

Highly-Dynamic Movements of a Humanoid Robot Using Whole-Body Trajectory Optimization

Master Thesis Presentation Julian Eßer

Time: Apr - Sep 2020

Supervisors: Prof. Kirchner,

Dr. Bruckmann (UDE)

Mentors: Dr. Kumar,

Dr. Stasse (LAAS-CNRS),

Dr. Mastalli (Univ. of Edinburgh)

https://github.com/loco-3d/crocoddy

OUTLINE

- 1. Introduction
- 2. Contact Stability Constrained DDP
- 3. Application to a Humanoid Robot
 - Bipedal Walking Variants
 - Highly-Dynamic Movements
- 4. Validation of the Planned Motions
 - Physics Simulation
 - Real-World Experiments
- 5. Conclusion and Outlook

MOTIVATION

- Why Legged Robots?
 - Improved mobility
 - Step over obstacles
 - Adapt to environment

https://rsl.ethz.ch/robots-media/starleth/pictures.html

- Why Humanoid Robots?
 - Inspired by human capabilities
 - Human-tailored environments
 - Intuitive collaboration

https://robotik.dfki-bremen.de/en/research/projects/transfit.html

LEGGED LOCOMOTION PLANNING

- Characteristic: Decoupled Base and Multibody Dynamics
- Reasons for Complexity
 - High-dimensional systems
 - Trivial underactuation
 - Nonlinear, hybrid dynamics
- Decomposition of Motion Planning into Subproblems

Optimization-Based Planning for Efficient Motions

TRAJECTORY OPTIMIZATION

- Goal: Compute Optimal Trajectories
 - Minimize a given cost function
 - Satisfy a set of constraints
- Classes of TO Algorithms
 - Direct methods (e.g. SQP): constrained but slow
 - Indirect methods (e.g DDP): fast but unconstrained
- Usage for Legged Locomotion Planning
 - TO based on reduced centroidal dynamics
 - Whole-body TO for efficient motions

CONTRIBUTIONS

- Goal: Generate Balanced and Efficient Motion Plans
- Approach: DDP-Based Whole-Body TO

- Contributions of this Thesis:
 - C1: Contact Stability Constrained DDP
 - C2: Experimental pipeline for whole-body TO
 - C3: Physical limitations of RH5 humanoid

FRAMEWORKS AND ROBOT

Involved Frameworks

(Robot Dynamics)

RH5 Humanoid Robot

- Biologically inspired (200 cm, 32 DoFs)
- Lightweight (62 kg)
- Series-parallel hybrid robot
- Tree-type robot model

OUTLINE

- 1. Introduction
- 2. Contact Stability Constrained DDP
- 3. Application to a Humanoid Robot
 - Bipedal Walking Variants
 - Highly-Dynamic Movements
- 4. Validation of the Planned Motions
 - Physics Simulation
 - Real-World Experiments
- 5. Conclusion and Outlook

DDP FORMULATION

Finite Horizon Optimal Control Problem

$$\boldsymbol{X}^*, \, \boldsymbol{U}^* = \arg\min_{\mathbf{X}, \mathbf{U}} l_N(x_N) + \sum_{k=0}^{N-1} \int_{t_k}^{t_k + \Delta t} l_k(\mathbf{x}, \mathbf{u}) dt$$

Cost at One Knot of the OC Problem

$$l_k = \sum_{c=1}^{C} \alpha_c \Phi_c(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau})$$

Multi-Contact Dynamics as Holonomic Constraints

$$\begin{bmatrix} \dot{\mathbf{v}} \\ -\boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{M} & \mathbf{J}_c^{\top} \\ \mathbf{J}_c & \mathbf{0} \end{bmatrix}^{-1} \begin{bmatrix} \boldsymbol{\tau}_b \\ -\mathbf{a_0} \end{bmatrix}$$
$$\mathbf{J}_c = \frac{\delta \phi}{\delta \mathbf{q}}, \quad \phi(\mathbf{q}) = 0$$

CONTACT STABILITY CONSTRAINED DDP

- Idea: Constrain Contact Stability for Each Contact
- Conditions for Contact Stability
 - I. Unilaterality of the forces
 - II. Forces inside friction cone
 - III. Center of Pressure (CoP) inside contact area
- Constraints for Unilaterality (I) and Friction Cone (II)

$$f_i^z > 0$$

$$|f_i^x| \le \mu f_i^z$$

$$|f_i^y| \le \mu f_i^z$$

CENTER OF PRESSURE CONSTRAINTS

CoP Stability Conditions

$$-X \le C_x \le X$$
$$-Y \le C_y \le Y$$

CoP Computation

$$oldsymbol{p}_{CoP} = rac{oldsymbol{n} imes oldsymbol{ au}_{O}^{c}}{oldsymbol{f}^{c} \cdot oldsymbol{n}}$$

Constraints for CoP (III)

$$\begin{bmatrix} Xn_0 & Xn_1 & Xn_2 & 0 & -n_2 & n_1 \\ Xn_0 & Xn_1 & Xn_2 & 0 & n_2 & -n_1 \\ Yn_0 & Yn_1 & Yn_2 & n_2 & 0 & -n_0 \\ Yn_0 & Yn_1 & Yn_2 & -n_2 & 0 & n_0 \end{bmatrix} \begin{bmatrix} f^x \\ f^y \\ f^z \\ \tau^x \\ \tau^y \\ \tau^z \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

INTEGRATION INTO CROCODDYL

- Goal: Integrate CoP Constraints into a Novel Cost Function
- Residual and Cost Computation

$$r = Aw \ge 0$$

$$\Phi_{CoP} = \left\{ egin{array}{ll} rac{1}{2} m{r}^T m{r} & | \ \mathrm{lb} > m{r} > \mathrm{ub} & ext{(Outside contact area)} \ 0 & | \ \mathrm{lb} \leq m{r} \leq \mathrm{ub} & ext{(Inside contact area)} \end{array}
ight.$$

$$lb = 0, ub = \infty$$

Analytical Computation of Derivatives

OUTLINE

- 1. Introduction
- 2. Contact Stability Constrained DDP
- 3. Application to a Humanoid Robot
 - Bipedal Walking Variants
 - Highly-Dynamic Movements
- 4. Validation of the Planned Motions
 - Physics Simulation
 - Real-World Experiments
- 5. Conclusion and Outlook

FORMULATION OF THE OPTIMIZATION

Robot Tasks

$$\Phi_{\text{foot}} = \mid\mid \boldsymbol{f}(t) - \boldsymbol{f}^{\text{ref}}(t) \mid\mid_{2}^{2}$$

$$\Phi_{\text{CoM}} = \mid\mid \boldsymbol{c}(t) - \boldsymbol{c}^{\text{ref}}(t)\mid\mid_{2}^{2}$$

Inequality Constraints for Physical Consistency

$$\frac{l_k = \sum_{c=1} \alpha_c \Phi_c(\boldsymbol{q}, \dot{\boldsymbol{q}}, \boldsymbol{\tau})}{\frac{1}{2} \boldsymbol{r}^T \boldsymbol{r} \mid \text{lb} > \boldsymbol{r} > \text{ub}}$$

$$\Phi_{\text{CoP}}, \Phi_{\text{friction}}, \Phi_{\text{joints}} = \begin{cases} 0 & |\boldsymbol{l} \cdot \boldsymbol{l} \cdot \boldsymbol{r} \cdot \boldsymbol{\tau}| \\ 0 & |\boldsymbol{l} \cdot \boldsymbol{l} \cdot \boldsymbol{r} \leq \text{ub} \end{cases}$$

Further Regularization Terms

$$\Phi_{\text{torque}} = \mid\mid \boldsymbol{\tau}(t) \mid\mid_2^2$$

$$\Phi_{\text{posture}} = \mid\mid \boldsymbol{q}(t) - \boldsymbol{q}^{\text{ref}}(t)\mid\mid_{2}^{2}$$

RESULTS: STATIC WALKING

Gait Characteristics		Optimization Constraints	
Step length:	10 cm	Tasks:	$\Phi_{ m foot},\Phi_{ m CoM}$
Step height:	$5~\mathrm{cm}$	Stability:	$\Phi_{ m friction}$
Time:	12 s	Limits:	$\Phi_{\rm joint}$, torques
Step size:	$0.03 \; {\rm s}$	Regularization:	$\Phi_{ m posture},\Phi_{ m torque}$

Static Stability Criterion

RESULTS: DYNAMIC WALKING

Gait Characteristics		Optimization Constraints	
Step length:	$40~\mathrm{cm}$	Tasks:	$\Phi_{ m foot}$
Step height:	$5~\mathrm{cm}$	Stability:	$\Phi_{\mathrm{CoP}}, \Phi_{\mathrm{friction}}$
Time:	2 s/step	Limits:	$\Phi_{\rm joint}$, torques
Step size:	$0.03 \; {\rm s}$	Regularization:	$\Phi_{ m posture},\Phi_{ m torque}$

Contact Stability Constrained DDP

EVALUATION OF CONTACT STABILITY

Stability Analysis for Dynamic Walking

(500%/F5obAAre)a)

Finding: Proposed Approach Yields Balanced Motions

HIGHLY-DYNAMIC MOVEMENTS

- Flight Phases: Physical Consistency of Contact Timings
 - Falling time given by physics
 - Derive other timings
- Numerical Drift in the Holonomic Constraints
 - Baumgarte stabilization
 - Reduce integration step size
- Multi-Phase Optimal Control Problem

$$\boldsymbol{X}^*, \, \boldsymbol{U}^* = \arg\min_{\mathbf{X}, \mathbf{U}} \sum_{p=0}^{P} \sum_{k=0}^{N} \int_{t_k}^{t_k + \Delta t} l_p(\mathbf{x}, \mathbf{u}) dt$$

RESULTS: VERTICAL JUMP

Jump Characteristics		Optimization Constraints	
Jump length:	0 cm	Tasks:	$\Phi_{ m foot}$
Jump height:	10 cm	Stability:	$\Phi_{\mathrm{CoP}}, \Phi_{\mathrm{friction}}$
Total time:	0.9 s	Limits:	Torques
Step size:	$0.01 \; { m s}$	Regularization:	$\Phi_{ m posture},\Phi_{ m torque}$

Analysis of System Limits

RESULTS: FORWARD JUMP

Jump Characteristics		Optimization Constraints	
Jump length:	30 cm	Tasks:	$\Phi_{ m foot}$
Jump height:	10 cm	Stability:	$\Phi_{\mathrm{CoP}}, \Phi_{\mathrm{friction}}$
Total time:	0.9 s	Limits:	Torques
Step size:	0.01 s	Regularization:	$\Phi_{ m posture},\Phi_{ m torque}$

Analysis of System Limits

RESULTS: MULTIPLE OBSTACLES JUMPS

Jump Characteristics		Optimization Constraints		
Jump length:	$60 \mathrm{cm}$	Tasks:	$\Phi_{ m foot}$	
Jump height:	$25~\mathrm{cm}$	Stability:	$\Phi_{\mathrm{CoP}},\Phi_{\mathrm{friction}}$	
Total time:	$0.9 \mathrm{\ s} / \mathrm{jump}$	Limits:	-	
Step size:	$0.01 \; \mathrm{s}$	Regularization:	$\Phi_{ m posture},\Phi_{ m torque}$	

Findir

EVALUATION OF THE SYSTEM DESIGN

Case Studies of Increasing Complexity

	Position Limits	Torque Limits	Velocity Limits
Vertical Jump $(l = 0 \text{ cm})$			
$h=1~\mathrm{cm}$	\checkmark	\checkmark	\checkmark
h = 5 cm	\checkmark	\checkmark	x_3
h = 10 cm	\checkmark	(\checkmark)	X_3
$h=20~\mathrm{cm}$	\checkmark	(\checkmark)	x_5
h = 30 cm	\checkmark	(\checkmark)	\mathbf{x}_7
Forward Jump $(h = 10 \text{ cm})$			
$l=10~\mathrm{cm}$	\checkmark	(\checkmark)	\mathbf{x}_7
$l=20~\mathrm{cm}$	\checkmark	(\checkmark)	\mathbf{x}_7
l = 30 cm	\checkmark	(\checkmark)	\mathbf{x}_7
l = 40 cm	\checkmark	(\checkmark)	\mathbf{x}_7
l = 50 cm	\checkmark	(\checkmark)	\mathbf{x}_7
Obstacle Jump $(h = 25 \text{ cm})$			
l = 60 cm	✓	x_5	× ₇

- Critical Joint Velocities: Body, Knee, Hip, Shoulder
- Result: Guidelines for Next Design Iteration

OUTLINE

- 1. Introduction
- 2. Contact Stability Constrained DDP
- 3. Application to a Humanoid Robot
 - Bipedal Walking Variants
 - Highly-Dynamic Movements
- Validation of the Planned Motions
 - Physics Simulation
 - Real-World Experiments
- 5. Conclusion and Outlook

SIMULATION SETUP

- Goal: Online Stabilization of Planned Motions
- Real-Time Physics Simulation: PyBullet
 - Rigid contact model
 - Collision detection
- Pipeline Comparable to Real Robot
 - Trajectory from file
 - Cubic spline interpolation (1 kHz)
- Control Architecture
 - Joint space level
 - PD position/velocity control

RESULTS: DYNAMIC WALKING

• Rresolviting Pearser Martice i (Utai at Soplace)

Stabilized

RESULTS: FORWARD JUMPING

• Rresolviting Pearser Malanticen i (Whoi out Soplande)

Stabilized

EXPERIMENTAL SETUP

Goal: Online Stabilization of Planned Motions

EXPERIMENTS

Four Experiments of Increasing Difficulty

	I	II	Ш	IV
	Balancing	Static Walk	Fast Squats	Dynamic Walk
Surface contacts	√	√	√	\checkmark
Base motion	\checkmark	\checkmark	\checkmark	\checkmark
Swing foot motion	\checkmark	\checkmark	×	\checkmark
Step sequence	×	\checkmark	×	\checkmark
Impacts	×	\checkmark	×	\checkmark
Dynamic forces	×	×	\checkmark	\checkmark
Flight-phases	×	×	×	×
Success	✓	(√)	√	×

EXPERIMENTS

I: One-Leg Balancing √

II: Static Walking (✓)

EXPERIMENTS

III: Fast Squats √

IV: Dynamic Walking X

DISCUSSION

Stability of the Motions

Related Issues

- Tracking performance
- Handling impulses
- Model discrepancies
- Mechanical deficiencies

Actions for Improvement

- Task space control
- System identification
- Hardware upgrade

Fig. 1: Ankle Roll Tracking

Fig. 2: Ankle Pitch Tracking

Fig. 3: Deviation in Task Space

OUTLINE

- 1. Introduction
- 2. Contact Stability Constrained DDP
- 3. Application to a Humanoid Robot
 - Bipedal Walking Variants
 - Highly-Dynamic Movements
- 4. Validation of the Planned Motions
 - Physics Simulation
 - Real-World Experiments
- 5. Conclusion and Outlook

THESIS SUMMARY

- Motivation: Physically Consistent and Efficient Motion Plans
- Approach: DDP-Based Whole-Body TO

- Idea: Contact Stability Constrained DDP
 - Evaluation: inherently balanced motions
 - Validation: simple control architecture

- Experimental Pipeline
- Physical Limitations of RH5 Humanoid

FUTURE DIRECTIONS

- Assessment: Large Potential of Whole-Body TO
 - Reduced handcrafted components
 - High-level tasks formulation

1. Algorithmic Perspective

- Inequality constraints embedded in DDP
- Solving internal closed loops

2. Control Perspective

- Task space control
- Model predictive control

Thanks for your attention!

https://www.deviantart.com/crvstalstarspirit/art/Animation-.lump-Sequence-105385147

BIBLIOGRAPHY

- [1] Marc H Raibert. Legged robots that balance. MIT press, 1986.
- [2] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. Springer, 2016.
- [3] Kevin Giraud, Pierre Fernbach, Gabriele Buondonno, Carlos Mastalli, Olivier Stasse, et al. Motion planning with multi-contact and visual servoing on humanoid robots. 2020.
- [4] Shivesh Kumar. Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots. PhD thesis, Universität Bremen, 2019.
- [5] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nicolas Mansard. Crocoddyl: An Efficient and Versatile Framework for Multi-Contact Optimal Control. In *IEEE International Conference on Robotics and Automation (ICRA)*, 2020.
- [6] Rohan Budhiraja, Justin Carpentier, Carlos Mastalli, and Nicolas Mansard. Differential dynamic programming for multi-phase rigid contact dynamics. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pages 1–9. IEEE, 2018.
- [7] Stéphane Caron, Quang-Cuong Pham, and Yoshihiko Nakamura. Stability of surface contacts for humanoid robots: Closed-form formulae of the contact wrench cone for rectangular support areas. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 5107–5112. IEEE, 2015.