Kaggle 다중 분류 모델 대회

정소영

목차

- 1. 대회 소개
- 2. 탐색적 자료분석
- 3. 머신러닝 주요 알고리즘 소개
- 4. 모델 평가
- 5. 결론 및 리뷰

대회명	비만 위험의 다 중 분류 예측
목표	심혈관 질환과 관련된 개인의 비만 위험을 예측하기 위해서 다양한 요소 활용

◆ 대회 개요

대회 타임라인	February 1, 2024~February 29, 2024, 11:59 PM UTC
상금	Choice of Kaggle merchandise
참여 기간	7 days(February 23, 2024~February 29, 2024)
참여자 수	1
등수	2038/3587
Kaggle Notebook	https://www.kaggle.com/code/jeosoyoung/obesity-risk?scriptVersionId=164855698

◆ 데이터셋 소개

Data	description		Data	description		
Id	id	아이디	CAEC	Consumption of food between meals	식사 사이의 음식 섭취	
Gender	Gender	성별	SMOKE	Smoke	흡연	
Age	Age	나이	CH2O	Consumption of water daily	하루 물 소비	
Height	Height is in meter	키(미터)	SCC	Calories consumption monitoring	열량소비량 모니터링	
Weight	Weight is between 39 to 165	몸무게(39~165)	FAF	Physical activity frequency	신체활동 빈도	
family_history_with_overweight	family history with overweight	과체중 가족력	TUE	Time using technology devices	전자기기 사용시간	
FAVC	Frequent consumption of high calorie food	고칼로리 음식을 자 주 소비하는가	CALC	Consumption of alcohol	알코올 소비	
FCVC	Frequency of consumption of vegetables	야채 섭취 빈도	MTRANS	Transportation used	이동수단 사용	
NCP	Number of main meals	주된 식사 횟수	NObeyesdad	(Target) Obesity	비만	

◆ 평가지표

Evaluation

Submissions are evaluated using the accuracy score.

평가지표 : **정확도** 점수

◆ 모델링 프로세스

◆ 시각화

N0beyesdad Obesity_Type_III 4046 Obesity_Type_II 3248 Normal_Weight 3082 Obesity_Type_I 2910 Insufficient_Weight 2523 Overweight_Level_II 2522 Overweight_Level_I 2427 Name: count, dtype: int64

> Nobeyesdad (타겟 데이터)

-> 가장 많은 사람들이 분포된 유형: Obesity_Type_III(19.5%)

◆ 시각화

Gender

Gender

Female 10422

Male 10336

Name: count, dtype: int64

family_history_with_overweight

family_history_with_overweight

yes 17014 no 3744

Name: count, dtype: int64

FAVC

FAVC

yes 18982 no 1776

Name: count, dtype: int64

Gender :남녀가 <mark>비슷한 분포</mark>를 보임

Family_history_with_overweight : 82.0%의 사람들이 과체중 가족력을 가짐

FAVC

: <mark>91.4%</mark>의 사람들이 고열량 음식 자주 섭취

◆ 시각화

CAEC

CAEC
Sometimes 17529
Frequently 2472
Always 478
no 279
Name: count, dtype: int64

CAEC

: <mark>84.4%</mark>가 식사 사이 음식을 '가끔' 섭취 1.3%<mark>가 식사 사이 음식을 먹지 않음</mark> **SMOKE**

SMOKE
no 20513
yes 245
Name: count, dtype: int64

SMOKE

: <mark>98.8%</mark>가 비흡연

SCC

no 20071 yes 687

Name: count, dtype: int64

SCC

: <mark>96.7%</mark>가 소비 칼로리를 신경쓰지 않음

◆ 시각화

CALC
Sometimes 15066
no 5163
Frequently 529
Name: count, dtype: int64

CALC : <mark>72.6%</mark>가 술(알코올)을 '가끔' 마심 <mark>2.5%</mark>가 자주 마심

MTRANS

MTRANS
Public_Transportation 16687
Automobile 3534
Walking 467
Motorbike 38
Bike 32
Name: count, dtype: int64

CALC : <mark>2.4%</mark>가 걷기/자전거타기로 이동 <mark>97.6%</mark>가 차량 통해 이동

3. 머신러닝 주요 알고리즘 소개

♦ LightGBM

특징

- 리프 중심 트리 분할(Leaf Wise) 방식 사용
- : 트리의 균형을 맞추지 않고 최대 손실 값을 가지는 리프 노드를 지속적으로 분할 〉 예측 오류 손실을 최소화할 수 있음(더 나은 정확도)
- 학습 시간과 메모리 사용량이 적음
- 카테고리형 피처의 자동 변환&최적 변환
- : 워-핫 인코딩 등과 같은 전처리 과정 없이 노드 분할 수행 가능
- 병렬 및 GPU 학습
- : 대용량 데이터에 대한 빠른 학습 가능

주요 파라미터

- learning_rate
- 0~1 사이 값 지정, 부스팅 스텝 반복적 수행 시 업데이트되는 학습률 값(기본값 0.1)
- max_depth
- : 0보다 작은 값 지정 시 깊이 제한 없음. LightGBM은 다른 트리보다 큰 깊이를 가짐.(기본값 -1)
- n_estimators(num_iterations)
- : 반복 수행하려는 트리의 개수를 지정. 클수록 예측 성능이 높아질 수 있지만 너무 크면 과적합으로 성능 저하될 가능성 있음(기본값 100)

3. 머신러닝 주요 알고리즘 소개

◆ Random Forest

특징

• 배깅의 대표적인 알고리즘

: 배깅은 같은 알고리즘으로 여러 개의 분류기를 만들어서 보팅으로 최종 결정하는 알고리즘임.

• 결정 트리의 부트스트랩 샘플링

: 각 트리는 원본 데이터셋에서 복원 추출된 부트스트랩 샘플을 사용해 학습되도 록 함.(여러 개의 데이터 세트가 중첩되게 분리됨)

병렬 학습

: 각 트리가 독립적으로 학습되므로 병렬 학습의 쉬운 구현 가능. 학습시간을 단축 하는 데 도움이 됨.

주요 파라미터

- n_estimators
- : 결정 트리의 개수 지정(기본값 10)
- max_features
- : 최적의 분할을 위해 고려할 최대 피처 개수(기본값 auto=sqrt)
- max_depth
- : 트리의 최대 깊이
- min_samples_split
- : 노드를 분할하기 위한 최소한의 샘플 데이터 수. 과적합을 제어
- min_samples_leaf
- : 분할이 될 경우 왼쪽과 오른쪽의 브랜치 노드에서 가져야 할 최소한의 샘플 데이터 수

4. 모델 평가

◆ 최종모델 선정 과정 (시나리오별 / 모델별)

모델	데이터 재가공	파생변수 유무	피처 엔지니어링	학습시간	정확도
LightGBM+RandomSearch(cv2)	Numerical Variables - Standardization		숫자/문자형 데이터 선택&분할	31.50 seconds	0.909
LightGBM+RandomSearch(cv5)	(StandardScaler), Nominal Variables -	X		1 min, 53.45 seconds	0.910
RandomFores+RandomSearch	OneHotEncoding			1 min, 2.27 seconds	0.887

◆ 최종모델

모델	학습시간	정확도	F1-Score	최종순위
LightGBM+RandomSearch(cv2)	31.50 seconds	0.909	0.90	2038/3587

최종 순위: 2038/3587 (Top 57%)

5. 결론 및 리뷰

데이터 분석

응답 결과를 두 분류로 나눌 수 있는(Yes/No, 먹음/안먹음 등) 데이터 : 과체중 가족력, 고열량 음식 섭취, 식사 사이 음식 섭취, 흡연여부, 소비 칼로리 체크, 음주 빈도, 이동수단 등

- → 8~90%정도는 한 쪽으로 분포 집중
- → 그럼에도 비만 단계는 각각 10~20% 정도로 골고루 분포
- → 다양한 시각으로 상관관계를 파악할 필요가 있음

Feature Engineering

숫자형/문자형 데이터 선택 및 추출하는 작업만 진행

몸무게(Weight), 키(Height)를 통한 BMI 피처, 야채 섭취 빈도 (FCVC), NCP(주 식사 횟수)를 곱한 (Meal Habits) 등 다양한 피처를 생성했다면 풍부한 분석이 가능했을 것 같음

모델 관련

LightGBM, RandomForest 모델 사용

- → 2분 미만의 학습시간 소요(짧은 학습시간)
- → 부족한 전처리 과정에도 불구하고 약 90%의 정확도 달성
- → 타겟 데이터를 인코딩하지 않고도 분석 가능했음

5. 결론 및 리뷰

배운 점

- Kaggle을 통한 실전 데이터 경험
- 머신러닝 적용 단계 이해
- LightGBM, RandomForest 모델 특성 파악
- 데이터 전처리에 다양한 방법이 있음을 공부

부족한 점

- 데이터에 접근하는 방법 미숙
- → 전처리, 피처 엔지니어링 등을 정확하게 하지 못함
- → 데이터 이해도 부족으로 다양한 시각화를 하지 못함
- 머신러닝에 대한 공부 부족
- → 특성에 따라 적용할 수 있었던 것이나, 파라미터 조정 등을 제대로 하지 못함
- → 정확도를 높이지 못함