CS 353 Spring 2020 Homework 2 Solutions

Due: 4 March, Wednesday till 17:00

Q.1 [60 pts]

(Each part, except (e), (g), and (h) are 5 points; (e), (g), and (h) are 10 points.

Consider the computer product database schema below.

Product(<u>maker, model</u>, type)
PC(<u>model</u>, speed, ram, hd, price)
Laptop(<u>model</u>, speed, ram, hd, screen, price)
Printer(model, color, type, price)

Maker of a product is the manufacturer firm. models are numbers for PCs, Laptops, and Printers. Type of a product is "pc", "laptop", or "printer." Color for printer is true for color printers, false for black and white printers. Printer type is "laser" or "inkjet". PC models are four-digit numbers 1XXX. Laptop models are four-digit numbers 2XXX. Printer models are four-digit numbers 3XXX.

Write the following queries in Relational Algebra:

- a) Find the model number and price for all color laser printers.
- b) Find the manufacturers that produce PC's or Laptops, but not printers.
- c) Find the manufacturers that produce laptops who has a hard disk higher than 120 GB and a memory (RAM) of at least 1024 MB and a screen size of at least 17.0 inch, together with the laptop models and prices of the models.
- d) Find the manufacturer pairs that produce the same PC models with the speeds of at least 2.5 MHz. Report the pairs only once.
- e) Find the Laptop models that are produced by at least three different manufacturers. Do this i) without aggregate operators, ii) with aggregate operators.
- f) Find the manufacturers that produce all PCs and laptops whose speed is at least 2.50.
- g) Find the manufacturers who produce exactly one PC, one Laptop, and one Printer model. Do this i) without aggregate operators, ii) with aggregate operators.
- h) Find the manufacturer(s) who produce Laptops with the highest speed.
 - Do this i) without aggregate operators, ii) with aggregate operators.
- i) Find the pairs of laptops (model) with the same speed, RAM, and screen size. Report the pairs only once.

Solution:

```
(a) \Pi_{\text{model, price}} (\sigma_{\text{color}} = \text{``true''} \land \text{type} = \text{``laser''} (Printer))
(b) \rho(T1, (\Pi_{maker} \sigma_{type = "printer"}(Product)))
                  \Pi_{\text{maker}} (Product) – T1
(c) \Pi_{\text{maker, Product.model, price}} (Product \bowtie (\sigma_{\text{hd} > 120 \land \text{ram}} >= 1024 \land \text{screen} >= 17.0 \text{ (Laptop)})
(d)
                 \rho(T1, \prod_{\text{model}} (\sigma_{\text{speed}}) = 2.50 (PC)
                  \rho(P1, Product \bowtie T1)
                  \rho(P2, Product \bowtie T1)
                 \Pi_{P1.maker, P2.maker} \left( \sigma_{P1.maker < P2.maker} \land P1.model = P2.model \left( P1 \times P2 \right) \right)
(e)
                                   (i)
                                    \rho(P1, Product)
                                    \rho(P2, Product)
                                    \rho(P3, Product)
                                   \Pi_{P1.model} (\sigma_{P1.type} = \text{``laptop''} \land P1.model = P2.model \land P2.model = P3.model \land P1.maker != P2.maker \land P2.maker != P3.model \( \sigma_{P1.type} = \text{``laptop''} \land P1.model = P3.model \( \sigma_{P1.type} = \text{``laptop''} \land P3.model = P3.model = P3.model \( \sigma_{P1.type} = \text{``laptop''} \land P3.model = P3.mo
                                   P3.maker \land P1.maker != P3.maker (P1 \times P2 \times P3))
                                   (ii)
                                       t_1 \leftarrow \text{model } G_{\text{count}(*) \text{ as cnt}}(\sigma_{\text{type}} = \text{``laptop''}(\text{Product}))
                                      \Pi_{\text{P1.model}}\left(\sigma_{\text{cnt}>=3}\left(t_{1}\right)\right)
(f)
                 \rho(T1, \Pi_{\text{model}} (\sigma_{\text{speed}}) = 2.50 (PC) \cup \Pi_{\text{model}} (\sigma_{\text{speed}}) = 2.50 (Laptop)
                 \Pi_{\text{maker, model}}(\text{Product}) / T1
```

```
(g)
             (i)
              \rho(P1, \sigma_{type} = "pc" (Product))
              \rho(P2, \sigma_{type} = "pc" (Product))
              \rho(P3, \sigma_{type} = \text{``laptop''} (Product))
              \rho(P4, \sigma_{type = "laptop"} (Product))
              \rho(P5, \sigma_{type = "printer"} (Product))
              \rho(P6, \sigma_{type = "printer"} (Product))
              \rho(R1, \prod_{\text{maker}} (\sigma_{\text{type} = \text{"pc"}}(\text{Product})) -
                           \Pi_{P1.maker} (\sigma_{P1.maker} = P2.maker \land P1.model! = P2.model (<math>P1 \times P2))))
              \rho(\text{R2},\,\Pi_{\text{maker}}\,\big(\sigma_{\text{type}\,=\,\text{``laptop''}}\!\big(\,\,\text{Product}\big)\,-\,
                                  \Pi_{P3.maker} (\sigma_{P3.maker} = P4.maker \land P3.model! = P4.model(P3 \times P4))))
             \rho(\text{R3,}\, \Pi_{\text{maker}} \, \big(\sigma_{\text{type}\,=\,\text{``printer''}} \! \big(\, \text{Product} \big) \, - \,
                                 \Pi_{P5.maker} (\sigma_{P5.maker} = P6.maker \land P5.model! = P6.model(P3 × P4))))
             R1 ∩ R2 ∩ R3
             (ii)
             t_1 \leftarrow \text{type, maker } G_{\text{count}(*) \text{ as cnt}}((\text{Product}))
               \rho(R1, \Pi_{\text{maker}} (\sigma_{\text{type}} = \text{"laptop"} \land \text{cnt} = 1(t_1))
               \rho(R2, \prod_{\text{maker}} (\sigma_{\text{type}} = \text{"pc"} \land \text{cnt} = 1(t_1))
               \rho(R3, \prod_{\text{maker}} (\sigma_{\text{type}} = \text{"printer"} \land \text{cnt} = 1 (t_1))
             R1 ∩ R2 ∩ R3
(h)
             (i)
              \rho(L1, (Laptop))
              \rho(L2, (Laptop))
             \rho(\text{HighestSpeedLaptops}, \Pi_{\text{model}} (\text{Laptop}) - \Pi_{\text{L1.model}} (\sigma_{\text{L1.speed} < \text{L2.speed}} (\text{L1} \times \text{L2}))
             \Pi_{\text{maker}} (Product \bowtie HighestSpeedLaptops)
```

```
(ii) \rho(\text{HighestLaptopSpeed}, \, \mathcal{G}_{\text{max(speed) as maxspeed}} \, (\text{Laptop})) \\ \rho(\text{HighestSpeedLaptops}, \, \Pi_{\text{speed= HighestLaptopSpeed.maxspeed}} \, (\text{Laptop})) \\ \Pi_{\text{maker}} \, (\text{Product} \bowtie \text{HighestSpeedLaptops})
```

i) Find the pairs of laptops (model) with the same speed, RAM, and screen size. Report the pairs only once.

```
\rho(L1, (Laptop))
\rho(L2, (Laptop))
```

$$\Pi_{L1.model,L2.model}\left(\sigma_{L1.model < L2.model \land L1.ram = L2.ram \land L1.speed = L2.speed \land L1.screen = L2.screen}\left(L1 \times L2\right)\right)$$

Q.2 [20 pts, 5 pts each]

Suppose the relations *R* and *S* have *n* tuples and *m* tuples, respectively. Give the minimum and maximum numbers of tuples that the results of the following expressions can have.

- a) $R \cup S$
- b) $R \bowtie S$
- c) $\sigma_c(R) \times S$, for some condition C.
- d) $\pi_L(R)$ S, for some list of attributes L. Assume the projection operator eliminates duplicates.

Solution:

- a) $\min = \min(n, m)$; $\max = n + m$
- **b**) $\min = 0$; $\max = \min(n, m)$
- c) $\min = 0$; $\max = n \times m$
- d) min = 0; max = n

Q.3 [20 pts]

a) [5 pts] Let R be a relation with schema

$$(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$$

and let S be a relation with schema $(B_1, B_2, ..., B_m)$; that is, the attributes of S are a subset of the attributes of S. The quotient of S and S, denoted by, S (or S (or S), is the set of tuples S over attributes S (or S), is the set of tuples S over attributes S (i.e., the attributes of S that are not attributes of S such that for every tuple S in S, the tuple S consisting of the components of S for S (i.e., S in S), is a member of S dive an expression in Relational Algebra, using the basic operators of Relational Algebra, that is equivalent to S is

b) **[15 pts]** Show the result of the division operations A/B1, A/B2, and A/B3 for the following relations:

A	
sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s2	p4
s3	n2

B1		
	pno	
	p1	
	p2	
	p3	
	p4	

B2
pno
p1
p3

B3	
pno	
p1	
p2	
p4	

Solution:

Idea: For $R \div S$, compute all t values that are not 'disqualified' by some s value in S. t value is *disqualified* if by attaching s value from S, we obtain an st tuple that is not in R.

Disqualified *t* values: $\Pi_t ((\Pi_t (R) \times S - R))$

 $R \div S = \Pi_t(R)$ – all disqualified tuples

$$R \div S = \prod_{t} (R) - \prod_{t} ((\prod_{t} (R) \times S - R))$$

b)

A / B2
sno
s1
s4