# MA 1101: Mathematics I

Priyanshu Mahato, 21ms002

February 15, 2022

#### Solution 1.

Let  $X, Y, Z \neq \emptyset$ , let  $f: X \to Y$  and let  $g: Y \to Z$ . We have

$$g \circ f : X \to Z,$$
  
 $x \mapsto g(f(x))$ 

(i) If f and g are injective, for arbitrary  $x_1, x_2 \in X$ ,

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

$$\Rightarrow g(f(x_1)) = g(f(x_2))$$

$$\Rightarrow f(x_1) = f(x_2) \qquad \text{(Injectivity of } g)$$

$$\Rightarrow x_1 = x_2 \qquad \text{(Injectivity of } f)$$

Hence,  $g \circ f$  is injective.

- (ii) If g is surjective, it follows that for all  $z_i \in Z$ , there exists  $y_i \in Y$  such that  $g(y_i) = z_i$ . If f is also surjective, it follows that for all these  $y_i$ , there exists  $x_i \in X$  such that  $f(x_i) = y_1$ . Hence, for all  $z_i \in Z$ , there exists  $x_i \in X$  such that  $(g \circ f)(x_i) = g(f(x_i)) = z_i$ . Therefore,  $g \circ f$  is surjective.  $\square$
- (iii) If f and g are bijective,  $g \circ f$  must be injective from (i) and surjective from (ii). Therefore,  $g \circ f$  is bijective.
- (iv) If  $g \circ f$  is surjective, it follows that for all  $z_i \in Z$ , there exists  $x_i \in X$  such that  $g(f(x_i)) = z_i$ . Since f is a function, for all these  $x_i$ , there must exist  $y_i \in Y$  such that  $f(x_i) = y_i$ . Hence, for all  $z_i \in Z$ , there exists  $y_i \in Y$  such that  $g(y_i) = z_i$ . Therefore, g is surjective.  $\Box$ Consider

$$f: \{0, 1, 2\} \to \{0, 1\},$$

$$x \mapsto 0.$$

$$g: \{0, 1\} \to \{0\},$$

$$x \mapsto 0.$$

Clearly, we have  $g \circ f : \{0, 1, 2\} \to \{0\}, x \mapsto 0$  is surjective, yet f is not surjective since there is no  $x \in \{0, 1, 2\}$  such that f(x) = 1.

(v) Let  $x_1, x_2 \in X$  such that  $x_1 \neq x_2$ . We have two cases:  $f(x_1) = f(x_2)$  or  $f(x_1) \neq f(x_2)$ . If  $f(x_1) = f(x_2) = y \in Y$ , we must have  $(g \circ f)(x_1) = g(f(x_1)) = g(f(x_2)) = (g \circ f)(x_2)$ . This contradicts the injectivity of  $g \circ f$ . Hence, we must have  $f(x_1) \neq f(x_2)$ . Therefore, f is injective.  $\square$  Consider

$$\begin{split} f : \{0\} &\to \{0,1\}, \\ x &\mapsto 0. \\ g : \{0,1\} &\to \{0\}, \\ x &\mapsto 0. \end{split}$$

Clearly, we have  $g \circ f : \{0\} \to \{0\}, x \mapsto 0$  is injective, yet g is not injective since g(0) = g(1) = 0.

(vi) We have  $g \circ f$  is injective and f is surjective. Let  $y_1, y_2 \in Y$  such that  $g(y_1) = g(y_2)$ . The surjectivity of f implies that there exist  $x_1, x_2 \in X$  such that  $f(x_1) = y_1$  and  $f(x_2) = y_2$ . Hence, we have  $g(f(x_1)) = g(f(x_2)) \Leftrightarrow (g \circ f)(x_1) = (g \circ f)(x_2)$ . The injectivity of  $g \circ f$  implies  $x_1 = x_2$ , from which we have  $y_1 = y_2$ . Therefore, g is injective.

#### Solution 2.

Let  $W, X, Y, Z \neq \emptyset$ , and let  $f: W \to X$ ,  $g: X \to Y$  and  $h: Y \to Z$ . We will show that

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Clearly, we have  $h \circ g : X \to Z$ , hence  $(h \circ g) \circ f : W \to Z$ . Also,  $g \circ f : W \to Y$ , hence  $h \circ (g \circ f) : W \to Z$ . Thus, the domains and codomains of both these functions are equal.

Let  $w \in W$ ,  $x = f(w) \in X$ ,  $y = g(x) \in Y$ ,  $z = h(y) \in Z$ . Thus,  $(h \circ g)(x) = h(g(x)) = h(y) = z$ , so  $((h \circ g) \circ f)(w) = (h \circ g)(f(w)) = (h \circ g)(x) = z$ .

Again,  $(g \circ f)(w) = g(f(w)) = g(x) = y$ , so  $(h \circ (g \circ f))(w) = h((g \circ f)(w)) = h(y) = z$ .

Hence, for all  $w \in W$ ,  $((h \circ g) \circ f)(w) = (h \circ (g \circ f))(w) \in Z$ . Therefore, these two functions are equal.  $\square$ 

## Solution 3.

(i) We examine

$$f: \mathbb{R} \to \mathbb{R},$$
$$x \mapsto x^2 + x.$$

Clearly, f is not injective, since f(0) = f(-1) = 0.

Note that for all  $x \in \mathbb{R}$ ,

$$f(x) = x^2 + x = \left(x + \frac{1}{2}\right)^2 - \frac{1}{4} \ge -\frac{1}{4}$$

Hence, for all y < -1/4, e.g., y = -1, there is no  $x \in \mathbb{R}$  such that f(x) = y.

Therefore, f is neither injective, nor surjective.

(ii) We examine

$$f: \mathbb{N} \to \mathbb{N},$$

$$n \mapsto \left\lfloor \frac{n+1}{2} \right\rfloor.$$

Clearly, f is not injective, since f(1) = f(2) = 1.

Note that for all  $k \in \mathbb{N}$ , f(2k-1) = k. Also,  $2k-1 \in \mathbb{N}$ .

Therefore, f is not injective, but is surjective.

(iii) We examine

$$f: \mathbb{R} \to \mathbb{R},$$
  
 $x \mapsto x + \lfloor x \rfloor.$ 

Let  $x_1, x_2 \in \mathbb{R}$ . Thus,

$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1 + \lfloor x_1 \rfloor = x_2 + \lfloor x_2 \rfloor$$

$$\Rightarrow x_1 - x_2 = -|x_1| + |x_2|$$

It follows that  $k = x_1 - x_2 \in \mathbb{Z}$ , so

$$\begin{bmatrix} x_1 \end{bmatrix} = \lfloor k + x_2 \rfloor 
= k + \lfloor x_2 \rfloor 
= x_1 - x_2 + \lfloor x_2 \rfloor 
x_1 - x_2 = |x_1| - |x_2|$$

Hence, we have  $x_1 = x_2$ . Therefore, f is injective.

For  $f(x) = 2k + 1 \in \mathbb{Z} \subset \mathbb{R}$ ,  $k \in \mathbb{Z}$ , we must have  $x + \lfloor x \rfloor = 2k + 1$ , so  $x \in \mathbb{Z}$ . Thus,  $f(x) = 2x = 2k + 1 \Rightarrow x = k + \frac{1}{2} \notin \mathbb{Z}$ , a contradiction. Hence, there is no  $x \in \mathbb{R}$  such that f(x) = 2k + 1,  $k \in \mathbb{Z}$ . Therefore, f is injective, but not surjective.

### (iv) We examine

$$\begin{split} f: \mathbb{R} &\to \mathbb{R}, \\ x &\mapsto x - \lfloor x \rfloor \,. \end{split}$$

Clearly, f is not injective, since f(0) = f(1) = 0.

Note that  $\lfloor x \rfloor$  is the *greatest* integer less than or equal to x. Let  $x - \lfloor x \rfloor = \delta$ , where  $\delta \in \mathbb{R}$ . We must have  $\lfloor x \rfloor \leq x$ , so  $\delta \geq 0$ . If  $\delta \geq 1$ , we would have  $x - (1 + \lfloor x \rfloor) = \delta - 1 \geq 0 \Rightarrow x \geq 1 + \lfloor x \rfloor$ , a contradiction. Hence,  $\delta < 1$ , and f(x) < 1 for all  $x \in \mathbb{R}$ , i.e., there is no  $x \in \mathbb{R}$  such that f(x) = 2.

Therefore, f is neither injective, nor surjective.

### (v) We examine

$$f: \mathbb{R} \setminus \{1\} \to \mathbb{R},$$
  
 $x \mapsto \frac{x+1}{x-1}.$ 

Let  $x_1, x_2 \in \mathbb{R} \setminus \{1\}$ . Thus,

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1 + 1}{x_1 - 1} = \frac{x_2 + 1}{x_2 - 1}$$

$$\Rightarrow (x_1 + 1)(x_2 - 1) = (x_1 - 1)(x_2 + 1)$$

$$\Rightarrow x_1 x_2 - x_1 + x_2 - 1 = x_1 x_2 + x_1 - x_2 - 1$$

$$\Rightarrow x_1 = x_2$$

$$(x \neq 1)$$

Hence, we have  $x_1 = x_2$ . Therefore, f is injective.

Note that for  $f(x) = 1 \in \mathbb{R}$ , we require x + 1 = x - 1, a contradiction. Hence, there is no  $x \in \mathbb{R} \setminus \{1\}$  such that f(x) = 1.

Therefore, f is injective, but not surjective.

## (vi) We examine

$$f: (-1,1) \to \mathbb{R},$$
  
 $x \mapsto \frac{x}{1-|x|}.$ 

Let  $x_1, x_2 \in (-1, 1)$ . Thus,

$$f(x_1) = f(x_2)$$

$$\Rightarrow \frac{x_1}{1 - |x_1|} = \frac{x_2}{1 - |x_2|}$$

$$\Rightarrow x_1(1 - |x_2|) = x_2(1 - |x_1|)$$

$$\Rightarrow x_1 - x_2 = x_1|x_2| - x_2|x_1|$$
(|x| \neq 1)

If either  $x_1$  or  $x_2$  is zero, we are forced to have  $x_1 = x_2 = 0$ .

Note that  $x_1$  and  $x_2$  cannot have opposite signs, since 1 - |x| > 0 for all  $x \in (-1, +1)$ .

We are left with  $x_1$  and  $x_2$  sharing the same sign. Thus, we have  $x_1/|x_1| = x_2/|x_2| = \pm 1$ , so  $x_1|x_2| = x_2|x_1|$ , and  $x_1 = x_2$ .

In all cases, we have  $x_1 = x_2$ . Therefore, f is injective.

We will now show that f is surjective. Let  $y = f(x) \in \mathbb{R}$ .

For y = 0, we have x = 0.

For y > 0, we have x > 0, so

$$y = \frac{x}{1-x} \Rightarrow x = \frac{y}{1+y} < 1$$
  $(1+y > y > 0)$ 

Clearly, for every y > 0, there exists  $x \in (0,1)$  such that f(x) = y. For y < 0, we have x < 0, so

$$y = \frac{x}{1+x} \Rightarrow x = \frac{y}{1-y} > -1$$
  $(0 > y > y - 1)$ 

Again, for every y < 0, there exists  $x \in (-1,0)$  such that f(x) = y. Therefore, f is both injective and surjective.