Magic States Distillation Using Quantum LDPC Codes.

David Ponarovsky

March 10, 2024

1 Good Codes With Large Λ .

```
ı Let J \leftarrow \emptyset
 ı Let J \leftarrow \emptyset
                                                                           2 for i \in [k/3] do
 2 for i \in [k/2] do
                                                                                   J \leftarrow J \cup \{v_{3i-2}, v_{2i-1}, v_{2i}\}
         J \leftarrow J \cup \{v_{2i-1}, v_{2i}\}
                                                                                   for S \subset J do
         for S \subset J do
 4
                                                                                        Compute the vector m_S
 5
             Compute the vector m_S
                                                                                           define as
                define as m_{S,j} = u_j \sum_{w \in S} w
 6
                                                                                          m_{S,j,j'} = u_{j'}u_j \sum_{w \in S} w
 7
                                                                                   end
         Pick S such m_S=0 and set
                                                                                   Pick S such m_S = 0 and set
                                                                            8
         u_i \leftarrow \sum_{w \in S} w
Choose randomly w \in S and set
                                                                                   u_i \leftarrow \sum_{w \in S} w
Choose randomly w \in S and set
                                                                                     J \leftarrow J/w
10 end
                                                                          10 end
   : Find commuted vectors u_1, u_2, ... u_{k'}
                                                                              : Find commuted vectors u_1, u_2, ... u_{k'}
```

Claim 1.1. Let $v_1, v_2..v_k$ vectors in \mathbb{F}_2^n , then there are $u_1, u_2..u_{k'}$ for k' > k/2. Such span $\{u_1, u_2..u_{k'}\} \subset \text{span } \{v_1, v_2..v_k\}$ and for any i, j it holds that $u_i u_j = 0$.

Proof. Consider the following algorithm:

Now, we are going to prove that Figure 1a always finds a subset S that satisfies the equality on line (7). Assume not. On one hand, the number of possible values that m_S can have is $2^i - 1$. On the other hand, since J contains i + 1 vectors on the ith iteration, it follows that the number of subsets is $2^{i+1} - 1 \ge 2^i$.

Therefore, there must be at least two different subsets S and S' such that $u_S = u_{S'}$. However, this means that

$$m_{S\Delta S',j} = u_j \sum_{w \in S\Delta S'} w = u_j \left(\sum_{w \in S\Delta S'} w + 2 \sum_{w \in S\cap S'} w \right)$$
$$= m_{S,j} + m_{S',j} = 0$$

Thus, $m_{S\Delta S'}=0$. Additionally, it is clear that the rank does not decrease, as for u_i , there exists one v_j such that only u_i is supported by v_j .

Claim 1.2. Let $v_1, v_2..v_k$ vectors in \mathbb{F}_2^n , then there are $u_1, u_2..u_{k'}$ for k' > k/4. Such span $\{u_1, u_2..u_{k'}\} \subset span \{v_1, v_2..v_k\}$. And for any $i, j \sum u_{i,k}u_{j,k} = 0$.

Proof. Use the Figure 1a twice. However, in the second iteration, define $m_{S,j}$ to be the product of module 4. Note that $m_{S,j}$ must be either 4n or 4n+2. Thus, we can follow the proof of Claim 1.1.

Claim 1.3. Consider the Left-Right (Δ,n) -Complex Γ . dim $C_X/C_Z^{\perp} \cap C_Z/C_X^{\perp}$ is linear in n.

Proof. The rates of both C_X/C_Z^{\perp} and C_Z^{\perp}/C_X^{\perp} are $(2\rho-1)^2$, where ρ can be any number in the range (0,1) [LZ22]. Consider choosing ρ such that the rates of the quotient spaces are strictly greater than $\frac{1}{2} + \alpha$. This implies that the rate of their intersection is greater than 2α .

Corollary 1.1. Fix the rate of the small codes C_A and C_B to $\rho = \frac{1}{2} + \alpha$. There is a subspace $\Lambda \subset C_X/C_Z^{\perp}$ at rate $\frac{1}{4} \cdot 2\alpha$ such that for any $x \in \Lambda$ and $y \in C_Z^{\perp} \cup \Lambda$ $xy =_2 0$ and also for any $x, y \in \Lambda$ $x, y =_4 0$.

Claim 1.4. Consider C, Λ and C', Λ' defined in ??. Denote by $\bar{\Lambda}$ the subspace C/Λ . Then:

$$d(C'/\bar{\Lambda}') \ge d(C/\bar{\Lambda})$$

Proof. The way we perform Guess elimination is critical. We want to make sure that we do not add an Λ row to a $\bar{\Lambda}$ row. [COMMENT] Continue, Easy. Just need to perform the row reduction when rows of Λ at bottom, and then rotate the matrix \frown

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \curvearrowright \begin{bmatrix} D & C \\ B & A \end{bmatrix}$$

Claim 1.5 (Not Formal). It is easy to see that by using concatenation again, one can obtain the code dim $\Lambda' \leftarrow \frac{1}{2} \dim \Lambda'$. For any $x \in \text{gen } \Lambda'$, $|x|_4 = 1$, and for any $x \in C'/\Lambda'$, we have $|x|_4 = 0$.

Proof. [COMMENT] We will do it by iterating the generators of C after performing rows reduction to the generator matrix. Now we will concatenate the i coordinate to complete the weight of the ith row to satisfy the requirements.

2 Distillate $|\Lambda + C_Z^{\perp}\rangle$ Into Magic.

Let $|f\rangle$ be a codeword in C_X , and let \hat{X}_g be the indicator that equals 1 if f has support on generator g, and 0 otherwise. Observe that applying T^{\otimes} on $|f\rangle$ yields the state:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= T^{\otimes n} \left| \sum_g \hat{X}_g g \right\rangle = \exp \left(i \pi / 4 \sum_g \hat{X}_g |g| - 2 \cdot i \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h |g \cdot h| \right. \\ &+ 4 \cdot i \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| - 8 \cdot i \pi / 4 \cdot \text{ integers} \right) \left| f \right\rangle \\ &= \exp \left(i \pi / 4 \sum_g \hat{X}_g |g| - 2 \cdot \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h |g \cdot h| + 4 \cdot i \pi / 4 \sum_{g,h} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| \right) \left| f \right\rangle \end{split}$$

So in our case:

$$\begin{split} T^{\otimes n} \left| f \right\rangle &= \\ &= \exp \left(i \pi / 4 \sum_{g \in \, \text{gen } \Lambda} \hat{X}_g \right. \\ &- 2 \cdot \pi / 4 \sum_{g \in \, \text{gen } \Lambda, h} 2 \hat{X}_g \hat{X}_h \\ &- 2 \cdot \pi / 4 \sum_{g,h \in \, \text{gen } C_Z^{\perp}} \hat{X}_g \hat{X}_h |g \cdot h| \\ &+ 4 \cdot i \pi / 4 \sum_{g,h \in \, \text{gen } C_Z^{\perp}} \hat{X}_g \hat{X}_h \hat{X}_l |g \cdot h \cdot l| \right) |f\rangle \end{split}$$

So eventually, we have a product of gates when non-Clifford gates are applied on only on generators of C_Z^\perp .

$$T^n \left| f \right\rangle = \prod_{g \in \, \mathrm{gen} \, \Lambda} T_g \prod_{g \in \, \mathrm{gen} \, \Lambda, h} \{CZ_{g,h} | I\} \prod_{g,h \in \, \mathrm{gen} \, C_Z^\perp} \{CS_{g,h} | CZ_{g,h} | I\} \prod_{g,h,l \in \, \mathrm{gen} \, C_Z^\perp} \{CCZ_{g,h,l} | I\} \left| f \right\rangle$$

Decompose $f = f_1 + f_2$, where f_1 is supported only on C_X/C_Z^{\perp} and f_2 is supported only on C_Z^{\perp} . By using commuting relations, the above can be turned into.

$$\begin{split} T^n \left| f \right\rangle &= \prod_{g \in \text{ gen } \Lambda, h} \{CZ_{g,h} | I\} \prod_{g \in \text{ gen } \Lambda} T_g \ X_{f_1} \\ &\prod_{g,h \in \text{ gen } C_Z^{\perp}} \{CS_{g,h} | CZ_{g,h} | I\} \prod_{g,h,l \in \text{ gen } C_Z^{\perp}} \{CCZ_{g,h,l} | I\} \left| f_2 \right\rangle \end{split}$$

Denote by M_1, M_2 the gates:

$$\begin{split} M_1 &= \prod_{g \in \text{ gen } \Lambda, h} \{CZ_{g,h}|I\} \\ M_2 &= \prod_{g,h \in \text{ gen } C_Z^\perp} \{CS_{g,h}|CZ_{g,h}|I\} \quad \prod_{g,h,l \in \text{ gen } C_Z^\perp} \{CCZ_{g,h,l}|I\} \end{split}$$

And then we get that

$$\begin{split} &\prod_{g\in\,\text{gen }\Lambda} T_g\,|f\rangle = M_1^\dagger T^n M_2^\dagger\,|f\rangle \\ &\prod_{g\in\,\text{gen }\Lambda} T_g\,|f\rangle = M_1^\dagger T^n\ E\ L[M_2^\dagger]\ |L[f]\rangle \end{split}$$

Claim 2.1. The state $\left(M_2^{\dagger}\otimes I\right)|C_Z^{\perp}+\Lambda\rangle|0\rangle$ can be computed, such that the light cone depth of any non-clifford gate is bounded by constant.

Proof.

$$(I \otimes H_X) CX_{n \to n} (E \otimes E) \quad I \otimes L[M_2^{\dagger}] \prod_{\substack{J \in \{\text{gen } \Lambda, g \in J \\ \text{gen } C_Z^{\perp} \}}} \prod_{\{l \in A, l \in J \}} (I + X_{L[g]}) \qquad |0\rangle |0\rangle$$

$$= (I \otimes H_X) CX_{n \to n} \sum_{\substack{z \in C_Z^{\perp} \\ x \in \Lambda}} e^{\varphi(z)} \qquad |x\rangle |z\rangle$$

$$= \sum_{\substack{z \in C_Z^{\perp} \\ x \in \Lambda}} \left(M_2^{\dagger} \otimes I \right) \qquad |x + z\rangle |0\rangle$$

$$= \left(M_2^{\dagger} \otimes I \right) \qquad |C_Z^{\perp} + \Lambda\rangle |0\rangle$$

Denote by $p \in [0, 1]$ the error rate of input magic states, and let $|A\rangle$ be an ancilla initialized to a one-qubit magic state. This $|A\rangle$ can be used to compute the T gate, with a probability of Z error occurring with a probability of p [BH12].

Claim 2.2. There are constant numbers $\zeta_{\Delta}, \xi_{\Delta}$, and a circuit C such that:

1. In the no-noise setting, The circuit compute the state

$$\mathcal{C} \left| 0 \right\rangle^{\Theta(n)} \otimes \left| A \right\rangle^{\Theta(n)} \to \prod_{g \in \ \mathrm{gen} \ \Lambda} T_g \left| C_Z^\perp + \Lambda \right\rangle$$

2. Otherwise, the circuit computes the state

$$\mathcal{C}\left|0\right\rangle^{\Theta(n)}\otimes\left|A\right\rangle^{\Theta(n)}\to Z^{e}\prod_{g\in\ gen\ \Lambda}T_{g}\left|C_{Z}^{\perp}+\Lambda\right\rangle$$

, where the probability that $e_i = 1$ is less than $\zeta_{\Delta} \cdot p$. Additionally, for any i, there are at most ξ_{Δ} indices j such that e_i and e_j are dependent.

Proof. Concatinate the $T^n \otimes I$ with the gate in Claim 2.1.

Claim 2.3. For any $\alpha \in (0,1)$ the probability that $|e| > (1+\alpha)p\zeta_{\Delta}$ is less than:

$$\mathbf{Pr}\left[|e| > (1+\alpha)\mathbf{E}\left[|e|\right]\right] < \frac{1 \cdot \xi_{\Delta} n}{\alpha^2 \zeta_{\Delta}^2 p^2 n^2} = o\left(1/n\right)$$

Proof. By the Chebyshev inequality, notice that the number for which $\mathbf{E}\left[e_ie_j\right] - \mathbf{E}\left[e_i\right] \mathbf{E}\left[e_j\right] \neq 0$ is less than $\xi_{\Delta}n$.

Definition 2.1. We will said that a decoder \mathcal{D} for the good qunatum LDPC code is an good-local decoder if

- 1. There is a treashold μn such that if the error size is less than $|e| < \mu n$ then \mathcal{D} correct e in constant number of rounds. With probability 1 o(1/n).
- 2. In any rounds \mathcal{D} performs at most O(n) work (depth \times width).
- 3. The above is true in operation-noisy settings, where there is a probability of p for an error to occur after acting on a qubit. (\star)
- \star The motivation for this is that if the decoder does not act on the qubit, then it also does not apply a T gate on it. Therefore, in the distillation setting, there is zero chance for an error to occur.

Claim 2.4. Suppose there is a good local decoder \mathcal{D} for the good qLDPC code. Then, there exists p_0 such that for any sufficiently large n, there is a distillation protocol that, given $\Theta(n)$ magic states at an error rate $p < p_0$, successfully distills $\Theta(n)$ perfect magic states with a probability of 1 - o(1/n). Furthermore, the protocol's space and time complexity (both quantum and classical) are $\Theta(n)$ and $\Theta(n^2)$, respectively.

References

- [BH12] Sergey Bravyi and Jeongwan Haah. "Magic-state distillation with low overhead". In: *Physical Review A* 86.5 (2012), p. 052329.
- [LZ22] Anthony Leverrier and Gilles Zémor. Quantum Tanner codes. 2022. arXiv: 2202.13641 [quant-ph].