Fiche de synthèse : Interactions Fondamentales Gravitation, Électromagnétisme

Benjamin L'Huillier

1 Introduction

- Il existe plusieurs interactions fondamentales dans la nature.
- Nous nous intéressons ici à deux interactions à distance : la gravitation et l'interaction électrostatique.
- Ces interactions sont modélisées par les notions de force et de champ.

2 Forces et champs

2.1 Forces

Definition 2.1: Force

Une force est une action mécanique exercée par un objet sur un autre. Elle peut :

- mettre un corps en mouvement ou modifier son mouvement (accélération);
- être de contact (ex. frottement, tension) ou à distance (ex. gravitation, électrostatique).

La force s'exprime en Newtons (N).

$$1 \,\mathrm{N} = 1 \,\mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2}$$
 (1)

Dans ce chapitre, nous nous intéressons à des forces à distance :

- la force gravitationnelle entre deux masses ;
- la force électrostatique entre deux charges.

2.2 Champs

Plutôt que de décrire une interaction entre deux objets directement, on peut dire qu'un objet (la source) crée un **champ** dans l'espace autour de lui.

Ce champ représente son influence à distance. Un second objet placé dans ce champ subira une force.

Definition 2.2: Champ

Un champ est une grandeur définie en chaque point de l'espace, qui permet de décrire l'action d'une source physique sur une particule test.

Exemples:

- le champ gravitationnel \overrightarrow{q} , créé par une masse ;
- le champ électrostatique \overrightarrow{E} , créé par une charge.

2.3 Lien entre champ et force

La force subie par une particule dans un champ est proportionnelle à la grandeur caractéristique de la particule (masse ou charge):

Champ	Force subie par un objet placé dans le champ
Champ gravitationnel \overrightarrow{g} Champ électrostatique \overrightarrow{E}	, ,

Remarque 2.1

On dit souvent qu'un corps est *plongé dans un champ*: c'est ce champ qui agit sur lui, et non directement la source. Cette approche est particulièrement utile lorsqu'il y a plusieurs sources, ou dans des situations où les champs sont connus ou mesurés expérimentalement.

3 Interaction gravitationnelle

3.1 Masse gravitationnelle

Definition 3.1: Masse gravitationnelle

La masse est la source de l'interaction gravitationnelle. Elle est toujours positive et engendre une force attractive entre les objets. Elle s'exprime en kilogrammes (kg).

3.2 Force gravitationnelle

Figure 1: Force Gravitationnelle

Propriété 3.1: Loi de Newton

Deux corps ponctuels de masses m_A et m_B , séparés par une distance AB = r, exercent l'un sur l'autre des forces opposées et de même norme :

$$\overrightarrow{F}_{A\to B} = -G\frac{m_A m_B}{r^2} \overrightarrow{u}_{A\to B},$$

où:

- $G = 6.67 \times 10^{-11} \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{kg}^{-2}$ est la constante de gravitation universelle ;
- $\overrightarrow{u}_{A\to B}$ est un vecteur unitaire dirigé de A vers B, c'est-à-dire tel que $\|\overrightarrow{u}_{A\to B}\|=1$.

Chaque corps attire l'autre : la force exercée par A sur B est dirigée vers A, et réciproquement.

3.3 Champ gravitationnel

Definition 3.2: Champ gravitationnel

Le champ gravitationnel \overrightarrow{g} créé par une masse ponctuelle M à une distance r est défini par :

$$\overrightarrow{g} = -G\frac{M}{r^2} \overrightarrow{u},$$

où \overrightarrow{u} est un vecteur unitaire dirigé du point considéré vers la masse M. L'unité du champ gravitationnel est le newton par kilogramme (N kg⁻¹).

Un corps de masse m placé dans ce champ subit une force gravitationnelle :

$$\overrightarrow{F} = m\overrightarrow{g}$$
.

4 Interaction électrostatique

4.1 Charge électrique

Definition 4.1: Charge électrique

La charge électrique est la source de l'interaction électrostatique. Elle peut être positive ou négative, et s'exprime en coulombs (C).

- Deux charges de **même signe** se repoussent.
- Deux charges de signes opposés s'attirent.

4.2 Force électrostatique

Propriété 4.1: Loi de Coulomb

Deux charges ponctuelles q_1 et q_2 , séparées par une distance r, exercent l'une sur l'autre des forces opposées et de même norme :

$$\overrightarrow{F}_{1\to 2} = k \frac{q_1 q_2}{r^2} \overrightarrow{u}_{1\to 2},$$

où:

- $\overrightarrow{u}_{1\rightarrow 2}$ est un vecteur unitaire dirigé de q_1 vers q_2 ;
- la constante de Coulomb est $k \approx 8.99 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{C}^{-2}$.

La force est **attractive** si $q_1q_2 < 0$, c'est-à-dire, q_1 et q_2 de signes opposés, et **répulsive** si $q_1q_2 > 0$, c'est-à-dire, de même signe.

4.3 Champ électrostatique

	Gravitation	Électrostatique
Source	Masse m	Charge q
Type	Toujours attractive	Attractive ou répulsive
Constante	G	k
Champ	$\overrightarrow{g} = -\frac{GM}{r^2}\overrightarrow{u}$	$\overrightarrow{E} = k \frac{Q}{r^2} \overrightarrow{u}$
Force subie	$\overrightarrow{F} = m\overrightarrow{g}$	$\overrightarrow{F}=\overrightarrow{q}\overrightarrow{E}$

Table 1: Tableau comparatif des interactions gravitationnelle et électrostatique. \overrightarrow{u} est un vecteur unitaire pointant dans la direction opposée à la source du champ.

Definition 4.2: Champ électrostatique

Le champ électrostatique \overrightarrow{E} créé par une charge ponctuelle Q à une distance r est donné par :

$$\overrightarrow{E} = k \frac{Q}{r^2} \overrightarrow{u},$$

où \overrightarrow{u} est un vecteur unitaire pointant loin de la charge si Q > 0, et vers la charge si Q < 0. L'unité du champ électrostatique est le volt par mètre $(V m^{-1})$ ou le newton par coulomb $(N C^{-1})$.

Une charge q placée dans ce champ subit une force électrostatique :

$$\overrightarrow{F} = q\overrightarrow{E}$$
.

5 Comparaison des deux interactions

6 Remarques

Remarque 6.1

- Les deux interactions sont décrites par des lois en $\frac{1}{r^2}$.
- La gravitation est toujours attractive, l'électrostatique peut être attractive ou répulsive selon le signe des charges.
- Les champs permettent de décrire l'action exercée localement sur un corps placé dans l'environnement d'une source.