Отчёта по лабораторной работе №8

дисциплина: Математическое моделирование

Шапошникова Айталина Степановна НПИбд-02-18

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	9
4	Выволы	17

List of Tables

List of Figures

3.1	График для первого случая							•				16
3.2	График для второго случая											16

1 Цель работы

Изучить модель конкуренции двух фирм и построить графики.

2 Задание

Модель конкуренции двух фирм

Вариант 7

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом). Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1^2 \tilde{p}_1^2}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2^2 \tilde{p}_2^2}$$

Также введена нормировка $t=c_1\theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влия-

ния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - (\frac{b}{c_1} + 0.0016) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$M_{1.0} = 2.4, M_{2.0} = 1.7, p_{cr} = 19, N = 22, q = 1, \tau_1 = 15, \tau_2 = 18, \tilde{p}_1 = 12, \tilde{p}_2 = 10$$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн единиц.

Обозначения:

N – число потребителей производимого продукта;

au – длительность производственного цикла;

p – рыночная цена товара;

 \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции;

q – максимальная потребность одного человека в продукте в единицу времени; $\theta = \frac{t}{c_1}$ – безразмерное время.

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

8

3. Найдите стационарное состояние системы для первого случая.

3 Выполнение лабораторной работы

Постановка задачи

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{P}{S} = q(1 - \frac{p}{p_{cr}}), \tag{1}$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта)потребители отказываются от приобретения товара. Величина $p_{cr}=\frac{Sq}{k}$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{\partial M}{\partial t} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + NQ(1 - \frac{p}{p_{cr}})p - \kappa \tag{2}$$

Уравнение для рыночной цены р представим в виде

$$\frac{\partial p}{\partial t} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + NQ(1 - \frac{p}{p_{cr}})\right) \tag{3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + NQ(1 - \frac{p}{p_{cr}}) = 0 \tag{4}$$

Из (4) следует, что равновесное значение цены р равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p} N q}) \tag{5}$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{\partial M}{\partial t} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \delta p})^2 \frac{p_{cr}}{Nq} - \kappa \tag{6}$$

Уравнение (6) имеет два стационарных решения, соответствующих условию $\frac{\partial M}{\partial t}$ = 0

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b} \tag{7}$$

где

$$a=Nq(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta},b=\kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2} \tag{8}$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может

функционировать стабильно, то есть, терпит банкротство. Однако как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения M равны

$$\tilde{M}_{+}=Nq\frac{\tau}{\delta}(1-\frac{\tilde{p}}{p_{cr}})\tilde{p}, \tilde{M}_{-}=\kappa\tilde{p}\frac{\tau}{\delta(p_{cr}-\tilde{p})} \tag{9}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так что при $M<\tilde{M}_-$ оборотные средства падают ($\partial M/\partial t<0$), то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta = 1$, а параметр τ будем считать временем цикла с учётом сказанного.

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом).

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} + N_1 q (1 - \frac{p}{p_{cr}}) p - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}}) p - \kappa_2 \end{cases}$$
 (10)

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме соответственно. Величины N_1 и N_2 – числа потребителей, приобревших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\begin{cases} \frac{M_1}{\tau_1 \tilde{p}_1} = -N_1 q (1 - \frac{p}{p_{cr}}) \\ \frac{M_2}{\tau_2 \tilde{p}_2} = -N_2 q (1 - \frac{p}{p_{cr}}) \end{cases} \tag{11}$$

где \tilde{p}_1 и \tilde{p}_2 – себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} (1 - \frac{p}{\tilde{p}_1}) - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} (1 - \frac{p}{\tilde{p}_2}) - \kappa_2 \end{cases}$$
 (12)

Уравнение для цены по аналогии с (3)

$$\frac{\partial p}{\partial t} = -\gamma (\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq(1 - \frac{p}{p_{cr}}) \tag{13}$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr} \left(1 - \frac{1}{Nq} \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2}\right)\right) \tag{14}$$

Подставив (14) в (12) имеем:

$$\begin{cases} \frac{\partial M_1}{\partial t} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{\partial M_2}{\partial t} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \end{cases}$$
 (15)

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1^2 \tilde{p}_1^2}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2^2 \tilde{p}_2^2}$$
(16)

Исследуем систему (15) в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$
(17)

Чтобы решить систему (17) необходимо знать начальные условия. Зададим начальные значения и известные параметры: $M_{1.0}=2.4, M_{2.0}=1.7, p_{cr}=19, N=22, q=1, \tau_1=15, \tau_2=18, \tilde{p}_1=12, \tilde{p}_2=10$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1\,M_2$ будет отличаться.

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - (\frac{b}{c_1} + 0.0016) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$
(18)

Начальные условия и известные параметры остаются прежними.

Построение графиков

Написали прогрмму на Python и получили два графика:

#Программа

import math

import numpy as np

from scipy.integrate import odeint

import matplotlib.pyplot as plt

```
M10 = 2.4
  M20 = 1.7
  х0=[М10, М20] #начальное значение объема оборотных средств х1 и х2
  p_cr = 19 #критическая стоимость продукта
  tau1 = 15 #длительность производственного цикла фирмы 1
  р1 = 12 #себестоимость продукта у фирмы 1
  tau2 = 18 #длительность производственного цикла фирмы 2
  р2 = 10 #себестоимость продукта у фирмы 2
  N = 22 #число потребителей производимого продукта
  q = 1 #максимальная потребность одного человека в продукте в единицу вре-
мени
  #Время
  t0 = 0
  tmax = 30
  dt = 0.01
  t = np.arange(t0, tmax, dt)
  a1 = p_cr/(tau1tau1p1p1N*q)
  a2 = p_cr/(tau2tau2p2p2N*q)
  b = p_cr/(tau1tau1tau2tau2p1p1p2p2N*q)
  c1 = (p_cr-p1)/(tau1*p1)
  c2 = (p_cr-p2)/(tau2*p2)
  #вычисление функции для первого случая
  def syst1(x, t):
dx_1 = (c1/c1)*x[0] - (a1/c1)*x[0]*x[0] - (b/c1)*x[0]*x[1]
dx_2 = (c2/c1)*x[1] - (a2/c1)*x[1]*x[1] - (b/c1)*x[0]*x[1]
return dx_1, dx_2
```

```
#вычисление функции для второго случая
  def syst2(x, t):
dx_1 = x[0] - (b/c1 + 0.0016)*x[0]*x[1] - (a1/c1)*x[0]*x[0]
dx_2 = (c2/c1)*x[1] - (b/c1)*x[0]*x[1] - (a2/c1)*x[1]*x[1]
return dx_1, dx_2
  #решение уравнений
  y1 = odeint(syst1, x0, t)
  y2 = odeint(syst2, x0, t)
  #подсчет стационарного состояния
  M1 = (a2c1-bc2)/(a1a2-bb)
  M2 = (a1c2-bc1)/(a1a2-bb)
  print(M1, ";", M2)
  #построение динамики изменения оборотных средств фирмы 1 и фирмы 2 для
первого случая
  plt.plot(t, y1[:,0], label='Фирма 1')
  plt.plot(t, y1[:,1], label='Фирма 2')
  plt.hlines(M1, t0, tmax, colors="darkgrey", linestyles='dashed', label='M1')
  plt.hlines(M2, t0, tmax, colors="dimgrey", linestyles='dashed', label='M2')
  plt.legend(loc=4)
  plt.grid()
  #построение динамики изменения оборотных средств фирмы 1 и фирмы 2 для
второго случая
  plt.plot(t, y2[:,0], label='Фирма 1')
  plt.plot(t, y2[:,1], label='Фирма 2')
  plt.legend()
  plt.grid()
```

Графики и значения

Получили значение стационарного состояния для первого случая:

$$M_1=1458.8894750739469, M_2=1875.7444462312765$$

Получили график динамики изменения оборотных средств фирмы 1 и фирмы 2 для первого случая (см. рис. 3.1):

Figure 3.1: График для первого случая

И график динамики изменения оборотных средств фирмы 1 и фирмы 2 для второго случая (см. рис. 3.2):

Figure 3.2: График для второго случая

4 Выводы

После выполнения Лабораторной работы $N^{\circ}8$ мы изучили модель конкуренции двух фирм и построили графики.