Calculus 3 Notes

Matthew Stringer

Matthew Stringer Calculus 3

Contents

1	Sect	tion 14.6	3
	1.1	Standard Linear Approximation	3
	1.2	The Error in the Standard Linear Approximation	3
	1.3	Tangent Plane	3
	1 /	Normal Line	2

Matthew Stringer Calculus 3

1 Section 14.6

1.1 Standard Linear Approximation

For f(x,y) at (x_0,y_0) , the Standard Linear Approximation of f(x,y) is:

$$L(x,y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(1.1.1)

1.2 The Error in the Standard Linear Approximation

If f has continuous first and second partial derivative throughout an open set containing a rectangle R centered at (x_0, y_0) and if M is any upper bound for the values of $|f_{xx}|, |f_{yy}|$, and $|f_{xy}|$ on R, then the error E(x, y) incurred in replacing f(x, y) on R by its linearizion satisfies the inequality

$$|E(x,y)| \le \frac{1}{2}M(|x-x_0|+|y-y_0|)^2.$$
 (1.2.1)

1.3 Tangent Plane

For f(x,y) at (x_0,y_0) , the tangent plane of f(x,y) is:

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$
(1.3.1)

If you have a surface z = f(x, y) at $P(x_0, y_0, z_0)$ use

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$$
(1.3.2)

1.4 Normal Line

The normal line to f(x, y, z) at $P_0(x_0, y_0, z_0)$ has the following equations:

$$x = x_0 + f_x(P_0)t$$

$$y = y_0 + f_y(P_0)t$$

$$z = z_0 + f_z(P_0)t$$