

Real-time Visualization of Analyzed Industrial Communication Network Traffic

Xiaoru Li, Klevia Ulqinaku, Mario Alberto Gonzalez Ordiano, Philipp Mergenthaler Advisor: Ankush Meshram

PSE 2018/19

Background

- Industrial Network Security aims to understand the traffic in industrial production systems
- Analysis of the traffic to find anomalies
- Real-time visualization to help the user understand
 - Communication behavior
 - Changes in the communication
- Incidents can be detected visually

Back-end

Front-end

Demo

Evaluation

Requirements

- 24 Functional Requirements
 - User access control, security roles
 - Three different diagram types
 - Brushing
 - Data filter
- 12 Non-Functional Requirements

Back-end

Front-end

Demo

Evaluation

The Workflow

- Network traffic is recorded
- Traffic data is analyzed (dissected)
- Data is fed to a streaming platform (Kafka)
- A visualization tool displays data and analysis results

Architecture and Design

- Client-Server Architecture
- Back-End:
 - Mediator pattern
 - Strategy pattern
- Front-End:
 - Model-View-Controller
 - Observer

Back-end

Front-end

Demo

Evaluation

Overview \sum Back-end \sum Front-end \sum Demo \sum Evaluation \sum Conclusion

 \sum

Demo

Front-end

13.04.2019

Overview

 \sum_{i}

Back-end

Conclusion

Evaluation

 \sum_{i}

Front-end

 \sum_{i}

Back-end

13.04.2019

Overview

Conclusion

 \sum

Demo

Evaluation

Front-End Components

- Written in Javascript
- Additional third party components (open source):
 - React library
 - 3 D3 graphics library
- nivo diagram components
 - MobX state management

Back-end

Front-end

Demo

Evaluation

Development Tools Used

Back-end development:

eclipse Eclipse

Maven

JUnit **6** Junit

Front-end development:

Visual Studio Code

Parcel.js

Netlify (CD)

Common tools:

♦ Git

GitHub

Slack

LATEX Latex

Overview

Back-end

Front-end

Demo

Evaluation

Implementation

- User access control
- Data source selection
- Multiple diagram types
- Brushing
- Modular structure
- 19 of 24 functional requirements

- Node-link diagram (partial)
- Filtering (partial)
- Data selection

Back-end

Front-end

Demo

Evaluation

Unexpected Difficulties and Challenges

- Only four team members
- Larger Scope than expected
- Many different technologies
 - Javascript and the libraries make use of multiple programming paradigms
 - Complexity of D3
 - Nivo components have inconsistent features
 - MongoDB idiosyncracies

Back-end

Front-end

Demo

Evaluation

Lessons Learned

- Design more thoroughly
 - Especially data structures
- Plan and schedule more strictly
- Evaluate third party components more thoroughly
- Waterfall model didn't work.

Best Practices

- Overall design was viable
- Good commit practices
- Frequent team communication
- Flexibility
- Learning from each other

Back-end

Front-end

Demo

Evaluation

- We produced a working system
- Usable as a good and extensible base for future work
- Underestimated the amount of work required
- Gained experience with teamwork
- Gained understanding of technologies

