REINFORCE with Baseline

Shusen Wang

Value Functions

• Discounted return:

$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

Value Functions

• Discounted return:

$$U_{t} = R_{t} + \gamma \cdot R_{t+1} + \gamma^{2} \cdot R_{t+2} + \gamma^{3} \cdot R_{t+3} + \cdots$$

• Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t \mid s_t, \mathbf{a_t}].$$

Value Functions

Discounted return:

$$U_{t} = R_{t} + \gamma \cdot R_{t+1} + \gamma^{2} \cdot R_{t+2} + \gamma^{3} \cdot R_{t+3} + \cdots$$

Action-value function:

$$Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t \mid s_t, \mathbf{a_t}].$$

State-value function:

$$V_{\pi}(s_t) = \mathbb{E}_{\mathbf{A}}[Q_{\pi}(s_t, \mathbf{A}) \mid s_t].$$

Approximations to Policy Gradient

Policy Gradient

Policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

Policy Gradient

Policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$= \mathbf{g}(\mathbf{A_t})$$

Policy Gradient

Policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$= \mathbf{g}(A_t)$$

- Randomly sample $a_t \sim \pi(\cdot | s_t; \theta)$.
- Then $g(a_t)$ is an unbiased estimation of the policy gradient.

Policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$= \mathbf{g}(A_t)$$

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a}_t) - V_{\pi}(s_t)).$$

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a}_t) - V_{\pi}(s_t)).$$

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

- Recall that $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t \mid s_t, a_t]$.
- Monte Carlo approximation to $Q_{\pi}(s_t, a_t) \approx u_t$ (REINFORCE):

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

- Recall that $Q_{\pi}(s_t, \mathbf{a_t}) = \mathbb{E}[U_t \mid s_t, \mathbf{a_t}].$
- Monte Carlo approximation to $Q_{\pi}(s_t, a_t) \approx u_t$ (REINFORCE):
 - Observing the trajectory: s_t , a_t , r_t , s_{t+1} , a_{t+1} , r_{t+1} , \cdots , s_n , a_n , r_n .
 - Compute return: $u_t = \sum_{i=t}^n \gamma^{i-t} \cdot r_i$.
 - u_t is an unbiased estimate of $Q_{\pi}(s_t, a_t)$.

Stochastic policy gradient:

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

• Approximate $V(s; \mathbf{\theta})$ by the value network, $v(s; \mathbf{w})$.

Approximate policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \mathbf{g}(a_t) \approx \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t;\mathbf{w})).$$

Summary of Approximations

Approximate policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t;\mathbf{w})).$$

- Three approximations:
 - 1. Approximate expectation using one sample, a_t . (Monte Carlo.)
 - 2. Approximate $Q_{\pi}(s_t, a_t)$ by u_t . (Another Monte Carlo.)
 - 3. Approximate $V_{\pi}(s)$ by the value network, $v(s; \mathbf{w})$.

Summary of Approximations

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$\mathbf{g}(\mathbf{a_t}) = \frac{\partial \ln \pi(\mathbf{a_t}|s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a_t}) - V_{\pi}(s_t)).$$

Summary of Approximations

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} = \mathbb{E}_{A_t \sim \pi} \left[\frac{\partial \ln \pi(A_t \mid s_t; \theta)}{\partial \theta} \cdot \left(Q_{\pi}(s_t, A_t) - V_{\pi}(s_t) \right) \right].$$

$$\mathbf{g}(\mathbf{a}_t) = \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot (Q_{\pi}(s_t, \mathbf{a}_t) - V_{\pi}(s_t)).$$

$$\mathbf{g}(\mathbf{a}_t) \approx \frac{\partial \ln \pi(\mathbf{a}_t|s_t;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot (u_t - v(s_t; \mathbf{w})).$$

Policy and Value Networks

Policy Network

Approximate policy function, $\pi(a|s)$, by policy network, $\pi(a|s;\theta)$.

Value Network

Approximate state-value, $V_{\pi}(s)$, by value network, $v(s; \mathbf{w})$.

Parameter Sharing

REINFORCE with Baseline

Updating the policy network

Approximate policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t; \mathbf{w})).$$

Update policy network by policy gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot (u_t - v(s_t; \mathbf{w})).$$

Updating the policy network

Approximate policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t; \mathbf{w})).$$

Update policy network by policy gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} + \beta \cdot \frac{\partial \ln \pi(\mathbf{a}_t \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot \left[u_t - v(\mathbf{s}_t; \mathbf{w}) \right].$$

$$= -\delta_t$$

Updating the policy network

Approximate policy gradient:

$$\frac{\partial V_{\pi}(s_t)}{\partial \theta} \approx \frac{\partial \ln \pi(a_t|s_t;\theta)}{\partial \theta} \cdot (u_t - v(s_t;\mathbf{w})).$$

Update policy network by policy gradient ascent:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \mathbf{\delta}_t \cdot \frac{\partial \ln \pi(\mathbf{a}_t \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

• Recall $v(s_t; \mathbf{w})$ is an approximation to $V_{\pi}(s_t) = \mathbb{E}[U_t \mid s_t]$.

- Recall $v(s_t; \mathbf{w})$ is an approximation to $V_{\pi}(s_t) = \mathbb{E}[U_t \mid s_t]$.
- Prediction error: $\delta_t = v(s_t; \mathbf{w}) u_t$.

- Recall $v(s_t; \mathbf{w})$ is an approximation to $V_{\pi}(s_t) = \mathbb{E}[U_t \mid s_t]$.
- Prediction error: $\delta_t = v(s_t; \mathbf{w}) u_t$.
- Gradient: $\frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}.$

- Recall $v(s_t; \mathbf{w})$ is an approximation to $V_{\pi}(s_t) = \mathbb{E}[U_t \mid s_t]$.
- Prediction error: $\delta_t = v(s_t; \mathbf{w}) u_t$.
- Gradient: $\frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}.$
- Gradient descent:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_n, a_n, r_n$$
.

• Compute $u_t = \sum_{i=t}^n \gamma^{i-t} \cdot r_i$ and $\delta_t = v(s_t; \mathbf{w}) - u_t$.

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \dots, S_n, a_n, r_n$$
.

- Compute $u_t = \sum_{i=t}^n \gamma^{i-t} \cdot r_i$ and $\delta_t = v(s_t; \mathbf{w}) u_t$.
- Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a}_t \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial \ v(s_t; \mathbf{w})}{\partial \ \mathbf{w}}.$$

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \dots, S_n, a_n, r_n$$
.

- Compute $u_t = \sum_{i=t}^n \gamma^{i-t} \cdot r_i$ and $\delta_t = v(s_t; \mathbf{w}) u_t$.
- Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial \ v(s_t; \mathbf{w})}{\partial \ \mathbf{w}}.$$

Play a game to the end and observe the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \dots, S_n, a_n, r_n$$
.

- Compute $u_t = \sum_{i=t}^n \gamma^{i-t} \cdot r_i$ and $\delta_t = v(s_t; \mathbf{w}) u_t$. Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

Repeat this procedure for $t=1,\cdots,n$.

Thank you!