para H^{\perp} . Como los vectores \mathbf{u}_i son independientes, debe demostrarse que generan a H^{\perp} . Sea $\mathbf{x} \in H^{\perp}$; entonces por el teorema 6.1.4

$$\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{x} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{x} \cdot \mathbf{u}_k) \, \mathbf{u}_k$$
$$+ (\mathbf{x} \cdot \mathbf{u}_{k+1}) \, \mathbf{u}_{k+1} + \dots + (\mathbf{x} \cdot \mathbf{u}_n) \, \mathbf{u}_n$$

Sin embargo, $(\mathbf{x} \cdot \mathbf{u}_i) = 0$ para $i = 1, 2, \ldots, k$, ya que $\mathbf{x} \in H^{\perp}$ y $\mathbf{u}_i \in H$. Por tanto, $\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_{k+1})\mathbf{u}_{k+1} + \cdots + (\mathbf{x} \cdot \mathbf{u}_n)\mathbf{u}_n$. Esto muestra que $\{\mathbf{u}_{k+1}, \ldots, \mathbf{u}_n\}$ es una base para H^{\perp} , lo que significa que dim $H^{\perp} = n - k$.

Los espacios $H y H^{\perp}$ permiten "descomponer" cualquier vector en \mathbb{R}^n .

Teorema 6.1.7 Teorema de proyección

Sea H un subespacio de \mathbb{R}^n y sea $\mathbf{v} \in \mathbb{R}^n$. Entonces existe un par único de vectores \mathbf{h} y \mathbf{p} tales que $\mathbf{h} \in H$, $\mathbf{p} \in H^{\perp}$ y $\mathbf{v} = \mathbf{h} + \mathbf{p}$. En particular, $\mathbf{h} = \operatorname{proy}_H \mathbf{v}$ y $\mathbf{p} = \operatorname{proy}_{H^{\perp}} \mathbf{v}$, de manera que

$$\mathbf{v} = \mathbf{h} + \mathbf{p} = \operatorname{proy}_{H} \mathbf{v} + \operatorname{proy}_{H\perp} \mathbf{v}$$
 (6.1.23)

Demostración

Sea $\mathbf{h} = \operatorname{proy}_H \mathbf{v}$ y sea $\mathbf{p} = \mathbf{v} - \mathbf{h}$. Por la definición 6.1.4 se tiene $\mathbf{h} \in H$. Ahora se mostrará que $\mathbf{p} \in H^{\perp}$. Sea $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ una base ortonormal para H. Entonces

$$\mathbf{h} = (\mathbf{v} \cdot \mathbf{u}_1) \ \mathbf{u}_1 = (\mathbf{v} \cdot \mathbf{u}_2) \ \mathbf{u}_2 + \cdots + (\mathbf{v} \cdot \mathbf{u}_k) \mathbf{u}_k$$

Sea x un vector en H. Existen constantes $\alpha_1, \alpha_2, \ldots, \alpha_k$, tales que

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_k \mathbf{u}_k$$

Entonces

$$p \cdot x = (v - h) \cdot x = [v - (v \cdot u_1) u_1 - (v \cdot u_2) u_2 + \dots + (v \cdot u_k) u_k]$$

$$[\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_k u_k]$$
(6.1.24)

Como $\mathbf{u}_i \cdot \mathbf{u}_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$, es sencillo verificar que el producto escalar (6.1.24) está dado por

$$\mathbf{p} \cdot \mathbf{x} = \sum_{i=1}^{k} \alpha \left(\mathbf{v} \cdot \mathbf{u}_{i} \right) - \sum_{i=1}^{k} \alpha_{i} (\mathbf{v} \cdot \mathbf{u}_{i}) = 0$$

Así, $\mathbf{p} \cdot \mathbf{x} = 0$ para todo $\mathbf{x} \in H$, lo que significa que $\mathbf{p} \in H^{\perp}$. Para demostrar que $\mathbf{p} = \operatorname{proy}_{H^{\perp}} \mathbf{v}$, se amplía $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$ a una base ortonormal en \mathbb{R}^n : $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k, \mathbf{v}_{k+1}, \ldots, \mathbf{u}_n\}$. Entonces $\{\mathbf{v}_{k+1}, \ldots, \mathbf{u}_n\}$ es una base para H^{\perp} , y por el teorema 6.1.4,

$$\mathbf{v} = (\mathbf{v} \cdot \mathbf{u}_1) \, \mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2) \, \mathbf{u}_2 + \dots + (\mathbf{v} \cdot \mathbf{u}_k) \, \mathbf{u}_k + (\mathbf{v} \cdot \mathbf{u}_{k+1}) \, \mathbf{u}_{k+1} + \dots + (\mathbf{v} \cdot \mathbf{u}_n) \, \mathbf{u}_n$$

$$= \operatorname{proy}_H \mathbf{v} + \operatorname{proy}_{H^{\perp}} \mathbf{v}$$