Licenciatura em Engenharia Informática ALGAN 1° Semestre 2025-2026 TP1

1) Escreva as matrizes definidas por:

(a)
$$\mathbf{A} = [a_{ij}]_{\substack{1 \le i \le 3 \\ 1 \le j \le 2}} \text{ com } a_{ij} = 2i - 3j$$

(b)
$$\mathbf{B} = [b_{ij}]_{\substack{1 \le i \le 4 \\ 1 \le j \le 4}} \text{ com } b_{ij} = \frac{1}{i+j}$$

(c)
$$\mathbf{C} = [c_{ij}]_{\substack{1 \le i \le 2 \\ 1 \le j \le 3}}^{1 \le i \le 2} \text{ com } c_{ij} = 5 - i^j$$

(d)
$$\mathbf{D} = [d_{ij}]_{\substack{1 \le i \le 3 \\ 1 \le j \le 3}} \text{ com } d_{ij} = \sqrt{ij}$$

(e)
$$\mathbf{E} = [e_{ij}]_{\substack{1 \le i \le 4 \ j=1}} \text{ com } e_{ij} = (-2)^i (j-3)$$

(f)
$$\mathbf{F} = [f_{ij}]_{\substack{1 \le i \le 2 \\ 1 \le j \le 3}} \text{ com } f_{ij} = \begin{cases} 1 & \text{se } i = j \\ i - j & \text{se } i \ne j \end{cases}$$

2) Considerando as matrizes do exercício anterior, caso seja possível, efetue as seguintes operações de matrizes. Justifique a impossibilidade.

- (a) $\mathbf{A} + \mathbf{C}$
- (b) C 2F
- (c) $\mathbf{A}^T \mathbf{D}$
- (d) **CA**
- (e) CD + A

3) Seja **A** uma matriz quadrada de ordem 3 cujos elementos a_{ij} são obtidos através da relação $a_{ij} = i^2 - j$. O valor numérico resultante do produto dos elementos da diagonal secundária da matriz **A** é:

a) 0

b) 16

c) -32

d) 32

4) Se $\mathbf{B} = [b_{ij}]_{\substack{1 \le i \le 4 \\ 1 \le j \le 4}}$ com $b_{ij} = \begin{cases} 0 & \text{se } i = j \\ i - j & \text{se } i \ne j \end{cases}$ então:

- a) ${f B}$ é simétrica
- b) $\mathbf{B} + \mathbf{B}^T = \mathbf{I}_4$
- c) **B** é antissimétrica

 $d) \mathbf{B} - \mathbf{B}^T = 0_4$

5) A matriz $\mathbf{C} = \begin{bmatrix} 4+a & a+b \\ 2(a-1)-b & b \end{bmatrix}$ é uma matriz diagonal se:

a) $a = b = \frac{2}{3}$

- b) $a = b = -\frac{2}{3}$
- c) $a = \frac{2}{3} e b = -\frac{2}{3}$

d) $a = -\frac{2}{3}$ e $b = \frac{2}{3}$

6) Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & -1 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & -2 & -1 & 0 \\ 0 & -2 & 1 & 0 \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} 0 & -2 & 2 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 0 \\ -1 \\ 3 \\ 0 \end{bmatrix} \qquad \mathbf{E} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & -2 & -1 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Calcule se possível as seguintes matrizes:

- 7) Sejam $\mathbf{A} \in \mathbf{B} \in \mathcal{M}_n$. Em que condições se verifica a relação,

$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$$

- 8) Sejam $\mathbf{A} \in \mathbf{B} \in \mathcal{M}_n$ simétricas. Em que condições se verifica a propriedade, "a matriz $\mathbf{A} \mathbf{B}$ é simétrica".
- 9) Resolva as seguintes equações matriciais em ordem à matriz X.
 - a) $\mathbf{A} \mathbf{X} + \mathbf{X} \mathbf{B} = \mathbf{C}$, onde $\mathbf{A} + \mathbf{B}$ é invertível e \mathbf{X} permuta com \mathbf{A} .
 - b) $\mathbf{A} \mathbf{X} + \mathbf{X} \mathbf{B} = \mathbf{C}$, onde $\mathbf{A} + \mathbf{B}$ é invertível e \mathbf{X} permuta com \mathbf{B} .
 - c) $(\mathbf{A}^T \mathbf{X})^T \mathbf{I}^5 = \mathbf{0}$, onde **A** é invertível.
 - d) $((\mathbf{A}^T\mathbf{X})\mathbf{B})^T = (\mathbf{A}^T)^{-1}$, onde \mathbf{A} , \mathbf{B} são invertíveis e \mathbf{A}^{-1} é simétrica.
 - e) $(\mathbf{B}^T \mathbf{X}^{-1})^{-1} \mathbf{B}^T \mathbf{C} + (\mathbf{C}^T \mathbf{B}^{-1})^T = \mathbf{I}$, onde \mathbf{C} é invertível.
 - f) $A(B+X)B^{-1} = I$ onde as matrizes envolvidas são invertíveis.
 - $\mathbf{g})~[\mathbf{A}(\mathbf{B}+\mathbf{X})]^T=\mathbf{I},$ onde as matrizes envolvidas são invertíveis.
- 10) Determine o conjunto formado pelas matrizes que comutam com a matriz $\begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix}$.
- 11) Considere a matriz $\mathbf{B} = \begin{bmatrix} -1 & -1 \\ 0 & 2 \end{bmatrix}$.
 - a) Determine a matriz A que satisfaz a relação $AB = I_2$.
 - **b)** Sabendo que $\mathbf{B}^{20} = \begin{bmatrix} 1 & -349525 \\ 0 & 1048576 \end{bmatrix}$, determine \mathbf{B}^{19} .
- **12)** Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

- **a)** Mostre que $\mathbf{A}^{\mathbf{n}} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}$, $\forall n \in \mathbb{N}$.
- b) Encontre a matriz inversa, A^{-1} .
- c) Mostre que $\mathbf{A}^{\mathbf{n}} = \begin{bmatrix} 1 & -n \\ 0 & 1 \end{bmatrix}, \forall n \in \mathbb{Z}.$
- 13) Considere as seguintes matrizes:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 1 & 2 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 2 \end{bmatrix} \qquad \mathbf{E} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{F} = \begin{bmatrix} 1 & 1 & 24 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 12 & 1 \\ 0 & 0 & 24 & 2 \end{bmatrix}$$

Para cada matriz acima referida,

- a) Encontre uma matriz equivalente em forma de escada por linhas, E(*).
- b) Calcule a característica.
- 14) Determine, se possível duas matrizes A, B ($A \neq -B$) invertíveis tais que A + B não é invertível.
- **15)** Seja $\alpha \in \mathbb{R} \setminus \{0\}$ e $\mathbf{A} \in \mathcal{M}_n$ invertível.
 - a) Mostra que a matriz α A é invertível.
 - b) Determine $(\alpha \mathbf{A})^{-1}$.
- 16) Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. Determine a matriz \mathbf{X} que satisfaz a equação

$$\left[\mathbf{A}^T \mathbf{X}^{-1}\right]^T = (\mathbf{A}^T)^{-1}.$$

- **17)** Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$.
 - a) Calcule A^3 .
 - **b)** Verifique, sem calcular a matriz inversa, se $(\mathbf{A}^2)^{-1} = (\mathbf{A}^T)^2$.
 - c) Verifique, sem calcular a matriz inversa, se $(\mathbf{A}^n)^{-1} = (\mathbf{A}^T)^n$ para todo o inteiro positivo n. Sugestão: Use as identidades $(\mathbf{A}^T)^n = (\mathbf{A}^n)^T$ e $\mathbf{A}^n(\mathbf{A}^T)^n = \mathbf{A}^{n-1}\mathbf{A}\mathbf{A}^T(\mathbf{A}^T)^{n-1}$.
- 18) Considere as matrizes

$$\mathbf{A} = \begin{bmatrix} -2 & -2 & 0 \\ -1 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{J} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

- a) Use o algoritmo de Gauss-Jordan para calcular A^{-1} .
- b) Determine, caso possível, Uma matriz B tal que $ABA^{-1} = J$.

Soluções

(a)
$$\mathbf{A} = \begin{bmatrix} -1 & -4 \\ 1 & -2 \\ 3 & 0 \end{bmatrix}$$
 (b) $\mathbf{B} = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \end{bmatrix}$ (c) $C = \begin{bmatrix} 4 & 4 & 4 \\ 3 & 1 & -3 \end{bmatrix}$ (d) $\mathbf{D} = \begin{bmatrix} 1 & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & 2 & \sqrt{6} \\ \sqrt{3} & \sqrt{6} & 3 \end{bmatrix}$ (e) $\mathbf{E} = \begin{bmatrix} 4 \\ -8 \\ 16 \\ -32 \end{bmatrix}$ (f) $\mathbf{F} = \begin{bmatrix} 1 & -1 & -2 \\ 1 & 1 & -1 \end{bmatrix}$

(d)
$$\mathbf{D} = \begin{bmatrix} 1 & \sqrt{2} & \sqrt{3} \\ \sqrt{2} & 2 & \sqrt{6} \\ \sqrt{3} & \sqrt{6} & 3 \end{bmatrix}$$
 (e) $\mathbf{E} = \begin{bmatrix} 4 \\ -8 \\ 16 \\ -32 \end{bmatrix}$ (f) $\mathbf{F} = \begin{bmatrix} 1 & -1 & -2 \\ 1 & 1 & -1 \end{bmatrix}$

2.

(a) Não é possível efetuar a operação

(a) Nation of possiver electrical at operation
$$(b) \begin{bmatrix} 2 & 6 & 8 \\ 1 & -1 & -1 \end{bmatrix}$$
(c)
$$\begin{bmatrix} -1 + \sqrt{2} + 3\sqrt{3} & 2 - \sqrt{2} + 3\sqrt{6} & 9 - \sqrt{3} + \sqrt{6} \\ -4 - 2\sqrt{2} & -4(\sqrt{2} + 1) & -4\sqrt{3} - 2\sqrt{6} \end{bmatrix}$$
(d)
$$\begin{bmatrix} 12 & -24 \\ -11 & -14 \end{bmatrix}$$

(e) Não é possível efetuar a operação

Não é possível efectuar as operações indicadas nas alíneas: a), b), e), f), h), j) e m). As restantes alíneas são possíveis e tem-se:

c)
$$\begin{bmatrix} 6 & 3 \end{bmatrix}$$
 d) $\begin{bmatrix} 6 & 3 \\ 3 & 5 \end{bmatrix}$ g) $\begin{bmatrix} -4 & 7 & 4 & 1 \\ 0 & 8 & 0 & 0 \end{bmatrix}$
i) $\begin{bmatrix} -2 & 6 \\ 9 & 8 \\ 2 & 0 \\ -4 & -1 \end{bmatrix}$ k) $\begin{bmatrix} 4 \\ -9 \\ -1 \\ 0 \end{bmatrix}$ l) $\begin{bmatrix} 2 \\ 4 \\ -1 \\ -3 \end{bmatrix}$ n) $\begin{bmatrix} -2 & -1 & -5 & 1 \\ -4 & -3 & 4 & -1 \\ -4 & 6 & 4 & 2 \\ 4 & 2 & 1 & 2 \end{bmatrix}$ o) $\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ p) $\begin{bmatrix} -2 & 0 & 4 & 0 \\ -2 & 6 & 1 & 0 \\ -4 & 0 & 8 & 0 \\ -4 & 6 & 5 & 0 \end{bmatrix}$
q) $\begin{bmatrix} -9 \\ -11 \end{bmatrix}$ r) $\begin{bmatrix} 6 \end{bmatrix}$ s) $\begin{bmatrix} 0 & -4 & 3 & 0 \\ 2 & -4 & 0 & 0 \\ 0 & -3 & 0 & 0 \end{bmatrix}$
t) $\begin{bmatrix} 5 & 10 \end{bmatrix}$

7. e 8.

Quando A e B forem permutáveis.

9.

a)
$$X = C(A + B)^{-1}$$
.

b)
$$X = (A + B)^{-1}C$$
.

c)
$$X = (A^T)^{-1}$$
.

d)
$$X = A^{-2}B^{-1}$$
.

e)
$$X = C^{-1} - (B^{-1})^T$$
.

f)
$$X = (A^{-1} - I)B$$
.

g)
$$X = A^{-1} - B$$
.

10.
$$\left\{ \begin{bmatrix} t - z & -2z \\ z & t \end{bmatrix} \in \mathcal{M}_2 : z, t \in \mathbb{R} \right\}.$$
11. **a)** $\mathbf{A} = \begin{bmatrix} -1 & -1/2 \\ 0 & 1/2 \end{bmatrix}.$ **b)** $\mathbf{B}^{19} = \begin{bmatrix} -1 & -174763 \\ 0 & 524288 \end{bmatrix}.$
12.

a)
$$\mathbf{A} = \begin{bmatrix} -1 & -1/2 \\ 0 & 1/2 \end{bmatrix}$$

b)
$$\mathbf{B}^{19} = \begin{bmatrix} -1 & -174763 \\ 0 & 524288 \end{bmatrix}$$

$$\mathbf{b)} \ \mathbf{A}^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

$$\mathbf{E}(\mathbf{A}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{E}(\mathbf{B}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{E}(\mathbf{C}) = \mathbf{C}$$

$$\mathbf{E}(\mathbf{D}) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{E}(\mathbf{E}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \mathbf{E}(\mathbf{F}) = \begin{bmatrix} 1 & 1 & 24 & 1 \\ 0 & 0 & 24 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

b)
$$r(\mathbf{A}) = 3$$
. $r(\mathbf{B}) = 2$. $r(\mathbf{C}) = 3$. $r(\mathbf{D}) = 3$. $r(\mathbf{E}) = 3$. $r(\mathbf{F}) = 2$.

14.

Por exemplo,
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix}$$
.

b)
$$(\alpha \mathbf{A})^{-1} = \frac{1}{\alpha} \mathbf{A}^{-1}$$
.

16.
$$\mathbf{X} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}.$$