AML: Questions before the test

week 1 introduction

- what are we estimating in the supervised scenario vs generative scenario (6) -
- formulate the cross entropy loss (19) *
- formulate SGD with momentum (21) *
- what's the difference between empirical risk and generalization (23) -
- give 3 'Real World Hypothesis Class' requirements (28) *
- why are linear function good for some problems but insufficient for others (29) -
- what are NNs good, ok and poor at according to Yadid (30) *
- In what sense does Classical ML theory not generalize well to deep networks (31) *
- give 2 regularization methods and their formulation (33) *
- survey the 5 steps of supervised ML pipeline (35) *

Architectures

- formulate the fc layers with Relus (45) -
- why not using only Fully-connected (FC) layers (with compression) (51) -
- how do we increase context with CNNs -
- describe 'depth-wise' convolutions and their advantages vs regular ones (61) -
- explain self attention in detail, and why are CNNs a private case of self attention (63-65) -
- explain the context of each token in the CNN vs Transformer scenarios -
- describe the problem with very deep NNs and the solution (69) -
- explain Batch/Layer normalization and why are they needed (73) *
- summarize the Two ways of reaching global context with few params (77) -
- Should you try to find your own architecture? -
- How do you use transformers for images?
- When would we use a transformer and when would we use CNNs in terms of data size and why? -

Autoregressive models:

- What are the 3 tasks generative models try to do? (93) *
- formulate the joint probability of N variables using bayes decomposition (102) *
- formulate the loss of the autoregressive model in general (103) *
- formulate the loss in simple terms (106) *
- Why is it hard to implement on images? *
- How do we sample from an autoregressive model? (109-111) *
 - What are the problems with the 'most likely' approach?
- How do you do point estimation on an autoregressive model? -
- formulate the perplexity measurement. (113)
- Example: Linear Language Model
 - what is the problem of a linear language model (114) (order)
 - What is good? (115) (words representations)
- Formulate the conditional scenario (119) *
- What are the ways to use it on continuous data? (121) (parametrization, discretisation) *
- How does the 'parti' model by google works? *

• What are the 3 major limitations of Autoregressive models? (133) *

neural scaling laws: (125)

- Where would you invest? (data, compute, bigger batch sizes) (130) *
- describe power law analysis and the GPT predicted accuracy (128) *
- Does the architecture of the transformer matter? (129) *

variational inference

- What is the posterior distribution $p_{_{\rm P}}(x|z)$ (141) -
- how do we compute the likelihood $p_{\alpha}(x)$ given the latent variable z? (142) *
- Explain and formulate importance sampling vs monte carlo method (144-148)
- how do you compute p(x) with monte carlo sampling? What's the problem with it? (149)
- Formulate the variational inference loss from importance sampling: $log(p(x)) \ge E_{z \sim q} log(p(x|z)) KL(q||p)$:
- What is the best proposal distribution? (156)
- What loss are we optimizing and what parameters are we looking for in the latent optimization scenario of VI (157)
- What is the reparameterization trick and how does it help to propagate the gradients?
 (158)
- How is the VAE in the amortized version optimized in practice (the formal implementation vae) (161)
- Why are the results of VAE blurry? (164, 171)
- how do we measure p(x) (point estimation) using the VAE formulation (formula and practice)? (165)
- Why don't we use the same method for optimizing G,S? (we wanted the mean out of the log so we used jensen inequality)
- What does the conditional VAE formulation look like? (167-168)
 - o formulate p(x, c)
 - o after choosing the q of the importance sampling as q = q(z|x,c)
 - formulate the ELBO inequality
 - o formulate the loss

Diffusion models

- formulate the diffusion process SDE -> x(t+dt) = ? (176)
- formulate dx if we take the step size to 0
- what is dW_t and $E[dW_t]$
- Can we invert a noise to a **specific** image? (180)
- why not just invert the sign of the dx in the SDE? (180)
- What is the difference between VP and VE processes? and Why to use VP (optimization considerations)
- write the Fokker-Planck equation and explain it in general terms (181)
- What is a score function? (184-187)
- How do we compute the estimation of the score function? (187 190)

- given a very noisy image, and a denoiser. Given the fact that a lot of images could result in this image given an added noise, what is this denoiser going to estimate?
- How do we train a denoiser?
- write the process of DDIM sampling loop (pseudo code) (191)
- what is the intuition behind the ELBO log probability estimation of a sample (192)
- Why would we want to estimate p(x) for an image?
- How do we change the formulation (DDIM) for a conditional scenario? (195)
- formulate the denoiser in the Classifier-Free Guidance scenario. what does ω do?
- How does MagVIT work? (203)

GANs

- Does it have point estimation?
- what is Integral Probability Metrics (210-211)
- What is good in this idea and what is bad? (212)
- What is the alternative of IPM in GANs? (214-215)
- Why don't we optimize G(z) vs a trained discriminator d(x)? explain using IPM
- formulate the GAN loss and explain why does it work
- what is easy with GANs, and impossible (219)
- why is JS divergence giving the optimal discriminator but is still unusable? (221) (p=Not(q))
- What is the wisherstain distance? And why is it better then other matrices (225)
- Why do we want to enforce Lipschitz-1 on the discriminator function? and how do we do it? (5 ways) (234-235)
- What is the problem with the loss that enforces lipschitz-1 on d(x) for x's from the training set? (only enforces it in certain places in the images distribution)
- What is Spectral Normalization? (235) (largest eigenvalue smaller than 1, divide in sigma)
- explain the Wasserstein GAN
- How can you do disentanglement in styleGan? (243)

Representation learning

- What are 5 good criteria for choosing representations (248-253)?
- Why is learning 'Informativeness on Semantic Attributes' easier than learning 'Meaningful Distance on Semantic Attributes'.
- What is the **general Distance Preservation** Schema (256)
- What are we learning in these classical methods? (a matrix of representations)
- explain a Simple Case: Classical Dimensional Scaling (257)
- Give the final solution formula of the representations in cMDS and how to get to it (258)?
- So why not do PCA (259)?
- Explain the algorithm and the loss of **laplacian eigenmaps** (261)?
- Why do we have to add the cov(E) = I term (261) Why does it ensure that solution won't collapse?
- What are the issues with Local Methods?
 - if the manifold consists of 2 'pages' or just noise the representations losses meaning

- \circ cov(E) = I doesn't necessary solves all problems: it can put most of the embeddings around 0 and pad some other embeddings in random places to enforce the constraint
- formulate SNE Stochastic Neighborhood Embeddings (263)
 - What does sigma represent?
 - Why is it not a symmetric matrix, and how do you formulate a Symmetric SNE? (264)
 - Explain **tSNE** and what is the difference with SNE (265)
- What are 4 issues with classical methods? (267)
- What are the 2 main differences between DL representation learning and the classical methods? (268)
- What are the 2 problems with classical methods that are solved with DL? (269)
- Why do we use augmentations for generating the neighbors in representation learning? and what are the problems with augmentations? (272)
- Explain **Contrastive learning** and formulate the loss, for one augmentation (273)
 - What is the intuition for the loss term? (275)
- Explain the classifier interpretation to contrastive learning, and what do we do to save computations (274)
- formulate the **VICReg** loss (Ex2) (277)
- formulate CCA, and its loss in the Barlow Twins scenario.
 - what is the rationale of learning the $corr(f(x_i), f(x'_i)) = 1$
- Explain the SIMSIAM Idea (281)
- Explain Multi-Modal Supervision for contrastive learning, and the Clip ML and DL tricks (282-284)
- Explain masked auto encoding (285)
 - O What do we estimate?
 - O What does it learn?
 - Explain how 'Bert' was trained? What was the motivation? (286)
 - What is the difference in the final use of Masked Autoencoders for images and text? (for images: a way to do transfer learning, vs representation learning)
 - What can be a reason that Masked Autoencoders fail to learn good representations? (don't have to learn anything semantic)
 - What is the implementation trick for Masked Autoencoders for images for saving memory and computation, and why can transformers do that?
- Explain how **BEIT** works, was it better than the masked AE?

method	pros	cons
Contrastive	works good	 for each iteration requires a pass on all images/ big batches
Barlow Twins	every sample is independent from other samples, doesn't need	

	negative samples (doesn't require big batches)	
SimSiam	doesn't require big batches (negative samples)	isn't very explainable, can collapse
VICReg		 VICreg requires tuning the variance threshold and the regularization weight parameters VICreg assumes that the data has a Gaussian distribution along each dimension
BERT		not trained for autoregressive tasks
BEIT		too complex, the tokenization proved to be unnecessary
MAE	good for pre training	bad for representation learning

Compositionality and Disentanglement

- describe the Compositionality problem in representation learning (295)
 - we want to be able to separate between attributes in our representation (color and label of fruit)
- describe the biasing problem, and 2 ways to overcome it (296)

Disentanglement

- describe the disentanglement task (297)
- How does disentanglement entail compositionality and classification? (298-299)
- Formulate the Identifiability in the Linear Setting (301)
- In which scenario this problem is unidentifiable? (302)
- Explain the ICA method in general and what it tries to solve
- Explain **BetaVAE** for unsupervised disentanglement (304)
 - O Why doesn't it work?
 - What enforcing cov(Z) = 1 over the representations doest solve the disentanglement problem? (any rotation of the axis gives a cov(Z) = 1 but we don't know that these are the features we want or a mixture of them)
- Explain the scenario of conditional disentanglement (not included in test)

Anomaly detection

- What is **Retrieval**? (315-317)
 - What is the Hubness problem? and what can be done to address it?
- What is the connection between anomaly detection and density estimation? (324)
 - Output Description
 Output Descript
- What is Out-of-Distribution Generalization, what is the assumption hidden inside it?
 (327) (we decode the data from a highly dense representation of it so we need to have good idea what is it going to look like)
 - What is the problem with it? (328)
- Explain **Deep Nearest Neighbors** (331)
 - \circ How does it approximate P(X)?
 - Why is it better than P(X) in sparse areas? (sparse and therefore noisy and bad estimation)
 - What is the problem with high dimensional representations?
 - Is it robust across datasets? (333)
- What is the **Deep Anomaly Segmentation** (SPADE) pipeline? (335)
- What are 4 desirable properties of anomaly detection methods? (339)
- How can we combine training data with external data? (340)
 - Explain the PANDA pipeline example
 - How can they avoid collapse to a singular point? (342)
- If we had the best representations possible, can we solve AD? (354)
- Explain the Expressivity-Sensitivity Tradeoff of anomaly detection and the conclusion from it. (356-358)
- explain the **No Free Lunch** principle in anomaly detection (358)
- describe a way to learn Representations Invariant to Nuisance Attributes (360-363)
 - o how can you train z not to reveal any information over d?

clustering

- Under what assumptions can we do Unsupervised classification using clustering?
- Explain **Hierarchical Clustering** (368)
 - O What parameters can be tuned?
- Explain **kmeans**, what is the difference from Hierarchical Clustering (369)
- Explain Gaussian Mixture Models: (370-372)
 - o formulate a latent variable with a small set of discrete values
 - O What is the assumption over the data?
 - For each latent variable, what parameters do we need to find?
 - o how do we find P(z = i|x)?
 - What is the loss we optimize?
 - How do we do unsupervised classification using GMM (show the formula)?
 - Where does the GMMs assumption fail? (bad k, gaussian assumption)
- Explain Classification-Based Clustering (373)
 - What are the 2 assumptions we use for this method? (373)
 - What are the first 2 losses used here? write their formulas (374-375)
 - What would happen if we choose only one of them?
 - Are the 2 of them enough? (no semantics)
 - Can we use it on the pixel domain? (answer: no semantics)
 - What does the final loss and the architecture look like? (376)
- Explain **Domain Generalization**
 - what is the solution now for that (a lot of data, variation, big models)
 - Explain **Domain Adaptation** (379-380)
 - Give an optional solution for that, write the loss and explain it
 - When will this fail?