MMS

Vanessa Closius, Jonas Tietz, Tronje Krabbe

December 17, 2018

1. b) Die Bandpasscharakteristik der Gabor-Transformation lässt sich leicht aus ihrer Formel $e^{j\omega t}\cdot G(t,\sigma)$ herleiten. $e^{j\omega t}$ lässt sich nach der eulerschen Formel als $e^{j\omega t}=\cos(\omega t)+j\sin(\omega t)$ darstellen. Im Frequenzbereich wird daraus sowohl ein gerades als auch ein ungerades Impulspaar. Aus der Multiplikation wird dann eine Faltung. Dadurch bekommt man im Frequenzbereich diese Formel: $(\frac{1}{2}(\delta(t+\omega)+\delta(t-\omega))+\frac{1}{2}(\delta(t+\omega)-\delta(t-\omega)))\otimes F\{G(t,\sigma)\}$ Laut den Replikationstheorem wird die Gauß'sche Dichtefunktion auf die Dirac-Stöße repliziert. Dadurch entsteht ein Bandpassfilter, dessen Breite sich mit der Standardabweichung σ der Gauß'sche Dichtefunktion einstellen lässt und dessen Bandmitteder Frequenz ω .