CS6462 Probabilistic and Explainable AI

Lesson 23 *Meta-Learning Causal Structures*

Causal Direction

Causality & causal inference:

- basic goal: learn causality from data:
 - what is the cause and what is the effect
 - correlations between variables should be enough for most of the cases
- causal inference: go one step further and figure out what would happen if we decide to change some of the underlying assumptions in our model

Inferring causal direction:

- the most popular tool is proper trial designs of experiments randomized control trial (RCT)
- RCT are not universal, because cannot be conducted in many scenarios: can be too
 costly or infeasible due to the complexity of real-world systems
- the development of more causality in Machine Learning is a necessary step in building more human-like machine intelligence

Meta-Learning to Infer Causal Direction

Meta-learning in ML:

- learning algorithms learn from other learning algorithms
- use of machine learning algorithms that learn how to best combine the predictions from other machine learning algorithms
- meta: raising the level of abstraction one step higher + additional model information

Meta-learning for causal direction:*

- apply learned models assuming different causal directions to data with a changed transfer distribution
- meta-learning objective concerned with assumptions on data distribution and data changes due to moving from a <u>training distribution</u> to a <u>transfer distribution</u>, possibly resulting from some neuron's actions (part of the neural network we train)
- the <u>correct causal model</u> needs to adjust its transfer distribution only, and thus it adapts faster, which allows us to determine the underlying causal directions

^{*}Y. Bengio et al. 2019. A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

* *

Learning a Causal Graph with Two Variables

Learning meta-model:

- Bayesian network of two discrete random variables A, B (each taking n possible values)
- training samples (a; b) from a pair of related distributions: training distribution and transfer distribution
- based only on samples from a single training distribution, both models $A \rightarrow B$ (A causes B) and $B \rightarrow A$ tend to perform
- determining if variable A causes variable B or vice-versa
- parametrizations of models $(A \rightarrow B)$ and $B \rightarrow A$) to estimate their joint distribution:

$$P_{A\to B}(A,B) = P_{A\to B}(A) * P_{A\to B}(B|A)$$
 - for training and transfer distributions

$$P_{B\to A}(A,B) = P_{B\to A}(B) * P_{B\to A}(A|B)$$
 - for training and transfer distributions

four distribution models (training and transfer distribution models per graph)

• A and B are completely observed: maximum likelihood estimator is used to independently train all four models

Learning a Causal Graph with Two Variables (cont.)

Distributions:

- model $A \rightarrow B$
 - training distributions:

$$P_{A\to B}^{0}(A,B) = P_{A\to B}^{0}(A) * P_{A\to B}^{0}(B|A)$$

transfer distributions

$$P_{A\to B}^{1}(A,B) = P_{A\to B}^{1}(A) * P_{A\to B}^{1}(B|A)$$

- model $B \rightarrow A$
 - training distributions:

$$P_{B\to A}^{0}(A,B) = P_{B\to A}^{0}(B) * P_{B\to A}^{0}(A|B)$$

transfer distributions

$$P_{B\to A}^{1}(A,B) = P_{B\to A}^{1}(B) * P_{B\to A}^{1}(A|B)$$

• models trained with $P_{A/B\to B/A}^0$ first and then moved to $P_{A/B\to B/A}^1$

Learning a Causal Graph with Two Variables (cont.)

Result likelihood distributions:

 both network models are meta-trained on both training and transfer distributions for T steps with resulting likelihoods:

$$L_{A\to B} = \prod_{i=1}^{T} P_{A\to B,i}(A_i, B_i)$$

$$L_{B\to A} = \prod_{i=1}^{T} P_{B\to A,i}(A_i, B_i)$$

- models are trained following the steps:
 - 1) models of $A \rightarrow B$ and $B \rightarrow A$ are trained using their training distribution
 - 2) relationship between \mathbf{A} and \mathbf{B} is learned using the training results
 - 3) distribution of both models is moved from a training to a transfer distribution
 - 4) both models are retrained on the new data and the resulting likelihoods are recorded
 - 5) based on the results, we evaluate the direction of the causal relationship

Learning a Causal Graph with Two Variables (cont.)

Loss function:

• the loss function of both training steps (over training and transfer distributions):

$$R(\alpha) = -\ln[\sigma(\alpha) * L_{A \to B} + (1 - \sigma(\alpha)) * L_{B \to A}]$$

- $R(\alpha)$ computed with α denoting a structural parameter defining the causal direction and $\sigma(\alpha)$ the sigmoid transformation
- α is optimized to minimize $R(\alpha)$

Loss gradient:

•
$$\frac{dR}{d\alpha} = \sigma(\alpha) - \sigma(\alpha + \ln(L_{A\to B}) - \ln(L_{B\to A}))$$

•
$$\frac{dR}{d\alpha} > 0$$
 if $L_{A\to B} < L_{B\to A}$ - i.e., if $B \to A$ is better at explaining the transfer

distribution than $A \rightarrow B$

Meta-Learning Causal Structures

Causal Directions

Meta-Learning to Infer Causal Direction

Learning a Causal Graph with Two Variables

Next Lesson:

Structural Equation Modeling

Thank You!

Questions?