Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки: 09.03.04 — Системное и прикладное программное обеспечение Дисциплина «Вычислительная математика»

Лабораторная работа №5

Вариант 7

Выполнил:

Капарулин Тимофей Иванович

Преподаватель:

Машина Екатерина Алексеевна

Цель работы

Решить задачу интерполяции, найти значения функ ции при заданных значениях аргумента, отличных от узловых точек.

Вычислительная реализация

1) Таблица исходных данных

X	y
0.50	1.5320
0.55	2.5356
0.60	3.5406
0.65	4.5462
0.70	5.5504
0.75	6.5559
0.80	7.5594

$$X_1 = 0.751, X_2 = 0.651$$

2) таблица конечных разностей

X	у	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	∆ ⁵ <i>y</i>	$\Delta^6 y$
0.50	1.5320	1.0036	0.0014	-0.0008	-0.0012	0.0059	-0.0166
0.55	2.5356	1.0050	0.0006	-0.0020	0.0047	-0.0107	
0.60	3.5406	1.0056	-0.0014	0.0027	-0.0060		
0.65	4.5462	1.0042	0.0013	-0.0033			
0.70	5.5504	1.0055	-0.0020				
0.75	6.5559	1.0035					
0.80	7.5594						

3) вычисление X1

Так как $X_1 \in [x_{5,}x_{6}]$ и она находится в левой части, то целесообразней использовать формулу Ньютона для интеполлирования вперед. Тогда узлы: $0.75,\,0.8$

$$t = \frac{X_1 - x_5}{0.05} = \frac{0.751 - 0.75}{0.05} = 0.02$$

$$N_1(0.751) = y_5 + t \cdot \Delta y_5 = 6.5559 + 0.02 \cdot 1.0035 = 6,576$$

4) вычисление Х2

Так как $X_2 \in [x_{3,}x_4]$ и она находится в левой части, то воспользуемся первой интерполяционной формулой Гаусса.

$$t = \frac{X_2 - x_3}{0.05} = \frac{0.651 - 0.65}{0.05} = 0.02$$

$$\begin{split} P_2(0.651) &= \\ y_3 + t \cdot \Delta y_3 + t \frac{t-1}{2!} \Delta^2 y_2 + (t+1) t \frac{t-1}{3!} \Delta^3 y_2 \\ &= 4.5462 + 0.02 \cdot 1.0042 + 0.02 \cdot (-0.98) \cdot \frac{0.0013}{2} + 0.02 \cdot (-0.98) \cdot 1.02 \cdot \frac{0.0027}{6} \\ &= 4.566 \end{split}$$

Листинг программы

```
# Построение таблицы конечных разностей
def finite_diff(y):
  table = np.zeros((n, n))
  table[:,0] = y
  for j in range(1, n):
    for i in range(n - j):
       table[i][j] = table[i+1][j-1] - table[i][j-1]
  return table
# 1. Интерполяция многочленом Лагранжа
def lagrange_interpolation(x, y, x_val):
  for i in range(n):
    for j in range(n):
      if j != i:
         term *= (x_val - x[j]) / (x[i] - x[j])
    result += term
  return result
# 2. Интерполяция Ньютона с разделенными разностями
def newton_divided_diff(x, y, x_val):
  coef = np.zeros([n, n])
  coef[:,0] = y
  for j in range(1, n):
    for i in range(n - j):
       coef[i][j] = (coef[i+1][j-1] - coef[i][j-1]) / (x[i+j] - x[i])
  for j in range(1, n):
    for k in range(j):
       term *= (x_val - x[k])
  return result
# 3. Интерполяция Ньютона с конечными разностями (1 и 2 формулы)
def newton_forward(x, y, x_val):
  h = x[1] - x[0]
```

```
t = (x_val - x[0]) / h
diff = finite_diff(y)
result = y[0]
for i in range(1, len(x)):
    term = 1.0
    for j in range(i):
        term *= (t - j)
    result += (term / factorial(i)) * diff[0, i]
return result
```

Выводы

В данной работе были реализованы методы интерполяции. Методы были протестированы на различных примерах. Результаты показали, что реализованные алгоритмы успешно справляется с поставленной задачей и находят решения в пределах допустимых погрешностей.