

Comparison of MetAP2 Homologues (mouse = SEQ ID NO:13; rat = SEQ ID NO:17; human = SEQ ID NO:12; yeast = SEQ ID NO:14)

0 0 0 8	180 180 180 116	263 263 263 206	353 353 296	4446 4448 8888	
76 LEEKERDDDEDGDG LEEKEKDDDDEDGDG LEDKERDEDDEDGDG LEDKERDEDDEDGDG VEQQDQAKADES DEV	166 WNDFREAAEAHRQVR WNDFREAAEAHRQVR WNDFREAAEAHRQVR WNDVRKGAEIHRRVR	256 KIDFGTHISGRIDC KIDFGTHISGRIDC KIDFGTHISGRIDC KVDYGVQVNGNIIDS	346 HAGKTVPIVKGGEAT HAGKTVPIVKGGEAT HAGKTVPIVKGGEAT HGGKSVPIVKNGDTT	436 LMALKNLCDLGIVDP LMALKNLCDLGIVDP LMALKNLCDLGIVDP LFALNNLVRHGIVQD	
61 GALVDEVAKQLESQA GTSVDEVAKQLERQA GASVDEVARQLERSA SPASDLKELNLENEG	151 165 TSEEKKALDQASEEI TSEEKKALDQASEEI TSEEKKALDQASEEI SRYLKRDLERAEH	241 255 PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC	331 345 PIRNINGHSIGPYRI PIRNINGHSIGPYRI PIRNINGHSIGQYRI PCRNICGHSIAPYRI	421 AFCRRWLDRLGESKY AFCRRWLDRLGESKY AFCRRWLDRLGESKY PFCRRYLDRLGESKY	
46 KGAVSAVQELDKES KGAVSAGQELDKES KGPSAGEQEPDKES	136 EYPPTQDGRTAAWRT EYPPTQDGRTAAWRT EYPPTQDGRTAAWRT DYHQDFNLQRTTDEE	226 240 FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT FPTGLSLNHCAAHFT	316 ESYEVEIDGKTYQVK ESYEVEIDGKTYQVK ESYEVEIDGKTYQVK ESYEVEINGETYQVK	406 TKHLLNVINENFGTL TKHLLNVINENFGTL TKHLLNVINENFGTL TKHLLNVINENFGTL AKNLLKTIDRNFGTL	
31 AEEAAKKRRKKKG AEEAAKKRRKKKG AEEAAKKRRKKKS	121 135 CDLYPNGVFPKGQEC CDLYPNGVFPKGQEC CDLYPNGVFPKGQEC	211 225 NGLNAGLA NGLNAGLA NGLNAGLA SILAMEDPKSQGIG	315 DVRLCDVGEAIQEVM DVRLCDVGEAIQEVM DVRLCDVGEAIQEVM	405 MKNFDVGHVPIRLPR MKNFDVGHVPIRLPR MKNFDVGHVPIRLPR ARSAEDHQVMPTLDS	RGDDY 478 EEMTIKT 480 RGDDY 478 KGDDY 478
16 ODLDPDDREGGTSST ABEAAKKRRKKKKK RDLDPDREEGTSST ABEAAKKRRKKKKK GDLDPDDREEGTSST ABEAAKKRRKKKKK GDLDPDDREEGAAKT ABEAAKKRRKKKKKKKKK GDLDPDREEGAAKT ABEAAKKRRKKKKKK	120 KRGPKVQTDPPSVPI KRGPKVQTDPPSVPI KRGPKVQTDPPSVPI NVKKI	210 ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE IADMIENTTRKYTGA	300 AVKDATNTGIKCAGI AVKDATNTGIKCAGI AVKDATNTGIKCAGI	316 390 391 GKGWARDDNECSHY MRNEDVGHVETRLPR TGKGWHDDNECSHY MRNEDVGHVETRLPR TGKGWHDDNECSHY MRNEDVGHVETRLPR TGKGWYTAGGEVSHY ARSAEDHQVNETLDS	466 480 EHTILIRPTCKEVVS EHTILIRPTCKEVS EHTILIRPTCKEVVS
1 MAGVEQAASFGGHLN MAGVEEASSFGGHLN MAGVEEVAASGSHLN	91 DADGATGKKKKKK DGDGAAGKKKKKK DGDGATGKKKKKKK ESKKKNKKKKK	191 KYVMSWIKPGMTMIE KYVMSWIKPGMTMIE KYVMSWIKPGMTMIE RAIKDRIVPGMKLMD	271 285 AETVTENPKYDILLT AETVTENPKYDILLK AETVTENPKYDTLLK	361 RMEEGEVYALETFGS RMEEGEVYALETFGS RMEEGEVYALETFGS KMEEGEHFALETFGS	465 YPPLCDIKGSYTAQF YPPLCDIKGSYTAQF YPPLCDIKGSYTAQF YPPLNDIPGSYTAQF
mouse rat human yeast	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast

Figure 2

Figure 3

Figure 4

H174A-MetAP2 requires N-terminal residues 2-57 for inhibition of map 1Δ growth under the GAL1 promoter.

(H174A)

Figure 5

The steady state levels of each MetAP2 construct are comparable. Immunoblot comparison of HA-MetAP2 wt, HA-MetAP2 H174A, and MetAP2 $\Delta 2$ -57 H174A steady state levels in map1 Δ .

Figure 6

Overexpression of H174A-MetAP2 under the GPD promoter does not inhibit the growth of $map2\Delta$

Figure 7

FIGURE 8

FIGURE 9

Figure 10

Figure 11