Given below are a few examples of a database and a few queries based on that.

(1). Suppose there is a banking database which comprises following tables :

Customer(Cust_name, Cust_street, Cust_city)

Branch(Branch_name, Branch_city, Assets)

Account (Branch_name, Account_number, Balance)

Loan(Branch_name, Loan_number, Amount)

Depositor(Cust_name, Account_number)

Borrower(Cust_name, Loan_number)

Query: Find the names of all the customers who have taken a loan from the bank and also have an account at the bank.

Solution:

Step 1: Identify the relations that would be required to frame the resultant query.

First half of the query(i.e. names of customers who have taken loan) indicates "borrowers" information.

So Relation $1 \longrightarrow >$ Borrower.

Second half of the query needs Customer Name and Account number which can be obtained from Depositor relation.

Hence, Relation 2——> Depositor.

Step 2: Identify the columns which you require from the relations obtained in Step 1.

Column 1 : Cust_name from Borrower

$\Pi_{customer_name}$ (borrower)

<u>Column 2 :</u> Cust_name from Depositor

$\Pi_{customer_name}$ (depositor)

Step 3: Identify the operator to be used. We need to find out the names of customers who are present in both Borrower table and Depositor table.

Hence, operator to be used—-> Intersection.

Final Query will be

 $\Pi_{customer_name}$ (borrower) $\cap \Pi_{customer_name}$ (depositor)