Chapter 12

12.1 a) Codes: 1 + South Yes Democrat Yes Yes

0 + non-South No Republican No No

e.g. Reagan - Carter:

Pair	<u>Coeffi</u>	icient (a+d)/p
R-C		.6
R-F		.4
R-N		.6
R-J		0
R-K		.6
C-F		0
C-N		.2
C-J		.4
C-K		.6
F-N		.8
F-J		.6
F-K		.4
N-J		.4
N-K		.6
J-K		.4

12.1 b)	Coefficient				Rank Order			
	Pair	1	2	3	1	2	3_	
	R-C R-F R-N R-K C-F C-N C-J C-K F-N F-K N-J	.6 .6 .6 .0 .2 .4 .6 .8 .6	.75 .571 .75 0 .75 0 .333 .571 .75 .889 .75 .571 .571	.429 .25 .429 0 .429 0 .111 .25 .429 .667 .429 .25 .429	4.5 10 4.5 14.5 14.5 13 10 4.5 1 4.5 10 10 4.5	4.5 10 4.5 14.5 14.5 10 4.5 10 4.5 10 4.5	4.5 10 4.5 14.5 14.5 14.5 10 4.5 10 4.5	
12.2		r	efficie	ent	R	ank Orde		
	Dais	5	6	7	5	6	7	
	Pair R-C R-F R-N R-J R-K C-F C-N C-J C-K F-J F-K N-J	.333 0 .333 0 .333 0 .2 .4 .5 .667 .5 .25	.5 0 .5 0 .333 .571 .667 .8 .667 .4 .571	.2 0 .2 0 .111 .25 .333 .5 .333 .143 .25	9 14 9 14 9 14 12 6 3 1 1 6 3	9 14 9 14 19 14 12 6 3 1 3 16 3 6	9 14 9 14 12 6 3 1 1 6 3 6	

$$\bar{x} = (a+b)/p; \quad \bar{y} = (a+c)/p$$

$$\Sigma(x_i - \bar{x})^2 = (a+b)(1 - (a+b)/p)^2 + (c+d)(0 - (a+b)/p)^2 = \frac{(c+d)(a+b)}{p}$$

$$\Sigma(y_i - \bar{y})^2 = (a+c)(1 - (a+c)/p)^2 + (b+d)(0 - (a+c)/p)^2 = \frac{(a+c)(b+d)}{p}$$

$$\Sigma(x_i - \bar{x})(y_i - \bar{y}) = \Sigma(x_i y_i - y_i \bar{x} - x_i \bar{y} + \bar{x} \bar{y})$$

$$= a - \frac{(a+c)(a+b)}{p} - \frac{(a+b)(a+c)}{p} + p \cdot \frac{(a+b)(a+c)}{p^2}$$

$$= \frac{a(a+b+c+d) - (a+c)(a+b)}{p} = \frac{ad-bc}{p}$$

Therefore

$$r = \frac{(ad-bc)/p}{\left[\frac{(c+d)(a+b)(a+c)(b+d)}{p^2}\right]^{\frac{1}{2}}} = \frac{ad-bc}{\left[(a+b)(c+d)(a+c)(b+d)\right]^{\frac{1}{2}}}$$

Let
$$c_1 = \frac{a+d}{p}$$
, $c_2 = \frac{2(a+d)}{2(a+d)+(b+c)}$ and $c_3 = \frac{a+d}{(a+d)+2(b+c)}$
then $c_3 = \frac{1}{1+2(c_1^{-1}-1)}$ so c_3 increases as c_1 increases

Also, $c_2 = \frac{2}{c_1^{-1}+1}$ so c_2 increases as c_1 increases

Finally, $c_2 = \frac{4}{c_3^{-1}+3}$ so c_2 increases as c_3 increases

12.5 a) Single linkage

Dendogram

- 12.5 b)
- Complete Linkage

c) Average Linkage

Dendogram

Dendogram

12.6 Dendograms

All three methods produce the same hierarchical arrangements. Item 3 is somewhat different from the other items.

12.7 Treating correlations as similarity coefficients we have:

Single linkage

$$S_{45} = .68$$

$$S_{(45)1} = \max(S_{41}, S_{51}) = .16$$

$$S_{(45)2} = .32$$
, $S_{(45)3} = .18$, and so forth.

Complete linkage

$$S_{45} = .68$$

$$S_{(45)1} = \min(S_{41}, S_{51}) = .12$$

$$S_{(45)2} = .21$$
, $S_{(45)3} = .15$, and so forth.

Both methods arrive at nearly the same clustering.

12.8

1

Average linkage produces results similar to single linkage.

12.9 Dendograms

Although the vertical scales are different, all three linkage methods produce the same groupings. (Note different vertical scales.)

12.10 (a)
$$ESS_1 = (2-2)^2 = 0$$
, $ESS_2 = (1-1)^2 = 0$, $ESS_3 = (5-5)^2 = 0$, and $ESS_4 = (8-8)^2 = 0$.

(b) At step 2

	Clusters		Increase in ESS
{ 12}	{3}	{4}	.5
{ 13}	$\{2\}$	{4}	4.5
{ 14}	{2}	{3}	18.0
{ 1}	{23}	{4 }	8.0
{ 1}	$\{24\}$	{3}	24.5
{ 1}	{2}	{34}	4.5

(c) At step 3

	Clusters	Increase in ESS
{ 12}	{34}	5.0
{ 123}	{4}	8.7

Finally all four together have

ESS =
$$(2-4)^2 + (1-4)^2 + (5-4)^2 + (8-4)^2 = 30$$

12.11 K = 2 initial clusters (AB) and (CD)

$$(AB) \begin{vmatrix} \overline{x}_1 & \overline{x}_2 \\ (AB) & 3 & 1 \\ (CD) & 1 & 1 \end{vmatrix}$$

Final clusters (AD) and (BC)

$ \begin{array}{c cccc} & \overline{x}_1 & \overline{x}_2 \\ \hline (AD) & 4 & 2.5 \\ \hline (BC) & 0 &5 \end{array} $		Squa	ered dis	tance to	group
$(BC) \mid 05$	Cluster	Α	8	C	D
	(AD)	3.25	29.25	27.25	3.25
	(BC)	45.25	3.25	3.25	11.25

12.12 K = 2 initial clusters (AC) and (BD)

$$\begin{array}{c|cc}
 & \overline{x}_1 & \overline{x}_2 \\
\hline
(AC) & 3 & .5 \\
(BD) & -2 & -.5
\end{array}$$

Final clusters (A) and (BCD) $\begin{array}{c|cccc}
 & \overline{x}_1 & \overline{x}_2 \\
\hline
(A) & 5 & 3 \\
(BCD) & -1 & -1
\end{array}$

	Squa	red dis cent	tance to roids	group
Cluster	A	B	С	D
(A)	0	40	41	89
(BCD)	52	4	5	5

As expected, this result is the same as the result in Example 12.11. A graph of the items supports the (A) and (BCD) groupings.

12.13 K = 2 initial clusters (AB) and (CD)

$$\begin{array}{c|cccc}
 & \overline{x}_1 & \overline{x}_2 \\
\hline
 & (AB) & 2 & 2 \\
 & (CD) & -1 & -2 \\
\end{array}$$

Final clusters (A) and (BCD) $\begin{array}{c|cccc}
 & \overline{x}_1 & \overline{x}_2 \\
\hline
(A) & 5 & 3 \\
(BCD) & -1 & -1
\end{array}$

	Squar	tance to	to group		
Cluster	Α	В	С	D	
A	0 🗸	40	47	89	
(BCD)	52	4√	5√	5/	

The final clusters (A) and (BCD) are the same as they are in Example 12.11. In this case we start with the same initial groups and the first, and only, reassignment is the same. It makes no difference if you start at the top or bottom of the list of items.

12.14. (a) The Euclidean distances between pairs of cereal brands

```
C1
             C2
                   C3
                         C4
                               C5
                                    C6
                                          C7
                                                C8
                                                      C9
                                                           C10
                                                                 C11
                                                                       C12
      0.0
 C1
            0.0
 C2 116.0
     15.5 121.7
                  0.0
      6.4 117.9
                10.0
                        0.0
 C5 103.2
          61.6 100.6 102.1
                             0.0
     72.8
           44.1
                78.4
                      74.4
                            54.3
                                   0.0
     86.4
           71.9
                 82.5
                       84.9 22.3
                                  52.4
 C7
                                         0.0
     15.3 121.5
                       10.1 100.6
                  1.4
                                  78.3
                                        82.4
     46.2 72.6
                 54.7
                       48.9 75.8
                                  32.1
                                        65.2
                                              54.5
     54.9 123.0
                 68.9
                      59.5 134.7
                                  87.8 122.5
                                              68.8
                                                    65.7
                94.7
                       85.8 169.6 121.3 157.0
                                              94.6
                                                    94.5
     81.3 154.7
                                                          47.1
C12
     42.3 114.2
                31.3 38.5 81.1 75.3 60.2
                                             31.0
                                                    59.8
                                                          92.9 121.9
C13 163.2 163.4 177.9 168.1 208.0 155.4 205.1 177.9 148.9 112.4 110.7 198.0
                                                          44.3 67.5
C14
     46.7 90.8
                60.4 51.5 103.8 55.4 92.9
                                              60.3
                                                    28.5
C15
     60.3 170.5
                 50.0
                      56.6 141.5 127.8 121.5
                                              50.0 103.8 101.7 115.6
     46.9 90.8
                60.5 51.6 103.8 55.5 92.9
                                             60.3
                                                    28.5
                                                          44.3 67.6
     23.1 101.0 21.6 21.6 81.4 58.5 63.6
                                                          70.1 100.7
                                             21.4
                                                    37.5
C18 265.7 221.1 280.0 270.6 278.9 233.9 283.3 280.0 235.6 227.7 218.6 294.5
                60.5 65.2 155.9 138.7 136.2 60.5 113.2 102.7 111.7
    68.2 181.9
C20 116.6 71.0 113.2 115.3 19.7 69.9 32.1 113.1 89.3 150.5 183.5
C21 103.0 217.7 96.6 100.6 191.7 174.7 171.6 96.6 148.1 129.7 130.5 111.7
     98.6 160.1 112.6 103.4 181.3 130.5 170.2 112.6 106.9 54.1 22.5 139.2
                                              48.9 61.2 105.4 136.9 20.7
C23
     58.0 102.8
                49.1 54.9 62.4 68.1 41.3
C24
     68.1 181.8
                60.4 65.2 155.8 138.7 136.1
                                              60.4 113.1 102.7 111.6 76.5
                36.2 44.8 82.5 82.1 62.8
                                             36.2 68.9 101.7 130.2
     49.4 121.0
C26 182.8 290.3 186.0 183.8 285.6 250.4 267.2 185.9 220.2 173.8 145.7 210.7
                                                         99.6 113.7 160.9
C27 134.7 99.9 148.2 139.1 150.9 101.1 152.2 148.2 104.2
     16.1 128.3
                14.2
                      14.2 111.1 85.7 92.3
                                             13.7
                                                    59.2
                                                          63.5
                                                                86.3
C29 107.5 159.0 120.3 111.6 180.7 132.1 170.7 120.3 116.0
                                                          54.1
                                                                64.6 144.1
C30
     33.5 120.1
                21.2
                      29.2 90.7
                                  78.8 71.2
                                              21.0
                                                    61.7
                                                          83.1 113.7
     78.9
         80.5
                90.9
                      82.8 108.5
                                  59.2 103.1
                                             90.8
                                                    56.9
                                                          52.6
                                                               90.6 101.7
C32 32.1 122.6 43.5
                     36.0 120.8 83.1 105.0 43.3 51.3 50.9 60.0 65.9
C33 143.1 68.0 141.3 142.4 42.0 84.5 61.1 141.2 109.8 170.6 203.8 120.8
C34 173.0 157.7 187.8 177.9 207.5 155.6 206.8 187.8 151.8 127.0 123.8 205.9
C35 116.2 70.4 112.7 114.9 16.9 69.2 30.4 112.6 89.9 148.8 183.8
C36 114.1 230.0 111.1 112.9 210.2 186.9 190.8 111.1 158.8 129.8 122.7 131.2
                                        34.2
                                                    38.1
                                                         91.1 124.5
C37
     53.1 78.2 51.4
                     52.4 51.6
                                 41.3
                                             51.1
C38
     54.2 100.4
                45.8
                      51.0
                            61.8
                                  63.5
                                        43.5
                                              45.8
                                                    59.0
                                                          99.2 133.6
C39
     48.3 93.5
                42.5
                      45.9 61.0 55.1
                                        43.3
                                              42.5
                                                    49.6
                                                          90.7 125.9
C40 40.6 140.9
                51.6 44.3 139.8 100.7 123.8
                                             51.4
                                                    70.3
                                                          44.1
                                                               46.2
C41 197.8 309.6 194.3 196.6 288.1 268.0 268.1 194.3 237.8 215.5 194.4 209.9
C42 191.1 301.3 190.3 190.8 286.6 260.4 267.3 190.2 229.3 200.8 174.0 209.7
C43 185.2 290.7 189.2 186.6 288.1 251.4 270.2 189.2 221.4 173.6 143.7 214.8
                                                                 C23
      C13
           C14
                 C15
                       C16
                             C17
                                   C18
                                         C19
                                               C20
                                                     C21
                                                           C22
                                                                       C24
C13
      0.0
C14 127.4
           0.0
C15 213.2 105.0
                 0.0
           1.0 105.0
C16 127.4
                       0.0
                69.7 51.3
C17 173.1
          51.3
                             0.0
C18 134.4 220.7 321.2 220.8 270.1
C19 212.5 110.8 16.2 110.9 81.2 322.6
```

```
C20 223.2 117.3 151.2 117.3 94.3 288.6 166.1
                                              0.0
C21 234.6 142.8 50.3 142.8 117.2 347.4 36.5 201.2
          79.1 135.2 79.2 116.8 204.1 131.1 195.9 148.8
                                                          0.0
C22 91.5
           83.3 81.1 83.2 36.8 295.9 96.2 70.9 130.9 153.2
                                                                0.0
C23 204.9
                                        1.4 166.0 36.5 131.1
C24 212.5 110.7 16.0 110.8 81.1 322.6
          86.0 60.0 86.1 35.2 303.9 75.3 91.8 110.1 147.9
                                                               23.2 75.3
C25 207.5
C26 233.8 200.3 159.3 200.3 204.2 342.0 143.8 297.3 121.0 152.7 231.2 143.8
C27 67.1 92.1 193.3 92.2 136.5 141.1 197.4 164.6 227.0 105.1 162.0 197.4
                      59.3 30.1 278.3 55.0 123.1 89.7 104.7 58.5 54.9
C28 174.0
          59.3 46.7
           93.3 144.4
                      93.3 122.6 214.5 141.7 197.4 160.4 51.8 156.3 141.7
C29 83.1
                      73.8 24.6 293.2 66.8 102.5 102.5 130.6 34.3 66.8
           73.8 53.3
C30 191.2
                            78.9 207.0 141.7 124.7 173.2 91.2 104.5 141.7
C31 104.8
           49.4 135.7
                      49.3
          37.5 75.3 37.5 47.4 248.1 78.9 132.4 108.8 79.4 80.7 78.7
C32 150.5
C33 230.0 136.6 181.8 136.5 121.5 283.5 196.3 31.7 231.9 214.1 101.6 196.3
C34 30.1 132.2 226.4 132.3 180.7 107.3 226.8 221.3 250.8 107.0 210.8 226.8
C35 221.6 117.8 150.9 117.7 93.7 289.9 165.8 10.1 201.0 195.7 70.2 165.7
C36 226.8 148.7 71.8 148.7 131.9 341.0 56.0 221.0 28.8 139.2 151.3 56.0
C37 182.4 63.6 95.5 63.6 31.1 270.0 108.7 64.4 144.7 138.6 27.7 108.6
                            34.1 292.4 95.7 74.1 131.3 148.9
                                                              17.1 95.7
C38 198.4
          80.8 81.3 80.9
                      71.6 27.4 282.6 96.8 74.6 132.8 140.6
                                                              21.8 96.7
          71.5
                83.1
C39 188.6
          52.5 71.8 52.6 62.1 252.4 70.9 152.7 96.8 66.6 96.6 70.8
C40 146.6
C41 301.1 227.1 153.1 227.1 213.8 401.5 140.2 295.1 108.9 210.5 228.7 140.1
C42 277.2 214.8 154.9 214.9 209.3 375.5 140.8 294.9 112.9 188.1 229.2 140.7
C43 229.1 200.6 165.0 200.7 207.1 335.7 149.7 300.2 128.8 149.4 235.2 149.6
                                                    C33
                                                          C34
                                                                C35
                                                                      C36
            C26
                       C28
                             C29
                                   C30
                                         C31
                                               C32
      C25
                  C27
C25
      0.0
C26 213.9
            0.0
C27 170.1 257.2
                 0.0
C28 46.5 175.0 148.2
C29 152.5 172.5 103.0 113.8
                             0.0
    20.8 200.3 158.2 30.2 132.8
                                   0.0
C31 111.4 225.7 66.9 91.2 79.1
                                 97.2
                                         0.0
C32 75.0 170.7 126.2 36.4 101.6 62.2 81.5
                                               0.0
C33 122.5 324.8 167.2 151.1 214.1 131.9 137.3 157.0
                                                    0.0
C34 215.5 253.2 58.3 184.8 107.8 201.1 112.6 158.5 225.1
C35 91.3 297.5 163.7 122.7 194.6 101.0 121.9 133.6 33.3 220.7
                                                                0.0
C36 131.0 93.2 227.1 102.7 152.9 120.7 178.1 114.7 250.8 244.4 220.8
                                             72.4 91.2 186.6 63.7 161.4
     43.5 234.6 136.1 60.4 141.6 44.5 81.7
C37
                                             81.1 103.2 205.3 72.0 150.5
    24.7 230.4 156.4 57.3 148.9
                                 30.7
                                       97.7
C38
                                             74.5 102.6 195.3 72.6 150.5
                                 30.7
                                       87.9
     30.1 227.7 146.5 53.6 140.6
C39
                                 71.1 88.4 24.1 177.4 158.4 153.0 98.1
C40 86.9 150.1 132.6 41.9 88.9
          98.9 305.4 186.0 236.3 204.2 264.3 190.2 325.4 315.9 297.0 96.8
C41 209.3
          71.2 286.8 180.8 216.6 203.0 251.2 179.4 324.1 292.0 296.8 94.0
C42 210.6
          17.7 254.4 178.3 170.3 204.2 225.5 172.3 327.1 248.4 300.5 100.9
C43 218.2
           C38
                 C39
                       C40
                             C41
                                 C42 C43
      C37
C37
     0.0
C38
     27.0
           0.0
          10.1
C39
     20.2
                 0.0
C40 90.2
          94.6
               88.5
                       0.0
C41 241.1 232.1 233.1 177.4
                             0.0
C42 237.9 231.7 231.2 164.5
                           35.2 0.0
C43 237.2 233.9 230.8 151.2 108.2 78.7
```

(b) Complete linkage produces results similar to single linkage.

12.15. In K-means method, we use the means of the clusters identified by average linkage as the initial cluster centers.

Final cluster centers for K = 4	Distances between centers
	1 2 3 4
1 110.0 2.1 0.9 215.0 0.7 15.3 7.9 50.0	1 0.0
2 114.4 3.1 1.7 171.1 2.8 15.0 6.6 123.9	2 86.1 0.0
3 86.7 2.3 0.5 26.7 1.4 10.0 5.8 55.8	3 190.0 162.2 0.0
4 112.5 3.2 0.8 225.0 5.8 12.5 10.8 245.0	4 195.4 132.7 275.4 0.0

			K-me	ans			4	clus	ters	
	K	= 2	K	= 3	K	= 4		ngle	Compl	ete
1	C1	1	C1	1	C1	1	C1	1	C1	1
2	C2	1	C2	1	C2	1	C2	.1	C2	1
3	C3	1	C3	1	C3	1	C3	1	C3	
4	C4	1	C4	ī	C4	1	C4			1
5	C5	1	C5	1	C5	1		1	C4	1
6	C6	1	C6				C5	1	C5	1
7	C7	1		1	C6	1	C6	1	C6	1
8	C8		C7	1	C7	1	C7	1	C7	1
9	C9	1	C8	1	C8	1	C8	1	C8	1
		1	C9	1	C9	1	C9	1	C9	1
10	C10	1	C10	1	C12	1	C10	1.	C10	1
11	C12	1	C12	1	C15	1	C11	1	C12	1
12	C14	1	C14	1	C17	1	C12	1	C14	1
13	C15	1	C15	1	C19	1	C13	1	C16	1
14	C16	1	C16	1	C20	1	C14	1	C17	1
15	C17	1	C17	1	C23	.1	C15	1	C20	1
16	C19	1	C19	1	C24	1	C16	1	C23	1
17	C20	1	. C20	1	C25	1	C17	1	C25	1
18	C21	1	C23	1	C28	1	C19	1	C28	1
19	C23	1	C24	1	C30	1	C20	1	C30	1
20	C24	1	C25	1	C33	. 1	C21	1	C31	1
21	C25	1 -	C28	1	C35	1	C22	1	C32	1
22	C26	1	C30	1	C37	1	C23	1	C33	1
23	C28	1	C31	1	C38	1	C24	1	C35	1
24	C30	1	C32	1	C39	1	C25	1	C37	1
25	C32	1	C33	1	C10	2	C27	1	C38	1
26	C33	1	C35	1	C11	2	C28	1	C39	1
27	C35	1	C37	1	C14	2	C29	1		1
28	C36	1	C38	1	C14	2	C30		C40	
29	C37	1	C39	1	C22	2		1	C11	11
30	C38	1	C40	1			C31	1	C13	11
31	C39	1	C21	2	C29	2	C32	1	C22	11
32	C40	1			C31	2	C33	1	C27	11
33	C41		C26	2	C32	2	C34	1	C29	11
		1	C36	2	C40	2	C35	1	C34	11
34	C42	1	C41	2	C21	3	C36	1	C15	15
35	C43	1	C42	2	C26	3	C37	1	C19	15
36	C11	2	C43	2	C36	3 ,	C38	1	C21	15
37	C13	2	C11	3	C41	3	C39	1	C24	15
38	C18	2	C13	3	C42	3	C40	1	C26	15
39	C22	2	C18	3	C43	3	C18	18	C36	15
40	C27	2	C22	3	C13	4	C26	26	C41	15
41	C29	2	C27	3	C18	4	C43	26	C42	15
42	C31	2	C29	3	C27	4	C41	41	C43	15
43	C34	2	C34	3	C34	4	C42	41	C18	18
				-		-			010	-0

12.16 (a), (b) Dendrograms for single linkage and complete linkage follow. The dendrograms are similar; as examples, in both procedures, countries 11, 40 and 46 form a group at a relatively high level of distance, and countries 4, 27, 37, 43, 25 and 44 form a group at a relatively small distance. The clusters are more apparent in the complete linkage dendrogram and, depending on the distance level, might have as few as 3 or 4 clusters or as many as 6 or 7 clusters.

(c) The results for K = 4 and K = 6 clusters are displayed below. The results seem reasonable and are consistent with the results for the linkage procedures. Depending on use, K = 4 may be an adequate number of clusters.

Data Display

Country	Clast MomV-6	ClustMemK=4					
Country 1	ClustMemK=6	2					
2	2	4					
3	1	2					
4	4	4					
5	3	1					
6	6	2	Number of	clusters: 4			
. 7	6	2 2					
8	1 4	4			Within	Average	Maximum
9 10	1	2			cluster	distance	
11	5	3		Number of	sum of	from	from
12	3	1		observations	squares	centroid	
13	2	4	Cluster1	11		4.494	9.049
14	. 6	2	Cluster2	20	318.294	3.613	6.800
15	3	1	Cluster3	3 20	490.251 182.870	11.895 2.681	16.915 7.024
16	6	2	Cluster4	20	102.070	2.001	7.024
17	6 2	2					
18 19	4	4					
20	1	2					
21	3	1					
22	6	2					
23	1	2	Number of	clusters: 6			
24	1	1					
25	4	4			Within	Average	Maximum
26	1 4	2 4			cluster	distance	distance
27 28	4	4		Number of	sum of	from	from
29	4	4		observations	squares	centroid	centroid
30	6	2	Cluster1	10	90.154	2.884	4.008
31	6	2	Cluster2	8	22.813	1.613	2.428
32	6	2	Cluster3	8	116.518	3.346	6.651 5.977
33	3	1	Cluster4	10	78.508 490.251	2.513 11.895	16.915
34	3 2	1 4	Cluster5	3 15	128.783	2.669	5.521
35	1	1	Cluster6	13	120.705		
36 37	4	4					
38	6	2					
39	4	4	V Ide	4: 1			
40	5	3	A Trac	mical			
41	3	1					
42	2	4					
43	4	4					
44	2 2	4					
45 46	5	3					
46	1	2					
48	6	4					
48 49	6	2					
50	6	4					
51	1	1					
52	3	1					
53	6	2 4					
54	2	4					

12.17 (a), (b) Dendrograms for single linkage and complete linkage follow. The dendrograms are similar; as examples, in both procedures, countries 11 and 46 form a group at a relatively high level of distance, and countries 2, 19, 35, 4, 48 and 27 form a group at a relatively small distance. The clusters are more apparent in the complete linkage dendrogram and, depending on the distance level, might have as few as 3 or 4 clusters or as many as 6 or 7 clusters.

(c) The results for K = 4 and K = 6 clusters are displayed below. The results seem reasonable and are consistent with the results for the linkage procedures. Depending on use, K = 4 may be an adequate number of clusters. The results for the men are similar to the results for the women.

Data Display

(Count	try	Clusti	MemK=4	ClustMemK=6					
	1			2	2					
	2			4	4					
	3			2	1					
	4			4	4					
	5									
	6			1	3	Manufa a sa				
	-			4	6	Muliber 01	f clusters: 4			
	7			2	2					
	8			2	1			w		
	9			4	2			Wi thin	Average	Maximum
	10			2	2			cluster	distance	distance
	11			3	5		Number of	sum of	from	from
	12			2	1		observations	squares	centroid	
	13			2	1	Cluster1	10	169.042	3.910	5.950
	14			2 .	2	Cluster2	21	73.281	1.684	3.041
	15			1	3	✓ Cluster3	2	49.174	4.959	4.959
	16			2	2	Cluster4	21	56.295	1.481	3.249
	17			4	6				2.301	3.243
	18			4	4			*		
	19			4	4					
	20			2	1	Number of	clusters: 6			
	21			2	ī					
	22			2	ī					
	23			- 2	ī			Within	Average	Maximum
	24			1	3			cluster		
	25			4	2		Number of	sum of	from	from
	26			- 2	1		observations	squares	centroid	
	27			4	4	Cluster1	12	26.806	1.418	2.413
	28			. 1	6	Cluster2	15	18.764	1.048	1.844
	29			±. 1	6	Cluster3	10	169 . 042	3.910	
	30			<u>.</u> 1	_	Cluster4	10	10.137	0.935	5.950
				_	4	Cluster5	2	49.174		1.559
	31			3	- 4	Cluster6	5	6.451	4.959	4.959
	32		2		1	01000010	3	0 - 45T	1.092	1.606
	33		1		3					
	34		1		3					
	35		4		4	/ 7	Edentical			
	36		1		3	٠,	Lowinted			
_	37		4	•	4					
_	8		4		2					
. 3	9		2		2		* • · ·			
4	0		1		3					
4	1		1		3					
4	2		. 4		2					
4	3		4		4					
4	4		2		1					
4	5		4		2					
4	6		3		5					
			_							
4	7		1		3					

12.19.

The stress of final configuration for q=5 is 0.000. The sites in 5 dimensions and the plot of the sites in two dimensions are

COORDINATES IN 5 DIMENSIONS

VARIABLE	PLOT	DIMENSION					
		1	2	3	4	5	
P1980918	· A	.51	28	.24	68	.12	
P1931131	В	-1.32	. 69	. 62	05	02	
P1550960	C	.47	07	.19	. 30	.06	
P1530987	D	.39	.09	.05	. 34	.10	
P1361024	E	.23	. 30	32	. 05	.12	
P1351005	F	. 47	.14	22	14	28	
P1340945	Ğ	. 58	35	.46	.18	10	
P1311137	H	-1.12	-1.12	31	. 05	01	
P1301062	I	22	. 61	70	06	.01	

DIMENSION 2

The results show a definite time pattern (where time of site is frequently determined by C-14 and tree ring (lumber in great houses) dating).

12.20. A correspondence analysis of the mental health-socioeconomic data

lambda 0.1613 0.0371 0.0082 0.0000

Cumulative inertia 0.0260 0.0274 0.0275

Cumulative proportion 0.9475 0.9976 1.0000

The lowest economic class is located between moderate and impaired. The next lowest class is closest to impaired.

12.21. A correspondence analysis of the income and job satisfaction data


```
    V

    -0.6272 -0.2392 0.7412
    -0.6503 -0.6661 -0.3561

    0.2956 0.8073 0.5107
    -0.1944 0.5933 -0.7758

    0.7206 -0.5394 0.4356
    -0.3400 0.3159 0.2253

    0.6510 -0.3233 -0.4696
```

lambda 0.1069 0.0106 0.0000

Cumulative inertia 0.0114 0.0116

Cumulative proportion 0.9902 1.0000

Very satisfied is closest to the highest income group, and very dissatisfied is below the lowest income group. Satisfaction appears to increase with income.

12.22. A correspondence analysis of the Wisconsin forest data


```
U
-0.3877 -0.2108 -0.0616 0.4029 -0.0582 0.3269 0.4247 -0.1590
-0.3856 -0.2428 -0.0106 0.4345 -0.1950 -0.1968 -0.2635 -0.3835
-0.3495 -0.1821 0.4079 -0.5718 0.2343 -0.1167 0.3294 -0.1272
-0.3006 0.1355 0.0540 -0.2646 0.0006 -0.0826 -0.6644 -0.3192
0.2022 0.5400 0.4626 0.2687 -0.0978 -0.3943 0.2668 -0.3606
0.1852 -0.0756 -0.5090 -0.0291  0.6026 -0.1955  0.1520 -0.5154
0.3140 0.0644 0.3394 0.1567 0.3366 0.6573 -0.2507 -0.2267
0.3549 -0.2897 -0.0345 -0.3393 -0.5994 0.2002 0.1262 -0.4907
-0.3904 -0.0831 -0.4781 0.4562 -0.0377 0.3369 0.4071 -0.3511
-0.5327 -0.4985 0.4080 0.0925 -0.0738 -0.3420 -0.2464 -0.3310
-0.1999 0.3889 0.4089 -0.3622 0.4391 0.3217 0.1808 -0.4260
0.0698 0.5382 -0.1726 0.3181 -0.0544 -0.1596 -0.6122 -0.4138
-0.0820 -0.0151 -0.4271 -0.7086 -0.4160 -0.1685 0.0307 -0.3258
0.4005 0.0831 0.1478 0.1866 -0.0042 -0.5895 0.5587 -0.3412
0.4689 -0.2476  0.3150  0.0726 -0.4771  0.5142 -0.0763 -0.3412
```

lambda

0.7326 0.3101 0.2685 0.2134 0.1052 0.0674 0.0623 0.0000

Cumulative inertia

0.5367 0.6329 0.7050 0.7506 0.7616 0.7662 0.7700

Cumulative proportion

0.6970 0.8219 0.9155 0.9747 0.9891 0.9950 1.0000

12.23. We construct biplot of the pottery type-site data, with row proportions as variables.

S				Eigenve			
0.0511	-0.0059	-0.0390	-0.0061	0.6233	0.5853	0.1374	-0.5
-0.0059	0.0084	-0.0051	0.0025	0.0064	-0.2385	-0.8325	-0.5
-0.0390	-0.0051	0.0628	-0.0187	-0.7694	0.3464	0.1951	-0.5
-0.0061	0.0025	-0.0187	0.0223	0.1396	-0.6932	0.5000	-0.5

Eigenvalues of S 0.0978 0.0376 0.0091 0.0000

pc1 pc2 pc3 pc4
St. Dev. 0.3128 0.1940 0.0952 0
Prop. of Var. 0.6769 0.2604 0.0627 0
Cumulative Prop. 0.6769 0.9373 1.0000 1

As in the correspondence analysis.

12.24. We construct biplot of the mental health-socioeconomic data, with column proportions as variables.


```
Eigenvectors of S
  0.003089
            0.000809 -0.000413 -0.003485
                                             -0.6487
                                                      0.0837 -0.5676
                                                                       0.5
  0.000809 0.000329 -0.000284 -0.000853
                                             -0.1685
                                                      0.4764
                                                              0.7033
                                                                      0.5
 -0.000413 -0.000284 0.000379
                                0.000318
                                              0.0794 - 0.8320
                                                              0.2270
                                                                      0.5
 -0.003485 -0.000853
                      0.000318
                                0.004021
                                              0.7379 0.2719 -0.3628
                                                                      0.5
 Eigenvalues of S
  0.007314 0.000480
                      0.000024
                                0.000000
                           pc2
                                  pc3 pc4
        St. Dev. 0.0855 0.0219 0.0049
   Prop. of Var. 0.9355 0.0614 0.0031
Cumulative Prop. 0.9355 0.9969 1.0000
```

The biplot gives similar locations for health and socioeconomic status. A reflection about the 45 degree line would make them appear more alike.

12.25. A Procrustes analysis of archaeological data

A two-dimensional representation of archaeological sites produced by metric multidimensional scaling

A two-dimensional representation of archaeological sites produced by nonmetric multidimensional scaling

Site	Metric	MDS	Nonmet	ric MDS
P1980918	-0.512	-0.278	-0.276	-0.829
P1931131	1.318	0.692	1.469	0.703
P1550960	-0.470	-0.071	-0.545	-0.156
P1530987	-0.387	0.088	-0.338	-0.048
P1361024	-0.234	0.296	-0.137	0.379
P1351005	-0.469	0.137	-0.642	0.387
P1340945	-0.581	-0.349	-0.889	-0.409
P1311137	1.118	-1.122	1.262	-0.989
P1301062	0.216	0.608	0.096	0.963
U		$\boldsymbol{v}^{(i)} = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		
-0.9893	-0.1459	-0.9977	-0.0679	
-0.1459	0.9893	-0.0679	0.9977	
Q		Lambda		
0.9969	0.0784	4.7819	0.000	
-0.0784	0.9969	0.0000	2.715	

To better align the metric and nonmetric solutions, we multiply the nonmetric scaling solution by the orthogonal matrix $\hat{\mathbf{Q}}$. This corresponds to clockwise rotation of the nonmetric solution by 4.5 degrees. After rotation, the sum of squared distances, 0.803, is reduced to the Procrustes measure of fit $PR^2=0.756$.

12.26 The dendrograms for clustering Mali Family Farms are given below for average linkage and Ward's method. The dendrograms are similar but a moderate number of distinct clusters is more apparent in the Ward's method dendrogram than the average linkage dendrogram. Both dendrograms suggest there may be as few as 4 clusters (indicated by the checkmarks in the figures) or perhaps as many as 7 or 8 clusters. Reading the "right" number of clusters from either dendrogram would depend on the use and require some subject matter knowledge.

12.27 If average linkage and Ward's method clustering is used with the standardized Mali Family Farm observations, the results are somewhat different from those using the original observations and different from one another. The dendrograms follow. There could be as few as 4 clusters (indicated by the checkmarks in the figures) or there could be as many as 8 or 9 clusters or more. The distinct clusters are more clearly delineated in the Ward's method dendrogram and if we focus attention on the 4 marked clusters, we see the two procedures produce quite different results.

12.28 The results for K = 5 and K = 6 clusters follow. The results seem reasonable and are similar to the results for Ward's method considered in Exercise 12.26. Note as the number of clusters increases from 5 to 6, cluster 1 in the K = 5 solution is partitioned into two clusters, 1 and 6, in the K = 6 solution, there is no change in the other clusters. Although not shown, K = 4 is a reasonable solution as well.

Data Display

Number of clusters: 5

		Within	Average	Maximum
		cluster	distance	distance
	Number of	sum of	from	from
	observations	squares	centroid	centroid
Cluster1	6	2431.094	18.498	33.076
Cluster2	11	4440.330	19.511	24.647
Cluster3	35	3298.539	8.878	21.053
cluster4	12	1129.083	9.072	16.024
Cluster5	8	1943.156	15.030	19.619

Number of clusters: 6

		Within	Average	Maximum
		cluster	distance	distance
	Number of	sum of	from	from
	observations	squares	centroid	centroid
Cluster1	4	696.609	13.005	15.474
Cluster2	11	4440.330	19.511	24.647
Cluster3	35	3298.539	8.878	21.053
Cluster4	12	1129.083	9.072	16.024
eluster5	8	1943.156	15.030	19.619
Cluster6	2	1005.125	22.418	22.418

/ Identical for two choices of K

12.29 The results for K = 5 and K = 6 clusters follow. The results seem reasonable and are similar to the results for Ward's method considered in Exercise 12.27. Note as the number of clusters increases from 5 to 6, clusters 3 and 4 in the K=5 solution lose 1 and 2 farms respectively to form cluster 6 in the K = 6 solution, there is no change in the other clusters. These results using standardized observations are somewhat different from the corresponding results using the original data. It makes a difference whether standardized or un-standardized observations are used.

rm.	SdClusMemK=5	SdClusMemK= 1
2	1 5	5
3	3	3
4	3 5	3 5
5 6	1	1
7	3	3
8 9		5
0 '	3	4
1 2	5 3 3 3 3	3
3	3	3
4		3
5 6	3	3
7	4	4
8 9	3 2 3	2
0	3	3
1	3	3 3 4
2	4	4
4	4 3	6
5	3	3
7	3	3
8	4 2	
0	3	3
1	2 3 4 3 3	4
3	3	
14	4 3	
16	4	
17 18	3	
9	3	1
0	3	
12	4	
13	5 3	
14	3	
16	4	
17 18	3	
19	3	
50 51	3 3 3 2 3	
52	4	
53	3 2	
54 55	5	
56	4	
57 . 58	4	
59	4	
60	4 4 5 3 3	
61 62	3	
63	4.	
64 65	4 3 3	
66	3	
67	4 2 1 1	

Number of clusters: 5

		Within cluster	Average distance	Maximum distance
- Marie	Number of	sum of	from	from
	observations	squares	centroid	centroid
Cluster1	5	14.050	1.568	2.703
eluster2	5	56.727	3.288	4.259
Cluster3	35	55.318	1.211	1.993
Cluster4	20	84.099	1.954	3.172
Cluster5	7	63.071	2.970	3.482

Number of clusters: 6

		Within	Average	Maximum
		cluster	distance	distance
	Number of	sum of	from	from
	observations	squares	centroid	centroid
Cluster1	5	14.050	1.568	2.703
. Luster2	5	56.727	3.288	4.259
Cluster3	34	51.228	1.183	1.951
Cluster4	18	65.501	1.806	3.195
LeTuster5	7	63.071	2.970	3.482
Cluster6	3	7.960	1.604	1.954

Identical for two choices of K

12.30 The cumulative lift (gains) chart is shown below. The y-axis shows the percentage of positive responses. This is the percentage of the total possible positive responses (20,000). The x-axis shows the percentage of customers contacted, which is a fraction of the 100,000 total customers. With no model, if we contact 10% of the customers we would expect 10%, or $2,000 = .1 \times 20,000$, of the positive responses. Our response model predicts 6,000 or 30% of the positive responses if we contact the top 10,000 customers. Consequently, the y-values at x = 10% shown in the chart are 10% for baseline (no model) and 30% for the gain (lift) provided by the model. Continuing this argument for other choices of x (% customers contacted) and cumulating the results produces the lift (gains) chart shown. We see, for example, if we contact the top 40% of the customers determined by the model, we expect to get 80% of the positive responses.

12.31 (a) The Mclust function, which selects the best overall model according to the BIC criterion, selects a mixture with four multivariate normal components. The four estimated centers are:

$$\widehat{\mu}_{1} = \begin{bmatrix} 3.3188 \\ 6.7044 \\ 0.3526 \\ 0.1418 \\ 11.9742 \end{bmatrix} \quad \widehat{\mu}_{2} = \begin{bmatrix} 5.1806 \\ 5.2871 \\ 0.5910 \\ 0.1794 \\ 5.5369 \end{bmatrix}, \quad \widehat{\mu}_{3} = \begin{bmatrix} 7.2454 \\ 4.8099 \\ 0.3290 \\ 0.2431 \\ 3.2834 \end{bmatrix}, \quad \widehat{\mu}_{4} = \begin{bmatrix} 8.6893 \\ 4.1730 \\ 0.5158 \\ 0.2445 \\ 7.4846 \end{bmatrix}$$

and the estimated covariance matrices turn out to be restricted to be of the form $\eta_k \mathbf{D}$ where \mathbf{D} is a diagonal matrix.

The estimated

$$\widehat{\mathbf{D}} = \text{diag}(11.2598, 2.7647, 0.3355, 0.0053, 18.0295)$$

and the estimated scale factors are $\hat{\eta}_1 = 0.0319$, $\hat{\eta}_2 = 0.3732$, $\hat{\eta}_3 = 0.0909$, $\hat{\eta}_4 = 0.1073$.

The estimated proportions are $\hat{p}_1 = 0.1059$, $\hat{p}_2 = 0.4986$, $\hat{p}_3 = 0.1322$, $\hat{p}_4 = 0.2633$.

This minimum BIC model has BIC = -547.1408.

(b) The model chosen above has 4 multivariate normal components. These four components are shown in the matrix scatter plot where the observations have been classified into one of the four populations.

The matrix scatter plot of the true classification, is given in the next figure.

Comparing the matrix scatter plot of the four group classification with the matrix scatter plot of the true classification, we see how the oil samples from the Upper sandstone are essentially split into two groups. This is clear from comparing the two scatter plots for (x_1, x_2) .

We also repeat the analysis using the me function to select mixture distribution with K=3 components. We further restrict the covariance matrices to satisfy $\Sigma_k = \eta_k \mathbf{D}$. The K=3 groups selected by this function have estimated centers

$$\widehat{\mu}_{1} = \begin{bmatrix} 5.3395 \\ 5.2467 \\ 0.5485 \\ 0.1862 \\ 5.2465 \end{bmatrix}, \quad \widehat{\mu}_{2} = \begin{bmatrix} 8.5343 \\ 4.2762 \\ 0.4988 \\ 0.2453 \\ 6.6993 \end{bmatrix}, \quad \widehat{\mu}_{3} = \begin{bmatrix} 3.3228 \\ 6.7093 \\ 0.3511 \\ 0.1418 \\ 11.9780 \end{bmatrix},$$

Figure 1: Classification into four groups using Mclust

Figure 2: True classification into sandstone strata

the estimated diagonal matrix

$$\widehat{\mathbf{D}} = \text{diag}(10.1535, 2.6295, 0.2969, 0.0052, 24.0955)$$

with estimated scale parameters $\hat{\eta}_1 = 0.3702$, $\hat{\eta}_2 = 0.1315$, $\hat{\eta}_3 = 0.0314$, with resulting BIC = -534.0949.

The estimated proportions are $\hat{p}_1 = 0.5651$, $\hat{p}_2 = 0.3296$, $\hat{p}_3 = 0.1052$.

If we use this method to classify the oil samples, the following samples are misclassified:

and the misclassification error rate is 33.93%.