devoir à rendre le 26/04/2021

Problème:

I. Contexte

Soit $(a, b, c) \in \mathbb{R}^3$. On considère une suite u telle que :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = au_{n+2} + bu_{n+1} + cu_n.$$

1. Montrer que, pour tout entier n, on a:

$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} \quad \text{avec} \quad A = \begin{pmatrix} a & b & c \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Pour tout entier
$$n$$
, on pose $H(n) =$ " $\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$ ".

Initialisation: Par définition $A^n \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} = \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$ donc H(0) est vraie.

Hérédité : Soit $n \in \mathbb{N}$ tel que H(n) soit vrais

On a alors
$$\begin{pmatrix} u_{n+3} \\ u_{n+2} \\ u_n \end{pmatrix} = \begin{pmatrix} au_{n+2} + bu_{n+1} + cu_n \\ u_{n+2} \\ u_n \end{pmatrix} = A \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$$

donc, d'après l'hypothèse de récurrence

$$\begin{pmatrix} u_{n+3} \\ u_{n+2} \\ u_n \end{pmatrix} = AA^n \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} = A^{n+1} \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$$

II. Premier exemple

On suppose dans cette question que $A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

2. (a) Déterminer les réels λ tels que $A - \lambda I_3$ soit non inversible.

On pourra remarquer que le polynôme $X^3 - 2X^2 - X + 2$ possède 1 comme racine et le factoriser par X - 1.

Soit $\lambda \in \mathbb{R}$, on a

$$\det(A - \lambda I_3) = \det \begin{pmatrix} 2 - \lambda & 1 & -2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{pmatrix} = \det \begin{pmatrix} 2 - \lambda & 0 & \lambda - 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{pmatrix}$$

$$\det(A - \lambda I_3) = (2 - \lambda) \det \begin{pmatrix} 1 & 0 & -1 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{pmatrix} = (2 - \lambda) \det \begin{pmatrix} 1 & 1 & -1 \\ 0 & -\lambda & 1 \\ 0 & 1 & -\lambda \end{pmatrix}$$

donc
$$\det(A - \lambda I_3) = (2 - \lambda) \det \begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = (2 - \lambda)(\lambda^2 - 1).$$

Comme $\det(A - \lambda I_3) = (2 - \lambda)(\lambda - 1)(\lambda + 1)$, $A - \lambda I_3$ est inversible si, et seulement si, $\lambda \notin \{-1, 1, 2\}$.

(b) En déduire qu'il existe une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.

Les vecteurs
$$X_{-1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $X_{-1} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ et $X_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ sont des

vecteurs propres de A associés aux valeurs propres -1, 1 et 2.

Comme det
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 1 & 1 & 4 \end{pmatrix} = \det \begin{pmatrix} 1 & 0 & 0 \\ 1 & -2 & 1 \\ 1 & 0 & 3 \end{pmatrix} = -6 \neq 0$$
, la famille

 (X_{-1}, X_1, X_2) est une base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.

- (c) Prouver que la matrice A est semblable à une matrice diagonale. Si l'on considère l'endomorphisme f canoniquement associé à A, alors sa matrice dans la base canonique vaut A et sa matrice dans la base (X_{-1}, X_1, X_2) est diagonale. On en déduit que A est able à une matrice diagonale.
- 3. Prouver qu'il existe trois matrices R_1 , R_2 et R_3 de $\mathcal{M}_3(\mathbb{R})$ tel que pour tout entier n, on ait $A^n = R_1 + (-1)^n R_2 + 2^n R_3$.

On ne demande pas de calculer explicitement ces matrices.

D'après la question précédente, il existe $P \in GL_3(\mathbb{R})$ tel que

$$A = P \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{array} \right) P^{-1}$$

donc on a pour tout entier n, on a

1

$$A^{n} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} P^{-1} = R_{1} + (-1)^{n} R_{2} + 2^{n} R_{3}$$

En posant
$$R_1 = P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$$
, $R_2 = P\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$ et $R_3 = P\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}$, on a donc, pour tout entier n , $A^n = R_1 + (-1)^n R_2 + 2^n R_3$

4. Soit u une suite vérifiant :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n$$

Prouver qu'il existe des constantes α , β et γ telles que :

$$\forall n \in \mathbb{N}, \quad u_n = \alpha 2^n + \beta + \gamma (-1)^n.$$

On ne demande pas d'expliciter les constantes α , β et γ . On a pour tout entier n,

$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = R_1 \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} + (-1)^n R_2 \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix} + 2^n R_3 \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$$

En posant α , β et γ les troisièmes coordonnées des vecteurs $R_3 \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$,

$$R_1 \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$$
 et $R_2 \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$, on a donc la résultat.

III. Second exemple

On suppose dans cette question que $A = \begin{pmatrix} 4 & -5 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

5. (a) Déterminer les réels λ tels que $A - \lambda I_3$ soit non inversible. Soit $\lambda \in \mathbb{R}$, on a

$$\det(A - \lambda I_3) = \det \begin{pmatrix} 4 - \lambda & -5 & 2 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda \end{pmatrix} = \det \begin{pmatrix} 4 - \lambda & -5 & 2 - 5\lambda \\ 1 & -\lambda & -\lambda^2 \\ 0 & 1 & 0 \end{pmatrix}$$

donc

$$\det(A - \lambda I_3) = -\det\begin{pmatrix} 4 - \lambda & 2 - 5\lambda \\ 1 & -\lambda^2 \end{pmatrix} = -\lambda^3 + 4\lambda^2 - 5\lambda + 2$$

Comme $\det(A-\lambda I_3) = -(\lambda-1)^2(\lambda-2)$, $A-\lambda I_3$ est inversible si, et seulement si, $\lambda \notin \{1,2\}$.

- (b) En déduire qu'il existe pas de base de $\mathcal{M}_{3,1}(\mathbb{R})$ constituée de vecteurs propres de A.

 Si une telle base (X_1, X_2, X_3) existait, alors elle serait constituée de vecteurs appartenant à $\ker(A I_3) = \operatorname{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ ou à $\ker(A 2I_3) = \operatorname{Vect}\begin{pmatrix} 1\\2\\4 \end{pmatrix}$.

 On aurait donc $\operatorname{Vect}(X_1, X_2, X_3) \subset \operatorname{Vect}\begin{pmatrix} 1\\2\\4 \end{pmatrix}, \begin{pmatrix} 1\\2\\4 \end{pmatrix}$, ce qui est absurde pour des raisons de dimension.
- 6. On pose $U = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$.

Montrer que la droite vectorielle D engendrée par le vecteur U est stable par A. Soit $X \in VectU$, il existe $t \in \mathbb{R}$ tel que X = tU donc $AX = tAU = 2tU \in VectU$. Donc la droite vectorielle D engendrée par le vecteur U est stable par A.

7. On pose $V = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$.

2

(a) Prouver que l'espace vectoriel engendré par les vecteurs V et AV est un plan vectoriel. On le notera P.

Les vecteurs V et $AV = \begin{pmatrix} -4 \\ 0 \\ 2 \end{pmatrix}$ ne sont pas proportionnels, ils engendrent donc un plan.

(b) Prouver que le vecteur A^2V appartient au plan P.

On a
$$A^2V = \begin{pmatrix} -12 \\ -4 \\ 0 \end{pmatrix} = -2V + 3AV \in P$$
.

(c) En déduire que le plan P est stable par la matrice A. Soit $X \in P$, il existe deux réels t et s tel que X = tV + sAV donc $AX = tAV + sA^2V = -2sV + (t+3s)AV \in P$. Donc P est stable par la matrice A.

IV. Résultats sur les droites et plans stables par une matrice de $\mathcal{M}_3(\mathbb{R})$ Dans cette partie, on considère une matrice $A \in \mathcal{M}_3(\mathbb{R})$ quelconque.

- 8. Soit D une droite vectorielle de \mathbb{R}^3 dirigée par un vecteur U non nul.

 Prouver que la droite D est stable par la matrice A si, et seulement si, U est un vecteur propre de la matrice A.
 - Soit U un vecteur propre de A et λ la valeur propre associée. Soit $X \in D$, il existe $t \in \mathbb{R}$ tel que X = tU donc $AX = tAU = \lambda tU \in VectU$.
 - Donc la droite vectorielle D engendrée par le vecteur U est stable par A.

 Réciproquement, supposons que D soit stable par A. On a alors $AU \in D$ donc il existe $t \in \mathbb{R}$ tel que AU = tU. Comme U est non nul, c'est donc un vecteur
 - Donc la droite D est stable par la matrice A si, et seulement si, U est un vecteur propre de la matrice A.
- 9. Soit P un plan vectoriel de \mathbb{R}^3 . On considère une base (X_1, X_2) de P et X_3 un vecteur non nul normal à P.
 - (a) Prouver que le plan P est stable par la matrice A si, et seulement si, les vecteurs AX_1 et AX_2 appartiennent à P.
 - Supposons le plan P stable par la matrice A, alors par définition, les vecteurs AX_1 et AX_2 appartiennent à P.
 - Supposons que les vecteurs AX_1 et AX_2 appartiennent à P. Soit $X \in P$, il existe deux réels t et s tel que $X = tX_1 + sX_2$ donc $AX = tAX_1 + sAX_2 \in P$ car P est stable par combinaison linéaire.
 - Donc P est stable par la matrice A.

propre de A.

- Ainsi, le plan P est stable par la matrice A si, et seulement si, les vecteurs AX_1 et AX_2 appartiennent à P.
- (b) Montrer que le vecteur AX_1 appartient au plan P si, et seulement si, les vecteurs X_1 et tA X_3 sont orthogonaux.
 - On utilisera la notation matricielle du produit scalaire usuel sur \mathbb{R}^3 donnée en préambule $(X|Y) = {}^t X Y$.
 - Le vecteur AX_1 appartient au plan P si, et seulement si, il est orthogonal au vecteur X_3 donc si, et seulement si, ${}^t(AX_1)\,X_3=0$ donc si, et seulement si, ${}^tX_1\,{}^tAX_3=0$ donc si, et seulement si, les vecteurs X_1 et ${}^tA\,X_3$ sont orthogonaux.

au vecteur ^tA X₃ cad si, et seulement si, ^tA X₃ est colinéaire au vecteur

normal X_3 donc si, et seulement si, le vecteur X_3 est un vecteur propre de

(c) En déduire que le plan P est stable par la matrice A si, et seulement si, le vecteur X₃ est un vecteur propre de la matrice ^tA.
Le plan P est stable si, et seulement si, les vecteurs AX₁ et AX₂ appartiennent à P si, et seulement si, les vecteurs X₁ et X₂ sont orthogonaux

la matrice tA .

V. Fin du second exemple

On suppose de nouveau dans cette question que $A = \begin{pmatrix} 4 & -5 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

10. Déterminer les droites vectorielles stables par la matrice A.

Comme
$$\ker(A - I_3) = Vect \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 et $\ker(A - 2I_3) = Vect \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$, il n'y a que deux droites stables par A : celle engendrée par $U_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et celle engendrée par $U_2 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$.

11. On admet que les valeurs propres de tA sont 1 et 2.

Déterminer les équations des plans vectoriels stables par la matrice A.

Les plans stables par A sont les plans d'équation ax + by + cz = 0 où $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est vecteur propre de la matrice tA .

Comme $\ker \begin{pmatrix} tA - I_3 \end{pmatrix} = Vect \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$ et $\ker \begin{pmatrix} tA - 2I_3 \end{pmatrix} = Vect \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, il existe exactement deux plans stables par A celui d'équation x - 3y + 2z = 0 et celui d'équation x - 2y + z = 0.

- 12. En déduire une base $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 telle que :
 - le vecteur e_1 soit un vecteur propre de la matrice A associé à la valeur propre 2,
 - la droite engendrée par le vecteur e_2 soit stable par la matrice A,
 - le plan P engendré par les vecteurs e_2 et e_3 soit stable par la matrice A.

Vu les calculs précédents, les vecteurs e_1 et e_2 ne peuvent qu'être proportionnels à U_1 ou U_2 . Comme $P_1 = Vect(U_1, U_2), e_3 \in P_2$.

On prend
$$e_1 = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ de sorte que $P_2 = Vect(e_2, e_3)$.

La famille (e_1,e_2,e_3) étant de cardinal 3, il n'y a qu'à prouver sa liberté pour conclure.

- 13. Soit f l'endomorphisme de \mathbb{R}^3 dont A est la matrice dans la base canonique.
 - (a) Déterminer la matrice de f dans la base \mathcal{B} .

Elle est égale à
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) En déduire que la matrice A est semblable à une matrice de la forme

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & \delta \\ 0 & 0 & 1 \end{pmatrix} \text{ avec } \delta \in \mathbb{R}.$$

En prenant $\delta = 1$, ces matrices représentent le mêle endomorphismes dans des bases différentes, elles sont donc semblables.

(c) Déterminer B^n pour tout entier naturel n.

On prouve par récurrence que, pour tout entier n, on a $B^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & n\delta \\ 0 & 0 & n \end{pmatrix}$

On peut aussi utiliser le binôme de Newton, en précisant que les matrices $\begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & \delta \\ 0 & 0 & 1 \end{pmatrix} \text{ et } \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & \delta \\ 0 & 0 & 0 \end{pmatrix} \text{ commutent.}$

14. En déduire que si une suite u vérifie :

$$\forall n \in \mathbb{N}, \quad u_{n+3} = 4u_{n+2} - 5u_{n+1} + 2u_n,$$

alors il existe des constantes α , β et γ telles que :

$$\forall n \in \mathbb{N}, \quad u_n = \alpha 2^n + \beta + \gamma n.$$

On ne demande pas d'expliciter les constantes α , β et γ .

Soit u une telle suite. Considérons $P \in GL_3(\mathbb{R})$ tel que $A = PBP^{-1}$. On a pour tout entier n,

$$\begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix} = PB^n P^{-1} \begin{pmatrix} u_2 \\ u_1 \\ u_0 \end{pmatrix}$$

On écrit $B^n = Q_1 + 2^n Q_2 + nQ_3$ pour conclure comme à la question 4.