Inter (Part-II) 2021

Mathematics	(Group-II)	PAPER: II
Time: 30 Minutes	(OBJECTIVE TYPE)	Marks: 20

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

- $x = at^2$ and y = 2at are parametric equations of:
 - (a) Parabola ✓
- (b) Ellipse
- (c) Circle
- (d) Hyperbola
- If θ is measured in radian, then $\lim_{\theta \to 0} \frac{\sin 7 \theta}{\theta} = :$ 2-

(b) $\frac{1}{7}$

(c)
$$\frac{7\pi}{22}$$

- (d) $\frac{7\pi}{12}$
- The derivative of $\frac{1}{1+x}$ is:

(c)
$$(1 + x)^{-2}$$

(c)
$$(1+x)^{-2}$$
 (d) $-1(1+x)^{-2}$

The derivative of In (tan h x) is:

(a)
$$\frac{1}{\tanh x}$$

(b)
$$\frac{\text{sec } h^2 x}{\text{tan } h x}$$

(c)
$$sec h^2 x$$

- (d) sec hx
- If $y = \cot^{-1} x$, then $\frac{dy}{dx} = :$ 5-

(a)
$$\frac{1}{1-x^2}$$

(b)
$$\frac{-1}{1+x^2}$$

(c)
$$\frac{1}{x^2-1}$$

(d)
$$\frac{1}{x^2 + 1}$$

If $y^2 + x^2 = a^2$, then $\frac{dy}{dx} = :$ 6-

(a)
$$-\frac{x}{y} \checkmark$$

(b)
$$-\frac{x}{\lambda}$$

(c)
$$\frac{x}{y}$$

(d) $\frac{y}{x}$

 $\int \cos x \, dx = :$

(a)
$$1 - \sin^2 x$$

(b)
$$\sqrt{1 - \sin^2 x}$$

 $\int_{1}^{2} (x^2 + 1) dx = :$

(a)
$$\frac{10}{3}$$

(b)
$$\frac{3}{10}$$

(d)
$$\frac{\pi}{2}$$

The order of $\frac{dy}{dx} = \frac{4}{3}x^3 + x - 3$ is:

(a)
$$1 \checkmark$$
 (b) $\frac{3}{4}$

(b)
$$\frac{3}{4}$$

(c)
$$\frac{4}{3}$$

 $\int_{0}^{x} 3x^2 dx = :$

(a)
$$x^3 + a^3$$
 (c) $3x^3$

(b)
$$x^3 - a^3 \checkmark$$

(d) x^3

(c)
$$3x^3$$

$$(d) x^3$$

The equation of a straight line represented by x cos α + y sin α = P is called:

- (a) Normal form ✓
- (b) Angular form
- (c) Symmetric form
 - (d) P-form

The measure of the angle between the lines ax2 + 12- $2hxy + by^2 = 0$ is given by $tan \theta = :$

(a)
$$\frac{\sqrt{h^2 - ab}}{a - b}$$

(b)
$$\frac{2\sqrt{h^2 - ab}}{a + b} \checkmark$$

(c)
$$\frac{h^2 - ab}{a + b}$$

13-	The points $A(\pm 5, -2)$, $B(5, -4)$ are ends point diameter of the circle. The centre will be:		
		(b) (0, −3) ✓	
		(d) (–5, 4)	
14-	The feasible solution which maximize or minimiz the objective function is called: (a) Boundary (b) Half plane		
	(c) Optimal solution ✓		
15-	An angle inscribed in a semi-circle is:		
	(a) 0	(b) $\frac{\pi}{2}$	
	(c) π	(d) 2π	
16-	xy = 0 represents:		
,	(a) A pair of lines ✓	(b) Hyperbola	
	(c) Parabola	(d) Ellipse	
17-	The value of c for $\frac{y^2}{16} - \frac{x^2}{49} = 1$ is:		
	(a) 16	(b) 49	
		(d) √65 ✓	
18-	If $\overrightarrow{a} = \widehat{i} - \widehat{j}$ and $\overrightarrow{b} = \widehat{j}$	= j + k, then a . b = :	
	(a) 0 ✓ Bollows (c) -1	(b) 1	
	(c) -1	(d) √2	
19-	The projection of \overrightarrow{v} along \overrightarrow{u} is:		
	(a) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ u } \checkmark$	(b) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ v }$	
	(c) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ u v }$	(d) $\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{ u + v }$	
20-	The unit vector in the	ne direction of $\overrightarrow{v} = [3, -4]$:	
	(a) 5[3, -4]	(b) $\frac{1}{5}[3, -4]$	
	î (o)	(d) j	