Catalog of Publications per Application Domain

Open-Source Hardware in Education: a Systematic Mapping Study

January 11, 2018

Art

- [1] S. Adinandra, N. A. Adhilaga, and D. Erfawan. Waybot: A low cost manipulator for playing javanese puppet. In *2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)*, pages 376–381, Oct. 2015.
- [2] F. Agatolio and M. Moro. Aworkshop to promote arduino-based robots aswide spectrum learning support tools. *Advances in Intelligent Systems and Computing*, 457:113–125, 2017.
- [3] M. Ali, N. Azlan, and K. Safian. Development of low-cost robotic hands for introduction to mechatronics engineering courses. *ARPN Journal of Engineering and Applied Sciences*, 11(10):6222–6227, 2016.
- [4] M. Bajzek, H. Bort, O. Hunpatin, L. Mivshek, T. Much, C. O'Hare, and D. Brylow. Muzecs: Embedded blocks for exploring computer science. In *IEEE Blocks and Beyond Workshop (Blocks and Beyond)*, pages 127–132, Oct. 2015.
- [5] S. Barrett, J. Anderson, and M. Love. Robots! introduction to engineering and computer science. In *ASEE Annual Conference and Exposition*, New Orleans, LA, USA, 2016.
- [6] E. Bear, T. Maxwell, T. Anglea, D. Raval, I. Buckley, and Y. Wang. An undergraduate research platform for cooperative control and swarm robotics. In *IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)*, pages 1876–1879, Hefei, China, June 2016.

- [7] L. Benotti, M. Gomez, and C. Martinez. Unc++duino: A kit for learning to program robots in python and c++ starting from blocks. *Advances in Intelligent Systems and Computing*, 457:181-192, 2017.
- [8] L. Bertelli, F. Bovo, L. Grespan, S. Galvan, and P. Fiorini. Eddy: An open hardware robot for education. volume 216, pages 47–54, 2007.
- [9] T. U. Islamgozhayev, S. S. Mazhitov, A. K. Zholmyrzayev, and E. T. Toishybek. Iict-bot: Educational robotic platform using omni-directional wheels with open source code and architecture. In *2015 International Siberian Conference on Control and Communications (SIBCON)*, pages 1–3, May 2015.
- [10] C. Kopic and K. Gohlke. Inflatibits: A modular soft robotic construction kit for children. In *Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '16, pages 723–728, New York, NY, USA, 2016. ACM.
- [11] D. L. McPherson, A. R. Ofoli, and T. D. Loveless. Basketballbot: Developing an intelligent controls teaching platform using labview, matlab, and arduino. In *SoutheastCon 2015*, pages 1–8, Apr. 2015.
- [12] M. Resnick and B. Silverman. Some reflections on designing construction kits for kids. In *Conference on Interaction Design and Children*, IDC '05, pages 117–122, New York, NY, USA, 2005. ACM.
- [13] J. Sadler, K. Durfee, L. Shluzas, and P. Blikstein. Bloctopus: A novice modular sensor system for playful prototyping. In *Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '15, pages 347–354, New York, NY, USA, 2015. ACM.
- [14] E. Schweikardt. Modular robotics as tools for design. In *6th ACM SIGCHI Conference on Creativity & Cognition*, C&C'07, pages 298–298, New York, NY, USA, 2007. ACM.
- [15] M. Virnes. Robotics in special needs education. In *7th International Conference on Interaction Design and Children*, IDC '08, pages 29–32, New York, NY, USA, 2008. ACM.

Biology

[16] C. Brady, K. Orton, D. Weintrop, G. Anton, S. Rodriguez, and U. Wilensky. All roads lead to computing: Making, participatory simulations, and social computing as pathways to computer science. *IEEE Transactions on Education*, 60(1):59–66, Feb. 2017.

- [17] L. Buechley, M. Eisenberg, J. Catchen, and A. Crockett. The lilypad arduino: Using computational textiles to investigate engagement, aesthetics, and diversity in computer science education. In *SIGCHI Conference on Human Factors in Computing Systems*, CHI '08, pages 423–432, New York, NY, USA, 2008. ACM.
- [18] L. Buechley, M. Eisenberg, and N. Elumeze. Towards a curriculum for electronic textiles in the high school classroom. *SIGCSE Bulletin*, 39(3):28–32, June 2007.
- [19] D. A. Fields, K. A. Searle, and Y. B. Kafai. Deconstruction kits for learning: Students' collaborative debugging of electronic textile designs. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn 16, pages 82–85, New York, NY, USA, 2016. ACM.
- [20] Y. B. Kafai, E. Lee, K. Searle, D. Fields, E. Kaplan, and D. Lui. A crafts-oriented approach to computing in high school: Introducing computational concepts, practices, and perspectives with electronic textiles. *ACM Transactions on Computing Education*, 14(1):1:1–1:20, Mar. 2014.
- [21] E.-S. Katterfeldt, N. Dittert, and H. Schelhowe. Eduwear: Smart textiles as ways of relating computing technology to everyday life. In *International Conference on Interaction Design and Children*, IDC '09, pages 9–17, New York, NY, USA, 2009. ACM.
- [22] J. Sarik and I. Kymissis. Lab kits using the arduino prototyping platform. In *2010 IEEE Frontiers in Education Conference (FIE)*, pages T3C-1-T3C-5, Oct. 2010.
- [23] K. A. Searle, C. Tofel-Grehl, and V. Allan. The e-textiles bracelet hack: Bringing making to middle school classrooms. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn '16, pages 107–110, New York, NY, USA, 2016. ACM.

BiomedicalEngineering

- [24] D. Assante and M. Tronconi. Photovoltaic system as a remote didactic laboratory for electrical engineering courses. *International Journal of Interactive Mobile Technologies*, 11(4):39–46, 2015. cited By 1.
- [25] D. Assante and M. Tronconi. A remotely accessible photovoltaic system as didactic laboratory for electrical engineering courses. In *2015 IEEE Global Engineering Education Conference (EDUCON)*, pages 479–485, Mar. 2015.
- [26] L. Boaroli, A. D. Spacek, C. L. Izidoro, J. M. Neto, E. Maestrelli, and O. H. A. Junior. Data monitoring and hardware control for app android by bluetooth

- communication for laboratory teaching in electrical engineering courses. *IEEE Latin America Transactions*, 15(1):31–39, Jan. 2017.
- [27] G. G. da Silva and C. A. Petry. Teaching ac-ac converters using voltage regulators. In *2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC)*, pages 1–6, Nov. 2015.
- [28] W. Dams, M. Roggemans, P. Pelgrims, T. Tierens, and D. Pauwels. Open hardware platform helps students getting started in analog and digital design. In *IEEE International Conference on Microelectronic Systems Education (MSE'07)*, pages 133–134, June 2007.
- [29] C. Madritsch, T. Klinger, A. Pester, and W. Schwab. Work in progress: Using pocket labs in master degree programs. *Advances in Intelligent Systems and Computing*, 545:54–59, 2017.
- [30] H. Mostefaoui and A. Benachenhou. Design of a remote electronic laboratory. In *2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL)*, pages 160–162, Nov. 2015.
- [31] J. Qi, A. b. Huang, and J. Paradiso. Crafting technology with circuit stickers. In *Proceedings of the 14th International Conference on Interaction Design and Children*, IDC '15, pages 438–441, New York, NY, USA, 2015. ACM.

Biomedicine

- [32] C. Dhal and A. Wahi. Psycho-physiological training approach for amputee rehabilitation. *Biomedical instrumentation & technology*, 49(2):138–143, 2015.
- [33] H. Z. Wang, X. L. Zhang, W. Li, P. Q. Yang, C. Liu, and C. H. Ren. The application research on mini-type magnetic resonance imaging instrument. In *2007 IEEE/ICME International Conference on Complex Medical Engineering*, pages 1996–1999, May 2007.

Chemistry

- [34] A. Altadmri, N. C. Brown, and M. Kölling. Using bluej to code java on the raspberry pi. In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 178–178, New York, NY, USA, 2015. ACM.
- [35] J. A. Ariza. A proposal for teaching programming languages through open hardware tools. In *IEEE 8th International Conference on Engineering Education (ICEED)*, pages 202–207, Dec. 2016.

- [36] E. Barba and S. Chancellor. Tangible media approaches to introductory computer science. In *Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education*, ITiCSE '15, pages 207–212, New York, NY, USA, 2015. ACM.
- [37] C. BouSaba, T. Kazar, and W. Pizio. Wireless network security using rasp-berry pi. In *ASEE Annual Conference and Exposition*, volume 2016-June, New Orleans, LA, 2016.
- [38] C. Brady, D. Weintrop, K. Gracey, G. Anton, and U. Wilensky. The ccl-parallax programmable badge: Learning with low-cost, communicative wearable computers. In *Proceedings of the 16th Annual Conference on Information Technology Education*, SIGITE '15, pages 139–144, New York, NY, USA, 2015. ACM.
- [39] M. Brinkmeier and D. Kalbreyer. A case study of physical computing in computer science education. In *11th Workshop in Primary and Secondary Computing Education*, WiPSCE '16, pages 54–59, New York, NY, USA, 2016. ACM.
- [40] J. D. Brock. Being the dba (database administrator): Nifty assignment. *Journal of Computing Sciences in Colleges*, 31(2):275–277, Dec. 2015.
- [41] R. F. Bruce, J. D. Brock, and S. L. Reiser. Make space for the pi. In *IEEE SoutheastCon 2015*, pages 1–6, Fort Lauderdale, Florida, USA, Apr. 2015.
- [42] L. Buechley and M. Eisenberg. Boda blocks: A collaborative tool for exploring tangible three-dimensional cellular automata. In *8th International Conference on Computer Supported Collaborative Learning*, CSCL'07, pages 102–104. International Society of the Learning Sciences, 2007.
- [43] J. Byrne, L. Fisher, and B. Tangney. A 21st century teaching and learning approach to computer science education: Teacher reactions. *Communications in Computer and Information Science*, 583:523–540, 2016.
- [44] J. R. Byrne, L. Fisher, and B. Tangney. Computer science teacher reactions towards raspberry pi continuing professional development (cpd) workshops using the bridge21 model. In *2015 10th International Conference on Computer Science Education (ICCSE)*, pages 267–272, July 2015.
- [45] M. Cata. Smart university, a new concept in the internet of things. In 2015 14th RoEduNet International Conference Networking in Education and Research (RoEduNet NER), pages 195–197, Sept. 2015.
- [46] S. Cheong, I. Chai, and R. Logeswaran. Quick response multimodal learning system with raspberry pi. *Asian Journal of Information Technology*, 15(16):2737–2742, 2016.
- [47] D. Connors, K. Dunn, and R. Bueter. Pycomparch: Python-based modules for exploring computer architecture concepts. In *Proceedings of the Workshop*

- on Computer Architecture Education, WCAE '15, pages 4:1-4:6, New York, NY, USA, 2015. ACM.
- [48] S. Cox, J. Cox, R. Boardman, S. Johnston, M. Scott, and N. O'Brien. Iridis-pi: A low-cost, compact demonstration cluster. *Cluster Computing*, 17(2):349–358, 2014. cited By 23.
- [49] B. Dixon. Code isolation for accurate performance scoring using raspberry pis. *J. Comput. Sci. Coll.*, 31(4):94–99, Apr. 2016.
- [50] J. Fritz, M. Matthews, T. Wulf, J. Scott, and J. Fritz. University of cincinnati and saint ursula academy partnership: Introducing female high school students to the field of information technology, year 2. In *Proceedings of the 17th Annual Conference on Information Technology Education*, SIGITE '16, pages 109–109, New York, NY, USA, 2016. ACM.
- [51] B. Gottlob. Real time occupancy notification: A comparison between passive infrared and ibeacon implementations (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 716–716, New York, NY, USA, 2015. ACM.
- [52] K. Hajdarevic and S. Konjicija. A low energy computer infrastructure for radio voip supported communication and sdr aprs in education and disaster relief situations. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pages 556–561, May 2015.
- [53] J. Kawash, A. Kuipers, L. Manzara, and R. Collier. Undergraduate assembly language instruction sweetened with the raspberry pi. In *Proceedings of the 47th ACM Technical Symposium on Computing Science Education*, SIGCSE '16, pages 498–503, New York, NY, USA, 2016. ACM.
- [54] S. P. Krishnamoorthy and V. Kapila. Using a visual programming environment and custom robots to learn c programming and k-12 stem concepts. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn '16, pages 41–48, New York, NY, USA, 2016. ACM.
- [55] S. Kurkovsky and C. Williams. Raspberry pi as a platform for the internet of things projects: Experiences and lessons. volume Part F128680, pages 64-69, 2017.
- [56] D. Kyuchukova, G. Hristov, P. Zahariev, and S. Borisov. A study on the possibility to use raspberry pi as a console server for remote access to devices in virtual learning environments. In 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), pages 1-4, June 2015.

- [57] B. Li, J. Mooring, S. Blanchard, A. Johri, M. Leko, and K. Cameron. Seemore: A kinetic parallel computer sculpture for educating broad audiences on parallel computation. *Journal of Parallel and Distributed Computing*, 105:183–199, 2017.
- [58] Q. H. Mahmoud, D. Qendri, and M. Lescisin. The sensorian shield: Transforming the raspberry pi into an iot platform. In *Proceedings of the 47th ACM Technical Symposium on Computing Science Education*, SIGCSE '16, pages 162–162, New York, NY, USA, 2016. ACM.
- [59] P. Martín-Ramos, M. M. L. da Silva, M. J. a. Lopes, and M. R. Silva. Student2student: Arduino project-based learning. In *Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality*, TEEM '16, pages 79–84, New York, NY, USA, 2016. ACM.
- [60] S. Papavlasopoulou, M. N. Giannakos, and L. Jaccheri. Creative programming experiences for teenagers: Attitudes, performance and gender differences. In *Proceedings of the The 15th International Conference on Interaction Design and Children*, IDC '16, pages 565–570, New York, NY, USA, 2016. ACM.
- [61] S. Patil, K. Supriya, M. Uma, R. Shettar, and P. Kumar. Open ended approach to empirical learning of iot with raspberry pi in modeling and simulation lab. pages 179–183, 2017.
- [62] P. Putjorn, C. S. Ang, and D. Farzin. Learning iot without the "i"- educational internet of things in a developing context. In *Proceedings of the 2015 Workshop on Do-it-yourself Networking: An Interdisciplinary Approach*, DIYNetworking '15, pages 11–13, New York, NY, USA, 2015. ACM.
- [63] N. Radzi, A. Ismail, S. Karunanithi, L. Weng, K. Jern, G. Hock, J. Jamaluddin, and P. Krishnan. Integrating programming with beaglebone black for undergraduate's "programming for engineers" syllabus. pages 12–15, 2017. cited By 0.
- [64] S. Ray and A. Al Dhaheri. Using single board computers in university education: A case study. *Advances in Intelligent Systems and Computing*, 571:371–377, 2017. cited By 0.
- [65] G. T. Richard and Y. B. Kafai. "maker innovators": A workshop for youth creating responsive and wearable game interfaces with tangible and digital construction toolkits (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 682–682, New York, NY, USA, 2015. ACM.
- [66] G. T. Richard and Y. B. Kafai. Making physical and digital games with e-textiles: A workshop for youth making responsive wearable games and controllers. In *Proceedings of the 14th International Conference on Interaction Design and Children*, IDC '15, pages 399–402, New York, NY, USA, 2015. ACM.

- [67] G. T. Richard, Y. B. Kafai, B. Adleberg, and O. Telhan. Stitchfest: Diversifying a college hackathon to broaden participation and perceptions in computing. In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 114–119, New York, NY, USA, 2015. ACM.
- [68] I. Russell, K. H. Jin, and M. Sabin. Make and learn: A cs principles course based on the arduino platform. In *Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education*, ITiCSE '16, pages 366–366, New York, NY, USA, 2016. ACM.
- [69] J. Schaeffer and R. Lindell. Arduino in museum exhibition: Lessons learned when working with design students inexperienced in coding. In *Proceedings* of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, TEI '15, pages 715–720, New York, NY, USA, 2015. ACM.
- [70] D. Tarnoff. Integrating the arm-based raspberry pi into an architecture course. *Journal of Computing Sciences in Colleges*, 30(5):67–73, 2015.
- [71] D. Ursutiu, C. Samoila, and V. Jinga. Creative developments in labview student training: (creativity laboratory labview academy). pages 309–312, 2017.
- [72] X. Wang, S. Jiang, X. Xu, Z. Wu, and Y. Tao. A raspberry pi and lxc based distributed computing testbed. pages 170–174, 2017.
- [73] G. Wetzstein, R. Konrad, H. Ikoma, and N. Padmanaban. Build your own vr system an introduction to vr displays and cameras for hobbyists and educators. 2017.
- [74] J. Wolfer and W. Keeler. From geiger-counters to file systems: Remote hardware access for the operating systems course. *International Journal of Online Engineering*, 12(9):26–31, 2016.

CivilEngineering

- [75] M. Abdelrahman, M. Salem, and M. Nijim. Towards an integrated Hardware And SOftware Book (HASOB). volume 122nd ASEE Annual Conference and Exposition: Making Value for Society, 2015.
- [76] Abhas, A. Shukla, A. Borah, R. Singh, and A. Gehlot. Arduino and Rx/Tx based low cost class monitoring system. In *2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom)*, pages 2785–2790, Mar. 2016.
- [77] N. Arora, N. Agarwal, and S. R. N. Reddy. Funpi: An interactive learning experience using story narration. In *Proceedings of the Sixth International*

- Conference on Computer and Communication Technology 2015, ICCCT '15, pages 398-402, New York, NY, USA, 2015. ACM.
- [78] D. D. Buhl-Brown. Developing a robotics education platform using android based cellbots (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 714–714, New York, NY, USA, 2015. ACM.
- [79] W. J. Esposito, F. A. Mujica, D. G. Garcia, and G. T. A. Kovacs. The lab-in-a-box project: An arduino compatible signals and electronics teaching system. In *2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)*, pages 301–306, Aug. 2015.
- [80] K. Fox, W. Mongan, and J. Popyack. Raspberry hadoopi: A low-cost, hands-on laboratory in big data and analytics (abstract only). In *Proceedings of the 46th ACM Technical Symposium on Computer Science Education*, SIGCSE '15, pages 687–687, New York, NY, USA, 2015. ACM.
- [81] A. Kobeissi, A. Sidoti, F. Bellotti, R. Berta, and A. De Gloria. Building a tangible serious game framework for elementary spatial and geometry concepts. pages 173–177, 2017.
- [82] Y. Lee. Integrated information and communication learning model for rasp-berry pi environment. *ARPN Journal of Engineering and Applied Sciences*, 12(17):5088–5093, 2017.
- [83] S. Marichal, E. Bakala, A. Rosales, F. Perilli, G. Sansone, J. Blat, and A. Pires. Ceta: Open, affordable and portable mixed-reality environment for low-cost tablets. 2017.
- [84] M. Martinez, J. Campion, T. Gholami, M. Rittikaidachar, A. Barron, and A. Okamura. Open source, modular, customizable, 3-d printed kinesthetic haptic devices. pages 142–147, 2017.
- [85] R. Meintjes and H. Schelhowe. Inclusive interactives: The transformative potential of making and using craft-tech social objects together in an after-school centre. In *Proceedings of the The 15th International Conference on Interaction Design and Children*, IDC '16, pages 89–100, New York, NY, USA, 2016. ACM.
- [86] A. Merkouris and K. Chorianopoulos. Introducing computer programming to children through robotic and wearable devices. In *Proceedings of the Workshop in Primary and Secondary Computing Education*, WiPSCE '15, pages 69–72, New York, NY, USA, 2015. ACM.
- [87] K. Muterspaw, T. Urner, R. Lewis, I. Babic, D. Srinath, C. Peck, D. Cerda-Granados, P. Lemiszki, M. Sánchez-Miranda, M. Mayorga-Méndez, O. Petursson, and B. Smith.

Multidisciplinary research and education with open tools: Metagenomic analysis of 16s rrna using arduino, android, mothur and xsede. In *Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure*, XSEDE '15, pages 22:1–22:8, New York, NY, USA, 2015. ACM.

- [88] M. Resnick. All I Really Need to Know (About Creative Thinking) I Learned (by Studying How Children Learn) in Kindergarten. In 6th ACM SIGCHI Conference on Creativity & Cognition, C&C '07, pages 1-6, New York, NY, USA, 2007. ACM.
- [89] E. Schweikardt and M. D. Gross. A brief survey of distributed computational toys. In *First IEEE International Workshop on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL'07)*, pages 57–64, Mar. 2007.
- [90] A. Srivastava and S. Dawle. Mudra: A multimodal interface for braille teaching. In *Proceedings of the 6th Augmented Human International Conference*, AH '15, pages 169–170, New York, NY, USA, 2015. ACM.
- [91] M. Tan, Y. Yang, and P. Yu. The influence of the maker movement on engineering and technology education. *World Transactions on Engineering and Technology Education*, 14(1):89–94, 2016.
- [92] M. Vizner and A. Strawhacker. Curious construction kit: A programmable building kit for early childhood. In *Proceedings of the 6th Annual Conference on Creativity and Fabrication in Education*, FabLearn '16, pages 90–93, New York, NY, USA, 2016. ACM.
- [93] D. Wang, L. Zhang, Y. Qi, and F. Sun. A tui-based programming tool for children. In *Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education*, ITiCSE '15, pages 219–224, New York, NY, USA, 2015. ACM.
- [94] B. Yulianto, R. Layona, and L. Dewi. A low-cost wireless multi-presentation on single screen in classroom using raspberry pi. *International Journal of Web-Based Learning and Teaching Technologies*, 12(3):23–33, 2017.

ComputerScience

- [95] J. Arrizabalaga, A. Simmons, and M. Nollert. Fabrication of an Economical Arduino-Based Uniaxial Tensile Tester. *Journal of Chemical Education*, 94(4):530–533, 2017.
- [96] K. Bougot-Robin, J. Paget, S. Atkins, and J. Edel. Optimization and design of an absorbance spectrometer controlled using a raspberry pi to improve analytical skills. *Journal of Chemical Education*, 93(7):1232–1240, 2016.

- [97] A. Butterfield and K. Branch. Results & lessons learned from a chemical engineering freshman design laboratory. In *ASEE Annual Conference and Exposition*, Seattle, WA, USA, 2015.
- [98] A. Millner and E. Baafi. Modkit: Blending and extending approachable platforms for creating computer programs and interactive objects. In *10th International Conference on Interaction Design and Children*, IDC '11, pages 250–253, New York, NY, USA, 2011. ACM.
- [99] A. Rowe, A. Bonham, R. White, M. Zimmer, R. Yadgar, T. Hobza, J. Honea, I. Ben-Yaacov, and K. Plaxco. Cheapstat: An open-source, "do-it-yourself" potentiostat for analytical and educational applications. *PLoS ONE*, 6(9), 2011.

ControlEngineering

[100] T. Baden, A. M. Chagas, G. Gage, T. Marzullo, L. L. Prieto-Godino, and T. Euler. Open Labware: 3-D Printing Your Own Lab Equipment. *PLOS Biology*, 13(5):1–12, 2015.

Design

[101] G. Pasolini, A. Bazzi, and F. Zabini. A raspberry pi-based platform for signal processing education [sp education]. *IEEE Signal Processing Magazine*, 34(4):151–158, 2017.

ElectricalEngineering

- [102] A. Albayrak, M. Albayrak, and R. Bayir. Design of matlab/simulink based development board for fuzzy logic education. In *2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)*, pages 1–7, Aug. 2015.
- [103] P. Aradi. Offline and online thermostat experiment with labview and arduino. In 2016 International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS), pages 127–131, June 2016.
- [104] D. Assante and C. Fornaro. Involving graduating engineers in applying a commercial brain computer interface to motorized wheelchair driving. In *2015 IEEE Global Engineering Education Conference (EDUCON)*, pages 446–452, Mar. 2015.

- [105] A. Aziz Khater, M. El-Bardini, and N. El-Rabaie. Embedded adaptive fuzzy controller based on reinforcement learning for dc motor with flexible shaft. *Arabian Journal for Science and Engineering*, 40(8):2389–2406, 2015.
- [106] C. J. Bay and B. P. Rasmussen. Exploring controls education: A re-configurable ball and plate platform kit. In *American Control Conference (ACC)*, pages 6652–6657, Boston, MA, USA, July 2016.
- [107] J. Bermudez-Ortega, E. Besada-Portas, J. Lopez-Orozco, J. Bonache-Seco, and J. Cruz. Remote web-based control laboratory for mobile devices based on ejss, raspberry pi and node.js. *IFAC-PapersOnLine*, 48(29):158–163, 2015. cited By 7.
- [108] T. Bewley, J. Strawson, and C. Briggs. Leveraging open standards and credit-card-sized linux computers in embedded control & Eamp; robotics education. In *ASEE Annual Conference and Exposition*, Seattle, WA, USA, 2015.
- [109] F. Candelas, G. GarcÃŕ£Â¡a, S. Puente, J. Pomares, C. Jara, J. PÃŕ£Â¡rez, D. Mira, and F. Torres. Experiences on using arduino for laboratory experiments of automatic control and robotics. *IFAC-PapersOnLine*, 48(29):105–110, 2015.
- [110] F. A. Candelas, S. T. Puente, and F. Torres. Competition benchmarking to design and program mobile robots. In *2016 IEEE Conference on Control Applications (CCA)*, pages 839–844, Sept. 2016.
- [111] J.-S. Choi and Y.-S. Lee. The implementation of a hardware-in-the-loop simulator for an inverted pendulum system using open-source hardware. *Journal of Institute of Control, Robotics and Systems*, 23(2):117–125, 2017.
- [112] P. Di Giamberardino and M. Temperini. Adaptive access to robotic learning experiences in a remote laboratory setting. pages 565–570, 2017.
- [113] S. Gokceli, H. B. Tugrel, S. Pisirgen, G. K. Kurt, and B. ñrs. A building automation system demonstration. In *2015 9th International Conference on Electrical and Electronics Engineering (ELECO)*, pages 56–60, Nov. 2015.
- [114] C. Gonzalez, I. Alvarado, and D. Pea. Low cost two-wheels self-balancing robot for control education. *IFAC-PapersOnLine*, 50(1):9174–9179, 2017.
- [115] R. C. Hill. Hardware-based activities for flipping the system dynamics and control curriculum. In *2015 American Control Conference (ACC)*, pages 2777–2782, July 2015.
- [116] P. Reguera, S. Alonso, M. Domnguez, M. Prada, A. Morn, and J. Fuertes. Using low-cost open source hardware to control puma560 motors. *IFAC-PapersOnLine*, 50(1):9180–9185, 2017.

- [117] J. Reitinger, P. Balda, and M. Schlegel. Steam turbine hardware in the loop simulation. pages 380–385, 2017.
- [118] D. Sullivan, W. Chen, and A. Pandya. Design of remote control of home appliances via bluetooth and android smart phones. pages 371–372, 2017.

ElectronicEngineering

[119] R. S. Lawyer. Student driven digital signage. In *Proceedings of the 2015 ACM Annual Conference on SIGUCCS*, SIGUCCS '15, pages 133–135, New York, NY, USA, 2015. ACM.

ETextile

- [120] P. Brox, G. Huertas-Sñnchez, A. Lñpez Angulo, M. ñlvarez Mora, and I. Haya. Design of sensory systems using the platform arduino by undergraduate physics students. In *Technologies Applied to Electronics Teaching (TAEE)*, pages 1–6, Seville, Spain, June 2016.
- [121] D. G. Carvalho and W. C. B. Lins. Labduino: An open source tool for science education. In *IEEE Frontiers in Education Conference (FIE)*, pages 1–5, Erie, PA, USA, USA, Oct. 2016.
- [122] P. Carvalho and M. Hahn. A simple experimental setup for teaching additive colors with arduino. *Physics Teacher*, 54(4):244–245, 2016. cited By 0.
- [123] L. de la Torre, M. Guinaldo, R. Heradio, and S. Dormido. The Ball and Beam System: A Case Study of Virtual and Remote Lab Enhancement With Moodle. *IEEE Transactions on Industrial Informatics*, 11(4):934–945, Aug 2015.
- [124] E.-S. Katterfeldt, D. Cuartielles, D. Spikol, and N. Ehrenberg. Talkoo: A new paradigm for physical computing at school. In *Proceedings of the The 15th International Conference on Interaction Design and Children*, IDC '16, pages 512–517, New York, NY, USA, 2016. ACM.

Financial

[125] F. Adamo, F. Attivissimo, G. Cavone, C. G. C. n. Carducci, and A. M. L. Lanzolla. New technologies and perspectives for laboratory practices in measurement science. In *2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings*, pages 1–6, May 2015.

ImpairedPeople

[126] O. Alsos. Teaching product design students how to make everyday things interactive with arduino. volume 1450, pages 7-14, 2015.

IndustrialDesign

- [127] S. Analytis, J. Sadler, and M. Cutkosky. Paper robot: A design activity to increase beginner's prototyping confidence with microcontrollers. In *3rd International Conference on Design Creativity, Indian Institute of Science, Bangalore*, pages 200–208, 2015.
- [128] S. Analytis, J. Sadler, and M. Cutkosky. Creating paper robots increases designersÃŕ£Â; confidence to prototype with microcontrollers and electronics. *International Journal of Design Creativity and Innovation*, 5(1-2):48–59, 2017.
- [129] S. Arakliotis, D. G. Nikolos, and E. Kalligeros. Lawris: A rule-based arduino programming system for young students. In *5th International Conference on Modern Circuits and Systems Technologies (MOCAST)*, pages 1–4, May 2016.
- [130] K. Asato, K. Asato, T. Nagado, and S. Tamaki. Development of low cost educational material for learning fundamentals of mechatronics. In *International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)*, pages 454–456, Nov. 2015.
- [131] D. Assante, C. Fornario, A. E. Sayed, and S. A. Salem. Edutronics: Gamification for introducing kids to electronics. In *IEEE Global Engineering Education Conference (EDUCON)*, pages 905–908, Apr. 2016.
- [132] M. Black. Export to arduino: A tool to teach processor design on real hardware. *Journal of Computer Science and Technology*, 31(6):21–26, June 2016.
- [133] T. Oda, K. Matsuo, L. Barolli, M. Yamada, and Y. Liu. Design and implementation of an iot-based e-learning testbed. *International Journal of Web and Grid Services*, 13(2):228–241, 2017.
- [134] D. Trivedi and J. Pearce. Open source 3-d printed nutating mixer. *Applied Sciences (Switzerland)*, 7(9), 2017.

InstrumentationEngineering

[135] L. Michels, L. Schaeffer, V. Gruber, R. Marcelino, and L. Casagrande. Remote compression test machine for experimental teaching of mechanical forming. *International Journal of Online Engineering*, 12(4):20–22, 2016.

MeasurementScience

- [136] S. Aaron, A. Blackwell, and P. Burnard. The development of sonic pi and its use in educational partnerships: Co-creating pedagogies for learning computer programming. *Journal of Music, Technology and Education*, 9(1):75–94, 2016.
- [137] D. Bar-El and O. Zuckerman. Maketec: A makerspace as a third place for children. In *10th International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '16, pages 380–385, New York, NY, USA, 2016. ACM.
- [138] B.-H. Kim, Y.-D. Lim, M.-Y. Jung, and J. Kim. The effects of steam class using science-art-it convergence art work for middle school education under a free semester system in korea. *Advanced Science Letters*, 23(3):1700–1704, 2017. cited By 0.
- [139] K. Peppler and K. Wohlwend. Theorizing the nexus of steam practice. *Arts Education Policy Review*, pages 1–12, 2017.

MechanicalEngineering

[140] I. Ivan, C. Petit, I. Gurgu, and R. Toscano. Afm nanye  development of an education oriented high resolution profilometer. *IFAC-PapersOnLine*, 50(1):2385–2390, 2017.

Mechatronics

[141] R. Chacon and S. Oller. Designing experiments using digital fabrication in structural dynamics. *Journal of Professional Issues in Engineering Education and Practice*, 143(3), 2017.

MetallurgicalEngineering

[142] Y. Mita and Y. Kawahara. 15-year educational experience on autonomous electronic information devices by flipped classroom and try-by-yourself methods. *IET Circuits, Devices and Systems*, 11(4):321–329, 2017.

Pedagogy

[143] D. Mohapatra, N. Kashyap, A. Biswal, and S. Padhee. Design of measurement and data acquisition laboratory for instrumentation engineering course. 2017.

Physics

[144] S. Puente, A. beda, and F. Torres. e-health: Biomedical instrumentation with arduino. *IFAC-PapersOnLine*, 50(1):9156–9161, 2017.

Robotics

[145] M. Adusei and D. Lee. "clicks" appressory for visually impaired children. In *Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems*, CHI EA '17, pages 19–25, New York, NY, USA, 2017. ACM.

Telecom

[146] J. Schaeffer and R. Lindell. It could just as well have been in greek: Experiences from introducing code as a design material to exhibition design students. In *Proceedings of the TEI '16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction*, TEI '16, pages 126–132, New York, NY, USA, 2016. ACM.