ΓΡΑΜΜΑΤΙΚΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ

ΓΛΩΣΣΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ www.psounis.gr

Ιδιότητ

ΓΛΩΣΣΕΣ ΧΩΡΙΣ ΣΥΜΦΡΑΖΟΜΕΝΑ www.psounis.gr

Ορισμός: Μία γραμματική Χωρίς Συμφραζόμενα είναι μια τετράδα: $G = (V, \Sigma, S, P)$:

- *V* το σύνολο των μεταβλητών
- Σ το σύνολο των τερματικών συμβόλων ($V \cap \Sigma = \emptyset$)
- $S \in V$ είναι η αρχική μεταβλητή
- P το σύνολο κανόνων με κάθε κανόνα να είναι της μορφής $W \to w$ με $\{0^{2n}1^{3n} | n \ge 0\}$
 - $W \in V$ (είναι μία μεταβλητή) και
 - $w \in (V \cup \Sigma)^*$ (παράθεση μεταβλητών και μη τερματικών συμβόλων)

$\{0^n 1^n \mid n \ge 0\}$

$$\begin{cases} S \to 0S1 \\ S \to \varepsilon \end{cases}$$

Σχόλια:

- Τα παραπάνω λέγονται κανόνες της γραμματικής διότι ξεκινώντας από την μεταβλητή S μπορούμε να παράγουμε με διαδοχική χρήση των κανόνων οποιαδήποτε συμβολοσειρά της γλώσσας.
- Ο $1^{o\varsigma}$ κανόνας $S \to 0S1$ λέγεται και αναδρομικός κανόνας διότι επανεμφανίζει την
- Ο $2^{\circ\varsigma}$ κανόνας $S \to \varepsilon$ λέγεται και τερματικός κανόνας διότι σταματά τις εμφανίζεις μεταβλητών.

Παραδείγματα Παραγωγών:

$S \Rightarrow \varepsilon$	$S \Rightarrow 0S1 \Rightarrow 0\varepsilon 1 = 01$	$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 00S11 = 0011$	$\begin{array}{c} S \\ \Rightarrow 0S1 \\ \Rightarrow 00S11 \\ \Rightarrow 000S111 \\ \Rightarrow 000E111 = 000111 \end{array}$	S ⇒ 0S1 ⇒ 00S11 ⇒ 000S111 ⇒ 0000S111 ⇒ 0000S1111 ⇒ 0000€1111 = 00001111	 {

<u>Παράδειγμα 2:</u> Η Γραμματική για την γλώσσα $L = \{0^n 1^m 0^m 1^n | n, m \ge 0\}$ $(S \rightarrow 0S1 \mid X)$

$$X \to 1X0 \mid \varepsilon$$

Σχόλια: Το | διαβάζεται ή (ή διαζευκτικό)

τα	Γραμματική Χωρίς Συμφραζόμενα

$\frac{\mathbf{I}\sigma \delta \mathbf{\tau} \mathbf{\eta} \mathbf{\tau} \mathbf{\alpha}}{\{0^n 1^n \mid n \ge 0\}}$	$S \rightarrow 0S1 \mid \varepsilon$
$\frac{\mathbf{A}\mathbf{va\lambdaoyia}}{(0^{2n}1^{3n}\ln 20)}$	S → 00S111

$$\frac{\mathbf{Avio\acute{o}tnta}}{\{a^nb^m\mid n\leq m\}}\ S\to aSb\mid X,X\to bX\mid \varepsilon$$

$$\{a^n b^m \mid n < m\} \quad S \to aSb \mid X, X \to bX \mid b$$

$$\{a^n b^m \mid n > m\} \quad S \to aSb \mid X, X \to aX \mid a$$

$$\frac{\mathbf{K\acute{e}vrpo}}{(a^nb^mc^md^n|n,m\geq 0)}S \rightarrow aSd\mid X,X\rightarrow bXc\mid \varepsilon$$

$$\frac{(a^{n+m}b^mc^n|n,m\geq 0)}{(a^nb^jc^k|i=j+k)}S \rightarrow aSc\mid X,X\rightarrow aXb\mid \varepsilon$$

$$\{a^ib^jc^k|i>j+k\} \qquad \begin{array}{l} S\to aSc\mid X,X\to aXb\mid Y\\ Y\to aY\mid a \end{array}$$

$$\begin{cases} (a^n b^{n+m} c^n | \mathbf{n}, \mathbf{m} \ge 0) \\ \{a^i b^j c^k | j = i + k\} \end{cases} \begin{cases} S \to XY \\ X \to aXb \mid \varepsilon \\ Y \to bYc \mid \varepsilon \end{cases}$$

$$\begin{array}{lll} & \underline{\mathbf{Aidjevkn}} & S \rightarrow S_1 \mid S_2 \\ & \underline{\mathbf{Evhff/pow}} & S_1 \rightarrow X_1 X_2 & X_1 \rightarrow a X_1 b \mid \varepsilon & X_2 \rightarrow c X_2 \mid \varepsilon \\ \left[a^ib^jc^k\right] i = j \ \eta j = k) & S_2 \rightarrow Y_1 Y_2 & Y_1 \rightarrow a Y_1 \mid \varepsilon & Y_2 \rightarrow b Y_2 c \mid \varepsilon \\ & S_2 \rightarrow Y_1 Y_2 & Y_1 \rightarrow a Y_1 \mid \varepsilon & Y_2 \rightarrow b Y_2 c \mid \varepsilon \end{array}$$

Kavovikės
$$\{a^n | n \ge 0\}$$
 $S \rightarrow aS \mid \varepsilon$ $\{a^n | n > 0\}$ $S \rightarrow aS \mid a$

$$S \rightarrow aS \mid a$$

Ορισμός Κανονικής Γραμματικής:

KANONIKH FPAMMATIKH

Μία γραμματική χωρίς συμφραζόμενα θα λέγεται Κανονική Γραμματική αν και μόνο αν οι κανόνες της έχουν αποκλειστικά και μόνο τη

$$X \to \sigma$$
 $\dot{\eta}$ $X \to \sigma \Upsilon$

όπου

- X, Y ∈ V (είναι μεταβλητές)
- $\sigma \in \Sigma$ (είναι τερματικά σύμβολα, δηλαδή σύμβολα του αλφαβήτου ή η κενή συμβολοσειρά)

Λήμμα: Κάθε Κανονική Γραμματική είναι και Γραμματική Χωρίς Συμφραζόμενα

Κανόνες Μετατροπής ΜΠΑε,ΜΠΑ,ΝΠΑ σε Κανονική Γραμματική

- Κάθε κατάσταση γίνεται μεταβλητή. Ειδικά την αρχική κατάσταση την ονομάζουμε S.
- Βάζουμε τον κανόνα $X \to \sigma Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με το σύμβολο σ
- Βάζουμε τον κανόνα $X \to Y$ αν και μόνο αν από την κατάσταση X μεταβαίνουμε στην Y με ϵ -κίνηση
- Βάζουμε τον κανόνα $X \to \varepsilon$ αν η X είναι τελική κατάσταση.

Παράδειγμα: Στο ακόλουθο ΜΠΑ-ε

αντιστοιχεί η κανονική γραμματική

$$\begin{cases} S \to A \mid 0B \\ A \to 1\Gamma \\ B \to 0S \\ \Gamma \to B \mid \epsilon \end{cases}$$

Παράδειγμα: Στο ακόλουθο ΜΠΑ

αντιστοιχεί η κανονική γραμματική

$$\begin{cases} S \to 1\Gamma | 1\Delta | \varepsilon \\ \Gamma \to 0S \\ \Delta \to 1E \\ E \to 0S | \varepsilon \end{cases}$$

Παράδειγμα: Στο ακόλουθο ΝΠΑ

αντιστοιχεί η κανονική γραμματική

$$\begin{cases} S \to 0B \mid 1S \\ B \to 0\Gamma \mid 1S \\ \Gamma \to 0\Gamma \mid 1\Gamma \mid \varepsilon \end{cases}$$