BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI First Semester 2003-2004

Course Title : OPERATING SYSTEMS Course No CS C372 **Component**: Test I (Regular) **Closed Book Component**

Weightage : 15% Max Marks: 15 Date: 15-09-2003

QI	$(10 \times 0.5 = 5 \text{ Marks})$: Please write only one	e-word answers in	the FIRST	PAGE of
the	answer book and the answers to the parts s	hould be in order		

1.	With	the dual mode operation protect the OS from errant			
users and errant users from one another.					
2.	By using	and	we are implementing		
memory protection in dual mode operation.					
3.		_ And	are the two communication methods used.		
4.	Is the main advantage of layered approach				
5.	For each of the following statements, is the statement true or false?				

- - a. Multiple threads that are part of the same process have their own program counter and stack pointer values.
 - b. Multiple threads that are part of the same process have their own copies of global
- (A) True, True (B) True, False (C) False, True (D) False, False
- 6. For each of the following statements, is the statement true or false?
 - a. Multiple threads that are part of the same process share any open files.
- b. It is generally faster to switch between threads that are part of the same process than it is to switch between processes.
- (A) True, True (B) True, False (C) False, True (D) False, False
- 7. Void main() if(!fork()) if(!fork());

how many new processes are created by fork calls?

- A process is about to execute the following code {fork();exec(...); fork();} what is the maximum number of new processes that should be created from this code?
- A program containing race condition will result in data corruption or some other incorrect behavior?
- (A) Always (B) Sometimes (C) Never (D) None
- Suppose you try to enforce mutual exclusion as follows:

PROCESS 1:	PROCESS 2:
while (true) {	while (true) {
while (p2_in_crit_sect == true)	while (p1_in_crit_sect == true)
; /* do nothing */	; /* do nothing */
p1_in_crit_sect = true;	p2_in_crit_sect = true;
critical section	critical section
p1_in_crit_sect = false;	p2_in_crit_sect = false;
}	}

Does this code always enforce mutual exclusion?

(A) Never (B) Sometimes (C) Always (D) Information not sufficient

Q II. $(1 \times 5 = 5 \text{ Marks})$

Assume that a context switching may occur between any two-machine instructions. Initially, address x contains 2 and address y contains 10, Assembly-language code is given for two threads, T1 and T2 which execute concurrently. Basically, T1 does "y:= x + y" and Y2 does "x:= y + 1".

T1	T2
LOAD x, r1	LOAD y, r1
LOAD y, r2	INC r1
ADD r1, r2	STORE r1, x
STORE r1, y	

What are the possible pairs of final values of x and y (i.e.,the values after both threads have finished)? For example, your answer could be something like: $x = \{1, 2, 3 ...\}$ and $y = \{1, 2, ...\}$.

Q III. $(1 \times 5 = 5 \text{ Marks})$

For each of the following code segments, where the variables are initialized as shown and thread A and B can run concurrently, what are the possible ending values of x after both threads A and B are completed.

(a)	(b)	(c)
Int x=0;	Int x=0;	Int x=0;
Int y=23;	Int y=23;	Int y=23;
Semaphore m=1;	Semaphore m=1;	Semaphore m=1;
Semaphore s=0;	Semaphore s=0;	Semaphore s=0;
Thread A	Thread A	Thread A
{	{	{
x=x+1;	wait(m);	wait(s);
}	x=x+1;	x=x+1;
	signal(m);	signal(m);
Thread B	}	}
{		
x=y+1;	Thread B	Thread B
}	{	{
	wait(m);	wait(m);
	x=y+1;	x=y+1;
	signal(m);	signal(s);
	}	}
Possible ending values of x	Possible ending values of x	Possible ending values of x

Please write the answer in the following format:

- a) Possible ending values of x : _____
- b) Possible ending values of x : _____
- c) Possible ending values of x : _____