Math 3B: Lecture 10

Noah White

February 1, 2019

More complicated rates of change

Suppose we have a car whose speed is descibed by the following curve. How far has it travelled in this time?

More complicated rates of change

Suppose we have a car whose speed is descibed by the following curve. How far has it travelled in this time?

Accumulated change

• Suppose we know the rate of change f(t), of some quantity (distance, water flow, population, etc).

Accumulated change

- Suppose we know the rate of change f(t), of some quantity (distance, water flow, population, etc).
- How do we find the total amount by which this changes between t = a and t = b?

Accumulated change

- Suppose we know the rate of change f(t), of some quantity (distance, water flow, population, etc).
- How do we find the total amount by which this changes between t = a and t = b?
- Answer: area under f(t) between a and b.

Areas under general curves

We would like to calculate the area between a function f(x) and the x-axis, between x = a and x = b.

Areas under general curves

We would like to calculate the area between a function f(x) and the x-axis, between x = a and x = b.

A first approach to calculating the area under a curve is to approximate using rectangles:

Areas under general curves

We would like to calculate the area between a function f(x) and the x-axis, between x = a and x = b.

A first approach to calculating the area under a curve is to approximate using rectangles:

(Too hard to draw, lets look at an animation)

The definite integral

Defintion

The definite integral of a function f(x) is defined to be

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \Delta x \sum_{k=1}^{n} f(a + k \Delta x)$$

where $\Delta x = \frac{b-a}{n}$.

The definite integral

Defintion

The definite integral of a function f(x) is defined to be

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \Delta x \sum_{k=1}^{n} f(a + k \Delta x)$$

where $\Delta x = \frac{b-a}{n}$.

Properties of definite integrals

Zero area

$$\int_a^a f(x) \ dx = 0$$

Properties of definite integrals

Adding areas

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx$$

More properties of definite integrals

Reversing the area

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

More properties of definite integrals

Reversing the area

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

Additivity

$$\int_{a}^{b} f(x) + g(x) \ dx = \int_{a}^{b} f(x) \ dx + \int_{a}^{b} g(x) \ dx$$

More properties of definite integrals

Reversing the area

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

Additivity

$$\int_{a}^{b} f(x) + g(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Lineararity (scalars factor out)

$$\int_{a}^{b} \alpha f(x) \ dx = \alpha \int_{a}^{b} f(x) \ dx$$

Theorem

For any a,

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=f(x)$$

Theorem

For any a,

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=f(x)$$

Theorem

For any a,

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

Theorem

For any a,

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

• $F(x) = \int_a^x f(t) dt$ is a function of x.

Theorem

For any a,

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

That is, $F(x) = \int_a^x f(t) dt$ is an antiderivative of f(x)!

Note

- $F(x) = \int_a^x f(t) dt$ is a function of x.
- every input x produces a number as an output.

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

Why?

Well $F(x) = \int_a^x f(t) dt + C$ for some a and C. So

$$F(b) - F(a) = \int_a^b f(t) dt + C - \int_a^a f(t) dt - C$$
$$= \int_a^b f(t) dt$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \ dx$$

Question

Evaluate the definite integral

$$\int_0^1 x^2 - 4 \ dx$$

Solution

An antiderivative of $x^2 - 4$ is $\frac{1}{3}x^3 - 4x$ so

$$\int_0^1 x^2 - 4 \, dx = \frac{1}{3} \cdot 1^3 - 4 - \frac{1}{3} \cdot 0^3 + 4 \cdot 0$$
$$= \frac{1}{3} - 4 = -\frac{11}{3}$$

Question

Evaluate the definite integral

$$\int_0^\pi \sin x \ dx$$

Question

Evaluate the definite integral

$$\int_0^{\pi} \sin x \ dx$$

Solution

An antiderivative of $\sin x$ is $-\cos x$ so

$$\int_0^{\pi} \sin x \, dx = -\cos \pi + \cos 0$$
$$= -(-1) + 1 = 2$$

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=f(x)$$

$$\frac{d}{dx}\int_{a}^{x}f(t)\ dt=f(x)$$

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$\frac{d}{dx} \int_{0}^{x} f(t) dt = f(x)$$

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$\frac{d}{dx} \int_{0}^{x} f(t) dt = f(x)$$

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

$$= \lim_{h \to 0} \frac{1}{h} h f(x)$$

$$\frac{d}{dx}F(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

$$= \lim_{h \to 0} \frac{1}{h} h f(x)$$

$$= f(x)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

A consequence (corrollary)

Corollary

For any antiderivative F(x) of f(x)

$$\int_a^b f(x) \ dx = F(b) - F(a)$$

Why?

Well $F(x) = \int_a^x f(t) dt + C$ for some a and C. So

$$F(b) - F(a) = \int_a^b f(t) dt + C - \int_a^a f(t) dt - C$$
$$= \int_a^b f(t) dt$$

The indefinite integral

We also use the following notation for the general antiderivative:

Definition

$$\int f(x) \ dx := F(x) + C$$

The indefinite integral

We also use the following notation for the general antiderivative:

Definition

$$\int f(x) \ dx := F(x) + C$$

Example

$$\int \sin(x) - x \, dx = -\cos(x) - \frac{1}{2}x^2 + C$$

Question

Find an antiderivative of f(x) = |x|?

Question

Find an antiderivative of f(x) = |x|?

Solution

Question

Find an antiderivative of f(x) = |x|?

Solution

• The FTC tells us that

$$F(x) = \int_{a}^{x} f(t) dt$$

is an antiderivative for any choice of a.

Question

Find an antiderivative of f(x) = |x|?

Solution

• The FTC tells us that

$$F(x) = \int_{a}^{x} f(t) dt$$

is an antiderivative for any choice of a.

Lets use a = 0.

Question

Find an antiderivative of f(x) = |x|?

Solution

• The FTC tells us that

$$F(x) = \int_{a}^{x} f(t) dt$$

is an antiderivative for any choice of a.

- Lets use a = 0.
- How should we calculate F(x)?

Use the defintition!

$$F(x) = \int_0^x |t| \ dt$$

is the area under |t|!

$$F(x) = \frac{1}{2}x^2 \quad \text{if } x \ge 0$$

If x < 0 then

$$F(x) = \int_0^x |t| \ dt = -\int_x^0 |t| \ dt$$

is the negative of the area under |t|!

$$F(x) = -\frac{1}{2}x^2 \quad \text{if } x \le 0$$

In summary

$$F(x) = \begin{cases} \frac{1}{2}x^2 & \text{if } x \ge 0\\ -\frac{1}{2}x^2 & \text{if } x \le 0 \end{cases}$$

or

$$F(x) = \frac{1}{2}x|x|$$