

⑯ 日本国特許庁 (JP)

⑰ 特許出願公開

⑯ 公開特許公報 (A)

昭57-212252

⑮ Int. Cl.³
C 08 L 77/00

識別記号

庁内整理番号
6820-4 J

⑯ 公開 昭和57年(1982)12月27日

発明の数 1
審査請求 未請求

(全 5 頁)

⑯ 耐塩化カルシウム性ポリアミド組成物

タム工場内

⑯ 特 願 昭56-97536

出口隆一

⑯ 出 願 昭56(1981)6月25日

宇部市大字小串1978番地の6号
部興産株式会社宇部カプロラク
タム工場内

⑯ 発明者 松岡康博

⑯ 出願人

宇部興産株式会社

宇部市大字小串1978番地の6号
部興産株式会社宇部カプロラク

宇部市西本町1丁目12番32号

明細書

1. 発明の名称

耐塩化カルシウム性ポリアミド組成物

2. 特許請求の範囲

(a) ナイロン6または6.6を6.5~9.5重量部
および

(b) ナイロン12, 11, 6.10および6.12
から選ばれるナイロンを3.5~5重量部からなる
ことを特徴とする耐塩化カルシウム性ポリアミド
組成物。

3. 発明の詳細な説明

本発明は、耐塩化カルシウム性に優れた新規ポ
リアミド組成物に関するものである。

ポリアミドは、広い範囲の工業的用途を有して
おり、そのうちナイロン6, 6.6は、例えはラジ
エターナンク、フューエルストレーナー、コネク
ター、パワースティアリングオイルタンクなどの
自動車部品としても広く使用されている。

しかし、ポリアミド、特にナイロン6, 6.6は、
比較的高い温度で塩化カルシウムと接触すると、

その成形品にクラックが生じる恐れがある。

従って、ポリアミド特に自動車部品に使用され
るナイロン6, 6.6には、道路の凍結防止剤とし
て用いられる塩化カルシウムに対し、優れた耐性
を有することが要望される。

本発明者らは、耐塩化カルシウム性ポリアミド
組成物を開発することを目的とし、鋭意研究を行
なった。その結果、ナイロン6または6.6に、ナ
イロン12, 11, 6.10または6.12を特定量
配合したポリアミド組成物は、極めて優れた耐塩
化カルシウム性を有することを知見し、本発明に到
達した。

すなわち本発明は、(a) ナイロン6または6.6
を6.5~9.5重量部、および(b) ナイロン12,
11, 6.10および6.12から選ばれるナイロン
を3.5~5重量部からなる耐塩化カルシウム性に
優れたポリアミド組成物を提供するものである。

本発明におけるナイロン6または6.6は、余り
相対粘度が低いと成形品の機械的強度が低下する
ため、相対粘度が(JIS-K-6810, 以下同様)

2.2 以上、特に 3~5 のものがよい。一方、ナイロン 1.2, 1.1, 6.1.0 または 6.1.2 は、通常 1.8~5 の相対粘度を有するものが使用される。

これらナイロンは、ナイロン 6 または 6.6 を 6.5~9.5 重量部好ましくは 7.0~9.0 重量部、ナイロン 1.2, 1.1, 6.1.0 および 6.1.2 から選ばれるナイロンを 3.5~5 重量部好ましくは 3.0~1.0 重量部の範囲になるように配合される。ナイロン 1.2, 1.1, 6.1.0 または 6.1.2 の配合量が、前記下限値より少ないと、成形品の耐塩化カルシウム性が改善されず、またその配合量が前記上限値より多い場合には、組成物の成形が困難で、成形物に銀条現象が生じる。

なお、ナイロン 6 または 6.6 と、ナイロン 1.2, 1.1, 6.1.0 または 6.1.2 とは相溶性が悪く、両者を溶融混練した場合粗状にならず、ペレット化するのが難かしい。従って、ナイロンの配合は、ナイロン 6 または 6.6 のポリマーべレットと、ナイロン 1.2, 1.1, 6.1.0 または 6.1.2 のポリマーべレットとを、ドライブレンドすることにより

類のものが有用で、その金属塩の金属種としては、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、亜鉛などが挙げられる。

また本発明の組成物は、目的に応じて染料、顔料、充填剤、核剤、繊維状物、可塑剤、滑剤、発泡剤、耐熱剤、耐候剤および難燃剤などを適量添加してもよい。

本発明では、前記のようにナイロン 6 または 6.6 のポリマーべレットと、ナイロン 1.2, 1.1, 6.1.0 または 6.1.2 のポリマーべレットとを、ドライブレンドした後、樹脂温度、225~300°C、射出圧力 300~800 kg/cm²、金型温度 50~80°C の条件で射出成形することにより、成形品を得ることができる。また、圧縮成形などの公知の成形法にも適用することができる。

本発明のポリアミド組成物は、ナイロン 6, 6.6 の一般物性が大きく損なわれることなく、耐塩化カルシウム性に極めて優れているため、特に自動車部品としての用途に適する。

次に、本発明の実施例および比較例を挙げる。

行なうのが好ましい。

本発明において、ナイロン 6 を用いたポリアミド組成物はナイロン 6 単体に比較し、耐衝撃強度がやや低下する傾向にある。従って本発明では、特にナイロン 6 を用いる場合に耐衝撃強度の低下を防止するため、エチレン系共重合体を、1.00 重量部のナイロン 6 当り、1~3.0 重量部配合することもできる。このエチレン系共重合体は、エチレン、不飽和カルボン酸エステル、不飽和カルボンおよび不飽和カルボン酸金属塩のモノマー単位からなる共重合体であり、たとえば、特公昭 54-4743 号公報に記載の方法に従って製造することができる。不飽和カルボン酸エステルとしては、炭素数 3~8 個を有する不飽和カルボン酸、例えばアクリル酸、メタクリル酸、1-エチルアクリル酸などの低級アルキルエステルが好ましく、具体的にはアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸 n-ブチル、1-エチルアクリル酸メチルなどが挙げられる。また不飽和カルボン酸としては、前記種

実施例 1

5 ガロン缶に、相対粘度 3.6 を有するナイロン 6 のペレット（商品名：UBEナイロン 1022B）8.0 重量部と、相対粘度 2.5 を有するナイロン 1.2（商品名：UBE 3024B）2.0 重量部を入れ、5 分間缶を回転させた。

得られた混合ペレットを、

シリンドー温度：210°C（ホッパー側）-

240°C-240°C-

（ノズル側）

金型温度：80°C

射出圧力：700 kg/cm²（1 次圧）- 650

kg/cm²（2 次圧）- 150 kg/cm²

（背圧）

成形時間：10 秒（射出）- 30 秒（冷却）- 3 秒（中間）

スクリュー回転数：77 rpm

の各条件で射出成形し、長さ 5 インチ、幅 1/2 インチおよび厚味 1/8 インチのテストピースを得た。

このテストピースの中央に、塩化カルシウム飽和水溶液を含浸させた10度角の涙紙をのせ、

室温に6.5時間→-30°Cに4時間→室温に0.5時間→80°Cに4時間→室温に0.5時間→-30°Cに4時間→室温に0.5時間→70°C(相対湿度90%)、なお、その他の工程では湿度コントロールを行なっていない。)に3時間→室温に0.5時間、

の各放置を1サイクルとする処理を連続10サイクル行なった。その結果、テストピースには全くクラックの発生は認められなかつた。

実施例2, 3

ナイロン6と12のペレットの配合割合を、実施例2ではナイロン6のペレット85重量部、ナイロン12のペレット15重量部に、また実施例3ではナイロン6のペレット70重量部、ナイロン12のペレット30重量部に、各々変えた他は、実施例1と同様の操作で実験を行なつた。

比較例1

ナイロン6単味を用い、実施例1と同様の操作

で実験を行なつた。

実施例4

5ガロン缶に、相対粘度3.4を有するナイロン6のペレット74重量部、相対粘度2.5を有するナイロン12のペレット20重量部、およびエチレン95.0モル%、メタクリル酸メチル0.3モル%、メタクリル酸2.3モル%、メタクリル酸のマグネシウム塩2.1モル%およびナトリウム塩0.4%のモノマー単位からなるエチレン系共重合体6重量部を入れ、3分間缶を回転させた。

得られた混合ペレットを、シリンドー温度を220°C(ホッパー側)-250°C-260°C-260°C(ノズル側)とした他は、実施例1と同じ条件で射出成形した。次いで、得られた長さ5インチ、幅1/2インチおよび厚味1/8インチのテストピースを用い、実施例1に示した各放置を1サイクルとする処理を連続10サイクル行なつた。

実施例5

ナイロン6のペレットの配合量を68重量部に

エチレン系共重合体の配合量を12重量部に変えた他は、実施例4と同様の操作で実験を行なつた。

第1表に、実施例1～5および比較例1におけるテストピースのクラック発生の有無と一般物性を示す。

表 1

第1表 物性表									
ガラス化温度(℃)		クラックの発生の有無		引張り強度 破壊伸び (kg/cm ²) (%)		曲げ強度 曲げ剛性 (kg/cm ²) (kg/cm ³)		アイソフロ 性状 (kg/cm ²) (kg/cm ³)	
ナイロン6 +ナイロン12 共重合体	0	なし	なし	650	20.0以上	22.100	890	22.600	5.7
1	6.0	0	なし	660	+	25.100	910	25.500	5.9
2	8.5	1.5	なし	680	+	25.100	910	25.500	5.9
3	7.0	3.0	なし	620	+	21.600	650	22.100	5.0
4	7.4	2.0	なし	610	+	—	650	21.700	1.1.0
5	6.6	2.0	なし	540	+	—	740	18.000	2.2.1
比較例1	10.0	0	なし	2.710-4.0K クラック発生	720	+	24.500	10.050	22.000

※: 滴定状態のテストピースを用いたASTM法によって測定。
また、一印は、測定していないことを示す。

実施例 6 ~ 8

ナイロン 12 に代えて、相対粘度 1.85 を有するナイロン 11 (実施例 6'), 相対粘度 2.65 を有するナイロン 6.10 (実施例 7), 相対粘度 2.76 を有するナイロン 6.12 (実施例 8) を、各々 2.0 重量部用いた他は実施例 1 と同様の操作で実験を行なった。

その結果、いずれのテストピースにも、10 サイクル目までの処理において、全くクラックの発生は認められなかつた。

実施例 9

5 カロン缶に、相対粘度 3.55 を有するナイロン 6.6 のペレット (商品名: UBEナイロン2026B) 8.0 重量部と、相対粘度 2.5 を有するナイロン 12 のペレット (商品名: UBEナイロン3024B) 2.0 重量部を入れ、3 分間缶を回転させた。

得られた混合ペレットを、

シリンダー温度: 240°C (ホッパー側) - 270°C - 270°C - 280°C (ノズル側)

た。

比較例 2

ナイロン 6.6 単味を用い、実施例 9 と同様の操作で実験を行なつた。

第 2 表に、実施例 9 ~ 11 および比較例 2 におけるテストピースのクラック発生の有無と一般物性を示す。

金型温度: 80°C

射出圧力: 700 kg/cm² (1 次圧) - 650 kg/cm²

(2 次圧) - 100 kg/cm² (背圧)

成形時間: 10 秒 (射出) - 30 秒 (冷却) - 3 秒 (中間)

スクリュー回転数: 77 rpm

の各条件で射出成形し、長さ 5 インチ、幅 1/2 インチおよび厚味 1/8 インチのテストピースを得た。

このテストピースを用い、実施例 1 に示した各放置を 1 サイクルとする処理を連続 10 サイクル行なつた。その結果、テストピースには全くクラックの発生は認められなかつた。

実施例 10, 11

ナイロン 6.6 と 12 のペレットの配合割合を、実施例 10 ではナイロン 6.6 のペレット 8.5 重量部、ナイロン 12 のペレット 1.5 重量部に、また実施例 11 ではナイロン 6.6 のペレット 9.0 重量部、ナイロン 12 のペレット 1.0 重量部に、各々えた他は、実施例 9 と同様の操作で実験を行な

実験番号	クラック発生の有無		引張り强度 kg/cm ²	伸び率 %	引張り伸長率 kg/cm ²	引張り伸長率 kg/cm ²	引張り伸長率 kg/cm ²
	実施例 9 ナイロン 6.6 + 12	実施例 10 ナイロン 6.6 + 12					
実施例 9	0	2.0	27.700	10.0	24.400	4.5	
実施例 10	0.5	1.5	7.90	11.0	2.6400	4.7	
実施例 11	9.0	1.0	8.00	7.0	2.6200	4.5	
比較例 2	10.0	0	3.747 kg/cm ²	7.80	4.0	3.0000	4.0
				1.100		2.9000	

注: 比較状態のテストピースを用いた ASTM 法によつて測定。

実施例 1.2 ~ 1.4

ナイロン 1.2 に代えて、相対粘度 1.85 を有するナイロン 1.1 (実施例 6)、相対粘度 2.65 を有するナイロン 6.1.0 (実施例 7)、相対粘度 2.76 を有するナイロン 6.1.2 (実施例 8)を、各々 2.0 重量部用いた他は、実施例 9 と同様の操作で実験を行なった。

その結果、いずれのテストピースには、10 サイクル目までの処理において、全くクラックの発生は認められなかった。

特許出願人 宇部興産株式会社