随机算法 Spring 2025

Lecture 1 - 2025 / 2 / 17

Checking Matrix Multiplication

输入: 三个 $n \times n$ 矩阵 A, B, C。

输出:是否 AB = C。

随机选定向量 $r=(r_1,r_2,\cdots,r_n)$,其中 r_i 独立同分布于 U(S), $2\leq |S|<|\mathbb{N}|$

如果 $(AB)r \neq Cr$ 则输出 No ,否则输出 Yes 。

确定算法 $O(n^3)$,或者最优秀的是 $O(n^{2.376})$ 。

算法时间复杂度 $O(n^2)$ 。

Claim: 如果 AB
eq C,则 $\Pr[(AB)r = Cr] \le rac{1}{|S|}$ 。

设 D=AB-C
eq 0,则不失一般性设 $d_{11}
eq 0$ 。

如果 Dr=0,则 $(Dr)_1=\sum_{i=1}^n d_{1i}r_i=0$

于是 $r_1 = -rac{1}{d_{11}}(d_{12}r_2 + \cdots + d_{1n}r_n)$

于是对于 r_2,\cdots,r_n 的每种选择, r_1 只有唯一的可能性有可能使 Dr=0,于是 $\Pr[Dr=0] \leq rac{1}{|S|}$

Checking Associativity

输入: 在一个大小为 n 的集合 X 上定义二元运算 \circ 。

输出:是否满足结合律 $\forall i,j,k \in X, i \circ (j \circ k) = (i \circ j) \circ k$ 。

确定性算法 $O(n^3)$ 。

不妨规定 $X = \{1, 2, \dots, n\}$ 。

首先可以构造一种 ○ 使得不满足条件的三元组是常数组。

事实上,构造 $1 \circ 2 = 1$,其余运算结果全部为 3,则只有 $(1 \circ 2) \circ 2 \neq 1 \circ (2 \circ 2)$ 。

记 $\mathcal{X}=2^X$,对于 $R\in\mathcal{X}$,可以用 $R=r_1r_2\cdots r_n$ 表示,其中 $r_i\in\mathbb{F}_2$ 表示 i 有没有在 R 中出现。

从而 R 可以写成 $\sum\limits_{i=1}^n r_i \cdot i$ 。

我们在 X 上定义一种 + 运算,并扩展 ○ 运算

$$R+S = \sum_{i=1}^n (r_i + s_i) \cdot i \ R\circ S = \sum_{i=1}^n \sum_{j=1}^n (r_i s_j) \cdot (i\circ j)$$

我们将算法规定为:

均匀随机选择 $R,S,T\in\mathcal{X}$,如果 $(R\circ S)\circ T\neq R\circ (S\circ T)$ 输出 No ,否则输出 Yes 。 可以看出 \circ 在 X 上是结合的,等价于 \circ 在 \mathcal{X} 上是结合的。

 \Rightarrow 可以通过展开得到, \Leftarrow 是因为单元素集 \in \mathcal{X} 。

Claim: 如果 \circ 不结合,那么 $\Pr[(R \circ S) \circ T = R \circ (S \circ T)] \leq \frac{7}{8} \circ$

假设存在 i^*, j^*, k^* 不结合。

任取一组 R_0, S_0, T_0 使得 $i^* \notin R_0, j^* \notin S_0, k^* \notin T_0$ 。

$$\Leftrightarrow R_1 = R_0 \cup \{i^*\}, S_1 = S_0 \cup \{j^*\}, T_1 = T_0 \cup \{k^*\}_{\circ}$$

则设
$$f(\alpha, \beta, \gamma) = (\alpha \circ \beta) \circ \gamma + \alpha \circ (\beta \circ \gamma)$$
。

不结合即 $f(\{i^*\}, \{j^*\}, \{k^*\}) \neq \emptyset$ 。

根据容斥原理

$$f(\{i^*\},\{j^*\},\{k^*\}) = \sum_{r,s,t \in \{0,1\}} f(R_r,S_s,T_t)
eq arnothing$$

从而 $\exists r, s, t \in \{0,1\}$ 使得 $f(R_r, S_s, T_t) \neq \varnothing$ 。

由于这样的 (R_0,S_0,T_0) 以及衍生出的 8 个集合构成了 \mathcal{X}^3 的一个划分,所以一定有 $\frac{1}{8}$ 的 \mathcal{X} 的三元组是不满足结合律的。

Testing Polynomial Identities

给定某个域下 $2 \land n$ 元多项式 P,Q,判定是否 $P \equiv Q$ 。

作差后问题等价于判定 $P \equiv 0$ 是否成立。

我们在有限集 |S| 上均匀随机采样 r_1, \dots, r_n , 并带入 P 计算。

Claim: 如果 P
eq 0,则 $\Pr[P(r_1,\cdots,r_n)=0] \leq rac{d}{|S|}$,其中 $d=\deg P$ 。

对于 n 归纳。 n=1 时显然至多 d 个根,结论成立。

设 $k \in P$ 关于 x_1 的最大度数。

$$P(x_1,\cdots,x_n)=M(x_2,\cdots,x_n)x_1^k+N(x_1,\cdots,x_n)$$

其中 $\deg M \leq d - k$, N 中 x_1 的度数 < k。

设 \mathcal{E} 表示 $M(r_2, \cdots, r_n) = 0$ 。

- 1. 如果 ${\mathcal E}$ 发生,则对 M 由归纳, $\Pr[{\mathcal E}] \leq rac{d-k}{|S|}$ 。
- 2. 如果 $\mathcal E$ 不发生,则当固定 r_2,\cdots,r_n 时,P 是关于 x_1 的 k 次多项式,从而能使 P=0 的 x_1 不超过 k 个,于是 $\Pr[P(r_1,\cdots,r_n)=0\mid \neg \mathcal E]\leq \frac{k}{|S|}$ 。

根据 union bound 立刻得证。

Lecture 2 - 2025 / 2 / 20

Bipartite Matching

给定一个二分图 $G=(V_1,V_2,E)$,且 $|V_1|=|V_2|=n$,求 G 是否包含一个完美匹配?

Definition (Tutte matrix): 二分图 G 的 Tutte 矩阵定义为 $n \times n$ 矩阵 $A_G = [a_{ij}]$,其中如果 $(i,j) \in G$ 那么 $a_{ij} = x_{ij}$ 为一个变量,否则 $a_{ij} = 0$ 。

Claim: G 包含完美匹配当且仅当 $|A_G|
eq 0$ 。

由行列式定义

$$|A_G| = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i\sigma(i)}$$

G 包含完美匹配,也就是存在排列 σ 使得 $orall 1 \leq i \leq n, a_{i\sigma(i)}
eq 0$ 。换言之 $\prod_{i=1}^n a_{i\sigma(i)}
eq 0$ 。

根据 Tutte 矩阵的定义,每个 σ 对应的乘积包含的变量均不相同,因此只要有一项非 0,就有 $|A_G| \neq 0$ 。反之亦然。

小知识: $n \times n$ 矩阵的行列式可以通过并行算法,在 $O(n^{3.5})$ 个处理器上用 $O(\log^2 n)$ 的时间计算。

Finding a Perfect Matching in Parallel

Lemma (Isolation Lemma): 设 $S_1, S_2, \cdots, S_k \subseteq S$,给 S 中的每个元素均匀随机赋值 $\{1, 2, \cdots, l\}$,则

$$\Pr[\exists ext{unique } S_i ext{ of minimal sum of weights}] \geq \left(rac{l-1}{l}
ight)^{|S|} \geq 1 - rac{|S|}{l}$$

我们可以不妨设集合是没有包含关系的。

我们记所有赋值方法 $w=\{w_x\mid x\in S\}$ 构成的集合为 \mathcal{W} ,如果 $\forall x,w_x>1$,那么这样的赋值方法构成的集合为 \mathcal{W}^+ 。

易知 $|\mathcal{W}| = l^{|S|}$ 。

接下来我们构造一个从 \mathcal{W}^+ 到"最小集合唯一的赋值方式"的单射。

对于 $w \in \mathcal{W}^+$,我们任取一个此时的最小集合 S_* ,构造 w' 为

$$w_x' = egin{cases} w_x - 1 & (x \in S_*) \ w_x & (x
otin S_*) \end{cases}$$

此时 w' 是一个有唯一最小集合(S_*)的赋值方式。

而且对于 w',可以通过取出唯一最小集合 +1 返回得到 w,因此该映射为单射。从而"最小集合唯一的赋值方式"不少于 $|\mathcal{W}^+|=(l-1)^{|\mathcal{S}|}$ 种。

由于
$$rac{|\mathcal{W}^+|}{|\mathcal{W}|} = rac{(l-1)^{|\mathcal{S}|}}{l^{|\mathcal{S}|}}$$
,立刻得证。

于是我们给每条边 e 随机赋值 $w_e \in \{1,2,\cdots,l\}$,根据 Isolation Lemma 有很大把握认为最小权完美匹配是唯一的。假设确实唯一。

从而我们令 $x_{ij}=2^{w_{(i,j)}}$,称带入值之后的为矩阵 B,则当 $|A_G|
eq 0$ 即完美匹配存在时:

$$lowbit(|B|) = 2^{minimal \text{ weights perfect match}}$$

求出一个完美匹配的并行算法:

首先计算 $2^w = lowbit(|B|)$ 。

然后并行的对于每条边 (i,j),如果 $2^{w_{(i,j)}} \times \operatorname{lowbit}(|B_{ij}|) = 2^w$,那么输出 (i,j)。这里 B_{ij} 表示余子式。

Fingerprinting

给定 n-bit 数 a 和 b,判断是否相等。

假设这两个数可以快速取模,那么我们在不超过 T 的素数中,随机一个素数 p。

由于 |a-b| 的素因子个数不超过 $\log_2 |a-b| \leq n$ 个,因此 $a \equiv b \pmod p$ 的概率不超过 $\frac{n}{\pi(T)}$ 。

Theorem (Prime Number Theorem): 用 $\pi(x)$ 表示 $\leq x$ 的素数的个数,

$$orall x \geq 17, \quad rac{x}{\ln x} \leq \pi(x) \leq 1.26 rac{x}{\ln(x)}$$

我们随机生成一个不超过 T 的素数,发生错误的概率不超过 $\frac{n \ln T}{T}$ 。

因此取 $T=cn\ln n$,则有错误概率 $\leq rac{1}{c}+o(1)$ 。

更紧的,有结论: n-bit 数的素因子数量不超过 $\pi(n)$,因此取 T=cn 就能达到效果。

Fingerprinting 算法直接应用: Pattern matching。

Lecture 3 - 2025 / 2 / 24

Primality Testing

费马素数测试: 随机选择 $a\in\{1,2,\cdots,n-1\}$,如果 $\gcd(a,n)\ne 1$ 直接输出 n 不是素数,否则如果 $a^{p-1}\equiv 1\pmod n$,则输出 Yes ,否则为 No 。

Definition (Carmichael number): 对于所有 $1 \le a < n$,都有 $a^{p-1} \equiv 1 \pmod{n}$,则 n 为 Carmichael 数。

Theorem: 如果 n 是合数且不是 Carmichael 数,则 $\Pr[\mathrm{Error\ in\ Fermat\ test}] \leq \frac{1}{2}$ 。

后文称
$$G=\{a\mid (a,n)=1\}=\mathbb{Z}_n^*$$
。

令 $H=\{a\in G\mid a^{n-1}\equiv 1\pmod n\}$,显然有 $H\lneq G$,从而根据拉格朗日定理,

$$\Pr[\text{Error in Fermat test}] \leq \frac{|H|}{|G|} \leq \frac{1}{2}$$
°

现在考虑 Carmichael 数,首先我们处理掉 $n=p^k$ 的情况。

Claim: 可以在 $O(\log^2 n)$ 的时间内,判断一个数是不是 p^k 。

首先 $k < O(\log n)$, 所以每次二分 p 即可。

Lemma: 对于素数 p,一定不存在 $x\not\equiv \pm 1\pmod p$, $x^2\equiv 1\pmod p$ 。

$$(x-1)(x+1) \equiv 0 \pmod{p}$$

我们试图通过寻找非平凡1的平方根的方式来判定素数。

记 $n-1=2^wO$ 。 随机选择 $a\in G$ 。

- 首先根据 Carmichael, $a^{2^wO} \equiv 1 \pmod{n}$.
- 计算 $a^{2^{w-1}O} \bmod n$,如果是 -1,输出 Yes ,如果是 1,继续;否则输出 No 。
- 计算 $a^{2^{w-2}O} \mod n$,如果是 -1,输出 Yes ,如果是 1,继续;否则输出 No 。
-
- 如果 $a^O \equiv 1 \pmod{n}$ 依然成立,输出 Yes 。

显然素数一定能通过这个测试。对于合数,如果 a 能够成功淘汰它,则称 a 为一个 witness。

Claim: 对于存在两个不同素因子 p_1,p_2 的合数 n, $\Pr[a \text{ is a non-witness}] \leq \frac{1}{2}$ 。

第一步构造一个包含所有 non-witness 的 G 的子群。

记 $s^* \in \{O, 2O, \cdots, 2^wO\}$ 为最大的满足, $\exists x \in G, x^{s^*} \equiv -1 \pmod{n}$ 的数。

 s^* 一定是良定义的,因为 $(-1)^O \equiv -1 \pmod{n}$ 。

构造 $H=\{a\in G\mid a^{s^*}\equiv \pm 1\pmod n\}$ $\leq G$ 。易见所有 non-witness 都包含于 H。下面说明 $H\lneq G$,即可由拉格朗日定理得到 $\Pr[a\text{ is a non-witness}]\leq \frac{|H|}{|G|}=\frac{1}{2}$ 。

考虑中国剩余定理,取出一个 $(x^*)^{s^*} \equiv -1 \pmod n$,我们构造满足如下方程的 $a \in G$ 。

$$\left\{egin{aligned} a \equiv x^* \pmod{p_1^{k_1}} \ a \equiv 1 \pmod{p_2^{k_2}} \end{aligned}
ight.$$

由于 $a \notin H, a \in G$,从而 H 是真子群,原命题得证。

Probabilistic Method

Theorem (Ramsey): 对于 $n \leq 2^{k/2}$ 个点的图,存在二染色方案,使得任意 k 完全子图都不是同色的。

Theorem (Max Cut): 对于图 G=(V,E),存在一个割的大小 $\geq rac{|E|}{2}$ 。

Independent Set

Claim: 对于图 G=(V,E),存在独立集大小 $\geq \sum\limits_v rac{1}{\deg(v)+1}$ 。

随机对点赋实数值,如果一个点是自己和邻居的最小值,就将其选入独立集。

可以看出不会选到相邻的点。v 被选入的概率是 $\dfrac{1}{\deg(v)+1}$,从而期望即右式。

Crossing Number

Definition (crossing number): 把 G=(V,E) 嵌入平面,交叉数 c(G) 为最少的边的交点数量。

Theorem (Euler's formula): 对于平面图,|V|+|R|=|E|+2。同时 $|R|\geq rac{2|E|}{3}$ 从而 $|E|\leq 3|V|-6$

Claim: $c(G) \geq |E| - 3|V| + 6$

容易验证,最佳的嵌入方式满足:

- 边不自交
- 两条边至多一个交点
- 有公共点的边不交

于是,对于原图每一组相交的 (a,b), (c,d),构造新的点 v,断开原来的边并将 (a,v), (b,v), (c,v), (d,v) 连边。

新图为平面图,|E'|=|E|+2c(G), |V'|=|V|+c(G), 从而

$$|E| + 2c(G) \le 3|V| + 3c(G) - 6 \Rightarrow c(G) \ge |E| - 3|V| + 6$$

用概率方法加强这个结论。我们以 p 的概率保留一个点,1-p 的概率把点删去。

从而每条边有 p^2 的概率保留下来,每个原来的交点有 p^4 的概率被保留下来。

从而

$$p^4c(G) \geq \mathbb{E}[c(G)] \geq \mathbb{E}[|E|-3|V|+6] = p^2|E|-3p|V|+6$$
 $c(G) \geq rac{p^2|E|-3p|V|+6}{p^4} \geq rac{p|E|-3|V|}{p^3}$

Claim: 对任何 $|E| \geq 4|V|$ 的图 G,有 $c(G) \geq \frac{|E|^3}{64|V|^2}$ 。

取
$$p=rac{4|V|}{|E|}$$
 即可。

Lecture 4 - 2025 / 2 / 27

Unbalancing Lights

对于 $n \times n$ 的灯泡矩阵,每行、每列各有一个开关,作用是翻转完整的一行、一列。

现在对于一个初始状态,试图通过操作开关最大化亮灯数。

Claim: 对于每一种初始状态,存在操作方式使亮灯数量当 $n \to \infty$ 时渐进

$$rac{n^2}{2} + \sqrt{rac{1}{2\pi}} n^{3/2}$$

首先均匀随机操作每一列的开关。用 $X_{ij}=\pm 1$ 表示 (i,j) 位置的灯是否亮。

对于第i行,用 $Z_i = \sum_j X_{ij}$,由于 X_{i1}, \cdots, X_{in} 在 $\{1, -1\}$ 中均匀随机,因此由随机游走结论:

$$\mathbb{E}[|Z_i|] \sim \sqrt{rac{2}{\pi}n}$$

对于每一行的开关,如果操作后亮灯数量增多就操作它。从而根据期望的线性性:

$$\mathbb{E}[\# ext{on} - \# ext{off}] \sim \sqrt{rac{2}{\pi}} n^{3/2}$$

从而
$$\mathbb{E}[\# ext{on}] \sim rac{n^2}{2} + \sqrt{rac{1}{2\pi}} n^{3/2}$$
。

Large Girth and Chromatic Number

Definition (girth): 一个图 G 的周长为其中最小环的长度。

Definition (chromatic number): 一个图 G 的染色数为同色不相邻染色,最少需要的颜色数。

Theorem: $\forall k, l$,存在一张图的周长 $\geq l$,染色数 $\geq k$ 。

取随机图 $G \sim \mathcal{G}_{n,n}$,这里 $p = n^{-1+1/l}$ 。

用 X 表示 G 的 < l 的环数量,Y 表示最大独立集的大小。

首先

$$\mathbb{E}[X] = \sum_{i=3}^{l-1} rac{n^i}{2i} p^i \leq \sum_{i=3}^{l-1} rac{(np)^i}{2i} = \sum_{i=3}^{l-1} rac{n^{i/l}}{2i} = O(n^{1-1/l}) = o(n)$$

从而 $\Pr[X \geq \frac{n}{2}] = o(1)$ 。

另一方面,任取y,

$$egin{aligned} \Pr[Y \geq y] & \leq inom{n}{y} (1-p)^{inom{y}{2}} \ & \leq n^y \cdot e^{-pinom{y}{2}} \leq (e^{\ln n - py/4})^y \end{aligned}$$

取
$$y = \frac{8 \ln n}{p} = 8 \ln n \cdot n^{1-1/l} = o(n)$$
,就有 $\Pr[Y \geq y] \leq e^{-\ln n \cdot y} = o(1)$ 。

因此,根据 union bound,当 n 足够大,G 有 $\geq \frac{1}{2}$ 的概率满足:

- ullet < l 的环的数量不超过 $rac{n}{2}$
- 最大独立集的大小不超过 y=o(n)

从每个环中删去一个点,剩下的图 G' 周长 $\geq l$,染色数 $\geq \frac{n}{y} = \omega(1)$,从而 n 充分大一定可以满足染色数 $\geq k$ 。

MAX3SAT

记 $arphi = \{(x_1 ee \neg x_2 ee x_3), \cdots\}$,其中的每一项称为一个 clause。

Claim: 对于任一个 φ ,存在一种赋值方法使至少 $\frac{7}{8}|\varphi|$ 的 clause 被满足。并且可以高效找出。

存在性只需要随机赋值即可证明。

依次考虑每一个 x_i ,由于

$$\frac{7}{8}|\varphi| = \mathbb{E}[\varphi] = \Pr[x_1 = T] \cdot \mathbb{E}[\varphi|x_1 = T] + \Pr[x_1 = F] \cdot \mathbb{E}[\varphi|x_1 = F]$$

从而一定能有一种条件期望 $\geq \frac{7}{8}|\varphi|$,递归下去寻找即可。

这种方法叫做 Method of conditional probabilities。

4-Cliques / Triangles

Definition (threshold): 称 p(n) 是性质 Q 的 threshold,当且仅当:

$$p\gg p(n) \implies \Pr[G\in\mathcal{G}_{n,p} ext{ has } Q] o 1 ext{ as } n o\infty \ p\ll p(n) \implies \Pr[G\in\mathcal{G}_{n,p} ext{ has } Q] o 0 ext{ as } n o\infty$$

对于图 $G\sim \mathcal{G}_{n,p}$,设 X 为其中的 4-Clique 的个数, $X_C=0/1$ 代表 C 是不是 4-Clique。

$$\mathbb{E}[X] = inom{n}{4} p^6 = \Theta(n^4 p^6)$$

Theorem: $p(n)=n^{-2/3}$ 是包含 4-Clique 的 threshold。

首先 $p \ll p(n)$ 时,由于 $\mathbb{E}[X] o 0$,因此 $\Pr[X \ge 1] \le \mathbb{E}[X] o 0$ 。

当
$$p\gg p(n)$$
时, $\Pr[X=0]\leq \Pr[|X-\mathbb{E}[X]|\geq \mathbb{E}[X]]\leq rac{\mathrm{Var}[X]}{\mathbb{E}[X]^2}$ 。

由于

$$egin{align} ext{Var}[X] &= \sum_C ext{Var}[X_C] + \sum_{C,D} ext{Cov}[X_C,X_D] \ &\leq \Theta(n^4p^6) + inom{n}{6}inom{6}{2}p^{11} + inom{n}{5}inom{5}{3}p^9 \ &= \Theta(n^4p^6) + \Theta(n^6p^{11}) + \Theta(n^5p^9) \ \end{cases}$$

从而
$$rac{ ext{Var}[X]}{\mathbb{E}[X]^2} = \Theta(n^{-4}p^{-6}) + \Theta(n^{-2}p^{-1}) + \Theta(n^{-3}p^{-3}) o 0$$
。

该方法不适用于密集程度"不均匀"的图。

Lecture 5 - 2025 / 3 / 3

Monotone Circuits for the Majority Function

Definition (Boolean circuit): $f:\{0,1\}^n \to \{0,1\}$,通过门进行计算,每个门即 $\{0,1\}^2 \to \{0,1\}$ 的函数(共 16 种门)。

Claim: 几乎所有 n 个输入的 Boolean function 需要 $\Omega(2^n/n)$ 个门(包括输入门)。

首先 n 个输入的 Boolean function 有 2^{2^n} 种。

考虑 S 个门能够表达多少种 Boolean function。首先每个门可以选择 S^2 种输入,以及自身有 16 种计算方法,故函数数量不超过 $(16S^2)^S$ 。

将S用 $\frac{2^n}{16n}$ 带入,由于

$$S\ln(16S^2) = \frac{2^n}{16n}\ln\left(16 \cdot \frac{4^n}{16^2n^2}\right) = \frac{2^n}{16n}(-\ln 16 + n\ln 4 - 2\ln n)$$
$$= 2^n \frac{\ln 2}{8} + \cdots$$

另一方面
$$\ln 2^{2^n}=2^n\ln 2$$
,因此 $S<rac{2^n}{16n}$ 时, $\lim_{n o\infty}rac{(16S^2)^S}{2^{2^n}}=0$ 。

Definition (monotone circuits): 一个电路是单调的,当且仅当它的所有门都是单调函数,即:

$$f(x_1,\cdots,x_n)=1, orall i, y_i\geq x_i\Rightarrow f(y_1,\cdots,y_n)=1$$

现在考虑众数函数 $\mathrm{Maj}_n(x_1,\cdots,x_n)$,试图找到一个单调电路来实现它。

一个最优的实现 Maj_3 的电路为(因为只用到了单调的 \wedge, \vee ,故这个电路也是单调的):

$$(x_1 \wedge (x_2 ee x_3)) ee (x_2 \wedge x_3)$$

Theorem: 存在一个单调电路计算 Maj_n ,n 为奇数,门的数量是 $\mathrm{poly}(n)$,深度是 $O(\log n)$ 。

考虑一个随机电路 C,包含 $D=O(\log n)$ 层的 Maj_3 ,底层每个 Maj_3 随机从 x_1,\cdots,x_n 中选择 3 个输入。

不妨设众数为 1,那么底层每个门输入 1 的概率至少为 $p_0=rac{n+1}{2n}=rac{1}{2}+rac{1}{2n}$ 。

如果一个 Maj_3 的每个输入有 p 的概率为 1,那么其输出为 1 的概率为

$$f(p) = p^3 + 3p^2(1-p) = 3p^2 - 2p^3$$

考虑迭代过程 $p_1=f(p_0), p_2=f(p_1), \cdots$,目标为证明在 $O(\log n)$ 次迭代后, $p\geq 1-2^{-(n+1)}$,从而根据 union bound, $\Pr[\exists {m x}, C({m x})
eq \mathrm{Maj}_n({m x})] \leq 2^n \cdot 2^{-(n+1)} = \frac{1}{2}$,根据概率方法立刻得证。

1. 第一阶段, $rac{1}{2} + rac{1}{2n} \leq p_t \leq rac{3}{4}$,由于步长增大,计算得

$$\left(p_{t+1}-rac{1}{2}
ight)\geq rac{11}{8}\left(p_t-rac{1}{2}
ight)$$

故在 $O(\log n)$ 步内, p_t 可以达到 $\frac{3}{4}$ 。

2. 第二阶段: $p_t \geq rac{3}{4}$,设第一次达到这个要求为 p_{t_0} ,则:

$$(1-p_{t+1}) \leq 3(1-p_t)^2 \leq 3(1-p_{t_0})^{2^{t+1-t_0}} \leq rac{3}{4^{2^{t+1-t_0}}}$$

故在 $O(\log n)$ 步内, p_t 可以达到 $1-\frac{1}{2^{n+1}}$ 。

从而总共只需 $D = O(\log n)$ 次迭代即可。

Lecture 6 - 2025 / 3 / 6

Probability Amplification Using Pairwise Independence

Claim: 随机变量 $a,b \sim U(\mathbb{Z}_q)$,q 是质数,则

$$\{ax+b\mid x\in\mathbb{Z}_q\}$$

是一组两两独立的随机变量,且同分布于 $U(\mathbb{Z}_q)$ 。

首先
$$orall x,c\in \mathbb{Z}_q, \Pr[ax+b=c]=rac{1}{q}$$
,故 $ax+b\sim U(\mathbb{Z}_q)$ 。

考虑 $\forall x,y,c_1,c_2\in\mathbb{Z}_q,x\neq y$,则 $\Pr[ax+b=c_1,ay+b=c_2]=rac{1}{q^2}=\Pr[ax+b=c_1]\Pr[ay+b=c_2]$ 。(因为关于 a,b 的方程有唯一解)从而两两独立。

假设现在已有一个随机算法 A,依赖 m 个随机 bits,用来判断 $x \in L \subseteq \{0,1\}^n$ 是否成立。而且满足:

$$x \in L \Rightarrow \Pr[A \text{ output Yes}] \geq rac{1}{2} \ x
otin L \Rightarrow \Pr[A \text{ output Yes}] = 0$$

现在试图将这个算法泛化到任何正确性。如果独立重复 t 次,可以做到 $\Pr[\mathcal{E}] \leq 2^{-t}$,从而如果需要达到 $\frac{1}{r}$ 的正确率,则需要生成 $m\log r$ 个随机 bits。

Theorem: 对于 $r \leq 2^m$,可以只生成 2m 随机 bits,在 O(rm) 的时间复杂度内达到 $\Pr[\mathcal{E}] \leq 2^{-t}$ 的效果。

考虑生成 r 组两两独立的长度为 m 的随机 bits。形式化的说,每组随机 bits 可以看作从 $U(\{0,1\}^m)\cong U(\mathbb{Z}_{2^m})$ 采样的随机变量,这 r 个随机变量两两独立。一个不太完美的做法可以利用上面 **Claim** 的算法,取质数 $2^m \leq q \leq 2^{m+1}$,通过 rejection sampling 可以通过生成期望 O(m) 个随机 bits 得到 $U(\{0,1\}^m)$ 中 r 组两两独立的比特串。

然后运行算法 $A\,r$ 次。用 $X_i=0/1$ 代表第 i 次 A 的输出,输出 Yes 时 $X_i=1$ 。定义 $X=\sum_{i=1}^r X_i$ 。

当 $x \in L$ 时,发生错误的概率为

$$\Pr[\mathcal{E}] = \Pr[X = 0] \leq \Pr[|X - \mathbb{E}[X]| \geq \mathbb{E}[X]] \leq \frac{\operatorname{Var}[X]}{\mathbb{E}[X]^2}$$

其中由于两两独立, $\mathrm{Var}[X] = \sum\limits_{i=1}^r \mathrm{Var}[X_i] \leq rac{r}{4}, \mathbb{E}[X] \geq rac{r}{2}$,从而 $\mathrm{Pr}[\mathcal{E}] \leq rac{1}{r}$ 。

Derandomization Using k-wise Independence

考虑给一张完全图 K_n 的边二染色,要求没有同色 k-clique,这里 $n=2^{k/2}$,根据之前的概率方法,染色方案是存在的。

如果要求出一种方案,一种暴力的策略是枚举 $2^{\binom{n}{2}}$ 种染色方案。

回顾概率证法,设X为同色k-clique数量,

$$\mathbb{E}[X] = inom{n}{k} rac{2}{2^{inom{k}{2}}} < 1$$

这里其实并不要求所有边的染色全部独立。事实上,只要每 $\binom{k}{2}$ 条边的染色是相互独立的即可。

考虑一族 $\binom{k}{2}$ -wise 独立的染色方案,其中每条边的颜色边际分布是均匀的。根据上述概率证法, $\mathbb{E}[X]$ 不变,从而这族染色方案中一定存在一个合法方案。

推广 Claim 到 ax^2+bx+c ,不难看出,要生成服从 $U(\mathbb{Z}_q)$ 的 $\binom{k}{2}$ -wise 独立的随机变量,只需要采样 $\binom{k}{2}$ 个服从 $U(\mathbb{Z}_q)$ 的变量。这里需要 $q\geq \binom{n}{2}$,以保证能够生成足够数量的随机变量。

从而我们枚举 $q^{\binom{k}{2}}$ 种采样的可能性,然后通过固定的解码策略得到唯一对应的 $\binom{k}{2}$ -wise 独立的边染色方案。在这族方案上, $\mathbb{E}[X]<1$,从而其中必有可行解。

由于 $q^{inom{k}{2}} \simeq n^{O(k^2)}$,相较于暴力做法 $2^{O(n)}$,我们将复杂度降到了多项式级别。

Universal Hashing

Definition (2-universal): 一个 U o T 的函数集 $\mathfrak H$ 是 2-universal 的当且仅当 $orall x, y \in U, x
eq y$,有

$$\Pr_{h \in \mathfrak{H}}[h(x) = h(y)] \leq \frac{1}{|T|}$$

例如, $h_{a,b}(x)=(ax+b) mod q mod |T|$,其中 $a,b\sim U(\mathbb{Z}_q),q>|U|$ 。

$$egin{aligned} \Pr[h_{a,b}(x) = h_{a,b}(y)] &\leq \sum_{c_1 \equiv c_2 \pmod{|T|}} \Pr[h_{a,b}(x) = c_1] \Pr[h_{a,b}(y) = c_2] \ &= rac{q^2}{|T|} \cdot rac{1}{q} \cdot rac{1}{q} = rac{1}{|T|} & orall x
eq y \end{aligned}$$

Lecture 7 - 2025 / 3 / 10

Double Hashing

Claim: 对于一组 2-universal hashing 把 $S\subseteq U$ 的元素投影到 T,且 $|T|=|S|^2$,则存在碰撞的概率 $\leq rac{1}{2}$

$$\mathbb{E}[\text{collision}] \le {|S| \choose 2} \frac{1}{|T|} \le \frac{1}{2}$$

当然哈希表大小为 $O(|S|^2)$ 还是过大,希望能压缩到 O(|S|)。

Claim: 对于一组 2-universal hashing 把 $S\subseteq U$ 的元素投影到 T,且 |T|=|S|。设有 b_i 个元素 h(x)=i,则 $\Pr\left[\sum\limits_{i=1}^{|S|}b_i^2\geq 4|S|\right]\leq \frac{1}{2}$ 。

首先注意到:

$$\# ext{collision} = \sum_{i=1}^{|S|} inom{b_i}{2} = rac{1}{2} \left(\sum_{i=1}^{|S|} b_i^2 - |S|
ight)$$

另一方面
$$\mathbb{E}[\# ext{collision}] = {|S| \choose 2} rac{1}{|T|} \leq rac{|S|}{2}$$
,从而 $\mathbb{E}\left[\sum_{i=1}^{|S|} b_i^2
ight] \leq 2|S|$ 。

从而可以通过第一次 hash 将值域映射到 |S|,对于有 b_i 个冲突的组,再进行一次 hash 将值域映射到 b_i^2 。从而我们可以在期望 O(S) 次抽取哈希函数,构造一个值域为 O(S) 的无冲突 hash。

Buffon's Needle

平面上一组两两距离为 1 的平行线,现在随机投掷(中心点均匀随机、角度均匀随机)一根长度为 1 的针,那么针与线相交的概率是多少?

$$rac{2}{\pi}\int_{ heta=0}^{\pi}\int_{d=0}^{1/2\sin heta}1\mathrm{d}d\mathrm{d} heta=rac{1}{\pi}\int_{ heta=0}^{\pi}\sin heta\mathrm{d} heta=rac{2}{\pi}$$

Median Trick

Theorem (Unbiased Estimator Theorem): 对于两两独立的 X_1,\cdots,X_t ,期望为 μ ,方差为 σ^2 , $X=rac{1}{t}\sum_{i=1}^t X_i$,则当 $t\geq rac{1}{\delta}\cdotrac{\sigma^2}{\epsilon^2\mu^2}$ 时,

$$\Pr[|X - \mu| \ge \epsilon \mu] \le \frac{\operatorname{Var}[X]}{\epsilon^2 \mu^2} = \frac{\sigma^2}{t\epsilon^2 \mu^2} \le \delta$$

现在所以,达到 δ 的错误率需要通过 $O(\frac{1}{\delta})$ 次采样。现在考虑增加一部分随机性,能否通过 $O(\log \frac{1}{\delta})$ 的样本实现同样的错误率。

Lemma: 对于一枚 $\Pr[\mathrm{Head}] \geq rac{3}{4}$ 的硬币,在 2s+1 次相互独立投掷中, $\Pr[\#\mathrm{Head} \leq s] \leq (rac{3}{4})^s$ 。

$$\begin{split} \Pr[\# \text{Head} & \leq s] \leq \sum_{i=0}^{s} \binom{2s+1}{s} (\frac{3}{4})^{i} (\frac{1}{4})^{2s+1-i} \\ & \leq \left(\sum_{i=0}^{s} \binom{2s+1}{i}\right) (\frac{3}{4})^{s} (\frac{1}{4})^{s+1} \\ & \leq (\frac{3}{4})^{s} \times \frac{2^{2s+1}}{4^{s+1}} \leq (\frac{3}{4})^{s} \end{split}$$

从而我们组间完全独立、组内两两独立的生成 $2\log_{3/4}\frac{1}{\delta}+1$ 组、每组 $\frac{4\sigma^2}{\epsilon^2\mu^2}$ 个样本。对于每组求平均值、再对所有组求中位数。从而可以在 $O(\log\frac{1}{\delta})$ 次采样实现 δ 的错误率。

Lecture 8 - 2025 / 3 / 13

DNF Counting

Definition (Disjunctive Normal Form): 称形如 $(x_1 \wedge x_2 \wedge \cdots) \vee (\overline{x}_3 \wedge \cdots) \vee \cdots$ 为 DNF。

类似的,CNF 就是常见的 SAT 问题,有 $\#\mathrm{SAT}(\varphi) = 2^n - \#\mathrm{DNF}(\neg \varphi)$ 。

我们试图设计一个算法在多项式时间内估算 DNF 的解的比例的 FPRAS。

Definition (fully polynomial randomized approximation scheme): 针对 $f: \Sigma^* \to \mathbb{N}$ 的 FPRAS 是一个算法,读入 (x,ε) ,在关于 $|x|,\varepsilon^{-1}$ 多项式时间内输出随机变量 Z 满足:

$$\Pr[(1-arepsilon)f(x) \leq Z \leq (1+arepsilon)f(x)] \geq rac{3}{4}$$

给定 DNF $\varphi_1 \vee \cdots \vee \varphi_n$,共涉及 x_1, \cdots, x_m 。设第 i 个 term 的解集为 S_i ,显然 $S_i = 2^{m-|\varphi_i|}$,目标即为求 $|\bigcup S_i|$ 。具体而言,构造集合

$$U = \{(a,i) \mid a \in S_i\}$$

从而 $|U|=\sum\limits_{i=1}^n|S_i|$ 。我们可以在 U 中均匀随机采样 (a,i)。我们称一个样本 (a,i) 是 special 的,当且仅当 $\forall j< i, a\notin S_i$ 。换言之,a 最早出现在 S_i 中。

从而

$$\mathbb{E}\left[\frac{\#\text{special}}{\#\text{total}}\right] = \frac{|\bigcup S_i|}{|U|}$$

由于 $\mu \geq \frac{1}{n}$,从而由 Unbiased Estimator Theorem,可以有效得到 $\frac{3}{4}$ 正确率的 ε 误差估计。实际上根据 Chernoff bound,只需要 $O(n/\varepsilon^2)$ 次独立采样即可。

Network Reliability (1)

对于一张图 G,有 n 个点 m 条边,每条边有 p 的概率割断,记 p_{fail} 为 G 不连通的概率,即"网络鲁棒性"。

Theorem: 存在关于 n, ε^{-1} 多项式时间的 FPRAS 估测 p_{fail} 。(对于每条边隔断概率不同的情况,依然存在)设 c 为最小割的长度。

如果 $p^c \geq \frac{1}{1^{n^4}}$,则直接使用 Monte Carlo 方法,根据 Unbiased Estimator Theorem,由于 $\mu \geq p^c$,可以在 $O(\frac{1}{\mu^2 \varepsilon^2}) = O(n^8 \varepsilon^{-2})$ 次采样中得到估计。**后文假设该性质不成立,即** $p^c = n^{-(4+\delta)}$ 。

用 α -最小割 表示大小不超过 αc ,且仅将 G 分为两部分的割。

考虑如下算法 $\operatorname{RMinCut}$: 均匀随机抽取图中一条边 (u,v),将两个点缩点(保留重边),直到只剩下 2 个点,返回它们之间所有的边。

Theorem: 设 $C \subset E$ 是任一个最小割,则 $\Pr[\mathrm{RMinCut\ returns\ } C] \geq {n \choose 2}^{-1}$ 。

由于最小割大小为 c,所以任何点的度数都 $\geq c$,也就是 $|E(G)| \geq \frac{cn}{2}$ 。

从而第 1 轮选中 C 中边的概率 $\leq \frac{c}{cn/2} = \frac{2}{n}$

容易看出等价于一直没有选择 C 中的边,而且缩点并不会导致新图最小割变小,从而

$$\Pr[C \text{ survive all rounds}] \ge \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{3}\right)$$
$$= \frac{2}{n(n-1)}$$

Corollary: 任意图 G 的最小割的数量不超过 $\binom{n}{2}$,因为 $\mathrm{RMinCut}$ 输出任何一个最小割是互斥事件。

Claim: 只有至多 $n^{2\alpha}$ 个 α -最小割,这些割可以在关于 n, ε^{-1} 的多项式时间内列举出。

类似上面的证明方法,对于任意一个 α -最小割 C,有

$$ext{Pr}[C ext{ survive until } 2lpha ext{ vertices remain}] \geq \left(1-rac{2lpha}{n}
ight)\cdots\left(1-rac{2lpha}{2lpha+1}
ight) \\ = \left(rac{n}{2lpha}
ight)^{-1}$$

对于剩下 2α 个点的图,任意输出一个割,则

$$\Pr[C ext{ survive}] \geq {n \choose 2lpha}^{-1} rac{1}{2^{2lpha-1}} \geq rac{1}{n^{2lpha}}$$

最后,根据 coupon-collector,可以在期望 $O(n^{2\alpha}\log n^{2\alpha})$ 次实验内,列举出所有的 α -最小割。

从而,我们对于 $\operatorname{poly}(n)$ 个 α -最小割,可以用加权的 DNF Counting 的方式,估算至少一个发生的概率。具体而言,割掉 x 条边的方案权值为 $p^x(1-p)^{m-x}$,从而一个 term 的总权值为 $p^{|\varphi_i|}$,可以构造

$$\mathbb{E}\left[rac{\sum\limits_{ ext{special }(a,i)} p^{|a|} (1-p)^{m-|a|}}{\sum\limits_{(a,i)} p^{|a|} (1-p)^{m-|a|}}
ight] = rac{\sum\limits_{ ext{cut }a} p^{|a|} (1-p)^{m-|a|}}{\sum\limits_{i=1}^n p^{|arphi_i|}}$$

的 $(1\pm\varepsilon)$ 估计,而右边分子正是我们想求的概率。

Lecture 9 - 2025 / 3 / 17

Network Reliability (2)

接下来,对于 $\geq \alpha c$ 个点的割,我们只需要通过说明

 $\Pr[\text{some cut of size } \geq c \alpha \text{ fails}] \leq \varepsilon p_{\text{fail}}$

即可。

将 $\geq \alpha c$ 个点的割从小到大排序 $c_1 \leq c_2 \leq \cdots$ 。假设至少有 $n^{2\alpha}$ 个割(如若不然,直接得到总概率不超过 $n^{2\alpha}p^{c\alpha}$),那么前面这部分 fail 的概率不超过

$$n^{2\alpha}p^{c\alpha} \le n^{2\alpha}n^{-(4+\delta)\alpha} = n^{-(2+\delta)\alpha} \tag{1}$$

对于任意 eta>0,我们知道 $\leq eta c$ 的割不超过 n^{2eta} 个,从而 $c_{n^{2eta}}\geq eta c$,换言之

$$c_k \geq rac{c}{2} \log_n k \qquad \Rightarrow \qquad p^{c_k} \leq p^{rac{c}{2} \log_n k} = k^{-2 + rac{\delta}{2}}$$

所以

$$egin{aligned} \Pr[\exists i > n^{2lpha}, c_i ext{ fails}] & \leq \sum_{i > n^{2lpha}} k^{-2 + rac{\delta}{2}} \leq \int_{n^{2lpha}}^{\infty} x^{-2 + rac{\delta}{2}} \mathrm{d}x \ & = rac{n^{-2lpha(1 + rac{\delta}{2})}}{1 + rac{\delta}{2}} \leq n^{-(2 + \delta)lpha} \end{aligned}$$

结合 (1)(2), $\Pr[\text{some cut of size } \geq c\alpha \text{ fails}] \leq 2n^{-(2+\delta)\alpha}$ 。

取
$$\alpha=2+rac{1}{2}\log_n(rac{2}{arepsilon})$$
,立刻得到

$$2n^{-(2+\delta)\alpha} \leq 2n^{-(2+\delta)(2+\frac{1}{2}\log_n(\frac{2}{\varepsilon}))} \leq \varepsilon n^{-(4+\delta)} \leq \varepsilon p_{\mathrm{fail}}$$

综上,直接忽略这些大割,算法可以在 $O(n^{2\alpha}\log n^{2\alpha})=O(n^4\varepsilon^{-1}(\log n+\log \varepsilon^{-1}))$ 次调用 RMinCut 内,得到关于 $p_{\rm fail}$ 的 $(1\pm\varepsilon)^2$ 估计。

Chernoff Bounds

Theorem: 让 X_1,\cdots,X_n 为独立 [0,1] 变量 $\mathbb{E}[X_i]=p_i$, $X=\sum\limits_{i=1}^nX_i$, $\mu=\mathbb{E}[X]=\sum\limits_{i=1}^np_i$, $p=\frac{\mu}{n}$

•
$$\Pr[X \geq \mu + \lambda] \leq \exp(-nH_p(p + rac{\lambda}{n}))$$
,对于 $0 < \lambda < n - \mu$

•
$$\Pr[X \leq \mu - \lambda] \leq \exp(-nH_{1-p}(1-p+rac{\lambda}{n}))$$
,对于 $0 < \lambda < \mu$

其中
$$H_p(x) = x \ln \frac{x}{p} + (1-x) \ln \frac{1-x}{1-p}$$
 为 KL 散度。

通过矩生成函数证明。

Corollary:

$$rac{\Pr[X \leq \mu - \lambda]}{\Pr[X \geq \mu + \lambda]} \leq \exp\left(-rac{2\lambda^2}{n}
ight)$$

对指数部分求导比较即可。

Corollary:

• 对
$$0<\beta<1$$
, $\Pr[X\leq (1-\beta)\mu]\leq \exp(-rac{eta^2\mu}{2})$
• 对 $\beta>0$, $\Pr[X\geq (1+\beta)\mu]\leq egin{cases} \exp(-rac{eta^2\mu}{2+\beta}) & \beta>0 \\ \exp(-rac{eta^2\mu}{3}) & 0<\beta\leq 1 \end{cases}$

Corollary: 对于 X_i 在 $[a_i, b_i]$ 中取值时,

$$rac{\Pr[X \leq \mu - \lambda]}{\Pr[X \geq \mu + \lambda]} \leq \exp\left(-rac{2\lambda^2}{\sum_{i=1}^n (b_i - a_i)^2}
ight)$$

Lecture 10 - 2024 / 3 / 20

Randomized Routing

考虑 n 维超立方体,网格的顶点为 $\{0,1\}^n$,共 $N=2^n$ 个,每条边双向,令 π 是任意排列,目标是从每个i 发送一个数据包到对应的 $\pi(i)$,但是同一个条边每个时间只能有 1 个数据包通过。

现在要设计一种路径规划算法,最小化最大传输时间。这里要求i的路径只取决于i和 $\pi(i)$ 我们称之为 oblivious,这是具备现实意义的。

Theorem: 对于任何确定性 oblivious 的路径规划算法,存在一种排列需要 $\Omega(\sqrt{N/n}) = \Omega(\sqrt{2^n/n})$ 。

Theorem: 存在一种 oblivious 随机路径规划算法,w.h.p 在 O(n) 步停止。

该算法的思路是"随机中转",即对于每一个 i,等概率采样一个 $\delta(i)$,算法分为两个阶段

1. 从
$$i
ightarrow \delta(i)$$

2. 从
$$\delta(i)
ightarrow \pi(i)$$

在两个阶段中,都采用 bit-fixing 方式,例如 $x \to y$,就是从左到右逐位比较,如果 $x_i \neq y_i$,那么当前就从对应边前进。

不失一般性,我们只分析第1阶段的长度。

用 D(i) 表示 i 在路径中等待的时间长短,那么总时长一定不超过 $n + \max_i D(i)$,我们接下来将证明

$$\forall i, \Pr[D(i) > cn] \leq e^{-2n}$$

根据 union bound, $\Pr[\exists i, D(i) > cn] \leq 2^n e^{-2n} < 2^{-n}$

用 P_i 表示 $i \to \delta(i)$ 的路径上所经过的点,用 $S_i = \{j \neq i \mid P_j \cap P_i \neq \varnothing\}$,也即路径相交的个数。直观上我们得到以下结论:

Claim: $D(i) \leq |S(i)|$

证明的思路是"锅不能停"。

在等价意义下,至多只会被每个人阻碍一次,因此 $D(i) \leq |S(i)|$ 。

Lemma: $\forall i, \Pr[D(i) > cn] \leq e^{-2n}$

定义
$$H_{ij} = egin{cases} 1 & P_i \cap P_j
eq arnothing \ 0 & P_i \cap P_j = arnothing \end{cases}$$
,从而 $D(i) \leq \sum_{j
eq i} H_{ij} = |S(i)|$ 。

对于图中每一条边,期望经过它的路径条数为 $\frac{Nn/2}{Nn}=rac{1}{2}$,从而 $\mathbb{E}[|S(i)|]\leqrac{n}{2}$,即路径长度乘每条边的期望路径个数。根据 Chernoff bound,有

$$\Pr[D(i) \ge (1+\beta)\mu] \le \exp(-\frac{\beta^2}{2+\beta}\mu)$$

容易看出,当我们想分析一个固定的 tail 时, $\mu=\frac{n}{2}$ 一定是最坏的,取 $\beta=6$,有 $\Pr[D(i)\geq \frac{7}{2}n]\leq \exp(-\frac{9}{4}n)\leq \exp(-2n)$ 。

Hamilton Cycles (1)

对于 $G=(V,E)\in \mathcal{G}(n,p)$,其中 $p\geq \frac{72\ln n}{n-1}$,则存在一个多项式时间的随机算法 w.h.p. 找到一个 Hamiltonian 圈。

start with $P = \{v_1\}$ where $v_1 = s$ is an arbitrary vertex repeat for at most $4(n-1)\ln(n-1)$ steps if |P| = n and $\{v_1, v_n\} \in E$ then output P else choose vertex y with $\{v_k, y\} \in E$ where v_k is the current path endpoint if $y \notin P$ then extend(P, y) else rotate(P, y)

if cycle not found then output "fail"

这里有 extent 和 rotate 两个函数,分别表示枚举到新端点 v 时,若其之前还没出现 / 已经出现,现在应该如何操作

于是重点在于 *choose* 这一步,我们需要保证的是从"观察者视角",所有的 V 中的点具有均等概率被选作下一个点。从而我们可以利用 coupon collector 的结论,期望在前 $2n\ln n$ 步收集到所有点形成 Hamiltonian 路,后 $2n\ln n$ 步枚举到与 v_1 相邻的点,找到 Hamiltonian 圈。

严谨的来说,我们要保证

$$\Pr_G[v \in V \text{ is next endpoint} \mid \text{Path history}] \text{ are the same}$$

为了达到这一点,我们需要将边退化为有向边,以确保双向选择的独立性,对于 $(u,v)\in E$ 时,定义 N(x) 为 G' 中 x 的邻居结点

$$egin{aligned} \{y \in N(x) \wedge x \in N(y)\} ext{ w.p. } rac{p}{4} \ \{y
otin N(x) \wedge x \in N(y)\} ext{ w.p. } rac{1}{2} - rac{p}{4} \ \{y \in N(x) \wedge x
otin N(y)\} ext{ w.p. } rac{1}{2} - rac{p}{4} \ \{y
otin N(x) \wedge x
otin N(y)\} ext{ w.p. } rac{p}{4} \end{aligned}$$

我们将在实现 choose 时从 N(x) 中挑选邻居。定义 $OLD(x) = \{y \mid choose \text{ picked } y \text{ when } x \text{ was endpoint} \}$,选点策略如下:

- 以 $\frac{|OLD(x)|}{n-1}$ 的概率,在 OLD(x) 中等概率随机挑选一个点。
- 以剩下的概率,在 $N(x)\setminus OLD(x)$ 中等概率随机挑选一个点。

算法的正确性将在下一讲证明。

Lecture 11 - 2025 / 3 / 24

Hamilton Cycles (2)

Claim: 在 G' 中, $\{y \in N(x)\}$ 是互相独立的事件,且每个以 $\frac{p}{2}$ 的概率发生。

首先
$$\Pr[y \in N(x)] = p \cdot (\frac{p}{4} + (\frac{1}{2} - \frac{p}{4})) = \frac{p}{2}$$
。

其次由于下式,立刻得到独立性:

$$\Pr[y \in N(x) \land x \in N(y)] = p \cdot rac{p}{4} = rac{p^2}{4} = \Pr[y \in N(x)] \Pr[x \in N(y)]$$

Claim: 取 $p \geq 72 \frac{\ln n}{n-1}$, $G \in \mathcal{G}(n,p)$,w.h.p. *choose* 的实现方法保证了每个点以均等的概率 $\frac{1}{n-1}$ 作为新的端点。

我们假设始终有 $N(x)\setminus OLD(x) \neq \varnothing$ (接下来会证明),那么

1. 对于
$$y \in OLD(x)$$
,有 $\Pr[choose ext{ picks } y] = \frac{|OLD(x)|}{n-1} \cdot \frac{1}{|OLD(x)|} = \frac{1}{n-1}$

2. 对于
$$y \notin OLD(x)$$
,类似可知也为 $\frac{1}{n-1}$ 。

值得注意的是,这里 G 也为随机性来源之一,我们是从观察者视角计算概率,也即我们只能根据 choose history 对 G 进行假设。

Claim: 在 $4n\ln n$ 步内,w.h.p $orall x,N(x)ackslash OLD(x)
eq \varnothing$ 。

我们对于一个 fixed x,说明 $\Pr[N(x) \backslash OLD(x) = \varnothing] = O(\frac{1}{n^2})$ 即可通过 union bound 证明原结论。

首先 $\Pr[|N(x)| \leq 24 \ln n] \leq \frac{1}{n^2}$,这是因为 $|N(x)| \sim B(n-1,\frac{p}{2})$,所以 $\mathbb{E}[|N(x)|] = 36 \ln n$ 。 我们根据 Chernoff bound 即可得证。

接下来 $\Pr[|OLD(x)| \geq 24 \ln n] \leq \frac{1}{n^2}$,这是因为,x 作端点的次数 $\sim B(4n \ln n, \frac{1}{n-1})$,而 |OLD(x)| 显然不会超过这个次数,故由 Chernoff bound 再次得证。

Balls and Bins (1)

考虑将m个球独立均匀放进n个桶里,设第i个桶里 X_i 个球,那么

$$\Pr[X_1=k_1,\cdots,X_n=k_n]=rac{1}{n^m}rac{m!}{k_1!\cdots k_n!}$$

另一方面,假设 Y_1, \cdots, Y_n 是一列独立服从 $\pi(\lambda)$ 的变量,

$$ext{Pr}[Y_1 = k_1, \cdots, Y_n = k_n] = \prod_{i=1}^n rac{e^{-\lambda} \lambda^{k_i}}{k_i!} \ ext{Pr}\left[\sum_{i=1}^n Y_i = m
ight] = rac{e^{-\lambda n} (\lambda n)^m}{m!}$$

从而我们有 $\Pr[X_1=k_1,\cdots,X_n=k_n]=\Pr[Y_1=k_1,\cdots,Y_n=k_n\mid \sum_{i=1}^n Y_i=m]$ 。

Theorem: 将 n 个球独立均匀放进 n 个桶里,最大负载量 w.h.p 是 $O(\frac{\ln n}{\ln \ln n})$ 。

记 \mathcal{E}_1 表示某个桶的球个数 $> (1+arepsilon) rac{\ln n}{\ln \ln n}$ 我们需要证明 $\Pr[\mathcal{E}_1] = 1/\mathrm{poly}(n)$ 。

由于 $X_1 \sim B(n, \frac{1}{n})$,有

$$egin{align*} \Pr[X_1 > (1+arepsilon) rac{\ln n}{\ln \ln n}] & \leq \left(rac{e \ln \ln n}{(1+arepsilon) \ln n}
ight)^{(1+arepsilon) \ln n / \ln \ln n} \ & = \exp\left((1+arepsilon) rac{\ln n}{\ln \ln n} \cdot (1+\ln \ln \ln n - \ln(1+arepsilon) - \ln \ln n)
ight) \ & = \exp(-\Theta((1+arepsilon) \ln n)) = n^{-\Theta(1+arepsilon)} \end{split}$$

从而根据 union bound 得证。

Lecture 12 - 2025 / 3 / 27

Balls and Bins (2)

Lemma: 设 $\mathcal E$ 是关于 bin loads 的事件,且 $\Pr[\mathcal E]$ 关于 m 递增是单调上升 / 单调下降的,则 $\Pr_X[\mathcal E] \le 4\Pr_Y[\mathcal E]$,其中 X 为 Balls and Bins 模型,Y 为 n 个独立的 $\pi(m/n)$ 。

不妨设 $\Pr[\mathcal{E}]$ 单调上升,则

$$\begin{split} \Pr_{Y}[\mathcal{E}] &= \sum_{k=0}^{\infty} \Pr_{Y} \left[\mathcal{E} \mid \sum_{i=1}^{n} Y_{i} = k \right] \Pr\left[\sum_{i=1}^{n} Y_{i} = k \right] \\ &\geq \sum_{k=m}^{\infty} \Pr_{Y} \left[\mathcal{E} \mid \sum_{i=1}^{n} Y_{i} = m \right] \Pr\left[\sum_{i=1}^{n} Y_{i} = k \right] \\ &\geq \Pr_{Y} \left[\mathcal{E} \mid \sum_{i=1}^{n} Y_{i} = m \right] \Pr\left[\sum_{i=1}^{n} Y_{i} \geq m \right] \\ &\geq \Pr_{X}[\mathcal{E}] \cdot \frac{1}{4} \end{split}$$

最后一步用到对于 $\lambda \in \mathbb{N}$,对于 $X \sim \pi(\lambda)$,有 $\Pr[X \geq \lambda] \geq 1/4$ 。

Corollary: $\Pr[\forall i, X_i \leq c] \leq 4 \Pr[\forall i, Y_i \leq c]$

Theorem: 将 n 个球独立均匀放进 n 个桶里,最大负载量 w.h.p 是 $\Omega(\frac{\ln n}{\ln \ln n})$ 。

记 \mathcal{E}_2 表示所有 $Y_i \leq (1-arepsilon) rac{\ln n}{\ln \ln n}$ 我们需要证明 $\Pr[\mathcal{E}_2] = 1/\mathrm{poly}(n)$ 。

由于 $Y_1 \sim \pi(1)$,所以 $\Pr[Y_1 \geq k] = \sum_{j=k}^{\infty} \frac{e^{-1}}{j!} \leq \frac{1}{k!}$ 。这是因为 $e=1+1/2+1/3!+\cdots$ 。当 然,更直接的有 $\Pr[Y_1 \geq k] \geq \frac{1}{ek!}$ 。

$$egin{aligned} \Pr[\mathcal{E}_2] &= (1 - \Pr[Y_1 \geq k])^n \ &\leq \left(1 - rac{1}{ek!}
ight)^n \ &\leq \exp\left(-rac{n}{ek!}
ight) \ &\leq \exp(-\exp(\Theta(arepsilon \ln n))) \ &= \exp(-n^{\Theta(arepsilon)}) \end{aligned}$$

于是以指数速度趋于 0。

综上所述,最大负载量 w.h.p 是 $\Theta(\frac{\ln n}{\ln \ln n})$ 。

Stochastic Dominance

Definition (SD w.r.t. random variables): 对于两个在 [a,b] 上的随机变量 X,Y,如果 $\forall c \in [a,b], \Pr[Y \geq c] \geq \Pr[X \geq c]$,则称 Y stochastic dominates X,记作 $X \preceq Y$ 。

Definiton (SD w.r.t. functions): 对于两个在 [a,b] 上的函数 f,g,如果 $orall c \in [a,b]$

$$\int_{x \geq c} f(x) \mathrm{d}x \leq \int_{y \geq c} g(y) \mathrm{d}y$$

则称 f stochastic dominates g,记作 $f \preceq g_{\circ}$

Lemma: $X_1 \preceq Y_1, X_2 \preceq Y_2$,且 X_1, X_2 独立, Y_1, Y_2 独立,则 $X_1 + X_2 \preceq Y_1 + Y_2$ 。

对于任何 c,我们只需证明 $Y_1+X_2 \preceq Y_1+Y_2$,则根据对称性得证。

$$egin{aligned} \Pr[Y_1 + Y_2 \geq c] &= \sum_{y_1} \Pr[Y_1 = y_1] \Pr[Y_2 \geq c - y_1] \ &\geq \sum_{y_1} \Pr[Y_1 = y_1] \Pr[X_2 \geq c - y_1] \ &= \Pr[Y_1 + X_2 \geq c] \end{aligned}$$

Corollary: 如果函数列 $\{g_j\}_{j=1}^m$ 和 $\{f_j\}_{j=1}^m$ 满足 $f_j(\cdot;x_1,\cdots,x_{i-1})\preceq g_j(\cdot)$,则

$$\int_{\sum x_j \geq c} f_1(x_1) \cdots f_m(x_m; x_1, \cdots, x_{m-1}) \mathrm{d}x \leq \int_{\sum x_j \geq c} g_1(x_1) \cdots g_m(x_m) \mathrm{d}x$$

归纳法,先固定 x_1,\cdots,x_{m-1} ,将 $f_m(\cdot;x_1,\cdots,x_{m-1})$ 替换为 $g(\cdot)$,然后重复上述过程。

Power of 2 Choices (1)

将m个球独立放入n个桶中,每个球随机选择两个桶,放入负载较小的那个桶。

Theorem: m=n 时,最大负载量 w.h.p 不超过 $\dfrac{\ln \ln n}{\ln 2}+\Theta(1)$ 。

证明的大体思路是,设 B_i 为负载量 $\geq i$ 的桶的个数。我们试图找到一系列 bound β_i ,使得 w.h.p $B_i \leq \beta_i$,则对于任何一个特定的球,其落在负载 $\geq i$ 的桶的概率 $\leq \left(\frac{\beta_i}{n}\right)^2$ 。从而 $B_{i+1} \preceq \mathcal{B}(n,(\beta_i/n)^2)$,均值为 β_i^2/n ,可以根据 Chernoff bound 取 $\beta_{i+1} = c\beta_i^2/n$,于是有 $\frac{\beta_{i+1}}{n} = c\left(\frac{\beta_i}{n}\right)^2$,即 β_i/n 平方速度下降,当 $i \approx \frac{\ln \ln n}{\ln 2}$ 时有 $\beta_i < 1$,这便是最大负载量。

Lecture 13 - 2025 / 3 / 31

Power of 2 Choices (2)

Theorem: 将 n 个球独立放入 n 个桶中,每个球随机选择两个桶,放入负载较小的那个桶,最大负载量 w.h.p 不超过 $\frac{\ln \ln n}{\ln 2} + \Theta(1)$ 。

分两个阶段对该定理进行证明。不妨设 $eta_6=rac{n}{2e}$,则 $B_6\le eta_6$ 是 trivial 的,因为 ≥ 6 的桶的个数不超过 $rac{n}{6}<rac{n}{2e}$ 。对于 i>6,定义 $eta_{i+1}=rac{eeta_i^2}{n}$ 。

Claim: 对于任意 $i>6, eta_i^2\geq 2n\ln n$ 时,有 $\Pr[B_i>eta_i]\leq rac{i}{n^2}$ 。

归纳法。显然有 $\Pr[B_{i+1}>eta_{i+1}]\leq \Pr[B_{i+1}>eta_{i+1},B_i\leq eta_i]+\Pr[B_i>eta_i]$ 。后项根据归纳假设 $\leq rac{i}{n^2}$ 。

接下来试图说明前一项不超过 $\Pr[\mathcal{B}(n,(\beta_i/n)^2)>\beta_{i+1}]$,从而根据 Chernoff bound $\Pr[X\geq e\mu]\leq e^{-\mu}$ 得知不超过 $\exp(-\beta_i^2/n)\leq \frac{1}{n^2}$,于是即可证毕。

定义 $B_i^{(j)}$ 代表当我们放置第 j 个球之前,负载量 $\geq i$ 的桶的个数。用 X_j 作为第 j 个球的高度是否 $\geq i+1$ 的 indicator。则易见 $B_{i+1} \leq \sum X_j$ 。

$$\Pr[B_{i+1} > eta_{i+1}, B_i \leq eta_i] \leq \Pr\left[\sum_{j=1}^n X_j > eta_{i+1}, B_i \leq eta_i
ight]$$

从而将右侧写作 $\sum_{\sum x_i>eta_{i+1}}\Pr[X_1=x_1,\cdots,X_m=x_m,B_i\leqeta_i]$,对于其中每一项

$$\begin{aligned} &\Pr[X_{1} = x_{1}, \cdots, X_{m} = x_{m}, B_{i} \leq \beta_{i}] \\ &= \Pr[X_{1} = x_{1}, \cdots, X_{m} = x_{m}, B_{i}^{(1)} \leq \beta_{i}, \cdots, B_{i}^{(m)} \leq \beta_{i}] \\ &\leq \Pr[X_{1} = x_{1}, B_{i}^{(1)} \leq \beta_{i}] \cdots \Pr[X_{m} = x_{m}, B_{i}^{(m)} \leq \beta_{i} \mid X_{j} = x_{j}, B_{i}^{(j)} \leq \beta_{i}] \\ &= f_{1}(x_{1}) \cdots f_{m}(x_{m}; x_{1}, \cdots, x_{m-1}) \end{aligned}$$

其中 $f_j(x_j; x_1, \dots, x_{j-1}) = \Pr[X_j = x_j, B_i^{(j)} \le \beta_i \mid X_1 = x_1, B_i^{(1)} \le \beta_i, \dots, X_{j-1} = x_{j-1}, B_i^{(j-1)} \le \beta_i]$ 。下面说明 $f_j(1, x_1, \dots, x_{j-1}) \le (\beta_i/n)^2$ 。

实际上这是因为,我们可以通过全概率公式枚举 $B_i^{(j)}$ 的值,而 condition on $B_i^{(j)}$ 的值后, $\Pr[X_j=x_j]$ 是完全与 x_1,\cdots,x_{j-1} 的情况无关的。也就是说,

$$egin{aligned} f_j(1,x_1,\cdots,x_{j-1}) &= \sum_{b_i^{(j)} \leq eta_i} \Pr[X_j = 1 \mid B_i^{(j)} = b_i^{(j)}] \Pr[B_i^{(j)} = b_i^{(j)} \mid \cdots] \ &\leq \left(rac{eta_i}{n}
ight)^2 \sum_{b_i^{(j)} \leq eta_i} \Pr[B_i^{(j)} = b_i^{(j)} \mid \cdots] \ &= \left(rac{eta_i}{n}
ight)^2 \end{aligned}$$

至此,我们证明了 $f_j(x_j \mid x_1, \dots, x_{j-1}) \leq \mathcal{B}(1, (\beta_i/n)^2)$ 。 根据 stochastic dominance 的 Lemma 证 毕。

设 i^* 是第一个满足 $eta_i^2 < 2n \ln n$ 的 i,则容易看出 $i^* = rac{\ln \ln n}{\ln 2} + O(1)$,我们手动分析最后两个阶段。

Claim: $\Pr[B_{i^*+1} \geq 6 \ln n] = O(1/n)$

根据 $\Pr[B_{i^*+1} \geq 6 \ln n] \leq \Pr[B_{i^*+1} \geq 6 \ln n, B_{i^*} \leq \sqrt{2n \ln n}] + \Pr[B_{i^*} > \sqrt{2n \ln n}]$,后面一项由前面的归纳法 $\leq 1/n$,而前面一项使用前面类似的 Stochastic dominance 的技术 $\leq \Pr[\mathcal{B}(n, 2 \ln n/n) \geq 6 \ln n] \leq 1/n^2$ (Chernoff bound)。

Claim: $\Pr[B_{i^*+2} \ge 1] \le O(\log^2 n/n)_{\circ}$

根据 $\Pr[B_{i^*+2} \geq 1] \leq \Pr[B_{i^*+2} \geq 1, B_{i^*+1} \leq 6 \ln n] + \Pr[B_{i^*+1} > 6 \ln n]$,后面一项由前面的 Claim $\leq O(1/n)$,而前面一项使用 Stochastic dominance 的技术 $\leq \Pr[\mathcal{B}(n, (6 \ln n/n)^2) \geq 1] \leq (6 \ln n)^2/n$ (union bound)。

事实上,最大负载量的下界也是 w.h.p $\Omega(\ln \ln n)$ 的。如果每次选择 d 个桶,则最大负载量 w.h.p 是 $\frac{\ln \ln n}{\ln d} + O(1)$ 。

Galton-Watson Branching Process

设 X 是一个非负整数 r.v.,X 定义的分支过程从时间 0 的一个单点开始,每次分支生成 $x\sim X$ 个儿子,并对每个儿子分别独立进行下去。

Time

用 Z_i 代表时间 i 的结点数量,则 $Z_0=1$,将**灭绝**的概率定义为

$$\Pr[ext{extinction}] = \lim_{n o \infty} \Pr[Z_n = 0]$$

Theorem: 对于一个 X 定义的分支过程, $\Pr[X=1] < 1, \Pr[X=0] > 0$,有

- 如果 $\mathbb{E}[X] \leq 1$ 则 $\lim_{n \to \infty} \Pr[Z_n = 0] = 1$
- 如果 $\mathbb{E}[X]>1$ 则 $\lim_{n o\infty}\Pr[Z_n=0]=p^*<1$,其中 p^* 是 (0,1) 之间的方程 f(x)=x 的唯一解,

$$f(x) = \sum_{i>0} \Pr[X=i] x^i$$

设 q_n 为时间 n 灭绝的概率,即 $q_n = \Pr[Z_n = 0]$,其中 $q_0 = 0$,我们可以针对第 1 步分裂情况进行讨论,从而列出递推方程 $q_n = f(q_{n-1})$ 。

根据实际含义容易看出 $0 < q_1 \le q_2 \le q_3 \le \cdots \le 1$,也就是 (q_n) 单调递增且有界,故必然收敛到 $q^* \le 1$ 。

注意到 f(x) 是在 [0,1] 内的严格递增函数,且严格凸的函数,我们针对 y=f(x) 和 y=x 的关系进行讨论。注意 $\mathbb{E}[X]=f'(1)$ 。

- 对于第二种情况,因为 $\mathbb{E}[X]=f'(1)>1$,所以 y=f(x) 和 y=x 第一次相交于 a<1,根据 左图 $q^*=a<1$ 。
- 对于第一种情况,因为 $\mathbb{E}[X]=f'(1)\leq 1$,所以 y=f(x) 和 y=x 第一次相交于 1,根据右图 $q^*=1$ 。

Lecture 14 - 2025 / 4 / 7

Giant Component (1)

Theorem: 对于 $G\in\mathcal{G}_{n,p}$,其中 $p=\frac{c}{n}$,c<1 是一个常数,则 a.a.s. G 的最大的连通分支大小是 $O(\log n)$ 的。

对于一个结点 v,通过 BFS 找出 v 所在的连通块大小的过程,可以看作从 v 开始的一个 branching process。

- 即根节点为v,为v 采样 $\mathcal{B}(n-1,p)$ 个邻居(儿子)结点,假设这里是 $2 \land v_1, v_2$ 。
- 为 v_1 采样 $\mathcal{B}(n-3,p)$ 个邻居(儿子结点),即忽略掉 v,v_1,v_2 的影响,假设是 3 个。
- 为 v_2 采样 $\mathcal{B}(n-6,p)$ 个邻居(儿子结点),即忽略掉所有上述已知连通的点的影响......

从而"v 在一个大小为 k 的连通块"即"branching process 可以展出 k 个结点"的概率。注意这里每次针对一个结点展开,而不是针对一层展开。

我们将上述每一步展开放缩为 $\mathcal{B}(n,p)$,这给出了一个上界。进而上述概率不低于"k 次采样 $\mathcal{B}(n,p)$ 之和不低于 k-1 的概率"。

$$1 + \mathcal{B}(n,p) + \cdots + \mathcal{B}(n,p) \ge k$$

我们基于这一点给出一个 upper bound。

设 $X_i \sim \mathcal{B}(n,c/n)$ i.i.d $i=1,2,\cdots,k$,则

$$\Pr\left[\sum_{i=1}^k X_i \geq (k-1)
ight] = \Pr\left[\sum_{i=1}^k X_i \geq ck + (1-c)k - 1
ight]$$

注意 $\mu=ck, eta=rac{(1-c)k-1}{ck}=\Theta(1)$,根据 Chernoff bound

$$\Pr\left[\sum_{i=1}^{k} X_i \ge (k-1)\right] \le \exp\left(-\frac{((1-c)k-1)^2}{c^2k^2(2+((1-c)k-1)/ck)}ck\right)$$

$$= \exp\left(-\frac{((1-c)k-1)^2}{((c+1)k-1)}\right)$$

$$= \exp\left(-\frac{(1-c)^2}{c+1}k + O(1)\right)$$

从而取 $k=2\cdot\frac{(1+c)}{(1-c)^2}\ln n$,则有上述概率 $\leq O(n^{-2})$ 。对所有 n 个初始的 v union bound,得到原命题 w.p. $1-O(n^{-1})$ 成立。

Lecture 15 - 2025 / 4 / 10

Giant Component (2)

Theorem: 对于 $G \in \mathcal{G}_{n,p}$,其中 $p=\frac{c}{n}$,c>1 是一个常数,则 a.a.s. G 存在唯一一个最大的连通分支大小是 $\beta n(1+o(1))$,其中 β 是 (0,1) 之间 $\beta+e^{-\beta c}=1$ 的唯一解。其余的连通块大小都是 $O(\log n)$ 级别。

Claim: 对于所有结点 v, a.a.s 以下两者之一成立:

- 1. 从 v 开始的 braching process 在 k^- 步内停止。
- 2. $\forall k$ s.t. $k^- \le k \le k^+$,从 v 开始的 branching process 在 k 步后,至少有 (c-1)k/2 个已探索但是没有饱和的结点。

对于后者,实际上只需要证明从v开始总共至少探索到了

$$\frac{(c-1)k}{2} + k = \frac{(c+1)k}{2}$$

个点。我们定义一个点 v 是 k-bad 的,如果从 v 开始的 branching process 在 k 步后停止或者探索到了少于 (c+1)k/2 个点。

因此,当 v 是 k-bad 时,从 v 开始的 branching process 被每次展开服从 $\mathcal{B}\left(n-\frac{(c+1)k^+}{2},\frac{c}{n}\right)$ 的过程支配(因为总共涉及到的点数不超过 $(c+1)k^+/2$,因此 $\mathcal{B}(n-?,p)$ 的?处不高于这个值)。

进而从 v 开始的 branching process 在 k 步内展开的点数,不低于 k 次采样 $\mathcal{B}\left(n-\frac{(c+1)k^+}{2},\frac{c}{n}\right)$ 展开的点数。

「上面这一步并没有理解,如果 branching process 提前终止了,为什么还能 dominate 固定次数采样的求和?」

从而 a.a.s 从任何一个点 v 开始的 branching process 要么在 $k^- = O(\log n)$ 轮终止,要么持续至少 $k^+ = n^{2/3}$ 轮。记前面的一类点是 *small* 的,后面的一类是 *large* 的。

Lemma: a.a.s. 存在唯一的一个连通块,包含了所有 large 点。

考虑两个 large 的 $u\neq v$ 。 分别从 u,v 独立进行 branching process,则在 k^+ 轮后,两者已探索未饱和的点分别记作 U(u),U(v),则这两个集合大小都 $\geq \frac{c-1}{2}k^+$ 。

如果前 k^+ 步已经遇到公共点了,则 u,v 已连通。否则我们证明 w.h.p. U(u),U(v) 之间有边。

$$egin{aligned} \Pr[
end{denset} & \Pr[
end{denset} = \operatorname{Pr}(u), U(v)] \leq (1-p)^{(rac{c-1}{2}k^+)^2} \ & \leq \exp\left(-p\left(rac{c-1}{2}k^+
ight)^2
ight) \ & \leq \exp\left(-rac{c(c-1)^2}{4}n^{1/3}
ight) \ & = o(n^{-2}) \end{aligned}$$

从而对所有 u, v 进行 union bound 立刻得到总概率是 o(1)。

至此已经证明了最大连通块的唯一性,以及所有小连通块都是 $O(\log n)$,只剩下判断最大连通块的大小了。 我们通过对 small 点计数来证明此。

Lemma: a.a.s. small 点的个数是 $(1+o(1))(1-\beta)n$ 。

根据 small 点的定义,可以知道 $\Pr[v \text{ is small}]$:

- (\geq) 服从 $\mathcal{B}(n,c/n)$ 的 branching process 在 k^- 步内终止的概率。 这是因为利用 $\mathcal{B}(n-\cdots,p)\leq\mathcal{B}(n,p)$,展出的点变多,终止概率变低。
- •(\leq)服从 $\mathcal{B}(n-k^-,c/n)$ 的 branching process 在 k^- 步内终止的概率。 这是因为 small 的点总共展出了 $\leq k^-$ 个点,所以 $\mathcal{B}(n-\cdots,p)\geq \mathcal{B}(n-k^-,p)$,展出的点变少,终止概率增大。

更进一步,用 d(n,p) 表示服从 $\mathcal{B}(n,p)$ 的 branching process 终止的概率:

- (\geq) 根据 claim,我们知道 w.h.p. 如果不在 k^- 步终止,则最终不会终止,故下界为 d(n,c/n)+o(1) 。
- (\leq) 不限制终止步数,终止概率自然增大,故上界为 $d(n-k^-,c/n)$ 。

当 $n\to +\infty$ 时,根据泊松分布的结论, $d(n,c/n)\to 1-\beta$,其中 β 是 (0,1) 之间 $\beta+e^{-\beta c}=1$ 的解。同时因为 $k^-\ll n$,所以 $d(n-k^-,c/n)\to 1-\beta$ 。根据 sandwiching 定理,可以知道

$$\Pr[v \text{ is small}] \to 1 - \beta =: \alpha$$

用 $Z=\sum_v Z_v$ 代表 small 点的个数,我们通过 Chebyshev 给 Z 一个 concentration bound。则 $\mathbb{E}[Z_v] o lpha, \mathbb{E}[Z] = (1+o(1)) lpha n$ 。

$$egin{aligned} \mathbb{E}[Z^2] &= \mathbb{E}[Z] + \sum_{u
eq v} \mathbb{E}[Z_u Z_v] \ &= \mathbb{E}[Z] + \sum_v \Pr[v ext{ is small}] \sum_{u
eq v} \Pr[u ext{ is small} \mid v ext{ is small}] \end{aligned}$$

对于最后一个 \sum ,可以拆分为 u 和 v 在同一连通块、u 和 v 在不同连通块的两类分别计数。

- 和 v 在同一连通块的 u 不超过 k^- 个
- 和 v 在不同连通块的任何一个 u 满足

$$egin{aligned} & \Pr[u ext{ is small} \mid v ext{ is small}] \ & = \Pr[u ext{ is small in } \mathcal{G}(n - |\operatorname{Comp}(v)|, p)] \ & \leq \Pr[u ext{ is small in } \mathcal{G}(n - k^-, p)] \ & \leq d(n - k^-, c/n) \sim d(n, c/n)
ightarrow lpha \end{aligned}$$

从而 $\mathbb{E}[Z^2] \leq \mathbb{E}[Z] + n(\alpha + o(1))(k^- + n(\alpha + o(1))) \sim \mathbb{E}[Z] + n^2\alpha^2(1 + o(1)) = \mathbb{E}[Z]^2(1 + o(1))_\circ$

从而根据 Chebyshev 不等式

$$\Pr[|Z - \mathbb{E}[Z]| > \gamma \mathbb{E}[Z]] \leq \frac{1}{\gamma^2} \left(\frac{\mathbb{E}[Z^2]}{\mathbb{E}[Z]^2} - 1 \right) = \frac{1}{\gamma^2} o(1)$$

只需取 $\gamma=o(1)$ 但下降足够缓慢,则上式昭示了 a.a.s. 最大连通分支大小是 (1+o(1))eta n。

综合以上两个 Lemma, 原 Theorem 得证。

Lecture 16 - 2025 / 4 / 14

Johnson & Lindenstrauss Lemma

Theorem (JL Lemma). 对于任何 \mathbb{R}^d 上 n 个点的集合 X,任何 $\varepsilon\in(0,1)$,存在一个 $\mathbb{R}^d\to\mathbb{R}^k$ 的映射 φ ,其中

$$k = \left\lceil rac{4 \ln n}{arepsilon^2/2 - arepsilon^3/3}
ight
ceil \leq \left\lceil rac{24 \ln n}{arepsilon^2}
ight
ceil$$

使得 $\forall u,v \in X$,

$$\|(1-arepsilon)\|u-v\|_2^2 \leq \|arphi(u)-arphi(v)\|_2^2 \leq (1+arepsilon)\|u-v\|_2^2$$

考虑随机选择一个坐标系,并保留 u 在其中的前 k 个坐标(的一个倍数)作为 $\varphi(u)$ 。为了分析这个过程,我们可以对称的看作,对于个固定的标准正交坐标系,u 在 \mathbb{S}^{d-1} 上均匀随机采样。

于是我们生成一个随机向量 $X=(X_1,\cdots,X_d)$,其中 $X_i\sim\mathcal{N}(0,1)$,可以将 u 表示为 Z= $rac{1}{\|X\|_2}(X_1,\cdots,X_d)$,降维后的向量定义为 $Y=arphi(X)=\sqrt{rac{k}{d}\cdotrac{1}{\|X\|_2}}(X_1,\cdots,X_k)$ 。

需要分析 $L=rac{X_1^2+\cdots+X_k^2}{X^2+\cdots+X_n^2}$ 的分布。根据对称性,显然有 $\mathbb{E}[L]=k/d$,于是 $\mathbb{E}[\|Y\|_2^2]=1$ 。

根据 Chernoff bound 可以得到

- $\Pr[\|\varphi(u)\|_2^2 \ge (1+\varepsilon)] \le \exp(-\frac{k}{2}(\frac{\varepsilon^2}{2} \frac{\varepsilon^3}{3}))$ $\Pr[\|\varphi(u)\|_2^2 \le (1-\varepsilon)] \le \exp(-\frac{k}{4}\varepsilon^2)$

证明过程主要利用了 $\ln(1-\varepsilon) < (-\varepsilon - \frac{\varepsilon^2}{2})$ 和 $\ln(1+\varepsilon) < (\varepsilon - \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3})$ 。

于是,当 k 满足条件时, $\Pr[|\|arphi(u)\|_2^2-1|>arepsilon]\leq 2\exp(-2\ln n)=2/n^2$ 。从而根据 union bound,对于所有 $inom{n}{2}$ 个点对 $inom{u,v}$,都保距的概率 $\geq rac{1}{n}$ 。根据 probabilistic method,可以得到 JL 引 理。

Embedding into ℓ_p metrics

Theorem. 设 (X,d) 是一个度量空间,|X|=n,则 (X,d) 可以被嵌入一个 ℓ_1 空间,保距比为 $O(\log n)$,维度 $k = O(\log^2 n)$ 。

我们通过构造 $m = O(\log^2 n)$ 个随机的 $A_i \subseteq X$,并定义

$$arphi(x)=rac{1}{m}(d(x,A_1),d(x,A_2),\cdots,d(x,A_m))$$

其中 $d(x, A_i) = \min_{y \in A_i} d(x, y)$ 。我们从两个方向分别证明这个构造的合理性。

Claim. $\forall x,y \in X, \|\varphi(x)-\varphi(y)\|_1 \leq d(x,y)$

$$egin{aligned} \|arphi(x)-arphi(y)|_1 &= rac{1}{m}\sum_{i=1}^m |d(x,A_i)-d(y,A_i)| \ &\leq rac{1}{m}\sum_{i=1}^m d(x,y) = d(x,y) \end{aligned}$$

上式中,第二个不等式是因为,不妨设 $d(x,A_i)\geq d(y,A_i)$,设 $d(y,A_i)=d(y,z)$,其中 $z\in A_i$, 则有 $d(x, A_i) - d(y, A_i) \le d(x, z) - d(y, z) \le d(x, y)$ 。

我们构造 $\{A_i\}$ 的方法是,对于每个 $t\in\{1,2,\cdots,\log n\}$,构造 $r\log n$ 个随机集合 $\{A_i^{(t)}\}_{i=1}^{r\log n}$,其中每 个 $x\in X$ 都独立均匀的以 2^{-t} 的概率包含在 $A_i^{(t)}$ 中。因此 $A_i^{(t)}$ 的期望大小为 $\frac{n}{2^t}$,总共有 $r\log^2 n$ 个集 合。

Claim.
$$\exists c, orall x, y \in X, \| arphi(x) - arphi(y) \|_1 \geq rac{1}{c \log n} d(x,y)$$

为了证明这个 claim, 我们首先定义"球":

$$B(x,
ho) = \{z \in X \mid d(x,z) \leq
ho\} \ B^\circ(x,
ho) = \{z \in X \mid d(x,z) <
ho\}$$

定义一列半径 $0 = \rho_0 < \rho_1 < \cdots$,其中 ρ_t 定义为

$$\rho_t = \min\{\rho \mid B(x,\rho), B(y,\rho) \text{ both contain } \geq 2^t \text{ points of } X\}$$

持续定义这样的 ρ_t ,直到某一项 $\rho_{t^*}\geq \frac{1}{4}d(x,y)$ 时,修改定义这一项为 $\rho_{t^*}=\frac{1}{4}d(x,y)$,定义结束。可以看出 $B(x,\rho_t),B(y,\rho_t)$ 永远是不交的。

我们称 $A_i^{(t)}$ 是 good 的当且仅当(两者之一):

- ρ_t 对于 $B(x, \rho_t)$ 是紧的,而 $A_i^{(t)}$ 与 $B(y, \rho_{t-1})$ 相交但与 $B^{\circ}(x, \rho_t)$ 不交。
- ho_t 对于 $B(y,
 ho_t)$ 是紧的,而 $A_i^{(t)}$ 与 $B(x,
 ho_{t-1})$ 相交但与 $B^\circ(y,
 ho_t)$ 不交。

注意,一个 good 的集合将为 $\|\varphi(x)-\varphi(y)\|_1$ 贡献 $\frac{1}{m}(\rho_t-\rho_{t-1})$ 。

对于任何集合 $A_i^{(t)}$,它 good 的概率有

$$egin{aligned} \Pr[A_i^{(t)} ext{ is good for } x,y] &= \Pr[A_i^{(t)} \cap B^\circ(x,
ho_t) = \emptyset \wedge A_i^{(t)} \cap B(y,
ho_{t-1})
eq \emptyset] \ &\geq \Pr[A_i^{(t)} \cap B^\circ(x,
ho_t) = \emptyset] \cdot \Pr[A_i^{(t)} \cap B(y,
ho_{t-1})
eq \emptyset] \ &\geq \left(1-2^{-t}
ight)^{2^t} \cdot \left(1-(1-2^{-t})^{2^{t-1}}
ight) \ &\geq rac{1}{4} \cdot \left(1-rac{1}{\sqrt{e}}
ight) \end{aligned}$$

第一个不等号是因为两个事件是正相关的,最后一个不等号是因为前者单调递增,后者单调递减。

因此 $A_i^{(t)}$ 以常数概率是 good 的,对于每个固定的 t, $\mathbb{E}[\#\text{good sets}] \geq \frac{r \log n}{12} = \mu$,根据 Chernoff bound, $\Pr[\#\text{good sets} \leq \mu/2] \leq \exp(-\mu/8) = \exp(-r \log n/96) \leq n^{-3}$,这里取 r = 288。从而根据 union bound,对于所有的 x,y,t 都成立的概率 $\geq 1 - \log n/n$ 。

因此, 当上述事件发生时,

$$egin{align} \|arphi(x)-arphi(y)\|_1 &= rac{1}{m} \sum_{t=1}^{\log n} \sum_{i=1}^{r \log n} |d(x,A_i^{(t)})-d(y,A_i^{(t)})| \ &\geq rac{1}{m} rac{r \log n}{24} \sum_{t=1}^{\log n} (
ho_t-
ho_{t-1}) \ &= rac{1}{m} rac{r \log n}{24} (
ho_{t^*}-
ho_0) \ &= rac{1}{96 \log n} d(x,y) \end{aligned}$$

Lecture 17 - 2025 / 4 / 17

Martingale

Definition (filter): $\emptyset=\mathcal{F}_0\subseteq\mathcal{F}_1\subseteq\mathcal{F}_2\subseteq\cdots\subseteq\mathcal{F}_n$ 是一个概率空间上的递增 σ -代数。

例如 $\mathcal{F}_n=Z_1,\cdots,Z_n$,其中 Z_i 是随机变量。

Definition (martingale): (X_i) 是关于 (\mathcal{F}_i) 的鞅,如果满足

$$\mathbb{E}[X_i \mid \mathcal{F}_{i-1}] = X_{i-1}$$

Azuma Inequality

Lemma: 对于 r.v. X,若 $|X| \leq 1, \mathbb{E}[X] = 0$,则 $\mathbb{E}[e^{tX}] \leq e^{t^2/2}$ 。

根据凸性和 Taylor 展开, $\mathbb{E}[e^{tX}] \leq rac{1}{2}\left(e^t + e^{-t}
ight) \leq e^{t^2/2}$ 。

Theorem: 设 (X_i) 是关于 (\mathcal{F}_i) 的鞅, $Y_i=X_i-X_{i-1}$ 是"差异"序列,如果 $c_i>0$ 使得 $|Y_i|\leq c_i$,则

$$egin{array}{ll} \Pr[X_n \geq X_0 + \lambda] & \leq & \exp\left(-rac{\lambda^2}{2\sum_{i=1}^n c_i^2}
ight) \end{array}$$

当 n=1 时, $|X_1-X_0| \leq c_1$,则

$$\begin{aligned} \Pr[X_1 \geq X_0 + \lambda] &= \min_t \Pr[e^{t(X_1 - X_0)} \geq e^{t\lambda}] \\ &\leq \min_t \frac{\mathbb{E}[e^{t(X_1 - X_0)}]}{e^{t\lambda}} \\ &\leq \min_t \exp\left(\frac{c_1^2 t^2}{2} - t\lambda\right) = \exp\left(-\frac{\lambda^2}{2c_1^2}\right) \end{aligned}$$

接下来归纳,

$$\begin{aligned} \Pr[X_n \geq X_0 + \lambda] &\leq \min_t \frac{\mathbb{E}[e^{t(X_n - X_{n-1})} \cdot e^{t(X_{n-1} - X_0)}]}{e^{t\lambda}} \\ &= \min_t \frac{\mathbb{E}_{\mathcal{F}_{n-1}}[\mathbb{E}[e^{t(X_n - X_{n-1})} \mid \mathcal{F}_{n-1}] \cdot e^{t(X_{n-1} - X_0)}]}{e^{t\lambda}} \\ &\leq \min_t \frac{e^{c_n^2 t^2/2} \cdot \mathbb{E}[e^{t(X_{n-1} - X_0)}]}{e^{t\lambda}} \\ &\leq \min_t \frac{e^{c_n^2 t^2/2} \cdot \exp(-\lambda^2/2\sum_{i=1}^{n-1} c_i^2)}{e^{t\lambda}} \\ &\leq \exp\left(-\frac{\lambda^2}{2\sum_{i=1}^n c_i^2}\right) \end{aligned}$$

Doob Martingale

Claim: 设 $A,(Z_i)$ 是 r.v.,则 $X_i = \mathbb{E}[A \mid Z_1, \cdots, Z_i]$ 是鞅,称之为 A 的 Doob 鞅。

验证定义即可:

$$\mathbb{E}[X_i \mid Z_1, \cdots, Z_{i-1}] = \mathbb{E}_{Z_i}[\mathbb{E}[X_i \mid Z_1, \cdots, Z_i] \mid Z_1, \cdots, Z_{i-1}]$$

$$= \mathbb{E}_{Z_i}[\mathbb{E}[A \mid Z_1, \cdots, Z_i] \mid Z_1, \cdots, Z_{i-1}]$$

$$= \mathbb{E}[A \mid Z_1, \cdots, Z_{i-1}] = X_{i-1}$$

Definition: $f(Z_1, \dots, Z_n)$ 是 c-Lipschitz 函数,当且仅当改变 f 的任何一个坐标值,f 的变化绝对值不超过 $\pm c$ 。

Lemma: 如果 f 是 c-Lipschitz 函数,给定 Z_1,\cdots,Z_{i-1} 的条件下, Z_i 与 Z_{i+1},\cdots,Z_n 相互独立,则 f 关于 Z_i 的 Doob 鞅 (X_i) 满足 $|X_i-X_{i-1}|\leq c$ 。

我们根据定义对 $|X_i-X_{i-1}|$ 进行展开

$$= |\mathbb{E}_{Z_{i+1}, \dots, Z_n}[f \mid Z_1, \dots, Z_i] - \mathbb{E}_{\mathbf{Z}_i, \dots, Z_n}[f \mid Z_1, \dots, Z_{i-1}]|$$

$$= |\mathbb{E}_{Z_{i+1}, \dots, Z_n}[f \mid Z_1, \dots, Z_i] - \mathbb{E}_{Z_{i+1}, \dots, Z_n}[\mathbb{E}_{\mathbf{Z}_i}[f \mid Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n] \mid Z_1, \dots, Z_{i-1}]|$$

$$= |\mathbb{E}_{Z_{i+1}, \dots, Z_n}[f(Z_1, \dots, Z_i, \dots, Z_n) \mid Z_1, \dots, Z_{i-1}]$$

$$- \mathbb{E}_{Z_{i+1}, \dots, Z_n}[\mathbb{E}_{\mathbf{Z}_i}[f(Z_1, \dots, Z_n) \mid Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n] \mid Z_1, \dots, Z_{i-1}]|$$

$$= |\mathbb{E}_{Z_{i+1}, \dots, Z_n}[f(Z_1, \dots, Z_i, \dots, Z_n) - \mathbb{E}_{\mathbf{Z}_i}[f(Z_1, \dots, Z_i, \dots, Z_n) \mid Z_1, \dots, Z_{i-1}, Z_{i+1}, \dots, Z_n] \mid Z_1, \dots, Z_n)$$

$$= |\mathbb{E}_{Z_{i+1}, \dots, Z_n}[\mathbb{E}_{\mathbf{Z}_i}[f(Z_1, \dots, Z_i, \dots, Z_n) - f(Z_1, \dots, Z_i, \dots, Z_n) - f(Z_1, \dots, Z_n)$$

$$= |\mathbb{E}_{Z_{i+1}, \dots, Z_n}[\mathbb{E}_{\mathbf{Z}_i}[f(Z_1, \dots, Z_i, \dots, Z_n) \mid Z_1, \dots, Z_{i-1}]|$$

注意这里 Z_i 是已知量,而 Z_i 是未知量,可以看作两者是独立同分布的变量。从而每一项均 $\leq c$,由此结论成立。

Applications: Balls and Bins

m 个球 n 个桶, Z_i 是 i 号球选择的桶, $X=f(Z_1,\cdots,Z_m)$ 是空桶的个数。容易看出 f 是 1-Lipschitz 的,从而

$$\Pr[|X - \mathbb{E}[X]| \geq \lambda] \leq 2 \exp\left(-rac{\lambda^2}{2m}
ight)$$

这是 Chernoff bound 所不能得到的结论。

Applications: Chromatic Number of $\mathcal{G}_{n,1/2}$

染色数 $\chi(G)$ 代表最少需要的颜色数量,使得存在一组同色不相邻的方案。

对于随机图我们有两种常见的鞅。

Edge Exposure Martingale: 用 $Z_i=0/1$ 表示第 i 条边是否在图中出现,则 $A=f\left(Z_1,\cdots,Z_{\binom{n}{2}}\right)$ 的 Doob 鞅是 edge exposure maringle。

Vertex Exposure Martingle: 用 $Z_i \in \{0,1\}^{n-i}$ 代表是否 i 和 j (满足 j>i)的边是存在的,则 $A=f(Z_1,\cdots,Z_n)$ 的 Doob 鞅是 vertex exposure martingle。

这里我们使用后者,用 $X=f(Z_1,\cdots,Z_n)$ 代表 $\chi(G)$,则容易看出 f 是 1-Lipschitz 的。从而

$$\Pr[|X - \mathbb{E}[X]| \geq \lambda] \leq 2 \exp\left(-rac{\lambda^2}{2n}
ight)$$

注意我们不依赖任何关于 $\mathbb{E}[X]$ 的知识,给出了一个 concentration bound。

Lecture 18 - 2025 / 4 / 21

Quick Sort

考虑随机版本的快速排序算法

```
def QuickSort(a : list[int])
  x = random element in a
  a1 = [ y in a | y < x ]
  a2 = [ y in a | y > x ]
  QuickSort(a1)
  QuickSort(a2)
```

定义 Q_n 为对于大小为 n 的集合 S 进行快速排序所需要的比较次数, $q_n=\mathbb{E}[Q_n]$,经典地,有:

$$egin{align} q_n &= (n-1) + rac{1}{n} \sum_{j=1}^n (q_{j-1} + q_{n-j}) \ q_n &= 2n \ln n - (4-2\gamma)n + 2 \ln n + O(1) \ \end{cases}$$

其中 γ 是欧拉常数,现在考虑给 Q_n 一个 concentration bound。一个构造鞅的想法是记递归树上前 k 层的分割结果为 \mathcal{F}_k ,取 Q_n 关于 (\mathcal{F}_i) 的 Doob 鞅。但是以第 1 层划分为例,划分在最边上和最中间造成的差异远超常数级别。因此 $\mathbb{E}[Q_n \mid \mathcal{F}_k]$ 并不满足 Azuma inequality 的使用条件。

回归 Azuma inequality 的证明过程,我们需要给予 $\mathbb{E}[e^{t(X_k-X_{k-1})}\mid\mathcal{F}_{k-1}]$ 一个上界。假设 \mathcal{F}_{k-1} 中记录了第 k-1 层时,各段长度为 L_1,L_2,\cdots,L_m ,则各个段之间相互独立。定义 $T_j:=\mathbb{E}[Q_{L_j}\mid\mathcal{F}_k^{(j)}]-\mathbb{E}[Q_{L_j}]$,则显然

$$|T_j| = |(L_j - 1 + q_{L_1'} + q_{L_2'}) - q_{L_j}| \le L_j$$

上式在"最不平均"的分割时贴近取等,从而

$$\mathbb{E}[e^{t(X_k - X_{k-1})} \mid \mathcal{F}_{k-1}] = \mathbb{E}[e^{t\sum_{j=1}^m T_j}]$$

$$= \prod_{j=1}^n \mathbb{E}[e^{tT_j}]$$

$$\leq \prod_{j=1}^n \exp\left(\frac{1}{2}t^2L_j^2\right)$$

$$\leq \exp\left(\frac{1}{2}t^2(\max_{j=1}^m L_j)n\right) \quad (*)$$

第一个 \leq 使用了和证明 Azuma 相同的 Lemma,第二个 \leq 把每一项的一个 L_j 放缩成了 $\max L_j \circ$

Lemma: orall 0<lpha<1,当 $k>\lnrac{1}{lpha}$,对于第 k 层的 L_1,L_2,\cdots,L_m ,有

$$\Pr[\max_{j=1}^m L_j \geq lpha n] \leq lpha \left(rac{2e\lnrac{1}{lpha}}{k}
ight)^k$$

看作如下过程: 第 1 层随机采样 $U_1 \sim \mathrm{U}[0,1]$,将长度为 n 的区间划分为长度为 $U_1 n$ 和 $(1-U_1)n$ 的 两段,然后第二层采样 $U_2,U_3 \sim \mathrm{U}[0,1]$,分别表示左、右区间的划分点,然后第三层再采样 $U_4,U_5,U_6,U_7 \sim \mathrm{U}[0,1].....$

第 k 层划分结束产生 2^k 个区间, L_i 的长度可以视作 $n \cdot U_1 \cdot U_{2/3} \cdots U_{2^{k-1}/\dots/2^k-1}$,上式即

$$egin{aligned} \Pr\left[\left(\max_{j=1}^{2^k}\prod_{i=1}^k n\cdot U_1\cdots
ight) \geq lpha n
ight] &\leq 2^k\cdot\Pr\left[\prod_{i=1}^k U_i \geq lpha
ight] \ &\leq 2^k\cdot\Pr\left[\sum_{i=1}^k \ln U_i \geq \ln lpha
ight] \end{aligned}$$

注意到 $-\ln U_i \sim \mathrm{Exp}(1)$,从而 $-\sum_{i=1}^k \ln U_i \sim \Gamma(n,1)$,

$$egin{aligned} \Pr\left[\sum_{i=1}^k \ln U_i \geq \ln lpha
ight] & \leq \Pr_{X \sim \Gamma(k,1)}[-X \geq \ln lpha] \ & = \min_{t > 0} \Pr_{X \sim \Gamma(k,1)}[(lpha e^X)^t \leq 1] \ & = \min_{t > 0} \mathbb{E}_{X \sim \Gamma(k,1)}[(lpha e^X)^t] \ & = \min_{t > 0} lpha^t (1-t)^{-k} \end{aligned}$$

当 $1-t=k/\ln \frac{1}{\alpha}$ 时,上式为 $\alpha \left(\frac{e\ln \frac{1}{\alpha}}{k}\right)^k$,结合 union bound 给出的 2^k 原命题得证。

接下来我们分3个阶段分析快速排序过程:

- 1. 对于前 k_1 层,比较次数不超过 $k_1 n$
- 2. 对于 $k_1+1\sim k_2$ 层,高概率有 k_1 层的 $\max L_j\leq \alpha n$ (1),从而 $(*)\leq \exp\left(rac{1}{2}t^2 lpha n^2
 ight)$
- 3. 对于 k_2 层,高概率有 $\max L_j < 2$ (2),从而算法停止。

Theorem: $\forall \varepsilon>0$, $\Pr[|Q_n-q_n|\geq \varepsilon q_n]\leq n^{-(2+o(1))\varepsilon\ln\ln n}$

根据上述 Lemma, 事件 (1), (2) 均发生的概率 \geq

$$1-lpha\left(rac{2e\lnrac{1}{lpha}}{k_1}
ight)^{k_1}-rac{2}{n}\left(rac{2e\lnrac{n}{2}}{k_2}
ight)^{k_2}$$

假设这两个事件发生,对于 $k_1+1\sim k_2$ 层,根据 (*),类比于 Azuma inequality 得到

$$\Pr[|Q_n - q_n| \geq k_1 n + \lambda] \leq 2 \exp\left(-rac{\lambda^2}{2(k_2 - k_1) lpha n^2}
ight)$$

只需取得 $k_1n+\lambda \leq \varepsilon q_n$,并让上述 3 个概率之和为 $n^{-(2+o(1))\varepsilon \ln \ln n}$ 时,原命题即证毕。

接下来为琐碎的调参工作,首先希望 k_2 尽量小,取 $k_2=(\ln n)(\ln \ln n)$,则

$$rac{2}{n}\left(rac{2e\lnrac{n}{2}}{k_2}
ight)^{k_2}\sim \exp\left((\ln n)(\ln \ln n)(-\ln \ln \ln n)
ight)$$

接下来为了 k_1 尽量大,但必须有 $k_1 \leq n^{-1}(\varepsilon q_n - \lambda) \sim 2\varepsilon \ln n - \frac{\lambda}{n}$,这里希望 $2\varepsilon \ln n$ 是主导项,需要 $\lambda = o(\varepsilon n \ln n)$ 。从而可以令 $k_1 = 2\varepsilon \ln n - \frac{2\lambda}{n}$

$$2\exp\left(-rac{\lambda^2}{2(k_2-k_1)lpha n^2}
ight)\sim \exp\left(-rac{\lambda^2}{(\ln n)(\ln \ln n)n^2lpha}
ight) \qquad ({
m A})$$

同时有(注意 α < 1)

$$lpha \left(rac{2e\lnrac{1}{lpha}}{k_1}
ight)^{k_1} \sim \exp\left(2arepsilon \ln n \ln \lnrac{1}{lpha}
ight) \qquad ext{(B)}$$

(A) 式希望 λ 尽可能大一些,故取 $\lambda = \frac{\varepsilon n \ln n}{\ln \ln n}$,(A)式变为

$$\exp\left(\frac{\varepsilon^2 \ln n \ln \ln n}{\alpha}\right)$$

通过权衡两式,取 $\alpha = \frac{\varepsilon^2}{\ln \ln n}$,则 (A) 式为 $\exp(-\ln n(\ln \ln n)^2)$,(B) 式为

$$\exp(-2\varepsilon \ln n \ln \ln n + O(\ln \ln \ln n))$$

Corollary: orall arepsilon > 0 , $\Pr[|Q_n - q_n| \geq arepsilon q_n] = n^{-(2+o(1))arepsilon \ln \ln n}$

Optional Stopping Theorem

Definition (Stopping time): (\mathcal{F}_i) 是一组 filter,一个 r.v. $T \in \{0,1,\cdots\} \cup \{\infty\}$ 是一个 (\mathcal{F}_i) 的**停时**如果事件 T=i 是 \mathcal{F}_i -可测的。

Theorem (Optinal stopping theorem): (X_i) 是一个鞅,T 是一个关于 (\mathcal{F}_i) 的停时,则当下面条件成立时:

- 1. $\Pr[T < \infty] = 1$
- 2. $\mathbb{E}[|X_T|] < \infty$
- 3. $\mathbb{E}[X_i \cdot 1\{T>i\}] o 0$ 当 $i o \infty$ 时。

或者更强一些,满足:

- 1. $\mathbb{E}[T] < \infty$
- 2. $\mathbb{E}[|X_i X_{i-1}| \mid \mathcal{F}_i] \leq c$ 对任意 i

则此时有 $\mathbb{E}[X_T] = \mathbb{E}[X_0]$ 。

Gambler's Ruin

考虑从 0 处开始随机游走,1/2 概率 +1,1/2 概率 -1。第一次到达 -a 或 b 的时候停止。

定义 T 为上述停时,可以验证坐标位置 (X_i) 是一组鞅,并且满足停时定理的条件,则

$$\mathbb{E}[X_T] = p \cdot (-a) + (1-p) \cdot b = 0$$

解出 $p=\frac{b}{a+b}$,即首先碰到 -a 的概率。

接下来定义 $Y_i = X_i^2 - i$ 以分析 $\mathbb{E}[T]$ 。

Claim: (Y_i) 是一组关于 (X_i) 的鞅。

$$\mathbb{E}[Y_i \mid X_1, X_2, \cdots, X_{i-1}] = rac{1}{2} \left((X_{i-1} - 1)^2 + (X_{i-1} + 1)^2
ight) - i = X_{i-1}^2 - (i-1) = Y_{i-1}$$
从而 $\mathbb{E}[Y_T] = \mathbb{E}[X_T^2] - \mathbb{E}[T] = \mathbb{E}[Y_0] = 0$,即 $\mathbb{E}[T] = \mathbb{E}[X_T^2] = a^2 rac{b}{a+b} + b^2 rac{a}{a+b} = ab$ 。

Lecture 19 - 2025 / 4 / 24

Ballot

有两个竞选者 A, B,分别收到 a,b 张票。假设选票按随机顺序计入,a>b,则 A 的选票数量一直 > B 的选票数量的概率是多少。

定义 S_k 为 k 轮后 A, B 的选票数量之差,则 $S_n=a-b$ 。定义 $X_k=\dfrac{S_{n-k}}{n-k}$,即倒过来看, $X_0=\dfrac{a-b}{a+b}$ 。

Claim: (X_k) 是鞅。

在给定 X_{k-1} 的情况下,此时 A, B 的选票数量 a',b' 满足 $X_{k-1}=\dfrac{a'-b'}{a'+b'}$ 。因此

$$\mathbb{E}[X_k \mid X_{k-1}] = \frac{a'}{a'+b'} \cdot \frac{(a'-1)-b'}{a'+b'-1} + \frac{b'}{a'+b'} \cdot \frac{a'-(b'-1)}{a'+b'-1}$$

$$= \frac{a'(a'-1)-b'(b'-1)}{(a'+b')(a'+b'-1)}$$

$$= \frac{(a'-b')(a'+b'-1)}{(a'+b')(a'+b'-1)} = X_{k-1}$$

定义 $T = \min\{k \mid X_k = 0\}$ 或者 n - 1 如果 k 不存在。

- 如果 A 一直领先,则 T=n-1,故 $X_T=X_{n-1}=S_1=1$
- 如果存在平票的时刻,则 $X_T=0$ 。

从而第一种情况的概率,即答案为 $\mathbb{E}[X_T] = \mathbb{E}[X_0] = rac{a-b}{a+b}$ 。

Submartingale

Definition (sub/supmartingale): (X_i) 是关于 filter (\mathcal{F}_i) 的**下鞅**如果

$$\mathbb{E}[X_i \mid \mathcal{F}_{i-1}] \geq X_{i-1}$$

反之,是**上鞅**如果

$$\mathbb{E}[X_i \mid \mathcal{F}_{i-1}] \leq X_{i-1}$$

在满足相应条件下,关于下鞅,有 $\mathbb{E}[X_T] \geq \mathbb{E}[X_0]$;对于上鞅,有 $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$ 。

基于此可以有一种 bound $\mathbb{E}[T]$ 的方式:

记 $D_i=X_i-X_{i-1}$,假设 (X_i) 是一个鞅,即 $\mathbb{E}[D_i\mid X_1,\cdots,X_{i-1}]=0$,并且有 $\mathbb{E}[D_i^2\mid X_1,\cdots,X_{i-1}]\geq\sigma^2$ 。那么设 $Y_i=X_i^2-\sigma^2\cdot i$,从而

$$\mathbb{E}[Y_i \mid X_1, \cdots, X_{i-1}] = \mathbb{E}[X_i^2 \mid X_1, \cdots, X_{i-1}] - \sigma^2 \cdot i$$

$$= \mathbb{E}[D_i^2 \mid X_1, \cdots, X_{i-1}] + X_{i-1}^2 - \sigma^2 \cdot i$$

$$\geq \sigma^2 + (Y_{i-1} + \sigma^2 \cdot (i-1)) - \sigma^2 \cdot i$$

$$= Y_{i-1}$$

这表明 (Y_i) 是一个下鞅,从而对于一个停时 T,

$$\mathbb{E}[Y_T] \geq \mathbb{E}[Y_0] \quad \Rightarrow \quad \mathbb{E}[T] \leq rac{\mathbb{E}[X_T^2] - \mathbb{E}[X_0^2]}{\sigma^2}$$

现在考虑一个上鞅 (X_i) ,定义在区间 [0,n] 上, $X_0=s$,满足:

$$\mathbb{E}[D_i \mid X_1, \cdots, X_{i-1}] \leq 0$$

$$\mathbb{E}[D_i^2 \mid X_1, \cdots, X_{i-1}] \geq \sigma^2$$

Claim: 设 T 是第一次到达 0 的时刻, $\mathbb{E}[T] \leq rac{2ns-s^2}{\sigma^2} \leq rac{n^2}{\sigma^2}$

构造 $Y_i = X_i^2 - 2nX_i - \sigma^2 i$,可以验证 Y_i 是一个下鞅,从而

$$\mathbb{E}[Y_T] \geq \mathbb{E}[Y_0] \quad \Rightarrow \quad \mathbb{E}[T] \leq rac{2ns-s^2}{\sigma^2} \leq rac{n^2}{\sigma^2}$$

Random 2-SAT

对于一个有 n 个变量的 2-CNF ϕ ,任意选定一个起始赋值 a_0 。如果 ϕ 不满足,则任取一个没满足的 clause C_0 ,任选其中的一个 literal 并翻转之。

Claim: 如果 ϕ 是可满足的,则上述随机算法在期望 $O(n^2)$ 次找到一个合法赋值。

任取一个合法赋值 a^* ,用 X_i 代表 i 轮后的赋值 a_i 和 a^* 的 Hamming 距离,则当 a_i 仍是不满足的赋值 时,

$$|X_i - X_{i-1}| = 1, \quad \Pr[X_i - X_{i-1} = -1] \ge rac{1}{2}$$

后者是因为一个错误的 clause 当中所涉及的两个变量,不妨在 a^* 中的赋值是 00,则在 a_{i-1} 中的赋值只可能是 01,10,11。对于前两者 Hamming 距离期望不变,而对于最后一种情况 Hamming 距离一定 -1

因此设 $D_i = X_i - X_{i-1}$,则有

$$\mathbb{E}[D_i \mid X_1, \cdots, X_{i-1}] \leq 0$$

 $\mathbb{E}[D_i^2 \mid X_1, \cdots, X_{i-1}] = 1$

从而根据前述结论,有 $\mathbb{E}[\text{steps to }a^*] \leq n^2$ 。

注:事实上在上述迭代过程中可能中途即出现 $a_i \neq a^*$ 已经满足了 ϕ 的情况,此时迭代会收敛,因为找不到"错误的 clause",但这是有助于结论的,故不做考虑。

Lecture 20 - 2025 / 4 / 28

Percolation on d-Regular Graphs

Theorem: G 为 n 顶点的 d-正则图,其中 $3 \le d \le n-1$ 。用 \mathcal{C}_1 代表 G 上的 p-渗滤的最大的连通分支,其中 $p=\dfrac{1}{d-1}$,则对任意 A>0:

$$\Pr[|\mathcal{C}_1| \geq An^{2/3}] \leq rac{lpha}{A^{3/2}}$$

其中 α 是一个 universal 常数。

考虑选定一个点 v 开始分支过程,用 X_t 表示当前"前沿"点的数量,每次展开一个"前沿"点。初始 $X_0=1$,于是

$$X_t = X_{t-1} - 1 + \mathcal{B}\left(d-1, rac{1}{d-1}
ight)$$

可以看出 (X_t) 是鞅,我们关注的是 $X_T=0$ 的时刻。

Lemma: 假设 (X_t) 是关于 (\mathcal{F}_t) 的鞅, $X_0=1, X_t\geq 0$,定义停时 $T=\min\{k, \min\{t\mid X_t=0\lor X_t\geq h\}\}$,那么如果满足

- (方差有下界) $Var[X_t | \mathcal{F}_{t-1}] \ge \sigma^2 > 0$,对于 $X_t > 0$
- (越界不太多) $\mathbb{E}[X_T^2 \mid X_T \geq h] \leq Dh^2$

那么就有
$$\Pr[\forall t \leq k, X_t > 0] \leq \frac{1}{h} + \frac{Dh}{k\sigma^2}$$
。

首先所求即 $\Pr[X_T \neq 0] \leq \Pr[T \geq k] + \Pr[X_T \geq h]$ 。

容易根据 Markov 不等式得到
$$\Pr[X_T \geq h] \leq rac{\mathbb{E}[X_T]}{h} = rac{1}{h}$$
。

考虑 $Y_t:=X_t^2-hX_t-\sigma^2t$,易见 (Y_t) 是下鞅,从而 $1-h=\mathbb{E}[Y_0^2]\leq\mathbb{E}[Y_T^2]\leq\mathbb{E}[X_T^2]-h\mathbb{E}[X_T]-\sigma^2\mathbb{E}[T]$ 。

注意到 $\mathbb{E}[X_T^2] - h\mathbb{E}[X_T]$ 在 $X_T < h$ 时是负的,故 $\leq \Pr[X_T \geq h] \cdot (Dh^2 - h^2) \leq (D-1)h$ 。于是立刻可以得到 $\mathbb{E}[T] \leq Dh/\sigma^2$ 。

再根据 Markov 不等式,有 $\Pr[T \geq k] \leq rac{Dh}{k\sigma^2}$ 。

我们考虑将上述引理应用到 (X_t) 上。易见方差 $\sigma^2=rac{d-2}{d-1}\geqrac{1}{2}$,于是只需关注 $X_T\geq h$ 时的情况,我们针对最后一步展开。

$$egin{aligned} \mathbb{E}[X_T^2 \mid X_T \geq h] & \leq \mathbb{E}_{Z \sim \mathcal{B}(d-1,1/(d-1))}[(h+Z)^2] \ & \leq h^2 + 2h + 2 \leq 2h^2 \quad (orall h \geq 3) \end{aligned}$$

于是根据 Lemma,对于任何 $h\geq 3$,都有 $\Pr[\forall t\leq k, X_t>0]\leq \frac{1}{h}+\frac{4h}{k}$,取 $h=\frac{\sqrt{k}}{2}$ 得到最优概率 $\frac{2}{\sqrt{k}}$,即设 C(v) 表示从 v 开始分支过程的连通分支大小,则有 $\Pr[C(v)\geq k]\leq \frac{2}{\sqrt{k}}$ 。下证 Theorem。

如果直接对所有 v 使用 union bound,则将得到 $\Pr[\exists v, C(v) \geq k] \leq \frac{2n}{\sqrt{k}}$,这显然对于 $k = O(n^{2/3})$ 是一个不好的界限。我们可以巧妙地将分母再乘一个 k。

考虑用 N_k 代表位于 $\geq k$ 个点的连通分支的点数,则 $\mathbb{E}[N_k]=n\Pr[C(v)\geq k]=rac{2n}{\sqrt{k}}$ 。根据 Markov 不等式,有 $\Pr[N_k\geq k]\leq rac{2n}{k^{3/2}}$ 。取 $k=An^{2/3}$,则有

$$\Pr[|\mathcal{C}_1| \geq An^{2/3}] \leq rac{2}{A^{3/2}}$$

Lecture 21 - 2025 / 5 / 8

Lovász Local Lemma

Lemma: 设 A_1,\cdots,A_n 是一系列"坏事件", $\Pr[A_i]\leq p$,并且每个 A_i 独立于除最多 d 个其他事件 A_j 之外的所有事件。如果 $ep(d+1)\leq 1$,则

$$\Pr\left[igcap_{i=1}^n \overline{A_i}
ight] > 0$$

Claim: 对于任意任何 $S\subseteq\{1,\cdots,n\}$,对任意 i,有 $\Pr\left[A_i\mid igcap_{j\in S}\overline{A_j}
ight]\leq rac{1}{d+1}$ 。

对
$$m:=|S|$$
 归纳, $m=0$ 时 $\Pr[A_i] \leq p \leq rac{1}{e(d+1)} < rac{1}{d+1}$ 。

将 S 分为 $S_1=S\cap D_i, S_2=S\backslash S_1$,其中 D_i 为和 A_i 有关的事件集合。

$$\Pr\left[A_i \mid \bigcap_{j \in S} \overline{A_j}\right] = \frac{\Pr\left[A_i \cap \bigcap_{j \in S_1} \overline{A_j} \mid \bigcap_{k \in S_2} \overline{A_k}\right]}{\Pr\left[\bigcap_{j \in S_1} \overline{A_j} \mid \bigcap_{k \in S_2} \overline{A_k}\right]}$$

分子 $\leq \Pr\left[A_i \mid \bigcap_{k \in S_2} \overline{A_k}\right] \leq \Pr[A_i]_{\circ}$

对于分母,不妨设 $S_1 = \{1, 2, \cdots, |S_1|\}$ 。

$$egin{aligned} \Pr\left[igcap_{j \in S_1} \overline{A_j} \mid igcap_{k \in S_2} \overline{A_k}
ight] &= \prod_{j=1}^{|S_1|} \left(1 - \Pr\left[A_j \mid igcap_{j' < j} \overline{A_{j'}} \cap igcap_{k \in S_2} \overline{A_k}
ight]
ight) \ &\geq \left(1 - rac{1}{d+1}
ight)^{|S_1|} \ &\geq \left(1 - rac{1}{d+1}
ight)^d > rac{1}{e} \end{aligned}$$

从而原式 $\leq \frac{p}{1/e} = ep \leq \frac{1}{d+1}$,根据归纳法原命题得证。

根据 Claim, 我们有

$$egin{aligned} \Pr\left[igcap_{i=1}^n \overline{A_i}
ight] &= \prod_{i=1}^n \left(1 - \Pr\left[A_i \mid igcap_{j < i} \overline{A_j}
ight]
ight) \ &\geq \left(1 - rac{1}{d+1}
ight)^n > 0 \end{aligned}$$

从而 LLL 得证。

Example: k-SAT

Claim: 任何 k-CNF φ ,如果每个变量都出现在至多 $\frac{2^{k-2}}{k}$ 个 clause 里,则 φ 是可被满足的。

 $A_i:=$ 第 i 个 clause 不满足,则 $\Pr[A_i]=2^{-k}=p$,同时 $d=k\cdot \frac{2^{k-2}}{k}=2^{k-2}$ 。容易验证此时 LLL 的条件满足。

Lecture 22 - 2025 / 5 / 12

Packet Routing

考虑给定一张无向图 G,第 i 个数据包想从 $s_i \to t_i$,沿着固定的路径 P_i 。但是每条边每个时刻只能通过一个数据包。我们想要设计一个调度方案,使得传输完所有数据包的总时间最少。

定义 c_e 为经过 e 的路径数量, $c=\max\{c_e\}$,d 为所有路径 P_i 长度的最大值。显然答案必须 $\geq\max\{c,d\}$ 。

Theorem: 存在一种调度方案满足时间为 O(c+d) 且只有常数大小的缓冲区。

Theorem': 存在一种调度方案满足时间为 $O((c+d)2^{O(\log^*(c+d))})$ 且只有 $O((\log d)2^{O(\log^*(c+d))})$ 大小的缓冲区。这里 \log^* 的意思是通过不断取 \ln 直到变成常数规模所需要的次数。

不失一般性设 c=d。考虑尝试安排数据包 i 在起点等待 Z_i 时间,然后直接不等待地沿着路径 P_i 完成传输。这里 Z_i 是独立均匀从 $\{1,2,\cdots,\alpha d\}$ 中抽取, $\alpha>1$ 是待确定常数,显然这种做法的时间开销是 $(1+\alpha)d$,正确性待证。

Claim: 将时间切分为 $\ln d$ 长度的帧,可以将问题分割为若干子问题,其中每个数据包想从这个帧内的起点到这个帧内的终点。以正概率每个子问题中的边的冲突次数(经过的路径数量)为 $\ln c$ 。

对于每条边 e 定义坏事件 A_e 代表在某个帧内经过 e 的路径数量超过 $\ln c$ 。

注意到 A_e 只和 $A_{e'}$ 相关,其中 e,e' 存在公共经过的数据包。由于只有至多 c 个数据包经过 e,每个数据包经过的路径长度至多 d,因此 A_e 至多依赖 $cd=d^2$ 个坏事件。

接下来分析 $\Pr[A_e]$ 。对于任何一个数据包,因为帧的长度是 $\ln d$,所以对于一个特定的帧,在其中任何数据包经过 e 的概率仅为 $\ln d/\alpha d$ 。于是该帧内经过 e 的总边数 $\sim \mathcal{B}(c, \ln d/\alpha d)$,因此 $\Pr[A_e] = (1+\alpha)d\cdot\Pr[\mathcal{B}(c, \ln d/\alpha d) > \ln c]$,即对所有 $< (1+\alpha)d$ 个帧 union bound。

根据 Chernoff bound,

$$\Pr[A_e] \leq (1+lpha)d \cdot \left(rac{ce \ln d}{dlpha \ln c}
ight)^{\ln d} = (1+lpha)d^{2-\ln lpha}$$

因此只需要取 α 足够大,即可满足 $\Pr[A_e] < 1/e(d^2+1)$ 。

利用这一性质,可以将问题拆分为 $(1+\alpha)d/\ln d$ 个子问题,参数分别为 $\ln c$ 和 $\ln d$,然后分别递归解决。通过不断取 \ln ,最终问题会变成常数规模,于是我们可以构造一个确定的调度方案。最终通过合并解决原问题。由于递归层数是 $O(\log^*(c+d))$ 的,每层总长度会伸长 $1+\alpha$ 倍,因此总时间为 $d2^{O(\log^*(c+d))}$,同时不同帧之间不会影响,因此缓冲区大小为 $O((\log d)2^{O(\log^*(c+d))})$ 。

Asymmetric LLL

Lemma (General LLL): 设 A_1,\cdots,A_n 是一系列坏事件, $D_i\subseteq\{A_1,\cdots,A_n\}$ 是 A_i 相关的事件集合,如果存在实数 $x_1,\cdots,x_n\in[0,1)$ 使得对所有的 i,有 $\Pr[A_i]\leq x_i\prod_{j\in D_i}(1-x_j)$,则 $\Pr[\bigcap_{i=1}^n\overline{A_i}]\geq\prod_{i=1}^n(1-x_i)>0$ 。

通过带入 $x_i = 2\Pr[A_i]$,有

Corollary (Asymmetric LLL): 同上,如果 $\sum_{j\in D_i}\Pr[A_j]\leq 1/4$,则 $\Pr[\bigcap_{i=1}^n\overline{A_i}]\geq \prod_{i=1}^n(1-2\Pr[A_i])>0$ 。

Frugal Graph Coloring

Definition: 称 G 的一个合法染色是 β -frugal 的,如果对于任何 $v\in G$ 的邻居,都没有一种颜色出现了多于 β 次。

Theorem: 如果 G 的最大度数 $\Delta \geq \beta^{\beta}$,则 G 有一种用 $16\Delta^{1+1/\beta}$ 种颜色的 β -frugal 染色。

对于 $\beta = 1$,有 $16\Delta^2$ 种颜色,这是容易做到的。

对于 $\beta \geq 2$,对 G 随机均匀 $Q:=16\Delta^{1+1/\beta}$ 染色。下面证明有正数概率是满足条件的即可。有两类坏事件:

- 1. A_{uv} : 相邻的两点 u, v 染成同一种颜色。
- 2. $B_{u_1,u_2,\cdots,u_{\beta+1}}$: 某一个点的邻居 $u_1,u_2,\cdots,u_{\beta+1}$ 染成了同一种颜色。

容易看出 $\Pr[A_{uv}]=1/Q, \Pr[B_{u_1,\cdots,u_{\beta+1}}]=1/Q^{\beta}$ 。对于 A 类事件,它与至多 2Δ 个 A 类事件、 $2\Delta\binom{\Delta}{\beta}$ 个 B 类事件相关;对于 B 类事件,它与至多 $(\beta+1)\Delta$ 个 A 类事件、 $(\beta+1)\Delta\binom{\Delta}{\beta}$ 个 B 类事件相关。可见 B 类事件的相关性更强,我们对其验证 Asymmetric LLL 的使用条件:

$$\begin{split} &\left((\beta+1)\Delta\cdot\frac{1}{Q}\right) + \left((\beta+1)\Delta\binom{\Delta}{\beta}\cdot\frac{1}{Q^{\beta}}\right) \\ &\leq \frac{(\beta+1)\Delta}{Q} + \frac{(\beta+1)\Delta^{\beta+1}}{\beta!Q^{\beta}} \\ &\leq \frac{\beta+1}{16\Delta^{1/\beta}} + \frac{\beta+1}{\beta!16^{\beta}} \leq \frac{\beta+1}{16\beta} + \frac{\beta+1}{\beta!16^{\beta}} < 1/4 \end{split}$$

因此满足 Asymmetric LLL 的使用条件,得证。

Lecture 23 - 2025 / 5 / 15

Markov Chains

Definition: 一个 Markov 链是一列随机变量 $(X_t)_{t=0}^{\infty}$,满足

$$\Pr[X_t = y \mid X_{t-1} = x, X_{t-2}, \cdots, X_0] = \Pr[X_t = y \mid X_{t-1} = x] = P(x, y)$$

其中 P(x,y) 是一个转移概率,P 是行和为 1 的矩阵。

我们有 $p_x^{(t)}=p_x^{(0)}P^t$,其中 $p_x^{(0)}$ 是从 x 出发的 one-hot 初始分布。

Definition (irreducible): $\forall x,y$, $\exists t \text{ s.t. } p_x^{(t)}(y)>0$

Definition (aperiodic): $\forall x,y,\gcd\{t\mid p_x^{(t)}(y)>0\}=1$

Stationary Distribution

Theorem (Fundamental Theorem): 如果 P 是不可约且非周期的,则存在唯一的平稳分布 π ,满足 $\pi P=\pi$,且 $p_x^{(t)}(y) \xrightarrow{t\to\infty} \pi(y)$ $\forall x,y$ 。这里 π 实际上是 P 特征值为 1 的唯一左特征向量。

Observation 1: 如果 P 是对称的,则 π 是均匀分布。

Observation 2: 如果 P 列和也为 1,则 π 是均匀分布。

Observation 3: 如果 P 关于某个分布 π 可反的,即 $\pi(x)P(x,y)=\pi(y)P(y,x)$,则 π 是平稳分布。

Metropolis Process

给定一个大集合 Ω 和权重 $w:\Omega\to\mathbb{R}^+$,希望设计一个稳态分布为 $\pi(x)=w(x)/Z$ 的 Markov 链,其中 $Z=\sum_{x\in\Omega}w(x)$,并且我们假定 Z 是不知道的,或者正是我们想求的。

大空间采样过程给定将 Ω 连接起来的无向图,以及位于 x 时抽取邻居的分布 $\kappa(x,y)>0$,并且有 $\kappa(x,y)=\kappa(y,x)$,我们构造 Markov 链如下:

- 在x时,抽取一个邻居y,概率为 $\kappa(x,y)$ 。
- 以概率 $\min\{1, w(y)/w(x)\}$ 接受 y,否则停留在 x。

Claim: 由大空间采样构造出的 Markov 链的平稳分布为 $\pi(x)=w(x)/Z$ 。

不妨设 $w(x) \geq w(y)$ 。当 x,y 不是邻居时, $\pi(x)P(x,y) = \pi(y)P(y,x) = 0$ 。当 x,y 是邻居时,

$$\pi(x)P(x,y) = \frac{w(x)}{Z} \cdot \kappa(x,y) \frac{w(y)}{w(x)} = \frac{w(y)}{Z} \kappa(x,y) = \pi(y)P(y,x)$$

最后一个等号是因为 $\kappa(x,y)=\kappa(y,x)$ 。

事实上,如果不满足 $\kappa(x,y)=\kappa(y,x)$,我们只需将接受概率修改为 $\min\{1,(w(y)\kappa(y,x))/(w(x)\kappa(x,y))\}$ 。

Lecture 24 - 2025 / 5 / 19

Mixing Time

Definition (Vartiation Distance): 对于两个 Ω 上的分布 μ, ξ ,定义

$$\|\mu-\xi\|=rac{1}{2}\sum_{x\in\Omega}|\mu(x)-\xi(x)|=\max_{A\subseteq\Omega}|\mu(A)-\xi(A)|$$

Definition: 对于一个不可约无周期的 Markov 链,定义时间 t 的距离为 $\Delta(t) = \max_{x \in \Omega} \|\pi - p_x^{(t)}\|$ 。

Definition (Mixing Time): 定义 $au_{ ext{mix}}$ 为混合时间: $au_{ ext{mix}} = \min\{t \mid \Delta(t) \leq 1/2e\}$ 。

Fact: $\Delta(\tau_{\min}\lceil\ln\epsilon^{-1}\rceil) \leq \epsilon$

通过 coupling 的方式可以证明 $\Delta(kt) \leq (2\Delta(t))^k$ 。

Definition (Strong Stationary Time): 停时 T 是一个强稳定时间,如果停下来时可以保证收敛 $\Pr[X_t=y\mid T=t]=\pi(y)$ 。

Claim: $\Delta(t) \leq \Pr[T > t]$

虽然 $\Delta(t)$ 是一个固定的数,但我们可以对它求期望

$$\mathbb{E}[\Delta(t)] = \Pr[T > t] \cdot \mathbb{E}[\Delta(t) \mid T > t] + \Pr[T \le t] \cdot \mathbb{E}[\Delta(t) \mid T \le t]$$

$$\le \Pr[T > t] \cdot 1 + \Pr[T \le t] \cdot 0 = \Pr[T > t]$$

Example: Top-in-at-Random

考虑一种洗牌方式:每次把最顶上的牌插入随机位置。

Claim: 这种洗牌方式的混合时间为 $O(n \log n)$ 。

用 T 表示原本最底下的牌被随机插入的时刻,则 T 是一个强稳定时间。可见 $T=T_1+T_2+\cdots+T_{n-1}+1$,其中 T_i 表示从位置 i 变动到 i+1 所需要的时间。每个 T_i 的分布是几何分布,期望为 n/i ,故 $\mathbb{E}[T]=O(n\log n)$ 。根据 Markov 不等式, $\tau_{\mathrm{mix}}\leq O(n\log n)$ 。

Example: Riffle Shuffle

考虑一种洗牌方式:每次把牌按照 $\mathcal{B}(n,1/2)$ 分成两堆,然后随机均匀交叉。它的逆过程是,随机将每张牌标记为 0/1,然后将 0 的牌挪到上面,1 的牌挪到下面。

Claim: 这种洗牌方式的混合时间 $\leq 2 \log_2 n + O(1)$ 。

将每轮的编号串联为一个二进制串,用 T 表示每张牌被唯一标号确定的时间,也即给每张牌随机抽样 $\left[0,2^{T}\right)$ 内的编号,能够做到不重复的时间。

根据生日悖论,n 个人从 cn^2 大小的集合抽取生日,有生日冲突的概率渐进趋向 $1 - \exp(-1/2c)$ 。因此,只需 $1 - \exp(-1/2c) \le 1/2e$ 且 $2^t \ge cn^2$,则有 $\tau_{\text{mix}} \le 2\log_2 n + O(1)$ 。

另一种看法是,对于固定的两张牌 (x,y),无法被分开的概率为 2^{-t} ,根据 union bound,只需要 $t=O(\log n)$ 即可使得 $n^22^{-t} \le 1/2e$ 。

Coupling

Definition (Coupling): 设 $(X_t),(Y_t)$ 为一个 Markov 链的两个样本,称它们是一个耦合,如果

- 1. 边际上 X_t 和 Y_t 的分布相同,即 $\Pr[X_t=y]=\Pr[Y_t=y]$;
- 2. $X_t = Y_t$ 时, $X_{t+1} = Y_{t+1}$ 。

Definition (Meeting Time): T_{xy} 是从 x,y 开始的两个 Markov 链的耦合的第一次相遇时间。即 $T_{xy}=\min\{t\mid X_t=Y_t, X_0=x, Y_0=y\}$ 。

Claim: $\Delta(t) \leq \max_{x,y} \Pr[T_{xy} \geq t]$

首先注意到,对于任何两个 r.v. X, Y,都有 $\Pr[X \neq Y] \geq ||P_X - P_Y||$ 。

从而 $\Delta(t) = \max_x \|P_x^{(t)} - \pi\| \le \max_{x,y} \|P_x^{(t)} - P_y^{(t)}\| \le \max_{x,y} \Pr[X_t \neq Y_t \mid X_0 = x, Y_0 = y] \le \max_{x,y} \Pr[T_{xy} \ge t]$ 。其中第一个不等号是因为 π 可以写作 $P_y^{(t)}$ 的线性组合 $\pi = \sum_y \pi(y) P_y^{(t)}$:

$$\pi(x) = (\pi P^t)(x) = \sum_y \pi(y) P^t(y, x) = \sum_y P_y^{(t)}(x) \pi(y)$$

Corollary: $au_{ ext{mix}} \leq 2e \max_{x,y} \mathbb{E}[T_{xy}]$

根据 Markov 不等式, $\Pr[T_{xy} \geq t] \leq \mathbb{E}[T_{xy}]/t$,因此 $\Delta(t) \leq \max_{x,y} \mathbb{E}[T_{xy}]/t$ 。当 $t = 2e \max_{x,y} \mathbb{E}[T_{xy}]$ 时, $\Delta(t) \leq 1/2e$ 。

Example: Random Transposition Shuffle

考虑一种洗牌方式:每次随机选择两个位置交换。这个洗牌方式的等价描述是,选择一个位置和一张牌 $\,c$,将 $\,c$ 交换到位置 $\,i$ 。

Claim: 这种洗牌方式的混合时间为 $O(n^2)$ 。

用 Coupling 来分析,用 D_t 表示 X_t, Y_t 不同的位置,目标是分析多久之后 $D_t = 0$ 。

考虑一次选中(i,c),

- 如果 c 已经匹配了,则 D_t 不会改变
- 如果 c 没有匹配,则 D_t 不会上深,且如果 i 位置之前不匹配,将会至少减少 1。

因此,如果当前 $D_t=d$,则 $\Pr[D_t ext{ decreases}] \geq (d/n)^2$ 。于是 $\mathbb{E}[T_{xy}] \leq \sum_{d=1}^n (n/d)^2 = O(n^2)$ 。

注:实际上为 $\Theta(n \log n)$ 。

Lecture 25 - 2025 / 5 / 22

Graph Colorings

给定一张无向图 G=(V,E),最大度数为 Δ ,k 种颜色。目标是随机生成一个 k-着色,使得同色不相邻。 考虑如下过程:

- 1. 随机选择结点 v 和颜色 c
- 2. 如果 v 可以用 c 染色,即染

Theorem: 如果 $k \geq 4\Delta + 1$ 则这个 Markov 链的混合时间为 $O(n \log n)$ 。

定义一个 coupling: X_t 和 Y_t 每次选择同样的 v,c,用 D_t 表示 X_t,Y_t 不同色的结点, $d_t=|D_t|$,目标则是计算 $d_t=0$ 所需的时间。

- 好的操作:如果 $v\in D_t$,且 c 对 X_t,Y_t 都合法,则 $d_{t+1}=d_t-1$ 。好的操作数量 $\geq d_t(k-2\Delta)$ 。
- 坏的操作:如果 $v\in V\setminus D_t$,且 c 对 X_t,Y_t 当中的一个合法、另一个不合法,则 $d_{t+1}=d_t+1$ 。坏的操作数量 $\leq 2d_t\Delta$ 。这可以通过枚举 v 的异色邻居计数。

从而 $\mathbb{E}[d_{t+1} \mid d_t] \leq d_t + d_t \frac{4\Delta - k}{kn} \leq d_t (1 - 1/kn)$ 。 进而 $\mathbb{E}[d_t \mid d_0] \leq d_0 (1 - 1/kn)^t$ 。 取 $t = Ckn\log n$,结合 $d_0 \leq n$ 有 $\mathbb{E}[d_t] \leq 1/2e$ 。

Theorem: 如果 $k \geq 3\Delta + 1$ 则这个 Markov 链的混合时间为 $O(n \log n)$ 。

我们通过设计一个更好的 coupling 来证明。具体而言, X_t 和 Y_t 每次选择同样的 v,但 X_t 选择颜色 c 时:

- 如果 X_t, Y_t 中都可以用 c 染色,则 Y_t 也选择颜色 c。
- 如果 X_t, Y_t 中都不可以用 c 染色,则 Y_t 也选择颜色 c。
- 如果 X_t 可以用 c 染色, Y_t 不可以,则 Y_t 尽量选择一个可以染色的颜色。
- 如果 X_t 不可以用 c 染色, Y_t 可以,则 Y_t 尽量选择一个不可以染色的颜色。

上述定义的思路是"将 $N_X(v)\setminus N_Y(v)$ 和 $N_Y(v)\setminus N_X(v)$ " 尽量配对起来,其中 N(v) 表示与 v 邻居的颜色集合。从而好的操作数量仍然为 $d_t(k-2\Delta)$,而坏的操作数量 $\leq d_t\Delta$,缩小了一半。从而好坏操作的差 $\leq d_t(3\Delta-k)$ 。

Theorem: 如果 $k \geq 2\Delta + 1$ 则这个 Markov 链的混合时间为 $O(n \log n)$ 。

我们只需对上面的 coupling 进行更为精细的分析。事实上,好坏操作的差为

$$d_t k - \sum_{v \in D_t} |N_X(v) \cup N_Y(v)| - \sum_{v \in V \setminus D_t} \max\{|N_X(v) \setminus N_Y(v)|, |N_Y(v) \setminus N_X(v)|\}$$

采用贡献法,对于每个 $v\in D_t$ 及其邻居构成的有序二元组 (v,u),如果 $u\in D_t$,则这条边分别在第一个求和 v 时贡献两次,如果 $u\in V\setminus D_t$,则这条边在第一个求和 v 时贡献一次,在第二个求和 u 时贡献一次。从而总贡献量不超过 $2d_t\Delta$,即好坏操作的差 $\leq d_t(2\Delta-k)$ 。

Algorithmic LLL

Fix(C)

Theorem: 对于任何 k-SAT 问题 ϕ ,如果每个变量至多在 $\dfrac{2^{k-d}}{k}$ 个子句出现,则该实例是可满足的,且赋值可以在多项式时间内构造得到。

解的存在性是 LLL 的经典应用,考虑如何构造。首先给 ϕ 随机赋值,然后每次取出一个尚未满足的子句 C,将其中的每个变量重新随机赋值。直到所有子句都满足为止。

```
Pick a random assignment of \phi while there is an unsatisfiable clause C
```

Fix(C):

Solve(ϕ):

Replace the variables of C with new random values while there is clause D that shares a variable with C that is not satisfied Fix(D)

下面从 Kolomogrov 复杂度的角度给出证明这个算法终止性证明。

考虑随机串是"不可压缩的",那么进行 F 次修复就需要 Fk 个 bit。但是现在更换方式为记录最终赋值和修复历史 C_1, C_2, \cdots, C_F ,可以看出通过这些信息足够恢复出所用到的所有随机 bit。因为修复一个 clause 前这个 clause 一定是完全不满足的,而最后一次被修复的信息又可通过最终赋值获得。

从而记录随机串只需要 c+n+F(k-d) 个 bit,其中 c 是常数。最后一项是因为被 Solve 调用的 Fix 可以用 $m\log m$ bit 记录,m 是子句数目。而递归调用的 Fix 涉及的 clause D 是与 C 有交的,因此只需要 $\log 2^{k-d}=k-d$ bit 记录。

综上 $c+n+F(k-d)\geq Fk$ 可以推出 F 是多项式级别的。结合随机串高概率 Kolomogrovly random 可知结论成立。