PRÉSENTATION: CAGE CONNECTÉE

INTERNET DES OBJETS

ANNEE 2019 - 2020

GROUPE WITHER

Mathieu JUGI Haseeb JAVAID Clément ZHOU

Sommaire

- 1 Introduction
- 2 Etat de l'art
- 3 Description du projet
- 4 Application web
- 5- Partie fonctionnelle
- 6 Conclusion

1- Introduction

- Groupe agrandit
- Changement de sujet
- Prévention

2- Etat de l'art

Contexte actuel:

- 49.9% foyers français possèdent au moins 1 animal de compagnie
- 100 000 abandons d'animaux domestiques
- Besoin principal : Assister les propriétaires d'animaux pour l'élevage de leurs compagnons
- **Cible Potentielle**: Particuliers, Associations, Animaleries ou Autres entreprises

Monde:

Marché de 54 milliards €

100 milliards € en 2020

France:

560 millions € en accessoires / an

Cage de la compagnie PITA

- Transport des animaux dans les avions
- Voir et parler avec ses animaux
- Régulation de la température
- Sol intelligent

Cage de la compagnie Egg iting

- alimentation panneau solaire
- connecté à internet
- avertir utilisateurs
- information sur l'état de graine, température et humidité

Distributeur Catspad

- Distribution intelligente
- Programmer la distribution
- Détection des chats
- L'eau maintenu fraîche
- Batterie de secours
- Entretien et nettoyage facile

3- Description du projet

Besoins:

- => Distribution de nourriture automatique
- => Surveiller la température de la cage et alerter si besoin
- => Visualiser la cage

User Stories / Technical Stories

Diagramme de cas d'utilisation

Matériels utilisés

Matériel	Prix	Image
Module de caméra compatible avec arduino Haljia VGA Ov7670 300 KP	8.99 €	
Lot de jumpers wires mâle/femelles	3.99 €	
Moteur pas à pas	Déjà fourni	
Carton	Stock personnel	
ESP 32	Déjà fourni	Time training
Thermomètre	Déjà fourni	

Logiciels utilisés

Répartition des tâches

Tâches	Rôles
Etat de l'art	Toute l'équipe
Mise en place du projet	Toute l'équipe
Prise en main sur la caméra et le moteur	Toute l'équipe
Calculer la tempérerature avec le thermistor	Haseeb JAVAID + Clément ZHOU
Réalisation du distributeur de nourriture avec le moteur pas à pas	Haseeb JAVAID + Clément ZHOU
Réalisation du serveur web	Haseeb JAVAID
Ajout de la caméra au serveur web	Haseeb JAVAID
Schémas électriques sur Fritzing	Haseeb JAVAID
Plan de la maquette	Clément ZHOU
Réalisation de la maquette en carton	Mathieu JUGI
Application WEB, Front-end	Mathieu JUGI + Clément ZHOU
Application WEB, Back-end	Mathieu JUGI
Tournage et montage de la vidéo de présentation	Mathieu JUGI
Ecriture du Readme	Clement ZHOU
Rapport final	Toute l'équipe

4- Application web

Diagramme de navigation

Connexion du client

Page principale

Réglages du client

Conr	ecté en tant que mat	hieu
Retour		

Température	Nourriture
Température minimale Température maximale (°C)	Quantité 5 grammes 10 grammes 15 grammes 20 grammes 30 grammes Horaires
	Horaire 1 :; Horaire 2 :; Horaire 3 :; Horaire 4 :;
	Appliquer

Base de données

5- Partie fonctionnelle

3 fonctionnalités implémentées :

- -> Mesure de la température avec une thermistance
- Mécanisme pour distribuer la nourriture avec un MPP (moteur plus précis)
- -> Serveur Web avec caméra et tableau de bord

Principe du mesure de la température

Equation de diviseur de tension :

 $V out = V cc * \frac{R2}{R1+R2}$ qui peut se réécrire $R2 = R1 * (\frac{V cc}{V out} - 1)$

Vout : Tension mesurée entre R1 et le thermistor

Vcc : Tension délivrée par le générateur (5V)

R1 : Résistance connue (10 k Ω)

R2 : Résistance du thermistor à calculer

Relation de Steinhart-Hart:

$$T = \frac{1}{A + (B*logR2) + C(logR2)^3}$$

T : Température en Kelvins

R2 : Résistance en Ohms

A, B, C les coefficients de Steinhart qui caractérisent chaque thermistance

Principe du moteur pas à pas

Step Position	1	2	3	4
pin23	1	0	0	0
pin22	0	1	0	0
pin21	0	0	1	0
pin5	0	0	0	1

Principe de la caméra avec ESP32

Problèmes rencontrés

- Thermistance non-fonctionnelle
- Découverte de l'ESP32 (documentation moins fournie)
- Caméra non adaptée à l'ESP32
- Confinement

6- CONCLUSION

Bilan technique

- Analyse du résultat
- Amélioration

Bilan humain

Merci à vous!