第 3 讲: 常用的证明方法

姓名: 魏恒峰	学号: hfwei@nju.edu.cn
评分:	评阅:
2019	年 10 月 4 日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

- 数学归纳法是你最好的朋友
- 反证法也是你最好的朋友
- 鸽笼原理, 哦, 有点高冷, 这个朋友不好交

1 作业(必做部分)

题目 (UD Problem 5.12: 3k + 2)

解答:
题目 (UD Problem 5.24: Squaring)
解答:
题目 (Primes 3 (Mod 4) Theorem) 请证明: There are infinitely many primes that are congruent to 3 modulo 4.
解答:

题目 (改编自 UD Problem 18.20 与 UD Problem 18.26) 请证明:

(1)	"The first principle of mathematical induction" (Theorem 18.1) 与 "The second
	principle of mathematical induction" (Theorem 18.9) 等价。

(2)	"The second principle of mathematical induction	" 蕴含	"Well-ordering	principles
	of the natural numbers" (in Chapter 12).			

解答:

题目 (UD Problem 18.25 (c, d): Binomial)

解答:

题目 (Lines in the Plane)

(1) What is the maximum number L_n of regions determined by n straight lines in the plane?

(注: 直线两端可以无限延长)

(2) What is the maximum number Z_n of regions determined by n bent lines, each containing one "zig", in the plane?

(注: 两端可以无限延长)

图 1: Examples for L_0 , L_1 , and L_2 .

图 2: Examples for Z_1 and Z_2 .

解答:

题目 (ES Problem 24.4: Distance in Square)

解答:

题目 (ES Problem 24.6: Lattice Points)

解答:

题目 (ES Problem 24.7: Monotone Subsequence)

解答:

作业 (选做部分)

题目 (Lines in the Plane (Continued))

(3) What's the maximum number ZZ_n of regions determined by n "zig-zag" lines in the plane?

图 3: Example for ZZ_2 .

解答:

题目 (Numbers)

Suppose $A \subseteq \{1, 2, \dots, 2n\}$ with |A| = n + 1. Please prove that:

- (1) There are two numbers in A which are relatively prime (互素).
- (2) There are two numbers in A such that one divides (整除) the other.

解答:

Open Topics 3

Open Topics 1 (Coq)

结合 Coq Induction.v 介绍数学归纳法。 更多内容???

解答:

Open Topics 2 ()

解答:

订正

反馈 5

你可以写 ①:

- 对课程及教师的建议与意见
- 教材中不理解的内容
- 希望深入了解的内容

① 优先推荐 ProblemOverflow