Algorithms for Approximate String Matching

Part I

Levenshtein Distance
Hamming Distance
Approximate String Matching with k Differences
Longest Common Subsequences

Part II

"A Fast and Practical Bit-Vector Algorithm for the Longest Common Subsequences Problem"

Yoan Pinzón

Universidad Nacional de Colombia Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial ypinzon@unal.edu.co www.pinzon.co.uk

August 2006

Levenshtein Distance

Levenshtein distance is named after the Russian scientist Vladimir Levenshtein, who devised the algorithm in 1965. If you cannot spell or pronounce Levenshtein, the metric is also called *edit distance*.

The edit distance $\delta(p,t)$ between two strings p (pattern) and t (text) (m=|p|,n=|t|) is the minimum number of insertions, deletions and replacements to make p equal to t.

- [Insertion] insert a new letter a into x. An insertion operation on the string x = vw consists in adding a letter a, converting x into x' = vaw
- [Deletion] delete a letter a from x. A deletion operation on the string x = vaw consists in removing a letter, converting x into x' = vw.
- [Replacement] replace a letter a in x. A replacement operation on the string x = vaw consists in replacing a letter for another, converting x into x' = vbw.

► Example 1:

► Example 2:

$$\delta(t,p)=2$$

▶ **Solution:** Using Dynamic Programing (DP): We need to compute a matrix D[0..m, 0..n], where $D_{i,j}$ represents the minimum number of operations needed to match $p_{1..i}$ to $t_{1..j}$.

This is computed as follows:

```
\begin{split} &D[i,0] = i \\ &D[0,j] = j \\ &D[i,j] = \min\{D[i-1,j] + 1, D[i,j-1] + 1, D[i,j] + \delta(p_i,t_j)\} \\ &\delta(p,t) = D[m,n] \end{split}
```

► Pseudo-code:

```
 \begin{array}{lll} & & & & & & & & & & & & \\ \mathbf{2} & & & & & & & & \\ \mathbf{begin} & & & & & & & \\ \mathbf{3} & & & & & & & \\ \mathbf{for} & i \leftarrow 0 & & & & & \\ \mathbf{4} & & & & & & \\ \mathbf{for} & j \leftarrow 0 & & & & \\ \mathbf{0} & & & & & \\ \mathbf{0} & & & & & \\ \mathbf{0} & & \\ \mathbf{0}
```

▶ Running time: O(nm)

► Example: p="survey", t="surgery"

		0	1	2	3	4	5	6	7
		ϵ	s	u	r	g	е	r	у
0	ϵ	0	1	2	3	4	5	6	7
1	s	1	0	1	2	3	4	5	6
2	u	2	1	0	1	2	3	4	5
3	r	3	2	1	0	1	2	3	4
4	v	4	3	2	1	1	2	3	4
5	е	5	4	3	2	2	1	2	3
6	у	6	5	4	3	3	2	2	2

1 2 3 4 5 6 7
String t: s u r g e r y

String p: surve ϵ y

A Graph Reformulation

for the Edit Distance problem

The Dynamic Programming matrix D can be seen as a graph where the nodes are the cells and the edges represent the operations. The cost (weight) of the edges corresponds to the cost of the operations.

 $\delta(t,p)=$ shortest-path from node [0,0] to the node [n,m].

▶ Running time: $O(nm \log(nm))$

► Example: p="survey", t="surgery"

Hamming Distance

The Hamming distance H is defined only for strings of the *same* length. For two strings p and t, H(p,t) is the number of places in which the two strings differ, i.e., have different characters.

► Examples:

```
H("pinzon", "pinion") = 1

H("josh", "jose") = 1

H("here", "hear") = 2

H("kelly", "belly") = 1

H("AAT", "TAA") = 2

H("AGCACACA", "ACACACTA") = 6
```

► Pseudo-code: too easy!!

▶ Running time: O(n)

Approximate String Matching with k Differences

▶ **Problem:** The k-differences approximate string matching problem is to find all occurrences of the pattern string p in the text string t with at most t differences (substitution, insertions, deletions).

► Solution: Using DP

```
\begin{split} &D[i,0]=i\\ &D[0,j]=0\\ &D[i,j]=\min\{D[i-1,j]+1,D[i,j-1]+1,D[i,j]+\delta(p_i,t_j)\} \end{split}
```

if $D[m,j] \leq k$ then we say that p occurs at position j of t.

► Pseudo-code:

```
procedure KDifferences(p, t, k) \{m = |p|, n = |t|\}
       begin
            for i \leftarrow 0 to m do D[i, 0] \leftarrow i
            for j \leftarrow 0 to n do D[0,j] \leftarrow 0
 4
            for i \leftarrow 1 to m do
                 for j \leftarrow 1 to n do
 6
                      \underline{\text{if}} \ p_i = \overline{t_i} \ \underline{\text{then}} \ D[i,j] \leftarrow D[i-1,j-1]
 7
 8
                           D[i,j] \leftarrow min(D[i,j-1], D[i-1,j], D[i-1,j-1]) + 1
 9
10
                 <u>od</u>
11
            od
            for j \leftarrow 0 to n do
12
                 \underline{\text{if}} D[m][j] \leq k \underline{\text{then}} \text{Output}(j)
13
14
15
       end
```

▶ Running time: O(nm)

► Example:

```
p = "CDDA",

t = "CADDACDACDBACBA"

k = 1
```


p occurs in t ending at positions 5, 8 and 12.

Longest Common Subsequence

Preliminaries

For two sequences $x = x_1 \cdots x_m$ and $y_1 \cdots y_n$ $(n \ge m)$

we say that x is a *subsequence* of y and equivalently, y is a *supersequence* of x, if for some $i_1 < \cdots < i_p$, $x_j = y_{i_j}$.

Given a finite set of sequences, S, a longest common subsequence (LCS) of S is a longest possible sequence s such that each sequence in S is a supersequence of s.

Example: y="longest", x="large"

String y: longest

String x: large

$$LCS(y,x)="lge"$$

Longest Common Subsequence

- ▶ **Problem:** The Longest Common Subsequence (LCS) of two strings, p and t, is a subsequence of both p and of t of maximum possible length.
- ▶ **Solution:** Using Dynamic Programing: We need to compute a matrix L[0..m, 0..n], where $L_{i,j}$ represent the LCS for $p_{1..i}$ and $t_{1..j}$.

This is computed as follows:

$$L[i,j] = \left\{ \begin{array}{ll} \mathbf{0}, & \text{if either } i = \mathbf{0} \text{ or } j = \mathbf{0} \\ L[i-1,j-1]+1, & \text{if } p_i = t_j \\ \max\{L[i-1,j], L[i,j-1]\}, & \text{if } p_i \neq t_j \end{array} \right.$$

► Pseudo-code:

```
 \begin{array}{lll} & & & & & & & & & \\ 1 & & & & & & & \\ 2 & & & & & & \\ \hline 2 & & & & & & \\ \hline 3 & & & & & & \\ \hline 4 & & & & & \\ \hline 4 & & & & & \\ \hline 5 & & & & & \\ \hline 5 & & & & \\ \hline 6 & & & & \\ \hline 5 & & & & \\ \hline 6 & & & & \\ \hline 7 & & & & \\ \hline 8 & & & & \\ \hline 9 & & & & \\ \hline 1 & & & & \\ \hline 9 & & & & \\ \hline 1 & & & \\ \hline 1 & & & \\ \hline 1 & & & \\ \hline 0 & & & \\ \hline 1 & & \\ \hline 1 & & & \\ \hline 0 & & & \\ \hline 1 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 0 & & \\ \hline 1 & & \\ \hline 0 & & \\ \hline
```

▶ Running time: O(nm)

▶ Example 1: p = "survey" and t = "surgery".

0	1	2	3	4	5	6	7
ϵ	s	u	r	g	е	r	У

0	ϵ	0	0	0	0	0	0	0	0
1	s	0	1	1	1	1	1	1	1
2	u	0	1	2	2	2	2	2	2
3	r	0	1	2	3	3	3	3	3
4	v	0	1	2	3	3	3	3	3
5	е	0	1	2	3	3	4	4	4
6	У	0	1	2	3	თ	4	4	5

String t: s u r g e r y

String p: s u r v e y

$$LCS(p,t) = "surey"$$

$$LLCS(p,t) = L[6,7] = 5$$

► Example 2:

 $p = "ttgatacatt" \\ t = "gaataagacc"$

		0	1	2	3	4	5	6	7	8	9	10
		ϵ	g	a	a	t	a	a	g	a	С	С
0	ϵ	0	0	0	0	0	0	0	0	0	0	0
1	t	0	0	0	0	1	1	1	1	1	1	1
2	t	0	0	0	0	1	1	1	1	1	1	1
3	g	0	1	1	1	1	1	1	2	2	2	2
4	a	0	1	2	2	2	2	2	2	3	3	3
5	t	0	1	2	2	3	3	3	3	3	3	3
6	a	0	1	2	3	3	4	4	4	4	4	4
7	С	0	1	2	3	3	4	4	4	4	5	5
8	a	0	1	2	3	3	4	5	5	5	5	5
9	t	0	1	2	3	4	4	5	5	5	5	5

LCS
$$(p,t) = ?$$

LLCS $(p,t) = L[9,10] = 5$

Part II

A Fast and Practical Bit-Vector Algorithm for the Longest Common Subsequence Problem

Some More Definitions

The ordered pair of positions i and j of L, denoted [i,j], is a match iff $x_i = y_j$.

If [i,j] is a match, and an LCS $s_{i,j}$ of $x_1x_2...x_i$ and $y_1y_2...y_j$ has length k, then k is the rank of [i,j].

The match [i,j] is k-dominant if it has rank k and for any other pair [i',j'] of rank k, either i' > i and j' < j or i' < i and j' > j.

Computing the k-dominant matches is all that is needed to solve the LCS problem, since the LCS of x and y has length p iff the maximum rank attained by a dominant match is p.

A match [i,j] precedes a match [i',j'] if i < i' and j < j'.

Let r be the total number of matches points, and d be the total number of dominant points (all ranks). Then $0 \le p \le d \le r \le nm$.

Let $\mathcal R$ denote a partial order relation on the set of matches in L.

A set of matches such that in any pair one of the matches always precedes the other in $\mathcal R$ constitutes a *chain* relative to the partial order relation $\mathcal R$.

A set of matches such that in any pair neither element of the pair precedes the other in $\mathcal R$ constitutes an *antichain*.

Sankoff and Sellers (1973) observed that the LCS problem translates to finding a longest *chain* in the *poset* of matches induced by \mathcal{R} .

A decomposition of a poset into antichains partitions the poset into the minimum possible number of antichains.

LCS(p,t) ="tccagg"

A Simple Bit-Vector Algorithm

Here we will make use of word-level parallelism in order to compute the matrix L more efficiently.

The algorithm is based on the O(1)-time computation of each column in L by using a bit-parallel formula under the assumption that $m \le w$, where w is the number of bits in a machine word or O(nm/w)-time for the general case.

An interesting property of the LCS allows to represent each column in L by using O(1)-space. That is, the values in the columns (rows) of L increase by at most one. i.e. $\Delta L[i,j] = L[i,j] - L[i-1,j] \in \{0,1\}$ for any $(i,j) \in \{1..m\} \times \{1..n\}$.

In other words ΔL will use the relative encoding of the dynamic programming table L.

 $\Delta L'$ is defined as NOT ΔL .

Example: x= "ttgatacatt" and y= "gaataagacc".

		0	1	2	3	4	5	6	7	8	9	10
		ϵ	G	A	A	T	A	A	G	A	C	C
0	ϵ	0	0	0	0	0	0	0	0	0	0	0
1	T	0	0	0	0	1	1	1	1	1	1	1
2	T	0	0	0	0	1	1	1	1	1	1	1
3	G	0	1	1	1	1	1	1	2	2	2	2
4	A	0	1	2	2	2	2	2	2	3	3	3
5	T	0	1	2	2	3	3	3	3	3	3	3
6	\overline{A}	0	1	2	3	3	4	4	4	4	4	4
7	C	0	1	2	3	3	4	4	4	4	5	5
8	\overline{A}	0	1	2	3	3	4	5	5	5	5	5
9	T	0	1	2	3	4	4	5	5	5	5	5

(a) Matrix L

		0	1	2	3	4	5	6	7	8	9	10
		ϵ	G	A	A	T	A	A	G	A	C	C
		_	_	_	_	_	_		_	_	_	
0	ϵ	0	0	O	O	0	O	0	0	O	0	0
1	T	0	0	0	0	1	1	1	1	1	1	1
2	T	0	0	0	0	0	0	0	0	0	0	0
3	G	0	1	1	1	0	0	0	1	1	1	1
4	\overline{A}	0	0	1	1	1	1	1	0	1	1	1
5	T	0	0	0	0	1	1	1	1	0	0	0
6	\overline{A}	0	0	0	1	0	1	1	1	1	1	1
7	C	0	0	0	0	0	0	0	0	0	1	1
8	\overline{A}	0	0	0	0	0	0	1	1	1	0	0
9	T	0	0	0	0	1	0	0	0	0	0	0

(b) Matrix ΔL

First we compute the array M of the vectors that result for each possible text character. If both the strings x and y range over the alphabet Σ then $M[\Sigma]$ is defined as $M[\alpha]_i=1$ if $y_i=\alpha$ else 0.

Example: x = "ttgatacatt" and y = "gaataagacc".

	A	C	G	T
1 T	0	0	0	1
$_2\overline{T}$	0	0	0	1
з \overline{G}	0	0	1	0
$4\overline{A}$	1	0	0	0
5 \overline{T}	0	0	0	1
$6\overline{A}$	1	0	0	0
7 \overline{C}	0	1	0	0
$8\overline{A}$	1	0	0	0
9 \overline{T}	0	0	0	1

	A	C	G	T
1 \overline{T}	1	1	1	0
$_2$ \overline{T}	1	1	1	0
з \overline{G}	1	1	0	1
\overline{A}	0	1	1	1
5 \overline{T}	1	1	1	0
$6\overline{A}$	0	1	1	1
7 \overline{C}	1	0	1	1
$8\overline{A}$	0	1	1	1
9 \overline{T}	1	1	1	0

(a) Matrix M

(a) Matrix M'

Basic steps of the algorithm

- 1. Computation of M and M'
- 2. Computation of matrix $\Delta L'(L)$ as follows:

$$L = \left\{ \begin{array}{ll} 2^m - 1, & \text{for } j = 0 \\ (L_{j-1} + (L_{j-1} \text{ AND } M(y_j))) \text{ OR } (L_{j-1} \text{ AND } M'(y_j)), & \text{for } j \in \{1..n\} \end{array} \right.$$

3. Let LLCS be the number of times a carry took place.

Pseudo-code

```
LLCS(x, y) \triangleright n = |y|, m = |x|, p = 0
 1 begin
      \triangleright Preprocessing
      for i \leftarrow 1 until m do
       M[\alpha](i) \leftarrow y_i = \alpha
        M'[\alpha](i) \leftarrow y_i \neq \alpha
      \triangleright Initialization
      L_0 = 2^m - 1
      \triangleright TheMainStep
      for j \leftarrow 1 until n do
      10
11
12
      return p
13 end
```

Illustration of $\Delta L'_{4}$ Computation

for x= "gaataagacc" and y= "ttgatacatt".

$$(4)$$

$$(3)$$

$$(1)$$

$$(2)$$

$$L_{4} \leftarrow (L_{3} + (L_{3} \& M_{T})) \mid (L_{3} \& M_{T}')$$

$$\frac{L_{3}}{(1)}$$

$$\frac{1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad \&}{M_{T}}$$

$$\frac{M_{T}}{(1)}$$

$$\frac{L_{3}}{(1)}$$

$$\frac{1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad \&}{M_{T}'}$$

$$\frac{M_{T}'}{(2)}$$

$$\frac{L_{3}}{(2)}$$

$$\frac{1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad +}{(1)}$$

$$\frac{1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad +}{(3)}$$

$$\frac{(3)}{(4)}$$

1 0 1 1 1 0 0 1 0 0

Automata for Addition

Experimental Results

