## **АиСД у2024. Второй семестр** Домашние задания М3134-М3135

 $\langle$ Версия от 9 февраля 2025 г. $\rangle$ 

| Темы |
|------|
|------|

| 1 | Дерево отрезков      | 1 |
|---|----------------------|---|
| 2 | Дерево отрезков $-2$ | 3 |

## Неделя 1. Дерево отрезков

В заданиях с 1.1 по 1.6 дан массив a длины n. Требуется придумать, как при помощи дерева отрезков выполнять две операции. Первая операция — присвоить элементу  $a_i$  значение x. Вторая операция описана в каждом задании. Обе операции должны работать за  $\mathcal{O}(\log n)$ .

- 1.1. Найти минимум на отрезке [l,r), а также вычислить количество элементов, равных минимуму.
- 1.2. Найти минимум на отрезке [l,r), а также найти позицию самого левого элемента отрезка, который равен минимуму.
- 1.3. Найти значение суммы  $a_l a_{l+1} + a_{l+2} \ldots + (-1)^{r-l} a_{r-1}$ .
- 1.4. Найти значение суммы  $a_l + 2a_{l+1} + 3a_{l+2} + \ldots + (r-l)a_{r-1}$ .
- 1.5. Найти подотрезок  $[l_1, r_1)$ , такой что  $l \leq l_1 \leq r_1 \leq r$  и сумма на подотрезке  $[l_1, r_1)$  максимальна среди всех таких отрезков. Достаточно найти значение самой суммы, хотя восстановить отрезок также не составит труда.
- 1.6. Найти минимальное i ( $1 \le i \le n$ ), такое что  $a_i \ge k$ . Здесь k параметр, который задается в запросе. То есть, в разных запросах значения k могут различаться.
- 1.7. Дан массив из 0 и 1. Нужно найти количество непрерывных отрезков из единиц и уметь менять элемент на противоположный с помощью ДО
- 1.8. Дан массив из 0 и 1. Нужно Найти самый длинный непрерывный отрезок из единиц и уметь менять элемент на противоположный с помощью ДО
- 1.9. Научитесь искать НВП массива длины n за  $\mathcal{O}(n \log n)$ , используя дерево отрезков. Считайте, что элементы массива натуральные числа, не превосходящие n.
- 1.10. Решите задачу 1.9, при условии, что элементы массива произвольные целые числа.
- 1.11. Вычислите количество инверсий в массиве длины n за  $\mathcal{O}(n \log n)$ , используя дерево отрезков.
- 1.12. Дана строка из n открывающих и закрывающих круглых скобок. Придумайте, как при помощи дерева отрезков отвечать на следующие запросы за  $\mathcal{O}(\log n)$ . Первый запрос изменить i-ю скобку. Второй запрос проверить, является ли скобочная последовательность  $a_l a_{l+1} \dots a_r$  правильной.
- 1.13. Дана строка из n открывающих и закрывающих круглых скобок. Придумайте, как при помощи дерева отрезков отвечать на следующие запросы за  $\mathcal{O}(\log n)$ . Первый запрос изменить i-ю скобку. Второй запрос найти длину наибольшего префикса отрезка [l,r), который является правильной скобочной последовательностью.

- 1.14. Дан массив длины n, элементы которого являются натуральными числами, не превосходящими n. Научитесь отвечать на запрос: даны l, r, x и y, требуется вычислить количество элементов на отрезке [l,r), которые лежат в диапазоне от x до y (то есть количество таких i, что  $l \le i < r$  и  $x \le a_i \le y$ ). В данной задаче считайте, что все запросы известны заранее, то есть можно решать задачу в Offline. Время работы:  $\mathcal{O}((n+q)\log n)$ .
- 1.15. Дан массив длины n, элементы которого являются натуральными числами, не превосходящими n. Научитесь отвечать на запрос: даны l, r, требуется вычислить количество различных элементов, которые встречаются на отрезке [l,r). В данной задаче считайте, что все запросы известны заранее, то есть можно решать задачу в Offline. Время работы:  $\mathcal{O}((n+q)\log n)$ .
- 1.16. Нужно реализовать две операции:
  - (а) Определить значение на позиции роз.
  - (b) Увеличить числа с l-й до r-й на величину d.
- 1.17. Марио собирается проходить уровень, состоящий из n последовательно расположенных труб, высота i-й трубы  $-a_i$ . Он может переместиться с трубы i на трубу j, если |i-j|=1 и  $a_j-a_i\leq 1$ . Требуется выполнять операции двух типов за  $\mathcal{O}(\log n)$ :
  - (a) Определить, может ли Марио добраться от трубы с номером x до трубы с номером y.
  - (b) Увеличить высоты труб с l-й до r-й на величину d.

## Неделя 2. Дерево отрезков — 2

В заданиях с 18 по 24 дан массив a длины n. Требуется придумать, как при помощи дерева отрезков выполнять указанные операции за  $\mathcal{O}(\log n)$ . Обратите внимание, при выполнении заданий следует уделить особое внимание псевдокоду функций проталкивания отложенных операций push().

- **2.18.** (a) Присвоить значение x всем элементам отрезка
  - (b) Умножить все элементы отрезка на -1 (то есть заменить  $a_i$  на  $-a_i$ )
  - (с) Найти сумму на отрезке
- **2.19**. (a) Присвоить значение x всем элементам отрезка
  - (b) Умножить все элементы отрезка на -1 (то есть заменить  $a_i$  на  $-a_i$ )
  - (с) Найти максимум на отрезке
- **2.20**. (a) Присвоить значение x всем элементам отрезка
  - (b) Умножить все элементы отрезка на -1 (то есть заменить  $a_i$  на  $-a_i$ )
  - (с) Найти подотрезок с максимальной суммой
- **2.21**. (a) Присвоить значение x всем элементам отрезка
  - (b) Прибавить значение x ко всем элементам отрезка
  - (с) Найти значение элемента
- **2.22**. (a) Присвоить значение x всем элементам отрезка
  - (b) Прибавить значение x ко всем элементам отрезка
  - (с) Найти сумму на отрезке
- 2.23. (a) Заменить на отрезке  $a_i$  на  $\max(a_i, x)$ 
  - (b) Заменить на отрезке  $a_i$  на  $\min(a_i, x)$
  - (с) Найти значение элемента
- (a) Присвоить значение x всем элементам отрезка
  - (b) Найти подотрезок максимальной длины, состоящий из одинаковых чисел

В заданиях с 2.25 по 2.28 дан массив a длины n, состоящий из булевых значений. Требуется придумать, как при помощи дерева отрезков выполнять указанные операции за  $\mathcal{O}(\log n)$ .

- **2.25**. (a) Присвоить значение x всем элементам отрезка
  - (b) Найти ближайшую к *i*-му элементу единицу
- 2.26. (a) Изменить все значения на отрезке на противоположные
  - (b) Найти количество единиц на отрезке
- **2.27.** (a) Присвоить значение x всем элементам отрезка
  - (b) Найти количество непрерывных отрезков из единиц
- **2.28**. (a) Присвоить значение x всем элементам отрезка

- (b) Найти самый длинный непрерывный отрезок из единиц
- **2.29.** Дан массив длины n. Вычислите количество возрастающих подпоследовательностей массива длины k. Время  $\mathcal{O}(kn\log n)$ .
- 2.30. Петя едет из Питера в Москву на машине. По пути ему встретятся *п* заправок, для каждой известно ее положение и стоимость литра бензина. Также известно, сколько бензина тратит машина на километр пути и сколько бензина помещается в бак. Нужно доехать, потратив минимальную сумму.
- 2.31. Есть n домашних заданий, которые нужно сделать, для каждого дела известно, сколько времени нужно на него потратить  $t_i$  и до какого времени его нужно сделать  $d_i$ . Кроме того, для каждого дз известно, в какое время пришлют задание  $s_i$  (соответственно, раньше начать его делать не получится). Составить план работы так, чтобы успеть все сделать вовремя, если можно переключаться с задания на задание (то есть например сделать частично первое, переключиться на второе, потом доделать первое,...).