

# 100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE

- OPERATING FROM Vcc=2V to 5.5V
- STANDBY MODE ACTIVE LOW (TS486) or HIGH (TS487)
- OUTPÙT POWER: 102mW @5V, 38mW @3.3V into 16Ω with 0.1% THD+N max (1kHz)
- LOW CURRENT CONSUMPTION: 2.5mA max
- High Signal-to-Noise ratio: 103dB(A) at 5V
- High Crosstalk immunity: 83dB (F=1kHz)
- PŠRR: 58 dB (F=1kHz), inputs grounded
- ON/OFF click reduction circuitry
- Unity-Gain Stable
- **SHÓRT CIRCUIT LIMITATION**
- Available in SO8, MiniSO8 & DFN 3x3mm

#### **DESCRIPTION**

The TS486/7 is a dual audio power amplifier capable of driving, in single-ended mode, either a 16 or a  $32\Omega$  stereo headset.

Capable of descending to low voltages, it delivers up to 90mW per channel (into  $16\Omega$  loads) of continuous average power with 0.3% THD+N in the audio bandwitdth from a 5V power supply.

An externally-controlled standby mode reduces the supply current to 10nA (typ.). The unity gain stable TS486/7 can be configured by external gain-setting resistors or used in a fixed gain version.

#### **APPLICATIONS**

- Headphone Amplifier
- Mobile phone, PDA, computer motherboard
- High end TV, portable audio player

#### **ORDER CODE**

| Part    | Temperature | Package |     |     | Gain     | Marking |  |
|---------|-------------|---------|-----|-----|----------|---------|--|
| Number  | Range: I    | D       | s   | Q   | Gain     | Warking |  |
| TS486   |             | •       |     |     | external | TS486I  |  |
| TS487   |             | •       |     |     | external | TS487I  |  |
| TS486   |             |         | •   | •   | external | K86A    |  |
| TS486-1 |             |         | tba | tba | x1/0dB   | K86B    |  |
| TS486-2 | -40, +85°C  |         | tba | tba | x2/6dB   | K86C    |  |
| TS486-4 | -40, +65 C  |         | tba | tba | x4/12dB  | K86D    |  |
| TS487   |             |         | •   | •   | external | K87A    |  |
| TS487-1 |             |         | tba | tba | x1/0dB   | K87B    |  |
| TS487-2 |             |         | tba | tba | x2/6dB   | K87C    |  |
| TS487-4 |             |         | tba | tba | x4/12dB  | K87D    |  |

MiniSO & DFN only available in Tape & Reel with T suffix, SO is available in Tube (D) and in Tape & Reel (DT)

### PIN CONNECTIONS (top view)

TS486IDT: SO8, TS486IST, TS486-1IST, TS486-2IST, TS486-4IST: MiniSO8



TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT: DFN8



TS487IDT: SO8, TS487IST, TS487-1IST, TS487-2IST, TS487-4IST: MiniSO8



TS487-IQT, TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8



June 2003 1/31

## **ABSOLUTE MAXIMUM RATINGS**

| Symbol            | Parameter                                                        | Value                          | Unit |
|-------------------|------------------------------------------------------------------|--------------------------------|------|
| V <sub>CC</sub>   | Supply voltage 1)                                                | 6                              | V    |
| V <sub>i</sub>    | Input Voltage                                                    | -0.3v to V <sub>CC</sub> +0.3v | V    |
| T <sub>stg</sub>  | Storage Temperature                                              | -65 to +150                    | °C   |
| T <sub>j</sub>    | Maximum Junction Temperature                                     | 150                            | °C   |
| R <sub>thja</sub> | Thermal Resistance Junction to Ambient<br>SO8<br>MiniSO8<br>DFN8 | 175<br>215<br>70               | °C/W |
| Pd                | Power Dissipation <sup>2)</sup> SO8 MiniSO8 DFN8                 | 0.71<br>0.58<br>1.79           | W    |
| ESD               | Human Body Model (pin to pin): TS486, TS4873)                    | 1.5                            | kV   |
| ESD               | Machine Model - 220pF - 240pF (pin to pin)                       | 100                            | V    |
| Latch-up          | Latch-up Immunity (All pins)                                     | 200                            | mA   |
|                   | Lead Temperature (soldering, 10sec)                              | 250                            | °C   |
|                   | Output Short-Circuit to Vcc or GND                               | continous 4)                   |      |

<sup>1.</sup> All voltage values are measured with respect to the ground pin.

## **OPERATING CONDITIONS**

| Symbol            | Parameter                                                                             | Value                                                       | Unit |
|-------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| V <sub>CC</sub>   | Supply Voltage                                                                        | 2 to 5.5                                                    | V    |
| $R_L$             | Load Resistor                                                                         | ≥ 16                                                        | Ω    |
| T <sub>oper</sub> | Operating Free Air Temperature Range                                                  | -40 to + 85                                                 | °C   |
| C <sub>L</sub>    | Load Capacitor $R_L = 16 \text{ to } 100\Omega$ $R_L > 100\Omega$                     | 400<br>100                                                  | pF   |
| V <sub>STB</sub>  | Standby Voltage Input TS486 ACTIVE / TS487 in STANDBY TS486 in STANDBY / TS487 ACTIVE | $1.5 \le V_{STB} \le V_{CC}$ $GND \le V_{STB} \le 0.4^{-1}$ | V    |
| R <sub>THJA</sub> | Thermal Resistance Junction to Ambient SO8 MiniSO8 DFN8 <sup>2)</sup>                 | 150<br>190<br>41                                            | °C/W |

The minimum current consumption (I<sub>STANDBY</sub>) is guaranteed at GND (TS486) or V<sub>CC</sub> (TS487) for the whole temperature range.
 When mounted on a 4-layer PCB.

<sup>2.</sup> Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.

<sup>3.</sup> TS487 stands 1.5KV on all pins except standby pin which stands 1KV.

<sup>4.</sup> Attention must be paid to continous power dissipation (V<sub>DD</sub> x 300mA). Exposure of the IC to a short circuit for an extended time period is dramatically reducing product life expectancy.

## FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS

 $V_{CC}$  from +5V to +2V, GND = 0V,  $T_{amb}$  = 25°C (unless otherwise specified)

| Symbol              | Parameter                         | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------|------|------|------|------|
| R <sub>IN 1,2</sub> | Input Resistance 1)               |      | 20   |      | kΩ   |
|                     | Gain value for Gain TS486/TS487-1 |      | 0dB  |      |      |
| G                   | Gain value for Gain TS486/TS487-2 |      | 6dB  |      | dB   |
|                     | Gain value for Gain TS486/TS487-4 |      | 12dB |      |      |

<sup>1.</sup> See figure 30 to establish the value of Cin vs. -3dB cut off frequency.

#### **APPLICATION COMPONENTS INFORMATION**

| Components           | Functional Description                                                                                                                                                                                                                     |  |  |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| R <sub>IN1,2</sub>   | Inverting input resistor which sets the closed loop gain in conjunction with $R_{FEED}$ . This resistor also forms a high pass filter with $C_{IN}$ (fc = 1 / (2 x Pi x $R_{IN}$ x $C_{IN}$ )) . <b>Not needed in fixed gain versions.</b> |  |  |  |  |  |  |
| C <sub>IN1,2</sub>   | Input coupling capacitor which blocks the DC voltage at the amplifier's input terminal.                                                                                                                                                    |  |  |  |  |  |  |
| R <sub>FEED1,2</sub> | Feedback resistor which sets the closed loop gain in conjunction with $R_{IN}$ . A <sub>V</sub> = Closed Loop Gain= -R <sub>FEED</sub> /R <sub>IN</sub> . <b>Not needed in fixed gain versions.</b>                                        |  |  |  |  |  |  |
| C <sub>S</sub>       | Supply Bypass capacitor which provides power supply filtering.                                                                                                                                                                             |  |  |  |  |  |  |
| СВ                   | Bypass capacitor which provides half supply filtering.                                                                                                                                                                                     |  |  |  |  |  |  |
| C <sub>OUT1,2</sub>  | Output coupling capacitor which blocks the DC voltage at the load input terminal. This capacitor also forms a high pass filter with RL (fc = $1 / (2 \times Pi \times R_L \times C_{OUT})$ ).                                              |  |  |  |  |  |  |

### **TYPICAL APPLICATION SCHEMATICS**





 $V_{CC} = +5V$ , GND = 0V,  $T_{amb} = 25$ °C (unless otherwise specified)

| Symbol               | Parameter                                                                                                                                                                                                                                                                                                                                     | Min.        | Тур.                        | Max.       | Unit |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|------------|------|
| I <sub>CC</sub>      | Supply Current<br>No input signal, no load                                                                                                                                                                                                                                                                                                    |             | 1.8                         | 2.5        | mA   |
| I <sub>STANDBY</sub> | Standby Current No input signal, $V_{STANDBY}$ =GND for TS486, $R_L$ =32 $\Omega$ No input signal, $V_{STANDBY}$ =Vcc for TS487, $R_L$ =32 $\Omega$                                                                                                                                                                                           |             | 10                          | 1000       | nA   |
| V <sub>IO</sub>      | Input Offset Voltage (V <sub>ICM</sub> = V <sub>CC</sub> /2)                                                                                                                                                                                                                                                                                  |             | 1                           |            | mV   |
| I <sub>IB</sub>      | Input Bias Current (V <sub>ICM</sub> = V <sub>CC</sub> /2) 1)                                                                                                                                                                                                                                                                                 |             | 90                          | 200        | nA   |
| P <sub>O</sub>       | Output Power $ \begin{array}{l} \text{THD+N} = 0.1\% \text{ Max, F} = 1 \text{kHz, R}_{L} = 32 \Omega \\ \text{THD+N} = 1\% \text{ Max, F} = 1 \text{kHz, R}_{L} = 32 \Omega \\ \text{THD+N} = 0.1\% \text{ Max, F} = 1 \text{kHz, R}_{L} = 16 \Omega \\ \text{THD+N} = 1\% \text{ Max, F} = 1 \text{kHz, R}_{L} = 16 \Omega \\ \end{array} $ | 60<br>95    | 64<br>65<br>102<br>108      |            | mW   |
| THD + N              | Total Harmonic Distortion + Noise ( $A_v$ =-1)<br>$R_L = 32\Omega$ , $P_{out} = 60$ mW, $20$ Hz $\leq F \leq 20$ kHz<br>$R_L = 16\Omega$ , $P_{out} = 90$ mW, $20$ Hz $\leq F \leq 20$ kHz                                                                                                                                                    |             | 0.3<br>0.3                  |            | %    |
| PSRR                 | Power Supply Rejection Ratio, inputs grounded $^{2)}$ (A <sub>V</sub> =-1), RL>=16 $\Omega$ , C <sub>B</sub> =1 $\mu$ F, F = 1kHz, Vripple = 200mVpp                                                                                                                                                                                          | 53          | 58                          |            | dB   |
| I <sub>O</sub>       | Max Output Current THD +N $\leq$ 1%, R <sub>L</sub> = 16 $\Omega$ connected between out and V <sub>CC</sub> /2                                                                                                                                                                                                                                | 106         | 115                         |            | mA   |
| V <sub>O</sub>       | Output Swing $V_{OL}: R_L = 32\Omega$ $V_{OH}: R_L = 32\Omega$ $V_{OL}: R_L = 16\Omega$ $V_{OH}: R_L = 16\Omega$                                                                                                                                                                                                                              | 4.45<br>4.2 | 0.45<br>4.52<br>0.6<br>4.35 | 0.5<br>0.7 | V    |
| SNR                  | Signal-to-Noise Ratio (A weighted, $A_V$ =-1) $^{2)}$ ( $R_L$ = $32\Omega$ , THD +N < 0.4%, $20$ Hz $\leq$ F $\leq$ $20$ kHz)                                                                                                                                                                                                                 | 80          | 103                         |            | dB   |
| Crosstalk            | Channel Separation, $R_L = 32\Omega$ , $A_V$ =-1<br>F = 1 kHz<br>F = 20 Hz to $20 kHzChannel Separation, R_L = 16\Omega, A_V=-1F = 1 kHzF = 20 Hz$ to $20 kHz$                                                                                                                                                                                |             | 83<br>79<br>80<br>72        |            | dB   |
| C <sub>I</sub>       | Input Capacitance                                                                                                                                                                                                                                                                                                                             |             | 1                           |            | pF   |
| GBP                  | Gain Bandwidth Product ( $R_L = 32\Omega$ )                                                                                                                                                                                                                                                                                                   |             | 1.1                         |            | MHz  |
| SR                   | Slew Rate, Unity Gain Inverting ( $R_L = 16\Omega$ )                                                                                                                                                                                                                                                                                          |             | 0.4                         |            | V/µs |

Only for external gain version.

<sup>2.</sup> Guaranteed by design and evaluation.

 $V_{CC}$  = +3.3V, GND = 0V,  $T_{amb}$  = 25°C (unless otherwise specified) <sup>1)</sup>

| Symbol               | Parameter                                                                                                                                                                                                                                        | Min.         | Тур.                     | Max.         | Unit |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|--------------|------|
| I <sub>CC</sub>      | Supply Current<br>No input signal, no load                                                                                                                                                                                                       |              | 1.8                      | 2.5          | mA   |
| I <sub>STANDBY</sub> | Standby Current No input signal, $V_{STANDBY}$ =GND for TS486, $R_L$ =32 $\Omega$ No input signal, $V_{STANDBY}$ =Vcc for TS487, $R_L$ =32 $\Omega$                                                                                              |              | 10                       | 1000         | nA   |
| V <sub>IO</sub>      | Input Offset Voltage (V <sub>ICM</sub> = V <sub>CC</sub> /2)                                                                                                                                                                                     |              | 1                        |              | mV   |
| I <sub>IB</sub>      | Input Bias Current (V <sub>ICM</sub> = V <sub>CC</sub> /2) <sup>2)</sup>                                                                                                                                                                         |              | 90                       | 200          | nA   |
| Po                   | Output Power $THD+N=0.1\% \text{ Max, } F=1 \text{kHz, } R_L=32\Omega$ $THD+N=1\% \text{ Max, } F=1 \text{kHz, } R_L=32\Omega$ $THD+N=0.1\% \text{ Max, } F=1 \text{kHz, } R_L=16\Omega$ $THD+N=1\% \text{ Max, } F=1 \text{kHz, } R_L=16\Omega$ | 23<br>36     | 26<br>28<br>38<br>42     |              | mW   |
| THD + N              | Total Harmonic Distortion + Noise ( $A_V$ =-1)<br>$R_L = 32\Omega$ , $P_{out} = 16$ mW, $20$ Hz $\leq F \leq 20$ kHz<br>$R_L = 16\Omega$ , $P_{out} = 35$ mW, $20$ Hz $\leq F \leq 20$ kHz                                                       |              | 0.3<br>0.3               |              | %    |
| PSRR                 | Power Supply Rejection Ratio, inputs grounded $^{3)}$ (A <sub>v</sub> =-1), RL>=16 $\Omega$ , C <sub>B</sub> =1 $\mu$ F, F = 1kHz, Vripple = 200mVpp                                                                                             | 53           | 58                       |              | dB   |
| I <sub>O</sub>       | Max Output Current THD +N $\leq$ 1%, R <sub>L</sub> = 16 $\Omega$ connected between out and V <sub>CC</sub> /2                                                                                                                                   | 64           | 75                       |              | mA   |
| Vo                   | Output Swing $\begin{aligned} &V_{OL}:R_L=32\Omega\\ &V_{OH}:R_L=32\Omega\\ &V_{OL}:R_L=16\Omega\\ &V_{OH}:R_L=16\Omega \end{aligned}$                                                                                                           | 2.85<br>2.68 | 0.3<br>3<br>0.45<br>2.85 | 0.38<br>0.52 | V    |
| SNR                  | Signal-to-Noise Ratio (A weighted, $A_v$ =-1) $^{3)}$ ( $R_L = 32\Omega$ , THD +N < 0.4%, $20$ Hz $\leq$ F $\leq$ $20$ kHz)                                                                                                                      | 80           | 98                       |              | dB   |
| Crosstalk            | Channel Separation, $R_L = 32\Omega$ , $A_V$ =-1 $F = 1 \text{kHz}$ $F = 20 \text{Hz to } 20 \text{kHz}$ Channel Separation, $R_L = 16\Omega$ , $A_V$ =-1 $F = 1 \text{kHz}$ $F = 20 \text{Hz to } 20 \text{kHz}$                                |              | 80<br>76<br>77<br>69     |              | dB   |
| C <sub>I</sub>       | Input Capacitance                                                                                                                                                                                                                                |              | 1                        |              | pF   |
| GBP                  | Gain Bandwidth Product ( $R_L = 32\Omega$ )                                                                                                                                                                                                      |              | 1.1                      |              | MHz  |
| SR                   | Slew Rate, Unity Gain Inverting ( $R_L = 16\Omega$ )                                                                                                                                                                                             |              | 0.4                      |              | V/µs |

<sup>1.</sup> All electrical values are guaranted with correlation measurements at 2V and 5V.

<sup>2.</sup> Only for external gain version.

<sup>3.</sup> Guaranteed by design and evaluation.

 $V_{CC} = +2.5V$ , GND = 0V,  $T_{amb} = 25$ °C (unless otherwise specified)<sup>1)</sup>

| Symbol               | Parameter                                                                                                                                                                                                                                        | Min.         | Тур.                         | Max.         | Unit |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------|------|
| I <sub>CC</sub>      | Supply Current<br>No input signal, no load                                                                                                                                                                                                       |              | 1.7                          | 2.5          | mA   |
| I <sub>STANDBY</sub> | Standby Current No input signal, $V_{STANDBY}$ =GND for TS486, $R_L$ =32 $\Omega$ No input signal, $V_{STANDBY}$ =Vcc for TS487, $R_L$ =32 $\Omega$                                                                                              |              | 10                           | 1000         | nA   |
| V <sub>IO</sub>      | Input Offset Voltage (V <sub>ICM</sub> = V <sub>CC</sub> /2)                                                                                                                                                                                     |              | 1                            |              | mV   |
| I <sub>IB</sub>      | Input Bias Current (V <sub>ICM</sub> = V <sub>CC</sub> /2) <sup>2)</sup>                                                                                                                                                                         |              | 90                           | 200          | nA   |
| P <sub>O</sub>       | Output Power $THD+N=0.1\% \text{ Max, } F=1 \text{kHz, } R_L=32\Omega$ $THD+N=1\% \text{ Max, } F=1 \text{kHz, } R_L=32\Omega$ $THD+N=0.1\% \text{ Max, } F=1 \text{kHz, } R_L=16\Omega$ $THD+N=1\% \text{ Max, } F=1 \text{kHz, } R_L=16\Omega$ | 12.5<br>17.5 | 13<br>14<br>21<br>22         |              | mW   |
| THD + N              | Total Harmonic Distortion + Noise ( $A_v$ =-1)<br>$R_L = 32\Omega$ , $P_{out} = 10$ mW, $20$ Hz $\leq F \leq 20$ kHz<br>$R_L = 16\Omega$ , $P_{out} = 16$ mW, $20$ Hz $\leq F \leq 20$ kHz                                                       |              | 0.3<br>0.3                   |              | %    |
| PSRR                 | Power Supply Rejection Ratio, inputs grounded $^{3)}$ (A <sub>V</sub> =-1), RL>=16 $\Omega$ , C <sub>B</sub> =1 $\mu$ F, F = 1kHz, Vripple = 200mVpp                                                                                             | 53           | 58                           |              | dB   |
| I <sub>O</sub>       | Max Output Current THD +N $\leq$ 1%, R <sub>L</sub> = 16 $\Omega$ connected between out and V <sub>CC</sub> /2                                                                                                                                   | 45           | 56                           |              | mA   |
| V <sub>O</sub>       | Output Swing $V_{OL}: R_L = 32\Omega$ $V_{OH}: R_L = 32\Omega$ $V_{OL}: R_L = 16\Omega$ $V_{OH}: R_L = 16\Omega$                                                                                                                                 | 2.14<br>1.97 | 0.25<br>2.25<br>0.35<br>2.15 | 0.32<br>0.45 | V    |
| SNR                  | Signal-to-Noise Ratio (A weighted, $A_V$ =-1) $^{3)}$ ( $R_L$ = $32\Omega$ , THD +N < 0.4%, $20$ Hz $\leq$ F $\leq$ $20$ kHz)                                                                                                                    | 80           | 95                           |              | dB   |
| Crosstalk            | Channel Separation, $R_L = 32\Omega$ , $A_V$ =-1<br>F = 1 kHz<br>F = 20 Hz to $20 kHzChannel Separation, R_L = 16\Omega, A_V=-1F = 1 kHzF = 20 Hz$ to $20 kHz$                                                                                   |              | 80<br>76<br>77<br>69         |              | dB   |
| C <sub>I</sub>       | Input Capacitance                                                                                                                                                                                                                                |              | 1                            |              | pF   |
| GBP                  | Gain Bandwidth Product ( $R_L = 32\Omega$ )                                                                                                                                                                                                      |              | 1.1                          |              | MHz  |
| SR                   | Slew Rate, Unity Gain Inverting ( $R_L = 16\Omega$ )                                                                                                                                                                                             |              | 0.4                          |              | V/µs |

All electrical values are guaranted with correlation measurements at 2V and 5V.
 Only for external gain version.

<sup>3.</sup> Guaranteed by design and evaluation.

 $V_{CC} = +2V$ , GND = 0V,  $T_{amb} = 25$ °C (unless otherwise specified)

| Symbol               | Parameter                                                                                                                                                                                  | Min.         | Тур.                         | Max.         | Unit |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------|------|
| I <sub>CC</sub>      | Supply Current<br>No input signal, no load                                                                                                                                                 |              | 1.7                          | 2.5          | mA   |
| I <sub>STANDBY</sub> | Standby Current No input signal, $V_{STANDBY}$ =GND for TS486, $R_L$ =32 $\Omega$ No input signal, $V_{STANDBY}$ =Vcc for TS487, $R_L$ =32 $\Omega$                                        |              | 10                           | 1000         | nA   |
| V <sub>IO</sub>      | Input Offset Voltage (V <sub>ICM</sub> = V <sub>CC</sub> /2)                                                                                                                               |              | 1                            |              | mV   |
| I <sub>IB</sub>      | Input Bias Current (V <sub>ICM</sub> = V <sub>CC</sub> /2) 1)                                                                                                                              |              | 90                           | 200          | nA   |
| P <sub>O</sub>       | Output Power $THD+N=0.1\%\ Max,\ F=1kHz,\ R_L=32\Omega$ $THD+N=1\%\ Max,\ F=1kHz,\ R_L=32\Omega$ $THD+N=0.3\%\ Max,\ F=1kHz,\ R_L=16\Omega$ $THD+N=1\%\ Max,\ F=1kHz,\ R_L=16\Omega$       | 7<br>9.5     | 8<br>9<br>12<br>13           |              | mW   |
| THD + N              | Total Harmonic Distortion + Noise ( $A_v$ =-1)<br>$R_L = 32\Omega$ , $P_{out} = 6.5$ mW, $20$ Hz $\leq F \leq 20$ kHz<br>$R_L = 16\Omega$ , $P_{out} = 8$ mW, $20$ Hz $\leq F \leq 20$ kHz |              | 0.3<br>0.3                   |              | %    |
| PSRR                 | Power Supply Rejection Ratio, inputs grounded $^{2)}$ (A <sub>V</sub> =-1), RL>=16 $\Omega$ , C <sub>B</sub> =1 $\mu$ F, F = 1kHz, Vripple = 200mVpp                                       | 52           | 57                           |              | dB   |
| I <sub>O</sub>       | Max Output Current THD +N $\leq$ 1%, R <sub>L</sub> = 16 $\Omega$ connected between out and V <sub>CC</sub> /2                                                                             | 33           | 41                           |              | mA   |
| V <sub>O</sub>       | Output Swing $V_{OL}: R_L = 32\Omega$ $V_{OH}: R_L = 32\Omega$ $V_{OL}: R_L = 16\Omega$ $V_{OH}: R_L = 16\Omega$                                                                           | 1.67<br>1.53 | 0.24<br>1.73<br>0.33<br>1.63 | 0.29<br>0.41 | V    |
| SNR                  | Signal-to-Noise Ratio (A weighted, $A_V$ =-1) $^{2)}$ ( $R_L$ = $32\Omega$ , THD +N < $0.4\%$ , $20$ Hz $\leq$ F $\leq$ $20$ kHz)                                                          | 80           | 93                           |              | dB   |
| Crosstalk            | Channel Separation, $R_L=32\Omega$ , $A_V=-1$<br>F=1kHz<br>F=20Hz to $20kHzChannel Separation, R_L=16\Omega, A_V=-1F=1kHzF=20Hz$ to $20kHz$                                                |              | 80<br>76<br>77<br>69         |              | dB   |
| C <sub>I</sub>       | Input Capacitance                                                                                                                                                                          |              | 1                            |              | pF   |
| GBP                  | Gain Bandwidth Product ( $R_L = 32\Omega$ )                                                                                                                                                |              | 1.1                          |              | MHz  |
| SR                   | Slew Rate, Unity Gain Inverting (R <sub>L</sub> = 16Ω)                                                                                                                                     |              | 0.4                          |              | V/µs |

Only for external gain version.

<sup>2.</sup> Guaranteed by design and evaluation.

## TS486-TS487

## **Index of Graphs**

| Description                                                      | Figure    | Page     |
|------------------------------------------------------------------|-----------|----------|
| Common Curves                                                    |           |          |
| Open Loop Gain and Phase vs Frequency                            | 1 to 10   | 9 to 10  |
| Current Consumption vs Power Supply Voltage                      | 11        | 10       |
| Current Consumption vs Standby Voltage                           | 12 to 17  | 10 to 11 |
| Output Power vs Power Supply Voltage                             | 18 to19   | 11 to 12 |
| Output Power vs Load Resistor                                    | 20 to 23  | 12       |
| Power Dissipation vs Output Power                                | 24 to 27  | 12 to 13 |
| Power Derating vs Ambiant Temperature                            | 28        | 13       |
| Output Voltage Swing vs Supply Voltage                           | 29        | 13       |
| Low Frequency Cut Off vs Input Capacitor for fixed gain versions | 30        | 13       |
| Curves With 0dB Gain Setting (Av=-1)                             |           |          |
| THD + N vs Output Power                                          | 31 to 39  | 14 to 15 |
| THD + N vs Frequency                                             | 40 to 42  | 15       |
| Crosstalk vs Frequency                                           | 43 to 48  | 16       |
| Signal to Noise Ratio vs Power Supply Voltage                    | 49 to 50  | 17       |
| PSRR vs Frequency                                                | 51 to 56  | 17 to 18 |
| Curves With 6dB Gain Setting (Av=-2)                             |           |          |
| THD + N vs Output Power                                          | 57 to 65  | 19 to 20 |
| THD + N vs Frequency                                             | 66 to 68  | 20       |
| Crosstalk vs Frequency                                           | 69 to 72  | 21       |
| Signal to Noise Ratio vs Power Supply Voltage                    | 73 to 74  | 21       |
| PSRR vs Frequency                                                | 75 to 79  | 22       |
| Curves With 12dB Gain Setting (Av=-4)                            |           |          |
| THD + N vs Output Power                                          | 80 to 88  | 22 to 24 |
| THD + N vs Frequency                                             | 89 to 91  | 24       |
| Crosstalk vs Frequency                                           | 92 to 95  | 24       |
| Signal to Noise Ratio vs Power Supply Voltage                    | 96 to 97  | 25       |
| PSRR vs Frequency                                                | 98 to 102 | 26       |

Fig. 1: Open Loop Gain and Phase vs Frequency



Fig. 3: Open Loop Gain and Phase vs Frequency



Fig. 5: Open Loop Gain and Phase vs Frequency



Fig. 2: Open Loop Gain and Phase vs Frequency



Fig. 4: Open Loop Gain and Phase vs Frequency



Fig. 6: Open Loop Gain and Phase vs Frequency



Fig. 7: Open Loop Gain and Phase vs Frequency



Fig. 9: Open Loop Gain and Phase vs Frequency



Fig. 11: Current Consumption vs Power Supply Voltage



Fig. 8: Open Loop Gain and Phase vs Frequency



Fig. 10: Open Loop Gain and Phase vs Frequency



Fig. 12: Current Consumption vs Standby Voltage



Fig. 13: Current Consumption vs Standby Voltage



Fig. 15: Current Consumption vs Standby Voltage



Fig. 17: Current Consumption vs Standby Voltage



Fig. 14: Current Consumption vs Standby Voltage



Fig. 16: Current Consumption vs Standby Voltage



Fig. 18: Output Power vs Power Supply Voltage



Fig. 19: Output Power vs Power Supply Voltage



Fig. 21: Output Power vs Load Resistor



Fig. 23: Output Power vs Load Resistor



Fig. 20: Output Power vs Load Resistor



Fig. 22: Output Power vs Load Resistor



Fig. 24: Power Dissipation vs Output Power



Fig. 25: Power Dissipation vs Output Power



Fig. 27: Power Dissipation vs Output Power



Fig. 29: Output Voltage Swing vs Power Supply Voltage



Fig. 26: Power Dissipation vs Output Power



Fig. 28: Power Derating vs Ambiant Temperature



Fig. 30: Low Frequency Cut Off vs Input Capacitor for fixed gain versions.



Fig. 31: THD + N vs Output Power



Fig. 33: THD + N vs Output Power



Fig. 35: THD + N vs Output Power



Fig. 32: THD + N vs Output Power



Fig. 34: THD + N vs Output Power



Fig. 36: THD + N vs Output Power



Fig. 37: THD + N vs Output Power



Fig. 39: THD + N vs Output Power



Fig. 41: THD + N vs Frequency



Fig. 38: THD + N vs Output Power



Fig. 40: THD + N vs Frequency



Fig. 42: THD + N vs Frequency



Fig. 43: Crosstalk vs Frequency



Fig. 45: Crosstalk vs Frequency



Fig. 47: Crosstalk vs Frequency



Fig. 44: Crosstalk vs Frequency



Fig. 46: Crosstalk vs Frequency



Fig. 48: Crosstalk vs Frequency



Fig. 49: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)



Fig. 51: PSRR vs Power Supply Voltage



Fig. 53: PSRR vs Input Capacitor



Fig. 50: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A



Fig. 52: PSRR vs Bypass Capacitor



Fig. 54: PSRR vs Output Capacitor



Fig. 55: PSRR vs Output Capacitor



Fig. 56: PSRR vs Power Supply Voltage



Fig. 57: THD + N vs Output Power



Fig. 59: THD + N vs Output Power



Fig. 61: THD + N vs Output Power



Fig. 58: THD + N vs Output Power



Fig. 60: THD + N vs Output Power



Fig. 62: THD + N vs Output Power



Fig. 63: THD + N vs Output Power



Fig. 65: THD + N vs Output Power



Fig. 67: THD + N vs Frequency



Fig. 64: THD + N vs Output Power



Fig. 66: THD + N vs Frequency



Fig. 68: THD + N vs Frequency



Fig. 69: Crosstalk vs Frequency



Fig. 71: Crosstalk vs Frequency



Fig. 73: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)



Fig. 70: Crosstalk vs Frequency



Fig. 72: Crosstalk vs Frequency



Fig. 74: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A



Fig. 75: PSRR vs Power Supply Voltage



Fig. 77: PSRR vs Input Capacitor



Fig. 79: PSRR vs Output Capacitor



Fig. 76: PSRR vs Bypass Capacitor



Fig. 78: PSRR vs Output Capacitor



Fig. 80: THD + N vs Output Power



Fig. 81: THD + N vs Output Power



Fig. 83: THD + N vs Output Power



Fig. 85: THD + N vs Output Power



Fig. 82: THD + N vs Output Power



Fig. 84: THD + N vs Output Power



Fig. 86: THD + N vs Output Power



Fig. 87: THD + N vs Output Power



Fig. 89: THD + N vs Frequency



Fig. 91: THD + N vs Frequency



Fig. 88: THD + N vs Output Power



Fig. 90: THD + N vs Frequency



Fig. 92: Crosstalk vs Frequency



Fig. 93: Crosstalk vs Frequency



Fig. 95: Crosstalk vs Frequency



Fig. 97: Signal to Noise Ratio vs Power Supply Voltage with Weighted Filter Type A



Fig. 94: Crosstalk vs Frequency



Fig. 96: Signal to Noise Ratio vs Power Supply Voltage with Unweighted Filter (20Hz to 20kHz)



Fig. 98: PSRR vs Power Supply Voltage



Fig. 99: PSRR vs Input Capacitor



Fig. 101: PSRR vs Output Capacitor



Fig. 100: PSRR vs Bypass Capacitor



Fig. 102: PSRR vs Output Capacitor



#### **APPLICATION NOTE:**



#### **TS486/487 GENERAL DESCRIPTION**

TS486/487 is a family of dual audio amplifiers able to drive  $16\Omega$  or  $32\Omega$  headsets. Working in the 2V to 5.5V supply voltage range, they deliver 100mW at 5V and 12mW at 2V in a  $16\Omega$  load. An internal output current limitation, offers protection against short-circuits at the output over a limited time period.

Fixed gain versions of the TS486 and TS487 including the feedback resistor and the input resistors are also proposed to reduce the number of external parts.

The TS486 and TS487 exhibit a low quiescent current of typically 1.8mA, allowing usage in portable applications.

The standby mode is selected using the SHUTDOWN input. For TS486 (respectively TS487), the device is in sleep mode when PIN 5 is connected at GND (resp.  $V_{CC}$ ).

#### **GAIN SETTING**

The gain of each inverter amplifier of the TS486 and TS487 is set by the resistors  $R_{\text{IN}}$  and  $R_{\text{FEED}}$ .

$$Gain_{LINEAR} = -(R_{FEED}/R_{IN})$$

$$Gain_{dB} = 20 Log(R_{FFFD}/R_{IN})$$

Fixed gain versions TS486-n and TS487-n including  $R_{\text{IN}}$  and  $R_{\text{FEED}}$  are proposed to reduce external parts.

## LOW FREQUENCY ROLL-OFF WITH INPUT CAPACITORS

The low roll-off frequency of the headphone amplifiers depends on the input capacitors  $C_{IN1}$  and  $C_{IN2}$  and the input resistors  $R_{IN1}$  and  $R_{IN2}$ .

The  $C_{\text{IN}}$  capacitor in series with the input resistor  $R_{\text{IN}}$  of the amplifier is equivalent to a first order high pass filter.

Assuming that  $F_{min}$  is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of  $C_{IN}$  is:

$$C_{IN} > 1 / (2^* \pi^* F_{min}^* R_{IN})$$

The following curve gives directly the low frequency roll-off versus the input capacitor  $\mathbf{C}_{\text{IN}}$ 

and for various values of the input resistor  $R_{\mbox{\scriptsize IN}}$  .



The input resistance of the fixed gain version is typically  $20k\Omega$ .

The following curve shows the limits of the roll off frequency depending on the min. and max. values of Rin:



## LOW FREQUENCY ROLL OFF WITH OUTPUT CAPACITORS

The DC voltage on the outputs of the TS486/487 is blocked by the output capacitors  $C_{OUT1}$  and  $C_{OUT2}$ . Each output capacitor  $C_{OUT}$  in series with the resistance of the load  $R_L$  is equivalent to a first order high pass filter.

Assuming that  $F_{min}$  is the lowest frequency to be amplified (with a 3dB attenuation), the minimum value of  $C_{OUT}$  is:

 $C_{OUT} > 1 / (2*\pi*F_{min}*R_L)$ 

The following curve gives directly the low roll-off

frequency versus the output capacitor  $C_{OUT}$  in  $\mu F$  and for the two typical  $16\Omega$  and  $32\Omega$  impedances:



## DECOUPLING CAPACITOR CB

The internal bias voltage at Vcc/2 is decoupled with the external capacitor  $C_{\rm B}$ .

The TS486 and TS487 have a specified Power Supply Rejection Ratio parameter with  $C_B = 1 \mu F$ . A higher value of  $C_B$  improves the PSRR, for example, a 4.7 $\mu F$  improves the PSRR by 15dB at 200Hz (please, refer to fig. 76 "PSRR vs Bypass Capacitor").

### **POP PRECAUTIONS**

Generally headphones are connected using a connector as a jack. To prevent a pop in the headphones when plugged in the jack, a resistor should be connected in parallel with each headphone output. This allows the capacitors Cout to be charged even when no headphone is plugged.

A resistor of 1 k $\Omega$  is high enough to be a negligible load, and low enough to charge the capacitors Cout in less than one second.

## **PACKAGE MECHANICAL DATA**

## **SO-8 MECHANICAL DATA**

| DIM. | mm.  |           |      | inch  |       |       |  |  |
|------|------|-----------|------|-------|-------|-------|--|--|
| DIW. | MIN. | TYP       | MAX. | MIN.  | TYP.  | MAX.  |  |  |
| А    | 1.35 |           | 1.75 | 0.053 |       | 0.069 |  |  |
| A1   | 0.10 |           | 0.25 | 0.04  |       | 0.010 |  |  |
| A2   | 1.10 |           | 1.65 | 0.043 |       | 0.065 |  |  |
| В    | 0.33 |           | 0.51 | 0.013 |       | 0.020 |  |  |
| С    | 0.19 |           | 0.25 | 0.007 |       | 0.010 |  |  |
| D    | 4.80 |           | 5.00 | 0.189 |       | 0.197 |  |  |
| E    | 3.80 |           | 4.00 | 0.150 |       | 0.157 |  |  |
| е    |      | 1.27      |      |       | 0.050 |       |  |  |
| Н    | 5.80 |           | 6.20 | 0.228 |       | 0.244 |  |  |
| h    | 0.25 |           | 0.50 | 0.010 |       | 0.020 |  |  |
| L    | 0.40 |           | 1.27 | 0.016 |       | 0.050 |  |  |
| k    |      | 8° (max.) |      |       |       |       |  |  |
| ddd  |      |           | 0.1  |       |       | 0.04  |  |  |



## **PACKAGE MECHANICAL DATA**

| DIM.  |      | mm.  |      | inch  |       |       |  |
|-------|------|------|------|-------|-------|-------|--|
| DIWI. | MIN. | TYP  | MAX. | MIN.  | TYP.  | MAX.  |  |
| Α     |      |      | 1.1  |       |       | 0.043 |  |
| A1    | 0.05 | 0.10 | 0.15 | 0.002 | 0.004 | 0.006 |  |
| A2    | 0.78 | 0.86 | 0.94 | 0.031 | 0.031 | 0.037 |  |
| b     | 0.25 | 0.33 | 0.40 | 0.010 | 0.13  | 0.013 |  |
| С     | 0.13 | 0.18 | 0.23 | 0.005 | 0.007 | 0.009 |  |
| D     | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 |  |
| E     | 4.75 | 4.90 | 5.05 | 0.187 | 0.193 | 0.199 |  |
| E1    | 2.90 | 3.00 | 3.10 | .0114 | 0.118 | 0.122 |  |
| е     |      | 0.65 |      |       | 0.026 |       |  |
| K     | 0°   |      | 6°   | 0°    |       | 6°    |  |
| L     | 0.40 | 0.55 | 0.70 | 0.016 | 0.022 | 0.028 |  |
| L1    |      |      | 0.10 |       |       | 0.004 |  |



#### **PACKAGE MECHANICAL DATA**

## DFN8 (3x3) MECHANICAL DATA

| DIM. | mm.  |      |      | inch |       |      |
|------|------|------|------|------|-------|------|
|      | MIN. | TYP  | MAX. | MIN. | TYP.  | MAX. |
| А    | 0,80 | 0,90 | 1,00 | 31,5 | 35,4  | 39.4 |
| A1   |      | 0.02 | 0.05 |      | 0.8   | 2.0  |
| A2   |      | 0.70 |      |      | 27.6  |      |
| А3   |      | 0.20 |      |      | 7.9   |      |
| b    | 0.18 | 0.23 | 0.30 | 7.1  | 9.1   | 11.8 |
| D    |      | 3.00 |      |      | 118.1 |      |
| D2   | 2.23 | 2.38 | 2.48 | 87.8 | 93.7  | 97.7 |
| E    |      | 3.00 |      |      | 118.1 |      |
| E2   | 1.49 | 1.64 | 1.74 | 58.7 | 64.6  | 68.5 |
| е    |      | 0.50 |      |      | 19.7  |      |
| L    | 0.30 | 0.40 | 0.50 | 11.8 | 15.7  | 19.7 |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

## © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com

