1. For what values of x is the series $\sum_{n=1}^{\infty} n^n x^n$ convergent or divergent?

- 2. Find the radius of convergence and interval of convergence:
- (a) $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$

(b) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n-1}$

(c) $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n!}$

$$\left(\mathcal{A}\right) \quad \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} x^{n}}{n \cdot 5^{n}}$$

(e)
$$\sum_{n=1}^{\infty} \frac{x^n}{1\cdot 3\cdot 5\cdot \cdots \cdot (2n-1)}$$

Theorem For $\sum_{n=0}^{\infty} c_n(x-a)^n$, these are the possibilities for the interval of convergence:

1) {a} (radius 0)

2) $(-\infty,\infty)$ (radius ∞)

3) (a-R, a+R), [a-R, a+R), (a-R, a+R], [a-R, a+R] (radius R)

Theorem A power series absolutely converges in the interior of its interval of convergence.

Theorem If $\lim_{n\to\infty} |c_n|^{1/n} = c \neq 0$, then the radius of convergence of $\sum_{n=0}^{\infty} c_n x^n$ is yc.

Theorem If $\lim_{n\to\infty} \left| \frac{C_n}{C_{n+1}} \right| = R$ exists, then the radius of convergence of $\sum_{n=0}^{\infty} C_n (x-a)^n$ is R.