Problem 0.1 (2.2. Algebra Structure on C_p^{∞}). Define carefully addition, multiplication, and scalar multiplication on C_p^{∞} . Prove that addition in C_p^{∞} is commutative.

Solution. Suppose [(f,U)], $[(g,V)] \in C_p^{\infty}$. Define $[(f,U)] + [(g,V)] = [(f+g,U\cap V)]$, $[(f,U)] \cdot [(g,V)] = [(f\cdot g,U\cap V)]$ and $\lambda[(f,U)] = [(\lambda f,U)]$ for $\lambda\in\mathbb{R}$ as scalar.

We must show that these is well-defined. Firstly, since $p \in U, V$ we have $p \in U \cap V$. Now, since $f : U \to \mathbb{R}$ and $g : V \to \mathbb{R}$ are smooth, we have that both are smooth on $U \cap V$ as this is an open subspace of U and V. Hence $f + g, f \cdot g \in C^{\infty}(U \cap V)$ and $\lambda f \in C^{\infty}(U)$ as $C^{\infty}(W)$ is a ring for any open set W. Hence $(f + g, U \cap V)$ is in some equivalence class in C_p^{∞} .

Suppose now $[(f,U)] = \left[\left(\tilde{f}, \tilde{U} \right) \right]$ and $[(g,V)] = \left[\left(\tilde{g}, \tilde{V} \right) \right]$. Then $f = \tilde{f}$ on some $W \subset U \cap \tilde{U}$ and $g = \tilde{g}$ on some $S \subset V \cap \tilde{V}$. Thus $f + g = \tilde{f} + \tilde{g}$ and $f \cdot g = \tilde{f} \cdot \tilde{g}$ on $W \cap S \subset U \cap \tilde{U} \cap V \cap \tilde{V}$, and $W \cap S$ is open. By definition then $[(f + g, U \cap V)] = \left[\left(\tilde{f} + \tilde{g}, \tilde{U} \cap \tilde{V} \right) \right]$ and $[(f \cdot g, U \cap V)] = \left[\left(\tilde{f} \cdot \tilde{g}, \tilde{U} \cap \tilde{V} \right) \right]$, so addition and multiplication are well-defined.

And similarly since $f = \tilde{f}$ on some $W \subset U \cap \tilde{U}$, we have $\lambda f = \lambda \tilde{f}$ on W, so by definition $[(\lambda f, U)] = [(\lambda \tilde{f}, \tilde{U})]$.

Commutativity of addition (and even multiplication) follows from the commutativity of these in \mathbb{R} and the above.

Problem 0.2 (Transformation rule for a wedge product of coverctors, 3.7.). Cuppose two sets of covectors on a vector space $V, \beta^1, \ldots, \beta^k$ and $\gamma^1, \ldots, \gamma^k$ are related by

$$\beta^i = \sum_{j=1}^k a^i_j \gamma^j, \quad i = 1, \dots, k,$$

for a $k \times k$ matrix $A = \begin{bmatrix} a_i^i \end{bmatrix}$. Show that

$$\beta^1 \wedge \ldots \wedge \beta^k = (\det A) \gamma^1 \wedge \ldots \wedge \gamma^k.$$

Solution. By proposition 3.27, we have

$$\beta^{1} \wedge \ldots \wedge \beta^{k} (v_{1}, \ldots, v_{k}) = \det \left[\beta^{i} (v_{j})\right].$$

Now since $\gamma^1 \wedge \ldots \wedge \gamma^k (v_1, \ldots, v_k) = \det \left[\gamma^i (v_j) \right]$, we must show that $\left[\beta^i (v_j) \right] = \left[a^i_j \right] \left[\gamma^i (v_j) \right]$. I.e., we must show $\beta^i (v_j) = \sum_{r=1}^k \alpha^i_r \gamma^r (v_j)$, but this is precisely the definition of β^i . Hence $\det \left[\beta^i (v_j) \right] = \det \left(\left[a^i_j \right] \left[\gamma^i (v_j) \right] \right) = \det A \det \left[\gamma^i (v_j) \right] = (\det A) \gamma^1 \wedge \ldots \wedge \gamma^k (v_1, \ldots, v_k)$. This shows the desired equality.

Exercise 0.3 (4.4 (Wedge product of a 2-form with a 1-form)). Let ω be a 2-form and τ a 1-form on \mathbb{R}^3 . If X, Y, Z are vector fields on M, find an explicit formula for $(\omega \wedge \tau)(X, Y, Z)$ in terms of the values of ω and τ on the vector fields X, Y, Z.

Solution. Let $X = x_1, Y = x_2, Z = x_3$. Then

$$(\omega \wedge \tau)(X, Y, Z) = \frac{1}{2} \sum_{\sigma \in S_3} (\operatorname{sgn} \sigma) \omega (x_{\sigma 1}, x_{\sigma 2}) \tau (x_{\sigma 3})$$
$$= \omega (X, Y) \tau(Z) + \omega (Y, Z) \tau(X) + \omega (Z, X) \tau(Y)$$

Exercise 0.4 (4.4 (Exterior calculus)). Suppose the standard coordinates on \mathbb{R}^3 are called ρ, φ and θ . If $x = \rho \sin \varphi \cos \theta, y = \rho \sin \varphi \sin \theta$ and $z = \rho \cos \varphi$, calculate dx, dy, dz and $dx \wedge dy \wedge dz$ in terms of $d\rho, d\varphi$ and $d\theta$.

Solution. We have

$$dx = \frac{\partial x}{\partial \rho} d\rho + \frac{\partial x}{\partial \varphi} d\varphi + \frac{\partial x}{\partial \theta} d\theta = \sin \varphi \cos \theta d\rho + \rho \cos \varphi \cos \theta d\varphi - \rho \sin \varphi \sin \theta$$
$$dy = \sin \varphi \sin \theta d\rho + \rho \cos \varphi \sin \theta d\varphi + \rho \sin \varphi \cos \theta d\theta$$
$$dz = \cos \varphi d\rho - \rho \sin \varphi d\varphi$$

Hence

$$dx \wedge dy \wedge dz = \sin^3 \varphi \cos^2 \theta \rho^2 d\rho \wedge d\varphi \wedge d\theta + \rho^2 \cos^2 \varphi \cos^2 \theta \sin \varphi d\rho \wedge d\varphi \wedge d\theta$$
$$+ \rho^2 \cos^2 \varphi \sin \varphi \sin^2 \theta d\rho \wedge d\varphi \wedge d\theta + \rho^2 \sin^3 \varphi \sin^2 \theta d\rho \wedge d\varphi \wedge d\theta$$
$$= (\rho^2 \sin^3 \varphi + \rho^2 \cos^2 \varphi \sin \varphi) d\rho \wedge d\varphi \wedge d\theta$$
$$= \rho^2 \sin \varphi d\rho \wedge d\varphi \wedge d\theta$$

Exercise 0.5 (Wedge product and cross product). The correspondence between differential forms and vector fields on an open subset of \mathbb{R}^3 in subsection 4.6 also makes sense pointwise. Let V be a vector space of dimension 3 with basis e_1, e_2, e_3 and dual basis $\alpha^1, \alpha^2, \alpha^3$. To a 1-covector $\alpha = a_1\alpha^1 + a_2\alpha^2 + a_3\alpha^3$ on V, we associate vector $v_{\alpha} = \langle a_1, a_2, a_3 \rangle \in \mathbb{R}^3$. To the 2-covector

$$\gamma = c_1 \alpha^2 \wedge \alpha^3 + c_2 \alpha^3 \alpha^1 + c_3 \alpha^1 \wedge \alpha^2$$

on V, we associate the vector $v_{\gamma} = \langle c_1, c_2, c_3 \rangle \in \mathbb{R}^3$. Show that under this correspondence, the wedge product of 1-covectors corresponds to the cross product of vectors in \mathbb{R}^3 : if $\alpha = a_1\alpha^1 + a_2\alpha^2 + a_3\alpha^3$ and $\beta = b_1\alpha^1 + b_2\alpha^2 + b_3\alpha^3$, then $v_{\alpha\wedge\beta} = v_{\alpha} \times v_{\beta}$.

Proof. We have

$$\alpha \wedge \beta = (a_1b_2 - a_2b_1) \alpha^1 \wedge \alpha^2 + (a_3b_1 - a_1b_3) \alpha^3 \wedge \alpha^1 + (a_2b_3 - b_2a_3) \alpha^2 \wedge \alpha^3$$

which corresponds to

$$v_{\alpha \wedge \beta} = \begin{pmatrix} a_2b_3 - b_2a_3 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - b_1a_2 \end{pmatrix} = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = v_a \times v_b$$

Example 0.6 (Smoothness of a projection map). Let M and N be manifolds and $\pi: M \times N \to M$, $\pi(p,q) = p$ the projection to the first factor. Prove that π is a C^{∞} map.

Proof. Suppose $(p,q) \in M \times N$. Choose a chart (U,φ) around p in M and a chart (V,ψ) around q in N. Then $(U \times V, \varphi \times \psi)$ is a chart around (p,q) in $M \times N$. Now $\varphi \circ \pi \circ (\varphi \times \psi)^{-1} : \varphi(U) \times \psi(V) \to \mathbb{R}^m$ is the projection map onto the first coordinate on $\varphi(U) \times \psi(V)$ which is C^{∞} . Hence π is C^{∞} .