Sveučilište u Zagrebu

Prirodoslovno - matematički fakultet

Matematički odsjek

Eliptičke krivulje u kriptografiji

3. domaća zadaća

Student: Antonio Kovačić Nastavnik: Doc. dr. sc. Filip Najman

Sadržaj

1	Problem	ii
2	Rješenje	iii
	2.1 1 zadatak	iii

1 Problem

1. Nađite racionalan broj tsa svojstvom da za eliptičku krivulju

$$E: y^2 = x(x+t)(x+t+38)$$

vrijedi $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z}_2 \times \mathbb{Z}_4$.

2. Odredite rang eliptičke krivulje nad $\mathbb Q$ zadane jednadžbom

$$y^2 = x^3 - 22x$$

3. Za polinom

$$p(x) = (x-4)(x-3)(x-2)x(x+1)(x+2)(x+3)(x+4),$$

odredite polinome $q(x), r(x) \in \mathbb{Q}[x]$ takve da vrijedi $p(x) = (q(x))^2 - r(x)$ i deg $r \leq 3$

2 Rješenje

2.1 1. zadatak

Prema [2, p. 28] je opći oblik krivulje s torzijskom podgrupom $\mathbb{Z}_2\times\mathbb{Z}_4$ oblika:

$$y^{2} = x(x+r^{2})(x+s^{2}), \quad r, s \in \mathbb{Q}$$
 (1)

Prema tome slijedi:

$$t = s^2 \tag{2}$$

$$t + 38 = r^2 \tag{3}$$

Iz čega slijedi da:

$$r^2 - s^2 = 38 (4)$$

No ne postoje $(r,s) \in \mathbb{Z}^2$ koji zadovoljavaju (4). Zaključujemo da je $(r,s) \in (\mathbb{Q} \setminus \mathbb{Z})^2$, a onda i $t \in \mathbb{Q} \setminus \mathbb{Z}$. Pokušajmo vidjeti postoji li $a \in \mathbb{Z}$ tako da za t vrijedi:

$$t = \left(a + \frac{1}{2}\right)^2, \qquad t + 38 = \left(a + \frac{3}{2}\right)^2$$
 (5)

Iz (5) se lako dobije a=18, pa je $s=\frac{37}{2}$, a $r=\frac{39}{2}$. Iz čega slijedi da je $\mathbb{Z}_2 \times \mathbb{Z}_4$ podgrupa od $E(\mathbb{Q})_{\text{tors}}$. Još je ostalo provjeriti da $E(\mathbb{Q})_{\text{tors}} \neq \mathbb{Z}_2 \times \mathbb{Z}_8$ jer imaju isti oblik, no prema:

Za
$$E: y^2 = x(x+r^2)(x+s^2), E(\mathbb{Q})_{\text{tors}}$$
 izomorfna s $\mathbb{Z}_2 \times \mathbb{Z}_8$ akko

$$rs, rs + r^2, rs + s^2$$
 kvadrati u \mathbb{Q}

No $\frac{37\cdot39}{4}=\frac{1443}{4}$ nije kvadrat u $\mathbb{Q},$ pa slijedi tražena tvrdnja za $t=\frac{1369}{4}.$

Literatura

- [1] A. Dujella. *Uvod u teoriju brojeva*. http://web.math.pmf.unizg.hr/~duje/utb/utblink.pdf.
- [2] A. Dujella. Eliptičke krivulje u kriptografiji. http://web.math.pmf.unizg.hr/~duje/elkript/elkripto2.pdf, 2013.