

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network? x_1 $\rightarrow \hat{y} = \alpha$ x_2 x_3 w = $z = w^T x + b$ $a = \sigma(z)$ $\mathcal{L}(a, y)$ dz da x_1 x_2 x_3 $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$ $z^{[1]} = W^{[1]}x + b^{[1]}$ $a^{[1]} = \sigma(z^{[1]})$ $a^{[2]} = \sigma(z^{[2]})$ $\mathcal{L}(a^{[2]},y)$ die W[2] . $b^{[1]}$ dary dz[2] Andrew Ng

One hidden layer Neural Network

Neural Network Representation

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$

$$a = \sigma(z)$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$z^{[1]} = \sigma(z^{[1]})$$

$$z^{[1]} = \sigma(z^{[1]})$$

$$z^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$$

$$z^{[2]} = \sigma(z^{[2]})$$

$$z^{[2]} = \sigma(z^{[2]})$$

$$z^{[2]} = \sigma(z^{[2]})$$

$$z^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

Vectorizing across multiple examples

One hidden layer Neural Network

Explanation for vectorized implementation

Recap of vectorizing across multiple examples

Andrew Ng

One hidden layer Neural Network

Activation functions

Activation functions

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

$$\Rightarrow \int z^{[1]} = W^{[1]}x + b^{[1]}$$

$$\Rightarrow a^{[1]} = g^{[1]}(z^{[1]}) \geq^{C_1}$$

$$\Rightarrow z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$\Rightarrow a^{[2]} = g^{[2]}(z^{[2]}) \geq^{c_2}$$

$$= \frac{\beta(t) = 5}{(p_{cs_3} p_{cs_3})} \times + (\frac{p_{cs_3} p_{cs_3} p_{cs_3}}{(p_{cs_3} p_{cs_3} p_{cs_3})}$$

Andrew Ng

One hidden layer Neural Network

deeplearning.ai

Derivatives of activation functions

Sigmoid activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$q(z) = \frac{1}{1 +$$

Tanh activation function

Andrew Ng

ReLU and Leaky ReLU

ReLU

Leaky ReLU

$$g(z) = \max(0.01z, z)$$

$$g'(z) = \begin{cases} 0.01 & \text{if } z < 0 \\ 1 & \text{if } z > 0 \end{cases}$$

One hidden layer Neural Network

Gradient descent for neural networks

deeplearning.ai

Gradient descent for neural networks

Parameters:
$$(\sqrt{10})$$
 $(\sqrt{10})$ $(\sqrt$

Formulas for computing derivatives

Formal propagation:

$$Z^{(1)} = L^{(1)} \times L^{(1)}$$

$$A^{(1)} = g^{(1)} (Z^{(1)}) \leftarrow$$

$$A^{(1)} = g^{(1)} (Z^{(1)}) = g(Z^{(1)})$$

$$A^{(1)} = g^{(1)$$

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$z^{tij} = \omega^{tij} \times + b^{tij}$$

$$z^{tij} = g^{tij}(z^{tij})$$

$$z^{tij} = \left[z^{tij(i)} z^{tij(i)} - z^{tij(i)}\right]$$

$$z^{tij} = \left[z^{tij(i)} z^{tij(i)} - z^{tij(i)}\right]$$

$$z^{tij} = \omega^{tij} \times + b^{tij}$$

$$z^{tij} = g^{tij}(z^{tij})$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dD^{[1]} = dz^{[1]}$$

One hidden layer Neural Network

Random Initialization

D

What happens if you initialize weights to zero?

Random initialization

