Project Development Phase Model Performance Test

Date	23 November 2022	
Team ID	PNT2022TMID39626	
Project Name	Project – Early detection of chronic kidney disease using machine learning.	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: Logistic Regression Model. Classification Model: Confusion Matrix — array([[52, 2],[0, 26]]) Accuracy Score — 0.975	■ Building a Machine Learning model ■ True science, linear_model input LighticRegression Input_science(sepression) Input_sc
		Accuracy Score - 0.975	✓ [34] conf_mathcomfraidon_mathfuly_statiny_smal) conf_mat erroy([[15, 3],

Tune the Model

Splitting the data into train and test.

Label Encoding.
Independent and Dependent variables.

- Splitting the data into train and test

- (30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(30, 1)
(3