Nan	ne :					Utech	
Invi	gilato	r's Si	gnati	ure :			
•						EM-8/EC-802F/2012	
				2012		,	
			C	OMMUNICATI	ON I	ENGG.	
Time	e Allo	otted	: 3 H	lours		Full Marks : 70	
		Th	e fia:	ires in the marain	indica	ate full marks.	
The figures in the margin indicate full marks. Candidates are required to give their answers in their own words							
as far as practicable.							
				GROUP -			
			-	ultiple Choice Ty	pe Qı	iestions)	
1.	Ans	wer a	my to	en :		$10 \times 1 = 10$	
	A)	Choose the correct alternatives for the following :					
		i)		an NBFM, the hig The bandwidth of		modulating frequency is system will be	
					b)		
			c)	$2f_m$	d)	$4f_m$.	
		ii)	Rec	overing information	on fro	m a carrier is known as	
			a)	demultiplexing	-	modulation	
			c)	detection	-	carrier recovery.	
	iii) A carrier is amplitude modulated to a depth of 40%. The increase in power is						
			a)	40%	b)	20%	
			c)	16%	d)	8%.	
		iv)	Ent	ropy is basically a	mea	sure of	
			a)	rate of information	on		
			b)	average informat	ion		
			c)	probability of inf	ormat	tion	
			d)	disorder of inform	matio	n.	
8399	9					[Turn over	

CS/B.Tech(EEE)/SEM-8/EC-802F/2012

- a) TDM
- b) FDM
- c) detection
- d) modulation.
- vi) A DSB-SC signal is generated using the carrier $\cos\left(\omega_c t + \theta\right)$ and modulating signal x (t). The envelope of the DSB-SC signal is
 - a) x(t)
 - b) |x(t)|
 - c) only positive portion x(t)
 - d) $x(t) \cos \theta$.
- vii) A 4 GHz carrier is DSB-SC modulated by a lowpass message signal with maximum frequency of 2 MHz. The resultant signal is to be ideally sampled. The minimum frequency of the sampling in train should be
 - a) 4 MHz
- b) 8 MHz
- c) 8 GHz
- d) 8.004 GHz.
- viii) An FM signal with modulation index of 9 is applied to a frequency tripler. The modultion index in the output signal will be
 - a) 0

b) 3

c) 9

- d) 27.
- ix) In all pulse communication system, carrier
 - a) is necessarily a high repetition train of pulses
 - b) is necessarily a high frequency continuous ac signal
 - c) is either a train of pulses or continuous *ac* wave
 - d) none of these.

- x) Quantization noise occurs in
 - a) TDM
- b) FDM
- c) PCM
- d) PWM
- B) Fill in the blank:

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Discuss the advantage and disadvantages of Digital Communication over Analog Communication.
- 3. Distinguish between PAM, PWM and PPM.
- 4. For the data bit 10110001, draw the waveforms for ASK, FSK, PSK, QPSK.
- 5. Compare FDM with carrier multiplexing.
- 6. Define amplitude modulation and modulation index. Derive the expression between the output power of an AM transmitter and the depth of modulation. 2+3

GROUP – C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) State and prove sampling theorem.

5

b) Discuss Time Division Multiplexing.

5

4

- c) Define line coding. Write the properties of line coding. 1+4
- 8. a) Explain coherent and non-coherent binary modulation techniques.
 - b) Explain coherent binary ASK.

8399 3 [Turn over

CS/	B.Tecl	h(EEE)/SEM-8/EC-802F/2012						
	c)	Briefly explain the differences between different modulation techniques.						
	d)	Compare the bandwidth of QPSK system with that of BPSK system.						
	e)	What is QAM system?						
9.	a)	What is Source Coding and what is its objective? 2						
	b)	Define Codeword length, Average codeword length, Code efficiency and Code redundancy. 4						
	c)	A DMS (Discrete Memoryless Source) \boldsymbol{X} has five equally likely symbols.						
		x) Construct a Shannon-Fano code for X and calculate the efficiency of the code.						
		y) Construct another Shannon-Fano code and compare the results.						
	d)	Define and write the mathematical expression of Information Rate.						
10.	rece	Draw the block diagram of PCM system (transmitter an receiver) and briefly explain the operation of each of th blocks.						
		Find out the signal to quantization noise ratio for the system.						
		Mention the advantages of DPCM, DM and ADM systeover PCM system.						
11.	Writ	Write short notes on any <i>three</i> of the following: 3×5						
	a)	Error Control Coding						
	b)	Matched filter						
	c)	Adaptive Delta Modulation						
	d)	Entropy and its properties						
	e)	Spread Spectrum Modulation.						

4

8399