Introduction to Audio Content Analysis

Module 2.6: Fundamentals — Non-Fourier Time-Frequency Transforms

alexander lerch

introduction overview

corresponding textbook section

Chapter 2 — Fundamentals: pp. 24–26

- lecture content
 - constant-Q transform (CQT)
 - Gammatone filterbank
- learning objectives
 - discussing the advantages and disadvantages of different time-frequency transforms
 - explaining the principles of the CQT and auditory filterbanks

introduction

overview

corresponding textbook section

Chapter 2 — Fundamentals: pp. 24–26

- lecture content
 - constant-Q transform (CQT)
 - Gammatone filterbank
- learning objectives
 - discussing the advantages and disadvantages of different time-frequency transforms
 - explaining the principles of the CQT and auditory filterbanks

other time frequency transforms introduction

- Fourier transform continues to be much-used tool in audio signal processing and MIR
- but there are disadvantages, e.g.
 - frequency axis does not directly map to (perceptual) pitch axis
 - frequency and time resolution inversely related
 - alternative transforms can be used

other time frequency transforms

- Fourier transform continues to be much-used tool in audio signal processing and MIR
- but there are disadvantages, e.g.
 - frequency axis does not directly map to (perceptual) pitch axis
 - frequency and time resolution inversely related
 - ⇒ alternative transforms can be used

constant-Q transform introduction

- DFT has a *linear* frequency axis:
 - not perceptually meaningful: logarithmic is better match
 - low frequency resolution at low frequencies
- ⇒ compute DFT-like transform at specific frequencies
 - ullet space frequencies logarithmically (constant ${\mathcal Q}$
 - resulting abscissa resolution is pitch-related

- DFT has a *linear* frequency axis:
 - not perceptually meaningful: logarithmic is better match
 - low frequency resolution at low frequencies
- ⇒ compute DFT-like transform at specific frequencies
 - ullet space frequencies logarithmically (constant \mathcal{Q})
 - resulting abscissa resolution is pitch-related

$$Q = \frac{f}{\Delta f} = \frac{1}{2^{1/c} - 1}$$

$$X_{\text{CQ}}(k,n) = \frac{1}{\mathcal{K}(k)} \sum_{i=i_{\text{s}}(n)}^{i_{\text{e}}(n)} w_k(i-i_{\text{s}}) \cdot x(i) e^{\mathrm{j}2\pi \frac{\mathcal{Q}\cdot(i-i_{\text{s}})}{\mathcal{K}(k)}}} \circ f(k)$$
: frequency of bin index k $\mathcal{K}(k)$: blocklength for bin index k \mathcal{Q} : measure of pitch res. $\mathcal{K}(k) = \frac{f_{\text{S}}}{f(k)} \mathcal{Q}$ $\mathcal{K}(k)$: window function $\mathcal{K}(k)$: $\mathcal{K}(k)$

$$\circ$$
 $f(k)$: frequency of bin in

- i_s, i_e: start and stop time indices of block
- fs: sample rate
- long window for low frequencies (high freq res, low time res)
- short window for high frequencies (low freq res, high time res)

constant Q transform implementation 2/2

non-overlapping

overlapping

- define transformation matrix with maximum window length
- zeropad higher frequencies (left & right)
- ⇒ independent definition of block and hop length

- + perceptually/musically adapted frequency resolution
- time resolution depends on frequency
- not invertible
- no optimized implementation (compare FFT)

- + perceptually/musically adapted frequency resolution
- time resolution depends on frequency
- not invertible
- no optimized implementation (compare FFT)

- + perceptually/musically adapted frequency resolution
- time resolution depends on frequency
- not invertible
- no optimized implementation (compare FFT)

- + perceptually/musically adapted frequency resolution
- time resolution depends on frequency
- not invertible
- no optimized implementation (compare FFT)

auditory filterbanks

FT and related transforms bad models of physiological properties of the human ear:

- frequency resolution (critical bands)
- frequency scale (pitch resolution)
- loudness & masking
- event perception & time integration

⇒ auditory filterbanks

not as widely used as one might think because

- computationally inefficient
- analysis only: no invertibility (mostly)
- not proven to be superior

auditory filterbanks introduction

FT and related transforms bad models of physiological properties of the human ear:

- frequency resolution (critical bands)
- frequency scale (pitch resolution)
- loudness & masking
- event perception & time integration

⇒ auditory filterbanks

not as widely used as one might think because

- computationally inefficient
- analysis only: no invertibility (mostly)
- not proven to be superior

auditory filterbanks introduction

FT and related transforms bad models of physiological properties of the human ear:

- frequency resolution (critical bands)
- frequency scale (pitch resolution)
- loudness & masking
- event perception & time integration

⇒ auditory filterbanks

not as widely used as one might think because

- computationally inefficient
- analysis only: no invertibility (mostly)
- o not proven to be superior

matlab source: matlab/displayGammatone.m

DFT has disadvantages

- low frequency resolution for low pitches
- non-logarithmic/perceptually relevant pitch resolution

CQT

- similar to Fourier Transform but logarithmically spaced frequency bins
- not invertible and inefficient

Filterbanks

- good model of human physiology
- not invertible and inefficient
- not proven to be superior

