CSE 548: Analysis of Algorithms

Lecture 3 (Divide-and-Conquer Algorithms: **Matrix Multiplication)**

Rezaul A. Chowdhury **Department of Computer Science SUNY Stony Brook** Fall 2017

Iterative Matrix Multiplication

$$\mathbf{z}_{ij} = \sum_{k=1}^{n} \mathbf{x}_{ik} \mathbf{y}_{kj}$$

Iter-MM (Z, X, Y)

 $\{X, Y, Z \text{ are } n \times n \text{ matrices}, \}$ where n is a positive integer }

for $j \leftarrow 1$ to n do

 $Z[i][j] \leftarrow 0$

for $k \leftarrow 1$ to n do

 $Z[\:i\:][\:j\:] \leftarrow Z[\:i\:][\:j\:] + X[\:i\:][\:k\:] \cdot Y[\:k\:][\:j\:]$

Recursive (Divide & Conquer) Matrix Multiplication X

Ζ

Recursive (Divide & Conquer) Matrix Multiplication

{ X and Y are n × n matrices, where $n = 2^k$ for integer $k \ge 0$ }

1. Let Z be a new $n \times n$ matrix

 $Z_{11} \leftarrow Rec\text{-MM} (X_{11}, Y_{11}) + Rec\text{-MM} (X_{12}, Y_{21})$

 $Z_{12} \leftarrow Rec\text{-}MM (X_{11}, Y_{12}) + Rec\text{-}MM (X_{12}, Y_{22})$

7. $Z_{21} \leftarrow Rec\text{-MM} (X_{21}, Y_{11}) + Rec\text{-MM} (X_{22}, Y_{21})$

8. $Z_{22} \leftarrow Rec\text{-}MM (X_{21}, Y_{12}) + Rec\text{-}MM (X_{22}, Y_{22})$

9 endif

10. return Z

recursive matrix products: 8 # matrix sums: 4

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1, \\ 8T\left(\frac{n}{2}\right) + \Theta(n^2), & \text{otherwise.} \end{cases}$$

Strassen's Algorithms for Matrix Multiplication (MM)

In 1968 Volker Strassen came up with a recursive MM algorithm that runs asymptotically faster than the classical $\Theta(n^3)$ algorithm. In each level of recursion the algorithm uses:

7 recursive matrix multiplications (instead to 8), and 18 matrix additions (instead of 4).

Strassen's MM: 7 Matrix Products

Deriving Strassen's Algorithm

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \implies \underbrace{\begin{bmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}}_{q} \underbrace{\begin{bmatrix} e \\ g \\ f \\ h \end{bmatrix}}_{s} = \underbrace{\begin{bmatrix} p \\ r \\ q \\ s \end{bmatrix}}_{s}$$

We will try to minimize the number of multiplications needed to evaluate ${\it Z}$ using special matrix products that are easy to compute.

Type	Product	#IVIUITS
(·)	$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae + bg \\ ce + dg \end{bmatrix}$	4
(A)	$\begin{bmatrix} a & a \\ a & a \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e+g) \\ a(e+g) \end{bmatrix}$	1
(B)	$\begin{bmatrix} a & a \\ -a & -a \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e+g) \\ -a(e+g) \end{bmatrix}$	1
(C)	$\begin{bmatrix} a & 0 \\ a-b & b \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} ae \\ ae+b(g-e) \end{bmatrix}$	2
(D)	$\begin{bmatrix} a & b-a \\ 0 & b \end{bmatrix} \begin{bmatrix} e \\ g \end{bmatrix} = \begin{bmatrix} a(e-g)+bf \\ bf \end{bmatrix}$	2

 $\begin{bmatrix} a-b & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ (a-b)-(a-c) & 0 & a-c & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & d-b & 0 & (d-c)-(d-b) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & d-c \end{bmatrix}$

Algorithms for Multiplying Two nxn Matrices

A recursive algorithm based on multiplying two $m \times m$ matrices using k multiplications will yield an $O(n^{\log_m k})$ algorithm. To beat Strassen's algorithm: $\log_m k < \log_2 7 \Rightarrow k < m^{\log_2 7}$. So, for a 3×3 matrix, we must have: $k < 3^{\log_2 7} < 22$. But the best known algorithm uses 23 multiplications!

Inventor	Year	Complexity
Classical	_	$\Theta(n^3)$
Volker Strassen	1968	$\Theta(n^{2.807})$
Victor Pan (multiply two 70 × 70 matrices using 143,640 multiplications)	1978	$\Theta(n^{2.795})$
Don Coppersmith & Shmuel Winograd (arithmetic progressions)	1990	$\Theta(n^{2.3737})$
Andrew Stothers	2010	$\Theta(n^{2.3736})$
Virginia Williams	2011	$\Theta(n^{2.3727})$
Lower bound: $\Omega(n^2)$ (why?)		

