Lecture

- This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005
 - ID: ID of each client
 - LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit
 - SEX: Gender (1=male, 2=female)
 - EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)
 - MARRIAGE: Marital status (1=married, 2=single, 3=others)
 - AGE: Age in years

- This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005
 - PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above)
 - PAY_2: Repayment status in August, 2005 (scale same as above)
 - PAY_3: Repayment status in July, 2005 (scale same as above)
 - PAY_4: Repayment status in June, 2005 (scale same as above)
 - PAY_5: Repayment status in May, 2005 (scale same as above)
 - PAY_6: Repayment status in April, 2005 (scale same as above)
 - BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)
 - BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)
 - BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)
 - BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar)
 - BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)
 - BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)

- This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005
 - PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)
 - PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar)
 - PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar)
 - PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)
 - PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar)
 - PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)
 - default.payment.next.month: Default payment (1=yes, 0=no)

- The distribution of target classes
 - # of default(1) = 6636 (22.12%)

Data Preparation

Data Load

import pandas as pd

data=pd.read_csv('https://drive.google.com/uc?export=download&id=1gd2jStJinE_egX7LCKnh1-_lxafRI-zF')

- Convert categorical variables to dummy variables
 - Which variables are categorical?

Build a Classifier

- Build a classifier for prediction default
 - Split data into two subsets: training and validation sets

```
from sklearn.model_selection import train_test_split
trnX,valX,trnY,valY=train_test_split(X,y, test_size=0.2, random_state=10)
```

- \blacksquare Apply logistic regression with C = 1 on the training set
- Question
 - Calculate evaluation metrics

The Issue on Cross-validation with Sampling

For model selection, cross-validation might be applied

How about the order?

The Issue on Cross-validation

 In the case of over sampling, it might happen that validation set contains some of the same samples in training set

The test set is biased from the original distribution

The Issue on Cross-validation

- The goal of cross validation is to define a dataset to "test" the model in the training phase
 - Generate validation set to estimate the general performance of models
- Sampling method aims to generate better training set to learn a better model for imbalance data

Apply Sampling Methods

- Test different sampling methods
 - Over sampling
 - Under sampling
 - SMOTE
 - ADASYN
 - NearMiss
 - Tomek link
 - One-sided selection

Apply Sampling Methods

Test different sampling methods

```
from imblearn.over sampling import RandomOverSampler, SMOTE,
ADASYN
from imblearn.under_sampling import RandomUnderSampler, NearMiss,
TomekLinks, OneSidedSelection
ros = RandomOverSampler(random_state=0, sampling_strategy='auto')
rus = RandomUnderSampler(random_state=0, sampling_strategy='auto')
sm = SMOTE(random_state=0,k_neighbors=5)
ada = ADASYN(random_state=0, n_neighbors=5)
nm1 = NearMiss(version=1)
nm2 = NearMiss(version=2)
nm3 = NearMiss(version=3)
tl = TomekLinks(sampling_strategy='auto')
oss = OneSidedSelection(random_state=0, n_neighbors=1, n_seeds_S=1)
```

Build Classifiers on Sampled Data

Apply logistic regression on the sampled data

```
from sklearn.linear_model import LogisticRegression clf=LogisticRegression(C=1) clf.fit(trnX,trnY)
```

- Calculate evaluation metrics
 - Accuracy
 - Recall
 - Precision
 - F1
- Draw roc curves

Compare Sampling Methods

Results

	Accuracy	Recall	Precision	F1
Original				
Over sampling				
Under sampling				
SMOTE				
ADASYN				
NearMiss-1				
NearMiss-2				
NearMiss-3				
Tomek links				
One-sided selection				

Penalized Models: Cost-sensitive Learning

- Cost-sensitive learning methods try to minimize the cost of misclassification
 - For imbalanced data, misclassification cost of the minor class is larger than that of the major class

		Real	
		Minor	Major
Model	Minor	0	C_1
	Major	C_2	0

 $C_1 < C_2$

Cost-sensitive Learning

- Give more importance to certain classes (e.g. the minor class)
 - This function is usually implemented by changing weights of classes or weights of samples
 - Set large weights on the minor class
- Example) compare two classifiers with and without setting weights on classes
 - First, generate samples from two different distributions

Cost-sensitive Learning

Train support vector classifiers

```
clf=LogisticRegression(C=1)
clf.fit(X, y)
w = clf.coef[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]
# get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)
ww = wclf.coef[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1]
```

Cost-sensitive Learning

Compare decision boundaries

Anomaly Detection

 Anomaly detection is the identification of items, events or observations which do not conform to an expected pattern or other items in a

dataset

Presentation

3. Model Learning

- Create training dataset
 - Select explanatory variables

- Select the appropriate algorithms to learning models
 - Parameter selection
- Evaluate models
 - Model selection
 - Find the better way to improve the performance of the model

Next Week

4. Model Validation

- Try to make the better model
 - New explanatory variables?
 - Different preprocessing steps?
 - Different algorithms?

Data Science Process

