# Chapter 14

# **Entity Authentication**

# Chapter 14 Objectives

- ☐ To distinguish between message authentication and entity authentication
- ☐ To define witnesses used for identification
- ☐ To discuss some methods of entity authentication using a password
- ☐ To introduce some challenge-response protocols for entity authentication
- ☐ To introduce some zero-knowledge protocols for entity authentication
- ☐ To define biometrics and distinguish between physiological and behavioral techniques

## 14-1 INTRODUCTION

Entity authentication is a technique designed to let one party prove the identity of another party. An entity can be a person, a process, a client, or a server. The entity whose identity needs to be proved is called the claimant; the party that tries to prove the identity of the claimant is called the verifier.

# Topics discussed in this section:

- **14.1.1** Data-Origin Versus Entity Authentication
- **14.1.2** Verification Categories
- 14.1.3 Entity Authentication and Key Management

# 14.1.1 Data-Origin Versus Entity Authentication

There are two differences between message authentication (data-origin authentication), discussed in Chapter 13, and entity authentication, discussed in this chapter.

- 1) Message authentication might not happen in real time; entity authentication does.
- 2) Message authentication simply authenticates one message; the process needs to be repeated for each new message. Entity authentication authenticates the claimant for the entire duration of a session.

# 14.1.2 Verification Categories

Something known

Something possessed

Something inherent

# 14.1.3 Entity Authentication and Key Management

This chapter discusses entity authentication. The next chapter discusses key managment.

## 14-2 PASSWORDS

The simplest and oldest method of entity authentication is the password-based authentication, where the password is something that the claimant knows.

# Topics discussed in this section:

14.2.1 Fixed Password

14.2.2 One-Time Password

#### 14.2.1 Fixed Password

# First Approach

#### Figure 14.1 User ID and password file

P<sub>A</sub>: Alice's stored password

Pass: Password sent by claimant



#### 14.2.1 Continued

# Second Approach

#### Figure 14.2 Hashing the password

P<sub>A</sub>: Alice's stored password

Pass: Password sent by claimant



#### 14.2.1 Continued

# Third Approach

#### Figure 14.3 Salting the password

P<sub>A</sub>: Alice's password

S<sub>A</sub>: Alice's salt

Pass: Password sent by claimant



Denv

### 14.2.1 Continued

# Fourth Approach

In the fourth approach, two identification techniques are combined. A good example of this type of authentication is the use of an ATM card with a PIN (personal identification number).

# 14.2.2 One-Time Password

# First Approach

In the first approach, the user and the system agree upon a list of passwords.

# Second Approach

In the second approach, the user and the system agree to sequentially update the password.

# Third Approach

In the third approach, the user and the system create a sequentially updated password using a hash function.

$$h^{n}(x) = h(h^{n-1}(x))$$
  $h^{n-1}(x) = h(h^{n-2}(x))$  ...  $h^{2}(x) = h(h(x))$   $h^{1}(x) = h(x)$ 

#### 14.2.2 Continued

Figure 14.4 Lamport one-time password



## 14-3 CHALLENGE-RESPONSE

In password authentication, the claimant proves her identity by demonstrating that she knows a secret, the password. In challenge-response authentication, the claimant proves that she knows a secret without sending it.

## Topics discussed in this section:

- 14.3.1 Using a Symmetric-Key Cipher
- 14.3.2 Using Keyed-Hash Functions
- 14.3.3 Using an Asymmetric-Key Cipher
- 14.3.4 Using Digital Signature

# 14-3 Continue

# Note

In challenge-response authentication, the claimant proves that she knows a secret without sending it to the verifier.

# Note

The challenge is a time-varying value sent by the verifier; the response is the result of a function applied on the challenge.

# 14.3.1 Using a Symmetric-Key Cipher

# First Approach

Figure 14.5 Nonce challenge



## 14.3.1 Continued

# Second Approach

#### Figure 14.6 Timestamp challenge



# 14.3.1 Continued

# Third Approach.

Figure 14.7 Bidirectional authentication



# 14.3.2 Using Keyed-Hash Functions

Instead of using encryption/decryption for entity authentication, we can also use a keyed-hash function (MAC).

Figure 14.8 Keyed-hash function



# 14.3.3 Using an Asymmetric-Key Cipher

# First Approach

#### Figure 14.9 Unidirectional, asymmetric-key authentication



## 14.3.3 Continued

# Second Approach

#### Figure 14.10 Bidirectional, asymmetric-key



# 14.3.4 Using Digital Signature

# First Approach

Figure 14.11 Digital signature, unidirectional



# 14.3.4 Continued

# Second Approach

#### Figure 14.12 Digital signature, bidirectional authentication



# 14-4 ZERO-KNOWLEDGE

In zero-knowledge authentication, the claimant does not reveal anything that might endanger the confidentiality of the secret. The claimant proves to the verifier that she knows a secret, without revealing it. The interactions are so designed that they cannot lead to revealing or guessing the secret.

# Topics discussed in this section:

- 14.4.1 Fiat-Shamir Protocol
- 14.4.2 Feige-Fiat-Shamir Protocol
- 14.4.3 Guillou-Quisquater Protocol

## 14.4.1 Fiat-Shamir Protocol

#### Figure 14.13 Fiat-Shamir protocol



# 14.4.1 Continued

# Cave Example

Figure 14.14 Cave example



# 14.4.2 Feige-Fiat-Shamir Protocol

#### Figure 14.15 Feige-Fiat-Shamir protocol



# 14.4.3 Guillou-Quisquater Protocol

#### Figure 14.16 Guillou-Quisquater protocol



## 14.4.3 Continued

#### Figure 14.16 Guillou-Quisquater protocol



## 14-5 BIOMETRICS

Biometrics is the measurement of physiological or behavioral features that identify a person (authentication by something inherent). Biometrics measures features that cannot be guessed, stolen, or shared.

# Topics discussed in this section:

- 14.5.1 Components
- 14.5.2 Enrollment
- 14.5.3 Authentication
- 14.5.4 Techniques
- **14.5.5 Accuracy**
- 14.5.6 Applications

# 14.5.1 Components

Several components are needed for biometrics, including capturing devices, processors, and storage devices..

### 14.5.2 Enrollment

Before using any biometric techniques for authentication, the corresponding feature of each person in the community should be available in the database. This is referred to as enrollment.

# 14.5.3 Authentication

Verification

Identification

# 14.5.4 Techniques

Figure 14.17 Techniques



# 14.5.4 Continued

# Physiological Techniques

| Fingerprint | Hands |
|-------------|-------|
| Iris        | Voice |
| Retina      | DNA   |
| Face        |       |



# Behavioral Techniques

Signature

Keystroke

# **14.5.5** Accuracy

False Rejection Rate (FRR)

False Acceptance Rate (FAR)

# 14.5.6 Applications

Several applications of biometrics are already in use. In commercial environments, these include access to facilities, access to information systems, transaction at point-ofsales, and employee timekeeping. In the law enforcement system, they include investigations (using fingerprints or DNA) and forensic analysis. Border control and immigration control also use some biometric techniques.