HOMEWORK 5

SAI SIVAKUMAR

This assignment has two problems.

- (a) Show, if $U : \mathbb{C} \to \mathbb{R}$ is harmonic and bounded below, then U is constant. [Suggestion: Observe there is an entire function f whose real part is U and consider the function $\exp(-f)$.]
- (b) Show if $f: \mathbb{C} \to \mathbb{C}$ is entire and there is an $M \geq 0$ and $N \in \mathbb{N}$ such that

$$|f(z)| \le M|z|^N$$

for all z, then f is a polynomial.

Proof. (a) Let M be the real constant such that $U(z) \geq M$ for all $z \in \mathbb{C}$.

Since \mathbb{C} is simply connected we can find a harmonic complement $V: \mathbb{C} \to \mathbb{R}$ such that $f: \mathbb{C} \to \mathbb{C}$ given by f(z) = U(z) + iV(z) is analytic (so U is the real part of an analytic function). Then since -f, exp are entire, so is $\exp(-f)$ and

$$|\exp(-f(z))| = |\exp(-U(z) - iV(z))| = |\exp(-U(z))||\exp(-iV(z))|$$
$$= |\exp(-U(z))|$$
$$\leq |\exp(-M)|$$

for all $z \in \mathbb{C}$. Thus the entire function $\exp(-f)$ is bounded above so it must be a constant function by Liouville's theorem. So for all $z \in \mathbb{C}$, $\exp(-f(z)) = c$ for some $c \in \mathbb{C}$, from which it follows that f(z) must be a constant; as a result $U = \operatorname{Re}(f)$ is constant.

(b) For any R > 0, since f is entire, f is analytic on $N_R(0)$. Furthermore, |f| will be uniformly bounded above by MR^N on $N_R(0)$. Then by a Cauchy estimate we have for each $n \ge 0$, $|f^{(n)}(0)| \le n!MR^N/R^n$. Since R was arbitrary, for n > N we may

take R arbitrarily large so that $|f^{(n)}(0)|$ vanishes, and for n < N we may take R arbitrarily small so that $|f^{(n)}(0)|$ vanishes also. Hence for $n \neq N$, $f^{(n)}(0) = 0$, and only $|f^{(N)}(0)|$ could be nonzero.

Since f is entire we may expand f as a power series about the origin. Then with the above we have for any $z \in \mathbb{C}$, $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = \frac{f^{(N)}(0)}{N!} z^N$. So f is a monomial.