§2. Свойства пределов функций

В силу определения 1.1 свойства пределов функций аналогичны свойствам сходящихся последовательностей (см. §3, глава 2).

Теорема 2.1. Если $\exists \lim_{x \to a} f(x)$, то он единственный.

Теорема 2.2 (теорема об арифметических операциях над функциями, имеющими предел). Если $\exists \lim_{x \to a} f(x) = A$ и $\exists \lim_{x \to a} g(x) = B$, то

- 1. $\exists \lim_{x \to a} (f(x) \pm g(x)) = A \pm B$, 2. $\exists \lim_{x \to a} (f(x) \cdot g(x)) = A \cdot B$,
- 3. $\exists \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B}$ при условии, что функция $g(x) \neq 0$ на $\overset{\circ}{U}(a)$ и $B \neq 0$.

Теорема 2.3 (*о сжатой функции*). Если функции f(x), g(x), h(x) определены на U(a) и для $\forall x \in U(a)$ справедливо неравенство $f(x) \le g(x) \le h(x)$, а также $\exists \lim_{x \to a} f(x) = A$, $\exists \lim_{x \to a} h(x) = A$, то $\exists \lim_{x \to a} g(x) = A$.

Доказательство теорем 2.1— 2.3 можно провести, используя определение 1.1 и соответствующих теорем о свойствах сходящихся последовательностей — теорема о единственности предела числовой последовательности (теорема 3.1 глава 2), теорема об арифметических операциях над сходящимися последовательностями (теорема 3.5 глава 2) и теорема о сжатой последовательности (теорема 3.4 глава 2).

Замечание 2.1. Теоремы 2.1 - 2.3 верны также и в случае, когда под *а* понимается один из символов ∞, + ∞ или − ∞.

Теорема 2.4 (об ограниченности функции, имеющий предел в точке). Если функция f(x) имеет предел при $x \to a$, то существует некоторая достаточно малая проколотая окрестность точки a, в которой эта функция ограничена.

▶Пусть $\lim_{x\to a} f(x) = A$. Тогда для $\forall \ \epsilon > 0$ $\exists \ \delta(\epsilon) > 0$: неравенство $|f(x) - A| < \epsilon$ или $A - \epsilon < f(x) < A + \epsilon$ верно для $\forall x \in U_{\delta}(a) \subset D(f)$ верно (определение предела функции в точке по Коши – определение 1.2). Положив $\epsilon = 1$, заключаем, что неравенство A - 1 < f(x) < A + 1 выполняется для $\forall x \in U_{\delta}(a)$, а это и означает, что функция f(x) ограничена в $U_{\delta}(a)$ – проколотой окрестности точки a. \blacktriangleleft

Теорема 2.5 (о сохранении знака функции, имеющей предел в точке). Если функция f(x) имеет отличный от нуля предел в точке a, то существует некоторая достаточно малая проколотая окрестность точки a, в которой значения функции сохраняют знак её предела.

▶Пусть $\lim_{x\to a} f(x) = A \neq 0$, для $\forall \ \epsilon > 0 \ \exists \ \delta(\epsilon) > 0$: неравенство $|f(x) - A| < \epsilon$ или $A - \epsilon < f(x) < A + \epsilon$ верно для $\forall x \in U_\delta(a)$ (определение 1.2). При $\epsilon = |A|$ получаем неравенство: A - |A| < f(x) < A + |A|, справедливое для $\forall x \in U_\delta(a)$. При A < 0 из него следует: 2A < f(x) < 0, а при A > 0 имеем: 0 < f(x) < 2A.

0

Два последних неравенства выполняются для $\forall x \in U_{\delta}(a)$, т. е. найдена проколотая окрестность, а именно, $U_{\delta}(a)$, где функция имеет знак своего предела. \blacktriangleleft

Теорема 2.6 (о замене переменной при вычислении пределов или о пределе сложной функции). Если существуют пределы $\lim_{x\to a} \varphi(x) = b$ и $\lim_{y\to b} f(y) = A$, при этом $\varphi(x) \neq b$ в некоторой проколотой окрестности U(a) точки a, то на U(a) определена сложная функция $f(\varphi(x))$, которая имеет предел при $x\to a$, при этом справедливо равенство: $\lim_{x\to a} f(\varphi(x)) = \lim_{y\to b} f(y) = A$.

► Из существования пределов функций $\varphi(x)$ при $x \to a$ и f(y) при $y \to b$ следует, что эти функции определены на некоторых проколотых окрестностях U(a) и U(b), причём для $x \in U(a)$ значение функции $y = \varphi(x) \in U(b)$. Таким образом, на U(a) определена сложная функция $f(\varphi(x))$.

Пусть $\{x_n\} \subset U(a)$ — любая последовательность, сходящаяся к a. В силу определения предела функции в точке по Гейне (определение 1.1) последовательность $\{y_n\}$, где $y_n = \varphi(x_n)$, сходится к b, при этом $y_n \in U(b)$. Поэтому последовательность $\{f(y_n)\} = \{f(\varphi(x_n))\}$ сходится к A (определение 1.1), а это и означает, что $\lim_{x\to a} f(\varphi(x)) = \lim_{y\to b} f(y) = A$.

Замечание 2.2. При вычислении пределов полезна теорема: "Любая элементарная функция f(x), определённая в некоторой окрестности точки x_0 , имеет в этой точке предел, равный $f(x_0)$ (т.е. $\exists \lim_{x \to x_0} f(x) = f(x_0)$)". Она выражает свойство непрерывности элементарной функции, определённой на некотором промежутке (теорема 5.1 главы 4).

Пример 2.1. Вычислить $\lim_{x\to 4} (x^2 - 8)/\log_2 x$.

▶Пусть $f(x) = x^2 - 8$, $g(x) = \log_2 x$. Данные функции элементарные, определённые в некоторой окрестности точки x = 4, поэтому в силу замечания 2.2, $\lim_{x \to 4} f(x) = f(4) = 8$, $\lim_{x \to 4} g(x) = g(4) = \log_2 4 = 2$. Отсюда $\lim_{x \to 4} f(x)/g(x) = 8/2 = 4$ (теорема 2.2). ◀