Fonctions logarithme népérien, exponentielle, puissances

1 Fonction logarithme népérien

Définition. Courbe représentative

La fonction logarithme népérien, notée ln, est la primitive sur]0; $+\infty[$ de la fonction $x \mapsto \frac{1}{x}$ qui s'annule pour x = 1. Pour tout x > 0, si $f(x) = \ln x$ alors $f'(x) = \frac{1}{x}$.

Propriétés

Pour tout a > 0 et b > 0: $\ln a b = \ln a + \ln b ; \ln a^n = n \ln a \text{ (}n \text{ entier relatif)}$ $\ln \frac{1}{h} = -\ln b ; \ln \frac{a}{h} = \ln a - \ln b.$

2 Fonction exponentielle

Définition. Courbe représentative

La fonction exponentielle est définie et dérivable sur \mathbb{R} .

Pour tout x réel, si $f(x) = e^x$ alors $f'(x) = e^x$

x	-∞	0		1	+ ∞
$f'(x) = e^x$			+	1,	
$f(x) = e^x$	0	_11		e	*+∞

Propriétés

Pour a et b réels quelconques : $e^{a+b} = e^a \times e^b$; $e^{a-b} = \frac{e^a}{e^b}$; $(e^a)^n = e^{na}$ (n entier relatif) Pour b > 0 : $e^a = b$ équivaut à $a = \ln b$.

3 Fonctions puissances

Pour α réel, la fonction puissance d'exposant α est la fonction définie sur]0; $+\infty[$ par : $f(x) = x^{\alpha} = e^{\alpha \ln x}$

Pour tout x > 0, $\operatorname{si} f(x) = x^{\alpha} \operatorname{alors} f'(x) = \alpha x^{\alpha - 1}$.

Les résultats dits de « croissances comparées à l'infini des fonctions logarithme, exponentielle et puissance sont donnés dans L'essentiel du chapitre 1.

Comment résoudre une équation ou une inéquation où figure la fonction logarithme ou la fonction exponentielle ?

On utilise:

- les résultats concernant « Équations et Inéquations » rappelés dans le Mémento page 302 ;
- les règles de calcul relatives à la fonction logarithme et à la fonction exponentielle rappelées dans le Mémento page 303;
- les propriétés du tableau suivant :
- l'équation $\ln x = a$ a pour solution : $x = e^a$.
- In a = In b équivaut à a = b.
- In $a < \ln b$ équivaut à a < b.
- l'équation $e^x = a$, avec a > 0, a pour solution : $x = \ln a$.
- $e^a = e^b$ équivaut à a = b.
- $e^a < e^b$ équivaut à a < b.

Exemple 1. Résoudre l'équation $e^{-0.5x+1} - 2 = 0$.

L'équation s'écrit : $e^{-0.5x+1} = 2$.

En prenant le logarithme népérien de chaque membre, on obtient : $-0.5x + 1 = \ln 2$,

d'où, successivement :
$$-0.5x = \ln 2 - 1$$
; $x = \frac{\ln 2 - 1}{-0.5} = 2(1 - \ln 2)$.

L'équation proposée admet une solution : $x = 2(1 - \ln 2)$; $x \approx 0.61$.

Exemple 2. Résoudre l'inéquation 2 $\ln (x + 4) > \ln (2 - x)$

On doit avoir x + 4 > 0 et 2 - x > 0 soit -4 < x < 2.

On écrit : $\ln (x + 4)^2 > \ln (2 - x)$ d'où $(x + 4)^2 > 2 - x$

c'est-à-dire: $x^2 + 8x + 16 > 2 - x$ d'où $x^2 + 9x + 14 > 0$.

Dans \mathbb{R} , l'équation $x^2 + 9x + 14 = 0$ a pour solutions : $x_1 = -7$; $x_2 = -2$.

Dans \mathbb{R} , on a $x^2 + 9x + 14 > 0$ pour x tel que x < -7 ou x > -2.

On doit avoir – 4 < x < 2, donc l'inéquation proposée a pour solutions **les réels x tels que** – 2 < x < 2.

Exemple 3. Résoudre l'équation $e^x - 10 = -3e^{2x}$.

L'équation s'écrit : $3e^{2x} + e^x - 10 = 0$ soit $3(e^x)^2 + e^x - 10 = 0$.

En posant $X = e^x$, on obtient l'équation du second degré $3X^2 + X - 10 = 0$.

Cette équation a pour solutions dans $\mathbb{R}: X_1 = -2$ et $X_2 = \frac{5}{3}$.

Il faut alors résoudre les équations d'inconnue $x : e^x = -2$; $e^x = \frac{5}{3}$.

- L'équation $e^x = -2$ n'a pas de solution, car $e^x > 0$.
- L'équation $e^x = \frac{5}{3}$ a pour solution : $x = \ln \frac{5}{3}$.

Donc l'équation proposée a une seule solution : $x = \ln \frac{5}{3}$; $x \approx 0.51$.

Calculs ; équations et inéquations avec logarithmes ou exponentielles

Fiche méthode 1

Simplifier les expressions suivantes :

$$\ln 3 + \ln \frac{1}{3}$$
; $\ln e^3 - \ln e$; $e^{-\ln 2}$.

2 R Simplifier les expressions suivantes : $\ln \sqrt{e^5}$; $e^{\ln 5 - \ln 3}$; $\ln e^3 - e^{\ln 3}$.

Pour chacun des exercices 3 à 7, résoudre les équations proposées.

3 R
$$\ln x + 2 = 0$$
; $\ln (x+1) - 3 = 0$.

4 C
$$\ln(x+2) = \ln(2x+1)$$
; $2 \ln x + \ln 3 = 0$.

5
$$\ln x^2 = \ln 2 + \ln (x+1)$$
.

6 R
$$e^{2x} - 3 = 0$$
; $e^{2x} = e^{x+1}$.

7 C
$$e^{4x} - 2e^{3x} = 0$$
; $e^{0.2x} = 2e^{-0.2x}$.

8 a) Résoudre l'équation d'inconnue X:

$$X^2 - 2X - 3 = 0.$$

b) En déduire les solutions de l'équation d'inconnue *x* :

$$e^{2x} - 2e^x - 3 = 0.$$

On posera $X = e^x$.

9 a) Résoudre l'équation d'inconnue X:

$$X^2 - 2X + 2 = 0.$$

b) En déduire les solutions de l'équation d'inconnue *x* :

$$e^{2x} - 2e^x + 2 = 0$$
.

On posera $X = e^x$.

Pour chacun des exercices 10 à 15, résoudre les inéquations proposées.

10 C
$$\ln(x+1) < 0$$
; $\ln(2-x) > \ln 3$.

$$11 \ln \frac{x+1}{x-1} > 0.$$

12 C
$$3-2e^{0.5x} > 0$$
.

13
$$e^x(e^x-2) > 0$$
.

14
$$e^{2x} - 4e^x < 0$$
.

15 R
$$1 - e^{0.5x-1} < 0$$
.

16 C Étudier sur \mathbb{R} le signe de $(e^x + 1)(e^x - 3)$.

Correction:

$$\frac{5}{2}$$
; $\frac{5}{3}$; 0.

• Solution :
$$x = e^{-2}$$
.

• Solution :
$$x = -1 + e^3$$
.

• On doit avoir
$$x > -2$$
 et $x > -\frac{1}{2}$ soit $x > -\frac{1}{2}$.

On obtient : x + 2 = 2x + 1. D'où la solution : x = 1.

• On doit avoir x > 0.

On obtient :
$$2 \ln x = -\ln 3$$
; $\ln x = -\frac{1}{2} \ln 3 = \ln \frac{1}{\sqrt{3}}$.

D'où la solution : $x = \frac{1}{\sqrt{3}}$.

6 •
$$\frac{1}{2} \ln 3$$
.

• On écrit successivement :

$$e^{4x} = 2e^{3x}$$
; $\frac{e^{4x}}{e^{3x}} = 2$; $e^x = 2$.

D'où la solution : $x = \ln 2$.

· On écrit successivement :

$$\frac{e^{0,2x}}{e^{-0,2x}} = 2 \; ; \; e^{0,4x} = 2 \; ; \; 0,4x = \ln 2.$$

D'où la solution : $x = \frac{1}{0.4} \ln 2$.

• On doit avoir x > -1.

On obtient : x + 1 < 1 soit x < 0Ensemble des solutions :]-1; 0[.

• On doit avoir x < 2.

On obtient : 2 - x > 3 soit x < -1.

Ensemble des solutions : $]-\infty;-1[$.

On obtient: $3 > 2e^{0.5x}$ soit $e^{0.5x} < \frac{3}{2}$.

D'où $0.5x < \ln \frac{3}{2}$; $x < 2 \ln \frac{3}{2}$.

15
$$x > 2$$

Puisque $e^x + 1 > 0$, le signe de $(e^x + 1)(e^x - 3)$ est celui de $e^x - 3$ d'où les résultats suivants :

$$-\sin x < \ln 3$$
, alors $(e^x + 1)(e^x - 3) < 0$;

$$-\sin x > \ln 3$$
, alors $(e^x + 1)(e^x - 3) > 0$.