Annex K: Serial Presence Detect (SPD) for DDR3 SDRAM Modules

DDR3 SPD

Document Release 6

UDIMM Revision 1.3

RDIMM Revision 1.3

CDIMM Revision 1.3

LRDIMM Revision 1.2

1.0 Introduction

This annex describes the serial presence detect (SPD) values for all DDR3 modules. Differences between module types are encapsulated in subsections of this annex. These presence detect values are those referenced in the SPD standard document for 'Specific Features'. The following SPD fields will be documented in the order presented in section 1.1 with the exception of bytes $60 \sim 116$ which are documented in separate appendices, one for each family of module types. Further description of Byte 2 is found in annex A of the SPD standard. All unused entries will be coded as 0x00. All unused bits in defined bytes will be coded as 0x00 except where noted.

To allow for maximum flexibility as devices evolve, SPD fields described in this document may support device configuration and timing options that are not included in the JEDEC DDR3 SDRAM data sheet (JESD79-3). Please refer to DRAM supplier data sheets or JESD79-3 to determine the compatibility of components.

1.1 Address map

The following is the SPD address map for all DDR3 modules. It describes where the individual lookup table entries will be held in the serial EEPROM.

Byte Number	Function Described	Notes
0	Number of Serial PD Bytes Written / SPD Device Size / CRC Coverage	1, 2
1	SPD Revision	
2	Key Byte / DRAM Device Type	
3	Key Byte / Module Type	
4	SDRAM Density and Banks	3
5	SDRAM Addressing	3
6	Module Nominal Voltage, VDD	
7	Module Organization	3
8	Module Memory Bus Width	
9	Fine Timebase (FTB) Dividend / Divisor	
10	Medium Timebase (MTB) Dividend	
11	Medium Timebase (MTB) Divisor	
12	SDRAM Minimum Cycle Time (tCKmin)	3
13	Reserved	
14	CAS Latencies Supported, Least Significant Byte	3
15	CAS Latencies Supported, Most Significant Byte	3

Note 1 Number of SPD bytes written will typically be programmed as 128 or 176 bytes.

Note 2 Size of SPD device will typically be programmed as 256 bytes.

Note 3 From DDR3 SDRAM datasheet.

Note 4 These are optional, in accordance with the JEDEC spec.

Byte Number	Function Described	Notes
16	Minimum CAS Latency Time (tAAmin)	3
17	Minimum Write Recovery Time (tWRmin)	3
18	Minimum RAS# to CAS# Delay Time (tRCDmin)	3
19	Minimum Row Active to Row Active Delay Time (tRRDmin)	3
20	Minimum Row Precharge Delay Time (tRPmin)	3
21	Upper Nibbles for tRAS and tRC	3
22	Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte	3
23	Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte	3
24	Minimum Refresh Recovery Delay Time (tRFCmin), Least Significant Byte	3
25	Minimum Refresh Recovery Delay Time (tRFCmin), Most Significant Byte	3
26	Minimum Internal Write to Read Command Delay Time (tWTRmin)	3
27	Minimum Internal Read to Precharge Command Delay Time (tRTPmin)	3
28	Upper Nibble for tFAW	3
29	Minimum Four Activate Window Delay Time (tFAWmin)	3
30	SDRAM Optional Features	3
31	SDRAM Thermal and Refresh Options	3
32	Module Thermal Sensor	
33	SDRAM Device Type	
34	Fine Offset for SDRAM Minimum Cycle Time (tCKmin)	
35	Fine Offset for Minimum CAS Latency Time (tAAmin)	
36	Fine Offset for Minimum RAS# to CAS# Delay Time (tRCDmin)	
37	Fine Offset for Minimum Row Precharge Delay Time (tRPmin)	
38	Fine Offset for Minimum Active to Active/Refresh Delay Time (tRCmin)	
39 ~ 40	Reserved, General Section	
41	SDRAM Maximum Activate Count (MAC) Value	3
42 ~ 59	Reserved, General Section	
60 ~ 116	Module Type Specific Section, Indexed by Key Byte 3	
117 ~ 118	Module ID: Module Manufacturer's JEDEC ID Code	
119	Module ID: Module Manufacturing Location	
120 ~ 121	Module ID: Module Manufacturing Date	
122 ~ 125	Module ID: Module Serial Number	
126 ~ 127	Cyclical Redundancy Code	
128 ~ 145	Module Part Number	4
146 ~ 147	Module Revision Code	4
148 ~ 149	DRAM Manufacturer's JEDEC ID Code	4
150 ~ 175	Manufacturer's Specific Data	4
176 ~ 255	Open for customer use	

Note 1 Number of SPD bytes written will typically be programmed as 128 or 176 bytes.

Note 2 Size of SPD device will typically be programmed as 256 bytes.

Note 3 From DDR3 SDRAM datasheet.

Note 4 These are optional, in accordance with the JEDEC spec.

2.0 Details of each byte

2.1 General Section: Bytes 0 to 59

This section contains defines bytes that are common to all DDR3 module types.

Byte 0: Number of Bytes Used / Number of Bytes in SPD Device / CRC Coverage

The least significant nibble of this byte describes the total number of bytes used by the module manufacturer for the SPD data and any (optional) specific supplier information. The byte count includes the fields for all required and optional data. Bits 6 ~ 4 describe the total size of the serial memory used to hold the Serial Presence Detect data. Bit 7 indicates whether the unique module identifier (found in bytes 117 ~ 125) is covered by the CRC encoded on bytes 126 and 127.

Bit 7	Bits 6 ~ 4	Bits 3 ~ 0
CRC Coverage	SPD Bytes Total	SPD Bytes Used
0 = CRC covers bytes 0 ~ 125 1 = CRC covers bytes 0 ~ 116	Bit [6, 5, 4] : 000 = Undefined 001 = 256 All others reserved	Bit [3, 2, 1, 0]: 0000 = Undefined 0001 = 128 0010 = 176 0011 = 256 All others reserved

Byte 1: SPD Revision

This byte describes the compatibility level of the encoding of the bytes contained in the SPD EEPROM, and the current collection of valid defined bytes. Software should examine the upper nibble (Encoding Level) to determine if it can correctly interpret the contents of the module SPD. The lower nibble (Additions Level) can optionally be used to determine which additional bytes or attribute bits have been defined; however, since any undefined additional byte must be encoded as 0x00 or undefined attribute bit must be defined as 0, software can safely detect additional bytes and use safe defaults if a zero encoding is read for these bytes.

Production Status	SPD Revision	Encoding Level			Additions Level				Hex	
Froduction Status	SFD Revision	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	пех
	Revision 0.0	0	0	0	0	0	0	0	0	00
Due mue divette a	Revision 0.1	0	0	0	0	0	0	0	1	01
Pre-production										
	Revision 0.9	0	0	0	0	1	0	0	1	09
	Revision 1.0	0	0	0	1	0	0	0	0	10
Production	Revision 1.1	0	0	0	1	0	0	0	1	11
Undefined	Undefined	1	1	1	1	1	1	1	1	FF

The Additions Level is never reduced even after an increment of the Encoding Level. For example, if the current SPD revision level were 1.2 and a change in Encoding Level were approved, the next revision level would be 2.2. If additions to revision 2.2 were approved, the next revision would be 2.3. Changes in the Encoding Level are extremely rare, however, since they can create incompatibilities with older systems.

The exceptions to the above rule are the SPD revision levels used during development prior to the Revision 1.0 release. Revisions 0.0 through 0.9 are used to indicate sequential pre-production SPD revision levels, however the first production release will be Revision 1.0.

This document defines the SPD contents for multiple families of DDR3 memory modules, with a separate subsection for each family that defines the bytes in SPD locations 60~116. These module families and their respective subsections are:

- Annex K.1: Unbuffered Memory Modules
- Annex K.2: Registered Memory Modules
- Annex K.3: Clocked Memory Modules
- Annex K.4: Load Reduced Memory Modules

The SPD revision level for each module family type is independent. This allows changes to be made to the Registered DIMM annex, for example, without necessarily changing the revision of Unbuffered DIMMs. In this context, the SPD revision value corresponds to all SPD bytes for that DIMM type. It also means that over time, the revisions for each module type may vary. Note that changes to a DIMM specific annex does not affect the revisions of other module types, but changes in the General Section of the SPD affect all DIMM types. The following example suggests a possible historical progression:

TABLE 1. Hypothetical Historic Progression of SPD Revisions by DIMM Type

Event	UDIMM	RDIMM	CDIMM	LRDIMM
Initial SPD release	1.0	1.0	1.0	1.0
Addition in RDIMM Annex	1.0	1.1	1.0	1.0
Addition in LRDIMM Annex	1.0	1.1	1.0	1.1
Addition in LRDIMM Annex	1.0	1.1	1.0	1.2
Addition in General Section	1.1	1.2	1.1	1.3
Addition in UDIMM Annex	1.2	1.2	1.1	1.3
Encoding change in LRDIMM Annex	1.2	1.2	1.1	2.3
Addition in LRDIMM Annex	1.2	1.2	1.1	2.4
Encoding change in General Section	2.2	2.2	2.1	3.4
Addition in RDIMM Annex	2.2	2.3	2.1	3.4

Byte 2: Key Byte / DRAM Device Type

This byte is the key byte used by the system BIOS to determine how to interpret all other bytes in the SPD EEPROM. The BIOS must check this byte first to ensure that the EEPROM data is interpreted correctly. Any DRAM or Module type that requires significant changes to the SPD format (beyond defining previously undefined bytes or bits) also requires a new entry in the key byte table below.

Line #	SDRAM / Module Type Corresponding to Key Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0	Reserved	0	0	0	0	0	0	0	0	00
1	Standard FPM DRAM	0	0	0	0	0	0	0	1	01
2	EDO	0	0	0	0	0	0	1	0	02
3	Pipelined Nibble	0	0	0	0	0	0	1	1	03
4	SDRAM	0	0	0	0	0	1	0	0	04
5	ROM	0	0	0	0	0	1	0	1	05
6	DDR SGRAM	0	0	0	0	0	1	1	0	06
7	DDR SDRAM	0	0	0	0	0	1	1	1	07
8	DDR2 SDRAM	0	0	0	0	1	0	0	0	08
9	DDR2 SDRAM FB-DIMM	0	0	0	0	1	0	0	1	09

Line #	SDRAM / Module Type Corresponding to Key Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
10	DDR2 SDRAM FB-DIMM PROBE	0	0	0	0	1	0	1	0	0A
11	DDR3 SDRAM	0	0	0	0	1	0	1	1	0B
-	-	-	-	-	-	-	-	1	-	1
253	Reserved	1	1	1	1	1	1	0	1	FD
254	Reserved	1	1	1	1	1	1	1	0	FE
255	Reserved	1	1	1	1	1	1	1	1	FF

Byte 3: Key Byte / Module Type

This byte is a Key Byte used to index the module specific section of the SPD from bytes 60 ~ 116. Byte 3 identifies the SDRAM memory module type which implies the width (D dimension) of the module. Other module physical characteristics, such as height (A dimension) or thickness (E dimension) are documented in the module specific section of the SPD. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 4	Bits 3 ~ 0			
Reserved	Module Type			
	Bit [3, 2, 1, 0]: 0000 = Undefined 0001 = RDIMM (width = 133.35 mm nom) 0010 = UDIMM (width = 133.35 mm nom) 0011 = SO-DIMM (width = 67.6 mm nom) 0100 = Micro-DIMM (width = TBD mm nom) 0101 = Mini-RDIMM (width = 82.0 mm nom) 0110 = Mini-UDIMM (width = 82.0 mm nom) 0111 = Mini-CDIMM (width = 67.6 mm nom) 1000 = 72b-SO-UDIMM (width = 67.6 mm nom) 1001 = 72b-SO-RDIMM (width = 67.6 mm nom) 1010 = 72b-SO-CDIMM (width = 67.6 mm nom) 1011 = LRDIMM (width = 133.35 mm nom) 1100 = 16b-SO-DIMM (width = 67.6 mm nom) 1101 = 32b-SO-DIMM (width = 67.6 mm nom) All others reserved			
Definitions: RDIMM: Registered Dual In-Line Memory Module LRDIMM: Load Reduced Dual In-Line Memory Module UDIMM: Unbuffered Dual In-Line Memory Module SO-DIMM: Unbuffered 64-bit Small Outline Dual In-Line Memory Module Micro-DIMM: Micro Dual In-Line Memory Module Mini-RDIMM: Mini Registered Dual In-Line Memory Module Mini-UDIMM: Mini Unbuffered Dual In-Line Memory Module Mini-CDIMM: Clocked 72-bit Mini Dual In-Line Memory Module 72b-SO-UDIMM: Unbuffered 72-bit Small Outline Dual In-Line Memory Module 72b-SO-RDIMM: Registered 72-bit Small Outline Dual In-Line Memory Module 72b-SO-CDIMM: Clocked 72-bit Small Outline Dual In-Line Memory Module 72b-SO-DIMM: Unbuffered 16-bit Small Outline Dual In-Line Memory Module 16b-SO-DIMM: Unbuffered 32-bit Small Outline Dual In-Line Memory Module				

Byte 4: SDRAM Density and Banks

This byte defines the total density of the DDR3 SDRAM, in bits, and the number of internal banks into which the memory array is divided. These values come from the DDR3 SDRAM data sheet.

Bit 7	Bits 6 ~ 4	Bits 3 ~ 0
Reserved	Bank Address Bits	Total SDRAM capacity, in megabits
	Bit [6, 5, 4]: 000 = 3 (8 banks) 001 = 4 (16 banks) 010 = 5 (32 banks) 011 = 6 (64 banks) All others reserved	Bit [3, 2, 1, 0]: 0000 = 256 Mb 0001 = 512 Mb 0010 = 1 Gb 0011 = 2 Gb 0100 = 4 Gb 0101 = 8 Gb 0110 = 16 Gb All others reserved

Byte 5: SDRAM Addressing

This byte describes the row addressing and the column addressing in the SDRAM device. Bits $2 \sim 0$ encode the number of column address bits, and bits $5 \sim 3$ encode the number of row address bits. These values come from the DDR3 SDRAM data sheet.

Bits 7 ~ 6	Bits 5 ~ 3	Bits 2 ~ 0
Reserved	Row Address Bits	Column Address Bits
	Bit [5, 4, 3]: 000 = 12 001 = 13 010 = 14 011 = 15 100 = 16 All others reserved	Bit [2, 1, 0]: 000 = 9 001 = 10 010 = 11 011 = 12 All others reserved

Byte 6: Module Nominal Voltage, VDD

This byte describes the Voltage Level for DRAM and other components on the module such as the register if applicable. Note that SPDs or thermal sensor components are on the VDDSPD supply and are not affected by this byte.

'Operable' is defined as the VDD voltage at which module operation is allowed using the performance values programmed in the SPD.

'Endurant' is defined as the VDD voltage at which the module may be powered without adversely affecting the life expectancy or reliability. Further specifications will exist to define the amount of time that the 'Endurant' voltage can be applied to the module. Operation is not supported at this voltage.

	Byte 6: Module Nominal Voltage, VDD						
Reserved	Reserved Module Minimum Nominal Voltage, VDD						
Bit 7~3	Bit 2	Bit 1	Bit 0				
Reserved	0 = NOT 1.25 V operable 1 = 1.25 V operable	0 = NOT 1.35 V operable 1 = 1.35 V operable	0 = 1.5 V operable 1 = NOT 1.5 V operable				

Note 1 1.35 V LV DDR3 devices are required to be 1.5 V operable.

Note 2 All DDR3 devices are required to be 1.5 V endurant.

Note 3 The value on Bit 0 uses a different polarity as compared to Bits 1 and 2 for backward compatibility with previous DDR3 SPD definitions.

A value on bits 2~0 of 000 implies that the device supports nominal operable voltage of 1.5 V only.

A value on bits 2~0 of 010 implies that the device supports nominal operable voltages of 1.35 V and 1.5 V.

A value on bits 2~0 of 110 implies that the device supports nominal operable voltages of 1.25 V, 1.35 V, or 1.5 V.

A value on bits $2\sim0$ of 111 implies that the device supports nominal operable voltages of 1.25 V or 1.35 V. The device is furthermore endurant to 1.5 V.

Byte 7: Module Organization

This byte describes the organization of the SDRAM module. Bits $2 \sim 0$ encode the device width of the SDRAM devices. Bits $5 \sim 3$ encode the number of physical ranks on the module. For example, for a double-rank module with x8 DRAMs, this byte is encoded 00 001 001, or 0x09.

Bits 7 ~ 6	Bits 5 ~ 3	Bits 2 ~ 0
Reserved	Number of Ranks	SDRAM Device Width
	Bit [5, 4, 3]: 000 = 1 Rank 001 = 2 Ranks 010 = 3 Ranks 011 = 4 Ranks 100 = 8 Ranks All others reserved	Bit [2, 1, 0]: 000 = 4 bits 001 = 8 bits 010 = 16 bits 011 = 32 bits All others reserved

Byte 8: Module Memory Bus Width

This byte describes the width of the SDRAM memory bus on the module. Bits $2 \sim 0$ encode the primary bus width. Bits $4 \sim 3$ encode the bus extensions such as parity or ECC.

Bits 7 ~ 5	Bits 4 ~ 3	Bits 2 ~ 0
Reserved	Bus width extension, in bits	Primary bus width, in bits
	Bit [4, 3]: 000 = 0 bits (no extension) 001 = 8 bits All others reserved	Bit [2, 1, 0]: 000 = 8 bits 001 = 16 bits 010 = 32 bits 011 = 64 bits All others reserved

Examples:

- 64 bit primary bus, no parity or ECC (64 bits total width): xxx 000 011
- 64 bit primary bus, with 8 bit ECC (72 bits total width): xxx 001 011

Calculating Module Capacity

The total memory capacity of the module may be calculated from SPD values. For example, to calculate the total capacity, in megabytes or gigabytes, of a typical module:

SDRAM CAPACITY ÷ 8 * PRIMARY BUS WIDTH ÷ SDRAM WIDTH * RANKS

Release 24

where:

- SDRAM CAPACITY = SPD byte 4 bits 3~0
- PRIMARY BUS WIDTH = SPD byte 8 bits 2~0
- SDRAM WIDTH = SPD byte 7 bits 2~0
- RANKS = SPD byte 7 bits 5~3

Example: 2 ranks of 1 Gb SDRAMs with x4 organization on a module with a 64 bit primary bus:

• 1 Gb \div 8 * 64 \div 4 * 2 = 4 GB

Example: 1 rank of 2 Gb SDRAMs with x8 organization on a module with a 64 bit primary bus:

• $2 \text{ Gb} \div 8 * 64 \div 8 * 1 = 2 \text{ GB}$

Commonly, parity or ECC are not counted in total module capacity, though they can also be included by adding the bus width extension in SPD byte 8 bits $4 \sim 3$ to the primary bus width in the previous examples.

Byte 9: Fine Timebase (FTB) Dividend / Divisor

This byte defines a value in picoseconds that represents the fundamental timebase for fine grain timing calculations. This value is used as a multiplier for formulating subsequent timing parameters. The fine timebase (FTB) is defined as the fine timebase dividend, bits $7 \sim 4$, divided by the fine timebase divisor, bits $3 \sim 0$.

Bits 7 ~ 4	Bits 3 ~ 0
Fine Timebase (FTB) Dividend	Fine Timebase (FTB) Divisor
Values defined from 1 to 15	Values defined from 1 to 15

Examples:

Dividend	Divisor	Timebase (ps)	Use
5	1	5	When time granularity of 5 ps is required
5	2	2.5	When time granularity of 2.5 ps is required
1	1	1	When time granularity of 1 ps is required

Byte 10: Medium Timebase (MTB) Dividend

Byte 11: Medium Timebase (MTB) Divisor

These bytes define a value in nanoseconds that represents the fundamental timebase for medium grain timing calculations. This value is typically the greatest common divisor for the range of clock frequencies (clock periods) supported by a particular SDRAM. This value is used as a multiplier for formulating subsequent timing parameters. The medium timebase (MTB) is defined as the medium timebase dividend (byte 10) divided by the medium timebase divisor (byte 11).

Byte 10 Bits 7 ~ 0	Byte 11 Bits 7 ~ 0
Medium Timebase (MTB) Dividend	Medium Timebase (MTB) Divisor
Values defined from 1 to 255	Values defined from 1 to 255

Dividend	Divisor	Timebase (ns)	Use
1	8 (0x08)	0.125	For clock frequencies of 400 through 1066 MHz

To simplify BIOS implementation, DIMMs associated with a given key byte value may differ in MTB value only by a factor of two. For DDR3 modules, the defined MTB values are:

Dividend	Divisor	Timebase (ns)	Use
1	8 (0x08)	0.125	MTB Value for DDR3
1	16 (0x10)	0.0625	Reserved for future use

Relating the MTB and FTB

When a timing value tXX cannot be expressed by an integer number of MTB units, the SPD must be encoded using both the MTB and FTB. The Fine Offsets are encoded using a two's complement value which, when multiplied by the FTB yields a positive or negative correction factor. Typically, for safety and for legacy compatibility, the MTB portion is rounded UP and the FTB correction is a negative value. The general algorithm for programming SPD values is:

```
Temp val = tXX / MTB
                                               // Calculate as real number
Remainder = Temp val modulo 1
                                              // Determine if integer # MTBs
Fine Correction = 1 - Remainder
                                              // If needed, what correction
if (Remainder == 0) then
                                              // Integer # MTBs?
       tXX(MTB) = Temp_val
                                              // Convert to integer
       tXX(FTB) = 0
                                              // No correction needed
else
                                              // Needs correction
       tXX(MTB) = ceiling (Temp_val)
                                              // Round up for safety in legacy systems
       tXX(FTB) = Fine_Correction * MTB / FTB // Correction is negative offset
endif
```

To recalculate the value of tXX from the SPD values, a general formula BIOSes may use is:

$$tXX = tXX(MTB) * MTB + tXX(FTB) * FTB$$

Examples:

	tCKmin SPD Calculations Using MTB and FTB					
Speed Bin	tCK Value Decimal	SPD byte 12 Decimal (Hexadecimal)	SPD byte 34 Decimal (Hexadecimal)			
DDR3-1333	1.5 ns	12 (0x0C)	0 (0x00)			
	=	(12 * 0.125)	+ (0 * 0.001)			

DDR3-1866	1.071 ns	9 (0x09)	-54 (0xCA)		
	=	(9 * 0.125) + (-54 * 0.001)			
Note: Examples assume MTB of 0.125 ns and FTB of 0.001 ns					

Timing parameters using both MTB and FTB are:

TABLE 2.

Parameter	MTB Byte(s)	FTB Byte
tCKmin	12	34
tAAmin	16	35
tRCDmin	18	36
tRPmin	20	37
tRCmin	21, 23	38

The encoding of two's complement fine timebase offsets:

(Coding		Value	FTB Timebase		
Bit 7	Bits 6~0	(Dec)	(Hex)	5 ps	2.5 ps	1 ps
0	1111111	+127	7F	+635 ps	+317.5 ps	+127 ps
0	1111110	+126	7E	+630 ps	+315 ps	+126 ps
0	0000001	+1	01	+5 ps	+2.5 ps	+1 ps
0	0000000	0	00	0	0	0
1	1111111	-1	FF	-5 ps	-2.5 ps	-1 ps
1	1111110	-2	FE	-10 ps	-5 ps	-2 ps
1	0000000	-128	80	-640 ps	-320 ps	-128 ps

Rounding Algorithms

Software algorithms for calculation of timing parameters are subject to rounding errors from many sources. For example, a system may use a memory clock with a nominal frequency of 933.33... MHz, or a clock period of 1.0714... ns. Similarly, a system with a memory clock frequency of 1066.66... MHz yields mathematically a clock period of 0.9375... ns. In most cases, it is impossible to express all digits after the decimal point exactly, and rounding must be done because the SPD establishes a minimum granularity for timing parameters of 1 ps.

Rules for rounding must be defined to allow optimization of memory module performance without violating device parameters. These algorithms rely on results that are within guardbands on device testing and specification to avoid losing performance due to rounding errors.

These rules are:

- 1. Clock periods such as t_{CKAVG}min are rounded to the nearest picosecond of accuracy; for example, 0.9375... ns is rounded to 938 ps and 1.0714... ns is rounded to 1071 ps.
- 2. Parameters programmed in systems in numbers of clocks (nCK) but expressed in the SPD in units of time (ns or ps) are divided by the clock period, a guardband factor of 0.01 clocks is subtracted, then the result is rounded up to the nearest integer number of clocks. Examples:

DDR3 Bin	Parameter	Value	@ t _{CKAVG-} min	Temp Result	- Guardband	Rounding Result
		ps	ps	nCK	nCK	nCK
1333	t_RRD	7500	1500	5.000	4.990	5
1866L	t_RCD	12840	1071	11.988	11.978	12
1866M	t_RC	47910	1071	44.733	44.724	45
1866M with downbin	t_RC	47125	1071	44.001	43.991	44

Byte 12: SDRAM Minimum Cycle Time (t_{CK}min)

This byte defines the minimum cycle time for the SDRAM module, in medium timebase (MTB) units. This number applies to all applicable components on the module. This byte applies to SDRAM and support components as well as the overall capability of the DIMM. This value comes from the DDR3 SDRAM and support component data sheets.

	Bits 7 ~ 0	
	Minimum SDRAM Cycle Time (t _{CK} min)	
	MTB Units	
Values defined from 1 to 255		

If tCKmin cannot be divided evenly by the MTB, this byte must be rounded up to the next larger integer and the Fine Offset for tCKmin (SPD byte 34) used for correction to get the actual value.

Examples:

	Kmin B units)	MTB (ns)		tCKmin Offset (FTB units) ¹		tCKmin Result (ns)	Use
20	0x14	0.125	0	0	0.001	2.5	DDR3-800 (400 MHz clock)
15	0x0F	0.125	0	0	0.001	1.875	DDR3-1066 (533 MHz clock)
12	0x0C	0.125	0	0	0.001	1.5	DDR3-1333 (667 MHz clock)
10	0x0A	0.125	0	0	0.001	1.25	DDR3-1600 (800 MHz clock)
9	0x09	0.125	-54	0xCA	0.001	1.071	DDR3-1866 (933 MHz clock)
8	0x08	0.125	-62	0xC2	0.001	0.938	DDR3-2133 (1067 MHz clock)
Note 1	See SPI) byte 34.			•		

Byte 13: Reserved

Byte 14: CAS Latencies Supported, Least Significant Byte

Byte 15: CAS Latencies Supported, Most Significant Byte

These bytes define which CAS Latency (CL) values are supported. The range is from CL = 4 through CL = 18 with one bit per possible CAS Latency. A 1 in a bit position means that CL is supported, a 0 in that bit position means it is not supported. Since CL = 6 is required for all DDR3 speed bins, bit 2 of SPD byte 14 is always 1. These values come from

Release 24

the DDR3 SDRAM data sheet.

Byte 14: CAS Latencies Supported, Low Byte									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CL = 11	CL = 10	CL = 9	CL = 8	CL = 7	CL = 6	CL = 5	CL = 4		
0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	1	0 or 1	0 or 1		
		Byte 15: C	AS Latencies	Supported, I	ligh Byte				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reserved	CL = 18	CL = 17	CL = 16	CL = 15	CL = 14	CL = 13	CL = 12		
0	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1		
Note 1 For ea	Note 1 For each bit position, 0 means this CAS Latency is not supported, 1 means this CAS Latency is supported.								

Example: DDR3-1600K

Byte 14 = 0xD4 (= 1101 0100) -- low byte.

Byte 15 = 0x00 (= 0000 0000) -- high byte.

(CAS Latencies	х	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
Ī	CL Mask	0	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0

Results: Actual CAS Latencies supported = 6, 8, 10, and 11.

Byte 16: Minimum CAS Latency Time (t_{AA}min)

This byte defines the minimum CAS Latency in medium timebase (MTB) units. Software can use this information, along with the CAS Latencies supported (found in bytes 14 and 15) to determine the optimal cycle time for a particular module. This value comes from the DDR3 SDRAM data sheet.

Bits 7	· ~ 0
Minimum SDRAM CAS	Latency Time (t _{AA} min)
MTB U	Jnits
Values defined from 1 to 2	255

If tAAmin cannot be divided evenly by the MTB, this byte must be rounded up to the next larger integer and the Fine Offset for tAAmin (SPD byte 35) used for correction to get the actual value.

Examples:

tAA (MTB		MTB (ns)		n Offset units) ¹	FTB (ns)	tAAmin Result (ns)	Use
100	0x64	0.125	0	0	0.001	12.5	DDR3-800D
120	0x78	0.125	0	0	0.001	15	DDR3-800E
90	0x5A	0.125	0	0	0.001	11.25	DDR3-1066E
105	0x69	0.125	0	0	0.001	13.125	DDR3-1066F
120	0x78	0.125	0	0	0.001	15	DDR3-1066G
84	0x54	0.125	0	0	0.001	10.5	DDR3-1333F
96	0x60	0.125	0	0	0.001	12	DDR3-1333G
108	0x6C	0.125	0	0	0.001	13.5	DDR3-1333H ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1333H downbin ²

tAAı (MTB		MTB (ns)	_	n Offset units) ¹	FTB (ns)	tAAmin Result (ns)	Use
120	0x78	0.125	0	0	0.001	15	DDR3-1333J
80	0x50	0.125	0	0	0.001	10	DDR3-1600G
90	0x5A	0.125	0	0	0.001	11.25	DDR3-1600H
100	0x64	0.125	0	0	0.001	12.5	DDR3-1600J
110	0x6E	0.125	0	0	0.001	13.75	DDR3-1600K ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1600K downbin ²
86	0x56	0.125	-50	0xCE	0.001	10.7	DDR3-1866J
95	0x5F	0.125	-105	0x97	0.001	11.77	DDR3-1866K
103	0x67	0.125	-35	0xDD	0.001	12.84	DDR3-1866L
112	0x70	0.125	-90	0xA6	0.001	13.91	DDR3-1866M ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1866M downbin ²
83	0x53	0.125	-90	0xA6	0.001	10.285	DDR3-2133K
90	0x5A	0.125	-30	0xE2	0.001	11.22	DDR3-2133L
98	0x62	0.125	-95	0xA1	0.001	12.155	DDR3-2133M
105	0x69	0.125	-35	0xDD	0.001	13.09	DDR3-2133N

Note 1 See SPD byte 35.

Note 2 Refer to device data sheet for downbin support details.

CAS Latency Calculation and Examples

CAS latency is not a purely analog value as DDR3 SDRAMs use the DLL to synchronize data and strobe outputs with the clock. All possible frequencies may not be tested, therefore an application should use the next smaller JEDEC standard tCKmin value (2.5, 1.875, 1.5, 1.25, 1.071, and 0.938 ns for DDR3 SDRAMs) when calculating CAS Latency. This section shows how the BIOS may calculate CAS latency based on Bytes 12 ~ 16, 34, and 35.

- Step 1: Determine the common set of supported CAS Latency values for all modules on the memory channel using the CAS Latencies Supported in SPD bytes 14 and 15.
- Step 2: Determine tAAmin(all) which is the largest tAAmin value for all modules on the memory channel (SPD bytes 16 and 35).
- Step 3: Determine tCKmin(all) which is the largest tCKmin value for all modules on the memory channel (SPD bytes 12 and 34).
- Step 4: For a proposed tCK value (tCKproposed) between tCKmin(all) and tCKmax, determine the desired CAS Latency. If tCKproposed is not a standard JEDEC value (2.5, 1.875, 1.5, 1.25, 1.071, or 0.938 ns) then tCKproposed must be adjusted to the next lower standard tCK value for calculating CLdesired.

CLdesired = ceiling (tAAmin(all) / tCKproposed)

where tAAmin is defined in Byte 16 and Byte 35. The ceiling function requires that the quotient be rounded up always.

- Step 5: Chose an actual CAS Latency (CLactual) that is greater than or equal to CLdesired and is supported by all modules on the memory channel as determined in step 1. If no such value exists, choose a higher tCKproposed value and repeat steps 4 and 5 until a solution is found.
- Step 6: Once the calculation of CLactual is completed, the BIOS must also verify that this CAS Latency value does not exceed tAAmax, which is 20 ns for all DDR3 speed grades, by multiplying CLactual times tCKproposed. If not, choose a lower CL value and repeat steps 5 and 6 until a solution is found.

Example 1: Slot 0 = DDR3-1066E 6-6-6, Slot 1 = DDR3-1333H 9-9-9

Step 1: CL in slot 0 = 5, 6, 7, 8; CL in slot 1 = 6, 8, 9; Common CL = 6, 8

Step 2: tAAmin in slot 0 = 11.25 ns; tAAmin in slot 1 = 13.5 ns; tAAmin(all) = 13.5 ns

Step 3: tCKmin in slot 0 = 1.875 ns; tCKmin in slot 1 = 1.5 ns; tCKproposed = 1.875 ns

Step 4: CLdesired = ceiling(13.5 / 1.875) = 8

Step 5: CLactual = CLdesired

Step 6: CLactual * tCKproposed = 8 * 1.875 = 15 < 20 ns ... value is okay

Results: tCKactual = 1.875 ns, CLactual = 8

Example 2: Slot 0 = DDR3-800D 5-5-5, Slot 1 = DDR3-1066G 8-8-8

Step 1: CL in slot 0 = 5, 6; CL in slot 1 = 6, 8; Common CL = 6

Step 2: tAAmin in slot 0 = 12.5 ns; tAAmin in slot 1 = 15 ns; tAAmin(all) = 15 ns

Step 3: tCKmin in slot 0 = 2.5 ns; tAAmin in slot 1 = 1.875 ns; tCKproposed = 2.5 ns

Step 4: CLdesired = ceiling(15 / 2.5 ns) = 6

Step 5: CLactual = CLdesired

Step 6: CLactual * tCKproposed = 6 * 2.5 = 15 < 20 ns ... value is okay

Results: tCKactual = 2.5 ns, CLactual = 6

Example 3: Slot 0 = DDR3-800D 5-5-5, Slot 1 = DDR3-1066G 8-8-8, System Bringup & Debug limits operating frequency to 333 MHz (tCK = 3.3 ns)

Step 1: CL in slot 0 = 5, 6; CL in slot 1 = 6, 8; Common CL = 6

Step 2: tAAmin in slot 0 = 12.5 ns; tAAmin in slot 1 = 15 ns; tAAmin(all) = 15 ns

Step 3: tCKproposed = 3.3 ns

Step 4: CLdesired = ceiling(15 / 3.3 ns) = 5

Step 5: CLactual = 6

Step 6: CLactual * tCKproposed = 6 * 3.3 = 19.8 < 20 ns ... value is okay

Results: tCKactual = 3.3 ns, CLactual = 6

Byte 17: Minimum Write Recovery Time (twRmin)

This byte defines the minimum SDRAM write recovery time in medium timebase (MTB) units. This value comes from the DDR3 SDRAM data sheet.

Bits 7 ~ 0	
Minimum Write Recovery Time (t _{WR})	
MTB Units	
Values defined from 1 to 255	

Example:

tWRmin	Timebase	tWR Result	Use
(MTB units)	(ns)	(ns)	
120	0.125	15	All DDR3 speed grades

Step 1: The BIOS first determines the common operating frequency of all modules in the system, ensuring that the corresponding value of tCK (tCKactual) falls between tCKmin (Bytes 12 and 34) and tCKmax. If tCKactual is not a JEDEC standard value, the next smaller standard tCKmin value is used for calculating Write Recovery.

Step 2: The BIOS then calculates the "desired" Write Recovery (WRdesired):

WRdesired = ceiling (tWRmin / tCKactual)

where tWRmin is defined in Byte 17. The ceiling function requires that the quotient be rounded up always.

Step 3: The BIOS then determines the "actual" Write Recovery (WRactual):

WRactual = max (WRdesired, min WR supported)

where min WR is the lowest Write Recovery supported by the DDR3 SDRAM. Note that not all WR values supported by DDR3 SDRAMs are sequential, so the next higher supported WR value must be used in some cases.

Usage example for DDR3-1333G operating at DDR3-1333:

tCKactual = 1.5 ns WRdesired = 15 / 1.5 = 10 WRactual = max(10, 10) = 10

Byte 18: Minimum RAS# to CAS# Delay Time (t_{RCD}min)

This byte defines the minimum SDRAM RAS# to CAS# Delay in medium timebase (MTB) units. This value comes from the DDR3 SDRAM data sheet.

Bits 7 ~ 0	
Minimum RAS# to CAS# Delay (t _{RCD})	
MTB Units	
Values defined from 1 to 255	

If tRCDmin cannot be divided evenly by the MTB, this byte must be rounded up to the next larger integer and the Fine Offset for tRCDmin (SPD byte 36) used for correction to get the actual value.

Examples:

tF	RCD	MTB	tRCD	Offset	FTB	tRCD Result	Use
(MTE	B units)	(ns)	(FTB	units) ¹	(ns)	(ns)	Use
100	0x64	0.125	0	0	0.001	12.5	DDR3-800D
120	0x78	0.125	0	0	0.001	15	DDR3-800E
90	0x5A	0.125	0	0	0.001	11.25	DDR3-1066E
105	0x69	0.125	0	0	0.001	13.125	DDR3-1066F
120	0x78	0.125	0	0	0.001	15	DDR3-1066G
84	0x54	0.125	0	0	0.001	10.5	DDR3-1333F
96	0x60	0.125	0	0	0.001	12	DDR3-1333G
108	0x6C	0.125	0	0	0.001	13.5	DDR3-1333H ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1333H downbin ²
120	0x78	0.125	0	0	0.001	15	DDR3-1333J
80	0x50	0.125	0	0	0.001	10	DDR3-1600G
90	0x5A	0.125	0	0	0.001	11.25	DDR3-1600H
100	0x64	0.125	0	0	0.001	12.5	DDR3-1600J
110	0x6E	0.125	0	0	0.001	13.75	DDR3-1600K ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1600K downbin ²
86	0x56	0.125	-50	0xCE	0.001	10.7	DDR3-1866J
95	0x5F	0.125	-105	0x97	0.001	11.77	DDR3-1866K
103	0x67	0.125	-35	0xDD	0.001	12.84	DDR3-1866L
112	0x70	0.125	-90	0xA6	0.001	13.91	DDR3-1866M ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1866M downbin ²
83	0x53	0.125	-90	0xA6	0.001	10.285	DDR3-2133K

1	RCD B units)	MTB (ns)		tRCD Offset (FTB units) ¹		tRCD Result (ns)	Use
90	0x5A	0.125	-30	0xE2	0.001	11.22	DDR3-2133L
98	0x62	0.125	-95	0xA1	0.001	12.155	DDR3-2133M
105	0x69	0.125	-35	0xDD	0.001	13.09	DDR3-2133N

Note 1 See SPD byte 36.

Note 2 Refer to device data sheet for downbin support details.

Byte 19: Minimum Row Active to Row Active Delay Time (t_{RRD}min)

This byte defines the minimum SDRAM Row Active to Row Active Delay Time in medium timebase units. This value comes from the DDR3 SDRAM data sheet. The value of this number may be dependent on the SDRAM page size; please refer to the DDR3 SDRAM data sheet section on Addressing to determine the page size for these devices. Controller designers must also note that at some frequencies, a minimum number of clocks may be required resulting in a larger tRRDmin value than indicated in the SPD. For example, tRRDmin for DDR3-800 must be 4 clocks.

Bits 7 ~ 0
Minimum Row Active to Row Active Delay (t _{RRD})
MTB Units
Values defined from 1 to 255

Examples:

tRRD (MTB units)	Timebase (ns)	tRRD Result (ns)	Use	
48	0.125	6.0	Example: DDR3-1333, 1KB page size	
60	0.125	7.5	Example: DDR3-1333, 2KB page size	
80 0.125 10 Example: DDR3-800, 1KB page size			Example: DDR3-800, 1KB page size	
Note 1 tRRD is at least 4 nCK independent of operating frequency				

Byte 20: Minimum Row Precharge Delay Time (t_{RP}min)

This byte defines the minimum SDRAM Row Precharge Delay Time in medium timebase (MTB) units. This value comes from the DDR3 SDRAM data sheet.

Bits 7 ~ 0			
Minimum Row Precharge Time (t _{RP})			
MTB Units			
Values defined from 1 to 255			

If tRPmin cannot be divided evenly by the MTB, this byte must be rounded up to the next larger integer and the Fine Offset for tRPmin (SPD byte 37) used for correction to get the actual value.

Examples:

1	RP units)	MTB (ns)	_	Offset units) ¹	FTB (ns)	tRP Result (ns)	Use
100	0x64	0.125	0	0	0.001	12.5	DDR3-800D
120	0x78	0.125	0	0	0.001	15	DDR3-800E
90	0x5A	0.125	0	0	0.001	11.25	DDR3-1066E

	RP	MTB		Offset	FTB	tRP Result	Use
	units)	(ns)	(FTB units) ¹ (ns) (ns		(ns)		
105	0x69	0.125	0	0	0.001	13.125	DDR3-1066F
120	0x78	0.125	0	0	0.001	15	DDR3-1066G
84	0x54	0.125	0	0	0.001	10.5	DDR3-1333F
96	0x60	0.125	0	0	0.001	12	DDR3-1333G
108	0x6C	0.125	0	0	0.001	13.5	DDR3-1333H ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1333H downbin ²
120	0x78	0.125	0	0	0.001	15	DDR3-1333J
80	0x50	0.125	0	0	0.001	10	DDR3-1600G
90	0x5A	0.125	0	0	0.001	11.25	DDR3-1600H
100	0x64	0.125	0	0	0.001	12.5	DDR3-1600J
110	0x6E	0.125	0	0	0.001	13.75	DDR3-1600K ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1600K downbin ²
86	0x56	0.125	-50	0xCE	0.001	10.7	DDR3-1866J
95	0x5F	0.125	-105	0x97	0.001	11.77	DDR3-1866K
103	0x67	0.125	-35	0xDD	0.001	12.84	DDR3-1866L
112	0x70	0.125	-90	0xA6	0.001	13.91	DDR3-1866M ²
105	0x69	0.125	0	0	0.001	13.125	DDR3-1866M downbin ²
83	0x53	0.125	-90	0xA6	0.001	10.285	DDR3-2133K
90	0x5A	0.125	-30	0xE2	0.001	11.22	DDR3-2133L
98	0x62	0.125	-95	0xA1	0.001	12.155	DDR3-2133M
105	0x69	0.125	-35	0xDD	0.001	13.09	DDR3-2133N
Note 4	Nete 4 Coo CDD buto 27						

Note 1 See SPD byte 37.

Note 2 Refer to device data sheet for downbin support details.

Byte 21: Upper Nibbles for t_{RAS} and t_{RC}

This byte defines the most significant nibbles for the values of tRAS (byte 22) and tRC (byte 23). These values come from the DDR3 SDRAM data sheet.

Bits 7 ~ 4	Bits 3 ~ 0
t _{RC} Most Significant Nibble	t _{RAS} Most Significant Nibble
See Byte 23 description	See Byte 22 description

Byte 22: Minimum Active to Precharge Delay Time (t_{RAS}min), Least Significant Byte

The lower nibble of Byte 21 and the contents of Byte 22 combined create a 12-bit value which defines the minimum SDRAM Active to Precharge Delay Time in medium timebase (MTB) units. The most significant bit is Bit 3 of Byte 21, and the least significant bit is Bit 0 of Byte 22. This value comes from the DDR3 SDRAM data sheet.

Byte 21 Bits 3 ~ 0, Byte 22 Bits 7 ~ 0			
Minimum Active to Precharge Time (t _{RAS})			
MTB Units			
Values defined from 1 to 4095			

Examples:

tRAS		MTB	tRAS Result	Use	
(MTB units)		(ns)	(ns)		
300	300 0x12C 0.125		37.5	DDR3-800D	

Release 24

	RAS	МТВ	tRAS Result	Use
(MIB	units)	(ns)	(ns)	
300	0x12C	0.125	37.5	DDR3-800E
300	0x12C	0.125	37.5	DDR3-1066E
300	0x12C	0.125	37.5	DDR3-1066F
300	0x12C	0.125	37.5	DDR3-1066G
288	0x120	0.125	36	DDR3-1333F
288	0x120	0.125	36	DDR3-1333G
288	0x120	0.125	36	DDR3-1333H
288	0x120	0.125	36	DDR3-1333J
280	0x118	0.125	35	DDR3-1600G
280	0x118	0.125	35	DDR3-1600H
280	0x118	0.125	35	DDR3-1600J
280	0x118	0.125	35	DDR3-1600K
272	0x110	0.125	34	DDR3-1866J
272	0x110	0.125	34	DDR3-1866K
272	0x110	0.125	34	DDR3-1866L
272	0x110	0.125	34	DDR3-1866M
264	0x108	0.125	33	DDR3-2133K
264	0x108	0.125	33	DDR3-2133L
264	0x108	0.125	33	DDR3-2133M
264	0x108	0.125	33	DDR3-2133N

Byte 23: Minimum Active to Active/Refresh Delay Time (t_{RC}min), Least Significant Byte

The upper nibble of Byte 21 and the contents of Byte 23 combined create a 12-bit value which defines the minimum SDRAM Active to Active/Refresh Delay Time in medium timebase (MTB) units. The most significant bit is Bit 7 of Byte 21, and the least significant bit is Bit 0 of Byte 23. This value comes from the DDR3 SDRAM data sheet.

Byte 21 Bits 7 ~ 4, Byte 23 Bits 7 ~ 0					
Minimum Active to Active/Refresh Time (t _{RC})					
MTB Units					
Values defined from 1 to 4095					

If tRCmin cannot be divided evenly by the MTB, this byte must be rounded up to the next larger integer and the Fine Offset for tRCmin (SPD byte 38) used for correction to get the actual value.

Examples:

· ·	RC 3 units)	MTB (ns)	tRC Offset (FTB units) ¹		FTB (ns)	tRC Result (ns)	Use
400	0x190	0.125	0	0	0.001	50	DDR3-800D
420	0x1A4	0.125	0	0	0.001	52.5	DDR3-800E
390	0x186	0.125	0	0	0.001	48.75	DDR3-1066E
405	0x195	0.125	0	0	0.001	50.625	DDR3-1066F
420	0x1A4	0.125	0	0	0.001	52.5	DDR3-1066G
372	0x174	0.125	0	0	0.001	46.5	DDR3-1333F
384	0x180	0.125	0	0	0.001	48	DDR3-1333G
396	0x18C	0.125	0	0	0.001	49.5	DDR3-1333H ²
393	0x189	0.125	0	0	0.001	49.125	DDR3-1333H downbin ²
408	0x198	0.125	0	0	0.001	51	DDR3-1333J
360	0x168	0.125	0	0	0.001	45	DDR3-1600G
370	0x172	0.125	0	0	0.001	46.25	DDR3-1600H

_	RC 3 units)	MTB (ns)		Offset units) ¹	FTB (ns)	tRC Result (ns)	Use
380	0x17C	0.125	0	0	0.001	47.5	DDR3-1600J
390	0x186	0.125	0	0	0.001	48.75	DDR3-1600K ²
385	0x181	0.125	0	0	0.001	48.125	DDR3-1600K downbin ²
358	0x166	0.125	-50	0xCE	0.001	44.7	DDR3-1866J
367	0x16F	0.125	-105	0x97	0.001	45.77	DDR3-1866K
375	0x177	0.125	-35	0xDD	0.001	46.84	DDR3-1866L
384	0x180	0.125	-90	0xA6	0.001	47.91	DDR3-1866M ²
377	0x179	0.125	0	0	0.001	47.125	DDR3-1866M downbin ²
347	0x15B	0.125	-90	0xA6	0.001	43.285	DDR3-2133K
354	0x162	0.125	-30	0xE2	0.001	44.22	DDR3-2133L
362	0x16A	0.125	-95	0xA1	0.001	45.155	DDR3-2133M
369	0x171	0.125	-35	0xDD	0.001	46.09	DDR3-2133N

Note 1 See SPD byte 38.

Note 2 Refer to device data sheet for downbin support details.

Byte 24: Minimum Refresh Recovery Delay Time (t_{RFC}min), Least Significant Byte

Byte 25: Minimum Refresh Recovery Delay Time (t_{RFC}min), Most Significant Byte

The contents of Byte 24 and the contents of Byte 25 combined create a 16-bit value which defines the minimum SDRAM Refresh Recovery Time Delay in medium timebase (MTB) units. The most significant bit is Bit 7 of Byte 25, and the least significant bit is Bit 0 of Byte 24. These values come from the DDR3 SDRAM data sheet.

Byte	25 Bits 7 ~ 0, Byte 24 Bits 7 ~ 0				
Minimum Refresh Recover Time Delay (t _{RFC})					
	MTB Units				
Values def	ined from 1 to 65535				

Examples:

tRFC (MTB units)		Timebase (ns)	tRFC Result (ns)	Use
720	0x2D0	0.125	90	512 Mb
880	0x370	0.125	110	1 Gb
1280	0x500	0.125	160	2 Gb
2400	0x960	0.125	300	4 Gb
2800	0xAF0	0.125	350	8 Gb

Byte 26: Minimum Internal Write to Read Command Delay Time (t_{WTR}min)

This byte defines the minimum SDRAM Internal Write to Read Delay Time in medium timebase (MTB) units. This value comes from the DDR3 SDRAM data sheet. The value of this number may be dependent on the SDRAM page size; please refer to the DDR3 SDRAM data sheet section on Addressing to determine the page size for these devices. Controller designers must also note that at some frequencies, a minimum number of clocks may be required resulting in a larger tWTRmin value than indicated in the SPD. For example, tWTRmin for DDR3-800 must be 4 clocks.

Bits 7 ~ 0			
Internal Write to Read Delay Time (t _{WTR})			
MTB Units			
Values defined from 1 to 255			

tWTR (MTB units)		Timebase (ns)	tWTR Result (ns)	Use		
60 0x3C 0.125		0.125	7.5	All DDR3 SDRAM speed bins		
Note 1 tWTR is at least 4 nCK independent of operating frequency.						

Byte 27: Minimum Internal Read to Precharge Command Delay Time (t_{RTP}min)

This byte defines the minimum SDRAM Internal Read to Precharge Delay Time in medium timebase (MTB) units. This value comes from the DDR3 SDRAM data sheet. The value of this number may be dependent on the SDRAM page size; please refer to the DDR3 SDRAM data sheet section on Addressing to determine the page size for these devices. Controller designers must also note that at some frequencies, a minimum number of clocks may be required resulting in a larger tRTPmin value than indicated in the SPD. For example, tRTPmin for DDR3-800 must be 4 clocks.

Bits 7 ~ 0		
Internal Read to Precharge Delay Time (t _{RTP})		
MTB Units		
Values defined from 1 to 255		

Examples:

tRTP (MTB units)		Timebase tRTP Result s) (ns) (ns)		Use		
60	60 0x3C 0.125 7.5		7.5	All DDR3 SDRAM speed bins		
Note 1 tRTP is at least 4 nCK independent of operating frequency.						

Byte 28: Upper Nibble for t_{FAW}

This byte defines the most significant nibble for the value of tFAW (SPD byte 29). This value comes from the DDR3 SDRAM data sheet.

Bits 7 ~ 4	Bits 3 ~ 0	
Reserved	t _{FAW} Most Significant Nibble	
Reserved	See Byte 29 description	

Byte 29: Minimum Four Activate Window Delay Time (t_{FAW}min), Least Significant Byte

The lower nibble of Byte 28 and the contents of Byte 29 combined create a 12-bit value which defines the minimum SDRAM Four Activate Window Delay Time in medium timebase (MTB) units. This value comes from the DDR3 SDRAM data sheet. The value of this number may be dependent on the SDRAM page size; please refer to the DDR3 SDRAM data sheet section on Addressing to determine the page size for these devices.

Byte 28 Bits 3 ~ 0, Byte 29 Bits 7 ~ 0				
Minimum Four Activate Window Delay Time (t _{FAW})				
MTB Units				
Values defined from 1 to 4095				

tFAW (MTB units)		Timebase (ns)	tFAW Result (ns)	Use
320	0x140	0.125	40	Example: DDR3-800, 1 KB page size
400	0x190	0.125	50	Example: DDR3-800, 2 KB page size
300	0x12C	0.125	37.5	Example: DDR3-1066, 1 KB page size
400	0x190	0.125	50	Example: DDR3-1066, 2 KB page size
240	0x0F0	0.125	30	Example: DDR3-1333, 1 KB page size
360	0x168	0.125	45	Example: DDR3-1333, 2 KB page size
240	0x0F0	0.125	30	Example: DDR3-1600, 1 KB page size
320	0x140	0.125	40	Example: DDR3-1600, 2 KB page size
216	0x0D8	0.125	27	Example: DDR3-1866, 1 KB page size
280	0x118	0.125	35	Example: DDR3-1866, 2 KB page size
200	0x0C8	0.125	25	Example: DDR3-2133, 1 KB page size
280	0x118	0.125	35	Example: DDR3-2133, 2 KB page size

Byte 30: SDRAM Optional Features

This byte defines support for certain SDRAM features and the optional drive strengths supported by the SDRAMs on this module. This value comes from the DDR3 SDRAM data sheet.

Bit 7	Bits 6 ~ 2	Bit 1	Bit 0
DLL-Off Mode Support	Reserved	RZQ / 7	RZQ / 6
0 = Not Supported 1 = Supported		0 = Not Supported 1 = Supported	0 = Not Supported 1 = Supported

Byte 31: SDRAM Thermal and Refresh Options

This byte describes the module's supported operating temperature ranges and refresh options. These values come from the DDR3 SDRAM data sheet. Use of self refresh in the Extended Temperature Range, ASR or ODTS require appropriate SDRAM Mode Register programming (MR2 bits A6, A7, and MR3 bit A3). Please refer to the DDR3 SDRAM data sheet (JESD79-3 or supplier data sheet) for a complete description of these options.

Bit 7	Bits 6 ~ 4	Bit 3	Bit 2	Bit 1	Bit 0
Partial Array Self Refresh (PASR)	Reserved	On-die Thermal Sensor (ODTS) Readout	Auto Self Refresh (ASR)	Extended Tempera- ture Refresh Rate	Extended Tem- perature Range
1 = Supported 0 = Not supported		1 = On-die thermal sensor readout is supported 0 = On-die thermal sensor readout is not supported (pending ballot of ODTS)	1 = ASR is supported and the SDRAM will determine the proper refresh rate for any supported temperature 0 = ASR is not supported	1 = Extended operating temperature range from 85-95 °C supported with standard 1X refresh rate 0 = Use in extended operating temperature range from 85-95 °C requires 2X refresh rate	1 = Normal and extended operating temperature range 0-95 °C supported 0 = Normal operating temperature range 0-85 °C supported

If SPD Byte 31 bit 0 = 0, the SDRAM does not support extended temperature range use and the SDRAM MR2 bit A7 must be set to 0. 1X refresh rate across the normal temperature range of 0-85 °C is supported.

If SPD Byte 31 bit 0 = 1, then the extended temperature range from 85-95 $^{\circ}$ C is supported and the SDRAM MR2 bit A7 may be set to 1. SPD byte 31 bit 1 may be used to determine an appropriate refresh rate when operating in the extended temperature range.

If SPD Byte 31 bit 2 = 0, then the SDRAM MR2 bit A6 must be set to 0. SDRAM MR2 bit A7 must be programmed to indicate the temperature range (TOPER) for subsequent self refresh operation.

If SPD Byte 31 bit 3 = 1, the on-die thermal sense logic can be used in conjunction with SPD Byte 31 bits 0 and 1 to determine an appropriate refresh rate and/or monitor the maximum operating temperature.

Byte 32: Module Thermal Sensor

This byte describes the module's supported thermal options.

Bit 7	Bits 6 ~ 0				
Thermal Sensor ¹	Thermal Sensor Accuracy				
0 = Thermal sensor not incorporated onto this assembly 1 = Thermal sensor incorporated onto this assembly	0 = Undefined All others settings to be defined.				
Note 1 Thermal sensor compliant with TSE2002 specifications.					

Byte 33: SDRAM Device Type

This byte describes the type of SDRAM Device on the module.

Bit 7	Bits 6~4	Bits 3~2	Bit 1~0	
SDRAM Device Type	Die Count	Reserved	Signal Loading ²	
0 = Standard Monolithic DRAM Device 1 = Non-Standard Device ¹	000 = Not specified 001 = Single die 010 = 2 die 011 = 4 die 100 = 8 die All others settings reserved.		00 = Not specified 01 = Multi load stack 10 = Single load stack 11 = Reserved	

Note 1 This includes Dual Die, Quad Die, Multi-Die and Physical stacked devices - anything that is outside the standard monolithic device.

Byte 34: Fine Offset for SDRAM Minimum Cycle Time (tCKmin)

This byte modifies the calculation of SPD Byte 12 (MTB units) with a fine correction using FTB units. The value of tCKmin comes from the SDRAM data sheet. This value is a two's complement multiplier for FTB units, ranging from +127 to -128.

Examples: See SPD byte 12. For Two's Complement encoding, see Relating the MTB and FTB.

Byte 35: Fine Offset for Minimum CAS Latency Time (tAAmin)

This byte modifies the calculation of SPD Byte 16 (MTB units) with a fine correction using FTB units. The value of tAAmin comes from the SDRAM data sheet. This value is a two's complement multiplier for FTB units, ranging from +127 to -128.

Examples: See SPD Byte 16. For Two's Complement encoding, see Relating the MTB and FTB.

Byte 36: Fine Offset for Minimum RAS# to CAS# Delay Time (tRCDmin)

This byte modifies the calculation of SPD Byte 18 (MTB units) with a fine correction using FTB units. The value of tRCDmin comes from the SDRAM data sheet. This value is a two's complement multiplier for FTB units, ranging from +127 to -128.

Examples: See SPD byte 18. For Two's Complement encoding, see Relating the MTB and FTB.

Byte 37: Minimum Row Precharge Delay Time (tRPmin)

This byte modifies the calculation of SPD Byte 20 (MTB units) with a fine correction using FTB units. The value of tRPmin comes from the SDRAM data sheet. This value is a two's complement multiplier for FTB units, ranging from +127 to -128.

Note 2 Refers to loading on signals at SDRAM balls. Loading on certain signals (CKE, ODT, etc.) per specification of device stacking as defined in JESD79-3.

Examples: See SPD byte 20. For Two's Complement encoding, see Relating the MTB and FTB.

Byte 38: Fine Offset for Minimum Active to Active/Refresh Delay Time (tRCmin)

This byte modifies the calculation of SPD Bytes 21 and 23 (MTB units) with a fine correction using FTB units. The value of tRCmin comes from the SDRAM data sheet. This value is a two's complement multiplier for FTB units, ranging from +127 to -128.

Examples: See SPD byte 21 and 23. For Two's Complement encoding, see Relating the MTB and FTB.

Byte 39 ~ 40: Reserved, General Section

Byte 41: SDRAM Maximum Active Count (MAC) Value

This byte describes the SDRAM Maximum Activate Count and the Maximum Activate Window. Bits 7~6 may have system implications; contacting the DRAM supplier for guidance is required.

Bits 7~6	Bits 5~4	Bits 3~0
Vendor Specific	Maximum Activate Window (tMAW)	Maximum Activate Count (MAC)
Contact DRAM supplier for guidance in coding or interpreting these bits	Bits [5, 4]: 00 = 8192 * tREFI 01 = 4096 * tREFI 10 = 2048 * tREFI 11 = Reserved	Bits [3, 2, 1, 0]: 0000 = Untested MAC ¹ 0001 = 700 K 0010 = 600 K 0011 = 500 K 0100 = 400 K 0101 = 300 K 0110 = 200 K 0111 = Reserved 1000 = Unrestricted MAC ² All other codes reserved

Note 1 Untested MAC means the device is not tested for tMAW and/or MAC; no particular value should be assumed.

Byte 42 ~ 59: Reserved, General Section

Note 2 Unrestricted MAC means there is no restriction to the number of activates to a given row in a refresh period providing DRAM timing requirements such as tRCmin and refresh requirements are not violated.

2.2 Module-Specific Section: Bytes 60 ~ 116

The content of bytes 60~116 of this SPD are determined according to specific DDR3 module families. Module Type Key Byte 3 is used as an index for the encoding of bytes 60 ~ 116. The content of bytes 60 ~ 116 are described in multiple subsections, one for each memory module family.

At the end of this Annex there are four separate subsections—one for each DDR3 module family—that define the bytes in SPD locations 60~116. These module families and their respective subsections are:

- Annex K.1: Unbuffered Memory Modules
- Annex K.2: Registered Memory Modules
- Annex K.3: Clocked Memory Modules
- Annex K.4: Load Reduced Memory Modules

2.3 Unique Module ID: Bytes 117 ~ 125

Byte 117: Module Manufacturer ID Code, Least Significant Byte

Byte 118: Module Manufacturer ID Code, Most Significant Byte

This two-byte field indicates the manufacturer of the module, encoded as follows: the first byte is the number of continuation bytes indicated in JEP-106; the second byte is the last non-zero byte of the manufacturer's ID code, again as indicated in JEP-106.

Byte 118, Bits 7 ~ 0	Byte 117, Bit 7	Byte 117, Bits 6 ~ 0
Last non-zero byte, Module Manufacturer	Odd Parity for Byte 117, bits 6 ~ 0	Number of continuation codes, Module Manufacturer
See JEP-106		See JEP-106

Examples:

0	JEP-106		# continuetion codes	SPD		
Company	Bank	Code	# continuation codes	Byte 117	Byte 118	
Fujitsu	1	04	0	0x80	0x04	
US Modular	5	A8	4	0x04	0xA8	

Byte 119: Module Manufacturing Location

The module manufacturer includes an identifier that uniquely defines the manufacturing location of the memory module. While the SPD spec will not attempt to present a decode table for manufacturing sites, the individual manufacturer may keep track of manufacturing location and its appropriate decode represented in this byte.

Bytes 120 ~ 121: Module Manufacturing Date

The module manufacturer includes a date code for the module. The JEDEC definitions for bytes 120 and 121 are year and week respectively. These bytes must be represented in Binary Coded Decimal (BCD). For example, week 47 in year 2003 would be coded as 0x03 (0000 0011) in byte 120 and 0x47 (0100 0111) in byte 121.

Release 24

Bytes 122 ~ 125: Module Serial Number

The supplier must include a unique serial number for the module. The supplier may use whatever decode method desired to maintain a unique serial number for each module.

One method of achieving this is by assigning a byte in the field from $122 \sim 125$ as a tester ID byte and using the remaining bytes as a sequential serial number. Bytes $117 \sim 125$ will then result in a nine-byte unique module identifier. Note that part number is not included in this identifier: the supplier may not give the same value for Bytes $119 \sim 125$ to more than one DIMM even if the DIMMs have different part numbers.

2.4 CRC: Bytes 126 ~ 127

Bytes 126 ~ 127: SPD Cyclical Redundancy Code (CRC)

This two-byte field contains the calculated CRC for previous bytes in the SPD. The following algorithm and data structures (shown in C) are to be followed in calculating and checking the code. Bit 7 of Byte 0 indicates which bytes are covered by the CRC.

```
int Crc16 (char *ptr, int count)
{
  int crc, i;
  crc = 0:
  while (--count >= 0) {
     crc = crc ^ (int)*ptr++ << 8;
     for (i = 0; i < 8; ++i)
       if (crc & 0x8000)
          crc = crc << 1 ^ 0x1021;
       else
          crc = crc << 1;
  return (crc & 0xFFFF);
}
char spdBytes[] = { SPD_byte_0, SPD_byte_1, ..., SPD_byte_N-1 };
int data16:
data16 = Crc16 (spdBytes, sizeof(spdBytes));
SPD byte 126 = (char) (data16 \& 0xFF);
SPD_byte_127 = (char) (data16 >> 8);
```

2.5 Other Manufacturer Fields and User Space: Bytes 128 ~ 255

Bytes 128 ~ 145: Module Part Number

The manufacturer's part number is written in ASCII format within these bytes. Unused digits are coded as ASCII blanks (0x20).

Bytes 146 ~ 147: Module Revision Code

This refers to the module revision code. While the SPD spec will not attempt to define the format for this information, the individual manufacturer may keep track of the revision code and its appropriate decode represented in this byte.

Byte 148: DRAM Manufacturer ID Code, Least Significant Byte

Byte 149: DRAM Manufacturer ID Code, Most Significant Byte

This two-byte field indicates the manufacturer of the DRAM on the module, encoded as follows: the first byte is the number of continuation bytes indicated in JEP-106; the second byte is the last non-zero byte of the manufacturer's ID code, again as indicated in JEP-106.

Byte 149, Bits 7 ~ 0	Byte 148, Bit 7	Byte 148, Bits 6 ~ 0
Last non-zero byte, DRAM Manufacturer	Odd Parity for Byte 148, bits 6 ~ 0	Number of continuation codes, DRAM Manufacturer
See JEP-106		See JEP-106

Examples: See examples for bytes 117~118 in SPD General Section.

Bytes 150 ~ 175: Manufacturer's Specific Data

The module manufacturer may include any additional information desired into the module within these locations.

Bytes 176 ~ 255: Open for Customer Use

These bytes are unused by the manufacturer and are open for customer use.

ASCII Decode Matrix for SPDs

The following table is a subset of the full ASCII standard which is used for coding bytes in the Serial Presence Detect EEPROM that require ASCII characters:

							Seco	nd He	x Digi	t in Pa	air					
First Hex Digit in Pair	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
2	Blank Space								()				- Dash	Period	
3	0	1	2	3	4	5	6	7	8	9						
4		Α	В	С	D	E	F	G	Н	ı	J	К	L	М	N	0
5	Р	Q	R	S	Т	U	V	W	Х	Υ	Z					
6		а	b	С	d	е	f	g	h	i	j	k	I	m	n	0
7	р	q	r	s	t	u	٧	w	х	у	z					

Examples:

0x20 = Blank Space

0x34 = '4'

0x41 = 'A'

SPD Bytes 128 ~ 145				
Manufacturer's PN Coded in ASCII				
13M32734BCD-260Y 31334D33323733344243442D323630592020				

Annex K.1: Module Specific Bytes for Unbuffered Memory Module Types (Bytes 60 ~ 116)

This section defines the encoding of SPD bytes 60 ~ 116 when Memory Technology Key Byte 2 contains the value 0x0B and Module Type Key Byte 3 contains any of the following:

- 0x02, UDIMM
- 0x03, SO-DIMM
- 0x04, Micro-DIMM
- 0x06, Mini-UDIMM
- 0x08, 72b-SO-UDIMM
- 0x0C, 16b-SO-DIMM
- 0x0D, 32b-SO-DIMM

The following is the SPD address map for the module specific section, bytes $60 \sim 116$, of the SPD for Unbuffered Module Types.

Module Specific SPD Bytes for Unbuffered Module Types				
Byte Number	Function Described	Notes		
60	Raw Card Extension, Module Nominal Height			
61	Module Maximum Thickness			
62	Reference Raw Card Used			
63	Address Mapping from Edge Connector to DRAM			
64 ~ 116	Reserved			

Byte 60 (Unbuffered): Raw Card Extension, Module Nominal Height

The upper 3 bits of this byte define extensions to the Raw Card Revision in Byte 62. The lower 5 bits of this byte define the nominal height (A dimension) in millimeters of the fully assembled module including heat spreaders or other added components. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 5	Bits 4 ~ 0
Raw Card Extension	Module Nominal Height max, in mm (baseline height = 15 mm)
000 = raw card revisions 0 to 3; see byte 62 001 = raw card revision 4 010 = raw card revision 5 011 = raw card revision 6 100 = raw card revision 7 101 = raw card revision 8 110 = raw card revision 9 111 = raw card revision 10	$\begin{array}{l} 00000 = \text{height} \leq 15 \text{ mm} \\ 00001 = 15 < \text{height} \leq 16 \text{ mm} \\ 00010 = 16 < \text{height} \leq 17 \text{ mm} \\ 00011 = 17 < \text{height} \leq 18 \text{ mm} \\ 00100 = 18 < \text{height} \leq 19 \text{ mm} \\ \dots \\ 01010 = 24 < \text{height} \leq 25 \text{ mm} \\ 01011 = 25 < \text{height} \leq 26 \text{ mm} \\ \dots \\ 01111 = 29 < \text{height} \leq 30 \text{ mm} \\ 10000 = 30 < \text{height} \leq 31 \text{ mm} \\ \dots \\ 11111 = 45 \text{ mm} < \text{height} \end{array}$

Byte 61 (Unbuffered): Module Maximum Thickness

This byte defines the maximum thickness (E dimension) in millimeters of the fully assembled module including heat spreaders or other added components above the module circuit board surface. Thickness of the front of the module is calculated as the E1 dimension minus the PCB thickness. Thickness of the back of the module is calculated as the E dimension minus the E1 dimension. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 4	Bits 3 ~ 0
Module Maximum Thickness max, Back, in mm (baseline thickness = 1 mm)	Module Maximum Thickness max, Front, in mm (baseline thickness = 1 mm)
0000 = thickness ≤ 1 mm	0000 = thickness ≤ 1 mm
0001 = 1 < thickness ≤ 2 mm	0001 = 1 < thickness ≤ 2 mm
0010 = 2 < thickness ≤ 3 mm	0010 = 2 < thickness ≤ 3 mm
0011 = 3 < thickness ≤ 4 mm	0011 = 3 < thickness ≤ 4 mm
1110 = 14 < thickness ≤ 15 mm	1110 = 14 < thickness ≤ 15 mm
1111 = 15 < thickness	1111 = 15 < thickness
Note Thickness = E - E1	Note Thickness = E1 - PCB

Byte 62 (Unbuffered): Reference Raw Card Used

This byte indicates which JEDEC reference design raw card was used as the basis for the module assembly, if any. Bits $4 \sim 0$ describe the raw card and bits $6 \sim 5$ describe the revision level of that raw card. Special reference raw card indicator, ZZ, is used when no JEDEC standard raw card reference design was used as the basis for the module design. Pre-production modules should be encoded as revision 0 in bits $6 \sim 5$.

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
0 = Reference raw cards A through AL	00 = revision 0 01 = revision 1 10 = revision 2 11 = revision 3 See byte 60 for extensions beyond revision 3; for legacy systems, these bits represent the compatibility of later revisions	When bit 7 = 0, 00000 = Reference raw card A 00001 = Reference raw card B 00010 = Reference raw card C 00011 = Reference raw card D 00100 = Reference raw card E 00101 = Reference raw card F 00110 = Reference raw card G 00111 = Reference raw card G 00111 = Reference raw card H 01000 = Reference raw card H 01000 = Reference raw card K 01010 = Reference raw card K 01010 = Reference raw card N 01101 = Reference raw card N 01101 = Reference raw card R 01110 = Reference raw card R 01111 = Reference raw card T 10000 = Reference raw card T 10000 = Reference raw card V 10010 = Reference raw card W 10011 = Reference raw card W 10011 = Reference raw card AA 10101 = Reference raw card AA 10101 = Reference raw card AC 10111 = Reference raw card AC 10111 = Reference raw card AC 10111 = Reference raw card AF 11000 = Reference raw card AF 11010 = Reference raw card AF 11010 = Reference raw card AF 11010 = Reference raw card AH 11100 = Reference raw card AH 11101 = Reference raw card AJ 11111 = ZZ (no JEDEC reference raw card design used)

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
1 = Reference raw cards AM through CB	00 = revision 0	When bit 7 = 1,
	01 = revision 1	00000 = Reference raw card AM
	10 = revision 2	00001 = Reference raw card AN
	11 = revision 3	00010 = Reference raw card AP
		00011 = Reference raw card AR
	See byte 60 for extensions beyond	00100 = Reference raw card AT
	revision 3; for legacy systems,	00101 = Reference raw card AU
	these bits represent the	00110 = Reference raw card AV
	compatibility of later revisions	00111 = Reference raw card AW
		01000 = Reference raw card AY
		01001 = Reference raw card BA
		01010 = Reference raw card BB
		01011 = Reference raw card BC
		01100 = Reference raw card BD
		01101 = Reference raw card BE
		01110 = Reference raw card BF
		01111 = Reference raw card BG
		10000 = Reference raw card BH
		10001 = Reference raw card BJ
		10010 = Reference raw card BK
		10011 = Reference raw card BL
		10100 = Reference raw card BM
		10101 = Reference raw card BN
		10110 = Reference raw card BP
		10111 = Reference raw card BR
		11000 = Reference raw card BT
		11001 = Reference raw card BU
		11010 = Reference raw card BV
		11011 = Reference raw card BW
		11100 = Reference raw card BY
		11101 = Reference raw card CA
		11110 = Reference raw card CB
		11111 = ZZ (no JEDEC reference raw
		card design used)

Byte 63: Address Mapping from Edge Connector to DRAM

This byte describes the connection of edge connector pins for address bits to the corresponding input pins of the DDR3 SDRAMs for rank 1 only; rank 0 is always assumed to use standard mapping. Only two connection types are supported, standard or mirrored, as described in the mapping table below. System software must compensate for this mapping when issuing mode register set commands to the ranks of DDR3 SDRAMs on this module.

Bits 7 ~ 1	Bit 0
Reserved	Rank 1 Mapping
Reserved	0 = standard 1 = mirrored

The definition of standard and mirrored address connection mapping is detailed below; highlighted rows in the table indicate which signals change between mappings.

Edge Connector	DRAM Pin,	DRAM Pin,
Signal	Standard	Mirrored
A0	A0	A0

Edge Connector Signal	DRAM Pin, Standard	DRAM Pin, Mirrored
A1	A1	A1
A2	A2	A2
A3	A3	A4
A4	A4	A3
A5	A5	A6
A6	A6	A5
A7	A7	A8
A8	A8	A7
A9	A9	A9
A10/AP	A10/AP	A10/AP
A11	A11	A11
A12/BC	A12/BC	A12/BC
A13	A13	A13
A14	A14	A14
A15/BA3	A15/BA3	A15/BA3
BA0	BA0	BA1
BA1	BA1	BA0
BA2	BA2	BA2

Bytes 64 ~ 116 (Unbuffered): Reserved

Annex K.2: Module Specific Bytes for Registered Memory Module Types (Bytes $60 \sim 116$)

This section defines the encoding of SPD bytes $60 \sim 116$ when Memory Technology Key Byte 2 contains the value 0x0B and Module Type Key Byte 3 contains any of the following:

- 0x01, RDIMM
- 0x05, Mini-RDIMM
- 0x09, 72b-SO-RDIMM

The following is the SPD address map for the module specific section, bytes $60 \sim 116$, of the SPD for Registered Module Types.

	Module Specific SPD Bytes for Registered Module Types		
Byte Number	Function Described	Notes	
60	Raw Card Extension, Module Nominal Height		
61	Module Maximum Thickness		
62	Reference Raw Card Used		
63	DIMM Module Attributes		
64	RDIMM Thermal Heat Spreader Solution		
65	Register Manufacturer ID Code, Least Significant Byte		
66	Register Manufacturer ID Code, Most Significant Byte		
67	Register Revision Number		
68	Register Type		
69	RC1 (MS Nibble) / RC0 (LS Nibble)		
70	RC3 (MS Nibble) / RC2 (LS Nibble) - Drive Strength, Command/Address		
71	RC5 (MS Nibble) / RC4 (LS Nibble) - Drive Strength, Control and Clock		
72	RC7 (MS Nibble) / RC6 (LS Nibble)		
73	RC9 (MS Nibble) / RC8 (LS Nibble)		
74	RC11 (MS Nibble) / RC10 (LS Nibble)		
75	RC13 (MS Nibble) / RC12 (LS Nibble)		
76	RC15 (MS Nibble) / RC14 (LS Nibble)		
77 ~ 116	Reserved		

Byte 60 (Registered): Raw Card Extension, Module Nominal Height

The upper 3 bits of this byte define extensions to the Raw Card Revision in Byte 62. The lower 5 bits of this byte define the nominal height (A dimension) in millimeters of the fully assembled module including heat spreaders or other added components. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 5	Bits 4 ~ 0
Raw Card Extension	Module Nominal Height max, in mm (baseline height = 15 mm)
000 = raw card revisions 0 to 3; see byte 62 001 = raw card revision 4 010 = raw card revision 5 011 = raw card revision 6 100 = raw card revision 7 101 = raw card revision 8 110 = raw card revision 9 111 = raw card revision 10	$\begin{array}{l} 00000 = \text{height} \leq 15 \text{ mm} \\ 00001 = 15 < \text{height} \leq 16 \text{ mm} \\ 00010 = 16 < \text{height} \leq 17 \text{ mm} \\ 00011 = 17 < \text{height} \leq 18 \text{ mm} \\ 00100 = 18 < \text{height} \leq 19 \text{ mm} \\ \dots \\ 01010 = 24 < \text{height} \leq 25 \text{ mm} \\ 01011 = 25 < \text{height} \leq 26 \text{ mm} \\ \dots \\ 01111 = 29 < \text{height} \leq 30 \text{ mm} \\ 10000 = 30 < \text{height} \leq 31 \text{ mm} \\ \dots \\ 11111 = 45 \text{ mm} < \text{height} \end{array}$

Byte 61 (Registered): Module Maximum Thickness

This byte defines the maximum thickness (E dimension) in millimeters of the fully assembled module including heat spreaders or other added components above the module circuit board surface. Thickness of the front of the module is calculated as the E1 dimension minus the PCB thickness. Thickness of the back of the module is calculated as the E1 dimension. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 4	Bits 3 ~ 0	
Module Maximum Thickness max, Back, in mm (baseline thickness = 1 mm)	Module Maximum Thickness max, Front, in mm (baseline thickness = 1 mm)	
0000 = thickness ≤ 1 mm	0000 = thickness ≤ 1 mm	
0001 = 1 < thickness ≤ 2 mm	0001 = 1 < thickness ≤ 2 mm	
0010 = 2 < thickness ≤ 3 mm	0010 = 2 < thickness ≤ 3 mm	
0011 = 3 < thickness ≤ 4 mm	0011 = 3 < thickness ≤ 4 mm	
1110 = 14 < thickness ≤ 15 mm	1110 = 14 < thickness ≤ 15 mm	
1111 = 15 < thickness	1111 = 15 < thickness	
Note Thickness = E - E1	Note Thickness = E1 - PCB	

Byte 62 (Registered): Reference Raw Card Used

This byte indicates which JEDEC reference design raw card was used as the basis for the module assembly, if any. Bits $4\sim0$ describe the raw card and bits $6\sim5$ describe the revision level of that raw card. Special raw card indicator, ZZ, is used when no JEDEC standard raw card was used as the basis for the design. Pre-production modules should be encoded as revision 0 in bits $6\sim5$.

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
0 = Reference raw cards A through AL	00 = revision 0	When bit 7 = 0,
_	01 = revision 1	00000 = Reference raw card A
	10 = revision 2	00001 = Reference raw card B
	11 = revision 3	00010 = Reference raw card C
		00011 = Reference raw card D
	See byte 60 for extensions beyond	00100 = Reference raw card E
	revision 3; for legacy systems,	00101 = Reference raw card F
	these bits represent the	00110 = Reference raw card G
	compatibility of later revisions	00111 = Reference raw card H
		01000 = Reference raw card J
		01001 = Reference raw card K
		01010 = Reference raw card L
		01011 = Reference raw card M
		01100 = Reference raw card N
		01101 = Reference raw card P
		01110 = Reference raw card R
		01111 = Reference raw card T
		10000 = Reference raw card U
		10001 = Reference raw card V
		10010 = Reference raw card W
		10011 = Reference raw card Y
		10100 = Reference raw card AA
		10101 = Reference raw card AB
		10110 = Reference raw card AC
		10111 = Reference raw card AD
		11000 = Reference raw card AE
	•	11001 = Reference raw card AF
		11010 = Reference raw card AG
		11011 = Reference raw card AH
		11100 = Reference raw card AJ
		11101 = Reference raw card AK
		11110 = Reference raw card AL
		11111 = ZZ (no JEDEC reference raw
		card design used)

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
1 = Reference raw cards AM through CB	00 = revision 0	When bit 7 = 1,
	01 = revision 1	00000 = Reference raw card AM
	10 = revision 2	00001 = Reference raw card AN
	11 = revision 3 or higher	00010 = Reference raw card AP
		00011 = Reference raw card AR
	See byte 60 for extensions beyond	00100 = Reference raw card AT
	revision 3	00101 = Reference raw card AU
		00110 = Reference raw card AV
		00111 = Reference raw card AW
		01000 = Reference raw card AY
		01001 = Reference raw card BA
		01010 = Reference raw card BB
		01011 = Reference raw card BC
		01100 = Reference raw card BD
		01101 = Reference raw card BE
		01110 = Reference raw card BF
		01111 = Reference raw card BG
		10000 = Reference raw card BH
		10001 = Reference raw card BJ
		10010 = Reference raw card BK
		10011 = Reference raw card BL
		10100 = Reference raw card BM
		10101 = Reference raw card BN
		10110 = Reference raw card BP
		10111 = Reference raw card BR
		11000 = Reference raw card BT
		11001 = Reference raw card BU
		11010 = Reference raw card BV
		11011 = Reference raw card BW
		11100 = Reference raw card BY
		11101 = Reference raw card CA
		11110 = Reference raw card CB
		11111 = ZZ (no JEDEC reference raw
		card design used)
	¥	

Byte 63 (Registered): DIMM Module Attributes

This byte indicates number of registers used on a module. Further it indicates number of rows of DRAM packages (monolithic or DDP or stacked) parallel to edge connector (independent of DRAM orientation) on each side of the printed circuit board.

Bit 7 ~ Bit 4	Bit 3 ~ Bit 2	Bit 1 ~ Bit 0
Reserved	# of rows of DRAMs on RDIMM	# of Registers used on RDIMM
Reserved	(1)1 = 1 row	00 = Undefined 01 = 1 register 10 = 2 registers 11 = 4 registers

Examples: DDR3 RDIMM R/C E programs byte 63 as 0x09. DDR3 RDIMM R/C F programs byte 63 as 0x0A.

Byte 64: RDIMM Thermal Heat Spreader Solution

his byte describes the module's supported thermal heat spreader solution.

Bit 7	Bits 6 ~ 0
Heat Spreader Solution	Heat Spreader Thermal Characteristics
0 = Heat spreader solution is not incorporated onto this assembly 1 = Heat spreader solution is incorporated onto this assembly	0 = Undefined All other settings to be defined

Byte 65: Register Manufacturer ID Code, Least Significant Byte

Byte 66: Register Manufacturer ID Code, Most Significant Byte

This two-byte field indicates the manufacturer of the register used on the module, encoded as follows: the first byte is the number of continuation bytes indicated in JEP-106; the second byte is the last non-zero byte of the manufacturer's ID code, again as indicated in JEP-106. These bytes are optional. For modules without the Register Manufacturer ID Code information both bytes should be programmed to 0x00.

Byte 66, Bits 7 ~ 0	Byte 65, Bit 7	Byte 65 Bits 6 ~ 0
Last non-zero byte, Register Manufacturer	Odd parity for Byte 65, bits 6 ~ 0	Number of continuation codes, Register Manufacturer
See JEP-106		See JEP-106

Example: For "7F 7F 7F 7F 7F 51" in JEP-106.

Byte 65[6:0]: 5 continuation codes expressed in binary => 0000101

Byte 65[7]: Odd parity for byte 65[6:0] => 1

Byte 66[7:0]: Last non-zero byte from JEP-106 => 0x51 This yields 0x51 and 0x85 for bytes 66 and 65, respectively.

Also: See examples for bytes 117~118 in SPD General Section.

Byte 67: Register Revision Number

This byte defines the vendor die revision level of the registering clock driver component. This byte is optional. For modules without the Register Revision Number information, this byte should be programmed to 0xFF.

Bits 7 ~ 0
Register Revision Number
Programmed in straight Hex format - no conversion needed. 00 - Valid 01 - Valid
 FE - Valid FF - Undefined (No Rev Number Provided)

Examples:

Code	Meaning
0x00	Revision 0
0x01	Revision 1
0x31	Revision 3.1
0xA3	Revision A3
0xB1	Revision B1

Byte 68 Register Type

This byte defines the type of support device that is used on this RDIMM assembly. It is used as an index for SPD Bytes 69 ~ 76 to determine the interpretation of personality word programming and other register or DIMM implementation specific features.

Bits 7 ~ 3	Bit 2	Bit 1	Bit 0	Support Device
Decemind	0	0	0	SSTE32882
Reserved	A	II other encoding	Reserved	

The programming of SPD bytes 69 ~ 76 is related to multiple documents including the DDR3 Registered DIMM Specification, the SSTE32882 Registering Clock Driver specification, register supplier data sheets, and DIMM supplier data sheets.

For JEDEC standard raw cards, the programming of the register control words is described in the DDR3 Registered DIMM Specification (in the appendices for each raw card), and the programming of the SPD bytes corresponding to the register control words is described in Bytes 69 ~ 76 below. Where control words or control bits are defined as RFU in the SPD specification, the SPD bytes and bits must be set to 0 to ensure future compatibility.

Custom registered DIMM designs should use the JEDEC standard designs as guidelines as much as possible, then refer to the JEDEC SSTE32882 specification and register supplier data sheets for detailed information on programming the devices. Simulation and testing are recommended to ensure proper operation in target systems. Where control words or control bits are defined as RFU in the SPD specification, users should refer to these other documents for programming details. The SPD bytes and bits must be set to 0 to ensure future compatibility, however these values may or may not be the required values sent to the register for proper operation. System BIOS writers in particular should make themselves aware of the effects of each register programming code.

Byte 69 [SSTE32882]: RC1 (MS Nibble) / RC0 (LS Nibble) - Reserved

This byte is currently reserved for future use.

RC1 - Reserved, RC0 - Reserved								
RC1 RC0								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value	

Note 1 Reserved for future use. SPD must be programmed as 0x00; refer to the RDIMM and register specifications for programming details.

Byte 70 [SSTE32882]: RC3 (MS Nibble) / RC2 (LS Nibble) - Drive Strength, Command/Address.

This byte defines the drive strength for addresses, commands (RC3) appropriate for the RDIMM design. LS Nibble is RESERVED for future use. This byte is referenced directly from the SSTE32882 specification.

RC2 - Timing Control Word, RC3 - Drive Strength: Command/Address								
RC3			RC2					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value	
Command	Command/Address, Command/Address,				Notes:			
B Out	tputs	A Ou	tputs	Reserved for future use. SPD must be programmed as 0000.				
00 = Light Driv	е	00 = Light D	rive	Refer to the RDIMM and register specifications for programming				
01 = Moderate Drive 01 = Moderate Drive				details.				
10 = Strong Drive 10 = Strong Drive								
11 = Reserved	<u> </u>	11 = Reserv	ed					

Note 1 Standard values for RC3 are defined in the DDR3 Registered DIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 71 [SSTE32882]: RC5 (MS Nibble) / RC4 (LS Nibble) - Drive Strength, Control and Clock

he control word location for the driver strength for control signals for the SSTE32882 is RC4. The control word location for the clock driver strength for the SSTE32882 is RC5. This byte defines the drive strength for clocks appropriate for the RDIMM design. This byte is referenced directly from the SSTE32882 specification.

	RO	C5 - Drive Stre	ength Clock,	RC4 - Drive Stre	ength: Control		
RC5				RC4			
Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2			Bit 1	Bit 0
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value
Y0/Y0# and Y2/Y2# Y1/Y1# and Y3/Y3#		nd Y3/Y3#	Control Signals,		Control Signals,		
Clock (Outputs	Clock Outputs		B Outputs		A Outputs	
00 = Light Drive	9	00 = Light Dr	ive	00 = Light Drive		00 = Light Drive	
01 = Moderate	Drive	01 = Moderat	te Drive	01 = Moderate Drive		01 = Moderate Drive	
10 = Strong Dri	ve 10 = Strong Drive		10 = Reserved		10 = Reserved		
11 = Reserved	<u> </u>		ed	11 = Reserved 11 = Reserved			ed
				- DDD0 Di-t-	100440		

Note 1 Standard values for RC5 and RC4 are defined in the DDR3 Registered DIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 72 [SSTE32882]: RC7 (MS Nibble) / RC6 (LS Nibble) - Reserved for Register Vendor Specific Modes

Register control words RC7 & RC6 are reserved for register vendor specific purposes (for example, register test modes). The corresponding SPD byte 72 should be programmed to 0x00 for normal operation.

RC7 - Register Vendor Defined, RC6 - Register Vendor Defined								
RC7 RC6								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value	
	16.61	000						

Note 1 Reserved for future use. SPD must be programmed as 0x00; refer to the RDIMM and register specifications for programming details.

Byte 73 [SSTE32882]: RC9 (MS Nibble) / RC8 (LS Nibble) - Reserved

This byte is currently reserved for future use.

RC9 - Reserved, RC8 - Reserved								
RC9 RC8								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DBA1 value								

Note 1 Reserved for future use. SPD must be programmed as 0x00; refer to the RDIMM and register specifications for programming details.

Byte 74 [SSTE32882]: RC11 (MS Nibble) / RC10 (LS Nibble) - Reserved

This byte is currently reserved for future use.

RC11 - Reserved, RC10 - Reserved							
	RC11				RC1	0	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value

Note 1 Reserved for future use. SPD must be programmed as 0x00; refer to the RDIMM and register specifications for programming details.

Byte 75 [SSTE32882]: RC13 (MS Nibble) / RC12 (LS Nibble) - Reserved

This byte is currently reserved for future use.

RC13 - Reserved, RC12 - Reserved							
	RC1	3			RC1	2	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value

Note 1 Reserved for future use. SPD must be programmed as 0x00; refer to the RDIMM and register specifications for programming details.

Byte 76 [SSTE32882]: RC15 (MS Nibble) / RC14 (LS Nibble) - Reserved

This byte is currently reserved for future use.

RC15 - Reserved, RC14 - Reserved							
RC15			RC14				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value

Note 1 Reserved for future use. SPD must be programmed as 0x00; refer to the RDIMM and register specifications for programming details.

Bytes 77 ~ 116 (Registered): Reserved

Annex K.3: Module Specific Bytes for Clocked Memory Module Types (Bytes $60 \sim 116$)

This section defines the encoding of SPD bytes 60 ~ 116 when Memory Technology Key Byte 2 contains the value 0x0B and Module Type Key Byte 3 contains any of the following:

- 0x07, Mini-CDIMM
- 0x0A, 72b-SO-CDIMM

The following is the SPD address map for the module specific section, bytes $60 \sim 116$, of the SPD for Unbuffered Module Types.

Module Specific SPD Bytes for Unbuffered Module Types			
Byte Number	Function Described	Notes	
60	Raw Card Extension, Module Nominal Height		
61	Module Maximum Thickness		
62	Reference Raw Card Used		
63 ~ 116	Reserved		

Byte 60 (Clocked): Raw Card Extension, Module Nominal Height

The upper 3 bits of this byte define extensions to the Raw Card Revision in Byte 62. The lower 5 bits of this byte define the nominal height (A dimension) in millimeters of the fully assembled module including heat spreaders or other added components. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 5	Bits 4 ~ 0
Raw Card Extension	Module Nominal Height max, in mm (baseline height = 15 mm)
000 = raw card revisions 0 to 3; see byte 62 001 = raw card revision 4 010 = raw card revision 5 011 = raw card revision 6 100 = raw card revision 7 101 = raw card revision 8 110 = raw card revision 9 111 = raw card revision 10	$\begin{array}{l} 00000 = height \leq 15 \ mm \\ 00001 = 15 < height \leq 16 \ mm \\ 00010 = 16 < height \leq 17 \ mm \\ 00011 = 17 < height \leq 18 \ mm \\ 00100 = 18 < height \leq 19 \ mm \\ \\ 01010 = 24 < height \leq 25 \ mm \\ 01011 = 25 < height \leq 26 \ mm \\ \\ 01111 = 29 < height \leq 30 \ mm \\ 10000 = 30 < height \leq 31 \ mm \\ \\ 11111 = 45 \ mm < height \\ \end{array}$

Byte 61 (Clocked): Module Maximum Thickness

This byte defines the maximum thickness (E dimension) in millimeters of the fully assembled module including heat spreaders or other added components above the module circuit board surface. Thickness of the front of the module is calculated as the E1 dimension minus the PCB thickness. Thickness of the back of the module is calculated as the E dimension minus the E1 dimension. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 4	Bits 3 ~ 0
Module Maximum Thickness max, Back, in mm (baseline thickness = 1 mm)	Module Maximum Thickness max, Front, in mm (baseline thickness = 1 mm)
0000 = thickness ≤ 1 mm	0000 = thickness ≤ 1 mm
0001 = 1 < thickness ≤ 2 mm	0001 = 1 < thickness ≤ 2 mm
0010 = 2 < thickness ≤ 3 mm	0010 = 2 < thickness ≤ 3 mm
0011 = 3 < thickness ≤ 4 mm	0011 = 3 < thickness ≤ 4 mm
1110 = 14 < thickness ≤ 15 mm	1110 = 14 < thickness ≤ 15 mm
1111 = 15 < thickness	1111 = 15 < thickness
Note Thickness = E - E1	Note Thickness = E1 - PCB

Byte 62 (Clocked): Reference Raw Card Used

This byte indicates which JEDEC reference design raw card was used as the basis for the module assembly, if any. Bits $4 \sim 0$ describe the raw card and bits $6 \sim 5$ describe the revision level of that raw card. Special reference raw card indicator, ZZ, is used when no JEDEC standard raw card reference design was used as the basis for the module design. Pre-production modules should be encoded as revision 0 in bits $6 \sim 5$.

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
Reference Raw Card Extension 0 = Reference raw cards A through AL	Reference Raw Card Revision 00 = revision 0 01 = revision 1 10 = revision 2 11 = revision 3 See byte 60 for extensions beyond revision 3; for legacy systems, these bits represent the compatibility of later revisions	When bit 7 = 0, 00000 = Reference raw card A 00001 = Reference raw card B 00010 = Reference raw card C 00011 = Reference raw card D 00100 = Reference raw card E 00101 = Reference raw card F 00110 = Reference raw card F 00111 = Reference raw card H 01000 = Reference raw card H 01000 = Reference raw card K 01010 = Reference raw card K 01010 = Reference raw card L 01011 = Reference raw card M 01100 = Reference raw card M 01100 = Reference raw card N 01101 = Reference raw card N 01101 = Reference raw card R 01111 = Reference raw card R 01111 = Reference raw card T 10000 = Reference raw card V 10010 = Reference raw card V 10010 = Reference raw card AA 1001 = Reference raw card AA 1011 = Reference raw card AA 1010 = Reference raw card AA 1010 = Reference raw card AC 10111 = Reference raw card AA 1100 = Reference raw card AA 1100 = Reference raw card AA 1101 = Reference raw card AA 1101 = Reference raw card AA 1101 = Reference raw card AA 11101 = Reference raw card AA 11101 = Reference raw card AA
		11010 = Reference raw card AG 11011 = Reference raw card AH 11100 = Reference raw card AJ

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
1 = Reference raw cards AM through CB	00 = revision 0	When bit 7 = 1,
	01 = revision 1	00000 = Reference raw card AM
	10 = revision 2	00001 = Reference raw card AN
	11 = revision 3	00010 = Reference raw card AP
		00011 = Reference raw card AR
	See byte 60 for extensions beyond	00100 = Reference raw card AT
	revision 3; for legacy systems,	00101 = Reference raw card AU
	these bits represent the	00110 = Reference raw card AV
	compatibility of later revisions	00111 = Reference raw card AW
		01000 = Reference raw card AY
		01001 = Reference raw card BA
		01010 = Reference raw card BB
		01011 = Reference raw card BC
		01100 = Reference raw card BD
		01101 = Reference raw card BE
		01110 = Reference raw card BF
		01111 = Reference raw card BG
		10000 = Reference raw card BH
		10001 = Reference raw card BJ
		10010 = Reference raw card BK
		10011 = Reference raw card BL
		10100 = Reference raw card BM
		10101 = Reference raw card BN
		10110 = Reference raw card BP
		10111 = Reference raw card BR
		11000 = Reference raw card BT
		11001 = Reference raw card BU
		11010 = Reference raw card BV
		11011 = Reference raw card BW
		11100 = Reference raw card BY
		11101 = Reference raw card CA
		11110 = Reference raw card CB
		11111 = ZZ (no JEDEC reference raw
		card design used)
		·

Bytes 63 ~ 116 (Clocked): Reserved

Annex K.4: Module Specific Bytes for Load Reduced Memory Module Types (Bytes $60 \sim 116$)

This section defines the encoding of SPD bytes $60 \sim 116$ when Memory Technology Key Byte 2 contains the value 0x0B and Module Type Key Byte 3 contains any of the following:

• 0x0B, LRDIMM

The following is the SPD address map for the module specific section, bytes $60 \sim 116$, of the SPD for Load Reduced Module Types.

Module Specific SPD Bytes for Load Reduced Module Types			
Byte Number	Function Described	Notes	
60	Raw Card Extension, Module Nominal Height		
61	Module Maximum Thickness		
62	Reference Raw Card Used		
63	Module Attributes		
64	Memory Buffer Revision ID		
65	Memory Buffer Manufacturer ID Code, Least Significant Byte		
66	Memory Buffer Manufacturer ID Code, Most Significant Byte		
67	F0RC3 / F0RC2 - Timing Control & Drive Strength, CA & CS		
68	F0RC5 / F0RC4 - Drive Strength, ODT & CKE and Y		
69	F1RC11 / F1RC8 - Extended Delay for Y, CS and ODT & CKE		
70	F1RC13 / F1RC12 - Additive Delay for CS and CA		
71	F1RC15 / F1RC14 - Additive Delay for ODT & CKE		
72	F3RC9 / F3RC8 - MDQ Termination and Drive Strength for 800 & 1066		
73	F[3,4]RC11 / F[3,4]RC10 - Rank 0 & 1 RD & WR QxODT Control for 800 & 1066		
74	F[5,6]RC11 / F[5,6]RC10 - Rank 2 & 3 RD & WR QxODT Control for 800 & 1066		
75	F[7,8]RC11 / F[7,8]RC10 - Rank 4 & 5 RD & WR QxODT Control for 800 & 1066		
76	F[9,10]RC11 / F[9,10]RC10 - Rank 6 & 7 RD & WR QxODT Control for 800 & 1066		
77	MR1,2 Registers for 800 & 1066		
78	F3RC9 / F3RC8 - MDQ Termination and Drive Strength for 1333 & 1600		
79	F[3,4]RC11 / F[3,4]RC10 - Rank 0 & 1 RD & WR QxODT Control for 1333 & 1600		
80	F[5,6]RC11 / F[5,6]RC10 - Rank 2 & 3 RD & WR QxODT Control for 1333 & 1600		
81	F[7,8]RC11 / F[7,8]RC10 - Rank 4 & 5 RD & WR QxODT Control for 1333 & 1600		
82	F[9,10]RC11 / F[9,10]RC10 - Rank 6 & 7 RD & WR QxODT Control for 1333 & 1600		
83	MR1,2 Registers for 1333 & 1600		
84	F3RC9 / F3RC8 - MDQ Termination and Drive Strength for 1866 & 2133		
85	F[3,4]RC11 / F[3,4]RC10 - Rank 0 & 1 RD & WR QxODT Control for 1866 & 2133		
86	F[5,6]RC11 / F[5,6]RC10 - Rank 2 & 3 RD & WR QxODT Control for 1866 & 2133		
87	F[7,8]RC11 / F[7,8]RC10 - Rank 4 & 5 RD & WR QxODT Control for 1866 & 2133		
88	F[9,10]RC11 / F[9,10]RC10 - Rank 6 & 7 RD & WR QxODT Control for 1866 & 2133		
89	MR1,2 Registers for 1866 & 2133		
90	Minimum Module Delay Time for 1.5 V		

Byte Number	Function Described	Notes
91	Maximum Module Delay Time for 1.5 V	
92	Minimum Module Delay Time for 1.35 V	
93	Maximum Module Delay Time for 1.35 V	
94	Minimum Module Delay Time for 1.25 V	
95	Maximum Module Delay Time for 1.25 V	
96~101	Reserved	
102~116	Memory Buffer Personality Bytes	1

Byte 60 (Load Reduced): Raw Card Extension, Module Nominal Height

The upper 3 bits of this byte define extensions to the Raw Card Revision in Byte 62. The lower 5 bits of this byte define the nominal height (A dimension) in millimeters of the fully assembled module including heat spreaders or other added components. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 5	Bits 4 ~ 0
Raw Card Extension	Module Nominal Height max, in mm (baseline height = 15 mm)
000 = raw card revisions 0 to 3; see byte 62 001 = raw card revision 4 010 = raw card revision 5 011 = raw card revision 6 100 = raw card revision 7 101 = raw card revision 8 110 = raw card revision 9 111 = raw card revision 10	$\begin{array}{l} 00000 = \text{height} \leq 15 \text{ mm} \\ 00001 = 15 < \text{height} \leq 16 \text{ mm} \\ 00010 = 16 < \text{height} \leq 17 \text{ mm} \\ 00011 = 17 < \text{height} \leq 18 \text{ mm} \\ 00100 = 18 < \text{height} \leq 19 \text{ mm} \\ \dots \\ 01010 = 24 < \text{height} \leq 25 \text{ mm} \\ 01011 = 25 < \text{height} \leq 26 \text{ mm} \\ \dots \\ 01111 = 29 < \text{height} \leq 30 \text{ mm} \\ 10000 = 30 < \text{height} \leq 31 \text{ mm} \\ \dots \\ \dots \\ 11111 = 45 \text{ mm} < \text{height} \end{array}$

Byte 61 (Load Reduced): Module Maximum Thickness

This byte defines the maximum thickness (E dimension) in millimeters of the fully assembled module including heat spreaders or other added components above the module circuit board surface. Thickness of the front of the module is calculated as the E1 dimension minus the PCB thickness. Thickness of the back of the module is calculated as the E1 dimension. Refer to the relevant JEDEC JC-11 module outline (MO) documents for dimension definitions.

Bits 7 ~ 4	Bits 3 ~ 0
Module Maximum Thickness max, Back, in mm (baseline thickness = 1 mm)	Module Maximum Thickness max, Front, in mm (baseline thickness = 1 mm)
0000 = thickness ≤ 1 mm	0000 = thickness ≤ 1 mm
0001 = 1 < thickness ≤ 2 mm	0001 = 1 < thickness ≤ 2 mm
0010 = 2 < thickness ≤ 3 mm	0010 = 2 < thickness ≤ 3 mm
0011 = 3 < thickness ≤ 4 mm	0011 = 3 < thickness ≤ 4 mm
1110 = 14 < thickness ≤ 15 mm	1110 = 14 < thickness ≤ 15 mm
1111 = 15 < thickness	1111 = 15 < thickness
Note Thickness = E - E1	Note Thickness = E1 - PCB

Byte 62 (Load Reduced): Reference Raw Card Used

This byte indicates which JEDEC reference design raw card was used as the basis for the module assembly, if any. Bits $4\sim0$ describe the raw card and bits $6\sim5$ describe the revision level of that raw card. Special raw card indicator, ZZ, is used when no JEDEC standard raw card was used as the basis for the design. Pre-production modules should be encoded as revision 0 in bits $6\sim5$.

	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
0 = Reference raw cards A through AL	00 = revision 0	When bit 7 = 0,
	01 = revision 1	00000 = Reference raw card A
	10 = revision 2	00001 = Reference raw card B
	11 = revision 3 or higher	00010 = Reference raw card C
		00011 = Reference raw card D
	See byte 60 for extensions beyond	00100 = Reference raw card E
	revision 3	00101 = Reference raw card F
		00110 = Reference raw card G
		00111 = Reference raw card H
		01000 = Reference raw card J
		01001 = Reference raw card K
		01010 = Reference raw card L
		01011 = Reference raw card M
		01100 = Reference raw card N
		01101 = Reference raw card P
		01110 = Reference raw card R
		01111 = Reference raw card T
		10000 = Reference raw card U
		10001 = Reference raw card V
		10010 = Reference raw card W
		10011 = Reference raw card Y
		10100 = Reference raw card AA
		10101 = Reference raw card AB
		10110 = Reference raw card AC
		10111 = Reference raw card AD
		11000 = Reference raw card AE
		11001 = Reference raw card AF
		11010 = Reference raw card AG
		11011 = Reference raw card AH
		11100 = Reference raw card AJ
		11101 = Reference raw card AK
		11110 = Reference raw card AL
		11111 = ZZ (no JEDEC reference raw
		card design used)

Bit 7	Bits 6 ~ 5	Bits 4 ~ 0
Reference Raw Card Extension	Reference Raw Card Revision	Reference Raw Card
1 = Reference raw cards AM through CB	00 = revision 0	When bit 7 = 1,
	01 = revision 1	00000 = Reference raw card AM
	10 = revision 2	00001 = Reference raw card AN
	11 = revision 3 or higher	00010 = Reference raw card AP
		00011 = Reference raw card AR
	See byte 60 for extensions beyond	00100 = Reference raw card AT
	revision 3	00101 = Reference raw card AU
		00110 = Reference raw card AV
		00111 = Reference raw card AW
		01000 = Reference raw card AY
		01001 = Reference raw card BA
		01010 = Reference raw card BB
		01011 = Reference raw card BC
		01100 = Reference raw card BD
		01101 = Reference raw card BE
		01110 = Reference raw card BF
		01111 = Reference raw card BG
		10000 = Reference raw card BH
		10001 = Reference raw card BJ
		10010 = Reference raw card BK
		10011 = Reference raw card BL
		10100 = Reference raw card BM
		10101 = Reference raw card BN
		10110 = Reference raw card BP
		10111 = Reference raw card BR
		11000 = Reference raw card BT
		11001 = Reference raw card BU
		11010 = Reference raw card BV
		11011 = Reference raw card BW
		11100 = Reference raw card BY
		11101 = Reference raw card CA
		11110 = Reference raw card CB
		11111 = ZZ (no JEDEC reference raw
		card design used)
	▼	

Byte 63 (Load Reduced): Module Attributes

This byte describes the connection of Memory Buffer pins for address bits to the corresponding input pins of the DDR3 SDRAMs. Only two connection types are currently supported, all rank non-mirrored or odd ranks mirrored, as described in the mapping table below. System software must compensate for this mapping when issuing mode register set commands to the ranks of DDR3 SDRAMs on this module.

Bits 3 ~ 2	Bits 1 ~ 0		
# of rows of DRAMs	Mirroring		
00 = undefined 01 = 1 row 10 = 2 rows 11 = Reserved	00 = All ranks are non-mirrored 01 = Odd ranks are mirrored 10 = Reserved 11 = Reserved		

Bit 7 Bit 6		Bit 5	Bit 4	
Heat Spreader	Reserved	Rank Numbering	Orientation of Memory Buffer	
0 = Heat spreader solution is not incorporated onto this assembly 1 = Heat spreader solution is incorporated onto this assembly	Reserved	0 = Ranks are numbered contiguously starting from rank 0 (e.g. 0, 1, 2, 3 for QR DIMM) 1 = Only even ranks starting from rank 0 are present (e.g. 0, 2, 4, 6 for QR DIMM)	0 = Vertical MB Orientation 1 = Horizontal MB Orientation	

Byte 63 bits 1~0: The definition of non-mirrored and mirrored address connection mapping is detailed below; highlighted rows in the table indicate which signals change between mappings.

Memory Buffer Pin	DRAM Pin, Non-mirrored	DRAM Pin, Mirrored		
A0	A0	A0		
A1	A1	A1		
A2	A2	A2		
A3	A3	A4		
A4	A4	A3		
A5	A5	A6		
A6	A6	A5		
A7	A7	A8		
A8	A8	A7		
A9	A9	A9		
A10/AP	A10/AP	A10/AP		
A11	A11	A11		
A12/BC_n	A12/BC_n	A12/BC_n		
A13	A13	A13		
A14	A14	A14		
A15	A15	A15		
BA0	BA0	BA1		
BA1	BA1	BA0		
BA2	BA2	BA2		

Byte 63 bit 3: Indicates number of rows of DRAM packages (monolithic, DDP, or stacked) parallel to the edge connector (independent of DRAM orientation) on each side of the printed circuit board.

Byte 63 bit 4: Indicates the orientation, vertical or horizontal, of the Memory Buffer, with respect to the edge connector.

Byte 63 bit 5: Indicates the rank numbering on the module. The purpose of this bit is for LRDIMMs where DRAMs have been removed to facilitate signal probing.

Byte 63 bit 6: Reserved; must be 0.

Byte 63 bit 7: Describes if the module assembly incorporates a heat spreader.

Examples:

Raw Card	Byte 63 Coding	Meaning			
		Heat spreader			
		Contiguous ranks			
С	0x89	Vertical Memory Buffer			
		2 rows of DRAMs			
		Odd ranks are mirrored			
		Heat spreader			
		Contiguous ranks			
F	0x94	Horizontal Memory Buffer			
		1 row of DRAMs			
		No rank mirroring			

Byte 64 (Load Reduced): Memory Buffer Revision Number

This byte defines the vendor die revision level of the memory buffer component. This byte is optional.

Bits 7 ~ 0
Register Revision Number
Programmed in straight Hex format - no conversion needed. 00 - Valid 01 - Valid
FE - Valid FF - Undefined (No Revision Number Provided)

Examples:

Code	Meaning
0x00	Revision 0
0x01	Revision 1
0x31	Revision 3.1
0xA3	Revision A3
0xB1	Revision B1

Byte 65 (Load Reduced): Memory Buffer Manufacturer ID Code, Least Significant Byte

Byte 66 (Load Reduced): Memory Buffer Manufacturer ID Code, Most Significant Byte

This two-byte field indicates the manufacturer of the memory buffer used on the module, encoded as follows: the first byte is the number of continuation bytes indicated in JEP-106; the second byte is the last non-zero byte of the manufacturer's ID code, again as indicated in JEP-106. These bytes are optional.

Release 24

Byte 66, Bits 7 ~ 0	Byte 65, Bit 7	Byte 65 Bits 6 ~ 0
Last non-zero byte, Memory Buffer Manufacturer	Odd parity for Byte 65, bits 6 ~ 0	Number of continuation codes, Memory Buffer Manufacturer
See JEP-106		See JEP-106

Example: For "7F 7F 7F 7F 7F 51" in JEP-106.

Byte 65[6:0]: 5 continuation codes expressed in binary => 0000101

Byte 65[7]: Odd parity for byte 65[6:0] => 1

Byte 66[7:0]: Last non-zero byte from JEP-106 => 0x51 This yields 0x51 and 0x85 for bytes 66 and 65, respectively.

Also: See examples for bytes 117~118 in SPD General Section.

Byte 67 (Load Reduced): F0RC3 / F0RC2 - Timing Control & Drive Strength, Address/Command & QxCS_n

This byte defines the drive strength for addresses, commands (F0RC3) appropriate for the LRDIMM design. LS Nibble is for Timing Control use. This byte is referenced directly from the Memory Buffer specification.

	F0R0	3 - Drive St	rength: Add	ress/Command	, F0RC2 - Tim	ing Control		
F0RC3				F0RC2				
Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2			Bit 1	Bit 0	
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value	
QxCS[3:0]_n Outputs Address/Command Outputs		Reserved	Reserved	Rank 1 and Rank 5 Swap	Address/Com- mand prelaunch			
00 = Light Drive 00 = Light Drive 01 = Moderate Drive 10 = Strong Drive 11 = Reserved 10 = Strong I		ate Drive Drive	0 = Operation 1 = Test Mode		0 = Not swapped 1 = Swapped	0 = Standard (1/2 clock) 1 = Controlled by F1RC12		

Note 1 Standard values for F0RC3 and F0RC2 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 68 (Load Reduced): F0RC5 / F0RC4 - Drive Strength, QxODT & QxCKE and Clock

The control word location for the driver strength for QxODT & QxCKE control signals for LRDIMMs is F0RC4. The control word location for the clock driver strength for LRDIMMs is F0RC5. This byte is referenced directly from the Memory Buffer specification.

F0RC5 - Drive Strength Clock, F0RC4 - Drive Strength: QxODT & QxCKE									
F0RC5 F0RC4									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value		
	nd Y2_t/Y2_c Outputs	Y1_t/Y1_c and Y3_t/Y3_c Clock Outputs		QxCKE[3:0] Outputs		QxODT[1:	0] Outputs		

F0RC5 - Drive Strength Clock, F0RC4 - Drive Strength: QxODT & QxCKE									
F0RC5 F0RC4									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
01 = Moderate Drive01 = Moderate Drive01 = Moderate Drive01 = Moderate Drive10 = Strong Drive10 = Strong Drive10 = Strong Drive					00 = Light Dr 01 = Moderat 10 = Strong I 11 = Reserve	te Drive Drive			

Note 1 Standard values for F0RC5 and F0RC4 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 69 (Load Reduced): F1RC11 / F1RC8 - Extended Delay for Clocks, QxCS_n and QxODT & QxCKE

The control word location for the extended delay for Y clocks and QxCS_n for LRDIMMs is F1RC8. The control word location for the extended delay for QxODT & QxCKE control signals for LRDIMMs is F1RC11. This byte is referenced directly from the Memory Buffer specification.

F1RC11 - Ext Delay for QxODT & QxCKE, F1RC8 - Ext Delay for Clocks and QxCS_n										
	F1RC	11			F1R0	8				
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 I							Bit 0			
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value			
QxCKE Exte	ended Delay	QxODT Exte	ended Delay	QxCS_n Extended Delay Y Extended Delay						
00 = 0		00 = 0		00 = 0		00 = 0	00 = 0			
01 = (1/128)*tC	K	01 = (1/128)*	tCK	01 = (1/128)*tCK			tCK			
10 = (2/128)*tCK				10 = (2/128)*tCK			tCK			
11 = (3/128)*tCK							tCK			

Note 1 Standard values for F1RC11 and F1RC8 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 70 (Load Reduced): F1RC13 / F1RC12 - Additive Delay for QxCS_n and QxCA

The control word location for the additive delay for QxCA signals for LRDIMMs is F1RC12. The control word location for the additive delay for the QxCS_n control signals for LRDIMMs is F1RC13. This byte is referenced directly from the Memory Buffer specification.

	F1RC13 - Additive Delay for QxCS_n, F1RC12 - Additive Delay for Y Clocks										
F1RC13					F1RC	12					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 B						
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value				
	QxCS_n	Delay		Reserved		Delay Y					
0 = Disabled	000 = Delay Qx	CS_n by (8/3	2)*tCK		000 = Delay Y I	oy (8/32)*tCK					
1 = Enabled	001 = Delay Qx	CS_n by (7/3	2)*tCK	001 = Delay Y by (7/32)*tCK							
	010 = Delay Qx	CS_n by (6/3	2)*tCK		010 = Delay Y I						
	011 = Delay Qx	CS_n by (5/3	2)*tCK		011 = Delay Y I	oy (5/32)*tCK					
	100 = Delay Qx	CS_n by (4/3	2)*tCK		100 = Delay Y I	oy (4/32)*tCK					
	101 = Delay Qx	CS_n by (3/3)	2)*tCK		101 = Delay Y I	oy (3/32)*tCK					
	110 = Delay Qx	CS_n by (2/3)	2)*tCK		110 = Delay Y I	oy (2/32)*tCK					
	111 = Delay Qx	CS_n by (1/3	2)*tCK		111 = Delay Y I	oy (1/32)*tCK					

Note 1 Standard values for F1RC13 and F1RC12 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 71 (Load Reduced): F1RC15 / F1RC14 - Additive Delay for QxODT and QxCKE

The control word location for the additive delay for QxODT signals for LRDIMMs is F1RC14. The control word location for the additive delay for the QxCKE control signals for LRDIMMs is F1RC15. This byte is referenced directly from the Memory Buffer specification.

	F1RC15 - Additive Delay for QxCKE, F1RC14 - Additive Delay for QxODT										
	F1RC	15			F1RC	14					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DBA1 value	DBA0 value DA4 value DA3 value DBA1 value DBA0 value DA4 value DA3										
	QxCKE [Delay		QxODT Delay							
0 = Disabled 1 = Enabled	000 = Delay Qx 001 = Delay Qx 010 = Delay Qx 011 = Delay Qx 100 = Delay Qx 101 = Delay Qx 110 = Delay Qx 111 = Delay Qx	CKE by (7/32 CKE by (6/32 CKE by (5/32 CKE by (4/32 CKE by (3/32 CKE by (2/32)*tCK)*tCK)*tCK)*tCK)*tCK)*tCK)*tCK	0 = Disabled 1 = Enabled	000 = Delay Qx 001 = Delay Qx 010 = Delay Qx 011 = Delay Qx 100 = Delay Qx 101 = Delay Qx 110 = Delay Qx 111 = Delay Qx	ODT by (7/32 ODT by (6/32 ODT by (5/32 ODT by (4/32 ODT by (3/32 ODT by (2/32)*tCK)*tCK)*tCK)*tCK)*tCK)*tCK)*tCK				

Note 1 Standard values for F1RC15 and F1RC14 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 72 (Load Reduced): F3RC9 / F3RC8 - DRAM Interface MDQ Termination and Drive Strength for 800 & 1066

The control word location for the MDQ ODT strength for the LRDIMMs is F3RC8. The control word location for MDQ Driver Control for the LRDIMMs is F3RC9. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $400 \le f \le 533$ MHz.

	F3RC9 - MDQ Driver Control, F3RC8 - MDQ Termination Strength for 800 & 1066										
	F3RC	9			F3R0	8					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value				
Reserved	MDG	Drive Streng	gth	Reserved	MD	Q ODT Streng	jth				
	000 = RZQ/6 (4	-0 Ω)			000 = DRAM Ir	nterface ODT	disabled				
	001 = RZQ/7 (3	34 Ω)			001 = RZQ/4 (6	60 Ω)					
	010 = RZQ/4 (4	-8 Ω)			010 = RZQ/2 (1	120 Ω)					
	011 = RZQ/9 (2	27 Ω)			011 = RZQ/6 (4	10 Ω)					
	100 = RZQ/12 ((20 Ω)			100 = Reserve	d					
	101 = Reserved	t			101 = RZQ/8 (3	30 Ω)					
	110 = Reserved	t			110 = RZQ (24	0 Ω)					
	111 = Reserved	d			111 = RZQ/3 (8	30 Ω)					

Note 1 Standard values for F3RC9 and F3RC8 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 73 (Load Reduced): F[3,4]RC11 / F[3,4]RC10 - Rank 0&1 Read and Write QxODT Control for 800 & 1066

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to ranks 0 and 1. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $400 \le f \le 533$ MHz

F[3,4]RC11 - Write QxODT Control for Rank 0 & 1, F[3,4]RC10 - Read QxODT Control for Rank 0 & 1 for 800 & 1066									
F4RC11		F3R	C11	F4R	C10	F3R	C10		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DA4 value R1	DA3 value R1	DA4 value R0	DA3 value R0	DA4 value R1	DA3 value R1	DA4 value R0	DA3 value R0		
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0		
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not		
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-		
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read		
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted		
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read		

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 74 (Load Reduced): F[5,6]RC11 / F[5,6]RC10 - Rank 2&3 Read and Write QxODT Control for 800 & 1066

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to ranks 2 and 3. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $400 \le f \le 533$ MHz.

F[5,6]RC11	F[5,6]RC11 - Write QxODT Control for Rank 2 & 3, F[5,6]RC10 - Read QxODT Control for Rank 2 & 3 for 800 & 1066										
F6RC11		F5R	C11	F6R	C10	F5R	C10				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DA4 value R3	DA3 value R3	DA4 value R2	DA3 value R2	DA4 value R3	DA3 value R3	DA4 value R2	DA3 value R2				
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0				
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not				
asserted dur- ing Write	asserted dur- ing Write	asserted dur- ing Write		asserted dur- ing Read	asserted dur- ing Read	asserted dur- ing Read	asserted dur- ing Read				
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted				
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read				

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 75 (Load Reduced): F[7,8]RC11 / F[7,8]RC10 - Rank 4&5 Read and Write QxODT Control for 800 & 1066

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to ranks 4 and 5. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $400 \le f \le 533$ MHz.

F[7,8]RC11 - Write QxODT Control for Rank 4 & 5, F[7,8]RC10 - Read QxODT Control for Rank 4 & 5 for 800 & 1066									
F8RC11		F7R	C11	F8R	C10	F7R	C10		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DA4 value R5	DA3 value R5	DA4 value R4	DA3 value R4	DA4 value R5	DA3 value R5	DA4 value R4	DA3 value R4		
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0		
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not		
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-		
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read		
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted		
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read		

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 76 (Load Reduced): F[9,10]RC11 / F[9,10]RC10 - Rank 6&7 Read and Write QxODT Control for 800 & 1066

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to ranks 6 and 7. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $400 \le f \le 533$ MHz.

F[9,10]RC11	F[9,10]RC11 - Write QxODT Control for Rank 6 & 7, F[9,10]RC10 - Read QxODT Control for Rank 6 & 7 for 800 & 1066										
F10RC11		F9R	C11	F10F	RC10	F9R	C10				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DA4 value R7	DA3 value R7	DA4 value R6	DA3 value R6	DA4 value R7	DA3 value R7	DA4 value R6	DA3 value R6				
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0				
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not				
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-				
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read				
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted				
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read				

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 77 (Load Reduced): MR1,2 for 800 & 1066

Bits[4:2] apply only to rank 0 and rank 1 (which are usually the termination ranks on the LRDIMM DRAM interface bus). The Memory Buffer SMBus addresses for the Rank 0 - 7 MR1,2 registers are 0xB8 - 0xBF. These bytes are referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $400 \le f \le 533$ MHz.

MR1,2 Registers for 800 & 1066											
Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit										
DRAM Rtt_Wi	AM Rtt_WR for all ranks		DRAM Rtt_Nom for ranks 0 and 1			DRAM Driver Imped- ance for all ranks					
00 = Dynamic C 01 = RZQ/4 (60 10 = RZQ/2 (12 11 = Reserved	Ω)		000 = Rtt_No 001 = RZQ/4 010 = RZQ/2 011 = RZQ/6 100 = RZQ/1 101 = RZQ/8 110 = Reserv 111 = Reserv	(60 Ω) (120 Ω) (40 Ω) 2 (20 Ω) (30 Ω) red		00 = RZQ/6 (01 = RZQ/7 (10 = RZQ/TB 11 = RZQ/TB	34 Ω) D				

Note 1 Rtt_Nom for ranks 2 to 7 must be programmed to '000' = Rtt_Nom disabled.

Byte 78 (Load Reduced): F3RC9 / F3RC8 - DRAM Interface MDQ Termination and Drive Strength for 1333 & 1600

The control word location for the MDQ ODT strength for the LRDIMMs is F3RC8. The control word location for MDQ Driver Control for LRDIMMs is F3RC9. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $533 < f \le 800 \text{ MHz}$.

	F3RC9 - MDQ Driver Control, F3RC8 - MDQ Termination Strength for 1333 & 1600										
	F3RC	9			F3R0	8					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DBA1 value	ue DBA0 value DA4 value DA3 value DBA1 value DBA0 value DA4 value						DA3 value				
Reserved	MDG	Drive Streng	gth	Reserved	MD	Q ODT Streng	jth				
	000 = RZQ/6 (4	-0 Ω)			000 = DRAM Ir	nterface ODT o	disabled				
	001 = RZQ/7 (3	34 Ω)			001 = RZQ/4 (6	60 Ω)					
	010 = RZQ/4 (4	-8 Ω)			010 = RZQ/2 (1	120 Ω)					
	011 = RZQ/9 (2	27 Ω)			011 = RZQ/6 (4	10 Ω)					
	100 = RZQ/12 ((20 Ω)			100 = Reserve	d					
	101 = Reserved	t			101 = RZQ/8 (3	30 Ω)					
	110 = Reserved	t			110 = RZQ (24	0 Ω)					
	111 = Reserved	d			111 = RZQ/3 (8	30 Ω)					

Note 1 Standard values for F3RC9 and F3RC8 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Note 2 Standard values for this byte are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 79 (Load Reduced): F[3,4]RC11 / F[3,4]RC10 - Rank 0&1 Read and Write QxODT Control for 1333 & 1600

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $533 < f \le 800$ MHz.

F[3,4]RC11 -	F[3,4]RC11 - Write QxODT Control for Rank 0 & 1, F[3,4]RC10 - Read QxODT Control for Rank 0 & 1 for 1333 & 1600									
F4RC11		F3R	C11	F4R	C10	F3R	C10			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DA4 value R1	DA3 value R1	DA4 value R0	DA3 value R0	DA4 value R1	DA3 value R1	DA4 value R0	DA3 value R0			
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0			
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not			
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-			
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read			
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted			
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read			

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 80 (Load Reduced): F[5,6]RC11 / F[5,6]RC10 - Rank 2&3 Read and Write QxODT Control for 1333 & 1600

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $533 < f \le 800$ MHz.

F[5,6]RC11 - Write QxODT Control for Rank 2 & 3, F[5,6]RC10 - Read QxODT Control for Rank 2 & 3 for 1333 & 1600										
F6RC11		F5R	C11	F6R	C10	F5R	C10			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DA4 value R3	DA3 value R3	DA4 value R2	DA3 value R2	DA4 value R3	DA3 value R3	DA4 value R2	DA3 value R2			
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0			
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not			
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-			
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read			
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted			
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read			

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 81 (Load Reduced): F[7,8]RC11 / F[7,8]RC10 - Rank 4&5 Read and Write QxODT Control for 1333 & 1600

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $533 < f \le 800$ MHz.

F8R	C11	F7R	C11	F8RC10		F7R	C10
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA4 value R5	DA3 value R5	DA4 value R4	DA3 value R4	DA4 value R5	DA3 value R5	DA4 value R4	DA3 value R4
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0
0 = Not							
asserted dur-							
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read
1 = Asserted							
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 82 (Load Reduced): F[9,10]RC11 / F[9,10]RC10 - Rank 6&7 Read and Write QxODT Control for 1333 & 1600

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $533 < f \le 800$ MHz.

F[9,10]RC11 - Write QxODT Control for Rank 6 & 7, F[9,10]RC10 - Read QxODT Control for Rank 6 & 7 for 1333 & 1600							
F10RC11		F9R	C11	F10F	RC10	F9RC10	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA4 value R7	DA3 value R7	DA4 value R6	DA3 value R6	DA4 value R7	DA3 value R7	DA4 value R6	DA3 value R6
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 83 (Load Reduced): MR1,2 for 1333 & 1600

Bits[4:2] apply only to rank 0 and rank 1 (which are usually the termination ranks on the LRDIMM DRAM interface bus). The Memory Buffer SMBus addresses for the Rank 0 - 7 MR1,2 registers are 0xB8 - 0xBF. These bytes are referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $533 < f \le 800 \text{ MHz}$.

MR1,2 Registers for 1333 & 1600								
Bit 7	Bit 6	Bit 5	Bit 4 Bit 3 Bit 2 Bit 1				Bit 0	
DRAM Rtt_WR for all ranks		Reserved	DRAM Rtt_Nom for ranks 0 and 1			DRAM Driver Imped- ance for all ranks		
00 = Dynamic ODT Off 01 = RZQ/4 (60 Ω) 10 = RZQ/2 (120 Ω) 11 = Reserved			000 = Rtt_No 001 = RZQ/4 010 = RZQ/2 011 = RZQ/6 100 = RZQ/1: 101 = RZQ/8 110 = Reserv	(60 Ω) (120 Ω) (40 Ω) 2 (20 Ω) (30 Ω) red		00 = RZQ/6 (01 = RZQ/7 (10 = RZQ/TE 11 = RZQ/TE	34 Ω) 3D	

Note 1 Rtt_Nom for ranks 2 to 7 must be programmed to '000' = Rtt_Nom disabled.

Byte 84 (Load Reduced): F3RC9 / F3RC8 - DRAM Interface MDQ Termination and Drive Strength for 1866 & 2133

The control word location for the MDQ ODT strength for LRDIMMs is F3RC8. The control word location for MDQ Driver Control for LRDIMMs is F3RC9. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $800 < f \le 1067$ MHz.

F3RC9 - MDQ Driver Control, F3RC8 - MDQ Termination Strength for 1866 & 2133									
	F3RC	9		F3RC8					
Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1				Bit 0				
DBA1 value	DBA0 value	DA4 value	DA3 value	DBA1 value	DBA0 value	DA4 value	DA3 value		
Reserved	MDQ Drive Strength			Reserved	MDO	Q ODT Streng	jth		
	MDQ DIVE Strength 000 = RZQ/6 (40 Ω) 001 = RZQ/7 (34 Ω) 010 = RZQ/4 (48 Ω) 011 = RZQ/9 (27 Ω) 100 = RZQ/12 (20 Ω) 101 = Reserved 110 = Reserved 111 = Reserved 112 = Reserved 113 = Reserved 114 = Reserved 115 = Reserved 115 = Reserved 116 = Reserved 117 = Reserved 117 = Reserved 117 = Reserved 118 = Reserv				000 = DRAM In 001 = RZQ/4 (6 010 = RZQ/2 (1 011 = RZQ/6 (4 100 = Reserver 101 = RZQ/8 (3 110 = RZQ (24 111 = RZQ/3 (8	50 Ω) 120 Ω) 10 Ω) d 30 Ω) 0 Ω)	disabled		

Note 1 Standard values for F3RC9 and F3RC8 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Note 2 Standard values for this byte are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 85 (Load Reduced): F[3,4]RC11 / F[3,4]RC10 - Rank 0&1 Read and Write QxODT Control for 1866 & 2133

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $800 < f \le 1067$ MHz.

F4R	C11	F3R	C11	F4R	C10	F3R	F3RC10	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DA4 value R1	DA3 value R1	DA4 value R0	DA3 value R0	DA4 value R1	DA3 value R1	DA4 value R0	DA3 value R0	
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	
0 = Not								
asserted dur-								
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read	
1 = Asserted								
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read	

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 86 (Load Reduced): F[5,6]RC11 / F[5,6]RC10 - Rank 2&3 Read and Write QxODT Control for 1866 & 2133

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is 800 < f ≤ 1067 MHz.

F[5,6]RC11 - Write QxODT Control for Rank 2 & 3, F[5,6]RC10 - Read QxODT Control for Rank 2 & 3 for 1866 & 2133							
F6R	F6RC11		C11	F6R	C10	F5R	C10
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA4 value R3	DA3 value R3	DA4 value R2	DA3 value R2	DA4 value R3	DA3 value R3	DA4 value R2	DA3 value R2
QxODT1	QxODT0	QxODT1		QxODT1	QxODT0	QxODT1	QxODT0
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 87 (Load Reduced): F[7,8]RC11 / F[7,8]RC10 - Rank 4&5 Read and Write QxODT Control for 1866 & 2133

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $800 < f \le 1067$ MHz.

F[7,8]RC11 - Write QxODT Control for Rank 4 & 5, F[7,8]RC10 - Read QxODT Control for Rank 4 & 5 for 1866 & 2133							
F8RC11		F7R	C11	F8RC10		F7RC10	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA4 value R5	DA3 value R5	DA4 value R4	DA3 value R4	DA4 value R5	DA3 value R5	DA4 value R4	DA3 value R4
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 88 (Load Reduced): F[9,10]RC11 / F[9,10]RC10 - Rank 6&7 Read and Write QxODT Control for 1866 & 2133

This byte defines the assertion for the QxODT[1:0] outputs for reads and writes from and to rank 0. This byte is referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $800 < f \le 1067$ MHz.

F[9,10]RC11 - Write QxODT Control for Rank 6 & 7, F[9,10]RC10 - Read QxODT Control for Rank 6 & 7 for 1866 & 2133							
F10RC11		F9R	C11	F10F	RC10	F9RC10	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DA4 value R7	DA3 value R7	DA4 value R6	DA3 value R6	DA4 value R7	DA3 value R7	DA4 value R6	DA3 value R6
QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0	QxODT1	QxODT0
0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not	0 = Not
asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-	asserted dur-
ing Write	ing Write	ing Write	ing Write	ing Read	ing Read	ing Read	ing Read
1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted	1 = Asserted
during Write	during Write	during Write	during Write	during Read	during Read	during Read	during Read

Note 1 Standard values for F[3,4]RC11 and F[3,4]RC10 are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Byte 89 (Load Reduced): MR1,2 for 1866 & 2133

Bits[4:2] apply only to rank 0 and rank 1 (which are usually the termination ranks on the LRDIMM DRAM interface bus). The Memory Buffer SMBus addresses for the Rank 0 - 7 MR1,2 registers are 0xB8 - 0xBF. These bytes are referenced directly from the Memory Buffer specification. Applies to usage when the operating clock rate is $800 < f \le 1067$ MHz.

MR1,2 Registers for 1866 & 2133									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 E					
DRAM Rtt_WR for all ranks		Reserved	DRAM Rtt_Nom for ranks 0 and 1			DRAM Driver Imped- ance for all ranks			
00 = Dynamic ODT Off 01 = RZQ/4 (60 Ω) 10 = RZQ/2 (120 Ω) 11 = Reserved			000 = Rtt_No 001 = RZQ/4 010 = RZQ/2 011 = RZQ/6 100 = RZQ/1 101 = RZQ/8 110 = Reserv	(60 Ω) (120 Ω) (40 Ω) 2 (20 Ω) (30 Ω) red		00 = RZQ/6 (01 = RZQ/7 (10 = RZQ/TB 11 = RZQ/TB	34 Ω) D		

Note 1 Rtt_Nom for ranks 2 to 7 must be programmed to '000' = Rtt_Nom disabled.

Byte 90 (Load Reduced): Minimum Module Delay Time for 1.5 V

This byte defines the minimum delay for the earliest byte lane of the module for 1.5 V, in medium timebase (MTB) units.

Bit 7		Bits 6 ~ 0				
Reserved	Minimum Delay Time for 1.5 V					
	Values defined from: 0000000 = 0 (0 ns)	60,				
	to 1111111 = 127 (15.875 ns)					

Note 1 This delay is defined for the specific prelaunch delay settings from LRDIMM SPD bytes 69 to 71.

Byte 91 (Load Reduced): Maximum Module Delay for 1.5 V

This byte defines the maximum delay for the latest byte lane of the module for 1.5 V, in medium timebase (MTB) units.

Bit 7	Bits 6 ~ 0					
Reserved	Maximum Delay Time for 1.5 V					
	Values defined from: 0000000 = 0 (0 ns) to 11111111 = 127 (15.875 ns)					

Notes:

This delay is defined for the specific prelaunch delay settings from LRDIMM SPD bytes 69 to 71.

This delay does not include delays created by utilizing "Additional DQ/DQS Read Delay Control Words F[3-11]RC12.

Note 2 Standard values for this byte are defined in the DDR3 LRDIMM Reference Design Specification for JEDEC standard module reference designs.

Note 2 This delay does not include delays created by utilizing "Additional DQ/DQS Read Delay Control Words F[3-11]RC12.

Byte 92 (Load Reduced): Minimum Module Delay for 1.35 V

This byte defines the minimum delay for the earliest byte lane of the module for 1.35 V, in medium timebase (MTB) units.

Bit 7	Bits 6 ~ 0						
Reserved	Minimum Delay Time for 1.35 V						
	Values defined from: 0000000 = 0 (0 ns) to 1111111 = 127 (15.875 ns)						
Note 1 This delay is defined for the specific prelaunch delay settings from LRDIMM SPD bytes 69 to 71. Note 2 This delay does not include delays created by utilizing "Additional DQ/DQS Read Delay Control Words F[3-11]RC12.							

Byte 93 (Load Reduced): Maximum Module Delay Time for 1.35 V

This byte defines the maximum delay for the latest byte lane of the module for 1.35 V, in medium timebase (MTB) units.

Bit 7	Bits 6 ~ 0
Reserved	Maximum Delay Time for 1.35 V
	Values defined from: 0000000 = 0 (0 ns) to 1111111 = 127 (15.875 ns)
1	defined for the specific prelaunch delay settings from LRDIMM SPD bytes 69 to 71. es not include delays created by utilizing "Additional DQ/DQS Read Delay Control Words F[3-11]RC12.

Byte 94 (Load Reduced): Minimum Module Delay Time for 1.25 V

This byte defines the minimum delay for the earliest byte lane of the module for 1.25 V, in medium timebase (MTB) units.

Bit 7	Bits 6 ~ 0
Reserved	Minimum Delay Time for 1.25 V
	Values defined from: 0000000 = 0 (0 ns)
	to 11111111 = 127 (15.875 ns)
Note 1 This	delay is defined for the specific prelaunch delay settings from LRDIMM SPD bytes 69 to 71.

Note 2 This delay is defined for the specific prelation delay settings from ERDIMIN SPD bytes 69 to 71.

Note 2 This delay does not include delays created by utilizing "Additional DQ/DQS Read Delay Control Words F[3-11]RC12.

Byte 95 (Load Reduced): Maximum Module Delay Time for 1.25 V

This byte defines the maximum delay for the latest byte lane of the module for 1.25 V, in medium timebase (MTB) units.

Bit 7	Bits 6 ~ 0
Reserved	Maximum Delay Time for 1.25 V
	Values defined from: 0000000 = 0 (0 ns) to 1111111 = 127 (15.875 ns)
	delay is defined for the specific prelaunch delay settings from LRDIMM SPD bytes 69 to 71. delay does not include delays created by utilizing "Additional DQ/DQS Read Delay Control Words F[3-C12.

Bytes 96 ~ 101 (Load Reduced): Reserved

Bytes 102 ~ 116 (Load Reduced): Memory Buffer Personality Bytes

The Personality Bytes for the Load Reduced DIMM Memory Buffer are listed, and the specific .

Duta Numban	Function Described	Destination ¹	
Byte Number		Bits 7~4	Bits 3~0
102	Personality Byte 0	F14RC1	F14RC0
103	Personality Byte 1	F14RC3	F14RC2
104	Personality Byte 2	F14RC5	F14RC4
105	Personality Byte 3	F15RC6	F14RC6
106	Personality Byte 4	F14RC9	F14RC8
107	Personality Byte 5	F14RC11	F14RC10
108	Personality Byte 6	F14RC13	F14RC12
109	Personality Byte 7	F14RC15	F14RC14
110	Personality Byte 8	F15RC1	F15RC0
111	Personality Byte 9	F15RC3	F15RC2
112	Personality Byte 10	F15RC5	F15RC4
113	Personality Byte 11	F15RC9	F15RC8
114	Personality Byte 12	F15RC11	F15RC10
115	Personality Byte 13	F15RC13	F15RC12
116	Personality Byte 14	F15RC15	F15RC14

Manufacturer's Specific Bytes for Load Reduced Memory Module Types (Bytes $150 \sim 175$): Reserved for manufacturer or user

Note that in early revisions of the LRDIMM SPD, this section contained personality byte data which has been relocated to the DIMM-specific region of the SPD. From LRDIMM SPD revision 0.5 on, this section is open for manufacturer specific information.