Содержание

1	Вве	дение	1
2	Пос	тановка задачи	3
	2.1	Описание данных и постановка задачи	3
	2.2	Постановка задачи порождения модели	3
		2.2.1 WANN Nº1	3
		2.2.2 WANN Nº2	4
3	Me	грики	4
	3.1	Эталонные метрики	4
	3.2	Структурные метрики	5
	3.3	Методы сравнения метрик	6
4	Ген	етический алгоритм и его модификации	7
	4.1	Общие понятия	7
		4.1.1 WANN 1	8
		4.1.2 WANN 2	8
	4.2	Классический генетический алгоритм	8
	4.3	Детектирование стагнаций с помощью метрики	9
	4.4	Детектирование стагнаций по значению ошибок	9
	4.5	Генетический алгоритм с кластеризацией	10
5	Вы	числительный эксперимент	10
	5.1	Метрики	10
	5.2	Генетические алгоритмы	12
6	Зак	лючение	16
7	Спи	исок литературы	16

Аннотация

В работе решается задача аппроксимации неизвестной зависимости с помощью агностических нейронных сетей. На множестве агностических нейронных сетей вводится структурная метрика. Предлагается несколько методов сравнения метрик друг с другом. На искусственно сгенерированных данных производится сравнение метрик. Рассматриваются четыре вариации генетического алгоритма, используемые для генерации агностических нейронных сетей.

Ключевые слова: WANN, структрное обучение, метрика, генетический алгоритм.

1 Введение

Одним из методов для решения задачи восстановления функциональной зависимости по набору исходных данных является символьная регрессия

[1]. Задача символьной регрессии заключается в отыскании такой композиции функций из некоторого заданного множества, которая бы наилучшим образом аппроксимировала зависимость. Джон Коза предложил метод, являющийся аналогом эволюционного алгоритма [2], получивший дальнейшее развитие в работе Ивана Зелинки [3]. Анна Варфоломеева для решения задачи символьной регрессии использует совершенно другой подход, строящий дерево композиции на основе уже имеющихся примеров [4].

Основной интерес для данной работы представляет статья Андрея Кулунчакова и Вадима Викторовича Стрижова [5], в которой рассматривается генерация непараметрических моделей, являющихся композицией некоторых примитивных функций.

Definition 1.1. Функция $\mu: X \times X \longrightarrow \mathbb{R}_{\geq 0}$ называется метрикой, если она удовлетворяет следующим условиям:

- 1. $\mu(x_1, x_2) = 0 \longleftrightarrow x_1 = x_2$
- 2. $\mu(x_1, x_2) = \mu(x_2, x_1)$
- 3. $\mu(x_1, x_2) + \mu(x_2, x_3) \ge \mu(x_1, x_3)$ (неравенство треугольника)

Definition 1.2. Структурная метрика - метрика, зависящая только от структуры модели.

Definition 1.3. Эталонная метрика - метрика, которая вводится из эмпирических соображений и считается идеально подходящей для рассматриваемой задачи.

В [5] на множестве моделей задается три структурных метрики. В качестве эталонной метрики берется следующая:

$$\eta(f, f') = \frac{1}{|C|(|C|-1)} \sum_{d_j, d_k \in C} [f(d_j) < f(d_k)][f'(d_j) > f'(d_k)]$$

Здесь C - некоторое наперед заданное множество. Утверждается, что структурные метрики близки к эталонной. Более строго, предлагается считать метрики μ , η близкими на множестве деревьев \mathfrak{M} , если

$$\alpha(\mathfrak{M}) = \nu([\mu(f, f') \le \alpha_1] \longrightarrow [\eta(f, f') \le \alpha_2]|f, f' \in \mathfrak{M}) \ge 1 - \varepsilon$$

где $\alpha_1, \alpha_2, \varepsilon$ - константы, $\nu(A)$ - частота события A. В нашей работе не используется такой способ сравнения метрик, потому что он требует задания сразу трех констант, что чрезмерно.

Далее в [5] предлагается детектировать стагнации с помощью структурной метрики, считая, что алгоритм застагнировался в случае, если диаметр популяции ниже некоторого фиксированного порога, то есть, иными словами, если все деревья в популяции слишком похожи друг на друга. В этом случае половина худших деревьев в популяции меняется на заново сгенерированные.

В данной работе схожий подход был применен для агностических нейронных сетей (Weight Agnostic Neural Networks), подробно описанных в статье [6]. Суть данной модели заключается в том, что все веса на ребрах нейронной сети заменяются одним единственным весом, то есть пространство параметров становится одномерным.

2 Постановка задачи

2.1 Описание данных и постановка задачи

Задана пара $(X,y), X \in \mathbb{R}^{n \times m}, y \in \mathbb{R}^{n \times k}$, строки матриц X и y находятся в некоторой неизвестной функциональной зависимости. Задано множество порождающих функций $\mathfrak{G}.\mathfrak{F}_{\mathfrak{G}}$ - множество агностических нейронных сетей, у которых функции активации содержатся в \mathfrak{G} .

Требуется найти оптимальную модель $f: \mathbb{W} \times \mathbb{X} \longrightarrow \mathbb{R}^{n \times k}, f \in \mathfrak{F}_{\mathfrak{G}}, \mathbb{W}$ - множество параметров модели (в случае агностической нейронной сети состоит из одного элемента).

Более формально, если задана функция ошибки $S(y_{pred}, y_{true})$, то необходимо найти $f \in \mathfrak{F}_{\mathfrak{G}}$ и $w \in \mathbb{W}$, минимизирующие значение функции S:

$$(f, w) = \arg\min_{(f, w) \in \mathfrak{F}_{\mathfrak{S}} \times \mathbb{W}} S(f^w(x), y) \tag{1}$$

Здесь и далее запись $f^{w}(x)$ эквивалентна f(w,x).

В качестве функции ошибки используется среднее квадратов регрессионных остатков:

$$S(y_{pred}, y_{true}) = \frac{1}{n} ||y_{pred} - y_{true}||_2^2$$
 (2)

2.2 Постановка задачи порождения модели

В данной работе рассмотриваются два способа представления агностических нейронных сетей. В дальнейшем нейросети, представленные первом способом, мы будем для краткости называть WANN №1, нейросети, представленные вторым способом - WANN №2. Если номер не указывается, это означает, что сказанное не зависит от способа представления агностической неронной сети.

2.2.1 WANN №1

Рассматривается неполносвязная сеть прямого распространения, у которой все параметры равны между собой.

Definition 2.1. Нейронную сеть можно разбить на слои, если существует такое разбиение множества нейронов на подмножества (слои), что:

• никакие 2 нейрона внутри одного слоя не соединены друг с другом

- на множестве слоев можно ввести линейный порядок, т.ч. если нейрон из слоя L_1 связан с нейроном из слоя L_2 , то $L_1 < L_2$ и $\nexists L: L_1 < L < L_2$, или $L_1 > L_2$ и $\nexists L: L_1 > L > L_2$.
- Если $n_1 \in L_1, L_1 < L_2, \nexists L: L_1 < L < L_2,$ то $\nexists n_2 \in L_2: n_1$ и n_2 соединены.
- Если $n_1 \in L_1, L_1 > L_2, \nexists L: L_1 > L > L_2,$ то $\nexists n_2 \in L_2: n_1$ и n_2 соединены.

Важной особенностью данной модели является то, что ее можно разбить на слои.

Definition 2.2. Подмножество нейронов называется слоем, если:

2.2.2 WANN №2

В данной модели нейроны могут соединяться между собой в произвольном порядке, единственное требование - в графе конфигураций не должно быть направленных циклов.

3 Метрики

3.1 Эталонные метрики

Важно отметить, что для эталонной метрики допустимо невыполнение первого свойства $(\mu(x,y)=0\longleftrightarrow x=y)$. В таком случае мы просто считаем, что метрика отождествляет x и y, для нее они неразличимы. Можно еще сказать, что метрика разбивает наше множество на классы эквивалентности и мы отныне работаем только с их представлителями.

Ниже приведен список метрик, которые в данной статье считаются эталонными для множества агностических нейронных сетей:

$$\mu_1(f_1, f_2) = \frac{1}{n|W|} \sum_{w \in W} \sum_{i=1}^n \|f_1^w(x_i) - f_2^w(x_i)\|_2$$
 (3)

$$\mu_2(f_1, f_2) = \max_{w_1, w_2 \in W} \frac{1}{n} \sum_{i=1}^n \| (f_1^{w_1}(x_i) - f_2^{w_2}(x_i)) \|_2$$
 (4)

Здесь $x_i, x_j \in X, X \subset \mathbb{R}^n$ - некоторый конечный набор точек, \mathbb{W} - конечное множество параметров. Заметим, что эти метрики определены для агностических нейронных сетей, чьи входные и выходные размерности совпадают.

Lemma 3.1. Все предложенные функции являются метриками.

Доказательство. Выполнение всех свойств, кроме неравенства треугольника, очевидно. Докажем, что и последнее тоже выполнено.

- 1) Следует из того, что для каждого фиксированного w неравенство выполнено, так как при фиксированном w имеем не что иное как сумму евклидовых норм.
- 2) Пусть максимум для (f_1,f_3) достигается на (w_1',w_2') . Тогда $\sum_{i=1}^n \|(f_1^{w_1'}(x_i)-f_2^{w_2'}(x_i))\|_2 \le ($ по свойствам евклидовой метрики $) \le \sum_{i=1}^n \|(f_1^{w_1'}(x_i)-f_2^{w_2'}(x_i))\|_2 + \sum_{i=1}^n \|(f_2^{w_1'}(x_i)-f_3^{w_2'}(x_i))\|_2 \le \max_{w_1,w_2 \in W} \sum_{i=1}^n \|(f_1^{w_1}(x_i)-f_2^{w_2}(x_i))\|_2 + \sum_{i=1}^n \|(f_2^{w_1}(x_i)-f_3^{w_2}(x_i))\|_2$

Эталонные метрики обладают существенным недостатком: они трудновычислимы. Как следствие, хочется уметь приближать эталонную метрику некоторой функцией близости, которая, с одной стороны, была бы легко вычислима, а с другой, как можно лучше согласовывалась бы с эталонной.

Для лаконичности изложения под словом метрика мы в дальнейшем будем понимать любую функцию близости, потому что строгое соблюдение свойств метрики нам больше нигде не понадобится.

3.2 Структурные метрики

Важно подчеркнуть, что, вообще говоря, вводится не метрика, а функция близости, которая метрикой называется только для лакончиности изложения. Из свойств метрики можно гарантировать лишь неотрицательность и симметричность. $\mu(x,y)=0\longleftrightarrow x$ изоморфен y - означало бы решить задачу проверки графов на изоморфизм, принадлежность которой классу P до сих пор не доказана. $\mu(x,y)=0\longleftrightarrow x$ и y ведут себя одинаково, как функции - означало бы решить задачу SAT, которая является NP-полной.

Каждой агностической нейронной сети поставим в соответствие матрицу размера $(|\mathfrak{G}|+ar(f))\times |\mathfrak{G}|$, где ar(f) - арность функции, или, что то же самое, размер входного слоя сети. Строкам соответствуют все функции из \mathfrak{G} , а так же $x_1,...,x_{ar(f)}$, столбцам - только функции из \mathfrak{G} .

В ячейке с координатами (i,j) стоит число, равную количеству направленных ребер в агностической нейронной сети, ведущих из нейрона с функцией активации соответствующей i-ой строке в нейрон с функцией активации, соответвующей j-ому столбцу (определение аналогично для $x_1, ..., x_{ar(f)}$).

Например, пусть нейросеть имеет следующий вид:

Тогда ей соответствует матрица

$$\begin{bmatrix} & sin & cos & exp \\ sin & 0 & 1 & 0 \\ cos & 2 & 0 & 2 \\ exp & 0 & 1 & 0 \\ x_1 & 0 & 1 & 0 \\ x_2 & 0 & 1 & 0 \end{bmatrix}$$

Первый способ измерять расстояние между двумя агностическими нейронными сетями по построенным матрицам - брать евклидову норму разности векторизованных матриц.

$$\mu_1(f_1, f_2) = \|v_1 - v_2\|_2 \tag{5}$$

Этот способ можно обобщить. Пусть (f_1,f_2) - две агностических нейронных сети, v_1,v_2 - построенные по ним векторизованные матрицы. Тогда рассмотрим данную пару как объект, признаковым описанием которого является вектор $abs(v_{f_1}-v_{f_2})$, где abs - операция взятия модуля, применяемая покомпонентно. Требуется построить отображение $g:\{abs(v_{f_1}-v_{f_2})|f_1,f_2\in\mathfrak{F}_{\mathfrak{G}}\}\longrightarrow\mathbb{R}_{\geq 0}$, так чтобы g как можно лучше согласовывалось с эталонной метрикой. До этого мы взяли $g(v)=\|v\|_2$. Возможно существует более подходящая функция.

Для поиска оптимальной g мы будем обучать полносвязную нейросеть прямого распространения предсказывать эталонную метрику по признаковому описанию пары WANN.

$$\mu_2(f_1, f_2) = g(v_1, v_2) \tag{6}$$

3.3 Методы сравнения метрик

В данном разделе вводятся четыре способа сравнения метрик.

Пусть дано фиксированное конечное множество T (в нашем конкретном случае $T \subset \mathfrak{F}_{\mathfrak{G}}$). Необходимо ввести функцию $\gamma(\mu_1, \mu_2)$, по значению которой можно было бы понять, насколько согласуются между собой метрики на данном множестве.

1 способ. Посчитать коэффициент корреляции Пирсона.

$$corr(\mu_1, \mu_2) = \frac{\overline{\mu_1 \mu_2} - \overline{\mu_1} \cdot \overline{\mu_2}}{(\overline{\mu_1^2} - \overline{\mu_1}^2)(\overline{\mu_2^2} - \overline{\mu_2}^2)}$$
(7)

Здесь
$$\overline{\mu_i} = \frac{1}{n(n-1)} \sum_{t_1, t_2 \in T} \mu_i(t_1, t_2)$$

2 способ.

$$\nu(\mu(f_1, f_2) < \mu(f_1, f_3) \land \eta(f_1, f_2) > \eta(f_1, f_3))$$
(8)

 ν - частота события

3 способ.

$$\frac{\inf_{x,y} \frac{\mu_1(x,y)}{\mu_2(x,y)}}{\sup_{x,y} \frac{\mu_1(x,y)}{\mu_2(x,y)}} \tag{9}$$

4 способ. Пусть для множества T заданы матрицы попарных расстояний $D_1,\,D_2$ для метрик μ_1 и μ_2 соответственно. Нормализуем эти матрицы (эквивалентно делению каждого элемента на диаметр множества T). Векторизовав их, получим вектора v_1 и v_2 соответственно. Тогда в качестве функции близости метрик можно рассмотреть

$$||v_1 - v_2||_2 \tag{10}$$

4 Генетический алгоритм и его модификации

4.1 Общие понятия

Хотя размерность пространства параметров в агностических нейронных сетях и так снижена до 1, все равно перебор по сетке может занимать слишком много времени. Поэтому рассматриваются 3 функции ошибки, по значению которых будет производиться отбор в конце каждой эпохи генетического алгоритма.

$$\min_{w \in \mathbb{W}'} S(f^w(x), y) \tag{11}$$

$$\frac{1}{|\mathbb{W}'|} \sum_{w \in \mathbb{W}'} S(f^w(x), y) \tag{12}$$

$$\max_{w \in \mathbb{W}'} S(f^w(x), y) \tag{13}$$

Здесь \mathbb{W}' - некоторое небольшое множество возможных значений параметра (в данной работе $\{-2, -1, -0.5, 0.5, 1, 2\}$). В конце работы ген. алгоритма полученный WANN оптимизируется по параметру.

4.1.1 WANN 1

Мутация. Операция мутации производит 3 возможных действия:

- Удаляет случайно выбранный слой, соседние с ним слои соединяет между собой произвольным образом.
- Заменяет случайно выбранный слой на новый, соединяет с соседними слоями произвольным образом.
- В случайное место добавляет новый сгенерированный слой, соединяет с соседними слоями произвольным образом.

Скрещиванье. Операция скрещиванья:

- 1. Случайным образом выбирает в первой сети и второй сети по одному слою.
- 2. Все слои, которые шли в первой сети после выбранного в ней слоя, заменяет на слои второй сети, начиная с выбранного.

В следующем примере продемонстрирована работа алгоритма скрещиванья:

$$L_1^1L_2^1...L_k^1...L_s^1,\ L_1^2L_2^2...L_m^2...L_r^2 \longrightarrow L_1^1...L_k^1L_m^2...L_r^2$$

Здесь L_i^j - i-й слой j-й нейросети.

4.1.2 WANN 2

Мутация. Операция мутации производит 3 возможных действия:

- Добавляет новое ребро.
- Добавляет новый нейрон на уже существующее ребро.
- Изменяет функцию активации у уже существующего нейрона.

Скрещиванье. Отсутствует.

4.2 Классический генетический алгоритм

В классической вариации генетического алгоритма ведется ненаправленный поиск оптимальной структуры нейросети с помощью применения к популяции описанных ранее операциях скрещивания и мутации.

```
Result: WANN
generate population();
while error > \varepsilon or iteration < max iterations do
   mutate();
   crossover(); //for WANN №1;
   select();
end
return population[0];
      Algorithm 1: Классический генетический алгоритм
```

4.3 Детектирование стагнаций с помощью метрики

В статье Кулунчакова [4] предложено детектировать стагнации в работе генетического алгоритма с помощью метрики: если диаметр популяции (как множества) не превосходит некоторого ε , то мы считаем, что алгоритм застагнировался и меняем половину худших деревьев в популяции на совершенно случайные.

```
Result: WANN generate_population(); while error > \varepsilon or iteration < max_iterations do | mutate(); | crossover(); //for WANN №1; | select(); | if <math>diam(population) \le \delta then | for wann \ in \ population[\frac{n}{2}:] do | regenerate(wann); | end | end | end | end | return population[0];
```

Algorithm 2: Генетический алгоритм с детектированием стагнаций с помощью метрики

4.4 Детектирование стагнаций по значению ошибок

Если лучшее значение ошибки в популяции перестает существенно меняться, то мы считаем это стагнацией и действуем аналогично предыдущему пункту, т.е. заменяем половину худших деревьев в популяции на совершенно случайные.

```
Result: WANN generate_population(); while error > \varepsilon or iteration < max_iterations do | mutate(); crossover(); //for WANN N^01; select(); if \frac{error[iteration-l]}{error[iteration]} \ge \delta then | for wann \ in \ population[\frac{n}{2}:] do | regenerate(wann); | end | end | end | return population[0];
```

Algorithm 3: Генетический алгоритм с детектированием стагнаций по значению ошибки

4.5 Генетический алгоритм с кластеризацией

В этой вариации генетического алгоритма, если ошибка перестает изменяться, то множество нейросетей в популяции кластеризуется по структурной метрике, а потом в каждом кластере все нейросети, кроме той, у которой ошибка среди них минимальна, заменяются на заново сгенерированные. Тем самым мы избавляемся от похожих нейросетей в популяции.

```
Result: WANN
generate population();
while error > \varepsilon or iteration < max iterations do
   mutate();
   crossover(); //for WANN №1;
   select();
   if \frac{error[iteration-l]}{error[iteration]} \ge \delta then
       clusters := cluster(population);
       for cluster in clusters do
           for wann in cluster \setminus {best in cluster} do
            | wann.regenerate();
           end
       end
   end
end
return population[0];
     Algorithm 4: Генетический алгоритм с кластеризацией
```

5 Вычислительный эксперимент

Цель: сравнить структурные метрики (5) и (6), сравнить скорости сходимости всех вариаций генетического алгоритма с функциями ошибки (11), (12), (13).

5.1 Метрики

Нейросеть с тремя скрытыми слоями была обучена предсказывать эталонные метрики по построенной матрице, как это уже описывалось ранее.

Ниже нейросеть, обученная предсказывать (3), обозначается **net1**, а нейросеть, обученная предсказывать 4 - **net2**. В качетстве обучающей выбоорке были взяты попарные расстояния между ста сгенерированными WANN'ами, в качестве тестовой - попарные расстояния между другими ста.

Далее представлены результаты для агностических сетей первого типа.

	standart 1	standart 2
structural 1	0.31	0.37
net1	0.12	0.22
net2	0.13	0.35

Таблица 1: 1 способ

	standart 1	standart 2
structural 1	0.44	0.46
net1	0.49	0.49
net2	0.52	0.51

Таблица 2: 2 способ

	standart 1	standart 2
structural 1	0.00	0.00
net1	0.01	0.03
net2	0.00	0.20

Таблица 3: 3 способ

	standart 1	standart 2
structural 1	21.92	29.01
net1	24.92	51.92
net2	22.79	27.92

Таблица 4: 4 способ

Таким образом, получаем соответствие между эталонной метрикой и той, которая лучше всего с ней согласуется.

	1 способ	2 способ	3 способ	4 способ
standart 1	structural 1	structural 1	net 1	structural 1
standart 2	structural 1	structural 1	net 2	net 2

Таблица 5: Соотстветсвие между эталонными и структурными метриками

Приведем аналогичные результаты для агностических нейронных сетей второго типа.

	standart 1	standart 2
structural 1	0.32	0.34
net1	0.28	0.20
net2	0.18	0.28

Таблица 6: 1 способ

	standart 1	standart 2
structural 1	0.44	0.47
net1	0.44	0.47
net2	0.47	0.47

Таблица 7: 2 способ

	standart 1	standart 2
structural 1	0.00	0.00
net1	0.00	0.00
net2	0.00	0.08

Таблица 8: 3 способ

	standart 1	standart 2
structural 1	36.94	21.82
net1	23.12	45.04
net2	27.39	31.30

Таблица 9: 4 способ

	1 способ	2 способ	3 способ	4 способ
standart 1	structural 1	structural 1 / net 1	_	net 1
standart 2	structural 1	_	net 2	structural 1

Таблица 10: Соотстветствие между эталонными и структурными метриками

Таким образом, предсказание эталонных метрик с помощью нейросетей на тестовой выборке показывает хоть и не слишком плохие результаты, но не лучшие, чем 5, поэтому в дальнейшем мы будем использовать именно последнюю.

5.2 Генетические алгоритмы

Сначала работа алгоритмов была протестирована на искусственно сгенерированных данных. Каждая из модификаций генетического алгоритма была

запущена на 50 эпох с каждой из трех функций ошибки (11), (12), (13). Получившаяся агностическая нейронная сеть была оптимизирована по параметру. Ниже на графиках представлены исходное множество точек и их функциональная аппроксимация.

Для агностических сетей первого типа:

Для агностических сетей второго типа:

После этого был поставлен эксперимент на датасете Iris. Ниже на графиках приведена зависимость усредненного по экспериментам значения функции ошибки от числа эпох. Все 4 модификации гентического алгоритма была запущены по 100 раз с каждой из трех функций ошибки 11, (12), (13) со следующими параметрами:

- 100 эпох
- размер популяции 10
- количество мутаций за одну эпоху 5/10 (WANN №1/WANN №2)
- количество скрещиваний 5/0 (WANN №1/WANN №2)

Результат усреднялся по всем 100 экспериментам. Так же в таблицах представлено значение функции ассигасу на полученной агностической нейронной сети после оптимизации параметра. Оно так же было усреднено по всем экспериментам.

Для агностических сетей первого типа:

	min	mean	max
classic	0.70	0.37	0.33
diameter	0.70	0.36	0.33
error	0.57	0.39	0.32
clustering	0.61	0.37	0.33

Таблица 11:

Для агностических сетей второго типа:

	min	mean	max
classic	0.88	0.77	0.64
diameter	0.87	0.77	0.63
error	0.88	0.81	0.62
clustering	0.88	0.80	0.65

Таблица 12:

6 Заключение

Итак, в данной работе были предложены:

- две структрных метрики на множестве агностических нейронных сетей
- четыре метода сравнения метрик, заданных на конечном множестве
- три модификации классического генетического алгоритма для генерации агностических нейронных сетей

Улучшить скорость сходимости классического генетического алгоритма не получилось. Мы дадим одно из возможных объяснений этому. В [5] генетический алгоритм производит ненаправленный поиск подходящей модели. При построении WANN №2 все мутации приводят только к усложнению модели, поэтому в этом случае гентический алгоритм представляет собой рандомизированный жадный, в следствие чего поиск подходящей модели уже не является ненаправленным. Именно поэтому замена худших моделей в популяции на случайно сгенерированные не ведет к улучшению: мы пытаемся увеличить скорость сходимости направленного поиска, подменяя его на ненаправленный.

7 Список литературы

- [1] Riccardo Poli, William B. Langdon, Nicholas F. McPhee A Field Guide to Genetic Programming, 2008.
- [2] Koza, J. R. Genetic programming. In Williams, J. G. and Kent, A. (editors) // Encyclopedia of Computer Science and Technology, 1998. Vol. 39. P.: 29-
- 43. [3] Ivan Zelinka, Zuzana Oplatkova, and Lars Nolle Analytic programming –

symbolic regression by means of arbitrary evolutionary algorithms, August 2008.

- [4] А. А. Варфоломеева Выбор признаков при разметке библиографических списков методами структурного обучения, 2013.
- [5] Kulunchakov A.S., Strijov V.V. Generation of simple structured Information Retrieval functions by genetic algorithm without stagnation // Expert Systems with Applications, 2017, 85:221-230.
- [6] https://weightagnostic.github.io/