Monphological Solution Guerton 1

- -) Iam considering structure element ones (15,15)
- -) Save the Prage into a variable ing
- -) do the exosion on image imp' with structure element.
- -) Now the string attached to the center square well be disappeared, withe bulatel' function and label disconnected components
- -) inclear mathab function, clear the components at the boundary, some substract this image(x) from the above image in a line of the components and inclear the components and inclear the components are the components and the components are the components and the components are t

y-ing = will give the expected

3) Selecting the distance measures for the necessar

nest bour charites

Problem 1 Medium Level Image Processing

The morphological solution to keep all 16 rounded thick sticks on the border

Problem 2 : Seeded region growing

3	2	2	1	1	1	1	1
6	5	2	2	1	1	1	1
7	7	7	7	7	1	1	1
7	7	6	7	6	7	1	1
8	7	7	8	6	7	1	1
8	8	7	3	2	1	1	1
8	8	8	4	2	1	2	1
8	8	8	5	1	1	1	1

Seeded region 1

sum = 6+7+7+7+7+7+6+8+7+7+8+8+7+8+8+8+8+8=140

Total numbers = 19

Mean = 140/19=7.368421053

Seeded region 2

Total elements = 28

Mean = 31/28 = 1.107142857

The value '7' 4 row 4 column is not shared. (blue colored)
It is closer to the mean value 7.3, so it will be merged with seeded region 1.

brown colored line would be boundary line between 2 regions.

3	2	2	1	1	1	1	1
6	5	2	2	1	1	1	1
7	7	7	7	7	1	1	1
7	7	6	7	6	7	1	1
8	7	7	8	6	7	1	1
8	8	7	3	2	1	1	1
8	8	8	4	2	1	2	1
8	8	8	5	1	1	1	1

2.2 even regions selections are interchanged as mentioned in the question, i think there would not be a difference. The segmentation results would be same as this one.

Watershed segmentation

In the first image, these are the minimas because they are surrounded by larger values.

8	8	7	8	9	9	9	9
8	8	3	3	9	9	4	9
8	8	9	9	9	9	9	9
8	7	6	8	9	9	9	9
7	6	6	7	7	9	1	1
7	2	2	7	6	5	1	1
7	6	6	7	11	12	5	5
7	7	6	7	11	11	7	5

8	8	7	8	9	9	9	9
8	8	3	3	9	9	4	9
8	8	9	9	9	9	9	9
8	7	6	8	9	9	9	9
7	6	6	7	7	9	1	1
7	2	2	7	6	5	1	1
7	6	6	7	11	12	5	5
7	7	6	7	11	11	7	5

8	8	7	8	9	9	9	9
8	8	3	3	9	9	4	9
8	8	9	9	9	9	9	9
8	7	6	8	9	9	9	9
7	6	6	7	7	9	1	1
7	2	2	7	6	5	1	1
7	6	6	7	11	12	5	5
7	7	6	7	11	11	7	5

Final Result

8					9	9	9
8	8	3			9	4	9
8	8	9	9	9	9	9	9
8	7	6	8	9	9	9	9
7	6	6	7	7	9	1	1
7	2	2	7	6	5	1	1
7	6	6	7	11	12	5	5
7	7	6	7	11	11	7	5

K-means Algorithm

{ (0,0), (0,1), (6,7), (5,5), (4,5), (1,2)}

Points {(4,5)} {(0,1)}

	(4,5)4	(0,1)	
(010)	6.40	14	CZ
(0,1)	5.65	or	12
(6,7)	2.82	8-48	CI
(5,5)	1~	6.40	CI
(4,5)	or	6.45	CI
(42)	4.24	1.41	C2
		1 1	-

(1 (2

(6,0) (0,0) and almost the same

(5,5) (0,1)

(415) (112)

1	(2124 2442)
(enla = (1+5+4,7+5+5)	(3) (3)
1/3 3	

 $=\left(\frac{15}{3},\frac{17}{3}\right)\left(\frac{1}{3},\frac{1}{3}\right)$

= (5,17/3) (1/311)

	010	(5,17/3)	(1/311) (2	
	(0,0)	7.5	1-04~	C2
	(0/1)	4.8	0.3~	c2
	(617)	1-72	8.27	41
	(5,5)	0.6~	6.17	41
	(415)	1.16 ~	5.45	CI
STATE OF THE PARTY	(1/2)	5.38	1.22	C2
		AND RESIDENCE OF THE PARTY OF T		

C2 41 (617) (010) (5,5) (91) (415) (1,2) Certer= (6+5+4 7+5+5) (0+0+1,0+1+2) (15,17/3) (1/311) (5/17/3) (1/31) Previous center and above center are same, the centroid of church and churter 2 are (5,13/3) (1/31) chuler 2 churt 1 (0,0) (6,7) (0/1) (5,5) (1/2) (4,5)

Hierarchical clustering algorithm {P,(0,0) P2(0,1) P3(6,7) P4(5,5) P5(4,5) P6(1,2)}

					_		
1		P,	P2	B	P4	P5	P
	Pi	0	0	9.21	7.07	8.06	2.23
1	P2	-	0	8.48	6.40	5.15	1.414
1	P3			0	2.23	2.92	707
1	P4			PLZ	0	1	6
	P5	1 2	-	1831	B.	0	4.24
	Pa						0
	1		1		-	-	

		-				1
1	PUPZ	Pz	P4	P5	Pu	-
P1, P2	0	8.48	7.4	5.69	1.414	-
11112		0	2.23	282	404	-
13	-		0	0	5	1
P4		92		0	14.2	1
P5	-	+		1	0	1
1 P6		1			1	

-			Pus Ps	8.
	P. 182	P3	14) 15	-
	-117	8.48	5.65	1.414
P1/P2		1	2.23	7.07
Pa		0	1	14.24
1-0-		1	6	+
P4, P5	-	+	1	101
Pb				

	P1, P2, P6	P3	PwP5
P1, P2, P6	6	7.07	4.25
P ₃		0	2.23
P4, P5			0
			-

Churter 1 = {P1, P2, P6} Churter 2 = {P3, P4, P5}

Problem 3.3 - Perceptron algorithm (0,0) (0,1) (6,7) (5,5) (4,5) (1,2)

$$W1 = (1,1,2)$$

```
X1 = (0,0,1) X4=(6,7,1)

X2 = (0,1,1) X5=(5,5,1)

X3 = (1,2,1) X6=(4,5,1)
```

Expected X1,x2,x3 >0 x4,x5,x6<0

W1x1 =
$$(1,1,2)(0,0,1)$$
' = 2 >0 no change w2=w1
W2x2 = $(1,1,2)(0,1,1)$ ' = 3 >0 no change w3=w2
W3x3 = $(1,1,2)(1,2,1)$ ' = 5 >0 no change w4=w3

$$W4x4 = (1,1,2) (6,7,1) = 15 > 0$$
 $w5 = w(4) - x(4) = (1,1,2) - (6,7,1) = (-5,-6,1)$
 $W5x5 = (-5,-6,1) (5,5,1) = -54 < 0$ no change $w6=w5$
 $W6x6 = (-5,-6,1) (4,5,1) = -49 < 0$ no change $w7=w6$

W7x1 =
$$(-5,-6,1)$$
 $(0,0,1)$ ' = 1 >0 no change w8=w7
W8x2 = $(-5,-6,1)$ $(0,1,1)$ ' = -5 <0 w9=w8+x2 = $(-5,-6,1)$ + $(0,1,1)$ = $(-5,-5,2)$
W9x3 = $(-5,-5,2)$ $(1,2,1)$ ' = -13 <0 w10=w9+x3 = $(-5,-5,2)$ + $(1,2,1)$ = $(-4,-3,3)$

W10x4 =
$$(-4,-3,3)$$
 $(6,7,1)$ = $-44 < 0$ no change w11=w12
W11x5 = $(-4,-3,3)$ $(5,5,1)$ ' = $-34 < 0$ no change w12=w11
W12x6 = $(-4,-3,3)$ $(4,5,1)$ ' = $-18 < 0$ no change w13=w7

W13x1 =
$$(-4,-3,3)$$
 $(0,0,1)$ ' = 3 > 0 no change w14=w13
W14x2 = $(-4,-3,3)$ $(0,1,1)$ ' = 0 = 0 w15 = w14+x2 = $(-4,-3,3)$ + $(0,1,1)$ = $(-4,-2,4)$
W15x3 = $(-4,-2,4)$ $(1,2,1)$ ' = -4 < 0 w16=w15+x3 = $(-4,-2,4)$ + $(1,2,1)$ = $(-3,0,5)$

W16x4 =
$$(-3,0,5)$$
 (6,7,1) = $-13 < 0$ no change w17=w16
W17x5 = $(-3,0,5)$ (5,5,1) ' = $-10 < 0$ no change w18=w17
W18x6 = $(-3,0,5)$ (4,5,1) ' = $-7 < 0$ no change w19=w18

W13x1 =
$$(-3,0,5)$$
 $(0,0,1)$ ' = 5 >0 no change w20=w19
W14x2 = $(-3,0,5)$ $(0,1,1)$ ' = 5 >0 no change w21 = w20
W15x3 = $(-3,0,5)$ $(1,2,1)$ ' = 2 >0 no change w22=w21

The final weight is (-3,0,5)

The equation of line is -3x1+5=0

Plot all your original data and sketch the found decision boundary on a graph.

Decide which class an unknown pattern (2, 2) belongs to and explain how you made the decision.

Which is less than 0, so (2,2) lies right side of the line

1 187 is more effective 3.4 (B) as sel kind shown graph minimal distance chalcon classification {6,0), (0,1) (6,7), (5,5), (4,6), (1,2)} A(0,0) B(0,1) ((1,2) - churter) D(4,5) E(5,5) F(6,7) - churter 2 mean of churter 1 M= 0+0+1 0+1+2 = (1/3/3/3) =(0.3/1) mean of churler 2 M2= 4+5+6 5+5+7 = (5,17/2)5.6 MIN MITZ (0.3,1) (0.3)=1.09 = (5,5.6) D1(x)=0.3x,+22-0.554 M2 x m2 = (5.6) (5,5.6) = 56.36 $P_2(x) = 5x_1 + 5.66x_2 - 28.51$ P12 = d, (x)-d2(x)=-4.67 x14-4.66x2+27.9 =4.6721+4.66x2-27.9 =0 abone we . (6,7) (4,5) (5,15)

from the graph above we can observe that the point (212) will go under the line, Hence ?+ belongs to church I

Question 3.5

Input values (Potals)

{(0,0)(0,1)(6,7)(5,5)(4,5)(1,2)}

x 2 3 4 5 6 x -> [0,0,6,5,4,1]

y-) [0,1,7,5,5,2]

Variance = [2.6,3.3]

find co-variance matrix

 $\times 1 - M = \begin{bmatrix} -2.6 \\ -3.3 \end{bmatrix}$

X2-M=[-2.6,2:3]

final co-variance matrix would be

= [5.89 5.9]

eigen values = 07 vector 1 = [-1.02, 1] =[0.97,1]

transformation matrix = [0.97 - 1.03]

TM = [1 1]

Transformed values =
$$(87M)^{-1}$$
 (variance)

 $x_1 = \begin{pmatrix} 0.97 & 1 \\ -1.03 & 1 \end{pmatrix} \begin{pmatrix} -2.6 \\ -3.3 \end{pmatrix} = \begin{pmatrix} -5.8 \\ -0.6 \end{pmatrix}$
 $x_2 = \begin{pmatrix} -4.8 \\ 0.4 \end{pmatrix} x_1^{-1} \begin{pmatrix} 7.0 \\ 0.2 \end{pmatrix}$
 $x_4 = \begin{pmatrix} 4.0 \\ -0.8 \end{pmatrix} x_5 = \begin{pmatrix} 3.1 \\ 0.3 \end{pmatrix} x_6 = \begin{pmatrix} -2.8 \\ 0.3 \end{pmatrix}$

The variance of above calculated points is

 $(23.174, 0.274)$
 $-1 A \\
0.7 \\
0.7$
 x_1^{-1}
 x_2^{-1}
 x_3^{-1}
 x_4^{-1}
 $x_$

talulating the variance of the Briapal component with hew transformation U= [0.97] X= [097 1 ×2 = -4.76 X3=7 x4=4 75=3. X6 = -2.81 Platting the above points · K3

the variance of the above points = 23.2 this describes the dataset concluded by two principal components. The second variance me duce the dimensorally gives less dataset information