Definición Cont.

$$Hf(\mathbf{x}_0)(\mathbf{h}) = \frac{1}{2} \sum_{i,j=1}^n \frac{\partial^2 f}{\partial x_i \, \partial x_j}(\mathbf{x}_0) h_i h_j$$

$$= \frac{1}{2} [h_1, \dots, h_n] \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \, \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_1 \, \partial x_n} \\ \vdots & & & \\ \frac{\partial^2 f}{\partial x_n \, \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n \, \partial x_n} \end{bmatrix} \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix}.$$

Obsérvese que, por la igualdad de las derivadas parciales cruzadas, la matriz de las derivadas segundas es simétrica.

Esta función se suele emplear en los puntos críticos $\mathbf{x}_0 \in U$. En este caso, $\mathbf{D}f(\mathbf{x}_0) = \mathbf{0}$, de modo que la fórmula de Taylor (véase el Teorema 2, Sección 3.2) se puede escribir de la forma

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + Hf(\mathbf{x}_0)(\mathbf{h}) + R_2(\mathbf{x}_0, \mathbf{h}).$$

Así, en un punto crítico, la hessiana es igual al primer término no constante de la serie de Taylor de f.

Se dice que una forma cuadrática $g: \mathbb{R}^n \to \mathbb{R}$ es **definida positiva** si $g(\mathbf{h}) \geq 0$ para todo $\mathbf{h} \in \mathbb{R}^n$ y $g(\mathbf{h}) = 0$ solo para $\mathbf{h} = \mathbf{0}$. De manera análoga, g es **definida negativa** si $g(\mathbf{h}) \leq 0$ y $g(\mathbf{h}) = 0$ solo para $\mathbf{h} = \mathbf{0}$. Obsérvese que si n = 1, $Hf(x_0)(h) = \frac{1}{2}f''(x_0)h^2$, que es definida positiva si y solo si $f''(x_0) > 0$.

Teorema 5 Criterio de la derivada segunda para puntos de extremo local Si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ es una función de clase C^3 , $\mathbf{x}_0 \in U$ es un punto crítico de f, y la hessiana $Hf(\mathbf{x}_0)$ es definida positiva, entonces \mathbf{x}_0 es un punto de mínimo relativo de f. Del mismo modo, si $Hf(\mathbf{x}_0)$ es definida negativa, entonces \mathbf{x}_0 es un punto de máximo relativo.

En realidad, probaremos que los extremos obtenidos mediante este criterio son estrictos. Un punto de máximo relativo \mathbf{x}_0 se dice que es estricto si $f(\mathbf{x}) < f(\mathbf{x}_0)$ en las proximidades de $\mathbf{x} \neq \mathbf{x}_0$. Un punto de mínimo relativo estricto se define de forma similar. Además, el teorema es válido incluso si f es solo de clase C^2 , aunque hemos supuesto que es de clase C^3 por simplicidad.

La demostración del Teorema 5 requiere el teorema de Taylor y el siguiente resultado del álgebra lineal.