Family Tax Benefits and Child Care Subsidy: A Macroeconomic Analysis

Darapheak Tin Chung Tran

Research School of Economics, Australian National University

4th Annual RSE PhD Workshop 2022

November 2022

Motivation

1. Sizeable child-related transfers (2-2.5% of GDP in the past decade).

Family Tax Benefits for lower income households (parents of dependent children)

Motivation

1. Sizeable child-related transfers (2-2.5% of GDP in the past decade).

Motivation

- 1. Sizeable child-related transfers (2-2.5% of GDP in the past decade).
- 2. Family Tax Benefit (FTB) and Child Care Subsidy (CCS)
 - Similarities: Both programs test age and number of children, marital status, and income.
 - Differences: FTB is not conditional on labour participation, but CCS has an activity test.

Age-profile of full-time participation by cohort, gender, and parenthood

Motivation

- 1. Sizeable child-related transfers (2-2.5% of GDP in the past decade).
- 2. Family Tax Benefit (FTB) and Child Care Subsidy (CCS)
 - Similarities: Both programs test age and number of children, marital status, and income.
 - Differences:
 FTB is not conditional on labour participation, but CCS has an activity test.

Motivation

- 1. Sizeable child-related transfers (2-2.5% of GDP in the past decade).
- 2. Family Tax Benefit (FTB) and Child Care Subsidy (CCS)
 - Similarities: Both programs test age and number of children, marital status, and income.
 - Differences: FTB is not conditional on labour participation, but CCS has an activity test.
- 3. Interaction between transfer schemes with opposing effects and household demographic characteristics.

Our study

We develop a GE heterogeneous-agent OLG framework featuring:

- Family structure,
- Endogenous female human capital,
- Time and monetary costs of children, and
- Detailed transfer programs.

Our goal is to address the following questions:

- 1. What does a world without one or both of these child-related transfers look like? Which is better and from which perspective (efficiency vs. welfare)? - our focus today
- 2. Are there more optimal alternatives? future work

Summary of findings (1)

- 1. Partially offsetting effects over life cycle
 - ► FTB discourages full-time work despite the presence of CCS (low-skilled and single mothers respond strongly)
 - ► However, eliminating both programs → less participation for young mothers (i.e., CCS's work incentive effect is dominant)
- 2. Transfer programs interact. E.g., Removing the FTB:
 - ▶ increases labor supply → higher CCS spending
 - \blacktriangleright increases savings against earnings and longevity risk \rightarrow lower age-pension spending due to assets test
 - → affects tax

Summary of findings (2)

- 3. Understanding the impact of a policy reform requires a holistic view
 - 3.1 From macro perspective:
 - ► remove FTB: +16.7% female LFP, +1.1% GDP
 - ► remove FTB and CCS: -3.6% female LFP, -3.3% GDP
 - remove CCS: -15.7% female LFP, -3.48% GDP
 - 3.2 From welfare perspective:
 - remove CCS: -1% welfare
 - remove FTB: -5.5% welfare (single mothers lose, though have CCS that allows for lower cost of work)
 - remove FTB and CCS: -51.5% welfare (single mothers lose; no support and work is too costly)
- 4. Within the confines of this model, either cutting FTB or raising CCS creates some gains at a relatively low cost.

Model overview

A small open economy calibrated to Australia (2012-2018):

1. Households

- heterogeneous in age (j), family structure (λ), asset (a), human capital (h), education (θ), transitory shocks (ϵ^m , ϵ^f);
- time and monetary costs of children;
- ▶ make decision on joint consumption c, savings a^+ and female labor supply $\ell \in \{0,1,2\}$;
- 2. A representative firm with Cobb-Douglas technology;
- 3. Government commits to balance the budget every period:
 - income tax, corporate income tax, consumption tax, borrowing;
 - general expenditure, age pension, FTB, CCS, debt;
- 4. Goods and factor markets clear.

Demographics (1)

- 1. Time-invariant population growth rate (n) and survival probabilities $(\psi_j^m \text{ and } \psi_j^f)$;
- 2. Populated by three household types:
 - Married parents, $\lambda = 0$
 - ▶ Single childless men, $\lambda = 1$
 - ▶ Single mothers, $\lambda = 2$
- 3. Households are born as workers at j=1, retire at j=45 and can live to the maximum age of j=J=80;

Demographics (2)

- 4. Low education (θ_L) households have children earlier;
- 5. Child spacing is identical for all parents;
- Children are exogenous and fully determined by household age, j:
 - ▶ the k^{th} child is born to households aged $j = b_{k,\theta}$;
 - ▶ the k^{th} child is dependent for 18 years from $j = b_{k,\theta}$ to $j = b_{k,\theta} + 17$;

Households (working age): Costs of working for women

If a woman works, she incurs:

1. A time cost, χ , and time cost per child, χ_{c,j_c} :

$$I_{j}^{f} = \begin{cases} 1 & \text{if } \ell = 0 \\ 0 < \left(1 - n_{j,\lambda,\ell=1}^{f}\right) < 1 & \text{if } \ell = 1 \\ 0 < \left(1 - n_{j,\lambda,\ell=2}^{f} - \chi - \chi_{c,j_{c}} \times nc_{j}\right) < 1 & \text{if } \ell = 2 \end{cases}$$

Households (working age): Costs of working for women

If a woman works, she incurs:

1. A time cost, χ , and time cost per child, χ_{c,j_c} :

$$I_j^f = \begin{cases} 1 & \text{if } \ell = 0 \\ 0 < \left(1 - n_{j,\lambda,\ell=1}^f\right) < 1 & \text{if } \ell = 1 \\ 0 < \left(1 - n_{j,\lambda,\ell=2}^f - \chi - \chi_{c,j_c} \times \textit{nc}_j\right) < 1 & \text{if } \ell = 2 \end{cases}$$

2. A **formal childcare cost per child** κ_j that is decreasing in the age of children:

Households (working age): Costs of working for women

If a woman works, she incurs:

1. A time cost, χ , and time cost per child, χ_{c,j_c} :

$$I_{j}^{f} = \begin{cases} 1 & \text{if } \ell = 0 \\ 0 < \left(1 - n_{j,\lambda,\ell=1}^{f}\right) < 1 & \text{if } \ell = 1 \\ 0 < \left(1 - n_{j,\lambda,\ell=2}^{f} - \chi - \chi_{c,j_{c}} \times nc_{j}\right) < 1 & \text{if } \ell = 2 \end{cases}$$

- **2.** A **formal childcare cost per child** κ_j that is decreasing in the age of children:
- 3. A loss of a portion or all of the means-tested FTB benefits.

Households (working age): Benefits of working for women

However, if she works, she gains:

1. Labor income

$$y_j = w n_j \theta h_j \epsilon_j$$

$$\ln(\epsilon_j) = \rho \times \ln(\epsilon_{j-1}) + v_j; \qquad v_j \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

Households (working age): Benefits of working for women

However, if she works, she gains:

1. Labor income

$$y_j = w n_j \theta h_j \epsilon_j$$

$$\ln(\epsilon_j) = \rho \times \ln(\epsilon_{j-1}) + v_j; \qquad v_j \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

2. Child care subsidy s_j per child;

Households (working age): Benefits of working for women

However, if she works, she gains:

1. Labor income

$$y_j = w n_j \theta h_j \epsilon_j$$

$$\ln(\epsilon_j) = \rho \times \ln(\epsilon_{j-1}) + v_j; \qquad v_j \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

- **2.** Child care subsidy s_i per child;
- **3.** Human capital accumulation for the next period that evolves according to a law of motion:

$$log(h_i) = log(h_{i-1}) + (\xi_1 + \xi_2 \times (j-1)) \mathbf{1}_{\{\ell_{i-1} \neq 0\}} - \delta_\ell \mathbf{1}_{\{\ell_{i-1} = 0\}}$$
 (1)

Key Macro Variables: Model vs. Data

Moments	Benchmark	Data	Source	
	economy			
Targeted				
$\overline{Capital}, K/Y$	3.2	3-3.3	ABS (2012-2018)	
Savings, S/Y	6.5%	5-8%	ABS (2013-2018)	
Mother's labor participation, <i>LFP</i>	63%	65-70%	HILDA (2012-2018)*	
Mother's full time rate, <i>FT</i>	23%	26-28% (40%× <i>LFP</i>)	HILDA (2012-2018)*	
Consumption Tax, T^C/Y	4.26%	4.50 [°] %	APH Budget Review	
Company Tax, T^K/Y	4.25%	4.25%	APH Budget Review	
Age Pension, P/Y	3.31%	3.20%	ABS (2012-2018)	
Gini coefficient (male	0.35	0.35	,	
aged 21)				
Non-targeted				
$\overline{\text{Consumption}}, C/Y$	53.23%	54-58%	ABS (2012-2018)	
Investment, I/Y	32.30%	24-28%	ABS (2013-2018)	
Income tax, T^I/Y	12.11%	11%	APH Budget Review	
Tax revenue to output	20.35%	25%	ABS(2012-2018)	
Child-related transfers $(FTB + CCS)$	2.75%	2%	ABS (2012-2018)	
Gini coefficient (working	0.3766	0.45	PC (2018)	
age male)		◆□ → ◆昼 → ◆臺 → ◆亳 → 亳 → 今へで 1		

Results: Benchmark vs. Experiments

	Pre-reform	Remove	Remove	Remove
		FTB	CCS	both
	Benchmark	Change	Change	Change
	values			
Income (Y)	1.13	1.01%	-3.48%	-3.05%
Consumption (C)	0.60	1.43%	-3.26%	-2.31%
Savings (S)	0.07	16.03%	-1.41%	18.99%
Female LFP	63.55%	10.58 p.p.	-10.00 p.p.	-2.31 p.p.
Female FT rate	24.02%	11.18 p.p.	-4.55 p.p.	0.26 p.p.
Income tax rate	19.77	-1.72%	-0.70%	-4.22%
FTB expense	0.018306	_	10.89%	_
CCS expense	0.013	79.23%	_	_
Pension	0.0382	-3.14%	-3.93%	-8.12%
HEV (newborn)	0	-5.5021%	-1.00%	-51.46%**

Table: Stationary equilibria comparison

^{**}Turning off household types, the loss is only 2% See also experiment 2.0 16/71

LFP and human capital of mothers: Benchmark

LFP and human capital of mothers: Remove FTB

LFP and human capital of mothers: Remove CCS

LFP and human capital of mothers: Remove FTB and CCS

Conclusion

- 1. A unified framework incorporating the FTB and CCS into a large scale GE heterogeneous-agent OLG model;
- 2. Lessons from a unique setting in Australia:
 - The interplay between transfers is key in understanding their the macroeconomic and welfare impacts;
 - ▶ Abolish or cutting back on a particular program can be a net gain or loss depending on changes to other programs → reforms demand a more holistic consideration.
- 3. A possible explanation on the findings by Herault and Kalb (2020) as to why tax and transfer policies contribute little to the increase in female LFP.¹

They explain the rise in female LFP rate (1990-2017 Australia) using a decomposition approach (4 explanatory factors: wage, tax and transfer, preference, demographic composition changes).

Future plan

Planned expansion:

- 1. More labor options (permanent and casual employments);
- 2. Endogenize intensive margin of labour supply;
- 3. Richer income process (See De Nardi et al. (2020));
- 4. More detailed policy experiments;
- 5. Optimal transfer policy.

Welfare expenditure in Australia

Financial year	Welfare (\$b)	Welfare-GDP	Welfare- Revenue (%)
2010-11	140.19	8.43	34.04
2011-12	149.66	8.7	34.2
2012-13	153.24	8.89	33.62
2013-14	155.68	8.88	33.47
2014-15	165.13	9.41	35.15
2015-16	167.68	9.47	34.59
2016-17	165.76	8.95	33.02
2017-18	171.62	8.99	32
2018-19	174.24	8.8	31.18
2019-20	195.71	9.86	36.05

Note: \$ value is expressed in 2019-20 prices.

Source: Australian Institute of Health and Welfare

Welfare expenditure to GDP (%) by target groups

Financial year	Families & children	Old people	Disabled	Unemployed	Others
2009-10	2.51	3.33	1.87	0.48	0.40
2010-11	2.39	3.33	1.94	0.44	0.34
2011-12	2.33	3.43	1.98	0.44	0.52
2012-13	2.31	3.57	2.00	0.49	0.52
2013-14	2.26	3.47	2.02	0.55	0.57
2014-15	2.33	3.79	2.09	0.59	0.61
2015-16	2.32	3.86	2.08	0.60	0.62
2016-17	2.02	3.72	2.01	0.57	0.63
2017-18	1.94	3.67	2.18	0.56	0.65
2018-19	1.81	3.63	2.22	0.49	0.64
2019-20	1.92	3.85	2.53	0.93	0.62

Source: Australian Institute of Health and Welfare

Full time employment rate by gender

ltg

■ Back to Introduction

Labour force participation rate by gender

■ Back to Main Section

Literature

Tax-Transfer in heterogeneous agent models with family structure:

- 1. Joint-filing income tax
 - ► For proportional and separate filing income tax in the US (Guner et al., 2012a,b) and in US and 10 EU countries (Bick and Fuchs-Schundeln, 2017)
- 2. Spousal and survival benefits
 - ► For elimination (US) (Kaygusuz, 2015; Nishiyama, 2019; Borella et al., 2020)*
- 3. Child-related transfers
 - Expansion requires stronger evidence (US) (Guner et al., 2020)
 - Negative childcare price elasticity of labour supply (AU)
 (Doiron and Kalb, 2004)*
- 4. Old age pension
 - ► For (at least) partial means-tested (US) (Feldstein, 1987; Braun et al., 2017)
 - ► Balancing insurance and incentive effects of means-tested Age Pension (AU) (Tran and Woodland, 2014)

Demographics (2)

As in Nishiyama (2019), the household type evolves according to Markov transition probabilities:

Table: Transition probabilities of household type

Households: Preferences (1)

Households born at time t maximize expected intertemporal utility:

$$\max_{c_j,l_j^f} \sum_{j=1}^J \beta^{j-1} \left(\prod_{s=1}^{j-1} \pi_{\lambda_{s+1}|\lambda_s}, \right) u(c_j,l_j^m,l_j^f,\lambda_j,nc_j) \tag{2}$$

- \triangleright β discount factor;
- lacktriangledown time-invariant survival probabilities;
- $ightharpoonup \lambda$ household type (by marital status)
- c joint consumption;
- $ightharpoonup I^i$ leisure time of $i \in m, f$;

◆ Back to Model Summary

Households: Preferences (2)

The periodic utility functions at age j are:

$$u(c, I^{m}, I^{f}, \lambda = 1, 0) = \frac{\left[\left(\frac{c}{ces(1, 0)}\right)^{\nu} (I^{m})^{1 - \nu}\right]^{1 - \frac{1}{\gamma}}}{1 - \frac{1}{\gamma}}$$
(3)

$$u(c, l^m, l^f, \lambda = 2, nc) = \frac{\left[\left(\frac{c}{ces(2, nc)}\right)^{\nu} \left(l^f\right)^{1-\nu}\right]}{1 - \frac{1}{\gamma}}$$
(4)

$$u(c, l^{m}, l^{f}, \lambda = 0, nc) = \frac{\left[\left(\frac{c}{ces(0, nc)}\right)^{\nu} (l^{m})^{1-\nu}\right]^{1-\frac{1}{\gamma}} + \left[\left(\frac{c}{ces(0, nc)}\right)^{\nu} (l^{f})^{1-\nu}\right]^{1-\frac{1}{\gamma}}}{1-\frac{1}{\gamma}}$$
(5)

- Spouses are perfectly altruistic towards one another;
- $ces(\lambda, nc) = \sqrt{\mathbf{1}_{\{\lambda \neq 1\}} + \mathbf{1}_{\{\lambda \neq 2\}} + nc}$ square root consumption equivalence scale;
- $ightharpoonup \gamma$ intertemporal elasticity of substitution;
- \triangleright ν taste for consumption relative to leisure.

More on children...

- 5. Households have full information on children (e.g., arrival time, costs and benefits if work, etc);
- 6. No informal child care available;
- 7. Childcare quality and cost are identical;
- 8. Children leave home at 18 years old. This marks the end of the link between parents and their children;
- 9. No bequest motive.

Households: Endowments

Labour income for $i \in \{m, f\}$ in working age j = 1 to $j = J_R = 45$:

$$y_{j,\lambda}^i = w n_{j,\lambda}^i e_{j,\lambda}^i$$

- w wage rate;
- ightharpoonup n exogenous labour hours (n = 1 I);
- e earning ability:

Where

$$e_{j,\lambda}^{m} = \overline{e}_{j}\left(\theta, h_{j,\lambda}^{m}\right) \times \epsilon_{j}^{m}$$

- **Deterministic**: θ permanent education; h human capital;
- Stochastic: ϵ transitory shocks.

Retirees receive means-tested pension $pen(y_{i,\lambda}^m + y_{i,\lambda}^f, a_j)$.

Households (working age): Men

Men always works and receives labor income:

$$y_{j,\lambda}^{m} = w n_{j,\lambda}^{m} \theta h_{j,\lambda}^{m} \epsilon_{j}^{m}$$

 n^m and h^m are exogenous.

The transitory shocks follow an AR1 process:

$$\underbrace{\overline{\ln\left(\epsilon_{j}^{m}\right)}}^{=\eta_{j}^{m}} = \rho^{m} \times \underbrace{\overline{\ln\left(\epsilon_{j-1}^{m}\right)}}^{=\eta_{j-1}^{m}} + \upsilon_{j}^{m}; \qquad \upsilon_{j}^{m} \sim \mathcal{N}(0, \sigma_{v}^{2}) \qquad (6)$$

Dynamic Optimization Problem: Working households

 $V(z_j)$ denotes the value function for a household aged j with state $z_j = \left\{ \lambda_j, a_j, h_{j,\lambda,\ell}^f, \theta, \eta_j^m, \eta_j^f \right\}$ for $j < J_R$.

$$V(z_{j}) = \max_{c_{j}, \ell_{j}, a_{j+1}} \{ u(c_{j}, l_{j}^{m}, l_{j}^{f}, \lambda_{j}, nc_{j}) + \beta \sum_{s_{2}} \int_{s_{2}} V(z_{j+1}) d\Pi(\lambda_{j+1}, \eta_{j+1}^{m}, \eta_{j+1}^{f} | \lambda_{j}, \eta_{j}^{m}, \eta_{j}^{f}) \}$$
(7)

s.t.

$$(1+\tau^{c})c_{j} + a_{j+1} + \mathbf{1}_{\{\lambda \neq 1, \, \ell_{j} > 0\}} [wn_{j,\lambda}^{f} \sum_{i=1}^{nc_{j}} (1-s_{j,i})\kappa_{j,i}]$$

$$= (1+r)a_{j} + y_{j,\lambda} + \mathbf{1}_{\{\lambda \neq 1\}} (nc_{j} \times tr_{i}^{A} + tr_{i}^{B}) + beq_{j} - tax_{j}$$
(8)

$$c_j > 0 (9)$$

$$a_{j+1} \ge 0 \tag{10}$$

$$I_i^f = 1 \quad \text{if } \lambda = 1 \tag{11}$$

$$0 < l_i^f < 1 - n_{i,\lambda,\ell}^f - \mathbf{1}_{\{\ell=1\}} (\chi + \chi_{c,j_c} \times nc_j) \quad \text{if } \lambda = 0 \text{ or } \lambda = 2$$
 (12)

Dynamic Optimization Problem: Retirees

Retiree's state vector is $z_j = \{a_j, \lambda_j\}$

- No labour income, no children;
- Pension is independent of labour earnings history but dependent on household type.

$$V(z_j) = \max_{c_j, a_{j+1}} \left\{ u(c_j, \lambda_j) + \beta \sum_{\Lambda} V(z_{j+1}) d\Pi(\lambda_{j+1} | \lambda_j) \right\}$$
(13)

s.t.

$$(1+\tau^c)c_j + a_{j+1} = (1+r)a_j + pen_j - tax_j$$
 (14)

$$c_j > 0 \tag{15}$$

$$a_{j+1} \ge 0$$
 and $a_{J+1} = 0$ (16)

Technology

▶ A firm with Cobb-Douglas production and labour-augmenting technology *A* (with constant growth rate *g*):

$$Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha}$$

Firm maximizes profit according to:

$$\max_{K_t, L_t} \quad (1 - \tau_t^k)(Y_t - w_t A_t L_t) - (r_t + \delta)K_t \quad (17)$$

Firm's FOC yields:

$$r_t = (1 - \tau_t^k) \alpha \frac{Y_t}{K_t} - \delta \tag{18}$$

$$w_t = (1 - \alpha) \frac{Y_t}{A_t L_t} \tag{19}$$

Government: Tax system

Separate tax filing for $i \in \{m, f\}$ on \widetilde{y}_j

If proportional:

$$tax_j^i = \tau^w \times \widetilde{y}_j \tag{20}$$

If progressive:

$$tax_{j}^{i} = \max\left\{0, \ \widetilde{y}_{j} - \zeta\widetilde{y}_{j}^{1-\tau}\right\}$$
 (21)

Where

- $ightharpoonup \widetilde{y_j} = y_{j,\lambda}^i + \mathbf{1}_{\lambda=0} rac{ra_j}{2} + \mathbf{1}_{\lambda
 eq 0} ra_j$ is the taxable income
- $ightharpoonup \zeta$ is a scaling parameter
- ightharpoonup au controls progressivity of the tax scheme:
 - $\tau = 1 \implies tax_j^i = y_{i,\lambda}^i;$ i.e., tax everything;
 - $au=0 \implies tax_j^i=(1-\zeta)y_{j,\lambda}^i$; i.e., $(1-\zeta)$ is a flat tax rate.

Government: Family Tax Benefit part A (1)

The FTB part A is paid per dependent child.

There are 3 pairs of key parameters:

- 1. **Max** and **base** payments per child: $\{tr_j^{A1}; tr_j^{A2}\};$
- 2. **Income thresholds** for max and base payments: $\{\bar{y}_{max}^{tr}, \bar{y}_{base}^{tr}\}$;
- 3. **Taper rates** for max and base payments: $\{\omega_{A1}; \omega_{A2}\}$

Government: Family Tax Benefit part A (2)

Let $y_{j,\lambda} = y_{j,\lambda}^m + y_{j,\lambda}^f + ra_j$. The benefit received per child, tr_j^A , is:

$$tr_{j}^{A} = \begin{cases} tr_{j}^{A1} & \text{if } y_{j,\lambda} \leq \bar{y}_{max}^{tr} \\ \max\left\{tr_{j}^{A2}, \quad tr_{j}^{A1} - \omega_{A1}\left(y_{j,\lambda} - \bar{y}_{max}^{tr}\right)\right\} & \text{if } \bar{y}_{max}^{tr} < y_{j,\lambda} < \bar{y}_{base}^{tr} \\ \max\left\{0, \quad tr_{j}^{A2} - \omega_{A2}\left(y_{j,\lambda} - \bar{y}_{base}^{tr}\right)\right\} & \text{if } y_{j,\lambda} \geq \bar{y}_{base}^{tr}, \end{cases}$$

$$\tag{22}$$

Government: Family Tax Benefit part B (1)

The FTB part B is paid per household to provide additional support to single parents and single-earner parents with limited means.

There are 3 pairs of key parameters:

- 1. Two max payments for households with children aged [0,4] or [5,18]: $\{tr_j^{B1}; tr_j^{B2}\};$
- 2. Separate income thresholds for y_{pe} and y_{se} : $\{\bar{y}_{pe}^{tr}; \ \bar{y}_{se}^{tr}\};$
- 3. A taper rate based on y_{se} : ω_B

Where

- $y_{pe} = \max(y_{i,\lambda}^m, y_{i,\lambda}^f)$ is the primary earner's income
- \triangleright $y_{se} = \min(y_{i,\lambda}^m, y_{i,\lambda}^f)$ is the secondary earner's income

Government: Family Tax Benefit part B (2)

The benefit received per household, tr_i^B , is given by:

$$tr_j^B = (23)$$

$$\begin{cases} \Upsilon_1 \times tr_j^{\text{B1}} + \Upsilon_2 \times tr_j^{\text{B2}} & \text{if } y_{pe} \leq \bar{y}_{pe}^{tr} \text{and } y_{se} \leq \bar{y}_{se}^{tr} \\ \\ \Upsilon_1 \times \max \left\{0, \ tr_j^{\text{B1}} - \omega_B(y_{se} - \bar{y}_{se}^{tr})\right\} & \text{if } y_{pe} \leq \bar{y}_{pe}^{tr} \text{and } y_{se} > \bar{y}_{se}^{tr} \\ + \Upsilon_2 \times \max \left\{0, \ tr_j^{\text{B2}} - \omega_B(y_{se} - \bar{y}_{se}^{tr})\right\} \end{cases}$$

Where

- $ightharpoonup \Upsilon_1 = \mathbf{1}_{\{nc_{[0,4],j} \geq 1\}}$
- ho $ho_2=\mathbf{1}_{\{nc_{[0,4],j}=0 \text{ and } (nc_{[5,15],j}\geq 1 \text{ or } nc_{[16,18]_{AS},j}\geq 1)\}}$

◆ Back to Main Section

Government: Child Care Subsidy (1)

The Child Care Subsidy (CCS) assists households with the cost of formal care for **children aged 13 or younger**.

The rate of subsidy depends on

- 1. **Statutory rates**: $sr = \{0.85, 0.5, 0.2, 0\}$;
- 2. Income thresholds: \bar{y}_i^{sr} for $i \in \{1, 2, 3, 4, 5\}$;
- 3. Hour thresholds of recognized activities;
- 4. A taper rate, ω_C^i , on household income y_{hh}

Government: Child Care Subsidy (2)

The rate of subsidy, s_i , is:

$$s_{j} = \Psi(y_{j,\lambda}, n_{j,\lambda}^{m}, n_{j,\lambda}^{f}) \times$$

$$\begin{cases} sr_{1} & \text{if } y_{j,\lambda} \leq \bar{y}_{1}^{sr} \\ max\{sr_{2}, sr_{1} - \omega_{c}^{1}\} & \text{if } \bar{y}_{1}^{sr} < y_{j,\lambda} < \bar{y}_{2}^{sr} \\ sr_{2} & \text{if } \bar{y}_{2}^{sr} \leq y_{j,\lambda} < \bar{y}_{3}^{sr} \\ max\{sr_{3}, sr_{2} - \omega_{c}^{3}\} & \text{if } \bar{y}_{3}^{sr} \leq y_{j,\lambda} < \bar{y}_{4}^{sr} \\ sr_{3} & \text{if } \bar{y}_{4}^{sr} \leq y_{j,\lambda} < \bar{y}_{5}^{sr} \\ sr_{4} & \text{if } y_{j,\lambda} \geq \bar{y}_{5}^{sr} \end{cases}$$

Where

 \blacktriangleright Let $n_j^{min} = min\{n_{j,\lambda}^m, n_{j,\lambda,\ell}^f\}.$ The adjustment factor is

$$\begin{split} \Psi(y_{j,\lambda}, n_{j,\lambda}^m, n_{j,\lambda}^f) &= 0 + 0.24_{\{y_{j,\lambda} \leq AU\$70,015, \, n_j^{min} \leq 8\}} + 0.36_{\{8 < n_j^{min} \leq 16\}} \\ &+ 0.72_{\{16 < n_j^{min} \leq 48\}} + 1_{\{n_j^{min} > 48\}} \end{split}$$

Government: Old Age Pension (1)

Pension is funded by the general government budget.

Pension is available to households aged $j \ge J_R$ and is means-tested (income and assets tests).

Income test:

$$\mathcal{P}^{y}\left(y_{j,\lambda}\right) = \begin{cases} p^{\max} & \text{if } y_{j,\lambda} \leq \bar{y}_{1}^{p} \\ \max\left\{0, \ p^{\max} - \omega_{y}\left(y_{j}^{p} - \bar{y}_{1}^{p}\right)\right\} & \text{if } y_{j,\lambda} > \bar{y}_{1}^{p}, \end{cases} \tag{25}$$

Asset test:

$$\mathcal{P}^{a}(a_{j}) = \begin{cases} p^{\max} & \text{if } a_{j} \leq \bar{a}_{1} \\ \max\{0, p^{\max} - \omega_{a}(a_{j} - \bar{a}_{1})\} & \text{if } a_{j} > \bar{a}_{1}, \end{cases}$$
(26)

Government: Old Age Pension (2)

The amount of pension benefit claimable, pen_j , is the minimum of (25) and (26). That is,

$$pen_{j} = \begin{cases} \min \left\{ \mathcal{P}^{a}\left(a_{j}\right), \mathcal{P}^{y}\left(y_{j,\lambda}\right) \right\} & \text{if } j \geq J_{P} \text{ and } \lambda = 0 \\ \\ \frac{2}{3} \min \left\{ \mathcal{P}^{a}\left(a_{j}\right), \mathcal{P}^{y}\left(y_{j,\lambda}\right) \right\} & \text{if } j \geq J_{P} \text{ and } \lambda = 1, 2 \\ \\ 0 & \text{otherwise} \end{cases}$$

Government: Budget

Government at time t collects taxes (T_t^c, T_t^K, T_t^I) and issue bond $(B_{t+1} - B_t)$ to meet its debt obligation $(r_t B_t)$ and its commitment to three spending programs:

- General government purchase, G_t;
- Family transfers (FTB + CCS), Tr_t ;
- ightharpoonup Old age pension, P_t .

The fiscal budget balance equation is therefore

$$(B_{t+1} - B_t) + T_t^{C} + T_t^{K} + T_t^{I} = G_t + Tr_t + P_t + r_t B_t.$$
 (28)

Competitive Equilibrium: Measure of Households

Let $\phi_t(z)$ and $\Phi_t(z)$ denote the population growth- and mortality-unadjusted population density and cumulative distributions, respectively, and Ω_t denotes the vector of parameters at time t.

Initial distribution of newborns:

$$\int_{\Lambda \times A \times H \times \Theta \times S^2} d\Phi_t(\lambda, a, h, \theta, \eta_m, \eta_f) \quad = \quad \int_{\Lambda \times \Theta \times S^2} d\Phi_t(\lambda, 0, 0, \theta, \eta_m, \eta_f) = 1, \quad \text{and}$$

$$\phi_t(\lambda, 0, 0, \theta, \eta_m, \eta_f) \quad = \quad \pi(\lambda) \times \pi(\theta) \times \pi(\eta_m) \times \pi(\eta_f).$$

The population density $\phi_t(z)$ evolves according to:

$$\phi_{t+1}(z^{+}) = \int_{\Lambda \times A \times H \times \Theta \times S^{2}} \mathbf{1}_{\{a^{+}=a^{+}(z,\Omega_{t}), h^{+}=h^{+}(z,\Omega_{t})\}} \times \pi(\lambda^{+}|\lambda)$$
$$\times \pi(\eta_{m}^{+}|\eta_{m}) \times \pi(\eta_{f}^{+}|\eta_{f}) d\Phi_{t}(z)$$
(29)

Competitive Equilibrium: Aggregation (Households)

Given the optimal decisions $\{c(z,\Omega_t),\,\ell(z,\Omega_t),\,a(z,\Omega_t)\}_{j=1}^J$, the share of alive households $(\mu_{j,t})$ and the distribution of households $\phi_t(z)$ at time t, we arrive at:

$$C_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} c(z, \Omega_t) \mu_{j,t} d\Phi_t(z)$$
 (30)

$$A_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} a(z, \Omega_t) \mu_{j,t} \, d\Phi_t(z)$$
 (31)

$$LFP_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} \mathbf{1}_{\{\ell(z,\Omega_t) \neq 0\}} \mu_{j,t} \, d\Phi_t(z). \tag{32}$$

$$LM_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} h_{j,\lambda}^m e^{\theta + \eta_m} \mu_{j,t} d\Phi_t(z)$$
 (33)

$$LF_{t} = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^{2}} \mathbf{1}_{\{\ell(z,\Omega_{t}) \neq 0\}} h_{j,\lambda,\ell}^{f} e^{\theta + \eta_{f}} \mu_{j,t} d\Phi_{t}(z).$$
(34)

Competitive Equilibrium: **Aggregation (Government)**

Given the optimal decisions $\{c(z, \Omega_t), \ell(z, \Omega_t), a(z, \Omega_t)\}_{i=1}^J$, government policy parameters, the share of alive households $(\mu_{i,t})$ and the distribution of households $\phi_t(z)$ at time t, we arrive at:

$$T_t^C = \tau_t^c C_t$$

$$T_t^K = \tau_t^k (Y_t - w_t A_t L_t)$$
(35)

$$T_t^K = \tau_t^k (Y_t - w_t A_t L_t)$$
 (36)

$$T_t^I = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} tax_j \mu_{j,t} d\Phi_t(z). \tag{37}$$

$$Tr_t = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^2} (ftba_j + ftbb_j + ccs_j) \mu_{j,t} d\Phi_t(z)$$
 (38)

$$\mathcal{P}_{t} = \sum_{j=1}^{J} \int_{\Lambda \times A \times H \times \Theta \times S^{2}} pen_{j} \mu_{j,t} d\Phi_{t}(z). \tag{39}$$

Competitive Equilibrium: Definition (1)

Given the household, firm and government policy parameters, the demographic structure, the world interest rate, a steady state equilibrium is such that:

- 1. The collection of individual household decisions $\{c_j, \ell_j, a_{j+1}\}_{j=1}^J$ solve the household problem (7) and (13);
- 2. The firm chooses labor and capital inputs to solve the profit maximization problem (18);
- 3. The government budget constraint (28) is satisfied;
- 4. The markets for capital and labour clear:

$$K_t = A_t + B_t + B_{F,t} \tag{40}$$

$$L_t = LM_t + LF_t \tag{41}$$

Competitive Equilibrium: Definition (2)

Goods market clears:

$$Y_{t} = C_{t} + I_{t} + G_{t} + NX_{t}$$

$$NX_{t} = (1 + n)B_{F,t+1} - (1 + r)B_{F,t}$$

$$B_{F,t} = A_{t} - K_{t} - B_{t}$$
(42)

Where

- $I_t = (1+n)K_{t+1} (1-\delta)K_t$ is investment
- \triangleright NX_t is the trade balance, and
- B_{F,t} is the foreign capital required to clear the capital market.

Competitive Equilibrium: Definition (3)

6. The total lump-sum bequest transfer, BQ_t , is the total assets left by all deceased households at time t:

$$BQ_t = \sum_{j=1}^J \int_{\Lambda \times A \times H \times \Theta \times S^2} (1 - \psi_{j,\lambda}) (1 + r_t) a(z, \Omega_t) d\Phi_t(z).$$
(43)

Bequest to each surviving household aged j at time t is

$$beq_{j,t} = \left[\frac{b_{j,t}}{\sum_{j=1}^{J} b_{j,t} m_{j,t}}\right] BQ_t$$
 (44)

Assuming bequest is uniform among alive working-age agents, then $b_{j,t} = \frac{1}{JR-1}$ if j < JR and $b_{j,t} = 0$ otherwise. Thus,

$$beq_{j,t} = \frac{BQ_t}{\sum_{j=1}^{JR-1} m_{j,t}}$$
 (45)

Summary: Externally Calibrated Parameters (1)

Parameter	Value	Target (2012-2018)	
Demographics			
Lifespan	J = 80	Age 21-100	
Retirement	$J_R = 45$	Age 65	
Population growth	n = 1.6%	Average (ABS)	
Survival probabilities	ψ_{m},ψ_{f}	Average (Aus. Life Tables, ABS)	
Measure of newborns by type	$\{\pi(\lambda_0), \pi(\lambda_1), \pi(\lambda_2)\} = \{0.70, 0.14, 0.16\}$	= HILDA 2010-2018	
Technology			
Labour augmenting tech. growth	g = 1.3%	Average per capita growth rate (World Bank)	
Output share of capital	$\alpha = 0.4$	Output share of capital for Australia	
Real interest rate	r = 4%	Average (World Bank)	
Households			
Relative risk aversion	$\sigma = \frac{1}{\gamma} = 3$	standard values 2.5-3.5	
Work hours	$n_{m,\lambda}, n_{f,\lambda}$	Age-profiles of avg. labour hours (HILDA)	
Male human capital profile	h_{λ}^{m}	Age-profile of hourly wages for married men	

Summary: Externally Calibrated Parameters (2)

Parameter	Value	Target
Permanent shocks		
Value	$\begin{cases} \theta_L, \theta_H \\ = \{0.745, 1.342\} \end{cases}$	College-HS wage premium of 1.8 (HILDA, 2012-2018)
Measure of $\{ heta_L, heta_H\}$ type households	$\{\pi(\theta_L), \pi(\theta_H)\}\$ = $\{0.7, 0.3\}$	College to high school ratio (2018, ABS)
Fiscal Policy		
Consumption tax	$\tau_c = 8\%$	$ \tau_c \frac{C_0}{Y_0} = 4.5\%; \frac{C_0}{Y_0} = 56.3\% $ $ \tau^k \left(\frac{Y - WL}{Y}\right) = 4.25\%; \frac{WL}{Y} = \alpha $
Company profit tax	$ au^k=10.625\%$	$\tau^k \left(\frac{Y - WL}{Y} \right) = 4.25\%; \frac{WL}{Y} = \alpha$
Gov't debt-to-GDP	$\frac{B}{Y} = 20\%$ $\frac{G}{Y} = 14\%$	Average (CEIC data, 2012-2018)
Gov't general purchase	$\frac{G}{Y} = 14\%$	Net of FTB, CCS and Age Pension (WDI and AIHW)
FTB, CCS and pension parameters		HILDA Tax-Benefit model

Summary: Internally Calibrated Parameters (1)

Parameter	Value	Target		
Households				
Discount factor	$\beta = 0.99$	Saving ratio 5% – 8% (ABS, 2013-2018)		
Taste for consumption	$\nu = 0.365$	LFP rate for mothers $=$ 65-70%		
Time cost of non- mother's FT work	$\chi = 0.14$	Mother's full time rate $=24\%$		
Extra time cost of mother's full time work	$ \{ \chi_{c,j_c=[0,6]}, \ \chi_{c,j_c=[7,12]} \} $ {0.025, 0.005}	-Age-profile of full time share		
Female human capital accumulation	$(\xi_{1,\lambda,\ell};\;\xi_{2,\lambda,\ell})$	Age-profile of hourly wages of male counterpart (if $\ell>0$ every period)		
Female human capital depreciation	$\delta_h = 0.074$	Peak married male-female wag gap 30% (HILDA)		
Transitory shocks, ϵ				
Persistence	ho=0.98	Literature		
Variance of shocks	$\sigma_{\epsilon}^2 = 0.0145$	$GINI_{j=1,m} = 0.35$		
Fiscal policy				
Progressive income tax	$\lambda = 0.7237, \tau = 0.2$	Tran and Zakariyya (2021)		
Maximum pension	$pen^{max} = 30\% \times Y_m$	Pension/GDP = 3.2% (ABS, 2012- 2018)		

Calibration: Demographics (1)

- Since child-related transfers are concentrated during child-bearing and raising age, we set one model period to correspond to 1 year of life to better capture behavioural responses;
- 2. Time-invariant n, ψ_m and ψ_m induce an unchanging population structure in every period t (see share of survivors).

Calibration: Demographics (2)

Figure: Share of survivors over life cycle

Calibration: Endowment (Deterministic) (1)

Figure: Age profiles of average labor hours

Calibration: Endowment (Deterministic) (2)

Figure: Age profiles of male hourly wages

Calibration: Endowment (Deterministic, Female)

We calibrate the female human capital accumulation rate that their human capital profiles match those of their male counterparts:

- if the wife works without time off over life cycle, and
- assuming ex-ante assortative matching of couples in terms of skills.

Our estimates are:

- Married mothers working full time: $(\xi_{1,\lambda=0,\ell=1}, \xi_{2,\lambda=0,\ell=1}) = (0.0450, -0.00175)$
- Married mothers working part time: $(\xi_{1,\lambda=0,\ell=2}, \xi_{2,\lambda=0,\ell=2}) = (0.0350, -0.00135)$
- ► Single mothers working full time: $(\xi_{1,\lambda=2,\ell=1}, \xi_{2,\lambda=2,\ell=1}) = (0.0206, -0.00088)$
- ► Single mothers working part time: $(\xi_{1,\lambda=2,\ell=2}, \xi_{2,\lambda=2,\ell=2}) = (0.0179, -0.00060)$

Calibration: Endowment (Deterministic, Children)

Children:

- 1. Assign first and second child births to
 - type θ_H households aged {28, 31};
 - type θ_L households aged $\{21,24\}$ (See LSAC and AIHW reports)
- 2. Child care service fee is \$12.5/hour or 48% of age 21 married male hourly wage.
- 3. Based on approximates from child care service and school fees, parents pay
 - ▶ 100% of the fee for child aged 0-2;
 - 80% for child aged 3-5;
 - ▶ 60% for child aged 6-11;
 - ▶ 40% for child aged 12-17.

Calibration: Endowment (Stochastic income process)

We calibrate the AR1 stochastic process, η^i , for $i \in \{m, f\}$ as follows:

▶ Discretized into 5 grid points:

$$\eta^i = \{0.29813, 0.54601, 1, 1.83146, 3.35424\}$$

Transition probabilities obtained via Rouwenhorst method:

```
      0.9606
      0.0388
      0.0006
      0
      0

      0.0097
      0.9609
      0.0291
      0.0003
      0

      0.0001
      0.0194
      0.9610
      0.0194
      0.0001

      0
      0.0003
      0.0291
      0.9609
      0.0097

      0
      0
      0.0006
      0.0388
      0.9606
```

Calibration: Endowment (Stochastic income process)

- Persistence: $\rho = 0.98$;
- Variance of the innovation to shocks: $\sigma_{\epsilon}^2 = 0.0145$ to achieve a Gini coefficient of age 21 male wage distribution of 0.35;
- ► The set-up results in GINI = 0.3766 for wage distribution of work-age male population (not targeted).

Lorenz Curve (male wages at aged 21 and 22)

Figure: Lorenz curves of the distributions of married male wages at age 21 and 22

Lorenz Curve (male wages at working age)

Figure: Lorenz curve of the wage distribution of the working-age male population (accounting for human capital, education and transitory shocks over the life cycle)

Benchmark: Life cycle profiles

Figure: **Top left:** Assets-to-income ratio. **Top right:** Married male and female human capital. **Bottom left:** Female labor force participation rate.

Bottom right: Female full time share of employment

Results: Experiment set 2

	+50% FTB	+50% CCS	-50% FTB	-50% CCS
	Change	Change	Change	Change
Income (Y)	-1.11%	1.33%	1.09%	0.69%
Consumption (C)	-1.81%	2.05%	2.30%	-0.90%
Savings (S)	-3.75%	1.13%	4.22%	-2.11%
Female LFP	-3.48 p.p.	7.61 p.p.	6.83 p.p.	-4.31 p.p.
Female FT rate	-1.85 p.p.	4.29 p.p.	5.51 p.p.	-1.95 p.p.
Income tax rate	1.48%	0.61%	-1.15%	-1.08%
FTB expense	49.90%	-14.24%	-49.34%	4.88%
CCS expense	-12.12%	75.38%	37.40%	-60.00%
Pension	-0.31%	1.31%	0.11%	1.31%
HEV (newborn)	0.83%	0.1%	-1.00%	-0.3467%

Table: Changes relative to benchmark values

Computing the Steady State: Algorithm (1)

We solve the benchmark model (*small open economy*) for its initial balanced-growth path steady state equilibrium.

- 1. Parameterize the model and discretize assets on $[a_{min}, a_{max}]$ such that:
 - Number of grid points, $N_A = 70$;
 - $ightharpoonup a_{min} = 0$ (No-borrowing constraint);
 - ► The grid if fairly dense near a_{min} so households are not restricted by an all-or-nothing decision;
 - a_{max} is sufficiently large so that (i) households are not bound by a_{max}, and (ii) there is enough room for upward movement induced by new policy regimes.

and for human capital grids on $[h_{min}^f, h_{max}^f]$:

- Number of grid points, $N_H = 25$;
- $h_{min}^f = h_{i=21}^m = 1;$
- $h_{max}^f = h_{j=50}^m = 1.546;$

Computing the Steady State: Algorithm (2)

- 2. Guess K_0 and L_0 , endogenous government policy variables, and w_m , taking $r = r^w$ as given;
- 3. Solve the firm's problem for (w_m, w_f) ;
- 4. Given the factor prices (w_m, w_f, r) and the initial steady state vector of parameters (Ω_0) , solve the household problem for decision rules on $\{a^+, c, I^f\}$ by backward induction (from j = J to j = 1) using value function iteration;

Computing the Steady State: Algorithm (3)

- Starting from a known distribution of newborns, compute the measure of households across states by forward induction, using
 - the computed decision rules,
 - $\blacktriangleright \psi$,
 - $ightharpoonup \eta$ and its Markov transition probabilities, and
 - the law of motion of female human capital (1).
- Accounting for the share of alive agents, sum across states for aggregate variables: A, C, L, T and Tr. Update L, K, I and Y (convex update). Solve for endogenous government policy variables.

Computing the Steady State: Algorithm (4)

7. Given the updated variables, compute the goods market convergence criterion for a small open economy:

$$Y = C + I + G + NX$$

- $\blacktriangleright B_F = A K B;$
- $NX = (1+r)B_{F,t} (1+n)(1+g)B_{F,t+1};$
- NX < 0 implies a capital account surplus (increase in foreign indebtedness).
- 8. Return to step 3 until the convergence criterion is satisfied.

Bibliography I

- Bick, A. (2016). The Quantitative Role of Child Care for Female Labor Force Participation and Fertility. *Journal of the European Economic Association*, 14(3):639–668.
- Bick, A. and Fuchs-Schundeln, N. (2017). Quantifying the disincentive effects of joint taxation on married women's labor supply. *The American Economic Review*, 107(5):100–104.
- Borella, M., Nardi, M. D., and Yang, F. (2020). Are Marriage-Related Taxes and Social Security Benefits Holding Back Female Labor Supply?

 Opportunity and Inclusive Growth Institute Working Papers 41, Federal Reserve Bank of Minneapolis.
- Braun, A., Kopecky, K., and Koreshkova, T. (2017). Old, sick, alone, and poor: A welfare analysis of old-age social insurance programmes. *Review of Economics Studies*, 84:580–612.
- De Nardi, M., Fella, G., and Paz-Pardo, G. (2020). Wage risk and government and spousal insurance. *NBER Working Paper*.

Bibliography II

- Doiron, D. and Kalb, G. (2004). Demands for childcare and household labour supply in australia. Melbourne institute working paper series, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Feldstein, M. S. (1987). Should social security benefits be means tested? *The Journal of Political Economy*, 95(3):468–484.
- Guner, N., Kaygusuz, R., and Ventura, G. (2012a). Taxation and household labour supply. *The Review of Economic Studies*, 79(3):1113–1149.
- Guner, N., Kaygusuz, R., and Ventura, G. (2012b). Taxing women: A macroeconomic analysis. *Journal of Monetary Economics*, 59(1):111 128. Carnegie-NYU-Rochester Conference Series on Public Policy at New York University on April 15-16, 2011.
- Guner, N., Kaygusuz, R., and Ventura, G. (2020). Child-related transfers, household labour supply, and welfare. *The Review of Economic Studies*, 87(5):2290–2321.

Bibliography III

- Herault, N. and Kalb, G. (2020). Understanding the rising trend in female labour force participation. *Working Paper*, (13288).
- Kaygusuz, R. (2015). Social security and two-earner households. *Journal of Economic Dynamics and Control*, 59:163–178.
- Nishiyama, S. (2019). The joint labor supply decision of married couples and the u.s. social security pension system. *Review of Economic Dynamics*, 31:277–304.
- Tran, C. and Woodland, A. (2014). Trade-offs in means-tested pension design. *Journal of Economic Dynamics and Control*, 47:72–93.
- Tran, C. and Zakariyya, N. (2021). Tax progressivity in australia: Facts, measurements and estimates. *Economic Record*, 97(316).