Nombres complexes 2

Initiation sur les nombres complexes

1. Rappeler la forme trigonométrique d'un nombre complexe z.

2. Mettre sous la forme trigonométrique les nombres complexes *z* suivants.

a)
$$z = 2\sqrt{3} - 6i$$
 b) $z = -\frac{3}{2} + i\frac{\sqrt{3}}{2}$ **c)** $z = (2 + 2i)(-\sqrt{3} + i)^2$ **d)** $z = 2ie^{i\frac{\pi}{6}}$

$$+21)(-\sqrt{3}+1)$$
 d) $z=2$

e)
$$z = (-3 + 3i) e^{i\frac{\pi}{3}}$$

e)
$$z = (-3+3i)e^{i\frac{\pi}{3}}$$
 f) $z = 1 + \cos 2\theta + i\sin 2\theta$ **g)** $z = \sin \frac{\pi}{5} + i\cos \frac{\pi}{5}$

g)
$$z = \sin \frac{\pi}{5} + i \cos \frac{\pi}{5}$$

h)
$$z = \frac{1 + \sqrt{2} + i}{1 - \sqrt{2} + i}$$

Exercice 2

Mettre sous forme algébrique les nombres complexes suivants.

$$z_1 = (1+i)^{17} z_2 = \left(-\sqrt{3}+i\right)^{2021} z_3 = \frac{(1+i)^3}{\left(\sqrt{3}+i\right)^4} z_4 = e^{i\frac{\pi}{3}} + e^{-i\frac{\pi}{6}} z_5 = \frac{-i\left(\sqrt{3}-i\right)^2}{2\left(1-i\sqrt{3}\right)^7}$$

Exercice 3

Le plan complexe est rapporté d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$. On considère les points A, B et C d'affixes respectives 1+i, 3+2i et 3i.

- 1. Donner une mesure de chacun des angles orientés suivants : $(\vec{u}, \overrightarrow{OA})$, $(\vec{u}, \overrightarrow{OC})$, $(\vec{v}, \overrightarrow{OA})$ $(\vec{v}, \overrightarrow{OC}), (\overrightarrow{CA}, \overrightarrow{CB}) \text{ et } (\overrightarrow{AB}, \overrightarrow{AC}).$
- 2. Soit $Z = \frac{z_C z_A}{z_B z_A}$.
 - (a) Calculer |Z| et un argument Z.
 - (b) Interpréter géométriquement |Z| et un argument Z. En déduire la nature du triangle ABC.

Exercice 4

Soit
$$z_1 = \sqrt{2} + i\sqrt{6}$$
, $z_2 = 2 - 2i$ et $Z = \frac{z_1}{z_2}$.

- 1. Ecrire *Z* sous forme algébrique.
- 2. Ecrire z_1 et z_2 sous forme trigonométrique.
- 3. En déduire *Z* sous forme trigonométrique.
- 4. Déterminer les valeurs de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

Exercice 5

Soit
$$\omega = \sqrt{3} + 1 + i\left(\sqrt{3} - 1\right)$$

- 1. Ecrire ω^2 sous forme algébrique.
- 2. Déterminer le module et un argument de ω^2 . En déduire le module et un argument de ω .

Exercice 6

Identifier la réponse juste et donner la justification.

- 1. Si $\frac{\pi}{6}$ est un argument de $\frac{9}{z}$ alors un argument de $\frac{1}{z^2}$ est : **a)** $\frac{\ddot{\pi}}{6}$ **b)** $-\frac{5\pi}{6}$ **c)** $\frac{5\pi}{6}$
- 2. Soit z un nombre complexe non nul d'argument θ . Un argument de $\frac{-1+i\sqrt{3}}{z}$ est :
 - **a)** $-\frac{\pi}{3} + \theta$ **b)** $\frac{2\pi}{3} + \theta$ **c)** $\frac{2\pi}{3} \theta$
- 3. Un argument de $\sin(x) + i\cos(x)$ est: **a)** -x **b)** x **c)** $\frac{\pi}{2} x\nu$ **d)** $\frac{\pi}{2} + x$
- 4. Le nombre complexe $(\sqrt{3} + i)^{1689}$ **a/** est un réel **b**/ est un imaginaire pur **c**/ n'est ni réel ni imaginaire pur.
- 5. Le conjugué de $e^{i\theta}$ est :
 - **a)** $-e^{i\theta}$ **b)** $e^{-i\theta}$ **c)** $e^{i\theta}$

Exercice 7

On considère les trois nombres complexes suivants : $z_1 = (1-i)(1+2i)$, $z_2 = \frac{2+6i}{2-i}$ et $z_3 = \frac{4i}{i-1}.$

Soit M_1 , M_2 et M_3 leurs images respectives dans le plan.

- Donner leurs formes agébriques.
- 2. Placer M_1 , M_2 et M_3 dans le plan complexe.
- 3. Calculer $\frac{z_3-z_1}{z_2-z_1}$. En déduire que le triangle $M_1M_2M_3$ est rectangle isocèle.
- 4. Déterminer l'affixe du point M_4 telle que le quadrilatère $M_1M_2M_4M_3$ soit un carré.
- 5. Montrer que les points M_1 , M_2 , M_3 et M_4 appartiennent à un même cercle dont on précisera les éléments.

Exercice 8

 $x \in \mathbb{R}$. Soient les nombres complexes suivants :

$$Z' = -2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) \text{ et } Z = (1-x)\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

- 1. Calculer le module et un argument de Z'.
- 2. Calculer le module et un argument de Z.

(On discutera selon les valeurs de x)

Donner pour chaque cas la forme trigonométrique et la forme algébrique de Z.

- 3. Montrer que Z^{2004} est un nombre réel dont on précisera le signe.
- 4. Montrer que l'équation |Z| = 2 a deux solutions Z_1 et Z_2 . Ecrire Z_1 et Z_2 forme algébrique.
- 5. Placer les points A et B d'affixes respectives $2e^{i\frac{\pi}{3}}$ et $-2e^{i\frac{\pi}{3}}$ dans le plan complexe muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$.

 Vérifier que les points A, B et O sont alignés.