2016级《一元分析学》期中考试试卷A卷

院((系)	班级	学号	姓名
ープは(<i>AN J</i>	クエカ人	1 1	\\T-\

考试日期: 2016.11.21

题号	 	三	四	五	总分
得分					

得分	
评阅人	

一. 填空题(每小题4分, 共20分)

- 1. $\lim_{n\to\infty} \frac{\sqrt[4]{n^3+1}\sin(n!)}{n^2+1} = \underline{\qquad}$.
- 2. $x_1 = 4, x_{n+1} = \frac{1}{2}(x_n + \frac{4}{x_n})$,设集合 $E = \{x_n | n = 1, 2, ...\}$,则 $\sup E = \underline{\hspace{1cm}}$, inf $E = \underline{\hspace{1cm}}$.
- 3. 己知 $f(x) = \begin{cases} \frac{\sqrt{x+a}-3}{x-2}, & x > 2 \\ x+b, & x \le 2 \end{cases}$ 在x = 2处连续,则 $a = \underline{\qquad}, b = \underline{\qquad}.$
- 4. $y = (x^3 1) \arctan \frac{x}{\sqrt{1 x^2}}$ 的导数为_______.
- 5. 阿基米德螺线 $r=2\theta$ 在 $\theta=\frac{\pi}{2}$ 时的切线方程为______

得分	
评阅人	

二. 选择题(每小题4分,共12分)

- 1. 当 $x \to 0^+$ 时,与 $\sqrt{x + \sqrt{x + \sqrt{x}}}$ 等价的无穷小量为_
 - (A) $x^{\frac{1}{2}}$
- (B) $x^{\frac{1}{4}}$ (C) $x^{\frac{1}{8}}$
- 2. 设 $f(x) = \cos(x + |\sin x|)$,则在x = 0处有_____
 - (A) f'(0) = 2 (B) f'(0) = 1 (C) f'(0) = 0 (D) f(x) 不可导
- 3. 设复合函数f(g(x))满足 $\lim_{x\to 0} f(g(x)) = A$,且有 $\lim_{x\to 0} g(x) = b$,则 f(x)在x = b处连续是f(b) = A的_____
 - (A) 充分条件
- (B) 必要条件
- (C) 充要条件
- (D) 即非充分也非必要条件

得分	
评阅人	

三. 计算题(每小题6分,共30分)

1. 己知 $y = x^{\ln x}$, 求y'.

2. 计算
$$\lim_{x\to 0} \left(\frac{1-x}{1+2x}\right)^{\csc 2x}$$
.

3. 设
$$f(x) = \frac{x}{2x^2 + 3x + 1}$$
, 求 $f^{(n)}(x)$.

4. 设
$$y^2 + 2 \ln y = x^4$$
确定函数 $y(x)$, 计算 d^2y .

5. 计算 $\lim_{x\to 0} \frac{(x-2)e^x+x+2}{x^3}$.

得分	
评阅人	

四. 解答题(每小题7分,共14分)

1. 设若对一切x > 0, 都有3f(x) + xf'(x) = 0, 且f(1) = 3, 求f(x).

2. 讨论: 函数 $f(x) = x \sin x$ 在 $(0, +\infty)$ 上的一致连续性,给出理由.

得分	
评阅人	

五. 证明题(每小题8分,共24分)

1. 用极限的定义 $(\epsilon - \delta$ 语言)证明: $\lim_{x\to 2} \frac{x-2}{x^2-2x} = \frac{1}{2}$.

2. 设f(x)在[0,3]中连续,在(0,3)中可导,且有f(0) = f(3) = 0,

$$f(2)=3$$
, 则至少存在一个 $\xi\in(0,3)$, 使得
$$f'(\xi)=1.$$

3. 若f(x)是 $(-\infty, +\infty)$ 的可微函数,且 $\lim_{x\to \pm \infty} f(x) = A$ 证明:存在 $\xi \in (-\infty, +\infty)$,使得 $f'(\xi) = 0$.