Homework 2 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

March 5, 2024

1. For all $\varepsilon > 0$, we can find a $N \in \mathbb{N}$ s.t. $|a_n - a| < \frac{\varepsilon}{2}$ for all n > N. And we can find a N' > N s.t.

$$\frac{\sum_{i=1}^{N} a_i - a}{N'} < \frac{\varepsilon}{2}. \text{ Thus, for any } n > N',$$

$$\left|\frac{\sum_{i=1}^{n} a_i}{n} - a\right| \le \left|\frac{\sum_{i=1}^{N} a_i - a}{n}\right| + \left|\frac{\sum_{i=N+1}^{n} a_i - a}{n - N'}\right|$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

Therefore, $\lim_{n\to\infty} b_n = a$.

2. Since $\lim_{n\to\infty} na_n = 0$, by 1., $\lim_{N\to\infty} \sum_{n=0}^N a_n = \lim_{N\to\infty} \sum_{n=0}^N \frac{na_n}{N} = 0$ Also, since $\lim_{n\to\infty} na_n = 0$, $\lim_{n\to\infty} a_n = 0$. Thus,

for any $\varepsilon > 0$, there exists a $N \in \mathbb{N}$ s.t. $|\sum_{n=0}^k a_n| < \frac{\varepsilon}{2}$ for all k > N. Then, for $x \to 1^-$ s.t. $|f(x) - A| < \frac{\varepsilon}{2}$,

$$\sum_{n=0}^{N} a_n - A = \sum_{n=0}^{N} a_n (1 - x^n) - \sum_{n=N+1}^{\infty} a_n x^n + (f(x) - A)$$

$$\leq \frac{\varepsilon}{2} - 0 + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Therefore,
$$\sum_{n=0}^{\infty} a_n = A$$
.

3. We have
$$\lim_{x \to 1^{-}} f(x) = A$$
 and $f(x) = \sum_{n=0}^{\infty} a_n x^n$.

$$\sum_{n=0}^{N} a_n = \sum_{n=0}^{N} a_n (1 - x^n) - \sum_{n=N+1}^{\infty} a_n x^n + f(x)$$

$$\to 0 - 0 + A \text{ as } x \to 1^- \text{ and } N \to \infty$$

4.

(
$$\Longrightarrow$$
) Since $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges uniformly, there exists a $N \in \mathbb{N}$ s.t. $|\sum_{n=N+1}^{\infty} a_n \sin(nx)| < \varepsilon$ for all x .
And since we can find x s.t. $\sin(nx) = 1$ for all x and all n , we can rewrite it as $\lim_{N \to \infty} \sum_{n=N+1}^{\infty} a_n |$

$$\lim_{N \to \infty} \sum_{n=N+1}^{\infty} \frac{na_n}{n} = 0$$
. By 1., $\lim_{n \to \infty} na_n = 0$.

(
$$\iff$$
) Since $na_n \to 0$, we have $\sum_{n=N+1}^{\infty} a_n \to 0$ as $N \to \infty$. And since $|\sin(nx)| \le 1$ for all x , $|\sum_{n=N+1}^{infty} a_n \sin(nx)| \le 1$ for all x , $|\sum_{n=N+1}^{infty} a_n \sin(nx)| \le 1$. By Cauchy Criterion, $\sum_{n=1}^{\infty} a_n \sin(nx)$ converges uniformly.