以AR SLAM技術運用在水下導航導覽空間決策之研究-以野柳水下珊瑚導覽為例

台大地理環境資源學系 黃文男 2017/10/24

大綱

- 一、研究動機
- 二、研究目的與範疇
- 三、文獻回顧
- 四、初步研究方法

五、初步成果

一、研究動機

- 研究的社會需求
 在地球的表面上大約有71%的表面積被水體覆蓋。
 人類有80%的時間生活在室內(科學發展2013年4月第55頁)。
- 研究的技術發展必要性 室內不易接收GNSS使用的訊號(折射、反射、繞射、吸收等)。 水體吸收GNSS使用的訊號。
- 研究的突破點感測器元件的普及與小型化。運算成本大幅降低(摩爾效應)。

一、研究動機(Cont.)

- 室內外特定設施的導航的需求 廁所、ATM 要到教室、會場等特定位置
- 水下無詳細資訊的導航 目前深水深區域使用AUV無人載具、潛艇等並使用聲納導航。
 水下工程需事先埋設定位基點及使用LASER。
 生態觀察均以潛水員人工觀測或錄影後由專家判釋。

室內外特定設施的導航的需求(如廁所)

廁所的相對/絕對位置?

廁所的指標在哪??

問題2:我想從台北車站到青年旅館。

整合室內、外導航,可縮短距離,不用繞一大圈

不是只要台鐵出站走到M6出口就好了嗎?

室內導航有障礙, 需迴避

人潮眾多的情境下導航效果不佳 目前室內定位技術尚無統一的標準

主要室內定位技術

定位技术名称	精确度	穿透性	抗干扰性	布局复杂程度	成本
红外线定位	****			****	**
超声波定位	****	*	***	**	****
射频识别定位	****	***	**	**	**
蓝牙室内定位	***	***	**	***	***
Wi-Fi 定位	*	***	****	*	*
ZigBee 定位	**	****	***	**	***
超宽带定位	****	****	****	***	****

水下的導航情境(資訊不夠詳細,有障礙)

2002年發現澎湖虎井沉城迄今,僅能由潛水員錄影紀錄(非即時、無資訊)。國立海洋生物博物館每年於珊瑚產卵季節架設水下攝影機直播(僅有畫面,無導覽資訊及解說)。

2017/10/15, 中興大學生命科學所博士生進行海蛇觀測時溺斃。

綜上可知, 迄今仍仰賴人工, 由無人載具自動化可提升效率、減少傷亡、並可應用於水下考古、環境教育等領域。

二、研究目的與範疇

本論文的目的,是透過善用定位與AR的技術來掌握室內與水下定位資訊,與動態情境資訊,再進行空間移動決策,以順利的進行導航、與必要的導覽。

- 為達成研究目的設定了三個子目標:
- 一、在室內或水下無法使用GPS的狀態下,善用空間定位資訊,進行空間定位。
- 二、運用AR動態判釋技術,掌握路徑上的障礙。
- 三、透過動態空間決策進行障礙迴避, 順利的進行導航、及必要的導覽。

二、研究範疇與限制

- 野柳地質公園管轄範圍:陸地及20米等深線內(本研究實驗場地)
- 水下環境只能使用Laser與照相機
- 珊瑚生長的環境約為水深30米(只能使用ROV, 無法使用AUV)

三、文獻回顧

- 空間定位(室內與水下)
- 空間導航及導航空間決策(配合AR)
- VR/AR導覽(以珊瑚為例)
- 水下ROV

列出文獻?

與台大地理系相關的歷史背景

- 王鑫教授研究珊瑚礁(台灣的珊瑚礁, 2002)
- 東北角是台灣珊瑚棲地的最北界(台灣環境協會全台珊瑚礁體檢報告成果)
- 地理系朱子豪教授與海洋所戴昌鳳教授合作進行野柳珊瑚研究(2006-2007)
- 野柳地質公園管轄範圍:陸地及20米等深線內(本研究實驗場地)

ROV: OpenROV應用情境

美國加州Tahoe lake中的沈船

https://youtu.be/noTsGnQD8Go?t=174

日本愛媛県漁協組合水產養殖

https://www.youtube.com/watch?v=Qvm4c2sy8pI

AR/VR相關技術: 魚類辨識、人車辨識

魚類辨識

https://youtu.be/Ihfjn6k6Y6M?t=67

人車辨識

https://youtu.be/ zZe27JYi8Y?t=15

VR導覽文獻回顧

• 李卓翰, 2007, 應用物件導向方法建構3D虛擬旅遊系統之研究—以野柳地質公園為例, 台大地理環境資源係碩士論文

AV文獻回顧(論文?):SLAM地圖自動繪製

2014

https://www.youtube.com/watch?v=h3FfXafuOvE

2017

https://www.youtube.com/watch?v=-GRBWBJtBiY

論文類別:相關大事記年表

時間	地點	事件	備註
1704	UK	福爾摩沙歷史與地理的描述出版	旅遊
1865	France	從地球到月球出版	科幻小說
1870	France	海底兩萬里出版	科幻小說
1959	Moon	Luna 1(Mechta)發射成功	RS
1968	USA	The Sword of Damocles發表	VR
1971	Mars	Mariner 9發射成功	RS
1979	USA	TMI核電廠事故	災難/RS
1986	Ukraine	Chernobyl核電廠事故	災難/RS
1995	USA	Imagined Geographies發表	學術
1999	USA	Thrill Seekers上映	災難旅遊
2007	USA	Google Street View啟用	旅遊
2007	Taiwan	本論文通過	學術
2010	USA	Oculus Rift原型發表	VR
2011	Japan	福島核電廠事故	災難/RS
2015	USA	Everest上映	旅遊

四、初步研究方法

- 室内與水下(ROV)的定位方法
- AV SLAM技術的情境判釋(動態導航)與類別辨認(導覽)
- 空間移動決策(迴避障礙)

五、初步成果

- 室内與水下(ROV)的定位方法
- AV SLAM技術的情境判釋(動態導航)與類別辨認(導覽)
- 空間移動決策(迴避障礙)(可能還沒有)