Выпускная квалификационная работа

Построение ансамбля алгоритмов рекомендаций

Выполнил:

студент 417 группы Кудрявцев Георгий Алексеевич

Научный руководитель: д.ф-м.н., профессор Дьяконов Александр Геннадьевич

3 мая 2016 г.

Неформальная постановка задачи

Требуется улучшить качество работы алгоритмов ранжирования при помощи ансамблирования уже существующих методов.

Предметная область

Рассматривается задачи ранжирования по данным с двоичной релевантностью.

На практике данная задача решается при помощи алгоритмов машинного обучения.

В данной работе рассматриваются факторизационные методы и их линейные ансамбли.

Актуальность задачи

Построение рекоммендаций для:

- социальных сетей
- сайтов знакомств
- интернет магазинов

Цель и задачи

Цель: разработать метод ансамблирования, который стабильно улучшает качество ранжирования. Задачи:

- Составить обзор современных факторизационных методов ранжирования.
- Предложить эффективный метод ансамблирования.
- Реализовать методы и провести их сравнительный анализ.

Формальная постановка задачи

Входные данные:

матрица R размера $M \times N$, где M - количество пользователей, N - количество предметов. $R_{ui}=1$, если пользователей u взаимодействовал с предметов i. В противном случае $R_{ui}=0$.

Выходные данные:

Для каждого пользователя u ранжированный список предметов, которые не лежат в тренировочной выборке.

Обзор существующих методов

- **CLiMF**¹ Факторизационный метод, который оптимизирует сглаженную версию метрики MRR.
- MPR_MF² Факторизационный метод, который оптимизирует AUC.
- **TFMAP**³ Факторизационный метод, который оптимизирует сглаженную метрику MAP.
- iMF⁴ Факторизационный метод, который оптимизирует взвешенную квадратичную ошибку.

 $^{^1\}mbox{Yue Shi},$ Alexandros Karatzoglou, Linas Baltrunas. CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering. 2012

²Steffen Rendle, Christoph Freudenthaler, Zeno Gantner. BPR: Bayesian Personalized Ranking from Implicit Feedback. 2009

³Yue Shia,Alexandros Karatzogloub, Linas Baltrunas. TFMAP: Optimizing MAP for Top-N Context-aware Recommendation. 2012

⁴Yifan Hu, Yehuda Koren, Chris Volinsky. Collaborative Filtering for Implicit Feedback Datasets. 2008

Линейный ансамбль

Пусть имеется множество базовых алгоритмов $b_i(x)$. Необходимо подобрать такие веса α_i , чтобы линейная комбинация алгоритмов $\hat{b}(x) = \sum_i \alpha_i b_i(x)$ показывала лучший результат по какому-нибудь заданному функционалу.

Оптимальное взвешенное голосование

Рассмотрим линейную комбинацию двух алгоритмов ранжирования в следующем виде:

$$\hat{f}_{ui} = lpha f_{ui}^{m_1} + (1-lpha) f_{ui}^{m_2}$$
 , где $0 \leq lpha \leq 1$

Рис. : Две вертикальные линии обозначают размер величины f. Чем выше точка, тем больше величина. Невертикальные линии обозначают линейные комбинации величин f. Если $\alpha=0$, то линейная комбинация учитывает только Ranker m_1 , если $\alpha=1$, то линейная комбинация учитывает только Ranker m_2