Geometria e Algebra - MIS-Z

Quinto appello - Gennaio

17/01/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) La matrice

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 0 & 5 \end{pmatrix}$$

è invertibile.

- \square VERO
- \Box FALSO

- (b) Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ un'applicazione lineare tale che f(1,0,1)=(0,1) e f(0,1,0)=(2,3). Allora f(1,1,1)=(4,5).
 - \square VERO
 - \square FALSO

(c) La retta $r\subseteq\mathbb{E}^3$ di equazioni parametriche

$$r: \left\{ \begin{array}{l} x = -t + 2 \\ y = 3t \\ z = -2t + 2 \end{array} \right., \qquad t \in \mathbb{R}$$

passa per il punto (1,3,2).

- \square VERO
- \square FALSO

- (d) Sia V uno spazio vettoriale di dimensione n e sia $\mathrm{id}_V:V\to V$ l'applicazione identità. Allora id_V è diagonalizzabile.
 - \square VERO
 - \square FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\left\{ \begin{array}{l} X+3Y-Z=0\\ kX+Y+3Z=1\\ -8Y+2kZ=1 \end{array} \right.$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni	

ESERCIZIO 3 [8 punti]. Sottospazi vettoriali.

(a) Sia V uno spazio vettoriale su un campo K. Si definisca quando un sottoinsieme W di V è un sottospazio vettoriale di V.

(b) Sia V uno spazio vettoriale su un campo K e siano U e W due sottospazi vettoriali di V. Dimostrare che $U\cap W$ è un sottospazio vettoriale di V.

(c) In $\mathcal{M}_2(\mathbb{R})$ si consideri il sottospazio vettoriale

$$U = \left\{ \begin{pmatrix} a & a \\ b & b \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

Si determini una base e la dimensione di U.

(d) Sia $D \subseteq \mathcal{M}_2(\mathbb{R})$ il sottospazio vettoriale delle matrici diagonali 2×2 . Si determini una base e la dimensione di $U \cap D$.

(e) Stabilire se $\mathcal{M}_2(\mathbb{R})=U\oplus D,$ giustificando la risposta.

ESERCIZIO 4 [7 punti]. Un endomorfismo di \mathbb{R}^4 .

(a) Si consideri il seguente endomorfismo di \mathbb{R}^4 :

$$f: \mathbb{R}^4 \to \mathbb{R}^4 (x, y, z, w) \mapsto (2z, 2x + y + 2z - 3w, -2z, 2x + 2z - 2w).$$

(a1) Si stabilisca se f è un automorfismo, giustificando la risposta.

(a2) Si determini se f è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

(b) Sia V uno spazio vettoriale su K di dimensione finita e sia $g:V\to V$ un endomorfismo. Si dimostri che se g non è un automorfismo allora 0 è un autovalore di g.

ESERCIZIO 5 [7 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano π passante per i punti A(1,1,-4), B(0,0,1) e C(-1,2,0) di \mathbb{E}^3 .

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca della retta r_h e del piano π , dove r_h è definita dalle equazioni parametriche

$$r_h: \left\{ \begin{array}{l} x = ht + 1 \\ y = 3t - h \\ z = -ht - 2 \end{array} \right., \quad t \in \mathbb{R}.$$

Per i valori di hper cui r_h e π sono incidenti si determini il punto di intersezione.

(c) Sia h_0 il valore di h, trovato al punto (b), per cui r_{h_0} e π sono paralleli. Si determini una retta s contenuta nel piano π e parallela alla retta r_{h_0} .