Sorting

Hsuan-Tien Lin

Dept. of CSIE, NTU

June 9, 2014

Selection Sort: Review and Refinements

idea: linearly select the minimum one from 'unsorted" part; put the minimum one to the end of the "sorted" part

- common implementation: swap minimum with a[i] for putting in i-th iteration corted a large unsorted
- rotate implementation: rotate minimum down to a[i] in i-th iteration
- linked-list implementation: insert minimum to the i-th element
- space O(1) in-place
- time $O(n^2)$ and $\Theta(n^2)$
- rotate/linked-list stable by selecting minimum with smallest index same-valued elements keep their index orders
- common implementation: unstable

Heap Sort: Review and Refinements

```
idea: selection sort with a max-neap in original array rather than priordered pile

• space O(1)
• time O(n \log n) (1)
• not stable
• usually preferred over selection (faster)
```

Bubble Sort: Review and Refinements

idea: swap disordered reighbors repeatedly

- space O(1) ✓
- time O(n²)
- stable
- adaptive can early stop
- a deprecated choice except in very specific applications with a few disordered neighbors or if swapping neighbors is cheap (old tape days)

Insertion Sort: Review and Refinements

idea: insert/a/card/rom the unsorted pile to its place in the sorted pile

- naive implementation: sequential search sorted pile from the front
 O(n) time per search, O(n) per insert
- backwise implementation: sequential search sorted pile from the back O(n) time per search, O(n) per insert
 - binary-search implementation: binary search the sorted pile $O(\log n)$ time per search, O(n) per insert
 - linked-list implementation: same as naive but on linked lists
 O(n) time per search, O(1) per insert
 - skip-list implementation: doable but a bit overkill (more space)
 - rotation implementation: neighbor swap rather than insert (gnome sort)

Insertion Sort: Review and Refinements (II)

- space *O*(1)
- time *O*(*n*²)
- stable
- backwise implementation adaptive
- usually preferred over bubble (faster) and over selection (adaptive)

Shell Sort: Introduction

idea: adaptive insertion sort on every k_1 elements; adaptive insertion sort on every k_2 elements; ... adaptive insertion sort on every $k_m = 1$ element

- insertion sort with "long jumps"
- space O(1), like insertion sort
- time difficult to analyze often faster than $O(n^2)$
- unstable, adaptive
- usually good practical performance and somewhat easy to implement

Merge Sort: Introduction

idea: combine sorted parts repeatedly to get everything sorted

Implementations bottom-up implementation: (size-1 sorted) (size-2 sorted) (size-4 sorted) 8 (size-8 sorted) • $O(\log n)$ loops, the i-th-loop combines size 2^i arrays $O(n/2^i)$ times • combine size- ℓ array can take $O(\ell)$ time but need $O(\ell)$ space! (how about lists?) • thus, bottom-up Merge Sort takes $O(n \log n)$ time top-down implementation: MergeSort(arr, left, right) = combine(MergeSort(arr, left, mid), MergeSort(arr, mid+1, right)); • divide and conquer, O(log n) level recursive calls

Merge Sort: Review and Refinements

idea: combine sorted parts repeatedly to get everything sorted

- time $O(n \log n)$ in both implementations
- usually stable (if carefully implemented), parallellize well
- popular in external sort

Tree Sort: Review and Refinements

idea: replace heap with a BST; an in-order traveral outputs the sorted result

- space O(n)
- time: worst $O(n^2)$ (unbalanced tree), average $O(n \log n)$, careful BST $O(n \log n)$
- unstable
- suitable for stream data and incremental sorting

Quick Sort: Introduction

idea: simulate tree sort without building the tree

Tree Sort Revisited

make a[0] the root of a BST

for
$$i \leftarrow 1, \cdots, n-1$$
 do

if
$$a[i] < a[0]$$

insert a[i] to the left-subtree of BST

else

insert a[i] to the right-subtree of BST

end if

end for

in-order traversal of left-subtree, then root, then right-subtree

Quick Sort

name a[0] the pivot

for $i \leftarrow 1, \cdots, n-1$ do

if a[i] < a[0]

put *a*[*i*] to the *left* pile of the pivot

a[•]

else

put a[i] to the right pile of the pivot

end if

end for

output quick-sorted *left*; output *a*[0]; output quick-sorted *right*

10 / 13

logn

randomly choose "root" (pivot)

D (h log n)

11 / 13

Quick Sort: Introduction (II)

- naive implementation: pick first-element in the pile as pivot
- random implementation: pick a random element in the pile as pivot
- median-of-3 implementation: pick median(front, middle, back) as pivot
- space worst O(n) average $O(\log n)$ on stack calls
- time worst $O(n^2)$, average $O(n \log n)$
- not stable
- usually best choice for large data (if not requiring stability), can be mixed with other sorts for small data

Best Use of Different Sorting Algorithms

- small:
- stable small:
- stable large:
- worst case time guarantee:
- least space with good time:
- adaptive:
- general:
- external:
- educational: