```
import numpy as np #linear alg
In [1]:
         import pandas as pd #data processing
         import seaborn as sns
         import re
         from collections import defaultdict
         #point to files/datasets
In [2]:
         import os
         print(os.listdir('/Users/clairekraft/Desktop/Python/Data/Data Science Dataset
        ['fulltimeLA.csv', 'UK.csv', 'fulltimeCHI.csv', 'fulltimeNY.csv', 'fulltimeBO.
        csv', 'fulltimeAT.csv', 'fulltimeMA.csv', 'fulltimeMV.csv', 'fulltimeSU.csv',
        'fulltimeSF.csv', 'fulltimeSEA.csv', 'fulltimeSD.csv', 'fulltimeRM.csv', 'full
        timeDC.csv', 'USA.csv', 'fulltimeAL.csv', 'fulltimeBOS.csv']
        #import all US data
In [3]:
         data_us = pd.read_csv('/Users/clairekraft/Desktop/Python/Data/Data_Science_Da
         #now UK
         data uk = pd.read csv('/Users/clairekraft/Desktop/Python/Data/Data Science Da
         select_data_us = data_us[["position","description"]]
In [4]:
         select_data_uk = data_uk[["job_title","job_description"]]
         #rename UK columns
         select data uk = select data uk.rename(index=str, columns={"job title": "posi
         #concatenate resulting dataframes
In [5]:
         select_dat = pd.concat([select_data_us,select_data_uk],axis=0)
         #convert to strings
         select_dat = select_dat.applymap(str)
         #replace certain strings
         select dat["description"] = select dat["description"].replace(to replace='App)
         select dat["description"] = select dat["description"].replace(to replace='app)
         select dat["description"] = select dat["description"].replace(to replace='now
         select dat["description"] = select dat["description"].replace(to replace='app
         select dat["description"] = select dat["description"].replace(to replace='App)
         select_dat["description"] = select_dat["description"].replace(to_replace='Job
         select dat["description"] = select dat["description"].replace(to replace='job
         select_dat["description"] = select_dat["description"].replace(to_replace='cha')
         select_dat["description"] = select_dat["description"].replace(to_replace='eve
         select dat["description"] = select dat["description"].replace(to replace='dat
         #Did it concat? Let's see the preview.
In [6]:
         select dat.head()
```

Out[6]:		position	description	
	0	Development Director	Development Director\nALS Therapy Development	
	1	An Ostentatiously-Excitable Principal Research	\n\n"The road that leads to accomplishment is	
	2	Data Scientist	Growing company located in the Atlanta, GA are	
	3	Data Analyst	DEPARTMENT: Program OperationsPOSITION LOCATIO	
	4 As	sistant Professor -TT - Signal Processing &	DESCRIPTION\nThe Emory University Department o	
In [7]:	select_dat.shape			
Out[7]:	(56964	4, 2)		
In [8]:	<pre>#I'm a Data Analyst (DA), so let's peek the DA postings from the listings. Analyst = select_dat[select_dat['position'].str.contains("Data Analyst")] Analyst.head()</pre>			
Out[8]:		position	description	
	3	Data Analyst	DEPARTMENT: Program OperationsPOSITION LOCATIO	
	100	Enterprise Data Analyst & Data Engineer	Role Overview\n\nNovelis is embarking on the j	
	287	Data Analyst - Public Education Data Analysis	General Information\n**Minimum salary is liste	
	298	Data Analyst	\nMake a Difference Every Day with Team Applie	
	333	Quantitative Data Analyst	PIMCO is a global investment solutions provide	
In [9]:	Scien	a Scientists? htist = select_dat[select_dat['p	oosition'].str.contains("Data Scientist")]	

Out[9]:		position	description
	2	Data Scientist	Growing company located in the Atlanta, GA are
	9	Senior Associate - Cognitive Data Scientist Na	Kn for being a great place to work and build a
	12	Senior Associate, Data Scientist	Innovate. Collaborate. Shine. Lighthouse — KPM
	15	Data Scientist	Cotiviti is looking for an industry leading Da
	18	Data Scientist	DATA SCIENTIST\n\nSUMMARY:\nAs an Amazon Web S
In [10]:	<pre>#ML? What a flex. ML = select_dat[select_dat['position'].str.contains("Machine Learning")] ML.head()</pre>		
Out[10]:		position	description
	4	Assistant Professor -TT - Signal Processing &	DESCRIPTION\nThe Emory University Department o
	63	Machine Learning / Artificial Intelligence Res	(This is an Individual Contributor Role)\n\nCo
	79	Technical Evangelist – Database, Analytics, an	\nDo you love data? Do you like getting people
	122	Mid Data Scientist - Machine Learning	Mid Data Scientist\nOur client in the Midtown
	133	Tech Fall 2018 Intern - Machine Learning	The Turner Story\n\nTurner is a division of Ti
In [11]:	<pre>#Fancy people BD = select_dat[select_dat['position'].str.contains("Big Data")] BD.head()</pre>		
Out[11]:		position	description
	124	Big Data SW Engineer	Kn for being a great place to work and build a
	136	Data Analytics Engineer / Big Data Engineer	5 years of hands on experience in Hadoop, HDFS
	160	Big Data Engineer (mid to senior level)	:\nGreenSky is a leading company in the consum
	407	Big Data Pipeline Software Engineer - Java/Scala	All data has a story to tall tan you hain tall
	417	Senior Director of Big Data Science & Analytics	, , , , , , , , , , , , , , , , , , , ,
In [12]:	#pip	o install wordcloud	

```
#import the wordcloud package
In [13]:
          from wordcloud import WordCloud, STOPWORDS
          import matplotlib.pyplot as plt
          #define the word cloud function with a max of 200 words
          def plot wordcloud(text, mask=None, max words=200, max font size=100, figure
                             title = None, title size=20, image color=False):
              stopwords = set(STOPWORDS)
              #define additional stop words that are not contained in the dictionary
              more_stopwords = {'one', 'br', 'Po', 'th', 'sayi', 'fo', 'Unknown'}
              stopwords = stopwords.union(more stopwords)
              #generate the word cloud
              wordcloud = WordCloud(background color='black',
                              stopwords = stopwords,
                              max_words = max_words,
                              max font size = max font size,
                              random_state = 42,
                              width=800,
                              height=400,
                              mask = mask)
              wordcloud.generate(str(text))
              #set the plot parameters
              plt.figure(figsize=figure size)
              if image color:
                  image colors = ImageColorGenerator(mask);
                  plt.imshow(wordcloud.recolor(color func=image colors), interpolation=
                  plt.title(title, fontdict={'size': title_size,
                                            'verticalalignment': 'bottom'})
              else:
                  plt.imshow(wordcloud);
                  plt.title(title, fontdict={'size': title size, 'color': 'black',
                                            'verticalalignment': 'bottom'})
              plt.axis('off');
              plt.tight layout()
          #n-gram func
          def ngram extractor(text, n gram):
              token = [token for token in text.lower().split(" ") if token != "" if token
              ngrams = zip(*[token[i:] for i in range(n gram)])
              return [" ".join(ngram) for ngram in ngrams]
          #func to generate a dataframe with n gram and top max row frequencies
          def generate_ngrams(df, n_gram, max_row):
              temp dict = defaultdict(int)
              for question in df:
                  for word in ngram_extractor(question, n_gram):
                      temp dict[word] += 1
              temp df = pd.DataFrame(sorted(temp dict.items(), key=lambda x: x[1])[::-1
              temp_df.columns = ["word", "wordcount"]
              return temp df
          #func to construct side by side comparison plots
          def comparison plot(df 1,df 2,col 1,col 2, space):
```

```
fig, ax = plt.subplots(1, 2, figsize=(20,10))

sns.barplot(x=col_2, y=col_1, data=df_1, ax=ax[0], color="royalblue")
sns.barplot(x=col_2, y=col_1, data=df_2, ax=ax[1], color="royalblue")

ax[0].set_xlabel('Word count', size=14)
ax[0].set_ylabel('Words', size=14)
ax[0].set_title('Top 20 Bi-grams in Descriptions', size=18)

ax[1].set_xlabel('Word count', size=14)
ax[1].set_ylabel('Words', size=14)
ax[1].set_title('Top 20 Tri-grams in Descriptions', size=18)

fig.subplots_adjust(wspace=space)
plt.show()
```

```
#select descriptions from DA
In [14]:
          Analyst_desc = Analyst["description"]
          Analyst desc.replace('--', np.nan, inplace=True)
          Analyst desc na = Analyst desc.dropna()
          #convert list elements to lower case
          Analyst desc na cleaned = [item.lower() for item in Analyst desc na]
          #remove html links from the list
          Analyst_desc_na_cleaned = [re.sub(r"http\S+", "", item) for item in Analyst_
          #remove special characters
          Analyst desc na cleaned = [re.sub(r"[-())"#/0;:<>{})"+=~|.!?,]", "", item) for
          #convert to dataframe
          Analyst desc na cleaned = pd.DataFrame(np.array(Analyst_desc_na_cleaned).resh
          #squeeze dataframe to obtain series
          Analyst cleaned = Analyst desc na cleaned.squeeze()
         /opt/anaconda3/lib/python3.8/site-packages/pandas/core/series.py:4563: Setting
         WithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
         able/user guide/indexing.html#returning-a-view-versus-a-copy
          return super().replace(
```

In [15]: #DA workcloud
plot_wordcloud(Analyst_cleaned, title="Word Cloud of Data Analyst Description

Word Cloud of Data Analyst Descriptions


```
In [16]: #select descriptions from DS
    Scientist_desc = Scientist["description"]
    Scientist_desc.replace('--', np.nan, inplace=True)
    Scientist_desc_na = Scientist_desc.dropna()
    #convert list elements to lower case
    Scientist_desc_na_cleaned = [item.lower() for item in Scientist_desc_na]
    #remove html links from the list
    Scientist_desc_na_cleaned = [re.sub(r"http\S+", "", item) for item in Scient
    #remove special characters
    Scientist_desc_na_cleaned = [re.sub(r"[-()\"#/0;:<>{}\"+=~|.!?,]", "", item) for
    #convert to dataframe
    Scientist_desc_na_cleaned = pd.DataFrame(np.array(Scientist_desc_na_cleaned).
    #squeeze dataframe to obtain series
    Scientist_cleaned = Scientist_desc_na_cleaned.squeeze()
```

```
In [17]: #DS wordcloud plot_wordcloud(Scientist_cleaned, title="Word Cloud of Data Scientist Description")
```

Word Cloud of Data Scientist Descriptions


```
In [18]: #select descriptions from ML
    ML_desc = ML["description"]
    ML_desc.replace('--', np.nan, inplace=True)
    ML_desc_na = ML_desc.dropna()
    #convert list elements to lower case
    ML_desc_na_cleaned = [item.lower() for item in ML_desc_na]
    #remove html links from the list
    ML_desc_na_cleaned = [re.sub(r"http\S+", "", item) for item in ML_desc_na_cl_
#remove special characters
    ML_desc_na_cleaned = [re.sub(r"[-()\"#/0;:<>{}`+=~|.!?,]", "", item) for item
#convert to dataframe
    ML_desc_na_cleaned = pd.DataFrame(np.array(ML_desc_na_cleaned).reshape(-1))
#squeeze dataframe to obtain series
    ML_cleaned = ML_desc_na_cleaned.squeeze()
```

```
In [19]: #ML plot_wordcloud(ML_cleaned, title="Word Cloud of Machine learning positions De
```

Word Cloud of Machine learning positions Descriptions


```
In [20]: #select descriptions from BD
BD_desc = BD["description"]
BD_desc.replace('--', np.nan, inplace=True)
BS_desc_na = BD_desc.dropna()
#convert list elements to lower case
BD_desc_na_cleaned = [item.lower() for item in BS_desc_na]
#remove html links from the list
BD_desc_na_cleaned = [re.sub(r"http\S+", "", item) for item in BD_desc_na_cl_
#remove special characters
BD_desc_na_cleaned = [re.sub(r"[-()\"#/0;:<>{}^++=~|.!?,]", "", item) for item
#convert to dataframe
BD_desc_na_cleaned = pd.DataFrame(np.array(BD_desc_na_cleaned).reshape(-1))
#squeeze dataframe to obtain series
BD_cleaned = BD_desc_na_cleaned.squeeze()
```

```
In [21]: #BD plot_wordcloud(BD_cleaned, title="Word Cloud of Big Data positions Description
```

Word Cloud of Big Data positions Descriptions


```
In [22]: #N-Gram analysis- N-grams are continuous sequences of words or symbols or tok
#In technical terms, they can be defined as the neighbouring sequences of ite.
#They come into play when we deal with text data in NLP(Natural Language Proc

#generate unigram for DA
Analyst_lgram = generate_ngrams(Analyst_cleaned, 1, 20)
#generate barplot for unigram
plt.figure(figsize=(12,8))
sns.barplot(Analyst_lgram["wordcount"],Analyst_lgram["word"])
plt.xlabel("Word Count", fontsize=15)
plt.ylabel("Unigrams", fontsize=15)
plt.title("Top 20 Unigrams for Data Analyst Descriptions")
plt.show()
```



```
In [23]: #bi-grams and tri-grams (Top 20)
Analyst_2gram = generate_ngrams(Analyst_cleaned, 2, 20)
Analyst_3gram = generate_ngrams(Analyst_cleaned, 3, 20)
#compare the bar plots
comparison_plot(Analyst_2gram,Analyst_3gram,'word','wordcount', 0.5)
```



```
In [24]: #generate unigram for DS
    Scientist_1gram = generate_ngrams(Scientist_cleaned, 1, 20)
    #generate barplot for unigram
    plt.figure(figsize=(12,8))
    sns.barplot(Scientist_1gram["wordcount"],Scientist_1gram["word"])
    plt.xlabel("Word Count", fontsize=15)
    plt.ylabel("Unigrams", fontsize=15)
    plt.title("Top 20 Unigrams for Data Scientist Descriptions")
    plt.show()
```



```
In [25]: #bi-grams and tri-grams (Top 20)
    Scientist_2gram = generate_ngrams(Scientist_cleaned, 2, 20)
    Scientist_3gram = generate_ngrams(Scientist_cleaned, 3, 20)
    #compare the bar plots
    comparison_plot(Scientist_2gram, Scientist_3gram, 'word', 'wordcount', 0.5)
```



```
In [26]: #generate unigram for ML
    Scientist_lgram = generate_ngrams(ML_cleaned, 1, 20)
    #generate barplot for unigram
    plt.figure(figsize=(12,8))
    sns.barplot(Scientist_lgram["wordcount"],Scientist_lgram["word"])
    plt.xlabel("Word Count", fontsize=15)
    plt.ylabel("Unigrams", fontsize=15)
    plt.title("Top 20 Unigrams for Machine Learning positions descriptions")
    plt.show()
```



```
In [27]: #bi-grams and tri-grams (Top 20)
ML_2gram = generate_ngrams(ML_cleaned, 2, 20)
ML_3gram = generate_ngrams(ML_cleaned, 3, 20)
#compare the bar plots
comparison_plot(ML_2gram, ML_3gram, 'word', 'wordcount', 0.5)
```



```
In [28]: #generate unigram for BD
BD_lgram = generate_ngrams(BD_cleaned, 1, 20)
#generate barplot for unigram
plt.figure(figsize=(12,8))
sns.barplot(Scientist_lgram["wordcount"],Scientist_lgram["word"])
plt.xlabel("Word Count", fontsize=15)
plt.ylabel("Unigrams", fontsize=15)
plt.title("Top 20 Unigrams for Big Data positions descriptions")
plt.show()
```



```
In [29]: #bi-grams and tri-grams (Top 20)
BD_2gram = generate_ngrams(BD_cleaned, 2, 20)
BD_3gram = generate_ngrams(BD_cleaned, 3, 20)
#compare the bar plots
comparison_plot(BD_2gram, BD_3gram, 'word', 'wordcount', 0.5)
```


In [30]: #Here's how the Data Science industry looks

#Data Analyst positions - (entry level position)

#Skills- knowledge of data science, big data, analytics, and machine learning

#May I add we need to be good translators, we must be able to translate numbe

#narrative to our stakeholders. We accompany our storytelling with aesthetic

#is unaccounted for in this EDA is "problem solving". Of course problem solvi

#science.

- In [31]: #Data Scientist positions- (Business focused role)
 #skills- knowledge of statistical and machine learning models
 #similar to the Data Analysts, Data Scientists have to use skills across the
 #of data mining, big data, analysis and machine learning.
- In [32]: #Machine Learning positions (Engineering focused role)
 #Education- computer science degree
 #Sklills- deep learning, software development, language processing, and artif
- #Big Data positions (Data Management role- highly technical)
 #The definition of big data is data that contains greater variety, arriving i
 #and with more velocity.
 #This is also known as the three Vs.
 #Put simply, big data is larger, more complex data sets, especially from new
 #These data sets are so voluminous that traditional data processing software
 #But these massive volumes of data can be used to address business
 #problems you wouldn't have been able to tackle before.

 #source Oracle