数字电路与逻辑设计实验报告

学院:数据科学与计算机学院专业:软件工程姓名:张伟焜学号:17343155

实验名称:组合逻辑电路分析与设计

预习报告

实验内容 2:

用八一数据选择器 151 设计一个函数发生器电路。功能如书上的表(五)

1.真值表:

S1	S0	Α	В	Υ
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

2.由真值表可得表达式:

 $Y = \overline{S_{1}} \, \overline{S_{0}} \, A \, B + \overline{S_{1}} \, S_{0} \, \bar{A} \, B + \, \overline{S_{1}} \, S_{0} \, A \, \bar{B} + \, \overline{S_{1}} \, S_{0} \, A \, B + S_{1} \, \overline{S_{0}} \, \bar{A} \, B + \, S_{1} \, \overline{S_{0}} \, A \, \bar{B} + \, S_{1} \, S_{0} \, \bar{A} \, \bar{B} + \, \bar{A}_{1} \, \bar{A} \, \bar$

3.74S151 的表达式:

 $\mathbf{Y} = \overline{\mathbf{C}} \; \overline{\mathbf{B}} \; \overline{\mathbf{A}} \; F_0 + \overline{\mathbf{C}} \; \overline{\mathbf{B}} \; A \; F_1 + \; \overline{\mathbf{C}} \; \mathbf{B} \; \overline{\mathbf{A}} \; F_2 + \; \overline{\mathbf{C}} \; \mathbf{B} \; A \; F_3 + C \; \overline{\mathbf{B}} \; \overline{\mathbf{A}} \; F_4 + \; C \; \overline{\mathbf{B}} \; A \; F_5 + \; C \; \mathbf{B} \; \overline{\mathbf{A}} \; F_6 + \; C \; \mathbf{B} \; A \; F_7$

4.由上述两式可得:

令 C = S1, B = S0, A = A 作为前三个输入

(74S151 表达式中 F0~F7 对应 proteus 元件 74S151 中的 X0~X7)

F0 = F7 = 0; F1 = F2 = F4 = B; F3 = F6 = 1; $F5 = \sim B$

5.Proteus 仿真电路:

6.逻辑分析仪结果:

波形对应 (真值表)

A0: S1

A1: S0

A2: A

A3: B

A4: Y

实验报告

一、实验内容1

实验内容:用 74LS138 设计数据分配器。输入为 D,地址信号为 A B C,将 D 按地址非配到 八路输出 F0 F1 F2 F3 F4 F5 F6 F7.其真值表如表(四)所示。

1.真值表

С	В	А	F0	F1	F2	F3	F4	F5	F6	F7
0	0	0	D	1	1	1	1	1	1	1
0	0	1	1	D	1	1	1	1	1	1
0	1	0	1	1	D	1	1	1	1	1
0	1	1	1	1	1	D	1	1	1	1
1	0	0	1	1	1	1	D	1	1	1
1	0	1	1	1	1	1	1	D	1	1
1	1	0	1	1	1	1	1	1	D	1
1	1	1	1	1	1	1	1	1	1	D

3.Proteus 仿真

4.逻辑分析仪结果:(D=1即 E1=1时的波形图)

二、实验内容2

实验内容:用八一数据选择器 151 设计一个函数发生器电路。功能如书上的表(五)

1.真值表(见预习报告) 2.表达式(见预习报告)

3.Proteus 仿真:

4.逻辑分析仪:

波形对应 (真值表)

A0: S1

A1: S0

A2: A

A3: B

A4: Y

5.实验箱连线:

6.波形图:

7.Basys3 板实现:

clk_in 接 W5 作为时钟输入。clk_div 调节参数为 99999999N,使时钟输入为 1Hz Q 作为输出接 LED 灯。

GROUND 和 H 接拨码开关 分别置于低电平和高电平。

三、实验内容3

实验内容:设计一个半加半减器,输入为 S,A,B,其中 S 为功能选择口。当 S=0 时,输出 A+B 及进位;当 S=1 时,输出 A-B 及借位。

1.真值表

表达式	开关 S	输入 A	输入 B	输出 Y	进位/借位 I/O
A+B	0	0	0	0	0
A+B	0	0	1	1	0
A+B	0	1	0	1	0
A+B	0	1	1	0	1
A-B	1	0	0	0	0
A-B	1	0	1	1	1
A-B	1	1	0	1	0
A-B	1	1	1	0	0

2.表达式

 $Y = \overline{S} \overline{A} B + \overline{S} A \overline{B} + S \overline{A} B + S A \overline{B}$ $I|O = \overline{S} A B + S \overline{A} B$

3. 卡诺图化简

 $Y = \overline{A} B + A \overline{B}$ $I|O = \overline{S} A B + S \overline{A} B$

4.Proteus 仿真及逻辑分析仪结果:

1) 利用卡诺图化简后只是用门电路实现

2) 使用 74LS138 实现

3) 使用 74LS151 实现

实验过程所得:

<

这次的数电实验内容较多,比前几次的复杂了不少。实验内容三的三种方法让我意识到, 一个任务是能够有多种解法的,这启示我要多角度看待问题。同时,在实验过程中,我发现 一些数据输入口 ABC 的顺序很容易搞混,还有一些需要固定接低电平或高电平的选通输入 端需要牢记。