Aula 2 - Exercícios

Filipe Chagas

9 - Junho - 2022

1 Exercícios

1. Fulano está cursando uma disciplina com 4 provas. Cada nota de prova tem um peso específico sobre a média final, que deve ser maior ou igual a 6 para que Fulano seja aprovado.

Considerando que Fulano fez 3 provas e tem a seguinte tabela de notas:

Prova	Peso	Nota
P_1	1	4
P_2	2	5.5
P_3	2	6
P_4	3	

Qual é a nota mínima que Fulano deve ter na P_4 para ser aprovado?

2. (FGV-SP) Um professor de matemática aplica três provas em seu curso (P_1, P_2, P_3) , cada uma valendo de 0 a 10 pontos. A nota final do aluno é a média aritmética ponderada das três provas, sendo que o peso da prova P_n é igual a n^2 . Para ser aprovado na matéria, o aluno tem que ter nota final maior ou igual a 5.4.

De acordo com esse critério, um aluno será aprovado nessa disciplina, independentemente das notas tiradas nas duas primeiras provas, se tirar na P_3 , no mínimo, nota:

- (A) 7,6.
- (B) 7,9.
- (C) 8,2.
- (D) 8,4.
- (E) 8.6
 - **3.** Quanto é 32% de 63% de R\$ 1000 ?
 - **4.** Quanto é 25% de 50%?
 - **5.** Quanto é 125% de R\$ 1000?

2 Resoluções

2.1 Questão 1

A questão fala em pesos, então a média final \bar{P} é uma média ponderada das notas. Lembre-se da definição de média ponderada:

$$\bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$
(1)

Onde $x=[x_1,x_2,...,x_n]$ é a sequência da qual deseja-se calcular a média, $w=[w_1,w_2,...,w_n]$ é a sequência de pesos e \bar{x} é a média ponderada. No caso da questão 1, a sequência da qual deseja-se calcular a média é $P=[P_1,P_2,P_3,P_4]$, onde P_i é a i-ésima prova. A média ponderada \bar{P} é, então:

$$\bar{P} = \frac{w_1 P_1 + w_2 P_2 + w_3 P_3 + w_4 P_4}{w_1 + w_2 + w_3 + w_4} \tag{2}$$

Pelo enunciado, sabe-se que:

- Os pesos são $w_1 = 1$, $w_2 = 2$, $w_3 = 2$, $w_4 = 3$.
- As três primeiras notas são $P_1=4,\,P_2=5.5$ e $P_3=6.$
- Se $\bar{P} \geq 6$, então Fulano é aprovado.
- Deseja-se encontrar a menor nota P_4 com a qual Fulano é aprovado, então deseja-se encontrar uma nota P_4 tal que $\bar{P} \geq 6$.

Para encontrar uma nota P_4 tal que $\bar{P} \geq 6$, devemos substituir \bar{P} por sua definição:

$$\frac{\bar{P} \ge 6}{w_1 P_1 + w_2 P_2 + w_3 P_3 + w_4 P_4} \ge 6$$

$$\frac{w_1 P_1 + w_2 P_2 + w_3 P_3 + w_4 P_4}{w_1 + w_2 + w_3 + w_4} \ge 6$$
(3)

Substituindo todos os pesos e notas conhecidas pelos seus respectivos valores, temos:

$$\frac{(1\times4) + (2\times5.5) + (2\times6) + 3P_4}{1+2+2+3} \ge 6$$

$$\frac{27+3P_4}{8} \ge 6$$
(4)

Precisamos isolar P_4 nesta inequação. Primeiro, vamos tirar o denominador 8 do lado esquerdo da inequação. Para isto, vamos multiplicar os dois lados da inequação por 8.

$$\frac{27 + 3P_4}{8} \times 8 \ge 6 \times 8$$

$$27 + 3P_4 \ge 6 \times 8$$

$$27 + 3P_4 \ge 48$$
(5)

Agora, vamos tirar a parcela 27 do lado esquerdo da inequação. Para isto, vamos subtrair os dois lados da inequação por 27.

$$27 + 3P_4 - 27 \ge 48 - 27$$

$$3P_4 \ge 48 - 27$$

$$3P_4 \ge 21$$
(6)

Agora, vamos tirar o fator 3 do lado esquerdo da inequação. Para isto, vamos dividir os dois lados da inequação por 3.

$$\frac{3P_4}{3} \ge \frac{21}{3}
P_4 \ge \frac{21}{3}
P_4 \ge 7$$
(7)

Ou seja: a nota mínima de P_4 que Fulano precisa ter para ser aprovado é 7.

2.2 Questão 2

Novamente, a questão é sobre média ponderada.

De acordo com o enunciado:

- A sequência de pesos é $w=[n^2]_{n=1}^3=[1^2,2^2,3^4]$
- A sequência da qual deseja-se calcular a média é $P = [P_n]_{n=1}^3 = [P_1, P_2, P_3]$
- Se $\bar{P} \geq 5.4$, então o aluno é aprovado.

A definição de \bar{P} é:

$$\bar{P} = \frac{1^2 P_1 + 2^2 P_2 + 3^2 P_3}{1^2 + 2^2 + 3^2} = \frac{P_1 + 4P_2 + 9P_3}{14} \tag{8}$$

Precisamos encontrar uma nota P_3 que garanta a aprovação do aluno independentemente das notas P_1 e P_2 , ou seja, precisamos encontrar um P_3 tal que $\bar{P} \geq 5.4$ para qualquer $0 \leq P_1 \leq 10$ e qualquer $0 \leq P_2 \leq 10$. Para encontrar um P_3 que satisfaça estas condições, vamos considerar o pior caso, que é quando $P_1 = 0$ e $P_2 = 0$. A definição de \bar{P} neste caso é:

$$\bar{P} = \frac{0 + (4 \times 0) + 9P_3}{14} = \frac{9P_3}{14} \tag{9}$$

Para encontrar a nota P_3 mínima que satisfaça $\bar{P} \geq 5.4$ nestas condições, precisamos isolar P_4 na seguinte inequação:

$$\frac{9P_3}{14} \ge 5.4\tag{10}$$

Primeiro, vamos multiplicar ambos os lados da inequação por 14.

$$\frac{9P_3}{14} \times 14 \ge 5.4 \times 14$$

$$9P_3 \ge 5.4 \times 14$$

$$9P_3 \ge 75.6$$
(11)

Agora, vamos dividir ambos os lados da inequação por 9.

$$\frac{9P_3}{9} \ge \frac{75.6}{9}
P_3 \ge \frac{75.6}{9}
P_3 \ge 8.4$$
(12)

Resposta: se o aluno tiver nota 8.4 na P_3 , ele é aprovado independentemente das notas P_1 e P_2 .

2.3 Questão 3

"Porcento" significa "dividido por 100". x% equivale a x/100.

32% de 63% de R\$ 1000 equivale a:

$$32\% \times 63\% \times 1000 = \frac{32}{100} \times \frac{63}{100} \times 1000 = \frac{32 \times 63 \times 1000}{100 \times 100} = \frac{2016000}{10000} = 201.6 \tag{13}$$

Resposta: R\$ 201,60

2.4 Questão 4

25% de 50% equivale a:

$$25\% \times 50\% = \frac{25}{100} \times \frac{50}{100} = \frac{1250}{10000} = \frac{12.5}{100} = 12.5\%$$
 (14)

2.5 Questão 5

$$125\% \times 1000 = \frac{125}{100}1000 = 125 \times 10 = 1250 \tag{15}$$

Resposta: R\$ 1250.