WHAT IS CLAIMED IS:

1.	A method of fabricating a semiconductor	transistor
comprising:	•	

forming a gate pattern on a semiconductor substrate;

forming a first insulating layer on an entire surface of the substrate including the gate pattern;

forming L-shaped third and second spacers which are sequentially stacked on the first insulating layer on a sidewall of the gate pattern, the third and second spacers each having a horizontal protruding portion;

simultaneously forming high- and medium-concentration junction areas in the substrate beyond the L-shaped second spacer and in the substrate under the horizontal protruding portion of the L-shaped second spacer, respectively, by performing a high-concentration ion implantation process using the L-shaped second spacer and the gate pattern as an ion implantation mask;

annealing the substrate having undergone the highconcentration ion implantation process;

removing the L-shaped second spacer; and

forming a low-concentration junction area under the horizontal protruding portion of the L-shaped third spacer by performing a low-concentration ion implantation process using the L-shaped third spacer and the gate pattern as an ion implantation mask.

1	2. The method as claimed in claim 1, wherein forming the
2	L-shaped third and second spacers comprises:
3	forming second, third, and fourth insulating layers which are
4	sequentially stacked on the first insulating layer;
5	anisotropically etching the fourth insulating layer to form a
6	first spacer on the sidewall of the third insulating layer;
7	etching the third insulating layer, using the first spacer as an
8	etch mask, to form an L-shaped second spacer having a horizontal
9	protruding portion under the first spacer; and
10	etching the second insulating layer at the same time as
11	removing the first spacer to form an L-shaped third spacer having
12	a horizontal protruding portion under the L-shaped second spacer.

3. The method as claimed in claim 1, wherein the first insulating layer is made of silicon oxide.

- 4. The method as claimed in claim 2, wherein the second insulating layer is made of material having an etch selectivity with respect to the first insulating layer.
- 5. The method as claimed in claim 2, wherein the third insulating layer is made of material having an etch selectivity with respect to the second insulating layer.

- 1 6. The method as claimed in claim 2, wherein the fourth
 2 insulating layer is made of material having an etch selectivity with
 3 respect to the third insulating layer.
- 7. The method as claimed in claim 2, wherein removing
 the first spacer uses an isotropic etch technique.

- 8. The method as claimed in claim 1, wherein removing the L-shaped second spacer uses an isotropic etch technique.
- 9. The method as claimed in claim 1, wherein removing the L-shaped second spacer includes etching the first insulating layer exposed on the gate pattern and beyond the L-shaped third spacer to expose a top surface of the gate pattern and to form an L-shaped fourth spacer having a horizontal protruding portion under the L-shaped third spacer.
- 10. The method as claimed in claim 9, further comprising forming a silicide layer on the substrate at both sides of the L-shaped fourth spacer and on the gate pattern, after the low-concentration ion implantation process is performed.

1	11. The method as claimed in claim 1, wherein the
2	annealing process step is a rapid thermal process (RTP).

12. The method as claimed in claim 1, wherein forming the medium- and high-concentration junction areas causes the medium-concentration junction area to have a lower impurity concentration than the high-concentration junction area, using the protruding portions of the L-shaped second and third spacers and the first insulating layer as an ion channeling barrier layer.

13. A semiconductor transistor comprising:

a gate pattern formed on a semiconductor substrate;

an L-shaped third spacer having a horizontal protruding portion, the third spacer being formed on a sidewall surface of the gate pattern;

an L-shaped fourth spacer having a vertical sidewall between a vertical sidewall of the L-shaped third spacer and the gate pattern and a horizontal protruding portion between the protruding portion of the L-shaped third spacer and the substrate;

a high-concentration junction area formed in the substrate beyond the L-shaped third spacer;

a low-concentration junction area formed in the substrate under the horizontal protruding portion of the L-shaped third spacer; and

15	a medium-concentration junction area positioned between
16	the high- and low-concentration junction areas.
1	14. The semiconductor transistor as claimed in claim 13,
2	wherein the medium- and low-concentration junction areas are
3	formed under the protruding portion of the L-shaped third spacer.
1	15. The semiconductor transistor as claimed in claim 13,
2	wherein the L-shaped fourth spacer is made of silicon oxide.
1	16. The semiconductor transistor as claimed in claim 13,
2	wherein the L-shaped third spacer is made of material having an
3	etch selectivity with respect to the L-shaped fourth spacer.
1	17. The method as claimed in claim 9, wherein the L-
2	shaped third spacer is removed before the low-concentration ion-
3	implantation process is performed.
1	18. The method as claimed in claim 1, wherein a silicon
2	oxide layer is formed on the substrate before the low concentration

3

ion-implantation process.

1	19. The method as claimed in claim 4, wherein the second
2	insulating layer is made of a material selected from the group
3	consisting of silicon nitride and silicon oxynitride.
1	20. The method as claimed in claim 4, wherein the third
2	insulating layer is made of silicon oxide.
1	21. The method as claimed in claim 6, wherein the fourth
2	insulating layer is made of a material selected from the group
3	consisting of silicon nitride and silicon oxynitride.
1	22. The method as claimed in claim 1, wherein the first
2	insulating layer is formed to a thickness of between about 2 nm -
3	5 nm.
1	23. The method as claimed in claim 2, wherein the sum of
2	the thickness of the first and second insulating layers is between
3	about 5 nm - 20 nm

24. The method as claimed in claim 2, wherein the third insulating layer is formed to a thickness of between about 20 nm - 70 nm.

1

2

3

1 25. The method as claimed in claim 2, wherein the fourth 2 insulating layer is formed to a thickness of between about 30 nm -3 90 nm.