МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра МОЭВМ

ОТЧЕТ

по практической работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка характеристик надежности программ по структурным схемам надежности

Студент гр. 8304	Воропаев А.О.
Преподаватель	Ефремов М.А.

Санкт-Петербург

2022

Цель работы.

Выполнить расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.

Ход работы.

Вариант 4

Таблица 1 – Исходные данные

	Λ	$\overline{I_1}$			N_2		N_3	
Комб.	λ_1	λ_2	λ_3	λ_4	Комб.	λ	Комб.	λ
соединения					соединения		соединения	
C(4)	4.0	2.28	3.8	2.85	(1,3)	2.8	(1,2)	4.0

Был построен граф программы (см. рис. 1)

Рисунок 1 – Граф программ

Структура графа: N_1 — блок, состоящий из 4-х последовательных эл-тов; N_2 — блок, состоящий из двух параллельных ветвей (один элемент на верхней ветви, три на нижней); N_3 — блок, состоящий из двух параллельных ветвей (один элемент на верхней ветви, три на нижней); 2 дополнительные вершины: первая — связь между N_2 и N_3 , вторая — конченая вершина

Расчетный способ

Ручной расчет вероятностей для блоков и для целого графа.

$$t = 2, \lambda_5 = 2.8, \lambda_6 = 4.0$$

Блок N_1 :

$$R_{N_1} = e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} = e^{-(4.0 + 2.28 + 3.8 + 2.85) *2*10^{-5}} \approx 0.9997414$$

Блок N_2 :

$$R_{N_2} = 1 - (1 - e^{-\lambda_5 t})(1 - e^{-3\lambda_5 t}) = 1 - (1 - e^{-2.8*2*10^{-5}})(1 - e^{-3*2.8*2*10^{-5}}) \approx 0.9999999529$$

Блок N_3 :

$$\begin{split} R_{N_3} &= 1 - \left(1 - e^{-\lambda_6 t}\right) \left(1 - e^{-2\lambda_6 t}\right) = \\ &1 - \left(1 - e^{-4.0*2*10^{-5}}\right) (1 - e^{-2*4.0*2*10^{-5}}) \approx 0.9999200032 \\ R_s &= R_{N_1} * R_{N_2} * R_{N_3} \approx 0.99966142 \\ MTFF &= \int_0^\infty R_S(t) dt = e^{-(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)t} * \left(1 - \left(1 - e^{-\lambda_5 t}\right) \left(1 - e^{-3\lambda_5 t}\right)\right) * (1 - e^{-\lambda_6 t}) (1 - e^{-2\lambda_6 t}) dt = 5547,77764503 \end{split}$$

Программный способ

Был выполнен программный расчет, XML-описание графа представлено вместе с отчетом (см. рис. 2)

Рисунок 2 – Полученная схема

Программные результаты представлены на рисунке 3

t	R	Т
2.0	0.9997184174464004	5760.66523694115

Рисунок 3 – Программные результаты

Заключение

В ходе выполнения лабораторной работы был выполнен расчет характеристик надёжности вычислительной системы по структурной схеме надежности, выбранной из таблицы в соответствии с номером студента в списке группы.