(19) **日本国特許庁(JP)** 

# (12)公開特許公報(A)

(11)特許出願公開番号

特**期2004-168999** (P2004-168999A)

(43) 公開日 平成16年6月17日(2004.6.17)

| -                                         |                              |               |                       |               |
|-------------------------------------------|------------------------------|---------------|-----------------------|---------------|
| (51) Int.C1. <sup>7</sup>                 | F 1                          |               | テーマ                   | コード (参考)      |
| CO8G 61/12                                | C08G                         | 61/12         | 2H0                   | 91            |
| CO9D 11/02                                | CO9D                         | 11/02         | 3 K O                 | 07            |
| CO9K 11/06                                | CO9K                         | 11/06 €       | 380 4JO               | 32            |
| <b>GO2F</b> 1/13357 GO2F 1/1335           |                              | 1/13357       |                       |               |
| HO5B 33/14                                | HO5B                         | 33/14         | В                     |               |
|                                           |                              | 審査請求 オ        | <b>卡請求 請求項の数 29 (</b> | O L (全 100 頁) |
| (21) 出願番号                                 | 特願2003-343244 (P2003-343244) | <br> (71) 出願人 | 000002093             |               |
| (22) 出願日                                  | 平成15年10月1日 (2003.10.1)       |               | 住友化学工業株式会社            |               |
| (31) 優先権主張番号 特願2002-315516 (P2002-315516) |                              |               | 大阪府大阪市中央区北海           | 兵4丁目5番33号     |
| (32) 優先日 平成14年10月30日 (2002.10.30)         |                              | (74) 代理人      | 100093285             |               |
| (33) 優先権主張国                               | 日本国(JP)                      |               | 弁理士 久保山 隆             |               |
|                                           |                              | (74) 代理人      | 100113000             |               |
|                                           |                              |               | 弁理士 中山 亨              |               |
|                                           |                              | (74) 代理人      | 100119471             |               |
|                                           |                              |               | 弁理士 榎本 雅之             |               |
|                                           |                              | (72) 発明者      | 小林 諭                  |               |
|                                           |                              |               | 茨城県つくば市北原6            | 住友化学工業株式      |
|                                           |                              |               | 会社内                   |               |
|                                           |                              | (72) 発明者      | 土居 秀二                 |               |
|                                           |                              |               | 茨城県つくば市北原 6           | 住友化学工業株式      |
|                                           |                              |               | 会社内                   |               |
|                                           |                              |               |                       | 最終頁に続く        |

(54) 【発明の名称】高分子化合物およびそれを用いた高分子発光素子

## (57)【要約】

【課題】強い発光強度を有する新規な高分子化合物を提供する

【解決手段】下記式(1)または(2)で示される繰り返し単位を含む高分子化合物。 【0001】



10



#### 【特許請求の範囲】

#### 【請求項1】

下記式(1)または(2)で示される繰り返し単位を含み、ポリスチレン換算の数平均分子量が10<sup>8</sup>~10<sup>8</sup>であることを特徴とする高分子化合物。



[式中、 $Ar^1$ あよび $Ar^2$ は、それぞれ独立に、8 価の芳香族炭化水素基または8 価の複素環基を表す。 $X^1$ あよび $X^2$ は、それぞれ独立に、O、S 、C (= O )、S (= O )、S ( $(R^3)$  ( $(R^4)$  、 $(R^5)$  、 $(R^6)$  、 $(R^7)$  または $(R^8)$ 

(式中、R<sup>-</sup>、R<sup>2</sup>、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>はせれぜれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アリールアルキルオキシ基、アリールアルキルオキシ基、アシルオキシ基、アミド基、酸イミド基、イミン残基、アミノル 基、置換アミノ基、置換シリルオキシ基、置換シリルチオ基、置換シリルチオ基、置換シリルチオ基、アリールティン 基、アリールオキシカルボニル基、アリールカルボニル基、アリールカルボニル基、アリールオキシカルボニル基、ステロアリールオキシカルボニル基またはシアノ基を表す。ただし、R<sup>1</sup>とR<sup>2</sup>、R<sup>3</sup>とR<sup>4</sup>は互いに結合して環を形成してもよい。)を表す。ただし、X<sup>1</sup>とX<sup>2</sup>が同一になることはない。また、X<sup>1</sup>とAr<sup>2</sup>はAr<sup>1</sup>の芳香環中の隣接炭素に結合している。〕



[式中、A $\Gamma^3$ およびA $\Gamma^4$ は、それぞれ独立に、3価の芳香族炭化水素基または3価の複素環基を表す。 $X^3$ および $X^4$ は、それぞれ独立に、N.B.P. C( $R^9$ )またはSi( $R^1$ 0)を表す。

(式中、 R <sup>9</sup> および R <sup>10</sup> は、それぞれ独立に、水素原子、八口ゲン原子、アルキル基、アルキルオキシ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アシル基、フリールアルキシ基、酸イミド基、イミン残基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1 価の複素環基、ヘテロアリールオキシ基、フリールアルケニル基、アリールエチニル基、カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。)を表す。ただし、 X <sup>3</sup> と X <sup>4</sup> が同一になることはない。また、 X <sup>8</sup> と A r <sup>4</sup> は A r <sup>8</sup> の 芳香環中の隣接炭素に結合し、 X <sup>4</sup> と A r <sup>8</sup> は A r <sup>4</sup> の 芳香環中の隣接炭素に結合している。〕

## 【請求項2】

式(1)の $X^1$ が、C( $R^1$ )( $R^2$ )、S i( $R^3$ )( $R^4$ )、N( $R^5$ )、B( $R^6$ )、P( $R^7$ )またはP(=O)( $R^8$ )

であることを特徴とする請求項1に記載の高分子化合物。

10

20

30

40

(式中、R<sup>1</sup>~R<sup>8</sup>は、前記と同じ意味を表す。)

#### 【請求項3】

上記式(1)で示される繰返し単位が下記式(3)で示される繰り返し単位であることを特徴とする請求項1または2に記載の高分子化合物。

(式中、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup>およびR<sup>8</sup>は上記と同じ意味を表す。)〕

#### 【請求項4】

上記式(3)で示される繰返し単位が下記式(4)で示される繰り返し単位であることを特徴とする請求項3に記載の高分子化合物。

式中、 X <sup>5</sup> 、 R <sup>1 1</sup> および R <sup>1 2</sup> は上記と同じ意味を表す。 R <sup>1 3</sup> 、 R <sup>1 4</sup> 、 R <sup>1 5</sup> 、 R <sup>1 6</sup> 、 R <sup>1 7</sup> および R <sup>1 8</sup> は それがれ独立に水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アシル基、フシル基、 置換シリルオキシ基、 置換シリルチオ基、 置換シリルアミノ基、 1 価の複素環基、ヘテロアリールオキシ基、 7 リールアルケニル基、 7 リールアルケニル基、 7 リールオキシカルボニル基、 7 リールオキシカルボニル基、 7 リールオキシカルボニル基、 7 リールオキシカルボニル基、 7 リールアリールオキシカルボニル基、 1 様 1 5 および R <sup>1 6</sup> と R <sup>1 7</sup> は互いに結合して環を形成してもよい。 【請求項 5 】

上記式(4)中、 X <sup>5</sup> が酸素原子であることを特徴とする請求項4に記載の高分子化合物。

## 【請求項6】

上記式(1)または(2)で示される繰返し単位を含み、更に下記式(5)、式(6)、式(7)または式(8)で示される繰り返し単位を含むことを特徴とする請求項1に記載の高分子化合物。

$$-Ar^{5}-$$
 (5)

10

20

30

40

30

50

 $-Ar^{5}-X^{6}-(Ar^{6}-X^{7})_{\alpha}-Ar^{7}-$  (6)

 $-Ar^{5}-X^{7}-$  (7)

 $-X^{7}$  - (8)

[式中、A F  $^{5}$  、A F  $^{6}$  、およびA F  $^{7}$  は  $^{7}$  は  $^{7}$  な  $^{7}$ 

#### 【請求項7】

(5) 式が下記式(9)、(10)、(11)、(12)、(18)または(14)で示される繰り返し単位であることを特徴とする請求項6記載の高分子化合物。

$$\begin{pmatrix}
\mathbb{R}^{24} \\
\mathbb{C}
\end{pmatrix}_{\mathbb{C}}$$
(9)

〔式中、R<sup>2</sup> 4 は、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルオキシ基、アミド基、酸イミド基、イミン残基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、カルボキシルルボニル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ステロアリールオキシカルボニル基またはシアノ基を表す。こは0~4の整数を表す。

$$\begin{pmatrix}
R^{25} \\
d
\end{pmatrix}$$

$$\downarrow = - \\
R^{26} \\
e$$
(10)

〔式中、R<sup>25</sup> およびR<sup>26</sup> は、それぞれ独立に八口ゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1個の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、

40

カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。よおよびeはそれぞれ独立に0~3の整数を表す。〕

$$\begin{array}{c}
\begin{pmatrix}
R^{27} \\
f \\
R^{28}
\end{pmatrix}$$

$$\begin{array}{c}
R^{29} \\
R^{30} \\
g
\end{array}$$
(11)

$$\begin{array}{c|c}
 & X^8 \\
 & Ar^8 \\
 & R^{31} \\
 & R^{31}
\end{array}$$
(12)

「式中、R<sup>3</sup>1 は、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキル基、アリールアルキルオキシ基、アミノ基、置換アミノ基、置換シリル基、アリールオキシ基、電換シリルオキシ基、でクテロアリールオキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基を表す。んは0~2の整数を示す。Ar<sup>8</sup> およびAr<sup>9</sup> はそれぞれ独立にアリーレン基、2 価の複素環基または金属錯体構造を有する2 価の基を表す。i およびjはそれぞれ独立に0または1を表す。X<sup>8</sup> は、O、SO、SO、SO、SE、またはTeを表す。〕

20

30

40

$$\begin{array}{c}
\begin{pmatrix}
R^{38} \\
M \\
M \\
R^{40}
\end{array}$$

$$\begin{array}{c}
R^{41} \\
R^{42} \\
R^{43} \\
N
\end{array}$$
(14)

## 【請求項8】

上記式(1)または(2)で示される繰返し単位を含み、更に下記式(15)で示される繰り返し単位を含むことを特徴とする請求項1記載の高分子化合物。

〔式中、 $A r^{1}$  、 $A r^{1}$  、 $A r^{1}$  。  $A r^{1}$  。

#### 【請求項9】

式(1)および(2)で示される繰り返し単位の合計が全繰り返し単位の10モル%以上であることを特徴とする請求項1~8のいずれかに記載の高分子化合物。

#### 【請求項10】

液晶性を有することを特徴とする請求項1~9のいずれかに記載の高分子化合物。

#### 【請求項11】

固体状態で蛍光を有することを特徴とする請求項1~10のいずれかに記載の高分子化 20合物。

## 【請求項12】

下記式(16-1)または(16-2)で示される化合物。



(式中、 $Ar^1$ および $Ar^2$ は、それぞれ独立に、3 価の芳香族炭化水素基または3 価の複 80素環基を表す。 $X^1$ および $X^2$ は、それぞれ独立に、O. S. C (= O), S (= O), S (= O), S (= O) ( $R^3$ ) ( $R^3$ ) ( $R^4$ ), N ( $R^5$ ). B ( $R^6$ ), P ( $R^7$ ) または P (= O) ( $R^8$ )

20

40

$$Z^{1} \longrightarrow Ar^{1} \longrightarrow Ar^{2} \longrightarrow Y^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X^{1} \longrightarrow X^{2}$$

$$(16-2)$$

(式中、A r<sup>1</sup>、A r<sup>2</sup>、X<sup>1</sup>、X<sup>2</sup> および Y<sup>2</sup> は上記と同じ。 Z<sup>1</sup> は水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、 B 換アミノ基、 置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、で、アリールアルケニル基またはアリールエチニル基を表す。)

## 【請求項13】

下記式(17-1)、(17-2)または(17-3)で示されることを特徴とする請求項12に記載の化合物。

$$Y^{1}$$
  $Ar^{1}$   $Ar^{2}$   $Y^{2}$  (17-1)

(式中、Ar<sup>1</sup> 、Ar<sup>2</sup> 、R<sup>1 1</sup> 、R<sup>1 2</sup> 、X<sup>5</sup> 、Y<sup>1</sup>およびY<sup>2</sup>は上記と同じ意味を表す。)

$$Z^{1}$$
  $Ar^{1}$   $Ar^{2}$   $Y^{2}$   $Ar^{1}$   $Ar^{2}$   $Y^{2}$   $Ar^{1}$   $Ar^{2}$   $Ar^{$ 

(式中、 $Ar^1$ 、 $Ar^2$ 、 $R^{11}$ 、 $R^{12}$ 、 $X^5$ 、 $Y^2$  および $Z^1$  は上記と同じ意味を表 80 す。)

$$Y^{1}$$
  $Ar^{1}$   $Ar^{2}$   $Z^{2}$  (17-3)
$$R^{11} - C - X^{5}$$

(式中、A r <sup>1</sup> 、A r <sup>2</sup> 、R <sup>1 1</sup> 、R <sup>1 2</sup> 、X <sup>5</sup> 、Y <sup>1</sup> は上記と同じ意味を表す。 Z <sup>2</sup> は 水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキ シ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアル キルチオ基、置換アミノ基、置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、 ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。)

# 【請求項14】

下記式(18-1)、(18-2)または(18-3)で示されることを特徴とする請求項13に記載の化合物。

(式中、R<sup>1 1</sup>、R<sup>1 2</sup>、R<sup>1 3</sup>、R<sup>1 4</sup>、R<sup>1 5</sup>、R<sup>1 6</sup>、R<sup>1 7</sup>、R<sup>1 8</sup>、X<sup>5</sup>、Y 10 <sup>1</sup> およびY<sup>2</sup>は上記と同じ意味を表す。)

$$Z^{1}$$
 $R^{14}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $R^{17}$ 
 $R^{13}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{16}$ 
 $R^{18}$ 
 $R^{18}$ 

(式中、 R  $^{1}$   $^{1}$  、 R  $^{1}$   $^{2}$  、 R  $^{1}$   $^{3}$  、 R  $^{1}$   $^{4}$  、 R  $^{1}$   $^{5}$  、 R  $^{1}$   $^{6}$  、 R  $^{1}$   $^{7}$  、 R  $^{1}$   $^{8}$  、 X  $^{5}$  、 Y  $^{2}$  および  $\Xi^{1}$  は上記 と同じ意味を表す。)

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $Z^2$ 
(18-3)

(式中、 $R^{1}$  1 、 $R^{1}$  2 、 $R^{1}$  3 、 $R^{1}$  4 、 $R^{1}$  5 、 $R^{1}$  6 、 $R^{1}$  7 、 $R^{1}$  8 、 $X^{5}$  、 $Y^{1}$  5 よび  $Z^{2}$  は上記  $Z^{2}$  6 に記  $Z^{2}$  6 に  $Z^{2}$  6 に  $Z^{2}$  7 に  $Z^{$ 

## 【請求項15】

上記式(18-1)、(18-2)または(18-3)で示される化合物のうち、 $X^5$  が酸素原子であることを特徴とする請求項14記載の化合物。

#### 【請求項16】

下記式(19)で示される化合物。

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $Y^{2}$ 
 $R^{13}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{14}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $R^{18}$ 
(19)

20

30

(式中、 $R^{1}$  、 $R^{1$ 

## 【請求項17】

上記式(19)で示される化合物を酸と接触させることを特徴とする請求項15に記載の化合物の製造方法。

#### 【請求項18】

上記式(19)で示される化合物のうち、 $R^{4}$ が水素原子である化合物の製造方法であって、下記式(20)で示される化合物とGrignard試業または有機Li化合物とを反応させることを特徴とする製造方法。

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $Y^{2}$ 
 $R^{13}$ 
 $R^{13}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

(式中、 $R^{1}$   $^{8}$  、 $R^{1}$   $^{4}$  、 $R^{1}$   $^{5}$  、 $R^{1}$   $^{6}$  、 $R^{1}$   $^{7}$  、 $R^{1}$   $^{8}$  、 $Y^{1}$  および $Y^{2}$  は上記と同じ 20 意味を表す。)

## 【請求項19】

下記式(21)で示される化合物と過水ウ酸ナトリウムとを反応させることを特徴とする下記式(22)で示される化合物の製造方法。

## 【請求項20】

下記式(23-1)、(23-2)、(23-3)、(24-1)、(24-2)また 40 は(24-3)で示される化合物。

$$R^{46}$$
 $R^{47}$ 
 $R^{48}$ 
 $R^{49}$ 
 $Y^4$ 
 $R^{45}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 

50

10

30

40

(式中、X<sup>13</sup> はホウ素原子、窒素原子またはリン原子を表す。Y<sup>3</sup> およびY<sup>4</sup> はやれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアル基、ホスホネート基、オウ酸エステル基、スルルスチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲンにメチル基、ホルミル基、またはピニスルホネートメチル基、モノハロゲンにメチルを表す。R<sup>45</sup>、R<sup>47</sup>、R<sup>48</sup>、R<sup>48</sup>、R<sup>5</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>47</sup>、R<sup>48</sup>、R<sup>5</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>、R<sup>45</sup>

$$Z^3 \longrightarrow X^{13} \longrightarrow X^{1$$

(式中、R<sup>4</sup><sup>5</sup>、R<sup>4</sup><sup>6</sup>、R<sup>4</sup><sup>7</sup>、R<sup>4</sup><sup>8</sup>、R<sup>4</sup><sup>9</sup>、R<sup>5</sup><sup>0</sup>、R<sup>5</sup><sup>1</sup>、X<sup>1</sup><sup>3</sup> およびY<sup>4</sup> は上記と同じ意味を表す。 Z<sup>3</sup> は水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、プリールアルを表、プリールアルを表、プリールアルを表、プリールアルケニル基またはアリールエチニル基を表す。)

$$R^{46}$$
 $R^{47}$ 
 $R^{48}$ 
 $R^{49}$ 
 $Z^{4}$ 
 $R^{45}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{50}$ 

(式中、R<sup>4</sup><sup>5</sup>、R<sup>4</sup><sup>6</sup>、R<sup>4</sup><sup>7</sup>、R<sup>4</sup><sup>8</sup>、R<sup>4</sup><sup>9</sup>、R<sup>5</sup><sup>0</sup>、R<sup>5</sup><sup>1</sup>、X<sup>1</sup><sup>8</sup> およびY<sup>8</sup> は上記と同じ意味を表す。 Z<sup>4</sup> は水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキル 基、アリールアルキル基、アリールアルキル 基、アリールアルキル 基、 置換アミノ基、 置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。)

20

30

40

50

(式中、X<sup>14</sup>は、ホウ素原子、窒素原子またはリン原子を表す。Y<sup>5</sup>あよびY<sup>6</sup>はせれぞれ独立にハロゲン原子、アルキルスルホネート基、ホウ酸エステル基、ホニウムメチル基、ホスホニート基、ホウ酸エステル基、ホスホネートメチル基、モンガンとは、スチートを表す。R<sup>52</sup>、R<sup>53</sup>、R<sup>54</sup>、R<sup>55</sup>、R<sup>56</sup>、およびR<sup>57</sup>はせれでルボネートメチル基、R<sup>56</sup>、R<sup>57</sup>はせれでカルボキシ原子、アルキルオキシ基、アリールアルキルデオ基、アリールアルキルチン原子、アルールアルキルメチンを表がよびR<sup>57</sup>はされで11年表、アリールアルキルチオ基、アリールアルキルチオ基、アリールアルキルチオ基、アリールアルキシール・アシールが表、アリールアルキシーが表が表が表が表が表が表が表がある。R<sup>58</sup>はアリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニルを表がよりに連結して環を形成してもよい。R<sup>58</sup>はアルキル基、アリール基、アリールアルトルを表に1.60複素環基を表す。)

$$Z^{5}$$
 $R^{53}$ 
 $R^{54}$ 
 $R^{55}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{57}$ 
 $R^{52}$ 
 $R^{58}$ 
 $R^{58}$ 

(式中、R<sup>52</sup>、R<sup>53</sup>、R<sup>54</sup>、R<sup>55</sup>、R<sup>56</sup>、R<sup>57</sup>、R<sup>58</sup>、X<sup>14</sup> およびY<sup>6</sup> は上記と同じ意味を表す。区<sup>5</sup> は水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルをオ基、アリールアルをフルエテニル基を表す。)

$$R^{53}$$
 $R^{54}$ 
 $R^{55}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{57}$ 
 $R^{58}$ 
 $R^{58}$ 
 $R^{58}$ 
 $R^{58}$ 
 $R^{58}$ 

 (式中、R<sup>5</sup><sup>2</sup>、R<sup>5</sup><sup>8</sup>、R<sup>5</sup><sup>8</sup>、R<sup>5</sup><sup>6</sup>、R<sup>5</sup><sup>6</sup>、R<sup>5</sup><sup>7</sup>、R<sup>5</sup><sup>8</sup>、X<sup>1</sup><sup>4</sup> およびY<sup>5</sup>

 は上記と同じ意味を表す。区<sup>6</sup> は水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリール

30

40

50

アルキルオキシ基、アリールアルキルチオ基、置換アミノ基、置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。)

#### 【請求項21】

下記式(25)で示される化合物。

#### 【請求項22】

上記式(23-1)~(23-3)で X <sup>1 3</sup> が窒素原子である化合物または上記式(24-1)~(24-3)で X <sup>1 4</sup> が窒素原子である化合物の製造方法であって、上記式(25)で示される化合物とハロゲン化アルキル、ハロゲン化アリール、ハロゲン化アリールアルキルまたは複素環ハロゲン化物とを塩基の存在下反応させることを特徴とする製造方法。

## 【請求項23】

正孔輸送材料、電子輸送材料および発光材料から選ばれる少なくとも1種類の材料と請求項1~11のいずれかに記載の高分子化合物を含有することを特徴とする組成物。

#### 【請求項24】

請求項1~11のいずれかに記載の高分子化合物を含有することを特徴とするインク組成物。

#### 【請求項25】

請求項1~11のいずれかに記載の高分子化合物を含有する発光性薄膜、導電性薄膜または有機半導体薄膜。

## 【請求項26】

陽極および陰極からなる電極間に、有機層を有し、該有機層が請求項1~11のいずれかに記載の高分子化合物を含むことを特徴とする高分子発光素子。

#### 【請求項27】

有機層が発光層であることを特徴とする請求項26に記載の高分子発光素子。

#### 【請求項28】

発光層がさらに正孔輸送材料、電子輸送材料または発光材料を含むことを特徴とする請

求項27に記載の高分子発光素子。

【請求項29】

請 求 項 2 6 ~ 2 8 の । ) ず れ か に 記 載 の 高 分 子 発 光 素 子 を 含 む こ と を 特 徴 と す 3 面 状 光 源 記 載 の 高 分 子 発 光 素 子 を バ ッ ク ラ イ ト と す る こ と を 特 徴 と す る 液 晶 表 示 装 置 。

【発明の詳細な説明】

【技術分野】

[00001]

本発明は、高分子化合物および該高分子化合物を用いた高分子発光素子(以下、高分子 LEDということがある。)に関する。

【背景技術】

[0002]

高分子量の発光材料および電荷輸送材料は低分子量のせれらとは異なり溶媒に可溶で塗 布 法 に よ り 発 光 素 子 に お け る 層 を 形 成 で き る こ と か ら 種 々 検 討 さ れ て お り 、 そ の 例 と し て 、 フ ル オ レ ン ジ イ ル 基 か ら な る 繰 リ 返 し 単 位 を 有 す る 高 分 子 化 合 物 が 知 ら れ て い る 〔 例 え ば、特許文献1参照)。また、左右対称な繰返し単位を有する高分子化合物が知られてい るが、発光強度は十分なものではなかった(特許文献2参照)。

[0003]

【特許文献1】国際公開第99/54385号パンフレット

【特許文献2】特開2002-284662

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明の目的は、強い発光強度を有する新規な高分子化合物、該高分子化合物を用いた 高分子発光素子を提供することにある。

【課題を解決するための手段】

[0005]

本 発 明 者 等 は 、 上 記 課 題 を 解 決 す べ く 検 討 し 友 結 果 、 繰 り 返 し 単 位 中 に 、 特 定 の 構 造 を 有する高分子化合物が、強い発光強度を有することを見出し、本発明を完成した。

即ち本発明は、下記式(1)または(2)で示される繰り返し単位を含み、ポリスチレン 換算の数平均分子量が103~108である高分子化合物に係るものである。

[0007]



式中、A饣¹およびA饣²は、それぞれ独立に、3価の芳香族炭化水素基または3価の複素 環基を表す。 $X^{1}$ および $X^{2}$ は、それぞれ独立に、O、S、C(=O)、S(=O)、SO  $_{2}$ ,  $C(R^{1})(R^{2})$ ,  $Si(R^{8})(R^{4})$ ,  $N(R^{5})$ ,  $B(R^{6})$ ,  $P(R^{7})$   $\sharp \xi \xi P$  $(=0) (R^8)$ 

(式中、 $R^1$ 、 $R^2$ 、 $R^8$ 、 $R^4$ 、 $R^5$ 、 $R^6$ 、 $R^7$ および $R^8$ は それ ぞれ 独立に、 水素 原子、 八 ロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオ キ シ 基 、 ア リ ー ル チ オ 基 、 ア リ ー ル ア ル キ ル 基 、 ア リ ー ル ア ル キ ル オ キ シ 基 、 ア リ ー ル ア ルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、アミノ 基 、 置 換 ア ミ ノ 基 、 置 換 シ リ ル 基 、 置 換 シ リ ル チ オ 基 、 置 換 シ リ ル アミノ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリール ア ル ケ ニ ル 基 、 ア リ ー ル エ チ ニ ル 基 、 カ ル ボ キ シ ル 基 、 ア ル キ ル オ キ シ カ ル ボ ニ ル 基 、 ア 10

20

30

40

[0008]



(式中、 R <sup>9</sup> および R <sup>10</sup> は、 それぞれ独立に、 水素原子、 八口ゲン原子、 アルキル基、 アルキルチオ基、 アリールオキシ基、 アリールチオ基、 アリールオキシ基、 アリールチオ基、 アリールアルキル基、 アリールアルキル基、 アリールアルキル基、 アシル基、 アシルオキシ基、 酸イミド基、 イミン残基、 アミノ基、 置換アミノ基、 置換シリル 基、 置換シリルオキシ基、 置換シリルチオ基、 置換シリルアミノ基、 1 価の複素環基、 ヘテロアリールオキシ基、 ヘテロアリールチオ基、 アリールアルケニル基、 アリールエチニル基、 カルボキシル基、 アルキルオキシカルボニル基、 アリールオキシカルボニル基、 スプリールオキシカルボニル基 またはシアノ 基を表す。)を表す。 ただし、 X 3 と X 4 が同一になることはない。 また、 X 3 と A r 4 は A r 8 の 芳香環中の隣接炭素に結合し、 X 4 と A r 8 は A r 4 の 芳香環中の隣接炭素に結合している。

#### 【発明の効果】

[0009]

本発明の高分子化合物は発光材料や電荷輸送材料等として有用である。該高分子化合物は、高分子発光素子用の材料として用いることができる。

【発明を実施するための最良の形態】

[0010]

上記式(1)および(2)中、 $Ar^1$ 、 $Ar^2$ 、 $Ar^3$  および $Ar^4$  は、それぞれ独立に、3 価の芳香族炭化水素基または 3 価の複素環基を表す。

[0011]

蛍光強度の観点から、上記式(1)で示される繰返し単位を含むことが好ましい。

[0012]

ここで 3 価の 芳香族炭化水素基とは、ベンゼン環または縮合環から水素原子 3 個を除いた残りの原子団をいい、通常炭素数 6 ~ 6 0 、好ましくは 6 ~ 2 0 であり、下記の化合物が例示される。なお、芳香族炭化水素基上に置換基を有していてもよい。 3 価の芳香族炭化水素基の炭素数には、置換基の炭素数は含まれない。

[0013]

10

20

30





[0015]

また、3価の複素環基とは、複素環化合物から水素原子3個を除りた残りの原子団をいい、炭素数は、通常4~60、好ましくは4~20である。なお複素環基上に置換基を有していてもよく、複素環基の炭素数には、置換基の炭素数は含まれない。

## [0016]

ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ケイ素などのヘテロ原子を環内に含むものをいう。

[0017]

3価の複素環基としては、例えば以下のものが例示される。

[0018]



[0019]



[0022]



[0024]

40

50

上記式中、Riはそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルコキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキン基、アリールアルキルチオ基、アリールアルキルアミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1 価の複素環基またはシアノ基を表す。

R ``は せれ ぜれ 独 立 に 水 素 原 子 、 ア ル キ ル 基 、 ア リ ー ル 基 、 ア リ ー ル ア ル キ ル 基 、 置 換 シ リ ル 基 、 ア シ ル 基 、 ま た は 1 価 の 複 素 環 基 、 ヘ テ ロ ア リ ー ル オ キ シ 基 、 ヘ テ ロ ア リ ー ル チ オ 基 を 表 す 。

3 価の芳香族炭化水素基、または 3 価の複素環基上に有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリール基、アリールオキシ基、アリールオキシ基、アリールアルキルオキシ基、アリールアルキルオキシ基、アリールアルキルオキシ基、アシル基、アシルオキシ基、酸イミド基、イミン残基、アミノ基、置換アミノ基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、カルボキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基またはシアノ基が例示される。

## [0028]

上記式(1)中、 $X^1$ あよび $X^2$ は、やれぞれ独立に、O、S、C(=O)、S(=O)、SO<sub>2</sub>、C( $R^1$ )( $R^2$ )、Si( $R^3$ )( $R^4$ )、N( $R^5$ )、B( $R^6$ )、P( $R^7$ )またはP(=O)( $R^8$ )を表す。ただし、 $X^1$ と $X^2$ が同一になることはない。

## [0029]

式中、 $R^{-1} \sim R^{-8}$ は それぞれ 独立  $R^{-1} \sim R^{-8}$ は それぞれ  $R^{-1} \sim R^{-8}$ は  $R^{$ 

30

キル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1個の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。【0030】

 $C(R^1)(R^2)$  において $R^1$  と  $R^2$  が互いに結合して環を形成していている場合、または  $Si(R^3)(R^4)$  において  $R^3$  と  $R^4$  が互いに結合して環を形成していている場合、環構 造部分としては具体的には下記が例示される。

[0031]

中でも、式(1)の $X^1$ が、 $C(R^1)(R^2)$ 、 $Si(R^3)(R^4)$ 、 $N(R^5)$ 、 $B(R^6)$ 、 $P(R^7)$  または $P(=0)(R^8)$ 

(式中、 $R^1 \sim R^8$ はそれぞれ独立に、前記と同じ意味を表す。)

であることが好ましく、

 $C(R^1)(R^2)$ 

であることがより好ましい。

[0032]

 $-X^{1}-X^{2}$  としては、下記(26)、(27)、(28)に例示の基が例示される。 【0033】



(26)

30

[0034]

(27) 30

40

50

[0035]

[0036]

中でも、化合物の安定性の観点から(27)、(28)式の基が好ましく、より好ましく は(28)式の基である。

## [0037]

式(1)で示される繰り返し単位として具体的には、以下の式(29)~(33)で示される基、およびこれらの芳香族炭化水素基または複素環上にさらに置換基を有する基が例示される。

これらのうち、式(29)~式(82)で示される基、およびこれらの芳香族炭化水素基または複素環上にさらに置換基を有する基が好ましく、式(29)で示される基、およびこれらの芳香族炭化水素基または複素環上にさらに置換基を有する基がさらに好ましい

10

20

[0038]

(29)

[0089]



[0040]

(31)

(32)

[0042]

20

30

40

(33)

## [0043]

上記式(1)で示される繰返し単位として、蛍光強度の観点から好ましくは下記式(3)で示される繰返し単位であり、さらに好ましくは下記式(4)で示される繰返し単位である。

 $Ar^1$ 、 $Ar^2$  は上記と同じ意味を表す。 $R^{1}$  がよび $R^{1}$  は せれぜれ 独立に水素原子、 ハロゲン原子、アルキル基、アリール基、アリールアルキル基または 1 価の 複素環基を表し、 互いに結合して環を形成してもよい。  $X^5$  は O 、 S 、 C ( = O ) 、 S ( = O ) 、 S O  $_2$  、 S ι (  $R^8$  )(  $R^4$  ) 、 N (  $R^5$  ) , B (  $R^6$  ) , P (  $R^7$  ) または P ( = O )(  $R^8$  )

(式中、R<sup>3</sup>、R<sup>4</sup>、R<sup>5</sup>、R<sup>6</sup>、R<sup>7</sup> およびR<sup>8</sup>は上記と同じ意味を表す。) 【0044】

式中、 $X^5$ 、 $R^{1}$  がよび $R^{1}$  は上記と同じ意味を表す。 $R^{1}$  3、 $R^{1}$  4、 $R^{1}$  5、  $R^{1}$  6、 $R^{1}$  7 がよび $R^{1}$  8 はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルオキシ基、 酸イミド基、イミン残基、アミノ基、 置換アミノ基、 置換シリルオキシ基、 置換シリルチオ基、 置換シリルアミノ 基、 1 価の複素環基、ヘテロアリールオキシ基、 ヘテロアリールチオ基、 アリールアルオキシカルボニル基、 アリールアルオキシカルボニル基、 アリールアルキルオキシカルボニル基、 ステロアリールオキシカルボニル基 ステリールアルキルオキシカルボニル基、 ステロアリールオキシカルボニル基 またはシアノ 基を表す。  $R^{1}$  4 Y 8 Y 7 Y 6 Y 8 Y 8 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9 Y 9

 $R^{1/4}$   $VR^{1/5}$  および  $R^{1/6}$   $VR^{1/7}$  は 互いに結合して環を形成していている場合、環構造部分 V しては具体的には下記が例示される。



## [0046]

高分子化合物の合成の容易さ、およびやの蛍光強度の観点から、特に好ましくは、上記式(4)において X<sup>5</sup> が酸素原子の場合である。

#### [0047]

次に上記式(2)で示される繰返し単位について説明する。上記式(2)におけるA F  $^3$  およびA F  $^4$  は、 それぞれ独立に、 3 価の芳香族炭化水素基または 3 価の複素環基を表す

[0048]

X<sup>8</sup>およびX<sup>4</sup>は、それぞれ独立に、

 $N. B.P. C(R^9)$   $\sharp \xi \xi \xi Si(R^{10})$ 

を表す。ただし、 X <sup>8</sup> と X <sup>4</sup> が同一になることはない。

[0049]

式中、R<sup>9</sup>およびR<sup>10</sup>は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アシル基、アシルオキシ基、酸イミド基、イミン残基、アミノ基、置換アミノ基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、アナールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。

[0050]

式(2)のX<sup>3</sup>は、

 $C(R^9)$   $\sharp \xi \xi \xi S(R^{10})$ 

(式中、 $R^9$  およひ $R^{10}$  は、 それぞれ独立に、 前記と同じ意味を表す。)

であることが好ましく、

 $C(R^9)$ 

であることがより好ましい。

[0.051]

- X<sup>3</sup> = X<sup>4</sup> - としては、下記式(34)、(35)、(36)に例示の基が学げられる。

[0052]

 $N = B \qquad N = P \qquad N = C \qquad N = Si \qquad B = P \qquad (34)$   $B = C \qquad B = Si \qquad P = C \qquad R^{10} \qquad C = Si \qquad C = Si \qquad R^{10}$ 

[0053]

10

20

30

$$N = C \qquad N = Si \qquad B = C \qquad B = Si \qquad R^{10}$$

$$P = C \qquad P = Si \qquad C = Si \qquad R^{10}$$

$$R^{10} \qquad R^{10} \qquad R^{10} \qquad R^{10}$$

$$R^{10} \qquad R^{10} \qquad R^{10} \qquad R^{10}$$

$$R^{10} \qquad R^{10} \qquad R^{10} \qquad R^{10}$$

[0054]

$$N = C$$
 $P = C$ 
 $P =$ 

中でも、化合物の安定性の観点から(35)、(36)式の基が好ましく、より好ましく は(36)式の基である。

# [0055]

式(2)で示される繰り返し単位として、具体的には、以下の式(37)、(38)、(89)で示される基、およびこれらの芳香族炭化水素基または複素環上にさらに置換基を有する基が例示される。

[0056]

(37)

# [0057]

(38)

# [0058]

(39)

[0059]

ハロゲン原子としては、フッ素、塩素、臭素、よう素が例示される。

[0060]

アルキル基としては、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよ 50

20

30

40

50

い。炭素数は通常 1 ~ 2 0 程度であり、具体的には、メチル基、エチル基、プロピル基、
i ープロピル基、ブチル基、 i ープチル基、 t ープチル基、ペンチル基、ヘキシル基、
シクロヘキシル基、ヘプチル基、オクチル基、2 ーエチルヘキシル基、ノニル基、デシル
基、3、7 ージメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロ
エチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基などが例示される。

[0061]

アルキルオキシ基としては、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよい。炭素数は通常1~20程度であり、具体的には、メトキシ基、エトキシ基、プロピルオキシ基、(一プロピルオキシ基、ブトキシ基、 (一プトキシ基、セープトキシ基、 スンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、 オクチルオキシ基、 2 ーエチルヘキシルオキシ基、 ノニルオキシ基、 デシルオキシ基、 スクチルオロメトキシ基、 ラウリルオキシ基、トリフルオロメトキシ基、 ペンタフルオロエトキシ基、パーフルオロプトキシ基、 パーフルオロイキシル基、 パーフルオロオクチル基、メトキシメチルオキシ基、 2 ーメトキシエチルオキシ基などが 例示される

[0062]

[0063]

アリール基は、置換基を有していてもよく、炭素数は通常3~60程度であり、具体的には、フェニル基、C<sub>1</sub>~C<sub>12</sub>アルコキシフェニル基(C<sub>1</sub>~C<sub>12</sub>は、炭素数1~12であることを示す。以下も同様である。)、C<sub>1</sub>~C<sub>12</sub>アルキルフェニル基、1-ナフチル基、2-ナフチル基、ペンタフルオロフェニル基、ピリジル基、ピリダジニル基、ピリミジル基、ピラジル基、トリアジル基などが例示される。

[0064]

アリールオキシ基としては、芳香環上に置換基を有していてもよく、炭素数は通常 3 ~ 6 0 程度であり、具体的には、フェノキシ基、C<sub>1</sub>~C<sub>12</sub>アルコキシフェノキシ基、C<sub>1</sub>~C<sub>12</sub>アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基、ピリジルオキシ基、ピリダジニルオキシ基、ピリミジルオキシ基、ピラジルオキシ基、トリアジルオキシ基などが例示される。

[0065]

アリールチオ基としては、芳香環上に置換基を有していてもよく、炭素数は通常 3 ~ 6 0 程度であり、具体的には、フェニルチオ基、C<sub>1</sub>~C<sub>12</sub>アルコキシフェニルチオ基、C<sub>1</sub>~C<sub>12</sub>アルキルフェニルチオ基、1ーナフチルチオ基、2ーナフチルチオ基、ペンタフルオロフェニルチオ基、ピリジルチオ基、ピリダジニルチオ基、ピリミジルチオ基、ピラジルチオ基、トリアジルチオ基などが例示される。

[0066]

アリールアルキル基としては、 置換基を有していてもよく、炭素数は通常  $7 \sim 6 0$  程度であり、具体的には、フェニルー $C_1 \sim C_{12}$  アルキル基、 $C_1 \sim C_1 \sim C_1$ 

[0067]

アリールアルキルオキシ基は、置換基を有していてもよく、炭素数は通常  $7 \sim 6 0$  程度であり、具体的には、フェニルー $C_1 \sim C_{12}$  アルコキシ基、 $C_1 \sim C_{12}$  アルキルフェニルー $C_1 \sim C_{12}$  アルコキシ基、 $C_1 \sim C_{12}$  アルコキシ

20

50

ナフチルー $C_1 \sim C_{12}$  アルコキシ基、 2- ナフチルー $C_1 \sim C_{12}$  アルコキシ基などが例示される。

[0068]

アリールアルキルチオ基としては、置換基を有していてもよく、炭素数は通常7~60程度であり、具体的には、フェニルー $C_1 \sim C_{12}$  アルキルチオ基、 $C_1 \sim C_{12}$  アルコキシフェニルー $C_1 \sim C_{12}$  アルキルチオ基、 $C_1 \sim C_{12}$  アルキルチオ基、 $C_1 \sim C_{12}$  アルキルチオ基、 $C_1 \sim C_{12}$  アルキルチオ基、 $C_1 \sim C_1 \sim C_1$ 

[0069]

アシル基は、炭素数は通常 2 ~ 2 0 程度であり、具体的には、アセチル基、プロピオニル基、プチリル基、イソブチリル基、ピバロイル基、ペングイル基、トリフルオロアセチル基、ペンタフルオロペングイル基などが例示される。

[0070]

アシルオキシ基は、炭素数は通常2~20程度であり、具体的には、アセトキシ基、プロピオニルオキシ基、プチリルオキシ基、イソプチリルオキシ基、ピパロイルオキシ基、ペンゲイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロペンゲイルオキシ基などが例示される。

[0071]

アミド基は、炭素数は通常2~20程度であり、具体的には、ホルムアミド基、アセトアミド基、プロピオアミド基、プチロアミド基、ペンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジベンタフルオロベンズアミド基などが例示される。

[0072]

酸イミド基は、スクシンイミド基、フタル酸イミド基などが例示される。

[0073]

イミン残基は、炭素数 2 ~ 2 0 程度であり、具体的には、以下の構造式で示される化合物が例示される。

[0074]

置換アミノ基は、炭素数は通常1~40程度であり、具体的には、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、イソプロピルアミノ基、イソプロペルアミノ基、セーブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニル

20

30

40

[0075]

置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリーnープロピルシリル基、トリーiープロピルシリル基、セーブチルシリルジメチルシリル基、トリフェニルシリル基、トリーPーキシリルシリル基、トリペンジルシリル基、ジフェニルメチルシリル基、セーブチルジフェニルシリル基、ジメチルフェニルシリル基などが例示される。

[0076]

置換シリルオキシ基としては、トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリーnープロピルシリルオキシ基、トリーiープロピルシリルオキシ基、セーブチルシリルジメチルシリルオキシ基、トリフェニルシリルオキシ基、トリーPーキシリルシリルオキシ基、トリペンジルシリルオキシ基、ジフェニルメチルシリルオキシ基、セーブチルジフェニルシリルオキシ基、ジメチルフェニルシリルオキシ基などが例示される。

[0077]

置換シリルチオ基としては、トリメチルシリルチオ基、トリエチルシリルチオ基、トリーロープロピルシリルチオ基、トリーiープロピルシリルチオ基、セーブチルシリルデオ チルシリルチオ基、トリフェニルシリルチオ基、トリーPーキシリルシリルチオ基、トリベンジルシリルチオ基、デフェニルメチルシリルチオ基、セーブチルデフェニルシリルチオ基、ジメチルフェニルシリルチオ基などが例示される。

[0078]

置換シリルアミノ基としては、トリメチルシリルアミノ基、トリエチルシリルアミノ基、トリーロープロピルシリルアミノ基、トリーiープロピルシリルアミノ基、セーブチルシリルアミノ基、トリフェニルシリルアミノ基、トリーPーキシリルシリルアミノ基、トリベンジルシリルアミノ基、ジフェニルメチルシリルアミノ基、セーブチルジフェニルシリルアミノ基、ジ(トリエチルシリル)アミノ基、ジ(トリーロープロピルシリル)アミノ基、ジ(トリーiープロピルシリル)アミノ基、ジ(トリートーキシリルシアミノ基、ジ(トリフェニルシリル)アミノ基、ジ(トリーPーキシリルシアミノ基、ジ(トリペンジルシリル)アミノ基、ジ(デフェニルメチルシリル)アミノ基、ジ(ナーブチルジフェニルシリル)アミノ基、ジ(デスェニルメチルシリル)アミノ基、ジ(デスェニルシリル)アミノ基、ジ(デスチルシリル)アミノ基、ジ(デスチルシリル)アミノ基、ジグの示される。

[0079]

1価の複素環基とは、複素環化合物から水素原子1個を除りた残りの原子団をりり、炭素数は通常4~60程度であり、具体的には、チエニル基、C<sub>1</sub>~C<sub>12</sub>アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C<sub>1</sub>~C<sub>12</sub>アルキルピリジル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、オキサゾリル基、チアゾール基、チアジアゾール基などが例示される。

[0800]

ヘテロアリールオキシ基(Q<sup>1</sup> 〇-で示される基、Q<sup>1</sup>は1価の複素環基を表す。)、ヘ

テロアリールチオ基( $Q^2-8-7$ 示される基、 $Q^2$ は1価の複素環基を表す。)、ヘテロアリールオキシカルボニル基( $Q^3$  O(C=O)ーで示される基、 $Q^3$ は1価の複素環基を表す。)における1 価の複素環基としては、上記の1 価の複素環基に例示の基が例示される。

例えば、ヘテロアリールオキシ基は、炭素数は通常4~60程度であり、具体的には、チエニルオキシ基、C<sub>1</sub>~C<sub>12</sub>アルキルチエニルオキシ基、ピロリルオキシ基、フリルオキシ基、ピリジルオキシ基、C<sub>1</sub>~C<sub>12</sub>アルキルピリジルオキシ基、イミダゾリルオキシ基、ピラゾリルオキシ基、トリアゾリルオキシ基、オキサゾリルオキシ基、チアゾールオキシ基、チアジアゾールオキシ基などが例示される。

へテロアリールチオ基は、炭素数は通常4~60程度であり、具体的には、チエニルメルカプト基、C<sub>1</sub>~C<sub>12</sub>アルキルチエニルメルカプト基、ピロリルメルカプト基、フリルメルカプト基、ピリジルメルカプト基、C<sub>1</sub>~C<sub>12</sub>アルキルピリジルメルカプト基、イミゲゾリルメルカプト基、ピラゾリルメルカプト基、トリアゾリルメルカプト基、オキサゾリルメルカプト基、チアゾールメルカプト基、チアゾールメルカプト基などが例示される。

[0081]

アルキルオキシカルボニル基におけるアルキルオキシ基としては、上記アルキルオキシ基 に例示の基が挙げられる。

[0082]

アリールオキシカルボニル基におけるアリールオキシ基としては、上記アリールオキシ基 に例示の基が挙げられる。

[0083]

アリールアルキルオキシカルボニル基におけるアルキルオキシ基としては、上記アリール アルキルオキシ基に例示の基が学げられる。

[0084]

ヘ テ ロ ア リ ー ル オ キ シ カ ル ボ ニ ル 基 に お け る ヘ テ ロ ア リ ー ル オ キ シ 基 と し て は 、 上 記 ヘ テ ロ ア リ ー ル オ キ シ 基 に 例 示 の 基 が 挙 げ ら れ る 。

[0085]

アリールアルケニル基、アリールエチニル基におけるアリール基としては、上記のアリ 80 ール基と同様な基が例示される。

アリールアルケニル基におけるアルケニル基は、炭素数は通常2~20程度であり、ビニル基、1-プロピレニル基、2-プロピレニル基、3-プロピレニル基、ブテニル基、ペンテニル基、ヘラニル基、シクロヘキセニル基、1.3-ブタジエニル基などが例示される。

[0086]

本発明の高分子化合物は式(1)、式(2)で示される繰り返し単位をそれぞれ2種以上含んでいてもよい。

本発明の高分子化合物は、蛍光特性や電荷輸送特性を損なわなり範囲で、式(1)、式(2)で示される繰り返し単位以外の繰り返し単位を含んでいてもよい。また、式(1) および式(2)で示される繰り返し単位の合計が全繰り返し単位の10モル%以上であることが好ましく、より好ましくは50モル%以上であり、さらに好ましくは80モル%以上である。

[0087]

本発明の高分子化合物は、蛍光強度を高める観点から、式(1)、(2)で示される繰り返し単位に加え、下記式(5)、式(6)、式(7)または式(8)で示される繰り返し単位を含むことが好ましい。

 $-Ar^{5}- (5)$ 

40

10

 $-Ar^{5}-X^{6}-(Ar^{6}-X^{7})_{a}-Ar^{7}-$  (6)

 $-Ar^{5}-X^{7}-$  (7)

 $-X^{7}$  - (8)

# [0088]

# [0089]

ここに、アリーレン基とは、芳香族炭化水素から、水素原子 2 個を除りた原子団であり、環を構成する炭素数は通常 6 ~ 6 0 程度であり、好ましくは 6 ~ 2 0 である。ここに芳香族炭化水素 2 しては、縮合環 2 もっもの、独立したペンゼン環または縮合環 2 個以上が直接またはピニレン等の基を介して結合したものも含まれる。

アリーレン基としては、フェニレン基(例えば、下図の式 1 ~ 3 )、ナフタレンデイル基(下図の式 4 ~ 1 3 )、アントラセンデイル基(下図の式 1 4 ~ 1 9 )、ピフェニルーデイル基(下図の式 2 0 ~ 2 5 )、フルオレンーデイル基(下図の式 3 6 ~ 3 8 )、ターフェニルーデイル基(下図の式 2 6 ~ 2 8 )、スチルペンーデイル(下図の式 A ~ D )、デスチルペンーデイル (下図の式 E . F )、 縮合環化合物基(下図の式 2 9 ~ 3 8 )などが例示される。中でもフェニレン基、ピフェニレン基、フルオレンーデイル基、スチルペンーデイル基が好ましい。

[0090]

R R R R R R R R R

$$R \rightarrow R$$
 $R \rightarrow R$ 
 $R \rightarrow R$ 

$$R \rightarrow R$$
 $R \rightarrow R$ 
 $R \rightarrow R$ 

40

10

20

30

[0091]

[0093]

40

[0095]

40

[0096]

本発明において、2価の複素環基とは、複素環化合物から水素原子2個を除いた残りの原 20子団をいい、環を構成する炭素数は通常3~60程度である。

ここに複素環化合物とは、環式構造をもつ有機化合物のすち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素などのヘテロ原子を環内に含むものをいす。

#### [0097]

2 価の複素環基としては、例えば以下のものが挙げられる。

へテロ原子として、窒素を含む2価の複素環基;ピリジンージイル基(下図の式89~44)、ジアザフェニレン基(下図の式45~48)、キノリンジイル基(下図の式49~63)、キノキサリンジイル基(下図の式64~68)、アクリジンジイル基(下図の式69~72)、ピピリジルジイル基(下図の式78~75)、フェナントロリンジイル基(下図の式76~78)、など。

ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含みフルオレン構造を有する基(下図の式79~93)。

ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基: (下図の式94~98)が挙げられる。

ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む 5 員環縮合複素基:(下図の式 9 9 ~ 1 0 8 )が挙げられる。

ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む 5 員環複素環基でそのヘテロ原子のα位で結合し 2 量体やオリゴマーになっている基:(下図の式109~118)が挙げられる。

ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む 5 員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基:(下図の式 1 1 8 ~ 1 1 9)が学げられる。ヘテロ原子として酸素、窒素、硫黄、などを含む 5 員環縮合複素環基にフェニル基やフリル基、チエニル基が置換した基:(下図の式 1 2 0 ~ 1 2 5)が学げられる。

[0098]

$$\begin{array}{c|cccc}
R & R & R & R \\
\hline
 & & & & & \\
\hline
 & & & & & \\
R & & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline
 & & & & \\
\hline$$

$$R \longrightarrow \begin{bmatrix} R & R & R \\ N & N \end{bmatrix} \longrightarrow \begin{bmatrix} R & R \\ N & N \end{bmatrix}$$

$$\begin{array}{c|cccc}
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & & & & & & & \\
R & &$$

$$\begin{array}{c|c}
R & R & R \\
R & R & R \\
R & R & 82
\end{array}$$

$$\begin{array}{c|c}
R & & & R \\
R & & & R \\
R & & & 84
\end{array}$$

$$\begin{array}{c|c} R & R & R \\ R & S & 88 \end{array}$$

$$\begin{array}{c|c}
R & & & \\
\hline
R & & & \\
R & & & \\
R & & & \\
\end{array}$$

$$\begin{array}{c}
R & & \\
\hline
R & & \\
\end{array}$$

$$\begin{array}{c}
40 \\
\end{array}$$

$$\begin{array}{c|c} R & R \\ R & Se & R 92 \end{array}$$

$$\begin{array}{c|c} R & R & R \\ \hline R & Se & R & 93 \end{array}$$

[0105]

# [0108]

本発明において、金属錯体構造を有する2価の基とは、有機配位子を有する金属錯体の 有機配位子がら水素原子を2個除いた残りの2価の基である。

該 有 機 配 位 子 の 炭 素 数 は 、 通 常 4 ~ 6 0 程 度 で あ り 、 例 え ば 、 8 - キ ノ リ ノ - ル お よ び そ の誘導体、ペングキノリノールおよびその誘導体、2-フェニルーピリジンおよびその誘 導体、2-フェニル-ペングチアグールおよびその誘導体、2-フェニル-ペングキサグ ールおよびその誘導体、ポルフィリンおよびその誘導体などが挙げられる。

また、該錯体の中心金属としては、例えば、アルミニウム、亞鉛、ペリリウム、イリジ ウム、白金、金、ユーロピウム、テルビウムなどが挙げられる。

有機配位子を有する金属錯体としては、低分子の蛍光材料、燐光材料として公知の金属錯 体、三重項発光錯体などが挙げられる。

#### [0109]

金属錯体構造を有する2価の基としては、具体的には、以下の(126~132)が例 示される。

50

20

30

#### [0110]

上記の式1~182およびA~Fで示した例において、Rは弋れぜれ独立に水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アリール基、アリール基、アリールオキシ基、アリールアルキルオキシ基、アリールアルキルオキシ基、アリールアルキルオキシ基、アリールアルキルオキシ基、アシルオキシ基、アミド基、イミド基、イミン残基、アミノ基、置換アミノ基、置換シリルオキシ基、でロアリールチオ基、置換シリルアルケニル基、アリールエチニル基、カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アリールオキシカルボニル基、ステロアリールオキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基、アリールオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。また、式1~182の基が有する炭素原子は、窒素原子、酸素原子または硫黄原子と置き換えられていてもよく、水素原子はフッ素原子に置換されていてもより。

# [0111]

上記式(5)で示される繰り返し単位のすち、下記式(9)、式(10)、式(11)、式(12)、式(13)、または式(14)で示される繰り返し単位を含むことが発光強度の観点から好ましい。

#### [0112]

40

$$\begin{pmatrix}
R^{24} \\
c
\end{pmatrix}$$
(9)

式中、R<sup>24</sup>は、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチ

50

オ基、置換シリルアミノ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、カルボキシル基、アルキルオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。cは0~4の整数を表す。 【0118】

式(9)の具体例としては、下記の繰返し単位があげられる。

$$C_{10}H_{21}$$
 $C_{10}H_{21}$ 
 $C_{1$ 

[0114]

$$\begin{pmatrix}
R^{25} \\
d
\end{pmatrix}$$

$$\begin{pmatrix}
R^{26} \\
e
\end{pmatrix}$$
(10)

式中、 R <sup>2 5</sup> および R <sup>2 6</sup> は、 それぞれ独立にハロゲン原子、 アルキル基、 アルキルオキシ基、 アルキルチオ基、 アリール基、 アリールオキシ基、 アリールチオ基、 アリールアル

キル基、アリールアルキルオキシ基、アリールアルキルチオ基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミノ基、アミノ基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基、カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基またはシアノ基を表す。
むおよびeはそれぞれ独立に0~3の整数を表す。

#### [0115]

式(10)の具体例としては、下記の繰返し単位があげられる。

$$C_{10}H_{21}$$
 $C_{10}H_{21}O$ 
 $C_{10}H_{21}O$ 

#### [0116]

$$\begin{array}{c}
\begin{pmatrix}
R^{27} \\
f \\
g \\
g \\
\end{pmatrix}_{f} \\
R^{28} \\
(11)$$

$$\begin{pmatrix}
R^{30} \\
g
\end{pmatrix}_{g}$$

式中、R<sup>27</sup> およびR<sup>30</sup> はそれぞれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルを対象、アシル基、アシル基、アシル基、アシル基、アシル基、アシル基、アシル基、アシール基、アリールスをは受けるでは、ではアリールオキシ基、では、アリールボーンをでは、アリールボーンをでは、アリールボーンをでは、アリールボーンをでは、アリールボーンをでは、アリールボーンをでは、アリールボーンをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリールをでは、アリーをでは、アリーをでは、アリールをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーをでは、アリーを

#### [0117]

式(11)の具体例としては、下記の繰返し単位があげられる

# [0118]

式中、 R <sup>8 1</sup> は、 ハロゲン原子、 アルキル基、 アルキルオキシ基、 アルキルチオ基、 アリール基、 アリールオキシ基、 アリールチオ基、 アリールアルキル基、 アリールアルキルオキシ基、 アリールアルキルオオ 基、 アリールアルキルチオ 基、 アシル基、 アシルオキシ基、 アミド基、 酸イミド基、 イミノ基、 アミノ基、 置換 シリル基、 置換 シリルオキシ基、 置換 シリルチオ基、 置換 シリルアミノ基、 1 価の 複素環基、 ヘテロアリールオキシ基、 ヘテロアリール チオ基、 アリールアルケニル基、 アリールエチニル基、 カルボキシル基、 アルキルオキシカルボニル基、 アリールオキシカルボニル基、 ヘ

[0119]

式(12)の具体例としては、下記の繰返し単位があげられる。

[ 0 1 2 0 ] 30

[ 0 1 2 1 ]

式(18)の具体例としては、下記の繰返し単位があげられる。

$$C_{6}H_{13}O$$
 $C_{6}H_{13}O$ 
 $C_{10}H_{21}O$ 
 $C_{10}H_{21}O$ 

[0122]

式中、R<sup>38</sup> およびR<sup>43</sup> はやれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アリールオキシ基、アシルオキシル基、アシルオキシルボニル基、アリールアルヤニル基、アリールボニル基、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリールオキシー、アリーレン基、2個の複素環基または金属錯体構造を有する2個の基を表す。

[ 0 1 2 3 ]

式(14)の具体例としては、下記の繰返し単位があげられる。

40

# [0124]

また、本発明の高分子化合物は、蛍光強度を高める観点から、式(1)、(2)で示される繰り返し単位に加え、下記式(15)で示される繰り返し単位を含むものであることも好ましい。

式中、 $Ar^{1}$   $^1$  、 $Ar^{1}$   $^2$  、 $Ar^{1}$   $^3$  および $Ar^{1}$   $^4$  は、それぞれ独立にアリーレン基または 2 価の複素環基を表す。 $Ar^{1}$   $^5$  、 $Ar^{1}$   $^6$  および $Ar^{1}$   $^7$  は、それぞれ独立にアリール基または 1 価の複素環基を表す。O および P はそれぞれ独立に 0 または 1 を表し、 0  $\leq$  O + P  $\leq$  1  $\sim$  ある。

[ 0 1 2 5 ]

上記式(15)で示される繰り返し単位の具体例としては、以下の式183~140の繰返し単位があげられる。

[ 0 1 2 6 ]

30

50

# [0127]

上記式133~140においてRは、前記式1~132のそれと同じ定義である。上記の例において、1つの構造式中に複数のRを有しているが、それらは同一であってもよいし、異なる基であってもよい。溶媒への溶解性を高めるためには、水素原子以外を1つ以上有していることが好ましく、また置換基を含めた繰り返し単位の形状の対称性が少ないことが好ましい。

さらに、上記式においてRがアリール基や複素環基をその一部に含む場合は、それらがさらに1つ以上の置換基を有していてもよい。

また、上記式においてRがアルキル鎖を含む置換基においては、それらは直鎖、分岐または環状のいずれかまたはそれらの組み合わせであってもよく、直鎖でない場合、例えば、イソアミル基、2ーエチルヘキシル基、3、7ージメチルオクチル基、シクロヘキシル基、4ーC<sub>1</sub>~C<sub>12</sub>アルキルシクロヘキシル基などが例示される。高分子化合物の溶媒への溶解性を高めるためには、1つ以上に環状または分岐のあるアルキル鎖が含まれることが好ましい。

また、複数のRが連結して環を形成していてもよい。さらに、Rがアルキル鎖を含む基の場合は、該アルキル鎖は、ヘテロ原子を含む基で中断されていてもよい。ここに、ヘテロ原子としては、酸素原子、硫黄原子、窒素原子などが例示される。

#### [0128]

上記(9)~(15)で示される繰り返し単位の中では、上記式(15)で示される繰り返し単位が好ましい。中でも下記式(15-2)で示される繰り返し単位が好ましい。

$$\begin{pmatrix}
R^{65} \\
Q \\
R^{66}
\end{pmatrix}_{r}$$
(15-2)

式中、R<sup>65</sup>、R<sup>66</sup> およびR<sup>67</sup> は、それぞれ独立に八口ゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシル基、アシルオキシ基、アミド基、イミン残基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルア

40

50

ミノ基、1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基、アリールエチニル基またはシアノ基を示す。 9 および 2 は 3 れぞれ独立に 0 ~4 の整数を示す。 5 は 1 ~ 2 の整数を示す。 t は 0 ~ 5 の整数を示す。

#### [0129]

なお式(5)~(15)におけるアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキル基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、イミド基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基の定義、具体例は前記(29)~(33)に例示の化合物等が有していてもよい置換基のそれと同じである。

#### [0130]

また、本発明の高分子化合物においては、繰り返し単位が、非共役の単位で連結されていてもよいし、繰り返し単位にされらの非共役部分が含まれていてもよい。結合構造としては、以下に示すもの、および以下に示すもののうち2つ以上を組み合わせたものなどが例示される。ここで、Rは前記のものと同じ置換基から選ばれる基であり、Aとは炭素数6~60個の炭化水素基を示す。

# [0181]

また、本発明の高分子化合物は、ランダム、ブロックまたはグラフト共重合体であってもよいし、されらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。蛍光またはりん光の量子収率の高い高分子発光体(高分子量の発光材料)を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やプロックまたはグラフト共重合体が好ましい。主鎖に枝分かれがあり、末端部が3つ以上ある場合やデンドリマーも含まれる。

#### [0132]

また、本発明の高分子化合物の末端基は、重合活性基がやのまま残っていると、素子にしたときの発光特性や寿命が低下する可能性があるので、安定な基で保護されていてよい。主鎖の共役構造と連続した共役結合を有しているものが好ましく、例えば、炭素一炭素結合を介してアリール基または複素環基と結合している構造が例示される。具体的には、特開平9-45478号公報の化10に記載の置換基等が例示される。

#### [ 0 1 3 3 ]

また、本発明の高分子化合物は末端に下記式(1丸)、(2丸)、(3丸)、(3b)

20

30

、(4 a)または(4 b)で示される構造単位を有していてもよい。 【 0 1 8 4】



式中、 A r <sup>1</sup> 、 A r <sup>2</sup> 、 X <sup>1</sup> および X <sup>2</sup> は、上記と同じ。 Z <sup>1</sup> は水素原子、アルキル基、アルキルオキシ基、アリールチオ基、アリールフルキル基、アリールアルキル基、アリールアルキル基、 T リールアルキル基、 T リールアルキル基、 T リールアルキル T オ基、 T 換 アミノ基、 T 換 シリル基、 1 価の 複素環基、 ヘテロアリールオキシ基、 ヘテロアリールチオ基、 アリールアルケニル基またはアリールエチニル基を表す。

$$Z^{1} \underbrace{\hspace{1cm} Ar^{3} \underbrace{\hspace{1cm} Ar^{4} \underbrace{\hspace{1cm}}}_{X^{3}} X^{4}} \qquad (2a)$$

[0135]

式中、A  $\Gamma$   $^3$  、A  $\Gamma$   $^4$  、X  $^3$  、X  $^4$  およびZ  $^1$  は上記と同じ。 【 0 1 3 6 】

$$Z^{1}$$
  $Ar^{1}$   $Ar^{2}$   $X^{5}$   $Ar^{1}$   $Ar^{2}$   $Ar^$ 

式中、 $Ar^1$ 、 $Ar^2$ 、 $R^{11}$ 、 $R^{12}$ 、 $X^5$  あよび $X^5$  は上記と同じ。 【 0 1 3 7 】

式中、 $Ar^1$ 、 $Ar^2$ 、 $R^{11}$ 、 $R^{12}$  および  $X^5$  は上記を同じ。 $Z^1$  は水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリール 40 チオ基、アリールアルキル基、アリールアルキル基、置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。 【 0 1 8 8 】

30

40

50

$$Z^{1} \xrightarrow{R^{14}} X^{15} \xrightarrow{R^{16}} R^{17}$$

$$X^{13} \xrightarrow{R^{11}} X^{12} X^{16} \xrightarrow{R^{18}} R^{18}$$

$$X^{18} \xrightarrow{R^{12}} X^{18} \xrightarrow{R^{18}} X^{18}$$

式中、R<sup>1</sup> <sup>1</sup> 、R<sup>1</sup> <sup>2</sup> 、R<sup>1</sup> <sup>3</sup> 、R<sup>1</sup> <sup>4</sup> 、R<sup>1</sup> <sup>5</sup> 、R<sup>1</sup> <sup>6</sup> 、R<sup>1</sup> <sup>7</sup> 、R<sup>1</sup> <sup>8</sup> 、X<sup>5</sup> および 10 区<sup>1</sup> は上記と同じ。

## [0139]

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $R^{13}$ 
 $R^{12}$ 
 $R^{12}$ 
 $R^{18}$ 
 $R^{18}$ 

式中、 $R^{1}$ 1、 $R^{1}$ 2、 $R^{1}$ 3、 $R^{1}$ 4、 $R^{1}$ 5、 $R^{1}$ 6、 $R^{1}$ 7、 $R^{1}$ 8、 $X^{5}$ 5よび $Z^{2}$  は上記と同じ。

# [0140]

本発明の高分子化合物のポリスチレン換算の数平均分子量は $10^3 \sim 10^8$ であり、好ましくは $10^4 \sim 10^6$ である。

## [0141]

本発明の高分子化合物に対する良溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、テトラリン、デカリン、n-ブチルペンゼンなどが例示される。高分子化合物の構造や分子量にもよるが、通常はこれらの溶媒に 0 . 1 重量 % 以上溶解させることができる。

#### [0142]

本発明の高分子化合物は、液晶性を有する高分子化合物であることが好ましい。液晶性を有する高分子化合物とは、高分子化合物を含む分子が液晶相を示すことである。液晶相は、偏光顕微鏡および示差走査熱量測定、X線回折測定などにより確認することができる

液晶性を有する化合物は、配向させることにより、光学的や電気的に異方性を有することが知られている。 (Synthetic Metals 119(2001)587)

配向させる手法としては、一般的に液晶の配向手法として知られているもの、例えば「液晶の基礎と応用」(松本正一、角田市良共著、工業調査会 1991年)第5章、「強誘電性液晶の構造と物性」(福田敦夫、竹添秀男共著、コロナ社、1990年)第7章、「液晶」第3巻第1号(1999年)3~16頁等に記載の方法を用いることができる。中でもラピング法、光配向法、ずり応力印加法や引き上げ塗布法が配向手法として簡便かつ有用で利用しやすい。

ラビング法とは、基板表面を布などで軽く擦る方法である。基板としてはガラスや高分子フィルム等を用いることができる。基板を擦る布としては、ガーゼやポリエステル、コッ

トン、ナイロン、レーヨンなどの布を用いることができる。また基板上に別途配向膜を形成すると、より配向性能が高くなる。ここで配向膜としては、ポリイミド、ポリアミド、PVA、ポリエステル、ナイロンなどが挙げられ、市販の液晶用配向膜も用いることができる。配向膜はスピンコート法やフレキソ印刷などで形成することができる。ラピングに用いる布は、用いる配向膜にあわせて適宜選択することができる。 光配向法とは、基板上に配向膜を形成し、偏光UV光照射あるいはUV光を斜入射照射する方法で配向機能を持たせる方法である。配向膜としては、ポリイミド、ポリアミド、ポ

リピニルシンナメートなどが挙げられ、市販の液晶用配向膜も用いることができる。 ラピング法または光配向法では、上記記載の処理を施した基板間に配向させた高分子材料を挟むことにより、配向させることができる。このとき、基板を材料が液晶相または等方相の温度にすることが必要である。温度設定を行うのは、高分子材料を基板に挟む前でも、挟んだあとでもよい。また、該高分子材料を配向処理を施した基板上に塗布するだけでもよい。高分子の塗布は、高分子を基板上にのせてT9以上あるいは液晶相または等方相を示す温度に設定し、ロッドなどで一方向にコーティングするか、有機溶媒に溶解した溶液を調製し、スピンコートやフレキソ印刷などで塗布する方法で行うことができる。

ずり応力印加法とは、基板上にのせた高分子材料の上に別の基板をのせ、液晶相または等方相になる温度下で上基板を一方向にずらす方法である。このとき基板は、上記ラピング法や光配向法で記載したような配向処理を施した基板を用いると、より配向度が高いものが得られる。基板としては、ガラスや高分子フィルム等を用いることができ、応力でずらすものは基板ではなく金属製のロッド等でもよい。

引き上げ塗布法とは、基板を高分子溶液に浸し、引き上げる手法である。高分子溶液に用いる有機溶剤や、基板引き上げ速度は特に限定はされないが、高分子の配向度にあわせて選択、調製することができる。

#### [0143]

液晶性を有するポリマーは、例えば、高分子LEDとして用いた時には偏光発光の光源として用いることができ、また、薄膜トランジスタとして用いた時には、電荷の移動度を上げるために有用である。

#### [0144]

次に、本発明の高分子化合物の製造方法について説明する。

本発明中、式(1)、(3)、(4)および(20-0)で示される繰返し単位を有する高分子化合物は、それぞれ下記式(16-1)、(17-1)、(18-1)および(20)で示される化合物を原料の一つとして縮合重合することにより製造することができる

[0145]



式中、 $Ar^1$ 、 $Ar^2$ 、 $X^1$  および $X^2$  は、上記と同じ意味を表す。 【 0 1 4 6 】

20

10

30

式中、 $Ar^1$ 、 $Ar^2$ 、 $X^5$ 、 $R^{11}$  あよび $R^{12}$  は上記と同じ意味を表す。 【 0.1.4.7 】

式中、 $X^5$ 、 $R^{1}$ 1、 $R^{1}$ 2、 $R^{1}$ 3、 $R^{1}$ 4、 $R^{1}$ 5、 $R^{1}$ 6、 $R^{1}$ 7 および $R^{1}$ 8 は上記と同じ意味を表す。

# [0148]

式中、 R  $^{1}$   $^{3}$  、 R  $^{1}$   $^{4}$  、 R  $^{1}$   $^{5}$  、 R  $^{1}$   $^{6}$  、 R  $^{1}$   $^{7}$  および R  $^{1}$   $^{8}$  は上記と同じ意味を表す。 【 0 1 4 9 】

$$Y^{1} \longrightarrow Ar^{1} \longrightarrow Ar^{2} \longrightarrow Y^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$X^{1} \longrightarrow X^{2}$$

$$(16-1)$$

$$80$$

式中、 $Ar^1$ 、 $Ar^2$ 、 $X^1$  および $X^2$  は上記と同じ。 $Y^1$  および $Y^2$ は それぞれ独立に八口ゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸基、ホルミル基、またはピニル基を表す。

# [0150]

$$Y^{1}$$
  $Ar^{1}$   $Ar^{2}$   $Y^{2}$  (17-1)
$$R^{11} - C - X^{5}$$

$$R^{12}$$

式中、 $Ar^1$ 、 $Ar^2$ 、 $R^{11}$ 、 $R^{12}$ 、 $X^5$ 、 $Y^1$ あよび $Y^2$ は上記と同じ意味を表す。 【 0 1 5 1 】

$$Y^1$$
 $R^{14}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $Y^2$ 
 $R^{13}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{12}$ 
 $R^{18}$ 

式中、 $R^{1}$  1 、 $R^{1}$  2 、 $R^{1}$  3 、 $R^{1}$  4 、 $R^{1}$  5 、 $R^{1}$  6 、 $R^{1}$  7 、 $R^{1}$  8 、 $X^{5}$  、 $Y^{1}$  10 および  $Y^{2}$  は上記  $Y^{2}$  10 また  $Y^{2}$  10 な  $Y^{2}$  10 また  $Y^{2}$  10 な  $Y^{2}$  10  $Y^{2}$  10 な  $Y^{2}$  10  $Y^{2}$  10 な  $Y^{2}$ 

# [0152]

式中、 R  $^{1}$   $^{8}$  、 R  $^{1}$   $^{4}$  、 R  $^{1}$   $^{5}$  、 R  $^{1}$   $^{6}$  、 R  $^{1}$   $^{7}$  、 R  $^{1}$   $^{8}$  、 Y  $^{1}$  および Y  $^{2}$  は上記と同じ意味を表す。

# [ 0 1 5 3 ]

合成上および官能基変換のしやすさの観点から、Y<sup>1</sup> およびY<sup>2</sup> はそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基またはホウ酸基であることが好ましい。

## [0154]

式(2)、(28)、(24)および(25)で示される繰返し単位を有する高分子化合物は、それぞれ下記式(2-1)、(23-1)、(24-1)および(25-1)で示される化合物を原料の一つとして縮合重合することにより製造することができる。

# [0155]



式中、A  $ho^3$  、 A  $ho^4$  、  $m X^3$  および  $m X^4$  は、上記 m 2 同じ 意味 m 8 表す。

# [0156]

式中、 $X^{1}$  8 はホウ素原子、窒素原子またはリン原子を示す。 $R^{4}$  5  $R^{4}$  6 、 $R^{4}$  7 、 50

20

30

20

30

40

R <sup>4 8</sup> 、 R <sup>4 9</sup> 、 R <sup>5 0</sup> 、 は やれ でれ 独立 に 水 素 原 子 、 八 口 が ン 原 子 、 アル キ ル 基 、 アル キ ル ま 、 アリール 基 、 アリール ま 、 アリール チ オ 基 、 アリール ま 、 アリール チ オ 基 、 アリール アル キ ル ま 、 アシル 基 、 ス ミ ド 基 、 イ ミ ア 残基 、 アミ ノ 基 、 置 換 アミ ノ 基 、 置 換 シリル ア ミ ノ 基 、 置 換 シリル オ キ シ 基 、 る で 日 アリール チ オ 基 、 アリール アル カル ボ ニ ル 基 、 アリール エ チ ニ ル 基 、 アリール ま 、 アリール ま 、 アリール ま に ま た は シ ア ノ 基 を 表 す 。 R <sup>4 6</sup> と R <sup>4 7</sup> 、 R <sup>4 8</sup> と R <sup>4 9</sup> は 互 い に 連結 し て 環 を 形成 し て も よ い 。 R トール ま 、 アリール ま 、 アリール アル キ ル 基 、 アリール ま 、 アリール ス ま た は 1 価 の 複素 環基 を 表 す 。

[0157]

[0158]

式中、 X 1 4 は、 ホウ素原子、 窒素原子またはリン原子を表す。 R 5 2 、 R 5 3 、 R 5 4 、 R 5 5 、 R 5 6 、 および R 5 7 はせれぞれ独立に水素原子、 ハロゲン原子、 アルキルオキシ 基、 アルキル チオ基、 アリール オキシ基、 アリール チオ基、 アリールアルキルチオ基、 アリールアルキルチオ基、 アリールアルキン基、 アシールアルキン基、 イミド基、 イミン残基、 アミノ基、 置検アミノ基、 置検シリルアミノ基、 1 価の複素環基 スペテロアリール オキシ基、 ヘテロアリールオキシカルボニル基、 アリールアルオキシカルボニル基、 アリールアルオキシカルボニル基、 アリールアルキシカルボニル基、 ヘテロアリールオキシカルボニル基 または 1 価の複素環基を示す。 R 5 8 はアルキル基、 アリールアルキル基、 アリールアルキル基、 アリールアルキル表、 アリールアルキル表、 アリールアルキル基、 アリールアルキル基、 アリールアルキル表。 R 5 8 はアルキル基、 アリールアルキル基、 アリールアルキル基、 アリールアルキル基。 R 5 8 はアルキル基、 アリールアルキル基、 アリールアルキル基。 R 5 8 はアルキル基、 アリールアルキル基または 1 価の複素環基を示す。

式中、 R <sup>5 °</sup> 、 R <sup>6 °</sup> な R <sup>6 °</sup> な

30

して環を形成してもよい。

# [0159]

式中、Ar³、Ar⁴、Х³ およびХ⁴ は、上記と同じ。Ү³ およびҮ⁴ はそれぞれ独立に ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルス ルホネート基、ホウ酸エステル基、スルホニウムメチル基、ホスホニウムメチル基、ホス ホネートメチル基、モノハロゲン化メチル基、ホウ酸基、ホルミル基、またはピニル基を 表す。

# [0160]

$$R^{46}$$
 $R^{47}$ 
 $R^{48}$ 
 $R^{49}$ 
 $Y^{4}$ 
 $R^{45}$ 
 $R^{45}$ 
 $R^{50}$ 
(23-1)

式中、 $X^{1}$   $^{3}$  、 $R^{4}$   $^{5}$  、 $R^{4}$   $^{6}$  、 $R^{4}$   $^{7}$  、 $R^{4}$   $^{8}$  、 $R^{4}$   $^{9}$  、 $R^{5}$   $^{0}$  および  $R^{5}$   $^{1}$  は上記  $^{1}$  目じ。 $Y^{8}$  および  $Y^{4}$  は それ ぞれ 独立に ハロ ゲン 原子、 アルキルスルホネート 基、 アリールスルホネート 基、 アリールアル キルスルホネート 基、 ホウ酸エステル基、 スルホニウムメチル基、 ホスホニウムメチル基、 ホウ酸基、 ホルミル基、 または ビニル基  $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$   $^{1}$ 

#### [0161]

$$R^{53}$$
 $R^{54}$ 
 $R^{55}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{57}$ 
 $R^{57}$ 
 $R^{58}$ 
 $R^{58}$ 
 $R^{58}$ 
 $R^{58}$ 

# [0162]

30

式中、R<sup>59</sup>、R<sup>60</sup>、R<sup>61</sup>、R<sup>62</sup>、R<sup>63</sup> およびR<sup>64</sup> は上記と同じ。Y<sup>7</sup>およびY<sup>8</sup>はそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、ホウ酸エステル基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸基、ホルミル基、またはビニル基を表す。

#### [ 0 1 6 8 ]

合成上および官能基変換のしやすさの観点から、Y<sup>3</sup>、Y<sup>4</sup>、Y<sup>5</sup>、Y<sup>6</sup>、Y<sup>7</sup>およびY<sup>8</sup>がせれぜれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基またはホウ酸基であることが好ましい。

## [0164]

本発明の上記式(1)、(3)、(4)および(20-0)で示される繰返し単位を有す 20 3 高分子化合物は、下記式(16-2)、(17-2)、(17-3)、(18-2)、(18-3)、(20-2)および(20-3)で示される化合物を原料の一つとして加えて縮合重合することによってその末端構造を好ましく制御できる。

# [ 0 1 6 5 ]

$$Z^{1} \longrightarrow Ar^{1} \longrightarrow Ar^{2} \longrightarrow Y^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

式中、Ar<sup>1</sup>、Ar<sup>2</sup>、X<sup>1</sup>、X<sup>2</sup> およびY<sup>2</sup> は上記と同じ。 Z<sup>1</sup> は水素原子、アルキル 基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ 基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換ア ミノ基、置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ 基、アリールアルケニル基またはアリールエチニル基を表す。

# [ 0 1 6 6 ]

$$Z^{1}$$
  $Ar^{1}$   $Ar^{2}$   $Y^{2}$  (17-2)

式中、A $r^1$ 、A $r^2$ 、R $^{11}$ 、R $^{12}$ 、X $^5$ 、Y $^2$  および $\mathbf{Z}^1$  は上記と同じ意味を表す

# [0167]

$$Y^{1}$$
  $Ar^{1}$   $Ar^{2}$   $Z^{2}$  (17-3)
$$R^{11} - C - X^{5}$$

式中、A r <sup>1</sup> 、A r <sup>2</sup> 、 R <sup>1 1</sup> 、 R <sup>1 2</sup> 、 X <sup>5</sup> 、 Y <sup>1</sup> は上記と同じ意味を表す。 Z <sup>2</sup> は水 素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ 基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキ ルチオ基、置換アミノ基、置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘ テロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。

[0168]

$$Z^{1} \xrightarrow{R^{14}} X^{15} \xrightarrow{R^{16}} R^{17} \\ X^{13} \xrightarrow{R^{11}} X^{5} \xrightarrow{R^{18}} R^{18}$$

$$(18-2)$$

式中、 R  $^1$   $^1$  、 R  $^1$   $^2$  、 R  $^1$   $^3$  、 R  $^1$   $^4$  、 R  $^1$   $^5$  、 R  $^1$   $^6$  、 R  $^1$   $^7$  、 R  $^1$   $^8$  、 X  $^5$  、 Y  $^2$  および  $\Xi^1$  は上記 と同じ 意味を表す。

# [0169]

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $Z^2$ 
(18-3)

式中、 R  $^1$   $^1$  、 R  $^1$   $^2$  、 R  $^1$   $^3$  、 R  $^1$   $^4$  、 R  $^1$   $^5$  、 R  $^1$   $^6$  、 R  $^1$   $^7$  、 R  $^1$   $^8$  、 X  $^5$  、 Y  $^1$  および  $\Xi^2$  は上記  $\Psi$  同じ意味を表す。

# [0170]

$$Z^{1}$$
 $R^{14}$ 
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $R^{18}$ 
(20-2)

式中、 R  $^{1}$   $^{8}$  、 R  $^{1}$   $^{4}$  、 R  $^{1}$   $^{5}$  、 R  $^{1}$   $^{6}$  、 R  $^{1}$   $^{7}$  、 R  $^{1}$   $^{8}$  、 Y  $^{2}$  および  $\mathbf{Z}^{1}$  は上記  $\mathbf{Z}$  同じ意味を表す。

# [0171]

10

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $R^{18}$ 
 $R^{13}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 

式中、 $R^{1}$   $^{3}$  、 $R^{1}$   $^{4}$  、 $R^{1}$   $^{5}$  、 $R^{1}$   $^{6}$  、 $R^{1}$   $^{7}$  、 $R^{1}$   $^{8}$  、 $Y^{1}$  および $Z^{2}$  は上記と同じ 10 意味を表す。

## [0172]

本発明の上記式(2)、(28)、(24)および(25)で示される繰返し単位を有する高分子化合物は、下記式(2-2)、(28-2)、(28-8)、(24-2)、(24-3)、(25-2)および(25-8)で示される化合物を原料の一つとして加えて縮合重合することによってその末端構造を好ましく制御できる。

[0173]

$$Z^{3} \xrightarrow{Ar^{3}} Ar^{4} \xrightarrow{Y^{4}} Y^{4}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

式中、 A r <sup>8</sup>、 A r <sup>4</sup>、 X <sup>8</sup>、 X <sup>4</sup> および Y <sup>4</sup> は、上記 と同じ。 区 <sup>8</sup> は、水素原子、 アルキル基、 アルキルオキシ基、 アルキルチオ基、 アリール基、 アリールオキシ基、 アリールチオ基、 置換 アミノ基、 置換 シリル基、 1 価 の 複素環基、 ヘテロアリールオキシ基、 ヘテロアリールチオ基、 で基、 アリールアルケニル基ま たは アリールエチニル 基を表す。

[0174]

$$Z^3$$
 $R^{46}$ 
 $R^{47}$ 
 $R^{48}$ 
 $R^{49}$ 
 $Y^4$ 
 $R^{45}$ 
 $R^{45}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 

式中、X  $^1$   $^3$  、R  $^4$   $^5$  、R  $^4$   $^6$  、R  $^4$   $^7$  、R  $^4$   $^8$  、R  $^4$   $^9$  、R  $^5$   $^0$  、R  $^5$   $^1$  、Y  $^4$  および 40 Z  $^3$  は上記と同じ意味を表す。

# [0175]

$$R^{46}$$
 $R^{47}$ 
 $R^{48}$ 
 $R^{49}$ 
 $Z^{4}$ 
 $R^{45}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 
 $R^{51}$ 

50

40

50

式中、 X <sup>1</sup> <sup>3</sup> 、 R <sup>4</sup> <sup>5</sup> 、 R <sup>4</sup> <sup>6</sup> 、 R <sup>4</sup> <sup>7</sup> 、 R <sup>4</sup> <sup>8</sup> 、 R <sup>4</sup> <sup>9</sup> 、 R <sup>5</sup> <sup>0</sup> 、 R <sup>5</sup> <sup>1</sup> および Y <sup>3</sup> は上記と同じ意味を表す。 Z <sup>4</sup> は、水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアルキル基、 置換アミノ基、 置換シリル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。

## [0176]

$$Z^{5}$$
 $R^{53}$ 
 $R^{54}$ 
 $R^{55}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{56}$ 
 $R^{57}$ 
 $R^{57}$ 
 $R^{58}$ 
 $R^{58}$ 
 $R^{59}$ 
 $R^{59}$ 
 $R^{59}$ 
 $R^{59}$ 

式中、 X <sup>1</sup> <sup>4</sup> 、 R <sup>5</sup> <sup>2</sup> 、 R <sup>5</sup> <sup>8</sup> 、 R <sup>5</sup> <sup>4</sup> 、 R <sup>5</sup> <sup>5</sup> 、 R <sup>5</sup> <sup>6</sup> 、 R <sup>5</sup> <sup>7</sup> 、 R <sup>5</sup> <sup>8</sup> および Y <sup>6</sup> は上記と同じ意味を表す。 Z <sup>5</sup> は、水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールテオ基、 プリールアルキル基、アリールアルキル基、アリールアルキル基、アリールアル基、 1 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。

# [0177]

$$R^{53}$$
 $R^{54}$ 
 $R^{55}$ 
 $R^{56}$ 
 $R^{56}$ 

式中、 X <sup>1</sup> <sup>4</sup> 、 R <sup>5</sup> <sup>2</sup> 、 R <sup>5</sup> <sup>8</sup> 、 R <sup>5</sup> <sup>4</sup> 、 R <sup>5</sup> <sup>5</sup> 、 R <sup>5</sup> <sup>6</sup> 、 R <sup>5</sup> <sup>7</sup> 、 R <sup>5</sup> <sup>8</sup> および Y <sup>5</sup> は上記と同じ意味を表す。 Z <sup>6</sup> は、水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルキル基、アリールアルキル基、 T 価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アリールアルケニル基またはアリールエチニル基を表す。

#### [0178]

$$Z^7$$
 $R^{60}$ 
 $R^{61}$ 
 $R^{62}$ 
 $R^{63}$ 
 $Y^8$ 
 $R^{59}$ 
 $NH$ 
 $R^{64}$ 

式中、 R <sup>5 9</sup> 、 R <sup>6 0</sup> 、 R <sup>6 1</sup> 、 R <sup>6 2</sup> 、 R <sup>6 3</sup> 、 R <sup>6 4</sup> および Y <sup>8</sup> は上記 と同じ 意味 を

表す。区<sup>7</sup>は、水素原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、置換アミノ基、置換シリル基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基アリールアルケニル基またはアリールエチニル基を表す。

[0179]

$$R^{60}$$
  $R^{61}$   $R^{62}$   $R^{63}$   $Z^{8}$  (25-3)

式中、 R <sup>5 9</sup> 、 R <sup>6 0</sup> 、 R <sup>6 1</sup> 、 R <sup>6 2</sup> 、 R <sup>6 3</sup> 、 R <sup>6 4</sup> および Y <sup>7</sup> は上記と同じ意味を表す。 Z <sup>8</sup> は、 水素原子、 アルキル基、 アルキルオキシ基、 アルキルチオ基、 アリール基、 アリールオキシ基、 アリールアルキル チオ基、 アリールアルキル基、 アリールアルキル チオ 基、 置換 アミノ 基、 置換 シリル基、 1 価の 複素環基、 ヘテロアリールオキシ基、 ヘテロアリールチオ基、 アリールアルケニル基または アリールエチニル基を表す。

# [0180]

上記式(1)または(2-0)で示される化合物のうち、合成上、および官能基変換のしやすさの観点から、Y¹~Y⁴がやれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、ホウ酸エステル基またはホウ酸基であることが好ましく、より好ましくはハロゲン原子である。

## [ 0 1 8 1 ]

っつにアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基などが例示され、アリールスルホネート基としては、ペンゼンスルホネート基、Pートルエンスルホネート基などが例示され、アリールアルキルスルホネート基としては、ペンジルスルホネート基などが例示される。

#### [0182]

ホウ酸エステル基としては、下記式で示される基が例示される。

[0183]

スルホニウムメチル基としては、下記式で示される基が例示される。

 $-CH_2SMe_2X$ 、 $-CH_2SPh_2X$  (Xはハロゲン原子を示す。)

#### [0184]

ホスホニウムメチル基としては、下記式で示される基が例示される。

- C H o P P h o X ( X は ハ ロ ゲ ン 原 子 を 示 す 。 )

#### [ 0 1 8 5 ]

ホスホネートメチル基としては、下記式で示される基が例示される。

-CH<sub>2</sub>PO(OR')<sub>2</sub>

( R ' はアルキル基、アリール基またはアリールアルキル基を示す。)

# [0186]

50

20

30

30

40

モノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ョウ 化メチル基が例示される。

## [0187]

上記(16-1)、(17-1)または(18-1)で示される化合物のうち、 $Y^1 \sim Y^4$ が八口ゲン原子の化合物から他の官能基を有する化合物へと変換することができる。例えば、ホウ酸エステル基の場合、メタル化試薬と反応させた後に、ホウ酸エステルと反応させる方法やJ. Or 9. Chem.. 7508(1995) に記載の方法に従い、パラジウム触媒と塩基の存在下、ジボランと反応させる方法などにより合成することができる。



上記(2-1)、(23-1)または(24-1)で示される化合物についても同様の方法で官能基変換することができる。以下の官能基変換反応についても同様である。

#### [0188]

メタル化試薬としては、メチルリチウム、 n ープチルリチウム、 S e c ープチルリチウム、 t ープチルリチウムなどのアルキルリチウム、 フェニルリチウム、 ナフチルリチウム、 トリルリチウムなどのアリールリチウム、 リチウムジイソプロピルアミド、 リチウムー 2 、 6 、 6 ーテトラメチルピペリジド、 リチウムへ + サメチルジシラジドなどのリチウムアミド、 金属マグネシウムが 例示される。

#### [0189]

ホウ酸エステルとしては、トリメトキシボラン、トリエトキシボランなどが例示される

#### [0190]

ホウ酸基の場合、上記のホウ酸エステル基の化合物を酸または塩基性条件下、加水分解する方法などにより合成することができる。

$$(RO)_2B - Ar^1 - Ar^2 - B(OR)_2$$
 $X^1 - X^2$ 
 $X^2$ 
 $(HO)_2B - Ar^1 - Ar^2 - B(OH)_2$ 
 $X^1 - X^2$ 

# [0191]

アルキルホスホネート基、アリールホスホネート基、アリールアルキルホスホネート基の場合、上記ホウ酸基またはホウ酸エステル基の化合物を過酸化物と反応させた後、塩基の存在下、スルホネート化試業と反応させる方法などにより合成することができる。

20

30

50

$$(RO)_{2}B - Ar^{1} - Ar^{2} - B(OR)_{2}$$

$$X^{1} - X^{2} - X^{2} - Ar^{1} - Ar^{2} - OH - RSO_{2}X, RO_{2}SO - Ar^{1} - Ar^{2} - OSO_{2}R$$

$$(HO)_{2}B - Ar^{1} - Ar^{2} - B(OH)_{2}$$

$$X^{1} - X^{2} - X^{2} - Ar^{2} - B(OH)_{2}$$

# [0192]

過酸化物としては、過酸化水素、セーブチルとドロパーオキシド、過酢酸、過安息香酸などが例示される。塩基としては、トリメチルアミン、トリエチルアミン、N・N・N・N・T・フ・トリーローブチルアミンなどの3級アミン類、ピリジン、4ージメチルアミン、ローテトラメチルエチレンジアミンなどの3級アミン類、ピリジン、4ージメチルスルホニウムクロライドなどのアルキルスルホン酸無水物、トリフルオロメタンスルホニウムクロライド、メチルスルホン酸無水物、トリフルオロメタンスルホン酸無水物などのアリールスルホン酸無水物、ペンゼンスルホン酸無水物、アートルエンスルホニカムクロライドなどのアリールスルホニルクロライド、ペンジルスルホニウムクロライドなどのアリールスルホン酸無水物などのアリールアルキルスルホン酸無水物などが例示される。

## [ 0 1 9 3 ]

ホルミル基の場合、 Y <sup>1</sup> ~ Y <sup>4</sup> が ハロゲン原子の化合物 をメタル化試業と反応させた後にN、N-ジメチルホルムアミドと反応させる方法などにより合成することができる。



#### [0194]

メタル化試薬としては、上記と同じ。

#### [0195]

モノハロゲン化メチル基の場合、上記のホルミル基の化合物を還元した後にハロゲン化する方法や、Y¹~Y⁴がハロゲン原子の化合物をメタル化試薬と反応させた後にホルムアルデヒドと反応させた後にハロゲン化する方法などが例示される。

OHC—
$$Ar^1$$
— $Ar^2$ — $CHO$ 
 $Reduction$   $HO$ 
 $Ar^1$ — $Ar^2$ 
 $X^1$ — $X^2$ 
 $X^1$ — $X^2$ 
 $X^1$ — $X^2$ 
 $X^2$ 
 $X^1$ — $X^2$ 
 $X^2$ 
 $X^1$ — $X^2$ 
 $X^2$ 
 $X^1$ — $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^3$ 
 $X^4$ 
 $X^2$ 
 $X^2$ 
 $X^3$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^2$ 
 $X^3$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^4$ 
 $X^4$ 
 $X^4$ 
 $X^5$ 
 $X^5$ 
 $X^5$ 
 $X^6$ 
 $X^6$ 

#### [0196]

還元剤としては、水素化ホウ素ナトリウム、リチウムアルミニウムヒドリド、ジイソブチルアルミニウムヒドリド、水素などが例示される。ハロゲン化試薬としては、四塩化炭素、N-クロロスクシンイミド、塩化チオニルなどの塩素化試薬、四臭化炭素、N-プロモスクシンイミド、三臭化リン、臭化リンなどの臭素化試薬が例示される。メタル化試薬

20

30

40

50

としては、上記と同じ。

# [0197]

スルホニウムメチル基の場合、上記のモノハロゲン化メチル基の化合物とスルフィドと を反応させる方法などにより合成することができる。



# [0198]

スルフィドとしては、ジメチルスルフィド、ジエチルスルフィドなどのジアルキルスルフィド、テトラヒドロチオフェンなどの環状スルフィド、ジフェニルスルフィド、ジトリルスルフィドなどのじアリールスルフィドなどが例示される。

# [0199]

ホスホニウムメチル基の場合、上記のモノハロゲン化メチル基の化合物とホスフィンと を反応させる方法などにより合成することができる。



# [0200]

ホスフィンとしては、トリメチルホスフィン、トリエチルホスフィン、トリーセーブチルホスフィンなどのトリアルキルホスフィン、トリペンジルホスフィンなどのトリアリールアルキルホスフィン、トリフェニルホスフィン、トリトリルホスフィンなどが例示される。

#### [0201]

ホスホネートメチル基の場合、上記のモノハロゲン化メチル基の化合物と亞リン酸エステルとを反応させる方法などにより合成することができる。



#### [0202]

亞リン酸エステルとしては、亞リン酸トリメチル、亞リン酸トリエチルなどが例示される。

#### [0203]

ピニル基の場合、 $Y^1 \sim Y^4$ がハロゲン原子の化合物とエチレンとのHeck 反応により合成することができる。

Br—Ar<sup>1</sup>——Ar<sup>2</sup>—Br Pd cat.

$$X^1$$
—— $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^2$ 
 $X^3$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^2$ 
 $X^4$ 
 $X^2$ 

#### [0204]

上記式(16-2)で示される化合物は例えば、対応する(16-1)で示される化合物のうち、 $Y^1$ および $Y^2$  が臭素原子である化合物から合成することができる。反応スキームを以下に示す。同様にして、(2-2)、(17-2)、(17-8)、(18-2

)、(18-3)、(20-2)、(20-3)、(23-2)、(23-3)、(24-2)、(25-3)、(25-3)で示される化合物も合成することができる。

[0205]

10

## [0206]

縮合重合の方法としては、主鎖にピニレン基を有する場合には、必要に応じてその他の 単 量 体 を 用 い て 、 例 え ば 特 開 平 5 - 2 0 2 8 5 5 号 公 報 に 記 載 の 方 法 に よ リ 製 造 し 得 る 。 すなわち、〔1〕アルデヒド基を有する化合物とホスホニウム塩基を有する化合物とのW itti3反応による重合、〔2〕アルデヒド基とホスホニウム塩基とを有する化合物の Witti3反応による重合、〔3〕ピニル基を有する化合物とハロゲン原子を有する化 合物とのHeck反応による重合〔4〕ビニル基とハロゲン原子とを有する化合物のHe こ k 反 応 に よ る 重 合 、 〔 5 〕 ア ル デ と ド 基 を 有 す る 化 合 物 と ア ル キ ル ホ ス ホ ネ ー ト 基 を 有 する化合物とのHorner-Wadsworth-Emmons法による重合〔6〕ア ルデヒド基とアルキルホスホネート基とを有する化合物のHorner-Wadswor t h ー E m m o n s 法による重合、〔7〕 ハロゲン化メチル基を 2 つ 从 上 有 す る 化 合 物 の 脱 八 口 ゲ ン 化 水 素 法 に よ 3 重 縮 合 、 〔 8 〕 ス ル ホ ニ ウ ム 塩 基 を 2 つ 从 上 有 す 3 化 合 物 の ス ルホニウム塩分解法による重縮合、〔9〕アルデヒド基を有する化合物とアセトニトリル 基を有する化合物とのKnoevena9el反応による重合〔10〕アルデヒド基とア セトニトリル基とを有する化合物のKnoevena9el反応による重合などの方法、 〔11〕アルデヒド基を2つ以上有する化合物のMcMuトトン反応による重合などの方 法が例示される。

50

上記〔1〕~〔11〕の重合について以下に式で示す。 [0207]

(1)

OHC — Ar — CHO 
$$+ X^- Ph_3 P^+ H_2 C$$
 — Ar —  $CH_2 P^+ Ph_3 X^-$ 

$$-$$
 Ar  $-$  Ar

(1)

OHC — 
$$Ar$$
 —  $CH_2P^+Ph_3$   $X^-$  —  $Base$  —  $Ar$  —  $n$ 

$$Br \longrightarrow Ar \longrightarrow Pd Cat. \qquad Ar \longrightarrow n$$

[0211] (5)

$$OHC \longrightarrow Ar \longrightarrow CHO + (RO)_2(O)PH_2C \longrightarrow Ar' \longrightarrow CH_2P(O)(OR)_2$$

$$OHC \longrightarrow Ar \longrightarrow CH_2P(O)(OR)_2 \longrightarrow Ar \longrightarrow Ar \longrightarrow n$$

(7)

50

10

20

30

OHC—Ar—CHO + NCCH<sub>2</sub>—Ar'—CH<sub>2</sub>CN 
$$\xrightarrow{\text{Base}}$$
  $\xrightarrow{\text{CN}}$   $\xrightarrow{\text{CN}}$   $\xrightarrow{\text{CN}}$   $\xrightarrow{\text{CN}}$   $\xrightarrow{\text{CN}}$   $\xrightarrow{\text{CN}}$ 

[0216]

[0217] [11]

OHC—Ar—CHO 
$$\xrightarrow{\text{TiCl}_3-\text{Zn}}$$
  $\leftarrow$  Ar— $\Longrightarrow$   $\xrightarrow{n}$ 

[0218]

また、本発明の高分子化合物の製造方法として、主鎖にピニレン基を有しない場合には、例えば

〔12〕Suzukiカップリング反応により重合する方法、〔18〕GFi9n $\alpha$ Fd反応により重合する方法、〔14〕Ni(0)触媒により重合する方法、〔15〕FeC+3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、あるいは〔16〕適当な脱離基を有する中間体高分子の分解による方法などが例示される。

上記〔12〕~〔16〕までの重合法について、以下に式で示す。

[0219]

[12]

$$Br \longrightarrow Ar \longrightarrow Br + (RO)_2B \longrightarrow Ar' \longrightarrow B(OR)_2 \longrightarrow R=H, alkyl$$
 
$$R=H, alkyl$$
 
$$R=H, alkyl$$

[0220] [13]

$$Br \longrightarrow Ar \longrightarrow MgBr \longrightarrow Ni Cat.$$

50

30

30

40

50

[0221] [14]

$$Br \longrightarrow Ar \longrightarrow Br \longrightarrow Ni(0).$$

[0222] [15]

Y=S.NH

[ 0 2 2 3 ] [ 1 6 ]

ROCO OCOR 
$$\frac{}{\mathbb{R}^{20}}$$

# [0224]

これらのうち、 Witti多反応による重合、Heck反応による重合、Hornerのよる、Worthelmmons法による重合、Knoevena9el反応による重合、Knoevena9el反応による重合、およびSuzukiカップリング反応により重合する方法、Gri9nard反応により重合する方法、Ni(0)触媒により重合する方法が、構造制御がしやすいので好ましい。さらにSuzukiカップリング反応により重合する方法、Gri9nard反応により重合する方法、Ni(0)触媒により重合する方法が原料の入手しやすさと重合反応操作の簡便さから好ましい。

#### [0225]

単量体を、必要に応じ、有機溶媒に溶解し、例えばアルカリや適当な触媒を用い、有機溶 媒の融点以上沸点以下で、反応させることができる。例えば、"オルガニック」リアクシ ョンズ (Or anic Reactions)", 第14巻, 270-490頁, ジョ ンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965 年、"オルガニック リアクションズ(Oh9anic Reactions)"、第 27巻、345-390頁、ジョンワイリー アンド サンズ(Jokn Wiley&S ONS, Inc. ), 1982年、"オルガニック シンセシス(Or & anic ntheses)"、コレクティブ第6巻(Collective Volume VI )、407-411頁、ジョンワイリー アンド サンズ(Jokn Wiley&So ns. Inc. ), 1988年、ケミカル レピュー(Chem. Rev. ), 第95巻 . 2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー( J. Organomet. Chem. ), 第576巻, 147頁(1999年)、ジャー ナル オブ プラクティカル ケミストリー(J. P r a k t . C h e m . ). 第336 巻. 247頁(1994年)、マクロモレキュラー ケミストリー マクロモレキュラー - シンポジウム(Makromol.Ckem.,Macromol.SymP.),第 1 2 巻. 2 2 9 頁( 1 9 8 7 年)などに記載の公知の方法を用いることができる。

#### [0226]

有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制する

20

30

40

50

ために、用いる溶媒は十分に脱酸素処理を施し、不活性雰囲気化で反応を進行させることが好ましい。また、同様に脱水処理を行うことが好ましい。(但し、Suzukiカップリング反応のような水との2相系での反応の場合にはその限りではない。)

[0227]

反応させるために適宜アルカリや適当な触媒を添加する。これらは用いる反応に応じて選択すればよい。該アルカリまたは触媒は、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリまたは触媒を混合する方法としては、反応液をアルゴンや窒素などの不活性雰囲気下で しながらやっくりとアルカリまたは触媒の溶液を添加するか、逆にアルカリまたは触媒の溶液に反応液をやっくりと添加する方法が例示される。

[0228]

本発明の高分子化合物を高分子LEDの発光材料として用いる場合、その純度が発光特性に影響を与えるため、重合前の単量体を蒸留、昇華精製、再結晶等の方法で精製したのちに重合することが好ましく、また合成後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。

[0229]

本発明の高分子化合物の製造方法において、されざれの単量体は、一括混合して反応させてもよいし、必要に応じ、分割して混合してもよい。

[0230]

より具体的に、反応条件について述べると、Witti3反応、Horner反応、K noeven9el 反応などの場合は、単量体の官能基に対して当量以上、好ましくは1 ~3当量のアルカリを用いて反応させる。アルカリとしては、特に限定されないが、例え ば、カリウムーセーブトキシド、ナトリウムーセーブトキシド、ナトリウムエチラート、 リ チ ウ ム メ チ ラ ー ト な ど の 金 属 ア ル コ ラ ー ト や 、 水 素 化 ナ ト リ ウ ム な ど の 八 イ ド ラ イ ド 試 薬、ナトリウムアミド等のアミド類等を用いることができる。溶媒としては、 N、N-ジ メ チ ル ホ ル ム ア ミ ド 、 テ ト ラ ヒ ド ロ フ ラ ン 、 ジ オ キ サ ン 、 ト ル エ ン 等 が 用 い ら れ る 。 反 応の温度は、通常は室温から150℃程度で反応を進行させることができる。 反応時間は 、 例 え ば 、 5 分 間 ~ 4 0 時 間 で あ 3 が 、 十 分 に 重 合 が 進 行 す 3 時 間 で あ れ ば よ く 、 ま た 反 応が終了した後に長時間放置する必要はないので、好ましくは10分間~24時間である 。 反 応 の 際 の 濃 度 は 、 希 薄 す ぎ 3 と 反 応 の 効 率 が 惡 く 、 濃 す ぎ 3 と 反 応 の 制 御 が 難 し く な るので、約 0 . 0 1 w t % ~ 溶解する最大 濃度の範囲で適宜選択すればよく、通常は、 0 1wt%~20wt%の範囲である。Heck反応の場合は、パラジウム触媒を用い、 ト リ エ チ ル ア ミ ン な ど の 塩 基 の 存 在 下 で 、 単 量 体 を 反 応 さ せ る 。 N 、 N - ジ メ チ ル ホ ル ム ア ミ ド や N - メ チ ル ピ ロ リ ド ン な ど の 比 較 的 沸 点 の 高 い 溶 媒 を 用 い 、 反 応 温 度 は 、 8 0 ~ 1 6 0 ℃程度、反応時間は、1時間から100時間程度である。

[ 0 2 3 1 ]

Suzukiカップリング反応の場合は、触媒として、例えばパラジウム[テトラキス(トリフェニルホスフィン)]、パラジウムアセテート類などを用い、炭酸カリウム、炭酸ナトリウム、水酸化パリウム等の無機塩基、トリエチルアミン等の有機塩基、フッ化セシウムなどの無機塩を単量体に対して当量以上、好ましくは1~10当量加えて反応させる。無機塩を水溶液として、2相系で反応させてもよい。溶媒としては、 N、Nージメチルホルムアミド、トルエン、ジメトキシエタン、テトラヒドロフランなどが例示される。溶媒にもよるが50~160℃程度の温度が好適に用いられる。溶媒の沸点近くまで昇温し、環流させてもよい。反応時間は1時間から200時間程度である。

[0232]

40

50

法に従って反応させることができる。

#### [0233]

上記式(18)で示される化合物のうち、下記式(18-1)で示される化合物は下記式(19)で示される化合物を酸の存在下、反応させることにより製造することができる

(式中、 $R^{1}$   $^{1}$   $^{2}$   $\sim$   $R^{1}$   $^{8}$  、 $Y^{1}$  および $Y^{2}$  は上記と同じ。)

$$R^{14}$$
 $R^{15}$ 
 $R^{16}$ 
 $R^{17}$ 
 $Y^{2}$ 
 $R^{13}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{18}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{18}$ 
 $R^{11}$ 
 $R^{12}$ 
 $R^{18}$ 
 $R^{11}$ 

(式中、 R <sup>1 1</sup> ~ R <sup>1 8</sup> 、 Y <sup>1</sup> および Y <sup>2</sup> は上記 と同じ。 R <sup>4 4</sup> は 水 素 原 子 、 ア ル キ ル 基 、 ア リ ー ル 基 、 ア リ ー ル ア ル キ ル 基 ま た は 1 価 の 複 素 環 基 を 表 す 。)

### [0234]

上記(18-1)の合成に用いられる酸としては、Lewis酸、Bronsted酸のいずれでもよく、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸、蟻酸、酢酸、プロピオン酸、シュウ酸、安息香酸、フッ化ホウ素、塩化アルミニウム、塩化スズ(IV)、塩化鉄(II)、四塩化チタンまたはこれらの混合物が例示される。

#### [0235]

反応の方法は特に限定されないが、溶媒の存在下に実施することができる。反応温度は80℃~溶媒の沸点が好ましい。

# [0236]

反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、プロモペンタン、クロロペンタン、クロロペンセン、ブロモペンセン、ジクロロペンゼン、ジクロロペンゼン、ジクロロペンゼン、シックロロペンゼン、シックロロペンゼン、カリクロロペンゼンなどのハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、セーブチルアルコールなどのアルコール類、蟻酸、酢酸、プロピオン酸などのカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチルーセーブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル類、塩酸、臭素酸、フッ化水素酸、硫酸、硝酸などの無機酸など

が例示され、単一溶媒、またはこれらの混合溶媒を用いてもよい。

[0237]

反応後は、例えば水でクエンチした後に有機溶媒で抽出し、溶媒を留去するなどの通常の後処理で得ることができる。生成物の単離後および精製はクロマトグラフィーによる分取や再結晶などの方法によりおこなうことができる。

[0238]

上記式(19)で示される化合物のすち、合成上、および官能基変換のしやすさの観点 から、 $X^1$ 、 $X^2$ がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基またはホウ酸基であることが好ましい。

[0239]

上記式(19)で示される化合物は、下記式(20)で示される化合物とGri9nard試業または有機Li化合物とを反応させることにより合成することができる。

(式中、R<sup>18</sup>~R<sup>18</sup>、Y<sup>1</sup>およびY<sup>2</sup>は上記と同じ意味を表す。)

[0240]

上記 反 応 に 用 い られる Gri 9 nard試 薬 としては、メチルマグネシウムクロライド、メチルマグネシウムプロマイド、エチルマグネシウムクロライド、エチルマグネシウムプロマイド、プロピルマグネシウムプロマイド、プロピルマグネシウムプロマイド、プラルマグネシウムプロマイド、プラルマグネシウムプロマイド、オクチルマグネシウムプロマイド、デシルマグネシウムプロマイド、アリルマグネシウムクロライド、フェニルマグネシウムプロマイド、ナフチルマグネシウムプロマイド、トリルマグネシウムプロマイドなどが例示される。

[0241]

有機 Li 化合物 としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、フェニルリチウム、ナフチルリチウム、ペンジルリチウム、トリルリチウムなどが例示される。

[0242]

反応の方法は特に限定されないが、窒素、アルゴンなどの不活性がス雰囲気下、溶媒の存在下に実施することができる。反応温度は 80℃~溶媒の沸点が好ましい。

[0243]

反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ペンゼン、トルエン、エチルペンゼン、キシレンなどの不飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチルーセーブチルエーテル、テトラとドロフラン、テトラとドロピラン、ジオキサンなどのエーテル類などが例示され、単一溶媒、またはこれらの混合溶媒を用いてもよい。

[0244]

反応後は、例えば水でクエンチした後に有機溶媒で抽出し、溶媒を留去するなどの通常の後処理で得ることができる。生成物の単離後および精製はクロマトグラフィーによる分取や再結晶などの方法によりおこなうことができる。

[0245]

50

40

10

20

20

30

40

50

また、本発明は、上記式(20)で示される化合物のうち、下記式(22)で示される化合物は下記式(21)で示される化合物と過ホウ酸ナトリウムと反応させることにより製造することができる。

# [0246]

反応の方法は、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸などのカルボン酸溶媒の存在下に実施することができる。溶解性を上げるため、四塩化炭素、クロロホルム、ジクロロメタン、ペンゼン、トルエンなどとの混合溶媒系でおこなうことが好ましい。反応温度は0℃~溶媒の沸点が好ましい。

#### [0247]

反応後は、例えば水でクエンチした後に有機溶媒で抽出し、溶媒を留去するなどの通常の後処理で得ることができる。生成物の単離後および精製はクロマトグラフィーによる分取や再結晶などの方法によりおこなうことができる。

## [0248]

上記式(23)および(24)で示される化合物は、上記式(25)で示される化合物と塩基の存在下、ハロゲン化物と反応させることにより製造することができる。

#### [0249]

# [0250]

ハロゲン化物としては、塩化メチル、臭化メチル、ヨウ化メチル、塩化エチル、臭化エチル、ヨウ化エチル、塩化プロピル、臭化プロピル、ヨウ化プロピル、塩化プチル、臭化プチル、コウ化プチル、塩化スキシル、塩化オクチル、臭化オクチル、塩化デシル、塩化アリル、臭化アリル、塩化ペンジル、臭化ペンジル、塩化ペンジル、臭化アニシル、ョウ化アニシルなどが例示される。

#### [0251]

反応は、窒素やアルゴンなどの不活性がス雰囲気下、溶媒の存在下に実施することがで

20

30

40

50

きる。 反応温度は 80℃~溶媒の沸点が好ましい。

[0252]

[0253]

反応後は、例えば水でクエンチした後に有機溶媒で抽出し、溶媒を留去するなどの通常の後処理で得ることができる。生成物の単離後および精製はクロマトグラフィーによる分取や再結晶などの方法によりおこなうことができる。

[0254]

上記式(2-1)、(16-1)、(17-1)、(18-1)、(28-1)または( 24-1)で示される化合物は、 $Y^1 \sim Y^6$ 部の誘導体化、重合反応により、医・農薬中間 体や、有機電子材料などの材料へと変換することができる。

[0255]

本発明の高分子化合物は電子素子用の材料としても用いることができ、有機トランジスタ用の有機半導体、レーザー用色素、有機太陽電池用材料などとしても用いることができる。

[0256]

次に本発明の高分子化合物の用途について説明する。

本発明の高分子化合物は、固体状態で蛍光または燐光を有し、高分子発光体(高分子量の発光材料)として用いることができる。また、該高分子化合物は優れた電子輸送能を有しており、高分子LED用材料や電荷輸送材料として好適に用いることができる。

該高分子発光体を用いた高分子LEDは低電圧、高効率で駆動できる高性能の高分子LEDである。

従って、該高分子LEDは液晶ディスプレイのバックライト、または照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の装置に好ましく使用できる。

また、本発明の高分子化合物はレーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、発光性薄膜、導電性薄膜、有機半導体薄膜などの伝導性薄膜用材料としても用いることができる。

[0257]

次に、本発明の高分子LEDについて説明する。

本発明の高分子LEDは、陽極および陰極からなる電極間に、有機層を有し、該有機層が本発明の高分子化合物を含むことを特徴とする。

有機層は、発光層、正孔輸送層、電子輸送層等のいずれであってもよいが、有機層が発 光層であることが好ましい。

[0258]

ここに、発光層とは、発光する機能を有する層をいい、正孔輸送層とは、正孔を輸送する機能を有する層をいい、電子輸送層とは、電子を輸送する機能を有する層をいう。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。発光層、正孔輸送層、電子輸送層は、 せれぜれ独立に 2 層以上用いてもよい。

[0259]

有機層が発光層である場合、有機層である発光層がさらに正孔輸送材料、電子輸送材料または発光材料を含んでいてもよい。ここで、発光材料とは、蛍光および/または燐光を

20

30

40

50

示す材料のことをさす。

#### [0260]

本発明の高分子化合物と正孔輸送材料と混合する場合には、その混合物全体に対して、正孔輸送材料の混合割合は1Wt%~80Wt%であり、好ましくは5Wt%~60Wt%である。本発明の高分子材料と電子輸送材料を混合する場合には、その混合物全体に対して電子輸送材料の混合割合は1Wt%~80Wt%であり、好ましくは5Wt%~60Wt%である。すらに、本発明の高分子化合物と発光材料を混合する場合にはその混合物全体に対して発光材料の混合割合は1Wt%~80Wt%であり、好ましくは5Wt%~60Wt%である。本発明の高分子化合物と発光材料、正孔輸送材料あよび/または電子輸送材料を混合する場合にはその混合物全体に対して発光材料の混合割合は1Wt%~50Wt%であり、好ましくは5Wt%~40Wt%であり、在発明の高分子化合物の含有量は99Wt%~20Wt%である。

#### [ 0 2 6 1 ]

混 合 す る 正 孔 輸 送 材 料 、 電 子 輸 送 材 料 、 発 光 材 料 は 公 知 の 低 分 子 化 合 物 や 高 分 子 化 合 物 が 使用できるが、高分子化合物を用いることが好ましい。 高分子化合物の正孔輸送材料、 電子輸送材料および発光材料としては、WO99/13692、WO99/48160、 GB2340304A、WO00/53656、WO01/19834、WO00/55 927、GB2348316、WO00/46321、WO00/06665、WO99 /54943、WO99/54885、US5777070、WO98/06778、W 097/05184、W000/35987、W000/53655、W001/347 22、WO99/24526、WO00/22027、WO00/22026、WO98 /27136、U8573636、WO98/21262、U85741921、WO9 7/09394、WO96/29356、WO96/10617、EP0707020、 WO95/07955、特開平2001-181618、特開平2001-123156 、 特 開 平 2 0 0 1 - 3 0 4 5 、 特 開 平 2 0 0 0 - 3 5 1 9 6 7 、 特 開 平 2 0 0 0 - 3 0 8 0 6 6 、特開平 2 0 0 0 - 2 9 9 1 8 9 、特開平 2 0 0 0 - 2 5 2 0 6 5 、特開平 2 0 0 0 - 1 3 6 3 7 9 、特開平 2 0 0 0 - 1 0 4 0 5 7 、特開 平 2 0 0 0 - 8 0 1 6 7 、特開 平 1 0 - 3 2 4 8 7 0 、特 開 平 1 0 - 1 1 4 8 9 1 、特 開 平 9 - 1 1 1 1 2 3 3 、特 開 平 9 - 4 5 4 7 8 等に開示されているポリフルオレン、その誘導体および共重合体、ポリアリ ー レ ン 、 そ の 誘 導 体 お よ び 共 重 合 体 、 ポ リ ア リ ー レ ン ピ ニ レ ン 、 そ の 誘 導 体 お よ び 共 重 合 体、芳香族アミンおよびその誘導体の(共)重合体が例示される。

低分子化合物の蛍光性材料としては、例えば、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8-ビドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などを用いることができる。

具体的には、例えば特開昭57-51781号、同59-194393号公報に記載されているもの等、公知のものが使用可能である。

#### [0262]

本発明の高分子化合物は、正孔輸送材料、電子輸送材料あよび発光材料から選ばれる少なくとも1種類の材料と混合し、発光材料や電荷輸送材料として用いることができる。ここで、本発明の高分子化合物2種以上用いてもよい。

その正孔輸送材料、電子輸送材料、発光材料から選ばれる少なくとも1種類の材料と本発明の高分子化合物の含有比率は、用途に応じて決めればよりが、発光材料の用途の場合は、上記の発光層におけると同じ含有比率が好ましい。

## [0263]

本発明の高分子LEDが有する発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、例えば1nmから1umであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200

n m である。

[0264]

発光層の形成方法としては、例えば、溶液からの成膜による方法が例示される。溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラピアコート法、グラピアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。パターン形成や多色の塗分けが容易であるという点で、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の印刷法が好ましい。

[0265]

印刷法等で用いるインク組成物としては、少なくとも 1 種類の本発明の高分子化合物が含有されていればよく、また本発明の高分子化合物以外に正孔輸送材料、電子輸送材料、発光材料、溶媒、安定剤などの添加剤を含んでいてもよい。

該インク組成物中における本発明の高分子化合物の割合は、溶媒を除いた組成物の全重量に対して20wt%~100wt%であり、好ましくは40wt%~100wt%である。

またインク組成物中に溶媒が含まれる場合の溶媒の割合は、組成物の全重量に対して 1 W t %  $\sim$  9 9 . 9 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 5 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W t %  $\sim$  8 0 W t %  $\sim$  9 9 . 0 W

インク組成物の粘度は印刷法によって異なるが、インクジェットプリント法などインク組成物中が吐出装置を経由するもの場合には、吐出時の目づまりや飛行曲がりを防止するために粘度が25℃において1~20mPa、Sの範囲であることが好ましい。

インク組成物として用いる溶媒としては特に制限はないが、該インク組成物を構成する溶媒以外の材料を溶解または均一に分散できるものが好ましい。該インク組成物を構成する材料が非極性溶媒に可溶なものである場合に、該溶媒としてクロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸プチル、エチルセルソルプアセテート等のエステル系溶媒が例示される。

[0266]

また、本発明の高分子LEDとしては、陰極と発光層との間に、電子輸送層を設けた高分子LED、陽極と発光層との間に、正孔輸送層を設けた高分子LED、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層との間に、正孔輸送層を設けた高分子LED等が挙げられる。

[0267]

例えば、具体的には、以下のの)~ん)の構造が例示される。

- a)陽極/発光層/陰極
- b)陽極/正孔輸送層/発光層/陰極
- c )陽極/発光層/電子輸送層/陰極
- む)陽極/正孔輸送層/発光層/電子輸送層/陰極(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
- [0268]

本発明の高分子LEDが正礼輸送層を有する場合、使用される正礼輸送材料としては、ポリピニルカルバゲールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゲリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(P-フェニレンピニレン)もしくはその誘導体、またはポリ(2、5-チエニレンピニレン)もしくはその誘導体などが例示される。

[0269]

10

20

30

40

20

30

40

50

具体的には、該正孔輸送材料として、特開昭63-70257号公報、同63-175860号公報、特開平2-135359号公報、同2-135361号公報、同2-209988号公報、同3-37992号公報、同3-152184号公報に記載されているもの等が例示される。

[0270]

これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(Pーフェニレンビニレン)もしくはその誘導体、またはポリ(2.5ーチエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。

[0271]

また、低分子化合物の正孔輸送材料としてはピラグリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体が例示される。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。

[0272]

混合する高分子パインゲーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子パインゲーとして、ポリ(N-ビニルカルパゲール)、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(P-フェニレンビニレン)もしくはその誘導体、ポリ(2.5-チエニレンビニレン)もしくはその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシラン、ポリシロキサン等が例示される。

[0273]

ポリ(N-ビニルカルバゲール)もしくはその誘導体は、例えばビニルモノマーからカ チオン重合またはラジカル重合によって得られる。

[0274]

ポリシランもしくはその誘導体としては、ケミカル・レビュー(Chem. Rev.) 第89巻、1859頁(1989年)、英国特許GB2800196号公開明細書に記載 の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特に キッピング法が好適に用いられる。

[0275]

ポリシロキサンもしくはその誘導体は、シロキサン骨格構造には正孔輸送がほとんどないので、側鎖または主鎖に上記低分子正孔輸送材料の構造を有するものが好適に用いられる。特に正孔輸送の芳香族アミンを側鎖または主鎖に有するものが例示される。

[0276]

正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。

[0277]

溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラビドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸プチル、エチルセルソルプアセテート等のエステル系溶媒が例示される。

[0278]

溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラピアコート法、グラピアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、

20

30

40

50

オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。

[0279]

正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1mmから1μmであり、好ましくは2mm~500mであり、さらに好ましくは5mm~200mmである。

[0280]

本発明の高分子LEDが電子輸送層を有する場合、使用される電子輸送材料としては公知のものが使用でき、オキサジアゲール誘導体、アントラキノジメタンもしくはその誘導体、ペングキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、アントラキノンもしくはその誘導体、アントラキノンもしくはその誘導体、ジフェノキノン誘導体、プフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリフルオレンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が例示される。

[0281]

具体的には、特開昭63-70257号公報、同63-175860号公報、特開平2-135359号公報、同2-135361号公報、同2-209988号公報、同3-37992号公報、同3-152184号公報に記載されているもの等が例示される。

[0282]

これらのうち、オキサジアゲール誘導体、ペンゲキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8-ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2-(4-ピフェニリル)-5-(4-セープチルフェニル)-1.8.4-オキサジアゲール、ペングキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。

[0283]

電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液または溶融状態からの成膜による方法がそれぞれ例示される。溶液または溶融状態からの成膜時には、上記の高分子バインダーを併用してもよい。

[0284]

溶液からの成膜に用いる溶媒としては、電子輸送材料および/または高分子バインダーを溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸プチル、エチルセルソルプアセテート等のエステル系溶媒が例示される

[0285]

溶液または溶融状態からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、パーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。

[0286]

電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1mmから1μmであり、好ましくは2mm~500mmであり、さらに好ましくは5mm~200mmである。

20

30

50

[0287]

また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。

[0288]

すらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は膜厚2 n m 以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いパッファー層を挿入してもよい。

積層する層の順番や数、および各層の厚さについては、発光効率や素子寿命を勘案して 適宜用いることができる。

[0289]

本発明において、電荷注入層(電子注入層、正孔注入層)を設けた高分子LEDとしては、陰極に隣接して電荷注入層を設けた高分子LED、陽極に隣接して電荷注入層を設けた高分子LEDが挙げられる。

例えば、具体的には、以下のe)~P)の構造が挙げられる。

- e)陽極/電荷注入層/発光層/陰極
- f)陽極/発光層/電荷注入層/陰極
- 分)陽極/電荷注入層/発光層/電荷注入層/陰極
- h ) 陽極/電荷注入層/正孔輸送層/発光層/陰極
- i)陽極/正孔輸送層/発光層/電荷注入層/陰極
- j )陽 極 / 電 荷 注 入 層 / 正 孔 輸 送 層 / 発 光 層 / 電 荷 注 入 層 / 陰 極
- k ) 陽極/電荷注入層/発光層/電子輸送層/陰極
- m ) 陽 極 / 電 荷 注 入 層 / 発 光 層 / 電 子 輸 送 層 / 電 荷 注 入 層 / 陰 極
- n ) 陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
- 〇)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
- P ) 陽 極 / 電 荷 注 入 層 / 正 孔 輸 送 層 / 発 光 層 / 電 子 輸 送 層 / 電 荷 注 入 層 / 陰 極
- [0290]

電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層などが例示される。

[0291]

上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、  $10^5$  S / c m 以上  $10^3$  以下であることが好ましく、発光画素間のリーク電流を小さくする ためには、  $10^5$  S / c m 以上  $10^2$  以下がより好ましく、  $10^5$  S / c m 以上  $10^1$  以下がより好ましく、  $10^5$  S / c m 以上  $10^1$  以下がさらに好ましい。

[0292]

上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、 $1040^5$  S / C M 以上  $10^3$  S / C M 以下であることが好ましく、発光画素間のリーク電流を小さくするためには、 $10^5$  S / C M 以上  $10^5$  S / C M 以下がさらに好ましい。

通常は該導電性高分子の電気伝導度を10 <sup>5</sup> S / c m 以上10<sup>8</sup>以下とするために、該導電性高分子に適量のイオンをドープする。

[0293]

ドープするイオンの種類は、正礼注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルペンゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンなどが

20

30

50

例示される。

電荷注入層の膜厚としては、例えば1nm~100nmであり、2nm~50nmか好ましい。

[0294]

電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリンおよびやの誘導体、ポリチオフェンおよびやの誘導体、ポリピロールおよびやの誘導体、ポリフェニレンピニレンおよびやの誘導体、ポリチエニレンピニレンおよびやの誘導体、ポリキノリンおよびやの誘導体、ポリキノキサリンおよびやの誘導体、芳香族アミン構造を主鎖または側鎖に含む重合体などの導電性高分子、金属フタロシアニン(銅フタロシアニンなど)、カーボンなどが例示される。

[0295]

膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。膜厚2nm以下の絶縁層を設けた高分子LEDとしては、陰極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDが挙げられる。

[0296]

具体的には、例えば、以下のり、~のも)の構造が挙げられる。

- Q)陽極/膜厚2nm以下の絶縁層/発光層/陰極
- r)陽極/発光層/膜厚2nm以下の絶縁層/陰極
- S)陽極/膜厚2nm以下の絶縁層/発光層/膜厚2nm以下の絶縁層/陰極
- t)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/陰極
- u)陽極/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
- V)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰 極
- w)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/陰極
- ×)陽極/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
- y)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰 極
- z)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/陰極 a.a.)陽極/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極 a.b.)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/膜厚2nm以
- 下の絶縁層/陰極

[0297]

本発明の高分子LEDを形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板などが例示される。不透明な基板の場合には、反対の電極が透明または半透明であることが好ましい。

[0298]

通常本発明の高分子LEDが有する陽極および陰極の少なくとも一方が透明または半透 40 明である。陽極側が透明または半透明であることが好ましい。

該陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亞鉛、酸化スズ、およびやれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亞鉛・オキサイド等からなる導電性がラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亞鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはやの誘導体、ポリチオフェンもしくはやの誘導体などの有機の透明導電膜を用いてもよい。

陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、

20

30

40

50

例えば10nmから10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。

また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボンなどからなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2mm以下の層を設けてもよい。

### [0299]

本発明の高分子LEDで用いる陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バリウム、 でから、 などの 金属、および されらの うち 2 つ以上の合金、あるいは やっかった 3 のうち 1 つ以上と、金、銀、白金、銅、マンがン、チタン、コバルト、ニッケル、タングステン、錫のうち 1 つ以上との合金、グラファイトまたはグラファイト層間 化合物 等が用いられる。合金の例としては、マグネシウムー銀合金、ワチウムーアルミニウム合金、リチウムーアがネシウム合金、リチウムーマグネシウム合金、リチウムーマグネシウム合金、アクカムーマグネシウムーアルミニウム合金などが挙げられる。陰極を 2 層以上の積層構造としてもよい。

陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。

#### [0300]

陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2mm以下の層を設けてもよく、陰極作製後、該高分子LEDを保護する保護層を装着していてもよい。該高分子LEDを長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。

#### [0301]

該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板などを用いることができ、該カバーを熱効果樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい

## [0302]

本発明の高分子LEDは面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライトとして用いることができる。

本発明の高分子LEDを用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光を子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の配をできるかの電極を独立にOn/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子発光体を塗り分ける方法や、カラースィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー

20

30

40

表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。

[0303]

さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のパックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。

【実施例】

[0304]

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。

ここで、数平均分子量については、クロロホルムを溶媒として、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算の数平均分子量を求めた。

[0305]

実施例1(化合物1の合成)

窒素置換した500ml 8ロフラスコに2,7 Dibromo 9 fluorenone 6.659 (19.9mmol)を取り、トリフルオロ酢酸:クロロホルム=1:1の混合溶媒140mlに溶解した。この溶液に過ホウ酸ナトリウム1水和物を加え、20時間 した。反応液をセライト 過し、トルエンで洗浄した。ろ液を水、亞硫酸水素ナトリウム、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥した。溶媒留去後、6.119の粗生成物を得た。

この粗生成物をトルエン(88ml)から再結晶し、4.999の化合物1を得た。さらに、クロロホルム(50ml)から再結晶し、1.199の化合物1を得た。

 $^1$  H NMR(CDCI  $_3$ , 300MHz): 8.52(s, 1H), 7.97  $\sim$  7.86(m, 3H), 7.55  $\sim$  7.46(m, 2H) GC M8(m/z): 356, 354, 352

[0306]

実施例2(化合物2の合成)

・C<sub>8</sub>H<sub>17</sub>M9Brの調製

100ml 8ロフラスコにマグネシウム 1.889(54.2mmol)を取り、フレームドライ、アルゴン置換した。これにTHF10ml、1 プロモオクタン2.8ml(18.6mmol)を加え、加熱し、反応を開始させた。2.5時間還流した後に室温まで放冷した。

· Gri9nard反 応

室素置換した300mI 3ロフラスコに1 1.009 ( P.96%、2.7mmoI ) を 8 り、10mIの THFに懸濁させた。0Cに冷却し、上記で調製した  $C_8$   $H_{17}$  M9Br溶液を加えた。冷浴をはずし、還流下、5時間 した。反応液を放冷後、水10mI、塩酸を加えた。塩酸を加える前は懸濁液であったが、添加後は2 相の溶液となった。分液後、有機相を水、飽和食塩水で洗浄した。硫酸ナトリウムで乾燥し、溶媒を留去したところ、1.659の粗生成物を得た。シリカゲルカラムクロマトグラフィーにより精製(ヘキサン:酢酸エチル=20:1)したところ、1.809の化合物 2 を 得た。

<sup>1</sup> H NMR(CDCI<sub>3</sub>, 300MHz): 7.66(br, 1H), 7.42(dd, 1H), 7.10 $\sim$ 7.06(m, 2H), 6.91 $\sim$ 6.85 (m, 2H), 5.55(br, 1H), 1.90 $\sim$ 0.86(m, 34H) MS(APCI, Negative, m/z): 583, 581, 579

[0307]

実施例3(化合物3の合成)

窒素置換した25ml 2ロフラスコに2 0.20分(0.82mmol)を取り、4mlのトルエンに溶解した。この溶液にPトルエンスルホン酸・1 水和物 0.029(0.06mmol)を加え、100℃で11時間 した。反応液を放冷後、水、4N NαOH水溶液、水、飽和食塩水の順に洗浄し、溶媒を留去したところ、0.149の化合物 8 を得た。

$$\begin{array}{c|c} \operatorname{Br} & & \operatorname{Br} \\ C_8 H_{17} & O & \\ C_8 H_{17} & 3 & \end{array}$$

20

10

 $^{1}$  H NMR(CDCI $_{3}$ , 800MHz): 7.59(d, 1H), 7.58(d, 1H), 7.47(d, 1H), 7.29(br, 1H), 7.15 (s. 1H), 7.18(d, 1H), 1.92 (br, 4H), 1.28(m, 24H), 0.93(t, 6H) FD M8(m/z): 566, 564, 562

[0308]

実施例4~9

実施例 2 において $C_8$   $H_{1.7}$  M9 Brの代わりに下記表 1 に示すG F i  $\mathcal{F}$  n  $\mathcal{L}$  だ 葉または  $\mathcal{L}$  i 試薬を用いることにより、表 1 に示す化合物 4 ~ 9 を合成した。

[0309]

【表 1】

| 【 表 1 | 4                                                | T                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|-------|--------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 実施例   | 化合物                                              | Gringard試薬 <sup>#1</sup>                            | 化合物データ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 4     | Br Br                                            | MgBr                                                | <sup>1</sup> H-NMR(300MHz/CDCl <sub>3</sub> ): $\delta$ 7. 54(d, 1H), 7. 48 (d, 1H), 7. 42(dd, 1H), 7. 21(d, 1H), 7. 10~7. 05 (m, 2H), 1. 91~1. 76(m, 4H), 1. 53~1. 38(m, 2H), 1. 30~1. 09(m, 4H), 0. 90~0. 81(m, 12H) <sup>1</sup> G-NMR(300MHz/CDCl <sub>3</sub> ): $\delta$ 153. 9, 139. 0, 13 0. 9, 128. 2, 127. 9, 124. 7, 124. 0, 123. 9, 123. 0, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|       |                                                  |                                                     | 22. 0、121. 2、120. 1、83. 2、36. 8、32. 7、31. 9、28. 5、22. 9、22. 7、14. 4  MS(API-ES(negative) KCl添加)m/z:517、515、513(M+Cl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10         |
| 5     | Br — Br — Br — 5                                 | PhMgBr                                              | <sup>1</sup> H-NMR(300MHz/CDCl <sub>3</sub> ): δ7. 56(d, 1H), 7. 51(d d, 1H), 7. 42(d, 1H), 7. 30~7. 13(m, 12H), 7. 03(d d, 1H), 6. 84(br, 1H) <sup>1 3</sup> C-NMR(300MHz/CDCl <sub>3</sub> ): δ 153. 7, 142. 7, 13 8. 9, 132. 0, 131. 5, 129. 0, 128. 8, 128. 6, 128. 3, 1 25. 7, 124. 3, 124. 2, 123. 2, 122. 1, 121. 9, 121. 6, 87. 1 MS(APCI(Positive))m/z: 495, 493, 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| 6     | Br — Br — Br — CeH170                            | MgBr<br>OC <sub>6</sub> H <sub>17</sub>             | $ ^{1} \   H-NMR(300MHz/CDCI_{3}): \delta  7. 54(d,1H), 7. 49 \\ (d,1H), 7. 42(d,1H), 7. 16(br,1H), 7. 06\sim 7. 02 \\ (m,5H), 6. 85(s,1H), 6. 78(d,4H), 3. 90(t,4H), 1. \\ 79\sim 1. 70(m,4H), 1. 45\sim 1. 29(m,20H), 0. 90(t,6H) \\ ^{1} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3} \   ^{3$ | 20         |
| 7     | Br Br Br t.Bu 7                                  | MgBr<br>t-Bu                                        | $^{1} \ H-NMR(300MHz/CDCI_{3}): \delta 7.\ 55(d,1H), 7.\ 50(d,1H), 7.\ 43(d,1H), 7.\ 32\sim7.\ 27(m,4H), 7.\ 20(br,1H), 7.\ 09\sim7.\ 02(m,5H), 6.\ 87(d,1H), 1.\ 29(s,18H), 1.\ C-NMR(300MHz/CDCI_{3}): \delta 153.\ 9, 151.\ 2, 139.\ 8, 139.\ 2, 131.\ 8, 131.\ 5, 128.\ 7, 128.\ 6, 125.\ 4, 125.\ 2, 124.\ 3, 124.\ 0, 123.\ 1, 122.\ 0, 121.\ 7, 121.\ 4, 86.\ 9, 34.\ 8, 31.\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30         |
| 8     | Ph Ph Ph Ph                                      | Ph<br>Ph                                            | <sup>1</sup> H-NMR(300MHz/CDCl <sub>3</sub> ): δ7. 54~7. 51(m, 3H), 7. 45(d, 1H), 7. 16~6. 77(m, 51H), 6. 61(brs, 1H) MS(APPI-positive)m/z:1253. 3(calcd. 1253. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 9     | Br — Br — Br — OC <sub>6</sub> H <sub>17</sub> O | BrMg MgBr<br>CeH <sub>17</sub> O OCeH <sub>17</sub> | 1 H-NMR(300MHz/CDCl <sub>3</sub> ): δ7. 67(d、2H)、7. 45(d d、1H)、7. 26~7. 06(m、6H)、6. 77(br、1H)、6. 69(d d、2H)、4. 01(t、4H)、1. 81(m、4H)、1. 48~1. 30(m、20H)、0. 89(t、6H) MS(ESI(Negative、KCl添加))m/z:747、745、743(M-H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>4</b> 0 |

#1 Gri9nard試薬は対応する臭化物から調製した。

実施例 8 についてはGri9nard試薬の代わりに、J. Am. Chem. Soc., 2001, 128,946に記載 の方法により調製したし、試薬を用いた。

[ 0 3 1 0 ]

実施例10(化合物3-丸の合成)

窒素雰囲気下、反応容器に上記化合物 8 1.09(1.77mmol)、ピス(ピナコレート)ジボロン 0.9459(3.72mmol)、〔1.1 ピス(ジフェニルホスフィノ)フェロセン〕パラジウムジクロリド 0.0789(0.11mmol)、1.1 ピス(ジフェニルホスフィノ)フェロセン 0.0599(0.11mmol)および 1.4 ジオキサン 15mlを入れ、アルゴンガスを 30分間パブリングした。その後、酢酸カリウム 1.0489(10.6mmol)を加え、窒素雰囲気下 95℃で 13.5時間反応させた。反応終了後、反応液を 5過して不溶物を除いた。アルミナショートカラムで精製し、溶媒を除去後、トルエンに溶解させ、活性炭を加えて撹 、 5過した。 5液を再度アルミナショートカラムで精製し、活性炭を加えて撹 、 5過した。トルエンを完全に除去した後、ヘキサン 2.5mlを加えて再結晶 することにより、下記に示す化合物 3 - の 0.289を 得た。(黄色がかった白色の結晶)

 $^{1}H - NMR (300MHz/CDCl_{3}) :$ 

 $\delta$  0 . 8 5 (t . 6 H) . 1 . 2 0 (S . 12 H) . 1 . 3 5 (m . 2 4 H) . 1 . 8 8 (m . H) . 7 . 3 6 (S . 1 H) . 7 . 3 8 (d . 1 H) . 7 . 5 1 (S . 1 H) . 7 . 7 2 (d . 1 H) . 7 . 7 5 (S . 2 H) .

 $MS: (FD^{+})M^{+} 659$ 

[0311]

実施例11(化合物10の合成)

アルゴン置換した1L 3ロフラスコに2.7 Dibromo 9 fluorenone 8.729(p.96%、28.4mm ol)とり、トリクロロ酢酸2509、濃硫酸6.7mlを加えた。この溶液を100<sup>©</sup>に加熱し、1時間 あきに0.59のアジ化ナトリウムを5回加え(Total 2.59、36.9mmol)、さらに7時間保温した。この溶液を500mlの氷水にあけ、 5過し、水で洗浄したところ、化合物 10 10.659の粗生成物を得た。

 $^1$  H NMR(DM80 d6, 300MHz): 8.44(\$\darkappa\$, 1H), 8.37(d, 1H), 8.32(d, 1H), 8.03(dd, 1H), 7.55(d, 1H), 7.44(dd, 1H)

MS(APCI Positive, m/z): 356, 354, 352

[0312]

実施例12(化合物11および12の合成)

窒素置換した300ml 3ロフラスコに化合物 1 0 5.009 (P.65.6%、9.3mmol)を取り、100 40 mlの脱水DMFに懸濁させた。この溶液にNaH (P.60%、2 1.2mmol)を加え、100℃で1時間加熱した。加熱後、不溶分は溶解した。この溶液を室温まで放冷した後に、1 臭化オクチル 3.7ml (P.99.5%、21.2mmol)を加え、100℃で10時間 した。

反応液を0℃に冷却し、50mlの水を加え、150ml×8回トルエン抽出した。有機相をあわせ、水、飽和食塩水で洗浄した後に、硫酸ナトリウムで乾燥後、溶媒を留去したところ、10.169の粗生成物を得た。

この粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒へキサンのみ~へキサン: 酢酸エチル=100:1)にて精製し、0.839の化合物 1 1 と、0.939の化合物 1 2 を得た

10

20

30

[0313]

20

30

40

50

化合物 1 1

<sup>1</sup> H NMR(CDCI<sub>3</sub>, 800MHz): 8.46( $\mathcal{L}$ , 1H), 8.26(d, 1H), 8.16(d, 1H), 8.02(d, 1H), 7.87 (dd, 1H), 7.55(dd, 1H), 4.58(t, 2H), 1.92(m, 2H), 1.59 $\sim$ 1.88(m, 10H), 0.90(t, 8H)

MS(APCI Positive, m/z): 468, 466, 464

[0314]

化合物 1 2

$$\begin{array}{c|c} Br & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

 $^1$  H NMR(CDCl\_3, 800MHz): 8.64(\$\delta\$, 1H), 8.09(m, 2H), 7.82(dd, 1H), 7.51(d, 1H), 7.4 1(dd, 1H), 4.30(t, 2H), 1.77(m, 2H), 1.60\$\sime\$ 1.29(m, 10H), 0.89(t, 3H) MS(APCI Positive, m/z): 468, 466, 464

[0315]

実施例13

<高分子化合物Aの合成>

[ 0 3 1 6 ]

実施例14

<高分子化合物Bの合成>

算重量平均分子量は6.5×106であった。

上記化合物 3 0 . 5 6 9 と 2 . 2 ・ - ピピリジル 0 . 2 7 9 とを 反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめ アルゴンがスでパブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒) 4 0 9 を加えた。次に、この混合溶液に、ピス(1.5 - シクロオクタジエン)ニッケル(0) {Ni(COD)₂} を 0 . 4 7 9 加え、室温で 1 0 分間 した後、6 0 ℃で 3 時間反応した。 なお、反応は、窒素がス雰囲気中で行った。反応後、この溶液を冷却した後、メタノール 1 0 0 m l / イオン交換水 2 0 0 m l 混合溶液中に サ せ ぎ 込み、約 1 時間 した。次に、生成した沈殿物を、 5 過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この

20

30

40

溶液を 過し、不溶物を除去した後、この溶液を、約1規定の塩酸で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2.5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、イオン交換水で洗浄した後、トルエン層を回収した。次に、この溶液を、メタノール中にそそぎ込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体 0.159を得た。

この重合体のポリスチレン換算数平均分子量は、 8.  $2 \times 10^4$  であり、ポリスチレン換算重量平均分子量は 2.  $6 \times 10^5$  であった。

[ 0 3 1 7 ]

実施例15

<高分子化合物Cの合成>

この重合体のポリスチレン換算数平均分子量は、 $3.0\times10^4$  であり、ポリスチレン換算重量平均分子量は $9.4\times10^4$  であった。

[0318]

実施例16

< 高分子化合物 D の合成>

上記化合物 3 0 . 4 2 9 と下記に示す化合物 1 3 0 . 4 1 9 と 2 . 2 1 ーピピリジル 0 . 5 5 9 とを反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでパブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒) 7 5 m l を加えた。次に、この混合溶液に、ピス(1 . 5 ーシクロオクタジエン)ニッケル(0) {Ni(COD)<sub>2</sub>} を 1 . 0 9 加え、室温で 1 0 分間 した後、 6 0 ℃で 3 時間反応した。なお、反応は、窒素がス雰囲気中で行った。

反応後、この溶液を冷却した後、メタノール100m | /イオン交換水200m | 混合溶液中にさせず込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物を除去した後、この溶液を、アルミナを充填したカラムを通した。次に、この溶液を、約1 規定の塩酸で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2.5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2.5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。次に、この溶液を、メタノール中にせせず込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体 0.293を得た。

この重合体のポリスチレン換算数平均分子量は、 2 .  $5 \times 10^4$  であり、ポリスチレン換算重量平均分子量は 4 .  $1 \times 10^4$  であった。

20

30

40

50

$$Br \longrightarrow DC_{10}H_{21}$$
 $Br \longrightarrow Br$ 
 $C_{10}H_{21}O$ 
13

#### [0319]

実施例17

<高分子化合物Eの合成>

反応後、この溶液を冷却した後、メタノール100m | /イオン交換水200m | 混合溶液中にせせぎ込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物を除去した後、この溶液を静置し、トルエン層を回収した。この溶液を、約1 規定の塩酸で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2.5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、 メタノール中にせせぎ込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体0.26分を得た。

この重合体のポリスチレン換算数平均分子量は、 2 .  $8 \times 10^5$  であり、ポリスチレン換算重量平均分子量は 1 .  $2 \times 10^6$  であった。

# [0320]

実施例18

<高分子化合物ドの合成>

上記化合物 3 0 . 2 5 分と下記に示す化合物 1 5 0 . 6 8 分と 2 . 2 <sup>1</sup> - ピピリジル 0 . 4 6 分とを反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでバブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒)70 m l を加えた。次に、この混合溶液に、じス(1 . 5 - シクロオクタジエン)ニッケル(0){Ni(COD)₂}を 0 . 8 3 分加え、室温で 1 0 分間 した後、60℃で3 時間反応した。なお、反応は、窒素がス雰囲気中で行った。

反応後、この溶液を冷却した後、メタノール100m | /イオン交換水200m | 混合溶液中にやせぎ込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物を除去した後、この溶液を、アルミナを充填したカラムを通した。次に、この溶液を、約1 規定の塩酸で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2.5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、 メタノール で、イオン交換水で洗浄した後、トルエン層を回収した。次に、この溶液を、メタノール中にやせず込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体 0.3%を得た。

この重合体のポリスチレン換算数平均分子量は、 3 .  $8 \times 1$  0  $^4$  であり、ポリスチレン換算重量平均分子量は 4 .  $2 \times 1$  0  $^5$  であった。

[0321]

実施例19

<高分子化合物Gの合成>

反応後、この溶液を冷却した後、この溶液に、25%アンモニア水5m I / メタノール35m I / イオン交換水35m I 混合溶液をややぎ込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物を除去した後、この溶液を、アルミナを充填したカラムを通した。次に、この溶液を、約1.規定の塩酸で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2. 5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、イオン交換水で洗浄した後、トルエン層を回収した。次に、この溶液を、メタノール中にややぎ込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体0. 6分を得た。

この重合体のポリスチレン換算数平均分子量は、 6 .  $2 \times 1$  0 4 であり、ポリスチレン換算重量平均分子量は 3 .  $0 \times 1$  0 5 であった。

[0322]

$$C_{10}H_{21}O$$
  $C_{10}H_{21}O$   $C_{10}H_{21}O$ 

実施例20

<高分子化合物Hの合成>

上記化合物 3 0 . 5 6 多と下記に示す化合物 1 7 0 . 2 多と 2 . 2 ・ - ピピリジル 0 . 4 6 多とを反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでパブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒)4 0 多を加えた。次に、この混合溶液に、ビス(1 . 5 - シクロオクタジエン)ニッケル(0) {Ni(COD)<sub>2</sub>}を0. 8 3 多加え、室温で 1 0 分間 した後、6 0 ℃で 3 時間反応した。なお、反応は、窒素がス雰囲気中で行った。

反応後、この溶液を冷却した後、メタノール100m | /イオン交換水200m | 混合溶液中にさせず込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物を除去した後、この溶液を、約1規定の塩酸で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、約2.5%のアンモニア水で洗浄した。この溶液を静置し、トルエン層を回収した。この溶液を、イオン交換水で洗浄した後、トルエン層を回収した。次に、この溶液を、メタノール中にせせず込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体0.069を得た。

この重合体のポリスチレン換算数平均分子量は、 2 . 4 × 1 0  $^4$  であり、ポリスチレン換算重量平均分子量は 7 . 7 × 1 0  $^4$  であった。

10

20

30

50

#### [0323]

実施例21

<高分子化合物 I の合成>

この重合体のポリスチレン換算数平均分子量は、 2 .  $7 \times 10^4$  であり、ポリスチレン換算重量平均分子量は 8 .  $9 \times 10^4$  であった。

[0324]

実施例22

<高分子化合物Jの合成>

[0325]

実施例23

<高分子化合物Kの合成>

算重量平均分子量は6.3×104であった。

50

10

20

30

20

40

50

上記化合物8 0.89と上記化合物14 0.819と上記化合物18 0.319と 2.2 ~~ピピリジル0.559とを反応容器に仕込んだ後、反応系内を窒素ガスで置換 した。これに、あらかじめアルゴンガスでパブリングして、脱気したテトラヒドロフラン (THF)(脱水溶媒)409を加えた。次に、この混合溶液に、ピス(1.5~シクロ オクタジエン)ニッケル(0){Ni(COD)₂}を1.09加え、室温で10分間 した後、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、 この溶液を冷却した後、メタノール100ml/イオン交換水200ml混合溶液中にそ そぎ込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。 この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物をは た後、この溶液を、シリカゲルとアルミナを充填したカラムを通すことにより精製した。 た後、この溶液を、メタノール中にそそぎ込み、再沈して、生成した沈殿を回収した。この沈殿 を減圧乾燥して、重合体0.389を得た。

この重合体のポリスチレン換算数平均分子量は、 4 . 4 × 1 0  $^4$  であり、ポリスチレン換算重量平均分子量は 2 . 6 × 1 0  $^5$  であった。

[0326]

実施例24

<高分子化合物しの合成>

上記化合物 6 0 . 74982、2 ゚ービビリジル 0 . 879とを反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでバブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒)100mlを加えた。次に、この混合溶液に、ビス(1、5-シクロオクタジエン)ニッケル(0){Ni(COD)₂}を0.679加え、0~5℃で15時間反応した。なお、反応は、窒素がス雰囲気中で行った

反応後、この溶液を、メタノール100m | /イオン交換水200m | 混合溶液中にせせぎ込み、約1時間 した。次に、生成した沈殿物を、ろ過することにより回収した。この沈殿物を減圧乾燥した後、トルエンに溶解した。この溶液を 過し、不溶物を除去した後、この溶液を、アルミナを充填したカラムを通し、精製した。次に、この溶液を、メタノール中にせせぎ込み、再沈して、生成した沈殿を回収した。この沈殿を減圧乾燥して、重合体 0 . 1 1 9 を得た。

この重合体のポリスチレン換算数平均分子量は、 $8.4\times10^3$  であり、ポリスチレン換 80 算重量平均分子量は $4.4\times10^3$  であった。

[0327]

実施例25

<高分子化合物Mの合成>

上記化合物 6 0 . 7 4 9 と上記化合物 1 8 0 . 3 1 9 と 2 . 2 'ーピピリジル 0 . 5 0 9 とを反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでパブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒) 7 5 m l を加えた。次に、この混合溶液に、ピス(1 . 5 ーシクロオクタジエン)ニッケル(0) {Ni(COD)<sub>2</sub>} を 0 . 9 1 9 加え、室温で 1 0 分間 した後、60℃で 3 時間反応した。なお、反応は、窒素がス雰囲気中で行った。

この重合体のポリスチレン換算数平均分子量は、 9. 4×10 <sup>4</sup> であり、ポリスチレン換

算重量平均分子量は4. 7×105であった。

[0328]

実施例 2 6

<高分子化合物Nの合成>

上記化合物8 0. 359(0. 28mmol) と2、2、一ビビリジル0. 0749(0. 47mmol) を反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでパプリングして、脱気したテトラヒドロフラン(脱水溶媒) 20mlを加えた。次に、この混合溶液に、ピス(1. 5-シクロオクタジエン)ニッケル(0)を0. 189(0. 47mmol) 加え、60℃で3時間反応した。なあ、反応後、この溶液を冷却した後、25%アンモニア水10ml/メタノール120ml/イオン交換水50ml混合溶液中にややず込み、約1時間した。次に、生成した沈殿を、3週することにより回収した。この沈殿をエタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン30mlに溶解し、1N塩酸30mlを加えて1時間し、水層の除去して有機層に4%アンモニア水30mlを加え、1時間した後に水層を除去した。有機層はメタノール150mlに溶解して1時間し、析出した沈殿を30mlに溶解して2時間減圧乾燥し、トルエン30mlに溶解すせた。その後、アルミナカラム(アルミナ量20分)を通して精製を行い、回収したトルエン溶液をメタノール100mlに滴下して1時間し、析出した沈殿を3週して2時間減圧乾燥し、トルエン30mlに溶解すせた。その後、アルミナカラム(アルミナ量20分)を通して精製を行い、回収したトルエン溶液をメタノール100mlに滴下して1時間し、析出した沈殿を3週して2時間減圧乾燥すせた。得られた重合体の収量は0. 020分であった。

この重合体のポリスチレン換算数平均分子量は、 4.  $3 \times 10^4$  であり、ポリスチレン換算重量平均分子量は 9.  $1 \times 10^4$  であった。

[0329]

実施例27

<高分子化合物〇の合成>

上記化合物 9 0 . 5 6 9 と 2 . 2 ・ - じじリジル 0 . 2 9 9 とを反応容器に仕込んだ後、反応系内を窒素がスで置換した。これに、あらかじめアルゴンがスでパブリングして、脱気したテトラヒドロフラン(THF)(脱水溶媒) 8 0 9 を加えた。次に、この混合溶液に、じス(1 . 5 - シクロオクタジエン)ニッケル(0) {Ni(COD)2} を0 . 6 9 加え、室温で 1 0 分間 した後、引き続いて、室温で 2 2 時間反応した。なお、反応は、窒素がス雰囲気中で行った。

この重合体のポリスチレン換算数平均分子量は、 1 . 5 × 1 0  $^4$  であり、ポリスチレン換 4 算重量平均分子量は 3 . 0 × 1 0  $^4$  であった。

[0330]

実施例28~42

<蛍光特性>

上記で合成した高分子蛍光体A~O弋れぞれの0.2wt%クロロホルム溶液を石英上にスピンコートして薄膜を作製した。この薄膜の蛍光スペクトルを蛍光分光光度計()を用いて測定した。なお、蛍光強度の算出には350mmで励起した時の蛍光スペクトルを用いた。横軸に波数をとってプロットした蛍光スペクトルの面積を350mmでの吸光度で割ることにより蛍光強度の相対値を求めた。測定結果を以下に示す。

[0331]

10

20

30

# 【表2】

| 実 施 例 | 高分子電光体 | 電 光 ピー ク(n m ) | 世 光 碓 度 |
|-------|--------|----------------|---------|
| 2 8   | A      | 4 4 5          | 6.15    |
| 2 9   | В      | 4 4 8          | 4 .5 1  |
| 3 0   | c      | 4 4 8          | 2 .2 7  |
| 3 1   | D      | 4 2 8          | 8 . 4 4 |
| 3 2   | E      | 4 4 5          | 3 .8 7  |
| 3 3   | F      | 4 2 9          | 4 . 4 0 |
| 3 4   | G      | 4 2 4          | 6 .0 4  |
| 3 5   | H      | 4 4 5          | 3 .5 8  |
| 3 6   | I      | 4 7 7          | 2 .6 7  |
| 3 7   | Ŋ      | 4 7 6          | 1 60    |
| 3 8   | K      | 4 7 6          | 1 .9 1  |
| 3 9   | L      | 439            | 9 .3 4  |
| 4 0   | М      | 4 8 7          | 2 .7 8  |
| 4 1   | Ν      | 4 3 4          | 5.00    |
| 4 2   | o      | 4 4 6          | 8.55    |

<EL発光の測定>

[0332]

実施例43

スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジ オキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、B瓜ソ七トonP) を用いてスピンコートにより70nmの厚みで成膜し、ホットプレート上で200℃で1 0分間乾燥した。次に、高分子化合物 D が 1. 8 W 七 % となるように調製したトルエン溶 液を用いてスピンコートにより2000kPmの回転速度で成膜した。さらに、これを減 圧下80℃で1時間乾燥した後、フッ化リチウムを約4mmを蒸着し、陰極として、カル シウムを約20nm、次1でアルミニウムを約50nm蒸着して、EL素子を作製した。 なお真空度が、1×10 4 P a 以下に到達したのち、金属の蒸着を開始した。得られた 素子に電圧を引加することにより、482nmにピークを有するEL発光が得られた。該 素子は、約6.5Vで100cd / m  $^2$  の発光を示した。また最大発光効率は0.45c d/Aであった。

[0333]

実施例44

高分子化合物Dの代わりに高分子化合物Fを用いた以外は実施例48と同様に素子を作製 して得た。製膜は1.8%トルエン溶液を用いて3500kPmでスピンコートすること によりおこなった。得られた素子に電圧を印加することにより448mmにピークを有す るEL発光が得られた。該素子は、約9.2Vで100c*d*ノm²の発光を示した。また 最大発光効率は0.14cむ/Aであった。

[0334]

実施例45

高 分 子 化 合 物 D の 代 わ リ に 高 分 子 化 合 物 G を 用 い 友 以 外 は 実 施 例 4 3 と 同 様 に 素 子 を 作 製して得た。製膜は1.7%トルエン溶液を用いて1000kPmでスピンコートするこ とにより行った。得られた素子に電圧を印加することにより420nmにピークを有する 10

20

30

40

20

30

EL発光が得られた。該素子は、約7. 1Vで100cd/m<sup>2</sup> の発光を示した。また最大発光効率は1. 1cd/Aであった。

[0335]

実施例46

[0336]

実施例47

高分子化合物 D の代わりに高分子化合物 J を用いた 以外は 実施 例 4 3 と同様に素子を作製して得た。 製膜は 1 . 5 w t % トルエン溶液を用いて 8 0 0 ヶ Pmでスピンコートすることによりおこなった。 得られた素子に電圧を印加することにより 4 8 4 n mにピークを有する E L 発光が得られた。該素子は、約 4 . 5 Vで 1 0 0 c む / m² の発光を示した。また最大発光効率は 1 . 0 c む / Aであった。

[0337]

実施例48

高分子化合物 D の代わりに高分子化合物 M を用いた 以外は実施例 4 3 と同様に素子を作製して得た。製膜は 1 . 1 %トルエン溶液を用いて 3 0 0 0 r P m でスピンコートすることにより おこなった。 得られた素子に電圧を印加することにより 4 9 6 n m にピークを有する E L 発光が得られた。該素子は、約 4 . 8 V で 1 0 0 c d / m 2 の発光を示した。また最大発光効率は 2 . 9 7 c d / A であった。

[0338]

実施例49

<液晶性の測定>

上記で合成した高分子化合物Bを、ポリイミド配向膜を塗布・ラピング処理したがラス基板に挟み、基板をラピング方向と同じ向きにずらすことによりシェアをかけた。これを偏光顕微鏡によりクロスニコル下で観察したところ、高分子化合物Bが1方向に配向していることが観察され、テクスチャより液晶相であることが確認された。また高分子化合物BのDSC測定をおこなったところ、室温からの冷却時に発熱ピークが、その後昇温した際に大きな吸熱ピークが観測されたことからも、本ポリマーは液晶相を示すことが確認された。

また本ポリマーを1.5重量%溶かしたトルエン溶液を、ポリイミド配向膜を塗布・ラビング処理したガラス基板上にスピンコートし、薄膜を形成した。これに紫外線を照射したところ、偏光蛍光が観測され、本ポリマーが偏光発光素子になりする発光材料であることが確認できた。

# フロントページの続き

# (72)発明者 野□ 公信

茨城県つくば市北原6 住友化学工業株式会社内

Fターム(参考) 2H091 FA45% FB02

3K007 AB02 AB18 DB03 FA01

4J032 BA03 BA12 BA13 BA17 BA18 BA20 BB03 BB06 BC03 CA02

CA12 CB03 CB12 CG00

4J039 AE00 BE01

#### 【要約の続き】

式中、 $Ar^3$  および $Ar^4$  は、8 価の芳香族炭化水素基または8 価の複素環基を表す。 $X^3$  および $X^4$  は、N. B. P 等 を表す。ただし、 $X^3$  と $X^4$  が同一になることはない。また、 $X^3$ とAょAなA の芳香環中の隣接炭素に結合し、 X<sup>4</sup> とAr<sup>3</sup> はAr<sup>4</sup> の芳香環中の隣接炭素に結合している。

【選択図】 なし