

Kurs
Einführung
In das Thema
Data Ware House
&
Business Intelligence

Organisatorisches

Warm werden: Vorstellungsrunde

- Name: Joachim Brock
- Baujahr 1965, Verheiratet und zwei Töchter
- Ausbildung im Handwerk
- Studium: Kommunikationsinformatik

- Werdegang: Softwarehaus, Eigene GmbH, Big-Date&KI, Expertensysteme, aktuell: Head of SWE bei AUVESY-MDT GmbH in Landau
- Erwartung: Interessierte lernbereiter Kurs mit engagierter Zusammenarbeit

Warm werden: Vorstellungsrunde

- •Vorstellungsrunde
 - Name
 - Werdegang
 - Erwartungshaltung an den Kurs

Warm werden: Geimeinsame Regeln

- Regeln der Vorlesung:
 - 1)Der aktuelle Redner darf ausreden
 - 2) Fragen sind von allen erwünscht und nicht nur von wenigen
 - Manche Blöcke muss ich am Stück erklären. Keine Panik, Zeit zum Fragen kommt am Ende des Blocks; Dies Blöcke benenne ich extra
 - 3) Pausen bitte einfordern, ich vergesse manchmal die Zeit
 - 4)Bei Online: Wenn die Technik mit macht sollten wir die Kameras einsetzen

Warm werden: Orga

- Organisation der Vorlesung
 - Theorie
 - Beispiele aus der Praxis
 - Aufgaben und Übungen
 - Vorstellung durch Teilnehmer
 - Wiederholung der vorherigen Vorlesung im Schnelldurchgang
 - Prüfung KW 51/2023
 - Fragen vorab oder noch offene Punkte?

Kurs
Einführung
In das Thema
Data Ware House
&
Business Intelligence

Tapitel 1: Erste Grundlager

Business Intelligence

Was umfasst BI?

- → OLAP (Online Analytical Processing)
 - Umfasst auch das DWH samt Dantenbanken
 - Weitere Themen sind Verteilung, Datenbeschaffung, Daten Vorbereitungen
- → Analyse
 - Auswertunge, Statistiken, zyklisch & adhoc, Entscheidungsvorlagen
- Data Mining
 - Korelationen, Kausalitäten, Wissenbasiertes Lernen und Prognosen
- Projektorganisation
 - Planung, Aufbau, Pflege und Betrieb on BI-Systemen

12 Regeln nach Edward F. Codd aus dem Jahr 1993

- 1) Multidimensionale Sicht auf die Daten
- 2) Transparenz (Trennung von UI und Architektur)
- 3) Zugriffsmöglichkeiten (Daten aus Operativen Systemen)
- 4) Konsistente Leistungsfähigkeit der Berichterstattung
- 5) Client-Server-Architektur mit Lasterverteilung
- 6) Generische Dimensionalität mit einheitlicher Dimensionierung
- 7) Dynamische Handhabung dünn besetzter Matrizen
- 8) Mehrbenutzerunterstützung
- 9) Einheitliche dimensionsübergreifende Operationen
- 10) Intuitive Datenanalyse
- 11) Flexibles Berichtswesen
- 12) Unbegrenzte Anzahl von Dimensionen und Konsolidierungsebenen

Quelle: https://www.hdm-stuttgart.de/~riekert/lehre/db-kelz/chap6.htm

FASMI-Regeln nach Pendse und Creeth

- 1) Fast = Schnelle Abfragen mit durchschnittlich 5 s bis max. 20 s
- **2) A**nalysis = Einfache Analyse der Daten ermöglichen möglichst ohne Programmieraufwand
- **3) S**hared = Mehrbenutzerbetrieb ermöglichen mit entsprechenden Schutzmaßnahmen
- **4) M**ultidimensional = Struktur der Daten ermöglich beliebige Dimensionshierarchien
- **5) I**nformation = Die Daten dürfen nicht durch das Systems in ihrer Transparenz beschränkt werden

Quelle: https://www.datenbanken-verstehen.de/business-intelligence/business-intelligence-grundlagen/anforderungen-business-intelligence/fasmi-regeln-pendse-creeth/

DWH Systeme samt Aufbau und Betrieb

Prinzipielles Prinzip

DWH Systeme samt Aufbau und Betrieb

OLAP Anwendung

- Konzentration unterschiedliche Datenquellen
 - Datenreihen, Produktionsanlagen, Wirschaftssysteme, Statistiken, ...
- Ermöglicht globale Sicht auf Daten
 - Knzentration und Agregation von unübersichtliche Datenmengen
- → Ermitteln von Korrelationen und Kausalität
 - Bitte nicht verwechseln!
 - Beispiel: Selbstmordrate und Nasa-Investitionen
- Beobachtung von Daten-Entwicklungen, auch von temporalen
 - Bis hin zu echzeitbeachtungen in Monitoring-Systemen
- Entscheidungsunterlage bieten
 - Analyse-Ergebnisse als Basis für Entscheidungen
 - Beispiel: Vorhersage Papierdicke zur Produktionssteuerung

OLAP Risiken

- Unvollständige Dimensionen
 - Korrelationen hängen an Dimesnsionen die nicht enthalten sind
- → Fehlerhafte Daten
 - Verfäschung von Analyseergebnissen
- Große Lücken in den Faktendaten
 - Lücken in den Daten reduzieren Aussagekraft
- → Dupletten in den Daten oder fehlende single Point of Truth
 - Wiedersprechende oder falsch verstärkende uneindeutige Wirkungen
- Datenschutzverletzungen
 - Einfache personenbezogene Daten
 - Besonders geschützte personenbezogene Daten, z.B. Medizin
- Scheinkorrelationen ohne Kausalitäten
 - Beispiel: MC<=>Asthma, siehe: https://scheinkorrelation.jimdofree.com/

Verständnisfragen

- Warum werden operative Daten von Auswertungsdaten getrennt?
- Welche Bereiche in einem Unternehmen haben Interesse an OLAP?
 Bitte nennen Sie min. 4 Bereiche und deren Nutzen.
- Zwei Vertriebsstellen mit überschneidenden Rechnungskreise benötigen ein gemeinsames OLAP, was empfehlen Sie als ersten Schritt?
- → Ein Pharmakonzern bietet Ihnen hohe Summen für Ihre medizinischen Labordaten. Was ist zu beachten?
- In den Jahren 2005 bis 2013 korrelieren die Schlachtungen in deutschen Schlachthöfen und die Sitzplatzkapazität der österreichischen Kinos.

Was leiten Sie daraus ab?

DWH gundsätzliche logische Architektur

- Mehrdimensionale logische Datenarchitektur
- Fakten werden in Form einer Matrize gehalten
- Gruppierung der Stammdaten bestimmen die Dimensionen
- → Symbolische Ähnlichkeit mit einem Würfel

Normalisierung zugunsten Performance vernachlässigt

DWH logische Architektur der Dimensionen

- → Star Schema
 - Jede Dimension wird in einer Tabelle/Objekt zusammengefasst

- → Snowflake Schema
 - Jede Hierarchie einer Dimension wird in einer Tabelle/Objekt gehalten

DWH logische Architektur der Dimensionen

- Beispiel Star Schema für Zeitreihen oder Temporalisierung
 - Pro Tag einen Eintrag
 - Mehrere Pfade der Hierarchie gleichzeitig möglich
 - Einen künstlichen Primärschlüssel ist empfehlenswert

Dimension Zeit Tagesgenau						
PK Ident	Jahr	Monat	Woche	Tag	Wochentag	
987613	2010	Januar	1	31	Montag	
942345	2011	Februar	5	25	Dienstag	
		•••	•••	•••		

DWH logische Architektur der Dimensionen

- Ein Beispiel Snowflake Schema für Zeitreihen oder Temporalisierung
 - Pro Tag mehrere gleichzeitige Pfade möglich
 - Jeweilige künstlichen Primärschlüssel ist empfehlenswert
 - Travesierung durch die Hierarchiestufen notwendig

DWH logische Architektur der Dimensionen

	Stufe Tag		Stufe Monat			Chafa Ialan		
	PK T Ident	Tag	FK Monat	PK M Ident	Monat	FK Jahr	Stufe Jahr	laby
							PK J Ident	Jahr
	_/ 73	1	761	761	Januar	613		
	[/] 75	1	792	762	Februar	613	613	2020
,	76	31	901	792	Januar	614	614	2021
	70	25	901	901	Januar	615	•••	•••
	•••	•••	•••		•••	•••		

Fakten Vertrieb						
PK ID	FK T	FK N	Umsatz			
5001	73	1001	10.333,05 €			
5002	75	1001	42.123,44 €			
5003	73	1003	72.042,42 €			
5042	70	1042	1.099,01 €			
	•••					

- → Beispiel Snowflake Schema Zeitreihen und Regionen
 - Fakten referenzieren nur auf die niedrigste Granularität
 - Redundanzen in den Stufen ggf. notwendigen

Umsatz 42.123,44 € am 1. Januar 2021 in der deutschen Zentral in Mannheim

	Stufe Niede	Stuf		
	PK N Ident	Name	FK S	PK S
\	1001	Zentrale	761	_761
	1002	Notre Dame	792	792
	1003	Limmat	901	712
	1042	Oerlikon	901	901
		:		

Stufe Stadt				
PK S Ident	Stadt	FK Land		
_761	Mannheir	49		
792	Paris	33		
712	Luzern	41		
901	Zürich	41		

Stufe Land				
PK L Ident	ISO2			
49	DE			
41	SW			
33	FR			
•••				

Verständnisfragen

- Warum wird im DWH gerne gegen die Normalformen verstoßen?
- Nennen Sie min. zwei weitere Dimensionen, bei denen ein Verstoß gegen Normalform sinnvoll ist.
- Sie sollen ein DWH entwerfen mit extrem schnellen Zugriffzeiten. Welches Modell (Star oder Snowflake) wählen Sie?
- → Bauen Sie ein Starschema für den Vertrieb mit folgenden Inhalten: Verkaufzeitstempel, Menge, Einzelpreis, MwSt, Produktname, Produktgruppe, Filiale, Ort, PLZ.
- → Schreiben Sie eine SQL Abfrage, welche die Verkaufssumme der jeweiligen Produktgruppen in den Filialen zwischen 12:00 Uhr und 13:00 Uhr am 18.08.2022 ausgibt.