PSALTer results panel $\iiint \left(\frac{1}{6}\left(-3\alpha_{0}^{\alpha}\mathcal{A}_{\alpha}^{\beta\beta}\mathcal{A}_{\beta}^{\alpha}\mathcal{A}_{\beta}^{\beta}\mathcal{A}_{\alpha}^{\beta}\right) + 4\beta_{1}^{\alpha}\mathcal{A}_{\beta}^{\beta\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\beta}^{\beta}\mathcal{A}_{\alpha}^{\beta} + 6\beta_{1}^{\alpha\beta}\mathcal{A}_{\beta}^{\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\alpha}^{\beta}\mathcal{A}_{\alpha}^$ $8 \beta_{2} \partial^{\beta} f^{\alpha}_{\alpha} \partial_{\chi} f^{\chi}_{\beta} + 6 \alpha_{1} \partial_{\beta} \mathcal{A}^{\delta}_{\chi} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha} - 6 \alpha_{2} \partial_{\beta} \mathcal{A}^{\delta}_{\chi} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha} - 6 \alpha_{2} \partial_{\beta} \mathcal{A}^{\delta}_{\chi} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha} + 6 \alpha_{2} \partial_{\gamma} \mathcal{A}^{\delta}_{\beta} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha} + 6 \alpha_{2} \partial_{\chi} \mathcal{A}^{\delta}_{\beta} \partial^{\chi} \mathcal{A}^{\alpha\beta}_{\alpha} - 6 \alpha_{2} \partial_{\gamma} \mathcal{A}^{\delta}_{\beta} \partial^{\chi} \mathcal{A}^{\alpha\beta}$ $8\beta_{3} \partial_{\alpha} f_{\beta \chi} \partial^{\chi} f^{\alpha \beta} - 8\beta_{1} \partial_{\alpha} f_{\chi \beta} \partial^{\chi} f^{\alpha \beta} - 4\beta_{3} \partial_{\alpha} f_{\chi \beta} \partial^{\chi} f^{\alpha \beta} + 4\beta_{1} \partial_{\beta} f_{\alpha \chi} \partial^{\chi} f^{\alpha \beta} + 4\beta_{1} \partial_{\beta} f_{\alpha \chi} \partial^{\chi} f^{\alpha \beta} + 4\beta_{1} \partial_{\chi} f_{\alpha \beta} \partial^{\chi} f^{\alpha \beta} \partial^{\chi} f^{\alpha \beta} + 4\beta_{1} \partial_{\chi} f_{\alpha \beta} \partial^{\chi} f^{\alpha \beta} \partial^{\chi} f^$ $6 \, \alpha_{1}^{} \, \partial_{\alpha} \mathcal{R}^{\alpha \beta \chi} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 6 \, \alpha_{2}^{} \, \partial_{\alpha} \mathcal{R}^{\alpha \beta \chi} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, - \, 6 \, \alpha_{2}^{} \, \partial_{\alpha} \mathcal{R}^{\alpha \beta \chi} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, - \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \beta} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta \chi}_{ \, \beta} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, - \, 6 \, \alpha_{2}^{} \, \partial_{\alpha} \mathcal{R}^{\alpha \beta \chi}_{ \, \beta} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, - \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_{2}^{} \, \partial^{\chi} \mathcal{R}^{\alpha \beta}_{ \, \alpha} \, \partial_{\delta} \mathcal{R}^{ \, \delta}_{\beta \, \chi} \, + \, 12 \, \alpha_$ $12\,\alpha_{1}^{}\,\partial^{\chi}\mathcal{R}^{\alpha\beta}_{}\,\partial_{\delta}\mathcal{R}^{\delta}_{\chi\beta} + 12\,\alpha_{2}^{}\,\partial^{\chi}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\delta}_{\chi\beta} + 12\,\alpha_{2}^{}\,\partial^{\chi}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\delta}_{\chi\beta} - 12\,\alpha_{2}^{}\,\partial^{\chi}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\delta}_{\chi\beta} + 8\,\alpha_{1}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} - 12\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\chi\delta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\delta}\mathcal{R}^{\alpha\beta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\beta} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{\alpha} + 4\,\alpha_{2}^{}\,\partial_{\beta}\mathcal{R}^{\alpha\beta}_{$

 $8\,\alpha_{1}\,\partial_{\beta}\mathcal{A}_{\chi\delta\alpha}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,12\,\alpha_{2}\,\partial_{\beta}\mathcal{A}_{\chi\delta\alpha}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,+\,4\,\alpha_{3}\,\partial_{\beta}\mathcal{A}_{\chi\delta\alpha}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{1}\,\partial_{\chi}\mathcal{A}_{\alpha\beta\delta}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,6\,\alpha_{2}\,\partial_{\chi}\mathcal{A}_{\alpha\beta\delta}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,2\,\alpha_{3}\,\partial_{\chi}\mathcal{A}_{\alpha\beta\delta}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,+\,4\,\alpha_{1}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,+\,4\,\alpha_{2}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,+\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\beta\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\gamma\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\gamma\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\beta\chi}\,\partial^{\delta}\mathcal{A}^{\alpha\gamma\chi}\,-\,4\,\alpha_{3}\,\partial_{\delta}\mathcal{A}_{\alpha\gamma\chi}\,\partial^{$

Wave operator

	${}^0.{}^{\circ}\mathcal{F}^{\parallel}$	$0.7f^{\parallel}$	$0.f^{\perp}$	${}^{0}\mathcal{A}^{\parallel}$
^{0,+} <i>A</i> [∥] †	$\frac{\alpha_{.0}}{2} + \beta_{.2} + (\alpha_{.4} + \alpha_{.6}) k^2$	$-\frac{i\left(\alpha_{0}+2\beta_{1}\right)k}{\sqrt{2}}$	0	0
^{0,+} f [∥] †	$\frac{i(\alpha.+2\beta.)k}{\sqrt{2}}$	$2 \beta_{.} k^2$	0	0
0.+ f +	0	0	0	0
^{0.} A [∥] †	0	0	0	$\frac{\alpha_{.}}{2} + 4\beta_{.} + (\alpha_{.} + \alpha_{.}) k^{2}$

$(\alpha_{.} + \alpha_{.}) k^2$	${}^{1^{+}}_{\cdot}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	${}^{1^+}_{\cdot}\mathcal{A}^{\scriptscriptstyle \perp}{}_{\alpha\beta}$	$\overset{1}{\cdot}^{+}f^{\parallel}{}_{\alpha\beta}$	$\dot{1}.\mathcal{A}_{\parallel}{}^{\alpha}$	1 $\mathscr{H}^{\perp}{}_{lpha}$	$1^{-}f^{\parallel}_{\alpha}$	$\frac{1}{2}f^{\perp}_{lpha}$
$^{1^{+}}_{\cdot}\mathcal{A}^{\parallel}\dagger^{^{\alpha\beta}}$	$\frac{\alpha_{.}}{4} + \frac{1}{3} (\beta_{.} + 8 \beta_{.}) + (\alpha_{.} + \alpha_{.}) k^{2}$	$\frac{3 \alpha4 \beta. +16 \beta.}{6 \sqrt{2}}$	$\frac{i(3\alpha4\beta.+16\beta.)k}{6\sqrt{2}}$	0	0	0	0
$^{1.^{+}}\mathcal{H}^{\scriptscriptstyle \perp}\dagger^{lphaeta}$	$\frac{3\alpha4\beta.+16\beta.}{6\sqrt{2}}$	$\frac{2}{3}(\beta_{1} + 2\beta_{.})$	$\frac{2}{3} \bar{l} (\beta_1 + 2 \beta_1) k$	0	0	0	0
$\overset{1}{\cdot}^{+}f^{\parallel} + \overset{lphaeta}{\cdot}$	$-\frac{i(3\alpha_{.0}-4\beta_{.1}+16\beta_{.3})k}{6\sqrt{2}}$	$-\frac{2}{3}i(\beta_{1}+2\beta_{3})k$	$\frac{2}{3} (\beta_{1} + 2 \beta_{3}) k^{2}$	0	0	0	0
$^{1}\mathcal{A}^{\parallel}$ † $^{\alpha}$	0	0	0	$\frac{\alpha_{.}}{4} + \frac{1}{3} (\beta_{.} + 2 \beta_{.}) + (\alpha_{.} + \alpha_{.}) k^{2}$	$-\frac{3\alpha4\beta.+4\beta.}{6\sqrt{2}}$	0	$-\frac{1}{6}i(3\alpha_{.}-4\beta_{.}+4\beta_{.})k$
$^{1}\mathcal{A}^{\perp}\dagger^{lpha}$	0	0	0	$-\frac{3\alpha.4\beta.+4\beta.}{6\sqrt{2}}$	$\frac{1}{3} (2 \beta_{1} + \beta_{2})$	0	$\frac{1}{3} i \sqrt{2} (2 \beta_1 + \beta_2) k$
$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0
$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{1}{6}$ i (3 α 4 β . + 4 β .) k	$-\frac{1}{3}i\sqrt{2}(2\beta_{1}+\beta_{2})k$	0	$\frac{2}{3} (2 \beta_1 + \beta_2) k^2$

$+\beta.)k^2$	${}^{2^{+}}_{\cdot}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$2^+f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{H}_{\alpha\beta\chi}^{\parallel}$
$^{2^{+}}\mathcal{A}^{\parallel}$ † lphaeta	$-\frac{\alpha}{4} + \beta_1 + (\alpha_1 + \alpha_2) k^2$	$\frac{i(\alpha4\beta.)k}{2\sqrt{2}}$	0
$2^+f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\left(\alpha_{0}-4\beta_{1}\right)k}{2\sqrt{2}}$	$2 \beta_{i} k^{2}$	0
$2^{-}\mathcal{A}^{\parallel} + ^{\alpha\beta\chi}$	0	0	$-\frac{\alpha}{4} + \beta_1 + (\alpha_1 + \alpha_2) k^2$

Saturated propagator

	$^{0,^{+}}\sigma^{\parallel}$	$\circ^+_{\cdot} \tau^{\parallel}$	$0.^+\tau^{\perp}$	$0.\sigma^{\parallel}$
^{0,+} σ [∥] †	$-\frac{4 \beta.}{\alpha.^{2} + 2 \alpha. \beta 4 (\alpha. + \alpha.) \beta. k^{2}}$	$\frac{i \sqrt{2} (\alpha. + 2 \beta.)}{-\alpha. (\alpha. + 2 \beta.) k + 4 (\alpha. + \alpha.) \beta. k^{3}}$	0	0
^{0,+} τ †	$\frac{i\sqrt{2}(\alpha_{0}+2\beta_{1})}{\alpha_{0}(\alpha_{0}+2\beta_{1})k-4(\alpha_{4}+\alpha_{6})\beta_{1}k^{3}}$	$\frac{\alpha. + 2 \left(\beta. + \left(\alpha. + \alpha.\right) k^2\right)}{-\alpha. \left(\alpha. + 2 \beta.\right) k^2 + 4 \left(\alpha. + \alpha.\right) \beta. k^4}$	0	0
$0.^+\tau^{\perp}$ †	0	0	0	0
⁰⁻ σ †	0	0	0	$\frac{2}{\alpha. + 8 \beta. + 2 (\alpha. + \alpha. 0)}$

3	0	0	
4	0	0	
	0	0	
	0	$\frac{2}{\alpha. + 8\beta. + 2(\alpha. + \alpha.)k^{2}}$	
		$1^+ \sigma^{\parallel} + \alpha^{\beta}$	

$\frac{2}{2(\alpha_{\cdot}+\alpha_{\cdot})k^2}$	$\overset{1^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1,^{+}}{\cdot}\sigma^{{}^{\perp}}{}_{\alpha\beta}$	$1.^+\tau^{\parallel}{}_{\alpha\beta}$	$\stackrel{1}{\cdot}\sigma^{\parallel}{}_{lpha}$	$1^{\cdot}\sigma^{\scriptscriptstyle \perp}{}_{\alpha}$	$1^{\mathbf{T}}\mathbf{T}^{\parallel}{}_{\alpha}$ $1^{\mathbf{T}}\mathbf{T}^{\perp}{}_{\alpha}$
$^{1.^{+}}\sigma^{\parallel}$ $\dagger^{^{lphaeta}}$	$-\frac{1}{\frac{3(\alpha_{.}-4\beta_{1})(\alpha_{.}+8\beta_{3})}{16(\beta_{1}+2\beta_{3})}} + (\alpha_{.}+\alpha_{.})k^{2}$	$-\frac{2\sqrt{2}(3\alpha4\beta.+16\beta.)}{(1+k^2)(-3(\alpha4\beta.)(\alpha.+8\beta.)+16(\alpha.+\alpha.)(\beta.+2\beta.)k^2)}$	$-\frac{2 i \sqrt{2} (3 \alpha4 \beta.+16 \beta.) k}{(1+k^2) (-3 (\alpha4 \beta.) (\alpha.+8 \beta.)+16 (\alpha.+\alpha.) (\beta.+2 \beta.) k^2)}$	0	0	0 0
$^{1.^{+}}\sigma^{\scriptscriptstyle \perp}$ $\dagger^{^{lphaeta}}$	$-\frac{2\sqrt{2}(3\alpha_{0}-4\beta_{1}+16\beta_{1})}{(1+k^{2})(-3(\alpha_{0}-4\beta_{1})(\alpha_{0}+8\beta_{1})+16(\alpha_{2}+\alpha_{1})(\beta_{1}+2\beta_{1})k^{2})}$	$\frac{6\alpha_{.}+8(\beta_{.}+8\beta_{.3}+3(\alpha_{.}+\alpha_{.5})k^{2})}{(1+k^{2})^{2}(-3(\alpha_{.}-4\beta_{.})(\alpha_{.}+8\beta_{.})+16(\alpha_{.}+\alpha_{.5})(\beta_{.}+2\beta_{.3})k^{2})}$	$\frac{6 i \alpha. k + 8 i k (\beta. + 8 \beta. + 3 (\alpha. + \alpha.) k^2)}{(1 + k^2)^2 (-3 (\alpha 4 \beta.) (\alpha. + 8 \beta.) + 16 (\alpha. + \alpha.) (\beta. + 2 \beta.) k^2)}$	0	0	0 0
$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2 i \sqrt{2} (3 \alpha4 \beta. +16 \beta.) k}{(1+k^2) (-3 (\alpha4 \beta.) (\alpha. +8 \beta.) +16 (\alpha. +\alpha.) (\beta. +2 \beta.) k^2)}$	$\frac{-6i\alpha.k-8ik(\beta.+8\beta.+3(\alpha.+\alpha.)k^2)}{(1+k^2)^2(-3(\alpha4\beta.)(\alpha.+8\beta.)+16(\alpha.+\alpha.)(\beta.+2\beta.)k^2)}$	$\frac{2k^2(3\alpha+4(\beta+8\beta+3(\alpha+\alpha)k^2))}{(1+k^2)^2(-3(\alpha4\beta)(\alpha+8\beta)+16(\alpha+\alpha)(\beta+2\beta)k^2)}$	0	0	0 0
$\frac{1}{2}\sigma^{\parallel}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{\frac{3(\alpha_{.}-4\beta_{1})(\alpha_{.}+2\beta_{.})}{8(2\beta_{1}+\beta_{2})}} + (\alpha_{.}+\alpha_{.})k^{2}$	$\frac{2\sqrt{2}(3\alpha_{0}^{-4}\beta_{1}^{+4}\beta_{2}^{-})}{(1+2k^{2})(-3(\alpha_{0}^{-4}\beta_{1}^{-})(\alpha_{0}^{-4}\beta_{2}^{-})+8(\alpha_{4}+\alpha_{5}^{-})(2\beta_{1}^{-4}\beta_{2}^{-})k^{2})}$	$0 \frac{4i(3\alpha4\beta.+4\beta.)k}{(1+2k^2)(-3(\alpha4\beta.)(\alpha.+2\beta.)+8(\alpha.+\alpha.)(2\beta.+\beta.)k^2)}$
$\frac{1}{2}\sigma^{\perp} + \frac{\alpha}{2}$	0	0	0	$\frac{2\sqrt{2}(3\alpha4\beta.+4\beta.)}{(1+2k^2)(-3(\alpha4\beta.)(\alpha.+2\beta.)+8(\alpha.+\alpha.)(2\beta.+\beta.)k^2)}$	$\frac{6\alpha.+8(\beta.+2\beta.+3(\alpha.+\alpha.)k^2)}{(1+2k^2)^2(-3(\alpha4\beta.)(\alpha.+2\beta.)+8(\alpha.+\alpha.)(2\beta.+\beta.)k^2)}$	$0 \frac{2 i \sqrt{2} k (3 \alpha. + 4 (\beta. + 2 \beta. + 3 (\alpha. + \alpha.) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha 4 \beta.) (\alpha. + 2 \beta.) + 8 (\alpha. + \alpha.) (2 \beta. + \beta.) k^2)}$
$1^{-}\tau^{\parallel}+^{\alpha}$	0	0	0	0	0	0 0
$\frac{1}{2} \tau^{\perp} + \frac{\alpha}{2}$	0	0	0	$-\frac{4 i (3 \alpha4 \beta+4 \beta) k}{(1+2 k^2) (-3 (\alpha4 \beta) (\alpha+2 \beta) +8 (\alpha+\alpha) (2 \beta+\beta) k^2)}$	$-\frac{2 i \sqrt{2} k (3 \alpha.+4 (\beta.+2 \beta.+3 (\alpha.+\alpha.) k^2))}{(1+2 k^2)^2 (-3 (\alpha4 \beta.) (\alpha.+2 \beta.)+8 (\alpha.+\alpha.) (2 \beta.+\beta.) k^2)}$	$0 \frac{4 k^2 (3 \alpha. + 4 (\beta. + 2 \beta. + 3 (\alpha. + \alpha.) k^2))}{(1 + 2 k^2)^2 (-3 (\alpha 4 \beta.) (\alpha. + 2 \beta.) + 8 (\alpha. + \alpha.) (2 \beta. + \beta.) k^2)}$

())			
$(2 \beta_1 + \beta_2) k^2$	2. ⁺ σ αβ	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
$^{2,+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{16 \beta_{1}}{-\alpha_{1}^{2}+4 \alpha_{0} \beta_{1}+16 (\alpha_{1}+\alpha_{1}) \beta_{1} k^{2}}$	$\frac{2 i \sqrt{2} (\alpha_{0}^{-4} \beta_{1}^{-})}{\alpha_{0} (\alpha_{0}^{-4} \beta_{1}^{-}) k \cdot 16 (\alpha_{1}^{-4} + \alpha_{1}^{-}) \beta_{1}^{-k^{3}}}$	0
2^+ τ^{\parallel} $\dagger^{\alpha\beta}$	$\frac{2 i \sqrt{2} (\alpha_{0}^{-4} \beta_{1}^{-4})}{-\alpha_{0} (\alpha_{0}^{-4} \beta_{1}^{-4}) k + 16 (\alpha_{1}^{-4} + \alpha_{1}^{-4}) \beta_{1}^{-k^{3}}}$	$\frac{2 \left(\alpha - 4 \beta - 4 \left(\alpha + \alpha \right) k^{2}\right)}{\alpha \left(\alpha - 4 \beta - 1\right) k^{2} - 16 \left(\alpha + \alpha - 1\right) \beta \cdot k^{4}}$	0
$2^{-}\sigma^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$\frac{1}{-\frac{\alpha_0}{4}+\beta_1+(\alpha_1+\alpha_2)k}$

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0.^{+}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
$0^+_{\cdot}\tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$2 i k 1 \sigma^{\perp} + 1 \tau^{\perp} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$\frac{1}{2} \tau^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\bar{i} k \stackrel{1^+}{\cdot} \sigma^{\perp}{}^{\alpha\beta} + \stackrel{1^+}{\cdot} \tau^{\parallel}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta$	3
Total expected gauge	generators:	11

Massive spectrum

Even

Spin: Parity:

Massive particle $-\frac{\alpha.+8\beta.}{\frac{0}{2}\frac{\alpha.+\alpha.}{2}} > 0$ Square mass: Parity: Odd

Massive particle

Pole residue:	$ \left(3 \left(\alpha_{.}^{2} \left(3 \alpha_{.} + 3 \alpha_{.} + 2 \beta_{.} + 4 \beta_{.} \right) - 8 \alpha_{.} \left(\beta_{.}^{2} + \alpha_{.} \left(\beta_{.} - 4 \beta_{.} \right) + \alpha_{.} \left(\beta_{.} - 4 \beta_{.} \right) - 4 \beta_{.}^{2} \right) + 16 \left(-4 \beta_{.} \beta_{.} \left(\beta_{.} + 2 \beta_{.} \right) + \alpha_{.} \left(\beta_{.}^{2} + 8 \beta_{.}^{2} \right) + \alpha_{.} \left(\beta_{.}^{2} + 8 \beta_{.}^{2} \right) \right) \right) \right) $				
	$(2(\alpha_{.} + \alpha_{.})(\beta_{.} + 2\beta_{.})(3\alpha_{.}^{2} - 12\alpha_{.}(\beta_{.} - 2\beta_{.}) + 16(\alpha_{.}\beta_{.} + 2\alpha_{.}\beta_{.} - 6\beta_{.}\beta_{.} + \alpha_{.}(\beta_{.} + 2\beta_{.})))) > 0$				
Square mass:	$\frac{\frac{3(\alpha4\beta.)(\alpha.+8\beta.)}{0}(\alpha.+8\beta.)}{\frac{16(\alpha.+\alpha.)(\beta.+2\beta.)}{1}(\beta.+2\beta.)} > 0$				
Spin:					
Do with a	E				

_	Pole residue:	$-((3(\alpha_{0}^{2}(3\alpha_{4}+3\alpha_{5}+4\beta_{1}+2\beta_{2})+4\alpha_{0}(-2\alpha_{4}\beta_{1}-2\alpha_{5}\beta_{1}-4\beta_{1}^{2}+2\alpha_{4}\beta_{2}+2\alpha_{5}\beta_{2}+\beta_{2}^{2})+8(-2\beta_{1}\beta_{2}(2\beta_{1}+\beta_{2})+\alpha_{4}(2\beta_{1}^{2}+\beta_{2}^{2})+\alpha_{5}(2\beta_{1}^{2}+\beta_{2}^{2}))))/$ $(2(\alpha_{4}+\alpha_{5})(2\beta_{1}+\beta_{2})(3\alpha_{0}^{2}+6\alpha_{0}(-2\beta_{1}+\beta_{2})+4(2\alpha_{5}\beta_{1}+\alpha_{5}\beta_{2}-6\beta_{1}\beta_{2}+\alpha_{4}(2\beta_{1}+\beta_{2})))))>0$
	Square mass:	$\frac{\frac{3(\alpha_0 - 4\beta_1)(\alpha_1 + 2\beta_2)}{8(\alpha_1 + \alpha_2)(2\beta_1 + \beta_2)}}{8(\alpha_2 + \alpha_3)(2\beta_1 + \beta_2)} > 0$
_	Spin:	1
		Odd

Massive particle				
Pole residue:	$-\frac{2}{\alpha_{0}^{2}} + \frac{\alpha_{1}^{2} + \alpha_{4}^{2} + 2\beta_{1}^{2}}{2\alpha_{1}\beta_{1}^{2} + 2\alpha_{4}\beta_{1}^{2}}$			
Square mass:	$\frac{\frac{\alpha. (\alpha 4\beta.)}{0.001}}{\frac{16 (\alpha. + \alpha.)\beta.}{1}\beta.} > 0$			

Even

ole residue:	$-\frac{1}{\alpha_{\cdot}+\alpha_{\cdot}}>0$
quare mass:	$\frac{\frac{\alpha4\beta.}{0}}{\frac{4(\alpha.+\alpha.)}{1}} > 0$
pin:	2
arity:	Odd

Massive particle

Massless spectrum

Massless particle	
Pole residue:	$\frac{p^2}{\alpha}$ > (

Polarisations: 2

Unitarity conditions (Demonstrably impossible)