Predicting King County Property Prices

Flatiron School, Data Science, Flex Program

Milad Shirani

Contents

- Project Overview
- Data
 - Categorical Data
 - Numerical Data
 - Data Preparation
 - Converted Data
- Modeling and Results
- Interpretation of Coefficients
- Suggestions
- ▶ Q&A

Data

- 1. We use 21099 data points for our analysis
- Data is coming from King County Open Data Source and it contains information about a property such as
 - Number of bedrooms, bathrooms and floors in a house
 - Year when the property was built
- 3. Categorical variables are:
 - waterfront, condition, grade, zipecode
- 4. Numerical variables are:
 - price, bedrooms, bathrooms, sqft_living, floors, yr_built, lat, long
- 5. Data preparation contains removing outliers and setting maximum and minimum values for
 - bedrooms, bathrooms, sqft_living, floors, grade

Modeling and Results

- 1. We used Linear Regression for modeling
- 2. $R^2 = 0.72$
- 3. Root Mean Squared Error \$143922.7

Interpretation of Coefficients

1. 1% change in the scaled 'sqft_living' gives 0.4858% change in scaled 'price'

2. Changing 'grade' from '7 Average' to '12 Luxury' gives \$0.8268 changes in scaled 'price'.

Conclusion

- 1. We used linear regression to model the data
- 2. We concluded that
 - Latitude and Square Footage of Living Area are the first and second numerical features that have the highest impact on the price of a property
- 3. The property owners might consider the following that might increase the value of their property
 - Reduce the number of bedrooms
 - Increase the square footage of living area
 - Increase the grade of the property at lease to very good.

Next Steps

- 1. Adding other features such as renovation year or square footage of basement to the model
- 2. Adding some combination of features into the model
- 3. Considering adding polynomial features to the model

Q and A

