Joba Structures
$$1 - H(N2 - Abraham Murciano)$$
 $5000 = \Theta(1)$
 $(g^8n = 3 \text{ c.N.st. } \forall n > N, \text{ c.} (g^3n > 5000)$
 $c = 5000 = 5000 \text{ M} = 2. \quad 5000 \text{ J} (g^3n > 5000)$

when $n > 2$.

 $3^{\log^{20}} = 3 \text{ c.J. } \forall n > N, \text{ c.J. } 3^{\log^{20}} > \text{ c.J. } g^3n$
 $c_1 = 1 \quad c_2 = 0.02 \quad N = 115 \quad 3^{\log^{20}} > 0.03 \text{ Jg}^3n$

when $n > 115$
 $\frac{n}{\log_3 n}$
 $n^{1/2}$
 $n = 1 \quad n^{1/2}$
 $n = 1 \quad n^{1/2}$

) 2]
$$f(n) = n^{\log n}$$
 $g(n) = n^{2\log n}$
 $g(n) = (n^{\log n})^2 = f(n)^2$
 $\forall f(n) > 1$, $g(n) > f(n)$
 $\Rightarrow n^{\log n} > 1$
 $n \neq 1$
 $\Rightarrow \forall n > 1$ $n^{\log n} < n^{2\log n}$
 $\Rightarrow f(n) = O(g(n))$
3] $f(n) = n^3 - 4n^2$ $g(n) = n^{2\sqrt{n}}$
 $f(n) = O(n^3)$
 $\forall n > N$ $n^3 < n^{2\sqrt{n}}$
 $\Rightarrow \forall n > \frac{q}{4}$
 $\Rightarrow f(n) = O(g(n))$

X S- NA FAIR

3) = 1	1 (Ascouding)	2 (descer	ding	period 25 and family 2 from 8	
while (2 < n)		+ N3 +			
if (A[i] > A[i+1]) A[i] & A[i] + A[i+1]		古いる十二	1		
A [11] ← A[1] - A [1+1] A	- A	シャー			
$A[i] \leftarrow A[i] + A[i+1]$ $i=1$	0	2パーラ	N		
o (se	1				
1) + scending order: 1 + n + (n-1) + (n-1	6 N3 -	2 1 + =	n - 1	
2) descending order: 1+(+ n + = n) = = = = n + = n + = n + 2.	2-1+4(2	N - 21) + 16 m	- 21	+ 3 M - 1
$= \frac{1}{2}n^3 + \frac{3}{2}n^2 + n$	-1 = 0(n	3)			
4) 0) f(n) = O(f(n)2) only for when	P(n) is a	a franct	ion Bu	1.1.	1. Lero evite
14, such That	01 600 6171	1, f(n	> 1	مابرس	W 100 C 00 13
so statement is	talse.				