Introduction to Problem Solving

TABLE OF CONTENTS

- 1. Count the Factors
- 2. Optimisation for counting the Factors
- 3. Check if a number is Prime
- 4. Sum of N natural numbers
- 5. Definition of AP and GP
- 6. How to find the number of a times a piece of code runs i.e number of iterations
- 7. How to compare two algorithms

- → Jitendur Punia (Jectu)
- Full 'time Instructor + Program Management
 Nork
- 4.5 years of teaching experience.

Few terms that you shall see/hear throughout the course!

PSP (Problem Solving Percentage) Solved Assignment Problems / Total Open Assignment Problems

- There are two types of section Assignment and Additional. Assignment section consists of implementation of the problems done in class. PSP is calculated based on only Assignment Problems
- Additional Problems are slight modifications of assignment problems, they are not part of PSP but once you're done with assignment, we highly recommend to complete additional problems as well.
- Try to keep PSP least 85% no matter what. It shall really help you stay focused and we have seen in the past that people with >= 85%, do well in interviews.

2. Attendance

- Try to maintain at least 75% attendance either through classes or by watching recordings.
- Though I will recommend you to come to classes regularly because otherwise it may create backlogs.
- So, I expect all of you to attend live classes and if for any reasons you are unable to,
 then please send me a message stating the reason.

21 Next Month

- Introduction to Problem Solving
- Time Complexity
- Introduction to Arrays
- Prefix Sum
- Carry Forward
- Subarrays
- 2D Matrices
- Sorting Basics
- Strings Basics
- Bit Manipulation Basics
- Interview Problems
- Contest [covers full Intermediate DSA]

Contest will be organised after Intermediate Module

- It will be for 1.5 hours and will be conducted within class duration followed by Contest Discussion (Instructor shall be discussing contest problems).
- It will consist of 3 questions and we expect you to solve >=2 problems. If for any reason you are unable to solve, then we shall also be having re-attempts as well. (We will provide more info on re-attempts moving forward)
- · Contests are critical to retaining what you have learnt and measuring where you need improvement. Please take contests seriously.

FAQs

- Notes will be uploaded after the class.
- · Assignment will be unlocked after the class ends.
- There is no deadline for assignments.
- If asking a questions, ask in public chat.
- If answering a questions, answer in private chat.

Answering To: Everyone

Answering To: Jikender.

1 minate)

< **Question** >: Given N. Find the count of factors of N. (N > 0)

1.
$$N = 24$$

idea. , iterate on all the numbers from 1 to N and Check of that no divides N completely.

inf count factors (inf N) {

$$count = 0;$$
 $for(i=1; i \le N; i + i) \{ // i = 1 \neq N \}$

$$f(N)/, i = 0) \{ (N)/, i = 0 \} \}$$

The return count;

Assumption: - 108 iterations are executed in 1 sec.

\\\ <u>\</u>	no of iterations	execution time
10g	108	1 8eC.
10	109	10 500.
1018	1078	10 ¹⁰ sec. ≈ 317 years.
.0		108 itr -, 1 sec

Optimisation

$$i + j = N$$
, Both i and j are foctors of N. $j = \frac{N}{i}$, Both i and $\frac{N}{i}$ are foctors of N.

$$N = 24$$
 $1 \le 24$
 $2 \le 12$
 $3 \le 8$
 $4 \le 6$
 $6 = 4$
 $8 = 3$
 $12 = 2$
 $24 = 1$

- After a certain value, factors are repeating.

$$i \leq N$$
: $\Rightarrow i \neq i \leq N$
 $i \leq JN$

</> </> Code

int count factors 2 (int N)?

Count = 0;

$$\begin{cases}
 \text{for } (i = 1; i \neq i \leq N), i \neq i \neq j \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0) \in \mathbb{N}^{i}, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = 0, i \neq j \text{ are factors of } N \\
 \text{if } (N), i = 0, i$$

Assumpt	ton:	108 ikra	tions are	executed	ส่ท	1 500	•
Ñ	no.	of iterati	ions exe	ution tin	rl	_	
1018		109	19	sec.			

observation is the key ingridient to improve Problem Solving.

Prime Numbers = Nois having only 2 factors. [1 and no. itself]

$$n_0 \rightarrow (0, 11, 23, 2, 25, 27, 31) \rightarrow a_{m=4}$$

< **Question** >: Given a number N. Check if it is prime or not.

</>

<pr

$$S = 1 + 2 + 3 + 4 + - - - - 98 + 99 + 100$$

 $S = 100 + 99 + 98 + 97 + - - - 3 + 2 + 1$

$$2.5 = 101 + 101 + 101 + 101 + 101 + 101$$

$$2.S = 101 \times 100$$

$$S = \frac{101 \times 100}{2} = \frac{5050}{2}$$

$$S = 1 + 2 + 3 + - - - (N-2) + (N-1) + N$$

$$S = N + (N-1) + (N-2) + - - - 3 + 2 + 1$$

$$S = N(N+1)$$

Range

$$[1, 11] \rightarrow 11-1+1 \Rightarrow \underline{11}$$

$$[3, 10] \rightarrow 10^{-3} + 1 = \frac{8}{2}$$

$$[a,b] \rightarrow b-\alpha+1$$

$$[a,b) \rightarrow b-a$$

$$(a, b] \rightarrow b-a$$

What is an iteration?

= No of time a loop runs.

Quiz-1

```
for(i=1; i\leqN; i++){

if(i==N) {break}

}

i \rightarrow (i,N)
```

Quiz- 2

```
s=0;
for(int i=0; i≤100; i++){
s=s+i+i^{2}
}
```

Quiz- 3

```
for (i=1; i \( \) \( \) if (i \( \) \( 2 = 0 \) \( \) | print (i); \\ \) for (j=1; j \( \) if (j \( \) 2 == 0) \( \) | print (j); \\ \) print (j); \\ \) = N + m + m = 1 + m
```

Geometric Progression

· Series where the ratio of two consecutive terms remains same.

Sum of first N ferms of 4-P
$$\frac{a \cdot (r^{N}-1)}{(r-1)}$$

$$S = \frac{ay + ay}{ar + ay^2 + ay^2 - 1} + \frac{ay^{N-1}}{ar - 1} + \frac{ay^{N-1}}{ar - 1} + \frac{ay^{N-1}}{ar - 1} - \frac{a$$

$$\gamma \cdot S - S = 0 \cdot \gamma^{n_1} - \alpha$$

$$S(r-1) = Q(r^{N}-1)$$

$$\left\{ S = \frac{\alpha(x^{N}-1)}{(x-1)} \right\}$$

How to compare two algorithms?

 $N = 10^8$. Given N elements, sort the elements in increasing order.

Conclusion - hie carit use execution time to compose?

2 algorithms.

 \coprod

How should we company then?

It

No. of iterations.

3 scissione - Advanced DSA-1

- Permutation L'ambination
 - 1 Prim

1

- GCD