

Model Development Phase Template

Date	12 JULY 2024	
ID	740069	
Project Title	Lymphography Classification Using ML	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
[ ] 1 clf.fit(x_train, y_train)
2
3 # Make predictions on the testing data
4 y_pred = clf.predict(x_test)
5
6 # Evaluate the classifier
7 report = classification_report(y_test, y_pred)
8 print("Classification Report:\n", report)
```

→ Classification Report: precision recall f1-score support 0.74 1.00 1.00 0.64 1.00 1.00 2.0 0.85 14 3.0 0.78 14 4.0 1.00 2 30 accuracy 0.83 0.91 0.88 macro avg 0.88 30 weighted avg 0.88 0.83 30 0.83


```
[ ] 1 from sklearn.linear_model import LogisticRegression
      2 from sklearn.metrics import accuracy score, classification report, confusion matrix
     1 model_lr = LogisticRegression()
      2 model_lr.fit(x_train,y_train)
     3 lr pred test=model lr.predict(x test)
     4 lr_pred_train=model_lr.predict(x_train)
     5 test_acc_lr=accuracy_score(y_test,lr_pred_test)
      6 train_acc_lr=accuracy_score(y_train,lr_pred_train)
      7 print('Logistic Regression test accuracy: ',test_acc_lr)
      8 print(classification_report(y_test,lr_pred_test))
Transfer Logistic Regression test accuracy: 0.8
                  precision recall f1-score support
             2.0
                       0.71
                               1.00
                                          0.83
                               0.71
             3.0
                     1.00
                                          0.83
                                                      17
             4.0
                     0.00 0.00
                                          0.00
        accuracy
                                          0.80
                                                      30
       macro avg 0.57 0.57
ighted avg 0.85 0.80
                                          0.55
                                                      30
                                                      30
    weighted avg
                                          0.80
```

KNN

```
1 knn_score1 = metrics.accuracy_score(y_train, knn_pred1) * 100
     Z print(knn_score1)
     3 knn_score = metrics.accuracy_score(y_test, knn_pred) * 100
     5 ### Print classification report for regular
     6 print(" ---- Regular Training Set Used ---- ")
     7 print("Classification report for {}:\n{}". format(knn, metrics.classification_report(y_test, knn_pred)))
     8 print("Accuracy score:", knn_score)
3 81.35593220338984
      ---- Regular Training Set Used ----
    Classification report for KNeighborsClassifier():
                precision recall f1-score support
                            0.93
            2.0
                      0.87
                                         0.98
            3.0
                      0.80
                               0.86
                                         0.83
                                                    14
                      0.00
            4.0
                              0.00
                                         0.00
                                                     2
        accuracy
                      0.56
                            0.60
                                         0.57
       macro avg
                                                    30
    weighted avg
                     0.78
                             0.83
                                         0.80
                                                    30
    Accuracy score: 83.333333333333334
```

Model Validation and Evaluation Report:

Model	Classification Report	Accuracy	Confusion Matrix

Decision tree classifier	The Chamification begons: president result filesore support 3.0 0.76 0.00 0.00 14 3.0 1.00 0.00 1.00 1.00 1.00 1.00 1.	0.8	1 confusion_matrix(y_test,y_pred) 1 confusion_matrix(y_test,y_pred) 1 confusion_matrix(y_test,y_pred) 2 confusion_matrix(y_test,y_pred) 3 confusion_matrix(y_test,y_pred) 5 confusion_matrix(y_test,y_pred) 5 confusion_matrix(y_test,y_pred)
Logistic Regression	## Logisti Regression tool anumony #.8 ##################################	0.8	[]
K-Nearest Neighbors	### THE TALL ALTERNY 14: E. Norman Alternation 100 per 1 per 12	0.83	[] I confusion_matrix(y_test_kno_prof_test) == errey([[11, 1, 0],
Gradient Boosting	## AF	0.83	