GP-UCB proof sketch

Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, Matthias Seeger

Chernoff bound and union bound

- ► Finite sampling set *D*
- ► $|f(x) \mu_{t-1}(x)| \le \beta_t^{\frac{1}{2}} \sigma_{t-1}(x)$ for all $x \in D$ and $t \ge 1$
- Proof:
 - ▶ Chernoff bound: for each $x \in D$ and $t \ge 1$

$$\Pr\left(|f(x) - \mu_{t-1}(x)| > \beta_t^{\frac{1}{2}} \sigma_{t-1}(x)\right) \le e^{-\frac{\beta_t}{2}}$$

By union bound:

$$\Pr\left(|f(x) - \mu_{t-1}(x)| \le \beta_t^{\frac{1}{2}} \sigma_{t-1}(x)\right) > 1 - |D| e^{-\frac{\beta_t}{2}}$$

Chernoff bound and union bound

- ► Choose $|D|e^{-\frac{\beta_t}{2}} = \frac{\delta}{\pi_t}$ with $\sum_t \frac{1}{\pi_t} = 1$
- So by union bound on $t \ge 1$

$$\Pr\left(|f(x) - \mu_{t-1}(x)| \le \beta_t^{\frac{1}{2}} \sigma_{t-1}(x)\right) > 1 - \sum_t |D| e^{-\frac{\beta_t}{2}} = 1 - \delta$$

Regret

- Lemma 5.2. Fix $t \ge 1$, if $|f(x) \mu_{t-1}(x)| \le \beta_t^{\frac{1}{2}} \sigma_{t-1}(x)$ for all $x \in D$, then the regret γ_t at time is bounded by $2\beta_t^{\frac{1}{2}} \sigma_{t-1}(x_t)$
- Proof:
 - ▶ By definition of x_t : $\mu_{t-1}(x_t) + \beta_t^{\frac{1}{2}} \sigma_{t-1}(x_t) \ge \mu_{t-1}(x^*) + \beta_t^{\frac{1}{2}} \sigma_{t-1}(x^*) \ge f(x^*)$
 - ► Therefore the regret:

Information Gain

- Lemma 5.3:
 - ▶ The information gain for the points selected can be expressed in terms of the predictive variances. If $f_T = (f(x_t)) \in R^T$:
 - $I(y_T; f_T) = \frac{1}{2} \sum_{t=1}^{T} \log(1 + \sigma^{-2} \sigma_{t-1}^2(x_t))$
 - Proof: By induction,
 - ► $I(y_T; f_T) = H(y_T) \frac{1}{2} \log|2\pi e \sigma^2 I|$
 - $H(y_T) = H(y_{T-1}) + H(y_T|y_{T-1}) = H(y_{T-1}) + \frac{\log(2\pi e(\sigma^2 + \sigma_{t-1}^2(x_T)))}{2}$

Regret Bound

- ▶ Lemma 5.4.
- Pick $\delta \in (0,1)$ and let β_t be defined as in Lemma 5.1. Then, the following holds with probability $\geq 1 \delta$
- $\sum_{t=1}^{T} r_t^2 \le \beta_T C_1 I(y_T; f_T) \le C_1 \beta_T \gamma_T \quad \forall \ T \ge 1$
- Proof:
 - ▶ By Lemma 5.2, $\gamma_t^2 \le 2\beta_t \sigma_{t-1}^2(x_t)$
 - ▶ By Lemma 5.3, $I(y_T; f_T) = \frac{1}{2} \sum_{t=1}^{T} \log(1 + \sigma^{-2} \sigma_{t-1}^2(x_t))$
 - ► Where $\log(1 + \sigma^{-2}\sigma_{t-1}^2(x_t)) \sim C_0\sigma_{t-1}^2(x_t)$

Regret Bound

- ▶ By Cauchy inequality, $(\sum_{t=1}^{T} \gamma_t)^2 \le T \sum_{t=1}^{T} r_t^2 \le T C_1 \beta_T \gamma_T$
- So the total regret $\sum_{t=1}^{T} \gamma_t \leq \sqrt{TC_1\beta_T\gamma_T} = O(\sqrt{T})O(\sqrt{\beta_T\gamma_T})$

In our case: Chernoff Bound

- Consider $f(x) = \sum_i g_i(x) f_i(x) \sim N(\mu_t(x), \sigma_t^2(x))$
- Where $\mu_t(x) = \sum_i g_i(x) \mu_{i,t}(x)$, $\sigma_t^2(x) = \sum_i g_i^2(x) \sigma_{i,t}^2(x)$
- So it is fine to have the same result.

In our case: Regret

In our case: Information Gain

- Original: $I(y_T; f_T) = \frac{1}{2} \sum_{t=1}^{T} \log(1 + \sigma^{-2} \sigma_{t-1}^2(x_t))$
- Here: $I(y_T; f_T) = \frac{1}{2} \sum_{i=1}^{I} \sum_{t=1}^{T} \log(1 + \sigma^{-2} \sigma_{i,t-1}^2(x_t))$ which is a little different from directly substituting the $\sigma_{t-1}^2(x_t)$ by entire aggregated $\sum_{i=1}^{I} g_i^2(x_t) \sigma_{i,t-1}^2(x_t)$
- $I(y_T; f_T) = \frac{1}{2} \sum_{i=1}^{I} \sum_{t=1}^{T} \log(1 + \sigma^{-2} \sigma_{i,t-1}^2(x_t)) \ge \frac{1}{2} \sum_{i=1}^{I} \sum_{t=1}^{T} \sigma^{-2} \sigma_{i,t-1}^2(x_t)$

In our case: Summary

What we have

$$I(y_T; f_T) = \frac{1}{2} \sum_{i=1}^{I} \sum_{t=1}^{T} \log(1 + \sigma^{-2} \sigma_{i,t-1}^2(x_t)) \ge \frac{1}{2} \sum_{i=1}^{I} \sum_{t=1}^{T} \sigma^{-2} \sigma_{i,t-1}^2(x_t)$$

- ▶ Or equivalently, $\gamma_t^2 \le 4\beta_t \sum_i^I g_i^2(x_t) \sigma_{i,t-1}^2(x_t)$
- We want to relate $\gamma_1 + \gamma_2 + \cdots + \gamma_T$ to the information gain $I(y_T; f_T)$

In our case: Next Step

- ▶ 1. Use some clever Cauchy inequality or something else to relate the total regret and the information gain.
- ▶ 2. Follow the remaining proof in GP-UCB paper to derive a bound on the maximum information gain.
 - ► They use relaxation and submodular optimization...
- \triangleright 3. Back to our first step, learn the transition function (each $g_i(x)$)...