Automorphic Forms in $L^2(\Gamma \backslash SL_2(\mathbb{R}))$

Yuheng Shi

Dec 9, 2021

Outline

1 Iwasawa Decomposition for $SL_2(\mathbb{R})$

2 $SL_2(\mathbb{R})$ unimodular

3 Right Regular Representation on $L^2(\Gamma \backslash SL_2(\mathbb{R}))$

Definition

$$SL_2(\mathbb{R}) := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) | ad - bc = 1 \}$$

Definition

$$SL_2(\mathbb{R}) := \{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in M_2(\mathbb{R}) | ad - bc = 1 \}$$

 $G = SL_2(\mathbb{R})$ acts on upper half complex plane by matrix multiplication. Let $K = Stab_G(i)$, then K = SO(2).

Definition

$$SL_2(\mathbb{R}):=\{egin{pmatrix} a & b \ c & d \end{pmatrix}\in M_2(\mathbb{R})|ad-bc=1\}$$

 $G = SL_2(\mathbb{R})$ acts on upper half complex plane by matrix multiplication. Let $K = Stab_G(i)$, then K = SO(2).

Theorem (Iwasawa Decomposition)

Let A be the group of all diagonal matrices in ${\it G}$ with positive entries. Let

N be matrices of the form $\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$ where $s \in \mathbb{R}$. Then

 $\psi: A \times N \times K \rightarrow G$ given by $(a, n, k) \mapsto ank$ is a homeomorphism.

Definition

$$SL_2(\mathbb{R}) := \{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in M_2(\mathbb{R}) | ad - bc = 1 \}$$

 $G = SL_2(\mathbb{R})$ acts on upper half complex plane by matrix multiplication. Let $K = Stab_G(i)$, then K = SO(2).

Theorem (Iwasawa Decomposition)

Let A be the group of all diagonal matrices in G with positive entries. Let N be matrices of the form $\begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$ where $s \in \mathbb{R}$. Then $\psi: A \times N \times K \to G$ given by $(a, n, k) \mapsto ank$ is a homeomorphism.

We can parametrize A, N, K by one single real variable, and we have $A \cong N \cong (\mathbb{R}, +)$. This fact will be important in proving $SL_2(\mathbb{R})$ is unimodular.

Radon Measure and Haar Measure

Definition

A measure μ defined on Borel σ -algebra of a locally compact Hausdorff space X is called Radon measure if:

- (a) $\mu(K) < \infty$ for all compact set K.
- (b) $\mu(A) = inf_{U \supset A}\mu(U)$ for A measurable, U open. (Outer regularity)
- (c) $\mu(A) = \sup_{K \subset A} \mu(K)$ for $K \subset X$ compact, A open or finite measure. (Inner regularity)

Radon Measure and Haar Measure

Definition

A measure μ defined on Borel σ -algebra of a locally compact Hausdorff space X is called Radon measure if:

- (a) $\mu(K) < \infty$ for all compact set K.
- (b) $\mu(A) = inf_{U \supset A}\mu(U)$ for A measurable, U open. (Outer regularity)
- (c) $\mu(A) = \sup_{K \subset A} \mu(K)$ for $K \subset X$ compact, A open or finite measure. (Inner regularity)

Theorem

Let G be a locally compact group. Then there exists a Radon measure $\mu \neq 0$ on the Borel σ -algebra, which is left-invariant. This measure μ is uniquely determined up to scaling by positive numbers. It is called a Haar measure of G.

Modular Function

Take locally compact group G. Take a Haar measure μ on it. For any $x \in G$, $\mu_x(A) = \mu(Ax)$ is another Haar measure on G. So $\mu_x = \Delta(x)\mu$ for some $\Delta(x) > 0$. Such $\Delta(x)$ is well defined by uniqueness of Haar measure.

Modular Function

Take locally compact group G. Take a Haar measure μ on it. For any $x \in G$, $\mu_x(A) = \mu(Ax)$ is another Haar measure on G. So $\mu_x = \Delta(x)\mu$ for some $\Delta(x) > 0$. Such $\Delta(x)$ is well defined by uniqueness of Haar measure.

Definition

We call the $\Delta: G \to (0, \infty)$ modular function of the locally compact group G. G is called unimodular if $\Delta \equiv 1$.

Modular Function

Take locally compact group G. Take a Haar measure μ on it. For any $x \in G$, $\mu_x(A) = \mu(Ax)$ is another Haar measure on G. So $\mu_x = \Delta(x)\mu$ for some $\Delta(x) > 0$. Such $\Delta(x)$ is well defined by uniqueness of Haar measure.

Definition

We call the $\Delta: G \to (0, \infty)$ modular function of the locally compact group G. G is called unimodular if $\Delta \equiv 1$.

Theorem

 Δ is a continuous group homomorphism.

Examples

If G is abelian/compact/discrete, then G is unimodular.

$\mathit{SL}_2(\mathbb{R})$ unimodular

Theorem

 $\mathit{SL}_2(\mathbb{R})$ is unimodular.

Theorem

 $SL_2(\mathbb{R})$ is unimodular.

Definition

Fix natural number N. We call $\Gamma(N) = ker(SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z}))$ the principal congruence group of level N. A subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is called congruence group if it contains a principal congruence group, i.e. $\Gamma(N) \subset \Gamma$ for some N.

Theorem

 $SL_2(\mathbb{R})$ is unimodular.

Definition

Fix natural number N. We call $\Gamma(N) = ker(SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z}))$ the principal congruence group of level N. A subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is called congruence group if it contains a principal congruence group, i.e. $\Gamma(N) \subset \Gamma$ for some N.

Theorem

Any congruence group is discrete (and thus unimodular).

Theorem

 $SL_2(\mathbb{R})$ is unimodular.

Definition

Fix natural number N. We call $\Gamma(N) = ker(SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z}))$ the principal congruence group of level N. A subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is called congruence group if it contains a principal congruence group, i.e. $\Gamma(N) \subset \Gamma$ for some N.

Theorem

Any congruence group is discrete (and thus unimodular).

Theorem

Discrete subgroup of a locally compact group G is closed in G.

Theorem

 $SL_2(\mathbb{R})$ is unimodular.

Definition

Fix natural number N. We call $\Gamma(N) = ker(SL_2(\mathbb{Z}) \to SL_2(\mathbb{Z}/n\mathbb{Z}))$ the principal congruence group of level N. A subgroup $\Gamma \subset SL_2(\mathbb{Z})$ is called congruence group if it contains a principal congruence group, i.e. $\Gamma(N) \subset \Gamma$ for some N.

Theorem

Any congruence group is discrete (and thus unimodular).

Theorem

Discrete subgroup of a locally compact group G is closed in G.

Later we will use these facts to give a Radon measure on $\Gamma \setminus SL_2(\mathbb{R})$.

A few theorems

Lemma

Let G be a locally compact group and let H be a closed subgroup. Then H is again a locally compact group and the quotient space G/H, equipped with the quotient topology, is a locally compact Hausdorff space.

Theorem

Let $H\subset G$ be a closed subgroup of the locally compact group G. On the locally compact space G/H there exists a non-trivial, G-invariant Radon measure if and only if $\Delta_G(h)=\Delta_H(h)$ holds for every $h\in H$. If it exists, the invariant measure is unique up to scaling.

A few theorems

Lemma

Let G be a locally compact group and let H be a closed subgroup. Then H is again a locally compact group and the quotient space G/H, equipped with the quotient topology, is a locally compact Hausdorff space.

Theorem

Let $H\subset G$ be a closed subgroup of the locally compact group G. On the locally compact space G/H there exists a non-trivial, G-invariant Radon measure if and only if $\Delta_G(h)=\Delta_H(h)$ holds for every $h\in H$. If it exists, the invariant measure is unique up to scaling.

Using these facts, we get a non-trivial G-invariant $(G = SL_2(\mathbb{R}))$ Radon measure on G/Γ . We can switch between left cosets and right cosets, so we get a Radon measure on $\Gamma \backslash G$. Now we have $L^2(\Gamma \backslash G)$.

Right Regular Representation on $L^2(\Gamma \setminus G)$

Definition

Let $R: G \to Aut(L^2(\Gamma \backslash G))$ be $R_g \varphi(x) = \varphi(xg)$ for $g \in G$, $x \in \Gamma \backslash G$.

Right Regular Representation on $L^2(\Gamma \setminus G)$

Definition

Let $R: G \to Aut(L^2(\Gamma \backslash G))$ be $R_g \varphi(x) = \varphi(xg)$ for $g \in G$, $x \in \Gamma \backslash G$.

Lemma

R is unitary representation of *G* on $L^2(\Gamma \backslash G)$.

Right Regular Representation on $L^2(\Gamma \backslash G)$

Definition

Let $R: G \to Aut(L^2(\Gamma \backslash G))$ be $R_g \varphi(x) = \varphi(xg)$ for $g \in G$, $x \in \Gamma \backslash G$.

Lemma

R is unitary representation of *G* on $L^2(\Gamma \backslash G)$.

Definition

An automorphic form is a function φ in $L^2(\Gamma \backslash G)$.