近世代数 (抽象代数) 笔记

管清文

2020年3月2日

目录

1	基本概念	1
	1.1 代数运算	1
	1.2 同态	2
2	群	2
3	环	2
4	域	2
5	TODO	2

1 基本概念

1.1 代数运算

注意 1 近世代数 (或抽象代数) 的主要内容就是研究所谓代数系统,即带有运算的集合。

定义 2 (映射)

$$A_1 \times A_2 \times \dots \times A_n \to D$$

 $(a_1, a_2, \dots, a_n) \mapsto d = \phi(a_1, a_2, \dots, a_n) = \overline{(a_1, a_2, \dots, a_n)}$

注意 3 判断一个法则 ϕ 是映射的充要条件: (i) 都有象 (ii) 象唯一.

定义 4 (代数运算)

$$A \times B \to D$$

 $(a,b) \mapsto d = \phi(a,b) = \circ(a,b) = a \circ b$

注意 5 A = B 时,对于代数运算 $A \times A \rightarrow D$, $a \circ b$ 和 $b \circ a$ 都有意义,但不一定相等.

定义 6 (A 的代数运算, 二元运算) 假如 \circ 是一个 $A \times A \to A$ 的代数运算 (即 A = B = D), 我们说集合 A 对于代数运算 \circ 来说是闭的, 也说, \circ 是A 的代数运算或二元运算.

定义 7 (结合率) 我们说,一个集合 A 的代数运算 \circ 适合结合律,假如对于 A 的任何三个元 a,b,c 来说都有

$$(a \circ b) \circ c = a \circ (b \circ c)$$

定义 8 假如对于 A 的 n $(n \geq 2)$ 个固定的元素 a_1, a_2, \cdots, a_n 来说,所有的加括号方式 $\pi(a_1 \circ a_2 \circ \cdots \circ a_n)$ 都相等,我们就把这些步骤可以得到的唯一的结果,用 $a_1 \circ a_2 \circ \cdots \circ a_n$ 来表示.

定理 9 若 A 的代数运算 \circ 满足结合律,则对于 A 的任意 $n(n \ge 2)$ 个元素 a_1, a_2, \dots, a_n 来说,对于任意的加括号的方法 $\pi, \pi(a_1 \circ a_2 \circ \dots \circ a_n)$ 都相等, $a_1 \circ a_2 \circ \dots \circ a_n$ 也就总有意义.

定义 10 A 上的二元运算 \circ , $a \circ b = b \circ a(a \vdash b)$ 可交换) $\forall a,b \in A$ 成立,则称 \circ 满足交换律.

定理 11 若 A 上的二元运算 \circ 满足结合律与交换律,则 $a_1 \circ a_2 \circ \cdots \circ a_n$ 可以任意交换顺序.

定义 12 \odot , \oplus 都是 A 上的二元运算,

- 若 $b\odot(a_1\oplus a_2)=(b\odot a_1)\oplus(b\odot a_2), \forall b,a_1,a_2,$ 则称 \odot,\oplus 满足第一分配率.
- $\ddot{\pi}$ $(a_1 \oplus a_2) \odot b = (a_1 \odot b) \oplus (a_2 \odot b), \forall b, a_1, a_2,$ 则称 \odot, \oplus 满足第二分配率.

定理 13 若 A 上的二元运算 \oplus 满足结合律, \odot , \oplus 满足第一分配率, 则

$$b\odot(a_1\oplus a_2\oplus\cdots\oplus a_n)=(b\odot a_1)\oplus(b\odot a_2)\oplus\cdots\oplus(b\odot a_n)$$

1.2 同态

定义 14 (满射) 映射 $\phi: A \to \bar{A}$ 被称为满射, 如果 $\forall \hat{a} \in \bar{A}, \exists a \in A \ s.t. \ \bar{a} = \hat{a}. \ (\phi^{-1} \ \text{都有象})$

定义 15 (单射) 映射 $\phi: A \to \bar{A}$ 被称为**单射**, 如果 $\forall a, b \in A, a \neq b \Rightarrow \bar{a} \neq \bar{b}$. $(\phi^{-1}$ 象唯一)

定义 16 (一一映射) 既是满射又是单射.

注意 17 判断一个法则 ϕ 是一一映射的充要条件: (i) 都有象 (ii) 象唯一 (iii) 满的 (iv) 单的.

定义 18 (变换) 从 A 到 A 的映射 $\phi: A \rightarrow A$ 叫 A 上的变换.

- 如果 ϕ 是满的,则称为**满变换**.
- 如果 ϕ 是单的,则称为**单变换**.
- 如果 ϕ 是一一的,则称为一一**变换**.

定义 19 (同态映射) 对于 $\phi: A \to \bar{A}$, A 上有二元运算 \circ , \bar{A} 上有二元运算 $\bar{\circ}$. 如果 $\overline{a \circ b} = \bar{a} \bar{\circ} \bar{b}$, 则称 ϕ 是 A 到 \bar{A} 的同态映射.

注意 20 (同态映射判别) 判断一个法则 ϕ 是同态映射的充要条件:

$$(i)$$
 都有象 (ii) 象唯一 (iii) $\overline{a \circ b} = \bar{a} \bar{\circ} \bar{b}$

- 2 群
- 3 环
- 4 域

5 TODO

• 括号斜体难看