DVD 在线租赁的优化设计方案

摘要:我们研究了一个 DVD 在线租赁问题,针对注册会员满意度的问题,提出了解决 DVD 分配方案以及应该购买 DVD 数量的模型与算法。我们得到如下结果:

问题 1:我们把模型简化为每月集中在月初和 16 号租赁,15 号和月末归还,月初时所有 DVD 全部被借出,月末全部返还,通过对这些问题的模型假设列出方程,解出至少准备多少张,才能保证希望看到该 DVD 的会员中至少 50%在一个月内能够看到该 DVD。

问题 2:目标函数是会员要获得最大满意度,满意度与会员对 DVD 偏爱程度有关,根据实际模拟出一个偏爱度的函数,要获得最大满意度,求所有会员对所收到 DVD 的偏爱度的和即可,然后通过 0-1 变量建立 0-1 规划模型求解会员获得的满意度最大时 DVD 的分配方案。我们在模型二求解时,认为该问题是一个变相的指派问题,用 LINGO 进行求解,然后我们又提出了一个寻找并逼近最优分配的算法,用 matlab 实现求解解得的满意度稍微小于用 LINGO 解的值,但运行速度加快,具体结果详见表一与表二。

问题 3:是一个多目标最优化问题,优化目标有两个,会员的满意度和 DVD 的购买量,两个目标在一定程度上相互影响,相互制约,要使满意度变大,即使购买量变大。同时还要满足 95%的会员得到他想要的 DVD,我们认为会员得到订单中十种 DVD 中的任意三种即为他得到想得到的 DVD。仍然用 0-1 变量建立了一个 0-1 规划。用 LINGO 进行求解,结果详见表三。我们还基于贪婪算法提出的一个新的解法得出一个近似最优解。

问题 4:我们考虑到生活中的关于 DVD 需求预测、购买和分配的实际情况。提出了一些问题并对其进行简单的解答和模型修改与建立。对于 DVD 需求预测我们应用灰度预测模型进行预测。

关键词:满意度函数 0-1 规划 指派问题 贪婪算法 灰度预测

问题重述

如下是在线 DVD 租赁问题。顾客缴纳一定数量的月费成为会员,订购 DVD 租赁服

务。会员对哪些 DVD 有兴趣,只要在线提交订单,网站就会通过快递的方式尽可能满足要求。会员提交的订单包括多张 DVD,这些 DVD 是基于其偏爱程度排序的。网站会根据手头现有的 DVD 数量和会员的订单进行分发。每个会员每个月租赁次数不得超过2次,每次获得3张 DVD。会员看完3张 DVD 之后,只需要将 DVD 放进网站提供的信封里寄回(邮费由网站承担),就可以继续下次租赁。请考虑以下问题:

- 1) 网站正准备购买一些新的 DVD,通过问卷调查 1000 个会员,得到了愿意观看这些 DVD 的人数(表1给出了其中5种 DVD 的数据)。此外,历史数据显示,60%的会员每月租赁 DVD 两次,而另外的40%只租一次。假设网站现有10万个会员,对表1中的每种 DVD 来说,应该至少准备多少张,才能保证希望看到该 DVD 的会员中至少50%在一个月内能够看到该 DVD?如果要求保证在三个月内至少95%的会员能够看到该 DVD 呢?
- 2)表2中列出了网站手上100种DVD的现有张数和当前需要处理的1000位会员的在线订单,如何对这些DVD进行分配,才能使会员获得最大的满意度?请具体列出前30位会员(即C0001~C0030)分别获得哪些DVD。
- 3)继续考虑表 2,并假设表 2 中 DVD 的现有数量全部为 0。如果你是网站经营管理人员,你如何决定每种 DVD 的购买量,以及如何对这些 DVD 进行分配,才能使一个月内 95%的会员得到他想看的 DVD,并且满意度最大?
- 4)如果你是网站经营管理人员,你觉得在 DVD 的需求预测、购买和分配中还有哪些重要问题值得研究?请明确提出你的问题,并尝试建立相应的数学模型。

	农工为1000十五页间量的的为名来							
DVD 名称	DVD1	DVD2	DVD3	DVD4	DVD5			
愿意观看的人	200	100	50	25	10			
数								

表 1 对 1000 个会员调查的部分结果

表 2 现有 DVD 张数和当前需要处理的会员的在线订单(表格格式示例)

				5 - 15 11 5 II - 17		1
DVD	编号	D001	D002	D003	D004	•••
DVD	现有数	10	40	15	20	
量	量					
	C0001	6	0	0	0	•••
会员	C0002	0	0	0	0	•••
在线	C0003	0	0	0	3	
订单	C0004	0	0	0	0	•••
		•••	•••			•••

注:D001~D100 表示 100 种 DVD, C0001~C1000 表示 1000 个会员, 会员的在线订单用数字 1,2,...表示,数字越小表示会员的偏爱程度越高,数字 0 表示对应的 DVD 当前不在会员的在线订单中。

模型假设

1) 假设一个月为一个租赁周期,60%的人租两次,40%的人租一次,第一次下订单是月

初,租两次的人统一在月初借,在15号还,16号继续下第二张订单,并和租一次的人在月末把所有 DVD 归还,而租一次的人有可能在月初也有可能在15号租赁到他想得到的 DVD。

- 2) 假设第一,二,三个月会员分别对 DVD;的需求量基本保持不变。
- 3) 假设一个月内,会员的所有订单中所选 DVD 的排序不变。
- 4) 如果你订单上的 10 张 DVD 存货小于三张时进行等待,直到能够分给该会员他想得到的某三张 DVD,网站才会发片。
- 5) 一个会员在归还 DVD 后,不会再租赁同一张 DVD。

问题分析

该问题是一个在一定约束条件下的最优化问题,问题二的目标函数是会员要获得最大满意度,满意度与会员对 DVD 偏爱程度有关,可以先构造一个偏爱度的函数,要获得最大满意度,求所有会员对所收到 DVD 的偏爱度的和即可。问题三是一个多目标最优化问题,优化目标有两个,会员的满意度和 DVD 的购买量,两个目标在一定程度上相互影响,要使满意度变大,即使购买量变大。同时还要满足 95%的会员得到他想要的 DVD,我们认为会员得到订单中十种 DVD 中的三种即为他想得到的 DVD。在解决问题二和问题三时,我们分别用两个 0-1 变量来表示会员 i 是否租到他想要的 DVD,和会员一个月内的租赁次数,通过这些决策变量我们可以列出约束条件进行求解。

基本符号说明

D_{i}	需购买 DVD_i 的张数
P_{i}	愿意看 DVD_i 的人的数量
a_{ij}	第 i 名会员租赁 j 张 DVD 的偏爱程度值 (不被租赁的 DVD 偏爱值为 0), 其中
J. J.	$a_{ij} = \{0, 1, 2, \dots, 10\}$
C_{i}	当会员租到他想要的 DVD 时记为 1 , 其它记为 0
E_{i}	当会员在一个月内租赁两次记为 1, 否则记为 0;
L_i	

模型建立

5.1 模型一

因为该网站是月费制,我们选一个月为一个租赁周期,到第二个月全部 DVD 收回,重新进入下一个租赁周期。D1 显然小于 DVD1 的需求量 200 张,所以开始的时候 D1 会被全部租出,因为 40%的人一个月只租一次,我们认为他们等到月末才会归还,60%的人一个月租两次,第一次看了半个月就归还,这时有 0.6D1 被归还回来可以继续租给他人,其他人看了半个月后归还,这样就构成了一个租赁周期。可表示为:

$$D_i + 0.6 D_i = 50\% * P_i$$

同样因为我们已经假设了以一个月为一个租赁周期,所以第二,三个月的租赁方法与第一个月一样,且我们已经假设第一,二,三个月会员分别对 DVD_i 的需求量保持不变。所以可以列式为:

$$3* (D_i + 0.6D_i) = 95\%*P_i$$

5.2 会员的偏爱度函数

会员的满意度与会员的偏爱程度有关,对租到的 DVD 的偏爱程度越高,会员的满意度越大,要使会员获得最大的满意度,即使所有会员对租到的 DVD 的偏爱程度的综合评价最高,我们就用这些偏爱度的和来表示这个综合评价。

事实上,每一个会员对 DVD 都有一个"偏爱程度",通常认为每个会员对 DVD 的偏爱程度可以分为十种等级,即构成了评语集 $V = \{v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6 \quad v_7 \quad v_8 \quad v_9 \quad v_{10}\}$,并附相应的数值 1,2,3,4,5,6,7,8,9,10。

为了得到"偏爱度"的量化指标,首先注意到,人们对在选择 DVD 时,开始时随着偏爱程度等级的降低,偏爱度的量化值变化不大,但当偏爱程度降到某一个等级时,以后每个会员对 DVD 的偏爱程度每降低一级可能导致会员的不感兴趣,根据实际情况我们构造这样一个函数:

$$f(x) = \begin{cases} a \ln(11 - x) + b, & 1 \le x \le 3 \\ e^{\frac{-x + \beta}{\alpha}}, & 3 \le x \le 10 \\ 0, & x = 0 \end{cases}$$

当"非常喜欢"时,则把这个函数值量化为 1 ,即 f(1)=1 ,当"一般喜欢"时,则把这个函数量化为 0.8 ,即 f(3)=0.8 ,当"不是很喜欢"时,则函数量化为 0.1 ,即 f(10)=0.1 。

于是确定出 $\alpha=3.36629$, $\beta=2.24883$,a=0.896284,b=-1.06377 ,经计算可得 f(1)=1, f(2)=0.9056,f(3)=0.8, f(4)=0.5944, f(5)=0.4416, f(6)=0.3281, f(7)=0.2438, f(8)=0.1811, f(9)=0.1346, f(10)=0.1

且其中 f(0) = 0

偏爱度图像,横坐标为偏爱程度,纵坐标为量化值

则每个会员对 DVD 的分配的评语集为 $\{v_1\ v_2\ v_3\ v_4\ v_5\ v_6\ v_7\ v_8\ v_9\ v_{10}\ \}$ 的量化值为 $\{1,\ 0.9056,\ 0.8,\ 0.5944,\ 0.4416,\ 0.3281,\ 0.2438,\ 0.1811,\ 0.1346,\ 0.1\}$

5.3 模型二:

构造三个决策变量:

$$x_{ij} = \begin{cases} 1, & \text{if } - x \text{ is } - x \text{ if } i \text{ is } - x \text{$$

会员的满意度可用 z 来表示,则

max
$$z = \sum_{i=1}^{1000} (\sum_{j=1}^{100} f(a_{ij}) *x_{ij})$$

$$s.t. \begin{cases} \sum_{j=1}^{1000} x_{ij} = 3 豆苡0 \\ \sum_{i=1}^{1000} x_{ij} \le D_i \\ x_{ij} = 0 豆苡1 \end{cases}$$

5.4 模型三

如果你订单上的 10 张 DVD 存货小于三张时进行等待,直到能够分给该会员他想得

到的某三张 DVD,网站才会发片。这样就会出现有些会员等了一个月都没等到订单上 DVD 的情况,即为题目中所说的没有得到想看的 DVD 的人的 5%的会员。

根据题意可知会员可分为两种人,一种是在一个月内得到自己想看的 DVD,一种是在一个月内并没有得到他想看的 DVD,而第一种人又可分为一个月租两次和一个月租一次。一个月租一次的可以月初租到月末归还,也可以 16 号租到月末归还。如图所示:

图:模型三的图示

首先构造两个决策变量:

分给第 i 名会员第 j 张 DVD ,当这张 DVD 是他想要的 DVD 时 ,则 $x_{ij}^{(1)}=3$ 或 $x_{ij}^{(2)}=3$, 否则就不是他想要的 DVD ,所以在 100 张 DVD 中分配给第 i 名会员时如果 $\sum_{j=1}^{100} x_{ij}^{(1)}=3$ 或 $\sum_{j=1}^{100} x_{ij}^{(2)}=3$ 则说明这名会员分到了他想要的 DVD ,否则说明他并没有得到

他想要的 DVD。

然后构造两个决策变量:

$$C_{i} = \begin{cases} 1, & \qquad \qquad \\ \underbrace{\mathbf{j}_{j=1}^{100}}_{j=1} \mathbf{x}_{ij}^{(1)} = 3 \mathbf{x} \sum_{j=1}^{100} \mathbf{x}_{ij}^{(2)} = 3 \end{cases}$$

$$0, \qquad \qquad$$
其他

要使一个月内有 95%的会员得到他想要的 DVD , 则 $\frac{\sum\limits_{i=1}^{1000}C_{i}}{1000}$ \geq 95% 。

$$E_{i} = \begin{cases} 1, & \qquad \qquad \\ \\ 1, & \qquad \\ \\ 1, & \qquad \\ \end{bmatrix} \sum_{j=1}^{100} X_{ij}^{(1)} = 3 \\ \\ 1, & \qquad \\ \end{bmatrix} \sum_{j=1}^{100} X_{ij}^{(2)} = 3$$

要保证大约 60%的会员每月租赁两次,另外的 40% 只租一次,则 $\frac{\sum\limits_{i=1}^{1000}E_{i}}{1000}$ = 60%

因为会员不会借他借过的 DVD,所以第一次分配后该会员的偏爱程度矩阵会变化,构造一个新的矩阵 $\overline{a_{ij}}$ (i=1,2……1000,j=1……100)作为第一次分配之后的偏爱程度矩阵,先令 $\overline{a_{ij}} = a_{ij}$,若在第一次分配中,会员 i1 租到 DVD j1,则 $\overline{a_{i,j_1}} = 0$,其他没被租到的 DVD 的喜爱程度 $\overline{a_{ij}}$,由小于 a_{ij} 的偏爱程度中曾被租过的个数 n 来决定,即 $\overline{a_{ij}} = a_{ij}$ -n。模型二的模型如下:

Max
$$z = \sum_{i=1}^{1000} (\sum_{j=1}^{100} f(a_{ij}) *x_{ij}^{(1)} + f(\overline{a_{ij}}) *x_{ij}^{(2)})$$

$$\min \sum_{i=1}^{1000} D_i$$

s f

$$\begin{split} & \left\{ \begin{aligned} \sum_{j=1}^{100} x_{ij}^{\ (1)} \leq 3 &, & \sum_{j=1}^{100} x_{ij}^{\ (2)} \leq 3 \\ \sum_{j=1}^{1000} C_{i} &, & \sum_{j=1}^{1000} E_{i} \\ 1000 & \geq 95\% &, & \frac{\sum_{i=1}^{1000} E_{i}}{1000} = 60\% \\ \sum_{i=1}^{1000} x_{ij}^{\ (1)} \leq D_{i} &, & \sum_{i=1}^{1000} x_{ij}^{\ (2)} \leq (D_{i} - \sum_{i=1}^{1000} x_{ij}^{\ (1)}) + 0.6 * \sum_{i=1}^{1000} x_{ij}^{\ (1)} \\ x_{ii}^{\ (1)} = 0 \ \vec{\boxtimes} 1 &, & x_{ii}^{\ (2)} = 0 \ \vec{\boxtimes} 1 \end{aligned} \end{split}$$

5.5 DVD 的需求预测,购买与分配

购买:1) 在购买 DVD 时要考虑 DVD 的价格不同这个因素。设价格为 v_j ,建立模型时的目标函数由原来的购买量最小($\min\sum_{i=0}^{1000}D_i$)变成购买时的花费最小

(
$$\min \sum_{i=1}^{1000} v_j * D_i$$
)

2) 我们认为 DVD 可以在月的中旬随时更新。设新进 DVD 为 m 个,则约束条件

中的
$$\sum_{i=1}^{1000} x_{ij}^{(2)} \le (D_i - \sum_{i=1}^{1000} x_{ij}^{(1)}) + 0.6 * \sum_{i=1}^{1000} x_{ij}^{(1)}$$
 变为

 $\sum_{i=1}^{1000} x_{ij}^{(2)} \leq (D_i - \sum_{i=1}^{1000} x_{ij}^{(1)}) + 0.6 * \sum_{i=1}^{1000} x_{ij}^{(1)} + m \quad 同时部分偏爱程度 a_{ij} 会发生变化。综$

合上面可以把模型改进为:

Max
$$z = \sum_{i=1}^{1000} (\sum_{i=1}^{100} f(a_{ij}) *x_{ij}^{(1)} + f(\overline{a_{ij}}) *x_{ij}^{(2)})$$

(
$$\min \sum_{i=1}^{1000} v_j * D_i$$
)

s.t.

- **分配:** 1) 考虑可以在一个月的任何时候归还和租赁 DVD, 这样可以提高 DVD 的利用率。我们可以考虑为概率问题,把月中归还时间与租赁时间看作一个正态分布。对一个月的租赁过程进行计算机模拟。
 - 2) 我们还会发现在实际情况中,一个人下订单时,网站可能会提示 DVD 的存货量信息有的为有库存,有的是暂时短缺,还有的是长时间缺货,会员可以根据这些提示下订单。
 - 3) 在分配时,先到先得,当几人同时等待时我们可能会优先分配给等待时间较长的会员。满意度是一个关于等待时间的单调递减函数,会员 i 的满意度函数

为
$$\sum_{i=1}^{100} f(a_{ij}) * x_{ij} - g(t), g(t)$$
 为一个关于等待时间的单增函数,可以理解为"埋怨

度",设 t_i 为该会员收到想得到的 DVD 的时间。当 $t \le t_i$ 时, $g(t) = kt^2$,当 $t \ge t_i$ 时,

$$g(t)=0_{\circ}$$

- 4) 分配的时候当发生冲突时要优先分给前几个月满意度较小的会员。我们考虑前三个月的情况,分别对前三个月的满意度进行加权求和,定义从上月到三个月前的权值分别为 0.5,0.3,0.2。取满意度加权求和后最小的会员,并把 DVD 分发给他。
- 5) 对每个会员建立一个信誉度,如果某会员违约没有按时归还 DVD,则信誉度变低,若某会员信誉度越低则不会在分配时给他优先。

上面一系列问题都是值得我们去研究的,必须将他们考虑到模型中。

需求预测:对 DVD 的总需求(或单个 DVD 需求)的预测我们选用灰色预测的模型 step1: 对数据进行检验与处理,为了保证建模的可行性需要对已知数据列作必要的检测处理,设以前的统计量即每个月的 DVD 的需求量用 $x^{(0)} = (x^{(0)}(1), x^{(0)}(2), \cdots x^{(0)}(n))$,计算数列的级比

$$\lambda(k) = \frac{x^{(0)}(k-1)}{x^{(0)}(k)}$$
 (k=2,3.....n)

如果所有的级比 $\lambda(k)$ 都落在可容覆盖 $X=(e^{-\frac{2}{n+1}},e^{\frac{2}{n+1}})$ 内,则数列 $x^{(0)}$ 可以进行数学灰度预测,否则,需要对数列 $x^{(0)}$ 做必要的变换处理,使其落在可容覆盖内。即取适当的常数 c,做平移变换 $y^{(0)}(k)=x^{(0)}(k)+c$ $(k=1,2,\ldots,n)$ 则使 $y^{(0)}=(y^{(0)}(1),y^{(0)}(2),\cdots y^{(0)}(n))$ 的级

step 2:建立灰度模型,根据已知公式可得

$$x^{(1)}(k+1) = (x^{(0)}(1) - \frac{b}{a})e^{-ak} + \frac{b}{a} \qquad (k=1,2,\dots,n-1)$$

$$\overline{m} \coprod x^{(0)}(k+1) = x^{(1)}(k+1) - x^{(1)}(k) \qquad (k=1,2,\dots,n-1)$$

模型求解

6.1 模型一的求解

$$P_1$$
=20000, P_2 =10000, P_3 =5000, P_4 =2500, P_5 =1000 使看见该 DVD 的会员至少 50% 在一个月内能够看到该 DVD 的 D_1 =6250 D_2 =3125 D_3 =1563 D_4 =782 D_5 =313 使看见该 DVD 的会员至少 95% 在三个月内能够看到该 DVD 的 D_1 =3960 D_2 =1980 D_3 =990 D_4 =495 D_5 =198

6.2 模型二的求解:

6.2.1,该问题为一种变相的指派问题 (某单位须完成 n 项任务,恰好有 n 人可承担这些任务),指派问题有固定的算法,用 lingo 编程[2]得前 30 位会员分别得到的 DVD 为:

	1	2	3	4	5	6	7	8	9	10
所选	8	6	4	7	11	19	8	31	53	55
DVD	41	44	50	18	66	5	26	71	78	60
	98	62	80	41	68	66	51	78	100	85
	11	12	13	14	15	16	17	18	19	20
所选	59	2	21	23	13	55	47	41	66	45
DVD	63	7	78	52	66	84	51	60	84	61
	66	31	96	89	85	97	67	78	86	89
	21	22	23	24	25	26	27	28	29	30
所选	45	38	29	37	9	22	22	8	26	37
DVD	50	55	81	41	69	68	50	26	30	62
	53	57	95	76	94	95	58	34	55	98

表一: lingo 问题二的分配方案

其中,他们获得的最大满意度z为2397

6.2.2,构造一个算法,如下流程图所示:

构造好 z[]和基本的 A[]后,如下面流程所示对 A[]中的 A_{ij} 进行调整达到 DVD 的分配最优,使会员获得最大满意度。

上面流程结束后,接着步骤一变为"在第 j 列找到使 $A_{ij}=0, a_{ij}=2$ 或3的 i_1 ",其他步骤按上面步骤进行,用 matlab 编程得: 前 30 个会员得到的 DVD 为:

	1	2	3	4	5	6	7	8	9	10
所选	8	6	4	7	11	16	8	15	53	55
DVD	82	44	50	18	66	19	26	31	78	60
	98	62	80	41	68	53	81	71	100	85
	11	12	13	14	15	16	17	18	19	20
所选	19	2	21	23	13	6	47	41	67	45
DVD	58	7	78	43	85	84	51	60	84	61
	83	31	96	52	88	97	67	78	86	89

	21	22	23	24	25	26	27	28	29	30
所选	45	38	29	37	9	22	22	8	30	1
DVD	53	55	81	41	69	68	42	34	44	37
	65	57	95	76	94	95	58	82	55	62

表二:算法问题二的分配方案

求得的会员的最大的满意度 z 为: 2182.3

6.3 模型三的求解:

6.3.1.这是一个多目标函数,要想求解必须把它转化为单目标函数,根据会员的满意度最大和 DVD 的购买量最小的双重目标,我们采用先满意度后购买量的策略。

第一步:根据满意度最大原则,要得到第一次分配和第二次分配第 i 名会员的 DVD 分

配情况,解出 $x_{ii}^{(1)}$ 和 $x_{ii}^{(2)}$ 的优值。[3]

Max
$$z = \sum_{i=1}^{1000} (\sum_{i=1}^{100} f(a_{ij}) *x_{ij}^{(1)} + f(\overline{a_{ij}}) *x_{ij}^{(2)})$$

s.t.

$$\begin{cases} \sum_{j=1}^{100} x_{ij}^{(1)} \leq 3 &, \sum_{j=1}^{100} x_{ij}^{(2)} \leq 3 \\ \frac{\sum_{i=1}^{1000} C_{i}}{1000} \geq 95\% &, \frac{\sum_{i=1}^{1000} E_{i}}{1000} = 60\% \\ \sum_{i=1}^{1000} x_{ij}^{(1)} \leq D_{i} &, \sum_{i=1}^{1000} x_{ij}^{(2)} \leq (D_{i} - \sum_{i=1}^{1000} x_{ij}^{(1)}) + 0.6 * \sum_{i=1}^{1000} x_{ij}^{(1)} \\ x_{ii}^{(1)} = 0 = 1 &, x_{ii}^{(2)} = 0 = 1 \end{cases}$$
 (1)

第二步:在一定满意度要求下,要考虑到购买量的最小重新调度。

$$\min \sum_{i=1}^{1000} D_i$$

s.t.

$$\begin{cases} \sum_{j=1}^{100} x_{ij}^{(1)*} \leq 3 &, \sum_{j=1}^{1000} x_{ij}^{(2)*} \leq 3 \\ \frac{\sum_{j=1}^{1000} C_{i}^{*}}{1000} \geq 95\% &, \frac{\sum_{j=1}^{1000} E_{i}^{*}}{1000} = 60\% \\ \sum_{i=1}^{1000} x_{ij}^{(1)*} \leq D_{i} &, \sum_{j=1}^{1000} x_{ij}^{(2)*} \leq (D_{i} - \sum_{j=1}^{1000} x_{ij}^{(1)*}) + 0.6* \sum_{j=1}^{1000} x_{ij}^{(1)*} \\ x_{ij}^{(1)*} = 0 = 1, \quad x_{ij}^{(2)*} = 0 = 1 \end{cases}$$

其中 $x_{ij}^{(1)*}$, $x_{ij}^{(2)*}$ 为上面在满意度最大为目标函数时求得的最优的分配方案。

用 lingo8.0 对模型进行求解得到每种 DVD 的购买量:

1	2	3	4	5	6	7	8	9	10
25	32	30	32	24	26	29	30	31	26
11	12	13	14	15	16	17	18	19	20
27	29	27	27	22	37	32	27	30	33
21	22	23	24	25	26	27	28	29	30
31	28	35	25	26	27	24	21	27	32
31	32	33	34	35	36	37	38	39	40
28	29	34	26	36	31	26	24	23	30
41	42	43	44	45	46	47	48	49	50
40	37	27	32	35	29	31	23	27	29
51	52	53	54	55	56	57	58	59	60
37	29	31	25	30	34	31	28	31	32
61	62	63	64	65	66	67	68	69	70
23	31	28	37	29	33	29	33	34	35
71	72	73	74	75	76	77	78	79	80
32	31	23	30	22	21	24	28	26	31
81	82	83	84	85	86	87	88	89	90
27	17	24	21	31	26	34	24	24	29
91	92	93	94	95	96	97	98	99	100
32	28	26	26	32	25	30	28	22	34

表三:问题三得 DVD 的购买量

DVD 的总的购买量为 2877 张。

注:分配方式见附件

6.3.2.我们构造一个贪婪算法来求解这个问题,把双目标线性规划通过加权归一化转变成单目标性线规划,并通过寻找最大满意度和看到他想看到 DVD 的人数比例这两个因素变化最小,来搜索使 DVD 的总数量最小的优解。

迭代初值。

步骤二:对各个 DVD 依次进行 D_k -5 (k=1...100) 的操作,求每次的最大满意度 z_k ,以及看到他想看到 DVD 的人数比例 t_k

Step1: 利用模型二对 DVD 的分配算法进行第一次的最优分配,并建立 0-1 矩阵 A (其中 A(i,j)=1则说明第 i 个会员租赁了第 j 张 DVD, A(i,j)=0则说明第 i 个会员没

有租赁了第 i 张 DVD)。

Step2: 随机从 A(i,j)=3 中取 60%作为一个月租赁两次的会员,并将随机选取的会员的 A(i,j) 加到第一次分配后的 D_j (即分配后各个 DVD 的库存)。

Step3: 再对随机选取的会员和第一次分配未租赁的会员(即 A(i,j) < 3 的会员) 利用模型二的分配算法进行第二次 DVD 分配,修正 0-1 矩阵 A。

Step4: 求出 $A(i,j) \ge 3$ 的会员的总数 n_k ,则会员看到他想看的 DVD 比例是

$$t_k = \frac{n_k}{1000}$$
; 最大满意度 $z_k = \sum_{i=1}^{1000} \left(\sum_{j=1}^{100} f(a_{ij}) * A(i,j) \right)$ 。

步骤三:对会员看到他想看到的 DVD 比例 t_k 和最大满意度 z_k 进行归一化。

注: 对 z_k 而言 , $z_{\text{max}} = f(1) + f(2) + f(3) = 2.7056$, $z_{\text{min}} = f(8) + f(9) + f(10) = 0.4157$

$$\diamondsuit z_k' = \frac{z_k - z_{\min}}{z_{\max} - z_{\min}} \bullet$$

如果减少 DVD 数量 ,考虑到满意度 z_k 和看到他想看到 DVD 的人数比例 t_k 这两个因素,现定义 $p_k=z_k^{'}+t_k$ 为减少 DVD 数量的价值,按价值 p_k 由小到大的顺序作为填充策略,从而获得近似最优解。 [4]

步骤四:求出最小的 p_{k}

如果 $t_k \ge 95\%$,将 $D_k - 5$,并且回到步骤二继续迭代;即减少 DVD 的数量,使最大满意度 z_k 以及看到他想看到 DVD 的人数比例 t_k 的劣达到最小,并且继续迭代寻找下个 DVD 数量减少点。

如果 t_{ν} < 95% , 继续步骤五跳出迭代。

步骤五:输出的数量 D_k ,最大满意度 z_k 。

1	2	3	4	5	6	7	8	9	10
25	32	30	32	25	30	25	29	30	28
11	12	13	14	15	16	17	18	19	20
27	29	27	30	25	35	32	29	32	34
21	22	23	24	25	26	27	28	29	30
32	30	32	26	28	31	28	23	25	33
31	32	33	34	35	36	37	38	39	40
33	30	31	29	34	32	25	30	26	28
41	42	43	44	45	46	47	48	49	50
42	35	29	30	36	27	30	27	30	28
51	52	53	54	55	56	57	58	59	60
34	26	32	26	27	33	30	24	29	34
61	62	63	64	65	66	67	68	69	70
26	32	28	35	31	35	31	33	33	31
71	72	73	74	75	76	77	78	79	80
32	33	24	26	27	25	24	30	28	29
81	82	83	84	85	86	87	88	89	90
31	22	22	22	29	24	32	24	27	31
91	92	93	94	95	96	97	98	99	100
35	29	27	27	33	24	22	32	21	31

表四:问题三的第二种算法的 DVD 的购买量

DVD 的总的购买量为 2905 张。

模型优缺点

- 1) 对模型二的求解我们用了两种解法,一种是直接用 lingo8.0 进行求解,第二种是自己建立了一个算法,其中有思想不够成熟,所以最后求得的最优解比用 lingo8.0 求得的小一些,但相差<10%,而且这个算法的优点就是运行速度比第一种要快。
- 2) 在整个过程中,我们认为一个月租两次的人 15 号还盘,接着 16 号第二次下订单, 而一个月租一次的人月末才还 DVD,但如果考虑会员可以随时归还 DVD,那么 DVD 的 利用率就会大大增加,所以这样的模型假设会使求得的 DVD 的购买量比最优值大。

灵敏度分析

1.对于模型三进行灵敏度分析,首先研究每月能够看到想看 DVD 的会员所占百分比变化的影响。

能够看到想看 DVD 的会员所 占比例	80%	85%	90%	95%
DVD 的购买量	2698	2753	2811	2877

满意度	2819 . 26	2995 . 47	3171 . 67	3347 . 87

从表中看出当能够看到想看 DVD 的会员的比例每较少 5% , DVD 的购买量减少大约 0.02% , 满意度减小 1% 。由此看出模型三的稳定性较好。

2. 这里我们研究每月租两次的会员所占百分比变化的影响

每月租两次的 会员所占百分 比	50%	60%	70%
DVD 的购买量	3160	2877	2732
满意度	3218 . 28	3347 . 87	3477 . 47

从表中可以看出当每月租两次的会员所占百分比每减少 10%, DVD 的购买量减少大约 5%,满意度大约减小 5%。

所以每月租两次的会员所占百分比变化的对 DVD 购买量和满意程度的影响比每月能够看到想看 DVD 的会员所占百分比变化的影响大些。

3.这里我们研究会员每次所拿 DVD 张数的变化对满意度的影响

会员每次所拿 DVD 张数	2	3
满意度	1859.7	2397 . 67

由此可以看出每个会员得到的 DVD 基本都是他们的偏爱程度为 1,2,3 的 DVD。即使每次所拿张数有变化,但他们得到的基本都是他们很喜欢的 DVD,没有明显变化。

模型拓展

见 5.5

参考文献:

- [1]韩中庚,《数学建模方法及其应用》,北京:高等教育出版社,2005年
- [2]钱颂迪 ,《运筹学》,北京:清华大学出版社,2002年
- [3]刘康生 胡崇海 《电力市场的输电阻塞管理》,工程数学学报,vol.21 No.7:117页, 2004年

[4]杨浩,《模型与算法》,北京:北方交通大学出版社,2003年

[5]姜启源 谢金星 叶俊 , 《数学模型》,北京:高等教育出版社,2004年

[6]D.Hanselman,B.Littlefield,《Matlab 6》,北京:清华大学出版社 , 2002 年