Philosophy 1115 Homework Assignment #6

April 8, 2016 (due on 04/22/16)

1 Problem #1

For this problem, please use the following stochastic truth table to determine all of your algebraic translations for probabilistic claims involving $\{X, Y, Z\}$.

State (s_i)	X	Y	Z	$\Pr(s_i)$
s_1	Т	Т	Т	$\Pr(s_1) = a_1$
<i>s</i> ₂	Т	Т	Т	$\Pr(s_2) = a_2$
s_3	Т	Т	Т	$\Pr(s_3) = a_3$
S4	Т	Т	Т	$\Pr(s_4) = a_4$
S ₅		Т	Т	$\Pr(s_5) = a_5$
<i>s</i> ₆		Т	Т	$\Pr(s_6) = a_6$
<i>S</i> ₇		Т	Т	$\Pr(s_7) = a_7$
\$8		Т	Т	$\Pr(s_8) = a_8$

The goal is to prove the following general claim (the Unconditional Sure Thing Principle holds for Factor #2):

$$[\Pr(Z \mid X \& Y) > \Pr(Z) \text{ and } \Pr(Z \mid X \& \sim Y) > \Pr(Z)] \Longrightarrow \Pr(Z \mid X) > \Pr(Z).$$

That is, the goal is the prove that the following two assumptions:

- (1) $Pr(Z \mid X \& Y) > Pr(Z)$
- (2) $Pr(Z \mid X \& \sim Y) > Pr(Z)$

generally entail this third claim:

(3)
$$Pr(Z | X) > Pr(Z)$$

In order to do this, you should follow these two steps:

Step 1. Translate claims (1)–(3) into their algebraic counterparts, using our definitions of unconditional and conditional probability (and the above table for the salient variables). That is, using:

$$\Pr(p) \stackrel{\text{def}}{=} \sum_{s_i \models p} \Pr(s_i) = \sum_{s_i \models p} a_i$$

$$\Pr(p \mid q) \stackrel{\text{\tiny def}}{=} \frac{\Pr(p \& q)}{\Pr(q)}$$
, provided that $\Pr(q) > 0$.

Step 2. Use our two general assumptions about the a_i 's:

- (i) Each of the a_i 's are on [0,1]. That is: $a_1, \ldots, a_8 \in [0,1]$.
- (ii) The a_i 's must sum to 1. That is: $\sum_{i=1}^8 a_i = 1$.

to show (in algebraic terms) that whenever (1) and (2) are both true, (3) must also be true.

2 Problem #2

Suppose we have an urn containing 320 objects. We are going to sample a single object *o* at random from the urn (each individual object is equally likely to be chosen). Consider the following three statements:

- B = o is black ($\sim B = o$ is white).
- M = o is metal ($\sim M = o$ is plastic).
- S = o is a sphere ($\sim S = o$ is a cube).

Assume that these three properties are distributed according to the following *probabilistic truth-table*:

State (s_i)	В	M	S	$Pr(w_i)$
<i>s</i> ₁	Т	Т	Т	$\Pr(s_1) = a_1 = \frac{24}{320}$
s_2	Т	Т	Т	$\Pr(s_2) = a_2 = \frac{6}{320}$
s_3	Т	Т	Т	$\Pr(s_3) = a_3 = \frac{24}{320}$
<i>S</i> 4	Т	Т	Т	$\Pr(s_4) = a_4 = \frac{42}{320}$
S ₅	1	Т	Т	$\Pr(s_5) = a_5 = \frac{33}{320}$
<i>s</i> ₆	1	Т	Т	$\Pr(s_6) = a_6 = \frac{33}{320}$
S ₇	1	Т	Т	$\Pr(s_7) = a_7 = \frac{47}{320}$
\$8	_	Т	Т	$\Pr(s_8) = a_8 = \frac{111}{320}$

That is, 24 of the 320 objects are black metallic spheres; 47 of the 320 objects are white plastic spheres *etc.* With these basic probabilities in mind, we can use our definitions of unconditional and conditional probability (on page 1) to calculate *any* probability in this example.

The HW is to answer the following eleven (11) questions. [Note: once you've answered questions (1)–(5), you'll have everything you need to answer questions (6)–(11). See my 03/29/16 lecture for the 3 Proposals.]

- 1. What is Pr(S)?
- 2. What is $Pr(S \mid B)$? [That is, what is $\frac{Pr(S\&B)}{Pr(B)}$?]
- 3. What is $Pr(S \mid B \& M)$? [That is, what is $\frac{Pr(S\&(B\&M))}{Pr(B\&M)}$?]
- 4. What is $Pr(B \to S)$? [Hint: do the truth-table for $B \to S$ to see in which of the 8 worlds $B \to S$ is true.]
- 5. What is $Pr((B \& M) \to S)$? [Hint: do the truth-table for $(B \& M) \to S$ to see in which worlds it is true.]
- 6. Is the argument $^{r}B : S^{r}$ inductively strong, according to Proposal #1? [Hint: use your answer to (4).]
- 7. Is $^{\mathsf{r}}B : S^{\mathsf{r}}$ inductively strong, according to Proposal #2 (Skyrms's proposal)? [Hint: use (2).]
- 8. Is $^{\mathsf{r}}B : S^{\mathsf{r}}$ inductively strong, according to Proposal #3 (my proposal)? [Hint: use (2) and (1).]
- 9. Is the argument $^{r}B \& M :: S^{\gamma}$ inductively strong, according to Proposal #1? [Hint: use (5).]
- 10. Is ${}^{r}B \& M : S^{r}$ inductively strong, according to Proposal #2 (Skyrms's proposal)? [Hint: use (3).]
- 11. Is $^{r}B \& M : S^{r}$ inductively strong, according to Proposal #3 (my proposal)? [Hint: use (3) and (1).]