodic Trends

Chapters 4 & 5

Creation of the Periodic Table

Mendeleev's Table

The Elements	Their Proporties in the Free State	The Composition of the Rylrogen and Organo-metallic Compounds	Symbols- and Atemie Weights	The Composition of the Salice Oxides	The Properties of the Saline Oxides	Small Periods or Series
Hydrogen Lithium Beryllium Beron Carbon Nitrogen Oxygen	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RH _m or B(CHg)m (a) m = 1 4 - 3 3 3	B A [6] H 1 L4 7 Be 9 B 11 C 12 N 14 Q 16	B _i O ₄ 1 - n [7] 1 - g 2 - 3 1 - 3 4 1 - 3 - 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 ⁽¹¹⁾
Finorine Sedium Magnesium Aluminium Silicon Phosphorus Sulphur Chlorine	90° 071 079 23 500° 027 174 14 600° 023 26 11 (1200°) 008 23 12 44° 128 22 14 114° 067 297 15 -75° 18 27	4 3 2 1	F 19 Na 23 Mg 24 Al 27 Si 28 P 31 8 39 Cl 35)	1† - 2† 3 3 4 1 - 3* 4*5* - 9 - 4*5*6* 1 - 1 - 5*-7*	Na ₂ O 26 24 -22 36 22 - 8 Al ₂ O ₃ 40 26 + 13 265 45 22 29 62 178 82 87	3
Potassium Calcium Seandium Titanium Chronium Chronium Linn Cobalt Cobalt	\$8° 084 0°87 45 (806°) — (9°3) (18) (2500°) — (5°1) (9°4) (2500°) — (5°1) (9°4) (2500°) — 5°5 9°2 (2500°) — 5°5 8°0 (1500°) — 7°5 7°3 1400° 012 7°8 7°2		K 39 Ca 40 So 44 Ti 48 V 51 Cr 52 Mn 55 Fe 56	1t - 2t - 3t - 3t - 2t 3 4 5 - 2t 3 4 - 6t - 2t 3 6t - 2t - 2t 3 6t - 2t - 2t 3 6t - 2t - 2t - 2t - 2t - 2t - 2t -	27 55 -55 915 56 -7 566 85 (0) 42 88 (+5) 249 52 67 274 78 95 	4
Cobalt	(1400°) 013 8-6 6-8 1350° 017 8-7 6-8 1054° 029 8-8 7-2 423° — 7-1 9-2		Co 583 Ni 59 Cu 68 Zo 65	- 9 3 4 - 9 3 1† 9 5	Ca ₂ O 59 21 98	5
Gallium Germanium Arsenie Selenium Beomine Boholium Strontium Titrium Zirconium Molybdenum Molybdenum	80° - 5 ° 61 ° 12 ° 5 ° 6 ° 12 ° 5 ° 7 ° 13 ° 5 ° 6 ° 6 ° 7 ° 13 ° 13 ° 7 ° 8 ° 1 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6	4 3 3 3 3 1	Ga 70 Ge 72 As 73 Se 79 Br 80 Rb 85 Sr 87 Y 89 Zr 90 Nb 94 Mo 96	-2 -3 -4 -6* 1 - 4 -5* -7* 1 - 3 + -7* - 3 + -7* - 3 + -7*	Ga ₂ O ₂ (0·1) (080) (190) 47 44 45 46 41 56 60	6
Ruthenium	(3000°) 010 122 84 (1900°) 080 1211 86 1500° 032 114 87 800° 032 114 87 800° 032 114 87 120° 033 72 16 432° 012 67 18 452° 017 04 30 114° 49 26 20° 031 72 16 452° 077 04 30 114° 49 26 20° 031 72 18 800° 031 72 18 800° 031 73 18 800° 031 73 18 800° 031 74 03 18	4 3 - 3 - 3 - 1	Ru 108 Rh 104 Pd 106 Ag 108 Cd 112 In 113 Su 118 Sb 120 To 125 I 127 Cz 133 Ba 187 La 188 Cc 140	-2 3 4 -6 -8 1 2 3 4 -6 1 2 3 4 -2 3 4 -2 3 4 -3 4 5 -3 4 5 -3 4 5 -3 4 5 -3 5 7 1 5 7 1 5 7 -3	Ag ₄ O 75 51 11 815 815 81 25 11 ₀ O ₅ 718 38 27 616 48 28 65 49 26 67 6 67 6 68 68 67 6 68 69 67 6 68 69 67 4 50 67	7
Ytterbium	(6-9) (25)		Yb 178	3 -5 3	9-18 43 (-2)	10
Tantalum Tungsten Osmism Iridium Platinum Platinum Gold Moreary Thalibum Lead Bismuth		. 2 2 -	Ta 182 W 184 (1) On 191 Ir 185 Pt 196 As 198 Hg 200 Tl 204 Pb 206 Bi 208		75 89 46 69 67 8 69 67 8 69 67 8 69 67 8 69 67 8 69 67 8 69 69 67 8 69 69 69 69 69 69 69 69 69 69 69 69 69	
Thorism	111 21	The state of the s	Th 202		986 34 20	12

Dmitry Mendeleev

He created the first periodic table based on the properties of the elements ChemCatalyst: This document was created in 1889, when chemists only knew of 63 different elements. How do you think the elements are organized? What do you think the numbers represent?

Mendeleyev's Table of the Elements - 1889

								THE RESERVE OF THE RE
	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
1	H = 1							
2	Li = 7	Be = 9	B = 11	C = 12	N = 14	0 = 16	F = 19	
3	Na = 23	Mg = 24	Al = 27	Si = 28	P = 31	S = 32	Cl = 35	
4	K = 39	Ca = 40	= 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56 Co = 59 Ni = 59 Cu = 63
5	Cu = 63	Zn = 65	= 68	- 72	As = 75	Se = 78	Br = 80	
6	Rb = 85	Sr = 87	Yt = 88	Zr = 90	Nb = 94	Mo = 96	= 100	Ru =104 Rh =106 Pd =106 Ag =108
7	Ag = 108	Cd = 112	In = 113	Sn = 118	Sb = 122	Te = 125	I = 127	
8	Cs = 133	Ba = 137	Di = 138	Ce = 140		_		
9	_	_		11 11	_			
10	_		Er = 178	La = 180	Ta = 182	$\mathbf{W} = 184$	_	Os = 195 Ir =197 Pt =198 Au = 199
11	Au = 199	Hg = 200	Tl = 204	Pb = 207	Bi = 208			
12			_	Th = 231	_	U = 240	_	

Note: Mendeleyev's symbol for iodine, "J", has been changed to "I" to match modern symbols.

Create a Periodic Table Activity

Activity Compared to Real Table

1A																	8A
1	i															= 7	2
H 1s1	2A											3A	4A	5A	6A	7A	He
		<u> </u>									Ÿ			DA.		a continue	152
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
2s1	2s2										7	$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
11	12										7	13	14	15	16	17	18
Na	Mg	20/39									5-500	Al	Si	P	S	Cl	Ar
3s1	3s2	3B	4B	5B	6B	7B		— 8B —		1B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
K 4s ¹	4s2	$3d^{1}4s^{2}$	$3d^24s^2$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^54s^2$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$					$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5s1	5s2	$4d^{1}5s^{2}$	$4d^25s^2$	$4d^45s^1$	$4d^{5}5s^{1}$	$4d^55s^2$	$4d^{7}5s^{1}$	4d85s1	4d ¹⁰	$4d^{10}5s1$	$4d^{10}5s^2$	$5s^25p^1$	$5s^25p^2$	NAME OF THE PARTY	$5s^25p^4$	$5s^25p^5$	$5s^25p^6$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6s1	$6s^2$	$5d^{1}6s^{2}$	$5d^26s^2$	$5d^36s^2$	5d ⁴ 6s ²	$5d^56s^2$	$5d^{6}6s^{2}$			$5d^{10}6s^{1}$	$5d^{10}6s^2$	$6s^26p^1$			The second second	$6s^26p^5$	$6s^{2}6p^{6}$
87	88	89	104	105	106	107	108	109	110	111	112		114	_	††116		**118
Fr	Ra	†Ac	Rf	Db			Hs	Mt				Unknown		Unknown		Unknown	
Fr 7s ¹	7s2			$6d^37s^2$	Sg 6d ⁴ 7s ²	7000		3335									

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Er Tm	Yb Lu
	$4f^{12}6s^2$ $4f^{13}6s^2$	414652 41450
90 91 92 93 94 95 96 97 98 99 Th Pa U Np Pu Am Cm Bk Cf Es	100 101 Fm Md	102 103 No Lr

Electron Configuration

Electrons are found in energy levels

Fill the lowest possible energy levels 1st and move outward as the energy levels fill up

n=1 n=2

Energy levels called "rings" in lower level classes

n=1 is lowest energy level (closest to the nucleus)

Each Energy Level is Different...

- Each energy level has specific orbitals (3-D) pathways) where electrons can be found
- Each energy level can hold a specific # of electrons

1st Energy Level- can hold 2 electrons

Puts them in "S" shaped orbital (always only hold 2 electrons).

electrons

2nd Energy Level

- Can hold up to 8 electrons
- Has an s-shaped orbital & a p-shaped orbital
 - The s-orbital always fills up 1st!

3rd Energy Level

- Can hold up to 18 Electrons
- Has s, p and d orbitals

NOTE: The 4s orbital is actually at a lower energy, so electrons will fill it before the 3d orbital!

4th Energy Level-

•Has 4 different types of orbitals (s,p,d & f)

- f orbitals are the most complicated
- 7 possible "f" orientations

■ 14 electrons can fit in f orbitals (2 electrons x 7 orientations = 14)

One little trick...

- Whoa... skips from 3p to 4s to 3d?
- Based on energy, it's easier to fill the "s" orbital on 4th energy level then the complicated "d" on the 3rd.
- Look further up the fill chart and you'll see more of this.

Order that Orbitals Fill Up... don't memorize!!!

You will learn to use your periodic table to figure this out!

Writing Electron Configurations

Orbital Notation & Electron Configuration Notation

Ex: E. Config. for Fluorine (9 electrons)

 $1s^2 2s^2 2p^6$

Write the order that they fill the electrons

More Practice (a harder one)

Ex: Titanium (22 electrons)

E. Configuration Notation

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d²

Remember the fill order, 4s before 3d!

Using the Periodic Table for E. Config.

E. Configuration with Periodic Table

1A																	8A
1 H																	2 He
H 1s1	2A											3A	4A	5A	6A	7A	152
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
2s1	252											$2s^22p^1$	$2s^22p^2$	$2s^22p^3$	$2s^22p^4$	$2s^22p^5$	$2s^22p^6$
11	12											13	14	15	16	17	18
Na	Mg	30.00									5:555	Al	Si	P	S	Cl	Ar
$3s^1$	3s2	3B	4B	5B	6B	7B		— 8B —		1B	2B	$3s^23p^1$	$3s^23p^2$	$3s^23p^3$	$3s^23p^4$	$3s^23p^5$	$3s^23p^6$
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
4s1	4s2	$3d^{1}4s^{2}$	$3d^24s^2$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^54s^2$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^{1}$	$3d^{10}4s^2$	$4s^24p^1$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5s1	5s ²	$4d^{1}5s^{2}$	$4d^25s^2$	$4d^45s^1$	$4d^{5}5s^{1}$	$4d^55s^2$	$4d^{7}5s^{1}$	4d85s1	$4d^{10}$	$4d^{10}5s1$	$4d^{10}5s^2$	$5s^25p^1$	$5s^25p^2$	$5s^25p^3$	$5s^25p^4$	$5s^25p^5$	$5s^25p^6$
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
6s1	$6s^2$	5d16s2	$5d^26s^2$	$5d^36s^2$	5d ⁴ 6s ²	5d56s2	5d ⁶ 6s ²	5d76s2	5d96s1	$5d^{10}6s^{1}$	$5d^{10}6s^2$	$6s^26p^1$	$6s^26p^2$	$6s^26p^3$	$6s^26p^4$	$6s^26p^5$	$6s^{2}6p^{6}$
87	88	89	104	105	106	107	108	109	110	111	112		114		††116	- 2	**118
Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt				Unknown		Unknown	110	Unknown	
7s ¹	7 <i>s</i> ²	$6d^{1}7s^{2}$	$6d^27s^2$	$6d^37s^2$	Sg 6d ⁴ 7s ²		-	3200						4			

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce 4f ² 6s ²	Pr 4f ³ 6s ²	Nd 4f46s2	Pm 4f ⁵ 6s ²	Sm 4f ⁶ 6s ²	Eu 4£6s2	Gd	Tb 4₽6c2	Dy 4£106.52	Ho 4/116,2	Er 4/126-2	Tm 4/136/2	Yb	Lu 4f ¹⁴ 5d ¹ 6s ²
Ŷ	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	$\frac{\text{Th}}{6d^27s^2}$	Pa $5f^26d^17s^2$	$\frac{U}{5f^36d^37s^2}$	Np 5f ⁴ 6d ¹ 7s ²	Pu 5f ⁶ 7s ²	5f ⁷ 7s ²	$\frac{\mathbf{Cm}}{5f^{0}6d^{1}7s^{2}}$	Bk 5 <i>f</i> 97 <i>s</i> 2	Cf 5f ¹⁰ 7s ²	Es 5f ¹¹ 7s ²	Fm 5f ¹²⁷ s ²	Md 5f ¹³ 7s ²	No 5f147s2	Lr 5f ¹⁴ 6d ¹ 7s ²

Practice Writing E. Configs.

- Carbon
- Magnesium
- Iron
- Iodine

Challenging:

Gold

Even more

challenging:

Plutonium

- $1s^22s^22p^2$
- $1s^22s^22p^63s^2$
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^5$
- $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^9$

 $= 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 \underline{6d^1} 5f^5$

Noble Gas Notation- the "short cut"

For Na

E. config: $1s^2 2s^2 2p^6 3s^1$

For Cl

E. config: $1s^2 2s^2 2p^6 3s^1$

Noble Gas Not.: [Ne] 3s¹

Noble Gas Not.: [Ne] $3s^2 3p^5$

*Start at the noble gas ABOVE the element and do the configuration from there.

Noble Gas Notations through the D and F Blocks

*	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	$4f^26s^2$	4f36s2	4f46s2	4f56s2	4f66s2	4f/6s2	$4f^{7}5d^{1}6s^{2}$	4f96s2	$4f^{10}6s^2$	4f116s2	$4f^{12}6s^2$	$4f^{13}6s^2$	4f146s2	$4f^{14}5d^{1}6s^{2}$
Ť	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	$6d^27s^2$	5f26d17s2	$5f^36d^17s^2$	$5f^46d^17s^2$	5f67s2	5f77s2	$5f^{9}6d^{1}7s^{2}$	5f97s2	5f107s2	5f117s2	5f127s2	5f13782	5f147s2	5f146d17s2

Noble Gas Notation for Br

[Ar]
$$4s^2 3d^{10} 4p^5$$

Remember d block is
$$n-1$$
 (row $4-1=3$)

Noble Gas Notation for Pb

[Xe]
$$6s^2 4f^{14} 5d^{10} 6p^2$$

Remember f block is n-2 (row 6-2=4)

Using Noble Gas Notation

The noble gas notation can tell you the identity of an element

Element identity = Carbon

Decoding Noble Gas Notation

	Period	Block	Group	Identity
	3	S	2	Mg
[Ne]3s ²	4	d	10	Ni
$[Ar]4s^23d^8$	6	p	14	Pb
$[Xe]6s^24f^{14}5d^{10}6p^2$				

Electrons

History Behind Electron Configuration

•Certain elements emit distinct, visible light when heated in a flame. But why?

Strontium

Copper

What is light?

- It's a form of energy
- The <u>Electromagnetic Spectrum</u> (see image) shows other types of energy in our environment.

Visible light makes up only a small portion of the spectrum

Spectroscopic Analysis

- When white light is scattered through a prism (or spectroscope), all of the colors of the visual spectrum can be seen.
 - This is seen as a "continuous spectrum" (without breaks)

Electron Transitions

- Electrons can "jump" to higher energy levels when atoms are exposed to an energy source
 - This is known as the "excited state"
- When the electrons fall back down, they release that energy in the form of light
 - This is known as the "ground state"

Energy Transitions for Hydrogen

Emission Spectroscopy

- Because atoms have different numbers of electrons, different types of atoms emit specific wavelengths and have a different pattern of spectral lines
 - This is the "line-emission spectrum"

Spectroscopy

 Elements have a unique set of spectral lines that allows us to identify them

Argon

This is how we know the sun contains H and He, even though we've never been there.

Hydrogen

Valence Electrons, Octet Rule, and Ions

These 3 atoms have similar reactivity and chemical behavior.

- A) where are they located on the periodic table?
- B. What do you think might be responsible for their similar properties?

Valence Electrons

- Valence Electrons electrons in the outermost energy level
- These are the electrons that interact with other atoms
 - They determine an atom's chemical reactivity

Valence Electrons & E. Congfig.

- In the electron configuration, the valence electrons are found in the s & p orbitals of the highest energy level.
- Examples:
 - Cl: [Ne]3s²3p⁵
 - Has 7 valence electrons
 - Fe: [Ar]4s²3d⁶
 - Has 2 valence electons
 - \blacksquare Sn: [Kr]5s²4d¹⁰5p²
 - Has 4 valence electrons

Valence Electrons and the Periodic Table

IA	51	r							
le- Hydrogen	IIA	IIIA	IVA	VA	VIA	VIIA	2e-		
le- 2e- Lithium	Beryllium	3e- 2e- Boron	Carbon	Se- 2e- Nitrogen	Oxygen	7e- 2e- Fluorine	8e- 2e- Neon		
Sodium	2e- 8e- 2e- Magnesium	Aluminum	8e- Silicon	5e- 8e- 2e- Phosphorus	6e- 8e- 2c- Sulfur		8e- 8e- 2e-		
8e- 8e- 2e- 1e-		18e- 8e- 2e- 3e-	18e- 8e- 2e- 4e-		18e- 8e- 2e- 6e-	18e- 8e- 2e- 7e-	8e- 8e- 2e- 8e-		
Potassium	Calcium	Gallium	Germanium		Selenium	Bromine	Krypton		

Figuring out # of Valence Electrons <u>Using the Periodic Table (Short Cut)</u>

The column that they are in is the number of valence electrons an atom has.

(EXCEPTION: This does not work for the D Block)

The Octet Rule

- Atoms tend to gain, lose, or share electrons to "fill" their valence shell.
- Exceptions: H & He abide by the "duet" rule.
 - They only need 2
 electrons in their valence
 shell because the 1st
 energy level only holds 2
 electrons

Ions

Sodium ion (Na⁺) (11 protons, **10** electrons)

Chloride ion (Cl⁻) (17 protons, **18** electrons)

@ 1998 Sinauer Associates, Inc.

- Ions are charged particles or atoms that have gained or lost electrons to "fill" their octet.
- Anions have a negative charge.
 - They have gained electrons & electrons are negative.
 - They have more electrons than protons.
- Cations have a positive charge.
 - They have lost electrons.
 - They have more protons than electrons

Ion Examples

- Potassium has 1 valence electron, what ion will it form?
- It will lose 1 electron and form the ion K⁺

- Sulfur has 6 valence electrons, what ion will it form?
 - It will gain 2 electrons and form S²-

Joke

joke

- Two atoms walk into a bar.
 One atom stops and says to the other,
 "I think I just lost an electron."
- The second atom asks "Are you sure?"
- The first atom replies, "I'm positive!"

Organization of the Periodic Table

Characteristics of the Periodic Table

 Elements are arranged in order of increasing atomic number

 Elements with similar properties appear at regular intervals ("periods" or rows)

 Elements with similar properties fall in the same column ("group" or "family")

Families/groups

Periods (rows)

2	H Sping Letter Group 1 Li Line Cost	Group 2 Be before and no			Acer Acergs de	ik surrivor— Symbol— Marse— orak rasss—	Key 6 	on	
1	helias 11.865.734	Name of the last o	Georg S	Group &	Group S	Group 6	Goup 7	Group il	Geoup 9
4	K Name Head	Ca man	Sc bester contine	Ti Date Mater	V V	Cr Oneir Tues	Mn Mn tulice	Fe be	Co Coan thill to
ı	Rb follow flags	Sr beta NO	Y No.	Zr Design	Nb Man	Mo Mo	TC biteles (9)	Ru tanto	Rh Bater 10230110
ε	CS Sales UMH.81	Ba hele- terral	La La teriore 194001	HE NAME TOTAL	Ta hase	W Segment	Re Reter	OS facion 18528	Ir Ir me mon
,	Fr Fr Insta (20)	Ra Ra tutor (20)	Ac better (22)	RF historian (200)	Db Dates (30)	Sg Interpret (940)	Bh Batter (200)	HS hote (22)	Mt Mt Mts.min (41)
	the demonstray	name and ope patentian 100 to approval of the C.	ed .		Ce Seta Seta	Pf Pf Pentions tendent	Md Nd Relysion 14824	Pm hadin	6 Sm leader

Th

Balan.

20000

Pa

State State

20000

U

Dealer

TRACKS.

Np

Pu

Handus.

940

Mictala Albali met Albaline e Tomalico	erits metals metals		Group 15	Geory 1st	Cacay 15	Goup 16	Group 17	He has a second
Other metals He are ctals Ha biggers Hobbs games			B ten ten	C Galant Tallett	N	o m	F Name Name (SE)	Ne ter pene
Other iior Greep 18	areinb Group 11	Geoup 12	Al Jinha Jinha Jinha	Si No.	P Andre	S Mo Doll	CI Sign	Ar inte
Ni Ni Rad	Cu Sur- siles	Zn h	Ga Ga onto	Ge Gentler 2001	As both Mill or	Se Shite THE	Br basin 2000	Kr Bytes M28
Pd Notes 100.0	Ag be	Cd Galein Tituett	In this man	Sn h mm	Sb below 191300	Te Te Nicks 10040	II I Index 100040147	Xe less title
Pt Pt Situs	Au ou nessen	Hg Hg Honey Honey	TI Nile 20203	Pb bal sets	Bi Bi book on Holh	Po littin (III)	At and	Rn No.
Ds Decetter Orb	Uau'	Uub'	Uut'	Tu Uuq*	Uup' Uup'			

A trans at Leasure Medicing Material Educations reported the channes of the term in 110 and 110 in how 1000. The curve trans or trained the channes in high 2001. The channes of the cents 110, 110, and 110 has been expected but not continued.

Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
bote	annie	hear	lamin	Notes	ben	feder	heetin	brita
10.85	stot	relief as	1000	18381-5	serves	NEARAST	1204	trese
Am bester (80)	Cm Gen gen	Bk tetitor (MT)	Cf Silector (20)	Es Section (913)	Fm Person (927)	Md Md Entires (28)	No No Nodes (018)	Lr Lr mete (20)

The situation reasons facing in this higher effect the position of account measurements. (Althou intention particulars are the reason combines of these estimation of recents must stable or must consume instagrant).

Organization of the Periodic Table

- Metals excellent conductors of heat & electricity
 - Alkali metals Group 1
 - Alkaline-earth metals Group 2
 - Transition metals Groups 3-12
- Metalloids properties of metals & non-metals (along zigzag)
- Non-Metals- poor conductors of heat & electricity. Usually brittle solids or gases.
 - Halogens Group 17
 - Noble gases Group 18
 - Other solid non-metals above metalloids

Alkali Metals

- Group 1 of the Periodic Table
- All have 1 valence electron

- Highly reactive (with water)
- Silvery in appearance
- Soft enough to be cut with a knife

Alkaline-Earth Metals

Group 2:

Mg

- Group 2 of the Periodic Table
- All have 2 valence electrons

- Harder, denser, stronger the alkali metals
- Also reactive, but not as much as alkali metals

Transition Metals

- Groups 3-12 of the periodic table
- All have 2 valence electrons

Halogens

- Group 17 of the Periodic Table
- All have 7 valence electrons

- Despite chemical similarities, some are solids, liquids, and gases
- Most reactive non-metals
- React with metals to make salts

Noble Gases

- Group 18 of the Periodic Table
- All have 8 valence electrons, a complete octet

- Total lack of reactivity, inert
 - "too noble to react with anyone else"

PERIODIC TRENDS

Periodic Trends

- Characteristics of elements are predictable based on their location on the Periodic Table.
- These characteristics are dependent on the structure of the atom and the location of its electrons.
- Periodic Trends include:
 - Reactivity
 - Atomic radius (size)
 - Ionization energy
 - Electronegativity

Atomic Radii

- Size of the atom measured using half the distance between the nuclei of two identical atoms bonded together
- Trend decreases across a period, increases down a group

- Largest atom = Francium
- Smallest atoms = Helium

Atomic Radii

- As you move across a period, you are adding electrons to the same energy level, but also adding more protons
 - These protons attract the electron cloud closer, decreasing the atomic radius.
- As you move down a group, you add energy levels.
 - Each energy level is farther away from the nucleus, increasing the atomic radius.

Ionization Energy (IE)

 The energy required to remove one electron from a neutral atom

Ex: Noble Gases require a **ton of energy** to lose an electron because they are "happy" with their full shells

Ex: Alkali Metals have <u>low ionization</u> energies because they want to lose their outer electron.

Trend - increases across a period, decreases down a group

Ionization Energy

Electronegativity

 The ability of an atom to attract electrons (how "greedy" it is)

Ex: Flourine really wants another electron to get to the octet rule so it has a very high electronegativity. Anything close to Fluorine will have a high electronegativity

 Trend - increase across a period, decrease down a group

Electronegativity

Heavy metal (joke) thinkgeek.com

Mental_Floss magazine

