	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Sommer 2008 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1	9.5	Aufgabe 6	15
Aufgabe 2	5.5	Aufgabe 7	15
Aufgabe 3	12.5	Aufgabe 8	10
Aufgabe 4	16.5	Aufgabe 9	10
Aufgabe 5	6		
Total OC I	50	Total OC II	50
Note OC I	6	Note OC II	6
		Note OC	6

1. Aufgabe (9.5 Pkt)

2. Aufgabe (5 1/2 Pkt)

a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen b) 1 1/2 Pkt. Zeichnen Sie mindestens je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen oΘ c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Atomen an. Bindungsgeometrie Hybridisierung sp + 2 p linear trigonal pyramidal 2 trigonal planar sp² + p 3 trigonal pyramidal Punkte Aufgabe 2

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgend Wenn ja, um welche Art von Isom	den Strukturen Isomerie vor? nerie handelt es sich?		
ОН ОН ОН	HO OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
НО НО НО	O HO OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
ноос	ноос	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere X Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?		
Welches ist die Beziehung zwischen a und d?		
a b c d chiral		
c) 5 Pkt. Die Fischerprojektion eines Glucitols ist unten angegeben.		
2) HOH		
Glucitol Perspektivformel Enantiomeres		
c1) 1/2 Pkt. Handelt es sich um D- oder L- Glucitol?		
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).		
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zum dargestellten Glucitol enantiomeren Moleküls (Projektion ergänzen).		
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 im abgebildeten Glucitol mit CIP Deskriptoren. C2: R X S C4: R S X c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 10 (2 Mesoformen und 4 Enantiomerenpaare 		
Übertrag Aufgabe 3		
	<u> </u>	l

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

 b) 5 Pkt. Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. Wichtgste Effekte: 1. Elektronegativität des direkt an das Proton gebunden Atoms. 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. 3. Hybridisierung des durch Deprotonierung entsehenden lone pairs 4. σ-Akzeptor = -I Effekt. 5. π-Akzeptor Effekt (-M). 6. π-Donor Effekt (+M). 			
 Solvatation (Wechselwirkur Wasserstoffbrücken. 	ig mit dem Losun	gsmiller).	
	\	wichtigster Effekt (1-8)	
CH₃OH		7	
X X	H H H	5	
OH ⊕NH ₃	⊕ _{NH3} OH	4	
	(⊕)NH		
	X	3	
ноос соон	нооссо	ОН	
X		8	
		Übertrag Aufgabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

$$\begin{array}{c|c} O \\ \hline \\ \end{array} \begin{array}{c} + H^{+} \\ \hline \\ \end{array} \begin{array}{c} O \\ \hline \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

Begründung

In diesem Amid ist die Konjugation zwischen Stickstoff lone-pair und Carbonylgruppe wegen der orthogonalen Geometrie unmöglich. Deshalb wird dieses Amid ausnahmsweise am N protoniert.

Begründung

Durch Protonierung am terminalen C der exocyclischen Doppelbindung entsteht ein aromatisches Tropylium Kation.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?
 Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Die durch die Deprotonierung an der Methylgruppe a entstehende Ladung kann bis auf den Amidsauerstoff delokalisiert werden, bei den anderen Methylgruppen geht das nicht.

$$\begin{array}{c|c}
0 & & & \\
\hline
0 & & & \\$$

Begründung:

Beide Enolate könnten gebildet werden, ohne die Bredtsche Regel zu verletzen. Thiolactone (pK $_a$ ca 20) haben einen stärkeren π -Akzeptor Effekt als Lactone (pK $_a$ ca 25).

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante K₂?

1)
$$K_1$$
 $COOH$ $\Delta G^{\circ}(1) = -5.7 \text{ kJ/mol}$

Wie gross ist K_2 ? Antwort: $K_2 = 0.01$

b) 2 Pkt. Zeichnen Sie die Konformere von (2S,3R)-2,3-Dibrombutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(Θ)] der Rotation um die C(2)-C(3) Bindung (Θ= Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ=0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen). Brom hat etwa den gleichen Van der Waals Radius wie eine Methylgruppe.

c) 2 Pkt. Aceton (2-Propanon) liegt bei Raumtemperatur in unpolaren Lösungsmitteln nur zu sehr geringem Anteil als Enol vor. Spektroskopische Messungen (im Lösungsmittel CH₃CN) ergaben ein Verhältnis Keton: Enol von 100'000'000: 1.

Was ist der pK_a -Wert der Enolform in Acetonitril? Antwort: pK_a (Enol) = 12

Da Keton und Enol dieselbe konjugate Base haben, muss $pK_a(Enol)=pK_a(Keton)-pK_E$ gelten. $pK_E=-log K_E=8$, da $K_E=[Enol]/[Keton]=10^{-8}$

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie alle benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an! Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung! HO a) CHO HO p-TsOH kat. Toluol als Lsgsm. 16 h Rückfluss am Wasserabscheider 1) HNO₃ (konz.), H₂SO₄ (konz.) b) (gibt p-Nitro-t-Butylbenzol) H_2N (2 Stufen) 2) Fe, 10% HCI NaOEt, EtOH c) **EtO** NaBr **EtO** (Acetessigestersynthese) 2N KOH in MeOH d) + Ph-COO Na 16 h 24° OH (Verseifung eines Esters) e) $\Delta\mathsf{T}$ Diels-Alder (±) 0 1) Mg, Et₂O OH f) 2) (±) 3) H₂O, H₃O⁺ Grignard-Addition Punkte Aufgabe 6

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

8. Aufgabe (*a=8 Pkt, b=2 Pkt; total 10 Pkt*)

9. Aufgabe (*a=4 Pkt,b=2x3 Pkt; total 10Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Wheland-Zwischenprodukt

Namens-Reaktion: Friedel-Crafts-Alkylierung

b) Wie lautet die Regel von Saytzew? Geben Sie ein Anwendungsbeispiel!

Regel: Bei einer E1-Eliminierung wird bevorzugt das thermodynamisch stabilere, höher substituierte Olefin gebildet.