Министерство образования и науки Российской Федерации

ФГБОУ ВО Рыбинский государственный авиационный технический университет имени П.А. Соловьева

Факультет радиоэлектроники и информатики
Кафедра математического и программного обеспечения
электронных вычислительных средств

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

по дисциплине

Математические методы анализа данных

по теме

Разработка регрессионной модели объекта по результатам экспериментов Вариант 8

Студент группы ИПБ-13 Преподаватель, доцент

Иванов Р.А. Воробьев К. А.

Содержание

1.	Линейная регрессия	3
2.	Параболическая регрессия	5
3.	Множественная регрессия	7
4.	Выводы	9
5 .	Приложения	10

1. Линейная регрессия

Ниже представлена выборка в исходном и стандартизированном видах (таблица 1).

Х Исходное	Х Исходное У Исходное Х Стандартизированное		<i>Y</i> Стандартизированное
0.32	13.24	-0.697175	-0.668287
0.08	12.38	-1.103296	-1.094642
1.02	15.65	0.487346	0.526499
0.19	12.78	-0.917158	-0.896337
0.0	12.04	-1.23867	-1.263201
1.06	15.66	0.555033	0.531457
0.26	12.96	-0.798705	-0.8071
0.16	12.59	-0.967923	-0.990532
0.45	13.58	-0.477193	-0.499728
1.58	17.56	1.434962	1.473404
1.32	16.63	0.994997	1.012346
1.47	17.04	1.248823	1.215608
0.55	13.99	-0.307975	-0.296466
0.63	14.24	-0.172602	-0.172525
1.89	18.48	1.959536	1.929505

Таблица 1 – Выборка для линейной регрессии

Ниже представлено математическое ожидание и среднеквадратичное отклонение исходной выборки.

тарактористики исходной высорки			
Выборка	Мат. ожидание	Среднеквадратичное отклонение	
X	0.73200000000000001	0.5909562871594931	
Y	14.588	2.0170975848150396	

Таблица 2 – Характеристики исходной выборки

Применив метод наименьших квадратов получим такую систему линейных уравнений для определени параметров уравнения регрессии.

$$y = ax + b$$

$$F(a,b) = \sum_{i=1}^{n} (ax_i + b - y_i)^2$$

$$\begin{cases} \frac{\partial F(a,b)}{\partial a} = 2\sum_{i=1}^{n} (ax_i + b - y_i)x_i = a \ 2\sum_{i=1}^{n} x_i^2 + b \ 2\sum_{i=1}^{n} x_i - 2\sum_{i=1}^{n} x_i y_i \\ \frac{\partial F(a,b)}{\partial b} = 2\sum_{i=1}^{n} (ax_i + b - y_i) = a \ 2\sum_{i=1}^{n} x_i + b \ 2n - 2\sum_{i=1}^{n} y_i \end{cases}$$

Решив систему было получено следующее уравнении линейной регрессии:

$$y = 0.9996986902215902 * x + 0.0000000000000032566$$

На графике представлена выборка в стандартизированном виде(красные точки) и уравнение регрессии (рис. 1). Видно, что уравнение достаточно хорошо описывает взаимосвязь рассматриваемых величин, но все же присутсвуют точки, которые немного выбиваются, что говорит о не особо идиальной взаимосвязи.

Рис. 1 – Линейная регрессия

Расчётное значение критерия Фишера (F-критерий) равно 21562.733249157056. Табличное значение критерия для уровня доверия 95% равно 4.67. Так как расчётный критерий много больше табличного, мы можем утверждать, что полученное уравнение регрессии статистически значимо.

Расчетное значение критерия Стьюдента для коэффициентов a и b равно 3.7357497490332565 и 1.2169545309210383e-15 соответственно. Критическому значению t-критерия соответствует 2.16037, таким образом можно утверждать, что параметр b статистически незначим и им можно пренебречь, в отличии от параметра a.

Вычисленный коэффициент детерминации $R^2=0.9996986902215901$ означает, что изменение X в 99,99% случаев влечет за собой изменение Y.

2. Параболическая регрессия

Ниже представлена выборка в исходном и стандартизированном видах (таблица 3), а также параметры первой (таблица 4)

Х Исходное	X Исходное Y Исходное X Стандартизированное		<i>Y</i> Стандартизированное
0.83 14.65		-0.658295	-0.57669
4.7	152.1	1.034838	0.739438
3.46	92.27	0.492336	0.166547
0.07	2.82	-0.990797	-0.689966
0.8	14.0	-0.67142	-0.582914
8.58	416.15	2.732347	3.267802
0.4	7.49	-0.846421	-0.645249
2.05	43.76	-0.124542	-0.297952
4.8	155.84	1.078589	0.77525
1.69	34.17	-0.282043	-0.389779
0.54	9.71	-0.785171	-0.623992
3.82	110.14	0.649837	0.337658
2.29	50.53	-0.019542	-0.233127
0.84	15.1	-0.65392	-0.572381
0.15	4.42	-0.955796	-0.674645

Таблица 3 – Выборка для параболической регресии

Таблица 4 – Характеристики исходной выборки

Выборка	Мат. ожидание	Среднеквадратичное отклонение
X	2.3346666666666667	2.285703003940412
Y	74.8766666666668	104.43514585085276

Применив метод наименьших квадратов получим такую систему линейных уравнений для определени параметров уравнения регрессии.

$$y = ax^{2} + bx + c$$

$$F(a, b, c) = \sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i})^{2}$$

$$\begin{cases} \frac{\partial F(a,b,c)}{\partial a} = 2 \sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i})x_{i}^{2} = a \ 2 \sum_{i=1}^{n} x_{i}^{4} + b \ 2 \sum_{i=1}^{n} x_{i}^{3} + c \ 2 \sum_{i=1}^{n} x_{i}^{2} - 2 \sum_{i=1}^{n} x_{i}^{2} y_{i} \end{cases}$$

$$\begin{cases} \frac{\partial F(a,b,c)}{\partial a} = 2 \sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i})x_{i} = a \ 2 \sum_{i=1}^{n} x_{i}^{3} + b \ 2 \sum_{i=1}^{n} x_{i}^{2} + c \ 2 \sum_{i=1}^{n} x_{i} - 2 \sum_{i=1}^{n} x_{i} y_{i} \end{cases}$$

$$\frac{\partial F(a,b,c)}{\partial c} = 2 \sum_{i=1}^{n} (ax_{i}^{2} + bx_{i} + c - y_{i}) = a \ 2 \sum_{i=1}^{n} x_{i}^{2} + b \ 2 \sum_{i=1}^{n} x_{i} + c \ 2n - 2 \sum_{i=1}^{n} y_{i} \end{cases}$$

Итоговое уравнение:

 $y = 0.2135817829018743 * x^2 + 0.6909999979747826 * x - 0.21358178290187405$

На графике представлена выборка в стандартизированном виде (красные точки) и уравнение регрессии (рис. 2).

Рис. 2 – Параболическая регрессия

3. Множественная регрессия

Ниже представлена выборка в исходном и стандартизированном видах (таблица 5), а также параметры первой (таблица 6)

Х Исходное	<i>Y</i> Исходное	<i>Z</i> Исходное	Х Станд.	<i>Y</i> Станд.	Z Станд.
2.3	6.33	59.06	-0.078401	1.285818	1.158237
3.33	0.03	15.79	1.170353	-0.950696	-0.558056
3.16	0.23	15.7	0.964248	-0.879696	-0.561626
2.43	0.15	8.81	0.079209	-0.908096	-0.834916
1.34	0.28	2.36	-1.242288	-0.861946	-1.090754
1.68	1.17	11.51	-0.830078	-0.545994	-0.727822
1.91	8.58	74.74	-0.55123	2.084574	1.78018
3.54	5.29	61.22	1.424954	0.916616	1.243913
2.64	2.53	31.03	0.333809	-0.06319	0.046434
3.42	2.59	35.02	1.279468	-0.04189	0.204696
1.12	0.22	0.16	-1.509012	-0.883246	-1.178016
1.94	1.89	20.75	-0.514858	-0.290392	-0.361319
3.3	7.9	76.99	1.133982	1.843172	1.869426
1.05	1.08	6.81	-1.593879	-0.577944	-0.914246
2.31	2.35	27.94	-0.066277	-0.127091	-0.07613

Таблица 5 – Выборка для множественной регресии

Таблица 6 – Характеристики исходной выборки

Выборка	Мат. ожидание	ие Среднеквадратичное отклонение	
X	2.36466666666666	0.8248221357089998	
Y	2.708	2.816882910831285	
Z	29.85933333333333	25.21130949042953	

Применив метод наименьших квадратов получим такую систему линейных уравнений для определени параметров уравнения регрессии.

$$z = ax + by + c$$

$$F(a, b, c) = \sum_{i=1}^{n} (ax_i + by_i + c - z_i)^2$$

$$\begin{cases} \frac{\partial F(a,b,c)}{\partial a} = 2\sum_{i=1}^{n} (ax_i + by_i + c - z_i)x_i = a \ 2\sum_{i=1}^{n} x_i^2 + b \ 2\sum_{i=1}^{n} x_iy_i + c \ 2\sum_{i=1}^{n} x_i - 2\sum_{i=1}^{n} x_iz_i \\ \frac{\partial F(a,b,c)}{\partial b} = 2\sum_{i=1}^{n} (ax_i + by_i + c - z_i)y_i = a \ 2\sum_{i=1}^{n} x_iy_i + b \ 2\sum_{i=1}^{n} y_i^2 + c \ 2\sum_{i=1}^{n} y_i - 2\sum_{i=1}^{n} y_iz_i \\ \frac{\partial F(a,b,c)}{\partial c} = 2\sum_{i=1}^{n} (ax_i + by_i + c - z_i) = a \ 2\sum_{i=1}^{n} x_i + b \ 2\sum_{i=1}^{n} y_i + c \ 2n - 2\sum_{i=1}^{n} z_i \end{cases}$$

Итоговое уравнение:

z = 0.24084103100742218000 * x + 0.90807086877838860000 * y - 0.00000000000000022177

Рис. 3 – Множественная регрессия

4. Выводы

Подводя общий итог можно сказать, что все модели достаточно точно описывают взяимосвязь между рассмотренными СВ и могут применяться для оценки данных за пределами эксперементальной выборки.

5. Приложения

Класс для вспомогательных вычислений

```
package helpers;
  import java.util.stream.DoubleStream;
5
  * Класс для вспомогательных вычислений
6
   * @author Roman
9
  public class CalculationHelper {
10
12
13
       * Метод для нормализации массива значений
14
       * @param array массив значений
       * @return нормализованный массив
16
       */
      public static double[] normalizedArray(double[] array) {
          double expValue = calculateExpectedValue(array);
          double standartDeviation = calculateStandardDeviation(array);
20
          return DoubleStream.of(array).map(xi ->
                   (xi - expValue) / standartDeviation
          ).toArray();
23
      }
24
      /**
26
       * Метод для подсчета стандартного отклонения для массива значений
27
28
       * @param array массив значений
29
       * @return стандартное отклонение
31
      private static double calculateStandardDeviation(double[] array) {
          return Math.sqrt(calculateDispersion(array));
34
35
      /**
36
       * Метод для подсчета диссперсии для массива значений
37
       * @param array массив значений
39
       * @return диссперсия
40
41
      public static double calculateDispersion(double[] array) {
42
          double expValue = calculateExpectedValue(array);
43
          return calculateExpectedValue(
44
45
                   DoubleStream.of(array)
46
                            .map(s \rightarrow Math.pow(s - expValue, 2))
                            .toArray()
47
          );
48
49
```

```
* Метод для подсчет математического ожидания для массива значений
52
53
        * @param array массив значений
54
        * @return математическое ожидание
       public static double calculateExpectedValue(double[] array) {
           return DoubleStream.of(array).sum() / array.length;
58
       /**
61
        * Метод для подсчета коэффициента Фишера
        * нужен для анализа реграссии
63
64
                      первоначальный массив нормализованных значений
        * @param y
65
        * @рагат newY новые значения Y, высчитаные по полученной формуле
        * @return коэффициент Фишера
        */
68
       public static double calculateCoefficientFisher(double[] y,
       double | | newY) {
           double expValueY = CalculationHelper.calculateExpectedValue(y);
71
           double numerator = 0;
72
           double denominator = 0;
73
           for (int i = 0; i < y.length; i++) {
               numerator += Math.pow(newY[i] - expValueY, 2);
75
                denominator += Math.pow(y[i] - newY[i], 2) / (y.length - 2);
76
           return numerator / denominator;
79
80
       /**
81

    Метод для высчитывания коэффициентов Стьюдента

82
        * @рагат а значение стоящее у переменной X в уравнении функции
83
        * @param b значение b в уравнениее функции
84
        * @рагат у массив значений Y
85
        * @рагат х массив значений X
        * @return коэффициенты Стьюдента
87
88
       public static double [] calculateCoefficientStudent(double a,
89
       double b, double [] y, double [] x) {
90
           double [] result = new double [2];
91
           double expValueY = calculateExpectedValue(y);
92
           double expValueX = calculateExpectedValue(x);
           double residual Dispersion Y = Double Stream.of(y)
94
                    .map(valuyY \rightarrow Math.pow(valuyY - expValueY, 2))
95
                    . sum();
96
           residual Dispersion Y = Math. sqrt (residual Dispersion Y / (y. length - 2));
           double numerator A = Double Stream . of(x)
98
                    .map(value -> Math.pow(value, 2))
99
                    . sum ();
100
           double denominator A = Double Stream.of(x)
                    .map(value -> Math.pow(value - expValueX, 2))
                    . sum();
103
           numeratorA *= residualDispersionY;
104
           denominatorA *= y.length;
           result [0] = a / Math.sqrt (numeratorA / denominatorA);
106
```

Вспомогательный класс для вычисления различных видов регрессий

```
package helpers;
3 import org.apache.commons.math.linear.RealVector;
4 import org.apache.commons.math.stat.regression.OLSMultipleLinearRegression;
5 import org.apache.commons.math.stat.regression.SimpleRegression;
6 import org.apache.commons.math3.fitting.PolynomialCurveFitter;
  import org.apache.commons.math3.fitting.WeightedObservedPoints;
  public class RegressionHelper extends OLSMultipleLinearRegression {
9
      /**
       * Метод для высчитывания коэффициентов параболической регрессии
       * @param arrayX массив значений X
12
       * @param arrayY массив значений Y
13
       * @return коэффициенты уравнения
      public static double[] calculateCoefficientPolynomialRegression(
16
      double[] arrayX, double[] arrayY) {
17
          WeightedObservedPoints obs = new WeightedObservedPoints();
          for (int j = 0; j < arrayX.length; <math>j++) {
19
              obs.add(arrayX[j], arrayY[j]);
20
21
          PolynomialCurveFitter fitter = PolynomialCurveFitter.create(2);
          return fitter.fit(obs.toList());
23
      }
24
      /**
       * Метод для высчитывания коэффициентов множественной регрессии
27
       * @рагат z массив значений Z
2.8
       * @param data масив со значениям X и Y
29
       * @return коэффициенты уравнения
30
       */
      public static double[] calculateCoefficientMultipleRegression(
32
      double [] z, double [][] data) {
33
          RegressionHelper regressionHelper = new RegressionHelper();
34
          regressionHelper.newSampleData(z, data);
          RealVector vector = regressionHelper.calculateBeta();
36
          return vector.getData();
      }
38
      /**
40
       * Метод для получения линейной зависимости по vfccbdfv значений
41
       * @рагат х массив значений X
42
       * @рагат у массив значений Y
43
       * @return линейная регрессия
44
```

```
public static SimpleRegression getSimpleRegression(double[] x,

double[] y) {
    SimpleRegression regression = new SimpleRegression();
    for (int i = 0; i < x.length; i++) {
        regression.addData(x[i], y[i]);
    }
    return regression;
}</pre>
```