Programmation synchrone

Adrien Guatto

2020-2021

Ces notes de cours proposent une introduction à la programmation des systèmes réactifs par le biais des langages de programmation dits *synchrone*. Elles correspondent à un enseignement délivré durant l'année universitaire 2020–2021 à l'Université de Paris, en Master 2 Informatique ainsi qu'à l'École d'Ingénieur Denis Diderot.

Table des matières

Introduction 1

Programmes et systèmes réactifs Langages synchrones 4

Le reste du cours

La programmation synchrone à flots de données 6

Premiers programmes 8

Programmation flots de données et causalité

Introduction

L'apprentissage de la programmation se structure traditionnellement le long de deux axes :

- 1. la pratique de la programmation dans des langages variés, par exemple Java, C ou OCaml;
- 2. l'étude de concepts et techniques algorithmiques indépendants du langage de programmation, par exemple l'algorithmique des tris, ou encore celle des graphes.

Le but du présent cours est de prolonger ces deux axes dans une direction qui devrait être nouvelle pour vous : celle des programmes *réactifs*, par opposition aux programmes *transformationnels* ¹.

Programmes et systèmes réactifs

Un programme transformationnel lit une entrée, la traite, puis produit un résultat complet en temps fini. L'utilitaire sort d'UNIX, qui trie une liste de lignes par ordre alphabétique, constitue un exemple très simple de programme transformationnel. Un exemple plus sophistiqué est fourni par n'importe quel compilateur capable de traduire un fichier source en un fichier en langage cible ² réutilisable ³. La plupart des

Version du 6 octobre 2020. Je suis preneur de toute coquille, erreur ou remarque par courriel à l'adresse adrien@guatto.org.

Ne pas redistribuer.

(Début du cours 01).

10

 La distinction entre ces deux classes de programmes est traditionnellement attribuée à Zohar Manna et Amir Pnueli [6].

- 2. Par exemple, le langage machine compris par votre processeur pour gcc, ou le code-octet de la machine virtuelle Java pour javac.
- 3. Le cas des compilateurs à la volée (*just-in-time*), qu'on trouve notamment dans les navigateurs web, est plus complexe et ne rentre pas facilement dans la dichotomie transformationnel *vs.* réactif.

programmes que vous avez écrits jusqu'ici sont transformationnels.

Par opposition, un programme réactif est en interaction continuelle avec un environnement extérieur qu'il va chercher à contrôler, surveiller ou réguler. Cet environnement extérieur est généralement un environnement physique, que notre programme observe par le biais de capteurs et influence par le biais d'actuateurs — voir fig. 1. Pensez au pilote automatique d'un avion (fly-by-wire en anglais), au firmware du modem 4G de votre téléphone, ou plus modestement au contrôleur de votre four à micro-ondes.

Question 1. Pouvez-vous citer d'autres exemples de programmes transformationnels? De programmes réactifs? De programmes qui ne semblent pas appartenir nettement à un des deux cotés de cette classification?

Un programme réactif ne peut généralement pas être considéré en isolation de son environnement extérieur. Par exemple, le pilote automatique d'un avion fait des hypothèses sur l'environnement aérien (altitude, force du vent, etc.) ainsi que sur l'avion lui même (poids, portance, etc.). Pour cette raison, on parlera généralement de système réactif pour englober sous un même terme le logiciel et son environnement, en insistant sur leur interdépendance ⁴.

En plus de cette définition générale, beaucoup de systèmes réactifs partagent un petit nombre de caractéristiques essentielles, que nous allons maintenant aborder.

Criticité. Certains programmes réactifs contrôlent des dispositifs physiques où l'erreur peut avoir des conséquences catastrophiques sur la vie humaine, ou bien un coût financier démesuré. Citons deux erreurs restées tristement célèbres.

- Le 4 juin 1996, le premier vol d'Ariane 5 aboutit à la destruction du lanceur 37 secondes après son décollage (fig. 2). Une partie du logiciel avait été reprise d'Ariane 4 sans être mise à jour pour tenir compte de l'évolution des caractéristiques physiques du lanceur ⁵ .
- Entre 1985 et 1987, les machines de radiothérapie Therac-25 (fig. 3) ont causé six irradiations massives, dont trois mortelles. Le tout a été causé par la combinaison d'une pratique défaillante du génie logiciel (manque de test), de l'absence de protections physiques (jugées redondantes), et de la présence de bogues de programmation concurrente de type "condition de course" (race condition).

Ces systèmes réactifs, où l'erreur est inadmissible, sont dits *critiques*. Leur conception et réalisation doit assurer un haut niveau de sûreté, et exige donc l'emploi d'une méthodologie adaptée.

Question 2. *Pouvez-vous citer un exemple de système critique dans le secteur* des transport? Dans le secteur bio-médical? Dans le secteur militaire?

FIGURE 1: système réactif générique.

4. On verra ultérieurement que cette interdépendance se traduit de façon concrète par la pratique qui consiste à développer simultanément le programme réactif et un modèle logiciel de son environnement physique, afin de simuler leur interaction.

FIGURE 2: vol 501 d'Ariane 5.

FIGURE 3: machine Therac-25.

5. On peut approfondir sur les causes logicielles de cet échec et leurs conséquences matérielles en lisant le rapport de la commission d'enquête. Une copie est disponible en ligne.

Contraintes temporelles. Les programmes réactifs sont souvent soumis à des contraintes dites de temps-réel — c'est presque toujours le cas s'ils appartiennent à un système critique. Un programme temps-réel doit absolument réagir en un temps borné maximal à certains changements de l'environnement. Manquer cette échéance peut entraîner un échec catastrophique de tout le système. Par exemple, le système TCAS II, employé dans l'aviation civile, est chargé d'avertir un pilote en cas de présence d'un appareil intrus dans une de ses trois zones d'intérêt (cf. fig. 4). Le pilote doit être averti très rapidement pour lui laisser le temps de réagir avant qu'une collision ait pu se produire.

Un des facteurs principaux qui impose des contraintes temps-réel aux programmes réactifs est leur interaction avec l'environnement physique. L'évolution de celui-ci est régie par des lois mathématiques qui évoluent en temps continu. À l'inverse, l'exécution du programme réactif prend la forme d'une séquence de transitions discrètes, autrement dit, en temps discret. Dès lors, il faut s'interroger sur la capacité du programme réactif à se faire une idée juste du système physique. Il s'agit d'un problème d'échantillonage : le programme réactif doit observer le système physique à la bonne fréquence, ni trop lente, ni trop rapide. Autrement dit, la fréquence de réaction du programme fait partie intégrante de l'algorithme employé ⁶.

Mathématiques dédiées. Le paragraphe précédent illustre l'importance des mathématiques appliquées dans la conception d'un programme réactif en interaction avec un environnement. En général, cet environnement évolue au cours du temps selon ses propre lois — on parle alors de système dynamique. La sous-discipline des mathématique appliquées qui se consacre au contrôle des systèmes dynamiques s'appelle l'automatique (control theory en anglais). Ce contrôle peut passer par des dispositifs numériques, mais aussi purement électriques ou mécaniques 7. Les théorèmes d'automatique fournissent par exemple des garanties sur la correction de l'échantillonage, comme nous en avons discuté ci-dessus, mais aussi des outils d'analyse du comportement des systèmes dynamiques.

Le présent cours n'est pas un cours de mathématiques, aussi nous ne traiterons pas d'automatique à proprement parler. Toutefois, nous ferons référence à certains de ses résultats à plusieurs reprises, et nous montrerons comment certains concepts issus de l'automatique sont utiles pour la programmation de systèmes réactifs, sans détailler leurs sous-bassements théoriques 8.

Contraintes de ressources. Enfin, les programmes réactifs se retrouvent en général exécutés par du matériel informatique dont c'est la seule fonction. On parle typiquement de système embarqué. De tels systèmes

FIGURE 4: Zones d'intérêt du système d'évitement de collision TCAS II.

6. La littérature sur les systèmes tempsréel distingue souvent la correction fonctionnelle des contraintes temps-réel, et propose de les considérer indépendamment. Cet exemple montre que cette approche n'est pas toujours pertinente.

7. Un exemple célèbre de dispositif de contrôle mécanique est le régulateur à boules de James Watt.

Il permet de maintenir une machine à vapeur à une vitesse quasiment constante en contrôlant l'arrivée de vapeur. Celle-ci diminue si la machine est trop rapide, et augmente si elle est trop lente.

8. Si vous souhaitez découvrir ceux-ci, le livre d'Åström et Murray [7] offre une introduction à l'automatique illustrée de nombreux exemples. La deuxième édition est disponible en ligne.

sont généralement soumis à des impératifs de coûts forts, surtout lorsqu'ils doivent être produits à de nombreux exemplaires dans une perspective commerciale (pensons, par exemple, aux microcontrôleurs qu'on trouve dans les fours à micro-ondes actuels). Ces impératifs de coût exigent généralement des programmes réactifs qu'ils soient économes en temps, en espace, en énergie.

La programmation des systèmes embarqués, envisagée sous l'angle de l'optimisation de l'usage des ressources, est un sujet riche, connecté à de nombreux sous-domaines de l'informatique dont la compilation, les systèmes d'exploitation ou l'architecture des processeurs. Dans ce cours, nous nous focaliserons néanmoins sur les aspects de haut niveau (expressivité, sûreté) de la programmation réactive dans la mesure où les aspects bas-niveau sont traités dans d'autres cours.

Langages synchrones

On a vu que les programmes réactifs peuvent être critiques, doivent généralement obéir à des contraintes temporelles et de ressources, et reposent sur des théories mathématiques dédiées, notamment l'automatique. Il est donc légitime pour un langage de programmation dédié aux systèmes réactifs de chercher à faciliter l'écriture de programmes mettant en jeu des procédés de contrôle issus de l'automatique, tout en assurant un niveau de sûreté élevé, et en étant économe en ressources.

Les langages de programmation synchrones suivent une telle voie. Issus de la recherche en informatique française, allemande et américaine depuis les années 1980, ils reposent sur une notion de temps discret global qui facilite la mise au point des programmes réactifs. Leur usage est désormais routinier, notamment dans l'industrie du transport. À titre d'exemple, le langage synchrone SCADE 6 a servi à la réalisation des commandes de vol du célèbre Airbus A380.

Figure 5: les langages synchrones à flots de données, du protolangage Spécification Assistée par Ordinateur (SAO) d'Airbus (à gauche), au langage industriel contemporain SCADE 6, développé par la compagnie Ansys (à droite).

Si plusieurs familles de langages synchrones existent, nous nous focaliserons sur celle des langages synchrones à flots de données (data-flow en anglais) 9. Ceux-ci sont en effet largement les plus utilisés dans l'industrie, tout en restant en développement actif dans le monde universitaire. Ils facilitent la programmation réactive en offrant des concepts proches à la fois de l'automatique et de la programmation fonctionnelle. Ils sont issus de travaux pionniers de chercheurs grenoblois, qui ont voulu comprendre et généraliser la méthodologie empirique suivie par les ingénieurs pour concevoir les premiers dispositifs de contrôle numériques ¹⁰. En une quarantaine d'années, ces langages ont contribué à l'évolution graduelle d'une méthodologie basée sur des schémas informels, suggestifs mais sans contenu calculatoire, à de véritables langages de programmation rigoureux, dotés d'une sémantique solide et de compilateurs sophistiqués (fig. 5).

Le reste du cours

Le but de ce cours est donc d'offrir une introduction aux systèmes réactifs ainsi qu'aux langages synchrones. Il sera structuré selon les deux axes décrits au début de ce texte, programmation et algorithmique, auxquels on adjoindra un troisième sujet, l'implémentation des langages synchrones, qui occupera la fin du semestre.

Tout d'abord, on pratiquera la programmation dans un langage synchrone à flots, le langage Heptagon. Heptagon est un langage très proche de SCADE 6, mais développé par des universitaires. Il dispose de fonctionnalités modernes : compilation séparée, automates imbriqués, gestion des tableaux. Sa proximité vis-à-vis de SCADE vous assure que vos compétences seront transférables facilement. De plus, il s'agit d'un logiciel libre.

Dans un second temps, nous discuterons des bases d'automatique appliquée qui servent de soubassements algorithmiques à la plupart des programmes réactifs. Nous n'entrerons quasiment pas dans les détails mathématiques, adoptant à la place une approche expérimentale de la conception de contrôleurs.

Enfin, nous terminerons le semestre avec une introduction à l'implémentation des langages synchrones. Il s'agit d'étudier les analyses statiques et techniques de génération de code employées par les compilateurs, les secondes reposant sur les premières. Pour bien comprendre leur fonctionnement, une initiation à la sémantique formelle des langages synchrones sera indispensable.

- 9. On pourra trouver un panorama historique des autres familles de langages synchrones dans l'article de Benveniste
- 10. On peut lire l'article [3] original de ces chercheurs au sujet du langage Lustre, l'ancêtre commun de tous les langages synchrones à flots de données.

Vous pouvez déjà avoir un aperçu du langage en consultant son site.

http://heptagon.gforge.inria.fr

La programmation synchrone à flots de données

On a vu qu'un programme réactif est en interaction continue avec un environnement physique via capteurs et actuateurs, comme illustré de façon schématique par la fig. 1. Les langages synchrones partent du principe que l'exécution d'un tel programme se produit de façon cyclique, c'est à dire comme une suite d'interactions entre le programme et son environnement. Un programme réactif n'agit en général pas uniquement en fonction de la valeur courante des capteurs, mais également de celles recueillies durant les interactions précédentes : il doit donc, pour ce faire, avoir accès à une mémoire dont le contenu persiste d'une interaction sur l'autre. De façon générale, chaque interaction se divise en trois phases distinctes, lecture-calcul-écriture :

- L. lecture des capteurs et de l'état courant de la mémoire;
- C. phase de calcul des consignes des actuateurs et du nouvel état;
- E. positionnement des actuateurs et mise à jour de la mémoire.

Enfin, les langages synchrones ne se préoccupent pas des détails basniveau d'accès aux capteurs et actuateurs. Il est donc utile de s'abstraire de la nature physique de l'environnement — sans toutefois oublier qu'elle induit les contraintes temporelles discutées précédemment. Une fois adopté ce point de vue simplifié, la structure d'un système réactif cyclique peut être représentée comme à la fig. 6, où capteurs et actuateurs ont été remplacés par des entrées et sorties génériques.

Le choix de structurer l'exécution comme une suite infinie d'interactions introduit naturellement une notion de temps logique. Ce temps logique est constituée d'une succession d'instants logiques, chacun d'eux correspondant à une interaction entre programme et environnement. Le caractère logique de cette temporalité réside dans l'omission volontaire du temps d'exécution. En d'autres termes, un instant logique n'a pas d'épaisseur : du point de vue synchrone, l'interaction avec l'environnement est instantanée. On appelle ce principe l'hypothèse synchrone. La fig. 7 illustre la relation entre temps logique et temps physique : le cycle Lecture-Calcul-Écriture (LCE) réalisé à chaque interaction peut prendre un temps d'exécution variable. De plus, rien ne garantit que les interactions soient exécutées à intervalle régulier.

On peut trouver l'hypothèse synchrone surprenante dans la mesure où, comme on l'a vu, de nombreux systèmes réactifs sont soumis à des contraintes temporelles strictes. On verra que ce choix simplifie en réalité leur mise au point en repoussant la prise en compte du temps physique aussi longtemps que possible durant le développement.

Les langages synchrones font donc le choix d'une exécution cyclique et d'une structuration du temps comme succession d'instants logiques. À un certain niveau d'abstraction, un programme synchrone

FIGURE 6: système réactif cyclique.

FIGURE 7: temps logique, temps physique.

peut donc être vu comme une machine à état, dont chaque transition correspondrait à un instant logique. Comme on cherche un formalisme mathématiquement simple pour décrire ces programmes, il est naturel de se tourner vers la théorie des automates et, plus précisément, des transducteurs, c'est à dires des automates finis qui, en plus de recevoir un mot en entrée, produit également un mot en sortie. Toutefois, les automates restent des objets complexes : par exemple, raisonner sur l'équivalence entre automates passe naturellement par la bisimulation (cf. fig. 8), une notion profonde mais relativement technique. Une autre difficulté est celle de la modularité : si on peut définir diverses manières d'assembler plusieurs automates en un automate plus gros — par exemple par la composition séquentielle de transducteurs — le résultat sera un automate à plat, sans structure. En bref, si le formalisme des automates est indispensable à la vérification de systèmes réactifs cycliques, il ne semble pas fournir un langage adapté au génie logiciel, du moins s'il n'est pas complété par d'autres principes de structuration.

On peut contraster la notion d'automate à une autre notion mathématique qui, bien qu'élémentaire, s'est révélée très compatible avec le génie logiciel : celle de fonction. Une fonction est un objet plus simple qu'un automate au sens où l'égalité entre fonctions est triviale — par définition, deux fonctions sont égales lorsqu'elles envoient les mêmes entrées vers les mêmes sorties. De plus, les langages dits "fonctionnels" tels que Haskell ou OCaml ont montré comment bâtir un langage de programmation au dessus de la notion de fonction. Il est donc naturel de chercher à concilier le monde des automates avec celui des fonctions.

Pour ce faire, on peut partir d'une observation simple. Si Σ_1 est l'alphabet du mot d'entrée et Σ_2 l'alphabet du mot de sortie, un transducteur déterministe ¹¹ A implémente une fonction $f_A: \Sigma_1^* \to \Sigma_2^*$ telle que $f_A(w) = w'$ lorsque A produit le mot w' en lisant le mot w. Cette fonction a toujours plusieurs propriétés remarquables, notamment son caractère synchrone: elle associe toujours un mot de longueur n à un mot de longeur n. L'idée clef des langages synchrones dits à flots de données est de partir de la fonction synchrone pour aller vers l'automate, plutôt que l'inverse. Autrement dit, un programme va consister en une fonction synchrone, et c'est le compilateur qui va reconstruire le transducteur sous-jacent, celui-ci étant vu comme une implémentation concrète de la fonction (cf fig. 9). De plus, comme on s'intéresse aux systèmes réactifs, qui s'exécutent sans discontinuer, la fonction synchrone va consommer et produire non pas des mots finis dans Σ_1^* et Σ_2^* , mais des suites infinies de lettres, aussi appelée flot, et dont les ensembles sont dénotés Σ_1^{ω} et Σ_2^{ω} . On espère ainsi bénéficier du meilleur des deux mondes : la proximité des automates avec le modèle d'exécution sous-jacent, et l'expressivité des langages fonctionnels 12.

Les deux automates ci-dessous sont-ils équivalents, c'est à dire, reconnaissent-ils le même langage? (Cet exemple simple est issu d'un article de Bonchi et Pous [2].)

On peut étudier cette question à l'aide de la notion de bisimulation. Écrivons S pour l'ensemble des états de nos automates. Une bisimulation est une relation $R \subseteq S \times S$ telle que, pour toute paire d'états $(s_1, s_2) \in R$, on ait :

- 1. s_1 est final ssi s_2 est final,
- 2. si $s_1 \stackrel{a}{\rightarrow} s_1'$ alors il existe s_2' tel que $s_2 \stackrel{a}{\rightarrow} s_2'$ et $(s_1', s_2') \in R$,
- 3. si $s_2 \stackrel{a}{\rightarrow} s_2'$ alors il existe s_1' tel que $s_1 \xrightarrow{a} s_1'$ et $(s_1', s_2') \in R$.

On peut montrer que deux états s_1, s_2 d'automates finis déterministes reconnaissent le même langage ssi il existe une bisimulation R telle que $(s_1, s_2) \in R$. Dans le cas qui nous occupe, existe-t-il une bisimulation R telle que $(x, u) \in R$? Oui! Essayez de définir $R = \{(x, u), \dots\}$ en énumérant les couples manquants. FIGURE 8: bisimulations entre automates.

FIGURE 9: compilation des langages synchrones à flots de données.

- 11. Cette fonction peut être partielle si le transducteur est incomplet. Plus généralement, un transducteur non-déterministe donne lieu à une relation $R_A \subseteq \Sigma_1^* \times$ Σ_2^* . Les relations implémentables par des transducteurs sont dites rationnelles (ou régulières), par analogie avec les langages et expressions rationnelles (ou régulières).
- 12. L'idée qui consiste à décrire des systèmes réactifs par des fonctions de flots est issue du travail pionnier de Kahn [4].

Premiers programmes

Nous allons maintenant explorer les langages synchrones à flots de données de façon concrète. Notre véhicule pour ce faire sera le langage Heptagon, qui est très proche du langage industriel SCADE 6 mais dont le compilateur est un logiciel libre.

Nœuds. Un programme Heptagon est un ensemble de fonctions synchrones sur les flots de données. On appelle ces fonctions des nœuds. Chaque nœud dispose d'une interface, liste finie de sorties et d'entrées déclarées avec leurs types, ainsi que d'un corps, qui est une liste d'équations définissant la valeur des sorties en fonction de celles des entrées. On peut par exemple définir un nœud correspondant à la fonction identité sur les entiers comme ci-dessous.

```
node identite(x : int) returns (y : int)
  y = x;
tel
```

Il est important de remarquer que le type **int**, en Heptagon, ne désigne pas un unique entier, mais un flot d'entiers. Il en va de même pour les types **float**, **bool**, etc. Le nœud ci-dessous représente donc la fonction mathématique $id: \mathbb{Z}_{32}^{\omega} \to \mathbb{Z}_{32}^{\omega}$, où \mathbb{Z}_{32} désigne l'ensemble des entiers relatifs représentable en complément à deux sur 32 bits 13.

On peut compiler un programme Heptagon en demandant au compilateur heptc de produire une sortie en langage C. Les fichiers sources ainsi générés contiennent une implémentation du transducteur sous une forme ressemblant 14 au code ci-dessous.

```
/* Définition de l'état du transducteur. */
struct identite_state { };
/* Défininition de la fonction d'initialisation de l'état. */
void identite_reset(struct identite_state *state) { }
/* Défininition de la fonction de transition. */
void identite_step(struct identite_state *state,
                   int x, int *y) { *y = x; }
```

On verra lors des cours et séances de travaux pratiques suivants une façon commode d'exécuter la fonction de transition.

Un nœud Heptagon peut également disposer de variables locales, qui ne sont ni des entrées ni des sorties. Elles doivent être déclarées avec le mot clef var et définies dans le corps du nœud.

```
node identite_bis(x : int) returns (y : int)
var z : int;
let
```

On peut représenter le comportement d'un nœud sur une entrée choisie à l'aide d'un chronogramme, c'est à dire d'un tableau dont chaque colonne correspond à un instant logique distinct.

Х	-2	О	1	-3	2	2	
у	-2	О	1	-3	2	2	

Ce chronogramme illustre le caractère synchrone de la fonction identité, vue comme agissant sur des flots : les n premières valeurs de y dépendent uniquement des n premières valeurs de x. On verra que ce sera aussi le cas de fonctions bien plus complexes.

- 13. En réalité, Heptagon ne fixe pas la taille des entiers utilisés, mais aligne son type int au type int du langage C. Sa taille dépend donc de votre machine, et plus précisément du compilateur C utilisé pour compiler le code généré par Heptagon (cf. plus bas).
- 14. En pratique, le compilateur applique certaines transformations qui rendent le code moins lisible mais plus efficace et plus court.

```
z = x;
  y = z;
tel
```

Un point très important, commun à tous les langages synchrones à flots de données, est que l'ordre des définitions n'importe pas. Ainsi, on peut réécrire notre fonction identité de façon strictement équivalente mais en définissant y avant z.

```
node identite_ter(x : int) returns (y : int)
var z : int;
let
  y = z;
  z = x;
tel
```

Cet exemple montre que le point-virgule qui sépare les équations n'a rien à voir avec une construction de séquentialisation, comme en C, Java ou OCaml. Au contraire, il s'agit simplement de marquer la fin d'une équation dans le bloc de définitions mutuellement récursives compris entre let et tel.

La possibilité d'écrire des équations mutuellement récursives est nécessaire pour pouvoir écrire des fonctions de flots générales, comme on le verra ultérieurement. Elle ouvre néanmoins la porte à la possibilité d'erreurs. Considérons le code ci-dessous, en apparence une simple modification du précédent.

```
node identite_bad(x : int) returns (y : int)
var z : int;
let
  y = z;
  z = y;
```

Ce programme est très suspect : on a défini y en fonction de z, et vice-versa! Si l'on essaie de le compiler avec heptc, on obtient un message d'erreur.

```
$ heptc -target c ex-04-bad.ept
Causality error: the following constraint is not causal.
z < y | | y < z
```

On appelle les erreurs causées par ce genre de définitions circulaires, ou cercles vicieux, des erreurs de causalité 15. L'étude de la notion de causalité est au coeur des langages synchrones, et il faut en comprendre le fonctionnement général pour programmer productivement dans un langage comme Heptagon. On y reviendra en détail lors des cours suivants, y compris une explication de ce message d'erreur.

^{15.} On trouve parfois employé le terme plus sobre de productivité.

Programmation flots de données et causalité

Opérations combinatoires. On a vu que tout programme Heptagon manipule des flots de données, c'est à dire des suites infinies de valeurs. Tout comme les types int ou bool désignent respectivement les flots d'entiers et de booléens, en Heptagon les littéraux désignent des flots constants.

```
node f() returns (x, y : int; z : bool)
let
  x = 1;
  y = 42;
  z = false;
tel
```

Ainsi, dans le nœud ci-dessus, les littéraux 0, 42 ou false désignent des flots constants. Les trois sorties x,y et z sont donc décrites par le chronogramme ci-dessous.

```
1
      1
                                                     1
                                                            1
                                                                    1
У
     42
             42
                     42
                             42
                                     42
                                            42
                                                    42
                                                            42
                                                                    42
    false
            false
                   false
                           false
                                   false
                                                   false
Z
                                           false
                                                           false
                                                                   false
```

Pour formuler précisément les constructions d'un exemple, il est utile d'employer une notation formelle pour désigner le flot associé à une expression Heptagon. Autrement dit, on va distinguer la sémantique d'une expression de sa syntaxe. Si e est une expression Heptagon, on écrira [e] pour l'objet sémantique associé. Il s'agira généralement d'un flot ou d'un n-uplet de flots. La sémantique $([l]_n)_{n\in\mathbb{N}}$ d'un littéral l est un flot dont le nème élément est défini par l'équation

$$[l]_n = l.$$

Un nœud Heptagon est une fonction de flots, et peut donc être appliqué à des arguments pour produire des résultats. Ainsi, on peut appeler le nœud précédent depuis un autre nœud situé plus bas dans le même fichier 16.

```
node g() returns (o : int)
var x, y : int; z : bool;
let
  (x, y, z) = f();
  0 = x + y;
tel
```

Le nœud g, en plus de sa sortie o, déclare trois variables locales x, y, z qui servent à stocker les résultats de f. La variable z n'est pas utilisée. La sortie de g est définie comme la somme des deux premières sorties de f. En Heptagon, la somme agit point à point sur les flots, tout

(Début du cours 02).

Un nœud Heptagon peut avoir plusieurs entrées et plusieurs sorties. On peut grouper les déclarations successives des varibales de même type en séparant les noms de variables par des virgules, et les groupes de variables de même type par des points-virgules. Ainsi, x, y: int; z: int est équivalent à x : int; y : int; z : int.

^{16.} En Heptagon, chaque fichier donne lieu à un module distinct. On peut faire référence à un nœud situé dans un autre module en le préfixant par le nom du module en question. Par exemple, si le nœud f a été défini dans le fichier a.ept, on peut y faire référence depuis un fichier b.ept en écrivant A.constantes. Le fichier a.ept doit avoir été compilé avant b.ept de sorte à produire un fichier d'interface a.epci. Si a.epci est présent dans un répertoire DIR autre que b.ept, on peut indiquer ce chemin via heptc -I DIR.

comme les autres opérateurs binaires — soustraction, multiplication, division, opérateurs logiques et de comparaison, etc. On peut formaliser ce comportement par les équations sémantiques ci-dessous. La dernière d'entre-elles, écrite pour une opération binaire op quelconque, généralise les autres.

$$[e_1 + e_2]_n = [e_1]_n + [e_2]_n$$

$$[e_1 - e_2]_n = [e_1]_n - [e_2]_n$$

$$\dots$$

$$[op(e_1, e_2)]_n = op([e_1]_n, [e_2]_n)$$

En appliquant ces définitions au nœud appel_addition, on obtient

$$[\![o]\!]_n = [\![x + y]\!]_n$$

$$= [\![x]\!]_n + [\![y]\!]_n$$

$$= 1 + 42$$

$$= 43.$$

La sortie de appel_addition est donc le flot constant 43.

Tout comme les opérateurs arithmétiques et logiques, la construction if/then/else d'Heptagon fonctionne de façon point à point.

$$\llbracket \textbf{if } e_1 \textbf{ then } e_2 \textbf{ else } e_3 \rrbracket_n = \begin{cases} \llbracket e_2 \rrbracket_n \text{ si } \llbracket e_1 \rrbracket_n = true \\ \llbracket e_3 \rrbracket_n \text{ si } \llbracket e_1 \rrbracket_n = false \end{cases}$$

Question 3. Supposons qu'on fournisse comme entrée x au nœud défini ci-dessous le flot constant 12. Que vaut la sortie o?

```
node h(k : int) returns (o : int)
var x, y : int; z : bool;
let
  (x, y, z) = f();
  o = k + if z then 2 * x else y;
tel
```

Opérateurs séquentiels. Jusqu'ici, nous n'avons écrits que des nœuds manipulant des flots constants, et des opérateurs dont la valeur du flot de sortie à l'instant courant ne dépend que des valeurs des flots d'entrée à l'instant courant. De tels opérateurs sont dits combinatoires. Ce n'est pas très excitant : on a essentiellement écrit des expressions arithmétiques et booléennes où le temps ne joue aucun rôle. La première construction avec une comportement temporel non-trivial que nous allons étudier sera l'opérateur binaire fby. Un tel opérateur est dite séquentiel. Sa sémantique est donnée par les équations suivantes.

$$[e_1 \text{ fby } e_2]_n = \begin{cases} [e_1]_0 & \text{si } n = 0\\ [e_2]_{n-1} & \text{si } n > 0 \end{cases}$$

Pour demander au compilateur Heptagon de vérifier qu'un nœud est combinatoire, on peut le définir à l'aide du mot-clef fun plutôt que node.

Informellement, x fby y calcule le flot obtenu en insérant le premier élément du flot x devant tous les éléments du flot y. En Heptagon, cet opérateur associe à droite : l'expression x fby y fby z est un raccourci pour x fby (y fby z).

Question 4. Expliquer pourquoi choisir de rendre l'opérateur **fby** associatif à gauche serait bien moins utile.

On peut illustrer le fonctionnement de fby avec, par exemple, le nœud i ci-dessous, variante du précédent où on choisit entre x et 2 * y selon la valeur courante du flot true **fby** z, variable au cours du temps.

```
node i(k : int) returns (o : int)
var x, y : int; z : bool;
let
  (x, y, z) = f();
  o = k + if true fby z then 2 * x else y;
tel
```

On peut comprendre son comportement via un chronogramme qui représente les flots de sortie et locaux de i pour une entrée k arbitraire.

k	4	-12	27	48	21	-20	5	
x	1	1	1	1	1	1	1	
у	42	42	42	42	42	42	42	
z	false							
true fby z	i							
О	6	30	69	90	63	22	47	

On peut ainsi vérifier que $[\![o \!]\!]_0 = [\![k \!]\!]_0 + 2$ et $[\![o \!]\!]_{n+1} = [\![k \!]\!]_{n+1} + 42$.

L'opérateur **fby** trouve toute son utilité en conjonction avec l'utilisation de définitions récursives. Pour vous en convaincre, essayez de résoudre la question suivante.

Question 5. Définir un nœud half avec une seule sortie booléenne qui calcule le flot booléen périodique o alternant entre true et false, c'est à dire tel que $[\![o]\!]_{2k} = true$ et $[\![o]\!]_{2k+1} = f$ alse. Les premières valeurs du flot o doivent donc être true, false, true, false...

Pour résoudre cette question, on peut observer que la première valeur de o doit être le booléen true, suivi de la négation du flot o lui même! Ce qui nous mène à la définition suivante.

```
node half() returns (o : bool)
let
  o = true fby not o;
tel
```

Pour nous convaincre du fonctionnement, on peut effectuer un bref calcul : on a $[o]_0 = true$ et $[o]_{n+1} = [o]_n$, où b désigne la négation

d'un booléen b. On peut aussi représenter les flots o et not o sur un chronogramme, et observer que le flot not o est égal au suffixe de o qui commence au deuxième instant.

```
o = true fby not o
                                false
                                                false
                                                               false
                         true
                                        true
not o
                         false
                                 true
                                        false
                                                true
                                                       false
                                                               true
                                                                      . . .
```

On a vu à la fin de la séance précédente que les définitions récursives peuvent introduire des cycles problématiques. Ce n'est pas le cas de la définition de o dans le nœud i, qui est parfaitement causale. En effet, on voit qu'en dépliant la définition de o suffisamment, on peut obtenir un nombre de valeurs arbitraire :

```
\llbracket \mathbf{o} \rrbracket = \llbracket \mathsf{true} \ \mathsf{fby} \ \mathsf{not} \ \mathsf{o} \rrbracket
      = true :: [not (true fby not o)]
      = true :: false :: [not (not o)]
      = true :: false :: [o]
      = true :: false :: true :: [not o]
```

On peut écrire beaucoup de programmes intéressants en combinant l'opérateur fby et des définitions récursives. En particulier, les définitions mutuellement récursives. L'exemple suivant montre comment les utiliser pour définir simultanément le flot nat des entiers naturels et celui des entiers strictement positifs pos.

```
node j() returns (nat, pos : int)
let
  nat = 0 fby pos;
  pos = nat + 1;
tel
```

Encore une fois, cette définition est causale : les flots nat et pos définissent tous deux une infinité d'éléments.

Question 6. Dépliez les définitions de nat et pos pour montrer qu'ils contiennent au moins trois éléments chacuns, à la manière de ce que nous avons fait pour la sortie du nœud half.

Si l'opérateur fby est le plus important, deux autres opérateurs sont également utiles : il s'agit de l'opérateur unaire pre et de l'opérateur binaire -> (prononcer "init"). Leur sémantique est décrite par les équations suivantes.

$$\llbracket \operatorname{pre} e \rrbracket_n = \begin{cases} nil & \text{si } n = 0 \\ \llbracket e \rrbracket_{n-1} & \text{si } n > 0 \end{cases} \qquad \llbracket e_1 \rightarrow e_2 \rrbracket_n = \begin{cases} \llbracket e_1 \rrbracket_0 & \text{si } n = 0 \\ \llbracket e_2 \rrbracket_n & \text{si } n > 0 \end{cases}$$

On écrit x :: xs pour le flot dont la tête est le scalaire est x et la queue est le flot xs. Il s'agit d'une opération qui n'est pas disponible telle quelle en Heptagon. On a

$$[\![e_1 \text{ fby } e_2]\!] = [\![e_1]\!]_1 :: [\![e_2]\!].$$

```
nat = 0 fby pos
pos = nat + 1
```

Alternativement, on pourrait définir [pre e] = nil :: [e].

La sémantique de pre exige une explication. En Heptagon, on suppose que chaque flot est capable de transporter une valeur spéciale baptisée *nil*, qui représente un flot non initialisé. C'est la valeur produite par l'opérateur pre au premier instant. Elle est absorbante par tous les opérations arithmétiques et logiques — par exemple, nil + x = x + nil = nil. Le compilateur Heptagon utilise une analyse d'initialisation pour s'assurer que cette valeur n'influe pas sur les résultats du calcul. Ainsi, le nœud ci-dessous est rejeté puisque sa sortie n'est pas initialisée au premier instant.

```
node i(x : int) returns (y : int)
let
  y = pre x;
tel
```

Certains programmeurs préfèrent utiliser pre et -> à fby dans la mesure où leur emploi permet de séparer proprement, lors de la définition d'un flot x, le cas de base x_0 du cas inductif x_{n+1} . Ainsi, pour définir le flot nat, on peut partir de l'équation intuitive nat = 1 + pre nat, puis l'initialiser via l'opérateur -> comme sui.

```
node k() returns (nat : int)
let
  nat = 0 \rightarrow (1 + pre nat);
```

Question 7. Pouvez-vous exprimer **fby** en utilisant uniquement pre et ->?

S'il peut être tentant de remplacer systématiquement **fby** par l'usage conjoint de pre et ->, il s'avère plus naturel dans certaines situations. Par exemple, pour donner une définition simultanée de nat et pos comme vu précédemment.

Causalité. Les exemples précédents montrent l'importance des définitions récursives dans la programmation synchrone à flots de données. Néanmoins, la récursion est aussi utile que dangereuse : on a vu qu'il est facile d'écrire des cercles vicieux, comme x = x. On peut envisager ces équations de deux manières.

- 1. On peut décider que n'importe quelle suite en est solution, auquel cas le langage devient non-déterministe.
- 2. On peut décider qu'elles n'ont pas de contenu calculatoire, c'est à dire qu'on ne peut jamais obtenir le premier élément de x simplement en dépliant l'équation. Elles ne sont pas causales.

En Heptagon, et dans ce cours, on va opter pour la première option, et préserver le déterminisme du langage en rejetant ces cercles vicieux ¹⁷. Quel critère algorithmique employer pour rejeter, tout en acceptant la

^{17.} D'autres langages synchrones comme Signal optent pour le premier point de vue. Les programmes écrits dans ces langages décrivent donc des relations plutôt que des fonctions. On peut lire l'article de Le Guernic et al. [5] pour en apprendre plus sur cette approche.

récursion mutuelle de codes tels que le nœud i défini plus haut? La recherche en langages synchrones a proposé de nombreuses solutions à ce problème. Heptagon utilise une des plus simples d'entre elles : les dépendances cycliques instantanées sont interdites. On peut comprendre ce critère en dessinant le graphe de dépendance d'un nœud. Il s'agit d'un graphe orienté dont les sommets x, y sont les variables déclarées dans le nœud et les arcs $x \to y$ indique que y dépend de x. La notion de dépendance est très simple : y dépend de x si x apparaît dans la définition de y. En particulier, une entrée ne peut jamais dépendre d'aucune variable puisqu'elle n'a pas de définition dans le corps du nœud. On distingue, de plus, les dépendances instantanées des dépendances retardées. Ces dernières sont celles où x apparaît dans la définition de y soit dans l'argument gauche d'une utilisation de l'opérateur **fby**, ou dans l'argument d'une utilisation de l'opérateur pre. Ainsi, le nœud i est causal parce que nat dépend de pos de façon retardée, et donc qu'aucun cycle instantané n'est présent (cf. fig. 10, partie supérieure). En revanche, si l'on utilise -> à la place de fby dans la définition de nat, le graphe de dépendances devient cyclique (cf. fig. 10, partie inférieure). En d'autres termes, le flot nat2 dépend instantanément de lui même (à travers pos2).

Question 8. Essayez de développer [nat2]. Que constatez-vous?

Si vous essayez de compiler le bloc d'équation définissant nat2 et pos2, vous obtiendrez un message d'erreur analogue à celui donné au tout début de cette section.

La formule, ou contrainte, qui accompagne ce message est une représentation compacte du graphe de dépendance de ce nœud. La première sous-contrainte ^pos2 < nat2 indique que la *lecture* de pos2, representée par le préfixe ^, doit avoir lieu strictement avant l'écriture de nat2, puisque ce dernier en dépend. La deuxième, ^nat2 < pos2, indique que la lecture de nat2 doit avoir lieu strictement avant l'écriture de pos2. L'opérateur || indique que ces deux contraintes sont vraies en parallèle, c'est à dire simultanément. De plus, toute variable x induit une contrainte implicite x < ^x (elle doit avoir été écrite avant d'être lue). On a donc la contrainte totale

```
^pos2 < nat2 || ^nat2 < pos2 || pos2 < ^pos2 || nat2 < ^nat2
```

qui n'est pas satisfiable, puisque la transitivité de l'ordre implique que nat2 < nat2 et pos2 < pos2. Ce raisonnement est l'analogue symbolique de l'existence d'un cycle dans le graphe de dépendances.

FIGURE 10: dépendances et causalité.

Références

- [1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The Synchronous Languages 12 Years Later. Proceedings of the IEEE, 2003.
- [2] F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to congruence. In Principles of Programming Languages (POPL'13). Association for Computing Machinery, 2013.
- [3] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declarative language for programming synchronous systems. In Principles of Programming Languages (POPL'87). Association for Computing Machinery, 1987.
- [4] G. Kahn. The semantics of a simple language for parallel programming. In Information Processing Congress (IFIP'74). IFIP, 1974.
- [5] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336, 1991.
- [6] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer New York, 1992.
- [7] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Jan 2008.