

Annotation Tool for Biomedical Images

Problem Statement

Medical institutions generate large volumes of biomedical image data that can be used to train supervised models for valuable AI-assisted diagnosis in healthcare. However, annotating biomedical images is a laborious process that also needs input from professionals for accuracy.

Proposed Solution

- Online, collaborative tool
- Specialised for medical professionals
- Smooth completion of annotations with an optimised user interface
- Human-In-The-Loop active learning architecture built on a pre-trained machine learning model

Methodology

Features

Human-In-The-Loop Machine Learning

Collaborative Teams

3

Objectives

Architecture

Results — Conclusion

trained by different datasets

Sathiesh Kumar Kaliyugarasan, "Deep transfer learning in medical imaging,"

M.S. thesis, The University of Bergen, 2019.

The project will be evaluated on the following metrics:

- Accuracy of the annotation prediction confidences
- Time-taken to annotate compared to similar software
- Evaluation by Nielsen's 10
 Usability Heuristics

Technology

Group Members

Fatimah Zulfiqar Muhammad Shaafay Saqib

Advisor

Dr. Hasan Ali Khattak

Co-Advisor

Dr. Shams Qazi

