

Balanced Trees

Semester 2, 2020 Kris Ehinger

Binary search trees

- Good average case behaviour: O(log n)
- Bad worst case behaviour: O(n)
- Recall that we usually base time complexity on worst case, so overall: O(n)

Binary search trees

- Solution? How to get a BST to stay balanced?
 - Or almost balanced?
 - Regardless of the data order?
- Balanced trees: AVL, red-black; 2,3,4; B+tree

Balanced trees

- Method to ensure BST is perfectly balanced (or almost balanced)
- Why? Keeps the height of the tree O(log n)
 - Perfectly balanced tree, height = log n, exactly
 - Approximately balanced tree, height = O(log n)
- Importantly, method should not increase time complexity to build tree
 - Search one item in a balanced tree: O(log n)
 - Build a balanced tree of n items: O(n log n)

Balanced trees

- Add steps during insertion to ensure the tree does not become unbalanced
 - Binary search tree ordering is preserved: left child < parent, right child > parent
- So, search in a balanced tree is exactly the same as binary tree
 - But search time is guaranteed to be O(log n)

Balanced trees

- AVL trees
- 2-3-4 trees
- B+ trees
- Red-black trees

AVL trees

- AVL = Adelson-Velskii & Landis
- Insert node and keep track of height of subtrees of every node
 - Balance node every time difference between subtree heights is > 1
 - Basic balancing operation is AVL rotation

Adelson-Velskii, G.; E. M. Landis (1962). "An algorithm for the organization of information". *Proceedings of the USSR Academy of Sciences* **146**: 263–266. (Russian) English translation by Myron J. Ricci in *Soviet Math. Doklady* **3**:1259–1263, 1962.

AVL condition

• Is this node balanced?

Balanced: Difference is <=1

Unbalanced: Difference is >1

Non-AVL tree caused by...

Outside insertion

Inside insertion

Mirror-symmetrical case is handled identically

Unbalanced tree categories

Unbalanced tree categories

How to balance?

- Outside imbalance:
 - Rotate to rebalance
 - E.g., left subtree > right subtree: rotate right
- Inside imbalance:
 - Similar, but requires two rotations

AVL rotation

Right rotation

Left rotation

Inside imbalance: double rotation

Right Left (RL) double rotation:

 First rotation swaps grandchild and child (Right rotation)

Inside imbalance: double rotation

Right Left (RL) double rotation:

 Second rotation swaps parent and child (Left rotation)

AVL insertion

```
node* insert ( node* tree, node* new_node )
if ( tree == NULL )
    tree = new_node;
else if ( new_node->key < tree->key ) {
     tree->left = insert ( tree->left, new_node );
     /* Fifty lines of left balancing code */
else {
     tree->right = insert ( tree->right, new_node );
     /* Fifty lines of right balancing code */
return tree;
```

Summary: AVL trees

- Good features:
 - Tree is always nearly balanced
 - Actually, height < 1.44 log₂(n)
 - Therefore complexity for any search is O(log n)
- Less ideal features:
 - Very fiddly to code, must keep track of
 - insertion path
 - height of all subtrees
 - Balancing adds time to insertion (but constant time)