Logic practicum A

Inhoudsopgave

- A1: IEEE-754 floating point standaard voor enkelvoudige precisie.
- 1.
 - Exponent
 - Mantissa
 - Binair
- 2.
 - Exponent
 - Mantissa
 - Binair
- A2: Circuit minimaliseren I.
- A3: Circuit minimaliseren II.

A1: IEEE-754 floating point standaard voor enkelvoudige precisie.

Converteer op papier de volgende twee decimale getallen naar floating point enkelvoudige precisie. Gebruik daarbij het stappenplan zoals is uitgelegd in hoorcollege 1.

- 1.8,5
- $2.-12\frac{11}{16}$

1.

$$8,5 = 1.000100 \cdot 2^3$$

8	4	2	1	1/2	1/4	1/8
1	0	0	0	1	0	0

Exponent

$$127 + 3 = 130$$

Delen	Resultaat	Overblijfsel
130/2	65	0
65/2	32	1
32/2	16	0
16/2	8	0
8/2	4	0
4/2	2	0
2/1	1	0
1/2	0	1

Mantissa

 $8,5 = 1.000100 \cdot 2^3$ Mantissa = 000100

Binair

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0

21	22	23	24	25	26	27	28	29	30	31	32
0	0	0	0	0	0	0	0	0	0	0	0

2.

$$-12\frac{11}{16} = 1100.1011$$

8	4	2	1	1/2	1/4	1/8	1/16
1	1	0	0	1	0	1	1

Exponent

$$-12\frac{11}{16} = 1.1001011 \cdot 2^3$$

$$127 + 3 = 130$$

Delen	Resultaat	Overblijfsel
130/2	65	0
65/2	32	1
32/2	16	0
16/2	8	0
8/2	4	0
4/2	2	0
2/1	1	0
1/2	0	1

130 = 10000010

Mantissa

$$-12\frac{11}{16} = 1.1001011 \cdot 2^4$$

Mantissa = 1001011

Binair

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	0	0	0	0	0	1	0	1	0	0	1	0	1	1	0	0	0	0

21	22	23	24	25	26	27	28	29	30	31	32
0	0	0	0	0	0	0	0	0	0	0	0

Converteer de volgende floating point enkelvoudige precisie codes naar een decimaal getal geschreven als breuk. Gebruik daarbij het stappenplan zoals is uitgelegd in hoorcollege 1.

- 1.0 × 41A60000
- 2.0 × C16A0000

1.

0 × 41A60000

- 2. Sign = 0, dus positief
- 3. Exponent = 1000 0011 = 131 127 = 4
- 4. Breuk = 0100 0011= 1.010011
- 5. $1.010011 \cdot 2^4 = 10100.11 = 20\frac{3}{4}$

2.

0 × C16A0000

- 2. Sign = 1, dus negatief
- 3. Exponent = $1000\ 0010 = 130 127 = 3$
- 4. Breuk = 1101 0100= 1.11010100
- 5. $1.11010100 \cdot 2^4 = 1110.10100 = 14\frac{5}{8}$

A2: Circuit minimaliseren I.

А	В	\cup	Q
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

1.
$$Q = \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot c$$

2. Na simulatie volgt dit circuit

3.
$$K[Q] = [3+3+3+3] + 4 = 16$$

4	7		L I	ı
4.	Zie	τa	be	ı

AB	00	01	11	10
0	1	1	0	1
1	0	1	0	0

001

101

-10 is $\overline{b} \cdot c$

000

010

0-0 is $\overline{a}\cdot\overline{c}$

$$Q' = \overline{b} \cdot c + \overline{a} \cdot \overline{c}$$

5.
$$k[Q'] = [2+2] + 2 = 6$$

A3: Circuit minimaliseren II.

Α	В	C	D	Q
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1

Α	В	C	D	Q
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

1.
$$Q = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot \overline{d}$$

2.
$$K[Q] = [4+4+4+4+4+4]+6 = 30$$

3. Zie tabel

AB	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	1	1	0	0
10	1	1	0	0

1-0- is
$$a\cdot \overline{c}$$

--01 is
$$\overline{c} \cdot d$$

$$Q' = a \cdot \overline{c} + \overline{c} \cdot d$$

5.
$$k[Q'] = [2+2] + 2 = 6$$

6. Circuit

7. Formule

Zoals je in in het circuit ziet komen de not en de and gates overeen met de vergelijking