Strictly Confidential- (For Internal and Restricted Use Only) Secondary School Examination ANNUAL EXAMINATION March 2018

Marking Scheme – Science (X) 31/1

- 1. The Marking Scheme provides general guidelines to reduce subjectivity in the marking. It carries only suggested value points for the answer. These are only guidelines and do not constitute the complete answer. Any other individual response with suitable justification should also be accepted even if there is no reference to the text.
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed.
- 3. If a question has parts, please <u>award marks in the right-hand side for each part</u>. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin.
- 4. If a question does not have any parts, marks be awarded in the left-hand side margin.
- 5. If a candidate has attempted an extra question, <u>marks obtained in the question attempted first should be retained</u> and the other answer should be scored out.
- 6. Wherever only two/three of a 'given' number of examples/factors/points are expected only the first two/three or expected number should be read. The rest are irrelevant and should not be examined.
- 7. There should be <u>no effort at 'moderation' of the marks</u> by the evaluating teachers. The actual total marks obtained by the candidate may be of no concern of the evaluators.
- 8. All the Head Examiners / Examiners are instructed that while evaluating the answer scripts, if the answer is found to be totally incorrect, the (X) should be marked on the incorrect answer and awarded '0' marks.
- 9. ½ mark may be deducted if a candidate either does not write units or writes wrong units in the final answer of a numerical problem.
- 10. A full scale of mark 0 to 100 has to be used. <u>Please do not hesitate to award full marks if the answer deserves it</u>.
- 11. As per orders of the Hon'ble Supreme Court the candidates would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points given in the marking scheme.

MARKING SCHEME OF SCIENCE (086) OF AISSE 2018

SET - 31/1

Max. Marks: 80

Q No	Value Points/ Expected Answers	Marks	Total
	SECTION – A		
1.	Violet flowers	1	1
2.	Potential /Kinetic/ Mechanical Energy into Electrical energy	1	1
3.	 X-Ethanol/ (C₂ H₅OH)/Ethyl Alcohol Y- Ethene / (C₂ H₄) Z- Hydrogen/ (H₂) Conc H₂SO₄ CH₃-CH₂OH CH₂= CH₂+H₂O Role of sulphuric acid –dehydrating agent 	½ + ½ ½ ½	2
4.	(a) Due to ambiguity in the question award 1 mark whether attempted or not.	½ x 2	
	(b) a) Cell body/ cyton b) Axon	½ x 2	2
5.	OR OR A B P B P B C N OR N OR Note: If arrows not marked, ½ mark to be deducted.	1 1/2	
	Note. II arrows not marked, /2 mark to be deducted.		2

6. heat		
• CaCO ₃ \longrightarrow CaO + CO ₂		
heat $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	e 1	
heat 2Pb(NO ₃) ₂ → 2PbO + 4NO ₂ + O ₂		
• 2AgCl Sunlight 2Ag + Cl ₂		
2AgBr Sunlight 2Ag + Br ₂ Any one	1	
electricity • $2H_2O$ \longrightarrow $2H_2 + O_2$ (or any other equation for above decomposition reaction.)	1	
Note: No marks to be deducted if equations are not balanced.		3
7. • $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$	1	
 When a burning splinter is brought near the gas, it burns with a Pop Sound. Gas – Hydrogen / H₂ 	1	
Gus Hydrogen / H ₂	1	
OR		
 NaHCO₃(Sodium Hydrogen Carbonate/ Sodium Bicarbonate) NaCl +H₂O+CO₂+NH₃→ NH₄Cl+NaHCO₃ 	1 1	
Uses: For making baking powder		
As ingredient of antacid. Soda-acid fire extinguishers (Any two)	1/2 + 1/2	
Note: As no salt can have pH = 14, give full credit for any attempt of the candidate:	s.	3
8. a) Carbon compounds form Covalent bonds/ do not dissociate into ions/ do not have charged particles (ions)	e 1	
b) Cyclohexane	1	
н н н н		
H C C — C H	1/2	
$H C \longrightarrow C H$		
	1/2	
Total No. of single bonds=18		
(OR any other cycloalkane with corresponding number of bonds)		3

9.	a. Thyroxine, regulates carbohydrate protein and fat metabolism/ controls metabolism for balance of body growth	1/2 + 1/2	
	b. Growth hormone, regulates growth and development of body (or any other correct answer)	1/2 + 1/2	
	c. Insulin, regulates/ decreases blood sugar level	1/2 + 1/2	
	Glucagon, regulates / increases blood sugar		3
10.	Any one of the following difference:	1	
	(i) In sexual reproduction two opposite sexes are involved where as in asexual reproduction only one individual is involved.		
	(ii) In sexual reproduction male and female gamete formation takes place where		
	as in asexual no gamete formation occurs.		
	Sexually reproducing organisms have better chances of survival	1	
	Because more variations are generated.	1	3
11.	1st law: the incident ray, refracted ray and normal to the interface at the point of	1	
	incidence lie in the same plane.		
	2 nd law: The sine of angle of incidence bears a constant ratio with sine of angle of	1	
	refraction for a given pair of media. Or $\frac{\sin i}{\sin r}$ = constant	1	
	Absolute Refractive Index of a medium = Speed of light in air or vacuum Speed of light in the medium	1	
	(Award full marks if the same thing is given in the form of statement)		
	OR		
	Power of lens = Ability to converge/ diverge light rays passing through it/ reciprocal of	.,	
	the focal length in metres / $\frac{1}{f}$ (in meters)	1/2	
	SI unit of power is Dioptre	½ ½	
	Power of 1 st lens $P_1 = \frac{100}{f_1} = \frac{100}{40 \text{ cm}} = +2.5 \text{ D}$	1/2	
	Nature: Converging lens / Convex lens	/2	
	Power of 2 nd lens $P_2 = \frac{100}{f^2} = \frac{100}{-20 \text{ cm}} = -5 \text{ D}$	1/2	
	Nature: Diverging lens / Concave Ins	1/2	3
12.	(i)	1 ½	
	Two 9 ohm resistors in parallel		
	connected to one 9 ohms in		
	series		
	$\frac{1}{R_p} = \frac{1}{9} + \frac{1}{9} = \frac{2}{9}$		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\therefore R_p = \frac{9}{2}\Omega$		
	$R = 9\Omega + \frac{9}{2}\Omega = 13.5\Omega$		
	$\int \frac{x - 9ii + \frac{1}{2}ii}{2} = 13.5ii$		
	<i>l</i>		

	Two 9 ohm resistors in series connected to one 9 ohms in parallel $R_s = 9\Omega + 9\Omega = 18\Omega$ $\frac{1}{R} = \frac{1}{18} + \frac{1}{9} = \frac{3}{18}$ $\therefore R = 6\Omega$ Note: Deduct ½ mark if calculations are not given.	11/2	
	calculations are not given.		
	OR (a) <u>Joule's law of heating</u> – Heat produced in a resistor is (i) directly proportional to the square of current for a given resistance, (ii) directly proportional to the resistance for a given current and (iii) directly proportional to the time for which the current flows through the resistor / H = I ² Rt where, H = Heat produced, I = current, R = Resistance of the conductor and t = Time for which the current flows through the resistor	1	
	resistor Note :If the candidate gives only the expression $H = I^2Rt$ award ½ mark only.		
	Note .ij the candidate gives only the expression H = 1 Kt awara /2 mark only.		
	(b) Current in 1 st bulb, $I_1 = \frac{P1}{V} = \frac{100}{220} = \frac{5}{11} \text{A or } 0.45 \text{ A}$ Current in 2 nd bulb, $I_2 = \frac{P2}{V} = \frac{60}{220} = \frac{3}{11} \text{A or } 0.27 \text{ A}$	1 1	3
13.	a. Factors on which resistance of a conductor depends:		
	i. Length of conductor [or R $\alpha \ell$]	1/2	
	ii. Area of cross-section of the conductor [or R $lpha$ 1/A]	1/2	
	 b. Metals are good conductor of electricity –as they have low resistivity/ have free electrons 	1/2	
	Glass is a bad conductor of electricity – as it has high resistivity/have no free electrons	1/2	
	c. Reason:		
	Alloys have high resistivity /high melting point / alloys do not oxidize (Or burn) readily at high temperatures.		
	(any one)	1	3
14.	 a. Incineration/ Waste compaction/ Biogas generation/ Composting/ Segregation and safe disposal/Vermicomposting (Any other) (any two) b. Reuse of empty bottles, books etc. Reduce the use of non-biodegradable substances like polythene, thermocol 	½ + ½ ½ ½	
	etc. (Any other)	/2	
	c. Awareness about environment, scientific attitude, Concern for community		
	health and personal health (Any two)	1/2, 1/2	3
15.	 Dam is a barrier that is built across a river or a stream for storage of water. Large dam can ensure the storage of adequate water for irrigation and also for generating electricity. 	½ ½ + ½	
	3. Social problem, economic problem and environmental problem	1 ½	3

16.	a. (i) Calcination (ii) Reduction (iii) Purification (in the given sequence only))b. Sulphide ore of copper is heated in air	1 ½	
	$2Cu_2S+3O_2 \rightarrow 2Cu_2O + 2SO_2$ $2Cu_2O+Cu_2S \rightarrow 6Cu + SO_2$ (Note: Full marks to be awarded even when only equations are written.)	2	
	c. Labelled diagram of electrolytic refining of copper Key Cathode Acidified copper sulphate solution Cu² Cu² Cu² Cu² Cu² Cu² Cu² Cu	1½	5
17.	Dobereiner Periodic Table	1/2 + 1/2	
	Advantage: To predict the atomic mass of middle element in each triad Limitation: Dobereiner could identify only three triads		
	Newland Periodic table	1/2 + 1/2	
	Advantage: Every eighth element had properties similar to that of first/ co-related the		
	properties of elements with their atomic mass.,		
	Limitation: It was only applicable up to Calcium / only 56 elements and no future element		
	Mendeleev's Periodic Table	1/2 + 1/2	
	Advantage: Elements with similar properties could be grouped / He predicted the		
	existence of new elements that had not been discovered at that time.		
	Limitation: No fixed position for hydrogen/ position of isotopes/ Atomic masses do not increase in a regular manner.		
	mercase in a regular manner.		
	Henry Moseley	1	
	Properties of elements are a periodic function of their atomic number	1	5
18.	a. Plasma, red blood cells, white blood cells, platelets (any two)	1/2, 1/2	
	b. Lungs \rightarrow Left side of the heart \rightarrow aorta \rightarrow body organs	½ x 4	
	Note: Give weightage even if same thing is explained in the form of paragraph.	4	
	c. Prevent back flow of bloodd. Artery has thick elastic wall and vein is thin walled/ valves are present in the	1 1	
	veins and not in arteries	_	
	OR		
	a. Process involved in removal of nitrogenous / harmful metabolic waste from the		
	body.	1	
	b. Nephron.	1	
	c) Diagram of Human Excretory System: Labelling of the following parts		
	i) kidney ii) ureter iii) urinary bladder		
	· · · · · · · · · · · · · · · · · · ·		

		Ureter Urinary bladder	11/	
		Drawing	1 ½ 1 ½	5
		Labelling	1 /2	5
19.	a.	i) Ovary – releases egg/ female gamete/ ovum	1	
		releases oestrogen/ female hormones (any one)	1	
		ii) Oviduct- Transportation of ovum/ egg from ovary to the uterus/ Site of fertilization	1	
		iii) <u>Uterus</u> – Development of embryo/ foetus	1	
	a)	<u>Placenta</u> - It is a disc embedded in uterine wall which contains villi on the	1	
	,	embryo side of the tissue and blood space on mother side.		
		Function of placenta: Provides nourishment to embryo from mother's blood /	1	
		Removal of waste from embryo to mother's blood. (Any one)		5
20.	a.	<u>Defect of vision</u> – Myopia or short sightedness or near sightedness	1	
		Causes of myopia: i) Excessive curvature of eye lens/eye lens becomes more		
		converging	1/ . 1/	
		ii) Elongation of eye ball Mathods of correction: By the use of consequence of suitable power or focal.	1/2 + 1/2	
		Methods of correction: By the use of concave lens of suitable power or focal length the defect is corrected. / suitable diagrammatic representation.	1	
			_	
	b.	Due to atmospheric refraction The density of different layers of air keeps on changing due to which the	1	
		The density of different layers of air keeps on changing due to which the apparent image of the stars keeps on changing. This changing position of stars		
		appears as twinkling of stars.		
		appears as twinking or stars.	1	
		OR		
	a.	Function of:		
		 <u>Cornea</u>: focuses light rays / permits the light to enter the eye 		
		• <u>Iris</u> : Controls amount of light entering the eye. / controls the size of pupil.		
		 <u>Crystalline Lens</u>: Converges light rays onto retina. 		
		<u>Cilliary Muscles</u> : Adjusts focal length of eye lens by contraction and		
		relaxation so that sharp image can be obtained on the retina. / helps in		
		accommodation	½ x 4	

	 In early morning, sun light has to cover larger distance in the atmosphere. So, the shorter wavelengths scatter out. Only the longer wavelengths like red reach our eye. On moon – No Cause: Moon has no atmosphere 	1 ½	F
		1	5
21.	 Fleming's left-hand rule: stretch the forefinger, middle finger and thumb of left hand in such a way that they are mutually perpendicular to each other. If the forefinger point in the direction of magnetic field, middle finger point in the direction of current then the thumb show the direction of force or motion on the current carrying conductor. Principle of working of electric motor: A coil carrying electric current placed in an external magnetic field experiences a force. Function of armature: Enhances the power of the motor/ induces motion. Function of brushes: Helps easy transfer of charge between the coil and the 	1 1 1	
	external circuit.	1	
	• <u>Function of split rings</u> : Reverses the direction of current after each half rotation of		
	the coil so that the coil can keep rotating continuously.	1	5
	SECTION – B		
22.	In the test tube A, B, D she will observe colour change (No splitting of marks)	1	
	in the test tabe (1, b) b she tim observe solour shange (1.0 spitting of marks)	_	
	Aluminum is the most reactive metal, because it displaces Iron, Zinc and Copper from		
	their aqueous salt solutions.	1/2 + 1/2	2
23.	White precipitate is observed	1/2	
23.	$Na_2SO_4(aq)$ + $BaCl_2(aq)$ \rightarrow $BaSO_4(s)$ + $2NaCl(aq)$	1	
	211401(44)	_	
	Double displacement reaction	1/2	2
24.	The steps are:	, -	
	i. Removal of peel from leaf	1/2	
	ii. Stain with safranin	1/2	
	iii. Put the stained peel on a clean slide	1/2	
	iv. Mount it with glycerine and cover slip	1/2	2
25.	Binary fission	1/2	
	• Diagram		
	CANDELLA DE LA CANDELLA DELLA DE LA CANDELLA DE LA		
		1 ½	

OR		
Yeast cell Chain of buds Yeast cell		2
26. Ray diagram	1	
Position of O and F Ratio=hi/ho approximately 2:1	½ ½ ½	2
27.		
Times and the second of the s		
Plotting of correct graph Calculation of resistance	1 1	2