Natural Language Processing CSE 325/425

Lecture 8:

HMM prediction and training

Want to find the best sequence of POS tags for a given sentence.

- ullet Vocabulary V
- Set of N POS tags $S = \{s_1, \dots, s_n\}$
- Observed sentence $O = [o_1, \dots, o_T], o_t \in V$

gotta do is go around the corner All we

Hidden states: $Q = [q_1, \dots, q_T], q_t \in S$

DT PRP VBN VB VBZ VB DT NN

MAP (maximum a posterior) prediction

$$Q^* = \arg\max_{Q} \Pr(Q|O)$$

 $Q^* = \operatorname{arg\,max} \Pr(Q|O)$ \Leftrightarrow $\operatorname{arg\,max}$ $\operatorname{Pr}(Q)$ (AB,Ti) Q

Using the Bayes theorem:

$$\Pr(Q|O) = \frac{\Pr(O|Q)\Pr(Q)}{\Pr(O)}$$

$$\text{Constant Wish.} Q$$

Difficulty: there are exponentially many possible sequences.

$$U_{+}(j) = U_{+}(j) = \min_{z_{1} = z_{+} = z_{+}} \{z_{1} = z_{+} = z_{$$

Cost of going from dumny

Predict optimal hidden states

Similar to the forward algorithm

- Use $\max(ax, ay, bx, by) = \max(a, b) \times \max(x, y)$ instead of ax + ay + bx + by = (a + b)(x + y) in the forward algorithm.

• Define the probability
$$v_t(j) = \max_{q_1,\ldots,q_{t-1}} \Pr(q_1,\ldots,q_{t-1},q_t=j,o_1,\ldots,o_t)$$

- \circ Interpreted as the maximum probability of seeing POS-tag $\,j\,$ and the observed words up to $\,O_t\,$.
- It is a dynamic programming algorithm and an example of a shortest path algorithm run on a trellis.

$$= \max \left\{ \max_{b_{7}=1...N} \left[\max_{b_{7}=1} \left(\sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$$

Viterbi algorithm: compute maximum probability

$V_i(i) = T(i) \times b_{i0}$

Predict optimal hidden states

Viterbi algorithm: compute maximum probability and the optimal sequence (decoding)

1. Initialize $v_1(i)$ for each value $\,i$ of the first hidden state q_1 .

A running example of Viterbi.

- Suppose you are in a casino with a cheating dealer X.
- X flips a fair coin if X decides not to cheat and a biased coin otherwise.
- X follows a Markov chain to change between cheating and no cheating.
- You only observe a sequence of flips.
- Guess which flips are from a biased coin?

$$Q^{*} = C \qquad NC \qquad NC$$

$$V_{1}(C) \qquad V_{2}(NC) \qquad V_{3}(NC) > V_{3}(C)$$