Building bridges seminar February 17, 2021

> Filtrations of the knot concordance group

Slice knots

Akust K $\subseteq S^3$ is trivial iff it bounds an embedded disc in S^3

Consider $K \subseteq S^3$ bounding an embedded disc $\Delta \subseteq B^4$

- · if D is smooth, Kis smoothly slice
- · if Δ is flat, his topologically slive

Trivial => slice

Examples of slice knots

Concordance of knots

Obstructions to sliceness

Not all knok ave slice e.g. slice

Goal: organise these systematically

Solvable fithation of 6 (Cochran-Orr-Teichner 2003)

Solve $f \in \mathcal{T}_n \subseteq \mathcal{T}_n \subseteq$

Some properties

Serve $f \in \mathcal{T}_n \subseteq \mathcal{T}_n \subseteq$

To = { K |

70.5 = 8 K

7 = = { K |

Livings ton Cochran-Orv-Teichner Cochran-Teichner Cochran-Harvey-Leidy See also Cha, Davis-Park-R.

Definition of & Fin?

Motivation: wish to approximate sliceness

Kis slice if it bounds a disc inside B4

K TOP \iff K bounds a disc in TOP W4 with $\partial W^4 = S^3$ St. $\pi_i W = 1$ $H_2 W = 0$

K TOP slice

K bounds a disc A
in TOP W4
s.t. TIW=1

Halwgen by emb spheres SL,D; w. rivial normal bundle and L MD=pt

$$L,D \cap \Delta = \emptyset$$

Definition: Kis n-solvable, denoted KE Trn, if it bounds a disc din a TOP W4 s.t.

- 1. H(W) = 0
- 2. H2(W) gen by embedded sonfaces ?Li, Dij, Li, Di EWIS w. hivial normal bundle s.t. Li MDj = fij, Li MLj = O = Di MDj
- 3. $\pi_{l}(L_{l}) \subseteq \pi_{l}(W \setminus \Delta)^{(n)}$ $\pi_{l}(D_{l}) \subseteq \pi_{l}(W \setminus \Delta)^{(n)}$

if in addition π, (Li) ⊆ π, (W\D), then K is n.5 solvable denoted K ∈ T_{n.5}

Examples

Infection/satellite operation:

if
$$R \in \mathcal{F}_n \& \eta \in \pi_r(S^3(R)^{(k)}$$
 then $R_{\eta}(\mathcal{F}_{n-k}) \subseteq \mathcal{F}_n$

Proof: if $R \in \mathcal{F}_n$, $\eta \in \pi_r(S^3(R)^{(k)})$ then $R_{\eta}(\mathcal{F}_{n-k}) \subseteq \mathcal{F}_n$ $R \subseteq S^3 \setminus \eta \times D^2$ Let J & Fn-k Dη R= ddr in some Wr n-solution

J= ddj in some Wy (n-k)-solution $W_{R_{\eta}(J)} = W_{R_{\eta}(J)} \times W_{J} \setminus (\Delta_{J} \times D^{2})$ $\eta \chi D^2 = \Delta_J \chi S^1$ nm my

Obstructions

M³ closed, oriented, Γ discrete group

define $P(M, \Psi : \pi_i M \longrightarrow M) := \sigma_P^{(2)}(W, Y) - \sigma(W)$

where M= 2W4. W compact, oriented

[Cochran-Orr-Teichner] $K \in \mathcal{F}_{h-S}$ and Γ is PTFA with $\Gamma^{(n+1)} = 0$ then $P(S_0^3(K), \Psi: \pi_1(S_0^3(K)) \longrightarrow \Gamma) = 0$

Other approximations?

Motivation: wish bapproximate sliceners

Kis slice if it bounds a disc inside B4 Gropes

KEGn if it bounds a height n grope in B4.

Whitney towers

KEWn if it bounds a height n Whitney hower in B4

[Cochran - Orr - Teichner] along &, B.

Similarly Wn+2 5 Fn 4n

Smooth vs topological concordance

 $\frac{1}{2} \frac{8n}{n} = \frac{1}{2} \frac{1}{2} \frac{1}{n} \frac{1}{n} = \frac{1}{2} \frac{1}{n} \frac{1}{n}$

KE Jush KE Julor

Positive/negative/bipolar filhrations

KEPn if it bounds a disc 1 in a smooth W4 s.t.

- 1. T(W)=0
- 2. H2(W) gen by embedded sonfaces 95i, $5i \in W \setminus \Delta$ Sintersection form is positive definite
- 3. $\pi_{l}(L_{i}) \subseteq \pi_{l}(W \setminus \Delta)^{(n)}$ $\pi_{l}(D_{i}) \subseteq \pi_{l}(W \setminus \Delta)^{(n)}$

Ke Nn if

Ke Bn J

Smooth vs topological concordance

Let T := { smooth concordance classes}
of topologically slice knots}

Define Tn := Bn n T Yn

Cochran-Harrey-Horn
Cochran-Horn
Cha-Kim
(see also Cha-Powell)

Miscellaneous results and open questions.

Generalisations

- · Links?
 - · String link concordance group
 - · define Fn, Gn, Wn, Pn, Nn, Bn, Tn Similarly.
- · Double concordance group
 - · analogues for Fn, Gn, Wn. [T. Kim, Cha-Kim]
 - · Smooth vs TOP?

Nonhiviality

$$\cdot \exists \mathcal{L}^{\infty} \oplus \mathcal{L}_{12}^{\infty} \subseteq \mathcal{G}_{n}/\mathcal{G}_{n+1} \quad \forall n \quad \text{[Horn, Jang]}$$

•
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{$

What about for knots?

•
$$\int_{n.s}^{m} / \int_{n+1}^{m} \pm 0$$
 for $m \ge 3.2^{n+1}$ [OHo]

what about for knots?

Every genus 1 knot in Fo.s is in F_1 [Davis-Martin-OHo-Park]

- · Gn E Wn Yn [Schneiderman] are they equal?
- · Geometric analogne for Pn, Nn, Bn?
 - · in terms of Casson to wers [R.]
- · Does there exist 7/2 = Tn/Tn+1 4n?
 - . 74/2° = 70/7, [Chen]
- · {Topslice} = noting are they equal?

Characterisation

- · 7 = & K/Arf(K)=0}
- · For = SK lalg slice }
- [Cochran-Orv-Teichner]

- · Jom characterised via Milnor invits [Martin]
- · Jon ? Po, No, Bo?
 - · Po in terms of gen. crossing changes [Cochran-Tweedy]

Interaction with other properties

. F? KE The with large 94? n=2 [Cha-Miller-Powell] Smooth version?

· J?KEFn,KXK?

Proxy for sliceness/concordance

· Is every knot in a 76HS3 TOP conc. to a knot in S3? Yes, "up to solvable filtration" [Davis] Questions?