Create and Analyze Features with Feature Engineering and Selection

Guillermo Fernández
DATA SCIENTIST

@guillermo_ai

Summary

Learn dimensionality reduction techniques for feature extraction

Understand what Factor Analysis is

Comprehend the most common clustering techniques

Perform feature selection and feature engineering methods

Extracting Features

Principal Component Analysis (PCA)

Converting and compressing data

Into something that captures the essence of the original data

Linear transformation algorithm

Transformation into a new space

Finds directions of maximum variance

That are mutually orthogonal

PCA Intuition

Interpreting PCA

Component	Eigenvalue	Proportion	Cumulative
1	0.57	0.57/1.1 = 0.52	0.52
2	0.31	0.31/1.1 = 0.28	0.8
3	0.13	0.13/1.1 = 0.12	0.92
4	0.09	0.09/1.1 = 0.08	1
Total	1.1		

PCA Considerations

Needs feature scaling or mean normalization in order to have comparable range of values

Only captures linear correlations (although there exist non-linear adaptations)

Explains the variance in data

Closely related to Factor Analysis but less domain specific

Non Linear Methods

t-SNE

t-distributed stochastic neighbor embedding

SOM

Self Organized Maps

Demo

Learn how to perform a PCA with Python Using package:

- Scikit-learn

Factor Analysis

Factor Analysis

Is a method to model or search observed variables in terms of a smaller number of influential underlying unobservable factors or latent variables.

Goals of Factor Analysis

Extract maximum common variance

From all variables of the dataset

Help interpreting data

Identifying influential features, highlighting relations among observations

Factor Analysis Intuition

$$Y_i = \beta_{i0} + \beta_{i1}F_1 + \beta_{i2}F_2 + \beta_{i3}F_3 + e_i$$

Observed Variables

Factor Analysis Assumptions

No outliers in dataset

Dataset size greater than number of factors

Variables should not present perfect multicollinearity

Does not require homoscedasticity between the variables

Factor Analysis Types

Exploratory

Assumes any observed variable is associated with any factor

Confirmatory

Assumes each factor is associated with certain subset of observed variables

Factor Analysis Steps

Factor Extraction

Uses variance partitioning methods

Factor Rotation

Tries to transform factors into uncorrelated factors for better interpretation

Deciding the Number of Factors

Comparison between PCA and FA

PCA

Explain maximum amount of variance

Components are orthogonal

Linear combination of observed variables

Uninterpretable

Observational

FA

Explains covariance

Orthogonality desired but not needed

Linear combination of unobserved variables

Interpretable

Modeling technique

Demo

Perform a Factor Analisis in Python

Using package

- Scikit-learn
- Factor_Analyzer

Clustering

Clustering Goals

Divide a dataset into natural groups

Previously undefined

Describe unobserved groups

With the observed data

Clustering Methods

Hierarchical

Agglomerative and Divisive

Non Hierarchical

K-means

Model Based

Uses a mixture model to specify the density function of variables

Measures of Association

Hierarchical Clustering

Dendrogram - Tree Diagram

K-Means

Deciding the Number of Clusters

Demo

Perform K-Means and Hierarchical clustering techniques in Python

Using packages:

- Scikit-learn
- Scipy

Selecting Features

"More data beats clever algorithms, but better data beats more data."

Peter Norvig

Goals of Selecting Features

Identify

Important features

Remove

Irrelevant and redundant features

Improve

Interpretability and predictive model performance

Benefits of Selecting Features

Enables algorithms to train faster

Reduces complexity of a model

Improves accuracy of a model

Reduces overfitting

Methods for Selecting Features

Filter Methods

Not based on models

Wrapper Methods

Based on models

Embedded Methods

Based on models. Tries to combine filter and wrapper methods

Filter Methods

Wrapper Methods

Embedded Methods

Model Performance Set of All Features **Generate a Subset Decision Tree Based Algorithms** Ridge L2 Regularisation **Lasso L1 Regularisation**

Demo

Perform some of the most common Filter Methods for selecting features

Using packages:

- Scikit-learn
- Scipy

Engineering Features

"Is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data."

Jason Brownlee

"Coming up with features is difficult, time-consuming, requires expert knowledge.

Applied machine learning is basically feature engineering."

Andrew Ng

Some Considerations

Ideally at the begining

But might have knowledge after performing EDA Is a representation problem

How data is presented

Feature engineering and selection

Are not mutually exclusive

Goals of Engineering Features

Get the most out of your data

For predictive modeling and data interpretation

Improve and optimize

Predictive model results

Find the best representation of the data

To learn a solution to a problem

Benefits of Engineering Features

Flexibility

Less complex models, faster to run, easier to understand and mantain

Simpler models

Easier to pick the most optimized parameters

Better results

Good features make you closer to the underlying problem

Suggested Pipeline

Feature Engineering Techniques

Imputation

Binning

Log Transform

Handling Outliers

Feature Split

One-Hot Encoding

•

Feature Construction

Grouping Operations

Scaling

Extracting Dates

Demo

Perform some of the most common methods for engineering features

Using packages:

- Pandas
- Numpy
- Scikit-learn
- Datetime

