Introduction à la logique des propositions et des prédicats

I) Les propositions:

 Proposition: tout énoncé dont on peut décider s'il est vrai ou faux.

• Exemples:

- « 2+2=4 » est une proposition vraie
- **^{\prime\prime} 2+2=5 ^{\prime\prime}** est une proposition fausse.
- « la terre est ronde »: proposition vraie
- -« 5+3 » n'est pas une proposition.

Parmi les assertions suivantes, lesquelles sont des propositions ?

- 1) < 3+x > 5 >
- 2) « cette phrase est un mensonge »
- 3) « Il a plu sur Sète le 16 juillet 1637 »
- 4) « 4≤3 »

Valeur de vérité

A chaque proposition **P** on peut associer sa **valeur de vérité**, notée **v(P)** :

II) Les connexions:

- Les **connexions** permettent de construire d'autres propositions à partir de propositions données.
- Les 5 principaux connecteurs sont:

```
− ¬ : la négation
```

Λ : la conjonction (« et »)

V: la disjonction (« ou non exclusif »)

− ⇒ : l'implication

- ⇔ : l'équivalence.

 On associe à chaque connecteur une table de vérité.

La négation

On lit:

Quand P est vrai alors ¬P est faux

Quand P est faux alors ¬P est vrai

la conjonction

P	Q	$\mathbf{P} \wedge \mathbf{Q}$
V	V	V
V	F	F
F	V	F
F	F	F 7

la disjonction

Р	Q	PVQ
V	V	V
V	F	V
F	V	V
F	F	F 8

Attention : la disjonction « mathématique » est non exclusive

(contrairement au « ou » de la langue française, comme dans l'expression « boire ou conduire »)

l'implication

P	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V 10

l'équivalence

P	Q	P ⇔ Q
V	V	V
V	F	F
F	V	F
F	F	V 11

III) Formules logiquement équivalentes:

- Une forme propositionnelle (ou une formule)
 est une expression formée de variables p, q, r
 ... pouvant prendre les valeurs V ou F, de
 connecteurs et de parenthèses.
- A chaque formule on peut associer une table de vérité.

Exemple: (p∧q)⇒¬r

Table de vérité de la formule (p∧q)⇒¬r

				\ -	• 7
p	q	r	(p _v q)	¬r	(p∧q)⇒¬r
V	V	V	V	F	F
V	V	F	V	V	V
V	F	V	F	F	V
V	F	F	F	V	V
F	V	V	F	F	V
F	V	F	F	V	V
F	F	V	F	F	V

 On dit que deux « formules » sont logiquement équivalentes ssi elles ont la même table de vérité.

• Exemples:

 $(p\Rightarrow q)$, $(\neg p \lor q)$ et $(\neg q \Rightarrow \neg p)$ sont 3 formules logiquement équivalentes.

Formules logiquement équivalentes usuelles commutativité: P19=91P PV9=9VP associativité: $\int (p \cdot q) \Lambda \pi = p \cdot (q \cdot 1 \tau)$ $p \cdot (q \cdot V \tau) = (p \cdot V q) V \tau$ distributivité $\begin{cases} p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r) \end{cases}$ $7(7P) \equiv P$ $(p \Rightarrow q) \equiv (7q \Rightarrow 7p) \equiv 7pVq$ $7(p \Rightarrow q) \equiv (p \land 7q)$ $(p \Leftarrow > q) \equiv (p = >q) \land (q = > p)$ De Morgan: 7 (p19) = 7 p V 79 7(pVq) = 7p17q

Tautologie: formule toujours vraie ex: pV(7p)

Quelques tautologies utiles:

ex: read => read vreB => readB

2 (PAq)=>P

exe: DE EADB (=> DE EAD DE B =) DE EA

(3)
$$[(p \Rightarrow q) \land (q \Rightarrow t)] \Rightarrow (p \Rightarrow t)$$

(en général on évrit $p \Rightarrow q \Rightarrow t$)

- A) On soit que le patient à la rougede : on en déduit qu'il a da la température et des boutons 3
- On observe que le patient n'a pas de boutans. On en déduit que ce n'est pas la rougede (8)

IV) Prédicats

 <u>Un prédicat</u> est un énoncé contenant une ou plusieurs variables et dont la valeur de vérité dépend de ces variables. On le représente par un symbole (P, Q, R ...) suivi de la liste de ses variables entre parenthèses.

• Exemple:

- P(n): « n est un nombre pair » est un prédicat,
- P(3) est une **proposition** fausse.
- P(2) est une **proposition** vraie.

Quantificateurs:

 A partir d'un prédicat P(x) et d'un ensemble E on peut définir 2 propositions à l'aide des quantificateurs ∀,∃ :

- ($\forall x \in E$, P(x)): cette *proposition* est vraie **ssi** P(x) est vraie pour **tous** les x dans E.

- ∃x∈E, P(x)): : cette *proposition* est vraie ssi il existe au moins un élément x de E pour lequel P(x) est vrai.

 \neg ($\forall x \in E, P(x)$) et $\exists x \in E, \neg P(x)$ ont la même valeur de vérité.

 \neg ($\exists x \in E P(x)$) et $\forall x \in E, \neg P(x)$ ont la même valeur de vérité.

Exemples:

•

P: $\forall x \in IR, x^2 \geq x$.

 Cette proposition est fausse. Il suffit de prendre le contre-exemple x= 0,5.

La négation de P peut s'écrire:

 \neg **P**: ∃x∈IR, x² < x. (proposition vraie)

Exemples

 Soit E l'ensemble E={1, 2, 3, 4}, et la proposition:

Cette proposition est donc vraie.

Sa négation s'écrit:

 $\exists x \in E, \forall y \in E, x + y \neq 5.$ (proposition fausse).

Exemple:

• En inversant les quantificateurs de la proposition précédente on obtient une proposition **fausse**:

 $\exists y \in E, \ \forall x \in E, \ x+y=5$

Exercice:

 Soit E={0,1,2,3,4} un ensemble.
 Donner les valeurs de vérité des propositions suivantes:

```
-1) \forall x \in E, \exists y \in E, x \cdot y = 0
```

$$-2)$$
 $\exists y \in E$, $\forall x \in E$ $x \times y = 0$

V) Quelques méthodes pour le raisonnement:

- A) <u>Avec les propositions</u>:
 - -1) Le « modus-ponens »:
 - Si on sait que P est vraie et que (P⇒Q) est vraie on peut en déduire que Q est vraie.

- -2) Disjonction de cas
 - Si on sait que (P⇒Q) est vraie et que (¬ P⇒Q) est vraie on peut en déduire que Q est vraie.

- 3) La contraposée:
 - $-(p\Rightarrow q)$ est logiquement équivalent à $(\neg q \Rightarrow \neg p)$

- 4) Transitivité de l'implication:
 - Si (P⇒Q) est vraie et (Q⇒R) est vraie alors
 (Q⇒R) est vraie.

B) Propositions de la forme $\forall x \in E, P(x)$

- 1)Si $E=\{x_1,x_2,...,x_n\}$ est un ensemble fini:
 - on montre que $P(x_1)^{\wedge}P(x_2)^{\wedge} \dots ^{\wedge} P(x_n)$ est vraie.

- 2) Si E est infini:
 - on fait un raisonnement littéral.

- 3) Par disjonction de cas:
 - Si E = A∪B on montre que $(\forall x \in A, P(x))^{\land}(\forall x \in B, P(x))$ est vraie.

- 4) Par l'absurde:
 - On montre que supposer la négation vraie (i.e. $\exists x \in E$, $\neg P(x)$) conduit à une absurdité.

• 5) La récurrence: sera vue en TD.

- Remarque:
 - Pour démontrer que ∀x∈E, P(x) est fausse il suffit d'un seul contre-exemple.

C) Démontrer une proposition de la forme ∀x∈E, P(x)⇒Q(x)

- 1) principe:
 - Il suffit de vérifier que pour les x∈E tels que
 P(x) est vraie alors Q(x) est vraie. Les autres cas sont inutiles.

- 2) Transitivité:
 - si $\forall x \in E$, $P(x) \Rightarrow R(x)$ et $\forall x \in E$, $R(x) \Rightarrow Q(x)$ sont vraies alors $\forall x \in E$, $P(x) \Rightarrow Q(x)$ est vraie.

Exemples:

• 1) $\forall x \in IR$, $(3x^2-3x-1>0) \Rightarrow (x^2+1>0)$.

• 2) $\forall x \in IR$, $(3x^2-3x-1>0) \Rightarrow (x \neq 0)$

• 3) $\forall x \in IR$, $(3x-1=0) \Rightarrow ((x=1/3)^{\lor}(x=0))$