Loi discrètes et continues

PST

6 - Distributions usuelles

Résumé du document

Definition

Table des matières

1. Loi discrètes	2
1.1. Loi de Bernoulli	
1.1.1. Exemples	
1.2. Loi binomiale	
1.2.1. Exemples	
1.3. Loi géométrique	
1.3.1. Exemples	3
1.4. Loi de Poisson	3
1.4.1. Exemples	3
2. Loi continues	
2.1. Loi uniforme	
2.2. Loi exponentielle	
2.3. Loi normale (Laplace - Gauss)	

1. Loi discrètes

1.1. Loi de Bernoulli

On utilise la loi de Bernoulli lors-ce qu'on réalise une expérience dont l'issue est interprétée soit comme un **succès** soit comme un **échec**. On définit une variable aléatoire *X* qui prend la valeur 1 si le succès est réalisé et 0 sinon.

La loi de Bernoulli est composée de:

- un paramètre p qui représente la probabilité de succès $0 \le p \le 1$
- H l'ensemble des valeurs possibles de X qui est $H = \{0, 1\}$
- · la loi de probabilité

$$P(X=x) = \begin{cases} p & \text{si } x=1 \\ 1-p=q & \text{si } x=0 \end{cases}$$

L'espérance et la variance de la loi de Bernoulli sont respectivement:

$$E(X) = p$$
$$Var(X) = pq$$

1.1.1. Exemples

- lancer d'une pièce de monnaie
- tirage d'une carte

1.2. Loi binomiale

La loi binomiale est utilisée pour représenter le nombre de succès dans une série de n expériences de Bernoulli indépendantes chacunes ayant p comme probabilité de succès. On définit une variable aléatoire X qui compte le nombre de succès dans les n expériences.

La loi binomiale est composée de:

- un paramètre n qui représente le nombre d'expériences
- un paramètre p qui représente la probabilité de succès $0 \le p \le 1$ et q = 1 p
- H l'ensemble des valeurs possibles de X qui est $H = \{0, 1, 2, ..., n\}$
- la loi de probabilité

$$P(X=x) = \binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} p^x q^{n-x}$$

L'espérance et la variance de la loi binomiale sont respectivement:

$$E(X) = np$$
$$Var(X) = npq$$

Notation: $\mathbb{B}(n,p)$

En posant n=1, on obtient la loi de Bernoulli.

1.2.1. Exemples

- lancer d'une pièce de monnaie n fois
- tirage de *n* cartes

1.3. Loi géométrique

La loi géométrique est utilisée pour représenter le nombre d'expériences de Bernoulli indépendantes nécessaires pour obtenir le premier succès. On définit une variable aléatoire X qui compte le nombre d'expériences nécessaires pour obtenir le premier succès.

La loi géométrique est composée de:

- un paramètre p qui représente la probabilité de succès $0 \le p \le 1$ et q = 1 p
- H l'ensemble des valeurs possibles de X qui est $H = \{1, 2, 3, ...\}$
- la loi de probabilité

$$P(X = x) = p(1 - p)^{x - 1} = pq^{x - 1}$$

L'espérance et la variance de la loi géométrique sont respectivement:

$$E(X) = \frac{1}{p}$$
$$Var(X) = \frac{q}{p^2}$$

Notation: $\mathbb{G}(p)$

1.3.1. Exemples

- lancer d'une pièce de monnaie jusqu'à obtenir le premier succès
- tirage de cartes jusqu'à obtenir la première carte rouge

1.4. Loi de Poisson

La loi de Poisson est utilisée pour représenter le nombre d'événements rares dans un intervalle de temps ou d'espace donné. On définit une variable aléatoire X qui compte le nombre d'événements rares dans un intervalle de temps ou d'espace donné.

La loi de Poisson est composée de:

- un paramètre λ qui représente le nombre moyen d'événements rares dans l'intervalle de temps ou d'espace donné
- H l'ensemble des valeurs possibles de X qui est $H = \{0, 1, 2, ...\}$
- la loi de probabilité

$$P(X = x) = e^{-\lambda} \cdot \frac{\lambda^x}{x!}$$

L'espérance et la variance de la loi de Poisson sont respectivement:

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

Notation: $\mathbb{P}(\lambda)$

Si $\lambda = np$ avec n grand et p petit, alors la loi de Poisson est une approximation de la loi binomiale $\mathbb{B}(n,p)$.

1.4.1. Exemples

- le nombre de fautes d'impression par page dans un livre;
- le nombre de pièces défectueuses dans une livraison importante, la production étant de bonne qualité;
- le nombre d'individus dépassant l'âge de 100 ans dans une communauté;
- le nombre de faux numéros téléphoniques composés en un jour.

- 2. Loi continues
- 2.1. Loi uniforme
- 2.2. Loi exponentielle
- 2.3. Loi normale (Laplace Gauss)