Started on	Thursday, 1 August 2024, 12:46 AM
State	Finished
Completed on	Thursday, 1 August 2024, 12:47 AM
Time taken	38 secs
Marks	6.00/6.00
Grade	10.00 out of 10.00 (100%)
Question 1 Correct Mark 1.00 out of 1.00	Which of the following statements are correct? Note: In the statements below, all the materials stated are 100% pure and ideal. ✓ a. monocrystalline silicon has no defects. ✓ ✓ b. multi crystalline silicon has grain boundaries. ✓ ✓ c. poly crystalline silicon has no defects. × ✓ d. amorphous silicon has no defects. ×
	Your answer is correct. The correct answers are: monocrystalline silicon has no defects., multi crystalline silicon has grain boundaries.
Question 2 Correct Mark 1.00 out of 1.00	How many atoms are there in a silicon unit cell? Answer: 8
	The correct answer is: 8

Mork 100 aut	
Mark 1.00 out	a. (110)
of 1.00	D. (001)
	c. (010)
	$ ightharpoonup$ d. $(ar{1}00)$ \checkmark
	Your answer is correct.
	The correct answer is: $(\bar{1}00)$
Question 4	What is the angle between the planes (100) and (111) in degrees for a cubic crystal? Hint:
Correct Mark 1.00 out of 1.00	Look for angle between planes in a crystal.
51 1150	Answer: 54.7
	The correct answer is: 54.7
Question 5	
Correct	Which of the following statements about dopants in silicon are true?
Mark 1.00 out	☑ a. Dopants in incorporated in interstitial sites are defects. ✓
of 1.00	 ✓ b. Dopants incorporated in substitutional sites are defects. ✓
	c. Dopants in substitutional sites contribute to the electron or hole concentration in the semiconductor, and are considered electrically "active".
	Your answer is correct.
	The correct answers are: Dopants incorporated in substitutional sites are defects.,
	Dopants in incorporated in interstitial sites are defects., Dopants in substitutional sites contribute to the electron or hole concentration in the semiconductor, and are considered electrically "active".
Question 6	How many interstitial sites are present in a silicon unit cell?
Correct Mark 1.00 out	
of 1.00	Answer: 5
	The correct answer is: 5

< Previous Activity

Jump to...

Next Activity >