# In [2]:

```
# import pyhton libraries
import numpy as np # It will tske care of numerical data
import pandas as pd # It will import excel file
# import data visualization library
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
```

# In [11]:

(https://getlin

data=pd.read\_csv(r"D:\PYTHON PROGRAMMES\WineQT.csv")
data

# Out[11]:

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|
| 0    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      |
| 1    | 7.8              | 0.880               | 0.00           | 2.6               | 0.098     | 25.0                      | 67.0                       | 0.99680 | 3.20 | 0.68      |
| 2    | 7.8              | 0.760               | 0.04           | 2.3               | 0.092     | 15.0                      | 54.0                       | 0.99700 | 3.26 | 0.65      |
| 3    | 11.2             | 0.280               | 0.56           | 1.9               | 0.075     | 17.0                      | 60.0                       | 0.99800 | 3.16 | 0.58      |
| 4    | 7.4              | 0.700               | 0.00           | 1.9               | 0.076     | 11.0                      | 34.0                       | 0.99780 | 3.51 | 0.56      |
|      |                  |                     |                |                   |           |                           |                            |         |      |           |
| 1138 | 6.3              | 0.510               | 0.13           | 2.3               | 0.076     | 29.0                      | 40.0                       | 0.99574 | 3.42 | 0.75      |
| 1139 | 6.8              | 0.620               | 80.0           | 1.9               | 0.068     | 28.0                      | 38.0                       | 0.99651 | 3.42 | 0.82      |
| 1140 | 6.2              | 0.600               | 0.08           | 2.0               | 0.090     | 32.0                      | 44.0                       | 0.99490 | 3.45 | 0.58      |
| 1141 | 5.9              | 0.550               | 0.10           | 2.2               | 0.062     | 39.0                      | 51.0                       | 0.99512 | 3.52 | 0.76      |
| 1142 | 5.9              | 0.645               | 0.12           | 2.0               | 0.075     | 32.0                      | 44.0                       | 0.99547 | 3.57 | 0.71      |

### 1143 rows × 12 columns

In [5]:

# Check rows and columns in the data set using .shape data.shape

### Out[5]:

(1143, 13)

## In [6]:

```
# Checking information about the dataset using .info()
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1143 entries, 0 to 1142
Data columns (total 13 columns):

| #  | Column               | Non-Null Count | Dtype   |
|----|----------------------|----------------|---------|
|    |                      |                |         |
| 0  | fixed acidity        | 1143 non-null  | float64 |
| 1  | volatile acidity     | 1143 non-null  | float64 |
| 2  | citric acid          | 1143 non-null  | float64 |
| 3  | residual sugar       | 1143 non-null  | float64 |
| 4  | chlorides            | 1143 non-null  | float64 |
| 5  | free sulfur dioxide  | 1143 non-null  | float64 |
| 6  | total sulfur dioxide | 1143 non-null  | float64 |
| 7  | density              | 1143 non-null  | float64 |
| 8  | рН                   | 1143 non-null  | float64 |
| 9  | sulphates            | 1143 non-null  | float64 |
| 10 | alcohol              | 1143 non-null  | float64 |
| 11 | quality              | 1143 non-null  | int64   |
| 12 | Id                   | 1143 non-null  | int64   |
|    | 67 (64/44) 1 (64     | (0)            |         |

dtypes: float64(11), int64(2)

memory usage: 116.2 KB

#### In [7]:

```
data.isnull().sum()
```

# Out[7]:

fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0 0 рΗ sulphates 0 alcohol quality 0 Ιd dtype: int64

(https://getlin

```
In [8]:
```

data.describe()

# Out[8]:

|       | fixed<br>acidity | volatile<br>acidity | citric acid | residual<br>sugar | chlorides   | free sulfur<br>dioxide | total s |
|-------|------------------|---------------------|-------------|-------------------|-------------|------------------------|---------|
| count | 1143.000000      | 1143.000000         | 1143.000000 | 1143.000000       | 1143.000000 | 1143.000000            | 1143.00 |
| mean  | 8.311111         | 0.531339            | 0.268364    | 2.532152          | 0.086933    | 15.615486              | 45.91   |
| std   | 1.747595         | 0.179633            | 0.196686    | 1.355917          | 0.047267    | 10.250486              | 32.78   |
| min   | 4.600000         | 0.120000            | 0.000000    | 0.900000          | 0.012000    | 1.000000               | 6.00    |
| 25%   | 7.100000         | 0.392500            | 0.090000    | 1.900000          | 0.070000    | 7.000000               | 21.00   |
| 50%   | 7.900000         | 0.520000            | 0.250000    | 2.200000          | 0.079000    | 13.000000              | 37.00   |
| 75%   | 9.100000         | 0.640000            | 0.420000    | 2.600000          | 0.090000    | 21.000000              | 61.00   |
| max   | 15.900000        | 1.580000            | 1.000000    | 15.500000         | 0.611000    | 68.000000              | 289.00  |
| 4     |                  |                     |             |                   |             |                        | •       |

# In [20]:

X=data[['fixed acidity','volatile acidity','residual sugar','chlorides','total sulfur di

# In [13]:

y=data[['quality']]

# In [14]:

Χ

# Out[14]:

|      | fixed<br>acidity | volatile<br>acidity | residual<br>sugar | chlorides | total<br>sulfur<br>dioxide | density | рН   | sulphates | alcohol |
|------|------------------|---------------------|-------------------|-----------|----------------------------|---------|------|-----------|---------|
| 0    | 7.4              | 0.700               | 1.9               | 0.076     | 34.0                       | 0.99780 | 3.51 | 0.56      | 9.4     |
| 1    | 7.8              | 0.880               | 2.6               | 0.098     | 67.0                       | 0.99680 | 3.20 | 0.68      | 9.8     |
| 2    | 7.8              | 0.760               | 2.3               | 0.092     | 54.0                       | 0.99700 | 3.26 | 0.65      | 9.8     |
| 3    | 11.2             | 0.280               | 1.9               | 0.075     | 60.0                       | 0.99800 | 3.16 | 0.58      | 9.8     |
| 4    | 7.4              | 0.700               | 1.9               | 0.076     | 34.0                       | 0.99780 | 3.51 | 0.56      | 9.4     |
|      |                  |                     |                   |           |                            |         |      |           |         |
| 1138 | 6.3              | 0.510               | 2.3               | 0.076     | 40.0                       | 0.99574 | 3.42 | 0.75      | 11.0    |
| 1139 | 6.8              | 0.620               | 1.9               | 0.068     | 38.0                       | 0.99651 | 3.42 | 0.82      | 9.5     |
| 1140 | 6.2              | 0.600               | 2.0               | 0.090     | 44.0                       | 0.99490 | 3.45 | 0.58      | 10.5    |
| 1141 | 5.9              | 0.550               | 2.2               | 0.062     | 51.0                       | 0.99512 | 3.52 | 0.76      | 11.2    |
| 1142 | 5.9              | 0.645               | 2.0               | 0.075     | 44.0                       | 0.99547 | 3.57 | 0.71      | 10.2    |

1143 rows × 9 columns

# In [15]:

у

# Out[15]:

|      | quality |
|------|---------|
| 0    | 5       |
| 1    | 5       |
| 2    | 5       |
| 3    | 6       |
| 4    | 5       |
|      |         |
| 1138 | 6       |
| 1139 | 6       |
| 1140 | 5       |
| 1141 | 6       |
| 1142 | 5       |
|      |         |

1143 rows × 1 columns

```
In [16]:
```

from sklearn.model\_selection import train\_test\_split
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.30, random\_state=4

# In [17]:

from sklearn.linear\_model import LinearRegression

### In [18]:

reg = LinearRegression().fit(X\_train, y\_train)
reg.score(X\_test,y\_test)
(https://getlin

### Out[18]:

0.3424875144168652

MODEL ACCURACY IS 34.24%

BY OLS SUMMARY

```
In [21]:
```

```
import statsmodels.api as sm
model = sm.OLS(y,X)
results = model.fit()
print(results.summary())
```

(https://getlin

|                      |             | Regress |        |               |         |        |
|----------------------|-------------|---------|--------|---------------|---------|--------|
|                      |             | =====   |        |               | ======  | ====== |
| ====<br>Dan Wandahla |             | -1:4    | D      |               |         |        |
| Dep. Variable:       | qu          | ality   | K-Sqi  | uarea:        |         |        |
| 0.373                |             |         |        |               |         |        |
| Model:               |             | OLS     | Adj.   | R-squared:    |         |        |
| 0.368                |             |         |        |               |         |        |
| Method:              | Least Sq    | uares   | F-sta  | atistic:      |         | 7      |
| 4.99                 |             |         |        |               |         |        |
| Date:                | Sun, 03 Sep | 2023    | Prob   | (F-statistic  | ):      | 1.29e  |
| -108                 |             |         |        | •             |         |        |
| Time:                | 21:         | 38:16   | Log-l  | Likelihood:   |         | -11    |
| 07.5                 |             |         | J      |               |         |        |
| No. Observations:    |             | 1143    | AIC:   |               |         | 2      |
| 235.                 |             | 11.5    | 7.10.  |               |         | _      |
| Df Residuals:        |             | 1133    | BIC:   |               |         | 2      |
| 285.                 |             | 1133    | DIC.   |               |         | 2      |
| Df Model:            |             | 9       |        |               |         |        |
|                      | nann        |         |        |               |         |        |
| Covariance Type:     | nonr        |         |        |               |         |        |
|                      | ========    | ======  | :====: |               | ======  | ====== |
| ==========           | ana f       | c + d   | 0.00   | _             | D. [+]  | Γα α   |
| 25 0.0751            | coei        | Stu     | er.r.  | t             | P> L    | [0.0   |
| 25 0.975]            |             |         |        |               |         |        |
|                      |             |         |        |               |         |        |
|                      |             |         |        |               |         |        |
| fixed acidity        | 0.0168      | 0.      | 029    | 0.587         | 0.557   | -0.0   |
| 39 0.073             |             |         |        |               |         |        |
| volatile acidity     | -1.0828     | 0.      | 119    | -9.106        | 0.000   | -1.3   |
| 16 -0.849            |             |         |        |               |         |        |
| residual sugar       | 0.0152      | 0.      | 018    | 0.828         | 0.408   | -0.0   |
| 21 0.051             |             |         |        |               |         |        |
| chlorides            | -1.8085     | 0.      | 473    | -3.822        | 0.000   | -2.7   |
| 37 -0.880            |             |         |        |               |         |        |
| total sulfur dioxide | -0.0024     | 0.      | 001    | -3.874        | 0.000   | -0.0   |
| 04 -0.001            |             |         |        |               |         |        |
| density              | -20.1290    | 25.     | 189    | -0.799        | 0.424   | -69.5  |
| 51 29.293            |             |         |        |               |         |        |
| рН                   | -0.3703     | 0.      | 221    | -1.677        | 0.094   | -0.8   |
| 04 0.063             | 010700      | •       |        | _,,,,         |         |        |
| sulphates            | 0.8764      | a       | 133    | 6.571         | 0.000   | 0.6    |
| 15 1.138             | 0.0704      | 0.      | 100    | 0.571         | 0.000   | 0.0    |
| alcohol              | 0.2748      | a       | 031    | 8.941         | 0.000   | 0.2    |
| 14 0.335             | 0.2/40      | 0.      | 621    | 0.341         | 0.000   | 0.2    |
|                      | 24 1646     | 2.4     | C00    | 0.070         | 0 220   | 24.2   |
| const                | 24.1646     | 24.     | 680    | 0.979         | 0.328   | -24.2  |
| 59 72.588            |             |         |        |               |         |        |
| ============         | ========    | ======  | :====: | ========      | ======  | ====== |
| 0                    | 4           | 0 244   | D la . |               |         |        |
| Omnibus:             | 1           | 9.311   | Durb:  | in-Watson:    |         |        |
| 1.779                |             |         | _      | - ()          |         | _      |
| Prob(Omnibus):       |             | 0.000   | Jarqı  | ue-Bera (JB): |         | 2      |
| 9.120                |             |         |        |               |         |        |
| Skew:                | -           | 0.152   | Prob   | (JB):         |         | 4.75   |
| e-07                 |             |         |        |               |         |        |
| Kurtosis:            |             | 3.721   | Cond   | . No.         |         | 1.07   |
| e+05                 |             |         |        |               |         |        |
| ===========          |             | ======  | =====  |               | ======= | ====== |
| ====                 |             |         |        |               |         |        |
|                      |             |         |        |               |         |        |

# Notes:

 $\[1\]$  Standard Errors assume that the covariance matrix of the errors is correctly specified.

(https://getlin

[2] The condition number is large, 1.07e+05. This might indicate that ther e are strong multicollinearity or other numerical problems.

```
BY RIDGE ALGORITHM
In [22]:
# Using Ridge Algorithm
from sklearn.linear_model import Ridge
In [23]:
                                                                                          (https://getlin
clf = Ridge(alpha=1.0)
clf.fit(X_train, y_train)
clf.score(X_train, y_train)
Out[23]:
0.37752215899941277
In [24]:
clf.score(X_test, y_test)
Out[24]:
0.3469752193868091
    MODEL PREDICTED GRAPH
In [26]:
y_pred = reg.predict(X_test)
y_pred
       [5.9/5/1082],
       [5.11257628],
       [5.52110827],
       [6.14184198],
       [5.43275836],
       [6.61780163],
       [5.75538717],
       [5.56420156],
       [5.20533374],
       [5.46673522],
       [6.03848713],
       [6.83833721],
       [6.51449947],
       [6.42228557],
       [5.39653428],
       [6.90906969],
       [5.30737726],
       [5.01781887],
       [5.03061961],
       [5.59682965],
```

### In [27]:

```
from sklearn.ensemble import ExtraTreesRegressor
model = ExtraTreesRegressor()
model.fit(X,y)
ExtraTreesRegressor()
```

### Out[27]:

```
* ExtraTreesRegressor
ExtraTreesRegressor()
```

(https://getlin

# In [28]:

```
print(model.feature_importances_)
```

```
[0.07082678 0.1656245 0.06456725 0.06254629 0.08856444 0.06467975 0.07386694 0.13538326 0.27394079 0. ]
```

### In [29]:

```
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(5).plot(kind='barh')
plt.show()
```

