Watch:

https://www.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-2/v/simple-riemann-approximation-using-rectangles

The video above showed a lower (left) estimation of the area under $y = x^2 + 1$ between x = 1 and 3. On the graph below, show a higher (right) estimation of the area. Use the same equal widths used in the video.

$$f(3) \times 0.5 + f(2.5) \times 0.5 + f(2) \times 0.5 + f(1) \times 0.5$$

= $10 \times 0.5 + 7.25 \times 0.5 + 5 \times 0.5 + 2.25 \times 0.5$
= $0.5 \times 25.5 = 12.75$

Given the curve $y = x^2$, find the area between the curve and the x-axis on the interval $0 \le x \le 1$.

1) Suppose we divide the interval in n subintervals, each of width $\frac{1}{n}$. Explain why the total area of lower rectangles can be written as:

$$A_{L} = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i-1}{n}\right)$$

$$A_{L} = \frac{1}{n} \left(f(0) + f(\frac{1}{n}) + f(\frac{1}{n}) + \dots + f(\frac{1}{n})\right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i-1}{n}\right)$$

2) Use the following sums to show that
$$A_L = \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2}$$
. $\sqrt{2} = \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{6}$

$$A_{L} = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i-1}{n}\right)$$

$$A_{L} = \frac{1}{n} \sum_{i=1}^{n} \frac{(i-1)^{2}}{n^{2}} = \frac{1}{n} \sum_{i=1}^{n} \frac{i^{2}-2i+1}{n^{2}} = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{i^{2}}{n^{2}} - \sum_{i=1}^{n} \frac{2i}{n^{2}} + \sum_{i=1}^{n} \frac{1}{n^{2}} \right)$$

$$= \frac{1}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6} - n(n+1) + 1 \right)$$

$$= \frac{1}{n^3} \left(\frac{n(n+1)(2n+1-6)+6n}{6} \right)$$

$$= \frac{1}{n^2} \left(\frac{(n+1)(2n-5)+6}{6} \right)$$

$$= \frac{2n^2 \cdot 3n + 1}{6n^2} = \frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2}$$

3) Explain why the total area of upper rectangles can be written as:

$$A_{U} = \sum_{i=1}^{n} f\left(\frac{i}{n}\right)$$

$$A_{u} = \frac{1}{n} \left(f\left(\frac{1}{n}\right) + f\left(\frac{2}{n}\right) + f\left(\frac{3}{n}\right) + f\left(\frac{4}{n}\right) - f\left(\frac{n-1}{n}\right) + f\left(\frac{3}{n}\right)\right)$$

$$A_{u} = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{n}\right)$$

$$A_{u} = \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{1}{n}\right)$$

4) Hence, show that $A_U = \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}$. $\gamma \approx \pi^2$

$$A_U = \sum_{i=1}^n f\left(\frac{i}{n}\right)$$

$$A_{u} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{n} \right)^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n^{2}} = \frac{1}{n^{3}} \sum_{i=1}^{n} i^{2} = \frac{1}{n^{1}} \left(\frac{n(n+1)(2n+1)}{6} \right)$$

$$= \frac{1}{n^{2}} \left(\frac{2n^{2}+3n+1}{6} \right)$$

$$= \frac{2n^{2}+3n+1}{6n^{2}}$$

$$= \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^{2}}$$

5) Show that as n approaches infinity, that $A_U = A_L$.

To find the area under the curve y = f(x) between $a \le x \le b$:

i) If we divide the interval into n subintervals, the width of each is:

ii) The upper sum would be:

$$Au = \frac{b-a}{n} \left(f(a+\frac{1}{n}) + f(a+\frac{2}{n}) + f(b) \right)$$

$$Au = \frac{b-a}{n} \sum_{i=1}^{n} f(a+\frac{1}{n}) = \sum_{i=1}^{n} f(a+\frac{1}{n}) \left(\frac{b-a}{n} \right)$$

$$= \int_{a}^{b} f(x) dx$$

$$= \int_{a}^{b} f(x) dx$$

$$= A(x) \text{ from } a \text{ to } b$$

if
$$x=a$$

$$A(a)=0$$

$$A(a)=f(a)+c$$

$$0=f(a)+c$$

$$c=-F(a)$$

$$hf(n) \leq A(\pi + h) - A(\pi) \leq hf(\pi + h)$$

$$f(n) \leq \frac{A(\pi + h) - A(\pi)}{h} \leq f(\pi + h)$$

$$f(\pi) \leq A'(\pi) \leq f(\pi + h)$$

$$as h \rightarrow 0 \qquad squeeze theorem$$

$$f(\pi) \leq A'(\pi) \leq f(\pi) \qquad squeeze theorem$$

$$f(\pi) \leq A'(\pi) \leq f(\pi) \qquad squeeze theorem$$

$$f(\pi) = A'(\pi) \qquad squeeze theorem$$

$$A(\pi) = f(\pi) + C$$

$$A(\pi) = f(\pi) - F(a)$$

$$A(b) = f(b) - F(a)$$

THE FUNDAMENTAL THEOREM OF CALCULUS

For a continuous function
$$f(x)$$
 with antiderivative $F(x)$, $\int_a^b f(x) dx = F(b) - F(a)$.

In general, $\int_a^b f(x) dx$ is called a **definite integral**.

Note: F(x) is the antiderivative of f(x).

PROPERTIES OF DEFINITE INTEGRALS

The following properties of definite integrals can all be deduced from the Fundamental Theorem of Calculus:

•
$$\int_{a}^{b} k \, dx = k(b-a) \quad \{k \text{ is a constant}\}$$

•
$$\int_a^a f(x) dx = -\int_a^b f(x) dx$$
 • $\int_a^b k f(x) dx = k \int_a^b f(x) dx$

•
$$\int_a^b \left[f(x) \pm g(x) \right] dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$$

Example #2

Find the area between the x-axis and $y = x^2 + 1$ from x = 1 to 3 using the Fundamental Theorem of Calculus.

$$f(x) = x^{2} + 1$$

$$F(x) = \frac{x^{3}}{3} + x + C$$

$$\int_{1}^{3} (x^{2}+1) dx = \left[\frac{x^{3}}{3} + x + C\right]_{1}^{3}$$

$$= \frac{1}{3} \times [3]^{3} + 3 + C - \left(\frac{1}{3} + 1 + C\right)$$

$$= 12 + C - \frac{4}{3} - C$$

$$= \frac{32}{3}$$

Example #2

Evaluate
$$\int_{1}^{3} (1+2x) dx$$
 and check using the GDC.

$$\int_{1}^{3} (1+2x) dx = \left[\gamma * * x^{2} \right]_{1}^{3} = 3 + 9 - (1+1)$$

$$= 10$$