Interpolação Polinomial de Newton

Prof. Gabriel Souto

IME/UERJ

2025.2

Roteiro da Aula

- MOTIVAÇÃO
- 2 Forma de Newton
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- (5) ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

2025.2

Por que a forma de Newton para interpolar?

- **Problema**: dados n+1 pontos distintos $(x_i, f(x_i))$, queremos um polinômio p_n tal que $p_n(x_i) = f(x_i).$
- Limitação da forma de Lagrange: ótima para dedução teórica, mas
 - é custosa para atualizar quando chega um novo ponto $(x_{n+1}, f(x_{n+1}))$;
- Ideia de Newton:
 - escrever p_n em base incremental $(x-x_0)(x-x_1)\cdots$ que permite inserir novos pontos sem recomputar tudo;
 - calcular coeficientes via diferencas divididas, obtidos em uma tabela simples e reutilizável;

Roteiro da Aula

- MOTIVAÇÃO
- 2 Forma de Newton
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- (5) ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

Polinômio interpolador na forma de Newton

Sejam x_0, x_1, \ldots, x_n pontos distintos (nós de interpolação). A forma de Newton para o polinômio interpolador $p_n(x)$ é dada por:

$$p_n(x) = d_0 + d_1(x-x_0) + d_2(x-x_0)(x-x_1) + \cdots + d_n(x-x_0)(x-x_1) \cdots (x-x_{n-1}),$$

onde os coeficientes d_k são obtidos por **diferenças divididas** de ordem k

No que segue, veremos

- o operador de diferenças divididas e suas propriedades;
- ② a **dedução** da expressão de $p_n(x)$ acima.

2025.2

Polinômio interpolador na forma de Newton

Sejam x_0, x_1, \ldots, x_n pontos distintos (nós de interpolação). A forma de Newton para o polinômio interpolador $p_n(x)$ é dada por:

$$p_n(x) = d_0 + d_1(x-x_0) + d_2(x-x_0)(x-x_1) + \cdots + d_n(x-x_0)(x-x_1) \cdots (x-x_{n-1}),$$

onde os coeficientes d_k são obtidos por **diferenças divididas** de ordem k.

No que segue, veremos:

- 1 o operador de diferenças divididas e suas propriedades;
- ② a **dedução** da expressão de $p_n(x)$ acima.

Roteiro da Aula

- MOTIVAÇÃO
- 2 FORMA DE NEWTON
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- 5 ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

OPERADOR DE DIFERENÇAS DIVIDIDAS

Seja f(x) uma função tabelada em n+1 pontos distintos: $x_0, x_1, ..., x_n$.

Definimos o operador de diferenças divididas por:

Operador de diferenças divididas

$$\begin{cases} f[x_0] = f(x_0), & \text{(Ordem Zero)} \\ f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, & \text{(Ordem 1)} \\ f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}, & \text{(Ordem 2)} \\ f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}, & \text{(Ordem 3)} \\ \vdots & \vdots & \vdots \\ f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}, & \text{(Ordem n)} \end{cases}$$

OPERADOR DE DIFERENÇAS DIVIDIDAS

Dizemos que $f[x_0, x_1, \dots, x_k]$ é a **diferença dividida de ordem** k da função f(x) sobre os k+1 pontos x_0, x_1, \dots, x_k .

Dada uma função f(x) e conhecidos os valores que f assume nos pontos distintos x_0, x_1, \ldots, x_n , podemos construir a seguinte **tabela de diferenças divididas**:

TABELA DE DIFERENÇAS DIVIDIDAS

X _i	Ordem 0	Ordem 1	Ordem 2	Ordem 3	··· Ordem n
<i>x</i> ₀	$f[x_0]$				
	65 1	$f[x_0,x_1]$	CI 1		
x_1	$f[x_1]$	f[v, v]	$f[x_0,x_1,x_2]$	fly y y y l	
X2	$f[x_2]$	$f[x_1,x_2]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
~2	, [\^2]	$f[x_2, x_3]$, [A1, A2, A3]	$f[x_1, x_2, x_3, x_4]$	
<i>X</i> 3	$f[x_3]$	[2 / 3]	$f[x_2, x_3, x_4]$	[17 27 37 4]	$f[x_0,\ldots,x_n]$
		$f[x_3, x_4]$:	
:	:		:		
x_{n-1}	$f[x_{n-1}]$		$f[x_{n-2}, x_{n-1}, x_n]$		
		$f[x_{n-1},x_n]$			
Xn	$f[x_n]$				

Forma de Newton - Polinômio Interpolador $P_n(x)$

х	Ordem 0	Ordem 1	Ordem 2		Ordem n
<i>x</i> ₀	$f[x_0]=d_0$				
x_1	$f[x_1]$	$f[x_0,x_1]=d_1$			
x_2	$f[x_2]$	$f[x_1,x_2]$	$f[x_0, x_1, x_2] = d_2$		
<i>X</i> ₃	$f[x_3]$	$f[x_2,x_3]$	$f[x_1,x_2,x_3]$		
:	:	÷	:	()	$f[x_0,x_1,\ldots,x_n]=d_n$
:	:	:	$f[x_{n-2},x_{n-1},x_n]$	÷	:
Xn	$f[x_n]$	$f[x_{n-1},x_n]$	÷	:	

$$P_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \dots + d_n(x - x_0) \cdot \dots \cdot (x - x_{n-1}).$$

Forma de Newton - Polinômio Interpolador $P_n(x)$

х	Ordem 0	Ordem 1	Ordem 2		Ordem n
<i>x</i> ₀	$f[x_0]=d_0$				
x_1	$f[x_1]$	$f[x_0,x_1]=d_1$			
x_2	$f[x_2]$	$f[x_1,x_2]$	$f[x_0, x_1, x_2] = d_2$		
<i>X</i> ₃	$f[x_3]$	$f[x_2,x_3]$	$f[x_1,x_2,x_3]$		
:	÷	÷	÷	()	$f[x_0,x_1,\ldots,x_n]=d_n$
:	:	:	$f[x_{n-2},x_{n-1},x_n]$:	:
Xn	$f[x_n]$	$f[x_{n-1},x_n]$	÷	:	

$$P_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + \cdots + d_n(x - x_0)(x - x_1) \cdots (x - x_{n-1}).$$

Roteiro da Aula

- MOTIVAÇÃO
- 2 FORMA DE NEWTON
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- 5 ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

Exemplo 1: Enunciado

Considere a função f(x) tabelada abaixo:

OBJETIVO

A partir destes dados tabelados

- Oconstrua a tabela de diferenças divididas de Newton, mostrando os cálculos passo a passo.
- ② Determine o **polinômio interpolador** $P_4(x)$ na forma de Newton.

DICA

Lembre-se: cada nova ordem de diferenças é calculada com base nos resultados da ordem anterior!

Exemplo 1: Enunciado

Considere a função f(x) tabelada abaixo:

OBJETIVO

A partir destes dados tabelados:

- Onstrua a tabela de diferenças divididas de Newton, mostrando os cálculos passo a passo.
- ② Determine o **polinômio interpolador** $P_4(x)$ na forma de Newton.

DICA

Lembre-se: cada nova ordem de diferenças é calculada com base nos resultados da ordem anterior!

Exemplo 1: Enunciado

Considere a função f(x) tabelada abaixo:

OBJETIVO

A partir destes dados tabelados:

- Construa a tabela de diferenças divididas de Newton, mostrando os cálculos passo a passo.
- ② Determine o **polinômio interpolador** $P_4(x)$ na forma de Newton.

DICA

Lembre-se: cada nova ordem de diferenças é calculada com base nos resultados da ordem anterior!

	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	$f[x_0] = 1$				
$x_1 = 0$	$f[x_1]=1$				
$x_2 = 1$	$f[x_2]=0$				
x ₃ = 2	$f[x_0] = 1$ $f[x_1] = 1$ $f[x_2] = 0$ $f[x_3] = -1$ $f[x_4] = -2$				
$x_4 = 3$	$f[x_4] = -2$				

	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	$f[x_0]=1$				
		$f[x_0,x_1]=\frac{1-1}{0-(-1)}=0$			
$x_1 = 0$	$f[x_1]=1$				
		$f[x_1,x_2]=\frac{0-1}{1-0}=-1$			
$x_2 = 1$	$f[x_2]=0$				
		$f[x_2, x_3] = \frac{-1 - 0}{2 - 1} = -1$			
$x_3 = 2$	$f[x_3]=-1$				
		$f[x_0, x_1] = \frac{1-1}{0-(-1)} = 0$ $f[x_1, x_2] = \frac{0-1}{1-0} = -1$ $f[x_2, x_3] = \frac{-1-0}{2-1} = -1$ $f[x_3, x_4] = \frac{-2-(-1)}{3-2} = -1$			
$x_4 = 3$	$f[x_4] = -2$				

	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	$f[x_0]=1$				
		$f[x_0,x1]=\frac{1-1}{0-(-1)}=0$			
$x_1 = 0$	$f[x_1]=1$				
	$f[x_1] = 1$ $f[x_2] = 0$	$f[x_1, x_2] = \frac{0-1}{1-0} = -1$	$f[x_0, x_1, x_2] = \frac{(-1) - 0}{1 - (-1)} = -\frac{1}{2}$		
$x_2 = 1$	$f[x_2]=0$				
		$f[x_2, x_3] = \frac{-1 - 0}{2 - 1} = -1$	$f[x_1, x_2, x_3] = \frac{(-1) - (-1)}{2 - 0} = 0$		
$x_3 = 2$	$f[x_3] = -1$				
		$f[x_3, x4] = \frac{-2 - (-1)}{3 - 2} = -1$	$f[x_1, x_2, x_3] = \frac{(-1) - (-1)}{2 - 0} = 0$ $f[x_2, x_3, x_4] = \frac{(-1) - (-1)}{3 - 1} = 0$		
$x_4 = 3$	$f[x_4] = -2$				

	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	$f[x_0] = 1$				
		$f[x_0,x_1]=\frac{1-1}{0-(-1)}=0$			
$x_1 = 0$	$f[x_1]=1$				
		$f[x_1,x_2]=\frac{0-1}{1-0}=-1$	$f[x_0, x_1, x_2] = \frac{(-1) - 0}{1 - (-1)} = -\frac{1}{2}$		
$x_2 = 1$	$f[x_2]=0$				
		$f[x_2, x_3] = \frac{-1 - 0}{2 - 1} = -1$	$f[x_1, x_2, x_3] = \frac{(-1) - (-1)}{2 - 0} = 0$	$\frac{0-(-\frac{1}{2})}{2-(-1)}=\frac{1}{6}$	
$x_3 = 2$	$f[x_3] = -1$	$f[x_3, x_4] = \frac{-2 - (-1)}{3 - 2} = -1$	Ordem 2 $f[x_0, x_1, x_2] = \frac{(-1) - 0}{1 - (-1)} = -\frac{1}{2}$ $f[x_1, x_2, x_3] = \frac{(-1) - (-1)}{2 - 0} = 0$ $f[x_2, x_3, x_4] = \frac{(-1) - (-1)}{3 - 1} = 0$	${3-0}=0$	
$x_4 = 3$	$f[x_4] = -2$				

	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	$f[x_0]=1$				
		$f[x_0,x_1]=\frac{1-1}{0-(-1)}=0$			
$x_1 = 0$	$f[x_1] = 1$				
	$f[x_1] = 1$ $f[x_2] = 0$	$f[x_1,x_2]=\frac{0-1}{1-0}=-1$	$f[x_0, x_1, x_2] = \frac{(-1) - 0}{1 - (-1)} = -\frac{1}{2}$		
$x_2 = 1$	$f[x_2]=0$				
		$f[x_2,x_3]=\frac{-1-0}{2-1}=-1$	$f[x_1, x_2, x_3] = \frac{(-1) - (-1)}{2 - 0} = 0$	$\frac{0-(-\frac{1}{2})}{2-(-1)}=\frac{1}{6}$	
$x_3 = 2$	$f[x_3] = -1$			$\frac{3}{3} = 0$	
	$f[x_3] = -1$	$f[x_3, x_4] = \frac{-2 - (-1)}{3 - 2} = -1$	$f[x_2, x_3, x_4] = \frac{(-1) - (-1)}{3 - 1} = 0$	3 0	$\frac{0-\frac{1}{6}}{3-(-1)}=-\frac{1}{24}$
$x_4 = 3$	$f[x_4] = -2$				

EXEMPLO 1: TABELA COMPLETA

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	1				
$x_1 = 0$	1	0			
$x_2 = 1$	0	-1	$-\frac{1}{2}$		
$x_4 = 2$ $x_4 = 3$	-1	-1	0	$\frac{1}{6}$	
$x_4 = 3$	-2	-1	0	Ŏ	$-\frac{1}{24}$

Exemplo 1: Tabela completa (Coeficientes d_k)

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3	Ordem 4
$x_0 = -1$	$1=d_0$				
$x_1 = 0$	1	$0=d_1$			
$x_2 = 1$	0	-1	$-\frac{1}{2} = d_2$		
$x_3 = 2$	-1	-1	0	$\frac{1}{6} = d_3$	
$x_4 = 3$	-2	-1	0	0	$-\frac{1}{24} = d_4$

Exemplo 1: Polinômio interpolador de Newton

Forma de Newton:

$$P_4(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2) + d_4(x - x_0)(x - x_1)(x - x_2)(x - x_3).$$

Substituindo:

$$P_4(x) = 1 - \frac{1}{2}(x+1)x + \frac{1}{6}(x+1)x(x-1) - \frac{1}{24}(x+1)x(x-1)(x-2)$$

Exemplo 1: Polinômio interpolador de Newton

Forma de Newton:

$$P_4(x) = \frac{d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2)}{d_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)}.$$

Substituindo:

$$P_4(x) = 1 - \frac{1}{2}(x+1)x + \frac{1}{6}(x+1)x(x-1) - \frac{1}{24}(x+1)x(x-1)(x-2)$$

Exemplo 1: Polinômio interpolador de Newton

Forma de Newton:

$$P_4(x) = \frac{d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2)}{d_4(x - x_0)(x - x_1)(x - x_2)(x - x_3)}.$$

Substituindo:

$$P_4(x) = 1 - \frac{1}{2}(x+1)x + \frac{1}{6}(x+1)x(x-1) - \frac{1}{24}(x+1)x(x-1)(x-2)$$

Exemplo 2 — Exercício

Usando a forma de Newton, determine o polinômio $P_2(x)$ que interpola f(x) nos pontos dados abaixo:

$$P_2(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1).$$

Construa a tabela de diferenças divididas e escreva o polinômio final.

Exemplo 2 — Gabarito

x	Ordem 0	Ordem 1	Ordem 2
-1	4		
0	1	-3	
2	-1	-1	$\frac{2}{3}$

Diferenças divididas:

$$f[x_0]=4,$$

$$f[x_0,x_1]=-3,$$

$$f[x_1,x_2]=-1,$$

$$f[x_0] = 4,$$
 $f[x_0, x_1] = -3,$ $f[x_1, x_2] = -1,$ $f[x_0, x_1, x_2] = \frac{2}{3}.$

Polinômio interpolador:

$$P_2(x) = 4 + (-3)(x - (-1)) + (\frac{2}{3})(x - (-1))(x - 0)$$

Roteiro da Aula

- MOTIVAÇÃO
- 2 FORMA DE NEWTON
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- 5 ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

2025.2

ESTUDO DO ERRO NA INTERPOLAÇÃO

Como já observamos, ao se aproximar uma função f(x) por um polinômio interpolador de grau $\leq n$, comete-se um erro. Assim, definimos o **erro de interpolação** como:

$$E_n(x) = f(x) - p_n(x)$$
 $\forall x \in [x_0, x_n].$

Importância do Estudo do Erro

O estudo do erro é fundamental para avaliarmos o quão próximo o polinômio interpolador $p_n(x)$ está da função original f(x).

Em particular, conhecer o erro permite:

- Estimar a precisão da aproximação numérica;
- Determinar a necessidade de mais pontos na interpolação:
- Identificar possíveis oscilações ou instabilidades do polinômio.

ESTUDO DO ERRO NA INTERPOLAÇÃO

Como já observamos, ao se aproximar uma função f(x) por um polinômio interpolador de grau $\leq n$, comete-se um erro. Assim, definimos o **erro de interpolação** como:

$$E_n(x) = f(x) - p_n(x) \quad \forall x \in [x_0, x_n].$$

Importância do Estudo do Erro

O estudo do erro é fundamental para avaliarmos o quão próximo o polinômio interpolador $p_n(x)$ está da função original f(x).

Em particular, conhecer o erro permite:

- Estimar a precisão da aproximação numérica;
- Determinar a necessidade de mais pontos na interpolação;
- Identificar possíveis oscilações ou instabilidades do polinômio.

Interpolação linear: mesmo $p_1(x)$

Este exemplo ilustra que o mesmo polinômio linear $p_1(x)$ pode interpolar duas funções diferentes $f_1(x)$ e $f_2(x)$ nos mesmos pontos x_0 e x_1 .

No gráfico, temos:

$$f_1(x_0) = f_2(x_0) = p_1(x_0), \qquad f_1(x_1) = f_2(x_1) = p_1(x_1).$$

Erro e concavidade no caso linear

Contudo, o erro $E_1^{(1)}(x) = f_1(x) - p_1(x)$ é maior do que $E_1^{(2)}(x) = f_2(x) - p_1(x)$ para $x \in (x_0, x_1)$.

Observa-se que o erro depende da **concavidade** das funções, ou seja, de $f_1''(x)$ e $f_2''(x)$:

$$E_1(x) = \frac{f''(\xi)}{2!} (x - x_0)(x - x_1), \qquad \xi \in (x_0, x_1).$$

Mais adiante veremos o **Teorema do Erro da Interpolação**, que fornece a expressão geral para $E_n(x)$ quando aproximamos f(x) por $p_n(x)$.

TEOREMA DO ERRO DA INTERPOLAÇÃO

Sejam $x_0 < x_1 < x_2 < \ldots < x_n$, um conjunto de (n+1) pontos distintos.

Seja f(x) uma função com derivadas até a ordem (n+1), $\forall x \in [x_0, x_n]$.

Seja $p_n(x)$ o polinômio interpolador de f(x) nos pontos x_0, x_1, \ldots, x_n .

ENTÃO

Em qualquer ponto $x \in [x_0, x_n]$, o erro da interpolação é dado por

$$E_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1)(x - x_2) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!},$$

onde $\xi_x \in (x_0, x_n)$.

TEOREMA DO ERRO DA INTERPOLAÇÃO

Sejam $x_0 < x_1 < x_2 < \ldots < x_n$, um conjunto de (n+1) pontos distintos.

Seja f(x) uma função com derivadas até a ordem (n+1), $\forall x \in [x_0, x_n]$.

Seja $p_n(x)$ o polinômio interpolador de f(x) nos pontos x_0, x_1, \ldots, x_n .

ENTÃO

Em qualquer ponto $x \in [x_0, x_n]$, o erro da interpolação é dado por:

$$E_n(x) = f(x) - p_n(x) = (x - x_0)(x - x_1)(x - x_2) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!},$$

onde $\xi_x \in (x_0, x_n)$.

Exemplo 3: Interpolação Linear de ln(x)

Seja o problema de obter ln(3,7) por **interpolação linear**, sabendo que ln(x) está tabelada como:

Como $x = 3,7 \in (3,4)$, escolhemos $x_0 = 3$ e $x_1 = 4$.

Pela forma de Newton, temos:

$$p_1(x) = f[x_0] + (x - x_0)f[x_0, x_1], \quad \text{com} \quad f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1.3863 - 1.0986}{4 - 3} = 0.2877.$$

Logo:

$$p_1(x) = 1.0986 + (0.2877)(x - 3),$$
 $p_1(3.7) = 1.0986 + (0.2877)0.7 = 1.300$

Sabendo que $\ln(3.7)=1.3083$, o erro és

$$E_1(3.7) = \ln(3.7) - p_1(3.7) = 1.3083 - 1.300 = 8.3 \times 10^{-3}$$

Exemplo 3: Interpolação Linear de ln(x)

Seja o problema de obter ln(3,7) por **interpolação linear**, sabendo que ln(x) está tabelada como:

Como $x = 3,7 \in (3,4)$, escolhemos $x_0 = 3$ e $x_1 = 4$.

Pela forma de Newton, temos:

$$p_1(x) = f[x_0] + (x - x_0)f[x_0, x_1], \quad \text{com} \quad f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1.3863 - 1.0986}{4 - 3} = 0.2877.$$

Logo:

$$p_1(x) = 1.0986 + (0.2877)(x - 3),$$
 $p_1(3.7) = 1.0986 + (0.2877)0.7 = 1.300.$

Sabendo que ln(3.7)=1.3083, o erro é

$$E_1(3.7) = \ln(3.7) - p_1(3.7) = 1.3083 - 1.300 = 8.3 \times 10^{-3}$$

Exemplo 3: Interpolação Linear de ln(x)

Seja o problema de obter ln(3,7) por **interpolação linear**, sabendo que ln(x) está tabelada como:

Como $x = 3,7 \in (3,4)$, escolhemos $x_0 = 3$ e $x_1 = 4$.

Pela forma de Newton, temos:

$$p_1(x) = f[x_0] + (x - x_0)f[x_0, x_1], \quad \text{com} \quad f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1.3863 - 1.0986}{4 - 3} = 0.2877.$$

Logo:

$$p_1(x) = 1.0986 + (0.2877)(x - 3),$$
 $p_1(3.7) = 1.0986 + (0.2877)0.7 = 1.300.$

Sabendo que ln(3.7) = 1.3083, o erro é:

$$E_1(3.7) = \ln(3.7) - p_1(3.7) = 1.3083 - 1.300 = 8.3 \times 10^{-3}$$
.

Exemplo 3: Verificação pelo Teorema do Erro

Pelo Teorema 2, o erro é dado por:

$$E_1(x) = (x - x_0)(x - x_1) \frac{f''(\xi_x)}{2}, \qquad \xi_x \in (x_0, x_1).$$

Para $f(x) = \ln(x)$, temos $f''(x) = -\frac{1}{x^2}$. Substituindo $x_0 = 3$, $x_1 = 4$ e x = 3.7:

$$E_1(3.7) = (3.7-3)(3.7-4)\frac{f''(\xi_{3.7})}{2} = (0.7)(-0.3)\frac{-1}{2\xi_{3.7}^2} = 8.3 \times 10^{-3}.$$

Resolvendo para $\xi_{3.7}$

$$0.0083 = \frac{0.21}{2\xi_{3.7}^2} \quad \Rightarrow \quad \xi_{3.7} = 3.5578.$$

Conclusão

O ponto ξ_x realmente pertence ao intervalo (3,4), confirmando o Teorema do Erro. Assim, ξ_x é uma **função de** x que depende da forma local da função.

Exemplo 3: Verificação pelo Teorema do Erro

Pelo Teorema 2, o erro é dado por:

$$E_1(x) = (x - x_0)(x - x_1) \frac{f''(\xi_x)}{2}, \qquad \xi_x \in (x_0, x_1).$$

Para $f(x) = \ln(x)$, temos $f''(x) = -\frac{1}{x^2}$. Substituindo $x_0 = 3$, $x_1 = 4$ e x = 3.7:

$$E_1(3.7) = (3.7-3)(3.7-4)\frac{f''(\xi_{3.7})}{2} = (0.7)(-0.3)\frac{-1}{2\xi_{3.7}^2} = 8.3 \times 10^{-3}.$$

Resolvendo para $\xi_{3.7}$:

$$0.0083 = \frac{0.21}{2\xi_{3.7}^2} \quad \Rightarrow \quad \xi_{3.7} = 3.5578.$$

Conclusão

O ponto ξ_x realmente pertence ao intervalo (3,4), confirmando o Teorema do Erro. Assim, ξ_x é uma **função de** x que depende da forma local da função.

LIMITANTE PARA O ERRO E COROLÁRIO

A expressão exata do erro:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \qquad \xi_x \in (x_0, x_n)$$

tem uso limitado na prática, pois:

- o ponto ξ_x é **desconhecido**;
- ullet e raramente conhecemos a derivada de ordem (n+1) da função.

Ideia: mesmo sem conhecer ξ_x , podemos estimar um limite superior para o erro, se soubermos um valor máximo de $|f^{(n+1)}(x)|$ no intervalo.

Chamando

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$

temos o Corolário:

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1) \cdots (x - x_n)| \frac{M_{n+1}}{(n+1)!}$$

LIMITANTE PARA O ERRO E COROLÁRIO

A expressão exata do erro:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \qquad \xi_x \in (x_0, x_n)$$

tem uso limitado na prática, pois:

- o ponto ξ_x é **desconhecido**;
- ullet e raramente conhecemos a derivada de ordem (n+1) da função.

Ideia: mesmo sem conhecer ξ_x , podemos **estimar um limite superior para o erro**, se soubermos um valor máximo de $|f^{(n+1)}(x)|$ no intervalo.

Chamando:

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|,$$

temos o Corolário:

$$|E_n(x)| = |f(x) - p_n(x)| \le |(x - x_0)(x - x_1) \cdots (x - x_n)| \frac{M_{n+1}}{(n+1)!}.$$

Importância do Limitante para o Erro

POR QUE O LIMITANTE É IMPORTANTE?

- Ele fornece uma estimativa prática do erro, sem precisar conhecer o ponto ξ_x .
- Permite avaliar o grau de precisão de uma interpolação.
- É utilizado para derivar estimativas de erro em outros métodos numéricos:
 - fórmulas de diferenciação numérica;
 - fórmulas de integração numérica.
- Mostra como o erro depende de dois fatores:
 - **1** o comportamento de $f^{(n+1)}(x)$ (curvatura da função);
 - 2 a distância entre os pontos x_0, x_1, \ldots, x_n .

Seja $f(x) = e^x + x - 1$ tabelada conforme:

			1	1.5	2
f(x)	0.0	1.1487	2.7183	4.9811	8.3890

Queremos estimar f(0.7) por interpolação linear

Como $0.7 \in (0.5, 1)$, escolhemos

$$x_0 = 0.5, \quad x_1 = 1.$$

Aplicando a forma de Newton

$$p_1(x) = f[x_0] + (x - x_0) f[x_0, x_1],$$

$$f[x_0, x_1] = \frac{2.7183 - 1.1487}{1 - 0.5} = 3.1392$$

$$\Rightarrow p_1(x) = 1.1487 + (x - 0.5)(3.1392)$$

Seja $f(x) = e^x + x - 1$ tabelada conforme:

Queremos estimar f(0.7) por interpolação linear.

Como $0.7 \in (0.5, 1)$, escolhemos:

$$x_0 = 0.5, \quad x_1 = 1.$$

Aplicando a forma de Newton

$$p_1(x) = f[x_0] + (x - x_0) f[x_0, x_1],$$

$$f[x_0, x_1] = \frac{2.7183 - 1.1487}{1 - 0.5} = 3.1392$$

$$\Rightarrow p_1(x) = 1.1487 + (x - 0.5)(3.1392)$$

Seja $f(x) = e^x + x - 1$ tabelada conforme:

Queremos estimar f(0.7) por interpolação linear.

Como $0.7 \in (0.5, 1)$, escolhemos:

$$x_0 = 0.5, \quad x_1 = 1.$$

Aplicando a forma de Newton:

$$p_1(x) = f[x_0] + (x - x_0) f[x_0, x_1],$$

$$f[x_0, x_1] = \frac{2.7183 - 1.1487}{1 - 0.5} = 3.1392,$$

$$\Rightarrow p_1(x) = 1.1487 + (x - 0.5)(3.1392).$$

Para x = 0.7

$$p_1(0.7) = 1.1487 + (0.2)(3.1392) = 1.7765.$$

Sabendo que $f(0.7) = e^{0.7} + 0.7 - 1 = 1.7137$, temos:

$$|E_1(0.7)| = |f(0.7) - p_1(0.7)| = |1.7137 - 1.7765| = 0.0628$$

Para x = 0.7:

$$p_1(0.7) = 1.1487 + (0.2)(3.1392) = 1.7765.$$

Sabendo que $f(0.7) = e^{0.7} + 0.7 - 1 = 1.7137$, temos:

$$|E_1(0.7)| = |f(0.7) - p_1(0.7)| = |1.7137 - 1.7765| = 0.0628$$

Para x = 0.7:

$$p_1(0.7) = 1.1487 + (0.2)(3.1392) = 1.7765.$$

Sabendo que $f(0.7) = e^{0.7} + 0.7 - 1 = 1.7137$, temos:

$$|E_1(0.7)| = |f(0.7) - p_1(0.7)| = |1.7137 - 1.7765| = 0.0628.$$

Usando o Corolário:

$$|E_1(x)| \le |(x-x_0)(x-x_1)| \frac{M_2}{2}$$
, onde $M_2 = \max_{x \in [0.5,1]} |f''(x)|$.

Sabemos que $f'(x) = e^x + 1 > 0, \forall x \in (0.5, 1)$, portanto é crescente e o máximo ocorre em x = 1. Como $f''(x) = e^x$, então $M_2 = e^1 = 2.7183$. Sabemos que

$$|E_1(0.7)| \le |(0.7 - 0.5)(0.7 - 1)| \frac{2.7183}{2} = 0.0815.$$

$$|E_1(0.7)|_{\text{real}} = 0.0628 < 0.0815 = |E_1(0.7)|_{\text{máx.}}$$

Usando o Corolário:

$$|E_1(x)| \le |(x-x_0)(x-x_1)| \frac{M_2}{2}$$
, onde $M_2 = \max_{x \in [0.5,1]} |f''(x)|$.

Sabemos que $f'(x) = e^x + 1 > 0, \forall x \in (0.5, 1)$, portanto é crescente e o máximo ocorre em x = 1. Como $f''(x) = e^x$, então $M_2 = e^1 = 2.7183$. Sabemos que

$$|E_1(0.7)| \le |(0.7-0.5)(0.7-1)| \frac{2.7183}{2} = 0.0815.$$

$$|E_1(0.7)|_{real} = 0.0628$$
 $< 0.0815 = |E_1(0.7)|_{máx.}$

Usando o Corolário:

$$|E_1(x)| \le |(x-x_0)(x-x_1)| \frac{M_2}{2}$$
, onde $M_2 = \max_{x \in [0.5,1]} |f''(x)|$.

Sabemos que $f'(x) = e^x + 1 > 0, \forall x \in (0.5, 1)$, portanto é crescente e o máximo ocorre em x = 1. Como $f''(x) = e^x$, então $M_2 = e^1 = 2.7183$. Sabemos que

$$|E_1(0.7)| \le |(0.7-0.5)(0.7-1)| \frac{2.7183}{2} = 0.0815.$$

$$|E_1(0.7)|_{\text{real}} = 0.0628$$
 < $0.0815 = |E_1(0.7)|_{\text{máx.}}$

Exemplo 4: Interpretação

- Neste exemplo, conhecemos f(x) e pudemos calcular o erro real.
- Na prática, f(x) é desconhecida, o limitante garante que o erro não ultrapasse o valor estimado.
- Assim, o Corolário fornece uma margem de segurança ou limite superior para o erro de interpolação.

ESTIMATIVA PARA O ERRO DE INTERPOLAÇÃO

Sabemos, pelo Teorema do Erro:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \quad \xi_x \in (x_0, x_n).$$

Quando a função f(x) é conhecida analiticamente, podemos calcular

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$

e obter um limitante superior para o erro:

$$|E_n(x)| \le |(x-x_0)(x-x_1)\cdots(x-x_n)| \frac{M_{n+1}}{(n+1)!}$$

Mas e se f(x) for dada apenas por valores tabelados?

- Não é possível calcular M_{n+1} , pois não conhecemos $f^{(n+1)}(x)$;
- Ainda assim, podemos estimar o erro a partir das informações numéricas.

ESTIMATIVA PARA O ERRO DE INTERPOLAÇÃO

Sabemos, pelo Teorema do Erro:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \quad \xi_x \in (x_0, x_n).$$

Quando a função f(x) é conhecida analiticamente, podemos calcular:

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$

e obter um limitante superior para o erro:

$$|E_n(x)| \leq |(x-x_0)(x-x_1)\cdots(x-x_n)|\frac{M_{n+1}}{(n+1)!}.$$

Mas e se f(x) for dada apenas por valores tabelados?

- Não é possível calcular M_{n+1} , pois não conhecemos $f^{(n+1)}(x)$;
- Ainda assim, podemos estimar o erro a partir das informações numéricas.

ESTIMATIVA PARA O ERRO DE INTERPOLAÇÃO

Sabemos, pelo Teorema do Erro:

$$E_n(x) = (x - x_0)(x - x_1) \cdots (x - x_n) \frac{f^{(n+1)}(\xi_x)}{(n+1)!}, \quad \xi_x \in (x_0, x_n).$$

Quando a função f(x) é conhecida analiticamente, podemos calcular:

$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{(n+1)}(x)|$$

e obter um limitante superior para o erro:

$$|E_n(x)| \leq |(x-x_0)(x-x_1)\cdots(x-x_n)|\frac{M_{n+1}}{(n+1)!}.$$

Mas e se f(x) for dada apenas por valores tabelados?

- Não é possível calcular M_{n+1} , pois não conhecemos $f^{(n+1)}(x)$;
- Ainda assim, podemos estimar o erro a partir das informações numéricas.

Estimando o Erro a partir de Diferenças Divididas

Ideia: As diferenças divididas de ordem n+1 têm papel análogo à derivada $f^{(n+1)}(x)$.

Se construirmos a tabela de diferenças divididas até ordem n+1, podemos usar o **maior valor (en módulo)** dessas diferenças como uma aproximação para o termo:

$$\frac{M_{n+1}}{(n+1)!}.$$

Assim, obtemos uma estimativa prática do erro:

$$|E_n(x)| \approx |(x-x_0)(x-x_1)\cdots(x-x_n)| \times (\max\{|\text{diferenças divididas de ordem } n+1|\}).$$

Estimando o Erro a partir de Diferenças Divididas

Ideia: As diferenças divididas de ordem n+1 têm papel análogo à derivada $f^{(n+1)}(x)$. Se construirmos a tabela de diferenças divididas até ordem n+1, podemos usar o **maior valor (em módulo)** dessas diferenças como uma aproximação para o termo:

$$\frac{M_{n+1}}{(n+1)!}.$$

Assim, obtemos uma estimativa prática do erro:

$$|E_n(x)| \approx |(x-x_0)(x-x_1)\cdots(x-x_n)| \times (\max\{|\text{diferenças divididas de ordem } n+1|\}).$$

Estimando o Erro a partir de Diferenças Divididas

Ideia: As diferenças divididas de ordem n+1 têm papel análogo à derivada $f^{(n+1)}(x)$. Se construirmos a tabela de diferenças divididas até ordem n+1, podemos usar o maior valor (em **módulo)** dessas diferencas como uma aproximação para o termo:

$$\frac{M_{n+1}}{(n+1)!}.$$

Assim, obtemos uma estimativa prática do erro:

$$|E_n(x)| \approx |(x-x_0)(x-x_1)\cdots(x-x_n)| \times (\max\{|\text{diferenças divididas de ordem } n+1|\}).$$

Exemplo 5

Seja f(x) dada na forma:

- A) Obter f(0.47) usando um polinômio de grau 2.
- B) Dar uma estimativa para o erro.

Exemplo 5: Tabela de Diferenças divididas

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0.2	0.16			
		0.4286		
0.34	0.22		2.0235	
		0.8333		-17.8963
$x_0 = 0.4$	0.27		-3.7033	
		0.1667		18.2492
$x_1 = 0.52$	0.29		1.0415	
		0.375		-2.6031
$x_2 = 0.6$	0.32		0.2085	
		0.4167		
0.72	0.37			

Exemplo 5: Polinômio $p_2(x)$

Coeficientes de Newton:

$$d_0 = f[x_0] = \mathbf{0.27}, \qquad d_1 = f[x_0, x_1] = \mathbf{0.1667}, \qquad d_2 = f[x_0, x_1, x_2] = \mathbf{1.0415}.$$

Polinômio (grau 2):

$$p_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) = 0.27 + 0.1667(x - 0.40) + 1.0415(x - 0.40)(x - 0.52).$$

Em
$$x = 0.47$$
: $p_2(0.47) = \boxed{0.2780} \approx f(0.47)$.

Exemplo 5 - Estimativa para o erro

Para n=2, olhamos a coluna de Ordem 3. Os valores são: -17.8963, 18.2492 e -2.6031. Calculamos o máximo valor em módulo (valor absoluto):

$$\max(|-17.8963|,|18.2492|,|-2.6031|)$$

$$\max(17.8963, 18.2492, 2.6031) = 18.2492$$

Agora, aplicamos a fórmula para x = 0.47:

$$|E_2(0.47)| \approx |(0.47 - 0.4)(0.47 - 0.52)(0.47 - 0.6)| \cdot (18.2492)$$

 $\approx |(0.07)(-0.05)(-0.13)| \cdot (18.2492)$
 $\approx |0.000455| \cdot (18.2492)$
 ≈ 0.008303386
 $|E_2(0.47)| \approx 8.303 \times 10^{-3}$

Roteiro da Aula

- MOTIVAÇÃO
- 2 Forma de Newton
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- 5 ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

2025.2

Exercício Proposto

Considere os seguintes valores de uma função f(x):

	0.0					
f(x)	1.00	1.22	1.49	1.82	2.20	2.64

Pede-se:

- O Calcular f(0.5) usando o polinômio interpolador de Newton de grau 2;
- Onstruir a tabela de diferenças divididas correspondente;
- **②** Fornecer uma **estimativa para o erro** em x = 0.5, considerando o valor máximo (em módulo) das diferenças de ordem 3.

B) TABELA DE DIFERENÇAS DIVIDIDAS

Xi	Ord 0	Ord 1	Ord 2	Ord 3	Ord 4	Ord 5
0.0	1.00	1 1000				
0.2	1.22	1.1000	0.6250			
		1.3500		0.2083		
0.4	1.49	1.6500	0.7500	-0.2083	-0.5208	1.0416
0.6	1.82		0.6250		0.5208	1.0410
0.8	2.20	1.9000	0.7500	0.2083		
0.0		2.2000	0.7300			
1.0	2.64					

A) CÁLCULO DE f(0.5) COM GRAU 2

Para estimar f(0.5), usamos 3 pontos (n = 2) que "cercam" o valor 0.5.

• Pontos escolhidos: $x_1 = 0.2$, $x_2 = 0.4$, $x_3 = 0.6$.

O polinômio de Newton de grau 2 é:

$$P_2(x) = f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

Substituindo os valores da tabela:

- $f[x_1] = 1.22$
- $f[x_1, x_2] = 1.35$
- $f[x_1, x_2, x_3] = 0.750$

Cálculo para x = 0.5

$$P_2(0.5) = 1.22 + 1.35(0.5 - 0.2) + 0.75(0.5 - 0.2)(0.5 - 0.4)$$

= 1.22 + 1.35(0.3) + 0.75(0.3)(0.1)
= 1.22 + 0.405 + 0.0225

 $P_2(0.5) = 1.6475$

A) CÁLCULO DE f(0.5) COM GRAU 2

Para estimar f(0.5), usamos 3 pontos (n = 2) que "cercam" o valor 0.5.

• Pontos escolhidos: $x_1 = 0.2$, $x_2 = 0.4$, $x_3 = 0.6$.

O polinômio de Newton de grau 2 é:

$$P_2(x) = f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

Substituindo os valores da tabela:

- $f[x_1] = 1.22$
- $f[x_1, x_2] = 1.35$
- $f[x_1, x_2, x_3] = 0.750$

Cálculo para x = 0.5

$$P_2(0.5) = 1.22 + 1.35(0.5 - 0.2) + 0.75(0.5 - 0.2)(0.5 - 0.4)$$
$$= 1.22 + 1.35(0.3) + 0.75(0.3)(0.1)$$
$$= 1.22 + 0.405 + 0.0225$$

 $P_2(0.5) = 1.6475$

A) CÁLCULO DE f(0.5) COM GRAU 2

Para estimar f(0.5), usamos 3 pontos (n = 2) que "cercam" o valor 0.5.

• Pontos escolhidos: $x_1 = 0.2$, $x_2 = 0.4$, $x_3 = 0.6$.

O polinômio de Newton de grau 2 é:

$$P_2(x) = f[x_1] + f[x_1, x_2](x - x_1) + f[x_1, x_2, x_3](x - x_1)(x - x_2)$$

Substituindo os valores da tabela:

- $f[x_1] = 1.22$
- $f[x_1, x_2] = 1.35$
- $f[x_1, x_2, x_3] = 0.750$

Cálculo para x = 0.5:

$$P_2(0.5) = 1.22 + 1.35(0.5 - 0.2) + 0.75(0.5 - 0.2)(0.5 - 0.4)$$

= 1.22 + 1.35(0.3) + 0.75(0.3)(0.1)
= 1.22 + 0.405 + 0.0225

$$P_2(0.5) = 1.6475$$

c) Estimativa do Erro em x = 0.5

A fórmula do termo do erro para $P_2(x)$ (baseado nos pontos x_1, x_2, x_3) é:

$$E_2(x) = f[x_1, x_2, x_3, x] \cdot (x - x_1)(x - x_2)(x - x_3)$$

O enunciado pede para estimar o termo $f[x_1, x_2, x_3, x]$ usando o valor máximo em módulo das diferenças de ordem 3.

- Olhando a tabela (coluna "Ord 3"):
- $|f[x_0, x_1, x_2, x_3]| = |0.2083|$
- $|f[x_1, x_2, x_3, x_4]| = |-0.2083| = 0.2083$
- $|f[x_2, x_3, x_4, x_5]| = |0.2083|$

O valor máximo em módulo é $M_3 \approx 0.2083$ (ou, exatamente, 5/24).

Cálculo do erro estimado em x = 0.5

$$|E_2(0.5)| \approx M_3 \cdot |(0.5 - x_1)(0.5 - x_2)(0.5 - x_3)|$$

$$\approx 0.2083 \cdot |(0.5 - 0.2)(0.5 - 0.4)(0.5 - 0.6)$$

$$\approx 0.2083 \cdot |(0.3)(0.1)(-0.1)|$$

c) Estimativa do Erro em x = 0.5

A fórmula do termo do erro para $P_2(x)$ (baseado nos pontos x_1, x_2, x_3) é:

$$E_2(x) = f[x_1, x_2, x_3, x] \cdot (x - x_1)(x - x_2)(x - x_3)$$

O enunciado pede para estimar o termo $f[x_1, x_2, x_3, x]$ usando o valor máximo em módulo das diferenças de ordem 3.

- Olhando a tabela (coluna "Ord 3"):
- $|f[x_0, x_1, x_2, x_3]| = |0.2083|$
- $|f[x_1, x_2, x_3, x_4]| = |-0.2083| = 0.2083$
- $|f[x_2, x_3, x_4, x_5]| = |0.2083|$

O valor máximo em módulo é $M_3 \approx 0.2083$ (ou, exatamente, 5/24).

Cálculo do erro estimado em x = 0.5:

$$|E_2(0.5)| \approx M_3 \cdot |(0.5 - x_1)(0.5 - x_2)(0.5 - x_3)|$$

$$\approx 0.2083 \cdot |(0.5 - 0.2)(0.5 - 0.4)(0.5 - 0.6)|$$

$$\approx 0.2083 \cdot |(0.3)(0.1)(-0.1)|$$

c) Estimativa do Erro em x = 0.5

A fórmula do termo do erro para $P_2(x)$ (baseado nos pontos x_1, x_2, x_3) é:

$$E_2(x) = f[x_1, x_2, x_3, x] \cdot (x - x_1)(x - x_2)(x - x_3)$$

O enunciado pede para estimar o termo $f[x_1, x_2, x_3, x]$ usando o valor máximo em módulo das diferenças de ordem 3.

- Olhando a tabela (coluna "Ord 3"):
- $|f[x_0, x_1, x_2, x_3]| = |0.2083|$
- $|f[x_1, x_2, x_3, x_4]| = |-0.2083| = 0.2083$
- $|f[x_2, x_3, x_4, x_5]| = |0.2083|$

O valor máximo em módulo é $M_3 \approx 0.2083$ (ou, exatamente, 5/24).

Cálculo do erro estimado em x = 0.5:

$$|E_2(0.5)| \approx M_3 \cdot |(0.5 - x_1)(0.5 - x_2)(0.5 - x_3)|$$

$$\approx 0.2083 \cdot |(0.5 - 0.2)(0.5 - 0.4)(0.5 - 0.6)|$$

$$\approx 0.2083 \cdot |(0.3)(0.1)(-0.1)|$$

Roteiro da Aula

- MOTIVAÇÃO
- 2 FORMA DE NEWTON
- O DIFERENÇAS DIVIDIDAS
- EXEMPLOS
- 5 ESTUDO DO ERRO NA INTERPOLAÇÃO
- 6 Exercício Proposto
- Conclusão

