

Разработка фотоприемной части восходящего канала связи по технологии Li-Fi

Лапа Николай Андреевич, L3430 12.03.05 Лазерная техника и лазерные технологии Лазеры для информационно-коммуникационных систем

Мотивация и актуальность

- В ИТМО разработана система передачи информации со скоростью до 50 мегабит в секунду
- Большее внимание уделяется нисходящему сигналу, однако для полноценной работы важен и восходящий (нисходящий — от светильника к устройству, восходящий — от устройства к светильнику)
- Широкий спектр возможностей применения: текущие устройства, интернет вещей, уличное освещение — высокая пропускная способность, безопасность, отсутствие помех
- Использование стандартных компонентов = быстрое внедрение

Рисунок 1 — Компоненты Li-Fi системы, разработанной в ИТМО

Цель работы:

• Исследование и разработка приёмной части восходящего канала связи по технологии Li-Fi

Задачи:

- Сделать обзор компонентной базы, выбрать фотодиод (ФД) и линзы;
- Сделать модель оптической схемы приёмника;
- Выполнить расчёт оптической системы приёмника;
- Расчётным путём оценить пропускную способность канала связи;
- Провести измерение коэффициента отражения от приёмника.

Обзор компонентов

университет итмо

Параметры фотодиодов:

- Полупроводниковый материал;
- Интервал регистрируемых длин волн;
- Размер активной области;
- Темновой ток;
- Чувствительность;
- Тип корпуса

Выбранный фотодиод:

Thorlabs FDGA05

- InGaAs
- 800-1700 HM
- 0.196 MM²
- 6 нA
- 0.95 A/BT
- Стандартный ТО-46

Рисунок 2 — Примеры фотодиодов, производимых компанией Thorlabs

Рисунок 3 — Выбранный фотодиод FDGA05

Моделирование системы в Zemax

-	5	•	УНИВЕРСИТЕТ	итмо
---	---	---	--------------------	------

	Object Type	Comment	Ref Object	Inside Of	X Position	Y Position	Z Position	Tilt About X	Tilt About Y	Tilt About 2	Material	Radius 1	Conic 1	Clear 1	Edge 1	Thickness	Radius 2	Conic 2	Clear 2	Edge 2
1	Source Diode	FPL1055T	0	0	0.000	0.000	0.000	0.000	0.000	0.000	-	10	5E+06	0.300	0	0	0.000	12.740	1.000	23.781
2	Annulus	FDGA05	0	0	0.000	0.000	100.000	0.000	0.000	0.000	ABSORB	2.300	2.300	1.250	1.250					
3	Cylinder Pipe	FDGA05	2	0	0.000	0.000	0.000	0.000	0.000	0.000	ABSORB	2.300	4.900	2.300						
4	Standard Lens		2	0	0.000	0.000	-15.860	0.000	0.000	0.000	LZ_K8	8.500	0.000	6.500	6.500	3.300	0.000	0.000	6.500	6.500
5	Detector Surface	FDGA05	2	0	0.000	0.000	0.900	0.000	0.000	0.000		0.000	0.000	0.250	0.000	16	8	0	0	0

Рисунок 4 — Оптическая система с линзой в Zemax. В качестве источника выбран ЛД FPL1055T, параметры ЛД и ФД выбраны исходя из заводских параметров компонентов. Параметры линзы: радиус поверхности 8.5 мм, диаметр 13 мм, толщина 3.3 мм, стекло К8 (f = 16.96 мм). Стекло прозрачно в ИК-диапазоне, остальные параметры не влияют значительно на систему.

Рисунок 5 — Вид системы оптической системы сбоку. Слева (маленькая точка) — площадка ЛД FPL1055T с размерами 1 мм * 0.5 мм, мощность — 300 мВт, длина волны 1550 нм, справа — ФД в корпусе. Посередине плосковыпуклая собирающая линза.

Моделирование системы в Zemax

Рисунок 6 — Зависимость абсолютного значения оптической мощности на ФД от угла поворота ЛД. Красная линия — система без линзы, синяя линия — система с линзой

Рисунок 7 — Зависимость оптической мощности на ФД от расстояния между ФД и линзой: результаты симуляции показаны синими точками, наибольшая мощность достигается, когда ФД находится в фокусе линзы (разница в ~10 раз)

Экспериментальное

исследование

Рисунок 8 — Фотография фотодиода FDGA05 сверху

Рисунок 9 — Схема экспериментальной установки. Векторный анализатор цепей Rohde & Schwarz ZVA 40 соединен с ФД и ЛД через SMA-разъём

Рисунок 11 — Диаграмма Смита для ФД FDGA05

$$f_{BW} = rac{1}{2\pi R_L C_j} = 318.31 \ \mathrm{M}\Gamma$$
ц

Уравнение 1— Уравнение для расчёта канала пропускания фотодиода. Здесь R_L — сопротивление нагрузки (50 Ом), C_j — ёмкость фотодиода (10 пФ)

Заключение

университет итмо

В результате работы было получено:

- Построенная модель позволяет рассчитывать потери оптической мощности, получаемой фотодиодом в зависимости от угла наклона, углов расходимости источника;
- Установка собирающей линзы на фокусном расстоянии от фотодиода позволяет увеличить мощность, собираемую на фоточувствительной площадке в 10 раз;
- С точки зрения работы в высокочастотном тракте, фотодиод представляет собой рассогласованную по сопротивлению нагрузку, поэтому сигнал переотражается и без схемы согласования не удаётся детектировать высокочастотный сигнал и исследовать амплитудно-частотную характеристику.

Следующие шаги:

- 1. Согласование фотодиода по сверхвысоким частотам;
- 2. Измерение пропускной способности фотодиода;
- 3. Исследовать возможность применения просветляющих покрытий и Търетофильтров для улучшения качества связи.

Спасибо за внимание!

www.ifmo.ru

IT;MOre than a
UNIVERSITY