Corp. 7. Multimi de numere 1. Multimea numerelor naturale 0, 1, 2, 3

Operatione memore maturale.

Admarea.

" 2d + 1 m + 0 del m / Sinctia successor. m + s(n) del s(m+n)

• Exemplu: Despre Mystim ca s(0) = 1 s(1) = 2 s(2) = 3, $0 + 0 \stackrel{\text{def}}{=} 0$ $0 + 1 = 0 + s(0) \stackrel{\text{def}}{=} s(0 + 0) = s(0) = 1$. $1 + 0 \stackrel{\text{def}}{=} 1$ $1 + 1 = 1 + s(0) \stackrel{\text{def}}{=} s(1 + 0) = s(1) = 2$. $2 + 0 \stackrel{\text{def}}{=} 2$:

 $m+1=m+s(o)\frac{der}{der}s(m+o)=s(m).$

 $m+2=m+s(1) \stackrel{\text{defr}}{=} s(m+1)=s(s(m))$

- · Proprietati: Daca m,n,p EN atenci:
- 1) (m+m)+p=m+(m+p) (adunarea nor. mat este osociativo)

Dem. prim inductie matematica dyra $p \in \mathbb{N}$. P(p): (m+m)+p = m + (n+p)

 $\Rightarrow P(o): (m+m)+0 = m+(m+o). ?$ $(m+m)+0 \xrightarrow{dyl} m+m \Rightarrow P(o) \text{ order}.$ $m+(n+o) \xrightarrow{dyl} m+m \Rightarrow P(o) \text{ order}.$

Demonstram $P(p) \rightarrow P(s|p)$, oblica elaca (m+m)+p=m+(m+p), at unci (m+m)+s(p)=m+(m+s(p)) $(m+m)+s(p) \stackrel{del2}{=} s(m+m)+p$ $m+(m+s(p)) \stackrel{del2}{=} s(m+(m+p)) \stackrel{del2}{=} s(m+(m+p))$

Asodor on principielle inductive matematice P(p) este oblevarat $\forall p \in \mathbb{N}$.

2) m + 0 = 0 + m = m (0 este elem neutru pt adunore) Enf. definiteri ad m. nat stim ca m+0 = m. Ramane se dem ca Otm = m., prin inductie moitematica olypa m EN.

P(m): Otm = m.

 $\rightarrow P(0): 0+0=0$ orderarat enfolg!

> Demonstram P(m) -> P(s(m)), odico dorō 0 tm = m, atunci 0 ts(m) = s(m).

Ots(m) dyz s(Otm) inde ind s(m).

Asoudor conform princip. ind matem. P(m) este oder, +m EN.

3) m t 1 = 1 t m Temoi (Hent: industic matem. dupa m) m + m = m + m.

Demonstram prin inductie matem. dupa mEN: P(m): m+n=m+m, +nEN

```
\rightarrow P(0): 0+m=m+0, \forall m \in \mathbb{N}.
    ader, desarece O este elem. neutru pt "+"
→ Demonstrain P(m) -> P(s(m)), odica
  daca m+m=n+m, +m EIW, atunci
     s(m) + n \stackrel{?}{=} m + s(m), \forall m \in \mathbb{N}.
 S(m)+m = (m+1)+m \xrightarrow{asoc} m+(1+m) \xrightarrow{3} m+(m+1)

m+s(m) = m+(m+1) \xrightarrow{esoc} (m+m)+1 \xrightarrow{in de ind} (m+m)+1
 Assolar, on princip ind matem:
    m +n = n+m, +n EN, +m EN.
5) Daca m+p=n+p, atunci m=n.
  Demonstram prim ind. matem. dupa pEN:
   P(p): m+p=n+p \longrightarrow m=m.
\Rightarrow P(0): m+0=m+0 \longrightarrow m=m?
> Demonstram P(p) -> P(s(p)), odica doca
 m+p=m+p \longrightarrow m=m atunci m+s(p)=m+s(p) \longrightarrow m=m?
s(m+p)=s(m+p)
```

injectivitatea lui s > m+p=m+p in ole ind > m=m 1. Anador, enf. principiului ind. matem: $\forall m, n, p \in \mathbb{N}$ $m + p = m + p \longrightarrow m = m$.

6) Dara m+n=0, atunci m=n=0. P. R.A va m = D = = I p EN ou m = s(p) $m + m = 0 \Rightarrow s(p) + m = 0$ commits m + s(p) = 0 $\frac{ds^2}{ds^2} s(m + p) = 0$ contradictie, o NV est e successful mici umi mr. mat As pador $m = 0 \Rightarrow 0 + m = 0$ $\frac{0 \text{ elem. } m}{n} = 0$.

- 7) Trihotomie: Din wm. 3 afirm. exact una este adevarata:
 - (i) m = n

 - (ii) $\exists p \in \mathbb{N}^*$ ai m+p=m(iii) $\exists p \in \mathbb{N}^*$ or m+p=m.

Partea 1: Aratam ca 2 afirm. NU pot ovea loc simulton:

Presuprenen la ore loc (i) or (ii) (Restul conviiler temà) $\Rightarrow \underline{m} = \underline{m} \times \exists_{p} \in \mathbb{N}^{*} \text{ où } \underline{m+p} = \underline{m} \Rightarrow$ $m + p = m \Rightarrow m + p = m + 0 \Rightarrow p = 0$ contradictie an pEN*. Portea 2: Demonstrain pour inductie matematica: P(m): m = n sau $(\exists p \in \mathbb{N}^* \text{ or } m + p = n)$ sau $\rightarrow P(0): O=m \text{ Soul} \underbrace{\exists_{p} \in \mathbb{N}^{p} \text{ or } O+p=m)}_{\text{son}} \text{ son}$ (Ane N° aû n+p=0) Dora n=0 => 1°) ader => P(0) eder. Dora n =0 => 2°) oder, luand p=n EN* => Plo) oder. → Demonstram P(m) --> P(s(m)). P(s(m)): (i)s(m) = m(ii) In EN* acshm) + p = m son ((ii) $\exists p \in \mathbb{N}^*$ où m + p = s(m). Stim P(m). Corul I Dora m=n => (iii) oder, huand p=1 EN"

Corul II Dora $\exists p \in \mathbb{N}^*$ as m+p=m.

Subcorul 1 Dora $p=1 \Rightarrow m+1=m \Rightarrow (i) \Rightarrow P(s(m))$.

Subcorul 2 Dora $p \in \mathbb{N} \land 0, 1$? $p \neq 0 \Rightarrow \exists g \in \mathbb{N}$ as p=s(g). $p \neq 1 \Rightarrow g \in \mathbb{N}^*$ $m+p=m \Rightarrow m+s(g)=m \Rightarrow m+g+1=m$ $\frac{connut}{m+1+p=n} \Rightarrow s(m)+p=m \Rightarrow$ ore for (ii) lustrad $p=g \Rightarrow P(s(m))$.

Corul III Dora $\exists p \in \mathbb{N}^*$ as $m+p=m \mid +1=$) $m+(p+1)=s(m) \Rightarrow ore loc(iii) pt <math>p \Rightarrow p+1 \in \mathbb{N}^*$. $\Rightarrow P(s(m))$

- Ordonaria numerelor naturale $m < m < \frac{dal}{dal} \exists p \in \mathbb{N}^* \text{ as } m + p = m$ $m \leq m < \frac{dal}{dal} \exists p \in \mathbb{N} \text{ as } m + p = m$ · Th (proprietatile de basa ale relatiei de ordine) Fie m,n,p EN. Atunci: 1) " « este relatie de ordine totala. dem: reflexivitate: m+0=m ⇒ m ≤ m, +m∈N teronsitivitate: daca m ≤ m m m = p, vrem m ≤ p. $m \le m \Rightarrow \exists r \in \mathbb{N} \text{ or } m+n = m$ $n \le p \Rightarrow \exists s \in \mathbb{N} \text{ or } m+s = p$ $|m| = p \Rightarrow (m+n) + s = p$ | asociativitatea, +" $m + (n+s) = p \Rightarrow m \leq p$. ontisimetrie: doea $m \le m$ m $n \le m$, verem m = m $m \le m \Rightarrow \exists r \in \mathbb{N}$ or $m + r = m' \Rightarrow (m+r) + r = m$ $m \le m \Rightarrow \exists r \in \mathbb{N}$ or $m + r = m' \Rightarrow (m+r) + r = m$ lasociativitatea "+" m+(2+0)=m カナカ=ロラカ=カ=の Apador " =" este rul. de ordine.

Cop. 7. Multimi de numore 7.1. Multimes numorelor naturale

```
Vrem " & " sul de ordine totale (orice 2 elem. sunt comparabile)
Fix m, n EN trihotomie exact una din urmatoorele
                                          afirmati este advarata:
                                         ii) \exists p \in \mathbb{N}^* \text{ or } m = m + p
iii) \exists p \in \mathbb{N}^* \text{ or } m = m + p.
 Dorā dre lor i) m=m \Rightarrow m=m+0 \Rightarrow m \leq m.

Dorā dre lor ii), um N \leq N \Rightarrow m \leq m.

Dorē dre lor iii), um N \leq N \Rightarrow m \leq m.
 2) 0 \leq m.
 olem: O+m=m, +m EN > O ≤ m
3) Dora n + O, atunci 16m.
 dem: n +0 => = p = N où s(p) = m => p+1=m=> 16m.
 4) m<m (>> m < m.
dom: m < m \Rightarrow \exists p \in \mathbb{N}^* \text{ our } m + p = m/
\exists p \in \mathbb{N} \text{ our } m + p = m/
\exists p \in \mathbb{N} \text{ our } n \mid p = p/
\Rightarrow m + (q+1) = m \Rightarrow m + (1+q) = m \Rightarrow (m+1) + q = m =)
=) m++ g=M => m+ ≤ m
dem: similar (tema)
```

$5)$ $m \leq m \leq m \leq m^{+}$
dem: anolog 4)
6) NU existà n EN où m < m < m+
(i.e. intre 2 vr. mat consecutive NV exista alte mr. mat.)
dem: Pn. R. A ca exista n EN où m < n < mt.
m < n => m + < n.
$m < m \Rightarrow m^{\dagger} \leq m$. $n < m^{\dagger} \Rightarrow \exists p \in \mathbb{N} \text{ ou } m + p = m^{\dagger} \Rightarrow m \leq m^{\dagger}$
=> $m = m^{\dagger}$ $dor m + p = m^{\dagger}$ => $m + p = m$ => $p = 0$ contradictie ($p \in \mathbb{N}^*$)
7) (N, <) este bine ordonata
dem: veri suportal de cars.
8) (principial insluctiei matemortice, vorienta 2:
induction complet or san induction tore).
induction complet or san induction tore). De P(m) este un predicat pe N estégel ca
(1) este oder n', (k) este ades nt dice be n
implicatelle) este oder at unci Pln) este oder.
pt. die n EN.
olen: conserintà imediata a inductiei mortem., vorianta 1.

3) Doca mcm atunci m+p < m+p. dem: inductie dupa p. IN=0: m+0 cm+0 (=) m cm oder. I Pp. cā de loc m+p < m+p pt un p EIV. Dem ca mtolp) cmtolp). m+p < m+p => = = = m+p => $S(m+p+g) = S(m+p) \Rightarrow m+p+g+1 = m+p+1$ count m+ p+1+2 = m +p+1 => m + o(p) + p = n + o(p) = m + o(p) < m + o(p).10) Derā m<m n° p ≠ 0 octunci mp <mp.

dem: se oroita prim inductie cā mp ≤ mp, +p ∈ N.

olegnē p∈N Dera in plus p +0. mp < mp => I e oi mp + g = mp. Vrem g + 0. Pr. R. A cat min = np $\frac{r+0}{m}$ m = m = m = m = m = t=0 m < n =) $\exists t \in \mathbb{N}^m$ or m+t=m! contradictive. 11/ (axioma lui Arhimeole) Dora m EN m n EN atunci Ip EN or pm >m. dem: inductie depà n. I m = 1: trubuie drétat ca Ip EN ei p.1>m (=>p>m. oder. pt. ca putem lui p = m+1. I Pp. ca Ip EN oi pm >m. vorem ne oratem ca FgEN er or g.s(m) > m. oder pt. ia putem lua y=p: p·m+p>p·m> \$\frac{1}{2}.m. 12) (teorema împartirii cu rest) Doia m EN n m EN atunci Zunic p, r EN où $m = m \cdot p + \pi$ $m \times m$. olem: existenta: inductie dupa m. $\underline{T} \underline{m} = 0$: $0 = m \cdot g + \pi$. $m \cdot \pi < m$. ham g=0 m r=0. I Pp. va 7 g, 2 EN où m = mig +9 m 7 < m. Vrem $\exists g', n' \in \mathbb{N} \text{ our } s[m] = m \cdot g' + 2 m' 2 < m.$ s(m)=m·g'+91'=) m+1=m·g'+91'(=) m·g +91+1=m·y'+91'(*) $\mathcal{R} < m \Rightarrow \mathcal{R} + l \leq m$

Daca n+1 <m atunci luam p'= g ns n'= n+1<m. Althel ovem r + 1 = m. $(*) = m \cdot p + m = m \cdot q' + h' = m \cdot q' + h' = m \cdot q' + h'$ astfel luiam $g' = g + l \times n' = 0 \le m$. unicitate: P_{p} ca $\exists g_{1}, \eta_{1} \in \mathbb{N}$ or $f_{m} = mg_{1} + \eta_{1}, \eta_{1} \times m$ $\exists g_{2}, \eta_{2} \in \mathbb{N}$ $m = mg_{2} + \eta_{2}, \eta_{2} \times m$ => mg1+91 = mg2+912 44. Pr. ca g, \$ 22 => g, > g2 son g2 > g1. Pp va 9,792 (coral 92291 este analog). =) ng, + 7, -mgz= Tz=) n(g,-gz)+1, = 2<m $\begin{array}{c} m \neq 0 \\ \implies 2^{1} - 2^{2} \leq 1 , \text{ dor } 2^{1} \neq 2^{2} \Rightarrow 2^{1} - 2^{2} = 1 \Rightarrow \\ \end{array}$ m < m + M = M = M = > M z > m controdictie nz < m. Agodor 9, = 92 => mp, + n, = mg, + nz => n, = 2.