

Markov Chain Monte Carlo (MCMC) Methods

PHYS 574 April 5th, 2019

Most common/Widely used

Most common/Widely used

Let's explore it with an example!

Most common/Widely used

Let's explore it with an example!

Python module: "emcee"

Prostate Cancer Test

- Blood test: Prostate-Specific Antigen (PSA)
 - PSA concentration in (ng/mL)

Prostate Cancer Test

- Blood test: Prostate-Specific Antigen (PSA)
 - PSA concentration in (ng/mL)

- Problems:
 - Ethnicity/Age/Gender
 - PSA velocity
 - False positives and biopsy complications

Sigmoid Model

Bayes' Theorem

$$p(B \mid A) = rac{p(A \mid B) p(B)}{p(A)}$$

Bayes' Theorem

 $p(m, b, f \mid x, y, \sigma) \propto p(m, b, f) p(y \mid x, \sigma, m, b, f)$

Bayes' Theorem

$$p(m,b,f\mid x,y,\sigma)\propto p(m,b,f)\;p(y\mid x,\sigma,m,b,f)$$
 POSTERIOR LIKELIHOOD

Draw a sample state from proposed distribution

x' from p(m, b, f)


```
where x_t = \{m^0, b^0, f^0\}
where x' = \{m', b', f'\}
```

Calculate the acceptance probability ratio

$$lpha = rac{p(x')}{p(x_t)}$$

Accept or Reject:

$$u \in [0,1]$$
 $lpha = rac{p(x')}{p(x_t)}$

$$u \leq \alpha, ext{ accept}: x_{t+1} = x'$$

$$u > \alpha$$
, reject: $x_{t+1} = x_t$

Draw a sample state from proposed distribution

$$\{m^0,b^0,f^0\} ext{ from } p(m,b,f)$$

Draw a sample state from proposed distribution

$$\{m^0,b^0,f^0\}\ \mathrm{from}\ p(m,b,f)$$

```
egin{align} 	ext{for } t 	ext{ in } [1:T]: \ & m^t \; \sim \; p(m \, | \, b^{t-1}, f^{t-1}) \ & b^t \; \sim \; p(b \, | \, m^t, f^{t-1}) \ & f^t \; \sim \; p(f \, | \, m^t, b^t) \ \end{pmatrix}
```

Simplest of MCMC algorithms

Simplest of MCMC algorithms

Use if conditional probabilities can be sampled

Simplest of MCMC algorithms

Use if conditional probabilities can be sampled

Slow for correlated parameters

Metropolis-adjusted Langevin Rule

Similar to MH algorithm, with a target probability distribution function term

Metropolis-adjusted Langevin Rule

Similar to MH algorithm, with a target probability distribution function term

$$lpha = rac{p(x')}{p(x_t)}$$
MH

Metropolis-adjusted Langevin Rule

Similar to MH algorithm, with a target probability distribution function term

$$lpha = rac{p(x') \, p(y \mid x')}{p(x_t) \, p(y \mid x_t)}$$

MH's and Gibbs' (and a little bit of Langevin's) weakness is their reliance on random steps

MH's and Gibbs' (and a little bit of Langevin's) weakness is their reliance on random steps

Add a momentum term to each variable

MH's and Gibbs' (and a little bit of Langevin's) weakness is their reliance on random steps

Add a momentum term to each variable

Gives the expected distance and direction of jump of variable based on the last few jumps

Draw a sample state from proposed distribution

$$\{m^0,b^0,f^0\} ext{ from }p(m,b,f)\ p(\mathbf{v})$$

Draw a sample state from proposed distribution

$$\{m^0,b^0,f^0\} ext{ from }p(m,b,f)\ p(\mathbf{v})$$

$$H(m,b,f,\mathbf{v})=E(m,b,f)+K(\mathbf{v})=\mathrm{constant}$$

Draw a sample state from proposed distribution $\{m^0, b^0, f^0\}$ from p(m, b, f) $p(\mathbf{v})$

$$H(m,b,f,\mathbf{v})=E(m,b,f)+K(\mathbf{v})=\mathrm{constant}$$

...followed by same accept/reject steps as MH

Slice Sampling

Sample the region under proposed distribution

Slice Sampling

Sample the region under proposed distribution

1. Sample a random initial value x_0

Slice Sampling

Sample the region under proposed distribution

- 1. Sample a random initial value x_0
- 2. At each iteration i
 - a. Sample uniformly (vertical slice) for an auxiliary variable in the region $[0, p(x_{i-1} \mid y)]$
 - b. Sample uniformly (horizontal slice) for x_i

Summary

Metropolis-Hastings:

Gibbs:

Langevin:

Hamiltonian:

Slice Sampling:

drunk man walking

drunk man hopscotch

drunk man with a map

drunk man running

drunk man in a room

Summary

While easy-to-use, they are easy to mess up

There are a lot of resources online, especially for the most common types of algorithms

Prostate Cancer Research:

https://www.cancer.gov/types/prostate/psa-fact-sheet

https://www.ncbi.nlm.nih.gov/pubmed/11333995

https://www.ncbi.nlm.nih.gov/pubmed/15163773

https://www.ncbi.nlm.nih.gov/pubmed/29772218

https://www.ices.on.ca/Publications/Atlases-and-Reports/2002/Prostate-specific-antigen-PSA-screening

http://www.topalbertadoctors.org/download/276/Prostate%2BCancer%2BGuideline%2BEval%2B%2526%2BReferr.pdf

MH and Slice Sampling:

https://www.sheffield.ac.uk/polopoly_fs/1.60510!/file/MCMC.pdf

Gibbs Sampling:

http://www.mit.edu/~ilkery/papers/GibbsSampling.pdf

Metropolis-adjusted Langevin:

https://warwick.ac.uk/fac/sci/statistics/crism/visitors/vats/misc/malavsrwm.pdf

Hamiltonian Monte Carlo Reference:

https://www.cs.utoronto.ca/~radford/ftp/ham-mcmc.pdf

EXTRA SLIDES

Bayes' Theorem (once again)

LOG LIKELIHOOD FUNCTION

$$\lim p(y \mid x, \sigma, m, b, f) = -rac{1}{2} \sum_n \left[rac{(y_n - ext{logit}(x_n, m, b))^2}{s_n^2} + \ln(2\pi s_n^2)
ight]$$

$$\operatorname{logit}(x,m,b) = rac{1}{1+e^{-(mx+b)}} \qquad \qquad s_n^2 = \sigma_n^2 + f^2(mx_n+b)^2$$

Prostate Cancer

Prostate Cancer

Yes No 0.9 Test Result

Prostate Cancer

Prostate Cancer

Yes No 0.2 0.9 Test Result 8.0

Test is positive!

Prostate Cancer

Test is positive!

$$p(\text{cancer} \mid +)$$
?

Prostate Cancer

$$p(ext{cancer} \mid +) = rac{p(+ \mid ext{cancer}) \, p(ext{cancer})}{p(+)}$$

$$p(ext{cancer} \mid +) = rac{p(+ \mid ext{cancer}) \, p(ext{cancer})}{p(+)}$$

$$p(ext{cancer} \mid +) = rac{p(+ \mid ext{cancer}) \ p(ext{cancer})}{p(+)}$$

$$p(+) = p(+ | \text{cancer}) p(\text{cancer}) + p(+ | \text{no cancer}) p(\text{no cancer})$$

$$0.00001$$
 $p(+) = p(+ | {
m cancer}) \ p({
m cancer}) + p(+ | {
m no \ cancer}) \ p({
m no \ cancer})$
 0.999999
 0.00001

$$p(\text{cancer} \mid +) = 0.000045$$

$$p(\text{cancer} \mid +) = 0.000045$$

Low chance of prostate cancer (0.00001)

High chance of false positive (0.2)

What if the prior was larger?

What if the prior was larger?

$$p(\text{cancer}) = 0.25$$

What if the prior was larger?

$$p(\text{cancer}) = 0.25$$

$$p(\text{cancer} \mid +) \approx 0.58$$

