Segundo Certamen

Introducción a la Informática Teórica

20 de junio de 2001

- 1. Determine cuáles de los siguientes conjuntos son lenguajes de contexto libre sobre $\Sigma = \{a, b, c\}$. Justifique brevemente sus respuestas.
 - a) $\{a^{n^2} : n \ge 1\}$
 - b) $\{a^ib^jc^k: i=j \circ j \neq k\}$
 - c) $\{a^m b^n a^m c^n : m \ge 1 \text{ y } n \ge 1\}$
 - d) El conjunto de strings que contienen tres a separadas únicamente por b
 - e) El conjunto de strings sobre $\Sigma = \{a, b, c\}$ con igual número de a que la suma de los b y los c (o sea, por ejemplo contiene 5 a, 3 b y 2 c en cualquier orden)

(35 puntos)

- 2. Clasifique las gramáticas siguientes en la jerarquía de Chomsky:
 - a) $S \rightarrow aA$, $A \rightarrow aA|Bc$, $B \rightarrow b$
 - b) $S \rightarrow aSa|\epsilon$
 - c) $S \rightarrow aA|bB, A \rightarrow bA|aB, B \rightarrow c|d$
 - d) $S \rightarrow aAbBc$, $Ab \rightarrow bbA$, $ABc \rightarrow cBa$
 - e) $S \rightarrow aABc$, $A \rightarrow bc|Ab$, $B \rightarrow Ad$

(15 puntos)

3. Construya un autómata de stack que acepte el conjunto de los palíndromos sobre $\Sigma = \{a, b, c\}$, vale decir, el lenguaje $\mathcal{L} = \{\sigma : \sigma^R = \sigma\}$

(25 puntos)

- 4. Encuentre una gramática para el lenguaje sobre $\Sigma = \{a,b,c\}, \ \mathcal{L} = \{a^ib^jc^k : i=j \ o \ i=k\}$ (25 puntos)
- 5. Esboze una construcción basada en autómatas que demuestre que los lenguajes aceptados por autómatas linealmente acotados son cerrados respecto de intersección con conjuntos regulares.

 (20 puntos)