VITMO

Анализ графовых данных и глубокое обучение

Азимов Рустам Высшая школа цифровой культуры

В предыдущих сериях

VİTMO GNN Training Pipeline

Training Pipeline

Output of a GNN: set of node embeddings

$$\{\mathbf{h}_{v}^{(L)}, \forall v \in G\}$$

Prediction head

Graph-level tasks

Node-level head

Можно использовать линейный слой над обученными эмбеддингами 😑 😢

$$\widehat{\mathbf{y}}_{v} = \text{Head}_{\text{node}}(\mathbf{h}_{v}^{(L)}) = \mathbf{W}^{(H)}\mathbf{h}_{v}^{(L)}$$

Размер линейного слоя зависит от количества целевых признаков у для задачи регрессии/классификации

Edge-level head (1)

$$\widehat{\mathbf{y}}_{uv} = \text{Linear}(\text{Concat}(\mathbf{h}_u^{(L)}, \mathbf{h}_v^{(L)}))$$

Edge-level head (2)

• 1-way prediction

$$\widehat{\mathbf{y}}_{uv} = (\mathbf{h}_u^{(L)})^T \mathbf{h}_v^{(L)}$$

• k-way prediction (идея, схожая с multi-head attention в GAT)

$$\widehat{\mathbf{y}}_{uv}^{(1)} = (\mathbf{h}_u^{(L)})^T \mathbf{W}^{(1)} \mathbf{h}_v^{(L)}$$

...

$$\widehat{\mathbf{y}}_{uv}^{(k)} = (\mathbf{h}_u^{(L)})^T \mathbf{W}^{(k)} \mathbf{h}_v^{(L)}$$

$$\widehat{y}_{uv} = \operatorname{Concat}(\widehat{y}_{uv}^{(1)}, ..., \widehat{y}_{uv}^{(k)}) \in \mathbb{R}^k$$

Graph-level head

(1) Global mean pooling

$$\widehat{\mathbf{y}}_G = \operatorname{Mean}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

(2) Global max pooling

$$\widehat{\mathbf{y}}_G = \operatorname{Max}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

(3) Global sum pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Sum}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

Training Pipeline

Supervised Labels

Метки вершин, рёбер или графов уже даны

Например, каждый граф — лекарство и известны некоторые токсичные и нетоксичные лекарства

Unsupervised Signals

- Можно самостоятельно выделить метки для предсказания
- Для вершин, например, предсказывать clustering coefficient, PageRank, ...
- Или к какому кластеру принадлежит вершина
- Для рёбер убрать некоторые из них и научится предсказывать их наличие
- Для графов, например, предсказывать изоморфны ли два графа

Training Pipeline

Dataset Splitting

• Как разделить набор графовых данных на train/validation/test?

- Легко, если набором является множество графов
- В чём сложность, когда имеется только один граф?

Training

Validation

Test

Transductive Setting

• Позволяем быть влиянию частей набора данных друг на друга

- На каждом этапе доступен весь граф
- При обучении вычисляются эмбеддинги с использованием всего графа, но loss оптимизируется только для тренировочных данных
- Аналогично при валидации метрику подсчитываем на валидационных данных

Training

Validation

Test

Пример: Link Prediction

Отдельного внимания заслуживает задача предсказания связей в графе

Прячем некоторые рёбра, чтобы на них оптимизировать предсказания

Predictions made by GNN

Inductive Link Prediction

Message edge ——

Supervision edge

Transductive Link Prediction

Training message edges
Training supervision edges
Validation edges
Test edges

(1) At training time:
Use training message
edges to predict training
supervision edges

(2) At validation time:
Use training message
edges & training
supervision edges to
predict validation edges

(3) At test time:
Use training message
edges & training
supervision edges &
validation edges to
predict test edges

VITMO Heterogeneous Graphs

Гетерогенные графы

• Мы рассмотрели pipeline для однородных графов

 Но часто на практике встречаются гетерогенные графы с несколькими видами вершин и рёбер

Гетерогенные графы

Biomedical Knowledge Graphs

Example node: Migraine

Example relation: (fulvestrant,

Treats, Breast Neoplasms)

Example node type: Protein

Example edge type: Causes

Event Graphs

Example node: SFO

Example relation: (UA689, Origin,

LAX)

Example node type: Flight

Example edge type: Destination

Гетерогенные графы

 Есть много способов сделать гетерогенный граф гомогенным и использовать рассмотренные в предыдущих лекциях методы

- Например, one-hot кодированием добавить информацию о типе вершин в их признаки (вершины-авторы [1, 0], вершины-статьи [0, 1]
- Но иногда нужно использовать именно гетерогенные графы
 - У разного типа вершин/рёбер разная размерность признаков
 - Существенное отличие связей требует обучения разных моделей

GCN

Message

- Сообщения от соседей: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$
- Агрегация:

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

• В GCN использовали петли для каждой вершины, чтобы одним из соседей была сама вершина

GCN

Relational GCN

Relational GCN

Relational GCN

• Relational GCN (RGCN)

$$\mathbf{h}_{v}^{(l+1)} = \sigma \left(\sum_{r \in R} \sum_{u \in N_{v}^{r}} \frac{1}{c_{v,r}} \mathbf{W}_{r}^{(l)} \mathbf{h}_{u}^{(l)} + \mathbf{W}_{0}^{(l)} \mathbf{h}_{v}^{(l)} \right)$$

- Сообщения нормализуются отдельно по каждому типу отношений
- Существенно увеличивается количество параметров с ростом числа отношений
- Появляется проблема переобучения
 - Использовать блочно-диагональные матрицы весов
 - Использовать базис весов

Block Diagonal Weights

Limitation: only nearby neurons/dimensions can interact through *W*

Basis Learning

Базисные матрицы весов

$$\mathbf{W}_r = \sum_{b=1}^B a_{rb} \cdot \mathbf{V}_b$$

Обучаемые скаляры для каждого отношения

Пример: Link Prediction

Training message edges for r_n

Validation edges for r_n

Test edges for r_n

Training supervision edges for r_n

Every edge also has a relation type, this is independent of the 4 categories.

In a heterogeneous graph, the homogeneous graphs formed by every single relation also have the 4 splits.

Training message edges

Training supervision edges
Validation edges
Test edges

Пример: Link Prediction

Training:

- 1. Use RGCN to score the training supervision edge (E, r_3, A)
- 2. Create a negative edge by perturbing the supervision edge (E, r_3, B)
- 3. Use GNN model to score negative edge
- 4. Optimize a standard cross entropy loss
 - 1. Maximize the score of training supervision edge
 - 2. Minimize the score of negative edge

$$\ell = -\log \sigma \left(f_{r_3}(h_E, h_A) \right) - \log(1 - \sigma \left(f_{r_3}(h_E, h_B) \right) \right)$$

Relational GNN

Идеи RGCN могут быть применены и для создания RGraphSAGE,
 RGAT, ...

- ullet При вычислении сообщений от соседей можно обучать отдельные функции для каждого отношения $\mathbf{m}_u^{(l)} = \mathbf{W}_r^{(l)} \mathbf{h}_u^{(l-1)}$
- Агрегировать можно в два этапа

$$\mathbf{h}_{v}^{(l)} = \operatorname{Concat}\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N_{r}(v)\right\}\right)\right)$$

• Отдельный (пре)постпроцессинг для каждого типа вершин

$$\mathbf{h}_{v}^{(l)} = \mathrm{MLP}_{T(v)}(\mathbf{h}_{v}^{(l)})$$

• T(v) is the type of node v

Heterogeneous Graph Manipulation 1/1TMO

Feature manipulation

- Добавлять в признаки различные статистики (clustering coefficient, ...) можно по отдельности для каждого типа отношений или как обычно, используя весь граф
- Graph structure manipulation
 - Сэмплирование соседей/подграфа стратифицировано по каждому отношению или как обычно из всего графа

Заключение

Output of a GNN: set of node embeddings

$$\{\mathbf{h}_{v}^{(L)}, \forall v \in G\}$$