01204211 Discrete Mathematics Lecture 13: Binomial Coefficients

Jittat Fakcharoenphol

September 20, 2015

The binomial coefficients

There is a reason why the term $\binom{n}{k}$ is called the binomial coefficients. In this lecture, we will discuss

- the Pascal's triangle,
- the binomial theorem, and
- advanced counting with binomial coefficients.

The equation

Last time we proved that, for n, k > 0,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

The equation

Last time we proved that, for n, k > 0,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

While we can prove this equation algebraically using definitions of binomial coefficients, proving the fact by describing the process of choosing k-subsets reveals interesting insights. This equation also hints us how to compute the value of $\binom{n}{k}$ using values of $\binom{n}{\cdot}$'s.

The equation

Last time we proved that, for n, k > 0,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

While we can prove this equation algebraically using definitions of binomial coefficients, proving the fact by describing the process of choosing k-subsets reveals interesting insights. This equation also hints us how to compute the value of $\binom{n}{k}$ using values of $\binom{n}{\cdot}$'s. So, let's try to do it.

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1						

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				

\overline{n}	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1						

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1						

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1						

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1						

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

We shall use the fact that $\binom{n}{0}=1$ and $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ to fill in the following table.

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

You can note that the table is left-right symmetric. This is true because of the fact that $\binom{n}{k} = \binom{n}{n-k}$.

The Triangle

If we move the numbers in the table slightly to the right, the table becomes the Pascal's triangle.

The Triangle

If we move the numbers in the table slightly to the right, the table becomes the Pascal's triangle.

```
10
                10
15
          20
                     15
```

The table and the binomial coefficients have many other interesting properties.

- $(x+y)^1 = x+y$
- $(x+y)^2 =$

- $(x+y)^1 = x+y$
- $(x+y)^2 = x^2 + 2 \cdot xy + y^2$

- $(x+y)^1 = x+y$
- $(x+y)^2 = x^2 + 2 \cdot xy + y^2$
- $(x+y)^3 =$

- $(x+y)^1 = x+y$
- $(x+y)^2 = x^2 + 2 \cdot xy + y^2$
- $(x+y)^3 = x^3 + 3 \cdot x^2 y + 3 \cdot xy^2 + y^3$

- $(x+y)^1 = x+y$
- $(x+y)^2 = x^2 + 2 \cdot xy + y^2$
- $(x+y)^3 = x^3 + 3 \cdot x^2y + 3 \cdot xy^2 + y^3$
- $(x+y)^4 =$

Let's start by looking at polynomial of the form $(x+y)^n$. Let's start with small values of n:

- $(x+y)^1 = x+y$
- $(x+y)^2 = x^2 + 2 \cdot xy + y^2$
- $(x+y)^3 = x^3 + 3 \cdot x^2y + 3 \cdot xy^2 + y^3$
- $(x+y)^4 = x^4 + 4 \cdot x^3y + 6 \cdot x^2y^2 + 4 \cdot xy^3 + y^4.$

Let's focus on the coefficient of each term. You may notice that terms x^n and y^n always have 1 as their coefficients. Why is that?

Let's start by looking at polynomial of the form $(x+y)^n$. Let's start with small values of n:

- $(x+y)^1 = x+y$
- $(x+y)^2 = x^2 + 2 \cdot xy + y^2$
- $(x+y)^3 = x^3 + 3 \cdot x^2y + 3 \cdot xy^2 + y^3$
- $(x+y)^4 = x^4 + 4 \cdot x^3y + 6 \cdot x^2y^2 + 4 \cdot xy^3 + y^4.$

Let's focus on the coefficient of each term. You may notice that terms x^n and y^n always have 1 as their coefficients. Why is that? Let's look further at the coefficients of terms $x^{n-1}y$. Do you see any pattern in their coefficients? Can you explain why?