

2015 年全国硕士研究生入学统一考试

数学一试题

一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.

(1)设函数 f(x) 在 $\left(-\infty, +\infty\right)$ 内连续,其中二阶导数 f''(x) 的图形如图所示,则曲线

y = f(x) 的拐点的个数为 ()

$$(D)$$
 3

(2)设 $y = \frac{1}{2}e^{2x} + (x - \frac{1}{3})e^{x}$ 是二阶常系数非齐次线性微分方程 $y'' + ay' + by = ce^{x}$ 的一个特解,则

(A)
$$a = -3, b = 2, c = -1$$

(B)
$$a=3, b=2, c=-1$$

(C)
$$a = -3, b = 2, c = 1$$

(D)
$$a = 3, b = 2, c = 1$$

- (3) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛,则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数 $\sum_{n=1}^{\infty} na_n (x-1)^n$ 的 ()
 - (A) 收敛点, 收敛点
 - (B) 收敛点,发散点
 - (C) 发散点, 收敛点
 - (D) 发散点,发散点
- (4) 设D是第一象限由曲线2xy=1,4xy=1与直线y=x, $y=\sqrt{3}x$ 围成的平面区

域,函数
$$f(x,y)$$
 在 D 上连续,则 $\iint_D f(x,y) dx dy =$ ()

(A)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{\sin 2\theta}{2\sin 2\theta}}^{\frac{1}{\sin 2\theta}} f(r\cos\theta, r\sin\theta) r dr$$

(B)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{\sqrt{2\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} f\left(r\cos\theta, r\sin\theta\right) r dr$$

(C)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{2\sin 2\theta}}^{\frac{1}{\sin 2\theta}} f\left(r\cos\theta, r\sin\theta\right) dr$$

(D)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} d\theta \int_{\frac{1}{\sqrt{2\sin 2\theta}}}^{\frac{1}{\sqrt{\sin 2\theta}}} f(r\cos\theta, r\sin\theta) dr$$

(5) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ d \\ d^2 \end{pmatrix}$, 若集合 $\Omega = \{1, 2\}$, 则线性方程组 $Ax = b$ 有

无穷多解的充分必要条件为

- (A) $a \notin \Omega, d \notin \Omega$
- (B) $a \notin \Omega, d \in \Omega$
- (C) $a \in \Omega, d \notin \Omega$
- (D) $a \in \Omega, d \in \Omega$

(6)设二次型 $f(x_1, x_2, x_3)$ 在正交变换为 $\mathbf{x} = \mathbf{P}\mathbf{y}$ 下的标准形为 $2y_1^2 + y_2^2 - y_3^2$,其中

 $P = (e_1, e_2, e_3)$,若 $Q = (e_1, -e_3, e_2)$,则 $f(x_1, x_2, x_3)$ 在正交变换x = Qy下的标准 形为

(A)
$$2y_1^2 - y_2^2 + y_3^2$$

(B)
$$2y_1^2 + y_2^2 - y_3^2$$

(C)
$$2y_1^2 - y_2^2 - y_3^2$$

(D)
$$2y_1^2 + y_2^2 + y_3^2$$

(7) 若 A,B 为任意两个随机事件,则

(A)
$$P(AB) \le P(A)P(B)$$

(B)
$$P(AB) \ge P(A)P(B)$$

(C)
$$P(AB) \le \frac{P(A) + P(B)}{2}$$

(D)
$$P(AB) \ge \frac{P(A) + P(B)}{2}$$

- (8)设随机变量 X,Y 不相关,且 EX=2,EY=1,DX=3,则 $E\left[X\left(X+Y-2\right)\right]=$ ()
 - (A) -3
- (B) 3
- (C) -5
- (D) 5
- 二、填空题: 9~14 小题,每小题 4分,共 24分.请将答案写在答题纸指定位置上.
- $(9) \lim_{x\to 0} \frac{\ln\cos x}{x^2} = \underline{\qquad}.$
- (10) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\sin x}{1 + \cos x} + |x| \right) dx = \underline{\qquad}.$
- (11)若函数 z = z(x, y) 由方程 $e^x + xyz + x + \cos x = 2$ 确定,则 dz
- (12) 设 Ω 是由平面x+y+z 与三个坐标平面平面所围成的空间区域,

$$\iiint_{\Omega} (x+2y+3z)dxdydz = \underline{\hspace{1cm}}$$

2 0 ··· 0 2 -1 2 ··· 0 2 -1 2 ··· 0 2 -1 ··· 1 0 0 ··· 2 2

- (14)设二维随机变量(x, y)服从正态分布N(1,1,0,1,0),则 $P\{XY-Y<0\}=$ ____
- 三、解答题: 15~23 小题,共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明 过程或演算步骤.
- (15)(本题满分 10 分) 设函数 $f(x) = x + a \ln(1+x) + bx \sin x$, $g(x) = kx^3$, 若 f(x)与 g(x)在 $x \rightarrow 0$ 是等价无穷小,求 a,b,k 的值.

(16)(本题满分 10 分) 设函数 f(x)在定义域 I 上的导数大于零,若对任意的 $x_0 \in I$,曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成区域的面积恒为 4,且 f(0) = 2,求 f(x) 的表达式.

(17)(本题满分 10 分)

已知函数 f(x,y) = x + y + xy, 曲线 C: $x^2 + y^2 + xy = 3$, 求 f(x,y) 在曲线 C 上的最大方向导数.

(18)(本题满分 10 分)

- (I) 设函数 u(x), v(x) 可导,利用导数定义证明 [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)
- (II) 设函数 $u_1(x), u_2(x), \cdots, u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \cdots u_n(x)$, 写出 f(x) 的求导公式.

罗沪江网校·考研

(19)(本题满分 10 分)

已知曲线 L 的方程为
$$\begin{cases} z = \sqrt{2-x^2-y^2}, & \text{起点为} A(0,\sqrt{2},0), & \text{终点为} B(0,-\sqrt{2},0), \end{cases}$$
 计算

曲线积分
$$I = \int_{L} (y+z) dx + (z^2 - x^2 + y) dy + x^2 y^2 dz$$

设向量组 $\alpha_1, \alpha_2, \alpha_3$ 为 R^3 的一个基, $\beta_1 = 2\alpha_1 + 2k\alpha_3$, $\beta_2 = 2\alpha_2$, $\beta_3 = \alpha_1 + (k+1)\alpha_3$.

- (I) 证明向量组 β_1 β_2 β_3 为 \mathbb{R}^3 的一个基;
- (II) 当 k 为何值时,存在非 0 向量 ξ 在基 α_1 , α_2 , α_3 与基 β_1 β_2 β_3 下的坐标相同,并求所有的 ξ .

罗 沪江网校·考研

(21) (本题满分 11 分)

设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{pmatrix}$$
相似于矩阵 $\mathbf{B} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{pmatrix}$

- (I) 求 a,b 的值;
- (II) 求可逆矩阵P, 使 $P^{-1}AP$ 为对角矩阵...

对 X 进行独立重复的观测, 直到 2 个大于 3 的观测值出现的停止. 记 Y 为观测次数.

- (I)求Y的概率分布;
- (II)求EY

(23) (本题满分 11 分)设总体 X 的概率密度为:

$$f(x,\theta) = \begin{cases} \frac{1}{1-\theta}, \theta \le x \le 1, \\ 0, & \text{其他.} \end{cases}$$

其中 θ 为未知参数, x_1, x_2, \cdots, x_n 为来自该总体的简单随机样本.

- (I)求 θ 的矩估计量.
- (II)求 θ 的最大似然估计量.

