a)

р	q	r	p V q	$(p \lor q) \Rightarrow r$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	Т	Т
Т	F	F	Т	F
F	Т	F	Т	F
F	Т	Т	Т	Т
F	F	Т	F	Т
F	F	F	F	Т

b)

$$(p \lor q) \Rightarrow r$$
$$= \neg (p \lor q) \lor r$$
$$= (\neg p \land \neg q) \lor r$$

2.

a) my statement:
$$\forall m, n \in \mathbb{N}, [7|(m-5) \land 7|(n-2)] \Rightarrow 7|(mn-3)$$

I believe the statement:

Proof: Let m,n∈ $\mathbb N$, assume 7|(m-5), that $\exists \ k_1 \in \mathbb Z$, $7 \times k_1 = m-5$. Let k_1 be such a value.

Also, assume 7|(n-2) that is $\exists k_2 \in \mathbb{Z}, 7 \times k_2 = n-2$. Let k_2 be such a value.

Let
$$k_3 = 7k_1k_2 + 2k_1 + 5k_2 + 1$$

Then
$$7k_3 = 49k_1k_2 + 14k_1 + 35k_2 + 7$$

= $(7k_1 + 5)(7k_2 + 2) - 3$

=mn-3 ■

b)converse:
$$\forall m, n \in \mathbb{N}, 7 | (mn - 3) \Rightarrow [7 | (m - 5) \land 7 | (n - 2)]$$

I disbelieve the converse:

Proof: Take m=10,n=1, so m, n $\in \mathbb{N}$, and 7|(mn-3)

But
$$7 \nmid 5$$
 and $7 \nmid -1$ that is $7 \nmid (m-5)$ and $7 \nmid (n-2)$

Hence, the converse is false. ■

3.

a)proof:

Let $F = \{f | f: D \to R \land |D| > 0 \land |R| > 0\}$ The pigeonhole principle says that:

$$\forall f \in F, OneToOne(f) \Longrightarrow |D| \le |R|$$

This is equal to $\forall f \in F, |D| > |R| \Longrightarrow \exists x, y \in D, x \neq y \land f(x) = f(y)$

We can define the question as a function $f:A \rightarrow B$, domain A is the set of people at the party, range B is the set of the number of people each person shook hands with.

Since when a people shook hand with |A|-1 people, there will be no people have not shake hand with anybody. Vice versa. Hence the range B may be $0\sim|A|-2$ or $1\sim|A|-1$, so $|B|\leq|A|-1$, hence |B|<|A|.

With the pigeonhole principle above, we can prove that $\exists x, y \in D, x \neq y \land f(x) = f(y)$ that is there are at least 2 people who shake hands with the same number of other people.

```
4.
```

a)Proof:

From the couse note we have this statement : $\forall n \in \mathbb{N}$, $Prime(n) \Longrightarrow (n > 1 \land (\forall a, b \in \mathbb{N}, n \nmid a \land n \nmid b \Longrightarrow n \nmid ab))$ and the proof of this statement is:

Let $n \in \mathbb{N}$. Assume that n is prime. We need to prove that n > 1 and that Atomic(n) are true.

For the first part, the definition of prime tells us immediately that n > 1.

For the second part, we want to prove that $(\forall a, b \in \mathbb{N}, n \nmid a \land n \nmid b \Rightarrow n \nmid ab)$, Let $a, b \in \mathbb{N}$ and assume that $n \nmid a$ and $n \nmid b$. We want to prove that $n \nmid ab$.

We'll first prove that there exist r_3 , $s_3 \in \mathbb{Z}$, $r_3 n + s_3 ab = 1$. By Claim 1 and the assumption that n is prime, there exist r_1 , s_1 , r_2 , $s_2 \in \mathbb{Z}$ such that $r_1 n + s_1 a = 1$ and $r_2 n + s_2 b = 1$. Let $r_3 = r_1 r_2 n + r_2 s_1 a + r_1 s_2 b$ and $s_3 = s_1 s_2$.

Then we can multiply the first two equations to obtain:

$$(r_1 n + s_1 a)(r_2 n + s_2 b) = 1$$

 $r_1 r_2 n^2 + r_2 s_1 a n + r_1 s_2 b n + s_1 s_2 a b = 1$
 $(r_1 r_2 n + r_2 s_1 a + r_1 s_2 b) n + s_1 s_2 a b = 1$
 $r_3 n + s_3 a b = 1$

So then there exist r_3 , $s_3 \in \mathbb{Z}$, $r_3 n + s_3 ab = 1$. Then using Claim 2 (and again the assumption that n is prime), we can conclude that $n \nmid ab$.

And the claim1 : $\forall n, m \in \mathbb{N}$, $Prime(n) \land n \nmid m \Rightarrow (\exists r, s \in \mathbb{Z}, rn + sm = 1)$ which can be proved by the claim3 and claim 6 in the Tutorial4 worksheet

Claim 2: $\forall n, m \in \mathbb{N}$, $Prime(n) \land (\exists r, s \in \mathbb{Z}, rn + sm = 1) \Rightarrow n \nmid m$ which can be proved by the claim 6 in the Tutorial4 worsheet.

Gcd(a,p)=1 and Prime(p) means $p \nmid a$ (same as the claim2 above) And we also know that $p \nmid n$ for n is belong to $T (T=\{1,...,p-1\})$ With the statement $\forall n \in \mathbb{N}$, Prime(n) \Longrightarrow (n > 1 \land ($\forall a,b \in \mathbb{N}$, n \nmid a \land n \nmid b \Longrightarrow n \nmid ab)) showned above we can find that $p \nmid an$. Hence rp(an) must be one of 1,...,p-1 In all, $\{r_p(an) \mid n \in T\} \subseteq T$.

b)Proof:

reduction ad absurdum:

assume that there are two distinct numbers n_1 and n_2 in T, that $r_p(an_1) = r_p(an_2)$ we also know that $p|an_1 - r_p(an_1)$ and $p|an_2 - r_p(an_2)$ so we can get the statement that $p|a(n_1-n_2)$ since $n_1,n_2\in T$ and they are distinct so $|n_1-n_2|\in T$ that is (n_1-n_2) cannot be divisible by p, With the statement $\forall n\in \mathbb{N}$, $Prime(n) \Rightarrow (n>1 \land (\forall a,b\in \mathbb{N},n\nmid a \land n\nmid b\Rightarrow n\nmid ab))$ showned above we can find that $p\nmid (n_1-n_2)$. And this is contradict to the conclusion

we assumed. So the statement we assumed is not true . And we can get the result that If n_1 and n_2 are distinct numbers in T, then $r_p(an_1) \neq r_p(an_2) \blacksquare$

c)Proof:

Let $F = \{f | f: D \to R \land |D| > 0 \land |R| > 0\}$ The pigeonhole principle says that:

$$\forall f \in F, OneToOne(f) \Longrightarrow |D| \le |R|$$

since if n_1 and n_2 are distinct numbers in T, then $r_p(an_1) \neq r_p(an_2)$ (claim b) that meet OneToOne(f)

So $|T| \le |\{r_p(an) | n \in T\}|$

since $\{r_p(an)\big|n\in T\}\subseteq T$ (claim a) $\mathrm{sol}\{r_p(an)\big|n\in T\}$ |T|

so we can say $|\{r_p(an)|n \in T\}| = |T| \blacksquare$

d)Proof:

since For finite sets A and B if $A \subseteq B$ then $|B| = |B \setminus A| + |A|$, both $\{r_p(an) \mid n \in T\}$ and T are finite sets and $\{r_p(an) \mid n \in T\} \subseteq T \text{ (claim 1) so } |T| = |T \setminus \{r_p(an) \mid n \in T\} | + |\{r_p(an) \mid n \in T\}| \text{ since } |\{r_p(an) \mid n \in T\}| = |T| \text{ we can get that } |T \setminus \{r_p(an) \mid n \in T\}| = 0 \text{ that means } T \setminus \{r_p(an) \mid n \in T\} = \emptyset \text{ hence we can conclude that } \{r_p(an) \mid n \in T\} = T \blacksquare$

e)Proof:

Since i = 1~P-1 so i is all the element of T. So $\prod_{i=1}^{i=p-1} r_p(ai)$ is the product of all elements in

 $\left\{r_p(an)\middle|n\in T\right\}$ and $\prod_{\mathrm{i=1}}^{\mathrm{i=p-1}}\mathrm{i}$ is the product of all elements in T.

We also know that $\{r_p(an)|n\in T\}=T$ (claim d), so the the product of all elements in $\{r_p(an)|n\in T\}$ is equal to the product of all elements in T.

Hence we can prove that $\prod_{i=1}^{i=p-1} r_p(ai) = \prod_{i=1}^{i=p-1} i$

f)Proof:

As a consequence of Example 2.18, if for $i \in \{1,2,\ldots,k\}$ $a_i \equiv b_i \pmod{p}$, then $\prod_1^k a_i = \prod_1^k b_i \pmod{p}$.

We can find that $\prod_{i=1}^{i=p-1} a_i \equiv \prod_{i=1}^{i=p-1} r_p(a_i) \pmod{p}$ since $i \in \{1,2,\ldots,p-1\}$ $r_p(a_i) \equiv a_i \pmod{p}$.

We also know that $\prod_{i=1}^{i=p-1} r_p(\mathbf{a}_i) = \prod_{i=1}^{i=p-1} \mathbf{i}$ (claim e)

So
$$\prod_{i=1}^{i=p-1} a_i \equiv \prod_{i=1}^{i=p-1} i \pmod{p}$$

So
$$p|(\prod_{i=1}^{i=p-1} a_i - \prod_{i=1}^{i=p-1} i)$$

That is $p|[a^{p-1} \times 1 \times 2 \times 3 \times \times (p-1) - 1 \times 2 \times 3 \times ... \times (p-1)]$

That is $p|[(a^{p-1}-1) \times [1 \times 2 \times 3 \times \times (p-1)]]$

Since none of $\{1,2,3...(p-1)\}$ can be divisible by p, $(a^{p-1}-1)$ must can be divisible by p.

As an extension of Example 2.14, that for any k>1, if prime pł $b_1 \land p$ ł $b_2 ... \land p$ ł b_k , then pł $(b_1 \times b_2 \times ... \times b_k)$ so pł a^{p-1} since pł a

So $(a^{p-1}-1)$ must can be divisible by p means $1 \equiv a^{p-1} \pmod{p}$

Since 1 is the smallest integer grater than zero we can find that $r_p(\mathbf{a}^{\mathbf{p}-\mathbf{1}})=1$

g)Proof:

Since a is an arbitrary natural number that is not divisible by 5 that means gcd(a,5)=1

And we all know that 5 is a prime number since it can only be divisible by 1 or 5.

So we can get the conclusion that $r_5(a^4) = 1$ (claim f) that is $1 \equiv a^4 \pmod{5}$

As a consequence of Example 2.18, if for $i \in \{1,2,...,k\}$ $a_i \equiv b_i \pmod{p}$, then $\prod_{i=1}^k a_i = p_i \pmod{p}$

$$\prod_{i=1}^{k} b_{i} \pmod{p}$$
. so $1^{25} \equiv a^{4^{25}} \pmod{5}$ that is $1 \equiv a^{100} \pmod{5}$

Since 1 is the smallest integer grater than zero we can find that $r_5(a^{100}) = 1$

5.

a)Proof:

Let $k \in \mathbb{N}$, take n=2+(k+2)!

We can write n,n+1,...,n+k as $n+a(a \in [0,k])$ and $a \in \mathbb{Z}$

So n+a = 2 + (k+2)! + a = (2+a) + (k+2)!

Since $a \in [0, k]$, so $(2+a) \in [2, k+2]$

So we can write $n+a=(2+a)[1\times 2\times 3\times (1+a)\times (3+a)\times (4+a)\times ...\times (k+2)+1]$

So n+a can be divisible by (2+a) which does not equal to 1 or n+a for (2+a)>1 since a∈

[0,k] and n>2 since n=2+(k+2)! and (k+2)!>1 for $k \in \mathbb{N}$

So we can say n+a is composite.

Hence for any $k \in \mathbb{N}$ there is some $n \in \mathbb{N}$ such that n,n1, ...n+k are composite.

b)Proof:

Let n>0 and n∈ N

Take a look at n!+1.

If n!+1 is a prime number then p=n!+1 since n< n!+1< n!+2 (n>0) the statement is proved.

If n!+1 is not a prime number then n!+1 must can be writed as $a \times b \times c....(a,b,c...$ is prime number) and a,b,c,...>n for the reason below:

We assume that there exist a number $p \in \{a,b,c...\}$ and $p \le n$ then p|n! and p|n!+1

So p|n!+1-n! that is p|1 and this is impossible for p is a prime so p>1. So what we assumed is false that is $\forall p \in \{a, b, c...\}, p > n$

Since $n!+2>n!+1=a\times b\times c...(a,b,c...is$ prime number) so $\forall p\in\{a,b,c...\},p< n!+1$

2 and p is a prime.

In all $\forall p \in \{a, b, c...\}$, n and p is a prime and this meet the statement.

Hence , For any positive natural number n there exists a prime p with n .