

Data Visualization

Andrea Giachetti

Department of Computer Science, University of Verona, Italy

andrea.giachetti@univr.it

Vis tools

- Many tools are available for data visualization
- See
 - https://mschermann.github.io/data_viz_reader/fundamentals.html#data-visualizationtools
 - Note: typically Scivis tool not included

Vis tools

- Many tools are available for data visualization
- See
 - https://mschermann.github.io/data_viz_reader/fundamentals.html#data-visualizationtools
 - Note: typically Scivis tool not included

	STATIC	WEB - INTERACTIVE
APPS	ILLUSTRATOR, NODEBOX, EXCEL, POLESTAR, RAW	HIGHCHARTS CLOUD, QUADRIGRAM, EASYCHRT, DATAWRAPPER, TABLEAU, PLOTLY, GOOGLE SHEETS
CHARTING LIBRARIES	GGPLOT2, MATPLOTLIB, R, SEABORN, BOKEH, PROCESSING	D3, D4, C3, NVD3, GGVIS, HIGHCHARTS, SHINY, VEGA, VEGA-LITE

3

Vis tools

- Many tools are available for data visualization
- See
 - https://mschermann.github.io/data_viz_reader/fundamentals.html#data-visualizationtools
 - Note: typically Scivis tool not included

Vis libraries/tools

- Python has many options for data visualization
- Each visualisation library has a particular audience
- Javascript backend is mostly used to extend power of the visualisation
- Python's extensive data processing tools integrates well with visualisation requirements
- https://mode.com/blog/python-data-visualization-libraries/

Lab

- We will use Jupyter-notebook
 - Template and exercises on github
 - https://github.com/giach68/DataVis2122
 - Local way
 - install anaconda https://www.anaconda.com
 - Alternative: use (for example) binder
 - Use link on the web page

Local setup

Files Running Clusters

Select items to perform actions on them.

Upload New ✓ ②

Name ↓ Last Modified

30 Objects 11 days ago

Contacts 11 days ago

Desktop 11 days ago

Documents 5 days ago

Documents 5 days ago

Documents 11 days ago

- Download anaconda
 - https://www.anaconda.com/
 - Follow instructions
 - Other method for python users: pip install jupyter

• Start jupyter-notebook from anaconda menu or from command line. Create new

notebook

- Browser opened on
 - http://localhost:8888/tree. Local web server
- Quick tutorial here
 - https://www.dataquest.io/blog/jupyter-notebook-tutorial/

Data Vis 2022 7

Notebook Python 3

Other: Text File

Folder

Terminals Unavailable

Python visualization setup

 We can add tools for geometry/volume visualization, e.g. pyvista

We will use

- Pandas: tabular data management
- Matplotlib: Matlab-like plotting
- Seaborn: Based on Matplotlib
 - simplified drawing of complex chart with attractive visual impact
 - Similar (in style) to the popular ggplot2 library in R
- Plotly: interactive plotting, maps
- Folium: maps
- Pyvista: scientific visualization (on top of VTK)

Pandas dataframes (Table data)

- Python | Pandas DataFrame
- Pandas DataFrame is two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). A Data frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in rows and columns. Pandas DataFrame consists of three principal components, the data, rows, and columns.

Reading data using pandas

Note: The above command has many optional arguments to fine-tune the data import process.

There is a number of pandas commands to read other data formats:

```
pd.read_excel('myfile.xlsx',sheet_name='Sheet1', index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5','df')
```


Exploring data frames

In [3]: #List first 5 records
 df.head()

Out[3]:

	rank	discipline	phd	service	sex	salary
0	Prof	В	56	49	Male	186960
1	Prof	Α	12	6	Male	93000
2	Prof	Α	23	20	Male	110515
3	Prof	Α	40	31	Male	131205
4	Prof	В	20	18	Male	104800

Data Frame data types

Pandas Type	Native Python Type	Description
object	string	The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).
int64	int	Numeric characters. 64 refers to the memory allocated to hold this character.
float64	float	Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal.
datetime64, timedelta[ns]	N/A (but see the <u>datetime</u> module in Python's standard library)	Values meant to hold time data. Look into these for time series experiments.

Data Frame data types

```
df['salary'].dtype
Out[4]: dtype('int64')
In [5]: #Check types for all the columns
df.dtypes
```

```
Out [4]: rank object discipline object phd int64 service int64 sex object salary int64 dtype: object
```

In [4]: #Check a particular column type

Data Frames attributes

Python objects have attributes and methods.

df.attribute	description
dtypes	list the types of the columns
columns	list the column names
axes	list the row labels and column names
ndim	number of dimensions
size	number of elements
shape	return a tuple representing the dimensionality
values	numpy representation of the data

Data Frames methods

df.method()	description
head([n]), tail([n])	first/last n rows
describe()	generate descriptive statistics (for numeric columns only)
max(), min()	return max/min values for all numeric columns
mean(), median()	return mean/median values for all numeric columns
std()	standard deviation
sample([n])	returns a random sample of the data frame
dropna()	drop all the records with missing values

Selecting a column in a Data Frame

 Method 1: Subset the data frame using column name: df['sex']

 Method 2: Use the column name as an attribute: df.sex

Note: there is an attribute rank for pandas data frames, so to select a column with a name "rank" we should use method 1.

- Using "group by" method we can:
 - Split the data into groups based on some criteria
 - Calculate statistics (or apply a function) to each group

Data Frames groupby method

• Once groupby object is create we can calculate various statistics for each group:

```
In []: #Calculate mean salary for each professor rank:
df.groupby('rank')[['salary']].mean()

salary

rank

AssocProf 91786.230769

AsstProf 81362.789474

Prof 123624.804348
```

Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. When double brackets are used the output is a Data Frame

Data Frames groupby method

- groupby performance notes:
 - no grouping/splitting occurs until it's needed. Creating the groupby object only verifies that you have passed a valid mapping
 - by default the group keys are sorted during the groupby operation. You may want to pass sort=False for potential speedup:

```
In [ ]: #Calculate mean salary for each professor rank:
    df.groupby(['rank'], sort=False)[['salary']].mean()
```

Data Frame: filtering

 To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the salary value is greater than \$120K:

```
In []: #Calculate mean salary for each professor rank:
    df_sub = df[ df['salary'] > 120000 ]

Any Boolean operator can be used to subset the data:
    > greater; >= greater or equal;
    < less; <= less or equal;
    == equal; != not equal;

In []: #Select only those rows that contain female professors:
    df_f = df[ df['sex'] == 'Female' ]</pre>
```


Data Frames: Slicing

- There are a number of ways to subset the Data Frame:
 - one or more columns
 - one or more rows
 - a subset of rows and columns

Data Frames: Slicing

When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame):

```
In [ ]: #Select column salary:
    df['salary']
```

When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets:

```
In []: #Select column salary:
    df[['rank','salary']]
```


Data Frames: Selecting rows

If we need to select a range of rows, we can specify the range using ":"

```
In []: #Select rows by their position:
    df[10:20]
```

Notice that the first row has a position 0, and the last value in the range is omitted:

So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9

Data Frames: method loc

If we need to select a range of rows, using their labels we can use method loc:

```
In []: #Select rows by their labels:
    df_sub.loc[10:20,['rank','sex','salary']]
```

```
      rank
      sex
      salary

      10
      Prof
      Male
      128250

      11
      Prof
      Male
      134778

      13
      Prof
      Male
      162200

      14
      Prof
      Male
      153750

      15
      Prof
      Male
      150480

      19
      Prof
      Male
      150500
```


Data Frames: method iloc

If we need to select a range of rows and/or columns, using their positions we can use method iloc:

```
In []: #Select rows by their labels:
    df_sub.iloc[10:20,[0, 3, 4, 5]]
```

			rank	service	sex	salary
	_	26	Prof	19	Male	148750
Out[]:	27	Prof	43	Male	155865
		29	Prof	20	Male	123683
		31	Prof	21	Male	155750
		35	Prof	23	Male	126933
		36	Prof	45	Male	146856
		39	Prof	18	Female	129000
		40	Prof	36	Female	137000
		44	Prof	19	Female	151768
		45	Prof	25	Female	140096

Data Frames: method iloc (summary)

```
df.iloc[0] # First row of a data frame
df.iloc[i] #(i+1)th row
df.iloc[-1] # Last row
```

```
df.iloc[:, 0] # First column
df.iloc[:, -1] # Last column
```


Data Frames: Sorting

We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return.

Out[]:		rank	discipline	phd	service	sex	salary
		55	AsstProf	Α	2	0	Female	72500
		23	AsstProf	Α	2	0	Male	85000
		43	AsstProf	В	5	0	Female	77000
		17	AsstProf	В	4	0	Male	92000
		12	AsstProf	В	1	0	Male	88000

Data Frames: Sorting

We can sort the data using 2 or more columns:

	-		rank	discipline	phd	service	sex	salary
Out[]:	52	Prof	А	12	0	Female	105000
		17	AsstProf	В	4	0	Male	92000
	1		AsstProf	В	1	0	Male	88000
		23	AsstProf	Α	2	0	Male	85000
		43	AsstProf	В	5	0	Female	77000
		55	AsstProf	Α	2	0	Female	72500
	57		AsstProf	Α	3	1	Female	72500
		28	AsstProf	В	7	2	Male	91300
		42	AsstProf	В	4	2	Female	80225
		68	AsstProf	Α	4	2	Female	77500

Out[]

Missing Values

Missing values are marked as NaN

```
In []: # Read a dataset with missing values
flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")
```

```
In [ ]: # Select the rows that have at least one missing value
flights[flights.isnull().any(axis=1)].head()
```

:		year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	origin	dest	air_time	distance	hour	minute
	330	2013	1	1	1807.0	29.0	2251.0	NaN	UA	N31412	1228	EWR	SAN	NaN	2425	18.0	7.0
	403	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EHAA	791	LGA	DFW	NaN	1389	NaN	NaN
	404	2013	1	1	NaN	NaN	NaN	NaN	AA	N3EVAA	1925	LGA	MIA	NaN	1096	NaN	NaN
	855	2013	1	2	2145.0	16.0	NaN	NaN	UA	N12221	1299	EWR	RSW	NaN	1068	21.0	45.0
	858	2013	1	2	NaN	NaN	NaN	NaN	AA	NaN	133	JFK	LAX	NaN	2475	NaN	NaN

Missing Values

There are a number of methods to deal with missing values in the data frame:

df.method()	description
dropna()	Drop missing observations
dropna(how='all')	Drop observations where all cells is NA
dropna(axis=1, how='all')	Drop column if all the values are missing
dropna(thresh = 5)	Drop rows that contain less than 5 non-missing values
fillna(0)	Replace missing values with zeros
isnull()	returns True if the value is missing
notnull()	Returns True for non-missing values

- When summing the data, missing values will be treated as zero
- If all values are missing, the sum will be equal to NaN
- cumsum() and cumprod() methods ignore missing values but preserve them in the resulting arrays
- Missing values in GroupBy method are excluded
- Many descriptive statistics methods have skipnan option to control if missing data should be excluded. This value is set to True by default

Aggregation Functions in Pandas

- Aggregation computing a summary statistic about each group, i.e.
 - compute group sums or means
 - compute group sizes/counts
- Common aggregation functions:
 - min, max
 - count, sum, prod
 - mean, median, mode, mad
 - std, var

Aggregation Functions in Pandas

agg() method are useful when multiple statistics are computed per column:

Basic Descriptive Statistics

df.method()	description
describe	Basic statistics (count, mean, std, min, quantiles, max)
min, max	Minimum and maximum values
mean, median, mode	Arithmetic average, median and mode
var, std	Variance and standard deviation
sem	Standard error of mean
skew	Sample skewness
kurt	kurtosis

00

Matplotlib

- Set of methods that make python work like matlab
- Note Pandas has integrated visualization API based on Matplotlib
- Flexible, complete.
 - 2 interfaces:
 - Matlab style plotting (Stateful)
 - Plotting methods are called from the **pyplot** package
 - They all work on the current Figure and Axes
 - Object oriented (Stateless)
 - Plot functions are called as methods of a specific Figure and Axes
 - This allows modifying many objects at a time(the system does not keep a "current object" state)
- Complete tutorials https://matplotlib.org/stable/tutorials/index.html

Matplotlib

- Local
 - Downloadthe Lab1 folder
 - Launch from there Jupyter-notebook
 - Load notebooks or create new ones
- Binder
 - Click on the link

Let's see

- Line plots, scatter plots, bar charts, pie charts
- styles, oo interface, load data save figs, and more

Examples (01_plot_1)

- Line plots lineplots.ipynb
- Scatter plots scatterplots.ipynb
- Bar charts bars.ipynb
- Pie charts PieChart.ipynb
- Styling styles.ipynb
- Color.ipynb

