$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$-\frac{4k^2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$
${\mathfrak r}_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+2k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + 2 k^2)^2}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$-\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+2k^2)}$	0	$\frac{4ik}{(\alpha_0-4\beta_1)(1+2k^2)}$
$\tau_1^{\#1}\!$	$\frac{2 i \sqrt{2} k}{(\alpha_0 - 4 \beta_1) (1 + k^2)}$	$-\frac{2ik}{(\alpha_0-4\beta_1)(1+k^2)^2}$	$-\frac{2 k^2}{(\alpha_0 - 4 \beta_1) (1 + k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2}{(\alpha_0-4\beta_1)(1+k^2)^2}$	•	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{2\sqrt{2}}{(\alpha_0-4\beta_1)(1+k^2)}$	$-\frac{2i\sqrt{2}k}{(\alpha_0-4\beta_1)(1+k^2)}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}+\beta_1$	$\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$	$2 \beta_1 k^2$	0
$\omega_{2^{-}}^{\sharp 1}\dagger^{lphaeta\chi}$	0	0	$-\frac{\alpha_0}{4} + \beta_1$

 $-\frac{1}{2}\,\tilde{I}\left(\alpha_{0}-4\,\beta_{1}\right)k$

0

 $\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$

 $\frac{1}{4} (\alpha_0 - 4 \beta_1)$

0

0

0

 $\omega_{1}^{\#1} +^{\alpha}$

0

0

0

 $-\frac{\alpha_0-4\beta_1}{2\sqrt{2}}$

0

0

0

 $\omega_1^{\#2} \uparrow^{\alpha}$

0

0

0

 $\frac{1}{2}$ \vec{i} (α_0 - 4 β_1) k

0

0

0

 $f_1^{\#2} + \alpha$

0

0

0

0

0

0

0

 $f_{1}^{\#1} \dagger^{\alpha}$

0

0

0

0

0

0

 $\bar{i}(\alpha_0-4\beta_1)k$

 $f_1^{\#1} \dagger^{\alpha\beta}$

 $f_{1^-}^{\#2}\alpha$

 $f_{1}^{\#1}{}_{lpha}$

 $\omega_{1^{^{-}}\alpha}^{\#1}$

 $f_1^{\#1}$

 $\omega_1^{\#2}{}_+ \alpha \beta$

 $\omega_{1}^{\#1}{}_{\alpha\beta}$

0

0

0

0

 $\frac{i(\alpha_0-4\beta_1)k}{2\sqrt{2}}$

 $\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$

 $\frac{1}{4} \left(\alpha_0 - 4 \, \beta_1 \right)$

 $\omega_1^{\#1} +^{\alpha\beta}$

0

0

0

0

0

0

 $\frac{\alpha_0 - 4 \beta_1}{2 \sqrt{2}}$

 $\omega_1^{\#2} + \alpha \beta$

1 αβχ	_	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
0	$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{16\beta_1}{\alpha_0^2-4\alpha_0\beta_1}$	$\frac{2i\sqrt{2}}{\alpha_0k}$	0
0	$ au_2^{\#1} \dagger^{lphaeta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
+ β ₁	$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4} + \beta_1}$
	I			•

Source constraints				
SO(3) irreps	#			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
Total #:	10			

$\omega_{0}^{\#1}$	0	0	0	$\frac{\alpha_0}{2} - 2\beta_1 + \alpha_3 k^2$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	$-\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	-4 $\beta_1 k^2$	0	0
$\omega_{0}^{\#1}$	$\frac{1}{2}(\alpha_0-4\beta_1)$	$\frac{i(\alpha_0-4\beta_1)k}{\sqrt{2}}$	0	0
	$\omega_{0}^{\#1}$ \dagger	$f_{0}^{\#1}$ †	$f_{0}^{#2} +$	$\omega_{0}^{\#1}$ \dagger

	Massive partic	le
? /	Pole residue:	$-\frac{1}{\alpha_3} > 0$
$J^P = 0^-$	Polarisations:	1
$\frac{1}{k^{\mu}}$?	Square mass:	$-\frac{\alpha_0-4\beta_1}{2\alpha_3}>0$
?	Spin:	0
	Parity:	Odd

Unitarity conditions $\alpha_0 > 0 \&\& \alpha_3 < 0 \&\& \beta_1 < \frac{\alpha_0}{4}$

$\tau_{0^{+}}^{\#2} + 0$ $\sigma_{0^{-}}^{\#1} + 0$		0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{2}{\alpha_0-4\beta_1+2\alpha_3 k^2}$
	$\int_{0}^{\alpha} f^{\alpha\beta} \partial_{\beta} \omega_{\alpha}^{X} + \int_{0}^{\delta} \partial_{\beta} f^{\alpha}_{\alpha} - \int_{0}^{\delta} \partial_{\beta} f^{\alpha}$	$\int_{\alpha}^{\alpha} \chi \partial_{\chi} \omega^{\beta \zeta \alpha}$	$\partial_{\chi}f^{\delta}_{\beta}\partial^{\chi}f_{}^{\beta}+$	
Lagrangian density $\frac{1}{2} \frac{\alpha_{0}}{\alpha_{0}} \frac{\alpha_{0}}{\alpha_{1}} \frac{1}{\alpha_{2}} \frac{\alpha_{0}}{\alpha_{1}} \alpha_{$	$ \int_{2}^{2} \omega_{\alpha} \alpha_{X} \beta_{\alpha} = \int_{2}^{2} \omega_{\alpha} \alpha_{\beta} \chi_{\beta} - P_{1} \alpha_{\alpha} \alpha_{\beta} \chi_{\beta} - P_{1} \alpha_{\alpha} \alpha_{X} \delta_{\beta} + P_{1} \alpha_{\alpha} \alpha_{\beta} \chi_{\beta} - P_{1} \alpha_{\alpha} \alpha_{\beta} \lambda_{\beta} + P_{2} \alpha_{\beta} \gamma_{\alpha} + P_{2} \alpha_{\beta} \gamma_{\alpha} + P_{2} \alpha_{\beta} \gamma_{\alpha} + P_{2} \alpha_{\beta} \gamma_{\alpha} \lambda_{\beta} + P_{2} \alpha_{\beta} \gamma_{\alpha} \lambda_{\beta} + P_{2} \alpha_{\beta} \beta_{\alpha} \lambda_{\beta} \lambda_{\alpha} \lambda_{\beta} + P_{2} \alpha_{\beta} \beta_{\alpha} \lambda_{\beta} \lambda_{\beta} \lambda_{\alpha} \lambda_{\beta} + P_{2} \alpha_{\beta} \beta_{\alpha} \lambda_{\beta} \lambda_{\beta}$	$2\beta_1 \partial_{\beta} f_{\chi}^{\chi} \partial^{\beta} f_{\alpha}^{\alpha} + \alpha_0 f^{\alpha\beta} \partial_{\chi} \omega_{\alpha\beta}^{\chi} - \alpha_0 f^{\alpha} \partial_{\chi} \omega^{\beta\chi}_{\beta} - \frac{2}{3} \alpha_3 \partial_{\beta} \omega_{\zeta\alpha}^{\chi} \partial_{\chi} \omega^{\beta\zeta\alpha} -$	$\frac{1}{3} \alpha_3 \partial_{\beta} \omega_{\zeta\alpha}^{\chi} \partial_{\chi} \omega^{\zeta\alpha\beta} + 4 \beta_1 \omega_{\alpha\chi\beta} \partial^{\chi} f^{\alpha\beta} + \beta_1 \partial_{\chi} f_{\beta}^{\ \delta} \partial^{\chi} f_{\delta}^{\ \beta} + \beta_1 \partial_{\chi} f^{\delta}_{\ \beta} \partial^{\chi} f_{\delta}^{\ \beta} +$	$\frac{2}{3}\alpha_3\partial_{\chi}\omega^{\beta\zeta\alpha}\partial^{\chi}\omega_{\zeta\alpha\beta} + \frac{1}{3}\alpha_3\partial_{\chi}\omega^{\zeta\alpha\beta}\partial^{\chi}\omega_{\zeta\alpha\beta} + 4\beta_1\partial^{\beta}f^{\alpha}_{\ \alpha}\partial_{\delta}f^{\delta}_{\ \beta} - 2\beta_1\partial_{\beta}f^{\chi}_{\ \chi}\partial_{\delta}f^{\chi\delta} + \frac{2}{3}\alpha_3\partial^{\beta}\omega_{\alpha}^{\ \delta}\partial^{\delta}\omega_{\zeta\beta}^{\ \alpha} - \beta_1\partial^{\chi}f^{\beta}_{\ \chi}\partial^{\zeta}f_{\lambda\beta} + \beta_1\partial^{\chi}f_{\delta\zeta}\partial^{\zeta}f^{\delta}_{\ \chi} - \beta_1\partial^{\chi}f_{\zeta\delta}\partial^{\zeta}f^{\delta}_{\ \chi} - \beta_1\partial^{\chi}f_{\zeta\delta}\partial^{\zeta}f^{\delta}_{\ \chi} + \beta_1\partial^{\chi}f_{\delta\zeta}\partial^{\zeta}f^{\delta}_{\ \chi} - \beta_1\partial^{\chi}f_{\zeta\delta}\partial^{\zeta}f^{\delta}_{\ \chi}$

 $\sigma_0^{\#1}$

8β₁

 $\frac{}{\alpha_0^2 - 4 \alpha_0 \beta_1}$

 $\frac{i\sqrt{2}}{\alpha_0 k}$

 $\tau_0^{\#1}$

 $\alpha_0 k$

 $\frac{1}{\alpha_0 k^2}$

 $\tau_0^{\#2}$

0

 $\sigma_0^{\#1}$

0

0