

anelis ..

دکتور:بشیرعلی عرنوس

```
• الذكاء الاصطناعي - مقدمة
                      0أنظمة الذكاء الأصطناعي - تعاريف
                                      oمثال العمل الذكى
                                               0خلاصة
                         • أالذكاء الإصطناعي- مفاهيم رئيسية
                                         oمشاکل و بحث
                                "تعريف المشكلة
                                  "بحث إرشادي
                                  oتمثيل المعرفة والبحث
                            " رسوم بيانية (و-أو)
                               " خوارزمية AO
                                         وتحليل النهايات
                                             ر ضاء قيد
                              Oلماذا هذه المواضيع مهمةِ؟
لغة البرمجة Prolog و الذكاء الاصطناعي (كتاب DB &AI)
                              o برمجة الذكآء الإصطناعي
                           "دعم للحساب الرمزي
                       "دعم للبرمجة الإستطلاعية
               "اللغات الرئيسية للذكاء الأصطناعي
                                     o أساسيات Prolog
                            oمصطلحات ومزايا Prolog
                        "الهيكلية الاساسية للبيانات
                      "أكثر حول مطابقة Prolog
       "وجهات نظر تصريحية وإجرائية مِنْ البرامج
                    o التكرار
"متابعة تنفيذ برنامج Prolog
                                         o معالجة القائمةِ
                                         o مواضيع باقية
                                            • تمثيل المعرفة
                                   مادة التَمثيل
                               oإستعمال المعرفة
                  ٥خصائص أنظمة تمثيل المعرفة
                       ٥مداخل إلى تمثيل المعرفة
                  "معرفة علائقية بسيطة
                        "معرفة مَوروثة
                               ٥معرفة إستنتاجية
                         "معرفة إجرائية
                        ٥مسائل في تمثيلِ المعرفةِ
                                     0الخلاصة
                          • القمثيل المنطقى للمعرفة
                                 oالهنطق الهسند
                                 "مثال
                        " علاقات الحالة
                            oتطبیقات و إمتدادات
```

 التمثيل الإجرائي للمعرفة Oالتمثيل القصريحي و الإجرائي مثال oكيفية إستعمالُ المعرفة • بنية الشقّ الضعيف والحشوة Oلماذا نستخدم تركيب البيانات هذا؟ oشبكات المعاني "القمثيل في شبكة المعاني "الإستدلال في شبكة المعاني " أالتوسع في شبكاتَ المعاني oالأطر "التمثيل الهيكلي للمعرفة "ىقسى الاطر • بنية الشقّ القوى والحشوة oالتبعية التصورية oالهخطو طات oالموسوعة CYC الأنظمة الخبيرة o مقدمة o تصميم النظم الخبيرة "المخطط المعماري للنظم الخبيرةِ "إخْتبار المشكلة "هندسة المعرفة "أسئلة إمتحان o النظم الخبيرة والقواعد " مثال بسيط "وسائل تفسير "أنظمة أكثر تعقيداً o مثال نظام خبيرِ في Prolog o حالة للدراسة: MYCIN الاستنتاج مع التردد: استنباط مجهول oما هو الاستنتاجُ؟ oكَيْفَ نستنتجُ؟ oاستنتاج متردد؟ استنتاج غير متفق مع المقدمة " الاستنتاج الاصلي " التحديد "تطبيقات: أنظمة صيانة حقيقة • الإستنتاج الغير مؤكد: الطرق الإحصائية oالمقابل الومزي للاستنتاج الإحصائي 0طرق إحصائية أساسية -- إحتمال "نظريةBayes oنماذج الإعتقادِ وعواملِ اليقين "الاستنتاج بعواملِ اليقين "التَّغلَّبُ عَلَى عيوبِ حُكُمِ Bayes oنماذج Dempster-Shafer

```
"حسابلت Dempster-Shafer
                         "جَمْع الإعتقاداتِ
                               Bayesianشبکات
           "استنتاج في شبكاتِBayesian
                             " مثال عملي
               منطق ضبابي انظرية مجموعات ضبابية

    الاستنتاج الهُوَزَّع
    مقدمة

                         o أُنظمة الاستنتاج الهُوَزَّعِ
                0 أنظمة اللوح
التنظيم الهعرفة والاستنتاج المعرفة والاستنتاج
                           "قضايًا تطبيقهة
                  "حَلّ المشكلةِ والاستنتاج
                            "مثال الأنظمة
                             oانظمة تمرير الوسائل
             معالجة لغةِ طبيعيةِ (كتاب DB &AI)
                                            o مقدمة
                                          o المشكلة
                                             o النحو
                            "كتابة القواعد
                      "قواعد في Prolog
                           "مُعْر بات لُغُوية
                 "مُراجعة شجرة الإعراب
                         "اعراب مضاعف
                   o در اسة معانى الكلمات والفلسفة
                   "در اسة معاني الكلمات
                            "فلسفة الذرائع
                                            o التوالد
                                            • التخطيط
                          oماذا يتضمن التخطيط ؟
                                oبحث في التخطيط
                             oأمثلة موانع التخطيط
                           ٥مكونات نظام القخطيط
                      "إختيار أفضل قانون
                             "تطبيق نظام
                           "إكتِشاف التَقْدَمِ
                          oتخطيط مجموعة اهداف
                         "مبدأ Sussman
              o تخطيط لاخطى باستخدام ايداع مقيد
"المساعدة على الكشف باستخدام ايداع مقيد

    التَّعلَّمُ
    مما التَّعلَّم؟
    "كَيْفَ نَتعلَمُ؟
    مروتين التَّعلَم
```

```
"مخزن اختصارات الحساب
                          oالْقَعَلَّم بأَخْذ النَّصيِحةِ
                 " مكننة أَخْذ النصيحة
                "صيانة قاعدة المعرفة
            "مثال نظام التعلم - FOO
                           oالقَعَلَّم بحَلّ المشكلة ِ
          "الْقَعَلَّم بتعديلِ عامل المقياس
          "التَّعَلَّمُ بعوامل واسعة النطاق
                    "التَّعَلَّمُ بقطع كبيرة
               oالنَّعَلِّم الاستقر أئي -
"مثال التعلم Winston
                        "حيز الوصف
                        "أشجار القرار
                     0الثَّعَلَّم المبني عَلَى الْتفسَيرِ
" مثالِ
                                      oإكتشاف
      "الاكتشاف بالنظرية المقادة AM
"الاكتشاف بالبيانات المقادة BACON
                                       oالتناظر
                    "القاظر القحويلي
                    "القاظر الاشتقاقي
                                  • الادراك العام
               Oالعالم الطبيعي -- فيزياء نوعية
                 "نمذجة العالمَ النوعيَ
     " الاستنتاج مع المعلومات النوعية
                    oالادراك العام لعلم الوجود
                               "الزمان
                               "المكان
                               "المادة
                                 oبتظيم الذاكرة
                       oالفاكرة في حَلّ المشكلةِ
                                          • الرؤية
                                 oتحدي الرؤية
                             oإكتساب الصورة
          " ادخال صورة ثنائية الابعاد
                " الصور ثلاثية الابعاد
              oعرض هندسي لرؤية الحاسوب
                "نماذج الاطر السلكية
                "نموذج السلسلة التامة
                   "تمثيل الحَدّ الفاصل
  "مواصفات نموذجية مرغوبة للرؤية
                             oالتصنيف الْخَطِّي
                               "مقدمة
                            "فر ضبات
                   "أنواع نقاط الالتقاء
                    "تصنيفُ الصورةً
```

oالتصنيف الإرخائي
التقنية الإحصائية
الشياء
الشياء
الشياء
اتمييز الاشياء
اتمييز النقوش
اتحوكلات Hough
صور Gaussian
اصور Gaussian
الطرق شجرة الهحث
الطرق شجرة الهحث
الطرق التصنيف الارخائي
البحث الوسم اليباني

بسم الله الرحمن الرحيم

الحمد لله رب العالمين الذي علم الإنسان مالم يعلم، والصلاة والسلام على رسوله الكريم أكمل خلقه. خلق الله الإنسان بإحسن تقويم، وميزه عن كل مخلوقاته بالعقل وحرية إتخاذ القرار (وعرضنا الأمانة ...وحملها الإنسان). وكرمه بأن جعله خليفته على الارض، واستوجب هذا الاستخلاف، الإبداع عند الانسان. عمل الإنسان وابدع في عمارة الأرض مستندا على المعرفة التي تعلمها من خالقه (وعلم أدم الاسماء)، كذلك المكتسبة من تجارب جنسه المتراكمة. خلال القرون الطويلة لخلافة الإنسان على الأرض، وبإستخدام ميزة العقل لديه، استطاع ولايزال يدرس نفسه وكل ماحوله من المخلوقات. أسس الإنسان قاعدة معرفة ضخمة في مختلف العلوم كالرياضيات والفيزياء والطب والفلك...الخ. في كل إبداعته كان الانسان ولايزال يحاول ان يقلد خالقه، وشتان مابين إبداعات الخالق والمخلوق. ولأن إبداعات الخالق تتصف بالكمال، فما كان من الانسان الا ان يحاول فهم هذه المخلوقات، ومن بينها هو نفسه. وان يستخدم هذه المعرفة في انتاجاته وإبداعته.

يتجلى هذا التقليد، بشكل واضح، في محاولات الإنسان تطوير الحاسبات الآلية و على رأسها انظمة الذكاء الإصطناعي. حيث يقف الإنسان على رأس هرم المخلوقات، بتميزه عنها جميعا بالعقل والذكاء. بالرغم من أن نسبة الذكاء لدى افضل نظام إصطناعي، لاتصل الى ذكاء طفل بعمر الـ 12 سنة، لكنها مفيدة للإنسان. قام الإنسان بتطوير هذه النظم بالإستناد على تكوبن جسده و عقله. تقوم هذه النظم بتنفيذ الاعمال الرتيبة والمجهدة للإنسان، تستبدله احيانا في الأماكن الخطرة صحيا، والاماكن الصعبة البلوغ بالنسبة اليه. تكون مساعدا وشريكا له في تحليل و/ أو حل المشاكل. بناءا على ذلك عمل الانسان و لاز ال يعمل على كشف طريقته في التعلم والادراك والتفكير والاستنتاج واتخاذ القرار. بالرغم من انه لم يصل بالتحديد الى الطريقة التي يقوم هو نفسه بتمبيز الاشياء، لكنه استطاع ان يقدم العديد من الفرضيات والمبادئ والطرق لتنفيذ بعض انواع التفكير والاستنتاج. كذلك قام ببناء العديد من إنظمة الذكاء الإصطناعي التي تهتم بحل مشاكل محددة.

تعتبر مداخل المعلومات لدى الإنسان- الحواس الخمس: البصر، السمع، الشم، الذوق و الحس. ويعتبر العقل هو المعالج الرئيسي المدير لعمل باقي الاجزاء والمحلل للمعلومات المدخلة والمسؤول عن التفكير والإدراك والإستنتاج و إتخاذ القرار. تعتبر الذاكرة (أجزاء من المخ) مركز تخزين المعرفة بكل انواعها مع خاصية استرجاعها عند الحاجة. يعتبر نصيب حاسة البصر لدى الإنسان، من نسبة المعلومات المدخلة عن طريقه، الاكبر، حيث يبلغ 90% من إجمالي المُدخلات. بينما تتوزع الـ 10% الباقية على الحواس الأربعة الأخرى. لذلك نجد ان الإنسان ركز على موضوع البصر الصناعي، لجعله المدخل الاساسي لمعلومات نظمه المطورة. تتكون هذه الانظمة من نفس الوحدات الرئيسية نفسها التي يملكها الإنسان. فنجد فيها وحدات الإدخال: كآلات التصوير، الماسح الضوئي، لوحة المفاتيح، أجهزة التقاط الصوت، الفأرة...الخ. كما نجد وحدة المعالجة المركزية (المعالج)، ووحدات الذاكرة بمختلف انواعها. بالإضافة الى كل هذه الاجزاء الصلبة نجد البرمجيات التي تعتبر مسؤولة عن إدارة الاجزاء الصلبة وحديل المعلومات المدخلة، تخزينها، ومعالجتها للوصول الى مخرجات الحل.

هذه البرمجيات مبنية على مختلف الاسس والمبادئ والنظريات الخاصة بإدخال وتشكيل قواعد البيانات وحفظ المعلومات، تمثيل المعلومات، المعالجة المبدائية للمعلومات بهدف تحسينها، معالجة المعلومات لإستخراج دلائل التمييز بالإعتماد على مبدأ التمييز المستخدم، ترجمة المعلومات للغة الدلائل، معالجة المعلومات لحساب معايير المطابقة بعد إختيار ها حسب المسألة المطلوبة، مطابقة الدلائل وإعطاء القرار (النتيجة). يغطي هذا الكتاب بنسب متفاوتة كل مراحل وأدوات وطرق تطوير انظمة الذكاء الإصطناعي، حيث ان بعض هذه المراحل، سيخصص لها كتب منفصلة لشرحها بالتفصيل. يبدأ الكتاب بمقدمة تعرف القارئ بتعاريف هذه النظم وانواعها ومهامها. ينتقل الى طرق تمثيل المعرفة ومشاكل البحث. يعطي فكرة عن لغات البرمجة المستخدمة في نظم الذكاء الإصطناعي ومعالجة اللغة الطبيعية. ينتقل الى الشرح المفصل عن الاستنتاج وأنواعه وطرقه. يوضح بتفصيل التخطيط واساليبه لتطوير نظم الذكاء الإصطناعي. يشرح بتمعن التعلم بمراحله وطرقه وخصائصه لهذا النوع من الانظمة. يعرف بالتفكير والادراك العام والاستنتاج المميز لهذه الانظمة. وأخيرا يقدم المعلومات الكافية عن خاصية البصر المعطاة لهذه الانظمة لرؤية وتمييز الاجسام والاشياء، مع إعطاء الشرح والتفاصيل وبعض الامثلة عن نظم ومبادئ التمييز. مع العلم بأنه سيخصص كتاب مفصل لمعالجة وتمييز الصور (سيغطي بالتفصيل الرؤية ونظم التمييز).

تم إعتماد اسلوب الملخصات في هذا الكتاب، ليكون اقرب الى الكتاب الأكاديمي، ويكون اسهل للقراءة والفهم من اسلوب السرد. تم طرح بعض الامثلة من الحياة العادية، لتساعد على فهم المضمون لبعض الطرق والمبادئ. هذا الكتاب موجه للدارسين والباحثين باللغة العربية والعاملين والمطورين والمبرمجين في مجالات تقنية المعلومات من هندسة الكمبيوتر ونظم المعلومات والنظم الطبية، المجالات الهندسية الآخرى، المجالات الطبية، المجالات العلمية الآخرى كالرياضيات، الفيزياء، الكيمياء، الجغرافيا، علوم الارض، علوم الفضاء الخرى كذلك العلوم الإجتماعية بأنواعها.

لمحة عن المؤلف

د. بشير علي عرنوس من مواليد دمشق 1966، دكتوارة في هندسة الحاسب الآلي، تخصص انظمة معالجة وتمييز الصور. عمل في مجال التعليم الأكاديمي في جامعة فلاديمير الحكومية التقنية، فلاديمير – روسيا. كما عمل في مجال تطوير نظم المعالجة والتمييز (نظام قارئ آلي للغة العربية). واخيرا يعمل في ادارة مشاريع تقنية المعلومات. يسر المؤلف معرفة آراء القراء و استلام كل الملاحظات، الاقتراحات والاستفسارات حول الكتاب، على البريد الألكتروني : drarnous@hotmail.com .

المقدمة

لمحة عن تاريخ الذكاء الإصطناعي

فكرة تشكيل الذكاء الإصطناعي، على نحو مشابه للخاصية البشرية، لحل المسائل الصعبة و نمذجة الذكاء الطبيعي (البشري)، خرجت للضوء في العصور القديمة. فمثلا عند المصريين القدماء تم اختراع تمثال ميكانيكي لآمون (له خاصية تحريك بعض اعضائه). في الإليادا لجومير تم وصف "جوفيست" كآلة على شكل الإنسان. تم طرح هذه الفكرة بشكل كبير في المنتجات الادبية إبتداء من: دمية بيغمليون وحتى اللعبة الخشبية لبوب كارلو. يعتبر الفيلسوف الاسباني رايموند لولي من القرون الوسطى (القرن الثالث عشر) هو المؤسس الاول لفكرة الذكاء الإصطناعي، حيث انه حاول تصميم آلة ميكانيكية لحل مشاكل متعددة، على اساس مفهوم التصنيف العام الذي وضعه بنفسه. في القرن الثامن عشر اقترح كل من ديكارت و ليبنتس فكرة لغة عامة لتصنيف كل العلوم. هذا العمل يمكن اإعتباره اول عمل نظري في مجال الذكاء الإصطناعي. تمت و لادة فكرة الذكاء الإصطناعي كإتجاه علمي محدد بالنهاية بعد تصميم اجهزة الكمبيوتر في اربعينيات القرن الماضي.

تم اقتراح مصطلح الذكاء الإصطناعي (artificial intelligence) في عام 1956 في احدى الندوات العلمية في احدى الجامعات الامريكية. دارت هذه الندوة حول تطوير مبادئ لحل مشاكل منطقية وليس حسابية آنذاك. في اللغة الانجليزية تعنى كلمة intelligence إمكانية التفكير بذكاء.

بعد الإعتراف بالذكاء الإصطناعي كمجال علمي منفصل، تم تقسيمه الي اتجاهين:

- شبكات البحث العصبية
- شبكات البحث الصندوق الأسود

ولادة شبكات البحث العصبية

يمكن تشكيل الفكرة الاساسية من هذا الاتجاه كالتالى:

- جسم وحيد له خاصية التفكير والاستنتاج العقل البشري.
- لذلك اي جهاز سيملك خاصية التفكير يجب ان يقلد نفس بنية العقل البشري.

لذلك كانت مهمة شبكات البحث العصبية موجهة لتطوير بنى (انظمة – برمجيات + اجهزة) تشبه بنية العقل البشري. يتكون العقل البشري من مجموعة كبيرة من الخلايا العصبية (21^10) المرتبطة والمتفاعلة مع بعضها البعض. على هذا النحو اهتمت شبكات البحث العصبية لتكوين عناصر مماثلة للعصبيات، وربطهم ببعض ضمن النظام الوظيفي. تسمى هذه النظم بالشبكات العصبية. اول شبكة عصبية صممت من قبل روزن بلاتوم و ماك كالاكوم بين العامين 1956- 1965. وكانت محاولة لتقليد البصر البشري و تفاعله مع المخ البشري تمكن هذا النظام من تغريق العامين 1956- 1965.

احرف الهجاء، غير انه كان شديد الحساسية لتغير الخط، بحيث انه اعتبر مثلا احرف A المكتوبة بخطوط مختلفة اجسام مختلفة

بعد ذلك تقلص عدد المحاولات في هذا المجال، الى ان تمكن الخبراء اليابنيون في الثمانينات من تصميم اول كمبيوتر – عصبي ضمن مشروع كمبيوتر الجيل الرابع. حيث لهذا الوقت تم التغلب على مشكلتي سرعة تنفيذ العمليات وحجم الذاكرة في اجهزة الكمبيوتر. وتم اختراع الترانسبيوتر بخاصية الحل المتوازي بإستخدام مجموعات من المعالجات التى تعمل بشكل متوازي.

تعتبر المهمة الاساسية لشبكات البحث العصبية هذه الايام تمييز الاجسام من الصور المأخوذة من الفضاء. هناك ثلاث طرق لتصميم شبكات البحث العصبي:

- مستوى الاجهزة بتصميم اجهزة كمبيوتر بمعالجات إضافية لتنفيذ كافة خوار زميات المعالجة والتمييز.
 - مستوى البرمجيات تطوير برمجيات تقوم بتنفيذ كافة مهام الخور زميات وتنفذ على حواسب قوية.
- مستوى المزيج بحيث نمزج الطريقتين السابقتين فبعض المهام تنفذ بإستخدام معالجات مساعدة والاخرى بإستخدام برمجيات.

من شبكات البحث حتى الذكاء الإصطناعي

ترتكز هذه الطريقة على اتجاه معاكس للطريقة الاولى (الشبكات العصبية)، بحيث لايهم هنا كيفية بناء النظم المفكرة. المهم هنا ان يكون رد الفعل على البيانات المدخلة مشابه لرد فعل المخ البشري. مشجعي هذا الاتجاه ارتكزوا على ان الانسان لايجب ان يتبع وبشكل اعمى التصماميم الطبيعية، واعطوا مثالا على ذلك : نجاح "الدولاب" والذي لم يتوفر بالطبيعة بشكله المعروف ووظيفته. بالإضافة الى الجهل الكبير بطرق (العمليات الداخلية ضمن العقل) تفكير الإنسان واستنتاجاته وكيفية بناء الذاكرة.

هذا الاتجاه من الذكاء الإصطناعي اهتم بالبحث عن الخوار زميات الخاصة بحل مشاكل الذكاء الإصطناعي باستخدام نماذج الحواسب المتوفرة. ان المساهمة الفعالة في هذا المجال كانت تطوير لغة برمجة خاصة بإنظمة الذكاء الإصطناعي (LISP) من قبل ماكارتي. ايضا اكتشاف الاطر و نموذج الاطر لتمثيل المعرفة. جرى بحث مكثف مابين الاعوام 1956- 1963 لنماذج وخوار زميات التفكير الإنساني وتطوير اول البرمجيات المبنية على اساس هذه الخوار زميات. تمكن خبراء الذكاء الإصطناعي من عمل هذا عندما لم يستطيع وقتها علماء العلوم الاجتماعية (الفلاسفة، علماء النفس، علماء اللغة) تقديم هذه الخوار زميات. عليه وبشكل متسلسل تم تطوير مختلف الطرق التالية:

- صمم نموذج بحث لابرينت بنهاية الخمسينات من القرن الماضي، يتمثل هذا المبدأ بإيجاد الطريق الأقصر للحل الامثل خلال مخطط البحث (تمثيل المخطط). لم يحظى هذا المبدأ بإستعمال واسع. طبقت على اساسه بعض الألعاب كالشطرنج، وبناء برج هانوي.
 - صمم نموذج على اساس اختصار مجموعة الخيارات في البحث (بداية الستينات).
 - تصميم مبدأ العزل بإستخدام رياضيات المنطق، 1963-1970 . بناءا على هذا المبدأ تم تطوير لغة البرمجة Prolog.
- تطوير عدة انظمة خبيرة مثل MYCIN و M976 1976 1978 بالإعتماد على تضييق مجال المعرفة والتخصص في مجال واحد مثلا الطب او الكيمياء كما في الامثلة المعطاة.
 - تطوير نظم وحواسب الجيل الرابع في الثمانينات من القرن الماضي.

من منتصف الثمانينات وحتى الان تضاعف بشكّل كبير عدد الانظمة الخبيرة والنظم الذكية وغطت الكثير من مجالات الحياة ومختلف العلوم. كأمثلة على ذلك يمكن عرض التالي:

- أنظمة القراءة الآلية لحروف اللغات المختلفة.
 - انظمة مضاهاة التواقيع
 - انظمة مطابقة البصمات
 - انظمة مطابقة بصمة العين
 - النظم الخبيرة الطبية
 - النظم الخبيرة الخاصة بالصيانة ...الخ.

أنظمة وتعاريف الذكاء الإصطناعي

القعريف العامّ والجيد للذكاء الإصطناعي يُمكنُ أَنْ يَكُونَ:

الذكاء الإصطناعي جزءُ من عِلْمِ الحاسبات والذي عُهنتم بأنظمة الحاسوب الذكية ِ، تلك، الأنظمة التي تمتلك الخصائصَ المَرتبطُة بالذكاء واتخاذ القرار والمشابهة لدرجة ما السلوك البشري في هذا المجال – فيما يخص اللغات ، التَعَلّم، التَفكيّ وَحُلَّ المشاكلَ...الخ.

انظمة الذكاء الإصطناعي : حقل واسع، وه ي مُهتمة بتطوير الحاسبات اتقوم بتنفيذ المهامُ التي تَتطلّبُ ذكاءا إنسانيً هناك العديد مِنْ هذه المهام بسهولة شديدة بالمقابل، هناك العديد مِنْ هذه المهام بسهولة شديدة بالمقابل، هناك العديد مِنْ المهام التي يقوم بها الناس حتى بدون تفكير - مثل تمييز الوجوه - والذي يعتبر معقّدا جداً للأَثمَنة (المكننة). انظمة الذكاء الاصطناعي مُهتمّة بهذه المهام الصعبة، التي تتَطلُّب العملياتِ المعقدة والهعرفة المعقّدة والمعرفة المعقدة والمعرفة المعقدة والمعرفة المعقدة والمعرفة المعقدة والمعرفة المهام المتطوّرة.

يقوم الناس بتطوير انظمة الذكاء الاصطناعي و أَتْمَنَة الههارات الإنسانية لعدد مِنْ الأسبابِ المختلفةِ. أحد الأسباب ببساطة هو الفهم الاوسع للطريقة الإنسانية في التفكير واتخاذ القرار . على سبيل المثال، نحن قَدْ نَكُون قادرون على إختِبار وتَنْقِية النظرياتِ النفسيةِ واللغويةِ بكتابة البرامج التي تُحاولُ تقليد مظاهر السلوك البشري. السبب الآخر ببساطة نحن نهتم ان يكون عِنْدَنا برامجُ ذكية، دون التقيد بمجاراتها لطرق التفاعيّ الإنساني بدقّة، مفيدةَ لحَلّ المشاكلِ الصعبة.

هناك من يعتقد بأن الذكاء الإصطناعي يمكن وصفه بالحقل الذي يَتداخلُ بعِلْم الحاسبات بدلاً مِنْ أَنْ يَكُونَ حقل ثانوي منها، حيث انه أكثر وثوقاً للصلة إلى عِلْم النفس، الفلسفة، الهنطق، علوه اللغة، وحتى علم وظائف الاعضاء. على أية حال، يعتبر الذكاء الاصطناعي جزء من علوم الحاسبات حيث انه يستخدم تقنيات وادوات الحسابلين ، لتنفيذ عمليات مكننة الخوارزميات المبنية على اسس العلوم المذكورة اعلاه. على سبيل المثال يمكن سرد بعض مِنْ القضايا الفلسفية: بَعْض مهام الذكاء الاصطناعي

يَمكن تقسيم الهَكاء الإنساني الَّى نوعين من الوظائف: `` حياتية، ذكية "و`` خبيرة ". بالحياتية الذكية أَعْني كُلّ تلك المهام التي (تقريباً) كلّنا يُمْكِنُ أَنْ نقوم بها بشكل دوري (بدرجاتِ مُخْتَلِفةِ) لكي نَتصرّف ونَتفاعلَ في العالمِ. هذا يَتضمّنُ:

- الرؤية: الرؤية مع القدرة على فَهْم الذي نراه.
- اللغة الطبيعية: القدرة على الإتَّصال مَع الآخِرين في اللغةِ الطبيعيةِ العربية ،الإنجليزيةِ أو غيرهم.
 - التخطيط: القدرة على تخطيط سلسلة مِنْ الأعمالِ لَّنَيْل الأهدافِ المرجوة.
 - الحركة: القدرة على التَحَرُّك والقَصَرُّف بالحياة، لتنفيذ المتطلبات الحياتية.

نقوم النظم الذكية على عدد كبير من الحسابات المعقدة، التي تعالج فيها الصور المدخلة، والتي على الأغلب، تكون صور جرافيك. ومن ثما يتم إختيار مبدأ التمييز وعلى اساسه تختار دلائل التمييز ويتم حسابها ومطابقتها مع تلك التي مخزنة في قاعدة البيانات. بلإعتماد على نتيجة المطابقة، يتم اتخاذ القرار، بإنتماء الجسم المطابق الى واحد من الاصناف المحتملة.

لللخبيرة رَغْني المهام التي فقط بَعْض الناسِ جيّدون في تنفيذها، والتي يتَطلّبُ تدريب شاملَ. والتي يُمكنُ أَنْ للْحُونَ مفيدَة خصوصاً لأَثْمَتَة هذه المهام، حيث يمكن ان يَكُون هناك نَقْص بالمخبراءِ الإنسانيين. كمثال للتفاصيّ الخبير:

- التشخيص الطبي.
- تصليح الأجهزة.
- ترتیب الحاسوب.
- القخطيط المالي.

الأنظمة الخبيرة مُهتمّة بأتمتة هذه الأنواع مِنْ المهامِ. والتي على الأغلب تكون مدخلتها نصية،مع إمكانية احتوائها على صور بهدف التوضيح والاستدلال. إتخاذ القرار في هذا النوع من النظم، يتم بناءا على الخبرات المدخلة في قواعد بيانات هذه النظم من قبل الانسان الخبير، وليس بناءا على حسابات كما في النوع الاول. الذكاء الاصطناعي مُهتمّ بأتْمَتَة النوعين. مع العلم، بأن المهامُ الحياتيةُ الذكية هي الاصعب للأَتْمَتَة.

هناك العديد مِنْ التعاريفِ والتقسيمات الأخرى حسب مراحل انظمة الذكاء الاصطناعي، حيث يمكن تقسيم هذه المهام الى ·

- الهحث.
- تمثيل المعرفة.
- التطبيقات على البحث والتمثيل.

ىتقطلّب التقنية العامّة الحاسمة في كتابة برامج الذكاء الاصطناعي الى بحث. في أغلب الأحيان ليس هناك طريق مباشر لإيجاد حَلُول لهَعْض المشاكل ، حتى وان كنا قادرين على وضع الاحتمالات. على سبيل المثال، في حَلّ مشكلة ما قَدْ رَعْرفُ كُلّ الحركات المحتملة، لكن ليسَ السلساعة التي تُؤدّي إلى الحَلّ. لنفترض انك تريد الذهاب لمكان ما، و أنت تَعْرفُ كُلّ الطرق الممكنة لذلك سيارات / حافلات / قطارات .. الخ، لكنك لاتعرف أفضل طريق للوصول إلى الجهة المطلوبة بسرعة لذا يتوجب البَحْث ضمن هذه الإمكانيات لايجاد انجع الحلول. هناك العديد من التقنيات الخاصة بالبحث والتى سيتم طرقها بالتفصيل لاحقا.

يَتعاملُ تمثيلُ الهعرفةِ مع إيجاد وسائل تشفير المعلومات الخاصة بالهعرفةِ لكي يُمْكِنُ أَنْ تَستعملَها الحاسبات الحقا. سيتم الحديث بالتفصيل عن تمثيلِ المعرفةِ في الفصل الخاص بهذا الموضوع.

كما سيبحث هذا الكتاب مواضيعً مهمة من الّذكاء الاصطناعي مثل التخطيط، النّفائيّ والاستنتاج، الْفَعَلّم، الْفَهْم و التمييز ِ كذلك شيناقش مهام مثل الرؤيةِ، فَهُم اللغاتِ الطبيعيّق، تمييز الصوتَ والتخطّيط الآليّ.

الخلاصة

يمكن استنتاج الخلاصة التالية من هذه المقدمة : كل مهام حل المشاكل المنوطة بانظمة الذكاء الإصطناعي يُمْكِنُ أَنْ تتلخص بنو عين:

تمثيل المعرفة، و الهحث

تعريف المشكلة

لقوضيح المشكلة سنأخذ مثال: لعبة بين شخصين على طاولة لعب على سبيل المثال لعبة الشطرنج ، مبدائيا علينا تحديد قواعد اللعبة والأهداف المفروض الوصول لها للفوز ، بالإضافة إلى وسائل تَمْثيل الهراحل في اللعبة المرحلة الإفتتاحية يُمْكِنُ أَنْ يتُرف كالحالة الأولية (صف الاحجار على رقعة اللعب)، و مرحلة الفوز كحالة الهدف (سقوط احد الملكين)، يُمْكِنُ أَنْ يكون هناك أكثر مِنْ هدف واحد. تَسْمحُ الحركاتُ في اللعبة بالانتقال مِنْ الحالة الأولية إلى الحالات الأخرى بما يُؤدي في النهاية الى الوصول إلى حالة الهدف. على أية حال وبالرغم من ان القواعد في لعبة الحالات الأخرى بما يؤدي في النهاية الى الطرق والخطط للعب غير منتهية العدد. هذه القواعد لا تستطيعُ أَنْ تَكُونَ مجهّزة عُموماً بدقة، وبرامجَ الحاسوب لا تستطيعُ مُعَالَجَتهم بسهولة. كما تواجهنا مشكلة أخرى متعلقة بوسط التخزين، غير ان البحث يُمْكِنُ أَنْ يُنجَزَ بالشجزئة.

إنّ عددَ القواعدِ الهستعملة يجب أنْ يُقلّلَ للحد الادنى حسب المتاح، والمجموعة يُمْكِنُ أَنْ تعامل بمعالجة كُلّ قاعدة في المجموعة على حدى بشكل عام. إنّ تمثيلَ الألعابِ بهذه الطريقة يؤدّي إلى تمثيل فضاءِ رسمي وهو طبيعي للألعابِ المُنظّمةِ بشكل جيّدِ ببَعْض التراكيبِ. هذا التمثيلِ يَسْمحُ لنا بالتعريفِ بالهشكلة والذي يَستوجبُ الحركة مِنْ مجموعة المواقع الأوليةِ إلى إحِدى مجموعات مواقعِ الهدفِ. يَعْني بأنّ الحَلّ يَتضمنُ إستعمال تقنياتِ معروفةِ والهحث الهنظّم.

- مشاكل مُنظّمة بشكل جيد (ومثال على ذلك: ألعاب) يُمْكِنُ أَنْ تُوْصَفَ كمجموعة القواعد.
 - قواعد يُمْكِنُ أَنْ تُعمّم وتُمثّل كتمثيل فضاء رسمي:
 - o تعریف رسمي.
 - o التنقل من المرحلة الأولية إلى إحدى مجموعات مواقع الهدف.
 - o تحرَّك مُنجَزُ عن طريق بحث منظم.

الهحث

هناك طريقان أساسيان لإداء الهحث:

- بحث اعمى -- يُمْكِنُ فقط أَنْ يَتحرّكُ طبقاً للموقع في البحثِ.
- بحث إرشادي باستخدام معلومات معينة لتقرير منطقة البحث.

البحث الأعمى ـ العمق اولا

- 1 نعتبر المجموعة L قائمة العُقد الأولية في المشكلة.
- L إذا كانت L فارغُة ، نصل الى فشل من المعقدة الأولى، في خلاف ذلك نأخذ العقدة n مِنْ L
 - إذا كانت العقدة n هي حالة الهدف، نعاود الكرة مِنْ العقدةِ الأوليةِ .

4. ما عدا ذلك تحذف الخطوة n مِنْ L ويتم اضافة كل اطفال ns الى بداية L. ضع علامة لكُل طفل مع طريقِه مِنْ العقدةِ الأوليةِ. عُدْ إلى 2.

رسم 1 تمثيل شجرة البحث - العمق اولا

المُلاحظة: كُلّ الأعداد في الرسم 1 تُشيرُ إلى تسلسل المرور في البحثِ.

بحث العرض أولاً

1. نعتبر المجموعة L قائمة العُقَدِ الأوليةِ في المشكلةِ.

2. إذا كانت L فارغُة، نصل الى فشل من العقدة الأولى، في خلاف ذلك نأخذ العقدة n مِنْ L.

 \bar{n} إذا كانت العقدة \bar{n} هي حالة الهدف، نعاود الكرة مِنْ العقدة الأولية.

4. ما عدا ذلك تحذف الخطوة n مِنْ L ويتم اضافة كل اطفال ns إلى نهاية L. ضع علامة لكُل طفل مع طريقِه مِنْ العقدةِ الأوليةِ. عُدْ إلى 2.

رسم 2. المُلاحظة: كُلّ الأعداد في الرسم 1 تُشيرُ إلى تسلسل المرور في البحثِ.

البحث الإرشادي

البحث الإرشادي هو المبدأ الذي:

• فَدْ لا يَعَطي أفضل الْجَلوّلِ دائماً

• لكن يُضْمَنُ لإيجاد حَلّ جيد في الوقتِ المعقولِ.

بالىكرار تَزِيدُ كفاءتة.

• مفيد في حَلَّ المشاكلِ الصعبةِ التي

o لا يُمْكن أَنْ تَكُلُّ لِلْيِّ طِرِيقَ آخْر.

م حلول تَأْخذُ وقتاً لانهائياً أو وقت طويلَ جداً للحساب.
 إنّ المثال الكلاسيكي لطرق البحث الإرشادية مشكلة البائع الجوّال.

خوارزمية توليد واختبار طرق البحث الإرشادية

- 1. تَوْلِيُّ الْحَلِّ الْمُحتمل والذي يُمْكِنُ أَنْ يَكُونُ نقطة في فضاءِ المشكلةَ أو بداية الطريق مِنْ الحالةِ الأوليةِ.
- 2. إختباو هذا الحَلِّ المحتمل هل هو الحَلّ الحقيقي بمُقَارَنَة الحالةِ التي تم الوّصول اليها بمجموعة حالات الهدف.
 - 3. إذا تبين انه هو الحَلّ الحقيقي، نعود بخلاف ذلك نكرر مِنْ 1.

هذه الطريقة أساس بحث الهمق او لا وتعتبر كحلول كاملة يجب أنْ تحدد قبل الإختبار. ه ذه الطريقة تُكعَى طريقة المتحف البريطاني، حيث يتم الهَدْث عن معروض بشكل عشوائي. البحث الإرشادي مطلوب لتضييق البحث انفترض انه لدينا مشكلة أربعة مكعبات ذات 6 أضلاع ، وكُلّ جانب من المكعبات مَلُون بلحد الألوان الأربعة. إنّ المكعبات الأربعة مَوْضُوعة بجانب أحده ا الآخر والمشكلة تَكْمنُ في ترتيبهم بحيث تكون الألوان المتوفرة الأربعة مَعْرُوضة في كل جوانب المكعبات منظورة. المشكلة يُمْكِنُ فقط أنْ تُحْلَّ إذا كان هناك على الأقل أربعة جوانب لوت في كُلّ لون وعدد الخيارات المُجرّب يُمْكِنُ أنْ يُخفّص بلستعمال البحث الارشادي بشرط ان اللون الأكثر شهرةً يُخفي بالمكعب المجاور.

تسلّق التّلّ

هنا طريقة التوليد والاختبار مَدْمُوجةُ بوظيفةِ إرشاديةِ والتي تَقِيسُ قربَ الوضعية الحاليةِ إلى حالةِ الهدفَ. 1. قيّمُ الحالةَ الأوليةَ إذا هي حالةُ الهدفِ فنصل للنهاية، بخلاف ذلك تكون الوضعية الحالية حالةُ أوليةُ.

2. نحدد مشغل جديد لهذه الحالة ورؤلَّدُ حالة جديدة.

3. قيّم الحالة الجديدة

إذا ه ي أقرب لحالة الهدف من الحالة الحاليه نقوم باعتمادها كحالة وضعية حالية

o إذا ه ي ابعد فتعُملُ

4. إذا الوضعية الحالية حالة الهدف أو ليس من مشغل جديّ متوفر، يتوَّكَ. ما عدا ذلك إعادة مِنْ 2.

في حالة المكتبات الأربعة العامل الإرشادي الهناسب هو مجموع الألوان المختلفة على كُلّ مِنْ الجوانب الأربعة، وحالة الهدف هي 16*4 على كُلّ جانب. إنّ مجموعة القواعدِ تَختارُ ببساطة الهكعّب وتَدُوي، بمقدار 90 درجة. الترتيب البادئ يُمْكِنُ أَنْ يَكُونُ محدّداً أَو عشوائياً.

التَلْدين المُقَلَّد

هذا المبدأ مختلف عن تسلق التَلِّ ، والفكرةِ أَنْ تَتضمَّنَ مسح عامٌ مِنْ المشهدِ لنَجَنُّب تَسَلُّق التلالِ الخاطئةِ. إِنَّ الفضاءَ الكاملَ مُسْتَكْشُفُ أُولياً وهذا يَتفادى خطرَ وجود هضبة أَو حافة ويَجْعلُ الإجراءَ أقل احساسل إلى نقطةِ البداية. هناك تغييران إضافيان؛ نَختارُ تحقيق حدّ أدنى بدلاً مِنْ خَلْق الحدود العليا ونحن نَستعملُ دالة التعبيرَ الموضوعية بدلاً مِنْ تسلّق تَلِّ. فَيْتِ هذا العنوانُ مِنْ عمليةِ الموضوعية بدلاً مِنْ النهائيةِ الثابتةِ. الإحتمال الذي يمكن ان تحمية المعادنِ وبعد ذلك نُركُه اتبرد حتى نصل الى حالة طاقةِ، أقل ما يمكنِ ، النهائيةِ الثابتةِ. الإحتمال الذي يمكن ان $p = \exp^{a-\Delta E/kT}$

يجعل المعدن يَقْفِزُ إلى مستوى طاقة أعلى مُعطى بالمعادلة: حيث أنَّ k هو ثابت بولتزمان Boltzmann. إنّ المعدل الذي يبرد عنده النظام يُدْعَى جدولَ التَّلْدين. Æ يُدْعَى التغييرَ في قيمة الدالة الموضوعية و kT يُدْعَى التغييرَ في قيمة البائع الجوّالُ. الموضوعية و kT يُدْعَى ترجة الحرارة. كمثال لهذا النوع من المشاكل يمكن اعتبار خوارزمية البائع الجوّالُ. إلى إنّ خوارزمية التَّلْدين المُقَلَّدة مستندة على العملية الطبيعية التي تُحْدثُ في علْم المعادن حيث ان الهعادن تستخلُ إلى درجات الحرارة العالية ومن ثما عيم تبوّيها أن نسبة أو معدل القبريد تُؤثِّرُ على المنتج التام الصنع بشكل واضح. إذا كانت نسبة التَّبريد سريعة ، مثل حالة سقي المعدن ، بحيث يتم تبريد المعدن المحمى بشكل كبير بسرعة برميه بخزان كبير مملؤ ، فإن التركيب في درجات الحرارة العالية عَيتمرُ في درجة الحرارة المنخفضة والتراكيب البلورية الكبيرة يختلف معدلها بالمقارنة مع القبريد الهطيئ كما في الهواء الطلق.

- 2. إذا ه ي حالةُ الهدفِ يتوَك فيماعدا ذلك نَجْعلُ الوضعية الحاليةَ حالةِ اولية ونتابع.
 - 3. نعطى صفة المتغيّر الحالة الأفضل للوضعية الحالية
 - 4. نحدد درجة حرارة الهجموعة، T، طبقاً لجدولِ التّلدين
 - 5. الإعادة

ختلاف بين قِيَم الوضعيات الحاليةِ والجديدةِ ΔE

- 1. إذا هذه الحالةِ الجديدةِ حالةُ الهدفِ ننهى البحث
 - 2. تُقارِنُ ما عدا ذلك بالوضعية الحاليةِ
- إذا كانت نتيجة 2 افضل، نعطى قيمة الوضع الحالى كالحالة الأفضل، ونجعل الحالية هي الحالة الجديدة.
- 4. إذا ه ي ليست أفضل ، نجْعل الوضعية الحالية بالإحتمال p'. هذا يتضمّن تُوليد عدد عشوائي في المدى من 0 الى 1 ورقارئه مَع النِصْف، إذا هو أقل مِنْ النِصْف لا نَعمَلُ شيء وإذا هو أكبر مِنْ النِصْف رَقْبلُ هذه الحالة كحالية قادمة.
 - 5. معدل T في جدولِ التَّلْدين معتمد على عددِ العُقدِ في الشجرةِ
 - نكرر حتى وجود حَلّ أو انتهاؤ اوامر التشغيل
 - 6. أاعطاء الجواب: أفضل حالة

البحث الأفضل الأول

يعتبر البحث الافضل الاول عبارة عن مزيج من بحثى العمق أولاً والعرض أولاً.

مريقة العمق أولاً جيدة لأن يمكن الوصول الحَلّ دون الحاجة لحساب كُلّ الْهُقَد، وطريقة العرض أولاً ايضا جيدة طريقة العمق أولاً جيدة النه النه النه النه النه الطريقة العرض أولاً المنفعة من كلتا النه الطريقة إلى النه الطريقة النه المنفعة من كلتا الطريقة إلى خطوة، يتم اختيار العقدة الأكثر وَاعِدة إذا تم إختيار إحدى العُقد والتي تُولّدُ العُقدَ التي أقل منها وتَعِدُ بأنّها محتملة الإختيار آخر في نفس المستوى وفي الواقع البحث يَتغيّرُ مِنْ العمقِ إلى العرض إذا كانت النتيجة وبناءا على التحليل الله من العقد السابقة التي الاتزال محفوظة لدينا وطريقة البحث تَرْجعُ إلى أحفادِ الإختيارِ وإلا براداتِ الأولى، عندها يتم التراجع.

هذه العملية جداً مشابهة للإعتلاء الحادِّ، لكن في طريقة تسلق النَّلِّ وعند اختيار الحركة يتم رفض العقد الآخرى ويعاد النظر فيها بينما في الأفضل أولاً هم مُوَفَّرون لتَمْكين زياْرة ثانية إذا يَحْدثُ الطريق المسدودَ على الظاهرِ أفضل طريق طريق أيضاً أفضل حالة متوفرة مختارة في الأفضل أو لا وحتى ولو قيمتِها أسوأ مِنْ قيمة العقدة المكتشفة عن طريق تسلق النَّلِّ وعليه يتوقف التقدّم في حال انه ليس هناك عُقد وريته أفضل خوارزمية الهحثِ الافضل الأول تتضمن مخطط OR و تتفادى اي تكرار العقدِ وتَفترضُ بأن كُلَّ عقدة لَها وصلة أصل واحدة وذلك لإعطاء أفضل عقدة التي منها جاءتْ، وصلة إلى كُلِّ ورثتها بهذه الطريقة إذا تم الوصول المعقدة الأفضل فيتم الانتقال للأسفل إلى الورثة وتتطلبُ هذه الطريقة بيستعمال مخطط OR مِنْ قوائم العُقدِ.

يسمى الطابور الأولى للحُقَد مفتوح ِ اذا قُيّمَ بالوظيفةِ الإرشاديةِ لكن لَمْ يتم النوُسّعَ إلى الورثةِ. تكون العقد الأكثر وَاعِدةِ في الجبهةِ. يسمى الطابور بالمُغلق اذا كانت العُقَدَ التي وُلّدتُ والتي يجب أنْ تُخْزَنَ لأن الوسم اليياني (المخطط) يُستَعملُ في التفضيلِ إلى شجرة.

البحث الأرشادي يستخدم لايتجاد العقد الأكثر واعدة، وتسمى الوظيفة الإرشادية f حيث أنَّ f تقريبَ إلى f وتنكُوّنُ من جزءين g الله والمنه النه المعالمة الأولية إلى العقدة الحالية والله والمعتبّر والمعالمة في هذا السياق الذي سيكُونُ عدد الأقواسِ التي عَبرَ كلّ منها ويُعتَبرُ مِنْ وزن الوحدة أن تخمينُ الكلفة الأولية يُصبحُ مِنْ العقدة الحالية إلى حالة الهدف. إنّ الوظيفة f القيمة التقريبية أو تخمينُ يُصبحانِ مِنْ الحالة الأولية إلى حالة الهدف. كلتا g والم متغيّرات مقيّمة إيجابية. خوارزمية الافضل الأولى هي ابسط شكل من خوارزمية f منْ f فلاحظُ بأن f المعقدة الأولية إلى العقدة المعلوب المعلوب المعلوب المعتبر والموالية إلى العقدة المعلوب المعلوب المعلوب الوصول إلى الحَلّ مِنْ العقدة المعلوب المعلوب المعلوب الوقت المعلوب الوقت المعلوب الوقت المعلوب الوقت المعلوب الوقت المعلوب المعلوب الوقت المعلوب المعلوب المعلوب المعلوب الوقت المعلوب ا

أفضل خوارزمية بحثِ أولى:

- الداية مع فتح حصّة الحالة الأولية
 اعتبار أفضل عقدة على اساس انها مفتوحة
 - 3. زولد ورثته
 - 4. لَكُلُّ ورَّبِث نعمل التالي:
- ريب تعمى السبعي. o إذا هو لَمْ يُولَّدْ قَبْلَ أَنْ يُقيِّمُه رُضِيفُه لَفَتْح ورَسَجيل والدِه o إذا هو وُلَّدَ قبل تغييرِ الوالد، وإذا هذا الطريقِ الجديدِ أفضلُ، في هذه الحالة نجددِ كلفة الوُصُول إلى أيّ عُقَد وريثِ
 - 5. إذا تم الوصول للهدف أو الايوجد عُقَدَ أكثرَ في مفتوح، نصل للنهاية ، او رَعُودُ فيها عدا ذلك إلى 2.

All figures indicate "cost" of move

رسم 3. خوارزمية البحث الأولى

خوارزمية *A

أفضل بحثِ أولِ هو مُبَسَّط *A.

- 1. العداية مع فَتَح حصّة العُقَدِ الأولية.
- 2. التقطُّ أفضل عقدةِ على مفتوحةٍ مثل هذه التي f=g+h أقل ما يمكنُ. 3. إذا أفضل عقدةُ هدفِ تَركتُ وتُرجعُ الطريقَ مِنْ الأولي إلى أفضل ما عدا ذلك

4. أزلْ الأفضل مِنْ الهفتوح وكُلّ اطفال الأفضل، يَعتبرُ كُلّ بطريقِه مِنْ العقدةِ الأوليةِ.

الإنحطاط الرشيق للمقبولية

إذا h' يَزِيدُ في تقدير نادراً h بأكثر مِنْ d فأن خوارزمية *A سَتَجِدُ الْحَلّ الذي كلفته d أعظم مِنْ الْحَلّ المثالي.

مخطط AND-OR

هذا المخطط مفيد لبَعْض المشاكل حيث:

 يَتضمّنُ الحَلَّ انقسام المشكلة إلى المشاكل الأصغر.
 نقوم بعدها بجْلُ هذه المشاكل الأصغر.
 تتضمّنُ هنا البدائل الفروع في أغلب الأحيان حيث البعض أو الكُلّ يجب أنْ ي ضي قبل امكانية التقدّم.
 على سبيل المثال إذا أردت التَّعلم لعَزْف فرانك Zappa المنفرد على القيثارة ، والذي يُمْكِنُ أَنْ نلاحظه (رسم. (2.2.1)

- إنسخه مِنْ القرص المدمج أو
- إشتر `` كتاب قيثارة فرانك Zappa " وأقَرأه مِنْ هناك.

All figures indicate "cost" of move

رسم 4. مخطط AND-OR

م لاحظة: تم إستعمالَ الأقواسِ للإشارة إلى ان واحدة أو اكثر من الهُقَدِ يَجِبُ أَنْ بَكُونَ محققة قبل انجاز العقدةِ الأصلِ. لإيجاد الحلولِ باستخدام مخطّط AND-OR ، خوارزميةِ الافضل الأول تتنتعمل كقاعدة مَع بعض القعديل لمُعَالَجَة مجموعةِ العُقَدِ المرتبطة بعاملِ AND.

خوارزمية *AO

- 1. بدء المخطط لبَدْء العقدة
- 2. إعبرُ الرسم البياني متابعا الطريقِ الحالي الذي يُجمّعُ العُقَدَ القي لحدّ الآن لَمْ تؤسّعَ أو تكُلّ
- 3 الِتقطُ هذه الْعُقَدِ ووسَّعْما وإذا ه ي لَيْسَ لمُا ورثةُ نَيْعُو هذا عبثِ القيمةِ يَحْسبُ ما عَدا ذلك فقط f' لكُلّ مِنْ الورثةِ .
 - 4. إذا 'f=0 رُؤُشِّرُ العقدةَ بأنها حُلَّتُ
 - غيّر قيمة f' للعقدة المَخْلُوقة حديثاً لعَكْس ورثتِها بالتوليد الخلفي.
- 6. إستعمل الطرق الاكثر وَاعِدةِ حيث هذا محتمل، وإذا الهقدة محددة انها حُليَّتَ وَمّ بتأشّرين العقدة الأصل انها حلت.
 - 7. إذا عقدة البداية حُليَّتُ أُو تُقيِّم ها أعظم مِنْ العبثِ، توقَّف، ما عدا ذلك إعادة مِنْ 2.

تحليل وسائل - نهايات

- يَسْمحُ بالبحث بكلا الاتجاهين جيئة وذهاباً.
- هذا يَعْني بأنّنا يُمْكِنُ أَنْ نَحْلَ أَجِزاءَ رئيسيةً من الهشكلة أو لا وبعد ذلك نعودُ إلى المشاكلِ الأصغرِ عندما يُجمّعُ الحَلَ النهائي.
 - جي بي إس كَانَ البرنامج الأولَ في الذكاء الاصطناعي لتنفيذ تحليلِ نهاياتِ الوسائلِ.
- مخطّط الرجل الآلي يعتبر مشكلةُ متقدّمةُ solverحيث يستخدم لحلها تحليلَ نهاياتِ الوسائلِ والتقنياتِ الأخرى.

خوارزمية تحليلِ نهاياتِ الوسائل:

- 1. كرر حتى الوصول للهدف أو لا إجراءات أكثر متوفرة:
- o يَصِفُ الوضعية الحالية، حالة الهدف والإختلافات بين الإثنان.
- و يَستعملُ الإختلافَ يَصِفُ الإجراء الذي سَيُصبحُ أقرب على أمل التَهْديف.
 - o يُستعملُ الإجراءَ ويُجدّد الوضعية الحالية.
 - 2. إذا تم الوصول للهدف نعتبره نجاحا ما عدا ذلك فشل.

رضاء القيدِ (تحقيق القيد)

- المشكلة العامة أَنْ تَجدَ الحَلّ الذي يَرضي (يحقق) مجموعة القيودِ.
- إستعمال المخطط الارشادي ليس لتهمين المسافة إلى الهدف لكن لتقرير اي العقد تصلح لتوسيع العش.
 - أمثلة هذه التقنية: مشكلة تصميم، تعريف رسوم بيانية، تخطيط طريق آلى و ألغاز

الخوارزمية:

- 1. حدد القيود المتوفرة:
- وَقْتَحُ كُلُ الأشياء النِّي لَهَا قِيمَ ضمن الحَلُ الكامل.
- o كرر حتى كل الأشياء التي خصّصت لها قِيمَ صحيحة تكون صحيحة:
- إختر جسماً ودعم قَدْرَ المستطاع مجموعة القيودِ التي تُقدّمُ إلى الجسم.
- إذا مجموعةِ القيودِ مختلفة عن المجموعةِ السابقةِ قم بثّقحُ كل الأشياء التي تَشتركُ في هذه القيودِ.

• اعزل الجسم المحدد.

2. إذا تم اكتشاف إتحاد القيود في الاعلى نعرّف الحَلّ كحل عودة.

3. إذا تم اكتشاف إتحاد القيود في الاعلى نعر ف التناقض لفشل عودة.

لماذا هذه المواضيع مهمة؟

بحث وشكل تمثيل الهعرفة يعتبر القاعدة الاساسية للعديد مِنْ تقنياتِ الذكاء الاصطناعي.

سيتم سرد بضعة مؤشرات لايضاح استخدام طرق الهحثِ الهعيّنةِ في فصول هذا الكتاب. تمثيل الهعرفة

--البحث الأفضل الأول (*A)، رضاء القيد وتحليل وسائل النهايات.

الاستنتاج المتردد

-- بحث العمق أولاً، بحث العرض أولاً وطرق رضاء القيدِ.

الاستنتاج المُوزّع

-- بحث الأفضل الأولِ (*A) ورضاء القيدِ.

التخطيط

-بحث الأفضل الأولِ (*A)، *AO، رضاء القيدِ وتحليل وسائلِ النهايات.

الفهم

-- رضاء القيدِ

التَعَلَّم

-- رضاء القيدِ، تحليل وسائل النهاياتِ.

الحسّ العام

-- رضاء القيدِ

الرؤية

- إلهمق أولاً ، العرض أولاً ، البحث الارشادي، قلَّدَ التَّلْدين، رضاء القيدِ.

عِلْم الإنسان الآلي

■ رضاء القيدِ ووسائلِ النهايات إستعملَ في تخطيط الطرقِ الأليّةِ.

برمجة الذكاء الإصطناعي باستخدام لغة البرمجة

سيتم في هذا الفصل سرد اساسيات برمجة الذكاء الإصطناعي prolog. التفاصيل الأخرى للغة ومِنْ تقنياتِ برمجة prolog سَتُقدَّمُ في الفصول التاليةِ، حسب الحاجة لاعطاء الامثلة، ويُمْكِنُ الاستعانة بلِي كتاب prolog تخصصي اخر. بهدف الفائدة الاكبر سيتم إعطاء الكثير من الامثلة الخاصة ببرمجة الذكاء الإصطناعي بلغة Prolog. قد يجد القارئ لغة البرمجة Prolog لغة غريبة عن لغات البرمجة الاخرى المعروفة، ولكن من الضروري جدا لدارس الذكاء الاصطناعي التَعَوُّد على هذه اللغة. لذا انصح بإعطاء هذا الفصل الحظ الكافي من القراءة والفهم للحصول على الكثير مِنْ الممارسةِ.

برمجة الذكاء الإصطناعي

برامج الذكاء الإصطناعي ، من حيث المبدأ، يُمْكِنُ أَنْ تَكُونُ مكتوبَّه في أيّ لُغة برمجة. على أية حال، كَمَا هو الحَال مَعَ أيّ برمجة مهمّة، هناك لغات التي لَها الميزّاتُ التي تَجْعلُ الذكاء الإصطناعي يُبرمجُ بشكل سهل، واللغات الاخرى التي تَجْعلُ الأمر اصعب. هذا مفيدُ لنا للمرور بسرعة خلال البعض مِنْ خصائصِ برمجة الذكاء الإصطناعي التي تُؤثّرُ على إختيار اللغةِ.

دعم للبرمجة الاستطلاعية

لاتعتبر تقنيات هندسة البرامج مثل تكرير الخطوات والقطوير مِنْ المواصفاتِ الاساسية مفيدة لإغلب مشاكل برمجة الذكاء الإصطناعي. لا يمكن أعْطاء مواصفاتَ كاملة ليرنامج الذكاء الإصطناعي قبل بناء نموذج له على الأقل – حيث اننا لا نَفْهِمُ طبيعةً المشاكلِ بما فيه الكفاية. تعتتبر برمجة الذكاء الإصطناعي إستطلاعيةً. لذا عندما نُطوّرُ برنامج نحن نسعى لإسْتِكْشاف طبيعةِ المشكلةِ والمجال، ونكتشفُ إستر اتيجياتَ الحَلِّ الجيدةِ لتنفيذ المطلوب. هذه لَيستْ دعوة لَنتُرك تقنيات هندسة البرامج الجيدة، فقط لاننا لا نستطيعُ الإعتِماد عليهم، وبأنّنا نَتطلّبُ الهيئةُ التي تَدْعمُ

الأساليبَ الأكثر استطلاعيةً مِن تطوير البرنامج. ميزّات لغة برمجة / نظام والتي تدعم الإستطلاعية تتضمّن: القدرة على تطوير مفسري اللغة لحَلّ كافة أصناف المشاكل؛ وبيئات تطوير تفاعلية – حيث ان المبر مجين يُمْكِنُ أَنْ يَختبرونَ بحرية أقسامَ صغيرةَ بشكل تفاعلي.

تَعْتبر مناسبة لبرمجة الذكاء الإصطناعي، مثل الدعم لمعالجة القائمةِ، مقارنة النقوش، والإستطلاعية. كلتا اللغتين كثيراتي الإستعمال - Prolog خصوصاً في أوروبا واليابان، Lisp في الولايات المتَّحدةِ. هذا الإستعمالِ العريض ضمن الحقلِ سببُ آخرُ لإخْتيار اللغةِ Prolog لتطبيقاتِ الذكاء الإصطناعي. هذا النوع من اللغات مستعمل بشكل اكبر في تطوير النظم الخبيرة، بينما نجده عاجزا في النظم الذكية، حيث اننا بحاجة لحسابات كثيرة ومعقدة. كذلك وبما ان مدخلتنا في النظم الذكية هي صور (جرافيك) وهي بحاجة لمعالجة كبيرة، فإننا بحاجة هنا لإستعمال لغة اكثر علمية مثل فئات اللغة C, C++, Visual C او Pascal الخ.

لغة البرمجة Lisp يُمْكِنُ أَنْ يَعْتَبَرَ كَجَدّ البرمجة الوظيفيةِ، طوّرتَ في أواخر الخمسيناتِ ومستندة على تعاريفِ الوظيفة بالرغم من نظرة استصغار مِن قِبل أصوليي البرمجة الوظيفيين، بثَّقي Lisp لَغة برمجة كثيرة الإستعمال وقويَّة ومفيدة. تَستعملُ اللغة القائمةَ كتمثيلها الأساسي للتراكيبِ وبرامج البياناتِ (تعاريف وظيفةٍ)، ونزُوِّدُ تشكيلة واسعة من بني وتراكيب في الوظائف لمُعَالَجَة القوائم. (في الحقيقة اللهِفة تُؤيِّدُ معالجة قائمةِ.) على خلاف اللغاتِ الوظيفيةِ الصافيةِ، تراكيب اليياناتِ قَدْ تُعدَّلُ - ذلك محتمل نظرياً ومع انه مكروه لكن في الممارسةِ مفيدةِ جداً أحياناً! بالطبع، هذا ما زالَ محتملُ لإسْتِعْمال اللغة عَلى نَحو وظيفي تماماً، وبشكل اختياري. إستعمال القوائم لتَمثيل البرامج تَسْمحُ بكتابة مفسري اللغة بسهولة، حيث أنّ هناك إمتياز صَغير بين prolog والييانات. تَسْمحُ القوائمُ ايضا معالجة تر اكيب الرموز المعقّدة بسهولة (كذلك تُمثِّقُ معرفة الذكاء الإصطناعي) ، كذلك الامر بالنسبة لمقارنة النقوش والانماط يُمْكِنُ أَنْ يَكُونَ مكتوبة بسهولة لمُجَارِاة تراكيبِ القائمةِ .

لغة البرمجة Prolog = PROgramming in LOGic). عمليا ، هي مستندة على الحساب الهسندِ. كتابة برامج Prolog بسيطة ومشابهة لكتابة البياناتِ في الحساب المسند. عند كتابة برنامج prolog كبير (حيث اصبح لدينا معرفة اساسية بتراكيب وادوات التحكم وألية المطابقة في لغة البرمجة Prolog) من الأفضلُ التوَقّف عن القعامل مع اليرنامج كبيانات في المنطق. كما في أيّ لُغة برمجة أخرى، في النهاية يَجِبُ أنْ نعي تماما ماهو المطلوب من البرنامج ، وليس فقط معنى تراكيب البيانات. عند كتابة برنامج بلغة البرمجة Prolog يجبّ أنْ يؤخذ بعين الإعتبار انها لُغة برّمجة اشتقّتْ مِنْ المنطق واثبات النظرية ، لكن مع قوتقا الرئيسية نجد ان تراكيبَ بياناتِها مرنةِ جدا، كذلك تراكيب قوي لمطابقة الانماط، وبَني جيدة في إستراتيجية البحثِ

أساسيات لغة البرمجة Prolog

أي برنامج prolog يَشْمَلُ مجموعة من الحقائق و مجموعة من القواعدِ. ليس هناك اي ضرورة لتحديد نوع المتغيرات في بداية البرنامج او تهيئة بدايات البرنامج كما في اللغات الاخرى. فقط بَعْض الحقائق والقواعدِ.

بعض الحقائق في prolog:

lectures (alison, ai). lectures (john, databases). female (alison).

```
age(alison, 29).
                                          [Oh, OK, that was last year..]
    office(alison, s134).
    animal(lion).
    animal(sparrow).
   has feathers (sparrow).
                                                                                          الحقائق تَشْملُها٠

    اسم مسند (أو دالة) مثل المحاضرات، أنثى، مكتب الخ. هذه الاسماء يَجِبُ أَنْ تَبْداً بحرف صغير.

                                                 • صفر أو حجج بقيم، مثل alison, ai 3، و134 s.
                                               مُلاحظة تلك الحقائق (القواعد، والأسئلة) يَجِبُ أَنْ تَنتهي بنقطة.
                                                                                   بَعْض قواعد prolog:
   bird(X) :-
       animal(X),
       has feathers(X).
    grandparent(X, Y) :-
      parent(X, Z),
      parent(Z, Y).
     هنا ممكن ان نقول ان مشغل prolog ``: -' ' يعنى `` اداة الشرط إذا "، بينما ``، " يُمْكِنُ أَنْ نَقُواً كمعنى `` اداة
  العطف و" لذا القاعدة الأولى تَقُولُ بأن `` X طير إذا X حيوان و X عِنْدَهُ ريشُ "، بينما القاعدة الثانية تَقُولُ بأنّ
                      `` Y,X جد إذا Z,X والد و Y,Z والد ". كُلّ الحجج تَبْدأُ بحرف كبير (مثلَ X,Y) متغيّرات.
 (مُلاحظة تلك المتغيّرات ِلَمْ تُعالَجْ بنفس الطّريقة في لغات البرمجة التقليدية - على سبيل المثال، ليس من الضروري
    أن يملكوا قِيَمُ). أيّ ثابت يَجِبُ أَنْ لا يَبْدأَ بحرف كبيّر ما عدا بإنَّهُ سَيَعتبرُ متغيّر. لذا، أخذاً بعين الإعتبار حقيقة ان
                      (Ścotland, Edinburgh) كلتا الحجج سَتُعتبرُ متغير اتَ غير مقيّدةَ لأنها تبدأ بحرف كبير.
 تشغيل برنامج prolog يَتضمّنُ أسئلةِ Prolog (بَعْدَ أَنْ تم تحميلٌ مجموعتي الحقائق والقواعد). على سبيل المثال،
                                                                                      أنت بُمْكنُ أنْ تَسْأَلَ·
                                                                     ?- lectures (alison, ai).
                              و prolog يَعطى الجوابَ `` نعم " و إذا سَلْالها سلسلة من الأسئلة نحن نحصل على:
?- lectures(alison, ai).
    ?- lectures (alison, databases).
  الأسئلة يُمكنُ أَنْ تحتوى على متغيّراتَ ، التي قَدْ تَحْصلُ على قِيمَ معيّنةَ، عندما prolog قُوم بالإجابة على السؤال.
                                 Prolog سَيَعْرِ ضُ قيم نتائج كُلّ المتغيّرات في الاسئلةِ. لذا نحن سنحصل على:
?- lectures(alison, Course).
    Course = ai
                                                        نحن يُمْكِنُ أَنْ نَسْأَلَ نفس السؤالَ بطريقة اخرى، مثل:
?- lectures (Someone, ai).
    Someone = alison
```

نلاحظ ان فصل وشخص ما هي متغيّراتَ يُمْكِنُ أَنْ تَأْخذَ قِيَمَ من أيّ نوع. نحن يُمْكِنُ أَنْ تَأْخذَ قِيَمَ من أيّ نوع. نحن يُمْكِنُ أَنْ نَكتشفَ من يحاضر ماذا بالسُؤال:

```
?- lectures(Someone, Something).
Someone = alison
Something = ai;
Someone = john
Something = databases;
no
```

بطِباعة الفارزة المنقوطة بعد طباعة المجموعة الاولى من العناصر في برنامج Prolog ، نحن يُمْكِنُ أَنْ نَرى إذا هناك أيّ عناصر اخرى محتملة. يَمْرُ Prolog بكُلّ حقائقه وقواعده بشكل منظم ويُحاولُ إيجاد كُلّ الطرق التي يُمْكِنُ أَنْ يَوْبط المتغيّراتَ بالقِيَمِ المعيّنةِ لكي تكون نتيجة الإستفسار الأولي مرضيعٌ. على أية حال، كَمِثال عن كَيفية استخدام القواعدِ ، يَفترضُ بأنّنا نَسْأَلُ السؤالَ التالي:

?- bird(B).

ونحن عِنْدَنا الحقائقُ والقاعدةُ:

```
animal(lion).
   animal(sparrow).
   has_feathers(sparrow).

bird(X) :-
   animal(X),
   has_feathers(X).
```

Prolog سَيَعطى النتيجة التالية:

B = sparrow.

وبعد ذلك animal(B) Prolog مع رأس القاعدةِ (bird(X))، ويضع أسئلة جديدة، أو لاً، (bird(B) Prolog وبعد ذلك bird(B) Prolog مع رأس القاعدةِ (bird(X))، ويضع أسئلة جديدة، أو لاً، (Animal(B) . has_feathers(B) . has_feathers(B) . has_feathers(B) يُمْكِنُ أَنْ يَكُون مقبول بملزمِ B = sparrow. عليه يقوم برنامج Prolog بالتراجعُ ويُحاولُ من جديد . has_feathers(lion) وهذا صحيح، ويعتبر حَلّ محتمل.

مصطلحات Prolog وخاصية التواجع والتوحيد

في هذا القسم ستَلقي نظرة أقرب على النحو والمعانى في برامج prolog.

النّحو و تراكيب البيانات الأساسي

رَأَينَا كَيْفَ برامَجَ prolog تَشْمُلُ أَلحقائقِ والقراعدِ والأسئلةِ تُعلنُ الحقائقُ الأشياءَ التي هي حقيقية دائماً. تُعلنُ القواعدُ الأشياءَ التي هي صحيحة بالإعتماد على بَعْض الشروطِ البرنامج هنا يتألف من رأس و جسم. على سبيل المثال القاعدة ".(b(X), c(X). يكون الوأس حقيقيُ إذا كانت كل القاعدة ".(a(X) -: b(X), c(X). يكون الوأس حقيقيُ إذا كانت كل الأهدافِ في الجسم صحيحة. (الحقائق يُمْكِنُ أَنْ نعامل كقواعد بدون جسم). الحقائق و/ أو القواعد يمكن أن يُستَعملوا لتعريف العلاقاتِ (أو الاسناد). كما يُمكنُ أَنْ يَكُونَ لَهُ أعدادُ مختلفةُ مِنْ الحججِ. على سبيل المثال، lectures/2 ، وقد تُعرّفُ بالحقائق الثلاث:

lectures (alison, ai), tt lectures (phil, databases), and lectures (gilbert, hci).

الأسئلة تُستَعملُ للإكتِشاف فيما إذا الشيء حقيقيُ (وماهو العنصر المتغير المرتبطَ الذي سجَعْله صحيح). الحقائق والقواعد والأسئلة كُلها بنود prolog ويَجِبُ أَنْ متنهي بنقطة.

التعبير هو بنية تراكيب البياناتُ الأساسي في Prolog. التعابير في Prolog تتضمّن:

الذرات:

مثل بx, 'Alison Cawsey', a102, و. هذه تقتّلُ كياناتَ وحيدةَ معيّنةَ عموماً ولا يُمْكن أنْ يَقُصَلَ إلى اجزاءِ. بثما الذرات عادة بحروف صغيرة، لكن الرموز يُمْكِنُ ايضا أَنْ يُستَعملوا إذا هم مقتبسون. رموز (مثل ``-' ') وسلاسل الرموز (ومثال على ذلك: - ، ``: -' ') أيضاً تعتبر ذرّاتَ.

لأعدادُ٠

مثل 29، 1.2، 3000، -2.

المتغيّرات:

مثل X, Person, _Var. المتغيّرات تَبْدأُ أمّا مَع حرف كبير أو بتها برمز _.

الأجسام المُنظَمة:

مثل:

book(title(lord_of_the_rings), author(tolkien))
bicycle(owner(alison), parts(gears(number(18), type(shimano))))

هذه يَتضمّنُ عناصر (ومثال على ذلك: -، book كتاب،bicycle دراجة)، وبَعْض الحجج الحجج قَد ْ تكون تباعاً أيّ تعبير prolog.

[مُلاحظة : الذرّات في prolog قَدْ تُعلَنُ كَا أو امر تشغطي. مثل امر التشغيل الحسابي * و+. بعد ذلك يُمكِنُ أَنْ يُكتب عنصر تقليدي او تركيب حجّة مثل (1,3)+، لكن يُستَعملونَ لتَشكيل شروطِ prolog مثل 1+3. نحن يُمكِنُ أَنْ نَكْتب عنصر تقليدي او تركيب حجّة مثل (1,3)+، لكن من الاسهل بكثير كتابتها 1+3. على أية حال تلك التعابيرِ الحسابيةِ لنَ تُقيّمُ مالم تُجبرُ تقبيماً مَع بَنى في مسندِ prolog `` is"، على سبيل المثال.]

التراكيب المعقّدة مثل الواردةِ اعلاه مفيدة إذا اردنا نقل كامل لهَعْض المعلوماتِ حول مجموعةِ اجسام مرتبطة بعلاقة ما، أو جسم له العديد مِنْ الأجزاءِ، على سبيل المثال نحن يُمْكِنُ أَنْ نَتوصّلَ إلى أجزاءِ تعبير معقّد بمُجَاراته مع إستفسار (سيتم مناقشتها لاحقا)، إذا كَانَ عِنْدَنا برنامجُ Prolog الطّتالي:

book(title(lord_of_the_rings), author(tolkien)).
has_famous_author(Title) : book(title(Title), author(Author)),
 famous(Author).

ولدينا الإستفسارَ التالي:

?- has_famous_author(lord_of_the_rings).

Prolog يَجاري اولا الإستفسارَ مَع رأسِ القاعدةِ، بحيث يقوم بربط Iord_of_the_rings. ثمّ يطبق: book(title(lord of the rings), author(Author)).

هذه سَنظُابق بالحقيقة الأولى، و Author ستربطب tolkien. ثمّ يقوم بتطبيق (tolkien) famous (tolkien) الذي يَجاري الحقيقة الثانية، مما يؤدي ببرنامج Prolog ان يَعُطي نتيجة نعم.

نلاحظُ هنا كيف إستعمل Prolog مطابقة النماذج التوصّلُ إلى واحد مِنْ مجموعة معقدة من حقائق Prolog: (The author). سنناقش المطابقة بشكل مباشر أكثر الاحقا.

كُما رَأينَا، Pròlog يُحاولُ إثْبات (اعطاء اجابة) الإسَنفسار بالبَحْث عن الحقائقِ القي نتجاري ذلك الإستفسارِ، أَو القواعد التي تَجاري رؤوسَ الإستفسارَ والتي تملك اجسلمَ يُمْكِنُ أَنْ يُثبَتَ مطابقتها. يطابق prolog التعابير والشروط بطريقة حاسمة.

```
رَأينَا كَيفَ تعابيرَ بسيطةَ مثل (lectures(alison, Course يُمْكِنُ أَنْ تُجارى إلى الحقائق مثل (lectures(alison
ai) . وصولا الى نتيجة مثل Course=ai. في القسم أعلاهِ رَأينا أمثلةَ أكثر تعقيًا، حيث يوجد تعابير بالحجج المعقّدة
                                                                                    تم مطابقتها بيعضها البعض
```

book(title(Name), author(Author))

مناظرة لـ:

book(title(lord of the rings), author(tolkien))

مع العناصر:

Name = lord of the rings Author = tolkien

يَجاري Prolog التعابير عَلى نَحو هيكلي تماماً، بدون تقييم التعابير:

$$?-1+2 = 3$$

[نلاحظ: في prolog ``= " تعني `` مطابقة مع". نحن يُمْكِنُ أَنْ نختبر المطابقة بطِباعة الإستفساراتِ مثل الوارد بنفس الطريقة التعابير التالية لن تجارى، حيث ان القعبيران تراكيب مختلفة:

```
?- X + 2 = 3 * Y.
no
```

بينما ، تتم المجارة التالية حيث لديهم نفس التركيب:

```
?- X+Y = 1+2.
   X = 1
   Y = 2
?-1+Y = X + 3.
   X = 1
    Y = 3
```

مُلاحظة: يُمْكِنُ أنْ يكون هناك متغيّرات في كلا الجانبين من القعابير المجاراة، كما في المثالِ الثاني اعلاه. كا أمثلةِ غير حساسيَة، نورد:

```
?- lectures(X, ai) = lectures(alison, Y).
   X = alison
?- book(title(X), author(Y)) = book(Z, author(tolkien)).
   Z = title(X)
   Y = tolkien
```

(في الحقيقة، في prolog نحن نَجْصلُ على شيءِ مركّباً أكثر قليلاً ردّاً على الإستفسار أعلاهِ، مَع (Z = title(_0) and X = 0° ، بينما يَخْلُقُ prolog متغيّر اته الداخلية الخاصة. هذه مكافئةٌ إلى العناصَر التي أعطتُ اعلاه.) بالطبع ، prolog عادة سَهِوم بالكثير مِنْ المطابقاتِ بالتّسلسل، كما يُحاولُ إثْبات الاهداف الفرعية في القاعدة. ثمّ يَحتاجُ لإستِعْمال العناصر المتغيّرةِ التي تم الحصول عليها بالمطابقة حتى حينما يقوم بالمطابقة القالرة. عليه يمكن القول:

```
?- X+Y = 1+5, X=Y.
```

[مُلاحظة: نحن يُمْكِنُ أَنْ رَقُوم بِعِدّة إستفسارات في السطر الواحد، مَع فاصلة في الوسط، مثل في جسمِ القاعدة في Prolog.] X و Y نخصلُ على قيم X على التوالي في المجاراةِ الأولى X الأولى X و X نخصلُ على قيم X و X المجاراة التالية سَتَنْجُخُ:

```
?- X+Y = 1+5, Z = X.
Z = 1
Y = 5
X = 1
?- book(author(X)) = book(author(tolkien)),
   famous(X) = famous(tolkien).
X = tolkien
?- X=Y, Y = alison.
X = alison
Y = alison
```

رُلاحظ ان إثنان من المتغيرات الخير مقيّدة متناظرة عليه حالما يُصبحُ واحد منهم مطابق إلى بَعْض التعبيرِ يُصبحُ الآخر مطابق بشكل آليً إلى ذلك التعبير.

إنّ الخوارزميةَ لعمليةِ المطابقة في prolog مستندة على خوارزميةِ التوحيدَ المستخدمة للإثْبات الآلي للنظرية. شرطان يطابقان اذا أمْكِنُ اسناد قيم للهتغيّرات بطريقة بحيث أنّ، إذا المتغيّراتِ في كلتا الشُّروط إستبدلتْ بمسنداتها، التعبيران عِصُبحان مماثلان.

التَرَاجُع

نبحث في هذا القسم كيف يُجيبُ Prolog على الإستفسارات (ويُديرُ البرامجَ). أعطى إستفسار لإنَّبات (جواب)، يراجع Prolog قائمته مِنْ الحقائقِ والقواعدِ، من الأعلى إلى الأسفل، يَبْحثُ عن رؤوسِ الوَّواعدَ أَو الحقائقَ الَّتِي تطابق الإستفسارَ. عندما يَجِدُ واحد، يَخْزنُ المكانَ الذي وصل عنده في بحثه في قاعدة الحقيقة / القاعدة ، إذن لو أنَّ المجاراةِ الأولى هي إكتشافاتِ غير جيّدة، يُمْكِنُ مواصلة البحث عن الإمكانياتِ الأخرى. المُقالية:

```
bird(type(sparrow), name(steve))).
bird(type(penguin), name(tweety))).
bird(type(penguin), name(percy)).
```

ويَعطي الإستفسارَ .(Nege penguin), name(X)). bird(type(penguin), name(X)). Prolog سَيُحاولُ مُجَارِاة الإستفسارِ أولاً بالحقيقةِ الأولى، لكن غِشلَ لأن العصفورَ لا يَطَابق بطريقَ. بعد ذلك سَيُحاولُ المُجَارِاة بالحقيقةِ الثانيةِ، وتَنْجحُ مَع tweety = X. على أية حال، هو سَيَضعُ مؤشر يدل على المكانِ الذي وَصلَ إليه، إذن لو يَظْهرُ أن الإستفسار/ الهدف الفرعي القالي يؤدي للفشل، سَيَعُودُ إلى الموقعِ المُخزنِ قبل ذلك، ويَبْحثُ عن الحلولِ الأخرى (percy = X). لذا، إذا كَانَ عنْدَنا حقيقة / قاعدة مثل:

```
animal(leo).
animal(tweety).
animal(percy).
animal(peter).
has_feathers(percy).
tame(peter).
```

```
\label{eq:bird} \begin{array}{ll} \text{bird}(X) := \text{animal}(X) \text{, has\_feathers}(X) \text{.} \\ \text{tame\_bird}(X) := \text{bird}(X) \text{, tame}(X) \text{.} \\ \end{array}
```

اذا أعطى الإستفسار (bird(Bird) ، فأن Prolog سيمر نزولا بالحقائق والقواعد حتى الوصول الى القاعدة الأولى، ويجاري (bird(Bird) مع (bird(X) . بعد ذلك يحاول Prolog اثبات جسم ويجاري (bird(X) مع (animal(X) يسند إلى المتغيّر X . بعد ذلك يحاول Prolog اثبات جسم القاعدة الهدف الثانوي (X) animal(X و يَبقي animal(X) و يَبقي animal(X) الهوشر هكذا ليدل اين هو اصبح في التّدقيق لله (animal(X) ، ويجاول بـ (has_feathers(leo) . ينزل اسفلا عبر الحقائق / القواعد المؤحث عن تلك التي تتجاري، لكن لا يَجِدُ أيّ شيّ يعُودُ إلى المجارة الأخيرة ، ويجاول مُجَاراة ((animal(X))، حيث يبدأ مِنْ حيث تَخلقٌ عنها، ويقوم بمجاراة (animal(tweety) . لذا يَعُودُ ثانيةً ويجدً (percy معاراة (Bird=percy) . لذا الهوضوع بأكمله يَنْجحُ، ب Bird=percy .

في المثالِ أعلاهِ ، prolog فقط يتراجع خلال الحقائقِ. لكن عُموماً هناك قَدْ يَكُون أكثر مِنْ قاعدة واحدة التي يمكن لـ prolog أَنْ يَجَاوِلَ، على سبيل المثال:

```
animal(percy).
               % fact1
has feathers(percy). % fact2
penguin (tweety). % fact3
penguin(peter). % fact4
                  % fact5
tame(peter).
bird(X) :-
                   % rule1
  penguin(X).
bird(X) :-
                   % rule2
  animal(X),
  has feathers(X).
tame bird(X) :-
                  % rule3
  bird(X),
   tame(X).
```

أعطى إستفسارِ prolog ،bird(B) يستعملُ القاعدةَ الأولى أو لا (والحقيقة الثالثة) وتُصبحُ B=tweety. إذن كان لا بُدُ أَنْ يَتراجعَ ويَجارِي penguin(X) بالحقيقةِ الرابعةِ لتُصبحَ B = peter . إذا هو يتراجع ثانيةً وهو سَيَستنفذُ بنودَ البطريقِ لذا يَجِبُ أَنْ يَجاولَ مع قاعدةَ الطيرِ الثانيةِ، و(تَستعملُ الحقيقةَ الأولى والثانية) تُصبحُ B = percy. لذا، يجب ان رَقَذكرُ بأنْ يُمُكِنُ أَنْ تَطْبعُ ``؛ " (أو نقرة على `` قادمة ") لخيار التَرَاجُع، مما يؤدي للتالي:

```
?- bird(B).
B = tweety;
B = peter;
B = percy;
no
```

هذا قَدْ (أَو قَدْ لا) يَكُونُ أوضحَ إذا رسمنا بَعْض الأشجارِ. بنية تراكيب الهدف/ الهدف الثانوي في Prolog نقُتُلُ كشجرة `` and-or ".

وجهات النظر التصريحية والإجرائية للبرامج

في هذه النقطة من الخطأ التفكير بمعنى برامج Prolog. هناك عموماً طريقان للنظر إلى أيّ قاعدة في Prolog او لا كبيان تصريحي حول ماهو حقيقي، أو كبيان إجرائي حول كيف ننفذ شيئا ما. إحدى الفوائد المُدَّعية لـProlog بأنها في أغلب الأحيان بوْمَجَة تماماً تصريحيق. يجب ان نكون مطمئنين بخصوص كيفية اثبات الاشياء في Prolog. على أية حال، لأيّ برنامج معقد إلى حدّ معقول، كما ناقشنا في وقت سابق، يُصبحُ مهمَ في أغلب الأحيان التفكير بشأن اليف كيف يُنفذُ البرنامج. على سبيل المثال، طلب تنفيذ الهدف الثانوي قدْ يَكُون حرج بالنسبة إلى كفاءة البرنامج، والهتغيرات قدْ نُستَعملُ بطريقة بحيث لاتؤدي الى قراءة تصريحية بسيطة. يَسْمحُ Prolog بالبياناتِ غير المنطقية والمتغيرات مثل كتابة البيانات والمزاعم. عندما تكون هذه الاشياء مُتضمّن في وُبرنامج يُصبحُ هذا البرنامج مهمَ لدرجة أكبر للتفكير بشأن الذي يمكن لـ Prolog ان يَعْملُ.

لنقول بشكل واضح ما الذي نَعْني بالقراءاتِ التصريحيةِ والإجرائيةِ مِنْ البرامج، لنفترض انه عِنْدَنا قاعدة: p :- q, r.

إِنَّ القراءة التصريحيةَ: ` $p \sim a$ حقيقيُ إذا $p \sim a$ حقيقيُ ". القراءة الإجرائية يُمْكِنُ أَنْ تَكُون كَالتالي `` لَحَلّ المشكلةِ p وَبعد ذلك رَجْلُ مشكلةً $p \sim a$ أَو بلا عن ذلك `` القحقيق $p \sim a$ نَجْلُ مشكلةً $p \sim a$ أَو بعد ذلك رَجْلُ مشكلةً $a \sim a$ أَو بعد ذلك رَجْلُ مشكلةً $a \sim a$ أَلَا بعد أَلَا بعد أَلْ بعد أَل

التكرار

تقريباً أيّ برنامج غير استنباطي من prolog يتضمّنُ مسندات تكراري — المسندات التي تنادي نفسها بنفسها. الفكرة الأساسية يَجِبُ أَنْ تَكُونَ مألوفةً مِنْ تعاريفِ الوظيفةِ التكراريةِ في اللغاتِ الوظيفةِ. على أية حال، بما ان برنامج Prolog ليسَ مستند على تطبيقِ الوظيفةِ، الطريق القكراري للمسندات المَستعملُ والمكتوبُ مختلفُ قليلاً. وقترضُ اننا نُريدُ كِتابَة إجراء Prolog للتَقْرير سواء شخص ما سلف (اسلاف) شخص آخر. هذا لَهُ تعريف تكراري طبيعي. X هو سلف Y إذا X والد Y أو Z والد Y و X سلف Z . هذا يُمْكِنُ أَنْ يُكْتَبُ كالتّالي:

```
ancestor(Person, Ancestor) :- % Rule 1: Base case
  parent(Person, Ancestor).

ancestor(Person, Ancestor) :- % Rule 2: Recursive case
  parent(Person, Parent),
  ancestor(Parent, Ancestor).
```

ُنلاحظ كيف ان الحالة الأساسية للتعريفِ التكراري قاعدةً منفصلة، نتَعْبقُ الحالةَ التكراريةَ. كُلّ المسندات التكراريخ يَجِبُ أَنْ يكونَ لهُمْ حالة أساسية، بخلاف ذلك أمّا يؤدوا الى الفشل او يبقون في تكرار إلى الأبد. إعتبرْ ما يَحْدثُ إذا عِنْدَنا الحقائقُ التاليةُ أيضاً:

```
parent(alison, david). % fact 1
parent(alison, kathleen). % fact 2
parent(david, harold). % fact 3
parent(david, ida).
parent(kathleen, john). % fact 5
```

ونحن نَسْأَلُ:

Prolog سَيَهَابِق الإستفسارَ مع القاعدةِ 1، ويُحاولُ إثبات parent(alison, harold). هذا سَيَقْشُلُ، لذا Prolog بَنْجِحُ أُولاً مَع Parent (alison, Parent) لذا Prolog بَنْجِحُ أُولاً مَع Parent (alison, Parent)، لذا parent(alison, Parent). يُحاولُ إثبات ancestor(david, harold). يَجاري هذا التعبيرِ الجديدِ مع رأسِ القاعدةِ الأولى، وبنجاح يُثبتُ parent(david, harold)، مما يؤدي الى انجاح الإستفسار بشكل كامل.

إذا نحن نُحاولُ إثبات ancestor (alison, john) تتَعقد الامور شيئا قليلاً حيث Prolog يَجِبُ أَنْ عِيْر اجعَ. (david, john) يعني ان parent (alison, david). يعني ان parent (alison, david). يعني ان السلف (kathleen, john). البرنامج يَجِبُ أَنْ يَتراجعَ، لإيجاد والد (alison, kathleen)، وبر هنة سلف (kathleen, john). من الحكمةُ ان لانفكر بصعوبة الذي يَحْدثُ عندما يَتراجعُ Prolog خلال تعاريفِ المسنداتِ التكراريةِ المعقّدةِ. التعاريف يُمْكِنُ أَنْ يَكُونوا مفهومون بسهولة في أغلب الأحيان بشكل تصريحي، ونحن يَجِبُ أَنْ ثُنعي ماذا سَيَحْدثُ، بدون الحاجة لتَتبَّع كُلّ شيءِ بالتفصيل. إفترض على سبيل المثال نَعطي الإستفسارَ التاليَ، وندفع للقراجعُ (بطِباعة الفار زة المنقوطة).

```
?- ancestor(alison, Ancestor).
  Ancestor = david;
  Ancestor = kathleen;
  Ancestor = harold;
  Ancestor = ida;
  Ancestor = john;
  no
```

يَجِدُ Prolog كُلّ الحقائق أولاً التي تَجاري الأهدافِ الثانويةِ للحالةِ الأساسيةِ (سلف = kathleen (david). ثمّ يَجِدُ أَلْمُ المعالى (john) kathleen)، ثمّ كُلّ أسلاف (ida (harold , fred))، ثمّ كُلّ أسلاف Prolog). إذا أضفنًا حقيقة ان والد (harold , fred) ثمّ سلف = harold سَيُعطي بعد السلفِ ida ، بينما Prolog حاولَ إيجاد كُلّ أسلاف harold.

متابعة تنفيذ برامج Prolog

في هذه النقطة يَجِبُ أَنْ نُحاولَ إستعمال وسائلِ متابعة الأثر في Prolog ، ورزى إذا من الممْكِنُ أَنْ نتابع الذي يهدثُ كما في الهتلل اعلاه. وسائل الأثر قد تتفاوتُ بعض الشيء مِنْ تطبيقِ إلى تطبيقِ، لكن كُلها مستندة على نفس الهموذج الأساسي، المعروف بنموذج الصندوق أساساً، لأي إجراء prolog (say, ancestor) نحن يُمْكِنُ أَنْ رَجعل برنامج Prolog إخْبارنا عندما يَدْعو ذلك الإجراء، وعندما يَخْرجُ (بنجاح) ذلك الإجراء، وعندما يُحاولُ ثانية ذلك الإجراء (بسبب المتابعة الخلفية) وعندما يصل أخيراً ذلك الإجراء الى الفشل أنت يُمْكِنُ أَنْ تُحدّد إجراء الإهتمام بوضع نقاط مراقبة، ولكن نحن الان سَنَنْظرُ فقط الى النوع الأسهل للأثر، حيث هو يُخبرُك عن كُلّ إجراء. في Prolog الهثالي يمكن اعطاء المثال التالي:

```
yes
| ?- ancestor(alison, Anc).
   (1) 1 call: ancestor(alison, 0) ?
   (2) 2 call: parent(alison, 0) ?
   (2) 2 exit: parent(alison, david)
   (1) 1 exit: ancestor(alison, david)

X = david;
   (1) 1 redo: ancestor(alison, 0) ?
   (2) 2 redo: parent(alison, 0) ?
   (2) 2 exit: parent(alison, kathleen)
   (1) 1 exit: ancestor(alison, kathleen)
```

| ?- trace.

```
(1) 1 redo: ancestor(alison,_0) ?
(2) 2 redo: parent(alison,_0) ?
(2) 2 fail: parent(alison,_0)
(3) 2 call: parent(alison,L103) ?
(3) 2 exit: parent(alison,david)
(4) 2 call: ancestor(david,_0) ?
(5) 3 call: parent(david,_0) ?
(5) 3 exit: parent(david,harold)
(4) 2 exit: ancestor(david,harold)
(1) 1 exit: ancestor(alison,harold)
X = harold;
```

يَدْعو Prolog اولا السلف (0, alison, -0) (حيث أنَّ -0) اسمَ لمتغير داخلي في Prolog)، ويَدْعو الهدف (alison, -0)، ويَدْعو الهدف (alison, -0). هذا يتم بنُجاحُ، و يُؤدّي الى الوصول الى نتيجة ان السلف (alison, david) يصل للخُرُوج مَع السلف (alison, david). عندما يقوم Prolog بالتعقب الرجعي ، يُعيدُ Prolog مجاراة السلف (alison, -0)، ويَبْدأُ بإعادة مجاراة الوالد (alison, -0)، الذي يؤدي الى الخروج بنتيجة مَع الوالد (, alison). كذلك يؤدي الى خروج الهلف (-0, alison). بتكرار التعقب الرجعي ثانيةً، يُحاولُ Prolog مجاراة الوالد (-0, alison). بتكرار التعقب الرجعي ثانيةً، يُحاولُ Prolog مجاراة الوالد (-0, alison) وتودي الى الفشل حيث انه ، ليس هناك مزيد من السلف (-0, alison). إعادة مجاراة الوالد (-0, alison) وتودي الى الفشل حيث انه ، ليس هناك مزيد من الحقائق التي تَجاري هذه المطابقة. يَستعملُ الهدف الثاني يقوم بنداء والد (-0, هذا يَنْجحُ ، ويؤدي الى مخرج ، مَع الوالد (-0)، هذا يَنْجحُ ، ويؤدي الى مخرج ، مَع الوالد (-0)، هذا يَنْجحُ ، ويؤدي الى السلف الدى الى المعافر (-0)، هذا يَنْجحُ ، ويؤدي الى مخرج ، مَع الوالد (-0)، هذا يَنْجحُ ، ويؤدي الى السلف الدى الى المغروج ، وكذلك الأول.

وسائل الأثر في Prolog، حسب ما رأينا في المثال أعلاهِ، تتَّفاوتُ بين التطبيقاتِ. في النهاية علينا أَنْ تَتعرَّفَ على خواص وسائل الأثر في Prolog للوصول الى افضل النتائج.

معالجة القائمة

حتى الآن نحن رأينا تراكيب البياناتِ من نوع مشغل / حجّةِ. هذا يجعل الى حدِّ ما الامور غير مرنة للعديد مِنْ التطبيقاتِ. نُريدُ أَنْ يَكُونَ عِنْدَنا بَعْض القوائمِ أَو الهجموعاتِ التي يُمْكِنُ أَنْ نُضيفَ اليها او نحذف منها الهنود حسب الرغبة. هذا يعني اننا بحاجة الى تراكيب القائمةِ. تراكيب القائمةِ الصحيحة في prolog تَتضمّنُ:

```
[1, 2, 3]
  [alison, richard]
  [1, 2, 3, "go"]
  [1+2, [alison], widget(handle(2))]
  [name=widget21, size=22, colour=blue]
  [alison, [[david, [[harold], [ida]]], [kathleen, [[john]]]]]
  [] (empty list)
```

```
من الصعب التَفكير بسياق حيث بَكُونُ مفيدَ، و القائمة الأخير ة قَدْ تُمثّلُ بشكل أفضل كالتر اكبب التقليدية في Prolog
                                                                         کشجرة ترکیب/حجة ، مثل:
person(name(alison), parents(person(name(david), parents(...)),
person(..)))
                         على أية حال، عُموماً قائمة Prolog قَدْ تَشْملُ شروطِ إعتباطية، من ضمن ذلك القوائم.
           كما في اللغاتِ الوظيفيةِ، نحن يُمْكِنُ أَنْ نَحتارَ رأسَ وذيلَ القائمة من خلال المُجَاراة. في Prolog، النمط
                                   الخاصّ [V2|V2] يَجاري القائمة بمطابقة الرأس مع V1والذيل مع V2:
?-[H|T] = [1,2,3,4].
   H = 1
    T = [2, 3, 4]
   ?- [alison|Rest] = [Person, richard, alan, jeff].
   Person = alison
   Rest = [richard, alan, jeff]
    ?- [person(X)|Rest] = [person(fred), person(joe)]
   X = fred
   Rest = [person(joe)]
   ?-[H|T] = [a]
   H = a
   T = []
    ?-[H|T] = []
    ?-[a,b|C] = [a,b,c,d]
   C = [c,d]
    ?-[a,b|[c|D]] = [a,b,c,d]
    D = [d]
 مِنْ المثالين الأخيرين، زُلاحظ ان الانماط التي تَتضمّنُ `` إ " لَيْسَ مِنْ الضروري أَنْ تَكُونَ بسيطة [رأس | ذيل] أنماط
  – عدة بنود يمكن ان تتبع هذا الرمز `` | " ، وكيون هذا ضمن قائمة ثانوية. الهند بعد `` | " يَجِبُ أَنْ يجاري بقيّة بنود
  نحن يُمْكِنُ أَنْ نَبْداً بِكِتابَة بَعْض عناصر ومسندات معالجة القائمةِ. رفتر ضْ اننا نُريدُ كِتابَة عضو مسندٍ، للإكتِشاف إذا
   عنصر ما موجود في القائمة المُعطاة. يعتبر بند ما عضو في قائمة إذا كان هو رأسُ القائمةِ، أو إذا كان عضو في
                                                                                    ذبلُ القائمة، لذا
member(Item, [Item|]). % It's a member if it matches the head.
   member(Item, [ |Tail]) :-
        member (Item, Tail).
                                   % or if it's a member of the tail.
   وللحظُّ إستعمالَ المتغيِّر أَتِ الغيرِ مسماةِ `` ". مما يسهل إسْتِعْمال هذه الاسماءِ المتغيّرة للأشياءِ التي لا نَهتمُّ بها.
 نحن يُمْكِنُ أَنْ نَستعملَ العضو الهسندَ للتَدقيق إذا شيء ما هو عضو في قائمة، كذلك نستخدمه لنوِّلُيُّ أعضاء جدد في
                                                         القائمة، أو حتى لتوليد القوائم الهيئ هو عضو بها:
?- member(a, [b, a, c]).
  yes
  ?- member(I, [b, a, c]).
```

I = b; I = a;

```
I = c;
  no
  ?- member(a, L).
  L = [a| 16];
  L = [15,a|20];
  L = [15, 19, a| 24]
  yes
                                                  فكّر كيف يَتر اجعُ Prolog للحُصنول على حلول مختلفة.
  العضو لا يعمل فقط مع القوائم الهسيطة. بل يُمكنُ أَنْ نكُون قوائمَ تَشْملُ شروطِ معقّدة ِ هذا سَيَنْجحُ إذا طابقت الحجّةَ
 الأولى بند ما في القائمة المعطاة في الحجّة الثانية. اكثر المسندات في Prolog على هذا الشكل - يُدقّقونَ إذا الأشياء
             متطابقة، ولَيسَ إذا الأشياء نفسها، وتكون نتيجة المُجَاراة بأنّ تربط بَعْض المتغيّراتِ ببعضها البعض.
?- member(book(tolkien, X), [book(cawsey, explanation), book(tolkien,
lord of rings)]).
  X = lord of rings
  ?- member(book(X, Y), [book(cawsey, explanation), book(tolkien,
lord of rings)]).
  X = cawsey
  Y = explanation;
  X = tolkien
  Y = lord of rings
                                                                         و هكذا يضاف مسندا آخر ا:
append([], List, List).
  append([H|T], List, [H|New]) :-
      append(T, List, New).
   اضيفت قائمة فارغة فقط لإذراج تلك القائمة. تم اضافة قائمتان تَشْملان سوية قائمة جديدة مَع الرأس، رأس القائمة
                           الأولى، وتَتعقبان نتيجة اضافة ونيلِ القائمةِ الأولى إلى الثانيةِ. أي مثال مُتَبّع يَعطى:
?-append([1,2], [3], L).
      (1) 1 call: append([1,2],[3], 9) ?
       (2) 2 call: append([2],[3], 27) ?
       (3) 3 call: append([],[3], 34) ?
      (3) 3 exit: append([],[3],[3])
      (2) 2 exit: append([2],[3],[2,3])
      (1) 1 exit: append([1,2],[3],[1,2,3])
      L = [1, 2, 3]
لمعالجة القائمةِ التكراريةِ لمسنداتُ مثل العضو وإستراتيجيةَ الاضافة الأساسية، يجب أَنْ نكْتبَ الحالة الأساسية التي
   تَحْلُ بَعْضِ النسخ البسيطةِ للمشكلةِ، كذلك الحالة القكر ارية التي تَبْقي النتيجة حقيقةً، وحيث عِثْر ب كُلّ نداء تكر اري
         أكثر نحو الحالةِ الأساسيةِ. في حالة الاضافة، التركيب الذي سَيُرجَعُ يُعزِّزُ في رأسَ البند ﴿ [H|New]).
     الإستراتيجية المألوفة الاخرى هي عندما يتم كتابة مسندات معالجة القائمة باستخدام متغيّر إضافي لإبقاء بعض
                       النتائج بعيدة شئ ما مثال وإضح على هذا هو مسند الإيجاد حَدّ أعظمي للقيم في قائمة ما:
max([], MaxSoFar, MaxSoFar).
```

max([Number|Rest], MaxSoFar, Max) :-

```
Number > MaxSoFar,
        max(Rest, Number, Max).
   max([Number|Rest], MaxSoFar, Max) :-
        Number = < MaxSoFar,
        max(Rest, MaxSoFar, Max).
                                                                   هذا يُمْكِنُ أَنْ يُدْعَى كالتالي:
?- \max([1,6,23,21], 0, \max).
  (يَقترضُ ان الأعدادَ التي ضمنت في القائمةِ اكبر مِنْ 0).
لإسنداتُ مثل هذه من الأسهلُ إعْطاء حساب أكثر إجرائيةً من الذي يَحْدثُ (الذي لَيسَ مختلف كثيرا عن الذي يَحْدثُ
  في برنامج باسكال). لإيجاد القيمة العظمي في قائمة، نفترض حَدّ أقصى للقيمة ، ونقارن مع العنصر القالي آذا كان
   أكبرُ مِنْ الاعظمي المفترض حتى الآن زجْعلُ هذا العنصر اعظمي جديد ، نحاولُ مع العناصر الباقيةَ. إذا العنصر
   التالي لَيسَ أكبرَ فقط نَستمرُّ إلى العنصر الذي يليه في للقائمةِ. عندما نصِلُ إلى نهايةِ القائمةِ فأن العنصر الاعظمي
                                              المفترض حتى الآن كُونُ حَدّ أعظمي لعناصر القائمةِ.
                                                نعطى هنا بعض الامثلة عن مسندات معالجة القائمة
% reverse(+List, +SoFar, -ReversedList)
  % Should succeed with ReversedList bound to reversed List (appended
  % initial value of SoFar). Normally called with SoFar=[]/
  reverse([], SoFar, SoFar).
  reverse([H|T], SoFar, Final) :-
      reverse(T, [H|SoFar], Final).
  % delete(+Item, +List, ?NewList)
  % Should succeed with NewList bound to List but with all items
matching
  % Item removed.
  delete( , [], []).
  delete(Item, [Item|Rest], NewRest) :-
      delete(Item, Rest, NewRest).
  delete(Item, [First|Rest], [First|NewRest]) :-
      not First = Item,
      delete (Item, Rest, NewRest).
   % replace(+Item, +NewItem, +List, -NewList)
    % Should succeed with NewList bound to List but with all items
   % matching Item replaced by NewItem
   replace( , ,[],[]).
   replace(Item, New, [Item|Rest], [New|NewRest]) :-
       replace (Item, New, Rest, NewRest).
   replace(Item, New, [First|Rest], [Item|NewRest]) :-
       not First = Item,
       replace(Item, New, Rest, NewRest).
```

لاحظْ إستعمالَ `` Not " للتَدقيق إذا شيءِ ما لَيسَ صحيح. بَعْض مبرمجي Prologs يَفْضل إستعمالَ \+ بدلاً مِنْ Not. إنّ السببَ هو انها لَيسَ Not الهنطقيق - Prolog فقط يُدقّقُ لهعرفقاإذا كان بالامكان اثبات شيءَ ما، واذا لا عِيَتطيعُ فإن `Not" تؤدي الى النجاح (بطريقة اخرى ممكن القول انه `` أنا لَيسَ مَتأكّدَ لَكنّي لا أَستطيعُ إثبات ذلك "). البعض الاخر من مبرمجي Prologs لا يَحْبُونَ إستعمال `` Not " لتَمْثيل هذه الفكرةِ (الهدعوَّة باسم `` إنكار كفشل ").

المواضيع الباقية

ما غَطِّينَاه حتى الآن يعتبر مقدمة للتعريف بلغة Prolog ,ولم نتطرق لكافة مواضيع اللغة، حيث ان تفاصيل هذه اللغة ليست موضوع هذا الكتاب لكن الحاجة لمعرفة بعض المفاهيم عنها، ولضرورة سرد بعض الامثلة في هذا الكتاب في مختلف اقسام الذكاء الاصطناعي باستخدام هذه اللغة، جعل من الضروري اعطاء هذه اللمحة. لمعرفة تفاصيل اكبر عن لغة Prolog يمكن الاستعانة بكتاب متخصص بهذه اللغة. كما يمكن مستقبلا ان يكون هناك كتاب متخصص بهذه اللغة ضمن مجموعة الكتب المخطط لاصدار ها، والتي تغطى كافة فروع الذكاء الاصطناعي وادواته.

تمثيل المعرفة

مادة التَمْثيل

لنحدد أو لا أنواعَ المعرفة التي يمكن أنْ تُمثّل في أنظمة الذكاء الاصطناعي:

الأجسام

-- حقائق حول الأجسام في مجالِنا الحيائي. ومثال على ذلك: - آلات وترية كالقيثارة ، آلات نحاسية كالأبواق. الأحداث

- عمل او حدث يقع في حياتنا. ومثال على ذلك: - زيد عزف قطعة موسيقية على آلة العود. الأداء

- أي سلوك مثل العزف على القيثارة عضمّنُ معرفةً حول كيفَ تنفيذ العزف.

معرفة الاطلاع

- معرفة حول ما نَعْرفُ. ومثال على ذلك: - إنسان آلي لديه خطة عن رحلة ما، بحيث انه يُمْكِنُ أَنْ يَقْرأَ الإشاراتَ على طول الطريق لإكتِشاف مكان وجوده.

لَحَلِّ المشاكلِ في انظمة الذكاء الاصطناعي يَجِبُ أَنْ نُمثِّلَ الهعرفة وهناك كيانان للتَعَامُل مع ذلك:

الحقائق

حقائق حول العالم الحقيقي وحول ما نُمثّلُ. هذا يُمْكِنُ أَنْ يُعرف بمستوى المعرفة

تمثيل الحقائق

اي الشئ الذي نحن نُعالجُ. هذا يُمْكِنُ أَنْ يُعتَبرَ مستوى الرمزَ حيث أَنْها نُعرّفْ التمثيلَ عادة من ناحية الرموزِ التي يُمْكِنُ أَنْ يُعالَمُ بالبرامج.

نحن يُمْكِنُ أَنْ نُنظَم هذه الكياناتِ في مستويين

مستوى المعرفة

-- وتدل على الحقائق الهَوْصُوفة

مستوى الرمز

-- تدل على تمثيل الأجسام الهُعَرَّفة باستخدام الرموز التي يُمْكِنُ أَنْ تُعالجَ في البرامج (انظر الرسم . 1)

برامج الإستنتاج

الرسم 5 كيانان في تمثيل المعرفة

اللغة العربية أَو اي لغة حية اخرى هي نوع مِنْ انواع التَمْثيل ومعالجة الحقائقِ المنطق يُمكّنُنا من إعتِبار الحقيقةِ التاليةِ: لنفترض ان حصانا اسمه ابجر، حصان(ابجر)، بما ان كُلّ الاحصنة لَها ذيولُ مَع:

 $\forall \mathbf{z} : horse(x) \rightarrow hasatail(x)$

عليه مُمْكِنُ القول ان :ان ابجر له ذيل، له ذيل (ابجر).

بإستعمال خصائص اللغة امكن لجملة ك، ابجر له ذيل، ان تولد.

العلاقة باللغة بين الوصف والموصوف ليست دائماً واحد لواحد لكن يمكن ان تكون العديد للعديد. كما في الجُمَل التالية: كُلّ الخيول لَها ذيولُ، وكُلّ حصان لَهُ ذيل، كلاهما يخبر بأنّ كُلّ حصان لَهُ ذيل، لكن الأولى يُمْكِنُ أَنْ تخبر بأنّ كُلّ حصان لَهُ أكثر مِنْ ذيلِ واحد ، لنحاول الان ان نَستبدلُ مثال الذيول بلاسنانَ. عندما تعالجُ برامجَ انظمة الذكاء الاصطناعي التمثيل الداخلي للحقائق هذه الإعتراضات الجديدة يَجِبُ أيضاً أَنْ تكون قابلة للتفسير كإعتراضات جديدة من الحقائق.

لنَّأَخذ مثالَ المشكلة الكلاسيكية للوحةِ الشطرنج المشوَّهةِ. حيث تم ازالت مربعاتِ الزاوي المعاكسةِ. إنَّ المهمّة المُعطاةَ أَنْ رَغطِّي كُلِّ المربعات الباقية على اللوحةِ باحجار الدومينو بحيث ان كُلِّ حجر يَهَطِّي مربعين. مع العلم ان تَداخُل الاحجار غير مَسْمُوح به لنهتبرْ ثلاثة تراكيبَ للبياناتِ

الرسم. 6 لوحة الشطرنج المشوهة

الأول والثاني مُصوَرَّ ان في الوسم اعلاه وتركيب البيانات الثالث هو عددُ المربعات السوداء وعددِ المربعات البيضاء . يَقْقَدُ التخطيطُ الأولُ لونُ المربعاتِ و هذا لايؤدي لحل؛ نلاحظ وجود الألوانَ في التخطيط الثاني لكن ذلك لنَّ يؤدي الى حل حيث ان عددَ مربعاتِ اللون الاسود32 وعدد الأبيض 30 والمفروض حسب المهمة المعطاة ان تغطي كل دومنة مربع أبيض واحد ومربع أسودِ واحد، بمعنى اخر ان عدد المربعات ِيَجِبُ أَنْ يَكُونَ م سَمَاويَ لهؤدي الى حَلَّ إيجابي.

إستعمال المعرفة

ذَكرنَا سابقا وبشكل سريع اين يمكن استعمال الهعرفة في أنظمةِ الذكاء الاصطناعي. المعرفة يمكن ان تُستَعملُ في المهام التالية :

التَعَلَّم

- إكتِساب الهعرفة. هذا أكثر مِنْ فقط اضافة حقائق جديدةً إلى قاعدة بيانات الهعرفة. البيانات الجديدة يَجِبُ أَنْ تُصنِّفَ قبل المتزين للإسترجاع السهلِ لاحقا. التفاعل والإستدلال بإيجاد الحقائق لتَفادي ال تكرار في قاعدة بيانات المعرفة وأيضاً لقحديث الحقائق في قاعدة البيانات.

الاسترحاء

- مخطط التمثيل المستعمل يُمكنُ أَنْ يكون له تأثير حرج على كفاءة الطريقة. بينما نجد ان البشر جيّدين فيه. الكثير من انظمة الذكاء الاصطناعي حاولت مشابهة (تقليد) الإنسان بطرق استرجاع المعلومات.

التفكي والاستنتاج

-- اَستَنبلخُ الحقائقُ مِنْ البياناتِ.

لنفترض أن نظام ما يَعْرفُ الحقائق التالية فقط:

- "فرید موسیقی جاز.
- "كُل موسيقيو الجاز يُمْكِنُ أَنْ يَعَزفوا بشكل جيد على آلاتَهم.

إذا أستفسارات مثل هَلْ فريد موسيقي جاز؟ أو هَل بإمكان موسيقيو الجاز العزف على آلاتَهم بشكل جيد؟ اسئلة ممكن ان نحصل على جوابها بسهولة مِنْ التراكيب وإجراءات البيانات.

على أية حال استفسار مثل: هَلّ بإمكان فريد ان يعزف على آلتِه بشكل جيد؟ يَنَطَلّبُ التَفْكُويِّ والاستنتاج. وهكذا يبدو واضحا ان كل ماورد أعلاه مرتبط ببعضه البعض. على سبيل المثال، من الواضحُ جداً ان التَعَلّم والتَفكّي يَتضمّنانِ إسترجاعاً الخ.

خصائص أنظمة تمثيل المعرفة

نظم تمثيل المعرفة يجب ان تمتلك الخصائص التالية:

الكفاية التمثيلية

-- القدرة على تَمثيل المعرفةِ المطلوبةِ؛

الكفاية الاستنتاجية

- القدرة على مُعَالَجَة المعرفةِ الممثّلة وذلك بهدف استنتاج معرفةِ جديدةِ والنيّ بقُابلُ تلك المُسْتَنْتجةِ مِنْ المعرفة الأصلية؛

الكفاءة الاستنتاجية

- القدرة على تَوجيه الآلياتِ الإستنتاجيةِ إلى الإتّجاهاتِ الأكثر إنتاجاً ببتَمَزْ بن الأدلاءِ الملائم؛

الكفاءة المكتسبة

- القدرة على إكتساب المعرفة الجديدة باستخدام طرق آلية محتملة لاستبدال الإعتماد على التدخّل الإنساني. حتى الآن لايوجد نظام وحيد له كل الخصائص الواردة أعلاه.

طرق تمثيل المعرفة

لنرى بَعْضَ مخططات التمثيلِ سريعاً. حيث سنقوم بدر اسة بعضها بتفصيلِ اكبو في الفصول الأخرى.

المعرفة العلائقية (المرتبطة) البسيطة

إِنَّ الطَّرِيقَةَ الأسَّهلُ لِهَتَّزْيِنِ الْحَقَائِقِ أَنْ يَستعملَ طريقة علائقية بجيث أنَّ كُلِّ حقيقة حول مجموعة أجسام يتم عُرِضها بشكل منظّم في الأعمدة. يَعطي هذا التمثيلِ فرصةً صَغيرةَ للإستدلالِ، لَكنَّه يُمْكِنُ أَنْ يُستَعملَ كقاعدة المعرفة لمحرّكاتِ الإستدلالِ. وعليه يمكن تلخيص خصائص هذا النوع من التمثيل بالتالي:

- "طريقة بسيطة لهتعَزْعِن الحقائق.
- "كُلّ حقيقة حول مجموعة الأجسام تُعْرَضُ بشكل منظّم في الأعمدة (رسم. 3).
 - " فرصة ضئيلة للإستدلال.
 - "قاعدة معرفة لمحرّكاتِ الإستدلالِ.

العمر	الآلة	نوع الموسيقي	اسم الموسيقي
میت	ترومبيت	جاز	سعتر
35	عود	شرقي	حسام
میت	جيتار	روك	تحسين
47	ساكسافون	كلاسيك	موفق

جدول 1: المعرفة العلائقية البسيطة

نحن يُمْكِنُ أَنْ رَطَلَب استفسار ات مثل: "مَنْ ميت؟

"الذي يَلْعبُ الجازَ / بوق الخ. ؟

هذا النوع مِنْ التمثيلِ شعبي في أنظمةِ قاعدةِ البيانات.

المعرفة الموروثة

المعرفة العلائقية تعطى الأشياء:

- "خواص
- "قِيَم مرتبطة مطابقة.

نُمدّدُ القاعدةَ أَكْثرَ بالسَماح لآلياتِ الإستدلالِ:

"ميراث الهلكية

- عناصر تَرثُ القِيَمَ بمجرد كونها أعضاء صنف.
- بيانات يجب أنْ تُنظّم في هرمية الأصناف (رسم. 4).

الرسم. 7 تدرج ميراثِ الملكيةِ

- "عُقَد مُؤطرة -- أجسام وقيم خواص الأجسام.
 - الْقِيَم يُمكنُ أَنْ تَكُونَ أَجْسامَ بِالخواصِ
 - "أسهم -- نقطة مِنْ الجسمِ إلى قيمتِها.
- " التركيبِ المعروف بالشقّ والحشوة يُنظّم، شبكة دراسة معاني الكلماتِ أَو مجموعة الإطرِ.

الخوارزمية الخاصة بإستررجاع قيمة لخاصية جسم ما:

- 1. جِدُ الْجُسمَ في قاعدة المعرفة.
- 2. اعط نتيجة إذا كان هناك قيمة ما.
- 3. فيها عدا ذلك نبحث عن قيمة الحالة وإذا لم نصل السيئ يعني فشل المهمة.
- 4. بخلاف ذلك رَفْهبُ إلى تلك العقدةِ وربحثِ عن قيمة للخاصية وبعد ذلك تُبلغُ عنها
 - 5. ما عدا ذلك نتابع الهحث حتى الحصول على قيمة للخاصيّةِ.

المعرفة الإستنتاجية

تمثيل المعرفة الاستنتاجية تعنى بمعرفي المعرفة كمنطق شكلي: لنعود الى المثال القديم

كُلّ الخيول لَها ذيولُ: ♦ hasatail(x)→: horse(x لودي الى:

- " مجموعة القواعد الصارمة.
- يمكن أن يُستَعملَ لإشْتِقاق حقائقِ أكثر.
- حقائق البياناتِ الجديدةِ يُمْكِنُ أَنْ تُحقّقَ.
 - الوصول للصواب مضمون.
- "توفر العديد مِنْ إجراءاتِ الإستدلالِ المؤدية إلى قواعدِ الأداةِ القياسيةِ للمنطق.
- "مميز في انظمة الذكاء الاصطناعي. ومثال على ذلك: مكننة إثبات النظرية .

المعرفة الإجرائية

الفكرة الأساسية:

معرفة تم توميزها في بَعْض الإجراءاتِ:

- برامج صغيرة تَعْرفُ كَيفَ تَعمَلُ أشياءُ معيّنةُ.
- ومثال على ذلك: مُ فسر لُغوي في لغة طبيعية يفهم ويستنتج لهي المعرفةُ التي هي عبارة إسمية قَدْ تَحتوي الصفات والأسماء. حيث انه مُمثَّلُ بالنداءاتِ إلى الروتيناتِ التي تَعْرفُ كَيفَ تُعالجُ المقالات والصفات والأسماء.

الفوائد من تمثيل المعرفة الاجرائية:

- "يمكن تمثيل كل من المعرفة الإرشادي أو معرفة مجالِ معيّنِ.
 - السهولة الإستدلالات الهنطقية، مثل التفائي والاستنتاج.

أضرار:

- "الهمال -- لَيسَ كُلّ الحالات قابِلةُ للهُمثِّقُ.
- "الإتساق -- لَيسَ كُلّ الاستنتاجات قَدْ تَكُون صحيحةً.

ومثال على ذُلك: - إذا كُنا نَعْرِفُ بأنّ ياغو طير هُذا يسمحُ لنا باَستنىلجُ بأنّ ياغو يُمْكِنُ أَنْ يَطِيرَ. لاحقاً نحن قَدْ نَكتشفُ بأنّ ياغو ببغاء.

- "انعدام المقياس والمعيار. بعض القغييرات في قاعدةِ المعرفةِ رُبَّمَا يَكُون لَهُ اتأثيرات بعيدة المدى.
 - "معلومات مر اقبة مُتعبة

قضية في تمثيل المعرفة

نُهُر جُ اسفُلَّا بعض لَ القضايا الَّتي يَجِبُ أَنْ توضح عند إستعمال تقنية تمثيل المعرفة:

الخواص المهمة

ــ تَهتم فيما اذا كان هناك أيّ خواص تظهر في العديد مِنْ الأنواع المختلفةِ للمشكلةِ.

11 - KEI

-- تبحث في العلاقة بين خواص جسم، مثل، التناسب العكسي، الهجود، تقنيات للتفاعيّ حول القِيَم والخواصِ المقيّمةِ الوحيدةِ. نحن يُمْكِنُ أَنْ نَعتبرَ مثالَ نسب عكسهِة في فرقة (حسّام،الفرقة الماسية)

band(Hosam, Masyah band)

هذا يُمْكِنُ أَنْ يفهم على ان حسام يعزف في الفرقة الماسية أو ان فرقة حسام هي الفرقة المسماة بالفرقة الماسية. التمثيل الآخر: الفرقة = الفرقة الماسية

band = Masyah band

أعضاء الفرقة = حسام ، فريد، شريف الخ .

band-members = *Hosam*, *Fared*, *Shareef*, . . .

خاصية الجزيئات

-للدلالة على الهستوى الذي يَجِبُ تمثيل المعرفة به ماهي البدايات . إخْتيار الجزيئات البدائية للتمثيل هي مفاهيم أساسية مثل التوقف، الرؤية، التشغيل كمثال على ذلك نأخذ اللغة الإنجليزي هي لغة غنية جداً بلكثر من نِصْف مليون كلمة نحن سَنَجِدُ صعوبة في التعيير، اي الكلمات تعتبر كلمات للإخْتيار البدائي في سلسلة من الحالات كأمثلة يمكن عرض التالى:

إذا سامى يطّعم كلب، يُمْكِنُ أَنْ يُصبحَ:

feeds(Sami, dog)

أطعم (سامی، کلب)

إذا يَعطى سامى الكلب عظم:

gives(sami, dog,bone)

يَعطى (سامي، كلب، عظم) هَلْ هذه الجملة تؤدي نفس معنى الجملة الاولى؟

هَلْ يعنى إعْطاء الطعام الإطعام؟

إذا (feed(x) →give(x, food) بمعنى اذا كان اعطاء س الطعام يؤدي الى اطعام س هذا يدل على اننا نَقَدَّمَ.

لَكنَّنا نَحتاجُ لإضافة بَعْض القواعدِ الإستنتاجيةِ.

لنأخذ مثال اخر كيف نمثل علاقة شخص بأخر، هل زيد إبن عم عمر كَيفَ نُمثِّلُ هذا؟

Zayd = son (brother or sister (father or mother(Amr)))

(((3a(3))))

من الواضح أنّ المستويات المنفصلةُ لفَهُم مُستويات مختلفةً مِنْ الجزيئات الابتدائية تَحتاجُ الى العديد مِنْ القواعدِ لربط البدايات المماثلة سوية.

من الواضح ان هناك مشكلة تخزي محتملة والسؤالِ يَجِبُ أَنْ يَكُون ماهو مستوى الفهم المطلوبُ.

الخلاصة

في هذا الفصل تأكدنا من:

- الحاجة الى المعرفة في برامج التفكير والاستنتاج.
- العديد مِنْ القضايا التي مَنْ الضَّرُوري أَنْ تُعتبر عند تَقْرير مخططِ ما لقمثيلَ المعرفةِ.
- قدّمنا مفهوم بيانات الحشوة والشق في المعرفة الهوروثة في الفصلين القادمين سندرس أنواع مختلفة مِنْ
 تمثيل الحشوة والشق يَبْدآنِ بالشبكاتِ والإطاراتِ والإنتقال الى التمثيل المبني على التبعية التصورية الأقوى.

تمثيل المعرفة المنطقي

ذَكرنَا بشكل سريعً كيف أن الهنطق يمكن أن يُستَعملَ لتَمْثيل الحقائقِ البسيطةِ. في هذا الفصل نحن سَنُبرزُ مبادئ رئيسيةً إشتركتْ في تمثيلِ الهعرفةِ في الواقع المسندات الهنطقيّة سنَجتمعُ في مخططاتِ تمثيلِ المعرفةِ الأخرى وطرقِ التفكير والاستنتاج.

سنعرض هنا رموز المنطق القياسية التالية التي استعملت في هذا الفصل:

∀ مهما یکن

∃ على الاقل

٨

لنأخذ الان مثالِ عن كيفية استعمال الهسنداتِ المنطقية لتَمْثيل المعرفةِ. هناك طرق أخرى لكن هذا الشكلِ معروف.

منطق مسند

-لنعتبر التالي: • "أمير - نجم كبير.

• "الفجوم الكبار أغنياء.

"الفاس الاغنياء عِنْدَهُمْ سياراتُ سريعةُ.

"تَستهاكُ الهياراتَ الهريعة الكثير مِنْ الهنزين.
 ولزجاولُ الإسْتئتاج: تَستهلكُ سيارةُ الأميرِ الكثير مِنْ البنزين.

لذا نحن يُمْكِنُ أَنْ نُترجمَ أميرَ نجم كبير إلّى: mega_star(prince) والنجوم الكبار أغنياء إلى :

 $\forall m: mega_star(m) \rightarrow rich(m)$

والفاس الاغنياء عِنْدَهُمْ سياراتُ سريعةُ، البديهية الثالثة أكثر صعوبةً:

" هل الهيار ات هي علاقة ولذا car(c,m) تخبر بأنّ الحالة مي سيارة m. أو

"هَلْ السيارات دالة؟ لذا نحن عِنْدَنا (car_of(m. لرفتر ضْ ان السيار اتُّ علاقة فأن البديِّهيةُ 3 قَدْ تُكُتُّبُ: -

 $\forall c,m: car(c,m) \land rich(m) \rightarrow fast(c).$

إِنَّ البديهيةَ الرابعةَ هي بيان عامّ حول السياراتِ السريعةِ. لنفترض ان consume(c) متوسط استهلاك تلك السيارةِ للبنزينِ. ثمّ نحن يمكن انْ نَكْتبُ:

 $\forall c: [fast(c)] \land \exists_{m:car(c,m) \to consume(c)}].$

لنسأل الان هَلْ الأمير لهَيْ سيارة؟ نَحتاجُ الى الدالة car_of بعد ذلك :

 $\forall c: car(car_of(m), m)$.

إنّ المجموعة النهائية من المسندات :

 $mega_star(prince) \ \forall m: \ mega_star(m) \longrightarrow rich(m) \ \forall c: car(car_of(m), m). \ \forall c, m: \ car(c, m) \ \land \ rich(m) \longrightarrow fast(c). \ \forall c: \ fast(c) \ m: car(c, m) \longrightarrow consume(c)$ باعطاء ذلك يمكن ان نصل للنتيجة التالية :

consume(car_of(prince)).

علاقات الحالة والمضمون

تُلُّعبُ خاصيتي علاقات الحالة والمضمون دور مهم في العديد مِنْ سماتِ تمثيلِ المعرفةِ.

إنّ السببَ وراء هذا الدور المهم هو شمولهم على ميزات ميراثَ الهلكيةِ.

المضمون:

--يستعمل لبيان مضمون الصنف، ومثال على ذلك : isa(mega_star,rich).

علاقة الحالة

- يستعمل لبيان عضوية الصنف، ومثال على ذلك: instance(prince, mega_star).

مِنْ الوارد أعلاهِ يتبين انه من السهل معرفة كيفَ يُمثّلُ هذا في الهنطق المسندِ.

التطبيقات والإمتدادات

- "يُمدّدُ الطلب الاول المنطقى مبدائيا الى المسندات للسماح بـ:
- وظائف تعطي اجسام كنتائج وليس فقط صح / خطأ.
 - يساوي مسند إضافي.
 - "حَلّ مشكلةِ وإثبات نظريةِ -- مناطق تطبيق كبيرةِ.
- " تعرية نظام التخطيط الآلي يوظف الطلب الاول المنطقي لتحسين تحليل نهايات وسائل تخطيط (GPS).
 هذا الدمج زود ببحث إرشادي قوي جداً.
 - "أنظمة إجابة على أسئلة واستفسارات.

تمثيل المعرفة التصريحي و الإجرائي

تمثيل المعرفة التصريحي:

- "القمثيل الساكن معرفة حول الأجسام، والأحداث الخ. وعِلاقاتهم والحالة المعطاة.
 - "يَتَطُلُّبُ برنامج لمعْرِفة ما العمل بالمعرفةِ وكَيفَ يَعمَلُ هذا.

التمثيل الإجرائي:

- معلومات سيطرة وتحكم ضروري الإستعمال المعلومات الهُضَمَّنةُ في المعرفةِ نفسها. ومثال على ذلك: كَيفَ يَجِدُ الحقائق ذات الصلة، والإستدلالات الخ.
 - يَتَطلُّبُ مِفسراً لتَنفيذ التعليماتِ المحدّدة في المعرَّفةِ.

مثال.

لمعرفة احتياجات فارزَ ألفبائيَ نحتاجُ:

- معرفة ضمنية بأن "أ" تأتي قبل "ب" الخ.
- هذا سهلُ -- بمقارنة عدد صحيح من رموز (آسكي) له أ، ب الخ.
 - o كُلّ البرامج تَحتوي على معرَّفةَ إجرائيةَ مَن هذا النوع.
- للمعلومات الإجرائية هنا هي تلك الهعرفة حول كيف تُرتب حسب الحروف الأبجدية تظهر واضحة في إجراء الألفبائية.
 - oَ أُي نظام تصريحي يَجِبُ يعتمد على حقائقُ واضحةُ مثل "أ" يأتي قبل "ب"، "ب" قبل "ث" الخ. .

تَمْثيل كَيفَ تسَتعملُ الهعرفة

نحتاج هنا لتَمْثيل كَيفية السيطرُة على مسار المعالجة:

-- يُشيرُ إلى إتّجاهِ النتيجةَ المضمنة والتي يُمْكِنُ أَنْ تُستَعملَ. ومثال على ذلك: - لإِثْبات ان الشيءِ يُمْكِنُ أَنْ يُطيّرَ يكفي bird(x)عرضه الطير عرضه الطير

المعرفة للوصول الى الهدف

-- يُحدّدُ ماهي المعرفة المطلوبة للوصول الى هدف معيّن. على سبيل المثال لإثّبات ان الشيء هو طير يجب ان نستخدم الحقائق: لَهُ أجنحة و لَهُ رُيّشُ.

بنية الشق الضعيف والحشوة

لماذا نَستعملُ تركيب البيانات هذا؟

- لَّمُكَّنُ هذه البنية من استرجاع قِيمَ الخاصيَّةِ بسرعة، ومنها:
 - الهزاعم الهُفَهرَسة بالكياناتِ
- المسندات الثنائية الهفهرسة بالحجّة الأولى. ومثال على ذلك: فريق (النصر، الرياض).
 - خصائص العلاقات سهلة للوَصنف.
 - يَسْمحُ سِهولةِ التّعويض حيث انه يَخذ سماتَ البرمجة الموجهة للاشياء.

عليه ممكن قول التالي فيما يخص نظرية الشق الضعيف والحشوة:

- يعتبر الشق قيمة بخاصية ازدواجية في شكله الأسهل.
- تعتبر الحشوة القيمة التي يُمْكِنُ أَنْ يَأْخَذَها الشق يُمكنُ أَنْ تَكُونَ قيمة عددي، نصية (أو أيّ نوع بيانات اخرى) أو مؤشر إلى شقِّ آخر.
 - تركيب الشق الضعيف والحشوة لا يَعتبر محتوى التمثيل.

نحن سَنَدْر سُ نوعان من هذه البنية والتراكيب:

- شبكات المعانى.
 - الإطر.

شبكات المعاني إنّ الفكرة الرئيسية لشبكات المعاني هي:

- معنى فكرة او تصور ما، يأتي مِنْ علاقتِه بالمفاهيم والتصورات الأخرى.
 - المعلومات مَخْزِنةُ برَبْط العُقَدِ مَع أقواسَ مصنفة.

الهمثيل في شبكة المعاني

ان الخواص الفيزيائية لشخص ما يُمْكِنُ أَنْ يقتِّلَ كما في الرسم 8.

ال سم . 8 شبكة سيمانطيقية (لفظية) هذه الْقِيَم يُمْكِنُ أيضاً أَنْ تُمثِّلَ فِي المنطق كالتالي: isa(person, mammal), instance(Al-Nasr, person) team(Al-Nasr, Riyadh)

المضمون (شخص، الثدييات)، الحالة (النصر، شخص) فريق (النصر، الرياض) بمعنى اخر يمكن القول ان الشخص هو من الثديبات له رأس لاعب في فريق النصر، الذي لون ملابسه ازرق/اصفر - الرياض.

رَ أَينَا كَيفَ ان مسند تقليدي مثل (lecturer(Jad يُمْكِنُ أَنْ يُكْتَبَ كحالة (Jad, lecturer) ، إستدعاء المضمون (isa) والحالة، يمثل الصَّفة الور اثية ويعتبر مستعمل بشكل كبير في العديد مِنْ مخطَطَاتِ تمثيلِ المعرفةِ. لَكنُّ لَهُ عِيَا مشكل عبير في العديد مِنْ مخطَطَاتِ تمثيلِ المعرفةِ. لَكنُّ لَهُ عِيَا مشكلة هنا : وتكمن بكيفية أخُذ أكثر مِنْ مكان لمسند ما في الشبكاتِ السيمانطيقيةِ؟ ومثال على ذلك:

score(Al-Naser,Al-Helal, 2-1) تحل هذه المشكلة حسب التالي:

• بإنشاء عُقَدَ جديدةَ لتَمْثيل الأجسامِ الجديدةِ التي تحتوي أو تشير إلى المعرفةِ، game و fixture في المثالِ

بالونبط بين الهعلومات والعُقد ومثل الشقوق (الرسم: 9).

الرسم. 9 شبكة سيمانطيقية لهسند بn مكان

بينما بمثال أكثر تعقيداً كما في الجملة: أعطى عمر زيدا كتابك هنا لدينا عِدّة سمات الحدثِ.

الرسم. 10 شبكة سيمانطيقية لجملة ما

الإستدلال في شبكة المعانى

آلية الإستدلال الأساسية هي: اتباع الروابط بين العُقدِ.

هناك مبدأن لتنفيذ ذلك:

الهحث الققاطعي

- الفكرة التي يقوم عليها البحث التقاطعي تتمثل بتنشيط تُقسي عقدتين وتحديد عِلاقاتَ تقاطعِهم بايجاد علاقتهم مع الأشياء. يتم أنجَازُ هذا بتَخصيص بطاقة خاصة لكُل عقدة تم المرور عليها.

العديد مِنْ الْفواندِ متضمّرةُ في البنية الهنظمةَ على أساس الهيانَ وفي البنى ذات خاصية القطبيق الهتوازيَ السريج. على أية حال الاستفسارات ذات البني المنظمة جدا بجاجةَ الى شبكاتَ منظمة إلى حدٍ كبير.

الميراث

-- تمثيل المضمون والحالة يُزوّدان بآلية لتَطبيق نظرية الميراث.

يُزوّدُ الميراثُ َ ايضا بوسائل الْهَعَامُل مع التفكيّ والاستنتاج المهمل. ومثال على ذلك: - نحن يُمْكِنُ أَنْ نُمثّلَ التالي في شبكة المعانى:

- النعام طيرَ.
- بشكل نموذجي الطيور تطير ولَها أجنحةُ.
 - النعام يركض.

في الشبكةِ السيمانطيقيةِ التاليةِ:

الوسم. 11 شبكة سيمانطيقية لتفكِّين مهمل

لعمل إستدلالات اكيدة نحن سَنَحتاجُ للتَمبيز بين الوابط الذي يُعُرِّفُ كيان جديد ويَجْملُ قيمتَه والنوعَ الآخرَ للوابط الذي يَتعلَق بالكيانين الحاليين. لنأخذ المثالَ المعروضَ حيث أنَّ طول شخصين حُدد وعلينا أَنْ نُقارِنَهم. نَحتاجُ عُقَدَ إضافيةَ للمفهوم بالإضافة إلى قيمتِها.

السم 12. طول شخصان الإجراءات الخاصة تقدم العُقدِ، لكن بدون هذا الإمتيازِ، التحليل سَيَكُونُ محدودَ جداً.

الرسم 13. المقارنة بين طولين تم الرمز الى الطول الاول H1 والثاني H2 وسيتم المقارنة بينهم "بأطول من"

تمديد الشبكات السيمانطيقية

سنرى هنا بَعْض الإمتداداتِ الخاصة ببراسة شبكات المعانى و التي تَتغلّب على بضعة مشاكل أو تقسع تعبير هم مِنْ المعرفةِ.

- الهقتر حات الّتي سَنصُرلُ بدون التزام إلى الحقيقةِ القعابير الّتي سَتُحدّدُ

... الفكرة الأساسية: تتمثّل بتجزئة الشبكة إلى الهساحات الهي يشّملُ مجموعات العُقَدِ والأقواسِ ويَعتبرُ كُلّ حيز كعقدة.

لن عتبر التالي: يَعتقدُ عمر بأنّ الأرضَ مستويةُ. نحن يُمْكِنُ أَنْ نُ رمز الى هذا المقترحَ " الأرضَ مستويةُ (منبسطة)" في مساحة ويكون لَها العُقَدُ والاقواسُ التي تقتلُ هذه الحقيقة (رسم. 14). نحن يُمْكِنُ أَنْ يكون عِنْدَنا العُقَدُ والأقواسُ المطلوبة لرَبْط هذا الفضاء ببقيّة الشبكة لتَمثيل إعتقاد عمر

الوسم. 14 شبكة مُقَسَّمة

لن عتبرُ الان التعبيرُ المُحَدَّدُ التالي: يَحبُّ كُلِّ والدين طفلهم. لتمثيل هذا التعبير نحن نعمل التالي:

- ننشأ اليبان العامّ، GS، بصنف خاصّ.
 - نعتبر g عقدة حالة من GS.
- كُلّ عنصر سَيكونُ عِنْدَهُ علي الأقل خاصيتين:
 - o الشكل الذي عَجدد العلاقة المؤكّدة.

o واحد أَو أكثَّر مَّن ارتباطات (مهما يكن ∀) أَو (على الاقل ∃) -- هذا يُمثِّلُ متغيِّراتَ قابلة للقياسَ في مثل هذه البياناتِ ومثال على ذلكِ:

$$x, y \text{ in } \forall x : parent(x) \xrightarrow{} \exists y : child(y) \land_{loves(x,y)}$$

هنا نحن يَجِبُ أَنْ نَبْني فراغان واحد لكُلِّ من x ,y الوالدان والطفل . وُلاحظ هنا : انه يُمْكِنُ أَنْ نَبدي المتغيّراتَ كمتغيّرات مشروطة بشكل وجودي ونَبدي حالة الحبّ التي سَهَكُونُ عِنْدَ المصّدر p والهستلم b لكُلّ أصل p الذي يُمْكِنُ أَنْ يُبِسّطَ الشبكة.

أيضًا إذا غير نا الجملة إلى: كُلّ والد يَحبُّ طفلاً فأن الهقدة هنا و التي تُتصرّفَ وفقها (الطفل) تقع خارج شكلِ البيانِ العامِّ. حيث لَمْ يُنْظَرُ اليها كمتغيّرات مشروطة بشكل وجودي والتي قيمتها قَدْ تَعتمدُ على المصدر الذي هو الوالد هنا. فمن الاكيد ان الوالد يحب طفله، لكنه ليس بالاكيد انه يحب الاطفال الاخرين بشكل عام. لذا نحن يُمْكِن أَنْ نَبْني شبكةً مقسمة كما في الرسم. 15

الوسم. 15 شبكة مُقَسَّمة

الإطر

الإطر يُمْكِنُ أيضاً أَنْ تُعتبر إمتدادا الشبكاتِ السيمانطيقيةِ. في الحقيقة الإمتياز بين شبكة المعاني و الإطر لَيسَ واضحاً ابن يَنتهي. مبدائيا نحن نستخدم شبكة الهعام المعاني لهُمثِّلُ الإرتباطات بين الأجسام المحددة. فلها أصبحتُ الههام أكثر تعقيداً

فأن مِنْ الضروري أَنْ يَكُونَ التمثيل أكثر تنظيماً. في النظم الأكثر تنظيما يُصبحُ استعمال الاطر أكثر فائدة. عليه يمكن تعريف الاطر بأنها مجموعة الخواصِ أو الشقوقِ والقيّم المرتبطة الهي تصف بَعْض الهيارات من العالم الواقعي. الإطر بشكلها المفرد لاتعتبر ذات فائدة كبيرة، لكن الأنظمة المبنية على اساس الإطر تعتبر طريقة قويّق لتَشْفير (ترميز) المعلومات لدّعْم التفائيّ والاستنتاج. نظرية المجموعات تتُعتبر قاعدة جيدة لفهم أنظمة الإطر. كُمتَّلُ:

- صنف (مجموعة)، أو
- حالة (عنصر من صنف).

تمثيل المعرفة بالإطر

لنأخذ المثالَ التالي:

Person

isa: Mammal

Cardinality:

Adult-Male

isa: Person

Cardinality:

Football-Player

isa: Adult-Male

Cardinality:

Height:

Weight:

Position:

Team:

Team-Colours:

Forwards

isa: Football-Player

Cardinality:

Tries:

instance: Forwards

Height: 6-0

Position: Centre

Team: Riyadh-SAT

Team-Colours: Yellow/Blue

Football-Team

isa: Team

Cardinality:

Team-size: 25

Coach:

Al-Naser

Instance: Fottball-Team

Team-size 25

Coach: Artur Jorge

Players: {Moh. Khojali, Ahmad Al-Ajami, Faisal Saif.....}

يعتبر هذا المثال نظام إطر بسيطِ

نلاحظ هنا ان الاطر ' Person (شخص) ، Adult-Male (ذكر بالغ)، Football-Player (لاعب كرة قدم) و Saad Al (وريق كرة قدم) كُلها أصناف. والإطر : سعد الحارثي (لاعب في فريق النصر) -Saad Al Harthi و الفرق السعودية Riyadh-SAT هي حالات.

- علاقة المضمون isa في الحقيقة هي علاقة المجموعة الثانوية.
 - علاقة الحالةَ instance في الحقيقة هي عنصر .
- خاصية المضمون isa تَمتلكُ خصائص انتقالية. هذا يَدْلُ عليه: روبرت ظهي والظهير هو لاعب كرة قدم والذي تباعاً هو ذكر بالغ وأيضاً شخص.

Saad Al-Harthi Forwards, Forwards is a Football-Player, Adult-Male, Person.

بمعنى ان سعد الحارثي لاعب هجوم في فريق كرة القدم وهو شخص ذكر بالغ.

- كلتا علاقتي المضمون isa والحالة لَهُما العكوسُ التي تَدْعو الفئات الفرعية أو كُلّ الحالات.
- هناك الخواص التي تُرتبطُ بالصنفِ أو المجموعة وتعتبر اساسية وجوهرية ومن الناحية الأخرى هناك الخواص التي يملكها كُلّ عضو في الصنفِ أو المجموعةِ.

الإختلافات بين المجموعات والحالات

من المهم بِأَنَّ يفهم هذا الإختلاف بشكل واضح. Riyadh-SAT يُمْكِنُ أَنْ تعتبر مجموعة اللاعبين أو كحالة فريق كرة قدم. إذا Riyadh-SAT هي صنف فإن

• اللاعدينَ سيكونون حالات الصنف

هذا الصنف لا يُمكنُ أَنْ يَكُونَ فئة فرعية مِنْ فريقِ الهرة قدم ما عدا ذلك عناصره ستتكونُ اعضاء فريقِ الهرة قدم أو هذا ما لا نُريده.

بدلاً مِن ذلك نَجْعلُه فئة فرعية مِنْ لاعب كرة قدم وهذا يَسْمحُ للاعبين وِرْث الخصائص الصحيحةِ الهي تقكّنُنا من جعل النصر عِنْث المعلومات حول الفرق.

هذا يَعْني بأنّ ٱلنصر حالّةُ من حالات فريق كرة قدم.

لكن هنا لدينا مشكلة:

- أي صنف هو مجموعة وعناصره لؤيهُم خصائص.
- نحن نرغب بلستعمال الميراثِ لمَنْح القِيم على أعضائه.
- هناك بعض الخصائص التي تملكها المجموعة أو الصنف، مثل مدير الفريق.

لهذا السبب نحن نريد جعل فرق كرة القدم بالرياض كمجموعة ثانوية مِنْ لاعبي صنف واحد وحالة من حالات الفريق. الحَلّ لهذه المشكلة يكمن في: الصنف المركب والذي يعرف بالصنف الخاص والذي يعتبر كل واحد من عناصره صنفا بحد ذاته.

لنَعتبرُ الان فرقُ كرة القدم ك:

Class

Instance: Class
Isa: Class
Cardianlity:

Team:

Instance: Class Isa: Class

Cardianlity: { The number of teams}

Team-Size 25

Football- Team

Isa: Team

Cardianlity: { The number of teams}

Team-Size: 25

Coach:

Al-Naser

Instance: Football-Team

Team-Size: 25

Coach: Artur Jorge

Ahmad Al-Ajami

Instance: Defender

Height: 170

Position: Defender
Team: Al-Naser
Team-Colors: Blue/ Yellow

نظام إطر الصنف المركب

الصنف المركب الأساسي هو صنف، وهذا يَسْمحُ لنا ب:

- تعرَّيْفُ الأصنافُ التي هي حالاتَ لأصنافِ أخرى.
 - ورائث الخصائص من هذا الصنف.

ورائةُ القِيَمِ الأصليةِ تحدثُ عندما عنصر واحد أو صنف يكون حالةُ الصنف المورث.

شقوق كأجسام

كَيْفَ يمكن تَمْثيل الخصائص التالية في الإطر؟

- خواص مثل الوزن، الهُمَر تُكُونُ ملّحقاً وتصبح مفهومةً.
- فرض قيود على القِيم المعثل في حالة خاصية العُمر أنْ تَكُونَ أقل مِنْ مائة.
 - قواعد لصالح ميراثُ القِيمِ مثلُ الأطفالِ الذين يَرثونَ أسماءَ الوالدِ
 - قواعد لحساب القِيَم

 العديد مِنْ القِيَمِ للشقَّ.
 يعتبر الشق العلاقة التي نجدول وتنظم مجال الاصناف إلى مداها مِنْ القِيم. تعتبر العلاقة مجموعة الأزواج المنظّمة عليه فإن علاقة واحدة هي مجمّوًعة ثانوية من أخرى. باعتبار ان الشق مجموعة, مجموعة كُلّ الشقوق يُمْكِنُ تَمْثيلها بالصنف المركب والمسمى Slot..

لنفترض التالي:

SLOT

isa: Class

instance: Class

domain:

range:

range-constraint:

definition:

default:

to-compute:

single-valued:

Coach

instance: SLOT

Football-Team domain:

range: Person

range-constraint: **λz** (experience x.manager)

default:

single-valued: TRUE

Colour

SLOTinstance:

Physical-Object domain:

Colour-Set range:

single-valued: FALSE

Team-Colours

instance: SLOT

isa: Colour

team-player domain:

Colour-Set range:

range-constraint: not Pink

single-valued: FALSE

Position

SLOTinstance:

domain: Football-Player

{ Forwards, Forward, Reserve } range:

λα x.position to-compute:

single-valued: TRUE

رُلاحظ التالي:

 حالات الصنف المركب SLOT شقوقَ

• الخواص التي كل حالة سترتها توتبط بالشق SLOT.

• كُلّ شقّ لَهُ مجال ومدى.

- الهدى يُقسم إلى جزءين الاول هو صنفَ مِنْ العناصرِ والآخر هو القيد الذي يعتبر تعبير منطقي في حال ان النتيجة تصل الى الصح.
 - إذا كان هناك قيمة مبدائية فإنه يجب إعادة استخدامها طالما الحالة لم تأخذ قيمتُها الخاصةُ.
 - خاصية الحساب تَتضمّنُ إجراء لحساب قيمتِه ا. ومثال على ذلك: في الموقع حيث عِبَتعملُ ترقيم النقطةَ لتَخصيص القِيمِ إلى شقّ ما من إطار.
 - الإنتقال خلال شُقوق القوائم الأخرى التي تشتق منها القِيَم من الميراثِ

تراكيب الشق القوى والحشوة

تراكيب الشقُّ القوي والحشوة بصفة نموذجيَّ تغطي التالي :

- المَعْثِقُ الصلاتَ بين الأجسام طبقاً للقواعد الصرارمة.
 - "أفكار معينة عن أنواع الأجسلم والعلاقات بينهم.
 - "تعنقلُ المعرفة حول الحالات المشتركة .

التبعية التصورية

طوّرتْ التبعيةُ التصوريةُ أصلاً لتَمْثيل المعرفةِ المكتسبة مِنْ مدخلات اللغةِ الطبيعيةِ .

إنّ أهداف هذه النظرية:

- المُسَاعَدة في رسم الإستدلالِ مِنْ الجُمَلِ.
- لإستعمالها في المدخلات الأساسية بشكل مستقل عن بعض كلمات الجمل
- "بمعنى آخر: يمكن القول بأنه في حال وجود جملتين أو أكثر واللتان/ الذين تحملان/ يحملون نفس المعنى، فأنه يَجِبُ أَنْ عِكُونَ لها فقط تمثيل واحد مِنْ ذلك المعنى.

ه ذه النظرية مستخدمة في كثير من اليرامج التي تعني بفَهْم اللغة الإنجليزية على سبيل المثال الأنظمة التالية: (MARGIE, SAM, PAM). نظرية التبعية التصورية طوّرتْ مِن قِبل Schank. التبعية التصورية تُزوّدُنا:

- بالتركيب الذي يتم به حفظ المعلومات الممثلة للعُقَد.
 - مجموعة معيّنة مِنْ معلومات البدايات
 - الهستوى المحدد و الهُعطى مِنْ الجزيئيات.

الجُمَل مُمَثَّلة كسلسلة من التخطيطاتِ اللَّهي تُصوّرُ الأعمال التي تستعمل كلتا الحاليين الطبيعية المُجرّدة والحقيقية.

- الوسطة والأجسام مُمَثّلة
- الأعمال تُعزّزُ مِنْ مجموعة الأَفْعالِ الإبنقائيةِ التي يُمْكِنُ أَنْ تُعدّلَ بالزمنِ.

أمثلة الأَفْعالِ الإبتدائيةِ:

Atrans

-- نقل علاقةِ مُجرّدةِ. ومثال على ذلك: - يَعطي.

Ptrans

-- نقل الموقع الطبيعي لجسم. ومثال على ذلك: - يَذْهبُ.

PROPEL

-- تطبيق قوة طبيعية على جسم. ومثال على ذلك: - دفع.

Mtrans

-- نقل المعلومات العقلية. ومثال على ذلك: - يُخبرُ.

Mbuild

-- إستنتاج وإنشاء معلومات جديدة مِنْ معلومات قديمة بومثال على ذلك: - يُقرّرُ بـ

SPEAK

-- اصدار صوت، الكلام ومثال على ذلك: - رأى.

ATTEND

-- تركيز الانتباه على محفّر ما. ومثال على ذلك: - الاستماع، المشاهدة.

MOVE

```
-- حركة عضو جسم ما مِن قِبل صاحب العضو. ومثال على ذلك: - لكمة، ركلة.
                                                                                                    GRASP
                                                   -- الهمثل الذي بُدركُ الاشياء ومثال على ذلك: - فاصل
                                                                                                  INGEST
                                                       - الشخص الذي يَأْكُلُ شيهاً، و مثال على ذلك: - يَأْكُلُ.
                          - الشخص الذي يَتخلِّصُ مِنْ اشياء مِنْ الجسم. ومثال على ذلك: - قضاء الحاجة .
ستّة أصناف تصورية إبنهائية تُزوّدُ كتل الهناء والتي تعتبر مجموعة التبعيات الجائزة في المفاهيم في جملة:
                                                                                   -- أجسام من عالم حقيقي.
                                                                                   ACT
-- أعمال من عالم حقيقي.
                                                                                        ---
-- خواص الأجسام.
                                                                                         ---
-- خواص الأعمالِ.
                                                                                                    -- الوقت
                                                                                                      LOC
                                                                                                    -- الموقع.
                                                                    كَيفَ رُوبِط هذه الأشياءِ ببعضها البعض؟
                                                                                          لنأخذ المثالَ التالي:
                                                                                     جون يَعطى ماري كتاب
                                                   \begin{array}{c|c} & & & \text{from} & \text{Mary} \\ \hline \text{John} \Leftrightarrow \text{ATR} & & & \text{to} & \text{John} \\ \end{array}

    تُشيرُ الأسهمُ إلى إتّجاهِ التبعيةِ. والرموز في الاعلى تُشيرُ إلى بَعْض العِلاقاتِ:

                                                                                  R
-- متلقي، متسلم.
                                                          1
-- أداة ومثال على ذلك: - يَأْكُلُ بالهلعقة.
                                        --
--الوجهة المقصودة ومثال على ذلك: -الذهاب إلى البيت.
     الأسهم الهضاعفة (ك) تُشيرُ إلى الصلاتِ الهزدوجةِ بين الشخص (PP) والعمل (ACT).
            الأعمال مبنية مِنْ مُجموعة الأَفْعالِ الإبتدائية . مع العلم أن هذا يُمْكِنُ أَنْ يُعدّلَ بالزمنِ.
```

الخصوص:

p -- ماضىي

إنّ إستعمالَ الوقت والمزاج في وَصْف الأحداثِ مهمةُ جداً و قد اورد ِ Schank المُعَدّلاتَ التاليةَ في هذا

```
-- إنتقال
                                                         -- إنتقال بداية
                                                         -- إنتقال نهاية
                                                            -- إسْتِمْرار
                                                     -- ضمير إستفهام
                                                                -- سلبي
                                                                  delta
                                              -- بدون وقت، سرمدي
                                                             -- شرطی
ملاحظة: غياب المؤشر الدال على الزمن يعنى اننا نقصد الزمن الحالى.
                 لذا يكون المثالِ المعطى أعلاهِ في الزمن الماضي كالتالي:
                                                 جون أعطى مارى كتاب يُصبح:
                  \begin{array}{c|c} & & & \text{from} & \text{Mary} \\ \text{John}^{D} \Leftrightarrow & \text{ATR} & & & \text{to} & \text{John} \end{array}
```

هنا نجد جسمُ (ACTOR)، PP وعمل، ACT. وبمعنى آخر: . PP \ACT . السهم الثلاثي (١) أيضاً هو رابط مزدوج لكن بين جسم، PP، وخاصيته، PA. وبمعنى آخر: PA PP.

هذا يُمثِّلُ تبعياتَ نوع المضمون. ومثال على ذلك: -

lecturer**↔>**Sami سامي مُحاضر . الجالات الاببقائية تُستَعملُ لوَصْف الكثيرِ من الأوصافَ مثل الإرتفاع، الصحة، الحالة العقلية، الحالة الفيزيائيق . هناك المزيد مِنْ الحالاتِ الفيزيائيةِ الاكثر مِنْ الأعمالِ الابتقائية حيث يستخدم لها مِقياس عددي. ومثال على ذلك:

height(+10) حيث ان مؤشر طوله عالى جدا.

height(< average) Sami سامي قصير او اقصر من المعدل.

health(-10) 😝 Ali علي مريض، حيث أن صحته بمؤشر سلبي كبير.

mental_state(-10) كبير. سابي كبير. mental_state(-10) كبير.

نحن يُمْكِنُ أَنْ تُحدّدَ ايضا أشياءَ مثل زمن الحدوثِ في هذا النوع من العلاقة. على سبيل المثال: جون أعطى ماري الكتاب أمس

سنأخذ الآن جملة أكثر تعقيداً: انا توقفت عن التدخين، حيث انه ممكن ان يسبب للموت. لنرى الان كيف يمكن ان نُمثّلُ ذلك الإستدلال ، التدخين يسبب الموت:

- إستعمل الفكرة لتطبيق المعرفة.
- استعمل الفعل الإببقائي INGEST لتدخين شخص ما (One) سيجارة.
- القتل او الموت هو إنتقال مِنْ حالة حيّ إلى حالة ميت نستعملُ أسهمَ ثلاثيةً للإشارة على الإنتقال من حالة إلى آخرى.
 - لدينا هنا ايضا شرط، c رابط سببيّ. يُشيرُ السهمُ الثلاثي إلى التبعيةِ مِنْ مفهوم على آخرِ.

لإضافة حقيقة أنّ الشخص قد تَوقّفُ عن التَدْخين:

- يجب استعمال قواعد مماثلة للإشارة ضمناً إلى أنَّ الشخص غُيدِّنُ السجائرَ.
- يجب رَبطَ المؤهلُ مِمُ بِهذه التبعيةِ، بحيث عِيْسِرُ إلى ان الحالةِ "يشرب دخاناً" قد تَوقَّفك.

مميزات القبعية التصورية:

- إستعمالُ الحالات الابتدائية يقلل قواعدَ الإستدلالِ مما يقلل حجم وزمن تنفيذ المهام المطلوبة.
 - العديد مِنْ قواعدِ الإستدلالِ بشكل آلى ممثلة في تراكيبِ التبعية التصورية.
 - الفتحات في التراكيب الأولية تساعد على التَركيز على النقاطِ التي لم ْ تُؤسّسَ بعد.

سلبيات القبعية التصورية:

- المعرفة يجب أنْ تُحلّلَ إلى الحالات الابتدائية وبمستوعات منخفض جداً.
- في بعض الحالات يكون من الهستحيل أو صعب جدا إيجاد مجموعة صحيحة مِنْ الحالات الابتدائية.
 - التّمثيل يُمكنُ أَنْ يَكُونَ معقدا بالنسبة لبعض الأعمالِ البسيطةِ لنفترض:

زيد بن اهن مع عمر على 100 ريال على ان البرازيل ستربح كأس العالم بكرة القدم. تَتَطلّبُ العَمْثيلاتُ المعقّدةُ الكثير مِنْ العَمْزِينِ

تطبيقات التبعية التصورية:

(Meaning Analysis, Response Generation and Inference on English) MARGIE

-- فَهُم نموذج لغةِ طبيعتي.

(Script Applier Mechanism) SAM

-- مخطوطة لفهم القصص.

(Plan Applier Mechanism) PAM

(خطة Applier آلية) - مخطط البرنامج الخاص بفَهُم القصص.

المخطوطات

الهخطوطة هي تركيب البيانات الذي يَصِفُ مجموعة الظروفِ المتوقعة والتي تخولنا المُتَابَعَة مِنْ مرحلة لإخرى. ه ي مشابهة لفكرة الهلسلة أو سلسلة الحالاتِ التي يُمْكِنُ أَنْ تُتوقَعَ. كما انها يُمْكِنُ أَنْ تشَمْل عدد مِنْ الشقوقِ أو الإطر لكن بقواعد اكثر تنظيما.

المخطوطات مفيدة لأنه:

- تقع الأحداثُ في المخطوطات بمِرّاتِ أو أنماطٍ معروفة.
 - في المخطوطات نجد العِلاقات سببية بين الأحداثِ.
- في المخطوطات نَچِدُ شروطَ الدخولِ تَسْمحُ بوقوع الحدث.
- في المخطوطات بطلهر الشروط عندما تقع الأحداث ومثال على ذلك: عندما يتقدم طالب ما بدرجاته في مخطط الهرجات أو عندما شخص ما يشتري بيت.

مكونات المخطوطة تتضمّن:

شروط الهخول

-- شروط الدخول او البدء يجب أنْ تتُحقق قبل وقوع الأحداثِ في المخطوطةِ.

النتائِج

- الشروط التي يجب ان تَكُونُ صحيحة بعد وقوع الأحداثِ في المخطوطةِ.

الدعائم

- الشفوق التي تُمثّلُ الأجسامَ المشتركة في الأحداثِ

الأدو ار

-- الأشخاص المشتركين في الأحداثِ.

المسار

-- الإختلافات على المخطوطةِ. المسارات المختلفة قَدْ تَشتركُ في مكوّناتِ نفس المخطوطةِ.

المشاهد

-- سلسلة الأحداثِ التي تَحْدثُ. الأحداث مُمَثَّلة في شكلِ التبعيةِ التصوري.

المخطوطات مفيدة في وَصْف بَعْض الحالاتِ مثل سَرقة مصرف. هذا قَدْ يَتضمّنُ:

- الحصول على سلاح.
 - احتجاز الهصرف.
 - الهروب بالمالِ.

هنا الدعائم قَدْ تَكُونُ

- بندقیة، G .
- الغنيمة (المال)، L .
 - الحقيبة، B
- الهروب بالسيارة، C.

الأدوار قَدْ تَكُونُ:

• سارق، S.

- صراف، M.
- مدير الهصرف، O.

الشرطي، P .
 شروط الدخول قد تكون:

\$\text{\text{o}} \text{ abscale} \\ \text{little in Secondary } \\ \text{little

- S عِنْدَهُ مالُ أكثرُ.
 - O غاضبُ.
- M في حالة من الذهول.
 - P يطلّق النار.

هناك 3 مشاهد: الحُصُول على البندقية، سْرقة المصرف والهروب.

المخطوطة الكاملة يُمْكِنُ أَنْ تُوْصَفَ في الرسم 6.

Script: ROBBERY	Track: Successful Snatch
Props: G = Gun, L = Loot, B= Bag, C = Get away car.	Roles: R = Robber M = Cashier O = Bank Manager P = Policeman.
Entry Conditions: R is poor. R is destitute.	Results: R has more money. O is angry. M is in a state of shock. P is shot.
Scene 1: Getting a gun R PTRANS R into Gun Shop R MBUILD R choice of G R MTRANS choice. R ATRANS buys G (go to scene 2)	
Scene 2 Holding up the bank R PTRANS R into bank R ATTEND eyes M, O and P R MOVE R to M position R GRASP G R MOVE G to point to M R MTRANS "Give me the money or ELSE" to M P MTRANS "Hold it Hands Up" to R R PROPEL shoots G P INGEST bullet from G M ATRANS L to M M ATRANS L puts in bag, B M PTRANS exit O ATRANS raises the alarm (go to scene 3)	
Scene 3: The getaway M PTRANS C	

الرسم. 16 مخطوطةً سُرقة مصرف بعض الملاحظات الإضافية حول المخطوطات:

- بحال تطبيق مخطوطة معيّنة فأنه يجب أنْ نفعل اولا والتَنْشيط او التفعيل يَعتمدُ على المعنى.
- في حال ان موضوع المخطوطة مَذْكُورُ في مخطط سير الحل، فأن الهؤشر إلى تلك المخطوطةِ يُمْكِنُ أَنْ يوقف.
 - في حال ان الموضوع يحمل صفة مهم فأن المخطوطة يَجِبُ أَنْ تُفْتَحَ.
- يَكُمنُ الخطرُ في وجود الكثير مِنْ المخطوطاتِ (البريمجات) النشيطةِ في آن واحد او ان يَكُون لَهُ الكثير مِنْ النوافذِ المفتوحة على الشاشةِ أو الكثير مِنْ النداءاتِ التكراريةِ في الهرنامج.
 - نسخ مختلفة قَدْ تُسْمَحُ لنتائج مختلفة مِنْ المخطوطاتِ (ومثال على ذلك: سرقة المصرف بحال الفُّشل).

مميزات المخطوطاتِ:

امكانية تَوقُع الأحداث.

• مفس متماسك وحيد قَدْ ينشأ مِنْ مجموعة الملاحظاتِ.

الهلبيات:

- تعتبر اقل شمولية مِنْ الإطر.
- قَدْ لا تَكُون مناسبة التَمْثيل كُلّ أنواع المعرفة.

الموسوعة (CYC) الموسوعة

ماهي الموسوعة؟

- محاولة طموحة لتشكيل قاعدة معرفة كبيرة جداً تمتلك خصائص الاستنتاج الادراكي.
- الهدّفُ الأول لهذه المحاولة كان استنباط المعرفةِ مِنْ مائة مقالة مختارة بشكل عشوائي من الموسوعةِ البريطانية (Britannica).
 - كل من نوعى المعرفة الضمني والواضح تم تشفيره.

المثال على المعرفة الضمنية والواضحة: لرقترضُ اننا قَرأنَا ان زيد عَلمْ بموتِ عمر اذن نحن اعبشر يُمْكِنُ أَنْ نَستنتجَ ان عمر أَبَداً لن يعرف بموت زيد. كنف استنتحنا هذا؟

تطُّلُبُ الامر فقط معرفة ضمنية خاصّة واستنتاجات مثل:

- عَشُوتُ الانسانِ مرّة واحدة فقط.
 - عُقى الانسان ميتاً اذا مات.
 - لا يستطيعُ الميت العِلْم بأيّ شئ.
- الزمن لا يَستطيعُ الرُجُوع إلى الوراء.

لماذا نَفْنى قواعدَ المعرفة الكبيرة:

الهشاشة

- قواعد الهعرفة الهُتَخَصّصة تعتبر هشّة. بسبب صعوبة تَشْفير الحالاتِ الجديدةِ والضعف في الأداءِ. قواعد الهعرفةِ المبنية على الادراك يَجِبُ أَنْ يكونَ لديها اسس أقوى.

الشكل والمحتوى

- تمثيل الهعرفة قد لا يَكُون مناسب لإنظمة الذكاء الاصطناعي. لكن إستراتيجيات الادراك يُمْكِنُ أَنْ تشُويرَ الى الهعوباتَ في المحتوى والتي قَدْ تؤثّرُ على الشكلِ.

المعرفة المشتركة

- يَجِبُ أَنْ يَسْمحَ لإتصالِ أكبرِ بين الأنظمةِ بالقواعدِ والفرضياتِ المشتركةِ.

كيف تشفّرُ الموسوعة؟

- ىشكل يدوي.
- باستخدام لغة سي واي سي إل الخاصة والتي لها الصفات التالية:
 - 0 لغة شبيهة بلغة LISP
 - o تستخدم نظرية الإطر
 - o تستخدم نظرية الهيراث الهتعدد
 - o تستخدم نظرية الشقوق.
- نستخدم الميراث المُعَمَّم -- أيّ ابط ليس فقط المضمون والحالة.

الأنظمة الخبيرة

مقدمة

حتى الآن نحن ناقشنًا كَيفَ يُمْكِنُ أَنْ نُمثّلَ معرفةً، لكنها لم نتطرق الى مسألة كيف يُمْكِنُ أَنْ نَستعملَ هذا لحَلّ مشاكلِ عملية حقيقية ِ هذا القسمِ سَهحت في كيفية استخدام البعض مِنْ التقنياتِ التي نوقشت حتى الآن في الأنظمةِ الخبيرةِ –

والتي يمكن تعريفها على انها: الأنظمة التي تُزوّدُ نا بنصل ع نوعية خبيرة، كذلك تشخّ عِصُ وتوصيات لمشاكل من العالم الحقيقي.

الأنظمة الخبيرة تصمم لحَلّ مشاكلِ حقيقية والتي عادة تَنطَلُبُ تَخصّص و خبرة بشرية (مثل الطبيب أو خبير المعادن). بناء نظاماً خبيراً يَتضمّنُ اولا إستخراج المعرفة ذات العلاقة مِنْ الخبير ال بشري. هذه المعرفة في اغلب الاحيان لها طابع إرشادي في الطبيعة، وتكون مستندة على البيانات المفيدة `` قواعد الإبهام " بدلاً مِنْ الحقائق الهطلقة المطلقة المعلومات مِنْ الخبير بطريقة ما لهكُونَ ممكن استعمالها بعد ذلك من قبل حاسوب تعتبر عموماً مهمة صعبة، وتعطل خبرته الخاصة تعتبر مهمة مهندس الهعرفة هي إنتزاع المعرفة و بناء قاعدة الهعرفة التي تمثل اساس النظم الخبيرة.

أي محاولة أولى في بناء نظام خبير من غير المحتمل أنْ يكُونَ ناجحة جداً. ذلك وبشكل جزئي لأن الخبير من الصعب بمكان ايجاد الهعرفة والقواعد المستخدمة من قبل البشر لحَلّ نفس المشكلة المراد مكننتها. وذلك لان مُعظم ه ذه القواعد لاشعوري تقريباً، أو تبدو سهلة جداً للبشر لدرجة انهم لايفكرون بطريقة اتمامها، ومثال على ذلك حفظنا لوجوه من نعرف! كتساب الهعرفة للأنظمة الخبيرة م جال واسع مِنْ البحث، مَع نوع عريض ومختلف مِنْ التقنياتِ المحورة على أية حال، عموماً من المُهم تطوير نموذجاً أولياً مستند على الهعلومات المنتزعة من مُقابَلة الخبير، ثمّ التقيها وتعديلها بشكل تكراري بالاستراد على آراء كل مِنْ الخبير و المستعملين المحتملين للنظام الخبير.

لَكَيَّ عِيْم مثل هذا التطوير التكراري الهموذج مبدئي، من المهم ان يكون النظام الخبير مكتوب بطريقة بحيث أنّه يُمْكِنُ اختباره و تعَمَّيْ بسهولة النظام يُجِبُ أَنْ يَكُونَ قادر على تَوضيح استنتاجاته (إلى الخبير و الهستخدم و مهندس الهعرفة) و الاجابة على الأسئلة حول عملية الحَلَّ. تَجديد النظام يَجِبُ أَنْ لا يَتضمّنَ إعادة كتابة الكثير مِنْ اجزاء العرنامج (الكود) - فقط إضافة أو حَذْف بعض مواضع اجزاء العرنامج.

إنّ مخطّط تمثيل المعرفة المستعمل على نحو واسع للأنظمة الخبيرة هو مجموعة قواعد (وأحياناً بالتمازج مع أنظمة الإطر). نموذجياً، القواعد لَنْ تعطي الإستنتاجات الاكيدة – بل سَيكُونُ لدينا فقط بَعْض درج ات الهقين التي ستؤدي بالاستنتاج الى التوقف في حال ان الشروط ادت الى توقف. التقنيات الإحصائية تُستَعملُ لتَقْرير هذه الحقائق. النظم المبنية على اساس القواعد ، مَع أو بدون الحقائق، تعتبر قابلة للتعديل بسهولة عموماً ويَجْعلُ الأمر سهلاً لل امتابعة وتعقب طريقة التفكير والاستنتاج في هذه النظم. ان اثار هذا القعقب يُمْكِنُ أَنْ تُستَعملَ في اعطاء تفسيرات لآلية عمل النظم

الأنظمة الخبيرة تُستَعملُ لحَلّ مجموعة واسعة من المشاكلِ في المجالاتِ العديدة مثل الطبِّ و الوياضياتِ و الهندسة وعِلْم طبقات الأرضِ وعِلْم الحاسبات و العملِ و القانونِ و الهفاعِ و القعليم الخ ضمن كُلّ مجال، تستعمل الانظمة الخبيرة لحَلّ مشاكلِ من أنواع مختلفةِ بعض المشاكل تتضمنُ:

- التشخيص (ومثال على ذلك: -، عيب نظام ما، خطأ الطالب أو تحديد المرض)؛
 - القصميم (أنظمة الحواسب، الانظمة الفندقية... الخ)؛
 - القفسير (على سبيل المثال، الييانات الجيولوجية).

النقنية الملائمة لُحلُ المشكلة يتتمد أكثرُ على نوعُ المشكلة مِنْ مجالِ المشكلة. كل الكُتُب في هذا الموضوع كُتِبتْ حول طريقة إَختطِير تمثيلَ الهعرفة و طرق الاستنتاج التي تعطى خصائصَ الهشكلةِ.

تصميم الفظم الخبيرة

في هذا القسم سنتعرف بتفصيل أكتو على كيفية تصميم وكتابة الأ نظمة الخبيرة. أولا مراجعة وتنقيح الهخططات المعمارية الأساسية للنظام الخبير ، ثمّ نحن ستناقش كيفية اختيار انظمة خبيرة ملائمة لمشاكل محددة وإختطي أنظمة التُطوّي.

المخططات المعمارية للانظمة الخبيرة

الرسم 18 يبين الوحداتَ الأكثر أهميةً التي تتوفر في الانظمة الخبيرة المبنية على أساس القواعد وهي التالية:

- وصلة التفاعل مع النظام: وهي الوصلة التي يَتفاعلُ من خلالها المستخدم مع النظام والتي يمكن ان تكون:
 - القوائم
 - لغة طبيعية
 - أو أيّ أسلوب آخر مِنْ التفاعل.
 - محرّك الإستدلال: والذي يُستَعملُ للتَفَاهُم مع كل من:
 - المعرفة التخصصية (التي تم الحصول عليها مِنْ الخبيرِ).

- اليبانات الخاصة بالمشكلة المعيّنة المراد حلها. المعرفة التخصصية نموذجياً سَتَكُونُ على شكل مجموعة من قواعد إذا آنذاكِ (IF-THEN).
 - بياناتُ الحالة المعيّنة: و تتضمّنُ كل من :
 - البيانات التي زودت بمساعدة المستخدم.
- الإستنتاجات الجزئية (السوية مع إجراءات الحقيقة) الهستندة على هذه البيانات في نظام بسيط و محدد مبنى على أساس القواعد، بيانات الحالة المعينة ستكون العناصر في الذاكرة الفعالة .

الرسم 17. هيكلية النظم الخبيرة

- نظام التفسير الفرعي: تقريباً كُل الأنظمة الخبيرة لَها نظام تفسير فرعي، و الذي يَسْمحُ للبرنامج بتَوضيح استنتاجاته للمستخدم.
- محرر المعرفة الاساسي: بَعْض الأنظمةِ لَها أيضاً محرّر الهعرفةِ الأساسي الذي يُساعدُ مهندسَ المعرفةَ أو الخبيرَ لتحديثه بسهولة ولتدوّقُ قاعدة المعرفة.

ميزّة مهمة واحدة الأنظمةِ الخبيرةِ وهي الطريقةُ التي يقوم بها النظام الخبير (عادة) بتقسيم مجال واسع وعام من تقنيات الاستنتاج والتمثيل الى مجالات اصغر لمعرفة محددة . إنّ مجموعة الهدف العام والمجتمعة (في الصندوقِ المنقطِ في الرسم) تسمى هيكل النظمِ الخبيرةِ. كما نَرى في الرسم، الهيكل سَهَنِوّد النظام بالتالي:

- أمحرتك الإستدلال
- مخطط تمثيلِ المعرفةِ
 - وصلة المستحدم
 - نظام التفسير
- وأحياناً محرر المعرفة الأساسي.

لنأخذ نوع جديد مِنْ المش الكِل المطلوب حلها (مثلا، تصميم سيارة)، نحن يُمْكِنُ أَنْ نَجِدَ عادة الهيكل (المخطط المعماري) الذي سيعطينا الخيار الصحيحَ لدعم حل تلك المشكلة، لذا كُلّ ما نحن نحتاجه هو النُزودُ بالمعرفة التخصصية. هناك نظم خبيرة عديدة تجارية ، كُلّ واحد منها ملائم لنوع مختلف قليلاً مِنْ المشاكلِ. إستعمال مبدأ الهيكل لكِتابَة الأنظمةِ الخبيرةِ تُخفّضُ الكلفةَ عموماً كثيراً ووقتَ التطويرِ.

إختيار المشكلة

تطوير نظامَ أخبيرَ أعموماً تتطلب الكثير مِنْ الوقتِ والمالِ. لتَفادي التكلفة المرتفعةِ وحالاتِ الفشل، طور بعض الخبراء مجموعة التعليماتِ (الدليل) للتحديد اي نظم خبيرة مناسبة لحل المسائل والهشاكل المحددة، حسب التالي:

- الحاجة لحَلّ مشكلة ما باستخدام النظم الخبيرة يَجِبُ أَنْ يُبرّرَ الهكلفة التي ستنفق على التطوير. لابد أن يكون هناك تقييم واقعي مِنْ الهكلفة والمنافع (دراسة جدوى اقتصادية).
- الخبرة الإنسانية لَيستْ متوفرة في كُلَّ الحالاتِ المطلوبة. إذا المعرفة التخصصية متوفرة بشكل واسع هذا لا يعني بأنها سَتَوَدي حتما الى تَطوير نظام خبيرَ. على أية حال، في مجالات مثل إستكشاف النفط والطبِّ هناك قَدْ بكُون الهعرفة الهُتَخَصِّصة نادرة والتي يُمْكِنُ أَنْ نحصل عليها بسعر رخيص من نظام خبير، وذلك عندما نحتاج لها، بدون الحاجة لهفع تكاليف كبيرة للخبير نفسه (الشخص).

المشكلة قَدْ تُحْلُ للستعمال تقنياتِ التفاعي الرمزيةِ بحيث أَنْ لا يَتطلّبَ مهارة يدوية أو مهارة طبيعية.

إنّ المشكلة مُنظّمةُ بشكل جيد و لا تَتطلّبُ الكثير من معرفة الحسّ العام. معرفة الحسّ العام صعبة جداً للتَمثيل. ويبدو ان التعامل مع حقول نبقنية عالية أسهل ، ويميل إلى تَضْمين كميات صغيرة نسبياً مِنْ المعرفة المشكلة الجيدة.

• المشكلة لا يُمكنُ أَنْ تحل بشكل سهل باستعمال طرقَ الحساب الققليدية بحيث انه إذا كان هناك من حَلّ حسابي جيد للهشكلة، فإنه تنتفي الحاجة الي إسْتِعْمال نظامَ خبيرَ لحلها.

ضرورة توفر الخبراء المتعاونون والواضحون بحيث ان من اهم عناصر مشروع النظام الخبير الفاجح توفر الخبراء الواغبون بالمُساعدة، و المستقرون بعملهم! كما نَحتاجُ لإدارة ومستخدمين محتملين لديهم مواقفُ إيجابيةُ إلى الهشروع بأكمله.

إنّ تكون المشكلة مِنْ الحجمِ والمجالِ الصحيحِ. نموذجياً نحن رَجتاجُ الى المشاكلَ التي تَتطلّبُ خبرةً عالية من التخصّص، والتى تتطلب من الخبير البشري وقت قصير لحلها (مثلا ساعة على الاغلب).

يَجِبُ أَنْ يَكُونَ من الواضَّحَ ان حيز صغير مِنْ المشاكلِ ملائم لتقنيةِ النظمُ الخبيرةِ. على أية حال، بوجود مشكلة مناسبة، الأنظمة الخبيرة يُمْكِنُ أَنْ تَعطي منافعَ هائلةً. تم تطوير بعض الأنظمة ، على سبيل المثال، للمُساعَدة على تَحليل العيناتِ التي تجمعُ في عملية إستكشافِ النفطِ، وللمُساعَدة على تشكيل أنظمةِ الحاسوبِ هذه الأنظمةِ، توفُفُلُ الكميّات الكبيرة من المال، في الاستعمال الصحيح لها.

هندسة المعرفة

بَعْدَ أَنْ تبينَ بأنّ المسألة او الهشكلة مناسبةُ لأن تحل بواسطة نظام خبير فأننا نَحتاجُ للحصول على المعرفةِ مِنْ الخبيرِ وتُعْلِقُه المستخدام هيكل الفظم الخبيرةِ هذه وظيفة او مهام مهندسِ المعرفة، بالقعاون المستمر مَع الخبير /اءِ والمستخدم/ين.

إِنَّ مهندسَ المعرفة هو خبير تمثيل وبرمجة انظمة الذكاءالاصطناعي. هو يَجِبُ أَنْ كِيُونَ قادرا على اجراءالتالى:

إخْتيار هيكل الفظم الخبيرة الهناسب (وأدوات أخرى) للمشروع.

الإستحصال على المعرفة مِنْ الخبير.

تُطبيقٌ المعرفة في قاعدة معرفة صحيحة وكفوءة.

قد لايكون لدى مهندس المعرفة اي معلومات او معرفة في مجال التطبيق فيما يخص هذه المسألة او المشكلة. لإنتزاع المعرفة مِنْ الخبير، يجب على مهندس المعرفة اولا أنْ علم بعض الشئ على الأقل بمجالِ المشكلة، لَرُبَّمَا بقراءة النصوصِ التمهيدية أو يَتكلَّمُ مع الخبير بشكل عام حول الافكار الاساسية. بعد هذا، يقوم بهقابلات أكثر تنظيماً مع الخبير. نموذجياً الخبراء يَضْربونَ سلسلة من الامثلة حول المشكلةِ ، وسَيُوضَحونَ طريقة تفكينٌ هم وآرائهم في حَلٌ هذه المشكلةِ. مهندس المعرفة سَيُخرجُ بقواعد عامّة من هذه التفسيراتِ، ويُدقّقُهم مَع الخبير.

كما في أكثر التطبيقات، النظام يعتبر بالفائدة إذا لم يكن المستخدم سعيدا به، لذا فأن القطوير يَجِبُ أَنْ يَتضمّنَ تعاونَ كامل مَع المستخدمين المحتملين لاحقا للنظام. كما هو مذكور في المقدمة، دورة التطوير الأساسية يَجِبُ أَنْ تَتضمّنَ التطويرَ السريعَ لنموذج أولي وإختبار تكراري وتعديلِ ذلك النموذج مَع كل من الخبراء (لتَدقيق صلاحية القواعدِ) والهستعملون (للتَدقيق بأنّ النظام يُمْكِنُ أَنْ يُزود هم بالمعلومات الضرورية، وبأنهم راضون عن أداء وتفسيرات الأنظمة، وبأنه في الحقيقة يُسهَلُ حياتهم بدلاً مِنْ ان يعقدها!).

لكي يُطوّرَ النموذَّجَ الأوليَ على مهندسُ المعرفة أَنْ يَتَخذَ قر أراتَ مؤقّتةَ حول تمثيلِ المعرفةِ الملائم وطرقِ الإستدلالِ (ومثال على ذلك: -، مبدأ القواعد، أو مبدأ القواعد + الإطر؛ التقييد الأمامي أو النقوي الخلفي). لإختبار قراراتِ التصميمِ الأساسيةِ، حيث ان النموذج الأول قَدْ يَحْلُ فقط جزء صغير مِنْ المشكلةِ العامّةِ. إذا الطرقَ المستعملة اعطت نتيجة جيدة لذلك الجزءِ الصغيرِ فإنه من المجدي إسْتِثْمار الجُهدِ في تَمثيل بقيّة المعرفة في نفس الشكلِ لحل باقي الاحزاء

تطوير النظم الخبيرة كَانَ عصريلَ جداً في نهايات القرن الماضي، بالتوقّعات الغير واقعية حول المنافع المحتملة. الآن تم حل بَعْض التهكم. هياكل النظم الخبيرة الان تستعمل بشكل واسع جداً، لكن في أغلب الأحيان تشتعملُ لحَلّ المشاكلِ البسيطة جداً، ومُختَارة بسبب وصلة الهستخدم بها وبيئات تطويره ا وليس بسبب قدراته االإستنتاجية.

القواعد والأنظمة الخبيرة

في هذا القسم سنري كيف تعمل الأنظمة الخبيرة المبنية على اساس إذا- فأن (IF-THEN)، و,سنورد مثالا على نظام خبير بسيط جداً باستخدام لغة البرمجة Prolog.

الأنظمة المبنية على أساس القواعد يُمكنُ أَنْ تَكُونَ هدف موجه بلستعمال النَّقِيَّةُ الخلفي لإختِبار بَعْض الفرضيات ان كانت صحيحة ، أو بيانات موجهة، بإستعمال النقيّة الأمامي للتوصل إلى الإستنتاجات الجديدة مِنْ البيانات الاصلية. الأنظمة الخبيرة قَدْ تَستعملُ واحدة أو كلتا الإستراتيجيات، لكن الأكثر شيوعاً استعمال استراتيجية الهدف الموجه خلفاً. أحد الأسباب لهذا بأنّ النظام الخبير يَجِبُ أَنْ يَجْمعَ معلوماتَ حول المشكلة مِنْ المست خدمين بسُؤالهم أسئلة - باستعمال إستراتيجية الهدف الموجه فقط نحن يُمكِنُ أَنْ تَسْألُ الأسئلة التي لها علاقة بالحل المفترض.

على أية حال، في النظم الخبيرة المبنية على اساس القواعد - الهدف الموجه السيط هناك في أغلب الأحيان مجموعة الحلولِ المحتملة للهشكلة - كمثال يمكن اعتبار مجموعة الأمراضِ التي من المحتمل ان تكون عند مريضِ مأ. النظام الخبير سيَعتبر كُل حَل مُفتَرض (ومثال على ذلك: -، عنده نزلة برد (فريد) (has_cold(fred))) ويُحاولُ إثبات الخبير سيَعتبر كُل حَل مُفتَرض (ومثال على ذلك: -، عنده نزلة برد (فريد) المولية الهجهزة من البيانات الأولية الهجهزة من المستخدم بعض الأسئلة (ومثال على ذلك: -، " هَلْ أنت تشعر بصداع؟ "). إستعمال الهيانات الأولية بالاضافة الى الاجابة على الأسئلة يَجِبُ أَنْ يمكن النظام من إسْتِنْتاج اي من الحلولِ المحتملة لهذه المشكلة يعتبر الصحيح.

مثال بسيط

سيبوُّضَّحُ هذا بشكل أفضل من خلال مثال بسيط. لرقترضُ بأنَّ لديَّا القواعدُ التاليةُ:

- IF engine_getting_petrol
 AND engine_turns_over
 THEN problem_with_spark_plugs
- 2. IF NOT engine_turns_over AND NOT lights_come_on THEN problem_with_battery
- IF NOT engine_turns_over AND lights_come_on THEN problem_with_starter
- 4. IF petrol_in_fuel_tank THEN engine_getting_petrol

مشكلتنا هنا أَنْ نعرف ما هو العطل في الهيارة التي أعطتْ بَعْض الأعراضِ الجديرة بالملاحظةِ. هناك ثلاث مشاكلِ محتملةِ بالسيارةِ:

- مشكلة ضعف شرارة التشغيل.
 - مشكلة بالبطارية.
 - مشكلة ببادئ التشغيل.

سَنَفترضُ بأنّنا لم نكُن مجهزون بللحقائق الأولية حول الأعراضِ الجديرة بالملاحظةِ. في نظام الهدف المُوجَهِ الأسهلَ والذي نحن نُحاولُ إثّبات كُلّ مشكلة مُفتَرَضة (بالسيارة) تباعاً. أولاً النظام يُحاولُ إثّبات `` مشكلة ضعف شرارة التشغيل ". القاعدة 1 افتراضيا مفيدة هنا، لذا النظام يَضِعُ الأهدافَ الجديدة للإثّبات `` الهحرّك _ يحصل على _ الينزين " و `` الهحرّك _ يبدأ بالدوران و لا يعمل ". بمحاولة إثّبات الأوّلي من هذه، القاعدة 4 يُمْكِنُ أَنْ تشتعملَ، مع الهدفِ الجديدِ مِنْ الإثّبات `` البنزين _ في خزان الوقود " ليس هناك قاعدة التي تستنتجُ هذا (والنظام لا يَعْرفُ الجوابَ)، لذا النظام سَيَسْألُ المستعمل:

هَلْ صحيح أنّ هناك بنزين في خزّانِ ألوقود؟

لنقول ان الجواب نعم. هذا الجوابِ سَيُسجِّلُ، لكي لا يُسْأَلُ المستخدم نفس السؤالِ ثانيةً. على أية حال، أثبتَ النظام الآن بأنّ المحرّكَ يبدأ بالدوران. بما ان النظام لا يَعْرفُ لحد الآن بأنّ المحرّكَ يبدأ بالدوران. بما ان النظام لا يَعْرفُ لحد الآن ان هذه هي الحالةُ، وبما انه ليس هناك قواعد التي يمكن ان تستنتجُ هذا، سيقوم بسؤال المستخدم:

هَلْ هو صحيح ان المحرّك بدأ بالدوران؟

لنفترض ان الجوابَ لا. ليس هناك قواعد أخرى التي يمكن أن تُستَعملَ لإثبات `` مشكلة _ ضعف شرارة التشغيل " لذا النظام سَيَستنتجُ بأنّ هذا ليس الحَلَّ لهذه المشكلةِ، وسَيَعتبرُ الفرضيةَ القادمةَ: مشكلة _ مَع العطارية. صحيح ان المحرّكُ لم يبدأ بالدوران، حسب جواب المستخدم ، لذا هو يَجِبُ أَنْ يُثبتَ بأنّ ال مصابيح لا تتضيئ. هو سَيَسْألُ المستخدم:

هَلْ صحيح ان المصابيح تضيئ؟

لرفترضْ آن الجوابَ لا أثبتنا الآن بأن المشكلة بالبطارية بعض الأنظمة قَدْ تَتوقّفُ هناك، لكن عادة هناك قَدْ يَكُونُ اكثر مِنْ عيب واحد بالسيارة)، أو سَيَكُونُ الحل الصحيح مجهولا مِنْ بين الحلولِ المُخْتَلِفة لذا كُلّ الفرضيات مُعتَبَرة هو سَيُحاولُ إثبات `` مشكلة مع مبدئ التشغيل "، لكن أعطى البيانات الحالية (المصابيح تضيئ) البرهان سَيَفْشل، لذا النظام سَيستنتجُ بأنّ المشكلة بالبطارية النفاعل الكامل مع نظامنا البسيط جداً قَدْ يَكُونُ:

النظام: هَلْ صحيحا بأنّ هناك بنزين في خزّان الوقود؟

المستعمل: نعم.

النظام: هَلْ صحيحا بأن المحرّك ببدأ بالدوران؟

المستعمل: لا

النظام هَلْ صحيحا ان المصابيح تضيئ؟

المستعمل: لا.

النظام: أستنتجُ بأنّ هناك مشكلة بالبطاريةِ.

نُلاحظ انه عُموماً، حُلُّ المشاكل بإَستعمالُ التُّوتِيدِ الخلفي تَتضمّنُ التَفتيش خلال كُلِّ الطرق المحتملة لإثْبات الفرضيةِ، وبشكل منظم يُدقّقُ كُلِّ واحد منهم. الطريق الهشترك مِنْ عَمَل هذا البحثِ يشبه تماماً مثل في Prolog – بحث العمق أولاً بالتَّرَاجُم.

وسائل الهفسير

أكثر الأنظمة الخبيرة له يها وسائلُ تفسير التي تَسْمحُ للمستخدم بطرح بعض الأسُرُاق عن سبب السؤال التي تطرحه هي بدورها، و عن كيفية توصلها له عض الفتائج. هذه الأسئلة مُجَابة بالرجوع إلى اهداف النظام ، القواعد تبدأ بأنْ تَكُونَ مستعملة، وتخرج بيانات الهشكلة. لتوضيح أنواع الوسائلِ المجهّزةِ عموماً، نحن سَنَنوسمعُ على مثالِنا البسيطِ المعطى اعلاه، بَدْء مَع الحوار في الهثالِ السيطِ والذي يَتضمّنُ أسئلة وتفسيرات مثل "لماذا" و "كيف".

النظام: هَلْ هناك بنزين في خزّانِ الوقود؟

المستعمل: نعم.

النظام: هَلْ صحيح ان المحرّك بدأ بالدوران؟

المستعمل: لا

النظام هَلُ ان المصابيح تضيئ؟

المستعمل: لماذا؟

النظام: أحاولُ إثبات: إن المشكلة بالبطاريةِ.

هو أسّسَ بأنّه أليسرَت الحالة التي تقول ان المحرّكَ بدأ بالدوران.

لذا إذا ه ي ليسنت الحالة التي تخبر ان المصابيح تضيئ فأنه هناك مشكلة بالبطاريةِ.

هَلْ هو صحيح ان المصابيح تضيئ؟

المستعمل: لا.

النظام: أستنتجُ بأنّ هناك مشكلة بالبطاريةِ.

المستعمل: كَيفَ؟

النظام: هذا يَتْلَى مِنْ قاعدةِ 2:

IF NOT engine_turns_overAND ...

NOT engine_turns_overwas given by the user. NOT lights_come_onwas given by the user.

ادراج وسيلة التفسير تتضمّن، على الأقل، ستُمجّئي ماذا تستعمل القواعد في تجهيز الإستنتاجات، ويَستعمل هذه السجلات لإغداد التفسيرات مثل الواردة في المثال المعطى اعلاه إعطاء التفسيرات البسيطة ، كقلك في نفس المثال، ليس صعبلُ جداً (الأجوبة دائماً لها شكل مجموعة بسيط)، ومفيدُ جداً أحياناً على أية حال، وسائل التفسير في الأنظمة الخبيرة في أغلب الأحيان ليست كثيرة الإستعمال، و اذا إستعمات فهي لاتبدو مقبولة من قبل المستخدمين. هناك الكثير مِنْ الأسباب لهذ ا، مما يُحفّزُ الهحث الأني في المنطقة أحد هذه الأسباب لان التفسيرات فقط تُرجعُ المعرفة السطحية المشفرة في القواعد، بدلاً مِنْ المعرفة العميقة حول المجال الذي حفّز القواعد أصلاً (والتي بالاصل ليسنت مُمثّلة). لذا، النظام سَيقولُ بأنّ إستنتج إكس بسبب القاعدة 23، لكن لا يُوضّحَ كلّ شيء عن القاعدة 23. (في المثال أعلاه، يَحتاجُ المستخدم له هُمْ ان كل من المصابيح ومبدئ التشغيل يَستعملان البطارية، التي تعتبر السبب الم علن الآخر للفشل المتكرّر لوسائل التفسير هو الحقيقة بأنّ، إذا أخفقُ المستخدم في فَهْم أو قُبُول التفسير، فأن النظام لا يَستطيع إعادة التُوض مُ بشكل آخر (كما يستطيع الانسان ان يفعل). المستخدم في فَهْم أو قُبُول التفسير، وما نتائج ذلك هل نمثل المعرفة التحتية.

الأنظمة الأكثر تعقيدا

القواعد الأربع في المثالِ اعلاه تُصوّرُ الأفكارَ الأساسيةَ للأنظمةِ الخبيرةِ المبنية على أساس الق اعد ذات الهدف المؤجّه. على أية حال، عُموماً بالطبع هناك سَيكُونُ مئاتَ أو آلافَ القواعدِ في النظامِ، وكُلّ قاعدة سَتَكُونُ أكثر تعقيداً المؤجّه. على ذلك: age(Patient, X) عمر إلى حدِّ كبير. القواعد ستَتضمّنُ الأنماطَ بالتأكيد تقريباً بالمتغيّراتِ (ومثال على ذلك: age_fred_23)) والتي عادةً لديها (مريض، إكس))، بدلاً مِنْ مقترحات غير منظّمة بسيطة (ومثال على ذلك: age_fred_23)) والتي عادةً لديها عواملُ حقيقةِ ارتبطت بهم (سيتم وصفها لاحقاً).

عُوامُلُ حَقَيقةِ الرَّبَطَت بهُم (سيتُم وَصفها لاحقاً). على الله على أية حال، بالرغم من أن الأنظمةِ الحقيقيةِ سَتَكُونُ أكثر تعقيداً من تلك الموصوفة أعلاه، حيث سَستعملُ الكثيرَ من نفس التَفكيّ والاستنتاج الأساسي وإجراءات التفسيرِ نظام مبكّر واحد إستعمل هذه النظر عني الأساسية ويدعى MYCIN ، وهو نظام لتَشخيص الإضطِرَابات الدموية. نحن سَنَصِفُ هذا النظامِ بشكل مفصلِ أكثر بعض الشيءِ لاحقاً

A Republication Appendix Prolog

إنّ البرنامج التالي هو هيكلية نظام خبير بسيطة جداً في Prolog. نهرده لنرى كيف يمكن ان تبدو الهيكلية الأساسية ، ولتقديم بضعة ميزّات جديدة اللغة البرمجة Prolog.

رُلاحظ انه لكي تُعرّفَ النحو الخاص للقواعد نستعمل بَعْض إعلاناتِ المشغلِ (: op.). هذا يَسْمحُ لنا أَنْ يَكُونَ عِنْدَنا تعابيرُ مثل `` (if small(X) and nice(X) then good(X) إذا إكس صغير ولطيف يعني اكس جيد ". على أية حال، هذه حقاً فقط حقائق Prolog، التي يُمكنُ أَنْ تَكُونَ نمطاً مقارناً على نحو طبيعي. لتَكوين فكرةِ عن هذا، حاول كتابة وتشغيل هذا البرنامجَ وإختبلوَ الإستفسارَ التاليَ:

?- (if a(A) and B then C) = (if a(1) and a(2) then a(3)).

على أية حال، هنا الهيكليةُ الصغيرةُ.

%% Micro Expert System.

- %% This is a very simple backward chaining rule-based
- %% expert system. Given some possible hypotheses it backward chains on
- %% each one trying to find out if it is true or not. If it cant
- %% prove a fact using the rules it will just ask the user if it is
- $\ensuremath{\mbox{\%}}$ true or not. Once it has $\ensuremath{\mbox{proved}}$ one of the hypotheses it will present

```
%% its conclusions to the user.
 % OPERATOR DECLARATIONS
  :- op(975, fx, if).
  :- op(950, xfy, then).
  :- op (925, xfy, and).
 § ______
 % EXPERT SYSTEM RULES (EXPERT KNOWLEDGE BASE)
 rule (if eats (X, Y) and living (Y) then carnivore (X)).
 rule (if carnivore(X) and big(X) then dangerous(X)).
 rule(if has feathers(X) then bird(X)).
 rule(if bird(X) and small(X) then good pet(X)).
 rule(if cuddly(X) then good pet(X)).
 § -----
 % TEXT TEMPLATES FOR ENGLISH
 % gtext/2: Provides a simple template based translation into English
 % questions.
 qtext(cuddly(X), ['Is ', X, ' cuddly?']).
 qtext(has feathers(X), ['Does ', X, ' have feathers?']).
 qtext(small(X), ['Is ', X, ' small']).
 % atext/2: Template based translation into recommendations.
 atext(good pet(X), ['I suggest that ', X, ' would make a good
pet.']).
 % -----
 % EXAMPLE TEST CASE
 find good pet :-
     check hypothesis([good pet(lenny), good pet(eddie),
good pet(tweety)]).
 § -----
 % MAIN EXPERT SYSTEM SHELL CODE
 % check hypothesis(+Hypotheses)
 % Succeeds when one of the hypotheses is proved true, or it
 % has tried them all.
 % Picks a hypothesis, and uses b chain to find out if it is true.
 % If it is true then b chain succeeds and check hypothesis writes out
the
 % appropriate recommendation. If false it backtracks to 'on' to find
 % another hypothesis to try.
 % Once it has tried all the hypotheses it will backtrack to second
 % check hypothesis clause and write an appropriate message.
 % (Uses MacProlog built in predicates message/1 and on/2)
 check hypothesis(Hypotheses) :-
```

```
on(Hypoth, Hypotheses), % get a member of hypotheses
bchain(Hypoth), !, % b_chain to check if true.
        bchain(Hypoth), !, % b_chain to cneck if class.

atext(Hypoth, Text), % get hold of appropriate text.

% write out the recommendation
 check hypothesis(): - message(['None of the possible hypotheses seem
to be true']).
  % bchain(+Goal)
  % Succeeds if Goal is true, given rules + facts supplied by user as
  % backward chaining proceeds.
 bchain(G1 and G2):-!,
                                   % G1 and G1 are true if
      bchain(G1),
                                    % G1 can be proved by backward
chaining
                                   % and G2 can be too.
      bchain(G2).
  b chain(Goal) :-
                                  % G's true if its a fact!
      userfact (Goal).
 bchain(Goal):-
                                          % Goal is true if
      rule(if Preconditions then Goal), % there's a rule concluding it
                                          % and its Preconditions can be
      bchain (Preconditions).
                                          % proved by backward chaining
  bchain(Goal):-
                                    % Goal is true if
      user says its true(Goal). % user says its true.
  % user says its true(+Goal)
  % True if there is some text to use to ask the user about it,
  % and when you ask the user they say yes.
  % Uses MacProlog built in predicate yesno/1
 user says its true(Goal) :-
      qtext(Goal, Text),
      yesno(Text),
      assert(userfact(G)).
                                        % Add the fact to Prolog's
database.
```

ان مسند المستوى الأعلى الرئيسي في Prolog هو مسند فرضية _ التدقيق. هذه المسند يستخدم طريقة التراجعُ للمُرور بكُلّ أعضاء قائمة الفرضياتِ لمعرفة اي من هذه العناصر يُمْكِنُ أَنْ يُثبتوا الصح بالتقييد الخلفي. عند ايَجادَ عنصر يتبنى الصح، يَكْتبَ النظام رسالةَ إلى المستخدم. لحَمَلُ هذا هو يَبْحثُ أولاً عن بعض النَصَ المخصّصُ لإستنتاج معيّن (ومثال على ذلك: tweety) pet _ good) -، تويتي حيوان اليف-جيد) يَستعملُ المسندَ 2/ atext منتاج معيّن (ومثال على ذلك: Prolog _ good رسالة / 1 لكِتابَة رسالة مناسبة. الرسالة تَأْخذُ حجّة وحيدة والتي يَجبُ أَنْ تَكُونَ قائمة، وتَظْهِرُ نافذة و كُتبُ الهنود في تلك القائمة.

مسند التقييد الرئيسي b _chainpredicate عِنْدَهُ أَرْبِع حَالاتٍ، يَتعامَلُ مع الحالاتِ التي بها:

- إر تباط الأهداف للإثبات.
- الهدف للإثبات فقط انه حقيقة.
- القواعد التي تَجاري خاتمتَها الهدف (لذا شروطه المسبقة تَضِعُ كأهداف جديدة).
 - الحقيقة حيث يَقُولُ المستخدم بأنّ الشيء صحيح.

المستخدم يعطي الجواب باختيار نعم او لا " user_says_its_true ' على الهسند المبني ضمنا في yesno Prolog ' على الهسند المبني ضمنا في ' نعم ' إذا الله يُظْهِرُ نافذة حوارِ ببَعْض النّصِ وال مفتاحين (نعم ولا) وتَنْجحُ في حال ان المستخدم يَنْقرُ على ` نعم ' إذا يقوُلُ الذي يَظْهِرُ نافذة حوارِ ببَعْض النّصِ وال مفتاحين (نعم ولا) وتَنْجحُ في حال ان المستعمل بأن شيءً ما حقيقيُ فأن تلك الحقيقةِ مُصرَحةُ إلى قاعدةِ بيانات Prolog (التي ستَحتوي بعد ذلك على

أشياءَ مثل `` userfact (لَها _ ريش (tweety)) "). النصريّ و النصريّ المستخدم هو مسند خاص في Prolog وذلك للأشياءِ المضافةِ بفاعلية إلى قاعدةِ بيانات prolog.

قُدْ تُلاحظُ الكَثير من علامات التعجب '`! " المنتشرة في نص الهرنامج اعلاه. والتي ستنعمل للسيطرة على التراجع. ملاحظة: '` messge " و '` yesno " ليست مسندات قياسية في Prolog. إنّ القياسي هو write/1 والذي فقط يكُّرت أيّ تعبير Prolog ويَ بطه بمتغيّر. لذا، أعطى الإستفسار يكُّتبُ أيّ تعبير Prolog ويَ بطه بمتغيّر. لذا، أعطى الإستفسار (A) بالكثير مِنْ: fred المستعمل يُمْكِنُ أَنْ يَطْبِعَ، مثلا، '`fred. " و عندها ترتبط A بـ fred . يُزوّدُ Prolog بالكثير مِنْ: الزه افذ الإضافيةِ / القائمة / مفاتيح مسندات الادخال والاخراج.

نورد هذا مثال على حوار من النظام أعلاه (وذلك بين: 'S'أو' U: الشارة إلى النظام والمستخدم):

```
?- find good pet.
```

```
S: Does lenny have feathers?
U: No.
S: Is lenny cuddly?
U: no
S: Does eddie have feathers?
U: yes.
S: Is eddie small?
U: no
S: Is eddie cuddly?
U: no
S: Does tweety have feathers?
U: yes
S: Is tweety small?
U: yes
```

S: I suggest that tweety would make a good pet.

واضح من الوارد اعلاه انه ليس كافي ليكون هيكل نظام خبير. كبداية هو يَسْمحُ فقط بالاجوبة نعم / لا ؛ لا يَسْمحُ للقواعدِ الهي يتضمّنُ الحقائقَ؛ و لايحتوي على وسيلةُ تفسير. إذا أردُنا مكوّنَ تفسيرِ للنظامِ فنحن نَحتاجُ لتَسجيل مسار القواعدِ المستخدمة للوصول الى الاستنتاج. كحَدّ أدنى نحن يُمْكِنُ أَنْ نُسجّلُ فقط القواعدَ التي إستعملتْ، ثمّ إذا سَألَ المستخدم `` كيف؟" فان النظام يُمْكِنُ أَنْ يَكْتبَ شيءَ مثل:

إستنتجتُ بأنَّ tweety حيوان أليف جيد، وذلك بإستعمالُ القواعدَ التاليةَ:

```
rule: has_feathers(X) ==> bird(X)
rule: bird(X) & small(X) ==> good_pet(X)
```

حتى الآن أعطينًا فكرة عن كيفية كتابة نظام (هيكل) بسيط مبني على اساس القواعد – التقييد الخلفي. عُموماً هيكل النظم الخبيرة ستَسْمحُ بالتقييد الأمامي أيضاً، وستَسْمحُ بتمثيل الهعض مِنْ المعرفة بلستعمال نظام الإطر على سبيل المثال، نحن قد نُريدُ أَنْ يَكُونَ عِنْدَنا مجموعة الإطر التي تَقُولُ (بين الأشياءِ الأخرى) ان روبي أرنب أبيض والأرانب محبوبة دائماً. نحن يُمْكِنُ أَنْ نُدقَّقُ بلستعمال النَّقُيِّدُ الخلفي لإكتِشاف إذا ما روبي يكون حيوان أليف و جيد، لكن التقيق باستعمال نظام الإطر لإكتِشاف إذا ما روبي معبوبُ (إستعمال ميراثِ مِنْ إطر الأرنبَ).

لمحة عن MYCIN

Mycin وكما هو ورد أعلاه، كَانَ أحد الأنظمةِ الخبيرةِ ال مبكرة، وتصميمه أثّرَ على تصميمِ الأنظمةِ الخبيرةِ التجارية بشكل كبير.

Mycin كَانَ نظاماً خبيراً طوّرَ في ستانفورد في السبعينات. وظيفته كَانَت شُنخّيصَ وإعطاء توَصيات حول معالجةً بَعْض إصاباتِ الدمِّ. ليَعمَلُ التشخيصُ ، بشكل صحيح ، دعم النظام بثقافات مُتزايدة عن إصابة الكائن الحي لسوء الحظ هذا يَأْخذُ حو الي 48 ساعةِ، وإذا إنتظرَ الأطباءَ حتى ينجز التشخيص فمن المحتمل ان يموت الهريض خلال هذه الفترة! لذا، فإن الأطباء يَجِبُ أَنْ يَجيئوا بالتخميناتِ السريعةِ حول المشاكلِ المحتملةِ مِنْ البياناتِ المتوفرةِ،

وتَستعملُ هذه التخميناتِ لتَزويد الهعالجة بالتوصيات حول اي ادوية يجب ان تَعطي وكيف يمكن التعاملَ مع أيّ مشكلة محتملة

Mycin طُوّر جزئياً لإك شواف كيف ان الخبراء البشريين يعطون تخمينات قاسي (لكن مهم ة) بالاستناد على المعلومات الجزئية. على أية حال، المشكلة فعلاً مهمة في الشروط العملية - هناك الكثير مِنْ الأطباء الغير مُتَخَصّصين الذين أحياناً يَجِبُ أَنْ يَعطوا مثل هذا التشخيص القاسي، وإذا كان هناك أداة خبيرة متوفرة لمُساعَدتهم فإن هذه قَدْ يَيْمحُ بمعالجة أكثر فعالية. في الواقع، Mycin لم يستعمل أبداً في الحقيقة عملياً. وهذا لم يكن بسبب أي ضعف في أدائِه ، بل كانتْ بسبب أخلاقي ومسائل قانونية تَعلقتُ بإستعمالِ الحاسباتِ في الطبِّ – بحيث انه إذا أعطي التشخيص الخاطئ، مَنْ تقاضى؟

على أية حال Mycin مثّل معرفتَه كمجموعة قواعد إذا فإن (IF-THEN) مع عوامل اكيدة. نورد هنا إحدى قواعد Mycin :

IF the infection is pimary-bacteremia AND the site of the culture is one of the sterile sites AND the suspected portal of entry is the gastrointestinal tract THEN there is suggestive evidence (0.7) that infection is bacteroid.

الـ0.7 تعتبر تقريباً الحقيقةُ التي سَتَكُونُ النتيجة التي أعطتْ الدليلَ. إذا الدليلِ مجهولُ، فإن اجزاء حقائقُ الدليلِ سَتَندمجُ مع حقيقةِ القاعدةِ لإعْطاء حقيقةِ الفتيجة.

Mycin كُتِبَ باستخدام لغة LISP، وقواعده تُمثّلُ رسمياً تعابير LISP. الجزء الفعلي للقواعد ﴿ يُمْكِنُ فقط أَنْ يَكُونُ النتيجة والتشخيص للمشكلةِ المراد حلها، أو يُمكنُ أَنْ تَكُونَ تعبيرَ LISP اخر. هذا سَمَحَ مبرونةِ كبيرةِ، لكن أزالَ البعض مِنْ معايير ووضوح الأنظمةِ المبنية على أساس القهاعد.

على أية حال، Mycin (أولياً) نظام مُوَجَّه الهدف، يَستعملُ إستراتيجيةِ التفكيرِ والاستنتاجِ المقيد خلفياً حسب ما وَصفنا سابقا. على أية حال، إستعمل Mycin العديد من الموجهات للسينطرة على البحث لحَلّ (أو برهان بَعْض الفرضياتِ). هذا كان ضروري لجَعْل التفاكيِّ والاستنتاج كفوءِ ولمَنْع المستعمل منِ أَنْ يُسْأَلُ الكثيرِ مِنْ الأسئلةِ الغير ضروريةِ.

Mycin-مع انه اعتبر نظام البحث الخبير و الرائد، كان لديه عدد مِنْ المشاكلِ التي عولجت لاحقاً، بمخططات معمارية أكثر تَطَوُّراً. أحد هذه المشاكل كَانَ ان القواعدِ خَلطت معرفة مجالِ ما في أغلب الأحيان، حَلّ مشكلة المعرفة و `` فحص شروطِ" (لتَجَنُّب طرح سُوال/ أسئلةِ سخيفة أو صعبة على المستخدم - ومثال على ذلك: -، النتوقيق فيما اذا المريض لَيسَ طفلاً قبل السُؤال عن إدمان الخمور). النسخة اللاحق والتي سميت بـ Neomycin عدلت للتَعامل مع هذا بإمتلاك عِلْم تصنيف أنواع مرض واضح (مثلّت المعلومات كنظام إطر) لتَمثيل الحقائق حول الأنواع المختلفة مِنْ الأمراض. المشكلة الأساسية في إستراتيجية الحل كانت أنْ النظام يَنزل اسفلا بجميع خيارات شجرة المرض، مِنْ الصنف العامِّ مِنْ الأمراضِ إلى الا نواع الم خصصة جداً، يَجْمعُ الهعلومات التَقريق بين فئتي المرض الفرعيتين.

كان هناك العديد مِنْ التَطَويَ اتِ الأخرى مِنْ مشروع Mycin. على سبيل المثال، Emycin كانَ حقاً الهيكل الخبير المطوّر مِنْ Mycin. نظام خبير جديد اسمه PUFF طُور لإستعمال Emycin في مجالِ إضطراباتِ القلبِ. و Neomycin طُوّر لتدريب الأطباءِ، الذي يَأْخذُهم خلال حالاتِ المثالِ المُخْتَلِفةِ، يُدقّقُ إستنتاجاتَهم ويُوضّحَ أين فَشلوا. نحن يَجِبُ أَنْ نَوضح نقطةِ هنا وهي ان ليستْ كُلّ الأنظمة الخبيرة تشبه Mycin. يَستعملُ الكثيرُ من الانظمة الطرق المختلفة لحَلّ نفس المشكلةِ وتمثيل المعرفةِ.

الإستنتاج مع الحيرة: القفكيّ الغيررتيب

ماهو الاستنتاج؟

- عندماً نَطلّبُ من أيّ نظام معرفةِ عمَلُ شيء ما، نحن لَمْ نُخبَرْ بشكل واضح كَيفَ يجب ان يقوم بذلك، هو يَجبُ أَنْ يُفكّرَ ويستنتج.
 - النظام يَجِبُ أَنْ يَفْهَمَ ما يَحتاجُه من المعْرِفة مِنْ نفس مخزون المعرفة لديه.
 رَأينَا مثالَ بسيطَ مِنْ التفكيّ والاستنتاج أو رسم الإستدلالات. على سبيل المثال إذا نحن نَعْرفُ أن: ابو الحناء طيرَ.
 ونعرف ان كُلّ الطيور لَها أُجنحةُ ثمّ نَسْأَلُ: هَلْ ابو الحناء لَهُ أُجنحةُ؟

ببَعْض التفائين و الاستنتاج (ولو أنه بسيط جداً) يَجِبُ أَنْ تكون الإجابة على السؤال نعم

كَيْفَ نُفكِّرُ ونستنتج؟

إلى حَدّ معين هذا سَيَعتمدُ على مبدأ تمثيلِ المعرفةَ المختارَ. مخطط تمثيلِ الهعرفةِ الجيدِ يَجِبُ أنْ يَسْمحَ بتفاقي معقولِ وطبيعي وسهل. أدرجُ اسفلا عدة طرقَ واسعةً جداً عن كيفية تفكيرنا واستنتاجنا. نحن سَنَدْرسُ حالاتَ معيّنةُ للبعض مِنْ هذه الطرق في الفصول القادمةِ.

التفاقي الرسمي - المنطقي المعرفة المنطقي. - واعد أساسية مِنْ الإستدلالِ بتمثيل المعرفة المنطقي.

التفائق الإجرائى

- يستعملُ الإجراءاتَ التي تُحدّدُ كَيفية حْلُّ الهشاكل/المشاكل الفرعية.

الهفائي بالتناظر الوظيفي

- يعتبر المبدأ الأكثر صَعوبةً لأنظمةِ الذكاء الإصطناعي، بينما نجد انه سهل جدا للانسان ومستخدم بكثرة . ومثال على ذلك: - إذا نحن سألنا هل يُمْكِنُ لإبي الحناء ان يَطِيرَ؟ . النظام قَدْ يُستنتج بأنّ ابو الحناء هو عصفور وهو يَعْرفُ ان العصافيرَ يُمْكِنُ أَنْ تَطِيرَ لذا هو يقرر بأن ابو الحناء يطير.

التعميم والتجريد

هذا المبدأ ايضا فعال بالنسبة للبشر. هذا المبدأ يعتبر أساس طرق التَعلم والفهم.

تفكس المستوطت المركبة

- يَستَعملُ الهعرفةُ النِّي يَهْرفُ، ويقوم بطِّلبُ نوع المعلومات حسب أهميُّها.

التفكي المتردد

كلنا يعرف ان العالم مكانُ متقلب. أيّ نظام ذكاء اصطناعي غُطلب منه البحث والثُّلكيُّ والاستنتاج في مثل هذا العالم يَجِبُ أَنْ يَكُونَ قادر على التَّعَامُل مع خاصية الغموض في هذا العالم. بشكل خاص هو يَجِبُ أَنْ يَكُونَ قادر على التّعَامُل مع:

- النقص -- تعويض النقص في المعرفة.
- النضارب حل حالات الغموض والتاقضات
- التغيير -- هو يَجِبُ أَنْ يَكُونَ قادر على تَجديد قاعدة معرفتِه بمرور الوقت.

بشكل واضح لكي يَتعاملَ مع هذا، نجد ان عدد القرارِت الهتي ستصل الى حالة "صحيح" (أو خاطئ) هي الاكثر ونحن يَجِبُ أَنْ نُقدِّمَ الطرقَ الهِي يُمْكِنُ أَنْ تتعامل مع هذه الحيرةِ.

هناك ثلاثة طرق أساسية التي يُمْكِنُ أَنْ تَعمَلُ هذا:

- طرق رمزیة
- طرق إحصائية.
- طرق الهنطق الغير واضح.

نحن سَنَنْظرُ إلى الطرق الرمزيةِ في هذه الفصلِ وتُشاهدُ الآخرين في الفصول القادمةِ.

الهنطق الهسند والإستدلالات التي قدمناها في الهثال سابقا تدل على القفائي الغير الرتيب.

في هذا النوع من النفكين إذا نحن توسعنا في مجموعة الهديهياتِ فإننا لا نَستطيعُ التَرَاجُع عن أيّ مزاعم أو بديهيات

بينما نجد ان الانسان بطريقة تفكيره واستنتاجه لا يَلتزمُ بتراكيبِ هذا المبدأ عندما فِكّر:

نحن نَحتاجُ لإستباق النتائج لكي نُخطِّطَ، والاهم لننجو من المخاطر في حال اخذ قرارت سريعة. نحن لا نستطيع توقع كُل النتائج المحتملة مِنْ خطتِنا.

نحن يَجِبُ أَنْ نَضع الفرضياتَ حول الأشياءِ التي لا نَعْر فَهُا بشكل مُحدّد.

الإستنتاج بالتزكية

هذا النوع من الاستنتاج شائع جداً في التفا*ئيق الغير ر*تيب. هنا نُريدُ أَنْ نَستنتجَ القرارت بالاعتماد على قربها للحقيقة.

رَأينَا أمثلة عن هذا النوع من الاستنتاج وعن الطرق المحتملة لتَمثيل هذه المعرفة بسَنُناقش هنا نظر عان لعمل ذلك:

- الهنطق الغير الرتيب.
 - منطق التزكية.

لا تشوّشُ نفسك بالنسبة للمعاني "غيرِ مرتبط بالمقدمات" و "التزكية" أَنْ يُطِبق في مبدأ النفكيّ و الهنطق الدقيق. التفكيّ الرتيب يعتبر أوصاف عامةُ لصنف او طريقة تفكيّ. الهنطق الرتيب يعتبر نظرية نوعيّة. نفس الشئ ممكن قوله عن استنتاج التزكية ومنطق التزكية.

المنطق الغير رتيب

مبدائياً يعتبر المنطق الغير رتيب إمتدادا لهنطقِ مسندِ الطلبِ الأولِ وذلك لتَضْمين مشغل نمطي، M. بغرض السَّماحَ للإتساق. على سبيل المثال:

abla z: plays_instrument(x) improvises(x) \rightarrow jazz_musician(x) improvises(x) \rightarrow jazz_musician(x) الحالة التي تخبر ان كُلّ x ، حيث، x يعزف على آلةً موسيقية، وإذا عرفنا الحقيقة بأنّ x يُمْكِنُ أَنْ يَستنتجَ بأنّ x موسيقي جازِ مثلا. كيف نُعرّفُ الإتساق؟

الَّهَلُّ الشَّائِعِ الْوَاحِد (و المِتَّسِق مع رموز Prolog) هو انه لبيان ان الحقيقةِ P صحيحة، يجاولُ إثَّبات P نفي P . إذا , إتوصلنا بهذا الاثبات الى "خطأ" يعني أنَّ P مطابق (حيث عكسه خاطئُ). لنَّعَتبرُ المجموعة المشهورة المَتعلِّقةُ بالرَّئِسِ نيكسون.

 $\forall x$: Republican(x) $\bigwedge M \neg$ Pacifist(x) $\rightarrow \neg$ Pacifist(x)

 $\forall x$: Quaker(x) \bigwedge M
Pacifist(x) \rightarrow Pacifist(x)

هذا يُصرِّحُ بأنَّ الكويكريين يَمِيلونَ إلى أن يكورها مسالمين بينما الجمهوري لايفعلون. الكون المنعلون على المناطقة المن

Quaker(Nixon)

Republican(Nixon)

هذا يُؤدّي إلى تناقض في معرفتِنا الكليّةِ.

منطق الهزكية

منطق التزكية يُقدّمُ قاعدة إستدلالِ جديدةِ:

 $\frac{A:B}{C}$

الذي يَذْكُرُ إِنه إذا A قابل للاستنتاجُ وهو مطابق لإفتِراض B فإنه ممكن استنتاج C .

هذا مشابه للمنطق الرتيب لكن هناك بَعْض الإمتيازاتِ:

- قواعد إستدلالِ جديدة مستعملة لحساب مجموعة الإمتدادات المعقولة لذا في مثال نيكسون الوارد اعلاه، منطق القزكية يُمْكِنُ أَنْ يَدْعمَ كلتا المزاعم ، حيث انه لا يَقُولُ أيّ شَيْ حول الإختظيرُ بينهم -- هو سَيَعتمدُ على الإستدلالِ الذي بدأ به.
 - في منطق التزكية أي تعابير رتيبة هي قواعد إستدلال بدلاً مِنْ تعابير.

التحديد

التحديد هو قاعدة التخمين التي تَسْمحُ لنا بالإستِباق إلى النتائج التي تظهر بأنّ الاشياء هي مجموعة خصائص مُؤكِّدة ، و ، و الخصائص مُؤكِّدة ، و ، في الحقيقة هي كُلّ الأجسام التي تملك هذه الخصائص. التحديد يُمْكِنُ أَنْ يعالج مع استنتاج التزكية أيضاً. للقترض اننا نَعْرفُ بأن : bird(tweety) اي، تويتي طير

 $\forall \mathbf{z}$: penguin(x) \rightarrow bird(x)

 $\forall \mathbf{z}$: penguin(x) $\rightarrow \neg$ flies(x)

وان القواعد السابقة، تقول ان البطريق طير وانه لايطير، نحن نريد إضافة الحقيقة بأنّه وبشكل نموذجي، الطيور تَطِيرُ في التحديد هذه العبارةِ سَنكون كالتالي: أي طائرُ يَطِيرُ إذا لم يكن شاذً، ويُمْكِنُ تمثيل هذا حسب الآتي:

 $\forall x$: bird(x) \bigwedge abnormal(x) \rightarrow flies(x).

على أية حال، هذا ليس كافي، لاننا لا نستطيعُ إسْتِنْتاج ان تويتي يطير بناءا على السابق:

flies(tweety)

حيث اننا لا نستطيعُ إثبات ان تويتي ليس بطائر اشاذ

¬abnormal(tweety).

هنا يمكن ان نُطبّقُ التحديد، وفي هذه الحالةِ، نحن سَنَفترضُ بأنَّ هذه الأشياءِ (الاجسام) المعروضة لِكي تَكُونَ شاذَة، هي الأشياء الوحيدة التي سَتَكُونُ شاذَة. وهكذا نحن يُمْكِنُ أَنْ نُعيدَ كتابة قاعدتنا الأصلية لطلتالي:

: $\forall x$: bird(x) \bigwedge \neg flies(x) \rightarrow abnormal(x)

و رضيف القالي:

 $\forall \mathbf{z}$: $\neg abnormal(x)$

إذا اضفنا الحقيقة التالية الآن، تويتي هو بطريق:

penguin(tweety)

فإنه بشكل واضح يُمْكِنُ أَنْ نُثبتَ بأن تويتي شاذ

abnormal(tweety).

إذا حُدِّدنا شاذِّيَّ تو يتي، نحن يمكن إن نُضيفُ الجملةَ، العطريق تو يتي هو الشيءُ الشاذُّ:

 $\forall \mathbf{z}$: abnormal(x) \rightarrow penguin(x).

لاحظْ الإمتيازَ بين منطق القركية التحديد: التركية هي جُمَلَ في اللغةِ نفسها ولَيست قواعدَ إستدلالِ إضافيةِ.

التطبيقات: حقيقة أنظمة الصيانة

العديد من أنظمة صيانة الحقيقة (TMS) طُوّرتْ لوسائل تَطبيق أنظمة التَفكيّ والاستنتاج الرتيب. مبدائيا انظمة الصيانة لها الخصائص التالية:

- كُلَّها معتمدة الى حد ما على مبدأ التراجع الموجه.
- الهزاعم التي تحويها، مُرتَبِطة عن طريق شبكة التبعياتِ.

أنظمة الصيانة المبنية على اساس القبرير (JTMS)

- هي أنظمة صيانة بسيطة لأنها لا تُعْرفُ أي شئ فيما يخص تركيب المزاعم أنفسها.
 - كُلّ إعتقاد مدعوم (زعم) فها لَهُ تبرير.
 - كُل تبرير لَهُ جزءان:
 - في القائمة -- والذي يساند الإعتقادات المحملة.
 - خارج قائمة -- والذي يَدْعمُ الإعتقاداتَ التي لَيستْ مَحْمُلةً.
 - زعم ما مرتبط إلى تبريره بسهم.
 - زعم واحد يُمْكِنُ أَنْ يَغذّي تَبريرَ آخرَ ، هكذا يَخْلقُ الشبكة.
 - مزاعم قَدْ تُعتبرُ بمنزلة إعتقادِ.
- يعتبر الن عم صحيح إذا كانت كُلّ المزاعم في القائمة اعتقادات و لا شيئ من خارج القائمة اعتقاد.
 - الزعم غير رتيب اذا كان خارج القائمة ليس فارغًا أو إذا أيّ زعم في القائمةِ غير رتيب.

+ IN-List - OUT-List

الوسم. 18 JTMS

أنظمة صيانة حقيقة مبنية على اساس المنطق (LTMS)

هذه الانظمة مشابهة لللانظمة السابقة بخلاف التألي:

- العُقَد (الهزاعم) لن تَقترض أي عِلاقاتِ بينهم ماعدا التي ستذكر بشكل واضح في التبريراتِ.
 - لِيُمْكِنُ أَنْ يَمَثّلُ بـ P و P بشكل متزامن بينما LTMS يعطي تناقض هنا.
 - إذا حدث هذا فيجب اعادة بناء الشبكة.

أنظمة صيانة حقيقة أساسها الفرضية (ATMS)

- "ITMS و LTMS" يُتابعان خَطَّ وحيد مِنْ التَفاكين والاستنتاج في الوقت بالمتابعة التراجعية (التبعية الفُوجَة) عند الحاجة وذلك باستخدام بحث الهمق أولاً.
 - يحافظ ATMS على طرق بديلة بالتوازي بحث العرض أولاً.
 - المتابعة بالتَرَاجُع يُتفادى على حساب إبْقاء السياقاتِ المتعددةِ.

• على أية حال عند ظهور تناقضات ُ الاستنتاج فإن ATMS يُمْكِنُ أَنْ يعدل.

امكانية ايجاد زعم ببساطة بدون اي تبرير صحيح.

الطرق الاحصائية للتفكير المتردد

التقائي الإحصائي الرمزي المنافية المنا

- صدق، (صح)
- خاطئ، (خطأ)
- لا صدق ولا خاطئ.

بَعْض الطرق كَانَ عِنْدَها المشاكلُ أيضاً مَع:

- المعرفة الفاقصة
- التناقضات في المعرفة.

الطرق الإحصائية كما قلنا سابقاً تعطى الطريقة لتَمْثيل الإعتقاداتِ التي لَيستْ مُتَأَكِّدةَ (أو مجهولة) ولكن التي يُجُون لها بَعْض الادلة المساندة (أو المتناقضة).

تَعْرِضُ الطرقُ الإحصائيةُ الفوائدُ والميزات في سيناريوه بن عريضين:

الحقيقى العشوائي

ــاور إقَّ اللِّعب هَي مثِّال جيد عن هذا انوع من التفكير . نحن قَدْ لا نَستطيعُ تَوَقُّع أيّ نتائج بدون أدنى شكّ لَكنَّنا عِنْدَنا معرفةً حول إمكانيةٍ بَعْض العناصر (على سبيل المثال: - خصائص الأسَ (الرقم 1 في ورق اللعب)) ونحن يُمْكِنُ أنْ نَستغلُّ هذه المعرفة.

الاستثناءات

- - الطرق الومزية يُمْكِنُ أَنْ تُمثِّلَ الاستثناءات. على أية حال إذا كان عددِ الإستثناءاتِ كبيرُ فإن هذا يؤدي بالنظام إلى التَّوَقُّف. على سبيل المثال كما في العديد مِنْ مهام الحسّ العام و الاستنتاج الخبير. بينما نجد ان التقنيات الإحصائية يُمْكِنُ أَنْ تُلخُّصَ إِستَثناءاتَ كبيرِةَ بدونِ اللَّجُوءِ إلى حسابِ.

الطرق الاحصائية الأساسية __ الاحتمال

تَتبنّى طرقُ النظرةِ الأساسيةِ الإحصائيةِ للتّعَامُل مع الحيرةِ عن طريق بديهياتِ الإحتمالِ:

- إحتمالات (حقيقية) أعداد في المدى 0 إلى 1.
- الإحتمال P(A)=0 يُشيرُ إلى الحيرةِ الكليّةِ في P(A)=1 وتأخذ قيمة بين بَعْض در جات الحقيقة و غير الحقيقة (الحيرة).
 - إحتمالات يُمْكِنُ أَنْ تُحْسَبَ في عدد مِنْ الطرقِ.

ببساطة جدآ

الإحتمال = (عدد النتائج المطلوبةِ) / (العدد الكليّ مِنْ النتائج)

بحالة مثال ورُق اللعبُ وبحال وجُود مُجموعة وّاحدة من الّورق فإن إحتمالَ وجود آساً هو 4 (عدد الأساتِ) / 52 (عدد اوراق اللعب في المجموعة الواحدة) و الذي يساوي 1/13. بنفس الطريقة إحتمال التَّعاملَ مع ورقة بستوني هو .13 / 52 = 1/4

إذا لدينا إختيار من عددٍ من الموادِ k مِنْ مجموعة الموادِ n فإن الصيغة التالية تستخدم لايجاد عددَ الطرق لهذا الإختيار (حيث، ! = عاملي).

 $C_k^n = \frac{n!}{k!(n-k)!}$

لذا الفرصة للغوز في بانصيبِ اللوتو (إختطِيرُ 6 مِنْ 49) هي : . 19 999 11 — إلا

 $\frac{48!}{6!43!} = 13,983,816$

• الإحتمال الشرطي، P(A|B) ، يُشيرُ إلى إحتماليةِ الحدثِ A , والمشروط بوقوع الحدثُ B

نظرية Baves

• تتمثل هذه النظرية بالمعادلة التالية:

$P(H_i|E) = \frac{P(E|H_i)P(H_i)}{\sum_{k=1}^{n} P(E|H_k)P(H_k)}$

- هذا يَقِيد بأنه اذا اعطي حدث E فإن إحتمال الفرضية H_i ان تكون حقيقية عساوي نسبة ان H_i الإحتمال E سَيَكُونُ معطاة حقيقية H_i الدليلِ الإستنتاجي المؤقت على إحتمالِ ومجموع إحتمالِ E على مجموعة كُلّ الفرضيات المؤقّىة لإحتمال هذه الفرضياتِ.
 - مجموعة كُل الفرضيات يَجِبُ أَنْ تَكُونَ متعارضة وشاملة.
- إذا نحن نَفْحصُ الدليلَ الطبيَ لتَشخيص مرضَ ما. نحن يَجِبُ أَنْ نَعْرفَ كُلّ الإحتمالات المسبقة للاعراض المتوفرة وأيضاً إحتمال وجود مرضَ مستند على بَعْض الأعراض الملاحظة.

إحصائياتُ Bayesian تتمركز في قلب أكثر أنظمةِ التفاعيّ الإحصائيةِ.

كيف يمكن ان نستغل نظرية Bayes ؟

المفتاح هو في كيفية أَنْ رَهَمُوعٌ الهشكلةَ بشكل صحيح: P(A|B) هي حالة إحتمالَ A الهُعطى دليل B الوحيد. إذا كان هناك دليل آخر ذو علاقة فيَجِبُ أيضاً أَنْ يؤخذ بعين الأُعتَىلَو.

هنا تكمن المشكلة:

• كُلّ الأحداث يَجِبُ أَنْ تَكُونَ متعارضةً. على أية حال أحداثِ الهشاكلِ في العالم الحقيقي لَيستُ غير مرتبطةً عموماً. على سبيل المثال في تَشخيص الحصبةِ، أعراض البُقَعِ و الحُمّى ذات علاقة. هذا يَعْني ان حُسلبُ الإحتمالات الشرطية بصَبح معقدة.

عُموماً إذا الهليل الاولى ، p وبَعْض الملاحظات الجديدةِ، n فيمكن تنفيذ المعادلة التالية:

$P(H|N,p) = P(H|N) \frac{P(p|N,H)}{P(p|N)}$

نلاحظ انها تَنْمو تصاعدياً بالنسبة للمجموعاتِ الكبيرة وp

• كُلّ الأحداث يَجِبُ أَنْ تَكُونَ شاملةً. هذا يَعْني آنه لحسلبَ كُلّ الإحتمالات فإن مجموعة الأحداثِ المحتملةِ يجب أنْ تتكون مُ غُلَقَ. و إذا تتم إنشاء معلومات جديدة فإن المجموعة يجب أنْ تُخْلَقَ ثانية و يجب إعادة حساب كُلّ الإحتمالات.

ممكن القول ان الأنظمة المبنية على اساس Bayes لاتعتبر قاعدة مناسبة للتفاكي المجهول او المتردد، لإن:

- إكتساب المعرفة صعب جداً.
- تحتاج الى الكثير مِنْ الإحتمالاتِ مما يؤدي الى الحاجة الى سعة تخزين كبيرة جداً.
 - تحتاج الى وقت حسابِ كبير جداً.
 - تحديث المعلومات الجديدة صعب ويبيتهلك وقت ِ
 - بعض الإستثناءات لا يُمْكن أنْ تُ مُثّلَ.
 - الهشر لَيسها مقدري إحتمالات جيدين جداً.

على أية حال، إحصانيات Bayesjan ما زالتُ تُعتبر لب التفكير في العديد مِنْ أنظمةِ التفك ي المترددةِ، مع اضافة بعض التحسيرات المناسبةِ التَغلُب على المشاكلِ أعلاهِ

نحن سَنَراقش ثُلاثة أصناف واسعة:

- عوامل الحقيقة ،
- نموذج Dempster-Shafer
 - شبكات Bayesian.

نماذج الإعتقاد وعوامل الحقيقة

هذه النظر عي إقترحتْ مِن قِبل Shortliffe و Buchanan و إستعملتْ في نظام التشخيص الطبي المشهور MYCIN.

MYCIN هو نظامُ خبيرُ وجو هري. هنا نُركّزُ فقط على سماتِ التفاعين الإحتماليةِ لـ MYCIN.

- يُمثّلُ MYCIN الهعرفةً كمجموعة القواعدِ.
 - عامل الحقيقة مرتبط بكُل قاعدة .
- عامل الحقيقة مستند على إجراءاتِ الإعتقادِ \mathbf{B} واللا إعتقاد \mathbf{D} من فرضيةِ أعطتُ دليلاً حسب التّالى:

$$B(H_i|E) = \begin{cases} 1 & \text{if } P(H_i) = 1\\ \frac{\max[P(H_i|E), P(H_i)] - P(H_i)}{(1 - P(H_i))P(H_i|E)} & \text{otherwise} \end{cases}$$

$$D(H_i|E) = \begin{cases} 1 & \text{if } P(H_i) = 0\\ \frac{P(H_i) - \min[P(H_i|E), P(H_i)]}{P(H_i)P(H_i|E)} & \text{otherwise} \end{cases}$$

 $P(H_i)$ ديث الإحتمالُ القياسيُ

به معلى الدليل E والهُعَرَّفُ كُلْلتالي: • عامل الحقيقة C من بَعْض الفرضيات، معطى الدليل C والهُعَرَّفُ كُلْلتالي: • $C(H_i|E) = B(H_i|E) - D(H_i|E)$.

التفكير وعوامل الحقيقة

- H_i فإن هناك دليل إيحائي بالإحتمال p ، عبرت القواعد كما لو أنَّ قائمة دليل E_1 . E_2 فإن هناك دليل إيحائي بالإحتمال p .
- يَستَعملُ MYCIN القواعد، للتَفكير خلفياً، والوصول إلى دليل البيانات السريرية بهدف توقع سبب مرض الكائن الحي.
 - عوامل الحقيقة مجهّزة مبدائيا من قبل الخبراء والتَّغيين يتم طبقاً للصِيَغ السابقةِ.
 - كَيفَ رُقُوم بِالتَفافِيِّ والاستنتاج عندما تكون عِدة قواعد مُقَيَّدة سوية؟

أعطتْ إجراءاتُ الإعتقادِ وَاللّااعتقاد عِدّة ملاحظات مَحْسُوبة كالتّالي:

$$B(H_i|E_1, E_2) = \begin{cases} 0 & \text{if } D(H_i|E_1, E_2) = 1 \\ B(H_i|E_1) + B(H_i|E_2)(1 - B(H_i|E_1)) & \text{otherwise} \end{cases}$$

$$D(H_i|E) = \begin{cases} 0 & \text{if } B(H_i|E_1, E_2) = 1 \\ D(H_i|E_1) + D(H_i|E_2)(1 - D(H_i|E_1)) & \text{otherwise} \end{cases}$$

• ماذا عَنْ إعتقادَنا حول عِدّة فرضيات أَخذتْ سوية؟ أعطتْ إجراءاتُ ومقاييس الإعتقادِ عِدّة فرضيات ولَهْمَجَها منطقباً تعسب كالتّالي:

 $B(H_1 \wedge H_2|E) = \min(B(H_1|E), B(H_1|E) \ B(H_1 \vee H_2|E) = \max(B(H_1|E), B(H_1|E) \ B(H_1 \vee H_2|E) = \max(B(H_1|E), B(H_1|E) \ B(H_1 \vee H_2|E)$

اللا إعتقاد عيشب بنفس الطريقة.

الْهَغَلُّب على عيوب قواعد Baves

عوامل الحقِيقةِ تَلتزمُ بلائحةِ إحصائياتِ Bayesian، لَكنَّه ا يُمْكِنُ أَنْ نَمُثَّلَ أَنظمةَ المعرفةِ السلسةِ:

- تشارك بعض القواعد الفردية الإعتقاد في الفرضيات مبدائيا الإحتمال الشرطي.
- الصِيغ لمجموعةِ الدليلِ / الفرضياتَ مبدائياً تفترضَ بأنَّ كُلِّ القُواعد مستقلَّة وتَستثنى الحاجةَ للإحتمالاتِ المشتركةِ.
 - إن عبء ضمان الإستقلالية يقع على عاتق كاتب القاعدة .

نماذج Dempster-Shafer

هذا يُمْكِنُ أَنْ يُعتَبرَ نظرة أكثر عمومية إلى تَمثيل الحيرةِ مِنْ نظرةِ Bayesian. غير ان طرق Bayesian غير ملائمة أحياناً:

 $P(\Lambda) + P(\neg \Lambda) = 1$ لنفترض ان A يُمثّلُ الإقتراحَ " ديمي مور جذّابُ". فإن بديهيات الإحتمالِ تَصرُ على الإقتراحَ لا يَعْرفُ حتى مَنْ هو ديمي مور. فإنه :

- نحن لا نستطيع قول ان أندرو عَصدق الإقتراح، حيث انه، لَيْسَ لهيه ادنى فكرة عنه.
 - أيضاً، ليس من المعقول القَول بأنّه يُنكرُ المقترحَ.
- $B(\neg A)$.0 لذا سَيَكُونُ من المفيد للدلالة على إعتقادِ أندرو B(A) و ...
 - عوامل الحقيقة لا تَسْمحُ بهذه.

A Dempster-Shafer حسابلت

إنّ الفكرة الأساسية في تَمثتبل الحيرة في هذا النموذج:

- حدد مجال الثقة وهو عبارة عن مجال الإحتمالات التي يقع ضمنها الإحتمال الحقيقي مع ثقة ألكية -- مستندة على الإعتقاد B و خاصية المعقول PL المزودة ببليل E لمقترح P.
 - يَجْمعُ الإعتقادَ كُلّ الإدلق الهي الله الله عنقاد بP مع بَعْض التأكيد.
 - تجَّمعُ خاصية المعقول او المقبول ظاهر اكل الادلة المتوافقة مَع P ولَيسنَ متناقضة مَعه.
 - هذه الطريقة تَسْمحُ بالإضافاتِ الأخرى إلى مجموعة المعرفة ولا تَقترضُ نتائجَ مفكّكةً

إذا Ω مجموعةُ النتائجَ المحتملةِ، فإن الإحتمال الجماعي، \dot{M} ، مُعَرَّفُ لكُل عضو من المجموعة 2^{6} وتأخذ قِيَمِ التقديراتَ في المدى [0,1].

إنّ المجموعة الملغية، ، هي أيضاً عضو.

مُلاحظة: هذا يتفاعل مع مصطلح نظرية الهجموعات والذي ستقعرف عليه بتفصيل اكبر في قسم لاحق. $M = \omega$ وظيفة كثافة الإحتمال والتي تعرّف للسس فقط من اجل Ω ولكن له m كُلّ المجموعات الفرعية. إذن لو أنَّ المجموعة Ω لها القيمة التالية :

 $\Omega = \{ \ Flu \ (F), \ Cold \ (C), \ Pneumonia \ (P) \ \}$

فإن المجموعة 25:

$$\mathbf{2}^{\Omega} = \{ (F, \{F\}, \{C\}, \{F\}, \{F, C\}, \{F, P\}, \{C, P\}, \{F, C, P\}) \}$$

: حيث [B(E),PL(E)] حيث مدى الثقة معرف حسب التالي

$$B(E) = \sum_{A} M$$

مرم ميث أنَّ $A\subseteq E$: كُلّ الأدلق اليني تجّعلنا نُعتقد بصواب P، و

$$\begin{array}{rcl} PL(E) & = & 1 - B(\neg E) \\ & = & 1 - \sum_{\neg A} M \end{array}$$

 $\neg A \subseteq \neg E$ حيث أنَّ : كُلّ الأدلق اليتي بتُأقض $\cap A \subseteq \neg E$

جَمْع الإعتقادات

- لديا الإمكانية لتَخصيص M إلى مجموعة الفرضيات.
- لَدَمْ مُ مُصادر متعددة مِنْ الأَدلِةَ بَقُوضية واحدة (أَو متعددة) نَعمَلُ التالي: M_1 وظيفتا إعتقاد. 0 لرَقِتر ضُ ان 0

نفترض ان X مجموعة الهجموعات الفرعية Ω ِالتي أخصّص قيم لاتساوي الهنفر 0 M_{i} ولنفترض ان ${
m Y}$ سَهِكُورِثُفس الشَّئِّ بالنسبة للهجموعة ${
m Y}$

نحن M_2 وظيفة إعتقادِ جديدة M_3 مِنْ مجموعةِ الإعتقاداتِ في وظيفة إعتقادِ جديدة M_2 نحن 0رستعمل المعادلة التالبة:

$$M_3(Z) = \frac{\sum_{X \bigcap Y = Z} M_1(X) M_2(Y)}{1 - \sum_{X \bigcap Y = \emptyset} M_1(X) M_2(Y)}$$

 $Z \neq 0$ بشرط

 $M_{is}(0)$ مُلاحظة: نحن نُعرّفُ لكي نَكُونَ 0 لكي يبقى الفاتج المتعامد مهمة إحتمالِ أساسيةِ .

شبكات Bayesian

تسمى شبكاتَ الإعتقادِ أيضاً أو شبكاتِ الإستدلالِ الإحتماليةِ. والتي طورت بشكل مبدائي من قبلً Pearl. إنّ الفكرة الأساسية قائمة على التالي:

- المعرفة في العالم قياسية -- أكثر الأحداثِ مستقلة بشكل مشروط عن اغلب الأحداثِ الأخرى.
- التي نؤُثِّرُ على تبرِّي الفمو ذج الذِّي يُمْكِنُ أَنْ يَستعملَ تمثيل أكثر محليةً للسَماح للتفاعلات بين الأحداثِ بعضه البعض فقط
- بَعْض الأحداثِ قَدْ تَكُون فقط ذات اتجاه و احد بينما احداث اخرى قَدْ نَكُون ثنائية الاتجاه -- يُميّزُ بين هذه الاحداث في النموذج. أحداث قَدْ تَكُون سببيةً و هكذا تُصبحُ مُقَيَّدةً سويةً في الشبكة.

التطبيق

- أي شبكة من شبكات Bayesian هي رسم بياني (مخطط) دوري و مُقاد:
- o مخطط حيث الإِتَّجاهات هي الصلاتَ التي تُشيرُ إلى التبعياتِ التي تَجِدُ بين العُقَدِ .
 - و العُقَد تُمثّلُ المقترحاتَ حولَ الأحداثِ أو الأحداثِ بأنفسهم.
 - o إحتمالات شرطية تُحدّدُ قوّةَ التبعياتِ.

لنأخذ المثالَ التاليَ:

- بأنّ سيارتي أنْ تَبْدأ بالدوران.
- إذا سيارتِي لَنْ تَبْدأَ فإنه من المحتمل ان يكون سبب ذلك:
 - o البطارية تحتاج لقغيير أو

o بادئ تشغيل السيارة عطلان.

لِنَّةُوسَ فيما اذا كنت سأصلح السيارة بنفسي أو أرسلُه إلى المرآبِ للصيانة فإنني أتّخذُ القرارَات التالغ :

- إذا الأضواء لا تعملُ فإن البطارية يُحتملُ أَنْ تَكُونَ عطلانة لذا يمكنني تبديلها بنفسي.
 - إذا بادئ تشغيل السيارة معطل فإنني اقرر إرسال السيارة إلى المرآب.
 - إذا البطارية وبادئ تشغيل السيارة كلاهما عطلان فإننا تُرسلُ السيارة إلى المرآب. الشبكة لتَمْثيل هذا كالتّالي:

الوسم. 19 شبكة Bayesian بسيطة

القفائي والاستنتاج في شبكات Bayesian

- · إحتمالات في الصلات تَطِيعُ بديهياتَ الإحتمالِ الشرطيةِ القياسيةِ.
- اتباع الروابط في وُصُول الى الفرضيات وتُعديثُ الإعتقاداتَ وفقاً لذلك.
- بضعة أصناف واسعة مِنْ الخوارزمياتِ أستَعملُت للمُساعدة بهذا، مثالا على ذلك:
 - o طريقة مرور رسائل Pearls.
 - o زمرة التقسيم الى مثلثات.
 - o طرق Stochastic.
- o مبدائيا كل هذه الطرق سَسَعَلَ العناقيدِ في الشبكةِ ويَستعملونَ حدودَهم في التأثيرِ لقضييق البحثِ في الشبكةِ.
 - هم أيضاً يَضْمنونَ بأنّ الإحتمالاتِ مُحدثة بشكل صحيح.
- حيث ان الهعلوماتِ هي معلوماتُ محليّةُ فإنه يُمْكِنُ أَنْ تُضافَ و تحدف بسهولة بالتأثيرِ الأدنى على الشبكة بأكملها. وعليه فقط العُقدُ الهتأثرةُ تحتاج لتحديث.

مثال عملي

هنا نَصِفُ مثال عملي عن البحثِ والمستندَ على Cardiff.

إستعملنًا شبكات Bayesian في تطبيقات نظر الحاسوب تفاصيل العمليات البصرية المعقّدة سَتُناقشُ لاحقًا في الفصول القادمة.

هنا نُحاولُ وَصنف تفكير Bayesian في كواليس العملية.

الهدف هو تحويل الههمة الهسمّاة بلنشطار البيانات للحُصُول على اقسام واجزاء - هذه الاقسام تصف الجسم (الظاهرة مِنْ مجموعة الصور) يُفصّلُ خصائصه السطحيّة. في المثالِ المعطى هنا نحن نتعاملَ مع مكعّب بسيط. لذا الوصف النهائي سَيُدرجُ حافاتَه و وجوهه و كَهِفية ارتباطهم سوية.

المدخل إلى عملية الإنشطارَ يتكون من ثلاث مراحل والتي إنتزعت معلومات الحواف و الهعلومات السطحيّة الهستوية مِنْ صورة ثنائية الابعاد 2D بالوان تدرجات الرمادي (أحادية اللون) كذلك معلومات المدى من الصور ثلاثية الابعاد 3D.

لذا مِنْ هذه العمليات المبدائية الثلاثة يتكون عِنْدَنا قائمة كُلّ الخطوط، المقوّسة أو مستقيمة ، قائمة كُلّ تقاطعات الخطوط (تقاطعات خَطِّ بن اوثلاثة خطوط) و قائمة كُلّ المعادلات السطحيّة التي إنتزعتْ مِنْ نوعي الصورةِ (2D,3D). يُمْكِنُ الان أَنْ نَبْني الشبكةَ مِنْ قوائمِ الميزّاتِ. كما هو مذكور أعلاه، نَفترضُ تَقَاطُع السطوحِ المُنْتَزعِ ة. لتقييم هذه الفرضياتِ نَحتاجُ الى دليلُ لدَعْم الفرضية أو نُقَضَها. إنّ الدليلَ الذي نَستعملُ يمكن ان يكون:

- خطوط مستقيمة إنتزعت مِنْ الصورة ِ.
 - · أقواس إنتزعتْ مِنْ الصورةِ.
- ` مناطق الحيرة ' إنتزعتْ منْ خريطة العمق.

إنّ قائمتي الخطوط منتجتان كما وُصِفتْ فوق. يتم ايجاد مناطقَ الحيرةِ عندما نُحاولُ إيجاد المعادلاتِ السطحيّةِ لكُلّ نوع من السطوح. يتم العثور على الأخطاء في خريطةِ العمقَ حيث القناعَ يستخدم لإيجاد الشكلِ العام السطحي يتوافق مع تداخلُ إثنان أو اكثر من السطوحَ ، يَمِيلُ الخطأُ إلى أن يكون مكبّراً لذا ، يَعطينا فكرة او اشارة بأن القاطع السطحي موجود في تلك المنطقةِ العامّةِ لذا نحن نَستعملُ ادلة مِنْ أكثر مِنْ مصدر واحد للبياناتِ.

رَضِتمر بِأَخْذ كُلِّ مِنْ السطوح في القائمةِ السطحيّةِ و العقدة تُولَّدُ اتَمْثيلها. ثَمِّ نأخذ زوج من السطوح ورُجَاوِلُ مُقَاطَعتهم. إذا هم يَتقاطعونَ فإنه من المحتمل انها `مجموعة ميزّةِ ' والعقدة مُولَّدةُ تشير الى السطوحَ و تُوتَئِط بِعُقَدِ سطوح المستوى الادنى (الأولاد). هذه العمليةِ متكرّرةُ لكُلِّ زوج من السطوح التي قمنا بلنتزاعه! نريدُ الآن أَنْ نَرْبطَ إحتمال شرطي إلى كُلِّ مِنْ عُقَدِنا الجديدةِ. لذا نحن نَعْرفُ الان السطوحَ التي من المحتمل يُمْكِنُ أَنْ تَتفاعلَ في الجسمِ (الشئ). وضيف الإحتمالات إلى هذه الإرتباطاتِ نحن نَعمَلُ هذا بإيجاد معادلةِ التقاطع، هذا الخط سَيَكُونُ ثلاثي الأبعاد للسطحين أو بيضوي لسطح و كرة، و إسقاط هذا سطحنا البؤري. الآن عِنْدَنا تقاطعاتُنا المُفتَرَضةُ في نفس البُعدِ كخطوطنا المُنْتَزعة مِنْ المرحلةِ التمهيديةِ نقوم الان بإنَجاد ، اقرب خَطّ مطابق مِنْ قائمةِ الخَطّوط، لكُلِّ خط مَتَقاطع. عندما زجد الخَطِّ المماثلَ الأقربَ نُولَدَ إحتمال مِنْ الخطأِ لذا بوجود الخَطِّ الذي يَجاري خَطَّ تقاطعنا مباشرةً فإنه عِنْدنا عندما نجد الخَطِّ المماثلَ الأقربَ نُولَدَ إحتمال مِنْ الخطأِ لذا بوجود الخَطَّ الذي يَجاري خَطَّ تقاطعنا مباشرةً ولو وهذا إحتمال عالي على ان السطحان اللذان لا يَقِعاطعان في الجسمِ مستبعد تطابقهم مَع الخَطِّ قائمةِ الخَرى بأن الخَطَّ الذي يتم ايجاه يُدققُ أيضاً لمعرفة فيما إذا يقع ضمن منطقةِ الحيرةِ او لا إذا هو يعطينا إحتمال منخفض إنّ الخَطَّ الذي وَجدناه في الحقيقة هو في موقع انضمام السطوخ.

لذا عندما ولدنا هذه السبكة بكُل الصلات الضرورية. فأن أكثر الهعلومات التي تُزودُ إلى النظام يُمْكِنُ أَنْ تُضاف والشبكة ستنشر هذه المعلومات في كافة أنحاء الشبكة على شكل تحديث الإحتمال لذا على سبيل المثال لنفترض ان صورة ما جديدة تم انشاؤها من صورة ملوزة وهذه الصورة زادت إمكانية بعض الحافات والزوايا أنْ تَكُون موجودة في الصورة فأن هذا يَزِيدُ إحتمال تلك الميزّات التي ترتبطُ إلى تلك الحافات والزوايا والتي ستنتشر في كافة أنحاء الشبكة السبكة السبكة المين مين الشبكة المين مين المين المين والوجوه المستوية الشبكة المين من المين ال

المنطق الغير واضح (الضبابي)

هذا المُوضوع يُعالجُ رُسمياً أكثَر في الفصولِ الأخرى. هنا نُلخّصُ النقاطَ الرئيسيةَ فقط. المنطق الضبابي طريقة مختلفة كلياً لتَمثيل الحيرةِ:

- يُركّزُ على حالاتِ الغموض في وَصْف حيرةَ الأحداثِ ببلا من الشك في وقوع الحدثِ.
 - يُغيّرُ تعاريفَ نظريةِ المجموعات والمنطقِ للسماح بهذا.
 - تُعرّفُ نظرية الهجموعات التقليدية عضويات الهجموعة كمسند منطقي.

نظرية المجموعات الضبابية

تُعرّفُ نظرية الهجموعات الضبابية عضوية الهجموعة كإمكانية التوزيع.
 القاعدة العامة لهذه النظرية يُمْكِنُ أَنْ بتمو كالتالي:

$f:[0,1]^n\to [0,1].$

حيث n عدد الإمكانياتِ.

هذا يُصرّ حُ أساسًا بانّنا يُمْكِنُ أَنْ نَأْخذَ n أحداث محتملة ونصل الى f كنتيجة محتملة وحيدة.

هذا يُمدّدُ عضويةَ الهجموعةِ حيث اننا يُمكنُ أَنْ نَاخُذَ تعاريفُ مختلفَةُ، لَنقل ، كاري حار شخص ما قَدْ يُعلنُ بأنّ الكاري الهندي هو الوحيدِ الحار جدا، بينما شخص أخر قَدْ عِيُولُ بأن الكاري الايراني حار اكثر نحن يُمْكِنُ أَنْ نَسْمحَ لهذه النّعاريفِ الضبابيةِ .

بما انه أُعيد تعريف عضوية المجموعة نحن يُمْكِنُ أَنْ نُطور منطق جديد مستند على دمج المجموعات.
 ويبر ر بفاعلية.

الرسم . 20 شبكة Bayesian لإنقسام مُكعّبُ

التفكي المُوزَع

لمقدمة

هناك العديد مِنْ الأسبابِ التي تجعلنا نُريدُ تَطبيق أَو تَبنّي نظريَّق التّفكير الموزع في انظمةِ الذكاء الاصطناعي:

- الانسان يستخدم نفس المبدأ -- نماذج نفسية.
- · توفر انظمة واجهزة تعمل بمبدأ النوازي أجهزة وبرامج.
 - بَعْض التطبيقاتِ ستُحسّنُ الكفاءةَ وتُسرّعُ التنفيذ.

لَيسَ كُلّ الْإِجراءات قَابلة لَلتنفيذ بشكل متوازي (تنفيذ اكثر من إجراء بنفس الوقت وبشكل متوازي). في الحقيقة الكثير من إجراءات الذكاء الاصطناعي معقّدة جداً ومن الصعوبة تنفيذها بشكل متوازي. على أية حال، يُمْكِنُ كسب الكثير من السرعة على عدد العُقَدِ لوحده. التوازي الاكثر رسمية – هو تبنى أمثلة البرمجة المتوازية - وهي مفيدة جداً.

• تطوير معياري للأنظمة -- يعتبر سهل لبناء وصيانة الانظمة ولإضافة / حُذفُ المعلومات الممثلة للمعرفة و استراتيجيات التفكير والاستنتاج.

- تقنيات تفكي متعددة -- نحن يُمْكِنُ أَنْ نَدْعمَ للشَّكِيلة التقنياتِ والتي عُودي البعض منها المهام الاكيدة بشكل أفضل في المعرفة المُثَاكِدة.
 - وجهاتِ نظر متعددة -- المعرفة مطلوبة عندما يكون التفائين مُمثِّلَ في عدة مجالاتِ.
 - الثقة -- إذا نموذج او جزء ما من النظام فشل بعمله فإن النظام يبقى يؤدي وظيفته ككل.

أنظمة التفائي المؤزّعة

نظام التَفاكيِّ الهُوزَع هو النظام الواحد المكوّن من وحداتِ منفصلةِ (تسمى العوامل) و مجموعة طرقِ الإتصالِ بينهم.

- كُلّ وحدة (عامل) عادة تعمل على الهشكلة التي تَحْلُ كياناً بنفسه.
 - العديد مِنْ أنواع النظمِ تَرَاوُح بين:
 - أنظَمة سيطرة مُتَمْركزة بمعرفة مشتركة،
 - oِ سيطرة ومعرفة موزّعَة كلياً.

مثل هذا النظامِ يَجِبُ أَنْ يُزوّد:

- تنسيق جيد بين الوحدات.
 - تراكيب إتصالِ جيدةِ.
 - تقنيات تفكي مُوزَعة.

اذن على الانظمة ان تتعامل مع سماتِ التنسيقِ العامّ، و تراكيب الإتصال والسيطرة. في هذ ا الفصل نحن سَنَنْ اقش تركيبين معيّنينِ والذان أصْبَحا ألياتَ التَفاعيّ الهُوزَ عَةِ الاكثر شهرة:

- أنظمة اللوح (السبورة(.
 - انظمة عبور الوسالة.

أنظمة الهسورة

إنّ الفكرةَ الأساسيةَ من نظام السبورةِ موضحة في الرسم 21.

الوسم. 21 نموذج السبورة

النظام عِيْكُون مِن:

مصادر المعرفة

- -- مجموعة الوحدات المستقلة التي تَحتوي على الهعرفة في الهجالات المعيّرة.
 - السبورة
 - -- بنية البيانات المشتركة والتي من خلالها تتصل مصادر المعرفة المختلفة.

نظام الهبيطرة

-- لقُوّرَ في امر أي مصادرَ المعرفةِ سَتَشتغلُ على المداخلِ في السبورةِ.

استنتاج وتنظيم المعرفة

- تركيب وبنية السبورة إلى حدٍ كبير منظم.
- نظام السبورة عَصِف تنظيم مجالات المعرفة وكُل الم دخلات، كذلك الحلول الهتوسطة و الجزئية المطلوبة لحل المشاكل.
 - مجال الحَلَّ مُنظَّمُ إلى واحد أو اكثر من التطبيقات المعتمدة على الهيكلية الهرمية.
 - الهعلومات في كُل مستوى من الهرم تمثل حلول جزئية.
 - مجالات المعرفة مُقسَمةُ إلى مصادرُ المعرفةِ الفرديةِ.
- تنجز القحويلات في هيكلية السبورة للستعمال إجراءات إرشادي او حسابية بإست جواب وحدات المعرفة تحت نظام السبطرة.

لنفترض ان مجموعة من الناس تُجمّعُ لعبة الصور المقطعة مَع سبورة:

- يَنْظُرُ الهتطوعونُ إلى القِطع ويقومون بإختطير القِطع الاكثر ملائمة ووضعها على اللوحة.
- كُلّ عضو يَنْظرُ على قِطعه ويرى إذا كانت متوافقة على اللوحة بمثل هذه القِطع نصل الى الحَلّ.
 - الحلول الجديدة تؤدي الى وضع قطع أخرى في مكانها.

ليكون الحَلِّ حَلّ سبورة يجب التالي:

- لا إتصالَ مباشرَ يُسْمَحُ بُوقوع الحدث. لعبة الصور المقطعة يُمْكِنُ أَنْ تجُمّعَ بصمتِ كليً و بدون مشاكلِ حققة
 - لا يَهْمَّ مَنْ وضع اي قِطعَ.
 - كُلّ الإتصالات بصرية على اللوحة.
 - كُلُّ شخص عنده تَنْشيط ذاتئ -- يعرف عندما تكون القطع التي يضعها مطابقة.
 - لا طلبَ إستنتاجيَ مُؤسَّسُ يعني تعاون مُتوسّطُ بحالةِ الحَلّ على السبورةِ.
- الحَلّ يُجمّعُ بشكلُ تزايدي وبانتهاز ية وهذه هي الخواص المهمة في أنظمةِ الذكاء الاصطناعي المبنية على الساس الهبورة.

لإيضاح أهمية وحدة السيطرة لنمعن النظر في المشكلة أعلاه:

لنُفترض ان السبورةُ تقع في ممر ضيق، بحيث فقط شخص و احد يُمْكِنُ أَنْ يَيْظرَ للوحةَ في حالة وحيدة.

- · نَحتاجُ الى مرَّاقبُ للسَيْطَرَة على مراقبة اللوحة وعملية تجُميُّعُ الصُّورة المقطعةُ.
- هذه العملية يُمكنُ أَنْ تَكُونَ بسيطة جداً أو يُمْكِنُ أَنْ تَتضمّنَ الكثير مِنْ الإستراتيجياتِ المعقّدةِ، مثل إظهار قطع كُلّ شخص والتقرير بشأن القطع التي تلائم `` بشكل أفضل ".
- الهناية مطلوبة لِكي لا عِيباومَ على الخاصية الضرورية الواحدة النظام السبورةِ، والتي تعتبر حَلّ الهشكلةِ الإنتهازي.
 - القطبيقات المبنية على اساس السبورة تواجه مشاكل مماثلة في أغلب الأحيان.

قضايا تطبيق

يُصوّرُ المثالُ أعلاه بَعْض المشاكلِ التي قَدْ تَظْهرُ عند تُطبّقُ نظام السبورةِ. في هذا القسم نأخذ بعين الاعتبار بَعْض الإعتبار الإعتبار ات العامة المطلوبة عند تطبيق وتصميم إطار السبورةِ.

مصادر المعرفة

- مجالات المعرفة يَجِبُ أَنْ تُقسّمَ لكي تبقى الهصادر منفصلة ومستقلة.
- كُلّ مصدر معرفة يجب ان يكون مسؤولا عن معْرفة الشروطِ التي هو تحتها يُمْكِنُ أَنْ يُساهمَ حَلّ:
 مجموعة الشروط المبدائية تُحدّدُ دلائل القبول قبل تفعيل المصدر.
 - مصادر المعرفة مُمَثّلة كمجموعات القواعد، للمزاعم المنطق أو الإجراءات.

مصادر الهعرفة تعدل السبورة فقط أو تُسيطرُ على تراكيبِ البياناتِ و فقط مصادر المعرفة هي الوحيدة التي يمكن ان تعدل السبورة (الرسم 21).

تراكيب بيانات السبورة

- مصادر المعرفة تحدد التغييرات للتركيب الذي يقود بشكل تزايدي إلى الحَلّ.
 - تراكيب البيانات بشمل الأجسام مِنْ حيز الحَلّ:
 - o البيانات المدخلة،
 - o الحلول الجزئية،
 - o البدائل،
 - o الحلول النهائية،
 - o بيانات السيطرة والتحكم.
- الشكل النهائي للتراكيب هو مشكلة إعتماد، بالرغم من أن الأجسام تُنظّمُ بشكل هيكلي هرمي يعني تراكيب من نوع: شجرة / رسم بياني.
 - مراتب متعددة أو طبقات سبورة ممكنة هنا.

السيطرة والتحكم

- مصادر المعرفة تتجاوب بانتهازية إلى التغييرات على السبورة.
- مجموعة وحداتِ السيطرةِ تُراقبُ التغييراتَ على السبورةِ و الجدول يُقرّر اي الأعمالَ يجب أَنْ تؤخذ في الخطوة التالية.
 - أنواع مُخْتَلِفة مِنْ المعلوماتِ تَجْعلُ متوفرة بشكل عام لهحداتِ السيطرة ومَخْزُونة أمّا :
 - o على السبورةِ، أو
 - o بشكل منفصل في وحدة التحكم.

الهدف منهم هو تواكّونَ الإنتباه.

- بؤرة الإنتباهِ يُمْكِنُ أَنْ تَكُونُ:
- o تراكيب السبورة، أو
- o مصادر الهعرفة ، أو
 - o کلاهما.
- الحلول عزّزت مرحليا مع الهقت. العديد مِنْ أنواع التفك عيّ طبقت (ومثال على ذلك: توجيه الهيانات ، توجيه الهدات قعات).

حَلّ واستنتاج المشكلة

تَحْدثُ الخطواتُ التكر إريةُ التاليةُ ضمن نشاطات حل السبورةِ المثاليةِ:

- 1. مصدر المعرفة يقوم بالتغيير على اجسلم السبورة.
- 2. كُلّ مصدر معرفة يُشْيرُ إلى المساهمةِ الذي هو يُمْكِنُ أَنْ يَ قدمها للوصول إلى حالةِ الحَلِّ الجديدِ -- أمّا بالإستناد على تبادل البيانات ديناميكيا أو ببهاهة.
 - 3. الجدول يُقرّرُ بؤرة الإنتباه.

3

- 1. وحدة السيطرة تُهيّئ بؤرة الإنتباه التنفيذ:
- إذا بؤرة الإنتباه كانت مصدر الهعرفة فإن اجسلم الهبورة تَ خُتَارُ لتخدم كسياقها (جدولة الهعرفة المركزية).
- إذا بؤرة الإنتباه كانت جسم من اجسام السبورة -- فإن مصدر المعرفة لمُعَالَجَة ذلك الجسم مختال ومعطى مع الجسم بشكل سياقه (جدولة الاحداث المركزية).
- آ. إذا كان كل من اجسلم السبورة و مصدر الهعرفة هما بؤرة الإنتباه لحالة مصدر المعرفة والتي تكون جاهزة القنفيذ مع الجسم كسياقها.

1. عملية حل المشكلة تَستمرُّ حتى يشير مصدر الهعرفة بأنها يَجِبُ أَنْ تَتوقَّفَ وذلك حسب التالي:

أمّا بالحصول على حَلّ مقبول ، أو

2. تَمْنعُ قلةُ المعرفةِ أو البياناتِ عملاً آخراً.

امثلة على هذا النوع من الانظمة

نعرض هنا بعض انواع الانظمة العملية المبنية على اساس السبورة:

HEARSAY II

-- السبورة الأصلية. نظام تمييز الصوتِ

HEARSAY III

-- نسخة مُعَمَّمة مِنْ النظام السابق.

BB1,GBB

-- سبورات متعددة الاغراض.

HASP

- مراقبة إشارة السونار (جهاز لكشف وجود الاشياء تحت الماء بواسطة موجات صوتية)

TRICERO

-- سبورةً موزعة تُستَعملُ لمُرَاقبَة المجال الجوي.

انظمة عبور الرسالة

هو عبارة عن نظام إتصالات بديل العملاء

انظمة عبور الرسالة تَختلفُ عن انظمة السبوراتِ في الطرق التاليةِ:

- نقِيلُ العوامل إلى معْرفة أكثر حول بعضهم البعض.
- المعرفة تُستَعملُ لتوجيه الرسائلِ، التي على الأغلب، التغيذ المهمّةُ المطلوبةُ.
- يَمتلكُ كُلّ عامل الهعرفة الكافية بحيث يمكن استخدام هذه الخبرة بدون الإتصالِ مَع الوكلاءِ الآخرينِ.
 - تعالجَ المعلومات ثمّ تمر للتالي.

نظم عبوير الرسالة المثالية تمتلك المكوّنات التالية:

وكلاء حل المشكلة

-- خبراء في مجالِ معينِ.

وكلاء نظام

-- مفسرات الاوامر، معالجة الخطأ ... الخ.

الوسىائل

- الوظائفِ الضمنية في النظام والتي يُمْكِنُ أَنْ يَستعملها الوكلاء لمطابقة النمطِ.

قاعدة بيانات وصف الوكيل

-- محدث في النظامِ.

النواة

-- واحد لكلّ معالج لمُعَالَجَة الإدخال / الإخراج، توجيه الرساطي ... الخ.

وكيل حل المشكلة سَيَبقي نماذجَ الوكلاءِ الآخرينِ. هو سَيُشكّلُ المعلوماتَ التاليةَ نموذجياً حول وكيلِ ما:

- الاسم، الوصف والموقع (العنوان).
 - العلاقة أو الهور بين الوكيلين.
 - مهام و مهارات الوكيلَ.
- الأهداف أو نتيجة (مخرجات) الوكيلِ
 - خطة الوكيل -- لئيف يُنجزُ أهدافه.

معالجة اللغة الطبيعية

المقدمة

في هذا الفصل سنناقش واحدة من اهم المهام الحياتية، وهي اللغة ، ولبيان هذه الاهمية، نحن سنقارنها في بعض الاحيان مع الرؤية "النظر". اللغة والرؤية الطبيعية. كلتا المهم تين متعلقة أولياً بالفهم: في اللغة الطبيعية نحن نتعلّقُ بغهم اللغة المنطوقة أو المطبوعة ، بينما في الرؤية نحن مُهتمّون بفهم الصور. في كلتا الحالتين نحن نُحاولُ الحصول، مِنْ بَعْض بياناتِ المدخل الحسي، على بَعْضِ التمثيلِ حول المعنى الحقيقي لتلك البياناتِ المدخل الحسي، على بَعْضِ التمثيلِ حول المعنى الحقيقي لتلك البياناتِ.

بالطبع `` المعنى الحقيقي لتلك البيانات " هي مبهمةُ بعض الشئ - بحيث اننا لسنا مُهتمّون عموما بالنتائج الفلسفيةِ العميقةِ البيانات (ومثال على ذلك: -، شروق الشمس الجميل يعني ان هناك إحساس نحو الكون. .). نحن فقط مُهتمّون بالتفسير الكافي لأ هدافنا. في الرؤيةِ ربما نحن فقط نُريدُ التعرف على قِطَع متقلقلةِ من المشهد ككل لذا نظام البصر الآلي يُمْكِنُ أَنْ يُزيلُهم مِنْ المشهد - `` معنى " الصورةِ يتعلق بتصنيف الصور. في اللغةِ الطبيعيةِ نحن نُريدُ ان تَكُونَ قادرة على إجابة أسئلةِ مستخدمها بإعطاء بَعْض المعلومات من قاعدةِ البيانات. عليه ممكن القول ان معنى الجملةِ قَدْ يَكُونُ مختلف جداً، ومهمّة ال فهم تتراوح بين يسهة وصعبة حسب المُدخل.

المشكلة

أنظمة اللغة الطبيعية طور ت لإستكشاف النظريات اللغوية العامّة ولإنتاج وصلات اللغة الطبيعية أو الواجهات الأمامية للتطبيقات البرمجية . سَنَفترضُ بأنّ هناك بَعْض التطبيق ات عموماً فأنّ المستخدم يَتفاعلُ مَع ها، وبأنّ مهمة الفظم الهكية هي تفسير ، تعابير المستخدم وترجمتها إلى الشكل الهناسب للتطبيق نحن سَنَفترضُ أيضاً الآن ان اللغة الطبيعية موضع السّؤال ممكن ان تكون أيّ لغة حية كالعربية او الانكليزية ...الخ.

عُموماً المستعمل قَدْ يَتَّصلُ بالنظامِ ب الهَلام المنطوق أو بالطِباعة. فهم اللغة المنطوقة اصعب بكثيرُ مِنْ فَهم اللغة المطبوعة. المطبوعة. المطبوعة.

سواء نحن بْدأنا بإشارات الخطاب (ادوات تمثيل اللغة المنطوقة) أو مدخلات الطباعة (اللغة المطبوعة)، في مرحلة ما سَيكونُ عِنْدنا قائمة (أو قوائم) مِنْ الكلماتِ ويَجِبُ أَنْ نعمل لمعرفة معانيها. هناك ثلاث مراحلِ رئيسيةِ لهذا التحليلِ:

• التحليل النحوي: حيث نَستعملُ قو انير:

حيث نَستعملُ قوانين قواعدية تَصِفُ التركيبَ القانونيَ للغةِ للحُصُول على اعراب واحد أَو أكثر للجملةِ

التحليل الفظي:
 التحليل الفظي:

حيث نُحاولُ وَنَحْصلُ على تمثيلِ أولي (أو تمثيلات) لهعني الجملةِ.

التحليل الواقعي:
 حيث نستعملُ معلومات سياقية إضافية لمَلْئ الفجواتِ في تمثيلِ المعنى، ولمعرفة ما اراد المتكلم ايصاله من معنى.

النحه

إنّ مرحلةَ التحليلِ النحوي أفضل مرحلةِ مفهومةِ لمعالجة اللغةِ الطبيعيةِ. النحو عيباعدُنا على فهم كيفيَة جمع الكلماتِ لتشكيل جُمَلِ معقّدةِ، ويَعَطينا نقطة بداية فهم معنى الجملةِ الكاملةِ. على سبيل المثال، لنفتر ض الجملتين التاليتينَ:

- أكل الكلب العظم.
- العظم أُكِلَ من قبل الكلبِ.

قواعد النحو تُساعدُناً لفهم بأنّ العظمُ هو الذي أكل ولَيسَ الكلبَ. يَسْمحُ التحليلُ النحوي لنا لتَقْرير تجمّعات محتملةِ مِنْ الكلماتِ في جملة. أحياناً هناك فقط سَيَكُونُ تجميعاً محتملاً واحد، ونحن سَنَكُونُ في الطّريق الصحيح لفهم المعنى. على سبيل المثال، في الجملةِ التاليةِ:

الأرنب ذو الآذان الطويلة يستمتع بالنفس الأخضر الكبير.

نحن يُمُكِنُ أَنْ نَستنتج مِنْ قواعدِ النحو بأنّ `` الأرنب ذو الآذانِ الطويلةِ " تُشكّلُ مجموعةً واحدة (جملة إسمية)، و `` الخسّ الأخضر الكبير " يُشكّلُ مجموعة جملة إسميةِ أخرى. عندما نريد فهم معنى الجملةِ علينا أَنْ نَبْداً بفهم معنى كلمات هذه المجموعات، قبل دَمْجهم سوية للحُصُول على معنى الجملةِ الكاملةِ.

في الحالاتِ الأخرى قد يكون هناك العديد مِنْ التجمّعات المحتملةِ للكلماتِ على سبيل المثال، الجملة `` رَأى زيد عمر بالنظارات " هناك قراءتان مختلفتان مستندة على القجمّعات التالمج:

• زید رأی (عمر بالفظارات). تعنی ان ، عمر یضع نظارات.

زید (رَأی عمر بالنظارات) تعنی ان ، زید یضع النظارات و رأی عمر من خلالها.

عندما يكون هناك العديد مِنْ التجمّعات المحتملةِ فان الجملة تكون غامضة بشكل نحوي. أحياناً نحن سَنَكُونُ قادرون على اسْتِعْمال المعرفةِ العامّةِ لفهم التجميع المقصودُ - على سبيل المثال، الجملة التالية:

رَأیتُ برج ایفیل طائر الی باریس.

نحن يُمْكِنُ أَنْ نَحْزَرَ أَنَّ البرج لا يَطِيرُ! لذا، هذه الجملةِ بشكل نحوي غامض، لكن المعنى الصحيح انني رأيت البرج بيما انا طائرا الى باريس.

على أية حال، تُحدَّدُ قُوانين النحو القنظيم المحتمل للكلماتِ في الجُمَلِ. القوانين تحدد عادة بكتابة قواعد اللغة بالطبع، وجود القواعد وحدها غير كاف لتَحليل الجملة - نحتاج الى مُعْرب لغوي لإستغمال القواعد لتَحليل الجملة المُعْرب اللغوي يَجِبُ أَنْ يُرجعَ شجراتَ الإعراب الهحتملة للجملة، يُشيرُ إلى التجمّعات المحتملة للكلمات القسم القادم سَيَصِف كيف يمكن ان نكتب قواعد بسيطة ومُعْربات لُغوية ، بالتَّركيز على بناء لغة البرمجة Prolog ، في شكلية قواعد البند المباشرة

كتابة القواعد

قواعد اللغة الطبيعية تُحدّدُ بنية جملةً جائزة من ناحية الأصناف النحوية الأساسية مثل الأسماء والأفعال ...الخ، وتَسْمحُ لنا لتَقْرير تركيب الجملة. هو مُعَرَّفُ عَلى نَحو مماثل بالنسبة إلى قواعد للغة برمجة ما، مع ذلك يَمِيلُ إلى أن يكون أكثر تعقيداً، و مجموعة الرموز المستعملة مختلفة جداً. بسبب تعقيد اللغة الطبيعية ، فان القواعد المعطاة لا يبدو أنها تَعطى كُلّ الجُمَل المحتملة و المقبولة بشكل نحوي.

[مُلاحظة: في اللغةِ الطبيعيةِ نحن لا نُعربُ اللغةُ عادة لتُدقّقَ بأنّها صحيحُ ة ولكن نُعربُه الكي نحدد التركيبَ ونُساعدُ

على فهم المعنى.

نقطة الهداية لوَصْف تركيب لغة طبيعية هو أَنْ رَهَتعملَ سياق قواعد حرة (كما غالباً رَهُتَعملُ لوَصْف النحو في لغاتِ البرمجة). لرفترض اننا نُريدُ القواعد التي سَتُعربُ جُمَلَ مثل:

• أكل زيد البسكويت.

• أَكُلُ الأسدُ المريض بالفصامَ.

قبّل الأسدُ زيد.

لَكنَّنا نُريدُ إِسْتِثْناء جُمَلِّ خَاطئةِ مثل:

أكل السكويتُ جون.

المريض بالفصام أكل الأسد.

قبل البسكويت الأسد.

القواعد السيطة التي تتعاملُ مع هذا هي التالية:

• 1. الجملة --> عبارة _ اسمية، عبارة _ فعلية.

• 2. الجملة الاسمية --> اسم _ صحيح.

3. الجملة _ الاسمية --> اداة التعريف، اسم.

4. الجملة _ الفعلية --> فعل، اسم _ عبارة.

الاسم_ الصحيح --> [زيد]. الاسم_ الصحيح --> [عمر]. السم --> [مريض بالفصام]. السم --> [أكل]. فعل --> [قبّل]. فعل --> [قبّل]. الدة تعريف --> [آبّل].

إنّ الترميز مشابه للذي يستعمل أحياناً لقواعد لغات البرمجة. الجملة تَشْملُ على عبارة اسمية أو/و عبارة فعلية. العبارة الإسمية تَشْملُ أمّا على اسم علم (إستعمال قاعدة 2) أو اداة التعريف (ومثال على ذلك: -، الـ)و اسم. العبارة الفعلية تَشْملُ على فعل (ومثال على ذلك: -، أكل) و عبارة إسمية. إنّ القواعد في النهاية حقاً مثل مداخلِ القاموس، التي تَذْكرُ الصنف النحوي للكلمات المختلفة الأصناف النحوية الأساسية مثل `` اسم "و `` فعل " رموز طرفية في القواعد، كما هم لا يُمكن أنْ يُوسّعوا إلى أصناف المستوى الأدنى. (وضعنا الكلمات في الأقواس المربعة لأن ها هذه هي الطريقة اليتي يُعْمَلُ بها عموماً في Prolog).

للقواعد الهُعطاة والتي نحن يُمْكِنُ أَنْ نُصوّرَ التركيبَ النحويَ للجملةِ بإعْطاء شجرةِ الإعراب، والتي تظهر كيف ان الجملة نشُرهُ إلى الاجزاء النحويينِ المختلفينِ. هذا النوع مِنْ المعلوماتِ قَدْ يَكُون مفيدَ للمعالجة اللفظيةِ.

بالطبع، القواعد المعطاة فوق لَيستْ كافية جداً لإعراب لغة طبيعية بشكل صحيح. إعتبر الجملتين التاليتين:

• أكلُ زيد الأسد.

• يَأْكِلُ زيد الأسدِ الشرس.

إذا عِنْدَنا `` أَكُلُ " و `` يَأْكُلُ " صَنَّفَت كَأَفعال ، فإذا اخذنا القواعدَ البسيطةَ الواردة اعلاه ، فإن الجملة الأولى سَتَكُونُ مقبولة طبقاً للقواعدِ، بينما الثانية لا – حيث انه لايوجد عِنْدَنا أيّ ذِكِر صفات في قواعدِنا. لحل هذه المشكلةِ نَحتاجُ لإضافة قواعدِ (قوانين) أخرى إلى قواعدِنا.

اسم _ عبارة (ضمير) --> مصمم (ضمير)، صفات، اسم (ضمير). صفات --> صفة، صفات.

صفات --> صفة

صفة --> [شرس]. صفة --> [قبيح]. الخ.

الشيء الآخر الذي مِنْ الضروري أَنْ نَعمَلَ القواعدِنا هي ان توُسعها لذا نحن يُمْكِنُ أَنْ نُميّزَ بين الأفعالِ المتعديةِ التي تَأخذ جسماً (ومثال على ذلك: -، يتحدث). (`` يَحْبُ عَمر الأسد " صحيحة، بينما `` يُناقشُ عمر الأسد " لَيسَت صحيحة منطقيا). قواعدنا حتى الآن ما زالت تُعربُ جُمَلَ فقط بشكل بسيط جداً. يُمْكِنُ أَنْ نُحاولَ إضافة قواعد أكثر فأكثر - على سبيل المثال، نَحتاجُ القواعدَ التي تَتعاملُ مع عباراتِ الجرّ، والاسماء الموصولة. الخ.

القواعد في لغة البرمجة Prolog

إِنَّ الشكليةُ العامّةَ الَّتِي إستعملانَا فوق مستندة على بنية شكلية القواعد في Prolog ، المعروفة بقواعدِ الفقرة المباشرةِ. يَسْمحُ Prolog بكِتابَة القواعدِ الفي سَتعملُ مباشرة مجموعة الرموز (كتلك الواردة في المثال السابق)، لكن داخلياً يتم ترجمُ تواعدِ Prolog عادية. مثل:

جملةً --> اسم عبارة، فعل عبارة.

sentence --> noun phrase, verb phrase.

يتُوجَمُ داخلياً إلى الشِّكُّلُ مثل:

sentence(Words, Remainder) : noun_phrase(Words, NPRemainder),
 verb_phrase(NPRemainder, Remainder).

إمتِلاك القواعد غير كاف لإغراب لغة طبيعية — نحن نحتاجُ الى مُعْرب لُغوي. المُعْرب اللُغوي يَجِبُ أَنْ يَبْحثَ عن الطرق المحتملة بحيث يمكن استعمال القواعد لإعْراب الجملة - لذا الإعراب يُمْكِنُ أَنْ يعتبر كنوع مِنْ مشكلة بحثِ عُموماً هناك قَدْ يَكُون العديد مِنْ القواعد المختلفة التي يمكن أن تُستَعملَ لتوسُ عَج أَو إعادةُ كتابة الصنف الفحوي المعطى، والمُعْرب اللُغوي يَجِبُ أَنْ يَفْحصَهم كُل هم، لهعرفقاذا الجملة يُمْكِنُ أَنْ تُعرَبَ او لا على سبيل المثال، في قواعدنا الصغيرة بالمثال اعلاه، كان هناك قاعدتان للاسم _ عبارات: أعرابُ الجملة قَدْ يَستعملُ أمّا واحد أو الآخرون. في المحقوقة نحن يُمْكِنُ أَنْ نهثلَ القواعدَ كتَعريف شجرة AND-OR للبَحْث.

لذاً، لإعْراب جملة ندن نَحتاجُ للبَحْث خلال كُلّ هذه الإمكانيات، رَهْرُ بكُلّ التراكيب النحوية المحتملة عملياً لإيجاد تركيب واحد يُلائمُ الجملة. هناك طرق جيدة وسيئة لإعراب لغات البرمجة. طريق واحد أساسي هو البحث بالعمق أو لأخلال شجرةِ الإعراب. عندما رَضِلُ العقدةَ الطرفيةَ الأولى في القواعدِ (الصنف الهحوي الهدائي، مثل الاسم) رُهُقَقُ الكلمةَ الأولى للجملةِ اذا ما تَعُودُ إلى هذا الصنفِ (ومثال على ذلك: -، اسم). إذا هي الكلمة المطلوبة ، فإننا رُهُ اصل أعرابَ بقيّة الجملةِ إذا لم يكن هو المطلوب رَيْراجعُ ورُجاولُ قواعدِ البديلةِ.

كَمِثال، لرَقَتر ضُ بأنَّك كُنْتَ تُحاولُ إعْراب `` يَحبُّ زيد عمر " أعطى القواعد التالية:

```
جملة --> اسم _ عبارة، فعل _ عبارة.
فعل _ عبارة --> فعل، اسم _ عبارة.
اسم _اداة تعريف <-- ، اسم _عبارة
اسم _ عبارة --> P _ اسم.
```

فعل --> [يَحبُّ]. p _ اسم --> [زيد]. p _ اسم --> [عمر].

```
sentence --> noun_phrase, verb_pharse.
verb_phrase --> verb, noun_phrase.
noun_pharse --> det, noun.
noun_phrase --> p_name.

verb --> [loves].
p_name --> [john].
p_name --> [mary].
```

أنت قَدْ تَبْداً التَوَسُّع لـ `` جملة " إلى عبارة فعلِهة و عبارة إسمية. ثمّ العبارة الإسمية سَتُوسّعُ لإعْطاء اداة تعريف و اسم، يَستعملُ القاعدةَ الثالثةَ. اداة التعريف صنف نحوي (عقدة طرفية في القواعد) لذا نُدققُ اذا ما الكلمةَ الأولى (زيد) تَعُودُ إلى ذلك الصنف. الجواب لا – زيد اسم علم - لذا نَتراجعُ وتَجِدُ طريقَ آخرَ مِنْ التَوَسُّع '` اسم علم علم هذا سَيَعْملُ بشكل حسنً، لذا نُواصلُ إعرابَ بقيّة الجملةِ ('` يَحبُ عمر "). نحن لحدّ الآن لم نُوسّعْ عبارةَ فعلِ، لذا نُحاولُ إعْراب `` يَحبُ عمر " كعبارة فعلِ. هذا سَيَنْجحُ في النهاية، لذا الا مر بأكمله يَنْجحُ.

قَدْ يَكُون واضحَ حتى الآن ان الية الاعراب في Prolog، بريّتُ في إجراءِ البحثِ فقط. Prolog سَيَتراجعُ فقط لإسْتِكُشاف التراكيبِ النحويةِ المحتملةِ المختلفةِ. الحجج الإضافية ال موجودة في Prolog (داخلياً) سَنْمحُ له بلعْراب من الجملةِ باستعمال قاعدة ، ثمّ بقيّة الجملةِ بإستعمالُ قواعد أخرى.

لاحظْ بِأَنَّ هَذَا نوع بسيطِ من انواع الأعراب "من الأعلى للأسفل". مُعْرب لُغوي يُمْكِنُ أَنْ يُطبَقَ إلى حدّ معقول بسهولة في اللغاتِ الأخرى، التي لا تَدْعمُ التَرَاجُع، بإستعمال آليةَ بحثِ أساسها جدولَ الأعمال. المُعْربات اللُغوية البسيطة غير كفء في أغلب الأحيان، لأنهم لا يَبقونَ سجل كُلّ قطع الجملةِ التي أُعربتْ. إستعمال البحث البسيط - العمق أولاً، بالترَاجُع يُمْكِنُ أَنْ يُؤدّى إلى القطع المفيدةِ مِنْ الإعراب.

مُعْرِب شبكةِ الإنتقالَ اللُّغوي يَعْبرُ هذه الشبكةِ ، ويُدقّقُ فيما اذا كانت الكلماتِ في الجملةِ تَجاري الأصناف النحويةَ على كُلّ قوس أو لا.

دراسة معاني الكلمات و فلسفة الذرائع

المرحلتين الباقيتين من التحليل، وهما دراسة معاني الكلمات فلسفة الذرائع، مُهتمّتين بالتَّوَصُّل إلى معنى الجملة. في المرحلة الأولى (دراسة معاني الكلمات) نحصل على التمثيل الجزئي مِنْ المعنى بالإستزاد على التركيب/ التراكيب النحوي المحتمل للجملة، وعلى معاني الكلمات في تلك الجملة. في المرحلة الثانية، يوضح المعنى بالإستزاد على المعرفة السياقية (قي سياق الكلم) والعامة لتصوير الإختلاف بين هذه المراحل، لنأخذ الجملة التالية:

سَألَ عن الرئيس.

مِنْ معرفةِ معنى الكلماتِ وتركيبِ الجملةِ الذي نحن يُمْكِنُ أَنْ نَحْسبَ بأنّ شخص ما (ضمير مستتر تقديره هو) سَألَ عن شخص ما الذي هو رئيس. لَكَنّا لا نَستطيعُ ان نَقُولُ مَنْ هؤلاء الناسِ و لماذا الرجلَ الأولَ يريد الثانيَ. إذا عُرفنا شيء حول السياقِ (من ضمن ذلك الجُمَلِ الأخيرةِ بِضع جمل محكية / مكتوبة) نحن قَدْ نَكُون قادرون على حَلّ هذه الأشياءِ. لَرُبّمَا الجملة الأخيرة كَانتُ `` فريد طرد من عمله. "، ونحن نَعْرفُ مِنْ خلال معرفتنا العامّةِ رؤساء العمل يمكن ان ينهوا خدمات عامل ما. وإذا يُريدُ شخص ما أَنْ يَتكلّمَ مع الشخص الذي فصله من عمله فإنه للإعتراض عليه. نحن يُمْكِنُ أَنْ نَبْدأُ بلِلتَوصُّل إلى معنى الجملةِ حقاً - فريد يُريدُ القظلم إلى رئيسِه حول فصله من العمل. على أية حال، هذه المرحلةِ الثانيةِ للتَوصُل إلى المعنى السياقي الحقيقي مدعوّة باسم فلسفة الذرائع. المرحلة الأولى - على معاني الكلماتِ وتركيبِ الجملةِ - دراسة معاني الكلماتُ وهذا ما نحن سَنُناقشُ بشكل مفصل أكثر.

دراسة معانى الكلمات

عُموماً، المدخّل إلى المرحلةِ اللفظيةِ التحليلِ قَدْ يُظِّرُ كما أنْ لو تَكُونَ مجموعة محتملةِ لإعراب الجملة، ومعلومات حول معاني الكلمةِ المحتملةِ. إنّ الهدفَ أنْ يَدْمجَ معاني الكلمةَ، الهعرفة المعطاة لتركيبِ الجملة، الحُصُول على تمثيلَ أوليَ مِنْ معنى الجملةِ الكاملةِ. إنّ الشيءَ الصعبَ، بمعنى، أنْ يُمثّلُ معاني الكلمةِ بطريقة بحيث أنّهم قَدْ يُندَمجونَ مع معاني الكلمةِ الأخرى بطريقة بسيطة و عامةً.

لنأخذ الجمل التالية:

يُطيّرُ الوقتَ مثل السهمِ.

تطير الفواكه مثل الموزةً.

إذا عِنْدَنا بَعْض تمثيلِ معاني الكلماتِ المختلفةِ في الجملةِ فإنه يُمْكِنُ أَنْ نَستثنى الاعراب السخ في المحتمل بالفظرُ الى المثل في الأعلى وتحديدا الى كلمة `` موز "و نحن نعرف بإنَّهُ افاكهة، والثمار عموماً لا تطِيرُ اذن نحن نستثني القراءة `` يَظُيّرُ الفواكه مثل موزةِ " إذا تَأكّدنَا بأنّ الجُمَلِ الذي تَعْني `` X تَعمَلُ شيءاً مثل Y' فإن ذلك يَتطلّبُ بأنّ X وY يُعمَلُ أَنْ يَعمَلُ ذلك الشيءِ!

أحياناً يكون الغموض مُقَدَّمُ في مرحَّلةِ التحليلِ اللفظيي، على سبيل المثال:

ذهب عمر إلى المصرف.

هَلْ ذَهبَ جون إلى مصرف النهر أو المصرف المالي؟ نحن نُريدُ أَنْ نَجْعلَ هذا واضح ا في تمثيلِنا السيمانطيقي، لكن بدون معرفةِ سياقيةِ نحن لَيْسَ عندما كلمة ما لها معنيان محتملانُ، لكن كلاهما ، على سبيل المثال، قد يَكُونُ أسما.

للحُصُول على تمثيل لفظي يُساعدُ إذا نحن يُمْكِنُ أَنْ رَثْمَجَ معاني أَجزاءِ الجملةِ بطريقة بسيطة للتَوَصُّل إلى معنى كُليِّ (تُشيرُ دراسة معاني الكلماتُ التعبيرَ التركيبية إلى هذه العمليةِ). لتلك المألوفةِ بتعابيرِ lambda، طريق واحد لَعمَلُ هذا وذلك بأَبْن يُمثِّلُ معاني الكلمةِ كتعابير lambda معقّدة، وفقط إستعمال تطبيقاً وظيفيا لدَمْجهم.

فلسفة الذرائع

فلسفة الذرائع هي المرحلةُ الأخيرةُ للتحليلِ، حيث أنَّ المعنى يوضح بتفصيل اكبر بالإستزاد على المعرفةِ السياقيةِ والعامةِ تتضمّنُ المعرفةُ السياقيةُ معرفةُ الجُمَلِ السابقةِ (منطوقة أو مكتوبة)، معرفة عامّة حول العالمِ، ومعرفة المتكلم وظيفة مهمة واحدة في هذه المرحلة وهي أَنْ نَجْدد الضمائر الخاصة بالتعابير. على سبيل المثال، في الجملة `` هو الطعم القط الابيض " القطد الابيض " أَنْ يَذْكَرَ توم وعمر. الرجلِ المعيّنِ الذي نحن نَتحدّثُ عنه (ربما يكون عمر). أي تمثيل كامل مِنْ معنى الجملةِ يَجِبُ أَنْ يَذْكَرَ توم وعمر. نحن في أغلب الأحيان يمكن ان نكتشف هذا بالنظر إلى الجملةِ السابقةِ، ومثال على ذلك: -:

- ذهب عمر إلى المتنزه.
- هو اطعم القط الابيض.

نحن يُمْكِنُ أَنْ نَحْسَبَ مِنْ هذا بأن `` هو "يُشيرُ إلى عمر نحن لَرُبَّمَا أيضاً نَخمن بأنّ القط الابيض في المتنزه، لكن القخمين بأنّة توم نحن نَحتاجُ الى بَعْض المعلومات العامة الإضافية أو المعرفة السياقية - الدي تقيد بأن القط الابيض توم هو القط الابيض الوحيد الذي يتردّدُ على المتنزه عموماً هذا النوع مِنْ الإستدلال صعب جداً، مع ذلك تماماً يُمْكِنُ أَنْ عِيْفذ باستعمال الإستراتيجياتِ البسيطةِ، مثل النَظْر إلى "من" الهَذْكُورةِ في الجملةِ السابقةِ لهعرفة ان `` هو "تُشيرُ اليها بالطبع، أحياناً هناك قَدْ يَكُون شخصين (أو قطان) الذي يشير اليهما المتكلم، ومثال على ذلك: - ،:

- كان هناك قط ابيض وقط أسود في المتنزهِ
 - ذَهبَ عمر إلى المتنزهِ مَع زيد.
 - هو اطعم القط

في مثل هذه الحالات نحن لهْعِيَا غموضُ مرجعي. من الواضح تماما ان نادر، لكن عُموماً يُمكنُ أَنْ يَكُونَ مشكلة كبيرة. عندما يكون المرجع المقصود غير واضحُ فإن نظام الحوارِ في اللغةِ الطبيعةِ يَجِبُ أَنْ يَبْداً لَبَوضيح حوارِ ثانوي، يَسْأَلُ عن المثال `` تَغنى الواحد الابيض او الأسودَ. ".

على أية حال، شيء آخر يقع في أغلب الأحيان في هذه المرحلة مِنْ التحليل وهو أَنْ رَجَاولَ تخمين أهداف التعبير. على سبيل المثال، إذا رَسْأَلُ شخص ما، "كَمْ الشيء ؟" رَقِترضُ عموماً بأنّ هدفهُ (من المحتمل) ان يَسْتريه. إذا أنت يُمكِنُ أَنْ تَكُونَ أكثر قدرة في الرَدّ على أسئلتِهم. لنفترض المثال التالي ، نظام خدمات معلومات الطيران الآلية، عند سرو الها عن موعد الطيران القادم إلى باريس ، فإنه لايجب فقط اعطاء الاجابة " ``6 مساءً " إذا يَعْرفُ بأن هذه الوحلة كاملة. بل يَجِبُ أَنْ يَجَمن بأنّ السائل يُريدُ السَفَر ، فيُدفّقُ بأنّ هذا محتمل، ويَقُولُ ``6 مساءً ، لَكنّه كاملُ إن الطيران القادم بمقعدِ فارغ في 8 مساءً . "

توالد الجمل والمعاني

في الفقطتين السابقتين ناقشناً فَهُم اللغةِ الطبيعي فقط على أية حال، يَجِبُ أَنْ نَهُونَ مدركَهِن أيضاً المشاكلِ في تَوليد اللغةِ الطبيعيةِ لنفترض اننا نريد قول شئ ما (ومثال على ذلك: -، يَأَكُلُ (عمر، شوكولاته))، أو عندما لدينا هذف رُويدُ إنْجازه (ومثال على ذلك: -، الطلب من زيد إغَلاق الباب)، فإن هناك عدّة أشكال لأنجاز ذلك خلال اللغةِ:

- هو يَأْكُلُ الشوكو لانق.
- ه في إنه الشوكو لانقُ الهي يأكلها عمر .
 - يَأْكُلُ عمر الشوكو لاَنقًا.
 - الشوكو لاته أُكُلت مِن قِبل عمر.

وللمثال الثاني :

- إغلق البابَ.
- الجو باردُ هنا.
- هل يُمْكِنُ أَنْ تَغْلقَ البابَ.

أي نظام توليد جَمَل ومعاني يُجِبُ أَنْ يَكُونَ قادر علي إِخْتيار وبشكل ملائم مِنْ بين الإنشاءاتِ المحتملةِ المختلفةِ، والهستندة على معرفةِ السياق. إذا عليه كتابة نص معقد ، فيَجِبُ أَنْ يَعْرفَ كَيفَ سِيَجْعُلُ ذلك النَصِّ متماسكِ.

التخطيط

ماذا بتضمن التخطيط؟

تخطيط المشاكل يعتبر مشكلة كبيرة لإن:

- المشاكل ليست بديهي بالتأكيد.
- تَتَضَمَّنُ الْحِلُولَ الْعِدَيْدِ مِنْ السَّمَاتِ الَّتِي نَاقَسْنَاهَا قَبَلَ، مثل : 0 الْهِحْثُ وإستر الْيَجِيَاتِ خَلِّ الْهِشْكَلَةِ.

o مخططات تمثيلِ المعرفةِ.

o تحليل الهشكلة -- تقسيم الهشكلة إلى عناصر ها البسيطة ومحاولة حَلّ هذه العناصر أولاً. رَأينَا بأنّه يمكن حَلّ مشكلة بإعتِبار الشكلِ الملائمِ لتمثيلِ المعرفةِ وإستعمال الخوارزمياتِ لحَلّ أجزاءِ المشكلةِ وأيضاً لإسْتِعْمال طرق البحث.

الهحثْ في التخطيط

الهحثْ كمّا رأينا سابقا وبشكل اساسي هو الإنتِقال من الحالةَ أوليةَ إلى حالة الهدفِ. تقنيات البحثِ الكلاسيكيةِ يُمْكِنُ أَنْ تظُبق لقخطيط الحالةِ في هذا الإسلوبِ:

خوارزمية *A

-- أفضل بحثِ أولِ،

تحليل المشكلة

-- ىتكىب، مشكلة إطار

خوارزمية *AO

- قُسِيَّةَ الهشكلة إلى الأجزاءِ المُتميّزةِ واضحة المعالم.

التفكور والاستنتاج الإرشادي

-- البَّحِث العادي بَالْقَرَاجُع يُمْكنُ أَنْ يُقدِّمَ التفائيِّ لإبتِكار الموجه والمساعد على الكشف كذلك مراقبة التَرَاجُع.

الطريقةُ الرئيسيةُ الأولى اعتبرت الحَلُّ كبحث مِنْ الحالةِ الأوليةِ إلى حالة الهدفِ عبر مدى الحالات. هناك عدّة أشكال إنتقال عبر هذا الهدى بإستعمال المشغلين و خوارزمية *A التي وصفت أفضل بحثِ أولِي خلال الوسم الهياني. هذه الطريقةِ جيدةُ للمشاكلِ الأسهلِ، لكن للمشاكلِ الأكثرِ واقعية من المُسْتَحسن إسْتِعمال تحليل المشكلةِ. هنا المشكلة تُقسّمُ إلى الهشاكلِ الفرعيةِ الأصغرِ ومن ثما تجمع الحلولِ الجزئيةِ. الخطر باستعمال هذه الطريقةِ يقع عندما بَعْض الطرقِ الكيدة تُصبحُ فاشلةَ ويؤدي ذلك الى رمي الحل جانبا. كيف يمكن للحَلِّ الجزئي أَنْ يُجفظ وكَمْ لإعادة حسابه ثانيةً.

مشكلة الإطارَ – تقرر الاشياء التي تَتغيّرُ والتي لاتتغير - نعَطي بَعْض التوجيهات التي تَمْكننا من القَقْرير ماذا نَبقى على حاله وماذا نَغيّرُ لئلها انتقانا مِنْ حالة الى الحالة التي بعدها. مثلا، إذا تَعلّقتَ المشكلةُ بتَصميم الإنسان الآلي المعد لقجميع السيارات فإن المحرّكَ المُركب على الهيكل لا يُؤثّرَ على مؤخّرةِ السيارةِ في الوقت الحاضر.

خوارزمية *AO مَكّنتْنا من مُعَالَجَة حَلِّ المشاكلِ حيث المشكلةِ يُمْكِنُ أَنْ تُقسّمَ إلى الأجزاءِ المُتميّزةِ وبعد ذلك أعادتْ تجميع الحلولُ الجزئية. على أية حال الصعوبات تَظْهرُ إذا تَفاعلتْ الأجزاءَ مع بعضه ا البعض. أغلب المشاكلِ لَها بَعْض التفاعلِ وهذه عِيُّلُ ضمنا على بَعْض الأفكارِ لاعتماد المراحل او الخطوات المتتالية ؛ على سبيل المثال إذا الإنسان الآلي يَجِبُ أَنْ يَهْقلَ منضدة بالأجسامِ التي عليها من غرفة إلى آخرى؛ أو لتَحَرُّك صوفا من غرفة إلى آخرى والبيانو قُرْب المدخلِ. عمليةُ المُلْكِينَ المبذول في إعادة توحيد الحلولِ الجزئيةِ في مثل هذه المشاكلِ تعرف بالتخطيط. من هذه المرحلة من هذه المرحلة الواسوب سَيَحْلُ المشكلة بدون التفاعلِ مَع الانسان.

عموماً الحاسوب يُستَعملُ للتَقْرير بالنسبة الّي أفضل طريقةِ مُ ناسبة لَحَلِّ الهشكلة. في إحساسِ واحد هذه يُمْكِنُ أَنْ عِيْرِجمَ كمحاكاة؛ على سبيل المثال في مشكلة تنظيم هبوط الطائرات، لا يجب ان يكون هناك اكثر من طائرةِ على مدرج الهطارِ في نفس الوقت. عليه عندما وجد الحاسوبُ افضل الحلول بناءا على ال تحقيق الذي قام به فإنه يُمْكِنُ يَطْمِعُهُ في الموقع الحقيقي.

تَقترضُ هذه النظرين بأن هناك إستمرارية في طريقة الحياة. لكنها لا تتتطيع وصنع تقديرات للتغيير السريع. كَيْفَ هذه النظرين بالأحداث الغير متوقّعة مثل مكوّن معيب أو حدث مزوّر مثل مادتين التصقتا ببعضهم البعض. عندما نواجه عيب أو بعض الحالات مستحيلة التمييز فإنه لَيسَ من الضروري الإسْتِنْناف لمُعظم ما حُلَّ بنجاح وما زالَ مفيدُ. لنفترض طفل ما يُزيلُ الإبرَ مِنْ بلوزَ ة مَحاكة جزئياً (لم تنتهي حياكتها). تَكْمنُ المشكلةُ في الإسْتِنْناف مِنْ الفهاية الفهاية الهسدودة وهذا سَيَحتاجُ الى بعض التَرَاجُع (التراجع الى بداية الخط). هذه الطريقة مِنْ الحَلَّ تُتبعُ لتَخفيض مستوى التعقيدِ ولذا لضمان معالجة ناجحة يَجِبُ أَنْ نُقدّمَ التفك عَلَّ للمُسَاعَدة في التَرَاجُع المطلوب للإهْتِمام بالعيوبِ. للمُسَاعَدة في السَيْطَرَة على التراجعُ هناك العديد مِنْ الطرق تتعامل بشكل خلفي مِنْ الهدفِ إلى الحالةِ الأوليةِ.

أمثلة تخطيط الكتل

ماهو عالم الكُتَلَ؟ -- العالم يَشْرُيْمَلُ على:

- السطح الهستوى مثل سطح الهنضدة
- مجموعة كافية مِنْ الكُتَل المماثلةِ التي مُمَيَّزت بجروف.
- الكُتَل يُمْكِنُ أَنْ تُكدّس واحد فوق الآخر لتَشكيل أبراج ذات إرتفاع غير محدود.
- التَّكديس انجز بلستعمال ذراع آلى يملك عملياتُ أساسيةُ وحالاًت يُمْكِنُ أَنْ نَقْيُم بلستعمال المنطق و ندُّمج بإستعمال العمليات المنطقية
 - الإنسان الآلي يُمْكِنُ أَنْ يَحْملَ كتلة واحدة كلّ مرة وفقط كتلة واحدة يُمْكِنُ أَنْ تُحرّكَ في نفس الوقت.

نحن سننستعملُ الأعمالَ الأربعة:

UNSTACK(A,B)

-- بَلتقطُ كتلةً و اضحةً A منْ الكتلة B؛

STACK(A,B)

- ضع الكتلة A بأستعمالُ الذراعَ فوق الكتلةِ الواضحةِ B؛

PICKUP(A)

-- أرفع الكتلة A الواضّحُة بالذراع الفارغ؛

- َ ضِعُ الكتلةَ المَحْمُولةَ A في المكان الفارغ على المنصدةِ.

والمسندات الخمسة:

ON(A,B)

-- الكتلة A على الكتلة B

ONTABLE(A)

-- الكتلة A على المنضدة.

CLEAR(A)

-- الكتلة A لَيْسَ عليها شيء.

HOLDING(A

-- الذراع يَحْملُ الكتلة A .

ARMEMPTY

-- الذراع لا يَحْملُ شيءَ.

بلستعمال المنطق ولكن لَيسَ الترميز الهنطقيّ يُمْكِنُ أَنْ نَقُولَ بأنّ إذا الذراع يَحْملُ كتلة فهو لَيسَ فارغا و إذا الكتلةِ A على المنضدةِ يعنَّى لَيسَ أيّ كتلة أخرى وإذا الكتلةِ A على الكتلةِ B، يعنيُ الكتلة B لَيستْ واضحةً ـ

لماذا رستعملُ عالمُ الكُتَلَ كَمثال؟

إنّ عالمَ الكُتَلَ مُختَارُ لأنه:

- بسيطُ بما فيه الكفاية و عَصرٌ فَ بشكل حسن.
 - مفهوم بسهولة
- رغم ذلك ما زال بُزود ببيئة عيرات جيدة لدر اسة التخطيط:
- ٥ الهشاكل يُمْكِنُ أَنْ تُقسِمَ الى مشاكل فر عية مُتميّزة تقريباً

نحن يُمْكِنُ أَنْ رُوى كَيفَ ان الحلول الجزئية مَنْ الضَّرُوري أَنْ تُدْمَجَ لتَشْكيل حَلّ كامل واقعى.

تخطيط مكوّنات النظام مهام حل المشكلة البسيطة تتضمّنُ الوظائف التالية:

- إختر أفضل قاعدة (قانون) مستندة على التوجيه المساعد.
 - 2. طبّق هذه القاعدة لخَلْق حالة جديدة.
 - 3. إكتشف عندما يوجد حَلّ.
 - 4. إكتشف النهايات المسدودة لتفاديهم.

لحل المشكلةُ الأكثر تعقيداً في أغلب الأحيان تضاف مهمّة خامسة:

5. إكتشف عندما تكون الحالة قريبة الحل و إستعملِ الطرق الخاصة لجَعْله الحالة المحلولة.

الآن دعنا نرى ماذا تستعمل تقنياتِ الذكاء الاصطناعي عموماً في كُلِّ مِنْ المهام أعلامِ. نحن بعد ذلك سَنَنْظرُ الطرقَ المعبنة للتطيبق

اختيار أفضل قاعدة

الطرق المستعملة تتضمّن:

- إيجَادُ الإختلافاتَ بين الوضعية الحالية وحالات الهدف.
- أَخْتُكُم القواعدَ التي نقلل هذه الإختلافات بفاعلية أكثر
 - تحلیل نهاطتِ مینز مثال جید ه نل

إذا نحن نريد السَفَر بالسيارة لزيارة صديق ما

- أول شيء يجب أَنْ نَهْلاً السيارة بالوقود.
- إذا ليس لدينا سيارة فأننا نَحتاجُ لواحدة.
 - الإختلاف الأكبر يجب أنْ يُعالجَ أو لأ.

تطبيق قاعدة

- القواعد السابقة يُمْكِنُ أَنْ تُطبّقَ بدون أيّ صعوبة كأنظمة كاملة حُدّدتْ وقواعدَ مَكّنتْ النظامَ للتَقَدُّم من حالة
 - الآن يَجِبُ أَنْ نَكُونَ قادرون على مُعَالَجَة القواعدِ النِّيُّ تَعْطَى فقط أَجِزاءِ مِنْ الأنظمةِ
 - استعمل عدد مِنْ النظر طِهِ لهذه المهمة .

نظرية Green's (1969) أساساً هذا يُصرّحُ بأنّنا نُلاحظُ التغييراتَ على الحالة والناتجة من تطبيقِ القاعدة.

إذا اردنا ان UNSTACK(A, B) ، وضع A على B. نَبدو العملية كالتّالى:

CLEAR $(x, s) \land ON(x, y, s) \rightarrow [HOLDING(x, DO(UNSTACK(x, y), s)) \land$ CLEAR (y, DO(UNSTACK(x, y), s))

حيث x ,y أيّ كُتَل ، s أيّ حالة و ()DO تحدّدُ النَّقائجَ الوسميةَ الجديدة مِنْ العملِ المُعطى.

نتبجة وَضْع هذه على حالة S_0 لاعْطاء الحالة S_1 فإننا نحصل على:

 $HOLDING(^{A_1}S_1) \land CLEAR(^{B_1}S_1).$

هناك بضعة مشاكل بهذه النظريق

مشكلة الاطار

-- من الوارد أعلاهِ نحن نَعْرفُ بأنّ B ما زالِت على المنضدةِ. هذا مَنْ الضَّرُوري أنْ عِثْفَرَ إلى بديهياتِ الإطر التي تَصِفُ مكوّناتَ الحالةِ والتي لَيستْ متأثّرةَ بالمشغل.

مشكلة المؤهل

- إذا حُلّيناً مشكلة الإطار ، فلن الوصف الناتج قَدْ يَكُونُ ناقص. هَلْ نَحتاجُ لتَشْفير ان الكتلة لا يُمكنُ أَنْ تَكُونَ موضوعة على نفسها؟ إذا كان الأمر كذلك هَلْ يَجِبُ أَنْ تَفشل هذه المحاولة ؟ إذا سُمْحُنا بالفشل فإن الأمور ستتعقد — هل سرنَسْمحُ بالكثير مِنْ الأحداثِ الغير محتملةِ؟

مشكلة النتيجة

- بعد وضع الكتلة A، مسبقاً، كَيفَ نَعْرفُ بأنّ A لَمْ نَعُدْ في موقعِه الأولى؟ لَيسَ فقط الصعوبة ببَعديد بالضبط الاحداث الهي له تقع (مشكلة إطار) بل ببَعديد الذي يَحْدثُ.

نظرية STRIPS(1971)

STRIPS إقترحَ نظريقً أخرى تقوم على:

- مبدایئا کُل مشغل اله یه ثلاثه قوائم من المسندات المرتبطة مَعه:
 - ٥ قائمة الأشياءِ التي تُصبحُ "صح" وبتعمّى Add.
- o قائمة الأشياءِ التي تُصبحُ "خاطئ" وبسّمّى Delete.
- o مجموعة الشروطِ التي يَجِبُ أَنْ تَكُونَ حَقيقيةَ قبل تطبيق المشغل.
 - أيّ شئ لَيسَ في هذه القوائم، مُفتَرَضُ ان كُيونَ غير متأثّرة بالعملية.
- هذه الطريقة هي القطبيق الأولي ل. STRIPS وُسع لَيْضَمْ الأشكالِ الأخرى مِنْ القفاعيّ / القخطيط (ومثال على ذلك: الطرق الرتيبة، تخطيط مجموعة الاهداف وحتى القخطيط اللاخطي -- يَرَى لاحقاً)

لنأخذ المثالَ التالي في عمليات الكُتَلَ العالمية والأساسية:

STACK

ــ يَتَطلّبُ الذراعَ لكي يَحْملَ الكتلة A ، والكتلة الأخرى B لِكي تَكُونَ واضحةً بعد ذلك الكتلة A على الكتلة B والذراع تصبح فارغة و هذه حقيقة -- ADD ؛ الذراع لا يَحْملُ كتلة و الكتلة B لَيسَت واضحَة؛ المسندات الفاشلة تحذف Delete ؛

UNSTACK

- يَتَطَلَّبُ بِأَنِّ الكَتَلَةَ A على الكَتَلَةِ B؛ و الذراع فارغُ و الكَتَلَةِ A واضحةُ. بعد ذلك الكَتَلة B واضحةُ والذراعُ يَحْملُ كَتَلَة A - DELETE ؛ كَتَلَة A فيسَ فارغُ والكَتَلة A لَيستُ على الكَتَلة A الذراع لَيسَ فارغُ والكتلة A لَيستُ على الكَتَلة A - A

و هكذا نحن قالنا المعلومات التي مَنْ الضَّرُوري أَنْ تُحْمَلَ. إذا الخاصيّة الجديدة نقيد بأننا لَسنا بِحاجة إلى أَنْ نُضيفَ بديهياتَ جديدة لأيجاد المشغلين. على خلاف ذلك في طريقةِ Greens ، نُزيلُ مؤشرَ الحالة ورستعملَ قاعدة بيانات المُسنداتُ للإشارة إلى الوضعية الحاليةَ وعليه إذا الحالة الأخبرة كانتُ:

 $ONTABLE(B) \land ON(A,B) \land CLEAR(A)$

بعد عمليةِ UNSTACK ، الحالة الجديدة ستكون:

ONTABLE(B) \land CLEAR(B) \land HOLDING(A) \land CLEAR(A)

إكتشاف التقدم

الحَلِّ النهائي يُمْكِنُ أَنْ يُكتَشْفَ إِذَا:

- نحن يُمْكِنُ أَنْ نَبتكرَ الهسند الذي يكون حقيقي (صح) عند وجود الحَلُّ وخاطئ بخلاف ذلك.
 - يَتِطلُّبُ الكثير مِنْ العَلَّهِي ويَتِطلُّبُ العرهان.

إكتِشاف الآثار الخاطئةِ ضروريةُ أيضاً:

- ومثال على ذلك: بحث *A-- إذا كان التقدّم غير كافي فإن هذا الأثر عليغي لمصلحة واحد أكثر تفائلا.
- أحياناً من الواضح أنّ حَلّ المشكلةِ بطريق واحد خفّضَ المشكلة إلى الأَجزاءِ التي تعتبر اصعب مِنْ الحالةِ الأصلية
- بالرُجُوع مِنْ حالةِ الهدف إلى الحالةِ الأوليةِ من الهحتمل إكتشاف تناقض لتِ وأي أثر أو طريق الهي تتضمن نزاع يُمْكِنُ أَنْ عَيْسبب بالخروج من البحث.
 - تُخفيضٌ عدد الطرقِ المحتملةِ يَعْني بأنّ هناك مصادر أكثر متوفرة الأولئك الذين اهملوا.

لرفتِر ض بأنّ معلّم الحاسوبَ مريضُ. في المدرسة هناك بديلان محتملان:

- نقل معلم الرياضيات والذي ععرف إستعمال الحاسبات أو
 - نجلب معلم آخر َ.

المشاكل المحتملة:

- إذا مدرس الرياضيات هو المعلّم الوحيدُ للرياضياتِ فإن المشكلةِ لَمْ تُحْلُ.
- إذا بتَين انه ليس هناك مال لدى المدرسة فإن الحَلّ الثاني يُمكنُ أَنْ يَكُونَ مستحيلَ.

إذا المشاكلِ قابلة للتقسيم الى عناصر ها الاساسية فنحن يُمْكِنُ أَنْ نُعالجَهم على اساس عناصر وبعد ذلك يُهم ربطهم، هكذا؟

لن عنار النا وصلنا الى الحالة النهائية بمُعَالَجة المشكلة ك عناصر في الوضعية الحالية وتُلاحظُ الإختلافات بين حالة الهدف والوضعية الحالية وتُلاحظُ الإختلافات بين حالة الهدف والوضعية الحالية والوضعية الحالية والمنافقة عنار الله في الطريق الذي يُؤدّي إلى الوضعية الحالية والنه عن إذا كان هناك خيارات. هو قَدْ يَكُون الطريق الإختياري الوحي الذي يُمْكِنُ أَنْ يُؤدّي إلى حَلّ بينما أدّى الطريقُ الحالي إلى تناقض. عموماً هذا يَعْني بأنّ بعض الشروطِ تُعَنّرت قبل أَخْذ الطريق الإختياري خلال المشكلة.

تَتضمّنُ النظرةُ الأخرى تَأجيل قراراتِ حتَى واحد يَجِبُ أَنْ، يَثْرِكُ إِتّخاذ القراراتَ حتى المزيد من المعلوماتِ طرقُ متوفرةُ وأخرى إستكشفتْ. في أغلب الأحيان بَعْض القراراتِ لَيْسَ مِنْ الضّرورِي أَنْ تَأْخذَ كهذه العُقَدِ مَا وَصلتْ.

تخطيط مجموعة الهدف

الفكرة الأساسية هي مُعَالَجَة إستعمالاتِ الأهدافِ المركّبةِ التفاعليةِ باستخدام مجموعة الاهداف، هنا الهجموعة تَحتوي على :

- الأهداف،
- الأوامر -- أضلفقه حذف وشروط القوائم
- قاعدة البيانات تَبقى الحالة الحالية لكُلّ امر إستعملَ.

لنفترض القالي: حيث نريد المَضي من حالة البداية الى حالةِ الهدف.

الوسم. 22 مثال تخطيط مجموعة الهدف

نحن يُمْكِنُ أَنْ نَصِفَ حالةَ البداية:

 $ON(B, A) \land ONTABLE(A) \land ONTABLE(C) \land ONTABLE(D) \land ARMEMPTY$

وحالة الهدف:

 $ON(C, A) \land ON(B,D) \land ONTABLE(A) \land ONTABLE(D)$

- مبدائيا مجموعة الهدف هي حالة الهدف.
- نحن قسمنا المشكلة إلى أربعة مشاكل فرعية
- اثنيان منها مَحْلُولة النهم حقيقيون في الحالةِ الأوليةِ -- ONTABLE(A), ONTABLE(D). -- إثنيان منها مَحْلُولة النهم حقيقيون في الحالةِ الأوليةِ
 - بالنسة للإثن الاخرين -- هناك طريقان للمَضي:

o ON(C, A)

С

```
0
                                               ON(C,A) \land ON(B,D)
            0
            0
                                         \wedge ONTABLE (A) \wedge
            0
                 ONTABLE (D)
            0
            0
                       ON (B, D)
                                               ON(C, A)
            0
                                               ON(C,A) \wedge ON(B,D)
            0
                                         \wedge ONTABLE (A) \wedge
                ONTABLE (D)
            0
            0
                                                                                           إنّ الطريقة هي التالية:
                                                       • تحرّ العقدة الأولى في المجموعة ، الهدف الأعلى.

    إذا اتضح ان سلسلة الاوامر تحقق هذا الهدف فإن هذا الهدف يُزالُ و نحاول مع الهدف القالي.
    يَستمرُ هذا حتى تكون حالةِ الهدف فارغةُ بمعنى اخر حتى مطابقة جميع الاهداف.

                                                                                 لنأخذ مثالا بديلاً للذي في الاعلى:
• الهدف الأوَّل ON(C,A) ليسَ حقيقيَ والامر الوحيدَ الذي يجعله حقيقة ON(C,A) التي تَستبدلُ ON(C,A)
            B <> STACK (C, A)
                                  ON(B, D)
                                   ON(C,A) \land ON(B,D)
                             \wedge ONTABLE (A) \wedge
     ONTABLE (D)

    المجموعة لَها الشروطُ التي يجب أنْ تطبق وهذا يعني ان الكتلة A واضحةُ والذراعُ يَحْملُ الكتلة C لذا نحن يَجِبُ أَنْ نَعمَلُ:

            B<>CLEAR (A)
                                   HOLDING (C)
                        CLEAR (A) \land HOLDING (C)
                                  STACK (C, A)
                                  ON(B, D)
                                   ON(C,A) \land ON(B,D)
                             \Lambda ONTABLE (A) \Lambda
```

ON(B, D)

0

```
• ONTABLE (D)
                                • الهدف الأعلى الآن خاطئ ويُمْكِنُ فقط أَنْ نَجْعَلَ صحيح ب UNSTACK(B) . هذا يُؤدّي إليه:
                                         B <> ON(B, A)
                                                                                                         CLEAR (B)
                                                                                                         ARMEMPTY
                                                                                                        ON(B,A) \land CLEAR(B)

∧ ARMEMPTY

                                                                                                         UNSTACK (B, A)
                                                                                                        HOLDING (C)
                                                                                                        CLEAR(A) \wedge HOLDING(C)

    الآن الهدف الأول حقيقي، الثاني حقيقة كونية، والذراع فارغ. وهكذا كُلّ الاهداف الثلاثة حقيقية، هذا يعني انه يُمْكِنُ أَنْ نُطبّق المشغل (UNSTACK(B,A حيث ان كُلّ الشروط نظبق. هذا يَعطينا العقدة الأولى في

                                                                                                                                                                                                                                                                         قاعدة البيانات
                           ONTABLE(A) \land ONTABLE(C) \land ONTABLE(D) \land HOLDING(C) \land CLEAR(A)
                            مُلاحظة : كإشارة مستقبلية مِنْ إستعمالِ UNSTACK(B,A) هي ان HOLDING(B) حقيقيةُ حيث ان
                                                                                                                                                                                                                                               • مجموعة الهدفَ تُصبحُ
                                         HOLDING (C)
                                                                                                         CLEAR(A) \(\Lambda\) HOLDING(C)
                                                                                                        STACK (C, A)
                                                                                                        ON(B,D)
                                                                                                        ON(C,A) \land ON(B,D) \land ONTABLE(A)
                                                                                        ↑ ONTABLE (D)
      \mathbf{x} أو UNSTACK(C,x) أو PICKUP(C) المر HOLDING(C) هناك طريقان الأنجاز كالمحددة المراكب الأمر كتلة غير محددة المراكب 
                                                                      1 ON (C, x)
                                         2.
                                          3.
                                                                                                        CLEAR (C)
                                                                    ARMEMPTY
                                                             ON(C, x) \land CLEAR(C)
                                         7.
```

```
∧ ARMEMPTY

              9.
             10.
                       UNSTACK (C, x)
             11.
              12.
                                   CLEAR(A) \wedge HOLDING(C)
             13.
             14.
             15.
                                   STACK (C, A)
             16.
             17.
                                   ON(B, D)
              18.
                                    ON(C,A) \land ON(B,D) \land ONTABLE(A)
              19.
             20.
                              ٨
             21.
             22.
                        ONTABLE (D)
             23.
             24.
                  1
              1.
                         ONTABLE (C)
              2.
              3.
                                    CLEAR (C)
              4.
              5.
                       ARMEMPTY
              6.
                     ONTABLE (C) \land CLEAR (C)
             7.
             8.

    ∧ ARMEMPTY

              9.
             10.
             11.
                       PICKUP(C)
             12.
                                   CLEAR(A) \wedge HOLDING(C)
             13.
             14.
             15.
                                   STACK (C, A)
             16.
             17.
                                   ON(B, D)
             18.
                                    ON(C,A) \land ON(B,D) \land ONTABLE(A)
             19.
             20.
                              Λ
             21.
              22.
                     ONTABLE (D)
              23.
             24.
في الطريقِ الأولِ نحن يُمْكِنُ أَنْ نَرى ثلاث إشاراتِ إلى بَعْض الكتلةِ ، x و هذا يَجِبُ أَنْ يُشيرَ إلى نفس الكتلةِ، بالرغم من أن خلال البحثِ من الهعقول ان عِدّة كُتَل سَنُصبحُ ملحقة بشكل مؤقت. لِذلك ربط الهتغيّراتِ بالكُتَل يجب أَنْ عِيجَلَ. القَحقيق التطبيق الهدفِ الأولِ يَتطلّب تَكديس C على بَعْض الكتلة الواضحةُ.
    CLEAR (x)
                                    HOLDING(C)
```

CLEAR(x) \wedge HOLDING(C)

STACK (C, x)

CLEAR (C)

ARMEMPTY

نُلاحظُ الان بأنّ إحد الأهدافِ المُخَلقة (HOLDING(C الذي كانْ الهدفَ الذي نحن كُنّا نُحاولُ إنْجاز ، بتَطبيق UNSTACK(C, some block) في هذه الحالة (PICKUP(C في النظر يق الأخرى. لذا هو يَظْهرُ بأنّنا أضفنا أُهدافَ جديدةَ ولم نحقق تقدّمَ و من ناحية خوار زمية * A أيبُدو أفضل لمُحَاوَلَة النظّرية الأخرى. بالنظرُ إلى النظري الثانيةِ:

- نحن يُمْكِنُ أَنْ نَرَى بأنّ الهدف الأول ينجز ,وضع الكتلة C على المنضدة .
 الهدف الثاني يُنجَزُ ، حيث الكتلة C واضحة .
- تذكّر بأنّ (HOLDING(B ما زالت صحيحة وهذا يَعْني بأنّ الذراع لَيسَ فارغ. هذا يُمْكِنُ أَنْ يُنجَزَ بوَضع B على المنضدةِ أو عكدسه على الكتلةِ D بشرط ان واضحُ.
- للنظر الان هل يُمْكِنُ هنا أُستَعمالَ مُقَارَنَة القوائم Add للمشغلين المتنافسين مع الأهدافِ في مجموعة الهدف و هذاك مطابق مَع ON(B,D) التي تطبق بـ STACK (B,D). هذا أيضًا يُوبط بَعْض الكُتُل الي الكتلة D.
 - استعمال STACK (B,D) يُولِّدُ أهدافَ إضافية CLEAR(D) و STACK (B,D) اذن مجموعة الهدف الجديدة تُصبحُ؟

CLEAR (D)

HOLDING (B)

CLEAR(D) \wedge HOLDING(B)

STACK (B, D)

ONTABLE (C) Λ CLEAR (C) Λ ARMEMPTY

PICKUP(C)

في هذه النقطة، الهدف الأعلى حقيقيُ والقالي ايضا وهكذا الهدف المشترك يُؤدّي إلى تطبيقِ STACK(B,D)، الذي يَغنى بأنّ النموذجَ العام يُصبحُ

Ontable ONTABLE(A) \land ONTABLE(C) \land ONTABLE(D) \land ON(B,D) \land **ARMEMPTY**

هذا يَعْني بأنّنا يُمْكِنُ أَنْ نُؤدّي $\operatorname{PICKUP}(C)$ وبعد ذلك STACK (C,A). ناتي الأَّن إلى الهدف ON(B.D) ثُدر كُ بأَنَّ هذا كَانَ مُنجَزَ وَلَهَدَقِيقِ الهدفِ النهائي نَشتقُ الخطة التاليةَ:

- 1. 1 UNSTACK(B,A)
- 2. STACK (*B*,*D*)
- 3. PICKUP(*C*)
- 4. STACK (*C*,*A*)

هذه الطريقةِ تُنتجُ الخطة التي تستعملُ تقنياتَ الفكاء الإصطناعي الجيدةِ مثل الموجه المساعد لإيجاد الأهداف المماثلةِ و خوارز مية * A لإكتشاف الطرق الغير مرجوة النجاح التي يُمْكِنُ أَنْ تُنْبَدَ.

Sussman Anomaly (1975)

الطريقة السابقة قَدْ تُخفقُ في إعْطاء حَلّ جيد. لنعتبرْ:

الوسم. 25 Sussman's Anomaly الوسم. أنّ حالة البداية مُعطية مِن قِبل:

$ON(C, A) \land ONTABLE(A) \land ONTABLE(B) \land ARMEMPTY$

والهدف مِن قِبل:

 $ON(A,B) \land ON(B,C)$

هذا يُؤدّي إلى طريقتين حسب التالي:

```
1.
         ON(A, B)
2.
3.
                          ON (B, C)
4.
                                  ON(A,B) \wedge ON(B,C)
5.
6.
7.
8.
          ON (B, C)
9.
10.
                          ON(A, B)
11.
12.
                                  ON(A,B) \wedge ON(B,C)
13.
14.
```

إِخْتِياَرِ الطريقِ 1 ومحاولة الحُصُول على ''الكتلةِ A على الكتلةِ B " يُؤدّي إلى مجموعة الهدف: ON (C,A)

CLEAR (C)

ARMEMPTY

 $ON(C,A) \land CLEAR(C) \land ARMEMPTY$

UNSTACK (C, A)

ARMEMPTY

PICKUP(A)

CLEAR(B) \wedge HOLDING(A)

STACK (A, B)

ON (B, C)

 $ON(A,B) \wedge ON(B,C)$

هذا يُنجزُ كتلةً A على الكتلةِ B والتي أُنتجَت بوَضْع الكتلةِ C على المنضدةِ إِنِّ سلسلةَ المشغلين :

- 1. 1 UNSTACK(C,A)
- 2. PUTDOWN(C)
- 3. PICKUP(A)
- 4. STACK (A,B)

العَمَل على الهدفِ القادمِ ON(B,C) يَتَطلّبُ الهَتَلةَ B لكي تُوضّحَ لكي يُمْكِنُ تُكديّيرَها على الكتلةِ C . لسوء الحظ نَحتاجُ إلى رفع الهَتَلةِ A علما بأننا قد رفعناها للتو. و هكذا قائمة المشغلين تُصبحُ

- 1. UNSTACK(C,A)
- 2. PUTDOWN(C)
- 3. PICKUP(A)
- 4. STACK (*A*,*B*)
- 5. UNSTACK(A,B)
- 6. PUTDOWN(*A*)
- 7. PICKUP(*B*)
- 8. STACK (*B*,*C*)

للوُصُولِ إلى حالة ان الكتلة A لَيستْ على الكتلة B فأنه يتطلب عمليتان إضافيتان:

- 1. PICKUP(A)
- 2. STACK(A,B)

للَّحليل هذه السلسلةِ للْلحظُ ان : الخطوات 4 و 5 نظراء ويَلغي أحدهما الآخر ، الخطوات 3 ، 6 نظراء ويَلغي أحدهما الآخر. لذا الهخطط الأكثر كفاءة:

- 1. 1 UNSTACK(C,A)
- 2. PUTDOWN(C)
- 3. PICKUP(B)
- 4. STACK (B,C)
- 5. PICKUP(A)
- 6. STACK(A,B)

للإنْتاج في مثل كُلّ هذه الحالاتِ فإن هذا المخططِ الكفوءِ حيث هذا التفاعلِ بين الأهدافِ يَتطلّبُ تقنياتَ أكثرَ تَطَوُّراً التي سَنتَقش في الفصل القادم.

التخطيط اللاخطى باستعمال الإيداع المقيد

دعنا نُعيدُ النظر في نظرية SUSSMAN ANOMALY

- مشاكل مثل هذه تَتطلّب مشاكل فرعية للعمل عليها بشكل آني.
 - · خطةِ اللاخطّي تستعمل موجهات مساعدة مثل:
- حاول إنجاز (A,B) ON بتنظيف كتلة A ووَضع كتلة كا على المنضدة.
 - 2. أنجزْ ON(B,C) بتكديس الكتلةِ B على الكتلةِ C.
 - 3. أتمم ON(A,B) بتكديس الكتلةِ A على الكتلةِ 3

إلإيداع الهقيد يبدو كتقنية مركزية في أنظمة التخطيط الأخيرة .

الإيداع المقيد يُعزّزُ الخطة بـ:

- إقتراح مشغلين،
- محاولة طلبهم، و
- اعطاء ملزمات بين المتغيّراتِ في المشغلين والكُتلِ الفعليةِ.

الخطة الأولية لَنْ تَشْملَ أي خطواتِ وبدِراسَة حالة الهدفَ يمكن للخطواتِ المحتملةِ ان تُـ وَلَّد.

ليس هناك طلب أو تفصيل في هذه المرحلة.

بشكل تدريجي تفاصيل اكثر ستُعطى وقيود حول طلب المجموعات الفرعية للخطوات سنقَهَم حتى الوصول الى تخليق سلسلة منظمة كاملة.

في هذه الهشكلةِ، تحليلِ طرفيات الوسائلَ، تَقترحُ خطوتين بشروطِ النهايةِ ON(A,B) و ON(B,C) والتي تُشيرُ ان إلى مجموعة المشغلُ (STACK) وتَعطي النتائج الموضحة اسفلا، حيث أنَّ المشغل سُبِقتُ بشروطها المسبقةِ واتبعت بشروطِ الايداع:

CLEAR(B)	CLEAR(C)
*HOLDING(A)	*HOLDING(B)
STACK(A,B)	STACK(B,C)
ARMEMPTY ON (A, B)	ARMEMPTY ON (B,C)
¬ CLEAR(B)	□ CLEAR(C)
¬ HOLDING(A)	→ HOLDING(B)

مُلاحظات:

- ليس هناك طلب (امر تشغيل) في هذه المرحلة.
 - شروط مسبقة غير مُنجَزة مع علامة (*).
- كُلُّى مِنْ شروط HOLDING المسبقةِ غير مُنجَز حيث أن الذراعَ لايحمل شيءَ في الحالةِ الأوليةِ.
 - حذف شروط الایداع محدد بعلامة (¬).

قدّم العديد مِنْ طرق القخطيط الموجهات المساعدة لقحقيق الأهدافِ أو الشروط المسبقة. وضعت طريقة تخطيط TWEAK كُلّ هذا سوية تحت شكلية واحدة. الطرق الأخرى التي قدّمتْ / إستعملتْ الموجهات المساعدة مَذْكُورة في القسم التالي.

موجهات Tweak بلمنتعمال الإيداع المقيدِ تَتضمّنُ طريقةُ تخطيط القرص الموجه التالي.

Step Addition إضافة خطوة

-- يَخْلقُ خطواتَ جديدةَ (GPS).

Promotion الترقية

-- يرغم الخطوة للذهاب قبل الخطوة الأخرى (Sussman HACKER).

Declobbering

-- يَضِعُ خطوة جديدة بين خطوتين لإعادة شرط مسبق (NOAH, NONLIN).

Simple Establishment المؤسسة البسيطة

-- يُخصّصُ قيمة إلى متغيّر لضمان شرط مسبق (TWEAK).

Separation الإفتراق

-- مَنْع متغيّر اتِ أَنْ تَخُصّصَ بَعْض القِيَم (TWEAK).

لنَّظُرُ الان اللهِ تأثير كُلِّ موجه إرَّشادَيُ. كما يَجِبُ أَنْ نُحاولَ ونُنجزَ الشروط المسبقةَ مِنْ عمليةِ الهجموعة اعلاه. يُمْكِنُ أَنْ نُحاولَ رفع الكُتل الخاصة:

CLEAR (A)	CLEAR(C)
ONTABLE (A)	ONTABLE (B)
*ARMEMPTY	*ARMEMPTY
PICKUP(A)	PICKUP(B)
¬ONTABLE (A)	¬ONTABLE (B)
¬ARMEMPTY	¬ARMEMPTY
HOLDING (A)	HOLDING(B)

في الوقت الحاضر ليس هناك خطة كالايداع المقيد لهذه المجموعة يُمْكِنُ أَنْ تَنْفي شروط مسبقة لخطة المجموعة (STACK) الأولى، لذا نحن يَجِبُ أَنْ نُعطي امر تشغيل حسب التالي:

- إذا الخطة النهائية تحتوي على PICKUP ثم خِطوة STACK فإن
- HOLDING شروط مسبقة مَنْ الضّرُوري أَنْ نظبق باستخدام خطوات أخرى.
 - حل هذا بفَرْض الطّلب وذلك بتقديم القيود حينمًا يُثبّتُ ان الإضافة مستقدمة.
- في هذه الحالة نَحتاجُ للذِكْر ان خطوة PICKUP يَجِبُ أَنْ تَسْبقَ تطبيق خطوة STACK. بمعنى آخر

 $PICKUP(A) \leftarrow STACK(A,B)$

 $PICKUP(B) \leftarrow STACK(B,C)$

هذا يَعطى أربع خطواتِ منظّمةِ جزئياً وأربعة شروطِ غير مُنجَزةِ

- * CLEAR(A) -- كتلة A لَيستْ واضحةَ في الحالةِ الأوليةِ.
- * CLEAR(B) -- بالرغم من أن الكتلة B واضحة في الهجموعة الرسمية الأولية * CLEAR(B) -- بالرغم من أن الكتلة * CLEAR(B) مع شرط الإيداع * CLEAR(B) مع شرط مسبق.
 - إثنان * ARMEMPTY -- حالة أوليق تَجْعلُ ARMEMPTY لكن خطوة PICKUP لَها ¬ اثنان * ARMEMPTY لَها أَنْ تَسْبِقَ هذه الخطوة ثانيةً.

نحن يُمْكِنُ أَنْ نَستعملَ الترقيةَ الإرشاديَّ لإجْبار مشغلِ واحد لسَبْق آخر، حيث شروط الإيداع لهشغلِ واحد $\operatorname{CLEAR}(B)$ هذا الطَّلَب مُمَثَّلُ ب: $\operatorname{CLEAR}(B)$ هذا الطَّلَب مُمَثَّلُ ب: $\operatorname{PICKUP}(B) \leftarrow \operatorname{STACK}(A,B)$

نحن يُمْكِنُ أَنْ نَستعملَ الترقيةَ لإنْجاز إحدى شروط ARMEMPTY المسبقةِ: جَعْل PICKUP(B) يَسْبقُ PICKUP(A) تَضْمنُ بأنّ الذراعَ فارغُ وكُلّ الشروط لـ PICKUP(B) تَجتمعُ. هذا كِيتبُ كالتالى :

 $PICKUP(B) \leftarrow PICKUP(A)$.

لسوء الحظ شروط الإيداع للمشغلِ الأولِ هو ان الذراع يُصبحُ غير فارغ ، لذا نَحتاجُ لإسْتِعْمال الموجه الإرشادي المرتبط (المرقع) لإنْجاز الشروط المسبقةِ للمشغلِ الثاني PICKUP(A). الترقيع

- ARMEMPTY¬ ئۇڭ PICKUP(B) •
- لكن إذا ادخلها خطوة بين PICKUP(B) و PICKUP(A) لإعادة تأكيد ARMEMPTY فإنه يُمْكِنُ أَنْ نُنجزَ الشرط المسبق.
 - STACK(B,C) يُمْكِنُ أَنْ تَعمَلُ هذه لذا نُودع قيداً آخراً:

 $PICKUP(B) \leftarrow STACK(B,C) \leftarrow PICKUP(A)$

نحن ما زلنا نَحتاجُ لإِنْجاز (CLEAR(A) : إنّ المشغلُ المدروعِ التاليةِ للشروطِ المستعلَ المدروعِ التاليةِ الشروطِ المستعلَ المدرومِ المدر

*ON(x,A)
*ARMEMPTY
UNSTACK(x,A)
¬ ON(x,A)
¬ ARMEMPTY
HOLDING(x)

CLEAR (A)

المتغيّر x يُمْكِنُ ان يكون مربوط بالكتلةَ C بالمؤسسةِ البسيطةِ الإرشاديةِ حيث C على A في الحالةِ الأوليةِ الآل الشروط المسبقة CLEAR(C) و بCLEAR(C) أو الشروط المسبقة CLEAR(C) و بCLEAR(C) أو PICKUP(A) على أية حال.

لذا نحن يَجِبُ أَنْ نُقدّمَ ثلاثة او امر بالترقيةِ لضمان المشغلِ (UNSTACK(C,A).

leftarrow STACK(B,C) UNSTACK (C, A)

UNSTACK(C,A) leftarrow PICKUP(A)

UNSTACK(C,A) leftarrow PICKUP(B)

تَتَضمَّنُ الترقيةُ إضافة خْطوة وهذا يَضْربُ احد الشروط الهسبقةِ PICKUP(B) بمعنى ARMEMPTY ، دائماً الهشكلة المحتملة مع هذه الإرشادية.

على أية حال لم نفقد الكُلّ ، حيث مازال هناك مشغل، PUTDOWN الذي عِنْدَهُ شروط الإيداع المطلوبة ومعطى ان المشغلَ UNSTACK(C,A) ولَّدَ الشرط المسبقَ له مِنْ HOLDING(C) لذا نحن يُمْكِنُ أَنْ رُبُتج مشغلَ أ إضافي بنجاح

HOLDING (C)

PUTDOWN (C)

¬ HOLDING(C)

ONTABLE (C)

ARMEMPTY

هذا الهشغل يرقع المشغل (PICKUP(B و عُتْجُ السلسلة :

 $UNSTACK(C,A) \leftarrow PUTDOWN(C) \leftarrow PICKUP(B)$

هذا يُنتجُ السلسلةَ النهائيةَ:

- 1. 1 UNSTACK(C,A)
- 2. PUTDOWN(C)
- 3. PICKUP(B)
- 4. STACK (B,C)
- 5. PICKUP(A)
- 6. STACK(A,B)

دعنا نَنهي هذا القسم بالنَظْر إلى خوارزمية TWEAK: 1. عرف S لِيكُونَ مجموعة المقترحاتِ في حالة الهدف.

- 1. احذف بَعْض المقترحات الغير مُنجَزة P مِنْ S.
 - 2. أنجزْ P بإستعمال أحد الموجهات الأرشادية.
- 3. راجعْ كُلّ الخطوات، من ضمن ذلك الخطوات الهضافةِ، لإيجاد كُلّ الشروط المسبقة الغير المُنجَزة،

أَضفُ هَذَا إلى S مجموعة الشروط المسبقةِ الغير المُنجَزةِ.

حتى تصبح المجموعة و كان فأ (شرط الاعادة).

3 أكملُ الخطةَ بتَّحويلُ الطلبات الجزُّ ئية إلى طلب كليّ بؤدِّي كُلّ المتطلبات الضرور عق

القَعَلَّم

ما هو التَعَلَّم؟

التَّعَلُّم يعتبر جزء مهم من الذكاء الإصطناعي ، ربما لدرجة أكبر مِنْ التخطيط حيث ان:

- الهشاكل صعبق -- أصعب مِنْ المشاكل في التخطيط.
- الحلول المتعرف عليها لَيستْ مشتركة لئما في التخطيط.
- هدف الذكاء الاصطناعي هو يقكين الحاسبات من التُعُلِّم بدلاً من اليُر مَجة.

القَعَلْم هو الجزء من الذكاء الإصطناعي الذي يُركِّزُ على عملياتِ التحسينِ الذاتيةِ.

معالَجُة المعلوماتُ الذي تُحسّنُ أدائَهم أَوّ تُكبّرُ قُواعدَ معرفةِهم بْعَني النَّعَلّم.

ذا التعلم صعب؟

- عَشِيرُ الذكاء ضمناً إلى أنَّ الكائن الحي أو الآلة يَجِبُ أنْ يَكُونا قادرين على التَّكيُّف مع الحالاتِ الجديدةِ.
 - الانسان او الآلة يَجِبُ أَنْ يَكُونَ قادر على التَّعَلِّم ليَعمَلُ أشياءُ جديدةُ.
- هذا يَتطلُّبُ إكتسابُ الهعرفةِ، الإستدلال والاستنتاج، تعديث / بتقية قاعدةِ المعرفةِ، إكتساب الموجه المساعد ، يظبعينُ عملياتَ بحث أسرع، الخ.

كَيْفَ نَتعلَّمُ؟

العديد مِنْ النظر عِابِ طرحت للمُحَاوَلَة سَنَوويد الآلة بقابليق التعلم. هذا لأن مهام النَّعَلَم تعطي تشكيلة واسعة من الظواهر.

ندرج هنا عدة أمثلة عن كيفية التعلُّم. نحن سَنَراقش هذا بالتفصيل الحقا:

مهارة التنقية والتصفية

- القَعْلَمَ بِالهُمَارَسَة، ومثال على ذلك: - العزف على البيانو.

إكتساب المعرفة

- الهَّعُلِّمَ بالتجربة وببتعَزْ عِن الخبرات الناتجة عن التجربة في قاعدة المعرفة مثال على ذلك حفظ البصم

الأخذ بلننصيحة

- مشابه للتَعَلِّم بلتكرارِ بالرغم من أن المعرفةِ الهُدخلة قَدْ تحتاج الى أَنْ تُحوّلَ (يتم اجراء بعض عمليات التحويل) لإستخدامها بشكل عملي فعال.

حَلّ المشكلة

- إذا خُلِيّناً مشكلة ما فإن احد ما قَدْ يَعِلِمُ مِنْ هذه التجربةِ (التعلم من اخطاء الغير). في المرة القادمة عندما نواجه مشكلة مماثلة فإنه يُمْكِنُ أَنْ نَحْلَه ا بكفلهة ألس. هذا لا يَيْضمّنُ معرفةً جديدةَ متراكمةً عادة لكن قَدْ يَيْضمّنُ إعادةَ تنظيم البياناتِ أَو القذكْرُ كَيفَ نصل إلى الحَلِّ.

الاستقراء

- يُمْكِنُ النَّعَلَّمَ مِنْ الأمثلةِ. يُصنّفُ البشرُ الأشياءَ في الحياة في أغلب الأحيان بدون معْرِفة قواعدِ واضحةِ. يَتطلب هذا النوع من التعلم عادة وجود معلّم أو مدرّب للمُساعَدة على التصنيفِ.

الاكتشاف

-- تعلُّمُ الهعرفةُ بدون مساعدةِ معلَّم.

لتناظ

-- إذا كان الفظام يُمْكِنُ أَنْ يَهِيز التشابه والتماثل في المعلومات المخَزرة لديه فإنه قَدْ يَكُون قادر على تَحويل بَعْض المعرفةِ لتَحْسين حَلّ المهمّةِ التي في متناول اليدّ.

التَعَلّم بالروتين (التكرار)

التَّعَلُّم بالروتين أساساً هو إستظهارُ (حفظ بصم)، بالخصائص التالية:

- حفظ المعرفة لأستعمالها ثانيةً.
- إسترجاع المعومات هو المشكلة الوحيدة.
- لا ضرورة للحسابَ الهتكرّر أو الإستدلال أو الإستفسارَات.

مثال بسيط الهَعَلم بالتكرار هو الذاكرة الوسيطة بالكمبيوتر

- تخزين القيم المحسوبة (أو قطع كبيرة مِنْ البياناتِ)
- إعادة استدعاء هذه المعلومات عندما تَيَطلُب الحساب ذلك.
 - یمکن توفیر وقت هام.
- الكثير من برامج الذكاء الإصطناعي، إستخدمت الذاكرة الوسيطة بشكل فعال.

الإستظهار هو ضرورة رئيسية للتَعَلَّم:

- هو ضرورة أساسية لأيّ برنامج ذكي هل هو عملية تعلم منفصلة؟
- الإستظهار يُمكنُ أَنْ يَكُونَ موضوع معقد -- ما هي أفضل طريقة التَقَزْعِين المعرفةِ؟

إستخدم برنامجُ التدقيق "مدقّق صموئيل" القُعَلّم بالقكرارِ (إستعملَ ايضا عامل القعديلَ الذي سرَفُاقشُ لاحقا).

- بحث "الأكبر الأصغر" (minimax) إستَعملُ لإسْتِكْشاف شجرةِ اللعبة.
 - قيود الوقتِ لا تَسْمحُ بعملياتِ بحث كاملةِ.
 - يُسجّلُ مواقعَ اللوحةِ ويحسب النقاط المُحرزُة في نهاياتِ البحثِ.
- إذا ظهر نفس موقع اللوحة الاحقاً في اللعبة، فإن القيمة المَخْزُنة يُمْكِنُ أَنْ تستدعى والقاثيرَ النهائي هو وقوع اللحث الاكثر عموا.

التَعَلّم بالإستظهار أساساً هو عملية بسيطة. على أية حال هو يُصوّرُ بَعْض القضايا ذات ال صلة بقضايا التَعَلّم الأكثر تعقيداً.

الهنظيم

- الوصول الى القيمةِ المَخْزُنةِ يَجِبُ أَنْ يَكُونَ أسرعَ من إعادة حْس ابُها. طرق مثل الفَهْرَسَة والتَصنيف يُمْكِنُ أَنْ يُستَخدما للهَّمْكين من تنفيذ هذا.

التعميم

-- عدد الأجسام المَخْزُنةِ فعلاً يُمكنُ أَنْ يَكُونَ كبير جداً. نحن قَدْ نَحتاجُ لتَعميم بَعْض المعلوماتِ لجَعْل المشكلةِ سهلة الانقيادِ.

إستقرار البيئة

- الْقَعَلَم بالقكرارِ لَيسَ فعّالَ جداً في بيئة سريعة التغيير. إذا البيئةِ تَتغيّرُ فإنه يَجِبُ أَنْ نَكتشف ونُسجّلَ بالضبط ما الذي تَغيّر- مشكلة الإطر. تَغيّر- مشكلة الإطر.

تخزين قيم الحساب

تَعَلِيَجُ الإستَظهار لا يَجِبُ أَنْ يَنْقصَ كفاءةَ النظامِ. يجب ان نَكُونُ قادرون على التَقْرير فيما اذا هو اسوأ تتَمزيُ القيمةِ في المركز الأول.

لنُعْتبر حالة الضرب – من الواضح انه أسرعُ إعادة َحْسابُ زاتَجَ ضرب عددين بدلاً مِنْ تَعَزيَيُ جدول الضرب بالكامل.

كَيْفَ نُقرّرُ؟

تحليل التكاليف والفائدة

ــ يُقْرّرُ متى المعلومات تكون متوفرةُ أولاً بغض النظر عن كيفية تُخْزَ عِيَها. القحليل يُمْكِنُ أَنْ يَرجح وزن وقيمة العتخزينِ المطلوّب، كلفة الحساب، و إمكانية الإستدعاءِ.

النسيان الإنتقائى

- َ هَنَا نَسْمُحُ للمعُلوماتِ لكي تُخْزَنَ مبدائيا ونُقرَّرُ لاحقاً إذا كنا سنَحتفظُ به الو لا . بشكل واضح ان تأثوار إعادة الإستعمالُ إجراء جيد نحن يُمُكِنُ أَنْ نُ حدد (نعطي علامة) جسمَ بنومن إستعمالُه الأخير . إذا كانت الذاكرة الوسيطة كاملةُ (ممثلئة) ونحن زَريد إضافة فقرة جديدة فإننا نُزيلُ الجسمَ الاقل إستعمالاً مؤخراً ونضيف الجديد . الإختلافات يُمْكِنُ أَنْ تَتضمَنَ نوع من تحليل التكاليف والأرباح للتقرير إذا الجسم يَجِبُ أَنْ يُزالُ .

الهَعَلِّم بِأَخْذ النصيحة

فكرة أخذ النصيحة في نظم الذكائ الإصطناعي المبنية على اساس ال تَعَلَيَّم إقترحَت بحدود 1958 (McCarthy). على أية حال القليل جداً من الهحاولات التي بذلت في خَلْق مثل هذا النوع من الأنظمة حتى أواخر السبعينات. الأنظمة الخبيرة تُزوِّدُ بجافز رئيسي في هذا المجال. هناك نظرتان أساسيّان في أخْذ النصيحةِ:

- مكننة (أتمتة) كل سمات الاخذ بالنصيحة: نأخذ ال نصيحة التجريدية العاليةِ المستوى وتُحوِّلُها إلى القواعد التي يُمْكِنُ أَنْ تُوجَّهَ عناصرَ أداءِ النظامِ.
- يطويٌّ أدواتَ متطوّرةَ مثل محرّري ومنقحى قواعد المعرفة هذه الادوات تشتَعملُ لمُسَاعَدة الخبيرَ لتَرْجَمة خبريِّه إلى القواعدِ المُفصِّلةِ. يعتبر الخبير هنا عنصر مكمِّلُ لنظام التَّعَلُّم. مثل هذه الأدواتِ مهمة في م جال الأنظمة الخبيرة من انظمة الذكاء الإصطناعي.

أَخْذ النصيحة الآلي تُلخّصُ الخطواتُ التاليةُ هذه الطريقةِ:

-- هذا يُمكنُ أَنْ يَكُونَ سؤالاً بسيطاً ، يَسْأَلُ عن نصيحةٍ عامّةٍ ، أو معقّدٍ أكثر بتَمييز العيوب في قاعدة المعرفة ويَسْأَلُ عن علاج

التفسير

-- يُترجمُ النصيحةَ إلى القمثيلِ الهاخلي.

التجهيز للعمل

-- النصيحة الهُتَرجَمة قَدْ لا تَكُونُ صالحة للإستعمال لذا في هذه المرحلةِ نقوم بإعادة التمثيل الذي يُمكنُ أنْ يَكُونَ مستعمل من قبل عنصر الأداء.

الدمج

-- عنَّد إضافة معرفة جديدة إلى قاعدة المعرفة يجب الأُخَذَ بالحسبان من الآثار الجانبية السيئة لتَّجَنّبها. ومثال على ذلك: - التكرار والتناقضاتِ.

النقيية

-- الْنَظَام يَجِبُ أَنْ يُقيّمَ المعرفةَ الجديدةَ من ناحية الأخطاءِ، تناقضات الخ الخطوات يُمْكِنُ أَنْ تُكرِّرَ.

صبانة قاعدة المعرفة

بدلاً مِنْ أَنْ أَتَمِتَهَ الخطواتَ الخمس اعلاه، العديد مِنْ الباحثين جمّعوا الأدواتَ التي تُساعدُ على تطويرَ وصيانةَ قاعدةِ المعر فة

العديدون منهم ركزوا على:

- التُوِّيُّ بمحرّرين أذكياءَ ولغاتَ تمثيلِ مرنةِ لهمج المعرفةِ الجديدةِ.
- التُورِيُّ بإدوات تَنقيح لتقييم وإيجاد التناقضات والفصل في قاعدة المعرفة الحالية.

كمثالُ على هذا النظام Emycin.

مثال نظم التعلم

تَعَلَّم لعبة الكُّبة (رمز القلب في ورق اللعب)

يُحاولُ تَحويل النصيحةِ ذات المستوى العالى (مبادئ، مشاكل، طرق) إلى إجراءات قابلة للتّنفيذِ وفعّالةِ (LISP). القلو ب:

- تلعب اللعبة كسلسلة من الحيل
- لاعب واحد الذي يتصدر يبدأ اللعبة عرَمي كرت.
- اللاعبون الآخرون يلعبون تباعاً كل بدوره وي مون كرت.
 - o اللاعب يَجِبُ أَنْ عُلَجِب مِباشر ةً.
- o إذا هو لا يستطيعُ فهو يرمى أيّ كرت مِنْ أوراقه.
- اللاعب الذي يَهمى الكرت بالقيمةِ الأعلى يُربحُ الحيلة (الدور) والتصدر.
 - يَأْخَذُ اللاعبَ الفائِزَ البطاقاتَ التي رُمينٌ في هذا الدور (الخدعةِ).
- الهدف أنْ يَتجِنَّبَ أَخْذ النقاط. يَعتبرُ كُلِّ قلب نقطة و احدة ،بنت البستوني تساوي 13 نقطةً.
 - الفائز هو الشخصُ الذي بعد كل الخُدَع التي نُعِبتْ عِنْدَهُ اقل النائع (عدد النقط).

الكبة هي لعبة المعلومات الجزئية بدون خوار زمية معروفة للفوز.

بالرغم من أن الحالاتِ المحتملةِ فأن نصائح عامّة عديدة يُمْكِنُ أنْ تُعطى مثل:

```
• تحنَّتْ أَخْذ النقاط
```

• لا تتصدر ببطاقة عالية في حالة ان الخصم فارغ.

• إذا الخصم لديه بنت البستوني، حاول ملاحقتها لجعله ير بحها.

لإخذ نصيحة يجب على الإنسان تحوّطها إلى تمثيل مفهوم حسب لغة البرمجة المستخدمة

avoid (take-points me) (trick))

(achieve (not (during (scenario (each p1 (players) (play-card p1)) (take-trick (trick-winner)))

(take-points me))))

عُلَّى أية حال النصيحة مَا زالَتْ لَيستْ شغَّالةَ حيث أنها تُعتمدْ على نتيجةِ الخدعةِ التي هي عموماً لَيستْ معروفة. يَستعملُ تحليل الحالة (أثناء التعبير) لتَقْرير أيّ الخطواتِ يُمْكِنُ أَنْ تُقتُّشَ لَأَخْذ النَقاطِ الخطُّوة [تشُتَثني والخُطُّوة 2 take-points مُتَجلِّبةُ

(achieve (not (exists c1 (cards-played) (exists c2 (point-cards) (during (take (trick-winner) c1) (take me c2))))))

المحلل يَجِبُ أَنْ يُقرّر: تحت اي شروطِ تَعمَلُ (take me c2) تَجْدبثُ أثناء (take (trick-winner) c1). التَّقنية، الهسمَّاة بالمُجَارِاة (المطابقة) الجزئيةِ، بقَترِ ضُ بأنِّ النقاطِ سَتَأْخذُ إذا :

me = trick-winner and c2 = c1. نحن يُمْكِنُ أَنْ نُحوّلَ تعبيرنا إلى:

(achieve (not (and (have-points(card-played)) (= (trick-winner) me))))

هذا يَعْني لا تُؤبحُ الدور "خدعةً" التي فيها نقاطُ. نحن لا نَعْرفُ مَنْ هو الفائزَ باللخدعة trick-winner، أيضاً نحن لم نقُل أيّ شَيّ حول كَيفية اللهمابُ في الخدعة الهي عِنْدَنا فيها نقطةُ القيادة. بعد بضعة خطوات أكثر لإنْجاز هذا

(achieve (>= (and (in-suit-led(card-of me)) (possible (trick-has-points))) (low(card-of me)))

المحلل كون من قاعدةُ المعرفةِ الأوليةِ التالي:

- مفاهيم المجال الأساسيةِ مثل الخدعةِ، يدّ، بدلات طابق، يَتفادى، فوز الخ.
 - القواعد والقيود السلوكية -- قواعد عامّة عن اللعبة.
 - الموجه و المساعد بالنسبة إلى كيفية التَجلّي.

لدينا هنا عيبان أساسوان:

- يَفتقرُ إلى تركيب التحكم الذي يُمْكِنُ أَنْ يُطبّقَ التشغيل الآلي.
 - هو محدد إلى الكبة والمهام المماثلة.

الْهَعَلَم بحَلَ المشكلةِ هناك الله المشكلةِ التي يمكن فيها النظام أنْ يَتعلَّمَ مِنْ تجاربِه الخاصةِ.

القعَلَم بتعديل العوامل

تَعتمدُ عدّة برَامجُ على إجراءِ القتييمِ لتَلخيص حالةِ البحثِ الخ. تُزوّدُ برامجُ اللعب للعديد مِنْ هذه الأمثلةِ. على أية حال، عدّة برامج لَها وظيفة تقييم ساكنةٍ. في الْهَعَلّم مطلوب التعديل الطفيف مِنْ صياغةٍ تقييم المشكلةِ. هنا المشكلة لَها و ظيفةُ تقييم االهُمَثَّلةُ كمتعدّد الحدود مِنْ الشكّل التالّي:

 $c_1t_1 + c_2t_2 + c_3t_3 + \dots$

يُعيِّنُ t قِيَم الميزّ ات و c الأو ز انَ.

في تَصميم البرامج من الصّعبِ في أغلب الأحيان التَقْرير بالنسبة للقيمةِ المضبوطةِ لإعْطائها لكُلّ وزن مبدائياً. لذا الفكرة الأساسية من فكرةِ تعديلِ العوامل هي:

- نبدأ ببَعْض القخمينِ حول اوضاع الوزنِ الصحيح.
- نعدّل الوزن في البرنامج على أساس التجارب المتراكمة.
- الميزات الين بثّهو كمتنبئ جيد ستتضاعف أوزانها والسيئة سَنتَتَاقصُ.

القَعَلَّم بأوامر الهشغط المختصرة

إنّ الفكرة الأساسية هنا مشابهة للتَعلّم بالتكرار:

حيث، تتجنب إعادة الحساب الهكلفة مختصرات او امر الشغطي يمكن أن يُستَعملوا لتَجميع مجموعة سلاسل الأعمالِ في واحدة، ليتم طلبها لإستعمالها لاحقا بدلا من طلب مجموعة كبيرة من الاوامر على سبيل المثال: عمل العشاء يُمْكِنُ أَنْ يُوْصَفَ ب: إعداد المائدة، طبخ العشاء ، مهام الخدمة نحن يُمْكِنُ أَنْ نُعالَجَ "إعداد المائدة" كعمل واحد بالرغم من أزّها تتضمّنُ سلسلة من الأعمال .

إستخدم حَلّ الهشكلةِ بطريقة STRIPS مختصرات التشغيل في مرحلة التعليم.

لزعتبر الهثال التالي ، والذي به ON(C,B) و ON(A,TABLE) حقيقة.

STRIPS يُمْكِنُ أَنْ تُنجز ON(A,B) في أربع خطواتِ:

UNSTACK(C,B), PUTDOWN(C), PICKUP(A), STACK(A,B)

تَبْني STRIPS الآن a مختصر تشغيل Macrop بالشروط المسبقة :

- ON(C,B), ON(A,TABLE) \circ
- ON(A,B), ON(C,TABLE) \circ

والخطوات الأربع كجسمها.

Macrop يُمْكِنُ أَنْ يَكُونَ الان مستعملا في عمليات مستقبليةَ. لَكَنَّه لَيسَ عامَّ جداً. المثال الوارد أعلاه يُمْكِنُ أَنْ يُعمّمَ بسهولة بلستخدام المتغيّرات بدلاً مِنْ الكُتَلِ. على أية حال القعميم لَيسَ دائماً سهلاِ.

القَعَلّم بالقطع الكبيرة

يَتَضمَّنُ التعلَّم بالقَطْع الكبيرة أفكار مماثلة إلى مختصرات التشغيل ويَنْشأْ مِنْ الأفكارِ النفسيةِ المتعلقة بجَلّ المشكلةِ والذاكرةِ. إنّ القواعد الحسابية موجودة في أنظمةِ الإنتاج (نوقشت سابقا). SOAR - هو النظام الذي استخدم قواعد الإنتاج لتَمْثيل معرفتِه. يَستخدمُ القطع الكبيرة أيضاً للتَعَلَّم مِنْ التجربةِ.

الخلاصة الأساسية لطريقة Soar

- Soar يَحْلَ الهشاكلَ بإطلاقُ الهُنْتَجاتَ الهَخْزُونة في ذاكرةِ المدى البعيدِ.
- عندما يَكتشف كoar سلسلة مفيدة مِنْ المنتجات، يقوم بتكوين القطع الكبيرة منها.
- القطع جو هرياً هي إنتاج كبير الذي يقوم بعملَ سلسلةِ كاملة من السلاسل الأصغر.
 - القطع يمكن ان تُعمّمُ قبل التَعَزْعِن.

التعكم الإستقراعي

هذا يَتَضمّنُ عمليةَ الفَعَلَم بالمثالِ -- حيث يحاول الفظام البحث عن القاعدة العامّة مِنْ مجموعة الحالات المُلاحَظةِ. هذا يَتضمّنُ القصنيف – الذي ينسب، لتفصيلات (اجزاء) المُدخل، اسم الصنف الذي يُنتمي اليه . التصنيف مهمُ للعديد مِنْ مهام حل المشكِلةِ.

نظام القَنْعُلُّم يَجِبُ أَنْ يَكُونَ قادر على تَطَوُّعي أوصاف اصرافِه الخاصة :

- تعاريف الصنف الأولية قَدْ لا تَكُون كافية.
- العالم قَدْ لا يَكُونَ مفهوم أو سريع التغيير بشكل جيد جداً.
 إنّ مهمّة بناء تعاريف الصنف تُدْعَى تَعَلّم المفهوم (الفكرة) أو الإستقراء

مثال على التعلم الإستقرائي-- Winston (1975)

• الهدف أَنْ يَبْني تمثيلَ تعاريفِ المفاهيم في هذا المجالِ.

- مفهوم مثل "البيتِ" يتكون من جسم المنزل (كتلة مستطيلة) مَع السقف (كتلة مثاثية) وَضعتْ بشكل مناسب على الجسم، خيمة حيث وتدين متلامسان جنباً إلى جنب، أو قوس طابوقتان بلا تلامس يَدْعمان وتدا ثالثاً أو الطابوق.
 - فكرة أجسام رمية خاطئة قريبة -- مشابهة للحالات الفعلية التي قُدّمتْ.
 - المُدخل كَان خَطِّ يرسم تراكيب (بنية) الكتل.
 - المدخلات عولجت (انظر قسمَ الرؤيةِ لاحقاً) لإنتاج التمثيل اللفظى للوصفِ الهيكلي للجسم (الرسم. 27)

الرسم. 23 شبكة لفظية لتمثيل منزل

- الصلاتَ في الشبكةِ تتضمن: يسارَ، يمين، لا يلامس، مدعوم به ، لَهُ جزءُ، والمضمون.
 - يلامس هي علاقة مهمة حيث جسمان مَع حافة مُؤثِّرة مشتركة يعني متلامسان.

هناك ثلاث خطواتِ أساسيةِ إلى مشكلةِ صياغةِ المفهوم:

- إختر واحد يَعْرف حالة المفهوم. إدع هذا تعريف المفهوم.
- 2. إفحص تعاريف الحالة المعروفة الأخرى للمفهوم. عمَّم التعريفَ لتَضْمينهم.
 - 3. أَفحصْ أوصاف التصادمات الوشيكة حدّد التعريف لإستبثناء هذه.

كُلَّتا خطوات 2 ، 3 تَعتمدان على المقارنة وكلتا التشابهات والإختلافات مَنْ الضَّرُوري أَنْ تُميِّز.

فراغات نسخة

انظمة التعلم المبنية على اساس المفهوم الهيكلي ليست بدون مشاكل. إنّ المشكلة الأكبر بأنّ المعلّم يَجِبُ أَنْ يُوجّه النظام خلال السلاسلِ المُختَّارةِ بعناية مِنْ الأمثلةِ. في برنامج وينستن، طلب العمليةِ مهم ، حيث ان، صلاتِ جديدةِ إضريفت عند تجميع المعرفة. إنّ مفهوم أهداف فراغاتِ النسخةِ غير حسرًاس بالنسبة إلى طلب المثالِ. لَعمَلُ هذا بدلاً مِنْ تطوّي وصف مفهوم وحيد لهجموعة الأوصافِ المحتملةِ الهُنبقية. كأمثلة جديدة نُقدّمُ الهجموعة التي تتطوّرُ كعملية الحالاتِ الجديدةِ والتصادمات الوشيكةِ.

نحن سَنَقترضُ بأنّ كُلّ شقّ في وصف فضاء النسخة عِيكُونُ من مجموعة المسندات الشي لا نَنْفي مسندات أخرى في المجموعة – حرفية (موضوعية) إيجابية. في الحقيقة نحن يُمْكِنُ أَنْ نُمثّل الوصف على اساس تمثيل الإطر بعِدة شقوق أو في الحقيقة إستعمال تمثيل أكثر عمومية. لأجل نبُسيّطُ المُناقشة نحن سَنَلتزمُ بالتمثيل البسيط. إذا التزمن بالتعريف أعلاه في الحقيقة إستعمال المرشح (Mitchell's) هي أفضل خوارزمية معروفة لهذا المغرض.

لنأخذ مثالِ حيث انه لدينا عدد مِنْ آوراقِ اللعب ونحن نَحتاجُ لمعرفة فيما إذا الكرت (ورقة اللعب) مفرد وأسود. مبدائيا نحن نَعْرفُ أشياءَ مثل: الأحمر، الأسود، البستوني، السباتي، كرت زوجي، كرت فردي.. الخ. لذا السطاقةُ هي حمراءُ، وزوجية وكبة.

الخصائص الأساسية لقحديد طريقة فضاء النسخة:

- مفاهيم ربط في المجالِ يُمْكِنُ أَنْ تُ مُظلبَ جزئياً بالتحديدِ.
- في مثالِ ورق اللعب، مفهوم "الأسود" أقل تحديدا مِنْ مفهوم " الأسودِ المفرد" أو "الاسود الهفرد البيتوني".
 - المفاهيم "أسود مفرد" و " بستوني" غير قابلة للمضاه اة، حيث لايوجد تعيين أكثرُ (أو أقل).

مفهوم "أسود" أكثرُ تعييناً مِنْ "أيّ كرت".

مجموعة التدريب تَشْملُ مجموعة من البطاقات ولكُلّ كرت يحدد فيما أذا كان في مجموعة الهدف (أسود مفرد) او لا. إنّ مجموعة التدريب عوملت بشكل تزايدي و قائمة المفاهيم المعيّنة الأكثر و الأقلّ" متّسقة مع تدريب الحالات الهُبتقية.

لنرى كَيْفَ يمكن الهَعلَّمُ مِنْ مجموعة عيرات مدخلة:

- مبدائيً المفهوم الأكثر تعييناً والهتسق مع البياناتِ هو المجموعةُ الفارغةُ المفهومَ الأقلّ تعييناً هو مجموعةُ كُلّ البطاقات.
 - دعْ $\stackrel{\Lambda}{\spadesuit}$ تكون البطاقةَ الأولى في مجموعةِ العيّنةَ. هذه البطاقة أسود مفرد.
 - لذا المفهوم الأكثر تعييناً $\stackrel{\Lambda_{ullet}}{\spadesuit}$ لوحده ما زال كُلّ مالدينا من بطاقات.
- الهطاقة التاليق: تحتاجُ لتَعديل مفهومِنا المعيّنِ اكثر للإشارة إلى تعميمَ المجموعةَ، شئ مثل: `` بطاقات مفردة وسوداء ".
- البطاقة التالمين: 40 الآن نحن يُمْكِنُ أَنْ نُعدَلَ المجموعةَ أقلّ تعبيناً لإسْتِثْناء 40. حيث ان الإستثناءات الأكثر مضلفة فلنّنا سَنُعمّهُ هذا إلى كُلّ البطاقات السوداء وكُلّ البطاقات المفردة.
- لاحظ ان الحالات السلبية تُسبّبُ التالي: أقل المفاهيم المعيّنةِ تُصبحَ اكثر تعييًا، والأكثر إيجابية تُؤثّرُ على المعيّنةِ الأكثر بنفس الطريقة.
 - إذا تُصبحُ المجموعتان نفس المجموعةِ فإن النتيجة مُضْموَنُ ومفهومَ الهدف يُجقق.

خوارزمية إزالة المرشتح

لنَصِفُ الخوارز مية الآن

لنفترض G هي مجموعةً أكثر المفاهيم العامّةِ. ولنفترض S هي مجموعةً أكثر المفاهيم المعيّنةِ.

إفترضْ: عِنْدَنا لغة تمثيلِ مشتركةِ ولدينا مجموعة أمثلةِ التدريب السلبيةِ والإيجابيةِ.

الهدف: وصف الهفهوم الذي يُسِّق مع كُلِّ الإيجابيةِ فقط من الأمثلةِ السلبيةِ.

الخوارزمية:

- عرف G لإحتِواء عنصرِ واحد -- الوصف الملغي، كُلّ الميزّات متغيّراتَ.
 - عرف S لإحتواء عنصر واحد كالذي في المثال الإيجابي الأول.
 - إعادة (كرر)
 - o أدخل مثال التدريب القالي
- o إذا كان مثال إيجابي -- كخطوة أولى احذف مِنْ G الأوصاف التي لا تَغطّي المثالَ. ثمّ جدد S لإحتواء المجموعة الأكثر تعييناً مِنْ الأوصافِ في النسخةِ التي تغطي المثالَ ومجموعة العنصرِ الحاليةِ في S. وبمعنى آخر: عمّمُ عناصرَ S لتكون صَغيرة بقدر الإمكان لكي يَغطّونَ مثالَ التدرب الجديد.
- ٥ إذا كان مثال سلبي -- كخطوة أولى احذف مِنْ \$ الأوصاف التي تَغطّي المثالَ. ثمّ جدد \$ لإحتواء المجموعة الأكثر عمومية مِنْ الأوصافِ في النسخةِ التي لا تَغطّي المثالَ. وبمعنى آخر: .
 تخصّص عناصر \$ صَغيرة بقدر الإمكان لكي لا تغطى الأمثلة السلبية بعناصر \$.
 - حتى S و G كلتهم يصبحا مجموعات الورقة الوحيدة (شرط التكرار).
 - إذا S و G كانتا متطابقتان فإننا نعطي قيمة نتائجهم.
 - إذا S و G مختلفتان، فإن مجموعات التدريب متناقضة.

(54, 74, 84, J4, K4)

لنجعل المثالَ الأولَ يَكُونُ إيجابياً: ثمّ وضعنا

$$G = \{(x_1, x_2, x_3, x_4, x_5)\}$$

$$S = \{(5\clubsuit, 7\clubsuit, 8\clubsuit, J\clubsuit, K\clubsuit)\}$$

 $(5\clubsuit,5\heartsuit,6\diamondsuit,J\heartsuit, {\Lambda})$ الثاني سلبي المثال الثاني سلبي المثال الثاني الثا نحن يَجِبُ أَنْ نَخْصُّص G (فقط إلى المجموعةِ الحاليةِ):

$$G = \{(x_1, x_2 = 7\$, x_3, x_4, x_5), \\ (x_1, x_2, x_3 = 8\$, x_4, x_5), \\ (x_1, x_2, x_3, x_4 = J\$, x_5), \\ (x_1, x_2, x_3, x_4, x_5 = K\$)\}$$

S غير متأثّر ُ.

(5♣, 6♣, 9♣, 10♣, Q♣) مثالنا الثالث إيجابيُ:

تُزيِلُ التضارباتُ أولاً مِنْ G وبعد ذلك تُعمّمُ S:

$$G = \{(x_1, x_2 = \clubsuit, x_3, x_4, x_5), \ (x_1, x_2, x_3 = \clubsuit, x_4, x_5), \ (x_1, x_2, x_3, x_4 = \clubsuit, x_5), \ (x_1, x_2, x_3, x_4, x_5 = \clubsuit)\}$$
 $S = \{(x_1 = 5\clubsuit, x_2 = \clubsuit, x_3 = \clubsuit, x_4 = \clubsuit, x_5 = \clubsuit)\}$
 $(A\heartsuit, 6\heartsuit, 9\heartsuit, 10\heartsuit, Q\heartsuit)$
مثالنا الرابع إيجابيُ أيضاً:

تُزيلُ التضارباتُ مرةً أخرى مِنْ G وبعد ذلك تُعمّمُ S:

$$G = \{(x_1 = x_2 = x_3 = x_4 = x_5 = samesuit, x_2, x_3, x_4, x_5), \}$$

$$S = \{(x_1 = x_2 = x_3 = x_4 = x_5 = samesuit, x_2, x_3, x_4, x_5)\}$$

- نحن يُمْكِنُ أَنْ نَستمر تَ بالتَّعميم والتَّخص تَصُ
- أَخذنَا بضعة قفزات كبيرة في مخطط الَّقَحَصر من القَعميم في هذا المثالِ. تَطلّبَ المزيد مِنْ خطوات القدريب للوُصنول الى هذه الخاتمةِ.
 - من الصعب إكتشاف اتجاه النوع نفسه ... الخ.

. Quinlan قَدَّمَ فكرةَ أشجارِ القرارِ في نظامه 3 ID ، البرنامج الذي يُمْكِنُ أَنْ يَبْني أشجارَ القرار آلياً مِنْ الحالاتِ الإيجابيةِ والسلبيةِ المُعطيةِ. أَساساً كُل ورقة شجرة قرار تُصرَّحُ مفهوم إيجابي أو سلبي. لتَصنيف مُدخل معيّن نَبْدأُ في القمة ونَتْلَى المزاعمَ أسفل فأسفل حتى نصل الجواب (الرسم 23)

الرسم. 23 شجرة قرار صالحية فطر للأكل

بناء أشجار القرار

- استعمل ID3 الطريقة التكرارية.
- الأشجار السيطة فضلت كتصنيف أكثر دقةً.
- الإختيار العشوائي مِنْ عيناتِ تدريب المجموعة تم للتجميع الأولي مِنْ الشجرةِ -- الهجموعة الثانوية للنافذة.
 - أمثلة تدريب أخرى تُستَعملُ لإختبار الشجرة.
 - إذا صنّفتْ كُلّ الأمثلة بشكل صحيح توقّف.
 - بخلاف ذلك اضف عدد مِنْ امثلة القدريب إلى النافذة و ابدأ ثانيةً.

إضافة عُقَد جديدة

عند تجميُّعُ الشجرةَ نَحتاجُ لإخْتيار وقت إضافة العقدة الجديدة:

- بَعْض الخواصِ سَتُنتجُ معلوماتَ اكثر مِنْ الآخرين.
- إضافة عقدة جديدة قد تكون عديمة الفائدة في عملية التصنيف العامة.
- أحياناً الخواص سَتَفْصلُ حالاتِ التدريب إلى مجموعات فرعية و التي أعضائها يَشتركونَ في علامة مشتركة. هنا تَقَرُّع يُمْكِنُه إنْهاء والعقدة الهرقةِ خصّصتْ للمجموعةِ الثانويةِ الكاملةِ.

فوائد شجرة القرار:

- أسرع مِنْ فراغاتِ النسخةِ اذا فضاءِ الهفهومِ كبيرُ.
 - الهلتقى أسهل.

الأضرار:

القمثيل أيس طبيعي بالنسبة للبشر -قد عكون من الصّعوبة توضيح تصنيف شجرة القرار.

التعلم على اساس التفسير (EBL)

يستطيع البشر تعلم الكثير مِنْ مثالٍ واحد.

الفكرة الأساسية: إستعمال نَتائِج مشكلةِ ما يوفر جُهداً في المرة القادمة.

التعلم على اساس القفسير يَقْبلُ 4 أنواع المدخلات:

مثال القدريب

-- حيث يتعلم من ما يراه في العالم.

مفهوم الهدف

-- مستوى الوصف العالى الذي يفترض ان يتعلمه البرنامج.

معيار جاهزية العمل

-- وصف المفاهيم القابلة للإستعمال.

نظرية المجال

-- مجموعة القواعدِ التي تَصِفُ العِلاقاتَ بين الأجسامِ والأعمالِ في مجال ما.

```
التعلم المبني على التفسير يَحْسبُ تعميم مثالِ التدريب الذي لَيسَ فقط كافي لوَصفَ مفهومَ الهدفَ لكن ليحقق معيارَ
جاهزية العمل أيضاً.
                                                                                                                                                                                لعمل هذا هناك خطوتان.
                                                                                                                                                                                                                التفسير
                              -- نظر ية المجالَ تُستَعملُ لتَشْذيب كُلّ السمات الغير مهمة مِنْ مثالِ التدريب فيما يتعلق بمفهومَ الهدفَ.
                                                                                                     -- التفسير مُعَمَّمُ كمحتمل بعيد بينما ما زالَ يَصِفُ مفهو مَ الهدفَ
                                                                                                                                                        مثالِ على التعلم المبني على التفسير
                                                                                                           الهدف: الوصنول إلى حمص ( Homs ) -- مدينة سورية.
                                                                                                                                                                                           انّ ساناتَ التدر س٠
near (Damascus, Homs),
          airport (Damascus)
                                                                                                                                                                                     إنّ معرفة المجالَ هي:
near(x,y) \land holds(loc(x),s) \rightarrow holds(loc(y), result(drive(x,y),s))
     airport(z) \rightarrow loc(z), result(fly(z),s)))
                                          في هذه الحالة معيار جاهزية العمل: نحن يَجِبُ أَنْ نَبدي تعريفَ الهفهوم بوصف نقى من اللغةِ.
                                                                                                                                                                           هدفنا يُمْكِنُ أَنْ يَبِدُو كَالتَّالَى:
                                                                                          .holds المالات s المالات ا
                                                                                                                            نَحنَ يُمْكِنُ أَنْ نُثبتَ أَن holds مَع s مُعَرَّفَ مِن قِبل:
result (drive (Damascus, Homs),
                                                        result(fly(Damascus), s')))
                 نحن يُمْكِنُ أَنْ نَطِيرَ إلى مطار دمشق (Damascus) وبعد ذلك نَقُودُ بالسيارة إلى حمص Homs. إذا حلَّلها
        البر هانَ يُمْكِنُ أَنْ نَتعلَّمَ بضعة قواعد عامّة منه. حيث ان حمص Homs بطُّهرُ في الإستفسار نحن يُمْكِنُ أَنْ نُجرّده
                                                                                                                                                                                                    لاعطاء التالي:
holds (loc(x), drive (Damascus, x),
                                     result(fly(Damascus), s')))
           لكن هذا ليس صحيحا بالضبط – حيث اننا لا نستطيعُ الوصول الى كل مكان بالهلَيرَاْن إلى دمشق. حيث Homs يَظْهرُ في قاعدةِ البيانات عندما نُجرّدُ الأشياءَ، نحن يَجِبُ أَنْ نُسجّلَ إستعمالَ الحقايقُ بشكل واضح:
near(Damascus, x) \rightarrow holds(loc(x), drive(Damascus, x), result(fly(Damascus),
           هذا يَذْكرُ إِذا x قُرْبِ دمشق نحن يُمْكِنُ أَنْ نَصِلَ إليه بالعطَيرَ إن إلى دمشق وبعد ذلك قيادة الهيارة الي x. اذن نحن
                                                                                                                                                                                 تَعلَّمنَا هذه القاعدة العامّة
                                                                                                                  نحن يُمْكِنُ ايضا أَنْ نُجرّ د دمشق بدلاً مِنْ Homs لَقُصبحَ:
near(Homs,x) \land airport(x) \rightarrow holds(loc(Homs), result(drive(x,Homs),
result(fly(x),s'))
هذا يهرح بأننا يُمْكِنُ أَنْ نَ ْصلَ الى حمص Homs بالطَيرَ أن إلى اقرب مطار وقيادة السيارة مِنْ هناك. نحن يُمْكِنُ
              أَنْ نُضْيِفَ مطارَ (حلب (Aleppo)) ونَحْصلُ على وسائلِ بديلةِ مِنْ خطةِ السفرِ ِ أخيراً نحن يُمْكِنُ أَنْ نُجرّدَ في
```

الحقيقة كل من Homs و Damascus التُصبح الخطة العامّة:

```
holds(loc(y), \rightarrowairport(y) \landnear(x,y) result(drive(x,y), result(fly(x),s')))
```

الإكتشلف

الإكتشاف شكلَ مقيد من الْقَعَلْم الذي فيه يَكتسبُ الكيانَ الواحد المعرفةُ بدون مساعدةِ معلَّم.

نظريةُ الإكتشاف المقاد - (1976)

AM ً - هو برنامج يكتشفُ المفاهيمَ في الرياضياتِ الأولّيةِ ونظريةِ المجموعات.

AM يملك مُدخلان: ً

- وصف بَعْض مفاهيم نظريةِ المجموعات (في شكلِ LISP). ومثال على ذلك: إتحاد المجموعات، القاطع، المجموعة الفارغة.
 - معلومات عن كيفية انجاز الوياضيات. ومثال على ذلك: العمليات في الرياضيات.

بإعطاء المعلومات أعلاه AM إكتشفت:

الأعداد الصحيحة

-- من الهحتملُ حِساب عناصرِ المجموعةِ وهذه الهمورةُ ه ي وظيفةِ الحِساب -- الأعداد الصحيحة – مجموعة مثيرة سبب ملائمتها.

الاضافة

-- إتحاد مجموعتين مفكّكتين ووظيفة الحساب الخاصة بهما.

الضر ب

- بَعْدَ إكتشرافَ الإِضافةَ والضربَ كعمليات نظرية مجموعة مرهقة، أوصاف أكثر فعّالية، كَانتْ مزودة باللِّدِّ. الأرقام الصماء
 - اكتشف قيمة العاملي للارقام والأعداد مَع عامل واحد فقط.

تخمين Golbach

- -- أعداد زَوجِيّة يُمْكِنُ أَنْ تُكْتَبَ كنتيجة جمع عددين اصمين. ومثال على ذلك: 28 = 17 + 11.
 - أعداد قابلة للقسمة بشكل أعلى
- أعداد مَع عوامل اكثر قدر الامكان. أي عدد k يكون قابل للقسمةُ بشكل أعلى، اذا كان k عِنْدَهُ عواملُ أكثرُ مِنْ أيّ عدد صحيح أقل مِنْ k. ومثال على ذلك: k عِنْدَهُ سنّة مقسوماتِ k. 1,2,3,4,6,12.

كيف عمل AM؟

AM يَستخدمُ العديد مِنْ التقنياتِ العامةِ للذكاء الإصطناعي:

- القمثيلَ المبني على اساس الأطر المفاهيم الرياضية.
- مَاكُنُ أَنْ يَخْلقَ مفاهيمَ جديدةَ (شقوق) ويَمْلأُ قِيمَهم.
 - استخدم الهحث الإرشادي
- الموجه المساعد 250 يُمثّلُ التلميحاتَ حول النشاطاتِ التي قَدْ تُؤدّي إلى إكتشافاتِ مهمة.
 - كَيفَ يَستخدمُ الوظائفَ، يَخْلقُ مفاهيمَ جديدةَ، تعميم الخ.
 - بحث مبني على الفرضية والإختبار .
 - جدولِ أعمال (اجندة) لإكتشافِ مراحل العمل.

إكتشاف البياناتُ المقاد -- بيكون (1981)

العديد مِنْ الإكتشافاتِ تَمت بملاحظة البياناتِ مِنْ العالمِ وتَفْهمُها -- ومثال على ذلك: - الفيزياء الفلكية - إكتشاف المواكب، ميكانيك الكواكب، ميكانيك الكواكب، ميكانيك الكواكب، المواكب، ميكانيك الكواكب، المواكب، ميكانيك الكواكب، المواكب، المواكب

بيكون هُو محاولة لتنفيذ مثل هذه النظم من الذكاء الإصطناعي.

خلاصة نظام بيكون:

ابدأ مَع مجموعة المتغيرات للهشكلة.

- و مثال على ذلك: بيكون كَانَ قادرَ على إشْتِقاق قانونِ الغازِ المثالي. بَداً بأربعة متغيّراتِ p ضغط الغازِ، V -- حجم الغازِ n -- كتلة مِنْ الغازِ، v -- درجة حرارة الغازِ. الإستدعاء v + v -- v + v -- v + v -- v --
 - ادخال قِيم مِنْ البياناتِ التجريبيةِ مِنْ المشكلةِ.
 - بيكون يَحْملُ بَعْض النوابت ويُحاولَ مُلاحَظَة الإِتّجاهاتِ في البياناتِ.
 - إعطاء الإستنتاج.

بيكون أيضاً طبق في قانون Kepler الثالث، قانون Ohm ، حماية الزخم وقانون Joule.

التناظر

التناظر يَتضمّنُ التخطيط المعقد بين الهفهومان الذان يبدوان متباينان.

زيد يُبْنَى غرفة كبيرة من الطابوق خارج المنزل.

هو كَانَ مثل المعجونِ في أيديها.

يمييز البشر بسرعة الفكرة التجريدية المتضمنة ويَفْهمُوا المعنى.

هناك طريقتان من طرق المشراكل القياسية درسا في الذكاء الإصطناعي.

التناظر التحويلي

إبحثْ عن حَلّ مماثل وإنسخْه إلى الحالةِ الجديدةِ التي تَجْعلُ الهدائلَ الهناسبينَ حل ملائم.

ومثال على ذلك: - الهندسة الفراغية.

إذا كنا نَعْرِفُ معلومات حول أطوالِ قطع الخَطُوط و اليراه يَيْ بأن بَعْض الخطوطِ م نتعاوية (الرسم. 24) فإننا يُمْكِنُ أَنْ رَضَع فرضيات مماثلةً بالنسبة للزوايا.

الوسم. 24 مثال تناظر تحويلي

- AOB = COD والنووايا RO = NY
 - رَأينَا ان NY + NY = NO + ON = NO قاعدة مضافقِهِ •
- AOB + BOC = BOC + COD لذا نحن يُمْكِنُ أَنْ نَقُولَ بأنّ الزوايا
 - RN = OY بناءا على قاعدة القعدي فأن الخط
 - AOC = BOD لذا بنفس الطريقة فأن الزاوية •

يَصِفُ T-space (1983) Carbonell ، طريقة الفضاء T لتَحويل الحلولِ القديمةِ إلى جديدةِ.

- كُلّ الحلول مَنْظُورة أكحالات في فضاء الهشكلة فضاء T.
- مشغلي T يَصِفونَ طرقَ تَحويلُ حالات الحَلِّ الناتج إلى الحالات الجديدةِ.
 - التفاعيّ بالتناظر يُصبحُ بحث في فضاء T -- تحليل وسائل الطرفيات.

الهناظر المشتق

التناظر التحويلي لا يَنْظرُ إلى لاَيفية حل المشكلة -- ولكن يَنْظرُ إلى الحَلِّ النهائي فقط.

إنّ تأريخَ (سلسلة الخطوات) حَلِّ المشكلة – الخطوات المأخوذة والمنفذة من البداية وحت الوصول الى الحل - في أغلب الأحيان ذات صلة كبيرة.

اظهر Carbonell بأنّ القناظرَ المشتق مكوّن ضروري في عملية نقلِ المهاراتِ في المجالاتِ المعقّدةِ:

- في تَرْجَمَة رم وز لغة البرمجة باسكال الى لغة البرمجة LISP الترجمة الحرفية خَطِّ بخَطِّ لا تفيد. لكن يَجِبُ أَنْ نَستعمل الهيكلية الرئيسية وقرارات التحكم.
 - طريق واحد لعمَلُ هذا هو أَنْ زعيدَ الإشتقاق السابق وتعطيله عند الضرورة.
 - إذا الخطوات والفرضيات الأولية ما زالا نسخة صحيحة فأننا نعبر هم.
 - بخلاف ذلك نَحتاجُ لإيجاد بدائل -- أفضل بحثِ أولى.

الإدراك العام

لبّهي الأنظمةُ الذكيةُ الحقيقيةُ إدراك عامُ – هذه الانظمة تم تلكَ معرفةَ أكثر من اللازمَ لِكي تَكُونَ قادرة على العَمَل في السيئة المُعطاة. ذَكرنا نظام CYC الذي يعتبر محاولةُ طموحةُ لتَشْفير الحسّ العام. على أية حال يظهر هذا المثالِ كيف ان هذا النوع من النظم تَتطلّبُ قاعدة معرفةِ كبيرةِ جداً. تَحتاجُ أنظمةُ الحسّ العامِ لدَعْم:

- أوصاف الأشياء (الأجسام) العادية -- الإطر.
- سلاسل مثالية مِنْ الأحداثِ اليوميةِ مخطوطات (بريمجات).
 - استنتاج (تفكير) التزكية -- الهنطق الرتيب

تُصوّرُ إستراتيجياتُ الحُسِّ العامِ العديد مِنْ المواضيع المهمةِ في الذكاء الإصطناعي. نحن سَنهاقش لَّقِف هذا يُمْكِنُ أَنْ يُطبّقَ على العديد مِنْ المواضيع التي نوقشت سابقاً.

العالم الطبيعي __ الفيزياء الفوعية

الفيزياء النوعية هي احدى مراطق تطبيق أنظمة الذكاء الإصطناعي المُهتمّة بالتفكيّ حول سلوكِ الأنظمةِ الطبيعيةِ (الفيزيائية). هي منطقة جِيدة للدِر اسَة حيث أن الإنسان يَعْرفْ معلومات عظيمة حول هذا العالم، على سبيل المثال:

- الإنسان يُمْكِنُ أَنْ يَتوقّع انه عند سُق طَ الكرة سَتقفر في العديد مِنْ الحالاتِ.
- ه و يُمْكِنُ أَنْ يَتوقَع مكان سقوط (مسقط) كرةِ الكريكتِ والإمساك بها حتى.
- يعْرف ان الهندول (النواس) سيستقر في المنتصف بعد تأرجحه للأمام والخلف.

على أية حال أكثر البشر بينما هم يؤدون اعمالهم في هذا العالم لَيْسَ لهيهمُ فكر أَهُ كبيرة عن قوانينِ الفيزياءِ التي تَحْكمُ هذا العالم في هذا العالم في هذا العالم في فكر أَنْ نَنْظرَ الى المعلومات بشكل واضح ونَشتقُ المعادلات لوَصْف، على سبيل المثال حركة الهندول في الحقيقة الحاسبات جيّدة جدا في هذا النوع مِنْ الحسابِ بتوفر بُر امج مصممة مِن قِبل المبر مجين الخبراء. هَلْ هذه هي الكيفية التي يَهِطُ بها الفظام الفكي في هذا العالم؟

الأطفال بعمر الثَّلاثة سنُّوات هل بإمكانهم أن تَقْر أُوا َ أُو يحلُّوا رياضياتُ أولِّيةُ؟

حافز آخر وهو بوجود نماذج حاسوب معقّدة يُمْكِنُ أَنْ تُجمّعَ العديد مِنْ المشاكلِ التي تعتبر صعبة أو مستحيلة الحَلّ بشكل تحليلي. أنظمة المعادلات (التفاضل، التكامل... الخ.) قَدْ تكون صعبة لإِن تَشتقُ ومستحيلةً حتى للحَلّ.

نمذجة العالم النوعى

الفيزياء النوعية تسعًى لِهَهُم العملياتِ الطبيعيةِ ببناء النماذجِ منهم. أي نموذج قَدْ يَشْمَلُ الكياناتِ التاليةِ: المتغيّرات

- ــ تاخذ القِيَمَ كما في نموذج الفيزياءِ الثقليدي لكن مَع مجموعة محددة من القيم، ومثال على ذلك: ـ درجة الحرارة : { التجمد، بين التجمد والغليان، الغليان} { frozen, between, boiling}
 - فر اغات الكمية
 - -- مجموعة صغيرة مِنْ القِيَمِ الرصينةِ لمتغيّر.
 - نسبة التغيير
- ــ الهتغيّر اَت تلُخذ قِيَمَ مختلفةً في الأوقاتِ المختلفةِ. النسبة الحقيقية الهقيّمة للتغييرِ يُمْكِنُ أَنْ تُشكّلَ بشكل نوعي مَع المعتقدة الهميةِ، ومثال على ذلك: ـ. طلح المعتقدة على المعتقدة المعتقدة

-- مزيج من المتغيراتِ

المعادلات

-- مهمة التعبير إلى المتغيّراتِ.

احالات

-- مجموعات المتغيّرات التي تغير قيّم هأ مع الوقت.

م لاحظة : الجبر النوعي مختلف:

[empty, between, full] الماسة الكاسة الكا

ثمّ عندما نُضيفُ قيمتين نوعيتينَ بآن واحد نحصل على:

empty + empty = empty

empty + betweem = between

empty + full = full

 $between + between = \{between, full, overflow\}$

between + full = full + overflow

full + full = full + overflow

التفكير (الإستنتاج) مع المعلومات النوعية

التفكيُّ في هذه المنطقة بيُعي محاكاة نوعية في أغلب الأحيان. الفكرة الأساسية تصبح:

تركيب سلسلة الحوادثِ المنفصلةِ التي تَحْدثُ كتغييرات قيمةِ متغيّراتِ نوعيةِ.

الحالات المُرتَبَطة بالقواعدِ النوعيةِ هي التي قَدْ تَكُون عامّةً.

• القواعد قَدْ تُقدّمُ إلى العديد مِنْ الأجسام بشكل آني ، حيث انهم عُيْثرون على بعضهم البعض – مستخدم هنا تحقيق القيد.

الغموض قَدْ يَظْهرُ وبالتالى بقريَّجَ النَّائج لطرق واشكال مختلفة من شبكة كُلّ الحالات والإنتقالات المحتملة.

كُلّ طريق يُدْعَى تأريخ الشّبكة هُو تخيلّي (تصوري).

لأنجازَ برامجَ فعّالةً لهذا الغرض يَجِبُ أَنْ نَعْرف كَيفَ نُمثّلُ سلوكَ العديد مِنْ أنواعِ العملياتِ، الهواد والعالم الذي فيه يَتصرّفونَ.

الحسّ العام الوجودي

بَعْض المفاهيم أساسية بالنسبة التفاكي الحسّ العام ومنها: الزمن، المكان، المادة

الزمن

هنا نحن نُعنونُ أفكار الزمن الهألوفةِ إلى أكثر الناسِ كمعارض الطبيعةِ الفلسفيةِ للزمن. على سبيل المثال:

- سجّل الموسيقار X ألبومانة بين منتصف الستينات و 1970.
 - ماتُ X في 1970.
- أصدر ناس مهتمين بالموسيقا ألبوماً مستندا على عيناتِ كُلِّ موسيقى X المسجّلة.
 - نحن يُمْكِنُ أَنْ نستنتج بسهولة بأنّ الألبوم المذكور اخيرا أصدر بعد 1970.

إنّ الفكرةَ الأكثر أساسية مِنْ الَّوْمن محتلَّةُ بالأحداثِ:

- قع الأحداث أثناء فترات -- أوقات زمنية مستمرة.
- الفترة لَها نقاط بداية ونهاية و مدة (مِنْ النومن) بينهم.
- الفترات يُمْكِنُ أَنْ تُتعلّقَ بأحدهما الأَخرى -- أوصاف مثل قبل ذلك، بعد، إجتماعات، يُقابلُ قِبل، بدايات، يُبْدَأُ قِبل، أثناء، نهايات، مُنتَهى ب. الخ.
 - نحن يُمْكِنُ أَنْ نَبْنى الهديهيات مع الفترات لوَصْف الأحداث بمرور الوقت.

المكان

إنّ عالمَ الكُتَلَ مثال بسيط حيث اننا يُمْكِنُ أَنْ نُشكّلَ ونَصِفَ المكان. على أية حال أفكار الحسّ الهامِ مثل" مكان الجسمِ x الجُوْب جسمِ y "غير ملائمة. الاجسام لَه ا مدى مكاني بينما الأحداث لَها مدى مؤقت (زمني). لذا نحن قَدْ نُحاولُ يوسِيع نظرية الحسّ العامِ مِنْ الوقتِ. على أية حال المكان هو فراغ ثلاثي الأبعاد 3D وهناك المزيد مِنْ العِلاقاتِ مِنْ هذه للوقتِ لذا هو لَيسَ فكرة جيدة. النظري الأخرى هي إظهار الاجسام والمكان في المستويات المُخْتَلِفة مِنْ التجريد. ومثال على ذلك: - نحن يُمْكِنُ أَنْ نَنْظرَ الى البطاقات الإلكترونية المطبوعة كما لو أنها جسم ثنائي الأبعاد 2D. إخْتيار القمثيل يعني تحديد الخصائص ذات العلاقة في المستويات المعيّنة مِنْ الجزيئيّة. على سبيل المثال نحن يُمْكِنُ أَنْ نُعرّفَ العلاقاتَ للأقواسِ وخطوطِ وسطوح و المستويات والحجوم. ومثال على ذلك: - على طول، عبر، عمودي الخ.

المادة

نَحتاجُ لوَصنف خصائص الموادِ:

- أنت لا تَستطيعُ المَشي على الماءِ.
- إذا انت ترمى لئأس القهوة بعيدا، ماذا يَحْدثُ؟
- إذا انت تَصْبُ مغلاة كاملة في كأس ماذا يَحْدثُ؟
 - أنت يُمْكِنُ أَنْ تَعْصرَ الإسفنج لكن ليسْ الطوب.

السوائل (كما يبدو اعلاه) تُزوّدُ بالمعديد مِنْ النقاطِ المثيرةِ. هذا مهم للتّفكير بالأمكنة الهشغولة بالأجسام. هكذا نحن يُمْكِنُ أَنْ نُعرّفَ الخصائص مثل:

- السعة -- تشير إلى كمية السائل.
- الكمية -- الحجم المشغول مِن قِبل السائل.
 - كامل -- إذا السعة تساوى الكمية.

خصائص الهواد يُمْكِنُ أَنْ تتضمن جماعات:

- حرّ إذا المكان لا يُحتّوى كللّ اي جسم داخلهِ.
- محیط -- إذا كان المكان محاط بفراغ حر رقیق جداً.
 - متصلّب
 - مرن
 - جزيئي -- ومثال على ذلك: الومل

نظوم الذاكرة

الذاكرة تعتبر مركز بالنسبة إلى سلوك الحسّ العام وأيضاً القاعدة الاساسية للتّعَلّم. الذاكرة الإنسانية ما زالَتْ لَيستْ مفهومة بالكامل على أية حال العلماء النفسانيون إقترحوا عِدّة أفكار:

- "ذاكرة الهدى القريب (STM) -- فقط عدة بنود يمكن أن تحمل هنا في نفس الوقت. الهعلوماتُ الخاصة بقوة الادراك تخزن مباشرة هنا.
 - داكرة الهدى الهعيد (LTM) قدرة على الهخزن كبيرُة جداً ودائمة.

ذاكرة المدى البعيد الشُمِّمُ في أُغلب الأحيان الي:

- ذاكرة إستطرادية -- تعتوي على المعلومات الخاصة بالتجارب الشخصية.
- ذاكرة سيمانطيقية (لفظية) تحتوي على الحقائق الهامة بدون معنى شخصي ومثال على ذلك: الطيور تطير وذلك مفيد في عملية فَهُم اللغة الطبيعيق.

من ناحية البُحْثِ في أنظمة النَّكاء الإصطناعي فأنها بَدأَت مِن قِبل Quillian على الذاكرةِ السيمانطيقيةِ و أدّت إلى الشبكاتِ والإطرِ السيمانطيقيةِ و التراكيب الاخرى كالشقِّ والحشوة. بالعملُ على الذاكرةِ الإستطراديةِ نَتجتُ ملخصات المخطوطاتِ. كذلك أنظمة إنتاج هي مثال على نماذج الحاسوبِ STM و LTM .

دور الذاكرة في حَلّ المشكلةِ

لرَّهُي هذا الموضوع بمعرفة دور الفاكرة في حَلّ المشكلة. رَأينًا بأنّ العديد مِنْ المشاكلِ مَحْلُولة بالتناظرِ أنظمة الحاسوب التي تُؤدّي هذه المهمّةِ تسمى انظمة الإستنتاج المبنية على الحالة (CBR) بتعتخدم هذه الأنظمة مكتبات حالة على على المعرّة على ترظي وإسترجاع الذاكرة .

- نظام الْهَهْرَسَة الْغني يجب أَنْ يُستَخدم -- عندما يستنتج مشكلة ما فإن الهجارب الهاضية و ذات العلاقة فقط يَجِبُ أَنْ تستُذكر (تطلب من الذاكرة).
 - o دليل بالميزّاتِ (الخصائص) الهوجودة في المشكلةِ.
 - عَطِلْبْ نوع من معايير صلة المعلوماتِ المُسْتَرْجعةِ.
 - و بَعْض الهيزّاتِ المهمةِ فقط في السياق الهؤَ كَلد.
 - o التعلم المبنى على الاستقراء والتفسير مناسب هنا.
 - تراكيب البيانات المستعملة سَيَكُونُ مهمة حيث ان عدد الحالات الهمثّلة سَيَكُونُ كبير.
 - o هَلْ نَسترجعُ كُلّ المعلومات حول الحالة أو جزء منها؟
- عدد مِنْ الحالاتِ تَسترجعُ عادة. نَحتاجُ لإِخْتيار أفضل حالة باستخدام موجهين إرشاديينَ والذي قَدْ
 تتضمنونَ
 - هدف بافضلية اولية-- الحالات التي تتضمّنُ الهدف نفسة كالمشكلة الحالية.
 - و تفضيل ميزة بارزة -- الحالات الهي تتضمن الأكثر أهمية (أو العدد الأكبر) من الهيزّات.
 - o تفضيل محدد مطابقة حسب الهيزّاتِ المحددة .
 - نفضيل بالواري بتحديد الحالات المطابقة بكثرة.
 - و تفضيل الحديث بإنتقاء الحالات المُطابقة مؤخراً.
 - ٥ سته على تفضيلِ التكيّفِ الحالات التي عُدلتْ ميزّاتها بسهولة للتكيف مع المشكلةِ الجديدةِ.

الرؤية

الرؤية جزء مهم من أنظمة الذكاء الإصطناعي، وهي اعطاء خاصية البصر لهذه الانظمة و جعلها تفهم ماترى . الرؤية هي الحاسة الأكثر تعقيدا لدى الإنسان – حيث كرس لها حول رُبع حجم الدماغ. كذلك حوالي 80% من مدخلات المعرفة التي تصل الى المخ البشري تدخل عن طريق النظر، والـ 20% الباقية هي نصيب باقي الحواس .

تحدي الرؤية

أنظمة الروؤية المطوّرة حتى الآن الاتملك القررة الموجودة لدى البشر من ناحية فهم المشاهد الداخليّ أو الخارجية المعقّدةِ. تَحتاجُ أنظمة الروية الآلية الناجحةِ أَنْ يَكُونَ موجهة في بيئةً ضيقة إلى حدٍ كبير.

لماذا الرؤية صعبة؟

- العالم: ثلاثي الأبعاد. الصور المشكّلة في آلة تصوير هي ثنائية الأبعاد -- بَعْض المعلوماتِ فُقِدتْ و من الصعب استعادتها.
 - الصورة معتمدة على العديد مِنْ العواملِ:
- o طبيعة أداةِ الإحساس الاشعة تحت الحمراء ، تدرجات الرمادي (الصور الابيض/السود) ، اللون ...الخ .
 - o خصائص الأداة -- الحسّاسية، الوضوح، الهدسات، الإستقرار، اليؤرة إلخ.
- وضاءة المشهد -- الإضاءة الخافتة تَعطي مقارنة سيئة، الظلال أو الإنعكاسات الهفرطة قد يسببان مشاكل أيضاً.
 - o البيئة -- غبار، ضباب، رطوبة الخ.
 - o الخصائص العاكسة لسطح الجسم مادة الشئ، اللون ..الخ.
- حجم كبير مِنْ المعلوماتِ يَجِبُ أَنْ يُعالَجَ. حيثُ ان الخوارزمياتَ المتعلّقة بمعالجة الصور (الرؤية) وتمييزها تَتَطلّبُ حساباتَ عالية الأداء وكثيرة جدا.
 - معرفة كثيرة عن العالم عن كل من الأجسام والبيئة مَنْ الضّرُوري أَنْ تُمثّلا لخوارزمياتِ الرؤيةِ.
 - أي نوع من العمليات تعلجها نظم معالجة وتمييز الصور لإداءها ولماذا هذا مرتبط بإنظمة الذكاء الإصطناعي؟
- وصِفْ الصورَ، والأجسام والعالم الطبيعي -- بشكل واضح نَحتاجُ الى نماذج (رياضية) للصورةِ والاجسام ونَحتاجُ الى مخططِ تمثيلِ المعرفةِ أيضاً.
- معالجة الصور -- تُعسرينُ مواصفات الصورَ للتعامل معها بشكل افضل من قبل الحاسوبَ أو الإنسانَ. مثال على ذلك : تحديد الحواف، تعديل الاضاءاة ، تنقية وتصفية الصور بإستخدام المرشحات...الخ.

- النقسي استخلاص ميزات الصورة (دلائل التمييز)، مثل الحافة، الهناطق، السطوح وأوصاف أخرى مِنْ الصورة.
 - تمبيز النمطِ -- لصورِ الجسمِ الو احد، تصريقي الصور بمطابقة القيم الدالة عليها مع القيم الدالة على باقي الصور في قاعدة البيانات أو القيم المحددة للإنتماء لهذا الصنف.
 - تحليل الهقياس (معايير المطابقة) ميزات القياس في الجسم.
- فَهْم الصورة لصور متعددة الاجسلم، تُحدّدُ مكان الأجسام في الصورة، تصنّفهم وربما يَبْن في نموذج ثلاثي الأبعاد مِنْ المشهد.

إنّ الهدفَ النهائيَ من نظام الوؤيةِ هو التعرف (تمبيز الاجسام) على الأجسامِ في الصورةِ من الواضح ان الكثير من تقنيات أنظمة الذكاء الإصطناعي -- تمثيل الهعرفةِ، القائعيّ والاستنتاج، الفَهْم، القخطيط والقعلَّمُ -- مطلوبة في عمليةِ الووية الآلية.

إكتساب الصورة

إنّ المرحلةَ الأولى لأيّ نظام رؤيةِ هي مرحلةُ إكتساب (إدخال) الصورةَ. كيفية الحصول على الصورة وإدخالها الى الحاسوب. بعد الحصول على الصورةِ الإداء العديد مِنْ المعالجة يُعْكِنُ أَنْ تنفذ على الصورةِ الإداء العديد مِنْ مهام الرؤيةِ المختلفةِ والمطلوبةَ اليوم. على أية حال، إذا الصورةِ لَمْ تُكتَسبُ بشكل مرضي فإن المهام المقصودة قَدْ الا تَكُون قابلة للإنجاز، حتى بواسطة نوع من تحسين الصورة.

ادخال الصور ثنائية الأبعاد 2D

إنّ الصورةَ الثنائية الأبعادَ الأساسية هي أحادية اللون (تدرجات الرمادي) التي حُوِّلتُ إلى أرقام (صورة رقمية). يمكن وصِفْ الصورةُ ثنائية الأبعادِ كعلاقة رياضية لشدة الإضاءاة f(x,y)، حيث x و y إحداثيات نقطة وقيمة f(x,y) لأي نقطة f(x,y) هي نسبةُ السطوعِ (الإضاءاة) أو قيمةِ اللون الرمادي مِنْ الصورةِ في تلك النقطةِ. الصور الرقمية لها الخصائص التالية :

- قيم إحداثيات وإضاءة منفصلة.
- كثافة مقاسة عبر إحداثيات شبكة x و y
- تم التعبير عن الكثافة بقيم من 8 خانات (256 قيمة).

للأغراضِ الحسابيةِ، نحن قَدْ نُفكّرُ بالصورة الوقمية كمصفوفة ثنائي الأبعاد حيث x و y يصنف نقطة من الصورةِ. كُل عنصر في المصفوفة يُدْعَى نقطة شاشة (عنصر صورةِ). شاهد الوسم. 25 و 26.

الوسم 25. صورة بتدرجات الرمادي وتم تحديد منطقة (المربع الأبيض)

99	71	61	51	49	40	35	53	86	99
93	74	53	56	48	46	48	72	85	102
101	69	57	53	54	52	64	82	88	101
107	82	64	63	59	60	81	90	93	100
114	93	76	69	72	85	94	99	95	99
117	108	94	92	97	101	100	108	105	99
116	114	109	106	105	108	108	102	107	110
115	113	109	114	111	111	113	108	111	115
110	113	111	109	106	108	110	115	120	122
103	107	106	108	109	114	120	124	124	132

الرسم 26: قِيم نقاط الصورة في المنطقة المحددة

اجهزة وادوات إدخال الصور ثنائية الأبعاد 2D

آلة تصوير تلفزيونية (كاميرا الفيديو)

الإختيار الأول لإدخال الصور ثنائية الأبعاد هو كاميرا الفيديو -- الفاتج (المخرجات) يكون إشارة فيديو:

- التوجيه نحو الصورة الهدف.
- مَسحَ الهدفَ خَطاً بخَط أفقياً بالشعاع الألكتروزي
- الإشارة الكهربائية تنتج بمْرورُ الشَعاعُ فوق الهدف.
 - الإشارة تمثل نسبة كثافة الضوء في كُل نقطة.
 - الإشارة الجاهزة للإستعمال تمثل إشارة الفيديو.

هذا الشكلِ مِنْ الأداةِ لَهُ عِدّة أضرار.

محدودية الوضوح

-- عدد محدود مِنْ خطوطِ المَسْحِ (حول 625) وإطر (30 او 60 إطار بالثَّانية) التَّشويه--

- تأخر غير مرغوب به بين الإطار والإطار الأخر.
 - خرج فيديو الخطّي فيما يتعلق بكثّافة خفيفة .
 - الهدف غير مستوي (مسطح) احيانا.

الماسح الضوئي

إلى حدّ بعيد تعتبر أداة التصوير الثنائية الأبعاد الأكثر شهرةً.

- يَشْهُلُ على مصَفوِّفة خلايا من العناصر الحساسة للضوء.
- تُنتجُ كُلّ خلية تيار كهربائي معتمد على الضوءِ الساقطِ عليه.
 - الفاتج "الخرج" إشارة فيديو
 - أقل تشويه هندسي
 - الفاتج اشارة فيديو أكثر خطيةً.

مخازن الإطر

إشارة الفيديو يجب أنْ تُحوّلَ إلى أرقام. الأداة المعروفة بمُخزن الإطار ومنتزع الإطار يُؤدّي هذه المهمّةِ حسب التالمي:

- يُحوّلُ إشارةَ الفيديو الهدخلة إلى أرقام
- يقسم الإشارة كعينات إلى نقاطِ الشاشة المنفصلةِ في فتراتِ ملائمةِ -- خَطّ بخَطّ.
 - يقسم الإشارة إلى قيم رقمية من 8 خانات.
 - يَخْزنُ عينات الاطر في ذاكرته الخاصة.
 - حوّل إطار بسهولة إلى ذاكرة الحاسوب أو ملف.

التصوير - الصور ثلاثية الأبعاد 3D

الصور ثلاثية الأبعاد 3D -- خرائط العمق

الطريق الأسهلِ والملائم لتَمْثيل ويتخزّي مقاييسِ العمق مِنْ مشهد ما، هو خريطة الهمقِ خريطة الهمقِ هي مصفوّفة ثنائيق الأبعاد حيث x و y معلومات إحداثيات المكان المقابل للصفوف و الأعمدة كما في الصورةِ العاديةِ، وقراءات المعمق المطابقةِ (z قِيَم) مَخْزُونة في عناصر الهصفوّفة (نقاط الشاشة).

خريطَة الهمقُ هُي مثلُ الهنورة بتَدرجات الرمادي ، مأعدا z معلومات (حقيقية - 32 بايتات) تَستبدلُ معلوماتَ شدة الإضاءاة.

الرسم. 27 خريطة عمق إصطناعية

(a) Widget with small coin

(b) Another test object الرسم. 28 خريطة عمق حقيقية

لماذا نَه متعمل بيانات ثلاثية الأبعاد؟

الصور الثلاثية الإبعاد 3D لَها العديد مِنْ الفوائدِ بالمقارنة مع نظيرتها من ثنائية الأبعاد: الهندسة الواضحة --

- صور 2D تعطي معلومات محدودة فقط الطشكل الطبيعي ومقياس الجسم في الهشهد.
- صور 3D يَعبر عن الهندسة من ناحية الإحداثيات الثلاثي الأبعاد، مما يسمح بتخيل الحجم.
 ومثال على ذلك: حجم (وشكل) الجسم في مشهد ما يُمُكِنُ أَنْ يُحْسَبَ ببساطة مِنْ الاحداثيات الثلاثي الأبعاد.
 التقدّم التقني الأخير (ومثال على ذلك: في آلات التصوير الرقمية ، آلات المسح الضوئية، أجهزة تعيين المدى الليزرية) سمح بالحصول على معلومات موثوقة ودقيقة لبيانات العمق الثلاثية الأبعاد. لذلك العديد مِنْ أنظمة اكتساب البيانات الثلاثية الأبعاد طورت.

طرق الإكتساب (الإدخال) أنظمة المدى الليزرية

تعمل هذه الانظمة على مبدأ إنعكاس ضوء الليزر على سطحَ الجسمِ، ليقوم حساس ضوئي بإستلام هذا الضوء المنعكس، ثمّ يَقِيسُ الوقتَ (أو المدة) بين الإرسالِ والإستقبالِ لكي يَحْسب العمقَ. اغلب الماسحات الليزرِية لها الخواص التالية:

- نعمل على مسافاتِ بعيدة (15 متر)
- ولذلك قرار عمقهم ناقص لمهام الرؤية المُفصّلة.
- تم تطوير أنظمة الهدى الاقصر لكن ما زال عِنْدَها قرارُ عمقِ ناقصِ (1 سنتيمتر في أحسن الأحوال) لأكثر أغراضِ الرؤيةِ الصناعيةِ العمليةِ.

طرق الضوء المنظمة

الفكرة الأساسية:

- اسقاط نماذج الضوء (شبكات، أشرطة، أنماط إهليليجية الخ.) على الجسم.
- استنتاج الأشكال السطحية مِنْ تشويهاتِ الأنماطِ التي تُنتجُ على سطح الجسمِ.
 - العديد مِنْ الطرق طُوّرتْ بلستعمال هذه النظريق
 - الفائدة الوئيسية السهولة في الإستعمال.

- الأنماط تُصبحُ أكثر تناثراً بالمسافة.
- حساسات المدى القريب (4 سنتيمتر) تج عطي قرار العمق الجيد (حول 0.05 مليمتر) لكن لها حقل ضيق جداً للرؤية ومدى قريب مِنْ العمليت.

طرق Moire الهامشية

إنّ جوهر الطريقة بأنّ يسقط الضوء من خلال مشبك (شبكة) على الجسم المراد تصويره وتتشكل الصورة سطح مشبك آخر مرتبط بالكاميرا (الشبكة المرجعية). تتداخل الصورة مع الشبكة المرجعية لتشكيل أنماط محيط مواريه الهامشي الذي يظهر تقطع مظلمة وقطع مضيئة من الأشرطة، كما هو موضّح بالرسم. 29. تحليل الأنماط يَعطي أوصاف دقيقة مِنْ التغييرات بالهمّق والشكل.

الوسم 29. نظام اسقاط مواريه

مُلاحظة: تَظْهِرُ حالاتُ الغموض في إسْتِوْجاب الأنماطِ الهامشيةِ.

- أيس من الممكن التَقْرير فيما اذا كانت محيطات الاجسام المجاورة أعلى أو أوطأ بالهمق.
 - الحل بتحريك إحدى المشابكِ وأخذ عدة صور مواريه
 - الهشبك المرجعي يُمْكِنُ أيضاً أَنْ يُحْذَف وتأثيرَه يُمْكِنُ أَنْ يعدل بالبرامج.

طرق هوامش مواريه قادرة على إنْتاج بياناتِ العمقِ الدقيقةِ جداً (درجة الوضّوح حوالي 10 ميكروناتِ) لكن هذه الطرقَ لَها بَعْض العوائقِ:

- طرق غالية بشكل حسابي نسبياً.
- السطوح في الناو عي الكبيرة غير قابلة للقياس أحياناً -- كثافة هامشية تُصبحُ كثيفة جداً.

طرق الشكل مِنْ الظل

طرق مستندة على الشكلِ مِنْ الظل إستخدام ت تقنيات مقاييس الضوء المجسم لإنتاج مقاييس العمق. إستخدام آلة تصوير واحدة، يمكن اخذ صورتين او اكثر لجسم في نفس الهوقع لكن بشروط إضاءة مختلفة بدراسة التغييرات في السطوع على السطح و إستخدام الهقيي في توجيه السطوح، فإن يمكن حساب معلومات الهمق بدقة. الطرق الهستندة على هذه التقنيات لا تتاسب لجمع بيانات العمق الثلاثي الأبعاد العامة:

- طرق معتمدة بشكل حسَّاس على الإضاءةِ وخصائص الانعكاس على سطوح الأجسامِ الهوجودة في المشهدِ.
 - تَعْملُ الطرقَ فقط بشكل حَسناً على الأجسامِ بالقوامِ السطحي الموحّدِ.
 - من الصعب إسْتِنتاج عمقِ مُطلق، والقوجيه السطحي فقط يُستَنتجُ بسهولة.
 - طرق تَستعملُ في الغالب عندما أن عند بنتزاع معلومات الشكل السطحيّة.

الطرق التجسيمية السلبية

تجسيم الصور كتقنية لقياس المدى بالإسقاط الثلاثي للمواقع الم حددة في مشهد صوّر بآلتي تصوير . إنّ المشكلةَ الحسابيةَ الأساسيةَ للصور المجسمة أنْ زَجَدَ تطابق النقاطِ المُخْتَلِفةِ في الصورتين. هذا يَتطلّب:

- إستخلاص موثوق لهعض الميزّات (مثل الحافات أو النقاط) مِنْ كلتا الصور
 - مُجَاراة الهيزّاتِ المطابقة بين الصورتين.
 - كلتا هذه المهام غير بديهي وبشكل حسابي معقد
 - مجسم سلبي قَدْ لا غِيْتِجُ خرائطَ العمق ضمن الوقت المعقول.
- بيانات العمق المنتجة متناثرة نموذجياً حيث ميزّات الهستوى الهالي، مثل الحافات، مستعملة بدلاً مِنْ النقاطِ.
 مُلاحظات.
 - مشاكل في إيجاد وتُحديثُ مكان الميزّاتَ بدقة في كُلّ صورة يُمكنُ أَنْ تَكُونَ صعبةً.
 - لتفادي الأخطاء تحتاج لهناية كبيرة.
 - مقاييس عمق دقيقة إلى بضعة مليمترات.
 - مثال على نظام الرؤيةِ الستيريو السلبي TINA طوّر في جامعةِ شافيلد.

الطرق التجسيمية النشيطة

مشاكل التقنياتِ التجسيميةِ السلبيةِ قَدْ تَتغلُّبُ عليها بالتالي:

- إضاءاة المشهدَ بمصدر قوي مِنْ الضوءِ (على شكل نقطة أَو خَطّ الضوءِ) الذي يُمْكِنُ أَنْ يُلاحظَ بكلتا آلات التصوير
 - · نقاط الهطابقة الهعروفة حددت في كُلّ صورة.
 - خرائط العمق يُمْكِنُ أَنْ يتُتجْ بمسح مصدر الضوء للمشهدِ الكاملِ.
 - استخدام مصدر ضوء ليزري يعتبر نموذجياً
 - مُجسم فعال يُمْكِنُ فقط أَنْ عِطِبّقَ في البيئاتِ المسيطر عليها (المتحكم بها) -- تطبيقات صناعية.

الهموذج الهندسي لرؤية الحاسوب

لكي يُمثّلُ النموذج الهندسي لرؤية الحاسوب نحن نَحتاج لهَعْض النماذج من أجسامِنا. بالنظر الى أنها نُهرك معلومات السطح بالعملية البصرية وهذه معتمدة بشدّة على هندسة الجسم فإننا نَعتبرُ سماتَ عن لكَيفية تشاكيل مثل هذه البياناتِ. ولاحظ انه لبَعْض العملياتِ البصريةِ نحن قَدْ نَحتاجُ لإعتبار خصائص الإنعكاس للسطح أيضاً.

سَلِقي نظرة على بعض مخططِ اتَ التمثيلِ الرئيسيَّةِ الَهْتِي لَمْ تُُحُدَّدُ بِالضروَّرةِ لِلرَّوْيَةَ أَوْ مواضيعِ أنظمة الذكاء الإصطناعي. بعض أنظمة الذكاء الإصطناعي المتعلقة بمخططاتِ التمثيلِ طُوِّر تَ على سبيل المثال الشبكات اللفظية والتي تم مناقشتها سابقا، وسنناقش تطبيقه في الرؤية لاحقاً (انظر تمييز الأجسلم المبني على النموذج)

- نَحتاجُ لبعض اوصاف الجسم (3D):
 - o الهندسة.
 - o الهندسة الطبوغرافية.
- 0 ميزّات خاصّة (ومثال على ذلك: إحتمال الفحص، اللون، القوام)
 - ميزّات مقارنة (دلائل التمييز) إنتزعتْ مِنْ المشهدِ لتَشكيل الوصفِ للتمييز.
 - علاقة بالتصميم بمساعدة الحاسوب (CAD) والرُسم الآلي.

نماذج الاطر السلكية

- تخزين الحافات و القِمَم في قائمة.
 - . Polyhedral تمثيل
 - مطابقة مبنية على الحواف.
- مشاكل مع الغموض (الرسم. 30) وتمثيلات مستحياة (الرسم. 31).
 - مشاكل بسبب انه لا مسألة صلبة مِنْ الجسم مثّلتْ.
 - النماذج الصلبة أفضل.

الوسع. 30 إطار سلكي غامض

الوسم. 31 شوكة الشيطان

نموذج المجموعة النظري

- · أيضاً معروف على نحو واسع بالهندسة الفراغية الحسابية (CSG).
- الفموذج متكوّن من الأشكالِ البدائيةِ، مثل الصناديق المستطيلةِ والهجالاتِ والإسطواناتِ والهخاريطِ الخ
 - جُمِّعَ مَع مشغلي المجموعةِ
 - مثّلٌ نموذج كترّكيب الشجرة (الرسم. 32).

الوسم. 32 نموذج المجموعة النظري

- أستُعملت مجموعة المشغلين الهشابهة لقلك التي في الجبر المنطق.
 - الهشغلون المستعملون:
 و إتحاد -- منطقي، أو

 - 0 تقاطع -- منطقي، و
 0 إختلاف -- منطقي لَيسَ،

الوسم. 33 مجموعة المشغلين

تمثيل الحَدِّ

- النماذج بتمثيل الحد لها تمثيل أكثر وضوحاً مِنْ نموذج المجموعة النظري.
- الجسم مُمثّلُ بتواكيبَ بياناتِ معقدة و الني تعطي معلوماتاً حول كُلّ مِنْ وجوهِ وحافاتَ وقِمَمَ هذا الجسمَ وليَونية ارتباطهم ببعضهم البعض.
 - يَبْدو انه تمثيل أكثر طبيعي للرؤية حيث ان المعلومات عن السطوح متوفرة بسهولة .
 - وصف الجسم يُمكنُ أَنْ عَسِم إلى جزءين:

الهندسة الطبوغرافية (اللاكمية)

- يُسجُّلُ ربطَ الوجوهِ والحافات والقِمَم بواسطة المؤشراتِ في تركيبِ البيانات.

لمندسة

- يَصِفُ الشكلَ المضبوطَ وموقعَ كُلّ مِنْ الحافاتِ والوجوهِ والقِمَمِ.
- قياس القمة هو فقط موقعها في الفضاءِ كما هو مُعطى بإحداثياتها (y,z،x).
 - الحافات قَدْ تَكُون خطوط مستقيمة،او أقواس دائرية، الخ.
 - الوجه مُمَثّلُ ببعض الوصفُ لسطحِه (جبري أو يستعمل شكلا متريا).

الرسم. 34 وجه وحافات وقِمَم

الخصائص النموذجية المرغوبة للرؤية

تَطلّبتُ المهامُ المثاليةُ عند الستعمال نمودَج صلب لأغراض الرؤيةِ، هذه المهام لتَضمّنُ:

- تزاوج مباشر بين الميزّاتِ النمونجيةِ و ميزّاتَ البّياناتِ،
 - تقدير مباشر لموقع وتوجيهِ الجسم، و
 - تنبؤ ظهور الجسم مِنْ أيّ موقع.

تعريف (وصف) الخط

تعتبر قطع الخطوط المستقيمة والمنحنية البنية الأساسية لإغلب الصور تعطي النسبة الرياضية، بين النقاط المحددة على حدود (محيط) الجسم الموجود في الصورة، التعريف (الوصف) الرمزي للصورة تعريف الخَطِّ قابل للتطبيقُ

عندما تنتزع الخطوطُ الثنائية الأبعادُ مِنْ صورة ثنائية الأبعاد. مبدائلًا نحن سَنُحدَّدُ لإنفسنا الأجسام الهندسية النظامية (المكعب) في الهشهد، وبمعنى آخر: الجسم الذي لَهُ وجوهُ مستويةً محاطة بالحافاتِ المستقيمةِ. تحت هذه الفرضيةِ يمكن تَرْجَمَة الحافاتِ:

- لتعديد اي الحافات ربطت بأي وجوه، و
 - لإستنتاج بعض العلاقات بين الوجوه

لنعتبر رسم الخَطِ الظاهر في الوسم. 35.

الوسم. 35 رسم خَطِّ مِنْ مكعبين

من الممكن أَنْ رُوري التالي:

- رَبطتُ الحافاتَ الوجوة المرقمة، وهي 1، 2 و 3 من الهكمّب الاول،
- بینما الوجوه 4، 5 و 6 تعُودُ للمربع الآخرِ (على إفتراض أنَّ المكعبان لَمْ يُ لتصقاً بخيط دقيق لا يُمكن أنْ يُرى).

ملاحظة مهمة:

- كُلّ حافة ثلاثية الأبعاد تُرتبطُ بوجهين بالضبط -- واحد على كل جانب منها،
 أحياناً كل من هذه الوجوهِ يُمْكِنُ أَنْ عَرى مِنْ وجهة الفظر الهُعطاة (كما في حالة الخَطِّ في ال رسم. 36). لو ان أحد الوجوهِ فقط مرئي فإن هذه الحافة تُدْعَى حافةً إغْلاق. على الجانب الآخرِ لحافة الإغلاق، الخلفية أو االوجه الغير ملتصق هو مرئي. إن قاعدة طريقة تعريف الخطِّ هي أَنْ تُحاول تصنيف كُلِّ حافة في الصورة كما أَنْ تَكُونَ إحدى:
 - حافة مقعّرة (concave)،
 - حافة محدّبة (convex)،
 - حافة إغْلاق (occluding).

امثلة على حافات كُلّ نوع موضحة في الرسم. 42.

الوسم. 36 أنواع الحافلت في رسم الخط

حييمًا تَجتمعُ الحافاتَ فقط بَعْض التفسير اتِ المحتملةِ لخطوطِ الإجتماع ثابتة بشكل متبادل. هذا يُخفّضُ عددَ الإمكانياتِ لتصنيفِ كُلّ حافة. إذا الخَطّ يُقابلُ حافة الإغْلاق:

- مُحدد بسهم. يَعطي توجيهُ السهم جانبَ الحافةِ الذي فيه الوجهِ المرئي، استعمال التقليد الذي فيه الوجهِ المرئي يَستندُ على الجهة اليمني مِنْ الحافةِ، نَاظُرا على طول إتّجاهِ السهم.
 - الخطوط التي تُقابلُ الحافاتَ المحدّبةَ محددة بعلامة '+ '.
 - الخطوط التي تُقابلُ الحافاتَ الهقعرةَ محددة بعلامة '- '
 - كُلّ حافة في الصورة لها إحد التعاريف الأربعة المحتملة.

الفرضيات

نحن سَنَعملُ بَعْض التَّبْسيط للفرضياتِ والذي يَتعلَّقُ بمنظر الجسم وتعقيده.

- الجسم في الموقع العامّ اليوجد جسمان يَتراصفانَ عرضياً في الصورةِ بسبب موقع رؤية خاصِّ.
 - الحافات الخارجية في الصورة -- صورتها الظلية -- تَعُودُ إلى الوجوهِ التي تُعلقُ الخلفيةَ .
 - الأجسام مِنْ التعقيدِ المحدودِ، وبشكل خاص تلك الحافاتِ الوحيدةِ الثلاث تَجتمعُ أبداً في قمّة.

أنواع الملتقى

من المحتملُ الآن قول ان كُلّ ملتقيات الخَطِّ سَتَعُودُ إلى إحدى الأنواع الأربعة، كما هو معروض في الرسم. 37.

الوسم. 37 أنواع الملتقى في رسم الخط

- في الملتقى من نوع L فقط حافتان تَجتمعان،
- يَجتمعُ ثلاث حافاتَ في أنواع الملتقى الأخرى.
- ، الإمتياز بين ملتقى السَّهم و مَلتقى Y سواء الحافاتُ الثلاث تُقابلُ زاوية كليَّة أقل أَو أكثر مِنْ180°.
 - حالة التقسيم بين ملتقي السهم وملتقى Y يُميّزُ بشكل مُحدّد ك مفرق T.

إعتبار ما يمكن هذه المُلتقيات أَنْ تُمثّلُهُ من وجهة نظر نموذج الاجسام النظامية يُؤدّي الى استنتاج بأن فقط التعريف المُتأكّد للحافاتِ في الهلتقي يُمكِنُ أَنْ يَظهرَ في صور مشهد حقيقي. هذا مُوضح في الرسم. 38.

الرسم. 38 تعريف جائز في الملتقى

ه ذاأقل مِنْ العددِ الكليِّ لكُلِّ التعريف المحتمل البعض مِنْ التعريف الجائزِيُ ظهر الحَدَث في الهشهد كما في الرسم. 39.

الوسم. 39 الخطوط المعرفة في الصورة

إستنتاج فوري واحد يُمْكِنُ أَنْ يُجْعَلَ م لتقى T يَجْدثُ فقط عندما جسمَ ما يُغلقُ جسما آخراً، أَو ربما جسم يُغلقُ جزءَ من نفسه.

تعريف (وصف) الصورة

يمكن إعتبار الخطوط المستقيمة والمنحنية كعناصر بسيطة لاجسام اعقد مثل: المثلثات، الدوائر...الخ. هذه البنى والاشكال ممكن معالجتها وتحليلها وتعريفها بمساعدة خصائص الشكل: القياسية، الطبوغرافية والهندسية. لنفترض انه عندنا صورة خَطِّ ونريد تعريفه آلياً. في كُلِّ قمّة

- التعريف يَجِبُ أَنْ يَكُونَ من التعاريف الجائزة واحد من العدد الصغير النسبي مِنْ الإمكانياتِ.
- كُلّ قطعة خَطِّ لَها نهايتان، وهي يَجِبُ أَنْ يكونَ عِنْدَها نفس التعريف في كُلّ نهاية، على الأقل في حالة نماذج الأجسام المنتظمة.

نبدأ بأَخْذ الخطوطِ الخارجية في الصورةِ ونَهتبرُ هم كإغْلاق الخلفيةِ. نحن قَدْ نُنظَّمُ طريقتَنا الآن كبحث شجرةِ.

- نخللو الهلتقي، نعرفه عَلى نَحو صحيح،
- نةحرّك على طول حافاتِه إلى الملتقيات المجاورة، نعرُفهم بطريقةٍ ثابتة.
- إذا هذا لَيسَ ممكنا، فإننا يَجِبُ أَنْ نَتراجعَ ونُحاولَ بديلاً آخراً لإختيار سابق.

• نستمرُّ حتى تعريفنا الرسم بنجاح، أو نوقف البحث في حال انه ليس ممكنا.

• في الحالةِ الأخيرةِ، صورة الخَطِّ لا تُمثِّلُ جسم طبيعي صحيح.

رُلاحظ انه قد يوجد أكثر مِنْ تفسير صحيح واحد ، لذاً نحن تَريد جَعْلَ بحثِ الشَّجرة شامل لإيجاد تعريف جائزِ آخرِ، بدلاً مِنْ القوقَّفُ بعد إيجاد تعريف ثابتِ واحد للصورةِ الكِاملةِ.

تحقيق التوهد: هو طريقة تطبيق مشتركة لتعريف الخَطِّ

تعريف الشكل

تقنيات تعريف الشكل يُمْكِنُ أَنْ تستخدم في العديد مِنْ مجالات رؤيةِ الحاسوب. طرق الشكل استخدمت في العديد مِنْ المجالات الأخرى مِنْ الحسابِ عُموماً، خصوصاً إلى حَلِّ المعادلاتِ اللاخطيةِ الآنيةِ. نحن سنَصِفُ اولا المبادئ الأساسية وراء طرق تعريف الشكل وبعد ذلك تُناقشُ تطبيقانة الهُخْتَلفة.

إنّ العناصر الأساسية لطريقة تعريف الشكل هي مجموعة الميزّات التي تَعُودُ إلى جسم و مجموعة العلامات. ضمن سياق الرؤية، هذه الميزّات عادة هي نقاط وحافات وسطوح. عادة، مخططات التعريف المستعملة فرضية لَكُلّ ميزّة أو أوزان أو إحتمالات يُخصّصان إلى كُلّ علامة في المجموعة التي تَعطي تخمينَ الإمكانية بأن العلامة المعيّنة صحيحة لتلك المبزّة.

النظر على الإحتمالية تُستَعملُ لتَزْييد (أَو تُقلَّلُ) الإحتمالات بالتعديلِ التكراري، يَأْخذُ في الحسبان ان الإحتمالات الرتبطتْ بالميزّاتِ المجاورةِ. إستراتيجيات الشكل لا تَضْمنُ تقاربَ بالضرورة، وهكذا، نحن قَدْ لا نَصِلُ إلى حَلّ تعريف نهائي مَع علامة فريدة سَيكونُ عِنْدَها إحتمالُ واحد لكُلّ ميزّة. دعنا نَعتبرُ نظر عَيَّ التعريف الآن في التفصيلِ الأكثر. دعنا نَفترضُ:

مجموعة من n ميزات جسم التعريف. $\{a_1,\ldots,a_n\}$

مجموعة من m علامات محتملة للميزّاتِ. $\{l_1,\ldots,l_m\}$

ياً $P_i(l_k)$ يَكُونَ الإحتمالَ بأن العلامةَ a هي العلامةُ الصحيحةُ لميزّةِ الجسمِ. دعْ يَكُونَ الإحتمالَ بأن العلامةَ تلك: a بديهيات الإحتمال العادية يُمْكِنُ أَنْ تُطبّقَ تلك:

بديهيات الإحتمالِ العاديةِ يُمْكِنُ أَنْ تُطبّقَ تلك: $P_i(I_k) = 0 \qquad 0 \leq P_i(I_k) \leq 1 \\ \text{ether constraints} \qquad 2 \\ P_i(I_k) = 1 \\ \text{ether constraints} \qquad 0 \\ P_i(I_k) = 1$

• مجموعة العلامات مشتركة وشاملة. هكذا نحن قَدْ نَكْتبُ لكُلّ i:

$\sum_{l_i} P_i(l_k) = 1.$

و هكذا كُلّ ميزّة تُوْصَفُ بشكل صحيح بالضبط بعلامة واحدة مِنْ مجموعة العلامات. تَبْدأُ عمليةُ التعريف بمهمة اولية، وربما إعتباطيق، وهي مهمة الإحتمالات لكُلّ علامة لكُلّ ميزّة. الخوارزمية الأساسية تُحوّلُ هذه الإحتمالاتِ إلى مجموعة جديدة طبقاً لبَعْض جد اولِ الشكل. هذه العمليةِ متكرّرةُ حتى طريقةِ التعريف تَتلاقى أو تَستقرُّ. هذا يَتِم عندما لا يحدث تغييرَ او انه تغيير قليل جدا بين المجموعاتِ المتعاقبةِ مِنْ قِيَم الإحتمالِ. يَعتبرُ مشغلُ تِوافقَ الإحتمالاتِ العلامةِ كالقيود في خوارزميةِ التعريف.

 $C_{ij}(l_k,l_l)$ إِنَّ التَّوافَقُ هُو إِرْ تِبَاطُ بِينِ الْعُلَّمَاتِ الْمُعَرِّفَةَ كَالْإِحْتَمَالُ الشَّرِطِي ان الْهِيزَةُ أَنَّ أَعَامَةُ أَعَطَتُ $C_{ij}(l_k,l_l)=P(l_k|l_l)$ ويمعنى آخر: $P(l_k|l_l)=P(l_k|l_l)$ ويمعنى آخر: .

وهكذا، تم تحديث إحتمالات العلامات باعتبار إحتمالات العلامات للميزات المُجَاوَرَة. دعنا نَفتر ضُ بأنّنا غيّرنَا كُلّ الإحتمالات إلى بَعْض الخطو ات، S، ونحن الان نُهحث عن إحتمالَ مُجَدَّدَ للخطوة القاليةِ +3.

 $P_i(l_k)$ نحن يُمْكِنُ أَنْ نُحْمّنَ تغيير بندن يُمْكِنُ أَنْ نُحْمّنَ تغيير

$$\delta P_i(l_k) = \sum_{j \in N} w_{ij} \left[\sum_{l \in L} C_{ij}(l_k, l_l) P_j(l_l) \right]$$

حيث أنَّ N هي مجموعةَ الميزّاتِ المجاورُة لـ، $\overset{a_i}{i}$ و $\overset{b_i}{i}$ الهامل الذي يَزِنُ تعريف هؤ لاء الجيرانِ، عرّفَ بطريقة $\sum_{i \in N} w_{ij} = 1$.

 $P_i(I_k)$ الإحتمال الجديد للعلامة في الجيل S الجيل S الجيل مِنْ القِيَمِ مِنْ الجيل S علمتعمال الجديد للعلامة في الجيل S علمتعمال الجيل S الجيل S علمتعمال الجيل S الحيل S الجيل S الجيل S الجيل S الحيل S الحيل S الجيل S الحيل S ا

 $P_i(l_k) = \frac{P_i(l_k) \left[1 + \delta P_i(l_k)\right]}{\sum_l P_i(l_l) \left[1 + \delta P_i(l_l)\right]}$

طرق الشكل الإحصائية

طرق الشكل استخدمت خصوصاً لقحقيقِ الأمثلية في المشاكل. مثل هذا النوع من المشاكلِ م تداول بكثرةً في رؤيةِ الحاسوب ولذا طرق الشكل طُبَقت بنتوع عريض مِنْ طرقِ إلى رؤيةِ الحاسوب.

طرق الشكل استخدمت في:

إرتباط الحافة

- إحتمالات نقاطِ الحافةِ تقع على الحافاتِ المعيّنةِ الهُحدَّدةُ بلعتبار نقاط الحافة المُ جاورُة. العلامات المختلفة مستعملة لكُلّ حافة، و جدول الشكل يُستَعملُ لإيجاد العلامةِ الملائمةِ لكُلّ نقطة حافةِ.

تقنيات تعريف الخَطّ

بُمْكُنُ أَنْ بُيدي مشكلة الشكل

- خطُّوط العلامة الطِنتماء إلى صنف أكيد مِنْ الحافة (إغْلاق، مقعّر أو محدّب).
 - إحتمالات يُمْكِنُ أَنْ تُخصّصَ إلى كُلّ نوع تعريف بانصاف بسهولة.
- فقط بَعْض مجموعاتِ تعريف الحافةِ متوافق بشكل متبادل في ملتقيات الخَطِّ.
- هذه القيودِ يُمْكِنُ أَنْ تُبدو كالعقيهي عند تخمين الإحتمالات الشرطية للعلاماتِ المعيّنةِ.

الهضريي

يُمْكِنُ أَنْ غِيْس بطريقين مختلفينِ قليلاً:

- عملية تجميع نقاطِ الشاشة في مجموعات فرعية تحتوي كل منها على النقاط المتشابهة ضمن شروط معينة . $\operatorname{rcgion}_1, \dots, \operatorname{rcgion}_n$ إنّ المناطق تَعرف ببساطة ك.
- عملية تعريف مناطق (المجموعات الفرعية) الصورة حسب انتمائها الى كيانات طبيعية معرفة (مميزة) مثل: السماء والعشب والأشجار والهيارة والطريق..الخ.

تمييز (التعرف على) الأجسلم

مرحلة التمييز هي الهدف النهائئ للكثير من أنظمة الرؤية -- يَحتاجُه إلى:

- فهم الاشياء والاجسام المراد تمييزها.
 - للقحرّك بسلامة وتجنّب الاشياء،
 - التقاط ووضع الأجسام الهُخْتَلِفة،
 - نفتيِّسْ وفحص الأجسام
 - لتأدّية العديد مِنْ المهامِ الأخرى.

الثو اىت

نحن يُمْكِنُ أَنْ نَستعملَ أوصافَ بسيطةَ (قيمة عددية واحدة) لتَمْثيل الميزّاتِ ، وتسمى معايير المطابقة، ومن ثما النعرف على الأجسام:

- يُزودونَ بوسائل بسيطة مِنْ المقارنةِ.
- يُمْكِنُ أَنْ يُزودوا بمطوماتَ التوجية والموقع.

- بسبط جداً لبَعْض التطبيقات
- لا يَعطى وسائل فريدة منْ المطابقة.

مثل هذه الأوصاف العددية أو الإحصائية قَدْ تُقسّمُ إلى صنفين مُتميّزين:

- أوصاف هندسية: المنطقة، الطول، الحافة. الخ
- أوصاف طوبولوجية: الربط وعدد يولر (Euler)..الخ.

البعض مِنْ المقاييس أعلاهِ لَها معانى واضحةُ. الآخر ي سَيتم وَصِفِها بإختصار لاحقا ضمن سياق الصور الثنائية

الاطالة

. - أحياناً سمتى اللا مركزيةِ او الشذوذ عن المركز . هذه نسبةُ الطولِ الأقصى للخَطِّ أو الوتر الذي يَغطِّي المنطقةَ إلى الطول الأدني للوتر. نحن يُمْكِنُ أَنْ نُعرّفَ هذا أيضاً من ناحية اللحظَاتِ كما نحن سَنَري بعد قليل "

-- هذه نسبةُ مربع الحافةِ (المحيط) إلى مساحة المنطقةِ. عزم القصور الذاتي

-- عزم ijth المنفصلة المركزية لسنطقة مُعَرَّفةُ مِن قِبل

$$m_{ij} = \sum (x - \bar{x})^i (y - \bar{y})^j \tag{1}$$

حيث الجمع مأخوذ على كُلّ النقاط (x,y) المحتواة ضمن المنطقة و مركزُ ثقل المنطقة:

$$\bar{x} = \frac{1}{n} \sum_{x} x$$
 and $\bar{y} = \frac{1}{n} \sum_{y} y$.

مُلاحظة ان ، n، العدد الكليّ للنقاطِ المحتواة في المنطقةِ، هي مقياس لمنطقتِه.

نحن يُمْكِنُ أَنْ نُشكِّلَ سبع عزُّوم جديدةِ مِنْ العزمُّ المركزي التِّي تكون ثابتة بالنسبة إلى القغييراتِ في الموقع والهِقياسِ والتوجيهِ لجسم ممثّلًا بالمنطقةُ (ثوابت سَتُناقشُ لاحقا بعّد قليل)، بالرغم من أن هذه العزوم الجديدةَ ليستُ تُابتةَ تحتَ الإسقاط المنظوري. العزوم السبع هي كالتالي:

$$M_{1} = m_{20} + m_{02}$$

$$M_{2} = (m_{20} - m_{02})^{2} + 4m_{11}^{2}$$

$$M_{3} = (m_{30} - 3m_{12})^{2} + (3m_{21} - m_{03})^{2}$$

$$M_{4} = (m_{30} + m_{12})^{2} + (m_{21} + m_{03})^{2}$$

$$M_{5} = (m_{30} - 3m_{12})(m_{30} + m_{12}) \left[(m_{30} + m_{12})^{2} - 3(m_{21} + m_{03})^{2} \right]$$

$$+ (3m_{21} - m_{03})(m_{21} + m_{03}) \left[3(m_{30} + m_{12})^{2} - (m_{21} + m_{03})^{2} \right]$$

$$M_{6} = (m_{20} + m_{02}) \left[(m_{30} + m_{12})^{2} - 3(m_{21} + m_{03})^{2} \right]$$

$$+ 4m_{11}(m_{30} + m_{12})(m_{03} + m_{21})$$

$$M_{7} = (3m_{21} - m_{03})(m_{12} + m_{30}) \left[(m_{30} + m_{12}^{2} - 3(m_{21} + m_{03})^{2} \right]$$

$$- (m_{30} - 3m_{12})(m_{12} + m_{03}) \left[3(m_{30} + m_{12})^{2} - (m_{21} + m_{03})^{2} \right]$$

$$(2)$$

نُحن يُمْكِنُ أَنْ نُعرّف لا مركزية أيضاً بإستخدام العزوم ك

eccentricity =
$$\frac{m_{20} + m_{02} + \sqrt{(m_{20} - m_{02})^2 + 4m_{11}^2}}{m_{20} + m_{02} - \sqrt{(m_{20} - m_{02})^2 + 4m_{11}^2}}.$$
 (3)

نحن يُمْكِنُ أَنْ نَجِدَ محاور رئيسيةَ أيضاً مِنْ القصور الذاتي التي تُعرّفُ نظام إحداثيات طبيعي لمنطقة. دعْ ل تكُونَ مُعطاة بـ

$$\theta = \frac{1}{2} \tan^{-1} \left[\frac{2m_{11}}{m_{20} - m_{02}} \right] \tag{4}$$

نحن سَنَحْصِلُ على قيمتين لـ ﴾ اللتان بعيداتان 90° عن بعضهم البعض ان زوجَ الخطوطِ الذي يَعْمَلُ زاويةً ﴾ بالهجور x السيني الذي يَصطفُ عموماً بمحاذاة ما نسميه بشكل حدسى طول وعرض المنطقةِ يُعرِّفُ زوج المحاور الرئيسيةِ الذي يَصطفُ عموماً بمحاذاة ما نسميه بشكل حدسى طول وعرض المنطقةِ .

الربط

-- عدد الميزّاتِ المجاورةِ التي تُجاورُ المنطقة.

عدد يولر Euler

- لم نطقة و احدة، واحد ناقص عدد الفتحاتِ في تلك المنطقةِ = 1- عدد الفتحات) . عدد يولر لمجموعة المناطق المُرتَبِطة يُمْكِنُ أَنْ يُحْسَبَ كعدد المناطق ناقص عدد الفتحاتِ (عدد يولر =عدد المناطق = 1).

أغلب هذه المقايءيس الإحصائية قَدْ تَكُونَ مفيدةَ المُسَاعَدة في التحكم بعملية الإستنتاج و التعرف على الصور ، حتى وإن كانوا بشكل منفصل غير كافين لعمل ذلك، بمعنى التفكير والإستنتاج والتمييز .

على أية حال، هذه الإجراءات رخيصة جداً للحساب كنواتج عرضية مِنْ إستراتيجيات الهقري المفصلة، خصوصاً نَمُو منطقة ولذلك، عند استعمال هذه الإجراءات بالإرتباط مع الميزّات المُنْتَرعة بشكل موثوق الأخرى، هم يُمكِنُ أَنْ يُساعدوا لتَحسين تقنيات ال نتعرف والتمييز بتضييق مجال البحث للم طابقات بين الصورة والميزّات الجسم المراد التعرف عليه.

الإجراءات الثابتة

عِدة مِنْ المقاعِس الإحصائية الذي مرت سابقا هي إجراءات ثابتة، التي تَقُولَ بأنّ قيمة الإجراء لا تَت غير، على سبيل المثال، موقع المنطقة في الصورة، أو ربما توجيهها أو مقياسها. هذه بشكل واضح خاصهة جيدة حيث اننا لا نستطيع ضمان رؤية جسم مِنْ وجهاتِ النظر المماثلةِ. وهكذا، بينما مركز ثقل منطقة من الواضح يَتغير بموقعِه، بينما منطقته ثابتة. بينما المنطقة تَتفاوتُ بالمِقياسِ (على سبيل المثال ، قرب آلةِ التصوير إلى الجسمِ) ، التركيز كما عُرّف اعلاه ثابتُ فيما يتعلق بالمِقياسِ بالإضافة إلى الموقع والتوجيهِ.

الإجراءات الثابتة الأخرى:

- أوصاف التقوسِ السطحي -- تقوس Gaussian والتقوس الهتوسط هما ثابيتان فيما يتعلق بدورانِ و تحريك السطح.
 - $M_1 \dots M_7$ عزم القصور الذاتي

هو ثابت فيما يتعلق تتغيير المُّقياس (التكبير و التصغير) والدوران والتحريك.

- اللا مركزية ثابتة ايضا، فيما يتعلق بتغيير المقياس (التكبير و التصغير) والدوران والتحريك.
- تحويلات فوريير (Fourier) ثابتة بالنسبة للهوران. نحن يُمْكِنُ أَنْ نَستعملَ تحويل فورييرَ لحِساب واصف فوريير للجسمِ الذي يعتبر ثابت فيما يتعلق بالموقع والتوجيهِ.

تمييز الهمط

طريق واحد للإكتشاف إذا جسم (أو جزء جسم) أَنْ يَبْحثَ عن الهمط البدائي الواقع في الهشهد.

مُطابقة القالد

مُطابِقة قالب نقطةِ الشاشة

هَنا نُريدُ قالب نقطةِ الشاشة ذات المستوى المنخفض. هناك 4 مبادئ:

القوالب الكلية

-- هنا مطلوب مطابقة مضبوطة. إنّ القالب نفس الحجم العالصورة المُدخلة. ليس هناك ثابت دوران أو تحريك. القوالب الجزئية

- هنا القالب بدون خلفية. الم طابقات المتعدّدة مَسْمُوحة. الم طابقات الجزئية لَرُبَّمَا أيضاً مَسْمُوحة. يجب اخذ الحيطة في هذه الحالة – القالب F يُمْكِنُ أَنْ يطابق بسهولة إلى القالب E . متطلبات التخزين قَدْ تُحدُّ تمثيلات النمط.

قوالب القطعة

- لإُجراء المطابقة هنا يقسم النمط إلى القوالب المكونة. ومثال على ذلك: - النمط A يُمْكِنُ أَنْ يَجِيز بثلاثة قوالب/، . - . متطلبات الخزيني أقل في هذه الطريقة .

القوالب المرنة

- هذه القوالب يُمْكِنُ أَنْ تُعالَجَ الإمْتِداد ، التوجيه و الإنحرافات المحتملة الأخرى. النموذج الجيد لجسمَ معروف مكتسبُ أولاً وم مثّلَ بشكل عوامل. الأمثلة الأخرى مُ مثلة وبعد ذلك يتم تعديل العوامل (التعلم بتعديل العوامل). تم استخدام الطرق المبنية على الإرخاءُ لتَقْرير المطابقات الهحتملة.

مُطابقة القوالب العالية المستوي

الهشكلة المتعلقة بنقطة الشاشة هي بالرغم من أنها رخيصة وبسيطة جداً للنّطبيق بالنسبة الدوران والتحريك هي مشكلة. أيضاً الصور تعاني من الشّويّئ تشويهات متمدّدة، ومليئة بالضوضاء. ومثال على ذلك: - كَيْفَ يمكن لطرق الهستوى الهنخفض معالجة الاحرف الهكتوبة بخط اليد؟

تشتغل طرق مطابقة قوالب المستوى العالي على الصورةِ التي قُسمتْ نموذجياً إلى مناطقِ الإهتمامِ. المناطق يُمْكِنُ أَنْ تُوْصَفَ من ناحية :"المساحة، متوسط الكثافة ، نسبة تغييرِ الكثافةِ، الققوس". و قَارنتْ أيضاً – "أكبر مِنْ، مجاور ل، فوق، مسافة بين".

القوالب لمَوْصُوفة في العِلاقاتِ بين المناطقِ. إستُخدمت هنا قواعد إنتاج و تمثيلات لغويةِ أخرى. لتنفيذ المطابقة استخدمت طرق إحصائية ايضا (تقنيات مبنية على الإرخاء).

تحويلات Hough

تحويلات Hough يُمْكِنُ أَنْ تَعُتَبرَ طريقة المطابقة بتعميِّ القالب. تحوّطيُ Hough نموذجياً يُستَعملُ لإنتزاع الحواف أَو النقُوّسُ مِنْ الصورةِ في هذه الحالةِ يُمْكِنُ إعتَىلِوَه رابطَ الحافةَ حيثُ أَنْ يُجمّعْ نقاطَ الحافةِ سوية ويُصِفُ كمعادلة خَطِّ

على أية حال تحويلات Hough يمكن أن ستنتعمل لإنتِزاع الدوائر و الاشكال المعممة حتى (ربما غير متماثلة). في هذه الحالة هي مثل مُطابق النمط. ولاحظ ان تحويلات Hough ثابتة بالنسبة إلى الدوران والمتعريك. المدخلات إلى تحويلات Hough عادة هي صورة التي إكتشفت حوافها – بإستخدام احد كواشف الحافة ، على سبيل المثال. دعنا نَفترضُ بأنّنا نَبْحثُ عن الخطوطِ المستقيمةِ في صورةِ. إذا نَأْخذُ نقطة (x',y') في الصورةِ، كُلّ الخطوط التي تَعْبرُ تلك النقطةِ لَها الشكلُ

$$y' = mx' + c (5)$$

لتَفَاوُت قِيمِ m وc. شاهد الرسم. 40.

الرسم. 40 خط خلال نقطة

على أية حال، هذه المعادلة يُمْكِنُ أيضاً أَنْ تُكْتَبَ ك

$$c = -x'm + y' \tag{6}$$

حيث نَعتبرُ الآن x' وy' لِكي يَكُونوا ثوابتَ، وm وc كمتغيرات. هذا خَطّ مستقيم على محاور إحداثيات c ضدّ m كما هو م عروض في الرسم. 41. كُلِّ خَطّ مختلف خلال النقطةِ (x',y) يُقابلُ إحدى النقاطِ على الخَطّ في (m,c) المستوى.

الوسم. 41 خط بإحداثيات m وى

لنعتبرُ النقطتان q و p في إحداثيات (x ,y) واللتان تقعان على نفس الخَطِّ.

• لكُلّ نقطة ، كُلّ الخطوطِ المُحتملةِ التي تمر خلاله ا مُمَثّلة بخَطّ وحيد في إحداثيات (m,c).

الخَطِّ الوحيد في إحداثيات (x,y) الذي يَمْرُ بكل من الفقطتين يقع علَى تقاطع الخُطين الممثّلان q و p في إحداثيات (m,c) ، كما هو مُصور في الرسم . 42.

الوسم. 42 نقطة على نفس الخَطِّ

رَأُخْذ هذه الخطوات ،

• كُلِّ النقاط التي تقع على نفس الخَطِّ في الاحداثيات (x,y) مُمَثَّلَة بالخطوطِ التي تمر خلال نقطة وحيدة في إحداثيات (m,c).

النقطة الوحيدة التي هم جميعاً عَرونَ خلالها تعطي قِيمَ m وى من معادلة الخَطِّ الجَرشاف الخطوطِ المستقيمة في صورة، نحن نعمَلُ التالي:

1. ثَيَّتْ قيمة إحداثيات(m,c) في مصفوّفة ثنائيق الأبعاد A للخطوات الملائمة من m وc.

2. نعط القيم المبدائية صُفر لكُل عناصر (m,c) A).

3. لكُلّ نقطة (x',y) تقع على بَعْض الحوافَ في الصورةِ، نُضيفُ 1 إلى كُلّ عناصر (m,c) A التي تشير الى ان y'=mx '+c و تحقق m و ي الصورةِ، نُضيفُ 1 الله عناصر (m,c) التي تشير الى ان

4. رُبُحثُ عن عناصرِ A (m,c) الهي لَه أُ قِيَمُ كبيرةً -- كُلِّ واحد يتم إيجاده يطابق مع الخَطِّ في الصورةِ الأصليةِ. ميزة مفيدةُ واحدة من تحويلات Hough هي ان تلك النقاطِ التي تقع على الخَطِّ لا يَلْزَمُ أن تَكُونَ كليا متاخمة له. على سبيل المثال، كُلِّ النقاطِ الواقعة على الخطين المنقطين في الرسم. 43 سَيَكُونُ منعرف عليهم كوقوع على نفس الخَطَّ الهستقيمَ. هذه يُمكنُ أَنْ تَكُونَ مفيدةَ جداً عندما تُحاولُ إكتِشاف الخطوطِ بلِنقطاعات قصيرةِ تحتسب كإشارة ضجيج، أو عندما الأجسام تُغلق جزئياً كما ظهر.

الوسم. 43 نقاط غير متاخمة على نفس الخَطِّ

من الناحية الأخرى، هو يُمْكِنُ أَنْ يَعطي نتائج مَضللة اذا صادف أن الاجسام كَانتْ مُصْطَفّةَ بِالصُّدفَة، كما هو معروض من قبل الخطّان المنقطان في الوسم. 44.

الوسم. 44 جسم مُصطَفّ

في الحقيقة، هذا يُوى بشكل واضح بأنّ واحد مِنْ عوائق طريقةً تحويلات Hough بأنّها تَعطي خَطّاً لانهائياً معبر عنه بزوج النقاط m وى ، بدلاً مِنْ قطعة خَطِّ محدودةِ بنقطتا نهاية واضحتا المعالم. المعادلة y =mx+c شكلت لتَمْثيل الخَطّ المستقيم الذي يَنوقّفُ للخطوطِ العموديةِ، عندما m تصبحُ لانهائيا. لتَفادي هذه المشكلةِ، من الأفضلُ إسْتِعْمال الصياغةِ البديلةِ (الرسم 44)،

$$x\cos\theta + y\sin\theta = r, (7)$$

كوسائل وَصنف الخطوط المستقيمة.

الوسم. 44 تمثيل الخَطُّوط

تُلاحظُ، على أية حال، ان النقطة في إحداثيات (x ,y) تقُثَّلُ الآن مِن قِبل منحنى في الفضاءِ بدلاً مِنْ خَطّ مستقيم.

ما عداً ذلك، الطريقة بدون تغييرً.

كما ذَكرنَا، تحقّ كِلاتُ Hough يمكن أن تشتَعملَ لإكتِشاف الأشكالِ الأخرى في الصورةِ بالإضافة إلى الخطوطِ المستقيمةِ.

على سبيل المثال، إذا نريد إيجاد الدوائر، بالمعادلة

$$(x-a)^2 + (y-b)^2 = r^2, (8)$$

الآن:

- كُلِّ نقطة في فضاء (x,y) تَقُابِلُ سطح في فضاء (a,b,r) (كما نحن يُمْكِنُ أَنْ نُغيِّرَ أَيِّ إِثنان a, b وr، لكن الطَّلْقُ ثابت).
 - الطريقة الأساسية، عدّلت لإستيعمال المصفوّفة الثلاثية الأبعاد A (a .b.r)،
 - كُلّ النقاط منها و التي تحقق المعادلة للهائرة مضاعفة.

عملياً، تَأْخذُ التقنيةَ كمياتَ متز آيدةَ بسرعة مِنْ الوقتِ للأقواسِ المعقّدةِ الأكثرِ كعدد المتغيّراتِ (ولِذلك عدد أبعادِ A). لذا الطريقة جيدة للإستعمال للأقواس البسيطةِ.

صور Gaussian الممتدة

- معلومات موجهِ (شعاع) طبيعيةِ سطحيّةِ لأيّ جسم يُمْكِنُ أَنْ يمثل كتخطيط وحدة كروية ، نتعمّى كرة Gaussian.
 - التخطيط يُدْعَى صورة Gaussian للجسم.
 - التخطيط: الموجهات لكُلّ نقطة من الجسم مَوْضُوعة بحيث : O الذيول (ذيل الموجه) بقع في مركز كرة Gaussian
 - o تقع الروزوسُ (رأسَ الموجه) على نقطة على الكرة تُخصّصُ إلى التوجيهِ السطحي المعيّنِ.

نحن يُمْكِنُ أَنْ نُمدّد هذه العمليةِ لكي نحصل على التألي:

- يخصص وزن إلى كُلّ نقطة على كرة Gaussian ويساوي منطقة السطح التي سَيكونُ عِنْدَها الموجه المُعطى
 - هذا التخطيط يُدْعَى صورة Gaussian الممتدة (EGI).
 - الأوزان الهُمَثَّاة بالموجهاتِ موازي إلى الأوضاع الطبيعية السطحيّة، بنظيرِ الطولِ إلى الوزنِ.
 مثال على هذا صورةِ Gaussian الممتدة الواضحة في الرسم. 45.

الوسم EGI .45 لكتلة

إستعمال النماذج الصلبةِ الثلاثية الأبعادِ مِنْ الأجسامِ (ستناقش في القسمَ التاليّ)،

- ĒGIs المطابق لكُلّ نموذج جسمِ مَخْزُنِ يُمْكِنُ أَنْ يُحْسَبَ ويُوفّرَ في قاعدةِ البيانات النموذجيةِ
 - النموذج مخَزنَ لكوسم بياني إحصائي لهوجهِ طبيعي سطحي.
 - إنتزعتُ الموجهات السطحيّة بسهولة مِنْ الصورةِ (تركيب مستوي)
- تتم المطابقة (بمُقَارَنَة الرسم البياني الإحصائي EGI) وتُخْسَبانِ لكل من الهوية وتوجيه الجسم. العوائق:
 - يُعرّفُ EGIs الأجسام المحدّبة فقط إستثنائياً.
 - عدد لانهائي مِنْ الأجسامِ غير المحدّبةِ يُمْكِنُ أَنْ يَمتلكَ نفس EGI.

الوسم 46. أمثلة الأجسام بنفس EGI

تمييز الاجسام المبنى على النموذج

- التمييز هو مشكلةً مطابقة بين المشهد ووصف النموذج.
- المطابقة مشكلة كلاسيكية من مشاكل الذكاء الإصطناعي.
- ، العديد من طرق الذكاء الإصطناعي المبنية على اساس البحث قدّمتْ المحاولة لحَلّ هذه المشكلةِ.
 - يعتبر التمييز معقد ومركز بشكل حسابي.
 - سنناقش ثلاثة طرق واسعة هنا.

طرق بحث الشجرة النظرة الأساسية:

- عُقَد الشجرةِ تُمثّلُ الهشهد لمطابقة عناصر النموذج الأولية (ومثال على ذلك: الحافة، السطح ... الخ).
 - لنفترض ان الشجرة لَها عدد m من الفروع في كُل عقدة التي تُقابلُ العناصر الاولية للنموذج.
 - لنفترض ان مستوى الشجرةِ يُمثّلُ العناصر الاولية للنموذج.
 - المستوى و موقع العقدة يُحدّدانِ زوج المطابقة.
 - نستعمل إستراتيجية بحث الشجرة (انظر اسفلا للطرق المستعملة) لإيجاد المطابقة.
 - إجتياز واحد خلال الشجرة يَعطى قائمة المطابقة -- اله طابقة الهحتملة مِنْ المشهدِ لتَشكيل الميزّاتِ.
 - القمثيل دَعا الهحث أو شجرة القفسير .

الوسم 47. شجرة القفسير

كَيفَ نُؤدّي المُطابقة؟

- في كُلّ مستوى من مستويات الشجرةِ، أحد الحافاتِ مِنْ المشهدِ تطابق بكُلّ الحافات m المحتملة في النموذج.
- كُلّ عقدةً لَها m أطفال الذين يُمثّلونَ أَخْذ الم طابق المقترحة الى ابعد حد مع كُلّ المطابقات المحتملة لحافةِ المشهد الحالية.
 - القحويل الذي يُمثّلُ المطابقةَ حتى الآن يُمْكِنُ أَنْ يُبقى.
 - شجرة بحثِ بلسلوب الهمّق أو لأوالنشذيّ برَفْض التفسيرات التي لا تحقق المطابق الحالية .
 - فضاء البحثَ كبيرُ -- مجموعات محتملة لعدد n من العناصر الاولية للمشهدِ.
 - الكثير مِنْ الحساباتِ؟

نحن يُمْكِنُ أَنْ نُخفّضَ المتاعب الحسابية بإسْتِخْدام بَعْض القيودِ الهندسيةِ المحليّةِ لتَشْذيب الشجرةِ أكثر.

و هي :

- سهلة للحساب والإستخدام.
- نظبقَ قبل إختبارِ التحويل.

للحافاتِ نحن يُمْكِنُ أَنْ نَستَخدمَ: `

توييد المسافة

-- طول الحافة المُحسّة يَجِبُ أَنْ يَكُونَ أقل أَو يساوي طولِ الحافةِ النموذجيةِ قَيْد النّظرِ

تقويد الفاوية

-- ٱلزاوية بين حافتين مُحسّتينِ منجاورتينِ يَجِبُ أَنْ تُوافق تلك بين الحافتين المتناظرتينِ في النموذج المطابقِ.

تقويد الإتجاه

د و \mathbf{d}_{ab} يُمثّل مدى الموجهاتِ مِنْ أيّ نقطة على الحافةِ المُحسّةِ a إلى أيّ نقطة على الحافةِ المُحسّةِ b في القسيرِ الذي أحسَّ على التوالي أزواجَ الحافاتَ a و b مع حافاتِ النموذج i و i هذا المدى مِنْ الموجهاتِ يَجِبُ أَنْ يَكُونَ متوافقَ بمدى الموجهاتِ المنتجَ مِن قِبل i i i

يُمْكِنُ أَنْ نَستخدمَ للسطوح:

- زوايا بين الهستويات (السطوح).
 - منطقة السطوح.
 - ثوابت.
 - إجراءات التقوس.

دراسات بعض حالات المطابقة المماثلة

طور العديد مِنْ القيودِ لكي تُنتجَ موجه مساعد لهحثَ كفوءَ. هنا نَصِفُ بَعْض الطرقِ المشهورة التي تُصوّرُ تشكيلة واسعة من الموجهات المساعدة.

طريقة Oshima و 1979)

هذه الطريقة كانتْ و آحدة من أوّل الطرق ِ التي طوّرتْ للتَعَامُل مع تَشْكِيلة أصنافِ الأجسامِ ولِكي تَكُونَ قادرة على القعرف على مشهد وَصفَ بخرائطِ العمقِ يَحتوي على أجسامَ متعدّدةَ في أيّ توجيه. الأجسام أعتَبَرت بلّنْ يَكُونَ عِنْدَها سطوحُ مستويةُ، سطوح مُقَوَّسة بيسر أو كلا النوعين. أصناف السطوحِ المُقَوَّسةِ بيسر سَمحتْ لتَتضمّنُ مجسمات القطع الناقص، مخاريط، وإسطوانات ..الخ.

تعَملُ هذه الطريقةِ بمرحلتين.

مرحلة التَعَلّم

هذه الطريقة لا تستعملُ أيّ تمثيل نموذج صلب مَخْزُون لإداء الم طابقة. بدلاً مِن ذلك تستخدم نماذج مَبْنية مِنْ صورِ الأجسامِ الّذي سَتُعَثَرفُ عليها. وهكذا ، مرحلة التعلم تَحْدثُ في الحالات التي بها الأجسام الهعروفة تعرض بشكل منفصل إلى النظام من وجهات نظر مختلفة. وصف كُلّ جسم يُعزّزُ، من ناحية خصائص السطوح وعِلاقاتِهم، لخَلْق نموذج الجسم.

إنّ الوصفَ يكون من إستعمال تقريج السطوح المُقَوَّسةِ والمستويةِ مِنْ الصورِ الفرديةِ. إنّ طريقةَ الإنقسامَ إستخدمتْ مِن قبل Shirai و Shirai هي طريقة على اساس نمو ال منطقة، بخلاف ذلك يحسب الكثيرِ من خصائص السطوح والعلاقات الداخلية. ثمّ يتم تُمَنثِيَّ هذا في رسم بياني علائقي أو شبكة سيمانطيقية (لفظية). الخصائص السطحيّة المثالية لكُلّ منطقة تَتضمّنُ:

- نوع سطحي (مستوي، إسطوانة الخ.)،
 - عدد السطوح المجاورة،
 - المنطقة،
 - الحافة،
- الحَدّ الأدنى، الحد الاقصى، أنصاف الأقطار الهتوسطة مِنْ سطح كروي غير منتظم الخ
 - الإنحراف المعياري مِنْ أنصافِ الأقطار مِنْ سطح كروي غير منتظم.

إنّ العِلاقاتَ بين السطوح مُمَيَّزة بالتالي:

- الهسافة بين سطح الاشكال الكروية الغير منتظمة ،
- الناوية بين أفضل المستويات اللائقة والمناطق المجاورة
- نوع التقاطع -- مصنف كمقعر أو محدّب، او خَلَيْط (إذا التقاطع لَيسَ محدّبَ أو مقعر) أو لايوجد تقاطع.
 فقط مجموعة منفصلة مِنْ وجهاتِ النظر تُستَعملُ لنمذجة الجسمَ. لوصف كامل لنموذجَ جسمِ يراد تجُميَجُ، كُلّ المشاهد الفريدة للجسم يجب أنْ تُقدّم إلى النظام.

مرحلة المطابوة

يَعُمل هذه المرحلة بمُحَاوَلَة مُ طابقة مجموعة المناطق المرئية الملاحظة في الهشهد إلى كُلّ منظر جسم في قاعدة بيانات أوصاف الجسم المتعلمة ليس كُلّ السطوح موجودة في نموذج المطابقة للمشهد قَدْ تَكُون موجودة في وصف المشهد المُلكحَظ بسبب التقسيم السيّئ، لذا الإجراء الذي يُحدّدُ المطابقات الخاطئ مطلوبُ يَهُجَز هذا بإطلاق البحث الأولى البيانات المُلكحَظة وبعد ذلك، عندما تطابق مجموعة مناسبة مِنْ ميزّاتِ المشهدِ بنجاح بالنموذج، بيانات النموذج تُستَعملُ لتَوجيه بقيّة البحث بشكل كفوء (انظر الرسم. 56)

(a) Image driven first phase of match

(b) Model driven second phase of match

الرسم 48.

طريقة 3DPO (1983)

الـ 3DPO (توجيه جزء ثلاثي الأبعاد) هو نظام رؤية طُوّر مِن قِبل Bolles وزملائه للقعرف وتَحديد مكان الأجزاء مِنْ خرائطِ العمق لأغراضِ تَوجيه ذراع آلي لإ لتقاط تشكيلة واسعة من الأجزاء الصناعية المعقّدة باعتدال. للوصول الى هذا الهدف تبين بأنّ أكثر إستراتيجيات الرؤية آنذاك لَمْ تُزوّد بالعمومية المطلوبة، أنْ نكُونَ مستندة على انواع الجسم العام البسيطِ مثل الإسطوانات، الكرات الخربدلا مِن ذلك تَبنّوا طريقة مختلفة كليّاً والتي يُمكنُ أنْ يتتعرف على الأجسام بإستعمال فقط بضعة ميزّات أو ميزات العناقيدَ التي تشيق عدد الاجسام إلى حد كبير (مثل دائرة مَع نصف قطر بنبّت) وبالتالي تقليل حجم فضاء بحث الحلّ. هذه الأفكار الآن المعروفة بطرق بؤرة الميزّة المحليّة. العملية المماثلة تَشْملُ خمس مراحل:

كشف ميزّات العنصر الاولى

- ميزّات المستوى المنخفضَ بتُقُسّمُ وتَرتبطُ سوية. تكتشف الحافات في البياناتِ الثلاثية الأبعادِ. تصنف الحافات الى مقعّرة، محدّبة، أو حافاتَ خطوة.

تشكيل عنقود الهيزات

توليد الفرضيات

- لإيجاد المطّابقة يعمل بحث قاعدة بيانات النماذج الإستراتيجية المستخدمة هنا أَنْ رَختبرَ الهناقيدَ الهفردةِ أولاً وإذا هذه لَيستْ كافية، يختبر مجموعات العناقيد في هذه المرحلة تستعمل نظري بؤرةِ الميزّةَ بالهَحْث عن جسمِ من عناقيدِ معيّنةِ، مثلا دوائر ذات نصف قطر مُحدِد.

إثبات الفرضية

- الفرضيات الهُشكَلة تجرّب بالبَحْث عن الميزّاتِ الإضافيةِ في الصورةِ الهنّسقة مع كُلّ فرضية مُعطاة. - • • تنديد والم

تصفية العوامل

-- في هذه المرحلةِ النهائيةِ، الفرضيةَ المُحَقَّقةَ المعطاة، مُسْتَوْجبةُ ثانيةً لكي تُنتجَ موقع أكثر دقّةً للجزءِ

طريقة المختصر (ACRONYM) طريقة المختصر

طور بروكس نظام رؤية ، ACRONYM ، الذي يَهترفُ على الأجسامِ الثلاثية الأبعادِ الواقعة في الصورِ الثنائية الأبعادِ الواقعة في الصورِ الثنائية الأبعادِ الأمثلة تَتضمّنُ النترف على الطائراتِ على مدارج الهطارِ مِنْ الصور الجويّةِ. يَستعملُ مبدأ الإسطوانةِ المعمم لتَمثيل كلا من النموذج المَخْزُون والجسم الهُنْتَزع مِنْ الصورةِ. . كما في طريقة Nevatia و Binford (انظر القسم القادم) ، استخدم تركيب الوسم اليباني الهلائقي لهتَزْين التمثيلِ. العُقد هي الإسطوانات المُعمَّمة والصلات يُمثَّلنِ التحويلات النسبية (دوران وتحريك) بين أزواج الإسطواناتِ.

يَستعملُ النظامُ تركيبا رسم بياني آخرينِ أيضاً، التي هي مَبْنية مِنْ نماذج الجسمَ، للمُسَاعَدة في إستراتيجيةِ المطابقة:

مخطط (رسم بياني) الهقييدِ

- هذا المخطط (الرسم البياني) يُمثّلُ القيودَ على أصنافِ الأجسامِ، لكي يَجْعلَ الجزء بالاوصاف العامة أوصافا أكثر تعييناً. أعطى مثالُ مِن قِبل بروكس الذي يَعتبرُ أصنافَ المحرّكاتِ الكهربائيةِ. هذا يُمْكِنُ أَنْ يُوْصَفَ بنوع الهحرّك الهام الذي يَجسّمَ إلى الأصنافِ الأكثرِ تعييناً مِنْ المحرّكاتِ مثل محرك مَع قاعدة، محرك بالحافاتِ. هذه يُمْكِنُ أَنْ تَكُونُ مصنفة من ناحية الأصنافِ الوظيفيةِ (معتمدة على الإستعمالِ) مثل مضخةِ ماء التدفئة المركزيةِ أو مضخّةِ الغازِ. القيود الإضافية مَسْمُوحة لكي تُضافَ إلى الهخطط أثناء عمليةِ الهترف.

مخطط الهنبق

-- الصلات في هذا المخطط نقئل العِلاقات بين الميزّاتِ في الصورةِ. إنّ الصلاتَ معرفة: " يَجِبُ أَنْ تَكُونَ "،" سَهِكُونَ" أَو " مقصور على " طبقاً لإحتمالية حدوث، وبوقت واحد، زوجَ الميزّاتِ المعطاة في جسم وحيد. حيث ان الصورةِ حسابُ ثنائي الأبعادُ فقط يَجِبُ أَنْ يَكُونَ مَأْخُوذَ مِنْ اسقاط ميزات الجسمِ الثلاثي الأبعادِ إلى بُعدين. يَستعملُ بروكس وصفان للميزّاتِ الثنائية الأبعادِ:

الأشرطة

ـ تنُتَعملُ لوَصْف مساقط شكلا مكون من الإسطواناتَ المعممة. ولاحظ ان Nevatia وBinford إَستعملا شكل ثلاثي الأبعاد من الشريط.

القطوع الناقصة

- تتُنتَّعملُ لوَصْف مساقط نهاياتِ إسطوانة مُعَمَّمة. مساقط نهاياتِ إسطوانة دائرية هي قطوع. للمقاطع العرضية المتعدِّدة الأضلاع، القطوع يُمْكِنُ أَنْ تُعطي وصف النهاياتِ بتركيب أفضل دائرةِ أَو قطع ناقص خلال القِمَمِ ومُلاحظة مسقط هذا الشكلِ.

إنّ عمليةَ المطابقةَ تؤدي على مرحلتين:

1. نبحث في الصورة عن الم طابقات المحلية لإشتقاق الأشرطة من النموذج المَخْزُونِ. في مثل هذه الحالات من المطابقات، الأشرطة مُجمّعة في عناقيد.

2. تفحص العناقيد من إجل الإتساق العام بمافي كُل مطابق يَجِبُ أَنْ تَحقق كلتا قيود مخطط التنبؤ ، والقيود المتراكمة لهخطط التقييد.

هذا العملِ وُسعَ مِن قِبل Kuan و Drazowich السَماح لإستعمالِ الصورِ الثلاثية الأبعادِ. إنّ المبادئ الأساسية للمختصرِ مَالتزمُ بها لكن الخصائص السطحيّة مُ ندمجة. أيضاً، مقاييس الهيزّةِ العدديةِ مستعملة أثناء المطابقة (بينما هناك إستعمال ميزات رمزيّة فقط في الطريقةِ الأصليةِ). إنّ ال خصائص السطحيّة مُتضمّنة في التمثيل المتعدد المستويات والميزّاتَ مثّلا في كُلّ مستوى:

مستوى الجسم

-- يخزن، على سبيل المثال، العلاقات الهكانية بين مكونات الجسم، أبعاد الجسم، خصائص نقطة النظر مثل الحجم الأدنى والأقصى، وعلاقات الإمتصاص بين الميزّات.

مستوى الإسطوانة المُعَمَّم

- يَخْزِنُ المحيط الحجمي للإسطوانة وموقع الإسطوانة والقوجيه، وأبعاد الإسطوانة، العلاقة بين الحافات الخ. هذا المستوى مهمُ جداً حيث ان الإسطوانات الهُعَمَّمة هي اساس تمثيلَ الأجسام في النظام. خصائص الإسطوانة المعيّنة بقيت منفصلة عن الخصائص السطحيّة الأكثر عمومية.

مستوى السطوح

-- يَصِفُ نوع السطح، معلومات حَدِّ الحافة، وعلاقة السطح المكانية. ،

مستوى الحافة

-- يُسجِّلُ أنواعَ الحافلت (خطوة، مقعّرة محدّبة الخ.).

طريقة Grimson و 1984) Lozano-Perez

هذه الطريقة صُمّمت أصلاً لم طابقة النقاطِ السطحيةِ الموجهةِ المتناثرةِ . لكن أيضاً مُدَدت لم طابقة الحافاتِ المستقيمةِ مِن قِبل موراي (1988) وآخرون. هنا نُناقشُ الطريقةَ من ناحية م طابقة الحافات ذات الخطوط الهباشرة في الهشهد مع الحافات ذات الخطوط المباشرة من الفهوذج، بالإستراد على عملِ موراي، وحيث ان الحافات مناسبة اكثر مِنْ النقاطِ عند توفر بياناتِ العمقِ الكثيفةِ. على أية حال، المُناقشة صحيحةُ على حد سواء لحالة النقاطِ السطحيّةِ الموجهةِ. إنّ الفرق الوحيدَ بأنّ النقاطِ نظابق إلى الوجوهِ النموذجيةِ المستويةِ وتطبيقِ بَعْض القيودِ الهندسيةِ مختلفةُ قليلاً. تتطلّبُ الطريقةُ الفرضياتَ التالية؛

بيانات الصورة قُسمتْ لتَزويد الحافاتِ الدقيقة مع يضمن بَعْض الخطأِ المحدّدِ. هذا الخطأِ محدّد من ناحية وَضْع النقاط الأخيرةِ و الحيرةِ بالنسبة لإتّجاهِ الحافةِ. أخطاء النقطةِ السطحيّةِ الموجهةِ محدّدة من ناحية حجم صغير مِنْ الخطأِ.

• الأجسام الَّذِي سَتُعتَرفُ يُمْكِنُ أَنْ تُشكّلَ كpolyhedra.

هذه الطريقة منقسمة إلى مرحلتين:

1. تُنتَجُ مجموعة شاملة مِنْ النفسيرات العمليةِ للبياناتِ المُحسّةِ النفسيرات تَشْملُ أزواج كُلّ حافة مُحسّة مَع بعضِ حافلتَ النموذج المخزنة. القسيرات الهتناقض مع قيود الحافةِ المحليّةِ والتي إشتقَتْ مِنْ النموذج تُبَدُ ببساطة قيود الحافة محليّة حيث انهم مُشْنَقُون مِنْ معرفةِ الحافات المُجَاوَرَة فقط وليسوا مِنْ المعرفةِ العامّةِ المُكسَسَة مِنْ وجهةِ النظرِ الكاملةِ أَو نموذج الجسمِ.

2. كُلّ تفسير عملي مُجَرّبُ للْإتساقِ بنموذج الجسمَ. النفسير جائزُ إذا هو يسمح بالهوران والتحريك الذي يَضِعانِ كُلّ حافة مُحسّة في المطابقة مَع حافة النموذج مَع بَعْض الخطأِ المحدّدِ.

بحث المخطط

نموذج الجسم وميز ات الهشهد مُمَثّلة في تركيب مبني على اساس شبكة سيمانطيقية. في الطريقة الأصلية من قبل Nevatia و Binford دعوا الشبكة - تركيب المخطط العلائقي:

هذه الطريقة كانت اساس العديد مِن الطرق ال مشهورة للتَمْثيل و تمييز الأجسام في رؤية الحاسوب.

المخطط يَشْهُلُ على:

- مجموعة العُقَدِ متصلة سووابط (أيضاً مسمّاة الحافاتِ أو الأقواسِ).
 - تُمثّلُ كُلّ عقدة ميزّة جسمِ (على سبيل المثال ، سطح)
- العُقَد يُمْكِنُ أَنْ تُعرَف بعِدَّة مِنْ خصائص الميزّات (مثل الحجم، الشكل، الهنطقة ، نوع السطح الخ.).
 - تُمثّلُ صلاتَ المخطط العِلاقاتَ بين الميزّاتِ ومثال على ذلك:
 - o مسافة بين المراكز للميز ات،
- و جوار الميزّات -- نسبة طول الحد المشترك بين الميزّتين إلى طول حافة أو لا مسمّى الميزّة.
 - نموذج تمثيل حَدِّ يُمْكِنُ أَنْ يُمثّلَ كهذا النوع مِنْ مخطط الجسم.

(a) Picture of a mug

(b) Relational Graph of Mug

الرسم 49. صورة فنجان وتمثيل مخططها البسيط

رُلاحظ ان بَعْض العِلاقاتِ هي مزدوجة الاتجاه، مثل المسافةِ، في تلك العلاقةِ لا تَعتمدُ على إتّجاهِ الوصلةِ. العلاقات الأخرى، مثل الجوار، يَعتمدُ على الإتّجاهِ.

التعرف:

- مسألة مُجَاراة رسمين بيانيين -- رسم بياني مِنْ نموذج الجسمَ إلى الرسم البياني مِنْ المشهدِ الذي يَحتوي الجسمَ
 - · طرق مماثلة يَجِبُ أَنْ تَأْخذَ في الحسبان الامتصاص وتتداخلُ الأجسام.
- الرسم بياني المشتق من نموذج صلب من الفنجان يَحتوي القاع الذي يَتغيّبُ في المشهد (ونموذج الهشمد).
 - لذا المشكلة في إيجاد رسم بياني ثانوي مِنْ الرسم البياني الكاملِ المشتق مِنْ النموذج الصلبِ.
 - هذه مشكلة كبيرة لبحث فضاء إستعمال القيود.

دعنا نَعُودُ لمعرفة كيف يُؤدّي Nevatia و Binford إستراتيجية المطابقة يَستعملونَ نموذج سطح بالإسطواناتِ المُعَمّمة كميزّات، رتّبته في مخطط علائقي. إنّ الميزّاتَ الهجمّعة في المجموعاتِ تسمى الأشرطةَ التي تَحتوي على مجموعات الخافاتِ الثلاثية الأبعادِ. كُلّ مجموعة تُفتَرضُ لتَشكيل حَدِّ مفرد الاسطوانة معمّة.

الهنطقة حيث أنَّ عِدَّة أشرطة مرتبطة مُثلَث بوصلة تمثيل كُل وصلة يَحتوي على قائمة الأشرطة المُرتبطة هذه القائمة منظّمة ، بحيث تقبع الأشرطة الأطول أو الأوسع أولاً.

لكُلّ منظر جسم هناك مخطط علائقي مَبْنيُ بالوصلات كعُقَد، وبالصلاتِ يُقابلُ أشرطةً مرتبطةً. تَخْزنُ هذه الصلاتِ خصائص هندسيةً مُخْتَلِفةً مِنْ الأشرطةِ، من ضمن ذلك طولِ المحورِ، عرض مقطع عرضي متوسطِ وإطالةِ وصنفِ (الهخروط أو الإسطوانة).

المخطط الذي يُمثِّلُ مشهد يطابق مع وصفِ النموذج في خطوتين:

1. لكُلّ شريط بارز ثلاث خصائص تَختارُ قيَاْدَة المُجَارَاة. هذه:

o ربط الشريط،

o نوع الشريطِ -- طويل أو عريض،

٥ صنف الشريطِ -- مخروطي أو إسطواني.

المطابقات الأولية مطلوبة للهَحْث عن الميزّاتِ البارّزةِ في الصورةِ. إذا عُثر على أكثر مِنْ م طابقة واحدة فإن الخصائص أعلاه تُستَعملُ لتُقرّرُ أيّ المطابقات يجب أنْ تؤخذ بالإعتبار أولا.

2. إنّ الم طابقات نَشأت لَقَضْمين الأشرطة الأخرى طالما إنساق علاقات الربط مُحتَفَظ ب ه. مخطط شكّل مِنْ وجهة نظر، عينمخ لمُجَاراة مخطط النموذج إذا بعض الأشرطة في مخطط النموذج ليست موجود في وجهة النظر.

الخاتمة

قارئي العزيز، انت الان تنتهي من قراءة كتاب عن أنظمة الذكاء الإصطناعي. أنا أعي انه خارج أطار هذا الكتاب مازالت هناك قارات من عالم الذكاء الإصطناعي تنتظر مكتشفيها من: باحثين، محلين، مطورين و طبيعيا قراء. بسبب ندرة المؤلفات باللغة العربية في هذا المجال، وقلة التخصص به في بلادنا، دفعني للعمل على تأليف هذا الكتاب. مادة هذا الكتاب توضح بأنه، في الوقت الراهن، في مجال أنظمة الذكاء الإصطناعي تتوفر قاعدة نظرية ضخمة، كما تتوفر مجموعة عريضة من مبادئ وتقنيات تطوير هذا النوع من الانظمة. الكثير من هذه المبادئ والتقنيات مدعومة بإدوات البرمجة والتطوير. والهدف الرئيسي للمؤلف من وراء هذا الكتاب، هو تقديم هذه المعلومات للقارئ العربي بلغته و بطريقة مبسطة، لسهولة الفهم، وتعريفه بهذا المجال من المعرفة. من الواضح انه لايمكن إعطاء تفصيل دقيق لكل مجالات الذكاء الإصطناعي بجميع مراحل تطوير انظمته والطرق المختلفة لذلك بكتاب واحد. لذلك نجد ان بعض اقسام هذا الكتاب لم تأخذ حقها من التفصيل على إعتبار بأن المؤلف يضع بخطته، انشاء الله، تأليف كتب مختصة بهذه المجالات. أوردت عدد كبير من المراجع التي يمكن للقارئ العودة لها ومعرفة معلومات مفصلة اكثر للجزيئة التي

من الواضح للقارئ بعد قراءة هذه الكتاب، ان تطوير انظمة الذكاء الإصطناعي، عملية شاقة وطويلة (تحتاج احيانا لإعوام) ومكلفة (تقدر بمئات الالاف من الدولارات وحتى الملايين) وتحتاج لفريق عمل بحثي، يعمل اعضائه مع بعضهم البعض ويملكون الخبرات العالية كل في مجاله. هذا يفسر غلاء هذه الانظمة، وتخصصها بمجال معين، وعدم توفر انظمة لحل طيف واسع من المشاكل وللاستخدام من قبل شريحة عريضة من المستخدمين. عليه تبقى مسألة إكتشاف النظريات والمبادئ والتقنيات الخاصة بتطوير انظمة الذكاء الإصطناعي، بمختلف مهام مراحله كالبحث، التمثيل، التفكير والاستنتاج والرؤية...الخ مسألة حيوية للبحث العلمي بهدف التطوير في مجال الذكاء الإصطناعي. كذلك تبقى عملية تطوير انظمة الذكاء الإصطناعي على الاسس والمبادئ والنظريات المتوفرة عملية ذات فائدة للانسان بتنفيذ مختلف المهام الحياتية. المسألة الاكثر أهمية، من وجهة نظري، هي نشر هذه المعلومات النظرية والانظمة المطورة بقواعد معلوماتها لتكون متاحة للدارس والمستخدم على حد سواء وبلغات مختلفة. في الختام أتمنى، ان تستغل مساهمتي المتواضعة، من قبل الدارسين العرب والمتخصصين او الراغبين في التخصص في هذا المجال صناعة في هذا المجال، للمتابعة في المضي في هذا الطريق، والوصول الى نجاحات اكبر ليصبح هذا المجال صناعة في بلادنا.

مع تحيات المؤلف والى اللقاء في كتاب قادم

د. بشير علي عرنوس

- <u>Александр Шамис</u>, Поведение, восприятие, мышление: проблемы создания искусственного интеллекта, <u>Едиториал УРСС</u>, 2005 г.
- <u>Стюарт Рассел</u>, <u>Питер Норвиг</u>, Искусственный интеллект. Современный подход, Издательство: <u>Вильямс</u>, 2006 г. <u>К. Птицин</u>, Алгоритмы искусственного интеллекта на языке PROLOG, Издательство: <u>Вильямс</u>, 2004 г.
- <u>Аркадий Частиков</u>, <u>Татьяна Гаврилова</u>, Разработка экспертных систем. Среда CLIPS, Издательство: <u>БХВ-Петербург</u>, 2003 г.
- А. П. Частиков, Д. Л. Белов, Т. А. Гаврилова, <u>Разработка экспертных</u> систем. Среда <u>CLIPS</u>, Твердый переплет (2003)
- А. И. Башмаков, И. А. Башмаков, Интеллектуальные информационные технологии, Твердый переплет (2005)
- Л. Г. Комарцова, А. В. Максимов, <u>Нейрокомпьютеры</u>, Твердый переплет (2004)
- Г. Б. Евгенев, <u>Системология инженерных знаний</u>, Твердый переплет (2001)
- Ю. А. Григорьев, Г. И. Ревунков, <u>Банки данных</u>, Твердый переплет (2002)
- В. В. Девятков, <u>Системы искусственного интеллекта</u>, Твердый переплет (2001)
- <u>Вячеслав Афонин</u>, <u>Владимир Макушкин</u>, Интеллектуальные робототехнические системы, Издательство: <u>Интернет-университет информационных технологий</u>, 2005 г.
- В. Л. Афонин, В. А. Макушкин, <u>Интеллектуальные робототехнические</u> системы, Твердый переплет (2005)
- <u>К. Протасова</u>, Искусственный интеллект. Стратегии и методы решения сложных проблем, Издательство: <u>Вильямс</u>, 2003 г.
- А. Л. Шамис, <u>Поведение, восприятие, мышление: проблемы создания искусственного интеллекта</u>, Издательство: <u>Едиториал УРСС</u>, 2005 г.
- А. И. Башмаков, И. А. Башмаков, <u>Разработка компьютерных учебников и обучающих систем</u>, Издательство: <u>Едиториал УРСС</u>, 2003 г.
- Н. Ясницкий, <u>Введение в искусственный интеллект</u>, Издательство: <u>ДМК</u> пресс, 2004 г.
- Е. В. Масленников, <u>Экспертное знание. Интеграционный подход и его приложение в социологическом исследовании</u>, Издательство: <u>Наука</u>, 2001 г.
- Бондарев В.Н., Аде Ф.Г., <u>Искусственный интеллект: Учебное пособие для вузов</u>
 - Твердый переплет (2002)
- В. К. Финн, <u>Интеллектуальные системы и общество</u>, Издательство: <u>Синтег</u>, 2002 г.
- Ю. Ф. Тельнов, <u>Интеллектуальные информационные системы в</u> экономике., Учебное пособие, Мягкая обложка (2000)
- В. В. Корнеев, А. Ф. Гареев, С. В. Васютин, В. В. Райх, <u>Базы данных.</u> <u>Интеллектуальная обработка информации</u>, Мягкая обложка (2000)
- К.А. Пупков, В.Г. Коньков, <u>Интеллектуальные системы</u>, Мягкая обложка (2003)
- В. А. Филиппов, <u>Интеллектуальный анализ данных: методы и средства</u>, Издательство: <u>Питер</u>, 2000 г.

- Б. Я. Лихтциндер, М. А. Кузякин, А. В. Росляков, С. М. Фомичев, Интеллектуальные сети связи, Издательство: Питер, 2000 г.
- Г. А. Кушнир, <u>Системы искусственного интеллекта.</u> <u>Лекция,</u> Издательство: <u>Маркетинг</u>, 2001 г.
- Вагин В.Н., Головина Е.Ю., Загорянская А.А. и др. <u>Достоверный и правдоподобный вывод в интеллектуальных системах</u>, Книгопечатная продукция (2004)
- А. В. Алексеев, А. Н. Борисов, Э. Р. Вилюмс, Н. Н. Слядзь, С. А. Фомин, Интеллектуальные системы принятия проектных решений, Издательство: Zinatne, 1997 г.
- Продеус А. Н., Захрабова Е. Н. <u>Экспертные системы в медицине</u>, Издательство: Век +, 1998 г.
- Т. А. Гаврилова, В. Ф. Хорошевский, <u>Базы знаний интеллектуальных</u> <u>систем</u>
 - Букинистическое издание (2000)
- Т. А. Гаврилова, Искусственный интеллект. В трех книгах. Книга 3. Программые и аппаратные средства, Издательство: Радио и связь, 1990 г.
- Вагин В.Н., Головина Е.Ю., Загорянская А.А. и др., Достоверный и правдоподобный вывод в интеллектуальных системах, 2004 г.
- А. В. Алексеев, А. Н. Борисов, Э. Р. Вилюмс, Н. Н. Слядзь, С. А. Фомин, Интеллектуальные системы принятия проектных решений, Твердый переплет (1997)
- Еремеев А.П. Экспертные модели и методы принятия решений. М.: МЭИ, 1995.
- Загорулько Ю.А., Попов И.Г. Представление знаний в интегрированной технологической среде SemP-TAO// Сб. Проблемы представления и обработки не полностью определенных знаний/ М. Новосибирск, RRIAI, 1996.
- Заде Л. Понятие лингвистической переменной/ Пер. с англ. М.: Мир, 1976. 165 С.
- Искуственный интеллект: В 3 кн.: Справочники/ Под ред. Э.В. Попова, Д.А. Поспелова, В.Н. Захарова, В.Ф. Хорошевского. М.: Радио и связь, 1990.
- Першиков В.И., Савинков В.М. Толковый словарь по информатике. М., Финансы и статистика, 1991.
- Попов Э.В., Фридман Г.Р. Алгоритмические основы интеллектуальных роботов и искусственного интеллекта. М.: Наука, 1976.
- Попов Э.В. Экспертные системы: Решение неформализованных задач в диалоге с ЭВМ. М.: Наука. Гл. ред. ф-м лит., 1987.
- Попов Э.В. и др. Реинжиниринг бизнеса: Реинжиниринг организаций и информационные технологии. М.: Финансы и статистика, 1997.
- Поспелов Г.С. Системный анализ и искусственный интеллект. М.: ВЦ АН СССР, 1980.
- Поспелов Г.С. Искусственный интеллект основа новой информационной технологии. М.: Наука, 1988.
- Поспелов Д.А. Ситуационное управление: теория и практика. М.: Наука, 1980.
- Минский М. Структура для представления знания // Психология машинного зрения/ М.: Мир, 1978.
- Уотерман Д. Руководство по экспертным системам. М.: Мир, 1989.
- Швецов А.Е. Основные положения технологии активных объектов. Новосибирск, Препринт/ Рос. НИИ ИИ, 1995.

- Александров Н.И. и др. Моделирование организации и управления решением научно-технических проблем. М., Наука, 1988.
- Абчук В.А., Бункин В.А. Интенсификация: принятие решений. Л.: Лениздат, 1987. 174 С.
- Борисов А.Н. и др. Модели принятия решений на основе лингвистической переменной. Рига; ЗИНАТНЕ, 1982. С. 173
- Ефимов Е.И. Решатели интеллектуальных задач. М.: Наука, 1982.
- Дерягин Р.И. Алгоритм решения исследовательских проблем //Информатика и ее проблемы. Новосибирск, Наука, вып.5, 1972.
- Жуковин В.Е. Многокритериальные модели принятия решений с неопределенностью. Тбилиси, 1983.
- Ларичев О.И. Наука и искусство принятия решений. М., 1979.
- Ларичев О.И. Проблемы принятия решений с учетом факторов риска и безопасности. Вестник АН СССР, 1987, N 11, C. 38-45.
- Лотов А.В. и др. Компьютер и поиск компромисса. Метод достижимых целей. М. Наука, 1997.
- Макаров И.М. и др. Теория выбора и принятия решений. М.: Наука, 1987.
- Ниссинен Й., Воутилайнен Э. Время руководителя: эффективность использования.- М.: Экономика. 1988. -193 С.
- Озерной В.М. Принятие решений (обзор). "Автоматика и телемеханика", N11, 1971, C.106-121.
- Основы функционально стоимостного анализа. / Под ред. М.Г. Карпунина и Б.И. Майданчика. М.: Энергия, 1980.-176 С.
- Орловский С.А. Проблемы принятия решений при расплывчатой информации. М.: наука, 1981.
- Саати т. Принятие решений: Метод анализа иерархий/ Пер. с англ. М.: Радио и связь, 1993.
- Функционально-стоимостный анализ в электротехнике/ Под ред. М.Г. Карпунина. М.: Энергоатомиздат, 1984. 288 С.
- Френкс Л. Теория сигналов. М.: Сов. радио, 1974.
- Ennals, R., *Artificial Intelligence: Applications to Logical Reasoning and Historical* Research. New York: Wiley, 1985.
- Banerji, R. B. (1980). Artificial Intelligence: A Theoretical Approach. North Holland, NewYork.
- Winston, P. H., Artificial Intelligence. second edition. Reading, Mass.: Addison-Wesley, 1984
- Charniak, E. and McDermott, D., *Introduction to Artificial Intelligence*. Reading, Mass.: Addison-Wesley, 1985.
- Gevarter, W. B., *Intelligent Machines: An Introductory Perspective of Artificial Intelligence* and Robotics. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1985.
- Reitman, W., (ed.), Artificial Intelligence Applications for Business. Norwood, N. J.: Ablex, 1984.
- Feigenbaum, E., and McCorduck, P., *The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge* to the World. Reading, Mass.: Addison-Wesley, 1983.
- Waterman, D., A Guide to Expert Systems. Reading, Mass.: Addison-Wesley, 1986. Hayes-Roth, F., Lenat, D., and Waterman, D., (eds.), Building Expert Systems. Reading, Mass.: Addison-Wesley, 1983.
- Winograd, T., Language As a Cognitive Process, Volume I: Syntax. Reading, Mass.: Addison-Wesley, 1983.
- Schank, R. and Abelson, R., *Scripts, Plans, Goals, and Understanding*. Hillsdale, N.J.: Lawrence Erlbaum, 1977.
- Ballard, D. and Brown, C., Computer Vision. Englewood Cliffs, N.J.: Prentice-Hall, 1982.

- Wos, L., Overbeek, R., Lusk, E., and Boyle, J., *Automated Reasoning: Introduction and Applications*. Englewood Cliffs, N. J., Prentice-Hall, 1984.
- Maier, D., "Databases in the Fifth Generation Project: Is Prolog a Database Language?", in New Directions for Database Systems, Ariav, G. and Clifford, J., eds. Norwood, N.J.: Ablex, 1986.
- Fishman, D., "The DBMS--Expert-System Connection", in *New Directions for Database Systems*, Ariav, G. and Clifford, J., eds. Norwood, N.J.: Ablex, 1986,
- Michalski, R., Carbonell, J., and Mitchell, T., eds., Machine Learning: An Artificial Intelligence Approach. Palo Alto, Ca.: Tioga, 1983.
- Goldberg, A., and Robson, D., *Smalltalk-80: The Language and Its Implementation*. Reading, Mass.: Addison-Wesley, 1983.
- Winston, P., and Horn, B., *Lisp*, second edition. Reading, Mass.: Addison-Wesley, 1984.
- Olivier Faugeras (1993). Three-Dimensional Computer Vision, A Geometric Viewpoint, MIT Press.
- David A. Forsyth and Jean Ponce (2003). Computer Vision, A Modern Approach, Prentice Hall
- Richard Hartely and Andrew Zisserman (2003). *Multiple View Geometry in computer vision*, Cambridge University Press
- Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms. *Machine Learning*, 6(1):37–66.
- Al-Attar, A. (1991). Structured Decision Tasks Methodology. Attar Software Ltd., Newlands
- Aleksander, I., Thomas, W. V., and Bowden, P. A. (1984). Wisard: A radical step forward in image recognition. *Sensor Review*, 4:120–124.
- Arbab, B. and Michie, D. (1988). Generating expert rules from examples in prolog. In
- Hayes, J. E., Michie, D., and Richards, J., editors, *Machine Intelligence 11*, pages 289 –304. Oxford University Press, Oxford.
- Bain, M. (1990). Machine-learned rule-based control. In Grimble, M., McGhee, J., and Mowforth, P., editors, *Knowledge-Based Systems in Industrial Control*, pages 222–244, Stevenage. Peter Peregrinus.
- Bilbro, G. and den Bout, D. V. (1992). Maximum entropy and learning theory. *Neural Computation*, 4:839–853.
- Bratko, I. (1991). Qualitative modelling: Learning and control. In *Proceedings of the 6th Czechoslovak Conference on Artificial Intelligence*. Prague.
- Bratko, I. Mozetic, I. and Lavrac, L. (1989). *KARDIO: A Study in deep and Qualitative Knowledge for Expert Systems*. MIT Press, Cambridge, MA, and London.
- Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). *Classification and Regression Trees*. Wadsworth and Brooks, Monterey, Ca.
- Buntine, W. (1992). Learning classification trees. Statistics and Computing, 2:63–73.
- Dvorak, D. L. (1987). Expert systems for monitoring and control. Technical Report
- Ersoy, O. K. and Hong, D. (1991). Parallel, self-organizing, hierarchical neural networks for vision and systems control. In Kaynak, O., editor, *Intelligent motion control: proceedings*
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Academic Press, 2nd edition.
- Geman, S. (1992). Neural networks and the bias/variance dilemma. *Neural computation*, 4:1–58.
- Hecht-Nielsen, R. (1989). *Neurocomputing*. Addison-Wesley, Reading, Mass.
- Hertz, J., Krogh, A., and Palmer, R. (1991). *Introduction to the Theory of Neural Computation*. Addison-Wesley.
- Kohonen, T., Barna, G., and Chrisley, R. (1988). Statistical pattern recognition with neural networks: Benchmarking studies. In *IEEE International Conference on Neural Networks*, volume 1, pages 61–68, New York. (San Diego 1988), IEEE.
- Krishnaiah, P. and Kanal, L., editors (1982). *Classification, Pattern Recognition, and Reduction of Dimensionality*, volume 2 of *Handbook of Statistics*. North Holland, Amsterdam.

- Clocksin, W. and Mellish, C., Programming in Prolog. second edition. Berlin, B.R.D.: Springer-Verlag, 1984. A well-written introduction to Prolog as a programming language, including features not covered in our book. Uses a dialect containing ours. Sterling, L. and Shapiro, E., The Art of Prolog. Cambridge, Mass.: MIT Press, 1986. A more detailed introduction to Prolog.
- Bratko, I., Prolog Programming for Artificial Intelligence. Reading, Mass.: Addison-Wesley, 1986.
- Clark, K., and McCabe, F., *Micro-Prolog: Programming in Logic*. Englewood Cliffs, N. J.: Prentice-Hall International, 1984.
- Dudgeon, D.E. and R.M. Mersereau, *Multidimensional Digital Signal Processing*. 1984, Englewood Cliffs, New Jersey: Prentice-Hall.
- Castleman, K.R., *Digital Image Processing*. Second ed. 1996, Englewood Cliffs, New Jersey: Prentice-Hall.
- Oppenheim, A.V., A.S. Willsky, and I.T. Young, *Systems and Signals*. 1983, Englewood Cliffs, New Jersey: Prentice-Hall.
- Papoulis, A., Systems and Transforms with Applications in Optics. 1968, NewYork: McGraw-Hill.
- Russ, J.C., *The Image Processing Handbook*. Second ed. 1995, Boca Raton, Florida: CRC Press.
- Giardina, C.R. and E.R. Dougherty, *Morphological Methods in Image and Signal Processing*. 1988, Englewood Cliffs, New Jersey: Prentice–Hall. 321.
- Gonzalez, R.C. and R.E. Woods, *Digital Image Processing*. 1992, Reading, Massachusetts: Addison-Wesley. 716.
- Goodman, J.W., *Introduction to Fourier Optics*. McGraw-Hill Physical and Quantum Electronics Series. 1968, New York: McGraw-Hill. 287.
- Stockham, T.G., *Image Processing in the Context of a Visual Model.* Proc. IEEE, 1972. **60**: p. 828 842.
- Murch, G.M., Visual and Auditory Perception. 1973, New York: Bobbs-Merrill Company, Inc. 403.
- Frisby, J.P., Seeing: Illusion, Brain and Mind. 1980, Oxford, England: Oxford University Press. 160.
- Born, M. and E. Wolf, *Principles of Optics*. Sixth ed. 1980, Oxford: Pergamon Press.
- Young, I.T., *Quantitative Microscopy*. IEEE Engineering in Medicine and Biology, 1996. **15**(1): p. 59-66.
- Dorst, L. and A.W.M. Smeulders, *Length estimators compared*, in *Pattern Recognition in Practice II*, E.S. Gelsema and L.N. Kanal, Editors. 1986, Elsevier Science: Amsterdam. p. 73-80.
- Vossepoel, A.M. and A.W.M. Smeulders, *Vector code probabilities and metrication error in the representation of straight lines of finite length.* Computer Graphics and Image Processing, 1982. **20**: p. 347–364.
- Groen, F.C.A., R.J. Ekkers, and R. De Vries, *Image processing with personal computers*. Signal Processing, 1988, 15: p. 279-291.
- Verbeek, P.W., H.A. Vrooman, and L.J. Van Vliet, *Low-Level Image Processing by Max-Min Filters*. Signal Processing, 1988. **15**: p. 249-258.
- Young, I.T. and L.J. Van Vliet, *Recursive Implementation of the Gaussian Filter*. Signal Processing, 1995. **44**(2): p. 139-151.
- Vincent, L., Morphological transformations of binary images with arbitrarystructuring elements. Signal Processing, 1991. **22**(1): p. 3-23.
- Van Vliet, L.J. and B.J.H. Verwer, *A Contour Processing Method for Fast Binary Neighbourhood Operations*. Pattern Recognition Letters, 1988. **7**(1): p. 27-36.
- Canny, J., *A Computational Approach to Edge Detection*. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986. **PAMI-8**(6): p. 679-698.
- Marr, D. and E.C. Hildreth, Theory of edge detection. Proc. R. Soc. London Ser. B., 1980. 207: p. 187-217.
- Verbeek, P.W. and L.J. Van Vliet, On the Location Error of Curved Edges in Low-Pass Filtered 2D and 3D Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994. 16(7): p. 726-733.

- Lee, J.S.L., R.M. Haralick, and L.S. Shapiro. *Morphologic Edge Detection*. In 8th International Conference on Pattern Recognition. 1986. Paris: IEEE Computer Society.
- Van Vliet, L.J., I.T. Young, and A.L.D. Beckers, A Non-linear Laplace Operator as Edge Detector in Noisy Images. Computer Vision, Graphics, and Image Processing, 1989. 45: p. 167-195.
- Meyer, F. and S. Beucher, *Morphological Segmentation*. J. Visual Comm. Image Rep., 1990. **1**(1): p. 21-46.

هذا الكتاب

الذكاء الإصطناعي جزء من عِلْم الحاسبات والذي عُهِنم بأنظمة الحاسوب الذكية ، تلك، الأنظمة التي تمتلك الخصائص المرتبطة بالذكاء واتخاذ القرار والمشابهة لدرجة ما ل لسلوك البشري في هذا المجال – فيما يخص اللغات ، تمثيل المعلومات، البحث، النَّعَلَم، التَفكين، اتخاذ القرار وَحْلَّ المشاكل...الخ. هذا الكتاب موجه للدارسين والباحثين باللغة العربية والعاملين والمطورين والمبرمجين في مجالات تقنية المعلومات من هندسة الكمبيوتر ونظم المعلومات. إن أسلوب الملخصات المعتمد في هذا الكتاب، ليكون اقرب الى الكتاب الأكاديمي، ويكون اسهل للقراءة والفهم من اسلوب السرد يسمح للدارسين في المجالات الاخرى كالهندسة، الطب، المجالات العلمية الآخرى كالرياضيات، الفيزياء، الكيمياء، الجغرافيا، علوم الارض، علوم الفضاء...الخ، كذلك العلوم

الإجتماعية بأنواعها بقراءة وفهم المضمون العام لهذا الكتاب