Application No.: 10/800,022

AMENDMENTS

Please replace all prior versions and listings of claims with the amended claims as follows:

IN THE CLAIMS

1-51. (previously canceled)

52. (previously amended) A compound of formula (II):

$$X_1$$
 C_1 F_3C B OH (II);

or a pharmaceutically acceptable salt thereof, wherein:

 C_1 is H, aryl, heterocyclic, heteroaryl, aliphatic, $C(O)R^2$, $C(O)R^3$, $C(O)NH_2$, $C(O)NH_2$, $C(O)NH_3$, $C(O)N(R^2)_2$, $C(O)N(R^3)_2$;

 X_1 is selected from halo, R^2 , CF_3 , CN, COOH, COOR, C(O)R, $C(O)NH_2$, $C(O)NH_2$, or $C(O)N(R)_2$;

each R is independently R² or R³;

wherein each of ring B, optionally including X_1 and OH, and C_1 optionally comprises up to 4 substituents, and ring A optionally comprises up to 3 substituents, wherein said substituents are independently selected from R^1 , R^2 , R^3 , R^4 , or R^5 ;

 R^1 is R^6 or $(CH_2)_n$ -Y;

n is 0, 1 or 2;

Y is halo, CN, NO₂, CF₃, CHF₂, CH₂F,

Application No.: 10/800,022

OCF₃, OH, SCHF₂, SR⁶, S(O)R⁶, SO₂R⁶, NH₂, NHR⁶, N(R⁶)₂, NR⁶R⁸, COOH, COOR⁶ or OR⁶; or

two R¹ on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 R^2 is aliphatic, wherein each R^2 optionally comprises up to 2 substituents independently selected from R^1 , R^4 , or R^5 ;

 R^3 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from R^1 , R^2 , R^4 or R^5 ;

 $R^4 \text{ is } OR^5, OR^6, OC(O)R^6, OC(O)R^5, OC(O)OR^6, OC(O)OR^5, OC(O)N(R^6)_2, \\ OC(O)N(R^5)_2, OC(O)N(R^6R^5), OP(O)(OR^6)_2, OP(O)(OR^5)_2, OP(O)(OR^6)(OR^5), SR^6, SR^5, \\ S(O)R^6, S(O)R^5, SO_2R^6, SO_2R^5, SO_2N(R^6)_2, SO_2N(R^5)_2, SO_2NR^5R^6, SO_3R^6, SO_3R^5, \\ C(O)R^5, C(O)OR^5, C(O)R^6, C(O)OR^6, C(O)N(R^6)_2, C(O)N(R^5)_2, C(O)N(R^5R^6), \\ C(O)N(OR^6)R^6, C(O)N(OR^5)R^6, C(O)N(OR^6)R^5, C(O)N(OR^5)R^5, C(NOR^6)R^6, C(NOR^6)R^5, \\ C(NOR^5)R^6, C(NOR^5)R^5, N(R^6)_2, N(R^5)_2, N(R^5R^6), NR^5C(O)R^5, NR^6C(O)R^6, \\ NR^6C(O)R^5, NR^6C(O)OR^6, NR^5C(O)OR^6, NR^6C(O)OR^5, NR^5C(O)OR^5, NR^6C(O)N(R^6)_2, \\ NR^6C(O)NR^5R^6, NR^6C(O)N(R^5)_2, NR^5C(O)N(R^6)_2, NR^5C(O)NR^5R^6, NR^5C(O)N(R^5)_2, \\ NR^6SO_2R^6, NR^6SO_2R^5, NR^5SO_2R^5, NR^6SO_2N(R^6)_2, NR^6SO_2NR^5R^6, NR^6SO_2N(R^5)_2, \\ NR^5SO_2NR^5R^6, NR^5SO_2N(R^5)_2, N(OR^6)R^6, N(OR^6)R^5, N(OR^5)R^5, N(OR^5)R^6, \\ P(O)(OR^6)N(R^6)_2, P(O)(OR^6)N(R^5R^6), P(O)(OR^6)N(R^5)_2, P(O)(OR^5)N(R^5R^6), \\ P(O)(OR^5)N(R^6)_2, P(O)(OR^5)N(R^5)_2, P(O)(OR^6)_2, P(O)(OR^5)_2, Or P(O)(OR^6)(OR^5); \\ \end{array}$

 ${\sf R}^5$ is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3 ${\sf R}^1$ substituents;

R⁶ is H or aliphatic, wherein R⁶ optionally comprises a R⁷ substituent;

Application No.: 10/800,022

 R^7 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each R^7 optionally comprising up to 2 substituents independently chosen from H, (C₁-C₆)-straight or branched alkyl, (C₂-C₆) straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or (CH₂)_n-Z;

Z is selected from halo, CN, NO₂, CHF₂, CH₂F,
CF₃, OCF₃, OH, SCHF₂, S-aliphatic, S(O)-aliphatic, SO₂-aliphatic, NH₂, N-aliphatic,
N(aliphatic)₂, N(aliphatic)R⁸, COOH, C(O)O(-aliphatic), or O-aliphatic; and
R⁸ is an amino protecting group.

- 53. (previously canceled)
- 54. (previously amended) The compound according to claim 53, wherein X_1 is selected from (C1-C4) aliphatic, or C(O) NH₂ \underline{F} .
 - 55. (previously amended) A compound having formula (III):

$$X_2$$
 $HN-N$
 X_3
 OH
(III);

or a pharmaceutically acceptable salt thereof, wherein:

 X_2 is selected from halo, R^2 , CF_3 , CN, COOH, $COOR^2$, $COOR^3$, $COOR^3$, $COOR^3$, $COONH_2$,

 X_3 is selected from H, halo, CF₃, or NO₂; each R is independently R^2 or R^3 ;

Application No.: 10/800,022

 R^1 is oxo, R^6 or $(CH_2)_n$ -Y;

n is 0, 1 or 2;

Y is halo, CN, NO₂, CHF₂, CH₂F, CF₃, OCF₃, OH, SCHF₂, SR⁶, S(O)R⁶, SO₂R⁶, NH₂, NHR⁶, N(R⁶)₂, NR⁶R⁸, COOH, COOR⁶ or OR⁶; or

two R¹ on adjacent ring atoms, taken together, form 1,2-methylenedioxy, 1,2-difluoromethylenedioxy, or 1,2-ethylenedioxy;

 R^2 is aliphatic, wherein each R^2 optionally comprises up to 2 substituents independently selected from R^1 , R^4 , or R^5 ;

 R^3 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally comprising up to 3 substituents, independently selected from R^1 , R^2 , R^4 or R^5 ;

 $R^4 \text{ is } OR^5, OR^6, OC(O)R^6, OC(O)R^5, OC(O)OR^6, OC(O)OR^5, OC(O)N(R^6)_2, \\ OC(O)N(R^5)_2, OC(O)N(R^6R^5), OP(O)(OR^6)_2, OP(O)(OR^5)_2, OP(O)(OR^6)(OR^5), SR^6, SR^5, \\ S(O)R^6, S(O)R^5, SO_2R^6, SO_2R^5, SO_2N(R^6)_2, SO_2N(R^5)_2, SO_2NR^5R^6, SO_3R^6, SO_3R^5, \\ C(O)R^5, C(O)OR^5, C(O)R^6, C(O)OR^6, C(O)N(R^6)_2, C(O)N(R^5)_2, C(O)N(R^5R^6), \\ C(O)N(OR^6)R^6, C(O)N(OR^5)R^6, C(O)N(OR^6)R^5, C(O)N(OR^5)R^5, C(NOR^6)R^6, C(NOR^6)R^5, \\ C(NOR^5)R^6, C(NOR^5)R^5, N(R^6)_2, N(R^5)_2, N(R^5R^6), NR^5C(O)R^5, NR^6C(O)R^6, \\ NR^6C(O)R^5, NR^6C(O)OR^6, NR^5C(O)OR^6, NR^6C(O)OR^5, NR^5C(O)OR^5, NR^6C(O)N(R^6)_2, \\ NR^6C(O)NR^5R^6, NR^6C(O)N(R^5)_2, NR^5C(O)N(R^6)_2, NR^5C(O)NR^5R^6, NR^5C(O)N(R^5)_2, \\ NR^6SO_2R^6, NR^6SO_2R^5, NR^5SO_2R^5, NR^6SO_2N(R^6)_2, NR^6SO_2NR^5R^6, NR^6SO_2N(R^5)_2, \\ NR^5SO_2NR^5R^6, NR^5SO_2N(R^5)_2, N(OR^6)R^6, N(OR^6)R^5, N(OR^5)R^5, N(OR^5)R^6, \\ P(O)(OR^6)N(R^6)_2, P(O)(OR^6)N(R^5R^6), P(O)(OR^6)N(R^5)_2, P(O)(OR^5)N(R^5R^6), \\ P(O)(OR^5)N(R^6)_2, P(O)(OR^5)N(R^5)_2, P(O)(OR^6)_2, P(O)(OR^5)_2, Or P(O)(OR^6)(OR^5); \\ \end{array}$

R⁵ is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring optionally optionally comprising up to 3 R¹ substituents;

Application No.: 10/800,022

R⁶ is H or aliphatic, wherein R⁶ optionally comprises a R⁷ substituent;

 R^7 is a cycloaliphatic, aryl, heterocyclic, or heteroaryl ring and each R^7 optionally comprising up to 2 substituents independently chosen from H, (C₁-C₆)-straight or branched alkyl, (C₂-C₆) straight or branched alkenyl or alkynyl, 1,2-methylenedioxy, 1,2-ethylenedioxy, or (CH₂)_n-Z;

Z is selected from halo, CN, NO2, CHF2, CH2F,

CF3, OCF3, OH, SCHF2, S-aliphatic, S(O)-aliphatic, SO2-aliphatic, NH2, N-aliphatic,

N(aliphatic)₂, N(aliphatic)R⁸, COOH, C(O)O(-aliphatic, or O-aliphatic; and

 R^8 is an amino protecting group; provided that:

- (i) when X_3 is H, then X_2 is not methyl, chloro, or bromo;
- (ii) when X_2 is chloro, then X_3 is not fluoro, chloro, or nitro;
- (iii)when X_2 is methyl, then X_3 is not nitro or chloro.

56-82. (previously canceled)

83. (previously amended) A compound selected from IA-6, IA-7, IA-20, IA-26, IA-31, IA-42, IA-50, IA-54, IA-61, IA-64, IA-76, IA-92, IA-95, or IA-107.

Application No.: 10/800,022

$$F_3C$$
 $IA-6$
 $IA-7$
 $IA-20$
 $IA-26$

Application No.: 10/800,022

Application No.: 10/800,022

$$\begin{array}{c|c}
 & & & & \\
 & & & & \\
 & & & & \\
\hline
 & & & & \\
\hline$$

HO'

Application No.: 10/800,022

- 84. (canceled)
- 85. (previously presented) A compound of formula (I):

$$A \xrightarrow{\qquad \qquad } B$$

$$X \qquad \qquad (I)$$

or a pharmaceutically acceptable salt thereof; wherein:

Application No.: 10/800,022

A is
$$X_2$$
OH; wherein X_2 is halogen;

B is ; wherein
$$X_3$$
 is H, halo, CF_3 , or NO_2 ,

C is H;

X is H; and

provided that when X_3 is H, X_2 is not Cl.

86. (previously presented) The compound according to claim 85, wherein said compound has one or more of the features selected from the group:

- (a) X_3 is halo, CF_3 , or NO_2 ; and
- (b) X₂ is halo.

87. (new) A pharmaceutical composition comprising a compound according to any one of claims 52, 55, 83, 85, and 86, and a pharmaceutically acceptable carrier or adjuvant.