

ProSavageDDR P4M266A Chipset

VT8751A

Single-Chip SMA North Bridge for Pentium 4™ CPUs with 533 MHz FSB, External 4x AGP Bus and Integrated ProSavage8™ AGP Graphics Core plus Advanced ECC Memory Controller supporting PC2100 / PC1600 DDR SDRAM and PC133 / PC100 SDR SDRAM for Desktop PC Systems

Revision 1.1 July 19, 2002

a joint development of VIA TECHNOLOGIES, INC. and S3 GRAPHICS, INC.

Copyright Notice:

Copyright © 1999, 2000, 2001, 2002 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 1999, 2000, 2001 S3 Graphics Incorporated. All rights reserved. If you have received this document from S3 Graphics Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Graphics Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Graphics Incorporated. The material in this document is for information only and is subject to change without notice. S3 Graphics Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8233, VT8233C, VT8751, VT8751A, P4M266, and P4M266A may only be used to identify products of VIA Technologies.

The S3 Corporate Logo is a trademark of SONICblue Incorporated.

Savage™, Savage3D™, Savage4™, Savage/MX™, Savage2000™, ProSavage8™, and Twister™ are trademarks of S3 Graphics, Inc.

Intel™, Pentium™ and MMX™ are registered trademarks of Intel Corp.

Cyrix™, Cyrix6_x86™ and WinChip™ are registered trademarks of VIA Technologies

Athlon™, AMD5_K86™, AMD6_K86™, AMD-K5™, and AMD-K6™ are registered trademarks of Advanced Micro Devices Corp.

PCI™ is a registered trademark of the PCI Special Interest Group.

PS/2™ is a registered trademark of International Business Machines Corp

VESA™ is a trademark of the Video Electronics Standards Association,

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies or S3 Graphics. VIA Technologies and S3 Graphics make no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies and S3 Graphics assume no responsibility for any errors in this document. Furthermore, VIA Technologies and S3 Graphics assume no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 8th Floor, No. 533 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC

Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

VIA Technologies Incorporated USA Office:

940 Mission Court Fremont, CA 94539

USA

Tel: (510) 683-3300

Fax: 510) 683-3301 or (510) 687-4654

Home Page: http://www.viatech.com

S3 Graphics Incorporated

USA Office: 1045 Mission Court Fremont, CA 94539

USA

Tel: (510) 687-4900 Fax: (510) 687-4901

Home Page: http://www.s3graphics.com

REVISION HISTORY

Document Release	Date	Revision	Initials
1.1	7/19/02	Initial external release based on VT8751 Data Sheet Rev 1.1 (P4M266)	DH
		Updated legal page trademarks list	
		Increased size of figure 1 block diagram	
		Updated CPU FSB frequency to 533 MHz	

TABLE OF CONTENTS

REVISION HISTORY	l
TABLE OF CONTENTS	Il
LIST OF FIGURES	IV
LIST OF TABLES	IV
PRODUCT FEATURES	1
OVERVIEW	4
HIGH-PERFORMANCE 3D ACCELERATOR	5
128-BIT 2D GRAPHICS ENGINE	5
DVD PLAYBACK AND VIDEO CONFERENCING	5
FLAT PANEL MONITOR / TV OUT SUPPORT	6
HIGH SCREEN RESOLUTION CRT SUPPORT	6
PINOUTS	7
PINOU1S	······ /
PIN DESCRIPTIONS	10
REGISTERS.	20
REGISTER OVERVIEW	
MISCELLANEOUS I/O	24
CONFIGURATION SPACE I/O	24
DEVICE 0 REGISTER DESCRIPTIONS	25
Device 0 Host Bridge Header Registers	
Device 0 Host Bridge Device-Specific Registers	27
V-Link Control	
Host CPU Control	
DRAM Control	
PCI Bus Control	
AGP Control	
AGP Control (continued)	42 /13
V-Link Control.	
DRAM Interface Control	
Power Management	
ECC Error Control	
AGTL+ I/O Control	
Frame Buffer and High Memory Control	
BIOS Scratch	47
DEVICE 1 REGISTER DESCRIPTIONS	48
Device 1 PCI-to-PCI Bridge Header Registers	48
Device 1 PCI-to-PCI Bridge Device-Specific Registers	
AGP Bus Control	
FUNCTIONAL DESCRIPTION - INTEGRATED SAVAGE4 GRAPHICS	53
CONFIGURATION STRAPPING	53
PCI CONFIGURATION AND INTEGRATED AGP	53

PCI Configuration 53 PCI Subsystem ID 54 Integrated AGP 54 DISPLAY MEMORY 55 INTERRUPT GENERATION 55 DISPLAY INTERFACES 56 TFT Flat Panel DVI Interface 56 CRT Interface 56 External TV Encoder Interface 57 TC Serial Communications Port 57 ELECTRICAL SPECIFICATIONS 58 ABSOLUTE MAXIMUM RATINGS 58 DC CHARACTERISTICS 58 PACKAGE WEIGHT SPECIFICATIONS 58 POWER CHARACTERISTICS 59 AC TIMING SPECIFICATIONS 60 MECHANICAL SPECIFICATIONS 62 MECHANICAL SPECIFICATIONS 62		
Integrated AGP	PCI Configuration	5
DISPLAY MEMORY 55 INTERRUPT GENERATION 55 DISPLAY INTERFACES 56 TFT Flat Panel DVI Interface 56 CRT Interface 56 External TV Encoder Interface 57 I²C Serial Communications Port 57 ELECTRICAL SPECIFICATIONS 58 ABSOLUTE MAXIMUM RATINGS 58 DC CHARACTERISTICS 58 PACKAGE WEIGHT SPECIFICATIONS 58 POWER CHARACTERISTICS 59 AC TIMING SPECIFICATIONS 60	· ·	
INTERRUPT GENERATION 55 DISPLAY INTERFACES 56 TFT Flat Panel DVI Interface 56 CRT Interface 56 External TV Encoder Interface 57 I²C Serial Communications Port 57 ELECTRICAL SPECIFICATIONS 58 ABSOLUTE MAXIMUM RATINGS 58 DC CHARACTERISTICS 58 PACKAGE WEIGHT SPECIFICATIONS 58 POWER CHARACTERISTICS 59 AC TIMING SPECIFICATIONS 60	Integrated AGP	
DISPLAY INTERFACES. 56 TFT Flat Panel DVI Interface 56 CRT Interface	DISPLAY MEMORY	
TFT Flat Panel DVI Interface	INTERRUPT GENERATION	
CRT Interface	DISPLAY INTERFACES	50
External TV Encoder Interface 57 I²C Serial Communications Port 57 ELECTRICAL SPECIFICATIONS 58 ABSOLUTE MAXIMUM RATINGS 58 DC CHARACTERISTICS 58 PACKAGE WEIGHT SPECIFICATIONS 58 POWER CHARACTERISTICS 59 AC TIMING SPECIFICATIONS 60		
I ² C Serial Communications Port		
ABSOLUTE MAXIMUM RATINGS		
ABSOLUTE MAXIMUM RATINGS		
DC CHARACTERISTICS		
PACKAGE WEIGHT SPECIFICATIONS	ABSOLUTE MAXIMUM RATINGS	
PACKAGE WEIGHT SPECIFICATIONS	DC CHARACTERISTICS	
POWER CHARACTERISTICS	DACKAGE WEIGHT SPECIFICATIONS	50
AC TIMING SPECIFICATIONS60	TACKAGE WEIGHT SPECIFICATIONS	
AC TIMING SPECIFICATIONS	POWER CHARACTERISTICS	
MECHANICAL SPECIFICATIONS	AC TIMING SPECIFICATIONS	60
AIR STAIR CONTINUE OF THE PROPERTY OF THE PROP	MECHANICAL SPECIFICATIONS	6

LIST OF FIGURES

FIGURE 1	1. P4M266A CHIPSET SYSTEM BLOCK DIAGRAM	. 4
FIGURE 2	2. VT8751A / P4M266A BALL DIAGRAM (TOP VIEW)	. 7
	3. REFERENCE COMPONENT PLACEMENT USING THE P4M266A CHIPSET 1	
FIGURE 4	4. GRAPHICS APERTURE ADDRESS TRANSLATION4	11
FIGURE 5	5. DVI INTERFACE	56
FIGURE (6. EXTERNAL TV ENCODER INTERFACE5	57
FIGURE 7	7. MECHANICAL SPECIFICATIONS - 664-PIN HSBGA BALL GRID ARRAY PACKAGE WITH HEAT	
SPRE	CADER	52

LIST OF TABLES	
TABLE 1. SUPPORTED CRT SCREEN RESOLUTIONS	6
TABLE 2. VT8751A PIN LIST (NUMERICAL ORDER)	
TABLE 3. VT8751A PIN LIST (ALPHABETICAL ORDER)	9
TABLE 4. VT8751A / P4M266A PIN DESCRIPTIONS	10
TABLE 5. VT8751A / P4M266A REGISTERS	20
TABLE 6. SYSTEM MEMORY MAP	32
TABLE 7. DEVICE 0 RX58 MA MAP TYPE ENCODING	33
TABLE 8. MEMORY ADDRESS MAPPING TABLE	33
TABLE 9. DIMM MODULE CONFIGURATION	38
TABLE 10. VGA/MDA MEMORY/IO REDIRECTION	
TABLE 11. DEFINITION OF STRAPPING BITS AT THE RISING EDGE OF RESET#	53
TABLE 12. PCI SUBSYSTEM ID AND SUBSYSTEM VENDOR ID REGISTERS	54
TABLE 13. SUPPORTED FRAME BUFFER MEMORY CONFIGURATIONS	55
TABLE 14. EXTERNAL TV ENCODER OUTPUT DATA FORMATS	57
TABLE 15. ABSOLUTE MAXIMUM RATINGS	58
TABLE 16. DC CHARACTERISTICS	58
TABLE 17. PACKAGE WEIGHT SPECIFICATIONS	58
TABLE 18. POWER CHARACTERISTICS – INTERNAL AND INTERFACE DIGITAL LOGIC	59
TABLE 19. POWER CHARACTERISTICS – ANALOG AND REFERENCE VOLTAGES	
TABLE 20. AC TIMING MIN / MAX CONDITIONS	
TABLE 21. AC TIMING – CPU INTERFACE	
TABLE 22. AC TIMING – MEMORY INTERFACE	61
TABLE 23. AC TIMING – V-LINK INTERFACE	61
TABLE 24. AC TIMING – AGP INTERFACE	61

PROSAVAGEDDR P4M266A CHIPSET

VT8751A

Single-Chip SMA North Bridge for Pentium 4 CPUs with 533 MHz Front Side Bus, External 4x AGP Bus and Integrated ProSavage8 AGP Graphics core plus Advanced ECC Memory Controller supporting PC2100 / PC1600 DDR SDRAM and PC133 / PC100 SDR SDRAM for Desktop PC Systems

PRODUCT FEATURES

• Defines Integrated Solutions for Value PC Desktop Designs

- VIA VT8751A High Performance SMA North Bridge: Integrated Pentium 4 DDR VIA North Bridge and S3
 Graphics ProSavage8 2D/3D Graphics Controller with equivalent 8x AGP performance in a single chip
- 64-bit Advanced ECC Memory controller supporting PC2100/PC1600 DDR and PC100/PC133 SDR SDRAM
- Combines with VIA VT8233 V-Link South Bridge for integrated LAN, Audio, ATA100 IDE, and 6 USB ports
- 2.5V Core and AGTL+ I/O
- 37.5 x 37.5mm HSBGA (Ball Grid Array with Heat Spreader) package with 664 balls

High Performance CPU Interface

- Support for Intel[™] Pentium 4 processors with 533 MHz (133 MHz QDR) CPU Front Side Bus (FSB)
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions
- Nine outstanding transactions (eight In-Order Queue (IOQ) plus one output latch)
- Dynamic deferred transaction support

• High Bandwidth 266MB/S 8-bit V-Link Host Controller

- Supports 66MHz V-Link Host interface with peak bandwidth of 266MB/S
- Operates at 2X or 4X modes
- Full duplex commands with separate command / strobe
- Request / Data split transaction
- Configurable outstanding transaction queue for Host to V-Link Client accesses
- Supports Defer / Defer-Reply transactions
- Transaction assurance for V-Link Host to Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to eliminate data wait-state / throttle transfer latency
- All V-Link transactions for both Host and Client have a consistent view of transaction data depth and buffer size to avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead
- All V-Link transactions have predictable cycle length with known command / data duration

• Advanced High-Performance DDR / SDR DRAM Controller

- DRAM interface pseudo-synchronous with host CPU (100 or 133 MHz) for most flexible configuration
- DRAM interface may be faster than CPU by 33 MHz to allow use of 133 MHz memory with 100 MHz FSB clock
- Concurrent CPU, AGP, and V-Link access
- Supports SDR and DDR SDRAM memory types
- Clock Enable (CKE) control for SDRAM power reduction in high speed systems
- Mixed 16M / 32M / 64M x 8/16/32 DRAMs
- Supports 8 banks up to 4 GB DRAMs (512Mb x8/x16 DRAM technology)
- Flexible row and column addresses. 64-bit data width only
- LVTTL 3.3V DRAM interface with 5V-tolerant inputs for SDR SDRAM and 2.5V SSTL-2 DRAM interface for DDR SDRAM
- Programmable I/O drive capability for MA, MD, and command signals
- Dual copies of MA and control signals for improved drive
- Optional ECC (single-bit error correction and multi-bit error detection) or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mb, 128Mb, 256Mb, 512Mb SDRAM support
- Supports maximum 16-bank interleave (i.e., 16 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization
 - (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU to DRAM write buffers
- Four cache lines of CPU to DRAM read prefetch buffers
- Read around write capability for non-stalled CPU read
- Speculative DRAM read before snoop result
- Burst read and write operation
- Burst length 4 and 8 for SDR and DDR
- Supports DDR SDRAM CL 2/2.5/3 and 1T per command
- 1T and 2T command rate for SDR and DDR which can be specified bank by bank
- Decoupled and burst DRAM refresh with staggered RAS timing (CAS before RAS or self refresh)

• Full Featured Accelerated Graphics Port (AGP) Controller

- Supports 266 MHz 4x and 133 MHz 2x transfer modes for AD and SBA signaling
- AGP specification v2.0 compliant
- Pseudo-synchronous with the host CPU bus with optimal skew control
- Supports SideBand Addressing (SBA) mode (non-multiplexed address / data)
- AGP pipelined split-transaction long-burst transfers up to 1GB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (256 bytes)
- Sixteen level (quadwords) write data FIFO (128 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Sixteen entry fully associative page table
 - LRU replacement scheme
 - Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / 2000 miniport driver support

High Resolution CRT RGB Interface

- 250 MHz RAMDAC on chip with Gamma Correction
- Horizontal / Vertical Sync outputs compliant with Monitor Power Management protocols
- I²C Serial Bus for DDC Monitor Communications
- Simultaneous display of CRT with TV or DVI Flat Panel Monitor

• Integrated ProSavage8 2D / 3D Graphics Controller and Video Accelerator

- Optimized Shared Memory Architecture (SMA)
- Equivalent 8x AGP internal performance
- 8 / 16 / 32 MB frame buffer using system memory
- Floating point triangle setup engine
- Single cycle 128-bit 3D architecture
- 8M triangles/second setup engine
- 140M pixels/second trilinear fill rate
- Microsoft DirectX texture compression
- Next generation, 128-bit 2D graphics engine
- High quality DVD video playback
- Flat panel monitor support
- 2D/3D resolutions up to 1920x1440

• 3D Rendering Features

- Single-pass multiple textures
- Anisotropic filtering
- 8-bit stencil buffer
- 32-bit true color rendering
- Specular lighting and diffuse shading
- Alpha blending modes
- Massive 2K x 2K textures
- MPEG-2 video textures
- Vertex and table fog
- 16 or 24-bit Z-buffering
- Reflection mapping, texture morphing, shadows, procedural textures and atmospheric effects

2D Hardware Acceleration Features

- ROP3 Ternary Raster Operation BitBLTs
- 8, 16, and 32 bpp mode acceleration

• Motion Video Architecture

- High quality up/down scaler
- Planar to packed format conversion
- Motion compensation for full speed DVD playback
- Hardware subpicture blending and highlights
- Multiple video windows for video conferencing
- Contrast, hue, saturation, brightness and gamma controls

• Flat Panel Monitor / TV Output Support

- Digital Visual Interface (DVI) 1.0 compliant
- Optional configuration of DVI outputs as digital output port for external NTSC/PAL TV encoder

Full Software Support

- Drivers for major operating systems and APIs: Windows[®] 9x/ME, Windows NT 4.0, Windows 2000, Windows XP,
 Direct3D™, DirectDraw™ and DirectShow™, and OpenGL™ ICD for Windows 9x/ME, NT, 2000, and XP
- North Bridge/Chipset and Video BIOS support

Advanced System Power Management Support

- Power down of SDRAM (CKE)
- VTT suspend power plane preserves memory data
- Suspend-to-DRAM and self-refresh power down
- Low-leakage I/O pads
- ACPI 1.0B and PCI Bus Power Management 1.1 compliant

OVERVIEW

The ProSavageDDR P4M266A (VT8751A North Bridge plus VT8233 South Bridge) is a high performance, cost-effective and energy efficient SMA chip set for the implementation of desktop personal computer systems with 533 MHz (133 MHz QDR) CPU host bus ("Front Side Bus") based on 64-bit Intel Pentium-4 super-scalar processors. This data sheet describes the VT8751A North Bridge portion of the P4M266A chipset (except for detailed register descriptions for the integrated graphics controller which are described in a separate document published by S3 Graphics). The VT8233 South Bridge is described in a separate data sheet.

Figure 1. P4M266A Chipset System Block Diagram

The ProSavageDDR P4M266A chipset consists of the VT8751A DDR SMA North Bridge (664 pin BGA) and the VT8233 V-Link South Bridge (376 pin BGA). The VT8751A (which may also be referred to as a "Host System Controller") integrates VIA's VT8653 Apollo Pro266T system controller with CPU bus extensions to support Pentium 4, S3 Graphics' 128-bit ProSavage8 2D/3D graphics accelerator and S3 Graphics' flat panel monitor and TV out interfaces into a single 664 BGA package. The VT8751A provides superior performance between the CPU, DRAM, V-Link bus and internal or external AGP 4x graphics controller bus with pipelined, burst, and concurrent operation. The VT8233 South Bridge (which may also be referred to as a "V-Link Client Controller") is a highly integrated PCI / LPC controller. Its internal bus structure is based on 66 MHz PCI bus that provides 2x bandwidth compare to previous generation PCI bridge chips. The VT8233 also provides a 266MB/sec bandwidth Host/Client V-Link interface with V-Link-PCI and V-Link-LPC controllers. It supports five PCI slots of arbitration and decoding for all integrated functions and LPC bus.

The VT8751A supports eight banks of SDR / DDR SDRAMs up to 4 GB. The DRAM controller supports PC2100 / PC1600 Double-Data-Rated (DDR) SDRAM but can also support standard PC133 / PC100 Synchronous DRAM (SDR SDRAM). The DDR / SDR DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 100 / 133 MHz. The different banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16M / 32M / 64M x 8/16/32 DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The VT8751A host system controller supports a high speed 8-bit 66 MHz Quad Data Transfer interconnect (V-Link) to the VT8233 South Bridge. The chip also contains a built-in bus-to-bus bridge to allow simultaneous concurrent operations on each

bus. Five levels (doublewords) of post write buffers are included to allow for concurrent CPU and V-Link operation. For V-Link Host operation, forty-eight levels (doublewords) of post write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent V-Link bus and DRAM/cache accesses. When combined the V-Link Host / Client controllers, it realizes a complete PCI sub-system and supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

P4M266A also integrates S3 Graphics' 128-bit ProSavage8™ graphics accelerator into a single chip. P4M266A brings mainstream graphics performance to the Value PC with leading-edge 2D, 3D and DVD video acceleration into a cost effective package. Based on its capabilities, P4M266A is an ideal solution for the consumer, corporate mobile users and entry level professionals.

The industry's first integrated Pentium 4 AGP solution to support DDR memory, P4M266A combines AGP 8x performance with Microsoft DirectX texture compression and massive 2Kx2K textures to deliver unprecedented 3D performance and image quality for the Value PC mobile market.

The 376-pin Ball Grid Array VT8233 Client V-Link PCI / LPC controller supports four levels (doublewords) of line buffers, type F DMA transfers and delay transaction to allow efficient PCI bus utilization and (PCI-2.1 compliant). The VT8233 integrated PCI controller and PCI arbitration for up to five PCI slots. One of the PCI REQ / GNT pair can be configured as high-priority to better support a low latency PCI bus master device. The VT8233 integrated networking MAC controller with standard MII interface to an external PHY for 10/100Mb base-T Ethernet or 1/10Mb PNA home networking.

The VT8233 also includes an integrated keyboard controller with PS2 mouse support, integrated DS12885 style real time clock with extended 256 byte CMOS RAM, integrated master mode enhanced IDE controller with full scatter / gather capability and extension to UltraDMA-33/66/100 for 33/66/100 MB/sec transfer rate, integrated USB interface with root hubs and six functional ports with built-in physical layer transceivers, Distributed DMA support, and OnNow / ACPI compliant advanced configuration and power management interface.

For sophisticated power management, P4M266A provides independent clock stop control for the CPU / SDRAM and AGP bus plus Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation. Coupled with the VT8233 south bridge chip, a complete power conscious PC main board can be implemented with no external TTLs.

High-Performance 3D Accelerator

Featuring a new super-pipelined 128-bit engine, P4M266A utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, anisotropic filtering, and an 8-bit stencil buffer. In addition with DDR266 (PC2100) system memory, the ProSavage8 graphics controller will achieve up to 8x AGP equivalent performance (2.1 MB/sec 3D data transfers). P4M266A also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. P4M266A further enhances image quality with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. P4M266A's advanced triangle setup engine provides industry leading 3D performance for a realistic user experience in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

128-bit 2D Graphics Engine

P4M266A's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. Several enhancements have been made to the 2D architecture to optimize SMA performance and to provide acceleration in all color depths.

DVD Playback and Video Conferencing

P4M266A provides the ideal architecture for high quality MPEG-2 based DVD applications and video conferencing. For DVD playback, P4M266A's video accelerator offloads the CPU by performing the planar to packed format conversion and motion

compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback. For video conferencing, P4M266A's multiple video windows enable a cost effective solution.

Flat Panel Monitor / TV Out Support

The P4M266A can drive an external flat panel monitor via a 12-bit interface to a TMDS encoder. This interface is Digital Visual Interface (DVI) 1.0 compliant. All resolutions are supported up to 1280x1024. This interface can alternately be configured to drive an external TV encoder chip for driving a standard television set.

High Screen Resolution CRT Support

	System Memory Frame Buffer Size							
Resolutions Supported	8 MB	16/32 MB						
640x480x8/16/32	~	V						
800x600x8/16/32	~	V						
1024x768x8/16/32	V 0	~						
1280x1024x8	~	~						
1280x1024x16	~ ~							
1280x1024x32	V	• •						
1600x1200x8	V)	V						
1600x1200x16	V	~						
1600x1200x32	•	~						
1920x1440x8	V	~						
1920x1440x16	~	~						

Table 1. Supported CRT Screen Resolutions

Revision 1.1, July 19, 2002 -6- Overview

PINOUTS Figure 2. VT8751A / P4M266A Ball Diagram (Top View) 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 18 | 19 | 20 | 21 | 22 7 8 25 26 3 4 -5 23 INT A# FPDET FPD11 FPD7 TV11 TVBL# TVD7 GCMP N0 GND QQ VCC QQ R SET XIN XDCK FPD2 HD61 HD58 HD56 HD62 HD48 HD47 HD44 HD35 HD32 HD36 HD16 HD18 HD22 HD27 NC AG HD40 SYNC **FPDE** HDS GND AR GND **GND** AB HD63 HD55 HD49 HD46 HD45 HD39 HD33 HD19 HD29 GND HD23 GNT; SYNC IN# TVCK TVD10 TVD8 GND RGB VCC DAC VCC PLL1 DCLK SP CLK1 HDS 3 G REO# SBA 1 SBA FPD0 TVD0 C GND **GND** GND HD59 GND HD51 HD50 HD41 GND GND HD38 HD28 HD26 HD25 HD20 HD31 GND PLL2 DCLK O HDBI 3# SBA 4 SBA 3 HDS GND HD54 GND GND HD37 HD30 SBS# SBS **GND** GND **GND** HD21 GND HD17 HD24 HD13 DAT1 OUT TVD5 VCC RGB VCC PLL2 SP DAT2 SP CLK2 GPO0 FPD9 TVD9 FPD4 TVD4 CPU GND TT HDS 2# SBA SBA SBA **FPCLK** HD53 HD52 GND ST0 HD57 VTT HD42 HD34 E VTT GND GND GND HD12 XECK TVCK RST# HD VREF VCC 25 VCC 25 SBA HR COMP GD31 GND GND GND GND GND **GND** VTT VTT VTT HD3 F NC ST1 HD9 HD11 HD1 HDBI 0# HDS 0 G PIPE# AGP VREF **HDS** GND GD29 GD30 17 **G23** HD14 GD26 GD27 **F7** 9 10 11 12 13 14 15 16 18 19 20 21 22 VCC 25 G RBF# GND GD25 GD28 Н Н HD5 HD15 GND GD24 CRT Pins FPM Pins GND HD10 GDS 1# GDS 1 VCC VCC GND CPU GD23 ST2 HITM# HD0 HD6 HD2 HD8 25 GBE 3# VCC AGP VCC FP D BSY# GD19 GD20 GD22 VTT VTT VTT VTT VTT VTT VTT VTT RS2# RS0# RS1# GD21 K GND Pins K GND G G FRM# WBF# H B LOCK# REQ# 12 17 L19 GD18 GND **GD17** \mathbf{L} AGP L11 13 14 15 16 18 VTT HIT# **GND** ÄĞP GI RDY# GBE 2# VCC AGP H CLK# HT RDY# DE FER# D RDY# M GD16 GND NC M Pins GND GND GND GND **GND** GND GND M VTT BNR# M AGP GBE G DSEL# VCC VCC AGP H CLK HREQ GD14 GD15 GD13 GND GND HA7 GND GND GND GND VTT **GND** GND TT HREQ HREQ GT RDY# VCC HREQ P GD10 GND GD11 GD12 GND GND GND GND VTT ADS# GND GND GND 25 GBE 0# AGP VREF HREQ 0# G STOP# GD9 GD8 GND GND GND GND R HA5 HA4 HA11 R GND GND GND GND VTT HA6 GDS 0# GD7 GD4 T VTT GND GD6 T GND GND **GND** GND GND GND GND VTT Т HA9 HA15 HA8 AGP G PAR G CLK VCC VL GND HA16 GD2 GND GD5 U GND GND GND GND **GND** GND VTT U VTT GND HA12 HA13 GD3 GD0 GD1 GND VBE# V GND GND GND GND GND GND \mathbf{V} HA10 HA14 HA19 HA18 HA17 GND TEST IN# VAD3 VAD5 VAD1 GND W W11 12 13 14 15 18 W **GND** HA25 HA22 HA24 16 17 UP CMD UP STB# VL VREF VCC MEM HAS GND GND Vlink VTT HA30 GND Y Y HA29 MEM DN VAD4 strap VCC 25 AA Pins VTT HA23 HA26 HA21 HA20 HA28 AA CMD MEM STB STB# MEM VAD VAD2 VL COMP VSUS 25 VAD6 ΑB GND VTT GND GND HA33 HA31 HA27 AB Mem Pins AB strap RE SET# **PWR GND** MD59 GND 10 GND HA32 GND MD0 AC7 9 11 12 13 15 19 20 22 14 16 17 18 21 AC23 VCC 25 MEM VREF MEM VREF MD58 MD62 MD63 GND NC MD2 MD1 MD5 MD4 SCAS A# MAB 10 MECC 7 SWE A# VCC MAA MAA 5 MAA MAB 8 MAA 13 MAB 13 DQM DQS 0# MAA MD41 CS0# CS4# GND GND **GND** MD57 MD61 MD56 GND CS6# CS7# NC MD6 MDLI MAA MECC MECC MAA 4 MAB MAA 9 MAB GND GND GND **GND** MD30 **GND** GND AF MD51 GND MD60 MD54 MD43 MD45 CS1# MD38 CS5# GND MD25 MD18 MD17 **GND** MD7 MAA 12 MECC DQS 8# MAB SRAS A# MAA 3 MAB 6 MAB 14 MAA 8 MD55 MD50 MD52 MD49 MD42 MD40 CS3# MD39 MD34 MD33 MD36 MD27 MD29 MD22 MD21 MD10 MD15 MD9 MD8 MD3 MECC MECC MAB 3 MAA GND ΑH GND MD48 GND CS2# **GND** GND MD32 **GND GND** MD31 **GND** MD24 **GND** MD19 GND MD11 MD12

MECC

MAB

MAB

MD26

MAA

MD23

MD16 MD20 MD14

MD13

MD28

MAA

DQM

MECC

MAB

MD37

MAB

MAA

MD35

MD44

DQM

MD53 MD47 MD46

Table 2. VT8751A Pin List (Numerical Order)

Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin #		Pin Names	Pin #		Pin Name
A01	-	NC	C25	Ю	HDBI1#	G28	Ю	HDS0	R26	IO	HA05	AD03	Ю	DOS7# / CKE7	AG10	Ю	MD33
A02	ΑI	GCOMPN0	C26	Ю	HD26	G29	Ю	HDS0#	R27	IO	HA04	AD04	O	DQM7 / CKE7	AG11	IO	MD36
A03		GNDQQ	C27	Ю	HD25	H01	IO	GD24	R28		HA11	AD05	Ю	MD63	AG12	O	MAA12
A04	P	VCCQQ	C28	Ю	HD20	H03	IO	GD25	R29	IO	HA06	AD07	P	MEMVREF	AG13	IO	MECC3 / CKE3
A05	AO	AG	C29	Ю	HD31	H04	IO	GD28	T01	Ю	GD6	AD08	-	NC	AG14	IO	DQS8#
A06	ΑI	RSET	D01	I	SBS#	H05	I	GRBF#	T02	IO	GD7	AD12	P	MEMVREF	AG15	0	MAB01
A07	I	XIN / XDCLK	D02	I	SBS	H25	IO	HD05	T03	IO	GD4	AD15	P	GNDMDLL SCASD#	AG16	0	SRASA#
A08 A09	O	VSYNC INTA#	D03 D04	I I	SBA4 SBA3	H26 H29	IO IO	HD15 HD10	T04 T05	IO IO	GDS0 GDS0#	AD16 AD17	0	SCASB# SWEB#	AG17 AG18	O IO	MAA03 MD27
A10	-	FPDET/TVD11	D04 D06	P	GNDDAC	J01	IO	GD23	T25		HAS0#	AD17	P	MEMVREF	AG19	O	MAB06
A11		FPD11/TVBL#	D07	P	GNDPLL2	J02	IO	GDS1#	T27	IO	HA09	AD19	o	SRASB#	AG20	IO	MD29
A12		FPD07/TVD7/str	D08	О	DCLKO	J03	IO	GDS1	T28		HA15	AD23	P	MEMVREF	AG21	O	MAB14
A13	O	FPD02/TVD2/str	D09	Ю	SPDAT1	J05	О	ST2	T29	IO	HA08	AD24	P	VCCMCK	AG22	О	MAA08
A14		HD61	D10	O	FPHS / TVHS	J25	I	HITM#	U01	IO	GD2	AD25	I	MCLKF	AG23	IO	MD22
A15	IO	HD58	D11	O	GPOUT	J26	IO	HD06	U03	IO	GD5	AD26	IO	MD02	AG24	IO	MD21
A16	IO IO	HD56 HD62	D12 D13	0	FPD05/TVD5/str FPD03/TVD3/str	J27 J28	IO IO	HD02 HD00	U04 U05		GPAR GCLK	AD27 AD28	IO IO	MD01	AG25	IO IO	MD10 MD15
A17 A18	-	HD48	D13	Ю	HD60	J28 J29	IO	HD00	U26	I IO	HA16	AD28 AD29	IO	MD05 MD04	AG26 AG27	IO	MD09
A19		HD47	D14	IO	HDBI3#	K01	IO	GD21	U28		HA12	AE01	IO	MD57	AG28	IO	MD08
A20	IO	HD44	D17	IO	HD54	K02	IO	GD19	U29		HA13	AE02	IO	MD61	AG29	IO	MD03
A21	Ю	HD35	D20	Ю	HDS2	K03	Ю	GD20	V01		GD3	AE03	Ю	MD56	AH01	IO	DQS6# / CKE6
A22	IO	HD40	D22	Ю	HD37	K04	IO	GD22	V02	IO	GD0	AE05	О	CS6#	AH03	IO	MD48
A23		HD32	D23	IO	HD30	K05	IO	GBE3#	V03	IO	GD1	AE06	0	CS7#	AH05	0	DQM5 / CKE5
A24	IO	HD36	D25	IO	HD21	K25	IO	DBSY#	V05		VBE#	AE07	IO	MD41	AH06	0	CS2#
A25 A26	IO IO	HD16 HD18	D27 D28	IO IO	HD17 HD24	K27 K28	IO IO	RS2# RS0#	V24 V25	P IO	HAVREF HA10	AE08 AE09	o	NC CS0#	AH08 AH09	O IO	MAB11 DQS4# / CKE4
A20 A27	-	HDS1	D28 D29	IO	HD13	K29	IO	RS1#	V25 V26		HA14	AE10	o	SCASA#	AH11	IO	MD32
A28		HD22	E01	I	SBA5	L01	IO	GD18	V27		HA19	AE11	ŏ	MAB10	AH12	O	MAA10
A29		HD27	E03	Ì	SBA6	L03	IO	GD17	V28		HA18	AE12	ŏ	CS4#	AH14	IO	MECC2 / CKE2
B01	О	GGNT#	E04	I	SBA2	L04	Ю	GFRM#	V29	Ю	HA17	AE13	Ю	MECC7 / CKE7	AH15	Ю	MECC4 / CKE4
B03	ΑI	GCOMPN1	E05	О	ST0	L05	I	GWBF#	W01	IO	VAD3 / strap	AE14	O	SWEA#	AH17	О	MAB03
	AO	AB	E06	P	VCCRGB	L24	P	GTLVREF	W02		VAD5 / strap	AE15	P	VCCMDLL	AH18	IO	MD31
		AR CNDBLL1	E07	P IO	VCCPLL2	L25 L26	O	HLOCK# BREQ#	W03 W05		VAD1 / strap VAD0 / strap	AE16 AE20	0	MAA01 MAA06	AH20 AH21	IO IO	DQS3# / CKE3 MD24
B07 B08		GNDPLL1 HSYNC	E08 E09	IO	SPDAT2 SPCLK2	L20 L27	IO	HIT#	W25	IO	TESTIN#	AE20 AE21	ő	MAA05	AH23	IO	MD19
B09	I	BISTIN#	E10	O	GPO0	L29	IO	BPRI#	W27	Ю	HA25	AE22	o	MAA07	AH24	IO	DQS2# / CKE2
B10		FPDE/TVCKI	E11	ŏ	FPCLK/TVCKO	M01		GIRDY#	W28		HA22	AE23	ŏ	MAB08	AH26	IO	MD11
B11		FPD10/TVD10	E12	O	FPD09/TVD9/str	M02	IO	GBE2#	W29		HA24	AE24	O	MAB07	AH27	0	DQM1 / CKE1
B12	O	FPD08/TVD8	E13	O	FPD04/TVD4/str	M03	IO	GD16	Y01	I	UPCMD	AE25	О	MAA13	AH29	IO	MD12
B13	O	FPD01/TVD1/str	E14	O	CPURST#	M05	-	NC	Y03	I	UPSTB#	AE26	О	MAB13	AJ01	O	DQM6 / CKE6
B14		HD63	E15	IO	HD57	M24	P	GNDHCK	Y05	P	VLVREF	AE27	IO	MD06	AJ02	IO	MD53
B15 B17	IO IO	HD55 HDS3#	E17 E18	IO IO	HD53 HD52	M25 M26	I IO	HCLK# HTRDY#	Y26 Y27		HA30 HAS1#	AE28 AE29	IO	DQM0 / CKE0 DQS0# / CKE0	AJ03 AJ04	IO IO	MD47 MD46
B18		HD49	E19	P	GNDTT	M27		DEFER#	Y29		HA29	AF01	IO	MD51	AJ04 AJ05	IO	DQS5# / CKE5
B19	IO	HD46	E20	Ю	HDS2#	M28	IO	DRDY#	AA01	0		AF03	IO	MD60	AJ06	IO	MD44
B20		HD45	E21	OL	HD42	M29	IO	BNR#	AA02		DNCMD	AF04	IO	MD54	AJ07	O	MAA11
B21	IO	HD43	E22	IO	HD34	N01	IO	GD14	AA03	О	DNSTB#	AF05	Ю	MD43	AJ08	Ю	MD35
B22	IO	HDBI2#	E27	Ю	HD12	N02	Ю	GD15	AA04	I	UPSTB	AF06	IO	MD45	AJ09	О	DQM4 / CKE4
B23	IO	HD39	E28	IO	HD04	N03	IO	GBE1#	AA05		VAD4 / strap	AF08	0	CS1#	AJ10	IO	MD37
B24		HD33	E29	IO	HD07	N04	IO	GDEVSEL#	AA25	IO	HA23	AF09	IO	MD38	AJ11	0	MAB12
B25 B26		HD19 HD29	F01 F02	IO	GD31 NC	N05 N24	IO P	GD13 VCCHCK	AA26 AA27	IO IO	HA26 HA21	AF11 AF12	0	CS5# MAA00	AJ12 AJ13	O IO	MAB00 MECC6 / CKE6
B27		HDS1#	F03	I	SBA7	N25	Ā	HCLK	AA28		HA20	AF14	Ю	MECC1 / CKE1	AJ13	O	DQM8
B29		HD23	F05	Ô	ST1	N27	Ю	HREQ2#	AA29		HA28	AF15	IO	MECC0 / CKE0		IO	MECC5 / CKE5
C01		GREQ#	F16	P	HDVREF	N28		HA07	AB01		VAD6 / strap		О	MAA04	AJ16	0	MAB02
C02	I	SBA1	F19	P	HDVREF	N29	IO	HA03	AB02	IO	VAD7	AF18	Ю	MD30	AJ17	О	MAA02
C03		SBA0	F22		HDVREF	P01		GD10			VAD2 / strap			MD25	AJ18	О	MAB04
C05		GNDRGB	F24		HDVREF	P03		GD11	AB04		VLCOMP	AF21	0	MAB05	AJ19	IO	MD26
C06		VCCDAC	F25	AI	HRCOMP	P04		GD12	AB05		VSUS25	AF23		MD18	AJ20	0	DQM3 / CKE3
C07 C08		VCCPLL1 DCLKI	F26 F27		HD03 HD09	P05 P24	P	GTRDY# GNDTT	AB27 AB28		HA33 HA31	AF24 AF26	0	MD17 MAA09	AJ21 AJ22	IO O	MD28 MAA14
C08		SPCLK1	F28		HD11	P25		ADS#	AB29		HA27	AF27		MAB09	AJ23	Ю	MD23
C10		FPVS / TVVS	F29		HD01	P26		HREQ4#	AC01	I	PWROK	AF29		MD07	AJ24	O	DQM2 / CKE2
C12	O	FPD06/TVD6/str	G01	IO	GD26	P27		HREQ1#	AC03	Ī	RESET#	AG01	IO	MD55	AJ25	IO	MD16
C13		FPD00/TVD0/str	G02	Ю	GD27	P29		HREQ3#	AC04		SUSST#	AG02		MD50	AJ26	IO	MD20
C15		HD59	G03	IO	GD29	R01		GBE0#	AC05		MD59	AG03	Ю	MD52	AJ27	Ю	MD14
C17		HDS3	G04	IO	GD30	R02		GD9	AC24		GNDMCK	AG04		MD49	AJ28	IO	DQS1# / CKE1
C18		HD51	G05	I	GPIPE#	R03		GD8	AC25		MCLK			MD42	AJ29	IO	MD13
C19 C20		HD50	G06	P P	AGPVREF	R05		GSTOP#	AC27		HA32	AG06					1
C20 C23		HD41 HD38	G24 G25		HCMPVREF HD14	R06 R24	P P	AGPVREF HAVREF	AC29 AD01		MD00 MD58	AG07 AG08	O IO	CS3# MD39			
C23		HD28	G23 G27		HDBI0#	R24 R25		HREQ0#	AD01 AD02			AG08					
C27	10	111/20						V6.24 A A 6 A 1				11009	10	דעעוויו	<u> </u>	Щ_	

VCC25 Pins (26 pins): F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22

VCCMEM Pins (26 pins): V20, W10,20, Y10-20, AA9-20

 $VCCAGP \ Pins \ (19 \ pins): \quad K6,9, L6,9-10, M6,9-10, N9-10, P9-10, R9-10, T6,9-10, U6, V6$

VCCVL (4 pins): U9-10, V9-10, W9, Y9

VCCFP (3 pins): K11-13

VTT Pins (25 pins): E16, E23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20,T20,24, U20,24, Y25, AA24, AB24

GND Pins (133 pins): B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28, M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26,

AC2,6,26,28,AD6,AE4,17-19,AF2,7,10,13,16,19,22,25,28,AH2,4,7,10,13,16,19,22,25,28

Table 3. VT8751A Pin List (Alphabetical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin #		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin #		Pin Name
B05	ΑO	AB	V01	Ю	GD3	V28	Ю	HA18	B18	Ю	HD49	AG21	О	MAB14	AJ15	Ю	MECC5 /CKE5
P25		ADS#	T03	Ю	GD4	V27	IO	HA19	C19	IO	HD50	AC25	O	MCLK	AJ13	IO	MECC6 /CKE6
A05	ΑO	AG	U03	Ю	GD5	AA28	Ю	HA20	C18	Ю	HD51	AD25	I	MCLKF	AE13	Ю	MECC7 /CKE7
G06	P	AGPVREF	T01	Ю	GD6	AA27	IO	HA21	E18	IO	HD52	AC29	Ю	MD00	AD07	P	MEMVREF
R06	P	AGPVREF	T02	Ю	GD7	W28	IO	HA22	E17	IO	HD53	AD27	IO	MD01	AD12	P	MEMVREF
B06	AO	AR DICTINI#	R03	IO	GD8	AA25	IO	HA23	D17	IO	HD54	AD26	IO	MD02	AD18	P	MEMVREF
B09	I IO	BISTIN# BNR#	R02 P01	IO IO	GD9 GD10	W29 W27	IO	HA24 HA25	B15	IO IO	HD55 HD56	AG29 AD29	IO	MD03 MD04	AD23	P -	MEMVREF NC
M29 L29	IO	BPRI#	P01	IO	GD10 GD11	AA26	IO IO	HA26	A16 E15	IO	HD57	AD29 AD28	IO	MD04 MD05	A01 F02	-	NC NC
L26	o	BREO#	P04	IO	GD12	AB29	IO	HA27	A15	IO	HD58	AE27	IO	MD06	M05	-	NC
E14	O	CPURST#	N05	Ю	GD13	AA29	Ю	HA28	C15	Ю	HD59	AF29	Ю	MD07	AD08	-	NC
AE09	О	CS0#	N01	Ю	GD14	Y29	Ю	HA29	D14	Ю	HD60	AG28	Ю	MD08	AE08	-	NC
AF08	О	CS1#	N02	Ю	GD15	Y26	IO	HA30	A14	IO	HD61	AG27	Ю	MD09	AC01	I	PWROK
AH06	0	CS2#	M03	IO	GD16	AB28	IO	HA31	A17	IO	HD62	AG25	IO	MD10	AC03	I	RESET#
AG07	0	CS3#	L03	IO	GD17	AC27	IO	HA32	B14	IO	HD63	AH26	IO	MD11	K28	IO	RS0#
AE12 AF11	0	CS4# CS5#	L01 K02	IO IO	GD18 GD19	AB27 T25	IO	HA33 HAS0#	G27 C25	IO IO	HDBI0# HDBI1#	AH29 AJ29	IO	MD12 MD13	K29 K27	IO IO	RS1# RS2#
AE05	ŏ	CS6#	K02	IO	GD19 GD20	Y27	IO	HAS1#	B22	IO	HDBI2#	AJ27	IO	MD13 MD14	A06	AI	RSET
AE06	ŏ	CS7#	K01	IO	GD21	R24	P	HAVREF	D16	IO	HDBI3#	AG26	IO	MD15	C03	I	SBA0
K25	Ю	DBSY#	K04	Ю	GD22	V24	P	HAVREF	G28	Ю	HDS0	AJ25	Ю	MD16	C02	I	SBA1
D08	O	DCLKO	J01	Ю	GD23	N25	I	HCLK	G29	IO	HDS0#	AF24	Ю	MD17	E04	I	SBA2
C08	I	DCLKI	H01	IO	GD24	M25	I	HCLK#	A27	IO	HDS1	AF23	IO	MD18	D04	I	SBA3
M27	IO	DEFER#	H03	IO	GD25	G24	P	HCMPVREF	B27	IO	HDS1#	AH23	IO	MD19	D03	I	SBA4
AA02 AA01	0	DNCMD DNSTB	G01 G02	IO IO	GD26 GD27	J28 F29	IO IO	HD00 HD01	D20 E20	IO IO	HDS2 HDS2#	AJ26 AG24	IO	MD20 MD21	E01 E03	I I	SBA5 SBA6
AA03	ŏ	DNSTB#	H04	IO	GD27 GD28	J27	IO	HD02	C17	IO	HDS3	AG23	IO	MD22	F03	Ĭ	SBA7
AE28	Ō	DQM0 / CKE0	G03	IO	GD29	F26	IO	HD03	B17	IO	HDS3#	AJ23	IO	MD23	D02	I	SBS
AH27	О	DQM1 / CKE1	G04	Ю	GD30	E28	Ю	HD04	F16	P	HDVREF	AH21	Ю	MD24	D01	I	SBS#
AJ24	О	DQM2 / CKE2	F01	Ю	GD31	H25	Ю	HD05	F19	P	HDVREF	AF20	Ю	MD25	AE10	О	SCASA#
AJ20	О	DQM3 / CKE3	T04	IO	GDS0	J26	IO	HD06	F22	P	HDVREF	AJ19	IO	MD26	AD16	О	SCASB#
AJ09	0	DQM4 / CKE4	T05	IO	GDS0#	E29 J29	IO	HD07	F24	P	HDVREF	AG18	IO	MD27	C09	IO	SPCLK1
AH05 AJ01	0	DQM5 / CKE5 DQM6 / CKE6	J03 J02	IO IO	GDS1 GDS1#	F27	IO	HD08 HD09	L27 J25	IO I	HIT# HITM#	AJ21 AG20	IO	MD28 MD29	E09 D09	IO	SPCLK2 SPDAT1
AD04	ŏ	DQM7 / CKE7	N04	IO	GDEVSEL#	H29	IO	HD10	L25	I.	HLOCK#	AF18	IO	MD30	E08	IO	SPDAT2
AJ14	ŏ	DQM8	L04	IO	GFRM#	F28	IO	HD11	F25	AI	HRCOMP	AH18	10	MD31	AG16	0	SRASA#
AE29	Ю	DQS0# / CKE0	B01	O	GGNT#	E27	IO	HD12	R25	νIO	HREQ0#	AH11	Ю	MD32	AD19	O	SRASB#
AJ28	Ю	DQS1# / CKE1	M01	Ю	GIRDY#	D29	Ю	HD13	P27	Ю	HREQ1#	AG10	Ю	MD33	E05	О	ST0
AH24	IO	DQS2# / CKE2	D06	P	GNDDAC	G25	IO	HD14	N27	IO	HREQ2#	AG09	IO	MD34	F05	O	ST1
AH20	IO	DQS3# / CKE3	M24	P	GNDHCK	H26	IO	HD15	P29	IO	HREQ3#	AJ08	IO	MD35	J05	0	ST2
AH09 AJ05	IO IO	DQS4# / CKE4 DQS5# / CKE5	AC24 AD15	P P	GNDMCK GNDMDLL	A25 D27	IO IO	HD16 HD17	P26 B08	IO	HREQ4# HSYNC	AG11 AJ10	IO IO	MD36 MD37	AC04 AE14	O	SUSST# SWEA#
AH01	IO	DQS6# / CKE6	B07	P	GNDPLL1	A26	Ю	HD18	M26	Ю	HTRDY#	AF09	IO	MD37 MD38	AD17	ő	SWEB#
AD03	IO	DQS7# / CKE7	D07	P	GNDPLL2	B25	IO	HD19	A09	0	INTA#	AG08	IO	MD39	W25	I	TESTIN#
AG14	Ю	DQS8#	A03	P	GNDQQ	C28	IO	HD20	AF12	O	MAA00	AG06	Ю	MD40	Y01	I	UPCMD
M28		DRDY#	C05	P	GNDRGB	D25	IO	HD21	AE16	0	MAA01	AE07	Ю	MD41	AA04	I	UPSTB
E11	0	FPCLK/TVCKO	E19	P	GNDTT	A28	IO	HD22	AJ17	0	MAA02	AG05	IO	MD42	Y03	I	UPSTB#
C13	0	FPD00 / TVD0 / strap	P24 U04	P	GNDTT	B29 D28	IO	HD23	AG17	0	MAA03	AF05	IO	MD43	W05	IO IO	VAD1 / strap
B13 A13	ŏ	FPD01 / TVD1 / strap FPD02 / TVD2 / strap	G05	ŢO.	GPAR GPIPE#)C27	IO	HD24 HD25	AF17 AE21	0	MAA04 MAA05	AJ06 AF06	IO	MD44 MD45	W03 AB03	IO	VAD1 / strap VAD2 / strap
D13	-	FPD03 / TVD3 / strap	E10	O	GPO0	C26	IO	HD26	AE20	ŏ	MAA06	AJ04	IO	MD45 MD46	W01	IO	VAD3 / strap
E13	ŏ	FPD04 / TVD4 / strap	D11	ŏ	GPOUT	A29	IO	HD27	AE22	ŏ	MAA07	AJ03	IO	MD47	AA05	IO	VAD4 / strap
D12	О	FPD05 / TVD5 / strap	H05	I	GRBF#	C24	IO	HD28	AG22	О	MAA08	AH03	Ю	MD48	W02	Ю	VAD5 / strap
C12	0	FPD06 / TVD6 / strap	C01	I	GREQ#	B26	IO	HD29	AF26	0	MAA09	AG04	IO	MD49	AB01	IO	VAD6 / strap
A12	0	FPD07 / TVD7 / strap	R05	IO	GSTOP#	D23	IO	HD30	AH12	0	MAA10	AG02	IO	MD50	AB02	IO	VAD7
B12 E12		FPD08 / TVD8 FPD09 / TVD9 / strap	L24	P IO	GTLVREF GTRDY#	C29 A23	IO	HD31 HD32	AJ07 AG12	0	MAA11 MAA12	AF01 AG03		MD51 MD52	V05 C06		VBE# VCCDAC
B11		FPD10 / TVD10	L05		GWBF#	B24	IO	HD32 HD33	AE25	o	MAA12 MAA13	AJ02		MD52 MD53	N24	P	VCCHCK
A11		FPD11 / TVBL#	N29		HA03	E22	IO	HD34	AJ22	ŏ	MAA14	AF04	IO	MD54	AD24	P	VCCMCK
B10		FPDE / TVCKI	R27		HA04	A21	IO	HD35	AJ12	Ö	MAB00	AG01	IO	MD55	AE15	P	VCCMDLL
A10	Ю	FPDET / TVD11	R26	Ю	HA05	A24	Ю	HD36	AG15	О	MAB01	AE03	Ю	MD56	C07	P	VCCPLL1
D10		FPHS / TVHS	R29		HA06	D22	IO	HD37	AJ16	O	MAB02	AE01	Ю	MD57	E07	P	VCCPLL2
C10		FPVS / TVVS	N28		HA07	C23	IO	HD38	AH17	O	MAB03	AD01	IO	MD58	A04	P	VCCQQ
R01	IO	GBE0#	T29		HA08	B23	IO	HD39	AJ18	0	MAB04	AC05	IO	MD59	E06	P	VCCRGB VLCOMB
N03 M02		GBE1# GBE2#	T27 V25		HA09 HA10	A22 C20	IO	HD40 HD41	AF21 AG19	0	MAB05 MAB06	AF03 AE02	IO	MD60 MD61	AB04 Y05	AI P	VLCOMP VLVREF
K05		GBE3#	R28		HA11	E21	IO	HD41 HD42	AE24	Ö	MAB07	AD02	IO	MD61 MD62	AB05	P	VSUS25
U05	I	GCLK	U28		HA12	B21	IO	HD43	AE23	ŏ	MAB08	AD05		MD63	A08	0	VSYNC
A02		GCOMPN0	U29		HA13	A20	IO	HD44	AF27	ŏ	MAB09	AF15	IO	MECC0 /CKE0		Ĭ	XIN / XDCLK
B03	ΑI	GCOMPN1	V26	Ю	HA14	B20	IO	HD45	AE11	O	MAB10	AF14	Ю	MECC1 /CKE1			
V02	IO	GD0	T28		HA15	B19	IO	HD46	AH08	O	MAB11	AH14	IO	MECC2 /CKE2			
V03		GD1	U26		HA16	A19		HD47	AJ11	0	MAB12	AG13	IO	MECC3 /CKE3	l		
U01	IO	GD2	V29	Ю	HA17	A18	Ю	HD48	AE26	О	MAB13	AH15	Ю	MECC4 /CKE4	<u> </u>	<u></u>	<u> </u>

VCC25 Pins (26 pins): F9-11,14-15,20-21, H6,24, J6,24, N6, P6, W6,24, Y6,24, AA6, AD9-11,13-14,20-22

VCCMEM Pins (26 pins): V20, W10,20, Y10-20, AA9-20

 $VCCAGP \ Pins \ (19 \ pins): \quad K6,9, L6,9-10, M6,9-10, N9-10, P9-10, R9-10, T6,9-10, U6, V6$

VCCVL (4 pins): U9-10, V9-10, W9, Y9

VCCFP (3 pins): K11-13

VTT Pins (25 pins): E16, E23, F17-18,23, K14-20,24, L20, M20, N20, P20, R20,T20,24, U20,24, Y25, AA24, AB24

GND Pins (133 pins): B2,4,16,28, C4,11,14,16,21-22, D5,15,18-19,21,24,26, E2,24-26, F4,6-8,12-13, G26, H2,27-28, J4, K10,26, L2,28, M4,12-18, N12-18,26, P2,12-18,28, R4,12-18, T12-18,26, U2,12-18,25,27, V4,12-18, W4,26, Y2,4,28, AB6,25-26,

AC2,6,26,28,AD6,AE4,17-19,AF2,7,10,13,16,19,22,25,28,AH2,4,7,10,13,16,19,22,25,28

PIN DESCRIPTIONS

Table 4. VT8751A / P4M266A Pin Descriptions

			CPU Interface							
Signal Name	Pin #	<u>I/O</u>	Signal Description							
HA[33:3]#	(see pinout tables)	Ю	Host CPU Address Bus. Connect to the address bus of the host CPU. Inputs during CPU cycles and driven by the P4M266A during cache snooping operations. HA[33:32] are reserved for future use in supporting up to 16 Gbytes of real memory.							
HAS[1:0]#	Y27, T25	IO	Host CPU Address Strobe. Source synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at a 2x transfer rate. HAS1# is the strobe for HA[31:17]# and HAS0# is the strobe for HA[16:3] and HREQ[4:0]#.							
HD[63:0]#	(see pinout tables)	IO	Host CPU Data. These signals are connected to the CPU data bus.							
HDBI[3:0]#	D16, B22, C25, G27	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the associated signals are inverted or not. Used to limit the number of simultaneously switching signals to 8 for the associated 16-bit data pin group (HDBI3# for HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.							
HDS[3:0]	C17, D20, A27, G28	IO	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer HD[63:0]# and HDBI[3:0]# at a 4x transfer rate. HDS3 / HDS3# are the strobes for HD[63:48]# and HDBI3#; HDS2 / HDS2# are the strobes for HD[47:32]# and HDBI2#;							
HDS[3:0]#	B17, E20, B27, G29		HDS1 / HDS1# are the strobes for HD[31:16]# and HDBI1#; and HDS0 / HDS0# are the strobes for HD[15:0]# and HDBI0#.							
ADS#	P25	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.							
DBSY#	K25	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.							
DRDY#	M28	IO	Data Ready. Asserted for each cycle that data is transferred.							
HIT#	L27	IO	Hit . Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.							
HITM#	J25	Ĭ	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.							
HLOCK#	L25	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.							
HREQ[4:0]#	P26, P29, N27, P27, R25	Ю	Request Command . Asserted during both clocks of the request phase. In the first clock, the signals define the transaction type to a level of detail that is sufficient to begin a snoop request. In the second clock, the signals carry additional information to define the complete transaction type.							
HTRDY#	M26	Ю	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.							
	1705	IO	Response Signals. Indicates the type of response per the table below:							
RS[2:0]#	K27, K29, K28	10	RS[2:0]#Response typeRS[2:0]#Response type000Idle State100Hard Failure001Retry Response101Normal Without Data010Defer Response110Implicit Writeback011Reserved111Normal With Data							

Note: Clocking of the CPU interface is performed with HCLK and HCLK#.

Note: Internal pullup resistors are provided on all AGTL+ interface pins. If the CPU does not have internal pullups, these north bridge internal pullups may be enabled to allow the interface to meet AGTL+ bus interface specifications (see VAD3 strap).

	CPU Interface (continued)								
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description						
BREQ#	L26	О	Bus Request. Bus request output to CPU.						
BPRI#	L29	Ю	Priority Agent Bus Request . The owner of this signal will always be the next bus owner. This signal has priority over symmetric bus requests and causes the current symmetric owner to stop issuing new transactions unless the HLOCK# signal is asserted. The P4M266A drives this signal to gain control of the processor bus.						
BNR#	M29	Ю	Block Next Request . Used to block the current request bus owner from issuing new requests. This signal is used to dynamically control the processor bus pipeline depth.						
DEFER#	M27	Ю	Defer . The P4M266A uses a dynamic deferring policy to optimize system performance. The P4M266A also uses the DEFER# signal to indicate a processor retry response.						
CPURST#	E14	О	CPU Reset. Reset output to CPU. External pullup and filter capacitor to ground should be provided per CPU manufacturer's recommendations.						

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

Figure 3. Reference Component Placement Using the P4M266A Chipset

	DRAM	Inte	rface
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pin lists)	IO	Memory Data. These signals are connected to the DRAM data bus. Output drive strength may be set by Device 0 Rx6D[1-0].
MECC[7:0] / CKE[7:0]	AE13, AJ13, AJ15, AH15, AG13, AH14, AF14, AF15	IO	DRAM ECC or EC Data: when ECC is enabled. Clock Enables: For each DRAM bank for powering down the SDRAMs in notebook applications. Also used in desktop systems for clock control to reduce power usage and for reducing heat/temperature in high-speed memory systems.
MAA[14:0]	AJ22, AE25, AG12, AJ7, AH12, AF26, AG22, AE22, AE20, AE21, AF17, AG17, AJ17, AE16, AF12	O	Memory Address A. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[7-6].
MAB[14:0]	AG21, AE26, AJ11, AH8, AE11, AF27, AE23, AE24, AG19, AF21, AJ18, AH17, AJ16, AG15, AJ12	0	Memory Address B. DRAM address lines (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[5-4].
SRASA#, SCASA#, SWEA#	AG16, AE10, AE14	0	Row Address, Column Address and Write Enable Command Indicator Set A. (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[7-6].
SRASB#, SCASB#, SWEB#	AD19, AD16, AD17	0	Row Address, Column Address and Write Enable Command Indicator Set B. (two sets for better drive). Output drive strength may be set by Device 0 Rx6C[5-4].
CS[7:0]#	AE6, AE5, AF11, AE12, AG7, AH6, AF8, AE9	О	Chip Select. Chip select of each bank. Output drive strength may be set by Device 0 Rx6D[3-2].
DQM[8], DQM[7:0] / CKE[7:0]	AJ14, AD4, AJ1, AH5, AJ9, AJ20, AJ24, AH27, AE28	0	Data Mask. Data mask of each byte lane plus DQM8 for ECC byte. Output drive strength may be set by Device 0 Rx6D[5-4].
DQS[8], DQS[7:0]# / CKE[7:0]	AG14, AD3, AH1, AJ5, AH9, AH20, AH24, AJ28, AE29	IO	DDR Data Strobe. Data strobe of each byte lane plus DQS8# for ECC byte. Output drive strength may be set by Device 0 Rx6C[3-2].
CKE[7:0] / MECC[7:0] -or- CKE[7:0] / DQM[7:0] -or- CKE[7:0] / DQS[7:0]#	(see above)	O	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems. See Device 0 Rx78[0] for CKE function enable.

			AGP Bus Interface
Signal Name	Pin#	<u>I/O</u>	Signal Description
GD[31:0]	(see pin list)	IO	Address / Data Bus. Address is driven with GDS assertion for AGP-style transfers and with GFRM# assertion for PCI-style transfers.
GBE[3:0]#	K5, M2, N3, R1	Ю	Command / Byte Enables. AGP: These pins provide command information (different commands than for PCI) driven by the master (graphics controller) when requests are being enqueued using GPIPE#. These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data. PCI: Commands are driven with GFRM# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GPAR	U4	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GBE[3:0].
GDS0, GDS0#	T4, T5	IO	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the data drives these signals). GDS0 provides timing for 2x data transfer mode; GDS0 and GDS0# provide timing for 4x transfer mode.
GDS1, GDS1#	J3, J2	IO	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing the data drives these signals). GDS1 provides timing for 2x data transfer mode; GDS1 and GDS1# provide timing for 4x transfer mode.
GFRM#	L4	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GIRDY#	MI	IO	Initiator Ready. AGP: For write operations, the assertion of this pin indicates that the master is ready to provide all write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For read operations, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is never allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. PCI: Asserted when the initiator is ready for data transfer.
GTRDY#	P5	Ю	Target Ready. AGP: Indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfer for both read and write transactions. PCI: Asserted when the target is ready for data transfer.
GSTOP#	R5	IO	Stop (PCI transactions only). Asserted by the target to request the master to stop the current transaction.
GDEVSEL#	N4	Ю	Device Select (PCI transactions only). This signal is driven by the VT8753 when a PCI initiator is attempting to access main memory. It is an input when the VT8753 is acting as PCI initiator. Not used for AGP cycles.
GPIPE#	G5	I	Pipelined Request. Asserted by the master (the external graphics controller) to indicate that a full-width request is to be enqueued by the target VT8753. The master enqueues one request each rising edge of GCLK while GPIPE# is asserted. When GPIPE# is deasserted no new requests are enqueued across the AD bus.

AGP Bus Interface (continued)							
Signal Name	Pin#	<u>I/O</u>	Signal Description				
GRBF#	Н5	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF# is asserted, the VT8753 will not return low priority read data to the graphics controller.				
GWBF#	L5	I	Write Buffer Full.				
SBA[7:0]	F3, E3, E1, D3, D4, E4, C2, C3	I	SideBand Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (VT8753 north bridge logic). These pins are ignored until enabled.				
SBS, SBS#	D2, D1	I	Sideband Strobe. Driven by the master to provide timing for SBA[7:0]. SBS is used for AGP 2x while SBS and SBS# are used together for AGP 4x.				
ST[2:0]	J5, F5, E5	0	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT# is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. The master may enqueue AGP requests by asserting PIPE# or start a PCI transaction by asserting GFRM#. ST[2:0] are always outputs from the target (north bridge logic) and inputs to the master (graphics controller). 				
GREQ#	C1	I	Request. Master (graphics controller) request for use of the AGP bus.				
GGNT#	B1	0	Grant. Permission is given to the master (graphics controller) to use the AGP bus.				

Note: For PCI operation on the AGP bus, the following pins are not required:

- PERR# (parity and error reporting not required on transient data devices such as graphics controllers)
- LOCK# (no lock requirement on AGP)
- IDSEL (internally connected to AD16 on AGP-compliant masters)

Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA-B#.

Note: The AGP bus supports only one master directly (REQ[3:0]# and GNT[3:0]# are not provided). External logic is required to implement additional master capability. Note that the arbitration mechanism on the AGP bus is different from the PCI bus.

Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: Two mechanisms are provided by the AGP bus to enqueue master requests: GPIPE# (to send addresses multiplexed on the AD lines) and the SBA port (to send addresses unmultiplexed). AGP masters implement one or the other or select one at initialization time (they are not allowed to change during runtime). Therefore only one of the two will be used and the signals associated with the other will not be used. Therefore the VT8753 has an internal pullup on GRBF# to maintain it in the de-asserted state in case it is not implemented on the master device.

	V-Link Interface						
Signal Name	Pin#	<u>I/O</u>	Signal Description				
VAD7,	AB2	IO	Address / Data Bus.	SB			
VAD6 / strap,	AB1	IO	Strap Strap Name Definition (L=strap low, H=high) Regist	<u>er</u> <u>Pin</u>			
VAD5 / strap,	W2	IO	VAD6 Auto-Configure L=Disable (use on-chip defaults) Rx54[5] SDA2			
VAD4 / strap,	AA5	IO	H=Enable (get from ROMSIP)				
VAD3 / strap,	W1	IO	VAD5 AGTL+ Drive Strength 4x L=1x, H=4x	SDA1			
VAD2 / strap,	AB3	IO	VAD4 AGTL+ Drive Strength 2x L=1x, H=2x	SDA0			
VAD1 / strap,	W3	IO	VAD3 AGTL+ Internal Pullups L=Disable, H=Enable. Rx50[6] SA19			
VAD0 / strap	W5	IO	VAD2 In Order Queue Depth L=1-level, H=8-level. Rx50[7] SA18			
_			VAD1 CPU Clock Speed Msb LL=66, LH=100, Rx54[7] SA17			
			VAD0 CPU Clock Speed Lsb HL=Auto, HH=133 MHz Rx54[6] SA16			
VBE#	V5	IO	Byte Enable.				
UPCMD	Y1	I	Command from Client-to-Host.				
UPSTB	AA4	I	Strobe from Client-to-Host.				
UPSTB#	Y3	I	Complement Strobe from Client-to-Host.				
DNCMD	AA2	О	Command from Host-to-Client.				
DNSTB	AA1	О	Strobe from Host-to-Client.				
DNSTB#	AA3	0	Complement Strobe from Host-to-Client.				

	CRT Interface						
Signal Name	Signal Name Pin # I/O Signal Description						
AR	B6	AO	Analog Red. Analog red output to the CRT monitor.				
AB	B5	AO	Analog Blue. Analog blue output to the CRT monitor.				
AG	A5	AO	Analog Green. Analog green output to the CRT monitor.				
HSYNC	B8	O	Horizontal Sync. Output to CRT.				
VSYNC	A8 _	0	Vertical Sync. Output to CRT.				
RSET	A6	ΑĬ	eference Resistor. Tie to GNDRGB through an external 140Ω resistor to control the				
		7	RAMDAC full-scale current value.				

	SMB / I2C Interface						
Signal Name	Pin#	<u>I/O</u>	Signal Description				
SPCLK[2:1]	E9, C9	IO	Serial Port (SMB/I2C) Clocks. These are the clocks for serial data transfer. SPCLK1 is typically used for I^2C communications. As an output, it is programmed via CRA0[0]. As an input, its status is read via CRA0[2]. In either case the serial port must be enabled by CRA0[4] = 1. SPCLK2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[0]. As an input, its status is read via CRB1[2]. The port is enabled via CRB1[4] = 1.				
SPDAT[2:1]	E8, D9	IO	Serial Port (SMB/I2C) Data. These are the data signals used for serial data transfer. SPDAT1 is typically used for I^2C communications. As an output, it is programmed via CRA0[1]. As an input, its status is read via CRA0[3]. In either case the serial port must be enabled by CRA0[4] = 1. SPDAT2 is typically used for DDC monitor communications. As an output, it is programmed via CRB1[1]. As an input, its status is read via CRB1[3]. The port is enabled via CRB1[4] = 1.				

	Flat Panel Monitor (DVI) Interface					
Signal Name	Pin#	<u>I/O</u>	Signal Description			
FPD11 / TVBL#,	A11	0	Panel Data. 8mA is the default. 16mA is selected via SR3D[6]=1. This function is			
FPD10 / TVD10,	B11		selected on these pins when $SR31[4] = 1$.			
FPD9 / TVD9 / strap,	E12					
FPD8 / TVD8,	B12					
FPD7 / TVD7 / strap,	A12					
FPD6 / TVD6 / strap,	C12					
FPD5 / TVD5 / strap,	D12					
FPD4 / TVD4 / strap,	E13					
FPD3 / TVD3 / strap,	D13					
FPD2 / TVD2 / strap,	A13					
FPD1 / TVD1 / strap,	B13					
FPD0 / TVD0 / strap	C13		Y .			
FPCLK / TVCLKO	E11	О	Panel Clock. 8mA is the default. 16mA may also be selected.			
FPHS / TVHS	D10	О	Panel Horizontal Sync.			
FPVS / TVVS	C10	О	Panel Vertical Sync.			
FPDE / TVCLKI	B10	О	Panel Data Enable.			
FPDET / TVD11	A10	I	Panel Detect. If SR30[1]=0, SR30[2] will read 1 if a Flat Panel is appropriately			
			connected. Must be tied to ground if not used.			

TV Encoder Interface					
Signal Name	Pin#	<u>I/O</u>	Signal Description		
TVD11 / FPDET,	A10	0	TV Encoder Output Data.		
TVD10 / FPD10,	B11				
TVD9 / FPD9 / strap,	E12				
TVD8 / FPD8,	B12				
TVD7 / FPD7 / strap,	A12				
TVD6 / FPD6 / strap,	C12	(
TVD5 / FPD5 / strap,	D12				
TVD4 / FPD4 / strap,	E13		<i>y</i>		
TVD3 / FPD3 / strap,	D13				
TVD2 / FPD2 / strap,	A13				
TVD1 / FPD1 / strap,	B13				
TVD0 / FPD0 / strap	C13		Y		
TVCLKI / FPDE	B10	I	TV Encoder Clock In. Input clock from encoder.		
TVCLKO / FPCLK	E11	О	TV Encoder Clock Out. Output clock to TV encoder.		
TVHS / FPHS	D10	О	TV Encoder HSYNC.		
TVVS / FPVS	C10	О	TV Encoder VSYNC.		
TVBL# / FPD11	A11	О	TV Encoder Blanking.		

Clocks, Resets, Power Control, General Purpose I/O, Interrupts and Test					
Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description		
HCLK	N25	I	Host Clock. This pin receives the host CPU clock (100 MHz). This clock is used by all P4M266A logic that is in the host CPU domain.		
HCLK#	M25	I	Host Clock Complement. Used for Quad Data Transfer on host CPU bus.		
MCLK	AC25	0	Memory (SDRAM) Clock. Output from internal clock generator to the external clock buffer.		
MCLKF	AD25	I	Memory (SDRAM) Clock Feedback. Input from the external clock buffer.		
DCLKI	C8	I	Dot Clock (Pixel Clock) In. Used for external EMI reduction circuit if used. Connect to GND if external EMI reduction circuit not implemented.		
DCLKO	D8	О	Dot Clock (Pixel Clock) Out. Used for external EMI reduction circuit if used. NC if external EMI reduction circuit not implemented.		
GCLK	U5	I	Graphics Clock. Clock for internal graphics controller logic.		
XIN / XDCLK	A7	I	Reference Frequency Input. External 14.31818 MHz clock source. All internal graphics controller clocks are synthesized on chip using this frequency as a reference. This pin may also be used as a direct external pixel clock input for the internal graphics controller, bypassing the on-chip graphics clock synthesizers (for more information, see the FPD3 pin strap description, graphics controller register CR37[3], and Table 11 in the Functional Description section of this document).		
RESET#	AC3	Ι	Reset. Input from the South Bridge chip. When asserted, this signal resets P4N266 and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options. Internally puled up.		
PWROK	AC1	I	Power OK. Connect to South Bridge and Power Good circuitry.		
SUSST#	AC4	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pullup to disable. Internally pulled up.		
GPOUT	D11	O	General Purpose Output. This pin reflects the state of SRD[0].		
GOP0 / XECLK	E10	O	General Output Port. When SR1A[4] is cleared, this pin reflects the state of CR5C[0]. This pin may also be used as a direct external clock input for the internal graphics controller (for more information, see the FPD3 pin strap description, graphics controller register CR37[3], and Table 11 in the Functional Description section of this document).		
INTA#	A9	Ο	Interrupt. PCI interrupt output (handled by the interrupt controller in the South Bridge)		
BISTIN#	В9	I	BIST In. This pin is used for testing and must be tied high (connected to 3.3V) on all board designs.		
TESTIN#	W25	I	Test In. This pin is used for testing and must be left unconnected or tied high on all board designs.		
XDCLK / XIN	A7	I	External DCLK. Used for test of the on-chip Graphics Controller subsystem.		
XECLK / GOP0	E10	I	External ECLK. Used for test of the on-chip Graphics Controller subsystem.		
NC	A1, F2, M5, AD8, AE8	-	No Connect.		

Configuration Straps						
Signal Name	Pin#	<u>I/O</u>	Signal D	Signal Description		
Strap / FPD9 / TVD9,	E12	I	Straps.			
Strap / FPD7 / TVD7,	A12		Strap	Strap Name	Definition (L=low, H=high)	Register
Strap / FPD6 / TVD6,	C12		FPD9	Graphics Test Mode	L=Disable, H=Enable	_
Strap / FPD5 / TVD5,	D12		FPD7-4	Panel Type	OEM Defined	CRF0[3:0]
Strap / FPD4 / TVD4,	E13		FPD3	XDCLK clock input on XIN	L=Disable, H=Enable	CR37[3]
Strap / FPD3 / TVD3,	D13		FPD2	PCI Base Address Mapping	L=Map0, H=Map1	CRB0[7]
Strap / FPD2 / TVD2,	A13		FPD1	I/O Disable	L=Enable, H=Disable	CR36[4]
Strap / FPD1 / TVD1,	B13		FPD0	PCI Interrupt Disable	L=Enable, H=Disable	CR36[0]
Strap / FPD0 / TVD0	C13		(for mor	re information on straps, see Ta	able 11 in the Functional Descr	ription section
			of this de	ocument)		

	Reference Voltages				
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
GTLVREF	L24	P	Host CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
HDVREF	F16, F19, F22, F24	P	Host CPU Data Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
HAVREF	R24, V24	P	Host CPU Address Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
HCMPVREF	G24	P	Host CPU Compensation Voltage Reference. 1/3 VTT ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
MEMVREF	AD7, AD12, AD18, AD23	P	Memory Voltage Reference. 1/2 VCC25 ±2% typically derived using a resistive voltage divider. See P4M266A Design Guide.		
VLVREF	Y5	P	V-Link Voltage Reference. 0.9V derived using a resistive voltage divider consisting of 2K Ω 1% to VCC25 and 1.13K Ω 1% to ground.		
AGPVREF	G6, R6	P	AGP Voltage Reference. 0.4 VCCQQ (1.32V) when VCCQQ is 3.3V and 0.5 VCCQQ (0.75V) when VCCQQ is 1.5V. Check the VT8751A Design Guide for additional information.		

Compensation						
Signal Name	Signal Name Pin # I/O Signal Description					
HRCOMP	F25	AI	Host CPU Compensation. Connect 20.5 Ω 1% resistor to ground. Used for Host CPU interface I/O buffer calibration.			
VLCOMP	AB4	AI	Vlink P-Channel Compensation. Connect 70Ω 1% resistor to ground.			
GCOMPN0	A2	AI	AGP N-Channel Compensation 0.			
GCOMPN1	В3	AI	AGP N-Channel Compensation 1.			

	Analog Power / Ground					
Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description			
VCCHCK	N24	P	Power for Host CPU Clock PLL (2.5V ±5%)			
GNDHCK	M24	P	Ground for Host CPU Clock Circuitry. Connect to main ground plane through a ferrite bead.			
VCCMCK	AD24	P	Power for Memory Clock PLL (2.5V ±5%)			
GNDMCK	AC24	P	Ground for Memory Clock Circuitry. Connect to main ground plane through a ferrite bead.			
VCCMDLL	AE15	P	Power for Memory Strobe DLL (2.5V ±5%)			
GNDMDLL	AD15	P	Ground for Memory Strobe DLL Circuitry. Connect to main ground plane through a ferrite			
			bead.			
VCCRGB	E6	P	Power for CRT RGB Outputs (2.5V ±5%).			
GNDRGB	C5	P	Connection Point for RGB Load Resistors. Connect to main ground plane.			
VCCDAC	C6	P	Power for DAC Digital Logic. (2.5V ±5%)			
GNDDAC	D6	P	Ground for DAC Analog Circuitry. Connect to main ground plane through a ferrite bead.			
VCCPLL1	C7	P	Power for PLL1 (2.5V ±5%).			
GNDPLL1	B7	P	Ground for PLL1. Connect to main ground plane through a ferrite bead.			
VCCPLL2	E7	P	Power for PLL2 (2.5V ±5%).			
GNDPLL2	D7	P	Ground for PLL2. Connect to main ground plane through a ferrite bead.			

	Digital Power / Ground								
Signal Name	Pin #	<u>I/O</u>	Signal Description						
VTT	E16,23, F17-18,23, K14-20,24, L20,	P 4	Power for CPU I/O Interface Logic (25 Pins). 1.65V ±5%						
	M20, N20, P20, R20, T20,24,	.0.(
	U20,24, Y25, AA24, AB24								
GNDTT	E19, P24	P	Ground for CPU I/O Interface Logic (2 Pins).						
VCCMEM	V20, W10,20, Y10-20, AA9-20	P	Power for Memory I/O Interface Logic (26 Pins). 2.5 ±5%.						
VCCVL	U9-10, V9-10, W9, Y9	P	Power for V-Link I/O Interface Logic (6 Pins). 2.5V ±5%						
VCCFP	K11-13	P	Power for Flat Panel I/O Interface Logic (3 Pins). $3.3V \pm 5\%$						
VCCAGP	K6,9, L6,9-10, M6,9-10, N9-10, P9-	P	Power for AGP Bus I/O Interface Logic (19 Pins). 1.5 / 3.3V						
	10, R9-10, T6,9-10, U6, V6		±5% (Device 0 RxB2[1] should be set to indicate the voltage).						
VCCQQ	A4	P	AGP Quiet Power. Connect to main AGP power (VCCAGP =						
			$1.5 / 3.3 \text{V} \pm 5\%$) through a ferrite bead.						
GNDQQ	A3	P	Ground for AGP Quiet Power. Connect to main ground plane.						
VCC25	F9-11,14-15,20-21, H6,24, J6,24,	P	Power for Internal Logic (26 Pins). 2.5V ±5%						
	N6, P6, W6,24, Y6,24, AA6,								
	AD9-11,13-14,20-22								
VSUS25	AB5	P	Suspend Power. 2.5V ±5%						
GND	B2,4,16,28, C4,11,14,16,21-22,	P	Digital Ground (133 Pins)						
	D5,15,18-19,21,24,26, E2,24-26,								
	F4,6-8,12-13, G26, H2,27-28, J4,								
	K10,26, L2,28, M4,12-18,								
	N12-18,26, P2,12-18,28, R4,12-18,								
	T12-18,26, U2,12-18,25,27,								
	V4,12-18, W4,26, Y2,4,28,								
	AB6,25-26, AC2,6,26,28,								
	AD6, AE4,17-19,								
	AF2,7,10,13,16,19,22,25,28,								
	AH2,4,7,10,13,16,19,22,25,28								

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the P4M266A. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), RWC (or just WC) (Read / Write 1's to Clear individual bits), and W1 (Write Once then Read / Only after that). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

The graphics registers are described in a separate document.

Table 5. VT8751A / P4M266A Registers

P4M266A I/O Ports

Port #	I/O Port	<u>Default</u>	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

P4M266A Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3148	RO
5-4	Command	0006	RW
7-6	Status	0210	WC
8	Revision ID	0n	RO
9	Program Interface	00	RO
A	Sub Class Code	00	RO
В	Base Class Code	06	RO
С	-reserved-	00	
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	0000 0008	RW
14-2B	-reserved-	00	
2D-2C	Subsystem Vendor ID	0000	W 1
2F-2E	Subsystem ID	0000	W1
30-33	-reserved-	00	
37-34	Capability Pointer	0000 0 <u>0A</u> 0	RO
38-3F	-reserved-	00	_

Device-Specific Registers

Offset	V-Link Control	<u>Default</u>	Acc
40	V-Link Revision ID	00	RO
41	V-Link NB Capability	18	RO
42	V-Link NB Downlink Command	88	RW
44-43	V-Link NB Uplink Status	8280	RO
45	V-Link NB Bus Timer	44	RW
46	V-Link Misc NB Control	00	RW
47	V-Link Control	00	RW
48	V-Link NB/SB Configuration	18	RW
49	V-Link SB Capability	18	RO
4A	V-Link SB Downlink Status	88	RO
4C-4B	V-Link SB Uplink Command	8280	RW
4D	V-Link SB Bus Timer	44	RW
4E	CCA Master High Priority	00	RW
4F	V-Link SB Miscellaneous Control	00	RW

Offset	Host CPU Protocol Control	Default	Acc
50	CPU Interface Request Phase Control	00	RW
51	CPU Interface Basic Control	00	RW
52	CPU Interface Advanced Control	00	RW
53	CPU Interface Arbitration Control	03	RW
54	CPU Frequency	00	RW

Device-Specific Registers (continued)

Offset	DRAM Control	Default	Acc
55	DRAM Control	00	RW
56-57	(see below)		
59-58	MA Map Type	2222	RW
5F-5A	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[31:24])	01	RW
5B	Bank 1 Ending (HA[31:24])	01	RW
5C	Bank 2 Ending (HA[31:24])	01	RW
5D	Bank 3 Ending (HA[31:24])	01	RW
5E	Bank 4 Ending (HA[31:24])	01	RW
5F	Bank 5 Ending (HA[31:24])	01	RW
56	Bank 6 Ending (HA[31:24])	01	RW
57	Bank 7 Ending (HA[31:24])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for All Banks	E4	RW
65	DRAM Arbitration Timer	00	RW
66	DRAM Arbitration Control	00	RW
67	DRAM DQS/SDR/MD Read Delay	00	RW
68	DRAM DDR Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	10	RW
6C	DRAM Drive Control 1	00	RW
6D	DRAM Drive Control 2	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	WC

Offset	PCI Bus Control	<u>Default</u>	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control	48	WC
72	-reserved-	00	
73	PCI Master Control	00	RW
74	-reserved-	00	
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77-7D	-reserved-	00	
7E-7F	Reserved (do not program)	00	RW

Device 0 Device-Specific Registers (continued)

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85	Write Policy	00	RW
86-87	-reserved-	00	_
8B-88	Gr. Aperture TLB Base Register Base	0000 0000	RW
8C-9F	-reserved-	00	

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	C0	RO
A2	AGP Specification Revision	20	RO
A3	-reserved-	00	
A7-A4	AGP Status	1F00 0207	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Miscelleneous Control	02	RW
AE	AGP Miscellaneous Control	00	RW
AF	-reserved-	00	
В0	AGP Compensation Control / Status	8x	RW
B1	AGP Output Drive Strength	63	RW
B2	AGP Pad Drive & Delay Control	08	RW
В3	AGP Strobe Drive Strength	63	RW

Offset	V-Link Control	<u>Default</u>	Acc
B4	V-Link NB Compensation Control	00	RW
B5	V-Link NB Drive Control	00	RW
B6-B7	-reserved-	00	_
B8	V-Link SB Compensation Control	00	RW
B9	V-Link SB Drive Control	00	RW
BA-BD	-reserved-	00	P

Offset	DRAM Interface Control	Default	Acc
BE	MECC Drive Strength	00	RW
BF	MA / SCMD Pad Toggle Reduction	00	RW

Offset	Power Mgt. &Misc. Control	Default	Acc
C0	Power Management Capability	01	RO
C1	Power Management Next Pointer	00	RO
C2	Power Management Capabilities I	02	RO
C3	Power Management Capabilities II	00	RO
C4	Power Management Control/Status	00	RW
C5	Power Management Status	00	RO
C6	PCI-to-PCI Bridge Support Extension	00	RO
C7	Power Management Data	00	RO
C8-CF	-reserved-	00	

Device 0 Device-Specific Registers (continued)

Offset	ECC Error Control	<u>Default</u>	Acc
D3-D0	ECC Error Address	XX	RO
D4	ECC Error Syndrome Bit	XX	RO
D5-D7	-reserved-	00	

Offset	AGTL+ I/O Control	Default	Acc
D8	Host Address (2x) Pullup Drive	00	RW
D9	Host Address (2x) Pulldown Drive	00	RW
DA	Host Data (4x) Pullup Drive	00	RW
DB	Host Data (4x) Pulldown Drive	00	RW
DC	AGTL+ Output Delay / Stagger Ctrl	00	RW
DD	AGTL+ I/O Control	00	RW
DE	AGTL+ Compensation Status	00	RW
DF	AGTL+ AutoCompensation Offset	00	RW

	Offset	Frame Buffer & High Memory Ctrl	<u>Default</u>	Acc
	E0	CPU Direct Access FB Base	00	RW
1	E1	CPU Direct Access FB Size	00	RW
	E2	VGA Arbitration Timer 1	00	RW
	E3	SMA Control	00	RW
	E4	Low Top Address Low	00	RW
	E5	Low Top Address High	FF	RW
4	E6	SMM / APIC Decoding	01	RW
	E7	-reserved-	00	
7	E8	VGA Arbitration Timer 2	00	RW
	E9-EF	-reserved-	00	

Offset	Test, BIOS Scratch, Miscellaneous	Default	Acc
F0-F2	Reserved (Do Not Program)	00	RW
F3-F4	BIOS Scratch Registers	00	RW
F5-FF	Reserved (Do Not Program)	00	RW

P4M266A Device 1 Registers - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc		Offset	AGP Bus Control
1-0	Vendor ID	1106	RO		40	CPU-to-AGP Flow C
3-2	Device ID	B091	RO		41	CPU-to-AGP Flow C
5-4	Command	0007	RW		42	AGP Master Control
7-6	Status	0230	WC		43	AGP Master Latency
8	Revision ID	nn	RO		44	Reserved (Do Not Pro
9	Program Interface	00	RO		45	Fast Write Control
A	Sub Class Code	04	RO		47-46	PCI-to-PCI Bridge Do
В	Base Class Code	06	RO		48-7F	-reserved-
С	-reserved-	00	_		80	Capability ID
D	Latency Timer	00	RO		81	Next Pointer
Е	Header Type	01	RO		82	Power Management C
F	Built In Self Test (BIST)	00	RO		83	Power Management C
10-17	-reserved-	00	_		84	Power Management C
18	Primary Bus Number	00	RW		85	Power Management S
19	Secondary Bus Number	00	RW		86	PCI-PCI Bridge Supp
1A	Subordinate Bus Number	00	$\mathbf{R}\mathbf{W}$		87	Power Management I
1B	Secondary Latency Timer	00	RO		88-FF	-reserved-
1C	I/O Base	F0	RW			
1D	I/O Limit	00	RW			
1F-1E	Secondary Status	0000	RO		Z) Y	
21-20	Memory Base	FFF0	RW			
23-22	Memory Limit (Inclusive)	0000	RW			
25-24	Prefetchable Memory Base	FFF0	RW			
27-26	Prefetchable Memory Limit	0000	ŔW			
28-33	-reserved-	00	_			
34	Capability Pointer	80	RO			
	-reserved-	00				
3F-3E	PCI-to-PCI Bridge Control	00	RW	7		

Device-Specific Registers

Offset	AGP Bus Control	Default	Acc
40	40 CPU-to-AGP Flow Control 1		RW
41	CPU-to-AGP Flow Control 2	08	RW
42	AGP Master Control	00	RW
43	AGP Master Latency Timer	43	RW
44	Reserved (Do Not Program)	00	RW
45	Fast Write Control	72	RW
47-46	PCI-to-PCI Bridge Device ID	0000	RW
48-7F	-reserved-	00	_
80	Capability ID	01	RO
81	Next Pointer	00	RO
82	Power Management Capabilities 1	02	RO
83	Power Management Capabilities 2	00	RO
84	Power Management Control / Status	00	RW
85	Power Management Status	00	RO
86	PCI-PCI Bridge Support Extensions	00	RO
87	Power Management Data	00	RO
88-FF	-reserved-	00	

of Device 0 Configuration Register 78.

Miscellaneous I/O

One I/O port is defined in the P4M266A: Port 22.

Port 22	- PCI / AGP Arbiter DisableRW	
7-2	Reserved always reads 0	
1	1 AGP Arbiter Disable	
	0 Respond to GREQ# signaldefault	
	1 Do not respond to GREQ# signal	
0	PCI Arbiter Disable	
	0 Respond to all REQ# signalsdefault	
	1 Do not respond to any REQ# signals,	
	including PREQ#	
This po	rt can be enabled for read/write access by setting bit-7	

Configuration Space I/O

All registers in the P4M266A (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Do not respond to GREQ# signal		
I Arbiter Disable		
Respond to all REQ# signalsdefault	Port C	FB-CF8 - Configuration AddressRW
Do not respond to any REQ# signals,	31	Configuration Space Enable
including PREQ#		0 Disableddefault
n be enabled for read/write access by setting bit-7 Configuration Register 78.		1 Convert configuration data port writes to configuration cycles on the PCI bus
Configuration Register 76.	30-24	Reservedalways reads 0
		PCI Bus Number
		Used to choose a specific PCI bus in the system
	15-11	Device Number
	6 - 6-	Used to choose a specific device in the system
		(devices 0 and 1 are defined for the P4M266A)
	10-8	Function Number
	100	Used to choose a specific function if the selected
	N.	device supports multiple functions (only function 0 is
		defined for the P4M266A).
	7-2	Register Number (also called the "Offset")
	9 , -	Used to select a specific DWORD in the P4M266A
		configuration space
	1-0	Fixedalways reads 0
	Port C	FF-CFC - Configuration DataRW
	Refer to	PCI Bus Specification Version 2.2 for further details
		ration of the above configuration registers.
	1	
/		

Device 0 Register Descriptions

Device 0 Host Bridge Header Registers

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and <u>device number</u> equal to <u>zero</u>.

Device (0 Offs	et 1-0 - Vendor ID (1106h)RO		
15-0	ID Code (reads 1106h to identify VIA Technologies)			
Davias	n Offe	et 3-2 - Device ID (3148h)RO		
15-0		ode (reads 3148h to identify the P4M266A)		
15-0	ID C	ode (reads 3146) to identify the F4M200A)		
Device	0 Offs	et 5-4 -Command (0006h)RW		
15-10	Rese	rvedalways reads 0		
9	Fast	Back-to-Back Cycle EnableRO		
	0	Fast back-to-back transactions only allowed to		
		the same agentdefault		
	1	Fast back-to-back transactions allowed to		
		different agents		
8		R# EnableRO		
	0	SERR# driver disableddefault		
	1	SERR# driver enabled		
7	(SEK	R# is used to report ECC errors). ress / Data SteppingRO		
7	Adar ()	Device never does steppingdefault		
	1	Device always does stepping		
6	_	y Error ResponseRW		
U	1 0	Ignore parity errors & continue		
	1	Take normal action on detected parity errors		
5	_	Palette SnoopRO		
-	0	Treat palette accesses normallydefault		
	1	Don't respond to palette accesses on PCI bus		
4	Mem	ory Write and Invalidate Command RO		
	0	Bus masters must use Mem Writedefault		
	1	Bus masters may generate Mem Write & Inval		
3	Speci	ial Cycle MonitoringRO		
	0	Does not monitor special cyclesdefault		
	1	Monitors special cycles		
2	PCI 1	Bus MasterRO		
	0	Never behaves as a bus master		
	1	Can behave as a bus masterdefault		
1		ory SpaceRO		
	0	Does not respond to memory space		
	1	Responds to memory spacedefault		
0	I/O S			
	0	Does not respond to I/O spacedefault		
	1	Responds to I/O space		

Device	0 Offset 7-6 – Status (0210h)RWC
15	Detected Parity Error
	0 No parity error detecteddefault
	1 Error detected in either address or data phase.
	This bit is set even if error response is disabled
	(command register bit-6) write one to clear
14	Signaled System Error (SERR# Asserted)
	always reads 0
13	Signaled Master Abort
	0 No abort received default
	1 Transaction aborted by the master
	write one to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target
4	write one to clear
11.	Signaled Target Abortalways reads 0
	0 Target Abort never signaled
10-9	DEVSEL# Timing
10,	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected
	0 No data parity error detected default
	1 Error detected in data phase. Set only if error
	response enabled via command bit-6 = 1 and
1	P4M266A was initiator of the operation in
	which the error occurred write one to clear
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capable always reads 0
4	Supports New Capability listalways reads 1
3-0	Reserved always reads 0
5 0	incident void
Device	0 Offset 8 - Revision ID (0nh)RO
7-0	Chip Revision Codealways reads 0nh
_	
Device	0 Offset 9 - Programming Interface (00h)RO
7-0	Interface Identifieralways reads 00h
Davida	O Offset A Sub Class Code (00h)
	0 Offset A - Sub Class Code (00h)RO
7-0	Sub Class Code reads 00 to indicate Host Bridge
Device	0 Offset B - Base Class Code (06h)RO
7-0	Base Class Code reads 06 to indicate Bridge Device
7-0	Dase Class Code leads of to indicate Bridge Device
	0 Offset D - Latency Timer (00h)RW
Specifie	es the latency timer value in PCI bus clocks.
7-3	Guaranteed Time Slice for CPU default=0
2-0	Reserved (fixed granularity of 8 clks) always read 0
	These bits are writeable but read 0 for PCI
	specification compatibility. The programmed value
	may be read back in Rx75[6-4] (PCI Arbitration 1).

Device 0 Host Bridge Header Registers (continued)

Device 0 Offset E - Header Type (00h)RO			
7-0	Header Type Code reads 00: single function		
Device	Device 0 Offset F - Built In Self Test (BIST) (00h)RO		
7	BIST Supportedreads 0: no supported functions		
6-0	Reserved always reads 0		

<u>Device 0 Offset 13-10 - Graphics Aperture Base</u> (00000008h)RW

31-28 Upper Programmable Base Address Bits def=0
27-20 Lower Programmable Base Address Bits def=0
These bits behave as if hardwired to 0 if the corresponding Graphics Aperture Size register bit (Device 0 Offset 84h) is 0.

27 26 25 24 23 22 21 20 (This Register) (Gr Aper Size) 3 2 1 RW RW RW RW RW RW RW 1M RWRWRWRWRWRW 0 2MRWRWRWRWRW 0 4M RWRWRWRW 0 0 8M 0 RWRWRWRW 0 16M RWRWRW 0 0 0 32M RWRW 0 0 0 64M 0 0 0 0 0 128M RW 0 0 0 0 0 256M

19-0 Reservedalways reads 00008

Note: The locations in the address range defined by this register are prefetchable.

Device 0 Offset 2D-2C - Subsystem Vendor ID (0000h)R/W1

15-0 Subsystem Vendor ID default = 0 This register may be written once and is then read only.

Device 0 Offset 2F-2E - Subsystem ID (0000h)......R/W1

15-0 Subsystem IDdefault = 0 This register may be written once and is then read only.

Device 0 Offset 37-34 - Capability Pointer (000000A0h) RO

Contains an offset from the start of configuration space.

31-0 AGP Capability List Pointer always reads A0h

Device 0 Host Bridge Device-Specific Registers

These registers are normally programmed once at system initialization time.

V-Link Control

7-0	0 Offset 40 – V-Link Specification ID (00h)RO Specification Revision always reads 00	Device 0 Offset 45 –NB V-Link Bus Timer (44h)
		0000 Immediate
		0001 1*4 VCLKs
Device	0 Offset 41 – NB V-Link Capability (18h)RO	0010 2*4 VCLKs
7-6	Reserved always reads 0	0011 3*4 VCLKs
5	16-bit Bus Width SupportedRO	0100 4*4 VCLKs default
	0 Not Supporteddefault	0101 5*4 VCLKs
	1 Supported	0110 6*4 VCLKs
4	8-Bit Bus Width SupportedRO	0111 7*4 VCLKs
	0 Not Supported	1000 8*4 VCLKs
	1 Supporteddefault	1001 16*4 VCLKs
3	4x Rate SupportedRO	1010 32*4 VCLKs
	0 Not Supported	1011 64*4 VCLKs
	1 Supporteddefault	11xx Own the bus for as long as there is a request
2	2x Rate SupportedRO	3-0 Timer for High Priority Requests from SB
	0 Not Supporteddefault	0000 Immediate
	1 Supported	0001 1*2 VCLKs
1-0	Reservedalways reads 0	0010 2*2 VCLKs
		0011 3*2 VCLKs
Dovice	0 Offset 42 – NB Downlink Command (88h) RW	0100 4*2 VCLKs default
		0101 5*2 VCLKs
	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	0110 6*2 VCLKs
3-0	DnCmd Write Buffer Size (doublewords) def = 8	0111 7*2 VCLKs
Device	0 Offset 44-43 – NB Uplink Status (8280h)RO	1000 8*2 VCLKs
	UpCmd P2C Write Buffer Size (max lines) def = 8	1001 16*2 VCLKs
11-8		1010 32*2 VCLKs
7-4	UpCmd Max Request Depth (0=1 UpCmd). def = 8	1011 64*2 VCLKs
3-0	Reservedalways reads 0	11xx Own the bus for as long as there is a request
3-0	Reserved arways reads 0	

7	Downstream High Priority	7 Reservedalways reads 0
	0 Disable High Priority Down Commandsdef	6 Rest Bus Width Supported
	1 Enable High Priority Down Commands	0 Not Supporteddefault
6	Downlink Priority	1 Supported
	0 Treat Downlink Cycles as Normal Priority.def	5 16-bit Bus Width Supported
	1 Treat Downlink Cycles as High Priority	0 Not Supporteddefault
5-4	Combine Multiple STPGNT Cycles Into One V-	1 Supported
	Link Command	4 8-Bit Bus Width Supported
	00 Compatible, 1 command per V-Link cmddef	0 Not Supported
	01 2 commands per V-Link command	1 Supporteddefault
	10 3 commands per V-Link command	3 4x Rate Supported
	11 4 commands per V-Link command	0 Not Supported
3-2	V-Link Master Access Ordering Rules	1 Supported defaul
	00 High priority read, pass normal read (not pass	2 2x Rate Supported
	write)default	0 Not Supported defaul
	01 Read (high/normal) pass write (HR>LR>W)	1 Supported
	1x Read / write in order	1-0 Reservedalways reads 0
1-0	Reservedalways reads 0	6N-Y
		Device 0 Offset 49 – SB V-Link Capability (18h) RO
<u> Pevice</u>	0 Offset 47 – V-Link Control (00h)RW	7-6 Reservedalways reads 0
7-3	Reserved always reads 0	5 16-bit Bus Width SupportedRO
2	Auto-Disconnect	0 Not Supported defaul
	0 Disabledefault	1 Supported
	1 Enable	4 8-Bit Bus Width SupportedRO
1	V-Link Disconnect Cycle for HALT cycle	0 Not Supported
	0 Disabledefault	1 Supporteddefaul
	1 Enable	3 4x Rate SupportedRO
0	V-Link Disconnect Cycle for STPGNT Cycle	0 Not Supported
	0 Disabledefault	1 Supported default
	1 Enable	2 2x Rate SupportedRO
	1 Enable	2 22 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1 Enable	2 2x Rate Supported

Device	0 Offset 4A – SB Downlink Status (88h)RO	Device	0 Offset 4E - CCA Master Priority (00h)RW
7-4	DnCmd Max Request Depth (0=1 DnCmd) . def = 8	7	1394 High Priority
3-0	DnCmd Write Buffer Size (doublewords) def = 8		0 Low prioritydefault
	0.000 + 40.4D OD V. H. L. G L. (0.001) DVV		1 High priority
	0 Offset 4C-4B – SB Uplink Command (8280h).RW	6	LAN / NIC High Priority
	UpCmd P2C Write Buffer Size (max lines) $def = 8$		0 Low prioritydefault
11-8	• • • • • • • • • • • • • • • • • • • •		1 High priority
7-4	UpCmd Max Request Depth (0=1 UpCmd) . def = 8	5	Reserved always reads 0
3-0	Reservedalways reads 0	4	USB High Priority
Device 0 Offset 4D – SB V-Link Bus Timer (44h)RW			0 Low prioritydefault
7-4	Timer for Normal Priority Requests from SB	_	1 High priority
/	0000 Immediate	3	Reserved always reads 0
	0001 1*4 VCLKs	2	IDE High Priority
	0010 2*4 VCLKs		0 Low prioritydefault
	0011 3*4 VCLKs		1 High priority
	0100 4*4 VCLKsdefault	1	AC97-ISA High Priority
	0101 5*4 VCLKs		0 Low prioritydefault
	0110 6*4 VCLKs	0	1 High priority
	0111 7*4 VCLKs		PCI High Priority 0 Low prioritydefault
	1000 8*4 VCLKs		1 High priority
	1001 16*4 VCLKs		1 High priority
	1010 32*4 VCLKs	Device	0 Offset 4F - SB V-Link Misc Control (00h) RW
	1011 64*4 VCLKs	7	Upstream Command High Priority
	11xx Own the bus for as long as there is a request		0 Disable high priority up commands default
3-0	Timer for High Priority Requests from SB		1 Enable high priority up commands
	0000 Immediate	6-1	Reservedalways reads 0
	0001 1*2 VCLKs	0	Down Cycle Wait for Up Cycle Write Flush
	0010 2*2 VCLKs		(Except Down Cycle Post Write)
	0011 3*2 VCLKs		0 Disabledefault
	0100 4*2 VCLKsdefault		1 Enable
	0101 5*2 VCLKs		
	0110 6*2 VCLKs	7	
	0111 7*2 VCLKs	*	
	1000 8*2 VCLKs		
	1001 16*2 VCLKs		
	1010 32*2 VCLKs		
	1011 64*2 VCLKs		
	11xx Own the bus for as long as there is a request		

Host CPU Control

Device 0 Offset 50 - Request Phase Control (00h)RW CPU Hardwired IOQ (In Order Queue) Size....RO

Default set from the inverse of the VAD2 (south bridge SA18) strap. E.g., this bit can be strapped 0 (strap pin pulled high) to restrict the chip to one level of IOO.

- 0 1-Level (strap pin pulled high)
- 1 8-Level (strap pin pulled low)

AGTL+ Pullups

Default set from the inverse of the VAD3 (south bridge SA19) strap.

- 0 Disable (strap pulled high)
- 1 Enable (strap pulled low)
- 5 **Fast DRAM Access**
 - 0 Disabledefault
 - 1 Enable

4-0 **Dynamic Defer Snoop Stall Count**

(granularity = 2T, normally set to 01000b)

ordwired IOQ (In Order Queue) SizeRO set from the inverse of the VAD2 (south	Device 7	Offset 51 – CPU Interface Basic Control (00h)RW CPU Read DRAM Fast Ready Medium / Slow Ready (see bit 0) default
A18) strap. E.g., this bit can be strapped 0		1 Fast Ready (bit-0 of this register is ignored)
n pulled high) to restrict the chip to one level	6	Read Around Write
		0 Disabledefault
Level (strap pin pulled high)		1 Enable
Level (strap pin pulled low)	5	DRQ Control
Pullups		0 Non pipelined similar to VT8633 default
set from the inverse of the VAD3 (south		1 Pipelined
A19) strap.	4	CPU to PCI Read Defer
isable (strap pulled high)		0 Disabledefault
nable (strap pulled low)		1 Enable
AM Access	3	Two Defer / Retry Entries
isabledefault		0 Disabledefault
nable		1 Enable
c Defer Snoop Stall Count	2	Two Defer / Retry Entries Shared
rity = $2T$, normally set to $01000b$)	2 0	0 Each entry is dedicated to 1 CPU default
		1 Each entry is shared by 2 CPUs
	1	PCI Master Pipelined Access
		0 Disabledefault
		1 Enable
	0	CPU Read DRAM Ready
		(this bit is ignored if bit- $7 = 1$)
		0 Slowdefault
	1	1 Medium
7		

	0 Offset 52 – CPU Interface Advanced Ctrl (00h)RW		0 Offset 54 - CPU Frequency (00h)RW
7	CPU RW DRAM 0WS for Back-to-Back Pipeline	7-6	CPU Clock FrequencySet from VAD1-0 Straps
	Access		00 66 MHz
	0 Disabledefault		01 100 MHz
_	1 Enable		10 Auto
6	HREQ High Priority	_	1 133 MHz
	0 Disabledefault	5	Auto Configure (ROMSIP). Set from VAD6 Strap
_	1 Enable		0 Disable (strap pulled low). Chip configuration
5	C2P2 Timing		settings per on-chip defaults.
	0 Compatibledefault		1 Enable (strap pulled high). AGTL+ Drive
	1 Enhanced		settings and other chip configuration settings
	This bit should always be set to 1.		are stored in ROM, transferred from the south
4	Dynamic Snoop Stall for CPU FIFO Full		bridge (via the V-Link bus), and loaded into
	0 Disabledefault		the VT8703 automatically after system reset.
2	1 Enable		Refer to the VT8703 BIOS Porting Guide for
3	Write Retire Policy After 2 Writes		layout of the AutoConfigure settings in ROM
	0 Disabledefault		and for recommended bit settings.
2	1 Enable	4	SDRAM Burst Length of 8
2	133 / 100 DADS Fast Conversion	2	0 Disable
	0 Disabledefault	,	1 Enable
1	1 Enable Consecutive Speculative Read	2	Reservedalways reads 0 PCI Master 8QW Operation
1	0 Disabledefault	2	0 Disabledefault
	1 Enable	N.	1 Enable
0	Speculative Read	1	AGP Capability Header Support
U	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
	1 Liladic	0	Reservedalways reads 0
Device	0 Offset 53 - CPU Arbitration Control (03h)RW	U	Reservedarways reads o
7-4	Host Timer default $= 0$		
3-0	BPRI Timer (units of 4 HCLKs) default = 3		
	>		

DRAM Control

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory (refer to the VIA Technologies VT8751A BIOS porting guide for details).

Table 6. System Memory Map

					0 Disable	
Space Some DOS	tart Size 0 640K	Address Range 00000000-0009FFFF	<u>Comment</u> Cacheable	3	1 Enable DQM Remov	
VGA 64	40K 128K	000A0000-000BFFFF	Used for SMM		0 Disable	
	68K 16K	000C0000-000C3FFF	Shadow Ctrl 1	2	1 Enable DQS Output	
	84K 16K	000C4000-000C7FFF	Shadow Ctrl 1		0 Disable	
BIOS 80	00K 16K	000C8000-000CBFFF	Shadow Ctrl 1		1 Enable	
BIOS 8	16K 16K	000CC000-000CFFFF	Shadow Ctrl 1			
BIOS 83	32K 16K	000D0000-000D3FFF	Shadow Ctrl 2	1	Auto Prechai	
BIOS 84	48K 16K	000D4000-000D7FFF	Shadow Ctrl 2		0 Disable	
BIOS 8	64K 16K	000D8000-000DBFFF	Shadow Ctrl 2		1 Enable	
BIOS 88	80K 16K	000DC000-000DFFFF	Shadow Ctrl 2	0	Write Recove	
BIOS 89	96K 64K	000E0000-000EFFFF	Shadow Ctrl 3		0 1T	
	60K 64K	000F0000-000FFFFF	Shadow Ctrl 3		1 2T	
Sys 1	MB —	00100000-DRAM Top	Can have hole			
•	Тор	DRAM Top-FFFEFFF				
		FFFEFFFF-FFFFFFFF	000Fxxxx alias			

De	vice	Offset 55 – DRAM Control (00h)RW
	7	OWS Back-to-Back Write to Different DDR Bank
		0 Disabledefault
		1 Enable
	6	Reserved always reads 0
	5	DQS Input DLL Adjustment
		0 Disabledefault
		1 Enable
	4	DQS Output DLL Adjustment
		0 Disabledefault
		1 Enable
	3	DQM Removal (Always Perform 4-Burst RW)
		0 Disabledefault
	-	1 Enable
	2	DQS Output
		0 Disabledefault
6		1 Enable
	1	Auto Precharge for TLB Read or CPU WriteBack
		0 Disabledefault
		1 Enable
	0	Write Recovery Time
		0 1Tdefault
_4		1 2T
		Y

Device (Offse	et 59	2-58 - DRAM MA Map Type (2222h).RW
15-13	Bank	5/4	MA Map Type (see table below)
12	Bank	5/4	1T Command Rate
	0	2T	Commanddefault
	1	1T	Command
11-9	Bank	7/6	MA Map Type (see table below)
8	Bank	7/6	1T Command Rate
	0	2T	Commanddefault
	1	1T	Command
7-5	Bank	1/0	MA Map Type (see table below)
4	Bank	1/0	1T Command Rate
	0	2T	Commanddefault
	1	1T	Command
3-1	Bank	3/2	MA Map Type (see table below)
0	Bank	3/2	1T Command Rate
	0	2T	Commanddefault
	1	1T	Command

Table 7. Device 0 Rx58 MA Map Type Encoding

000	<u>16Mb</u>	8-bit, 9-bit, 10-bit Column Address
001	64/128Mb	8-bit Column Addressdefault
010	64/128Mb	9-bit Column Address
011	64/128Mb	10/11-bit Column Address
100		-reserved-
101	256Mb	8-bit Column Address
110	256Mb	9-bit Column Address
111	<u>256Mb</u>	10/11-bit Column Address
	4	A COUNTY

Device 0 Offset 5F-5A – DRAM Row Ending Address:

Offset 5A - Bank 0 Ending (HA[31:24]) (01h)	RW
Offset 5B - Bank 1 Ending (HA[31:24]) (01h)	RW
Offset 5C - Bank 2 Ending (HA[31:24]) (01h)	RW
Offset 5D - Bank 3 Ending (HA[31:24]) (01h)	RW
Offset 5E – Bank 4 Ending (HA[31:24]) (01h)	RW
Offset 5F - Bank 5 Ending (HA[31:24]) (01h)	RW
Offset 56 – Bank 6 Ending (HA[31:24]) (01h)	RW
Offset 57 – Bank 7 Ending (HA[31:24]) (01h)	RW

Note: BIOS is required to fill the ending address registers for all banks even if no memory is populated. The endings have to be in incremental order.

Device 0 Offset 60 – DRAM Type (00h)......RW

- 7-6 DRAM Type for Bank 7/6
- 5-4 DRAM Type for Bank 5/4
- 3-2 DRAM Type for Bank 3/2
- 1-0 DRAM Type for Bank 1/0
 - 00 SDR SDRAM......default
 - 01 -reserved- (do not program)
 - 10 DDR SDRAM
 - 11 -reserved-

Table 8. Memory Address Mapping Table

SDR / DDR SDRAM (x4 DRAMs supported by SDR only)

	MA:	<u>14</u>	13	12	11	<u>10</u>	9	8	<u>7</u>	<u>6</u>	<u>5</u>	4	<u>3</u>	<u>2</u>	1	0	
7	16Mb	7	24		13	12	11	14	22	21	20	19	18	17	16	15	12 row
	(000)			1	13	PC	24	23	10	9	8	7	6	5	4	3	10,9,8 col
	64/128Mb)															x16 (14,8)
	2K page	14	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (14,8)
	001		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	x8 (14,9)
	4K page	14	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (14,9)
	010		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	x4 (14,10)
	8K page	14	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (14,10)
	011		27	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (14,11)
	256Mb																
	2K page	25	24	14	13	12	11	23	22	21	20	19	18	17	16	15	x32 (15,8)
	101		27	14	13	PC	26	25	10	9	8	7	6	5	4	3	
	4K page	26	25	14	13	12	24	23	22	21	20	19	18	17	16	15	x16 (15,9)
	110		27	14	13	PC	26	11	10	9	8	7	6	5	4	3	
	8K page	27	26	14	13	25	24	23	22	21	20	19	18	17	16	15	x8 (15,10)
	111		28	14	13	PC	12	11	10	9	8	7	6	5	4	3	x4 (15,11)

Device	0 Offs	et 61 - Shadow RAM Control 1 (00h)RW	Device	0 Offset 63 - Sh
7-6	CC00	00h-CFFFFh	7-6	E0000h-EFFF
	00	Read/write disabledefault		00 Read/wi
	01	Write enable		01 Write er
	10	Read enable		10 Read en
	11	Read/write enable		11 Read/wi
5-4	C800	0h-CBFFFh	5-4	F0000h-FFFF
	00	Read/write disabledefault		00 Read/wi
	01	Write enable		01 Write er
	10	Read enable		10 Read en
	11	Read/write enable		11 Read/wi
3-2	C400	0h-C7FFFh	3-2	Memory Hole
	00	Read/write disabledefault		00 None
	01	Write enable		01 512K-64
	10	Read enable		10 15M-16
	11	Read/write enable		11 14M-16
1-0	C000	0h-C3FFFh	1	A0000 / B0000
	00	Read/write disabledefault		0 Enable
	01	Write enable		1 Disable
	10	Read enable	0	A0000 / B0000
	11	Read/write enable		0 Enable
Device	0 Offs	et 62 - Shadow RAM Control 2 (00h)RW) '	1 Disable
7-6		00h-DFFFFh		SMI Ma
	00	Read/write disabledefault		Sivii ivia
	01	Write enable		Bits
	10	Read enable		1-0 <u>Cod</u>
	11	Read/write enable		00 DRA
5-4	D800	0h-DBFFFh		01 DRA
	00	Read/write disabledefault		10 DRA
	01	Write enable		11 DRA
	10	Read enable		II DICI
	11	Read/write enable		
3-2	D400	0h-D7FFFh	<i>y</i>	
	00	Read/write disabledefault		
	01	Write enable		
	10	Read enable		
	11	Read/write enable		
1-0	$\mathbf{D000}$	00h-D3FFFh		
	00	Read/write disabledefault		
	01	Write enable		
	10	Read enable		
	11	Read/write enable		

vice	0 Offse	et 63 - Shadow RAM Control 3 (00h) RW
7-6	E000	Oh-EFFFFh
	00	Read/write disable default
	01	Write enable
	10	Read enable
	11	Read/write enable
5-4	F0000	Oh-FFFFFh
	00	Read/write disable default
	01	Write enable
	10	Read enable
	11	Read/write enable
3-2	Mem	ory Hole
	00	Nonedefault
	01	512K-640K
	10	15M-16M (1M)
	11	14M-16M (2M)
1	A000	0 / B0000 SMRAM Direct Access
	0	Enabledefault
	1	Disable
0	A000	0 / B0000 DRAM Access
	0	Enabledefault
	1	Disable

SMI Mapping Control

Bits	<u>SN</u>	<u>1M</u>	Non-	SMM_
1-0	Code	<u>Data</u>	Code	<u>Data</u>
00	DRAM	DRAM	PCI	PCI
01	DRAM	DRAM	DRAM	DRAM
10	DRAM	PCI	PCI	PCI
11	DRAM	DRAM	DRAM	DRAM

Device	0 Offs	et 64 - :	DRAM T	iming for	All Banks	s (E4h)RW	Device	0 Offset 67 - DDR Strobe I
7	Prec	harge (Command	to Active	e Commar	nd Period		DDR:
	0	$T_{RP} =$	2T				7-6	CS Early Clock Select
	1	$T_{RP} =$	3T			default	5-0	DQS Input Delay
6	Activ	ve Com	mand to	Precharge	Commar	nd Period		(if Rx66[7]=0, read DLL
	0	Tras :		J				
	1	Tras :	= 6T			default		
5-4	CAS	Latenc	ev					SDR:
		SDR	DDR				7-5	Reserved
	00	1T					4	MD Latch Clock Select
	01	2T	2T					0 Internal clock
	10	3T				default		 External feedback cl
	11	_	3T			aciaaii	3	Reserved
3	Rese	rved			alw	ays reads 0	2-0	MD Latch Delay
2		IVE to		••••••	ai w	ays reads o		•
_	0	2T	CIVID				. .	
	1	3T				default		0 Offset 68 – DDR Strobe (
1-0		ار د Interl			•	uciuuii	7-0	DDR DQS Output Delay
1-0						default		
	01	2-way		••••••	• • • • • • • • • • • • • • • • • • • •	aciaaii	4	
		4-way						
		Reser						
				ank interle	eave is alw	ays 2-way		
	1011	0110 51	DICI IIVIS U	ank michic	zave is aiw	ays 2 way	X	
					C			
						0h) RW		
7-4						default = 0		
3-0	CPU	Timer	(units of	4 MCLKs)		default = 0		
Device	0 Offs	et 66 -	DRAM A	rhitration	Control	(00h)RW		
7			back Clo		Control	(0011)11(1)		
,			Input De		σ			
	0					esult)def		
	1		ial (Rx67 r					
6	_		ess Timin		input dele	.3)		
U	0	2T				default		
	1		et this bit					
5-4			Parking 1			r clock)		
3-4	00					default		
	01		at CPU	owner		uclault		
		Park a						
2.0	11 ACD	-reser		mita -£ 1	MCI V~\			
3-0	AGP	/ CPU	Priority (umus of 4	MCLKS)			

Device	Oliset 07 - DDK Strobe input Delay (0011) K W
	DDR:
7-6	CS Early Clock Selectdefault = 0
5-0	DQS Input Delay default = 0
	(if Rx66[7]=0, read DLL calibration result)
	SDR:
7-5	Reservedalways reads 0
4	MD Latch Clock Select
	0 Internal clock default
	1 External feedback clock
3	Reservedalways reads 0
2-0	MD Latch Delay
Device	0 Offset 68 - DDR Strobe Output Delay (00h) RW
7-0	DDR DQS Output Delay default = 0

Device	0 Offset 69 – DRAM Clock Select (00h)RW	Device 0 Offset 6A - Refresh Counter (00h)RW
7	CPU Operating Frequency Faster Than DRAM	7-0 Refresh Counter (in units of 16 MCLKs)
	0 CPU Same As or Equal to DRAMdefault	00 DRAM Refresh Disabled default
	1 CPU Faster Than DRAM by 33 MHz	01 32 MCLKs
6	DRAM Operating Frequency Faster Than CPU	02 48 MCLKs
	0 DRAM Same As or Equal to CPUdefault	03 64 MCLKs
	1 DRAM Faster Than CPU by 33 MHz	04 80 MCLKs
	T BIGINITUM OF C CY CO INITE	05 96 MCLKs
	Bits	
	7-6 CPU / DRAM	
	10 100 / 66	The programmed value is the desired number of 16-
	00 100 / 100default	MCLK units minus one.
	01 100 / 133	Device 0 Offset 6B - DRAM Arbitration Control (10h) RW
		7 Fast Read to Write Turn-around
5	S1 Resume	0 Disabledefault
	0 Compatibledefault	1 Enable
	1 Enhanced	6 Page Kept Active When Cross Bank
4	DRAM Controller Queue Not Equal to 4	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	5 Burst Refresh
3	DRAM 8K Page Enable	0 Disabledefault
	0 Disabledefault	1 Enable
	1 Enable	4 CKE Function
2	DRAM 4K Page Enable	0 Disable
	0 Disabledefault	1 Enable default
	1 Enable	3 HA14/HA22 Swap
1	DIMM Type	0 Normal default
	0 Unbuffereddefault	1 Swap to improve performance
	1 Registered	2-0 SDRAM Operation Mode Select
0	Multiple Page Mode	000 Normal SDRAM Mode default
	0 Disabledefault	001 NOP Command Enable
	1 Enable	010 All-Banks-Precharge Command Enable
		(CPU-to-DRAM cycles are converted
		to All-Banks-Precharge commands).
		011 MSR Enable
		CPU-to-DRAM cycles are converted to
		commands and the commands are driven on
		MA[14:0]. The BIOS selects an appropriate
	Y	host address for each row of memory such that
		the right commands are generated on
		MA[14:0].
		100 CBR Cycle Enable (if this code is selected,

CAS-before-RAS refresh is used; if it is not

selected, RAS-Only refresh is used)

101 Reserved11x Reserved

Device	0 Offse	et 6C – DRAM Drive Control 1 (00h)RW
7-6	SDR	AM A Drive – SRASA/SCASA/SWEA, MAA
	00	Lowestdefault
	01	
	10	
	11	Highest
5-4	SDR	AM B Drive – SRASB/SCASB/SWEB, MAB
	00	Lowestdefault
	01	
	10	
	11	Highest
3-2	DDR	DQS Drive
	00	Lowestdefault
	01	
	10	
	11	Highest
1-0	MD/N	MECC/DQM/CKE Early Clock Select
	00	Latestdefault
	01	
	10	
	11	Earliest

Note: Refer to the VT8751A BIOS Porting Guide for SDRAM configuration algorithms and recommended settings for these bits for typical memory system configurations.

AND PROPERTY.

Device	0 Offset 6D - DRAM Drive Control 2 (00h) RW
7-6	Early Clock Select for SCMD, MA Output (for 1T
	Command)
	00 Latestdefault
	01
	10
	11 Earliest
5-4	DQM Drive
	00 Lowest default
	01
	10
	11 Highest
3-2	CS# Drive
	00 Lowest default
	01
	10
	11 Highest
1-0	Memory Data Drive (MD, MECC)
	00 Lowest default
	01
7	10
	11 Highest

Note: Refer to the VT8751A BIOS Porting Guide for SDRAM configuration algorithms and recommended settings for these bits for typical memory system configurations.

Device 0 Offset 6E - ECC Control (00h)RW

- 7 ECC / EC Mode Select
 - 0 ECC Checking and Reporting.....default
 - 1 ECC Checking, Reporting, and Correcting
- 6 Perform Read-Modify-Write for Partial Write
 - 0 Disabledefault
 - 1 Enable
- 5 Enable SERR# on ECC / EC Multi-Bit Error
 - 0 Don't assert SERR# for multi-bit errorsdef
 - 1 Assert SERR# for multi-bit errors
- 4 Enable SERR# on ECC / EC Single-Bit Error
 - 0 Don't assert SERR# for single-bit errorsdef
 - 1 Assert SERR# for single-bit errors
- 3 ECC / EC Enable Bank 7/6 (DIMM 3)
 - 0 Disable (no ECC or EC for banks 7/6)...default
 - 1 Enable (ECC or EC per bit-7)
- 2 ECC / EC Enable Bank 5/4 (DIMM 2)
 - 0 Disable (no ECC or EC for banks 5/4)...default
 - 1 Enable (ECC or EC per bit-7)
- 1 ECC / EC Enable Bank 3/2 (DIMM 1)
 - 0 Disable (no ECC or EC for banks 3/2)...default
 - 1 Enable (ECC or EC per bit-7)
- 0 ECC / EC Enable Bank 1/0 (DIMM 0)
 - 0 Disable (no ECC or EC for banks 1/0)...default
 - 1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-3 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-3 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-3 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use EC or all will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 3-0	$\underline{\mathbf{RMW}}$	Error Checking	Error Correction
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1_	Yes	Yes	Yes

Device 0 Offset 6F - ECC Status (00h)RWC7Multi-bit Error Detectedwrite of '1' resets6-4Multi-bit Error DRAM Bankdefault=0Encoded value of the bank with the multi-bit error.3Single-bit Error Detectedwrite of '1' resets2-0Single-bit Error DRAM Bankdefault=0

Encoded value of the bank with the single-bit error.

Table 9. DIMM Module Configuration

Rx6B	Rx6E	Rx6E	Rx55				
[4]	[3-0]	[6]	[3]	DIMM	MECC	DQM	DQS#
CKE	ECC	RMW	No	Module	[7-0]	[8-0]	[8-0]
<u>Ena</u>	<u>Ena</u>	<u>Ena</u>	<u>DQM</u>	Configuration	<u>Pins</u>	<u>Pins</u>	<u>Pins</u>
1	1	1	1	DDR Only x4 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	1	0	1	DDR Only x8 with ECC	MECC[7-0]	CKE[7-0]	DQS[8-0]#
1	0	0	0	DDR Only x8 no ECC	CKE[7-0]	DQM[7-0]	DQS[7-0]#
0	0	0	0	184-Pin DDR/SDR Mix	CKE[7-0]	DQM[8-0]	DQS[8-0]#
1	1	X	0	168-Pin SDR Only	MECC[7-0]	DQM[8-0]	CKE[7-0]
1	0	0	1	2 DDR + 2 SDR (SDR Installed)	CKE[7-0]	-	DQS[7-0]#
1	0	0	0	2 DDR + 2 SDR (DDR Installed)	CKE[7-0]	DQM[7-0]	DQS[7-0]#

PCI Bus Control

These registers are normally programmed once at system initialization time.

DXX

Device	0 Offse	et 70 - PCI Buffer Control (00h)RW
7	CPU	to PCI Post-Write
	0	Disabledefault
	1	Enable
6	Reser	rvedalways reads 0
5-4	PCI I	Master to DRAM Prefetch
	00	Always prefetchdefault
	x1	Never prefetch
	10	Prefetch only for Enhance command
3-2	Reser	rvedalways reads 0
1	Delay	Transaction
	0	Disabledefault
	1	Enable
0	Rese	rved always reads 0
Device	0 Offs	et 71 - CPU to PCI Flow Control (48h)RWC
7		StatusRWC
,	Ken y	No retry occurreddefault
	1	Retry occurred
6	-	Timeout Action
U	0	Retry forever (record status only)
	1	Flush buffer or return FFFFFFFh for reads
	1	default
5-4	Retry	Count and Retry Backoff
5 1	00	Retry 2 times, backoff CPUdefault
	01	Retry 16 times
	10	Retry 4 times
	11	Retry 64 times
3		Burst
	0	Disable
	1	Enabledefault
2	Rese	rved always reads 0
1	Com	patible Type#1 Configuration Cycles
	0	Disable (fixed AD31)default
	1	Enable
0	IDSE	L Control
	0	AD11, AD12default

W	Device	0 Offse	t 73	- PC	I Ma	ster	Con	trol ((00h)		RV	W
	7	Reser									s reads	
ılt	6	PCI N	Aast							•		
		0	Zero	o wai	t stat	e TR	DY#	resp	onse.		defau	ılt
0		1	One	wait	state	TRI	DY#	respo	onse			
	5	PCI N	Aast	er 1-	Wait	-Stat	te Re	ead				
ılt		0		1							defau	ılt
		1	One	wait	state	TRI	DY#	respo	onse			
	4	WSC										
0		0	Disa	able			• • • • • • • • • • • • • • • • • • • •				defau	ılt
	4	1	Ena	ble								
ılt	3-1	Reser								lway	s reads	0
	0	PCI N	Aast	er Br	oker	ı Tin	ner F	Enab	le			
0		0									defau	
		1									ere is r	10
<u>C</u>	, 7		FRA	AME	# 16]	PCIC	CLK'	s afte	er the	gran	t.	
		900	,									
ılt	k					,						
			0,4									
.14			22,									
ılt												
ılt												
111												
	7											

1 AD30, AD31

Device	0 Offset 75 - PCI Arbitration 1 (00h)RW	Device	0 Offset 76 - PCI Arbitration 2 (00h)RW
7	Arbitration Mode	7	I/O Port 22 Access
	0 REQ-based (arbitrate at end of REQ#)default		0 CPU access to I/O address 22h is passed on to
	1 Frame-based (arbitrate at FRAME# assertion)		the PCI bus default
6-4	Latency Timerread only, reads Rx0D bits 2:0		1 CPU access to I/O address 22h is processed
3	Reserved always reads 0		internally
2-0	PCI Master Bus Time-Out	6	Reserved always reads 0
	(force into arbitration after a period of time)	5-4	Master Priority Rotation Control
	000 Disabledefault		00 Disabledefault
	001 1x16 PCICLKs		01 Grant to CPU after every PCI master grant
	010 2x16 PCICLKs		10 Grant to CPU after every 2 PCI master grants
	011 3x16 PCICLKs		11 Grant to CPU after every 3 PCI master grants
	100 4x16 PCICLKs		Setting 01: the CPU will always be granted access
			after the current bus master completes, no matter how
	111 7x16 PCICLKs		many PCI masters are requesting.
			Setting 10: if other PCI masters are requesting during
			the current PCI master grant, the highest priority
			master will get the bus after the current master completes, but the CPU will be guaranteed to get the
		2	bus after that master completes.
			Setting 11: if other PCI masters are requesting, the
			highest priority will get the bus next, then the next
			highest priority will get the bus, then the CPU will
			get the bus.
			In other words, with the above settings, even if
			multiple PCI masters are continuously requesting the
			bus, the CPU is guaranteed to get access after every
		7	master grant (01), after every other master grant (10)
			or after every third master grant (11).
		3-2	Select REQn# to REQ4# mapping
			00 REQ4#default
			01 REQ0#
		/	10 REQ1#
			11 REQ2#
		1	Reserved always reads 0
		0	REQ4# is High Priority Master
	, , , , , , , , , , , , , , , , , , ,		0 Disabledefault
			1 Enable

GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the P4M266A.

This scheme is shown in the figure below.

Figure 4. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the P4M266A contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

Device	0 Offset 83-8	80 - GART/TLB Control (00000000h) RW
31-16	Reserved	always reads 0
15-8	Reserved (1	test mode status)RO
7	Flush Page	TLB
	0 Disal	oledefault
	1 Enab	le
6-0	Reserved	always reads 0
	or any maste vill not be per	er access to the Graphics Aperture range, rformed.

Device 0 Offset 84 - Graphics Aperture Size (00h)...... RW

7-0	Graphics	Aperture	Size

	M	1111000	16M
11111110 21	M	1110000	32M
11111100 41	M	11000000	64M
11111000 81	M	10000000	128M
,	(00000000	256M

Offset	<u> 85 – Write Policy (00h)</u>	RW
7	Reserved	always reads 0
6-4	Write Request Limit	default = 0
3	Reserved	always reads 0
2-0	Write Request Base	default = 0

Offset 8B-88 - GA Translation Table Base (00000000h) RW

31-12 Graphics Aperture Translation Table Base. Pointer to the base of the translation table in system memory used to map addresses in the aperture range (the pointer to the base of the "Directory" table).

	• /
11-2 Reserved	 always reads (

1 Graphics Aperture Enable

- Disable......default
- 1 Enable

Note: To disable the Graphics Aperture, set this bit to 0 and set all bits of the Graphics Aperture Size to 0. To enable the Graphics Aperture, set this bit to 1 and program the Graphics Aperture Size to the desired aperture size.

0 DRAM Power Reduction

- 0 Disable......default
- 1 Enable (use only with 1 bank DRAM module)

AGP Control

Device	0 Offset A3-A0 - AGP Capability Identifier	Device	0 Offset AC - AGP Control (00h)RW
(0020C		7	AGP Disable RO
31-24	Reserved always reads 00	·	0 Disabledefault
	Major Specification Revision always reads 0010		1 Enable
20 20	Major rev # of AGP spec to which device conforms		This bit is latched from MA9 at the rising edge of
19-16	Minor Specification Revision always reads 0000		RESET#.
17-10	Minor rev # of AGP spec to which device conforms	6	AGP Read Synchronization
15_0	Pointer to Next Item always reads C0h (last item)	U	0 Disabledefault
7-0	AGP ID(always reads 02 to indicate it is AGP)		1 Enable
/-0	(always leads 02 to ilidicate it is AOI)	5	AGP Read Snoop DRAM Post-Write Buffer
Device (0 Offset A7-A4 - AGP Status (1F000207h)RO	3	0 Disabledefault
	Maximum AGP Requestsalways reads 1F		1 Enable
01 2.	Max # of AGP requests the device can manage (32)	4	
23-10	Reserved	4	GREQ# Priority Becomes Higher When Arbiter is Parked at AGP Master
9	Supports SideBand Addressing always reads 1		0 Disabledefault
8-6	Reserved		
5	4G Supported (can be written at RxAE[5]		y i Eliacio
4	Fast Write Supported (can be written at RxAE[4]	3	2X Rate Supported
3	Reservedalways reads 0		0 Disabledefault
2	4X Rate Supportedalways reads 1		1 Enable
1	2X Rate Supportedalways reads 1	2	Fence / Flush
0	1X Rate Supportedalways reads 1		0 Disable - low priority requests may be
U	TA Rate Supported always leads 1		executed out of orderdefault
			1 Enable – all normal priority AGP operations
			will be executed in order
Device (O Offset AB-A8 - AGP Command (00000000h)RW	1	AGP Grant Parking Policy
	Request Depth (reserved for target)always reads 0s		0 Non-Parking Grant – if GFRM# or GPIPE# is
	Reservedalways reads 0s		asserted, GGNT# is deasserted default
9	SideBand Addressing Enable		1 Parking Grant – if GFRM# or GPIPE# is
	0 Disabledefault		asserted, GGNT# is not de-asserted until
	1 Enable		GREQ# is deasserted or timeout
8	AGP Enable	0	AGP to PCI Master or CPU to PCI Turnaround
	0 Disabledefault		Cycle
	1 Enable		0 2T or 3T Timingdefault
7-6	Reservedalways reads 0s		1 1T Timing
5	4G Enable		
	0 Disabledefault		
	1 Enable		
4	Fast Write Enable		
•	0 Disabledefault		
	1 Enable		
3	Reservedalways reads 0s		
2	4X Mode Enable		
4	0 Disabledefault		
	1 Enable		
1	2X Mode Enable		
1	0 Disabledefault		
	1 Enable		
0	1X Mode Enable		
U			
	0 Disabledefault		
	1 Enable		

AGP Control (continued)

Device	0 Offset AD – AGP Miscellaneous Control (02h)RW	Device	0 Offset B1 – AGP Drive Strength (63h)RW
7	AGP Performance Improvement	7-4	AGP Output Buffer Drive Strength N Ctrldef=6
	0 Disabledefault	3-0	AGP Output Buffer Drive Strength P Ctrl def=3
	1 Enable		
6	Pipe Mode Performance Improvement	ъ.	A COST A DA LA CONDINENTAL DE LA CALLACADANTE
	0 Disabledefault		0 Offset B2 – AGP Pad Drive & Delay Ctrl (08h)RW
	1 Enable	7	GD/GDS/GDS#/GBE Pad Control default = 0
5	Input on AGP GD / GBE Pads		SA / SBS = GD / GBE / GDS
	0 Disabledefault		0 VDDQ=1.5V: Normal Normal
	1 Enable		VDDQ=3.3V: Delayed Normal
4	AGP Performance Improvement		1 VDDQ=1.5V: Normal Delayed
	0 Disabledefault		VDDQ=3.3V Delayed Delayed
	1 Enable	6	External AGP Pad Power Down
3-0	AGP Data Phase Latency Timer default = 02h		0 Disabledefault
			1 Enable
	0 Offset AE – AGP Miscellaneous Control (00h)RW	5	GDS/GDS# Skew Relative to GD/GBE#
7-6	Reserved always reads 0	4	(see bit-2)
5	4G Supported	4	GD[31:16] Output Stagger Delay
	0 4G not supporteddefault		0 No delay default
	1 4G supported		1 Delay GD[31:16] by 1 ns
4	Fast Write Supported	3	GD/GBE#, GDS, GDS# Slew Rate Control
	0 Fast Write not supporteddefault		0 Disable
	1 Fast Write supported		1 Enabledefault
3	Reserved always reads 0	2	GDS/GDS# Skew Relative to GD/GBE#
2	4X Rate Supported		(part of a 2-bit field; this bit is lsb & bit-5 is msb)
	0 Disabledefault		00 GDS/GDS# early by 150 pS default
	1 Enable		01 GDS/GDS# center of GD
1-0	Reserved always reads 0		10 GDS/GDS# lags 150 pS from center of GD
Dovice	0 Offcot DO ACD Dad Control / Status (8vh) DW	1	10 GDS/GDS# lags 300 pS from center of GD
	0 Offset B0 – AGP Pad Control / Status (8xh) RW	1	AGP Bus Voltage
7	AGP 4x Strobe VREF Control		0 1.5Vdefault
	This bit is valid only when $RxA8[2] = 1$ (4x transfer		1 3.3V
	mode enabled), otherwise, STB VREF is AGPVREF.	0	GDS Output Delay
	0 STB VREF is STB# and vice versa		0 No delay default
	1 STB VREF is AGPVREFdefault		1 Delay GDS by 400 ps
	The reference voltage is also determined by setting of		(GDS & GDS# will be delayed 1 ns more if bit- $4 = 1$)
	RxB2[1] (AGP Bus Voltage):		
	AGP Voltage This Bit Strobe Reference Voltage		
	3.3V don't care AGPVREF = 0.4×3.3 V	Device	0 Offset B3 – AGP Strobe Drive Strength (63h) RW
	1.5V 1 AGPVREF = 0.5×1.5 V	7-4	AGP Strobe Output Drive Strength N Ctrldef=6
	1.5V 0 STB / STB#	3-0	AGP Strobe Output Drive Strength P Ctrldef=3
6	AGP 4x Strobe & GD Pad Drive Strength	3-0	231 Strong Output Diffe Strength 1 Culucl-3
	0 Drive strength set to compensation circuit		
	default		
F 2	1 Drive strength controlled by RxB1[7-0]		
5-3	AGP Compensation Circuit N Control Output.RO		
2-0	AGP Compensation Circuit P Control Output.RO		

V-Link Control

	V-Link NB Compensation Ctrl (00h)RW V-Link Autocomp Output Value always reads 0 Pullup Compensation Selection 0 Auto Comp (use values in bits 7-6)default 1 Manual Comp (use values in bits 3-2) Pulldown Compensation Selection 0 Auto Comp (use values in bits 7-6)default		V-Link Autocomp Output Value always reads 0 Pullup Compensation Selection 0 Auto Comp (use values in bits 7-6) default 1 Manual Comp (use values in bits 3-2) Pulldown Compensation Selection 0 Auto Comp (use values in bits 7-6) default
3-2	1 Manual Comp (use values in bits 1-0) Pullup Compensation Manual Setting def = 0	3-2	1 Manual Comp (use values in bits 1-0) Pullup Compensation Manual Setting def = 0
1-0	Pulldown Compensation Manual Setting def = 0	1-0	Pulldown Compensation Manual Settingdef = 0
	0 Offset B5 – V-Link NB Drive Control (00h)RW		0 Offset B9 – V-Link SB Drive Control (00h) RW
7-6	NB V-Link Strobe Pullup Manual Setting	7-6	SB V-Link Strobe Pullup Manual Setting
5-4	NB V-Link Strobe Pulldown Manual Setting	5-4	SB V-Link Strobe Pulldown Manual Setting
3-1	Reservedalways reads 0	3-1	Reservedalways reads 0
0	NB V-Link Slew Rate Control	0	SB V-Link Slew Rate Control
	0 Disabledefault	2	0 Disabledefault
	1 Enable		1 Enable

DRAM Interface Control

Device	Offset BE – MECC Drive Strength (00h)RW
7-6	MECC Drive Strength default = 0
5-0	Reserved always reads 0
Device	Offset BF – DRAM Pad Toggle Reduction (00h)RW
7	MA / SCMD Pin Toggle Reduction
	0 Disabledefault
	1 Enable (MA and S command pins won't
	toggle if not accessed)
6	Slew Rate Control for MA / SCMD Group A
	0 Disabledefault
	1 Enable
5	Slew Rate Control for MA / SCMD Group B
	0 Disabledefault
	1 Enable
4	Reserved always reads 0
3	DIMM #3 MAA / MAB Select
	0 MAAdefault
	1 MAB
2	DIMM #2 MAA / MAB Select
	0 MAAdefault
	1 MAB
1	DIMM #1 MAA / MAB Select
	0 MAAdefault
	1 MAB
0	DIMM #0 MAA / MAB Select
	0 MAAdefault
	1 MAR

Power Management

Device	<u> 0 Offset C0 – Power Management Capability IDRO</u>
7-0	Capability IDalways reads 01h
Device	0 Offset C1 – Power Management New Pointer . RO
7-0	Next Pointer
Device	0 Offset C2 – Power Mgmt Capabilities IRO
7-0	Power Management Capabilities always reads 02h
Device	0 Offset C3 – Power Mgmt Capabilities II RO
7-0	Power Management Capabilities always reads 00h
Device	0 Offset C4 – Power Mgmt Control / Status RW
7-2	Reserved always reads 0
1-0	Power State
	00 D0default
6	01 -reserved-
	10 -reserved-
7	11 D3 Hot
	0 Offset C5 – Power Management StatusRO
7-0	Power Management Statusalways reads 00h
Dovice	0 Offset C6 – PCI-to-PCI Bridge Support Ext RO
7	
7-0	P2P Bridge Support Extensions always reads 00h
Device	0 Offset C7 – Power Management DataRO
7-0	Power Management Dataalways reads 00h

ECC Error Control

Device 0 Offset D3-D0 – ECC Error Address	(xxh) RO
Device 0 Offset D4 – ECC Error Syndrome (x	xh)RO

AGTL+ I/O Control

Device	0 Offset D8 – Host Address (2x) Pullup DriveRW	Device	0 Offset DD - AGTL+ I/O Control (00h)RW
7	Reserved always reads 0	7	AGTL+ 4x Input Increase Delay to Filter Noise
6-4	Strobe Pullup Drive (HAS#) default = 0		0 Disabledefault
3	Reservedalways reads 0		1 Enable
2-0	Address Pullup Drive (HA,HREQ#) default = 0	6	AGTL+ 2x Input Increase Delay to Filter Noise
ъ .			0 Disabledefault
	0 Offset D9 – Host Address (2x) Pulldown DriveRW		1 Enable
7	Reserved always reads 0	5	AGTL+ Slew Rate Control
6-4	Strobe Pulldown Drive (HAS#) default = 0		0 Disabledefault
3	Reserved always reads 0		1 Enable
2-0	Address Pulldown Drive (HA,HREQ#) . $default = 0$	4	Reservedalways reads 0
Device	0 Offset DA – Host Data (4x) Pullup DriveRW	3	Input Pullup
	-		0 Disabledefault
7	Reserved always reads 0		1 Enable
6-4	Strobe Pullup Drive (HDS,HDS#) default = 0 Reserved	2	AGTL+ Strobe Internal Termination Pullups
3	Address Pullup Drive (HD,HDBI#) default = 0		0 Disabledefault
2-0	Address Fullup Drive (nD, nDB1#) deraun – 0	4	1 Enable
Device	0 Offset DB – Host Data (4x) Pulldown DriveRW	1	AGTL+ Data Internal Termination Pullups
7	Reservedalways reads 0		0 Disabledefault
6-4	Strobe Pulldown Drive (HDS,HDS#) default = 0		1 Enable
3	Reserved	0	AGTL+ Dynamic Compensation
2-0	Address Pulldown Drive (HD,HDBI#) default = 0		0 Disabledefault
			1 Enable
Note:	Refer to the VT8751A BIOS Porting Guide for	Device	0 Offset DE – AGTL+ Comp Status (00h) RW
	nended settings for these bits for typical system	V -	
recomn configu		7	Select AutoCompensation Drive
configu	rations.	V -	Select AutoCompensation Drive 0 Disabledefault
configu Device	rations. O Offset DC – Output Delay / Stagger ControlRW	V -	Select AutoCompensation Drive 0 Disable
configu	rations. O Offset DC – Output Delay / Stagger ControlRW Data / Strobe Relative Delay	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault	7 6-4	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault O Data delay = strobe delay	7	Select AutoCompensation Drive 0 Disable
configu Device	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay O Data delay = strobe delay + 150 psecdefault O Data delay = strobe delay Data delay = strobe delay Data delay = strobe delay - 150 psec	7 6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	rations. 0 Offset DC – Output Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay – 150 psec 11 Data delay = strobe delay – 300 psec	7 6-4	Select AutoCompensation Drive 0 Disable
configu Device	rations. O Offset DC – Output Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4 3	Select AutoCompensation Drive 0 Disable
Device 7-6	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delay	6-4 3	Select AutoCompensation Drive 0 Disable
Device 7-6	rations. O Offset DC – Output Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay − 150 psec 11 Data delay = strobe delay − 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	6-4 3	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delaydefault 1 1 nsec delay HDS / HDS# Output Extra Delay 00 No delaydefault	7 6-4 3 2 1	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive 0 Disable
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delaydefault 1 1 nsec delay HDS / HDS# Output Extra Delay 00 No delaydefault 01 150 psec delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive 0 Disable default 1 Enable (RxD8-DB set automatically on-chip based on auto compensation results) AGTL+ Compensation Result default = 0 AGTL+ POS Function 0 Inputs always powered default 1 Inputs powered down when not in input mode DBI Double Check 0 Disable default 1 Enable (bit-1 must also be 1) DBI (Dynamic Bus Inversion) Function 0 Enable default 1 Disable (DBI always high) Reserved always reads 0 Offset DF - AGTL+ Auto Comp Offset (00h). RW AGTL+ Drive Offset to Comp Result for 2x Pad default = 0
Device 7-6 5	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device	Select AutoCompensation Drive 0 Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable default 1 Enable (RxD8-DB set automatically on-chip based on auto compensation results) AGTL+ Compensation Result default = 0 AGTL+ POS Function 0 Inputs always powered default 1 Inputs powered down when not in input mode DBI Double Check 0 Disable default 1 Enable (bit-1 must also be 1) DBI (Dynamic Bus Inversion) Function 0 Enable default 1 Disable (DBI always high) Reserved always reads 0 Offset DF - AGTL+ Auto Comp Offset (00h). RW AGTL+ Drive Offset to Comp Result for 2x Pad default = 0
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delaydefault 1 1 nsec delay HA[31:17] Output Stagger 0 No delaydefault 1 1 nsec delay HDS / HDS# Output Extra Delay 00 No delaydefault 01 150 psec delay 10 300 psec delay 11 450 psec delay HAS # Output Extra Delay 00 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable
5 4 3-2	Data / Strobe Relative Delay / Stagger ControlRW Data / Strobe Relative Delay 00 Data delay = strobe delay + 150 psecdefault 01 Data delay = strobe delay 10 Data delay = strobe delay - 150 psec 11 Data delay = strobe delay - 300 psec HD[63:48, 31:16], HDBI[3,1]# Output Stagger 0 No delay	7 6-4 3 2 1 0 Device 7-4	Select AutoCompensation Drive 0 Disable

Frame Buffer and High Memory Control

Device	0 Offset E0 - CPU Direct Access FB Base (00h) RW	Device 0 Offset E4 - Low Top Address Low (00h) RW
7-1	CPU Direct Access FB Base Address[27:21] . def=0	7-4 Low Top Address Low default = 0
0	CPU Direct Access Frame Buffer	3-0 DRAM Granularity
	0 Disabledefault	0 16M Total DRAM less than 4G default
	1 Enable	1 32M Total DRAM less than 8G
D	O OCC. 4 E1 CDU D' 4 A ED C' (OOL) DW	2 64M Total DRAM less than 16G
	0 Offset E1 – CPU Direct Access FB Size (00h)RW	3 128M Total DRAM less than 32G
7	Internal VGA	4 256M Total DRAM less than 64G
	0 Disabledefault	5-7 -reserved-
	1 Enable	Davies 0 Offset E5 I am Ton Adduses High (EEh) DW
6-4	Frame Buffer Size	Device 0 Offset E5 – Low Top Address High (FFh) RW
	000 Nonedefault	7-0 Low Top Address Highdefault = FFh
	001 Reserved	Device 0 Offset E6 - SMM / APIC Decoding (01h) RW
	010 Reserved	7-6 Reservedalways reads 0
	011 8MB	5 Reserved (Do Not Program) default = 0
	100 16MB	4 I/O APIC Decoding
	101 32MB	0 FECxxxxx accesses go to PCI default
2.0	11x -reserved-	1 FEC00000 to FEC7FFFF accesses go to PCI
3-0	CPU Direct Access FB Base Address[31:28] . def=0	FEC80000 to FECFFFFF accesses go to AGP
Device	0 Offset E2 – VGA Arbitration Timer 1 (00h) RW	3 MSI (Processor Message) Support
7-4	Timer to Promote High Priority Display $def = 0$	0 Disable (master access to FEExxxxx will go to
3-0	Timer for Promoted High Priority Display. def = 0	PCI)default
The fiel	ds above are defined in units of 16 MCLKs.	1 Enable (master access to FEExxxxx will be
See note	e under VGA Timer 2 description).	passed to host side to do snoop)
		2 Top SMM
Device	0 Offset E3 – SMA Control (00h)RW	0 Disabledefault
7-5		1 Enable
4	Frame Buffer Address Conversion	1 High SMM
	0 Disabledefault	0 Disabledefault
	1 Enable	1 Enable
	Setting this bit further optimizes the MA table for	0 Compatible SMM
	VGA frame buffer accesses according to the DRAM	0 Disable
	page size in use. Setting this bit should improve	1 Enabledefault
	VGA performance especially in tiling address mode.	Device 0 Offset E8 – VGA Arbitration Timer 2 (00h) RW
	This but cannot be used at the same time as CPU	
	Direct Access FB mode. If used, this bit must be set before enabling the internal VGA to prevent display	 7-4 Timer to Promote Low Priority Display def = 0 3-0 Timer for Promoted Low Priority Displaydef = 0
	corruption.	· · · · · · · · · · · · · · · · · · ·
3	Frame Buffer Page Close Prediction in Tiling	The fields above are defined in units of 16 MCLKs.
3	Address Mode	VGA timers 1 and 2 are access arbitration timers between the
	0 Disabledefault	display engine and the graphics engine. Normally the display
	1 Enable	engine has lower priority than the graphics engine unless the
	This feature automatically closes the FB DRAM	display buffer is below the threshold level where display
	pages that are no longer needed in tiling address	requests become high priority. The VGA Timers provide the
	mode. This bit can be set / cleared any time. This	ability to override this deault behavior. These bits should be set prior to turning on the VGA.
	feature will show maximum performance increase if	set prior to turning on the VOA.
	frame buffer address conversion is also enabled.	
2-0	Frame Buffer Bank	BIOS Scratch
		Device 0 Offset F3-F4 – BIOS Scratch Registers RW
		7-0 No hardware function
		7-0 IND HALLWALE TUHCHOH

Device 1 Register Descriptions

Device 1 PCI-to-PCI Bridge Header Registers
All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and <u>device number</u> equal to <u>one</u> .
Device 1 Offset 1-0 - Vendor ID (1106h)RO 15-0 ID Code (reads 1106h to identify VIA Technologies)

Device	<u> 1 Of</u>	<u>fset 3-2</u>	2 - Devi	ice ID (I	<u> 309</u>	1h)		RO
15-0	ID	Code	(reads	B091h	to	identify	the	P4M266A
	PC	I-to-PC	I Bridg	e device	()			

15-0	ID C	ode (reads 1106h to identify VIA Technologies)
Device 1	1 Offs	et 3-2 - Device ID (B091h)RO
15-0		Code (reads B091h to identify the P4M266A
		o-PCI Bridge device)
Davisa	1 Off.	24.5.4. Command (0007b)
		et 5-4 – Command (0007h)RW
15-10 9		rvedalways reads 0 Back-to-Back Cycle EnableRO
9	rast.	Fast back-to-back transactions only allowed to
	U	the same agentdefault
	1	Fast back-to-back transactions allowed to
	1	different agents
8	SERI	R# EnableRO
	0	SERR# driver disableddefault
	1	SERR# driver enabled
	(SER	R# is used to report ECC errors).
7	Addr	ress / Data SteppingRO
	0	Device never does steppingdefault
	1	Device always does stepping
6	Parit	y Error ResponseRW
	0	Ignore parity errors & continuedefault
_	_ 1	Take normal action on detected parity errors
5	Rese	
4		ory Write and Invalidate CommandRO
	0	Bus masters must use Mem Writedefault
3	_	Bus masters may generate Mem Write & Inval ial Cycle MonitoringRO
3	opeci 0	Does not monitor special cyclesdefault
	1	Monitors special cycles
2	_	MasterRW
_	0	Never behaves as a bus master
	1	Enable to operate as a bus master on the
		primary interface on behalf of a master on the
		secondary interfacedefault
1	Mem	ory SpaceRW
	0	Does not respond to memory space
	1	Enable memory space accessdefault
0		paceRW
	0	Does not respond to I/O space
	1	Enable I/O space accessdefault

	1 Offset 7-6 - Status (Primary Bus) (0230h)RWC
15	Detected Parity Error always reads 0
13	Signaled System Error (SERR#)always reads 0
13	· · · · · · · · · · · · · · · · · · ·
13	Signaled Master Abort
	0 No abort received
	1 Transaction aborted by the master with
	Master-Abort (except Special Cycles)
	write 1 to clear
12	Received Target Abort
	0 No abort received default
	1 Transaction aborted by the target with Target-
	Abort write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detected always reads 0
7	Fast Back-to-Back Capablealways reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capablealways reads 1
4	Supports New Capability listalways reads 1
3-0	Reservedalways reads 0
D .	1.0% (0 P :: ID (001)
	1 Offset 8 - Revision ID (00h)RO
7-0	P4M266A Chip Revision Code (00=First Silicon)
Device	1 Offset 9 - Programming Interface (00h)RO
	gister is defined in different ways for each Base/Sub-
	ode value and is undefined for this type of device.
	• •
7-0	Interface Identifieralways reads 00
Device	1 Offset A - Sub Class Code (04h)RO
7-0	Sub Class Code reads 04 to indicate PCI-PCI Bridge
Device	1 Offset B - Base Class Code (06h)RO
7-0	-
	Base Class Code reads 06 to indicate Bridge Device
	Base Class Code reads 06 to indicate Bridge Device
Device	Base Class Code reads 06 to indicate Bridge Device 1 Offset D - Latency Timer (00h)RO
Device 7-0	
7-0	1 Offset D - Latency Timer (00h)RO Reservedalways reads 0
7-0	1 Offset D - Latency Timer (00h) RO Reserved always reads 0 1 Offset E - Header Type (01h) RO
7-0	1 Offset D - Latency Timer (00h)RO Reservedalways reads 0
7-0 <u>Device</u> 7-0	1 Offset D - Latency Timer (00h) RO Reserved always reads 0 1 Offset E - Header Type (01h) RO Header Type Code reads 01: PCI-PCI Bridge
7-0 Device 7-0 Device	1 Offset D - Latency Timer (00h) RO Reserved always reads 0 1 Offset E - Header Type (01h) RO Header Type Code reads 01: PCI-PCI Bridge 1 Offset F - Built In Self Test (BIST) (00h) RO
7-0 Device 7-0 Device 7	1 Offset D - Latency Timer (00h)
7-0 Device 7-0 Device 7 6	1 Offset D - Latency Timer (00h)
7-0 Device 7-0 Device 7	1 Offset D - Latency Timer (00h)

Device 1 Offset 18 - Primary Bus Number (00h)RW	Device 1 Offset 3F-3E - PCI-to-PCI Bridge Control
7-0 Primary Bus Number default = 0	(0000h)RW
This register is read write, but internally the chip always uses	15-4 Reservedalways reads 0
bus 0 as the primary.	3 VGA-Present on AGP
	0 Forward VGA accesses to PCI Bus default
Device 1 Offset 19 - Secondary Bus Number (00h)RW	1 Forward VGA accesses to AGP Bus
7-0 Secondary Bus Number default = 0	Note: VGA addresses are memory A0000-BFFFFh
Note: AGP must use these bits to convert Type 1 to Type 0.	and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-
	3DFh (10-bit decode). "Mono" text mode uses
Device 1 Offset 1A - Subordinate Bus Number (00h) RW	B0000-B7FFFh and "Color" Text Mode uses B8000-
7-0 Primary Bus Number default = 0	BFFFFh. Graphics modes use Axxxxh. Mono VGA
Note: AGP must use these bits to decide if Type 1 to Type 1	uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If an MDA is present, a VGA will not
command passing is allowed.	use the 3Bxh I/O addresses and B0000-B7FFFh
	memory space; if not, the VGA will use those
<u>Device 1 Offset 1B – Secondary Latency Timer (00h)RO</u>	addresses to emulate MDA modes.
7-0 Reserved always reads 0	2 Block / Forward ISA I/O Addresses
Device 1 Offset 1C - I/O Base (f0h)RW	0 Forward all I/O accesses to the AGP bus if
7-4 I/O Base AD[15:12]default = 1111b	they are in the range defined by the I/O Base
3-0 I/O Addressing Capability default = 0	and I/O Limit registers (device 1 offset 1C-
	1D)
Device 1 Offset 1D - I/O Limit (00h)RW	default
7-4 I/O Limit AD[15:12] default = 0	1 Do not forward I/O accesses to the AGP bus
3-0 I/O Addressing Capability default = 0	that are in the 100-3FFh address range even if
Doi: 10ff-41F1F Complete States	they are in the range defined by the I/O Base
Device 1 Offset 1F-1E - Secondary StatusRO	and I/O Limit registers.
15-0 Secondary Status	1-0 Reservedalways reads 0
Rx44[4] = 0: these bits read back 0000h	
Rx44[4] = 1: these bits read back same as $Rx7-6$	
Device 1 Offset 21-20 - Memory Base (fff0h)RW	
15-4 Memory Base AD[31:20] default = FFFh	
3-0 Reserved always reads 0	Y
D : 1066 12222 M	V
Device 1 Offset 23-22 - Memory Limit (Inclusive) (0000h) RV	<u>v</u>
15-4 Memory Limit AD[31:20] default = 0	
3-0 Reserved always reads 0	
Device 1 Offset 25-24 - Prefetchable Memory Base (fff0h) RV	V
15-4 Prefetchable Memory Base AD[31:20]default = FFFh	
3-0 Reserved always reads 0	•
·	
Device 1 Offset 27-26 - Prefetchable Memory Limit	
(0000h)RW	
15-4 Prefetchable Memory Limit AD[31:20]. default = 0	
3-0 Reserved always reads 0	
Device 1 Offset 34 - Capability Pointer (80h)RO	
Contains an offset from the start of configuration space.	
-	
7-0 AGP Capability List Pointer always reads 80h	

Device 1 PCI-to-PCI Bridge Device-Specific Registers

AGP Bus Control

Device	1 Offset 40 - CPU-to-AGP Flow Control 1 (00h) RW
7	CPU-AGP Post Write
	0 Disabledefault
	1 Enable
6	Reserved always reads 0
5	CPU-AGP One Wait State Burst Write
	0 Disabledefault
	1 Enable
4-3	Read Prefetch Control
	00 Always prefetchdefault
	x1 Never prefetch
	10 Prefetch only for Enhance command
2	MDA Present on AGP
	0 Forward MDA accesses to AGPdefault
	1 Forward MDA accesses to PCI
	Note: Forward despite IO / Memory Base / Limit
	Note: MDA (Monochrome Display Adapter)
	addresses are memory addresses B0000h-B7FFFh
	and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh
	(10-bit decode). 3BC-3BE are reserved for printers.
	Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA
	accesses are forwarded to the PCI bus).
1	AGP Master Read Caching
	0 Disabledefault
	1 Enable
0	AGP Delay Transaction
	0 Disabledefault
	1 Enable

Table 10. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	VGA	MDA	Axxxx,	<u>B0000</u>	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	3Dx	3Bx
Pres.	Pres.	<u>on</u>	<u>on</u>	Access	Access	I/O	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device	1 Offset 41 - CPU-to-AGP Flow Control 2 (08h) RW
7	Retry Status
	0 No retry occurreddefault
	1 Retry Occurredwrite 1 to clear
6	Retry Timeout Action
Ů	0 No action taken except to record status def
	1 Flush buffer for write or return all 1s for read
5-4	Retry Count
٠.	00 Retry 2, backoff CPU default
	01 Retry 4, backoff CPU
	10 Retry 16, backoff CPU
•	11 Retry 64, backoff CPU
3	CPU-to-AGP Bursting Timeout
	0 Disable
	1 Enable default
2	Reserved always reads 0
1	CPU-to-PCI/AGP Cycles Invalidate PCI/AGP
-	Buffered Read Data
K	0 Disabledefault
	1 Enable
0	Reservedalways reads 0
<u>Device</u>	1 Offset 42 - AGP Master Control (00h)RW
_	
7	Reservedalways reads 0
7 6	AGP Master One Wait State Write
	AGP Master One Wait State Write 0 Disable
6	AGP Master One Wait State Write 0 Disable default 1 Enable
	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read
6	AGP Master One Wait State Write 0 Disable
5	AGP Master One Wait State Write 0 Disable
6	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses
5	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default
5	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable
6 5 4 3	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0
5	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles
6 5 4 3	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default
6 5 4 3 2	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable
6 5 4 3	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles
6 5 4 3 2	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default
6 5 4 3 2	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable
6 5 4 3 2	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable Snoop Write Enable 2T Rate, Support Host Side
6 5 4 3 2	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable Snoop Write Enable 2T Rate, Support Host Side Snoop Cycles at 2T Rate
6 5 4 3 2	AGP Master One Wait State Write 0 Disable default 1 Enable AGP Master One Wait State Read 0 Disable default 1 Enable Break Consecutive PCI Master Accesses 0 Disable default 1 Enable Reserved always reads 0 Claim I/O R/W and Memory Read Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable Claim Local APIC FEEx xxxx Cycles 0 Disable default 1 Enable Snoop Write Enable 2T Rate, Support Host Side

Device 1 Offset 43 - AGP Master Latency Timer (22h) RW	Device 1 Offset 45 – Fast Write Control (72h)RW
7-4 Host to AGP Time slot	7 Force Fast Write Cycle to be QW Aligned
0 Disable (no timer)	(if Rx45[6] = 0)
1 16 GCLKs	0 Disabledefault
2 32 GCLKsdefault	1 Enable
	6 Merge Multiple CPU Transactions Into One Fast
F 128 GCLKs	Write Burst Transaction
3-0 AGP Master Time Slot	0 Disable
0 Disable (no timer)	1 Enabledefault
1 16 GCLKs	5 Merge Multiple CPU Write Cycles To Memory
2 32 GCLKsdefault	Offset 23-20 Into Fast Write Burst Cycles
	(if Rx45[6] = 0)
F 128 GCLKs	0 Disable
	1 Enabledefault
	4 Merge Multiple CPU Write Cycles To
	Prefetchable Memory Offset 27-24 Into Fast
	Write Burst Cycles (if $Rx45[6] = 0$)
	0 Disable

113	et 43 - AGI Master	Latency Times (2211) KW	Device	1 011501 43	- rast will	CUIII UI (/2II) K VV
st	to AGP Time slot		7	Force Fas	t Write Cyc	ele to be QW Aligned
0	Disable (no timer)			(if Rx45[6]=0)	
1	16 GCLKs			0 Dis	able	default
2	32 GCLKs	default		1 Ena	ble	
	•••		6	Merge M	ultiple CPU	Transactions Into One Fast
F	128 GCLKs				rst Transact	
ЗP	Master Time Slot			0 Dis	able	
0	Disable (no timer)			1 Ena	ble	default
1	16 GCLKs		5			U Write Cycles To Memory
2	32 GCLKs	default		Offset 23-	20 Into Fast	t Write Burst Cycles
	•••			(if Rx45[6		·
F	128 GCLKs			0 Dis	700	
				1 Ena	ble	default
			4	Merge		CPU Write Cycles To
			4		-	ry Offset 27-24 Into Fast
						f Rx45[6] = 0
				0 Dis	•	,
				1 Ena	ble	default
			3	Reserved		always reads 0
			2	Fast Writ		Max (No Slave Flow Control)
						default
			N.	1 Ena	ble	
			1	Fast Writ	e Fast Back	to Back
				0 Dis	able	
				1 Ena	ble	default
			0			ck 1 Wait State
				0 Dis	able	default
				1 Ena	ble	
	_		Rx45	CPU Write	CPU Write	
			Bits	Address	Address	
			<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
			x1xx	-	_	QW aligned, burstable
			0000	-	-	DW aligned, nonburstable
			x010	0	0	n/a
			0010	0	1	DW aligned, non-burstable
			x010	1	_	QW aligned, burstable
		>	x001	0	0	n/a
			x001	-	1	QW aligned, burstable
			0001	1	0	DW -1: 1 1 1 - 1 -

Dits	Address	Address	
<u>7-4</u>	in Mem1	in Mem2	Fast Write Cycle Alignment
x1xx	-	-	QW aligned, burstable
0000	-	-	DW aligned, nonburstable
x010	0	0	n/a
0010	0	1	DW aligned, non-burstable
x010	1	-	QW aligned, burstable
x001	0	0	n/a
x001	-	1	QW aligned, burstable
0001	1	0	DW aligned, non-burstable
x011	0	0	n/a
x011	1	-	QW aligned, burstable
x011	0	1	QW aligned, burstable
1000	-	-	QW aligned, non-burstable
1010	0	1	QW aligned, non-burstable
1001	1	0	QW aligned, non-burstable

<u>Device 1 Offset 47-46 – PCI-to-PCI Bridge Device IDRW</u>	Device 1 Offset 84 – Power Mgmt
15-0 PCI-to-PCI Bridge Device ID default = 0000	7-2 Reserved 1-0 Power State
Device 1 Offset 80 – Capability ID (01h) RO 7-0 Capability ID always reads 01h Device 1 Offset 81 – Next Pointer (00h) RO	00 D0
7-0 Next Pointer: Null always reads 00h	7-0 Power Mgmt Status
Device 1 Offset 82 – Power Mgmt Capabilities 1 (02h)RO 7-0 Power Mgmt Capabilitiesalways reads 02h	 Device 1 Offset 86 – P2P Br. Support 7-0 P2P Bridge Support Extens Device 1 Offset 87 – Power Manag
Device 1 Offset 83 – Power Mgmt Capabilities 2 (00h)RO	7-0 Power Management Data
7-0 Power Mgmt Capabilities always reads 00h	

Device	1 Offset 84	– Power Mgmt Ctrl/S	Status (00h) RW
7-2	Reserved		always reads 0
1-0	Power Sta	te	
	00 D0		default
	01 -res	erved-	
	10 -res	erved-	
	11 D3	Hot	
Device	1 Offset 85	– Power Mgmt Statu	s (00h)RO
7-0	Power Mg	mt Status	default = 00
Device	1 Offset 86	– P2P Br. Support E	xtensions (00h). RO
7-0	P2P Bridge	Support Extensions.	default = 00
Device	1 Offset 87	– Power Managemer	nt Data (00h) RO
7-0	Power Man	nagement Data	default = 00

FUNCTIONAL DESCRIPTION - INTEGRATED SAVAGE4 GRAPHICS

Configuration Strapping

Certain P4M266A graphics functions have options that must be selected and fixed at reset (before the register bits controlling these functions can be programmed by software). This is accomplished via power-on configuration strapping.

All strapping pins must be individually pulled high or low through 10 KOhm resistors. These pull-ups and pull-downs do not affect normal operation of the pins, but they do force the pins to a definite state during reset. At the rising edge of the reset signal, this state is sampled, the result is inverted and the data loaded into the CR36, CR37, CRB0 and CRF0 registers. The data is used for system configuration. The definitions of the graphics controller strapping bits at the rising edge of the reset signal are shown in Table 11. Nongraphics straps are described in the pinouts section of this document (see the VAD pin descriptions).

Pin	- · · · ·	CR Bit(s)	
<u>Name</u>	Ball #	<u>Value</u>	<u>Description</u>
FPD9	E12	(n/a)	Graphics Test Mode
		1	Enable
		0	Disable
FPD7	A12	CRF0[3]	OEM-Defined Panel Type
FPD6	C12	CRF0[2]	
FPD5	D12	CRF0[1]	
FPD4	E13	CRF0[0]	
FPD3	P4	CR37[3]	External XDCLK Input on XIN
		1	Enable (use clock from XIN)
		0	Disable (generate clock internally)
FPD2	A13	CRB0[7]	PCI Base Address Mapping
		1	Address Mapping 1
		0	Address Mapping 0 (PCI10, 14) (16M
			assigned to PCI0; 128M assigned to
			PCI14)
FPD1	B13	CR36[4]	IO Disable
		1	Disable I/O access PCI04[0] ignored
		0	Enable I/O access via PCI04[0] = 1.
FPD0	C13	CR36[0]	PCI Interrupt
		1	Disable INTA# claim (00H in PCI3D)
		0	Enable INTA# claim (01H in PCI3D)

Table 11. Definition of Strapping Bits at the Rising Edge of RESET#

PCI Configuration and Integrated AGP

PCI Configuration

The P4M266A graphics Vendor ID register (Index 00H) in the PCI Configuration space is hardwired to 5333H to specify S3 Graphics Incorporated as the vendor. The Device ID register is hardwired to 8D04H.

Bits 10-9 of the Status register (Index 06H) are hardwired to 01b to specify medium DEVSEL timing. The Class Code register (Index 08H) is hardwired to 30000xxH to specify that the P4M266A is a VGA compatible device.

There are two MMIO address mappings, as determined by the state of CRB0[7]. By default, CRB0[7] = 1, which selects Mapping 0. This uses the PCI base addresses specified by PCI10 and PCI14. 16 Mbytes of address space is claimed by PCI10 and 128 Mbytes of address space is claimed by PCI14. If the MA4 pin is strapped high at reset, a 0 is latched in CRB0[7] and selects Mapping 1. This uses base addresses PCI10 (same as Mapping 0), PCI14 (redefined from Mapping 0 to claim 16 Mbytes) and adds PCI18, PCI1C, PCI20 and PCI24, each claiming 16 Mbytes. Thus, Mapping 1 allows the address space claimed to be broken up into smaller blocks, as required by some operating systems. The Base Address 0 register (Index 10H) defaults to address 7000 0000H. This is the relocatable base address for memory-mapped I/O register accessing.

PCI06[4] is hardwired to 1 to indicate a capabilities list is available. PCI34[7-0] point to the PCI power management registers starting at offset DC. The basic power states (D0-D3) are supported as explained by the PCI Bus Power Management Interface Specification, Revision 1.1.

PCI Subsystem ID

The Subsystem ID and Subsystem Vendor ID are located in a 32-bit read only register at PCI Configuration Space Index 2C. These registers reflect the content of 4 read/write CR registers as follows:

	CR	PCI Configuration
Register	Space	Space
Subsystem Vendor ID Low Byte	CR81	Index 2CH
Subsystem Vendor ID High	CR82	Index 2DH
Byte		
Subsystem ID Low Byte	CR83	Index 2EH
Subsystem ID High Byte	CR84	Index 2FH

Table 12. PCI Subsystem ID and Subsystem Vendor ID Registers

These registers allow identification of particular vendors using the same graphics chip. The following design allows the subsystem identification to be handled by software (no hardwiring).

All P4M266A motherboard designs will incorporate the video BIOS into the system BIOS ROM. The system BIOS must load the subsystem ID information in the P4M266A before any ID scanning takes place. To do this, it must turn on the P4M266A, enable I/O accesses in the PCI configuration space, unlock the CR registers, program the subsystem ID information in the registers described above, then turn off the P4M266A.

Integrated AGP

P4M266A graphics conform with the requirements of Revision 2.0 of the AGP Interface Specification. Internal AGP P4M266A graphics are enabled by default, but the internal graphics controller may be disabled in order to enable the external AGP bus instead.

For the most part, AGP configuration is identical to PCI (V-Link) configuration. PCI04[4] is hardwired to 1 to indicate that P4M266A graphics implements a list of capabilities. PCI34[7-0] point to the location of this list, which is at offset 80H. PCI80, PCI84 and PCI88 implement the register bits required by the AGP specification. PCI88[2-0] select the data rate. PCI88[8] = 1 enables AGP bus master operations. PCI88[9] =1 enables sideband addressing. This is indicated by PCI84[9] (1 = sideband addressing supported). The state of PCI84[9] is determined by the state of CR70[7].

Display Memory

The P4M266A north bridge utilizes a Shared Memory Architecture (SMA) for Frame Buffer Memory. SMA allows system memory to be efficiently shared by the host CPU and the P4M266A north bridge graphics controller. By default, no system memory is allocated for the graphics frame buffer, but up to 32 Mbytes may be allocated depending on user preference, application requirements, and the total size of system memory.

Note: Frame buffer memory is allocated from system memory at bootup time. Changing the display settings to a resolution requiring additional frame buffer memory will require a system reboot to be performed.

Frame Buffer Size	Dev 0 RxFB[6-4] Register Setting	CR36[7-5] † Register Setting
0 Mbytes	000	000
8 Mbytes	011	011
16 Mbytes	100	100
32 Mbytes	101	101

[†] For driver information only (not connected to hardware)

Table 13. Supported Frame Buffer Memory Configurations

AP STOPPED

Interrupt Generation

Whatever the mode of operation (VGA or Enhanced), bit 4 of CR32 must be set to 1 to enable interrupt generation. When an enabled interrupt is generated, INTA# is pulled low unless CR36[0] = 0 (MA2 pulled high at reset), for which case no PCI interrupt line is claimed during PCI configuration.

When P4M266A graphics are being operated in VGA mode (CR66[0] = 0), only vertical retrace can generate an interrupt. This is enabled when CR11[5] = 0 and CR11[4] = 1. When an interrupt occurs, it is cleared by writing a 0 to CR11[4]. The interrupt must then be re-enabled by writing a 1 to the same bit. Note that the BIOS clears both bit 4 and bit 5 of CR11 during power-on, a mode set, or a reset. Thus, interrupt generation is disabled until bit 4 is set to 1.

In Enhanced mode (CR66[0] = 1 or 3D operation), interrupts can be generated by vertical retrace, command or bus FIFO overflow, command or bus FIFO empty, or by a BCI command. These interrupts are enabled and cleared and their status reported via MM8504. Serial port interrupts are controlled via MMFF08. If interrupts are used, they should be cleared before they are enabled.

Multiple interrupts can be enabled at the same time in Enhanced mode. The interrupt pin will remain asserted until all interrupt status bits are cleared.

Display Interfaces

TFT Flat Panel DVI Interface

Figure 5 shows the hardware connections to a transceiver conforming to the DVI 1.0 standard. This interface allows the P4N266 to drive a TFT flat panel over considerable distance and is active when CRB0[3] = 1 and CRB0[4] = 1. Panel power sequencing is controlled by the receiver components.

Figure 5. DVI Interface

P4M266A provides the following panel detection capability. If SR30[1] = 0 and the FPDET pin is properly connected to a voltage source indicating the presence/absence of a panel, SR30[1] will reflect the high/low state of this input. A read of 1 indicates that a powered-up panel is connected.

For proper flat panel output with a standard VGA primary screen and the Streams Processor active, the following special register settings are required:

CR3A[4] = 1

CR67[3-2] = 01b (Streams Processor secondary and VGA primary

CR67[7-4] = desired bits/pixel mode

CR90[3] = 1 (CR0 must be programmed before this is set to 1. Setting this bit is not required for 8 bit/pixel modes)

CR90[6] = 1 (this bit must also be set to 1 for 8 bit/pixel modes)

MM8180 = 000000000h

These settings are required for correct automatic centering and expansion with Streams Processor operation.

CRT Interface

P4M266A provides the following CRT interface signals:

- RED (analog red)
- GREEN (analog green)
- BLUE (analog blue)
- HSYNC (horizontal sync)
- VSYNC (vertical sync)

In addition, DDC2 monitor communications can be implemented via the serial communications port controlled by CRB1[4:0]. These bits control two-way communications over the SPCLK2 (clock) and SPDAT2 (data) lines. The operation is the same as described for the I²C serial communications port section except that interrupts and wait states are not supported.

External TV Encoder Interface

Figure 6 shows the interface to an external TV encoder (BT868/869, VIA VT1621, or compatible device). The TV outputs are generated whenever the clock input from the decoder is present on the TVCLK pin, CRB0[3] = 1, and CRB0[4] = 0. The encoder is controlled via the I^2 C interface. TV monitor detection is also done via this interface. The TV encoder interface and the flat panel interface are multiplexed on common pins, so only one of the two (either the TV interface or the flat panel interface) can be enabled at any given time

Figure 6. External TV Encoder Interface

The P4M266A chipset VT8751A north bridge chip supports three output formats as shown in Table 14. As shown in Figure 6, P[11:0] on the encoder connect to TVD[11:0] on the VT8751A chip. The CLKI pin on the encoder connects to the TVCLKR pin on the VT8751A chip.

CLK1	-4] = 10 CLKI
	CLKI
	CLKI
Rising	Falling
R7	G3
R6	G2
R5	G1
R4	G0
R3	B7
R2	B6
R1	B5
R0	B4
G7	В3
G6	B2
G5	B1
G4	В0
	R6 R5 R4 R3 R2 R1 R0 G7 G6 G5

Table 14. External TV Encoder Output Data Formats

I²C Serial Communications Port

One serial communications port is implemented in a register that can be accessed either via MMFF20 or CRA0. Bit 4 is set to 1 to enable the interface. The clock is written to bit 0 (= 0) and data to bit 1 (= 0), driving the SPCLK1 and SPDAT1 pins low respectively. The state of the SPCLK1 pin can be read via bit 2 and the state of the SPDAT1 pin can be read via bit 3. The SPCLK1 and SPDAT1 pins are tri-stated when their corresponding control bits are reset to 0, allowing other devices to drive the serial bus.

This serial port is typically used for I2C interfacing. When SPCLK1 and SPDAT1 are tri-stated, the P4M266A can detect an I2C start condition (SPDAT1 driven low while SPCLK1 is not driven low). This condition is generated by another I2C master that wants control of the I2C bus. If bit 19 of MMFF08 is set to 1, detection of a start condition generates an interrupt and sets bit 3 of MMFF08 to 1. If bit 24 of MMFF08 is set to 1, the P4M266A drives SPCLK1 low to generate I2C wait states until the Host can clear the interrupt and service the I2C bus.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Table 15. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
$T_{\rm C}$	Case operating temperature	0	85	oС	1
T_{S}	Storage temperature	-55	125	oC	1
V_{IN}	Input voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2
V_{OUT}	Output voltage	-0.5	$V_{RAIL} + 10\%$	Volts	1, 2

Note 1. Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V only. AGP can be 1.5V (4x transfer mode) or 3.3V (2x transfer mode).

DC Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND=0V

Table 16. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
$ m V_{IL}$	Input Low Voltage	-0.50	0.8	V	
$V_{ m IH}$	Input High Voltage	2.0	$V_{CC}+0.5$	V	
V_{OL}	Output Low Voltage	-	0.55	V	I_{OL} =4.0mA
V_{OH}	Output High Voltage	2,4	-	V	I _{OH} =-1.0mA
${ m I}_{ m IL}$	Input Leakage Current	-	+/-10	uA	$0 < V_{IN} < V_{CC}$
I_{OZ}	Tristate Leakage Current		+/-20	uA	$0.55 < V_{OUT} < V_{CC}$

Package Weight Specifications

Table 17. Package Weight Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Condition
W_{P}	Package Weight	7.99	8.00	8.02	grams	Standard earth gravity

Revision 1.1, July 19, 2002 -58- Electrical Specifications

Power Characteristics

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND=0V

Table 18. Power Characteristics – Internal and Interface Digital Logic

Symbol	Parameter	Тур	Max	Unit	Condition
I_{TT}	Power Supply Current – VTT	46		mA	Full-On Operation
I _{TTPOS}	Power Supply Current – VTT	54.5		mA	POS
I _{TTSTR}	Power Supply Current – VTT	0.002		mA	STR
I_{TTSOF}	Power Supply Current – VTT	0.002		mA	Soft-Off
I_{CCG}	Power Supply Current – VCCAGP	1.38		mA	Full-On Operation
I_{CCGPOS}	Power Supply Current – VCCAGP	1.1		mA	POS
I_{CCGSTR}	Power Supply Current – VCCAGP	0.002	2	mA	STR
I_{CCGSOF}	Power Supply Current – VCCAGP	0.002	W.	mA	Soft-Off
I_{CCV}	Power Supply Current – VCCVL			mA	Full-On Operation
I _{CCVPOS}	Power Supply Current – VCCVL		>	mA	POS
I _{CCVSTR}	Power Supply Current – VCCVL	~		mA	STR
I_{CCVSOF}	Power Supply Current – VCCVL			mA	Soft-Off
I_{CCM}	Power Supply Current – VCCMEM			mA	Full-On Operation
I _{CCMPOS}	Power Supply Current – VCCMEM		, ,	mA	POS
I_{CCMSTR}	Power Supply Current – VCCMEM		0	mA	STR
I _{CCMSOF}	Power Supply Current – VCCMEM			mA	Soft-Off
I_{CCF}	Power Supply Current – VCCFP			mA	Full-On Operation
I_{CCFPOS}	Power Supply Current – VCCFP			mA	POS
I_{CCFSTR}	Power Supply Current – VCCFP			mA	STR
I_{CCFSOF}	Power Supply Current – VCCFP			mA	Soft-Off
I_{CC25}	Power Supply Current – VCC25	1920		mA	Full-On Operation
I _{CC25POS}	Power Supply Current – VCC25	52.8		mA	POS
I _{CC25STR}	Power Supply Current – VCC25	0.003		mA	STR
I _{CC25SOF}	Power Supply Current – VCC25	0.003		mA	Soft-Off
I_{SUS25}	Power Supply Current – VSUS25	3.3		mA	Full-On Operation
I _{SUS25POS}	Power Supply Current – VSUS25	0.95		mA	POS
I _{SUS25STR}	Power Supply Current – VSUS25	0.016		mA	STR
I _{SUS25SOF}	Power Supply Current – VSUS25	0.016		mA	Soft-Off
I_{CCQQ}	Power Supply Current – VCCQQ			mA	Max operating frequency
I_{CCDAC}	Power Supply Current – VCCDAC			mA	Max operating frequency
P_{D}	Power Dissipation	4.84		W	Max operating frequency

Table 19. Power Characteristics – Analog and Reference Voltages

Symbol	Parameter	Тур	Max	Unit	Condition
I _{CCGTL}	Power Supply Current – GTLVREF			mA	Max operating frequency
I _{CCHAREF}	Power Supply Current – HAVREF			mA	Max operating frequency
I _{CCHDREF}	Power Supply Current – HDVREF			mA	Max operating frequency
I _{CCHCREF}	Power Supply Current – HCMPVREF			mA	Max operating frequency
I _{CCMREF}	Power Supply Current – MEMVREF			mA	Max operating frequency
I _{CCGREF}	Power Supply Current – AGPVREF			mA	Max operating frequency
I _{CCVLREF}	Power Supply Current – VLVREF			mA	Max operating frequency
I _{CCHCK}	Power Supply Current – VCCHCK			mA	Max operating frequency
I_{CCMCK}	Power Supply Current – VCCMCK		%	mA	Max operating frequency
I _{CCMDLL}	Power Supply Current – VCCMDLL			mA	Max operating frequency
I _{CCRGB}	Power Supply Current – VCCRGB		7	mA	Max operating frequency
I _{CCPLL1}	Power Supply Current – VCCPLL1	60		mA	Max operating frequency
I _{CCPLL2}	Power Supply Current – VCCPLL2	20		mA	Max operating frequency

AC Timing Specifications

AC timing specifications provided are based on external zero-pf capacitance load. Min/max cases are based on the following table:

Table 20. AC Timing Min / Max Conditions

Parameter	Min	Max	Unit
3.3V Power (I/O Pads, VCCQ for 2x transfer mode)	3.135	3.465	Volts
2.5V Power (Internal Logic)	2.375	2.625	Volts
1.5V Power (VCCQ for 4x transfer mode)	1.425	1.575	Volts
Case Temperature	0	85	оС

Drive strength for selected output pins is programmable. See Rx6D for details.

Table 21. AC Timing – CPU Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
HD Bus	HDS[3:0]#	0.55	0.55	0.85	0.80	ns
HA Bus	HAS[1:0]#	0.50	0.55	1.6	1.6	ns
HREQ[4:0]#	HAS0#	0.50	0.55	1.6	1.6	ns
ADS#	HCLK	2.4	-0.20			ns
DBSY#	HCLK	2.4	-0.20			ns
DRDY#	HCLK	2.4	-0.20			ns
HIT#	HCLK	2.4	-0.20			ns
HITM#	HCLK	2.4	-0.20	Ġ		ns
HLOCK#	HCLK	2.4	-0.20	•. C		ns

Table 22. AC Timing – Memory Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
MD Bus	DQS[7:0]#	-1.2	2	1.10	1.05	ns
MA Bus	_	-	<i>_</i>			ns
SRAS# Bus	_	-	-			ns
SCAS# Bus	_	3 -	- K			ns
SWE# Bus	- 6	7-	7			ns
CS# Bus		7 -				ns
DQM Bus	- 2	- 3	_			ns

Table 23. AC Timing – V-Link Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
VAD Bus	Strobes	0.45	0.45	1.1	1.1	ns

Table 24. AC Timing – AGP Interface

Signal	Reference Signal	Setup	Hold	Min Delay	Max Delay	Unit
GD Bus	GDS[1:0]#			0.90	0.85	ns

Revision 1.1, July 19, 2002 -61- Electrical Specifications

MECHANICAL SPECIFICATIONS

Figure 7. Mechanical Specifications - 664-Pin HSBGA Ball Grid Array Package with Heat Spreader