

CH3: Physical Layer Data and Signals

Analog vs. Digital Data

- Analog data
 - Data take on continuous values
 - E.g., human voice, temperature reading
- Digital data
 - Data take on discrete values
 - E.g., text, integers

Analog vs. Digital Signals

To be transmitted, data must be transformed to electromagnetic signals

- Analog signals
 - have an infinite number of values in a range

- Digital signals
 - Have a limited number of values

Data and Signals

Sine Waves

Simplest form of periodic signal

• General form: $x(t) = A \times \sin(2\pi f t + \phi)$

Frequency and period are the inverse of each other.

$$f = \frac{1}{T}$$
 and $T = \frac{1}{f}$

Figure 3.4 Two signals with the same amplitude and phase, but different frequencies

a. A signal with a frequency of 12 Hz

Table 3.1 Units of period and frequency

Unit	Equivalent	Unit	Equivalent
Seconds (s)	1 s	Hertz (Hz)	1 Hz
Milliseconds (ms)	10^{-3} s	Kilohertz (kHz)	10 ³ Hz
Microseconds (μs)	10^{-6} s	Megahertz (MHz)	10 ⁶ Hz
Nanoseconds (ns)	$10^{-9} \mathrm{s}$	Gigahertz (GHz)	10 ⁹ Hz
Picoseconds (ps)	10^{-12} s	Terahertz (THz)	10 ¹² Hz

Time vs. Frequency Domains

Consider the signal

$$x(t) = \sin(2\pi \times t) + \frac{1}{3}\sin(2\pi \times 3t)$$

4

Time vs. Frequency Domains

Time Domain Representation

→ plots amplitude as a function of time

Frequency Domain Representation

→ plots each sine wave's peak amplitude against its frequency

Fourier Analysis

- Every periodic signal consists of
 - DC component
 - AC components
 - Fundamental frequency (f_0)
 - Harmonics (multiples of f_0)

AC components

The time and frequency domains of a nonperiodic signal

a. Time domain

b. Frequency domain

Ba

Bandwidth

- A property of a medium
 - Indicates the difference between the highest and the lowest frequencies allowed to pass
 - <highest freq allowed> <lowest freq allowed>

18

Also a property of a single spectrum

Bandwidth of a Medium

Digital Signals

- Properties:
 - Bit rate number of bits per second
 - Bit interval duration of 1 bit

1

Two digital signals: one with two signal levels and the other with four signal levels

a. A digital signal with two levels

b. A digital signal with four levels

Baseband transmission

- Baseband transmission
 - → Sending a digital signal over a channel without changing it to an analog signal

Baseband transmission requires a low-pass channel

Digital vs. Analog Bandwidth

- Digital bandwidth
 - Expressed in bits per second (bps)
- Analog bandwidth
 - Expressed in Hertz (Hz)

Bit rate and bandwidth are proportional to each other

Transmission Impairment

- Attenuation
- Distortion
- Noise

Signal Attenuation

- Attenuation ⇒ Loss of energy
 - Signal strength falls off with distance

- Attenuation depends on medium
- Attenuation is an increasing function of frequency

4

Relative Signal Strength

Measured in *Decibel (dB)*

$$dB = 10 \log_{10} \left(P_2 / P_1 \right)$$

• P_1 and P_2 are signal powers at points 1 and 2, respectively

- Positive dB → signal is amplified (gains strength)
- Negative dB → signal is attenuated (loses strength)

Figure 3.28 Distortion

■ Distortion ⇒ Change in signal shape

Noise

Noise ⇒ Undesirable signals added between the transmitter and the receiver

- Types of noise
 - Thermal
 - Due to random motion of electrons in a wire

- Types of noise (cont'd)
 - Crosstalk
 - Signal from one line picked up by another

- Impulse
 - Irregular pulses or spikes
 - E.g., lightning
 - Short duration
 - High amplitude

Network Performance

- Bandwidth
 - Hertz
 - Bits per second (bps)
- Throughput
 - Actual data rate
- Latency (delay)
 - Time it takes for an entire message to completely arrive at the destination

Latency

- Composed of
 - Propagation time
 - Transmission time
 - Queuing time
 - Processing time

Bandwidth-Delay Product

- The link is seen as a pipe
 - Cross section = bandwidth
 - Length = delay
- Bandwidth-delay product defines the number of bits that can fill the link

Figure: Filling the link with bits for case 1

Figure 3.32 Filling the link with bits in case 2

Summary

- Data need to take form of signal to be transmitted
- Frequency domain representation of signal allows easier analysis
 - Fourier analysis
- Medium's bandwidth limits certain frequencies to pass
- Bit rate is proportional to bandwidth
- Signals get impaired by attenuation, distortion, and noise