- 1. Only MPASM assembly language is allowed
- 2. Get 0 points, if any ways of cheating
- 3. NO communication devices or applications allowed
- 4. Examination time: 1800-2100

Implement a 16-bit Restricted divider and display the

results

Description:

- 1. Build a 16-bit Divider. (Please refer to Figure 1, Figure 2, and Table 1)
 - Dividend size is 16 bits.
 - Divisor size is 8 bits. (Range: 1 <= Divisor value <= 255, NO ZERO!)
 - Quotient size is 8 bits. (Range: 0 <= Quotient value <= 255) (The result I want)
 - Remainder size is 8 bits. (The result I want)
- 2. Split your results to 2 values from the bit7-bit4 to bit3-bit0 and put values on 2 file registers. (Please refer to Figure 3)
- 3. Pushing button 1 can display the result of Quotient. Pushing button 2 can display the result of Remainder. LED status is dark for 0.5 seconds and LED status is bright for 1 second. (Please refer to Figure 4)

		Quotient	Divisor	Remainder
		0	0001000100000000	0000111111111100
	Remainder-Divisor<0	0	0001000100000000	0000111111111100
1	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	0	0001000100000000	0000111111111100
	Divisor Rotates right 1 bit.	0	0000100010000000	0000111111111100
	Remainder-Divisor>=0, Remainder = Remainder - Divsior	0	0000100010000000	0000011101111100
2	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	1	0000100010000000	0000011101111100
	Divisor Rotates right 1 bit.	1	0000010001000000	0000011101111100
	Remainder-Divisor>=0, Remainder = Remainder - Divsior	1	0000010001000000	0000001100111100
3	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	11	0000010001000000	0000001100111100
	Divisor Rotates right 1 bit.	11	0000001000100000	0000001100111100
	Remainder-Divisor>=0, Remainder = Remainder - Divsior	11	0000001000100000	0000000100011100
4	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	111	0000001000100000	0000000100011100
	Divisor Rotates right 1 bit.	111	0000000100010000	0000000100011100
	Remainder-Divisor>=0, Remainder = Remainder - Divsior	111	0000000100010000	000000000001100
5	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	1111	000000100010000	000000000001100
	Divisor Rotates right 1 bit.	1111	000000010001000	000000000001100
	Remainder-Divisor<0	1111	000000010001000	000000000001100
6	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	11110	000000010001000	000000000001100
	Divisor Rotates right 1 bit.	11110	000000001000100	000000000001100
	Remainder-Divisor<0	11110	000000001000100	000000000001100
7	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	111100	000000001000100	000000000001100
	Divisor Rotates right 1 bit.	111100	000000000100010	000000000001100
	Remainder-Divisor<0	111100	000000000100010	000000000001100
8	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	1111000	000000000100010	000000000001100
	Divisor Rotates right 1 bit.	1111000	000000000010001	000000000001100
	Remainder-Divisor<0	1111000	000000000010001	000000000001100
9	Quotient Rotates left 1 bit, then setting 1 at bit0 of Quotient.	11110000	000000000010001	000000000001100
_	Divisor Rotates right 1 bit.	11110000	000000000001000	000000000001100

Table 1. dividing 0Xffc by 0x11 or 111111111100 by 00010001

Quotient: FO

	Reg1: 0x133	Reg2:0x134
Remainder: F0	F	0

Remainder: OC

	Reg1: 0x123	Reg2:0x124
Remainder: OC	0	С

Figure 3

Quotient: F0

	Reg1: 0x133	Reg2:0x134
Remainder: F0	F	0
0.5s	1s	0.5s 1s
1	F	0

Remainder: OC

Score: 100%

- 1. LED can be lighted up. (10%)
- 2. Setting lighting flag on ISR (Interrupt service routine). (10%)
- 3. Build Delay to control the interval time when Displaying digits time is 0.5 seconds and Lighting time is 1 second. (10%)
- 4. Explain how you design the delay macro to control the delay duration. (e.g. cycle used, input argument) (10%)
- 5. Quotient and Remainder are split into **two** 4-bit numbers head-to-head and the CORRECT results are shown on hardware. (20%)

E.g, (A7) [1010 0111] > [1010] [0111]

	Bit7-bit4	Bit3-bit0
The address of Quotient	0x133	0x134
The address of Remainder	0x123	0x124

- 6. Be sure to use appropriate ADDRESSING MODE in your code. (Don't use MOVFF instruction in your whole code) (10%)
- 7. Pushing the button 1/button 2 will display digits of quotient/remainder sequentially. (from the bit7-bit4 to the bit3-bit0) (10%)
- 8. Display the CORRECT answer on software, after the division process is completed. (20%)

Restriction

- 1. Quotient on 0x133 and 0x134 and Remainder on 0x123 and 0x124
- 2. Lighting LED on RD3-RD0
- 3. Using direct (Banked) or indirect addressing mode in the 6th item of Score requirements.
- 4. Pull-up registers are required
- 5. Please put the value in the Specified address, TA can test your result quickly.

Hint:

- 1. Default Oscillator frequency: 4Mhz (set in the zipped sample code)
- 2. A little error on cycles and seconds are tolerated.
- 3. Easy questions: 1, 2, 3, 4, 6, 7