

INSTITUTO TECNOLÓGICO NACIONAL DE MÉXICO

INSTITUTO TECNOLÓGICO DE TLAXIACO

CARRERA: Ingeniería Sistemas Computacionales

MATERIA: Matemáticas Discretas

TEMA: Operaciones Básicas

TITULO: Practica

DOCENTE: ING. José Alfredo Román Cruz

ALUMNA: Paula María Castellanos Cts.

Heroica Ciudad de Tlaxiaco, Oax. A 30 de Agosto de 2025

"Educación Ciencia y Tecnología, Progreso Día con Día"

OBJETIVO:	4
MATERIALES:	4
TABLA DE ILUSTRACIONES	5
SUMA BINARIOS	6
RESTA BINARIOS	7
MULTIPLICACIÓN BINARIOS	7
DIVISIÓN BINARIO	9
RESTA OCTAL	11
MULTIPLICACIÓN OCTAL	12
DIVISIÓN OCTAL	13
SUMA HEXADECIMAL	14
RESTA HEXADECIMAL	
MULTIPLICACIÓN HEXADECIMAL	
DIVISIÓN HEXADECIMAL	18
RESULTADOS:	21
CONCLUSIÓN:	21

INTRODUCCIÓN:

Las operaciones básicas en los sistemas numéricos suelen ser muy útiles para desarrollar ciertas habilidades, Pensamiento Estratégico, Razonamiento Lógico, Pensamiento crítico, Análisis, Trabajo en equipo, Operaciones Avanzadas, y sobre todo para nuestro desempeño académico y actividades de la vida diaria.

Al entender cómo se realizan las operaciones básicas, nos ayuda a entender como este tipo de operaciones se aplican en distintas disciplinas, como las matemáticas, programación, electrónica, contabilidad, entre otras, así es como encontramos las teorías de las diversas áreas a trabajr por las cuales y por medio de las cuales es necesario aportar siempre un método diferente para cada una de las especificaciones.

Cada sistema un numérico tiene ciertas características que lo hace distinguirse, es decir cumple con algunas reglas de validación y estructura algunos son de fácil comprensión y otros requieren un mayor análisis que los hacen útiles.

Estos distintos métodos y aplicación de cada uno de ellos nos muestran una gran diversidad de las mismas las cuales varían según su operación y su práctica.

Así como a su vez damos a ver y observar que cada una de ellas conlleva un proceso diverso no son iguales, algunas son más largas y otras más cortas y todo varia de la operación a realizarse.

OBJETIVO:

Esta práctica es con la finalidad, de comprender las bases de la informática y computación mediante la resolución de operaciones básicas es decir ejercicios en los sistemas numéricos; comprender como funciona cada sistema y aprender a utilizarlos correctamente.

MATERIALES:

- Libreta de apuntes
- Lápiz y Lapiceros
- Computadora
- Calculadora

TABLA DE ILUSTRACIONES

Ilustración 1	6
Ilustración 2	6
Ilustración 3	6
Ilustración 4	7
Ilustración 5	7
Ilustración 6	7
Ilustración 7	8
Ilustración 8	_
Ilustración 9	8
Ilustración 10	9
Ilustración 11	9
Ilustración 12	10
Ilustración 13	10
Ilustración 14	10
Ilustración 15	11
Ilustración 16	11
Ilustración 17	12
Ilustración 18	12
Ilustración 19	12
Ilustración 20	13
Ilustración 21	13
Ilustración 22	13
Ilustración 23	14
Ilustración 24	14
Ilustración 25	14
Ilustración 26	15
Ilustración 27	15
Ilustración 28	15
Ilustración 29	16
Ilustración 30	16
Ilustración 31	16
Ilustración 32	17
Ilustración 33	17
Ilustración 34	18
Ilustración 35	18
Ilustración 36	19
Ilustración 37	19
Ilustración 38	19
Ilustración 39	20

SUMA BINARIOS

EJERCICIO 1:

SUMAR 100101+110010

• Para sumarlos primero se les otorga un orden.

Ilustración 1

• Posteriormente se comienza a sumar desde derecha a la izquierda. Tomando en cuenta la tabla de valores, para así llegar al resultado.

Suma de Binarios

$$0 + 0 = 0$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$1 + 1 = 0$$

Ilustración 2

Ilustración 3

RESTA BINARIOS

EJERCICIO 1:

RESTAR 111101-110010

Teniendo en cuenta lo siguiente:

$$\Rightarrow 1 - 0 = 1$$

$$\Rightarrow 1 - 1 = 0$$

$$\Rightarrow 0 - 0 = 0$$

$$\Rightarrow 0 - 1 = 1$$

Ilustración 4

• Sigue las reglas de la resta binaria para restar los números

Ilustración 5

• Obtenemos el resultado

Ilustración 6

MULTIPLICACIÓN BINARIOS

EJERCICIO 1:

MULTIPLICAR 1001*100

Seguir las reglas de la Multiplicación

Ilustración 7

Pimero colocamos los números de forma correcta.

8

Ilustración 8

• Comenzamos de derecha a izquierda

Ilustración 9

 Para la obtención del resultado, sumamos los datos obtenidos.

Ilustración 10

DIVISIÓN BINARIO

EJERCICIO 1:

DIVIDIR 11001100/00110101

Escribir la operación

Ilustración 11

Transformar los números para una aplicación mas fácil.

Ilustración 12

Dividir entre estos dígitos presentes actuales.

Ilustración 13

Volver a transformarlos, así obtenemos el resultado.

Ilustración 14

SUMA OCTAL

EJERCICIO 1:

SUMAR 25731+32147

Escribir el ejercicio

Ilustración 15

Comenzamos a sumar de izquierda a derecha.

Ilustración 16

Se realiza esto hasta el último digito y así obtendremos el resultado.

RESTA OCTAL

EJERCICIO 1:

RESTAR 543-276

Escribir ejercicio de manera correcta.

Ilustración 17

Se comienza de izquierda a derecha, tomando en cuenta los dígitos mayores y menores.

Ilustración 18

Se sigue el proceso hasta el final de los dígitos.

MULTIPLICACIÓN OCTAL

EJERCICIO 1:

MULTIPLICAR 213*423

Escribir la operación correctamente.

Ilustración 19

Se comienza de derecha a izquierda, ocupando la tabla de equivalencias.

Ilustración 20

ecimal	Octal	Binario
14	16	1 110
16	20	10 000
20	24	10 100
64	100	1 000 000
100	144	1 100 100
500	764	111 110 100
512	1000	1 000 000 000
612	1144	1 001 100 100
1024	2000	10 000 000 00

Ilustración 21

Así hasta culminar con el ultimo digito y obtener el resultado mediante una suma.

Ilustración 22

DIVISIÓN OCTAL

EJERCICIO 1:

DIVIDIR 57/12

Escribir ejercicio

Ilustración 23

Transformar los dígitos a decimales para proceder a dividirlos.

Ilustración 24

De esta manera obtenemos el resultado.

Ilustración 25

SUMA HEXADECIMAL

EJERCICIO 1:

SUMAR 7ABCD+AA33

Escribir el ejercicio

Ilustración 26

Para la solución de este se comienza de derecha izquierda tomando en cuenta la tabla de equivalencias.

Ilustración 27

Ilustración 28

Se continua el proceso hasta el final.

RESTA HEXADECIMAL

EJERCICIO 1:

RESTAR FF-B5

Escribir el ejercicio

Ilustración 29

Teniendo en cuenta la tabla de equivalencias en hexadecimal, comenzamos a restar de derecha a izquierda.

Ilustración 30

Ilustración 31

Ilustración 32

Se repite hasta culminar con el ultimo digito.

MULTIPLICACIÓN HEXADECIMAL

EJERCICIO 1:

MULTIPLICAR 3F2*211

Escribir ejercicio

Ilustración 33

Se vuelve a tomar en cuenta la tabla de equivalencias, y dado a ello se comienza a multiplicar

Ilustración 34

Al final se suma lo obtenido para el resultado concreto.

Ilustración 35

DIVISIÓN HEXADECIMAL

. EJERCICIO 1:

DIVIDIR FF/B3

Escribir ejercicio

Ilustración 36

Seguimos tomando en cuenta la tabla de equivalencias. Transformamos a decimal.

Ilustración 37

Dividimos entre estos y restamos

Ilustración 38

Así obtenemos el resultado.

Ilustración 39

LISTA DE RESULTADOS

SUMA BINARIOS

EJERCICIO 1: 100101+110010=1010111

RESTA BINARIOS

EJERCICIO 1: 111101-110010=001011

MULTIPLICACION BINARIOS

EJERCICIO 1: 1001*100=100100

DIVISIÓN BINARIOS

EJERCICIO 1: 11001100/00110101=101101

SUMA OCTAL

EJERCICIO 1:25731+32147=60100

RESTA OCTAL

EJERCICIO 1:543-276=245

MULTIPLICACIÓN OCTAL

EJERCICIO 1:213*423=112521

DIVISIÓN OCTAL

EJERCICIO 1:57/12=7

SUMA HEXADECIMAL

EJERCICIO 1: 7ABCD+AA33=85600

RESTA HEXADECIMAL

EJERCICIO 1: FF-B5=11A

MULTIPLICACIÓN HEXADECIMAL

EJERCICIO 1: 5F*2A

DIVISIÓN HEXADECIMAL

EJERCICIO 1: FF/B3=4C

RESULTADOS:

Por parte a los resultados, llevamos un aprendizaje nuevo que nos va a beneficiar en un futuro más adelante sobre todo porque forma parte de lo que es el aprendizaje de un programador.

CONCLUSIÓN:

En cada una de las operaciones se tomó una cierta referencia la cual no podemos pasar por alto, de esta manera es necesaria su práctica, mediante la cual, cada una de las operaciones lleva una marca rigurosa de cómo hacerlas, y así mismo cada una nos deja un aprendizaje que nos ayudara en lo que resta de nuestra vida profesional.