UC San Diego

CSE 151B: Deep Learning

SEQUENCE MODELING

Sequences are everywhere

machine translation

speech recognition

music composition

trajectory prediction

Mathematical Formulation

machine translation

- Learn the probability p(Er, Liebte, Zu, Essen|He, loved, to, eat)
- In general, given input sequence (x_1, x_2, \dots, x_T) , output sequence (y_1, y_2, \dots, y_T)
- Learn the probability $p(y_1, \dots, y_T | x_1, \dots, x_T)$

Encoder-Decoder

- Approximate $p(y_1, \dots, y_T | x_1, \dots, x_T)$ with neural networks
- Encoder: $(x_1, \dots, x_T) \to h$ maps the input sequence into hidden states
- Decoder: $h \to (y_1, \dots, y_T)$ maps the hidden states to output sequence

Seq2Seq *y*₂ decoder y_1 copy encoder

- Use (multi-layer) RNNs for both encoder and decoder
- Copy the last hidden state of the encoder to the initial state of the decoder

Attention/Transformer

- Compute the alignment between encoder-decoder hidden states
- Decoder decides part of the source (input) to pay attention to

Encoder

- Discard the outputs in the encoder RNN and only keep the hidden states
- Encoder architecture is flexible: RNN, FC, CNN, as long as it gives the map from input sequence to hidden states

Decoder

- Decoder: RNN with no input? Not really
- Auto-regressive: use the model's own prediction from previous step
- Teacher-forcing: use the ground truth output sequence from previous step
- Decoder architecture is flexible: RNN, FC, CNN, as long as it gives the map from hidden states to output sequence