General chemistry

Chapter 4
The Electronic Structure of Atoms

Introduction

- An electron possesses both particle (has a mass) and wave properties (an electron move around the nucleus as standing waves).
- These waves correspond to definite energy states (orbitals).
- It is impossible to know the precise description of the path of an electron in an atom, so we use the term of atomic orbital.
- Orbitals defines the distribution of electron density in three-dimensional space around the nucleus. Electron density gives the probability that an electron will be found in a particular region of an atom.
- An atomic orbital has a characteristic energy, as well as a characteristic distribution of electron density.

Quantum numbers

- Quantum numbers describe the distribution of electrons in atomic orbitals and label electrons that reside in them in terms of its wave characters.
- In quantum mechanics, three quantum numbers are required to describe the distribution of electrons in atoms. They are called the *principal quantum number*, the *angular momentum quantum number*, and the *magnetic quantum number*. A fourth quantum number— the *spin quantum number*—describes the behavior of a specific electron and completes the description of electrons in atoms.

The Principal Quantum Number (n)

- The principal quantum number (n) can have integral values 1, 2, 3, and so forth.
- It describes the shell or the level to which the electron belongs.
- The principal quantum number relates to the average distance of the electron from the nucleus in a particular orbital.
- The larger n is, the greater the average distance of an electron in the orbital from the nucleus and therefore the larger the orbital.

38

25

15

The Angular Momentum Quantum Number (1) or subsidiary Quantum Number

- Each shell is divided into subshell or sublevels assigned *I* number.
- The values of *I* depend on the value of n .For a given value of n, *I* has possible integral values from 0 to (n 1).
- It tells us the "shape" of the orbitals.
- Thus, if I=0, we have an s orbital; if I=1, we have a p orbital; and so on.

ℓ	0	1	2	3	4	5
Name of orbital	S	p	d	f	8	h

The Magnetic Quantum Number (m_I)

- The magnetic quantum number m_l describes the orientation of the orbital in space
- The values of m_l can vary from l to l.
- The number of m_l values indicates the number of orbitals in a subshell with a particular l value.
- There are (2 l + 1) integral values of m_l as follows: if l = 0, then there are (2 l + 1) = 1 orbital and the value of $m_l = 0$. If l = 1, then there are (2 l + 1) = 3 orbitals have three values of m_l namely, -1, 0, 1 and so on.

The Electron Spin Quantum Number (m_s)

- Electrons spin on their own axes, so can generate a magnetic field, and it is this motion that causes an electron to behave like a magnet.
- There are two possible spinning motions of an electron, one clockwise and the other counterclockwise.
- The electron spin quantum number (m_s) , describe electron spinning and has a value of $+\frac{1}{2}$ or $-\frac{1}{2}$.

Summary

n (shell)	/ (sub-shell) (0 to n-1)	symbol of <i>I</i> subshell	m _I (-I to +I)	no. of orbitals in the subshell (2I +1)	Total no. of orbitals in the shell (n²)	Total no. of electrons in the shell (2 n²)
1	0	S	0	1	1	2
2	0	S	0	1	4	8
	1	р	-1,0,+1	3		
3	0	S	0	1	9	18
	1	р	-1,0,+1	3		
	2	d	-2,-1,0,+1,+2	5		
4	0	S	0	1	16	32
	1	р	-1,0,+1	3		
	2	d	-2,-1,0,+1,+2	5		
	3	f	-3,-2,-1,0,+1,+2,+3	7		

Atomic Orbitals

s Orbitals

All s orbitals are spherical.

They increase in size as n

increases, so 1s< 2s <3s

p Orbitals

These three p orbitals are identical in size, shape, and energy; they differ from one another only in orientation.

Each p orbital can be thought of as two lobes on opposite sides of

the nucleus.

They increase in size as n increases, so 2p< 3p< 4p.

Atomic Orbitals

d Orbitals

All the five d orbitals in an atom are identical in energy. They differ from one another in orientation. They increase in size as n increases.

Notes

• When we write the subshell, we write first the n number followed by the symbol of the l number.

• For example:

In 2s and 2p subshells, 2 denotes the value of n, and s and p denote the symbol of l number.

- The four quantum numbers n, l, m, and m_s enable us to label completely an electron in any orbital in any atom.
- In a sense, we can regard the set of four quantum numbers as the "address" of an electron in an atom.
- We use the simplified notation $(n, 1, m, m_s)$.

Problems

List the possible quantum numbers of electron in the 2p subshell.

$$(2, 1, -1, +1/2), (2, 1, -1, -1/2), (2, 1, 0, +1/2), (2, 1, 0, -1/2),$$

 $(2, 1, +1, +1/2), (2, 1, +1, -1/2)$

List the possible quantum numbers of electron in the 3s subshell.

$$(3, 0, 0, +1/2), (3, 0, 0, -1/2).$$

List the possible quantum numbers of electron in the 4d subshell.

$$(4, 2, -2, +1/2), (4, 2, -2, -1/2),$$

 $(4, 2, -1, +1/2), (4, 2, -1, -1/2),$
 $(4, 2, 0, +1/2), (4, 2, 0, -1/2),$
 $(4, 2, +1, +1/2), (4, 2, +1, -1/2),$
 $(4, 2, +2, +1/2), (4, 2, +2, -1/2).$

Problems

• Provide the missing quantum number: (there may be more than one choice):

$$(2,...., 0,....), (1,....,), (3,...., -2,.....), (3,...., -1,.....)$$
 $(2, 1,....,), (...., 2, +1,.....)$

Ground state and excited state

- A **ground state** of an atom is the lowest possible energy (stable state) of an atom in which all the electrons in the atom are as close to the nucleus as possible.
- An **excited state** of an atom in which the electronic configurations gives the atom a higher energy than the ground state.

The Energies of Orbitals

- The energy of an electron in manyelectron atoms in such an atom depends on *n* and *l* values.
- For the same subshell (l), the energy increases as n increase. (1s<2s<3s).
- In the same shell (n), the energy increase as l increase (3s<3p<3d).
- Between subshells in different shells, there are overlap. For example, the 3d energy level is very close to the 4s energy level.
- It turns out that the total energy of an atom is lower when the 4s subshell is filled before a 3d subshell (the energy of repulsion between the electrons in d orbitals make increase in the atom energy).

Ground state Electron Configuration

- The **Ground state electron configuration** of the atom determines how the electrons are distributed among the various atomic orbitals. It is important to understand electronic behavior.
- The next figure shows the order in which atomic subshells are filled in a many-electron atom.
- Start with the 1s orbital and move downward, following the direction of the arrows.

Electron Configuration

• To write the electron configuration we write the symbol of the subshell (n+ symbol of *l*) and provide the number of its electrons in the superscript as follows:

• The electron configuration can also be represented by an *orbital* diagram that shows the spin of the electron:

• The upward arrow denotes one of the two possible spinning motions of the electron. (Alternatively, we could have represented the electron with a downward arrow.) The box represents an atomic orbital.

The Building-Up Principle

- It is used in writing electron configurations for the elements. This process is based on the Aufbau principle.
- The **Aufbau principle** dictates that as protons are added one by one to the nucleus (as Z increase) to build up the elements, electrons are similarly added to the atomic orbitals.
- The electron configurations of elements (except hydrogen and helium) could be represented by a **noble gas core**, which shows in brackets the noble gas element that most nearly precedes the element being considered, followed by the symbol for the highest filled subshells in the outermost shells.

1	Н	1s ¹
2	He	$1s^2$
3	Li	[He]2s ¹
4	Be	$[He]2s^2$
5	В	$[He]2s^22p^1$
6	C	$[He]2s^22p^2$
7	N	$[He]2s^22p^3$
8	0	$[He]2s^22p^4$
9	F	[He] $2s^22p^5$
10	Ne	$[He]2s^22p^6$
11	Na	[Ne]3s1
12	Mg	$[Ne]3s^2$
13	A1	$[Ne]3s^23p^1$
14	Si	$[Ne]3s^23p^2$
15	P	$[Ne]3s^23p^3$
16	S	$[Ne]3s^23p^4$
17	C1	$[Ne]3s^23p^5$
18	Ar	$[Ne]3s^23p^6$

The Pauli Exclusion Principle

- This principle states that no two electrons in an atom can have the same four quantum numbers.
- If two electrons in an atom should have the same n, l, and m_l values (that is, these two electrons are in the *same* atomic orbital), then they must have different values of m_s .
- In other words, only two electrons may occupy the same atomic orbital, and these electrons must have opposite spins.
- Consider the helium atom, which has two electrons. The right way of placing two electrons in the

is orbital are as follows:

Hund's rule

• This rule states that the most stable arrangement of electrons in subshells is the one with the greatest number of parallel spins.

Paramagnetism & diamagnetism

 Atoms in which one or more electrons are unpaired and are attracted by a magnet are paramagnetic.

• Atoms in which all the electron spins are paired (cancel each other) and are slightly repelled by a magnet are diamagnetic.

Ne
$$1s^2$$
 $2s^2$ $2p^6$

Irregularities

- The electron configuration of chromium (Z=24) is [Ar]4s¹3d⁵ and not [Ar]4s²3d⁴, as we might expect. A similar break in the pattern is observed for copper (Z=29), whose electron configuration is [Ar]4s¹3d¹o rather than [Ar]4s²3d9.
- The reason for these irregularities is that a slightly greater stability is associated with the half-filled (3d⁵) and completely filled (3d¹⁰) subshells.
- The electron configuration of gadolinium (Z=64) is [Xe]6s²4f⁷5d¹ rather than [Xe]6s²4f⁸. Like chromium, gadolinium gains extra stability by having a half-filled subshell (4f⁷).

Irregularities

- Elements that require particular care are the transition metals, the lanthanides, and the actinides.
- As we noted earlier, at larger values of the principal quantum number n, the order of subshell filling may reverse from one element to the next.

Problems

• Write the ground-state electron configurations for (a) sulfur (S) and (b) palladium (Pd), which is diamagnetic. (discussion with referring to the periodic table in the next slide).

87 Fr 714	55 Cs 6r ¹	37 Rb 3r ¹	19 K 4s ¹	11 Na 3s ¹	3 Lä 2r ^t	i H 1si	1 1A
88 Ra 7s ³	56 Ba 6r ³	38 5r 5r	20 Ca 45 ³	12 Mg 3s ¹	4 Be 2r ³	2 2 A	3
89 Ae 7s²6d³	57 La 6r²5d²	39 Y 5:14d1	21 Se 4s ² 3d ³	3 3B		41	
104 Rf 7s26d2	72 Hf 6r ² 5d ²	40 Zr 5r ² 4d ²	22 Ti 4r ²³ d ²	4 4B			
105 D1 7s26a73	73 Ta 6s ² 5d ³	41 Nb 3s ⁴ 4d ⁴	23 V 4s ² 3d ³	5 5B			
106 Sg 7s ² 6d ²	74 W 6x ² 5d ⁴	42 Mo 3r:4d ³	24 Cr 4s ¹ 3d ²	6 6B			
107 Ek 7s26d ³	75 Re 6x ² 3d ³	43 Te 5r ¹ 4d ³	25 Ma 4s ² 3d ³	7 7B			
108 Hs 7s ² 6a ⁸	76 Os 6s ² 5a ⁸	44 Rn 3s44d7	26 Fe 4s ¹ 3d ⁸	8			
109 Mi 7s26d7	77 Ir 6 <i>2</i> 3 <i>d</i> 7	45 Rh 5x44d ^a	27 Co 4s ² 3d ⁷	9 8B			
110 Ds 7s26d1	78 Pt 6r ¹ 5d ⁹	46 Pd 4d ¹⁰	28 Ni 4s ¹ 3d ¹	10			
111 Rg 7s ² 6d ⁹	79 Au 61 ¹ 5d ¹⁰	47 Ag 3s14d10	29 Cu 4s ¹ 3d ¹⁰	11 1B			
112 7 <i>s</i> ² 6d ¹⁰	80 Hg 61 ¹ 3d ¹⁰	48 Cd 5;14;210	30 Zn 43 ¹ 3d ¹⁰	12 2B			
(113)	81 Tl 6s ² 6p ⁴	49 In 31 ² 5p ¹	31 Ga 45 ²⁴ p ¹	13 Al 3r ² 3p ¹	5 B 2s ² 2p ⁴	13 3A	
114 75 ³⁷ p ³	82 Pb 6s ² 6p ²	50 5n 5s ¹⁵ p ²	32 Ge 4s ³ 4p ³	14 Si 3s ¹ 3p ²	6 C 2s ¹ 2p ²	14 4A	
(115)	83 Bi 61 ² 6p ³	51 5h 51 ² 5p ³	33 As 4s ² 4p ³	15 P 3r ² 3p ³	7 N 21 ² 2p ³	15 5A	
116 7s ²⁷ p ⁴	84 Po 63 ² 6p ⁴	52 Te 51 ² 5p ⁴	34 Se 43 ²⁴ p ⁴	16 S 31 ² 3p ⁴	8 O 2 <i>r</i> ² 2 <i>p</i> ⁴	16 6A	
(117)	85 At 6s ³ 6p ³	53 I 5s ¹ 5p ³	35 Br 45 ³ 4p ³	17 C1 3s ² 3g ³	9 F 2s ³ 2p ³	17 7A	
(118)	86 Ra 61 ² 6p ⁶	54 Xe 51 ² 5p ⁶	36 Kr 4s ² 4p ⁴	18 Ar 3s ² 3p ⁸	10 Ne 2 <i>s</i> ² 2 <i>p</i> ⁴	2 He 1s ²	18 8A

63 **I1** 624

95 AR 7255 64 **C4** 6a³4j^a5a³

96 Cn 725/1641 65 Th 6-47

97 Bk 7,255 67 Ha 6:14ft1

99 Is 7,35511

66 Dy 624500

98 Cf 725/90 68 Er 624⁵³

100 In 7,25/12 69 Tm 624f²⁸

101 Md 725fm

60 Nd 6245

92 U 7x25j*6a* 61 Pm 6:145°

93 Ny 7.25/1641 62 Sn 6-47

94 Pa 7,255°

58 Ce 6249522

> 90 Th 7,26a3

59 Pr 6-247

91 Pa 7,25/962 70 \$70 6524fes

102 No 7,2554 71 Lu 6249252

103 Lr 725/162