PROJECT PROPOSAL FOR RESEARCH PROJECT IIT 474-6

Development of New Supply Chain Models and Ontologies:

A study of Sri Lankan minor export crops - Cinnamon, Turmeric & Ginger

Dilrukshika T. A. G UWU/IIT/17/012

Industrial Information Technology

Jayalath S. H. M. M UWU/IIT/17/020

Industrial Information Technology

Nawanjani S. K UWU/IIT/17/037

Industrial Information Technology

Department of Computer Science and Informatics

Uva Wellassa University

November 2021

Project Title

Development of New Supply Chain Models and Ontologies: A study of Sri Lankan minor export crops - cinnamon, turmeric & ginger

Student Details

Name Registration	Number	Contact	Signature
Dilrukshika T. A. G	UWU/IIT/17/012	iit17012@std.uwu.ac.lk 0719631032	Engeller.
Jayalath S. H. M. M	UWU/IIT/17/020	iit17020@std.uwu.ac.lk 0773968134	Malki ·
Nawanjani S. K	UWU/IIT/17/037	iit17037@std.uwu.ac.lk 0767592427	

Supervisors Details

Principle supervisor

Name	Email	Contact No
Mr. N.E.C. Jayasekara	chinthaka@uwu.ac.lk	0718194439

Signature: Date: 28/11/2021

Contents

1. Introduction	4
1.1 Background of the study	4
1.2 Problem Definition	7
1.3 Project aims/objectives	8
2. Project Description	8
3. Methodology	9
4. Resources Needed	11
5. Individual Contribution	12
6. Time Plan	13
7. References	14
List of Figures	
Figure 1: Minor Export Crops	4
Figure 2: Crop supply chain Structure	8
Figure 3: Methodology	9
List of Tables	
Table 1: Contribution	12
Table 2: Time Plan	13

1. Introduction

1.1 Background of the study

Traditional minor export crops supply chains in Sri Lanka that engage in moving spices from the producer to the consumer are prone to various sources of inefficiencies. Farmers in spice producing areas are unable to attract competitive buyers.

Demand and Production of turmeric, ginger and cinnamon had increased during the last two years and they were stable during the last years to present. Nearly 50 percent of the production of turmeric and ginger comes from Kurunegala, Kandy, Gampaha and Kegalle districts. And cinnamon comes from Kandy, Matale, Belihull Oya, Haputale, Horton planes, Negombo, Matara, Kalutara and Rathnapura areas. The demand for turmeric, ginger and cinnamon has increased in the country and the prices have also increased.

Sri Lankan minor export crops are demanded from worldwide.

Description	2017		2018		2019 (January To November)		
	Quantity	Value	Quantity	Value	Quantity	Value	
Cinnamon	16,617,089 Kg	202,205	17,536,573 Kg	213,249	15,576,225 Kg	160,195	
Pepper	13,309,191 Kg	83,497	13,118,114 Kg	74,283	7,392,365 Kg	44,226	
Cloves	7,805,600 Kg	47,140	3,279,577 Kg	16,031	4,821,048 Kg	29,067	
Essential Oils	619,060 Kg	28,046	619,078 Kg	24,520	599,855 Kg	21,703	
Nutmeg & Mace	2,042,871 Kg	14,389	1,938,368 Kg	13,858	2,874,813 Kg	20,256	
Oleoresins	382,347 Kg	17,992	360,125 Kg	12,839	335,964 Kg	12,462	
Other Spices and Spice Mixtures	880,737 Kg	3,759	813,571 Kg	3,135	741,430 Kg	2,989	
Turmeric (Curcuma)	114,896 Kg	675	76,376 Kg	628	108,598 Kg	546	
Ginger	81,606 Kg	615	97,179 Kg	756	32,601 Kg	274	
Cardamoms	839,294 Kg	5,720	108,307 Kg	992	12,704 Kg	183	
Vanilla	5,995 Kg	178	1,555 Kg	360	701 Kg	136	
Saffron	10,894 Kg	62	6,432 Kg	29	18,505 Kg	106	
Condiments	1,271,375 Kg	3,894	202,430 Kg	418	39,183 Kg	90	
Total:	43,980,955	408,173	38,157,685	361,100	32,553,992	292,233	

Figure 1: Minor Export Crops

Supply chain management (SCM) implies managing the relationships between the businesses responsible for the efficient production and supply of products from the farm level to the consumers to meet consumers' requirements reliably in terms of quantity, quality and price. In practice, this often includes the management of both horizontal and vertical alliances and the relationships and processes between firms. Agri-supply chains are economic systems which distribute benefits and apportion risks among participants. Thus, supply chains enforce internal mechanisms and develop chain wide incentives for assuring the timely performance of production and delivery commitments. They are linked and interconnected by virtue of shared information and reciprocal scheduling, product quality assurances and transaction volume commitments. Process linkages add value to agricultural products and require individual participants to coordinate their activities as a continuous improvement process. Costs incurred in one link in the chain are determined in significant measure by actions taken or not taken at other

links in the chain. Extensive pre-planning and co-ordination are required up and down the entire chain to affect key control processes such as forecasting, purchase scheduling, production and processing programming, sales promotion, and new market and product launches etc.

Following are the components of an organized supply chain:

- Procurement or sourcing
- Logistic management Transportation, Material management, Warehousing and Logistics Network modeling
- Organizational management Long term storage, Packaging technology, Cold chain management, Energy efficient transport and Quality and safety

Literature Review

According to prior studies we identified the gaps between theory and practices in order to develop a supply chain model for a particular crop including Turmeric, Cinnamon and Ginger.

Supply Chain Management

Supply chain management is described as the integrated planning, coordination, and control of all processes and activities throughout the supply chain in order to offer a value added service while lowering the overall cost of all supply chain stakeholders (Van Der Vorst et al., 2000). It has been suggested that the supply chain management field lacks appropriate theoretical basis, leading in simplified conceptualizations of supply networks and their settings, and that theory may be useful in unearthing some of the complexity that characterizes supply chains (Dubois et al., 2004). The supply chain management idea often focuses on reorganizing the supply chain to increase material and information flow efficiency and effectiveness(Alvarado & Kotzab, 2001). Supply chain management has grown more crucial in a globalized corporate environment as the focus has shifted from individual cost savings to overall revenue growth and performance(Chandra, C. and Kumar, 2000). Many manufacturing and service companies throughout the world have discovered that shifting costs to other supply chain partners in upstream or downstream nodal points does not improve the focal firm's competitive advantage (Harland, 1996).

The SCOR model

Users can utilize the SCOR Model to address, enhance, and communicate supply chain management practices inside and across all relevant stakeholders. The SCOR framework tries to include components of business process design, best practices, and benchmarking into one framework. The SCOR Model was created to describe the business activities involved in meeting

a customer's demand at all stages. Using a standard set of concepts, it may be used to define and enhance both small and complicated supply chains(Peter Bolstorff, 2011). Farm produce logistics are characterized by a wide variety, big quantity, relative independence, consumable and value-added processing, and significant digitalization in modern agriculture. The SCOR model (Supply-Chain Operations Reference-model) of agricultural products based on the Internet of Things has been proposed through the improvement of the logistics model of traditional agricultural products, taking into account the features of modern agriculture and farm produce logistics(Lianguang, 2014).

Turmeric, Cinnamon and Ginger are small-scale, non-traditional minor crops.

Cinnamon

There are eight cinnamon species in Sri Lanka but among them only one species is grown commercially. Although Sri Lanka is one of the leading exporters of cinnamon in the world, the growth of the cinnamon industry is slow due to supply chain risk factors (Sugathadasa et al., 2021). The cinnamon supply network in Sri Lanka is not properly optimized and it has influenced many inefficiencies and risks in the cinnamon SCM. The researches which have been done previously have identified certain risks in this supply chain. Five critical risk factors were identified related to quality control, communication, timing of product delivery, inventory, and lack of technology which demands immediate mitigation strategies (Sugathadasa et al., 2021). Providing an ample solution to overcome the risks in cinnamon SCM is one of the objectives of this research.

Ginger

In the ancient times ginger has been widely used as a medicine in Chinese and Ayurveda medicine but in recent years, Ginger has been cultivated as a commercial crop in Sri Lanka. There are many local and introduced varieties of Ginger grown in Sri Lanka such as local ginger, Chinese ginger and Rangoon ginger. The supply chain of Ginger can have several problems due to the actors of that supply chain. Wimalaratana(2018) has mentioned the price fluctuations, unavailability of quality seeds, scarcity and high prices of fertilizer and other inputs, and inefficient extension services as the major issues in the ginger market of Sri Lanka. These issues can arise due to the lack of a proper SCM in the Sri Lankan context at present.

Turmeric

Turmeric is a highly valued crop due to the wide-range of uses it has in various industries. Turmeric is one of the multi-use commodities, which has commercial, economic, cultural and medicinal significance across the globe (Abeynayaka et al., 2020). In Sri Lanka, the turmeric production is concentrated in the intermediate and wet zones. The main issue of the turmeric market is the inefficiency of turmeric production and it has led to Production instability in turmeric production over the years. This inefficiency is inseparable from the constraints that

occur in managing turmeric farming that are linked to the aspects like input availability, production technology, market price and the delivery of necessary support services (Apasinghe, 2013) This implies the need of a good SCM in the turmeric production as well.

1.2 Problem Definition

Currently, it is critical to achieve competitive advantage of sustainable supply chain management in Sri Lanka. The important areas that have a strong impact on sustainable Supply Chain Managements are risk, uncertainty, strategy, innovation, relationship, infrastructure, regulation and technology. These factors have been studied within the manufacturing sector in developed countries; there is a lack of research on Agri-supply chains in Sri Lanka with respect to the concept of sustainable Supply Chain Management.

Therefore, our research tries to map the supply chain and identify the influencing factors and their performance on sustainable Supply Chain Management in the turmeric, cinnamon and ginger crops supply chain in Sri Lanka. Importantly, early research suggests that mapping the supply chain represents a significant research gap not only in Agri-supply chains but also supply networks in general.

Significance of the study:

Individual suppliers, producers and marketers who are associated through a supply chain coordinate their value creating activities with one another and, in the process, create greater value than they can, when they operate independently. The Sustainable supply chains create synergies in one of three ways:

- Expand traditional markets beyond their original boundaries and thus increase sales volume for members
- Reduce the delivered cost of products below the cost of competing chains and thus increase the gross margin for the working capital committed by members of the chain
- Target specific market segments with specific products and differentiate the service, product
 quality or brand reputation of the products delivered to these market segments and thus
 increase consumer perception of delivered value.

1.3 Project aims/objectives

Our primary aim is to, Develop supply chain models for each selected crops - Turmeric, Cinnamon and Ginger.

The objectives are,

- 1. To find out the factors that can be automated in the developed models.
- 2. To develop a design guideline for the software / system developers in relevant fields.
- 3. To Develop separate ontologies for each developed model.

2. Project Description

A supply chain is considered as a loop from customers' demand to customer's satisfaction by final product or service. It consists of a chain of producers, suppliers, distributors, and transporters. A supply chain can be modeled as a system of intelligent agents, which agree to cooperate to reach the final goal. A new, modern, and cost-effective implementation of supply chain management (SCM) is enabled by rapidly developing information and communication technologies(Jayaratne et al., 2011).

Figure 2: Crop supply chain Structure

There are three main objectives for achieve the final outcome in our proposed project. First we develop a supply chin model for a particular crop such as:

- Supply chain model for Turmeric crop
- Supply chain model for Cinnamon crop
- Supply chain model for Ginger crop

For this we are going to use the SCORE model.

Then we are going to find out the factors of separate model to automate. Then using responsibility assignment Metrix we can bring prepared models in to computer platform.

As well as by using Responsibility Assignment Metrix, we supposed to consider who are the actors and how they accountable for each and every step they involve.

Thus our plan is to develop a design guideline for the people who are developing software/ Systems in the relevant field.

As final objective we are going to develop ontology for separate models using protégé tool.

3. Methodology

The supply chain management ontology has the goal of providing a framework to better formulate, understand, analyze and share a company's supply chain management model. Therefore ontologies can be regarded as precious tools that can be used to increase the efficiency of supply-chains.

Figure 3: Methodology

The methodology used for constructing a general-purpose ontology for supply chain management is presented along with the resulting ontology and an ontology based SCM model. The ontology may be enhanced by including supply chain performance drivers and by including other concepts such as forecasting, warehouse location, aggregate planning, etc. More effort can be devoted to synchronizing the ontology with the SCOR (Supply Chain Operations) model in which the operations of supply chain is classified as plan, source, make, deliver and return, as is used in our ontology.

SCOR Model

SCOR focuses on the measurement and assessment of the outcomes of supply chain process execution. A comprehensive approach to understanding, evaluating, and diagnosing supply chain performance consists of three elements: Performance Attributes, Metrics, and Process / Practice Maturity. Elements, as distinct from the Levels in the Process and Metrics hierarchies, describe different aspects or dimensions of performance.

- Plan develop strategies for managing resources and balancing demands and supplies. A set of metrics to monitor the SC efficiency has to be proposed.
- Source choose a set of suppliers for producing goods and services.
- Make goods and materials are transformed to final products. This step is the manufacturing portion of the supply chain. Production scheduling, testing, packaging, etc. are the activities that take place at this step.
- Deliver coordination of orders from customers, developing a network of warehouses, distribution and transportation of products to customer, invoicing system to receive payments from customers. This part is known as "logistics"
- Return deals with the problematic of defective products, how they can be returned to
 producer and how customers are dealt with to satisfy their requirements on problematic
 products.

Responsibility Assignment Matrix

The responsibility assignment matrix is a project management style with four main roles: responsible, accountable, consulted and informed (this is also referred to as a RACI matrix). Each letter applies to a member of the team and lets them know what their role is in the project and how it fits in with the other members of the team.

The RAM method of project management allows team members to understand why the tasks they're doing are important in the big picture. When a project manager decides to implement the responsibility assignment matrix on a big project, they should make sure that everything has dates and reminders for every party. Informed team members should know when they're going to get updates from responsible team members. By the same token, a consulted team member should have an idea of when they're going to get questions from responsible team members.

Finally, the accountable team member will have assigned out all of the tasks and follow up on any missed deadlines.

Protégé

Protégé is a free, open-source ontology editor and framework for building intelligent systems. Protégé's plug-in architecture can be adapted to build both simple and complex ontology-based applications. Developers can integrate the output of Protégé with rule systems or other problem solvers to construct a wide range of intelligent systems. Protégé is based on Java, is extensible, and provides a plug-and-play environment that makes it a flexible base for rapid prototyping and application development. Protégé fully supports the latest OWL 2 Web Ontology Language and RDF specifications from the World Wide Web Consortium.

4. Resources Needed

Hardware:

- Computers /laptops,
- Mobile phones,
- Wi-Fi adapters

Software:

Protégé

Technologies

Ontology development technology

5. Individual Contribution

Name / Index number	Contribution						
Dilrukshika T.A.G UWU/IIT/17/012	 Develop a supply chain model for Turmeric crop Find out the factors of Turmeric crop to automate using the Responsibility Assignment Matrix. Develop a design guideline Develop an ontology for developed model (supply chain model for Turmeric crop) using protégé tool 						
Jayalath S.H.M.M UWU/IIT/17/020	 Develop a supply chain model for Cinnamon crop Find out the factors of Cinnamon crop to automate using the Responsibility Assignment Matrix. Develop a design guideline Develop an ontology for developed model (supply chain model for Cinnamon crop) using protégé tool 						
Navanjani S.K UWU/IIT/17/037	 Develop a supply chain model for Ginger crop Find out the factors of Ginger crop to automate using the Responsibility Assignment Matrix. Develop a design guideline Develop an ontology for developed model (supply chain model for Ginger crop) using protégé tool 						

Table 1: Contribution

6. Time Plan

Tasks	Months											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep
Identify research area												
Formulate research question and planning work												
Conducting literature review												
Collecting required data												
Preparation of research proposal												
Proposal presentation												
Develop a supply chain model for crop												
Find out the factors of crop to automate using the Responsibility Assignment Matrix												
Develop separate ontologies for developed models using protégé tool												
Thesis writing and Final presentation												

Table 2: Time Plan

7. References

- Abeynayaka, A. A. S. L., Bandara, A. M. K. R., Lankapura, A. I. Y., & Idamekorala, P. R. (2020). Economics of Turmeric Production in Sri Lanka: An Empirical Analysis in Major Turmeric Growing Districts. *Asian Journal of Agricultural and Horticultural Research*, 6(4), 10–17. https://doi.org/10.9734/ajahr/2020/v6i430078
- Alvarado, U. Y., & Kotzab, H. (2001). Supply Chain Management: The Integration of Logistics in Marketing. *Industrial Marketing Management*, *30*(2), 183–198. https://doi.org/10.1016/S0019-8501(00)00142-5
- Apasinghe, S. (2013). විවෘත වෙළෙද ප්රතිපත්තියේ බලපෑම නිසා දේශීය අර්තාපල් ගොවියාගේ ආර්ථික හා සාමාජීය තත්ත්වය කෙරෙහි හා යෙදවුම් බෙදාහැරීමේ පද්ධතිය තුළ සිදු වී ඇති විචලතා පිළිබඳ අධ්යයනයක්. (Doctoral Dissertation).
- Chandra, C. and Kumar, S. (2000). Supply chain management in theory and practice: a passing fad or a fundamental change? *Industrial Management & Data Systems*, *Vol. 100 N*, 100–114. https://doi.org/10.1108/02635570010286168
- Dubois, A., Hulthén, K., & Pedersen, A. C. (2004). Supply chains and interdependence: a theoretical analysis. *Journal of Purchasing and Supply Management*, *10*(1), 3–9. https://doi.org/10.1016/J.PURSUP.2003.11.003
- Harland, C. (1996). Supply network strategies the case of health supplies. *European Journal of Purchasing & Supply Management*, 2(4), 183–192. https://doi.org/10.1016/S0969-7012(96)00014-7
- Jayaratne, P., Styger, L., & Perera, N. (2011). Sustainable supply chain management: using the Sri Lankan tea industry as a pilot study. 25th Annual Australia New Zealand Academy of Management Conference (ANZAM 2011), 1(December 2018), 1–22. http://ro.uow.edu.au/gsbpapers/179
- Lianguang, M. (2014). Study on Supply-Chain of Agricultural Products Based on IOT. In 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation. IEEE. https://doi.org/10.1109/ICMTMA.2014.153
- Peter Bolstorff, R. R. (2011). *Using SCOR to Drive Supply Chain Improvement* (Issue Chapter 1). AMACOM. https://learning.oreilly.com/library/view/supply-chain-excellence/9780814417713/
- Sugathadasa, P. T. R. S., Perera, H. N., Hewage, H. C., & Samarakoon, S. P. A. V. S. (2021). Identifying the Supply Chain Risk Factors in Cinnamon Export Industry in Sri Lanka. *Sri Lankan Journal of Agriculture and Ecosystems*, *3*(1), 81. https://doi.org/10.4038/sljae.v3i1.62
- Van Der Vorst, J. G. A. J., Beulens, A. J. M., & Van Beek, P. (2000). Modelling and simulating multiechelon food systems. *European Journal of Operational Research*, *122*(2), 354–366. https://doi.org/10.1016/S0377-2217(99)00238-6
- Wimalaratana, W. (2018). Challenges and Prospects of Ginger Farming in Sri Lanka With Special Reference To Plogahawela Divisional Sectratariat Division. *International Journal of Business, Economics and Law, 17*(3), 63–69.