Ecole Supérieure de la Statistique et de l'Analyse de l'Information de Tunis

1ère année Durée: 2h00 Novembre 2007

CORRECTION DE L'EXAMEN DU MODULE ANALYSE NUMÉRIQUE

Exercice 1 (4pt).

1. La méthode de la puissance consiste à calculer la suite
$$x_n = \frac{Ax_{n-1}}{\|Ax_{n-1}\|}$$
 avec $x_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $A = \begin{pmatrix} 4 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$. Nous obtenons ainsi $\lambda_1 = 4.56$ associée au vecteur propre $v_1 = \begin{pmatrix} 0.93 \\ -0.26 \\ -0.26 \end{pmatrix}$.

2. L'algorithme de la méthode de la puissance inversée prend en entrée la matrice A,une précision de calculs ϵ et un vecteur x_0 et retourne la valeur propre λ_n de plus petit module associée à A ou un message d'erreur. Il s'agit de calculer la suite $x_{n+1} = \frac{A^{-1}x_n}{\|A^{-1}x_n\|}$ qui converge vers le vecteur propre associé à λ_n (à ϵ près lorsque x_0 ne lui est pas colineaire) sinon l'algorithme diverge (dans ce cas, il suffira de choisir un autre vecdteur initial). La valeur propre de plus petit module associée à A est égale à $\lambda_n = \frac{A^{-1}x_n[1]}{x_n[1]}$.

Ici, nous avons supposé que la matrice A est inversible et qu'elle admet n valeurs propores distinctes.

Exercice 2 (4pt). Etant donnés une matrice A triangulaire inférieure de taille (n, n) avec des 1 sur la diagonale inversible et un vecteur b de taille n, la méthode de descente est donnée par l'algorithme suivant :

Début

$$x_1:=b_1$$
 Pour i allant de 2 à n Faire $x_i:=b_i-\sum_{j=1}^{j=i-1}a_{i,j}x_j$ Fin Pour.

Le nombre d'opérations élémentaires de la méthode de descente appliquée au système Ax = b

est égal à $\sum_{i=2}^{i=n} i$ additions et $\sum_{i=2}^{i=n} (i-1)$ multiplications. La complexité est de l'ordre de $o(n^2)$.

Problème (12pt). Soit n = 3. Nous considérons l'ensemble de points

$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$,
 $f_0 = 1$, $f_1 = 0$, $f_2 = 1$, $f_3 = 4$.

1. Afin de déterminer une approximation du nuage de points (x_i, f_i) par la droite de régression linéaire, nous appliquerons la méthode des moindres carrés discrets qui consiste à minimiser la somme des distances aux carrés, nous obtenons grâce à cette minimisation, le système d'équations linéaires suivant :

(a)
$$\begin{pmatrix} \sum_{i=0}^{i=n} x_i^2 & \sum_{i=0}^{i=n} x_i \\ \sum_{i=0}^{i=n} x_i & n+1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{i=n} x_i f_i \\ \sum_{i=0}^{i=n} f_i \end{pmatrix}$$

- (b) La décomposition LU de A est donnée par $L = \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & 1 \end{pmatrix}$ et $U = \begin{pmatrix} 6 & 2 \\ 0 & \frac{10}{3} \end{pmatrix}$.
- (c) Le système $LU\begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$ est équivalent à $U\begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = y$ et $Ly = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$.

Nous obtenons $y_1 = 8$, $y_2 = \frac{10}{3}$ grâce à une descente et $a_0 = 1$ et $a_1 = 1$ grâce à une remontée.

2. Le polynôme de Lagrange P sur les points (x_i, f_i) pour i entre 0 et 3 est égal à

$$P(x) = x^2$$

- 3. Le polynôme de Lagrange P passe nécessairement par tous les points d'interpolation. En outre et contrairement à la droite de régression linéaire y=x+1, le degré de P est de l'ordre du nombre de points interpolés. La droite de régression résume un comportement du nuage de points...
- 4. Le théorème de convergence globale de la méthode de Newton pour une fonction f de classe C^2 suppose que f' et f'' soient non nuls sur [a,b] et que f soit stable sur ce même intervalle. Ainsi pour tout $x_0 \in [a,b]$ vérfiant $f(x_0).f''(x_0) > 0$, la suite définie par $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ est convergente vers l'unique solution de f(x) = 0 sur [a,b]. Ce théorème ne s'applique pas au calcul de la racine de P(x) = 0 sur l'intervalle [0,3] avec $x_0 = 1$ en revanche toutes les hypothèses sont satisfaites pour $x_0 = 0$.

Bonne Continuation, Ines Abdeljaoued.