Функциональный анализ

Курс Виденского И.В.

Осень 2023

Оглавление

Оглавление					
Ι	Метрические пространства				
1	Вве	дение	5		
	1.1	Зачем изучать функциональный анализ	6		
2	Метрические пространства				
	2.1	Банаховы пространства	11		
	2.2	Пространство ограниченных функций	14		
	2.3	Пространство последовательностей с sup нормой	16		
	2.4	Пространство <i>п</i> раз непрерывно дифференцируемых функ-			
		ций на отрезке	17		
3	Пространство суммируемых функций (Лебега L^p)				
	3.1	Теория меры	18		
	3.2	Классические неравенства	21		
	3.3	Пространство Лебега	23		
	3.4	Пространства l_n^p, l^p	27		
	3.5	Неполное нормированное пространство	29		
	3.6	Пополнение метрического пространства	31		
	3.7	Теорема о вложенных шарах	36		
	3.8	Сепарабельные пространства	38		
	3.9	Нигде не плотные множества	44		
	3.10	Полные семейства элементов	45		
	3.11	Полные и плотные множества в L^p	46		
4	Mer	грические компакты	53		
	4.1	Относительно компактные множества в $C(K)$	60		

 $O\Gamma$ ЛABЛEНИE 2

Η	Ли	нейные операторы	67
5	Линейные операторы в линейных пространствах		
	5.1	Линейные операторы в линейных пространствах	. 68
	5.2	Линейные операторы в нормированных пространствах	. 71
	5.3	Линейные функционалы	
	5.4	Изоморфные линейные пространства	. 83
	5.5	Конечномерные пространства	. 86
	5.6	Конечномерные подпространства	. 90
	5.7	Конечномерность нормированного пространства с ком-	
		пактным единичным шаром	. 93
	5.8	Факторпространство	. 96
II	Пи.	льбертовы пространства	99
6	Гил	ъбертовы пространства	100
	6.1	Введение	. 100
	6.2	Пространство, сопряжённое к гильбертову	. 117
	6.3		
ΙV	Ли	нейные функционалы	123
7	Гео	метрический смысл линейного функционала	124
	7.1	Продолжение линейного функционала	
	7.2	Продолжение линейных функционалов в нормирован-	
		ном пространстве	. 134
8	_	инцип равномерной ограниченности	139
	8.1		
		рядам Фурье	. 145
9		рема об открытом отображении	150
	9.1	Обратные операторы	
	9.2	Открытые отображения	
	9.3	Теорема об эквивалентных нормах и о замкнутом график	e158
	9.4	Примеры неограниченных операторов в банаховом пространстве	. 161
10	Соп	ряжённые пространства	164
10		Сопряженное пространства к L^p	. 164

ОГЛАВЛЕНИЕ 3

	10.2 Второе сопряжённое	170
	10.3 Слабая сходимость	173
	10.4 Слабая со * сходимость	179
	10.5 Сопряжённые операторы в нормированном пространстве	185
	10.6 Сопряжённый оператор в гильбертовом пространстве	188
11	Спектр и резольвента оператора	193
	11.1 Компактные операторы	200
	11.2 Спектр компактного оператора	203
	11.3 Самосопряжённые операторы	205
	11.4 Компактные самосопряжённые операторы	207
	11.5 Интегральный оператор в L^2	213
	11.6 Каноническое представление компактного оператора	215

Часть I Метрические пространства

Глава 1

Введение

День рождения функционального анализа — 1932 год. В этом году вышла книжка «Теория линейных операторов», автор — С. Банах. Главная цель функционального анализа — изучение линейных операторов (но не только их). Главным объектом у нас будет X — линейное топологическое пространство. Оно же линейное пространство над $\mathbb C$ (или $\mathbb R$). Есть непрерывные операции

1.
$$(x,z) \rightarrow x+z$$
 $x,z \in X$

2.
$$(\alpha, x) \to \alpha x \quad \alpha \in \mathbb{C}$$

Если у нас есть топологическое пространство, то у нас есть все любимые объекты из математического анализа — пределы, непрерывность, производные, интегралы.

Пусть есть X,Y — линейные топологические пространства. Также есть линейное отображение $A:X\to Y$

Определение 1.1 (Линейное отображение).

$$A(\alpha x + \beta z) = \alpha Ax + \beta Az$$

Если $\dim X < +\infty$, $\dim Y < +\infty$, то это линейная алгебра.

$$A: X \to X, \dim X = n, A = A^* \Rightarrow \exists \text{ OHB}\{u_j\}_{j=1}^n$$

 λ_i — j-е собственное число

$$Au_i = \lambda_i u_i$$

Теорема 1.1 (Гильберт). X — гильбертово (сепарабельное) пространство. $A = A^*, A: X \to X \Rightarrow \exists$ ОНБ из собственных векторов.

Если $\dim Y=1$, т.е. $Y=\mathbb{C}$ (или \mathbb{R}), то $A:X\to\mathbb{C},$ A — линейный функционал.

В математическом анализе мы изучаем $f:\mathbb{C}\to\mathbb{C}.$ В функциональном анализе же у нас X — пространство функций, $f\in X$

$$D(f) = f' \quad D: X \to Y$$

и здесь мы задаемся вопросами о следующих свойствах D(f)

- компактность
- самосопряжённость
- непрерывность

Отцы-основатели функционального анализа:

- Ф. Гильберт (1862–1943) Гильбертовы пространства;
- С. Банах (1892–1945) Банаховы пространства;
- Ф.Рисс (1880–1956) пространства Лебега L^p .

Ну и хочется ещё упомянуть для вас, компьютер саентистов, отцов основателей кибернетики, которые оставили немалый след в функциональном анализе

- Н. Винер (1894–1964);
- Д. фон Нейман (1903–1957). Про его архитектуру, наверное, чтото слышали?

1.1. Зачем изучать функциональный анализ

Во-первых, он позволяет посмотреть на задачу с высокого уровня абстракции.

Рассмотрим пространство непрерывных функций C[a,b], там введём норму $|f|=\max_{x\in[a,b]}|f(x)|$. Рассмотрим пространство многочленов $P_n=\{\sum_{k=0}^n a_k x^k, a_k\in\mathbb{R}\}$ Существует ли такой многочлен, на котором инфимум достигается? И если да, то единственный ли он?

$$E_n(f) = \inf_{p \in P_n} ||f - p|| = \min_{p \in P_n} ||f - p||$$

На первый вопрос ответ да, это следует из общей теоремы функционального анализа.

$$\dim P_n = n + 1 < +\infty$$

На второй же вопрос ответ тоже да, и тут функциональный анализ ни при чём. Суть в том, что у многочлена степени n не может быть больше n корней.

Ну и ещё немаловажные причины

- 1. язык функционального анализа междисциплинарный язык математики;
- 2. его результаты применяются в математической физике, которая у нас будет в следующем семестре;
- 3. это интересно и важно. 0, 1, 2 = o(3);
- 4. у нас будет экзамен, на котором придется говорить уже нам.

Дополнительная литература по курсу. Первая рассчитана на студентов: в некоторых местах рассказывается, как придумать доказательство, как прийти к тому, что требуется, а не в обратную сторону, как обычно. Остальные же книги поумнее.

- 1. А.Н.Колмогоров, С.В. Фомин «Элементы теории функций и Ф.А.»;
- 2. М.Рид, Б. Саймон. 1 том «методы современной физики». Тонкая (можно осилить), рассказывается также про применение ФА;
- 3. А.В. Канторович, Г.Г Акилов «Функциональный анализ». Похожа на энциклопедию. Но там можно найти всё;
- 4. К. Итосида «Функциональный анализ»;
- 5. У. Рудин.

Глава 2

Метрические пространства

Начнём с того, что все знают, надо ведь с чего-то начать. Мы будем несколько раз возвращаться к метрическим пространствам, а не изучим всё сразу. Один из полезных результатов, который мы получим, это новое описание компакта в метрических пространствах. Оно будет самым рабочим. А компакт — вещь очень полезная. Компакты в гигантских пространствах напоминают компакты в \mathbb{R}^n или в \mathbb{C}^n и обладают теми же полезными свойствами.

Определение 2.1 (Метрика). X — множество. $\rho: X \times X \to \mathbb{R},$ ρ — метрика, если при $\forall \, x,y,z \in X$ она обладает следующими свойствами

1.
$$\rho(x,y) \ge 0 \land (\rho(x,y) = 0 \Leftrightarrow x = y)$$

$$2. \ \rho(y,x) = \rho(x,y)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z)$$

Введём стандартное обозначение открытого шара. $x \in X, r > 0$ $B_r(x) = \{y \in X : \rho(x,y) < r\}$ — шар с радиусом r. $\{B_r(x)\}_{r>0}$ — база окрестности в точке x.

G — открытое, если $\forall x \in G \exists r > 0 B_r(x) \subset G$.

F — замкнутое \Leftrightarrow F \subset $X \land X \setminus F$ — открытое.

В метрическом пространстве удобно характеризовать замкнутые множества с помощью последовательностей. Вспомним, что такое сходящаяся последовательность.

 $\{x_n\}_{n=1}^\infty$ — последовательность и $\forall\,n\in\mathbb{N}\,x_n\in X$ и $\lim_{n\to\infty}x_n=x_0\Leftrightarrow\lim_{n\to\infty}\rho(x_n,x_0)=0$

 (X, ρ) — метрическое пространство \Rightarrow (F — замкнутое \Leftrightarrow $\{x_n\}_{n=1}^{\infty}$ — последовательность и \forall $n \in \mathbb{N}$ $x_n \in F$ и $(\lim_{n \to \infty} x_n = x_0 \Rightarrow x_0 \in F))$

Определение 2.2 (Фундаментальная последовательность). $\{x_n\}_{n=1}^{\infty}$ — фундаментальная $\Leftrightarrow \forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \in \mathbb{N} \forall m \in \mathbb{N} ((n > N \land m > N)) \Rightarrow \rho(x_n, x_m) < \varepsilon) \Leftrightarrow \lim_{n,m \to \infty} \rho(x_n, x_m) = 0$

Замечание 2.1. $\exists x_0 \lim_{n \to \infty} x_n = x_0 \Rightarrow \{x_n\}_{n=1}^{\infty} - ф$ ундаментальная

Определение 2.3 (Полное метрическое пространство). (X, ρ) — полное, если все фундаментальные последовательности имеют предел, лежащий в X

Почему хорошо жить в полном метрическом пространстве?

Замечание 2.2 (о пользе полноты). $F: X \to \mathbb{R}, (X, \rho)$ — метрическое пространство, F — непрерывная функция.

Стоит задача найти $x_0 \in X$ т.ч. $F(x_0) = 0$. Алгоритм: $\{x_n\}_{n=1}^{\infty}$, $\lim_{n \to \infty} F(x_n) = 0$, $\lim_{n,m \to \infty} \rho(x_n,x_m) = 0$. Если (X,ρ) — полное, то $\lim_{n \to \infty} x_n = x_0$, $F(x_0) = 0$. А если нет, то из наших вычислений вообще ничего не следует, воз-

можно, решения вообще нет.

Пример 2.1. \mathbb{R}^n , \mathbb{C}^n — полные.

Пример 2.2. $\mathbb{R}^n \setminus \{\mathbb{O}_n\}$ — неполное.

Пример 2.3. \mathbb{Q} — неполное.

Потом приведем примеры поинтереснее. Кстати, древние греки пришли в ужас, когда узнали, что \mathbb{Q} — неполное.

Определение 2.4 (ограниченное множество). (X, ρ) — метрическое пространство, $A \subset X, A$ — ограниченное, если

$$\exists R > 0 \,\exists x_0 \in X : A \subset B_R(x_0)$$

Теорема 2.1 (Свойства фундаментальных последовательностей). (X, ρ) — метрическое пространство, $\{x_n\}_{n=1}^{\infty}$ — фундаментальная последовательность, тогда выполняется:

- 1. $\{x_n\}_{n=1}^{\infty}$ ограниченная, т.е. $\exists R > 0 \exists x_0 \in X \forall n \in \mathbb{N} x_n \in B_R(x_0)$
- 2. $\exists \{x_{n_k}\}_{k=1}^{\infty}$ подпоследовательность $\Rightarrow (\exists a \in X \lim_{k \to \infty} x_{n_k} = a \Rightarrow \exists a \in X \lim_{n \to \infty} x_n = a = \lim_{k \to \infty} x_{n_k})$
- 3. $\{\varepsilon_k\}_{k=1}^{\infty}$ произвольная последовательность действительных чисел, $\forall k \in \mathbb{N} \ \varepsilon_k > 0 \Rightarrow \exists \{x_{n_k}\}_{k=1}^{\infty}$ подпоследовательность $\forall j \in \mathbb{N} \ (j > k \Rightarrow \rho(x_{n_k}, x_{n_j}) < \varepsilon_k)$

1 утверждение. Возьмём $\varepsilon=1$, тогда из фундаментальности $\exists N \forall n \in \mathbb{N} \ (n>N \Rightarrow \rho(x_n,x_N)<1).$

Возьмём $R = \max\{\rho(x_1,x_N),\dots,\rho(x_{N-1},x_N)\}+1$. Единичка на всякий случай.

Тогда
$$\forall n \in \mathbb{N} x_n \in B_R(x_N)$$
.

2 утверждение. Возьмём $\varepsilon > 0$, тогда по фундаментальности $\exists N \forall n, m \in \mathbb{N} \ ((\underline{n > N} \land m > N) \Rightarrow \rho(x_n, x_m) < \varepsilon)$. Возьмём это N.

 $\exists \ a \lim x_{n_k} = a \Rightarrow \exists \ n_k (n_k > N) \Rightarrow \rho(x_{n_k}, a) < \varepsilon$). Возьмём это n_k .

Возьмём некоторое m>N. Тогда $\rho(x_m,a)<\underline{\rho(x_m,x_{n_k})}+\rho(x_{n_k},a)<2\varepsilon$

3 утверждение. Докажем по индукции:

 $\varepsilon_1:\exists\, n_1\forall\, n,m\in\mathbb{N}\ ((n>n_1\wedge m>n)\Rightarrow \rho(x_m,x_n)<\varepsilon_1).$ Выберем $n_1,$ тогда $\forall\, m\in\mathbb{N}(m>n_1\Rightarrow \rho(x_m,x_{n_1})<\varepsilon_1).$

 ε_k : по индукции выбрали $n_1, \ldots, n_{k-1}, k \geq 2$. $\forall j \in (1 \ldots k-1) \forall m \in \mathbb{N}(m > n_j \Rightarrow \rho(x_m, x_{n_j}) < \varepsilon_j)$. Из фундаментальности исходной последовательности $\exists n_k (n_k > n_{k-1} \land \forall m \in \mathbb{N}(m > n_k \Rightarrow \rho(x_m, x_{n_k}) < \varepsilon_k))$ \square

Следствие 2.1. $(X, \rho), \{x_n\}$ — фундаментальная последовательность, тогда

$$\exists \{x_{n_k}\}$$
 т.ч. $\sum_{k=1}^{\infty} \rho(x_{n_k}, x_{n_{k+1}}) < +\infty$

Доказательство. По 3 свойству при $\varepsilon_k = \frac{1}{2^k}$.

Теорема 2.2 (О замкнутом подмножестве). (X, ρ) — метрическое пространство, тогда

- 1. (X, ρ) полное, $Y \subseteq X$, Y замкнутое $\Rightarrow (Y, \rho)$ полное
- 2. $Y \subseteq X$, (Y, ρ) полное $\Rightarrow Y$ замкнутое

1 утверждение. Доказательство следует прямо из определения. Знаем, что Y — замкнутое подмножество полного пространства. Берем фундаментальную последовательность. $Y \subset X$, пусть $\{x_n\}_{n=1}^{\infty}, \forall n \in \mathbb{N} \ x_n \in Y$ — фундаментальная. $\forall n \in \mathbb{N} \ x_n \in X, X$ — полное $\Rightarrow \exists \ x_0 \in X \ \lim_{n \to \infty} x_n = x_0. \ Y$ — замкнутое, значит $x_0 \in Y \Rightarrow (Y, \rho)$ — полное. \square

2 утверждение. Второй пункт не труднее первого. Пусть $\{x_n\}_{n=1}^{\infty}$ — произвольная фундаментальная последовательность в Y.

Y- полное $\Rightarrow \exists x_0 \in Y \lim_{n \to \infty} x_n = x_0 \Rightarrow Y-$ замкнутое из-за произвольности последовательности. \Box

2.1. Банаховы пространства

Сначала введём понятие полунормы.

Определение 2.5 (полунорма). Пусть X — линейное пространство над \mathbb{R} или \mathbb{C} . Отображение $p:X\to\mathbb{R}$ называется полунормой, если при $\forall \, x,y\in X\, \forall\, \lambda\in\mathbb{R}(\mathbb{C})$

- 1. $p(x + y) \le p(x) + p(y)$ (полуаддитивность)
- 2. $p(\lambda x) = |\lambda| p(x)$

Свойство 2.1. p — полунорма \Rightarrow

$$\forall x \in X (p(x) \ge 0 \land p(0) = 0)$$

Доказательство.
$$p(\mathbb{O}) = p(0 \cdot \mathbb{O}) = 0 \cdot p(\mathbb{O}) = 0$$
. Пусть $x \in X \Rightarrow \mathbb{O} = x + (-x) \Rightarrow p(\mathbb{O}) \le p(x) + \underbrace{p(-x)}_{p(x)} = 2p(x) \Rightarrow p(x) \ge 0$

Определение 2.6 (Норма). X — линейное пространство, p : $X \to \mathbb{R}$. p — норма $\Leftrightarrow (p$ — полунорма $\land (p(x) = 0 \Leftrightarrow x = \mathbb{0}))$. Будем обозначать ||x|| := p(x).

 $(X, ||\cdot||)$ будем обозначать нормированное пространство, и при $x, y \in X$ $\rho(x, y) := ||x - y||$. Тогда $(X, ||\cdot||)$ — метрическое пространство.

Определение 2.7 (банахово пространство). $(X, ||\cdot||)$ — банахово, если оно полное

Еще пару определений перед критерием банахова пространства.

Определение 2.8 (подпространство в алгебраическом смысле). X — линейное пространство, $L \subset X$. L — подпространство в алгебраическом смысле \Leftrightarrow

$$\forall x, y \in L \ \forall \alpha, \beta \in K \ \alpha x + \beta y \in L$$

Определение 2.9 (подпространство). $(X,||\cdot||),\ L\subset X,\ L$ подпространство, если

- 1. L подпространство в алгебраическом смысле
- 2. $L = \overline{L} \; (\overline{L}$ замыкание)

Теперь нам потребуется сходимость рядов. Для того, чтобы говорить о сходимости, нужна топология.

Определение 2.10 (Сходимость).

$$(X, ||\cdot||)$$
 $\{x_k\}_{k=1}^{\infty}$ $S_n = \sum_{k=1}^n x_k$

 $\sum_{k=1}^{\infty} x_k(*), (*)$ сходится, если $\exists \lim_{n \to \infty} S_n = S \in X$ (*) сходится абсолютно, если $\sum_{k=1}^{\infty} ||x_k||$ сходится

В \mathbb{R}^n (или в \mathbb{C}^n) если у нас была абсолютная сходимость, то была и обычная, но вообще говоря, это не так.

Теорема 2.3 (Критерий полноты нормированного пространства). $(X, ||\cdot||)$ - полное \Leftrightarrow из абсолютной сходимости ряда следует сходимость ряда.

Доказательство. Предположим, что наше пространство полное (\Rightarrow) . (X, ρ) — полное, $\{x_k\}_{k=1}^{\infty}$ — последовательность, при этом

$$\sum_{k=1}^{\infty} ||x_k|| \operatorname{сходится} \tag{**}$$

 $S_n = \sum_{k=1}^n x_k$. Цель такая: последовательность S_n — фундаментальная. Сейчас применим критерий Коши к ряду (**). Это ряд из чисел, так что всё в порядке. Пусть $\varepsilon > 0$. По критерию Коши $\exists \ N \in \mathbb{N} : \forall n, p \in \mathbb{N} \ (n > N \Rightarrow \sum_{k=n+1}^{n+p} ||x_k|| < \varepsilon)$.

$$||S_{n+p} - S_n|| = \left|\left|\sum_{k=1}^p x_{n+k}\right|\right| \le \sum_{k=1}^p ||x_{n+k}|| = \sum_{k=n+1}^{n+p} ||x_k|| < \varepsilon$$
 $\Rightarrow \{S_n\}_{n=1}^{\infty} - \text{фундаментальная, } (X, \rho) - \text{полное}$ $\Rightarrow \exists S \in X \lim_{n \to \infty} S_n = S$ $\Rightarrow \sum_{k=1}^{\infty} x_k \text{ сходится}$

Мы так запаслись номерами, чтобы выражение было меньше ε .

Теперь (\Leftarrow). У нас кроме определения ничего нет. Возьмём какуюто фундаментальную последовательность. Откуда взять предел? Есть соотношения между элементами последовательности. Возьмём подпоследовательность, ведь у нас есть следствие 2.1! Из свойств фундаментальных последовательностей, мы знаем, что

$$\exists \ \{x_{n_k}\}_{k=1}^{\infty} - \text{подпоследовательность}||x_{n_1}|| + \sum_{k=1}^{\infty} ||x_{n_{k+1}} - x_{n_k}|| \text{ сходится}$$

$$\Rightarrow \text{последовательность} \ x_{n_1} + \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k}) \text{ сходится}$$

Но её последовательность частичных сумм — это в точности оригинальная подпоследовательность:

$$S_m = x_{n_1} + \sum_{k=1}^{m-1} (x_{n_{k+1}} - x_{n_k}) = x_{n_m} \Rightarrow \exists S \in X \lim_{k \to \infty} x_{n_k} = S$$

Далее из части 2 Теоремы 2.1

$$\exists S \in X \lim_{m \to \infty} x_{n_m} = S \Rightarrow \exists S \in X \lim_{n \to \infty} x_n = S$$

2.2. Пространство ограниченных функций

Определение 2.11. Пусть A — произвольное множество. Стандартное обозначение m(A) — множество всех ограниченных функций из него в $\mathbb{C}(\mathbb{R})$

$$m(A) = \{f \mid f: A \to \mathbb{C} \text{ и } \sup_{x \in A} |f(x)| < +\infty\}$$

$$f \in m(A) \Rightarrow ||f||_{\infty} = \sup_{x \in A} |f(x)|.$$

Теорема 2.4. $(m(A), ||\cdot||_{\infty})$ — банахово пространство

Доказательство. Нужно проверить две вещи. Во-первых, что $||\cdot||_{\infty}$ удовлетворяет аксиомам нормы. А во-вторых, что пространство с таким определением является полным. Просто по определению, никаких хитрых критериев — возьмём фундаментальную подпоследовательность и покажем, что у нее есть предел.

Проверяем, что $\|\cdot\|_{\infty}$ удовлетворяет аксиомам нормы.

$$\forall \, \lambda \in \mathbb{C} ||\lambda f||_{\infty} = \sup_{x \in A} |\lambda| \cdot ||f(x)|| = |\lambda| \cdot \sup_{x \in A} ||f(x)|| = |\lambda| \cdot ||f||_{\infty}$$

Нужно проверить неравенство треугольника.

$$\forall f, g \in m(A) \forall x \in A | f(x) + g(x) | \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

$$\Rightarrow \forall f, g \in m(A) ||f + g||_{\infty} = \sup_{x \in A} |f(x) + g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

Следующая аксиома нормы:

$$||f||_{\infty}=0\Leftrightarrow \forall\,x\in A\,f(x)=0$$
 т.е. f — нулевая функция

Теперь мы проверили аксиомы нормы. Доказываем полноту. $\{f_n\}_{n=0}^{\infty}$ — фундаментальная в m(A).

$$\forall \varepsilon > 0 \,\exists \, N \in \mathbb{N} \,\forall m, n \in \mathbb{N}$$

$$((m > N \land n > N) \Rightarrow ||f_n - f_m||_{\infty} < \varepsilon) \text{ T.e. } \sup_{x \in A} |f_n(x) - f_m(x)| < \varepsilon$$

Первый вопрос: откуда взять претендента на роль предела? Еще желательно, чтобы он был единственный. Берём ε , N из формулы выше, фиксируем x. Если для супремума есть неравенство, то и для x тем более. $\forall x \in A((n > N \land m > N) \Rightarrow |f_n(x) - f_m(x)| < \varepsilon). \Rightarrow \{f_n(x)\}_{n=0}^{\infty}$ — фундаментальная последовательность в $\mathbb{C}(\mathbb{R})$.

$$\Rightarrow \forall x \in A \exists L \in \mathbb{C}(\mathbb{R}) : \lim_{n \to \infty} f_n(x) = L$$
Определим $f : A \to \mathbb{R}(\mathbb{C}), x \mapsto \lim_{n \to \infty} f_n(x)$

$$(n > N \land m > N \Rightarrow \forall x \in A |f_n(x) - f_m(x)| < \varepsilon) \quad \text{пусть } m \to \infty$$

$$\Rightarrow (n > N \Rightarrow \forall x \in A |f_n(x) - f(x)| \le \varepsilon)$$

$$\Rightarrow (n > N \Rightarrow ||f_n - f||_{\infty} = \sup_{x \in A} |f_n(x) - f(x)| \le \varepsilon)$$

Последнее сображение, которое нужно добавить, это то, что f — элемент A. Для n > N можем записать f как $f = (f - f_n) + f_n, f_n \in m(A), f - f_n \in m(A)$.

$$\Rightarrow ||f||_{\infty} = ||(f - f_n) + f_n||_{\infty} \le ||f - f_n||_{\infty} + ||f_n||_{\infty} < +\infty \Rightarrow f \in m(A)$$

Давайте заметим, что у нас получилось определение равномерной непрерывности из математического анализа.

$$\lim_{n \to \infty} f_n = f \in m(A) \Leftrightarrow \lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0 \Leftrightarrow f_n \underset{\substack{x \in A \\ n \to \infty}}{\rightrightarrows} f$$

Определение 2.12 (Топологический компакт). Множество K — топологический компакт, если оно обладает следующими свойствами

- 1. $\forall \alpha \in A$ G_{α} открытое множество и $K \subseteq \bigcup_{\alpha \in A} G_{\alpha} \Rightarrow \exists \{\alpha_j\}_{j=1}^n$ конечная подпоследовательность : $K \subseteq \bigcup_{j=1}^n G_{\alpha_j}$
- 2. Хаусдорфовость $\forall x,y \in K(x \neq y \Rightarrow \exists U,V$ открытые и $x \in U \land y \in V \land U \cap V = \emptyset$)

Определение 2.13.
$$C(K) = \{ f \mid f : K \to \mathbb{R} \text{ и } f \text{ непрерывна} \}$$

$$||f||_{C(K)} = ||f||_{\infty} = \sup_{x \in K} |f(x)| = \max_{x \in K} |f(x)|$$

Следствие 2.2. K — топологический компакт $\Rightarrow C(K)$ — банахово

Доказательство. $C(K) \subset m(K)$. C(K) — подпространство в алгебраическом смысле. Проверим, что C(K) — замкнуто в m(K)

$$\{f_n\}, f_n \in C(K), \lim_{n \to \infty} |f - f_n|_{\infty} = 0 \Leftrightarrow f_n \underset{K, n \to \infty}{\Longrightarrow} f \overset{\text{анализ}}{\Longrightarrow} f \in C(K) \Rightarrow C(K) \text{ замкнуто}$$
 тогда $m(K)$ — полное и $C(K)$ — полное.

2.3. Пространство последовательностей с sup нормой

Определение 2.14.
$$\mathbb{C}^n, n \in \mathbb{N}, l_n^{\infty} = \{x = (x_1, \dots, x_n), x_j \in \mathbb{C}\}$$

$$||x||_{\infty} = \max_{1 \leq j \leq n} |x_j|$$

 $A=\{1,2,\dots,n\}, l_n^\infty=m(A)\Rightarrow l_n^\infty$ — полное. Удобно думать, что последовательность — это функция на множестве натуральных чисел.

Определение 2.15 (l^{∞}) .

$$l^{\infty} = \{x = \{x_j\}_{j=1}^{\infty}, \sup_{j \in \mathbb{N}} |x_j| < +\infty\}$$

$$||x||_{\infty}=\sup_{j\in\mathbb{N}}|x_j|$$
 $A=\{1,2,3,\ldots,n,\ldots\}$ $x=\{x\}_{j=1}^{\infty}\in m(A), f:A\to\mathbb{C}, j\mapsto x_j$ $l^{\infty}:=m(\mathbb{N})\Rightarrow l^{\infty}-$ полное

Определение **2.16** (c, c_0) .

$$c = \{x = \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{C} \quad \exists \lim_{n \to \infty} x_n = x_0\}$$
$$c \subset l^{\infty}, ||x|| = ||x||_{\infty} = \sup ||X||$$
$$c_0 = \{x = \{x\}_{j=1}^{\infty}, \lim_{n \to \infty} x_j = 0\}, c_0 \subset c \subset l^{\infty}$$

 c, c_0 — замкнутые подпространства в $l^{\infty} \Rightarrow c, c_0$ — банаховы.

2.4. Пространство n раз непрерывно дифференцируемых функций на отрезке

$$n \in \mathbb{N}$$
 $C^{(n)}[a,b] = \{f : [a,b] \to \mathbb{R} \text{ и } \exists f^{(n)} \in C[a,b] \}$

Определение 2.17 (норма n-ой производной).

$$||f||_{C^{(n)}[a,b]} = \max_{0 \le k \le n} \{||f||_{\infty}^{(k)}\}, f^{(0)} = f$$

Теорема 2.5. $C^{(n)}[a,b]$ — банахово.

Доказательство.

$$\{f_m\}_{m=1}^\infty$$
 — фундаментальная последовательность в $C^{(n)}[a,b]$ $\varepsilon>0$ \exists $N:(m>N\land q>N)\Rightarrow ||f_m-f_q||_{C^{(n)}}<\varepsilon\Rightarrow ||f_m^{(k)}-f_q^{(k)}||_\infty<\varepsilon$ $k=0,1,\ldots,n$

 $\{f_m^{(k)}\}$ — фундаментальная в полном пространстве C[a,b]

$$\Rightarrow \exists \varphi_k \in C[a,b], f_m^{(k)} \underset{[a,b]}{\Longrightarrow} \varphi_k, k = 0, 1, \dots, n$$

$$\stackrel{\text{Анализ}}{\Rightarrow} (f_k^{(0)} \underset{[a,b]}{\Longrightarrow} \varphi_0 \wedge f_k' \underset{[a,b]}{\Longrightarrow} \varphi_1) \Rightarrow \varphi_1 = \varphi_0', \varphi_2 = \varphi_0'', \dots, \varphi_n = \varphi_0^{(n)}$$

$$\Rightarrow \max \left\{ \left| \left| f_m^{(k)} - \varphi_0^{(k)} \right| \right|_{\infty} \right\} \underset{m \to \infty}{\longrightarrow} 0$$

а этот максимум это и есть $||f_m - \varphi_0||_{C^{(n)}[a,b]}$

Глава 3

Пространство суммируемых функций (Лебега L^p)

Сейчас будет небольшой экскурс в теорию меры, которая была на математическом анализе. Мы ничего доказывать не будем и поверим, что все утверждения верны и в общем случае.

3.1. Теория меры

Определение 3.1 (Мера). (X,U,μ) — пространство с мерой. X — множество, U — σ -алгебра подмножества X

- 1. $\emptyset \in U$
- $2. \ A \in U \Rightarrow X A \in U$
- 3. $\{A_n\}_{n=1}^{\infty}, A_n \in U, A = \bigcup_{n=1}^{\infty} A_n \Rightarrow A \in U$

$$\mu:U\to [0,+\infty]$$

- мера, если
 - 1. $\mu(\emptyset) = 0$
 - 2. $A=\bigcup_{n=1}^{\infty}A_n, A_n\cap A_m=\varnothing, n\neq m, A_n\in U\Rightarrow \mu(A)=\sum_{n=1}^{\infty}\mu A_n$ (счетная аддитивность)

Предположения:

1. μ — полная мера, то есть $A\in U, \mu(A)=0 \Rightarrow (\forall\, B\subset A\Rightarrow B\in U, \Rightarrow \mu B=0)$

2.
$$\mu - \sigma$$
-конечна, то есть $X = \bigcup_{i=1}^{\infty} X_i, \mu(X_i) < +\infty$

Пока можем думать, что речь идет о мере Лебега. Потом приведём другие примеры. В теории пространств будем считать, что функция действует из X в $\mathbb R$ или в $\mathbb C$ (не особо важно).

Определение 3.2 (Измеримая функция). $f: X \to \overline{\mathbb{R}}.$ f — измерима, если

$$\forall c \in \mathbb{R}, \ \underbrace{\{x : c < f(x)\}}_{\text{измеримое множество}} \in U$$

В комплексном случае $f:X\to\mathbb{C}\Rightarrow f=u+iv,u,v:X\to\mathbb{R},\,f$ измерима, если u,v — измеримы.

Как же определяется интеграл? Пусть есть какой-то элемент σ -алгебры $e\in U,\ \chi_e(x)=\begin{cases} 1&x\in e\\0&x\notin e \end{cases}$. Множество простых функций определяется как

$$S = \left\{ g : g(x) = \sum_{k=1}^{n} c_k \chi_{e_k}(x), c_k \in \mathbb{C}, e_k \in U \right\}$$

 $g \in S, \int_X g(x) d\mu = \sum_{k=1}^n c_k \mu e_k$ как интеграл от простой функции

Определение 3.3 (Произвольно измеримая функция). Два случая: неотрицательная функция и произвольная

1. f(x) — измеримая, $f(x) \ge 0$, f(x) — произвольно измеримая, если конечен

$$\int_X f d\mu = \sup \left\{ \int_X g(x) d\mu, 0 \le g(x) \le f(x), x \in X \right\}$$

2. f(x) не обязательно неотрицательная, $f_+(x) = \max(f(x),0), f_-(x) = \max(-f(x),0) \Rightarrow f = f_+ - f_-.$ f(x) — произвольно измеримая, если $\int_X f_+ d\mu$ — конечен или $\int_X f_- d\mu$ — конечен, тогда

$$\int_X f d\mu = \int_X f_+ d\mu - \int_X f_- d\mu$$

Если f — измеримая, $f: X \to \mathbb{C} \Rightarrow f = u + iv$

$$\int_X f d\mu = \int_X u d\mu + i \int_X v d\mu$$

Определение 3.4 (Множество суммируемых функций). $L(X,\mu)$ — множество суммируемых функций =

$$\left\{ f: \int_X |f| d\mu < +\infty \right\}, |f| = f_+ + f_-$$

Прежде чем двигаться дальше, приведем примеры других мер (кроме мер Лебега)

Пример 3.1. $E \subset \mathbb{R}^n, E$ — измеримо по Лебегу, λ — мера Лебега, $w(x) \geq 0, x \in E, w$ — измерима по Лебегу.

 $e\subset E, e$ — измеримо по Лебегу. $\mu e=\int_e w(x)d\lambda, w(x)$ — плотность меры μ

Вторая мера в каком-то смысле противоположная. Она сосредоточна на наборе точек и называется дискретной.

Пример 3.2 (δ -функция Дирака). X — множество ($X \neq \emptyset$), $a \in X$

$$e \subset X, \delta_a(e) = \begin{cases} 1 & a \in e \\ 0 & a \notin e \end{cases}$$

 $\forall e, e \subset X, e$ — измеримо

Пример 3.3 (Дискретная мера). X — бесконечное множество. $\{a_j\}_{j=1}^\infty, a_j \in X, a_j \neq a_k, j \neq k$ $\{h_j\}_{j=1}^\infty, h_j \in \mathbb{R}, h_j > 0$

$$E \subset X, \mu E = \sum_{j=1}^{\infty} h_j \delta_{a_j}(E) = \sum_{\{j: a_j \in E\}} h_j$$

На пальцах: X — не более чем счётное множество, каждому элементу сопоставили вещественное число. Мера какого-то подмножества E — это сумма сопоставленных чисел элементов X, которые принадлежат E.

План такой: хотим ввести норму на множестве интегрируемых функций. Для этого нам надо ввести некоторые неравенства.

3.2. Классические неравенства

Теорема 3.1 (Неравенство Юнга). $p>1, \frac{1}{p}+\frac{1}{q}=1$ (q-сопряженный показатель)

$$\Rightarrow ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

Доказательство. Пусть b — фиксировано, $\varphi(x) = \frac{x^p}{p} - xb, x \in [0, +\infty)$. Хотим найти $\min_{x \in [0, +\infty)} \varphi(x)$. Для этого посмотрим, где производная обращается в 0. $\varphi'(x) = x^{p-1} - b, \; \varphi'(x_0) = 0 \Leftrightarrow x_0 = b^{\frac{1}{p-1}} \Rightarrow \varphi(x) > \varphi(x_0) \; \forall \, x \neq x_0, x \geq 0$. Таким образом, x_0 — строгий локальный минимум.

$$\varphi(x_0) = \frac{1}{p} b^{\frac{p}{p-1}} - b^{\frac{p}{p-1}} = b^{\frac{p}{p-1}} \left(\frac{1}{p} - 1\right) = -\frac{b^q}{q}$$

$$\left[\left[-\frac{1}{q} = \frac{1}{p} - 1 = \frac{1-p}{p} \Rightarrow q = \frac{p}{p-1} \right] \right]$$

$$\varphi(x) \ge -\frac{b^q}{q} \, \forall \, x \in [0, +\infty) \text{ то есть ОК}$$

Замечание 3.1. Равенство в неравенстве Юнга достигается только при $a=b^{\frac{1}{p-1}}$

Теорема 3.2 (Неравенство Гельдера). (X,U,μ) — пространство с мерой. f,g — измеримые, $p>1,\frac{1}{p}+\frac{1}{q}=1$ \Rightarrow

$$\int_{X} |fg| d\mu \le \left(\int_{X} |f|^{p} d\mu \right)^{\frac{1}{p}} \cdot \left(\int_{X} |g|^{q} d\mu \right)^{\frac{1}{q}} \tag{*}$$

Если p=q=2, то это «Неравенство Коши-Бунаковского-Шварца», или на молодёжном математическом сленге неравенство КБШ.

Доказательство. Для начала отбросим какие-то простые случаи. $A = \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}, B = \left(\int_X |g|^q d\mu\right)^{\frac{1}{q}}.$ Если $A = 0 \Leftrightarrow |f| = 0$ почти всюду по $\mu \Leftrightarrow f(x) = 0$ почти всюду по μ (то есть $\mu\{x: f(x) \neq 0\} = 0$). На

всякий случай поясним, почему функция равна 0 почти всюду по мере μ

$$\int_{X} |f| d\mu = 0 \Rightarrow e = \{x : f(x) \neq 0\}, m \in \mathbb{N}, e_{m} = \{x : |f(x)| > \frac{1}{m}\}$$

$$e = \bigcup_{m=1}^{\infty} e_{m} \quad \int_{X} |f| d\mu \ge \int_{e_{m}} |f| d\mu \ge \frac{1}{m} \mu e_{m} \Rightarrow \mu e_{m} = 0 \Rightarrow \mu e = 0$$

$$\Rightarrow f(x) \cdot g(x) = 0 \text{ fi.b.} \quad 0 \le 0$$
(*)

Если $A = +\infty$, то (*)

пусть
$$0 < A < +\infty, 0 < B < +\infty$$

Неравенство Гельдера однородное, то есть если мы f умножим на константу, то левая и правая часть умножится на неё же, аналогично с g. Иногда бывает удобно ввести нормировку.

$$f_1(x) = \frac{f(x)}{A}, g_1(x) = \frac{g(x)}{B}, \int_X |f_1(x)|^p d\mu = \frac{A^p}{A^p} = 1, \int_X |g_1(x)|^q d\mu = 1$$

Пусть x — фиксирован, $a = |f(x)|, \ b = |g(x)| \stackrel{\text{н.Юнга}}{\Rightarrow}$

$$|f_1(x)| \cdot |g_1(x)| \le \frac{|f_1(x)|^p}{p} + \frac{|g_1(x)|^q}{q}$$
 проинтегрируем X по μ
$$\Rightarrow \int_X |f_1| \cdot |g_1| d\mu \le \frac{1}{p} \int_X |f_1|^p d\mu + \frac{1}{q} \int_X |g_1|^q d\mu = \frac{1}{p} + \frac{1}{q} = 1$$

Умножаем на
$$AB \Rightarrow \int_X |fg| d\mu \le AB$$

Теорема 3.3 (Неравенство Минковского). $(X,U,\mu),\,f,g$ — измеримые, $1\leq p<+\infty$ \Rightarrow

$$\underbrace{\left(\int_{X}|f(x)+g(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{C} \leq \underbrace{\left(\int_{X}|f(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{A} + \underbrace{\left(\int_{X}|g(x)|^{p}d\mu\right)^{\frac{1}{p}}}_{B}$$
(*)

Доказательство. Сначала разберём простые случаи. p=1,x — фиксирован. $|f(x)+g(x)|\leq |f(x)|+|g(x)|$ проинтегрируем по $X\Rightarrow (*)$ при p=1. Теперь пусть p>1. Если $A=+\infty$, или $B=+\infty$, или C=0, то (*).

Теперь же пусть $A<+\infty, B<+\infty, C>0$. Доказательство будет в два этапа. На первом этапе получим гораздо более слабое утверждение, вообще не то, что требуется в теореме, но оно нам понадобится. Докажем, что $C<+\infty$.

 $a,b\in\mathbb{R}\Rightarrow |a+b|\leq |a|+|b|\leq 2\max(|a|,|b|)\Rightarrow |a+b|^p\leq 2^p\max(|a|^p,|b|^p)\leq 2^p(|a|^p+|b|^p)\Rightarrow$ при фиксированном x

$$|f(x) + g(x)|^p \le 2^p (|f(x)|^p + |g(x)|^p)$$
 проинтегрируем по X

 $\Rightarrow C^p \leq 2^p (A^p + B^p) \Rightarrow C < +\infty$. Первая часть доказательства закончена.

$$C^p = \int_X |f+g|^p d\mu = \int_X |f+g| \cdot |f+g|^{p-1} d\mu \le \int_X |f| \cdot |f+g|^{p-1} d\mu + \int_X |g| \cdot |f+g|^{p-1} d\mu$$

$$\int_X |f| \cdot |f + g|^{p-1} d\mu \overset{\text{н. Гельдера}}{\leq} \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}} \cdot \left(\int_X |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}}$$

$$\int_X |g| \cdot |f + g|^{p-1} d\mu \overset{\text{н. Гельдера}}{\leq} \left(\int_X |g|^p d\mu \right)^{\frac{1}{p}} \cdot \left(\int_X |f + g|^{(p-1)q} d\mu \right)^{\frac{1}{q}}$$

$$(p-1)\cdot q=(p-1)\cdot \frac{p}{p-1}=p$$
и $\frac{1}{q}=1-\frac{1}{p}$

$$C^p \leq \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} \cdot \left(\int_X |f+g|^p d\mu\right)^{1-\frac{1}{p}} + \left(\int_X |g|^p d\mu\right)^{\frac{1}{p}} \cdot \left(\int_X |f+g|^p d\mu\right)^{1-\frac{1}{p}}$$

так как доказали, что $C<+\infty$, делим на $C^{p\left(1-\frac{1}{p}\right)}=\left(\int_X|f+g|^pd\mu\right)^{1-\frac{1}{p}}$

$$C^{p-p\left(1-\frac{1}{p}\right)} \le A + B$$

а это и есть $C \leq A + B$

3.3. Пространство Лебега

Отсюда и до определения L^{∞} очень аккуратно с \mathcal{L} и L читать. Тут точно есть путаница, но записи лекции нет, чтобы ее устранить.

Определение 3.5. (X,U,μ) — пространство с мерой. $\mathcal{L}(X,\mu)$ — пространство суммируемых функций. $1 \leq p < +\infty$ $\mathcal{L}^p(X,\mu) = \{f: |f|^p \in \mathcal{L}(X,\mu)\}$

$$f \in \mathcal{L}^p(X,\mu), ||f||_p = \left(\int_X |f(x)|^p d\mu\right)^{\frac{1}{p}}$$

Проверим, что $||f||_p$ — это полунорма на $\mathcal{L}^p(X,\mu)$. $c\in\mathbb{R}$ (или \mathbb{C}). $||cf||_p=|c|\cdot||f||_p$

 $||f+g||_p \le ||f||_p + ||g||_p$ — неравенство Минковского

 $||f||=0 \Leftrightarrow \int_X |f(x)|^p d\mu=0 \Leftrightarrow f(x)=0$ почти всюду по мере μ на X.

Пример 3.4. $L[0,1], \lambda$ — мера Лебега на [0,1].

функция Дирихле
$$\varphi(x)=\begin{cases} 1 & x\in\mathbb{Q}\\ 0 & x\notin\mathbb{Q} \end{cases} \int_0^1 |\varphi(x)|d\lambda=0.$$

 $N=\{f$ — измерима и f(x)=0 п.в. на X по $\mu\}$. $||f||_p=0\Leftrightarrow f\in N$ (не зависит от p).

Рецепт приготовления пространства с нормой из полуфабриката (с полунормой): N — подпространство в \mathcal{L}^p , $L^p = \mathcal{L}^p/N$ — факторпространство.

 $g,f\in L^p, f\sim g\Leftrightarrow f-g\in N\Leftrightarrow f(x)=g(x)$ почти всюду по $\mu.$ \overline{f} — класс эквивалентности, $\overline{f}=\{g:f\sim g\}.$

 $||\overline{f}||_p:=||f||$, то есть можно взять любую функцию из класса эквивалентности.

$$||\overline{f}||_p = 0 \Leftrightarrow \int_X |f|^p d\mu = 0 \Leftrightarrow f \in N \Rightarrow \overline{f} = N = \overline{0} \Rightarrow$$

 $||\overline{f}||_p$ — норма на L^p . Говорят, что $f \in L^p$, возьмём функцию из L^p , но имеют в виду, что возьмут класс экивалентности, а из него возьмут функцию.

Одна из главных целей — доказать, что эти пространства Банаховы. Сначала определим $L^{\infty}(X,\mu)$ (существенно ограниченные функции).

Определение 3.6
$$(\mathcal{L}^{\infty}(X,\mu))$$
. $f \in \mathcal{L}^{\infty}(X,\mu)$, если

$$\exists\,c>0:|f(x)|\leq c$$
 п.в. на X по μ

Возьмём точную нижнюю грань этой константы. $||f||_{\infty}=\inf\{c\geq 0: \mu\{x: ||f(x)||>c\}=0\}$ (существуенный \sup , или на подлом англосаксонском $\exp_X f$)

Свойство 3.1.
$$f \in \mathcal{L}^{\infty}(X, \mu) \Rightarrow \mu\{x : f(x) > ||f||_{\infty}\} = 0$$

Доказательство.
$$e=\{x:|f(x)|>||f||_{\infty}\}, m\in\mathbb{N}.$$
 $e_m=\{x:|f(x)|>||f||_{\infty}+\frac{1}{m}\}\Rightarrow \mu e_m=0$ по определеннию ess $\sup_X f\Rightarrow e=\cup_{m=1}^\infty e_m\Rightarrow \mu e=0$

Покажем, что $||f||_{\infty}$ — полунорма на \mathcal{L}^{∞}

$$\lambda \neq 0 \quad |\lambda f(x)| \leq |\lambda| \cdot c \Leftrightarrow |f(x)| \leq c \Rightarrow ||\lambda f||_{\infty} = |\lambda| \cdot ||f||_{\infty}$$

полуаддитивность есть по свойству 3.1

$$f,g \in \mathcal{L}^{\infty}, x \in X \Rightarrow |f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$
 для п.в. x на $X \Rightarrow ||f + g||_{\infty} < ||f||_{\infty} + ||g||_{\infty}$

$$||f||_{\infty}=0\Leftrightarrow \mu\{x:|f(x)|>0\}=0\Leftrightarrow f(x)=0$$
 п.в. на $X\Leftrightarrow f\in N=\{f$ — измерима, $f(x)=0$ п.в. на $X\}$

$$L^{\infty} = \mathcal{L}^{\infty}/N$$

Все, что Н.А. доказал для меры Лебега, верно и для других мер. Те доказательства и так были не особо веселые, чтобы их повторять.

Теорема 3.4 (Фату).
$$(X, U, \mu), \{g_n\}_{n=1}^{\infty}, g_n$$
 — измеримые, $g_n(x) \ge 0$

$$g_n(x) \xrightarrow[\text{п.в.}]{} g(x) \int_X g_n(x) d\mu \le C, C$$
 не зависит от п
$$\Rightarrow \int_X g(x) d\mu \le C$$

Первая существенная теорема, которая нам встретилась.

Теорема 3.5 (полнота пространства Лебега). $(X,U,\mu), 1 \le p \le +\infty \Rightarrow L^p(X,\mu)$ — банаховы.

Доказательство. при $1 \le p < +\infty$ воспользуемся критерием полноты (если сходится ряд из норм, то сам ряд сходится)

$$\{f_n\}_{n=1}^{\infty}, f_n \in L^p, \sum_{n=1}^{\infty} ||f_n||_p \le C < +\infty$$

$$S_n(x) = \sum_{k=1}^n f_k(x)$$

Докажем, что $\lim_{n\to\infty}||S_n(x)-f(x)||_p=0$. Существует ли $f(x)=\lim_{n\to\infty}S_n(x)$ почти всюду на X?

Рассмотрим $\sigma_n(x) = \sum_{k=1}^n |f_k(x)| \Rightarrow \sigma_n(x)$ возрастает $\Rightarrow \exists \sigma(x) = \lim_{n \to \infty} \sigma_n(x)$. Возможно, $\sigma(x) = +\infty$ для некоторых x.

$$||\sigma_n||_p \le \sum_{k=1}^n ||f_k||_p \le C$$

$$\int_X |\sigma_n(x)|^p d\mu \le C^p \text{ и } \sigma_n(x)^p \underset{n \to \infty}{\longrightarrow} \sigma(x)^p \, \forall \, x \in X \stackrel{\text{т. } \Phiary}{\Rightarrow}$$

 $\int_X \sigma(x)^p d\mu \le C^p$. Самое главное, что мы из этого заключаем: $\sigma(x) < +\infty$ п.в. на X по μ .

$$x\in X$$

$$\sum_{k=1}^{\infty}|f_k(x)|<+\infty\Rightarrow\sum_{k=1}^{\infty}f_k(x)-$$
 сходится
$$f(x):=\sum_{k=1}^{\infty}f_k(x)$$
 определена п.в. на $X,\lim_{n\to\infty}S_n(x)=f(x)$
$$\sum_{k=1}^{\infty}||f_k||_p<+\infty, \varepsilon>0$$

Применим критерий Коши: $\exists N \in \mathbb{N} \quad m > n > N \Rightarrow \sum_{k=n+1}^m ||f_k||_p < \varepsilon \Rightarrow ||S_m(x) - S_n(x)||_p \leq \sum_{k=n+1}^m ||f_k||_p < \varepsilon$

$$\int_X |S_m(x) - S_n(x)|^p d\mu < \varepsilon^p (n \text{ фиксировано}) \text{ и } |S_m(x) - S_n(x)| \underset{m \to \infty}{\longrightarrow} |f(x) - S_n(x)|$$

$$\stackrel{\Phi_{\text{ary}}}{\Rightarrow} \int_X |f - S_n|^p d\mu \le \varepsilon^p \Rightarrow ||f - S_n||_p \le \varepsilon$$

 $f-S_n\in L_p,\, S_n\in L^p\Rightarrow f=(f-S_n)+S_n\Rightarrow f\in L_p$ и $||f-S_n||_p\underset{n\to\infty}{\longrightarrow} 0$ Теперь осталось рассмотреть случай $p=\infty.$ $\{f_n\}_{n=1}^\infty$ фундаментальная, $f_n\in L^\infty,$

$$|f_n(x)| < ||f_n||_{\infty}$$
 $x \in X \setminus e_n, \mu e_n = 0$ $n \in \mathbb{N}$

 $e=\bigcup_{n=1}^\infty e_n, X_1=X\setminus e\Rightarrow f_n\in m(X_1)$ — ограниченная функция. $m(X_1)$ — полное $\Rightarrow \{f_n\}$ — фундаментальна в $m(X_1)\Rightarrow \exists f\in m(X_1)$ — $\sup_{x\in X_1}|f(x)-f_n(x)|\underset{n\to\infty}{\longrightarrow} 0$. Положим f(x)=0 если $x\in e\Rightarrow \lim_{n\to\infty}||f_n-f||_{L\infty}=0$ —

3.4. Пространства l_n^p, l^p

 $n \in \mathbb{N}, 1 \le p < +\infty.$

Определение 3.7.

$$l_n^p = \{ \mathbb{R}^n, x = (x_1, \dots, x_n), x_j \in \mathbb{R} \}$$

$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}$$

Рассмотрим $X=\{1,2,\ldots,n\}$. Возьмём дискретную меру $\mu(j)=1$ при $1\leq j\leq n,\ l_n^p=L^p(X,\mu).\ f\in L^p(X,\mu), f(j)=x_j\Rightarrow l_n^p$ — полное.

Посмотрим, что будет обозначать сходимость этой нормы.

Теорема 3.6.
$$\{x^{(m)}\}_{m=1}^{\infty}, x=(x_1,\ldots,x_n), x^{(m)}=(x_1^{(m)},\ldots,x_n^{(m)}), x^{(m)}\in l_n^p, q\leq p\leq +\infty$$

$$\lim_{m \to \infty} ||x - x^{(m)}||_p = 0 \Leftrightarrow \lim_{m \to \infty} x_j^{(m)} = x_j, 1 \le j \le n$$

 \mathcal{A} оказательство. \Rightarrow

Пусть j — фиксировано, $\lim_{m\to\infty} x^{(m)} = x$ в l_n^p .

При
$$p < +\infty ||x - x^{(m)}||_p = \left(\sum_{i=1}^n |x_i - x_i^{(m)}|^p\right)^{\frac{1}{p}} \ge |x_j - x_j^{(m)}|.$$
 Так как $||x - x^{(m)}||_p \xrightarrow[m \to \infty]{} 0 \Rightarrow \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0.$

При
$$p = \infty$$
 $||x - x^{(m)}||_{\infty} = \max_{1 \le i \le m} \{|x_i - x_i^{(m)}|\} \ge |x_j - x_j^{(m)}|$. Так как $||x - x^{(m)}||_{\infty} \xrightarrow[m \to \infty]{} 0 \Rightarrow \lim_{m \to \infty} |x_j - x_j^{(m)}| = 0$

Теперь ←

Определение 3.8.

$$l_p = \{x : \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{R}(\mathbb{C}) \text{ и } \sum_{j=1}^{\infty} |x_j|^p < +\infty\}$$

$$||x||_p=\left(\sum_{j=1}^\infty|x_j|^p\right)^{\frac{1}{p}}$$
 $X=\mathbb{N},\,\mu(j)=1,\,\mu=\sum_{n=1}^\infty\sigma_n$
$$l^p=L^p(\mathbb{N},\mu)\Rightarrow \text{ полное} \qquad 1\leq p<+\infty$$

Замечание 3.2. $\{x^{(m)}\}_{m=1}^{\infty}, x^{(m)} \in l^p, \lim_{m \to \infty} ||x^{(m)} - x||_p = 0 \Rightarrow \forall j \lim_{m \to \infty} x_j^{(m)} = x_j$. Например, $\not =$ при $e_m = (0, 0, \dots, 0, 1, 0, 0, \dots)$

Пусть j фиксировано. $\lim_{m\to\infty}(e_m)_j=0$ $||e_m-\mathbb{O}||_p=1$ $\forall\, p,1\le p\le +\infty.$ В качестве упражнения доказать, что l^p — полное непосредственно.

На рисунке 3.1 приведены примеры единичных шаров в $l_2^p=\{(x,y):(|x|^p+|y|^p)^{\frac{1}{p}}\},1\leq p<+\infty.$ Для l_2^∞ норма определяется $||(x,y)||_\infty=\max(|x|,|y|)$

Рис. 3.1: Примеры единичных шаров в l_2^p

3.5. Неполное нормированное пространство

Определение 3.9 (Финитное линейное пространство).

$$F = \{x = \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{R}(\mathbb{C}) \exists \ N(x) \in \mathbb{N} : n > N(x) \Rightarrow x_n = 0\}$$

 $F\subset l^p$ $1\leq p\leq +\infty.$ $(F,||\cdot||_p)$ — не полное, F — не замкнуто. Будем брать геометрическую прогрессию и обрывать ее на некотором

члене.

$$x^{(m)} = \left\{ \frac{1}{2}, \frac{1}{4}, \dots, \frac{1}{2^m}, 0, 0, 0, \dots \right\} \in F$$

$$x = \left\{ \frac{1}{2^k} \right\}_{k=1}^{\infty} \in l^p$$

$$1 \le p < +\infty \quad ||x - x^{(m)}||_p = \left(\sum_{k=m+1}^{\infty} \frac{1}{2^{kp}} \right)^{\frac{1}{p}} \xrightarrow[m \to \infty]{} 0$$

Следовательно, F — не замкнуто.

В качестве упражнения проверить, что \overline{F} в $l^p=$? при $p<+\infty$ и при $p=\infty.$

Теорема 3.7.
$$C[a,b], ||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}, 1 \leq p < +\infty$$

$$(C[a,b], ||\cdot||) - \text{ не полное}$$

Доказательство. При $p=1, [a,b]=[-1,1], f\in C[a,b], \int_a^b |f(x)|^p dx=0 \Leftrightarrow f(x)\equiv 0$. Предъявим фундаментальную последовательность, предел которой не будет непрерывной функцией.

$$f_n = \begin{cases} 0 & -1 \le x \le 0 \\ nx & x \in [0, \frac{1}{n}] \\ 1 & x \in [\frac{1}{n}, 1] \end{cases}, f \in C[-1, 1]$$

 f_n — фундаментальная в (C[-1,1], p=1)

$$\int_{1}^{1} |f_{m}(x) - f_{n}(x)| dx = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{m} \right) \le \frac{1}{2n} \underset{n, m \to \infty}{\longrightarrow} 0$$

Пусть $\exists f \in C[-1,1] : ||f - f_n||_1 \underset{n \to \infty}{\longrightarrow} 0$

$$m \ge n$$

$$\int_{\frac{1}{n}}^{1} \underbrace{|f(x) - 1|}_{=0} dx \xrightarrow[m \to \infty]{} 0$$

потому что
$$\int_{\frac{1}{n}}^{1} |f(x) - 1| dx \le \int_{0}^{1} |f(x) - f_{m}(x)| dx \xrightarrow[m \to \infty]{} 0$$

$$\Rightarrow f(x) = 1, x \in \left[\frac{1}{n}, 1\right] \forall n$$

$$\begin{cases} \Rightarrow f(x)=1, x\in(0,1], f \text{ непрерывна }, f(0)=1\\ \text{аналогично } f(x)\equiv 0 \text{ на } [-1,0] \end{cases} \Rightarrow \text{противоречие}$$

Рис. 3.2: Доказательство теоремы 3.7

3.6. Пополнение метрического пространства

Мы привели несколько примеров нормированных пространств, не являющихся полными. Приведём еще один пример.

Определение 3.10.

$$\mathcal{P} = \left\{ p(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{R}, n \ge 0 \right\}$$

 \mathcal{P} (подпространство в алгебраическом смысле) $\subset C[a,b],\,||p||_{\infty}=\max_{x\in[a,b]}|p(x)|$

 $e^x \notin \mathcal{P}, \ p_n(x) = \sum_{k=0}^n \frac{x^k}{k!}, \Rightarrow p_n \underset{[a,b],n\to\infty}{\Longrightarrow} e^x$ это не многочлен, потому

что если сколько-то раз продифференцировать многочлен, он станет тождественным 0.

$$\Rightarrow \overline{\mathcal{P}} \setminus \mathcal{P} \ni e^x \Rightarrow \mathcal{P}$$
 — не замкнуто $\Rightarrow \mathcal{P}$ — не полное.

$$\overline{\mathcal{P}} = C[a, b]$$

Теорема 3.8 (Вейерштрасса, 1885). $f \in C[a,b], \forall \varepsilon > 0 \,\exists \, p \in \mathcal{P}$ т.ч. $||f-p|| < \varepsilon$ (любую функцию на отрезке можно приблизить многочленами)

$$p_n \rightrightarrows f \Rightarrow f$$
 аналитическая в G

Несколько простых свойств метрики, и все следуют из неравенства треугольника

Теорема 3.9 (Свойства метрики). (X, ρ) — метрическое

1.
$$x, y, z, u \in X \Rightarrow |\rho(x, u) - \rho(y, z)| \le \rho(x, y) + \rho(u, z)$$

- 2. $\rho: X \times X \to \mathbb{R} \Rightarrow \rho(x,y)$ непрерывная функция
- 3. $A\subset X, A$ подмножество, $\rho(x,A)=\inf_{y\in A}\rho(x,y)\Rightarrow \rho(x,A)$ непрерывная функция от x
- 4. $A \subset X, A = \overline{A}, x_0 \notin A \Rightarrow \rho(x_0, A) > 0$

Доказательство. 1.
$$\rho(x,u) \leq \rho(x,y) + \rho(y,u) \leq \rho(x,y) + \rho(y,z) + \rho(z,u) \Rightarrow \rho(x,u) - \rho(y,z) \leq \rho(x,y) + \rho(z,u)$$
 Аналогично $\rho(y,z) - \rho(x,u) \leq \ldots$ из всего $\Rightarrow 1$)

2. Докажем непрерывность с помощью последовательности. $\rho(x,y)$ — непрерывная?

$$\lim_{n \to \infty} x_n = x, \lim_{n \to \infty} y_n = y \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x) = 0 = \lim_{n \to \infty} \rho(y_n, y)$$

$$\rho(x,y) - \rho(x_n,y_n)| \stackrel{(1)}{\leq} \rho(x,x_n) + \rho(y,y_n) \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \lim_{n \to \infty} \rho(x_n,y_n) = \rho(x,y)$$

3. $A \subset X$, $x, z \in X$, $|\rho(x, A) - \rho(z, A)| \le ?$ Пусть $y \in A$

$$\rho(x,y) \le \rho(x,z) + \rho(z,y) \Rightarrow \rho(x,A) \le \rho(x,z) + \rho(z,y) \,\forall \, y \in A$$
$$\Rightarrow \rho(x,A) \le \rho(x,z) + \inf_{y \in A} \rho(z,y) = \rho(x,z) + \rho(z,A) \Rightarrow$$
$$\rho(x,A) - \rho(z,A) \le \rho(x,z)$$

Но нам нужен модуль. Можем сказать, что x и z ничем не отличаются, аналогично $\rho(z,A)-\rho(x,A)\leq \rho(x,z)\Rightarrow 3$

$$x_0 \notin A \Rightarrow x_0 \in X \setminus A \text{ открытое}$$

$$\Rightarrow \exists \ \delta > 0 \quad B_\delta(x_0) \subset X \setminus A \Rightarrow \rho(x_0,A) \geq \delta$$

Перед определением пополнения нам потребуется несколько определений, связанных с отображениями в метрических пространствах.

 $(X, \rho), (Y, d)$ — метрические пространства. $T: X \to Y$.

Определение 3.11 (Изометрическое вложение).

$$d(T_x, T_z) = \rho(x, z) \quad \forall x, z \in X$$

Обозначение: $X \hookrightarrow Y$

Определение 3.12 (Изометрия). T — изометрическое вложение, T(X) = Y

Определение 3.13 (Изометричность пространств). $(X,\rho),(Y,d)$ изометричны, если $\exists \ T: X \to Y, T$ — изометрия

Свойство 3.2. T — изометрическое вложение $\Rightarrow T$ — инъективное, непрерывное

Доказательство. $x,z\in X,T:X\to Y$, пусть $T_x=T_z\Rightarrow d(T_x,T_z)=0$ Значит, исходное расстояние тоже 0 по свойству метрики. $d(x,z)=0\Rightarrow x=z$

Инъективность проверили, теперь непрерывность, это еще проще.

$$\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} \rho(x,x_n) = 0 \Rightarrow \lim_{n\to\infty} d(T_{x_n},T_x) = 0 \Rightarrow \lim_{n\to\infty} T_{x_n} = T_x$$

Свойство 3.3. Если T — изометрия, то $\exists T^{-1}$ — изометрия.

Свойство 3.4. «Изометричность» — отношение эквивалентности на множестве метрических пространств

И наконец

Определение 3.14 (Пополнение м. пространства). (X, ρ) — метрическое пространство. (Z, d) — полное метрическое пространство. (Z, d) — пополнение (X, ρ) , если существует $T: X \to Z$

1. T — изометрическое вложение

2.
$$\overline{T(X)} = Z$$

Замечание 3.3. Не обязательно искать пространство, удовлетворяющее и второму свойству. Достаточно найти такое, которое удовлетворяет первому. (X, ρ) — метрическое пространство, (U, d) — полное метрическое пространство. Пусть $\exists T: X \to U$ — изометрическое вложение. Если 2 свойство не выполняется, то легко такое Z построить. Возьмём замыкание образа. $Z = \overline{T(X)} \Rightarrow (Z, d)$ — пополнение X.

Теперь обещанная теорема. Возьмём любое метрическое пространство и покажем, что у него есть пополнение.

Теорема 3.10 (О пополнении метрического пространства). (X, ρ) — метрическое $\Rightarrow \exists$ пополнение (Z, d)

Доказательство. Есть классическое доказательство с рассмотрением всех фундаметнальных последовательностей, рассмотрением фактор-пространства, муторным разбором случаев. Мы пойдем другим путём. Будет короткое, но фантастически непонятное доказательство в том смысле, что непонятно, как его придумать.

Мы собираемся использовать $m(X) = \{f: X \to \mathbb{R}, \sup_{x \in X} |f(x)| < +\infty \}$

$$||f||_{m(X)} = ||f||_{\infty} = \sup_{x \in X} |f(x)|$$

m(X) — полное пространство.

Каждой точке мы сопоставим функцию. Вот такая идея! $\varphi: X \to m(X)$. Оно же будет изометрическим вложением, то есть будет сохранять расстояния.

Сначала будет маленькое облегчающее предположение про X, от которого мы потом откажемся. Пусть X — ограниченное, то есть $\exists \ M>0$ т.ч. $\forall \, x,y \in X \, \rho(x,y) \leq M$. Единственная цель предположения — формула для φ будет чуть проще. Вообще, можно было бы обойтись и без него.

 $t \in X, t$ — фиксирован, $f_t(x) = \rho(x,t)$. При фиксированном t — это функция на X. Именно сюда наше отображение будет отображать t. Одной точке — целая функция, понятно?

$$\varphi(t) := f_t(x) \text{ r.e. } \varphi : t \mapsto f_t(x)$$

 $|f_t(x)| \le M \Rightarrow f_t \in m(X)$

Самое главное. Проверим, что отображение сохраняет расстояния. Это очень легко. Возьмём 2 точки.

Пусть
$$t, s \in X$$
, $||f_t - f_s||_{\infty} = \sup_{x \in X} |\rho(x, t) - \rho(x, s)|$
 $|\rho(x, t) - \rho(x, s)| \le \rho(t, s)$, Пусть $x = t \Rightarrow |\rho(t, t) - \rho(t, s)| = \rho(t, s)$

то есть супремум достигается. Естественно, с таким же успехом можно было взять x=s

$$\Rightarrow ||\varphi(t) - \varphi(s)||_{\infty} = \rho(t,s) \Rightarrow \varphi$$
 — изометрическое вложение

Посмотрим, что будет, если откажемся от этого облегчающего предположения. Надо будет чуть исправить отображение φ . X — любое метрическое пространство. $a \in X$ — фиксированная точка.

$$t \in X, f_t(x) = \rho(x, t) - \rho(x, a) \Rightarrow |f_t(x)| \le \rho(a, t) \Rightarrow f_t \in m(X)$$

Раньше мы могли так брать и не вылетать из пространства из-за ограниченности. Вычтем эту штуку, чтобы попасть, куда надо.

$$t,s\in X\Rightarrow f_t(x)-f_s(x)=
ho(x,t)-
ho(x,s)\overset{(1)}{\Rightarrow}||f_t-f_s||_{\infty}=
ho(s,t)$$
 Пополнение $X\colon \overline{\varphi(X)}^{||\cdot||_{\infty}}=Z,(Z,||\cdot||_{\infty})$

Таким образом, изучение метрических пространств можно свести к изучению подмножества пространства непрерывных функций.

Замечание 3.4. Забегая далеко вперёд. $(X, ||\cdot||)$ — нормированное, X^* — множество непрерывных линейных функционалов на X, X^* — полное (ВСЕГДА).

Мы построим каноническое вложение $\pi: X \to \underbrace{(X^*)^*}_{\text{полное}}, \ \overline{\varphi(x)}^{X^{**}}$ —

пополнение Х.

3.7. Теорема о вложенных шарах

Когда-то в анализе была теорема Кантора о том, что если есть последовательность вложенных друг в друга отрезков, то их пересечение не пусто. Мы докажем похожее утверждение для метрических пространств. Оказывается, то утверждение было связано с полнотой вещественной прямой $\mathbb{R}.$ (X,ρ) — метрическое пространство, $r>0, x\in X$ Введём стандартное обозначение замкнутого шара.

$$D_r(x) = \{ y \in X : \rho(x, y) \le r \}$$

Теорема 3.11 (О вложенных шарах). (X, ρ) — метрическое пространство. X — полное \Leftrightarrow $(\forall \{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n, \lim_{n \to \infty} r_n = 0 \Rightarrow \bigcap_{n=1}^{+\infty} D_n \neq \varnothing).$

По сранению с теоремой Кантора у нас есть дополнительное предположение о стремлении к нулю, которое здесь важно, а на прямой было как данность.

$$\{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n, \lim_{n \to \infty} r_n = 0$$

Надо проверить, что центры шаров образуют фундаментальную последовательность, то есть что $\{x_n\}_{n=1}^{\infty}$ — фундаментальная. Пусть $\varepsilon > 0 \quad \exists \ N \in \mathbb{N} \quad r_n < \varepsilon$ при $n \geq N$.

$$(n > N \land m > N) \Rightarrow (x_n \in D_n \land x_m \in D_n) \Rightarrow \rho(x_n, x_m) \le$$

 $\leq \rho(x_n, x_N) + \rho(x_m, x_N) \le 2\varepsilon$

$$X$$
 — полное $\Rightarrow \exists \lim_{n \to \infty} x_n = x$

любое фиксированное $m \in \mathbb{N}$ $x_n \in D_m \, \forall \, n \geq m, D_m$ — замкнутое

$$\Rightarrow \lim_{n \to \infty, n \ge m} x_n = x \in D_m$$

$$\Rightarrow x \in \bigcap_{m=1}^{\infty} D_m$$

 \leftarrow

Ничего кроме определения для доказательства полноты у нас нет.

Пусть $\{x_n\}_{n=1}^{\infty}$ — фундаментальная. Возьмём достаточно быстро убывающую последовательность $\varepsilon_k=\frac{1}{2^k}.$ По свойству 3 фундаментальных последовательностей, существует $\{x_{n_k}\}_{k=1}^{\infty}$, $\rho(x_{n_k},x_{n_{k+1}})<\frac{1}{2^{k+1}}.$ $D_k=D_{\varepsilon_k}(x_{n_k})$

$$\begin{cases} y \in D_{k+1} \Rightarrow \rho(y, x_{n_{k+1}}) \leq \frac{1}{2^{k+1}} \\ \rho(x_{n_k}, x_{n_{k+1}}) < \frac{1}{2^{k+1}} \end{cases} \Rightarrow$$

$$\rho(y, x_{n_k}) \le \rho(y, x_{n_{k+1}}) + \rho(x_{n_{k+1}}, x_{n_k}) < \frac{1}{2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k}$$
$$\Rightarrow y \in D_k \Rightarrow D_{k+1} \subset D_k$$

Мы взяли произвольный элемент из D_{k+1} и показали, что он принадлежит D_k , то есть показали вложенность элементов последовательности.

$$\Rightarrow \exists x \in \bigcap_{k=1}^{\infty} D_k \quad \rho(x, x_{n_k}) \le \frac{1}{2^k} \Rightarrow \lim_{k \to \infty} x_{n_k} = x$$

По свойству фундаментальных последовательностей из первой лекции $\lim_{n \to \infty} x_n = x$

Замечание 3.5. В условиях теоремы пересечение вложенных шаров $\bigcap_{n=1}^{\infty} D_n$ состоит из одной точки.

Доказательство. Пусть $x \in \bigcap_{n=1}^{\infty} D_n, \Rightarrow \rho(x, x_n) < r_n, \lim_{n \to \infty} r_n = 0 \Rightarrow \lim_{n \to \infty} x_n = x$. А мы знаем, что предел в метрическом пространстве единственный.

Замечание 3.6. Условие, что $\lim_{n\to\infty} r_n = 0$ в теореме существенно.

Пример 3.5 (Замкнутые множества). $\{F_n\}_{n=1}^{\infty}, F_n$ — замкнутое, $F_{n+1} \subset F_n, F_n \subset \mathbb{R}, \bigcap_{n=1}^{\infty} F_n = \varnothing, F_n = [n, +\infty)$

Пример 3.6 (По теореме).

$$X = [1, +\infty) \quad \rho(x, y) = \begin{cases} 1 + \frac{1}{x+y}, & x \neq y \\ 0, & x = y \end{cases}$$

Проверим, что ρ — метрика. x, y, z

$$\rho(x,y) + \rho(y,z) = 1 + \frac{1}{x+y} + 1 + \frac{1}{y+z} > 1 + 1 > 1 + \frac{1}{x+z} = \rho(x,z)$$

Проверяем полноту. Пусть $\{x_n\}_{n=1}^\infty$ фундаментальная, $\varepsilon=\frac{1}{2}\Rightarrow$

$$\exists \ N \in \mathbb{N} : (n \geq N \ \land \ m \geq N) \rho(x_n, x_m) < \frac{1}{2} \Rightarrow \left(\rho(x_n, x_N) < \frac{1}{2} \ \land \ \rho(x_m, x_N) < \frac{1}{2} \right) \Rightarrow$$

$$x_N = x_{N+1} = x_{N+2} = \dots$$

$$\Rightarrow \exists \lim_{n \to \infty} x_n = x_N \Rightarrow (X, \rho) - \text{полное}$$

Полноту проверили.

Полноту проверили.
$$r_n = 1 + \frac{1}{2n}, x_n = n; D_n = D_{r_n}(n), n \in D_n.$$
 Пусть $x \neq n, x \in D_n \Rightarrow \rho(x, x_n) = 1 + \frac{1}{x+n} \leq 1 + \frac{1}{2n}$

Замечание 3.7 (Домашнее задание). Если $(X, ||\cdot||)$ — банахово, то $\{D_n\}_{n=1}^{\infty}, D_{n+1} \subset D_n \Rightarrow \bigcap_{n=1}^{\infty} D_n \neq \emptyset$ (требование $\lim_{n \to \infty} r_n = 0$ лишнее)

3.8. Сепарабельные пространства

 (X, ρ) — метрическое пространство,

Определение 3.15 (*A* плотно в *C*). $A \subset X, C \subset X$. *A* плотно в C, если $C \subset \overline{A} \Leftrightarrow$

$$\forall x \in C \,\forall \, \varepsilon > 0 \,\exists \, a \in A \, \rho(x, a) < \varepsilon \Leftrightarrow \forall \, \varepsilon > 0 \, C \subset \bigcup_{a \in A} B_{\varepsilon}(a)$$

Любой элемент C можно сколь угодно хорошо приблизить элементами из A.

Определение 3.16 (A всюду плотно в X). A — всюду плотно в X, если $\overline{A} = X$

Чем же полезно это свойство? Если хотят доказать свойство для X, то часто доказывают сначала для всюду плотного подмножества.

Определение 3.17 (Сепарабельное пространство). (X, ρ) — сепарабельное, если $\exists E \subset X, E = \{x_n\}_{n=1}^{\infty}, \overline{E} = X$

Теорема 3.12. $n \in \mathbb{N}, 1 \leq p \leq +\infty$,

 l_n^p — сепарабельное

Доказательство.

$$l_n^p = (\mathbb{R}^n, ||\cdot||_p) = \{x = (x_1, \dots, x_n), x_j \in \mathbb{R}, ||x||_p\}$$
$$E = \mathbb{Q}^n = \{x = (x_1, \dots, x_n), x_j \in \mathbb{Q}\}$$

Если
$$(\mathbb{C}^n, ||\cdot||_p), \tilde{\mathbb{Q}} = \{x + iy, x, y \in \mathbb{Q}\}, E = \tilde{\mathbb{Q}}^n$$

Знаем, что сходимость в l_n^p эквивалентна покоординатной сходимости, так что если что-то сходится в \mathbb{R} , а \mathbb{Q} всюду плотно в \mathbb{R} , то \mathbb{Q}^n всюду плотно в \mathbb{R}^n

Теорема 3.13. F — финитные последовательности, $1 \le p \le +\infty$

$$(F,||\cdot||_p)$$
 — сепарабельно

Доказательство. $(F,||\cdot||_p) = \bigcup_{n=1}^{\infty} l_n^p$ (если мы дополним нулями x) Тогда $E = \bigcup_{n=1}^{\infty} \mathbb{Q}^n = \{x = (x_1, x_2, \dots, x_{N(x)}, 0, 0, \dots,), x_j \in \mathbb{Q}\}$. Попросту говоря, все финитные последовательности, координаты которых рациональны.

Теорема 3.14.
$$l^p, 1 \le p < +\infty, c_0$$
 — сепарабельные

Доказательство. На прошлой лекции мы доказали, что

$$(F,||\cdot||_p),\overline{F}^{||\cdot||_p}$$
 (замыкание по норме) $=l^p$ при $1\leq p<+\infty$ $\begin{cases} E=\bigcup_{n=1}^\infty \mathbb{Q}^n-\text{ всюду плотное в }F\\ F-\text{ всюду плотное в }l^p \end{cases}$ \Rightarrow E всюду плотно в $l^p,1\leq p<+\infty$

Почему любой элемент из l^p может быть приближен финитной последоватностью? Мы ее просто отрезаем (как я понимаю, когда у финитной последовательности набирается норма, достаточно близкая к норме элемента l^p).

Ответ на упражнение для читателя, которое было на прошлой лекции: F — подпространство в алгебраическом смысле, $F \subset l^{\infty}$, $\overline{F}^{||\cdot||_{\infty}} = c_0$

$$x_0 \in c_0 \Leftrightarrow x = \{x_n\}_{n=1}^{\infty}, \lim_{n \to \infty} x_n = 0$$

берем первые m координат и дополняем их нулями

$$x^{(m)} = (x_1, \dots, x_m, 0, 0, \dots, 0, \dots) \Rightarrow x^{(m)} \in F$$
$$||x - x^{(m)}||_{\infty} = \sup_{k > m} |x_k| \underset{m \to \infty}{\longrightarrow} 0$$

Любой элемент из c_0 является пределом последовательности элементов из F по норме $\|\cdot\|_{\infty}$.

Остаётся вопрос, почему c_0 — замкнутое множество. Можно в лоб, а можно по-учёному рассудить.

пусть
$$\{y^{(m)}\}_{m=1}^{\infty}, y^{(m)} \in c_0, y^{(m)} \xrightarrow[m \to \infty]{} y$$
 в c_0 $\Rightarrow \lim_{m \to \infty} ||y-y^{(m)}||_{\infty} = 0 \qquad y = \{y_n\}_{n=1}^{\infty}, \text{ хотим доказать } \lim_{n \to \infty} y_n = 0$

А это равномерная сходимость на множестве натуральных чисел. Здесь y и y_m — непрерывные функции на множестве натуральных чисел. То есть это тот случай, когда можно менять местами пределы (были такие умные теоремы в анализе)

$$\lim_{n \to \infty} y_n = \lim_{m \to \infty} \underbrace{\lim_{n \to \infty} y_n^{(m)}}_{=0} = 0$$

Упражнение: c — сепарабельное, $c \subset l^{\infty}$

Теорема 3.15. l^{∞} — не сепарабельное

Всюду плотное \Leftrightarrow какой бы шарик из X мы бы не предъявили, там всегда будет элемент всюду плотного множества. Как доказывать несепарабельность? Построим гигантское, несчётное число непересекающихся шариков. И скажем, что если какое-то множество — всюду плотное, то в каждом из них должен быть представитель, а шарики-то не пересекаются, значит в каждом должен быть свой представитель. Значит, счётного всюду плотного — нет.

Доказательство. Рассмотрим специальные последовательности, состоящие только из нулей и единиц. Рассмотрим последовательность, являющуюся в точности характеристической функцией A

$$A \subset \mathbb{N} \quad x_n^A = \begin{cases} 1 & n \in A \\ 0 & n \notin A \end{cases}$$

Для каждого набора натуральных чисел рассмотрим вот такую последовательность. Когда координата принадлежит множеству A, будет 1, иначе - 0. Например, $A = \{2,3\}, \, x_n^A = \{0,1,1,0,0,\ldots\}$.

Мощность $\{A,A\subset\mathbb{N}\}$ — континуум (> счётное). Это и будут центры наших пересекающихся шариков. Посмотрим, каким будет расстояние между двумя разными точками.

$$A \subset \mathbb{N}, C \subset \mathbb{N}, A \neq C$$
$$x_n^A - x_n^C = \begin{cases} 1\\0\\-1 \end{cases}$$

всех нулей не бывает, поскольку множества не совпадают

$$\Rightarrow ||x^A - x^C||_{\infty} = \sup_{n \in \mathbb{N}} |x_n^A - x_n^C| = 1$$

То есть если 2 множества не равны, то расстояние между ними единица.

$$B_{\frac{1}{2}}(x^A) \cap B_{\frac{1}{2}}(x^C) = \varnothing$$

Мы предъявили несчётный набор дизъюнктных шариков. Пусть E — всюду плотно в $l^\infty \Rightarrow \forall A \subset \mathbb{N} \exists e_A \in B_{\frac{1}{2}}(x^A)$

$$A \neq C \Rightarrow e_A \neq e_C,$$
 $\underbrace{\{e_A\}_{A \subset \mathbb{N}}}_{\text{несчётно}} \subset E \Rightarrow E$ несчётно

На пальцах: $x^A \in l^\infty$. Если есть какое-то всюду плотное множество, то его элемент должен лежать в любой окрестности (пусть $\varepsilon = \frac{1}{2}$) x^A . Все x^A для $\forall A \subset N$ отделены друг от друга единицей. Это значит, что $x^A, x^C, A \neq C$ не может обслуживать один e_I . Иначе $\rho(x^A, x^C) \leq \rho(x^A, e_A) + \rho(x^C, e_C) < 1$. То есть для каждого x^A он свой, а их несчётное количество.

 ${
m To,}\ {
m чтo}\ {
m y}\ {
m всеx}\ {
m шариков}\ {
m одинаковый радиус}\ {
m -}\ {
m этo}\ {
m просто}\ {
m приятный}$ бонус.

Теорема 3.16. (X, ρ) — сепарабельное, $Y \subset X \Rightarrow (Y, \rho)$ — сепарабельное.

Доказательство. $\exists \ E = \{x_n\}_{n=1}^{\infty}$ — всюду плотно в $X, x_0 \in X$

$$\begin{split} \rho(x_n,Y) &= \inf_{y \in Y} \rho(x_n,y) \Rightarrow \\ \exists \ \{y_{n,k}\}_{k=1}^{\infty} \quad \lim_{k \to \infty} \rho(x_n,y_{n,k}) = \rho(x_n,Y) \\ y_{n,k} \in Y, \ F &= \{y_{n_k}\}_{n,k} \ - \text{счётное} \ , F \subset Y \end{split}$$

Проверим, что F — всюду плотно в Y. Пусть $y \in Y, \varepsilon > 0 \Rightarrow \exists x_n : \rho(y,x_n) < \varepsilon$. Из этого неравенства мы делаем вывод, что $\rho(x_n,Y) < \varepsilon$. Значит, $\exists \, k : \rho(x_n,y_{n,k}) < \varepsilon \Rightarrow$

$$\rho(y, y_{n,k}) \le \rho(y, x_n) + \rho(x_n, y_{n,k}) < \varepsilon + \varepsilon = 2\varepsilon$$

Следствие 3.1. X — бесконечное множество $\Rightarrow m(X)$ — не сепарабельное.

 \mathcal{A} оказательство. Можно слово в слово повторить доказательство для l^{∞} , но мы воспользуемся последними доказанными теоремами.

$$\exists \ \{a_j\}_{j=1}^{\infty}, a_j \in X, a_j \neq a_i \text{ при } i \neq j$$

$$Y = \{f \in m(X), f(x) = 0 \text{ если } x \neq a_j\} \sup_{j \in \mathbb{N}} |f(a_j)| < +\infty$$

$$Y \text{ изометрично } l^{\infty}, f \in Y, T(f) = \{f(a_j)\}_{j=1}^{\infty} \in l^{\infty}$$

$$Y - \text{ не сепарабельно } \Rightarrow \text{ и по последней теореме}$$

$$m(X) - \text{ не сепарабельно}$$

Теорема 3.17.

C[a,b] — сепарабельно

1 часть.

$$L=\{$$
 ломаные $\}$ $a=x_0 < x_1 < \ldots < x_n=b$ $\{y_k\}_{k=0}^n\,,y_k \in \mathbb{R}$ $L(x)$ — ломаные $L(x_k)=y_k,\ k=0,1,\ldots,n$ $l(x)$ линейная на $[x_k,x_{k+1}]$

Отметим, что L — всюду плотное множество в пространстве непрерывных функций. Это связано с равномерной непрерывностью. Никаких надежд на то, что оно будёт счётным нет.

пусть
$$f \in C[a,b], \, \varepsilon > 0 \Rightarrow \exists \, \delta > 0 : |x-y| < \delta$$

$$\Rightarrow |f(x) - f(y)| < \varepsilon$$

$$\exists \, \{x_k\}_{k=0}^n \quad \text{разбиение} \quad x_{k+1} - x_k < \delta$$

$$y_k := f(x_k) \quad L(x) - \text{ломаная}$$

$$\Rightarrow |f(x) - L(x)| < \varepsilon \Rightarrow ||f - L||_{\infty} \le \varepsilon \Rightarrow \overline{\mathcal{L}} = C[a,b]$$

как сделать так, чтобы множество ломаных было счётным? возьмём в качестве вершин элементы $\mathbb Q$

$$E=\{L\in\mathcal{L},\,x_k,y_k\in\mathbb{Q}\}\text{ — счетное множество}$$

$$\begin{cases} \mathcal{L}\subset\overline{E}\\ \overline{\mathcal{L}}=C[a,b] \end{cases}\Rightarrow E\text{ — всюду плотно, т.е. }\overline{E}=C[a,b]$$

2 часть. по т. Вейерштрасса замыкание многочленов — тоже пространство непрерывных функций.

$$\mathcal{P} = \{ p(x) = \sum_{k=0}^{n} a_k x^k \} \quad \overline{\mathcal{P}} = C[a, b]$$

$$E = \{ p(x) = \sum_{k=0}^{n} a_k x^k, \ a_k \in \mathbb{Q} \}$$

$$\begin{cases} \mathcal{P} \subset \overline{E} \\ \overline{\mathcal{P}} = C[a, b] \end{cases} \Rightarrow \overline{E} = C[a, b]$$

3.9. Нигде не плотные множества

Определение 3.18. (X, ρ) — метрическое пространство. $A \subset X, A$ — **нигде не плотно** в X, если

$$\forall B_r(x)$$
 при $r > 0, x \in X$ $B_r(x) \not\subset \overline{A} \Leftrightarrow \operatorname{Int}(\overline{A}) = \varnothing \Leftrightarrow$

Если мы рассмотрим замыкание, никакого шарика там не будет. Иначе: если мы рассмотрим внутренность замыкания, она будет пустой.

$$\forall r > 0, x \in X \quad B_r(x) \exists B_{r_1}(x_1) \subset B_r(x), B_{r_1}(x_1) \cap A = \emptyset$$

$$\Leftrightarrow \forall r > 0, x \in X, D_r(x) \exists D_{r_1}(x_1) \subset D_r(X), D_{r_1}(x_1) \cap A = \emptyset$$

Скоро докажем связь между нигде не плотными множествами и полными пространствами. Но сперва определение, которое не будет часто встречаться, но сам факт — полезный.

Определение 3.19 (множество первой категории). $M \subset X, (X, \rho).$ M — **множество первой категории**, если

$$M = igcup_{j=1}^\infty E_j, E_j$$
 нигде не плотно в X

M- **множество второй категории**, если M нельзя представить в виде объединения счетного числа нигде не плотных множеств.

Теорема 3.18 (Бэр, о категориях). (X, ρ) — полное $\Rightarrow X$ — множество второй категории.

Доказательство. Можно было бы даже от противного. Но мы возьмём семейство $\{M_j\}_{j=1}^{\infty}$, M_j — нигде не плотно в X, $E = \bigcup_{j=1}^{\infty} M_j$. Мы докажем, что найдётся хоть одна точка, которая принадлежит X и не принадлежит E. Это и будет обозначать, что X невозможно представить в виде такого объединения.

$$x_0 \in X$$
 $D_0 = \{y: \rho(x_0,y) \le 1\}$ M_1 — нигде не плотно $\Rightarrow \exists \, D_1 = D_{r_1}(x_1) \subset D_0, D_1 \cap M_1 = \varnothing$ $r_1 < 1$

Теперь мы то же соображение применим к множеству M_2 , которое тоже нигде не плотно

$$\exists D_2 = D_{r_2}(x_2) \subset D_1, D_2 \cap M_2 = \emptyset$$

$$r_2 < \frac{1}{2}$$

и так далее $\begin{cases} \{D_n\}_{n=1}^{\infty}, D_n = D_{r_n}(x_n), D_{n+1} \subset D_n \\ D_n \cap M_n = \varnothing, r_n < \frac{1}{n} \end{cases}$ по теореме о вложенных шарах $\Rightarrow \exists x \in \bigcap_{n=1}^{\infty} D_n, (x \in D_n \land x \in X \setminus E) \Rightarrow x \notin M_n \, \forall \, n \Rightarrow x \notin E$

3.10. Полные семейства элементов

Теперь мы будем понимать полноту в совершенно другом смысле. Сначала вспомним, что такое линейная оболочка пространства.

Определение 3.20 (Линейная оболочка). X — линейное пространство над $\mathbb{R}(\mathbb{C})$. Рассмотрим семейство $\{x_{\alpha}\}_{{\alpha}\in A}$ — семейство элементов, $x_{\alpha}\in X$.

$$\mathcal{L}\left\{x_{\alpha}\right\}_{\alpha \in A} = \left\{\sum_{k=1}^{n} c_{k} x_{\alpha_{k}}, c_{k} \in \mathbb{R}(\mathbb{C}), n \in \mathbb{N}\right\}$$

Определение 3.21 (Полное семейство). $(X, ||\cdot||), \{x_{\alpha}\}_{\alpha \in A}$ — полное семейство, если $\overline{\mathcal{L}\{x_{\alpha}\}_{\alpha \in A}} = X$. То есть линейная оболочка всюду плотна в X.

Пример 3.7. $C[a,b], \{x^n\}_{n=0}^{+\infty}$ — полное семейство в C[a,b], так как $\mathcal{P} = \mathcal{L} \{x^n\}_{n=0}^{+\infty}, \overline{\mathcal{P}} = C[a,b]$

Пример 3.8. l^p , $1 \le p < +\infty$, c_0

$$e_n=(0,0,0,\dots,0,\underbrace{1}_n,0,\dots),\{e_n\}_{n=1}^\infty$$
 — полное семейство
$$\mathcal{L}\left\{e_n\right\}_{n=1}^\infty=F$$
 — финитная последовательность

Упражнение: что будет полным семейством в c?

Утверждение 3.1. $(X,||\cdot||)$ - нормированное пространство. В нём существует $\{x_n\}_{n=1}^{\infty}$ — полное семейство

X — сепарабельное

Доказательство. Рассмотрим линейную оболочку $L=\mathcal{L}\left\{x_n\right\}_{n=1}^{\infty}=\left\{x=\sum_{j=1}^n c_j x_j, c_j\in\mathbb{R}(\mathbb{C})\right\}$. $\overline{L}=X$.

$$E=\left\{x=\sum_{j=1}^nc_jx_j,c_j\in\mathbb{Q}
ight\}$$
 — счётное всюду плотное
$$(L\subset\overline{E}\,\wedge\,\overline{L}=X)\Rightarrow\overline{E}=X$$

Замечание 3.8. $l^{\infty}, E = \{x = \{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{Q}, \sup_{n \in \mathbb{N}} |x_n| < +\infty\}. \overline{E} = l^{\infty}, E$ — не счётное.

3.11. Полные и плотные множества в L^p

Сначала небольшое замечание. (X,U,μ) — пространство с мерой $e\in U$ — измеримые множества, $\chi_e(x)=\begin{cases} 1 & x\in E\\ 0 & x\notin E \end{cases}$ — характеристическая функция. $\chi\in L^\infty(X,\mu),\, \forall\, e\in U$

$$\chi_e \in L^p(X,\mu)$$
 при $1 \le p < +\infty \Leftrightarrow \int_X (\chi_e(x))^p d\mu < +\infty \Leftrightarrow \mu e < +\infty$

Теорема 3.19. (X,U,μ) — пространство с мерой \Rightarrow

$$\{\chi_e\}_{e\in U} \ -\text{полное семейство в } L^\infty(X,\mu)$$

$$\{\chi_e\}_{e\in U,\mu e<+\infty} \ -\text{полное семейство в } L^p(X,\mu), 1\leq p<+\infty$$

Для доказательства этой теоремы нужно будет вспомнить теорему Лебега из анализа (она у нас уже была).

Теорема 3.20 (Лебег).
$$\{h_n(x)\}_{n=1}^{\infty}$$
 — измеримые, $\varphi(x)$. $\int_X \varphi(x) d\mu < +\infty, |h_n(x)| \leq \varphi(x)$ п.в. на X

$$h_n(x) \xrightarrow[n \to \infty]{\text{II.B. IIO } \mu} h(x) \Rightarrow \lim_{n \to \infty} \int_X h_n(x) d\mu = \int_X h(x) d\mu$$

Доказательство. Вспомним конструкцию, которая была в математическом анализе. f — измеримая, $f(x) \ge 0, x \in X$. Рассмотрим разбиение множества X, а по нему построим соотвествующую простую функцию

$$n \in \mathbb{N} \quad e_k = \left\{ x \in X : \frac{k}{n} \le f(x) < \frac{k+1}{n} \right\}, k = 0, 1, \dots, n^2 - 1$$
$$e_{n^2} = \left\{ x : f(x) \ge n \right\} \Rightarrow X = \bigcup_{k=0}^{n^2} e_k, e_k \cap e_j = \emptyset(k \ne j)$$

Теперь построим измеримые функции, они же будут простыми.

$$g_n(x) = \sum_{k=1}^{n^2} \frac{k}{n} \chi_{e_k}(x) \quad 0 \le g_n(x) \le f(x), x \in X$$

$$f(x) \le g_n(x) + \frac{1}{n}, x \in \bigcup_{k=0}^{n^2 - 1} e_k$$

Теперь все готово, чтобы обсудить случай L^{∞} . Пусть $f \in L^{\infty}(X, \mu) \Rightarrow n \geq ||f||_{\infty} \Rightarrow \mu(e_{n^2}) = 0. \Rightarrow |f(x) - g_n(x)| \leq \frac{1}{n}$ для п.в. $x \in X$ $\Rightarrow ||f - g_n||_{\infty} \xrightarrow[n \to \infty]{} 0, g_n \in \mathcal{L}\left\{\chi_e\right\}_{e \in U}$ $\Rightarrow f \in \overline{\mathcal{L}\left\{\chi_e\right\}_{e \in U}}$

Посмотрим теперь, что происходит с конечными p. Тут вспоминаем теорему Лебега, она была верна для интеграла Лебега, но верна и для произвольной меры.

$$\begin{cases} f(x) \in L^p(X,\mu), 1 \leq p < +\infty & |f(x) - g_n(x)|^p \leq |f(x)|^p \\ g_n(x) \xrightarrow[\text{п.в.}]{} f(x) & \Rightarrow |f(x) - g_n(x)|^p \xrightarrow[n \to \infty]{} 0 \end{cases}$$

$$\lim_{n \to \infty} \left(\int_X |f - g_n|^p d\mu \right)^{\frac{1}{p}} = 0$$

все, что надо — убедиться, что мера конечная. Покажем, что $f \in L^p \Rightarrow \mu e_k < +\infty$

$$f(x) \ge \frac{k}{n}, x \in e_k \Rightarrow \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} \ge \left(\int_{e_k} \left(\frac{k}{n}\right)^p d\mu\right)^{\frac{1}{p}} = \frac{k}{n} (\mu e_k)^{\frac{1}{p}} \Rightarrow \mu e_k < +\infty$$
$$\Rightarrow f \in \overline{\mathcal{L}\left\{\chi_e\right\}_{e \in U, \mu e < +\infty}}$$

Теперь покажем, что для произвольных f рассуждение тоже верно. Рассмотрим замыкание линейное оболочки

$$\begin{cases} f: X \to \mathbb{R}, \Rightarrow f = f_{+} - f_{-}, f_{+}(x) \ge 0, f_{-}(x) \ge 0 \\ f: X \to \mathbb{C} \Rightarrow f = u + iv; u, v: X \to \mathbb{R} \end{cases}$$

$$\forall f \in L^{p}, f \in \overline{\mathcal{L} \{\chi_{e}\}_{e \in U}}$$

$$(p = \infty \, \forall e, p < +\infty, \mu e < +\infty)$$

Теперь, зная эту теорему, посмотрим, какое множество будет полным в пространстве l^{∞}

Следствие 3.2.
$$l^{\infty},A\subset\mathbb{N},\,x^A=\left\{x_n^A\right\}_{n=1}^{\infty},x_n^A=\left\{\begin{matrix} 1&n\in A\\0&n\notin A\end{matrix}\right\}$$
 \Rightarrow $\left\{x^A\right\}_{A\subset\mathbb{N}}$ — полное семейство в l^{∞}

Доказательство. $l^\infty=L^\infty(\mathbb{N},\mu), \mu(n)=1\,\forall\,n\in\mathbb{N}\quad\forall\,A\subset\mathbb{N},A$ — измеримо

$$\chi_A = x^A \Rightarrow \left\{ x^A \right\}_{A \subset \mathbb{N}}$$
 — полное семейство

Теорема 3.21. $(\mathbb{R}^n, U, \lambda), \lambda$ — классическая мера Лебега. U — измеримые по Лебегу множества.

$$\mathcal{R} = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j; a_j, b_j \in \mathbb{R} \right\}$$
 — множество ячеек

$$\Rightarrow \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}$$
 — полное семейство в $L^p(\mathbb{R}^n,\lambda), 1 \leq p < +\infty$

П

Достаточно рассмотреть характеристические множества ячеек.

Доказательство. Собираемся приблизить элемент χ_e линейной комбинацией характеристических функций ячеек. Вспомним определение внешней меры.

$$e \in U, \lambda(e) < +\infty$$

$$\lambda(e) = \inf \left\{ \sum_{k=1}^{\infty} \lambda(\Delta_k), e \subset \bigcup_{k=1}^{\infty} \Delta_k, \Delta_k \in \mathcal{R}, \Delta_k \cap \Delta_j = \emptyset \right\}$$

Сначала просто по определению нижней грани. $\forall \varepsilon > 0 \Rightarrow \exists \{\Delta_k\}_{k=1}^{\infty}$. $\lambda(e) \leq \sum_{k=1}^{\infty} \lambda(\Delta_k) < \lambda(e) + \varepsilon$. $e \subset \bigcup_{k=1}^{\infty} \Delta_k, \Delta_k \in \mathcal{R}, \Delta_k \cap \Delta_j = \emptyset$ при $k \neq j$.

$$A = \bigcup_{k=1}^{\infty} \Delta_k, e \subset A, \lambda(A \setminus e) < \varepsilon$$

$$\exists N \in \mathbb{N} \quad \sum_{k=N+1}^{\infty} \lambda(\Delta_k) < \varepsilon, B = \bigcup_{k=1}^{N} \Delta_k$$

$$\Rightarrow \lambda(A \setminus B) < \varepsilon$$

$$||\chi_{e} - \chi_{B}||_{p} \leq ||\chi_{e} - \chi_{A}||_{p} + ||\chi_{A} - \chi_{B}||_{p} \leq \left(\int_{A \setminus e} \mathbb{1} d\mu\right)^{\frac{1}{p}} + \left(\int_{A \setminus B} \mathbb{1} d\mu\right)^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}} + \varepsilon^{\frac{1}{p}} = 2\varepsilon^{\frac{1}{p}}$$

$$\chi_{B} = \sum_{k=1}^{N} \chi_{\Delta_{k}} \in \mathcal{L} \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}$$

$$\begin{cases} \overline{\mathcal{L} \{\chi_{e}\}_{e \in U}} = L^{p} \\ \chi_{e} \in \overline{\mathcal{L} \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}} \end{cases} \Rightarrow \overline{\mathcal{L} \{\chi_{\Delta}\}_{\Delta \in \mathcal{R}}} = L^{p}, 1 \leq p < +\infty$$

Следствие 3.3. $E \subset \mathbb{R}^n, \, E$ — измеримые по Лебегу, $1 \leq p < +\infty$

$$\Rightarrow L^p(E,\lambda)$$
 — сепарабельные

 $(\lambda - \text{мера лебега})$

Доказательство. Докажем, что $L^p(\mathbb{R}^n,\lambda)$ — сепарабельное.

$$\mathcal{R} = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j, \ a_j, b_j \in \mathbb{R} \right\}$$
 — полные семейства в L^p

Теперь мы возьмём только такие ячейки, координаты которых рациональны. Пока что можем сказать, что это счётное множество.

$$R_0 = \left\{ \Delta = \prod_{j=1}^n [a_j, b_j), a_j < b_j, \ a_j, b_j \in \mathbb{Q} \right\}$$
 — счётное множество

$$\Delta \in \mathcal{R} \quad \text{пусть } \varepsilon > 0$$

$$\Rightarrow \exists \Delta_0 \in R_0, \Delta \subset \Delta_0, \lambda(\Delta_0 \setminus \Delta) < \varepsilon$$

$$\Rightarrow ||\chi_{\Delta_0} - \chi_\Delta||_p = ||\chi_{\Delta_0 \setminus \Delta}||_p = \left(\int_{\Delta_0 \setminus \Delta} \mathbb{1} dx\right)^{\frac{1}{p}} = (\lambda(\Delta_0 \setminus \Delta))^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}}$$

$$\Rightarrow \forall \Delta \in \mathcal{R} \quad \chi_\Delta \in \overline{\mathcal{L}\{\chi_\Delta\}_{\Delta \in R_0}}$$

 R_0 — полное счётное семейство \Rightarrow [[утверждение 3.1]] $L^p(\mathbb{R}^n,\lambda)$ — сепарабельное.

$$E\subset\mathbb{R}^n, E-\text{измеримое}\;, f\in L^p(E,\lambda)$$
пусть $f(x)=0, x\in\mathbb{R}^n\setminus E\Rightarrow f\in L^p(\mathbb{R}^n,\lambda)$ $\Rightarrow L^p(E,\lambda)$ — подпространство $L^p(\mathbb{R}^n,\lambda)\Rightarrow L^p(E,\lambda)$ — сепарабельно

Определение 3.22. (X,U,μ) — пространство с мерой. (X,ρ) — метрическое пространство. μ — борелевская мера, если (G — открытое $\Rightarrow G \in U)$

 β — минимальная σ -алгебра, содержащая все открытые множества. β — борелевские множества, то есть $\beta \subset U$.

Чем же хороши борелевские меры? Оказывается, они безумно связаны с непрерывными функциями

Замечание 3.9. Пусть $f: X \to \mathbb{R}, f$ — непрерывная $\Rightarrow f^{-1}((c, +\infty)), c \in \mathbb{R}, (c, +\infty)$ — открытое в \mathbb{R} . Определение непрерывной функции из топологии: прообраз любого открытого множества открыт. Так как прообраз f открыт в $X \Rightarrow f$ — измеримая по μ , если μ — борелевская.

Замечание 3.10. λ — мера Лебега в \mathbb{R}^n , тогда λ — борелевская.

Еще более специальное определение. Этим свойством мера Лебега тоже обладает.

Определение 3.23 (регулярная мера). $(X,U,\mu),\ (X,\rho),\ \mu$ — борелевская. μ — **регулярная мера**, если $\forall\,e\in U$

$$\sup_{\{F\subset e,F\,-\,\mathrm{Замкнутоe}\}}\big\{\mu F\big\}=\mu e=\inf_{\{e\subset G,G\,-\,\mathrm{открытоe}\}}\mu G$$

Замечание 3.11. λ -мера Лебега — регулярная.

На самом деле эти 2 свойства друг из друга следуют, но мы это доказывать не будем.

Теорема 3.22. $(X, U, \mu), (X, \rho), \mu$ — регулярная мера \Rightarrow непрерывные функции плотны в $L^p(X, \mu), 1 \le p < +\infty$.

$$\overline{C(X)\cap L^p(X,\mu)}^{||\cdot||_p}=L^p(X,\mu)$$

Доказательство. Мы уже знаем, что полное семейство — это семейство характеристических функций всех измеримых функций, и мы будем этим изо всех сил пользоваться. Возьмём какую-то характеристическую функцию из множества и ее будем приближать непрерывными функциями.

 $\{\chi_e\}_{e\in U, \mu e<+\infty}$ — полное семейство.

пусть $e\in U, \mu e<+\infty,$ пусть $\varepsilon>0, \mu$ — регулярная \Rightarrow \exists $F\subset e\subset G, F$ — замкнутое, G — открытое. $\mu(G\setminus F)<\varepsilon$

$$\varphi(x) = \frac{\rho(x, X \setminus G)}{\rho(x, X \setminus G) + \rho(x, F)}$$

Когда мы попадем в $X \setminus G$, она будет равна нулю. Нужно позаботиться о том, чтобы знаменатель не был равен нулю.

 $\rho(x,A)$ — непрерывная функция $\forall\,A\subset X$ (теорема 3.9). $X\setminus G$ — замкнутое, F— замкнутое. Если $\rho(x,F)=0\Rightarrow x\in F\Rightarrow x\notin X\setminus G\Rightarrow \rho(x,X\setminus G)>0$

$$\Rightarrow \rho(x,X\setminus G)+\rho(x,F)>0 \ \forall \, x\in X \Rightarrow \varphi\in C(X)$$

$$\varphi(x) = 0, x \in X \setminus G, \varphi(x) = 1, x \in F \quad \forall x \in X \ 0 \le \varphi(x) \le 1$$

Понятно, что модуль $\varphi(x)$ совпадает с характеристической функцией множества e.

$$\begin{split} |\chi_e(x)-\varphi(x)| &\leq 1 \quad \forall \, x \in X \\ \chi_e(x)-\varphi(x) &= 0 \quad x \in F \text{ или } x \in X \setminus G \\ \Rightarrow ||\chi_e-\varphi||_p &= \left(\int_X |\chi_e(x)-\varphi(x)|^p d\mu\right)^{\frac{1}{p}} = \left(\int_{G \setminus F} |\chi_e(x)-\varphi(x)|^p d\mu\right)^{\frac{1}{p}} \leq \\ &\leq (\mu(G \setminus F))^{\frac{1}{p}} < \varepsilon^{\frac{1}{p}} \\ \Rightarrow \chi_e &\in \overline{C(X)}^{||\cdot||_p} \end{split}$$

Тем самым мы доказали, что $\chi_e(x)$ может быть приближена непрерывными функциями. Может быть, стоить отметить, что $\mu G < \mu e + \varepsilon < +\infty$ $\int_X |\varphi(x)|^p d\mu - \int_G |\varphi(x)|^p d\mu < \mu G \Rightarrow \varphi \in L^p(X,\mu)$

Раз утверждение верно для любых регулярных мер, то оно верно и для меры Лебега.

Глава 4

Метрические компакты

Топологический компакт: из любого покрытия можно выбрать конечное подпокрытие.

Утверждение 4.1 (из топологии). 1. (X, ρ) — метрическое пространство, $K \subset X, K$ — компакт $\Leftrightarrow K$ — счётнокомпактен, то есть

$$\forall \{x_n\}_{n=1}^{\infty}, x_n \in K \quad \exists \{x_{n_j}\}_{j=1}^{\infty} \text{ т.ч. } \exists \lim_{j \to \infty} x_{n_j} = x_0, \ x_0 \in K$$

2. K — компакт $\Rightarrow K$ — ограниченное замкнутое множество.

Пример 4.1. \mathbb{R}^n , K — компакт $\Leftrightarrow K$ — ограниченное, замкнутое

Замечание 4.1. НИ В КОЕМ СЛУЧАЕ из того, что K — ограниченное замкнутое, не следует, что K — компакт

Замечание 4.2.
$$l^2=\left\{x=\left\{x_n\right\}_{n=1}^{\infty},||x||_2=\left(\sum_{n=1}^{\infty}|x_n|^2\right)^{\frac{1}{2}}<+\infty,x_n\in\mathbb{R}(\mathbb{C})\right\}$$

$$D = \{x \in l^2 : ||x||_2 \le 1\}$$
 — ограниченное, замкнутое

$$e_n = (0,0,\dots,0,\underbrace{1}_n,0,0,\dots),\ n \neq m \quad ||e_n - e_m||_2 = \sqrt{2} \Rightarrow \forall \ \left\{e_{n_j}\right\} -$$
 не фундаментальная. Тогда $\nexists \lim_{j \to \infty} e_{n_j} \Rightarrow D$ — не компакт.

յ→∞ з Ещё одно *напоминание,* кто такие относительно компакть

Ещё одно *напоминание*, кто такие относительно компактные множества.

Определение 4.1 (относительный компакт). $(X, \rho), A \subset X, A$ — относительно компактно, если \overline{A} — компакт. Или можно сказать

$$\Leftrightarrow \forall \{x_n\}_{n=1}^{\infty}, x_n \in A \exists \{x_{n_j}\}_{j=1}^{\infty}, \exists \lim_{j \to \infty} x_{n_j} = x_0, x_0 \in X$$

Предел не обязательно принадлежит A. А в компакте предел обязательно лежит в A.

Мы получим новое описание компактных и относительно компактных множеств. В \mathbb{R}^n мы описывали относительные компакты. Для описания компакта нужно добавить замыкание.

Еще несколько определений:

Определение 4.2 (ε -сеть). (X, ρ) — метрическое пространство. $A \subset X, \varepsilon > 0$ $F - \varepsilon$ -сеть для A, если

$$\forall a \in A \,\exists f \in F : \rho(a, f) < \varepsilon$$

$$(\Leftrightarrow \forall a \in A \, B_{\varepsilon}(a) \cap F \neq \varnothing) \Leftrightarrow (A \subset \bigcup_{f \in F} B_{\varepsilon}(f))$$

Определение 4.3. A — вполне ограниченное множество, если для $\forall \, \varepsilon > 0 \, \exists \,$ конечная ε -сеть для A.

Описание компактных и относительно-компактных множеств в терминах вполне ограниченных — как раз наша главная цель. Мы будем использовать это новое описание так: если мы в полном метрическом пространстве, то там относительная компактность и вполне ограниченность — одно и то же. А проверять вполне ограниченность — гораздо проще, чем проверять относительную компактность. Предъявим ε -сеть и всё!

Замечание 4.3. $(X, \rho), A$ — вполне ограниченное $\Rightarrow A$ — ограничено.

Пример 4.2. $(\mathbb{R}^n,||\cdot||_2)=l_n^2$ $A\subset\mathbb{R}^n.$ A — ограниченное $\Leftrightarrow A$ вполне ограниченное

Доказательство. A — ограниченное $\Leftrightarrow \exists M > 0, \ \forall x = (x_1, \dots, x_n) \in A \Rightarrow |x_j| \leq M$

Рис. 4.1: классный поясняющий рисуночек

 $A\subset Q=\{|x_j|\leq M, 1\leq j\leq n\}$ Как же построить ε —сеть? Пусть $\varepsilon>0,\ Q=\bigcup Q_j, l$ —сторона Q_j

$$\dim Q_j = \sup_{x,y \in Q_j} \rho(x,y) = \sqrt{n} \cdot l < \varepsilon \Rightarrow l < \frac{\varepsilon}{\sqrt{n}}$$

$$l = \frac{M}{N}, N \in \mathbb{N}, \ \exists \ N : \frac{M}{N} < \frac{\varepsilon}{\sqrt{n}} \Rightarrow$$

$$F - \text{вершины } Q_j - \varepsilon\text{-сеть}$$

Убедимся в пространстве l^2

Пример 4.3. $D \subset l^2, D = \{x \in l^2 : ||x||_2 \le 1\}$ Убедимся, что D — не вполне ограниченное.

Доказательство.

$$\begin{split} \{e_n\}_{n=1}^\infty, e_n &= (0,\dots,0,\underbrace{1}_n,0,\dots), n \neq m, ||e_n-e_m|| = \sqrt{2} \\ B_{\frac{1}{2}}(e_n) \cap B_{\frac{1}{2}}(e_m) &= \varnothing \\ \varepsilon &= \frac{1}{2}, F - \frac{1}{2}\text{-сеть для } D \\ \Rightarrow \forall \, n \, \exists \, f_n \in F \cap B_{\frac{1}{2}}(e_n), \, f_n \neq f_m (n \neq m) \text{ так как } B_{\frac{1}{2}}(e_n) \cap B_{\frac{1}{2}}(e_m) = \varnothing \\ \{f_n\}_{n=1}^\infty \subset F \Rightarrow F - \text{ не конечноe} \end{split}$$

Теперь посмотрим для l^{∞}

Пример 4.4. $\Pi=\left\{x=\left\{x_n\right\}_{n=1}^\infty,\;|x_n|<\frac{1}{2^n}\right\}\subset l^2.$ Проверим, что Π — вполне ограничено. пусть $\varepsilon>0$

$$\exists N \in \mathbb{N} \quad \left(\sum_{k=N+1}^{\infty} \left(\frac{1}{2^k}\right)^p\right)^{\frac{1}{p}} < \varepsilon$$

$$\Pi^* = \left\{x = \left\{x_1, \dots, x_N, 0, 0, \dots\right\}\right\}, |x_j| \le \frac{1}{2^j}, \ 1 \le j \le N \quad x_{N+k} = 0, k \in \mathbb{N}$$

Если мы забудем про нули, то можем думать, что Π^* лежит в \mathbb{R}^n , и там оно ограниченное, а значит и вполне ограниченное. $\Pi^* \subset \mathbb{R}^n$, Π^* — ограниченное \Rightarrow вполне ограниченное \Rightarrow \exists $F \subset \Pi^*$ — конечная ε -сеть. Докажем, что $F - 2\varepsilon$ -сеть для Π .

$$x \in \Pi$$
 $\Rightarrow x = \underbrace{(x_1, \dots, x_N, 0, \dots)}_{y} + \underbrace{(0, 0, \dots, 0, x_{N+1}, x_{N+2}, \dots)}_{z}$

$$||z||_2 < \varepsilon \quad y \in \Pi^* \Rightarrow \exists f \in F : ||y - f||_2 < \varepsilon \Rightarrow$$

$$||x - f||_2 = ||(y - f) + z||_2 \le ||y - f||_2 + ||z||_2 < 2\varepsilon$$

$$\Rightarrow \Pi - \text{вполне ограничено}$$

Таким образом, все множества можно описать в пространстве l^p . Перед тем, как доказывать основную теорему, несколько свойств вполне ограниченных множеств.

Свойство 4.1. 1. A — вполне ограничено $\Rightarrow \overline{A}$ — вполне ограничено

- 2. $A \subset Y \subset X, A$ вполне ограничено в $X \Rightarrow A$ вполне ограниченое в Y.
- 3. A вполне ограничено \Rightarrow (A, ρ) сепарабельно.

1 свойство. $A\subset X, \varepsilon>0$. F — конечная ε -сеть для A. Проверим, что F — $(2\varepsilon$ -сеть) для \overline{A}

пусть
$$x \in \overline{A} \Rightarrow \exists y \in A : \rho(x,y) < \varepsilon, \exists f \in F : \rho(y,f) < \varepsilon$$

 $\Rightarrow \rho(x,f) \leq \rho(x,y) + \rho(y,f) < 2\varepsilon$

2 свойство. Проблема в том, что надо двигать точки. Мы уже так делали, когда доказывали сепарабельность. $A \subset Y \subset X, \varepsilon > 0, \{x_k\}_{k=1}^n$

П

— ε -сеть для $A, x_k \in X$

 $A \subset \bigcup_{k=1}^n B_{\varepsilon}(x_k)$, если $A \cap B_{\varepsilon}(x_k) \neq \emptyset$, то пусть $y_k \in A \cap B_{\varepsilon}(x_k)$ (если $= \emptyset$, то не будем выбирать)

Мы найдем ε -сеть из точек множества A, тогда она точно будет обслуживать и Y. Как же и куда сдвигать точки?

$$E = \{y_k\}_{k=1}^n$$

$$x \in A \Rightarrow \exists x_k : \rho(x, x_k) < \varepsilon \Rightarrow A \cap B_{\varepsilon}(x_k) \neq \varnothing \Rightarrow \exists y_k \in B_{\varepsilon}(x_k) \Rightarrow$$

$$\rho(x_k, y_k) < \varepsilon \Rightarrow \rho(x, y_k) \leq \rho(x, x_k) + \rho(x_k, y_k) < 2\varepsilon \Rightarrow$$

$$E - (2\varepsilon)\text{-сеть для } A, E \subset A$$

3 свойство. $n \in \mathbb{N}, F_n - \left(\frac{1}{n}\right)$ -сеть для A, F_n — конечное.

$$F$$
 (счетное) = $\bigcup_{n=1}^{\infty} F_n$ — плотно в A , то есть $A \subset \overline{F}$

Лемма 4.1 (о разбиении). $(X, \rho), A \subset X, \varepsilon > 0$. F — конечная ε -сеть для $A \Rightarrow$

$$\exists \{C_j\}_{j=1}^n \quad A = \bigcup_{j=1}^n C_j \quad C_j \cap C_k = \emptyset, j \neq k, \operatorname{diam} C_j \leq 2\varepsilon, C_j \neq \emptyset$$

Доказательство.

$$F = \{x_k\}_{k=1}^n, A \subset \bigcup_{k=1}^n B_{\varepsilon}(x_k)$$

$$C_1 = A \cap B_{\varepsilon}(x_1)$$

$$C_2 = (A \cap B_{\varepsilon}(x_2)) \setminus C_1$$

$$C_k = A \cap B_{\varepsilon}(x_k) \setminus \left(\bigcup_{j=1}^{k-1} C_j\right) \quad k = 2, \dots, n$$

если $C_k=\varnothing$, то забудем о нём. $C_k\subset B_\varepsilon(x_k)\Rightarrow {\rm diam}\, C_k\le 2\varepsilon$

Теперь у нас всё готово для доказательства теоремы о том, как описывать компакты в терминах вполне ограниченных множеств.

Теорема 4.1 (Хаусдорф). (X, ρ) — метрическое пространство,

A — компакт \Leftrightarrow

- 1. A полное, то есть $\forall \{x_n\}_{n=1}^{\infty}$ $A, \{x_n\}$ фундаментальная $\exists \lim x_n = x_0 \in A$
- 2. A вполне ограничено

Высока вероятность, что спросят на экзамене эту теорему, пытаясь вытянуть.

 $Доказательство. \Rightarrow$

доказатывания. \neg $A - \text{компакт}, \{x_n\}_{n=1}^{\infty} - \text{фундаментальная}, x_n \in A.$ $A - \text{компакт} \Rightarrow \exists \{x_{n_j}\}, \lim_{k \to \infty} x_{n_j} = x_0, x_0 \in A.$ Тогда по свойствам фундаментальных последовательностей $\lim_{n\to\infty}x_n=x_0\Rightarrow (A,\rho)$ — полное метрическое пространство. Проверили первое условие. Теперь надо проверить второе: сначала покроем наш компакт безумным количеством шариков, а они ведь открытые множества, и среди них существует конечное подпокрытие.

пусть
$$\varepsilon>0$$
 $A\subset\bigcup_{a\in A}B_{\varepsilon}(a)$ и A — компакт \Rightarrow \exists $\{a_j\}_{j=1}^n$, $a_j\in A$:
$$A\subset\bigcup_{j=1}^nB_{\varepsilon}(a_j)\Rightarrow F=\{a_j\}_{j=1}^n$$
 — ε -сеть для A

Это была тривиальная часть теоремы.

 $\{x_n\}_{n=1}^{\infty}, x_n \in A$. Собираемся применять лемму о разбиении. $\varepsilon_1 = \frac{1}{2}$. По лемме $\exists \left\{C_j^{(1)}\right\}_{j=1}^{N_1}$. $A = \bigcup_{j=1}^{N_1} C_j^{(1)}, \operatorname{diam} C_j^{(1)} \leq 1$. Когда-то в детстве мы занимались бесконечным делением пополам и доказывали, что из ограниченной последовательности можно выбрать сходящуюся. Тут будем делать то же самое — разбивать на конечное число C_i до посинения. $\exists j: C_i^{(1)}$ содержит бесконечное число элементов $\{x_n\}$.

$$A_1 := C_j^{(1)}.$$

$$arepsilon_2=rac{1}{2^2},\;$$
 по лемме о разбиении к $A_1\Rightarrow\exists\;\left\{C_j^{(2)}
ight\}_{j=1}^{N_2}$
$$\dim C_j^{(2)}\leqrac{1}{2}\quad A_1=igcup_{j=1}^{N_2}C_j^{(2)}$$

поскольку x_n бесконечного много, а C_j конечное число

 $\exists \ 1 \leq j \leq N_2 \quad C_j^{(2)}$ содержит бесконечное количество элементов в x_n и так далее $\{A_m\}_{m=1}^\infty$, $A_{m+1} \subset A_m$, $\operatorname{diam}_{A_m} \leq \frac{1}{2^m}$ A_m содержит бесконечное число элементов $\{x_n\}_{n=1}^\infty$ (*) $x_{n_1} \in A_1$

теперь нам важно, что из-за (*) существует не какой-то n_2 , а $n_2 > n_1$

$$\exists \, n_2 > n_1 : x_{n_2} \in A_2 \text{ т.к. (*)}$$
 и так далее $\exists \, n_k$ т.ч. $n_k > n_{k-1} \quad x_{n_k} \in A_k$ $\{x_{n_k}\}_{k=1}^{\infty}, x_{n_k} \in A_k, \operatorname{diam} A_k \xrightarrow[k \to \infty]{} 0 \quad A_{k+1} \subset A_k$ $\Rightarrow \{x_{n_k}\}_{k=1}^{\infty} - \operatorname{фундаментальная} \text{ и } A - \operatorname{полное}$ $\Rightarrow \exists \lim_{k \to \infty} x_{n_k} = x_0, x_0 \in A$

а это и была наша мечта: доказать что у какой-то последовательности есть подпоследовательность с пределом в A

Часто описывают компакт, но фактически говорят об относительный компакте. Для описания компакта, опять же, надо просто добавить замкнутость.

Следствие 4.1. (X, ρ) — метрическое, $A \subset X$.

- 1. A относительно компактно \Rightarrow A вполне ограничено
- 2. (X, ρ) полное, A относительно компактно $\Leftrightarrow A$ вполне ограничено

Будем изо всех сил пользоваться теоремой Хаусдорфа.

1 утверждение. A — относителько компактно, $\Rightarrow \overline{A}$ — компакт, тогда по теореме Хаусдорфа \overline{A} — вполне ограничено, $A \subset \overline{A} \Rightarrow A$ вполне ограничено.

2 утверждение. ←

 (X, ρ) — полное, A — вполне ограничено, тогда по свойству 4.1 $(\overline{A}$ — вполне ограничено и \overline{A} — замкнутое в $X \Rightarrow \overline{A}$ — полное) \Rightarrow по теореме Хаусдорфа \overline{A} компакт $\Rightarrow A$ — относительно компактно.

$$B\Rightarrow$$
 сторону это как раз первая часть.

Оказывается, можно вместо конечных ε -сетей можно утверждать чуть большее.

Следствие 4.2. (X,ρ) — полное, $A\subset X$. Если для $\forall\,\varepsilon>0$ \exists относительно компактная ε -сеть, то A — относительно компактно

Доказательство. пусть $\varepsilon>0, F-\varepsilon$ -сеть для $A.\ F$ — относительно компактно $\Rightarrow F$ вполне ограничено, $\exists \, E$ — конечная ε -сеть для $F\Rightarrow E$ — (2ε) -сеть для $A\Rightarrow A$ — вполне ограничено $\Rightarrow A$ — относительно компактно.

4.1. Относительно компактные множества в C(K)

Определение 4.4. (K,ρ) — метрический компакт. $C(K) = \{f: K \to \mathbb{R}(\mathbb{C}), f$ — непрерывная $\}, ||f|| = \max_{x \in K} |f(x)|. \Phi \subset C(K), \Phi$ — равностепенно непрерывно, если $\forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, \, \forall \, f \in \Phi, \, \forall \, x,y \in K, \rho(x,y) < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

EC — equicontinuous.

Раностепенная непрерывность отличается от равномерной непрерывности тем, что δ не зависит от f, но от ε , конечно, зависит. Некоторый вариант теоремы Арцелла-Асколи, который, возможно, доказывали на дифурах:

Теорема 4.2 (Асколи-Арцелла). K — компакт, (K, ρ) , $\Phi \subset C(K)$. Φ — относительно компактно \Leftrightarrow

- 1. Φ ограниченное в C(K)
- 2. Φ равностепенно непрерывно ($\Phi \in EC$ equicontinuous)

Доказательство. С самого начала отметим, что C(K) — полное. Вместо проверки относительной компактности Φ будем проверять вполне ограниченность.

 \Rightarrow

 Φ — относительно компактно \Rightarrow Φ — вполне ограничено \Rightarrow Φ — ограничено, то есть $\exists~M~\geq~0$ т.ч. $||f||~\leq~M~\forall~f\in\Phi~\Leftrightarrow~\forall~x\in K,~\forall~f\in\Phi~|f(x)|\leq M$

Пусть $\varepsilon>0\Rightarrow \exists \{\varphi_j\}_{j=1}^n$ - ε -сеть для $\Phi.$ $\varphi_j\in C(K)\Rightarrow \varphi_j$ — равномерно непрерывна

$$\exists \delta_j > 0 \ \forall x, y \in K, \rho(x, y) < \delta_j \Rightarrow |\varphi_j(x) - \varphi_j(y)| < \varepsilon$$

$$\delta = \min_{1 \le j \le n} \delta_j, \delta > 0$$
 пусть $f \in \Phi \Rightarrow \exists j: ||f - \varphi_j|| < \varepsilon$ то есть

надо оценить этот модуль через неравенство треугольника; справа, очевидно, будет 3 слагаемых

$$\max_{x \in K} |f(x) - \varphi_j(x)| < \varepsilon \Rightarrow$$

пусть
$$x,y\in K, \rho(x,y)<\delta, |f(x)-f(y)|\leq \underbrace{|f(x)-\varphi_j(x)|}_{<\varepsilon}+$$

$$+\underbrace{|\varphi_j(x)-\varphi_j(y)|}_{<\varepsilon\text{ так как }\delta\leq\delta_j}+|\varphi_j(y)-f(y)|<3\varepsilon$$

мы и проверили равностепенную непрерывность. Тривиальная часть доказательства закончена.

 \Leftarrow

 Φ — ограничено $\Rightarrow \exists M > 0: f \in \Phi \Rightarrow ||f|| \leq M \Rightarrow |f(x)| \leq M \, \forall \, x \in K.$ Надо по определению построить конечную ε -сеть в множестве непрерывных функций. Но мы воспользуемся двумя облегчающими хитростями:

- 1. $\Phi \subset C(K)$, а $C(K) \subset m(K)$, и если множество имеет ε -сеть в большем пространстве, то в меньшем и подавно. Более того, сеть можно построить из элементов меньшего множества. Мы выберем ограниченные функции.
- 2. выберем относительно компактную ε -сеть в m(K) вместо конечной в C(K), и этого будет достаточно.

$$\varepsilon > 0 \quad \Phi \subset C(K) \subset m(K) = \{ f : K \to \mathbb{C}, \sup_{x \in K} |f(x)| < +\infty \}$$

$$\varepsilon > 0$$
 $\exists \delta$ из определения (EC)

применим к этой парочке лемму о разбиении $(K, \rho), \delta > 0$

$$\exists \{C_j\}_{j=1}^n, \operatorname{diam} C_j < \delta, K = \bigcup_{j=1}^n C_j, C_j \cap C_i = \emptyset (j \neq i), C_j \neq \emptyset$$

$$\Psi = \left\{ g(x) = \sum_{j=1}^n y_j \chi_{C_j}(x) \right\} \subset m(K), y_j \in \mathbb{C}, 1 \leq j \leq n$$

$$g \in \Psi, ||g||_{\infty} = \sup_{x \in K} |g(x)| = \max_{1 \leq j \leq n} |y_j| = ||y||_{l_n^{\infty}}, y = (y_1, \dots, y_n)$$

$$F : l_n^{\infty} \to \Psi, F(y) = \sum_{j=1}^n y_j \chi_{C_j}(x)$$

Мы выяснили, что F биекция, изометрия, линейное.

 $Q=\{y=(y_1,\dots,y_n),|y_j|\leq M\}$ полидиск, что бы это пока не значило $Q-\text{компакт}\ ,F-\text{непрерывна}\ \Rightarrow F(Q)-\text{компакт в }m(K)$

$$E := F(Q), E = \left\{ g(x) = \sum_{j=1}^{n} y_j \chi_{C_j}(x), |y_j| \le M \right\}$$

вот у нас есть компакт E, и мы собираемся проверить, что он и будет ε -сетью для Φ . Будет полезно в каждом множестве выбрать по точечке. Пусть $x_j \in C_j$, $f \in \Phi$, $y_j := f(x_j)$.

$$g(x) = \sum_{j=1}^{n} f(x_j) \chi_{C_j}(x), g \in E, |y_j| \le M$$

Пусть $x \in K \Rightarrow \exists j, x \in C_j \Rightarrow g(x) = f(x_j) \Rightarrow$

$$|f(x)-g(x)|=|f(x)-f(x_j)| т.к. $ho(x,x_j)<\delta$ (по выбору δ)$$

Вот это и то, что было обещано. E — компактная ε -сеть.

Замечание 4.4. Условия теоремы не зависимы.

Пример 4.5. C[0,1]. $f_n(x) = x^2 + n$, $\{f_n\}$ — равностепенно непрерывны, но $\{f_n\}$ не ограничено.

Пример 4.6. $C[0,1], f_n(x) = x^n$. $\{f_n\}$ — ограничены, но не равностепенно непрерывны.

Рис. 4.2: Пример 4.5

Теорема 4.1 (достаточные условия равностепенной непрерывности). (K, ρ) — компакт, $\Phi \subset C(K)$. Сначала какие-то абстрактные множества, потом будут более конкретные.

1. Если $\exists M > 0, \alpha > 0, \beta > 0$ такие что

$$\forall f \in \Phi (\forall x, y \in K \rho(x, y) < \beta) \Rightarrow |f(x) - f(y)| \le M(\rho(x, y))^{\alpha}$$
$$\Rightarrow \Phi \in (EC)$$

2. $C[a,b], \Phi \subset C[a,b]$, пусть $\exists L > 0$

$$\forall f \in \Phi \,\exists\, f'(x), x \in (a,b), |f'(x)| \leq L \Rightarrow \Phi \in (EC)$$

3. чуть более общий случай. $K \subset G \subset \mathbb{R}^n, \ K$ — компакт, G — открытое.

$$\exists L > 0 : \forall f \in \Phi, \exists \left| \frac{\partial f}{\partial x_j}(x) \right| \le L(1 \le j \le n), \forall x \in G \Rightarrow \Phi \in (EC)$$

4. про аналитические функции, предполагать можно будет гораздо меньшее. $K\subset G\subset \mathbb{C},\, G$ — открытое, K — компакт.

$$\exists\: L>0, f\in\Phi, f\:$$
аналитическая в $G,\exists\: f'(x), \underbrace{|f(x)|}_{\mathrm{TYT}}\leq L, \forall\: x\in G$

ТУТ НЕ ПРОИЗВОДНАЯ, НА ЭКЗАМЕНЕ ЧАСТО ОШИБАЮТ-СЯ!!!! Аналитичность — фантастическое свойство, в отличие от, например, дифференцируемости. Именно из-за неё ТАМ как раз и не производная.

1. Пусть $\varepsilon > 0$, $x, y \in K$, пусть $\rho(x, y) < \delta < \beta$, $\delta(\varepsilon) = ?$.

$$f \in \Phi \Rightarrow |f(x) - f(y)| \le M\rho(x, y)^{\alpha} < M\delta^{\alpha} \le \varepsilon$$
$$\Rightarrow \delta \le \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}},$$
$$\delta(\varepsilon) = \min\left\{\beta, \left(\frac{\varepsilon}{M}\right)^{\frac{1}{\alpha}}\right\},$$

Будем сводить остальные доказательства к первому пункту, находя M, α, β . Второй пункт теперь совсем лёгкий.

2. $\Phi \subset C[a,b], \ x,y \in [a,b], f \in \Phi$. Для оценки разности f(x) - f(y) воспользуемся теоремой Лагранжа.

$$f(x) - f(y) = f'(c)(x - y) \Rightarrow |f(x) - f(y)| \le |f'(c)||x - y| \le L|x - y|$$
$$M = L, \alpha = 1, (\beta - \forall) \stackrel{1}{\Rightarrow} \Phi \in (EC)$$

3. Пусть $z,y\in K$ такие что $[z,y]\subset G, f\in \Phi$ Оценим разность f(y)-f(z).

$$\Gamma: [0,1] \to [y,z]$$

$$\Gamma(t) = ty + (1-t)z, \Gamma(0) = z, \Gamma(1) = y$$
 опять можем воспользоваться теоремой Лагранжа
$$f(y) - f(z) = f(\Gamma(1)) - f(\Gamma(0)) = (f(\Gamma(c)))'_t$$

$$(f(\Gamma(t)))'_{t} = (f(ty + (1-t)z))'_{t} = \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(\ldots)(y_{j} - z_{j})$$

$$|f(\Gamma(t))'| \le L \sum_{j=1}^{n} |y_j - z_j| \stackrel{\text{KBIII}}{\le} L \sqrt{n} \left(\sum_{j=1}^{n} (y_j - z_j)^2 \right)^{\frac{1}{2}} = L \sqrt{n} \rho(y, z)$$

Если выбрать β достаточно маленьким, то наш отрезок будет лежать в этом компакте. $F = \mathbb{R}^n \setminus G$ — замкнутое, $\rho(x,F)$ — непрерывная функция в $\mathbb{R}^n \Rightarrow \rho(x,F)$ непрерывна на $K \Rightarrow \exists x_0 \in K, \rho(x_0,F) = \min_{x \in K} \rho(x,F)$

Рис. 4.3: Утопленность компакта

$$x_0 \notin F \Rightarrow \rho(x_0, F) > 0, r := \rho(x_0, F)$$
 $\forall x \in K \ B_r(x) \subset G, \beta = r$
 $\rho(x, y) < r \Rightarrow y \in B_r(x) \subset G \Rightarrow$
отрезок $[x, y]B_r(x) \subset G$
 $\Rightarrow |f(x) - f(y)| \le L\sqrt{n}\rho(x, y)$

z и y, которые с самого начала были выбраны вместо x и y, чтобы не смущаться из-за dx, обратно превратились в x и y, все же поняли? На пальцах: наш компакт настолько утоплен в G, что если мы возьмём шарик радиуса r, то шарик всё еще лежит в G.

4. Букву r, которую мы нашли в предыдущем пункте, будем изо всех сил использовать. $K \subset G \subset \mathbb{C}$. В 3 пункте выяснили, что $\exists \ r > 0 : B_r(x) \subset G \ \forall \ x \in K, \beta = \frac{r}{3}$.

$$x, y \in K, \rho(x, y) < \beta, \gamma = \{\zeta \in \mathbb{C} : |x - \zeta| = 2\beta\}$$

 $f \in \Phi$

разницу собираемся оценивать с помощью формулы Коши, поэтому никакие проивзодные и не нужны!!!

$$f(x) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - x} d\zeta$$
$$f(y) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - y} d\zeta$$
$$f(x) - f(y) = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \frac{x - y}{(\zeta - x)(\zeta - y)} d\zeta$$

оцениваем самым грубом образом, отправляя модули под интегралы

$$|f(\zeta)| \le L, |\zeta - x| = 2\beta, |\zeta - y| \ge \beta$$

$$|f(x) - f(y)| \le \frac{1}{2\pi} L \cdot |x - y| \cdot |\gamma| \cdot \frac{1}{(2\beta) \cdot \beta} = |x - y| L \frac{(2\beta) \cdot 2\pi}{(2\pi)(2\beta)\beta} = \frac{L}{\beta} |x - y|$$

и в обозначениях 1 пункта получаем $M=\frac{L}{\beta}, \alpha=1, \beta=\frac{r}{3}, \stackrel{(1)}{\Rightarrow} \Phi \in (EC)$

Перед тем, как мы покинем относительно компакты, пара упражнений, которые на экзамене спрашивали в качестве задачи на 5.

Утверждение 4.2. $1 \le p < +\infty$. $\Phi \subset l^p, \Phi$ — относительно компактно \Leftrightarrow

1. Φ — ограничено в l^p

2.
$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall x = \{x_j\}_{j=1}^{\infty} \in \Phi, \left(\sum_{j=N+1}^{\infty} |x_j|^p\right)^{\frac{1}{p}} < \varepsilon$$

Утверждение 4.3. $\Phi \subset c_0, \Phi$ — относительно компактно \Leftrightarrow

1. Φ — ограничено

$$2. \ \varepsilon > 0 \, \exists \, N \in \mathbb{N} : \forall \, x \in \Phi \quad \sup_{j \geq N+1} |x_j| < \varepsilon$$

Мы сейчас находимся на перепутье функционального анализа. Можно отправиться в гильбертовы пространства, в линейные операторы или еще куда-то. Изучить-то придётся всё, но мы начинаем линейные операторы.

Часть II Линейные операторы

Глава 5

Линейные операторы в линейных пространствах

Первый парагарф про линейные пространства будет совсем простой, здесь будут самые тривиальные свойства, следующие из линейности.

5.1. Линейные операторы в линейных пространствах

Определение 5.1 (Линейный оператор). X, Y — линейны над $k(k = \mathbb{R} \text{ или } \mathbb{C}).$ $A: X \to Y, A$ — линейный оператор, если

$$A(\alpha x + \beta z) = \alpha Ax + \beta Az, \quad x, z \in X, \alpha, \beta \in k$$

 $\operatorname{Lin}(X,Y)$ — множество линейных операторов из X в Y. Также нам понадобится линейное пространство над k

$$\alpha \in k, A \in \text{Lin}(X,Y), (\alpha A)(x) := \alpha Ax, 0(x) = 0 (0 в пространстве Y)$$

 $A, B \in \text{Lin}(X,Y), (A+B)(x) := Ax + Bx$

Если X = Y, пишем только Lin(X).

Пример 5.1 (интегральный оператор). $C[a,b], k(s,t) \in C([a,b] \times [a,b])$

$$f \in C[a, b], (\mathcal{K}f)(s) = \int_{a}^{b} k(s, t) f(t) dt$$
$$(\mathcal{K}f)(s) \in C[a, b], \mathcal{K} \in \text{Lin}(C[a, b])$$

Пример 5.2 (оператор дифференцирования). $X = C^{(1)}[0,1] = \{f : f' \in C[0,1]\}, Y = C[0,1]. f \in X, D(f) = f', D \in \text{Lin}(X,Y)$

Пример 5.3 (оператор вложения). $l^1 \subset l^2, x = \{x_n\}_{n=1}^{\infty}, \sum_{n=1}^{\infty} |x_n| < +\infty, x \in l^1 \Rightarrow \sum_{n=1}^{\infty} |x_n|^2 < +\infty \Rightarrow x \in l^2$

$$Ax = x, A$$
 оператор вложения $l^1 \stackrel{A}{\hookrightarrow} l^2$ $\forall 1 \leq p_1 < p_2 \leq +\infty \Rightarrow l^{p_1} \stackrel{A}{\hookrightarrow} l^{p_2}, Ax = x$ $A \in \operatorname{Lin}(l^{p_1}, l^{p_2})$

Пример 5.4 (оператор, но не линейный). X — линейное пространство, $x_0 \in X, x_0 \neq 0, Ax = x + x_0 \Rightarrow A$ — не линейный.

Перед тем, как доказывать теорему, еще одно небольшое определение.

Определение 5.2 (Выпуклое множество). $B \subset X, X$ — линейное пространство. B — **выпуклое** , если

$$\forall x, z \in B, \forall t, 0 \le t \le 1 \Rightarrow tx + (1 - t)z \in B$$

то есть отрезок, соединяющий любые две точки, полностью лежит в этом множестве

Теорема 5.1 (простейшие свойства линейного оператора). X, Y — линейные пространства над k (\mathbb{R} или \mathbb{C}), $A \in \text{Lin}(X,Y)$

- 1. $L \subset X, L$ подпространство в $X \Rightarrow A(L)$ подпространство в Y (образ подпространства подпространство)
- 2. $M\subset Y, M$ подпространство в $Y\Rightarrow\underbrace{A^{-1}(M)}_{\text{прообраз}}$ подпро-

странство в X

- 3. $B \subset X, B$ выпуклое $\Rightarrow A(B)$ выпуклое в Y
- 4. $C \subset Y, C$ выпуклое $\Rightarrow A^{-1}(C)$ выпуклое в X
- 5. пусть A биекция $\Rightarrow A^{-1} \in \text{Lin}(Y, X)$

Все 5 свойств доказывать не будем, покажем только несколько и скажем, что остальные доказываются аналогично.

1. L — подпространство, $y, v \in A(L), \alpha \in k$. Наша мечта — проверить $(\stackrel{?}{\Rightarrow} \alpha y + v \in A(L))$, не обязательно писать α и β .

$$\Rightarrow \exists x, u \in L : (Ax = y \land Au = v) \Rightarrow A(\alpha x + u) = \alpha Ax + Au = \alpha y + v$$
$$\alpha x + u \in L \Rightarrow A(\alpha x + u) \in A(L) \Rightarrow \alpha y + v \in A(L)$$

3 проверяется тютелька в тютельку как 1, а 2 $\,-\,$ как 4, поэтому проверим 4.

4. C — выпуклое, $x, u \in A^{-1}(C), 0 \le t \le 1$.

$$(y:=Ax \wedge v:=Au) \quad y,v \in C \Rightarrow ty+(1-t)v \in C$$

$$A(tx+(1-t)u)=tAx+(1-t)Au=ty+(1-t)v \in C$$

$$\Rightarrow tx+(1-t)u \in A^{-1}(C) \Rightarrow A^{-1}(C) \text{ выпуклое}$$

5. $y,v\in Y\Rightarrow x=A^{-1}y,u=A^{-1}v\Rightarrow (Ax=y\wedge Au=v)\Rightarrow$ пусть $\alpha\in k,\quad A(\alpha x+u)=\alpha Ax+Au=\alpha y+v\Rightarrow$ $\alpha x+u=A^{-1}(\alpha y+v)=\alpha A^{-1}y+A^{-1}v\Rightarrow$ $A^{-1}\in \mathrm{Lin}(Y,X)$

Определение 5.3 (Ядро линейного оператора). $A \in \text{Lin}(X,Y)$

$$\operatorname{Ker} A = \{x \in X : Ax = 0\} \ -\text{ ядро } A$$

$$\operatorname{Im} A = \{y \in Y : \ \exists \ x : Ax = y\} = A(X) \ -\text{ образ } A$$

Следствие 5.1. X, Y — линейные пространства, $\Rightarrow \text{Ker } A$ — подпространство в X, Im A — подпространство в Y.

Определение 5.4 (произведение операторов). X,Y,Z — линейные пространства

$$X \stackrel{A}{\to} Y \stackrel{B}{\to} Z$$

 $A\in \mathrm{Lin}(X,Y), B\in \mathrm{Lin}(Y,Z), \ C=BA, C(x):=B(Ax), x\in X\Rightarrow C\in \mathrm{Lin}(X,Z), C$ — произведение BA

Всё самое тривиальное для операторов в линейных простаранствах мы вспомнили

5.2. Линейные операторы в нормированных пространствах

Линейные операторы в нормированных пространствах — главный объект, который изучает функциональный анализ.

Определение 5.5 (Ограниченный оператор). $(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X,Y).$ A — **ограниченный**, если $\forall C \subset X, C$ — ограниченное $\Rightarrow A(C)$ — ограниченное в Y.

Оказывается, для операторов ограниченность эквивалентна непрерывности. Казалось бы, ограниченность сильно слабее, но если к ней добавить линейность, то будет аж непрерывность.

Обычно если в теореме 2 свойства, то говорят «если и только если», а если условий несколько, то говорят «равносильность». Подлые англосаксы говорят Following Conditions are Equivalent.

Теорема 5.2 (эквивалентность ограниченности и непрерывности линейного оператора). $(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X, Y).$ Следующие условия равносильны (СУР) (FCE)

- 1. A непрерывен в точке 0
- 2. A непрерывен $\forall x \in X$
- 3. $\exists C > 0 : ||Ax|| \le C||x|| \ \forall x \in X$
- 4. А ограниченный
- 5. $\exists r > 0 \ A(B_r(0))$ ограниченное множество в Y.

Доказательство очень простое, и, конечно, строится на линейности

 $1\Rightarrow 2.$ A непрерывен в точке 0. Пусть $\varepsilon>0$ \exists $\delta>0,$ $||x||<\delta\Rightarrow ||Ax||<\varepsilon$ $(A(\mathbb{O})=\mathbb{O}).$ утверждается, что те же самые ε и δ подходят.

пусть
$$x_0 \in X$$
, проверим, что A непрерывен в x_0 пусть $||x-x_0|| < \delta \Rightarrow ||A(x-x_0)|| < \varepsilon \Rightarrow ||Ax-Ax_0|| < \varepsilon$

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ ПРОСТРАНСТВАХ

72

 $2 \Rightarrow 1$ очевидно

$$1\Rightarrow 3.$$
 Пусть $\varepsilon>0$ \exists $\delta>0: ||x||\leq \delta\Rightarrow ||Ax||<\varepsilon.$
$$z\in X, z\neq 0 \quad x=\frac{z}{||z||}\cdot \delta\Rightarrow ||x||=\delta\Rightarrow ||Ax||<\varepsilon.$$

$$\Rightarrow ||A\left(\frac{z}{||z||} \cdot \delta\right)|| < \varepsilon \Rightarrow ||Az|| < \frac{\varepsilon}{\delta}||z|| \text{ r.e. } C = \frac{\varepsilon}{\delta}$$

 $3\Rightarrow 4.\ B\subset X,\ B$ — ограниченное, то есть $\exists\ M>0: (\forall\ x\in B\ ||x||< M)\stackrel{3}{\Rightarrow}||Ax||\leq C||x||\leq CM\ \forall\ x\in B\Rightarrow \{A(B)\}$ — ограниченное. \square

 $4 \Rightarrow 5$ очевидно $(B_r(0) - \text{ограниченноe})$

$$5 \Rightarrow 1. \exists R > 0 A(B_r^X(0)) \subset B_R^Y(0)$$

$$||x|| < r \Rightarrow ||Ax|| < R$$

непрерывность в 0 означает

пусть
$$\varepsilon > 0 \quad ||x|| < \delta(\varepsilon) \Rightarrow ||Ax|| < \varepsilon$$

$$\delta(\varepsilon) = \varepsilon \cdot \frac{r}{R}$$

$$||z|| < \varepsilon \cdot \frac{r}{R} \Rightarrow ||z \cdot \frac{R}{\varepsilon}|| < r \Rightarrow ||A\left(z \cdot \frac{R}{\varepsilon}\right)|| < R \Rightarrow ||Az|| < \varepsilon$$

$$(X, ||\cdot||), (Y, ||\cdot||)$$

$$\underbrace{\mathcal{B}(X,Y)}_{\mathrm{bounded}} = \{A \in \mathrm{Lin}(X,Y) \ \mathrm{if} \ A \ - \mathrm{orpahu}$$
ченный $\}$

С помощью теоремы, которую мы только что доказали, введём норму в этом пространстве.

Определение 5.6 (норма оператора). $A \in \mathcal{B}(X,Y)$

$$||A||=\inf\{C:C>0\wedge||Ax||\leq C\,||x||\,\,\forall\,x\in X\}$$

то бишь точная нижняя грань множества величин, на которые наш оператор увеличивает норму элемента.

Раз мы так объявили норму, то надо проверять аксиомы нормы.

Утверждение 5.1.
$$(X, ||\cdot||), (Y, ||\cdot||), A \in \mathcal{B}(X, Y)$$

- 1. $\forall x \in X ||Ax|| \le ||A|| \cdot ||x||$ (то есть inf в определении нормы $= \min$)
- 2. ||A|| удовлетворяет аксиомам нормы

Доказательство. x — фиксирован, по определению $\inf \Rightarrow \forall C > ||A||, ||Ax|| \le C||x|| \Rightarrow ||Ax|| \le ||A|| \cdot ||x||$. Был фиксирован, теперь любой, первое утверждение доказано. Теперь второе.

$$\alpha \in k, \alpha \neq 0, x \in X, x - \text{фиксирован}$$

$$(\alpha A)(x) = \alpha A x$$

$$\forall x \in X \quad ||(\alpha A)(x)|| = ||\alpha \cdot Ax|| = |\alpha| \cdot ||Ax|| \leq |\alpha| \cdot ||A|| \cdot ||x||$$

$$\Rightarrow ||\alpha A|| \leq |\alpha| \cdot ||A|| \qquad (*)$$

Очевидное замечание по слёзной просьбе двух студенток, которые ничего не понимали. Если мы докажем $||Ax|| \le M||x|| \, \forall \, x \in X$, то $||A|| \le M$. Применим (*) к оператору αA и константе $\frac{1}{\alpha}$

$$\Rightarrow \left| \left| \frac{1}{\alpha} (\alpha A) \right| \right| \le \frac{1}{|\alpha|} ||\alpha A|| \Rightarrow$$

сократим константы слева и домножим обе части на $|\alpha|$

$$|\alpha| \cdot ||A|| \le ||\alpha A||$$

$$\Rightarrow ||\alpha A|| = |\alpha| \cdot ||A||$$

 $A, B \in \mathcal{B}(X, Y), x \in X$

$$||(A+B)(x)|| = ||Ax+Bx|| \le ||Ax|| + ||Bx|| \le ||A|| \cdot ||x|| + ||B|| \cdot ||x|| =$$

$$= (||A|| + ||B||)||x|| \quad \forall x \in X$$

$$\Rightarrow ||A+B|| \le ||A|| + ||B||$$

Как только есть какая-то константа, то настоящая норма меньше или равна этой константы. $||A|| = 0 \Rightarrow \forall x \in X ||Ax|| \leq ||A|| \cdot ||x|| = 0$. $\Rightarrow Ax = 0 \forall x \in X \Rightarrow A = 0 \Rightarrow ||A||$ — настоящая норма

Теорема 5.3 (вычисление нормы непрерывного оператора). $(X, ||\cdot||), (Y, ||\cdot||), A \in \mathcal{B}(X, Y) \Rightarrow$

$$||A|| = \sup_{\{||x|| \le 1\}} ||Ax|| = \sup_{\{||x|| < 1\}} ||Ax|| = \sup_{\{||x|| = 1\}} ||Ax|| = \sup_{\{x \in X, x \ne 0\}} \frac{||Ax||}{||x||}$$

Доказательство. Очевидно $a \geq b, a \geq c, d \geq c$. Докажем $||A|| \geq a \geq b \geq ||A||, \quad ||A|| \geq d \geq c \geq ||A||.$

$$||Ax|| \leq ||A|| \cdot ||x|| \leq ||A|| \quad \forall \, x, ||x|| \leq 1 \Rightarrow \sup_{\{||x|| \leq 1\}} ||Ax|| \leq ||A|| \Rightarrow a \leq ||A||$$

Доказали $||A|| \ge a$.

Пусть
$$\varepsilon > 0$$
 $z \in X, z \neq 0 \Rightarrow \left| \left| \frac{z}{\|z\|(1+\varepsilon)} \right| \right| = \frac{1}{1+\varepsilon} < 1$

$$\left| \left| A \left(\frac{z}{||z||(1+\varepsilon)} \right) \right| \right| \le b \Rightarrow ||Az|| \le b(1+\varepsilon)||z|| \quad \forall z \in X$$
$$\Rightarrow ||A|| \le b(1+\varepsilon) \, \forall \varepsilon > 0 \Rightarrow ||A|| \le b$$

Получаем $||A|| \ge a \ge b \ge ||A||$, закончили с первой цепочкой неравенств.

Пусть $x \neq 0 \Rightarrow ||Ax|| \leq ||A|| \cdot ||x|| \Rightarrow \frac{||Ax||}{||x||} \leq ||A|| \Rightarrow d = \sup_{\{x \neq 0\}} \frac{||Ax||}{||x||} \leq ||A||.$

пусть
$$z \in X, z \neq 0, \ \left|\left|\frac{z}{||z||}\right|\right| = 1 \Rightarrow \left|\left|A\left(\frac{z}{||z||}\right)\right|\right| \leq c \Rightarrow ||Az|| \leq c||z|| \ \forall \, z \in X$$

с — супремум по единичной сфере

$$||A|| \le c$$

$$||A|| \ge d \ge c \ge ||A||$$

Пример 5.5. $C[a,b], h(x) \in C[a,b]$ — фиксированная функция. $f \in C[a,b], M_h(f) := h(x) \cdot f(x)$.

$$M_h \in \operatorname{Lin}(C[a,b])$$

Проверим, что он непрерывен и сосчитаем его норму.

Доказательство.

$$||M_h(f)||_{\infty} = \max_{x \in [a,b]} |h(x) \cdot f(x)| \le \max_{x \in [a,b]} |h(x)| \cdot \max_{x \in [a,b]} |f(x)| = ||h||_{\infty} \cdot ||f||_{\infty}$$

$$\Rightarrow M_h \in \mathcal{B}(C[a,b]), ||M_h||_{\mathcal{B}(C[a,b])} \le ||h||_{\infty}$$

получили непрерывность; раз есть общая константа, не зависящая от f, то мы получаем и оценку для нормы

$$\chi_{[a,b]}(x) = 1 \,\forall \, x \in [a,b], \, \chi_{[a,b]} \in C[a,b], \, ||\chi_{[a,b]}||_{\infty} = 1$$
$$||M_h|| \ge ||M_h(f)|| \,\forall \, f, \, ||f|| = 1 \Rightarrow ||M_h|| \ge ||M_h(\chi_{[a,b]})||_{\infty} = ||h||_{\infty}$$
$$\Rightarrow ||M_h||_{\mathcal{B}(C[a,b])} = ||h||_{\infty}$$

Теперь посмотрим на оператор дифференцирования, это очень важный пример.

Пример 5.6.
$$Y = C[a,b], X = \{f: \exists f' \in C[a,b]\}, 0 \le a \le b$$
 $X \subset Y, X$ — подпространство Y , то есть $||f||_X = ||f||_Y = \max_{x \in [a,b]} |f(x)|$ $D(f) = f' \Rightarrow D \in \text{Lin}(X,Y),$ $D(x^n) = nx^{n-1} \sup_{n \in \mathbb{N}} \frac{||D(x^n)||}{||x^n||} = \sup_{n \in \mathbb{N}} \frac{nb^{n-1}}{b^n} = +\infty$

при таком определении нормы оператор дифференцирования D не непрерывен.

Пример 5.7.
$$Y = C[a, b], X = C^{(1)}[a, b]$$

$$||f||_{X} = \max\{||f||_{\infty}, ||f'||_{\infty}\}$$

$$D(f) = f' \quad ||D(f)|| = ||f'||_{\infty} = \max_{x \in [a,b]} |f'(x)| \le \max\{||f||_{\infty}, ||f'||_{\infty}\} = 1 \cdot ||f||_{X}$$

$$\Rightarrow D \in \mathcal{B}(X,Y), ||D|| \le 1$$

В зависимости от того, как мы определим норму в пространстве, один и тот же оператор может оказаться как непрерывным, так и не непрерывным.

Теорема 5.4 (вложение пространств в l^p). Пусть $1 \le p_1 < p_2 \le +\infty$. $x \in l^p$. Рассмотрим оператор вложения $Ax = x \Rightarrow A \in \mathcal{B}(l^{p_1}, l^{p_2}), ||A|| = 1$.

Доказательство. То, что он линейный, мы уже обсуждали, это очевидно. Удобно будет рассматривать последовательности из единичной сферы. $x \in l^p, x = \{x_n\}_{n=1}^\infty, x_n \in \mathbb{C}. \ ||x||_p = (\sum_{n=1}^\infty |x_n|^p)^{\frac{1}{p}}, 1 \leq p < +\infty.$ Возьмём не просто последовательность из l^{p_1} , но и такую, что $||x||_{p_1} = 1 \Rightarrow \sum_{n=1}^\infty |x_n|^{p_1} = 1$ Ax = x.

$$\Rightarrow |x_n| \le 1 \Rightarrow (|x_n|^{p_2}) < |x_n|^{p_1}$$

$$||Ax||_{p_2} = \left(\sum_{n=1}^{\infty} |x_n|^{p_2}\right)^{\frac{1}{p_2}} \le \left(\sum_{n=1}^{\infty} |x_n|^{p_1}\right)^{\frac{1}{p_2}} = 1 \Rightarrow A \in \mathcal{B}(l^{p_1}, l^{p_2})$$

$$||A|| = \sup_{\{||x||_{p_1} = 1\}} ||Ax||_{p_2} \le 1 \Rightarrow ||A||_{\mathcal{B}(l^{p_1}, l^{p_2})} \le 1 \quad \text{при } p_2 < +\infty$$
 теперь $p_2 = +\infty ||x||_{p_1} = 1 \Rightarrow$

потому что сумма в какой-то степени \geq супремума

 L^p .

$$\sup_{n\in\mathbb{N}}|x_n|\leq ||x||_{p_1}\Rightarrow ||x||_{\infty}\leq ||x||_{p_1}\Rightarrow$$

$$A\in\mathcal{B}(l^{p_1},l^{p_2})\,||A||\leq 1$$
 если $e_1=(1,0,\ldots),\,||e_1||_p=1\,\forall\,p:1\leq p\leq +\infty$
$$||A||=\sup_{\{||x||_{p_1}=1\}}||Ax||_{p_2}\geq ||Ae_1||_{p_2}=1\Rightarrow ||A||_{\mathcal{B}(l^{p_1},l^{p_2})}=1\quad\forall\,p_1< p_2$$

Посмотрим теперь на похожую теорему для больших пространств

Теорема 5.5 (вложение пространств в $L^p(\mu)$ для конечной меры). $(X,U,\mu),1\leq p_1< p_2\leq +\infty, \mu(X)< +\infty.$ Рассмотрим $f\in L^{p_2}, Af=f\Rightarrow A\in \mathcal{B}(L^{p_2},L^{p_1}).$ $||A||=(\mu(X))^{\frac{1}{p_1}-\frac{1}{p_2}}, \left(\frac{1}{\infty}=0\right)$

Доказательство. Начнём с самого простого случая. То есть что называлось существенно ограниченными функциями. $p_2 = \infty, f \in L^{\infty}(\mu), |f(x)| \le ||f||_{\infty}$ п.в. для $x \in X$ по μ .

$$||Af||_{p_1} = ||f||_{p_1} = \left(\int_X |f|^{p_1} d\mu\right)^{\frac{1}{p_1}} \le ||f||_{\infty} \left(\int_X d\mu\right)^{\frac{1}{p_1}} = ||f||_{\infty} \mu(X)^{\frac{1}{p_1}}$$

Вот у нас получилась константа, которая обслуживает все функции f. Тогда, во-первых, оператор непрерывен, а во-вторых, это и есть оценка для нормы

$$\Rightarrow A \in \mathcal{B}(L^{\infty}, L^{p_{1}}), ||A|| \leq (\mu(X))^{\frac{1}{p_{1}}}$$
 пусть $p_{2} < +\infty, f \in L^{p_{2}}, \left(\int_{X} |f|^{p_{2}} d\mu\right)^{\frac{1}{p_{2}}} = ||f||_{p_{2}}$
$$||Af||_{p_{1}} = ||f||_{p_{1}} = \left(\int_{X} |f|^{p_{1}} d\mu\right)^{\frac{1}{p_{1}}} \overset{\text{1. Гёльдера}}{\leq} \left[\left(\int_{X} |f|^{p_{2}} d\mu\right)^{\frac{1}{p}} \left(\int_{X} \mathbb{1}^{q} d\mu\right)^{\frac{1}{q}}\right]^{\frac{1}{p_{1}}} =$$

$$p = \frac{p_{2}}{p_{1}}, \frac{1}{q} = 1 - \frac{1}{p} = 1 - \frac{p_{1}}{p_{2}}$$

$$= \left(\int_{X} |f|^{p_{2}} d\mu\right)^{\frac{1}{p_{2}}} \cdot (\mu(X))^{\left(1 - \frac{p_{1}}{p_{2}}\right) \frac{1}{p_{1}}} = ||f||_{p_{2}} (\mu(X))^{\frac{1}{p_{1}} - \frac{1}{p_{2}}}$$

$$\Rightarrow A \in \mathcal{B}(L^{p_{2}}, L^{p_{1}}), ||A|| \leq (\mu(X))^{\frac{1}{p_{1}} - \frac{1}{p_{2}}}$$

Почти всё готово. Мы оценили норму сверху, и утверждается, что на самом деле имеет место равенство. На какой пробной функции получить неравенство с другой стороны? Наверное, все уже догадались. Раз есть sup, то мы можем подставить какую-то конкретную функцию. $p_2 < +\infty, \chi_X(x) \equiv 1$

$$\begin{split} ||A|| &= \sup_{f \neq 0} \frac{||Af||_{p_1}}{||f||_{p_2}} \geq \frac{||A(\chi_X)||_{p_1}}{||\chi_X||_{p_2}} = \frac{\left(\int_X \chi_X^{p_1} d\mu\right)^{\frac{1}{p_1}}}{\left(\int_X \chi_X^{p_2} d\mu\right)^{\frac{1}{p_2}}} = \\ &= \frac{\left(\mu(X)\right)^{\frac{1}{p_1}}}{\mu(X)^{\frac{1}{p_2}}} = \mu(X)^{\frac{1}{p_1} - \frac{1}{p_2}} \end{split}$$
 если $p_2 = \infty, ||\chi_X||_{\infty} = 1 \Rightarrow ||A||_{\mathcal{B}(L^\infty, L^{p_1})} \geq \mu(X)^{\frac{1}{p_1}} \end{split}$

Позже вычислим норму интегрального оператора, который часто встречается в анализе и в матфизике.

Теорема 5.6 (полнота пространства операторов, действующих в банахово пространство). $(X,||\cdot||)$ — нормированное, $(Y,||\cdot||)$ — банахово $\Rightarrow \mathcal{B}(X,Y)$ — банахово.

Доказательство. Тут без хитростей. По определению возьмём фундаментальную последовательность и покажем, что у нее есть предел. Сначала надо добыть оператор, который будет претендентом на

78

звание предела. $\{A_n\}_{n=1}^{\infty}$ — фундаментальная, $A_n \in \mathcal{B}(X,Y)$. Пусть $\varepsilon > 0 \; \exists \; N \in \mathbb{N} \; (n > N \land m > N) \Rightarrow ||A_n - A_m|| < \varepsilon. \; x \in X, x — фиксирован, <math>\Rightarrow ||A_n x - A_m x|| = ||(A_n - A_m)x|| < \varepsilon \, ||x||$. Тогда $\{A_n x\}_{n=1}^{\infty}$ — фундаментальная в Y, Y — банахово \Rightarrow

$$\exists \lim_{n\to\infty} A_nx \in Y, Ax := \lim_{n\to\infty} A_nx$$
 поточечный предел
$$\lim - \text{линейная} \ \Rightarrow A \in \operatorname{Lin}(X,Y)$$

$$x - \text{фиксирован} \ ||A_nx - A_mx|| < \varepsilon \, ||x|| \, , \text{ пусть } m \to \infty$$

$$\Rightarrow ||A_nx - Ax|| \le \varepsilon \, ||x|| \quad \forall \, x \in X$$

$$\Rightarrow A_n - A \in \mathcal{B}(X,Y), ||A_n - A|| \le \varepsilon \Rightarrow A = (A - A_n) + A_n \Rightarrow A \in \mathcal{B}(X,Y)$$

Поговорим немного о линейных функционалах. Вы только не думайте, что мы покидаем линейые операторы, это всё-таки главный объект изучения функционального анализа.

5.3. Линейные функционалы

Определение 5.7 (линейный функционал). X — линейное пространство над k ($\mathbb R$ или $\mathbb C$). $\mathrm{Lin}(X,k)$ — линейные функционалы на X

Определение 5.8 (сопряжённое пространство). $(X, ||\cdot||), X^* = \mathcal{B}(X, \mathbb{C})$ (или же $X^* = \mathcal{B}(X, \mathbb{R})$) — сопряжённое пространство. X^* — линейные **НЕПРЕРЫВНЫЕ** функционалы.

Про неперывность надо помнить. На экзамене часто спрашивают, что такое сопряжённое пространство, и не могут выпытать непрерывность. Что делают с такими студентами? Выгоняют.

Следствие 5.2.
$$(X, ||\cdot||), f \in X^* \Rightarrow$$

$$||f|| = \sup_{\{||x|| \le 1\}} |f(x)| = \sup_{\{||x|| < 1\}} |f(x)| = \sup_{\{||x|| = 1\}} |f(x)| = \sup_{\{x \in X, x \ne 0\}} \frac{|f(x)|}{||x||}$$

Следствие 5.3. $(X, ||\cdot||) \Rightarrow X^* -$ банахово

Г

 \mathcal{A} оказательство. \mathbb{R} и \mathbb{C} — полные $\Rightarrow \mathcal{B}(X,\mathbb{C})$ — банахово ($\Rightarrow \mathcal{B}(X,\mathbb{R})$ — банахово).

Пример 5.8. $X = l^p, (1 \le p \le +\infty), i \in \mathbb{N}$ — фиксированное число

$$x \in l^p \Rightarrow x = \{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{C}, f(x) := x_i \Rightarrow f \in X^*, ||f|| = 1$$

$$|f(x)| = |x_i| \le \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} = 1 \cdot ||x||_p \text{ при } 1 \le p < +\infty \text{ и}$$

$$\le \sup_n ||x_n|| = 1 \cdot ||x||_{\infty} \text{ при } p = +\infty$$

$$\Rightarrow f \in \mathcal{B}(X, \mathbb{C}) = X^*, ||f|| \le 1$$

$$||f|| = \sup_{\{||x||=1\}} |f(x)| \ge |f(e_i)| = 1$$

Со временем мы сосчитаем, что такое сопряженное пространство к l^p для конечных p. По секрету, это l^q , где p и q — сопряжены.

Пример 5.9. $C(K) = \{f \mid f : K \to \mathbb{C} \text{ и } f \text{ непрерывная}\}, x_0 \in K, K$ — компакт. Почему всегда рассматривается компакт? Потому что на компакте функция достигает свой максимум, и иначе непонятно, как норму вводить.

 $f \in C(K), G(f) := f(x_0) \Rightarrow G \in X^*, ||G|| = 1$ (функционал значения в точке, подлые англосаксы говорят point evaluation)

$$G \in \text{Lin}(C(K), \mathbb{C})$$

$$f \in C(K), |G(f)| = |f(x_0)| \le \sup_{x \in K} |f(x)| = ||f||_{C(K)} \Rightarrow$$

$$G \in X^*, ||G|| \le 1$$

$$\begin{cases} \chi_K(x) = 1, \chi_K \in C(K), ||\chi_K|| = 1, \chi_K(x_0) = 1 \\ \Rightarrow ||G|| = \sup_{\{||f||=1\}} |G(f)| \ge |G(\chi_K)| = 1 \end{cases} \Rightarrow ||G|| = 1$$

Когда-то мы опишем пространство непрерывных функций, но доказывать, почему оно так выглядит, не будем, ибо это очень сложно, и придётся просто поверить в это описание. Сейчас докажем теорему про норму интегрального оператора в C[a,b]. Мы ей даже когда-то нескоро воспользуемся. **Теорема 5.7.** $C[a,b] = \{f \mid f : [a,b] \to \mathbb{R}, f \text{ непрерывная}\}$. Ядро интегрального оператора $:= k(s,t) \in C([a,b] \times [a,b])$, пусть $f \in C[a,b]$.

$$(\mathcal{K}f)(s) := \int_a^b k(s,t)f(t)dt$$
 при $s \in [a,b] \Rightarrow$

$$\mathcal{K} \in \mathcal{B}(C[a,b]), ||\mathcal{K}|| = \max_{a \le s \le b} \int_a^b |k(s,t)| dt$$

Доказательство начнём с важной леммы, помогающий вычислить норму линейного функционала. Когда мы сосчитаем норму линейного функционала, то будет очень нетрудно применить это для вычисления нормы линейного оператора.

Лемма 5.1.
$$\varphi(t) \in C[a,b], \varphi$$
 — фиксирована. $f \in C[a,b], G(f) := \int_a^b f(t)\varphi(t)dt \Rightarrow G \in (C[a,b])^*, ||G|| = \int_a^b |\varphi(t)|dt$.

Доказательство леммы. Оценка сверху совершенно тривиальна. $f \in C[a,b]$

$$|G(f)| = \left| \int_{a}^{b} f(t)\varphi(t)dt \right| \le \int_{a}^{b} |f(t)||\varphi(t)|dt \le \max_{t \in [a,b]} |f(t)| \cdot \int_{a}^{b} |\varphi(t)|dt =$$

$$= ||f||_{\infty} \int_{a}^{b} |\varphi(t)|dt \Rightarrow$$

$$G \in (C[a,b])^{*}, ||G|| \le \int_{a}^{b} |\varphi(t)|dt$$

Теперь оценка ||G|| снизу. Сначала тривиальные замечания. Если $\varphi(t) \ge 0 \ \forall \ t \in [a,b], \ \text{то} \ \chi_{[a,b]}(x) \equiv 1$

$$|G(\chi_{[a,b]})| = \left| \int_a^b \varphi(t)dt \right| = \int_a^b \varphi(t)dt$$

Если $\varphi(t) \leq 0 \, \forall \, t \in [a,b]$ — то же самое.

$$g(t) = \operatorname{sign} \varphi(t) = \begin{cases} 1 & \varphi(t) > 0 \\ -1 & \varphi(t) < 0 \\ 0 & \varphi(t) = 0 \end{cases}$$

 $G(g) = \int_a^b |\varphi(t)| dt$, но $g \notin C[a,b]$. До сих пор мы всегда находили пробную функцию, на котором достигался sup, а здесь такого элемента

нет. Поэтому будем приближать φ непрерывными функциями с точностью до ε , вот такая идея.

Пусть $\varepsilon > 0, \varphi \in C[a,b] \Rightarrow \varphi$ — равномерно непрерывна на $[a,b] \Rightarrow$

$$\exists \, \delta > 0 \, |s-t| < \delta \Rightarrow |\varphi(t) - \varphi(s)| < \varepsilon \quad a \le s, t \le b$$

$$a = t_0 < t_1 < \ldots < t_n = b, t_k - t_{k-1} < \delta.$$

 $a=t_0 < t_1 < \ldots < t_n = b, t_k - t_{k-1} < \delta.$ Рассмотрим $\{\Delta_j\}_{j=1}^n.$ Δ_j — интервалы $[t_{k-1},t_k].$ Нумерация будет не по порядку, как сперва может показаться, а совершенно другая, и она никак не будет зависеть от расположения на отрезке. Разобьём интервалы на 2 сорта. Первый — где функция положительна или отрицательна, то есть не меняет знак. Второй — где меняет знак или обращается в 0. $\Delta_1, \ldots, \Delta_r$ — те интервалы, на которых $\varphi(t) > 0, t \in \Delta_i$ или $\varphi(t) < 0, t \in \Delta_j \ (1 \le j \le r)$

 $\Delta_{r+1},\ldots,\Delta_n$ — те интервалы, для которых $\exists s \in \Delta_i : \varphi(s) = 0, n \geq 0$ j > r

пусть
$$t \in \Delta_j, j > r \Rightarrow \exists \, s \in \Delta_j, \varphi(s) = 0 \Rightarrow$$

$$|\varphi(t)| = |\varphi(t) - \varphi(s)| < \varepsilon \Rightarrow \int_{\Delta_j} |\varphi(t)| dt < \varepsilon |\Delta_j|$$

$$\Rightarrow \int_{\bigcup_{j=r+1}^n \Delta_j} |\varphi(t)| \, dt \le \varepsilon \left(\sum_{j=r+1}^n |\Delta_j|\right) \le \varepsilon (b-a)$$

$$h(t) = \begin{cases} \operatorname{sign} \varphi(t), t \in \Delta_j & 1 \le j \le r \\ \text{линейная на } \Delta_j & j > r \\ \operatorname{если} \left[a, t_1\right] \in \Delta_j, j > r, \text{ то } h(a) = 0 \\ \operatorname{если} \left[t_{n-1}, b\right] \in \Delta_j, j > r, \text{ то } h(b) = 0 \end{cases}$$
 $h \in C[a, b], |h(t)| \le 1$

$$||G|| = \sup_{\{||f|| \le 1\}} |G(f)| \ge |G(h)| = \left| \int_a^b h(t)\varphi(t)dt \right| =$$

$$= \left| \int_{\bigcup_{j=1}^r \Delta_j} h(t)\varphi(t)dt + \int_{\bigcup_{j=r+1}^n \Delta_j} h(t)\varphi(t)dt \right| =$$

$$= \left| \int_{\bigcup_{j=1}^r \Delta_j} |\varphi(t)|dt + \int_{\bigcup_{j=r+1}^n \Delta_j} h(t)\varphi(t)dt \right| \ge$$

$$\ge \int_{\bigcup_{j=1}^r \Delta_j} |\varphi(t)|dt - \int_{\bigcup_{j=r+1}^n \Delta_j} |h(t)||\varphi(t)|dt \ge$$

$$\ge \int_{\bigcup_{j=1}^r \Delta_j} |\varphi(t)|dt - \int_{\bigcup_{j=r+1}^n \Delta_j} |\varphi(t)|dt = \int_a^b |\varphi(t)|dt - 2\int_{\bigcup_{j=r+1}^n \Delta_j} |\varphi(t)|dt \ge$$

$$\ge \int_a^b |\varphi(t)|dt - 2\varepsilon(b-a) \quad \forall \varepsilon > 0$$

$$\Rightarrow ||G|| \ge \int_a^b |\varphi(t)|dt$$

Главной частью доказательства теоремы было доказательство леммы. Вернёмся к теореме.

Доказательство. Оценим сначала норму оператора сверху. $(\mathcal{K}f)(s) = \int_a^b k(s,t)f(t)dt, f \in C[a,b].$ $M = \max_{a \leq s \leq b} \int_a^b |k(s,t)|dt.$ Мы как раз хотим показать, что норма оператора будет равна M.

$$|(\mathcal{K}f)(s)| \le \int_a^b |k(s,t)||f(t)|dt \le ||f||_{\infty} \int_a^b |k(s,t)|dt \le M ||f||_{\infty}$$
$$||\mathcal{K}f||_{\infty} = \max_s |\mathcal{K}f(s)| \le M \cdot ||f|| \ \forall f \in C[a,b] \Rightarrow \mathcal{K} \in \mathcal{B}(C[a,b])$$

 $||K||_{\mathcal{B}(C[a,b])} \leq M$ Теперь оценим $||\mathcal{K}||$ снизу.

$$g(s) = \int_{a}^{b} |k(s,t)| dt \Rightarrow g \in C[a,b] \Rightarrow$$
$$\exists s_0 \ g(s_0) = \max g(s) \Rightarrow g(s_0) = M$$

применим к произвольной непрерывной функции оператор

$$f \in C[a, b], ||(\mathcal{K}f)(s)||_{\infty} = \max_{a \le s \le b} |\mathcal{K}f(s)| \ge |(\mathcal{K}f)(s_0)| = \left| \int_a^b k(s_0, t)f(t)dt \right| = |G(f)|$$

где
$$\varphi(t) = k(s_0, t), G(f) = \int_a^b k(s_0, t) f(t) dt.$$

$$||\mathcal{K}|| = \sup_{\{||f|| \le 1\}} ||\mathcal{K}(f)|| \ge \sup_{\{||f|| \le 1\}} |G(f)| = ||G||_{(C[a,b])^*} \stackrel{\text{лемма}}{=} \int_a^b |\varphi(t)| dt = M \Rightarrow ||K|| = M$$

От сопряжённых пространств мы не уходим, а наоборот, углубляемся в них.

5.4. Изоморфные линейные пространства

Определение 5.9 (изоморфность пространств). $(X, ||\cdot||), (Y, ||\cdot||)$ — линейно изоморфны, если $\exists \ A \in \mathcal{B}(X,Y), \ \exists \ A^{-1} \in \mathcal{B}(Y,X).$ A — линейный изоморфизм

Замечание 5.1. «Изоморфность» — отношение эквивалентности на множестве нормированных пространств.

Когда можно сказать, что два пространства изоморфны?

Теорема 5.8 (критерий линейного изоморфизма). $(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X, Y), A(X) = Y$ (то есть A — сюръекция). A — линейный изоморфизм \Leftrightarrow пусть $0 < c_1 < c_2 < +\infty$ т.ч. $c_1 \, ||x|| \le ||Ax|| \le c_2 \, ||x||$, $\forall \, x \in X$

 $Доказательство. \Rightarrow$

$$A \in \mathcal{B}(X,Y) \Rightarrow ||Ax|| \leq ||A|| \cdot ||x|| \ \forall x \in X, c_2 = ||A||$$
 $\exists A^{-1} \in \mathcal{B}(Y,X) \Rightarrow ||A^{-1}y|| \leq ||A^{-1}|| ||y|| \ \forall y \in Y$
пусть $x \in X, y = Ax \Rightarrow ||A^{-1}(Ax)|| \leq ||A^{-1}|| \cdot ||Ax|| \Rightarrow \frac{1}{||A^{-1}||} \cdot ||x|| \leq ||Ax|| \quad c_1 = \frac{1}{||A^{-1}||}$

 \leftarrow

 $||Ax|| \le c_2 ||x|| \Rightarrow A \in \mathcal{B}(X,Y)(||A|| \le c_2)$. Теперь проверим, что A — инъекция. С помощью неравенства снизу мы сейчас как раз выведем,

что образы различных иксов различны. Пусть $Ax_1 = Ax_2 \Rightarrow A(x_1 - x_2)$ $(x_2) = 0$

$$0 = ||A(x_1 - x_2)|| \ge c \, ||x_1 - x_2|| \Rightarrow x_1 = x_2 \Rightarrow A - \text{биекция}$$

$$\Rightarrow [[\text{свойство 5 линейных операторов}]] \exists \, A^{-1} \in \text{Lin}(Y, X)$$

$$\begin{cases} c_1 \, ||x|| \le ||Ax|| \, \, \forall \, x \in X \\ \text{пусть } y \in Y, x = A^{-1}y \end{cases} \Rightarrow$$

$$c_1 \, \big| \big| A^{-1}y \big| \big| \le ||y|| \Rightarrow \big| \big| A^{-1}y \big| \big| \le \frac{1}{c_1} \, ||y|| \Rightarrow A^{-1} \in \mathcal{B}(Y, X) \, \bigg(\big| \big| A^{-1} \big| \big| \le \frac{1}{c_1} \bigg)$$

Раз нам предстоит потом долгий разговор про обратные операторы, сразу отметим некоторое следствия из доказательства теоремы, чтобы не возвращаться к нему потом.

Следствие 5.4 (из доказательства теоремы).
$$(X, ||\cdot||), (Y, ||\cdot||), A \in \operatorname{Lin}(X, Y), A(X) = Y$$

$$\exists \, A^{-1} \in \mathcal{B}(Y, X) \Rightarrow \exists \, c > 0 : ||Ax|| \geq c \, ||x|| \, \, \forall \, x \in X$$

Доказательство. Следует из доказательства теоремы.

Часто бывает, что на одном и том же пространстве определены две различные нормы. Какие же нормы будут называться эквивалентными?

Определение 5.10. X — линейное пространство, $||\cdot||_1$, $||\cdot||_2$ две нормы на X. $||\cdot||_1$ эквивалентна $||\cdot||_2$, если

$$\lim_{n \to \infty} ||x_n - x_0||_1 = 0 \Leftrightarrow \lim_{n \to \infty} ||x_n - x_0||_2 = 0$$

По-другому можно сказать, что топологии, которые задают эти нормы, одинаковые: $\Leftrightarrow G \subset X, G$ — открытое в $(X, ||\cdot||_1) \Leftrightarrow G$ открытое в $(X, ||\cdot||_2)$

Следствие 5.5. X — линейное, $||\cdot||_1$, $||\cdot||_2$ — нормы на X. $||\cdot||_1$ эквивалентна $||\cdot||_2 \Leftrightarrow \exists \ 0 < c_1 < c_2 \le +\infty$ т.ч.

$$|c_1||x||_1 \le ||x||_2 \le |c_2||x||_1$$

хотя в определении не утверждалось, что одну норму можно оценить через другую

Доказательство. $X=(X,||\cdot||_1),Y=(X,||\cdot||_2)$ — как бы 2 разных пространства, но на одном множестве. Рассмотрим оператор Ix=x. Ясно, что $I\in \mathrm{Lin}(X,Y),\ I$ — биекция, $I^{-1}\in \mathrm{Lin}(Y,X)$. Что означает, что $||\cdot||_1$ эквивалентна $||\cdot||_2?\Leftrightarrow I,I^{-1}$ непрерывны $\Leftrightarrow I$ — линейный изоморфизм X и Y т.критерий линейного изоморфизма $c_1 ||x||_1 \leq \underbrace{||Ix||_2}_{||x||_2} \leq c_2 ||x||_1$

Не очень скоро мы получим обобщение этой теоремы. Окажется, что если пространство банахово в обеих нормах, то только одно из последних неравенств влечёт другое.

Утверждение 5.2. $(X,||\cdot||),(Y,||\cdot||)$ — линейно изоморфны. Пусть X — банахово, тогда Y — банахово.

Доказательство.

$$A: X o Y \quad A \in \mathcal{B}(X,Y) \quad A$$
 — линейный изоморфизм
$$A^{-1}: Y o X \quad A^{-1} \in \mathcal{B}(Y,X)$$
 $\{y_n\}_{n=1}^{\infty}$ — фундаментальная в $Y \quad x_n = A^{-1}y_n$ $||x_n - x_m|| \le \left|\left|A^{-1}\right|\right| \cdot ||y_n - y_m|| \Rightarrow \{x_n\}_{n=1}^{\infty}$ фундаментальная в X

теперь применяем наш, слава богу, непрерывный оператор

$$\Rightarrow \exists \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} Ax_n = Ax_0 \land \lim_{n \to \infty} y_n = Ax_0 \Rightarrow Y$$
 полное

5.5. Конечномерные пространства

Определение 5.11 (Размерность пространства). X — линейное пространство над $\mathbb C$ или $\mathbb R$. Если $\exists \ n$ линейно независимых элементов в X, и $\forall (n+1)$ элементов линейно зависимы, то $\dim X = n$

Определение 5.12. Если $\forall n \in \mathbb{N} \exists n$ линейно незаисимых элементов, то X — **бесконечномерное**

Теорема 5.9. $(X, ||\cdot||), (Y, ||\cdot||)$ — линейные пространства над $\mathbb{C}, \dim X = \dim Y = n.$

 $\Rightarrow X$ линейно изоморфно Y

Доказательство. Поскольку мы обсудили, что изоморфность — отношение эквивалентности, то можно зафиксировать

$$X=l_n^2=\left\{x=(x_1,\dots,x_n),x_j\in\mathbb{C},||x||=\left(\sum_{j=1}^n|x_j|^2
ight)^{rac{1}{2}}
ight\}\{f_j\}_{j=1}^n$$
 — базис в Y $A:l_n^2 o Y,A(e_j)=f_j$

утверждается, что это и будет линейный изоморфизм

$$x \in l_n^2, x = \sum_{j=1}^n x_j e_j$$

$$A\left(\sum_{j=1}^n x_j e_j\right) = \sum_{j=1}^n x_j f_j, A \in \text{Lin}(l_n^2, Y)$$

$$||Ax|| = \left|\left|\sum_{j=1}^n x_j f_j\right|\right| \le \sum_{j=1}^n |x_j| \, ||f_j|| \stackrel{\text{KBIII}}{\le} \underbrace{\left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}}_{||x||_{l^2}} \underbrace{\left(\sum_{j=1}^n ||f_j||^2\right)^{\frac{1}{2}}}_{:=M}$$

мы оценили норму оператора A

$$\Rightarrow ||Ax||_Y \leq ||x||_{l^2_n} \cdot M \Rightarrow A \in \mathcal{B}(l^2_n,Y), ||A|| \leq M$$

$$g(x):=||Ax|| \ -\text{ функция на } l^2_n \Rightarrow g(x) \ -\text{ непрерывна на } l^2_n$$

Теперь рассмотрим эту функцию не на всём пространстве, а на единичной сфере $S = \{x \in l_n^2, ||x||_2 = 1\}$ — компакт в l_n^2 .

$$x\in S, g(x)>0, g$$
 непрерывная на компакте $S\Rightarrow \exists x_0\in S, g(x_0)=\min_{x\in S}g(x), r=g(x_0), r>0$ пусть $x\in l_n^2, x\neq 0$ $\dfrac{x}{||x||}\in S\Rightarrow g\left(\dfrac{x}{||x||}\right)\geq r\Rightarrow$ $\left|\left|A\left(\dfrac{x}{||x||}\right)\right|\right|\geq r\Rightarrow ||Ax||\geq r\,||x||\,\,\,\forall\,x\in l_n^2$ $\Rightarrow A$ — линейный изоморфизм

Следствие 5.6. $(X, ||\cdot||), \dim X = n \in \mathbb{N} \Rightarrow$

- 1. X банахово
- 2. $K \subset X, K$ относительно компактно $\Leftrightarrow K$ ограничено
- 3. $K \subset X, K$ компакт $\Leftrightarrow K$ ограничено и замкнуто

Мы когда-нибудь выясним, что если в пространстве единичный шар — компакт, то это пространство конечномерное.

- 2. $A \in \mathcal{B}(l_n^2,X), A^{-1} \in \mathcal{B}(X,l_n^2), A,A^{-1}$ непрерывны. А непрерывное отображение переводит компакты в компакты, относительные компакты в относительные компакты. Описание компактов в l_n^2 мы знаем.
- 3. аналогично 2

Теорема 5.10. $(X, ||\cdot||), (Y, ||\cdot||), \dim X = n, n \in \mathbb{N}$ $\Rightarrow \operatorname{Lin}(X, Y) = \mathcal{B}(X, Y)$

Доказательство. Рассмотрим сначала частный случай, потом сведём произвольный случай к частному. Пусть $T \in \text{Lin}(l_n^2, Y)$.

$$e_j = (0, \dots, 0, \underbrace{1}_{j}, \dots, 0)$$

 $x \in l_n^2, x = \{x_j\}_{j=1}^n, x = \sum_{j=1}^n x_j e_j \Rightarrow Tx = \sum_{j=1}^n x_j Te_j$

оцениваем норму простейшим образом

$$||Tx|| \le \sum_{j=1}^{n} |x_j| \cdot ||Te_j|| \stackrel{\text{KBIII}}{\le} \left(\sum_{j=1}^{n} |x_j|^2\right)^{\frac{1}{2}} \cdot \underbrace{\left(\sum_{j=1}^{n} ||Te_j||^2\right)^{\frac{1}{2}}}_{M} \le ||x||_2 \cdot M$$

2 множитель не зависит от x, и раз получилась независимая константа, то оператор непрерывен

$$\Rightarrow T \in \mathcal{B}(l_n^2, Y), ||T|| \leq M$$

теперь произвольный случай, пусть $U \in \text{Lin}(X,Y), \dim X = n$

$$A — линейный изоморфизм
$$T = UA \in \mathrm{Lin}(l_n^2,Y) \stackrel{\mathrm{доказали}}{\Rightarrow} T \in \mathcal{B}(l_n^2,Y)$$

$$\Rightarrow U = TA^{-1} \quad A, A^{-1} \text{ непрерывны } \Rightarrow U \in \mathcal{B}(X,Y)$$$$

Следствие 5.7. $(X,||\cdot||_1,||\cdot||_2),\dim X=n<+\infty$ $\Rightarrow ||\cdot||_1 \text{ эквивалентна } ||\cdot||_2$

Доказательство. $(X = (X, ||\cdot||_1)), Y = (X, ||\cdot||_2)$

$$\begin{cases} Ix = x \Rightarrow I \in \operatorname{Lin}(X,Y) \stackrel{\text{теорема}}{\Rightarrow} I \in \mathcal{B}(X,Y) \\ I^{-1}x = x \quad I^{-1} : Y \to X \Rightarrow I^{-1} \in \mathcal{B}(Y,X) \end{cases} \Rightarrow ||\cdot||_{1} \equiv ||\cdot||_{2}$$

$$(\Leftrightarrow \exists \ 0 < c_{1} < c_{2} : c_{1} ||x||_{1} \leq ||x||_{2} \leq c_{2} ||x||_{1})$$

Если последовательность сходится в одной норме, то под действием непрерывного оператора сходится и в другой. \Box

Последнее, что хочется сказать в этом параграфе

Теорема 5.11.
$$(X, ||\cdot||), \dim X = n < +\infty \Rightarrow$$
 $X^* = \mathcal{B}(X, \mathbb{C}) \quad \dim X^* = n$

Доказательство.

$$\mathcal{B}(X,\mathbb{C})=\mathrm{Lin}(X,\mathbb{C})$$
пусть $\{e_j\}_{j=1}^n$ — базис $X,x\in X\Rightarrow x=\sum_{j=1}^n x_je_j$
$$f_j(x)=x_j,f_j:X\to\mathbb{C},f_j\in\mathrm{Lin}(X,\mathbb{C})$$

проверим $\{f_i\}_{i=1}^n$ базис в X^*

$$f \in X^*, x = \sum_{j=1}^n x_j e_j \Rightarrow f(x) = \sum_{j=1}^n x_j f(e_j) = \sum_{j=1}^n \alpha_j x_j, \alpha_j = f(e_j)$$

$$\Rightarrow f(x) = \sum_{j=1}^n \alpha_j f_j(x) \, \forall \, x \in X$$

$$\Rightarrow f = \sum_{j=1}^n \alpha_j f_j$$

Проверим, что $\{f_j\}_{j=1}^n$ линейно независимы

пусть
$$\sum_{j=1}^n c_j f_j = \mathbb{O}$$
, то есть $\mathbb{O}(x) = 0 \ \forall x \in X$
$$f_j(e_k) = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases} \Rightarrow \underbrace{\left(\sum_{j=1}^n c_j f_j\right)(e_k)}_{=0} = c_k \Rightarrow c_k = 0, \ k = 1, \dots, n$$
 $\Rightarrow \{f_j\}_{j=1}^n - \text{базис в } X^*$

Теперь мы расстаёмся с конечномерными пространствами.

5.6. Конечномерные подпространства

Начнём с некоторого общего определения, которое касается метрических пространств.

Определение 5.13.
$$(X, \rho)$$
 — метрическое, $Y \subset X, x_0 \in X, \rho(x_0, Y) = \inf_{y \in Y} \rho(x_0, y)$. Если $\exists \ y_0 \in Y$ т.ч. $\rho(x_0, Y) = \rho(x_0, y_0)$, то y_0 — элемент наилучшего приближения для x_0 в Y

Возникают вопросы, существует ли он, и если да, то единственный ли? Тривиальное замечание

Замечание 5.2. Если Y компакт, то $\exists y_0 \in Y : f(y) = \rho(x_0, y), f(y)$ непрерывна на Y. $\exists y_0, f(y_0) = \min_{y \in Y} f(y)$

теперь мы имеем дело с конечномерным подпространством

Теорема 5.12. $(X,||\cdot||)$ — нормированное, $L\subset X.$ L — подпространство (в алгебраическом смысле), $\dim L=n<+\infty$

- 1. L замкнутое
- 2. $\forall x_0 \in X \exists y_0 \in L$ элемент наилучшего приближения
- 1. Естественно, о компактности никакой речи быть не может, но конечномерность нам поможет. Во-первых, мы уже отмечали, что все конечномерные пространства полные. Ещё мы доказывали линейную изоморфность. Таким образом, L полное. А ещё в самом начале мы обсуждали, что если есть полное подмножество метрического пространства, то оно автоматически оказывается замкнутым.

2.

пусть
$$x_0 \in X \setminus L$$
 $\rho(x_0, L) = d > 0$
$$\rho(x_0, L) = \inf_{y \in L} ||x_0 - y|| \Rightarrow \exists \{y_n\}_{n=1}^{\infty}, y_n \in L$$

План такой: мы докажем что последовательность ограниченная, значит, она относительно компактная, и из неё можно выбрать сходящуюся подпоследовательность, а так как L замкнуто, то предел будет лежать в L. Для оценки воспользуемся неравенством треугольника

$$d<||x_0-y_n||\leq d+\frac{1}{n}\left\{y_n\right\}_{n=1}^{\infty}$$
 ограничена в L
$$\dim L<+\infty\Rightarrow \left\{y_n\right\}_{n=1}^{\infty}$$
 относительно компактна \Rightarrow
$$\exists \left\{n_k\right\}_{k=1}^{\infty} \exists \lim_{k\to\infty}y_{n_k}=y_0, L-\text{замкнуто } \Rightarrow y_0\in L$$

$$d\leq ||x_0-y_{n_k}||\leq d+\frac{1}{n_k}\Rightarrow \text{при } k\to\infty \, ||x_0-y_0||=d$$

Замечание 5.3. $\dim L < +\infty$, элемент наименьшего приближения может быть не единственным.

Пример 5.10 (l_2^{∞}) . $||(x,y)|| = \max\{|x|,|y|\}$. $L = \{(x,y): y = kx, k \neq 0\}$. (·) — элемент наилучшего приближения, единственный Если допустить k = 0, то все точки будут лежать на одном и том же расстоянии от (x_1,y_1) . $\forall x \in [x_1-y_1,x_1+y_1], y = 0 \ \forall (\cdot)$ — элемент наилучшего приближения

Пример 5.11 (l_2^1) . $||(x,y)||_1 = |x| + |y|$, $L = \{(x,y) : y = kx, k \neq \pm 1\}$, тогда \exists единственный элемент наилучшего приближения. Если же $L = \{y = x\}$, все точки отрезка — элементы наилучшего приближения

Пример 5.12 (l_2^2) . $l_2^2 = \left\{ (x,y) : ||(x,y)||_2 = \sqrt{|x|^2 + |y|^2} \right\} \ \forall L \ \exists \ !$ элемент наилучшего приближения, при 1 аналогично

Следствие 5.8 (про многочлены). $C_{\mathbb{R}}[a,b] = \{f: [a,b] \to \mathbb{R}\},$

$$\mathcal{P}_n = \left\{ p(x) = \sum_{k=0}^n a_k x^k, a_k \in \mathbb{R} \right\}$$

$$E_n(f) = \inf_{p \in \mathcal{P}_n} ||f - p||_{\infty}$$

$$\Rightarrow \exists p_0 \text{ T.q. } E_n(f) = ||f - p_0||_{\infty}$$

 p_0 носит торжественное название многочлена наилучшего приближения

ГЛАВА 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ $\Pi POCTPAHCTBAX$

93

Рис. 5.2: Почти перпендикуляр

Доказательство. $\dim \mathcal{P}_n = n+1 \Rightarrow \exists p_0$

Замечание 5.4. $\exists ! \ p_0$, так как $p_0(x) = 0$ только в n точках. В пространстве непрерывных функций единичный шар устроен совершенно кошмарно, хотя норма устроена похожим образом на l^{∞} . В шаре полно отрезков.

5.7. Конечномерность нормированного пространства с компактным единичным шаром

Лемма 5.2 (Ф.Рисс, о почти перпендикуляре). $(X, ||\cdot||), L \subsetneq X, L$ — замкнутое подпространство, $0 < \varepsilon < 1$

$$\Rightarrow \exists x_0, ||x_0|| = 1, \rho(x_0, L) > 1 - \varepsilon$$

На рисунке 5.2 показано, причём тут «почти перпендикуляр». Хочется, чтобы x_0 , был элемент на расстоянии 1, но 1 обеспечить нельзя, а $1-\varepsilon$ — можно.

Доказательство.

$$z \in X \setminus L, d = \rho(z, L) = \inf_{y \in L} ||z - y|| \Rightarrow \exists y_0 \in L : d \le ||z - y_0|| < d(1 + \varepsilon)$$
$$x_0 = \frac{z - y_0}{||z - y_0||}, ||x_0|| = 1$$

оценим норму разности

пусть
$$y \in L$$
 $||x_0 - y|| = \left| \left| \frac{z - y_0}{||z - y_0||} - y \right| \right| = \frac{1}{||z - y_0||} \underbrace{\left| \left| z - \underbrace{y_0 - y \, ||z - y_0||}_{\geq d} \right| \right|}_{\geq d} \ge \frac{d}{d(1 + \varepsilon)} = \frac{1}{1 + \varepsilon}$

$$\forall y \in L \Rightarrow \rho(x_0, L) \ge \frac{1}{1+\varepsilon} > 1 - \varepsilon$$

Замечание 5.5. Если $\exists \ y_0 \in L: ||z-y_0|| = d, \ \text{то} \ x_0 = \frac{z-y_0}{||z-y_0||} \Rightarrow
ho(x_0,L) = 1$

Следствие 5.9 (из замечания). $(X, ||\cdot||), L \subsetneq X, L$ — подпространство, $\dim L < +\infty$

$$\Rightarrow \exists x_0 \in X \setminus L, ||x_0|| = 1, \rho(x_0, L) = 1$$

А это следствие нам понадобится несколько раз.

Следствие 5.10. $(X,||\cdot||),\{L_n\}_{n=1}^{\infty},\ L_n$ — замкнутые подпространства. $L_n\subsetneq L_{n+1},L_1\neq\varnothing\Rightarrow$

$$\exists \{y_n\}_{n=1}^{\infty}, y_n \in L_n, \rho(y_{n+1}, L_n) \ge \frac{1}{2}, ||y_n|| = 1$$

Доказательство. пусть $y_1 \in L_1, ||y_1|| = 1, L_1 \subsetneq L_2 \stackrel{\text{Лемма}}{\Rightarrow} \exists y_2 \in L_2, ||y_2|| = 1, \, \rho(y_2, L_1) \geq \frac{1}{2}$ и так далее по индукции

Теорема 5.13 (Ф.Рисс).
$$(X,||\cdot||),B=\{x:||x||<1\}.$$
 $\overline{B}=\{x:||x||\leq 1\}$

$$\overline{B}$$
 — компакт $\Leftrightarrow \dim X < +\infty$

 \mathcal{A} оказательство. \Leftarrow уже доказали \Rightarrow

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ $\Pi POCTPAHCTBAX$

95

пусть $\dim X = \infty \Rightarrow \exists \{x_n\}_{n=1}^{\infty}$ — линейно независимы

$$L_{n} = \operatorname{Lin} \{x_{j}\}_{j=1}^{n}, \dim L_{n} = n, L_{n} \subsetneq L_{n+1}$$

$$\stackrel{\text{Ca.2}}{\Rightarrow} \exists \{y_{n}\}_{n=1}^{\infty}, ||y_{n}|| = 1, \rho(y_{n}, L_{n-1}) > \frac{1}{2} \Rightarrow$$

Вот так нам удалось установить, что если в пространстве единичный шар — компакт, то пространство конечномерное.

Теорема 5.14 (о продолжении линейного оператора). $(X, ||\cdot||)$ — нормированное, $(Y, ||\cdot||)$ — банахово, $L \subset X, L$ — подпространство в алгебраическом смысле

$$\overline{L} = X, A \in \mathcal{B}(L, Y) \Rightarrow \exists! \ V \in \mathcal{B}(X, Y) : ||V||_{\mathcal{B}(X, Y)} = ||A||_{\mathcal{B}(L, Y)}$$

Доказательство. Сначала мы должны распространить оператор, то есть определить, как он будет действовать на произвольный элемент X. Пусть $x \in X$. Всюду плотность означает в точности следующее:

$$\exists \ \{x_n\}_{n=1}^\infty, x_n \in L, \lim_{n\to\infty}||x-x_n||=0$$

$$\{Ax_n\}_{n=1}^\infty, Ax_n \in Y, \{Ax_n\}_{n=1}^\infty - \text{фундаментальная в } Y, ||Ax_n-Ax_m|| \underset{n,m\to\infty}{\longrightarrow} 0$$

Раз последовательность имеет предел, то она фундаментальная. Значит мы не зря в условии требовали банаховость. Y — банахово, тогда $\exists \lim_{n \to \infty} Ax_n \in Y$

$$Vx := \lim_{n \to \infty} Ax_n$$

надо убедиться, что определение корректно, то есть что предел не зависит от изначально выбранной последовательности:

пусть
$$\{z_n\}_{n=1}^{\infty} \lim_{n \to \infty} z_n = x \Rightarrow \exists \lim_{n \to \infty} Az_n$$

$$z_n \in L \quad ||Ax_n - Az_n|| \le ||A|| \underbrace{||x_n - z_n||}_{\substack{n \to \infty \\ n \to \infty}} \Rightarrow \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Az_n$$

корректность проверена

пусть
$$x \in L$$
, пусть $x_n = x \, \forall \, n \in \mathbb{N} \Rightarrow Vx = \lim_{n \to \infty} Ax_n = Ax \Rightarrow V|_L = A$
пусть $\lim_{n \to \infty} x_n = x \Rightarrow Vx = \lim_{n \to \infty} Ax_n \Rightarrow$

$$\lim_{n \to \infty} ||x_n|| = ||x|| \quad ||Vx|| \le \lim_{n \to \infty} ||A|| \cdot ||x_n|| = ||A|| \cdot ||x||$$

$$\Rightarrow ||V|| \le ||A||$$

$$||V|| = \sup_{\{x \in X: ||x|| = 1\}} ||Vx|| \ge \sup_{\{x \in L: ||x|| = 1\}} ||Vx|| = ||A||$$

$$\Rightarrow ||V|| = ||A||$$

Следующая конструкция, которая ранее упоминалась, это фактор-пространства.

5.8. Факторпространство

Определение 5.14 (класс эквивалентности). X — линейное пространство над \mathbb{C}, Y — подпространство. $X/Y = \{\overline{x}\}_{x \in X}$

$$x \sim z \text{ если } x - z \in Y$$

$$\overline{x} = \{z : z = x + h, h \in Y\}$$

$$\overline{x} + \overline{y} = \overline{x + y}$$

$$\lambda \in \mathbb{C}, \lambda \overline{x} = \overline{(\lambda x)}$$

$$\varphi : X \to X/Y \quad \varphi(x) = \overline{x}$$

 φ — линейное (канонический гомоморфизм).

Если пространство будет не замкнутым, то будут ненулевые элементы с нулевой нормой (те, что лежат в замыкании).

Определение 5.15. $(X, ||\cdot||)$ — нормированное, Y — замкнутое подпространство. $X/Y = \{\overline{x}\}_{x \in X}$,

$$||\overline{x}|| = \inf_{z \in \overline{x}} ||z|| = \inf_{y \in Y} ||x - y|| = \rho(x, Y)$$

Теорема 5.15. $(X, ||\cdot||), Y$ — замкнутое подпространство \Rightarrow

- 1. $||\overline{x}||$ в X/Y удовлетворяет аксиомам нормы
- 2. $\varphi: X \to X/Y, \varphi(x) = \overline{x} \Rightarrow \varphi \in \mathcal{B}(X, X/Y), ||\varphi|| = 1$
- 3. Если X банахово, то X/Y банахово

1.

$$\begin{split} \lambda \in \mathbb{C}, \lambda \neq 0, x \in X \\ \big| \big| \overline{\lambda x} \big| \big| &= \inf_{z \in \overline{x}} ||\lambda z|| = |\lambda| \inf_{z \in \overline{x}} ||z|| = |\lambda| \cdot ||\overline{x}|| \\ \text{пусть } \overline{x}, \overline{u} \in X/Y, z \in \overline{x}, v \in \overline{y} \\ \big| \big| \overline{x} + \overline{u} \big| \big| \leq ||z + v|| \leq ||z|| + ||v|| \quad \forall \, z \in \overline{x}, \forall \, v \in \overline{y} \\ \Rightarrow ||\overline{x} + \overline{u}|| \leq \inf_{z \in \overline{x}} ||z|| + \inf_{v \in \overline{u}} ||v|| = ||\overline{x}|| + ||\overline{u}|| \end{split}$$

теперь проверяем в 0, тут как раз нужна замкнутость

$$||\overline{x}|| = 0 \quad ||\overline{x}|| = \rho(x, Y) = 0 \Rightarrow x \in Y \Rightarrow \overline{x} = Y = \overline{0}$$

2. $||\varphi(x)||=||\overline{x}||=\inf_{z\in\overline{x}}||z||\leq ||x||\Rightarrow \varphi\in\mathcal{B}(X,X/Y),||\varphi||\leq 1.$ По лемме о почти перпендикуляре, пусть $\varepsilon>0$ \exists $x_0,||x_0||=1$

$$\rho(x_0, Y) > 1 - \varepsilon \Rightarrow ||\varphi(x_0)|| = \rho(x_0, Y) > 1 - \varepsilon$$

$$\Rightarrow ||\varphi|| = \sup_{\{x: ||x|| = 1\}} ||\varphi(x)|| > 1 - \varepsilon \,\forall \, \varepsilon > 0 \Rightarrow ||\varphi|| = 1$$

3. Воспользуемся критерием полноты: если сходится ряд из норм, то сходится и сам ряд. X/Y — полное?

пусть
$$\{x_n\}_{n=1}^{\infty} \sum_{n=1}^{\infty} ||\overline{x_n}|| < +\infty \left(\stackrel{?}{\Rightarrow} \sum_{n=1}^{\infty} \overline{x_n}$$
 сходится в $X/Y \right)$ $||\overline{x_n}|| = \inf_{z \in \overline{x_n}} ||z|| \Rightarrow \exists z_n \in \overline{x_n} : ||z_n|| \le 2 ||\overline{x_n}||$

 $\Rightarrow \sum_{n=1}^{\infty} ||z_n|| < +\infty, X$ — банахово, и по критерию полноты \Rightarrow

$$\exists S = \sum_{n=1}^{\infty} z_n, S \in X$$

$\Gamma \Pi ABA$ 5. ЛИНЕЙНЫЕ ОПЕРАТОРЫ В ЛИНЕЙНЫХ ПРОСТРАНСТВАХ

98

рассмотрим частичные суммы

$$\begin{cases} S_n = \sum_{k=1}^n z_k, \lim_{n \to \infty} S_n = S \\ \varphi(S_n) = \sum_{k=1}^n \varphi(z_k) = \sum_{k=1}^n \overline{x_k} \end{cases} \varphi \text{ непрерывна} \Rightarrow \\ \lim_{n \to \infty} \varphi(S_n) = \varphi(S) \in X/Y \\ \Rightarrow \exists \lim_{n \to \infty} \sum_{k=1}^n \overline{x_k} = \sum_{k=1}^\infty \overline{x_k} \Rightarrow X/Y - \text{банахово} \end{cases}$$

Часть III Гильбертовы пространства

Глава 6

Гильбертовы пространства

6.1. Введение

Кто-то говорил, что матобесам в курсе ФА надо читать только гильбертовы пространства. Но неизвестно, как жить без трех китов функционального анализа, которые нас ждут дальше :(. А вы бы хотели 32 лекции про гильбертовы пространства?

Определение 6.1. H — линейное пространство над \mathbb{C} . Скалярное произведение $H \times H \to \mathbb{C}, \ x,y \in H, (x,y)$ — скалярное произведение удовлетворяет следующим аксиомам

- 1. $(\lambda x, y) = \lambda(x, y), \lambda \in \mathbb{C}, x, y \in H$
- 2. (x, y + z) = (x, y) + (x, z)
- 3. $(y,x) = \overline{(x,y)}$ (комплексное сопряжение)
- 4. $(x, x) > 0, (x, x) = 0 \Leftrightarrow x = 0$

если H над \mathbb{R} , то 3 выглядит как (y, x) = (x, y)

Снабдим H нормой: $||x||:=\sqrt{(x,x)}$ — норма, порожденная скалярным произведением. (H,||x||) называется предгильбертовым пространством.

Если $(H, ||\cdot||)$ полное, то H — гильбертово.

Рис. 6.1: Тождество параллелограмма

- 2. $||x|| = \sqrt{(x,x)}$ удовлетворяет аксиомам нормы
- 3. $||x+y||^2+||x-y||^2=2(||x||^2+||y||^2)$ (тождество параллеллограмма)
- 4. непрерывность (x,y), то есть $\lim_{n\to\infty} x_n = x, \lim_{n\to\infty} y_n = y \Rightarrow \lim_{n\to\infty} (x_n,y_n) = (x,y)$

2.

$$||x|| = 0 \Leftrightarrow (x, x) = 0 \Leftrightarrow x = 0$$
$$||\lambda x||^2 = (\lambda x, \lambda x) = \lambda \cdot \overline{\lambda}(x, x) = |\lambda|^2 ||x||^2$$

$$||x+y||^2 = (x+y, x+y) = ||x||^2 + (x,y) + (y,x) + ||y||^2 =$$

$$= ||x||^2 + 2\operatorname{Re}(x,y) + ||y||^2 \le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 =$$

$$= (||x|| + ||y||)^2$$

Кто не верит в тождество параллелограмма, может проверить сам
4.

$$\begin{aligned} |(x,y) - (x_n, y_n)| &\leq |(x,y) - (x,y_n)| + |(x,y_n) - (x_n, y_n)| = \\ &= |(x,y-y_n)| + |(x-x_n, y_n)| \overset{\text{K-B}}{\leq} \\ &\leq ||x|| \cdot \underbrace{||y-y_n||}_{\to 0} + \underbrace{||x-x_n||}_{\to 0} \underbrace{||y_n||}_{n \to \infty} \underset{n \to \infty}{\longrightarrow} 0 \end{aligned}$$

$$\lim_{n \to \infty} ||y_n|| = ||y|| \Rightarrow \exists M : ||y_n|| \le M$$

Пример 6.1.

$$l_n^2=\left\{x:x=\left\{x_1,\dots,x_n
ight\},x_j\in\mathbb{C}
ight\},\left|\left|x
ight|
ight|_2=\sqrt{\sum_{k=1}^n\left|x_j
ight|^2}$$
 $(x,y)=\sum_{j=1}^nx_j\overline{y_j},l_n^2$ — гильбертово

 $y=(y_1,\ldots,y_n),y_j\in\mathbb{C},\overline{y_j}$ — комплексное сопряжение

Пример 6.2
$$(l^2)$$
. $l^2=\left\{x:x=\{x_j\}_{j=1}^\infty,||x||=\sqrt{\sum_{j=1}^\infty|x_j|^2}<+\infty\right\}.$ $(x,y)=\sum_{j=1}^\infty x_j\overline{y_j}.\ l^2$ — гильбертово

Главый пример

Пример 6.3. (X, U, μ) — пространство с мерой. $L^2(X, \mu)$,

$$||f|| = \left(\int_X |f(x)|^2 d\mu\right)^{\frac{1}{2}} < +\infty$$

 $(f,g)=\int_X f(x)\cdot \overline{g(x)}d\mu, L^2(X,\mu)$ — полное, \Rightarrow гильбертово

Пример 6.4 (пространство Харди). H^2 — пространство Харди

$$H^{2} = \left\{ f(z) = \sum_{n=0}^{+\infty} a_{n} z^{n}, ||f||^{2} = \sum_{n=0}^{+\infty} |a_{n}|^{2} < +\infty \right\}$$

 ${\cal H}^2$ линейно изометрически изоморфно $l^2.$

$$(f,g)=\sum_{n=0}^{\infty}a_n\overline{b_n},g(z)=\sum_{n=0}^{+\infty}b_nz^n\Rightarrow H^2$$
 гильбертово

Отметим, где f будет аналитической

$$\sum_{n=0}^{+\infty} |a_n|^2 < +\infty \Rightarrow \lim_{n \to \infty} |a_n| = 0 \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \le 1$$
$$\Rightarrow R \ge 1$$

где R — радиус круга сходимости ряда $\sum_{n=0}^{+\infty} a_n z^n$

$$R=rac{1}{\varlimsup\limits_{n o\infty}\sqrt[n]{|a_n|}},f\in H^2\Rightarrow f$$
 аналитическая в $\left\{z:|z|<1\right\}$

Теперь примеры предгильбертовых пространств

Пример 6.5. F — финитные последовательности.

 $(x,y) \in F, (x,y) = \sum_{j=1}^{\infty} x_j \overline{y_j}$ (конечная сумма $F \subset l^2, ||x|| = \sqrt{\sum_{j=1}^{N} |x_j|^2}, x_{N+k} = 0$ $k \in \mathbb{N}$). F — предгильбертово (не полное)

Пример 6.6. $C[a,b] = \{f : [a,b] \to \mathbb{C}\}$

$$||f|| = \left(\int_{a}^{b} |f(x)|^{2} dx\right)^{\frac{1}{2}}, (f,g) = \int_{a}^{b} f(x)\overline{g(x)} dx$$

не полное ⇒ предгильбертово

Пример 6.7. $\mathcal{P} = \{p(x) = \sum_{k=0}^n a_k x^k, a_k \in \mathbb{C}, n \geq 0\}.$ $q(x) = \sum_{k=0}^n b_k x^k, (p,q) = \sum_{k=0}^n a_k \overline{b_k}$ предгильбертово. \mathcal{P} — линейно изометрически изоморфно $F: p(x) \to (a_0, a_1, \dots, a_n) \in F$. Пополнение \mathcal{P} по этой норме до гильбертова пространства есть l^2 .

Пример 6.8. $\mathcal{P}, \mathcal{P} \subset C[a,b]. \ (p,q) = \int_a^b p(x) \overline{q(x)} dx$ — предгильбертово, пополнением \mathcal{P} будет $L^2(a,b)$ по мере Лебега.

Определение 6.2. H — гильбертово,

- 1. $x, y \in H, (x, y) = 0$, то $x \perp y$ (x ортогонален y)
- 2. $M \subset H, M$ подмножество. Ортогональным дополнением к нему будем называть

$$M^{\perp} = \{ y \in H : (y, x) = 0 \ \forall x \in M \}$$

Свойство 6.2. $M \subset H$ — гильбертово $\Rightarrow M^{\perp}$ — замкнутое подпространство

Доказательство.

$$y, z \in M^{\perp}, \lambda \in \mathbb{C}, \text{ пусть } x \in M$$
$$(\lambda y + z, x) = \lambda \underbrace{(y, x)}_{=0} + \underbrace{(z, x)}_{=0} \Rightarrow \lambda y + z \in M^{\perp}$$
пусть $\{y_n\}_{n=1}^{\infty}, y_n \in M^{\perp}, \lim_{n \to \infty} y_n = y_0, \text{ пусть } x \in M$
$$\lim_{n \to \infty} \underbrace{(y_n, x)}_{=0} = (y_0, x) \Rightarrow (y_0, x) = 0 \Rightarrow y_0 \in M^{\perp}$$

В гильбертовом пространстве всегда существует элемент наилучшего приближения, он ещё и единственный!

Теорема 6.1 (о существовании элемента наилучшего приближения в гильбертовом пространстве). H — гильбертово, $M \subset H, M$ — замкнутое подпространство, $\forall x \in H \Rightarrow \exists ! z \in M : ||x-z|| = \min_{h \in M} ||x-h|| = \rho(x,M)$

Для произвольного метрического пространства мы доказывали, что если есть конечномерное подпространство, то элемент существует. Доказательство начнём с простой леммы.

Лемма 6.1. H — гильбертово, замкнутое подпространство $M \subset H.$ $x \in H \setminus M, \ u,v \in M, \ d = \inf_{h \in M} ||x-h||$

$$\Rightarrow ||u - v||^2 \le 2(||u - x||^2 + ||v - x||^2) - 4d^2$$

Доказательство. Применим тождество параллелограмма к (u-x), (v-x)

$$||u - v||^2 + ||u + v - 2x||^2 = 2(||u - x||^2 + ||v - x||^2)$$

тут 3 слагаемых из 4 участвуют в формулировке леммы, нужно оценить только второе слагаемое.

$$||2x - u - v|| = 2\left|\left|x - \frac{u + v}{2}\right|\right| \ge 2d$$

$$\frac{u - v}{2} \in M \Rightarrow ||u - v||^2 \le 2(||u - x||^2 + ||v - x||^2) - 4d^2$$

Доказательство. Обозначим $d = \rho(x, M)$. Мы ещё не знаем, достигается ли расстояние, но знаем, что $\exists \{y_n\}_{n=1}^{\infty}, y_n \in M. \lim_{n \to \infty} ||x - y_n|| = d.$ План такой: мы докажем, что последовательность фундаментальная, значит, предел лежит в M и всё доказано.

воспользуемся леммой и устремим в получившемся неравенстве n,m к ∞

$$||y_n - y_m||^2 \stackrel{\text{_{ЛЕММА}}}{\leq} 2(\underbrace{||x - y_n||^2}_{d^2} + \underbrace{||x - y_m||^2}_{d^2}) - 4d^2 \underset{n,m \to \infty}{\longrightarrow} 0$$
 $\Rightarrow \{y_n\}_{n=1}^{\infty} - \text{фундаментальная}, H - \text{гильбертово} \Rightarrow$
 $\exists \lim_{n \to \infty} y_n = z, z \in M, \text{ т.к. } M \text{ замкнуто } \Rightarrow$
 $d = \lim_{n \to \infty} ||x - y_n|| = ||x - z||$

теперь проверим единственность

пусть
$$||x - z|| = d, ||x - u|| = d$$
 $z, u \in M$

воспользуемся ещё раз леммой

$$\Rightarrow ||z - u||^2 \le 2(\underbrace{||x - z||^2}_{=d^2} + \underbrace{||x - u||^2}_{=d^2}) - 4d^2 = 0 \Rightarrow z = u$$

Теорема 6.2 (о проекции на подпространство). H — гильбертово, $M \subset H$, M — замкнутое подпространство

$$\forall x \in H \exists !z, w : x = z + w, z \in M, w \in M^{\perp}$$

Этот элемент z как раз будет ближайшим элементом, который появился в предыдущей теореме.

Доказательство.

$$d := \rho(x, M) \quad \exists z \in M \quad ||x - z|| = d \quad w := x - z$$

проверим, что $w\perp M$; будем пользоваться тем, что для любой точки расстояние до M больше или равно d

пусть
$$u \in M, u \neq 0 \ \forall t \in \mathbb{R} \ z + tu \in M$$

$$d^2 \leq ||x - (z + tu)||^2 = ||w - tu||^2 = (w - tu, w - tu) = \underbrace{||w||^2}_{=d^2} - t(u, w) - t(w, u) + t^2 ||u||^2 \Rightarrow$$

так как 2 и 3 слагамое комплексно сопряжённые

$$t \cdot 2\operatorname{Re}(u, w) \le t^2 ||u^2||$$

неравенство верно для любого вещественного t

пусть
$$t>0\Rightarrow 2\operatorname{Re}(u,w)\leq t\left|\left|u\right|\right|^2\ \forall\ t>0\Rightarrow \operatorname{Re}(u,w)\leq 0$$
 пусть $t<0\Rightarrow 2\operatorname{Re}(u,w)\geq t\left|\left|u\right|\right|^2\ \forall\ t<0\Rightarrow \operatorname{Re}(u,w)\geq 0$ $\Rightarrow \operatorname{Re}(u,w)=0$ аналогично $\forall\ t\in\mathbb{R}\ d^2\leq \left|\left|x-(z+itu)\right|\right|^2\Rightarrow \operatorname{Im}(u,w)=0$ $\Rightarrow (u,w)=0$, то есть $w\perp M\Rightarrow w\in M^\perp$

осталось проверить единственность

пусть
$$x = z + w, x = z_1 + w_1$$
 $z, z_1 \in M, w, w_1 \in M^{\perp}$

$$\Rightarrow u = \underbrace{z - z_1}_{\in M} = \underbrace{w_1 - w}_{\in M^{\perp}} \Rightarrow u \perp u \Rightarrow (u, u) = 0$$

$$\Rightarrow u = 0 \Rightarrow z = z_1, w = w_1$$

Определение 6.3. H — гильбертово, X,Y — замкнутые подпространства. $H=X\oplus Y.$ H — ортогональная сумма подпространств X и Y, если

- 1. $\forall h \in H \exists x \in X, y \in Y : h = x + y$
- 2. $\forall x \in X, y \in Y (x, y) = 0$

Замечание 6.1.

X,Y — подпространства в $H,X\perp Y,$ то есть $\forall\,x\in X,\forall\,y\in Y\,(x,y)=0\Rightarrow X\cap Y=\{0\}.$

Доказательство.
$$u \in X \cap Y \Rightarrow u \perp u \Rightarrow u = 0$$

Замечание 6.2. Если $H = X \oplus Y$, то $\forall h \in H \ \exists \ ! x \in X, \ \exists \ ! y \in Y \ \text{т.ч.}$ h = x + y

Доказательство. Пусть
$$h = x + y, h = x_1 + y_1 x, x_1 \in X, \quad y, y_1 \in Y \Rightarrow \underbrace{x - x_1}_{\in X} = \underbrace{y_1 - y}_{\in Y} \stackrel{\text{Зам.1}}{\Rightarrow} x = x_1, y = y_1$$

Следствие 6.1. 1. M — замкнутое подпространство \Rightarrow $H = M \oplus M^{\perp}$

- 2. M замкнутое подпространство $\Rightarrow (M^{\perp})^{\perp} = M$
- 3. Если $H=X\oplus Y,\,X,Y$ замкнутые $\Rightarrow Y=X^{\perp}$

Определение 6.4 (оператор ортогонального проектирования). H — гильбертово, M — замкнутое подпространство. Знаем, что $\forall h \in H \; \exists \; ! z \in M, w \in M^{\perp} : h = z + w$

$$P_M(h) := z$$

 P_{M} — оператор ортогонального проектирования на M.

Хоть в определении об этом нигде не сказано, но хорошо помнить, что $||h-z||=\min_{y\in M}||h-y||.$ На экзамене часто пристают с вопросом, откуда же взять этот z. $w=P_{M^\perp}(h).$

Теорема 6.3 (критерий принадлежности оператора множеству ортогональных проекторов). Теорема будет состоять из 2 частей. Первая полегче, в ней опишем простые свойства ортогонального проектора. Вторая посложнее, и в ней будет собственно критерий.

- 1. M замкнутое подпространство, $P := P_M \Rightarrow$
 - a) $P \in \mathcal{B}(H)$
 - b) $P^2 = P$
 - с) $(Px,y) = (x,Py), \ \forall x,y \in H$ (по секрету, это самосопряжённость)
- 2. пусть оператор P удовлетворяет свойствам $1–3 \Rightarrow M := P(H), M$ замкнутое, $P = P_M$

1 часть. 1. Сначала проверим, что $P_M \in \text{Lin}(H, M)$

$$h \in H \Rightarrow \exists ! z \in M, w \in M^{\perp} \quad h = z + w$$

утверждается, что P(h) = z

$$\alpha \in \mathbb{C} \Rightarrow \alpha h = \alpha z + \alpha w \quad \alpha z \in M, \alpha w \in M^{\perp}$$

по единственности разложения $\alpha z \Rightarrow$

$$P(\alpha h) = \alpha z$$
 пусть $h_1 \in H \Rightarrow h_1 = z_1 + w_1$ $z_1 \in M, w_1 \in M^{\perp}$ $P(h_1) = z_1 \Rightarrow h + h_1 = \underbrace{(z + z_1) + (w + w_1)}_{\text{разложение единственно}} z + z_1 \in M, w + w_1 \in M^{\perp}$ $\Rightarrow P(h + h_1) = z + z_1 = P(h) + P(h_1)$

Теперь проверим непрерывность P

$$h=z+w,\;z\perp w\Rightarrow (h,h)=(z,z)+(w,w)$$

$$||h||^2=||z||^2+||w||^2$$
 $z=P(h)\Rightarrow ||P(h)||^2\leq ||h||^2\Rightarrow P\in \mathcal{B}(H)$
$$||P||\leq 1$$
 если $M\neq \{0\},\;\exists\;x\in M,x\neq 0\Rightarrow Px=x\Rightarrow ||P||\geq \frac{||Px||}{||x||}=1$ $\Rightarrow ||P||=1$

2.
$$x\in M\Rightarrow Px=x,$$
 пусть $x\notin M, y=Px\Rightarrow y\in M\Rightarrow \underbrace{Py}_{=y=Px}=P(Px)\Rightarrow P^2x=Px$

3.

$$x, y \in H, P = P_M, Q = P_{M^{\perp}}$$

 $x = Px + Qx, y = Py + Qy$
 $(Px, y) = (Px, Py + Qy) = (Px, Py)$
 $(x, Py) = (Px + Qx, Py) = (Px, Py)$

2 часть. $P \in \mathcal{B}(H), M := P(H), M$ — подпространство в алгебраическом смысле. План такой: проверим, что P совпадает с ортогональным проектором на M и что он отправляет ортогональное дополнение в 0. Проверим, что если $x \in M$, то Px = x.

пусть
$$x\in M\Rightarrow \exists y\in H: Py=x\Rightarrow P(Py)=Px$$
 по свойству ортогонального оператора $P^2=P\Rightarrow P(Py)=Py=x$ $\Rightarrow x=Px$

Проверим теперь замкнутость M

пусть
$$\{x_n\}_{n=1}^{\infty}$$
, $x_n \in M$, $\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} Px_n = Px_0$
 $Px_n = x_n \Rightarrow \lim_{n \to \infty} x_n = Px_0 \Rightarrow x_0 = Px_0 \Rightarrow x_0 \in P(H) = M$

осталось убедиться, что оператор P отправляет в 0 ортогональное дополнение

пусть
$$y\in M^\perp$$

$$||Py||^2=(Py,Py)\stackrel{\text{самосопряжённость}}{=}(y,P(Py))=(y,Py)$$
т.к. $y\in M^\perp,Py\in M=0$
$$\Rightarrow Py=0$$

Мы знаем, что оператор совпадает на M, а ортогональное дополнение отправляет в 0

$$h \in H \Rightarrow h = z + w, z \in M, w \in M^{\perp}$$

 $\Rightarrow P(z + w) = z$
 $P_M(z + w) = z$
 $\Rightarrow P = P_M$

Следствие 6.2 (ортогональный оператор на конечномерное подпространство). H — гильбертово, подпространство $M \subset H, \dim M = n, n \in \mathbb{N}$

$$\{e_j\}_{j=1}^n$$
 — ортонормированный базис
$$(e_j,e_k) = \begin{cases} 0 & j \neq k \\ 1 & j=k \end{cases}, x \in H, P_M(x) = \sum_{j=1}^n (x,e_j)e_j$$

Доказательство. $s_n = \sum_{j=1}^n (x, e_j) e_j, \ s_n \in M, w := x - s_n.$ Проверим, что $w \in M^{\perp}$. Для этого проверим, что он ортогонален всем e_i

$$(s_n, e_k) = \left(\sum_{j=1}^n (x, e_j)e_j, e_k\right) = (x, e_k)$$

$$\Rightarrow (x - s_n, e_k) = 0 \Rightarrow (w, e_k) = 0 \,\forall \, k, 1 \le k \le n$$

$$\Rightarrow w \perp M, \Rightarrow w \in M^{\perp} \Rightarrow P_M(x - s_n) = 0 \Rightarrow P_M(x) = P(s_n) = s_n$$

Следствие 6.3 (критерий полноты системы элементов в гильбертовом пространстве). H — гильбертово, $\{x_{\alpha}\}_{{\alpha}\in A}, x_{\alpha}\in H$ (A — множество индексов)

$$\{x_{\alpha}\}_{\alpha\in A}$$
 — полное $\Leftrightarrow (y\perp x_{\alpha}\ \forall\ \alpha\in A\Rightarrow y=0)$

Доказательство.

$$\left\{x_{\alpha}\right\}_{\alpha\in A}$$
 — полное $\Rightarrow\overline{\mathcal{L}\left\{x_{\alpha}\right\}_{\alpha\in A}}=H$
$$L=\overline{\mathcal{L}\left\{x_{\alpha}\right\}}$$
 $L=H\Leftrightarrow L^{\perp}=\left\{0\right\}\Leftrightarrow\left(y\perp x_{\alpha}\ \forall\ \alpha\in A\Rightarrow y=0\right)$

Несмотря на то, что доказательство тривиальное, этот критерий полноты очень полезен.

Упражнения, которые когда-то давали в качестве задачи на 5 на экзамене

Утверждение 6.1. $l^2, l=\{x=\{x_n\}_{n=1}^\infty\in l^2: \sum_{n=1}^\infty x_n=0\}.$ Нужно доказать, что L — плотно в l^2

Утверждение 6.2. $z\in\mathbb{C}, |z|<1, x_z=\{1,z,z^2,\dots,z^n,\dots\}\in l^2.$ $\{z_n\}_{n=1}^\infty, |z_n|<1, \lim_{n\to\infty}z_n$ Нужно доказать, что $\{x_{z_n}\}_{n=1}^\infty$ — плотное семейство в l^2

Утверждение 6.3. Пусть $\lim_{n\to\infty}z_n=a, |a|<1.$ Нужно доказать, что $\{x_{z_n}\}_{n=1}^\infty$ — плотное семейство в l^2

То, что |a| < 1 — очень важно. При равенстве утверждения неверны.

Определение 6.5 (коэффициент Фурье). H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — ортонормированная система

$$(e_j,e_k)=0$$
 при $j \neq k$ $(e_k,e_k)=1, ||e_k||=1$ $M_n=\{\alpha e_n | \alpha \in \mathbb{C}\}$, $\dim M_n=1, P_{M_n}$ $x \in H, P_{M_n}(x)=(x,e_n)e_n$ (x,e_n) — коэффициент Фурье $x \sim \sum_{n=1}^{\infty} (x,e_n)e_n$ ряд Фурье по системе $\{e_n\}_{n=1}^{\infty}$

Определение 6.6.

$$\{e_n\}_{n=1}^{\infty}$$
 — ортогональная система (ОС)
$$(e_j,e_k)=0, j\neq k, e_n\neq 0$$
 $M_n=\{\alpha e_n:\alpha\in\mathbb{C}\}$
$$P_{M_n}(x)=\left(x,\frac{e_n}{||e_n||}\right), \frac{e_n}{||e_n||}=\frac{(x,e_n)}{||e_n||^2}e_n$$
 коэффициент Фурье по системе $\{e_n\}$
$$x\sim\sum_{n=1}^{\infty}\frac{(x,e_n)}{||e_n||^2}e_n$$

Когда мы пишем $\{e_n\}_{n=1}^{\infty}$, мы подразумеваем бесконечномерность пространства. Если же вы возьмёте книжку Колмогорова, то гильбертово пространство в ней по определению бесконечномерное. Однако И.В. решил убрать это условие в своём курсе, ведь есть теория конечномерных банаховых пространств, где переходят к пределу и получают утверждения про бесконечномерные пространства. В общем: если вам попадётся кровожадный помощник на экзамене и вы скажете, что гильбертово пространство бесконечномерное, он спросит: «С какой стати?». Если не скажете — то вы услышите, что даже не знаете определение, и вы в любом случае получите 2.

Следствие 6.4 (неравенство Бесселя). H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — О.Н.С, $x \in H \Rightarrow$

$$\sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2$$

Доказательство.

$$h = \sum_{j=1}^{n} \alpha_{j} e_{j}, \alpha_{j} \in \mathbb{C} \Rightarrow$$

$$||h||^{2} = \left(\sum_{j=1}^{n} \alpha_{j} e_{j}, \sum_{k=1}^{n} \alpha_{k} e_{k}\right) = \sum_{k=1}^{n} |\alpha_{k}|^{2}$$

$$L_{n} = \mathcal{L}\left\{e_{j}\right\}_{j=1}^{n}, P_{L_{n}}(x) = \sum_{j=1}^{n} (x, e_{j}) e_{j}$$

$$||P_{L_{n}}|| \leq 1 \Rightarrow ||P_{L_{n}}(x)||^{2} \leq ||x||^{2} \Rightarrow$$

$$\sum_{j=1}^{n} |(x, e_{j})|^{2} \leq ||x||^{2} \forall n \in \mathbb{N} \Rightarrow$$

$$\sum_{j=1}^{\infty} |(x, e_{j})|^{2} \leq ||x||^{2}$$

Сейчас выясним, когда неравенство превращается в равенство, то есть когда можно узнать норму, вычислив эту сумму.

Теорема 6.4 (о разложении элемента гильбертова пространства в ряд Фурье). H — гильбертово, $x \in H, \{e_n\}_{n=1}^{\infty}$ — О.Н.С., тогда следующие условия равносильны

1.
$$x \in \overline{\mathcal{L}\left\{e_n\right\}_{n=1}^{\infty}}$$

$$2. \ x = \sum_{n=1}^{\infty} (x, e_n) e_n$$

3.
$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2$$
 (равенство Парсеваля)

Доказательство. $1 \Rightarrow 2$

По виду первое утверждение куда более слабое, чем второе. В первом

можно приблизить элемент сколько угодно хорошо какими-то элементами. Во втором же есть сходимость к какому-то ряду.

$$x \in H, x \in \overline{\mathcal{L}\left\{e_{n}\right\}_{n=1}^{\infty}}, \text{ пусть } \varepsilon > 0$$

$$\exists y = \sum_{k=1}^{n} \alpha_{k} e_{k}, ||x - y|| < \varepsilon$$

$$L_{n} = \mathcal{L}\left\{e_{k}\right\}_{k=1}^{n} \Rightarrow \rho(x, L_{n}) < \varepsilon \quad P_{L_{n}}(x) = \underbrace{\sum_{j=1}^{n} (x, e_{j}) e_{j}}_{:=S_{n}}$$

$$\Rightarrow ||x - S_{n}|| \leq ||x - y|| < \varepsilon \quad L_{n} \subset L_{n+1} \Rightarrow$$

$$||x - S_{n+1}|| \leq ||x - S_{n}|| < \varepsilon \Rightarrow$$

$$\forall m \geq n \ ||x - S_{m}|| < \varepsilon \Rightarrow \lim_{n \to \infty} S_{n} = x$$

 $2\Rightarrow 1$ очевидно: $x=\lim_{n\to\infty}S_n\Rightarrow x\in\overline{\mathcal{L}\left\{e_j
ight\}_{j=1}^\infty}$ $2\Rightarrow 3$

 $S_n = \sum_{k=1}^n (x, e_k) e_k$, $x = \lim_{n \to \infty} S_n$, и по непрерывности скалярного произведения $\Rightarrow (x, x) = \lim_{n \to \infty} (S_n, S_n) \Leftrightarrow$

$$||x||^2 = \lim_{n \to \infty} \sum_{k=1}^n |(x, e_k)|^2 = \sum_{k=1}^\infty |(x, e_k)|^2$$

 $3 \Rightarrow 2$

$$\sigma_{n} = \sum_{k=1}^{n} |(x, e_{k})|^{2}, \lim_{n \to \infty} \sigma_{n} = ||x||^{2}$$

$$w_{n} := x - S_{n}, w_{n} \perp S_{n} \Rightarrow ||x||^{2} = \underbrace{||S_{n}||^{2}}_{\substack{n \to \infty \\ n \to \infty}} + ||w_{n}||^{2}$$

$$||S_{n}||^{2} = \sigma_{n} \Rightarrow \lim_{n \to \infty} ||w_{n}||^{2} = 0 \Rightarrow \lim_{n \to \infty} ||x - S_{n}|| = 0$$

Следствие 6.5. H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — полная О.Н.С \Rightarrow

$$\forall x \in H \ x = \sum_{k=1}^{\infty} (x, e_k) e_k, ||x||^2 = \sum_{k=1}^{\infty} |(x, e_k)|^2$$

Доказывать нечего, принадлежность линейной оболочке означает полноту.

Определение 6.7. $(X,||\cdot||)$ — нормированное пространство, $\{e_n\}_{n=1}^{\infty}$ — базис (Шаудера), если

$$\forall x \in X \exists ! \{\alpha_n\}_{n=1}^{\infty}, \ \alpha_n \in \mathbb{C} : x = \sum_{n=1}^{\infty} \alpha_n e_n$$

Пример 6.9. $l^p, 1 \le p < +\infty, e_n = (0, 0, \dots, 0, \underbrace{1}_n, 0, \dots)$

$$x \in l^p, x = \{x_n\}_{n=1}^{\infty} = \sum_{n=1}^{\infty} x_n e_n, ||x - S_n||_{l^p} \underset{n \to \infty}{\longrightarrow} 0$$
$$c_0, x \in c_0, \lim_{n \to \infty} x_n = 0 \quad x = \sum_{n=1}^{\infty} x_n e_n \quad ||x - S_n||_{\infty} \underset{n \to \infty}{\longrightarrow} 0$$

Упражнение: $c = \left\{ x = \{x_n\}_{n=1}^{\infty}, \; \exists \lim_{n \to \infty} x_n = x_0 \right\} \subset l^{\infty}$. Что тут будет базисом?

Замечание 6.3. Если в $(X, ||\cdot||)$ есть базис, то X — сепарабельно.

Замечание 6.4 (Проблема Банаха, проблема базиса).

$$X$$
 — нормированное сепарабельное $\stackrel{?}{\Rightarrow}$ \exists базис

Собирались товарищи во Львове в кафе и выводили эти проблемы. Обычно математики любят сидеть в тишине, нот вот Банах любил сидеть в кафе. Вероятно, они там не только чаи гоняли. Пер Энфло в 1973 году дал ответ на этот вопрос: нет. Он предоставил множество контр-примеров. Да и вообще он знаменит своими контр-примерами. Сейчас в Америке где-то работает.

Следствие 6.6. H — гильбертово, $\{e_n\}_{n=1}^{\infty}$ — полная О.Н.С. $\Rightarrow \{e_n\}_{n=1}^{\infty}$ — базис в H

Доказательство.

$$x \in H \Rightarrow x = \sum_{n=1}^{\infty} (x, e_n)e_n$$

проверяем единственность: пусть $x=\sum_{n=1}^{\infty}\alpha_ne_n, \alpha_n\in\mathbb{C}$

$$\sigma_n = \sum_{k=1}^n \alpha_k e_k \lim_{n \to \infty} \sigma_n = x \Rightarrow \lim_{n \to \infty} (\sigma_n, e_k) = (x, e_k)$$

пусть
$$n \ge k \Rightarrow (\sigma_n, e_k) = \alpha_k \Rightarrow \alpha_k = (x, e_k)$$

Теорема 6.5 (о существовании О.Н.Б. в сепарабельном гильбертовом пространстве). H — сепарабельное гильбертово пространство \Rightarrow

$$\exists \{e_n\}_{n=1}^{\infty} - \text{O.H.B.}$$

По секрету, если убрать сепарабельность, то базис будет несчётный. Какова размерность, такой и базис. Обычно, когда говорят о гильбертовом пространстве, подразумевают гильбертово сепарабельное.

Доказательство. Будем действовать в 2 этапа. Сепарабельность означает, что есть счётное всюду плотное множество, возьмём его: $\{x_n\}_{n=1}^{\infty}$. 1 этап: по индукции выберем из него линейно независимую систему так, чтобы замыкание её линейной оболочки совпадало с замыканием линейной оболочки x_n . Она будет полной и линейно-независимой. 2 этап: применим к ней ортогонализацию Грама-Шмидта (а он ученик Гильберта, кстати).

$$x_1=x_2=\ldots=x_{n_1-1}=0, x_{n_1}
eq 0 \quad z_1=x_{n_1}$$
 $L_1=\mathcal{L}(z_1)=\{\alpha z_1|\alpha\in\mathbb{C}\}$ $x_{n_1+1},\ldots,x_{n_2-1}\in L_1\;x_{n_2}\notin L_1,z_2=x_{n_2},L_2=\mathcal{L}(z_1,z_2)$ пусть выбрали z_1,\ldots,z_m $z_m=x_{n_m},x_{n_m+1},\ldots,x_{n_{m+1}-1}\in L_m,x_{n_{m+1}}\notin L_m$ $z_{m+1}=x_{n_{m+1}}$

как мы их выбираем?

$$\{z_j\}_{j=1}^{\infty}$$
 — линейно независимы $\mathcal{L}(z_j)_{j=1}^m = \mathcal{L}\left\{x_k\right\}_{k=1}^{n_m} \, \forall \, m \Rightarrow \mathcal{L}\left\{z_j\right\}_{j=1}^{\infty} = \mathcal{L}\left\{x_n\right\}_{n=1}^{\infty}$ $\Rightarrow H = \overline{\mathcal{L}\left\{z_n\right\}_{n=1}^{\infty}} \Rightarrow \left\{z_n\right\}_{n=1}^{\infty}$ — полная

Процесс ортогонализации Грама-Шмидта:

$$e_1=rac{z_1}{||z_1||}, ext{ пусть } e_1,\dots,e_{n-1}$$
 — выбрали $\mathcal{L}\left\{e_j
ight\}_{j=1}^{n-1}=\mathcal{L}\left\{z_j
ight\}_{j=1}^{n-1}$ $z_n-P_{L_{n-1}}(z_n)$ $z_n-\sum_{j=1}^{n-1}(z_n,e_j)e_j$

$$L_{n} = \mathcal{L}\left\{z_{j}\right\}_{j=1}^{n}, L_{n} \subsetneq L_{n+1} \quad e_{n} = \frac{z_{n} - P_{L_{n-1}}(z_{n})}{\left|\left|z_{n} - P_{L_{n-1}}(z_{n})\right|\right|} = \frac{z_{n} - \sum_{j=1}^{n=1}(z_{n}, e_{j})e_{j}}{\left|\left|z_{n} - P_{L_{n-1}}(z_{n})\right|\right|} \Rightarrow$$

 e_n так выбрали такими, потому что они всегда будут лежать в ортогональном дополнении L_{n-1} по теореме о проекции на подпространство

$$\left\{e_n\right\}_{n=1}^{\infty}$$
 — полная О.Н.С. \Rightarrow $\left\{e_n\right\}_{n=1}^{\infty}$ — базис (Шаудера)

Теперь докажем, что все сепарабельные линейные пространства похожи друг на друга как две капли воды: не просто линейно изоморфны, а линейно изометрически изоморфно. Для конечномерных тоже верно, нужно только рассматривать пространства одинаковой размерности.

Теорема. Все сепарабельные бесконечномерные гильбертовы пространства линейно изометрически изоморфны друг другу

Доказательство. H — гильбертово сепарабельное, $\dim H = \infty$. Мы обсуждали, что линейный изоморфизм — отношение эквивалентности, отношение изометричности — тоже. Поэтому линейный изометрический изоморфизм есть отношение эквивалентности. Поэтому вместо того, чтобы брать H_1, H_2 , возьмём H и l^2 и покажем, что они линейно изометрически изоморфны.

пусть
$$\{f_n\}_{n=1}^{\infty}$$
 — О.Н.Б. в H $\varphi: H \to l^2 \quad x \in H \quad x \mapsto \{(x, f_n)\}_{n=1}^{\infty}$ $||x||^2 = \sum_{n=1}^{\infty} |(x, f_n)|^2 \Rightarrow ||x||_H = ||\varphi(x)||_{l^2}$ $\varphi \in \operatorname{Lin}(H, l^2)$ очевидно $\Rightarrow \varphi \in \mathcal{B}(H, l^2)$ φ — инъективен

проверим, что φ — сюръекция

пусть
$$y=\{y_n\}_{n=1}^\infty\in l^2$$

$$S_n=\sum_{k=1}^ny_kf_k,S_n\in H,\ \text{пусть m}>\text{n}$$

$$||S_m-S_n||^2=\sum_{k=n+1}^m|y_k|^2\underset{n,m\to\infty}{\longrightarrow}0\Rightarrow\{S_n\}\quad -\text{фундаментальная}$$

$$\Rightarrow\ \exists\ \lim_{n\to\infty}S_n=s,s=\sum_{k=1}^\infty y_kf_k\Rightarrow\varphi(s)=y$$

Замечание 6.5. Пусть $m \in \mathbb{N}, H$ — гильбертово пространство, $\dim H = m \Rightarrow H$ — линейно изометрически изоморфно l_m^2 .

6.2. Пространство, сопряжённое к гильбертову

Опишем все непрерывные функционалы в гильбертовом пространстве ${\cal H}.$

Теорема (Ф.Рисс, общий вид линейного непрерывного функционала в гильбертовом пространстве). H — гильбертово. Опишем набор линейных функционалов: покажем, что он непрерывный. Вторая часть будет утверждать, что других нет.

1. $y \in H, y$ — фиксирован. Рассмотрим отображение

$$f_y: H \to \mathbb{C} \quad x \mapsto (x, y) \, \forall \, x \in H$$

 $\Rightarrow f_y \in H^*, ||f_y||_{H^*} = ||y||_H$

2.
$$f \in H^* \Rightarrow \exists ! y \in H : f = f_y$$
, то есть $f(x) = (x,y) \, \forall \, x \in H$

1 часть.

 $f_y \in \operatorname{Lin}(H,\mathbb{C})$ — очевидно из свойств скалярного произведения

$$|f_y(x)| = |(x,y)| \stackrel{\text{K-B}}{\leq} ||x|| \cdot ||y|| \ \forall x \in H$$

 $\Rightarrow f_y \in H^*, ||f_y||_{H^*} \leq ||y||_H$

проведём тривиальное отбрасывание тривиальных случаев

$$y=0 \Rightarrow f_y=0 \quad ||f_y||=0$$
 пусть $y\neq 0 \quad ||f_y||=\sup_{x\in H, x\neq 0}\frac{|f_y(x)|}{||x||}\geq \frac{|f_y(y)|}{||y||}=\frac{(y,y)}{||y||}=||y||$
$$\Rightarrow ||f_y||_{H^*}=||y||_H$$

2 часть. Намёк, откуда брать y: мы знаем, что $f_y(x) = 0 \Leftrightarrow (x,y) = 0 \Leftrightarrow x \in \{y\}^{\perp}$. Сначала рассмотрим и отбросим тривиальный случай: пусть f(x) = 0, то есть $f(x) = 0 \ \forall x \in H \Rightarrow$ пусть $y = 0, f = f_0$.

Теперь пусть $f \neq 0, N = \operatorname{Ker} f (N = f^{-1}(0)) \Rightarrow N \subsetneq H, f$ — непрерывный $\Rightarrow N$ — замкнутое подпространство. Значит, существует нетривиальное ортогональное дополнение N^{\perp} , то есть $N^{\perp} \neq \{0\}$, пусть $x_0 \in N^{\perp}, x_0 \neq 0$

$$v = \frac{x_0}{f(x_0)}, f(x_0) \neq 0, f(v) = \frac{1}{f(x_0)} \cdot f(x_0) = 1$$

установим следующую вещь: $\dim N^{\perp} = 1$, то есть все элементы дополнения кратны v; вообще, это очевидно, гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма, помните такую скороговорку из алгебры? Но сейчас докажем аккуратно

пусть
$$u \in N^{\perp}$$
 $\alpha := f(u)$ $f(\alpha v) = \alpha f(v) = \alpha$
 $\Rightarrow f(u - \alpha v) = 0 \Rightarrow u - \alpha v \in N$
 $u, v \in N^{\perp} \Rightarrow u - \alpha v \in N^{\perp}$ $\} \Rightarrow u - \alpha v = 0 \Rightarrow u = \alpha v$

 $\forall u \in N^{\perp}$ мы знаем 2 вещи: $f(u) = \alpha \Rightarrow u = \alpha v$ и $u = \alpha v \Rightarrow f(u) = \alpha;$ v уже почти то, что нам надо, но мы его еще должны нормировать, чтобы не отправлять те же элементы в 0, что и f; найдём $\beta: f_{\beta v}(v) = 1 = f(v)$

$$f_{\beta v}(v) = (v, \beta v) = \overline{\beta} ||v||^2 = 1 \Rightarrow \beta = \frac{1}{||v||^2}$$
$$y = \frac{v}{||v||^2}$$

пусть $x \in H, x = h + \alpha v, h \in N, \alpha v \in N^{\perp}, y \perp h$ (так как $v \perp h$) $f(x) = \underbrace{f(h)}_{0} + f(\alpha v) = \alpha, f_{y}(x) = \underbrace{f_{y}(h)}_{0} + f(\alpha v) = \alpha \Rightarrow f = f_{y}$

Всё, что осталось проверить, это единственность:

$$f_y = f_z \Rightarrow (x, y) = (x, z) \,\forall \, x \in H$$

$$\Rightarrow (x, y - z) = 0 \,\forall \, x \in H \Rightarrow y - z = 0$$

Замечание 6.6. Рассмотрим отображение $C: H \to H^*, C(y) = f_y$. Во-первых, с суммой всё в порядке: $C(y+z) = f_{y+z} = f_y + f_z = C(y) + C(z)$. А с умножением на комплексное число уже не всё хорошо: пусть $\alpha \in \mathbb{C}, C(\alpha y) = f_{\alpha y}, f_{\alpha y} = (x, \alpha y) = \overline{\alpha}(x, y) = \overline{\alpha}f_y(x), C(\alpha y) = \overline{\alpha}C(y)$, то есть умножение не совсем линейное. Но $||C(y)||_{H^*} = ||y||_H$, C — антилинейный изометрический изоморфизм. Удобно думать, что сопряжённое к гильбертову пространство — это оно само. Говорят: $H^* = H$, а имеют в виду это взаимно-однозначное соответствие $C(H) = H^*$. Это очень просто, но фантастически удобно: сопряжённое — это оно само, но за удобство надо платить: α переходит в $\overline{\alpha}$.

Пример 6.10. Есть $l^2, (x,y) = \sum_{n=1}^{\infty} x_n \overline{y_n}, x, y \in l^2$. Как устроены все линейные функционалы в пространстве последовательностей $l^2 ? f \in (l^2)^* \Rightarrow \exists ! y \in l^2 : f(x) = (x,y) = \sum_{n=1}^{\infty} x_n \overline{y_n}.$

Пример 6.11.
$$(X,\mu),\,L^2(X,\mu),(f,g)=\int_X f(x)\overline{g(x)}d\mu$$

$$F \in (L^2(X,\mu))^* \Rightarrow \ \exists \, !g \in L^2(X\mu) : F(f) = \int_X f(x) \overline{g(x)} d\mu$$

Посмотрим сейчас чуть-чуть, как эта теория применяется к классическим рядам Фурье, которые были у нас в анализе.

6.3. Классические ряды Фурье

Как сходятся ряды Фурье в L^2 по мере Лебега?

Пример 6.12.

$$L^2_{\mathbb{R}}[-\pi,\pi]$$
 по мере Лебега $dx,(f,g)=\int_{-\pi}^{\pi}f(x)g(x)dx,\{1,\cos nx,\sin nx\}_{n\in\mathbb{N}}$

Для того, чтобы что-то утверждать, нам понадобится второй вариант теоремы Вейерштрасса, но доказывать мы его не будем.

Теорема (Вейерштрасса). $f \in \tilde{C}_{\mathbb{R}}[-\pi,\pi]$ $(f \in C[-\pi,\pi],f(-\pi)=f(\pi))$

$$\forall \varepsilon > 0 \,\exists \, T(x) = a_0 + \sum_{k=1}^n a_k \cos kx + b_k \sin kx$$
$$||f - T||_{\infty} = \max_{x \in [-\pi, \pi]} |f(x) - T(x)| < \varepsilon$$

То есть существует многочлен, который приближает нашу функцию с точностью до ε .

Теорема 6.6.
$$\{1,\cos nx,\sin nx\}_{n\in\mathbb{N}}$$
 — полная О.С. в $L^2_{\mathbb{R}}[-\pi,\pi]$

Доказательство. Будем считать, что ортогональность посчитали в анализе

$$\int_{-\pi}^{\pi} \cos nx \sin mx dx = 0 \qquad \int_{-\pi}^{\pi} (\cos nx)^2 dx = \pi = \int_{-\pi}^{\pi} (\sin nx)^2 dx$$

$$\int_{-\pi}^{\pi} 1 dx = 2\pi \qquad \int_{-\pi}^{\pi} \cos nx \cos mx dx = 0 (n \neq m)$$

$$\int_{-\pi}^{\pi} \sin nx \sin mx dx = 0 (n \neq m)$$

$$\Rightarrow \{1, \cos nx, \sin nx\}_{n \in \mathbb{N}} \quad -\text{ ортогональная система}$$

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin nx}{\pi}, \frac{\cos nx}{\pi}\right\}_{n \in \mathbb{N}} \quad -\text{ ортонормированная система}$$

мы уже доказали (теорема 3.22), что $C[-\pi,\pi]$ плотно в $L^2[-\pi,\pi]$ по мере Лебега, то есть любую функцию из L^2 можно приблизить сколь угодно хорошо, найдя такую функцию g, что разница интегралов будет меньше ε , но g, в отличие от f, 2π -периодическая

$$\begin{split} \exists \, g \in \tilde{C}[-\pi,\pi] & \left(\int_{-\pi}^{\pi} \left| f(x) - g(x) \right|^2 dx \right)^{\frac{1}{2}} < \varepsilon \\ \exists \, \delta > 0 : g(x) = f(x), x \in [-\pi,\pi-\delta] \\ & \Rightarrow \tilde{C}[-\pi,\pi] \text{ плотно в } L^2[-\pi,\pi] \\ \forall \, \varepsilon > 0 \, \forall \, f \in L^2[-\pi,\pi] \, \exists \, g \in \tilde{C}[-\pi,\pi], ||f-g||_{L^2} < \varepsilon \end{split}$$

по теоремере Вейерштрасса $\exists T = \alpha_0 + \sum_{k=1}^n \alpha_k \cos kx + \beta_k \sin kx$

$$\begin{split} ||g-T||_{\infty} < \varepsilon \Rightarrow ||g-T||_{2} &= \left(\int_{-\pi}^{\pi} |g(x)-T(x)|^{2} \, dx \right)^{\frac{1}{2}} < (\varepsilon^{2} \cdot 2\pi)^{\frac{1}{2}} = \sqrt{2\pi} \cdot \varepsilon \\ \Rightarrow ||f-T||_{2} &\leq ||f-g||_{2} + ||g-T||_{2} < \varepsilon (1+\sqrt{2\pi}) \Rightarrow \{1,\cos nx,\sin nx\} \quad -\text{ полная} \end{split}$$

Следствие 6.7. Пусть $f \in L^2_{\mathbb{R}}[-\pi,\pi]$. Коэффициенты Фурье:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)dx, a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos kx dx, b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin kx dx$$

Теперь что же значит f(x) разлагается в свой ряд Фурье?

$$S_n(x) = a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx) \Rightarrow$$

$$\left(\int_{-\pi}^{\pi} |f(x) - S_n(x)|^2 dx \right)^{\frac{1}{2}} \xrightarrow[n \to \infty]{} 0 \tag{*}$$

$$f(x) = a_0 + \sum_{k=1}^{\infty} (a_k + \cos kx + b_k \sin kx) \text{ в смысле (*)}$$

Пример 6.13. $L^2_{\mathbb{C}}[-\pi,\pi], f \in L^2_{\mathbb{C}}[-\pi,\pi], f = u + iv$

$$u, v \in L^2_{\mathbb{R}}[-\pi, \pi] \Rightarrow \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin nx}{\sqrt{\pi}} \right\} - \text{OHB}$$

Пример 6.14. $L^2_{\mathbb{C}}[-\pi,\pi], \{e^{inx}\}_{n\in\mathbb{Z}}$ — полная О.С.

$$(f,g) = \int_{-\pi}^{\pi} f(x)\overline{g(x)}dx, (e^{inx}, e^{imx}) = \int_{-\pi}^{\pi} e^{i(n-m)x}dx = [[e^{ix} - 2\pi\text{-периодическая}]]$$

$$= \begin{cases} 0 & n \neq m \\ 2\pi & n = m \end{cases}$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx}dx = \frac{1}{2}(a_n - ib_n), n \neq 0$$

$$c_0 = a_0$$

$$\sum_{k=-n}^{n} c_k e^{-ikx} = a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx) = S_n(x)$$

$$||f - S_n||_2 \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \left\{ e^{inx} \right\}_{n \in \mathbb{Z}} - \text{полная система}$$

Пример 6.15. $L^2_{\mathbb{R}}[0,\pi], \{\cos nx\}_{n=0}^{+\infty}$ — полная О.С.

Доказательство.

$$f\in L^2_{\mathbb{R}}[0,\pi]$$
, продолжим её симметричным образом, пусть $f(-x)=f(x), x\in (0,\pi]$ $f\in L^2_{\mathbb{R}}[-\pi,\pi]$

у нас под интегралом в коэффициентах b_k получится нечётная функция, поэтому b_k будут равны нулю

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx = 0$$
$$\left\| \left\| f - S_n(f) \right\|_{L^2[-\pi,\pi]} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \left\| f - \left(a_0 + \sum_{k=1}^n a_k \cos kx \right) \right\|_2 \underset{n \to \infty}{\longrightarrow} 0$$

Прощаемся с гильбертовыми пространствами.

Часть IV Линейные функционалы

Глава 7

Геометрический смысл линейного функционала

Линейное пространство, без нормы, без топологии, может, уже даже в алгебре доказывали такую теорему.

Теорема 7.1. X — линейное пространство над \mathbb{C} (\mathbb{R})

1.
$$f \in \text{Lin}(X, \mathbb{C}), f \neq \emptyset, L = \text{Ker } f \Rightarrow$$

$$\dim(X/L) = 1$$

 $\operatorname{codim} L := \dim(X/L)$ — коразмерность, не то чтобы мы будем этим пользоваться, просто сообщение по секрету

2. пусть
$$L \subset X, L$$
 — подпространство, такое что $\dim(X/L) = 1. \ x_0 \in X \setminus L \Rightarrow \exists ! f \in \text{Lin}(X, \mathbb{C}), L = \text{Ker } f, f(x_0) = 1$

Поскольку образ одномерен, это и означает, что фактор по ядру имеет такую же размерность, а образ у нас это $\mathbb C$

1 утверждение. Пусть
$$x_0 \in X \setminus L \Rightarrow f(x_0) \neq 0, v = \frac{x_0}{f(x_0)} \Rightarrow f(v) = 1$$

$$(X/L)=\{\overline{x}\}_{x\in X}\,, \overline{x}=\{x+y|y\in L\}$$
 возьмём какой-то $x\in X, \alpha:=f(x), f(\alpha v)=\alpha f(v)=\alpha$
$$\Rightarrow f(x-\alpha v)=0\Rightarrow x-\alpha v\in L\Rightarrow \overline{x}=\alpha \overline{v}$$

$$\Rightarrow \dim(X/L)=1$$

2 утверждение.

$$(X/L)=\{\overline{x}\}_{x\in X}\dim(X/L)=1\Rightarrow \ \forall \,x\in X\ \exists \, \alpha\in\mathbb{C}: \overline{x}=\alpha\overline{x_0}$$
 определим $f:X\to\mathbb{C}$ установили, что $\forall \,x\ \exists \,\alpha\in\mathbb{C}: \overline{x}=\alpha\overline{x_0},\ f(x)\coloneqq \alpha\Rightarrow f\in \mathrm{Lin}(X,\mathbb{C})$ $f(x_0)=1$ пусть $f(x)=0\Rightarrow \overline{x}=0\cdot\overline{x_0}=\overline{0}=L\Rightarrow x\in L\Rightarrow$ Ker $f=L$

Проверим единственность:

пусть
$$g \in \text{Lin}(X,\mathbb{C})$$
, $\text{Ker } g = L, g(x_0) = 1$

$$\forall x \in X \ x = y + \alpha x_0 \text{ где } y \in L, \alpha \in \mathbb{C}$$

$$\Rightarrow f(x) = \alpha, g(x) = \alpha$$

докажем теперь что-то с функционалами для нормированного пространства

Теорема 7.2 (норма линейного функционала). $(X, ||\cdot||)$ — нормированное пространство. $f \in X^*, f \neq \emptyset, L = \operatorname{Ker} f, f(x_0) = 1 \Rightarrow ||f|| = \frac{1}{\rho(x_0, L)}$

Доказательство.

$$L = f^{-1}(0) \Rightarrow L - \text{ замкнутое}$$

$$d = \rho(x_0, L) = \inf_{y \in L} ||x_0 - y||$$

$$1 = f(x_0) = f(x_0 - y) \Rightarrow |f(x_0 - y)| \le ||f|| \cdot ||x_0 - y|| \ \forall y \in L$$

$$\Rightarrow 1 \le ||f|| \inf_{y \in L} ||x_0 - y|| = ||f|| \cdot d \Rightarrow \frac{1}{d} \le ||f||$$

Получили неравенство в одну сторону. Теперь в другую:

$$x \notin L \Rightarrow f(x) \neq 0, \ f\left(\frac{x}{f(x)}\right) = 1, f(x_0) = 1 \Rightarrow$$

$$f\left(\frac{x}{f(x)} - x_0\right) = 0 \Rightarrow \frac{x}{f(x)} - x_0 = y, y \in L$$

$$\Rightarrow \frac{x}{f(x)} = x_0 - (-y) \Rightarrow \left|\left|\frac{x}{f(x)}\right|\right| = ||x_0 - (-y)|| \geq d$$

$$\Rightarrow |f(x)| \leq \frac{1}{d} \cdot ||x|| \Rightarrow ||f|| \leq \frac{1}{d}$$

126

Вот и получили, что было обещано: $||f|| = \frac{1}{d}$

Замечание 7.1. В условиях теоремы, $M = f^{-1}(1)$, тогда $M = x_0 + L$, $\rho(x_0, L) = \rho(0, M)$. Вместо того, чтобы рассматривать ядро, можно рассматривать такое «сдвинутое ядро». Подпространство L можно сдвинуть на вектор, это довольно очевидно, не будем это доказывать.

7.1. Продолжение линейного функционала

Новый раздел, в котором наконец появится существенная теорема, до этого были так...

Будет задан функционал с дополнительным условием, и мы будем продолжать его на всё пространство так, чтобы условие сохранилось. Нам понадобится не только анализ, но и математическая логика, в частности, лемма Цорна. Поскольку нам никто её не рассказывал, придётся провести ликбез. Нам понадобится индукция: но не обычная, ведь у нас какие-то гигантские пространства, переход от n к n+1 нам ничем не поможет, нужен более хитрый трюк.

Определение 7.1 (частично упорядоченное множество). \mathcal{P} частично упорядоченное множество, если $\mathcal{R} \subset \mathcal{P} \times \mathcal{P}, (a,b) \in \mathcal{R}$, то есть $a \leq b$. \mathcal{R} — порядок, если выполнены аксиомы

- 1. $\forall a \in \mathcal{P}, (a, a) \in \mathcal{R}$, то есть $a \leq a$ (рефлексивность)
- 2. если $(a \le b \land b \le c) \Rightarrow a \le c$ (транзитивность)
- 3. если $(a \le b \land b \le a)$, то a = b (антисимметричность)

важно, что не для всех элементов определён порядок, а для каких-то

Определение 7.2 (линейно упорядоченное множество). \mathcal{P} — частично упорядоченное, $A\subset\mathcal{P}, A$ — линейно упорядочено, если $\forall\,a,b\in A, a\leq b$ или $b\leq a$

Определение 7.3 (верхняя грань множества). $A \subset \mathcal{P}, x -$ верхняя грань для A, если $a \leq x \ \forall \ a \in A$

Определение 7.4 (максимальный элемент множества). y — максимальный элемент в \mathcal{P} , если $y \leq a \Rightarrow y = a$. Максимальный в том смысле, что больше него не существует, но таких максимумов может быть хоть миллион, и они между собой не сравнимы.

Лемма (Цорн). Если в \mathcal{P} любое линейно упорядоченное множество имеет верхнюю грань, то в \mathcal{P} есть максимальный элемент

Аксиома (Выбора).
$$\{B_{\alpha}\}_{\alpha\in A}, B_{\alpha}\neq\emptyset\Rightarrow \exists C=\{b_{\alpha}:b_{\alpha}\in B_{\alpha}\}_{\alpha\in A}$$

Если есть алгоритм выбора элементов из множества, то пользуемся им, без этой аксиомы.

Для общего развития: Аксиома Выбора \Leftrightarrow Лемма Цорна. Закончили с ликбезом по теории множеств.

Определение 7.5 (выпуклый функционал). X — линейное пространство над \mathbb{C} (\mathbb{R}). $p:x\to\mathbb{R},p$ — выпуклый функционал, если

1.
$$p(x+y) \le p(x) + p(y) \forall x, y \in X$$

$$2. \ p(tx) = tp(x) \ \forall \ t \ge 0$$

Замечание 7.2. p — полунома, тогда $p(\lambda x) = |\lambda| \, p(x) \, \forall \, \lambda \in \mathbb{C}(\mathbb{R}) \Rightarrow p$ — выпуклый функционал

Считается, что весь линейный функциональный анализ стоит на трёх китах, и мы дошли до Кита №1.

Теорема 7.3 (Хан-Банах, о продолжении линейного функционала в вещественном пространстве). X — линейное пространство над $\mathbb{R}, p: X \to \mathbb{R}, p$ — выпуклый функционал. $L \subset X, L$ — подпространство, $f \in \text{Lin}(L,\mathbb{R}), f(x) \leq p(x) \ \forall \, x \in L$ (говорят f подчинён p)

$$\exists \ g \in \operatorname{Lin}(X,\mathbb{R}), g(x) = f(x), x \in L \quad g(x) \leq p(x) \ \forall \ x \in X$$

Тут очень важно, что пространство вещественное, у нас будет другая теорема для комплексного. Эта теорема всё время возникает, мы ей либо по умолчанию пользуемся, либо следствиями из неё.

Доказательство будет состоять из 2 частей. Первая — естественная часть MA: покажем, что существует функционал, продлённый на одну размерность больше и который совпадает с f на подпространстве. Во второй части продлим на всё X, там нам и понадобится это логическое жульничество.

Доказательство.

$$f \in \operatorname{Lin}(L, \mathbb{R}), z \in X \setminus L$$
$$L_1 = \mathcal{L}(L, z) = \{x + tz : t \in \mathbb{R}, x \in L\}$$

докажем, что $\exists f_1 \in \text{Lin}(L_1,\mathbb{R}): f_1|_L = f, f_1(y) \leq p(y) \ \forall y \in L_1;$ мы можем распоряжаться только значением f_1

$$f_1(z)=c$$
 $c\in\mathbb{R}$, выберем «с» так, как надо $y=x+tz\in L_1\Rightarrow f_1(y)=f(x)+tc$

хотим доказать $f(x) + tc \le p(x+tz) \forall t \in \mathbb{R}$, напишем 2 неравенства для положительных и отрицательных c соответственно, потому что из функционала выносить можно только положительные числа

$$\begin{cases} f(x) + tc \le p(x+tz) & t > 0 \\ f(x) - tc \le p(x-tz) & t > 0 \end{cases} \Leftrightarrow$$

$$\begin{cases} f\left(\frac{x}{t}\right) + c \le p\left(\frac{x}{t} + z\right) & \forall t > 0 \\ f\left(\frac{x}{t}\right) - c \le p\left(\frac{x}{t} - z\right) & \forall t > 0 \end{cases}, \frac{x}{t} \in L \Leftrightarrow x \in L$$

$$u = \frac{x}{t}, u \in L, v = \frac{x}{t} \Leftrightarrow \frac{f(u) + c}{f(v) - c} \leq p(u+z) \end{cases} \Leftrightarrow$$

$$f(v) - p(v-z) \le c \le p(u+z) - f(u), u, v \in L$$

если такое c есть, все хорошо, а если нет — ужасно

обозначим
$$A=\{f(v)-p(v-z):v\in L\}\subset\mathbb{R}, B=\{p(u+z)-f(u):u\in L\}\subset\mathbb{R}$$

проверим, что $\forall a \in A, \forall b \in B \ a \leq b$. Это и будет означать, что между этими множествами и есть какой-то элемент (из-за полноты вещественной прямой)

$$f(v) - p(v - z) \le p(u + z) - f(u) \Leftrightarrow f(v) + f(u) \le p(u + z) + p(v - z)$$

 $f(v) + f(u) = f(u + v) \le [[u + v \in L]]p(u + v)$ [[выпуклость p]] $\le p(u + z) + p(v - z)$
 $\Rightarrow \exists c \in \mathbb{R} : f_1(z) = c \Rightarrow f_1(y) \le p(y) \, \forall y \in L_1, f_1|_L = f$

129

итак, мы продолжили функционал на размерность+1, и если бы было сепарабельное или банахово пространство, мы бы ограничились обычной индукцией, увеличивая размерность на 1, и по непрерывности пришли бы к пределу, и замыкание было бы всем X. Но раз у нас всего этого нет, мы будем пользоваться леммой Цорна, которая по всем кардиналам эквивалентна трансфинитной индукции. Что же у нас тут будет частично упорядоченным множеством? Рассмотрим все возможные продолжения линейного фунционала, удовлетворяющие условиям

$$\mathcal{P} = \{(M, h)\}$$

где $L\subset M$ — подпространство $X,\ h\in \mathrm{Lin}(M,\mathbb{R}), h|_L=f, h(x)\leq p(x)\ \forall x\in M.$ Докажем, что $\exists\ M=X,$ то есть $(X,h)\in\mathcal{P}.$ Раз в множестве \mathcal{P} есть максимальный элемент, то он равен X, вот такой краткий план.

Как определяется частичный порядок в \mathcal{P} ? $(M_1,h_1) \leq (M_2,h_2),$ если $M_1 \subset M_2,h_2|_{M_1}=h_1$

 $\{(M_\alpha,h_\alpha)\}_{\alpha\in A}$ — линейно упорядоченное множество. Построим верхнюю грань:

$$M_0 = \bigcup_{\alpha \in A} M_{\alpha}, h_0 : M_0 \to \mathbb{R}$$

пусть $x \in M_0 \Rightarrow \exists \alpha \in A : x \in M_\alpha, h_0(x) := h_\alpha(x)$ и то, и другое определение требует обоснования корректности, ведь объединение подпространств не обязано быть подпространством (на вещественной плоскости: объединение 2 прямых, проходящих через 0 — непонятно, что вообще такое). Проверим, что M_0 — подпространство

пусть
$$x, y \in M_0 \Rightarrow \exists \alpha, \beta \in A : x \in M_\alpha, y \in M_\beta$$

вспоминаем про линейный порядок

$$(M_{\alpha},h_{\alpha})\leq (M_{\beta},h_{\beta})$$
 или $(M_{\beta},h_{\beta})\leq (M_{\alpha},h_{\alpha})$ пусть $(M_{\alpha},h_{\alpha})\leq (M_{\beta},h_{\beta})\Rightarrow M_{\alpha}\subset M_{\beta}\Rightarrow x\in M_{\beta}\Rightarrow \lambda x+\mu y\in M_{\beta}$ $\Rightarrow \lambda x+\mu y\in M_0\Rightarrow M_0$ подпространство

проверим корректность определения h_0 , то есть что оно не должно зависеть от того, возьмём мы α или β

пусть $x \in M_0$, пусть $x \in M_\alpha$, $x \in M_\beta$, пусть $(M_\alpha, h_\alpha) \le (M_\beta, h_\beta)$ или наоборот $\Rightarrow h_\alpha(x) = h_\beta(x) \Rightarrow \begin{cases} h_0(x) = h_\alpha(x) \\ h_0(x) = h_\beta(x) \end{cases}$

 $h_{\alpha}(x)=h_{\beta}(x)$, потому что если выберем для h_0 h_{β} , то по определению $h_{\beta}|_{M_{\alpha}}=h_{\alpha}$. В итоге h_0 определено корректно, одно другому не противоречит

$$h_0(x) \leq p(x) \, \forall \, x \in M_0 \,$$
 (очевидно) $\Rightarrow (M_0, h_0) \in \mathcal{P}$ $\alpha \in A \, (M_\alpha, h_\alpha) < (M_0, h_0)$ — верхняя грань

теперь, когда мы рассмотрели произвольное линейное упорядоченное множество и доказали, что у него есть верхняя грань, мы можем применить лемму Цорна

$$\Rightarrow$$
 в $\mathcal{P} \exists$ максимальный элемент $(M,h) \in \mathcal{P}$ пусть $M \subsetneq X \exists z \in X \setminus M, M_1 = \text{Lin}(M,z)$

построим как в первой части продолжение $(M_1, f_1) \in \mathcal{P}$

$$(M,h) \leq (M_1,f_1), M \subsetneq M_1$$
 противоречит максимальности (M,h)
 $\Rightarrow M = X, (M,h)$ — искомое продолжение

Прежде, чем рассказать комплексный аналог, сначала применение вещественного случая.

Теорема 7.4 (обобщённый предел ограниченной последовательности).

$$l_{\mathbb{R}}^{\infty} = \left\{ x = \left\{ x_n \right\}_{n=1}^{\infty}, x_n \in \mathbb{R}, ||x|| = \sup_{n \in \mathbb{N}} |x_n| < +\infty \right\}$$

$$\Rightarrow \exists F \in \mathcal{B}(l^{\infty}, \mathbb{R}) = (l^{\infty})^*$$

$$\forall x \in l^{\infty} \underline{\lim} x_n \leq F(x) \leq \overline{\lim} x_n$$

в частности, если $\exists \lim_{n\to\infty} x_n = x_0$, то $F(x) = x_0$

То есть каждой ограниченности сопоставляется число, причём это отображение линейное.

Доказательство.

$$x \in l^{\infty}, p(x) := \overline{\lim} x_n, x = \{x_n\}_{n=1}^{\infty} \in l^{\infty}$$

131

откуда же берётся неравенство треугольника, которое фигурирует в выпуклости? Когда-то в детстве мы доказывали такое неравенство, оно даже в Демидовиче есть

$$\overline{\lim}(x_n + y_n) \le \overline{\lim}x_n + \overline{\lim}y_n$$

напоминание, как это доказывается через альтернативное определение верхнего предела

$$a_n=\sup\{x_n,x_{n+1},\ldots\},a_n$$
 убывают к $a,\lim_{n\to\infty}a_n=a,a=\overline{\lim}x_n.$
$$b_n=\sup_{k\geq 0}\{y_{n+k}\},b_n$$
 убывают к $b,b=\overline{\lim}y_n.$
$$c_n=\sup_{k\geq 0}\{x_{n+k}+y_{n+k}\},c_n$$
 убывают к $c=\overline{\lim}(x_n+y_n)$ пусть $k\geq 0$ $x_{n+k}+y_{n+k}\leq a_n+b_n$ $\forall\, k\Rightarrow c_n\leq a_n+b_n\Rightarrow c\leq a+b$

напоминание закончилось

Вот мы доказали, что это функционал

$$c = \left\{x = \{x_n\}_{n=1}^{\infty}, \ \exists \lim_{n \to \infty} x_n = x_0\right\}$$

$$g: c \to \mathbb{R} \quad x = \{x_n\}_{n=1}^{\infty} \in c \Rightarrow g(x) = x_0$$

$$g(x) = \lim_{n \to \infty} x_n \le p(x) \coloneqq \overline{\lim} x_n$$
 по теореме Хана-Банаха
$$\exists \ F: l^{\infty} \to \mathbb{R}, F(x) \le p(x)$$

$$F(x) = g(x) = x_0, \ \text{если} \ x \in c$$

$$x \in l^{\infty}, p(-x) = \overline{\lim}(-x_n) = -\underline{\lim} x_n$$

почему это так? представьте последовательность, у которой два предела: нижний -1, верхний -2, проотрицаем последовательность, получим пределы в -1 и -2, её верхний предел -1 это как раз нижний предел исходной последовательности

$$-F(x) = F(-x) \le p(-x) = -\underline{\lim} x_n \Rightarrow F(x) \ge \underline{\lim} x_n$$

В формулировке обещалось ||F||=1. мы можем взять $x=(1,1,1,\ldots)$

$$F(x) = 1, ||x||_{\infty} = 1 \Rightarrow ||F|| \ge 1$$

$$\forall x |F(x)| \le \overline{\lim} x_n \le \sup x_n = ||x||_{\infty} \Rightarrow ||F|| \le 1$$

132

Хочется последнее неравенство записать в более общем случае.

Утверждение 7.1. 1. X — линейное, p(x) — выпуклый функционал, $f \in \text{Lin}(X,\mathbb{R})$

$$f(x) \le p(x) \Rightarrow f(x) \ge -p(-x)$$

2. если p(x) полунорма, $f(x) \le p(x) \ \forall x \in X \Rightarrow |f(x)| \le p(x)$

Доказательство. 1.
$$f(x) \leq p(x) \Rightarrow f(-x) \leq p(-x) \Rightarrow -f(x) \leq p(-x) \Rightarrow f(x) \geq -p(x)$$

2.
$$p$$
 — полунорма $\Rightarrow p(-x) = p(x) \Rightarrow -p(x) \leq f(x) \leq p(x) \Rightarrow |f(x)| \leq p(x)$

Теперь, как было обещано, вариант теоремы продолжения линейного функционала для комплексного случая.

Теорема 7.5 (Боненблюст-Собчик, продолжение линейного функционала в комплексном линейном пространстве). X над \mathbb{C} . В вещественном случае предполагали что p — выпуклый функционал, теперь предполагаем чуть большее: $p: X \to \mathbb{R}, p$ — полунорма, $L \subset X$ — подпространство, $f \in \text{Lin}(L, \mathbb{C})$. Второе отличие состоит в том, что мы говорим $|f(x)| \leq p(x) \, \forall \, x \in L \Rightarrow$

$$\exists g \in \text{Lin}(X, \mathbb{C}), g|_L = f, |g(x)| \le p(x) \, \forall x \in X$$

Доказательство. Мы будем использовать доказательство для вещественного случая изо всех сил. Проведём овеществление X, то есть X над $\mathbb{R}, \ x,y \in X, \ a,b \in \mathbb{R} \Rightarrow ax+by \in X,$ то есть забудем на какое-то время, что X над \mathbb{C} .

$$f(x) = u(x) + iv(x), u, v : L \to \mathbb{R}$$

Проверим, что $u,v\in {\rm Lin}(L,\mathbb{R}),$ а также покажем что между ними существует связь. Потом примением к u теорему Хана-Банаха, а там, глядишь, и получится то, что требовалось

$$y \in X \Rightarrow f(y) = u(y) + iv(y)$$

$$\Rightarrow f(x) + f(y) = u(x) + u(y) + i(v(x) + v(y))$$

$$f(x+y) = u(x+y) + iv(x+y)$$

$$\Rightarrow u(x+y) = u(x) + u(y) \quad v(x+y) = v(x) + v(y)$$

$$\text{пусть } a \in \mathbb{R} \Rightarrow f(ax) = u(ax) + iv(ax)$$

$$f(ax) = af(x) = a(u(x) + iv(x))$$

$$\Rightarrow u(ax) = a(u(x)), v(ax) = av(x)$$

проверили, что они линейные функционалы в вещественном случае. оказывается, они еще и связаны между собой особым образом

$$f(ix) = if(x)$$

$$u(ix) + iv(ix) = i(u(x) + iv(x)) \Rightarrow v(x) = -u(ix)$$
 (*)

перед тем, как применять теорему Хана-Банаха проверим, чего меньше этот функционал

$$u(x) \leq |u(x)| \leq |f(x)| \leq p(x)$$
 при $x \in L$

применяем теорему Хана-Банаха к и

$$\exists \, \varphi \in \operatorname{Lin}(X, \mathbb{R}), \varphi|_L = u, \varphi(x) \leq p(x) \, \forall \, x \in X$$

на всякий случай отметим, что $|\varphi(x)| \le p(x)$ так как p — полунорма, вдруг пригодится. По аналогии с (*) определим ψ

$$\psi(x) := -\varphi(ix) \Rightarrow \underline{\psi \in \text{Lin}(X, \mathbb{R})} \quad x \in X$$
$$g(x) := \varphi(x) + i\psi(x), g|_{L} = f \Rightarrow g \in \text{Lin}(X, \mathbb{R})$$

g линейный в вещественном смысле. Остаётся проверить что он линейный в комплексном случае (можно вынести i) и что он подчинён p. Проверяем, что g(ix)=ig(x)

$$g(ix) = \varphi(ix) + i(-\varphi(-x)) = \varphi(ix) + i\varphi(x) = i(\varphi(x) - i\varphi(ix)) = i(\varphi(x) + i\psi(x)) = ig(x)$$

 $\Rightarrow g \in \text{Lin}(X,\mathbb{C})$. Теперь проверяем подчинённость

пусть
$$x \in X$$
 $g(x) \in \mathbb{C} \Rightarrow g(x) = re^{i\theta}, r \ge 0 \Rightarrow$

такой трюк: воспользуемся линейностью g

$$g(xe^{-i\theta}) = r$$
$$r = g(xe^{-i\theta}) = \varphi(xe^{-i\theta}) + i\psi(xe^{-i\theta})$$

слева у нас вещественное число, а справа комплексное, значит, комплексная часть справа равна нулю. Ещё вспоминаем, что p — полунорма, и можно вынести модуль любого числа

$$\Rightarrow r = \varphi(xe^{-i\theta}) \le p(xe^{-i\theta}) = \left| e^{-i\theta} \right| \cdot p(x) = p(x)$$
$$|q(x)| = r < p(x) \quad \forall x \in X$$

7.2. Продолжение линейных функционалов в нормированном пространстве

В этой части абсолютно все равно, пространство над $\mathbb R$ или же $\mathbb C$

Теорема 7.6 (Хан-Банах). $(X, ||\cdot||)$ над $\mathbb{R}(\mathbb{C})$. $L \subset X, L$ — подпространство в алгебраическом смысле, $f \in L^*(L^* = \mathcal{B}(L, \mathbb{C})) \Rightarrow$

$$\exists \, g \in X^*, g|_L = f, ||g||_{X^*} = ||f||_{L^*}$$

Мы уже отмечали, что при продолжении норма может только увеличиться, но в условиях этой теоремы норму же удаётся сохранить.

пусть
$$f \neq 0, M \coloneqq ||f||_{L^*}, p(x) \coloneqq M \cdot ||x||, x \in X$$

 $\Rightarrow p$ — норма (\Rightarrow полунорма \Rightarrow выпуклый функционал)

пусть
$$x \in L \Rightarrow |f(x)| \le ||f||_{L^*} \cdot ||x|| = p(x)$$
 (условие подчинения)

Теперь применяем теорему Хана-Банаха, если X над \mathbb{R} , или Боненблюста-Собчика, если X над \mathbb{C}

$$\exists g \in \operatorname{Lin}(X, \mathbb{C}) \left(\operatorname{Lin}(X, \mathbb{R}) \right)$$

$$g|_{L} = f, \quad |g(x)| \leq p(x) \, \forall x \in X$$

$$\Rightarrow |g(x)| \leq M \cdot ||x|| \, \forall x \in X \Rightarrow ||g||_{X^{*}} \leq M$$

$$\Rightarrow ||g||_{X^{*}} \leq ||f||_{L^{*}}$$

$$\left(||g||_{X^{*}} = \sup_{\{x \in X: ||x|| \leq 1\}} |g(x)| \geq \sup_{\{x \in L: ||x|| \leq 1\}} |f(x)| = ||f||_{L^{*}} \right)$$

$$\Rightarrow ||g||_{X^{*}} = ||f||_{L^{*}}$$

Следствие 7.1 (о достаточном числе линейных функционалов). $(X, ||\cdot||), x_0 \in X \Rightarrow \exists g \in X^*, ||g|| = 1, g(x_0) = ||x_0||,$ при этом

$$||x_0|| = \max\{h(x_0) : h \in X^*, ||h|| \le 1\}$$

Доказательство. Если $x_0=0$, то $\forall g\in X^*, ||g||=1 \Rightarrow g(0)=0$ (при линейном отображении 0 переходит в 0 всегда).

Пусть $x_0 \neq 0, L = \{\alpha x_0 : \alpha \in \mathbb{C}\}$

$$f: L \to \mathbb{C} f(\alpha x_0) \coloneqq \alpha ||x_0|| \Rightarrow f \in \text{Lin}(L, \mathbb{C})$$
$$|f(\alpha x_0)| = |\alpha| ||x_0|| \Rightarrow ||f|| = \sup_{\alpha \neq 0} \frac{|f(\alpha x_0)|}{||\alpha x_0||} = 1 \Rightarrow ||f||_{L^*} = 1$$

по теореме Хана-Банаха для нормированного пространства

$$\exists g \in X^*, ||g|| = 1, g|_L = f \Rightarrow g(x_0) = f(x_0) = ||x_0||$$
 пусть $h \in X^*, ||h|| \le 1 \Rightarrow |h(x_0)| \le ||h|| \cdot ||x_0|| \le ||x_0||$ $\Rightarrow ||x_0|| \ge \sup_{\{h \in X^*: ||h|| \le 1\}} |h(x_0)|, \text{ но } \exists g, ||g|| = 1, g(x_0) = |x_0|$ $\Rightarrow |x_0| = \max_{\{h \in X^*: ||h|| \le 1\}} \{h(x_0)\}$

в этом смысле и много, то есть есть такой, на котором максимум достигается $\hfill \Box$

Замечание 7.3. $f \in X^* \Rightarrow ||f|| = \sup_{\{x \in X: ||x|| \le 1\}} |f(x)|$, то есть максимум может не достигаться

Пример 7.1.

$$C[-1,1] = X, \varphi(x) = \begin{cases} -1 & -1 \le x < 0 \\ 1 & 0 \le x \le 1 \end{cases}$$

$$G_{\varphi}(f) = \int_{-1}^{1} f(x)\varphi(x)dx \quad G_{\varphi} \in (C[-1,1])^{*}$$

$$||G_{\varphi}|| = \int_{-1}^{1} |\varphi(x)| dx = 2$$

Мы показывали, что норма такого функционала всегда будет больше $2-\varepsilon$ \forall ε

В качестве упражнения доказать, что $\nexists f \in C[-1,1], ||f|| \leq 1, |G(f)| = 2.$

Следствие 7.2 (расстояние от элемента до подпространства). $(X,||\cdot||),L\subset X,L=\overline{L}$ — подпространство

$$x_0 \in X, d = \rho(x_0, L) = \inf_{y \in L} ||x_0 - y|| \Rightarrow$$

$$\exists \ g \in X^*, ||g|| = 1, g|_L = 0, g(x_0) = d, \ \text{при этом}$$

$$d = \max \left\{ |h(x_0)| \ , h \in X^*, ||h|| \le 1, h|_L = 0 \right\}$$

Это следствие полезно для решения экстремальных задач: от инфимума можно перейти к максимуму и решать другую задачу.

Доказательство. Если $x_0 \in L$, то $d = 0, \exists g|_L = 0, ||g|| = 1 ($ если $L \neq X)$

пусть
$$x_0 \in X \setminus L, M = \mathcal{L}(L, x_0) = \{\alpha x_0 + y : \alpha \in \mathbb{C}, y \in L\}$$

 $f: M \to \mathbb{C}, f(\alpha x_0 + y) := \alpha \Rightarrow \forall y \in L f(y) = 0$
 $f^{-1}(0) = L, f \in \text{Lin}(M, \mathbb{C}), f(x_0) = 1, ||f|| = \frac{1}{d}$

это уже вычислили в геометрическом смысле линейного функционала

$$f_1 = df \Rightarrow ||f_1||_{M^*} = 1, f_1(x_0) = d$$

по теореме Хана-Банаха для нормированного пространства

$$\exists g \in X^*, ||g||_{X^*} = 1, g|_M = f_1 \Rightarrow g(x_0) = d, g|_L = f|_L = 0$$

это была первая часть утверждения следствия

пусть
$$h \in X^*, ||h|| \le 1, h(y) = 0 \,\forall y \in L \Rightarrow$$

$$|h(x_0)| = |h(x_0 - y)| \le ||h|| \cdot ||x_0 - y|| \le ||x_0 - y|| \quad \forall y \in L \Rightarrow$$

$$|h(x_0)| \le d \Rightarrow$$

$$\sup\{|h(x_0)| : ||h|| \le 1, h|_L = 0\} \le d, \text{ но } \exists g \Rightarrow$$

$$d = \max\{|h(x_0)| : ||h|| \le 1, h|_L = 0\}$$

Замечание 7.4. Следствие 1 — частный случай следствия 2 при $L=\{0\}$. На экзамене можно рассказать только второе следствие, отметив, что первое является его частным случаем

Следствие 7.3 (критерий полноты системы элементом в нормированном пространстве). $(X,||\cdot||)$ — нормированное пространство, $x_{\alpha} \in X, A$ — множество индексов, $\{x_{\alpha}\}_{\alpha \in A}$ — полное семейство в $X \Leftrightarrow$ если $f \in X^*, f(x_{\alpha}) = 0, \alpha \in A \Rightarrow f = 0$

Критерий проверять гораздо проще, чем определение.

 $Доказательство. \Rightarrow$

$$f(x_{\alpha})=0, L=\mathcal{L}\left\{x_{\alpha}\right\}_{\alpha\in A}, x\in L\Rightarrow$$

$$x=\sum_{k=1}^{n}c_{k}x_{\alpha_{k}}\Rightarrow f(x)=0$$
 пусть $z\in X, y_{n}\in L$ \exists $\{y_{n}\}_{n=1}^{\infty}, \lim_{n\to\infty}y_{n}=z$ (полнота), f — непрерывная \Rightarrow
$$\lim_{n\to\infty}f(y_{n})=f(z)\Rightarrow f(z)=0$$
 $\Rightarrow f=\emptyset$

 \Leftarrow

$$\begin{aligned} \{x_{\alpha}\}_{\alpha \in A} &- \text{полная} \Leftrightarrow \overline{L} = X \\ \text{пусть } \overline{L} \subsetneq X \Rightarrow & \exists \ x_0 \in X \setminus \overline{L} \overset{\text{Сл.2}}{\Rightarrow} \ \exists \ g \in X^* \\ \underline{g|_{\overline{L}} = 0} (\Rightarrow g = \mathbb{0}), g(x_0) = \rho(x_0, \overline{L}) \neq 0 \quad d = \rho(x_0, \overline{L}) \\ \text{но } g(x_{\alpha}) = 0 \ \forall \ \alpha, g \neq \mathbb{0} \end{aligned}$$

Наконец, с помощью последнего следствия докажем такую теорему

Теорема 7.7. $(X, ||\cdot||)$. Если X^* сепарабельно, то X — сепарабельно

Доказательство.

$$\exists \{f_n\}, f_i \in X^*$$
 — плотная система в X^*

вспомним, что $||f_n|| = \sup_{\{x \in X: ||x||=1\}} |f_n(x)|$

$$\Rightarrow \exists x_n, ||x_n|| = 1 \quad ||f_n|| \ge |f_n(x_n)| \ge \frac{1}{2} ||f_n||$$
 проверим, что $\{x_n\}_{n=1}^{\infty}$ — полная в X

возьмём произвольный линейный функционал f и предположим, что он обращается в 0 на всех x_n

пусть
$$f \in X^*, f(x_n) = 0$$
плотность $\{f_n\} \Rightarrow \exists \{f_{n_k}\}_{k=1}^{\infty}$

$$\lim_{k \to \infty} ||f - f_{n_k}|| = 0$$

$$\underbrace{\lfloor (f - f_{n_k})(x_{n_k}) \rfloor}_{=|f_{n_k}(x_{n_k})| \ge \frac{1}{2}||f_{n_k}||} \le ||f - f_{n_k}|| \cdot \underbrace{||x_{n_k}||}_{k \to \infty} \to 0$$

$$= \lim_{k \to \infty} ||f_{n_k}|| = 0 \Rightarrow f = 0$$

$$\lim_{k \to \infty} ||f_{n_k}|| = 0 \Rightarrow f = 0$$

$$\lim_{k \to \infty} ||x_n||_{n=1}^{\infty} - \text{полная}$$

$$(E = \left\{\sum_{k=1}^{n} c_k x_k, c_k \in \mathbb{Q}, n \in \mathbb{N}\right\} - \text{счётное всюду плотное в } X)$$

Глава 8

Принцип равномерной ограниченности

Принцип равномерной ограниченности, тут будет много теорем, они все связаны с первой, а всё вместе это второй кит линейного функционального анализа.

Теорема 8.1 (принцип равномерной ограниченности).
$$(X, ||\cdot||)$$
 — банахово, $(Y, ||\cdot||)$ — нормированное, $\{U_{\alpha}\}_{\alpha \in A}, U_{\alpha} \in \mathcal{B}(X, Y)$
$$\forall \, x \in X \, \sup_{\alpha \in A} ||U_{\alpha}x|| < +\infty \, \Rightarrow \, \exists \, M > 0 : ||U_{\alpha}|| \leq M \, \forall \, \alpha \in A$$

Причём тут равномерность?

$$\begin{aligned} ||U_{\alpha}|| &= \sup_{\{x \in X: ||x|| \le 1\}} ||U_{\alpha}x|| \\ \sup_{\alpha \in A} \sup_{\{x \in X: ||x|| \le 1\}} ||U_{\alpha}x|| < +\infty \end{aligned}$$

предполагаем для одного икса, а оказывается, что можно взять sup по единичной сфере, а потом ещё раз взять sup, и это фантастически полезно и в то же время странно. Начнём с простой леммы.

Лемма 8.1.
$$(X,||\cdot||),(Y,||\cdot||)$$
 — нормированные
$$U\in \mathrm{Lin}(X,Y),\ \exists\ \varepsilon>0,R>0,a\in X:$$

$$U(B_\varepsilon(a))\subset \overline{B_R(0)}\Rightarrow U\in\mathcal{B}(X,Y)$$

$$||U||\leq \frac{2R}{\varepsilon}$$

ГЛАВА 8. ПРИНЦИП РАВНОМЕРНОЙ ОГРАНИЧЕННОСТИ 140

Новизна этой простой леммы состоит в том, что не обязательно брать шар в точке 0, суть остаётся такой же, но чуть-чуть ухудшается норма.

Доказательство.

пусть
$$z \in X, ||z|| < \varepsilon, a \in B_{\varepsilon}(a), a+z \in B_{\varepsilon}(a)$$

$$z = (a+z) - a \Rightarrow ||Uz|| \leq ||U(a+z)|| + ||U(a)|| \leq R + R = 2R$$
 пусть $x \in X, x \neq 0$ $||x|| < 1 \Rightarrow ||\varepsilon x|| < \varepsilon \Rightarrow ||U(\varepsilon x)|| \leq 2R \Rightarrow ||Ux|| \leq \frac{2R}{\varepsilon}$
$$||U|| = \sup_{\{x \in X: ||x|| \leq 1\}} ||Ux|| \leq \frac{2R}{\varepsilon}$$

Доказательство теоремы. Вспомним теорему Бэра о категориях (3.18): полное метрическое пространство нельзя представить как счётное объединение нигде не плотных множеств.

$$n\in\mathbb{N}, D_n=\{y\in Y:||y||\leq n\}$$

$$\Rightarrow U_\alpha^{-1}(D_n)-\text{замкнутое множество в }X,\alpha\in A$$

$$E_n=\bigcap_{\alpha\in A}U_\alpha^{-1}(D_n), E_n-\text{замкнутое}$$

Проверим, что $X = \bigcup_{n=1}^{\infty} E_n$

пусть
$$x \in X \Rightarrow \sup_{\alpha \in A} ||U_{\alpha}x|| < +\infty \Rightarrow \exists n \in \mathbb{N}$$

$$\sup_{\alpha \in A} ||U_{\alpha}x|| < n \Rightarrow x \in U_{\alpha}^{-1}(D_n) \, \forall \, \alpha \in A$$

$$\Rightarrow x \in E_n$$

$$X = \bigcup_{n=1}^{\infty} E_n, X$$
 — банахово, E_n — замкнутые \Rightarrow

по теореме Бэра о категориях

$$\exists n_0: \mathrm{Int}(E_{n_0}) \neq \varnothing, \text{ то есть}$$

$$\exists B_{\varepsilon}(a) \subset E_{n_0} = \bigcap_{\alpha \in A} U_{\alpha}^{-1}(D_{n_0}) \Rightarrow$$

$$U_{\alpha}(B_{\varepsilon}(a)) \subset D_{n_0} \text{ по лемме } \Rightarrow ||U_{\alpha}|| \leq \frac{2n_0}{\varepsilon} \, \forall \, \alpha \in A$$

Следствие 8.1 (Принцип фиксации особенности). X — банахово, Y — нормированное, $\{U_{\alpha}\}_{{\alpha}\in A}$, $U_{\alpha}\in \mathcal{B}(X,Y)$

пусть
$$\sup_{\alpha \in A} ||U_{\alpha}|| = +\infty \Rightarrow \exists x_0 \in X : \sup_{\alpha \in A} ||U_{\alpha}(x_0)|| = +\infty$$

Предлагается доказать следующее утверждение

Утверждение 8.1. В условиях следствия $E = \{x \in X : \sup_{\alpha \in A} ||U_{\alpha}x|| = +\infty\}$. Доказать, что

- 1. E всюду плотно в X
- 2. $X \setminus E$ множество первой категории

Определение 8.1 (сильный предел).

$$(X, ||\cdot||), (Y, ||\cdot||), \{U_n\}_{n=1}^{\infty}, U_n \in \text{Lin}(X, Y)$$

Если $\forall x \in X \lim_{n \to \infty} U_n x = U x$, то U - **поточечный** (или сильный) предел $\{U_n\}$. Обозначение U = s-lim U_n (s = strong)

Он хоть и сильный, но куда слабее сходимости по норме. Отметим простые свойства:

- 1. $U_n \in \text{Lin}(X, Y) \Rightarrow U \in \text{Lin}(X, Y)$
- 2. Если $U_n, U \in \mathcal{B}(X,Y), \lim_{n\to\infty} ||U-U_n|| = 0 \Rightarrow$

$$\lim_{n \to \infty} U_n x = U x \,\forall \, x \in X$$

(из сходимости по норме следует поточечная сходимость)

2.
$$||Ux - U_nx|| \le \underbrace{||U - U_n||}_{\to 0} \cdot ||x|| \Rightarrow \lim_{n \to \infty} U_nx = Ux$$

Замечание 8.1.
$$U = \operatorname{s-lim} U_n \not\Rightarrow \lim_{n \to \infty} ||U - U_n|| = 0$$

Пример, где поточечный предел существует и равен нулю, а предела по норме не существует

Пример 8.1.

$$X = l^1 = \left\{ x = \{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{C}, ||x||_1 = \sum_{n=1}^{\infty} |x_n| \right\}$$

$$f_n : l^1 \to \mathbb{C} \quad f_n \in (l^1)^* \quad f_n(x) = x_n, ||f_n|| = 1$$

$$x \in l^1 \Rightarrow \lim_{n \to \infty} x_n = 0 \Rightarrow \lim_{n \to \infty} f_n(x) = 0 \ \forall \ x \in l^1$$

$$\mathbb{C} = \text{s-lim} \ f_n, \text{ Ho } ||f_n - \mathbb{C}|| = \underbrace{||f_n||}_{\neq 0} = 1$$

Пример 8.2. H — сепарабельное гильбертово пространство, $\{e_n\}_{n=1}^{\infty}$ — ортонормированный базис.

$$x \in H, x = \sum_{k=1}^{\infty} (x, e_k) e_k$$
 $S_n(x) = \sum_{k=1}^n (x, e_k) e_k$ $\Rightarrow \forall x \in H \lim_{n \to \infty} S_n(x) = x, Ix = x \ \forall x \in H(I - \text{тождественный})$ $\Rightarrow I = \text{s-lim } S_n$ $(I - S_n)(e_{n+1}) = I(e_{n+1}) = e_{n+1} \Rightarrow ||I - S_n|| = 1$ $||I - S_n|| \not\longrightarrow 0$

Несмотря на то, что сильная сходимость слабее сходимости по норме, иногда оказывается, что сильный предел является непрерывным оператором.

Теорема 8.2.
$$(X, ||\cdot||)$$
 — банахово, $(Y, ||\cdot||)$ — нормированное $U_n \in \mathcal{B}(X, Y)$, пусть $U = \text{s-lim}\,U_n \Rightarrow$
$$U \in \mathcal{B}(X, Y), ||U|| \leq \underline{\text{lim}}\,||U_n|| \leq \sup_{n \in \mathbb{N}} ||U_n|| < +\infty$$

Доказательство. Собираемся изо всех сил использовать принцип равномерной ограниченности. $\forall x \exists \lim_{n \to \infty} U_n(x) \Rightarrow \sup_n ||U_n x|| < +\infty$. По принципу $\Rightarrow \sup_n ||U_n|| < +\infty$

пусть
$$b = \underline{\lim} ||U_n|| \Rightarrow \exists \{U_{n_k}\} : b = \underline{\lim}_{k \to \infty} ||U_{n_k}||$$

пусть $x \in X \Rightarrow Ux = \underline{\lim}_{k \to \infty} U_{n_k}(x) \Rightarrow$
 $||Ux|| = \underline{\lim}_{k \to \infty} ||U_{n_k}x|| \le \underline{\lim}_{k \to \infty} ||U_{n_k}|| \cdot ||x|| = b ||x|| \ \forall x \in X$
 $\Rightarrow U \in \mathcal{B}(X,Y), ||U|| \le b$

ГЛАВА 8. ПРИНЦИП РАВНОМЕРНОЙ ОГРАНИЧЕННОСТИ 143

Замечание 8.2. $U = \text{s-lim}\,U_n$, возможно $||U|| < \underline{\text{lim}}\,||U_n||$ Пример 8.3. $f_n: l^1 \to \mathbb{C}, f_n(x) = x_n, 0 = \text{s-lim}\,f_n, ||f_n|| = 1 \,\forall\, n. \, ||0|| = 0$

Теорема 8.3 (Банах-Штейнгауз, критерий существования сильного предела). X, Y — банахово, $\{U_n\}$, $U_n \in \mathcal{B}(X,Y)$. Для того чтобы существовал s-lim U_n , необходимо и достаточно

- 1. $\exists M > 0 : ||U_n|| < M \forall n \in \mathbb{N}$
- 2. $\exists E \subset X, E$ полное (то есть $\overline{\mathcal{L}(E)} = X$), и для него $\{U_n x\}$ фундаментальная для $\forall x \in E$

Существует множество вариантов этой теоремы, и все они по-своему полезные, поэтому у нас будет очень много замечаний потом

Доказательство. \Rightarrow пусть $U = \text{s-lim } U_n$, мы уже доказали, что $\sup_n ||U_n|| < +\infty$, а второе утверждение очевидно.

Пусть $x \in \mathcal{L}(E)$, то есть $x = \sum_{k=1}^{N} c_k x_k, c_k \in \mathbb{C}, x_k \in E$. Проверим, что для $x \in \mathcal{L}(E)$ U(x) — фундаментальная

$$||U_n(x) - U_m(x)|| \le \sum_{k=1}^N |c_k| \cdot ||U_n x_k - U_m x_k|| \Rightarrow \{U_n x\} -$$
фундаментальная

Пусть $x \in X$, проверим, что $\{U_n x\}_{n=1}^{\infty}$ фундаментальна

$$x \in X, \varepsilon > 0 \quad \exists \ z \in \mathcal{L}(E), ||x-z|| < \varepsilon$$

$$\exists \ N \in \mathbb{N} \ n, m > N \Rightarrow ||U_n z - U_m z|| < \varepsilon$$

$$||U_n x - U_m x|| \leq \underbrace{||U_n x - U_n z||}_{\leq ||U_n|| \cdot ||x-z|| \leq M\varepsilon} + \underbrace{||U_n z - U_m z||}_{\varepsilon} + \underbrace{||U_m z - U_m x||}_{\leq M\varepsilon}$$

$$< \varepsilon (2M+1) \Rightarrow \{U_n x\}_{n=1}^{\infty} \text{ фундаментальна}$$

$$Y \text{ банахово} \Rightarrow \exists \lim_{n \to \infty} U_n x \, \forall \ x \in X \Rightarrow \exists \ U = \text{s-lim} \ U_n$$

Замечание 8.3. 1. $\Rightarrow X$ — банахово, Y — нормированное (чтобы доказать вправо нам хватало только этих условий)

2. $\Leftarrow Y$ — банахово, X — нормированное (в обратную же сторону мы пользовались банаховостью Y)

ГЛАВА 8. ПРИНЦИП РАВНОМЕРНОЙ ОГРАНИЧЕННОСТИ 144

3. В условии 2 теоремы моэно сформулировать 2':

$$\exists E \subset X, \overline{\mathcal{L}(E)} = X, \exists \lim_{n \to \infty} U_n x$$

Заплатим жестокую цену за такую теорему: раньше U не было, оно появлялось, критерий существования всё-таки, а здесь же мы предположим сразу непрерывность этого U

Теорема 8.4 (Банах-Штейнгауз). X — банахово, Y — нормированное, $U_n \in \mathcal{B}(X,Y), U \in \mathcal{B}(X,Y)$ $U = \text{s-lim}\,U_n \Leftrightarrow$

1.
$$\sup_n ||U_n|| \le M < +\infty$$

2.
$$\exists E \subset X, \overline{\mathcal{L}(E)} = X, \forall x \in E \exists \lim_{n \to \infty} U_n x = U(x)$$

За счёт существования и непрерывности этого U можно будет распространить условие 2 на всё X, не используя банаховость Y (от нее мы и отказались).

 \mathcal{A} оказательство. \Rightarrow очевидно \Leftarrow

$$\forall\,x\in\mathcal{L}(E)\Rightarrow\,\exists\,\lim_{n\to\infty}U_nx\;(\text{очевидно}\;)$$
пусть $x\in X,\varepsilon>0\,\exists\,z\in\mathcal{L}(E),||x-z||<\varepsilon,\;\exists\,N:n\geq N\Rightarrow||Uz-U_nz||<\varepsilon$

вот в чём разница, вместо фундаментальности оцениваем такую разность

$$||Ux - U_nx|| \leq \underbrace{||Ux - Uz||}_{\leq ||U|| \cdot ||x - z|| \leq ||U||\varepsilon} + \underbrace{||Uz - U_nz||}_{\leq \varepsilon} + \underbrace{||U_nz - U_nx||}_{||U_n|| \cdot ||x - z|| \leq M\varepsilon}$$

мы тут сразу пользуемся тем, что U — непрерывный оператор и у него есть норма

$$\leq \varepsilon (1 + ||U|| + M) \Rightarrow \exists \lim_{n \to \infty} U_n x = Ux \, \forall x \in X$$

Маленькая историческая байка из серии «Мифы и легенды из жизни Банаха» о встрече Банаха и Штейнгауза. Банах чудесным образом родился, никто не знает его мать, имя ему досталось от отца Стефана

его крестили и оставили (Банах — это фамилия женщины, которая заботилась о нём с трехдневного возраста). В школе Банах интересовался только математикой, но рядом не оказалось никого, кто сказал бы ему идти на математический факультет, а ведь в Варшаве был хороший университет, преподавал там ученик Гаусса. В итоге Банах закончил что-то вроде политеха, издали интересовавшись математикой. И вот, началась первая мировая война, Банаха не взяли в армию, а Штейнгауза взяли, но потом отослали обратно.

Штейнгауз как-то шёл по улице и услышал, как 2 человека на скамейке что-то обсуждают, а доносятся от них умные слова типа «мера Лебега», Штейнгауз обратился к ним: «Предмет вашей учебной беседы настолько интересен!». И начал он им навешивать всякую математическую лапшу на уши. Через несколько дней Банах решил какую-то задачку, и Штейнгауз у себя на дому устраивает встречу математиков, они даже собирались организовать вчетвером краковское математическое общество, но сам он потом уехал во Львов, перетащил туда Банаха. Банах устроился работать в какой-то из университетов и стал ликвидировать свою математическую безграмотность. Штейнгауз же потом говорил, что главный его вклад в функциональный анализ — это открытие Банаха.

8.1. Применение принципа равномерной ограниченности к рядам Фурье

Пусть
$$f \in \widetilde{C}[-\pi,\pi]$$
. Волна означает $f(-\pi) = f(\pi)$
$$S_n(f,x) = \sum_{k=-n}^n c_k e^{ikx} = \int_{-\pi}^{\pi} f(t) D_n(x-t) dt \quad c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-ikt} dt$$
 где $D_n(u) = \frac{1}{2\pi} \sum_{k=-n}^n e^{iku} = \frac{1}{2\pi} \frac{\sin(\left(n + \frac{1}{2}\right)u)}{\sin\left(\frac{u}{2}\right)} -$ ядро Дирихле

если вместо f подставить e^{ikx} , то все члены в сумме, крмое одного, занулятся из-за ортогональности такой системы

$$S_n(e^{ikx})=e^{ikx}$$
 если $n\geq k\Rightarrow \lim_{n o\infty}S_n(e^{ikx})=e^{ikx}$ $If=f,I$ — тождественный в $\widetilde{C}[-\pi,\pi]$

при фиксированном к имеем

$$\lim_{n\to\infty}S_n(e^{ikx})=I(e^{ikx})=e^{ikx}\Rightarrow$$
 $\left\{e^{ikx}\right\}_{k\in\mathbb{Z}}$ — полная система в $\widetilde{C}[-\pi,\pi]$ по теореме Вейертршрасса
$$I(f)=\lim_{n\to\infty}S_n(f), \text{ при } f=e^{ikx} \text{ или } f\in\mathcal{L}e^{ikx}_{k\in\mathbb{Z}}$$

Теорема 8.5 (Лебег, 1906). $\exists f \in \widetilde{C}[-\pi, \pi]$ т.ч. $S_n(f, x)$ не сходятся равномерно, более того $\sup_n ||S_n(f, x)||_{\infty} = +\infty$ (Лебег, 1906)

Для доказательства будем применять следствия из принципа равномерной ограниченности. Если S_n вычислять на базисе e^{ikx} , то сходимость будет, но теорему Банаха-Штейнгауза нельзя применять, потому что нет ограниченности по норме оператора S_n

Доказательство. Проверим, что $\sup_n ||S_n||_{\mathcal{B}(\widetilde{C}[-\pi,\pi])} = \infty$

$$S_n(f,x) = \int_{-\pi}^{\pi} f(t)D_n(x-t)dt \quad S_n \in \operatorname{Lin}(\widetilde{C}[-\pi,\pi])$$
$$f \in \widetilde{C}[-\pi,\pi], x \in [-\pi,\pi]$$

мы уже вычисляли норму интегрального оператора в пространстве непрерывных функций

$$||S_n|| = \max_{x \in [-\pi,\pi]} \int_{-\pi}^{\pi} |D_n(x-t)| dt$$

цель ближайших вычислений: проверить, что при $n \to \infty$ норма стремится к ∞ . Сначала проверим, что она не зависит от x

$$\int_{-\pi}^{\pi} |D_n(x-t)| \, dt = [[\tau = x - t, d\tau = -dt]] = -\int_{x+\pi}^{x-\pi} |D_n(\tau)| \, d\tau =$$

$$[[D_n - 2\pi\text{-периодическая}]] = \int_{-\pi}^{\pi} |D_n(\tau)| \, d\tau = [[\text{чётная}]]$$

$$= \frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})\tau}{\sin(\frac{\tau}{2})} \, d\tau \ge \frac{2}{\pi} \int_0^{\pi} \frac{\left|\sin(n + \frac{1}{2})\tau\right|}{\tau} \, d\tau =$$

$$[[x \ge \sin x \quad v = \left(n + \frac{1}{2}\right)\tau \Rightarrow \frac{d\tau}{\tau} = \frac{dv}{v}]] =$$

$$= \frac{2}{\pi} \int_0^{(n + \frac{1}{2})\pi} \frac{\left|\sin v\right|}{v} \, dv \ge \frac{2}{\pi} \sum_{k=1}^n \int_{(k-1)\pi}^{k\pi} \frac{\left|\sin v\right|}{v} \, dv \ge$$

ГЛАВА 8. ПРИНЦИП РАВНОМЕРНОЙ ОГРАНИЧЕННОСТИ 147

про половинку намеренно забыли

$$[[v \in [(k-1)\pi, k\pi] \Rightarrow v \le k\pi \Rightarrow \frac{1}{v} \ge \frac{1}{k\pi}]]$$

$$\ge \frac{2}{\pi} \cdot \frac{1}{\pi} \sum_{k=1}^{n} \frac{1}{k} \ge \frac{2}{\pi^2} \sigma_n, \lim_{n \to \infty} \sigma_n = +\infty$$

$$x \in [k, k+1] \Rightarrow k \le x \Rightarrow \frac{1}{k} \ge \frac{1}{x} \Rightarrow \frac{1}{k} \ge \int_{k}^{k+1} \frac{dx}{x} \Rightarrow$$

$$\sigma_n = 1 + \dots + \frac{1}{n} \ge \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$

$$\Rightarrow ||S_n|| \ge \frac{2}{\pi^2} \ln n$$

как используем принцип фиксации особенности? Есть последовательность операторов S_n . При фиксированном f она стремится к $S_n(f)$. Мы оценили снизу норму и доказали, что она стремится к бесконечности. Если норма операторов не ограничена, то в нашем банаховом пространстве непрервных 2π -периодических функций найдется такой элемент, на котором норма не ограничена, значит там тем более не может быть равномерной сходиомсти.

Теорема 8.6 (Дю Буа Реймонд, 1886). Пусть
$$x_0 \in [-\pi, \pi] \Rightarrow \exists f \in \widetilde{C}[-\pi, \pi]$$
 т.ч. не $\exists \lim_{n \to \infty} S_n(f, x_0)$, более того $\sup_n |S_n(f, x_0)| = +\infty$

Доказательство. Вместо линейных операторов теперь рассмотрим линейные функционалы. x_0 — фиксирована, $S_n(f,x_0)$ — линейные функционалы. $S_n(f,x_0): \widetilde{C}[-\pi,\pi] \to \mathbb{C}$. Там же, где мы вычисляли норму интегрального оператора, мы вычисляли норму линейного функционала

$$S_n(f,x_0) = \int_{-\pi}^{\pi} f(t) D_n(x_0 - t) dt$$
 норма функционала $||S_n||_{(\widetilde{C}[-\pi,\pi])^*} = \int_{-\pi}^{\pi} |D_n(x_0 - t)| dt \stackrel{\mathrm{Jie 6er}}{=}$ $= ||S_n|| \geq \frac{2}{\pi^2} \ln n \Rightarrow \sup_n ||S_n(f,x_0)||_{(\widetilde{C}[-\pi,\pi])^*} = +\infty$

по принципу фиксации особенности

$$\Rightarrow \exists f \in \widetilde{C}[-\pi, \pi] : \sup_{n} |S_n(f, x_0)| = +\infty$$

Замечание 8.4. Пусть $E\subset [-\pi,\pi], E$ — счётное $\Rightarrow \exists f\in \widetilde{C}[-\pi,\pi] \forall x_0\in E \sup_n |S_n(f,x_0)|=+\infty$

Замечание 8.5.
$$\exists f \in L^1[-\pi,\pi] \ \forall x \in [-\pi,\pi] \ \text{не} \ \exists \lim_{n \to \infty} S_n(f,x)$$

Этот пример построил Колмогоров в 1926 году, а в 1923 построил такую функцию, у которой почти всюду не \exists lim. Колмогоров был учеником Лузина. А он предъявил такую гипотезу

Замечание 8.6 (Гипотеза Лузина, 1923). $f \in L^2[-\pi, \pi] \Rightarrow S_n(f, x) \to f(x)$ почти всюду на $[-\pi, \pi]$.

Шведский математик Карлесон в 22 года подумал улучшить пример Колмогорова. Поехал в Америку на семинар по тригонометрическим рядам, там рассказал Зигмунду, как собирается опровергать гипотизу Лузина. А тот его всячески поощрял. Весь мир тогда считал, что гипотеза неверна.

Вот он несколько лет мучился и подумал, что функция, которую он пытается построить, не существует. Так и оказалось. На международном математическом конгрессе в 1966 Карлесон показал, что гипотеза верна. Колмогоров вышел, пожал ему руку и сказал, что это главный результат математического анализа за весь XX век.

Лемма 8.2 (Риман-Лебег). $f \in L^1[-\pi, \pi]$

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx \Rightarrow \lim_{n \to \infty} c_n(f) = 0$$

 \mathcal{A} оказательство. Будем думать, что $c_n \in \operatorname{Lin}(L^1,\mathbb{C})$ — линейный функ-

 \Box

ГЛАВА 8. ПРИНЦИП РАВНОМЕРНОЙ ОГРАНИЧЕННОСТИ 149

ционал. При фиксированном $f c_n$ — конкретное число

$$f \in L^{1} \quad |c_{n}(f)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)| \, dx = \frac{1}{2\pi} \, ||f||_{1}$$

$$\Rightarrow c_{n} \in (L^{1})^{*}, ||c_{n}||_{(L^{1})^{*}} \leq \frac{1}{2\pi}$$

$$\left\{\chi_{[a,b)}\right\} \quad \text{полное семейство в } L^{1}[-\pi,\pi], -\pi \leq a < b \leq \pi$$

$$c_{n}(\chi_{[a,b)}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi_{[a,b)}(x) e^{-inx} dx = \frac{1}{2\pi} \int_{a}^{b} e^{-inx} dx =$$

$$= \frac{1}{2\pi} \frac{e^{-inb} - e^{-ina}}{-in} \Rightarrow$$

$$|c_{n}(\chi_{[a,b)})| \leq \frac{2}{2\pi n} = \frac{1}{\pi n} \xrightarrow[n \to \infty]{} 0$$

$$c_{n}(\chi_{[a,b)}) \longrightarrow \mathbb{O}(\chi_{[a,b)}) = 0 \Rightarrow$$

у нас есть ограниченность c_n (1) и сходимость c_n на полном множестве (2) к оператору \mathbb{O} , тогда по теореме Банаха-Штейнгауза (вариант 2)

$$\forall f \in L^1 \quad c_n(f) \xrightarrow[n \to \infty]{} 0$$

Глава 9

Теорема об открытом отображении

9.1. Обратные операторы

X,Y — нормированные пространства, $A\in {\rm Lin}(X,Y)$. Уравнение Ax=y, где y — дано, A — дан, x — неизвестное. Когда для $\forall\,y\in Y\;\exists\;!x\in X$ т.ч. Ax=y? Ответ очевиден: когда A — биекция, то есть $\exists\;A^{-1}$.

$$\{y_n\}_{n=1}^{\infty}$$
 $\lim_{n\to\infty} y_n = y$ $\exists !x_n : Ax_n = y_n$

Было бы хорошо, чтобы $x_n \xrightarrow[n \to \infty]{} x$, и ещё хорошо было бы, если Ax = y, то есть если бы A^{-1} был непрерывен. Когда же \exists непрерывный A^{-1} ? На самом деле, это вопрос, которым естественно интересовать.

Третий кит линейного функционального анализа будет как раз касаться обратных операторов. Понятно, что самый хороший оператор, который можно представить — это тождественный, у него есть обратный, это он сам и есть. Вопрос такой: насколько можно отодвинуться от тождественного оператора, чтобы он остался обратимым?

Теорема 9.1.

$$X$$
 — банахово , $Ix = x$, $\forall x \in X$ пусть $A \in \mathcal{B}(X)$, $||A|| < 1 \Rightarrow$ $\exists (I - A)^{-1} \in \mathcal{B}(X)$, при этом $(I - A)^{-1} = \sum_{k=0}^{+\infty} A^k \quad (A^0 = I)$ $||(I - A)^{-1}|| \leq \frac{1}{1 - ||A||}$

 \mathcal{A} оказательство. X — банахово $\Rightarrow \mathcal{B}(X)$ — банахово (мы уже отмечали, что множество непрерывных операторов из X в Y, где Y банахово, тоже будет банахово). Был у нас критерий полноты, поэтому проверим, что ряд из норм сходится

$$A, B \in \mathcal{B}(X) \Rightarrow ||AB|| \leq ||A|| \cdot ||B||$$
$$\Rightarrow ||A^k|| \leq ||A||^k \Rightarrow \sum_{k=0}^{+\infty} ||A^k|| \leq \sum_{k=0}^{+\infty} ||A||^k =$$

как геометрическая прогрессия из чисел меньше единицы

$$=\frac{1}{1-||A||}$$

есть банаховость, есть абсолютно сходящийся ряд, значит сходится и сам ряд

$$\Rightarrow \exists S = \sum_{k=0}^{+\infty} A^k, S \in \mathcal{B}(X)$$

заодно отметим, что мы получили такие неравенства

$$S_n = \sum_{k=0}^n A^k \Rightarrow ||S_n|| \le \frac{1}{1 - ||A||} \Rightarrow ||S|| \le \frac{1}{1 - ||A||}$$

проверим, что $S = (I - A)^{-1}$. Проверка будет ровно такая, как для суммы геометрической прогрессии

честно умножим
$$S_n(I-A) = (I+A+A^2+\ldots+A^n)(I-A) =$$

= $(I-A)+(A-A^2)+\ldots+(A^n-A^{n+1})=I-A^{n+1}$ (*)

$$\left| \left| A^{n+1} \right| \right| \le \left| \left| A \right| \right|^{n+1} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \lim_{n \to \infty} (I - A^{n+1}) = I \tag{**}$$

перейдем теперь в неравенстве (*) к пределу

$$\Rightarrow \lim_{n \to \infty} S_n(I - A) = S(I - A)[[$$
перейдем к пределу в (**)]] $\Rightarrow S(I - A) = I$

но для бесконечномерного пространства этого недостаточно. Чтобы было достаточно:

$$(I-A)S_n=[[$$
коммутируют как степени $A]]S_n(I-A)=I-A^{n+1}\Rightarrow$ при $n\to\infty$ $(I-A)S=I\Rightarrow S=(I-A)^{-1}$

теперь у нас есть AB = I, BA = I, значит, всё

Замечание 9.1. $\dim X < +\infty, \ A, B \in \mathcal{B}(X), AB = I \Rightarrow B = A^{-1}.$ Если $\dim X = +\infty$, то нет

Пример 9.1.

$$X = l^{2}, x = \{x_{n}\}_{n=1}^{\infty}, x_{n} \in \mathbb{C}, ||x||_{2} = \left(\sum_{n=1}^{\infty} |x_{n}|^{2}\right)^{\frac{1}{2}}$$
$$S(x) = (0, x_{1}, x_{2}, \dots) \quad ||S|| = 1, S \in \mathcal{B}(l^{2})(S - \text{shift})$$

рассмотрим оператор, который будет сдвигать в другую сторону, то есть x_1 он будет выбрасывать

$$T(x) = (x_2, x_3, x_4, \ldots), ||T|| = 1$$

и тут теперь важно, в какой последовательности мы применяем операторы

$$(TS)(x)=x\Rightarrow TS=I$$
 $\not\exists S^{-1}$ так как $S(l^2)\subsetneq l^2(S$ — не сюръекция) точно так же $\not\exists T^{-1}, T$ не инъективен

Так что когда речь идёт о бесконечномерном пространстве, мы не зря проверили, что $AB = I, BA = I \Rightarrow B = A^{-1}$.

Применим эту теорему для общего случая, но сначала будет удобно ввести определение

Определение 9.1. X, Y — нормированные

$$In(X,Y) = \{ A \in \mathcal{B}(X,Y) : \exists A^{-1} \in \mathcal{B}(Y,X) \}$$

Теорема 9.1 (множество обратимых операторов открыто). — банахово, Y — нормированное

$$A \in \text{In}(X,Y)$$

$$B \in \mathcal{B}(X,Y) \quad ||A - B|| < \frac{1}{||A^{-1}||} \Rightarrow B \in \text{In}(X,Y) \text{ и при этом}$$

$$||B^{-1}|| \le \frac{||A^{-1}||}{1 - ||A - B|| \cdot ||A^{-1}||} \tag{1}$$

$$||A^{-1} - B^{-1}|| \le \frac{||A - B|| \cdot ||A^{-1}||^2}{1 - ||A^{-1}||^2} \tag{2}$$

$$||A^{-1} - B^{-1}|| \le \frac{||A - B|| \cdot ||A^{-1}||^2}{1 - ||A - B|| \cdot ||A^{-1}||}$$
 (2)

2. $\varphi: \operatorname{In}(X,Y) \to \operatorname{In}(Y,X)$ $\varphi(A) := A^{-1} \Rightarrow \varphi$ непрерывное

1.

$$W := A^{-1}(A - B) \in \mathcal{B}(X)$$
$$||A^{-1}(A - B)|| \le ||A^{-1}|| \cdot ||A - B|| < 1$$

||W|| < 1 по теореме об обратимости оператора, близкого к тождественному

$$\Rightarrow \exists (I - W)^{-1}, ||(I - W)^{-1}|| \leq \frac{1}{1 - ||W||} \leq \frac{1}{1 - ||A^{-1}|| \cdot ||A - B||}$$

$$W = A^{-1}(A - B) = I - A^{-1}B \Rightarrow I - W = A^{-1}B$$

$$B = A \cdot (A^{-1}B), \ \exists A^{-1}, \ \exists (A^{-1}B)^{-1} \Rightarrow \ \exists B^{-1}$$

$$B^{-1} = (A^{-1}B)^{-1} \cdot A^{-1} \Rightarrow$$

$$||B^{-1}|| \leq ||(A^{-1}B)^{-1}|| \cdot ||A^{-1}|| \leq \frac{||A^{-1}||}{1 - ||A^{-1}|| \cdot ||A - B||}$$

$$(1)$$

Сейчас будет фантастический алгебраический трюк:

$$A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1} \Rightarrow$$

$$\left| \left| A^{-1} - B^{-1} \right| \right| \le \left| \left| A^{-1} \right| \cdot \left| B - A \right| \cdot \left| B^{-1} \right| \le \frac{\left| A - B \right| \cdot \left| A^{-1} \right|^2}{1 - \left| A^{-1} \right| \cdot \left| A - B \right|}$$
(2)

Замечание 9.2. Как мы можем истолковать первое утверждение?

$$B_{\frac{1}{||A^{-1}||}}(A) \subset \operatorname{In}(X,Y)$$

Как только есть обратимый оператор, тогда шарик с центром в этом операторе и таким радиусом будет лежать в множестве непрерывных операторов.

2.

$$\varphi(A) = A^{-1} \quad \varphi(B) = B^{-1}$$
$$||\varphi(A) - \varphi(B)|| = ||A^{-1} - B^{-1}|| \le \frac{||A - B|| \cdot ||A^{-1}||^2}{1 - ||A^{-1}|| \cdot ||A - B||}$$

а что такое непрерывность?

пусть
$$A$$
 фиксирован
$$\lim_{B\to A}||B-A||=0 \Rightarrow \lim_{B\to A}||\varphi(A)-\varphi(B)||=0 \Rightarrow$$
 \Rightarrow φ непрерывное

9.2. Открытые отображения

Определение касается только банаховых пространств, но дадим его в общем случае для произвольных топологических простанств

Определение 9.2 (открытое отображение). $(X, \tau_1), (Y, \tau_2)$ — топологические пространства. $U: X \to Y, U$ — отображение. U — открытое, если $\forall G \subset X, G$ — открытое $\Rightarrow U(G)$ — открыто в Y

Отметим, что в общем виде непрерывность с открытостью не связана.

Замечание 9.3. U — непрерывное, G — открытое \Leftrightarrow ($\forall G \subset Y \Rightarrow U^{-1}(G)$ открыт)

Из непрерывности не следует открытость!

Пример 9.2. $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x \Rightarrow f(-\pi, \pi) = [-1, 1], f$ не открытое

Пример 9.3. $f:[-\frac{\pi}{2},\frac{\pi}{2}]\to\mathbb{R},\, f$ — непрерывное, f — открытое, так как $\exists\, f^{-1}$ — непрерывное

Открытость отображения, если есть обратное, означает непрерывность обратного отображения. Так и отметим в общем виде

Рис. 9.1: Утверждение 9.1

Утверждение 9.1. $(X, \tau_1), (Y, \tau_2)$ — топологические пространства, $U: X \to Y, U$ — биекция U — открытое $\Leftrightarrow U^{-1}$ — непрерывно

Доказательство.

$$V \coloneqq U^{-1} \quad X \xrightarrow{U} Y \quad X \xleftarrow{V} Y$$

$$W = U(G)$$
 $G = V(W)$ $W = V^{-1}(G)$

U — открытое \Leftrightarrow (G — открыто \Rightarrow W = U(G) — открыто). V — непрерывно \Leftrightarrow (G — открыто \Rightarrow $V^{-1}(G) = W$ — открыт)

Утверждение 9.2 (критерий открытости линейного оператора). $(X, ||\cdot||, (Y, ||\cdot||))$ — нормированные. $U \in \text{Lin}(X, Y), U$ — открытое $\Leftrightarrow \exists \, r > 0 \, B_r^Y(0) \subset U(B_1^X(0))$ (то есть $0 \in \text{Int}(U(B_1(0)))$)

 $Доказательство. \Rightarrow$

U — открытое, U(0) = 0 из-за линейности, $B_1^X(0)$ — открытое \Rightarrow $U(B_1^X(0))$ — открытое. $0 \in U(B_1^X(0)) \Rightarrow \exists \, r > 0 \, B_r^Y(0) \subset U(B_1^X(0))$ \Leftarrow

Пусть $G \subset X, G$ — открытое, $x_0 \in G \Rightarrow$

$$\exists R > 0 \quad B_R^X(x_0) \subset G$$

поскольку отображение линейное, можем 1 поменять на R в том, что нам дано

$$\Rightarrow B_{rR}^Y(0) \subset U(B_R^X(0))$$

Проверим, что $U(x_0)$ — внутренняя точка U(G)

$$\underbrace{U(x_0) + B_{rR}^Y(0)}_{=B_{rR}^Y(U(x_0))} \subset U(x_0) + U(B_R^X(0)) =$$

$$= U(B_R(x_0)) \subset U(G)$$

Перед тем, как доказывать главную теорему, ещё одно утверждение

Утверждение 9.3 (необходимое условие открытости линейного оператора). $(X, ||\cdot||), (Y, ||\cdot||)$ нормированные

$$U \in \text{Lin}(X,Y), U$$
 — открытое $\Rightarrow U(X) = Y$

 $\ensuremath{\mathcal{A}}$ оказать, что любой элемент из Y покрывается образом какого-то шара.

$$\exists \, r>0 \ B_r^Y(0) \subset U(B_1^X(0)) \Rightarrow B_{rn}^Y(0) \subset U(B_n^X(0)), n \in \mathbb{N}$$
 пусть $y \in Y \Rightarrow \exists \, n \in \mathbb{N} : ||y|| < nr \Rightarrow$
$$y \in B_{rn}(0) \subset U(B_n^X(0)) \subset U(X)$$

При каких-то обстоятельствах это необходимое условие оказывается иногда и достаточным.

Вот и кит №3.

Теорема (Банах, об открытом отображении).
$$(X,||\cdot||),(Y,||\cdot||)$$
 — банаховы, $U\in\mathcal{B}(X,Y)$. Если $U(X)=Y,$ то U — открытое

Почему это кит? Потому что это очень полезный факт, на который постоянно хочется ссылаться.

Доказательство будет в 2 этапа. Сначала докажем лемму

Лемма 9.1 (Редукция). X — банахово, Y — нормированное, $U \in \mathcal{B}(X,Y)$. Пусть $\exists \, r > 0, B_r^Y(0) \subset \overline{U(B_1^X(0))}$ (замыкание) $\Rightarrow B_{\frac{r}{2}}^Y(0) \subset U(B_1^X(0))$

Доказательство леммы. Поскольку U — линейное, то мы можем умножать на любую константу.

$$\forall\,k\in\mathbb{N}\quad B^Y_{\frac{r}{2^k}}(0)\subset\overline{U(B^X_{\frac{1}{2^k}}(0))}$$
пусть $y\in Y,||y||<\frac{r}{2}$

Построим x, ||x|| < 1 т.ч. Ux = y. Будем его строить постепенно, сначала x_1, x_2, \ldots , и их сумма даст нам x

$$y \in B_{\frac{r}{2}}^{Y}(0) \subset \overline{U(B_{\frac{1}{2}}^{X}(0))} \Rightarrow \exists x_{1}, ||x_{1}|| < \frac{1}{2}$$

$$||y - U(x_{1})|| \text{ может быть меньше, чем всё, что угодно, мы возьмём } \frac{r}{4}$$

$$||y - U(x_{1})|| < \frac{r}{4}, y - Ux_{1} \in B_{\frac{r}{4}}^{Y}(0) \subset \overline{U(B_{\frac{1}{4}}^{X}(0))}$$

$$\Rightarrow \exists x_{2}, ||x_{2}|| < \frac{1}{4}, ||y - Ux_{1} - Ux_{2}|| < \frac{r}{2^{3}} \text{ и так далее}$$

$$\{x_{k}\}_{k=1}^{\infty}, ||x_{k}|| < \frac{1}{2^{k}}, ||y - Ux_{1} - \ldots - Ux_{k}|| < \frac{r}{2^{k+1}}$$

$$\sum_{k=1}^{\infty} ||x_{k}|| < 1, [[\text{ банаховость X}]] \Rightarrow$$

$$\exists x = \sum_{k=1}^{\infty} x_{k}, x \in X, ||x|| < 1$$

$$S_{n} = \sum_{k=1}^{n} x_{k} \quad \lim_{n \to \infty} S_{n} = x$$

$$\lim_{n \to \infty} ||y - US_{n}|| = 0 \Rightarrow y = Ux, (U - \text{ непрерывный})$$

Доказательство теоремы.

$$B=B_1^X(0) \quad X=\bigcup_{n=1}^\infty nB, U(X)=Y\Rightarrow Y=\bigcup_{n=1}^\infty U(nB)$$
 Y — банахово [[т. Бэра о категориях]] $\Rightarrow \exists \, n_0: \mathrm{Int}(\overline{U(n_0B)})\neq\varnothing$ U — линейный $\Rightarrow \exists \, y_0\in \mathrm{Int}(\overline{U(B)})\Rightarrow$ $\exists \, r>0 \, B_r(y_0)\subset \overline{U(B)}$

чтобы воспользоваться леммой, нам нужно заменить y_0 на 0

пусть
$$z\in Y, ||z||< r, y_0+z\in \overline{U(B)}$$
 B — симметричное множество, т.е. $x\in B\Rightarrow -x\in B\Rightarrow$ $\overline{U(B)}$ — симметричное, т.е. $y_0\in \overline{U(B)}\Rightarrow -y_0\in \overline{U(B)}$ $z=(y_0+z)+(-y_0)\in \overline{U(B)}+\overline{U(B)}\subset \overline{U(2B)}$ $\Rightarrow B_r^Y(0)\subset \overline{U(2B)}\Rightarrow B_{\frac{r}{2}}^Y\subset \overline{U(B)}$ [[лемма о редукции]] $\Rightarrow B_{\frac{r}{4}}^Y(0)\subset U(B)$ [[критерий открытости]] \Rightarrow U открыт

Особенно часто применяется следствие, когда U — биекция

Теорема (Банах, об обратном отображении). X,Y — банаховы, $U \in \mathcal{B}(X,Y), U$ — биекция \Rightarrow

$$U^{-1} \in \mathcal{B}(Y,X)$$
 (то есть U^{-1} непрерывен)

Доказывать нечего. Мы уже показали, что открытость отображения эквивалентна непрерывности обратного. Эта теорема нам пригодится, когда будем говорить о спектрах.

Теперь некоторые приложения.

9.3. Теорема об эквивалентных нормах и о замкнутом графике

Когда мы говорили о нормах, нам обещалась некоторая сногсши-бательная теорема, которую мы сейчас и докажем.

Теорема 9.2. X — линейное пространство, \exists две нормы на X, т.ч. $(X, ||\cdot||_1), (X, ||\cdot||_2)$ — банаховы. Пусть $\exists C > 0: ||x||_2 \le C ||x||_1 \, \forall x \in X$. Как бы это не могло показаться чудовищно странным, но существует и оценка в другую сторону

$$\Rightarrow \exists c_1 > 0 : ||x||_1 \le c_1 ||x||_2 \ \forall x \in X$$

Доказательство. Как мы уже делали, когда рассматривали 2 пространства с эквивалентными нормами, рассмотрим $X=(X,||\cdot||_1),Y=(X,||\cdot||_2)$

 $Ix=x,I\in \mathrm{Lin}(X,Y),I$ — биекция $\Rightarrow ||Ix||_2\leq C\,||x||_1\Rightarrow I\in\mathcal{B}(X,Y),||I||\leq C$ [[т. Банаха об обратном отображении]] $\Rightarrow I^{-1}\in\mathcal{B}(Y,X)\Rightarrow ||x||_1\leq c_1\,||x||_2\;\forall\,x\in X$

X,Y — нормированные над $\mathbb{C}(\mathbb{R})$. $X \times Y$ — линейное нормированное

$$(x,y) + (x_1,y_1) = (x + x_1, y + y_1), \lambda(x,y) = (\lambda x, \lambda y), \lambda \in \mathbb{C}$$

 $||(x,y)||_{X \times Y} = ||x||_X + ||y||_Y$

Определение 9.3 (график).

$$U:X\to Y, U$$
— отображение $G_U=\left\{(x,Ux)\right\}_{x\in X}$ — график U

U — замкнутое отображение, если G_U — замкнутое множество

$$\Leftrightarrow \left(\lim_{n \to \infty} (x_n, Ux_n) = (x_0, y_0) \Rightarrow y_0 = Ux_0\right) \Leftrightarrow$$

$$\lim_{n \to \infty} x_n = x_0$$

$$\lim_{n \to \infty} Ux_n = y_0$$

$$\Rightarrow y_0 = Ux_0$$

Посмотрим, как связаны замкнутость и непрерывность. Мы убедимся, что замкнутость это более слабое утверждение, чем непрерывность.

Замечание 9.4. U — непрерывное $\Rightarrow U$ — замкнутое

$$1. \lim_{n \to \infty} x_n = x_0$$

$$2. \lim_{n \to \infty} Ux_n = y_0$$

3.
$$Ux_0 = y_0$$

U непрерывен $\Leftrightarrow 1 \Rightarrow 2+3; U$ замкнутое $\Leftrightarrow 1+2 \Rightarrow 3$

Есть множество примеров, где проверка замкнутости гораздо легче проверки непрерывности. И бывает иногда удобно, что эти условия равносильны.

Теорема (о замкнутом графике).
$$X,Y$$
 — банаховы, $U \in \mathrm{Lin}(X,Y), U$ — замкнут $\Rightarrow U$ непрерывен

Доказательство. $(X,||\cdot||_X),(Y,||\cdot||_Y).$ Новая норма на $X:||x||_1=||x||_X+||Ux||_Y.$ Аксиомы нормы очевидны.

Проверим, что $(X, ||\cdot||_1)$ — банахово по определению

$$\{x_n\}_{n=1}^{\infty}$$
 фундаментальная в $(X_1, ||\cdot||_1)$, то есть
$$\underbrace{||x_m - x_n||_1}_{m,n \to \infty} = ||x_m - x_n||_X + ||Ux_m - Ux_n||_Y$$
 $\Rightarrow \lim_{m,n \to \infty} ||x_m - x_n||_X = 0$ $\Rightarrow \lim_{m,n \to \infty} ||Ux_n - Ux_m||_Y = 0$

Имеем дело с фундаментальными последовательностями в банаховом пространстве

$$\lim_{m,n\to\infty} ||Ux_m - Ux_n||_Y = 0 \Rightarrow \exists y_0 \in Y \lim_{n\to\infty} Ux_n = y_0$$

$$\Rightarrow Ux_0 = y_0 \Rightarrow$$

$$\lim_{n\to\infty} (||x_n - x_0||_X + ||Ux_n - Ux_0||_Y) = 0$$

$$\Rightarrow (X, ||\cdot||_1) - \text{банахово}$$

$$\Rightarrow ||x||_X \leq ||x||_X + ||Ux||_Y = ||x||_1$$
[[теорема об эквивалентных нормах]] \Rightarrow

$$\exists C > 0 \quad ||x||_X + ||Ux||_Y \leq C ||x||_X \Rightarrow ||Ux||_Y \leq C ||x||_X \Rightarrow U \in \mathcal{B}(X, Y)$$

Естественно, требуются примеры, когда есть замкнутость, но нет непрерывности.

Замечание 9.5. X,Y — нормированные, $U \in \text{Lin}(X,Y), U$ — замкнутый $\not\Rightarrow U$ — непрерывный.

У нас было не так много не непрерывных операторов: например, оператор дифференцирования, им и воспользуемся.

Пример 9.4.

$$D(f)=f',Y=C[-1,1],X\subset Y,X=\{f:f'\in C[-1,1]\}$$

$$||f||_X=||f||_Y=\max_{x\in [-1,1]}|f(x)|$$

$$D(x^n)=nx^{n-1},||D(x^n)||=n,||x^n||=1\Rightarrow \sup_{||f||=1}||D(f)||=+\infty$$

$$\Rightarrow D \text{ не непрерывен}$$

это воспоминание о не непрерывности. Почему же он замкнут?

$$\{f_n\}_{n=1}^{\infty}, f_n \in X, f_n \xrightarrow{X} f, D(f_n) \xrightarrow{Y} g \stackrel{?}{\Rightarrow} [[\text{ замкнутость }]]D(f) = g$$

когда-то в анализе доказали

$$\begin{cases}
 f_n & \Longrightarrow f \\
 f_n' & \Longrightarrow g \\
 f_{n-1,1}' & \Longrightarrow g
 \end{cases}$$
 $\Rightarrow g = f'$, то есть $D(f) = g \Rightarrow D$ замкнут

Теорему о замкнутости графика нельзя применять, потому что X — не полное. Более того, $\overline{X} = Y$

9.4. Примеры неограниченных операторов в банаховом пространстве

Заодно ещё раз вспомним лемму Цорна, чтобы вы не думали, что это была экзотика для доказательства теоремы Хана-Банаха, а вполне рабочий инструмент, когда мы хотим построить максимальный элемент в бесконечных множествах, где обычная индукция не помогает.

Определение 9.4 (алгебраический базис). X — линейное пространств над \mathbb{C} (или \mathbb{R}). $\{x_{\alpha}\}_{\alpha\in A}$ — алгебраический базис (базис Гамеля), если $\forall x, x = \sum_{j=1}^n c_j x_{\alpha_j}$ такое представление единственно

Раньше у нас были ряды, а тут только конечные линейные комбинации. В конечномерном пространстве разницы с предыдущим определением базиса нет. Но в бесконечномерных пространствах нет надежды, что мы хотя бы счётное представление сможем предъявить.

Теорема 9.3. X — линейное пространство \Rightarrow в X \exists базис Гамеля.

Доказательство. План такой: мы возьмём максимальное линейнонезависимое множество и назовём его максимальным элементом, потом применим лемму Цорна. Когда мы говорим о линейной независимости, речь идёт только о конечных комбинациях

$$\mathcal{P}=\{Y:Y\subset X,Y$$
 — линейно независимое $\}$ порядок $Y\leq Z,$ если $Y\subset Z,$ $Y,Z\in\mathcal{P}$

для того, чтобы применить лемму Цорна, нужно установить, что в любом линейно упорядоченном множестве есть верхняя грань

$$\{Y_{\alpha}\}_{\alpha\in A}$$
 — линейно упорядоченное множество, то есть $\forall\,\alpha,\beta$ либо $Y_{\alpha}\subset Y_{\beta}$ или $Y_{\beta}\subset Y_{\alpha}$
$$Y_{0}=\bigcup_{\alpha\in A}Y_{\alpha}\Rightarrow Y_{0}$$
— верхняя грань для $\{Y_{\alpha}\}_{\alpha\in A}$ [[лемма Цорна]] \Rightarrow в \mathcal{P} \exists максимальный элемент Z

проверим, что $\mathcal{L}(Z)=X$. Допустим $\exists \, x_0 \in X \setminus \mathcal{L}(Z)$

$$Y=x_0\cup Z\Rightarrow Y\subset \mathcal{P}, Z\leq Y, Z\neq Y$$
 противоречие $\Rightarrow Z$ — базис Гамеля

С помощью этого базиса построим примеры, если их вообще можно назвать примерами, ведь они будут совсем-совсем неявными.

Пример 9.5. X — банахово, $\dim X = \infty$, пусть $\{x_{\alpha}\}_{{\alpha}\in A}$ — базис Гамеля

$$\{\lambda_{\alpha}\}_{{\alpha}\in A}, \lambda_{\alpha}\in \mathbb{C} \quad \sup_{{\alpha}\in A} |\lambda_{\alpha}| = +\infty$$

$$U: X \to X, U(x_{\alpha}) = \lambda_{\alpha} \cdot x_{\alpha}$$

по линейности продолжим

$$x \in X \Rightarrow x = \sum_{j=1}^{n} c_j x_{\alpha_j} \quad U(x) = \sum_{j=1}^{n} c_j \lambda_{\alpha_j} x_{\alpha_j}$$
$$U \in \operatorname{Lin}(X), \sup_{\alpha \in A} \frac{||U(x_\alpha)||}{||x_\alpha||} = \sup_{\alpha \in A} |\lambda_\alpha| = +\infty \Rightarrow U \notin \mathcal{B}(X)$$

Пример не очень явный, но, тем не менее, вот такие ужасы. Теперь пусть будет не непрерывный линейный функционал.

Пример 9.6. X — банахово, $\{x_{\alpha}\}_{\alpha\in A}$ — базис Гамеля, $\{\lambda_{\alpha}\}_{\alpha\in A}$, $\sup_{\alpha\in A}|\lambda_{\alpha}|=+\infty$

$$f: X \to \mathbb{C}$$
 $f(x_{\alpha}) = \lambda_{\alpha} \cdot ||x_{\alpha}||$

продолжим по линейности

$$\Rightarrow f \in \operatorname{Lin}(X,\mathbb{C}), \sup_{\alpha} \frac{|f(x_{\alpha})|}{||x_{\alpha}||} = +\infty \Rightarrow f \notin X^{*}$$

Чуть-чуть более явный пример

Пример 9.7.

$$l^{2}, \{e_{n}\}_{n=1}^{\infty}, e_{n} = (0, \dots, 0, \underbrace{1}_{n}, 0, \dots)$$

можем строить базис Гамеля, который содержит фиксированное линейно независимое множество, но предъявить базис мы не надеемся

$$\mathcal{P} = \left\{Y \subset l^2, E = \{e_n\}_{n=1}^\infty, E \subset Y, Y \text{— линейно независимое}\right\}$$
 \exists максимальный элемент
$$\left\{e_\alpha\right\}_{\alpha \in A} \text{— базис Гамеля}$$
 $\mathbb{N} \subset A, \lambda_n = n, \text{ то есть}$
$$f(e_n) = n, f(e_\alpha) = \lambda_\alpha, \lambda_\alpha \in \mathbb{C}, \lambda_\alpha \text{— любое}$$

$$\sup_{n} |f(e_n)| = +\infty \Rightarrow f \notin (l^2)^* \text{ при } \alpha \neq n$$

Глава 10

Сопряжённые пространства

10.1. Сопряженное пространство к L^p

На самом деле, в этой части всё докажем только для l, для L только простую часть.

Напоминание о том, что мы думаем о мерах: (X,U,μ) — пространство с мерой, μ — σ -конечная, то есть $X=\bigcup_{j=1}^{\infty}X_j, \mu(X_j)<+\infty$. μ — полная мера, то есть если $A\subset U, \mu A=0$, то $\forall\, B\subset A\Rightarrow B\in U, \mu(B)=0$

Теорема 10.1 (сопряженное к $L^p(X, U, \mu)$). 2 случая, во втором очень важно, что бесконечность не включается!

1.
$$1 \le p \le +\infty$$

$$g\in L^q(X,\mu)\quad \frac{1}{p}+\frac{1}{q}=1$$

$$g-$$
 фиксирована, $h\in L^p, F_g(h):=\int_X h(x)g(x)d\mu\Rightarrow F_g\in (L^p)^*$
$$||F_g||=||g||_{L^q}$$

2.
$$1 \leq p < +\infty, \, F \in (L^p)^* \Rightarrow \, \exists \, !g \in L^q$$
 т.ч. $F = F_g$

1 утверждение. Ну тут совсем легко. $F_g \in \mathrm{Lin}(L^p,\mathbb{C})$ — очевидно, просто потому что интеграл — линейное действие. Теперь, как его оценить?

$$g\in L^q, h\in L^p, |F_g(h)|=\left|\int_X hgd\mu
ight|\leq \left[\left[\ \Gamma$$
ельдер $\left.
ight]
ight]|h||_p\left|\left|g
ight||_q\ orall\ h\in L^p$

мы уже отмечали, что неравенство верно даже для бесконечных p и q

$$\Rightarrow F_g \in (L^p)^*, ||Fg|| \le ||g||_q$$

чтобы получить неравенство в другую сторону, предъявим так называемую пробную функцию, на которой будет выполняться неравенство. Пусть сначала 1

$$U(x) \coloneqq egin{cases} rac{\overline{g(x)}}{|g(x)|} \left| g(x)
ight|^{q-1} & g(x)
eq 0 \\ 0 & g(x) = 0 \end{cases}, \overline{g(x)}$$
 — комплексное сопряжение

Проверим, что $U \in L^p$, чтобы к ней применять что-то

$$|U(x)|^{p} = |g(x)|^{p(q-1)} = [[(q-1)p = q\left(1 - \frac{1}{q}\right)p = q \cdot \frac{1}{p} \cdot p = q]] = |g|^{q}$$

$$\Rightarrow \left(\int_{X} |U|^{p} d\mu\right)^{\frac{1}{p}} = \left(\int_{X} |g|^{q} d\mu\right)^{\frac{1}{p}} \Rightarrow U \in L^{p}$$

значит, мы имеем право вычислять

$$F_g(U) = \int_X g(x) \frac{\overline{g(x)}}{|g(x)|} |g(x)|^{q-1} d\mu = \int_X |g|^q d\mu = ||g||_q^q$$

$$||F_g|| = \sup_{h \in L^p, h \neq 0} \frac{||F_g(h)||}{||h||_p} \ge \frac{|F_g(U)|}{||U||_p} = \frac{||g||_q^q}{||g||_q^{\frac{q}{p}}} = ||g||_q^{q-\frac{q}{p}} = ||g||_q$$

$$\Rightarrow ||F_g|| \ge ||g||_q \Rightarrow ||F_g|| = ||g||_{L^q}$$

Теперь пусть $p=1, q=\infty.$ Опять хотим оценить снизу норму линейного функционала

если
$$||g||_{\infty} = 0$$
, то $g = 0$ п.в. $\Rightarrow F_g = 0$, $||F_g|| = 0$ пусть $||g||_{\infty} > 0$, пусть $c > 0$ $||g||_{\infty} > c > 0$ $A = \{x \in X : |g(x)| \ge c\} \Rightarrow +\infty > \mu(A) > 0$

Вот, наконец, где нам потребуется σ -конечность. Почему вообще существует такое множество A?

пусть
$$e \subset A, 0 < \mu e < +\infty$$
 т.к. $X = \bigcup_{j=1}^{\infty} X_j, \mu(X_j) < +\infty$ $\Rightarrow A = \bigcup_{j=1}^{\infty} (A \cap X_j), e_j = A \cap X_j \Rightarrow \mu e_j < +\infty, \text{ если бы } \mu e_j = 0 \forall j, \text{ то } \mu A = 0$ $\Rightarrow \exists \ e = e_j \quad 0 < \mu e < +\infty, e \subset A$ $U(x) = \frac{\overline{g(x)}}{|g(x)|} \chi_e(x) \Rightarrow ||U||_{\infty} = 1$
$$F_g(U) = \int_X g(x) \frac{\overline{g(x)}}{|g(x)|} \chi_e(x) d\mu = \int_e |g(x)| \, d\mu \ge c\mu(e)$$
 $U \in L^1, ||U||_1 = \int_X |U(x)| \, d\mu = \int_e d\mu = \mu(e)$ $||F_g|| \ge \frac{|F_g(U)|}{||U||_1} \ge \frac{c\mu(e)}{\mu(e)} = c \ \forall \ c, 0 < c < ||g||_{\infty}$ $\Rightarrow ||F_g|| \ge ||g||_{\infty}$

Вторая, главная часть, без доказательства. Разве что скажем пару слов про единственность

$$F_g=F_v\Rightarrow F_{g-v}=0\Rightarrow \int_X h(gv)d\mu=0\ \forall\ h\in L^p$$

$$||F_{g-v}||=||g-v||_p=0\Rightarrow g=v\ \text{п.в., To есть }g=v\ \text{в }L^p$$

Для доказательства второй части нам не хватает одной теоремы из теории меры, а именно теоремы Никодима, который как раз сидел с Банахом на лавочке, когда мимо них проходил Штейнгауз, но у нас нет времени её доказывать.

Теорема (Сопряжённое пространство к l^p). 2 случая, во втором очень важно, что бесконечность не включается!

1.

$$1 \leq p \leq +\infty, y = \{y_n\}_{n=1}^{\infty}, y \in l^q, y$$
 — фиксирован $x = \{x_n\}_{n=1}^{\infty} \in l^p$ $F_y(x) \coloneqq \sum_{n=1}^{\infty} x_n y_n \Rightarrow F_y \in (l^p)^*$ $||F_y|| = ||y||_q$

2.
$$1 \le p < +\infty, F \in (l^p)^* \implies \exists ! y \in l^q : F = F_y$$

1 утверждение.

$$F_y \in \operatorname{Lin}(l^p, \mathbb{C})$$
 $|F_y(x)| = \left|\sum_{n=1}^{\infty} x_n y_n\right| \leq \left[\left[\text{ Гельдер } \right]\right] ||x||_p ||y||_q \Rightarrow F_y \in (l^p)^*, ||F_y|| \leq ||y||_q$

2 утверждение.

$$F \in (l^p)^*, 1 \leq p < +\infty, \{e_n\}_{n=1}^{\infty}$$
 — базис в $l^p, 1 \leq p < +\infty$ $e_n = (0, \dots, 0, \underbrace{1}_n, 0, \dots)$ $y_n \coloneqq F(e_n)$ $x \in l^p \Rightarrow x = \sum_{n=1}^{\infty} x_n e_n, S_n = \sum_{k=1}^n x_k e_k$ $\lim_{n \to \infty} S_n = x \Rightarrow [[F \text{ непрерывен }]] \lim_{n \to \infty} F(S_n) = F(x)$ $F(S_n) = \sum_{k=1}^n x_k y_k \Rightarrow F(x) = \sum_{k=1}^{\infty} x_k y_k \Rightarrow F = F_y$

осталось проверить 2 вещи: $y \in l^q$ и $||F|| \ge ||y||_q$. Пробные последовательности, которые мы будем брать тут, будут напоминать пробные функции, которые мы брали в предыдущей теореме

$$n \in \mathbb{N} \quad x^{(n)} = \sum_{k=1}^{n} \frac{\overline{y_k}}{|y_k|} |y_k|^{q-1} e_k \text{ при } 1
$$||x^{(n)}||_p = \left(\sum_{k=1}^{n} |y_k|^{(q-1)p}\right)^{\frac{1}{p}} = \left(\sum_{k=1}^{n} |y_k|^q\right)^{\frac{1}{p}}$$

$$F(x^{(n)}) = \sum_{k=1}^{n} y_k \cdot \frac{\overline{y_k}}{|y_k|} \cdot |y_k|^{q-1} = \sum_{k=1}^{n} |y_k|^q$$$$

как обычно, когда вычисляем норму линейного функционала

$$||F|| \geq \frac{\left|F(x^{(n)})\right|}{||x^{(n)}||_p} = \frac{\sum_{k=1}^n |y_k|^q}{\left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{p}}} = \left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}} \ \forall \, n \in \mathbb{N}$$

$$\Rightarrow y \in l^q, ||F|| \geq ||y||_q$$
 если $p = 1, q = \infty, ||F|| \geq |F(e_n)| = |y_n| \ \forall \, n \Rightarrow y \in l^\infty$
$$||F|| \geq ||y||_\infty$$

Это замечание нужно было сделать про L^p , но сделаем его тогда сразу и для l^p

Замечание 10.1.

$$1 \le p \le +\infty$$

$$T: l^q \to (l^p)^* \quad y \in l^q$$

$$T(y) = F_y$$

Если $1 \le p < +\infty$, то T — линейный изометрический изоморфизм. Говорят $(l^p)^* = l^q$, а имеют в виду $T(l^q) = (l^p)^*$

$$p=\infty, T(l^1) \subsetneq (l^\infty)^*$$
 T — изометрическое вложение

To же самое для L^p :

$$(X, U, \mu), T: L^q \to (L^p)^* \quad T(g) = F_q$$

Если $1 \le p < +\infty, T$ — линейный изометрический изоморфизм. Говорят $(L^p)^* = L^q$. Если $p = \infty, T(L^1) \subsetneq (L^\infty)^*$ — изометрическое вложение

Вспомним, что такое c_0

Теорема 10.2 (сопряжённое к c_0).

$$c_0 = \left\{ x = \left\{ x_n \right\}_{n=1}^{\infty}, x_n \in \mathbb{C}, \ \exists \ \lim_{n \to \infty} x_n = 0 \right\}, c_0 \subset l^{\infty}$$

1. $y \in l_1, y$ — фиксирован, $x \in c_0$

$$F_y(x) = \sum_{n=1}^{\infty} x_n y_n \Rightarrow F_y \in (c_0)^*, ||F_y|| = ||y||_1$$

2.
$$F \in (c_0)^* \Rightarrow \exists ! y \in l^1 \text{ r.e. } F = F_y$$

1 утверждение.

$$|F_y(x)| = \left| \sum_{n=1}^{\infty} x_n y_n \right| \le \sup_{n \in \mathbb{N}} |x_n| \sum_{n=1}^{\infty} |y_n| = ||x||_{\infty} ||y||_1$$

$$\Rightarrow F_y \in (c_0)^*, ||F_y|| \le ||y||_1$$

Это повторение доказательства для l^p где $p=\infty$

2 утверждение.

$$F \in (c_0)^* \quad \{e_n\}_{n=1}^{\infty} \, - \,$$
базис в $c_0, e_n = (0, \dots, 0, \underbrace{1}_n, 0, \dots)$ $y_n \coloneqq F(e_n) \quad x \in c_0, x = \sum_{n=1}^{\infty} x_n e_n \quad S_n = \sum_{k=1}^n x_k e_k$ $\lim_{n \to \infty} S_n = x, F \, - \,$ непрерывный $\Rightarrow \lim_{n \to \infty} F(S_n) = F(x)$ $F(S_n) = \sum_{k=1}^n x_k y_k \Rightarrow F(x) = \sum_{k=1}^\infty x_k y_k \Rightarrow F = F_y$

остатаётся понять, что $y \in l^1$

$$x^{(n)} = \sum_{k=1}^{n} \frac{\overline{y_k}}{|y_k|} e_k \Rightarrow x^{(n)} \in c_0 \quad \left| \left| x^{(n)} \right| \right|_{\infty} = 1$$

$$\Rightarrow F(x^{(n)}) = \sum_{k=1}^{n} y_k \frac{\overline{y_k}}{|y_k|} = \sum_{k=1}^{n} |y_k|$$

$$||F|| \ge \left| F(x^{(n)}) \right| = \sum_{k=1}^{n} |y_k| \quad \forall n \in \mathbb{N} \Rightarrow y \in l^1$$

$$||F|| \ge ||y||_1 \Rightarrow ||F|| = ||y||_1$$

Замечание 10.2.

 $y \in l^1, T : l^1 \to (c_0)^*$ $T(y) = F_y$

T — линейный изометрический изоморфизм

Говорят $(c_0)^* = l^1$

$$c = \left\{ x = \left\{ x_n \right\}_{n=1}^{\infty}, \ \exists \lim_{n \to \infty} x_n = x_0 \right\}$$

Упражнение:

Утверждение 10.1. требуется доказать

1.
$$y = \{y_n\}_{n=0}^{+\infty} \in l^1 \Rightarrow F_y(x) = \sum_{n=0}^{+\infty} x_n y_n, F_y \in (c)^*$$

2.
$$F \in (c)^* \Rightarrow \exists ! y \in l^1, y = \{y_n\}_{n=0}^{+\infty} : F = F_y$$

Чтобы получился базис, нужно, чтобы был какой-то e_0 помимо e_n и нужно понять, как определять этот дополнительный элемент, подумайте чуть-чуть.

10.2. Второе сопряжённое

Определение 10.1.

$$X^{**} = (X^*)^*$$
, то есть $X^{**} = \mathcal{B}(X^*, \mathbb{C})$ или $\mathcal{B}(X^*, \mathbb{R})$

Есть каноническое вложение $\pi: X \to X^{**}$. Пусть $x \in X$ — фиксирован. Посмотрим, как этот фиксированный x порождает множество линейных функционалов на X

пусть
$$f \in X^*$$
 $G_x(f) := f(x)$ $\pi(x) := G_x$, то есть $(\pi(x))(f) := f(x)$

Теорема 10.3 (каноническое вложение X во второе сопряженное). $(X, ||\cdot||), \pi: X \to X^{**} \Rightarrow$

$$\pi \in \mathcal{B}(X, X^{**}), ||\pi(x)||_{X^{**}} = ||x||_X (\Rightarrow ||\pi|| = 1)$$

Доказательство. Проверим, что при фиксированном $x, \pi(x) \in X^{**}$ есть линейность:

$$\lambda \in \mathbb{C}, f \in X^* \quad (\pi(x))(\lambda f) = (\lambda f)(x) = \lambda f(x) = \lambda \pi(x)(f)$$

$$f, g \in X^* \Rightarrow \pi(x)(f+g) = (f+g)(x) = f(x) + g(x) = (\pi(x))(f) + (\pi(x))(g)$$

$$\Rightarrow \pi(x) \in \operatorname{Lin}(X^*, \mathbb{C})$$

$$f \in X^* \quad |(\pi(x))(f)| = |f(x)| \le ||f|| \cdot ||x|| \ \forall f \Rightarrow \pi(x) \in (X^*)^*$$

$$||\pi(x)|| \le ||x||$$

вспомним следствие из теоремы Хана-Банаха о достаточном числе линейных функционалов

$$\exists g \in X^*, ||g|| = 1, g(x) = ||x||$$
$$||\pi(x)|| \ge |(\pi(x))(g)| = |g(x)| = ||x||$$
$$\Rightarrow ||\pi(x)|| = ||x||_X \Rightarrow ||\pi|| = 1$$

Вложение это как раз потому, что это отображение сохраняет норму.

Следствие, которое когда-то было обещано:

Следствие 10.1.
$$(X,||\cdot||)$$
 \Rightarrow $\overline{\pi(X)}^{X^{**}}$ $=$ Y \Rightarrow Y — пополнение X

Появляюстя теперь некоторые особенно хорошие банаховы пространства

Определение 10.2 (рефлексивное пространство). Если $\pi(X) = X^{**},$ то X — рефлексивное пространство

Следствие 10.2.
$$X$$
 — рефлексивное $\Rightarrow X$ — банахово

У нас были симметричные формулы для нормы элемента и для нормы линейного функционала, но всё-таки они отличались тем, что в норме функционала мы ставили sup, а в рефлексивном пространстве этого делать не надо.

Следствие 10.3.
$$X$$
 — рефлексивное \Rightarrow $||f||=\max_{\{||x||=1\}}|f(x)|$

Доказательство. известно, что

$$||x|| = \max_{\{||f||=1\}} |f(x)|, ||f|| = \sup_{\{||x||=1\}} |f(x)|$$

$$f \in X^* \Rightarrow ||f|| = \max_{\{\varphi \in X^{**}: ||\varphi|| = 1\}} |\varphi(f)| = [[\text{ рефлексивность }]]$$

$$= \max_{\{\pi(x), ||x|| = 1\}} |(\pi(x))(f)| = \max_{\{||x|| = 1\}} |f(x)|$$

Пример 10.1. $1 — рефлексивные, <math>(L^p)^* \cong L^q, (L^q)^* \cong L^p$

Пример 10.2. H — гильбертово, H — рефлексивное, H^* — сопряженное линейно изоморфно H, H^{**} — линейно изометрически изоморфно H

Пример 10.3. $L^1, L^{\infty}, l^1, l^{\infty}, c_0, c$ — не рефлексивны. Мы доказали, что $l^1 \subset (l^{\infty})^*, l^{\infty}$ — не сепарабельно $\Rightarrow (l^{\infty})^*$ — не сепарабельно

Пример 10.4. C(K) — не рефлексивное

Единственный пример, когда мы реально можем сосчитать дважды сопряженное

Пример 10.5.
$$(c_0)^* = l^1, (l^1)^* = l^\infty \Rightarrow (c_0)^{**} = l^\infty$$

10.3. Слабая сходимость

Когда-то давно деткам рассказывали, что такое слабая топология, но лектора отговорили это делать, поэтому будет только слабая сходимость.

Определение 10.3.
$$(X, ||\cdot||), \{x_n\}_{n=1}^{\infty} x_n \in X, x_0 \in X$$

$$x_0 = \text{w-lim } x_n$$
 если $\forall f \in X^* \lim_{n \to \infty} f(x_n) = f(x_0)$

w = weak

Отметим его простейшие свойства

Свойство 10.1. 1. Если \exists w-lim x_n , то он единственный

2. Если $\lim_{n\to\infty} ||x_0 - x_n|| = 0$, то $x_0 = \text{w-lim } x_n$ (как раз почему слабая сходимость слабее сходимости по норме)

1.

пусть
$$x_0 = \text{w-lim } x_n, y_0 = \text{w-lim } x_n \Rightarrow \forall f \in X^* \lim_{n \to \infty} f(x_n) = f(x_0), \lim_{n \to \infty} f(x_n) = f(y_0)$$

[[по следствию о достаточном числе линейных функционалов]]

$$\exists g \in X^*, ||g|| = 1 \quad g(x_0 - y_0) = ||x_0 - y_0||$$
$$g(x_0) = g(y_0) \Rightarrow ||x_0 - y_0|| = 0 \Rightarrow x_0 = y_0$$

2. Пусть
$$f \in X^*, |f(x_0) - f(x_n)| \le ||f|| \cdot \underbrace{||x_0 - x_n||}_{n \to \infty} \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$$

Воспользуемся теоремой Банаха-Штейнгауза чтобы получить критерий слабой сходимости.

Теорема 10.4 (критерий слабой сходимости). $(X, ||\cdot||), \{x_n\}_{n=1}^{\infty}, x_n \in X \ x_0 = \text{w-lim} \ x_n \Leftrightarrow$

- 1. $\sup_{n\in\mathbb{N}}||x_n||<+\infty$
- 2. $E\subset X^*, E$ полное семейство, т.е. $\overline{\mathcal{L}(E)}=X^*, f\in E\Rightarrow \lim_{n\to\infty}f(x_n)=f(x_0)$

Доказательство. Пока у нас нет никаких отображений, не говоря уже о том, что в теореме Банаха-Штейнгауза была куча полных пространств. К чему будет применять критерий? Тут нам и пригодится π

$$\pi: X \to X^{**}$$

$$\lim_{n \to \infty} f(x_n) = f(x_0) \Leftrightarrow \lim_{n \to \infty} (\pi(x_n))(f) = \pi(x_0)(f)$$

$$x_0 = \text{w-lim } x_n \Leftrightarrow \pi(x_0) = \text{s-lim } \pi(x_n) \Leftrightarrow$$

когда-то мы доказывали, что пространство линейных операторов $\mathrm{Lin}(X,Y),$ где Y — банахово, тоже будет банаховым

$$[[\pi(x):X^*\to\mathbb{C}\quad X^*,\mathbb{C}$$
 — банаховы, теорема Банаха-Штейнгауза]]

$$\begin{cases} \sup_{n} ||\pi(x_n)|| < +\infty \\ E \subset X^*, \overline{\mathcal{L}(E)} = X^*, \forall f \in E \lim_{n \to \infty} (\pi(x_n))(f) = (\pi(x_0))(f) \end{cases}$$
$$\begin{cases} \sup_{n} ||x_n|| < +\infty \\ \forall f \in E, \overline{\mathcal{L}(E)} = X^*, \lim_{n \to \infty} f(x_n) = f(x_0) \end{cases}$$

Теорема 10.5 (слабая сходимость в конечномерном пространстве). $(X,||\cdot||),\dim X<+\infty\Rightarrow$

$$x_0 = \text{w-lim } x^{(n)} \Leftrightarrow \lim_{n \to \infty} \left| \left| x_0 - x^{(n)} \right| \right| = 0$$

Доказательство.

пусть
$$\dim X = m, \{e_j\}_{j=1}^m$$
 — базис в X $x \in X, x = \sum_{j=1}^m x_j e_j, ||x||_\infty \coloneqq \max_{1 \le j \le m} |x_j|$

когда-то мы доказывали, что в конечномерном пространстве все нормы эквивалентны

$$x_{0} = \text{w-lim } x^{(n)} \quad x^{(n)} = \sum_{j=1}^{m} x_{j}^{(n)} e_{j} \quad x_{0} = \sum_{j=1}^{m} (x_{0})_{j} e_{j}$$

$$f_{j}(x) := x_{j}, f_{j} \in X^{*} \Rightarrow \lim_{n \to \infty} f_{j}(x^{(n)}) = f_{j}(x_{0})$$

$$\lim_{n \to \infty} x_{j}^{(n)} = (x_{0})_{j} \Rightarrow \left| \left| x_{0} - x^{(n)} \right| \right| \xrightarrow[n \to \infty]{} 0 \Rightarrow \left| \left| x_{0} - x^{(n)} \right| \right|_{X} \xrightarrow[n \to \infty]{} 0$$

Теперь, господа, какое-то странное определение-обозначение для того, чтобы обозначать действие линейного функционала на элемент и забыть про $\pi(x)$ и писать x. Есть X, X^* .

$$x \in X, f \in X^*$$

 $\langle f, x \rangle := f(x)$

а тут мы уже будем думать что x это элемент X^{**} , который действует на f; вместо x подразумевается $\pi(x)(f)$

$$\langle x, f \rangle := f(x)$$

Иногда удобно думать, что x — аргумент линейного функционала, а в другом случае удобно думать что x это сам линейный функционал.

Например, 1 . Одна компонента — функция, другая — линейный функционал, и может быть наоборот.

Теорема 10.6 (слабая сходимость в l^p , 1).

$$x^{(n)} \in l^p, x = \text{w-lim } x^{(n)} \Leftrightarrow \begin{cases} \sup_n \left| \left| x^{(n)} \right| \right| < +\infty \\ \lim_{n \to \infty} x_j^{(n)} = x_j \ j \in \mathbb{N} \end{cases}$$

Доказательство.

$$x^{(n)} = \left\{ x_j^{(n)} \right\}_{j=1}^{\infty}, (l^p)^* = l^q, E = \left\{ e_n \right\}_{n=1}^{\infty} \subset l^q, e_n = (0, \dots, 0, 1, 0, \dots)$$

$$\overline{\mathcal{L}(E)} = l^q$$

В l^q мы выберем базис. Рассмотрим действие e на произвольном элементе

$$x \in l^p \quad e_n \in l^q \Rightarrow e_n \in (l^p)^*$$
$$\langle e_n, x \rangle = \sum_{j=1}^{\infty} (e_n)_j x_j = x_n, \langle e_m, x \rangle = x_m$$

применим критерий

$$x = \text{w-}\lim_{n \to \infty} x^{(n)} \Leftrightarrow \begin{cases} \sup_{n} ||x^{(n)}||_{p} < +\infty \\ \lim_{n \to \infty} \langle e_{j}, x^{(n)} \rangle = \langle e_{j}, x \rangle \, \forall \, j \end{cases} \quad 2 \Leftrightarrow \lim_{n \to \infty} x_{j}^{(n)} = x_{j}$$

Естественно сделать следующее замечание

Замечание 10.3.
$$1$$

Слабая сходимость всегда слабее сходимости по норме, поэтому она и слабая. В обратную сторону следствие мы уже доказали

Пример 10.6.

$$e_{m} = (0, 0, \dots, 0, 1, 0, \dots)$$

$$\sigma_{j}^{m} = \begin{cases} 1 & m = j \\ 0 & m \neq j \end{cases}, \quad e_{m} = \left\{\sigma_{j}^{m}\right\}_{j=1}^{\infty}$$

Давайте убедимся, что слабый предел последовательностей m равен 0

$$\lim_{m \to \infty} \sigma_j^m = 0 \forall j \\ ||e_m||_p = 1 \end{cases} [[\texttt{критерий слабой сходимости }]] \Rightarrow \\ \mathbb{O} = \texttt{w-lim}\,e_m \\ ||e_m - \mathbb{O}|| = 1 \Rightarrow ||e_m - \mathbb{O}||_p \not\longleftrightarrow 0$$

Обсудим теперь, что такое слабая сходимость в больших пространствах \mathcal{L}^p

Теорема 10.1 (Слабая сходимость в L^p). $(X, U, \mu), 1 \le p < +\infty, \{f_n\}_{n=1}^{\infty}, f_n \in L^p, f \in L^p$

$$f = \text{w-lim } f_n \Leftrightarrow \begin{cases} \sup_n ||f_n||_p < +\infty \\ \lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu \ A \in U, 1 < p < +\infty, \mu A < +\infty \end{cases}$$

$$\lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu \ \forall A \in U, p = 1$$

$$(2)$$

Доказательство. Мы помним, что $(L^p)^* = L^{q1}$

$$g \in L^q, f \in L^p$$

$$\langle g, f \rangle = \int_X g(x)f(x)d\mu$$

В L^q мы хотим предъявить подмножество, которое будет полным семейством. Мы когда-то обсуждали, что у нас будет полным семейством в L^q

пусть $p>1\Rightarrow q<+\infty\Rightarrow E=\{\chi_A\}_{A\in U,\mu(A)<+\infty}$ — полное семейство в L^q , т.е. $\overline{\mathcal{L}(E)}=L^q$ $g=\chi_A,f\in L^p\Rightarrow \langle\chi_A,f\rangle=\int_A f(x)d\mu$

 $\langle \chi_A, f \rangle$ обозначает нашу старую запись для функционала F_{χ_A} , который действует на f. Теперь воспользуемся критерием слабой сходимости

$$f = \text{w-lim } f_n \Leftrightarrow \begin{cases} \sup_n ||f_n||_p < +\infty \\ \forall \, \chi_A \in E \lim_{n \to \infty} \langle \chi_A, f_n \rangle = \langle \chi_A, f \rangle \end{cases}$$
$$2 \Leftrightarrow \lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu \, \forall \, A \in U, \mu(A) < +\infty$$

Если же $p=1, q=\infty$

$$E_1 = \{\chi_A\}_{A \in U}\,, E_1$$
 — полные в L^∞ $2' \Leftrightarrow \lim_{n o \infty} \int_A f_n d\mu = \int_A f d\mu \, orall \, A \in U$

Теперь немножко о слабой сходимости в гильбертовом пространстве

 $^{^{1}}$ пишем равно, но имеем в виду изометрический изоморфизм

Теорема 10.7 (слабая сходимость в гильбертовом пространстве). H — гильбертово пространство, $\{x_n\}_{n=1}^{\infty}, x_n \in H, x \in H$.

1. Следующие условия равносильны:

a)
$$x = \text{w-lim } x_n$$

b)
$$\forall y \in H \lim_{n \to \infty} (x_n, y) = (x, y)$$

c)
$$\begin{cases} \sup_{n \to \infty} ||x_n|| < +\infty \\ \exists E \subset H, \overline{\mathcal{L}(E)} = H, y \in E \Rightarrow \lim_{n \to \infty} (x_n, y) = (x, y) \end{cases}$$

2.

$$\lim_{n \to \infty} ||x_n - x|| = 0 \Leftrightarrow \begin{cases} \lim_{n \to \infty} ||x_n|| = ||x|| \\ x = \text{w-lim } x_n \end{cases}$$

1 утверждение. Для того, чтобы показать, что $a \Leftrightarrow b$ надо просто вспомнить, как устроены все линейные функционалы. По теореме Рисса (тык) $f \in H^* \Rightarrow \exists ! y \in H : f(x) = (x,y) \, \forall \, x \in H$. Далее, $x = \text{w-lim} \, x_n \Leftrightarrow \forall \, f \in H^* \lim_{n \to \infty} f(x_n) = f(x) \Leftrightarrow \forall \, y \in H \lim_{n \to \infty} (x_n,y) = (x,y)$. То есть $a \Leftrightarrow b$.

Теперь $a \Leftrightarrow c$. По критерию слабой сходимости

$$a \Leftrightarrow \begin{cases} \sup_{n} ||x_n|| < +\infty \\ \exists E \subset H^*, \forall f \in E, \lim_{n \to \infty} f(x_n) = f(x) \end{cases}$$

опять-таки воспользуемся тем, что каждый $f \in E$ порождается элементом нашего H

$$\forall f \in E \exists y \in E_1, E_1 \subset H$$

$$f(x) = (x, y), \overline{\mathcal{L}(E)} = H^* \Leftrightarrow \overline{\mathcal{L}(E_1)}^H = H$$

$$\Leftrightarrow \lim_{n \to \infty} (x_n, y) = (x, y) \, \forall y \in E_1$$

2 утверждение. \Rightarrow очевидно. Первое условие есть в любом нормированном пространстве (1), а из сходимости по норме следует слабая сходимость (2).

$$\Leftarrow$$

$$||x - x_n||^2 = (x - x_n, x - x_n) = ||x||^2 - \underbrace{(x_n, x)}_{\to ||x||^2} - \underbrace{(x, x_n)}_{\to (x, x)} + \underbrace{||x_n||^2}_{\stackrel{1}{\to} ||x||^2}$$

$$\Rightarrow \lim_{n \to \infty} ||x - x_n||^2 = 0$$

10.4. Слабая со * сходимость

Определение 10.4. X — нормированное пространство, $X^*, \{f_n\}_{n=1}^{\infty}, f_n \in X^*, f \in X^*$

$$f = \mathbf{w}^*$$
-lim f_n , если $\lim_{n \to \infty} f_n(x) = f(x) \, \forall \, x \in X$

Самый кошмар состоит в том, что она нам она уже встречалась. Это сильная сходимость, если вместо линейных операторов у нас линейные функционалы. Имеется понятие «Слабая топология», и ей соотвествует эта сходимость

Замечание 10.4. $f = \text{s-lim } f_n \Leftrightarrow f = \text{w*-lim } f_n$

Утверждение 10.2.
$$\{f_n\}_{n=1}^{\infty}, f_n \in X^*, f = \text{w-lim } f_n \Rightarrow f = \text{w*-lim } f_n$$

Доказательство.

$$f = \text{w-lim } f_n \Leftrightarrow \forall \varphi \in X^{**}$$
$$\lim_{n \to \infty} \varphi(f_n) = \varphi(f)$$

Среди этих функционалов есть часть, которая порождается элементами X

$$\pi: X \to X^{**}$$
, пусть $x \in X \Rightarrow \pi(x) \in X^{**}$
пусть $\varphi = \pi(x) \Rightarrow \lim_{n \to \infty} (\pi(x))(f_n) = (\pi(x))(f) \Leftrightarrow$
 $\lim_{n \to \infty} f_n(x) = f(x) \, \forall \, x \in X \Rightarrow f = \text{w*-lim } f_n$

Замечание 10.5. Если X — рефлексивное, то есть $\pi(X) = X^{**}$, то $f = \text{w-lim } f_n \Leftrightarrow f = \text{w*-lim } f_n$

Теперь воспользуемся теоремой Банаха-Штейнгауза, чтобы сформулировать критерий. Когда был критерий слабой сходимости, чтобы сформулировать критерий для неё, мы применяли $\pi(x)$, здесь же этого не будет, мы сразу будем предполагать, что X — банахово.

Теорема 10.8 (критерий слабой со * сходимости). X — банахово, $f_n \in X^*, f \in X^*$

$$f = w^*$$
- $\lim f_n \Leftrightarrow \begin{cases} \sup_n ||f_n|| < +\infty \\ \exists E \subset X, \overline{\mathcal{L}(E)} = X : \forall x \in E \lim_{n \to \infty} f_n(x) = f(x) \end{cases}$

Доказательство. Просто применяем теорему Банаха-Штейнгауза, $f = \text{s-lim } f_n$.

Замечание 10.6. В \Leftarrow сторону верно, если X — нормированное

Обсудим сейчас, что означает w*-lim в l^1 . Чем хорошо l^1 ? Тем, что мы знаем сопряжённое к нему, и чьим сопряжённым оно является.

Теорема 10.2 (слабая и слабая со * сходимость в l^1). $x^{(m)} \in l^1, x^{(m)} = \left\{x_j^{(m)}\right\}_{i=1}^{\infty}, x \in l^1$

$$x = \mathbf{w}^*$$
- $\lim x^{(m)} \Leftrightarrow \begin{cases} \sup ||x^{(m)}||_1 < +\infty \\ \lim_{m \to \infty} x_j^{(m)} = x_j, j \in \mathbb{N} \end{cases}$

$$x = \text{w-lim } x^{(m)} \Leftrightarrow \begin{cases} \sup \left| \left| x^{(m)} \right| \right|_1 < +\infty \\ \forall A \subset \mathbb{N} \lim_{m \to \infty} \sum_{j \in A} x_j^{(m)} = \sum_{j \in A} x_j \end{cases}$$

Доказательство. Слабая со звездочкой сходимость — для последовательности функционалов на любом элементе пространства, рассматриваем элементы l_1 как линейные функционалы, а мы знаем, что $(c_0)^* = l_1$, значит, будем искать полное семейство в c_0 , чтобы применить критерий. Слабая сходимость — для элементов пространства на любом линейном функционале. В этом случае уже будем рассматривать элементы l_1 как элементы пространства, $(l_1)^* = l^{\infty}$, и чтобы

применять критерий слабой сходимости, будем искать полное семейство функционалов, и функционалами будут выступать уже l^{∞} .

$$(c_0)^* = l^1, (l^1)^* = l^\infty, e_m = (0, \dots, 0, 1, 0, \dots)$$
$$x \in c_0, y \in l_1, \langle y, x \rangle = \sum_{m=1}^{\infty} x_m y_m, E = \{e_m\}_{m=1}^{\infty}, e_m \in c_0$$

чтобы воспользоваться критерием слабой со звездочкой сходимости, нам нужно предъявить полное семейство в c_0

$$E$$
 — полное семейство в c_0

применим критерий слабой со * сходимости

$$x = \mathbf{w}^* - \lim x^{(m)} \Leftrightarrow \begin{cases} \sup ||x^{(m)}||_1 < +\infty \\ \lim \langle x^{(m)}, e_j \rangle = \langle x, e_j \rangle \, \forall \, j \in \mathbb{N} \end{cases}$$

$$\langle x^{(m)}, e_j \rangle = x_j^{(m)}, 2 \Leftrightarrow \lim_{m \to \infty} x_j^{(m)} = x_j \, \forall \, j \in \mathbb{N}$$

$$(2)$$

Разобрались с первой половиной теоремы. Во второй же нам надо использовать $(l^1)^* = l^\infty$

$$x \in l^1, y \in l^{\infty}$$
$$\langle y, x \rangle = \sum_{n=1}^{\infty} x_n y_n$$

В огромном пространстве l^{∞} нет никакой надежды предъявить счётное семейство, которое будет полным, его там нет. Что же будем делать?

$$A\subset\mathbb{N}, x_j^A=\begin{cases} 1 & j\in A\\ 0 & j\notin A\end{cases}, x^A\in l^\infty, x^A=\left\{x_j^A\right\}_{j=1}^\infty$$
 если есть $L^\infty(X,\mu)$, то $\left\{\chi_A\right\}_{A\in U}$ — полное семейство в $L^\infty(X,U,\mu)$
$$l^\infty=L^\infty(\mathbb{N},\mu), \mu(n)=1\Rightarrow \left\{\chi^A\right\}_{A\subset\mathbb{N}}$$
 — полное семейство в l^∞
$$E=\left\{x^A\right\}_{A\subset\mathbb{N}}$$

$$\left\langle x^A, x^{(m)}\right\rangle=\sum_{j\in A} x_j^{(m)}$$

воспользуемся критерием слабой сходиости

$$x = \text{w-lim } x^{(m)} \Leftrightarrow \begin{cases} \sup ||x^{(m)}||_1 < +\infty \\ \forall A \subset \mathbb{N} \lim_{m \to \infty} \langle x^A, x^{(m)} \rangle = \langle x^A, x \rangle(2) \end{cases}$$

$$(2) \Leftrightarrow \lim_{m \to \infty} \sum_{j \in A} x_j^{(m)} = \sum_{j \in A} x_j$$

Пример 10.7. $e_m = (0, \dots, 0, 1, 0, \dots), e_m \in l^1, ||e_m|| = 1 \Rightarrow \sup_m ||e_m||_1 = 1 < +\infty$. Если мы зафиксируем j-ю координату, то она будет стремиться к 0.

$$\lim_{m\to\infty} (e_m)_j = 0 \Rightarrow \mathbb{0} = \mathrm{w*-lim}\, e_m$$
пусть $A = \mathbb{N}, \sum_{j=1}^{\infty} (e_m)_j = 1 \, \forall \, m \in \mathbb{N}$
$$\lim_{m\to\infty} \sum_{j=1}^{\infty} (e_m)_j = 1, \sum_{j=1}^{\infty} 0 = 0 \Rightarrow$$
 $\mathbb{0} \neq \mathrm{w-lim}\, e_m \Rightarrow \nexists \, \mathrm{w-lim}\, e_m$

Поскольку l^{∞} фантастически гигантское пространство, верна такая нетривиальная теорема, которую мы даже не будем доказывать

Замечание 10.7 (для общего развития). $x^{(m)} \in l^1, x = \text{w-lim } x^{(m)} \Leftrightarrow \lim_{m \to \infty} \left| \left| x - x^{(m)} \right| \right|_1 = 0$

Теорема 10.3 (аппроксимативная единица).

$$X = C[-1,1], \mu$$
 на $[-1,1], A \subset [-1,1]$

рассмотрим такую меру

$$\mu(A) = \begin{cases} 1 & 0 \in A \\ 0 & 0 \notin A \end{cases}$$

кроме того, есть последовательность «колокольчиков» (см. рисунок 10.1)

$$\left\{\varphi_n\right\}_{n=1}^\infty, \varphi_n \in C[-1,1], \varphi_n(x) \geq 0$$

$$\varphi_n(x) = 0 \text{ при } |x| > \frac{1}{n}, \int_{-1}^1 \varphi_n(x) dx = 1$$

тогда утверждается, что если мы рассмотрим последовательность линейных функционалов

$$g \in C[-1,1], F(g) = \int_{-1}^{1} g(x)d\mu$$
$$F_n(g) = \int_{-1}^{1} g(x)\varphi_n(x)dx \Rightarrow F = \mathbf{w}^*\text{-}\lim F_n$$

Рис. 10.1: Теорема 10.3

Доказательство.

$$F(g) = \int_{-1}^{1} g(x) d\mu = [[\text{раз мера сосредоточена в нуле}]] = g(0)$$

$$F_n(g) = \int_{-1}^{1} g(x) \varphi_n(x) dx = \int_{-\frac{1}{n}}^{\frac{1}{n}} g(x) \varphi_n(x) dx =$$

теорема о среднем говорит, что существует такая точка $c_n \in \left[-\frac{1}{n}, \frac{1}{n}\right]$

$$= g(c_n) \int_{-\frac{1}{n}}^{\frac{1}{n}} \varphi_n(x) dx = g(c_n)$$

$$g \in C[-1, 1] \Rightarrow \lim_{n \to \infty} g(c_n) = g(0) \Rightarrow$$

$$\lim_{n \to \infty} F_n(g) = F(g) \,\forall \, g \in C[-1, 1] \Rightarrow F = \mathbf{w}^*\text{-}\lim F_n$$

Теорема 10.9 (Банах-Алаоглу, слабая со * компактность единичного шара сопряженного пространства). X — сепарабельное, нормированное, $D = \{f \in X^*, ||f|| \leq 1\}, \forall \{f_n\}_{n=1}^{\infty}, f_n \in D \exists \{f_{n_j}\}$ — подпоследовательность $f_0 \in D, f_0 = w^*$ -lim f_{n_j} Теорема утверждает гораздо большее на самом деле и могла бы быть даже четвёртвым китом, но четырёх китов не бывает: слишком уж неустойчивая конструкция.

Доказательство. Идея такая: выбрать подпоследовательность из f_n , которая будет сходиться на каждом элементе всюду плотного множества в X. Выбирать мы будем, используя диагональный процесс.

$$\{x_n\}_{n=1}^{\infty}$$
 — плотное множество в X $\{f_n(x_1)\}_{n=1}^{\infty}$, $|f_n(x_1)| \leq ||f_n|| \cdot ||x_1|| = ||x_1||$ $\Rightarrow \{f_n(x_1)\}_{n=1}^{\infty}$ — ограниченная последовательность в $\mathbb C$

а из анализа известно, что из ограниченной последовательности можно выбрать сходящуюся подпоследовательность

$$\Rightarrow \exists$$
 подпоследовательность $\{f_{1,n}\}_{n=1}^{\infty}: \exists \lim_{n\to\infty} f_{1,n}(x_1) = z_1$
 $\{f_{1,n}(x_2)\}_{n=1}^{\infty}, |f_{1,n}(x_2)| \leq ||x_2|| \Rightarrow \exists \lim_{n\to\infty} f_{2,n}(x_2) = z_2$

отметим, что первое условие мы не потеряли, потому что $f_{2,n}$ — подпоследовательность $f_{1,n}$ и $\lim_{n\to\infty} f_{2,m}(x_1)=z_1$. И так далее, формально говоря, по индукции

Первая строка имеет предел в точке x_1 , вторая — подстрочка первой, есть пределы в точках x_1, x_2 . Каждая строчка добавляет новый предел. Диагональная последовательность, начиная с некоторого момента $(n \geq j)$ на диагонали, будет подпоследовательностью $\{f_{j,m}\}_{m=1}^{\infty}$. По замечанию 10.6 к критерию w*-lim сходимости $\exists f \in D : f = \text{w*-lim} f_{n,n}$

Рис. 10.2: Определение 10.5, коммутативная диаграмма

10.5. Сопряжённые операторы в нормированном пространстве

Определение 10.5. $(X, ||\cdot||), (Y, ||\cdot||), T \in \mathcal{B}(X, Y)$. Определим $T^*: Y^* \to X^*: f \in Y^*, x \in X, (T^*f)(x) \coloneqq f(Tx)$

Теорема 10.10 (простейшие свойства сопряженного оператора). $(X, ||\cdot||), (Y, ||\cdot||), T \in \mathcal{B}(X, Y) \Rightarrow$

- 1. $T^* \in \mathcal{B}(Y^*, X^*), ||T^*|| = ||T||$
- 2. $\alpha \in \mathbb{C}, (\alpha T)^* = \alpha T^*$
- 3. $T, S \in \mathcal{B}(X, Y) \Rightarrow (T + S)^* = T^* + S^*$
- 4. $(X, ||\cdot||), (Y, ||\cdot||), (Z, ||\cdot||), X \xrightarrow{T} Y \xrightarrow{S} Z, T \in \mathcal{B}(X, Y), S \in \mathcal{B}(Y, Z) \Rightarrow (ST)^* = T^*S^*$
- 1. Проверим, что $T^* \in \text{Lin}(Y^*, X^*)$

$$\alpha \in \mathbb{C}, f \in Y^*, x \in X, (T^*(\alpha f))(x) = (\alpha f)(Tx) = \alpha f(Tx) = \alpha (T^*(f))(x) \,\forall \, x \in X$$

$$\Rightarrow T^*(\alpha f) = \alpha T^*(f)$$

$$f, g \in Y^*, x \in X, (T^*(f+g))(x) = (f+g)(Tx) = f(Tx) + g(Tx) =$$

$$= (T^*(f))(x) + (T^*(g))(x) \,\forall \, x \in X$$

линейность проверили. Теперь посчитаем норму T^*

$$||T^*|| = \sup_{\{f \in Y^*, ||f|| \leq 1\}} ||T^*f|| =$$

но при фиксированном f у нас получается линейный функционал, поэтому

$$= \sup_{\{||f||_{Y^*} \le 1\}} \left(\sup_{\{||x|| \le 1\}} |(T^*f)(x)| \right) =$$

нам ничего не стоит поменять sup местами. По следствию из теоремы Хана-Банаха для нормированного пространства получаем

$$= \sup_{\{||x|| \leq 1\}} (\sup_{\{||f|| \leq 1\}} |f(Tx)|) = \sup_{\{||x|| \leq 1\}} ||Tx|| = ||T||$$

2.

$$\alpha \in \mathbb{C}, f \in Y^*, x \in X$$
$$(\alpha T^*)(f)(x) = f((\alpha T)(x)) = \alpha f(Tx) = \alpha (T^*f)(x) \,\forall \, x, \forall \, f \Rightarrow (\alpha T)^* = \alpha T^*$$

3 доказывается аналогично

4.

$$(ST)^*: Z^* \to X^*, f \in Z^*, x \in X$$

$$(((ST)^*)(f))(x) = f((ST)(x)) = f(S(Tx)) = (S^*f)(Tx) = (T^*(S^*f))(x)$$

$$\forall x \in X, \forall f \in Z^* \Rightarrow (ST)^* = T^*S^*$$

Посмотрим, как выглядит сопряжённый оператор для интегрального оператора. Будем думать, что речь идёт о мере Лебега, чтобы не пугаться каких-то абстрактных мер, хотя Лебег тут совершенно ни при чём.

Теорема 10.4.

$$x \in \mathbb{R}^n, y \in \mathbb{R}^m, K(x, y) \in L^p(\mathbb{R}^{n+m}), 1
$$M = ||K||_{L^p} = \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^m} |K(x, y)|^p \, dx dy\right)^{\frac{1}{p}}$$

$$(\mathcal{K}(f))(x) = \int_{\mathbb{R}^m} K(x, y) f(y) dy, f \in L^q(\mathbb{R}^m)$$$$

dx в \mathbb{R}^n , dy в \mathbb{R}^m , dxdy — в \mathbb{R}^{n+m} . Тогда

- 1. $\mathcal{K} \in \mathcal{B}(L^q(\mathbb{R}^m), L^p(\mathbb{R}^n))$
- 2. $(\mathcal{K}^*g)(y) = \int_{\mathbb{R}^n} K(x,y)g(x)dx$

Ядро сопряженного оператора мы должны записать таким образом, чтобы интегрирование происходило по второй перменной. Если мы запишем 2 как $(\mathcal{K}^*g)(y) = \int_{\mathbb{R}^n} K^*(y,x)g(x)dx$. Сопоставляя эти 2 равенства, мы заключаем, что $K^*(y,x) = K(x,y)$. То есть ядро сопряжённого оператора получается перестановкой координат x и y.

1. Справедлива теорема Фубини

$$\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |K(x,y)|^p \, dx \right) dy < +\infty \Rightarrow$$

$$\int_{\mathbb{R}^n} |K(x,y)|^p \, dx < +\infty \text{ для п.в. } y \text{ по мере Лебега } dy \text{ в } \mathbb{R}^m$$

$$x \in \mathbb{R}^n \text{ фиксируем}, f \in L^q$$

$$|(\mathcal{K}f)(x)| = \left| \int_{\mathbb{R}^m} K(x,y) f(y) dy \right| \le [[\Gamma$$
ёльдер]] $\left(\int_{\mathbb{R}^m} |K(x,y)|^p dy \right)^{\frac{1}{p}} \cdot ||f||_q$

последний интеграл конечен для п.в. x. Теперь хотим оценить норму этой штуки в L^p

$$\left(\int_{\mathbb{R}^n} |\mathcal{K}f(x)|^p dx\right)^{\frac{1}{p}} \le ||f||_q \underbrace{\left(\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} |K(x,y)|^p dy\right) dx\right)^{\frac{1}{p}}}_{M} = M ||f||_q$$

$$\Rightarrow \mathcal{K} \in \mathcal{B}(L^q(\mathbb{R}^n), L^p(\mathbb{R}^n)), ||K|| \le M$$

2.

$$K^*, (L^p(\mathbb{R}^n))^* = L^q(\mathbb{R}^n), (L^q(\mathbb{R}^m))^* = L^p(\mathbb{R}^m)$$

$$\Rightarrow \mathcal{K}^* \in \mathcal{B}(L^q(\mathbb{R}^n), L^p(\mathbb{R}^m))$$

$$T \in \mathcal{B}(X, Y), T^* \in \mathcal{B}(Y^*, X^*)$$

$$f \in Y^*, x \in X \quad \langle f, Tx \rangle = \langle T^*f, x \rangle \Leftrightarrow (T^*f)(x) = f(Tx)$$

 $f\in L^p, g\in L^q, \langle f,g\rangle=\int_X fgd\mu, f\in (L^q)^*, f$ действует на g или $g\in (L^p)^*, g$ действует на f

$$\langle g, \mathcal{K}f \rangle = \langle \mathcal{K}^*g, f \rangle \quad f \in L^q(\mathbb{R}^m), g \in L^q(\mathbb{R}^n)$$

$$\langle g, \mathcal{K}f \rangle = \int_{\mathbb{R}^n} g(x) \left(\int_{\mathbb{R}^m} K(x, y) f(y) dy \right) dx =$$

по теореме Фубини можем переписать

$$= \int_{\mathbb{R}^m} f(y) \left(\int_{\mathbb{R}^n} K(x,y) g(x) dx \right) dy$$

$$\Rightarrow (\mathcal{K}^*g)(y) = \int_{\mathbb{R}^n} K(x,y) g(x) dx, g \in L^q(\mathbb{R}^n)$$

$$K^* - \text{ядро оператора } \mathcal{K}^*$$

$$(\mathcal{K}^*g)(y) = \int_{\mathbb{R}^n} K^*(y,x) g(x) dx \Rightarrow K^*(y,x) = K(x,y)$$

10.6. Сопряжённый оператор в гильбертовом пространстве

Определение 10.6 (T^*) **.** H — гильбертово, $T \in \mathcal{B}(H), y \in H, y$ — фиксирован, $x \in H$

$$G_y(x) := (Tx, y)$$

из определения G_y , очевидно, $G_y \in \operatorname{Lin}(H,\mathbb{C})$

$$|G_y(x)| \le ||Tx|| \cdot ||y|| \le ||T|| \cdot ||x|| \cdot ||y|| \, \forall \, x \in H \Rightarrow$$

 $G_y \in H^*, ||G_y|| \le ||T|| \cdot ||y||$

воспользуемся теоремой Рисса (тык). У нас есть непрервный оператор, значит, есть какой-то элемент, который его порождает

$$\Rightarrow \exists !z \in H$$

$$G_{v}(x) = (x, z) \forall x \in H, ||G_{v}|| = ||z||$$

можно было бы написать сразу это, всё выше просто оправдание корректности

$$T^*y \coloneqq z$$
, то есть $(Tx,y) = (x,T^*y) \, \forall \, x,y \in H$

 $||T^*y|| = ||G_y|| \le ||T|| \cdot ||y||, T^*$ — эрмитово сопряжение к T. Но слово «эрмитовость» скоро отомрёт.

Теорема 10.5 (простейшие свойства эрмитово сопряженного оператора).

1.
$$T^{**} = T$$

2.
$$T^* \in \mathcal{B}(H), ||T^*|| = ||T||$$

3.
$$\alpha \in \mathbb{C} (\alpha T)^* = \overline{\alpha} T^*$$

4.
$$(S+T)^* = S^* + T^*$$

5.
$$(ST)^* = T^*S^*$$

6.
$$\exists T^{-1} \Leftrightarrow \exists (T^*)^{-1}$$
 и при этом $(T^*)^{-1} = (T^{-1})^*$

1.

$$(Tx,y) = (x,T^*y) = \overline{(T^*y,x)} = \overline{(y,T^{**}x)} = (T^{**}x,y) \ \forall \ y \in H$$
$$\Rightarrow Tx = T^{**}x \ \forall \ x \in H$$

2. $T^* \in \text{Lin}(H)$ — очевидно. При определении T^* доказали $||T^*y|| \le ||T|| \cdot ||y|| \Rightarrow T^* \in \mathcal{B}(H), ||T^*|| \le ||T||$. Теперь вот такой трюк мы будем часто использовать

$$\Rightarrow ||T^{**}|| \le ||T^*||, \text{ Ho } T^{**} = T \Rightarrow ||T|| = ||T^*||$$

3.

$$(Tx,y) = (x,T^*y) \Rightarrow ((\alpha T)x,y) = \begin{cases} = (x,\overline{\alpha}T^*y) \\ = (x,(\alpha T)^*y) \end{cases} \Rightarrow (\alpha T)^* = \overline{\alpha}T^*$$

4, 5 — очевидно.

6.

пусть
$$\exists T^{-1} \Rightarrow TT^{-1} = I, T^{-1}T = I, I^* = I \stackrel{5}{\Rightarrow}$$

$$(T^{-1})^*T^* = I, T^*(T^{-1})^* = I$$

$$\begin{cases} T^*(T^{-1})^* = I \Rightarrow \exists (T^*)^{-1} = (T^{-1})^* \\ \text{пусть } \exists (T^*)^{-1} \Rightarrow \exists (T^{**})^{-1}, \text{ но } T^{**} = T \end{cases}$$

Замечание 10.8. Если X, Y — банаховы, $T \in \mathcal{B}(X, Y)$

$$\exists T^{-1} \in \mathcal{B}(Y, X) \Leftrightarrow \exists (T^*)^{-1} \in \mathcal{B}(X^*, Y^*)$$

и при этом $(T^*)^{-1} = (T^{-1})^*$

В одну сторону как для гильбертовых пространств, в другую сторону, чтобы доказать похожее, мы пользовались фактом $T^{**}=T$, здесь же этого нет. Оставим без доказательства.

Следствие 10.4 (интегральный оператор в L^2 и его сопряженный).

$$H=L^2(\mathbb{R}^n,dx),dx=\lambda_n - \text{мера Лебега}$$
 $K(x,y)\in L^2(\mathbb{R}^{2n},d\lambda_{2n}) \quad \left(\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}|K(x,y)|^2\,dxdy\right)^{\frac{1}{2}}=M<+\infty$
$$(\mathcal{K}f)(x)=\int_{\mathbb{R}^n}K(x,y)f(y)dy\Rightarrow$$

- 1. $\mathcal{K} \in \mathcal{B}(L^2(\mathbb{R}^n))$
- $2. \mathcal{K}^*$ эрмитово-сопряженный

$$(K^*g)(y) = \int_{\mathbb{R}^n} \overline{K(x,y)} g(x) dx, \mathcal{K}^* \in \mathcal{B}(L^2(\mathbb{R}^n))$$

$$(\mathcal{K}^*g)(y) = \int_{\mathbb{R}^n} K^*(y, x)g(x)dx \Rightarrow K^*(y, x) = \overline{K(x, y)}$$

Первое утверждение уже доказывали.

2 утверждение.

$$(\mathcal{K}f,g) = (f,K^*g) \quad f,g \in L^2(\mathbb{R}^n)$$
$$(f,g) = \int_{\mathbb{R}^n} f(x)\overline{g(x)}dx$$

$$(\mathcal{K}f,g) = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} K(x,y) f(y) dy \right) \overline{g(x)} dx = [[\text{ теорема Фубини }]]$$

$$= \int_{\mathbb{R}^n} f(y) \left(\int_{\mathbb{R}^n} K(x,y) \overline{g(x)} dx \right) dy = \left(f, \int_{\mathbb{R}^n} \overline{K(x,y)} g(x) dx \right) \Rightarrow$$

$$\Rightarrow (\mathcal{K}^*g)(y) = \int_{\mathbb{R}^n} \overline{K(x,y)} g(x) dx$$

Введём ещё одно полезное понятие.

Определение 10.7. X — нормированное, $T \in \mathcal{B}(X)$. $Y \subset X, Y$ — подпространство в алгебраическом смысле. Y — инвариантное подпространство для T, если $T(Y) \subset Y$.

Иными словами, можно рассмотреть сужение оператора на Y, это тоже будет оператор.

Прежде чем доказывать что-то простое, сначала небольшое замечание.

Замечание 10.9 (Проблема Банаха). X — банахово, $T \in \mathcal{B}(X)$. Существует ли замкнутое инвариантное подпространство $(Y \neq \{0\}, Y \neq X)$

Опять Енфло в 1974 предъявил контр-пример.

Если H — гильбертово, то ответ неизвестен. Может так, может и не так, никто не знает. Стараются математики, бьются головой, всё бестолку. А мы докажем что-то совсем простое.

Теорема 10.11. H — гильбертово, $T \in \mathcal{B}(H)$, Y — инвариантное подпространство для $T \Rightarrow Y^{\perp}$ — инвариантное для T^*

Доказательство. Просто по определению. Возьмём $x \in Y^{\perp}, y \in Y$

$$(T^*x,y)=(x,Ty)=0 \text{ так как } x\in Y^\perp,Ty\in Y$$

$$\Rightarrow T^*x\in Y^\perp\Rightarrow T^*(Y^\perp)\subset Y^\perp$$

Определение 10.8 (самосопряжённый оператор). H — гильбертово пространство. $T \in \mathcal{B}(H), T$ — самосопряжённый, если $T = T^*$

$$\Leftrightarrow (Tx,y) = (x,Ty) \ \forall \ x,y \in H$$

Пример 10.8. H — гильбертово, M — замкнутое подпространство. $P: H \to M, P$ — ортогональный проектор, тогда $P = P^*$

Следствие 10.5 (из последней теоремы). H — гильбертово, $T \in \mathcal{B}(H), T = T^*, Y$ — инвариантное подпространство для $T \Rightarrow Y^{\perp}$ — инвариантное подпространство для T

Теорема 10.12 (о ядре и образе оператора и его сопряженного). H — гильбертово пространство, $T \in \mathcal{B}(H) \Rightarrow$

- 1. $H = \operatorname{Ker} T \oplus \overline{T^*(H)} \ (\overline{T^*(H)}$ замыкание образа)
- 2. $H = \operatorname{Ker} T^* \oplus \overline{T(H)}$

Такое часто бывает полезно при разложении гильбертова пространства.

Доказательство. Сначала сделаем абстрактное замечание. Пусть L — подпространство в алгебраическом смысле для H (не обязательно замкнутое, даже интереснее, если оно не замкнутое). Может, мы когда-то уже отмечали, что $L^{\perp} = \overline{L}^{\perp}$. Если $M = \{x : x \perp L\} = \{x : x \perp \overline{L}\} \Rightarrow$

$$H = \overline{L} \oplus M$$
 в нашем случае будет $L \coloneqq T^*(H)$ вычислим L^\perp пусть $x \perp T^*(H) \Leftrightarrow 0 = (x, T^*y) \ \forall \ y \in H \Leftrightarrow \Leftrightarrow 0 = (Tx, y) \ \forall \ y \in H \Leftrightarrow Tx = 0 \Leftrightarrow x \in \operatorname{Ker} T$ $\Rightarrow H = \operatorname{Ker} T \oplus \overline{T^*(H)}$

применим 1 к T^*

$$\Rightarrow H = \operatorname{Ker} T^* \oplus \overline{T^{**}(H)}, T^{**} = T$$

Глава 11

Спектр и резольвента оператора

Определение 11.1. X — банахово, $T \in \mathcal{B}(X), Ix = x, x \in X$ — тождественный оператор

$$\lambda \in \mathbb{C}$$
 $V(\lambda) : \mathbb{C} \to \mathcal{B}(X)$ $V(\lambda) = \lambda I - T$

Теперь множество комплексных чисел разбивается на 2 подмножества. λ — регулярное значение, если $V(\lambda)$ — биекция [[теорема Банаха]] $\Rightarrow \exists (V(\lambda))^{-1} \in \mathcal{B}(X)$.

 $ho(T) = \{\lambda - ext{perулярная} \} - ext{peзольвентное множество}$

$$R(\lambda): \rho(T) \to \mathcal{B}(X) \quad R(\lambda, T) = R(\lambda) = (V(\lambda))^{-1}$$

R — резольвента

Операторно-значная функция: комплексному числу сопоставляем оператор.

Откуда берется такое пугающее слово резольвента? Рассмотрим уравнение $\lambda x - Tx = y$. Если $\forall y \in X \exists ! x$ — решение этого уравнения, то λ — регулярное значение, а уравнение — разрешимо (resolve). Англосаксонское слово проникло и сюда

$$\sigma(T) = \mathbb{C} \setminus \rho(T)$$
 — спектр оператора

Посмотрим, из каких частей состоит этот спектр. Почему V может быть не биекцией? В конечномерных пространствах он мог быть

только не инъекцией, но в бесконечномерных может быть и не сюръекцией.

1. σ_p — точечный спектр (p = point)

$$\lambda \in \sigma_p(T)$$
 если $\operatorname{Ker}(\lambda I - T) \neq \{0\}$
 $X_{\lambda} = \operatorname{Ker}(\lambda I - T), x \in X_{\lambda} \Leftrightarrow Tx = \lambda x$

 λ — собственное значение, X_λ — собственное подпространство

2. $\sigma_c(T)$ — непрерывный спектр (c = continuous)

$$\sigma_c(T)=\{\lambda\in\mathbb{C}, \mathrm{Ker}(\lambda I-T)=\{0\}\,, (V(\lambda))(X)$$
 — всюду плотен в $X\}$ то есть $\overline{(\lambda I-T)(X)}=X$

хоть и не биекция, но почти — на всюду плотном множестве существует решение уравнения

3. $\sigma_r(T)$ — остаточный спектр (r = remainder)

$$\sigma_r = \left\{ \lambda \in \mathbb{C} : \operatorname{Ker}(\lambda I - T) = \{0\}, \overline{\lambda I - T(X)} \subsetneq X \right\}$$

образ $(V(\lambda))(X)$ не плотен в X

$$\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$$

части спектра не пересекаются

Пример 11.1. Если dim $X < +\infty$, то $\sigma(T) = \sigma_p(T)$

Теорема 11.1 (свойства резольвенты). X — банахово, $T \in \mathcal{B}(X), \ \lambda, \mu \in \rho(T)$

- 1. $R(\lambda)R(\mu) = R(\mu)R(\lambda)$
- 2. $R(\lambda) R(\mu) = (\mu \lambda)R(\lambda)R(\mu)$ (тождество Гильберта)
- 3. $\lambda \in \mathbb{C}, |\lambda| > ||T|| \Rightarrow \lambda \in \rho(T)$
- 4. $\rho(T)$ открытое множество, μ \in $\rho(T), \left\{\lambda \in \mathbb{C}: |\lambda \mu| < \frac{1}{||R(\mu)||}\right\} \subset \rho(T)$
- 5. $R(\lambda)$ непрерывная функция, то есть $\lim_{\lambda \to \mu} ||R(\lambda) R(\mu)|| = 0$, $\lim_{\lambda \to \infty} R(\lambda) = 0$
- 6. $F \in (\mathcal{B}(X))^*, g(\lambda) = F(R(\lambda)), \lambda \in \rho(T) \Rightarrow g(\lambda)$ аналитическая в $\rho(T)$ (то есть $\exists \ g'(\lambda)$)

1.

$$V(\lambda)V(\mu) = (\lambda I - T)(\mu I - T) =$$

$$[[I \text{ коммутирует со всеми}]] = (\mu I - T)(\lambda I - T) = V(\mu)V(\lambda)$$

$$AB = BA, \ A, B \in \mathcal{B}(X), \ \exists \ A^{-1}, B^{-1} \Rightarrow$$

$$(AB)^{-1} = (BA)^{-1} \Leftrightarrow B^{-1}A^{-1} = A^{-1}B^{-1}$$

2.

$$A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$$

$$A = V(\lambda) = \lambda I - T \quad B = V(\mu) = \mu I - T$$

$$B - A = (\mu - \lambda)I$$

$$\Rightarrow R(\lambda) - R(\mu) = R(\lambda)(\mu - \lambda)I \cdot R(\mu) = (\mu - \lambda)R(\lambda)R(\mu)$$

это рассужедние связано с утвержедниями об открытости множества обратимых операторов, об обратимости оператора, близкого к тождественному, и всё это мы будем сейчас использовать \Box

3.

$$\lambda \in \mathbb{C}, |\lambda| > ||T||$$

$$V(\lambda) = \lambda I - T = \lambda \left(I - \frac{1}{\lambda} T \right), \left| \left| \frac{1}{\lambda} T \right| \right| < 1$$

[[теорема об обратимости оператора, близкого к тождественному]] \Rightarrow

$$\exists \left(I - \frac{1}{\lambda}T\right)^{-1} \Rightarrow R(\lambda) = \frac{1}{\lambda} \left(I - \frac{1}{\lambda}T\right)^{-1}$$

4.

 $A \in \operatorname{In}(X)$, то есть A обратим, [[теорема об открытости $\operatorname{In}(X)$]] \Rightarrow

$$||B-A||<\frac{1}{||A^{-1}||}\Rightarrow B\in \mathrm{In}(X)$$

$$A=\mu I-T\quad B=\lambda I-T$$

$$||A-B||=|\lambda-\mu|\quad |\lambda-\mu|<\frac{1}{||R(\mu)||}\Rightarrow \exists\, B^{-1}, \text{ r.e. } R(\lambda), \text{ r.e. }$$

$$\lambda\in\rho(T)$$

5.

$$||V(\lambda) - V(\mu)|| = |\lambda - \mu|$$

$$\lim_{\lambda \to \mu} ||V(\lambda) - V(\mu)|| = 0$$

$$\varphi : \operatorname{In}(X) \to \operatorname{In}(X) \quad \varphi(A) := A^{-1}$$

 φ — непрерывное отображение, доказали в теореме об открытости $\mathrm{In}(X)$

$$\Rightarrow \lim_{\lambda \to \mu} \varphi(V(\lambda)) = \varphi(V(\mu)) \Leftrightarrow \lim_{\lambda \to \mu} R(\lambda) = R(\mu)$$

теперь воспользуемся формулой, которую мы вывели в доказательстве пункта 3

$$\lim_{\lambda \to \infty} \frac{1}{\lambda} T = 0 \Rightarrow \lim_{\lambda \to \infty} \left(I - \frac{1}{\lambda} T \right) = I[[\text{по непрерывности } \varphi]] \Rightarrow$$

$$\lim_{\lambda \to \infty} \left(I - \frac{1}{\lambda} T \right)^{-1} = I \Rightarrow \lim_{\lambda \to \infty} R(\lambda) = \lim_{\lambda \to \infty} \frac{1}{\lambda} \left(I - \frac{1}{\lambda} T \right)^{-1} = 0$$

$$R(\lambda) = \frac{1}{\lambda} \left(I - \frac{1}{\lambda} T \right)^{-1}$$

6. напишем просто тождество Гильберта

$$\frac{R(\lambda) - R(\mu)}{\lambda - \mu} \stackrel{?}{=} \frac{(\mu - \lambda)R(\lambda)R(\mu)}{\lambda - \mu} = -R(\lambda)R(\mu) \xrightarrow[\lambda \to \mu]{} -R(\mu)^2$$

ура, у нас получилась аналитическая функция со значениями в банаховом пространстве. Но такого у нас еще не было, и чтобы не вводить новый объект, мы просто применим наш функционал

$$\begin{split} \frac{F \in (\mathcal{B}(X))^* \quad g(\lambda) = F(R(\lambda))}{\lambda - \mu} &= \frac{F(R(\lambda)) - F(R(\mu))}{\lambda - \mu} = F\left(\frac{R(\lambda) - R(\mu)}{\lambda - \mu}\right) \xrightarrow[\lambda \to \mu]{} \\ -F((R(\mu))^2) \Rightarrow &\exists \, g'(\mu) \, \forall \, \mu \in \rho(T) \end{split}$$

Важная теорема, которая будет простым следствием из доказанных свойств

Теорема 11.2 (компактность и не пустота спектра). X — банахово, $T \in \mathcal{B}(X) \Rightarrow \sigma(T)$ — не пуст и компактен

Достаточно необычно, что для того чтобы показать непустоту спектра, нам понадобится ТФКП, математика всё-таки едина, ёлы-палы!

Теорема 11.3 (Лиувилль). Пусть $f(\lambda)$ — аналитическая в $\mathbb C$ и ограниченная, то есть $\exists \ M>0: |f(\lambda)|\leq M\ \forall \lambda\in\mathbb C\Rightarrow f(\lambda)\equiv const.$

По секрету, функции, аналитические во всей комплексной плоскости, называются **целыми**.

Доказательство теоремы Лиувилля.

$$a\in\mathbb{C}\quad f'(a)=\frac{1}{2\pi}\int_{\{|z-a|=r\}}\frac{f(z)}{(z-a)^2}dz\Rightarrow$$

то есть продифференцировали формулу Коши. Когда функция у нас целая, мы r можем взять любое

$$\Rightarrow |f'(a)| \le \frac{1}{2\pi} \frac{M \cdot 2\pi r}{r^2} = \frac{M}{r} \xrightarrow[r \to \infty]{} 0$$
$$\Rightarrow f'(a) = 0 \ \forall \ a \in \mathbb{C}$$
$$\Rightarrow f(\lambda) = c \ \forall \ \lambda \in \mathbb{C}, c \in \mathbb{C}$$

Рис. 11.1: Теорема 11.3

Доказательство теоремы. $\rho(T)$ — открыто, $\rho(T)\subset\mathbb{C}\Rightarrow\sigma(T)=\mathbb{C}\setminus\rho(T)$ — замкнутое.

 $|\lambda|>||T||\Rightarrow \lambda\in\rho(T)\Rightarrow\sigma(T)=\{\lambda\in\mathbb{C}:|\lambda|\leq||T||\}\ -\text{ограниченное}$ $\Rightarrow\sigma(T)-\text{компакт}.$

пусть
$$\sigma(T) \neq \emptyset \Rightarrow \rho(T) = \mathbb{C} \Rightarrow 0 \in \rho(T)$$

 $V(0) = 0 \cdot I - T = -T, 0 \in \rho(T) \Rightarrow \exists T^{-1}$

по следствию о достаточном числе линейных функционалов

$$\exists F \in (\mathcal{B}(X))^* : F(T^{-1}) = \left| \left| T^{-1} \right| \right|, F(T^{-1}) \neq 0$$

но нас интересует только что $F(T^{-1}) \neq 0$

$$g(\lambda) = F(R(\lambda)) \quad \underline{g(0) \neq 0}, 6 \text{ свойство} \ \Rightarrow g(\lambda) \text{ аналитическая в } \mathbb{C}$$

$$\lim_{\lambda \to \infty} R(\lambda) = 0 \Rightarrow \lim_{\lambda \to \infty} g(\lambda) = \lim_{\lambda \to \infty} F(R(\lambda)) = 0$$

$$[[\exists \, R > 0 : |g(\lambda)| \leq 1 \text{ при } \lambda \geq R, \exists \, M = \max_{|\lambda| \leq R} |g(\lambda)| \Rightarrow |g(\lambda)| \leq \max\{1, M\}]]$$

применяем теорему Лиувилля

$$g(\lambda)=const, \lim_{\lambda \to \infty} g(\lambda)=0 \Rightarrow g(\lambda)\equiv 0 \Rightarrow \underline{g(0)=0}$$
 противоречие $\Rightarrow \sigma(T) \neq \varnothing$

Определение 11.2 (Спектральный радиус оператора T). $r(T) = \max_{\lambda \in \sigma(T)} |\lambda|$. Из теоремы $\Rightarrow r(T) \leq ||T||$

Примем без доказательства формулу

$$r(T) = \lim_{n \to \infty} \sqrt[n]{||T^n||}$$

Наконец, обсудим, как связаны между собой спектр оператора и спектр сопряженного оператора.

Теорема 11.4 (спектр сопряженного оператора). 1. X — банахово, $T \in \mathcal{B}(X) \Rightarrow$

$$\sigma(T^*) = \sigma(T)$$
$$\lambda \in \rho(T) \Rightarrow (R(\lambda, T))^* = R(\lambda, T^*)$$

2. H — гильбертово, $T \in \mathcal{B}(H), T^*$ — эрмитово сопряженный

$$\sigma(T^*) = \left\{ \overline{\lambda} : \lambda \in \sigma(T) \right\}$$
$$\lambda \in \rho(T) \quad R(\overline{\lambda}, T^*) = (R(\lambda, T))^*$$

1.

пусть
$$\lambda \in \rho(T) \Rightarrow \exists (\lambda I - T)^{-1}$$

 $(\lambda I - T)^* = \lambda I - T^*$ $\Rightarrow \exists (\lambda I - T^*)^{-1} = ((\lambda I - T)^{-1})^*$

В обратную сторону по замечанию 10.8 (из существования $(T^*)^{-1}$ следует существование T^{-1})

2.

$$(\lambda I - T)^* = \overline{\lambda} I - T^*$$
и так далее

Маленькое ДЗ, которое когда-то давали в качестве задачи на 5 на экзамене

Утверждение 11.1. H — гильбертово, M — замкнутое подпространство. $P: H \to M$ — ортопроектор. $\sigma(P), R(\lambda) = ?$

Иногда кровожадные помощники задавали такие вопросы (но это не на 5, это просто на 1 секунду подумать): I — тождественный, $\sigma(I)$ = ?

11.1. Компактные операторы

Определение 11.3 (компактный оператор). X, Y — банаховы, $T \in \text{Lin}(X,Y)$. T — компактный, если $T(B_1^X(0))$ — относительно компактен

 $\operatorname{Com}(X,Y)$ — множество всех компактных операторов. Если X=Y, будем писать $\operatorname{Com}(X)$

Замечание 11.1. $Com(X,Y) \subset \mathcal{B}(X,Y), T(B_1^X(0))$ — относительно компактно $\Rightarrow T(B_1^X(0))$ — ограниченное $\Rightarrow T \in \mathcal{B}(X,Y)$

Замечание 11.2. $\forall A \subset X, A$ — ограниченное, $T \in \text{Com}(X,Y) \Rightarrow T(A)$ — относительно компактно

Понятно, что если есть относительная компактность образа единичного шара, то его можно раздувать как угодно.

Теперь еще один способ сказать, что оператор — компактный.

Замечание 11.3.
$$T \in \text{Com}(X,Y) \Leftrightarrow \forall \{x_n\}_{n=1}^{\infty}$$
 — ограниченная $\Rightarrow \exists \{n_k\}_{k=1}^{\infty}$ т. ч. $\exists \lim_{k \to \infty} T(x_{n_k}) = y_0 \in Y$

Вот чем мы будем пользоваться изо всех сил: если последовательность ограниченная, то у нее есть сходящаяся в Y подпоследовательность.

Более узкий класс операторов, но они же являются и примерами компактных операторов:

Определение 11.4 (оператор конечного ранга). X,Y — банаховы, $T \in \mathcal{B}(X,Y),T$ — **оператор конечного ранга**, если $\dim(T(X)) < +\infty$

Пример 11.2.

$$\{y_j\}_{j=1}^n, y_j \in Y, \{f_j\}_{j=1}^n, f_j \in X^*$$

$$x \in X \quad Tx = \sum_{j=1}^n f_j(x)y_j$$

$$\operatorname{rank} T = n$$

Небольшое ДЗ: показать, что любой оператор конечного ранга имеет такой вид.

Утверждение 11.2. T — оператор конечного ранга \Rightarrow $T \in \mathrm{Com}(X,Y)$

Доказательство. $\dim(T(X)) < +\infty, T \in \mathcal{B}(X,Y) \Rightarrow T(B_1^X(0))$ — ограниченное множество в конечномерном пространстве $\Rightarrow T(B_1^X(0))$ — относительно компактно

Существенная теорема о том, как связаны между собой компактность, операторы конечного ранга, конечномерные подпространства.

Теорема 11.5.
$$X,Y$$
 — банаховы, $T\in \mathrm{Com}(X,Y)$. Если $L=\overline{L},L$ — подпространство $T(X)\Rightarrow \dim L<+\infty$

Доказательство. Первая часть доказательства. Допустим, что L=T(X). Иными словами, предполагаем, что образ замкнут $\Rightarrow T(X)$ — банахово как замкнутое подпространство полного пространства Y. Тогда вот что у нас есть

$$T: X o T(X)[[$$
 теорема Банаха об открытом отображении $]] \Rightarrow$ $\exists \, B_r^{T(X)}(0) \subset T(B_1^X(0)) -$ относительно компактно $\Rightarrow B_r^{T(X)}(0) -$ относительно компактно $[[$ теорема Рисса $]] \dim(T(X)) < +\infty$

Вторая часть, $L=\overline{L}\subset T(X)$, и тут другая идея, как это свести к предыдущему пункту. Рассмотрим $X_1=T^{-1}(L), X_1$ — банахово, потому что T^{-1} — непрерывный

$$T(X_1) = L, T \in \text{Com}(X_1, L) \stackrel{1}{\Rightarrow} \dim L < +\infty$$

Следствие 11.1. X -банахово, $T \in \text{Com}(X)$

- 1. Если T(X) = X, то dim $X < +\infty$
- 2. Если dim $X = +\infty$, то $0 \in \sigma(T)$

Доказательство. Первое очевидно. Второе от противного, предположим, что $0 \in \rho(T)$

$$0 \in \rho(T) \Leftrightarrow V(0) = 0 \cdot I - T = -T, \; \exists \, T^{-1} \Rightarrow T(X) = X$$
 — противоречие с 1 $\Rightarrow 0 \in \sigma(T)$

Посмотрим теперь, какие арифметические операции можно выполнять с компактными операторами

Теорема 11.6 (арифметические операции и предельный переход в Com(X,Y)). X,Y — банаховы

- 1. Com(X,Y) замкнутое подпространство в $\mathcal{B}(X,Y)$. Поэтому будет сложение, композиция, умножение на константу и переход к пределу
- 2. $X \xrightarrow{T} Y \xrightarrow{S} Z$, X, Y, Z банаховы
 - a) $T \in \mathcal{B}(X,Y), S \in \text{Com}(Y,Z) \Rightarrow ST \in \text{Com}(X,Z)$
 - b) $T \in \text{Com}(X, Y), S \in \mathcal{B}(Y, Z) \Rightarrow ST \in \text{Com}(X, Z)$

1.

$$T\in \mathrm{Com}(X,Y), \alpha\in \mathbb{C}[[$$
 очевидно $]]\Rightarrow \alpha T\in \mathrm{Com}(X,Y)$ $T,S\in \mathrm{Com}(X,Y)$ $B=B_1^X(0)$

вспомним, что в полном пространстве относительная компактность эквивалентна вполне ограниченности

$$T(B)$$
 — относительно компактно \Leftrightarrow вполне ограничено

хотим воспользоваться тем, что T(B), S(B) — вполне ограничены, а значит, (S+T)(B) будет вполне ограниченным

$$\varepsilon>0\,\exists\,E-\text{ конечная }\varepsilon\text{-сеть для }T(B)$$

$$\exists\,F-\text{ конечная }\varepsilon\text{-сеть для }S(B)$$

$$E+F=\{e+f:e\in E,f\in F\}-\text{ конечная }2\varepsilon\text{-сеть для множества }T(B)+S(B)$$

$$(T+S)(B)\subset T(B)+S(B)$$

$$\Rightarrow (T+S)(B)-\text{ вполне ограничено }\Rightarrow\text{ относительно компактно}$$

Проверим замкнутость Com(X, Y). Возьмём

$$\{T_n\}_{n=1}^{\infty}, T_n \in \text{Com}(X, Y)$$
$$\lim_{n \to \infty} ||T_n - T|| = 0$$

наша мечта проверить, что T — компактный оператор. Опять-таки воспользуемся вполне ограниченностью

пусть
$$\varepsilon>0$$
 \exists $n\in\mathbb{N}:||T_n-T||<\varepsilon$ \exists E — конеченая ε -сеть для $T_n(B)$ \Rightarrow $E-2\varepsilon$ -сеть для $T(B)\Rightarrow T(B)$ — вполне ограничено

2. $X \xrightarrow{T} Y \xrightarrow{S} Z, B = B_1^X(0)$

Первый пункт: $T \in \mathcal{B}(X,Y) \Rightarrow T(B)$ — ограниченное множество $\Rightarrow S(T(B))$ — относительно компактно.

Второй пункт: $T\in \mathrm{Com}(X,Y)\Rightarrow T(B)$ — относительно компактен. S — непрерывное отображение $\Rightarrow S(T(B))$ — относительно компактно.

Вот какую умность можно сказать:

Следствие 11.2. X — банахово, $\mathrm{Com}(X)$ — замкнутый двусторонний идеал алгебры $\mathcal{B}(X)$

11.2. Спектр компактного оператора

Замечание-напоминание, которое, вероятно, было в алгебре, тут даже никакой непрерывности не требуется

Замечание 11.4. X — линейное пространство, $T \in \text{Lin}(X), \{\lambda_j\}_{j=1}^n$, $\lambda_j \neq \lambda_k$ при $j \neq k$

$$Tx_j = \lambda_j x_j, x_j \neq 0 \Rightarrow \{x_j\}_{j=1}^n$$
 — линейно независимы

Теорема 11.7. $T\in \mathrm{Com}(X), X$ — банахово, $\delta>0, X_{\lambda}=\mathrm{Ker}(\lambda I-T)$ — собственное подпространство, соответствующее λ

$$\sum_{\lambda \in \sigma_p(T), |\lambda| > \delta} \dim X_{\lambda} < +\infty$$

Число линейно независимых собственных векторов, соотвествующих собственнным числам λ , таким, что $|\lambda| > \delta$, конечно.

Доказательство. Доказывать будем от противного.

пусть
$$\left\{x_n\right\}_{n=1}^{\infty}$$
 — линейно назвисимы , $Tx_n=\lambda_n x_n, |\lambda_n|>\delta$

возможно, $\lambda_n = \lambda_m$ при $n \neq m$

$$L_n = \mathcal{L}\left\{x_j\right\}_{j=1}^n, L_n \subsetneq L_{n+1}$$

[[следствие из леммы Рисса $5.10]] \Rightarrow \exists \{y_n\}_{n=1}^{\infty}, ||y_n|| = 1, \rho(y_{n+1}, L_n) \geq \frac{1}{2}$

$$T \in \text{Com}(X) \Rightarrow \exists \{n_k\}_{k=1}^{\infty}$$

 $\exists \lim_{k \to \infty} Ty_{n_k}$

Проверим, что $||Ty_n - Ty_m|| > \varepsilon(\delta) > 0$, то есть не существует фундаментальной подпоследовательности

$$y_n = \alpha_n x_n + u_n, u_n \in L_{n-1}$$
$$Ty_n = \alpha_n \lambda_n x_n + Tu_n, Tx_j = \lambda_j x_j \Rightarrow T(L_n) \subset L_n$$

учёным образом говоря, L_n — инвариантное подпространство относительно оператора T

$$Ty_n = \lambda_n(\alpha_n x_n + u_n) - \lambda_n u_n + Tu_n = \lambda_n y_n + v_n, \ v_n \in L_{n-1}$$

сейчас докажем, что $||Ty_n-Ty_m||$ отделена от нуля, это и есть наша мечта, это и будет противоречием. пусть n>m

$$||Ty_n - Ty_m|| = ||\lambda_n y_n + v_n - Ty_m|| = |\lambda_n| \left| \left| y_n + \frac{1}{\lambda_n} (\underbrace{v_n}_{\in L_{n-1}} - \underbrace{Ty_m}_{\in L_{n-1}\text{T.K. } n > m}) \right| \right| \ge \delta\rho(y_n, L_{n-1}) \ge \frac{1}{2}\delta$$

Отметим такое тривиальное следствие

Следствие 11.3. X — банахово пространство, $T \in \text{Com}(X) \Rightarrow$

- 1. $\delta > 0, \# \{\lambda \in \sigma_p(T), |\lambda| \geq \delta\} < +\infty$
- 2. $\lambda \in \sigma_p(T), \lambda \neq 0 \Rightarrow \dim X_{\lambda} < +\infty$
- 3. $\sigma_p(T)\setminus\{0\}=\{\lambda_n\}_{n=1}^N, 0\leq N\leq +\infty.$ Если $N=+\infty,$ то $\lim_{n\to\infty}\lambda_n=0,$ можно занумеровать $|\lambda_1|\geq |\lambda_2|\geq \dots$

Всё очевидно, разве что про 3 что-то сказать. Вспоминаем одно из эквивалентных определений предела. Вот у нас есть 0, его δ -окрестность, знаем что вне окрестности только конечное число элементов последовательности (это и утверждает теорема), а это и значит, что 0 — предел.

11.3. Самосопряжённые операторы

Теорема 11.8 (простейшие свойства самоспоряженного оператора). H — гильбертово, $T \in \mathcal{B}(H), T = T^*, ((Tx,y) = (x,Ty) \, \forall \, x,y \in H)$

- 1. $(Tx, x) \in \mathbb{R}$
- 2. $\lambda \in \sigma_p(T) \Rightarrow \lambda \in \mathbb{R}$
- 3. $\lambda, \mu \in \sigma_p(T), \lambda \neq \mu, Tu = \lambda u, Tv = \mu v \Rightarrow (u, v) = 0$
- 4. $||T|| = \sup_{\{x:||x||=1\}} |(Tx, x)|$

Свойства 1-3 были доказаны в алгебре, вероятно, да и вообще доказываются в одну секунду. Будем считать их очевидными. Четвертый пункт самый содержательный

1.

$$(Tx,x)=(x,Tx)=\overline{(Tx,x)}\Rightarrow (Tx,x)\in\mathbb{R}$$

2.

$$\lambda \in \sigma_p(T) \Rightarrow \exists x > 0 : Tx = \lambda x \Rightarrow$$

$$(Tx, x) = \lambda(x, x) \Rightarrow \lambda = \frac{(Tx, x)}{||x||^2} \in \mathbb{R}$$

3.

$$\lambda \neq \mu, \ \lambda, \mu \in \mathbb{R} \ \text{ из } (2)$$

$$(Tu,v) = (\lambda u,v) = \lambda(u,v)$$

$$(Tu,v) = (u,Tv) = (u,\mu v) = \mu(u,v)$$

$$0 = (\lambda-\mu)(u,v), \lambda \neq \mu \Rightarrow (u,v) = 0$$

4.

$$Q = \sup_{\{x: ||x|| = 1\}} |(Tx, x)|, ||x|| = 1 \Rightarrow$$
$$|(Tx, x)| \le ||Tx|| \cdot ||x|| \le ||T|| \cdot ||x||^2 = ||T||$$
$$\forall x: ||x|| = 1 \Rightarrow Q \le ||T||$$

а в другую сторону нужно постараться

пусть
$$u \in H, u \neq 0, \left| \left| \frac{u}{||u||} \right| \right| = 1 \Rightarrow \left| \left(T \left(\frac{u}{||u||} \right), \frac{u}{||u||} \right) \right| \leq Q \Rightarrow$$

$$|(Tu, u)| \leq Q ||u||^2 \ \forall u \in H$$
пусть $x, y \in H, u = x + y \Rightarrow$

$$(T(x + y), x + y) \leq Q ||x + y||^2$$

$$-(T(x - y), x - y) \leq Q ||x + y||^2$$

неравенства складывать можно, а вычитать нельзя, поэтому во втором неравенстве появился минус

$$(T(x+y), x+y) = (Tx, x) + (Ty, x) + (Tx, y) + (Ty, y) =$$

$$[[(Tx, y) = (x, Ty) = \overline{(Ty, x)}]] =$$

$$= (Tx, x) + 2\operatorname{Re}(Tx, y) + (Ty, y)$$

$$(T(x-y), x-y) = (Tx, x) - 2\operatorname{Re}(Tx, y) + (Ty, y)$$

вспомним тождество параллелограмма

$$4\operatorname{Re}(Tx,y) \leq 2Q(||x||^2 + ||y||^2)$$
пусть $||x|| = 1$, пусть $Tx \neq 0, y = \frac{Tx}{||Tx||} \Rightarrow ||y|| = 1$ $\Rightarrow 4\operatorname{Re}\left(Tx, \frac{Tx}{||Tx||}\right) \leq 4Q \Rightarrow ||Tx|| \leq Q \,\forall \, x, ||x|| = 1$ $\Rightarrow ||T|| = \sup_{\{x:||x=1||\}} ||Tx|| \leq Q$

Определение 11.5 (границы оператора).

$$T = T^*, M = \sup_{x:||x||=1} (Tx, x), m = \inf_{x:||x||=1} (Tx, x)$$

m, M — границы оператора T

Замечание 11.5.
$$T = T^* \Rightarrow ||T|| = \max\{|m|, M\}$$

Еще одна причина, почему «границы»

Замечание 11.6 (без доказательства).
$$T = T^* \Rightarrow \sigma(T) \subset [m, M]$$

Вот минимальные сведения о самосопряжённых операторах

11.4. Компактные самосопряжённые операторы

Теорема 11.9.
$$H$$
 — гильбертово, $T \in \mathcal{B}(H), T \in \text{Com}(H), T = T^*$

$$\Rightarrow \exists \lambda \in \sigma_p(T), |\lambda| = ||T||$$

Доказательство.

$$M = \sup_{x:||x||=1} (Tx, x), m = \inf_{x:||x||=1} (Tx, x)$$

$$||T|| = \max\{|m|, M\}$$
 пусть $||T|| = M \quad \exists \ \{x_n\}_{n=1}^{\infty}, ||x_n|| = 1$
$$M = \lim_{n \to \infty} (Tx_n, x_n), T \in \text{Com}(H), \ \exists \ \{n_k\}_{k=1}^{\infty} \text{ т.ч.}$$

$$\exists \ \lim_{k \to \infty} Tx_{n_k} = y$$

не умаляя общности, просто чтобы не писать много индексов, $\exists \lim_{n \to \infty} Tx_n = y$. Сейчас убедимся, что y — искомый собственный вектор, то есть $y \neq 0, Ty = My$

$$||Tx_n|| \le ||T|| \cdot ||x_n|| = M$$

$$||y|| = \lim_{n \to \infty} ||Tx_n|| \Rightarrow ||y|| \le M$$

$$0 \le ||Tx_n - Mx_n||^2$$

наша мечта доказать, что эта разница стремится к нулю при $n o \infty$

$$||Tx_{n} - Mx_{n}||^{2} = (Tx_{n} - Mx_{n}, Tx_{n} - Mx_{n}) = \underbrace{||Tx_{n}||^{2}}_{\rightarrow ||y||^{2}} - \underbrace{M(Tx_{n}, x_{n})}_{\rightarrow M^{2}} - \underbrace{M(Tx_{n}, x_{n})}_{\rightarrow M^{2}} - \underbrace{M(Tx_{n}, x_{n})}_{\rightarrow M^{2}} + \underbrace{M(Tx_{n}, x_{n})}_{\rightarrow M^{2}} - \underbrace{M(Tx_{n}, x_{n})}_{\rightarrow M^{2$$

возвращаемся к тому, с чего начинали

$$\Rightarrow \lim_{n\to\infty} Tx_n = M \cdot \lim_{n\to\infty} x_n \Rightarrow y = M \cdot \lim_{n\to\infty} x_n[[\text{ применим } T]] \Rightarrow$$

$$Ty = M \cdot \lim_{n\to\infty} Tx_n \Rightarrow Ty = My$$
 Если $||T|| = |m|, \ T_1 = -T \sup_{\{x: ||x|| = 1\}} (T_1x, x) = -m$ уже показали, что $\exists \ y \neq 0: \ T_1y = -my \Rightarrow Ty = my, \lambda \in \sigma_p(T), \lambda = m$
$$|\lambda| = |m|$$

короче говоря, применим первую часть доказательства к T_1 и получим то, что надо

Теорема 11.10 (Гильберт-Шмидт).
$$H$$
 — гильбертово, $T \in \text{Com}(H), T = T^*, \sigma_p(T) \setminus \{0\} = \{\lambda_n\}_{n=1}^N, 0 \le N \le +\infty$

 $H_{\lambda_n}=\mathrm{Ker}(\lambda_n I-T), P_{\lambda_n}$ — ортогональный проектор на H_{λ_n}

$$\Rightarrow T = \sum_{n=1}^{N} \lambda_n P_{\lambda_n}$$

если
$$N=+\infty,$$
 то $\lim_{n\to\infty}||T-\sum_{k=1}^n\lambda_kP_{\lambda_k}||=0$

Доказательство. Доказательство действительно напоминает то, как это делается в алгебре. Отщепляем собственные подпространства. Тут мы ещё можем и перейти к пределу. Сначала сделаем такое абстрактное действие

$$\lambda \in \sigma_p(T), \lambda \neq 0, \ H_{\lambda} = \mathrm{Ker}(\lambda I - T), \ P_{\lambda} : H \to H_{\lambda}$$
 — ортпроектор

и что за отщепление?

$$\widetilde{T} = T - \lambda P_{\lambda}$$

сейчас отметим, что он самосопряженный, компактный, собственные числа и собственные подпространства такие же, как у оператора T. Обсудим подробнее связь T и \widetilde{T}

$$(\widetilde{T})^*=T^*-\overline{\lambda}P_\lambda^*=T-\lambda P_\lambda$$
 т.к. $\lambda\in\mathbb{R}, T=T^*, P_\lambda^*=P_\lambda$ $L\coloneqq H_\lambda^\perp$ то есть $H=H_\lambda\oplus L$

так как P_{λ} отправлят элементы из L в 0, если $x \in L = H_{\lambda}^{\perp}, \widetilde{T} = Tx - \underbrace{\lambda P_{\lambda}(x)}_{0}$, а если $x \in H^{\lambda}, Tx = \lambda x, \widetilde{T}x = Tx - \underbrace{\lambda P_{\lambda}(x)}_{\lambda x}$

$$\begin{split} \widetilde{T}|_L &= T, \widetilde{T}|_{H_\lambda} = 0 \\ \text{пусть } \mu \in \sigma_p(T), \mu \neq 0, \mu \neq \lambda \Rightarrow H_\mu \perp H_\lambda \Rightarrow H_\mu \subset L \\ \Rightarrow \mu \in \sigma_p(\widetilde{T}), \operatorname{Ker}(\mu I - \widetilde{T}) = H_\mu = \operatorname{Ker}(\mu I - T) \end{split}$$

то есть отщепление никак не испортит остальные собственные числа и собственные подпространства

$$\exists \lambda_1 \quad \lambda_1 \in \sigma_p(T), |\lambda_1| = ||T||$$
 так как мы знаем, что $\forall \lambda \in \sigma(T), |\lambda| \leq ||T||$ λ_1 имет наибольший возможный модуль

если вдруг окажется, что $\lambda_1=0$, то $T=\mathbb{O}$. Тогда вообще непонятно, что утверждает теорема, ноль равен сумма пустого числа слагаемых... далее пусть $T\neq \mathbb{O}$

$$T_1 = T \quad T_2 = T_1 - \lambda_1 P_{\lambda_1}$$
 если $T_2 = \mathbb{O}$, то $T = \lambda_1 P_{\lambda_1}$ если $T_2 \neq \mathbb{O}$, то $\exists \lambda_2 = ||T_2|| = \sup_{\{x:||x||=1\}} |(T_2x,x)| = \sup_{\{x:||x||=1,x\perp H_{\lambda_1}\}} |(Tx,x)|$ и так далее $T_n = T - \lambda_1 P_{\lambda_1} - \ldots - \lambda_{n-1} P_{\lambda_{n-1}}$ если $T_n = \mathbb{O}$, то $T = \sum_{k=1}^{n-1} \lambda_k P_{\lambda_k}$ если $\forall n \, T_n \neq \mathbb{O} \quad ||T_n|| = |\lambda_n| = \sup_{\{x:||x||=1,x\perp H_{\lambda_j},1\leq j\leq n-1\}} |(Tx,x)|$ если $N = +\infty$, то $\lim_{n\to\infty} \lambda_n = 0$ $|\lambda_n| = \left|\left|T - \sum_{n=1}^{n-1} \lambda_k P_{\lambda_k}\right|\right| \xrightarrow[n\to\infty]{} 0$

Теорема 11.11 (Гильберт-Шмидт). В сепарабельном гильбертовом пространстве у самосопряженного компактного оператора существует О.Н.Б из собственных векторов

Это та самая теорема, которая обещалась на первой лекции! Тут уже почти нечего доказывать.

Покороче: H — гильбертово, $T = T^*, T \in \text{Com}(H) \Rightarrow \exists \{e_n\}_{n=1}^{\infty} \text{ O.H.B. }, e_n$ — собственные векторы.

Доказательство.

$$\sigma_p(T) \setminus \{0\} = \{\lambda_n\}_{n=1}^N, 1 \le N \le +\infty$$
 $H_{\lambda_n} = \text{Ker}(\lambda_n I - T), m_n = \dim H_{\lambda_n}$
 $m_n < +\infty, \{e_{n,j}\}_{j=1}^{m_n} - \text{O.H.B. B } H_{\lambda_n}$

возьмём все векторы и рассмотрим замыкание линейной оболочки

$$L = \overline{\mathcal{L}\left\{e_{n,j}\right\}_{n=1,1 < j < m_n}^N}$$
 — замыкание линейной оболочки

используя предыдущую теорему, проверим, что $L=\overline{T(H)}$

$$Te_{n,j} = \lambda_n e_{n,j}, \lambda_n \neq 0 \Rightarrow e_{n,j} = T\left(\frac{e_{n,j}}{\lambda_n}\right) \Rightarrow L \subset \overline{T(H)}$$

а чтобы показать включение в другую сторону, понадобится предыдущая теорема

 $x\in H$ по предыдущей теореме $Tx=\sum_{n=1}^N \lambda_n P_{\lambda_n} x\Rightarrow Tx\subset L\Rightarrow T(H)\subset L$

$$P_{\lambda_n} x = \sum_{j=1}^{m_n} (x, e_{n,j}) e_{n,j}$$

L — замкнутое подпространство, поэтому нам ничего не стоит и замкнуть $(L=\overline{L})\Rightarrow \overline{T(H)}\subset L.$ T(H) — всегда есть О.Н.Б. из собственных векторов H (для $\forall\, H,$ не обязательно сепарабельного); уже доказазал для любого T

$$H = \overline{T(H)} \oplus \operatorname{Ker} T^* = \overline{T(H)} \oplus \operatorname{Ker} T, H_0 = \operatorname{Ker} (0 \cdot I - T) = \operatorname{Ker} T \Rightarrow$$

$$H = L \oplus H_0$$

H — сепарабельное $\Rightarrow H_0$ — сепарабельное, $m_0=\dim H_0, 0\leq m_0\leq +\infty$ $\{\lambda_{0,j}\}_{j=1}^{m_0} \ -\text{ O.H.B. в } H_0$ $\Rightarrow \{e_{n,j}\}_{n=0,1\leq j\leq m_n}^N \ -\text{ O.H.B. в } H$

Теорема 11.12 (о спектре компактного самосопряженного оператора). H — бесконечномерное гильбертово пространство, $T \in \text{Com}(H), T = T^*$

$$\Rightarrow \sigma(T) = \sigma_p(T) \cup \{0\}$$

0 может быть собственным числом, а может и не быть. Остальные комплексные числа, не 0 и не собственные, являются регулярными. Начнём с тривиальной леммы. Раньше её вариант давался в качестве задачки на 5 на экзамене.

Лемма 11.1. \mathcal{H} — сепарабельное гильбертово пространство, $\{e_n\}_{n=1}^{\infty}$ — О.Н.Б.

$$\{\mu_n\}_{n=1}^{\infty}, \mu_n \in \mathbb{C}, Ae_n := \mu_n e_n$$

продолжим по линейности на $\mathcal{L}\left\{e_n\right\}_{n=1}^{\infty}$

1.
$$A \in \mathcal{B}(\mathcal{H}) \Leftrightarrow \{\mu_n\}_{n=1}^{\infty} \in l^{\infty}, ||A|| = ||\{\mu_n\}||_{l^{\infty}} = \sup_{n \in \mathbb{N}} |\mu_n|$$

2.
$$\exists A^{-1} \in \mathcal{B}(\mathcal{H}) \Leftrightarrow \inf_{n \in \mathbb{N}} |\mu_n| = \delta > 0$$

Доказательство первого утверждения леммы. \Rightarrow

$$A \in \mathcal{B}(\mathcal{H}) \Rightarrow ||A|| = \sup_{\{x:||x||=1\}} ||Ax|| \ge ||Ae_n|| = |\mu_n| \ \forall n$$

 $\Rightarrow \{\mu_n\} \in l^{\infty}, ||A|| \ge ||\{\mu_n\}||_{l^{\infty}}$

 \Leftarrow

$$x \in \mathcal{H} \Rightarrow x = \sum_{n=1}^{\infty} x_n e_n \Rightarrow ||x||^2 = \sum_{n=1}^{\infty} |x_n|^2$$
$$||Ax||^2 = \sum_{n=1}^{\infty} |\mu_n|^2 |x_n|^2 \le ||\{\mu_n\}||_{\infty}^2 ||x||^2 \Rightarrow ||A|| \le ||\{\mu_n\}||_{\infty}$$

Доказательство второго утверждения леммы.

$$A^{-1}e_n=rac{1}{\mu_n}e_n$$
 из 1 $A^{-1}\in\mathcal{B}(\mathcal{H})\Leftrightarrow\left\{rac{1}{\mu_n}
ight\}\in l^\infty\Leftrightarrow \inf_{n\in\mathbb{N}}|\mu_n|>0$

Доказательство теоремы.

$$\left\{\lambda_n\right\}_{k=1}^N = \sigma_p(T) \setminus \{0\}$$

$$E = \sigma_p(T) \cup \{0\} \Rightarrow E - \text{замкнутое}$$

 ${\cal E}$ замкнуто, поскольку если последовательность конечная, то и обсуждать нечего, а если бесконечная, то их предельная точка обязательно 0

$$\lambda \notin E \exists \delta > 0 \mid \lambda - \lambda_n \mid \geq \delta, |\lambda| \geq \delta$$

$$H_{\lambda_n}, \{e_{n,j}\}_{j=1}^{m_n} - \text{O.H.B. B } H_{\lambda_n}$$

$$x \in H \quad x = x_0 + x_1, x_0 \in H_0 \quad x_1 \in L = \overline{T(H)}$$

$$Tx = \underbrace{Tx_0}_{=0} + Tx_1 = \sum_{n=1}^{N} \lambda_n \sum_{j=1}^{m_n} (x, e_{n,j}) e_{n,j}$$

мечтаем доказать, что у $(\lambda I - T)$ есть обратный

$$(\lambda I - T)x = \lambda x_0 + \sum_{n=1}^{N} (\lambda - \lambda_n) \sum_{j=1}^{m_n} (x, e_{n,j}) e_{n,j}$$
$$|\lambda - \lambda_n| \ge \delta, \left| \frac{1}{\lambda - \lambda_n} \right| \le \frac{1}{\delta}, \left\{ \frac{1}{\lambda - \lambda_n} \right\} \in l^{\infty}[[\text{ лемма }]] \Rightarrow$$
$$\exists R(\lambda) = (\lambda I - T)^{-1}$$
$$(\lambda I - T)^{-1}y = \frac{1}{\lambda} y_0 + \sum_{n=1}^{N} \frac{1}{\lambda - \lambda_n} \sum_{j=1}^{m_n} (y, e_{n,j}) e_{n,j}$$

Замечание 11.7 (без доказательства). X — банахово бесконечномерное, $T \in \text{Com}(X) \Rightarrow \sigma(T) = \sigma_p(T) \cup \{0\}$

11.5. Интегральный оператор в L^2

Это главный пример оператора, к которому применяют эти все теоремы Гильберта-Шмидта.

Теорема 11.13. $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m, X, Y$ — измеримые по мере Лебега множества.

$$K(x,y) \in L^{2}(X \times Y, dxdy_{\mathbb{B}\mathbb{R}^{m+n}})$$

$$\left(\int_{X} \int_{Y} |K(x,y)|^{2} dxdy\right)^{\frac{1}{2}} < +\infty$$

$$(\mathcal{K}f)(x) = \int_{Y} K(x,y)f(y)dy, f \in L^{2}(Y)$$

$$Com(L^{2}(Y), L^{2}(Y))$$

 $\Rightarrow \mathcal{K} \in \text{Com}(L^2(Y), L^2(X))$

Доказательство. Докажем, что $||\mathcal{K}|| \le ||K(x,y)||_{L^2(X\times Y)}$. Идея такая: будем приближить этот компактный оператор операторами конечного ранга. Мы знаем, что они компактные и мы знаем, что можно переходить к пределу. А предел компактных операторов — компактный оператор.

$$L^2(X)$$
 — сепарабельное $\Rightarrow \exists \ \{\varphi_n(x)\}_{n=1}^\infty$ О.Н.Б. в $L^2(X)$ $L^2(Y)$ — сепарабельное $\Rightarrow \exists \ \{\psi_m(x)\}_{m=1}^\infty$ О.Н.Б. в $L^2(Y)$
$$\int_X \varphi_n(x) \overline{\varphi_m(x)} dx = \begin{cases} 0 & n \neq m \\ 1 & n = m \end{cases}$$

проверим $\{\varphi_n(x)\psi_m(y)\}_{n,m\in\mathbb{N}}$ — О.Н.Б. в $L^2(X\times Y)$

$$\int_{X} \int_{Y} \varphi_{n}(x)\psi_{m}(y) \overline{\varphi_{k}(x)\psi_{j}(y)} dxdy = \begin{cases} 1 & n = k, m = j \\ 0 & (n, m) \neq (k, j) \end{cases}$$

проверим полноту теперь через критерий: предположим, что есть функция, которая ортогональна этой системе

$$\{\varphi_n\psi_m\} \ -\text{ полная в } L^2(X\times Y): \ \text{пусть } f(x,y)\in L^2(X\times Y), f\perp \{\varphi_n\psi_m\} \ \forall \, n,m$$

$$\int_X \int_Y f(x,y)\overline{\varphi_n(x)\psi_m(y)}dxdy = 0 \ \forall \, n,m$$
 пусть $n-$ фиксированное
$$\int_Y \left(\int_X f(x,y)\overline{\varphi_n(x)}dx\right)\overline{\psi_m}(y)dy = 0$$

есть некоторая фиксированная функция, ортогональная всем элементам базиса ψ_m

$$\Rightarrow \int_X f(x,y)\overline{\varphi_n(x)}dx = 0 \text{ п.в. } y \in Y$$
 для п.в. y для $\forall n \in \mathbb{N}$
$$\int_X f(x,y)\overline{\varphi_n}(x)dx = 0 \Rightarrow$$

аналогично заключаем, что и f(x,y) = 0 почти всюду

$$f(x,y)=0$$
 п.в. $x\in X\Rightarrow f=\mathbb{0}$ в $L^2(X\times Y)\Rightarrow$ $\{\varphi_n(x)\psi(m)y\}$ — базис в $L^2(X\times Y)$

теперь разложим ядро по базису

$$K(x,y) \in L^{2}(X \times Y) \Rightarrow$$

$$K(x,y) = \sum_{1 \leq i,j < +\infty} \alpha_{ij} \varphi_{i}(x) \psi_{j}(y)$$

$$K_{n}(x,y) = \sum_{1 \leq i,j \leq n} \alpha_{ij} \varphi_{i}(x) \psi_{j}(y), ||K(x,y) = K_{n}(x,y)||_{L^{2}} \underset{n \to \infty}{\longrightarrow} 0$$

идея такая: рассмотрим интегральный оператор с ядром K_n , убедимся, что он конечного ранга, значит, он будет компактным, а потом перейдем к пределу, поскольку в множестве компактных операторов можно переходить к пределу, оператор с ядром K тоже будет компактным оператором

$$f \in L^{2}(Y), (\mathcal{K}_{n}f)(x) = \int_{Y} K_{n}(x, y)f(y)dy = \int_{Y} \sum_{1 \leq i, j \leq n} \alpha_{ij}\varphi_{i}(x)\psi_{j}(y)f(y)dy =$$
$$= \sum_{1 \leq i, j \leq n} \alpha_{ij}\varphi_{i}(x) \int_{Y} \psi_{j}(y)f(y)dy \in \mathcal{L}(\varphi_{i}(x))_{i=1}^{n}$$

$$\dim \mathcal{K}_n(L^2(Y)) = n < +\infty$$

$$\Rightarrow \mathcal{K}_n - \text{ оператор конечного ранга}$$

$$\Rightarrow \mathcal{K}_n \in \text{Com}(L^2(Y), L^2(X))$$

мы учились оценивать норму интегрального оператора с помощью нормы его ядра

$$||\mathcal{K} - \mathcal{K}_n||_{\mathcal{B}(L^2(Y), L^2(X))^*} \le ||K(x, y) - K_n(x, y)||_{L^2(X, Y)} \underset{n \to \infty}{\longrightarrow} 0$$

$$\Rightarrow \mathcal{K} \in \text{Com}(L^2(Y), L^2(X))$$

Отметим такое следствие, главный пример, к которому применяются теоремы Гильберта-Шмидта

Следствие 11.4.
$$X \subset \mathbb{R}^n, X$$
 — измеримое, $K(x,y) \in L^2(X \times X)$

$$K(y,x) = \overline{K(x,y)}$$
 $(\mathcal{K}f)(x) = \int_X K(x,y)f(y)dy f \in L^2(X)$

$$\Rightarrow \mathcal{K} = \mathcal{K}^*, \mathcal{K} \in \text{Com}(L^2(X))$$

к оператору $\mathcal K$ применили теорему Гильберта-Шмидта. Верно не только для меры Лебега

11.6. Каноническое представление компактного оператора

Произвольный компактный оператор нет надежды представлять такой замечательной суммой, поскольку у него может быть только одно собственное число — 0, и весь спектр будет состоять из 0, и ничего не напишешь больше.

Определение 11.6.
$$H$$
 — гильбертово, $T \in \mathcal{B}(H), T = T^*, T \geq 0$ если $(Tx,x) \geq 0 \ \forall \, x \in H$

$$S=S^*, S\geq T$$
 если $S-T\geq 0$

Пример 11.3.

$$T = T^*, m = \inf_{\{x: ||x|| = 1\}} (Tx, x), M = \sup_{\{x: ||x|| = 1\}} (Tx, x)$$

 $Ix = x, mI \le T \le MI$

Теорема 11.14. H — гильбертово, $T \in \mathcal{B}(H) \Rightarrow$

- 1. $TT^* > 0$
- 2. $||TT^*|| = ||T||^2$
- 3. $\operatorname{Ker}(T^*T) = \operatorname{Ker} T$

Теорема хороша тем, что T произвольный, и мы можем рассмотреть TT^* , и он уже будет положительно определённый и самосопряжённый

1.

$$(TT^*)^*=TT^*\Rightarrow TT^*$$
 — самосопряжённый
$$(TT^*x,x)=(T^*x,T^*x)=||T^*x||^2\geq 0$$

2.

$$||x|| = 1$$
 $||TT^*|| = \sup_{\{x:||x||=1\}} |(TT^*x, x)| = \sup_{\{x:||x||=1\}} ||T^*x||^2 = ||T||^2$

3.

$$Tx=0\Rightarrow T^*Tx=0$$
пусть $T^*Tx=0\Rightarrow (T^*Tx,x)=0\Rightarrow\underbrace{(Tx,Tx)}_{=||Tx||^2}=0\Rightarrow Tx=0$

Из того, что оператор положительно определённый, следует, что его собственные числа неотрицательные.

Замечание 11.8. $\mu_n \ge 0$

$$(Tx, x) \ge 0 \,\forall x \in H, Tx = \lambda x \Rightarrow \lambda = \frac{(Tx, x)}{||x||^2} \ge 0$$

Определение 11.7 (сингулярное число оператора). $T \in \text{Com}(H), H$ — гильбертово $\Rightarrow T^*T \in \text{Com}(H), (T^*T)^* = (TT^*) \Rightarrow \sigma_p(T^*T) \setminus \{0\} = \{\mu_n\}_{n=1}^N, \ \mu_n \geq 0, \mu_1 > \mu_2 > \dots, \text{ если } N = +\infty, \text{ то } \lim_{n \to \infty} \mu_n = 0$

$$s_n = \sqrt{\mu_n}$$

 s_n — сингулярное число оператора T

 $m_n = \dim(\mu_n I - T^*T), m_n$ — кратность сингулярного числа s_n

Теорема 11.15 (каноническое разложение компактного оператора). H —гильбертово, $T \in \text{Com}(H), \{s_n\}_{n=1}^N$ — сингулярные числа, $\{m_n\}_{n=1}^N$ — кратности \Rightarrow

$$\{e_{n,j}\}_{n=1,1 \le j \le m_n}^N - \text{O.H.C.}, \ \{f_{n,j}\}_{n=1,1 \le j \le m_n}^N - \text{O.H.C.},$$

$$Tx = \sum_{n=1}^N s_n \sum_{i=1}^{m_n} (x, e_{n,j}) f_{n,j}$$

Наибольший интерес теорема представляет в случае бесконечных рядов $1 \leq N \leq +\infty$

Доказательство.

$$H_{\mu_n} = \text{Ker}(\mu_n I - T^*T), m_n = \dim H_{\mu_n}$$

$$\{e_{n,j}\}_{j=1}^{m_n} - \text{O.H.B. B } H_{\lambda_n}$$

$$f_{n,j} = \frac{1}{s_n} T e_{n,j}$$

проверим, что они ортогональны друг другу

$$(f_{n,j}, f_{m,k}) = \frac{1}{s_n s_m} (T e_{n,j}, T e_{m,k}) = \frac{1}{s_n s_m} (T^* T e_{n,j}, e_{m,k}) = \frac{\mu_n}{s_n s_m} (e_{n,j}, e_{m,k}) =$$

$$= \begin{cases} 1 & n = m, j = k \\ 0 & (n, j) \neq (m, k) \end{cases}$$

$$x = \underbrace{x_0}_{\in H_0} + \sum_{n=1}^{N} \sum_{j=1}^{m_n} (x, e_{n,j}) e_{n,j} \quad x_0 \in \text{Ker}(T^* T) = \text{Ker}(T)$$

$$Tx = \sum_{n=1}^{N} s_n \sum_{j=1}^{m_n} (x, e_{n,j}) f_{n,j}$$

Следствие 11.5.
$$T\in \mathrm{Com}(H), H$$
 — гильбертово \Rightarrow $\exists \{T_n\}_{n=1}^{\infty}, T_n$ — конечного ранга $\lim_{n\to\infty}||T_n-T||=0$

 \mathcal{A} оказательство. Пусть $N=+\infty,$ иначе оператор и так конечного ранга.

$$T_n x = \sum_{k=1}^n s_k \sum_{j=1}^{m_k} (x, e_{k,j}) f_{k,j}, \text{ пусть } ||x|| = 1$$
$$||(T - T_n)x||^2 = \sum_{k=n+1}^{\infty} |s_k|^2 \left(\sum_{j=1}^{m_k} |(x, e_{k,j})|^2 \right) \le |s_{n+1}|^2 \cdot ||x||^2 \le |s_{n+1}|^2 \underset{n \to \infty}{\longrightarrow} 0$$

Конец.

١