

Types of Learners • Eager learner - Designed to learn a model from instances (examples) that maps input attributes to the class label as soon as training data is available • Decision trees, rule-based, SVM, ... • Lazy learner - Opposite of eager learner. Delay the process of learning a model from training data until it is needed to classify a new sample • Rote-learner - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly • Nearest neighbor - Uses k "closest" instances (nearest neighbors) for performing classification

Basic k-nearest neighbor algorithm

- Training method
 - Save the training examples
- Prediction
 - Find the k training examples (x_1,y_1) , ..., (x_k,y_k) that are closest to the test example (x,?)
 - Assign the most frequent class among those y_i's

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - Take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

Nearest Neighbor Classification... • Choosing the value of k: — If k is too small, sensitive to noise points — If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- · Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Distance Measure

- Euclidian
 - Why its not best?
 - Distances in each dimension are squared before summation places great emphasis on those features which dissimilarity is large
 - How about just absolute differences
 - Manhattan or city block or taxi-cab distance
 - How would you deemphasize single large feature difference and more influenced by numerous small ones?

NC STA UNIVERS

Nearest neighbor Classification...

- k-NN classifiers are lazy learners since they do not build models explicitly
- Classifying unknown records are relatively expensive
- Can produce arbitrarily shaped decision boundaries
- Easy to handle variable interactions since the decisions are based on local information
- Selection of right proximity measure is essential
- Superfluous or redundant attributes can create problems
- · Missing attributes are hard to handle

Improving KNN Efficiency

- Avoid having to compute distance to all objects in the training set
 - Multi-dimensional access methods (k-d trees)
 - Fast approximate similarity search
 - Locality Sensitive Hashing (LSH)
- Condensing
 - Determine a smaller set of objects that give the same performance
- Editing
 - Remove objects to improve efficiency

Improving KNN Efficiency • Multi-dimensional access methods (k-d trees) $\frac{\ell_5}{\ell_8} \frac{\ell_1}{p_1} \frac{\ell_7}{\ell_9} \frac{\ell_7}{p_6} \frac{\ell_9}{\ell_6} \frac{\ell_9}{p_1} \frac{\ell_9}{\ell_6} \frac{\ell_9}{p_1} \frac{\ell_9}{p_2} \frac{\ell_9}{p_6} \frac$

Practice

- Compare KNN with K-Means
 - Assume that the data is labeled, so we can label clusters
 - Given a new point, how each method predicts