PORTFOLIO

차진원

E-mail: jimmyda8@gmail.com, jinwon.cha@msl.yonsei.ac.kr

Contents

Portfolio

- ◆ 자기 소개
- ◆ 수행 프로젝트 및 작성 논문
 - 이동형 프로젝션 기술을 이용한 Pervasive AR 인터랙션 플랫폼 구축(NRF)
 - Hough transform을 이용한 평면 검출 모듈 구현
 - 모바일 객체 등록 어플리케이션 및 프로젝션 AR 몰입감 증진 연구(HCI Korea 2019 발표)
 - ChildAR-bot: Educational Playing Projection-based AR Robot for Children(ACM MM 2018)
 - 퍼스널 어시스턴트 구현을 위한 맥락인지 Pervasive AR 플랫폼 구축(NRF)
 - 팬틸트 시스템과 부분 스캔 방식을 이용한 실시간 3차원 시맨틱 세그멘테이션 기반 상황 인식 기술 구현(학위 논문)
 - IoT 제어를 위한 비전 기술과 프로젝션 AR 통합 맥락 인지 기술(HCI Korea 2020 accept)

자기 소개 자기 소개

- Mail: jimmyda8@gmail.com, jinwon.cha@msl.yonsei.ac.kr
- 학부: 국민대학교 컴퓨터공학부 (2013.03~2018.02)
- 대학원: 연세대학교 공학대학원 컴퓨터과학과 석사 (2018.03~2020.02)
 - 연구실: media system lab
 - 지도 교수: 한탁돈
 - 연구 분야 및 관심 분야
 - Augmented Reality
 - 3D Computer Vision3D Object Detection3D Semantic Segmentation
 - HCI
- Programming skills: C++, Python
- Deeplearning framework: Tensorflow, Pytorch

수행 프로젝트 및 작성 논문

이동형 프로젝션 기술을 이용한 Pervasive AR 인터랙션 플랫폼 구축(NRF)

- 프로젝트 개요
 - 빔 프로젝터와 RGB-D 카메라인 키넥트를 결합한 형태의 프로젝션 AR 기반의 Pervasive AR 인터랙션 플랫폼 구축
 - Pervasive AR 인터랙션 플랫폼을 이용한 인터랙션 및 어플리케이션 설계 및 구현
- 담당 업무
 - Hough transform 알고리즘을 이용한 평면 검출 모듈 구현
 - 모바일 객체 등록 어플리케이션 및 프로젝션 AR 몰입감 증진 연구(HCI Korea 2019 발표)

이동형 프로젝션 AR 디바이스

천장형 프로젝션 AR 디바이스

기본적인 프로젝션 AR 디바이스 구조

이동형 프로젝션 기술을 이용한 Pervasive AR 인터랙션 플랫폼 구축(NRF)

Hough transform 알고리즘을 이용한 평면 검출 모듈 구현

- Hough transform 알고리즘을 이용한 평면 검출 모듈 구현
 - 포인트 클라우드 환경에 hough transform을 적용시킨 평면 검출 모듈 개발
 - 3차원 공간 재구축이 이루어진 포인트 클라우드 환경에 적용

평면 검출 결과1

평면 검출 결과2

수행 프로젝트 및 작성 논문

모바일 객체 등록 어플리케이션 및 프로젝션 AR 몰입감 증진 연구(HCI Korea 2019 발표)

- 모바일 객체 등록 어플리케이션 및 프로젝션 AR 몰입감 증진 연구(HCI Korea 2019 발표)
 - 이동형 프로젝션 디바이스와 모바일 디바이스가 상호작용하는 형태의 어플리케이션
 - TCP를 통해 모바일 디바이스와 이동형 프로젝션 디바이스가 통신
 - 모바일 디바이스에서 이동형 프로젝션 디바이스로 이미지 전송
 - 모바일 디바이스가 hand-held 프로젝터의 역할을 수행
 - 모바일 디바이스의 카메라 좌표와 사용자의 손좌표를 이용해 이미지 투사 위치를 결정
 - 사용자와 프로젝션된 벽면과의 거리에 따라 이미지의 크기에 변화를 주어 프로젝션 AR의 몰입감 증진

어플리케이션 구동 사진

이동형 프로젝션 기술을 이용한 Pervasive AR 인터랙션 플랫폼 구축(NRF)

ChildAR-bot: Educational Playing Projection-based AR Robot for Children(ACM Multimedia Conference 2018)

- ChildAR-bot: Educational Playing Projection-based AR Robot for Children(ACM Multimedia Conference 2018)
 - 아이들이 이용하기 위한 어플리케이션 제공
 - 사용자는 터치와 같은 인터랙션을 통해 콘텐츠와 상호작용
 - 스토리텔링, 컬러링, 드로잉, 숫자 놀이 등의 어플리케이션 제공

어플리케이션 시스템의 구조

수행 프로젝트 및 작성 논문

퍼스널 어시스턴트 구현을 위한 맥락인지 Pervasive AR 플랫폼 구축(NRF)

- 프로젝트 개요
 - 프로젝션 증강현실 시스템과 맥락인지(Context-aware) 기술의 융합을 통해서 <u>사용자 의도/상황</u>에 <u>적합한 정보/콘텐츠/UI</u>를 제공
 - 다중 상호작용(Multi-modal interaction)을 Context-aware Pervasive AR 공간 내에서 제공함에 따라 보다 시스템과 원활한 상호작용 수행 가능
 - Context-aware Pervasive AR 플랫폼을 구축하여 사전 정보가 존재 하지 않는 <u>스마트 환경</u>에서 즉각적으로 사용될 수 있는 어플리케 이션 설계 및 구현

- 기존 context-awareness 연구의 한계점
 - 센서 기반의 context-awareness 기술
 - 대다수의 센서 기반의 context-awareness 기술은 오브젝트나 공간에 센서를 부착해야함
 - 센서를 이용한 context-awareness 기술은 다양한 제약으로 인해 실제 환경에서 사용하기 어려움
 - 모바일 디바이스 사용
 - 대부분의 센서 기반의 context-awareness 기술은 인터랙션과 제어를 위해 모바일 디바이스를 사용
 - 모바일 디바이스를 손에 들고 있어야 한다는 불편함 존재
- 개선 방안
 - 컴퓨터 비전 기술 이용
 - 컴퓨터 비전 기술을 이용하여 별도의 센서를 오브젝트나 공간에 부착하지 않아도 식별이 가능한 환경 제공 센서 기반의 context-awareness 기술이 갖고 있던 문제점을 보완
 - 프로젝션 AR을 이용해 인터페이스 제공
 - 기존에 모바일 디바이스로 제공하던 인터페이스를 프로젝션 AR로 제공 모바일 디바이스가 갖고 있던 문제점을 보완

- SGPN이란
 - SGPN은 PointNet과 PointNet++를 기반으로 한 아키텍처
 - 포인트 클라우드를 input으로 하고 각각의 point에 object instance label을 할당
 - Similarity Matrix로 포인트 클라우드 간의 유사도를 비교하여 instance를 판별함
 - Similarity Matrix: feature 공간에서 각 쌍의 포인트 사이의 유사성을 나타내는 유사도 행렬
- SGPN을 선택한 이유
 - 오브젝트와 공간의 위치 정보를 정확하게 파악하기 위해 선택
 - 현존하는 semantic segmentation 모델 중에서 가장 높은 정확도를 보임
 - 오브젝트나 공간이 있는 곳에 3D bounding box를 제공하기 때문에 사용자의 위치와 오브젝트의 위치 관계를 파악하기 쉬움

시스템 구조

- 팬틸트 시스템을 통한 부분 스캔 방식
 - 팬과 틸트의 움직이는 각도에 따라 segmentation이 진행되는 영역에 차이를 부여
 - 팬과 틸트가 각각 45도 이상 움직였을 때는 새롭게 받은 영상에 대해서 segmentation을 진행
 - 팬과 틸트가 45도 이하로 움직였을 경우에는 새롭게 받은 영상에서 사전에 segmentation이 진행되지 않았던 부분에 한해서 새롭게 segmentation 진행
 - Segmentation이 커버해야하는 영역을 줄여서 연산량을 줄임
 이를 통해 속도 증진
- 팬틸트가 움직이는 동안에는 3D Semantic Segmentation 중지
 - 팬틸트가 움직이는 동안의 3D Semantic Segmentation의 연산 누적 방지
 - 기존에 segmentation 연산이 누적되어 급격하게 느려지던 문제 해결

팬틸트 시스템

실행 결과

IoT 제어를 위한 비전 기술과 프로젝션 AR 통합 맥락 인지 기술(HCI Korea 2020 accept)

• SGPN을 이용한 객체 검출 기술

- 기존의 SGPN이 대부분의 오브젝트를 평면으로 잘못 인식하는 경우가 많이 발생
 - 이 점을 착안하여 평면이 오브젝트를 인식에 방해를 한다는 가정을 세움
- 평면 제거를 이용한 SGPN의 객체 검출 성능 증진
 - **평면 검출을 통한 평면 제거를 이용**하여 정확한 객체 분리가 가능한 시스템 개발
 - 위의 시스템과 SGPN을 통합하여 일반적인 오브젝트에 대한 3D Semantic Segmentation 구현

시스템 구조

IoT 제어를 위한 비전 기술과 프로젝션 AR 통합 맥락 인지 기술(HCI Korea 2020 accept)

- 평면 검출 및 객체 분리
 - 일반적으로 객체들이 보통 테이블과 같은 평면에 올려져 있거나 벽면과 같은 평면에 부착되어 있음
 - 이에 착안하여 평면 제거를 통해 객체 검출의 정확도를 높이고자 작업 수행
 - RANSAC 알고리즘을 이용해 평면 검출 수행
 - 검출한 평면 외의 영역을 mask를 통해 분리
 - 분리한 mask에 floodfill 방법으로 blob을 검출
- 객체 인식
 - 분리한 객체에 3D Semantic Segmentation 모델인 SGPN을 적용

적용 과정 및 결과