Encuentre la tabla de verdad de los siguientes circuitos y encuentre su función lógica. En un Excel muestre el estado de cada compuerta (ON/OFF) dadas las entradas

NAND								
Tabla de verdad								
Α	A B Y							
0	0	1						
0	1	1						
1	0	1						
1	1	0						

NOR									
Tabla de verdad									
Α	В	Υ							
0	0	1							
0	1	0							
1	0	0							
1	1	0							

Tabla de verdad									
Α	В	С	Υ						
0	0	0	1						
0	0	1	0						
0	1	0	1						
0	1	1	0						
1	0	0	1						
1	0	1	0						
1	1	0	0						
1	1	1	0						

2. Construya el siguiente circuito y demuestre la función logica.

Esta función lógica representa un NOT ya que lo que realiza es negar la señal de entrada como lo podemos ver en la siguiente tabla de verdad.

Α	Υ
0	1
1	0

3. Según el siguiente circuito, encuentre su función de transferencia digital (Tabla de verdad?). Que pasaría si no colocamos la resistencia?

Con la resistencia podemos observar el mismo comportamiento de una compuerta NOT, si no utilizamos la resistencia unos de los puertas quedaría al aire (alta impedancia) por lo que obtendríamos una respuesta no deseada y al utilizar una fuente obtenemos un error por la dirección del mosfet.

Α	Υ
0	1
1	0

4. Encuentre la tabla de verdad según la siguiente respuesta en voltaje de un circuito siendo A y B las entradas e Y la salida (Ejes en volts). Tome en cuenta los márgenes de ruido (niveles en donde la entrada es considerdada como valida).

	AND									
Tabl	Tabla de verdad									
Α	A B Y									
0	0	0								
0	1	0								
1	0	0								
1	1	1								

5. Encuentre el margen de ruido del nodo intermedio de las dos compuertas lógicas asumiendo este operando a +3V3 y 25 grados centígrados. Seleccione las compuertas lógicas y el link de Digikey (o su proveedor de elección). Después de cálculos y capturas de pantalla de datasheet debe concluir "el nodo soporta X voltios de ruido en high y soporta Y voltios de ruido en low"

Carne terminación par

High Noise Margin: $NM_H = V_{OH} - V_{IH}$ Low Noise Margin: $NM_L = V_{IL} - V_{OL}$

Compuerta NAND

	Douare tou	Took Conditions	,	25°C			-40°C to 85°C		-40°C to 125°C		1114
	Parameter	Test Conditions	V _{CC}	Min	Typ.	Max	Min	Max	Min	Max	Unit
			2V	1.9	2		1.9		1.9		
		I _{OH} = -50µA	3V	2.9	3		2.9		2.9		
	High Level		4.5V	4.4	4.5		4.4		4.4		v
	Output Voltage	I _{OH} = -4mA	3V	2.58			2.48		2.40		1
		I _{OH} = -8mA	4.5V	3.94			3.8		3.70		
			2V			0.1		0.1		0.1	
I Voi I		$I_{OL} = 50\mu A$	3V			0.1		0.1		0.1	
	Low Level	Level	4.5V			0.1		0.1		0.1	v
	Output Voltage	I _{OL} = 4mA	3V			0.36		0.44		0.55	
		I _{OL} = 8mA	4.5V			0.36		0.44		0.55	

$$V_{OH}=2.58$$

$$V_{OL} = 0.3$$

Compuerta NOT

Davamatav	V	Conditions	1	_=25°C	:	T _A =-40	to 85°C	Unite
Parameter	V cc	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
HIGH Level Input	1.65 to 1.95		0.75V _∞			0.75V _{cc}		V
Voltage	2.30 to 5.50		0.70V _{cc}			0.70V _{cc}		V
LOW Level Input	1.65 to 1.95				0.25V _{cc}		0.25V∞	V
Voltage	2.30 to 5.50				0.30V _{CC}		0.30V∞	l v
	Voltage LOW Level Input	HIGH Level Input Voltage 1.65 to 1.95 LOW Level Input 1.65 to 1.95	HIGH Level Input Voltage 1.65 to 1.95 LOW Level Input 1.65 to 1.95 LOW Level Input 1.65 to 1.95	Parameter V _{CC} Conditions HIGH Level Input Voltage 1.65 to 1.95 0.75V _{CC} LOW Level Input Voltage 1.65 to 1.95 0.70V _{CC}	Parameter V _{CC} Conditions Min. Typ. HIGH Level Input Voltage 1.65 to 1.95 0.75V∞ LOW Level Input Voltage 1.65 to 1.95 0.70V∞	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter V _{CC} Conditions Min. Typ. Max. Min. HIGH Level Input Voltage 1.65 to 1.95 0.75V _{CC} 0.75V _{CC} 0.70V _{CC} LOW Level Input Voltage 1.65 to 1.95 0.25V _{CC} 0.25V _{CC}	Parameter V _{CC} Conditions Min. Typ. Max. Min. Max. HIGH Level Input Voltage 1.65 to 1.95 0.75V _{CC} 0.75V _{CC} 0.75V _{CC} LOW Level Input Voltage 1.65 to 1.95 0.25V _{CC} 0.25V _{CC} 0.25V _{CC}

$$V_{IH}=0.7$$

$$V_{IL}=0.30$$

High Noise Margin	2.58 - 0.75	1.83
Low Noise Margin	0.3 - 0.3	0

6. Las siguientes funciones de transferencia corresponden a un inversor (izquierda) y un buffer (derecha). En ambas graficas es posible definir niveles lógicos (Vih, Vil, Voh, Vol) seguros? Elabore

Vih = 3v - 5v	
Vil = 0.5v - 2v	
Voh= 4v - 5v	
Vol= 3v - 5v	

- 7. Tome su numero de carne y realice lo siguiente sin ayuda de calculadora
 - a. Convierta su numero de carne a binario

Para que sea mas facil realizamos la siguiente tabla multiplicando x2 el numero anterior

1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384
---	---	---	---	----	----	----	-----	-----	-----	------	------	------	------	-------

Diego Roberto Garcia Godinez

Buscamos desde el valor mas grande y vamos restando para conocer el siguiente valor

															Carne
1	2	4	8	16	32	64	128	256	512	1024	2048	4096	8192	16384	
															13896
													1	0	
															5704
												1	1	0	
															1608
										1	0	1	1	0	
															584
									1	1	0	1	1	0	
															72
						1	0	0	1	1	0	1	1	0	
															8
0	0	0	1	0	0	1	0	0	1	1	0	1	1	0	
															0

Como ultimo paso, ordenamos los bits del mas significativo al menos significativo

b. Convierta su numero de carne de binario a hexadecimal

Ya que conocemos que cada letra tiene un valor en 4 bits, unicamente sustituimos ese valor por cada grupo de bits

c. Con su numero de carne en binario, parta en 2 partes iguales su numero de carne (Carne_high y Carne_low). Realice las operaciones.

Carne_high - Carne_low Carne_low - Carne_high

el numero a numero binario normal

Carne High Carne Low	0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0
De primero pasamos cada parte a su complemento 2	
Carne High complemento 2	1 1 0 0 1 0 1 0 202
Carne Low complemento 2	1 0 1 1 1 0 0 0 184
Realizamos la operaciones	
High + CL	1 1 1 0 1 1 1 0
Low + CH	0 0 0 1 0 0 1 0 = 18 18
Como la resta High-Low da un complemento 2 pasamos	0 0 0 1 0 0 1 0 = 18 -18

8. El protocolo USB 4.x puede transmitir data a una razón de 20 Gbit/seg. Cuantos bytes pueden ser transmitidos en 1 min sostenidos?

Primero convertimos 20Gbit/seg a bytes/seg

$$20\frac{Gbit}{seg} = 20 * 10^9 \frac{bits}{seg}$$

$$\frac{20*10^9}{8} = 2.5*10^9 \frac{Gbytes}{seg}$$

Ahora pasamos los seg a min

$$2.5 * 10^9 \frac{Gbytes}{seg} = 1.5 * 10^{11} \frac{Gbytes}{min}$$

En 1 minuto podemos transmitir 150 Gbytes por minuto

9. Cuantos bytes se encuentran en un registro de 64 bit?

Un byte tiene 8 bits, entonces para saber cuantos tiene tenemos que multiplicar 64/8. Entonces 64-8 = 8 bytes.