EARLY DETECTION OF CHRONIC KIDNEY DISEASE USING MACHINE LEARNING

PROJECT DOCUMENTATION

Introduction:

Every year many people are diagnosed with Chronic Kidney Disease. Mostly people are diagnosed with later stages rather than the early stages, the major reason for this is people are not aware about the symptoms and they do not have a proper diagnosis in a very earlier stage. The result of early diagnosis is that they can be treated easily with effective therapy and medication, the later stages are tough to be treated and require high medication. The final stage is the renal failure, which leads to high damage to the life of the patient and risks high.

So, we have created a web application along with dataset so as to predict the chronic kidney disease in an earlier stage by the users without any medical help with higher accuracy and prediction.

Literature Survey:

S.NO	TITLE	DESCRIPTION	ALGORITHM AND
			TECHNIQUES USED
01.	A Machine Learning	A machine learning	Feed Forward Neural
	Methodology for	approach for	Network, knearest
	Diagnosing Chronic	diagnosing CKD was	neighbour, Naive Bayes
	Kidney Disease	proposed in this study.	classifier,Random Forest,
		A model that combines	Support vector machine,
		logistic regression and	Logistic regression.
		random forest with the	
		aid of perceptron was	
		utilized and it was able	
		to attain an average	
		accuracy of after ten	
		times of simulation.	

02.	Chronic Kidney Disease	This study proposes the	Support Vector Machine
	Prediction using Machine	techniques for CKD	(SVM) classifier , Ant
	Learning	such as Ant Colony	Colony Optimization
		Optimization (ACO)	technique
		technique and Support	
		Vector Machine (SVM)	
		classifier, predicts	
		whether the person is	
		having CKD or not by	
		using minimum number	
		of features.	
03.	Performance Analysis of	This proposed system	Random Forest classifier,
	Machine Learning	detects chronic kidney	Logistic Regression and
	Classifier for Predicting	disease using machine	Classification, Decision
	Chronic Kidney Disease	learning; They have	tree classifier
		attained an accuracy of	
		100% in decision tree	
		classifier, 95.12% in	
		random forest and	
		98.82% in logistic	
		regression.	
04.	Statistical and Data	They predicted good	Random Forest, Support
	Mining Aspects on	accuracy with	vector machine, Logistic
	Kidney Stones: A	Classification tree and	and NN
	Systematic Review and	Random Forest	
	Meta-analysis	followed by Support	
		Vector Machines .	
		Logistic and NN has	
		also shown good	
		accuracy results .	

05.	A Neural Network based	The 14 different	Artificial Neural
	Model for Predicting	properties are analysed	Network
	Chronic Kidney Diseases	and linked to chronic	
		kidney disorder victims	
		and foretold accuracy	
		for a machine learning	
		algorithm named	
		Artificial Neural	
		Network. After	
		analysing the outcomes,	
		it is recognized that the	
		algorithm gives	
		correctness of 96	
06.	Prediction of chronic	This proposed research	Support Vector Machine,
	kidney disease (CKD)	work is primarily	Random Forest,
	using Data Science	focused on finding the	XGBoost, Logistic
		best classification	Regression, Neural
		algorithm which can be	networks
		used for the diagnosis	
		of CKD based on the	
		classification report.	
07.	Chronic Kidney Disease	They have diagnosed	Back Propogation Neural
	Prediction Using Data	kidney-related diseases	Network, Random Forest
	Mining	using various data	Algorithm
		mining techniques, and	
		in that, our overall	
		objective is not to find	
		the ideal solution but to	
		indulge the solid	
		diagnosis.	

08.	Predict chronic kidney disease using data mining algorithms in hadoop	This paper presents the	KNN (K-Nearest
		prediction of chronic	Neighbor) and SVM
		kidney disease using	(Support Vector
		data mining classifiers.	Machine).
		To elicitate the hidden	
		information about	
		chronic disease from a	
		given dataset, data	
		mining technology is	
		used to make decisions.	
09.	Classifcation with Ant	The primary objective	Ant Colony Optimization
	Colony Optimisation	of this research is to	
		propose and investigate	
		a novel ant colony	
		optimization-based	
		classification rule	
		discovery algorithm	
		and its variants.	

Information Gathering:

Existing Problem:

Chronic Kidney Disease (CKD) is a major medical problem, can be if treated in the early stages. Usually, people are not aware that medical tests we take for different purposes could contain valuable information concerning kidney diseases. Consequently, attributes of various medical tests are investigated to distinguish which attributes may contain helpful information about the disease. The information says that it helps us to measure the severity of the problem, the predicted survival of the patient after the illness, the pattern of the disease and work for curing the disease.

Proposed Solution:

In this proposed system we are able to identify the patients with disease. Once any person gets kidney disease, they may suffer from the disease which may decrease their working capability as well as living quality. Our aim is to predict patients with chronic kidney failure (ckd) disease and patients who do not (not-ckd) suffer from the disease. So for that we are building a Machine Learning model to predict the compressive strength of concrete using IBM Watson AutoAI

Machine Learning Service. The model is deployed on IBM cloud to get a scoring end point which can be used as web app building. We make use of the scoring end point to give user input values to the deployed model. The model prediction is then showcased on User Interface.