

Experiment / Assignment / Tutorial No. 2

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Batch: B1	Roll No.: 1711072	Experiment / assignment / tutorial No.: 2
-----------	-------------------	---

Title: Binary Adders and Subtractors

Objective: To implement half and full adder–subtractor using gates and IC 7483

Expected Outcome of Experiment:

CO2: Use different minimization technique and solve combinational circuits, synchronous & asynchronous sequential circuits.

Books/ Journals/ Websites referred:

- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill
- M. Morris Mano, "Digital Logic & computer Design", PHI
- http://physics.niser.ac.in/labmanuals/sem5/elect/7_ADDER%20SUBTRACTO R%20CIRCUITS.pdf

Pre Lab/Prior Concepts:

Adder: Addition of two binary digits is most basic operation performed by the digital computer. There are two types of adder:

- Half adder
- Full adder

Half Adder: Half adder is combinational logic circuit with two inputs and two outputs. It is the basic building block for addition of two single bit numbers.

Full adder: A half adder has a provision not to add a carry coming from the lower order bits when multi bit addition is performed. for this purpose a third input terminal is added and this circuits is to add A,B,C where A and B are the nth order bits of the number A and B respectively and C is the carry generated from the addition of (n-1) order bits. This circuit is referred to as full adder.

Subtractor: Subtraction of two binary digits is one of the most basic operations performed by digital computer .there are two types of subtractor:

- Half subtractor
- Full subtractor

Half subtractor: Logic circuit for the subtraction of B from A where A,B are 1 bit numbers is referred to as half subtract or .the subtract or process has two input and difference and borrow are the two outputs.

Full subtractor: As in the case of the addition using logic gates, a full subtractor is made by combining two half-sub tractors and an additional OR-gate. A full subtractor has the borrow in capability (denoted as BOR_{IN}) and so allows cascading which results in the possibility of multibit subtraction.

IC 7483

For subtraction of one binary number from another, we do so by adding 2's complement of the former to the latter number using a full adder circuit.

IC 7483 is a 16 pin, 4-bit full adder. This IC has a provision to add the carry output to transfer and end around carry output using Co and C4 respectively.

2's complement: 2's complement of any binary no. can be obtained by adding 1 in 1'scomplement of that no.

e.g. 2's complement of
$$+(10)_{10} = 1010$$
is

1C of 1010 0101
$$+$$
 1 0110 $-$ 0110

In 2's complement subtraction using IC 7483, we are representing negative number in 2's complement form and then adding it with 1st number.

Implementation Details:

Half Adder Block Diagram

Half Adder Circuit

Truth Table for Half Adder

Inputs		Outputs	
A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

From the truth table (with steps):

S=A.B'+A'.B C=A.B

Full Adder Block Diagram

4 **Department of Computer Engineering**

Full Adder Circuit

Truth Table for Full Adder

A	В	С	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

From the truth table (with steps):

$$S=A'.B'.C_{in}+A'.B.C_{in}'+A.B'.C_{in}'+A.B.C_{in}$$

$$C_{out}(Carry) = A.C_{in} + A.B + B.C_{in}$$

${\bf K.\,J.\,Somaiya\,\, College\,\, of\,\, Engineering,\, Mumbai-77}$

Half Subtractor Block Diagram

A	Held	Barrow (Bo)
	Subtractor	4.53
3		Differencel D

Half Subtractor Circuit

Truth Table for Half Subtractor

A	В	DIFFERENCE (D)	BORROW(Bo)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

From the truth table (with steps):

Difference(D)=A'.B+A.B'

Borrow(Bo)=A'.B

Full Subtractor Block Diagram

Full Subtractor Circuit

7 **Department of Computer Engineering**

Truth Table for Full subtractor:

A	В	B _{IN}	D	BOR _{OUT}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

From the truth table (with steps):

 $\begin{array}{l} \textbf{Difference (D)=A'.B'.B}_{in}+A'.B.B_{in}'+A.B'.B_{in}'+A.B.B_{in}\\ \textbf{BOR}_{out}=A'.B+A'.B_{in}+B.B_{in} \end{array}$

IC 7483

Procedure:

- 1) Locate the IC 7483 and 4-not gates block on trainer kit.
- 2) Connect 1st input no. to A4-A1 input slot and 2nd (negative) no. to B4-B1 through 4-not gates (1C of 2nd no.)
- 3) Connect high input to C_0 so that it will get added with 1C of 2^{nd} no. to get 2C.
- 4) Connect 4-bit output to the output indicators.
- 5) Switch ON the power supply and monitor the output for various input combinations.

Example:

1)
$$710-210 = 510$$

 7 0111
 2 0010
1'C of 2 1101
 $+ 1$
2'C of 2 1110
0111
 $+ \frac{1110}{0101}$

Pin Diagram IC7483

Adder

9 **Department of Computer Engineering**

Subtractor

Post Lab Descriptive Questions:

1. What is difference between half and full adder, half and full subtractor?

Ans. Full adder and half adder:

The difference between half adder and full adder is that full adder has three inputs and two outputs. The two inputs are A and Band the third is a carry input Cin. The output carry is designated as Cout and the normal output is designated as S whereas half adder has two inputs and one output and carry is neglected in half adder. It isn't neglected in full adder.

Full subtractor and half adder:

The difference between half subtractor and half subtractor is also the same. Half subtractor has two inputs and one output while full subtractor has 3 inputs and 2 outputs and bits are borrowed in full subtractor. It is not restricted to one bit subtraction.

- 2. Perform the following Binary subtraction with the help of appropriate ICs:
 - a) 7-5
 - b) 5-7
 - c) 9-4

Ans. a) The binary form of 7 is:0111

The binary form of 5 is: 0101

1's complement of 5 is:1010

<u>+ 1</u>

2's complement of 5 is:1011

Thus 7-5 is:

0111

+1011

 $(0010)_2 = (2)_{10}$

b) The binary form of 5 is: 0101

The binary form of 7 is: 0111

1's complement of 7 is: 1000

+ 1

2's complement of 7 is: 1001

Thus 5-7 is:

0101

+1001

 $(1110)_2$

The answer is a negative number. Hence we take the 2's complement

1's complement: 0001

+1

2's complement: $(0010)_2 = (2)_{10}$

c) The binary form of 9 is:1001

The binary form of 4 is: 0100

1's complement of 4 is: 1011

<u>+ 1</u>

2's complement of 4 is: 1100

Thus 9-4 is:

1001

+1100

 $(0101)_2 = (5)_{10}$

Conclusion:

The binary circuit for half/full adder and subtractor were studied by both basic gates and dedicated gates for various test cases with correct outputs.