Introduction to Linear Algebra

Lecture Notes for the Course UMAT-302 at SSSIHL.

Reference: Linear Algebra by Larry Smith, Springer.

Compiled and Edited by: Hirak Doshi.

An Offering with Love and Gratitude at His Divine Lotus Feet.

Contents

1	Matrices				
	1.1	Basic Operations	1		
	1.2	Special Types of Matrices	2		
	1.3	Determinants	3		
2	Intr	roduction to Vector Spaces	7		
	2.1	Definitions and Examples	7		
	2.2	Linear Subspaces	8		
	2.3	Linear Span	9		
	2.4	Linear Dependence and Independence	10		
3	Finite Dimensional Vector Spaces and Bases				
	3.1	Definitions and Examples	13		
	3.2	Properties of Bases	13		
	3.3	Fundamental Results	15		
4	Linear Transformations				
	4.1	Definition and Examples	18		
	4.2	Properties of Linear Transformations	18		
	4.3	Kernels and Images	21		
	4.4	Isomorphisms	26		

5	Rep	resenting Linear Transformations by Matrices	29	
	5.1	Matrix Representation	29	
	5.2	Fundamental Results	30	
	5.3	Change of Basis	33	
6	System of Linear Equations			
	6.1	Existence Results	35	
	6.2	Affine Subspaces	36	
	6.3	Echelon Forms	39	
7	Special Transformations			
	7.1	Projection Maps	42	
	7.2	Nilpotent Transformations	43	
	7.3	Cyclic Transformations	44	
8	The	Theory of Eigen Values and Eigen Vectors	46	
	8.1	Rank and Nullity	46	
	8.2	Eigen Values and Eigen Vectors	48	
	8.3	Characteristic Polynomial	50	

1 Matrices

1.1 Basic Operations

1. **Matrix Addition:** Matrices of the same dimensions can be added by adding their corresponding entries.

Example 1. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$. The sum A + B is calculated by adding corresponding entries:

$$A + B = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}.$$

2. **Scalar Multiplication**: A matrix can be multiplied by a scalar by multiplying each entry of the matrix by the scalar.

Example 2. Let k = 2 and $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. The scalar multiplication kA is calculated as:

$$kA = 2 \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 6 & 8 \end{bmatrix}.$$

3. **Matrix Transpose**: The transpose of a matrix A, denoted as A^T , is obtained by swapping its rows and columns.

Example 3. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$. The transpose A^T is calculated by swapping rows and columns:

$$A^T = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}.$$

4. **Matrix Multiplication**: Matrix multiplication is defined as the product of two matrices $A = (a_{ij})$ and $B = (b_{ij})$, resulting in a matrix $C = (c_{ij})$, where

$$c_{ij} = \sum_{k} a_{ik} b_{kj}.$$

Example 4. Consider two matrices A and B where the number of columns in A

1

matches the number of rows in B:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}.$$

The matrix product C = AB is calculated as:

$$C = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}.$$

1.2 Special Types of Matrices

We look at some of the special types of matrices which will be useful in subsequent chapters.

1. **Identity Matrix** (*I*): The identity matrix is a square matrix with ones on the main diagonal and zeros elsewhere. It serves as a multiplicative identity in matrix multiplication.

Example 5.

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

2. **Scalar Matrix**: A scalar matrix is a diagonal matrix of the form $\mathbf{A} = e\mathbf{I}$ where \mathbf{I} is the identity matrix.

Example 6.

$$A = 3 \cdot I = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

3. **Nilpotent Matrix:** A nilpotent matrix is a square matrix N such that $N^k = 0$ for some positive integer k. The integer k is the smallest such k called the index of nilpotence.

Example 7.

$$N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 is nilpotent as $N^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

4. **Idempotent Matrix**: An idempotent matrix is a square matrix P such that $P^2 = P$.

Example 8.

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

5. Invertible Matrix (Non-Singular): An invertible matrix, also known as a non-singular matrix, has an inverse A^{-1} such that $AA^{-1} = A^{-1}A = I$.

Example 9.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}.$$

6. **Triangular Matrix**: A triangular matrix is a matrix in which all entries above or below the main diagonal are zero. It can be upper triangular or lower triangular.

[1 2

Example 10 (Upper Triangular).

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}.$$

7. **Symmetric Matrix:** A symmetric matrix is a square matrix S such that $S^T = S$. **Example 11**.

$$S = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}.$$

8. **Skew-Symmetric Matrix**: A skew-symmetric matrix is a square matrix K such that $K^T = -K$.

Example 12.

$$K = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 4 \\ 3 & -4 & 0 \end{bmatrix}.$$

1.3 Determinants

Definition 1. Let $A = (a_{ij})$ be an $n \times n$ matrix. The (i, j) – **minor of** A denoted by M_{ij} is the matrix obtained by deleting the i^{th} row and j^{th} column.

3

Example 13. Let $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 2 & 0 & 7 \end{bmatrix}$. Then the minor matrices M_{13}, M_{22} of A are given as

$$M_{13} = \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}, M_{22} = \begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix}.$$

Definition 2. The **determinant of** A denoted by $\det A$, is defined by the recursive formula:

 $\det A = a$, if A = [a] is a 1×1 matrix

$$\det A = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det M_{ij}, \text{ if } A \text{ is a square matrix of size } n > 1.$$

Definition 3. The **cofactor of** a_{ij} is the number A_{ij} defined as

$$A_{ij} = (-1)^{i+j} \det M_{ij}.$$

Thus, we observe that

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij} \text{ for each } i = 1, 2, \dots$$

Example 14. Let $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \\ 2 & 0 & 7 \end{bmatrix}$. Then, by the above definition:

$$\det A = 1 \cdot \det \begin{bmatrix} 1 & 3 \\ 0 & 7 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} -1 & 3 \\ 2 & 7 \end{bmatrix} + 2 \cdot \det \begin{bmatrix} -1 & 1 \\ 2 & 0 \end{bmatrix}$$
$$= 1(1 \cdot 7 - 0 \cdot 3) - 0 + 2(-1 \cdot 0 - 1 \cdot 2)$$
$$= 7 - 4 = 3.$$

Theorem 1 (Properties of Determinants). Let A be a square matrix. Then the following properties hold:

1. Linearity:

$$det(A + B) \neq det(A) + det(B).$$
$$det(kA) = k^n det(A).$$

2. Product of Matrices:

$$det(AB) = det(A) det(B)$$
.

3. Equality of Rows/Columns:

If any two rows/columns of A are equal, then $\det A = 0$.

4. Transposition:

 $det(A^T) = det(A)$, where A^T is the transpose of the matrix A.

5. Row or Column Operations:

If B is obtained from A by swapping two rows, then $\det B = -\det A$.

6. Triangular and Diagonal Matrices:

For a triangular matrix (upper or lower), the determinant is the product of the diagonal elements.

7. Block Matrices:

$$\det \begin{pmatrix} \begin{bmatrix} A & B \\ 0 & C \end{pmatrix} \end{pmatrix} = \det(A) \cdot \det(C), \text{ where } A, B, C \text{ are square matrices.}$$

Theorem 2.

$$\sum_{j} a_{ij} A_{kj} = 0 \text{ if } k \neq i.$$

Proof. If *B* is obtained from *A* by replacing the k^{th} row of *A* by the i^{th} row, then *B* has two equal rows and hence $\det B = 0$.

Definition 4. The **cofactor matrix** of A, denoted by A^{cof} , is the matrix $A^{\text{cof}} = (a_{ij}^*)$, where $a_{ij}^* = A_{ji}$.

Theorem 3.

$$AA^{\text{cof}} = (\det A)I.$$

Proof.
$$AA^{\text{cof}} = \sum_{j} a_{ij} a_{jk}^* = \sum_{j} a_{ij} A_{kj} = \begin{cases} 0, & k \neq i \\ \det A, & k = i \end{cases} = \sum_{j} a_{ij} A_{ij} = (\det A)I. \quad \Box$$

Theorem 4. A matrix A is invertible if and only if $\det A \neq 0$.

Proof. Let A be invertible. Then $AA^{-1} = I$. Using the properties of determinants, we see that

$$\det AA^{-1} = \det A \det A^{-1} = \det I = 1.$$

Hence $\det A \neq 0$ and $\det A^{-1} = (\det A)^{-1}$.

Conversely, suppose that $\det A \neq 0$. Define the matrix B as

$$B = \frac{1}{\det A} A^{\text{cof}}.$$

Then,

$$AB = \frac{1}{\det A} A A^{\text{cof}} = \frac{1}{\det A} (\det A) I = I \text{ (by Theorem 3)}$$

and hence A is invertible.

2 Introduction to Vector Spaces

2.1 Definitions and Examples

A **vector space** V over a field \mathbb{F} consists of the following:

- 1. A set of vectors \mathcal{V} .
- 2. Two binary operations:
 - (a) **Vector addition**, denoted as +, which takes two vectors **A** and **B** in \mathcal{V} and produces a vector $\mathbf{A} + \mathbf{B}$ in \mathcal{V} .
 - (b) **Scalar multiplication**, denoted as \cdot , which takes a scalar α from the field \mathbb{F} and a vector \mathbf{A} in \mathcal{V} and produces a vector $\alpha \cdot \mathbf{A}$ in \mathcal{V} .

A vector space V must satisfy the following axioms for all vectors A, B, and C in V and all scalars α and β in \mathbb{F} :

1. Vector Addition Axioms:

- (a) Closure under Addition: A + B is in V.
- (b) Commutativity: A + B = B + A.
- (c) Associativity: (A + B) + C = A + (B + C).
- (d) **Identity Element**: There exists a vector $\mathbf{0}$ (called the zero vector) such that $\mathbf{A} + \mathbf{0} = \mathbf{A}$ for all \mathbf{A} in \mathbf{V} .
- (e) **Inverse Elements**: For every vector **A** in \mathcal{V} , there exists a vector $-\mathbf{A}$ such that $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}$.

2. Scalar Multiplication Axioms:

- (a) Closure under Scalar Multiplication: $\alpha \cdot \mathbf{A}$ is in \mathcal{V} .
- (b) Compatibility with Field Multiplication: $(\alpha\beta) \cdot \mathbf{A} = \alpha \cdot (\beta \cdot \mathbf{A})$.
- (c) Identity Element: There exists a scalar 1 such that $1 \cdot \mathbf{A} = \mathbf{A}$ for all \mathbf{A} in \mathbf{V} .
- (d) Distributivity of Scalars over Vector Addition: $\alpha \cdot (\mathbf{A} + \mathbf{B}) = \alpha \cdot \mathbf{A} + \alpha \cdot \mathbf{B}$.
- (e) Distributivity of Scalars over Field Addition: $(\alpha + \beta) \cdot \mathbf{A} = \alpha \cdot \mathbf{A} + \beta \cdot \mathbf{A}$.

Here are some examples of vector spaces:

- 1. Euclidean Space \mathbb{R}^n : The set of all *n*-dimensional real vectors with vector addition and scalar multiplication defined as component-wise operations.
- 2. **Polynomial Space** $P_n(\mathbb{R})$: The set of all polynomials of degree at most n with real or complex coefficients, where vector addition is polynomial addition and scalar multiplication is scalar multiplication of the coefficients.
- 3. Function Space C([a,b]): The set of all continuous real-valued functions defined on the closed interval [a,b], with vector addition defined as function addition and scalar multiplication defined as scalar multiplication of the function values.
- 4. **Matrix Space** $M_{m \times n}(\mathbb{F})$: The set of all $m \times n$ matrices with entries from the field \mathbb{F} , where vector addition is matrix addition and scalar multiplication is scalar multiplication of the matrix entries.

2.2 Linear Subspaces

Definition 5. A subset \mathcal{U} of a vector space \mathcal{V} is called a **linear subspace** if it is itself a vector space with respect to the vector addition and scalar multiplication operations defined in \mathcal{V} . In other words, \mathcal{U} is a linear subspace of \mathcal{V} if it satisfies the following properties:

- 1. Closure under Vector Addition: For all vectors **A** and **B** in \mathcal{U} , **A** + **B** is also in \mathcal{U} .
- 2. Closure under Scalar Multiplication: For all vectors **A** in \mathcal{U} and scalars α , $\alpha \cdot \mathbf{A}$ is also in \mathcal{U} .
- 3. Containing the Zero Vector: The zero vector $\mathbf{0}$ of V is in U.

In other words, \mathcal{U} is a linear subspace if it is a vector space in its own right. Here are some examples of linear subspaces:

Example 15. The Trivial Subspace: The set containing only the zero vector, $\{0\}$, is a linear subspace of any vector space.

Example 16. The Whole Space V: The entire vector space V itself is a linear subspace of itself.

Example 17. Let $\mathcal{V} = \mathbb{R}^3$. Then the set $\mathcal{U} = \{(0,0,z) : z \in \mathbb{R}\}$ is a linear subspace of \mathcal{V} .

2.3 Linear Span

Definition 6. Let \mathcal{V} be a vector space and $\mathbf{A}_1, \ldots, \mathbf{A}_k$ be vectors in \mathcal{V} . Then, the linear span of $\mathbf{A}_1, \ldots, \mathbf{A}_k$, denoted by $\mathcal{L}(\mathbf{A}_1, \ldots, \mathbf{A}_k)$, is the set of all vectors in \mathcal{V} which are linear combinations of $\mathbf{A}_1, \ldots, \mathbf{A}_k$, i.e.

$$\mathcal{L}(\mathbf{A}_1,\ldots,\mathbf{A}_k) = \bigg\{ \sum_{i=1}^k a_i \mathbf{A}_i : a_i \in \mathbb{R} \bigg\}.$$

Theorem 5. Let $E = \{A_1, ..., A_k\}$ be a set of vectors in \mathcal{V} . Then $\mathcal{L}(E)$ is a linear subspace of \mathcal{V} .

Proof. Let $\mathbf{A}, \mathbf{B} \in \mathcal{L}(E)$. Then,

$$\alpha \mathbf{A} + \beta \mathbf{B} = \alpha \sum_{i=1}^{k} a_i \mathbf{A}_i + \beta \sum_{i=1}^{k} b_i \mathbf{A}_i, \ a_i, b_i \in \mathbb{R}$$
$$= \sum_{i=1}^{k} (\alpha a_i + \beta b_i) \mathbf{A}_i$$
$$= \sum_{i=1}^{k} d_i \mathbf{A}_i \in \mathcal{L}(E),$$

where $d_i = \alpha a_i + \beta b_i$.

Theorem 6. Let $E \subseteq \mathcal{V}$. Then $E = \mathcal{L}(E)$ if and only if E is a linear subspace of \mathcal{V} .

Proof. Let E be a linear subspace of V. If $A_i \in E$, i = 1, ..., k, then $\sum_{i=1}^k a_i A_i \in E$ since E is closed under vector addition and scalar multiplication so that $\mathcal{L}(E) \subseteq E$. By definition, $E \subseteq \mathcal{L}(E)$. Hence $E = \mathcal{L}(E)$.

Conversely, if $E = \mathcal{L}(E)$ then by Theorem 5, $\mathcal{L}(E)$ is a subspace of \mathcal{V} and hence, E is a subspace of \mathcal{V} .

Theorem 7. Let S and T be two subspaces of V. Then

1. $S \cap T$ is a linear subspace of V.

- 2. S + T is a linear subspace of V.
- 3. $S \cup T$ is a linear subspace of \mathcal{V} if and only if $S \subseteq T$ or $T \subseteq S$.

Proof. Let S and T be two subspaces of V.

- 1. Let $A, B \in S \cap T$. Then $A, B \in S$ and $A, B \in S \cap T$. Therefore $aA + bB \in S$ and $aA + bB \in T$. Hence $aA + bB \in S \cap T$.
- 2. Let $\mathbf{A}, \mathbf{B} \in S + T$. Then $\mathbf{A} = \mathbf{X}_1 + \mathbf{Y}_1, \mathbf{B} = \mathbf{X}_2 + \mathbf{Y}_2, X_i \in S, Y_i \in T$. Therefore $a\mathbf{A} + b\mathbf{B} = a\mathbf{X}_1 + b\mathbf{X}_2 + a\mathbf{Y}_1 + b\mathbf{Y}_2$. Note that $a\mathbf{X}_1 + b\mathbf{X}_2 \in S$ and $a\mathbf{Y}_1 + b\mathbf{Y}_2 \in T$. Hence $a\mathbf{A} + b\mathbf{B} \in S + T$.
- 3. Let $S \subseteq T$ or $T \subseteq S$. Then $S \cup T = T$ or $S \cup T = S$ respectively.

2.4 Linear Dependence and Independence

Definition 7. A set of distinct vectors $A_1, ..., A_k$ is **linearly dependent** if there exists scalars $a_1, ..., a_k$ not all zero such that

$$a_1\mathbf{A}_1 + \cdots + a_k\mathbf{A}_k = 0.$$

Definition 8. A set of distinct vectors $A_1, ..., A_k$ is **linearly independent** if the relation

$$a_1\mathbf{A}_1 + \cdots + a_k\mathbf{A}_k = 0$$

implies $a_1 = \cdots = a_k = 0$.

Example 18. The set $\{(1,0,0),(0,1,0),(1,1,0)\}$ is linearly dependent since

$$(1,0,0) + (0,1,0) - (1,1,0) = 0.$$

Here $a_1 = a_2 = 1$, $a_3 = -1$.

Example 19. The set $\{1+x,1-x\}$ is linearly independent in $P_1(\mathbb{R})$ since

$$a_1(1+x) + a_2(1-x) = 0$$

gives $a_1 + a_2 = 0$ and $a_1 - a_2 = 0$ whence we conclude $a_1 = a_2 = 0$.

Theorem 8. If a set contains **0**, then it is linearly dependent.

Proof. The relation $1 \cdot 0 = 0$ is a linear relation with a nonzero scalar 1.

Theorem 9. Let $E = \{A_1, ..., A_k\}$ be a finite set of vectors. Then E is linearly dependent if and only if there is a vector A_i which is linearly dependent on the set $E \setminus \{A_i\}$.

Proof. Suppose that there is a vector in E which is linearly dependent on the remaining vectors. Without any loss in generality, we may assume this vector to be A_1 , i.e. $A_1 \in \mathcal{L}(E \setminus \{A_1\})$. Then

$$\mathbf{A}_1 = a_2 \mathbf{A}_2 + \dots a_k \mathbf{A}_k.$$

But then

$$(-1)\mathbf{A}_1 + a_2\mathbf{A}_2 + \dots a_k\mathbf{A}_k = 0$$

is a linear relation with a non-zero scalar -1. Hence E is linearly dependent. On the other hand, let E be a linearly dependent set. Then, there are scalars, a_1, \ldots, a_k not all zero such that, there is a linear relation

$$a_1\mathbf{A}_1 + \cdots + a_k\mathbf{A}_k = 0.$$

By rearranging, without any loss in generality we may choose $a_1 \neq 0$. Then,

$$\mathbf{A}_1 = -\frac{a_2}{a_1}\mathbf{A}_2 - \frac{a_3}{a_1}\mathbf{A}_3 - \dots - \frac{a_k}{a_1}\mathbf{A}_k.$$

which shows that $A_1 \in \mathcal{L}(E \setminus \{A_1\})$. This proves the theorem.

Theorem 10. If E is a finite set such that $\mathcal{L}(E) = \mathcal{U}$ where \mathcal{U} is a linear subspace of \mathcal{V} . Then, there exists a linearly independent subset F of E such that $\mathcal{L}(F) = \mathcal{U} = \mathcal{L}(E)$.

Proof. If E is linearly dependent, then set F = E and the proof is complete. Otherwise, suppose that it is linearly dependent. Then by Theorem 9 there is a vector \mathbf{A} which is linearly dependent on the remaining vectors. Let $E_1 = E \setminus \mathbf{A}$. Then $\mathbf{A} \in E_1$. By construction, $\mathcal{L}(E_1) \subseteq \mathcal{L}(E)$. But

$$\mathcal{L}(E) = \mathcal{L}(E_1 \cup \{\mathbf{A}\}) \subseteq \mathcal{L}(\mathbf{A}) + \mathcal{L}(E_1) \subseteq \mathcal{L}(E_1) + \mathcal{L}(E_1) = \mathcal{L}(E_1).$$

Hence $\mathcal{L}(E_1) = \mathcal{L}(E)$. If $\mathcal{L}(E_1)$ is linearly independent then set $F = E_1$ and the proof is complete, otherwise continue the process. Since E is a finite set, the process terminates after finite number of times.

Theorem 11. Let \mathcal{V} be a vector space and $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3 \in \mathcal{V}$ such that $\mathbf{A}_3 \notin \mathcal{L}(\mathbf{A}_1, \mathbf{A}_2)$. Then $\mathbf{A}_1, \mathbf{A}_2$ are linearly independent if and only if $\mathbf{A}_1 + \mathbf{A}_3, \mathbf{A}_2 + \mathbf{A}_3$ are linearly independent.

Proof. Suppose that A_1, A_2 are linearly independent. Consider the relation,

$$a_1(\mathbf{A}_1 + \mathbf{A}_3) + a_2(\mathbf{A}_2 + \mathbf{A}_3) = 0.$$
 (1)

Rearranging, we obtain

$$a_1\mathbf{A}_1 + a_2\mathbf{A}_2 + (a_1 + a_2)\mathbf{A}_3 = 0.$$
 (2)

Since $A_3 \notin \mathcal{L}(A_1, A_2)$, we must have $a_1 + a_2 = 0$, otherwise we would get

$$\mathbf{A}_3 = -\frac{a_1}{a_1 + a_2} \mathbf{A}_1 - \frac{a_2}{a_1 + a_2} \mathbf{A}_2.$$

Hence $a_2 = -a_1$. Therefore,

$$a_1(\mathbf{A}_1 - \mathbf{A}_2) = 0.$$

But since A_1 , A_2 are linearly independent, we must have $a_1 = 0$ and hence $a_2 = 0$. Conversely, suppose that $A_1 + A_3$, $A_2 + A_3$ are linearly independent. Then from (2), we have

$$a_1\mathbf{A}_1 + a_2\mathbf{A}_2 = 0$$
 and $a_1 + a_2 = 0$.

The second relation holds since $A_3 \notin \mathcal{L}(A_1, A_2)$. But then from (1), we have $a_1 = a_2 = 0$ since $A_1 + A_3$, $A_2 + A_3$ are linearly independent. Hence A_1 , A_2 are linearly independent.

3 Finite Dimensional Vector Spaces and Bases

3.1 Definitions and Examples

Definition 9. A vector space \mathcal{V} is **finite-dimensional** if there exists a finite set of vectors E such that $\mathcal{L}(E) = \mathcal{V}$.

Example 20. The vector space \mathbb{R}^n is finite-dimensional as $\mathbb{R}^n = \mathcal{L}(\mathbf{E}_1, \dots, \mathbf{E}_n)$ where $\mathbf{E}_i = (0, \dots, 1, \dots, 0)$ has a 1 in the i^{th} place.

Example 21. The vector space $P_n(\mathbb{R})$ is finite-dimensional as $P_n(\mathbb{R}) = \mathcal{L}(1, x, \dots, x^n)$, i.e. the polynomials $1, x, x^2, \dots, x^n$ span the space $P_n(\mathbb{R})$.

Definition 10. A set of vectors E is a **basis for** \mathcal{V} if E is linearly independent and $\mathcal{L}(E) = \mathcal{V}$.

Example 22. The set $\{E_1, \ldots, E_n\}$ is a basis for \mathbb{R}^n since the vectors E_1, \ldots, E_n are linearly independent in \mathbb{R}^n and also span \mathbb{R}^n as seen in Example 20.

Example 23. The set $\{1, x, ..., x^n\}$ is a basis for $P_n(\mathbb{R})$ since the polynomials $1, x, x^2, ..., x^n$ are linearly independent in $P_n(\mathbb{R})$ and also span $P_n(\mathbb{R})$ as seen in Example 21.

Example 24. The set $\{1, x - 1, (x - 2)(x - 1)\}$ is a basis for $P_2(\mathbb{R})$. Suppose there are scalars a_1, a_2, a_3 such that

$$a_1 + a_2(x-1) + a_3(x-2)(x-1) = 0.$$

Then, we obtain $a_3 = 0$, $a_2 - 3a_3 = 0$ and $a_1 - a_2 + 2a_3 = 0$ which gives $a_1 = a_2 = a_3 = 0$. Hence, they are linearly independent. To check linear span, observe that if $p(x) = a_0 + a_1x + a_2x^2$ is an arbitrary polynomial in $P_2(\mathbb{R})$, then we want b_0, b_1, b_2 such that

$$a_0 + a_1 x + a_2 x^2 = b_0 + b_1 (x - 1) + b_2 (x - 2)(x - 1).$$

Solving for b_i , we obtain $b_0 = a_0 + a_1 + a_2$, $b_1 = a_1 + 3a_2$, $b_2 = a_2$. Hence, $\{1, x - 1, (x - 2)(x - 1)\}$ is the spanning set.

3.2 Properties of Bases

Theorem 12. Let $E = \{A_1, ..., A_k\}$ be a finite set of vectors. Then E is linearly dependent if and only if

$$\mathbf{A}_m \in \mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_{m-1})$$

for some $m \le k$.

Proof. Suppose that $A_m \in \mathcal{L}(A_1, ..., A_{m-1})$ for some $m \leq k$. Then A_m is linearly dependent on the remaining vectors of E. Hence E is linearly dependent.

On the other hand, let E be a linearly dependent set. Then, there are scalars, a_1, \ldots, a_k not all zero such that, there is a linear relation

$$a_1\mathbf{A}_1 + \cdots + a_k\mathbf{A}_k = 0.$$

Let $m = \max\{1, ..., k\}$ for which $a_m \neq 0$. By this construction, we ensure that $a_{m+1} = a_{m+2} = \cdots = 0$ so that the linear relation may be written as

$$a_1\mathbf{A}_1 + \cdots + a_k\mathbf{A}_m = 0.$$

But then,

$$\mathbf{A}_m = -\frac{a_1}{a_m} \mathbf{A}_1 - \frac{a_1}{a_m} \mathbf{A}_2 - \dots - \frac{a_{m-1}}{a_m} \mathbf{A}_{m-1}.$$

which shows that $A_m \in \mathcal{L}(A_1, \dots, A_{m-1})$. This proves the theorem.

Theorem 13. Let V be a finite-dimensional vector space and $E = \{A_1, ..., A_k\}$ be a finite set of vectors. If F is linearly independent set of vectors in $\mathcal{L}(E)$, then F is finite and the number of elements in F is at most k.

Proof. Let $H = \{\mathbf{B}_1, \dots, \mathbf{B}_k\}$ be a finite subset of F. Then, H is linearly independent. Since V is finite-dimensional, $\mathcal{L}(E) = V$ and hence F is finite. Consider the set

$$G_1 = {\mathbf{B}_s, \mathbf{A}_1, \dots, \mathbf{A}_k}.$$

Since H is a linearly independent subset of $\mathcal{L}(E)$, we have $\mathbf{B}_s \in \mathcal{L}(E)$ and hence G_1 is linearly dependent. Therefore by Theorem 12, there is a vector in G_1 which is linearly dependent on the preceding vectors. This vector cannot be \mathbf{B}_s , since \mathbf{B}_s is a linearly independent vector and so $\mathbf{B}_s \neq \mathbf{0}$. So it has to be an A_i , $i = 1, \ldots, k$. Without any loss in generality, we may assume this vector to be \mathbf{A}_k , i.e.

$$\mathbf{A}_k \in \mathcal{L}(\mathbf{B}_s, \mathbf{A}_1, \dots, \mathbf{A}_{k-1}). \tag{3}$$

Define $E_1 = \{\mathbf{B}_s, \mathbf{A}_1, \dots, \mathbf{A}_{k-1}\}$. From (3) we see that,

$$\mathbf{A}_k = a_1 \mathbf{A}_1 + \dots + a_{k-1} \mathbf{A}_{k-1} + b_s \mathbf{B}_s. \tag{4}$$

But since $\mathbf{B}_s \in \mathcal{L}(E)$, we have,

$$\mathbf{B}_s = c_1 \mathbf{A}_1 + \dots + c_k \mathbf{A}_k. \tag{5}$$

Substituting (5) in (4), we get,

$$\mathbf{A}_k = a_1 \mathbf{A}_1 + \dots + a_{k-1} \mathbf{A}_{k-1} + b_s (c_1 \mathbf{A}_1 + \dots + c_k \mathbf{A}_k).$$

Rearranging the terms, we obtain,

$$\mathbf{A}_k = (a_1 + b_s c_1) \mathbf{A}_1 + \dots + (a_{k-1} + b_s c_{k-1}) \mathbf{A}_{k-1} + b_s c_k \mathbf{A}_k$$

which shows that $A_k \in \mathcal{L}(E)$. Thus, we conclude $\mathcal{L}(E_1) = \mathcal{L}(E)$. Now consider,

$$G_2 = {\mathbf{B}_{s-1}, \mathbf{B}_s, \mathbf{A}_1, \dots, \mathbf{A}_{k-1}}.$$

As before, there is a vector in G_2 which is linearly dependent on the preceding vectors. This vector cannot be \mathbf{B}_{s-1} since \mathbf{B}_{s-1} is linearly independent, i.e. $\mathbf{B}_{s-1} \neq \mathbf{0}$. ALso it cannot be \mathbf{B}_s since $\{\mathbf{B}_{s-1}, \mathbf{B}_s\}$ is linearly independent. Therefore, it must be an \mathbf{A}_i . As before we may choose this vector to be \mathbf{A}_{k-1} , i.e.

$$A_{k-1} \in \mathcal{L}(B_{s-1}, B_s, A_1, \dots, A_{k-2})$$

and as before, set $E_2 = \{\mathbf{B}_{s-1}, \mathbf{B}_s, \mathbf{A}_1, \dots, \mathbf{A}_{k-2}\}$ to obtain $\mathcal{L}(E_2) = \mathcal{L}(E)$. We want to show $s \leq k$. Assume on the contrary that s > k. Then by repeating the above arguments k times, we can construct a set $E_k = \{\mathbf{B}_{s-(k-1)}, \mathbf{B}_{s-(k-2)}, \dots, \mathbf{B}_s\}$ such that $\mathcal{L}(E_k) = \mathcal{L}(E)$. But then,

$$\mathbf{B}_{s-k} \in \mathcal{L}(E) = \mathcal{L}(E_k)$$

which shows that $H = \{\mathbf{B}_1, \dots, \mathbf{B}_k\}$ is linearly dependent which is a contradiction. Hence $s \leq k$ as required.

3.3 Fundamental Results

Theorem 14. A vector space \mathcal{V} is finite-dimensional if and only if every linearly independent set of vectors in \mathcal{V} is finite.

Proof. If V is finite-dimensional, then every linearly independent set of vectors is finite by Theorem 13. On the other hand, suppose that every linearly independent

set of vectors is finite but \mathcal{V} is not finite-dimensional. Then, \mathcal{V} is not spanned by any finite set of vectors in \mathcal{V} . Let $\mathbf{0} \neq \mathbf{A}_1 \in \mathcal{V}$. Then $\{\mathbf{A}_1\}$ is a linearly independent set in \mathcal{V} . Since \mathcal{V} is not finite-dimensional $\mathcal{L}(\mathbf{A}_1) \neq \mathcal{V}$. Choose a vector $\mathbf{A}_2 \in \mathcal{V}$ such that $\mathbf{A}_2 \notin \mathcal{L}(\mathbf{A}_1)$. Then the set $\{\mathbf{A}_1, \mathbf{A}_2\}$ is linearly independent. Again since \mathcal{V} is not finite-dimensional, $\mathcal{L}(\mathbf{A}_1, \mathbf{A}_2) \neq \mathcal{V}$. But continuing this process, we can find $\mathbf{A}_{i+1} \notin \mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_i)$ and an infinite set $\{\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_i, \dots\}$ which is linearly independent which contradicts our hypothesis that every linearly independent set of vectors is finite. Hence \mathcal{V} is finite-dimensional.

Definition 11. Let \mathcal{V} be a finite-dimensional vector space. The **dimension of** \mathcal{V} , denoted by dim \mathcal{V} is the number of elements in the basis of \mathcal{V} .

Example 25. dim $\mathbb{R}^n = n$ as there are *n* vectors $(1, \dots, 0), \dots, (0, \dots, 1)$ in the basis.

Example 26. dim $P_n(\mathbb{R}) = n + 1$ as there are n + 1 vectors $1, x, x^2, \dots, x^n$ in the basis.

Theorem 15 (Basis Extension Theorem). Let \mathcal{V} be a finite-dimensional vector space and $\mathbf{A}_1, \ldots, \mathbf{A}_m$ be linearly independent vectors in \mathcal{V} . Then there exist $n = \dim \mathcal{V} - m$ vectors $\mathbf{B}_1, \ldots, \mathbf{B}_n$ in \mathcal{V} such that $\{\mathbf{A}_1, \ldots, \mathbf{A}_m, \mathbf{B}_1, \ldots, \mathbf{B}_n\}$ is a basis for \mathcal{V} .

Proof. If $\mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_m) = \mathcal{V}$, then $m = \dim \mathcal{V}$ and the proof is complete. So suppose, $\mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_m) \neq \mathcal{V}$. Choose a vector $\mathbf{B}_1 \in \mathcal{V}$ such that $\mathbf{B}_1 \notin \mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_m)$. Then the set

$$\{\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1\}$$

is a linearly independent set since B_1 does not depend on the preceding vectors by construction (see Theorem 12).

If $\mathcal{L}(\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1)=\mathcal{V}$, then $m=\dim\mathcal{V}-1$ and the proof is complete. So assume $\mathcal{L}(\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1)\neq\mathcal{V}$. Then, we can find $\mathbf{B}_2\in\mathcal{V}$ such that $\mathbf{B}_2\notin\mathcal{L}(\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1)$. Then the set

$$\{\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1,\mathbf{B}_2\}$$

is linearly independent. Continue this process k times such that $m + k = \dim V$ to get a linearly independent set

$$\{\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1,\ldots,\mathbf{B}_k\}.$$

In this case k = n and

$$\mathcal{L}(\mathbf{A}_1,\ldots,\mathbf{A}_m,\mathbf{B}_1,\ldots,\mathbf{B}_n)=\mathcal{V}.$$

as required. This completes the proof.

The Basis Extension Theorem is a fundamental result whose implications are farreaching. Some of the immediate consequences are listed below.

Theorem 16. Let \mathcal{V} be a finite-dimensional vector space and \mathcal{U} be a linear subspace of \mathcal{V} . Then \mathcal{U} is finite-dimensional and $\dim \mathcal{U} \leq \dim \mathcal{V}$.

Theorem 17. Let \mathcal{V} be a finite-dimensional vector space with $\dim \mathcal{V} = n$. If the vectors $\mathbf{A}_1, \ldots, \mathbf{A}_n$ are linearly independent in \mathcal{V} , then they are a basis.

Proof. If the vectors $\mathbf{A}_1, \ldots, \mathbf{A}_n$ are not a basis, then by Theorem 15, there exists $\mathbf{B}_1, \ldots, \mathbf{B}_m$ vectors such that $\{\mathbf{A}_1, \ldots, \mathbf{A}_n, \mathbf{B}_1, \ldots, \mathbf{B}_m\}$ would be a basis for \mathcal{V} . But then $\dim \mathcal{V} = m + n \neq n$ which is a contradiction.

Theorem 18. Let \mathcal{V} be a finite-dimensional vector space with $\dim \mathcal{V} = n$. If the vectors $\mathbf{A}_1, \ldots, \mathbf{A}_n$ span \mathcal{V} , then they are a basis.

Theorem 19. Let \mathcal{V} be a finite-dimensional vector space and \mathcal{U} be a linear subspace of \mathcal{V} with dim $\mathcal{U} = n$. Then $\mathcal{U} = \mathcal{V}$.

Proof. Since dim $\mathcal{U} = n$, there is a basis $\{A_1, \dots, A_n\}$ for \mathcal{U} . By Theorem 15,

$$\mathcal{U} = \mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_n) = \mathcal{V}.$$

Example 27. Let $\mathcal{V} = \mathbb{R}^3$ and $A_1 = (1,2,3)$. Using Theorem 15, we will extend the vector A_1 to form a basis for \mathcal{V} . Observe that $\mathcal{L}(A_1) \neq \mathcal{V}$. Choose $A_2 = (1,0,0) \in \mathcal{V}$. Since $A_2 \notin \mathcal{L}(A_1)$, we conclude that the set $\{A_1,A_2\}$ is linearly independent. Clearly $\mathcal{L}(A_1,A_2) \neq \mathcal{V}$. For example, $(0,1,0) \in \mathcal{V}$ but not in $\mathcal{L}(A_1,A_2)$. Consider $A_3 = (0,1,0) \in \mathcal{V}$. Then $\{A_1,A_2,A_3\}$ is linearly independent. Therefore by Theorem 17, $\{A_1,A_2,A_3\}$ is a basis for \mathcal{V} .

4 Linear Transformations

4.1 Definition and Examples

A **linear transformation** is a function that preserves vector addition and scalar multiplication. Formally, a function T from vector space V to vector space W is a linear transformation if it satisfies two properties:

1. Additivity: For all vectors $A, B \in \mathcal{V}$,

$$T(\mathbf{A} + \mathbf{B}) = T(\mathbf{A}) + T(\mathbf{B}).$$

2. Scalar Multiplication: For all vectors $A \in V$ and scalars c,

$$T(c\mathbf{A}) = cT(\mathbf{A}).$$

Example 28 (Dilation in 2D Space). Consider the 2D vector space \mathbb{R}^2 . The transformation T that scales each vector by a constant factor k is a linear transformation.

$$T(\mathbf{A}) = k\mathbf{A}.$$

Example 29 (Projection onto a Line). In 2D space, consider the line L spanned by the vector $\mathbf{B} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. The transformation T that projects any vector $\mathbf{A} \in \mathbb{R}^2$ onto L is a linear transformation.

$$T(\mathbf{A}) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{B}\|^2} \mathbf{B}.$$

This transformation projects vectors onto the line L defined by \mathbf{B} .

Example 30 (Rotation in 2D Space). The transformation T that rotates vectors in 2D space counterclockwise by an angle θ is a linear transformation.

$$T(\mathbf{A}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \mathbf{A}.$$

4.2 Properties of Linear Transformations

Theorem 20. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. Then $T(\mathbf{0}) = \mathbf{0}$.

Proof.
$$T(\mathbf{0}) = T(0\mathbf{0}) = 0$$

Theorem 21. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. Suppose \mathcal{U} is a linear subspace of \mathcal{V} . Then the set

$$T(\mathcal{U}) = \{T(\mathbf{A}) \in \mathcal{W} : \mathbf{A} \in \mathcal{U}\}$$

is a linear subspace of W.

Proof. To prove this theorem, we need to show that the set $T(\mathcal{U})$ is a linear subspace of W. For this, we need to verify the three properties of a linear subspace: closure under vector addition, closure under scalar multiplication, and containing the zero vector.

1. Closure under Vector Addition:

Let $A', B' \in T(\mathcal{U})$. Then, there exists $A, B \in \mathcal{U}$ such that

$$A' = T(A)$$
 and $B' = T(B)$.

Since \mathcal{U} is a linear subspace, $\mathbf{A} + \mathbf{B} \in \mathcal{U}$. Since T is a linear transformation, we have $T(\mathbf{A} + \mathbf{B}) = \mathbf{A}' + \mathbf{B}' \in T(\mathcal{U})$.

2. Closure under Scalar Multiplication:

Let $A' \in T(\mathcal{U})$ and c be a scalar. Again, since \mathcal{U} is a linear subspace, $cA \in \mathcal{U}$. Since T is a linear transformation, it preserves scalar multiplication, $T(cA) = cT(A) = cA' \in T(\mathcal{U})$.

3. Containing the Zero Vector:

Since \mathcal{U} is a linear subspace of \mathcal{V} , it contains the zero vector $\mathbf{0}$ of \mathcal{V} . Since T is a linear transformation, it maps the zero vector to the zero vector:

$$T(\mathbf{0}) = \mathbf{0} \in T(\mathcal{U})$$

Therefore, $T(\mathcal{U})$ contains the zero vector of W. This completes the proof of the theorem.

Theorem 22. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation and E is a set of vectors in \mathcal{V} . Then,

$$T(\mathcal{L}(E)) = \mathcal{L}(T(E)).$$

Proof. We will prove this theorem by showing that $T(\mathcal{L}(E))$ is a subset of $\mathcal{L}(T(E))$ and vice versa.

Part 1: $T(\mathcal{L}(E)) \subseteq \mathcal{L}(T(E))$.

Let $A \in \mathcal{L}(E)$. This means that A can be expressed as a linear combination of vectors in E:

$$\mathbf{A} = c_1 \mathbf{A}_1 + c_2 \mathbf{A}_2 + \ldots + c_n \mathbf{A}_n,$$

where $A_1, A_2, ..., A_n$ are vectors in E, and $c_1, c_2, ..., c_n$ are scalars.

Now, apply the linear transformation T to both sides of the equation:

$$T(\mathbf{A}) = T(c_1\mathbf{A}_1 + c_2\mathbf{A}_2 + \ldots + c_n\mathbf{A}_n).$$

Since T is a linear transformation, it preserves vector addition and scalar multiplication:

$$T(\mathbf{A}) = c_1 T(\mathbf{A}_1) + c_2 T(\mathbf{A}_2) + \ldots + c_n T(\mathbf{A}_n).$$

Each of the vectors $T(\mathbf{A}_1), T(\mathbf{A}_2), \dots, T(\mathbf{A}_n)$ is in T(E) because T maps vectors from E to T(E). Therefore, the right-hand side of the equation is a linear combination of vectors in T(E). Hence, $T(\mathbf{A})$ is an element of $\mathcal{L}(T(E))$. Since \mathbf{A} was an arbitrary element of $\mathcal{L}(E)$, we have shown that $T(\mathcal{L}(E)) \subseteq \mathcal{L}(T(E))$.

Part 2: $\mathcal{L}(T(E)) \subseteq T(\mathcal{L}(E))$.

Let $\mathbf{B} \in \mathcal{L}(T(E))$. This means that \mathbf{B} can be expressed as a linear combination of vectors in T(E):

$$\mathbf{B} = d_1 \mathbf{B}_1 + d_2 \mathbf{B}_2 + \ldots + d_m \mathbf{B}_m,$$

where $\mathbf{B}_1, \mathbf{B}_2, \dots, \mathbf{B}_m$ are vectors in T(E), and d_1, d_2, \dots, d_m are scalars. Since each \mathbf{B}_i is in T(E), there exists a corresponding vector \mathbf{A}_i in E such that $T(\mathbf{A}_i) = \mathbf{B}_i$. Now, we can express \mathbf{B} as a linear combination of the original vectors in E:

$$\mathbf{B} = d_1 T(\mathbf{A}_1) + d_2 T(\mathbf{A}_2) + \ldots + d_m T(\mathbf{A}_m).$$

Again, since T is a linear transformation, it preserves vector addition and scalar multiplication:

$$\mathbf{B} = T(d_1\mathbf{A}_1) + T(d_2\mathbf{A}_2) + \ldots + T(d_m\mathbf{A}_m) = T\bigg(\sum_{i=1}^m d_i\mathbf{A}_i\bigg).$$

Define

$$\mathbf{A} = \sum_{i=1}^{m} d_i \mathbf{A}_i$$

So $\mathbf{A} \in \mathcal{L}(E)$ and for $\mathbf{B} \in \mathcal{L}(T(E))$, we have found an $\mathbf{A} \in \mathcal{L}(E)$ such that $T(\mathbf{A}) = \mathbf{B}$. This implies $\mathbf{B} \in T(\mathcal{L}(E))$ and hence $\mathcal{L}(T(E)) \subseteq T(\mathcal{L}(E))$. Combining both parts, we conclude that

$$T(\mathcal{L}(E)) = \mathcal{L}(T(E)),$$

which completes the proof.

Theorem 23. Let $T: \mathcal{V} \to \mathcal{W}$ and $S: \mathcal{W} \to \mathcal{U}$ be linear transformations. Then, the composition,

$$S \cdot T : \mathcal{V} \to \mathcal{U}$$

is a linear transformation.

Proof. We need to verify the two properties of a linear transformation. Indeed,

$$S \cdot T(a\mathbf{A} + b\mathbf{B}) = S(T(a\mathbf{A} + b\mathbf{B}))$$

$$= S(aT(\mathbf{A}) + bT(\mathbf{B}))$$

$$= aS \cdot T(\mathbf{A}) + bS \cdot T(\mathbf{B}).$$

4.3 Kernels and Images

Definition 12. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. The **kernel** of T is defined as

$$\operatorname{Ker} T = \big\{ \mathbf{A} \in \mathcal{V} : T(\mathbf{A}) = \mathbf{0} \big\}.$$

The **image** of *T* is defined as

Im
$$T = \{ \mathbf{B} \in \mathcal{W} : \exists \mathbf{A} \in \mathcal{V} \text{ such that } T(\mathbf{A}) = \mathbf{B} \}.$$

Theorem 24. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. Then,

- 1. Ker T is a linear subspace of V.
- 2. Im T is a linear subspace of W.

Proof. Part 1: Ker T is a linear subspace of V.

To prove that $\operatorname{Ker} T$ is a linear subspace of \mathcal{V} , we need to show that it satisfies the three properties of a linear subspace:

1. Closure under Vector Addition: Let $A_1, A_2 \in \text{Ker } T$. This means that $T(A_1) = 0$

and $T(\mathbf{A}_2) = \mathbf{0}$. Therefore,

$$T(\mathbf{A}_1 + \mathbf{A}_2) = T(\mathbf{A}_1) + T(\mathbf{A}_2) = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

Hence $A_1 + A_2 \in \text{Ker } T$.

2. Closure under Scalar Multiplication: Let $A \in \text{Ker } T$ and c be a scalar. This means that T(A) = 0. Therefore,

$$T(c\mathbf{A}) = cT(\mathbf{A}) = c\mathbf{0} = \mathbf{0}.$$

Thus, $T(c\mathbf{A}) = \mathbf{0}$, $c\mathbf{A} \in \text{Ker } T$.

3. Containing the Zero Vector: Since T(0) = 0, the zero vector 0 is in Ker T. Thus, we conclude that Ker T is a linear subspace of V.

Part 2: Im T is a linear subspace of W.

1. Closure under Vector Addition: Let $\mathbf{B}_1, \mathbf{B}_2 \in \operatorname{Im} T$. This means that there exist vectors $\mathbf{A}_1, \mathbf{A}_2 \in \mathcal{V}$ such that $T(\mathbf{A}_1) = \mathbf{B}_1$ and $T(\mathbf{A}_2) = \mathbf{B}_2$. Using the properties of a linear transformation:

$$T(\mathbf{A}_1 + \mathbf{A}_2) = T(\mathbf{A}_1) + T(\mathbf{A}_2) = \mathbf{B}_1 + \mathbf{B}_2.$$

Since $A_1 + A_2 \in \mathcal{V}$ and $T(A_1 + A_2) = B_1 + B_2$, we conclude that $B_1 + B_2 \in \text{Im } T$.

2. Closure under Scalar Multiplication: Let $\mathbf{B} \in \operatorname{Im} T$ and c be a scalar. Thus, there exists a vector \mathbf{A} in \mathcal{V} such that $T(\mathbf{A}) = \mathbf{w}$. Using the properties of a linear transformation:

$$T(c\mathbf{A}) = cT(\mathbf{A}) = c\mathbf{B}.$$

Since $c\mathbf{A} \in \mathcal{V}$ and $T(c\mathbf{A}) = c\mathbf{B}$, we conclude that $c\mathbf{B} \in \text{Im } T$.

3. Containing the Zero Vector: Since $T(\mathbf{0}) = \mathbf{0}$, the zero vector $\mathbf{0}$ is in Im T. Thus, we conclude that Im T is a linear subspace of W.

Example 31. Let $D: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ be the differentiation operator. For $f(x) \in P_n(\mathbb{R})$, ker D contains all f(x) such that D(f(x)) = f'(x) = 0. The only polynomials that satisfy this condition are constant polynomials. Therefore, the kernel of D is the set of constant polynomials $P_0(\mathbb{R})$. Therefore,

$$\ker D = P_0(\mathbb{R}).$$

For $g(x) \in P_n(\mathbb{R})$, Im D contains all g(x) such that there exists $f(x) \in P_n(\mathbb{R})$ with D(f(x)) = g(x). Since the derivative of a polynomial f(x) is D(f(x)) = f'(x), any polynomial g(x) in $P_n(\mathbb{R})$ can be in the image of D of degree of at most n-1. Therefore, Im D is the set of polynomials of degree at most n-1:

$$\operatorname{Im} D = P_{n-1}(\mathbb{R}).$$

Generalizing, we can show that $\operatorname{Ker} D^m = P_{m-1}(\mathbb{R})$, $\operatorname{Im} D^m = P_{n-m}(\mathbb{R})$.

Theorem 25 (Dimension Formula). Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. If \mathcal{V} is finite dimensional, so are Ker T and Im T and

$$\dim \mathcal{V} = \dim \operatorname{Ker} T + \dim \operatorname{Im} T$$
.

Proof. Given \mathcal{V} is finite dimensional and Ker T is a linear subspace of \mathcal{V} , so Ker T is finite dimensional. Let $\{\mathbf{A}_1, \ldots, \mathbf{A}_s\}$ be a basis for Ker T. Then by Basis Extension Theorem, we can find linearly independent vectors $\mathbf{B}_1, \ldots, \mathbf{B}_t$ such that $\{\mathbf{A}_1, \ldots, \mathbf{A}_s, \mathbf{B}_1, \ldots, \mathbf{B}_t\}$ is a basis for \mathcal{V} . Now,

$$\operatorname{Im} T = T(\mathcal{V}) = T(\mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_s, \mathbf{B}_1, \dots \mathbf{B}_t))$$

$$= \mathcal{L}(T(\mathbf{A}_1), \dots, T(\mathbf{A}_s), T(\mathbf{B}_1), \dots T(\mathbf{B}_t)) \quad \text{(by Theorem 22)}$$

$$= \mathcal{L}(\mathbf{0}, \dots, \mathbf{0}, T(\mathbf{B}_1), \dots T(\mathbf{B}_t))$$

$$= \mathcal{L}(T(\mathbf{B}_1), \dots T(\mathbf{B}_t)).$$

This shows that Im T is finite dimensional. We claim that $\{T(\mathbf{B}_1), \dots T(\mathbf{B}_t)\}$ form a basis for Im T. All that remains to be shown is, they are linearly independent. To that end, suppose there are scalars b_1, \dots, b_t such that

$$b_1T(\mathbf{B}_1) + \cdots + b_tT(\mathbf{B}_t) = 0.$$

By definition of a linear transformation, we have,

$$T\bigg(\sum_{i=1}^t b_i \mathbf{B}_i\bigg) = 0.$$

Let $\mathbf{B} = \sum_{i=1}^{T} b_i \mathbf{B}_i$. Then $T(\mathbf{B}) = 0$. This means $\mathbf{B} \in \text{Ker } T$. Now, since $\{\mathbf{A}_1, \dots, \mathbf{A}_s\}$ is a

basis for Ker T, we have,

$$\mathbf{B} = a_1 \mathbf{A}_1 + \dots + a_s \mathbf{A}_s,$$

for scalars a_1, \ldots, a_s . But then,

$$a_1\mathbf{A}_1 + \cdots + a_s\mathbf{A}_s - b_1\mathbf{B}_1 - \cdots - b_t\mathbf{B}_t = 0.$$

Since $\{A_1, \ldots, A_s, B_1, \ldots B_t\}$ is a basis for \mathcal{V} , we conclude that $a_i = b_i = 0$ which shows that the $\{T(B_1), \ldots T(B_t)\}$ is linearly independent and hence a basis for Im T. Thus,

$$\dim \operatorname{Ker} T = s, \dim \operatorname{Im} T = t \text{ and } \dim \mathcal{V} = n = s + t,$$

as required. This completes the proof.

Theorem 26. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation. Let $\{A_1, \ldots, A_n\}$ be a basis for \mathcal{V} and $\{B_1, \ldots, B_n\}$ be a set of vectors in \mathcal{W} . Then the linear extensio of

$$T(\mathbf{A}_i) = \mathbf{B}_i, i = 1, \dots, n$$

is a linear transformation.

Proof. We first observe that T is well-defined since $\{A_1, \ldots, A_n\}$ is a basis for \mathcal{V} . Let $A, C \in \mathcal{V}$. Then,

$$\mathbf{A} = \sum_{i=1}^{n} a_i \mathbf{A}_i, \ \mathbf{C} = \sum_{i=1}^{n} c_i \mathbf{A}_i,$$

Therefore,

$$T(a\mathbf{A} + c\mathbf{C}) = a \sum_{i=1}^{n} a_i T(\mathbf{A}_i) + c \sum_{i=1}^{n} c_i T(\mathbf{C}_i)$$
$$= a \sum_{i=1}^{n} a_i \mathbf{B}_i + c \sum_{i=1}^{n} c_i \mathbf{B}_i$$
$$= aT(\mathbf{A}) + cT(\mathbf{C}).$$

Theorem 27. If $S, T : \mathcal{V} \to \mathcal{W}$ be linear transformations, the so is $S + T : \mathcal{V} \to \mathcal{W}$. *Proof.* Obvious.

Theorem 28. Let $A_1, \ldots, A_n \in \mathcal{V}$ and E_1, \ldots, E_n be the standard basis for \mathbb{R}^n . Let

 $T: \mathbb{R}^n \to \mathcal{V}$ be the linear extension of

$$T(\mathbf{E}_i) = \mathbf{A}_i, \ i = 1, \ldots, n.$$

Then,

- 1. $A_1, ..., A_n$ are linearly independent if and only if $\text{Ker } T = \{0\}$.
- 2. $A_1, ..., A_n$ span $\mathcal V$ if and only if $\operatorname{Im} T = \mathcal V$.

Proof. Let $T: \mathbb{R}^n \to \mathcal{V}$ be the linear extension of

$$T(\mathbf{E}_i) = \mathbf{A}_i, i = 1, \dots, n.$$

1. Suppose A_1, \ldots, A_n are linearly independent. Let $\mathbf{B} = (b_1, \ldots, b_n) \in \mathbb{R}^n$. Then,

$$\mathbf{B} = \sum_{i=1}^{n} b_i \mathbf{E}_i.$$

Suppose $\mathbf{B} \in \text{Ker } T$. Then $T(\mathbf{B}) = 0$, i.e.

$$0 = T(\mathbf{B}) = T\left(\sum_{i=1}^{n} b_i \mathbf{E}_i\right) = \sum_{i=1}^{n} b_i T(\mathbf{E}_i) = \sum_{i=1}^{n} b_i \mathbf{A}_i.$$

But since A_i are linearly independent, we have $b_i = 0, i = 1, ..., n$. Hence B = 0 and hence $Ker T = \{0\}$.

Conversely, let $\text{Ker } T = \{0\}$. Then, for any $\mathbf{A} = (a_1, \dots, a_n) \in \text{Ker } T$, we have $a_i = 0$, i.e. $\mathbf{A} = \mathbf{0}$. But then,

$$\mathbf{0} = \mathbf{A} = \sum_{i=1}^{n} a_i \mathbf{E}_i.$$

so that $\mathbf{0} = T(\mathbf{0}) = \sum_{i=1}^{n} a_i \mathbf{A}_i$. Hence the vectors $\mathbf{A}_1, \dots, \mathbf{A}_n$ are linearly independent trivially.

2. Suppose A_1, \ldots, A_n span \mathcal{V} . Then $\mathcal{L}(A_1, \ldots, A_n) = \mathcal{V}$. By definition, Im $T \subseteq \mathcal{V}$. Let $\mathbf{B} \in \mathcal{V}$. Then,

$$\mathbf{B} = \sum_{i=1}^{n} a_i \mathbf{A}_i = \sum_{i=1}^{n} a_i T(\mathbf{E}_i) = T \left(\sum_{i=1}^{n} a_i \mathbf{E}_i \right).$$

Let $\mathbf{A} = (a_1, \dots, a_n) = \sum_{i=1}^n a_i \mathbf{E}_i$. Then, $\mathbf{B} = T(\mathbf{A})$ and hence $\mathbf{B} \in \operatorname{Im} T$. Combining both the parts, we conclude that $\operatorname{Im} T = \mathcal{V}$.

On the other hand, suppose that $\operatorname{Im} T = \mathcal{V}$. By definition, $\mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_n) \subseteq \mathcal{V}$. Let $\mathbf{B} \in \operatorname{Im} T = \mathcal{V}$. Then there exists $\mathbf{A} = (a_1, \dots, a_n) \in \mathbb{R}^n$ such that $T(\mathbf{A}) = \mathbf{B}$. Therefore,

$$\mathbf{B} = T(\mathbf{A}) = T\left(\sum_{i=1}^{n} a_i \mathbf{E}_i\right) = \sum_{i=1}^{n} a_i T(\mathbf{E}_i) = \sum_{i=1}^{n} a_i \mathbf{A}_i$$

showing that $\mathbf{B} \in \mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_n)$. Hence, $\mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_n) = \mathcal{V}$.

4.4 Isomorphisms

Definition 13. A linear transformation $T: \mathcal{V} \to \mathcal{W}$ is an **isomorphism** if there exists a linear transformation $S: \mathcal{W} \to \mathcal{V}$ such that

$$S \cdot T(\mathbf{A}) = \mathbf{A}, \quad \forall \ \mathbf{A} \in \mathcal{V}$$

$$T \cdot S(\mathbf{B}) = \mathbf{B}, \quad \forall \ \mathbf{B} \in \mathcal{W}.$$

S and T are called **inverse isomorphisms**. If there is a linear transformation $T: \mathcal{V} \to \mathcal{W}$, then we say \mathcal{V} and \mathcal{W} are **isomorphic**.

Theorem 29. Suppose that $T: \mathcal{V} \to \mathcal{W}$ is a linear transformation and $\operatorname{Ker} T = \{0\}$. Then for each $\mathbf{B} \in \operatorname{Im} T$, there exists exactly one vector $\mathbf{A} \in \mathcal{V}$ such that $T(\mathbf{A}) = \mathbf{B}$.

Proof. Suppose that $T: \mathcal{V} \to \mathcal{W}$ is a linear transformation and $\operatorname{Ker} T = \{0\}$. Let $\mathbf{B} \in \operatorname{Im} T$ and suppose there exists two vectors $\mathbf{A}, \mathbf{C} \in \mathcal{V}$ such that $T(\mathbf{A}) = \mathbf{B}$ and $T(\mathbf{C}) = \mathbf{B}$. Then,

$$T(\mathbf{A} - \mathbf{C}) = T(\mathbf{A}) - T(\mathbf{C}) = \mathbf{B} - \mathbf{B} = \mathbf{0}$$

showing that $A - C \in \text{Ker } T$. Since $\text{Ker } T = \{0\}$, we conclude A = C.

Theorem 30. A linear transformation $T: \mathcal{V} \to \mathcal{W}$ is an isomorphism if and only if $\text{Ker } T = \{\mathbf{0}\}$ and $\text{Im } T = \mathcal{W}$.

Proof. Suppose that Ker $T = \{0\}$ and Im $T = \mathcal{W}$. By Theorem 29, for each $\mathbf{B} \in \text{Im } T$, there exists exactly one vector $\mathbf{A} \in \mathcal{V}$ such that $T(\mathbf{A}) = \mathbf{B}$. Define a map $S : \mathcal{W} \to \mathcal{V}$ by setting $S(\mathbf{B}) = \mathbf{A}$. By construction, such a map is well-defined since \mathbf{A} is the

unique vector. We claim that S is a linear transformation.

Let $B_1, B_2 \in \text{Im } T$. Then there exists unique vectors $A_1, A_2 \in \mathcal{V}$ such that

$$T(\mathbf{A}_1) = \mathbf{B}_1, \quad T(\mathbf{A}_2) = \mathbf{B}_2.$$

By definition, $S(\mathbf{B}_1) = \mathbf{A}_1$ and $S(\mathbf{B}_2) = \mathbf{A}_2$. Now $T(\mathbf{A}_1 + \mathbf{A}_2) = \mathbf{B}_1 + \mathbf{B}_2$. Here $\mathbf{A}_1 + \mathbf{A}_2$ is the unique vector which is mapped to $\mathbf{B}_1 + \mathbf{B}_2$ under T. Hence, by definition,

$$S(\mathbf{B}_1 + \mathbf{B}_2) = \mathbf{A}_1 + \mathbf{A}_2 = S(\mathbf{B}_1) + S(\mathbf{B}_2).$$

Similarly, $S(a\mathbf{B}) = aS(\mathbf{B})$ whence we conclude that S is a linear transformation. Therefore,

$$S \cdot T(\mathbf{A}) = S(T(\mathbf{A})) = S(\mathbf{B}) = \mathbf{A}, \ \forall \ \mathbf{A} \in \mathcal{V}$$

 $T \cdot S(\mathbf{B}) = T(S(\mathbf{B})) = T(\mathbf{A}) = \mathbf{B}, \ \forall \ \mathbf{B} \in \mathcal{W}.$

Hence T is an isomorphism.

On the other hand, suppose that T is an isomorphism and $A \in \text{Ker } T$. Therefore T(A) = 0. But then,

$$\mathbf{A} = S \cdot T(\mathbf{A}) = S(\mathbf{0}) = \mathbf{0}.$$

Hence Ker $T = \{0\}$. Use Theorem 25 to conclude Im T = W.

Theorem 31. Two finite-dimensional vector spaces \mathcal{V} and \mathcal{W} are isomorphic if and only if dim $\mathcal{V} = \dim \mathcal{W}$.

Proof. Suppose dim $\mathcal{V} = \dim \mathcal{W}$. Let $\{\mathbf{A}_1, \dots, \mathbf{A}_n\}$ be a basis for \mathcal{V} and $\{\mathbf{B}_1, \dots, \mathbf{B}_n\}$ be a basis for \mathcal{W} . Let $T: \mathcal{V} \to \mathcal{W}$ be the linear transformation which is the linear extension of

$$T(\mathbf{A}_i) = \mathbf{B}_i, i = 1, \ldots, n.$$

Then Im $T = \mathcal{W}$ since $\{\mathbf{B}_1, \dots, \mathbf{B}_n\}$ is a basis for \mathcal{W} . Use Theorem 25 to show $\operatorname{Ker} T = \{\mathbf{0}\}$ and finally Theorem 30 to conclude that T is an isomorphism.

Conversely, suppose $\mathcal V$ and $\mathcal W$ are isomorphic. Then there is an isomorphism $T: \mathcal V \to \mathcal W$. Let $\{\mathbf A_1, \dots, \mathbf A_n\}$ be a basis for $\mathcal V$. Then $\dim \mathcal V = n$. Since T is an isomorphism we will show that the set $\{T(\mathbf A_1), \dots, T(\mathbf A_n)\}$ is a basis for $\mathcal W$ so that

 $\dim W = n = \dim V$. Observe that

$$W = \operatorname{Im} T = T(V) = T(\mathcal{L}(\mathbf{A}_1, \dots, \mathbf{A}_n))$$

= $\mathcal{L}(T(\mathbf{A}_1), \dots, T(\mathbf{A}_n))$ (by Theorem 22).

This shows that $\{T(\mathbf{A}_1), \dots T(\mathbf{A}_n)\}$ span \mathcal{W} . All that remains to be shown is, they are linearly independent. To that end, suppose there are scalars a_1, \dots, a_n such that

$$a_1T(\mathbf{A}_1)+\cdots+a_nT(\mathbf{A}_n)=0.$$

By definition of a linear transformation, we have,

$$T\bigg(\sum_{i=1}^n a_i \mathbf{A}_i\bigg) = 0.$$

Let $\mathbf{A} = \sum_{i=1}^{n} a_i \mathbf{A}_i$. Then $T(\mathbf{A}) = 0$. This means $\mathbf{A} \in \text{Ker } T$. But $\text{Ker } T = \{\mathbf{0}\}$. Therefore,

$$a_1\mathbf{A}_1 + \dots + a_s\mathbf{A}_n = 0$$

But since $\{\mathbf{A}_1, \dots, \mathbf{A}_n\}$ is a basis for \mathcal{V} , we conclude that $a_i = 0$ which shows that the $\{T(\mathbf{A}_1), \dots T(\mathbf{A}_n)\}$ is linearly independent and hence a basis for \mathcal{W} .

One of the most important results for a finite-dimensional vector space is the following.

Theorem 32. A finite-dimensional vector space of dimension n is isomorphic to \mathbb{R}^n .

Proof. Hint: Note that $\dim \mathcal{V} = \dim \mathbb{R}^n = n$. Use Theorem 31 above and define a map $T: \mathcal{V} \to \mathbb{R}^n$ which takes basis vectors to basis vectors.

5 Representing Linear Transformations by Matrices

A linear transformation T from a vector space V to a vector space W can be represented by a matrix with respect to some ordered basis.

5.1 Matrix Representation

Let $\{A_1, ..., A_n\}$ be an ordered basis for \mathcal{V} and $\{B_1, ..., B_m\}$ be an ordered basis for \mathcal{W} . Note that ordering is important otherwise the representation of the matrix will change.

Since $T(\mathbf{A}_1), \ldots, T(\mathbf{A}_n)$ are elements in W, they can be uniquely represented as a linear combination of the basis vectors $\mathbf{B}_1, \ldots, \mathbf{B}_m$. Let $a_{ij}, i = 1, \ldots, m, j = 1, \ldots, n$ be scalars such that

$$T(A_1) = a_{11}\mathbf{B}_1 + \dots + a_{m1}\mathbf{B}_m,$$

$$\vdots$$

$$T(A_n) = a_{1n}\mathbf{B}_1 + \dots + a_{mn}\mathbf{B}_m.$$

Then the $m \times n$ matrix $A = (a_{ij})$ is called the matrix of T relative to the ordered basis $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_m\}$.

Example 32. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as:

$$T(x, y) = (2x + 3y, 4x - y).$$

We want to find the matrix representation of T with respect to the following basis pair for \mathbb{R}^2 :

$$\{(1,0),(0,1)\}\$$
and $\{(1,0),(0,1)\}.$

Now,

$$T(1,0) = (2,4) = 2(1,0) + 4(0,1),$$

 $T(0,1) = (3,-1) = 3(1,0) - 1(0,1).$

Therefore, the matrix A of T relative to this basis pair is

$$A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}.$$

5.2 Fundamental Results

Theorem 33. Let $\{A_1, \ldots, A_n\}$ be an ordered basis for \mathcal{V} and $\{B_1, \ldots, B_m\}$ be an ordered basis for \mathcal{W} . Then assigning to each linear transformation $T: \mathcal{V} \to \mathcal{W}$, its matrix relative to these ordered bases defines an isomorphism

$$M: \mathcal{L}(\mathcal{V}, \mathcal{W}) \to M_{m \times n}$$

where $\mathcal{L}(V, W)$ is the vector space of all linear transformations from V to W and $M_{m \times n}$ is the vector space of all $m \times n$ matrices.

Proof. Refer to class notes and discussions.

Theorem 34. Let V and W be finite-dimensional vector spaces. Then $\mathcal{L}(V, W)$ finite-dimensional and $\dim \mathcal{L}(V, W) = \dim V \cdot \dim W$.

Proof. The result is an immediate consequence of Theorem 33. Since M is an isomorphism $\dim \mathcal{L}(\mathcal{V}, \mathcal{W}) = \dim M_{m \times n} = n \cdot m = \dim \mathcal{V} \cdot \dim \mathcal{W}$.

Theorem 35. A linear transformation $T: \mathcal{V} \to \mathcal{V}$ is an isomorphism if and only if its matrix is invertible.

Proof. Let $\{A_1, \ldots, A_n\}$, $\{B_1, \ldots, B_n\}$ be ordered bases for \mathcal{V} . Suppose that $T: \mathcal{V} \to \mathcal{V}$ is an isomorphism whose matrix relative to the ordered bases $\{A_1, \ldots, A_n\}$, $\{B_1, \ldots, B_n\}$ is A. Let $S: \mathcal{V} \to \mathcal{V}$ be the inverse of T whose matrix relative to the ordered bases $\{B_1, \ldots, B_n\}$, $\{A_1, \ldots, A_n\}$ is B. Then AB is the matrix of $T \cdot S: \mathcal{V} \to \mathcal{V}$ relative to the ordered bases $\{B_1, \ldots, B_n\}$, $\{B_1, \ldots, B_n\}$. Since T is an isomorphism, $T \cdot S(C) = C$ for all $C \in \mathcal{V}$. In particular,

$$T \cdot S(\mathbf{B}_j) = \mathbf{B}_j = 0\mathbf{B}_1 + \dots + 1\mathbf{B}_j + \dots + 0\mathbf{B}_n$$

and the matrix of $T \cdot S$ relative to the ordered bases $\{B_1, \ldots, B_n\}, \{B_1, \ldots, B_n\}$ is

$$I = \begin{bmatrix} 1 & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & 1 \end{bmatrix}$$

Hence AB = I. Similarly, we can show that the matrix of $S \cdot T$ relative to the ordered bases $\{A_1, \ldots, A_n\}, \{A_1, \ldots, A_n\}$ is I. Thus, BA = I. Thus, the matrix of T represented by A is invertible.

Conversely, let the matrix A of T be invertible. Then there is a matrix B such that AB = BA = I. Let $S: \mathcal{V} \to \mathcal{V}$ be the linear transformation whose matrix relative to the ordered bases $\{\mathbf{B}_1, \ldots, \mathbf{B}_n\}, \{\mathbf{A}_1, \ldots, \mathbf{A}_n\}$ is B. Then the matrix of $S \cdot T: \mathcal{V} \to \mathcal{V}$ relative to the ordered bases $\{\mathbf{A}_1, \ldots, \mathbf{A}_n\}, \{\mathbf{A}_1, \ldots, \mathbf{A}_n\}$ is

$$I = \begin{bmatrix} 1 & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & 1 \end{bmatrix}$$

Hence $S \cdot T$ and I have the same matrix relative to the ordered bases $\{A_1, \ldots, A_n\}, \{A_1, \ldots, A_n\}$. Therefore, $S \cdot T = I$. Hence,

$$S \cdot T(\mathbf{A}) = \mathbf{A}, \quad \forall \ \mathbf{A} \in \mathcal{V}$$

and similarly,

$$T \cdot S(\mathbf{A}) = \mathbf{A}, \quad \forall \mathbf{A} \in \mathcal{V}.$$

so that S and T are inverse isomorphisms.

Remark. It is important to understand that the definition of a linear transformation is independent of any basis representation and is more general in nature. By associating a matrix with a linear transformation we get a lot of additional information about the nature of the transformation. However, one should not blindly associate a matrix with a linear transformation without specifying the underlying basis pair. By doing so, one may commit a grave mistake as the following examples show.

Example 33. Let $I: \mathbb{R}^3 \to \mathbb{R}^3$ be the identity transformation. One would naturally expect that the matrix associated with I will be the identity matrix as discussed in Theorem 35. The reader may have observed that the matrix of $T \cdot S$ and $S \cdot T$

was an identity matrix relative to same ordered basis pair $\{B_1, \ldots, B_n\}, \{B_1, \ldots, B_n\}$ and $\{A_1, \ldots, A_n\}, \{A_1, \ldots, A_n\}$ respectively. If the basis is changed then the associated matrix also changes. To see this, consider the following basis pair of \mathbb{R}^3 :

$$(1,0,0),(0,1,0),(0,0,1)$$
 and $(1,1,1),(1,1,0),(1,0,0)$.

Then the matrix of I relative to this basis pair is

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

which is not the identity matrix.

Example 34. Let $D: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the differentiation operator. It is well known that D is a nilpotent transformation and hence the matrix of D relative to the ordered bases $\{1, x, x^2\}$, $\{1, x, x^2\}$ is a nilpotent matrix. However, if we consider the following basis pair of $P_2(\mathbb{R})$,

$$1, x, x^2$$
 and $x - 1, x + 1, (x - 1)^2$

then the matrix of D relative to this basis pair is

$$M = \begin{bmatrix} 0 & -\frac{1}{2} & 1 \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Here $D^3 = 0$ but $M^3 \neq 0$.

Theorem 36. Let A and B be square matrices of size n such that AB = I. Then BA = I.

Proof. We will prove the result for a finite-dimensional vector space V where dim V = n. One may as well consider \mathbb{R}^n and the proof remains valid due to Theorem 32. Let $T, S: \mathcal{V} \to \mathcal{V}$ whose matrices relative to the ordered bases $\{\mathbf{A}_1, \ldots, \mathbf{A}_n\}, \{\mathbf{B}_1, \ldots, \mathbf{B}_n\}$ and $\{\mathbf{B}_1, \ldots, \mathbf{B}_n\}, \{\mathbf{A}_1, \ldots, \mathbf{A}_n\}$ are A and B respectively. Now AB is the matrix of $T \cdot S$ relative to the ordered bases $\{\mathbf{B}_1, \ldots, \mathbf{B}_n\}, \{\mathbf{B}_1, \ldots, \mathbf{B}_n\}$. Since AB = I, we see that $T \cdot S$ is the identity transformation I. We will first show that the vectors $S(\mathbf{B}_1), \ldots, S(\mathbf{B}_n)$ are linearly independent. Suppose on the contrary they are linearly dependent. Then

there exists scalars a_1, \ldots, a_n not all zero such that

$$a_1S(\mathbf{B}_1) + \cdots + a_nS(\mathbf{B}_n) = \mathbf{0}.$$

Applying T both sides we get

$$a_1T \cdot S(\mathbf{B}_1) + \cdots + a_nT \cdot S(\mathbf{B}_n) = \mathbf{0}.$$

Since $T \cdot S = I$, we get the relation,

$$a_1\mathbf{B}_1 + \dots + a_n\mathbf{B}_n = \mathbf{0}$$

which is a contradiction since $\mathbf{B}_1, \dots, \mathbf{B}_n$ is a basis for \mathcal{V} . Hence $S(\mathbf{B}_1), \dots, S(\mathbf{B}_n)$ are linearly independent and therefore by Theorem 17, they form a basis for \mathcal{V} . So any vector $\mathbf{C} \in \mathcal{V}$ can be written as:

$$\mathbf{C} = c_1 S(\mathbf{B}_1) + \dots + c_n S(\mathbf{B}_n) = S\left(\sum_{i=1}^n c_i \mathbf{B}_i\right) = S(\mathbf{D})$$
 (6)

where $\mathbf{D} = \sum_{i=1}^{n} c_i \mathbf{B}_i$. To show BA = I we will show that $S \cdot T$ is the identity transformation, i.e. $S \cdot T(\mathbf{C}) = \mathbf{C}$ for all $\mathbf{C} \in \mathcal{V}$. But then from (6), we see that

$$S \cdot T(\mathbf{C}) = (S \cdot T) \cdot S(\mathbf{D}) = S \cdot (T \cdot S)(\mathbf{D}) = S \cdot I(\mathbf{D}) = S(\mathbf{D}) = \mathbf{C}.$$

and hence BA = I as required.

5.3 Change of Basis

Theorem 37. Let A, B be $m \times n$ matrices, dim $\mathcal{V} = n$ and dim $\mathcal{W} = m$. Then A, B represent the same linear transformation T relative to different pair of ordered bases if and only if there exists nonsingular matrices P and Q such that

$$A = PBQ^{-1}$$

where P is a $m \times m$ matrix and Q is a $n \times n$ matrix.

Proof. Let the matrix of T relative to the ordered bases $\{\mathbf{A}_1, \ldots, \mathbf{A}_n\}$ and $\{\mathbf{B}_1, \ldots, \mathbf{B}_m\}$ be A and the matrix of T relative to the ordered bases $\{\mathbf{C}_1, \ldots, \mathbf{C}_n\}$ and $\{\mathbf{D}_1, \ldots, \mathbf{D}_m\}$ be B. Let P be the matrix of the identity transformation $I: \mathcal{W} \to \mathcal{W}$ relative to

Figure 1: Visual representation of change of basis.

the ordered bases $\{\mathbf{D}_1,\ldots,\mathbf{D}_m\}$ and $\{\mathbf{B}_1,\ldots,\mathbf{B}_m\}$. Similarly, let Q be the matrix of the identity transformation $I:\mathcal{V}\to\mathcal{V}$ relative to the ordered bases $\{\mathbf{C}_1,\ldots,\mathbf{C}_n\}$ and $\{\mathbf{A}_1,\ldots,\mathbf{A}_n\}$. Then by Theorem 35 both P and Q are invertible. Then PB is the matrix of $T:\mathcal{V}\to\mathcal{W}$ relative to the ordered bases $\{\mathbf{C}_1,\ldots,\mathbf{C}_n\}$ and $\{\mathbf{B}_1,\ldots,\mathbf{B}_m\}$. Subsequently, PBQ^{-1} is the matrix of $T:\mathcal{V}\to\mathcal{W}$ relative to the ordered bases $\{\mathbf{A}_1,\ldots,\mathbf{A}_n\}$ and $\{\mathbf{B}_1,\ldots,\mathbf{B}_m\}$. But A is the matrix of $T:\mathcal{V}\to\mathcal{W}$ relative to the ordered bases $\{\mathbf{A}_1,\ldots,\mathbf{A}_n\}$ and $\{\mathbf{B}_1,\ldots,\mathbf{B}_m\}$, see Figure 1 for a better visualization. Hence,

$$A = PBQ^{-1}.$$

To prove the converse, suppose P and Q be invertible matrices such that $A = PBQ^{-1}$. Let the matrix of T relative to the ordered bases $\{\mathbf{A}_1, \ldots, \mathbf{A}_n\}$ and $\{\mathbf{B}_1, \ldots, \mathbf{B}_m\}$ be A. Define

$$\mathbf{C}_1 = Q^{-1}(\mathbf{A}_1), \dots, \mathbf{C}_n = Q^{-1}(\mathbf{A}_n),$$

 $\mathbf{D}_1 = P^{-1}(\mathbf{B}_1), \dots, \mathbf{D}_m = P^{-1}(\mathbf{B}_m).$

This definition is well-defined as P and Q are invertible. We need to show that the matrix of T relative to the ordered bases $\{C_1, \ldots, C_n\}$ and $\{D_1, \ldots, D_m\}$ is B. Since $A = PBQ^{-1}$, we can compute and show that $B = P^{-1}AQ$. From the above construction AQ is the matrix of $T: \mathcal{V} \to \mathcal{W}$ relative to the ordered bases $\{C_1, \ldots, C_n\}$ and $\{B_1, \ldots, B_m\}$. Therefore $P^{-1}AQ$ is the matrix of $T: \mathcal{V} \to \mathcal{W}$ relative to the ordered bases $\{C_1, \ldots, C_n\}$ and $\{D_1, \ldots, D_m\}$ which is B as required.

6 System of Linear Equations

6.1 Existence Results

We are interested in the solution of the problem

$$AX = B$$

where

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation whose matrix relative the standard bases is A. Then,

$$T(X) = T(x_1, \dots, x_n) = AX = \left(\sum_{j=1}^n a_{1j}x_j, \sum_{j=1}^n a_{2j}x_j, \dots, \sum_{j=1}^n a_{mj}x_j\right).$$
(7)

Let $\mathbf{B} = (b_1, \ldots, b_m) \in \mathbb{R}^m$.

Definition 14. A **solution** of the system (7) is a vector $\mathbf{S} = (s_1, \dots, s_n) \in \mathbb{R}^n$ such that $T(\mathbf{S}) = \mathbf{B}$, i.e.

$$T(s_1,\ldots,s_n)=(b_1,\ldots,b_m).$$

Theorem 38. The system (7) has a solution if and only $\mathbf{B} \in \operatorname{Im} T$.

Proof. The system (7) has a solution

 \iff There exists a vector **S** such that T(S) = B

$$\iff$$
 B \in Im T .

Definition 15. The **column space** of A, denoted as C(A), is the linear span of the column vectors of A, i.e. $C(A) = \mathcal{L}(\mathbf{A}_{(1)}, \ldots, \mathbf{A}_{(n)})$ where $\mathbf{A}_{(i)} = (a_{1i}, a_{2i}, \ldots, a_{mi}), i = 1, \ldots, n$.

Theorem 39. The system (7) has a solution if and only $B \in C(A)$.

Proof. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation whose matrix relative the standard bases is A. Observe that, by definition of the representation of T by it's

matrix A, we have $\mathbf{A}_{(i)} = T(\mathbf{E}_i), i = 1, \dots, n$. Therefore,

$$\operatorname{Im} T = T(\mathcal{L}(\mathbf{E}_1, \dots, \mathbf{E}_i)) = \mathcal{L}(T(\mathbf{E}_1), \dots, T(\mathbf{E}_n)) = \mathcal{L}(\mathbf{A}_{(1)}, \dots, \mathbf{A}_{(n)}) = C(A)$$

and by Theorem 38, $\mathbf{B} \in \operatorname{Im} T = C(A)$.

Example 35. The following system

$$x_1 + x_2 + x_3 = 1,$$

 $x_1 + x_3 = 1,$
 $2x_1 + x_2 + 2x_3 = 0$

has no solution since $C(A) = \mathcal{L}((1,1,2),(1,0,1))$ and the vector $\mathbf{B} = (1,1,0) \notin C(A)$.

Definition 16. A system AX = B is called **homogeneous** if B = 0.

Theorem 40. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be the linear transformation whose matrix relative the standard bases is A. Then S = Ker T where S is the set of all solutions for $AX = \mathbf{0}$.

Proof.
$$S \in S \iff T(S) = 0 \iff AS = 0 \iff S$$
 is a solution of $AX = 0$. Hence $S = \text{Ker } T$.

6.2 Affine Subspaces

Definition 17. Let V be a vector space and U be a linear subspace of V. Then the set defined as

$$\mathbf{A} + \mathcal{U} = \left\{ \mathbf{A} + \mathbf{X} : \mathbf{X} \in \mathcal{U} \right\}$$

is called a **parallel translate** or a **parallel** of \mathcal{U} in \mathcal{V} . A parallel of some linear subspace of \mathcal{V} is called an **affine subspace** of \mathcal{V} .

Example 36. Let $\mathcal{V} = \mathbb{R}^2$ and $\mathcal{U} = \{(x, y) : x + y = 0\}$ be the linear subspace. Let $\mathbf{A} = (3, 1)$. A visualization of a parallel of \mathcal{U} in \mathcal{V} is shown in Figure 2.

Theorem 41. The following results hold:

- 1. $\mathbf{A} \in \mathbf{A} + \mathcal{U}$.
- 2. If $\mathbf{B} \in \mathbf{A} + \mathcal{U}$, then $\mathbf{B} + \mathcal{U} = \mathbf{A} + \mathcal{U}$.
- 3. Two parallels have no common vectors.

Figure 2: Parallel translate of ${\mathcal U}$ in ${\mathcal V}$

4. If $B, C \in A + \mathcal{U}$ then $B - C \in \mathcal{U}$.

Proof. Let us prove each of the claims.

- 1. $0 \in \mathcal{U}$ and A = A + 0.
- 2. Let $\mathbf{B} \in \mathbf{A} + \mathcal{U}$. Then,

$$B + \mathcal{U} = \{B + Y : Y \in \mathcal{U}\},\$$

$$= \{A + X + Y : X, Y \in \mathcal{U}\}, \ (\because B \in A + \mathcal{U})$$

$$= \{A + C : C \in \mathcal{U}\}, \ (C = X + Y)$$

$$= A + \mathcal{U}.$$

- 3. Let $C \in A + \mathcal{U}$ and $C \in B + \mathcal{U}$. Then $C + \mathcal{U} = A + \mathcal{U} = B + \mathcal{U}$ by above relation.
- 4. Let $B, C \in A + \mathcal{U}$. Then B = A + X and C = A + Y so that $B C = X Y \in \mathcal{U}$. \square

Theorem 42. Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation and $\mathbf{C} \in \operatorname{Im} T$. Define

$$\mathcal{P} = \big\{ \mathbf{D} \in \mathcal{V} : T(\mathbf{D}) = \mathbf{C} \big\}.$$

If **A** is any vector in \mathcal{V} with $T(\mathbf{A}) = \mathbf{C}$ then $\mathcal{P} = \mathbf{A} + \operatorname{Ker} T$.

Proof. Let **A** be any vector in \mathcal{V} with $T(\mathbf{A}) = \mathbf{C}$ and let $\mathbf{B} \in \mathbf{A} + \operatorname{Ker} T$. Then $\mathbf{B} = \mathbf{A} + \mathbf{X}, \mathbf{X} \in \operatorname{Ker} T$. Then,

$$T(\mathbf{B}) = T(\mathbf{A}) = \mathbf{C}$$

showing $\mathbf{B} \in \mathcal{P}$ so that $\mathbf{A} + \operatorname{Ker} T \subseteq \mathcal{P}$.

Conversely, suppose $\mathbf{B} \in \mathcal{P}$. Then $T(\mathbf{B}) = \mathbf{C}$. Then,

$$T(\mathbf{B} - \mathbf{A}) = \mathbf{C} - \mathbf{C} = \mathbf{0}$$

showing $\mathbf{B} - \mathbf{A} \in \operatorname{Ker} T$ i.e. $\mathbf{B} \in \mathbf{A} + \operatorname{Ker} T$ so that $\mathcal{P} \subseteq \mathbf{A} + \operatorname{Ker} T$.

Theorem 43. Let S be the solution set of the system AX = B. Then S is either empty or an affine subspace of \mathbb{R}^n . Precisely, if $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation whose matrix relative to the standard bases is A, then either $S = \emptyset$ or S is a parallel translate of Ker T by some vector S.

Remark. To solve a system of equations AX = B completely, an affine subspace of \mathbb{R}^n needs to be specified. As this affine subspace is a parallel translate of Ker T, we may consider the system

$$AX = 0$$

and obtain a basis for the solution of this system (called the homogeneous system). Denote this by S_c , the complementary solution space. Next find a vector $\mathbf{S}_p \in \mathbb{R}^n$ for which $A\mathbf{S}_p = B$. This is a particular solution of the system AX = B. Therefore the solution set S of the system AX = B is completely determined by the relation

$$S = S_p + S_c$$

where S_c is the basis for Ker T.

Example 37. Specify the solution for the following system of equations

$$x_1 + x_2 + x_3 = 3,$$

 $x_1 - 2x_2 = -1.$ (8)

We first consider the associated homogeneous system AX = 0 which is

$$x_1 + x_2 + x_3 = 0,$$

$$x_1 - 2x_2 = 0.$$

From these we get

$$x_2 = \frac{1}{2}x_1,$$

$$x_3 = -\frac{3}{2}x_1.$$

Set $x_1 = 2$. Then $x_2 = 1$, $x_3 = -3$. Thus the solution set for the homogeneous system of (8) is spanned by the vector (2, 1, -3). Therefore,

$$S_c = \mathcal{L}((2, 1, -3)).$$

A particular solution of (8) is $\mathbf{S}_p = (1,1,1)$. Thus the complete solution $\mathcal S$ of (8) is given as

$$S = (1, 1, 1) + \mathcal{L}((2, 1, -3)).$$

6.3 Echelon Forms

Definition 18. An **echelon matrix** is a matrix $A = (a_{ij})$ where the leading coefficient (the first nonzero entry) in each row is a 1 and it appears to the right of the leading coefficient in the previous row.

Example 38. The matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$ is an echelon matrix.

Definition 19. $A = (a_{ij})$ is called a **reduced echelon matrix** if all the entries below and above the leading coefficient are zero, i.e. the first non-zero entry in each row is the only non-zero entry in that column.

Example 39. The matrix $\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$ is a reduced echelon matrix.

Theorem 44. Consider the system

$$AX = B$$
.

By a finite sequence of the operations:

1. interchanging two equations,

- 2. multiplying an equation by a non-zero scalar,
- 3. adding two equations

we may obtain a system of equations

$$\bar{A}\bar{X} = \bar{B}$$

where \bar{A} is in reduced-echelon form.

Definition 20. The **augmented matrix** of the system AX = B is the matrix $[A \mid B]$, i.e. the matrix

$$\begin{bmatrix} a_{11} & \dots & a_{1n} & | & b_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mn} & | & b_m \end{bmatrix}.$$

Example 40. Solve the following system of equations using reduced echelon form:

$$2x_1 + 3x_2 - x_3 = 7,$$

$$3x_1 + 2x_2 + 2x_3 = 5,$$

$$4x_1 - x_2 + 3x_3 = 1.$$

To solve this system, we can represent it as an augmented matrix and perform row operations to reduce it to its reduced echelon form:

$$\begin{bmatrix} 2 & 3 & -1 & | & 7 \\ 3 & 2 & 2 & | & 5 \\ 4 & -1 & 3 & | & 1 \end{bmatrix}.$$

We'll start by applying row operations to create zeros below the leading coefficients:

1.
$$R_1 \leftarrow \frac{1}{2}R_1$$

$$\begin{bmatrix} 1 & \frac{3}{2} & -\frac{1}{2} & | & \frac{7}{2} \\ 3 & 2 & 2 & | & 5 \\ 4 & -1 & 3 & | & 1 \end{bmatrix}.$$

$$2. R_2 \leftarrow R_2 - 3R_1$$

$$\begin{bmatrix} 1 & \frac{3}{2} & -\frac{1}{2} & | & \frac{7}{2} \\ 0 & -\frac{5}{2} & \frac{7}{2} & | & -\frac{11}{2} \\ 4 & -1 & 3 & | & 1 \end{bmatrix}.$$

3.
$$R_3 \leftarrow R_3 - 4R_1$$

$$\begin{bmatrix} 1 & \frac{3}{2} & -\frac{1}{2} & | & \frac{7}{2} \\ 0 & -\frac{5}{2} & \frac{7}{2} & | & -\frac{11}{2} \\ 0 & -7 & 5 & | & -13 \end{bmatrix}.$$

4.
$$R_2 \leftarrow -\frac{2}{5}R_2$$
, $R_1 \leftarrow R_1 - \frac{3}{2}R_1$, $R_3 \leftarrow R_3 + 7R_2$

$$\begin{bmatrix} 1 & 0 & -\frac{8}{5} & | & \frac{1}{5} \\ 0 & 1 & -\frac{7}{5} & | & \frac{11}{5} \\ 0 & 0 & -\frac{24}{5} & | & \frac{12}{5} \end{bmatrix}.$$

5.
$$R_3 \leftarrow -\frac{5}{24}R_3$$
, $R_1 \leftarrow R_1 - \frac{8}{5}R_3$

$$\begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{5} \\ 0 & 1 & -\frac{7}{5} & | & \frac{11}{5} \\ 0 & 0 & 1 & | & -\frac{1}{2} \end{bmatrix}.$$

6.
$$R_2 \leftarrow R_2 + \frac{7}{5}R_3$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & \frac{3}{2} \\ 0 & 0 & 1 & | & -\frac{1}{2} \end{bmatrix}.$$

Now, the system is in reduced echelon form and we can read the solution to the system of equations as $x_1 = 1$, $x_2 = \frac{3}{2}$, and $x_3 = -\frac{1}{2}$.

7 Special Transformations

7.1 Projection Maps

Definition 21. A linear transformation $P: \mathcal{V} \to \mathcal{V}$ is called a **projection** if $P^2 = P$, i.e. $P(P(\mathbf{A})) = \mathbf{A}$ for all $\mathbf{A} \in \mathcal{V}$.

Theorem 45. Let \mathcal{V} be a finite-dimensional vector space of dimension n and S: $\mathcal{V} \to \mathcal{V}$ be a projection. Then there is a basis $\{A_1, \ldots, A_n\}$ for \mathcal{V} such that,

$$S(\mathbf{A}_i) = \begin{cases} \mathbf{A}_i, & 1 \le i \le r, \\ 0, & r+1 \le i \le n, \end{cases}$$

where $r = \dim \operatorname{Im} S$ and hence the matrix of S relative to the basis $\{A_1, \ldots, A_n\}$ is

Proof. Let $\{\mathbf{B}_1, \ldots, \mathbf{B}_r\}$ be a basis for $\mathrm{Im}\, S$ and $\{\mathbf{C}_1, \ldots, \mathbf{C}_s\}$ be a basis for $\mathrm{Ker}\, S$. Therefore $\mathrm{dim}\, \mathcal{V} = n = r + s$. We will show that the set $\{\mathbf{B}_1, \ldots, \mathbf{B}_r, \mathbf{C}_1, \ldots, \mathbf{C}_s\}$ is a basis for \mathcal{V} . Observe that

$$S(C_i) = 0, i = 1, ..., s.$$
 (9)

Since $\mathbf{B}_i \in \operatorname{Im} S$, there exists $\mathbf{D}_i \in \mathcal{V}$ such that $S(\mathbf{D}_i) = \mathbf{B}_i$. Therefore,

$$S(\mathbf{B}_i) = S(S(\mathbf{D}_i)) = S^2(\mathbf{D}_i) = S(\mathbf{D}_i) = \mathbf{B}_i.$$
(10)

for i = 1, ..., r since S is a projection. By Theorem 17, we only need to show that the set $\{\mathbf{B}_1, ..., \mathbf{B}_r, \mathbf{C}_1, ..., \mathbf{A}_s\}$ is linearly independent. To that end, consider the linear relation,

$$b_1\mathbf{B}_1 + \dots + b_r\mathbf{B}_r + c_1\mathbf{C}_1 + \dots + c_s\mathbf{C}_s = 0.$$

Applying S on both sides and using (9), (10) we obtain,

$$b_1\mathbf{B}_1+\cdots+b_r\mathbf{B}_r=0.$$

Since $\{\mathbf{B}_1,\ldots,\mathbf{B}_r\}$ is a basis for $\mathrm{Im}\,S$, we conclude that $b_i=0, i=1,\ldots,r$. We are now left with

$$c_1\mathbf{C}_1 + \cdots + c_s\mathbf{C}_s = 0.$$

Again since $\{C_1, \ldots, C_s\}$ is a basis for Ker S, so $c_i = 0, i = 1, \ldots, s$. Thus, we have shown that the set $\{B_1, \ldots, B_r, C_1, \ldots, C_s\}$ is a basis for \mathcal{V} . Now, set $A_1 = B_1, \ldots, A_r = B_r, A_{r+1} = C_1, \ldots, A_n = C_s$. The, we will have,

$$S(\mathbf{A}_i) = \begin{cases} \mathbf{A}_i, & 1 \le i \le r, \\ 0, & r+1 \le i \le n, \end{cases}$$

as required.

7.2 Nilpotent Transformations

Definition 22. A linear transformation $T: \mathcal{V} \to \mathcal{V}$ is **nilpotent of index** k if $T^k = \mathbf{0}$ and $T^{k-1} \neq \mathbf{0}$, i.e. $T^k(\mathbf{A}) = \mathbf{0}$ for all $\mathbf{A} \in \mathcal{V}$ but there exists at least one $\mathbf{B} \in \mathcal{V}$ such that $T^{k-1}(\mathbf{B}) \neq \mathbf{0}$.

Example 41. Let $D: P_n(\mathbb{R}) \to P_n(\mathbb{R})$ be the differentiation operator. Then the matrix of D relative to the standard bases is

$$\begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

which is nilpotent of index n + 1.

Theorem 46. Let $T: \mathcal{V} \to \mathcal{V}$ be a nilpotent transformation of index k. Let $\mathbf{B} \in \mathcal{V}$ be a vector such that $T^{k-1}(\mathbf{B}) \neq \mathbf{0}$. Then the set

$$\left\{\mathbf{B}, T(\mathbf{B}), T^2(\mathbf{B}), \dots, T^{k-1}(\mathbf{B})\right\}$$

is linearly independent. Hence $k \le n = \dim \mathcal{V}$.

Proof. Consider the linear relation

$$b_0 \mathbf{B} + b_1 T(\mathbf{B}) + b_2 T^2(\mathbf{B}) + \dots + b_{k-1} T^{k-1}(\mathbf{B}) = \mathbf{0}.$$

Since $T^k(\mathbf{B}) = 0$, we have $T^{k+1}(\mathbf{B}) = T^{k+2}(\mathbf{B}) = \cdots = 0$. Applying T^{k-1} both sides in the above relation, we obtain:

$$b_0 T^{k-1}(\mathbf{B}) + b_1 T^k(\mathbf{B}) + b_2 T^{k+1}(\mathbf{B}) + \dots + b_{k-1} T^{2k-2}(\mathbf{B}) = \mathbf{0}$$

which gives $b_0 T^{k-1}(\mathbf{B}) = \mathbf{0}$ so that $b_0 = 0$ since $T^{k-1}(\mathbf{B}) \neq \mathbf{0}$.

Similarly, applying T^{k-i} , $i=2,\ldots,k-1$ we can show $b_{i-1}=0$ which shows linear independence.

Theorem 47. If $k = \dim \mathcal{V}$, then

$$\left\{\mathbf{B}, T(\mathbf{B}), T^2(\mathbf{B}), \dots, T^{k-1}(\mathbf{B})\right\}$$

is a basis for V.

Proof. Apply Theorem 46 and Theorem 17.

7.3 Cyclic Transformations

Definition 23. A linear transformation $T: \mathcal{V} \to \mathcal{V}$ is **cyclic** if there exists a vector $\mathbf{A} \in \mathcal{V}$ such that the collection

$$\left\{\mathbf{A}, T(\mathbf{A}), T^2(\mathbf{A}), \dots\right\}$$

spans V. The vector **A** is called the **cyclic vector** for T.

An immediate consequence of the definition is the following result.

Theorem 48. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. A vector \mathbf{A} is cyclic vector of T if and only if $T(\mathbf{A}) \notin \mathcal{L}(\mathbf{A})$.

Theorem 49. Let $T: \mathcal{V} \to \mathcal{V}$ be a cyclic transformation and dim $\mathcal{V} = n$. Let $\mathbf{A} \in \mathcal{V}$ be a cyclic vector of T. Then,

$$\left\{\mathbf{A}, T(\mathbf{A}), T^2(\mathbf{A}), \dots, T^{n-1}(\mathbf{A})\right\}$$

is a basis for V.

Proof. By Theorem 17, it suffices to show that the vectors $\mathbf{A}, T(\mathbf{A}), T^2(\mathbf{A}), \dots, T^{n-1}(\mathbf{A})$ are linearly independent. Suppose on the contrary that they are linearly dependent.

By Theorem 9, there exists $m \le n - 1$ such that

$$T^m(\mathbf{A}) \in \mathcal{L}(\mathbf{A}, T(\mathbf{A}), \dots, T^{m-1}(\mathbf{A})).$$

Applying T both sides, we get

$$T^{m+1}(\mathbf{A}) \in \mathcal{L}(T(\mathbf{A}), T^2(\mathbf{A}), \dots, T^m(\mathbf{A})) \subseteq \mathcal{L}(\mathbf{A}, T(\mathbf{A}), \dots, T^{m-1}(\mathbf{A})).$$

Applying T again, we see that

$$T^{m+2}(\mathbf{A}) \in \mathcal{L}(T^2(\mathbf{A}), T^3(\mathbf{A}), \dots, T^{m+1}(\mathbf{A})) \subseteq \mathcal{L}(\mathbf{A}, T(\mathbf{A}), \dots, T^{m-1}(\mathbf{A})).$$

Continuing this process, we observe that

$$T^{m}(\mathbf{A}), T^{m+1}(\mathbf{A}), T^{m+2}(\mathbf{A}), \dots \in \mathcal{L}(\mathbf{A}, T(\mathbf{A}), \dots, T^{m-1}(\mathbf{A}))$$

so that

$$\mathcal{V} = \mathcal{L}(\mathbf{A}, T(\mathbf{A}), \dots, T^m(\mathbf{A}), T^{m+1}(\mathbf{A}), \dots) \subseteq \mathcal{L}(\mathbf{A}, T(\mathbf{A}), \dots, T^{m-1}(\mathbf{A}))$$

showing that dim $V = m \le n$ which is a contradiction.

Theorem 50. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is cyclic if and only if $T \neq eI$ where $e \in \mathbb{R}$ and $I: \mathbb{R}^2 \to \mathbb{R}^2$ is the identity transformation.

Proof. T is not cyclic
$$\iff T(\mathbf{A}) \in \mathcal{L}(\mathbf{A}), \ \forall \ \mathbf{A} \in \mathcal{V}, \ \text{by Theorem 48}$$

$$\iff T(1,0) = e_1(1,0), \ T(0,1) = e_2(0,1), \ T(1,1) = e(1,1)$$

$$\iff (e,e) = e_1(1,0) + e_2(0,1) = (e_1,e_2) \implies e = e_1 = e_2$$

$$\iff T(1,0) = (e,0), \ T(0,1) = (0,e)$$

$$\iff \text{Matrix of } T \text{ relative to the standard basis is } \begin{bmatrix} e & 0 \\ 0 & e \end{bmatrix} = eI$$

$$\iff T = eI.$$

8 The Theory of Eigen Values and Eigen Vectors

Throughout this chapter, V will denote a finite-dimensional vector space.

8.1 Rank and Nullity

Definition 24. An **endomorphism** is a linear transformation $T: \mathcal{V} \to \mathcal{V}$ from a vector space \mathcal{V} to itself.

Theorem 51. Let $T: \mathcal{V} \to \mathcal{V}$ be an endomorphism. Then there exists bases $\{\mathbf{A}_1, \dots, \mathbf{A}_n\}$ and $\{\mathbf{B}_1, \dots, \mathbf{B}_n\}$ for \mathcal{V} such that the matrix of T is

$$\begin{bmatrix}
1 & & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & 0
\end{bmatrix} k$$

$$\begin{bmatrix}
1 & & & & & \\
& & 1 & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & 0
\end{bmatrix} n-k$$

The integer k is called the **rank** of the linear transformation and the integer n - k is called the **nullity** of the linear transformation.

Proof. Let $\{C_1, \ldots, C_m\}$ be a basis for Ker T. By Theorem 15, we may find vectors C_{m+1}, \ldots, C_n such that $\{C_1, \ldots, C_m, C_{m+1}, \ldots, C_n\}$ is a basis for \mathcal{V} as dim $\mathcal{V} = n$. We claim that the vectors $T(C_{m+1}), \ldots, T(C_n)$ are linearly independent. To that end, consider the linear relation

$$c_{m+1}T(\mathbf{C}_{m+1})+\cdots+c_nT(\mathbf{C}_n)=\mathbf{0}.$$

Using the properties of linear transformations and setting $C = c_{m+1}C_{m+1} + \cdots + c_nC_n$, we see T(C) = 0 implying $C \in \text{Ker } T$. Since $\{C_1, \ldots, C_m\}$ is a basis for Ker T we may write

$$\mathbf{C} = c_1 \mathbf{C}_1 + \dots + c_m \mathbf{C}_m.$$

Therefore,

$$c_1\mathbf{C}_1 + \cdots + c_m\mathbf{C}_m - c_{m+1}\mathbf{C}_{m+1} - \cdots - c_n\mathbf{C}_n = \mathbf{0}.$$

Since $\{C_1, \ldots, C_m, C_{m+1}, \ldots, C_n\}$ is a basis for \mathcal{V} , we must have $c_i = 0, i = 1, \ldots, m, m + 1$

 $1, \ldots, n$. Now,

Im
$$T = T(\mathcal{V}) = T(\mathcal{L}(\mathbf{C}_1, \dots, \mathbf{C}_m, \mathbf{C}_{m+1}, \dots \mathbf{C}_n))$$

$$= \mathcal{L}(T(\mathbf{C}_1), \dots, T(\mathbf{C}_m), T(\mathbf{C}_{m+1}), \dots T(\mathbf{C}_n)) \text{ (by Theorem 22)}$$

$$= \mathcal{L}(\mathbf{0}, \dots, \mathbf{0}, T(\mathbf{C}_{m+1}), \dots T(\mathbf{C}_n))$$

$$= \mathcal{L}(T(\mathbf{C}_{m+1}), \dots T(\mathbf{C}_n)).$$

Hence the vectors $T(\mathbf{C}_{m+1}), \ldots, T(\mathbf{C}_n)$ form a basis for Im T. Again by Theorem 15 there exists m vectors $\mathbf{D}_1, \ldots, \mathbf{D}_m$ such that $\{\mathbf{D}_1, \ldots, \mathbf{D}_m, T(\mathbf{C}_{m+1}), \ldots, T(\mathbf{C}_n)\}$ form a basis for V. Set

$$A_{1} = C_{m+1}, \qquad B_{1} = T(C_{m+1}),$$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $A_{n-m} = C_{n} \qquad B_{n-m} = T(C_{n}),$
 $A_{n-m+1} = C_{1}, \qquad B_{n-m+1} = D_{1},$
 $\vdots \qquad \vdots \qquad \vdots$
 $A_{n} = C_{m}, \qquad B_{n} = D_{m}.$

Then by this construction,

$$T(\mathbf{A}_i) = \begin{cases} \mathbf{B}_i, & i = 1, \dots, n - m, \\ 0, & i = n - m + 1, \dots, n. \end{cases}$$

Set k = n - m. Therefore, the matrix of T relative to the bases $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_n\}$ is

Since dim Im T = n - m and dim Ker T = m, we see that $k = n - m = \dim \operatorname{Im} T$ is the rank of the linear transformation.

Remark. From the above conclusion, it is clear that

$$\dim \mathcal{V} = \operatorname{rank} + \operatorname{nullity}$$
.

Definition 25. For a matrix A, it's **row (column) rank** is defined as the maximum number of linearly independent rows (columns) of A.

Theorem 52. For a matrix A, row rank = column rank.

Proof. Obvious from Theorem 51.

Example 42. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 2 & 4 & 6 \end{bmatrix}$$
. Then row rank = column rank = rank = 2.

8.2 Eigen Values and Eigen Vectors

Matrix representations of a linear transformation $T: \mathcal{V} \to \mathcal{V}$ do provide some useful information about the nature of the transformation but do not reveal the complete structure. The complete information can be obtained if we were to find a basis with respect to which the matrix of T is diagonal. Needless to say, the basis for both domain and range must be the same.

The behaviour is in some sense a "non-cyclic" one. That is, given a basis $\{E_1, \ldots, E_n\}$ for \mathcal{V} , i.e. dim $\mathcal{V} = n$, the matrix of T relative to this basis will be a diagonal matrix only if $T(\mathbf{E}_i) \in \mathcal{L}(\mathbf{E}_i)$, (opposite to what we saw in Theorem 48). This means, there are numbers e_i such that

$$T(\mathbf{E}_i) = e_i \mathbf{E}_i$$
.

This motivates the following definition.

Definition 26. Let $T: \mathcal{V} \to \mathcal{V}$ be an endomorphism. A number e is an **eigen value** of T if there exists a non-zero vector \mathbf{E} such that

$$T(\mathbf{E}) = e\mathbf{E}$$
.

Such a vector E is called an eigen vector of T associated with the eigen value e.

Theorem 53. Let $T: \mathcal{V} \to \mathcal{V}$ be an ednomorphism. Then T is represented by a diagonal matrix if and only if \mathcal{V} has a basis consisting of eigen vectors of T.

Proof. Let $\{\mathbf{E}_1, \dots, \mathbf{E}_n\}$ be a basis for \mathcal{V} . Then

T is represented by a diagonal matrix

$$\iff$$
 The matrix of T relative to the basis $\{\mathbf{E}_1,\ldots,\mathbf{E}_n\}$ is of the form $\begin{bmatrix} e_1 & \mathbf{0} \\ & \ddots \\ \mathbf{0} & e_n \end{bmatrix}$

$$\iff T(\mathbf{E}_i) = e_i \mathbf{E}_i$$

$$\iff \{E_1, \ldots, E_n\}$$
 are eigen vectors of T.

Definition 27. An endomorphism $T: \mathcal{V} \to \mathcal{V}$ is **diagonalizable** if there exists a basis with respect to which the matrix of T is diagonal.

Theorem 54. The following results hold:

- 1. The only eigen values of a projection map P are 0 and 1.
- 2. The only eigen value of a nilpotent transformation T is 0.

Proof. Let e denote an eigen value and E it's corresponding eigen vector.

1. Then P(E) = eE. Also since P is a projection, we see that

$$P(E) = P(P(E)) = P(eE) = eP(E) = e^2E.$$

Subtracting, we obtain $(e^2 - e)\mathbf{E} = 0$. Since $\mathbf{E} \neq \mathbf{0}$, we conclude e = 0, 1.

2. Then $T(\mathbf{E}) = e\mathbf{E}$. Therefore

$$T^{2}(\mathbf{E}) = T(T(\mathbf{E})) = T(e\mathbf{E}) = eT(\mathbf{E}) = e^{2}\mathbf{E}.$$

Continuing this way k times, $0 = T^k(\mathbf{E}) = e^k \mathbf{E}$ whence e = 0.

Definition 28. An endomorphism $T: \mathcal{V} \to \mathcal{V}$ is **singular** if it is not an isomorphism.

Theorem 55. Let $T: \mathcal{V} \to \mathcal{V}$ be an endomorphism. Then e is an eigen value of T if and only if T - eI is singular.

Proof.

e is an eigen value of T

$$\iff$$
 $T(\mathbf{E}) = e\mathbf{E}, \mathbf{E} \neq \mathbf{0}$
 \iff $(T - eI)(\mathbf{E}) = \mathbf{0}$
 \iff $\mathbf{E} \in \operatorname{Ker}(T - eI)$
 \iff $\operatorname{Ker}(T - eI) \neq \{\mathbf{0}\}$
 \iff $T - eI$ is not an isomorphism
 \iff $T - eI$ is singular.

Definition 29. Let $T: \mathcal{V} \to \mathcal{V}$ be an endomorphism. Let e be an eigen value of T. For each e define

$$\mathcal{V}_e = \big\{ \mathbf{E} : T(\mathbf{E}) = e \mathbf{E} \big\}.$$

The set V_e is called the **eigen space of** T associated with e.

Theorem 56. If e is an eigen value of $T: \mathcal{V} \to \mathcal{V}$ then $\mathcal{V}_e = \text{Ker}(T - eI)$.

Proof.

$$\begin{aligned} \mathcal{V}_e &= \left\{ \mathbf{E} : T(\mathbf{E}) = e \mathbf{E} \right\} \\ &= \left\{ \mathbf{E} : (T - eI)(\mathbf{E}) = \mathbf{0} \right\} \\ &= \operatorname{Ker}(T - eI). \end{aligned} \quad \Box$$

8.3 Characteristic Polynomial

Definition 30. Let $T: \mathcal{V} \to \mathcal{V}$ be a linear transformation whose matrix relative to the basis $\{\mathbf{A}_1, \dots, \mathbf{A}_n\}$ is A. The **characteristic polynomial** of T is the polynomial $\Delta(t)$ of degree n defined as $\Delta(t) = \det(A - tI)$.

Remark. The definition of the characteristic polynomial is independent of the choice of basis. Indeed, if $\{B_1, \ldots, B_n\}$ is another basis of V for which the matrix of T is B, then by Theorem 37, there exists an invertible matrix P such that $B = PAP^{-1}$. Then,

$$B - tI = PAP^{-1} - tI = PAP^{-1} - tPIP^{-1} = P(A - tI)P^{-1}.$$

Therefore,

$$\det(B - tI) = \det P \det(A - tI) \det P^{-1} = \det(A - tI).$$

Definition 31. A value *e* is said to be a **root** of $\Delta(t)$ if $\Delta(e) = 0$.

Theorem 57 (Necessary and Sufficient Condition for Eigen Values). Let $\Delta(t)$ be the characteristic polynomial of $T: \mathcal{V} \to \mathcal{V}$. Then e is an eigen value of T if and only if e is a root of the characteristic polynomial $\Delta(t)$.

Proof. e is an eigen value of T $\iff T - eI \text{ is singular, (Theorem 35)}$ $\iff \det(A - eI) = 0 \text{ (Theorem 4)}$ $\iff \Delta(e) = 0 \text{ (by Definition)}$ $\iff e \text{ is a root of the characteristic polynomial } \Delta(t).$

Theorem 58. Let $T: \mathcal{V} \to \mathcal{V}$ be an endomorphism. Let e_1, \ldots, e_m be distinct eigen values of T and F_1, \ldots, F_m be the corresponding eigen vectors. Then F_1, \ldots, F_m are linearly independent.

Proof. Suppose on the contrary that F_1, \ldots, F_m are linearly dependent. Then by Theorem 12, there exists F_k such that $F_k \in \mathcal{L}(F_1, \ldots, F_{k-1})$. Therefore,

$$\mathbf{F}_k = a_1 \mathbf{F}_1 + \dots + a_{k-1} \mathbf{F}_{k-1}.$$
 (11)

Applying T both sides,

$$T(\mathbf{F}_k) = a_1 T(\mathbf{F}_1) + \dots + a_{k-1} T(\mathbf{F}_{k-1}).$$

Since F_i are eigen vectors associated with the eigen values e_i , we obtain

$$e_k \mathbf{F}_k = a_1 e_1 \mathbf{F}_1 + \dots + a_{k-1} e_{k-1} \mathbf{F}_{k-1}.$$
 (12)

Multiplying Equation (11) by e_k and subtracting from Equation (12) we obtain

$$\mathbf{0} = a_1(e_1 - e_k)\mathbf{F}_1 + \dots + a_{k-1}(e_{k-1} - e_k)\mathbf{F}_{k-1}.$$

But since F_1, \ldots, F_{k-1} are linearly independent, we have

$$a_i(e_i - e_k) = 0, i = 1, \dots, k - 1.$$

But since the eigen values are distinct, $e_i \neq e_j, i \neq j$. Therefore $a_i = 0, i = 1, ..., k-1$. This shows that $\mathbf{F}_k = \mathbf{0}$ which is a contradiction. Hence the result.

Theorem 59. Let $T: \mathcal{V} \to \mathcal{V}$ be an endomorphism and $\dim \mathcal{V} = n$. Let the characteristic polynomial has n distinct real roots. Then there is a basis for \mathcal{V} consisting of the eigen vectors $\mathbf{F}_1, \ldots, \mathbf{F}_n$ of T.

Proof. Apply Theorem 57, Theorem 58 and Theorem 17.

Example 43. Diagonalize the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as:

$$T(x, y) = (x + 2y, 4x + 3y).$$

We observe that

$$T(1,0) = (1,4),$$

$$T(0,1) = (2,3).$$

Therefore, the matrix of T relative to the standard bases is

$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}.$$

The characteristic polynomial $\Delta(t)$ is given as

$$\Delta(t) = \det(A - tI) = (t - 5)(t + 1).$$

Equating this to 0 gives t = 5, -1. Therefore the eigen values are real and distinct. Let us compute the eigen vectors.

1. t = 5. In this case, we have the equation

$$2x - y = 0.$$

Therefore the eigen space is computed as

$$V_5 = \mathcal{L}((1,2)).$$

Set $\mathbf{F}_1 = (1, 2)$.

2. t = -1. In this case, we have the equation

$$x + y = 0$$
.

Therefore the eigen space is computed as

$$\mathcal{V}_{-1} = \mathcal{L}((1, -1)).$$

Set
$$\mathbf{F}_2 = (1, -1)$$
.

The vectors F_1 , F_2 are linearly independent and hence a basis for \mathbb{R}^2 relative to which the matrix of T is

$$\begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}.$$