Surface mining control arrangement, having position sensor and microprocessor, for transmitting detected position- and/or movement direction signals over radio to shield control arrangement

Publication number: DE19982113
Publication date: 2003-12-18

Inventor:

KUSSEL WILLY (DE)

Applicant:

TIEFENBACH BERGBAUTECHNIK GMBH (DE)

Classification:

- international:

E21C35/24; E21D23/14; E21D23/26; E21C35/00;

E21D23/00; (IPC1-7): E21D23/14; E21C35/24

- European:

E21C35/24; E21D23/14; E21D23/26

Priority number(s): DE19991082113 19991019; DE19981048538 19981021;

Application number: DE19991082113 19991019

WO1999DE03349 19991019

Also published as:

WO0023690 (A1) US6481802 (B1) ZA9906636 (A)

PL189957B (B1) DE29918460U (U1)

Report a data error here

Abstract of **DE19982113**

The mining machine is equipped with a position sensor composed of a revolving measuring wheel (28) with electro-magnetically readable marks, which moves along the mining path. Two inductive pulse generators (35) scan the marks of the measuring wheel, and a microprocessor (31) converts the produced signals to position- and/or movement direction signals which are transmitted by a radio instrument to shield control arrangement. The arrangement includes a number of hydraulically operated shields which are automatically controlled in dependence on the position of a mining machine, whereby the position of the mining machine is automatically notified to the shield control arrangement. The mining machine is equipped with a position sensor which is composed of a revolving measuring wheel (28), e.g. a pinion, with electromagnetically readable marks, which moves along the mining path. Two inductive pulse generators (35) scan the marks of the measuring wheel, and a microprocessor (31) converts the produced signals to position- and/or movement direction signals which are transmitted by a radio instrument. One or several radio receivers are distributed along the mining path, and are connected with the shield control arrangement for converting the position- and/or movement direction signals to control signals for the shields.

Data supplied from the esp@cenet database - Worldwide

® BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Patentschrift

_m DE 199 82 113 C 1

(21) Deutsches Aktenzeichen: 199 82 113.5-24 86 PCT-Aktenzeichen: PCT/DE99/03349

(87) PCT-Veröffentlichungs-Nr.: WO 00/23690 ® PCT-Anmeldetag: 19. 10. 1999

PCT-Veröffentlichungstag: 27. 4. 2000

Veröffentlichungstag der Patenterteilung:

18. 12. 2003

(51) Int. Cl.⁷: E 21 D 23/14 E 21 C 35/24

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(66) Innere Priorität:

198 48 538.7

21, 10, 1998

(73) Patentinhaber:

Tiefenbach Bergbautechnik GmbH, 45136 Essen, DE

(74) Vertreter:

Krienen Pfingsten Truskowski Rechts- und Patentanwälte, 42853 Remscheid

(72) Erfinder:

Kussel, Willy, 59368 Werne, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 195 46 427 A1 42 02 246 A1 DE 41 03 545 A1 DE 26 10 101 A1 DE

DE-Zeitschrift "Glückauf" 130 (1994), S. 577-582; DE-Zeitschrift "Glückauf-Forschungshefte" 34 (1973), S. 135-137;

(4) Steuerung für den Strebausbau

Steuerung für den Strebausbau mit einer Vielzahl von hydraulisch betätigten Ausbaueinheiten (1 bis 18) mit einer entsprechenden Vielzahl von Ausbausteuereinrichtungen (34), von denen jeweils eine jedem der Ausbaueinheiten zum automatischen Umsetzen im Sinne des Raubens, Schreitens und Setzens in Abhängigkeit von der Position und der Bewegungsrichtung der Gewinnungsmaschine (21) geordnet ist, wozu die Position und die Bewegungsrichtung der Gewinnungsmaschine (21) automatisch mittels eines Positionsmelders, welcher aus einem drehbaren Meßrad (28) mit elektromagnetisch erfaßbaren Umfangsmarkierungen, das die Abbaustrecke abfährt, zwei induktiven Impulsgebern, durch welche(n) die elektromagnetisch erfaßbaren Umfangsmarkierungen abgetastet werden, und einem Mikroprozessor, dem die Signale des Doppelimpulsgebers aufgegeben werden und der die Signale in Positions und/oder Sewegungsrichtungssignale umsetzt,

besteht, ermittelt werden

und die Positions- und Bewegungsrichtungssignale zur Umsetzung der Signale in Signale zum Umsetzen der Ausbaueinheiten (1 bis 18) mittels eines an der Gewinnungsmaschine (21) mitgeführten Funkgeräts und mittels mehrerer Funkempfänger (33), die auf der Streblänge verteilt und mit jeweils einer der Ausbausteuereinrichtungen (34) verbunden sind, an eine Ausbausteuereinrichtung übergeben werden,

dadurch gekennzeichnet daß

auf der Grundlage der Positions- und Sewegungsrichtungssignale über die gemeinsame Rechnerkapazität der Strebsteuerung die Ermittlung der jeweils anzusprechenden Ausbaueinheit erfolgt und dass die Signale zur Umsetzung der Ausbauteinheiten (1 bis 18), die durch die Funkempfänger (33) an die Ausbausteuereinrichtungen (34) übergeben werden, an die übrigen Ausbausteuereinrichtungen (34) weitergeleitet werden.

Beschreibung

[0001] Die Erfindung betrifft eine Steuerung für den Strebausbau mit einer Vielzahl von hydraulisch betätigten Ausbaueinheiten (Schilden) nach dem Oberbegriff des Anspruchs 1.

[0002] Eine derartige Strebsteuerung ist bekannt durch die Zeitschrift Glückauf 130 (1994) S. 580 rechte Spalte.

[0003] Dabei sind die Schilde beim Rauben, Schreiten und Setzen in Abhängigkeit von der Position der Abbaumaschine (Schrämmaschine) automatisch umsetzbar. Es wird nicht beschrieben, in welcher Weise diese Positions- und Richtungsmessung erfolgt und in welcher Weise die Übertragung der Meßsignale an die Strebsteuerung erfolgt.

[0004] Zur Positions- und Richtungsbestimmung einer 15 Schrämmaschine beschreiben die DE 26 10 101 A1 ein Messrad mit elektromagnetisch erfassbaren Umfangsmarkierungen sowie einen magnetischen Doppelsensor und die DE 42 02 246 A1 einen Doppelimpulsgeber. Darüber hinaus wird in der DE 42 02 246 A1 auch die automatische 20 Übertragung der Meßwerte an die Strebsteuerung über ein von der Gewinnungsmaschine mitgeschlepptes Kabel beschrieben.

[0005] Diese letztgenannte Steuerung hat den Nachteil, daß die Auslegung eines solchen Kabels aufwendig ist und 25 daß das Kabel der Gefahr von Beschädigungen und einem erheblichen Verschleiß ausgesetzt ist. Daraus resultieren wiederum Gefahren für den sicheren Ausbau des Strebs durch Falschmeldungen und Fehlsteuerungen.

[0006] Durch die DE 41 03 545 A1 ist ein Verfahren zur 30 Positions- und Richtungsbestimmung der Gewinnungsmaschine bekannt, bei welcher an jeder Ausbaueinheit eine Empfangs- und Auswerteinheit vorhanden ist, durch welche der Empfang von zwei von der Gewinnungsmaschine ausgesandten Strahlenkegel überwacht wird. Die hiermit mögliche örtliche Zuordnung der Gewinnungsmaschine ist ungenau und von Störungen abhängig.

[0007] Aufgabe der Erfindung ist es diese Nachteile zu vermeiden und die Steuerung so auszustatten, daß sie verschleiß- und störungsfrei arbeitet und dabei robust und si- 40 cher ist.

[0008] Die Lösung ergibt sich aus Anspruch 1 mit weiterer Ausgestaltung nach Anspruch 2.

[0009] Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels beschrieben.

[0010] Es zeigen

[0011] Fig. 1 die Ansicht einer Schrämmaschine und

[0012] Fig. 2 die schematische Aufsicht auf eine Schrämmaschine.

[0013] In Fig. 2 sind Ausbaueinheiten 1 bis 18 gezeigt. 50 Diese Ausbaueinheiten sind längs eines Strebs angeordnet. Das Flöz 20 wird in Schneidrichtung 19 durch die Gewinnungsmaschine 21 in Form der Schrämmaschine in Abbaurichtung 22 abgebaut. Die Schrämmaschine ist in Schneidrichtung 19 verfahrbar. Sie besitzt zwei Schneidwalzen 23, 55 24, die mit unterschiedlicher Höhe eingestellt sind und den Kohlestoß abfräsen. Die gebrochene Kohle wird von der Schrämmaschine, auch "Walzenlader" genannt, auf einen Förderer 25 geladen. Der Förderer 25 besitzt eine Rinne, auf welcher die Schrämmaschine längs der Kohlefront verfahr- 60 bar ist. Die Rinne ist in einzelne Einheiten unterteilt, die zwar miteinander verbunden sind, jedoch relativ zueinander eine Bewegung in Abbaurichtung 22 ausführen können. Jeder Rinnenschuß ist durch eine Zylinder-Kolben-Einheit 29 mit einer der Ausbaueinheiten 1 bis 18 verbunden. Jede der 65 Ausbaueinheiten dient dem Zweck, das Streb abzustützen. Hierzu dient eine weitere Zylinder-Kolben-Einheit, die eine Ligendkufe gegenüber einer Hangendkappe verspannt. Die

Hangendkappe besitzt an ihrem vorderen, dem Flöz 20 zugewandten Ende einen sogenannten Kohlenstoßfänger. Dabei handelt es sich um eine Klappe, die vor den abgebauten Kohlenstoß klappbar ist. Der Kohlenstoßfänger muß vor der heranfahrenden Schrämmaschine hochgeklappt werden. Auch hierzu dient eine nicht dargestellte weitere Zylinder-Kolben-Einheit.

[0014] In Fig. 2 bewegt sich die Schrämmaschine nach rechts. Daher muß der Kohlenstoßfänger der Ausbaueinheit 17 zurückgeklappt sein. Andererseits wird der Rinnenschuß der Ausbaueinheit 9, die sich hinter der Schrämmaschine U befindet, in Richtung auf den abgebauten Kohlenstoß vorgerückt. Ebenso befinden sich die folgenden Ausbaueinheiten 8, 7, 6, 5 und 4 im Vorwärtsgang mit Richtung auf die Kohlefront bzw. auf den abgebauten Kohlenstoß. An diesen Ausbaueinheiten wird der Kohlenstoßfänger bereits wieder heruntergeklappt. Die Ausbaueinheiten 3, 2, 1 sind fertig gerückt und bleiben in dieser Position, bis die Schrämmaschine sich wieder von rechts nähert.

[0015] Zur Steuerung dieser Umsetzbewegung ist an der Schrämmaschine ein Detektor 35 angebracht. Dabei handelt es sich um zwei Elektromagneten, die in Fahrtrichtung hintereinander angebracht sind. Diese Elektromagneten wirken zusammen mit einem Meßrad 28, das an der Schrämmaschine angebracht ist. Mit diesem Rad wird die Bewegung der Schrämmaschine abgetastet. Das Meßrad besitzt auf seinem Umfang magnetisch inhomogene Stellen, hier dargestellt durch eine Verzahnung. Dadurch kann die Drehbewegung des Rades von den beiden Elektromagneten des Detektors 35 erfaßt werden. Es werden also beim Fahren der Schrämmaschine ständig zwei Signale gegeben Durch die Folge der Signale der Elektromagneten kann auch die Bewegungsrichtung der Schrämmaschine erfaßt werden. Die Signale des Detektors werden durch eine Leitung 36 auf einen Rechner 31 übertragen, der an der Schrämmaschine befestigt ist. In dem Rechner werden die Signale einerseits zu einem Signal aufsummiert, das die Position der Schrämmaschine angibt (Positionssignal). Ferner werden die Signale auf ihre Folge hin analysiert und daraus ein Signal abgeleitet, das die Fahrtrichtung der Schrämmaschine repräsentiert (Fahrtrichtungssignal). Der Rechner gibt die beiden Signale, Positionssignal und Fahrtrichtungssignal weiter an ein mit ihm verbundenes Funkgerät. Dieses überträgt die Signale über Funk an drei ortsfeste Funkempfänger 33, die mit jeweils einer der Ausbausteuereinrichtungen 34 verbunden sind. Jeweils eine der Ausbausteuereinrichtungen 34 ist mit ie einer Ausbaueinheit verbunden. Die Ausbausteuereinrichtungen 34 sind auch untereinander verbunden.

[0016] Beim Herannahen der Schrämmaschine erhalten die Funkempfänger und über diese die Ausbausteuereinrichtungen 34 der Ausbaueinheiten zwei Signale, das heißt das Positionssignal und das Fahrrichtungssignal. Aufgrund dieser Signale und der Folge der Signale wird die Position und Fahrtrichtung der Schrämmaschine erkannt und es wird ermittelt, welche Ausbaueinheit bedient werden muß.

[0017] In Fig. 2 ist die Situation dargestellt, daß die Ausbausteuereinrichtung 34 der Ausbaueinheit 17 angesprochen werden muß, weil sich die Schrämmaschine ihr nähert. Daher gibt die Ausbausteuereinrichtung 34 die notwendigen Signale zum Einziehen des Kohlenstoßfängers an die Ausbaueinheiten 17 und eventuell schon 18 und die erforderlichen Vorrücksignale an die folgenden Ausbaueinheiten 9, 8, 7, 6, 5, 4.

[0018] Es hat sich herausgestellt, daß auch im Untertagebetrieb eine sichere störungsfreie Funkübertragung der erforderlichen Positions und Richtungssignale möglich ist und daß die Ausbausteuerung auch bei erheblicher Streblänge über einen oder wenige Funkempfänger zuverlässig steuer-

30

4

bar ist. Zu diesem Zwecke besitzen die Ausbausteuereinrichtungen die Eigenheit, daß Signale, die an eine oder einzelne der Ausbausteuereinrichtungen übergeben werden, an die übrigen weitergeleitet werden und daß über die gemeinsame Rechnerkapazität eine sichere Ermittlung der jeweils anzusprechenden Ausbaueinheiten erfolgt. Dadurch wird eine genaue geometrische Zuordnung von Position und Bewegungsrichtung der Schrämmaschine und ein sicherer, störungsfreier und robuster Betrieb der Schrämmaschine und des Ausbaus mit geringem Bedienungsaufwand möglich.

2. Strebsteuerung nach Anspruch 1, dadurch gekennzeichnet, daß die Anzahl der Funkempfänger (33) geringer ist als die Anzahl der Ausbausteuereinrichtungen (34).

Hierzu 2 Seite(n) Zeichnungen

Bezugszeichen

1-18 Ausbaueinheit 19 Schneidrichtung 15 20 Flöz 21 Gewinnungsmaschine 22 Abbaurichtung 23 Schneidwalze 24 Schneidwalze 20 25 Förderer 28 Rad 29 Zylinder-Kolben-Einheit 31 Rechner 33 Funkempfänger 25 34 Ausbausteuereinrichtung 35 Detektor 36 Leitung

Patentansprüche

1. Steuerung für den Strebausbau mit einer Vielzahl von hydraulisch betätigten Ausbaueinheiten (1 bis 18) mit einer entsprechenden Vielzahl von Ausbausteuereinrichtungen (34), von denen jeweils eine jedem der 35 Ausbaueinheiten zum automatischen Umsetzen im Sinne des Raubens, Schreitens und Setzens in Abhängigkeit von der Position und der Bewegungsrichtung der Gewinnungsmaschine (21) geordnet ist, wozu die Position und die Bewegungsrichtung der Gewinnungs- 40 maschine (21) automatisch mittels eines Positionsmelders, welcher aus einem drehbaren Meßrad (28) mit elektromagnetisch erfaßbaren Umfangsmarkierungen, das die Abbaustrecke abfährt, zwei induktiven Impulsgebern, durch welche(n) die elektromagnetisch erfaß- 45 baren Umfangsmarkierungen abgetastet werden, und einem Mikroprozessor, dem die Signale des Doppelimpulsgebers aufgegeben werden und der die Signale in Positions und/oder Sewegungsrichtungssignale um-50 setzt,

besteht, ermittelt werden

und die Positions- und Bewegungsrichtungssignale zur Umsetzung der Signale in Signale zum Umsetzen der Ausbaueinheiten (1 bis 18) mittels eines an der Gewinnungsmaschine (21) mitgeführten Funkgeräts und mittels mehrerer Funkempfänger (33), die auf der Streblänge verteilt und mit jeweils einer der Ausbausteuereinrichtungen (34) verbunden sind, an eine Ausbausteuereinrichtung übergeben werden,

dadurch gekennzeichnet daß

auf der Grundlage der Positions- und Sewegungsrichtungssignale über die gemeinsame Rechnerkapazität der Strebsteuerung die Ermittlung der jeweils anzusprechenden Ausbaueinheit erfolgt und dass die Signale zur Umsetzung der Ausbauteinheiten (1 bis 18), 65 die durch die Funkempfänger (33) an die Ausbausteuereinrichtungen (34) übergeben werden, an die übrigen Ausbausteuereinrichtungen (34) weitergeleitet werden.

- Leerseite -

Nummer: Int. Cl.⁷: Veröffentlichungstag: **DE 199 82 113 C1 E 21 D 23/14**18. Dezember 2003

F ig . 1

