Theory of Computation: CS-202 Deterministic Finite Automata

Content

Finite Automata

Deterministic Finite Accepters

- Deterministic Accepters
- Transition Graphs
- Languages and DFAs

Deterministic Finite Accepters

Definition

A deterministic finite accepter or dfa is defined by the quintuple

$$M = (Q, \Sigma, \delta, q_0, F)$$

where Q is a finite set of internal states,

 Σ is a finite set of symbols called the input alphabet,

 $\delta: Q \times \Sigma \to Q$ is a total function called the transition function,

 $q_0 \in Q$ is the initial state,

 $F \subseteq Q$ is a set of final states.

Transition Graph

- To visualize and represent finite automata, we use transition graphs, in which vertices represents states and the edges represents transitions.
- The labels on the vertices are the name of the states, while the labels on the edges are the current values of the input symbol.

- The initial state is identified by an incoming unlabeled arrow not originated at any vertex.
- Final states are drawn with a double circle.

Example

Transition Graph of a dfa $M = (Q, \Sigma, \delta, q_0, F)$ Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_j labeled with a: transition $\delta(q_i, a) = q_j$. Example 1.1 $M = (\{q_0, q_1, q_3\}, \{0,1\}, \delta, q_0, \{q_1\})$, where δ is given by $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1, \delta(q_1, 0) = q_0$, $\delta(q_1, 1) = q_2, \delta(q_2, 0) = q_2, \delta(q_2, 1) = q_1$

Transition Table

Transition Graph of a dfa $M = (Q, \Sigma, \delta, q_0, F)$ Vertex labeled with q_i : state $q_i \in Q$, Edge from q_i to q_j labeled with a: transition $\delta(q_i, a) = q_j$. Example 1.1 $M = (\{q_0, q_1, q_3\}, \{0,1\}, \delta, q_0, \{q_1\})$, where δ is given by $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1, \delta(q_1, 0) = q_0,$ $\delta(q_1, 1) = q_2, \delta(q_2, 0) = q_2, \delta(q_2, 1) = q_1$

	0	1
→ q0	q0	q1
*q1	q0	q2
q2	q2	q1

Note: Machine should be complete

 The processed symbol is remembers by changing the state.

Number of final states

Dead and Unreachable state

Dead State: A rejecting state that is essentially a dead state.

 Once the machine enters a dead state, there is no way for it to reach an accepting state.

Unreachable state: the states that are not reachable from the initial state of the DFA.

• Draw a DFA which accepts all the strings on $\Sigma = \{a, b\}$ with the prefix 'ab'.

• Draw a DFA which accepts all the strings on $\Sigma = \{a,b\}$ which starts with 'a'.

• Draw a DFA which accepts all the strings on $\Sigma = \{a, b\}$ which must end with 'bb'.

• Draw a DFA which accepts all the strings on $\Sigma = \{a, b\}$ which must end with 'ab'.

• Draw a DFA which accepts all the strings on $\Sigma = \{a,b\}$ which must end with 'bab'.

• Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which must start & end with '0'.

0, 00, 010

01110??

• Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which must start & end with '0'.

• Draw a DFA which accepts all the strings on $\Sigma = \{a,b\}$ which starts and ends with same symbol.

• Draw a DFA which accepts all the strings on $\Sigma = \{a,b\}$ which starts and ends with different symbol.

• Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which starts with '00' or '11'.

Practice Problems

1. Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which never ends with '100'.

2. Draw a DFA which accepts all the strings on $\Sigma = \{0,1\}$ which contains sub-string '00'.

Suggested readings

- 1. An introduction to FORMAL LANGUAGES and AUTOMATA by PETER LINZ.
- 2. Introduction to Automata Theory, Languages, And Computation by JOHN E. HOPCROFT, RAJEEV MOTWANI, JEFFREY D. ULLMAN
- 3. Theory of computer science: automata, languages and computation by K.L.P MISHRA