Matematická analýza III

Stručné výpisky z materiálů p. doc. Klazara

Letní semestr 2020/2021

Viktor Soukup

Tyto poznámky jsem sepsal pro přípravu na zkoušku z přednášek pana doc. Klazara. Neprošly zatím žádnou korekcí, budou tedy pravděpodobně obsahovat mnoho chyb. Pokud v poznámkách najdete chybu, nebo pokud budete mít nějakou připomínku k tomu, jak jsou psané, kontaktujte mě prosím na Discordu, nebo mi dejte pull-request na https://github.com/3011/ma3-poznamky. Ke většině vět jsem vynechal důkazy, psal jsem je téměř výhradně k větám/tvrzením, která spadají k otázkám vypsaným ke zkoušce.

Obsah

1	Met	crické prostory	
	1.1	Definice	
	1.2	Euklidovský prostor, Sférická metrika	
	1.3	p-adické metriky	
	1.4	Kompaktnost množin v metrických prostorech	
	1.5	Topologická spojitost	
	1.6	Heine-Borelova věta	
	1.7	Souvislé množiny a metrické prostory	
	1.8	Základní věta algebry	
	1.9	Úplné množiny a metrické prostory	
	1.10	Baireova věta	
2	Řad	$\mathbf{l}_{\mathbf{V}}$	
	2.1	Definice	
	2.2	Fourierova řada funkce	
	2.3	Basilejský problém	
	2.4	Divergentní řady	
	2.5	Konvergence řad	
		2.5.1 Absolutní konvergence	
		2.5.2 Stejnoměrná a bodová konvergence	
	2.6	Mocninné řady	
		2.6.1 Pólyova věta o náhodných procházkách	
3	Komplexní analýza		
	3.1	Holomorfní a analytické funkce	
	0.1	3.1.1 Odlišnosti reálné a komplexní analýzy	
	3.2	Úsečky a obdélníky	
	3.3	Integrály	
	3.4	Konstanta $\rho = 2\pi i$	
	3.5	Cauchy-Goursatova věta	
	3.6	Funkcionál f	
	3.7	Meromorfní funkce a rezidua	
4	Úvod do diferenciálních rovnic 26		
-	4.1	Rovnice se separovanýmí proměnými	
	4.2	Lineární rovnice	
		Věta o evistenci	

Metrické prostory 1

Definice 1.1

Definice (Metrický prostor): Metrický prostor je dvojice (M,d) množiny $M \neq \emptyset$ a zobrazení

$$d: M \times M \to \mathbb{R}$$

zvaného metrika či vzdálenost, které $\forall x, y, z \in M$ splňuje:

- 1. $d(x,y) = 0 \iff x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

Z těchto podmínek plyne i $d(x,y) \ge 0$.

Definice (Podprostor): Každá podmnožina $X \subset M$ určuje nový metrický prostor (X, d'), tak zvaný podprostor metrického prostoru (M,d). Pro $x,y\in X$ klademe d'(x,y):=d(x,y). Obě metriky označíme stejným symbolem a máme (X, d).

Definice (Izometrie): Izometrie f dvou metrických prostorů (M,d) a (N,e) je bijekce $f:M\to N$, jež zachovává vzdálenosti:

$$\forall x, y \in M : d(x, y) = e(f(x), f(y))$$

Existuje-li f, prostory M a N jsou izometrické. Znamená to, že jsou fakticky nerozlišitelné.

1.2 Euklidovský prostor, Sférická metrika

Příklad (Euklidovský prostor): Euklidovský prostor $(\mathbb{R}^n, e_n), n \in \mathbb{N}$, s metrikou e_n danou pro $\overline{x}, \overline{y}^1 \in$ \mathbb{R}^n formulí

$$e_n(\overline{x}, \overline{y}) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Geometricky je e_n délka úsečky určené body \overline{x} a \overline{y} . Euklidovským prostorem pak rozumíme obecněji každý podprostor (X, e_n) , když $X \subset \mathbb{R}^n$.

Příklad (Sférická metrika): Jako

$$S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^3 = 1\}$$

si označíme jednotkovou sféru v euklidovském prostoru \mathbb{R}^n . Funkci $s: S \times S \to [0,\pi]$ definujeme pro $\overline{x}, \overline{y} \in S$ jako

$$s(\overline{x}, \overline{y}) = \begin{cases} 0 \dots \overline{x} = \overline{y} \\ \varphi \dots \overline{x} \neq \overline{y} \end{cases}$$

kde φ je úhel sevřený dvěma polopřimkami procházejícímí počátkem $\overline{0}$ a body \overline{x} a \overline{y} . Tento úhel je vlastně délka kratšího z oblouků mezi body \overline{x} a \overline{y} na jednotkové kružnici vytknuté na S rovinou určenou počátkem a body \overline{x} a \overline{y} . Funkci s nazveme sférickou metrikou.

Tvrzení: (S, s) je metrický prostor.

Definice ((Horní) hemisféra): (Horní) hemisféra H je množina

$$H := \{(x_1, x_2, x_3) \in S \mid x_3 \ge 0\} \subset S$$

$$1 \overline{x} = (x_1, \dots, x_n), \overline{y} = (y_1, \dots, y_n)$$

Věta (H není plochá): Metrický prostor (H,s) není izometrický žádnému Euklidovskému prostoru (X, e_n) s $X \subset \mathbb{R}^n$

Důkaz: TODO

Definice (Ultrametrika): Metrika d v metrickém prostoru (M, d) je ultrametrika(nearchimédovká metrika), pokud splňuje silnou trojúhelníkovou nerovnost

$$\forall x, y, z \in M: d(x, y) \le \max(d(x, z), d(z, y))$$

Protože $\max(d(x,z),d(z,y)) \leq d(x,z) + d(z,y)$, je každá ultrametrika metrika. V ultrametrických prostorech nefunguje intuice založená na Euklidovských prostorech.

Tvrzení (Trojúhelníky v ultrametrickém prostoru): V ultrametrickém prostoru (M, d) je každý trojúhelník rovnoramenný, to jest má dvě stejně dlouhé strany.

Definice (Otevřená koule): (Otevřená) koule v metrickém prostoru (M,d) se středem v $a \in M$ a poloměrem r>0 je podmnožina

$$B(a,r) := \{ x \in M \mid d(x,a) < r \} \subset M$$

Vždy $B(a,r) \neq \emptyset$, protože $a \in B(a,r)$.

1.3 p-adické metriky

Definice (p-adický řád): Nechť $p \in \{2, 3, 5, 7, 11, \dots\}$ je prvočíslo a nechť $n \in \mathbb{Z}$ je nenulové celé číslo. Jako p-adický řád čísla n definujeme

$$\operatorname{ord}_p(n) := \max(\{m \in \mathbb{N}_0 : p^m \mid n\})^2$$

Dále ještě $\forall p$ definujeme $\operatorname{ord}_p(0) := +\infty$.

Poznámka (Rozšíření ord_p(·) na zlomky): Pro nenulové $\alpha = \frac{a}{b} \in \mathbb{Q}$ definujeme

$$\operatorname{ord}_n(\alpha) := \operatorname{ord}_n(a) - \operatorname{ord}_n(b)$$

Jinak opět $\operatorname{ord}_p(0) = \operatorname{ord}_p(\frac{0}{b}) := +\infty.$

Tvrzení (aditivita $\operatorname{ord}_{p}(\cdot)$): *Platí*, že

$$\forall \alpha, \beta \in \mathbb{Q} : ord_n(\alpha\beta) = ord_n(\alpha) + ord_n(\beta)$$

$$kde(+\infty) + (+\infty) = (+\infty) + n = n + (\infty) := +\infty$$
, pro každé $n \in \mathbb{Z}$.

Definice (p-adická norma): Fixujeme reálnou konstantu $c \in (0,1)$ a definujeme funkci $|\cdot|_p : \mathbb{Q} \to [0,+\infty)$ jako

$$\left| \frac{a}{b} \right|_p := c^{\operatorname{ord}_p\left(\frac{a}{b}\right)}$$

kde klademe $|0|_p = c^{+\infty} := 0$

Tvrzení (multiplikativita $|\cdot|_p$): Pro každé p a každé dva zlomky α, β (a každé $c \in (0,1)$) je

$$|\alpha\beta|_p = |\alpha|_p |\beta|_p$$

 $^{^2\}cdot\mid\cdot$ značí relaci dělitelnosti.

Definice (Normované těleso): Normované těleso $F = (F, 0_F, 1_F, +_F, \cdot_F, |\cdot|_F)$, psáno zkráceně $(F, |\cdot|_F)$, je těleso vybavené normou $|\cdot|_p : \mathbb{Q} \to [0, +\infty)$, jež splňuje tři následující požadavky

- 1. $\forall x \in F : |x|_F = 0 \iff x = 0_F$
- 2. $\forall x, y \in F : |x \cdot_F y|_F = |x|_F \cdot |y|_F$
- 3. $\forall x, y \in F : |x +_F y| \le |x|_F + |y|_F$

Tvrzení: Pro každé normované těleso $(F, |\cdot|_F)$ je funkce $d(x, y) := |x - y|_F$ metrika na F. Pokud $|\cdot|_F$ splňuje silnou trojúhelníkovou nerovnost, pak je d ultrametrika.

Tvrzení (o $|\cdot|_p$): Pro každé prvočíslo p a každé $c \in (0,1)$ je $\mathbb{Q}, |\cdot|_p$ normované těleso. Příslušný metrický prostor $(\mathbb{Q}, d)(s \ d(x, y) := |x - y|_E)$ je ultrametrický prostor.

Definice (Triviální norma): Triviální norma na libovolném tělese F je funkce $||\cdot||$ s $||0_F|| = 0$ a ||x|| = 1 pro $x \neq 0_F$.

Tvrzení (Mocnění obvyklé absolutní hodnoty): Pro c>0 je $|\cdot|^c$ norma(na \mathbb{Q}, \mathbb{R} a \mathbb{C}), právě když $c\leq 1$.

Definice (Kanonická p-adická norma): Pro $\alpha \in \mathbb{Q}$ a prvočíslo p je kanonická p-adická norma $||\cdot||_p$ definovaná jako

$$||\alpha||_p := p^{-\operatorname{ord}_p(\alpha)}$$

to jest v obecné p-adické normě $||\cdot||_p$ klademe $c:=\frac{1}{n}$.

Věta (A. Ostrowski): Nechť $||\cdot||$ je norma na tělese racionálních čísel \mathbb{Q} . Pak nastává jedna ze tří následujících možností.

- 1. Je to triviální norma.
- 2. Existuje reálné $c \in (0,1]$ takové, že $||x|| = |x|^c$.
- 3. Existuje reálné $c \in (0,1)$ a prvočíslo p, že $||x|| = |x|_p = c^{ord_p(x)}$ (kde $c^{\infty} := 0$).

Modifikovaná absolutní hodnota a p-adické normy jsou tedy jediné netriviální normy na tělese racionálních čísel.

Důkaz: TODO

1.4 Kompaktnost množin v metrických prostorech

Poznámka (Konvence): $\varepsilon > 0$ a $\delta > 0$ jsou reálná čísla a $n, n_0 \in \mathbb{N}$. Limitu píšeme jako $\lim a_n = a$ nebo $\lim_{n \to \infty} a_n = a$.

Definice (Limita): Nechť je (M,d) metrický prostor, $(a_n) \subset M$ je posloupnost bodů v něm a $a \in M$ je bod. (a_n) má limitu v (M,d), pokud

$$\forall \varepsilon \exists n_0 : n \ge n_0 \Rightarrow d(a_n, a) < \varepsilon$$

Definice (Konvergence, Divergence): Pokud má (a_n) limitu, řekneme, že je konvergentní. Pokud limitu nemá, je divergentní.

Definice (Kompaktní metrický prostor): Buď (M,d) metrický prostor a $X\subset M$. Řekneme, že X je kompaktní, pokud

$$\forall (a_n) \subset X \exists (a_{m_n}) \exists a \in X : \lim_{n \to \infty} a_{m_n} = a.$$

Jinak řečeno, každá posloupnost bodů množiny X má konvergentní podposloupnost s limitou v X. Metrický prostor (M,d) je kompaktní, pokud M je kompaktní.

Definice (Spojité zobrazení mezi Metrickými prostory): Buďte (M, d) a (N, e) metrické prostory a buď $f: M \to N$ zobrazení mezi nimi. f je spojité v $a \in M$, pokud

$$\forall \varepsilon \exists \delta \forall x \in M : d(x, a) < \delta \Rightarrow e(f(x), f(a)) < \varepsilon$$

Zobrazení f je spojité, pokud je spojité v každém bodě $a \in M$.

Věta (Princip maxima): Necht'(M, d) je metrický prostor,

$$f:M\to\mathbb{R}$$

je funkce z M do reálné osy a $X \subset M$ je neprázdná kompaktní množina. Pak

$$\exists a, b \in X \forall x \in X : f(a) \le f(x) \le f(b)$$

Funkce f tedy na X nabývá svou nejmenší hodnotu f(a) a největší hodnotu f(b).

Definice (Součin metrických prostorů): Pro metrické prostory (M, d) a (N, e) definujeme jejich součin $(M \times N, d \times e)$ tak, že $M \times N$ je kartézský součin množin M a N a metrika $d \times e$ je na něm dána jako

$$(d \times e)((a_1, a_2), (b_1, b_2)) := \sqrt{d(a_1, b_1)^2 + e(a_2, b_2)^2}$$

Definice (Otevřená množina): Množina $X \in M$ v metrickém prostoru (M, d) je otevřená, pokud

$$\forall a \in X \exists r > 0 : B(a, r) \subset X.$$

Definice (Uzavřená množina): Množina X je uzavřená, pokud $M \setminus X$ je otevřená.

Definice (Omezená množina): Množina X je omezená, pokud

$$\exists a \in M \exists r > 0 : X \subset B(a, r)$$

Definice (Diametr): Diametr(průměr) množiny X je s $V := \{d(a,b)|a,b \in X\} \subset [0,+\infty)$ definovaný jako

$$\operatorname{diam}(X) := \begin{cases} \sup(V) & \dots & \operatorname{množina} V \text{ je shora omezená} \\ +\infty & \dots & \operatorname{množina} V \text{ není shora omezená} \end{cases}$$

Věta (Kompaktní ⇒ uzavřená a omezená, součin): Platí následující:

- 1. $Když X \subset M$ je kompaktní množina v metrickém prostoru (M,d), pak X je uzavřená a omezená. Opačná implikace obecně neplatí.
- 2. Jsou-li (M,d) a (N,e) dva kompaktní metrické prostory, pak i jejich součin $(M\times N, d\times e)$ je kompaktní metrický prostor.

Věta (Kompaktní množina v \mathbb{R}^n): V každém Euklidovském metrickém prostoru (\mathbb{R}^n , e_n) je množina $X \subset \mathbb{R}^n$ kompaktní, právě když je omezená a uzavřená.

1.5 Topologická spojitost

Tvrzení (Topologická spojitost): Nechť $f: M \to N$ je zobrazení mezi metrickými prostory (M, d) a (N, e). prostorem

$$f \text{ je spojit\'e} \iff \forall OM A \subset N : f^{-1}[A] = \{x \in M \mid f(x) \in A\} \subset M \text{ je } OM.^3$$

Toto tvrzení platí i pro uzavřené množiny.

Tvrzení (Topologická spojitost pro podprostory): Nechť (M,d) a (N,e) jsou metrické prostory, $X \subset M$ je neprázdná množina a $f: X \to N$. prostorem

f je spojité zobrazení definované na $(X,d) \iff \forall OM \ A \subset N : \exists OM \ B \subset M : f^{-1}[A] = X \cap B$.

Topologickou definici spojitosti jsme rozšířili na podprostory.

Tvrzení (Spojitý obraz kompaktu): Nechť (M,d) a (N,e) jsou metrické prostory, $X\subset M$ je neprázdná kompaktní množina a

$$f: X \to N$$

je spojitá funkce. Pak obraz $f[X] \subset N$ je kompaktní množina.

Tvrzení (Spojitost inverzu): Nechť $f: X \to N$ je spojité zobrazení z neprázdné kompaktní množiny $X \subset M$ v metrickém prostoru (M,d) do (N,e). Potom inverzní zobrazení

$$f^{-1}:f[X]\to X$$

je spojité.

Definice (Homeomorfismus): Zobrazení $f: M \to N$ mezi metrickými prostory (M,d) a (N,e) je jejich homeomorfismus, je-li f bijekce a jsou-li f a f^{-1} spojitá zobrazení. Pokud mezi (M,d) a (N,e) existuje homeomorfismus, jsou homeomorfní.

1.6 Heine-Borelova věta

Definice (Topologická kompaktnost): Podmnožina $A \subset M$ metrického prostoru (M, d) je topologicky kompaktní, pokud každý systém otevřených množin $\{X_i \mid i \in I\}$ v M platí:

$$\bigcup_{i \in I} X_i \supset A \Rightarrow \exists$$
konečná množina $J \subset I : \bigcup_{i \in J} X_i \supset A.$

Věta (Heine-Borelova): $Podmnožina \ A \subset M \ metrického prostoru (M, d) je kompaktní, právě když je topologicky kompaktní.$

1.7 Souvislé množiny a metrické prostory

Definice (Obojetná množina): Podmnožina $X \subset M$ v metrickém prostoru (M, d) je obojetná⁴, je-li současně otevřená i uzavřená, jako jsou například množiny \emptyset a M.

Definice (Souvislý prostor): Prostor (M, d) je souvislý, pokud v něm neexistuje netriviální⁵ obojetná podmnožina. Jinak, má-li M obojetnou podmnožinu $X \subset M$ s $X \neq \emptyset$, je nesouvislý.

³OM zkracuje sousloví "otevřená množina".

⁴anglicky *clopen*

 $^{{}^{5}}$ Různou od M a \emptyset .

Definice (Souvislá podmnožina): Podmnožina $X \subset M$ je souvislá, je-li podprostor (X, d) souvislý. Pokud podprostor (X, d) souvislý není, je nesouvislá.

Definice (Trhání množiny): Nechť (M,d) je metrický prostor a $X,A,B\subset M$. Řekneme, že množiny A a B trhají množinu X, pokud A a B jsou otevřené a platí všechna následující

- $X \subset A \cup B$
- $X \cap A \neq \emptyset \neq X \cap B$
- $(X \cap A) \cap (X \cap B) = \emptyset$

Tvrzení: Podmnožina $X \subset M$ je nesouvislá množina v metrickém prostoru (M, d), přávě když existují $A, B \subset M$, které ji trhají.

1.8 Základní věta algebry

Věta (Základní věta algebry): Každý nekonstantní komplexní polynom má kořen, tedy

$$(n \in \mathbb{N}) \wedge (a_0, a_1, \dots, a_n \in \mathbb{C}) \wedge (a_n \neq 0) \Rightarrow \exists \alpha \in \mathbb{C} : \sum_{j=0}^n a_j \alpha^j = 0$$

Věta (Souvislost intervalů): Každý interval $[a,b] \subset \mathbb{C}$, kde $a,b \in \mathbb{R}$ a $a \leq b$, je souvislá množina.

Věta (souvislost a spojitost): Nechť $f: X \to N$ je spojité zobrazení ze souvislé množiny $X \subset M$ v metrickém prostoru (M,d) do metrického prostoru (N,e). Potom

$$f[X] = \{ f(x) \mid x \in N \} \subset N$$

je souvislá množina.

Poznámka: Komplexní jednotková kružnice

$$S:=\{z\in\mathbb{C}\mid |z|=1\}\subset\mathbb{C}$$

je souvislá množina.

Tvrzení: Pro každé nezáporné $x \in \mathbb{R}$ a každé $n \in \mathbb{N}$ existuje nezáporné $y \in \mathbb{R}$ takové, že $y^n = x$.

Tvrzení (Druhá odmocnina v \mathbb{C}): $\forall a + bi \in \mathbb{C}$ máme pro vhodnou volbu znamének v reálných číslech

$$c := \pm \frac{\sqrt{\sqrt{a^2 + b^2} + a}}{\sqrt{2}}$$
 $a \quad d := \pm \frac{\sqrt{\sqrt{a^2 + b^2} - a}}{\sqrt{2}},$

 $\check{z}e\ (c+di)^2 = a+bi.$

Z předchozích dvou tvrzení lze dokázat, že pokud pro každé $u \in S$ a pro každé liché $n \in \mathbb{N}$ $\exists v \in S : v^n = u$, pak platí následující věta.

Věta (n-té odmocniny v C): Komplexní čísla obsahují všechny n-té odmocniny, tedy

$$\forall u \in \mathbb{C} \ \forall n \in \mathbb{N} \ \exists v \in \mathbb{C} : v^n = u.$$

Důkaz: TODO

Tvrzení (Redukce na n-té odmocniny): $Kdy\check{z}$ \mathbb{C} obsahuje všechny n-té odmocniny, pak platí Základní věta algebry a každý nekonstantní komplexní polynom má kořen.

1.9 Úplné množiny a metrické prostory

Definice (Cauchyova posloupnost): Cauchyova posloupnost (a_n) splňuje, že

$$\forall \varepsilon \ \exists n_0 : m, n \ge n_0 \Rightarrow d(a_m, a_n) < \varepsilon$$

Definice (Úplný metrický prostor): Metrický prostor (M, d) je úplný, je-li každá Cauchyovská posloupnost $(a_n) \subset M$ konvergentní.

Definice (Úplná množina): Množina $X \subset M$ je úplná, je-li podprostor (X, d) úplný.

Tvrzení (úplnost uzavřených podprostorů): V úplném metrickém prostoru (M,d) je každá uzavřená $množina \ X \subset M$ úplná.

1.10 Baireova věta

Definice (Řídká a hustá množina): Množina $X\subset M$ v metrickém prostoru (M,d) je řídká(v M), pokud

$$\forall a \in M \ \forall r > 0 \ \exists b \in M \ \exists s > 0 : B(b,s) \subset B(a,r) \land B(b,s) \cap X = \emptyset$$

Každá koule v (M,d) tedy obsahuje podkouli disjunktní s X. Podobně množina $Y\subset M$ v metrickém prostoru (M,d) je hustá(v M), pokud

$$\forall a \in M \ \forall r > 0 : B(a,r) \cap Y \neq \emptyset$$

Tvrzení (hustota a spojitost): Nechť (M,d) a (N,e) jsou metrické prostory, $X \subset M$ je hustá v M a

$$f, q: M \to N$$

jsou taková spojitá zobrazení, že $f|X=g|X^6$ Potom f=g.

Definice (Uzavřená koule): Pro $a \in M$ a reálné r>0 rozumíme v metrickém prostoru (M,d) uzavřenou koulí $\overline{B}(a,r)$ množinu

$$\overline{B}(a,r) := \{ x \in M \mid d(a,x) \le r \}.$$

Uzavřená koule je uzavřená množina a pro každé $a \in M$ a kladná čísla $r, s \in \mathbb{R}$ t.ž. r < s je $\overline{B}(a, r) \subset B(a, s)$.

Věta (Baireova): Nechť (M,d) je úplný metrický prostor a

$$M = \bigcup_{n=1}^{\infty} X_n.$$

 $Pak \ některá \ množina \ X_n \ není \ \check{r}idká.$

Důsledek (o úplném metrickém prostoru): Každý úplný metrický prostor (M, d), který neobsahuje izolované body, je nespočetný.

2 Řady

2.1 Definice

Definice (Řada, konvergence a divergence řady): Řada $\sum a_n = \sum_{n=1}^{\infty} a_n$ je posloupnost $(a_n) \subset \mathbb{R}$, které je přiřazena posloupnost částečných součtů

$$(s_n) := (a_1 + \cdots + a_n) \subset \mathbb{R}.$$

 $^{^6{\}rm Z}$ úžení obou funkcí na množinu X se shodují.

Pokud posloupnost (s_n) má limitu, řekneme, že řada <u>má součet</u>. Je-li tato limita vlastní $(\in \mathbb{R})$, pak řada <u>konverguje</u>, jinak(součet je $\pm \infty$ nebo neexistuje) <u>diverguje</u>. Součet řady se označuje stejným symbolem jako řada sama, takže také

$$\sum a_n = \sum_{n=1}^{\infty} a_n := \lim s_n = \lim (a_1 + \dots + a_n).$$

Tvrzení (Nutná podmínka konvergence): $Když \check{r}ada \sum a_n konverguje, pak lim <math>a_n = 0$.

Tvrzení (Harmonická řada):

$$\sum \frac{1}{n} = +\infty$$

Tvrzení:

$$\sum \frac{1}{(n+1)n} = \frac{1}{n^2} = 1$$

Tvrzení (Geometrická řada): *Pro každé* $q \in (-1,1)$ *je*

$$\sum_{n=1}^{\infty} q^n = \frac{1}{1-q}$$

Tvrzení (Leibnizovo kritérium): $Když\ a_1 \ge a_2 \ge \cdots \ge 0\ a\ \lim a_n = 0,\ pak\ \check{r}ada\ \sum (-1)^{n-1}a_n = a_1 - a_2 + a_3 - \ldots\ konverguje.$

2.2 Fourierova řada funkce

Definice (Trigonometrická řada): Trigonometrická řada je řada

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

kde a_n, b_n jsou její koeficienty a $x \in \mathbb{R}$ je proměnná.

Trigonometrická řada je fakticky parametrický systém řad parametrizovaný proměnnou x. Chceme odvodit vyjádření široké třídy funkcí $f: [-\pi, \pi] \to \mathbb{R}$, pomocí trigonometrických řad.

Definice (Skoro skalární součin): Nechť $\mathcal{R}(-\pi,\pi)$ je množina všech funkcí $f:[-\pi,\pi] \to \mathbb{R}$, které mají na $[-\pi,\pi]$ Riemannův integrál. Pro $f,g \in \mathcal{R}(-\pi,\pi)$ definujeme

$$\langle f, g \rangle := \int_{-\pi}^{\pi} fg \in \mathbb{R}.^7$$

Pro tento skoro skalární součin platí následující

Tvrzení (Symetrie, nezápornost a linearita skoro skalárního součinu):

- 1. $\langle f, g \rangle = \langle g, f \rangle$
- $2. \langle f, f \rangle = > 0$
- 3. $\langle af + bg, h \rangle = a \langle f, h \rangle + b \langle g, h \rangle$

ale

⁷Z teorie Riemannova integrálu plyne, že pokud $f, g \in \mathcal{R}(-\pi, \pi)$, pak i $fg \in \mathcal{R}(-\pi, \pi)$.

Tvrzení: Ekvivalence $\langle f, f \rangle = 0 \iff f \equiv 0$ neplatí.

Definice (2π -periodická funkce): Funkce je 2π -periodická, když pro každé $x \in \mathbb{R}$ je $f(x+2\pi) = f(x)$.

Tvrzení (Ortogonalita sinů a cosinů): Pro každá dvě celá čísla $m, n \ge 0$ je

$$\langle \sin(mx), \cos(nx) \rangle = 0.$$

Pro každá dvě delá čísla $m, n \ge 0$, kromě m = n = 0, je

$$\langle \sin(mx), \sin(nx) \rangle = \langle \cos(mx), \cos(nx) \rangle = \begin{cases} \pi & \dots & m = n \\ 0 & \dots & m \neq n. \end{cases}$$

Konečně

$$\langle \sin(0x), \sin(0x) \rangle = 0$$
 a $\langle \cos(0x), \cos(0x) \rangle = 2\pi$.

Definice (Kosinové a sinové Fourierovy koeficienty): Pro každou funkci $f \in \mathcal{R}(-\pi, \pi)$ definujeme její kosinové Fourierovy koeficienty

$$a_n := \frac{\langle f(x), \cos(nx) \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, \mathrm{dx}, n = 0, 1, \dots$$

a <u>sinové</u> Fourierovy koeficienty

$$b_n := \frac{\langle f(x), \sin(nx) \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx, n = 1, 2, \dots$$

Definice (Fourierova řada funkce): Fourierova řada funkce $f \in \mathcal{R}(-\pi,\pi)$) je trigonometrická řada

$$F_f(x) := \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

kde a_n a b_n jsou po řadě její kosinové a sinové Fourierovy koeficienty.

Geometricky nahlíženo, pracujeme v nekonečně rozměrném vektorovém prostoru se (skoro) skalárním součinem $\langle \cdot, \cdot \rangle$, v němž jsou "souřadnými osami"(prvky ortogonální báze) funkce

$$\{\cos(nx) \mid n \in \mathbb{N}_0\} \cup \{\cos(nx) \mid n \in \mathbb{N}\}\$$

V kontrastu s kartézskými souřadnicemi bodů v \mathbb{R}^n se ale zdaleka ne každá funkce rovná součtu své Fourierovy řady.

Věta (Besselova nerovnost): Pro Fourierovy koeficienty a_n a b_n funkce $f \in \mathcal{R}(-\pi, \pi)$ platí nerovnost

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \le \frac{\langle f, f \rangle}{\pi} = \frac{1}{\pi} \int_{-\pi}^{\pi} f^2.$$

Tvrzení (Riemannovo-Lebesgueovo lemma): Pro každou funkci $f \in \mathcal{R}(-\pi,\pi)$ je^8

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = 0$$

⁸Lze dokázat pomocí Besselovy nerovnosti.

Definice (Po částech hladká funkce): Funkce $f:[a,b] \to \mathbb{R}$, kde a < b jsou reálná čísla, je po částech hladká, když existuje takové dělení

$$a = a_0 < a_1 < a_2 < \dots < a_k = b, k \in \mathbb{N},$$

intervalu [a, b], že na každém intervalu $a_{i-1}, a_i, i = 1, 2, ..., k$, má spojitou derivaci f' a pro každé i = 1, 2, ..., k existují vlastní jednostranné limity

$$f(a_i - 0) := \lim_{x \to a_i^-} f(x)$$
 a $f'(a_i - 0) := \lim_{x \to a_i^-} f'(x)$

a pro každé $i=0,1,\dots,k-1$ existují vlastní jednostranné limity

$$f(a_i + 0) := \lim_{x \to a_i^+} f(x)$$
 a $f'(a_i - 0) := \lim_{x \to a_i^+} f'(x)$

Po částech hladká funkce tedy může být v několika bodech intervalu [a,b] nespojitá, ale v bodech nespojitosti má vlastní jednostranné limity a má v nich definované jednostranné nesvislé tečny.

Tvrzení (O Dirichletově jádře): Nechť $n \in \mathbb{N}$ a

$$J_n(x) := \frac{1}{2} + \cos(x) + \cos(2x) + \dots + \cos(nx).$$

Pak pro každé $x \in \mathbb{R} \setminus \{2k\pi \mid k \in \mathbb{Z}\}$ máme

$$J_n(x) = \frac{\sin\left(\left(n + \frac{1}{2}\right)x\right)}{2\sin\left(\frac{x}{2}\right)}.$$

 $tak\acute{e}$

$$\frac{1}{\pi} \int_{-\pi}^{0} J_n(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} J_n(x) \, dx = \frac{1}{2}.$$

Věta (Dirichletova): Nechť $f : \mathbb{R} \to \mathbb{R}$ je taková 2π -periodická funkce, že její zúžení na interval $[-\pi, \pi]$ je po částech hladké. Pak její Fourierova řada $F_f(x)$ má pro každé $a \in \mathbb{R}$ součet

$$F_f(a) = \frac{f(a+0) + f(a-0)}{2} = \frac{\lim_{x \to a_i^+} f(x) + \lim_{x \to a_i^-} f(x)}{2}$$

V každém bodu spojitosti $a \in \mathbb{R}$ funkce f(x) tedy její Fourierova řada má součet rovný funkční hodnotě, $F_f(a) = f(a)$.

Definice (Hladká funkce): Řekneme, že funkce $f:[a,b] \to \mathbb{R}$ je hladká, když má na intervalu (a,b) spojitou derivaci f' a v krajních bodech a a b mají f(x) a f'(x) vlastní jednostranné limity.

Důsledek (O hladké funkci): Nechť $f: \mathbb{R} \to \mathbb{R}$ je 2π -periodická a spojitá funkce, jejíž zůžení na interval $[-\pi, \pi]$ je hladké. Potom pro každé $a \in \mathbb{R}$ je

$$F_f(a) = f(a).$$

Spojitá a hladká funkce se tedy rovná součtu své Fourierovy řady.

2.3 Basilejský problém

Příklad (Basilejský problém): TODO

2.4 Divergentní řady

Řadě $\sum a_n$, to jest posloupnosti $(a_n) \subset \mathbb{R}$, lze přiřadit její "součet" i mnoha jinými způsoby, než jen jako limitu

$$\lim s_n = \lim (a_1 + \dots + a_n)$$

posloupnosti částečných součtů. Jako ilustrace jsou uvedeny dvě sumační metody.

Fakt (Abelovský součet):

$$\lim_{x \to 1^{-}} \sum_{n=0}^{\infty} a_n x^n = s \Rightarrow \sum_{n=0}^{\infty} a_n , = "s.$$

Fakt (Cesàrovský součet):

$$\lim_{n \to \infty} \frac{s_1 + s_2 + \dots + s_n}{n} = s \Rightarrow \sum_{n=0}^{\infty} a_n , =$$
" s

2.5 Konvergence řad

2.5.1 Absolutní konvergence

Definice (Absolutní konvergence): Řekneme, že řada $\sum a_n = \sum_{n=1}^{\infty} a_n$ absolutně konverguje(je to absolutně konvergentní řada), pokud konverguje řada $\sum |a_n| = \sum_{n=1}^{\infty} |a_n|$ tedy

$$\sum_{n=1}^{\infty} |a_n| < +\infty.$$

Definice (Obecná absolutní konvergence): Nechť A je nekonečná spočetná množina.

Pak řadou $\sum_{x \in A} a_x(\text{na } A)$ budeme rozumět každou funkci $a : A \to \mathbb{R}$, kde pro $x \in A$ místo a(x) stále píšeme a_x . Řekneme, že tato řada je obecná absolutně konvergentní řada, když

$$\exists c > 0 \; \forall$$
konečnou množinu $B \subset A : \sum_{x \in B} |a_x| < c$

Věta (O absolutně konvergentních řadách): Nechť $\sum_{x \in A} a_x$ je řada an A. Pak $\sum_{x \in A} a_x$ je obecná absolutně konvergentní řada, právě když pro libovolnou bijekci $\pi : \mathbb{N} \to A$ je klasická řada

$$B(\pi) = \sum_{n=1}^{\infty} b(\pi)_n = \sum_{n=1}^{\infty} b_n, \quad b := a_{\pi(n)},$$

absolutně konvergentní řada. Všechny řady $B(\pi)$ jsou pak absolutně konvergentní a mají týž součet, nezávislý na bijekci π .

Definice (Součet obecné absolutně konvergentní řady): Pro obecnou absolutně konvergentní řadu $\sum_{x \in A} a_x$ tak definujeme její součet jako součet $\sum b_n$ řady $\sum b_n$ s $b_n := a_{\pi(n)}$ pro libovolnou bijekci $\pi : \mathbb{N} \to A$.

Definice (Součin řad): Buďte $\sum_{x \in A} a_x$ a $\sum_{x \in B} b_x$ dvě obecné řady. Jejich součin, či součinová řada, je řada

$$\sum_{(a,b)\in A\times B} a_x b_x.$$

Věta (Součin absolutně konvergentních řad): Nechť $\sum_{x \in A} a_x$ a $\sum_{x \in B} b_x$ jsou obecné absolutně konvergentní řady se součty

$$r := \sum_{x \in A} a_x \in \mathbb{R} \quad a \quad \sum_{y \in B} b_y \in \mathbb{R}.$$

Pak i jejich součin je obecná absolutně konvergentní řada, která má součet rs.

Tvrzení (Exponenciála): $Pro \ x \in \mathbb{R} \ nechť$

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots$$

Pak pro každé $x, y \in \mathbb{R}$ platí identita

$$\exp(x+y) = \exp(x)\exp(y).$$

Tvrzení (Prvočísel je ∞ mnoho): *Množina prvočísel*

$$\mathbb{P} := \{2, 3, 5, 7, 11, 13, 17, 19, 23, \dots\}$$

je nekonečná.

2.5.2 Stejnoměrná a bodová konvergence

Definice (Stejnoměrná konvergence): Nechť $M \subset \mathbb{R}$ je neprázdná množina a $f: M \to \mathbb{R}$ a $f_n: M \to \mathbb{R}$, $n = 1, 2, \ldots$, jsou na ní definované funkce. Řekneme, že f_n konvergují (na M) stejnoměrně k f, symbolicky

$$f_n \rightrightarrows f \pmod{M}$$

když ($\varepsilon > 0$)

$$\forall \varepsilon \ \exists n_0 = n_0(\varepsilon) \ \forall x \in M : n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$

Definice (Bodová konvergence): Nechť $M \subset \mathbb{R}$ je neprázdná množina a $f: M \to \mathbb{R}$ a $f_n: M \to \mathbb{R}$, $n = 1, 2, \ldots$, jsou na ní definované funkce. Pokud

$$\forall \varepsilon \ \forall x \in M \ \exists n_0 = n_0(\varepsilon, x) : n \ge n_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon,$$

řekneme, že f_n konvergují (na M) k f bodově, symbolicky

$$f_n \to f \pmod{M}$$

Jinými slovy, $\forall x \in M : \lim f_n(x) = f(x)$. Stejnoměrná konvergence implikuje bodovou, ale ne naopak.

Definice (Supremová norma): Pro funkci $f: M \to \mathbb{R}$ definujeme její supremovou normu $||f||_{\infty}$ jako

$$||f||_{\infty} := \sup(\{|f(x)| \mid x \in M\}) \in [0, +\infty],$$

s hodnotou $+\infty$ pro shora neomezenou množinu $\{\dots\}$.

Tvrzení (Kritérium \Rightarrow): Nechť $M \subset \mathbb{R}$ je neprázdná množina a $f: M \to \mathbb{R}$ a $f_n: M \to \mathbb{R}$, $n = 1, 2, \ldots$, jsou na ní definované funkce. Pak

$$f_n \rightrightarrows f \pmod{na M} \iff \lim_{n \to \infty} ||f - f_n||_{\infty} = 0.$$

Definice (Lokálně stejnoměrná konvergence): Nechť $M \subset \mathbb{R}$ je neprázdná množina a $f: M \to \mathbb{R}$ a $f_n: M \to \mathbb{R}, n = 1, 2, \ldots$, jsou na ní definované funkce. Lokálně stejnoměrná konvergence f_n k f (na M), symbolicky $f_n \stackrel{\text{loc}}{\rightrightarrows} f$ (na M), znamená, že

$$\forall a \in M \; \exists \delta > 0 : f_n \Longrightarrow f \; (\text{na } M \cap (a - \delta, a + \delta)).$$

Věta ($\stackrel{\text{loc}}{\Longrightarrow}$ zachovává spojitost): Nechť $M \subset \mathbb{R}$, $f: M \to \mathbb{R}$, $f_n: M \to \mathbb{R}$ pro $n \in \mathbb{N}$, každá funkce f_n je spojitá a

$$f_n \stackrel{\text{loc}}{\Rightarrow} f \ (na \ M).$$

Pak i f je spojitá.

Důkaz: Nechť $a \in M$ a buď dáno $\varepsilon > 0$. Vezmeme $\delta > 0$, že f_n konvergují na $N := M \cap (a - \delta, a + \delta)$ stejnoměrně. Vezmeme n_0 , že $n \ge n_0 \wedge x \in N \Rightarrow |f(x) - f_n(x)| < \frac{\varepsilon}{3}$. Vezmeme libovolné $n_1 \ge n_0$ a pak, díky spojitosti f_{n_1} , takové $\delta \in (0, \delta)$, že

$$x \in M \cap (a - \delta_0, a + \delta_0)(\subset N) \Rightarrow |f_{n_1}(a) - f_{n_1}(x)| < \frac{\varepsilon}{3}.$$

Pak pro každé $x \in M \cap (a - \delta_0, a + \delta_0) \subset N$ máme, že

$$|f(a) - f(x)| \le |f(a) - f_{n_1}(a)| + |f_{n_1}(a) - f_{n_1}(x)| + |f_{n_1}(x) - f(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Funkce f je spojitá v bodě a.

Tvrzení (Weierstrassův test): Nechť $M \subset \mathbb{R}$ je neprázdná množina, $f: M \to \mathbb{R}$, $f_n: M \to \mathbb{R}$ a $\sum f_n \to f$ (na M). Pak

$$\sum_{n=1}^{\infty} f_n \rightrightarrows f \quad (na M), \ pokud \quad \sum_{n=1}^{\infty} F_n := \sum_{n=1}^{\infty} ||f_n||_{\infty} < +\infty.$$

2.6 Mocninné řady

Definice (Mocninná řada): Mocninná řada se středem $a \in \mathbb{R}$ a koeficienty $a_n \in \mathbb{R}$ (a proměnnou $x \in \mathbb{R}$) je funkční řada

$$\sum_{n=0}^{\infty} a_n (x-a)^n.$$

Definice (Poloměr konvergence): Poloměr konvergence R mocninné řady

$$\sum_{n=0}^{\infty} a_n x^n$$

je nezáporné reálné číslo nebo $+\infty$:

$$R:=\frac{1}{\limsup |a_n|^{\frac{1}{n}}}\in [0,+\infty],$$

kde $\frac{1}{0} = +\infty$ a $\frac{1}{+\infty} := 0$. S těmito konvencemi máme i ekvivalentní vztah $\limsup |a_n|^{\frac{1}{n}} = \frac{1}{R}$.

Věta (O konvergencích mocninných řad): Nechť

$$F(x) := \sum_{n=0}^{\infty} a_n x^n$$

je mocninná řada s poloměrem konvergence R. Pak pro každé reálné x s |x| < R řada F(x) absolutně konverguje a pro |x| > R diverguje. Když R > 0, pak na intervalu (-R,R) řada F(x) konverguje lokálně stejnoměrně ke svému (bodovému) součtu.

Věta (Počítání s mocninnými řadami): Nechť

$$A(x) := \sum_{n \ge 0} a_n x^n \quad a \quad B(x) := \sum_{n \ge 0} b_n x^n$$

jsou mocninné řady konvergující na nějakém intervalu I := (-a, a), kde a > 0. Označme stejně i odpovídající funkce $A, B : I \to \mathbb{R}$. Pro jejich (formální) součet, součin, podíl a derivaci platí následující.

1. Mocninná řada (Formální součet)

$$C(x) := \sum_{n \ge 0} (a_n + b_n) x^n$$

konverguje na I a pro každé $x \in I$ je C(x) = A(x) + B(x).

2. Mocninná řada (Formální součin)

$$C(x) := \sum_{n>0} \left(\sum_{k=0}^{n} a_n b_{n-k} \right) x^n$$

konverguje na I a pro každé $x \in I$ je $C(x) = A(x) \cdot B(x)$.

3. Nechť $b_0 \neq 0$ a $d_n := -\frac{b_n}{b_0}$. Pak existuje b > 0, že mocninná řada (Formální podíl)

$$C(x) = \sum_{n>0} c_n x^n = \frac{A(x)}{B(x)} := \frac{1}{b_0} \sum_{n=0}^{\infty} a_n x^n \sum_{n=0}^{\infty} (d_1 x + d_2 x^2 + \dots)^n$$

konverguje na intervalu J := (-b, b) a pro každé $x \in J$ je $C(x) = \frac{A(x)}{B(x)}$.

4. Mocninná řada (Formální derivace)

$$C(x) := \sum_{n \ge 1}^{\infty} n a_n x^{n-1}$$

konverguje na I a pro každé $x \in I$ je C(x) = A'(x).

Ve třetí části je použita formální geometrická řada:

$$\frac{1}{1 - (d_1 x + d_2 x^2 + \dots)} = \sum_{n=0}^{\infty} (d_1 x + d_2 x^2 + \dots)^n.$$

Tvrzení (Abelova nerovnost): Pro $i=1,2,\ldots,n$ nechť $a_i\in\mathbb{C},b_i\in\mathbb{R}$ s $b_1\geq b_2\geq\cdots\geq b_n\geq 0$, $A_i:=a_1+a_2+\cdots+a_i$ a $A[n]:=\max(|A_1|,|A_2|,\ldots,|A_n|)$. prostorem

$$\left| \sum_{i=1}^{n} a_i b_i \right| \le A[n] \cdot b_1.$$

Věta (Abelova): Nechť

$$A(x) := \sum_{n=0}^{\infty} a_n x^n$$

je mocninná řada s poloměrem konvergence $R \in (0, +\infty)$ a označme stejně odpovídající funkci $A : (-R, R) \to \mathbb{R}$. Když řada $\sum_{n \geq 0} a_n R^n$ konverguje a má součet

$$S := \sum_{n>0} a_n R^n,$$

pak je limita zleva v R funkce A(x) rovna S:

$$\lim_{x \to R^{-}} A(x) = \lim_{a \to R^{-}} \sum_{n=0}^{\infty} a_{n} x^{n} = \sum_{n=0}^{\infty} a_{n} R^{n} = S.$$

2.6.1 Pólyova věta o náhodných procházkách

Definice (Graf): Graf G = (V, E) sestává z množiny <u>vrcholů</u> V a množiny <u>hran</u> $E \subset \binom{V}{2}$. Zde

$$\binom{V}{2} := \{A \mid A \subset V \wedge |A| = 2\}$$

je množina všech dvouprvkových podmnožin množiny V.

Definice (d-regulární graf): Graf G=(V,E) je d-regulární, $D\in\mathbb{N}$, má-li každý vrchol d sousedů, to jest

$$\forall v \in V : |\overbrace{\{u \in V \mid \{u, v\} \in E\}}^{N(v)}| = d.$$

Definice (Lokálně konečný graf): Graf G je lokálně konečný, má-li každý vrchol $v \in V$ jen konečně mnoho sousedů, tj. množina N(v) je konečná.

Definice (Procházka): Procházka w v grafu G=(V,E) je taková konečná, $w=(v_0,v_1,\ldots,v_n)$ s délkou $|w|:=n\in\mathbb{N}_0$, či nekonečná, $w=(v_0,v_1,\ldots)$, posloupnost vrcholů $v_i\in V$, že pro každé $i\in\mathbb{N}_0(< n)$ je $\{v_i,v_{i+1}\in E\}$. Vrchol v_0 pojmenujeme jako start procházky w.

Definice (Počet procházek): Definujeme

$$d_n(v_0,G) := |\{w \mid w \subset V \text{ je procházka se startem } v_0 \ a \ |w| = n\}|,$$

počet procházek v grafu G s daným startem v_0 a s délkou n.

Definice (Rekurentní procházka): Rekurentní procházka $w = (v_0, v_1, \dots, v_n)$ opětovně prochází startem: existuje $i \in \{1, 2, \dots, n\}$, že $v_i = v_0$

Definice (Počet rekurentních procházek): Jako

$$a_n(v_0,G) := |\{w \mid w \subset V \text{ je rekurentní procházka se startem } v_0 \ a \ |w| = n\}|$$

označíme počet rekurentních procházek v grafu G s daným startem v_0 a s délkou n.

Definice (Automorfismus): Automorfismus grafu G = (V, E) je taková bijekce $f: V \to V$, že

$$\forall u, v \in V : \{u, v\} \in E \iff \{f(u), f(v) \in E\}.$$

Definice ((Vrcholově) tranzitivní graf): Graf G = (V, E) je (vrcholově) tranzitivní, když

$$\forall u, v \in V \; \exists F : F \text{ je automorfismus } G \land F(u) = v.$$

Tvrzení (Procházky v grafech): Počet procházek, popř. rekurentních procházek, dané délky v tranzitivním grafu nezávisí na startu: když je G = (V, E) tranzitivní a lokálně konečný, pak pro každé $n \in \mathbb{N}_0$ a každé dva vrcholy $u, v \in V$ je

$$d_n(u,G) = d_n(v,G), \quad pop\check{r}. \quad a_n(u,G) = a_n(v,G).$$

V tranzitivních grafech G budeme stručně označovat počty procházek, resp. rekurentních procházek, s délkou n jako $d_n(G)$, resp. $a_n(G)$.

Příklad (Nekonečná cesta): Nekonečná cesta

$$P = (\mathbb{Z}, \{\{n, n+1\} \mid n \in \mathbb{Z}\})$$

je tranzitivní a 2-regulární.

Definice (Zobecněná nekonečná cesta): Zobecnněním nekonečné cesty je pro $d \in \mathbb{N}$ graf

$$\mathbb{Z}^d := \left(\mathbb{Z}^d, \left\{ \{ \overline{u}, \overline{v} \} \mid \sum_{i=1}^d |u_i - v_i| = 1 \right\} \right),$$

kde píšeme $\overline{u} = (u_1, \dots, u_d) \in \mathbb{Z}^d$.

Tvrzení: Grafy \mathbb{Z}^d jsou tranzitivní a 2d-regulární.

Věta (Slabá Abelova): Když mocninná řada

$$U(x) := \sum_{n=0}^{\infty} u_n x^n \in \mathbb{R}[[x]]$$

konverguje pro každé $x \in [0, R)$, kde $R \in (0, +\infty)$ je reálné číslo, a má všechny koeficienty $u_n \ge 0$, pak následující limita a suma jsou definované a rovnají se -

$$\lim_{x \to R^{-}} U(x) = \sum_{n=0}^{\infty} u_{n} R^{n} \quad (=: U(R))$$

- bez ohledu na to, zda jsou konečné nebo $+\infty$.

Věta (Stirlingův vzorec):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \quad n \to \infty.$$

Věta (Pólya): $Pro\ d = 1\ a\ 2\ je$

$$\lim_{n \to \infty} \frac{a_n(\mathbb{Z}^d)}{d_n(\mathbb{Z}^d)} = \lim_{n \to \infty} \frac{a_n(\mathbb{Z}^d)}{(2d)^n} = 1$$

a pro $d \geq 3$ je

$$\lim_{n\to\infty}\frac{a_n(\mathbb{Z}^d)}{d_n(\mathbb{Z}^d)}=\lim_{n\to\infty}\frac{a_n(\mathbb{Z}^d)}{(2d)^n}<1$$

Důkaz: TODO Důkaz: TODO

3 Komplexní analýza

Definice (Komplexní čísla): Komplexní čísla

$$\mathbb{C} = \{z = a + bi \mid a, b \in \mathbb{R}\}, \quad i = \sqrt{-1},$$

tvoří normované těleso $\mathbb{C}, 0, 1, +, \cdot, |\ldots|$, s normou $|z| = |a+bi| := \sqrt{a^2 + b^2}$. Zároveň tvoří úplný metrický prostor (\mathbb{C}, d) s metrikou $d(z_1, z_2) := |z_1 - z_2|$, který je izometrický klasické euklidovkské rovině \mathbb{R}^2 .

Poznámka (Značení):

$$re(a+bi) := a$$
 a $im(a+bi) := b$

Definice (Komplexní koule): Jako $B(z,r)=\{u\in\mathbb{C}\mid |u-z|< r\}$ označíme kouli se středem z a poloměrem r>0.

3.1 Holomorfní a analytické funkce

Definice (Derivace): Pro funkci $f: U \to \mathbb{C}$ a bod $z_0 \in U$ je její derivace $f'(z_0)$ v z_0 definovaná jako pro reálné funkce:

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \in \mathbb{C},$$

pokud tato limita existuje. Explicitně, $f'(z_0) \in \mathbb{C}$ je derivace funkce f v bodě z_0 , právě když

$$\forall \varepsilon > 0 \; \exists \delta > 0 : z \in U \land 0 < |z - z_0| < \delta \Rightarrow \left| \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0) \right| < \varepsilon.$$

Definice (Holomorfní funkce): Funkce $f: U \to \mathbb{C}$ je holomorfní (na U), má-li v každém bodě $z_0 \in U$ derivaci. Celá či celistvá funkce $f: \mathbb{C} \to \mathbb{C}$ je lohomorfní na celé komplexní rovině \mathbb{C} . Komplexní derivace má stejné algebraické vlastnosti jako derivace reálná.

Tvrzení (Vlastnosti derivace): $f, g: U \to \mathbb{C}$ a $h: U_0 \to \mathbb{C}$ buďte holomorfní funkce a $\alpha, \beta \in \mathbb{C}$. Platí následující.

- 1. Funkce $\alpha f + \beta g$ je holomorfní na U a $(\alpha f + \beta g)' = \alpha f' + \beta g'$.
- 2. Součin fg je holomorfní na U a (fg)' = f'g + fg'.
- 3. Když $g \neq 0$ na U, pak je podíl $\frac{f}{g}$ holomorfní na U a $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$.
- 4. $Když\ h[U_0] \subset U$, pak je složená funkce $f(h): U_0 \to \mathbb{C}$ holomorfní na U_0 a (f(h))' = f'(h)h'.

Poznámka (K derivacím): Jako pro reálné funkce, pro $n \in \mathbb{N}$ na \mathbb{C} máme $(z^n)' = nz^{n-1}$, derivace konstantní funkce je nulová funkce a každá racionální funkce je holomorfní na svém definičním oboru a její derivace je táž jako v reálném případě(tj. je daná stejnou formulí).

Definice (Analytická funkce): Funkce $f:U\to\mathbb{C}$ je analytická (na U), pokud pro každý bod $z_0\in U$ existují taková komplexní čísla a_0,a_1,\ldots , že

$$z \in U \land B(z_0, |z - z_0|) \subset U \Rightarrow f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Analytická funkce je v každém kruhu se středem z_0 , který je obsažený v definičním oboru, vyjádřena mocninnou řadou s komplexními koeficienty a středem z_0 . S mocninnými řadami s komplexními koeficienty počítáme úplně stejně jako s reálnými mocninnými řadami.

3.1.1 Odlišnosti reálné a komplexní analýzy

1. Odlišnost

Věta (Holomorfní \Rightarrow analytická): Je-li $f: \mathbb{C} \to \mathbb{C}$ celá funkce, pak existují komplexní koeficienty a_0, a_1, \ldots , že pro každé $z \in \mathbb{C}$ je

$$f(z) = \sum_{n=0}^{\infty} a_n z^n.$$

2. Odlišnost

Poznámka: Funkce $f: U \to \mathbb{C}$ je omezená, když $\exists c > 0 \ \forall c \in U: |f(z)| < c$.

Věta (Liouville): Když je $f: \mathbb{C} \to \mathbb{C}$ celá a omezená funkce, pak je f konstantní.

3. Odlišnost

Důsledek (Holomorfní funkce má \forall derivace): Každá holomorfní funkce $f:U\to\mathbb{C}$ má derivace $f^{(n)}(z)$ všech řádů $n\in\mathbb{N}$. Speciálně je její derivace $f':U\to\mathbb{C}$ spojitá funkce.

4. Odlišnost

Věta (Princip maxima modulu): Nechť $f: U \to \mathbb{C}$ je holomorfní funkce. Pak

$$\forall z_0 \in U \ \forall \delta > 0 : 0 < |z - z_0| < \delta \land |f(z)| > |f(z_0)|.$$

3.2 Úsečky a obdélníky

Definice (Úsečka): Pro dva různé body je úsečka $u = ab \subset \mathbb{C}$ obraz

$$u = ab := \varphi[[0,1]] = \{\varphi(t) \mid 0 \le t \le 1\} \subset \mathbb{C}$$

intervalu [0, 1] lineární funkcí

$$\varphi(t) := (b-a)t + a : [0,1] \to \mathbb{C}.$$

Poznámka (Orientace úsečky): Úsečka je orientována pořadím svých konců, takže *ab* a *ba* jsou dvě různé úsečky.

Definice (Délka úsečky):

$$|u| = |ab| := |b - a| \ge 0$$

Definice (Dělení úsečky): Dělení p úsečky u=ab je k+1-tice $p=(a_0,a_1,\ldots,a_k)\subset u, k\in\mathbb{N},$ jejích bodů

$$a_i := \varphi(t_i), \quad i = 0, 1, \dots, k,$$

které jsou obrazy bodů $0 = t_0 < t_1 < \dots < t_k = 1$ tvořících dělení intervalu [0,1]. Takže $a_0 = a, a_k = b$ a body a_0, a_1, \dots, a_k běží na u od a do b.

Definice (Norma dělení): Norma ||p|| dělení p je

$$||p|| := \max_{1 \le i \le k} |a_{i-1}a_i| = \max_{1 \le i \le k} |a_i - a_{i-1}|,$$

tedy největší délka podúsečky dělení.

Definice (Cauchyova suma a její modifikace): Pro funkci $f: U \to \mathbb{C}$ a dělení $p = (a_0, a_1, \dots, a_k)$ úsečky u definujeme Cauchyovu sumu C(f, p) a její modifikaci C'(f, p) jako

$$C(f,p) := \sum_{i=1}^{k} f(a_i) \cdot (a_i - a_{i-1}) \in \mathbb{C}$$

$$C'(f,p) := \sum_{i=1}^{k} f(a_{i-1}) \cdot (a_i - a_{i-1}) \in \mathbb{C}.$$

Definice (Obdélník): Obdélník $R \subset \mathbb{C}$ je množina

$$R := \{ z \in \mathbb{C} \mid \alpha \le \operatorname{re}(z) \le \beta \land \gamma \le \operatorname{im}(z) \le \delta \}$$

dána reálnými čísly $\alpha < \beta$ a $\gamma < \delta$. Jeho strany jsou rovnoběžné s reálnou a imaginární osou. Když $\beta - \alpha = \delta - \gamma$, jde o <u>čtverec</u>.

Definice (Kanonické vrcholy obdélníka): Kanonické vrcholy obdélníka R jsou $(a, b, c, d) \in \mathbb{C}^4$, kde

$$a := \alpha + \gamma i, b := \beta + \gamma i, c := \beta + \delta i$$
 a $d := \alpha + \delta i$.

Začínají levým dolním vrcholem a jdou proti směru hodinových ručiček.

Definice (Hranice obdélníka): Hranice ∂R obdélníka R je sjednocení úseček

$$\partial R := ab \cup bc \cup cd \cup da.$$

Definice (Vnitřek obdélníka): Vnitřek int(R) obdélníka R je

$$int(R) := R \backslash \partial R.$$

Definice (Obvod obdélníka): Obvod obv(R) obdélníka R je součet délek jeho stran,

$$obv(R) := |ab| + |bc| + |cd| + |da|.$$

3.3 Integrály

Definice (Integrál přes úsečku a hranici obdélníka): Nechť $f:u,\partial R\to\mathbb{C}$ je spojitá funkce definovaná na úsečce u nebo na hranici obdélníka R. Definujeme

$$\int_{u} f := \lim_{n \to \infty} C(f, p_n) \in \mathbb{C}$$

a

$$\int_{\partial R} f := \int_{ab} f + \int_{bc} f + \int_{cd} f + \int_{da} f,$$

kde (p_n) je libovolná posloupnost dělení p_n úsečky u, která splňuje $\lim ||p_n|| = 0$, a (a,b,c,d) jsou kanonické vrcholy obdélníka R. Hodnota $\int_u f$ je integrál funkce f je funkce přes úsečku u a $\int_{\partial R} f$ je integrál funkce f přes hranici obdélníka R.

Věta (O integrálech): Nechť u=ab je úsečka, R je obdélník a funkce $f,g:u,\partial R\to\mathbb{C}$ jsou spojité. Limita definující $\int_u f$ vždy existuje a nezávisí na posloupnosti (p_n) . Tedy i $\int_{\partial R} f$ je vždy dobře definovaný. Oba integrály mají následující vlastnosti.

- 1. Pro každé $\alpha, \beta \in \mathbb{C}$ je $\int_u (\alpha f + \beta g) = \alpha \int_u f + \beta \int_u g$ a totéž platí pro $\int_{\partial R} dx$
- 2. Platí ML odhady

$$\left| \int_{u} f \right| \le \max_{z \in u} |f(z)| \cdot |u| \quad a \quad \left| \int_{\partial R} f \right| \le \max_{z \in \partial R} |f(z)| \cdot obv(R)$$

3. Pro každý vnitřní bod c úsečky u=ab, to jest $c\in ab$ a $c\neq a,b$, je $\int_{ab}f=\int_{ac}f+\int_{cb}f$. Též $\int_{ba}f=-\int_{ab}f$.

Tvrzení (Stejnoměrná spojitost): Nechť $A \subset M$ je kompaktní množina v metrickém prostoru (M, d) a $f: A \to \mathbb{R}$ je spojitá funkce. Pak je f stejnoměrně spojitá, takže

$$\forall \varepsilon > 0 \; \exists \delta > 0 : a, b \in A \land d(a, b) < \delta \Rightarrow |f(a) - f(b)| < \varepsilon.$$

Definice (k-ekvidělení): Pro $k \in \mathbb{N}$ a úsečku $u \subset \mathbb{C}$ jejím k-ekvidělením rozumíme dělení u na k podúseček stejné délky $\frac{|u|}{k}$, které je dané obrazy dělení $0 < \frac{1}{k} < \frac{2}{k} < \cdots < \frac{k-1}{k} < 1$ jednotkového intervalu.

Tvrzení: Nechť $a, b, \alpha, \beta \in \mathbb{C}$ s $a \neq b$. Platí

$$\int_{ab} (\alpha z + \beta) = \left(\frac{b^2}{2} - \frac{a^2}{2}\right) + \beta(b - a) = g(b) - g(a),$$

$$kde\ g(z) := \frac{\alpha z^2}{2} + \beta z.$$

Tvrzení (Jednoduchá Cauchy-Goursatova věta): Nechť $\alpha, \beta \in \mathbb{C}$ a $R \subset \mathbb{C}$ je obdélník. pak

$$\int_{\partial R} (\alpha z + \beta) = 0.$$

Tvrzení $(\int_u a(R) f)$: Nechť $a, b \in \mathbb{C}$ s $a \neq b$, $f: ab \to \mathbb{C}$ je spojitá funkce $a \varphi(t) := t(b-a) + a : [0,1] \to \mathbb{C}$ je parametrizace definující úsečku u = ab. Potom

$$\int_{u} f = \int_{0}^{1} f(\varphi(t)) \cdot \varphi'(t) dt = (b - a) \int_{0}^{1} f(\varphi(t)) dt$$
$$= (b - a) \left(\int_{0}^{1} re(f(\varphi(t))) dt + i \cdot \int_{0}^{1} im(f(\varphi(t))) dt \right)$$

(až na první integrál jsou všechny ostatní Riemannovy).

Definice (Křivkový integrál): Když

$$f: U \to \mathbb{C}$$
 je funkce a $\varphi: [a, b] \to U$

je spojitá a po částech hladká funkce, pak integrál funkce f přes křivku φ definujeme jako

$$\int_{\varphi} f := \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt$$

$$= \int_{a}^{b} \operatorname{re} \left(f(\varphi(t)) \cdot \varphi'(t) \right) dt + i \cdot \int_{a}^{b} \operatorname{im} \left(f(\varphi(t)) \cdot \varphi'(t) \right) dt,$$

pokud poslední dva (reálné) Riemannovy integrály existují. Náš "úsečkový integrál" \int_u je tedy podle předchozího tvrzení speciálním případem křivkového integrálu \int_{ω} .

3.4 Konstanta $\rho = 2\pi i$

Tvrzení: Buď dána konvergentní posloupnost komplexních čísel (z_n) . Platí $im(\lim z_n) = \lim im(z_n)$.

Věta (Konstanta ρ): Nechť S je čtverec s vrcholy $\pm 1 \pm i$. Pak

$$\rho := \int_{\partial S} \frac{1}{z} \neq 0, \ dokonce \ im(\rho) \geq 4.$$

Důkaz: Kanonické vrcholy čtverce S jsou a:=-1-i, b:=1-i, c:=1+i a d:=-1+i. Nechť $p_n=(a_0,a_1,\ldots,a_n)$ je n-ekvidělení úsečky ab. Protože násobení číslem i je otočení kolem počátku kladným směrem 9 o úhel $\frac{\pi}{2}$ je $q_n=ip_n:=(ia_0,ia_1,\ldots,ia_n)$ n-ekvidělení úsečky bc. Podobně je $r_n=iq_n=-p_n$, resp. $s_n=ir_n=-ip_n$, n-ekvidělení úsečky cd, resp. da. Překvapivě pro $f(z)=\frac{1}{z}$ je

$$C(f, p_n) = C(f, q_n) = C(f, r_n) = C(f, s_n)$$

Skutečně, rozšíření zlomku číslem i dává

$$C(f, p_n) = \sum_{j=1}^n \left(\frac{\frac{b-a}{n}}{a + \frac{j(b-a)}{n}} \right) = \left(\sum_{j=1}^n \frac{\frac{ib-ia}{n}}{ia + \frac{j(ib-ia)}{n}} \right)$$
$$= \sum_{j=1}^n \left(\frac{\frac{c-b}{n}}{b + \frac{j(c-b)}{n}} \right) = C(f, q_n)$$

⁹proti směru hodinových ručiček

a podobně pro další dvě rovnosti. Dále vzhledem k b-a=2 a a=-1-i rozšířením zlomku číslem $\frac{2j}{n}-1$ dostáváme

$$\operatorname{im}(C(f, p_n)) = \operatorname{im}\left(\sum_{j=1}^n \frac{\frac{2}{n}}{-1 - i + \frac{2j}{n}}\right)$$

$$= \operatorname{im}\left(\frac{2}{n}\sum_{j=1}^n \frac{\frac{2j}{n} - 1 + i}{\left(\frac{2j}{n} - 1\right)^2 + 1}\right)$$

$$= \frac{2}{n}\sum_{j=1}^n \left(\frac{1}{\left(\frac{2j}{n} - 1\right)^2 + 1}\right) \ge \frac{2}{n}\sum_{j=1}^n \frac{1}{2} = 1.$$

Tedy, podle tvrzení výše,

$$\begin{split} \operatorname{im}(\rho) &= \operatorname{im}\left(\int_{\partial S} \frac{1}{z}\right) = 4 \cdot \operatorname{im}\left(\int_{ab} \frac{1}{z}\right) \\ &= 4 \cdot \lim_{n \to \infty} \operatorname{im}\left(C\left(\frac{1}{z}, p_n\right)\right) \\ &> 4 \cdot 1 = 4 \end{split}$$

a skutečně $\rho \neq 0$.

Tvrzení: Nechť opět a:=-1-i a b:=1-i. Potom $\int_{ab} \frac{1}{z} = \frac{\pi i}{2}$. Tedy, podle předchozího důkazu, $\rho = 4 \cdot \frac{\pi i}{2} = 2\pi i.^{10}$

3.5 Cauchy-Goursatova věta

Integrál $\int_{\varphi} f$ holomorfní funkce f přes jednoduchou uzavřenou křivku φ , která leží v definičním oboru funkce f se svým celým vnitřkem, je 0.

Definice (Diametr množiny): Pro množinu $x \subset \mathbb{C}$ je její diametr¹¹ definovaný jako

$$diam(X) = sup(\{|x - y| \mid x, y \in X\}).$$

Průměr množiny může být i $+\infty$.

Tvrzení: $Kdy\check{z} A_n$,

$$\mathbb{C} \supset A_1 \supset A_2 \supset \ldots$$

jsou neprázdné a uzavřené množiny s lim $diam(A_n) = 0$, pak $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Definice (Čtvrtka obdélníka): Buď obdélník R s kanonickými vrcholy (a,b,c,d). Když $e:=\frac{a+b}{2}, f:=\frac{b+c}{2}, g:=\frac{c+d}{2}$ a $h:=\frac{d+a}{2}$ jsou středy stran R a $j:=\frac{a+c}{2}$ je jeho celkový střed, pak jeho čtyři čtvrtky jsou obdélníky A,B,C a D, jejichž kanonické vrcholy jsou, po řadě,

$$(a, e, j, h), (e, b, f, j), (j, f, c, q)$$
 a (h, j, q, d) .

Obdélník se na čtvrtky rozpadne po rozříznutí podle úseček eg a hf. Pro každou z těchto čtvrtek E patrně platí: $obv(E) = \frac{1}{2}obv(R)$ a $diam(E) = \frac{1}{2}diam(R)$.

 $[\]int_{11}^{10} \int \frac{1}{1+t^2} = \arctan t$

¹¹průměr

Věta (Cauchy-Goursatova pro obdélníky): Nechť

$$f:U\to\mathbb{C}$$

je holomorfní funkce a $R \subset U$ je obdélník. Pak

$$\int_{\partial R} f = 0.$$

Důkaz: Mějme f, U a R. Sestrojíme takové vnořené obdélníky

$$R = R_0 \supset R_1 \supset R_2 \supset \dots,$$

že pro každé $n \in \mathbb{N}_0$ je $R_n + 1$ čtvrtka obdélníku R_n a

$$\left| \int_{\partial R_{n+1}} f \right| \ge \frac{1}{4} \left| \int_{\partial R_n} f \right|.$$

Nechť už jsou takové obdélníky R_0, R_1, \ldots, R_n definované a A, B, C, D jsou čtvrtky obdélníku R_n . Tvrdíme, že

$$\int_{\partial R_n} f = \int_{\partial A} f + \int_{\partial B} f + \int_{\partial C} f + \int_{\partial D} f$$

Tato identita plyne použitím třetí části věty o integrálech. Po rozvinutí každého integrálu $\int_{\partial A} f, \dots, \int_{\partial D} f$ jako součtu čtyř integrálů přes strany dostáváme na pravé straně předchozí rovnosti 16 členů. Osm z nich odpovídá stranám čtvrtek uvnitř R_n a vzájemně se zruší, protože vytvoří čtyři dvojice opačných orientací stejné úsečky. Zbylých osm členů odpovídá stranám čtvrtek ležících na ∂R_n , které se sečtou na integrál na levé straně předcházející rovnosti. Z této rovnosti plyne podle trojúhelníkové nerovnosti, že pro nějakou čtvrtku $E \in \{A, B, C, D\}$ je $\left| \int_{\partial E} f \right| \geq \frac{1}{4} \left| \int_{\partial R_n} f \right|$. Položíme tedy $R_{n+1} = E$.

Podle předchozího tvrzení existuje bod z_0 , že

$$z_0 \in \bigcap_{n=0}^{\infty} R_n.$$

Protože $R_0 = R \subset U$, je i $z_0 \in U$. Nyní použijeme existenci derivace $f'(z_0)$. Pro dané $\varepsilon > 0$ existuje $\delta > 0$, že $B(z_0, \delta) \subset U$ a pro nějakou funkci $\Delta : B(z_0, \delta) \to \mathbb{C}$ pro každé $z \in B(z_0, \delta)$ je $|\Delta(z)| < \varepsilon$ a

$$f(z) = \underbrace{f(z_0) + f'(z_0) \cdot (z - z_0)}_{g(z)} + \underbrace{\Delta(z) \cdot (z - z_0)}_{h(z)}.$$

Uvážíme tyto funkce g(z) a h(z). Je jasné, že g(z) je lineární a h(z) = f(z) - g(z) je spojitá¹². Nechť $n \in \mathbb{N}_{\vdash}$ je tak velké, že $R_n \subset B(z_0, \delta)^{13}$. Podle linearity integrálu a jednoduché Cauchyho-Goursatovy věty(JCG) máme

$$\int_{\partial R_n} f = \int_{\partial R_n} g + \int_{\partial R_n} h \stackrel{JCG}{=} \int_{\partial R_n} h.$$

Platí odhad

$$\left| \int_{\partial R_n} h \right|^{\text{ML odhad}} \leq \max_{z \in \partial R_n} |\Delta(z) \cdot (z - z_0)| \cdot \text{obv}(R_n)$$

$$< \varepsilon \cdot \text{diam}(R_n) \cdot \text{obv}(R_n)$$

$$= \varepsilon \cdot \frac{\text{diam}(R)}{2^n} \cdot \frac{\text{obv}(R)}{2^n}$$

$$< \varepsilon \cdot \frac{\text{obv}(R)}{4^n}.$$

¹²na $B(z_0, \delta)$

¹³potřebujeme jenom, že lim diam $(R_n) = 0$, pro esxistenci z_0 to není podstatné

Zde jsme použili výše zmíněné zmenšení průměru a obvodu na polovinu po čtvrcení a to, že průměr obdélníka je menší než jeho obvod. Podle předchozích výsledků tak máme

$$\left|\frac{1}{4^n} \left| \int_{\partial R} f \right| \leq \left| \int_{\partial R_n} f \right| = \left| \int_{\partial R} h \right| < \varepsilon \cdot \frac{\operatorname{obv}(R)^2}{4^n}$$

a $\left|\int_{\partial R} f\right| < \varepsilon \cdot \text{obv}(R)^2$. Protože to platí pro každé $\varepsilon > 0$, je $\int_{\partial R} f = 0$.

Věta (Cauchy-Goursatova): Nechť $f: U \to \mathbb{C}$ je holomorfní funkce a $\varphi: [a,b] \to U$ je spojitá a po částech hladká fuknce, která je prostá, s vyjímkou hodnoty $\varphi(a) = \varphi(b)$, a jejíž vnitřek¹⁴ je podmnožinou množiny U. Pak

$$\int_{\omega} f = 0.$$

3.6 Funkcionál

Definice (Funkcionál): Pro libovolnou kompaktní¹⁵ množinu $A \subset \mathbb{C}$ definujeme množiny holomorfních funkcí

$$H_A := \{ f : \mathbb{C} \backslash A \to \mathbb{C} \mid f \text{ je holomorfní} \}$$

$$H := \bigcup_{A \subset \mathbb{C} \text{ je kompaktní}} H_A.$$

H tedy obsahuje všechny funkce holomorfní na doplňcích kompaktů. Funkcionál \int , tedy funkci na množině H, definujeme předpisem

$$\int: H \to \mathbb{C}, \ \int f := \int_{\partial R} f,$$

kde $f \in H_A$ a $R \subset \mathbb{C}$ je libovolný obdélník, že int $(R) \supset A^{16}$.

Tvrzení (Korektnost definice \int): Definice funkcionálu \int je korektní, jeho hodnota $\int f$ nezávisí na volbě obdélníku R.

Věta (Vlastnosti f): Důležité vlastnosti jsou tři.

1. Linearita: pro každé $\alpha, \beta \in \mathbb{C}$ a $f, g \in H$ je

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$$

2. Rozšíření Cauchy-Goursatovy věty: když $a\in\mathbb{C}$ a funkce $f\in H_{\{a\}}$ je omezená na nějakém prstencovém okolí bodu a, pak

$$\int f = 0.$$

3. Pro každé $a \in \mathbb{C}$ je

$$\int \frac{1}{z-a} = \rho$$

 $kde \ \rho = 2\pi i \ je \ d\check{r}ive \ zaveden\'a \ konstanta.$

Věta (Cauchyův vzorec): Nechť $f: \mathbb{C} \to \mathbb{C}$ je celá funkce. Pak je-li $\rho = 2\pi i$ dříve definovaná konstanta, pro každé $a \in \mathbb{C}$ je

$$f(a) = \frac{1}{\rho} \int \frac{f(z)}{z - a}.$$

 $^{^{14}}$ ta komponenta ve dvojici komponent množiny $\mathbb{C}\backslash \varphi[[a,b]],$ která je omezená

¹⁵uzavřenou a omezenou

 $^{^{16}{\}rm A}$ je obsažena uvnitř obdélníku R

3.7 Meromorfní funkce a rezidua

Definice (Diskrétní množina): Množina $A \subset \mathbb{C}$ je diskrétní, pokud v každé kouli $B(z,r) \subset \mathbb{C}$ leží jen konečně mnoho jejích prvků.

Definice (Meromorfní funkce, množina pólů): Holomorfní funkci

$$f: U \backslash A \to \mathbb{C},$$

kde $A \subset \mathbb{C}$ je diskrétní, nazveme meromorfní funkcí a A nazveme množinou jejích pólů, když každý bod $a \in A$ má okolí $U_a \subset U$ s $U_a \cap A = \{a\}$, že pro nějakou holomorfní funkci $g_a : U_a \to \mathbb{C}$ a nějaká čísla $k_a \in \mathbb{N}_0$ a $c_{j,a} \in \mathbb{C}, j = 1, 2, \ldots, k_a$ že pro každé $z \in U_a \setminus \{a\}$ je

$$f(z) = g_a(z) + \sum_{j=1}^{k_a} \frac{c_{j,a}}{(z-a)^j}.$$

Pro $k_a=0$ se suma definuje jako 0 a $f=g_a$ pak je holomorfní na U_a .

Definice (Reziduum funkce f): Koeficient $c_{1,a}$ z předchozí definice je takzvané reziduum funkce f v bodě a, označované jako

$$res(f, a) := c_{1,a}.$$

Z Cauchyova vzorce plyne, že res(f, a) je jednoznačně určené funkcí f.

Věta (Reziduová): Nechť $f: U \setminus A \to \mathbb{C}$ je meromorfní funkce s množinou pólů A a $R \subset U$ je obdélník, jehož hranice neobsauje žádný bod z A. Potom platí rovnost

$$\frac{1}{2\pi i} \int_{\partial R} f = \sum_{a \in A \cap int(R)} \mathit{res}(f, a) = \sum_{a \in A \cap R} \mathit{res}(f, a)$$

(suma v ní je konečná). Integrál funkce f přes hranici obdélníka R, dělený $2\pi i$, se tedy rovná součtu reziduí funkce f v pólech ležících uvnitř R.

Tvrzení (O funkci F(z)): Nechť

$$F(z) := \frac{2\pi i}{e^{2\pi i z} - 1} : \mathbb{C} \backslash \mathbb{Z} \to \mathbb{C}.$$

Funkce F je meromorfní s póly v \mathbb{Z} a v každém čísle má reziduum rovné 1.

Lemma: Nechť F(z) je jako v předešlém tvrzení a $S_N \subset \mathbb{C}$, $N \in \mathbb{N}$, je čtverec s vrcholy $(N+\frac{1}{2})(\pm 1 \pm i)$. Pak existuje konstanta c>0, že

$$\forall N \in \mathbb{N} \, \forall z \in \partial S_N : |F(z)| < c.$$

Věta (Sečtení řady $\sum n^{-2k}$): Pro každé $k \in \mathbb{N}$ existuje kladný zlomek $\alpha_k \in \mathbb{Q}$, že

$$\zeta(2k) = 1 + \frac{1}{2^{2k}} + \frac{1}{3^{2k}} + \frac{1}{4^{2k}} + \dots = \alpha_k \pi^{2k}.$$

4 Úvod do diferenciálních rovnic

- 4.1 Rovnice se separovanýmí proměnými
- 4.2 Lineární rovnice
- 4.3 Věta o existenci

The End