

WS 2021/22 29.10.2021

2. Exercise Sheet of "Diskrete Optimierung I"

Required knowledge (see lecture notes):

- Complexity classes \mathcal{P} and \mathcal{NP}
- Karp-reduction and \mathcal{NP} -completeness

The SAT problem: Let $V = \{x_1, \ldots, x_n\}$ be a set of Boolean variables. A literal $x_{ij} \in X := \{x_1, \bar{x}_1, \ldots, x_n, \bar{x}_n\}$ is a variable x_i or a negated variable \bar{x}_i . A Boolean formula is given in conjunctive normal form (KNF) if it is a conjunction (AND-statement) of disjunctions. Each such disjunction (OR-statement) connects only literals. A disjunction in a Boolean KNF formula is also called clause. Thus, the KNF formula is given by:

$$\mathcal{F} = \bigwedge_{i} \left(\bigvee_{j} x_{ij} \right).$$

An example is: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_3 \lor x_4)$ for $V = \{x_1, x_2, x_3, x_4\}$ and $X = \{x_1, \bar{x}_1, x_2, \bar{x}_2, x_3, \bar{x}_3, x_4, \bar{x}_4\}$.

The SAT problem is defined as follows:

- Given: A Boolean KNF formula \mathcal{F} .
- Question: Is \mathcal{F} satisfiable?

Groupwork

Exercise G1 (STABLE SET (SS))

Let G = (V, E) be a graph, and let $k \in \mathbb{N}$ be a number. A subset $U \subseteq V$ is called a *stable set*, if no two nodes $u, v \in U$ are connected by an edge. We consider the problem STABLE SET: Does G contain a stable set consisting of k nodes?

Show: STABLE SET is \mathcal{NP} -complete. Use that SAT is \mathcal{NP} -complete.

Exercise G2 (CLIQUE)

Let G = (V, E) be a graph, and let $k \in \mathbb{N}$ be a number. A *clique* is a subset $U \subseteq V$, such that every two nodes $u, v \in U$, $u \neq v$, are connected by an edge. We consider the problem CLIQUE: Does G contain a clique of cardinality k?

Show: CLIQUE is \mathcal{NP} -complete.

Exercise G3 (CLIQUE, VERTEX COVER (VC) und STABLE SET)

Let G = (V, E) be a graph, and let $k \in \mathbb{N}$ be a number. A vertex cover in a graph G = (V, E) is a set $U \subseteq V$, such that every edge $e \in E$ is incident to at least one node in U. We consider the problem VERTEX COVER: Does G contain a vertex cover of cardinality k?

- (a) Show that VERTEX COVER is \mathcal{NP} -complete. Give a polynomial reduction from STABLE SET to VERTEX COVER.
- (b) Alternatively, give the proof via a polynomial reduction from CLIQUE to VERTEX COVER.

Homework

Exercise H1 (The k-SAT Problem)

(6+2+2+4+2 points)

The k-SAT problem is defined as follows:

- Given: Let \mathcal{F} be a Boolean KNF formula where each clause contains exactly k literals.
- Question: Is \mathcal{F} satisfiable?
- (a) Show: 3-SAT is \mathcal{NP} -complete. *Hint:* Reduce SAT to 3-SAT.
- (b) Next, show that 2-SAT is in \mathcal{P} . To do this, construct to a given 2-SAT instance consisting of n variables x_1, \ldots, x_n and k clauses C_1, \ldots, C_k , a directed graph $\tilde{G} = (V, A)$. Let $V := \{x_1, \ldots, x_n, \bar{x}_1, \ldots \bar{x}_n\}$ and the edge set A chosen in such a way that for each clause $C = (l_1 \vee l_2), l_1, l_2 \in V$, two directed edges $\bar{l}_1 \to l_2$ and $\bar{l}_2 \to l_1$. These edges model the relation that for satisfiability in any 2-SAT clause we have: If l_1 is false, then l_2 must be true and vice versa.
 - i. Give an example of a non-satisfiable 2-SAT formula and the corresponding auxiliary graph \tilde{G} .
 - ii. Show: If there exists a directed path from v to u in \tilde{G} for $u, v \in V$, then there also exists a path from \bar{u} to \bar{v} .
 - iii. Show: 2-SAT is <u>not</u> satisfiable if and only if there is a node $v \in V$ for which there exists both a directed path from v to \bar{v} as well as a directed path from \bar{v} to v.
 - iv. Show by i)-iii): $2\text{-SAT} \in \mathcal{P}$

For submitting your homework, you have two weeks time. You can submit them as a (fixed) team of 2 people. The submission is electronic via StudOn. For reaching 2/3 of all possible points from the homework, you obtain a bonus of 0.3 geade points in the oral exam (only applicable for grades between 1.3 and 4.0).

The submission of the 2nd homework is until Friday, 20 November 2021