Нотатки до курсу аналізу та геометрії

Професор: Christian Gérard

Єгор Коротенко

7 червня 2025 р.

Анотація

Це нотатки, зроблені на курсі OLMA251 - Аналіз та Геометрія, який читав професор Крістіан Жерар. Ці нотатки містять інформацію, отриману під час лекцій, а також мою думку, розуміння та речі, вивчені поза цим курсом. Цей конспект написаний Єгором Коротенко: https://dobbikov.com

Зміст

1	Вст					
	1.1	Простори \mathbb{R}^d \mathbb{C}^d				
	1.2	Простір \mathbb{C}^d				
	1.3	Відстань на \mathbb{R}^d				
2	Mag	D.C.				
4		тричні простори				
	2.1	Кулі у метричному просторі				
	2.2	Обмежені підмножини (E,d)				
	2.3	Обмежені функції				
	2.4	Відстань між множинами				
	2.5	Топологія метричних просторів				
	2.6	Алгоритми для доведення, що множина є відкритою/замкненою				
	2.7	Внутрішність, замикання, межа				
		2.7.1 Внутрішність				
		2.7.2 Учасник				
		2.7.3 Межа				
	2.8	Послідовність у метричному просторі				
	$\frac{2.0}{2.9}$					
	-					
		Підпослідовності				
		Процес побудови внутрішнього та замикання				
	2.12	Компактність				
		$2.12.1$ Компактність у \mathbb{R}^n зі звичайною відстанню				
	2.13	Межі та неперервність				
		2.13.1 Межі				
3	Ф	якції багатьох змінних				
3	-					
	3.1	Вступ				
	3.2	Як показати, що множина є відкритою або замкненою				
	3.3	Зв'язок із компактністю				
	3.4	Часткова неперервність (непотрібно)				
4	Диференціювання функцій від кількох змінних					
	4.1	Вступ				
	4.2	Обмежений Розклад першого порядку				
	4.3	Екстремуми та критичні точки				
	4.4	Часткові похідні порядку ≥ 2				
	4.5					
	4.6	Нагадування з лінійної алгебри та зв'язок з аналізом				
	4.7	Природа критичних точок				
	4.8	Ланцюгове правило диференціювання				
5	Нормовані векторні простори 44					
	5.1	Вступ				
	5.2	Топологія нормованих векторних просторів				
	5.3	Еквівалентні норми				
	5.4	Доповнення до нормованих векторних просторів				
	0.4					
		5.4.1 Послідовності функцій				

		5.4.2	Збіжність проста:
		5.4.3	Рівномірна збіжність:
		5.4.4	Ряди зі значеннями у нормованому векторному просторі
		5.4.5	Нормальна збіжність
	5.5	Непер	ервні лінійні відображення
			Норма на $B(E,F)$
	5.6		ь матриць
		_	Гарна норма на $L(\mathbb{C}^n)$ (або на $\mathcal{M}_n(\mathbb{C})$)
			$\overline{\text{Як}}$ "обчислити" $\ A\ $?
		5.6.3	Як обмежити зверху $\ A\ $
6	Сис	тема д	циференціальних рівнянь 58
	6.1	Засто	ування до систем ОД

3MICT 2

розділ **1**

Вступ

1.1 Простори \mathbb{R}^d \mathbb{C}^d

Визначення 1.1.

$$\mathbb{R}^d = \{X = (x_1, \dots, x_d), x_i \in \mathbb{R}\}\$$

 x_1, \ldots, x_d декартові координати X

Приклад 1.2. d=2 полярні координати:

$$\begin{aligned} x &= r\cos\theta \\ y &= r\sin\theta \\ 0 &\le r \le \infty \quad \theta \in [0, 2\pi[\end{aligned}$$

Визначення 1.3. \mathbb{R}^d ε векторним простором над \mathbb{R}

$$\vec{X} + \vec{Y} = (x_1 + y_1, \dots, x_d + y_d)$$
$$\lambda X = (\lambda x_1, \dots, \lambda x_d) \quad \lambda \in \mathbb{R}$$
$$\vec{0}_d = \vec{0} = (0, \dots, 0)$$

Визначення 1.4. Скалярний добуток:

$$X \cdot Y = x_1 y_1 + x_2 y_2 + \dots x_d y_d = \|X\| \|Y\| \cos(\theta)$$
 (де θ є кут між X та Y)

Інтуїція. Цей добуток говорить нам how closely the vectors point in the same direction (косинус прямує до 1, коли θ прямує до 0° , і косинус прямує до 0, коли θ прямує до 0°). І цей добуток дозволяє нам отримати

проекцію X на Y за формулою:

$$Proj(X) = \frac{X \cdot Y}{\|Y\|} \cdot \frac{Y}{\|Y\|}$$

 $X\cdot Y$ дає longeur X і Y разом, поділивши цю longeur на $\|Y\|$ (longeur Y), ми отримуємо longeur X на Y, нам залишається помножити цю longeur на одиничний вектор (longeur 1), який вказує в тому ж напрямку, що й Y, (ми отримуємо його за допомогою $\frac{Y}{\|Y\|}$)

Твердження 1.5. Скалярний добуток задовольняє такі властивості:

- 1. білінійність $\lambda \in \mathbb{R}$
 - (a) $(X + Y) \cdot Z = X \cdot Z + Y \cdot Z$
 - (6) $(\lambda X) \cdot Z = \lambda (X \cdot Z)$
 - (B) $Z \cdot (X + Y) = Z \cdot X + Z \cdot Y$
 - (r) $Z \cdot (\lambda X) = \lambda (Z \cdot X)$
- 2. симетрія $X \cdot Y = Y \cdot X$
- 3. додатно визначений: $X \cdot X \geq 0$ та $X \cdot X = 0 \Leftrightarrow X = 0_d$

Твердження 1.6. Коші-Шварца:

$$|X \cdot Y| < (X \cdot X)^{\frac{1}{2}} (Y \cdot Y)^{\frac{1}{2}}$$

Визначення 1.7. Евклідова норма вектора X позначається:

$$||X|| = \left(\sum_{n=1}^{d} x_i^2\right)^{\frac{1}{2}} = \sqrt{x_1^2 + \dots + x_d^2} = (X \cdot X)^{\frac{1}{2}}$$

часто позначається $||X||_2$

Інтуїція. За теоремою Піфагора, це довжина цього вектора.

Твердження 1.8. Норма має такі властивості:

- 1. $\|\lambda X\| = |\lambda| \|X\| X \in \mathbb{R}^d, \ \lambda \in \mathbb{R}$
- 2. $||X + Y|| \le ||X|| + ||Y||$ (нерівність трикутника)
- 3. ||X|| > 0 et $||X|| = 0 \Leftrightarrow X = 0_d$

Доведення. 3 (2)

$$||X + Y||^2 = (X + Y) \cdot (X + Y) = X \cdot (X + Y) + Y \cdot (X + Y) = X \cdot X + X \cdot Y + Y \cdot X + Y \cdot Y$$
$$= ||X||^2 + 2X \cdot Y + ||Y||^2 \le ||X||^2 + 2||X|| ||Y|| + ||Y||^2 = (||X|| + ||Y||)^2$$

Визначення 1.9. Норма на \mathbb{R}^d це відображення $N: \mathbb{R}^d \to \mathbb{R}$ таке що:

1.
$$N(\lambda X) = |\lambda| N(X)$$

2.
$$N(X + Y) \le N(X) + N(Y)$$

3.
$$N(X) \ge 0$$
 i $N(X) = 0 \Leftrightarrow X = 0_d$

Приклад 1.10.

$$||X||_1 = \sum_{n=1}^d |x_i|$$
$$||X||_{\infty} = \max_{1 \le i \le n} |x_i|$$

1.2 Простір \mathbb{C}^d

Визначення 1.11.

$$\mathbb{C}^d = \{X = (x_1, \dots, x_d) : x_i \in \mathbb{C}\}$$

$$z \in \mathbb{C} \quad \overline{z} = a - ib \quad \overline{z}z = a^2 + b^2 \quad |z| = \sqrt{\overline{z}z} = \sqrt{a^2 + b^2}$$

$$z = a + ib \quad a = Re z, b = Im z$$

$$Re X = (Re x_1, \dots, Re x_d) \in \mathbb{R}^d$$

$$Im X = (Im x_1, \dots, Im x_d) \in \mathbb{R}^d$$

$$X = Re X + i Im X$$

$$\in \mathbb{C}^d = Re X + i Im X$$

$$\in \mathbb{R}^d$$

 \mathbb{C}^d є векторним простором над \mathbb{C} (ті ж формули з $\lambda \in \mathbb{C}$ полем скалярів)

Визначення 1.12. Скалярний добуток:

$$(X|Y) = \sum_{n=1}^{d} \overline{x_i} y_i \in \mathbb{C}$$

Твердження 1.13.

1. (X|Y) є "лінійним відносно Y"

•
$$(Z|X + Y) = (Z|X) + (Z|Y)$$

•
$$(Z|\lambda X) = \lambda(Z|X) \quad \lambda \in \mathbb{C}$$

•
$$(Z|\lambda X + \mu Y) = \lambda(Z|X) + \mu(Z|Y)$$

•
$$(X + Y|Z) = (X|Z) + (Y|Z)$$

•
$$(\lambda X|Z) = \overline{\lambda}(X|Z) \quad \lambda \in \mathbb{C}$$

•
$$(\lambda X + \mu Y|Z) = \overline{\lambda}(X|Z) + \mu(Y|Z)$$

2.
$$(Y|X) = \overline{(X|Y)}$$

3.
$$(X|X) = \sum_{n=1}^d \overline{x_i} x_i = \sum_{n=1}^d |x_i|^2$$

 $(X|X) \ge 0$ i $(X|X) = 0 \Leftrightarrow X = 0_d$

Доведення. Маємо Коші-Шварц:

$$(X|Y) \le (X|X)^{\frac{1}{2}} (Y|Y)^{\frac{1}{2}}$$

те саме доведення, що й раніше

Покладемо:

$$\|X\|$$
 (або $\|X\|_2$)
$$= (X|X)^{\frac{1}{2}} = \left(\sum_{n=1}^d |x_i|^2\right)^{\frac{1}{2}}$$

гільбертова норма

$$\|X\|^2_{\in \mathbb{C}^d} = \|Re\,X\|^2 + i\,\|Im\,X\|^2_{\in \mathbb{R}^d}$$

Лема 1.14.

$$||X|| = \sup_{\|Y\| \le 1} |(X|Y)|$$

Доведення. $|(X|Y)| \le ||X|| ||Y|| \le ||X||$ якщо $||Y|| \le 1$

$$\sup_{\|Y\| \le 1} (X|Y)$$

Інше значення:

$$\begin{split} X \neq 0 \quad Y &= \frac{X}{\|X\|} = \lambda X \quad \lambda = \frac{1}{\|X\|} \\ \|Y\| &= |\lambda| \|X\| = \frac{1}{\|X\|} \|X\| = 1 \\ (X|Y) &= (X|\frac{X}{\|X\|}) = \frac{1}{\|X\|} (X|X) = \|X\| \\ \sup\{|(X|Y)|: \|Y\| \leq 1\} \\ \|X\| \leq \sup\{|(X|Y)|: \|Y\| \leq 1\} \quad \text{(взяти } Y = \frac{X}{\|X\|}) \end{split}$$

Інші норми на \mathbb{C}^d

•
$$||X||_1 = \sum_{n=1}^d |x_i| \quad X \in \mathbb{C}^d$$

$$\bullet ||X||_{\infty} = \sup_{1 \le i \le d} |x_i|$$

1.3 Відстань на \mathbb{R}^d

Ми забуваємо про норму та скалярний добуток. Ми вводимо відстань

Визначення 1.15. Відстань — це відображення:

$$d: \mathbb{R}^d \longrightarrow \mathbb{R}$$
$$(X,Y) \longmapsto d((X,Y))$$

яке задовольняє наступні властивості:

- 1. d(X,Y) = d(Y,X) (симетрія)
- 2. $d(X,Y) \leq d(X,Z) + d(Z,Y)$ (нерівність трикутника) $\forall X,Y,Z$
- 3. $d(X,Y) \ge 0 \quad \forall X, Y \text{ Ta } d(X,Y) = 0 \Leftrightarrow X = Y$

Визначення 1.16. Евклідова відстань

$$d(X,Y) = ||X - Y|| = \sqrt{\sum_{n=1}^{d} (x_i - y_i)^2}$$

Приклад 1.17. Відстані

- 1. $d_2(X,Y) = ||X Y||_2$ (евклідова відстань на \mathbb{R}^d)
- 2. $d_1(X,Y) = ||X Y||_1$ $d_{\infty}(X,Y) = ||X - Y||_{\infty}$
- 3. логарифмічна відстань на \mathbb{R}_+ : d(a,b) = |b-a|

$$\log_{10}(a) = \frac{\log(a)}{\log(10)}$$

$$x, y \in]0, +\infty[$$
 $d_{\log}(x, y) = |\log_{10}(\frac{y}{x})|$ $i \in \text{відстань на }]0, +\infty[$ $d_{\log}(100, 110) = \log_{10}(1, 1)$

4. відстань SNCF

d(X,Y) звичайна відстань у \mathbb{R}^2 покладемо:

$$\delta(X,Y) = \begin{cases} d(X,Y) \text{ якщо } X,0,Y \text{ вирівняні} \\ d(X,0) + d(0,Y) \text{ інакше} \end{cases}$$

Твердження 1.18. Нехай E метричний простір і дві метрики d_1 та d_2 . Метрики називаються **еквівалентними** якщо $\exists a,b \in \mathbb{R}$ такими, що:

$$\forall x, y \in E, \quad a \cdot d_1(x, y) \le d_2(x, y) \le b \cdot d_1(x, y)$$

розділ **2**

МЕТРИЧНІ ПРОСТОРИ

Визначення 2.1. E, оснащений функцією відстані d (див. Визначення 1.15), позначається (E,d): метричний простір

Примітка 2.2. якщо $d_1 \neq d_2 \; (E, d_1)$ не має нічого спільного з (E, d_2)

Примітка 2.3. Запам'ятайте наступну версію нерівності трикутника:

$$|d(x,z) - d(y,z)| \le d(x,y)$$

Примітка 2.4. Індуктована відстань:

Якщо (E,d) метричний простір і $U \subset E$. Я можу restreidnre d на $U \times U$: (U,d) також є éspace metrique.

2.1 Кулі у метричному просторі

Визначення 2.5. (E,d) метричний простір. Нехай $x_0 \in E$ та $r \geq 0$

- 1. $B(x_0,r) = \{x \in E : d(x_0,x) < r \ \}$ відкрита куля з центром x_0 , радіусом r
- 2. $B_f(x_0,r) = \{x \in E : d(x_0,x) \le r\}$ замкнена куля з центром x_0 , радіусом r

(а) відкриті кулі (тобто $d(x_0, x) < r$)

(б) замкнені кулі (тобто $d(x_0, x) \le r$)

Лема 2.6.

- 1. $B(x_0,0) = \emptyset$ (тому що неможливо мати точки, відстань до яких строго менша за 0)
- 2. $B_f(x_0,0) = \{x_0\}$
- 3. $B(x_0,r_1) \subset B_f(x_0,r_1) \subset B(x_0,r_2)$ якщо $r_1 < r_2$
- 4. $B(x_1, r_1) \subset B(x_0, r)$ якщо $d(x_0, x_1) + r_1 \leq r$

Рис. 2.2: Лема 4

Доведення. Я припускаю, що $d(x_0, x_1) \le r$

Нехай $x \in B(x_1, r_1)$ тому $d(x_1, x) < r_1$ показати: $x \in B(x_0, r)$ (тобто $d(x_0, x) < r$?)

Нерівність трикутника говорить мені:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$

 $< d(x_0, x_1) + r_1 \le r$
 $\Rightarrow x \in B(x_0, r)$

Приклад 2.7. 1. $E = \mathbb{R}, \quad d(x,y) = |x-y|$

$$B(x_0, r) = |x_0 - r, x_0 + r|$$

2. $E = \mathbb{R}^d$, d = 2, 3, $X = (x_1, \dots, x_d)$

$$||X||_{2} = \left(\sum_{i=1}^{d} x_{i}^{2}\right)^{\frac{1}{2}}$$

$$||X||_{1} = \sum_{i=1}^{d} x_{i}$$

$$||X||_{\infty} = \max_{1 \le i \le d} |x_{i}|$$

$$d_2(X,Y) = ||Y - X||_2 = ||\vec{XY}||_2$$

$$d_1(X,Y), d_{\infty}(X,Y)$$

Властивість. У \mathbb{R}^n

- $d_{\infty}(X,Y) \leq d_1(X,Y) \leq nd_{\infty}(X,Y)$
- $d_{\infty}(X,Y) \leq d_2(X,Y) \leq \sqrt{n}d_{\infty}(X,Y)$

2.2 Обмежені підмножини (E, d)

Визначення 2.8. Нехай $A \subset E$. A ε обмеженою якщо $\exists R > 0$ і $\exists x_0 \in E$ таке що

$$A \subset B(x_0, R)$$

Рис. 2.3: Приклад обмеженої множини

Лема 2.9. Наступні властивості є еквівалентними:

- 1. $A \in обмеженою$
- 2. $\forall x_0 \in E, \exists r > 0$ такий що $A \subset B(x_0, r)$
- 3. $\exists r > 0$ такий що $\forall x, y \in A$ виконується d(x,y) < r

Доведення. леми

• $(1) \Rightarrow (2)$:

<u>Гіпотеза</u>: $\exists x_1 \in E, \exists r_1 \in E$ така що $A \subset B(x_1, r_1)$ Нехай $x_0 \in E$. Мета: знайти r такий що $A \subset B(x_0, r)$ якщо $x \in A$, маємо: $d(x_1, x) < r_1$ Я хочу: $d(x_0, x) < r$

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x) \le d(x_0, x_1) + r_1 < r$$
 якщо $r > d(x_0, x_1) + r_1$

Властивість. 1. Будь-яка скінченна частина є обмеженою

- 2. Якщо A обмежена і $B \subset A$ тоді B обмежена
- 3. Об'єднання скінченного числа обмежених є обмеженим

Доведення. з (3).

 A_1,\dots,A_n є обмеженими. \underline{A} фіксую $x_0\in E$, A_i обмежений $(1\leq i\leq n)$, отже $\exists r_i>0$ такий що $A_i\subset B(x_0,r_i)$ якщо $r=\max_{1\leq i\leq n}r_i$

$$A_i \subset B(x_0, r), \, \forall i \Rightarrow \bigcup_{i=1}^n A_i \subset B(x_0, r)$$

2.3 Обмежені функції

Визначення 2.10. Нехай B — множина. Функція $F: B \to E$ є обмеженою якщо $F(B) = \{F(b): b \in B\} \subset E$ є обмеженим.

2.4 Відстань між множинами

Визначення 2.11. Відстань між двома множинами A, B становить:

$$d(A,B) := \inf_{x \in A, y \in B} d(x,y)$$

Інтуїтивно, ми шукаємо дві точки x і y такі, що відстань є найменшою можливою.

Визначення 2.12. Відстань між точкою x та множиною B становить:

$$d(x,B) := \inf_{y \in B} d(x,y)$$

Та сама інтуїція.

Властивість. $\forall x \in A, \ y \in B, \ d(x,y) \geq d(A,B)$ і $\forall \varepsilon > 0, \exists x \in A, \ y \in B$ така що $d(x,y) \leq d(A,B) + \varepsilon$

Рис. 2.4: Відстань між множинами

2.5 Топологія метричних просторів

відстань $d(x,y) \longrightarrow$ кулі $B(x_0,r) \longrightarrow$ відкриті множини

Визначення 2.13. Нехай (Е, d) метричний простір.

- 1. $U \subset E$ є відкритою, якщо $\forall x_0 \in U, \exists r > 0 \ r(x_0)$ такий, що $B(x_0, r) \subset U$
- 2. $F \subset E$ є замкненою, якщо $E \setminus F$ є відкритою

 \emptyset є відкритою і E є відкритою. \emptyset є замкненою і E є замкненою.

(а) Закрита множина

На межі неможливо знайти кулі, які належать F, оскільки неможливо мати відкриту кулю радіуса r=0. Приклад: темно-синій круг Для кожної точки в $E\setminus F$ можна знайти відкриту кулю

 $B(2.993,\delta)$ \bullet 0,0 U

(б) Відкрита множина для кожної точки поблизу межі можна знайти кулю нескінченно малу з точками навколо цієї точки, включеними в U.

Рис. 2.5: Демонстрація відкритих і закритих просторів

Примітка 2.14. в \mathbb{R} відкриті інтервали є відкритими (те саме для замкнених)

Примітка 2.15. Відстань між двома відкритими множинами завжди існує, і вона є інфімумом (який ніколи не досягається)

Лема 2.16. 1. $B(x_0, r_0)$ є відкритою.

2. $B_f(x_0, r_0)$ є замкненою.

Доведення. 1. Нехай $x_1 \in B(x_0,r_0)$ $(d(x_0,x_1) < r_0)$. Мета: знайти $r_1>0$ таке що $B(x_1,r_1)\subset B(x_0,r_0)$?

 $x \in B(x_1, r_1): \ d(x_1, x) < r_1$ $x \in B(x_0, r_0)$ якщо $d(x_0, x) < r_0$

легко:

$$d(x_0, x) \le d(x_0, x_1) + d(x_1, x)$$
 $\le d(x_0, x_1) + r_1$
 $< r_0$ якщо

$$r_1 < r_0 - d(x_0, x_1) > 0$$

Приклад 2.17. дивно.

Нехай $E = \mathbb{R}, d(x,y) = |y-x|, A =]0,1[$ відкритий, не замкнений в \mathbb{R} .

Я розглядаю A як частину (A,d). Оскільки $A \setminus A = \emptyset$ є відкритим, то A є замкненим в A. Натомість, межі ніколи не досягаються, тому A є відкритим в (A,d).

Теорема 2.18.

- 1. Нехай $U_i, i \in I$ колекція відкритих множин. Тоді, $\cup_{i \in I} U_i$ є відкритою. Переклад: Будь-яке об'єднання відкритих множин є відкритою.
- 2. Якщо U_1, \ldots, U_n є відкритими

$$\bigcap_{i=1}^{n} U_i$$
 є відкритою.

Переклад: скінченний перетин відкритих множин є відкритою.

- 1. Нехай $U_i, i \in I$ колекція замкнених множин. Тоді, $\cup_{i \in I} U_i$ є замкненою. Переклад: Будь-яке об'єднання замкнених множин є замкненою.
- 2. Якщо U_1, \ldots, U_n є замкненими

$$\bigcap_{i=1}^{n} U_i$$
 є замкненою.

Переклад: скінченний перетин замкнених множин є замкненою.

Доведення.

- 1. Нехай $x\in U:=\bigcup_{i\in I}U_i$. Існує i позначений i_0 такий, що $x\in U_{i_0},\,U_{i_0}$ є відкритою, тому $\exists r>0$ такий, що $B(x,r)\subset U_{i_0}\subset U:=\bigcup_{i\in I}U_i$.
- 2. Нехай $x\in U:=\bigcap_{1\le i\le n}U_i$. Зафіксуємо i. $x\in U_i,$ U_i відкритою, тому $\exists r_i>0$ такий, що $B(x,r)\subset U_i,$ $1\le i\le n$, тому $B(x,r)\subset U:=\bigcap_{1\le i\le n}U_i$

2.6 Алгоритми для доведення, що множина є відкритою/замкненою

Показати, що множина є відкритою

Показати, що множина ϵ замкненою

• Використовувати визначення:

$$\forall x \in \mathcal{U}, \exists r > 0$$
 таке що $B(x,r) \subset \mathcal{U}$

- Показати, що $E \setminus \mathcal{U}$ є замкненою.
- Показати, що \mathcal{U} є прообразом відкритої множини при неперервному відображенні.
- ullet Виразити ${\cal U}$ як відкриту кулю.
- Записати *U* як :
 - об'єднання відкритих множин;
 - скінченний перетин відкритих множин.
- $\mathcal{U} = \operatorname{Int}(U)$.
- Записати $\mathcal{U} = I_1 \times \cdots \times I_n$ з I_i відкритою.

- \bullet Використовувати визначення : $E \setminus V$ ε
- Послідовнісна характеристика : Будьяка збіжна послідовність у V, її границя також знаходиться в V.
- Показати, що V ϵ прообразом замкненої множини при неперервному відображенні.
- \bullet Показати, що V ϵ компактною.

відкритою.

2.7 Внутрішність, замикання, межа

2.7.1 Внутрішність

Визначення 2.19. Нехай $A \subset E$.

1. $x_0 \in E$ є внутрішньою до A якщо $\exists \, \delta > 0$ таке що:

$$B(x_0,\delta) \subset A$$

2. Int(A) (внутрішність A) = усі внутрішні точки A. (також позначається A)

Інтуїція. Int(A) є множиною, яка повністю знаходиться в A і яка знаходиться далеко від країв A.

Твердження 2.20. Int(A) є найбільшою відкритою множиною, що міститься в A. Еквівалентно, Int(A) — це об'єднання всіх відкритих множин, що містяться в A.

Доведення. 1. $Int(A) \subset A$: зрозуміло

2. Int(A) є відкритою:

 $\text{Нехай } x_0 \in Int(A).$

Мета: знайти δ_0 таке що $B(x_0, \delta_0) \subset Int(A)$. Знайти δ_0 таке що якщо $d(x_0, x) < \delta_0$ тоді $x \in Int(A)$?

Гіпотеза: $x_0 \in Int(A)$. $\exists \delta_1 > 0$ таке що $B(x_0, \delta_1) \subset A$. Ми бачили, що $B(x_0, \delta_1)$ є відкритою. Я стверджую, що $B(x_0, \delta_1) \subset Int(A)$.

Доведення: Нехай $x \in B(x_0, \delta_1)$. $B(x_0, \delta_1)$ відкрита, отже $\exists \delta_2 > 0$ таке що $B(x, \delta_2) \subset B(x_0, \delta_1) \subset A$. Отже $x \in Int(A)$, отже $B(x_0, \delta_1) \subset Int(A)$.

Int(A) є відкритою.

3. Якщо U є відкритою і $U \subset A$ тоді $U \subset Int(A)$?

Рис. 2.6: Приклад інтер'єру

$$x_0 \in U.$$
 U відкрита $\Rightarrow \exists \delta$ таке що $B(x_0,\delta) \subset U \subset A \Rightarrow x_0 \in Int(A)$

2.7.2 Учасник

Визначення 2.21. Нехай $A \subset E$.

- 1. $x_0 \in E$ є прилягаючою точкою до A, якщо $\forall \delta > 0, \ B(x_0, \delta)$ перетинає A. (еквівалентно $d(x_0, A) = 0$)
- 2. Adh(A) (замикання або замикання A)= множина точок, прилягаючих до A (також позначається \overline{A})

Інтуїція. Замикання допомагає доповнювати множини. Якщо A є відкритою, то її межі не належать до A, але вони належать до Adh(A).

Рис. 2.7: Дотична точка

Твердження 2.22. Adh(A) є найменшою замкненою множиною, що містить A (перетин усіх замкнених множин, що містять A)

Доведення. 1. $A \subset Adh(A)$ очевидно

2. Adh(A) є замкненою? Покажемо, що $E \setminus Adh(A)$ є відкритою.

 $x_0\in Adh(A)\Leftrightarrow \forall \delta>0,\ B(x_0,\delta)\cap A\neq\emptyset$ $x_0\not\in Adh(A)\Leftrightarrow \exists \delta_0>0$ така що $B(x_0,\delta_0)\cap A=\emptyset\Leftrightarrow \exists \delta_0>0$ така що $B(x_0,\delta_0)\subset E\setminus A\Leftrightarrow x_0\in Int(E\setminus A)$ Тоді:

$$E \setminus Adh(A) = Int(E \setminus A)$$
$$Adh(A) = (Int(\underbrace{A^{c}}_{E \setminus A}))^{c}$$

Визначення 2.23. Нехай $A\subset B$. Кажуть, що A ϵ **щільним** у B якщо $B\subset Adh(A)$ Нехай $x_0\in B,$ $\forall \varepsilon>0$ $\exists x_\varepsilon\in A$ такий що $d(x_0,x_\varepsilon)<\varepsilon$

Приклад 2.24.

$$\mathbb{Q}^2 = \{(x,y): x,y \in \mathbb{Q}\}$$
 щільна в \mathbb{R}^2

Визначення 2.25. альтернатива щільності. Нехай $A \subset B$. A є щільним у B якщо кожна відкрита куля з B містить щонайменше один елемент з A.

2.7.3 Межа

Визначення 2.26. Нехай $A \subset E$. Межа A (або край A), що позначається Fr(A) або ∂A , це:

$$Adh(A) \cap Adh(E \setminus A)$$

Приклад 2.27. в ℝ

- 1. $Int(\mathbb{Q}) = \emptyset$
- 2. $Int(\mathbb{R} \setminus \mathbb{Q}) = \emptyset$
- 3. $Adh(\mathbb{Q}) = \mathbb{R}$
- 4. $Adh(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$
- 5. $Fr(\mathbb{Q}) = \mathbb{R}$
- 6. $Fr(\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$

Приклад 2.28. $E = \{a, b, c\}$ Покладемо:

- d(a,a) = d(b,b) = d(c,c) = 0
- d(a,b) = d(b,a) = d(b,c) = d(b,c) = 1
- d(a,c) = d(c,a) = 2

$$B(a,2) = \{a,b\} = Adh(B(a,2))$$

 $B_f(a,2) = \{a,b,c\}$

Твердження 2.29. 1. $Int(A) \subset A \subset Adh(A)$

- 2. $E = Int(E \setminus A) \cup Fr(A) \cup Int(A)$ (диз'юнктне об'єднання)
- 3. $E \setminus Int(A) = Adh(E \setminus A)$
- 4. $E \setminus Adh(A) = Int(E \setminus A)$
- 5. $Fr(A) = Adh(A) \setminus Int(A)$

Твердження 2.30. 1. A відкрита $\Leftrightarrow A = Int(A)$

- 2. A замкнена $\Leftrightarrow A = Adh(A)$
- 3. $x \in Adh(A) \Leftrightarrow d(x, A) = 0$
- 4. $x \in Int(A) \Leftrightarrow d(x, E \setminus A) > 0$

2.8 Послідовність у метричному просторі

Визначення 2.31. E множина. Послідовність в E: позначена $(u_n)_{n\in\mathbb{N}}$ це функція $u:\mathbb{N}\to E$, де u(n) позначається u_n і є n-тим членом послідовності $(u_n)_{n\in\mathbb{N}}$.

Якщо $E = \mathbb{R}^d$

$$\mathbb{R}^d \ni X_n = (x_{1,n}, \dots, x_{d,n})$$

де $(x_{i,n})_{n\in\mathbb{N}}$ послідовності в \mathbb{R}

Визначення 2.32. Нехай (x_n) послідовність у E і $x \in E$. Кажуть, що $\lim_{n\to\infty} x_n = x$ якщо $\lim_{n\to\infty} d(x_n,x) = 0$.

 $(\forall \varepsilon > 0, \exists N \in \mathbb{N}$ така що якщо $n \geq N, d(x_n, x) < \varepsilon)$

Твердження 2.33. $(x_n)_{n\in\mathbb{N}}$ є обмеженою, якщо $\{x_n:n\in\mathbb{N}\}(\subset E)$ є обмеженою множиною.

Примітка 2.34. в \mathbb{R}^d з d_2 (евклідова відстань)

$$X_n = (x_{1,n}, \dots, x_{d,n})$$
$$X = (x_1, \dots, x_d)$$

$$\lim_{n \to \infty} X_n = X \Leftrightarrow \lim_{n \to \infty} x_{i,n} = x_i \quad (1 \le i \le d)$$

Твердження 2.35. межа збіжної послідовності ϵ унікальною.

Доведення.

Якщо
$$X_n \xrightarrow[n \to \infty]{} X$$
 і $X_n \xrightarrow[n \to \infty]{} X'$
$$d(X,X') \leq \underbrace{d(X,X_n)}_{\to 0} + \underbrace{d(X_n,X')}_{\to 0} \Rightarrow d(X,X') = 0 \Rightarrow X = X'$$

Твердження 2.36. (зв'язок із замиканням)

- 1. $x \in Adh(A)$ тоді й лише тоді, якщо існує послідовність (x_n) елементів з A така що $\lim_{n \to \infty} x_n = x$
- 2. A є замкненою тоді й лише тоді, якщо для будь-якої послідовності (x_n) елементів з A, що збігається до $x \in E$, ми маємо $x \in A$

Інтуїція. 1. Якщо $(x_n)_{n\in\mathbb{N}}$ складається з елементів A ($\forall n\in N, x_n\in A$), то вона збігається до елемента x, який може бути або в A, або на межі елементів A, тобто на кордоні.

2. Якщо границя будь-якої послідовності $(x_n)_{n\in\mathbb{N}}$ елементів A також знаходиться в A, тоді межа A включена в A. Тому що одна з послідовностей прямує до межі.

Доведення. Доведення Проп. 2.36

1. (\Leftarrow) Нехай (x_n) з $x_n \in A \quad \forall n \in \mathbb{N}$ і $\lim_{n \to \infty} x_n = x$. Маю $d(x_n, x) \xrightarrow[n \to \infty]{} 0$ і $x_n \in A$, тому

$$inf_{y \in A}(d(x,y)) = 0 = d(x,A)$$

$$d(x, A) = 0 \Leftrightarrow x \in Adh(A)$$

 (\Rightarrow) Нехай $x \in Adh(A)$

$$\Leftrightarrow d(x,A)=0$$

$$\Leftrightarrow \forall \varepsilon>0, \ \exists x_\varepsilon\in A \ \text{такий що}\ d(x,x_\varepsilon)<\varepsilon$$

Візьмемо $\varepsilon=\frac{1}{n}$, покладемо $u_n=x_{\frac{1}{n}}.$ $u_n\in A$ $d(x,u_n)<\frac{1}{n}$, тому $\lim_{n\to\infty}u_n=x$

2. (\Rightarrow) Нехай A замкнена, тому

$$A = Adh(A)$$

Якщо (x_n) послідовність в A, що збігається до x.

$$x \in Adh(A) = A$$

 (\Leftarrow) Кажуть, що $Adh(A)\subset A.$ Оскільки $A\subset Adh(A)$, тому A=Adh(A)

2.9 Послідовності Коші

Визначення 2.37. $(x_n)_{n\in\mathbb{N}}$ послідовність в $E \in \underline{\text{Коші}}$ якщо:

$$\forall \varepsilon>0\,\exists N(\varepsilon)\in\mathbb{N}$$
таке що $\forall n,p\geq N(\varepsilon),d(x_n,x_p)\leq \varepsilon$

Інтуїція. Послідовність Коші — це ніби ми вимірюємо точку і локалізуємо її, тобто:

- 1. Ми кажемо, що вона знаходиться між 0 та 1.
- 2. Потім ми уточнюємо і кажемо, що вона знаходиться між 0.5 та 0.6.
- 3. Далі, між 0.55 та 0.56

Ми можемо нескінченно збільшувати рівень точності. Це і є ідея послідовності Коші.

Твердження 2.38. 1. Будь-яка послідовність Коші є обмеженою.

2. Будь-яка збіжна послідовність є послідовністю Коші

Доведення. 1. Нехай $(x_n)_{n\in\mathbb{N}}$ послідовність Коші. Тоді, за визначенням

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}$$
 така що $\forall n, p \geq N, d(x_n, x_p) < \varepsilon$

Нехай $\varepsilon=1$. Отже $\exists N\in\mathbb{N}$ така що $\forall n,p\geq N, d(x_n,x_p)<1$, отже $\forall n\geq N, d(x_n,x_N)<1$. Тоді маємо:

$$\forall n \in N, d(x_n, x_N) < 1 + \underbrace{\sup_{1 \le i \le N} d(x_n, x_N)}^{=:r_0}$$

Тоді $\forall n \in \mathbb{N}, x_n \in B(x_N, 1+r_0)$ отже $(x_n)_{n \in \mathbb{N}}$ обмежена.

- 2. Нехай (x_n) послідовність з $\lim_{n\to\infty} x_n = x$ з $x\in E$.
 - Гіпотеза: $\frac{\varepsilon}{2}>0$ $\exists N(\frac{\varepsilon}{2})\in\mathbb{N}$ така що $\forall n\geq N(\frac{\varepsilon}{2}), d(x_n,x)\leq \varepsilon/2$
 - Довести: $\varepsilon>0$ $\exists M(\varepsilon)\in\mathbb{N}$ така що $\forall n,p\geq M(\varepsilon), d(x_n,x_p)\leq \varepsilon$

$$d(x_n,x_p) < d(x_n,x) + d(x,x_p)$$
 якщо $n,p \geq N(rac{arepsilon}{2})\,d(x_n,x_p) \leq 2rac{arepsilon}{2} = arepsilon$

Визначення 2.39. (E,d) є <u>повним,</u> якщо будь-яка послідовність Коші в E є збіжною.

Визначення 2.40. Метричний простір (E,d) є **повним** якщо будь-яка послідовність $(x_n)_{n\in\mathbb{N}}$ елементів з E збігається до границі x яка також належить до E.

Інтуїція. Не дуже коректно говорити, але можна сказати, що послідовність Коші $(x_n)_{n\in\mathbb{N}}$ завжди збігається, оскільки існує момент $N\in\mathbb{N}$, після якого елементи дуже близькі, але границя не завжди належить множині, в якій ця послідовність є послідовністю Коші.

Наприклад, послідовність $(u_n)_{n\in\mathbb{N}}$ зі значеннями в \mathbb{Q} , яка збігається до $\sqrt{2}$ в \mathbb{R} . В \mathbb{R} вона є збіжною та Коші, але в \mathbb{Q} вона є Коші, але <u>не збіжною</u>, оскільки границя $\sqrt{2} \notin \mathbb{Q}$.

Приклад 2.41. Метричний простір (]0,1],d) з d евклідовою відстанню не є повним, оскільки нехай послідовність: $x_n = \frac{1}{n}$ границя якої дорівнює 0. Однак, $0 \not\in]0,1]$. Отже, цей простір не є повним.

Рис. 2.8: ([0,1],d) не ϵ повним

Приклад 2.42. Простір (\mathbb{Q}, d) не є повним. Бо можна взяти послідовність x_n яка прямує до $\sqrt{2} \notin \mathbb{Q}$.

Рис. 2.9: Q неповний

Твердження 2.43. \mathbb{R}^d зі звичайною відстанню є повним.

Доведення.

$$X_n = (x_{1,n}, \dots, x_{d,n})$$

 $|x_i - y_i| \le d(X, Y) = ||X - Y||_2 \quad \forall 1 \le i \le d$

дійсні послідовності $(x_{i,n})_{n\in\mathbb{N}}$ є Коші якщо (X_n) є Коші.

Властивість. \mathbb{R} є повним

Доведення. (Випливає з властивості верхньої межі) Існує $x_i \in \mathbb{R}$ з $1 \le i \le d$ таке що $|x_{i,n} - x_i| \xrightarrow[n \to \infty]{} 0$

$$d(X,Y) \le \sqrt{d} \max_{1 \le i \le d} |x_i - y_i|$$

Tomy
$$X_n \xrightarrow[n\to\infty]{} X$$
, $X = (x_1, \dots, x_d)$

2.10 Підпослідовності

Визначення 2.44. Нехай $(x_n)_{n\in\mathbb{N}}$ послідовність у E. Послідовність

$$(y_n)_{n\in\mathbb{N}}$$
 $y_n = x_{\phi(n)}$

де $\phi: \mathbb{N} \to \mathbb{N}$ є строго зростаючою називається підпослідовністю послідовності (x_n) .

Приклад 2.45. Нехай функція $\phi: \mathbb{N} \to \mathbb{N}$ така що $\phi(n) = 2n$. Тому $(x_n)_{\phi(n)}$ є підпослідовністю $(x_n)_{n \in \mathbb{N}}$ і:

$$(x_n)_{\phi(n)} = \{x_0, x_2, x_4, \ldots\}$$

Твердження 2.46. 1. Будь-яка підпослідовність збіжної послідовності збігається до границі цієї послідовності.

Це означає, що, $\forall (x_n)_{n\in\mathbb{N}}$ така що $\exists x\in E, \lim_{n\to\infty} x_n=x$

$$\forall \phi: \mathbb{N} \to \mathbb{N}$$
строго зростаюча, $\lim_{n \to \infty} x_{\phi(n)} = x$

2. Якщо (x_n) є послідовністю Коші і має підпослідовність, яка збігається до X, то (x_n) збігається до x.

Доведення. 1. Нехай (x_n) з $\lim x_n = x$

$$\forall \varepsilon > 0 \,\exists M(\varepsilon)$$
 таке що якщо $n \geq N(\varepsilon), d(x_n, x) \leq \varepsilon$

Нехай $y_n = x_{\phi(n)}$ підпослідовність.

• Мета: Нехай $\varepsilon>0,$ знайти $N(\varepsilon)$ таке що якщо $n\geq N(\varepsilon),$ $d(\underbrace{y_n}_{:=x_{\phi(n)}},x)\leq \varepsilon$

Я обираю $N(\varepsilon)$ таке що якщо $n\geq N(\varepsilon)$ тоді $\phi(n)\geq M(\varepsilon)$, тому $d(y_n,x)d(x_{\phi(n)},x)\leq \varepsilon$. Це можливо, оскільки $\phi(n)\xrightarrow[n\to\infty]{}\infty,\,N(\varepsilon)=M(\varepsilon)$

- 2. Гіпотеза1: $\forall \varepsilon > 0 \,\exists M(\varepsilon)$ таке що якщо $n, p \geq M(\varepsilon) \, d(x_n, x_p) \leq \varepsilon$
 - Гіпотеза2: $\forall \varepsilon > 0 \,\exists P(\varepsilon)$ таке що якщо $p \geq P(\varepsilon), d(y_p, x) \leq \varepsilon, d(y_p, x) = d(x_{\phi(p)}, x)$

$$d(x_n,x) \leq d(x_n,x_{\phi(p)}) + d(x_{\phi(p)},x)$$
 за нерівністю трикутника

$$d(x_n, x_{\phi(p)}) \leq \varepsilon$$
 якщо $n \geq M(\varepsilon)$ та $\phi(p) \geq M(\varepsilon)$

$$d(x_{\phi(p)}, x) \leq \varepsilon$$
 якщо $p \geq P(\varepsilon)$

Якщо $n \geq M(\varepsilon)$, я обираю p такий що $\phi(p) \geq M(\varepsilon)$ та $p \geq P(\varepsilon)$. Я фіксую це p!

якщо
$$n \geq M(\varepsilon)$$
 тоді $d(x_n, x) \leq 2\varepsilon$

2.11 Процес побудови внутрішнього та замикання

Я маю $A\subset\mathbb{R}$ або \mathbb{R}^2 (або \mathbb{R}^3). Я маю знайти Int(A) та Adh(A)

- $1. \, \, Я$ малюю A на аркуші
- 2. Я думаю, що Int(A) = C (C має бути включеним в A!)
 - (a) Я показую, що C є відкритою (легко), тому

$$C \subset Int(A)$$

бо Int(A) є найбільшою відкритою множиною, включеною в A.

- (б) Я показую, що $Int(A) \subset C$, тобто я показую, що точки в A, але не в C, не належать Int(A): я беру $X \in A, X \not\in C$, я показую, що $X \not\in Int(A)$ Я будую послідовність (X_n) з $X_n \not\in A$ але $X_n \to X$.
- 3. Я думаю, що Adh(A) = B (потрібно, щоб $A \subset B$)
 - (a) Я показую, що $B \in \text{замкненою (легко)}$

тому
$$Adh(A) \subset B$$

21

(б) Ми показуємо, що $B \subset Adh(A)$: Ми фіксуємо $X \in B$, ми шукаємо послідовність (X_n) з $X_n \in A$ і $X_n \xrightarrow[n \to \infty]{} X$. Ми розглядаємо лише $X \in B, X \not\in A$

Приклад 2.47.

$$A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y \le 4, x \ne y\}$$

Рис. 2.10: Приклад інтер'єру

•

- Я припускаю, що $Int(A) = C = \{(x,y) \mid 2x + 3y < 4, x \neq y\}$
- Опукле: $\{(x,y) \mid 2x+3y<4, x< y\} \cup \{(x,y) \mid 2x+3y<4, x> y\}$

Я будую послідовність (X_n) з $X_n \not\in A$ але $X_n \to X$. Нехай $X \in A, X \not\in C, X = (x,y)$ отже: 2x+3y=4 $x \neq y$

$$X_n=(x,y+rac{1}{n})$$
 $2x_n+3y_n=2x+3y+rac{3}{n}=4+rac{3}{n}>4$ $X_n
ot\in A$ але $X_n o X$

Приклад 2.48.

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = x^{-1}\}\$$

 $Int(A)=\emptyset ?\ C=\emptyset$

Рис. 2.11: Приклад внутрішньої частини гіперболи

 \emptyset відкрита, тому $C\subset Int(A)$ Нехай $X\in A\quad X\not\in C,$ тому $X\in A.$

$$X_n := (x, y + \frac{1}{n})$$
 $X_n \notin A$
$$x_n y_n = xy + \frac{x}{n} = 1 + \frac{x}{n} \neq 1$$

$$X_n \xrightarrow[n \to \infty]{} X \text{ Tomy } X \notin Int(A)$$

$$Int(A) = \emptyset$$

Приклад 2.49.

$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y = x^{-1}\}\$$

Adh(A) = ?

Я думаю, що Adh(A)=A (B=A). Достатньо показати, що A $\underline{\epsilon}$ замкненою.

$$x > 0$$
 $y \le \frac{1}{x}$ $y \ge \frac{1}{x}$

Якщо $X_n = (x_n, y_n)$ $X_n \in A$ і $X_n \to X$, тоді $X \in A$

$$X = (x, y) \quad \begin{array}{ccc} x_n \to x & x_n \to x \\ y_n \to y & \frac{1}{x_n} \to y \end{array} \quad (x_n > 0)$$

тому x>0 і $y=\frac{1}{x}$ тому $X\in A$

 $A \in$ замкненою

Приклад 2.50.

$$A = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y \le 4, x \ne y\}$$

Рис. 2.12: example-adherence

1. B є замкнений (легко), тому $Adh(A) \subset B$

2. Нехай $X\in B$. Показуємо, що $X\in Adh(A)$ (шукаємо $X_n\in A$ з $X_n\to X$) Я просто дивлюся на $X\in B, X\not\in A$

$$X_n=(x_n,y_n)\in A\quad x_n\to x\ \mathrm{i}\ y_n\to y$$

$$x_n=x+\frac{1}{n},y_n=y=x$$

$$X_n\to X\ \mathrm{i}\ 2x_n+3y_n=2x+3y-\frac{2}{n}\leq 4ix_n\neq y_n$$

тому $X_n \in A$

Приклад 2.51.

$$\begin{split} A &= \{(x,y) \mid |x| \leq 1, |y| < 1\} \\ Int(A) &= \{(x,y) \mid |x| < 1, |y| < 1\} \\ Adh(A) &= \{(x,y) \mid |x| \leq 1, |y| \leq 1\} \end{split}$$

Приклад 2.52.

$$A = \{(x, y) \mid x > 0, y = \sin(\frac{1}{n})\}\$$

$$Adh(A) = A \cup \{(0,y) \mid -1 \leq y \leq 1\} \ Int(A) =$$

fdsf fds fds

2.12 Компактність

Визначення 2.53. Нехай $F \subset E$. Відкрите покриття F — це сукупність $(U_i)_{i \in I}$ де U_i є відкритими множинами і $F \subset \bigcup_{i \in I} U_i$ ("множини U_i покривають F")

Рис. 2.13: відкрите покриття

Приклад 2.54. • $U_x = B(x, \frac{1}{2})$

- $\bigcup_{x \in F} U_x$ містить F
- $(U_x)_{x\in F}$ відкрите покриття F

Визначення 2.55. $K \subset E$ є компактною, якщо з будь-якого відкритого покриття $(U_i)_{i \in I}$ множини F можна виділити скінченне підпокриття: я можу вибрати $i_1, \ldots, i_n \in I$ такі що

$$F \subset U_{i_1} \cup U_{i_2} \cup \ldots \cup U_{i_n}$$

Властивість. Скінченна множина є компактною.

$$F = \{a_1, \dots, a_p\} \quad a_j \in E$$

 $(U_i)_{i\in I}$ покриває F. Я обираю a_j (точка з F), існує $i\in I$ позначений як i(j) такий, що

$$a_j \in U_{i(j)}$$
 $F \subset U_{i(1)} \cup \ldots \cup U_{i(p)}$

Теорема 2.56. Характеристика за допомогою послідовностей.

 $K \subset E$ є компактною тоді і тільки тоді, якщо кожна послідовність елементів з K має підпослідовність, що збігається до елемента з K.

Рис. 2.14: Компактність з послідовностями

Приклад 2.57. • $E = \mathbb{R}^2$

- $F = B(x_0, r)$ не компактна
- $x_n \in F, x_n \to x, x \notin F$
- ullet якщо $y_n=x_{\phi(n)},\,y_n o x$ але $x
 ot\in F$

Рис. 2.15: suite-sans-sous-suite-convergente

Приклад 2.58.

$$F = \{(x,y) : x \ge 0, -\frac{1}{x} \le y \le \frac{1}{x}\}$$

 $u_n = (n,0) \; (u_n)$ послідовність в F без збіжної підпослідовності.

Твердження 2.59. 1. K компактний $\Rightarrow K$ замкнений і обмежений. (обернене твердження є хибним загалом!)

- 2. Якщо K компактний і F замкнений, тоді $K\cap F$ є компактним.
- 3. Якщо K компактний, будь-яка послідовність Коші в K збігається в K

Доведення. 1. Нехай K компакт. K замкнений якщо (u_n) послідовність в K, яка збігається до u,

тоді $u \in K$.

зрозуміло: (u_n) має підпослідовність $v_n=u_{\phi(n)}$ з $v_n\to v\in K,\,u_n\to u,\,{\rm тому}\,\,v_n\to u\Rightarrow u=v\Rightarrow u\in K$

K обмежений:

Нехай $U_x = \bigcup_{x \in K} B(x,1)$ відкрите покриття K. Однак K компактний, тому існують $x_1, \ldots, x_n \in K$, такі що $K \subset \bigcup_{i=1,\ldots,n} B(x_i,1)$, тому K обмежений.

- 2. K компактний і F замкнений. (u_n) послідовність в $K \cap F$. $u_n \in K$. \exists підпослідовність $v_n = u_{\phi(n)}$ з $v_n \to x \in K$. $v_n \in F, v_n \to x$, F замкнений тому $x \in F, x \in K \cap F$.
- 3. Нехай (u_n) послідовність Коші в K. (u_n) має підпослідовність $v_n=u_{\phi(n)},$ яка збігається до $x\in K.$ $u_n\to x\in K$

2.12.1 Компактність у \mathbb{R}^n зі звичайною відстанню

Теорема 2.60. (Borel-Lebesgue)

в \mathbb{R}^n зі звичайною відстанню K є компактною тоді і тільки тоді, якщо K є замкненою та обмеженою

Твердження 2.61. Замкнені кулі $B_f(x_0, r)$ є компактними в \mathbb{R}^n .

• Тягне за собою теорему: Нехай K замкнений та обмежений. K обмежений, отже $K \subset B_f(0,r)$ з r великим, отже $K = K \cap B_f(0,r)$. Отже K компактний.

Доведення. до проп. 2.61

1. n = 1. Показати: [a, b] ϵ компактним.

Нехай $(U_i)_{i\in I}$ відкрите покриття для [a,b]. Нехай F: множина $x\in [a,b]$ такі що [a,x] покривається скінченною кількістю U_i .

Мета: показати, що $b \in F!$ (якщо $x \in F$, і $x' \le x$ $x' \in F$)

- (a) $F \neq \emptyset$: $a \in F [a, a] = \{a\}$
- (б) c = sup(F). Показуємо, що c = b

Припустимо, що c < b.

- ullet с належить одному з U_i позначений U_{i_0}
- U_{i_0} є відкритим, $c \in U_{i_0}$ отже $\exists \delta_0 > 0$ такий що $]c \delta_0, c + \delta_0 [\subset U_{i_0}]$
- c = sup(F): $\forall \delta > 0$, $\exists x_{\delta} \in F \ 3 \ c \delta < x_{\delta} \le c$

$$\delta = \delta_{0,2} \quad \exists x_{\delta_0} \in F, c - \delta_{0,2} < x_{\delta_0}$$

 $[a,x_{\delta_0}]$ покривається $U_{i_1}\cup\ldots\cup U_{i_n}$ і $]c-\delta_0,c+\delta_0[\subset U_{i_0}$ отже $[a,c+\delta_{0,2}]$ покривається $U_{i_0}\cup U_{i_1}\cup\ldots\cup U_{i_n},$ отже $c+\delta_{0,2}\in F$ суперечить тому, що c=sup(F). Отже c=b. F це [a,b[або [a,b]. $b\in F$ $\exists U_{i_1},\ldots,U_{i_n}$ такі що $[a,b]\subset U_{i_1}\cup\ldots\cup U_{i_n},$ [a,b] компактний.

2.13 Межі та неперервність

2.13.1 Межі

Я беру $(E_1,d_1),(E_2,d_2)$ два метричні простори і $F:E_1\to E_2.$ $x_0\in E_1,l\in E_2.$

Визначення 2.62. .

1. Границя:

$$\lim_{x \to x_0} F(x) = l$$

якщо $\forall \varepsilon>0, \exists \delta>0$ така що якщо $d_1(x_0,x)<\delta$ тоді $d_2(l,F(x))<\varepsilon$

- 2. F неперервна в x_0 якщо $\lim_{x \to x_0} F(x) = F(x_0)$
- 3. F є неперервною (на E) якщо вона неперервна в кожній x_0 з E

Твердження 2.63. Наступні властивості є еквівалентними:

- 1. $F:(E_1,d_1)\to (E_2,d_2)$ є неперервною.
- 2. $\forall U_2 \subset E_2$ відкритою, $F^{-1}(U_2)$ є відкритою в E_1 .
- 3. $\forall F_2 \subset E_2$ замкненою, $F^{-1}(F_2) \subset E_1$ є замкненою.
- 4. $\forall (x_n)$ послідовність в E_1 з $\lim_{n\to\infty} x_n = x$ маємо:

$$\lim_{n \to \infty} F(x_n) = F(x)$$

Рис. 2.16: топологічна неперервність

Приклад 2.64.

$$U = \{(x, y) \in \mathbb{R}^2 : x \sin(y) - e^x > 1\}$$

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto F((x,y)) = x\sin(y) - e^x$$

очевидно неперервна.

$$U=F^{-1}(\underbrace{\underline{]1,+\infty[}}_{\text{відкрита множина в }\mathbb{R}})$$

28

Доведення. $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 1$

 $1\Rightarrow 2$: Гіпотеза: F неперервна і $U_2\subset E_2$ є відкритою.

Висновок: $U_1 = F^{-1}(U_2)$ є відкритою?

Я фіксую $x_0 \in U_1 \ (F(x_0) \in U_2).$

- 1. U_2 відкрита $\Rightarrow \exists \varepsilon_0 > 0$ така що $B_2(F(x_0), \varepsilon_0) \subset U_2$
- 2. F неперервна в x_0 :

$$\forall \varepsilon > 0, \, \exists \delta > 0$$
 така що $d_1(x_0,x) < \delta \Rightarrow d_2(F(x_0),F(x)) < \varepsilon$

$$x \in B_1(x_0, \delta) \Rightarrow F(x) \in B_2(F(x_0), \varepsilon)$$

 $\delta_0 = \text{той } \delta$ що працює для ε_0

$$x \in B_1(x_0, \delta_0) \Rightarrow F(x) \in B_2(F(x_0), \varepsilon_0)$$

Отже $B_1(x_0, \delta_0) \subset F^{-1}(U_2)$. Отже $F^{-1}(U_2)$ відкрита.

$$2 \Rightarrow 3: : F^{-1}(U_2)^c = F^{-1}(U_2^c)$$

Приклад 2.65. результат цієї пропозиції. Візьмемо функцію: $f(x)=x^2$. $f^{-1}(]4,9[)=\{x\in\mathbb{R}\mid 4< x^2<9\}=]-3,-2[\cup]2,3[$. Іншими словами, неперервність f (очевидно) дає, що U=]4,9[відкритий, тоді $f^{-1}(U)$ також відкритий.

Рис. 2.17: Приклад для $f(x) = x^2$

розділ **3**

ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ

3.1 Вступ

Основа: \mathbb{R}^n , \mathbb{R}^p $D \subset \mathbb{R}^n$

$$F:D\to\mathbb{R}^p$$

на \mathbb{R}^n , \mathbb{R}^p звичайні відстані, на D відстань успадкована від \mathbb{R}^n . з декартовими координатами

$$F(x_1, \ldots, x_n) = (F_1(x_1, \ldots, x_n), F_2(x_1, \ldots, x_n), \ldots, F_p(x_1, \ldots, x_n))$$

де $F_i:D\to\mathbb{R}$

$$F: D \to \mathbb{R}^p$$
 continue

ми знаємо:

Лема 3.1.

$$F: D \to \mathbb{R}^p iiii$$
, :

кожне $F_i:D o\mathbb{R}$ є неперервним

Доведення. $Y_n = (Y_{1,n}, \dots, Y_{p,n})$ послідовність \mathbb{R}^p . $Y_n \to Y$ тоді і тільки тоді, коли $Y_{i,n} \to Y_i$ $(1 \le i \le p)$

Твердження 3.2. Нехай $f,g:D\to\mathbb{R}$ неперервні.

- $f+g, f \times g$ є неперервними на D
- якщо $g(X) \neq 0, \, \forall X \in D, \frac{f}{g}$ неперервна на D
- якщо $f(D)\subset I$ інтервал і $\phi:I\to\mathbb{R}$ неперервна, тоді $\phi\circ f:D\to\mathbb{R}$ є неперервною.

•

$$P: X \to \sum_{\alpha_1 + \dots + \alpha_n < d} a_{\alpha_1, \dots, \alpha_n} x^{\alpha_1} \dots x^{\alpha_n}$$

 $a_{\alpha_1,\ldots,\alpha_n} \in \mathbb{R}, d =$ степінь P.

 $P:\mathbb{R}^n \to \mathbb{R}$ неперервна.

3.2 Як показати, що множина є відкритою або замкненою

Згідно з пропозицією 2.63 , якщо $f:D\to Q$ є неперервною і $K\subset Q$ відкрита і $K_f\subset Q$ замкнена, тому:

• $f^{-1}(K)$ також є відкритою

• $f^{-1}(K_f)$ також є замкнутою

Це дозволяє нам спростити докази того, що множина є замкнутою або відкритою. Ось кілька прикладів:

Приклад 3.3.

$$D = \{(x_1, x_2, x_3) : x_1^2 + 2x_2x_3^2 < 2, \sin(x_1x_2) > 0\}$$
$$D = D_1 \cap D_2$$

$$D_1 = f_1^{-1}(] - \infty, 2[)$$

$$D_2 = f_2^{-1}(]0, +\infty[)$$

$$f_1(x) = x_1^2 + 2x_2x_3^2$$

$$f_2(x) = \sin(x_1x_2)$$

 D_1, D_2 відкриті, тому D відкритий.

Приклад 3.4.

$$D = \{(x_1, x_2) : \frac{e^{x_1 - 2x_2^2}}{x_1^2 + 3x_2^4} \ge 1\}$$

$$D = f^{-1}([1, +\infty[))$$

$$f(x) = \frac{e^{x_1 - 2x_2^2}}{x_1^2 + 3x_2^4}$$

 $[1,+\infty[$ є замкненим у $\mathbb R$, тоді D також є замкненим, оскільки f неперервна на $[1,+\infty[$

3.3 Зв'язок із компактністю

Теорема 3.5. Нехай $F:\mathbb{R}^n \to \mathbb{R}^p$ неперервна і $K\subset \mathbb{R}^n$ компактна. Тоді, F(K) є компактним у \mathbb{R}^p

Примітка 3.6. Можна замінити $\mathbb{R}^n, \mathbb{R}^p$ на E, F метричні простори.

Примітка 3.7. U відкритий, f неперервна $\not\Rightarrow f(U)$ відкритий:

Приклад 3.8.

$$f([0,1]) = [-1,1]$$

$$f(x) = \sin(2\pi x)$$

Рис. 3.1: Приклад, що образ відкритої множини не є відкритою

Приклад 3.9.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) = \arctan x.$

$$f(\underbrace{]-\frac{\pi}{2},\frac{\pi}{2}[}_{\text{некомпактний}})=\underbrace{\mathbb{R}}_{\text{некомпактний}}$$

Доведення. Нехай $(v_n)_{n\in\mathbb{N}}$ послідовність в F(K). Маємо: $v_n=F(u_n)$ де $u_n\in K$. $(u_n)_{n\in\mathbb{N}}$ послідовність в K, K компакт, отже: \exists підпослідовність $(u_{\phi(n)})_{n\in\mathbb{N}}$ з

$$u_{\phi_n} \xrightarrow[n \to +\infty]{} u \in K$$

F неперервна: отже $F(u_{\phi(n)}) = v_{\phi(n)} \to F(u) \in K$. (v_n) має підпослідовність $(v_{\phi(n)})$ яка збігається до $F(u) \in F(K)$, отже F(K) компактна!

Теорема 3.10. Нехай $F: \mathbb{R}^n \to \mathbb{R}$ неперервна і $K \subset \mathbb{R}^n$ компактна. Тоді f є обмеженою на K і досягає своїх меж. Тобто, Q:=f(K) є обмеженою і досягає меж.

Доведення. Weierstrass: $f: \mathbb{R} \to \mathbb{R}$ K = [a, b].

Я беру (E,d) замість \mathbb{R}^n . f обмежена на $K: \exists c_1, c_2$ такі що

$$c_1 \le f(x) \le c_2, \forall x \in K \Leftrightarrow f(K) \subset [c_1, c_2]$$

Це зрозуміло, оскільки f(K) є компактною в \mathbb{R} , тому обмежена.

$$m = \inf_{x \in K} f(x) = \inf f(K) \qquad M = \sup_{x \in K} f(x) = \sup f(K)$$

Потрібно показати: $\exists x \in K$ такий що f(x) = m і $\exists x' \in K$ такий що f(x') = M $m = \inf f(K)$, це означає, що

- 1. $f(K) \subset [m, +\infty[$ (m міноранта для f(K))
- 2. $\forall \varepsilon > 0, \exists y \in f(K)$ такий що $y \leq m + \varepsilon$

 $\varepsilon = \frac{1}{n}$ дає послідовність $y_n \in f(K)$ таку що $y_n \to m$

$$y_n = f(x_n)$$

$$x_n \in K$$

K компактна: \exists підпослідовність $x_{\phi(n)}$ така що

$$x_{\phi(n)} \xrightarrow[n \to \infty]{} x \in K$$

 $f: E \to \mathbb{R}$ неперервна, тому

$$f(x_{\phi(n)}) = y_{\phi(n)} \to f(x)$$

Але, $y_n \to m$, тому $y_{\phi(n)} \to m$ і $y_{\phi(n)} \to f(x)$, тому $m=f(x), \, m$ досягається. Щоб показати, що M досягається, доказ ідентичний.

3.4 Часткова неперервність (непотрібно)

 $D \subset \mathbb{R}^n$ $f: D \to \mathbb{R}$ неперервна D відкрита

Нехай $A=(a_1,\ldots,a_n)\in D$, існують відкриті інтервали I_1,\ldots,I_n з $a_i\in I_i$ такі що $I_1\times\ldots\times I_n\subset D$ Я можу покласти

$$f_i(t) = f(a_1, \dots, a_{i-1}, t, a_{i+1}, \dots, a_n)$$
 $t \in I_i$

Приклад 3.11.

$$n = 2$$
 $f_1(t) = f(t, a_2)$ $f_2(t) = f(a_1, t)$

Рис. 3.2: $f \in$ неперервною в $A = (a_1, a_2)$

Визначення 3.12. f ϵ частково неперервною в $A=(a_1,\ldots,a_n)$ якщо $f_i(t)$ ϵ неперервними в a_i $(1\leq i\leq n)$

- <u>неперервність:</u> $f(x_1, x_2) \xrightarrow[(x_1, x_2) \to (a_1, a_2)]{} f(a_1, a_1)$
- <u>часткова:</u> $f(x_1, a_2) \xrightarrow[x_1 \to a_1]{} f(a_1, a_2)$ та $f(a_1, x_2) \xrightarrow[x_2 \to a_2]{} f(a_1, a_2)$
- Гарне поняття: неперервність передбачає часткову неперервність (зворотне хибне)

Приклад 3.13.

$$f(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2} \text{ якщо } (x_1, x_2) \neq (0, 0) \\ 0 \text{ якщо } (x_1, x_2) = (0, 0) \end{cases}$$

неперервна на $\mathbb{R}^2 \setminus \{(0,0)\}$

 \bullet частково неперервна в (0,0)

$$f(x_1,0) = \begin{cases} 0 \text{ якщо } x_1 = 0 \\ 0 \text{ якщо } x_1 \neq 0 \end{cases}$$
 $f(0,x_2) = 0 \, \forall x_2$

• не ϵ неперервною в (0,0):

$$x_1 = r\cos(\theta) \quad x_2 = r\sin(\theta)$$

$$f(r\cos(\theta), r\sin(\theta)) = \begin{cases} 0 \text{ якщо } r = 0 \\ \frac{r^2\cos(\theta)\sin(\theta)}{r^2} = \cos(\theta)\sin(\theta) \text{ якщо } r \neq 0 \end{cases}$$

$$\lim_{r\to 0}f(r\cos(\theta),r\sin(\theta))=\cos(\theta)\sin(\theta)\neq 0$$
якщо $\theta\neq 0,\pi,\frac{\pi}{2},\dots$

гозділ **4**

Диференціювання функцій від кількох змінних

4.1 Вступ

n = 1: як визначити $f'(x_0)$?

1.
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

2. DL:
$$f(x) = f(x_0) + a_1(x - x_0) + (x - x_0)\varepsilon(x)$$
 де $a_1 = f'(x_0)$

f:D o R D відкритий $X_0\in D$ $D\subset \mathbb{R}^n$

Визначення 4.1. f диференційовна в X_0 у напрямку $\vec{u}~(\neq \vec{0})$ якщо функція

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto g(t) = f(X_0 + t\vec{u}).$

диференційовна в t=0

Інакше кажучи, похідна за напрямком (у напрямку вектора \vec{u}) задається так:

$$D_u f(X_0) = \lim_{t \to 0} \frac{f(X_0 + t\vec{u}) - f(X_0)}{t}$$
(4.1)

Y випадку \mathbb{R} ми мали визначення похідної:

$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}$$

Напрямок був завжди той самий (вісь x), це можна розглядати як взяття вектора u=(1) і використання лише осі x як напрямку, і ми отримуємо рівняння (4.1)

Рис. 4.1: Напрямна похідна

 $\vec{e_1},\dots,\vec{e_n}$ канонічна база $\mathbb{R}^n,\,f$ має частинні похідні в $X_0,\,$ якщо f диференційовна в X_0 за напрямками $\vec{e_1},\dots,\vec{e_n}.$

$$\frac{d}{dt}f(X_0 + t\vec{e_i})\mid_{t=0}$$

позначається

$$\frac{\partial f}{\partial x_i}(X_0)$$

Натомість функція може бути диференційовною в $\underline{\text{усі напрямки}}$ в одній точці, але $\underline{\text{не бути}}$ продовжується в цій точці, ось

Приклад 4.2.

$$f(x_1,x_2) = \begin{cases} 1 \text{ якщо } x_2 = x_1^2 \text{ i } (x_1,x_2) \neq (0,0) \\ 0 \text{ інакше} \end{cases}$$

Рис. 4.2: Приклад диференційовної, але не неперервної функції

$$f((0,0) + t\vec{u}) = f(t\vec{u}) = 0$$

якщо $t \neq 0$ і t малий, маємо, що f диференційовна в усіх напрямках. Але, f не є неперервною в (0,0):

$$X_n = (\frac{1}{n}, \frac{1}{n^2}) \quad X_n \to (0, 0)$$

$$\forall n, f(X_n) = 1 \quad f(X_n) \not\xrightarrow[n \to \infty]{} f(0, 0)$$

Визначення 4.3. Нехай $D \subset \mathbb{R}^n$ відкрита та $X_0 \in D$, функція $f:D \to \mathbb{R}$ є диференційовною в X_0 якщо існує вектор $\vec{u} \in \mathbb{R}^n$ такий, що

$$f(X_0 + \vec{X}) = f(X_0) + \vec{u} \cdot \vec{X} + ||\vec{X}|| \varepsilon(\vec{X})$$

де $\lim_{\vec{X}\to\vec{0}} \varepsilon(\vec{X}) = 0$

Інтуїція. Пропоную поміркувати над тим, що означає це визначення. Нагадаємо, що інтуїтивно означає похідна у випадку $\mathbb{R}^n = \mathbb{R}$ (n=1). Інтуїтивно, якщо збільшити функцію, яку ми диференціюємо, вона поводиться і виглядає як лінія. У випадку $R^n = \mathbb{R}^2$, якщо збільшити функцію, вона виглядає як площина. Дійсно, це і є ідея похідної: якщо зробити маленький-маленький крок мурашки, переміщення також буде маленьким і рівномірним. Зі збільшенням n, похідна дає скаляри для побудови підпростору розмірності n-1 простору \mathbb{R}^n .

Примітка. Щоб показати, що функція диференційовна, достатньо показати, що її частинні похідні неперервні.

4.2 Обмежений Розклад першого порядку

Ця репрезентація похідної як підпростору при збільшенні зображена за допомогою DL першого порядку. З визначення 4.3, цей вектор \vec{u} позначається $\vec{\nabla} f(X_0)$ (градієнт f в X_0)

Твердження 4.4. f диференційовна в $X_0 \Rightarrow f$ диференційовна за всіма напрямками в X_0 , і тоді:

$$\vec{\nabla} f(X_0) = \begin{pmatrix} \frac{\partial f}{\partial x_1} f(X_0) \\ \dots \\ \frac{\partial f}{\partial x_n} f(X_0) \end{pmatrix}$$

у базисі $\vec{e_1}, \dots, \vec{e_n}$

Доведення. f є неперервною в X_0 $|\vec{u} \cdot X| \leq |\vec{u}||X|$

1. неперервність

$$|f(X_0 + X) - f(X_0)| \le |\vec{u} \cdot X| + ||X|| |\varepsilon(X)|$$

 $\le ||X|| (||\vec{u}|| + |\varepsilon(x)|) \le c||X||$

отже:
$$f(X_0 + X) \xrightarrow[X \to \vec{0}]{} f(X_0)$$

2. .

$$g(t) = f(X_0 + t\vec{v}) = f(X_0) + \vec{\nabla}f(X_0) \cdot t\vec{v} + ||t\vec{v}|| \cdot \varepsilon(t\vec{v})$$
$$= f(X_0) + t\vec{\nabla}f(X_0) \cdot \vec{v} + |t|||\vec{v}||\varepsilon_1(t)$$
$$= f(X_0) + t\vec{\nabla}f(X_0) \cdot \vec{v}$$

отже:

$$\frac{d}{dt}f(X_0 + t\vec{v})\mid_{t=0} = \vec{\nabla}f(X_0) \cdot \vec{v}$$

(взяти $\vec{v} = \vec{e_1}, \dots, \vec{e_n}$ для координат $\vec{\nabla} f(X_0)$)

Визначення 4.5.

$$D\subset\mathbb{R}^n$$
 D відкрита $f:D o\mathbb{R}$ є \mathcal{C}^1 на D

Нехай $D\subset\mathbb{R}^n$ відкрита, тоді функція $f:D\to\mathbb{R}$ є класу \mathcal{C}^1 на D якщо f є диференційовною в кожній $X\in D$ і функція

$$: D \longrightarrow \mathbb{R}^n$$
$$X \longmapsto \vec{\nabla} f(X)$$

є неперервною.

Теорема 4.6. f класу \mathcal{C}^1 на D тоді і лише тоді, якщо f має неперервні частинні похідні у кожній точці D.

Приклад 4.7.

$$f(X) = f(X_0) + \vec{\nabla}f(X_0) \cdot (X - X_0) + ||X - X_0|| \varepsilon (X - X_0)$$

лінійний

 $\mathbb{V} \mathbb{R}^3$: f(x,y,z)

$$S = \{(x, y, z) : f(x, y, z) = 0\}$$

S: поверхня в \mathbb{R}^3 , $X_0 \in S$ дотична площина до S у X_0 , площина рівняння:

$$f(X_0) + \vec{\nabla}f(X_0) \cdot X = 0$$

Рис. 4.3: Приклад диференційовної поверхні

4.3 Екстремуми та критичні точки

Визначення 4.8. Екстремум (локальний) f — це мінімум або максимум (локальний) f

• X_0 є локальним максимумом f, якщо: $\exists \delta > 0$ таке що

$$\forall X \in D, f(X) \leq f(X_0) \ \text{3} \ d(X, X_0) \leq \delta$$

• X_0 є локальним мінімумом f, якщо: $\exists \delta > 0$ таке що

$$\forall X \in D, f(X) \geq f(X_0) \ \text{3} \ d(X, X_0) \leq \delta$$

Визначення 4.9. Нехай $f:D \to \mathbb{R}$ та $X_0 \in D$, тоді якщо

$$\vec{\nabla}f(X_0) = \vec{0}$$

тому X_0 є **критичною точкою**.

Інтуїція. Зв'язок між екстремумами та критичною точкою:

- 1. щоб існував екстремум, необхідно, щоб існувала хоча б одна критична точка це необхідний <u>але не достатній</u> критерій.
- 2. кожен локальний екстремум є критичною точкою

Критичні точки falicites пошук локальних екстремумів.

Теорема 4.10. Нехай $f:D\longrightarrow \mathbb{R}$ диференційовна, D відкрита і $X_0\in D$ (інакше, якщо D не відкрита, потрібно $X_0\in \mathrm{Int}(D)$) тоді:

 X_0 локальний екстремум $\Rightarrow X_0$ критична точка

Приклад 4.11. Не кожна критична точка ϵ локальним екстремумом

Рис. 4.4: Критична точка, яка не є локальним екстремумом

4.4 Часткові похідні порядку ≥ 2

Визначення 4.12. Нехай D, тоді $f:D\to\mathbb{R}$ є \mathcal{C}^k якщо $f:D\to\mathbb{R}$ є \mathcal{C}^1 і $\partial_{x_i}f:D\to\mathbb{R}$ є C^{k-1}

Визначення 4.13. Нехай $\alpha=(\alpha_1,\ldots,\alpha_n)$ $\alpha_i\in\mathbb{N}$. Покладемо

$$\partial_x^{\alpha} f = \frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \cdot \dots \cdot \frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}$$

це позначення для похідної вищого порядку.

$$\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} f \stackrel{?}{=} \frac{\partial^2}{\partial x_1^2} \frac{\partial}{\partial x_2} f$$

Теорема 4.14. Лема Шварца

Якщо $f \in \mathcal{C}^2(D)$ тоді

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(X) = \frac{\partial^2 f}{\partial x_j \partial x_i}(X) \qquad \forall X \in D, \forall i,j$$

Приклад 4.15. де функція має часткові похідні вищого порядку, але $\frac{\partial^2 f}{\partial x_i \partial x_j}(X) \neq \frac{\partial^2 f}{\partial x_j \partial x_i}(X)$

$$f(x_1,x_2) = \begin{cases} x_1x_2\frac{x_1^2-x_2^2}{x_1^2+x_2^2} \text{ якщо } (x_1,x_2) \neq (0,0) \\ 0 \text{ якщо } (x_1,x_2) = 0 \end{cases}$$

$$r^2 \sin(\theta) \cos(\theta) \cos(2\theta) = \frac{1}{4} r^2 \sin(4\theta)$$

Обчислимо $\frac{\partial^2 f}{\partial_{x_1}\partial_{x_2}}(0,0)$? Це $\frac{\partial}{\partial x_1}g(x_1)$ у $x_1=0$ для $g(x_1)=\frac{\partial f}{\partial x_2}(x_1,x_2)|_{x_2=0}$. Обчислення $g(x_1)$:

- 1. якщо $x_1 \neq 0$ $\frac{\partial f}{\partial x_2}(x_1,x_2) = x_1 \frac{x_1^2 x_2^2}{x_1^2 + x_2^2}$, отже якщо $x_1 \neq 0$ $\frac{\partial f}{\partial x_2}(x_1,0) = x_1$
- 2. якщо $x_1 = 0$ $f(0, x_2) = 0$

Висновок:

$$\frac{\partial f}{\partial x_2}(x_1, 0) = x_1 \quad \forall x_1$$

отже:

$$\frac{\partial}{\partial x_1} \frac{\partial}{\partial x_2} f(0,0) = 1$$

$$\frac{\partial}{\partial x_2}\frac{\partial}{\partial x_1}f(0,0)=$$
?. Бачимо, що, $f(x_2,x_1)=-f(x_1,x_2)$ отже

$$\frac{\partial}{\partial x_2}\frac{\partial}{\partial x_1}f(0,0) = -\frac{\partial}{\partial x_1}\frac{\partial}{\partial x_2}f(0,0) = -1$$

4.5 Формула Тейлора другого порядку

Визначення 4.16. Нехай $f \in \mathcal{C}^2(D)$. Гессіанна матриця: матриця $n \times n$

$$H_f(X_0) = \left[\frac{\partial^2}{\partial x_i \partial x_j}(X_0)\right] 1 \le i, j \le n$$

Лема 4.14 дає нам, що $H_f(X_0)$ є симетричною якщо $f \in \mathcal{C}^2(D)$

Нагадаємо:

$$\vec{\nabla}f(X_0) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(X_0) \\ \vdots \\ \frac{\partial f}{\partial x_n}(X_0) \end{pmatrix}$$

Теорема 4.17. Теорема Тейлора другого порядку Нехай $f \in C^2(D), X_0 \in D$. Тоді

$$f(X_0 + \vec{X}) = f(X_0) + \vec{\nabla}f(X_0) \cdot \vec{X} + \frac{1}{2}\vec{X} \cdot H_f(X_0)\vec{X}$$

приклад у \mathbb{R}^1

$$f(x_0 + x) = f(x_0) + f'(x_0)x + \frac{1}{2}f''(x_0)x^2 + \dots$$

Інтуїція. Отже, гессіанська матриця слугує для обчислення похідної другого порядку.

4.6 Нагадування з лінійної алгебри та зв'язок з аналізом

$$\vec{X} \cdot A\vec{X} = \sum_{1 \le i, j \le n} x_i a_{i,j} x_j$$

Якщо
$$\vec{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 $A = \begin{bmatrix} a_{i,j} \end{bmatrix}$ маємо: $X \mapsto X \cdot AX$ для вивчення. Якщо $A = A^T, A \in \mathcal{M}_n(\mathbb{R})$

"А допускає ортонормований базис власних векторів"

Існує базис $\vec{u_1}, \dots, \vec{u_n}$ з \mathbb{R}^n з $\vec{u_i} \cdot \vec{u_j} = \delta_{i,j}$ (1 якщо i=j і 0 в іншому випадку) та дійсні числа $\lambda_1, \dots, \lambda_n (\lambda_i = \lambda_j$ можливо) такі, що

$$A\vec{u_i} = \lambda_i \vec{u_i}$$

$$\vec{X} = \sum_{j=1}^n y_j \vec{u_j}$$

$$\vec{X} \cdot \vec{u_i} = \sum_{j=1}^n y_j \vec{u_j} \vec{u_i} = y_i$$

$$\|\vec{X}\|^{2} = \vec{X} \cdot \vec{X} = \left(\sum_{j=1}^{n} y_{j} \vec{u_{j}}\right) \cdot \left(\sum_{i=1}^{n} y_{i} \vec{u_{i}}\right)$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} y_{j} y_{i} \vec{u_{j}} \cdot \vec{u_{i}}$$

$$= \sum_{j=1}^{n} y_{j}^{2}$$

$$A\vec{X} = A\sum_{j=1}^{n} y_j \vec{u_j} = \sum_{j=1}^{n} y_j A \vec{u_j} = \sum_{j=1}^{n} \lambda_j y_j \vec{u_j}$$
$$\vec{X} \cdot A\vec{X} = \sum_{j=1}^{n} \lambda_j y_j^2$$

1. якщо $\lambda_i > 0 \ (1 \le i \le n)$

$$C = \min \lambda_i > 0$$

$$X \cdot AX \ge C \sum_{i=1}^n y_i^2 = C \|X\|^2$$

2. якщо $\lambda_i < 0 \ (1 \le i \le n)$

$$-C = \max \lambda_i < 0$$
$$X \cdot AX \le -C||X||^2$$

Приклад 4.18. n=2

$$f(y_1, y_2) = -y_1^2 + 3y_2^2$$
$$\lambda_1 = -1 \qquad \lambda_2 = 3$$
$$f(y_1, 0) < f(0, 0) < f(0, y_2)$$

4.7 Природа критичних точок

Теорема 4.19. (Природа критичних точок)

Нехай $f \in \mathcal{C}^2(D), X_0 \in D, D$ відкрита і $\nabla f(X_0) = \vec{0}$

- 1. якщо всі власні значення $H_f(X_0)$ є > 0 (відп. < 0) X_0 є мінімумом (відп. максимумом) локальним.
- 2. якщо всі власні значення $H_f(X_0)$ є <u>ненульовими</u> але не одного знаку, X_0 не є локальним екстремумом: X_0 є сідловою точкою (точкою перегину).
- 3. якщо 0 власних значень $H_f(X_0)$, висновок неможливий, $(X_0$ вироджена критична точка) тобто нічого не можна зробити висновок

Доведення. Доказ теореми 4.19

$$f(X_0 + X) - f(X_0) = \frac{1}{2}X \cdot H_f(X_0)X + ||X||^2 \varepsilon(X)$$

1. якщо $\lambda_i > 0$ $\frac{1}{2} X \cdot H_f(X_0) X \geq C \|X\|^2$ C > 0

$$f(X_0+X)-f(X_0) \geq \|X\|^2(C+arepsilon(X)) \geq rac{C}{2}\|X\|^2$$
 якщо $\|X\|$ досить малий

 $\Rightarrow X_0$ локальний мінімум

2. якщо $\lambda_1 < 0$ і $\lambda_2 > 0$

$$H_f(X_0)\vec{u_i} = \lambda_i \vec{u_i}$$

$$f(X_0 + t\vec{u_i}) = f(X_0) + \frac{1}{2}\lambda_i t^2 + t^2 \varepsilon(t)$$

$$\varepsilon(t\vec{u_i}) = \varepsilon(t)$$

$$f(X_0 + t\vec{u_i}) - f(X_0) = t^2(\frac{1}{2}\lambda_i + \varepsilon(t))$$

якщо $i=1<0\;|t|$ малий, $i=2>0\;|t|$ малий, тоді X_0 не ϵ локальним екстремумом

Приклад 4.20.

$$f(x,y) = \frac{1}{2}(x^2 - y^2)$$

$$H_f(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$I_f = \{(x,y,z) : z = \frac{1}{2}(x^2 - y^2)\}$$

Рис. 4.5: Приклад сідлової точки.

Червоні лінії представляють часткові похідні, і ми бачимо, що одні зростають, а інші спадають, тому ця точка не ε ні мінімумом, ні максимумом

Приклад 4.21. n=2

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$$

 $(a_{1,2} = a_{2,1})$

Власні значення: корені характеристичного пол.:

$$P(\lambda) = \det(A - \lambda I) = \begin{vmatrix} a_{1,1} - \lambda & a_{1,2} \\ a_{2,1} & a_{2,2} - \lambda \end{vmatrix} = (\lambda - a_{1,1})(\lambda - a_{2,2}) - a_{1,2}a_{2,1}$$

$$\lambda^2 - (a_{1,1} + a_{2,2})\lambda + a_{1,1}a_{2,2} - a_{2,1}a_{1,2}$$

$$a_{1,1} + a_{2,2} = Tr(A)$$

$$a_{1,1}a_{2,2} - a_{2,1}a_{1,2} = \det(A)$$

$$x^2 - Sx + P = x^2 - (\lambda_1 + \lambda_2)x + \lambda_1\lambda_2$$

$$\det(A) = \text{ добуток власних значень}$$

$$Tr(A) = \text{ сума власних значень}$$

$$A = H_f(X_0)$$

- 1. якщо $\det(A) < 0$, X_0 сідлова точка
- 2. якщо $\det(A) > 0$
 - (a) $Tr(A) > 0, X_0$ мінімум
 - (б) $Tr(A) < 0, X_0$ максимум
- 3. $\det(A) = 0, X_0$ вироджена критична точка

4.8 Ланцюгове правило диференціювання

Визначення 4.22. Нехай $f: \mathbb{R}^n \to \mathbb{R}$ неперервна функція, що диференціюється, та функції $g_1: \mathbb{R} \to \mathbb{R}$, ..., $g_n: \mathbb{R} \to \mathbb{R}$ диференційовні та неперервні функції, і

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$

 $t \longmapsto h(t) = f(g_1(t), g_2(t), \dots, g_n(t))$

тоді

$$h'(t) = \frac{\partial g_1}{\partial h} g_1'(t) + \frac{\partial g_2}{\partial h} g_2'(t) + \ldots + \frac{\partial g_n}{\partial h} g_n'(t)$$

Визначення 4.23. Нехай $f:\mathbb{R}^n\to\mathbb{R}$ неперервна диференційовна функції та функції $g_1:\mathbb{R}^p\to\mathbb{R},\ldots,g_n:\mathbb{R}^p\to\mathbb{R}$ диференційовні функції тобто

$$\forall i \in \{1, \dots, n\}, \quad g_i : \mathbb{R}^p \longrightarrow \mathbb{R}$$
$$(t_1, \dots, t_n) \longmapsto q_i(t_1, \dots, t_n)$$

та

$$h: \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $(x_1, \dots, x_n) \longmapsto h(g_1(t_1, \dots, t_p), \dots, g_n(t_1, \dots, t_p)).$

тоді

$$\frac{\partial h}{\partial t_i} = \frac{\partial h}{\partial x_1} \frac{\partial g_1}{\partial t_i} + \ldots + \frac{\partial h}{\partial x_n} \frac{\partial g_n}{\partial t_i}$$

розділ **5**

Нормовані векторні простори

5.1 Вступ

Визначення 5.1. Нехай $E-\mathbb{K}$ -векторний простір і $\lambda\in\mathbb{R}$, **норма** на E є відображенням $N:E\to\mathbb{R}_+$ з:

1. $N(\lambda u) = |\lambda| N(u) \quad u \in E$

2. $N(u+v) \le N(u) + N(v)$

3. $N(u) = 0 \Leftrightarrow u = 0_E$

напівнорма: 1 і 2 тільки.

Ми можемо інтерпретувати 2 як:

$$|N(u) - N(v)| \le N(u - v)$$

Твердження 5.2. Індуктована норма: Якщо $F \subset E$ є векторним підпростором, я обмежую N до F, тоді (F, N) є нормованим векторним простором.

Приклад 5.3. $E = \mathbb{K}^n$ з $x = (x_1, \dots, x_n) \in E$

- $||x||_1 = \sum_{i=1}^n |x_i|$
- $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$
- $\bullet ||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
- $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}} \ \text{3 } 1 \le p < \infty$

Твердження 5.4. Трикутна нерівність для p>2 називається **нерівність Мінковського**:

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

Визначення 5.5. Нехай U множина та $E = \{f : U \to \mathbb{K} \text{ обмежена}\}$

$$\|f\|_{\infty} = \sup_{x \in U} |f(x)|$$
норма на Е

Визначення 5.6. $R([a,b],\mathbb{K})=\{ \ \mathrm{ri} \ f:[a,b] \to \mathbb{K} \ \mathrm{iнтегровнi} \ \mathrm{зa} \ \mathrm{Pіманом}^a \ \}$

 a Функція є інтегровною за Ріманом (не обов'язково неперервна), якщо можна обчислити площу, використовуючи інтегрування за сумами Рімана. Тоді, якщо f розривна, вона є інтегровною за Ріманом, якщо розрив є незначним.

Приклад 5.7.

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}} \ \ 3 \ 1 \le p < \infty$$

 $\|.\|_p$ є напівнормою на $R([a,b],\mathbb{K})$ (нерівність Мінковського). $\|f\|_p=0$ не означає, що f=0 (напр.: $[a,b]=[-1,1],\ f(x)=x,\ p=3).$

$$||u+v||_p \le ||u||_p + ||v||_p$$

На $E=\mathcal{C}([a,b],\mathbb{K}),$ $\|.\|_p$ є нормою: якщо $f:[a,b]\to\mathbb{K}$ неперервна і $\int_a^b|f(x)|^p\,dx=0$ тоді $f(x)=0 \forall x\in[a,b]$

Приклад 5.8. $E=\mathbb{K}^{\mathbb{N}}$ множина послідовностей u зі значеннями в \mathbb{K}

$$u = (u_1, u_2, \dots, u_n, \dots)$$

для $1 \le p < \infty$

$$l^p(\mathbb{N}, \mathbb{K}) = \{(u_n) : \sum_{n \in \mathbb{N}} |u_n|^p \in \mathfrak{s}$$
біжною \}

$$||u||_p = \left(\sum_{n=0}^{\infty} |u_n|^p\right)^{\frac{1}{p}}$$

 ϵ нормою на $l^p(\mathbb{N}, \mathbb{K})$

$$p=\infty$$
 $l^{\infty}(\mathbb{N},\mathbb{K})=\{u \text{ обмежена }\}$
$$\|u\|_{\infty}=\sup_{n\in\mathbb{N}}|u_n|$$

5.2 Топологія нормованих векторних просторів

Твердження 5.9. Нехай (E, ||.||) нормований векторний простір з

$$d(u, v) = ||u - v||$$

відстань на E (індукована $\|.\|$), тоді (E,d) є метричним простором.

Визначення 5.10. Повний нормований векторний простір називається банаховим простором.

Випадок скінченної вимірності:

- 1. Будь-який нормований векторний простір скінченної розмірності є повним (нагадування: пропозиція 2.43) (див. нижче)
- 2. Якщо E скінченновимірного:

K компактний $\Leftrightarrow K$ замкнений та обмежений

Лема 5.11.

$$(\mathcal{C}([0,1],\mathbb{R}),\|.\|_1)$$

не ε повним.

Доведення. Побудуємо послідовність неперервних функцій $(f_n)_{n\in\mathbb{N}}$ на [0,1], яка сходиться за нормою $\|\cdot\|_1$ до розривної функції f. Це покаже, що границя цієї послідовності за нормою $\|\cdot\|_1$ не належить до $\mathcal{C}([0,1],\mathbb{R})$, отже, цей простір не є повним.

Рис. 5.1: Лема з неповним простором

Визначення послідовності (f_n) : для кожного $n\in\mathbb{N}$ визначимо $f_n:[0,1]\to\mathbb{R}$ як

$$f_n(x) = \begin{cases} 0 & \text{якщо } x \le \frac{1}{2} - \frac{1}{2n}, \\ 2n\left(x - \frac{1}{2} + \frac{1}{2n}\right) & \text{якщо } \frac{1}{2} - \frac{1}{2n} < x < \frac{1}{2} + \frac{1}{2n}, \\ 1 & \text{якщо } x \ge \frac{1}{2} + \frac{1}{2n}. \end{cases}$$

Кожна f_n є неперервною на [0,1], оскільки вона є кусково-афінною з неперервними з'єднаннями.

Визначення граничної функції : покладемо

$$f(x) = \begin{cases} 0 & \text{якщо } x < \frac{1}{2}, \\ 1 & \text{якщо } x > \frac{1}{2}, \\ \text{довільне значення} & \text{якщо } x = \frac{1}{2}. \end{cases}$$

Тоді $f \in \mathbf{розривною}$ в $x = \frac{1}{2}$, отже $f \notin \mathcal{C}([0,1],\mathbb{R})$.

Збіжність (f_n) до f за нормою $\|\cdot\|_1$: Маємо

$$||f_n - f||_1 = \int_0^1 |f_n(x) - f(x)| dx.$$

Але $f_n(x)=f(x)$ скрізь, крім інтервалу $\left[\frac{1}{2}-\frac{1}{2n},\frac{1}{2}+\frac{1}{2n}\right]$ довжиною $\frac{1}{n}$, і на цьому інтервалі $|f_n(x)-f(x)|\leq 1$, тому :

$$||f_n - f||_1 \le \int_{\frac{1}{2} - \frac{1}{2n}}^{\frac{1}{2} + \frac{1}{2n}} 1 \, dx = \frac{1}{n} \xrightarrow[n \to \infty]{} 0.$$

Таким чином, $f_n \to f$ за нормою $\|\cdot\|_1$.

Наслідок : послідовність (f_n) є послідовністю Коші в $(\mathcal{C}([0,1],\mathbb{R}),\|\cdot\|_1)$, оскільки :

$$||f_n - f_p||_1 \le ||f_n - f||_1 + ||f - f_p||_1 \le \frac{1}{n} + \frac{1}{p} \xrightarrow[n, p \to \infty]{} 0.$$

Однак, границя f не ϵ неперервною, отже $f \notin \mathcal{C}([0,1],\mathbb{R})$.

Висновок : Існує послідовність Коші в $(\mathcal{C}([0,1],\mathbb{R}),\|\cdot\|_1)$, яка не сходиться в цьому просторі. Отже, цей простір не є повним.

Лема 5.12. У $E = l^1(\mathbb{N}, \mathbb{R})$ з

$$||u||_1 = \sum_{n=0}^{\infty} |u_n|$$

 $B_f(0,1)$ не є компактним.

Доведення. Побудуємо послідовність елементів з $B_f(0,1)$ без збіжної підпослідовності.

$$u \in E \quad u : \mathbb{N} \to \mathbb{R}$$

Я позначаю u(p) замість u_p послідовність у E позначена $(u_n),\,u_n\in E.\,u_n(p)$ р-й член $u_n.$ Я покладаю

$$u_n(p) = \delta_{n,p} = \begin{cases} 1 \text{ якщо } n = p \\ 0 \text{ інакше} \end{cases}$$

$$||u_n||_1 = \sum_{n=0}^{\infty} |u_n(p)| = |u_n(n)| = 1$$

Отже $u_n \in B_f(0,1) \forall n$. Якщо $v \in l^1(\mathbb{N}, \mathbb{R})$

$$|v(p)| \le \sum_{n=0}^{\infty} |v(p)| = ||v||_1$$

якщо $\|v_n-v\|_1 \xrightarrow[n\to\infty]{} 0$ тоді $\forall p,v_n(p)\to v(p)$. Припустимо, що $(v_n)=(u_{\phi(n)})$ є підпослідовністю (u_n) , яка збігається до v для $\|.\|$. Я фіксую $p\in\mathbb{N},\ v_n(p)=u_{\phi(n)}(p)\xrightarrow[n\to\infty]{} v(p),$ але $v_n(p)\xrightarrow[n\to\infty]{} 0$, отже v(p)=0 $\forall p.\ v$: нульова послідовність, також

$$\|v_n\|_1 = 1 \forall n$$
 ta $\|v_n\|_1 \xrightarrow[n \to \infty]{} \|v\|_1$

протиріччя

5.3 Еквівалентні норми

Визначення 5.13. Дві норми N_1 та N_2 на E ε еквівалентними $(N_1 \sim N_2)$ якщо $\exists c_1, c_2 > 0$ такі що

- $N_1(u) \le c_1 N_2(u) \quad \forall u \in E$
- $N_2(u) \le c_2 N_1(u) \quad \forall u \in E$

 $\exists c > 0$ така що

$$cN_1(u) \le N_2(u) \le cN_1(u)$$

Примітка 5.14. Якщо $N_1 \sim N_2$ і $N_2 \sim N_3$, тоді $N_1 \sim N_3$

Визначення 5.15. Норми N_1 і N_2 є топологічно еквівалентними, якщо вони визначають одні й ті ж відкриті множини.

Теорема 5.16. Нехай N_1, N_2 дві норми, тоді:

 N_1, N_2 топологічно еквівалентні $\Leftrightarrow N_1, N_2$ еквівалентні

Приклад **5.17.** 1. $E = \mathcal{C}([0,1],\mathbb{R})$

- 2. $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$

3. $\|f\|_1=\int_0^1|f(x)|\;dx$ Зауважимо, що $\|f\|_1\leq \|f\|_\infty.$ Чи $\exists c>0$ така що

$$||f||_{\infty} \le c||f_1|| \forall f \in E$$

? Щоб це побачити, побудуємо послідовність (f_n) в E така що $||f_n||_1 \to 0$ але $||f_n||_\infty \not\to 0$

Теорема 5.18. Нехай E простір скінченної вимірності. Тоді всі норми на E ϵ еквівалентними.

Доведення. Оскільки E є скінченновимірним, існує базис E і, отже, лінійний ізоморфізм між E та \mathbb{R}^{n} (або \mathbb{C}^{n}). Як наслідок, ми можемо звести задачу до вивчення норм на \mathbb{R}^{n} .

Розглянемо норму $\|\cdot\|_1$ на E та визначимо відповідну одиничну сферу:

$$S = \{x \in E : ||x||_1 = 1\}.$$

У скінченновимірному просторі одинична сфера S є компактною (це базується на тому факті, що в \mathbb{R}^n замкнуті та обмежені множини є компактними).

Функція

$$f: S \to \mathbb{R}, \quad f(x) = ||x||_2$$

 ϵ неперервною, оскільки $\|\cdot\|_2$ ϵ нормою (а отже, неперервною функцією). За теоремою Вейєрштрасса, f досягає своїх границь на S. Отже, існує:

- Мінімум $m = \min_{x \in S} f(x) > 0$ (строгість m > 0 пояснюється тим, що $x \neq 0$ для $x \in S$).
- Максимум $M = \max_{x \in S} f(x)$.

Нехай $x \in E$ довільний, $x \neq 0$. Запишемо $x = ||x||_1 y$, де $y = \frac{x}{||x||_1}$ належить S. Тоді,

$$||x||_2 = ||x||_1 ||y||_2.$$

Однак, оскільки $y \in S$, ми маємо

$$m \le ||y||_2 \le M$$
.

Отже,

$$m \|x\|_1 \le \|x\|_2 \le M \|x\|_1$$
.

Поклавши c = m та C = M, ми отримуємо саме еквівалентність норм.

Для x = 0 нерівність є тривіальною, оскільки $||0||_1 = ||0||_2 = 0$.

РОЗДІЛ 5. НОРМОВАНІ ВЕКТОРНІ ПРОСТОРИ

48

5.4Доповнення до нормованих векторних просторів

5.4.1Послідовності функцій

X множина $(X\subset\mathbb{R}),\ f_n:X\to\mathbb{R}(\mathbb{C})$ та $(f_n)_{n\in\mathbb{N}}.$ Корисно для подальшого розділу: $B(X,\mathbb{R})$ позначає множину функцій $f:X\to\mathbb{R}$ обмежені

5.4.2Збіжність проста:

Визначення 5.19. $(f_n)_{n\in\mathbb{N}}$ просто збігається до f якщо $\forall x_0\in X, f_n(x_0)\xrightarrow[n\to\infty]{} f(x_0)$ (не походить від

5.4.3 Рівномірна збіжність:

Визначення 5.20. $f \in B(X,\mathbb{R})$ якщо $\sup_{x \in X} |f(x)| = \|f\|_{\infty} < \infty$ (f обмежена на X). Рівномірна збіжність: $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ така що $\forall n \geq N \forall x \in X |f_n(x) - f(x)| < \varepsilon$ еквівалентно

$$\forall \varepsilon > 0 \exists N \in \mathbb{N}$$
 така що $\forall n \geq N, \|f_n - f\|_{\infty} < \varepsilon$

$$f_n \to f$$
 в $(B(X,\mathbb{R}),\|\cdot\|_{\infty})$

Визначення 5.21. Рівномірна границя неперервних функцій: $X = [a,b], \mathcal{C}([a,b],\mathbb{R}) \subset B([a,b],\mathbb{R})$ (підпростори векторів). $\mathcal{C}([a,b],\mathbb{R})$ є замкненим у $(B([a,b],\mathbb{R}),\|\cdot\|_{\infty})$

5.4.4 Ряди зі значеннями у нормованому векторному просторі.

Визначення 5.22. Нехай $(E,\|\cdot\|_{\infty})$ н.в.п. $^a,(u_n)_{n\in N}$ послідовність в E. Ряд $\sum u_n$ збігається в $(E,\|\cdot\|),$ якщо послідовність $S_N=\sum_{n=0}^N u_n$ збігається в $(E,\|\cdot\|).$ $\lim_{N\to\infty} S_N,$ що позначається $\sum_{n=0}^\infty u_n (\in E)$

Примітка 5.23. Якщо $\sum u_n$ і $\sum v_n$ сходяться, тоді

- $\sum u_n + v_n$ сходиться і $\sum \lambda u_n$ сходиться $\sum_{n=0}^{\infty} u_n + v_n = \sum_{n=0}^{\infty} u_n + \sum_{n=0}^{\infty} v_n$ $\sum_{n=0}^{\infty} \lambda u_n = \lambda \sum_{n=0}^{\infty} u_n$

5.4.5Нормальна збіжність

Визначення 5.24. $\sum u_n$ нормально збігається в $(E,\|\cdot\|)$ якщо $\sum \|u_n\|$ збігається в \mathbb{R} .

Приклад 5.25. $E = \mathbb{R}, \|x\| = |x|$. Нормальна збіжність = абсолютна збіжність $(\sum u_n$ збігається)

Приклад 5.26. $\sum u_n$ може збігатися, не збігаючись нормально, як: $u_n = \frac{(-1)^n}{n}$

^анормований векторний простір

Теорема 5.27. Якщо $(E,\|\cdot\|)$ є повним, будь-який нормально збіжний ряд є збіжним і

$$\|\sum_{n=0}^{\infty} u_n\| \le \sum_{n=0}^{\infty} \|u_n\|$$

Доведення. $S_n = \sum_{k=0}^n u_k$ і $T_n = \sum_{k=0}^n \|u_k\|$

$$n > p$$
 $||S_n - S_p|| = ||\sum_{k=p+1}^n u_k|| \le \sum_{k=p+1}^n ||u_k|| = T_n - T_p = |T_n - T_p|$

 (T_n) збігається в \mathbb{R} , тому (T_n) є Коші:

$$\forall \varepsilon > 0, \exists N$$
така що $\forall n > p \geq N |T_n - T_p| \leq \varepsilon$

тому (S_n) є Коші в $(E, \|\cdot\|)$. \underline{E} повний: (S_n) збігається до $S \in E$.

5.5 Неперервні лінійні відображення

Для будь-якої секції B_E позначає кулю закритий!

Нехай E, F два нормовані векторні простори з $\|\cdot\|_E$ та $\|\cdot\|_F$ відповідними нормами,

- $A \in \mathcal{L}(E, F)$
- $\lambda A \in \mathcal{L}(E, F)$ i $\lambda Ax = \lambda(Ax)$
- $A + B \in \mathcal{L}(E, F)$ i (A + B)x = Ax + Bx
- $0x = 0_F \ \forall x \in E$

$$\mathcal{L}(E) = \mathcal{L}(E, E)$$

- (AB)x = A(Bx) де $AB = A \circ B$
- $(\lambda A)B = \lambda (AB)$
- A(B+C) = AB + AC
- (A+B)C = AC + BC
- $\bullet \ 0A = 0$
- $AB \neq BA$ (загалом)
- A(BC) = (AB)C

Теорема 5.28. Нехай $A \in \mathcal{L}(E, F)$. Наступні властивості є еквівалентними:

- 1. $A:E\to F$ є неперервною
- 2. A є неперервною в 0_E
- 3. $\exists C \geq 0$ таке що

$$||Ax||_F \le C||x||_E \quad \forall x \in E$$

це називається, що A є обмеженою

4. $A \in \text{обмеженою на } B_E(0,R) \ \forall R > 0$

Кажуть, що $A \in \text{обмеженою}$ (якщо $A \in \text{неперервною}$ та лінійною)

Доведення. • 1) \Rightarrow 2) : очевидно

- $2) \Rightarrow 3)$:
 - <u>Гіпотеза:</u> $\forall \varepsilon > 0, \exists \delta > 0$ таке що $\|x 0_E\|_E \le \delta \Rightarrow \|Ax A0_E\|_F \le \varepsilon \|x\|_E \le \delta \Rightarrow \|Ax\|_F \le \varepsilon$
 - $-\varepsilon = 1 \exists \delta > 0$ таке що $\|x\|_E \le \delta \Rightarrow \|Ax\|_F \le 1$
 - Нехай $x \in E$ і $x \neq 0_E$
 - $-y = \frac{\delta}{\|x\|_E} x$ тому $\|y\|_E = \delta \Rightarrow \|Ay\|_F \le 1$
 - $-Ay = \frac{\delta}{\|x\|_E}Ax$ і A лінійне
 - $\|Ay\|_F = \frac{\delta}{\|x\|_E} \|Ax\|_F \le 1 \Rightarrow \|Ax\|_F \le \frac{1}{\delta} \|x\|_E$
- $3) \Rightarrow 1)$
 - Я фіксую $x_0 \in E$. потрібно перевірити: A неперервне в x_0 ?
 - $\|Ax Ax_0\|_F = \|A(x x_0)\|_F \le C\|x x_0\|_E$
 - Отже, якщо $||x-x_0||_E \leq \frac{\varepsilon}{c} = \delta(\varepsilon), ||Ax-Ax_0||_F \leq \varepsilon$

Позначення.

$$B(E,F) = \{A \in \mathcal{L}(E,F) : A$$
 неперервна $\}$
$$B(E,E) = B(E)$$

Лема 5.29. Якщо E ϵ скінченновимірним, то

$$\mathcal{L}(E,F) = B(E,F)$$

Це неправда, якщо $\dim E = \infty$

Доведення. (e_1, \ldots, e_n) база для E. На E всі норми ε еквівалентними.

- $||x||_E$ задана норма.
- $\bullet ||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

ле $x = \sum_{i=1}^{n} x_i e_i$

$$||Ax||_F = ||\sum_{i=1}^n x_i A e_i|| = \sum_{i=1}^n |x_i| ||Ae_i||_F$$

$$||Ax||_F \le ||x||_{\infty} \times \sum_{i=1}^n ||Ae_i||_F = C||x||_{\infty}$$

 $(\|x\|_{\infty}\| \leq C'\|x\|_E).$ Отже: $\|Ax\|_F \leq CC'\|x\|_E.$ Тоді: $A \in B(E,F)$

5.5.1 Норма на B(E, F)

Теорема 5.30. Нехай $A \in B(E,F)$, покладемо $\|A\| = \sup_{x \in E, \|x\|_E \le 1} \|Ax\|_F = \sup_{x \in B_E(0,1)} \|Ax\|_F$

- 1. $\|\cdot\|$ є нормою на B(E,F) називається рівномірною нормою.
- 2. Маємо: $||Ax||_F \le ||A|| ||x||_E \quad \forall x \in E$
- 3. ||A|| = найменша константа C така що $||Ax||_F \le C||x||_E \quad \forall x \in E$

Примітка 5.31. 1. Можна записати $||A||_{B(E,F)}$ замість ||A||

- 2. Іноді зустрічається |||A||| для ||A||
- 3. Нехай $I^+ =$ множина $C \ge 0$ така що $\|Ax\|_F \le C \|x\|_E \quad \forall x \in E$. $I^+ \ne \emptyset$ (оскільки $A \in B(E,F)$) та $I^+ \subset [0,+\infty[$. (2) та (3) говорять, що $\|A\|$ є найменшим елементом I^+

$$\inf I^+ = \min I^+ = ||A||$$

Доведення. 1. $A \in B(E,F) \Leftrightarrow \sup_{x \in B_F(0,1)} \|Ax\|_F < \infty \Leftrightarrow \|A\|$ добре визначена.

$$||(A+B)x||_F = ||Ax + Bx||_F \le ||Ax||_F + ||Bx||_F$$

$$\Rightarrow \sup_{x \in B_E(0,1)} ||(A+B)x||_F \le \sup_{x \in B_E(0,1)} ||Ax||_F + \sup_{x \in B_E(0,1)} ||Bx||_F$$

$$||A+B|| \le ||A|| + ||B||$$
 та $A,B \in B(E,F) \Rightarrow A+B$ також

$$\|\lambda A\| = |\lambda| \|A\|$$
та $A \in B(E,F) \Rightarrow \lambda A$ також

Якщо $\|A\|=0$, тоді $\|Ax\|_F=0 \forall x\in B_E(0,1)\Rightarrow Ax=0_F \forall x\in B_E(0,1)$

$$Ax = \|x\|_E A \frac{x}{\|x\|_E}$$

$$Ax = 0_F \forall x \in E \Rightarrow A = 0_{L(E|F)}$$

$$C \in I^+$$
 якщо $\|Ax\|_F \leq C \|x\|_E \quad \forall x \in E$

$$||A|| \in I^+ \Rightarrow ||Ax||_F \le ||A|| ||x||_E \forall x$$

- Очевидно, якщо $x = 0_E$.
- Якщо $x \neq 0_E, \ y = \frac{x}{\|x\|_E} \in B_E(0,1)$ тому

$$||Ay||_F = \frac{1}{||x||_E} ||Ax||_F \le ||A|| \Rightarrow ||Ax||_F \le ||A|| ||x||_E$$

Нехай $C \in I^+$ тому

$$||Ax||_F \leq C||x||_E$$

тому $\|Ax\|_F \le C \quad \forall x \in B_E(0,1)$, тому $\|A\| \le C$, тоді

$$||A|| = \min I^+ =$$
 "найкраща константа C "

Приклад 5.32. $E = \mathcal{C}([a,b],\mathbb{R}), \ \|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|, \ F = \mathbb{R}, \ u \in \mathcal{C}([a,b],\mathbb{R})$

$$A:E\longrightarrow F$$

$$f \longmapsto A(f) = \int_a^b f(x)u(x) dx.$$

<u>А обмежений</u>: потрібно показати: $\exists C \geq 0$ такий що

$$\left| \int_{a}^{b} f(x)u(x) \, dx \right| \le C \sup_{x \in [a,b]} |f(x)|$$

?

$$\left| \int_{a}^{b} f(x) u(x) \ dx \right| \leq \int_{a}^{b} |f(x)| |u(x)| \ dx \leq \int_{a}^{b} \|f\|_{\infty} |u(x)| \ dx = \|f\|_{\infty} \int_{a}^{b} |u(x)| \ dx$$

$$C = \int_{a}^{b} |u(x)| dx$$
 підходить

(Насправді $\|A\|=\int_a^b|u(x)|\,dx$). $E=\mathcal{C}^1([0,1],\mathbb{R})$ оснащений $\|f\|_\infty,\,F=\mathbb{R},\,Af=f'(0)$ лінійний, але не неперервний. Побудуємо послідовність (f_n) в E така що $\|f_n\|_E\xrightarrow[n\to\infty]{}0$ але $\|Af_n\|_F\not\to 0$

$$f_n(x) = \frac{1}{n}\sin(nx)$$

Твердження 5.33. Нехай $A \in B(E,F)$ та $\|A\| = \sup_{\|x\|_E \le 1} \|A\|_F$ рівномірна норма. $\|A\| =$ найменший c такий що

$$||Ax||_F \le c||x||_E \quad \forall x \in E$$

Доведення. $E = \mathcal{C}([a,b],\mathbb{R})$ і $\|f\|_1 = \int_a^b |f(x)| \ dx$ норма на $\mathcal{C}([a,b],\mathbb{R})$. Зафіксуємо $m \in \mathcal{C}([a,b],\mathbb{R})$ і $A: f \to mf$. Af(x) = m(x)f(x).

- $A \in L(E)$ очевидно
- $A \in B(E)$?

Знайти $c \geq 0$ таку що

$$||Af||_1 \le c||f||_1 \quad \forall f \in E$$

$$||Af||_1 = \int_a^b |m(x)f(x)| dx$$

$$|m(x)f(x)| \le |m(x)||f(x)| \le ||m||_{\infty}|f(x)|$$

$$||m||_{\infty} = \sup_{x \in [a,b]} |m(x)|$$

$$\int_a^b |m(x)f(x)| \ dx \le \|m\|_\infty \int_a^b |f(x)| \ dx = \|m\|_\infty \|f\|_1$$

$$c = ||m||_{\infty}$$

Маємо: $A \in B(E)$ і $||A|| \leq ||m||_{\infty}$. Покажемо, що $||A|| = ||m||_{\infty}$

$$\|A\| = \sup_{\|f\|_1 \le 1} \|Af\|_1 \stackrel{?}{=} \|m\|_{\infty} = \sup I \ \text{3} \ I = \{\|Af\|_1 : \|f\|_1 \le 1\}$$

Позначимо $\alpha = \sup I$

- 1. α верхня межа для I
- 2. $\exists (a_n) a_n \in I \exists a_n \xrightarrow[n \to \infty]{} \alpha$

У нашому випадку:

• Мета: знайти послідовність $f_n \in E \ \|f_n\|_1 \le 1$ і $\|Af_n\|_1 \to \|m\|_\infty$

 $a_n = ||Af_n||_1 ||m||_{\infty} = \sup функції |m|$ на [a, b].

• |m| неперервна: $\exists x_0 \in [a,b]$ такий, що $\|m\|_{\infty} = |m|(x_0)$

$$|m|(x) = |m(x)|$$

Рис. 5.2: f_n

$$|m(x)f_n(x)|=|Af(x)|$$
 близько до $|m(x_0)||f_n(x)|$

 $||f_n||_1 = 1$ якщо $c_n \le 2n$

$$f_n(x) = \begin{cases} 0 \text{ якщо } a \le x \le x_0 - \frac{1}{2n} \\ 2n(1 - n|x - x_0|) \text{ якщо } |x - x_0| \le \frac{1}{2n} \\ 0 \text{ якщо } x_0 + \frac{1}{2n} \le x \le b \end{cases}$$

Рис. 5.3: f_n

$$|m(x)f_n(x) - m(x_0)f_n(x)| \le |m(x) - m(x_0)||f_n(x)| \le \varepsilon_n|f_n(x)|$$

Там, де $f_n(x) \neq 0 |x - x_0| \leq \frac{1}{n}$ отже

$$|m(x) - m(x_0)| \le \varepsilon_n \quad \varepsilon_n \xrightarrow[n \to \infty]{} 0$$

тоді m неперервна в x_0 .

$$||Af_n||_1 = \int_a^b |m(x)f_n(x)| \, dx \le \int_a^b |m(x) - m(x_0)||f_n(x)| \, dx + \int_a^b |m(x_0)||f_n(x)| \, dx$$

- 1 член: $\leq \varepsilon_n \|f_n\|_1 = \varepsilon_n$
- 2 член: $= \|m\|_{\infty} \|f_n\|_1 = \|m\|_{\infty}$

Тоді:

$$\|f_n\|_1 = 1$$
 $\|Af_n\|_1 \to \|m\|_{\infty}$ отже $\|A\| = \|m\|_{\infty}$

Твердження 5.34. Випадок B(E):

Якщо $A, B \in B(E), A \circ B$ (позначений $AB) \in B(E)$ і

$$||AB|| \le ||A|| ||B||$$

(дуже корисно)

Доведення.

$$||A \underbrace{Bx}_{V}||_{E} \le ||A|| ||Bx||_{E} \le \underbrace{||A|| ||B||}_{c} \cdot ||x||_{E}$$

отже $||AB|| \le ||A|| ||B||$

Теорема 5.35. Якщо N_1, N_2 є дві норми на E. N_1 і N_2 топологічно еквівалентні $\Leftrightarrow N_1$ і N_2 еквівалентні.

Доведення. E_1 це $(E, N_1), E_2 = (E, N_2).$

 N_1 і N_2 топологічно еквівалентні означає саме:

- 1. $Id: E_1 \to E_2$ є неперервними
- 2. i $Id: E_2 \to E_1$

Отже:

- 1. Ω відкрита щодо $N_2 \Rightarrow \Omega$ відкрита щодо N_1
- 2. Ω відкрита щодо $N_1 \Rightarrow \Omega$ відкрита щодо N_2
- 1. $\Leftrightarrow N_2(Idu)(=N_2(u)) \leq c_1N_1(u)$
- 2. $\Leftrightarrow N_1(Id u)(=N_1(u)) \le c_2 N_2(u)$

оскільки Id неперервне і лінійне, тому обмежене $\exists c$ таке що $\underbrace{Id\,u}_{\in E_2} \leq c\underbrace{u}_{E_1}$ отже $N_2(Id\,u) \leq cN_1(u)$

(1) і (2) $\Leftrightarrow N_1$ і N_2 еквівалентні.

5.6 Норма матриць

 $A \in \mathcal{M}_n(\mathbb{C})$ ототожнений з $A \in L(\mathbb{C}^n)$

$$\left((Ax)_i = \sum_{j=1}^n a_{i,j} x_j \right) \quad x = (x_1, \dots, x_n) \in \mathbb{C}^n$$

- $(x|y) = \sum_{i=1}^{n} \overline{x_i} y_i$
- $||x|| = (x|x)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} |x_i|^2\right)^{\frac{1}{2}}$

Суміжна матриця A^* $(A^*)_{i,j} = \overline{(A)_{j,i}}$

$$(x|Ay) = (A^*x|y) \quad \forall x, y$$

5.6.1 <u>Гарна норма</u> на $L(\mathbb{C}^n)$ (або на $\mathcal{M}_n(\mathbb{C})$)

 $\|A\|$ рівномірна норма на $L(\mathbb{C}^n)$ (= $B(\mathbb{C}^n)$) отримана з $\|\cdot\|_2$

Лема 5.36.

$$||A|| = ||A^*|| = ||A^*A||^{\frac{1}{2}}$$

Доведення. $||x||_2 = \sup_{||y||_2 \le 1} |(y|x)|$. Отже:

$$||A|| = \sup_{\|x\|_2 \le 1} ||Ax||_2 = \sup_{\|x\|_2 \le 1, \|y\|_2 \le 1} |(y|Ax)|$$

$$(y|Ax) = (A^*y|x) = \overline{(x|A^*y)}$$

тому $|(y|Ax)| = |(x|A^*y)|$

$$\begin{split} \|A\| &= \sup_{\|x\| \le 1, \|y\| \le 1} |(x|A^*y)| = \|A^*\| \\ \|A^*A\| &\le \|A^*\| \|A\| = \|A\|^2 = \sup_{\|x\| \le 1} \|Ax\|^2 \end{split}$$

$$\|Ax\|^2=(Ax|Ax)=(x|A^*Ax)\leq \|x\|\|A^*Ax\|$$
 (Коші-Буняковського)
$$\leq \|x\|\|A^*A\|\|x\|=\|A^*A\|\|x\|^2$$

$$\|Ax\|^2\leq \|A^*A\|\|x\|^2$$

$$||Ax||_2 \le ||A^*A||^{\frac{1}{2}} ||x||_2 \Rightarrow ||A||^2 \le ||A^*A||^{\frac{1}{2}}$$

 $||A|| = ||A^*A||^{\frac{1}{2}}$

5.6.2 Як "обчислити" ||A||?

Теорема 5.37. $\|A\|=\max_{1\leq i\leq n}\mu_i$ причому $\mu_i=\lambda_i^{\frac{1}{2}}$ де $\lambda_1,\ldots,\lambda_n\in\mathbb{R}^+$ власні значення A^*A .

Доведення.

$$||A|| = ||A^*A||^{\frac{1}{2}}$$

Треба показати: $||A^*A|| = \max_{1 \le i \le n} \lambda_i \ (\lambda_i \ge 0)$

$$(AB)^* = B^*A^*$$

$$(A^*A)^* = A^*A^{**} = A^*A$$

Нехай $B = A^*A$, $B = B^*$ і $(x|Bx) = (x|A^*Ax) = (Ax|Ax) = ||Ax||^2 \ge 0$. Отже:

$$\forall x, (x|Bx) \ge 0$$

Існує о.н.б (u_1,\ldots,u_n) з \mathbb{C}^n і $\lambda_1,\ldots,\lambda_n\in\mathbb{R}$ такі, що

$$Bu_i = \lambda_i u_i \quad 1 \le i \le n$$

$$\lambda_i = (u_i | \lambda_i u_i) = (u_i | Bu_i) \ge 0$$

Якщо $u = \sum_{i=1}^n x_i u_i \ \|u\|^2 = \sum_{i=1}^n |x_i|^2$

$$Bu = \sum_{i=1}^{n} x_i Bu_i = \sum_{i=1}^{n} \lambda_i x_i u_i$$

$$||Bu||^2 = \sum_{i=1}^n \lambda_i^2 |x_i|^2 \le \max \lambda_i^2 \cdot \sum_{i=1}^n |x_i|^2 = \max \lambda_i^2 ||u||^2$$
$$||B|| \le \max_{1 \le i \le n} \lambda_i$$

Якщо $\lambda_1 = \max_{1 \leq i \leq n} \lambda_i$

$$||Be_1|| = ||\lambda_1 e_1|| = \lambda_1 ||e_1|| \le ||B|| ||e_1||$$

Tomy $||B|| \ge \lambda_1$

5.6.3 Як обмежити зверху ||A||

Твердження 5.38. Маємо: $||A|| \le ||A||_{HS}$ де

$$||A||_{HS}^2 = \sum_{1 \le i,j \le n} |a_{i,j}|^2$$

Доведення.

$$\mathcal{M}_n(\mathbb{C}) \sim \mathbb{C}^{n \times n}$$

 $\|\cdot\|_{HS}$ канонічна норма на $\mathbb{C}^{n\times n}$!

$$(Ax)_i = \sum_{i=1}^n a_{i,j} x_j$$

$$(y|Ax) = \sum_{i=1}^{n} \overline{y_i} \sum_{j=1}^{n} a_{i,j} x_j = \sum_{1 \le i,j \le n} a_{i,j} \overline{y_i} x_j$$

Нехай $b_{i,j} = y_i \overline{x_j}$

$$(y|Ax) = \sum_{i,j} \overline{b_{i,j}} a_{i,j}$$

$$\begin{split} |(y|Ax)| & \leq \left(\sum_{i,j} |a_{i,j}|^2\right)^{\frac{1}{2}} \times \left(\sum_{i,j} |b_{i,j}|^2\right)^{\frac{1}{2}} \\ \left(\sum_{i,j} |b_{i,j}|^2\right)^{\frac{1}{2}} & = \left(\sum_{1 \leq i,j \leq n} |y_i|^2|x_i|^2\right)^{\frac{1}{2}} = \left(\sum_{1 \leq i \leq n} |y_i|^2\right)^{\frac{1}{2}} \times \left(\sum_{1 \leq j \leq n} |x_j|^2\right)^{\frac{1}{2}} = \|y\| \|x\| \\ |(y|Ax)| & \leq \|A\|_{HS} \|x\| \|y\| \Rightarrow \|A\| \leq \|A\|_{HS} \end{split}$$

розділ **(**

Система диференціальних рівнянь

$$(E) \begin{cases} x'_1(t) = a_{1,1}x_1(t) + \dots + a_{1,n}x_n(t) + f_1(t) \\ \vdots \\ x'_n(t) = a_{n,1}x_1(t) + \dots + a_{n,n}x_n(t) + f_n(t) \end{cases}$$

$$x(t) = (x_1, \dots, x_n(t)) \text{ afo } \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$

$$A = [a_{i,j}]_{1 \le i,j \le n} \quad f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

$$f : \mathbb{R} \longrightarrow \mathbb{C}^n$$

$$A \longmapsto f(A) = \mathcal{M}_n(\mathbb{C})$$

$$x'(t) = Ax(t) + f(t)$$

$$(H) x'(t) = Ax(t)$$

$$(C) \begin{cases} x'(t) = Ax(t) + f(t) \\ x(0) = x_0 \in \mathbb{C}^n \end{cases}$$

 $\underline{\text{Розв'язок на }I\colon f:I\to\mathbb{C}^n$ з $I\subset\mathbb{R}$ інтервал (f вважається неперервною). $x:I\to\mathbb{C}^n$ класу \mathcal{C}^1 така що (C) виконується $\forall t \in I$

• Якщо n=1 $A=a\in\mathbb{C}.$ Розв'язок $(H): x(t)=e^{ta}x_0$ з $x_0\in\mathbb{C}$

$$e^a = \sum_{n=0}^{\infty} \frac{a^n}{n!}$$

<u>Але:</u> визначити e^A

Теорема 6.1. Нехай $A \in \mathcal{M}_n(\mathbb{C})$ $(A \in B(E)$ де $(E, \|\cdot\|)$ повний!)

- 1. Ряд $\sum_{n\in\mathbb{N}}\frac{A^n}{n!}$ збігається в $(\mathcal{M}_n(\mathbb{C}),\|\cdot\|)$, її сума $\sum_{n=0}^\infty\frac{A^n}{n!}$ позначається e^A і називається експонентою A.
- 2. $||e^A|| \le e^{||A||}$ 3. $||e^A \sum_{n=0}^N \frac{A^n}{n!}|| \le \frac{||A||^{N+1}}{(N+1)!}e^{||A||} (\le \frac{||A||_{HS}^{N+1}}{(N+1)!}e^{||A||_{HS}})$
- 4. $e^A e^B = e^B e^A$ якщо AB = BA

Доведення. -

1. $\|AB\| \leq \|A\| \|B\|$ (бо $\|\cdot\|$ рівномірна норма!) тому $\|A^n\| \leq \|A\|^n$. $\sum_{n \in \mathbb{N}} \frac{\|A\|^n}{n!}$ (числовий ряд!) збігається до $e^{\|A\|}$ тому $\sum_{n \in \mathbb{N}} \frac{A^n}{n!}$ збігається <u>нормально</u> в $\mathcal{M}_n(\mathbb{C})$.

 $\mathcal{M}_n(\mathbb{C})$ є повним (як B(E) якщо E є повним) тому $\sum_{n\in\mathbb{N}} \frac{A^n}{n!}$ збігається в $\mathcal{M}_n(\mathbb{C})$.

2. Також ОК

3.

$$\|e^A - \sum_{n=0}^N \frac{A^n}{n!}\| = \|\sum_{n=N+1}^\infty \frac{A^n}{n!}\| \le \sum_{n=N+1}^\infty \frac{\|A\|^n}{n!}$$

Позначимо $f(x) = e^x$

$$f(x) = \sum_{n=0}^{N} f^{(n)}(0) \frac{x^n}{n!} + \frac{x^{N+1}}{(N+1)!} f^{(N+1)}(y) \quad (y \text{ між } 0 \text{ та } x)$$

$$x = ||A||$$

4.

$$e^A e^B = e^{A+B}$$
 якшо $AB = BA$

$$(A+B)^2 = A^2 + AB + BA + B^2 = A^2 + 2AB + B^2$$
 (якщо $AB = BA$)

$$(A+B)^n = \sum_{p=0}^n C_n^p A^{n-p} B^p$$

Такий самий доказ якщо A=a, B=b з $a,b\in\mathbb{R}$

5. вправа

Примітка 6.2.

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad BA = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$A^2 = 0 \quad e^A = \mathcal{I} + A \quad e^B = \mathcal{I} + B \text{ де } \mathcal{I} \text{ одинична матриця}$$

$$e^A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad e^B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad e^A e^B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

$$e^{A+B} = ? \quad A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad (A+B)^2 = \mathcal{I}$$

$$C = A + B \quad C^{2p} = \mathcal{I} \quad C^{2p+1} = C$$

$$e^C = \sum_{p=0}^{\infty} \frac{C^{2p}}{2p!} + \sum_{p=0}^{\infty} \frac{C^{2p+1}}{(2p+1)!} = \mathcal{I} \sum_{p=0}^{\infty} \frac{1}{2p!} + C \sum_{p=0}^{\infty} \frac{1}{(2p+1)!}$$

$$= \operatorname{ch}(1)$$

$$e^{A+B} = \operatorname{ch}(1)\mathcal{I} + \operatorname{sh}(1)C = \begin{pmatrix} \operatorname{ch}(1) & \operatorname{sh}(1) \\ \operatorname{sh}(1) & \operatorname{ch}(1) \end{pmatrix} \neq e^A \times e^B$$

Твердження 6.3. $A \in \mathcal{M}_n(\mathbb{C})$ (або B(E))

1.
$$e^{tA}e^{sA} = e^{(s+t)A}$$
 $s, t \in \mathbb{R}$
2. $(e^{tA})^{-1} = e^{-tA}$ $t \in \mathbb{R}$

2.
$$(e^{tA})^{-1} = e^{-tA}$$
 $t \in \mathbb{R}$

3.
$$\frac{d}{dt}(e^{tA}) = Ae^{tA}$$
 $t \in \mathbb{R}$

Доведення. -

1. ОК, оскільки tA комутує з sA

2.
$$e^{tA}e^{-tA} = e^{-tA}e^{tA} = e^{0A} = \mathcal{I} \text{ Tomy } (e^{tA})^{-1} = e^{-tA}$$

3. Обчислити:
$$\lim_{\varepsilon \to 0} \frac{e^{(t+\varepsilon)A} - e^{tA}}{\varepsilon} = ?$$

$$e^{tA}(\frac{e^{\varepsilon A}-\mathcal{I}}{\varepsilon})$$

$$\begin{split} e^{\varepsilon A} - \mathcal{I} &= \sum_{n=1}^{\infty} \frac{(\varepsilon A)^n}{n!} \quad n = 1 + p \\ &= \varepsilon A \times \sum_{p=0}^{\infty} \frac{(\varepsilon A)^p}{(p+1)!} \\ &= \varepsilon A \left(\mathcal{I} + \| \sum_{p=1}^{\infty} \frac{(\varepsilon A)^p}{(p+1)!} \| \right) \\ &= \varepsilon A \left(\mathcal{I} + R(\varepsilon) \right) \end{split}$$

$$\frac{e^{\varepsilon A} - \mathcal{I}}{\varepsilon} = A + AR(\varepsilon)$$

подивимося: $\|AR(\varepsilon)\|\xrightarrow[\varepsilon\to 0]{}0$ тоді $\lim_{\varepsilon\to 0}\frac{e^{\varepsilon A}-\mathcal{I}}{\varepsilon}=A$

$$||AR(\varepsilon)|| \le c\varepsilon \xrightarrow[\varepsilon \to 0]{} 0$$

$$||R(\varepsilon)|| \le \sum_{p=1}^{\infty} \frac{\varepsilon^p ||A||^p}{(p+1)!} = \varepsilon \sum_{p=1}^{\infty} \frac{\varepsilon^{p-1} ||A||^p}{(p+1)!} \le \varepsilon e^{||A||}$$

Якщо $|\varepsilon| \leq 1$

$$\frac{\varepsilon^{p-1}||A||^p}{(p+1)!} \le \frac{||A||^p}{p!}$$

6.1Застосування до систем ОД

$$(H) x'(t) = Ax(t)$$

Теорема 6.4. Множина Sol(H) розв'язків (H) задається

$$x(t) = e^{tA}x_0 \quad x_0 \in \mathbb{C}^n$$

Нехай x(t) розв'язок

$$y(t) = e^{-tA}x(t)$$

$$\Rightarrow y'(t) = -Ae^{-tA}x(t) + e^{-tA}x'(t)$$

$$= -Ae^{-tA}x(t) + e^{-tA}Ax(t)$$

$$= 0$$

$$\Rightarrow y(t) = x_0 \Rightarrow x(t) = e^{tA}$$

$$(E) \quad x'(t) = Ax(t) + f(t)$$

$$x(t) = e^{tA}x_0 + \int_0^t e^{(t-s)A}f(s) ds$$

$$x(0) = x_0$$

$$x(t) = e^{tA}y(t)$$

Я знаходжу, що $y'(t) = e^{-tA} f(t)$

$$y(t) = x_0 + \int_0^t e^{-sA} f(s) \, ds$$

ЛІТЕРАТУРА

- [1] Christian Gérard. Analyse et Géométrie (OLMA251). fre.
- [2] Christian Gérard. Cours Magistral d'Analyse et Géométrie (OLMA251) à l'Université Paris-Saclay. 2024-2025.