Algoritmos y estructuras de datos III **Trabajo Práctico Nº1**

Carla Livorno424/08 carlalivorno@hotmail.com Completen!!!

Abril 2010

${\bf \acute{I}ndice}$

In	troducción	2
1.	Problema 1	2
	1.1. Explicación	2
	1.1.1. Análisis de complejidad	2
	1.2. Detalles de la implementación	
	1.3. Pruebas y Resultados	
2.	Problema 2	5
	2.1. Explicación	5
	2.1.1. Optimizaciones	5
	2.1.2. Análisis de complejidad	6
	2.2. Detalles de la implementación	6
	2.3. Pruebas y Resultados	6
3.	Problema 3	7
	3.1. Explicación	7
	3.1.1. Análisis de complejidad	7
	3.2. Detalles de la implementación	
	3.3. Pruebas y Resultados	9
4.	Compilación y ejecución de los programas	10
5.	Conclusiones	10

Introducción

Este trabajo tiene como objetivo la aplicación de diferentes técnicas algorítmicas para la resolución de tres problemas particulares, el cálculo de complejidad teórica en el peor caso de cada algoritmo implementado, y la posterior verificación empírica.

El lenguaje utilizado para implementar los algoritmos de todos los problemas fue C/C++

1. Problema 1

Dados $b, n \in \mathbb{N}$ calcular $b^n \mod n$

1.1. Explicación

Para la resolución del problema, usamos la técnica de *Divide & Conquer* para tratar de minimizar la cantidad de multiplicaciones.

1.1.1. Análisis de complejidad

Esta vez, elegimos un modelo logarítmico para analizar el algoritmo, ya que las operaciones que aplicamos, en teoría, dependen del logaritmo del número en cuestión, o dicho de otra forma, del tamaño de la entrada. No obstante, en los resultados muchas de ellas tienen costo uniforme por trabajar con números de tamaño acotado (unsigned long long int) para simplificar la implementación.

```
while m > 0
                                                        O(\log_2^3 n)
             if m es impar
                                                         O(\log_2 m)
                                                        O(\log_2^2(n))
                   tmp \leftarrow tmp * b
                                                        O(\log_2^2(n))
                   tmp \leftarrow tmp \ mod \ n
                                                        O(\log_2 m)
O(\log_2^2 n)
             m \leftarrow \frac{m}{2} \\ b \leftarrow b^2
                                                        O(\log_2^2 n)
             b \leftarrow b \bmod n
       return tmp
       1 iteración
                        m = n
      2 iteración
      3 iteración
      4 iteración
                       m = \frac{n}{2^3}
      k iteración m = \frac{2^n}{2^{k-1}} = 1
     Como el algoritmo termina cuando m=1 entonces,
\frac{n}{2^{k-1}} = 1
\bar{n} = 2^{k-1}
\log_2 n = \log_2 2^{k-1}
\log_2 n = k - 1 \Rightarrow k = \log_2(n) + 1
```

Sea m=n

Entonces, el algoritmo hace $\log_2(n) + 1$ iteraciones, cada una con una cantidad constante de operaciones. Por lo tanto, la cantidad de operaciones que hace el algoritmo es del orden de $\log_2 n$ y $O(\log n) \subset O(n)$.

Complejidad en el modelo logarítimico

La complejidad del algoritmo en el modelo logarítmico es:

```
(1) O(\log_2(n) * (\log(m) * \log(2) + \log(tmp) * \log(b) + \log(tmp) * \log(n) + \log(m) * \log(2) + \log^2(b) + \log(b) * \log(n)))
```

Como $m \leq n$ y la función logaritmo es estrictamente creciente, $\log m \leq \log n$. De la misma manera $\log b$ y $\log tmp$ están acotados por $\log n$. Por lo tanto.

```
 \begin{aligned} &(1) \leq \mathrm{O}(\log(n) * (\log(n) + \log^2(n) + \log^2(n) + \log(n) + \log^2(n) + \log^2(n))) \\ &= \mathrm{O}(\log(n) * (2\log(n) + 4\log^2(n))) = \mathrm{O}(2\log^2 n + 4\log^3 n) \\ &\quad \text{Por definición, } \mathrm{O}(2\log^2 n + 4\log^3 n) = \mathrm{O}(\max(2\log^2 n, 4\log^3 n)) = \mathrm{O}(\log^3 n). \end{aligned}
```

1.2. Detalles de la implementación

La siguiente tabla representa la correspondencia entre las variables de entrada $(b \ y \ n)$ en cada iteración del algoritmo implementado:

iteración	1	2	3	 k
n	\overline{n}	$\frac{n}{2}$	$\frac{n}{2^2}$	 $\frac{n}{2^{k-1}}$
b	b	b^2	b^4	 $b^{2^{k-1}}$

Sean

$$A_k = \frac{n}{2^{k-1}}$$
 bla bla bla, y

 $A_k = \frac{n}{2^{k-1}}$ bla bla bla, y $Z_k = impar(A_k) * b^{2^{k-1}}$ la sucesión que tiene los valores de b correspondientes a los n imp entonces el cálculo hecho por el algoritmo está dado por

$$\prod_{i=1}^k Z_i = b^n$$

Además, luego de cada multiplicación toma el módulo ya que

$$b^{k} * b^{n-k} \mod n = (b^{k} \mod n) * (b^{n-k} \mod n) \ \forall \ k \leq n^{[1]}$$

De esta manera, incluso si el cálculo de b^n es un número tan grande que no entra en el tamaño de la variable, se va a poder realizar sin problemas (suponiendo que $(n-1)^2$ entra en una variable).

[1] impar se define como:

$$impar(x) = \begin{cases} 1 & \text{si } x \text{ es impar} \\ 0 & \text{sino} \end{cases}$$

[2] Por propiedades del módulo $x * y \mod z = (x \mod z) * (y \mod z)$

Pruebas y Resultados 1.3.

2. Problema 2

Se tiene n chicas cada de estas tiene k amigas, con k < n. Decidir si se puede formar una ronda que las contega a todas donde cada una de las chicas este de la mano de dos de sus amigas.

2.1. Explicación

El Algotirmo busca todas las formas de armar la ronda utilizando la técnica de backtracking. Para esto, el algoritmo recorre la matriz de relaciones uniendo a las chicas hasta que:

- forma la ronda (encuentra una combinación posible), o
- no puede armar la ronda de esa forma, y

saca la última chica que puso y vuelve a intentar formar la ronda poniendo otra amiga. Termina cuando encuentra una forma de armar la ronda o cuando prueba todas las posibles formas de armarla.

Además, el algoritmo utiliza algunas propiedades de la ronda para ser más eficiente:

2.1.1. Optimizaciones

- Verifica que cada chica tenga al menos dos amigas, de no ser asi podemos afirmar que no se puede formar la ronda ya que cada chica debe estar tomada de la mano de dos de sus amigas.
- A la vez, comprueba si todas son amigas de todas. Si eso sucede podemos afirmar que la ronda existe.
- Por otro lado, detecta si existen grupos independientes, es decir, sin conexiones entre si. Si esto ocurre podemos afirmar que no se puede armar la ronda ya que esta debe incluirlas a todas.

2.1.2. Análisis de complejidad

2.2. Detalles de la implementación

```
ronda_de_amigas(relaciones)
    if no_todas_tienen_dos_amigas(relaciones) ó hay_más_de_un_grupo(relaciones)
        return false
    if todas_amigas_de_todas(relaciones)
        return true
    backtracking( relaciones )
```

Elegimos arbitrariamente empezar la ronda por la chica *uno* (la primera segun el archivo de entrada) ya que a los efectos de verificar si es posible armar la ronda esta elección no tiene relevancia alguna.

El algoritmo de backtracking recorre las chicas, para cada una de estas chequea si es amiga de la última chica que se agrego a la ronda y si todavia no pertenece a la misma. Si es asi la agrega y repite este procedimiento (avanza). Sino significa que recorrió todas las chicas y ninguna cumple ambas condiciones por lo que comienza a retroceder.

Cuando retrocede, saca la última chica que agrego a la ronda (la cual identificaremos con la letra a, además llamamos b a la actual última chica en la ronda (la anterior a la que sacó)) y prosigue la busqueda desde la chica a de la amiga de b que ocupara la posición recientemente desocupada en la ronda. Si no hay una chica que puede ocuparla, es decir, b no tiene mas amigas el algoritmo sigue retrocediendo.

Avanzando, si llega a meter a todas las chicas a la ronda y la primer chica es amiga de la última, encontró una forma de armar la ronda, termina y devuelve verdadero.

Retrocediendo, si llega a la primer chica, termina y devuelve falso.

2.3. Pruebas y Resultados

3. Problema 3

Dada una lista de ingresos y otra de egresos que contienen los horarios de ingreso y egreso de cada uno de los programadores de una empresa respectivamente, determinar la mayor cantidad de programadores que estan simultáneamente dentro de la empresa.

3.1. Explicación

Para cada instancia tenemos una lista que contiene para cada programador su horario de ingreso a la empresa y otra con su horario de egreso. Además, tenemos guardado en cada momento la cantidad máxima de programadores en simultáneo.

Dado que ambas listas se encuentran ordenadas, nuestro algoritmo las recorre decidiendo a cada momento si se produce un ingreso o un egreso, es decir, si el horario que sigue en la lista de ingresos es anterior a la de egresos implica que hubo un ingreso, en caso contrario un egreso.

Cuando una persona ingresa a la empresa se incrementa el contador de la cantidad de programadores en simultáneo en el horario actual. Así, cuando se produce un egreso se compara si la cantidad de programadores dentro de la empresa previo a dicho egreso es mayor a la máxima cantidad de programadores en simultáneo hasta el momento, de ser así, actualizamos el máximo.

Luego se descuenta el recientemente egresado del contador "cantidad de programadores en simultáneo".

Este procedimiento se repite hasta haber visto todos los ingresos, lo que nos garantiza tener el máximo correspondiente, ya que a partir de ese momento sólo se producirían egresos.

3.1.1. Análisis de complejidad

Elegimos el modelo uniforme para analizar la complejidad de este algoritmo porque el tamaño de los elementos es acotado y por lo tanto todas las operaciones elementales son de tiempo constante.

Sea n la cantidad de programadores.

```
\begin{aligned} & programadores\_en\_simultaneo(ingresos, egresos) \\ & max, tmp, j, k \leftarrow 0 \\ & \textbf{while } (j < n) \\ & \textbf{if } (ingresos[j] \leq egresos[k]) \\ & tmp \leftarrow tmp + 1 \\ & j \leftarrow j + 1 \\ & \textbf{else} \\ & \textbf{if } (tmp > max) \\ & max \leftarrow tmp \\ & tmp \leftarrow tmp - 1 \\ & k \leftarrow k + 1 \\ & \textbf{if } (tmp > max) \\ & max \leftarrow tmp \\ & return \ max \end{aligned}
```

Cada programador tiene un ingreso y un egreso, por lo tanto la lista de ingresos y la lista de egresos tienen longitud n.

El algoritmo en todos los casos recorre completamente la lista de ingresos, por lo que el peor caso es cuando el último ingreso y el último egreso corresponden al mismo programador, ya que para registrar éste último ingreso, tambien tuvo que recorrer toda la lista de egresos. Por este motivo, podemos inferir que a lo sumo se realizan 2n-1 iteraciones. En cada una de estas iteraciones tenemos un costo constante de operaciones, que no modifican la complejidad en el análisis asintótico. La complejidad algorítmica entonces, es O(n).

3.2. Detalles de la implementación

Guardamos los horarios de ingreso de todos los programadores (de la misma forma que estan en el archivo de entrada, es decir, en orden creciente) en un arreglo de strings (los cuales representan un horario en formato "HH:MM:SS") de tamaño n, donde n es la cantidad de programadores. Además guardamos otro arreglo del mismo tamaño con los horarios de egreso.

A medida que vamos recorriendo los arreglos ingresos y egresos necesitamos decidir si el horario de ingreso del programador j es anterior o posterior al horario de egreso del programador i, esto lo hacemos comparando

los strings por menor o igual (que el horario de ingreso del programador j sea el mismo que el horario de egreso del programador i significa que ambos estuvieron en simultáneo en la empresa jústamente en ese horario ya que se considera que un programador permanece dentro de la empresa desde su horario de ingreso hasta su horario de egreso, incluyendo ambos extremos). Si la comparación resulta verdadera significa que el programador j ingresa a la empresa por lo que incrementamos el contador de programadores en simultáneo en ese horario. En caso contrario lo decrementamos ya que el programador i egresa. Antes de decrementar dicho contador verificamos si la cantidad de programadores en simultáneo previo al egreso de i es mayor a max (máxima cantidad de programadores en simultáneo calculada hasta el momento) y de ser necesario actualizamos max.

Una vez que terminamos de recorrer la lista de ingresos, actualizamos \max ya que desde el último egreso visto se pueden haber producido nuevos ingresos. Una vez hecho esto tenemos determinada la mayor cantidad de programadores que estan simultáneamente dentro de la empresa.

3.3. Pruebas y Resultados

4. Compilación y ejecución de los programas

Para compilar los programas se puede usar el comando make (Requiere el compilador g++). Se pueden correr los programas de cada ejercicio ejecutando ./bn_mod_n, ./ronda_de_amigas y ./programadores respectivamente.

Los programas leen la entrada de stdin y escriben la respuesta en stdout. Para leer la entrada de un archivo Tp1EjX.in y escribir la respuesta en un archivo Tp1EjX.out ses puede usar:

./(ejecutable) <Tp1EjX.in >Tp1EjX.out

Para medir los tiempos de ejecución: ./(ejecutable) time

Para contar la cantidad de operaciones: ./(ejecutable) count. Devuelve la cantidad de operaciones de cada instancia.

5. Conclusiones