Teoria probabilităților - Curs 7

probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria Probabilităților discrete Teoria Teoria probabilităților discr**Aprilie**, 2016 probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților

Table of contents

- Metoda probabilistică discrete Teoria probabilităților discrete Teoria Problema satisfiabilității de Teoria probabilităților discrete Teoria probabilităților discrete

 - Aplicaţii în teoria grafurilor ria probabilităților discrete

 Teoria probabilităților discrete Teoria probabilităților discrete
- Variabile aleatoare continue babilităților discrete Teoria Teoria probabilităților discrete Teoria Teoria probabilităților discrete
 - Variabile aleatoare continue Teoria probabilităților discrete Teoria
 - probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Repartiții continue remarcabile Teoria probabilităților discrete
- Bibliography screte Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria

Metoda probabilistică

- Metoda probabilistică este o tehnică folosită pentru demonstrarea existenţei unor obiecte matematice (combinatorii) cu anumite proprietăţi.
- Ideea de bază a acestei metode constă în a demonstra că probabilitatea existenței unui obiect cu proprietățile cerute este strict pozitivă, ceea ce înseamnă că un asemenea obiect există.
- Pentru aceasta, construim un spaţiu de probabilitate peste mulţimea obiectelor implicate şi arătăm ca probabilitatea obiectului respectiv este nenulă.

Metoda probabilistică

liscrete Teoria probabilităților discrete

Teoria probabilitătilor discrete

Teoria

Theorem 0.1

(Principiul mediei) Dacă X este o variabilă aleatoare discretă cu $M[X]\geqslant \alpha$, atunci $P\{X\geqslant \alpha\}>0$.

Primele exemple ale aplicării metodei probabiliste sunt legate de chestiunea satisfiabilității.

Proposition 0.1

Fie $\mathcal{F} = \{C_1, C_2, \dots, C_m\}$ o familie de m clauze. Există o asignare a valorilor de adevăr a variabilelor booleene implicate, astfel ca numărul de clauze satisfăcute să fie cel puțin

$$\sum_{i=1}^m \left(1-2^{-|C_i|}
ight)\geqslant m\left(1-2^{-h}
ight),$$

 $unde h = \min_{i \in I} |C_i|$.

Problema satisfiabilității

proof: Imaginăm următorul experiment aleator abstract: fiecărei variabile booleene x îi asignăm independent valoarea 1 (adevărat) sau 0 (fals) cu acceași probabilitate 0.5. Definim variabilele aleatoare

Teoria probabilită
$$X_i = \begin{cases} 0 & 1, & \text{dacă } C_i \text{ este adevărată} \\ 0 & \text{decă } C_i \text{ este adevărată} \end{cases}$$
Teoria probabilită discrete Teoria probabilită probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete

Probabilitatea ca să fie adevărată clauza C_i este egală cu probabilitatea ca măcar unul dintre cei l_i literali ai ei să fie adevărat, adică $\left(1-2^{-|C_i|}\right)$.

Numărul de clauze satisfăcute este egal cu $X = \sum_{i=1}^{n} X_i$ și, atunci obabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria

$$M[X] = \sum_{i=1}^{n} M[X_i] = \sum_{i=1}^{n} \left(1 - 2^{-|C_i|}\right) \geqslant m\left(1 - 2^{-h}\right)$$
 . Applied the second probability of screen regions of the second probability of screen regions.

Concluzia urmează conform Teoremei 0.1.

Problema satisfiabilității

discrete Teoria probabilităților discrete Teoria

Corollary 1.1

Orice instanță a problemei k-SAT cu un număr de clauze mai mic strict decât 2^k este satisfiabilă. (O instanță a problemei k-SAT are în fiecare clauză exact k literali.)

 ${f proof:}$ Reluând argumentul de mai sus, cu $|C_i|=k, \, orall i=1, m:$

$$M[X] = \sum_{i=1} M[X_i] = \sum_{i=1} \left(1-2^{-|C_i|}
ight) = m\left(1-2^{-k}
ight) > m-1,$$
Teoria probabilităților discrete

obținem de aici că $P\{X\geqslant m\}=P\{X>m-1\}>0$ - deci există o asignare a valorilor de adevăr care să satisfacă toate cele m clauze. \blacksquare

Problema satisfiabilității

 Marginea indicată în acest rezultat este cea mai bună posibilă deoarece putem defini o instanţă a problemei k-SAT cu 2^k clauze care să fie nesatisfiabilă: de exemplu familia tuturor clauzelor având k literali

definit peste o multime de k variabile booleene.

• În mod similar se poate demonstra discrete Teoria probabilităților discrete

Proposition 1.1

O familie de clauze $\mathcal{F} = \{\mathit{C}_1, \ldots, \mathit{C}_m\}$ este satisfiabilă dacă

$$\sum_{i=1}^{m} 2^{-|C_i|} < 1.$$

- Următoarele două rezultate sunt aplicații ale metodei probabiliste în teoria grafurilor. Introducem aceste rezultate cu două definiții mai degrabă informale.
- Fie G=(V,E) un graf, o mulţime de noduri $S\subseteq V$ se numeşte stabilă dacă oricare două noduri din S nu sunt adiacente: $uv\notin E$, $\forall\, u,v\in S$. Dacă (A,B) este o partiţie a nodurilor lui G, tăietura generată de această partiţie este mulţimea de muchii în cross între A şi B:

Teoria proba
$$E(A|B)=\{uv\in E$$
eccia $u\in A$ ți \check{v} il $\in B\}$ rete
Teoria probabilităților discrete Teoria probabilităților discrete

• Este de menționat că atât problema determinării unei mulțimi stabile de cardinal maxim cât și cea a determinării unei tăieturi cu număr maxim de muchii sunt probleme NP-hard.

discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria

Proposition 2.1

Fie G = (V, E) un graf cu n noduri și m muchii. Există o bipartiție (A, B) a lui G astfel încât

$$|E(A,B)|\geqslant \frac{m}{2}.$$

dem.: Considerăm următorul algoritm aleator care construiește o bi-e partiție (A^{B}) a lui V ilor discrete Teoria probabilităților discrete Teoria

Pentru fiecare muchie $uv \in E$ definim o variabilă Bernoulli discrete

Teoria probabilităților discrete Teoria probabilităților discrete **Evident**: Çăbabilităților discrete Teoria probabilităților discrete Teoria probabilităților

$$P\{X_{uv}=1\}=P\{(u\in A \text{ si } v\in B) \text{ sau } (u\in B \text{ si } v\in A)\}=0$$

probabilitărilor discrete Teoria probabilitătilor discrete Te
$$\frac{1}{2}$$
ia $\frac{1}{2}$ oab $\frac{1}{2}$ ită $\frac{1}{2}$ or dis $\frac{1}{2}$ ete $\frac{1}{2$

În plus, $X = \sum_{uv \in E} X_{uv}$ este o variabilă aleatoare care numără câte muchii conține tăietura generată de bipartiția (A, B) și, atunci Teoria probabilitătilor discrete Teoria probabilitătilor discrete

probability
$$M[X] = \sum_{uv \in E} M[X_{uv}] = rac{m}{2}$$
 for a probability $M[X] = \sum_{vv \in E} M[X_{uv}] = rac{m}{2}$ for a probability $M[X] = \sum_{vv \in E} M[X_{uv}] = rac{m}{2}$ for a probability $M[X] = \sum_{vv \in E} M[X_{uv}] = rac{m}{2}$ for a probability $M[X] = \frac{m}{2}$ for a probability $M[X$

Astfel, va trebuie să existe o partiție cu proprietățile din enunț. .

discrete Teoria probabilităților discrete

Proposition 2.2

Fie G = (V, E) un graf cu n noduri și $m \ge n/2$ muchii. Atunci G are o mulțime stabilă (sau independentă) de noduri de cardinal cel puțin n^2/m .

dem.: Fie
$$d=\frac{2m}{n}$$
 gradul mediu în G $(\sum_{v\in V}d_G(v)=2m)$; decarece $m\geqslant n/2$, avem $(1-d^{-1})\geqslant 0$. Construim o mulțime stabilă folosind

 $m\geqslant n/2$, avem $(1-d^{-1})\geqslant 0$. Construin o multime stabila folosind urmatorul algoritm aleator $(V=\{v_1,v_2,\ldots,v_n\})$:

- **1.** $\mathbf{for}_{i}(i) \pm \overline{1;n}$ lor discrete Teoria probabilităților discrete Teoria probabilităților
 - discrete v_i probabilitate v_i sterge v_i probabilitation discrete v_i sterge v_i probabilitation discrete v_i sterge v_i probabilitation discrete

// se elimină și toate muchiile incidente cu voria probabilităților discrete Teoria

2. for $(e = uv \in E)$ Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria şterge muchia e și nodul u sau v;

După execuția acestui algoritm, nodurile rămase formează o mulțime independentă. După pasul 1 un nod rămâne în graf cu probabilitate d^{-1} ; fie X_i o variabilă egală cu 1 dacă nodul v_i a rămas în graf și 0 altfel. Notăm $X = \sum_{i=1}^{n} X_i$ numărul de noduri rămase după pasul 1.

Deoarece fiecare X_i este o variabilă Bernoulli cu media d^{-1} , obțineme $M[X] \equiv nd^{-1}$ discrete Teoria probabilităților discrete Teoria probabilităților discrete

Fie acum $Y_{uv}, uv \in E$, un alt set de variabile Bernoulli: $Y_{uv} = 1$ dacă muchia uv rămâne în graf după pasul 1 și 0 altfel. $Y = \sum_{uv \in E} Y_{uv}$ este

numărul de muchii rămase în graf după primul pas.

Evident că $P\{Y_{uv}=1\}=d^{-2}$ (probabilitatea ca nici u, nici v să nu fie şterse), deci $M[Y_{uv}]=d^{-2}$ și $M[Y]=md^{-2}=\frac{n}{2d}$.

Fie Z numărul de noduri rămase în graf după pasul 2. Deoarece $Z \geqslant X - Y$ (mai sunt șterse încă cel mult Y noduri):

- Următorul rezultat folosește noțiunea de turneu (un digraf D=(V,A) cu proprietatea că între orice două noduri există exact un singur arc: $\forall \ u,v\in V,\ |\{\vec{uv},\vec{vu}\}\cap A|=1)$.
- Denumirea vine din aceea că nodurile pot fi asimilate unor jucători și fiecare pereche de jucători se confruntă o singură dată: $\vec{uv} \in A$ numai dacă u îl bate pe v.
- Un turneu D are proprietatea P_k dacă pentru orice mulţime de k jucători există un alt jucător care îi bate pe toţi (k < |V|).
- Pentru un k dat, există un turneu cu proprietatea S_k ? Metoda oferă și o idee despre câte noduri trebuie să aibă turneul.

Proposition 2.3

Fie $k\in\mathbb{N}^*$, dacă $\binom{n}{k}<(1-2^{-k})^{k-n}<1$, atunci există un turneu cu n noduri care să aibă proprietatea P_k .

dem.: Construim mai întâi un turneu aleator astfel atilor discrete Teoria $A \leftarrow \varnothing$; Teoria probabilităților discrete Teoria probabilită Teoria probabi

Fie $M \subseteq V$, |M| = k; probabilitatea ca un nod $v \notin M$ să domine toate nodurile din M este 2^{-k} , deci probabilitatea ca să nu le domine pe toate cele din M este $(1-2^{-k})$. Evenimentele că două noduri distincte u, respectiv $v \neq u$ nu domină nodurile din M sunt independente, astfel probabilitatea ca mulţimea M să nu fie dominată de nici un nod din afara ei este $(1-2^{-k})^{n-k}$.

Olariu E. Florentin

discrete Teoria probabilităților discrete

Acum putem estima probabilitatea ca nici o mulţime S, de cardinal k, să nu fie dominată: Distributior discrete Teoria probabilitaților discrete

Teoria probabilităților discrete

deci probabilitatea ca măcar una dintre mulțimile de cardinal k să fie dominate este nenulă...aților discrete Teoria probabilităților discrete

Fie acum f(k) numărul minim de noduri ale unui turneu care are proprietatea P_k . Se poate arăta ([Alon08]) că $f(k) = \mathcal{O}(k^2 2^k)$.

Teoria probabilităților discrete Teoria

Evenimente aleatoare

- În cazul în care $|\Omega|\geqslant |\mathbb{R}|$ (i.e., cardinalul lui Ω este cel puţin continuu), evenimentele aleatoare se definesc diferit faţă de cazul discret.
- Diferența constă în aceea că nu orice submulțime $A \subseteq \Omega$ este în mod necesar eveniment aleator.
- Familia evenimentelor aleatoare este o σ -algebră $\mathcal{A} \subseteq \mathbb{P}(\Omega)$:
 - $\operatorname{prob}_{\operatorname{o}}$ bi \varnothing , $\Omega \in A$; ete Teoria probabilităților discrete Teoria probabilităților discrete
 - o dacă $A_1,A_2\in\mathcal{A},$ atuncî $A_1\cap A_2\in\mathcal{A};$ Teoria probabilităților discrete Teoria Teoria probabilităților discrete
 - o dacă $(A_n)_{n\geqslant 1}\subseteq \mathcal{A}$, atunci $\bigcup_{n\geqslant 1}A_n\in \mathcal{A}$. babilităților discrete ria probabilităților discrete Teoria probabilităților
- Iar funcția de probabilitate este definită numai pe submulțimile din A (cu axiomele cunoscute):

 Teoria probabilităților discrete

 Teoria probabilităților discrete

Teoria probabilităților discrete P:
$$\mathcal{A} o [0,1]$$
.

Variabile aleatoare continue

- O funcție $X:\Omega\to\mathbb{R}$ este numită variabilă aleatoare dacă or discrete Teoria probabilităților discrete Teoria probabilită prob
- O variabilă aleatoare $X:\Omega\to\mathbb{R}$ se numește continuă dacă are funcția de repartiție continuă.
- Câteodată, această definiție se referă la toate cazurile când $X(\Omega)$ este de cardinal continuu.
- Distribuția (repartiția) unei astfel de variabile poate fi dată prin funcția de repartiție: probabilităților discrete

Teoria probabilităților discrete
Teoria probabilităților di
$$F:\mathbb{R} o[0,1],F(a)=P(X\leqslant a),$$

• sau prin funcția de densitate (de masă), $f : \mathbb{R} \to [0, +\infty)$, astfel încât funcția de repartiție F poate fi descrisă astfel:

tatilor discrete Teoria pro
$$rac{a}{f}$$
 bilitatilor discrete $F(a) = P(X \leqslant a) = \int f(t) \ dt.$

Variabile aleatoare continue

• Cu ajutorul funcției de densitate putem calcula (dacă integralele corespunzătoare există)

Teoria probabilităților
$$t$$
rete Teoria probabilităților discrete Teoria probabilităților discrete

• Probabilitățile asociate unei variabile aleatoare continue se calculează astfel:

Teoria probabilităților discrete

Teoria probabilităților discrete

probabilităților discrete

Teoria pr
$$P(a) \leq X \leq b = F(b)$$
 oria $F(a) = f(b)$ de Teoria probabilităților discrete

Variabile aleatoare continue

- Observație: dacă F este continuă, P(X = a) = F(a) = 0 și $P(a \le X < b) = P(a < X \le b) = P(a < X < b)$.
- Pentru o variabilă aleatoare $X: \Omega \to \mathbb{R}$, dată, operația de standardizare constă în următoarea transformare a variabilei X:

Noua variabilă este "standard" pentru că are

ăților discrete Te
$$M[Y]$$
 $\stackrel{\text{def}}{=} 0$ $\stackrel{\text{def}}{=} 1$. Teoria probabilităților discrete Teoria probabilităților discrete Teoria

Distribuţia (legea) normală.

discrete Teoria probabilităților discrete

• Este o distribuție notată $N(\mu, \sigma^2)$ cu funcția de densitate aulor discrete

Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete
$$f(t) = \frac{1}{\sigma} \frac{(t - \mu)^2}{2\sigma^2}$$
 Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete

ullet Dacă $X:N(\mu,\sigma^2)$, atunci babilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete

Legea normală standard.

```
discrete Teoria probabilităților discrete
```

- Distribuţia N(0,1) se numeşte normală standard. Valorile unei variabile distribuite normal au următoarea împrăștiere:
 - %68 se găsesc la cel mult o deviație standard față de medie; %95 se găsesc la cel mult două deviații standard față de medie; %99.7 se găsesc la cel mult trei deviații standard față de medie;

```
Teoria probabilităților discrete Teoria probabilităților discrete
```

Distribuţia Student (sau t).

ullet Este o distribuție notată t(r) cu funcția de densitate discrete

probabilităților discrete Teoria probabilităților discrete Teoria

ullet Pentru o variabilă aleatoare X distribuită Student cu r>2 grade de libertate avem allor discrete Teoria probabilităților discrete Teoria

Distribuţia Fisher-Snedecor (sau F).

• Este o distribuție notată $F(r_1, r_2)$ cu funcția de densitate

Teoria probabilităților discrete probabilităților discrete probabilităților discrete probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete
$$\sqrt{\frac{(r_1x)^{r_1}r_2^{r_2}}{(r_1x+r_2)r_1+r_2}}$$
 Teoria probabilităților discrete Teoria probabilităților discrete $\sqrt{\frac{r_1}{r_1}x+r_2}$ Teoria probabilităților discrete Teoria

• Pentru o variabilă aleatoare X distribuită $F(r_1,r_2)$ avem probabilităților discrete

$$M[X] = rac{r_2}{r_2-2}, r_2>2 ext{ si } D^2[X] = rac{2r_2^2(r_1+r_2-2)}{r_1(r_2-2)^2(r_2-4)}, r_2>4.$$

Distribuţia χ^2 .

ullet Este o distribuție notată $\chi^2(n)$ $(n\in\mathbb{N}^*ackslash\{1\})$ cu funcția de densitate

probabilităților discrete Teoria probabilităților
$$n/2-1$$
 $e^{-x/2\sigma^2}$ eoria probabilităților discrete Teoria probabilităților $n/2-1$ $e^{-x/2\sigma^2}$ eoria probabilităților discrete Teoria probabilităților discrete Teoria

Teoria prob
$$x = -\infty$$
ităților discrete Teoria probabilităților discrete

ullet Pentru o variabilă aleatoare X distribuită $\chi^2(n)$ avem ${}^{ ext{Teoris}}$

Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete
$$M[X] = n\sigma^2 \sin D^2[X] = 2n\sigma^4$$
oria probabilităților discrete Teoria probabilităților discrete Teoria

Despre examenul partial din săptămâna a 8-a.

- Examenul parţial durează aproximativ o oră şi constă din exerciţii de tipul celor rezolvate la seminar și din rezultatele teoretice demonstrate la curs (cele scrise cu negru).
- La examen puteți folosi cursurile disponibile pe pagina http:// profs.info.uaic.ro/~olariu/, în format electronic sau imprimate. Acestea sunt singurele materiale care sunt permise în timpul examenuluiTeoria probabilităților discrete Teoria probabilităților discrete
- În lipsa unui motiv foarte întemeiat, fiecare student este obligat să vină la examen cu semianul său. llor discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria

Bibliography

- Alon, N., J. H. Spencer, The probabilistic method, Wiley, 2008.
- Bertsekas, D. P., J. N. Tsitsiklis, Introduction to Probability, discrete
 Athena Scietific, 2002 oria probabilităților discrete

 Teoria probabilităților discrete
- Lipschutz, S., Theory and Problems of Probability, Schaum's Outline Series, McGraw-Hill, 1965.

 Teoria probabilitatilor discrete

 Teoria probabilitatilor discrete

 Teoria probabilitatilor discrete

 Teoria probabilitatilor discrete

 Teoria probabilitatilor discrete
- Motwani R., P. Raghavan Randomized Algorithms, Cambridge
 University Press, 1995. screte
 Probabilitation discrete
 Teoria probabilitation discrete
 Teoria probabilitation discrete
- Ross, S. M., A First Course in Probability Rentice Hall, 5th edition, 1998.

 Teoria probabilităților discrete Teoria probabilităților discrete Teoria probabilităților discrete Teoria
- Spencer, J. H., Ten lectures on the probabilistic method, SIAM, 1994, intuitior discrete
- Stone, C. J., A Course in Probability and Statistics, Duxbury Press, 1996.