浙江理工大学 2009 - 2010 学年 第二学期 《高等数学 B》期末试卷 (B) 卷

班级			学号					_ 姓名			
题号	_	=	三							总分	阅卷人
			(1)	(2)	(3)	(4)	(5)	(6)	(7)		
得 分											

- 一. 选择题(本题共5小题,每小题5分,满分25分)
 - (1) 设常数 k > 0, 则级数 $\sum_{n=1}^{n=\infty} (-1)^n \frac{k+n}{n^2}$ ()

 - (A) 发散 (B) 条件收敛
 - (C) 绝对收敛 (D) 收敛性与 k 有关
 - (2) $\int_0^a dx \int_{-\sqrt{(\frac{a}{2})^2 x^2}}^{\sqrt{(\frac{a}{2})^2 x^2}} f(x, y) dy =$ ()
 - (A) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{\frac{a}{2}\cos\theta} f(\rho\cos\theta, \rho\sin\theta) d\rho$ (B) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(\rho\cos\theta, \rho\sin\theta) d\rho$ (C) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$ (D) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(\rho\cos\theta, \rho\sin\theta) \rho d\rho$
 - (3) 二元函数 z = f(x, y) 在点 (x,y) 偏导数都存在是其在该点可微的 ()
 - (A) 充分条件 (B) 必要条件
 - (C) 充要条件 (D) 既非充分又非必要条件
 - (4) $\sum_{n=1}^{\infty} (-1)^{n-1} a_n = 2, \sum_{n=1}^{\infty} a_{2n-1} = 5$, 则级数 $\sum_{n=1}^{\infty} a_n = ($)

(A) 3 (B) 7 (C)8 (D) 9

- (5) 二元函数 z = f(x, y) 在 (x_0, y_0) 处可微的充分条件是 ()
 - (A) f(x,y) 在 (x_0,y_0) 连续
 - (B) $f'_{x}(x,y), f'_{y}(x,y)$ 在 (x_{0},y_{0}) 的某邻域内存在

 - (C) $\triangle z f'_x(x_0, y_0) \triangle x f'_y(x_0, y_0) \triangle y \\ \stackrel{\triangle}{=} \sqrt{(\triangle x)^2 + (\triangle y)^2} \to 0$ 时,是无穷小 (D) $\frac{\triangle z f'_x(x_0, y_0) \triangle x f'_y(x_0, y_0) \triangle y}{\sqrt{(\triangle x)^2 + (\triangle y)^2}}$ 当 $\sqrt{(\triangle x)^2 + (\triangle y)^2} \to 0$ 时,是无穷小
- 二. 填空题(本题共5小题,每小题4分,满分20分)

- (3) 设 $e^{-xy} 2z + e^z = 0$, 则 $\frac{\partial z}{\partial x} =$ _____
- $(4) \int_0^1 \mathrm{d}y \int_y^{\sqrt{y}} \frac{\sin x}{x} \mathrm{d}x = \underline{\qquad}$
- (5) 方程 $y'' + \frac{2}{1-y}y' = 0$ 满足初始条件 $y|_{x=0} = 0, y'|_{x=0} = 1$ 的特解为______

三. 解答题 (55分)

(1) 计算 $\iint_D |y-x^2| \mathrm{d}x \mathrm{d}y$,其中 D 是以 $|x| \le 1$ 和 $0 \le y \le 2$ 围成的闭区域. (8分)

(2) 求下列曲面所围形体的体积:z = x + y, z = xy, x + y = 1, x = 0, y = 0.(8 分)

(3) 求级数 $\sum_{n=1}^{n=\infty} \frac{x}{n^x}$ 的收敛域.(8 分)

(4) 将 $f(x) = \frac{1}{x^2+3x+2}$ 展开成 x-1 的幂级数.(9 分)

(5) 求
$$y'' - 8y' + 16y = e^{4x}$$
 的通解 (8 分)

(6) 已知 $z = (x^2 + y^2)e^{-\arctan\frac{y}{x}}$,求 dz 和 $\frac{\partial^2 z}{\partial y \partial x}$.(8 分)

(7) 设函数 f(x) 在 [a,b] 上满足 $a \leq f(x) \leq b, |f'(x)| < q < 1, 令 <math>u_n = f(u_{n-1}), n = 1, 2, \cdots, u_0 \in [a,b],$ 证明 $\sum_{n=1}^{\infty} (u_{n+1} - u_n)$ 绝对收敛. (6 分)