Global Normalization via a Coverage Parameter (o > 1) \Rightarrow FLT:

A Coq-Verified Conditional Route

Grigoriy Dedenko

Abstract. We develop a global-normalization reading of Dedenko's idea. A single real factor o > 1 is postulated to serve all putative counterexamples to Fermat's equation $x^n + y^n = z^n$ with n > 2, yielding the coverage identity pow $(o, n) = 2 \cdot \text{INR}(n)$. Under the maximum-coverage condition (the same o covers precisely the exponents $n \in \{1, 2\}$ and no others), the Coq development proves o = 2 and shows that pow $(2, n) = 2 \cdot \text{INR}(n)$ can hold only for $n \in \{1, 2\}$. Hence any putative solution with n > 2 yields a contradiction, and Fermat's Last Theorem follows. The normalization premise is kept as an explicit hypothesis over \mathbb{N} ; bridge lemmas connect the real equation pow $(o, n) = 2 \cdot \text{INR}(n)$ with the integer comparison 2^n vs. 2n. The classical parametrization $(z, x) = (m^n + p^n, m^n - p^n)$ and parity identities appear only as motivation and are not used in the final contradiction. This coverage-parameter presentation replaces the earlier fixed-base GN(2) wording.

Keywords: Fermat's Last Theorem \cdot global normalization \cdot coverage \cdot Coq \cdot formal verification

1 Introduction

We consider Fermat's equation

$$x^{n} + y^{n} = z^{n}, \qquad x, y, z \in \mathbb{N}, \ n \in \mathbb{N}.$$
 (1)

In the present reading the analysis is collapsed by a single global normalizer o > 1 and a coverage predicate:

Definition 1 (Coverage predicate). For a real o > 1 and $n \in \mathbb{N}$, set

covers_with
$$(o, n) : \iff pow(o, n) = 2 \cdot INR(n)$$
.

Definition 2 (Global normalization hypothesis). There exists a fixed o > 1 such that for every integer n > 2 and all $x, y, z \in \mathbb{N}$,

$$x^n + y^n = z^n \implies \text{covers_with}(o, n).$$

Definition 3 (Maximum coverage). The same o satisfies covers_with(o, 1) and covers_with(o, 2), and for all n, if covers_with(o, n) then $n \in \{1, 2\}$.

Theorem 1 (Conditional on global normalization (coverage parameter)). Assume there exists o > 1 satisfying Definitions 2 and 3. Then the Fermat equation $x^n + y^n = z^n$ has no solutions in \mathbb{N} for any n > 2.

2 Motivation: algebraic setup and parity (not used in the core)

Following the standard trick, set $z := m^n + p^n$ and $x := m^n - p^n$ (initially over \mathbb{R} so that ring equalities are straightforward). Then

$$y^n = z^n - x^n = (m^n + p^n)^n - (m^n - p^n)^n$$

is the odd-binomial sum. Passing to \mathbb{Z} , one obtains that $z \pm x$ are even; in Coq this is captured by lemmas sum_diff_from_parameters_R, sum_diff_from_parameters_Z, and parity_condition_Z. These parity facts are logically independent from the final step and are included for completeness only.

3 Coq formalization: naturals core with a real wrapper

The development proves the elementary growth comparisons $2^n > 2n$ for $n \ge 3$ (and $3^n > 2n$ for $n \ge 1$), and packages them into the lemma pow_eq_linear_positive showing that $2^n = 2 \cdot n$ forces $n \in \{1, 2\}$.

Coverage predicate (Coq).

```
Definition covers_with (o : R) (n : nat) := pow o n = 2 * INR n.
```

Global normalization and maximum coverage (Coq, section hypotheses).

```
Variable o : R.
Hypothesis normalization_gt1 : 1 < o.
Hypothesis maximum_coverage :
   covers_with o 1%nat /\
   covers_with o 2%nat /\
   (forall n, covers_with o n -> n = 1%nat \/ n = 2%nat).
Hypothesis normalization_equation :
   forall (n x y z : nat),
        2 < n ->
        Nat.pow x n + Nat.pow y n = Nat.pow z n ->
        covers_with o n.
```

From these, the Coq file derives:

- -o = 2 (lemma normalization_parameter_is_two via pow(o, 1) = 2),
- the contradiction for all n > 2 (lemma normalization_forces_small_exponent).

For convenience, the explicit choice o = 2 is verified to realise maximum coverage:

```
Lemma covers_two_one : covers_with 2 1%nat. (* pow(2,1) = 2 \cdot INR(1) *) Lemma covers_two_two : covers_with 2 2%nat. (* pow(2,2) = 2 \cdot INR(2) *) Lemma covers_two_only_small (n : nat) : covers_with 2 n -> n = 1%nat \/ n = 2%nat.
```

Combining the global normalization with this explicit choice yields fermat_last_theorem_via_maximum_coverage.

4 What is *not* assumed

The reading here does not rely on any unconditional congruence like $(m^n + p^n)^n - (m^n - p^n)^n \equiv 0 \pmod{2n}$ (which is false in general), nor on a fixed-base hypothesis GN(2). Algebraic parametrization and parity serve as motivation/consistency checks and are not used in the final step.

5 Article-Coq correspondence

6 Conclusion

Under the single global-normalization premise encoded by a coverage parameter o > 1, the Coq file derives FLT for all n > 2 using only elementary growth lemmas and the maximum-coverage principle that isolates $n \in \{1,2\}$. Parity constraints from the parametrization are checked separately. This coverage-parameter presentation replaces the earlier fixed-base GN(2) wording.

Article (item)	Coq formalization (lemma/theorem)
Algebraic parametrization over \mathbb{R} ; integer parity facts	<pre>sum_diff_from_parameters_R, sum_diff_from_parameters_Z, parity_condition_Z.</pre>
Coverage predicate and bridge to naturals	covers_with, covers_two_nat, INR_two_mul_nat.
Growth vs. linear comparison; $2^n = 2 \cdot n \Rightarrow n \in \{1, 2\}$	<pre>pow2_gt_linear, pow_eq_linear_positive.</pre> <pre>pow3_gt_linear,</pre>
Global normalization and maximum coverage (hypotheses/section)	normalization_gt1, maximum_coverage, normalization_equation.
Consequences: $o = 2$ and contradiction for $n > 2$	normalization_parameter_is_two, normalization_forces_small_exponent.
corollaries	covers_two_one, covers_two_two, covers_two_only_small, fermat_last_theorem_from_global_normalization, fermat_last_theorem_via_maximum_coverage.

Table 1. Mapping between the paper's steps and the Coq development.

Appendix: selected Coq declarations (names)

sum_diff_from_parameters_R, sum_diff_from_parameters_Z, parity_condition_Z, no_parameters_if_parity_violation, no_parameters_if_odd, pow2_gt_linear, pow3_gt_linear, pow_eq_linear_positive, covers_two_nat, INR_two_mul_nat, covers_with, normalization_gt1, maximum_coverage, normalization_equation, normalization_parameter_is_two, normalization_forces_small_exponent, covers_two_one, covers_two_two, covers_two_only_small, fermat_last_theorem_from_global_normalization, fermat_last_theorem_via_maximum_coverage.

References

- 1. A. Wiles. Modular elliptic curves and Fermat's Last Theorem. Annals of Mathematics 141 (1995), 443–551.
- 2. G. L. Dedenko. The "Difficulties" in Fermat's Original Discourse on the Indecomposability of Powers Greater Than a Square: A Retrospect. Preprint, 2025. DOI: 10.13140/RG.2.2.24342.32321.
- 3. The Coq Development Team. The Coq Proof Assistant. $\verb|https://coq.inria.fr|.$