Visibly Pushdown Automata: Universality and Inclusion via Antichains

Marc Ducobu - UMONS

Joint work with : Véronique Bruyère (UMONS), Olivier Gauwin (LaBRI)

LATA13 - 4 April 2013

Outline

1 Introduction

2 Antichain universality checking

3 Extensions

Words with nesting structure (XML, traces of programs)

VPAs

Words with nesting structure (XML, traces of programs)

Words with nesting structure (XML, traces of programs)

$$\begin{array}{c} \text{Translation} \\ \text{VPAs} \leftarrow & \begin{array}{c} \text{(Non-deterministic VPA)} \\ \text{(XPath, CaRet)} \end{array}$$

Testing inclusion of VPAs \rightarrow XML type checking, model checking of programs (EXPTIME-complete)

$$\begin{array}{c} \text{Translation} \\ \text{VPAs} \xleftarrow{\text{(Non-deterministic VPA)}} \text{Logics} \\ \text{(XPath, CaRet)} \end{array}$$

Testing inclusion of VPAs \rightarrow XML type checking, model checking of programs (EXPTIME-complete)

Related work:

- lacksquare universality classical method $(L(\mathcal{A}^c)=\emptyset$ test)
 - OpenNWA (by E. Driscoll, A. Thakur and T. Reps (CAV'12))
- universality on the fly
 - VPAchecker (by T. Van Nguyen and H. Ohsaki (CONCUR'09))
- universality and inclusion Ramsey
 - FADecider (by O. Friedmann, F. Klaedtke and M. Lange (preprint 2012))

Antichains

Our approach : antichains

Antichains

Our approach : antichains

Universality checking with antichain very efficient for

- finite word automata (De Wulf, Doyen, Henzinger and Raskin (CAV'06))
- non-deterministic finite ranked tree automata (Bouajjani, Habermehl, Holik, Touili, and Vojnar (CIAA'08))
- ...

Unranked tree and linearization

Unranked tree labeled by Σ

 \mathcal{T}_{Σ} : set of all (unranked) trees over Σ

 ${\cal H}_{\Sigma}$: set of all hedges over Σ

Unranked tree and linearization

Unranked tree labeled by Σ

 \mathcal{T}_{Σ} : set of all (unranked) trees over Σ

 H_{Σ} : set of all hedges over Σ

Linearization

 $a c b \overline{b} c \overline{c} \overline{c} \overline{a}$

Well nested word over $\Sigma \cup \overline{\Sigma}$

 $[T_{\Sigma}]$ set of all linearizations of trees over Σ

 $[H_{\Sigma}]$ set of all linearizations of hedges over Σ

Visibly Pushdown Automata (VPA) (on linearizations of unranked trees)

Definition (Alur and Madhusudan, Visibly pushdown languages, 2004)

A VPA over alphabet $\Sigma \cup \overline{\Sigma}$ is a tuple $\mathcal{A} = (Q, \Sigma \cup \overline{\Sigma}, \Gamma, Q_i, Q_f, \Delta)$ where Q finite set of states, $Q_i \subseteq Q$ initial states, $Q_f \subseteq Q$ final states, Γ finite set of stack symbols, and Δ finite set of rules of two types :

- $extbf{ extbf{q}} q_1 \xrightarrow{a,\gamma^+} q_2$, for an opening letter $a \in \Sigma$ and $\gamma \in \Gamma$,

Visibly Pushdown Automata (VPA) (on linearizations of unranked trees)

Definition (Alur and Madhusudan, Visibly pushdown languages, 2004)

A VPA over alphabet $\Sigma \cup \overline{\Sigma}$ is a tuple $\mathcal{A} = (Q, \Sigma \cup \overline{\Sigma}, \Gamma, Q_i, Q_f, \Delta)$ where Q finite set of states, $Q_i \subseteq Q$ initial states, $Q_f \subseteq Q$ final states, Γ finite set of stack symbols, and Δ finite set of rules of two types :

- $extbf{ extbf{q}} q_1 \xrightarrow{a,\gamma^+} q_2$, for an opening letter $a \in \Sigma$ and $\gamma \in \Gamma$,

A *configuration* : (q, σ) where $q \in Q$ is a state and $\sigma \in \Gamma^*$ is a stack.

Visibly Pushdown Automata (VPA) (on linearizations of unranked trees)

Definition (Alur and Madhusudan, Visibly pushdown languages, 2004)

A VPA over alphabet $\Sigma \cup \overline{\Sigma}$ is a tuple $\mathcal{A} = (Q, \Sigma \cup \overline{\Sigma}, \Gamma, Q_i, Q_f, \Delta)$ where Q finite set of states, $Q_i \subseteq Q$ initial states, $Q_f \subseteq Q$ final states, Γ finite set of stack symbols, and Δ finite set of rules of two types :

- $extbf{ extbf{q}} q_1 \xrightarrow{a,\gamma^+} q_2$, for an opening letter $a \in \Sigma$ and $\gamma \in \Gamma$,
- $q_1 \xrightarrow{\overline{a}, \gamma^-} q_2$, for a closing letter $\overline{a} \in \Sigma$, $\gamma \in \Gamma$.

A *configuration* : (q, σ) where $q \in Q$ is a state and $\sigma \in \Gamma^*$ is a stack.

A *run* on a tree linearization $a_1 a_2 a_3 \dots a_n \in [T_{\Sigma}]$: $(q_i, \epsilon) \xrightarrow{a_1} (q_1, \sigma_1) \xrightarrow{a_2} (q_1, \sigma_2) \xrightarrow{a_3} \dots \xrightarrow{a_n} (q_n, \epsilon)$, with $q_i \in Q_i$.

A run is *accepting* if $q_n \in Q_f$. A tree is *accepted* if there is an accepting run on its linearization.

Outline

1 Introduction

2 Antichain universality checking

3 Extensions

A VPA \mathcal{A} is said *universal* if it accepts all unranked trees, i.e. $L(\mathcal{A}) = T_{\Sigma}$.

A VPA $\mathcal A$ is said *universal* if it accepts all unranked trees, i.e. $L(\mathcal A)=T_\Sigma.$ For all $t\in T_\Sigma$, we have to check that $t\in L(\mathcal A).$

A VPA ${\mathcal A}$ is said *universal* if it accepts all unranked trees, i.e. $L({\mathcal A})=T_{\Sigma}.$

For all $t \in T_{\Sigma}$, we have to check that $t \in L(A)$.

Accessibility relation

$$Acc(t) = \{(q, q') \in Q \times Q \mid (q, \epsilon) \xrightarrow{[t]} (q', \epsilon)\} \subseteq Q \times Q, \ t \in T_{\Sigma}$$

A VPA ${\cal A}$ is said *universal* if it accepts all unranked trees, i.e. $L({\cal A})=T_{\Sigma}.$

For all $t \in T_{\Sigma}$, we have to check that $t \in L(A)$.

Accessibility relation

$$Acc(t) = \{(q, q') \in Q \times Q \mid (q, \epsilon) \xrightarrow{[t]} (q', \epsilon)\} \subseteq Q \times Q, \ t \in T_{\Sigma}$$

Algorithm: compute the set $\{Acc(t) \mid t \in T_{\Sigma}\} \subseteq \mathcal{P}(Q \times Q)$ and check if $\forall t \in T_{\Sigma}, \ Acc(t) \cap Q_i \times Q_f \neq \emptyset$

Let $r \in Q \times Q$ be a relation over Q.

$$Post_a(r) = \{(p, p') \in Q \times Q \mid \exists (q, q') \in r, p \xrightarrow{a:\gamma} q \in \Delta, q' \xrightarrow{\overline{a}:\gamma} p' \in \Delta\}$$

$$\begin{array}{ccc}
 & a & p' & & p & \xrightarrow{\underline{a}:\gamma} q \in \Delta, \\
\hline
 & r_3 & \cdots & r_n \\
 & r & & (q,q') \in r = r_1 \circ r_2 \circ r_3 \circ \cdots \circ r_n
\end{array}$$

Let $r \in Q \times Q$ be a relation over Q.

$$Post_a(r) = \{ (p, p') \in Q \times Q \mid \exists (q, q') \in r, p \xrightarrow{a:\gamma} q \in \Delta, \ q' \xrightarrow{\overline{a}:\gamma} p' \in \Delta \}$$

$$\begin{array}{ccc}
 & a & p' & & p & \xrightarrow{\overline{a}:\gamma} q \in \Delta, \\
\hline
 & r_3 & \cdots & r_n \\
 & r & & (q,q') \in r = r_1 \circ r_2 \circ r_3 \circ \cdots \circ r_n
\end{array}$$

$$Acc(t) = Post_a(Acc(t_1) \circ \cdots \circ Acc(t_n))$$
 $Acc(t_1)$
 $Acc(t_2)$
 \cdots
 $Acc(t_n)$

Let $\mathscr{R} \subseteq \mathcal{P}(Q \times Q)$ be a set of relations over Q.

 \mathscr{R}^* denote the reflexive and transitive closure of \mathscr{R} i.e. $\{r_1 \circ r_2 \circ \cdots \circ r_n \mid n \geq 0 \text{ and } r_i \in \mathscr{R} \text{ for all } 1 \leq i \leq n\}$

$$Post(\mathcal{R}) = \{Post_a(r) \mid a \in \Sigma, r \in \mathcal{R}^*\} \cup \mathcal{R}$$

$$Post^{0}(\mathcal{R}) = \mathcal{R}$$
, and for all $i > 0$, $Post^{i}(\mathcal{R}) = Post(Post^{i-1}(\mathcal{R}))$

$$Post^*(\mathscr{R}) = \cup_{i \geq 0} Post^i(\mathscr{R})$$

Let $\mathscr{R} \subseteq \mathcal{P}(Q \times Q)$ be a set of relations over Q.

$$\mathscr{R}^*$$
 denote the reflexive and transitive closure of \mathscr{R} i.e. $\{r_1 \circ r_2 \circ \cdots \circ r_n \mid n \geq 0 \text{ and } r_i \in \mathscr{R} \text{ for all } 1 \leq i \leq n\}$

$$Post(\mathcal{R}) = \{Post_a(r) \mid a \in \Sigma, r \in \mathcal{R}^*\} \cup \mathcal{R}$$

$$Post^0(\mathscr{R}) = \mathscr{R}$$
, and for all $i > 0$, $Post^i(\mathscr{R}) = Post(Post^{i-1}(\mathscr{R}))$

$$Post^*(\mathscr{R}) = \bigcup_{i \geq 0} Post^i(\mathscr{R})$$

$$Post^*(\emptyset) = \{Acc(t) \mid t \in T_{\Sigma}\}$$

$$\mathcal{A}$$
 is universal iff $\forall r \in Post^*(\emptyset), r \cap Q_i \times Q_f \neq \emptyset$

The algorithm

```
Universality(\mathcal{A}):
    \mathscr{R} \leftarrow \emptyset:
    \mathscr{R}^* \leftarrow \{ id_O \} ;
     repeat
          \mathscr{R}_{new} \leftarrow \{Post_a(r) \mid a \in \Sigma, r \in \mathscr{R}^*\} \setminus \mathscr{R};
          if \exists r \in \mathcal{R}_{new} : r \cap Q_i \times Q_f = \emptyset then
               return False // Not universal
          \mathscr{R} \leftarrow \mathscr{R} \cup \mathscr{R}_{now}
         \mathscr{R}' \leftarrow \mathscr{R}_{new} \setminus \mathscr{R}^*
          if \mathscr{R}' \neq \emptyset then
               \mathscr{R}^* \leftarrow (\mathscr{R}^* \cup \mathscr{R}')^*
     until \mathscr{R}' = \emptyset
     return True // Universal
```

Antichains

Let S be a partially ordered set. An antichain A is a subset of S such that all the elements are pairwise incomparable.

For ex. Let $S = \{e \mid e \subseteq \{c_1, c_2, c_3\}\}$ with \subseteq as order.

Antichain Optimization

We only need to consider minimal elements.

 \mathcal{A} is universal iff $\forall r \in \lfloor Post^*(\emptyset) \rfloor$, $r \cap Q_i \times Q_f \neq \emptyset$.

If $\exists r \in \lfloor Post^*(\emptyset) \rfloor : r \cap Q_i \times Q_f = \emptyset \Rightarrow \mathsf{VPA}$ not universal.

If $\forall r \in \lfloor Post^*(\emptyset) \rfloor : r \cap Q_i \times Q_f \neq \emptyset \Rightarrow VPA$ universal as $\forall r' \supseteq r, r' \cap Q_i \times Q_f \neq \emptyset$

Post operator is monotonic.

Experiments

Sample size: 100 Transition density: 12 Timeout: 60 sec.

False inst. - ATC4VPA
True inst. - ATC4VPA
False inst. - FADecider
True inst. - FADecider

Experiments

Sample size: 100 Transition density: 13 Timeout: 60 sec.

False inst. - ATC4VPA
True inst. - ATC4VPA
False inst. - VPAchecker
True inst. - VPAchecker

Outline

1 Introduction

2 Antichain universality checking

3 Extensions

Inclusion

$$\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, \Gamma_{\mathcal{A}}, Q_{i,\mathcal{A}}, Q_{f,\mathcal{A}}, \Delta_{\mathcal{A}}) \text{ and } \mathcal{B} = (Q_{\mathcal{B}}, \Sigma, \Gamma_{\mathcal{B}}, Q_{i,\mathcal{B}}, Q_{f,\mathcal{B}}, \Delta_{\mathcal{B}})$$

$$Question: L(\mathcal{A}) \nsubseteq L(\mathcal{B})$$

Inclusion

$$\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, \Gamma_{\mathcal{A}}, Q_{i,\mathcal{A}}, Q_{f,\mathcal{A}}, \Delta_{\mathcal{A}}) \text{ and } \mathcal{B} = (Q_{\mathcal{B}}, \Sigma, \Gamma_{\mathcal{B}}, Q_{i,\mathcal{B}}, Q_{f,\mathcal{B}}, \Delta_{\mathcal{B}})$$

$$\text{Question} : L(\mathcal{A}) \nsubseteq L(\mathcal{B})$$

Our goal : find $t \in T_{\Sigma}$: $t \in L(A)$ and $t \notin L(B)$

Inclusion

$$\mathcal{A} = (Q_{\mathcal{A}}, \Sigma, \Gamma_{\mathcal{A}}, Q_{i,\mathcal{A}}, Q_{f,\mathcal{A}}, \Delta_{\mathcal{A}}) \text{ and } \mathcal{B} = (Q_{\mathcal{B}}, \Sigma, \Gamma_{\mathcal{B}}, Q_{i,\mathcal{B}}, Q_{f,\mathcal{B}}, \Delta_{\mathcal{B}})$$

$$\text{Question} : L(\mathcal{A}) \nsubseteq L(\mathcal{B})$$

Our goal : find $t \in T_{\Sigma}$: $t \in L(A)$ and $t \notin L(B)$

- $(q,q') \in Q_A \times Q_A$:

 - $q \in Q_{i,A} \ q' \in Q_{f,A}$
- $r \subseteq Q_{\mathcal{B}} \times Q_{\mathcal{B}}$:
 - $r = Acc_{\mathcal{B}}(t)$
 - $r \cap Q_{i,\mathcal{B}} \times Q_{f,\mathcal{B}} = \emptyset$

Easy adaptation of *Post* operator.

Experiments

Sample size: 100 Transition density: 4 Timeout: 60 sec.

Hedge automata

Algorithm is easily adapted from VPAs to hedge automata.

Translating the Hedge automaton via a VPA.

Universality of General VPAs - Three Types of Symbols

Original VPA model : $\Sigma = \Sigma_c \cup \Sigma_r \cup \Sigma_i$ where

- Σ_c set of call symbols
- Σ_r set of return symbols
- Σ_i set of internal symbols

Adaptation of initialization : \mathscr{R}^* (resp. \mathscr{R}^*_{min}) gets $\{id_Q\} \cup \bigcup_{a \in \Sigma_i} \{(q,q') \mid q \stackrel{a}{\to} q' \in \Delta\}$ instead of $\{id_Q\}$ (internal symbols can appear at any place)

Adaptation of
$$Post: Post_{a,\overline{b}}(r) = \{(p,p') \in Q \times Q \mid \exists (q,q') \in r, \ p \xrightarrow{a:\gamma} q \in \Delta, \ q' \xrightarrow{\overline{b}:\gamma} p' \in \Delta \} \text{ for all } a \in \Sigma_c \text{ and } \overline{b} \in \Sigma_r.$$

Universality of General VPAs - Pending Calls and Returns

General shape word with pending calls or pending returns :

$$w = [h_0]\overline{b}_0[h_1]\overline{b}_1\cdots [h_m]\overline{b}_m \quad [h] \quad a_1[h'_1]a_2[h'_2]\cdots a_n[h'_n]$$
 where all $h_i,\ h'_j,\$ and h are hedges over Σ $(H_\Sigma),\$ and $\overline{b_i}\in\overline{\Sigma},\ a_j\in\Sigma$ for all $i,j.$

- w is a sequence of words $[h_i]\overline{b_i}$
- $lue{}$ followed by the linearization of a hedge [h]
- followed by a sequence of words $a_j[h'_j]$

Adapt the algorithm to compute :

- $lacksymbol{\mathscr{C}}^*$, the closure by composition of $\mathscr{C}=\{\mathit{Acc}([h]\overline{b})\mid h\in \mathit{H}_{\Sigma},\ \overline{b}\in\overline{\Sigma}\}.$
- $lacksymbol{\mathscr{O}}^*$, the closure by composition of $\mathcal{O}=\{Acc(a[h])\mid a\in\Sigma,\ h\in\mathcal{H}_\Sigma\}.$

Check $\forall r_c \in \mathscr{C}^*$, $r_h \in \mathscr{R}^*$, $r_o \in \mathscr{O}^*$ if $r_c \circ r_h \circ r_o \cap Q_i \times Q_f \neq \emptyset$.

Experiments

Future Work

- using the antichain universality finite ranked tree automata algorithms :
 - A. Bouajjani, P. Habermehl, L. Holik, T. Touili, and T. Vojnar (CIAA'08)
 - P. Abdulla, Y. Chen, L. Holik, R. Mayr and T. Vojnar (TACAS'10)
- p-universality checking
- simulation
- bisimulation up-to