Search <u>Dashboard</u>

softpapa's Blog

- About Me
- Archive
- feeds

over 4 years ago

Nand Flash 基本介紹

本文所有的內容請參考Figure 1和Figure 2,分別為small和large page 兩種型式的基本結構

Figure 1: 1Gb NAND Flash Small-Block Array Organization

Figure 2: 1Gb NAND Flash Large-Block Array Organization

文章內容基於2011 年的資訊,現在nand flash 單顆愈做愈大,也應該有新的技術出來,以後有機會再加吧

Page

為nand flash chip 讀取的最小單位,依顆粒製程不同有512, 2048, 4096, 8192 (bytes),目前最常見的為2048 (bytes)

Spare

以2k page 為例,每一個page在實體的結構中除了2k bytes的使用空間,還會有64 bytes額外的容量,供hw/sw儲存一些額外的資訊,通常會用來儲存ecc的data,來效正nand flash使用久後會有bit不能使用的問題

OOB (out of boundary)

即指spare, sw比較常用這個名詞

Small/Large

page 容量512 bytes 的稱 small page, 大於等2k bytes 都稱為large page

Block

為nand flash chip 寫入的最小單位, 每64 page 即為一個block,因為page size 會有不同,block size 也就不同,一顆chip裡有多少block,是依nand flash的大小而定,但通常是2的冪次方。

Read/Write operation

nand flash 讀寫方式異於一般的磁性儲性裝置。因為結構上的問題,如果要針對特定的page 寫入,只能把資料寫由1->0,如果要0->1,那只能針對整個block (64 pages)做動作,此動作稱為"erase",而寫入page的動作稱為"program",一般nand chip的資料都會標明erase/program的時間,以Micro MT29F2G08AABWP為例,erase/program的時間分別為(2ms/300us)

• write

標準寫入動作可分為下列幾步

- 1. 將block 讀進ram
- 2. 改變ram裡的資料
- 3. erase block
- 4. 依ram 裡block 的資料, program 64 個page
- read 則以page 為單位,無特殊的限制。

Life cycle

nand flash 相較傳統磁性的儲存裝置有較低的資料可靠度和使用限製,主要為二個方面

- endurance erase block/program page 這個二動作是破壞性的,每個block erase的次數是有限制的,通常為1k~100k次
- retention
 這是指當資料儲放在nand中,可以保証有效多久,一般是10年。所以nand flash device 不適合當長時間的資料保存裝置

Bad blcok

指在chip中資料讀取出來有可能會發生錯誤的block,依形成的原因可以分為下列二種

· factory-bad

即出廠時即有問題的block,每個nand chip 都會標明這個型別的顆粒至少有多少block是可以用的,而且保証第一個block一定是好的,且第一個block在某個erase/program次數不會出問題(這是為了nand boot)。nand flash 出廠時會erase 所有的block,如經檢測為bad block,則會j把那個block的第一個page的oob的第一(Micro)或第六個byte(Samung, Toshiba and 其他)標示為0xFF以外的值,每顆nand flash 在使用之前應該要先把這個值備份出來,作為以後建立bad block table時使用

• worn-out 即不斷使用後所產生的bad block

ECC

ECC即error correct code,因為無法預測什麼時候會發生bad block,sw上會對每個page做ecc的效正機制以防止資料錯誤,這些效正的資料的會被存在同一個page的oob裡,一般用的演算法有下列三種,每種有不同的效正能力也需要不同的ecc效正資訊,可參考下圖。另外隨著page size愈來愈大,對ECC的能力要求來愈來愈高,依innodisk 資料,硬碟型的產品,單一page ECC能力要求到7x bits

- Hamming code
- reed-solomum
- binary BCH

Туре	Hamming				R	eed-S	Solon	non	Binary BCH				
ECT ¹	Overhead Per Sector		d Spare Area Usage		Overhead Per Sector		Spare Area Usage		Overhead Per Sector		Spare Area Usage		
	Bit s	Byte s	64B	112B	Bit s	Bytes	64B	112B	Bits	Byte s	64B	112B	
1	13	2	13%	7%	18	3	19%	11%	13	2	13%	7%	
2	-	-	-	-	36	5	31%	18%	26	4	25%	14%	
4	•	-	-	-	72	9	56%	32%	52	7	44%	25%	
8	-	-	-	-	144	18	113%	64%	104	13	81%	46%	
10	-	-	-	-	180	23	144%	82%	130	17	106%	61%	
14	•	•	-	٠	252	32	200%	114%	182	23	144%	82%	

Notes: 1) ECT = error correction threshold; number of correctable bits per 512-byte sector.

Wear leveling

使得每個block可以寫入的次數可以大致相同延長nand使用的機制,通常由軟體或韌體負責,有分為Dynamic和static兩種方式

• Dynamic

在要寫入資料的時候,挑選比較少使用的block來寫入,原本的那個block就回收作為以後用,這方式的缺點為,假設磁碟中有2000個block,其中1500個儲放read only data,那可以用來置換block就只剩500個。

Static

收集的統計數據,在沒讀寫的時候偷偷的把資料交換到較少使用的block,此方式可以避免dynammic 的缺點,即使是 read-only data 所佔據的block 也可以釋放出來使用

由此可知nand flash based 的儲存裝置如果可用的空間等於實際的空最好不要裝滿資料,留些額外的空間做為替代用的block,可延長使用期限。但是現今實際上的產品,會限縮可使用空間。實際256GB 可用的只有240GB。

Chip ID Definition Table

每顆nand chip 容量的相關值,可以透過"read id"這個命令讀出來,舊的格式有5bytes(目前常見),新的格式有8 bytes(目前找不到),下圖為舊格式bit field的定義

Dashboard

ID Definition Table

90 ID : Access command = 90H

	Description
1 st Byte	Maker Code
2 nd Byte	Device Code
3rd Byte	Internal Chip Number, Cell Type, Number of Simultaneously Programmed Pages, Etc
4th Byte	Page Size, Block Size, Redundant Area Size, Organization, Serial Access Minimum
5 th Byte	Plane Number, Plane Size

3rd ID Data

	Description	1/07	1/06	1/05	I/O4	1/03	I/O2	1/01	I/O0
Internal Chip Number	1 2 4 8							0 0 1 1	0 1 0 1
Cell Type	2 Level Cell 4 Level Cell 8 Level Cell 16 Level Cell					0 0 1 1	0 1 0		
Number of Simultaneously Programmed Pages	1 2 4 8			0 0 1 1	0 1 0 1				
Interleave Program Between multiple chips	Not Support Support		0 1						
Cache Program	Not Support Support	0							

4th ID Data

_	Description	1/07	1/06	1/05	I/	1/03	1/02	1/01	1/00
Page Size (w/o redundant area)	1KB 2KB 4KB 8KB							0 0 1	0 1 0 1
Block Size (w/o redundant area)	64KB 128KB 256KB 512KB			0 0 1 1	0 1 0				
Redundant Area Size (byte/512byte)	8 16						0 1		
Organization	x8 x16		0						
Serial Access Minimum	50ns/30ns 25ns Reserved Reserved	0 1 0				0 0 1 1			

5th ID Data <u>Dashboard</u>

	Description	1/07	1/06	I/O5	I/O4	1/03	I/O2	I/O1	1/00
Plane Number	1 2 4 8					0 0 1 1	0 1 0 1		
Plane Size (w/o redundant Area)	64Mb 128Mb 256Mb 512Mb 1Gb 2Gb 4Gb 8Gb		0 0 0 0 1 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0				
Reserved		0						0	0

BBT

即*Bad Block Table*,用來記錄整個nand flash 顆粒中,有那些block 是壞掉的。每個nand flash 在出廠後,會先被測試機台scan一次,把壞的block資訊寫在某個特定的地方。做板子的廠商需要先把他讀出來記起來,不然後重新erase就不見了

← sudo service blog restart Nand Flash BBT Support in Linux →

- July 23, 2013 22:52
- Permalink

Copyright $\ @$ 2013 softpapa . Powered by <u>Logdown</u>. Based on work at subtlepatterns.com.