

CAM, Attention, and Transformers – COMP4423 Computer Vision

Xiaoyong Wei (魏驍勇) x1wei@polyu.edu.hk

Department of Computing 電子計算學系

Opening Minds • Shaping the Future 啟迪思維 • 成就未來

Outline

- >From concepts to code
- >Datasets for deep learning
- >Class Activation Mapping (CAM)
- >Attentions
- >Self-Attentions, and Transformers

It's time to link the concepts we learned to the actual code

Prepare the dataset by splitting it into batches

A Dataset

Department of Computing 電子計算學系

Design the networks

A Batch (subset)
BATCH_SIZE: 32
Image size: 28x28

Shape: 28x28x1 26x26x32 128 10

```
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()

# 28x28x1 => 26x26x32
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3)
        self.d1 = nn.Linear(26 * 26 * 32, 128)
        self.d2 = nn.Linear(128, 10)
```

A Dataset

Design the networks

The Loss and Optimizer

A Dataset

Department of Computing 電子計算學系

Learning Rate

Get everybody into position

```
for epoch in range(num epochs):
   train running loss = 0.0
   train acc = 0.0
   model = model.train() # tell the model we're training
   ## training step
   for i, (images, labels) in enumerate(trainloader):
       images = images.to(device)
       labels = labels.to(device)
       ## forward + backprop + loss
       logits = model(images) # forward
       loss = criterion(logits, labels) # loss between the predicted and truth
       optimizer.zero grad() # clean gradients
       loss.backward() # do backprobagation and udapte gradients
       ## update model params
       optimizer.step()
       train running loss += loss.detach().item()
       train acc += get accuracy(logits, labels, BATCH SIZE)
```

A Dataset

N-Fold Cross Validation

A Dataset

scores = cross_val_score(model, feat_x, feat_y, cv=10)

The advantage of Deep Learning for most of us is that we can build complex models by simply stacking layers

To train the models, we need data, especially those labeled ones. However, data labeling is a costly process

The publicly available datasets are thus of great help

ImageNet

Images: 14197122

Classes: 21841

Tasks: Image

classification

ImageNet is one of the largest and most classic CV public datasets. This dataset has driven the development of computer vision, but there are some problems in the dataset that the quality of the images is low, or the image might be wrong.

Department of Computing

SOTA Performance on ImageNet

Backbone: Transformer

Rank	Model	Top 1 Accuracy	↑ Top 5 Accuracy	Number of params	Extra Training Data	Paper	Code	Result	Year	Tags 🗹
1	CoAtNet-7	90.88%		2440M	Á	CoAtNet: Marrying Convolution and Attention for All Data Sizes	0	Ð	2021	Conv+Transformer JFT-3B
2	ViT-G/14	90.45%	_ (1843M	\ <u>\</u>	Scaling Vision Transformers		Ð	2021	Transformer JFT-3B
3	CoAtNet-6	90.45%		1470M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	0	Ð	2021	Conv+Transformer JFT-3B
4	ViT-MoE-15B (Every-2)	90.35%		14700M	✓	Scaling Vision with Sparse Mixture of Experts		Ð	2021	Transformer JFT-3B

CIFAR

CIFAR-100:

Images:60000

Classes:100

Tasks: Image classification

Sub dataset CIFAR-10:

Image:6000

Classes:10

The CIFAR dataset is more tidy, and its sub dataset CIFAR-10 is very suitable for getting started with image classification.

SOTA Performance on CIFAR-100

Backbone: Transformer EfficientNet

Rank	Model	Percentage PARAMS	Extra Training Data	Paper	Code	Result	Year	Tags 🗹
1	EffNet-L2 (SAM)	96.08	~	Sharpness-Aware Minimization for Efficiently Improving Generalization	0	Ð	2020	EfficientNet
2	ViT-H/14	94.55±0.04	~ <	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	0	Ð	2020	Transformer
3	ViT-B-16 (ImageNet-21K-P pretrain)	94.2		ImageNet-21K Pretraining for the Masses	0	Ð	2021	Transformer
4	CvT-W24	94.09	/	CvT: Introducing Convolutions to Vision Transformers	0	Ð	2021	Transformer

Department of Computing 電子計算學系

COCO

Images: 300K

Labels: 200K

Object: 80

Stuff: 91

Tasks: Image Detection /

Image Segmentation

COCO is one of the largest image recognition datasets with fine annotations and a large number of images.

ADE20K

Images: 27574

Classes: 21841

Object : 250

Tasks: Image Segmentation

Ade20k data set is one of the most commonly used data sets for image segmentation, which contains rich indoor and outdoor scenes and objects.

Department of Computing 電子計算學系

Source: ImageNet Large Scale Visual Recognition Challenge.

Great! We have models and datasets. But how can we tell if the models are working properly?

Beside the Accuracy, Precision, and Recall which we used to evaluate the performance overall, we cannot tell exactly how it works

That's the reason deep models are considered as a "Blackbox"

Luckily, there are some "probes" that we can use

Class Activation Mapping (CAM)

Class Activation Mapping (CAM)

Department of Computing 電子計算學系

Class Activation Mapping (CAM)

Department of Computing 電子計算學系

Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.

Unlike CAM, Grad-CAM is applicable to a wide variety of CNN model-families without architectural changes or re-training.

(a) Original Image

(b) Guided Backprop 'Cat'

(c) Grad-CAM 'Cat'

Source: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

Score-CAM

Unlike previous class activation mapping based approaches, Score-CAM gets rid of the dependence on gradients by obtaining the weight of each activation map through its forward passing score on target class, the final result is obtained by a linear combination of weights and activation maps. Score-CAM achieves better visual performance and fairness for interpreting the decision making process.

Source: Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks

Conceptor-CAM

In Conceptor-CAM, we unify the previous CAMs into a framework, in which they are different from each other in the way of modeling the channel relations. We find the inner-channel relations are ignored in those CAMs. So we propose Conceptor-CAM to model both inter- and inner-relation in one shot.

Source: Conceptor Learning for Class Activation Mapping

Conceptor-CAM

Conceptor-CAM is in fact compatible to other CAMs. We can use Conceptors to "regulate" the relations in those CAMs for better performance

Department of Computing

Source: Conceptor Learning for Class Activation Mapping

While we can "see" how well the objects are focused or not, can we "help" models to focus?

Attention

When we think about the English word "Attention", we know that it means directing your focus at something and taking greater notice. The Attention mechanism in Deep Learning is based on this idea, and it pays greater attention to certain factors when processing the data.

Department of Computing 電子計算學系

Source: Learn to pay attention

Attention

When we think about the English word "Attention", we know that it means directing your focus at something and taking greater notice. The Attention mechanism in Deep Learning is based on this idea, and it pays greater attention to certain factors when processing the data.

Department of Computing 電子計算學系

Source: Learn to pay attention

CBAM: Convolutional Block Attention Module

CBAM learns what and where to emphasize or suppress and refines intermediate features effectively.

The overview of CBAM

Diagram of each attention sub-module

Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module, Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.

Let's go one step further

Self Attention

Self Attention

- > Self-Attention calculates a weight according to the input data to represent the attention of each position in the data sequence to other different positions. The figure on the right is a simple example.
- > The specific implementation of self attention is to map three matrices Q, K and V using the input data. The dot products of Q and K are normalized by softmax to represent the weight matrix and V represents the value matrix. The formula is as follows:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Self Attention

- > Self-Attention calculates a weight according to the input data to represent the attention of each position in the data sequence to other different positions. The figure on the right is a simple example.
- > The specific implementation of self attention is to map three matrices Q, K and V using the input data. The dot products of Q and K are normalized by softmax to represent the weight matrix and V represents the value matrix. The formula is as follows:

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Input

Attention

Source: AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Transformer

Transformer is an Encoder-Decoder architecture based on Self-Attention.

Transformer was first used in the field of natural language processing with success, and then used in computer vision tasks.

Vision Transformer (ViT)

> The image will be segmented into patches before entering the model, and the patches are reshaped as 2D vectors.

> The model is a standard transformer Encoder architecture, and the output of Encoder gets the probability of each classification after MLP layer.

Transformer Encoder

L × + MLP

Norm

Multi-Head
Attention

Norm

Embedded
Patches

Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2020.

Department of Computing 電子計算學系

