The use of a stochastic movement simulator improves estimates of landscape connectivity

Aurélie Coulon^{1,2}, Job Aben³, Steve Palmer⁴, Michel Baguette^{5,6}, Virginie Stevens⁵, Diederick Strubbe³, Luc Lens^{7,8}, Justin Travis³

1: CESCO, Muséum national d'Histoire naturelle, Paris, France 2: CEFE, Montpellier, France

3: Evolutionary Ecology Group, Department of Biology, University of Antwerp, Belgium

4: Institute of Biological and Environmental Sciences, University of Aberdeen, Scotland

5: Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France

6: Institut Systématique, Evolution, Biodiversité, Muséum national d'Histoire naturelle, Paris, France

7: Terrestrial Ecology Unit, Department of Biology, Ghent University, Belgium

8: Ornithology Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya

Estimating connectivity: still a challenge...

« Connectivity: the degree to which a landscape facilitates or impedes movements among resource patches » (Taylor et al. 1993)

Most used estimators:

Least-cost paths: "easy" but several limiting assumptions (omniscience, optimality)

Least-cost path resistance (costs)

Estimating connectivity: still a challenge...

« Connectivity: the degree to which a landscape facilitates or impedes movements among resource patches » (Taylor et al. 1993)

Most used estimators:

- Least-cost paths: "easy" but several limiting assumptions (omniscience, optimality)
- (Electric) circuit-based estimates (Circuitscape): omniscience, optimality; but absence of realistic movement rules

Current density

Low

High

Estimating connectivity: still a challenge...

« Connectivity: the degree to which a landscape facilitates or impedes movements among resource patches » (Taylor et al. 1993)

Most used estimators:

- Least-cost paths: "easy" but several limiting assumptions (omniscience, optimality)
- (Electric) circuit-based estimates (Circuitscape): omriscience, optimality; but absence of realistic movement rules

An alternative:

- individual-based modelling, e.g. SMS (Stochastic Movement Simulator):
 - rule-based, stochastic simulations (C++)
 - animals have limited perceptual range
 - routes taken may be sub-optimal

Palmer, Coulon, Travis MEE 2011

SMS-simulated movement

Landscape assessment within Perceptual Range

ex: perceptual range = 3 cells

Mean effective costs

4.00	4.00	5.44
4.00		4.11
2.67	2.67	2.33

Landscape assessment within Perceptual Range

Current cell Diagonal move

Peceptual range Orthogonal move 10 4

Mean effective costs

4.00 5.44 4.00 2.67 2.67

ex: perceptual range = 3 cells

movement probability =

weighted mean effective cost

Landscape assessment within Perceptual Range

Orthogonal move

10 4 4

Mean effective costs

4.00 5.44 4.00 4.11 2.67 2.67

ex: perceptual range = 3 cells

movement probability =

weighted mean effective cost

1. mean of cost of cells within perceptual range

Landscape assessment within Perceptual Range

ex: perceptual range = 3 cells

Mean effective costs

4.00	4.00	5.44
4.00		4.11
2 67	2 67	2 33

movement probability =

weighted mean effective cost

- 2. weighting by directional persistence
- → higher probability for cells in the same direction as the previous move

Palmer, Coulon, Travis MEE 2011

- Movement decisions depend on:
 - perceptual range (*n* cells)
 - directional persistence
- Connectivity estimate from patch A to patch B
- = nb of dispersers from patch A to patch B

Aims of the study

- Compare performance of connectivity estimates based on:
 - Least Cost Paths
 - Circuit theory (Circuitscape)
 - SMS

2 case studies

Natterjack toad Bufo calamita

Cabanis's greenbul Phyllastrephus cabanisi

SMS / LCP / Circuitscape – How do they compare?

→ Larger r with better estimates of connectivity

SMS / LCP / Circuitscape – How do they compare?

1st case study: the Cabanis' greenbul in the Taita hills, Kenya

Cabanis's greenbul Phyllastrephus cabanisi

- Forest-dwelling passerine species
- Birds captured, released ~1km away & tracked back to home forest block →
 analysis of trajectories → resistance values
- SMS parameters set by congruence assessment of simulated trajectories to actual movements
- Dispersal bias added to SMS

SMS / LCP / Circuitscape – How do they compare? (Natterjack toad)

2nd case study: the Natterjack toad (*Bufo calamita*) in Sambre-Meuse valley, Belgium

- Terrestrial toad, favours open vegetation or bare ground
- Movement costs estimated experimentally (Stevens et al. 2004, 2006)
- 1km buffer around ponds added to SMS
- Microsatellites

 genetic distances among the four patches (migration rates, MIGRATE)

SMS / LCP / Circuitscape – How do they compare? (Natterjack toad)

Conclusions

- A spatially-explicit IBM appears to be a better predictor of habitat connectivity than LCP or Circuitscape
 - verified for 2 species (one landscape in each case)
 - requires certain species-specific assumptions (auditory attraction) ...
 - will this be prohibitive in general?
- SMS robust to the choice of spatial grain and perceptual range
- Is it robust to relative costs of habitat types?
- SMS is potentially a suitable tool to help conservationists and policy makers

Acknowledgements

VLIR-VLADOC scholarship

SMS / LCP / Circuitscape – How do they compare? (Natterjack toad)

Does SMS need species-explicit ecology?

SMS / LCP / Circuitscape – How do they compare? (Natterjack toad)

Does SMS need species-explicit ecology?

...in this case yes...

Example paths

Low PR High DP Harm. method

Low PR High DP Arith. method

Low PR

Low DP

High PR High DP Harm. method

PR = perceptual range; DP = directional persistence

Sensitivity analysis of SMS performance (Natterjacks)

Is SMS robust to assumed perceptual range?

