

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)	
Yasutomo ISHII et al.)	
Application No.: <u>10/716,406</u> /07/6409	7)	Group Art Unit: Unassigned
Filed: November 20, 2003)	Examiner: Unassigned
•		

For: CHARGING DEVICE AND IMAGE FORMING APPARATUS

Commissioner for Patents Arlington, VA 22202

CLAIM FOR PRIORITY

Under the provisions of 35 U.S.C. §119, Applicants hereby claim the benefit of the filing date of **Japanese** Patent Application Nos. 2003-177121 filed June 20, 2003 and 2002-177122 filed June 20, 2003 for the above-identified United States Patent Application.

In support of Applicants claim for priority, filed herewith are two certified copies of the Japanese applications.

Respectfully submitted,

MORGAN, LEWIS & BOCKIUS LLP

Robert J. Goodell Reg. No. 41,040

Dated: February 2, 2004

MORGAN, LEWIS & BOCKIUS LLP

1111 Pennsylvania Avenue, N.W. Washington, D.C. 20004

(202)739-3000

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 6月20日

出 願 番 号 Application Number:

特願2003-177121

[ST. 10/C]:

[JP2003-177121]

出 願 人
Applicant(s):

富士ゼロックス株式会社

2004年 1月 9日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】 特許願

【整理番号】 FE03-00273

【提出日】 平成15年 6月20日

【あて先】 特許庁長官殿

【国際特許分類】 G03G 15/02

【発明者】

【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株

式会社内

【氏名】 田中 功也

【発明者】

【住所又は居所】 神奈川県海老名市本郷2274番地 富士ゼロックス株

式会社内

【氏名】 石井 康友

【特許出願人】

【識別番号】 000005496

【氏名又は名称】 富士ゼロックス株式会社

【代理人】

【識別番号】 100094330

【弁理士】

【氏名又は名称】 山田 正紀

【選任した代理人】

【識別番号】 100079175

【弁理士】

【氏名又は名称】 小杉 佳男

【手数料の表示】

【予納台帳番号】 017961

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9507079

【包括委任状番号】 9507078

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 帯電装置および画像形成装置

【特許請求の範囲】

【請求項1】 所定の方向に移動しながら帯電を受ける被帯電体を帯電する 帯電部材と、該帯電部材に該被帯電体を帯電するための電力を供給する電源と、 該帯電部材により帯電された被帯電体に直接もしくは所定の中間媒体を介して接 触し、該被帯電体上の電荷に起因して流れる電流を測定する電流測定手段と、該 電流測定手段により測定された電流に基づいて該電源を制御する電源制御部とを 備えた帯電装置において、

前記電源が、前記帯電部材に直流電圧に交番電圧を重畳した電圧波形の電力を 供給するものであり、

前記被帯電体は、前記交番電圧のピーク間電圧が増大するほど、所定のピーク間関値電圧までは略直線的に帯電電圧が上昇するとともに、該交番電圧のピーク間電圧が該所定のピーク間閾値電圧以上の場合は略一定の帯電電圧となる特性を有するものであって、

前記電源制御部は、前記電流測定手段により測定された電流に基づいて前記ピーク間閾値電圧を検出し、該ピーク間閾値電圧に応じて前記電源の、前記直流電圧に重畳させる交番電圧を制御するものであることを特徴とする帯電装置。

【請求項2】 前記電流制御部は、前記電源に、所定の直流電圧に、前記ピーク間閾値電圧未満の相互に異なる少なくとも2つのピーク間電圧の2つの交番電圧を順次重畳し、前記電流測定手段により測定された、各交番電圧を重畳したときの各電流値を取得するとともに、該電源に、前記所定の直流電圧に、前記ピーク間閾値電圧を超える少なくとも1つのピーク間電圧の交番電圧を重畳して前記電流測定手段により測定された電流値を取得して、これら少なくとも3つの電流値に基づいて前記ピーク間閾値電圧を求めるものであることを特徴とする請求項1記載の帯電装置。

【請求項3】 前記電源制御部は、前記電源に、所定の直流電圧に、前記ピーク間閾値電圧を超えたピーク間電圧の交番電圧を印加して前記電流測定手段により測定された電流値を取得する処理を、該ピーク間電圧を徐々に低下させなが

ら行うことにより該ピーク間閾値電圧を求めるものであることを特徴とする請求 項1記載の帯電装置。

【請求項4】 前記電源制御部は、前記電源に、所定の直流電圧に、前記ピーク間閾値電圧未満のピーク間電圧の交番電圧を印加して前記電流測定手段により測定された電流値を取得する処理を、該ピーク間電圧を徐々に上昇させながら行うことにより該ピーク間閾値電圧を求めるものであることを特徴とする請求項1記載の帯電装置。

【請求項5】 所定の移動方向に移動する電荷受容体上に電荷を与え該電荷 受容体上の電荷によってトナーの移動を制御するプロセスを含む画像形成プロセ スを経て最終的に記録媒体上にトナー像を転写および定着することにより該記録 媒体上に定着トナー像からなる画像を形成する画像形成装置において、

前記電荷受容体に電荷を付与する帯電部材と、該帯電部材に直流電圧に交番電圧を重畳した電圧波形の電力を供給する電源と、該帯電部材により帯電された該電荷受容体に直接もしくは所定の中間媒体を介して接触し、該電荷受容体の電荷に起因して流れる電流を測定する電流測定手段と、該電流測定手段により測定された電流に基づいて該電源を制御する電源制御部とを有する帯電装置を備え、

前記電荷受容体が、前記交番電圧のピーク間電圧が増大するほど、所定のピーク間閾値電圧までは略直線的に帯電電圧が上昇するとともに、該交番電圧のピーク間電圧が該所定のピーク間閾値電圧以上の場合は略一定の帯電電圧となる特性を有するものであって、

前記電源制御部は、前記電流測定手段により測定された電流に基づいて前記ピーク間閾値電圧を検出し、該ピーク間閾値電圧に応じて前記電源の、前記直流電圧に重畳させる交番電圧を制御するものであることを特徴とする画像形成装置。

【請求項6】 前記電流測定手段が、連続する複数の画像形成プロセス中の1回の画像形成プロセスと次の1回の画像形成プロセスの間に、前記帯電部材により帯電された前記電荷受容体の電荷に起因して流れる電流を測定するものであることを特徴とする請求項5記載の画像形成装置。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、所定の方向に移動しながら帯電を受ける被帯電体を帯電する帯電部材と、その帯電部材にその被帯電体を帯電するための電力を供給する電源と、その帯電部材により帯電された被帯電体に直接もしくは所定の中間媒体を介して接触し、その被帯電体上の電荷に起因して流れる電流を測定する電流測定手段と、その電流測定手段により測定された電流に基づいてその電源を制御する電源制御部とを備えた帯電装置、およびその帯電装置を備えた画像形成装置に関する。

[0002]

【従来の技術】

従来、電子写真プロセスを応用した複写機やプリンタなどの画像形成装置では、回転する感光体表面を帯電装置により帯電させ、像露光することにより、その感光体表面に静電潜像を形成し、現像剤の付着によりその静電潜像を可視化して現像像を得、その現像像を記録紙などの記録媒体に転写し、定着するというプロセスにより、記録媒体上に画像を形成する。このような画像形成装置で用いられる帯電装置としては、接触帯電方式と、非接触帯電方式とがある。接触帯電方式は、半導電性を有する導電性部材を帯電部材として被帯電体である感光体表面に接触するように配置し、その帯電部材に電圧を印加して接触部近傍の微小空隙で放電を発生させることにより帯電を行うものである。非接触帯電方式は、半導電性を有する導電性部材を帯電部材として被帯電体である感光体表面に近接・隔離させて配置し、その帯電部材に電圧を印加してコロナ放電を発生させることにより帯電を行うものである。

[0003]

いずれの帯電方式においても、良好な画像を得るためには、感光体表面を均一な電位に帯電することが必要であり、印加電圧に起因する帯電不均一を防止するため、特に、接触帯電方式では、帯電部材に、直流成分に交流成分を重畳させた帯電バイアスを印加することが有効である。ところが、交流成分を重畳させた直流成分の電圧を印加すると、交流成分を重畳させない直流成分の電圧を印加するよりも、感光体表面へのイオン衝突回数が増加し、感光体の劣化が早くなるという問題がある。また、感光体表面に付着する放電生成物の量も多くなるという問

題もある。感光体表面に付着した放電生成物は、像露光を妨げ、画質欠陥(いわゆる白抜け)を生じさせる。

[0004]

これらの問題は、直流成分に重畳させる交流成分のピーク間電圧Vppが大きくなるほど顕在化してくることが知られている。一方、このピーク間電圧Vppが小さすぎると、不均一な放電になってしまう。このため、均一な放電が行われる範囲での最低電圧(以下、放電開始電圧Vthと称する。)をピーク間電圧Vppとする交流成分を重畳させることが好ましいが、この放電開始電圧Vthは、温度や湿度の環境変化や、汚れによる帯電部材の抵抗変化や、長期間の使用による感光体表面の状態変化に左右されやすく、バラつきやすい。したがって、ピーク間電圧Vppを設定する際には十分なマージンをとる必要があり、実際には、ピーク間電圧Vppは放電開始電圧Vthよりもかなり高めに設定され、帯電部材と感光体表面との間には過剰放電が生じている。このため、感光体の劣化が早まるといった問題や放電生成物による画質欠陥の発生といった問題が顕在化してきている。

[0005]

そこで、過剰放電の発生を少しでも抑える技術の一つとして、直流電圧に交流電圧を重畳させた帯電バイアスを定電流制御のもと印加する技術(例えば、特許文献 1 参照。)が知られているが、この技術では、放電開始電圧Vthのバラつきを緩和させるにとどまり抜本的な解決には至っていない。また、この特許文献1に記載された技術から1歩進んで、帯電部材に帯電バイアスを印加する際に、交流成分の電流値を測定し、その測定した交流成分の電流値の僅かな変動から過剰放電を見つけ、ピーク間電圧Vppの設定を下げようとする技術も提案されている(特許文献 2 参照。)。しかしながら、この特許文献 2 に記載された技術では、電流値の僅かな変動を捉えることが必要であり、この電流値の測定は困難を極め、少しでも電流値の変動を見落とすと上記の問題が生じてしまう。さらに、感光体の表面電位を直接測定し、ピーク間電圧Vppの設定を下げようとする技術も提案されている(特許文献 3 参照。)が、感光体の表面電位を直接測定するための装置の小型化は難しく、コンパクト化が求められている画像形成装置にお

いては採用しがたい。

[0006]

【特許文献1】

特開平1-267667号公報

【特許文献2】

特開平10-232534号公報

【特許文献3】

特開平9-185219号公報

[0007]

【発明が解決しようとする課題】

本発明は、上記事情に鑑み、放電による被帯電体の劣化や被帯電体への放電生成物の付着を低減することができる帯電装置、およびその帯電装置を備えた画像 形成装置を提供することを目的とする。

[0008]

【課題を解決するための手段】

上記目的を達成する本発明のうちの帯電装置は、所定の方向に移動しながら帯電を受ける被帯電体を帯電する帯電部材と、その帯電部材にその被帯電体を帯電するための電力を供給する電源と、その帯電部材により帯電された被帯電体に直接もしくは所定の中間媒体を介して接触し、その被帯電体上の電荷に起因して流れる電流を測定する電流測定手段と、その電流測定手段により測定された電流に基づいてその電源を制御する電源制御部とを備えた帯電装置において、

上記電源が、上記帯電部材に直流電圧に交番電圧を重畳した電圧波形の電力を 供給するものであり、

上記被帯電体は、上記交番電圧のピーク間電圧が増大するほど、所定のピーク間閾値電圧までは略直線的に帯電電圧が上昇するとともに、その交番電圧のピーク間電圧がその所定のピーク間閾値電圧以上の場合は略一定の帯電電圧となる特性を有するものであって、

上記電源制御部は、上記電流測定手段により測定された電流に基づいて上記ピーク間閾値電圧を検出し、そのピーク間閾値電圧に応じて上記電源の、上記直流

電圧に重畳させる交番電圧を制御するものであることを特徴とする。

[0009]

本発明の帯電装置によれば、まず、上記ピーク間閾値電圧という安定した均一 な放電が行われるギリギリの値を検出し、次いで、その検出したピーク間閾値電 圧に応じて上記電源の、上記直流電圧に重畳させる交番電圧を制御するため、上 記ピーク間閾値電圧を固定的に扱う装置に比べ、上記交番電圧の制御時にピーク 間閾値電圧に付与するマージンが少なくてすみ、結果として、上記交番電圧のピ ーク間電圧が低くおさえられる。このため、放電による被帯電体の劣化や被帯電 体への放電生成物の付着を低減することができる。

$[0\ 0\ 1\ 0\]$

また、本発明の帯電装置において、上記電流制御部は、上記電源に、所定の直 流電圧に、上記ピーク間閾値電圧未満の相互に異なる少なくとも2つのピーク間 電圧の2つの交番電圧を順次重畳し、上記電流測定手段により測定された、各交 番電圧を重畳したときの各電流値を取得するとともに、その電源に、上記所定の 直流電圧に、上記ピーク間閾値電圧を超える少なくとも1つのピーク間電圧の交 番電圧を重畳して上記電流測定手段により測定された電流値を取得して、これら 少なくとも3つの電流値に基づいて上記ピーク間閾値電圧を求めるものであるこ とが好ましい。

$[0\ 0\ 1\ 1]$

こうすることで、短い時間で上記ピーク間閾値電圧を検出することができる。

[0012]

また、本発明の帯電装置において、上記電源制御部は、上記電源に、所定の直 流電圧に、上記ピーク間閾値電圧を超えたピーク間電圧の交番電圧を印加して上 記電流測定手段により測定された電流値を取得する処理を、そのピーク間電圧を 徐々に低下させながら行うことによりそのピーク間閾値電圧を求めるものであっ てもよいし、あるいは

上記電源制御部は、上記電源に、所定の直流電圧に、上記ピーク間閾値電圧未 満のピーク間電圧の交番電圧を印加して上記電流測定手段により測定された電流 値を取得する処理を、そのピーク間電圧を徐々に上昇させながら行うことにより

そのピーク間閾値電圧を求めるものであってもよい。

[0013]

上記目的を達成する本発明のうちの画像形成装置は、所定の移動方向に移動する電荷受容体上に電荷を与えその電荷受容体上の電荷によってトナーの移動を制御するプロセスを含む画像形成プロセスを経て最終的に記録媒体上にトナー像を転写および定着することによりその記録媒体上に定着トナー像からなる画像を形成する画像形成装置において、

上記電荷受容体に電荷を付与する帯電部材と、その帯電部材に直流電圧に交番電圧を重畳した電圧波形の電力を供給する電源と、その帯電部材により帯電されたその電荷受容体に直接もしくは所定の中間媒体を介して接触し、その電荷受容体の電荷に起因して流れる電流を測定する電流測定手段と、その電流測定手段により測定された電流に基づいてその電源を制御する電源制御部とを有する帯電装置を備え、

上記電荷受容体が、上記交番電圧のピーク間電圧が増大するほど、所定のピーク間閾値電圧までは略直線的に帯電電圧が上昇するとともに、その交番電圧のピーク間電圧がその所定のピーク間閾値電圧以上の場合は略一定の帯電電圧となる特性を有するものであって、

上記電源制御部は、上記電流測定手段により測定された電流に基づいて上記ピーク間閾値電圧を検出し、そのピーク間閾値電圧に応じて上記電源の、上記直流電圧に重畳させる交番電圧を制御するものであることを特徴とする。

[0014]

また、本発明の画像形成装置は、上記電流測定手段が、連続する複数の画像形成プロセス中の1回の画像形成プロセスと次の1回の画像形成プロセスの間に、上記帯電部材により帯電された上記電荷受容体の電荷に起因して流れる電流を測定するものであってもよい。

[0015]

このように、上記電流測定手段が、連続プリント(ジョブ)の合間、すなわち 画像が異なるページとページの合間に上記電流を測定することで、ジョブエンド やジョブスタートでの上記電流の測定が省け、次のジョブスタートを即座に開始

することができる。

[0016]

【発明の実施の形態】

以下、本発明の実施形態について説明する。

 $[0\ 0\ 1\ 7]$

図1は、本発明の一実施形態である画像形成装置の概略構成を示す図である。

 $[0\ 0\ 1\ 8]$

本実施形態の画像形成装置1は、フルカラータンデム方式を採用した画像形成装置であって、イエロー、マゼンタ、シアンおよびブラックの4色のトナーそれぞれに対応した、4つのトナー像形成ユニットを用いて、中間転写ベルトの送りに同期させて各トナー像形成ユニットでそれぞれの色のトナー像を形成し、それらトナー像を中間媒体としての中間転写ベルト上に重ね合わせ(1次転写)、中間転写ベルト上に重ね合わせたトナー像を記録媒体である用紙に転写(2次転写)し、定着するものである。

[0019]

図1に示す画像形成装置1は、4つのトナー像形成ユニット10、4つの1次 転写ロール20、3つの支持ロール31に支持されて反時計回りの方向に循環移 動する半導電性の中間転写ベルト30、2次転写を行う一括転写装置40、およ び未定着トナー像を用紙に定着させる定着装置50を備えている。

[0020]

4つのトナー像形成ユニット10は、中間転写ベルト30の循環方向に並んで配置されており、各トナー像形成ユニット10には、時計回りに回転する感光体ドラム11が配備されている。各感光体ドラム11の表面は、中間転写ベルト30に接している。1次転写ロール20は、中間転写ベルト30を挟んで感光体ドラム11と対向する位置に配備されており、感光体ドラム11と中間転写ベルト30とが接する部分が1次転写位置である。

 $[0\ 0\ 2\ 1]$

また、各トナー像形成ユニット10は、本発明のうちの帯電装置の一実施形態 に相当する接触型帯電装置13を備えている他、現像装置12、およびクリーニ ングブラシ14も備えている。現像装置12は、感光体ドラム11の周囲の、1次転写位置の上流側に配備されている。接触型帯電装置13は、その現像装置12よりもさらに上流側に配備されている。さらに、クリーニングブラシ14は、感光体ドラム11の周囲の、1次転写位置の下流側に配備されている。

[0022]

感光体ドラム11の表面は、接触型帯電装置13によって一様に帯電される。接触型帯電装置13により一様に帯電した感光体ドラム11の表面にはレーザ光 Lが照射され感光体ドラム11表面に静電潜像が形成される。現像装置12は、二成分現像方式を採用したものであり、この現像装置12には、磁性キャリアと 所定の基準バイアスに対して負側に帯電した非磁性トナーが収容されている。また、図1に示す現像装置12にはマグロール121が配備されている。マグロール121の周面には、トナーが付着した磁性キャリアがブラシ状となった現像剤層(いわゆる磁気ブラシ)が形成され、非磁性トナーは、この現像剤層から静電潜像を担持した感光体ドラム11の表面に移行する。静電潜像は非磁性トナーの移行を受けて現像されトナー像となる。

[0023]

1次転写ロール20には、トナーの極性とは逆極性の転写バイアス(ここでは 所定の基準バイアスに対する正側の極性のバアイス)が印加されており、感光体 ドラム11の表面に形成されたトナー像は、感光体ドラム表面から中間転写ベル ト30表面に移行する。各トナー像形成ユニット10で形成されたトナー像は、 中間転写ベルト30上で1つに重なり合ったトナー像となる。

[0024]

また、一括転写装置 4 0 は、中間転写ベルト 3 0 のトナー像担持面側に圧接配置された二次転写ロール 4 1 と、中間転写ベルト 3 0 の裏面側に配置されたバックアップロール 4 2 を備えており、これら 2 つのロール 4 1, 4 2 で中間転写ベルト 3 0 を挟みこんでいる。これら 2 つのロール 4 1, 4 2 間が二次転写位置になる。

[0025]

さらに、図1に示すが画像形成装置1には、用紙トレイ60が配備されており

、用紙トレイ60に収容された用紙Pは、フィードロール61によって用紙トレイ60から送り出され、所定のタイミングで二次転写位置へと送り込まれる。二次転写位置では、中間転写ベルト30上で1つに重なり合ったトナー像が、送り込まれてきた用紙P上に転写される。定着装置50は、加熱熱機構511を有する定着ロール51、および定着ロール51に対向するように設けられた圧力ロール52を備えている。互いに対向する定着ロール51と圧力ロール52との間には、2次転写位置を通過した用紙Pが搬送されてくる。用紙P上のトナー像を構成するトナーは、定着ロール51の加熱機構511により溶融され用紙Pに定着する。

[0026]

また、一括転写装置40の下流側には、中間転写ベルト30上の残留トナーを除去するベルトクリーナ70が設けられている。この画像形成装置1では、感光体ドラム11に当接したクリーニングブレードを省略した、いわゆるクリーナレスシステムが採用されている。すなわち、図1に示すクリーニングブラシ14には、1次転写位置において中間転写ベルト30に転写されず、感光体ドラム11に残留したトナーを回収する回収バイアス(ここでは所定の基準バイアスに対する正側の極性のバアイス)と、回収したトナーを感光体ドラム11に吐き出させる吐出バイアス(ここでは所定の基準バイアスに対する負側の極性のバアイス)とが印加される。クリーニングブラシ14は、画像形成時に回収バイアスが印加されることで残留トナーを一旦回収・保持し、画像形成の合間に吐出バイアスが印加されることで回収・保持していたトナーを感光体ドラム11に吐き出す。感光体ドラム11上に吐き出されたトナーは1次転写位置において中間転写ベルト30に転写され、最終的にはベルトクリーナ70によって中間転写ベルト30上から除去される。

[0027]

図2は、図1に示す4つのトナー像形成ユニットそれぞれが備える接触型帯電装置の構成を示す図である。

[0028]

図2には、感光体ドラム11、現像装置12、接触型帯電装置13、クリーニ

ングブラシ14、1次転写ロール20、および半導電性である中間転写ベルト30の一部が示されている。また、図1に示す画像形成装置1は、1次転写ロール20に転写バイアスを供給する転写バイアス電源21と、1次転写ロール20に供給される転写バイアスを制御する際に用いられる電流計22と、感光体ドラム11周囲の温湿度を検出する環境センサ111も備えており、この図2には、それらも示されている。

[0029]

図2に示す接触型帯電装置13は、感光体ドラム11に接触して回転する帯電ロール131を有する。この帯電ロール131の表面は、半導電性を有するものであり、感光体ドラム11との接触部近傍の微小空隙で放電を発生させることにより感光体ドラム11を帯電させる。接触型帯電装置13は、帯電ロール131に、直流電圧に交番電圧が重畳された電圧波形の電力を供給する定電流電源132と定電流電源制御部134も備えており、帯電ロール131には、この定電流電源132から直流電圧に交番電圧が重畳された電圧波形の電力が供給される。

[0030]

1次転写ロール20には、帯電ロール131により帯電を受けた感光体ドラム11上の電荷に起因して、中間転写ベルト30を経由して電流(以下、この電流を転写電流と称する)が流れる。この転写電流は、直流電流であって、転写バイアスを制御する際に用いられる電流計22により測定される。したがって、この電流計22と帯電ロール131とを組合せたものが、本発明にいう電流測定手段に相当する。

[0031]

ここで、帯電ロール131に、直流電圧に交番電圧を重畳した電圧波形の電力を供給すると、交番電圧を重畳させない直流電圧の電力を供給したときよりも、均一な帯電は行えるものの、感光体表面へのイオン衝突回数が増加し、感光体表面に付着する放電生成物の量が多くなり像露光が妨げられることで、いわゆる白抜けといったDeletionが生じやすくなる。また、感光体の劣化も早くなる傾向にある。そこで、これらの不都合につき、帯電ロールに供給する電力のうちの交流成分の電流値あるいはピーク間電圧Vppを変えて検証したので以下説

明する。

[0032]

図3は、帯電ロールに供給する電力のうちの交流成分の電流値を変えて、帯電ロールに電力を供給した際に形成される画像の画質と、その交流成分の電流値との関係を表すグラフである。

[0033]

図3のグラフの横軸は、帯電ロールに供給する電力のうちの交流成分の電流値 I_{ac} (mA) を表し、縦軸は画像の画質を表す。ここでは、画像の画質として、形成された画像を目視観察することで、Deletionが生じている程度を7段階(グレード1~7)に分けた。グレード1はDeletionが非常に多く発生し画質が最も劣悪なものとし、グレード7はDeletionがほとんど発生しておらず画質が最も良好なものとする。丸のプロットはいずれも、帯電ロール131に、所定の直流電圧に交番電圧を重畳させた電圧波形の電力を10分間供給して画像形成を行った、いわゆる交流帯電の場合を表し、交流成分の電流値が小さいほど、Deletionの発生が抑えられていることがわかる。なお、図3のグラフには参考までに、帯電ロール131に、交番電圧を重畳させずに直流電圧のみを10分間供給して画像形成を行った、いわゆる直流帯電の場合におけるDeletionの発生の程度を三角のプロットで示してある。

[0034]

帯電ロールに供給する電力のうちの交流成分の電流値 I_{ac} とピーク間電圧 V_p p とは比例関係にあり、このことから、ピーク間電圧 V_p p の小さい交番電圧を重畳させるほど D_e I_e $I_$

[0035]

図4は、帯電ロールに供給する電力のうちの交流成分のピーク間電圧Vppと 感光体ドラムの摩耗率との関係を表すグラフである。

[0036]

図4のグラフの横軸は、帯電ロールに供給する電力のうちの交流成分のピーク間電圧Vpp(V)を示し、縦軸は感光体ドラムを1000回転させながら帯電ロールにより帯電させ続けた後の感光体ドラムの摩耗量(nm)を表す摩耗率(

nm/kcycle)を示す。図4のグラフにおける四角のプロットは、帯電ロール131に、所定の直流電圧に560Hzの交番電圧を重畳させた電圧波形の電力を供給し続けたときのデータであり、丸のプロットは840Hzの交番電圧を重畳させた電力を供給し続けたときのデータであり、三角のプロットは1000Hzの交番電圧を重畳させた電力を供給し続けたときのデータである。図4に示すグラフより、感光体ドラム11の摩耗量は、周波数に関係なく、ピーク間電圧Vppによって決定されることがわかり、ピーク間電圧Vppが低ければ、感光体ドラム11の摩耗が低減される傾向が強い。

[0037]

以上の検証結果から、感光体ドラム11に均一な帯電を行うことができる範囲で交番電圧のピーク間電圧Vppをできるだけ下げて帯電ロール131に電力を供給することが望まれる。

[0038]

ここで、図2に示す定電流電源制御部134についての詳細な説明を行う前に、まず、図5を用いて、感光体ドラム11の特性について詳述する。

[0039]

図5は、図2に示す感光体ドラムの帯電特性を示すグラフである。

[0040]

図5のグラフの横軸は、帯電ロール131に供給する電力のうちの交流成分に関する電流値 I_{ac} (mA)を示すものであり、縦軸は、感光体ドラム11の表面電位 Vh(V)を示すものである。また、図5に示す丸のプロットを結ぶ実線は感光体ドラム11を高温($28\mathbb{C}$)高湿(85%)下においた場合のグラフであり、四角のプロットを結ぶ実線は感光体ドラム11を低温($10\mathbb{C}$)低湿(15%)下においた場合のグラフであり、三角のプロットを結ぶ実線は感光体ドラム11をこれらの中間の環境である中温($22\mathbb{C}$)中湿(55%)下においた場合のグラフである。

[0041]

図2に示す感光体ドラム11は、接触型帯電装置13によって-450Vに帯電される様に直流電圧-450Vが印加されている。各グラフにおいて、感光体

ドラム11の表面電位Vhが-450Vに達するまでは、交流成分に関する電流値 I acが上昇するほど、その表面電位Vhは略直線的に上昇するが、その表面電位Vhが-450Vに達した以降は、交流成分に関する電流値 I acをいくら上昇させても、その表面電位Vhの上昇は見られず、表面電位Vhは略一定である。これは、図2に示す感光体ドラム11の特性により、-450Vを越えた帯電を行うことは不可能であり、交流成分に関する電流値 I acを漸次上昇させていったとき、感光体ドラム11の表面電位Vhが-450Vに達するまでは不均一放電が行われているものの、その表面電位Vhが-450Vに達した後は、過剰放電を行っているにすぎないことを表している。以下、感光体ドラム11の表面電位Vhを-450Vの飽和電位にすることができる、最も低い交番電圧のピーク間電圧Vppをピーク間閾値電圧Vthと称することにする。

[0042]

また、高温(28 C)高湿(85 %)下における交流成分に関する電流値 I_{ac} は 0.6 m A程度であるが、低温(10 C)低湿(15 %)下における交流成分に関する電流値 I_{ac} は、0.7 m A程度である。図 5 において左下がりのハッチング領域 310 は高温高湿下におけるマージンを示し、右下がりのハッチング領域 320 は低温低湿下におけるマージンを示す。低温(10 C)低湿(15 %)下においては、異常放電が起こりやすいため、ピーク間閾値電圧に大きなマージン(図 5 における右下がりのハッチング領域 320 参照)をのせなければ均一な放電を保証することができない。さらに、長期の使用における、帯電ロール 131 表面の汚れによる抵抗変化や、感光体ドラム 11 表面の状態変化を考慮し、ピーク間閾値電圧にさらなるマージンをのせる必要があり、その結果、図 15 に示す特性を有する感光体ドラムを備えた従来の画像形成装置の中には、交流成分の電流値 15 ac 15 m 15 c 15 c

[0043]

図6は、感光体ドラムの表面電位と、転写電流の電流値の関係を示すグラフである。

[0044]

図6に示すグラフの横軸は感光体ドラムの表面電位Vh(V)を表し、縦軸は

、電流計22で測定された転写電流の電流値ΙRTR(μΑ)を表す。また、白丸 のプロットを結ぶ実線は1次転写ロール20に印加する転写バイアスを1.5k Vにしたときのグラフであり、四角のプロットを結ぶ実線は転写バイアスを 1. 3 k V にしたときのグラフであり、三角のプロットを結ぶ実線は転写バイアスを 0kVにしたときのグラフであり、黒丸のプロットを結ぶ実線は転写バイア スを0.5kVにしたときのグラフである。この図6に示すグラフから明らかな ように、感光体ドラムの表面電位Vhと転写電流の電流値Igtrとの間には比例 関係が成立している。このことからすると、感光体ドラムの表面電位Vhを高価 な測定器を用いてわざわざ測定しなくとも、1次転写ロール20に流れる転写電 流の電流値IBTRを測定すれば、感光体ドラムの表面電位Vhを推定することが できる。また、図6に示すグラフから、転写バアイスが小さくなるほど、転写電 流の電流値IBTRも小さくなり、転写バイアスが0.5kVでは、図3に示した 電流計22では電流値の変化を捉えることがほとんど不可能である。図2に示す 1次転写ロール20に転写バイアスを供給する転写バイアス電源21は、1次転 写が良好に行われ、かつ電流計22によって転写電流の電流値の変化をはっきり と捉えることができる大きさの転写バアイスを1次転写ロール20に供給するも のである。

[0045]

続いて、図7から図9を用いて、帯電ロール131に供給する電力のうちの交流成分に関する電流値 I_{ac} と、電流計22 $で測定される転写電流の電流値 <math>I_{BTR}$ との関係について説明する。

$[0\ 0\ 4\ 6]$

図7は、1次転写ロールに1.0 k Vの転写バイアスを印加したときの関係を示すグラフであり、図8は、1次転写ロールに1.3 k Vの転写バイアスを印加したときの関係を示すグラフであり、図9は、1次転写ロールに1.5 k Vの転写バイアスを印加したときの関係を示すグラフである。

[0047]

図7から図9に示すいずれのグラフにおいても、横軸は、帯電ロール131に供給する電力のうちの交流成分に関する電流値 I_{ac} (mA)を表すものであり、

[0048]

図2に示す定電流電源制御部134は、このような感光体ドラム11の特性を 念頭において設計されたものであり、転写電流の電流値 I_{BTR} に基づいて、定電流電源132を制御するものである。すなわち、図2に示す定電流電源制御部134は、定電流電源132が帯電ロール132に供給する交番電圧のピーク間電圧 V_{pp} を制御する。また、定電流電源制御部134は、 C_{pp} を制御する。また、定電流電源制御部134は、 C_{pp} を制御する。また、定電流電源制御部134は、 C_{pp} を引力とメモリ1342を備えており、この C_{pp} には、電流計22で測定された電流値 I_{pp} を機力と、環境センサ111で検出された、感光体ドラム11周辺の温度および湿度が送られてくる。

[0049]

図10は、電源制御部に備えられたCPUによって実行されるピーク間電圧の 算出処理のフローチャートである。

[0050]

図10に示すピーク間電圧の算出処理は、画像形成開始前に実行される処理であり、画像形成装置1の主電源がオンされたことにより起動する。画像形成装置1の主電源がオンされるのは朝が多く、画像形成装置1がそれまで稼動していな

[0051]

図10に示すピーク間電圧の算出処理ではまず、図2に示す電流計22により 測定される転写電流の電流値 I RTRを取得し、取得した電流値 I RTRをメモリ13 42に記録する(ステップS11)。ここでは、所定の直流電圧に、所定の閾値 電圧未満の相互に異なる2つのピーク間電圧の2つの交番電圧を順次重畳させた 電圧波形の電力を、図2に示す接触型帯電装置13に備えられた定電流電源13 2によって帯電ロール131に供給させ、この際に図2に示す電流計22により 測定される各転写電流の電流値IBTR1,IBTR2を取得する。また、所定の直流電 圧に、所定の閾値電圧の2倍以上の大きさのピーク間電圧の交番電圧を重畳させ た電圧波形の電力を、その定電流電源132によって帯電ロール131に供給さ せ、この際の転写電流の電流値 I RTR3も取得する。ここでは、パッシェンの法則 により、帯電ロール132と感光体ドラム11の間に安定した均一放電が開始さ れる放電開始電圧をメモリ1342に予め記憶させておき、この放電開始電圧を 所定の閾値電圧として用いている。なお、この算出処理では、ピーク間閾値電圧 Vthを求めた上でピーク間電圧Vppの算出を行うが、前回求めたピーク間閾 値電圧を所定の閾値電圧として用いてもよい。CPU1342は、これら3つの 電流値I_{BTR1}~I_{BTR3}をメモリ1342に記録する。

[0052]

続いて、2点直線近似処理および1点平行直線近似処理を行う(ステップS1

2)。以下、図8を用いて、これらの処理について説明する。

[0053]

図11は、2点直線近似処理と1点平行直線近似処理を説明するためのグラフである。

[0054]

図11に示すグラフの横軸は帯電ロール131に供給する電力のうちの交流成分のピーク間電圧Vppを表し、縦軸は転写電流の電流値IBTRを表す。図11に示すグラフには、帯電ロール131に、所定の閾値電圧未満となる相互に異なる2つのピーク間電圧の2つの交番電圧を順次重畳させた電圧波形の電力を供給した際に測定された2つの転写電流の電流値IBTR1, IBTR2がプロットされており、これら2つの電流値IBTR1, IBTR2のプロットを結んだ2点直線L1が示されている。ここにいう2点直線近似処理はこの2点直線L1を求める処理に相当する。また、図11に示すグラフには、帯電ロール131に対して、所定の閾値電圧以上となるピーク間電圧の交番電圧を重畳させた電力波形の電力を供給した際の転写電流の電流値IBTR3もプロットされており、この電流値IBTR3のプロットを通る、横軸に平行な1点平行直線L2も示されている。ここにいう1点平行直線近似処理は、この1点平行直線L2を求める処理に相当する。

[0055]

図10に示すステップS13では、図11にそれぞれ示す2点直線L1と1点平行直線L2の交点Xを求め、上述した感光体ドラム11の特性により、この交点Xの電圧をピーク間閾値電圧Vthとしてメモリ1342に記録する。

[0056]

ここで、このようにして求めたピーク間閾値電圧Vthについての検証を行ったので以下、図12および図13を用いて説明する。

[0057]

図12は、低温低湿環境下における、帯電ロールに供給する電力のうちの交流成分のピーク間電圧Vppと、電流計で測定された転写電流の電流値I_{BTR}との関係を示すグラフであり、図13は、高温高湿環境下における、帯電ロールに供給する電力のうちの交流成分のピーク間電圧Vppと、電流計で測定された転写

電流の電流値 I RTRとの関係を示すグラフである。

[0058]

図12および図13に示すいずれのグラフにおいても、横軸は、帯電ロールに供給する電力のうちの交流成分のピーク間電圧Vpp(V)を表し、縦軸は、転写電流の電流値 I_{RTR} (μ A)を表す。

[0059]

ここでの検証では、帯電ロールに供給する電力のうちの交流成分のピーク間電 $\mathbb{E} V p p$ を徐々に高めていきながら、電流計で測定された転写電流の電流値 I_{BT} \mathbb{R}^{E} $\mathbb{R}^{$

[0060]

次いで、ピーク間電圧を算出する(ステップS14)。すなわち、ステップS13で求められたピーク間閾値電圧Vthに、環境センサ111で検出された温度および湿度に基づいたマージン分の電圧値を加算し、帯電ロール131に供給する電力のうちの交流成分のピーク間電圧Vppを求める。ここで、感光体ドラム11周辺の環境が低温低湿な環境ほど、マージン分の電圧値を大きくとる。

$[0\ 0\ 6\ 1]$

本実施形態の画像形成装置によれば、図2に示す定電流電源132を制御するにあたり必要な電流を、転写バイアスを制御する際に用いられる電流計22により測定しているため、新たに電流計を設ける必要がなくコストアップが抑えられている。また、ピーク間閾値電圧Vthという安定した均一な放電が行われるギリギリの値を検出し、次いで、その検出したピーク間閾値電圧Vthに応じて定電流電源132の、直流電圧に重畳させる交番電圧を制御するため、ピーク間閾値電圧Vthを固定的に扱う装置に比べ、交番電圧の制御時にピーク間閾値電圧Vthに付与するマージンが少なくてすみ、結果として、交番電圧のピーク間電圧が低くおさえられる。このため、放電による感光体ドラム11の劣化や感光体ドラム11への放電生成物の付着を低減することができる。

[0062]

続いて、本発明の第2実施形態について説明する。

[0063]

第2実施形態の画像形成装置も、図1に示す画像形成装置1と同じく、フルカラータンデム方式を採用した画像形成装置であって、4つのトナー像形成ユニットを備える。ここでは、図1に示す画像形成装置1の構成部材と同じ構成部材には、今まで用いた符号と同じ符号を付し、第2実施形態の画像形成装置の特徴的な部分について説明する。

[0064]

図14は、第2実施形態の画像形成装置の特徴的な構成を示す図である。

[0065]

図14には、図2と同じく、感光体ドラム11、現像装置12、接触型帯電装置13、およびクリーニングブラシ14を備えたトナー像形成ユニット10と、1次転写ロール20と、中間転写ベルト30の一部が示されている。また、この第2実施形態の画像形成装置は、1次転写ロール20を感光体ドラム11の表面に向けて定荷重で押しつける付勢手段23を備えている。

$[0\ 0\ 6\ 6]$

図14に示す1次転写ロール20にも、帯電ロール131により帯電を受けた 感光体ドラム11上の電荷に起因して、中間転写ベルト30を経由して転写電流 が流れ、その転写電流も、転写バイアスを制御する際に用いられる電流計22に より測定される。

[0.067]

ここで、感光体ドラム11と中間転写ベルト30とが接することで形成されるニップ領域のニップ長が変化すると、転写電流の電流量が変化してしまうが、図12に示す1次転写ロール20は、付勢手段23により感光体ドラム11の表面に定荷重で押しつけられていることで、ニップ長が一定に保たれ、電流計22により精度の高い転写電流の測定が行われる。

[0068]

また、図2に示す1次転写ロール20は、周面に当接するブレード201を備えている。1次転写ロール20の周面が汚れていると抵抗値が変化し、電流計2

2により転写電流の正確な電流値を測定することができないが、このブレードにより図9に示す1次転写ロール20の周面はクリーニングされ、第2実施形態においては、電流計22によって測定された転写電流の電流値はその抵抗変化の影響を受けていないものとなる。

[0069]

図15は、図14に示す定電流電源制御部に備えられたCPUによって実行されるピーク間電圧の算出処理のフローチャートである。

[0070]

図15に示すピーク間電圧の算出処理も、図10に示すピーク間電圧の算出処理と同じタイミングで起動するとともに、この図15に示す算出処理は、所定時間経過ごとに、連続プリントの合間、すなわち画像が異なるページとページの合間でも起動する。

[0071]

図14に示す定電流電源制御部134に備えられたメモリ1342には、パッシェンの法則による安定した均一放電が開始される放電開始電圧の2倍以上となる所定のピーク間高電圧の電圧値すなわち図9に示す感光体表面電位Vhあるいは転写電流IBTRが確実に飽和しているであろう電圧値、およびその放電開始電圧とその所定のピーク間高電圧との間を均等に分割したときの各分割点における電圧値が記録されている。この図15に示す算出処理では、メモリ1342に記憶されたこれらの電圧値を用いて、まず、ピーク間閾値電圧Vthを求める。

[0072]

まず、所定の直流電圧に、メモリ1342に記憶された所定のピーク間高電圧の交番電圧を重畳させた電圧波形の電力を、図14に示す定電流電源132によって帯電ロール131に供給させる(ステップS21)。

[0073]

次いで、ステップS21における電力供給によって1次転写ロール20に流れる転写電流の電流値IBTR Mを所得し、メモリ1342に記録する(ステップS22)。

[0074]

続いて、所定の直流電圧に、一つ下の分割点の電圧をピーク間電圧とする交番電圧を重畳させた電圧波形の電力を、定電流電源132によって帯電ロール131に供給させ(ステップ823)、このステップ823における電力供給により 1次転写ロール20に流れる転写電流の電流値 1_{BTR} $_{n}$ を所得し、メモリ134 $_{n}$ 2に記録する(ステップ824)。

[0075]

[0076]

次いで、メモリ1342に記録したピーク間閾値電圧Vthに、図10に示すステップS14と同じく、環境センサ111で検出された温度および湿度に基づいたマージン分の電圧値を加算し、帯電ロール131に供給する電力のうちの交流成分のピーク間電圧Vppを算出する(ステップS27)。

[0077]

図14に示す定電流電源制御部134も、図2に示す定電流電源制御部134 と同じく、算出したピーク間電圧Vppの交番電圧を重畳させた電圧波形の電力が、定電流電源132から帯電ロール131に供給されるよう、定電流電源13 2を制御する。

[0078]

続いて、本発明の第3実施形態について説明する。

[0079]

第3実施形態の画像形成装置も、図1に示す画像形成装置1と同じく、フルカ

ラータンデム方式を採用した画像形成装置であって、4つのトナー像形成ユニットを備える。ここでも、第2実施形態の説明と同じく、図1に示す画像形成装置1の構成部材と同じ構成部材には、今まで用いた符号と同じ符号を付し、第3実施形態の画像形成装置の特徴的な部分について説明する。

[0080]

図16は、第3実施形態の画像形成装置の特徴的な構成を示す図である。

[0081]

図16には、図2および図12と同じく、トナー像形成ユニット10と、1次 転写ロール20と、中間転写ベルト30の一部が示されている。図12に示すト ナー像形成ユニット10は、図2に示すトナー像形成ユニットと同じく、感光体 ドラム11、現像装置12、接触型帯電装置13、およびクリーニングブラシ1 4を備えている。また、図16には、第3実施形態の画像形成装置に備えられた 、クリーニングブラシ14に回収バアイスや吐出バイアスを印加する回収・吐出 バイアス電源141と、クリーニングブラシ14に供給される回収・吐出バイア スを制御する際に用いられる電流計142も示されている。クリーニングブラシ 14の先端は感光体ドラム11の表面に接しており、そのクリーニングブラシ1 4には、帯電ロール131により帯電を受けた感光体ドラム11上の電荷に起因 して電流(以下、この電流をクリーニング電流と称する)が流れる。クリーニン グ電流は、回収・吐出バイアスを制御する際に用いられる電流計142により測 定される。この第3実施形態では、図16に示す定電流電源制御部134が、転 写電流の電流値に代えてこのクリーニング電流の電流値 I CRBを取得し、取得し たその電流値ICRRを用いてピーク間閾値電圧Vthを検出する。そして、定電 流電源制御部134は、検出されたピーク間閾値電圧Vthに応じて、定電流電 源132の、所定の直流電圧に重畳させる交番電圧のピーク間電圧Vppを制御 する。

[0082]

続いて、本発明の第4実施形態について説明する。

[0083]

第4実施形態の画像形成装置は、クリーニングブラシ14の代わりにトナー帯

電制御部材15を備える以外は、第3実施形態の画像形成装置と同じである。ここでも、第3実施形態の説明と同じく、図1に示す画像形成装置1の構成部材と同じ構成部材には、今まで用いた符号と同じ符号を付し、第4実施形態の画像形成装置の特徴的な部分について説明する。

[0084]

図17は、第4実施形態の画像形成装置の特徴的な構成を示す図である。

[0085]

図17には、トナー像形成ユニット10と、1次転写ロール20と、中間転写 ベルト30の一部が示されている。図17に示すトナー像形成ユニット10は、 図16に示すトナー像形成ユニットと同じく、感光体ドラム11、現像装置12 、および接触型帯電装置13を備える他、図16に示すトナー像形成ユニットに 備えられていたクリーニングブラシ14に代えて、感光体ドラム11周囲の、1 次転写ロール20と帯電ロール131との間に、トナー帯電制御部材15を備え ている。トナー帯電制御部材15の先端は感光体ドラム11の表面に接しており 、このトナー帯電制御部材15は、感光体ドラム11上に残留したトナーを同極 性に均一に帯電させ、残留トナーが帯電ロール131に付着することを防止する ための部材である。また、第4実施形態の画像形成装置は、トナー帯電制御部材 15に帯電バイアスを印加する帯電バイアス電源151と、トナー帯電制御部材 15に供給される帯電バイアスを制御する際に用いられる電流計152も備えて いる。トナー帯電制御部材151には、帯電ロール131により帯電を受けた感 光体ドラム11上の電荷に起因して電流(以下、この電流をトナー帯電電流と称 する)が流れる。トナー帯電電流は、帯電バイアスを制御する際に用いられる電 流計152により測定される。この第4実施形態では、図17に示す定電流電源 制御部134が、転写電流の電流値に代えてこのトナー帯電電流の電流値ITRC を取得し、取得したその電流値 I TBCを用いてピーク間閾値電圧Vthを検出す る。そして、定電流電源制御部134は、検出されたピーク間閾値電圧Vthに 応じて、定電流電源132の、所定の直流電圧に重畳させる交番電圧のピーク間 電圧Vppを制御する。

[0086]

次に、本発明の第5実施形態について説明する。

[0087]

これまでの第1実施形態から第4実施形態までの画像形成装置は、4つのトナー像形成ユニットを用いてフルカラー画像を形成するものであったが、第5実施形態の画像形成装置は、1つのトナー像形成ユニットでフルカラー画像を形成するものである。以下、図1に示す画像形成装置1の構成部材と同じ構成部材には、今まで用いた符号と同じ符号を付し、第5実施形態の画像形成装置の特徴的な部分について説明する。

[0088]

図18は、第5実施形態の画像形成装置の概略構成を示す図である。

[0089]

図18に示す画像形成装置1には、トナー像形成ユニット10が1つしか配備されておらず、そのトナー像形成ユニット10は、感光体ドラム11、接触型帯電装置13、およびクリーニングブラシ14を備える他、現像ロータリー16も備えている。現像ロータリー16には、イエロー(Y)、マゼンタ(M)、シアン(C)、及びブラック(B)の各有色トナーを収容した現像器161が配設されている。

[0090]

図18に示す画像形成装置1では、感光体ドラム11の表面を、接触型帯電装置13により一様に帯電した後、感光体ドラム11の表面にイエローの画像信号に基づくレーザ光Lを照射し、感光体ドラム11表面に静電潜像を形成する。続いて、感光体ドラム11の表面に形成された静電潜像を、現像ロータリー16に備えられたイエロートナーを収納した現像器161により現像し、感光体ドラム11の表面にイエロートナー像を形成する。次いで、感光体ドラム11と中間転写ベルト30とが接する1次転写位置において、感光体ドラム11上のイエロートナー像を1次転写ロール20により中間転写ベルト30に1次転写する。イエロートナー像が中間転写ベルト30に1次転写された後の感光体ドラム11の表面からは、クリーニングブラシ14よって残留トナーが一旦回収される。

[0091]

続いて、現像ロータリー16が図18では時計回りに90度回転し、今度は、 感光体ドラム11の表面にマゼンタトナー像を形成し、1次転写位置において、 このマゼンタトナー像を、先に1次転写したシアントナー像と重なるように中間 転写ベルト30に1次転写する。

[0092]

以降、シアントナー像およびブラックトナー像を順次形成し、1次転写位置において、先に1次転写したトナー像と重なるように順次1次転写する。こうすることにより、中間転写ベルト20には、ベルト表面側からイエロー、マゼンタ、シアン、ブラックの順で1つに重なり合ったトナー像が形成される。

[0093]

次いで、図1に示す画像形成装置と同じように、中間転写ベルト30上で1つに重なり合ったトナー像が、用紙トレイ60から送られてきた用紙Pに一括転写装置40によって転写され、続いて、用紙P上に転写されたトナー像は定着装置50によって用紙Pに定着される。

[0094]

なお、この図18に示す画像形成装置1も図1に示す画像形成装置と同じように、感光体ドラム11に当接したクリーニングブレードを省力した、いわゆるクリーナレスシステムが採用されたものであり、中間転写ベルト30上の残留トナーを除去するベルトクリーナ70が設けられている。

[0095]

図18に示す接触型帯電装置13は、図2に示す接触型帯電器13と同じく、 帯電ロール131、定電流電源132、定電流電源制御部134を備えており、 定電流電源制御部134は、CPU1341とメモリ1342を有する。また、 第5実施形態の画像形成装置1も、第1実施形態の画像形成装置と同じく、図2 に示す、1次転写ロール20に転写バイアスを供給する転写バイアス電源21と 、1次転写ロール20に供給される転写バイアスを制御する際に用いられる電流 計22と、感光体ドラム11周囲の温湿度を検出する環境センサ111を備えて いる。

[0096]

図19は、図15に示す定電流電源制御部が有するCPUによって実行される ピーク間電圧の算出処理のフローチャートである。

[0097]

図19に示すピーク間電圧の算出処理も、図10に示すピーク間電圧の算出処理と同じタイミングで起動する。

[0098]

本実施形態の定電流電源制御部134に備えられたメモリ1342には、パッシェンの法則による安定した均一放電が開始される放電開始電圧の2倍未満となる所定のピーク間電圧の電圧値、およびその所定のピーク間電圧の電圧値から上下に所定間隔で連続する複数の電圧値が記録されている。なお、この所定のピーク間電圧の電圧値は、パッシェンの法則による放電開始電圧の2倍の電圧値付近の電圧値であれば、その放電開始電圧の2倍の電圧値よりも大きくてもよい。この図19に示す算出処理では、メモリ1342に記録されたこれらの電圧値を用いて、まず、ピーク間閾値電圧Vthを求める。

[0099]

まず、所定の直流電圧に、メモリ1342に記憶された所定のピーク間電圧の 交番電圧を重畳させた電圧波形の電力を、定電流電源132によって帯電ロール 131に供給させる(ステップS31)。

[0100]

次いで、ステップS 3 1 における電力供給によって 1 次転写ロール 2 0 に流れる転写電流の電流値 I BTR Bを取得し、メモリ 1 3 4 2 に記録する(ステップS 3 2)。

$[0\ 1\ 0\ 1]$

続いて、所定のピーク間電圧よりも一つ上の、メモリ1342に記録された電圧値をピーク間電圧とする交番電圧を重畳させた電力を、定電流電源132によって帯電ロール131に供給させ(ステップS33)、このステップS33における電力供給によって1次転写ロール20に流れる転写電流の電流値 I_{BTR} nを取得し、メモリ1342に記録する(ステップS34)。

[0102]

次に、ステップS34において記録した電流値 I_{BTR} $_{n}$ の方が、ステップS32において記録した電流値 I_{BTR} $_{B}$ よりも大きいか否かを判定する(ステップS35)。ここでの判定結果は、交番電圧のピーク間電圧 V_{p} $_{p}$ をピーク間閾値電圧 V_{t} $_{t}$ $_{t}$

[0103]

ステップS35における判定結果が大きいという判定結果であれば、直前に用いたピーク間電圧よりも一つ上の、メモリ1342に記録された電圧値をピーク間電圧とする交番電圧を重畳させた電力を、定電流電源132により帯電ロール131に供給させ(ステップS36)、このステップS36における電力供給によって1次転写ロール20に流れる転写電流の電流値IBTR $_{1}$ を取得し、メモリ1342に記録する(ステップS37)。次いで、ステップS37において記録した電流値IBTR $_{1}$ の方が、その直前にメモリ1342に記録した電流値IBTR $_{1}$ よりも大きいか否かを判定し(ステップS38)、大きければ、ステップS36に戻り、同じであれば、1つ前においてメモリ1342に記録した電流値IBT $_{1}$ の下のでに用いたピーク間電圧をピーク間閾値電圧Vthとしてメモリ1342に記録する(ステップS39)。

[0104]

一方、ステップS35における判定結果が同じという判定結果であれば、ここでは所定のピーク間電圧の電圧値としてパッシェンの法則による放電開始電圧の2倍未満の電圧値を用いたことから、用いた所定のピーク間電圧がほぼピーク間 閾値電圧V t h と一致していたとして、用いた所定のピーク間電圧をピーク間閾値電圧V t h としてメモリ1342に記録してもよいが、念のため、以下のような処理を続行してもよい。以下の処理は、ピーク間閾値電圧V t h よりも高い交番電圧のピーク間電圧V p p を用いたことにより、転写電流の電流値 I BTRが略一定になっている状態(図7~図9参照)における処理に相当する。

[0105]

ここではまず、ステップS41において、所定のピーク間電圧よりも二つ下の 、メモリ1342に記録された電圧値をピーク間電圧とする交番電圧を重畳させ た電力を、定電流電源132により帯電ロール131に供給させ、このステップ S41における電力供給によって1次転写ロール20に流れる転写電流の電流値 I_{BTR} n_- を取得し、メモリ1342に記録する(ステップS42)。次いで、ステップS42において記録した電流値 I_{BTR} n_- の方が、その直前にメモリ1342に記録した電流値 I_{BTR} n_- の方が、その直前にメモリ1342に記録した電流値 I_{BTR} n_- の方が、その直前にメモリ1342に記録された電圧値をピーク間電圧とする交番電圧を重畳させた電力を、定電流電源132により帯電ロール131に供給させ(ステップS44)、ステップS42に戻る。一方、ステップS43における判定が小さいという旨の判定であれば、その直前にメモリ1342に記録した電流値 I_{BTR} n取得した際に用いたピーク間電圧をピーク間閾値電圧 V_{CS} C_{CS} C_{CS} C

[0106]

次いで、メモリ1342に記録したピーク間閾値電圧Vthc、図10に示すステップS14と同じく、環境センサ111で検出された温度および湿度に基づいたマージン分の電圧値を加算し、帯電ロール131に供給する電力のうちの交流成分のピーク間電圧Vppを算出する(ステップS51)。

[0107]

次に、本発明の第6実施形態について説明する。

[0108]

これまでの第1実施形態から第5実施形態までの画像形成装置はいずれも、フルカラー画像を形成するものであったが、この第6実施形態までの画像形成装置は単色画像を形成するものである。ここでも、図1に示す画像形成装置1の構成部材と同じ構成部材には、今まで用いた符号と同じ符号を付し、第6実施形態の画像形成装置の特徴的な部分について説明する。

[0109]

図20は、第6実施形態の画像形成装置の特徴的な構成を示す図である。

[0110]

図20には、第6実施形態の画像形成装置が備える、トナー像形成ユニット1

0、1次転写ロール20、および環境センサ111が示されている。トナー像形 成ユニット10は、感光体ドラム11、現像装置12、および接触型帯電装置1 3を備えており、接触型帯電装置13は、図2に示す接触型帯電器13と同じく 、帯電ロール131、定電流電源132、および定電流電源制御部134を備え ている。また、図20に示すトナー像形成ユニット10は、図2に示すクリーニ ングブラシ14に代えてクリーニングブレード17を備えている。クリーニング ブレード17の先端は感光体ドラム11の表面に接しており、このクリーニング ブレード17は、感光体ドラム11の表面に残留したトナーやその表面に付着し た放電生成物等をその表面から除去するものである。さらに、本実施形態の画像 形成装置は、このクリーニングブレード17に帯電バイアスを印加する電源17 1を備えている。クリーニングブレード17には、帯電ロール131により帯電 を受けた感光体ドラム11上の電荷に起因して電流(以下、この電流をブレード 電流と称する)が流れる。接触型帯電装置13は、このブレード電流の電流値I CRRを測定する電流計135も備えており、本実施形態では、定電流電源制御部 134が、このブレード帯電電流の電流値 I CRRを取得し、取得したその電流値 I CBBを用いてピーク間閾値電圧V t h を検出する。そして、定電流電源制御部 134は、検出されたピーク間閾値電圧Vthに応じて、定電流電源132の、 所定の直流電圧に重畳させる交番電圧のピーク間電圧Vppを制御する。

$[0\ 1\ 1\ 1\]$

なお、この第5実施形態の画像形成装置では、図1に示す中間転写ベルト30や一括転写装置40は省略されており、感光体ドラム11に形成されたトナー像は、図20に示す1次転写ロール20によって用紙Pに転写される。

$[0\ 1\ 1\ 2]$

【発明の効果】

以上、説明したように、本発明によれば、放電による被帯電体の劣化や被帯電体への放電生成物の付着を低減することができる帯電装置、およびその帯電装置を備えた画像形成装置を提供することができる。

【図面の簡単な説明】

【図1】

本発明の一実施形態である画像形成装置の概略構成を示す図である。

[図2]

図1に示す4つのトナー像形成ユニットそれぞれが備える接触型帯電装置の構成を示す図である。

【図3】

帯電ロールに供給する電力のうちの交流成分の電流値を変えて、帯電ロールに 電力を供給した際に形成される画像の画質と、その交流成分の電流値との関係を 表すグラフである。

図4

帯電ロールに供給する電力のうちの交流成分のピーク間電圧 V p p と感光体ドラムの摩耗率との関係を表すグラフである。

【図5】

図2に示す感光体ドラムの帯電特性を示すグラフである。

【図6】

感光体ドラムの表面電位と、転写電流の電流値の関係を示すグラフである。

【図7】

1次転写ロールに1.0kVの転写バイアスを印加したときの関係を示すグラフである。

【図8】

1次転写ロールに1.3 k Vの転写バイアスを印加したときの関係を示すグラフである。

【図 9】

1次転写ロールに1.5 k Vの転写バイアスを印加したときの関係を示すグラフである。

【図10】

電源制御部に備えられたCPUによって実行されるピーク間電圧の算出処理のフローチャートである。

【図11】

2点直線近似処理と1点平行直線近似処理を説明するためのグラフである。

図12]

低温低湿環境下における、帯電ロールに供給する電力のうちの交流成分のピーク間電圧Vppと、電流計で測定された転写電流の電流値 I_{BTR} との関係を示すグラフである。

【図13】

高温高湿環境下における、帯電ロールに供給する電力のうちの交流成分のピーク間電圧 V p p と、電流計で測定された転写電流の電流値 I BTRとの関係を示すグラフである。

【図14】

第2実施形態の画像形成装置の特徴的な構成を示す図である。

【図15】

図14に示す定電流電源制御部に備えられたCPUによって実行されるピーク 間電圧の算出処理のフローチャートである。

【図16】

第3実施形態の画像形成装置の特徴的な構成を示す図である。

【図17】

第4実施形態の画像形成装置の特徴的な構成を示す図である。

【図18】

第5実施形態の画像形成装置の概略構成を示す図である。

【図19】

図15に示す定電流電源制御部が有するCPUによって実行されるピーク間電 圧の算出処理のフローチャートである。

【図20】

第6実施形態の画像形成装置の特徴的な構成を示す図である。

【符号の説明】

- 1 画像形成装置
- 10 トナー像形成ユニット
- 11 感光体ドラム
- 12 現像装置

- 13 接触型带電装置
- 131 帯電ロール
- 132 定電流電源
- 134 定電流電源制御部
- 1341 CPU
- 1342 メモリ
- 135 電流計
- 14 クリーニングブラシ
- 141 回収・吐出バイアス電源
- 142 電流計
- 15 トナー帯電制御部材
- 151 帯電バイアス電源
- 152 電流計
- 16 現像ロータリー
- 161 現像器
- 17 クリーニングブレード
- 171 電源
- 20 1次転写ロール
- 201 ブレード
- 21 転写バイアス電源
- 2 2 電流計
- 23 付勢手段
- 30 中間転写ベルト
- 40 一括転写装置
- 50 定着装置
- 60 用紙トレイ
- 70 ベルトクリーナ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

1/E

【書類名】 要約書

【要約】

【課題】所定の方向に移動しながら帯電を受ける被帯電体を帯電する帯電部材と、被帯電体上の電荷に起因して流れる電流を測定する電流測定手段とを備えた帯電装置等、およびその帯電装置を備えた画像形成装置に関し、放電による被帯電体の劣化や被帯電体への放電生成物の付着を低減する。

【解決手段】被帯電体11は、交番電圧のピーク間電圧が増大するほど、所定のピーク間閾値電圧までは略直線的に帯電電圧が上昇するとともに、交番電圧のピーク間電圧が所定のピーク間閾値電圧以上の場合は略一定の帯電電圧となる特性を有するものであって、電源制御部134は、電流測定手段20,22により測定された電流に基づいてピーク間閾値電圧Vthを検出し、ピーク間閾値電圧Vthに応じて電源132の、直流電圧に重畳させる交番電圧を制御する。

【選択図】 図2

特願2003-177121

出願人履歴情報

識別番号

[000005496]

1. 変更年月日 [変更理由]

1996年 5月29日

変更理田」 住 所 住所変更

住 所 東京都港区赤坂二丁目17番22号

富士ゼロックス株式会社

氏 名

À