"본 강의 동영상 및 자료는 대한민국 저작권법을 준수합니다. 본 강의 동영상 및 자료는 상명대학교 재학생들의 수업목적으로 제작·배포되는 것이므로, 수업목적으로 내려받은 강의 동영상 및 자료는 수업목적 이외에 다른 용도로 사용할 수 없으며, 다른 장소 및 타인에게 복제, 전송하여 공유할 수 없습니다. 이를 위반해서 발생하는 모든 법적 책임은 행위 주체인 본인에게 있습니다."

3.1 Recurrence relation

- Recurrence relation
 - An equation in which each term of the sequence is defined as a function of the preceding terms
 - Examples
 - T(n) = T(n/2) + 1
 - T(n) = 2T(n/2) + n
 - T(n) = T(n-1) + T(n-2)
 - T(n) = T(n/2) + n
 - Solutions
 - Characteristic equation
 - Repeated substitution or telescoping
 - Master theorem

3.1 Recurrence relation

• Performance comparison

	n							
Function	10	100	1,000	10,000	100,000	1,000,000		
1	1	1	1	1	1	1		
log ₂ n	3	6	9	13	16	19		
n	10	10 ²	10 ³	104	105	10 ⁶		
n ∗log₂n	30	664	9,965	105	10 ⁶	10 ⁷		
n ²	10 ²	104	106	108	10 10	10 ¹²		
n ³	10³	10 ⁶	10 ⁹	1012	10 15	10 ¹⁸		
2 ⁿ	10³	1030	1030	103,0	10 10 30,	103 10 301,030		

3.1 Recurrence relation

• Exercise 2.5 (P72)

(j)
$$T(n) = 2T(n-1) + 1$$

(k)
$$T(n) = T(\sqrt{n}) + 1$$

• Exercise 2.13 (P73)

- 2.13. A binary tree is *full* if all of its vertices have either zero or two children. Let B_n denote the number of full binary trees with n vertices.
 - (a) By drawing out all full binary trees with 3, 5, or 7 vertices, determine the exact values of B_3 , B_5 , and B_7 . Why have we left out even numbers of vertices, like B_4 ?
 - (b) For general n, derive a recurrence relation for B_n .
 - (c) Show by induction that B_n is $2^{\Omega(n)}$.

- Multiplying two integers of n-digit.
 - u & v: n-digit integers
 - Time for adding u & v: O(n)

- Multiplying two integers of n-digit.
 - Time for multiplying u & v: O(n²)

```
1 1 0 1

x 1 0 1 1

1 1 0 1 (1101 times 1)

1 1 0 1 (1101 times 1, shifted once)

0 0 0 0 (1101 times 0, shifted twice)

+ 1 1 0 1 (1101 times 1, shifted thrice)

1 0 0 0 1 1 1 1 (binary 143)
```

– Can we improve it by divide & conquer?

Gauss's original suggestion

$$-(a + b i) (c + d i) = ac - bd + (ad + bc) i$$

- How many multiplications?
- Actually, 3 instead of 4
 - ad + bc = (a + b)(c + d) ac bd.

Two binary numbers x & y with length n

$$X = [X_{L}][X_{R}] = 2^{s} X_{L} + X_{R}$$

$$Y = [Y_{L}][Y_{R}] = 2^{s} Y_{L} + Y_{R}, \text{ where } s = \left[\frac{n}{2}\right]$$

$$xy = (2^{s} X_{L} + X_{R})(2^{s} Y_{L} + Y_{R})$$

$$= 2^{n} X_{L} Y_{L} + 2^{s} (X_{L} Y_{R} + X_{R} Y_{L}) + X_{R} Y_{R}$$

$$- T(n) \rightarrow 4 T(n/2) + O(n)$$

$$X_{L}Y_{R} + X_{R}Y_{L} = (X_{L} + X_{R})(Y_{L} + Y_{R}) - X_{L}Y_{L} - X_{R}Y_{R}$$

- T(n) \rightarrow 3 T(n/2) + O(n)

Algorithm

Algorithm

```
void multiply ( int u, int v )
     n \leftarrow min (digit of u, digit of v);
     if ( n is small enough )
           return u * v;
     s \leftarrow n \text{ div } 2i
     w \leftarrow u \text{ div } 2^s;
     x \leftarrow u \mod 2^s;
     y \leftarrow v \text{ div } 2^s;
     z \leftarrow v \mod 2^s;
     r \leftarrow multiply (w + x, y + z);
     p \leftarrow multiply (w, y);
      q \leftarrow \text{multiply } (x, z);
     return p * 2^{2s} + (r - p - q) * 2^{s} + q;
```

Algorithm → Check three points

```
void multiply ( int u, int v )
     n \leftarrow min (digit of u, digit of v);
      if ( n is small enough )
           return u * v;
     s \leftarrow n \text{ div } 2;
     w \leftarrow u \operatorname{div} 2^{s};
     x \leftarrow u \mod 2^s;
     y \leftarrow v \text{ div } 2^s;
     z \leftarrow v \mod 2^s;
     r \leftarrow multiply (w + x, y + z);
     p \leftarrow multiply (w, y);
     q \leftarrow \text{multiply } (x, z);
     return p * 2^{2s} + (r - p - q) * 2^{s} + q;
```

- Performance analysis
 - Recurrence relation

$$T(n) = 3T(n/2) + O(n)$$

- a = 3, b = 2, k = 1.
- $a = 3 > b^k = 2^1$,

$$\mathcal{T}(n) = \mathcal{O}(n^{\log_2 3})$$

Comparison

	degenerate case	divide	conquer	combine	performance
tournament	n = 1 (s = e)	m = (s+e)/2	champ (s,m); champ (m+1,e);	win (LW, RW);	2T(n/2) + O(1) = O(n)
binary search	n = 1 (s = e)	m = (s+e)/2	bs (s, m-1); or bs (m+1, e);	-	T(n/2) + O(1) = $O(\log n)$
integer multiplication	n = 1	s = n/2; w = u div 2 ^s ; 	mult (w+x, y+z); mult (w, y); mult (x, z);	p 2 ⁿ + (r – p – q) 2 ^s + q;	3T(n/2) + O(n) = $O(n^{\log_2 3})$
merge sort					
quick sort					
median					
matrix multiplication					

퀴즈 2

- n 자리의 두 수를 곱하는 연산에 대한 설명이다 올 바른 것을 모두 고르시오.
 - (a) n 자리의 두 수의 곱을 n/2 자리의 두 수의 곱으로 분 할해서 문제를 해결한다.
 - (b) n/2 자리 수의 곱을 2번 수행한다.
 - (c) divide 과정에서는 O(n)번 연산이 수행된다.
 - (d) combine 과정에서는 O(1)번 연산이 수행된다.