Оглавление

0.1	Перебор перестановок в лекцикографическом порядко	е	(д	g	y-	
	гой способ)					1
0.2	Перебор с минимальным изменением					
0.3	Сочетания и бином Ньютона					2
0.4	Перебор сочетаний с хорошей нумерацией					

Лекция 3: Продолжение

27.09.2023

0.1 Перебор перестановок в лекцикографическом порядке (другой способ)

Алгоритм. Будем брать элементы (t_1,\ldots,t_k) из T_k и сопоставлять им перестановки так, как делали ранее. Переход к следующей перестановке осуществляется путем прибавления единицы к (t_1,\ldots,t_k) . (причем последний элемент в (t_1,\ldots,t_k) всегда ноль, т.к. ничего не значит)

	num	t	р
	0	(0, 0, 0, 0)	(1, 2, 3, 4)
	1	(0, 0, 1, 0)	(1, 2, 4, 3)
	2	(0, 1, 0, 0)	(1, 3, 2, 4)
_	3	(0, 1, 1, 0)	(1, 3, 4, 2)
Пример. (для P_4)	4	(0, 2, 0, 0)	(1, 4, 2, 3)
	5	(0, 2, 1, 0)	(1, 4, 3, 2)
	6	(0, 3, 0, 0)	(2, 1, 3, 4)
	:	:	:
		(0 0 1 0)	. (4 0 0 1)
	23	(3, 2, 1, 0)	(4, 3, 2, 1)

0.2 Перебор с минимальным изменением

На каждой итерации будем менять только два соседних элемента. Для этого необходимо:

• берем последний элемент в перестановке и меняем его с соседом до тех пор, пока элемент не дойдет до начала.

• когда этот элемент оказался в начале, мы меняем у него направление: теперь он будет менятся с соседом справ, а элемент, который оказался на последней позиции, делает 1 шаг (и так каждый раз, когда наш первый элемент меняет направление). Такие действия применяются ко всем элементам в перестановке.

Алгоритм. Кроме самой перестановки р и ее номера t (на этот раз младший разряд в номере — последний), будем хранить массив d, в котором будем хранить направление движения элементов. Если элемент движется вправо, то d[i]=+, если влево, то d[i]=-. Начальное значение d[i]=- для всех i.

Также храним j где будем записывать индекс элемента в t, в котором значение увеличилось.

- 1. Прибавляем 1 к t
- 2. Определяем номер разряда в котором значение увеличивается на 1, записываем в j
- 3. $\forall i \in [1, n] : i > j$, меняем $d_i = -d_i$.
- 4. ј (не номер, именно такой элемент) меняем с соседом слева если $d_j = -,$ и с соседом справа, если $d_j = +.$

		,	1		
	num	t	d	р	j
	0	0000		1234	-
	1	0001		1243	4
	2	0002		1423	4
	3	0003		4123	4
	4	0010	+	4132	3
	5	0011	+	1432	4
Пример.	6	0012	+	1342	4
	:	:	:	:	:
	19	0113	+ +	4231	4
	20	0120	++	4213	3
	21	0120	++	2413	4
	22	0121 0122	++	2143	4
		_		_	_
	23	0123	++	2134	4
	24	1000	-+	_	1

0.3 Сочетания и бином Ньютона

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Свойства. (Свойства сочетаний)

1.
$$C_n^k = C_n^{n-k}$$

2.
$$C_{n-1}^k + C_{n-1}^{k-1} = C_n^k$$

Доказательство. Доказывается путем подстановки непосредственно в формулу, или можно рассматривать пути на целочисленной решетке.

Теорема 1. (Бином Ньютона)

$$\forall a, b \in \mathbb{R}, n \in \mathbb{N}_0 : (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Доказательство. (По индкуции)

- 1. База n = 1 очевидна.
- 2. индкуционый переход $n-1 \to n$:

$$(a+b)^{n} = (a+b)(a+b)^{n-1} = a(a+b)^{n-1} + b(a+b)^{n-1} =$$

$$= a \cdot \sum_{k=0}^{n-1} C_{n-1}^{k} a^{k} b^{n-1-k} + b \cdot \sum_{k=0}^{n-1} C_{n-1}^{k} a^{k} b^{n-1-k} =$$

$$= \sum_{k=0}^{n-1} C_{n-1}^{k} a^{k+1} b^{n-1-k} + \sum_{k=0}^{n-1} C_{n-1}^{k} a^{k} b^{n-k} =$$

$$= \sum_{k=1}^{n} C_{n-1}^{k-1} a^{k} b^{n-k} + \sum_{k=0}^{n-1} C_{n-1}^{k} a^{k} b^{n-k} =$$

$$= a^{n} + \sum_{k=1}^{n-1} C_{n-1}^{k-1} a^{k} b^{n-k} + b^{n} + \sum_{k=1}^{n-1} C_{n-1}^{k} a^{k} b^{n-k} =$$

$$= a^{n} + b^{n} + \sum_{k=1}^{n-1} (C_{n-1}^{k} + C_{n-1}^{k-1}) a^{k} b^{n-k} = (a+b)^{n}$$

0.4 Перебор сочетаний с хорошей нумерацией

Для того чтобы присваивать номер сочетанию, будем рассматривать сочетание как вектор из нулей и единиц: если элемент взяли — единица, иначе — ноль.

Пример. Вектору b = (1, 0, 1, 1, 1, 0, 0, 0) соответствует сочетание 1345.

Алгоритм. определяем номер рекурсивно:

$$num(b[1:n-1],m) = \begin{cases} num(b[1:n-1],m), & \text{если}b[n] = 0,\\ num(b[1:n-1],m-1), & \text{если}b[n] = 1,\\ \Gamma\text{де }m-\text{кол-во единиц.} \end{cases}$$

Пример. Рассмотрим b = (1, 0, 1, 1, 1, 0, 0, 0), m = 4:

$$\begin{aligned} num(b,m) = & C_6^4 + num(b[1:n-1],3) = \\ = & C_6^4 + C_4^3 + num(b[1:n-2],3) = \\ = & C_6^4 + C_4^3 + num(b[1:n-3],2) = \\ = & C_6^4 + C_4^3 + num(b[1:n-4],2) = \\ = & C_6^4 + C_4^3 + C_2^2 + num(b[1:n-5],1) = \\ = & C_6^4 + C_4^3 + C_2^2 + 0 = 15 + 4 + 1 = 20 \end{aligned}$$