第一章 多项式

题 1.1. (p44.1) 计算 g(x) 除 f(x) 的商式 g(x) 和余式 r(x)。

(1)
$$f(x) = x^4 - 4x + 5$$
, $g(x) = x^2 - x + 2$

解.
$$f(x) = q(x)g(x) + r(x)$$
, 其中 $q(x) = x^2 + x - 1$, $r(x) = -7x + 7$ 。

题 1.2. (p44.2) 求多项式 f(x) 和 g(x) 的最大公因式和最小公倍式。

(1)
$$f(x) = x^4 + x^3 + 2x^2 + x + 1$$
, $g(x) = x^3 + 2x^2 + 2x + 1$

解. $f(x) = q_1(x)g(x) + r_1(x)$,其中 $q_1(x) = x - 1$, $r_1(x) = 2x^2 + 2x + 2$ $g(x) = q_2(x)r_1(x)$,其中 $q_2(x) = \frac{1}{2}x + \frac{1}{2}$ 于是

$$\gcd(f(x), g(x)) = \frac{1}{2}r_1(x) = x^2 + x + 1$$

$$\operatorname{lcm}(f(x), g(x)) = 4\frac{f(x)g(x)}{\gcd(f(x), g(x))}$$

$$= \frac{(x^4 + x^3 + 2x^2 + x + 1)(x^3 + 2x^2 + 2x + 1)}{x^2 + x + 1}$$

$$= (x^2 + 1)(x + 1)(x^2 + x + 1)$$

注: 以上计算最大公因式和最小公倍式乘的系数均为凑首 1 多项式。

题 1.3. (p44.3)求多项式 f(x) 和 g(x) 的最大公因式 $\gcd(f(x),g(x))$,以及满足等式 $u(x)f(x)+v(x)g(x)=\gcd(f(x),g(x))$ 的多项式 u(x) 和 v(x)。

(1)
$$f(x) = x^4 - x^3 - 4x^2 + 4x + 1$$
, $g(x) = x^2 - x - 1$

解.
$$f(x) = q_1(x)g(x) + r_1(x)$$
, 其中 $q_1(x) = x^2 - 3$, $r_1(x) = x - 2$

$$g(x) = q_2(x)r_1(x) + r_2(x)$$
,其中 $q_2(x) = x$, $r_2(x) = x - 1$
 $r_1(x) = q_3(x)r_2(x) + r_3(x)$,其中 $q_3(x) = 1$, $r_3(x) = -1$
 $r_2(x) = q_4(x)r_3(x)$,其中 $q_4(x) = -x + 1$

$$\gcd(f(x),g(x))=-r_3(x)=1$$
,于是 $1=u(x)f(x)+v(x)g(x)$,其中 $u(x)=-1-x$, $v(x)=x^3+x^2-3x-2$

注:以上计算最大公因式乘的系数为凑首1多项式。

题 1.4. (p45.6) 若多项式 f(x), g(x), u(x), v(x) 满足 $u(x)f(x) + v(x)g(x) = \gcd(f(x), g(x))$, 证明 u(x), v(x) 互素。

证明. 令 $d(x) = \gcd(f(x), g(x))$,则 f(x) = d(x)p(x), g(x) = d(x)q(x), $u(x)f(x) + v(x)g(x) = \gcd(f(x), g(x)) \Rightarrow u(x)d(x)p(x) + v(x)d(x)q(x) = d(x) \Rightarrow u(x)p(x) + v(x)q(x) = 1$,这便说明了 u(x), v(x) 互素。