Revisao

1. Introdução a Sistemas Distribuídos

- **Definição e Importância**: Sistemas distribuídos são formados por vários computadores que cooperam para realizar tarefas como se fossem uma única entidade. Exemplos incluem bolsas de valores, onde a propagação de eventos precisa ser quase em tempo real, e plataformas de streaming, que requerem uma alta disponibilidade para os usuários.
- Casos de Uso: Um exemplo destacado foi o uso de sistemas distribuídos para automação em mercados financeiros, onde o software detecta e propaga rapidamente mudanças nos preços das ações.

2. Arquitetura dos Sistemas Distribuídos

- Cliente-Servidor: Nessa arquitetura, o servidor oferece um serviço enquanto os clientes fazem requisições. Esse modelo é comum, por exemplo, em aplicações web, onde o servidor espera por solicitações e os clientes as iniciam.
- **P2P (Peer-to-Peer)**: Nesse sistema, cada nó atua tanto como cliente quanto como servidor. Usado em torrents, onde todos os participantes compartilham e obtêm arquivos simultaneamente, ajudando a distribuir a carga de dados.

3. Desafios e Tendências

- Mobilidade e Onipresença: Com a mobilidade, os sistemas distribuídos devem se adaptar para que o usuário tenha acesso contínuo ao serviço, mesmo que mude de rede (Wi-Fi para 4G, por exemplo).
- Heterogeneidade: Dispositivos e sistemas operacionais diversos precisam se comunicar. Para isso, usa-se o middleware, que atua como um intermediário e facilita a comunicação entre sistemas diferentes.
- Escalabilidade: Capacidade de aumentar o número de usuários ou cargas sem comprometer a
 performance. É fundamental em sistemas distribuídos de larga escala, como serviços de
 streaming.
- Confiabilidade e Tolerância a Falhas: Em um sistema distribuído, uma falha de um componente não deve comprometer o sistema inteiro, pois as falhas são tratadas de forma independente.
- **Serviços em Nuvem**: A computação em nuvem permite que usuários aluguem recursos (processamento e armazenamento) em vez de comprá-los, sendo uma tendência crescente devido à economia e flexibilidade proporcionadas.

4. Middleware

O middleware é uma camada de software entre o sistema operacional e as aplicações que esconde detalhes técnicos (como a rede e o tipo de hardware) e facilita a comunicação entre componentes distribuídos. Ele cuida da **heterogeneidade** do sistema, permitindo que diferentes dispositivos e redes trabalhem juntos.

5. Exemplos de Sistemas Distribuídos

- Sistemas de Multimídia: Como Netflix e YouTube, que distribuem conteúdo de vídeo para milhares de usuários. Esses sistemas exigem caching e distribuição geográfica para melhorar a eficiência.
- Jogos Online Massivos: Jogos com muitos jogadores simultâneos, que demandam uma infraestrutura escalável para manter a experiência de jogo em tempo real.

6. Modelos de Comunicação e Conexões

- TCP e UDP: Dois protocolos usados em comunicação entre cliente e servidor:
 - TCP (Transmission Control Protocol): Protocolo orientado à conexão que garante a entrega de dados com confiabilidade. Muito usado em aplicações onde a ordem dos dados e a confirmação da entrega são importantes.
 - **UDP** (User Datagram Protocol): Protocolo não orientado à conexão, usado onde a velocidade é mais importante que a confiabilidade, como em transmissões de vídeo ao vivo.

Questões para Estudo

#estudo/RevisaoSD

1. O que é um sistema distribuído? Dê um exemplo e explique a importância de sua utilização.

Um sistema distribuído é uma rede de computadores que trabalham juntos para realizar tarefas complexas, dando ao usuário a impressão de que é um único sistema. Cada computador (ou "nó") executa parte das operações, permitindo que grandes volumes de dados e processos sejam divididos. Por exemplo, o Google é um sistema distribuído: ele armazena dados em servidores ao redor do mundo e consegue fornecer respostas rápidas a milhões de usuários simultaneamente. A importância dos sistemas distribuídos está em sua capacidade de atender uma grande quantidade de usuários e realizar operações em larga escala, garantindo eficiência, escalabilidade e, muitas vezes, maior segurança.

2. Qual a diferença entre os modelos Cliente-Servidor e Peer-to-Peer?

?

No modelo Cliente-Servidor, o servidor é responsável por fornecer serviços (como armazenar dados ou processar informações) enquanto o cliente faz as solicitações. Por exemplo, ao acessar um site, o computador do usuário (cliente) faz uma solicitação ao servidor, que responde enviando a página solicitada. Já no modelo Peer-to-Peer (P2P), todos os computadores (ou "pares") podem agir tanto como clientes quanto como servidores. Um exemplo é o sistema de torrents, onde cada usuário pode tanto enviar quanto receber partes de arquivos de outros. A principal diferença entre os dois modelos é que, no Cliente-Servidor, há uma distinção clara de papéis (servidor fornece e cliente consome), enquanto no P2P todos os participantes colaboram ativamente.

3. Explique o papel do middleware em sistemas distribuídos.

2

O middleware é como um intermediário que facilita a comunicação e a integração entre diferentes sistemas e dispositivos em um sistema distribuído. Ele esconde detalhes técnicos, como o tipo de rede ou sistema operacional, permitindo que aplicativos em plataformas distintas funcionem juntos. Por exemplo, o middleware permite que um smartphone com sistema Android e um computador com sistema Windows compartilhem informações sem problemas. Ele faz isso "traduzindo" as informações, tornando o sistema mais eficiente e fácil de programar. Sem o

middleware, os desenvolvedores precisariam lidar com muitos detalhes complexos de hardware e rede.

4. Por que a escalabilidade é importante em sistemas distribuídos?

?

A escalabilidade é essencial em sistemas distribuídos porque permite que o sistema aumente sua capacidade de atender mais usuários ou processar mais dados sem perder desempenho. Em uma rede social como o Facebook, por exemplo, milhões de usuários podem estar online ao mesmo tempo; se o sistema não fosse escalável, ele ficaria lento ou até pararia de funcionar. Um sistema escalável consegue "crescer" conforme a demanda aumenta, o que é crucial para grandes aplicações e serviços que precisam manter uma boa experiência para os usuários, mesmo com um número muito alto de acessos.

5. Quais são as vantagens de utilizar serviços em nuvem em sistemas distribuídos?

?

Os serviços em nuvem permitem que as empresas "aluguem" recursos, como espaço de armazenamento ou capacidade de processamento, ao invés de comprar e manter servidores físicos. Isso reduz custos e aumenta a flexibilidade, já que é possível ajustar a quantidade de recursos conforme a necessidade. Outra vantagem é a acessibilidade: os dados e aplicativos ficam disponíveis na internet, permitindo que os usuários acessem de qualquer lugar. Por exemplo, uma empresa que usa o Google Drive pode armazenar e compartilhar documentos online, o que facilita o trabalho em equipe e reduz a necessidade de infraestrutura própria.

6. Qual a principal diferença entre os protocolos de comunicação TCP e UDP?

?

A principal diferença entre TCP e UDP está na forma como eles tratam a entrega de dados. O TCP (Transmission Control Protocol) é um protocolo confiável que garante que os dados cheguem ao destino sem erros e na ordem correta. É como enviar uma carta registrada, em que cada etapa é confirmada. Por isso, é usado em transmissões onde a ordem e a confiabilidade dos dados são importantes, como no carregamento de páginas da web. Já o UDP (User Datagram Protocol) é mais rápido, mas menos confiável, pois não garante que os dados cheguem nem que cheguem na ordem correta. Ele é utilizado em situações onde a velocidade é mais importante que a confiabilidade, como em transmissões ao vivo e jogos online, onde pequenas perdas de dados não comprometem a experiência.