7. LOGARITHMS

SYNOPSIS

- 1. If $a \ne 1$, N are two positive real numbers and $a^x = N$, then x is called logarithm of N to the base a and we write $x = \log_a N$
- 2. Logarithms are defined only for positive numbers.

3.
$$\log_a a = 1$$

5.
$$\log_a(xy) = \log_a x + \log_a y$$

7.
$$\log_a(x^n) = n \log_a x$$

9.
$$a^{\log a^m} = M$$

11.
$$\log_b a \log_a b = 1$$

13.
$$\log_b a = \frac{1}{\log_a b}$$

15.
$$a^{\sqrt{\log_a b}} = b^{\sqrt{\log_b a}}$$

4.
$$\log_a 1 = 0$$

6.
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

8.
$$\log_{a^n} x = \frac{1}{n} \log_a x$$

$$10. \quad \log_b a \, \log_c b = \log_c a$$

12.
$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$14. a^{\log c^b} = b^{\log c^a}$$

16. If x, y, z are in G.P., then
$$\log_a x$$
, $\log_a y$, $\log_a z$ are in A.P.

- 17. $\log_a x$ is a decreasing function of x if 0 < a < 1. i.e., $x > y \Leftrightarrow \log_a x < \log_a y$
- 18. $\log_a x$ is an increasing function of x if a > 1. i.e., $x > y \Leftrightarrow \log_a x > \log_a y$
- 19. $\log_b a$ is positive if a > 1 & b > 1 or 0 < a < 1 & 0 < b < 1
- 20. $\log_b a$ is negative if 0 < a < 1 & b > 1 or a > 1 & 0 < b < 1

® LECTURE SHEET (\$\)

LEVEL-I (MAIN)

Single answer type questions

1.
$$\frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi}$$

1) is equalt o 2

2) is less than 2

3) is greater than 2

4) cannot be determined

2. If
$$\frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_4 a} + \frac{1}{\log_{16} a} + \dots + \frac{n(n+1)}{2k}$$
, then $k = \frac{n(n+1)}{2k}$

- 1) log_2
- 2) log 4
- 3) $\log_2 a$
- 4) log, a

3. If
$$\log(x+y) = \log\left(\frac{3x-3y}{2}\right)$$
, then $\log x - \log y =$

- 1) log 2
- 2) log 3
- 3) log 4
- 4) log 5

4. If x,y,z are three consecutive natural numbers then
$$log(1 + xz) =$$

1) 0

2) y

- 3) log y
- 4) 2 log y

- 5. If $a^x = b^y = c^z$ and x,y,z are in G.P., then
 - 1) $\log_c b = \log_a c$
- 2) $\log_a c = \log_b a$
- 3) $\log_a b = \log_c b$
- 4) $\log_b a = \log_c b$

- 6. If $x = \log_a bc$, $y = \log_b ca$, $z = \log_c ab$ then xyz =
 - 1) x + y + z
- 2) x + y + z + 1
- 3) x + y + z + 2
- 4) x + y + z + 3
- 7. If $\log_a abc = x + 1$, $\log_b abc = y + 1$, $\log_c abc = z + 1$, then x + y + z + 2 = 1

- 2) xvz
- 4) 3yz

- 8. If $\log_{30} 3 = a$, $\log_{30} 5 = b$, then $\log_{30} 8 =$
 - 1) 3(1+a+b)
- 2) 3(1-a+b)
- 3) 3(1-a-b)
- 4) 3(1+a-b)

- 9. If $\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b}$, then $a^{b+c}b^{c+a}c^{a+b} = \frac{\log c}{a-b}$

3) 1

4) 4

- 10. If $\frac{\log a}{y-z} = \frac{\log b}{z-x} = \frac{\log c}{x-y}$, then $a^{y^2+yz+z^2} b^{z^2+zx+x^2} c^{x^2+xy+y^2} =$

- 3) -1
- 4) 2

- 11. If $\frac{xy \log(xy)}{x+y} = \frac{yz \log(yz)}{y+z} = \frac{zx \log(zx)}{z+x}$ then
 - 1) $x^x = y^y = z^z$
- 2) x = y = z
- 3) x + y + z = 0
- 4) none

- 12. If $\log_{12} 81 = x$, then $\log_6 3 =$
- 3) $\frac{2x}{x+4}$

- 13. If $(4.2)^x = (0.42)^y = 100$, then $\frac{1}{x} \frac{1}{y} = \frac{1}{100}$
 - 1) 1/2
- 2) 1/3
- 3) 1/4
- 4) 1/5

- 14. If $\frac{\log_a n}{\log_c n} = \frac{\log_a n \log_b n}{\log_b n \log_c n}$ then a,b,c are in
 - 1) A.P.
- 2) H.P.
- 3) G.P.
- 4) A.G.P.
- 15. If $\frac{1}{2}\log_{10} 2 + \log_{10} \sqrt{x^2 + 4x + 5} \frac{1}{2}\log_{10}(x^2 4x + 5) = \frac{1}{2}$, then x =
 - 1) 0 or 1
- 3) 0 or 5
- 4) 0 or 1 or 5

- 16. If $\log 2 = a$, $\log 3 = b$, $\log 7 = c$ and $6^x = 7^{x+4}$ then x = 1
- $2) \frac{4c}{a+b-c} \qquad \qquad 3) \frac{4b}{c-a-b}$
- 4) $\frac{4b}{a+b-c}$

- 17. $0.0001 < n < 0.001 \Rightarrow$
 - 1) $-4 < \log n < -3$
- 2) $-3 < \log n < -2$ 3) $-2 < \log n < -1$
- 4) $-5 < \log n < -4$

- $\log_a(\log_b a)$ 18. $\log_b(\log_a b)$
 - 1) log, a
- 2) log_b
- 3) -log_b
- 4) -log, a
- 19. If $\log 2 = a$, $\log 3 = b$, $\log 7 = c$ and $2^x \cdot 3^{x+4} = 7^x$, then the value of x in terms of a, b, c is
- $2) \ \frac{4b}{(c+a+b)}$
- $3) \ \frac{4}{(c+a+b)}$

OBJECTIVE	MATHEMATICS	Ш	Α	- Part	1	•	
1.1111111111111111111111111111111111111	and the state of t						

· LOGARITHMS

- 20. The solution set of $\log_{1/2}(x^2-1) > 0$ is:
 - 1) $(1,\sqrt{2})$
- 2) $(-\sqrt{2},-1)$
- 3) $(-\sqrt{2},\sqrt{2})$
- 4) $(-\sqrt{2},-1) \cup (1,\sqrt{2})$
- 21. The set of all x satisfying the equation, $x^{\log_3 x^2 + (\log_3 x)^2 10} = \frac{1}{x^2}$ is:
 - 1) {1, 9}
- 2) $\left\{1,9,\frac{1}{81}\right\}$ 3) $\left\{1,4,\frac{1}{81}\right\}$ 4) $\left\{9,\frac{1}{81}\right\}$
- 22. The set of all the solutions of the inequality, $\log_{1-x}(x-2) \ge -1$ is:
 - 1) $(-\infty, 0)$
- 2) (2,∞)

Numerical value type questions

23.
$$\log_2\left(1+\frac{1}{2}\right) + \log_2\left(1+\frac{1}{3}\right) + \dots + \log_2\left(1+\frac{1}{31}\right) =$$

24. If
$$\log_{10} \left[\frac{1}{2^x + x - 1} \right] = x [\log_{10} 5 - 1]$$
 then $x =$

- 25. If $\log_{10} 3 = 0.4771$, then the number of digits in 3^{40} is
- 26. Number of solution to the equation $[x] = \log x$.
- 27. The number of solution to (Real solutions) $x^{\frac{3}{4}(\log_2 x)^2 + \log_x x \frac{5}{4}} = \sqrt{2}$
- 28. If $x = \log_{2a}^a$: $y = \log_{3a}^{2a}$: $z = \log_{4a}^{3a}$ then (x-2)yz =
- 29. $a > 0 (a \ne 1), b > 0 (b \ne 1)$ such that $a^{(\log_a^b)^x} = b^{(\log_b^a)^x}$ then x = 0
- 30. There exist positive integers A, B and C with no common factors greater than 1, such that $A \log_{200} 5 + B \log_{200} 2 = C$. The sum A + B + C equals

LEVEL-II (ADVANCED)

Single answer type questions

- 1. If $c^2 = (ca)^{\log_a b}$ conditions $a,b,c>0,b>a \Rightarrow \ln a, \ln b, \ln c$ are in (natural logarithms)
 - a) A.P

- d) None
- 2. Given real numbers a, b, c > 0 (1) such that $\log_{\log_2 a} e$, $\log_{(a^{c/2})} e$, $\log_{(\log_2 c)} e$ ar e in H.P. then c equal
 - a) log (log b)
- b) log, (log,a)
- c) log_b(log_ba)
- d) log, (log,b)
- 3. For $x \in R$; x > 1 and $n \in I > 1$. Let $f_n(x) = \frac{n}{\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \dots + \frac{1}{\log_n x}}$, then $(5!)^{f_5(x)}$
 - a) 5x

- b) 55

- 4. Define a real valued function of a real variable x given by $f(x) = a \sin x + b \sqrt[3]{x} + 6$ where a and b are real numbers. If $f(\log_{30}(\log_{15} 30)) = 7$, the the value of $f(\log_{30}(\log_{30} 15))$ is.
 - a) 5

d) -7

LOGARITHMS	S • • • • • •	•••••• OBJECTIVE	MATHEMATICS II A - Part 1
5. If $a_n = \sum_{i=1}^n 1c_i$	$\log_e a^r$, $a > 0$ and $S_n = \sum_{r=0}^{n} a_r$, the	en minimum number of to	erms of S_n to be taken so that the
	ter than 1335log a^n is		4
a) 88	b) 89	c) 91	d) 92
5. If the equation	on $\frac{\log_{12}(\log_8(\log_4 x))}{\log_5(\log_4(\log_9(\log_2 x)))} = 0$	has a solution for 'x' who	en $c < y < b, y \ne a$, where 'b' is as
	sible and 'c' is as small as possi		
a) 18	b) 19	c) 20	d) 21
7. If $x > 1$, $y > 1$	1, $z > 1$ are in G.P., then $\log_{ex} e$,	log _{ey} e, log _{ez} e are in	
a) A.P	b) H.P	c) G.P	d) A.G.P
8. Which of th	ne following is/are true		
a) $\log_2^3 < \log_2^3$	g ₅ ¹⁷	b) $\log_2^{24} (\log_{96}^2)^{-1}$	$-\log_2^{192}(\log_{12}^2)^{-1} = 3$
c) $(\log_2^5)^2 >$	\log_{2}^{20}	d) $\log_{10}^5 . \log_{10}^{20} + ($	$\log_{10}^2)^2 = 1$
	More than one	answer type question	S
9. If $\frac{\log_2 x}{1}$	$\frac{\log_2 y}{2} = \frac{\log_2 z}{2} \text{ and } x^3 y^2 z = 1, \text{ then } y = 1$	nen k is equal to	
a) – 8	$\frac{\log_2 y}{6} = \frac{\log_2 z}{3k} \text{ and } x^3 y^2 z = 1, \text{ then } b = 1$	c) 0	d) $\log_2\left(\frac{1}{256}\right)$
	intersects the graph of $y = \log a$ is 0.5 given that $k = a + \sqrt{b}$, where $a + \sqrt{b}$		he distance between the points of
a) $a = 2, b =$			d) $a = b = 3$
			$\log_5 (x + 4)$. The distance between
	intersection is 0.5. Given that		
a) $a = 2, b =$		c) $a + b = 6$	d) $a = b = 3$
	$x = 10x^2$ (log x is to base 10) s	solve for x	
a) $10^{\sqrt{3}+1}$	b) $10^{-\sqrt{3}-1}$	c) $10^{-\sqrt{3}+1}$	d) $10^{\sqrt{3}-1}$
	Linked compre	hension type question	ns .
Passage - I:			
An equation $\begin{cases} f(x) > 0 \\ f^{2m}(x) = g \end{cases}$		$\log_a g(x), a > 0, a \neq 1, m \in$	N is equivalent to the system
COLUMN TO A SECURIT OF	of solutions of $2\log_e 2x = \log_e x$	$(7x-2-2r^2)$ is	
a) 1	b) 2	c) 3	d) infinite
A150 90000 50	of solutions of $\ln 2x = 2\ln(4x)$	200	
a) 0	b) 1	c) 2	d) infinite
	of solutions of $\log(3x^2 + x - 2)$		2000 2 00 10 00 11 0000 0000
a) 1	b) 2	c) 3	d) 0
192	.tt/=	LITE OFFICE 4 Cai f	haitanya Sr. ICON Students

Passage - II:

Equations of the form (i) $f(\log_a x) = 0, a > 0, a \neq 1$ and (ii) $g(\log_x A) = 0, A > 0$, then eq. (i) is equivalent to f(t) = 0, where $t = \log_{a} x$

If t_1 , t_2 , t_3 ,..., t_k are the roots of f(t) = 0, then $\log_a x = t_1$, $\log_a x = t_2$,..., $\log_a x = t_k$ and eq. (ii) is equivalent to f(y) = 0, where $y = log_x A$. If $y_1, y_2, y_3, \dots, y_k$ are the roots of f(y) = 0, then $\log_x A = y_1, \log_x A = y_2, \dots, \log_x A = y_k.$

16. The solution set of $(\log_5 x)^2 + \log_5 x + 1 = \frac{7}{\log_5 x - 1}$ contains

- a) (1, 3)
- b) {1}
- d) {1, 25}

17. The set of all x satisfying the equation $x^{\log_3 x^3 + (\log_3 x)^2 - 10} = \frac{1}{x^2}$ is

- $a)\{1, 9\}$
- b) $\left\{9, \frac{1}{81}\right\}$ c) $\left\{1, 4, \frac{1}{81}\right\}$
- d) $\{1, 9, \frac{1}{81}\}$

18. If $\frac{(\ln x)^2 - 3\ln x + 3}{\ln x - 1} < 1$, then x belongs to

- a) (0, e)
- b) (1, e)
- c) (1, 2e)
- d) (0, 3e)

Passage - III:

If $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$, $l = \log_{2k} k$, $m = \log_{3k} 2k$, $n = \log_{4k} 3k$ and $\log_{12} 27 = p$ then

- 19. xyz =
 - a) 1

- b) abc
- c) 0

d) -1

20. $x^a.y^b.z^c =$

a) 0

b) 2

c) 3

d) 1

21. $x^{b^2+bc+c^2}.y^{c^2+ca+a^2}.z^{a^2+ab+b^2} =$

a) 0

- c) -1
- d) 2

Passage - IV:

If $f(x) = \log x$, $g(x) = x^3$, $h(x) = \cos x$; $w(x) = \frac{1-x}{1+x}$,

 $T(x) = (fow)(x), u(x) = \frac{1+x}{1-x}$ and

V(x) = (fou)(x)

22. V(x) + V(y) =

- a) V(x + y)

- b) $V(x) + \frac{V(y)}{1+xy}$ c) $(x+y)V\left(\frac{1}{1+xy}\right)$ d) $V\left(\frac{x+y}{1+xy}\right)$

23. $u\left(\frac{3x+x^3}{1+3x^2}\right) = ----$

- b) v(x)
- c) 2v(x)
- d) none of 1,2,3

Matrix matching type questions

24. COLUMN - I

- A) If $log_{34}5$ lies in the interval (a, b), then
- B) If $log_{300}4$ lies in the interaval (a, b), then
- C) If $\log_{400}4$ lies in the interval (a, b), then

COLUMN - II

- p) [10a+10b]=8, where [.] denotes the greatest integer function
- q) (10a + 10b) = 5 where (.) denotes the least integer function
- r) [6b-3a] = 2 where [.] denotes the greatest integer function
- s) [10a + 10b] = 3 where [.] denotes the greatest integer function
- t) (6b 3a)= 1 where (.) denotes the least integer function

25. COLUMN - I

- A) The solution set of $\log_{100}|x+y| = \frac{1}{2}$, $\log_{10} y \log_{10} |x| = \log_{100} 4$ is
- B) The solution set of $4\log_2^2 x + 1 = 2\log_2 y$ and $\log_2 x^2 \ge \log_2 y$
- C) The solution set of $\log_4 x \log_2 y = 0$ and $x^2 5y^2 + 4 = 0$

COLUMN - II

q) {1, 1}

p) $\{\sqrt{2}, 2\}$

- r) {-10, 20}
- s) {4, 2}
- $t) \left\{ \frac{10}{3}, \frac{20}{3} \right\}$

26. LIST - I (equation)

1)
$$\log_8 x + \log_x 8 = \frac{10}{3}$$

- 2) $5^{(\log_{10} x-2)} = 3^{(\log_{10} x-2)}$
- 3) $2\log_2 \log_2 x + \log_2 \log_2 (2\sqrt{2}x)$
- 4) $x^{\log_2(x+4)} = 6$

LIST - II (solution)

- a) 8, ½
- b) 512, 2
- 0) 512,
- c) 100
- d) 1, $\frac{1}{3}$
- e) 1

- 1 2 3 4
- 1 2 3
- a) b c a e c) a b d c
- b) a e c d d d a c b

Integer answer type questions

- 27. $\log (a + c)$, $\log (a + b)$, $\log (b + c)$ are in A.P and a, c, b are in H.P where a, b, c > 0. If a + b = k c/4 then the value of 'k' is
- 28. If $x, y \in R^+$ satisfy $\log_8 x + \log_4 y^2 = 5$ and $\log_8 y + \log_4 x^2 = 7$ then the value of $\frac{(x^2 + y^2)}{2080} = \dots$
- 29. Number of values of x satisfy the equation $\log_{2x+3}(6x^2 + 23x + 21) = 4 \log_{3x+7}(4x^2 + 12x + 9)$ (is/are)
- 30. If $\log_{10} x + \frac{1}{2} \log_{10} x + \frac{1}{4} \log_{10} x + \dots = y$ and $\frac{1+3+5+\dots+(2y-1)}{4+7+10+\dots+(3y+1)} = \frac{20}{7 \log_{10} x} \forall x, y \in \mathbb{N}$, then the value of \log_y^x must be

PRACTICE SHEET

LEVEL-I (MAIN)

Single answer type questions

1.
$$3^{\sqrt{\log_3 7}} - 7^{\sqrt{\log_7 3}} =$$

2.
$$\log_2 17 \log_{1/5} 2 \log_3 (1/5)$$

3. If
$$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \dots + \frac{1}{\log_{43} n} = \frac{1}{\log_x n}$$
, then $x = \frac{1}{\log_x n}$

4)
$$n^{43}$$

4. If
$$y = \frac{10^{\log x}}{x^2}$$
 and $x = y^A$ then $A = \frac{10^{\log x}}{x^2}$

1)
$$y = \frac{10^{\log x}}{r^2}$$

2)
$$\frac{1}{\log 10 + 2}$$

3)
$$\frac{1}{\log 10 - 3}$$
 4) $\frac{1}{\log 10 + 3}$

4)
$$\frac{1}{\log 10 + 3}$$

5. If
$$x^3 + y^3 = 0$$
, $x + y \ne 0$ then $\log(x + y) =$

1)
$$\frac{1}{2}(\log x + \log y - \log 2)$$

2)
$$\frac{1}{2} (\log x + \log y + \log 3)$$

1)
$$\frac{1}{2}(\log x + \log y - \log 2)$$
 2) $\frac{1}{2}(\log x + \log y + \log 3)$ 3) $\log x + \log y + \log 2$ 4) $\log x + \log y - \log 2$

6. If
$$x = \log_{0.1} 0.001$$
, $y = \log_9 81$ then $\sqrt{x - 2\sqrt{y}} =$

1)
$$3-\sqrt{2}$$

2)
$$\sqrt{3}-2$$

3)
$$\sqrt{2}-1$$

4)
$$\sqrt{2} - 2$$

7. If
$$f(a) = \log \frac{2+a}{2-a}$$
, then $\frac{1}{2} f\left(\frac{8a}{4+a^2}\right) =$

3)
$$\frac{1}{2} f(a)$$

$$4) - f(a)$$

8. If
$$x = \log_a bc$$
, $y = \log_b ca$, $z = \log_c ab$ then $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = \frac{1}{z+1}$

9. If
$$a = 1 + \log_x yz$$
, $b = 1 + \log_y zx$, $c = 1 + \log_z xy$ then $ab + bc + ca = 1$

3)
$$a^2 + b^2 + c^2$$

10. If
$$a^{1/(1-\log_a x)} = y$$
, $a^{1/(1-\log_a y)} = z$ then $a^{1/(1-\log_a z)} =$

3)
$$x^2$$

4)
$$x/2$$

11. If
$$\frac{\log a}{b-c} = \frac{\log b}{c-a} = \frac{\log c}{a-b}$$
, then $a^{b+c}b^{c+a}c^{a+b} = \frac{\log c}{a-b}$

12. If
$$(x-y)\log_a 2 = (y-z)\log_b 2 = (z-x)\log_c 2$$
 then $5^{abc} =$

13. If
$$b = \frac{a^x + a^{-x}}{2}$$
, then $x = \frac{a^x + a^{-x}}{2}$

1)
$$\log_a(b+\sqrt{b^2+1})$$
 2) $\log_b(a+\sqrt{a^2+1})$ 3) $\log_a(b+\sqrt{b^2-1})$

2)
$$\log_b(a + \sqrt{a^2 + 1})$$

3)
$$\log_a(b + \sqrt{b^2 - 1})$$

14. If
$$5^x = (0.5)^y = 1000$$
 then $\frac{1}{x} - \frac{1}{y} =$

15. If $a^x = b^y = c^z = d^w$, then $\log_a(bcd) =$

1)
$$x \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right)$$

1)
$$x \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right)$$
 2) $\frac{1}{x} \left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w} \right)$ 3) $x \left(\frac{1}{y} + \frac{1}{z} - \frac{1}{w} \right)$ 4) $\frac{1}{x} \left(\frac{1}{y} + \frac{1}{z} - \frac{1}{w} \right)$

3)
$$x \left(\frac{1}{y} + \frac{1}{z} - \frac{1}{w} \right)$$

4)
$$\frac{1}{x} \left(\frac{1}{y} + \frac{1}{z} - \frac{1}{w} \right)$$

16. If a,b, c are distnict positive real numbers different from 1 such that

 $(\log_b a \log_c a - \log_a a) + (\log_a b \log_c b - \log_b b) + (\log_a c \log_b c - \log_c c) = 0$ then abc =

17. If $\log_2 x + \log_x 2 = \frac{10}{3} = \log_2 y + \log_y 2$ and $x \neq y$, then x + y = 1

- 4) 8+ 3/2

18. If $\log_{\ell} x, \log_{m} x, \log_{n} x$ are in A.P. and $x \neq 1$ then $(\ln)^{\log_{\ell} m} =$

- 2) n^{2}
- 4) n4

19. If x, y, z are positive and the p^{th} , q^{th} , r^{th} terms respectively of a G.P., then

 $(q-r)\log x + (r-p)\log y + (p-q)\log z =$

1) 0

- 3) pgr
- 4) xyz

20. If $\log_3 2, \log_3(2^x - 5), \log_3(2^x - 7/2)$ are in A.P., then x =

3) 3

4) 4

21. If $1 < \log_2 x^2 < 2$, then $x \in$

- 1) $(-2,\sqrt{2}) \cup (\sqrt{2},2)$
- 2) $(-2, -\sqrt{2}) \cup (\sqrt{2}, 2)$ 3) $(2, \sqrt{2}) \cup (-\sqrt{2}, 2)$ 4) $(-2, \sqrt{2}) \cup (-\sqrt{2}, 2)$

22. If $\log_{0.1}(x-3) < \log_{0.01}(x-3)$, then x lies in

- 1) (3,4)
- 2) [3, 4]
- 3) (4,∞)
- 4) none

23. If $\log_{1/3}(\log_4(x^2-5) > 0$, then

- 1) $x \in (-3, -\sqrt{6}) \cup (\sqrt{6}, 3)$ 2) $x \in (3, -\sqrt{6}) \cup (\sqrt{6}, 3)$ 3) $x \notin (-3, -\sqrt{6}) \cup (\sqrt{6}, -3)$ 4) $x \notin (-3, -\sqrt{6}) \cup (\sqrt{6}, 3)$

24. If $x = \log_2 3$, $y = \log_3 11$, then

- 1) x = y
- 3) x > y
- 4) none

 $25. \quad \frac{\log_a x + \log_b x}{\log_a x - \log_b x} =$

- 1) $2\log_{a/h}a$
- 2) $2\log_{a/b}b$ 3) $\log_{a/b}ab$

26. The set $\{x: |1 - \log_{1/5} x| + 2 = |3 - \log_{1/5} x|\}$ is equal to:

- 1) (0,∞)
- $2) \left[\frac{1}{5}, \infty \right] \qquad \qquad 3) \left[\frac{1}{5}, 5 \right]$
- $4) \left[0,\frac{1}{5}\right]$

27. If $|x-2|^{\log_2 x^3 - 3\log_x 4} = (x-2)^3$, then a value of x is:

- 4) 4

28. If $\log_2 x + \log_x 2 = \frac{10}{3} = \log_2 y + \log_y 2$ and $x \neq y$, then x + y is equal to:

- 4) $8 + 2^{1/3}$

196

ELITE SERIES for **Sri Chaitanya** Sr. ICON Students

OBJECTIVE MATHEMATICS II A - Part 1 + + + + +

· LOGARITHMS

- 29. The solution set of the equation, $\frac{(x+3)\log_{10} x}{(x-4)(x^2+9)} > 0$:
 - 1) $(0,1) \cup [4,\infty)$
- 2) $(0,2) \cup [4,\infty)$
- 3) (0,1]∪[4,∞)
- 4) (0,1) ∪ (1,∞)

Numerical value type questions

- 30. $\log_{\sqrt{2}}[\log_{\sqrt{2}}\{\log_{\sqrt{3}}(\log_3 27)\}] =$
- 31. If $\log_{10} 343 = 2.5353$ then the least positive integer n such that $7^n > 10^5$ is
- 32. If $\log_a \left[1 + \log_b \left\{ 1 + \log_c (1 + \log_a x) \right\} \right] = 0$ then x = 1
- 33. If $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$, then the number of digits in $(2^{10}3^5)^{20}$ is
- 34. If $\log_{10} 3 = 0.4771$ then the position of first significant figure in 81^{-25} is

LEVEL-II (ADVANCED)

Single answer type questions

- 1. The position of the first significant figure in 3^{-65} is (given that $\log_{10}^3 = 0.4771$)
 - a) 30

- b) 31

- 2. If a, b, c are unequal positive number and $\sum [\log_b^a \log_c^a 1] = 0$ then abc =
 - a) 0

- b) $\cos 0^0$
- c) cos300
- d) cosπ
- 3. a, b are the lengths of sides and c is the length of hypotenuse of a right angled triangle then $\frac{\log_{c+b}^a + \log_{c-b}^a}{\log_{c+b}^a \cdot \log_{c-b}^a} =$
 - a) 0

b) 1

- c) -1
- d) 2

- 4. Solution set of $\log_3(x^2-2) < \log_3\left(\frac{3}{2}|x|-1\right)$ is:
 - a) $(-\sqrt{2}, -1)$
- b) $(-2, +\sqrt{2})$
- c) $(-2, -\sqrt{2}) \cup (\sqrt{2}, 2)$ d) Null set

- 5. If $\log_{105}^7 = a, \log_7^5 = b$ then $\log_{35}^{105} =$
 - a) ab

- b) (b + 1)a
- d) $\frac{1}{a(b+1)}$

More than one answer type questions

- 6. $\log_{\cos x} \sin x + \log_{\sin x} \cos x = 2 \implies \text{solve for } x = \dots$
 - a) $\frac{\pi}{4}$
- b) $\frac{3\pi}{4}$
- c) $\frac{5\pi}{4}$
- d) $\frac{7\pi}{4}$

Linked comprehension type questions

An equation of the form $2m\log_a f(x) = \log_a g(x), a > 0, a \neq 1, m \in N$ is equivalent to the system $f^{2m}(x) = g(x)$

7. Solution set of the equation $\log_{(x^3+6)}(x^2-1) = \log_{(2x^2+5x)}(x^2-1)$ is

- a) {-2
- b) {1}
- c) {3
- d) {-2, 1, 3}

8. Solution set of the equation $\log(x-9) + 2\log\sqrt{(2x-1)} = 2$ is

- a) $\{\phi\}$
- b) {1}
- c) {2}
- d) {13}

Passage - II:

Equations of the form (i) $f(\log_a x) = 0, a > 0, a \ne 1$ and (ii) $g(\log_x A) = 0, A > 0$,

then eq. (i) is equivalent to f(t) = 0, where $t = \log_a x$.

If t_1 , t_2 , t_3 , t_k are the roots of f(t) = 0, then $\log_a x = t_1, \log_a x = t_2, \dots, \log_a x = t_k$ and eq. (ii) is equivalent to f(y) = 0, where $y = \log_x A$. If $y_1, y_2, y_3, \dots, y_k$ are the roots of f(y) = 0, then $\log_x A = y_1, \log_x A = y_2, \dots, \log_x A = y_k$.

9. The number of solutions of the equation $\frac{1-2(\log x^2)^2}{\log x - 2(\log x)^2} = 1$ is

a) 0

b)

c) 2

d) infinite

10. The number of solutions of the equation $\log_x^3 10 - 6\log_x^2 10 + 11\log_x 10 - 6 = 0$ is

a) 0

b) 1

c) 2

d) 3

Passage-III:

If $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$, $l = \log_{2k} k$, $m = \log_{3k} 2k$, $n = \log_{4k} 3k$ and $\log_{12} 27 = p$ then

11. (l-1)mn+1=

- a) 2mn
- b) 0

- c) lmn
- d) mn

12. $4\left(\frac{3-p}{3+p}\right) =$

- a) log₆16
- b) log₆12
- c) log₆18
- d) log₆21

Passage-IV:

If $f(x) = \log x$, $g(x) = x^3$, $h(x) = \cos x$; $w(x) = \frac{1-x}{1+x}$, T(x) = (fow)(x), $u(x) = \frac{1+x}{1-x}$ and V(x) = (fou)(x)

13. $f\{g(a)\} + f\{g(b)\} =$

- a) $f\{g(a) + g(b)\}$
- b) $f\{g(ab)\}$
- c) $g\{f(ab)\}$
- d) $g\{f(a) + f(b)\}$

14. $(hof)\left(\frac{1}{x}\right).(hof)\left(\frac{1}{y}\right)-\frac{1}{2}\left[(hof)(xy)+(hof)\left(\frac{x}{y}\right)\right]=$

a) (

- b) f(x) + f(y)
- c) f(x). f(y)
- d) f(x) f(y)

15. $T\left(\frac{2x}{1+x^2}\right) =$

- a) ½ (fow) (x)
- b) -(fow)(x)
- c) (fow) (x)
- d) 2(fow) (x)

198

ELITE SERIES for Sti Chaitanya Sr. ICON Students

Matrix matching type questions

b)

b)

16. Observe the following lists:

LIST - I

- 1) $\log_a bc = x$, $\log_b ca = y$, $\log_a ab = z$
- 2) $x = 1 + \log_a bc$, $y = 1 + \log_b ca$, $z = 1 + \log_a ab$
- 3) $\log_{2a} a = x$, $\log_{2a} 2a = y$, $\log_{4a} 3a = z$

4)
$$\frac{\log x}{a+b-2c} = \frac{\log y}{b+c-2a} = \frac{\log z}{c+a-2b}$$

4)
$$\frac{\log x}{a+b-2c} = \frac{\log y}{b+c-2a} = \frac{\log z}{c+a-2b}$$

LIST - II

- a) xyz = xy + yz + zx
- b) xyz = x + y + z + 2
- c) abc = 1

$$d) 1 + xyz = 2yz$$

e)
$$xyz = 1$$

LIST - II (solution set)

17. LIST - I (In equility)

1)
$$\log_{0.5}(x-2) < \log_{0.25}(x-2)$$

2)
$$\log_3(x-5) < \log_9(x-5)$$

3)
$$\log_4(x-3) > \log_{16}(x-3)$$

4)
$$\log_{0.2}(x-1) > \log_{0.04}(x-1)$$

$$(r-1) > \log (r-1)$$

a) (1, 2)

c)
$$(-1, 3) \cup (3, \infty)$$

LIST - II

18. LIST - I

1)
$$\log_{10} \tan 40^{\circ} + \log_{10} \tan 41^{\circ} + \dots + \log_{10} \tan 50^{\circ}$$

2)
$$\frac{\log 49\sqrt{7} + \log 25\sqrt{5} - \log 4\sqrt{2}}{\log 17.5}$$

3)
$$\log_3\left(1+\frac{1}{2}\right) + \log_3\left(1+\frac{1}{3}\right) + \dots + \log_3\left(1+\frac{1}{53}\right)$$

4)
$$3^{\frac{4}{\log_4 9}} + (27)^{\frac{1}{\log_{36} 9}} + (81)^{\frac{1}{\log_5 3}}$$

a) 3

d)
$$\frac{3}{2}$$

4

3

Integer answer type questions

- 19. If (x_1, y_1) and (x_2, y_2) are solutions of the system of simultaneous equation $\log_8(xy) = 3\log_8 x . \log_8 y$, $4\log_8 \left(\frac{x}{y}\right) = \frac{\log_8 x}{\log_8 y}$ then $x_1x_2 + y_1y_2$ equals to
- 20. The absolute value of x satisfying the equation $\log_{10}(98 + \sqrt{x^3 x^2 12x + 36}) = 2$ is
- 21. No.of solutions to (Real solutions) $|x-1|^{(\log x)^2 \log x^2} = |x-1|^3$
- 22. If $\log\left(\frac{x^2}{y^3}\right) = 1$ and $\log(x^2y^3) = 7$ then $\log(|xy|)$ is equal to

(y^3)			KEY	SHEET	•••			
		(LECTUR	E SHEE	T			
LEVEL-I	1) 3	2) 3	3) 4	4) 4	5) 4	6) 3	7) 2	8) 3
	9) 3	10) 2	11) 1	12) 3	13) 1	14) 3	15) 2	16) 2
	17) 1	18) 3	19) 1	20) 4	21) 2	22) 4	23) 4	24) 1
	25) 20	26) 0	27) 3	28) 1	29) 1	30) 7		
LEVEL-II	1) c	2) b	3) b	4) c	5) a	6) b	7) b	8) b
	9) abcd	10) ad	11) bc	12) bc	13) b	14) b	15) d	16) c
	17) d	18) a	19) a	20) d	21) b	22) d	23) a	
	24) A-pr	, B-qt, C	-st 25) A-rt, B-p, C-qs		26) a	27) 8		
	28) 2	29) 1	30) 5					
			PRACTIC	CE SHE	ET			
LEVEL-I	1) 1	2) 3	3) 3	4) 1	5) 2	6) 3	7) 1	8) 1
	9) 4	10) 1	11)3	12) 4	13) 3	14) 3	15) 1	16) 2
	17) 4	18) 2	19) 1	20) 3	21) 2	22) 3	23) 1	24) 2
	25) 4	26) 2	27) 2	28) 4	29) 4	30) 4	31) 6	32) 1
	33) 108	34) 48						
LEVEL-II	1) a	2) b	3) d	4) c	5) d	6) a	7) c	8) d
	9) c	10) d	11) d	12) a	13) b	14) a	15) d	16) a
	17) d	18) a	19) 1	20) 4	21) 3	22) 1		