×

D'après Bac S - Polynésie - 2017

Dans un disque en carton de rayon R, on découpe un secteur angulaire correspondant à un angle de mesure α radians.

On superpose les bords afin de créer un cône de révolution. On souhaite choisir l'angle α pour obtenir un cône de volume maximal.

On appelle ℓ le rayon de la base circulaire de ce cône et h sa hauteur.

On rappelle que :

- le volume d'un cône de révolution de hauteur h, et dont la base est un disque d'aire A, est $\frac{1}{3}Ah$;
- la longueur d'un arc de cercle de rayon r et d'angle heta, exprimé en degré, est $\dfrac{2\pi}{360} imes lpha r.$

- 1. On choisit $R=20\,\mathrm{cm}$.
- **a.** Montrer que, pour tout h>0, le volume du cône est $\mathrm{V}(h)=rac{\pi}{3}\left(400h-h^3
 ight)$

 ${f b.}$ Justifier qu'il existe une valeur de h qui rend le volume du cône maximum. Donner cette valeur.

c. Comment découper le disque en carton pour avoir un volume maximal ? Donner un arrondi de α au degré près.

2. L'angle lpha dépend-il du rayon R du disque en carton ? Justifier.