Context Sensitive Memory

- key/value pairs
 - lacktriangle keys and values are *vectors* of length d
- like a Python dict

$$egin{array}{c|c} {\sf Key} & {\sf Value} \\ \hline k_1 & v_1 \\ \hline k_2 & v_2 \\ \hline \end{array}$$

 $\dot{:}\, k_{\bar{T}} \mid v_{\bar{T}}$

- Unlike a dict:
 - a query always returns a value
 - even if the query does not exactly match any key

Match a query q_1 against each key

- ullet query is a vector of length d (just like keys)
- ullet $\operatorname{score}(q_i,k_j)$ is a measure of the similarity of query q_i and key k_j

$$\vdots k_{\bar{T}} \, | \, v_{\bar{T}} | \, q_1 \cdot k_{\bar{T}}$$

Here we use dot product (cosine similarity) as our measure of similarity of query and key.

Normalize the scores: turn them into weights lpha(q,k) so that they sum to 100%

• using a Softmax to exaggerate the differences

Key	Value	Score(q,k)	lpha(q,k)	
k_1	v_1	$q_1\cdot k_1$	$\operatorname{Norm}(q_1,k_1)$	
k_2	v_2	$q_1 \cdot k_2$	$Norm(q_1, k_2)$	

 $\dot{:}\, k_{ar{T}}\, |\, v_{ar{T}}\, |\, q_1 \cdot k_{ar{T}}\, |\, \mathrm{Norm}(q_1,k_{ar{T}})$

Lookup returns the weighted sum of values

$$\sum_i lpha(q,k_i) * v_i$$

This is similar to a Python dict lookup except

- a value is *always* returned, even if there is no **exact** match of the query with any key
- if there is an exact match with one key: a single Score should be 100% and all others equal to 0%

We call this a Soft lookup

Multiple queries at once

We can execute many queries in parallel.

Let Q be a matrix of shape (T imes d)

- ullet a collection of T queries
 - lacktriangle each a vector of length d, like the keys
- Let K be a matrix of shape $(ar{T} imes d)$
 - the \bar{T} keys in the CSM
- ullet Let V be a matrix of shape $(ar{T} imes d)$
 - lacksquare the $ar{T}$ values in the CSM

We can compute the score of each query againsts each key via matrix multiplication

$$Q*K^T$$

which has shape $(T imes ar{T})$

ullet each query against the $ar{T}$ keys

And the weighted (un-normalized) sum of values of all queries can be obtained by $Q*K^T*V$

which has shape (T imes d)

ullet T query results, each of length d

```
In [2]: print("Done")
```

Done