

Universidade Eduardo Mondlane

Faculdade de Engenharia Departamento de Cadeiras Gerais

FÍSICA - II

Determinação experimental de magnitudes Físicas - Tarefa nuclear para o Laboratorio de Fisica-II

1. Um grupo de estudantes da FENG-UEM, com vista a comprovar a lei de Ohm, mediu a corrente que passava por uma resistência eléctrica variando-se a diferença de potencial nos terminais do mesmo, conforme a tabela 1.

Tabela 1: Verificação experimental da lei de Ohm $(R = 820\Omega)$

V(V)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
I(A)	0	0	0.001	0.003	0.004	0.006	0.006	0.007	0.009	0.01	0.012	0.013	0.014	0.015	0.017	0.018	0.019	0.02	0.022	0.023	0.025

- (a) Faça dois gráficos (scatter plot e fitting curve) de I = I(V) e determine a magnitude da resistência em questão. Nota: para o fitting curve poderá usar a função curve_fit do módulo scipy.optimize.
- (b) Determine o erro relativo
- 2. Em 2019, um grupo dos estudantes de Fisca-2 na FENG-UEM realizou uma experiência de descarga de capacitor. O circuíto usado tinha uma resitência (R=33k) e uma capacitor (C = 470μ F) e o grupo obteve os seguintes resultados:

Tabela 2: Descarga de capacitor $(R = 33k, C = 470\mu F)$

V(V)	2	1.4	1.04	0.73	0.50	0.36	0.25	0.17	0.12	0.08	0.05	0.04	0.02	0.01
t(s)	0	5	10	15	20	25	30	35	40	45	50	55	60	65

- (a) Faça um gráfico (scatter plot) de Vxt
- (b) Determine o modelo que melhor descreve a distribuição dos dados da experiência e plote a curva de ajuste (fitting curve) juntamente com o scatter plot dos dados experimentais. O gráfico deve ter gridlines, minorticks, legenda no canto superior direito e o título com o valor de capacitância determinada experimentalmente. Os eixos devem ter os seus respectivos nomes e os dados conforme estao na tabela 2. Recorde que $C=\frac{1}{R\beta}$, sendo β o parámetro do seu modelo.
- (c) Determine o erro relativo