Ejercicio 1:

Defino los automatas L_1 y L_2 tal que $L=L_1\cap L_2$:

Figure 1: $\{a,b\}^*$ sin la subcadena aba: < R : $\{\mathbf{r_0},\mathbf{r_1},\mathbf{r_2},\mathbf{r_3}\}$, Σ : $\{\mathbf{a},\mathbf{b}\}$, δ : δ , $\mathbf{r_0}$: $\mathbf{r_0}$, F_R : $\{\mathbf{r_0},\mathbf{r_1},\mathbf{r_2}\}$ >

Figure 2: $\{a,b\}^*$ sin la subcadena baa: < P : $\{P_0,P_1,P_2,P_3\}, \Sigma$: $\{a,b\}, \delta$: δ , P_0 : P_0,F_P : $\{P_0,P_1,P_2\}$ >

Defino δ de L. L va a tener Q: RxP, voy a notar cada estado $(R_i,\!P_j)$ como (i,j)

	00	01	02	03	10	11	12	13	20	21	22	23	30	31	32	33
a	10	12	13	13	10	12	13	13	30	32	33	33	30	32	33	33
b	01	01	01	03	21	21	21	23	01	01	01	03	31	31	31	33

F = todos los (i,j) que cumplan que $r_i \in F_R \land p_j \in F_p$

L = $\{Q: RxP, \Sigma : \{a,b\}, \delta: tabla, Q_0 : (00), F\}$ >. Agregando transiciones λ desde un nuevo estado inicial a todos los estados que pertenezcan a algun camino que termine en un estado valido, construyo Fin(L).

Figure 3: La tupla es igual a la de L con un estado extra (q_0) , a δ se la agregan las transiciones λ de q_0 a cada estado que no sea trampa (no tenga un 3) y el estado inicial ahora es q_0

Ejercicio 2:

Voy a transformar la ER a AF, buscar el complemento de ese automata y por ultimo volver a pasar ese AF a ER.

Calcular las derivadas para armar el AF. A $\left(a{\left(ab\right)}^{*}\right)^{*}$ la llamo L_{0}

Aclaracion: La funcion de transicion del AFD resultante esta dada por el resultado de cada derivada, y son estados finales los L_i tq: $\lambda \in L_i$

<u>derivadas de L_0 :</u>

$$\begin{split} &\partial_{a}(L_{0}) = \partial_{a}\left(\left(a(ab)^{*}\right)^{*}\right) = \partial_{a}(\left(a(ab)^{*}\right).\left(a(ab)^{*}\right)^{*} = \left(\partial_{a}(a).(ab)^{*} \mid \emptyset\right).\left(\left(a(ab)^{*}\right)^{*}\right) = \\ &(ab)^{*}.\left(\left(a(ab)^{*}\right)^{*}\right) = (ab)^{*}.L_{0} = L_{1} \\ &\partial_{b}(L_{0}) = \partial_{b}\left(\left(a(ab)^{*}\right)^{*}\right) = \partial_{b}\left(\left(a(ab)^{*}\right).\left(a(ab)^{*}\right)^{*} = (\emptyset \mid \emptyset).(a(ab)^{*})^{*} = \emptyset \end{split}$$

<u>derivadas de L_1 :</u>

$$\begin{split} & \partial_{a}(L_{1}) = \partial_{a}\big((ab)^{*}.L_{0}\big) = \partial_{a}\big((ab)^{*}\big).L_{0} \mid \lambda.\partial_{a}(L_{0}) = \partial_{a}(ab).(ab)^{*}.L_{0} | L_{1} = \\ & \partial_{a}(a).b.(ab)^{*}.L_{0} \mid L_{1} = b.(ab)^{*}.L_{0} | L_{1} = L_{2} \\ & \partial_{b}(L_{1}) = \partial_{b}\big((ab)^{*}.L_{0}\big) = \partial_{b}\big((ab)^{*}\big).L_{0} \mid \lambda.\partial_{b}(L_{0}) = \partial_{b}(ab).(ab)^{*}.L_{0} \mid \emptyset = \emptyset \mid \emptyset = \emptyset \end{split}$$

derivadas de L_2 :

$$\begin{array}{l} \partial_{a}(L_{2}) = \partial_{a}\big(b.(ab)^{*}.L_{0}|L_{1}\big) = \partial_{a}\big(b.(ab)^{*}.L_{0}\big) \mid \partial_{a}(L_{1}) = \emptyset \mid L_{2} = L_{2} \\ \partial_{b}(L_{2}) = \partial_{b}\big(b.(ab)^{*}.L_{0}|L_{1}\big) = \partial_{b}\big(b.(ab)^{*}.L_{0}\big) \mid \partial_{b}(L_{1}) = (ab)^{*}.L_{0}| \ \emptyset = L_{1} \end{array}$$

Dibujar los automatas

Figure 4: M=< Q:{ L₀, L₁, L₂, Lt }, Σ :{a, b}, δ : δ , q₀:L₀,F:{ L₀, L₁, L₂ }>

Ahora calculo el AFD-Complemento dando vuelta los estados finales:

Figure 5: M=< Q, Σ , δ : δ , q_0 :L₀ , F':{ L_t }>

Pasar el AFD-Complemento a ER. Defino Sistema y busco L_0 para obtener la expresion regular:

$$\begin{cases} L_0 = a.L_1 | b.L_t \\ L_1 = a.L_2 | \ b.L_t \\ L_2 = a.L_2 | \ b.L_1 \\ L_t = a.L_t \mid b.L_t \mid \lambda \end{cases} \begin{cases} L_t = (a|b).L_t | \lambda \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^*.\lambda = (a|b)^* \\ L_2 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^*.\lambda = (a|b)^*.\lambda = (a|b)^*.\lambda = (a|b)^* \\ L_1 \stackrel{\text{arden}}{=} (a|b)^*.\lambda = (a|b)^$$

Entonces puedo concluir que, $(a.(a^+.b)^*.b.(a|b)^* \mid b.(a|b)^*)$ denota L^c