

Materiales para el instructor Capítulo 1: Conceptos de routing

CCNA Routing and Switching Routing and Switching

Essentials v6.0

Cisco Networking Academy® Mind Wide Open®

Materiales del instructor: Guía de planificación del capítulo 1

Esta presentación en PowerPoint se divide en dos partes:

- 1. Guía de planificación para el instructor
 - Información para ayudarlo a familiarizarse con el capítulo
 - Ayuda a la enseñanza
- Presentación de la clase del instructor
 - Diapositivas opcionales que puede utilizar en el aula
 - Comienza en la diapositiva n.º 13

Nota: Elimine la Guía de planificación de esta presentación antes de compartirla con otras personas.

Routing and Switching Esse ntials 6.0
Guía de planificación
Capítulo 1: Conceptos de routing

Cisco Networking Academy® Mind Wide Open®

Capítulo 1: Actividades

¿Qué actividades se relacionan con este capítulo?

N.° de página	Tipo de actividad	Nombre de la actividad	¿Opcional?
1.0.1.2	Actividad de clase	¿Realmente necesitamos un mapa?	Opcional
1.1.1.7	Actividad de clase	Identificar los componentes del router	-
1.1.1.8	Packet Tracer	Uso de traceroute para detectar la red	Recomendado
1.1.1.9	Práctica de laboratorio	Realización de un esquema de Internet	Opcional
1.1.2.7	Verificador de sintaxis	Configuración de la SVI de administración en S2	-
1.1.2.8	Actividad de clase	Documentar el esquema de asignación de direcciones	-
1.1.2.9	Packet Tracer	Documentar la red	Recomendado
1.1.3.1	Verificador de sintaxis	Configurar los parámetros básicos en R2	-
1.1.3.2	Verificador de sintaxis	Configuración de una interfaz de router IPv4	-
1.1.3.5	Packet Tracer	Configurar interfaces IPv4 e IPv6	Recomendado

La contraseña utilizada en las actividades de Packet Tracer en este capítulo es: PT_ccna5

Capítulo 1: Actividades

¿Qué actividades se relacionan con este capítulo?

N.° de página	Tipo de actividad	Nombre de la actividad	¿Opcional?
1.1.4.1	Verificador de sintaxis	Verificar interfaces de router (Figura 4)	-
1.1.4.1	Verificador de sintaxis	Verificar interfaces IP de router (Figura 5)	-
1.1.4.3	Verificador de sintaxis	Filtrado de comandos show	-
1.1.4.4	Verificador de sintaxis	Historial de comandos	-
1.1.4.5	Packet Tracer	Configurar y verificar una red pequeña	Recomendado
1.1.4.6	Práctica de laboratorio	Configurar los parámetros básicos del router con la CLI de IOS	Opcional
1.2.1.6	Actividad de clase	Indicar la correspondencia entre la asignación de direcciones de capa 2 y la de capa 3	-
1.2.2.5	Actividad de clase	Ordenar los pasos del proceso de reenvío de paquetes	-
1.2.2.6	Actividad de clase	Indicar la correspondencia entre la distancia administrativa y el origen de la ruta	-
1.3.1.4	Actividad de clase	Interpretar el contenido de una entrada de la tabla de routing	-

La contraseña utilizada en las actividades de Packet Tracer en este capítulo es: PT_ccna5

Capítulo 1: Actividades

¿Qué actividades se relacionan con este capítulo?

N.° de página	Tipo de actividad	Nombre de la actividad	¿Opcional?
1.3.2.3	Verificador de sintaxis	Configuración de las interfaces conectadas directamente en R2	-
1.3.2.5	Packet Tracer	Investigar rutas conectadas directamente con PT	Recomendado
1.3.3.2	Verificador de sintaxis	Configurar una ruta estática predeterminada en el R1 (Figura 3)	-
1.3.3.2	Verificador de sintaxis	Configurar una ruta estática en el R2 (Figura 4)	-
1.4.1.1	Actividad de clase	¡Nos vendría muy bien un mapa!	Opcional

La contraseña utilizada en las actividades de Packet Tracer en este capítulo es: PT_ccna5

Capítulo 1: Evaluación

- Los estudiantes deben completar el capítulo 1 "Evaluación" después de completar el capítulo 1.
- Los cuestionarios, las prácticas de laboratorio, los Packet Tracers y otras actividades se pueden utilizar para evaluar informalmente el progreso de los estudiantes.

Capítulo 1: Prácticas recomendadas

Antes de enseñar el capítulo 1, el instructor debe:

- Completar el capítulo 1, "Evaluación."
- Los objetivos de este capítulo son:
 - Describir las funciones y las características principales de un router.
 - Conectar dispositivos para una red enrutada pequeña.
 - Configurar un router mediante la CLI para enrutar entre varias redes conectadas directamente.
 - Explicar el proceso de encapsulamiento y desencapsulamiento que utilizan los routers para el switching de paquetes entre interfaces.
 - Explicar la función de determinación de rutas de un router.
 - Comparar las formas en las que un router crea una tabla de routing cuando funciona en la red de una pequeña a mediana empresa.
 - Explicar las entradas de la tabla de routing de las redes conectadas directamente.
 - Explicar la forma en que un router crea una tabla de routing de redes conectadas directamente.
 - Explicar la forma en que un router crea una tabla de routing mediante rutas estáticas.
 - Explicar la forma en que un router crea una tabla de routing mediante un protocolo de routing dinámico.

Sección 1.1

- Revise el modelo OSI, la pila de protocolos TCP/IP y el proceso de encapsulamiento.
- Analice las características de red clave:
 - Topología
 - Confiabilidad
 - Escalabilidad
 - Disponibilidad
 - Velocidad
 - Costo
 - Seguridad
- Destaque la posición de los routers en el modelo OSI y el proceso de encapsulación.
- Enfatice el concepto de que los routers son computadoras especializadas.
- Enfatice los tipos de memoria que utilizan los routers y qué se almacena en cada uno.

Sección 1.1 (continuación)

- Asegúrese de que los estudiantes comprendan con claridad el papel que los routers desempeñan en una red:
 - Determinación de la mejor ruta para los paquetes
 - Reenvío de paquetes a su destino
 - Interconexión de redes
 - Analice los tres mecanismos de reenvío de paquetes que utilizan los routers.
 Enfatice que Cisco Express Forwarding (CEF) es el método más reciente y preferido.
 - Pregunte a los estudiantes qué direcciones se requieren para conectarse a una red. Y cómo se asignan. Dirección IP, máscara de subred o prefijo y gateway predeterminado.
 - Revise la configuración básica de un router y los comandos para verificar la configuración.
 - El comando show puede filtrarse por parámetros específicos para reducir la cantidad de salida agregando la barra vertical (|) después de show.
 - Show ip interface brief | exclude unassigned
 - Show running config | section line vty

Sección 1.2

- Revise el encapsulamiento y desencapsulamiento de paquetes. Sugiera a los estudiantes que pongan a prueba sus conocimientos con la actividad 1.2.1.6.
- Analice las métricas y de qué manera un protocolo de routing elige la mejor ruta en función del valor o de la métrica que usa para determinar la distancia para llegar a esa red.
 - Haga que los estudiantes evalúen diferentes rutas para llegar a un destino local; por ejemplo: por una autopista (más larga pero más rápida) o por caminos locales (más corta pero más lenta). Compare con las métricas de routing.
- Los estudiantes deben estar muy familiarizados con las distancias administrativas predeterminadas.
- Describa las diferencias entre el routing estático y el dinámico, y las ventajas y desventajas de cada uno.

Sección 1.3

 Enfatice la importancia de comprender la tabla de routing para verificar que las entradas de routing estén presentes y sean las correctas. Las tablas de routing contienen información importante que se utiliza para la solución de problemas.

Sección 1.3 (continuación)

- Proporcione a los estudiantes ejercicios prácticos adicionales sobre la interpretación de entradas en la tabla de routing.
- Demuestre y fomente el uso de la utilidad Verificador de sintaxis para practicar los comandos de la CLI.
- Recomendación: Los estudiantes deberán tomar nota de los comandos, en especial de los "comandos show", y de los resultados.
- Recursos de la CLI: comandos básicos de la CLI del router

http://www.youtube.com/watch?v=-zvihHxrfzM

http://www.cisco.com/en/US/docs/routers/access/1900/software/configuration/guide/routconf.html

Capítulo 1: Ayuda adicional

- Para obtener ayuda adicional sobre las estrategias de enseñanza, incluidos los planes de lección, las analogías para los conceptos difíciles y los temas de debate, visite la Comunidad CCNA en https://www.netacad.com/group/communities/community-home.
- Prácticas recomendadas de todo el mundo para enseñar CCNA Routing and Switching.
 https://www.netacad.com/group/communities/ccna-blog
- Si tiene planes o recursos de lección que desee compartir, súbalos a la Comunidad CCNA, a fin de ayudar a otros instructores.
- Los estudiantes pueden inscribirse en Packet Tracer Know How 1: Packet Tracer 101 (autoinscripción)

Cisco | Networking Academy[®] | Mind Wide Open™

Capítulo 1: Conceptos de routing

Routing and Switching Essentials v6.0

Cisco | Networking Academy® Mind Wide Open®

Capítulo 1: Secciones y objetivos

1.1 Configuración inicial del router

- Describir las funciones y las características principales de un router.
- Configurar los parámetros básicos en un router para enrutar entre dos redes conectadas directamente, mediante la CLI.
- Verificar la conectividad entre dos redes que están conectadas directamente a un router.

1.2 Decisiones de routing

- Explicar el proceso de encapsulamiento y desencapsulamiento que utilizan los routers para el switching de paquetes entre interfaces.
- Explicar la función de determinación de rutas de un router.

1.3 Funcionamiento del router

- Explicar las entradas de la tabla de routing de las redes conectadas directamente.
- Explicar la forma en que un router crea una tabla de routing de redes conectadas directamente.
- Explicar la forma en que un router crea una tabla de routing mediante rutas estáticas.
- Explicar la forma en que un router crea una tabla de routing mediante un protocolo de routing dinámico.

1.1 Configuración inicial del router

Cisco | Networking Academy® Mind Wide Open®

Características de una red

Características de la red

¿Por qué elegir el routing?

El router es responsable del routing del tráfico entre redes.

Los routers son computadoras

Los routers son computadoras especializadas que tienen los siguientes componentes que se requieren para funcionar:

- Unidad central de procesamiento (CPU)
- Sistema operativo (OS): los routers utilizan IOS de Cisco
- Memoria y almacenamiento (RAM, ROM, NVRAM, flash, disco duro)

Funciones de un router

Los routers son computadoras (continuación)

Los routers utilizan puertos y tarjetas de interfaz de red especializados para interconectarse a otras redes.

Panel trasero de un router

Los routers son computadoras

Memoria del router

Memoria	Descripción	
Memoria de acceso aleatorio (RAM)	Memoria volátil que proporciona almacenamiento temporal para diferentes aplicaciones y procesos que incluyen: IOS en ejecución Archivo de configuración en ejecución Routing de IP y tablas ARP Buffer de paquetes	
Memoria de solo lectura (ROM)	 Memoria no volátil que proporciona almacenamiento permanente para: Instrucciones de arranque Software básico de diagnóstico IOS limitado en caso de que el router no pueda cargar el IOS contodas las funciones 	
Memoria de acceso aleatorio no volátil (NVRAM)	Memoria no volátil que proporciona almacenamiento permanente para: • El archivo de configuración de inicio	
Flash	Memoria no volátil que proporciona almacenamiento de permanente para: IOS Otros archivos relacionados con el sistema	

Los routers interconectan redes

Conexión del router

Funciones de un router

Los routers eligen las mejores rutas

- Los routers usan rutas estáticas y protocolos de routing dinámico para descubrir redes remotas y crear sus tablas de routing.
- Los routers utilizan tablas de routing para determinar la mejor ruta para enviar paquetes.
- Los routers encapsulan el paquete y lo reenvían a la interfaz indicada en la tabla de routing.

Funciones de un router

Métodos de reenvío de paquetes

- Switching de procesos: es un mecanismo de reenvío de paquetes más antiguo que todavía está disponible para routers Cisco.
- Switching rápido: es un mecanismo común de reenvío de paquetes que usa una memoria caché de switching rápido para almacenar la información de siguiente salto.
- Cisco Express Forwarding (CEF): es el mecanismo de reenvío de paquetes más reciente, más rápido y más utilizado de Cisco IOS.

Cisco Express Forwarding

Conectar dispositivos

Conexión a una red

Gateways predeterminados

Para habilitar el acceso a la red, los dispositivos deben estar configurados con la siguiente información de direcciones IP.

- Dirección IP: identifica a un host único en una red local.
- Máscara de subred: identifica a la subred de la red del host.
- Gateway predeterminado: identifica al router al que se envía un paquete cuando el destino no está en la misma subred de la red local.

Dirección MAC	Dirección MAC	Dirección IP	Dirección MAC	Datos
de destino	de origen	de origen	de destino	
11-11-11- 11-11-11	AA-AA-AA AA-AA-AA	192.168.1.110	172.16.1.99	

Documentar la asignación de direcciones de red

La documentación de la red debe incluir, por lo menos, los siguientes elementos en un diagrama de topología y una tabla de asignación de direcciones:

- Nombres de los dispositivos
- Interfaces
- Direcciones IP y máscaras de subred
- Gateways predeterminados

Dispositivo	Interfaz	Dirección IP	Máscara de subred	Gateway predeterminado
R1	Fa0/0	192.168.1.1	255.255.255.0	N/D
	S0/0/0	192.168.2.1	255.255.255.0	N/D
R2	Fa0/0	192.168.3.1	255.255.255.0	N/D
	S0/0/0	192.168.2.2	255.255.255.0	N/D
PC1	N/A	192.168.1.10	255.255.255.0	192.168.1.1
PC2	N/A	192.168.3.10	255.255.255.0	192.168.3.1

Conectar dispositivos

Habilitar IP en un host

Dirección IP asignada en forma estática: al host se le asigna manualmente una dirección IP, una máscara de subred y un gateway predeterminado. También se puede asignar la dirección IP de un servidor DNS.

- Se utiliza para identificar recursos de red específicos, como servidores de red e impresoras.
- Se puede utilizar en redes muy pequeñas con pocos hosts.

Dirección IP asignada en forma dinámica: un servidor asigna en forma dinámica la información de la dirección IP utilizando el protocolo de configuración dinámica de hosts (DHCP).

- La mayoría de los hosts obtienen la información de su dirección IP mediante DHCP.
- Los routers Cisco pueden proporcionar servicios DHCP.

Habilitar IP en un host

Asignación estática de una dirección IP

Habilitar IP en un host

Asignación dinámica de una dirección IP

Indicadores LED de los dispositivos

Indicadores LED de Cisco 1941

#	Puerto	Indicador LED	Color	Descripción
1	GEO/0 y	S (velocidad)	1 parpadeo + pausa	El puerto opera a 10 Mb/s.
	GEO/1		2 parpadeos + pausa	El puerto opera a 100 Mb/s.
			3 parpadeos + pausa	El puerto opera a 1000 Mb/s.
		L (enlace)	Verde	El enlace está activo.
			Apagado	El enlace está inactivo.
2	Consola	EN	Verde	El puerto está activo.
			Apagado	El puerto está inactivo.
3	USB	EN	Verde	El puerto está activo.
			Apagado	El puerto está inactivo.

Acceso a la consola

Requisitos para las conexiones de consola

Puerto en la computadora	Cable requerido	Puerto en el ISR	Emulación de terminal	
Puerto serie	Cable de consola RJ-45 a DB-9		T	
Puerto USB	 Adaptador de puerto serie compatible con USB a RS-232 El adaptador puede requerir un controlador de software Cable de consola RJ-45 a DB-9 	Puerto de consola RJ-45	Tera Term	
tipo A	 USB tipo A a USB tipo B (USB mini-B) Se requiere un controlador de dispositivo disponible en cisco.com. 	USB tipo B (USB mini-B)	PuTTY	

Habilitar IP en un switch

- Los dispositivos de infraestructura de red requieren direcciones IP para habilitar la administración remota.
- En un switch, la dirección IP de administración se asigna en una interfaz virtual llamada interfaz virtual de switch (SVI).

Configurar los parámetros básicos de un router

- Asignar un nombre al dispositivo: lo distingue de otros routers.
- Proteger el acceso administrativo: protege el acceso a los modos EXEC con privilegios y del usuario y el acceso a Telnet, además de cifrar contraseñas.
- Configurar un aviso: proporciona notificaciones legales de acceso no autorizado.
- Guardar la configuración

Proteger el acceso administrativo

Configurar una interfaz de router IPv4

Para que la interfaz de router esté disponible, debe cumplir con los siguientes requisitos:

- Debe estar configurada con una dirección y una máscara de subred.
- Debe activarse con el comando no shutdown. Las interfaces LAN y WAN no están activadas de manera predeterminada.
- Deben configurarse con el comando clock rate en el extremo del cable de serie rotulado como DCE.

Se puede incluir una descripción optativa.

Configuración de la interfaz G0/0


```
R1 (config) # interface gigabitethernet 0/0
R1 (config-if) # description Link to LAN 1
R1 (config-if) # ip address 192.168.10.1 255.255.255.0
R1 (config-if) # no shutdown
R1 (config-if) # exit
R1 (config) #
*Jan 30 22:04:47.551: %LINK-3-UPDOWN: Interface
GigabitEthernet0/0, changed state to down
R1 (config) #
*Jan 30 22:04:50.899: %LINK-3-UPDOWN: Interface
GigabitEthernet0/0, changed state to up
*Jan 30 22:04:51.899: %LINEPROTO-5-UPDOWN: Line protocol on
Interface GigabitEthernet0/0, changed state to up
R1 (config) #
```


Configurar una interfaz de router IPv6

Configure la interfaz con una dirección IPv6 y una máscara de subred:

- Utilice el siguiente comando de configuración de interfaces: ipv6 address direcciónipv6/longitud-ipv6 [link-local | eui-64].
- Actívela con el comando no shutdown.

Configuración de la interfaz G0/0 de R1

Configurar una interfaz de router IPv6 (continuación)

Las interfaces IPv6 pueden admitir más de una dirección:

- Configure una dirección de unidifusión global especificada: ipv6address dirección-ipv6 /longitud-ipv6
- Configure una dirección IPv6 global con un identificador (ID) de interfaz en los 64 bits de orden bajo: ipv6address dirección-ipv6 /longitud-ipv6 eui-64.
- Configure una dirección link-local: ipv6address dirección-ipv6 /longitudipv6 link-local.

Topología de IPv6

Configurar una interfaz de loopback IPv4

Una interfaz de loopback es una interfaz lógica interna del router:

- No se asigna a un puerto físico; se la considera una interfaz de software que se coloca automáticamente en estado UP (activo).
- Una interfaz de loopback es útil para pruebas.
- Es importante en el proceso de routing de OSPF.

Configurar la interfaz de bucle invertido 0

Verificar la configuración de la interfaz

Se utilizan comandos show para verificar el funcionamiento y la configuración de la interfaz:

- show ip interfaces brief
- show ip route
- show running-config

Comandos show que se utilizan para reunir información más detallada sobre la interfaz:

- show interfaces
- show ip interfaces:

Resúmenes de la interfaz de visualización

Verificar la configuración de la interfaz (continuación)

Verificación de la tabla de routing

Verificar la configuración de una interfaz IPv6

Comandos comunes para verificar la configuración de una interfaz IPv6:

- show ipv6 interface brief: muestra un resumen de cada una de las interfaces.
- show ipv6 interface gigabitethernet 0/0: muestra el estado de la interfaz y todas las direcciones IPv6 correspondientes a esta interfaz.
- **show ipv6 route**: verifica que las redes IPv6 y las direcciones de interfaces IPv6 específicas se hayan instalado en la tabla de routing IPv6.

Verificación de la conectividad en R1

Filtrar la salida del comando show

La salida del comando show se puede controlar con los siguientes comandos y filtros:

- Utilice el comando terminal length número para especificar la cantidad de líneas que se mostrarán.
- Para filtrar resultados específicos de los comandos, utilice una barra vertical (|) después del comando show. Algunos de los parámetros que se pueden utilizar después de la barra vertical son los siguientes:
 - section, include, exclude, begin

Filtrado de comandos show

```
Rl# show running-config | section line vty
line vty 0 4
password 7 030752180500
login
transport input all
Rl#
```

Filtrado de comandos show

```
R1# show ip interface brief
Interface
                          IP-Address
                                          OK? Method Status
Embedded-Service-Engine0/0 unassigned
                                          YES unset administ
GigabitEthernet0/0
                          192.168.10.1
                                         YES manual up
GigabitEthernet0/1
                         192.168.11.1
                                         YES manual up
                         209.165.200.225 YES manual up
Serial0/0/0
Serial0/0/1
                          unassigned
                                          YES unset administ
R1#
Rl# show ip interface brief | include up
GigabitEthernet0/0
                          192.168.10.1
                                          YES manual up
GigabitEthernet0/1
                          192.168.11.1
                                         YES manual up
                          209.165.200.225 YES manual up
Serial0/0/0
R1#
```


Historial de comandos

El historial de comandos almacena temporalmente una lista de los comandos ejecutados para poder acceder a ellos:

- Para recuperar comandos, presione Ctrl+P o la flecha HACIA ARRIBA.
- Para volver a los comandos más recientes, presione Ctrl+N o la flecha hacia abajo.
- De manera predeterminada, el historial de comandos está habilitado y el sistema captura los últimos 10 comandos presentes en el búfer. Utilice el comando show history del modo EXEC con privilegios para mostrar el contenido del búfer.
- Utilice el comando terminal history size del modo EXEC del usuario para aumentar o reducir el tamaño del búfer.

```
R1# terminal history size 200
R1#
R1# show history
show ip interface brief
show interface g0/0
show ip interface g0/1
show ip route
show ip route
show ip route 209.165.200.224
show running-config interface s0/0/0
terminal history size 200
show history
R1#
```


1.2 Decisiones de routing

Cisco | Networking Academy® Mind Wide Open®

Función de switching de un router

Encapsulación y desencapsulación de paquetes

Enviar un paquete

La PC1 envía un paquete a la PC2

Trama de enlace de datos de capa 2 Datos de capa 3 del paquete

MAC de destino 00-10	MAC de origen 0A-10	Tipo 0x800	IP origen 192.168.1.10	MAC IP 192.168.4.10	Campos de IP	Datos	Tráiler
----------------------------	---------------------------	------------	---------------------------	------------------------	-----------------	-------	---------

Caché ARP de la PC1 para R1			
Dirección IP	Dirección MAC		
192.168.1.1	00-10		

Reenviar al siguiente salto

El R1 reenvía el paquete a la PC2

Routing de paquetes

El R2 reenvía el paquete al R3

Tabla de routing del R2						
Red	Saltos	IP del siguiente salto	Interfaz de salida			
192.168.1.0/24	1	192.168.3.1	Fa/0/0			
192.168.2.0/24	0	Con. Conectarse.	Fa/0/0			
192.168.3.0/24	0	Con. Conectarse.	S0/0/0			
192.168.4.0/24	1	192.162.3.2	S0/0/0			

Llegar al destino

El R3 reenvía el paquete a la PC2

Decisiones de routing

Proceso de decisión de reenvío de paquetes

La mejor ruta

- Un protocolo de routing elige la mejor ruta en función del valor o la métrica que usa para determinar la distancia para llegar a una red:
 - Una métrica es un valor que se utiliza para medir la distancia que existe hasta una red determinada.
 - La mejor ruta a una red es la ruta con la métrica más baja.
- Los protocolos de routing dinámico utilizan sus propias reglas y métricas para armar y actualizar tablas de routing:
 - Protocolo de información de routing (RIP): recuento de saltos.
 - Abrir primero la ruta más corta (OSPF): costo según el ancho de banda acumulativo de origen a destino.
 - Protocolo mejorado de routing de gateway interior (EIGRP): ancho de banda, demora, carga, confiabilidad.

Determinación de rutas

Equilibrio de carga

- Cuando un router tiene dos o más rutas hacia un destino con métricas del mismo costo, el router reenvía los paquetes usando ambas rutas por igual:
 - El equilibrio de carga por mismo costo puede mejorar el rendimiento de la red.
 - El equilibrio de carga por mismo costo puede configurarse para usar tanto protocolos de routing dinámico como rutas estáticas.

Distancia administrativa

- Si se configuran varias rutas a un destino en un router, la ruta que se instala en la tabla de routing es la que tiene la menor distancia administrativa (AD):
 - Una ruta estática con una AD de 1 es más confiable que una ruta detectada mediante EIGRP con una AD de 90.
 - Una ruta conectada directamente con una AD de 0 es más confiable que una ruta estática con una AD de 1.

Origen de la ruta	Distancia administrativa
Conectado	0
Estática	1
Ruta sumarizada EIGRP	5
BGP externo	20
EIGRP interno	90
IGRP	100
OSPF	110
Sistema intermedio a sistema intermedio (IS-IS)	115
RIP	120
EIGRP externo	170
BGP interno	200

1.3 Funcionamiento del router

Cisco | Networking Academy® Mind Wide Open®

La tabla de routing

- La tabla de routing es un archivo almacenado en la RAM que contiene información acerca de lo siguiente:
 - Rutas conectadas directamente
 - Rutas remotas

Fuentes de la tabla de routing

El comando **show ip route** se utiliza para mostrar el contenido de la tabla de routing:

- Interfaces de routing locales: se agregan a la tabla de routing cuando se configura una interfaz. (Pueden verse en IOS 15 o versiones más recientes para rutas IPv4, y en todas las versiones de IOS para rutas IPv6.)
- Interfaces conectadas directamente: se agregan a la tabla de routing cuando se configura una interfaz y está activa.
- Rutas estáticas: se agregan cuando una ruta se configura manualmente y la interfaz de salida está activa.
- Protocolo de routing dinámico: se agrega cuando se implementa EIGRP u OSPF y se identifican las redes.

Fuentes de la tabla de routing (continuación)

Tabla de routing del R1 192.168.10.0/24 10.1.1.0/24 10.1.1.0/24 10.1.20/24 10.1.2.0/24

```
R1# show ip route

Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia -

IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks

D 10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05,
```

Analizar la tabla de routing

Entradas de routing para redes remotas

Interpretar las entradas en la tabla de routing

Interfaces conectadas directamente

Un router recién implementado, sin interfaces configuradas, tiene una tabla de routing vacía.

Tabla de routing vacía

Entradas de la tabla de routing conectadas directamente

Identificadores de entrada de red conectada directamente

Leyenda

- Identifica de qué manera el router detectó la red.
- Identifica la red de destino y cómo está conectada.
- Identifica la interfaz en el router conectado a la red de destino.

Ejemplo de conexión directa

Verificación de las entradas de la tabla de routing conectada directamente


```
R1# show ip route | begin Gateway
Gateway of last resort is not set

192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.10.0/24 is directly connected, GigabitEthernet0/0
L 192.168.10.1/32 is directly connected, GigabitEthernet0/0
192.168.11.0/24 is variably subnetted, 2 subnets, 2 masks
C 192.168.11.0/24 is directly connected, GigabitEthernet0/1
L 192.168.11.1/32 is directly connected, GigabitEthernet0/1
209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
C 209.165.200.224/30 is directly connected, Serial0/0/0
L 209.165.200.225/32 is directly connected, Serial0/0/0
R1#
```

Rutas conectadas directamente

Ejemplo de IPv6 conectada directamente

Visualización de la tabla de rutas IPv6

Rutas estáticas

Pueden implementarse rutas estáticas y rutas estáticas predefinidas después de agregar interfaces conectadas directamente a la tabla de routing:

- Las rutas estáticas se configuran de forma manual.
- Estas definen una ruta explícita entre dos dispositivos de red.
- Las rutas estáticas se deben actualizar manualmente si cambia la topología.
- Entre sus beneficios podemos mencionar la mayor seguridad y el mejor control de los recursos.
- Configure una ruta estática a una red específica con el comando ip route máscara de red {ip-de-siguiente-salto | interfaz-de-salida}.
- Se utiliza una ruta estática predeterminada cuando la tabla de routing no contiene ninguna ruta para una red de destino.
- Configure una ruta estática predeterminada con el comando ip route 0.0.0.0 0.0.0.0 {interfaz-de-salida | ip-del-siguiente-salto}.

Ejemplo de una ruta estática

Introducción y verificación de una ruta estática predeterminada

Rutas obtenidas en forma estática

Ejemplo de una ruta estática (continuación)

Ingresar y verificar una ruta estática

Ejemplos de rutas IPv6 estáticas

Introducción y verificación de una ruta estática predeterminada IPv6

Ejemplos de rutas IPv6 estáticas

Introducción y verificación de rutas estáticas IPv6

Protocolos de routing dinámico

Routing dinámico

- Los routers usan el routing dinámico para compartir información sobre el estado y la capacidad de alcance de redes remotas.
- Realiza la detección de redes y el mantenimiento de las tablas de routing.
- Los routers convergen una vez que finalizan el intercambio y actualizan sus tablas de routing.

Situación de routing dinámico

Protocolos de routing IPv4

Los routers Cisco admiten diversos protocolos de routing dinámico IPv4, incluidos los siguientes:

- EIGRP: Protocolo mejorado de routing de gateway interior
- OSPF: Abrir primero la ruta más corta
- IS-IS: Sistema intermedio a sistema intermedio
- RIP: Protocolo de información de routing

Utilice el comando **router** ? en el modo de configuración global para determinar qué protocolos de routing admite IOS.

```
R1(config) # router ?
  bgp
           Border Gateway Protocol (BGP)
           Enhanced Interior Gateway Routing Protocol (EIGRP)
  eigrp
 isis
        ISO IS-IS
 iso-igrp IGRP for OSI networks
  mobile Mobile routes
  odr
        On Demand stub Routes
  ospf
        Open Shortest Path First (OSPF)
 ospfv3 OSPFv3
           Routing Information Protocol (RIP)
  rip
R1(config) # router
```


Ejemplos de routing dinámico IPv4

Verificación de rutas dinámicas


```
R1# show ip route | begin Gateway
Gateway of last resort is 209.165.200.226 to network 0.0.0.0
     0.0.0.0/0 [170/2297856] via 209.165.200.226, 00:07:29, Serial0/0/0
      10.0.0.0/24 is subnetted, 2 subnets
         10.1.1.0 [90/2172416] via 209.165.200.226, 00:07:29, Serial0/0/0
D
         10.1.2.0 [90/2172416] via 209.165.200.226, 00:07:29, Serial0/0/0
D
      192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.10.0/24 is directly connected, GigabitEthernet0/0
C
         192.168.10.1/32 is directly connected, GigabitEthernet0/0
      192.168.11.0/24 is variably subnetted, 2 subnets, 2 masks
         192.168.11.0/24 is directly connected, GigabitEthernet0/1
C
         192.168.11.1/32 is directly connected, GigabitEthernet0/1
      209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
         209.165.200.224/30 is directly connected, Serial0/0/0
         209.165.200.225/32 is directly connected, Serial0/0/0
R1#
```


Protocolos de routing IPv6

Los routers Cisco pueden admitir diversos protocolos de routing dinámico IPv6, incluidos los siguientes:

- RIPng (RIP de próxima generación)
- OSPFv3
- EIGRP para IPv6

Utilice el comando **ipv6 router ?** para determinar qué protocolos de routing admite IOS.

```
R1(config)# ipv6 router ?
eigrp Enhanced Interior Gateway Routing Protocol (EIGRP)
ospf Open Shortest Path First (OSPF)
rip IPv6 Routing Information Protocol (RIPv6)

R1(config)# router
```

Protocolos de routing dinámico

Ejemplos de routing dinámico IPv6

Verificación de rutas dinámicas


```
C 2001:DB8:ACAD:3::/64 [0/0]
    via Serial0/0/0, directly connected

L 2001:DB8:ACAD:3::1/128 [0/0]
    via Serial0/0/0, receive

D 2001:DB8:ACAD:4::/64 [90/2172416]
    via FE80::D68C:B5FF:FECE:A120, Serial0/0/0

D 2001:DB8:ACAD:5::/64 [90/2172416]
    via FE80::D68C:B5FF:FECE:A120, Serial0/0/0

L FF00::/8 [0/0]
    via Null0, receive

Rl#
```


1.4 Resumen del capítulo

Cisco | Networking Academy® Mind Wide Open®

Resumen del capítulo

Resumen

- Describir las funciones y las características principales de un router.
- Configurar los parámetros básicos en un router para enrutar entre dos redes conectadas directamente, mediante la CLI.
- Verificar la conectividad entre dos redes que están conectadas directamente a un router.
- Explicar la forma en que los routers utilizan la información de los paquetes de datos para tomar decisiones de reenvío en una red de una pequeña a mediana empresa.
- Explicar el proceso de encapsulamiento y desencapsulamiento que utilizan los routers para el switching de paquetes entre interfaces.
- Explicar la función de determinación de rutas de un router.
- Explicar de qué manera un router obtiene información sobre redes remotas cuando funciona en la red de una pequeña a mediana empresa.
- Explicar la forma en que un router crea una tabla de routing de redes conectadas directamente.
- Explicar la forma en que un router crea una tabla de routing mediante rutas estáticas.
- Explicar la forma en que un router crea una tabla de routing mediante un protocolo de routing dinámico.

Sección 1.1

- Topología
- Velocidad
- Costo
- Seguridad
- Disponibilidad
- Escalabilidad
- Confiabilidad
- Protocolo punto a punto (PPP)
- Switching de procesos
- Switching rápido
- Cisco Express Forwarding (CEF)
- Puntos de acceso inalámbrico (WAP)

- Router perimetral
- Gateway de último recurso
- Diagrama de topología
- Secure Shell (SSH)
- Protocolo de transferencia de hipertexto seguro (HTTPS)
- Cable de consola
- Software de emulación de terminales: Tera Term, PuTTY, HyperTerminal
- Proteger el acceso administrativo
- Comando de configuración de interfaces ipv6 address dirección-ipv6/longitudipv6 [link-local | eui-64]

- Comando no shutdown
- Interfaz de loopback
- Comando
 interface loopback
 número
- Comando show ip route
- Interfaz show runningconfig ID de la interfaz
- Comando show ip interface brief
- Comando show runningconfig interface
- Comando show ip interfaces
- Comando show ipv6 interface

- Comando show interfaces
- Comando show ipv6 interface brief
- Comando show ipv6 route
- Carácter de barra vertical (|)
- Ctrl+P
- Ctrl+N
- show history
- terminal history

- Métricas
- Protocolo de información de routing (RIP)
- Abrir primero la ruta más corta (OSPF)
- Protocolo mejorado de routing de gateway interior (EIGRP)
- equilibrio de carga
- IS-IS: Sistema intermedio a sistema intermedio
- RIPng (RIP de próxima generación)
- OSPFv3

- Distancia administrativa (AD)
- Interfaces de ruta local
- Rutas estáticas
- Marca de hora de la ruta
- Origen de la ruta
- ip route máscara de red { ip-de-siguiente-salto | interfaz-de-salida }
- ip route 0.0.0.0 0.0.0.0 { interfaz-de-salida | ipdel-siguiente-salto }
- ipv6 unicast-routing
- ipv6 route ::/0 {dirección-ipv6 | tipo-deinterfaz número-de*interfaz*}

- ipv6 route prefijoipv6/longitud-del-prefijo {dirección-ipv6|tipo-deinterfaz número-de-interfaz}
- **Comando** router ?
- **Comando** lpv6 router ?

Cisco | Networking Academy[®] | Mind Wide Open™

. | | 1 . 1 | 1 . CISCO