## Annexe:

Loi Normale 
$$N\left(0,1\right)$$

$$\Phi\left(x\right)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}\;e^{-\frac{u^{2}}{2}}du$$



| particular services | x. 0    |       |       |       |       |       |       |        |       |       |
|---------------------|---------|-------|-------|-------|-------|-------|-------|--------|-------|-------|
| х                   | 0.00    | 0.01  | 0.02  | 0.03  | 0.04  | 0.05  | 0.06  | 0.07   | 0.08  | 0.09  |
| 0.0                 | (.5000) | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | 0.5279 | .5319 | .5359 |
| 0.1                 | .5398   | .5438 | .5478 | 5517  | .5557 | .5596 | 5636  | 0.5675 | .5714 | .5753 |
| 0.2                 | .5793   | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | 0.6064 | .6103 | .6141 |
| 0.3                 | .6179   | .6217 | 6255  | .6293 | .6331 | .6368 | .6406 | 0.6443 | .6480 | .6517 |
| 0.4                 | .6554   | .6591 | 6628  | .6664 | .6700 | .6736 | .6772 | 0.6808 | .6844 | .6879 |
| 0.5                 | .6915   | .6950 | .0985 | .7019 | .7054 | .7088 | .7123 | 0.7157 | 7190  | .7224 |
| 0.6                 | .7257   | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | 0.7486 | 7517  | .7549 |
| 0.7                 | .7580   | .7611 | .7642 | .7673 | .7703 | .7734 | .7764 | 0.7794 | .7823 | .7852 |
| 0.8                 | .7881   | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | 0.8078 | .8106 | 8133  |
| 0.9                 | .8159   | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | 0.8340 | .8365 | .8389 |
| 1.0                 | .8413   | .8438 | .8461 | .8485 | 8508  | .8531 | .8554 | 0.8577 | .8599 | .8621 |
| 1.1                 | .8643   | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | 0.8790 | .8810 | .8830 |
| 1.2                 | .8849   | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | 0.8980 | .8997 | .9015 |
| 1.3                 | .9032   | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | 0.9147 | .9162 | .9177 |
| 1.4                 | .9192   | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | 0.9292 | .9306 | .9319 |
| 1.5                 | .9332   | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | 0.9418 | .9429 | 9441  |
| 1.6                 | 9452    | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | 0.9525 | .9535 | .9545 |
| 1.7                 | .9554   | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | 0.9616 | .9625 | 9633  |
| 1.8                 | .9641   | .9649 | .9656 | .9664 | .9671 | 9678  | .9686 | 0.9693 | .9699 | 9706  |
| 1.9                 | .9713   | .9719 | 9726  | .9732 | .9738 | .9744 | .9750 | 0.9756 | .9761 | .9767 |
| 2.0                 | .9772   | 9778  | .9783 | .9788 | 9793  | .9798 | .9803 | 0.9808 | .9812 | .9817 |
| 2.1                 | .9821   | .9826 | .9830 | .9834 | .9838 | .9842 | .9846 | 0.9850 | .9854 | 9857  |
| 2.2                 | .9861   | .9864 | .9868 | .9871 | 3875  | .9878 | .9881 | 0.9884 | .9887 | .9890 |
| 2.3                 | .9893   | .9896 | .9898 | .9901 | .9904 | .9906 | .9909 | 0.9911 | .9913 | .9916 |
| 2.4                 | .9918   | 9920  | .9922 | .9925 | .9927 | .9929 | .9931 | 0.9932 | .9934 | .9936 |
| 2.5                 | .9938   | .9940 | .9941 | 9943  | .9945 | .9946 | .9948 | 0.9949 | .9951 | 9952  |
| 2.6                 |         | .9955 | .9956 | .9957 | .9959 | .9960 | .9961 | 0.9962 | .9963 | .9964 |
| 2.7                 |         | .9966 | .9967 | .9968 | .9969 | .9970 | .9971 | 0.9972 | 9973  | 9974  |
| 2.8                 |         | .9975 | .9976 | .9977 | .9977 | .9978 | .9979 | 0.9979 | .9980 | 9981  |
| 2.9                 | .9981   | .9982 | .9982 | .9983 | .9984 | .9984 | .9985 | 0.9985 | .9986 | 9986  |

tronver les valeurs surrantes: X ~ N(0,1)







## Exercise 1

I

X V.a. de densité f(x) égale à :

- 1 0 sin (0
- · x/2 quand 0 & x & 1
- · 1/2 15253/2
- · 2x 5/2 quand 3/2 (x < 2
- · O. quend xe >2



$$\star \quad \mathcal{F}_{x}(x) = 0$$

$$D(x) \leq 1 \quad F_{\chi}(x) = \int_{0}^{x} f(t) dt = \int_{0}^{x} \frac{t}{2} dt = \left[ \frac{t^{2}}{4} \right]_{0}^{x}$$

$$= \left(\frac{2L^2}{4}\right) - \left(\frac{\delta^2}{4}\right) = \left(\frac{2L^2}{4}\right)$$

\* 
$$1 \le x \le \frac{3}{2}$$
  $F_{X}(x) = \int_{0}^{4} \int_{x} (E) dE + \int_{1}^{x} \int_{x} (E) dE$ 

a de marce de  $0$ 

$$= \int_{1}^{2} + \int_{1}^{x} \int_{2}^{4} dE = \int_{4}^{4} + \left[ \frac{1}{2} \right]_{1}^{x}$$

$$\frac{1}{4} + \left(\frac{x}{2} - \frac{1}{2}\right) = \left[\frac{x}{2} - \frac{1}{4}\right]$$

$$\frac{3}{2} \le x \le 2$$

$$f_{x} = \int_{0}^{3h} \int_{x} |f(x)|^{2} dx = \int_{0}^{3h} \int_{x} |f(x)|^{2} dx + \int_{0}^{3h} 2x - \int_{0}^{2} dx = \int_{0}^{3h} |f(x)|^{2} dx = \int_{0}^{3h} \int_{x} |f(x)|^{2} dx = \int_{0}^{3h} \int_$$

$$= \left[ \frac{3}{4} \frac{3}{2} - \frac{1}{4} \right]_{0}^{3/2} + \left[ 2 \times \frac{t^{2}}{2} - \frac{5t}{2} \right]_{3/2}^{2}$$

$$= \frac{3}{4} - \frac{1}{4} + \left[t^2 - \frac{5t}{2}\right]_{3h}^2 = \frac{4}{4} \left(x^2 - \frac{5}{2}x + 2\right)$$

$$=\frac{1}{2}+\left[2^{2}-\frac{5x^{2}}{2}-\left(\frac{(3/2)^{2}}{2}-\frac{5\times\frac{3}{2}}{2}\right)\right]=\left[x^{2}-\frac{5}{2}x+2\right]$$



tel que proba Sous la combe

donc se > 3/2 et donc

Il fant resondre: 
$$\chi^2 - \frac{5}{2}x + 2 = \frac{3}{4}$$
  
 $\chi^2 - \frac{5}{2}x + \frac{5}{4} = 0$ 

$$\Delta = b^{2} - 4ac = 100 - 80 = 20$$

$$\alpha_{1} = \frac{10 + 2\sqrt{5}}{8}; \quad \alpha_{2} = \frac{10 - 2\sqrt{5}}{8}$$

$$\alpha_{1} = 0,69 \quad \text{on } \alpha_{2} = 1,8$$

Puisque x ) 3/2 => la solution est su: 1,8



## Exercise 2

taille moyenne d'un homme de 25 ans =) v.a re'elle T à densité normale de moyenne 175 et écant-type 6 donc T ~ N (175;6)

1. 
$$Y = \alpha x + \beta$$
  
 $E(Y) = E(\alpha x + \beta) = \alpha E(x) + \beta$   
 $Var(Y) = Var(\alpha x + \beta) = E(((\alpha x + \beta) - E(\alpha x + \beta))^{2})$   
 $= \alpha^{2} Var(x)$   
 $= \alpha^{2} Var(x)$   
 $= \alpha^{2} Var(x)$ 

2. Soit 
$$X=T$$
,  $x = t$   $y = t$  ponque  $y = t$   $y = t$ 

$$E(Y) = 0 \rightarrow d E(X) + \beta = 0$$

$$Var(Y) = \sigma(Y) = 1 \rightarrow d \sigma(X) = 1$$

$$\begin{cases} 175d + \beta = 0 \\ 6x = 1e \end{cases} \Rightarrow d = 16$$

$$\beta = -\frac{175}{6}$$

$$P(T7,185) = P(Y-P), 185) \longrightarrow X=T$$

$$= P(Y+175)6 7,185) \qquad X = Y-0$$

$$= P(Y7, 185) = P(Y7, \frac{10}{6})$$

$$P(T7,185) = P(Y7, \frac{5}{3})$$

$$P(Y,X) = 1 - P(YXX)$$
;  $sifest continue$ ,  
 $P(YXX) = P(YXX) = F(X)$ 

$$F(\frac{5}{3}) = 0,9515$$

Remarque Lou & est identique (Cf. Cours) car F continue,
$$P(Y=y)=0$$

donc

$$P(160 \langle T \langle 190 \rangle) = P(T \langle 190 \rangle - P(T \langle 160 \rangle))$$
  
=  $P(Y \langle 2,5) - P(Y \langle -2,5)$ 

$$= F(2,5) - F(-2,5)$$

$$= F(2,5) - (1-F(2,5))$$

$$-2,5$$
 $-2,5$ 
 $-2,5$ 
 $-2,5$ 
 $-2,5$ 
 $-2,5$ 
 $-2,5$ 
 $-2,5$ 

$$P(175-E \le T \le 175+E) = 2F(\frac{E}{6})-1$$

ian 
$$P\left(\frac{175-E}{6} \le 7 \le \frac{175+E-175}{6}\right) = P\left(-\frac{E}{6} \le 7 \le \frac{E}{6}\right)$$

$$=F(\frac{\varepsilon}{6})-F(-\frac{\varepsilon}{6})=F(\frac{\varepsilon}{6})-(1-F(\frac{\varepsilon}{6})=2F(\frac{\varepsilon}{6})-1$$

On when the 
$$2F(\frac{\epsilon}{6})-17,0,9=)$$
  $2F(\frac{\epsilon}{6})7,1,9$   $F(\frac{\epsilon}{6})7,0,95$ 

Soit environ woom, coherent avec la question precedente



Exercice 3

Picheurs ale'ahoires et somme de variables aleatoisos

Couple de variables allahoires récles (X,Y) de loi un Jorme (a,b) x [a,b]

$$\int (a) = \begin{cases} \int b - a & \text{sinm} \\ 0 & \text{sinm} \end{cases}$$

1. a) Donsiteide f $J(x,y) = \frac{1}{b-a} \cdot \frac{1}{b-a} = \begin{cases} \frac{1}{(b-a)^2}, & \text{sinon} \\ 0 & \text{sinon} \end{cases}$ 

b. a=0 b=1 et Z= x+7

Calent de la fonction de respontition de Z

= \( \int\_{-00}^3 \) d\( 3 \)

 $F(3) = \iint_{n+n} \int_{3}^{\infty} \int_{3}^{\infty} \ln_{n}(y) dx dy$ 

It fant que 3 Soit possibile

· F(3) = 0 si 3 <0

. 5: 37,0  $F(3) = \int_{0}^{\infty} \int_{0}^{$ 

$$F(3) = \int_{0}^{3} \int_{0}^{3-x} 1 \, dx \, dy = \int_{0}^{3} \left[ y \right]_{0}^{3-x} \, dx$$

$$= \int_{0}^{3} \left[ (3-x) \cdot 0 \right] dx = \int_{0}^{3} \left( 3-x \right) dx$$

$$= \left[ x_{3} - \frac{x^{2}}{2} \right]_{0}^{3} = \left( 3^{2} - \frac{3^{2}}{2} \right) \cdot \left( 0 \right)$$

$$= 3^{2} - \frac{3^{2}}{2} = \frac{3^{2}}{2}$$

$$\int (x,y) = \int (x$$

1. Calcular C
$$\int_{0}^{4} \int_{1}^{5} c xy \, dx \, dy = C \left[ \frac{x^{2}}{2} \right]_{0}^{4} \times \left[ \frac{ye}{2} \right]_{1}^{5}$$

$$= C \times \left(\frac{16}{2} - 0\right) \times \left(\frac{25}{2} - \frac{1}{2}\right) = C \times 8 \times 12 = C \times 96$$

## 2. Calcular P (1<×<2,2<4/3)

$$\int_{1}^{2} \int_{2}^{3} (xy) dx dy = \frac{1}{96} \left[ \frac{x^{2}}{2} \right]_{1}^{2} \times \left[ \frac{y^{2}}{2} \right]_{2}^{3}$$

$$= \frac{1}{96} \left( 2 - \frac{1}{2} \right) \left( \frac{9}{2} - 2 \right) = \frac{1}{96} \times \frac{3}{2} \times \frac{5}{2} = \frac{5}{128}$$

3. Calcula les lois marginales de X et Y

(9)

Pour la marginale de x qu'on appelle h(x) on inhègere par rapport à y donc

$$h(x) = \int_{1}^{5} c x y \times 1 \qquad \text{otherwise} dy = c x \left[ \frac{y^{2}}{2} \right]_{1}^{5} = 1$$

$$= \frac{1}{36} \times 2 \times \left( \frac{25}{2} - \frac{1}{2} \right) = \frac{12}{96} \times \frac{1}{8} \times \frac{1}{$$

h(x)= 1/8 2

poin Y, on interpret for napport  $\tilde{a} \times 3(y) = \int_0^4 \cos x \cdot 1 \sin x \cdot \sin$ 

4. Forcher de répartition F de (X,Y), Fx de X et Fy de Y

Par de problème on trouve Fx, Y = Fx x Fy =

$$f_{x,y} = \int_{0}^{x} \int_{1}^{y} \frac{1}{36} xy dx dy = \frac{1}{96} \left( \frac{x^{2}}{2} \right)_{0}^{x} + \left( \frac{y^{2}}{2} \right)_{1}^{y}$$

$$= \frac{1}{96} \left( \frac{x^{2}}{2} \left( \frac{y^{2}}{2} - \frac{1}{2} \right) \right)$$

$$F_{X} = \int_{0}^{\infty} \frac{1}{8} dx = \frac{1}{8} \left[ \frac{2^{2}}{2} \right]_{0}^{x} = \frac{1}{8} \frac{x^{2}}{2}$$

$$F_{y} = \int_{1}^{y} \frac{1}{12} y \, dy = \frac{1}{12} \left[ \frac{y^{2}}{2} \right]_{1}^{y} = \frac{1}{12} \left( \frac{y^{2}}{2} - \frac{1}{2} \right)$$

$$F_{X,Y} = F_{X} \cdot F_{Y} \cdot Can \frac{1}{36} = \frac{1}{8} \times \frac{1}{12}$$