LAUNCH COMPLEX 39B (SWMU 009) 2014 ANNUAL GROUNDWATER MONITORING REPORT: SUMMARY OF PERFORMANCE MONITORING, MONITORED NATURAL ATTENUATION, AND OPERATION AND MAINTENANCE ACTIVITIES KENNEDY SPACE CENTER, FLORIDA

Prepared for:

National Aeronautics and Space Administration Kennedy Space Center, Florida

July 2015 Revision 0

Prepared by:
Geosyntec Consultants
6770 South Washington Avenue, Suite 3
Titusville, FL 32780
(321) 269-5880

CERTIFICATION AND APPROVAL

I hereby certify that in my professional judgment this document entitled: *Launch Complex 39B*, *SWMU 009*, *2014 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities* satisfies the requirements set forth in Chapter 471, Florida Statues. I have completed and/or been in responsible charge of work completed by qualified professionals working directly under my supervision.

DRAFT

Michael S. Burcham, E.I.T./Date Geosyntec Consultants, Inc. Telephone: (321) 960-9789 Facsimile: (281) 920-4602

DRAFT

Rebecca C. Daprato, Ph.D.,
P.E./Date
Florida Professional Engineer No. 69809
11490 Westheimer Rd STE 150
Houston, TX 77077
Geosyntec Consultants, Inc.
Certificate of Authorization No. 4321
Telephone: (321) 795-1303
Facsimile: (281) 920-4602

TABLE OF CONTENTS

Section	<u>Title</u>	<u>Page</u>
I	INTRODUCTION	1-1
1.1	Overview	1-1
1.2	Facility Location	1-1
1.3	Site History and Background	1-1
1.4	Purpose	1-4
1.5	Report Organization	1-4
II	FIELD ACTIVITIES	2-1
2.1	Overview	2-1
2.2	Performance Monitoring	2-1
2.3	Monitored Natural Attenuation	2-1
2.4	Operation and Maintenance	2-2
2.4.1	Injection Well Status	2-2
III	RESULTS	3-1
3.1	Overview	3-1
3.2	Performance Monitoring Results	3-1
3.2.1	Comparison to Site-Specific Remedial Goals	3-1
3.2.2	Mass Removal	3-1
3.2.3	CVOC Trend Evaluation	3-2
3.2.4	Field Geochemical Parameter Evaluation	3-3
3.2.4.1	pH Evaluation	3-4
3.2.4.2	DO and ORP Evaluation	3-4
3.3	MNA Groundwater Sampling Results	3-4
3.3.1	MNA CVOC Groundwater Sampling Results	3-4
3.3.2	MNA Metals Groundwater Sampling Results	3-5
3.3.3	Evaluation of Geochemical Parameters	3-5
3.3.3.1	pH Evaluation	3-5
3.3.3.2	DO and ORP Evaluation	3-5
3.3.3.3	Salinity Evaluation	3-6
3.4	Operation and Maintenance	3-6
3.4.1	Recirculation System Operation and Maintenance	3-6
3.4.2	Sediment Block Inspection	3-7

TABLE OF CONTENTS (continued)

Section	<u>Title</u>	<u>Page</u>
IV	CONCLUSIONS AND RECOMMENDATIONS	4-1
4.1	Performance Monitoring	4-1
4.2	Monitored Natural Attenuation	4-1
4.3	Operation and Maintenance	4-2
V	REFERENCES	R-1
	LIST OF TABLES	
<u>Tables</u>	<u>Title</u>	<u>Page</u>
1-1	Site-Specific Cleanup Criteria from the Corrective Measures Design Report	1-5/1-6
3-1	Performance Monitoring Well and Surface Water Sampling Results: Chlorinated Volatile Organic Compounds	3-8/3-12
3-2	Performance Monitoring Well Sampling Results: Monitoring Well IW0013 Cluster	3-13
3-3	Performance Monitoring Well and Surface Water Sampling Results: Field Geochemical Parameters	3-14/3-18
3-4	Monitored Natural Attenuation Sampling Results: Chlorinated Volatile Organic Compounds and Dissolved Gases	
3-5	Monitored Natural Attenuation Sampling Results: Metals	3-23
3-6	Monitored Natural Attenuation Sampling Results: Field Geochemical	
	Parameters	3-24
4-1	Monitored Natural Attenuation Sampling Plan	4-3/4-4

TABLE OF CONTENTS (continued)

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1-1	LC39B Site Location Map	1-7/1-8
1-2	USGS Topographic Map	1-9/1-10
1-3	High and Low Concentration Plumes from CMS	1-11/1-12
1-4	Injection Well and Performance Monitoring Well Locations	1-13/1-14
1-5	CVOC Groundwater Impacts at LC39B	1-15/1-16
2-1	MNA Monitoring Well Locations	2-3/2-4
2-2	Destroyed Injection Well Locations	2-5/2-6
3-1	Performance Monitoring Results: CVOCs	3-25/3-26
3-2	Comparison of the Distribution of TCE, cDCE, and VC in the	
	Treatment Zone Monitoring Wells (TA0001S, TA0002S, TA0003S,	
	TA0004S, IW0009S, IW0013S, IW0013I)	3-27/3-28
3-3	Historical Data and Monitored Natural Attenuation Results:	
	CVOCs	3-29/3-30
3-4	Historical Data and Monitored Natural Attenuation Results: Metals	3-31/3-32
3-5	Sediment Control System – December 2014	3-33/3-34
	LIST OF APPENDICES	
Appendix A	Field Forms (Furnished on CD)	
Appendix B	Laboratory Analytical Data (Furnished on CD)	
Appendix C	RIS Completion Tickets (Furnished on CD)	
Appendix D	O&M Forms (Furnished on CD)	
Appendix E	Trend Graphs (Furnished on CD)	
Appendix F	Meeting Minutes	

39B AnlGWMR2014 – Abbreviations and Acronyms

Revision: 0 July 2015

ABBREVIATIONS AND ACRONYMS

Accutest Accutest Laboratories cDCE *cis*-1,2-dichloroethene

CMD Corrective Measures Design

CMI Corrective Measures Implementation

CMS Corrective Measures Study

CVOC chlorinated volatile organic compound

Dhc Dehalococcoides
DO dissolved oxygen

ECS Engineering Control Structures
EPA Environmental Protection Agency

FDEP Florida Department of Environmental Protection

Geosyntec Geosyntec Consultants

GCTL Groundwater Cleanup Target Level

KSCRT KSC Remediation Team KSC Kennedy Space Center LC39B Launch Complex 39B

LOX liquid oxygen

 $\begin{array}{ll} \mu g/L & \text{micrograms per liter} \\ mg/L & \text{milligrams per liter} \end{array}$

mV millivolts

MNA monitored natural attenuation

NASA National Aeronautics and Space Administration

O&M Operation and Maintenance ORP oxidation reduction potential PQL practical quantitation limit

RCRA Resource Conservation and Recovery Act

RIS Remediation Information System

SU standard unit

SOP standard operating procedure

SWCTL Surface Water Cleanup Target Level

SWMU Solid Waste Management Unit

TCE trichloroethene

tDCE trans-1,2-dichloroethene
TDS total dissolved solids
TOC total organic carbon

USGS United States Geological Survey

VC vinyl chloride

% percent

SECTION I

INTRODUCTION

1.1 OVERVIEW

This document presents a summary of the 2014 performance monitoring, the 2014 monitored natural attenuation (MNA) sampling, and the 2014 operation and maintenance (O&M) activities completed at Launch Complex 39B (LC39B), located at the John F. Kennedy Space Center (KSC), Florida. LC39B has been designated Solid Waste Management Unit Number 009 (SWMU 009) under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action program. This report was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B/NNK10CA31D, project control number PCN ENV1644.

This report provides information regarding ongoing Corrective Measures Implementation (CMI) activities as proposed in the 2013 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities (Revision 0) [NASA 2014a], which received Florida Department of Environmental Protection (FDEP) approval via correspondence dated 10 April 2014.

1.2 FACILITY LOCATION

LC39B is a National Historic Site located within KSC on the east-central Atlantic Coast of Florida in Brevard County. The site is a NASA operated facility that encompasses approximately 170 acres, and is the northernmost of the two former space shuttle launch sites situated along the eastern boundary of KSC (Figure 1-1). Figure 1-2 presents the United States Geological Survey (USGS) 7.5-minute Wilson OE East, Wilson, and False Cape topographic Quadrangle Map that shows LC39B is located within Section 28 and Section 33 of Township 21S, Range 37E.

1.3 SITE HISTORY AND BACKGROUND

During the RCRA Facility Investigation [NASA 2000; NASA 2003a; NASA 2003b] and additional field investigations, trichloroethene (TCE), *cis*-1,2-dichloroethene (cDCE), and vinyl chloride (VC) were identified as the principal contaminants present in groundwater downgradient of the liquid oxygen (LOX) tank discharge pipes, which extend from the LC39B launch pad. In the Corrective Measures Study (CMS) [NASA 2004] the chlorinated volatile organic compound (CVOC) groundwater impacts were separated into a high concentration plume (TCE concentrations greater than 300 micrograms per liter [μg/L]) and a low concentration plume (TCE concentrations less than 300 μg/L and CVOC concentrations greater than their FDEP Groundwater Cleanup Target Levels

[GCTLs]) as shown in Figure 1-3. The cleanup strategy selected in the CMS was enhanced bioremediation using biostimulation and bioaugmentation with aquifer buffering and downgradient recirculation for the high concentration plume, coupled with MNA for the low concentration plume.

As detailed in the FDEP-approved Corrective Measures Design (CMD) [NASA 2005], the enhanced bioremediation approach relied on the injection of sodium bicarbonate, potassium lactate, and a microbial culture (KB-1[®]) into a network of 107 injection wells to provide aquifer buffering, electron donor, and dechlorinating organisms for the *in situ* treatment of CVOCs. The CMD also provided details for a solar powered recirculation system including two extraction and two injection wells for the recirculation of site groundwater to mitigate the potential discharge of impacted groundwater into the adjacent surface water body and to encourage mixing in the subsurface. The site layout with the 107 injection wells, LOX area monitoring wells, and the extraction and injection wells for the recirculation system is shown on Figure 1-4. The site-specific cleanup goals detailed in the CMD are presented in Table 1-1.

CMI activities were implemented by Jacobs Engineering from December 2005 to September 2007. Geosyntec assumed CMI activities in October 2007, and performed a comprehensive treatment zone "snap shot" groundwater sampling event that included sampling all site injection and monitoring wells. In addition to performing groundwater sampling after assuming CMI activities, Geosyntec also changed the electron donor and aguifer neutralization agent to $EOS^{\mathbb{R}}$ and $EOS^{\mathbb{R}}$ AguaBup $H^{\mathbb{T}}$. respectively, to eliminate the need for multiple injections of sodium bicarbonate and lactate. Details of the comprehensive groundwater sampling event and modification to the electron donor and aquifer neutralization agent were provided in the Current Site Assessment and Injection Modification Plan (Revision 0) [NASA 2008]. EOS® and EOS® AquaBupHTM injections were performed in June and July 2008, with a total of 17, 55-gallon drums of EOS® AguaBupH™ and 54, 55-gallon drums of EOS® diluted with potable water injected (total injection volume of 28,760 gallons). From implementation (2006) to December 2008, performance monitoring results indicated that approximately 52 percent (%) of the total CVOC mass was removed. Injection activities and performance monitoring results from 2008 are documented in the 2008 Annual Groundwater Monitoring Report: Summary of Injection Activities, Performance Monitoring and Monitored Natural Attenuation (Revision 0) [NASA 2009].

In July 2009, two injection wells (INJ0110 and INJ0111) for the recirculation system were installed to increase the recirculation of groundwater in the vicinity of monitoring well TA0002S, with the objective of increasing the rate of reductive dechlorination in that area (Figure 1-4). After the injection well installation, performance monitoring results indicated that the increased recirculation in the vicinity of monitoring well TA0002S increased mass removal. In addition, an evaluation of the pH in site soil and groundwater was performed and results suggested that the EOS $^{\text{(B)}}$ AquaBupH $^{\text{TM}}$ was not providing the buffering capacity required to maintain the pH of the aquifer above the optimal level for reductive dechlorination of 6.5 standard units (SU). Even with a lower

site pH, approximately 75% of the total CVOC mass was removed from implementation (2006) to December 2009. Details from the 2009 CMI activities are documented in the 2009 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities (Revision 0) [NASA 2010].

Performance monitoring continued in 2010 and results suggested that the installation of the new injection wells for the recirculation system increased the concentration of VC, ethene and total organic carbon (TOC) in the area around the monitoring wells influenced by the recirculation system (LOX-TA0002S, LOX-TA0003S and LOX-IW0009S). The average site pH measured during all sampling events in 2010 was approximately 5.9 SU (consistent with pH in 2009), which appears to be limiting the dechlorination rate of VC to ethene. Though the rate of dechlorination appears to be limited, ethene production is occurring (25% of site mass in December 2010) and an approximate 80% CVOC mass reduction was observed from implementation (2006) to December 2010. During 2010, a surface water sample was collected in the area near injection well INJ0029 and results for CVOCs were non-detect (less than $0.26~\mu g/L$ TCE and cDCE and less than $0.22~\mu g/L$ VC). Details from the 2010 CMI activities are documented in the 2010 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities (Revision 0) [NASA 2011a].

Performance monitoring continued in 2011 through 2013, and the results suggested the following: (i) VC was the only constituent with concentrations above the site-specific cleanup criteria, with the exception of the results from samples collected from the LOX-IW0013 monitoring well cluster (cluster with practical quantitation limit [PQL] as cleanup criteria); (ii) that VC to ethene dechlorination is still rate limited due to pH (average pH of 6.0 (2011), 5.9 (2012), and 5.7 (2013) SU); and (iii) EOS® was still viable based on TOC concentrations which ranged from 22 to 94 milligrams per liter (mg/L) in 2011 and 14 to 61 mg/L in 2012 (TOC sampling was eliminated from the sampling and analysis plan following 2012). It was estimated that an 88%, 87%, and 86% CVOC mass reduction was observed from implementation (2006) to September 2011, September 2012, and October 2013 respectively. Details from the 2011 CMI activities are documented in the 2011 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities (Revision 0) [NASA 2012], the details from the 2012 CMI activities are documented in the 2012 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities (Revision 0) [NASA 2013], and the details from the 2013 CMI activities are documented in the 2013 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities [NASA 2014a].

In addition to CMI activities, supplemental assessment activities were occurring inside the LC39B perimeter fence in the area around the former Engineering Control Structure (ECS) Area and outside

Revision: 0 July 2015

the perimeter fence in the area around the LOX discharge pipes. A preliminary evaluation of the results from the assessment is presented on Figure 1-5. TCE has been identified inside the pad fence line adjacent to the LOX area and this mass is likely influencing the treatment zone via dissolved flux entering the LOX area. Results from the supplemental assessment activities will be reported after the assessment is complete in a Step 1 Engineering Evaluation and a CMI Progress Report.

1.4 PURPOSE

The purpose of this report is to: (i) present the results of the 2014 performance monitoring, (ii) present the results of the 2014 MNA sampling, and (iii) provide a summary of the 2014 O&M activities.

1.5 REPORT ORGANIZATION

The remainder of this report is organized as follows:

Section II: *Field Activities* – This section provides a summary of the field activities that occurred during 2014.

Section III: *Results* – This section provides a summary of the 2014 performance monitoring sampling results, MNA sampling results, and O&M activities.

Section IV: *Conclusions and Recommendations*- This section provides the conclusions from the results presented in Section III and recommendations for the path forward for the site.

Section V: *References* - This section provides a listing of the documents used in developing this report.

Table 1-1. Site-Specific Cleanup Criteria from the Corrective Measures Design Report Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Analyte	FDEP SWCTL (µg/L)	GIII (non-potable) (μg/L)	Upper Range of KSC Background Value (μg/L)	Site-Specific Cleanup Level (μg/L)
Trichloroethene	80.7	30	-	80.7/< PQL
cis-1,2-Dichloroethene	NA	700	-	700/< PQL
trans-1,2-Dichloroethene	11,000	1,000	-	11,000/< PQL
Dichloroethene (total)	7,000	700	-	7,000/< PQL
Vinyl Chloride	2.4	100	-	2.4/< PQL
Aluminum	13	-	280	280
Iron	1,000	-	10,000	10,000

Notes:

- 1. FDEP indicates Florida Department of Environmental Protection.
- 2. SWCTL indicates Surface Water Cleanup Target Level.
- 3. µg/L indicates micrograms per liter.
- 4. PQL indicates practical quantitation limit.
- 5. The site-specific cleanup goal is to ultimately have contaminant concentrations below their FDEP SWCTL for monitoring wells inside the plume and below their PQLs in monitoring wells adjacent to surface water body (IW0013S and IW0013I).

High and Low Concentration Plumes from CMS
1-11/1-12

Figure 1-4
Injection Well and Performance Monitoring Well Locations
1-13/1-14

Path: (Titusville-01\Data\T:\0GB\FR1352\MXDs\AnlGWMR2014_JUN2015\LC398_NASA_Overall_UEL_MAR2015.mxd 29 June 2015 JR

Figure 1-5 CVOC Groundwater Impacts at LC39B 1-15/1-16

SECTION II

FIELD ACTIVITIES

2.1 OVERVIEW

The 2014 field activities included performance monitoring, MNA sampling, and O&M activities. The performance monitoring and MNA sampling plans followed were presented in the 2013 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities (Revision 0) [NASA 2014a].

Monitoring well purging and sampling activities were conducted in general accordance with FDEP Standard Operating Procedures (SOPs) [FDEP 2014] and the KSC Sampling and Analysis Plan [NASA 2011b]. During monitoring well purging, Geosyntec recorded the following geochemical parameters at regular intervals: pH, temperature, dissolved oxygen (DO), conductivity, oxidation reduction potential (ORP), salinity, total dissolved solids (TDS), and turbidity. Field forms are included in Appendix A, laboratory analytical data is included in Appendix B, and the Remediation Information System (RIS) Completion Tickets are included in Appendix C. Groundwater samples were submitted to Accutest Laboratories (Accutest) for analysis under chain-of-custody protocol. Accutest is certified under the National Environmental Laboratory Accreditation Conference.

2.2 PERFORMANCE MONITORING

The annual performance monitoring event occurred on 22 and 23 October 2014. The event included the collection of groundwater samples from 11 monitoring wells (Figure 1-4). Groundwater samples were analyzed for CVOCs using Environmental Protection Agency (EPA) Method 8260B/SW846. In addition to the sampling, the concrete pad for monitoring well TA0003I was replaced after damage was noted during the October 2014 sampling event.

2.3 MONITORED NATURAL ATTENUATION

MNA was selected as the presumptive remedy in the CMD for the low concentration dissolved CVOC plume located in the ECS Area (within the LC39B perimeter fence) and for monitoring metals present in site groundwater with concentrations above the Upper Range of KSC Background Values. After supplemental assessment activities began, the MNA plan was modified to include only the wells outside the supplemental assessment area. MNA sampling occurs annually and included the collection of groundwater samples from two monitoring wells (Figure 2-1). The 2014 annual MNA sampling event occurred on 22 October 2014. Groundwater samples were analyzed for CVOCs using EPA Method 8260B/SW846 (two groundwater samples) and filtered and unfiltered aluminum (one groundwater sample) using EPA Method 6020A/SW846.

2.4 OPERATION AND MAINTENANCE

O&M at LC39B includes activities associated with maintaining and optimizing the solar powered groundwater recirculation system. O&M activities were performed biweekly (25 visits total during 2014) and included the following activities:

- measuring the flow rate from each extraction well;
- recording the hour meter reading;
- measuring the battery charge;
- inspecting system wiring and connections (monthly);
- inspecting the piping and connections for leaks (monthly);
- cleaning pump impellers (bi-weekly);
- cleaning the solar panels (as needed);
- cleaning flow meters (as needed);
- clearing vegetation around the trailer, piping, and wells (as needed); and
- cleaning injection and extraction well screens (monthly).

O&M forms documenting regular O&M activities are provided in Appendix D.

In addition to activities associated with the recirculation system, O&M also includes the monthly inspection of sediment blocks placed in the drainage swales to prevent the potential discharge of zinc impacted sediment from within the pad area.

2.4.1 INJECTION WELL STATUS. During a routine mowing event in September 2009, numerous injection wells in the treatment zone were damaged during mowing activities performed by NASA personnel. The mowing equipment ran over injections wells that had either been marked with tape or covered with traffic cones. The damaged wells were not repaired following the incident, and were left in place to be abandoned or repaired at a later date.

In November 2014, clearing activities performed by NASA personnel associated with both the supplemental assessment activities and regularly scheduled site maintenance occurred in the treatment area. The clearing activities included the use of a gyro-track to clear wooded areas around the treatment area. The gyro-trac destroyed a majority of the injection wells in the treatment area and left a significant layer of mulch debris (up to 2 feet thick) across the treatment area. Since the injection wells are damaged and buried beneath mulch debris, it is not practical (or potentially possible) to located destroyed injection wells at the site. In addition, the injection wells will not be utilized in the future.

Destroyed Injection Well Locations

SECTION III

RESULTS

3.1 OVERVIEW

This section provides a summary of the results of the 2014 groundwater sampling activities, which included performance monitoring and MNA sampling. The results of the O&M activities are also presented in this section.

3.2 PERFORMANCE MONITORING RESULTS

The performance monitoring sampling results for the October 2014 groundwater sampling event, along with historical data, are summarized in Table 3-1 and Table 3-2 and are presented on Figure 3-1.

- 3.2.1 COMPARISON TO SITE-SPECIFIC REMEDIAL GOALS. Comparing the data from the October 2014 sampling event to the site-specific cleanup levels indicates the following:
 - 9 of 9 monitoring wells have TCE concentrations below the site-specific cleanup level of 80.7 μg/L (same as last year);
 - 9 of 9 monitoring wells have cDCE concentrations below the site-specific cleanup level of 700 μg/L (same as last year);
 - 1 of 9 monitoring wells (LOX-TA0004I) have VC concentrations below the site-specific cleanup level of 2.4 µg/L; and
 - monitoring wells LOX-IW0013S and LOX-IW0013I have concentrations of TCE, cDCE, and VC above the site-specific cleanup levels (PQL) for each constituent.

Though CVOC concentrations remain above the PQL in samples collected from monitoring wells LOX-IW0013S and LOX-IW0013I, CVOC concentrations measured at these wells have decreased by an average of 99% (TCE), 92% (cDCE), and 66% (VC) since implementation of CMI activities (bioremediation component) in 2006.

3.2.2 MASS REMOVAL. Monitoring wells screened in the treatment zone (defined as the interval where the injection wells are screened: 5 to 25 feet below land surface) are LOX-TA0001S, LOX-TA0002S, LOX-TA0003S, LOX-TA0004S, LOX-IW0009S, LOX-IW0013S, and LOX-IW0013I. These monitoring wells are used to evaluate the performance of enhanced bioremediation at LC39B.

July 2015

A comparison of the relative amount of TCE, cDCE, and VC mass present in the treatment zone monitoring wells is shown in Figure 3-2. Each pie chart on Figure 3-2 displays the percent of the total mass that each CVOC constitutes for the sampling events conducted during the initiation of treatment (January 2006) and the October 2014 performance monitoring sampling event. Since January 2006, TCE has decreased from 65.3% of the overall CVOC mass to 5.4% of the remaining mass in October 2014. In general, the distribution of the CVOC mass is similar to that observed in 2013 (2.7% TCE, 37.2% cDCE and *trans*-1,2-dichloroethene [tDCE], and 60.1% VC).

The relative size of the pie chart for October 2014 presented in Figure 3-2 is intended to represent the total CVOC mass removal of approximately 92.1%. The overall mass reduction observed for the past four years (September 2011, September 2012, October 2013, and October 2014) has been approximately 88%, 87%, 86%, and 92%, respectively, and appears to be stable. The lack of an increase in mass removal is likely due to the influx of upgradient CVOC mass from the groundwater impacts identified within the pad. Even with the stable mass reduction observed since 2011, the results suggest that reductive dechlorination is occurring and CVOC mass is being removed.

3.2.3 CVOC TREND EVALUATION. Overall, a decreasing trend in CVOCs has been observed in all treatment zone monitoring wells since EOS® injection in July 2008 (based on visual observation; see trend graphs included in Appendix E), with the exception of LOX-TA0003S and LOX-IW0009S, which show fluctuating concentrations of cDCE and VC, and LOX-TA0004S, which shows fluctuating concentrations of VC. The fluctuating concentrations of cDCE and VC in monitoring wells LOX-TA0003S and LOX-IW0009S has been observed since installation of the new injection wells. While fluctuating concentrations of VC have been observed in monitoring well LOX-TA0004S since the injection of EOS, over the past 5 sampling events (March 2011 to October 2014) the concentration of VC has shown a decreasing trend.

To better evaluate the fluctuating concentrations in these three wells, a comparison of TCE equivalent concentrations for each well was made between the year following the recirculation system injection well installation (July 2009 to July 2010) or the year following the injection activities (October 2008 to September 2009) and 2014. The equivalent TCE concentration for each year was calculated using the geometric mean, which was used instead of the average because it has been suggested that concentration reduction can be described by geometric mean [Newell, 2006]. The TCE equivalent concentration was calculated using the concentration of TCE, cDCE, and VC observed in samples collected from the well.

For the samples collected from monitoring well LOX- TA0003S, the TCE equivalent concentrations decreased from 1,531 μ g/L (geometric mean July 2009 to July 2010) to 754 μ g/L

(2014), which suggest the CVOC concentrations are decreasing in the area of this monitoring well.

For the samples collected from monitoring well LOX-IW0009S, the TCE equivalent concentration increased from 75 μ g/L (geometric mean July 2009 to July 2010) to 265 μ g/L (2014), which suggests the CVOC concentrations are increasing in the area of this monitoring well.

For the samples collected from monitoring well LOX-TA0004S, the TCE equivalent concentration decreased from 630 μ g/L (geometric mean October 2008 to September 2009) to 169 μ g/L (2014). The TCE equivalent concentration in previous years is: 458 μ g/L (2011), 293 μ g/L (2012), and 348 μ g/L (2013). The TCE equivalent concentrations observed in 2014 suggest that CVOC concentrations in the area of this monitoring well are decreasing after appearing to stabilize from 2011 to 2013.

There are a few probable reasons for the fluctuating/stable CVOC concentrations observed in the samples collected from monitoring well LOX-TA0003S, LOX-TA0004S, and LOX-IW0009S. Since the fluctuating concentrations of cDCE and VC were observed in monitoring wells LOX-TA0003S and LOX-IW0009S after the new injection wells were installed, it is likely that these wells are within the influence of the recirculation system and the recirculation system is moving impacted groundwater in the area of these wells. Another factor that could be influencing the concentration trends in these wells is that, as discussed in Section 3.2.2, impacts (TCE source area) have been identified within the pad. Since groundwater flow is radially away from the pad, it is likely that there is an influx of mass from within the pad to the LOX area (these wells are located closest to identified groundwater impacts). Additionally, the pH of the site has historically been below the optimum range for biologically mediated reductive dechlorination; therefore, the rate of reductive dechlorination could be affected by the pH (further discussion on pH is included in Section 3.2.4.1 and pH data is presented on trend graphs in Appendix E).

3.2.4 FIELD GEOTECHNICAL PARAMETER EVALUATION. The geochemical parameters collected during performance monitoring are used to indicate if the aquifer conditions are favorable for the reductive dechlorination of CVOCs. A summary of the geochemical parameters collected is provided in Table 3-3. This section will provide an evaluation of the geochemical parameters collected during performance monitoring sampling.

Revision: 0 July 2015

- 3.2.4.1 <u>pH Evaluation</u>. The site was bioaugmented with a *Dehalococcoides* (*Dhc*; the organism responsible for cDCE to ethene dechlorination) containing culture (KB-1[®]) and it has been documented that the optimal pH range (fastest dechlorination rate) for *Dhc* is between 6.8 to 7.5 SU in pure culture laboratory studies [Maymo-Gatell 1997] and that a pH below 5.2 SU is inhibitory to *Dhc* [Sirem 2011]. The pH in groundwater samples collected from the performance monitoring wells (in the treatment zone) ranged from 5.4 to 6.2 SU, with an average pH of 5.7 SU. The average pH in the treatment zone monitoring wells has decreased since September 2012 (average pH 6.0 SU). In general, the site pH has remained above 5.2 SU, since the injection of EOS[®] AquaBupHTM in July 2008, but the average pH from performance monitoring wells falls below the optimal range for *Dhc*. The low pH may be reducing the rate of VC dechlorination to ethene.
- 3.2.4.2 <u>DO and ORP Evaluation</u>. The absence of DO in groundwater and negative ORP values are an indication that conditions are favorable for anaerobic reductive dechlorination of CVOCs. The average and range of DO and ORP values reported from groundwater collected from the treatment zone monitoring wells are summarized below:
 - DO ranged from 0.00 to 0.40 mg/L with an average of 0.22 mg/L; and
 - ORP ranged from negative 284 to negative 214 millivolts (mV) with an average of negative 254 mV.

The DO values are generally below where site groundwater is considered anaerobic (0.5 mg/L [Wiedemeier 2006]) within the treatment zone. Also, the ORP values were consistently negative, indicating a reducing, anaerobic environment conducive to the reductive dechlorination of CVOCs.

3.3 MNA GROUNDWATER SAMPLING RESULTS

3.3.1 MNA CVOC GROUNDWATER SAMPLING RESULTS. The results from the 2014 annual MNA CVOC sampling event are summarized in Table 3-4 and on Figure 3-3. Only the point of compliance wells, LOX-IW0012S and LOX-IW0012I, are sampled as part of the MNA program, since supplemental assessment is occurring at the site. It is anticipated that following the completion of supplemental assessment activities in 2015, an Interim Measure or other appropriate action will be implemented to address the impacted groundwater in the ECS and LOX Areas concurrently.

Since the initiation of MNA sampling (January 2006), CVOC concentrations in samples collected at monitoring wells LOX-IW0012S and LOX-IW0012I have remained less than their Surface Water Cleanup Target level (SWCTL) and/or Class G-III (non-potable water use, groundwater in unconfined aquifers which has a TDS content of 10,000 mg/L or greater; or which has TDS 3,000-10,000 mg/L) levels.

3.3.2 MNA METALS GROUNDWATER SAMPLING RESULTS. The results from the 2014 annual MNA metals sampling along with historical data are summarized in Table 3-5 and on Figure 3-4.

One monitoring well, LOX-IW0012S, is sampled as part of the MNA metals sampling event. The samples collected from LOX-IW0012S were analyzed for both dissolved and total aluminum using EPA Method 6020A. The concentrations of total aluminum (3,920 μ g/L) and dissolved aluminum (3,840 μ g/L) in groundwater collected from this monitoring well were greater than the upper limit of the Range of KSC Background Value of 280 μ g/L. These results exhibited the first increase in aluminum concentrations since September 2011, and were the highest concentration measured since January 2006 (12,000 μ g/L). The aluminum concentration observed is within the range of historic observations at the location.

One difference during this sampling event was that EPA Method 6020A was utilized instead of EPA Method 6010C, since EPA Method 6010C can bias aluminum concentrations high when chloride concentrations are high. Due to the location of monitoring well LOX-IW0012S, the samples collected from this well generally have a chloride concentration of approximately 20% (see Section 3.3.3.3).

- 3.3.3 EVALUATION OF GEOCHEMICAL PARAMETERS. The geochemical parameters collected during MNA groundwater monitoring are used to evaluate aquifer conditions. A summary of the geochemical parameters collected is provided in Table 3-6.
- 3.3.3.1 <u>pH Evaluation</u>. The pH value reported was 4.75 SU (LOX-IW0012S). The pH measured at monitoring well LOX-IW0012S was slightly more acidic than what has been historically observed (Table 3-6), and was below the average pH measured at the monitoring well since 2008 (5.5 SU). This acidic pH could be responsible for the higher than expected aluminum concentration in samples collected from monitoring well LOX-IW0012S, since aluminum has a higher solubility at lower pH values. The cause for the decrease in pH below 5.0 SU is not known.
- 3.3.3.2 <u>DO and ORP Evaluation</u>. The DO and ORP values reported were 0.33 mg/L and negative 95 mV (LOX-IW0012S). Aluminum concentrations are not generally affected by DO or ORP of groundwater.

Revision: 0 July 2015

3.3.3.3 <u>Salinity Evaluation.</u> High salinity values can affect the concentration of aluminum. The salinity observed in the sample collected from monitoring well LOX-IW-0012S was 27% and the average since 2008 is approximately 21%.

3.4 OPERATION AND MAINTENANCE

This section provides a summary of the O&M activities performed at LC39B during 2014. The recirculation system at LC39B consists of two extraction wells, four injection wells (two currently being utilized for injection), and a mobile trailer that houses the extraction pumps, solar panels, and solar powered batteries that provide power to the pumps. O&M activities at LC39B consisted of bi-weekly inspections of the system and monthly inspections of the sediment blocks.

3.4.1 RECIRCULATION SYSTEM OPERATION AND MAINTENANCE. The recirculation system at LC39B was installed to minimize potential discharge of the dissolved CVOC plume into the adjacent surface water body and to increase mixing in the treatment zone. A summary of each O&M event was sent to NASA in a monthly status report (by email) with the O&M forms attached to the report. O&M forms are included in Appendix D; therefore, only a brief summary of system operations is included below.

System modifications:

- recirculation well pumps were replaced with SHURflo On-Demand diaphragm pumps when they had reached the end of their useful lives (12 pumps replaced during 2014);
- damaged system piping was replaced following mowing and clearing operations in September and November 2014, respectively;
- tees in the system piping were replaced in May and June 2014; and
- tubing within the recirculation trailer for extraction well EW-1 was replaced in December 2014.

System operation:

- the system recirculated approximately 780,000 gallons from 30 December 2013 to 19 December 2014; and
- the system was operational approximately 81% of the time; downtime was primarily due to system operational issues (18% of the time due mechanical issues and lack of sufficient charge in batteries to run the system) and was also down due to system damage from mowing (1% of the time).

3.4.2 SEDIMENT BLOCK INSPECTION. The sediment blocks were installed to reduce the potential for off-site migration of zinc impacted sediment through the storm water/ditch systems at LC39B. The locations of the sediment blocks are presented on Figure 3-5, along with pictures of the sediment blocks from the December 2014 inspection event. Photos from the December 2013 sediment block inspection are also included on Figure 3-5 for comparison. The sediment block inspection consists of monitoring sediment accumulation at the sediment blocks and removing sediment if significant accumulation occurs. From January to December 2014 there was no accumulation of sediment at the sediment blocks. Maintenance of the sediment blocks included clearing vegetation from the sediment blocks, as necessary.

39B AnlGWMR2014 - Section III

Revision: 0 July 2015

Table 3-1. Performance Monitoring Well and Surface Water Sampling Results: Chlorinated Volatile Organic Compounds Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

				Concentration	ion (mg/L)			
Location	Screen Interval	Sample Date	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride		
Location	(ft BLS)	Sample Date	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4		
		01/12/2006	5,700	1,300	50.0	25 U		
		05/03/2006	6,400	1,400	56.0	25 U		
		06/22/2006	5,300	1,200	57.0	0.50 U		
		07/06/2006	3,800	1,600	22 U	43 U		
		10/31/2006	420	1,500	37.0	1,300		
		01/17/2007	380	600	36.0	1,900		
		04/13/2007	170	230	42.0	1,500		
		08/01/2007	140	140	30.0	590		
		09/25/2007	180	140	24.0	850		
		11/08/2007	370	200	36.0	510		
		09/08/2008	90.5	102	20.7	449		
LOV TA00010	0.4- 10	12/16/2008	69.5	57.9	24.4	371		
LOX-TA0001S	8 to 18	03/09/2009	94.5	79.7	18.1	315		
		06/15/2009	99.8	105 174	15.9	269		
		09/10/2009	162		16.8	409		
		12/17/2009	80.0 81.9	96.0 135	18.1 15.7	304 300		
		03/03/2010 06/02/2010	97.5	135	15.7	506		
		06/02/2010	48.2	69.3	17.8	358		
		12/21/2010	35.1	33.6	7.1	346		
		03/07/2011	28.0	23.8	3.6	149		
		09/28/2011	13.5	13.9	2.1	68.2		
		09/25/2011	13.8	15.3	2.5	77.1		
		10/21/2013	14.4	16.4	2.0	30.6		
		10/23/2014	17.4	16.9	2.1	34.5		
		01/12/2006	0.28 U	0.65 U	0.44 U	0.50 U		
		05/03/2006	7.0	7.3	0.44 U	0.50 U		
		06/22/2006	2.2	4.8	0.44 U	0.50 U		
		07/06/2006	1.1 U	2.4	0.44 U	0.50 U		
		10/31/2006	2.8	4.8	0.44 U	0.50 U		
		10/31/2006*	2.6	4.3	0.44 U	0.50 U		
		01/17/2007	2.0	4.2	0.44 U	0.50 U		
		04/13/2007	4.6	6.3	0.44 U	4.1		
		08/01/2007	2.4	3.2	0.44 U	12.0		
		09/25/2007	3.8	4.8	0.44 U	28.0		
		11/08/2007	2.9	6.2	1.0 U	19.7		
		09/08/2008	4.2	9.1	0.51	9.8		
LOX-TA0001I	25 to 35	12/16/2008	1.6	2.5	0.46 I	4.2		
		03/09/2009	0.93 I	1.7	0.49 I	1.4		
		06/15/2009	1.0	1.9	0.45 U	0.99 I		
		09/10/2009	1.6	2.5	0.71 I	1.6		
		12/17/2009	1.6	2.7	0.45 U	2.7		
		03/03/2010	1.3	2.8	0.34 U	2.7		
		06/02/2010	1.2	2.1	0.34 U	3.0		
		09/23/2010	0.87 I	1.8	0.34 U	1.0		
		12/21/2010	1.0	1.7	0.35 U	1.6		
		03/07/2011	0.85 I	1.7	0.35 U	0.92 I		
		09/27/2011	0.35 I	1.2	0.35 U	0.22 U		
		09/25/2012	0.54 I	0.76 I	0.23 U	0.44 U		
		10/21/2013	0.33 I	0.50 I	0.42 I	0.44 U		
		01/12/2006	3,300	920	46 I	220		
		05/03/2006	4,800	1,000	43 I	110		
		06/22/2006	5,100	1,100	47.0	290		
		08/06/2006	1,100	880	29.0	550		
LOX-TA0002S	8 to 18	10/27/2006	5,300	1,000	42.0	100		
		01/17/2007	3,600	860	33.0	140		
		04/12/2007	5,100	1,100	38.0	130		
		08/01/2007	3,800	1,100	8.8 U	10 U		
		09/25/2007	3,400	1,100	32.0	240		
		11/08/2007	2,300	1,500	50 U	170		

Table 3-1. Performance Monitoring Well and Surface Water Sampling Results: Chlorinated Volatile Organic Compounds Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

				on (mg/L)			
Location	Screen Interval	Sample Date	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	
	(ft BLS)	-	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4	
		09/09/2008	3,490	1,780	48.9	429	
		12/16/2008	3,340	2,330	54.0	484	
		03/09/2009	2,000	2,380	41 I	378	
		06/15/2009	1,600	2,040	40 I	341	
		09/10/2009	1.8	223	6.0	74.1	
		12/18/2009	9.3 I	1,330	15 I	216	
LOX-TA0002S	8 to 18	03/04/2010	7.7 I	1,230	16 I	230	
(cont)	(cont)	06/02/2010	2.4 U	638	11.3	351	
(, , ,	(, , ,	09/22/2010	2.5	100	7.9	523	
		12/21/2010	15.9	76.3	6.0	235	
		03/08/2011	19.5	152	6.8	182	
		09/27/2011	11.1	70.2 23.9	6.8	114	
		09/24/2012	7.8 9.4	15.2	16.5	103	
		10/22/2013	9.4		11.8	42.8	
		10/23/2014 01/12/2006	9.2 45.0	16.1 54.0	11.0 1.9	48.2 0.50 U	
		05/03/2006	39.0	55.0	2.2	0.50 U	
		5/3/2006*	48.0	70.0	2.5	0.50 U	
		06/22/2006	47.0	120	3.6	0.50 U	
		08/06/2006	2.9	8.2	0.44 U	0.50 U	
		10/26/2006	29.0	88.0	3.0	8.1	
		01/17/2007	21.0	67.0	2.6	11.0	
		04/12/2007	36.0	150	5.8	0.27	
		08/01/2007	45.0	71.0	2.2	40.0	
		09/25/2007	13.0	56.0	4.2	74.0	
		11/08/2007	27.0	49.0	5.0 U	22.0	
		09/09/2008	36.3	86.1	5.0	46.4	
LOX-TA0002I	25 to 35	12/16/2008	29.4	73.5	4.8	47.0	
LUA-1 A00021	23 10 33	03/09/2009	16.1	55.5	4.6	49.8	
		06/15/2009	24.5	53.6	4.8	42.6	
		09/10/2009	31.8	81.4	6.0	65.2	
		12/18/2009	16.4	23.7	3.9	42.8	
		03/04/2010	15.5	20.0	6.0	46.5	
		06/02/2010	20.0	31.4	4.7	68.7	
		09/23/2010	18.2	35.4	5.8	66.5	
		12/21/2010	7.6	10.0	5.5	31.2	
		03/08/2011	7.3	11.4	4.7	33.6	
		09/28/2011	5.6	21.7	5.8	96.5	
		09/24/2012	3.1	26.2	3.9	39.2	
		10/22/2013	2.8	20.2	3.8	23.2	
		10/23/2014	3.0	7.4	2.8	16.8	
		01/12/2006 05/03/2006	100	18.0 19.0	1.6 1.4	26.0	
		05/03/2006	120 93.0	49.0	1.4	18.0 39.0	
		08/06/2006	3.9	6.0	0.44 U	1.6	
		10/26/2006	1,200	110	8.8	72.0	
		01/16/2007	6.3	8.8	0.44 U	5.1	
		04/12/2007	250	260	5.5	87.0	
		07/26/2007	34.0	4.3	0.44 U	2.6	
		09/25/2007	130	890	4.8 I	53.0	
1 O 17 TH : 00007	0. 10	11/08/2007	5.0 U	47.0	5.0 U	6.0	
LOX-TA0003S	8 to 18	09/09/2008	8.5	131	3.4	35.1	
		12/16/2008	10.4	78.8	16.2	269	
		03/09/2009	6.8	103	13.1	152	
		06/16/2009	7.2	202	11.3	130	
		09/10/2009	72.5	634	34.9	565	
İ		12/18/2009	39.1	251	29.4	885	
		03/04/2010	36.0	295	14.8	115	
		06/02/2010	131	745	30.3	226	
		09/22/2010	80.4	955	38.3	961	
		12/21/2010	42.6	638	32.9	691	

39B AnlGWMR2014 - Section III

Revision: 0 July 2015

Table 3-1. Performance Monitoring Well and Surface Water Sampling Results: Chlorinated Volatile Organic Compounds Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

LOX-TA00035		<u> </u>		Concentration (mg/L)								
Control Cont	Location		Sample Date	Trichloroethene		trans-1,2-Dichloroethene	Vinyl Chloride					
LOX-TA00038 Sto 18	Location	(ft BLS)	Sumple Dute	FDEP SWCTL: 80.7	· -	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4					
100.1 100.1 100.1 100.1 100.1 144			03/08/2011	24.5		16.9	254					
(comt)	LOX-TA0003S	8 to 18										
10/22/2014												
LOX-TA00081 10	(====)	(2 2 2 2)										
LOX-TA00031												
Page		-										
LOX-TA00031 14.0 12.0		-										
LOX-TA00041 10.0												
LOX-TA00031 25 to 35		•										
LOX-TA00031												
LOX-TA00031		•	04/12/2007	100	220	21.0						
LOX-TA00031 Page 1108/2009				25.0	46.0	6.1	58.0					
LOX-TA00031 LOX-TA00031 LOX-TA00031 LOX-TA00031 LOX-TA00031 LOX-TA00031 LOX-TA00041 LOX-TA00042 LOX-TA00041 LOX-TA00042 LOX-TA00042 LOX-TA00041 LOX-T												
LOX-TA00031												
LOX-TA00031 25 to 35												
DA-TA00031		-										
Boliford Part Par	LOX-TA0003I	25 to 35										
Post			06/16/2009									
12/18/2009		-	09/10/2009									
Barriel												
LOX-TA00041 Page 25 to 35		•		5.7	23.2	13.7	101					
1221/2010 3.4 13.6 3.9 88.6			06/01/2010	10.0	44.9	10.5	154					
Barriella												
March Marc												
109/24/2012 5.8 22.1 2.1 24.3 1022/2013 2.9 9.6 1.4 12.8 1022/2014 2.3 5.8 0.951 6.2 101/12/2006 15.0 130 7.4 110 0503/2006 5.0 100 7.9 110 06/22/2006 2.1 6.6 3.2 34.0 08/06/2006 0.50 U 6.2 3.0 21.0 1027/2006 12.0 76.0 12.0 220 101/19/2007 8.7 3.1 5.0 650 04/16/2007 1.7 18.0 9.8 150 07/25/2007 1.1 35.0 9.0 170 09/25/2007 6.9 97.0 17.0 710 11/08/2007 1.0 U 1.5 4.7 15.1 09/09/2008 75.6 122 20.0 5.6 12/16/2008 6.9 83.7 20.6 309 12/16/2008 6.9 83.7 20.6 309 12/16/2009 1.5 15.1 12.1 218 12/17/2009 1.1 12.5 8.8 247 03/03/2010 1.7 22.1 12.8 12/17/2009 1.1 12.5 8.8 247 03/03/2010 1.7 22.1 12.8 12/17/2010 5.7 37.4 5.5 91.6 12/12/1010 4.5 27.0 1.9 101 03/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 03/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 03/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 03/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 03/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 103/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 103/07/2011 1.6 30.0 11.1 228 09/22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 103/07/2011 1.6 30.0 11.1 20.0 1.7 1.5 78.1 1.7 1.5 78.1 1.8 1.7 1.5 78.1 1.8 1.8 1.0 1.0 1.0 1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.1 1.1 1.3 1.1 1.1 1.1 1.4 1.0												
10/22/2013 2.9 9.6 1.4 12.8		-										
10/22/2014 2.3 5.8 0.951 6.2		-										
No. 10 10 10 10 10 10 10 1		•										
DS03/2006												
LOX-TA00041 108/06/2006 0.50 U 6.2 3.0 21.0												
LOX-TA0004S R to 18 10/27/2006 12.0 76.0 12.0 220 01/19/2007 8.7 3.1 5.0 650 650 04/16/2007 1.7 18.0 9.8 150 07/25/2007 1.1 35.0 9.0 170 09/25/2007 6.9 97.0 17.0 710 11/08/2007 1.0 U 1.5 4.7 15.1 09/09/2008 75.6 122 20.0 5.6 12/16/2008 6.9 83.7 20.6 309 20.0 5.6 12/16/2008 6.9 83.7 20.6 309 20.0 5.6 12/16/2009 3.6 50.8 19.1 339 06/16/2009 2.2 28.7 10.4 209 09/10/2009 1.5 15.1 12.1 218 12/17/2009 1.1 12.5 8.8 247 247 23/03/03/2010 1.7 22.1 12.8 195 12/17/2009 1.1 12.5 8.8 247 22/10 22/2010 5.7 37.4 5.5 91.6 12/21/2010 4.5 27.0 1.9 101 228 09/28/2011 2.3 27.3 5.3 165 09/28/2012 0.711 20.3 2.1 125 125 10/22/2013 0.63 U 32.4 1.61 144 10/22/2014 0.30 U 1.7 1.5 78.1 10/22/2014 0.30 U 1.7 1.5 78.1 10/22/2016 25.0 49.0 10.0 0.50 U 10.50 U				2.1	6.6	3.2	34.0					
LOX-TA00041 10 10 10 10 10 10 10												
LOX-TA0004I 25 to 35 150 170 177 18.0 9.8 150 17												
LOX-TA00045 R to 18			01/19/2007									
LOX-TA0004S 8 to 18		-	04/16/2007									
LOX-TA0004S 8 to 18 11/08/2007 1.0 U 1.5 4.7 15.1 1.5 09/09/2008 75.6 122 20.0 5.6 12/16/2008 6.9 83.7 20.6 309 309 3.6 50.8 19.1 339 339 1.5 15.1 12.1 218 12/17/2009 1.5 15.1 12.1 218 12/17/2009 1.1 12.5 8.8 247 12/17/2009 1.1 12.5 8.8 247 12/17/2009 1.1 12.5 8.8 247 12.8 195 12/17/2009 1.2 U 19.3 9.9 359 12/2010 1.2 U 19.3 9.9 359 12/21/2010 4.5 27.0 1.9 101 101 101 103/07/2011 1.6 30.0 11.1 228 109/28/2011 2.3 27.3 5.3 165 109/24/2012 0.711 20.3 2.1 125 10/22/2013 0.63 U 32.4 1.61 144 10/22/2014 0.30 U 1.7 1.5 78.1 10/22/2014 0.30 U 1.7 1.5 78.1 10/22/2014 0.50 U 1.7 1.5 78.1 1.5		-										
LOX-TA0004S												
LOX-TA0004S 8 to 18 12/16/2008 6.9 83.7 20.6 309		•										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOX-TA0004S	8 to 18	03/09/2009	3.6	50.8	19.1	339					
$ \text{LOX-TA0004I} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $			06/16/2009	2.2	28.7	10.4	209					
$ \text{LOX-TA0004I} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \text{LOX-TA0004I} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $		-										
$ \text{LOX-TA0004I} \begin{tabular}{l l l l l l l l l l l l l l l l l l l $												
$ \text{LOX-TA0004I} \begin{array}{ c c c c c c } \hline 03/07/2011 & 1.6 & 30.0 & 11.1 & 228 \\ \hline 09/28/2011 & 2.3 & 27.3 & 5.3 & 165 \\ \hline 09/24/2012 & 0.71 I & 20.3 & 2.1 & 125 \\ \hline 10/22/2013 & 0.63 U & 32.4 & 1.6 I & 144 \\ \hline 10/22/2014 & 0.30 U & 1.7 & 1.5 & 78.1 \\ \hline 01/12/2006 & 45.0 & 84.0 & 16.0 & 0.50 U \\ \hline 05/03/2006 & 35.0 & 69.0 & 14.0 & 0.50 U \\ \hline 05/03/2006 & 40.0 & 81.0 & 16.0 & 0.50 U \\ \hline 06/22/2006 & 25.0 & 49.0 & 10.0 & 0.50 U \\ \hline \end{array} $		-										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
LOX-TA0004I 25 to 35 01/12/2006 45.0 84.0 16.0 0.50 U 05/03/2006 35.0 69.0 14.0 0.50 U 05/03/2006* 40.0 81.0 16.0 0.50 U 06/22/2006 25.0 49.0 10.0 0.50 U				0.63 U	32.4		144					
LOX-TA0004I 25 to 35 05/03/2006 35.0 69.0 14.0 0.50 U 05/03/2006* 40.0 81.0 16.0 0.50 U 06/22/2006 25.0 49.0 10.0 0.50 U												
LOX-TA0004I 25 to 35												
06/22/2006 25.0 49.0 10.0 0.50 U	I ON THE 200 (-	25. 25										
	LOX-TA0004I	25 to 35										
100/06/2006 450 920 160 920			06/22/2006 08/06/2006	25.0 45.0	49.0 83.0	10.0 16.0	0.50 U 0.50 U					

Table 3-1. Performance Monitoring Well and Surface Water Sampling Results: Chlorinated Volatile Organic Compounds Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

			Concentration (mg/L)								
Location	Screen Interval	Sample Date	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride					
Location	(ft BLS)	Sumple Dute	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4					
		10/27/2006	39.0	76.0	15.0	0.50 U					
		01/19/2007	37.0	62.0	13.0	0.56 I					
		04/16/2007	19.0	39.0	7.9	5.1					
		07/26/2007	78.0	130	21.0	0.50 U					
		09/25/2007	51.0	89.0	17.0	3.1					
		11/09/2007	47.0	70.0	15.0	5.0 U					
		09/09/2008	7.4	98.8	23.3	511					
		12/16/2008	74.3	91.5	22.7	30.0					
		03/09/2009	68.8	95.9	18.2	15.7					
LOX-TA0004I	25 to 35	06/16/2009	48.4	79.7	15.2	9.0					
(cont)	(cont)	09/10/2009	54.1	88.2	17.0	12.8					
		12/17/2009	49.0	79.8	14.9	8.4					
		03/03/2010	48.0 39.5	78.7	17.6	12.3					
		06/02/2010 09/22/2010	39.5	67.7 81.3	15.3 14.5	47.4 22.2					
	•	12/21/2010	22.2	87.4	8.8	22.4					
		03/07/2011	23.1	90.0	9.2	10.8					
		09/28/2011	37.5	80.1	12.0	8.7					
		09/24/2012	37.6	82.4	10.6	4.1					
		10/22/2013	36.9	93.2	11.2	2.9					
		10/22/2014	38.2	77.8	11.1	1.6					
		01/12/2006	470	130	5.2	38.0					
		01/12/2006*	250 L	110	5.3	30.0					
		05/03/2006	63.0	140	5.1	27.0					
		06/22/2006	41.0	170	9.1	58.0					
		08/06/2006	9.4	38.0	1.5 U	9.1					
		10/27/2006	2.3	200	11.0	400					
		01/17/2007	12.0	44.0	4.0	36.0					
		04/13/2007	14.0	51.0	4.7	64.0					
		08/01/2007	5.9	19.0	3.8	0.50 U					
		08/01/2007*	14.0	58.0	2.1	15.0					
		10/06/2007	1.1	11.0	4.0	21.0					
		11/08/2007	1.1	6.6	3.5	15.5					
		09/09/2008	0.58	2.9	0.54	9.5					
LOX-IW0009S	12 to 17	12/16/2008	0.80 I	4.3	0.61 I	12.6					
		03/09/2009	0.45 I	2.2	0.49 I	13.2					
		06/15/2009	1.7	11.4	1.3	49.3					
		09/10/2009	0.90 I	13.0	1.8	51.5					
		12/17/2009	0.62 I	5.7	1.5	49.8					
		03/05/2010	0.24 U	1.5	0.34 I	11.9					
		06/03/2010	0.24 U	13.0 65.3	0.34 U 2.9	28.6 92.7					
		09/23/2010 12/22/2010	3.3 5.6	62.6	6.7	230					
		03/08/2011	3.7	48.9	6.4	118					
		09/27/2011	2.4	6.4	11.5	77.1					
		09/24/2012	1.2	89.6	11.3	149					
		10/22/2013	1.7	19.1	5.0	49.4					
		10/23/2014	9.6	32.7	10.1	94.6					
		01/12/2006	350	160	5.9	2.5					
		05/03/2006	390	310	15.0	2.6					
		06/22/2006	570	310	14.0	0.50 U					
		08/06/2006	1,300	520	24 I	54.0					
		10/27/2006	330	320	19.0	12.0					
		01/17/2007	260	290	18.0	2.0 U					
LOX-IW0009SI	22.5 to 27.5	04/13/2007	73.0	520	19.0	18.0					
		08/01/2007	91.0	600	18.0	66.0					
		10/06/2007	0.50 U	0.65 U	0.44 U	0.54 U					
		11/08/2007	93.0	390	27.0	74.0					
		09/09/2008	62.9	419	19.9	143					
		12/16/2008	50.6	248	21.0	186					
		03/09/2009	29.9	211	11.4	119					

39B AnlGWMR2014 - Section III

Revision: 0 July 2015

Table 3-1. Performance Monitoring Well and Surface Water Sampling Results: Chlorinated Volatile Organic Compounds Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

				Concentration	on (mg/L)	
Location	Screen Interval	Sample Date	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride
Location	(ft BLS)	Sample Date	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4
		06/15/2009	14.8	171	15.5	112
		09/10/2009	7.6	120	21.1	322
		12/17/2009	14.3	95.5	15.1	142
		03/04/2010	10.5	71.9	17.0	162
		06/03/2010	7.1	17.0	11.4	139
LOX-IW0009SI	22.5 to 27.5	09/23/2010	8.5	41.2	11.2	91.4
(cont)	(cont)	12/22/2010	11.9	51.3	6.7	218
		03/08/2011	6.4	59.3	8.0	160
		09/27/2011	5.2	44.0	10.5	155
		09/24/2012	10.6	22.2	6.6	63.1
		10/22/2013	2.6	2.7	2.9	5.9
		10/23/2014	3.4	4.8	8.9	12.4
LOX-SW0001	N/A	12/22/2010	0.26 U	0.26 U	0.35 U	0.22 U

Notes:

- SWCTL indicates Florida Department of Environmental Protection (FDEP) Surface Water Cleanup Target Level.
- 2. Baseline sampling occurred in January 2006.
- 3. µg/L indicates micrograms per liter.
- 4. ft BLS indicates feet below land surface.
- 5. U indicates not detected above method detection limit.
- 6. I indicates result greater than or equal to method detection limit, but less than the reporting limit.
- 7. J indicates an estimated value.
- 8. L indicates result detected above calibration range.
- 9. Bold, yellow shaded text indicates analyte detected above SWCTL or GIII.
- 10. * indicates a duplicate sample.

Table 3-2. Performance Monitoring Well Sampling Results: Monitoring Well IW0013 Cluster Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

	Screen		Concentration (µg/L)									
Location	Sample Date	Interval (ft BLS)	TCE	TCE PQL	cDCE	cDCE PQL	tDCE	tDCE PQL	VC	VC PQL		
	11/08/2007		81.0	5	50.0	5	36.0	5	530 L	5		
	09/09/2008		96.9	5	178	5	19.5	5	408	5		
	12/16/2008		295	5	333	5	20.5	5	708	10		
	03/09/2009		10.3	1	20.4	1	1.4	1	118	2		
	06/16/2009		11.5	5	164	5	4.4 I	5	240	5		
	09/10/2009		42,2	2	160	10	9.9	2	347	10		
	12/18/2009		7.2	1	57.4	1	2.3	1	80.5	2		
LOX-IW0013S	03/05/2010	6 to 11	18.0	1	33.1	1	2.1	1	64.2	1		
LOX-1W0013S	06/03/2010	6 to 11	76.6	5	198	5	12.0	5	308	5		
	09/23/2010		5.8	1	38.9	1	39.7	1	98.0	2		
	12/22/2010		23.2	1	26.9	1	5.1	1	140	2		
	03/07/2011		1.3	1	6.5	1	34.4	1	31.6	1		
	09/28/2011		6.4	1	13.9	1	7.1	1	103	2		
	09/25/2012		30.4	2	67.9	2	4.9	2	190	2		
	10/21/2013		24.9	2	111	1	10.1	1	158	2		
	10/23/2014		42.6	1	94.1	1	10.2	1	97.1	2		
	11/08/2007		6.8	1	4.1	1	32.9	1	44.6	1		
	09/09/2008		4.1	1	4.9	1	1.1	1	11.0	1		
	12/16/2008		2.9	1	4.6	1	0.71 I	1	19.9	1		
	03/09/2009		1.1	1	18.9	1	0.45 U	1	292	5		
	06/16/2009		1.6	1	1.8	1	0.46 I	1	11.8	1		
	09/10/2009		1.2	1	2.9	1	0.76 I	1	16.4	1		
	12/18/2009		1.3	1	7.9	1	1.8	1	27.6	1		
I ON WINDS 121	03/05/2010	165. 015	2.2	1	70.0	1	8.3	1	88.5	2		
LOX-IW0013I	06/03/2010	16.5 to 21.5	2.7	5	46.4	5	21.7	5	120	5		
	09/23/2010		63.2	1	73.4	1	9.8	1	122	1		
	12/22/2010		3.4	1	12.6	1	34.4	1	50.0	1		
	03/07/2011		7.6	1	13.2	1	5.6	1	69.0	1		
	09/28/2011		5.5	1	98.8	1	30.0	1	180	5		
	09/25/2012		25.3	1	164	5	28.0	1	250	5		
	10/21/2013		20.9	1	77.9	1	18.6	1	79.5	1		
	10/23/2014		14.4	1	38.3	1	9.3	1	52.9	2		

Notes:

- 1. Baseline sampling occurred in November 2007.
- 2. μg/L indicates micrograms per liter.
- 3. ft BLS indicates feet below land surface.
- 4. U indicates result not detected above method detection limit.
- 5. I indicates result greater than or equal to method detection limit, but less than the reporting limit.
- 6. L indicates result detected above calibration range.
- 7. Bold, yellow shaded text indicates analyte detected above Practical Quantitation Limit (PQL).
- 8. TCE indicates trichloroethene.
- 9. cDCE indicates cis-1,2-dichloroethene.
- 10. tDCE indicates trans-1,2-dichloroethene.
- 11. VC indicates vinyl chloride.

Table 3-3. Performance Monitoring Well and Surface Water Sampling Results: Field Geochemical Parameters Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screen Interval (ft BLS)	Sample Date	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
		11/08/2007	24.9	5.60	6.2	41.9	3.34	-273	0.51	4.0	clear
		09/08/2008	25.4	6.10	5.7	25.9	0.30	-309	0.00	3.6	black/brown
		12/16/2008	24.7	7.10	5.7	19.7	0.30	-300	0.27	3.6	dark gray
		03/09/2009	22.7	5.81	4.9	15.0	2.73	-154	0.54	3.3	clear yellow
		06/15/2009	23.5	6.00	5.0	9.9	2.54	-318	0.52	2.4	clear
		09/10/2009	26.5	7.00	5.7	19.8	0.30	-243	0.85	3.6	clear/brown
		12/17/2009	23.8	6.00	4.8	1.5	2.50	-262	0.27	3.2	yellowish
LOX-TA0001S	8 to 18	03/03/2010	20.9	6.02	3.7	14.9	1.96	-318	0.43	2.4	yellow
LOX-1A00013	01010	06/02/2010	23.8	5.84	3.6	11.1	1.87	-304	1.48	2.5	slight yellow
		09/23/2010	25.2	5.92	3.7	19.0	1.97	-223	0.13	2.4	yellow cloudy
		12/21/2010	22.7	5.98	3.2	13.6	1.69	-288	1.05	2.1	slight cloudy
		03/07/2011	21.1	6.64	3.0	9.0	1.53	-94	0.54	1.9	yellow, cloudy
		09/28/2011	26.1	5.91	1.8	15.0	0.93	-260	0.81	1.2	light yellow
		09/25/2012	25.9	6.11**	3.0	6.2	1.54	-292	0.57	2.0	yellow
		10/21/2013	25.9	5.72	2.2	63.7	1.12	-277	0.23	1.4	yellow tint
	l	10/23/2014	25.5	5.50	3.5	22.9	1.86	-255	0.00	3.5	yellow, cloudy
		11/08/2007	24.1	6.52	38.6	3.9	24.54	-178	0.57	25.5	light yellow
	•	09/08/2008	25.0	7.14	73.9	0.0	4.00	-210	0.00	45.0	clear
	•	12/16/2008	24.3	7.62	26.4	10.9	1.60	-298	0.31	16.0	clear
	•	03/09/2009	24.1	6.93	35.7	8.1	22.90	-63	0.60	23.6	clear
	-	06/15/2009	23.8	6.83	38.0	1.9	24.18	-237	0.00	19.0	clear
	•	09/10/2009	25.2	7.08	43.2	2.5	2.60	-51	1.13	27.0	clear
	•	12/17/2009	23.5	6.61	39.4	3.0	25.08	-173	0.23	25.6	clear
LOX-TA0001I	25 to 35	03/03/2010	21.4	6.81	36.3	2.0	22.97	-155	0.43	23.6	clear
	•	06/02/2010	24.0	6.75	37.0	0.9	23.43	-260	3.19	24.1	clear
	•	09/23/2010	24.8	6.72	39.8	6.2	25.35	-22	0.45	25.9	clear
	=	12/21/2010	22.4	7.03	41.5	1.4	26.64	-217	1.63	27.0	clear
	•	03/07/2011	22.4	6.75	37.3	2.7	23.75	-104	0.63	24.4	clear
	•	09/27/2011	24.6	6.66	37.6	3.9	23.87	-304	0.29	24.5	light yellow
	•	09/25/2012	25.0	6.94**	35.8	1.9	23.21	-309	0.89	24.5	clear
	•	10/21/2013	24.4	6.81	38.9	3.7	24.75	-372	0.37	25.3	clear
		11/08/2008	25.6	5.39	1.3	16.5	0.62	-254	0.41	0.8	clear
	-	09/09/2008	25.6	5.35	1.8	2.4	0.10	-263	0.00	1.1	clear
	-	12/16/2008	23.8	5.21	1.6	9.1	0.84	-268	0.89	1.1	clear
	•	03/09/2009	22.1	5.07	1.5	10.2	0.81	-127	0.62	1.0	clear yellow
	-	06/15/2009	23.9	5.58	1.8	11.7	0.91	-245	0.32	1.2	
	•	09/10/2009	25.6	6.24	2.1	8.7	0.20	-246	0.82	1.8	clear
		12/18/2009	24.7	5.74	1.7	22.0	0.84	-277	0.93	1.1	brown, yellow, cloudy
I OX/ TIA 00020	0. 10	03/04/2010	20.3	6.03	2.0	7.4	1.05	-279	0.43	1.3	orange
LOX-TA0002S	8 to 18	06/02/2010	25.1	5.81	2.1	8.9	1.06	-291	1.20	1.3	clear
		09/22/2010	26.2	5.47	6.3	2.7	3.41	-175	0.10	4.1	yellow
		12/21/2010	22.9	5.58	11.3	1.1	6.43	-266	1.54	7.3	clear
		03/08/2011	21.3	5.90	12.4	3.6	7.18	-247	0.45	8.1	clear
		09/27/2011	25.5	5.49	12.1	5.7	6.92	-266	0.58	9.9	clear
		09/24/2012	24.9	5.45**	7.0	5.9	3.86	-290	0.79	4.6	clear
	ŀ	10/22/2013	26.1	5.33	6.9	6.6	3.75	-251	0.50	4.5	clear
	l I	10/22/2013	20.1	3.33	0.5	0.0	3.13	-231	0.50	4.5	cieai

Table 3-3. Performance Monitoring Well and Surface Water Sampling Results: Field Geochemical Parameters Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screen Interval (ft BLS)	Sample Date	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
		11/08/2008	24.2	5.45	29.0	5.2	17.94	-228	0.33	18.9	clear
		09/09/2008	24.9	6.64	31.3	0.9	2.00	-303	0.00	19.0	clear
		12/16/2008	23.8	6.08	23.7	0.9	14.69	-264	0.77	15.7	clear
		03/09/2009	23.6	6.37	25.4	2.9	15.91	-185	0.67	16.9	clear
		06/15/2009	24.1	6.32	27.0	0.3	16.89	-264	0.33	17.9	
		09/10/2009	25.4	6.43	30.0	2.5	1.80	-220	0.35	19.0	clear
		12/18/2009	24.2	6.42	26.4	1.4	16.13	-312	0.90	17.1	light yellow
LOX-TA0002I	25 to 35	03/04/2010	21.6	6.86	24.2	0.8	14.70	-344	0.54	15.7	slight yellow
LOX-1A00021	25 10 35	06/02/2010	24.7	6.48	12.5	0.1	7.18	-326	0.49	8.1	clear
		09/23/2010	24.7	6.39	25.8	1.5	15.74	-253	0.18	16.8	slight yellow
		12/21/2010	23.2	6.69	25.0	0.2	15.22	-316	1.37	16.2	clear
		03/08/2011	23.0	6.20	21.6	1.9	12.99	-303	0.63	14.0	clear
		09/28/2011	24.2	6.40	19.1	0.9	11.35	-282	0.93	12.4	clear
		09/24/2012	25.4	6.03**	8.9	2.8	5.01	-300	0.29	6.3	clear
		10/22/2013	24.6	6.43	21.1	5.4	12.61	-376	0.89	12.7	clear
		10/23/2014	24.6	6.37	20.9	3.6	12.50	-330	0.24	13.6	clear
		11/08/2007	25.3	6.23	0.8	3.8	0.37	-241	0.70	0.5	light yellow
		09/09/2008	26.5	6.07	1.1	4.0	0.00	-219	0.00	0.7	clear
		12/16/2008	24.2	7.22	9.5	8.2	0.50	-331	0.39	6.0	clear
		03/09/2009	21.8	6.16	0.7	17.0	0.00	-289	0.57	0.5	clear
		06/16/2009	24.6	6.17	0.7	5.6	0.37	-257	0.30	0.5	
		09/10/2009	26.3	6.83	1.0	11.4	0.10	-236	0.91	0.8	clear
		12/18/2009	24.7	6.02	0.7	3.9	0.32	-256	0.56	0.4	clear
LOX-TA0003S	8 to 18	03/04/2010	21.5	6.01	0.6	3.9	0.31	-244	0.37	0.4	slight yellow
LOX-1A00033	8 10 18	06/02/2010	24.2	5.77	0.6	4.4	0.30	-280	1.21	0.4	slight yellow
		09/22/2010	26.2	6.04	0.7	14.0	0.34	-178	0.11	0.5	yellow
		12/21/2010	23.6	6.55	0.7	16.6	0.33	-282	1.53	0.4	yellow
		03/08/2011	22.4	5.95	0.6	3.7	0.29	-273	0.32	0.4	orange, clear
		09/27/2011	26.8	6.08	0.6	9.3	0.29	-263	0.24	0.4	light yellow
		09/24/2012	25.8	6.35**	0.6	2.9	0.32	-322	0.75	0.4	light yellow
		10/22/2013	26.6	6.00	0.6	16.7	0.29	-237	0.37	0.4	yellow tint
		10/22/2014	25.8	6.15	0.7	6.4**	0.33	-214	0.26**	0.4	clear yellow
		11/08/2007	24.8	6.23	15.0	1.5	8.69	-240	0.65	9.7	light yellow
		09/09/2008	25.8	6.54	15.6	5.1	0.90	-317	0.00	10.0	
		12/16/2008	24.3	6.80	1.5	8.2	0.10	-331	0.21	1.0	clear
		03/09/2009	22.7	6.33	12.1	7.0	0.70	-320	0.00	8.0	clear
		06/16/2009	25.2	6.43	14.0	0.6	8.05	-275	0.24	9.1	
		09/10/2009	25.7	7.01	10.6	19.5	2.70	-137	1.25	28.0	clear
		12/18/2009	24.1	6.48	13.4	3.3	7.73	-292	0.87	8.7	clear
LOX-TA0003I	25 to 35	03/03/2010	22.5	6.31	12.1	1.4	6.90	-296	0.46	7.8	clear
		06/01/2010	24.5	6.50	6.9	5.9	3.80	-296	1.15	4.5	clear
		09/22/2010	26.5	6.30	14.2	4.0	NA	-327	0.13	NA	clear
		12/21/2010	23.4	6.56	13.7	1.0	7.92	-320	1.27	8.9	clear
]	03/08/2011	22.8	5.98	13.7	2.7	7.94	-132	0.45	9.0	clear
]	09/27/2011	25.8	6.31	12.6	5.3	7.22	-292	0.60	8.2	light yellow
		09/24/2012	25.8	6.55**	10.6	2.5	6.03	-335	0.30	6.9	light yellow
		10/21/2013	25.6	6.40	12.2	4.2	6.98	-303	0.60	7.9	clear
		10/22/2014	24.7	6.35	11.4	4.7**	6.47	-305	0.20**	7.4	clear

Table 3-3. Performance Monitoring Well and Surface Water Sampling Results: Field Geochemical Parameters Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screen Interval (ft BLS)	Sample Date	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
LOX-TA0004S	8 to 18	11/08/2007	26.7	6.50	0.8	4.5	0.37	-268	0.65	0.5	light yellow
		09/09/2008	28.3	5.49	0.5	10.7	0.25	-271	0.94	0.3	light brown
		12/16/2008	25.3	7.12	1.0	4.1	0.00	-272	0.61	0.7	clear
		03/09/2009	24.8	5.68	0.4	17.0	0.00	-282	0.00	0.3	yellow
		06/16/2009	26.9	6.20	0.6	9.7	0.30	-248	0.81	0.3	light brown/clear
		09/10/2009	28.5	7.97 *	0.7	11.1	0.34	-367	0.04	0.5	yellow
		12/17/2009	25.5	6.06	0.7	1.9	0.34	-261	0.09	0.5	clear
		03/03/2010	21.8	6.26	0.6	2.4	0.31	-308	0.36	0.4	yellow
		06/02/2010	25.6	6.13	0.7	4.1	0.32	-301	0.42	0.4	yellow
		09/22/2010	28.2	5.98	0.7	7.0	0.35	-171	0.06	0.5	orange
		12/21/2010	24.6	6.20	0.8	4.1	0.41	-274	1.08	0.6	orange
		03/07/2011	21.7	6.28	0.6	6.2	0.31	-183	0.80	0.6	orange
		09/28/2011	27.7	5.90	0.6	8.0	0.30	-175	0.47	0.4	yellow
		09/24/2012	27.5	6.26**	0.6	9.8	0.29	-306	0.69	0.4	amber
		10/22/2013	28.3	5.84	0.5	11.0	0.26	-188	0.45	0.4	yellow
		10/22/2014	27.8	6.03	0.6	11.1**	0.28	-232	0.00**	0.4	yellow
LOX-TA0004I	25 to 35	11/09/2007	25.9	5.78	1.1	7.6	0.00	-283	0.16	0.7	clear
		09/09/2008	26.4	5.24	1.2	0.2	0.58	-268	0.97	0.8	clear
		12/16/2008	25.0	6.98	0.7	9.8	0.00	-295	0.51	0.5	clear
		03/09/2009	25.6	5.78	0.9	15.0	0.00	-283	0.00	0.6	clear
		06/16/2009	26.6	5.75	1.1	8.0	0.53	-264	1.23	0.5	clear
		09/10/2009	27.7	9.44 *	1.2	4.1	0.54	-361	0.03	0.7	clear
		12/17/2009	25.5	6.21	1.2	1.3	0.60	-238	0.20	0.8	clear
		03/03/2010	23.6	5.80	1.2	2.3	0.60	-279	0.33	0.8	yellow
		06/02/2010	25.8	5.80	1.1	2.1	0.57	-280	0.25	0.7	slight yellow
		09/22/2010	26.3	5.92	1.0	4.2	0.51	-157	0.43	0.7	yellow
		12/21/2010	24.2	6.29	1.0	5.4	0.51	-285	1.07	0.7	yellow
		03/07/2011	22.2	6.21	1.0	5.2	0.55	-203	0.79	0.8	yellow
		09/28/2011	26.2	5.96	0.7	5.6	0.34	-202	0.54	0.4	clear
		09/24/2012	25.8	6.25**	0.6	3.5	0.26	-275	0.49	0.4	clear
		10/22/2013	26.9	5.95	0.6	2.7	0.29	-219	1.34	0.4	clear
		10/22/2014	26.3	5.91	0.5	6.0**	0.26	-228	0.36**	0.4	clear yellow
		11/08/2007	25.5	6.60	2.0	33.5	1.00	-320	0.37	1.3	clear
LOX-IW0009S	12 to 17	09/09/2008	26.1	5.95	1.2	4.6	0.61	-277	0.92	0.8	light yellow
		12/16/2008	24.0	6.10	1.3	10.0	0.68	-312	0.76	0.9	clear
		03/09/2009	22.7	6.13	1.3	9.0	0.65	-119	0.40	0.8	clear yellow
		06/15/2009	26.1	6.30	1.6	12.0	0.76	-283	0.19	1.0	
		09/10/2009	26.6	7.45	3.2	3.5	1.00	-268	1.29	2.0	clear
		12/17/2009	24.6	6.11	2.4	24.0	1.21	-307	1.63	1.5	yellow cloudy
		03/05/2010	21.2	6.05	0.9	16.7	0.42	-239	0.53	0.6	yellow
		06/03/2010	24.1	6.03	0.8	11.0	0.40	-291	1.00	0.5	amber
		09/23/2010	26.5	5.89	0.9	30.3	NA	-305	1.69	NA	green/brown
		12/22/2010	24.0	5.70	16.0	1.4	9.33	-224	0.70	10.4	slight yellow
		03/08/2011	21.3	6.09	12.9	2.3	7.40	-263	0.39	8.4	clear
		09/27/2011	25.7	5.60	4.7	2.7	2.50	-219	0.59	3.1	clear
		09/24/2012	25.1	5.89**	1.0	6.7	0.49	-301	0.93	0.7	amber
		10/22/2013	25.9	5.82	2.2	7.0	1.12	-217	0.62	1.4	vellow tint
		10/23/2014	25.3	5.64	6.8	6.8	3.73	-268	0.23	4.4	clear

Table 3-3. Performance Monitoring Well and Surface Water Sampling Results: Field Geochemical Parameters Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screen Interval (ft BLS)	Sample Date	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
		11/08/2007	24.9	6.05	17.7	3.9	10.45	-265	0.23	11.5	clear
		09/09/2008	27.3	6.14	12.6	15.1	7.19	-331	0.93	8.2	clear
		12/16/2008	24.2	5.94	14.0	12.0	8.21	-328	0.77	9.2	clear
		03/09/2009	23.8	6.18	15.3	6.1	9.10	-144	0.40	10.1	clear yellow
		06/15/2009	25.8	6.16	16.5	5.4	9.52	-253	0.24	10.6	
		09/10/2009	25.6	6.83	13.9	12.5	8.10	-280	1.12	9.5	clear
		12/17/2009	24.1	6.21	14.2	11.0	8.22	-316	0.99	9.2	yellow
LOX-IW0009SI	22.5 4- 27.5	03/04/2010	22.2	6.01	12.4	6.0	7.14	-310	0.77	8.1	slight yellow
LOX-1W0009SI	22.5 to 27.5	06/03/2010	24.0	6.24	6.2	11.0	3.88	-308	0.66	4.1	clear
		09/23/2010	26.9	6.13	16.5	12.5	NA	-325	0.71	NA	clear
		12/22/2010	23.7	5.80	14.4	1.1	8.37	-281	0.61	9.4	slight yellow
	ļ	03/08/2011	22.2	5.79	13.7	2.5	8.05	-276	0.68	9.1	clear
	ļ	09/27/2011	24.5	5.80	10.0	615.0	5.62	-274	0.37	6.5	clear
		09/24/2012	24.5	6.03**	7.4	2.1	4.12	-326	0.90	4.9	clear
		10/22/2013	25.2	6.32	4.0	13.2	2.11	-311	0.62	2.6	clear
	l l	10/23/2014	24.9	6.27	8.0	5.4	4.42	-325	0.19	5.2	clear yellow
		05/29/2008	24.2	5.32	32.5	0.2	2.00	-183	0.37	20.0	light yellow
		09/09/2008	25.2	5.21	26.1	1.0	15.95	-25	1.02	17.0	clear
LOX-IW0010SI 23 to 28	12/16/2008	24.5	6.30	18.6	4.2	1.10	-29	0.29	11.0	clear	
	23 to 28	03/09/2009	25.4	5.26	26.3	2.7	1.60	-79	0.00	16.0	clear
		06/23/2009	26.8	5.11	27.1	1.3	1.80	-20	0.79	17.0	clear
	-	09/10/2009	26.3	5.40	20.6	2.1	11.97	-252	0.26	13.1	clear
		12/18/2009	24.3	5.05	23.4	1.3	14.16	-147	0.23	15.2	clear
		05/29/2008	25.2	7.16	39.4	0.7	2.50	-184	0.24	24.0	light yellow
	•	09/09/2008	26.0	7.47	36.9	0.0	2.40	-159	0.00	22.0	clear/yellowish
	•	12/16/2008	25.2	7.05	184.0	6.5	1.20	-122	0.32	12.0	clear
LOX-IW0011SI	23 to 28	03/09/2009	24.4	6.27	38.5	4.8	24.36	-34	0.64	24.9	clear
		06/18/2009	25.0	7.03	75.8	1.5	4.00	-94	0.00	48.0	clear
		09/10/2009	26.8	7.26	33.7	9.1	2.90	-62	0.92	28.0	clear
		12/18/2009	24.9	7.08	32.8	2.3	20.50	-112	0.90	21.3	clear
		11/08/2007	24.8	5.41	4.6	5.1	2.46	-268	0.58	3.0	clear
	 	05/29/2008	23.4	5.75	4.9	1.5	0.30	-312	0.14	3.1	light yellow
	•	09/09/2008	26.2	5.92	1.8	11.6	0.10	-304	0.00	1.1	clear/blackish
		12/16/2008	23.6	7.01	9.2	2.0	0.50	-291	0.20	5.8	clear
		03/09/2009	20.8	5.79	3.1	16.1	0.20	-313	0.83	2.0	clear
		06/16/2009	25.1	5.80	3.1	8.6	1.60	-274	1.02	1.5	clear
		09/10/2009	25.7	6.43	2.0	13.2	0.10	-280	1.00	1.1	clear
		12/18/2009	23.7	5.78	2.5	3.9	1.28	-224	0.30	1.6	vellow
LOX-IW0013S	6 to 11	03/05/2010	18.4	5.75	2.7	8.0	1.39	-252	0.65	1.7	yellow
222200100		06/03/2010	22.9	5.86	1.5	11.5	0.77	-294	0.52	1.0	yellow orange
		09/23/2010	26.8	5.87	1.8	8.4	0.89	-168	0.16	1.1	yellow
		12/22/2010	21.2	5.92	1.8	6.7	0.91	-298	0.19	1.2	yellow clear
		03/07/2011	19.7	6.49	3.2	14.2	1.80	-198	0.40	2.2	yellow, cloudy
		09/28/2011	26.6	5.93	3.5	2.6	1.82	-259	0.38	2.3	clear
		09/25/2012	25.8	6.12**	4.2	7.0	1.80	-296	0.70	2.3	clear
		10/21/2013	25.6	5.50	8.1	1.7	4.49	-202	0.70	5.3	clear
	l -	10/23/2014	25.5	5.38	8.4	1.8	4.66	-253	0.39	5.5	clear

Table 3-3. Performance Monitoring Well and Surface Water Sampling Results: Field Geochemical Parameters Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screen Interval (ft BLS)	Sample Date	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
		11/08/2007	24.0	3.16	5.0	2.4	2.67	-308	0.56	3.2	clear
		05/29/2008	24.0	5.88	4.5	2.7	2.41	-220	0.85	2.9	clear/yellowish
		09/09/2008	25.0	6.15	5.1	0.0	0.30	-325	0.00	3.2	black/gray
		12/16/2008	24.0	7.13	5.4	1.6	0.30	-308	0.20	3.4	clear
		03/09/2009	21.8	5.96	3.6	0.0	0.20	-319	0.39	2.3	clear
		06/16/2009	24.8	5.83	4.4	1.5	2.35	-269	0.27	2.9	
		09/10/2009	25.4	6.80	5.2	16.9	0.30	-288	0.62	3.2	clear
		12/18/2009	24.2	5.61	8.7	1.3	4.85	-241	0.21	5.7	yellow
LOX-IW0013I	16.5 to 21.5	03/05/2010	19.8	5.47	12.4	4.3	7.11	-237	0.77	8.0	slight yellow
		06/03/2010	22.9	5.67	14.1	1.2	8.17	-372	1.03	9.2	slight yellow
		09/23/2010	24.8	5.64	15.8	3.0	9.23	-147	0.23	10.3	slight yellow
		12/22/2010	22.9	5.72	16.9	1.8	9.92	-267	0.21	11.0	slight yellow
		03/07/2011	21.3	6.21	16.0	2.9	9.37	-148	0.57	10.4	clear
		09/28/2011	24.6	5.67	17.8	0.9	10.48	-210	0.42	11.6	clear
		09/25/2012	25.1	5.78**	16.3	1.8	9.85	-201	0.21	11.6	clear
		10/21/2013	24.9	5.67	16.4	6.6	9.58	-238	0.30	10.6	clear
		10/23/2014	24.7	5.60	16.9	2.5	9.92	-284	0.26	11.0	clear
LOX-SW0001	N/A	12/22/2010	18.8	8.91	21.2	10.6	12.73	-113	14.57	13.8	hazy

- 1. ft BLS indicates feet below land surface.
- 2. °C indicates degrees Celsius.
- 3. pH indicates hydrogen ion concentration.
- 4. S.U. indicates standard units.
- 5. mS/cm indicates milliSiemens per centimeter.
- 6. NTU indicates Nephelometric Turbidity Unit.
- 7. mV indicates millivolts.
- 8. mg/L indicates milligram per liter.
- 9. % indicates percent.
- 10. g/L indicates gram per liter.
- 11. * indicates pH meter malfunctioned.
- 12. -- indicates not recorded.
- 13. ** indicates respective meter failed the continuing calibration verification.

39B AnlGWMR2014 - Section III Revision: 0 July 2015

Table 3-4. Monitored Natural Attenuation Sampling Results: Chlorinated Volatile Organic Compounds and Dissolved Gases Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

					Concentration (μg/L)		Concentration (µg/L)							
Location	Sample Date	Screen Interval	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Methane	Ethane	Ethene						
Location	Sample Date	(ft BLS)	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4	No FDEP SWCTL								
	Sep-96		2.0 U	2.0 U	2.0	196	NA	NA	NA						
	Jul-98		2.0 U	2.0 U	3.0	290	NA	NA	NA						
	Jul-99		5.0 U	5.0 U	5.0 U	360	NA	NA	NA						
	Oct-00		2.0 U	1.8 U	1.8 U	200	NA	NA	NA						
	Oct-03		1.6 U	2.4 U	1.6 U	260	NA	NA	NA						
	Apr-04		0.63 J	1.9 J	2.5	466	NA	NA	NA						
ECS-IW0003I	Jan-06	45 to 50	20 U	20 U	20 U	607	NA	NA	NA						
	Aug-06		1.2	1.6	2.3	570	2,300	0.37 U	3.9						
	Apr-07		2.0 U	2.6 U	2.2 I	340	1,900	6.4 U	4.5 U						
Ţ	Sep-07		1.2 I	1.3 U	0.88 U	220	400	0.64 U	0.70 I						
Ţ	Sep-08	7	1.9	1.9	1.8	130	2,020	0.32 U	2.6						
Ţ	Sep-09	7	1.9	2.1	1.9	107	1,150	6.3	8.4						
	Oct-10	<u> </u>	1.5	1.7	1.2	34.7	1,070	0.32 U	1.6						
	Jul-98		10 U	170	9.0 U	1,000	NA	NA	NA						
	Jul-99	1	40 U	36 U	36 U	1,200	NA	NA	NA						
	Oct-00	1	12 U	18 U	12 U	1,600	NA	NA	NA						
Ī	Oct-03	1	0.78 J	18.3	18.0	2,110	NA	NA	NA						
ECS-IW0004I		41.5 to 46.5	0.28 U	0.65 U	12.0	1,900	1,800	0.35 U	15.0						
Sep-07		10 U	13 U	8.8 U	1,200	470	0.64 U	8.7							
	Sep-08		0.32 U	0.56	12.6	481	1,740	1.0	113						
Ī	Sep-09		0.33 I	0.43 I	15.2	262	1,620	0.82	26.7						
Ī	Oct-10		-				0.24 I	0.48 I	12.1	196	1,570	0.66 I	17.2		
	Jul-98		10 U	9.0 U	9.0 U	30.0	NA	NA	NA						
	Jul-99	1	40 U	36 U	36 U	36.0	NA	NA	NA						
Ī	Oct-00	1	0.08 U	9.4	0.08 U	19.0	NA	NA	NA						
Ī	Oct-03		2.0 U	2.0 U	2.0 U	1.0	NA	NA	NA						
200 HV000 4D	Jan-06	57. 62	0.28 U	0.65 U	0.44 U	3.4	48.0	0.35 U	1.5						
ECS-IW0004D	Sep-07	57 to 62	0.28 U	0.65 U	0.44 U	4.8	28.0	0.64	0.45						
Ī	Sep-07*	1	0.28 U	0.65 U	0.44 U	3.5	9.5	0.64 U	0.45 U						
Ī	Sep-08	1	0.32 U	0.20 U	0.45 U	3.3	118	0.32 U	0.19						
ţ	Sep-09	1	0.32 U	0.20 U	0.45 U	5.8	NA	NA	NA						
ļ	Oct-10	1	0.24 U	0.32 U	0.34 U	2.6	NA	NA	NA						
i	Jul-99		2.0 U	1.8 U	1.8 U	45.0	NA	NA	NA						
ļ	Oct-00	1	0.08 U	0.12 U	0.08 U	1.3	NA	NA	NA						
ļ	Oct-03	1	3.6	1.4 J	1.9 J	14.4	NA	NA	NA						
ţ	Apr-04	1	3.1	1.3 J	3.3	26.8	NA	NA	NA						
CO WOODS	Oct-06	22 / 20	2.4	1.2	1.1	0.50 U	110	0.37 U	0.36 U						
CS-IW0005SI	Apr-07 23	23 to 28	2.4	2.0	1.6	0.81 I	140	6.4 U	5.1 I						
j	Sep-07	1	2.1	0.65 U	1.4	0.50 U	15.0	0.64 U	0.45 U						
ļ	Sep-08	+	2.6	1.3	1.5	2.3	862	0.32 U	0.25						
ļ.	Sep-09	1	2.9	1.2	0.82 I	0.30 U	NA	NA	NA						
Oct-10	1	2.0	1.2	1.2	0.28 U	NA	NA	NA							

Table 3-4. Monitored Natural Attenuation Sampling Results: Chlorinated Volatile Organic Compounds and Dissolved Gases Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

					Concentration (μg/L)			
T4:	C	Screen Interval	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Methane	Ethane	Ethene
Location	Sample Date	(ft BLS)	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP GIII (non-potable): 700 FDEP SWCTL: 11,000			No FDEP SWCTL	
	Jul-99		40 U	24 U	16 U	3,200	NA	NA	NA
	Oct-00		16 U	184 J	200 U	2,500	NA	NA	NA
	Oct-03		200 U	240	36 U	4,700	NA	NA	NA
	Apr-04	10 U	199	13.3	3,710	NA	NA	NA	
ECS-IW0005I	Jan-06	42 to 47	0.28 U	0.65 U	12.0	690	1,200	0.35 U	21.0
	Sep-07		25.0 U	33 U	22 U	2,800	350	0.64 U	7.9
	Sep-08		0.32 U	2.1	13.5	1,330	1,530	0.80	68.6
	Sep-09		0.32 U	0.31 I	11.1	140	1,240	0.31	10.5
	Oct-10	0.24 U	0.88 I	10.5	551	1,200	1.0	18.9	
	Jul-99		100	130	1.8 U	1.8 U	NA	NA	NA
	Oct-00		28.0	75.0	0.40 U	0.45 U	NA	NA	NA
	Oct-03		76.7	79.5	2.8	1.0 U	NA	NA	NA
	Apr-04		122	104	4.8	2.0 U	NA	NA	NA
	Jan-06		38.0	24.0	1.9	1.1	NA	NA	NA
ECS-IW0006SI	Aug-06	22 to 27	35.0	15.0	1.3	0.61 I	1,200	0.37 U	0.36 U
	May-07		25.0	12.0	1.2	0.50 U	570	0.64 U	0.45 U
	Sep-07		18.0	9.2	1.1	0.50 U	130	0.64 U	0.45 U
	Sep-08		0.32 U	0.20 U	0.45 U	0.30 U	634	0.32 U	0.43 U
	Sep-09		41.5	23.9	1.1	0.30 U	1,490	0.32 U	0.43 U
	Oct-10		15.3	6.4	1.0	0.28 U	855	0.32 U	0.43 U
	Jul-99		10 U	36 I	9.0 U	580	NA	NA	NA
	Oct-00		2.0 U	52.0	2.0 U	280	NA	NA	NA
	Oct-03		20 J	45.9	40 U	923	NA	NA	NA
	Apr-04		3.0	9.8	4.2	1,210	NA	NA	NA
•	Jan-06	1	1.1 U	2.6 U	6.0	920	NA	NA	NA
ECS-IW0006I	Aug-06	32.5 to 37.5	0.91 I	1.2	6.2	770	2,700	0.44 I	10.0
	May-07		2.5 U	3.3 U	6.2	590	2,500	3.2 U	9.3
•	Sep-07	1	2.0 U	2.6 U	5.2	210	140	0.64 U	0.82 I
	Sep-08		0.33	0.33	1.6	93.8	243	0.32 U	1.1
	Sep-09	7	0.74 I	0.66 I	7.3	97.2	706	0.32 U	20.8
	Oct-10	1	0.24 U	0.32 U	7.7	115	1,160	0.32 U	54.3
	Jul-99		0.20 U	0.18 U	0.18 U	0.18 U	NA	NA	NA
ļ	Oct-00	7	0.08 U	0.12 U	0.08 U	0.09 U	NA	NA	NA
ļ	Oct-03	7	2.0 U	2.0 U	2.0 U	1.0 U	NA	NA	NA
ECC IVIOOCT	Jan-06	22 +- 20	0.28 U	0.65 U	0.44 U	0.50 U	NA	NA	NA
ECS-IW0007I	Sep-07	33 to 38	0.50 U	0.65 U	0.44 U	0.50 U	NA	NA	NA
ļ	Sep-08	1	0.32 U	0.20 U	0.45 U	1.8	NA	NA	NA
	Sep-09	7	0.32 U	0.20 U	0.45 U	0.30 U	NA	NA	NA
•	Oct-10	1	0.24 U	1.6	0.34 U	1.6	NA	NA	NA

Table 3-4. Monitored Natural Attenuation Sampling Results: Chlorinated Volatile Organic Compounds and Dissolved Gases Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

			Concentration (µg/L)								
T4:	C	Screen Interval	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Methane	Ethane	Ethene		
Location	Sample Date	(ft BLS)	FDEP SWCTL: 80.7 FDEP GIII (non-potable): 700 FDI		FDEP SWCTL: 11,000	FDEP SWCTL: 2.4	No FDEP SWCTL				
	Jul-99		0.20 U,J	0.71 I	0.18 U	5.8	NA	NA	NA		
	Oct-00		0.08 U	0.77 I	0.08 U	10.0	NA	NA	NA		
	Oct-03		2.0 U	4.6	2.0 U	45.6	NA	NA	NA		
	Jan-06		0.28 U	15.0	0.45 U	130	NA	NA	NA		
ECS-IW0008I	Jan-06*	42 to 47	0.28 U	15.0	0.45 U	130	NA	NA	NA		
	Sep-07		1.0 U	21.0	0.88 U	160	130	0.64 U	0.45 U		
	Sep-08		0.32 U	38.7	0.45 U	141	NA	NA	NA		
	Sep-09		0.64 U	52.0	0.90 U	222	NA	NA	NA		
	Oct-10		0.24 U	45.3	0.34 U	198	NA	NA	NA		
	Jul-98		99.0	530	12.0 I	42.0	NA	NA	NA		
	Jul-99		48.0	430	14.0 I	91.0	NA	NA	NA		
	Oct-00		39.0	330	12.0 I	120	NA	NA	NA		
	Oct-03		27.1	128	15.2	52.6	NA	NA	NA		
	Apr-04		35.9	187	17.4	21.7	NA	NA	NA		
	Jan-06		1.1	37.0	15.0	68.0	170	0.35 U	0.33 U		
LOX-IW0001I	Aug-06	22 to 27	3.2 U	37.0	14.0	53.0	NA	NA	NA		
LOX-1W00011	Apr-07	22 to 27	0.83 I	15.0	13.0 J	46 J	510	6.4 U	4.5 U		
	Sep-07		0.60 I	18.0	13.0	49.0	250	0.64 U	0.45 U		
	Sep-08		4.4	58.5	16.0	41.3	578	0.32 U	0.68		
	Sep-09		0.91 I	22.7	16.5	92.2	688	0.32 U	1.1		
	Oct-10		0.24 U	0.74 I	15.6	54.2	543	0.32 U	0.95 I		
•	Sep-11		0.57 I	5.1	15.8	47.6	798	0.32 U	0.43 U		
	Sep-12		1.1	11.1	12.9	22.6	895	0.32 U	0.43 U		
	Jun-01		0.08 U	0.12 U	0.08 U	0.09 U	NA	NA	NA		
	Nov-03		2.0 U	2.0 U	2.0 U	1.0 U	NA	NA	NA		
	Apr-04		2.0 U	2.0 U	2.0 U	1.0 U	NA	NA	NA		
	Jan-06		0.28 U	0.65 U	0.44 U	0.50 U	NA	NA	NA		
	Sep-07		0.50 U	0.65 U	0.44 U	0.50 U	NA	NA	NA		
LOX-IW0012S	Sep-08	7 to 12	0.32 U	0.20 U	0.45 U	0.30 U	NA	NA	NA		
LOX-1W0012S	Sep-09	7 to 12	0.32 U	0.20 U	0.45 U	0.30 U	NA	NA	NA		
ļ	Oct-10		0.24 U	0.32 U	0.34 U	0.28 U	NA	NA	NA		
Ī	Sep-11		0.26 U	0.26 U	0.35 U	0.22 U	NA	NA	NA		
	Sep-12		0.31 U	0.24 U	0.23 U	0.44 U	NA	NA	NA		
ļ	Oct-13		0.31 U	0.24 U	0.23 U	0.44 U	NA	NA	NA		
ļ	Oct-14		0.30 U	0.33 U	0.34 U	0.33 U	NA	NA	NA		

Table 3-4. Monitored Natural Attenuation Sampling Results: Chlorinated Volatile Organic Compounds and Dissolved Gases Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

				Concentration (µg/L)							
Location	Location Sample Date	Screen Interval	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride	Methane	Ethane	Ethene		
Location	Sample Date	(ft BLS)	FDEP SWCTL: 80.7	FDEP GIII (non-potable): 700	FDEP SWCTL: 11,000	FDEP SWCTL: 2.4]	No FDEP SWCTL			
	Jun-01		0.08 U	0.12 U	0.08 U	0.09 U	NA	NA	NA		
	Nov-03		2.0 U	2.0 U	2.0 U	1.0 U	NA	NA	NA		
	Apr-04		2.0 U	2.0 U	2.0 U	1.0 U	NA	NA	NA		
	Jan-06		NA	NA	NA	NA	2.7	0.35 U	0.35 U		
	Sep-07		0.50 U	0.65 U	0.44 U	0.50 U	NA	NA	NA		
LOX-IW0012I	Sep-08	23 to 28	0.32 U	0.20 U	0.45 U	0.30 U	NA	NA	NA		
LOA-1W00121	Sep-09	23 10 28	0.32 U	0.20 U	0.45 U	0.30 U	NA	NA	NA		
	Oct-10		0.24 U	0.32 U	0.34 U	0.28 U	NA	NA	NA		
	Sep-11		0.26 U	0.26 U	0.35 U	0.22 U	NA	NA	NA		
	Sep-12		0.31 U	0.24 U	0.23 U	0.44 U	NA	NA	NA		
	Oct-13		0.31 U	0.24 U	0.23 U	0.44 U	NA	NA	NA		
	Oct-14		0.30 U	0.33 U	0.34U	0.33 U	NA	NA	NA		

- 1. SWCTL indicates Florida Department of Environmental Protection (FDEP) Surface Water Cleanup Target Level.
- 2. MNA indicates Monitored Natural Attenuation.
- 3. MNA monitoring began in January 2006; Geosyntec began sampling March 2008.
- 4. μg/L indicates micrograms per liter.
- 5. ft BLS indicates feet below land surface.
- 6. U indicates not detected above method detection limit.
- 7. I indicates result greater than or equal to method detection limit but less than the reporting limit.
- 8. J indicates estimated value.
- 9. NA indicates not analyzed.
- 10. Bold, yellow shaded text indicates analyte detected above SWCTL or GIII.

Table 3-5. Monitored Natural Attenuation Sampling Results: Metals Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

		Screen Interval			Concentration (µg/L)			
Location	Sample Date	(ft BLS)	Aluminum	Arsenic	Barium VCC Parkers and 410	Iron	Thallium	
	0.05		KSC Background: 280	KSC Background: 28	KSC Background: 410	KSC Background: 10,000	KSC Background: 2	
F	Sep-96 Jul-98	4	NA NA	5.0 U 3.1 U	14.0 NA	NA NA	2.0 U 2.0 U	
	Jul-98 Jul-99	1	120 U,J	5.2	20 I	3,300	13 J	
-	Oct-00	1	NA	NA	NA NA	1,800 D	NA NA	
ECS-IW0003I	Jan-06	45 to 50	NA	NA	NA	NA	6.6 U	
	Aug-06	1	NA	NA	NA	NA	1.8 U	
	Apr-07	1	NA	NA	NA	NA	6.6 U	
	Sep-07		NA	NA	NA	NA	6.6 U	
	Sep-08		NA	NA	NA	NA	0.49 I	
L	Jul-98		770 I	6.9 I	52 I	13,900	2.0 U	
L	Jul-99		120 U	3.6 I	46 I	10,600	29 I	
L	Oct-00	4	NA	NA	NA	13,400 D	NA	
-	Jan-06	4	NA	NA NA	NA	14,000	NA	
H	Sep-07	1	NA NA	NA NA	NA NA	7,100 14,000	NA 0.02 U	
ECS-IW0004D	Sep-07* Sep-08 Sep-09	57 to 62	NA NA	NA NA	NA NA	11,500	0.02 U	
ECS-111 000-1D		371002	NA NA	NA NA	NA NA	10,800	NA	
ŀ	Oct-10		l	NA NA	NA NA	NA NA	10,900	NA NA
ŀ	Sep-11	1	NA NA	NA NA	NA NA	11,100	NA NA	
j	Sep-12	1	NA	NA	NA	10,200	NA	
ř	Oct-13	1	NA	NA	NA	9,920	NA	
	Oct-13		NA	NA	NA	3,500 F	NA	
	Oct-99		2,700	4.3 I	44 I	3,500	7.5 I	
	Oct-00		NA	NA	NA	1,400 D	NA	
ECS-IW0005I	Jan-06	42 to 47	230	NA	NA	NA	6.8	
	Sep-07		160 I	NA	NA	NA	6.6 U	
	Sep-08		NA	NA	NA	NA	0.55 I	
L	Jul-99		20,400	11.0	160 I	5,200	11 I	
-	Oct-00 Jan-06	1	NA 2 200	NA NA	NA 1.2	35 U,D 510	NA	
H		1	2,300 2,500	NA NA	7.8 I	310	6.8 U 1.8 U	
ECS-IW0006SI	Aug-06 May-07	22 to 27	1,200	NA NA	6.7 I	730	6.6 U	
LCD-111 0000031	Sep-07	221021	221027	1,800	NA NA	6.7 I	280	6.6 U
H	Sep-08		293	NA NA	NA	NA	0.16 I	
F	Sep-09	1	1,410	NA	NA	NA	NA	
Ī	Oct-10	1	1,760	NA	NA	NA	NA	
	Jul-99		170 I	3.0 U	56 I	480	12.0	
	Oct-00		NA	NA	NA	35 U,D	NA	
	Jan-06		NA	NA	NA	NA	6.6 U	
ECS-IW0006I	Aug-06	32.5 to 37.5	NA	NA	NA	NA	1.8 U	
L	May-07		NA	NA	NA	NA	6.6 U	
L	Sep-07	4	NA	NA	NA	NA	6.6 U	
	Sep-08 May-01	ļ	NA 350 U	NA 61.0	NA 200 I	NA 5,200	0.12 U 76.0	
ŀ	Oct-03	1	6.6 U	3.1 U,B	85 U,B	5,200 1,800 U	1.5 U	
HOF-IW0005I	Jan-06	23 to 28	NA	4.8 U	NA	NA	NA	
	Sep-07	1 22.020	NA NA	140	NA NA	NA NA	NA NA	
ŀ	Sep-08	1	NA	5.4 U	NA	NA	NA	
	Jun-01		3,400	5.6 J	210	14,100	60.0	
ř	Nov-03	1	NA	NA	NA	165 U,B	NA	
ļ	Jan-06		12,000	NA	110	1,000	66.0	
	Sep-07		580	NA	110	620	6.6 U	
	Sep-08		1,740	NA	NA	NA	0.12 U	
	Sep-09		3,310	NA	NA	NA	NA	
LOX-IW0012S	Oct-10	7 to 12	1,140	NA	NA	NA	NA	
Ļ	Sep-11	4	2,900	NA	NA	NA	NA	
	Sep-12	4	936	NA NA	NA	NA	NA	
	Oct-13	-	391	NA NA	NA	NA NA	NA NA	
	Oct-13	-	325 F	NA NA	NA NA	NA NA	NA NA	
F	Oct-14	1	3,920 3,840 F	NA NA	NA NA	NA NA	NA NA	
-	Oct-14 Jun-01	 	3,840 F 350 U	NA 46 J	NA 290 I	NA 11,000	NA 55.0	
F	Nov-03	-		NA		11,000 1,400 U,D	55.0	
LOX-IW00121	Jan-06	23 to 28	NA NA	NA NA	NA 220	1,400 U,D 570	NA 20 U	
LOX-IW0012I		231020	NA NA	NA NA	230	420	20 U	
	Sep-07							

- The corrective measure objective was to have contaminant concentrations below the upper range of KSC Background Values.
 MNA indicates Monitored Natural Attenuation.
- MNA monitoring began in January 2006; Geosyntec began sampling March 2008.
- μg/L indicates micrograms per liter. ft BLS indicates feet below land surface.

- U indicates not detected above method detection limit.
 I indicates result greater than or equal to method detection limit but less than the reporting limit.
- B indicates constituent detected in associated method blank.
 D indicates dissolved concentration.
- J indicates estimated value.
 NA indicates not analyzed.

- 11. Bold, yellow shaded text indicates analyte detected above upper limit of KSC Background Value.
 12. Bold, yellow shaded text indicates analyte detected above upper limit of KSC Background Value.
 13. The dissolved plume MNA sampling plan was modified during the CMI because the monitoring well cluster ECS-IW2 could not be located. ECD-5SI was substituted for ECS-IW2SI, ECS-IW4D with thallium added to analyte list was substituted for ECS-IW2D, and ECS-IW3I was substituted for ECS-IW2I.
- indicates a duplicate sample.
 Findicates sample was filtered.

Table 3-6. Monitored Natural Attenuation Sampling Results: Field Geochemical Parameters
Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screen Interval (ft BLS)	Sample Date	Temperature (°C)	pH (S.U.)	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)	Total Dissolved Solids (g/L)	Color
		09/08/2008	24.9	7.38	1.9	7.0	0.10	-176	0.00	1.2	clear
ECS-IW0003I	45 to 50	09/10/2009	25.8	7.73	2.0	3.1	0.98	-252	0.23	1.3	clear
		10/14/2010	25.1	7.40	1.6	6.4	0.82	-214	1.21	1.1	yellowish
		09/08/2008	24.9	7.38	1.9	7.0	0.10	-176	0.00	1.2	clear
ECS-IW0004I	41.5 to 46.5	09/09/2009	26.4	9.31 *	2.5	2.9	1.22	-360	0.07	1.5	clear
		10/14/2010	26.1	6.71	2.0	8.3	0.96	-172	1.05	1.8	clear
		09/08/2008	25.0	6.79	55.2	7.1	36.58	-125	0.30	35.9	clear
		09/09/2009	27.4	7.97 *	68.0	18.3	42.31	-264	0.07	44.1	clear
ECS-IW0004D	57 to 62	10/14/2010	26.1	6.31	59.3	2.9	31.29	-129	1.05	36.2	clear
EC3-1W0004D	37 10 02	09/28/2011	26.2	6.92	59.2	3.0	39.54	-147	0.83	38.5	clear
		09/25/2012	25.0	7.01	1.3	2.9	2.42	-151	0.95	3.1	clear
		10/23/2013	24.1	6.76	60.0	11.0	40.23	-86	0.41	39.0	clear
		09/08/2008	24.5	6.21	0.9	15.2	0.00	-286	0.00	0.6	clear/brown
ECS-IW0005SI	23 to 28	09/09/2009	26.0	6.24	0.8	3.0	0.41	-253	0.04	0.5	light yellow
		10/14/2010	24.9	6.46	0.9	10.8	0.25	-241	1.00	0.6	clear
		09/08/2008	25.1	7.90	2.3	4.8	0.10	-151	0.00	1.5	clear/brown
ECS-IW0005I	42 to 47	09/09/2009	25.3	9.10 *	1.9	2.4	0.95	-368	0.10	1.2	clear
		10/14/2010	25.2	7.25	2.3	3.9	0.56	-254	1.03	1.0	clear
ECS-IW0006SI	22.5 to 27.5	09/08/2008	25.7	7.15	2.3	1.2	0.11	-244	1.88	0.2	clear
EC3-1W000031	ECS-1W0000S1 22.3 to 27.3	09/09/2009	26.6	7.99	1.3	6.2	0.65	-332	0.01	0.8	clear
		09/08/2008	24.7	7.77	0.9	8.9	0.00	-297	0.00	0.7	clear
ECS-IW0006I	32.5 to 37.5	09/09/2009	27.0	9.60 *	2.3	8.1	1.12	-421	0.01	1.4	clear
		10/14/2010	25.0	7.70	1.3	7.6	0.51	-282	0.98	0.6	clear
		09/08/2008	24.3	6.47	3.1	0.3	1.61	-256	0.68	2.0	clear
ECS-IW0007I	33 to 38	09/09/2009	26.2	7.23	4.0	2.0	2.07	-328	0.05	2.6	clear
		10/14/2010	25.1	6.62	3.1	1.7	1.14	-253	1.37	2.1	clear
		09/08/2008	24.5	7.32	77.4	0.0	4.00	-156	0.00	48.0	-
ECS-IW0008I	42 to 47	09/10/2009	26.1	7.52	25.2	1.8	15.01	-260	0.04	16.1	clear
		10/14/2010	26.0	7.30	20.2	10.3	12.10	-247	1.10	13.1	clear
HOF-IW0005I	23 to 28	09/08/2008	26.6	5.87	0.7	0.2	0.35	-258	1.37	0.5	yellow
		09/11/2008	26.9	7.38	3.3	2.8	0.20	-259	0.00	2.1	clear
		09/10/2009	26.9	8.87 *	3.8	2.7	1.93	-396	0.03	2.4	clear
LOX-IW0001I	22 to 27	10/14/2010	25.6	7.20	2.1	8.4	1.09	-298	1.13	1.7	clear
		09/28/2011	25.9	7.06	4.1	1.0	2.19	-263	0.57	2.7	clear
		09/25/2012	24.8	7.31	5.1	9.8	2.75	-220	0.78	3.4	clear
		09/09/2008	25.5	4.93	35.3	0.8	22.25	-60	1.24	23.0	clear
		09/10/2009	26.2	6.36	37.4	2.3	23.08	-274	0.08	23.8	clear
		10/15/2010	26.0	6.95	32.3	12.3	22.25	-151	1.17	28.0	clear
LOX-IW0012S	7 to 12	09/28/2011	24.8	4.99	36.3	2.4	22.95	-140	0.54	23.6	clear
		09/24/2012	25.0	5.07	14.7	1.5	8.55	-155	0.28	9.7	clear
	L	10/22/2013	24.7	5.31	29.4	0.9	18.15	-92	0.50	19.1	clear
		10/22/2014	25.4	4.75	42.1	2.6**	27.39	-95	0.33**	27.4	clear
		09/09/2008	24.3	6.54	66.5	2.7	4.00	-206	0.00	40.0	clear
		09/10/2009	25.7	7.51	56.0	9.3	36.90	-298	0.14	36.2	clear
		10/15/2010	25.1	7.19	56.2	7.8	23.10	-276	1.21	37.3	clear
LOX-IW0012I	7 to 12	09/28/2011	24.8	6.86	55.0	3.4	36.42	589	0.24	35.7	clear
		09/24/2012	24.2	6.25	32.9	6.3	20.67	-172	0.34	21.3	clear
		10/22/2013	23.8	6.08	56.8	1.7	37.84	-74	0.49	36.9	clear
	l l		24.4	6.02	58.1	1.7**	38.79	-102	0.24**	37.8	clear

- 1. ft BLS = feet below land surface.
- °C indicates degrees Celsius.
- 3. pH indicates hydrogen ion concentration.
- 4. S.U. indicates standard units.
- 5. mS/cm indicates milliSiemens per centimeter.
- NTU indicates Nephelometric Turbidity Unit.
- mV indicates millivolts.

- 8. mg/L indicates milligram per liter.
- % indicates percent.
- 10. g/L indicates gram per liter.
- 11. * indicates pH meter malfunctioned.
- 12. -- indicates not recorded.
- 13. ** indicates the respective meter did not pass the continuing calibration varification at the end of the sampling day.

Figure 3-2
Comparison of the Distribution of TCE, cDCE, and VC, in the Treatment Zone Monitoring Wells (TA0001S, TA0002S, TA0003S, TA0004S, IW0009S, IW0013S, IW0013I)

usville-01\DATA1T:\0GIS\FR1352\MXDs\AnIGWMR2014JUN2015\MNAVOCs OCT2014.mxd 29June 2015 JRB

Legend

- MNA Monitoring Well Location showing screen interval (ft BLS)
- Monitoring Well not included in MNA showing screen interval (ft BLS)
- Abandoned Monitoring Well showing screen interval (ft BLS)

Parameter	Abbreviation	Site Specific
Tarameter	7 toole viation	Cleanup Level
Trichloroethene	TCE	80.7 (SWCTL)
cis-1,2-dichloroethene	cDCE	700 (GIII non-potable)
trans-1,2-dichloroethene	tDCE	11,000 (SWCTL)
Vinyl Chloride	VC	2.4 (SWCTL)

- 1. SWCTL indicates Florida Department of Environmental Protection (FDEP) Surface Water Cleanup Target Level.
- 2. MNA indicates Monitored Natural Attenuation.
- 3. MNA monitoring began in January 2006; Geosyntec began sampling September 2008.
- 4. Results are presented in micrograms per liter (μ g/L).
- 5. ft BLS indicates feet below land surface.
- 6. U indicates not detected above method detection limit.

Figure 3-4

Figure 3-5 Sediment Control System - December 2014 3-33/3-34

SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

The contents of this annual report were presented to the KSC Remediation Team (KSCRT) at the April 2015 Team meeting and the KSCRT agreed with all recommendations below. The meeting minutes are included in Appendix F.

4.1 PERFORMANCE MONITORING

Results from the performance monitoring suggest that enhanced bioremediation is still having a positive impact on the groundwater in the LOX area six years after injection of electron donor. A summary of the conclusions from the performance monitoring is provided below:

- VC was the only constituent detected above the site-specific cleanup criteria (SWCTL), with the exception of the results from samples collected from monitoring well cluster LOX-IW0013, which has the PQL as the cleanup criteria;
- approximately 92% of the CVOC mass has been removed in the treatment zone since 2006;
- VC to ethene dechlorination is occurring, but is most likely rate limited due to low pH in the treatment zone; and
- the TCE source area identified within the pad during supplemental assessment activities is likely contributing mass (dissolved flux) to the treatment area outside the pad (LOX area), since groundwater flow is radial from inside the pad.

Geosyntec recommends discontinuing the performance monitoring in the LOX area. The area was included in the supplemental assessment and will be included into the Engineering Evaluation Process. It is anticipated that the supplemental assessment data will be presented at the July 2015 KSCRT meeting.

4.2 MONITORED NATURAL ATTENUATION

Only one monitoring well cluster, LOX-IW0012 is included in the MNA sampling plan current, since the remainder of the site is in supplemental assessment. The COC data collected suggests that the CVOC plume is not expanding and the aluminum concentrations observed in samples collected from monitoring well LOX-IW0012S are within the range of historic observations.

Geosyntec recommends continuing analysis of groundwater samples for CVOCs from monitoring wells LOX-IW0012S and LOX-IW0012I on an annual basis to evaluate any plume migration to the west of the pond. It is recommended that both filtered and unfiltered samples continue to be

39B AnlGWMR2014 – Section IV Revision: 0 July 2015

collected for aluminum from monitoring well LOX-IW0012S and that the samples are analyzed using EPA Method 6020A/SW846The MNA monitoring plan is presented in Table 4-1. It is anticipated that the monitoring plan will be modified after the supplemental assessment activities are completed

4.3 OPERATION AND MAINTENANCE

Geosyntec recommends discontinuing the operation of the recirculation system. As mentioned above, the LOX area is included in the supplemental assessment area that will be included in the Engineering Evaluation Process. During the Engineering Evaluation Process, technologies will be evaluated to mitigate discharge to the adjacent Outstanding Florida Waters. In addition, dechlorination of the CVOCs will continue without recirculation system operation. Geosyntec also recommends that the on-site injection wells that have been destroyed (Figure 2-2) be considered abandoned. The remaining injection wells that are not damaged, will be abandoned in the future. It is also recommended that the monthly sediment block inspection continue to occur monthly.

Table 4-1. Monitored Natural Attenuation Sampling Plan Launch Complex 39B SWMU 009, Kennedy Space Center, Florida

Location	Screened Interval (ft BLS)	Analytical Parameters	Method	Frequency
LOX-IW0012S	7 to 12	CVOCs, aluminum (filtered and unfiltered)	Metals: EPA Method 6020A/SW846 CVOC: EPA Method 8260B/SW846	Annually
LOX-IW0012I	23 to 28	CVOCs	EPA Method 8260B/SW846	

- 1. ft BLS indicates feet below land surface.
- 2. CVOCs indicates chlorinated volatile organic compounds.

SECTION V

REFERENCES

Florida Department of Environmental Protection, March 2014. Department of Environmental Protection Standard Operating Procedures for Field Activities, DEP-SOP-001/01.

Maymo-Gatell, X. 1997. *Dehalococcoides ethenogenes Strain 195, A novel eubacterium that reductively dechlorinates tetrachloroethene (PCE) to ethene*. Report No. AL/EQ-TR-1997-0029. Submitted to the Air Force Research Laboratory, Tyndall Air Force Base, Florida.

National Aeronautics and Space Administration. October 2000. *Launch Complex 39B*, *SWMU 009*, *RCRA Facility Investigation*, *Kennedy Space Center*, *Florida (Revision 0)*, prepared by Geosyntec Consultants.

National Aeronautics and Space Administration. June 2003a. *RCRA Facility Investigation Report for Launch Complex 39B Located at the Kennedy Space Center, Florida (Revision 1) Addendum*, prepared by Geosyntec Consultants. NASA Document Number KSC-TA-6274.

National Aeronautics and Space Administration. September 2003b. *RCRA Facility Investigation Report for Launch Complex 39B Located at Kennedy Space Center, Florida (Revision 2) Addendum*, prepared by Geosyntec Consultants. NASA Document Number KSC-TA-6274.

National Aeronautics and Space Administration. November 2004. *Launch Complex 39B*, *SWMU No. 009*, *Corrective Measures Study Report, Kennedy Space Center, Florida (Revision 1)*, prepared by Geosyntec Consultants. NASA Document Number KSC-TA-6604.

National Aeronautics and Space Administration. March 2005. *Launch Complex 39B, SWMU No. 009, Corrective Measures Design Report, Kennedy Space Center, Florida (Revision 0)*, prepared by Geosyntec Consultants. NASA Document Number KSC-TA-7294.

National Aeronautics and Space Administration. March 2008. *Current Site Assessment and Injection Modification Plan, Launch Complex 39B,SWMU 009, Kennedy Space Center, Florida, (Revision 0)*, prepared by Geosyntec Consultants.

National Aeronautics and Space Administration. April 2009. 2008 Annual Groundwater Monitoring Report: Summary of Injection Activities, Performance Monitoring and Monitored Natural Attenuation, Launch Complex 39B,SWMU 009, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants. NASA document Number KSC-TA-10001.

39B AnlGWMR2014 – Section V

Revision: 0 July 2015

National Aeronautics and Space Administration. April 2010. 2009 Annual Groundwater Monitoring Report: Summary of Injection Activities, Performance Monitoring and Monitored Natural Attenuation, Launch Complex 39B,SWMU 009, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants. NASA Document Number KSC-TA-11201.

National Aeronautics and Space Administration. April 2011a. 2010 Annual Groundwater Monitoring Report: Summary of Injection Activities, Performance Monitoring and Monitored Natural Attenuation, Launch Complex 39B,SWMU 009, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants. NASA Document Number KSC-TA-11459.

National Aeronautics and Space Administration. June 2011b. Sampling and Analysis Plan for the RCRA Corrective Action Program at the John F. Kennedy Space Center, Florida (Revision 4), prepared by Geosyntec Consultants. NASA Document Number KSC-TA-6169.

National Aeronautics and Space Administration. April 2012. Launch Complex 39B (SWMU 009) 2011 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants. NASA Document Number KSC-TA-12109.

National Aeronautics and Space Administration. April 2013. Launch Complex 39B (SWMU 009) 2012 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants. NASA Document Number KSC-TA-12109.

National Aeronautics and Space Administration. April 2014. Launch Complex 39B (SWMU 009) 2013 Annual Groundwater Monitoring Report: Summary of Performance Monitoring, Monitored Natural Attenuation, and Operation and Maintenance Activities, Kennedy Space Center, Florida, (Revision 0), prepared by Geosyntec Consultants.

National Aeronautics and Space Administration. August 2014b. *Baseline Ecological Risk Assessment for the LC39 Lagoonal System, Advanced Data Package, Kennedy Space Center, Florida, (Revision 0)*, prepared by Geosyntec Consultants.

Newell, C., Cowie, I., McGuire, T., and McNab, W. June 2006. *Multiyear Temporal Changes in Chlorinated Solvent Concentrations at 23 Monitored Natural Attenuation Sites*. Journal of Environmental Engineering (653-663).

Sirem. February 2011. http://www.siremlab.com/kb1bioaugmentationfaq.html.

Wiedemeier, Todd H., Michael J. Barden, Patrick E. Haas, and W. Zachary Dickson. 2006. *Designing Monitoring Programs to Effectively Evaluate the Performance of Natural Attenuation*. In David M. Nielsen, *Environmental Site Characterization and Groundwater Monitoring* (573-637), Boca Raton, FL: CRC Press.

APPENDIX A FIELD FORMS

Geosyntec consultants

DAILY FIELD REPORT

Page of

Project: 2C398	Date: /0/23//9
Project No.: FRI3526	Task No.: 34*1
Contractors:	
Work	Performed
Well Installation:	Sampling Soil:
Soil Borings:	Sampling SW/Sediment:
DPT:	Sampling Monitor Wells: Sampling Hazardous Waste:
Well Inventory: Other:	Sampling Drums:
Othor.	
Observations	/Issues of Concern
A CONTRACTOR OF THE CONTRACTOR	
0730- Acrive @ office hogin YSI.	cal & putting supplies in Much
0805 - Equipment calibrated off	to 5:te
	7A4 cluster. Begin sampling activities.
See GW sampling forms for d	ktil,
Will comove current declicated	tubing a each well of replace of
HDPE tubing (18"ID)	we put for Mers outside fonce is turn in budgey. BL B5 pate
1100 - Wells inside pud complete for	are pul for Mers outside fence is two in budge
1/10- Call NASA Security for access to	BL B5 gate
1330- Break for lunch	
1420 - Back @ site. Begin to locate 1430 - Pal for LOX-TAOSI is broken (a)	wells & shot simply activities,
1430 - Pal for LOX-TAODI is broken (a	agled) but wall agrees OK and well
appears to be broken. Lorge	at soul clared out of LOX-+A035.
Call Rebecco Droub (RD) + or	about nell. Take pictures + seal to
her.	, , , , , , , , , , , , , , , , , , ,
1545 - Lift pul + Ful LOX-TAUSI	PUC. Talle to RD, will sample well.
Donalog notal no particles visible of	+ compare geochem to TAO35 to
See of similar (could inlimite	a break in the PVC well
Plans/Fu	iture Activities
1615- Turn off recore system.	after conversation w/ Joe Bortleff to
allow for IDW to allow to	after conversation of Joe Bortlett to
Dispose of IDW,	
1130 - Bear on of business + 5	amply TAO35. CW starts at make early
more furbil than other wells	30 del tolar
1715 - Done sampling for day. Locate	well by teneral livery of IDW
turn un system, + then at ice s	of pack could for pickup tonorrow
1745- OCF site; Call NASA Security once	ON OF Stone Signature/Date
1930 - Leave office; Jan will handle Nadminshare rom. Slank Daily Field Report Form. xls	sample pick up

Geosyntec consultants

Project: FR1352C

DAILY FIELD REPORT

Page of

Project: FK1352C 5 00	Date: _/0/23//Y
Project No.: 398	Task No.: 348/
Contractors:	
	Work Performed
Well Installation:	0 11 0 110
Soil Borings:	Sampling Soil:
DPT:	Sampling SW/Sediment: Sampling Monitor Wells:
Well Inventory:	Sampling Hazardous Waste:
Other:	Sampling Drums:
Observe	ations/Issues of Concern
1 march 2 marc	
0650- Arrive @ office. Look to	ruck + cal. agripment
0745 - Calibration complete. Leave +	for side
0815 - On site. Cill KSC Saurity	0 /2 / 0 De-
1825 2 Miles	and conter burnishe DS
Doso Degin I'W simply act	hustres. See Det mo MW Simpling forms he letil
0845 - Find large into not in m	uphale for LOX-TADT (less out before
to the Verth to the	and the same of th
14/11 -1 0-0 10 1	1 1/20 1 1/20 1
110- Vill replace Levisuked the	bing with HDPE tubing again, tiling
1105 - Novel to logate 95 2 957	
1/40 - Wells lovated LOXOGST L.	s large unt colony. Need for them to leave
h. ()	lade on the land
before simply	
1330 - Break for lunch	
1410 - Buck on site	
1510- Turn off secre system to	Man For TAW Day
1610- 10 + TODIS (1)	arow w. Die aspasa
1700 Car Out	large out culony from manhole before samply
1795- Simpling complete, Dispuse of	IDW in recirculation injection wells. Restart
ejec system of contact	NASA Security
1810 - Tues off blagguine system	a MLPV in an Assessmen for sampling Monlay
101	
Plai	ns/Future Activities
1930 - Somples on ice water to	a Acentest pick up tonorow. CCV confete
for VST	The application of the complete
N 10L	

Geosyntec Consultants Water Quality Instrument Calibration Form

Project/Site:	39B			Project #: F	31352C	Field Personne	M. Burch	e hy				
Water Quality Meter	r - Model/Ser	ral#: \SI	556 MP	3 11/100	358		Turbidimeter - M	lodel/Senal	# HACH 211	00 Q C	24006	S
Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std / NTU	Date	Reading (NTU)	Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		10/12/14	0738	23.73	4.415 7.983 ——	8.30/8.45 7.54	98.1/949 94.3	P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	19/2,14	9,99 3,0	P F F
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot #	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std <u>20 N</u> TU	Date	Reading (NTU)	Fail
CAL IGY CCY CAL ICY CCY		[0/17/14	<u>0753</u> 1918	1.413	11205	8/28/15	Acceptance Crite I-W03/J. 4/13 I. U17	- 1 - 1	CAL ICV CCV	Accel	14.1 25.5	P F F F F F
pH	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot #	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU Std <u>ا ک</u> NTU	Date	Reading (NTU)	Fail
CAL ICV CCV		10/22/1 10/22/14	744 0744 0747 0747 1912 1915	12.0 12.0 12.0 4.0 7.0	2405963 2312865 2406862 2312885 2312885 2406862	5/31/16 12/31/15 12/31/15 5/31/16 12/31/15	3.88/4.00 7.31/7.00 10.02/10.00 4.00 7.01 10.00	e F	CAL ICV CCV	Accept (3/12/114)	116	9: +/- 6.5° P F P F P F P F
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot#	Standard Exp. Date	Reading (mV)	Pass or Fall	>100 NTU Std <u>200</u> NTU	Date	Reading (NTU)	Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		ψ)/ (ψ)	0759	<u>) U CO) s</u>	4769	Geosyntee 7/31/17	2 Acceptance Crite 240.3/240. 234.6		CAL ICV CCV CAL ICV CCV CAL ICV CCV	(0/22/14 (0/22/14	#81 763	P F
Specific Conducta	nce Probe C	leaned? Yes	(No)	Disolved Oxyg	en membrane C	hanged? (Yes)	No					
See Table FS 2200 CAL - Initial Calibration ICV - Initial Calibration CCV - Continuing Calib	-2 on the back Verification oration Verificati	of this form on		au arbhratic	Comments	DO foile	1 ccv (>	اروم 0.3 م <u>ي</u>	IL from 3 atmosphero	.)		
Allow adequate time for Calibrate specific cond Calibrate pH using at lie	luctance using a	t least two standa	ards that bracket th	e range of expected sa	ample readings (unle mple readings, alway	ss readings < 0.1 ins ys start with pH 7, ad	S/cm then one standa Id a third calibration p	rd of 0.1 mS/o oint if needed	cm is acceptable) I (i.e. pH > 7)	(Geosyı	ntec D

consultants

If parameter fails to calibrate within SOP acceptance criteria than append sample results with a "J" qualifier

Geosyntec Consultants Water Quality Instrument Calibration Form

Field Personnel

M. Burchan \$ HA (4 2000 02399)

Water Quality Meter	- Model/Sen	al#: VSI	556 MB	IIKIO	0358		Turbidimeter - M	odel/Sena	# </th <th>mis</th> <th></th> <th></th>	mis		
Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std 0 NTU	Date	(NTU)	Pass or Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	1	16/27/14	0717	23.34 25.14	8,514	8.05	ptance Criteria: +, /0).4/102.0 47 6	P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV	10/3-3/14	(O.3	B F F F F
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot#	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std 20 NTU	Date	Reading (NTU)	Pass or Fail
CAL ICV CCV		10/13/14	6741	1,413	11205	8/28/15	Acceptance Criter	P F P F	CAL ICV CCV	2/23/4 \frac{1}{2}	eptance Criter	P F F F F F F
pH	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard Lot#	Standard Exp. Date	Reading (SU)	Pass or Fail	41 - 100 NTU Std <u>(3)</u> NTU	Date	Reading (NTU)	Fail
CAL ICV CCV		10/23/14 10/23/14P	0726	4.0 7.0 (2.0 4.0 7.0	245963 2405963 2405968 2405968 2312885 2406862	5/3)/15 12/31/15 12/31/15 5/31/15 12/31/15 12/31/15	345/4,00 1216/7,00 434/4,98 434/4,98 6,94 445	+/-0.2 \$U F F F F F F F F F F F F F F F F F F F	CAL ICV CCV	Acce 3/23/14 	tance Criteri	#: +/- 6.5%
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU Std 💈 🔾	Date	Reading (NTU)	Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		10/13/14	0733	140@15	4769	Geosyntee	277.5/240:	P F	CAL COV CCV CAL ICV CCV CAL ICV CCV	Acc	770 762	P F
Specific Conductan			(NO)	Disolved Oxyg	en membrane C	hanged? Yes	No)					

CAL - Initial Calibration

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0,1 inS/cm then one standard of 0,1 inS/cm is acceptable) Calibrate pH using at least two standards (typ, pH 4 and 7) that bracket the range of expected sample readings, always start with pH 7, add a third calibration point if needed (i.e., pH > 7)

Comments

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Geosyntec[▷] consultants

Site: 1398 Project No.: 581352 Task: 34-1 Date: 10/23/14 Sampled By: M. Burchyn
Station (Well ID): TAOO IS Purge Method: Pump Bailer Dentrifugal Pump Type: Submersible (Teflon SS Other) Peristaltic Centrifugal Bladder
Pump (Make & Model): Geograph Purge Rate: Make & Model) YST MPS 556 Water Level Meter: Solis of
Time @ Start of Purging: 1635 Time @ End of Purging: 1732 Total Purging Time: 57 Depth of Pump or Intake Tubing: 1635 ft. (BTOC)
Water Level: 2.71 ft BTO Total Well Depth: (8 ft BL) Screen Interval: 8-18 ft BLS Well diameter: 10.041 well Volume: 0.041 k 13=0.738 gal. Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.469

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рН <i>± 0</i> . <u>2</u>	Conductivity (mS/cm)	Turbidity (NTU) くいっ	Salinity (%)	ORP (mV)	DO (mg/L) インジ	TDS (g/L)	Color	Comments
1640	0,5 Star t	25.64	5.94	3,664	165	1.91	~136.9	0.11	2,304	Sloudy	-n+
1645	1,0	25.47	5.68	3.611	138	190	-703.8	0.00	32113347	(c')	=
1650	1,5	25.44	5.54	3,588	84.9	1.88	-237.4	0.00	2.328	cl 11	
1655	2.0	25.43	5.51	3,556	69.9	1.86	-242.2	0.00	2.312	cc 11	
1700	2.5	25/47	5.51	3.559	59.6	1.82	-250./	0.00	2.314	claudy, yella	e tost
1705	3,0	25,52	5,51	3 613	72,0	1.89	- 252,3	0,00	2.330	17 4	
1710	3.5	25.53	5.52	3360	54,2	1.75	-253.3	0.00	2.181	11 1,	
1715	37	25.45	5.46	4, 270	46.5	2-40	-244.1	0.01	2.897	10 11	
1718	3,8	25.42	5.48	4.261	44.7	2.15	-245-6	0.09	2.672	1: "	
1721	3,9	25.41	5.49	may 3,940	40.7	2.07	-249.7	0.00	2,532	11 11	
1724	4,0	25.37	5.50	3.767	30.3	1.72	_ 246.4	0.02	2,442	61 11	
1726	4,1	25.39	5,50	3,652	29.6	1.92	-250.6	0.00	2.371	(, 1)	

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 393-LOX-7400-15-013-0-2014-1023 Time Collected: 17412	Comments:	Vocs	
When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)=	gal		
When using ¼-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)=gal			
14"TD = 0.0006 x 20 + 0.25 = 6.26			1 of 2

water

Monitori.	Well	Sam	pling

Site: <u>LC39B</u>	Project No.: FR 1352 C Tas	k: 3481 Date: 10/13/	Sampled By: M.	Berken
Station (Well ID): TACOIS	Purge Method: Pump M Bailer ~0.0'75	Pump Type: Submersible (Teflor	nSSOther)Peristaltic	CentrifugalBladder
Pump (Make & Model): 600 prop	Purge Rate: §	pm Water Quality Meter (Make & Mo	odel) /SI 556 MPS W	rater Level Meter: 50/2017
Time @ Start of Purging: [635	Time @ End of Purging: 732	Total Purging Time: 57 m.	Depth of Pump or Intake Tubi	ng: ~/ \$ ft. (BTOC)
Water Level: 2.71 ft 3TOC	Total Well Depth: [9 # BL5	Screen Interval: 8-18 H 25 Correction Fac	Well diameter: 1 in tors: (3/4" use 0.02, 1" use 0.041, 2")	Well Volume: 0.737 ga use 0.163, 4" use 0.653, 6" use 1.46

							ion ractors. (3/4 use				
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	pН	Conductivity (mS/cm)	Turbidity (NTU) L 5 (pust 2)	Salinity (%) k well wie)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1728	(1) Start	25.43	5.50	3.584	27.5 1	1.88	-252.4	0.00	3.580		
1730	4.3	25.44	5.50	3.554	25.5	1.86	-154.0	0.00	3,551		
1732	4,4	25.45	5.50	3,539	22.9	1-86	-254.8	0,05	3.533	-	
		1									
			11		/						
		11									
			()	7							
											*
											4
			1								
			1	7							

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate

For high turbidity and DO, check now made to get the parameters within the specific Turbidity meter (if available). All attempts should be made to get the parameters within the specific Sample ID: 393-Lox-TAOXI sol3.0-2014b23 Time Collected: 1742 Comments: VOCs.

When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= gal

When using 1/4-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= gal

YOCs.

Turbidity comments: VOCs.

Turbidity comments: VOCs.

Turbidity comments: VOCs.

Turbidity comments to support the support to support the support to support the support to support to support to support the support to supp

Monitori. A	ell Sampling		FR	31352C							
Site: LC3	9 B	Project N	10.: <u>F43</u>	05796 Task:	34+1	Date: _/	10/13/14 s	Sampled By:	M. Bur	han	
Station (Well ID):	TAOOUZ	S Purge Metho	od: Pump	Bailer □ Pu	mp Type: Sul	bmersible (_	_TeflonSSOti	her) 🗶 Peris	staltic Centri	fugal Bla	dder
Pump (Make & Model): 6 sopnof Purge Rate: ~ Q./ gpm Water Quality Meter (Make & Model) 15 556 MPS Water Level Meter: 50/inst											
Time @ Start of P	ourging: 102	8 Time	@ End of Pu	urging: 1047	Total Purging	Гіте: <u>19</u>	Depth o	of Pump or Int	ake Tubing:	13	ft. (BTOC)
Water Level: 3,	18 ft BTO	Total	Well Depth:	18 ft BLS	Screen Interval:	8-18. Correct	Well diameter with the work wi	r:	<u>in.</u> Well V .041, 2" use 0.163	/olume: <u>0, 3/</u> 3, 4" use 0.653	$148 = 0.73_{\text{gal}}^{3}$ 3, 6" use 1.469
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	pН	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Commer
4.00	-Ctost	\ - a -	5110	r di-	111 -	2 20	-27/12	(0:12	700	clear,	

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рН	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1033	O.5 Start	25.33	5.48	5,910	14.5	3.20	-274.8	0.43	3,828	clear,	
1037	0.9	25.43	5.49	5,556	7.36	3.00	-274.3	0.03	3.602	21 7)	
1041	1.3	25.46	5,49	50126	5.58	2.42	-273.9	0.22	3,521	cc b	
1045	1.7	25.47	550	5,320	5,27	2,86	-273,2	0,21	3.456	11	
1042	1.9	25.45	5,50	5 188	7.98	2.84	- 272,3	0.20	3,429	(1 3)	
		54	1/1	11	F						

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 373-Loxoco 25-0 13.2-2014 20-3 Time Collected: 1057 Comments: VOCs

When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= _____ gal

When using ¼-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= _____ gal

1/8" ID = (0.0006x 18) + 0.25 = 0,261

Monitoria	Well	Sam	pling
MICHIGALIE	A A CAT	Dam	

Site: <u>LC39B</u> Project No.: <u>FR1352C</u> Task: <u>34*/</u> Date: <u>10/23/14</u> Sampled By: <u>M. Bushun</u>
Station (Well ID):
Pump (Make & Model): Copyring Purge Rate: ~Q.1 gpm Water Quality Meter (Make & Model) Y5I 55614PS Water Level Meter: 50/4st
Time @ Start of Purging: 0931 Time @ End of Purging: 0952 Total Purging Time: Depth of Pump or Intake Tubing: ~30 ft. (BTOC)
Water Level: 3,35' BTOC Total Well Depth: 35 [1/825] Screen Interval: 25-25 [1/825] Well diameter: 1 in. Well Volume: 0.041x 35= 2 435 Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.469

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C) 土の、と	рН <u>†</u> 0. 2	Conductivity (mS/cm) エラル	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L) くこっぷ	TDS (g/L)	Color	Comments
0935	0.5 Start	24.54	640	21.85	9.36	13,12	-3229	0.86	14,12	clear	
0939	0.9	24.67	6.36	21.31	3.36	12.78	-3289	0.81	13.85	clear	
0943	1.3	24,73	6,37	21.06	6.36	12,61	-334,2	0.44	13,69	clear	
0947	1.7	24.55	6.36	21.01	5.94	12,58	-331.5	0.28	13.65	c Lear	
0950	2.0	24.54	6.37	20.94	5,99	12.53	-331.6	6.26	13.61	clear	
0952	2.1	24.56	6,37	20.89	3.58	12,50	-3>0.2	0.24	13.57	chem	
			A	MP	11	D					

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every 1/4 well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 37B-Lov Thoo 1 - 030.5-20, 470.23 Time Collected: 100 Comments: Vocs

When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= ____ gal

When using 4-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= ____ gal

Monitoria,	Nell	Sam	pling

Site: <u>LC 31</u>	В	Project N	io.: FR	1 >52 C Task:	3441	Date: _/0	1/22/14 S	ampled By:	M. Bu	chun	
Station (Well ID)	LOX-TADO	Purge Metho	od: Pump	d Bailer □ Pu	amp Type: Sul	omersible (_	_TeflonSSOti	ner) 🗶 Peris	staltic Centri	fugal Bla	ıdder
Pump (Make & M	Iodel): (700 f	oung	Purge	Rate: ~ <u>~ 0.1</u> gpr	n Water Quality	Meter (Mak	e & Model) /5 [556 MP.	S Water Leve	el Meter: <u>5</u>	lint
Time @ Start of F	Purging: _/5/	3 Time	@ End of P	urging: <u>1528</u>	Total Purging	Гіте:	Depth o	f Pump or Inta	ake Tubing:/	3	_ ft. (BTOC)
Water Level:	2,20 Ft	BTOC Total	Well Depth:	18 FF BLS	Screen Interval:	8-18 Correct	ff BL5 Well diameter ion Factors: (3/4" use	:	in. Well V 041, 2" use 0.163	olume: <u>0.</u> 3, 4" use 0.653	738 gal. 6, 6" use 1.469)
Time (hrs)	Cumulative Purge Volume	Temp (°C)	pН	Conductivity (mS/cm)	Turbidity	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comment

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C) 土の, 2	pH IO. L	Conductivity (mS/cm) 15%	Turbidity ms (NTU)	Salinity (%)	ORP (mV)	DO (mg/L) <2で <u>火</u>	TDS (g/L)	Color	Comments
1518	2.5 Start	25.90	6.28	0.790	7.44	0.38	-210.9	0.48	0.506	yellow tint	
1512	0,9	25.88	6.21	0.707	5.25	0.34	-216.2	0.34	0459	(())	
1525	1,2	25,82	6.18	0,693	6,91	0.34	-116.8	0.34	0.450	(c)	
1528	1.5	25.83	6,15	0.637	6.44	0 33	-214.2	0.26	0.446	נג א	
		,									
	/		Λ	$O \setminus F$	- N						
		D/ /									
		1 ' '	l								

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 37B-Lox 7400035-013,0-2014[02] Time Collected: 1534 Comments: VOC5 DO Falls When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= gal When using $\frac{1}{4}$ -in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= gal $\frac{1}{2}$ ga

Monitori.	Well	Sam	pling

Site: 39B Project No.: FRISTIC Task: 34*) Date: 10/22/14 Sampled By: M. Berchan
Station (Well ID): Lox-TA0003T Purge Method: Pump Method: Pump Method: Pump Type: Submersible (_ Teflon _ SS _ Other) ** Peristaltic Centrifugal Bladder
Pump (Make & Model):
Time @ Start of Purging: 16:32 Time @ End of Purging: 168 Total Purging Time: 26min Depth of Pump or Intake Tubing: 30 ft. (BTOC)
Water Level: 2,21 FT BTOC Total Well Depth: 35 ft BLS Screen Interval: 25-35 ft BLS Well diameter: 1" in. Well Volume: 0.01 x 35 = 1.46 Correction Factors: (3/4" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.46

							ion ractors. (3/4 use	515,01,0130		1	E - 100000
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	pH TO.L	Conductivity (mS/cm)	Turbidity (NTU) くしつ	Salinity (%)	ORP (mV)	DO (mg/L) <12%	TDS (g/L)	Color	Comments
1637	O.y-Start	24.92	6.42	11 99	30.2	6.83	-275.4	0.49	7744	cleu	
1641	6.9	24.76	6.38	12.07	16.8	6.88	-279.5	0.72	7.816	16 31	
1645	1.3	14.77	6.37	11.60	8.72	6.60	-284.9	0.32	7.534	10 11	
1649	1.7	24.75	6.36	11.48	5.43	6.53	-293.2	6.28	7.457	10 11	
1653	2.(24.69	6.36	11.44	4.00	6.50	-297,9	0.23	7.430	CC 11	
(658	1.6	24.66	6.35	11.39	4.72	6-47	-304.5	0.20	7399	cc 1)	
			//	1	,			2			
				// //		1					
		74	10								
			/ /								
	/		(1							

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: $398-10\sqrt{0003}$ T = 030.5 = 2014(02)Time Collected: 1708 Comments: $\sqrt{900}$
Monitoria Well Sampling

Site: LC39R Project No.: FR1352 C Task: 348 Date: 10/22/14 Sampled By: M. Burhun
Station (Well ID):
Pump (Make & Model): 6cop-re Purge Rate: ~O. gpm Water Quality Meter (Make & Model) 45T 556 MPS Water Level Meter: Soliast
Time @ Start of Purging: 1023 Time @ End of Purging: 1037 Total Purging Time: 17 mm Depth of Pump or Intake Tubing: ~13 ft. (BTOC
Water Level: 3.2 BToC Total Well Depth: 18 14 865 Screen Interval: 8-18 14 86 Well diameter: 1 in. Well Volume: 0.041/8=0.75 Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.45

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рН Í <i>О.</i> <u>)</u>	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L) くつった	TDS (g/L)	Color	Comments
0925-1325	4 Start	27.88	6.06	0.59/	30.1	0.18	-1739	0.00	0.384	yellow	
1030	-8	17.94	6.04	0579	176	0.28	-216.1	æ.00	0.347	را ان	
1034	1.1	27.88	6.03	0.572	15.1	0.18	-112.1	0.00	0.375	i. u	
1037	1.3	27.83	6.03	0.573	115	0.28	-231.5	ひのつ	0,373		
	5/-	1/1	1) []							

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: <u>AB-Lox-Thoso45-0i3 0-2014[023</u>Time Collected: <u>1043</u> Comments: <u>Woc</u>; DO fulled (UV) When using 3/16-in. ID tubing EV=((0.041) (0.035x tubing length))+(flow thru vol.)= gal When using ½-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= 0.262 gal

1/8"ID = 0,0006 x Leight + 0,25 =

Monitoria, Well Sampling

Site: <u>LC39B</u> Project No.: FR1352C Task: 34" Date: 10/22/11 Sampled By: M. Bucham
Station (Well ID): TAOOSYT Purge Method: Pump Bailer Pump Type: Submersible (Teflon SS Other) Peristaltic Centrifugal Bladder
Pump (Make & Model): Leagung Purge Rate: vo. 1 gpm Water Quality Meter (Make & Model) 155 556 MPS Water Level Meter: 50/mt
Time @ Start of Purging: 0932 Time @ End of Purging: 0953 Total Purging Time: 1 Depth of Pump or Intake Tubing: 430 ft. (BTOC)
Water Level: 3-95 ft 370C Total Well Depth: 35 ft BL) Screen Interval: 25-35 ft BL5 Well diameter: 1" in. Well Volume: 34/35-1.435 Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.46

						Correct	tion Factors: (3/4" use	0.02, 1 usc 0	.0-1, Z use 0.10	5, T use 0.055	, o use 1,402)
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	pH ±0.∠	Conductivity (mS/cm) ± 5 %	Turbidity (NTU) < 20 NTV	Salinity (%)	ORP (mV)	DO (mg/L) < 10 %	TDS (g/L)	Color	Comments
0936	Start 0.5	26.60	5.98	6.556	7.83	0.12	-187.2	0.71	01367	dearlyd	(200
0140	0.9	26.55	5.96	0.556	5.32	0.27	-235.6	1.16	0.359	(C))	
0944	1.3	26.74	5.96	0.539	4.78	0.26	- 229.3	0.79	0.341	(c n	
0947	1.6	26.33	5.93	0.528	4.79	0.25	-229.5	2.61	0.343	cc y	
0950	19	76.35	5.92	0.535	5-90	0.26	- 223.5	0.46	0.349	6(1)	
0753	2.2	26.31	5.91	0.542	5.95	0.16	-227.8	0,36	0,353	16 6	
		. 1	2	1 +				ž.			
		$\Lambda \lambda / I$									
	5 +	+/~/	110								
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									

					0						

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 39B-LOX-TA-17-030.0-2019 Time Collected: 09577 Comments: VOC_5 ; When using 3/16-in. ID tubing EV=((0.041) (0.035x tubing length))+(flow thru vol.)= _____ gal When using 4-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)=0.17 gal $-10.0006 \times length$ $+10.25 = 0.0006 \times length$

Monitori. Well S	ampling
------------------	---------

Site: LC39B Project No.: FR1352C Task: 3401 Date: 10/23/14 Sampled By: M. Bursh	nu n	
Station (Well ID): 7 100093 Purge Method: Pump X Bailer Pump Type:Submersible (_Teflon _SS _Other) Y PeristalticCentrifugation	gal Blad	lder
Pump (Make & Model): 600 pump Purge Rate: 101 gpm Water Quality Meter (Make & Model) 1556 MP3 Water Level M		
Time @ Start of Purging: 1235 Time @ End of Purging: 121 Total Purging Time: 16 Mm Depth of Pump or Intake Tubing: ~ /		
Time @ Start of Purging: 1235 Time @ End of Purging: 1235 Total Purging Time: 16 mm Depth of Pump or Intake Tubing: ~ 1 Water Level: 17 h DL5 Screen Interval: 127 h BL5 Well diameter: 1 in. Well Volu Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4"	lume: 1 <u>7×0</u> 1" use 0.653,	1./63 = 2.57 gal. 6" use 1.469)
Cumulativa		

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C) ±0. ≥	рН <i>±0.</i> 2	Conductivity (mS/cm) ± 5%	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1210	0.5 Start	25.27	5.71	6.758	8.25	3.70	-248.7	0.45	4.402	clear	
1214	0.9	25.14	5,66	6824	6.24	3.72	-2525	0,33	4.423	C1 11	
1518	1,3	25,23	5-66	6 306	7242	372	-264.9	0.25	41.425	1c le	
1221	16	25,29	5.64	6.811	6.76	3.73	-268,1	0,23	4.428	11 11	
			, ,								
				1/1/1) [t-i					
						<u> </u>	\				
							/				
			/	11	1						
									\		

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 313 - LOXTWOOD95 - 014.5 - 20141023	Time Collected:	1131	Comments:	Vocs	
When using $3/16$ -in. ID tubing EV= ((0.041) (0.035x tubing EV= (1.041) (0.041) (0.035x tubing EV= (1.041) (0.041)	_	ru vol.)=	gal		
When using 1/4-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)=_ • 3	o gal			

₹ 0.15

Monitoria Well Sampling

Site: L(39B Project No.: FR/352C Task: 34st Date: 10/23/14 Sampled By: M. Burhan
Station (Well ID):
Pump (Make & Model): Cogung Purge Rate: 0.1 gpm Water Quality Meter (Make & Model) VSI 556 MPS Water Level Meter: 50/11
Time @ Start of Purging: 1245 Time @ End of Purging: 15/5 Total Purging Time: 25 mm Depth of Pump or Intake Tubing: ft. (BTOC)
Water Level: 3.8/ Ft 370C Total Well Depth: 275 ft BLs Screen Interval: 22.5-34.5 Well diameter: 2 in. Well Volume: 0163x34.5 gal Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.469

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C) ±○.1	pH ±0.2	Conductivity (mS/cm) ± 5%	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1250	5,5 Start	24.83	6,19	4.80-7.54	23.4	4-15	-295.3	0.40	4.891	cleur w/	o yellow that
1254	0,9	25.10	651	7.761	26.7	4.30	-310.2	0.31	5-096	CC 11	
1259	14	25,05	6.27	8,517	13.0	4.73	-322,4	0.26	5,510	CUN	
1307	1.8	24.94	6.27	8.150	7.51	4.52	- 325.6	0,22	5,294	a 11	
1307	2.2	34.94	6.28	8.028	4.71	4.44	-326.7	0.19	5,215	66 5	
1310	2.5	24.92	6.27	7.994	5.35	4.42	-325,3	0.19	5.196		
				K 1 /			- 1				
					1/1/1						
					VL						

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 39B-LOXIV 200951-025.0-10121013 Time Collected: 1323 Comments: VOCs

When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= _____gal

When using $\frac{1}{4}$ -in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)=(0.33)gal

Monitori	Well Sampling
TATOTITION	With Samping

Site: LC39B Project No.: FR1352C Task: 34* Date: 10/22/14 Sampled By: M. Burhan
Station (Well ID): Lox-Iw)25 Purge Method: Pump X Bailer Pump Type:Submersible (_Teflon _SS _Other) PeristalticCentrifugalBladder
Pump (Make & Model): Copung Purge Rate: 20) gpm Water Quality Meter (Make & Model) VST 556 MB Water Level Meter: Solinst
Time @ Start of Purging: 1254 Time @ End of Purging: 1313 Total Purging Time: 19 min Depth of Pump or Intake Tubing: 19 ft. (BTOC)
Water Level: 4/34 B BTOC Total Well Depth: 12 ft BL5 Screen Interval: 7-12 ft BL5 Well diameter: 2 in. Well Volume: 0.163x 12 = 1.96 Correction Factors: (3/4" use 0.02, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.469)

	Cumulative						Ion Pactors. (5/4 use				133450
Time (hrs)	Purge Volume (gal)	Temp (°C)	рН ±0.2	Conductivity (mS/cm) ナ 5%	Turbidity (NTU) く2つ	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1259	O.T Start	25.29	41.84	412.22	274	2709	-102,0	31.2.70	27,43	lew	
1302	0.4	25.53	4.78	42.10	2.14		MB / -43.0	12 1.11	27.39	clear	
1306	(,3	25,38	4,75	42.22	2.14	27.09	- 45.1	0.72	27.44	(1 >1	
1310	1.7	25.36	475	42.19	1,82	27.07	-96,1	0.37	27.41	<i>(c)</i>	
1313	2.0	25,36	4.75	42.14	2.64	2739	-94.5	0.33	27,40	66 3	
		2 1	,		,						
					<i>t</i>						
		7 /	-//		L						
				V /							
		3.0	/		- H						

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 318-LOX 0-125-009.5-2019 122 Time Collected: [313] Comments: VOCs; Alumnam (filtered & unfiltered Int filtered in fill)
When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= gal

Do filed CCV When using $\frac{1}{4}$ -in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)=0.16 gal $\frac{0.26}{3}$ gal $\frac{1}{10} = (0.0006 \times 18)^{7} = 0.15$

Monitori.	Well	Sam	plin	2

Site: LC39B Project No.: FR1352 C Task: 34 Date: 10/22/14 Sampled By: M. Buchan
Station (Well ID): $\angle OX-\overline{LW}$ Purge Method: Pump X Bailer D Pump Type:Submersible (_Teflon _ SS _ Other) _X PeristalticCentrifugalBladder
Pump (Make & Model): Copump Purge Rate: ~ 0.1 gpm Water Quality Meter (Make & Model) VST 556 Mps Water Level Meter: Solinst
Time @ Start of Purging: 121b Time @ End of Purging: 121 Total Purging Time: 15 min Depth of Pump or Intake Tubing: ~25.5 ft. (BTOC)
Water Level: 4.5 8 70 Total Well Depth: 28 ft BLS Screen Interval: 23-28 4 BLS Well diameter: 2 in. Well Volume: 4.5 64 ga Correction Factors: (3/4" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.46

						Contest	ion ractors: (3/4 use	0.02, 1 450 0	= =====================================		,
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	рН <u>†</u> 0-1	Conductivity (mS/cm) ± 5%	Turbidity (NTU) <22	Salinity (%)	ORP (mV)	DO (mg/L) く2ッパ:	TDS (g/L)	Color	Comments
1220	5-Start)4.53	5.90	5年33	2, 33	38.22	-91.2	0.26	39.31	clear/yell	212
1224	-9	24.35	5.93	57.73	1.89	38.51	-95.0	0.46	34.54	cc 11	
1228	1.3	24.38	5.99	57.97	1.86	38.20	-95,3	0.25	37.70	cleur	
1231	1,6	24.43	6.02	58.11	1.7/	38.79	-101.9	0.24	37.78	cleur	
		A	1 1	$\left(\right) $						_	
			1 4			\perp / \searrow					>
		21-1	0	17/	1						
				V /	_ /	1					
		360 7	,								

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity ≤ 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 39B-Lox-Twooilt-027.5-2014/02Time Collected: 1236 Comments: VOCs; DO failed When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= ____ gal When using ¼-in. ID tubing EV= (0.0026×1) +(flow thru vol.)= $\frac{.24}{}$ gal $\frac{1}{8}$ "ID = $\frac{0.0006 \times 35}{}$ + 0.25 = $\frac{.24}{}$

Monitori.	Vell	Sampling	,
MICHIGALIZ	// CII	Samping	Ĺ

Site: LC39R Project No.: FR1352C Task: 34*1 Date: 10/23/101 Sampled By: M, Barchen	
Station (Well ID):	
Pump (Make & Model): Geograp Purge Rate: ~O, gpm Water Quality Meter (Make & Model) YST 556 MP3 Water Level Meter: Solinst	- ,5
Time @ Start of Purging: 1514 Time @ End of Purging: 1539 Total Purging Time: 15 min Depth of Pump or Intake Tubing: 15. ft. (BTO	C)
Water Level: 3.37 ft BTOC Total Well Depth: 11 ft BL5 Screen Interval: 6-(1 ft BL5 Well diameter: 1 in. Well Volume: 0.041x11=0.45) Correction Factors: (3/4" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.	gal 469

Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C) ± ∅, 2	рН 10.2	Conductivity (mS/cm)	Turbidity (NTU) <2♡	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1529	0.5 Start	25.53	5.41	8.529	5.14	4.74	-2520	0.83	5,544	cleur	
1534	1.0	25.49	5.38	8.446	1.91	4.69	-247.6	6.49	5.488	(())	
1537	1,3	25.46	5 38	8 400	1.82	4,66	-251,6	0.41	-5.460	11 >	
1539	1,5	25,47	5.38	8.395	1.78	4.66	-253,3	0.40	5.454),))	
	3.6		,								
				MA	10/	1					
		/	1	- // /	F	/-					
			/	1		/					
									====		

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: \pm 0.2 °C; pH: \pm 0.2 standard units; Specific Conductance: \pm 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity \leq 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO \pm 0.2 mg/L or 10%, whichever is greater; and Turbidity \pm 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 318-10x-1W0035-088.5-20142027 Time Collected: 1549 Comments: When using 3/16-in. ID tubing EV=((0.041) (0.035x tubing length))+(flow thru vol.)= gal

When using 4-in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= gal

1/8" ID= 0,000 (x 15 + 0,25 ~ 0,26

Monitori. Well Sampling

Site: 1 C34B Project No.: FR/352C Task: 34"/ Date: 10/23/14 Sampled By: M. Burker
Station (Well ID): Purge Method: Pump X Bailer
Pump (Make & Model): Geograp Purge Rate: 201 gpm Water Quality Meter (Make & Model) Y57 556 MPS Water Level Meter: Svlns7
Time @ Start of Purging: 1443 Time @ End of Purging: 1458 Total Purging Time: 15 mm Depth of Pump or Intake Tubing: ~19 ft. (BTOC)
Water Level: 150 ft BTOC Total Well Depth: 21.5 ft BL5 Screen Interval: 16.5-21.5 ft by Well diameter: 1 in. Well Volume: 0.041-21.5 gg Correction Factors: (3/4" use 0.021, 1" use 0.041, 2" use 0.163, 4" use 0.653, 6" use 1.46

		r					ion ractors. (5/4 usc	T T		1	,
Time (hrs)	Cumulative Purge Volume (gal)	Temp (°C)	pН	Conductivity (mS/cm)	Turbidity (NTU)	Salinity (%)	ORP (mV)	DO (mg/L)	TDS (g/L)	Color	Comments
1448	05. Start -	24.71	5.62	17.23	10.13 &	> 7.10	-2687	0.67	11,18	clour/yella	u tout
1453	1,0	24.66	5.60	17,00	41.87	9.99	-2769	0.32	11.04	(1 ")	
1456	1.3	24,70	5.60	16.90	2.89	9,92	-281.6	0,18	10.99	// n	
1458	1,5	24.65	5.60	16 29	2 48	9.92	-204.4	0,26	1047	clear	
				· · · · · · · · · · · · · · · · · · ·							
			,	1 1	1						
					DIT						
			4	10/1	1/	/)					
				/ []		1					
		//	1								
, , , , , , , , , , , , , , , , , , ,											

Note: When purging well with pump or intake tubing within the well screen, purge minimum of 1 equipment volume prior to first field parameter measurements. Take additional field parameter measurements no sooner than 2 to 3 minutes apart, must purge minimum of 3 equipment volume + stabilized field parameters for sampling.

Note: When purging a well with well screen fully submerged and pump or intake tubing is placed in water column above the screened zone, purge minimum of one well volume prior to collecting first field parameter measurements. Take additional field parameter measurements every ¼ well volume until purging requirements are satisfied.

Note: Three (3) consecutive readings within specified limits are to be obtained for sampling. Temperature: ± 0.2 °C; pH: ±0.2 standard units; Specific Conductance: ± 5.0% of reading; DO is no greater than 20% saturation at field measured temperature; and Turbidity \leq 20 NTUs

If DO or Turbidity measurements cannot meet the above requirements within 5 well volumes; Temp, pH, Conductivity ranges remain unchanged, however, DO and turbidity must meet the following: DO ± 0.2 mg/L or 10%, whichever is greater; and Turbidity ± 5 NTUs or 10%, whichever is greater

For high turbidity and DO, check flow through cell for air bubbles, which may be causing erroneous readings. Turbidity should be verified visually and with a separate Turbidity meter (if available). All attempts should be made to get the parameters within the specified limits. Check water quality meter calibration before using again.

Sample ID: 393-LOX-TW0013T-619.5-904905Time Collected: 1508 Comments: VOC_5 When using 3/16-in. ID tubing EV= ((0.041) (0.035x tubing length))+(flow thru vol.)= _____ gal When using $\frac{1}{4}$ -in. ID tubing EV=(0.0026xtubing length)+(flow thru vol.)= $\frac{0.27}{10}$ gal $\frac{1}{10}$ ga

APPENDIX B LABORATORY ANALYTICAL DATA

11/03/14

Technical Report for

Geosyntec Consultants

LC-39B, KSC, FL

FR1352C

Accutest Job Number: FA19358

Sampling Date: 10/22/14

Report to:

Geosyntec Consultants 6770 South Washington Ave Suite 3

Titusville, FL 32780

RDaprato@Geosyntec.com; Elawson@GeoSyntec.com

ATTN: Rebecca Daprato

Total number of pages in report: 111

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Andrea Colby 407-425-6700

Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL002), SC (96038001) DoD ELAP (L-A-B L2229), CA (04226CA), TX (T104704404), PA (68-03573), VA (460177),

AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary 4	4
Section 3: Summary of Hits	6
Section 4: Sample Results	
4.1: FA19358-1: 39B-LOX-TA0004I-030.0-20141022	3
4.2: FA19358-2: 39B-LOX-TA0004S-013.0-20141022	10
4.3: FA19358-3: 39B-LOX-IW0012I-025.5-20141022	12
4.4: FA19358-4: 39B-LOX-IW0012S-009.5-20141022	14
4.5: FA19358-4F: 39B-LOX-IW0012S-009.5-20141022	17
4.6: FA19358-5: 39B-LOX-TA0003S-013.0-20141022	18
4.7: FA19358-6: 39B-LOX-TA0003I-030.0-20141022	20
Section 5: Misc. Forms	22
5.1: Chain of Custody	23
Section 6: GC/MS Volatiles - QC Data Summaries	26
6.1: Method Blank Summary	27
6.2: Blank Spike Summary	31
6.3: Matrix Spike/Matrix Spike Duplicate Summary	35
6.4: Instrument Performance Checks (BFB)	39
6.5: Internal Standard Area Summaries	44
6.6: Surrogate Recovery Summaries	47
6.7: Initial and Continuing Calibration Summaries	
Section 7: Misc. Forms (Accutest New Jersey)	77
7.1: Chain of Custody	
Section 8: Metals Analysis - QC Data (Accutest New Jersey)	81
8.1: Inst QC MA35299: Al	32

S

Sample Summary

Job No:

FA19358

Geosyntec Consultants

LC-39B, KSC, FL Project No: FR1352C

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA19358-1	10/22/14	09:57 MB	10/24/14	AQ	Ground Water	39B-LOX-TA0004I-030.0- 20141022
FA19358-2	10/22/14	10:43 MB	10/24/14	AQ	Ground Water	39B-LOX-TA0004S-013.0- 20141022
FA19358-3	10/22/14	12:36 MB	10/24/14	AQ	Ground Water	39B-LOX-IW0012I-025.5- 20141022
FA19358-4	10/22/14	13:23 MB	10/24/14	AQ	Ground Water	39B-LOX-IW0012S-009.5- 20141022
FA19358-4F	10/22/14	13:23 MB	10/24/14	AQ	Groundwater Filtered	39B-LOX-IW0012S-009.5- 20141022
FA19358-5	10/22/14	15:34 MB	10/24/14	AQ	Ground Water	39B-LOX-TA0003S-013.0- 20141022
FA19358-6	10/22/14	17:08 MB	10/24/14	AQ	Ground Water	39B-LOX-TA0003I-030.0- 20141022

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Geosyntec Consultants Job No: FA19358

Site: LC-39B, KSC, FL Report Date: 11/3/2014 3:39:03 PM

6 Sample(s) were collected on 10/22/2014 and were received at Accutest SE on 10/24/2014 properly preserved, at 2.8 Deg. C and intact. These Samples received an Accutest job number of FA19358. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ Batch ID: VN3547

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA19534-17MS, FA19534-17MSD were used as the QC samples indicated.

Matrix Spike/Matrix Spike Duplicate Recovery(s) for Tetrachloroethylene are outside control limits. Outside control limits due to high level in sample relative to spike amount. For method performance in a clean matrix, refer to Blank Spike. % RPD was within control limits in MS/MSD.

RPD(s) for MSD for Acetone are outside control limits for sample FA19534-17MSD. Probable cause is due to sample non-homogeneity.

Matrix: AQ Batch ID: VN3549

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA19358-5MS, FA19358-5MSD were used as the QC samples indicated.

Blank Spike Recovery(s) for 2-Hexanone, Acetone are outside control limits. Recoveries above upper control limits, but samples were ND for 2-Hexanone, Acetone. Data integrity not adversely affected.

Matrix Spike Recovery(s) for cis-1,2-Dichloroethylene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike.

FA19358-6 for Acetone: Associated BS recovery outside control limits.

FA19358-6 for 2-Hexanone: Associated BS recovery outside control limits.

Metals By Method SW846 6020A

Matrix: AO Batch ID: N: MP82882

FA19358-4 for Aluminum: Analysis performed at Accutest Laboratories, Dayton, NJ. FA19358-4F for Aluminum: Analysis performed at Accutest Laboratories, Dayton, NJ.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:	
	Date: November 3, 2014
Kim Benham, Client Services (signature on file)	

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Accutest Laboratories Southeast, Inc. Job No FA19358

Site: GSYNFLTI: LC-39B, KSC, FL Report Date 11/3/2014 11:47:54 A

On 10/29/2014, 1 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 1.6 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of FA19358 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6020A

Matrix: AQ Batch ID: MP82882

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB80352-2MS, JB80352-2MSD, JB80352-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Aluminum are outside control limits for sample MP82882-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Summary of Hits Job Number: FA19358

Account: Geosyntec Consultants **Project:** LC-39B, KSC, FL

Collected: 10/22/14

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method
FA19358-1	39B-LOX-TA0004	I-030.0-2014102	22			
1,1-Dichloroethy cis-1,2-Dichloroe trans-1,2-Dichlor Trichloroethylene Vinyl chloride	ethylene roethylene	0.44 I 77.8 11.1 38.2 1.6	1.0 2.5 1.0 1.0	0.25 0.82 0.34 0.30 0.33	ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
FA19358-2	39B-LOX-TA0004	S-013.0-201410	22			
cis-1,2-Dichloroe trans-1,2-Dichlor Toluene Vinyl chloride	roethylene	1.7 1.5 0.24 I 78.1	1.0 1.0 1.0 1.0	0.33 0.34 0.20 0.33	ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B
FA19358-3	39B-LOX-IW0012	ZI-025.5-2014102	22			
No hits reported	in this sample.					
FA19358-4	39B-LOX-IW0012	S-009.5-201410	22			
Aluminum ^a		3920	250	16	ug/l	SW846 6020A
FA19358-4F	39B-LOX-IW0012	S-009.5-201410	22			
Aluminum a		3840	50	3.2	ug/l	SW846 6020A
FA19358-5	39B-LOX-TA0003	S-013.0-201410	22			
1,1-Dichloroethy cis-1,2-Dichloroe trans-1,2-Dichlor Toluene Trichloroethylene Vinyl chloride	ethylene coethylene	0.98 I 222 24.6 0.21 I 16.8 195	1.0 5.0 1.0 1.0 1.0 5.0	0.25 1.6 0.34 0.20 0.30 1.6	ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
FA19358-6	39B-LOX-TA0003	3I-030.0-2014102	22			
cis-1,2-Dichloroe trans-1,2-Dichlor Toluene Trichloroethylene Vinyl chloride	roethylene	5.8 0.95 I 1.5 2.3 6.2	1.0 1.0 1.0 1.0 1.0	0.33 0.34 0.20 0.30 0.33	ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
(a) Analysis perfo	ormed at Accutest La	aporatories, Day	uon, NJ.			

Sample Results		
Report of Analysis		

Report of Analysis

Client Sample ID: 39B-LOX-TA0004I-030.0-20141022

 Lab Sample ID:
 FA19358-1
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	N0080528.D	1	10/31/14	RB	n/a	n/a	VN3547
Run #2	N0080575.D	2.5	11/02/14	RB	n/a	n/a	VN3549

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.44	1.0	0.25	ug/l	I
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	77.8 a	2.5	0.82	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	11.1	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.20 U	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	38.2	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value V = Indicates analyte found in associated method blank$

Report of Analysis

Client Sample ID: 39B-LOX-TA0004I-030.0-20141022

 Lab Sample ID:
 FA19358-1
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	1.6 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	104% 92% 90% 97%	101% 103% 98% 101%	79-1 85-1	18% 25% 12% 18%	

(a) Result is from Run# 2

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: 39B-LOX-TA0004S-013.0-20141022

 Lab Sample ID:
 FA19358-2
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N0080529.D 1 10/31/14 RB n/a n/a VN3547

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	1.7	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	1.5	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	_
108-88-3	Toluene	0.24	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	0.30 U	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: 39B-LOX-TA0004S-013.0-20141022

 Lab Sample ID:
 FA19358-2
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	78.1 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	102%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	92%		79-1	25%	
2037-26-5	Toluene-D8	90%		85-1	12%	
460-00-4	4-Bromofluorobenzene	97%		83-1	18%	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value \ V = Indicates analyte found in associated method blank$

Report of Analysis

Client Sample ID: 39B-LOX-IW0012I-025.5-20141022

 Lab Sample ID:
 FA19358-3
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	N0080530.D	1	10/31/14	RB	n/a	n/a	VN3547
Run #2							

Purge Volume Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.33 U	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.34 U	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.20 U	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	0.30 U	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

 $PQL = \ Practical \ Quantitation \ Limit$

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-IW0012I-025.5-20141022

 Lab Sample ID:
 FA19358-3
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.33 U 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 98% 88% 96%		79-1 85-1	18% 25% 12% 18%	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value \ V = Indicates analyte found in associated method blank$

4

Report of Analysis

Client Sample ID: 39B-LOX-IW0012S-009.5-20141022

 Lab Sample ID:
 FA19358-4
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 N0080531.D 1 10/31/14 RB n/a n/a VN3547

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.33 U	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.34 U	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.20 U	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	0.30 U	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

 $PQL = \ Practical \ Quantitation \ Limit$

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: 39B-LOX-IW0012S-009.5-20141022

 Lab Sample ID:
 FA19358-4
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	0.33 U 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	105%		83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	96%		79-1	25%	
2037-26-5	Toluene-D8	89%		85-1	12%	
460-00-4	4-Bromofluorobenzene	96%		83-1	18%	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value \ V = Indicates analyte found in associated method blank$

4

Report of Analysis

Client Sample ID: 39B-LOX-IW0012S-009.5-20141022

Lab Sample ID:FA19358-4Date Sampled:10/22/14Matrix:AQ - Ground WaterDate Received:10/24/14Percent Solids:n/a

Project: LC-39B, KSC, FL

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum ^a	3920	250	16	ug/l	10	10/30/14	10/31/14 ANJ	SW846 6020A ¹	SW846 3010A ²

(1) Instrument QC Batch: N:MA35299(2) Prep QC Batch: N:MP82882

(a) Analysis performed at Accutest Laboratories, Dayton, NJ.

PQL = Practical Quantitation Limit MDL = Method Detection Limit U = Indicates a result < MDL

I = Indicates a result > = MDL but < PQL

Report of Analysis

Client Sample ID: 39B-LOX-IW0012S-009.5-20141022

Lab Sample ID:FA19358-4FDate Sampled:10/22/14Matrix:AQ - Groundwater FilteredDate Received:10/24/14Percent Solids:n/a

Project: LC-39B, KSC, FL

Dissolved Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum ^a	3840	50	3.2	ug/l	2	10/30/14	10/31/14 ANJ	SW846 6020A ¹	SW846 3010A ²

(1) Instrument QC Batch: N:MA35299(2) Prep QC Batch: N:MP82882

(a) Analysis performed at Accutest Laboratories, Dayton, NJ.

PQL = Practical Quantitation Limit MDL = Method Detection Limit U = Indicates a result < MDL

I = Indicates a result > = MDL but < PQL

Report of Analysis

Client Sample ID: 39B-LOX-TA0003S-013.0-20141022

Lab Sample ID: FA19358-5 **Date Sampled:** 10/22/14 Matrix: AQ - Ground Water **Date Received:** 10/24/14 Method: SW846 8260B Percent Solids: n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	N0080532.D	1	10/31/14	RB	n/a	n/a	VN3547
Run #2	N0080576.D	5	11/02/14	RB	n/a	n/a	VN3549

	Purge Volume	
Run #1	5.0 ml	
Run #2	5.0 ml	

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.98	1.0	0.25	ug/l	I
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	222 a	5.0	1.6	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	24.6	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.21	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	16.8	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated valueV = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-TA0003S-013.0-20141022

 Lab Sample ID:
 FA19358-5
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	195 ^a 0.66 U	5.0 3.0	1.6 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 93% 90% 95%	102% 104% 97% 102%	79-1 85-1	18% 25% 12% 18%	

(a) Result is from Run# 2

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-TA0003I-030.0-20141022

 Lab Sample ID:
 FA19358-6
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1N0080573.D111/02/14RBn/an/aVN3549

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone ^a	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	5.8	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.95	1.0	0.34	ug/l	I
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone ^a	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	1.5	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	2.3	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-TA0003I-030.0-20141022

 Lab Sample ID:
 FA19358-6
 Date Sampled:
 10/22/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/24/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	6.2 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 102% 98% 100%		79-1 85-1	18% 25% 12% 18%	

(a) Associated BS recovery outside control limits.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Misc.	Forms			

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

15
۲.
_

U

	Chair 05 Vineland Ro TEL. 407-425	n of Coad, Suite C-15	ust(Orlan X: 407-4	do, Fl	7 32811		ast	A	ccutest	JOB	# e#	16	13	3.5 ISKIF	PA	3 IGE_	OF	-
Client / Reporting Information		www.accutest.coject Information	om	,	eri i destruire	· //	·		AL	סב/צ	14-6	10		rmetion		Section 1 April 1 April		
Company Name Generater Consultants	Project Name:	LC39]	?		with a season			T				Arrany	ucai iric	ALLVEROOU	' '	Z	Matrix Codes	
Address 6770 South Washington	Street	2001						\dashv	a 73.]		- 1	1			ı	DW - Drinking Water GW - Ground Water WW - Water	
city Titaville State F/ zip32780	City KS	C:		St	ate	- /		_						i		ŀ	SW - Surface Water SO - Soil	
Project Contact Reserve Dagrato E-mail Blaggato Georgetes, com		RISTAC				<u></u>		\dashv	48.3		l						SL - Sludge OI - Off	
Phone# 321-795-1307	Fax #	7113720		-				\dashv	30.00								LIQ - Other Liquid	
Sampler(s) Name(s) (Printed) Mike Burcham	Client Purchase C	Order #						-	7787	}	- 1		i				SOL - Other Solid WP - Wipe	
	COLLECTION	T	CONT	AINER INFO	PRACTION		9 .	≓ .	7		1	-		1 1			VII - VII-	
Accutest Field ID / Point of Collection	SAMPI	LED TOTA	T# R		¥ 8	7052	WATER	5	칠속									
DATE DATE	TIME BY	MATRIX BOTT	ES 5	<u> </u>	¥ ¥	罩.	9 ≴	-	-	\sqcup							LAB USE ONLY	
	14 0157 ME	- - - - - - - - - - 	\Box	_X	Н.	\sqcup	<u> </u>	<u> </u>	_	\sqcup	_							
2 12 LUI-1400-14 - 013/0-2014 1933 10/20	14 1043 191		\dashv	3	Ш	Ш		13						$oldsymbol{ol}}}}}}}}}}}}}}}}}}$				
	W 1236 MB	1 6W 3	Ш	3		Ш		ق ا	<u> </u>	$oxed{oxed}$								
	M 1323 MB	· 6W 5		13	1			3	12									
5 398-LOK-TA00035-013.0-20141022 10/22	14 1534 ME	3 6W 3		3	П	П		1 3	; [-									
	M 708 /43	3 GW 3		3		П		7					1				-	
			\dashv	Ť	\top	H	_	H۳	+		\neg		+-					
			++		\vdash	T	+	H	+	-	_	_	+	+	-	+	h	
	 		$\dashv \dashv$	+	H	H	_	\vdash	+-	Н	-+	-	+	\vdash	 		 	
K T	+		$\dashv \dashv$	+	H	H	+	+	+	\vdash		_	+	1-1	-	+	 	
			+	┿	 	Н	+	+	-	\vdash	\dashv		+-	\vdash		_		
		+-+	\dashv	+		₩	+	⊬	-	\vdash			-	1				
TURNAROUND TIME (Business Days)	Digital Transform		Data De	المحدد					LOS DAVISORS	200	100 (1.7 Jan)	N. Lagharia Sangara	THE STREET		ents / Re			
Approved By: / Rush Code		COMMERCIAL				lauon			-en `idos (i.e.	DAR	Sam	de la					te suffix	
10 Days Standard 7 Day RUSH		1			•							201410;						
5 Day RUSH		COMMERCIAL	•	ULIS P	LUS QC	(ن												
3 Day EMERGENCY		REDT1 (EPA LE	VEL 3)															
2 Day EMERGENCY		FULT1 (EPA LE	VEL 4)															
1 Day EMERGENCY		EDD'S								l							ļ	
OTHER													******					
Emergency or Rush T/A Data Available VIA Email or Lablink	15																	
Sample Custody must be docur Relinguished by Sampler: Date Time: Re	eceived By:		change p 0-23-1		ion, incli Reji n qui			deliver	ν			Date Ti	me:	Rec	eive	3v./ /	10.24-14 800	
1/1/2 10/12/14/1920 2	James L	low "	1035	3	/ 1		Il	or.	۸		10-1	13-14			M	מאונו		
Relinquished by: Date Time: Re	celved By:			F	Rélinqui	shed	by:	4				Date Ti			eived E	Зу:		
S 6	5			7										8		A (*		
Lab Use Only: Custody Seal in Place: Y N Temp Blank	Provided: Y	N Preserve	d where	Appli	cable:	Υ !	v To	tal # c	of Cooler	s:	Coo	ler Temp	erature	(s) Ce	lsius:_	2.8		

FA19358: Chain of Custody Page 1 of 3

5
•
_

u.	•	
_	_	

	Geosyntec PROJECT: LC39B
DATE/TIME RECEIVED: <u>10-24-14 800</u> {mm/dd/yy	24:00} NUMBER OF COOLERS RECEIVED:
METHOD OF DELIVERY: FEDEX UPS ACCUTE	ST COURIER GREYHOUND DELIVERY OTHER
AIRBILL NUMBERS:	
COOLER INFORMATION	TEMPERATURE INFORMATION
CUSTODY SEAL NOT PRESENT OR NOT INTACT	IR THERM ID CORR. FACTOR +0.4
CHAIN OF CUSTODY NOT RECEIVED (COC)	OBSERVED TEMPS: 24
ANALYSIS REQUESTED IS UNCLEAR OR MISSING	CORRECTED TEMPS: 2.8
SAMPLE DATES OR TIMES UNCLEAR OR MISSING	SAMPLE INFORMATION
TEMPERATURE CRITERIA NOT MET	INCORRECT NUMBER OF CONTAINERS USED
	SAMPLE RECEIVED IMPROPERLY PRESERVED
TRIP BLANK INFORMATION	INSUFFICIENT VOLUME FOR ANALYSIS
TRIP BLANK PROVIDED	DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
TRIP BLANK NOT PROVIDED	ID'S ON COC DO NOT MATCH LABEL
TRIP BLANK NOT ON COC	VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
TRIP BLANK INTACT	BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
TRIP BLANK NOT INTACT	NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
RECEIVED WATER TRIP BLANK 2	UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS
RECEIVED SOIL TRIP BLANK	SAMPLE CONTAINER(S) RECEIVED BROKEN
	5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
MISC. INFORMATION	BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
UMBER OF ENCORES ? 25-GRAM 5-GRAM	% SOLIDS JAR NOT RECEIVED
UMBER OF 5035 FIELD KITS ?	RESIDUAL CHLORINE PRESENT
UMBER OF LAB FILTERED METALS ?	{APPICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS}
	· · · · · · · · · · · · · · · · · · ·
JMMARY OF COMMENTS:	
71-1	
1,11,10-74-14	
CCHNICIAN SIGNATURE/DATE	EVIEWER SIGNATURE/DATE WITH 10/24/14

FA19358: Chain of Custody

Page 2 of 3

Job Change Order: FA19358_10/24/2014

Requested Date: 10/24/2014 Received Date: 10/24/2014 Account Name: Geosyntec Consultants Due Date: 10/31/2014 LC-39B, KSC, FL Deliverable: REDT1 Project CSR: AC TAT (Days): 7

 Sample #:
 Change:
 Please change sample ID to 39B-LOX-IW0012I-025.5-20141022.

39B-LOX-TA0012I-025.5-20141022

 Sample #:
 Change:
 Please change sample ID to 39B-LOX-IW0012S-009.5-20141022.

Above Changes Per: Mike Burcham Date: 10/24/2014 FA19358: Chain of Custody Page 3 of 3

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Page 1 of 1

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample VN3547-MB	File ID N0080526.D	DF 1	Analyzed 10/31/14	By RB	Prep Date n/a	Prep Batch n/a	Analytical Batch VN3547

The QC reported here applies to the following samples:

FA19358-1, FA19358-2, FA19358-3, FA19358-4, FA19358-5

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	25	11	ug/l
71-43-2	Benzene	ND	1.0	0.24	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.26	ug/l
75-25-2	Bromoform	ND	1.0	0.38	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l
75-00-3	Chloroethane	ND	2.0	0.50	ug/l
67-66-3	Chloroform	ND	1.0	0.31	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.20	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.40	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.25	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.24	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.36	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.36	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.34	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.28	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.54	ug/l
74-87-3	Methyl chloride	ND	2.0	0.53	ug/l
75-09-2	Methylene chloride	ND	5.0	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	5.0	1.5	ug/l
100-42-5	Styrene	ND	1.0	0.23	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.34	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.27	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.32	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.26	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.66	ug/l

Method: SW846 8260B

Method Blank Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample	File ID	DF	Analyzed 10/31/14	By	Prep Date	Prep Batch	Analytical Batch
VN3547-MB	N0080526.D	1		RB	n/a	n/a	VN3547

The QC reported here applies to the following samples:

FA19358-1, FA19358-2, FA19358-3, FA19358-4, FA19358-5

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	103%	83-118%
17060-07-0	1,2-Dichloroethane-D4	94%	79-125%
2037-26-5	Toluene-D8	90%	85-112%
460-00-4	4-Bromofluorobenzene	96%	83-118%

Method: SW846 8260B

Method Blank Summary Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VN3549-MB	File ID N0080572.D	DF 1	Analyzed 11/02/14	By RB	Prep Date n/a	Prep Batch n/a	Analytical Batch VN3549

The QC reported here applies to the following samples:

FA19358-1, FA19358-5, FA19358-6

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	25	11	ug/l
71-43-2	Benzene	ND	1.0	0.24	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.26	ug/l
75-25-2	Bromoform	ND	1.0	0.38	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l
75-00-3	Chloroethane	ND	2.0	0.50	ug/l
67-66-3	Chloroform	ND	1.0	0.31	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.20	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.40	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.25	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.24	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.36	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.36	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.34	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.28	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.54	ug/l
74-87-3	Methyl chloride	ND	2.0	0.53	ug/l
75-09-2	Methylene chloride	ND	5.0	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	5.0	1.5	ug/l
100-42-5	Styrene	ND	1.0	0.23	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.34	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.27	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.32	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.26	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.66	ug/l

Method: SW846 8260B

Method Blank Summary Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VN3549-MB	File ID N0080572.D	DF 1	Analyzed 11/02/14	By RB	Prep Date n/a	Prep Batch n/a	Analytical Batch VN3549

The QC reported here applies to the following samples:

FA19358-1, FA19358-5, FA19358-6

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	98%	85-112%
460-00-4	4-Bromofluorobenzene	103%	83-118%

Method: SW846 8260B

Blank Spike Summary Job Number: FA19358

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VN3547-BS	N0080524.D	1	10/31/14	RB	n/a	n/a	VN3547

The QC reported here applies to the following samples:

FA19358-1, FA19358-2, FA19358-3, FA19358-4, FA19358-5

CAS No.	Commound	Spike	BSP	BSP %	Limits
CAS No.	Compound	ug/l	ug/l	70	Lillits
67-64-1	Acetone	125	125	100	50-147
71-43-2	Benzene	25	28.2	113	81-122
75-27-4	Bromodichloromethane	25	24.5	98	79-123
75-25-2	Bromoform	25	23.0	92	66-123
108-90-7	Chlorobenzene	25	30.1	120	82-124
75-00-3	Chloroethane	25	27.5	110	62-144
67-66-3	Chloroform	25	26.2	105	80-124
75-15-0	Carbon disulfide	25	33.1	132	66-148
56-23-5	Carbon tetrachloride	25	27.2	109	76-136
75-34-3	1,1-Dichloroethane	25	28.5	114	81-122
75-35-4	1,1-Dichloroethylene	25	29.8	119	78-137
107-06-2	1,2-Dichloroethane	25	25.0	100	75-125
78-87-5	1,2-Dichloropropane	25	27.2	109	76-124
124-48-1	Dibromochloromethane	25	24.6	98	78-122
156-59-2	cis-1,2-Dichloroethylene	25	26.4	106	78-120
10061-01-5	cis-1,3-Dichloropropene	25	24.9	100	75-118
156-60-5	trans-1,2-Dichloroethylene	25	27.8	111	76-127
10061-02-6	trans-1,3-Dichloropropene	25	25.1	100	80-120
100-41-4	Ethylbenzene	25	27.2	109	81-121
591-78-6	2-Hexanone	125	118	94	61-129
108-10-1	4-Methyl-2-pentanone	125	116	93	66-122
74-83-9	Methyl bromide	25	25.9	104	59-143
74-87-3	Methyl chloride	25	28.6	114	50-159
75-09-2	Methylene chloride	25	25.8	103	69-135
78-93-3	Methyl ethyl ketone	125	113	90	56-143
100-42-5	Styrene	25	26.9	108	78-119
71-55-6	1,1,1-Trichloroethane	25	27.3	109	75-130
79-34-5	1,1,2,2-Tetrachloroethane	25	27.3	109	72-120
79-00-5	1,1,2-Trichloroethane	25	26.1	104	76-119
127-18-4	Tetrachloroethylene	25	24.7	99	76-135
108-88-3	Toluene	25	27.2	109	80-120
79-01-6	Trichloroethylene	25	29.1	116	81-126
75-01-4	Vinyl chloride	25	29.5	118	69-159
1330-20-7	Xylene (total)	75	84.6	113	80-126

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike Summary Job Number: FA19358

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VN3547-BS	File ID N0080524.D	DF 1	Analyzed 10/31/14	By RB	Prep Date n/a	Prep Batch n/a	Analytical Batch VN3547

The QC reported here applies to the following samples:

FA19358-1, FA19358-2, FA19358-3, FA19358-4, FA19358-5

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	100%	83-118%
17060-07-0	1,2-Dichloroethane-D4	87%	79-125%
2037-26-5	Toluene-D8	91%	85-112%
460-00-4	4-Bromofluorobenzene	94%	83-118%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike Summary Job Number: FA19358

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VN3549-BS	File ID N0080570.D	DF 1	Analyzed 11/02/14	By RB	Prep Date n/a	Prep Batch n/a	Analytical Batch VN3549

The QC reported here applies to the following samples:

FA19358-1, FA19358-5, FA19358-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	200	160*	50-147
71-43-2	Benzene	25	26.9	108	81-122
75-27-4	Bromodichloromethane	25	25.8	103	79-123
75-25-2	Bromoform	25	23.1	92	66-123
108-90-7	Chlorobenzene	25	28.7	115	82-124
75-00-3	Chloroethane	25	30.5	122	62-144
67-66-3	Chloroform	25	26.5	106	80-124
75-15-0	Carbon disulfide	25	31.3	125	66-148
56-23-5	Carbon tetrachloride	25	26.5	106	76-136
75-34-3	1,1-Dichloroethane	25	26.3	105	81-122
75-35-4	1,1-Dichloroethylene	25	30.1	120	78-137
107-06-2	1,2-Dichloroethane	25	26.0	104	75-125
78-87-5	1,2-Dichloropropane	25	26.3	105	76-124
124-48-1	Dibromochloromethane	25	25.0	100	78-122
156-59-2	cis-1,2-Dichloroethylene	25	26.8	107	78-120
10061-01-5	cis-1,3-Dichloropropene	25	22.7	91	75-118
156-60-5	trans-1,2-Dichloroethylene	25	28.4	114	76-127
10061-02-6	trans-1,3-Dichloropropene	25	25.9	104	80-120
100-41-4	Ethylbenzene	25	27.6	110	81-121
591-78-6	2-Hexanone	125	164	131*	61-129
108-10-1	4-Methyl-2-pentanone	125	140	112	66-122
74-83-9	Methyl bromide	25	29.7	119	59-143
74-87-3	Methyl chloride	25	24.2	97	50-159
75-09-2	Methylene chloride	25	27.6	110	69-135
78-93-3	Methyl ethyl ketone	125	155	124	56-143
100-42-5	Styrene	25	24.6	98	78-119
71-55-6	1, 1, 1-Trichloroethane	25	26.5	106	75-130
79-34-5	1,1,2,2-Tetrachloroethane	25	24.6	98	72-120
79-00-5	1,1,2-Trichloroethane	25	25.6	102	76-119
127-18-4	Tetrachloroethylene	25	27.5	110	76-135
108-88-3	Toluene	25	26.9	108	80-120
79-01-6	Trichloroethylene	25	28.1	112	81-126
75-01-4	Vinyl chloride	25	25.5	102	69-159
1330-20-7	Xylene (total)	75	87.4	117	80-126

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike Summary Job Number: FA19358

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VN3549-BS	File ID N0080570.D	DF 1	Analyzed 11/02/14	By RB	Prep Date n/a	Prep Batch n/a	Analytical Batch VN3549

The QC reported here applies to the following samples:

FA19358-1, FA19358-5, FA19358-6

CAS No.	Surrogate Recoveries	BSP	Limits	
1868-53-7	Dibromofluoromethane	99%	83-118%	
17060-07-0	1,2-Dichloroethane-D4	98%	79-125%	
2037-26-5	Toluene-D8	102%	85-112%	
460-00-4	4-Bromofluorobenzene	100%	83-118%	

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19358

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
FA19534-17MS	N0080543.D	10	10/31/14	RB	n/a	n/a	VN3547
FA19534-17MSD	N0080544.D	10	10/31/14	RB	n/a	n/a	VN3547
FA19534-17 a	N0080535.D	1	10/31/14	RB	n/a	n/a	VN3547
FA19534-17 ^a	N0080536.D	10	10/31/14	RB	n/a	n/a	VN3547

The QC reported here applies to the following samples:

FA19358-1, FA19358-2, FA19358-3, FA19358-4, FA19358-5

		FA195	34-17	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
67.64.1		ND		1250	1010	07	1050	0.42	7.5	25*	50 147/01
67-64-1	Acetone	ND		1250	1210	97	1250	942	75	25*	50-147/21
71-43-2	Benzene	ND		250	270	108	250	258	103	5	81-122/14
75-27-4	Bromodichloromethane	ND		250	238	95	250	233	93	2	79-123/19
75-25-2	Bromoform	ND		250	218	87	250	209	84	4	66-123/21
108-90-7	Chlorobenzene	ND		250	284	114	250	278	111	2	82-124/14
75-00-3	Chloroethane	ND		250	254	102	250	217	87	16	62-144/20
67-66-3	Chloroform	ND		250	248	99	250	235	94	5	80-124/15
75-15-0	Carbon disulfide	ND		250	337	135	250	349	140	3	66-148/23
56-23-5	Carbon tetrachloride	ND		250	248	99	250	237	95	5	76-136/23
75-34-3	1,1-Dichloroethane	ND		250	267	107	250	252	101	6	81-122/15
75-35-4	1,1-Dichloroethylene	2.2		250	274	109	250	258	102	6	78-137/18
107-06-2	1,2-Dichloroethane	ND		250	241	96	250	238	95	1	75-125/14
78-87-5	1,2-Dichloropropane	ND		250	251	100	250	250	100	0	76-124/14
124-48-1	Dibromochloromethane	ND		250	232	93	250	231	92	0	78-122/19
156-59-2	cis-1,2-Dichloroethylene	92.2		250	317	90	250	304	85	4	78-120/15
10061-01-5	·	ND		250	228	91	250	233	93	2	75-118/23
156-60-5	trans-1,2-Dichloroethylene	0.59	J	250	263	105	250	246	98	7	76-127/17
10061-02-6	trans-1,3-Dichloropropene	ND		250	229	92	250	232	93	1	80-120/22
100-41-4	Ethylbenzene	ND		250	256	102	250	248	99	3	81-121/14
591-78-6	2-Hexanone	ND		1250	1120	90	1250	1080	86	4	61-129/18
108-10-1	4-Methyl-2-pentanone	ND		1250	1110	89	1250	1110	89	0	66-122/16
74-83-9	Methyl bromide	ND		250	256	102	250	238	95	7	59-143/19
74-87-3	Methyl chloride	ND		250	280	112	250	271	108	3	50-159/19
75-09-2	Methylene chloride	ND		250	248	99	250	237	95	5	69-135/16
78-93-3	Methyl ethyl ketone	ND		1250	1080	86	1250	1020	82	6	56-143/18
100-42-5	Styrene	ND		250	247	99	250	243	97	2	78-119/23
71-55-6	1,1,1-Trichloroethane	ND		250	255	102	250	239	96	6	75-130/16
79-34-5	1,1,2,2-Tetrachloroethane	ND		250	259	104	250	264	106	2	72-120/14
79-00-5	1,1,2-Trichloroethane	ND		250	252	101	250	251	100	0	76-119/14
127-18-4	Tetrachloroethylene	727 ^c		250	803	30* b	250	756	12* b	6	76-135/16
108-88-3	Toluene	ND		250	254	102	250	247	99	3	80-120/14
79-01-6	Trichloroethylene	159 c		250	403	98	250	386	91	4	81-126/15
75-01-4	Vinyl chloride	ND		250	277	111	250	262	105	6	69-159/18
1330-20-7	Xylene (total)	ND		750	789	105	750	765	102	3	80-126/15

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
FA19534-17MS	N0080543.D	10	10/31/14	RB	n/a	n/a	VN3547
FA19534-17MSD	N0080544.D	10	10/31/14	RB	n/a	n/a	VN3547
FA19534-17 a	N0080535.D	1	10/31/14	RB	n/a	n/a	VN3547
FA19534-17 ^a	N0080536.D	10	10/31/14	RB	n/a	n/a	VN3547

The QC reported here applies to the following samples:

FA19358-1, FA19358-2, FA19358-3, FA19358-4, FA19358-5

CAS No.	Surrogate Recoveries	MS	MSD	FA19534-17	FA19534-17	Limits
1868-53-7	Dibromofluoromethane	101%	100%	103%	104%	83-118%
17060-07-0	1,2-Dichloroethane-D4	89%	92%	93%	95%	79-125%
2037-26-5	Toluene-D8	91%	91%	89%	91%	85-112%
460-00-4	4-Bromofluorobenzene	91%	93%	98%	96%	83-118%

⁽a) Sample was not preserved to a pH < 2.

⁽b) Outside control limits due to high level in sample relative to spike amount.

⁽c) Result is from Run #2.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19358

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA19358-5MS	N0080589.D	5	11/03/14	RB	n/a	n/a	VN3549
FA19358-5MSD	N0080590.D	5	11/03/14	RB	n/a	n/a	VN3549
FA19358-5	N0080576.D	5	11/02/14	RB	n/a	n/a	VN3549

The QC reported here applies to the following samples:

FA19358-1, FA19358-5, FA19358-6

CAS No.	Compound	FA19358- ug/l	.5 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	130 U		625	439	70	625	455	73	4	50-147/21
71-43-2	Benzene	5.0 U		125	122	98	125	125	100	2	81-122/14
75-27-4	Bromodichloromethane	5.0 U		125	120	96	125	121	97	1	79-123/19
75-25-2	Bromoform	5.0 U		125	98.9	79	125	100	80	1	66-123/21
108-90-7	Chlorobenzene	5.0 U		125	131	105	125	131	105	0	82-124/14
75-00-3	Chloroethane	10 U		125	142	114	125	147	118	3	62-144/20
67-66-3	Chloroform	5.0 U		125	126	101	125	127	102	1	80-124/15
75-15-0	Carbon disulfide	10 U		125	139	111	125	140	112	1	66-148/23
56-23-5	Carbon tetrachloride	5.0 U		125	121	97	125	125	100	3	76-136/23
75-34-3	1,1-Dichloroethane	5.0 U		125	121	97	125	122	98	1	81-122/15
75-35-4	1,1-Dichloroethylene	5.0 U		125	132	106	125	137	110	4	78-137/18
107-06-2	1,2-Dichloroethane	5.0 U		125	124	99	125	125	100	1	75-125/14
78-87-5	1,2-Dichloropropane	5.0 U		125	116	93	125	119	95	3	76-124/14
124-48-1	Dibromochloromethane	5.0 U		125	109	87	125	110	88	1	78-122/19
156-59-2	cis-1,2-Dichloroethylene	222		125	315	74*	125	328	85	4	78-120/15
10061-01-5	cis-1,3-Dichloropropene	5.0 U		125	97.4	78	125	96.6	77	1	75-118/23
156-60-5	trans-1,2-Dichloroethylene	17.6		125	145	102	125	150	106	3	76-127/17
10061-02-6	trans-1,3-Dichloropropene	5.0 U		125	111	89	125	111	89	0	80-120/22
100-41-4	Ethylbenzene	5.0 U		125	124	99	125	125	100	1	81-121/14
591-78-6	2-Hexanone	50 U		625	580	93	625	602	96	4	61-129/18
108-10-1	4-Methyl-2-pentanone	25 U		625	635	102	625	657	105	3	66-122/16
74-83-9	Methyl bromide	10 U		125	136	109	125	133	106	2	59-143/19
74-87-3	Methyl chloride	10 U		125	130	104	125	121	97	7	50-159/19
75-09-2	Methylene chloride	25 U		125	128	102	125	129	103	1	69-135/16
78-93-3	Methyl ethyl ketone	25 U		625	520	83	625	542	87	4	56-143/18
100-42-5	Styrene	5.0 U		125	102	82	125	105	84	3	78-119/23
71-55-6	1,1,1-Trichloroethane	5.0 U		125	124	99	125	126	101	2	75-130/16
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U		125	116	93	125	118	94	2	72-120/14
79-00-5	1,1,2-Trichloroethane	5.0 U		125	116	93	125	117	94	1	76-119/14
127-18-4	Tetrachloroethylene	5.0 U		125	122	98	125	123	98	1	76-135/16
108-88-3	Toluene	5.0 U		125	119	95	125	120	96	1	80-120/14
79-01-6	Trichloroethylene	11.3		125	138	101	125	141	104	2	81-126/15
75-01-4	Vinyl chloride	195		125	281	69	125	293	78	4	69-159/18
1330-20-7	Xylene (total)	15 U		375	388	103	375	390	104	1	80-126/15

^{* =} Outside of Control Limits.

6.3.2

Page 2 of 2

Method: SW846 8260B

σ

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA19358-5MS	N0080589.D	5	11/03/14	RB	n/a	n/a	VN3549
FA19358-5MSD	N0080590.D	5	11/03/14	RB	n/a	n/a	VN3549
FA19358-5	N0080576.D	5	11/02/14	RB	n/a	n/a	VN3549

The QC reported here applies to the following samples:

FA19358-1, FA19358-5, FA19358-6

CAS No.	Surrogate Recoveries	MS	MSD	FA19358-5	Limits
1868-53-7	Dibromofluoromethane	103%	104%	102%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	103%	104%	79-125%
2037-26-5	Toluene-D8	99%	97%	97%	85-112%
460-00-4	4-Bromofluorobenzene	98%	99%	102%	83-118%

^{* =} Outside of Control Limits.

Instrument Performance Check (BFB)

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VN3528-BFB
 Injection Date:
 10/15/14

 Lab File ID:
 N0080068.D
 Injection Time:
 11:01

Instrument ID: GCMSN

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	24317	16.0	Pass
75	30.0 - 60.0% of mass 95	69885	45.9	Pass
95	Base peak, 100% relative abundance	152377	100.0	Pass
96	5.0 - 9.0% of mass 95	10396	6.82	Pass
173	Less than 2.0% of mass 174	0	0.00 (0.00) ^a Pass
174	50.0 - 100.0% of mass 95	134485	88.3	Pass
175	5.0 - 9.0% of mass 174	10509	6.90 (7.81) ^a Pass
176	95.0 - 101.0% of mass 174	131541	86.3 (97.8	Pass
177	5.0 - 9.0% of mass 176	9301	6.10 (7.07	Pass Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VN3528-IC3528	N0080069.D	10/15/14	11:34	00:33	Initial cal 1
VN3528-IC3528	N0080070.D	10/15/14	12:12	01:11	Initial cal 1
VN3528-IC3528	N0080071.D	10/15/14	12:48	01:47	Initial cal 2
VN3528-IC3528	N0080072.D	10/15/14	13:17	02:16	Initial cal 3
VN3528-ICC3528	N0080073.D	10/15/14	13:47	02:46	Initial cal 4
VN3528-IC3528	N0080074.D	10/15/14	14:16	03:15	Initial cal 5
VN3528-IC3528	N0080075.D	10/15/14	14:46	03:45	Initial cal 6
VN3528-ICV3528	N0080077.D	10/15/14	15:44	04:43	Initial cal verification 4
VN3528-ICV3528	N0080078.D	10/15/14	16:56	05:55	Initial cal verification 4

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VN3547-BFB
 Injection Date:
 10/31/14

 Lab File ID:
 N0080521.D
 Injection Time:
 06:43

Instrument ID: GCMSN

m/e	Ion Abundance Criteria	Raw Abundance	% Relati		Pass/Fail
50	15.0 - 40.0% of mass 95	22555	15.6		Pass
75	30.0 - 60.0% of mass 95	64957	44.9		Pass
95	Base peak, 100% relative abundance	144717	100.0		Pass
96	5.0 - 9.0% of mass 95	10627	7.34		Pass
173	Less than 2.0% of mass 174	0	0.00	$(0.00)^{a}$	Pass
174	50.0 - 100.0% of mass 95	131779	91.1		Pass
175	5.0 - 9.0% of mass 174	9439	6.52	(7.16) a	Pass
176	95.0 - 101.0% of mass 174	128931	89.1	(97.8) a	Pass
177	5.0 - 9.0% of mass 176	8452	5.84	(6.56) b	Pass

⁽a) Value is % of mass 174

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
VN3547-CC3528	N0080523.D	10/31/14	08:05	01:22	Continuing cal 4
VN3547-BS	N0080524.D	10/31/14	08:42	01:59	Blank Spike
VN3547-MB	N0080526.D	10/31/14	09:41	02:58	Method Blank
ZZZZZZ	N0080527.D	10/31/14	10:50	04:07	(unrelated sample)
FA19358-1	N0080528.D	10/31/14	11:19	04:36	39B-LOX-TA0004I-030.0-20141022
FA19358-2	N0080529.D	10/31/14	11:49	05:06	39B-LOX-TA0004S-013.0-20141022
FA19358-3	N0080530.D	10/31/14	12:18	05:35	39B-LOX-IW0012I-025.5-20141022
FA19358-4	N0080531.D	10/31/14	12:48	06:05	39B-LOX-IW0012S-009.5-20141022
FA19358-5	N0080532.D	10/31/14	13:15	06:32	39B-LOX-TA0003S-013.0-20141022
ZZZZZZ	N0080534.D	10/31/14	14:12	07:29	(unrelated sample)
FA19534-17	N0080535.D	10/31/14	14:52	08:09	(used for QC only; not part of job FA19358)
FA19534-17	N0080536.D	10/31/14	15:45	09:02	(used for QC only; not part of job FA19358)
ZZZZZZ	N0080537.D	10/31/14	16:14	09:31	(unrelated sample)
ZZZZZZ	N0080538.D	10/31/14	16:44	10:01	(unrelated sample)
ZZZZZZ	N0080539.D	10/31/14	17:13	10:30	(unrelated sample)
ZZZZZZ	N0080540.D	10/31/14	17:57	11:14	(unrelated sample)
ZZZZZZ	N0080541.D	10/31/14	18:27	11:44	(unrelated sample)
FA19534-17MS	N0080543.D	10/31/14	19:32	12:49	Matrix Spike
FA19534-17MSD	N0080544.D	10/31/14	20:01	13:18	Matrix Spike Duplicate

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VN3548-BFB
 Injection Date:
 11/01/14

 Lab File ID:
 N0080554.D
 Injection Time:
 16:39

Instrument ID: GCMSN

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	10112	19.4	Pass
75	30.0 - 60.0% of mass 95	23179	44.6	Pass
95	Base peak, 100% relative abundance	52005	100.0	Pass
96	5.0 - 9.0% of mass 95	3446	6.63	Pass
173	Less than 2.0% of mass 174	0	0.00 (0.00) a	Pass
174	50.0 - 100.0% of mass 95	49685	95.5	Pass
175	5.0 - 9.0% of mass 174	3720	7.15 (7.49) ^a	Pass
176	95.0 - 101.0% of mass 174	47851	92.0 (96.3) a	Pass
177	5.0 - 9.0% of mass 176	3245	6.24 (6.78) ^b	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VN3548-IC3548	N0080559.D	11/01/14	19:40	03:01	Initial cal 1
VN3548-IC3548	N0080560.D	11/01/14	20:09	03:30	Initial cal 2
VN3548-IC3548	N0080561.D	11/01/14	20:40	04:01	Initial cal 3
VN3548-ICC3548	N0080562.D	11/01/14	21:09	04:30	Initial cal 4
VN3548-IC3548	N0080563.D	11/01/14	21:39	05:00	Initial cal 5
VN3548-IC3548	N0080564.D	11/01/14	22:08	05:29	Initial cal 6
VN3548-ICV3548	N0080566.D	11/01/14	23:08	06:29	Initial cal verification 4

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VN3549-BFB
 Injection Date:
 11/02/14

 Lab File ID:
 N0080568.D
 Injection Time:
 15:08

Instrument ID: GCMSN

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	26421	19.2	Pass
75	30.0 - 60.0% of mass 95	61320	44.5	Pass
95	Base peak, 100% relative abundance	137696	100.0	Pass
96	5.0 - 9.0% of mass 95	9534	6.92	Pass
173	Less than 2.0% of mass 174	0	0.00 (0.00) a	Pass
174	50.0 - 100.0% of mass 95	130787	95.0	Pass
175	5.0 - 9.0% of mass 174	9783	7.10 (7.48) a	Pass
176	95.0 - 101.0% of mass 174	125117	90.9 (95.7) a	Pass
177	5.0 - 9.0% of mass 176	8546	6.21 (6.83) ^b	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VN3549-CC3548	N0080569.D	11/02/14	15:51	00:43	Continuing cal 4
VN3549-BS	N0080570.D	11/02/14	16:35	01:27	Blank Spike
VN3550-BS	N0080570.D	11/02/14	16:35	01:27	Blank Spike
OP53756-LB	N0080571.D	11/02/14	17:02	01:54	Leachate Blank
VN3549-MB	N0080572.D	11/02/14	17:31	02:23	Method Blank
FA19358-6	N0080573.D	11/02/14	18:11	03:03	39B-LOX-TA0003I-030.0-20141022
ZZZZZZ	N0080574.D	11/02/14	18:41	03:33	(unrelated sample)
FA19358-1	N0080575.D	11/02/14	19:10	04:02	39B-LOX-TA0004I-030.0-20141022
FA19358-5	N0080576.D	11/02/14	19:36	04:28	39B-LOX-TA0003S-013.0-20141022
ZZZZZZ	N0080577.D	11/02/14	20:04	04:56	(unrelated sample)
D63640-28	N0080578.D	11/02/14	20:33	05:25	(used for QC only; not part of job FA19358)
D63640-28DUP	N0080579.D	11/02/14	21:03	05:55	Duplicate
ZZZZZZ	N0080580.D	11/02/14	21:33	06:25	(unrelated sample)
ZZZZZZ	N0080581.D	11/02/14	22:01	06:53	(unrelated sample)
ZZZZZZ	N0080582.D	11/02/14	22:30	07:22	(unrelated sample)
ZZZZZZ	N0080583.D	11/02/14	23:00	07:52	(unrelated sample)
ZZZZZZ	N0080584.D	11/02/14	23:30	08:22	(unrelated sample)
ZZZZZZ	N0080585.D	11/02/14	23:59	08:51	(unrelated sample)
ZZZZZZ	N0080586.D	11/03/14	00:29	09:21	(unrelated sample)
ZZZZZZ	N0080587.D	11/03/14	00:59	09:51	(unrelated sample)
ZZZZZZ	N0080588.D	11/03/14	01:26	10:18	(unrelated sample)
FA19358-5MS	N0080589.D	11/03/14	01:56	10:48	Matrix Spike
FA19358-5MSD	N0080590.D	11/03/14	02:25	11:17	Matrix Spike Duplicate
D63640-28MS	N0080591.D	11/03/14	02:55	11:47	Matrix Spike

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VN3549-BFB
 Injection Date:
 11/02/14

 Lab File ID:
 N0080568.D
 Injection Time:
 15:08

Instrument ID: GCMSN

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
D63640-28MSD	N0080592.D	11/03/14	03:24	12:16	Matrix Spike Duplicate

Volatile Internal Standard Area Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Check Std:
 VN3547-CC3528
 Injection Date:
 10/31/14

 Lab File ID:
 N0080523.D
 Injection Time:
 08:05

Instrument ID: GCMSN **Method:** SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT
Initial Cal ^a	982366	7.56	783749	10.65	474504	13.02	97970	5.15
Check Std b	999570	7.56	853719	10.65	530322		82499	5.16
Upper Limit ^c Lower Limit ^d	1999140 499785	8.06 7.06	1707438 426860		1060644 265161		164998 41250	5.66 4.66
Lab	IS 1		IS 2		IS 3		IS 4	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT
VN3547-BS	1008066	7.56	837870	10.65	508004	13.02	86951	5.16
VN3547-MB	925878	7.56	766719	10.66		13.02	71665	5.17
ZZZZZZ	885777	7.56	721665	10.66	406291	13.02	57704	5.16
FA19358-1	904209	7.56	740194	10.66	395125	13.03	69895	5.18
FA19358-2	897230	7.56	724348	10.66	384718	13.02	71421	5.17
A19358-3	843583	7.56	707062	10.66	376119	13.02	101888	5.17
A19358-4	869725	7.56	701671	10.66	376580	13.02	87145	5.17
FA19358-5	959494	7.56	761432	10.66	410483	13.02	80181	5.17
ZZZZZ	889772	7.56	732664	10.66	396286	13.02	68383	5.17
A19534-17	898888	7.56	754688	10.66	394193	13.02	62925	5.15
FA19534-17	884127	7.56	729384	10.66	390865	13.02	64047	5.17
ZZZZZZ	900853	7.56	749683	10.66	395600	13.02	60202	5.17
ZZZZZZ	809977	7.56	671873	10.66	347230	13.02	43521	5.17
ZZZZZZ	878982	7.56	744119	10.66	397761	13.02	52700	5.17
ZZZZZ	864095	7.56	702818	10.66	370999	13.02	52183	5.17
ZZZZZZ	827405	7.56	670407	10.66	354345	13.03	49085	5.16
FA19534-17MS	947831	7.56	781128	10.65	483756	13.02	75902	5.17
FA19534-17MSD	955969	7.56	800705	10.66	477645	13.02	77226	5.17

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 IS 4 = Tert Butyl Alcohol-D10

- (a) Initial Cal is: VN3528-ICC3528 N0080073.D 10/15/14 13:47
- (b) Check Std Limit = -50 to + 100% of initial cal area.
- (c) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (d) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Internal Standard Area Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Check Std:
 VN3549-CC3548
 Injection Date:
 11/02/14

 Lab File ID:
 N0080569.D
 Injection Time:
 15:51

Instrument ID: GCMSN **Method:** SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT
Initial Cal ^a	719097	7.56	590423	10.65	368831	13.01	62360	5.17
Check Std b	733763	7.56	604653		372865		58953	5.15
Upper Limit ^c	1467526	8.06	1209306	11.15	745730	13.51	117906	5.65
Lower Limit d	366882	7.06	302327	10.15	186433	12.51	29477	4.65
Lab	IS 1		IS 2		IS 3		IS 4	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT
VN3549-BS	750822	7.56	614968	10.65	376746	13.01	66250	5.15
VN3550-BS	750822	7.56	614968		376746	13.01	66250	5.15
OP53756-LB	721026	7.56	610396	10.65	342037	13.02	59919	5.15
VN3549-MB	702411	7.56	597236	10.66	331749	13.02	61784	5.15
FA19358-6	677591	7.56	571686	10.66	320713	13.02	62465	5.15
ZZZZZZ	691565	7.56	586006	10.66	321566	13.02	54258	5.16
FA19358-1	686004	7.56	586509	10.66	322456	13.02	58561	5.15
FA19358-5	645425	7.56	554428	10.66	303378	13.02	57296	5.15
ZZZZZZ	659751	7.56	564318	10.66	311993	13.02	57854	5.16
D63640-28	670183	7.56	570524	10.66	315590	13.02	58908	5.15
D63640-28DUP	660505	7.56	569829	10.66	316825	13.02	55724	5.15
ZZZZZZ	658317	7.56	567520	10.66	318240	13.02	56625	5.16
ZZZZZZ	658191	7.56	565143	10.66	312761	13.02	58175	5.16
ZZZZZZ	627274	7.56	533459	10.66	295841	13.02	56905	5.16
ZZZZZZ	672498	7.56	564146		316223		58618	5.17
ZZZZZZ	637316	7.56	531959	10.66	297361	13.02	54566	5.15
ZZZZZZ	640035	7.56	546957	10.66	299039		55259	5.15
ZZZZZZ	640033	7.56	550259	10.66	296521	13.02	56608	5.15
ZZZZZZ	646557	7.56	548182		298602	13.02	56754	5.16
ZZZZZZ	633692	7.56	539194		299168		55958	5.16
FA19358-5MS	693206	7.56	590752		359828		70275	5.16
FA19358-5MSD	687530	7.56	588721		354107		69691	5.16
D63640-28MS	706711	7.56	593684		361845		74744	5.15
D63640-28MSD	667327	7.56	573807	10.65	346069	13.02	69785	5.15

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 IS 4 = Tert Butyl Alcohol-D10

- (a) Initial Cal is: VN3548-ICC3548 N0080562.D 11/01/14 21:09
- (b) Check Std Limit = -50 to + 100% of initial cal area.
- (c) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

Volatile Internal Standard Area Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Check Std:
 VN3549-CC3548
 Injection Date:
 11/02/14

 Lab File ID:
 N0080569.D
 Injection Time:
 15:51

Instrument ID: GCMSN **Method:** SW846 8260B

Lab IS 1 IS 2 IS 3 IS 4 Sample ID AREA RT AREA RT AREA RT AREA RT

(d) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	S1	S2	S3	S4
FA19358-1	N0080575.D	101	103	98	101
FA19358-1	N0080528.D	104	92	90	97
FA19358-2	N0080529.D	102	92	90	97
FA19358-3	N0080530.D	105	98	88	96
FA19358-4	N0080531.D	105	96	89	96
FA19358-5	N0080576.D	102	104	97	102
FA19358-5	N0080532.D	103	93	90	95
FA19358-6	N0080573.D	101	102	98	100
FA19358-5MS	N0080589.D	103	102	99	98
FA19358-5MSD	N0080590.D	104	103	97	99
FA19534-17MS	N0080543.D	101	89	91	91
FA19534-17MSD	N0080544.D	100	92	91	93
VN3547-BS	N0080524.D	100	87	91	94
VN3547-MB	N0080526.D	103	94	90	96
VN3549-BS	N0080570.D	99	98	102	100
VN3549-MB	N0080572.D	100	102	98	103

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 83-118%

 S2 = 1,2-Dichloroethane-D4
 79-125%

 S3 = Toluene-D8
 85-112%

 S4 = 4-Bromofluorobenzene
 83-118%

Initial Calibration Summary

Job Number: FA19358 Sample: VN3528-ICC3528
Account: GSYNFLTI Geosyntec Consultants Lab FileID: N0080073.D

Project: LC-39B, KSC, FL

Response Factor Report MSVOA8

Method : C:\MSDchem\2\MET...260SCOXY101514.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed Oct 15 16:17:07 2014 Response via : Initial Calibration

Calibration Files

	ration Files N0080070.D 2 =N0080071.D 3 =N0080072.D 4 =N0080073.D =N0080074.D 6 =N0080075.D
	Compound 1 2 3 4 5 6 Avg %RSD
1) I 2) 3) P 4) C	Fluorobenzene
5)	Bromomethane 0.264 0.322 0.289 0.252 0.237 0.202 0.261 15.91 Quadratic regr., Force(0,0) Coefficient = 0.9990 Response Ratio = 0.00000 + 0.30166 *A + -0.04924 *A^2
6)	Chloroethane 0.219 0.273 0.227 0.193 0.162 0.124 0.200 26.29 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.24697 *A + -0.06160 *A^2
7)	Trichlorofluorometh 0.346 0.593 0.516 0.485 0.448 0.400 0.465 18.77 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 0.54885 *A + -0.07413 *A^2
8) 9)	Ethyl Ether 0.216 0.255 0.260 0.256 0.221 0.222 0.238 8.68 1,2-Dichlorotrifluo 1.016 0.380 0.364 0.355 0.295 0.296 0.451 61.87 Quadratic regr., Force(0,0) Coefficient = 0.9962 Response Ratio = 0.00000 + 0.36298 *A + -0.03588 *A*2
10) C 11) 12)	1,1-Dichloroethene 0.350 0.460 0.432 0.428 0.365 0.365 0.400 11.37 Freon 113 0.272 0.369 0.349 0.348 0.290 0.293 0.320 12.48 Carbon Disulfide 0.676 0.843 0.811 0.796 0.708 0.691 0.754 9.42 Quadratic regr., Force(0,0) Coefficient = 0.9991 Response Ratio = 0.00000 + 0.82654 *A + -0.07046 *A^2
13) 14) 15)	Iodomethane 0.595 0.689 0.751 0.728 0.648 0.641 0.675 8.65 Methylene Chloride 0.529 0.503 0.496 0.454 0.401 0.399 0.464 11.80 Acetone 0.044 0.039 0.038 0.037 0.033 0.032 0.037 12.08 Quadratic regr., Force(0,0) Coefficient = 0.9991 Response Ratio = 0.00000 + 0.03845 *A + -0.00067 *A^2
16)	Methyl acetate 0.053 0.055 0.061 0.062 0.056 0.060 0.058 6.47 Quadratic regr., Force(0,0) Coefficient = 0.9978 Response Ratio = 0.00000 + 0.05815 *A + 0.00014 *A^2
17) 18) 19) 20) 21) P 22)	trans-1,2-Dichloroe 0.401 0.500 0.526 0.514 0.441 0.449 0.472 10.38 Hexane 0.260 0.279 0.296 0.300 0.247 0.259 0.274 7.91 Methyl Tert Butyl E 0.992 1.172 1.232 1.208 1.088 1.105 1.133 7.84 Di-isopropyl ether 0.958 1.116 1.200 1.172 1.035 1.052 1.089 8.38 1,1-Dichloroethane 0.524 0.639 0.666 0.658 0.570 0.581 0.606 9.34 Acrylonitrile 0.133 0.150 0.132 0.137 0.119 0.125 0.133 7.98

Initial Calibration Summary Job Number: FA19358

Job Number: FA19358 Sample: VN3528-ICC3528
Account: GSYNFLTI Geosyntec Consultants Lab FileID: N0080073.D

Project: LC-39B, KSC, FL

23)	ETBE 0.946 1.104 1.172 1.136 1.009 1.018 1.064 8.16
24)	Vinyl acetate 0.698 0.798 0.765 0.757 0.620 0.598 0.706 11.61
	Quadratic regr., Force(0,0) Coefficient = 0.9983
	Response Ratio = $0.00000 + 0.81128 *A + -0.02243 *A^2$
25)	cis-1,2-Dichloroeth 0.455 0.444 0.458 0.445 0.390 0.405 0.433 6.58
26)	2,2-Dichloropropane 0.560 0.569 0.563 0.553 0.474 0.473 0.532 8.58
27)	Bromochloromethane 0.216 0.226 0.251 0.249 0.219 0.228 0.232 6.48
28)	Cyclohexane 0.521 0.597 0.642 0.636 0.545 0.548 0.581 8.81
29) C	Chloroform 0.727 0.698 0.718 0.701 0.603 0.617 0.677 7.87
30)	Tetrahydrofuran 0.098 0.155 0.117 0.111 0.098 0.103 0.114 18.90
	Linear regr., $Force(0,0)$ Coefficient = 0.9965
	Response Ratio = 0.00000 + 0.10280 *A
31) S	Dibromofluoromethan 0.268 0.307 0.310 0.263 0.296 0.307 0.292 7.19
	Linear regression Coefficient = 0.9906
	Response Ratio = $-0.07318 + 0.34584 *A$
221	Carbon Tetrachlorid 0.420 0.531 0.565 0.564 0.497 0.492 0.511 10.72
32) 33)	Carbon Tetrachlorid 0.420 0.531 0.565 0.564 0.497 0.492 0.511 10.72 1,1,1-Trichloroetha 0.584 0.570 0.622 0.609 0.525 0.533 0.574 6.85
34)	2-Butanone 0.236 0.137 0.151 0.156 0.140 0.144 0.161 23.44
34)	Linear regr., Force(0,0) Coefficient = 0.9981
	Response Ratio = 0.00000 + 0.14422 *A
	Response Racio - 0.00000 / 0.11122 //
35)	1,1-Dichloropropene 0.332 0.463 0.511 0.514 0.436 0.452 0.451 14.71
36)	tert-Butyl Formate 0.272 0.445 0.336 0.326 0.291 0.276 0.324 19.99
	Linear regr., Force $(0,0)$ Coefficient = 0.9950
	Response Ratio = 0.00000 + 0.28673 *A
37)	Benzene 1.260 1.432 1.519 1.498 1.276 1.288 1.379 8.54
38)	TAME 1.026 1.116 1.216 1.189 1.079 1.104 1.122 6.26
39) S	1,2-Dichloroethane- 0.276 0.318 0.322 0.267 0.305 0.316 0.301 7.80
40)	1,2-Dichloroethane 0.460 0.470 0.493 0.488 0.432 0.444 0.464 5.16
41)	Trichloroethene 0.515 0.366 0.394 0.398 0.347 0.358 0.396 15.48
	Linear regr., Force(0,0) Coefficient = 0.9970
	Response Ratio = 0.00000 + 0.35945 *A
42)	Mathedauglahawana 0.640.0.602.0.720.0.710.0.605.0.610.0.6677.52
42) 43)	Methylcyclohexane 0.648 0.693 0.720 0.718 0.605 0.619 0.667 7.53 Dibromomethane 0.235 0.235 0.257 0.257 0.230 0.240 0.243 4.88
44) C	1,2-Dichloropropane 0.256 0.349 0.375 0.333 0.342 0.338 12.93
45)	Bromodichloromethan 0.406 0.479 0.522 0.524 0.461 0.476 0.478 9.08
46)	2-Chloroethyl vinyl 0.107 0.151 0.178 0.179 0.160 0.164 0.157 17.02
10 /	Linear regr., Force(0,0) Coefficient = 0.9976
	Response Ratio = $0.00000 + 0.16432 *A$
	<u>.</u>
47)	cis-1,3-Dichloropro 0.442 0.588 0.653 0.660 0.584 0.601 0.588 13.42
48) I	Chlorobenzene-d5ISTD
49) S	Toluene-d8 1.171 1.359 1.362 1.207 1.297 1.324 1.287 6.21
50) C	Toluene 1.572 1.984 2.112 2.067 1.774 1.772 1.880 11.09
51)	2-Nitropropane 0.132 0.104 0.116 0.105 0.109 0.114 9.03
52)	4-Methyl-2-pentanon 0.322 0.370 0.396 0.389 0.345 0.349 0.362 7.82
53)	trans-1,3-Dichlorop 0.410 0.618 0.698 0.697 0.620 0.634 0.613 17.26
	Linear regr., Force $(0,0)$ Coefficient = 0.9974
	Response Ratio = 0.00000 + 0.63716 *A
54)	Tetrachloroethene 0.444 0.658 0.714 0.730 0.622 0.634 0.634 16.14
J=/	Quadratic regr., Force(0,0) Coefficient = 0.9969
	Response Ratio = $0.00000 + 0.72151 *A + -0.04788 *A^2$
	11,250

Page 3 of 4

Initial Calibration Summary Job Number: FA19358

VN3528-ICC3528 Sample: GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL Lab FileID: N0080073.D Account:

Project:	LC-39B, KSC, FĽ
55) 56) 57) 58) 59)	1,1,2-Trichloroetha 0.277 0.351 0.382 0.367 0.329 0.343 0.341 10.71 Dibromochloromethan 0.410 0.544 0.587 0.588 0.534 0.551 0.536 12.21 1,3-Dichloropropane 0.551 0.699 0.758 0.751 0.672 0.698 0.688 10.85 1,2-Dibromoethane 0.395 0.456 0.494 0.496 0.450 0.467 0.460 8.04 2-hexanone 0.103 0.274 0.261 0.270 0.247 0.252 0.235 27.81 Linear regr., Force(0,0) Coefficient = 0.9986 Response Ratio = 0.00000 + 0.25257 *A
60)	1-Chlorohexane 0.353 0.623 0.724 0.734 0.621 0.645 0.617 22.40 Linear regr., Force(0,0) Coefficient = 0.9948 Response Ratio = 0.00000 + 0.64820 *A
61) C 62) P 63) 64) 65) 66) 67) P 68)	Ethylbenzene 1.988 2.252 2.304 2.260 1.924 1.913 2.107 8.73 Chlorobenzene 1.057 1.293 1.374 1.356 1.178 1.196 1.242 9.75 1,1,1,2-Tetrachloro 0.427 0.545 0.579 0.571 0.514 0.522 0.526 10.47 m,p-Xylene 1.494 1.590 1.736 1.686 1.402 1.351 1.543 10.00 o-Xylene 1.445 1.678 1.819 1.777 1.528 1.540 1.631 9.19 Styrene 1.084 1.403 1.590 1.589 1.416 1.436 1.420 13.03 Bromoform 0.300 0.372 0.413 0.416 0.380 0.400 0.380 11.35 Isopropylbenzene 1.742 2.219 2.361 2.283 1.949 1.927 2.080 11.66 1,4-Dichlorobenzene-d
71) 72) 73) P 74) 75) 76)	n-Propylbenzene 3.145 3.977 4.157 4.108 3.449 3.443 3.713 11.35 Bromobenzene 0.890 1.078 1.179 1.181 1.042 1.076 1.074 9.96 1,1,2,2-Tetrachloro 0.743 0.945 0.955 0.958 0.852 0.893 0.891 9.40 1,3,5-Trimethylbenz 3.147 3.497 3.656 3.544 2.997 2.986 3.305 8.97 2-Chlorotoluene 2.122 2.787 2.873 2.841 2.419 2.458 2.583 11.58 trans-1,4-Dichloro- 0.356 0.239 0.242 0.265 0.247 0.262 0.268 16.43 Linear regr., Force(0,0) Coefficient = 0.9981 Response Ratio = 0.00000 + 0.25744 *A
77) 78)	1,2,3-Trichloroprop 0.239 0.298 0.301 0.307 0.275 0.291 0.285 8.86 Cyclohexanone 0.024 0.085 0.064 0.065 0.060 0.060 0.060 33.25 Linear regr., Force(0,0) Coefficient = 0.9983 Response Ratio = 0.00000 + 0.06050 *A
79) 80) 81) 82) 83) 84)	4-Chlorotoluene 2.321 2.258 2.557 2.593 2.254 2.292 2.379 6.48 tert-Butylbenzene 1.467 1.735 1.788 1.769 1.538 1.561 1.643 8.36 1,2,4-Trimethylbenz 2.864 3.359 3.625 3.592 3.046 3.037 3.254 9.77 sec-Butylbenzene 3.273 3.943 4.228 4.181 3.510 3.493 3.771 10.60 4-Isopropyltoluene 3.082 3.597 3.847 3.771 3.197 3.199 3.449 9.57 1,3-Dichlorobenzene 1.384 1.797 2.045 2.051 1.816 1.872 1.827 13.34 Linear regr., Force(0,0) Coefficient = 0.9973 Response Ratio = 0.00000 + 1.87640 *A
85)	1,4-Dichlorobenzene 1.995 2.163 2.325 2.301 2.022 2.076 2.147 6.58 Linear regr., Force(0,0) Coefficient = 0.9970 Response Ratio = 0.00000 + 2.08755 *A
86) 87)	n-Butylbenzene 1.521 1.909 2.119 2.114 1.806 1.866 1.889 11.76 Benzyl Chloride 0.331 0.398 0.478 0.482 0.436 0.460 0.431 13.43 Linear regr., Force(0,0) Coefficient = 0.9978 Response Ratio = 0.00000 + 0.45552 *A
88) 89)	1,2-Dichlorobenzene 1.683 1.913 2.083 2.051 1.810 1.850 1.898 7.97 1,2-Dibromo-3-Chlor 0.153 0.156 0.167 0.168 0.151 0.165 0.160 4.64

Page 4 of 4

Initial Calibration Summary
Job Number: FA19358
Account: GSYNFLTI Geosyntec Consultants
Project: LC-39B, KSC, FL VN3528-ICC3528 Sample: **Lab FileID:** N0080073.D

(#) = Out of Range

Project:	LC-39B, KSC, FL	
90) 91) 92) 93)	Hexachlorobutadiene 0.598 0.695 0.765 0.775 0.666 0.682 0.697 9.48 1,2,4-Trichlorobenz 1.174 1.461 1.589 1.586 1.424 1.437 1.445 10.50 Naphthalene 2.459 2.704 2.898 2.926 2.668 2.709 2.727 6.24 1,2,3-Trichlorobenz 1.065 1.223 1.294 1.299 1.182 1.211 1.212 7.08	
94) I	Tert Butyl Alcohol-d1ISTD	
95)	Ethanol 0.080 0.183 0.160 0.140 0.117 0.111 0.132 27.98	
	Quadratic regr., $Force(0,0)$ Coefficient = 0.9964	
	Response Ratio = $0.00000 + 0.15438 *A + -0.00559 *A^2$	
96)	acrolein 1.681 1.860 1.708 1.638 1.573 1.584 1.674 6.30	
97)	Tert Butyl Alcohol 1.649 1.623 1.583 1.617 1.505 1.562 1.590 3.25	
98)	tert Amyl alcohol 0.979 1.152 1.267 1.350 1.245 1.303 1.216 10.99	
99)	Isobutyl alcohol 0.283 0.510 0.395 0.400 0.390 0.392 0.395 18.22	
	Linear regr., Force $(0,0)$ Coefficient = 0.9997	
	Response Ratio = 0.00000 + 0.39237 *A	
100)	1,4-Dioxane 0.098 0.134 0.151 0.144 0.155 0.136 16.74	
	Linear regr., Force(0,0) Coefficient = 0.9976 Response Ratio = 0.00000 + 0.15055 *A	
	Response Radio 0.0000 . 0.13000 II	
101)	3,3-Dimethyl-1-buta 1.200 1.756 1.377 1.425 1.326 1.319 1.401 13.53	

8260SCOXY101514.m Wed Oct 15 19:24:33 2014

Initial Calibration Verification

Job Number:FA19358Sample:VN3528-ICV3528Account:GSYNFLTI Geosyntec ConsultantsLab FileID:N0080077.D

Project: LC-39B, KSC, FL

Evaluate Continuing Calibration Report

MS Integration Params: Tiny.p

Method : C:\MSDchem\2\MET...260SCOXY101514.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed Oct 15 16:17:07 2014
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(m	in)R.T.
1 I	Fluorobenzene	1.000	1.000	0.0	104	0.00	7.56
2	Dichlorodifluoromethane	0.435	0.455	-4.6	110	0.01	2.67
3 P	Chloromethane	0.434	0.440	-1.4	105	0.00	2.86
		Amount	Calc.	%Drift			
4 C	Vinyl Chloride	40.000	46.431	-16.1	112	-0.01	3.01
5	Bromomethane	40.000	44.306		117	0.00	3.39
6	Chloroethane	40.000	39.239	1.9		0.00	3.53
7	Trichlorofluoromethane	40.000	42.233	-5.6	110	0.00	3.75
		AvgRF	CCRF	%Dev			
8	Ethyl Ether	0.238	0.257	-8.0	104	0.00	4.01
		Amount	Calc.	%Drift			
9	1,2-Dichlorotrifluoroetha	40.000	45.186	-13.0	109	-0.02	4.24
		AvgRF	CCRF	%Dev			
10 C	1,1-Dichloroethene	0.400	0.436	-9.0	106	0.00	4.28
11	Freon 113	0.320	0.349	-9.1	104	-0.02	4.33
		Amount	Calc.	%Drift			
12	Carbon Disulfide	40.000	54.701			0.00	4.37
		AvaRF	CCRF	%Dev			
13	Iodomethane	0.675	0.761	-12.7	108	0.00	4.47
14	Methylene Chloride	0.464	0.463	0.2	106	0.00	4.91
		Amount	Calc.	%Drift			
15	Acetone	200.000			133	0.00	4.94
16	Methyl acetate	200.000	298.055	-49.0#	147	0.00	5.05
		AvgRF	CCRF	%Dev			
17	trans-1,2-Dichloroethene	0.472	0.498	-5.5	101	0.00	5.07
18	Hexane	0.274	0.302	-10.2	104	0.00	5.13
19	Methyl Tert Butyl Ether	1.133	1.205	-6.4	103	0.00	5.17
20	Di-isopropyl ether	1.089	1.178	-8.2	104	0.00	5.54
21 P	1,1-Dichloroethane	0.606	0.640	-5.6	101	0.00	5.73
22	Acrylonitrile	0.133	0.133	0.0	101	0.00	5.77
23	ETBE	1.064	1.152	-8.3	105	0.00	5.93
		Amount	Calc.	%Drift			
24	Vinyl acetate	200.000	89.234	55.4#	47	0.00	5.94

Initial Calibration Verification Job Number: FA19358

VN3528-ICV3528 Sample: GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL Lab FileID: N0080077.D Account:

Project:

		AvgRF	CCRF	%Dev			
25	cis-1,2-Dichloroethene	0.433	0.436	-0.7	101	0.00	6.29
26	2,2-Dichloropropane	0.532	0.527	0.9	99	0.00	6.41
27	Bromochloromethane	0.232	0.249	-7.3	104	0.00	6.50
28	Cyclohexane	0.581	0.619	-6.5	101		6.53
29 C	Chloroform	0.677	0.680	-0.4	100		6.55
	0111010101	0.07.	0.000	0.1		0.00	0.55
		Amount	Calc.	%Drift			
30		40.000		-8.3	104	0.00	6.74
31 S		50.000	49.102	1.8	105		
		AvgRF	CCRF	%Dev			
32		0.511		-12.1	105	0.00	6.73
33	1,1,1-Trichloroethane	0.574		-2.6	100		6.80
		Amount	Calc.	%Drift			
34	2-Butanone	200.000	226.686	-13.3	109	0.00	6.85
		AvgRF	CCRF	%Dev			
35	1,1-Dichloropropene	0.451	0.510	-13.1	103	0.00	6.91
		Amount	Calc.	%Drift			
36	tert-Butyl Formate	400.000	410.633	-2.7	94	0.00	7.00
		AvgRF	CCRF	%Dev			
37	Benzene	1.379	1.462	-6.0	101	0.00	7.16
38	TAME	1.122	1.178	-5.0	103	0.00	7.23
39 S	1,2-Dichloroethane-d4	0.301	0.268	11.0	104	0.00	7.30
40	1,2-Dichloroethane	0.464	0.487	-5.0	103	0.00	7.36
				%Drift			
41	Trichloroethene	40.000	43.780	-9.5	103	0.00	7.74
				%Dev			
42	Methylcyclohexane		0.715	-7.2		0.00	
43	Dibromomethane	0.243	0.254	-4.5	102		
44 C	1,2-Dichloropropane	0.338	0.370	-9.5	102		8.26
45	Bromodichloromethane	0.478	0.511	-6.9	101	0.00	8.31
46	2-Chloroethyl vinyl ether	200.000	154.254	22.9#	73	0.00	8.82
			aan =	0.7			
4.5		AvgRF	CCRF	%Dev			
47	cis-1,3-Dichloropropene	0.588	0.630	-7.1	99	0.00	8.92
40 T	Ohlamahan man - 15	1 000	1 000	0 0	100	0 00	10 65
48 I	Chlorobenzene-d5 Toluene-d8	1.000	1.000	0.0	102	0.00	10.65
49 S		1.287	1.209	6.1	103	0.00	9.11
50 C	Toluene	1.880	2.010	-6.9	100	0.00	9.16
51	2-Nitropropane	0.114	0.114	0.0	101	0.00	9.38
52	4-Methyl-2-pentanone	0.362	0.404	-11.6	107	0.00	9.49
		Amount	Calc.	%Drift			
53			45.872	-14.7	107	0.00	9.55
	trans-1,3-Dichloropropene						
54	Tetrachloroethene	40.000	50.787	-27.0#	120	0.00	9.56
		7**~D F	CCDE	&D0**			
55	1,1,2-Trichloroethane	0.341	CCRF 0.363	%Dev -6.5	102	0.00	9.72
55 56	Dibromochloromethane			-6.5 -9.1	102 102	0.00	9.72
		0.536	0.585		102		
57	1,3-Dichloropropane	0.688	0.758	-10.2	1U4	0.00	10.00

Initial Calibration Verification

92

Naphthalene

Page 3 of 4 Job Number: FA19358 Sample: VN3528-ICV3528 GSYNFLTI Geosyntec Consultants Lab FileID: N0080077.D Account: LC-39B, KSC, FL **Project:** 58 1,2-Dibromoethane 0.460 0.497 -8.0 103 0.00 10.17 59 2-hexanone 40.000 42.084 -5.2 95 0.00 10.60 60 1-Chlorohexane 61 C Ethylbenzene 62 P 63 64 1.631 1.867 -14.5 108 0.00 11.25 65 o-Xylene 66 Styrene 1.420 1.581 -11.3 102 0.00 11.30 67 P 0.380 0.404 -6.3 100 0.00 11.36 Bromoform 2.080 2.416 -16.2 108 0.00 11.55 68 Isopropylbenzene 1.000 1.000 0.0 102 0.00 13.02 1,4-Dichlorobenzene-d4 0.4 102 0.00 11.87 70 S 4-Bromofluorobenzene 71 72 1,1,2,2-Tetrachloroethane 0.891 0.963 1,3,5-Trimethylbenzene 3.305 3.459 73 P -4.7 99 0.00 12.16 74 2.583 3.024 -17.1 108 75 0.00 12.16 2-Chlorotoluene 76 ----- AvgRF CCRF %Dev 77 78 Cyclohexanone 75.0# 23 0.00 12.27 - AvgRF CCRF %Dev ------2.379 2.841 -19.4 111 0.00 12.33 ----- Avarf 4-Chlorotoluene tert-Butylbenzene 79 80 1.643 1.906 -16.0 109 0.00 12.50 3.254 3.534 -8.6 100 0.00 12.56 81 1,2,4-Trimethylbenzene 3.771 4.483 -18.9 109 0.00 12.68 3.449 3.978 -15.3 107 0.00 12.81 82 sec-Butylbenzene 83 4-Isopropyltoluene ----- Amount Calc. %Drift -----1,3-Dichlorobenzene 40.000 47.895 -19.7 111 0.00 12.95 1,4-Dichlorobenzene 40.000 44.663 -11.7 103 0.00 13.03 84 40.000 44.663 -11.7 103 0.00 13.03 85 1,4-Dichlorobenzene ----- AvgRF CCRF 86 n-Butylbenzene %Drift ---------- Amount Calc. 90 0.00 13.28 87 40.000 37.497 Benzyl Chloride 6.3 ----- AvgRF CCRF %Dev 1,2-Dichlorobenzene 1.898 2.242 -18.1 111 0.00 13.46 1,2-Dibromo-3-Chloropropa 0.160 0.172 -7.5 104 0.00 14.22 Hexachlorobutadiene 0.697 0.778 -11.6 102 0.00 14.77 1,2,4-Trichlorobenzene 1.445 1.605 -11.1 103 0.00 14.81 Naphthalene 2.727 2.946 -9.0 102 0.00 15.00 88 89 90 91

2.727 2.946

15.09

-8.0 102 0.00

Job Numb Account:	Calibration Verification ber: FA19358 GSYNFLTI Geosyntec ConsultC-39B, KSC, FL	ltants		Sample: Lab FileID:		3528-ICV3 080077.D	Page 4 of 4 528
93	1,2,3-Trichlorobenzene	1.212	1.308	-7.9	102	0.00	15.26
94 I	Tert Butyl Alcohol-d10	1.000	1.000	0.0	108	0.00	5.16
95	Ethanol	Amount	Calc. 806.014	%Drift -0.8	 106	0.02	4.19
96 97 98	acrolein Tert Butyl Alcohol tert Amyl alcohol	1.674	1.604		107	0.01	5.25
99 100	Isobutyl alcohol 1,4-Dioxane	Amount 800.000 8 800.000	865.194		115	0.00	
101	3,3-Dimethyl-1-butanol	_		%Dev -7.0	 114	0.00	 10.26

(#) = Out of Range SPCC's out = 0 CCC's out = 0 N0080073.D 8260SCOXY101514.m Wed Oct 15 19:24:12 2014

Initial Calibration Verification

Job Number:FA19358Sample:VN3528-ICV3528Account:GSYNFLTI Geosyntec ConsultantsLab FileID:N0080078.D

Project: LC-39B, KSC, FL

Evaluate Continuing Calibration Report

MS Integration Params: Tiny.p

Method : C:\MSDchem\2\MET...260SCOXY101514.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed Oct 15 16:17:07 2014
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev 2	Area%	Dev(mi	n)R.T.
1 I	Fluorobenzene	1.000	1.000	0.0	107	0.00	7.56
2	Dichlorodifluoromethane	0.435	0.429	1.4	107	0.01	2.67
3 P	Chloromethane	0.434	0.451	-3.9	110	0.01	2.87
		Amount	Calc.	%Drift			
4 C	Vinyl Chloride	40.000		-13.4		-0.01	3.01
5	Bromomethane	40.000	40.832		113	0.00	3.39
6	Chloroethane	40.000	36.489	8.8	102	0.00	3.53
7	Trichlorofluoromethane	40.000	40.734	-1.8		0.00	3.75
		3 DE	CCDE	0.5			
0			CCRF	%Dev	100		4 00
8	Ethyl Ether	0.238	0.257	-8.0	107	0.00	4.00
		Amount	Calc.	%Drift			
9	1,2-Dichlorotrifluoroetha	40.000	53.589	-34.0#	131	-0.02	4.24
		7DT	CODE	0.D			
10 0	1 1 5' 11	_		%Dev			
10 C	1,1-Dichloroethene	0.400	0.512			0.00	
11	Freon 113	0.320	0.396	-23.8#	121	-0.02	4.33
		Amount	Calc.	%Drift			
12	Carbon Disulfide	40.000	59.198	-48.0#	147	0.00	4.37
		<u>\</u>	CCRF	%Dev			
13	Iodomethane	0.675		-11.0		0.00	4.46
14	Methylene Chloride	0.464		1.5	107	0.00	4.90
7.4	Methylene Chioride	0.404	0.457	1.5	107	0.00	4.50
				%Drift			
15	Acetone	200.000		-34.7#			4.93
16	Methyl acetate	200.000	234.835	-17.4	119	0.00	5.04
		AvaRF	CCRF	%Dev			
17	trans-1,2-Dichloroethene	0.472	0.507	-7.4	105	0.00	5.07
18	Hexane	0.274	0.322	-17.5	114	0.00	5.12
19	Methyl Tert Butyl Ether	1.133	1.189	-4.9	105	0.00	5.17
20	Di-isopropyl ether	1.089	1.166	-7.1	106	0.00	5.54
21 P	1,1-Dichloroethane	0.606	0.651	-7.1 -7.4	105	0.00	5.72
22	Acrylonitrile	0.133	0.139	-4.5	103	0.00	5.72
23	ETBE	1.064	1.121	-5.4	105	0.00	5.77
	_			J. 1			
24	Vinyl acetate	200.000	180.563	9.7	93	0.00	5.93

Initial Calibration Verification Job Number: FA19358

VN3528-ICV3528 Sample: GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL **Account:** Lab FileID: N0080078.D

Project:

			CCRF	%Dev			
25	cis-1,2-Dichloroethene	0.433	0.440	-1.6	105	0.00	
26	2,2-Dichloropropane	0.532	0.577	-8.5	111	0.00	6.41
27	Bromochloromethane	0.232	0.248	-6.9	106	0.00	6.50
28	Cyclohexane	0.581	0.636	-9.5	107	0.00	6.53
29 C	Chloroform	0.677	0.681	-0.6	104	0.00	6.55
		Amount	Calc	%Drift			
30	Tetrahydrofuran	40.000		-5.3		0.00	
31 S	<u>-</u>	50.000		1.9			6.74
31 2				,		0.00	0.7.1
		AvgRF	CCRF	%Dev			
32	Carbon Tetrachloride	0.511	0.567	-11.0	107	0.00	
33	1,1,1-Trichloroethane	0.574	0.619	-7.8	108	0.00	6.80
			~ 1	05 15:			
2.4	0. D. Lavara			%Drift			
34	2-Butanone	200.000	232.099	-16.0	114	0.00	6.85
		AvaRF	CCRF	%Dev			
35		0.451	0.531			0.00	6.91
	I/I DIGHTOLOFIOFOM	0.101	0.001			0.00	0.72
		Amount	Calc.	%Drift			
36		400.000		-9.4	103	0.00	7.00
				%Dev			
37	Benzene	1.379		-7.3		0.00	
38	TAME	1.122		-3.4	104		
39 S	1,2-Dichloroethane-d4	0.301		10.6			
40	1,2-Dichloroethane	0.464	0.483	-4.1	106	0.00	7.36
		Amount	Cald	%Drift			
41	Trichloroethene	40.000				0.00	7 74
11	11 Telliof Occidenc	40.000	43.400	0.7	103	0.00	7.74
		AvgRF	CCRF	%Dev			
42	Methylcyclohexane	0.667	0.734	-10.0	109	0.00	7.75
43	Dibromomethane	0.243	0.251	-3.3	104	0.00	8.17
44 C	1,2-Dichloropropane	0.338	0.364	-7.7	103	-0.02	8.26
45	Bromodichloromethane	0.478	0.505	-5.6	103	0.00	8.31
			e. 3	0- 15:			
1.0	0. Ghila a saile 1			%Drift			
46	2-Chloroethyl vinyl ether	200.000	148.626	25.7#	73	0.00	8.82
		AvaRF	CCRF	%Dev			
47	cis-1,3-Dichloropropene	0.588	0.635	-8.0	102	0.00	8.92
	, 1 11111111111111111111111111111111111						
48 I	Chlorobenzene-d5	1.000	1.000	0.0	105	0.00	10.65
49 S	Toluene-d8	1.287	1.220	5.2	106	0.00	9.11
50 C	Toluene	1.880	2.035	-8.2	103	0.00	9.16
51	2-Nitropropane	0.114	0.114	0.0	103	0.00	9.38
52	4-Methyl-2-pentanone	0.362	0.397	-9.7	107	0.00	9.49
		7	G-3	0.D .' C.			
E 2	trans-1,3-Dichloropropene			%Drift		0 00	O E E
53 54	Tetrachloroethene	40.000	46.343 36.935	-15.9 7.7	111 91	0.00	9.55 9.55
54	recraciiioroechelle	40.000	30.733	/ . /	ラエ	0.00	9.33
		AvaRF	CCRF	%Dev			
55	1,1,2-Trichloroethane	0.341	0.363	-6.5	104	0.00	9.72
56	Dibromochloromethane	0.536	0.586	-9.3	105	0.00	9.91
57	1,3-Dichloropropane	0.688	0.744	-8.1	104	0.00	10.00

Page 3 of 4

Initial Calibration Verification

Job Number: FA19358 Sample: VN3528-ICV3528
Account: GSYNFLTI Geosyntec Consultants Lab FileID: N0080078.D
Project: LC-39B, KSC, FL

Account: Project:	GSYNFLTI Geosyntec Consulta LC-39B, KSC, FL	ints		Lab FileID:	NOC	080078.D		
58	1,2-Dibromoethane	0.460	0.489	-6.3	104	0.00	10.17	
		Amount	Calc.	%Drift				
59	2-hexanone	200.000	232.837	-16.4		0.00	10.31	
60		40.000	43.829			0.00		
		AvgRF	CCRF	%Dev				
61 C	Ethylbenzene					0.00		
62 P	Chlorobenzene	1 242	1.433	-15.4	111	0.00	10.67	
63	1,1,1,2-Tetrachloroethane	0.526	0.575	-9.3	106	0.00	10.72	
64	m,p-Xylene	1.543	1.722		107	0.00	10.81	
65	o-Xylene	1.631	1.879	-15.2	111	0.00	11.25	
66	Styrene	1.420	1.598	-12.5 -7.9	106	0.00	11.30	
67 P						0.00	11.36	
68	Isopropylbenzene	2.080	2.474	-18.9	114	0.00	11.55	
69 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	108	0.00	13.02	
		Amount	Calc.	%Drift				
70 S	4-Bromofluorobenzene	50.000				0.00	11.87	
		AvaPF	CCBE	%Dev				
71			4 374	-17 8				
72	n-Propylbenzene Bromobenzene	1 074	1 168	-17.8 -8.8	106	0.00	11 99	
73 P	1,1,2,2-Tetrachloroethane	0 891	n 94n	-5.5		0.00		
74	1,3,5-Trimethylbenzene			-2.9				
75	2-Chlorotoluene	2.583	2.973		112	0.00	12.16	
75							12.10	
76	trans-1,4-Dichloro-2-Bute			4.5	100	0.00	12.23	
		AvgRF	CCRF	%Dev				
77	1,2,3-Trichloropropane	0.285	0.306	-7.4	107	0.00	12.20	
		Amount	Calc.	%Drift				
78	Cyclohexanone			59.6#		0.00	12.27	
		AvaRF	CCRF	%Dev				
79	4-Chlorotoluene	2.379	2.828	-18.9	117	0.00	12.33	
80	tert-Butylbenzene	1.643	1.874	-14.1	114	0.00	12.50	
81	tert-Butylbenzene 1,2,4-Trimethylbenzene	3.254	3.455	-6.2	103	0.00	12.56	
82	sec-Butylbenzene	3.771	4.427	-17.4	114	0.00	12.68	
83	4-Isopropyltoluene	3.449	3.992	-15.7	114	0.00	12.81	
		Amount	Calc.	%Drift				
84	1,3-Dichlorobenzene	40.000	47.819	-19.5	118	0.00	12.95	
85	1,4-Dichlorobenzene	40.000	44.417	-11.0	108	0.00	13.04	
		AvaDE	CCRF	%Dev				
86	n-Butylbenzene	1.889	2.084	-10.3	106	0.00	13.25	
00					100	0.00	13.23	
				%Drift				
87	Benzyl Chloride	40.000	41.921	-4.8	107	0.00	13.28	
		AvgRF	CCRF	%Dev				
88	1,2-Dichlorobenzene	1.898	2.189	-15.3	115	0.00	13.47	
89	1,2-Dibromo-3-Chloropropa	0.160	0.164	-2.5	105	0.00	14.22	
90	Hexachlorobutadiene	0.697	0.788	-13.1	109	0.00	14.77	
91	1,2,4-Trichlorobenzene	1.445	1.560	-8.0	106	0.00	14.81	
92	Naphthalene	2.727	2.880	-5.6	106	0.00	15.09	

Initial (Job Numb Account: Project:	Calibration Verification ber: FA19358 GSYNFLTI Geosyntec Consul LC-39B, KSC, FL	tants		Sample: Lab FileID:		528-ICV35 80078.D	Page 4 of 4
93	1,2,3-Trichlorobenzene	1.212	1.314	-8.4	109	0.00	15.26
94 I	Tert Butyl Alcohol-d10	1.000	1.000	0.0	114	0.00	5.15
95	Ethanol	Amount 800.000 1	Calc. .094.104			0.01	4.18
		AvaRF	CCRF	%Dev			
96	acrolein	1.674	2.571	-53.6#	179	0.00	4.64
97	Tert Butyl Alcohol	1.590	1.580	0.6	111	0.00	5.23
98	tert Amyl alcohol	1.216	1.299	-6.8	110	0.00	7.40
		Amount	Calc.	%Drift			
99	Isobutyl alcohol	800.000	358.424	-7.3	120	-0.01	7.28
100	1,4-Dioxane	800.000 9	51.171	-18.9	135	0.00	8.49
		AvgRF	CCRF	%Dev			
101	3,3-Dimethyl-1-butanol	1.401	1.535	-9.6	123	0.00	10.26

(#) = Out of Range

(#) = Out of Range SPCC's out = 0 CCC's out = 1 N0080073.D 8260SCOXY101514.m Wed Oct 15 19:24:14 2014

Job Number:FA19358Sample:VN3547-CC3528Account:GSYNFLTI Geosyntec ConsultantsLab FileID:N0080523.D

Project: LC-39B, KSC, FL

Evaluate Continuing Calibration Report

MS Integration Params: Tiny.p

Method : C:\MSDchem\2\MET...260SCOXY101514.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Fri Oct 31 10:26:16 2014
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev	Area%	Dev(m	n)R.T.
1 I	Fluorobenzene	1.000	1.000	0.0	102	0.00	7.56
2	Dichlorodifluoromethane	0.435	0.377	13.3	90	0.01	2.67
3 P	Chloromethane	0.434	0.401	7.6	93	0.00	2.86
		Amount		%Drift			
4 C	Vinyl Chloride	40.000	37.308	6.7		-0.02	3.00
5	Bromomethane	40.000	33.282	16.8		0.00	3.39
6	Chloroethane	40.000	36.622	8.4	97	0.00	3.53
7	Trichlorofluoromethane	40.000	39.425	1.4	101	0.00	3.75
		AvgRF	CCRF	%Dev			
8	Ethyl Ether	0.238	0.252	-5.9	100	0.00	4.01
		Amount	Calc.	%Drift			
9	1,2-Dichlorotrifluoroetha	40.000	44.864	-12.2	106	-0.01	4.24
		AvgRF	CCRF	%Dev			
10 C	1,1-Dichloroethene	0.400	0.435	-8.7	104	0.00	4.28
11	Freon 113	0.320	0.395	-23.4#	115	-0.02	4.33
		Amount	Calc.	%Drift			
12	Carbon Disulfide	40.000	43.716	-9.3	107	0.00	4.36
		AvgRF	CCRF	%Dev			
13	Iodomethane	0.675	0.775	-14.8	108	0.00	4.47
14	Methylene Chloride	0.464	0.480	-3.4	108	0.00	4.90
		Amount	Calc.	%Drift			
15	Acetone	200.000	217.294	-8.6	106	0.00	4.94
16	Methyl acetate	200.000	290.625	-45.3#	141	0.00	5.04
		AvgRF	CCRF	%Dev			
17	trans-1,2-Dichloroethene	0.472	0.521	-10.4	103	0.00	5.07
18	Hexane	0.274	0.374	-36.5#	127	0.00	5.12
19	Methyl Tert Butyl Ether	1.133	1.091			0.00	5.17
20	Di-isopropyl ether	1.089	1.116	-2.5	97	0.00	5.54
21 P	1,1-Dichloroethane	0.606	0.691	-14.0		0.00	5.72
22	Acrylonitrile	0.133	0.119	10.5	89	0.00	5.77
23	ETBE	1.064	1.052	1.1	94	0.00	5.93
24	Vinyl acetate	200.000	87.724	56.1#	45	0.00	5.93

Continuing Calibration Summary
Job Number: FA19358
Account: GSYNFLTI Geosyntec Consultants
Project: LC-39B, KSC, FL VN3547-CC3528 Sample: Lab FileID: N0080523.D

		AvaRF	CCRF	%Dev			
25	cis-1,2-Dichloroethene	0.433	0.460	-6.2	105	0.00	6.29
26	2,2-Dichloropropane	0.532	0.514	3.4	95	0.00	6.41
27	Bromochloromethane	0.232	0.262	-12.9	107	0.00	
28	Cyclohexane	0.581	0.685	-17.9	109		6.53
29 C	Chloroform	0.677	0.721	-6.5	105	0.00	6.55
29 C	CIIIOIOIOIIII	0.077	0.721	-0.5	103	0.00	0.55
		Amount	Calc	%Drift			
30		40.000		6.5		0.00	6.73
31 S		50.000	50.370	-0.7	106	0.00	
31 5	DIDI GINGI I GOI GINE CHAILE	30.000	30.370	0.7	100	0.00	0.74
		AvaRF	CCRF	%Dev			
32	Carbon Tetrachloride	0.511				0.00	
33	1,1,1-Trichloroethane	0.574		-5.6	101	0.00	6.80
33	1,1,1 IIICIIIOIOCCIIAIIC	0.571	0.000	3.0	101	0.00	0.00
		Amount	Calc.	%Drift			
34	2-Butanone	200.000		-3.4		0.00	6.85
0 -				3.1		0.00	0.00
		AvaRF	CCRF	%Dev			
35	1,1-Dichloropropene			-15.1		0.00	6.91
	I, I DIGHTOLOFIOFONO	0.101	0.010			0.00	0.72
		Amount	Calc.	%Drift			
36	tert-Butyl Formate			35.4#		0.00	7.00
		AvaRF	CCRF	%Dev			
37	Benzene	1.379		-12.7		0.00	7.16
38	TAME	1.122	1.091	2.8	93	0.00	
39 S	1,2-Dichloroethane-d4	0.301		11.6	102	0.00	7.29
40	1,2-Dichloroethane	0.464	0.486	-4.7	101	0.00	7.36
	1,1 Didiretection	0.101	0.100			0.00	
		Amount	Calc.	%Drift			
41	Trichloroethene	40.000	46.322	-15.8	107	0.00	7.73
		AvgRF	CCRF	%Dev			
42	Methylcyclohexane			-13.3	107	0.00	7.74
43	Dibromomethane	0.243	0.259	-6.6	102	0.00	8.17
44 C	1,2-Dichloropropane	0.338	0.379	-12.1	103		8.25
45	Bromodichloromethane	0.478	0.504	-5.4		0.00	8.31
		Amount	Calc.	%Drift			
46	2-Chloroethyl vinyl ether	200.000	274.782	-37.4#		0.00	8.82
		AvgRF	CCRF	%Dev			
47	cis-1,3-Dichloropropene	0.588	0.644	-9.5	99	0.00	8.92
48 I	Chlorobenzene-d5	1.000	1.000	0.0	109	0.00	10.65
49 S	Toluene-d8	1.287	1.162	9.7	105	0.00	9.10
50 C	Toluene	1.880	2.010	-6.9	106	0.00	9.16
51	2-Nitropropane	0.114	0.081	28.9#	76	0.00	9.38
52	4-Methyl-2-pentanone	0.362	0.351	3.0	98	0.00	9.49
		Amount	Calc.	%Drift			
53	trans-1,3-Dichloropropene	40.000	39.538	1.2	98	0.00	9.55
54	Tetrachloroethene	40.000	37.636	5.9	96	0.00	9.55
		AvgRF	CCRF	%Dev			
55	1,1,2-Trichloroethane	0.341	0.372	-9.1	111	0.00	9.72
56	Dibromochloromethane	0.536	0.551	-2.8	102	0.00	9.91
57	1,3-Dichloropropane	0.688	0.736	-7.0	107	0.00	10.00

Job Numb	Job Number: FA19358 Account: GSYNFLTI Geosyntec Consultants Project: LC-39B, KSC, FL		Sample: Lab FileID:	ple: VN3547-CC3528 FileID: N0080523.D			
58	1,2-Dibromoethane	0.460	0.477	-3.7	105	0.00	10.17
		Amount	Calc.	%Drift			
59	2-hexanone				105	0.00	10.31
60	1-Chlorohexane	40.000	43.686		105	0.00	10.60
			CCRF	%Dev			
61 C	Ethylbenzene	2.107			107		10.67
62 P	Chlorobenzene	1.242	1.372	-10.5	110	0.00	10.67
63	1,1,1,2-Tetrachloroethane				103	0.00	10.72
64	m,p-Xylene	1.543	1.633		106	0.00	10.81
65	o-Xylene	1.631	1.687		103	0.00	11.25
66	Styrene	1.420			107	0.00	11.30
67 P	Bromoform	0.380			100	0.00	11.36
68	Isopropylbenzene		2.217		106	0.00	11.55
69 I	1,4-Dichlorobenzene-d4			0.0	112	0.00	13.02
				%Drift			
70 S	4-Bromofluorobenzene		46.023	8.0	102	0.00	11.87
		AvgRF	CCRF	%Dev			
71	n-Propylbenzene	3.713	4.029	%Dev -8.5	110	0.00	11.97
72	Bromobenzene	1.074		-12.0	114	0.00	11.99
73 P	1,1,2,2-Tetrachloroethane	0.891			114	0.00	12.04
74	1,3,5-Trimethylbenzene	3.305	3.387			0.00	12.16
75	2-Chlorotoluene	2.583				0.00	12.16
		Amount	Calc.	%Drift			
76	trans-1,4-Dichloro-2-Bute	40.000	34.789	13.0	94	0.00	12.23
		AvaRF	CCRF	%Dev			
77	1,2,3-Trichloropropane					0.00	12.20
		Amount	Calc	%Drift			
78	Cyclohexanone						12.27
		AvaRF	CCRE	%Dev			
79	4-Chlorotoluene	2 379	2.531	-6 4		0.00	
80	4-Chlorotoluene tert-Butylbenzene	1 643	1 669	-1 6			
81	1,2,4-Trimethylbenzene	3.254				0.00	12.56
82	sec-Butylbenzene		4.079				12.68
83	4-Isopropyltoluene	3.449	3.699			0.00	12.81
03						0.00	12.01
0.4				%Drift			10.05
84	1,3-Dichlorobenzene	40.000	45.083	-12.7			12.95
85		40.000	46.074	-15.2	117	0.00	13.03
86	n-Butylbenzene		CCRF 2.094			0.00	13 25
	-					0.00	13.23
87	Benzyl Chloride	Amount 40.000	Calc. 33.638	%Drift 15.9	 89	0.00	13.28
			CCRF				
88	1,2-Dichlorobenzene		2.115	-11.4	115	0.00	13.46
89	1,2-Dibromo-3-Chloropropa		0.149	6.9	99	0.00	14.22
90	Hexachlorobutadiene	0.697	0.836		121	0.00	14.77
91	1,2,4-Trichlorobenzene	1.445	1.658		117	0.00	
92	Naphthalene	2.727	2.828	-3.7	108	0.00	15.09

Job Numb Account:	uing Calibration Summa per: FA19358 GSYNFLTI Geosyntec Consu LC-39B, KSC, FL	•		Sample: Lab FileID:		8547-CC352 80523.D	Page 4 of 4
93	1,2,3-Trichlorobenzene	1.212	1.397	-15.3	120	0.00	15.26
94 I	Tert Butyl Alcohol-d10	1.000	1.000	0.0	84	0.00	5.16
95	Ethanol	Amount 800.000 9	Calc. 62.556	%Drift -20.3#	 96	0.02	4.19
		_	CCRF	%Dev			
96	acrolein	1.674	2.277	-36.0#	117	0.00	4.64
97	Tert Butyl Alcohol	1.590	1.610	-1.3	84	0.00	5.23
98	tert Amyl alcohol	1.216	1.316	-8.2	82	0.00	7.40
		Amount	Calc.	%Drift			
99	Isobutyl alcohol	800.000 8	14.955	-1.9	84	-0.01	7.28
100	1,4-Dioxane	800.000 1	362.406	-70.3	# 143	0.00	8.49
		AvgRF	CCRF	%Dev			
101	3,3-Dimethyl-1-butanol	1.401	1.289	8.0	76 	0.00	10.26

(#) = Out of Range SPCC's out = 0 CCC's out = 0 N0080073.D 8260SCOXY101514.m Fri Oct 31 10:45:37 2014 (#) = Out of Range

Initial Calibration Summary

Job Number: FA19358 Sample: VN3548-ICC3548 GSYNFLTI Geosyntec Consultants **Lab FileID:** N0080562.D Account:

LC-39B, KSC, FL **Project:**

Response Factor Report MSVOA8

Method : C:\MSDchem\2\MET...8260nnew110114.m (RTE Integrator)

: SW-846 Method 5030B/8260B & EPA 624

Title : SW-846 Method 5030B/8260F Last Update : Sun Nov 02 16:39:22 2014 Response via : Initial Calibration

Calibration Files

1 =N0080559.D 2 =N0080560.D 3 =N0080561.D 4 =N0080562.D

=N0080563.D 6 =N0080564.D

1 2 3 4 5 6 Avg Compound %RSD

- 1) I Fluorobenzene -----ISTD-----ISTD-----
- Dichlorodifluoromet 0.770 0.607 0.590 0.564 0.530 0.525 0.598 15.10 2.) ---- Linear regr., Force(0,0) ---- Coefficient = 0.9992 Response Ratio = 0.00000 + 0.53194 *A
- 3) P Chloromethane 1.076 0.818 0.759 0.719 0.663 0.664 0.783 19.78 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9988 Response Ratio = 0.00000 + 0.67149 *A
- 4) C Vinyl Chloride 0.689 0.506 0.508 0.497 0.489 0.495 0.531 14.70 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9999 Response Ratio = 0.00000 + 0.49385 *A
- 5) 0.574 0.338 0.300 0.273 0.245 0.235 0.328 38.57 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9963 Response Ratio = 0.00000 + 0.24341 *A
- 0.488 0.259 0.259 0.239 0.206 0.198 0.275 39.09 6) Chloroethane ---- Linear regr., Force(0,0) ---- Coefficient = 0.9937 Response Ratio = 0.00000 + 0.20605 *A
- 7) Trichlorofluorometh 0.746 0.616 0.587 0.565 0.529 0.522 0.594 13.83
- Ethyl Ether 0.526 0.421 0.319 0.314 0.293 0.306 0.363 25.33 8) ---- Linear regr., Force(0,0) ---- Coefficient = 0.9987 Response Ratio = 0.00000 + 0.30381 *A
- 9) 1,2-Dichlorotrifluo 0.716 0.532 0.409 0.394 0.354 0.371 0.463 30.11 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9980Response Ratio = 0.00000 + 0.36944 *A
- 10) C 1.1-Dichloroethene 0.864 0.695 0.543 0.530 0.477 0.505 0.602 24.72 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9977 Response Ratio = 0.00000 + 0.50064 *A
- 0.636 0.533 0.410 0.395 0.351 0.367 0.449 25.01 11) Freon 113 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9976 Response Ratio = 0.00000 + 0.36620 *A
- 12) 1.914 1.326 0.942 0.902 0.747 0.786 1.103 40.59 Carbon Disulfide ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9938 Response Ratio = $0.00000 + 0.89468 *A + -0.06237 *A^2$
- 1.378 1.027 0.808 0.815 0.732 0.704 0.911 28.04 13) Iodomethane ---- Linear regr., Force(0,0) ---- Coefficient = 0.9970 Response Ratio = 0.00000 + 0.72575 *A

Initial Calibration Summary Job Number: FA19358

VN3548-ICC3548 Sample: GSYNFLTI Geosyntec Consultants Lab FileID: N0080562.D Account:

Project:	LC-39B, KSC, FL	Lab Flield:	N0080362.D	
14)	Methylene Chloride 1.317 0.903 0.697 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.61	Coefficient		34.99
15)	Acetone 0.099 0.066 0.052 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 0.05	Coeffici	ent = 0.99	
16)	Methyl acetate 0.123 0.096 0.077 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.07	Coefficient		22.81
17)	trans-1,2-Dichloroe 1.039 0.813 0.657 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.59	Coefficient		24.81
18)	Hexane 0.765 0.662 0.503 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.43	Coefficient		26.03
19)	Methyl Tert Butyl E 1.923 1.405 1.115 Linear regr., Force(0,0) Response Ratio = 0.00000 + 1.08	Coefficient		26.07
20)	Di-isopropyl ether 2.355 1.871 1.537 Linear regr., Force(0,0) Response Ratio = 0.00000 + 1.46	Coefficient		21.15
21) P	1,1-Dichloroethane 1.336 1.052 0.818 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.75	Coefficient		25.93
22) 23)	Acrylonitrile 0.198 0.157 0.165 ETBE 2.032 1.620 1.358 Linear regr., Force(0,0) Response Ratio = 0.00000 + 1.28	3 1.366 1.235 1 Coefficient	.298 1.485	9.71 20.09
24) 25)	Vinyl acetate 0.613 0.525 0.562 cis-1,2-Dichloroeth 0.757 0.595 0.473 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.44	3 0.469 0.428 0 Coefficient	.447 0.528	7.69 23.90
26)	2,2-Dichloropropane 0.788 0.658 0.538 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.50	Coefficient		19.84
27)	Bromochloromethane 0.437 0.336 0.268 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.25	Coefficient		24.58
28)	Cyclohexane 1.241 1.088 0.908 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.83	Coefficient		17.41
29) C	Chloroform 1.275 0.964 0.743 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.67	Coefficient		28.43
30)	Tetrahydrofuran 0.229 0.164 0.114			31.42

---- Linear regr., Force(0,0) ---- Coefficient = 0.9987

Page 3 of 7

Initial Calibration Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL VN3548-ICC3548 Sample: Lab FileID: N0080562.D

rroject:	LC-39D, NSC, FL	
	Response Ratio = 0.00000 + 0.11846 *A	
31) S 32)	Dibromofluoromethan 0.281 0.278 0.275 0.275 0.264 0.261 0.272 Carbon Tetrachlorid 0.926 0.699 0.583 0.601 0.524 0.561 0.649 Linear regr., Force(0,0) Coefficient = 0.9965 Response Ratio = 0.00000 + 0.55476 *A	2.96 22.79
33)	1,1,1-Trichloroetha 0.998 0.785 0.634 0.641 0.583 0.604 0.708 Linear regr., Force(0,0) Coefficient = 0.9986 Response Ratio = 0.00000 + 0.60262 *A	22.47
34)	2-Butanone 0.397 0.267 0.199 0.197 0.172 0.177 0.235 Linear regr., Force(0,0) Coefficient = 0.9975 Response Ratio = 0.00000 + 0.17832 *A	36.82
35)	1,1-Dichloropropene 0.758 0.647 0.523 0.526 0.481 0.503 0.573 Linear regr., Force(0,0) Coefficient = 0.9985 Response Ratio = 0.00000 + 0.49925 *A	18.77
36)	tert-Butyl Formate 0.0000 Linear regr., Force(0,0) Coefficient = 0.0000 Response Ratio = 0.00000 + 0.00000 *A	-1.00
37)	Benzene 2.540 2.070 1.587 1.566 1.410 1.451 1.771 Linear regr., Force(0,0) Coefficient = 0.9984 Response Ratio = 0.00000 + 1.45437 *A	25.12
38)	TAME	17.66
39) S 40)	1,2-Dichloroethane- 0.311 0.305 0.295 0.292 0.283 0.281 0.294 1,2-Dichloroethane 1.028 0.753 0.572 0.555 0.512 0.534 0.659 Linear regr., Force(0,0) Coefficient = 0.9986 Response Ratio = 0.00000 + 0.53075 *A	4.06 30.39
41)	Trichloroethene 0.725 0.564 0.422 0.414 0.379 0.390 0.482 Linear regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 0.39033 *A	28.29
42)	Methylcyclohexane 1.039 0.927 0.762 0.754 0.680 0.702 0.811 Linear regr., Force(0,0) Coefficient = 0.9983 Response Ratio = 0.00000 + 0.70222 *A	17.45
43)	Dibromomethane 0.418 0.337 0.255 0.257 0.235 0.250 0.292 Linear regr., Force(0,0) Coefficient = 0.9977 Response Ratio = 0.00000 + 0.24689 *A	24.46
44) C	1,2-Dichloropropane 0.709 0.566 0.433 0.433 0.402 0.429 0.495 Linear regr., Force(0,0) Coefficient = 0.9978 Response Ratio = 0.00000 + 0.42206 *A	24.16
45)	Bromodichloromethan 0.748 0.611 0.495 0.499 0.468 0.500 0.553 Linear regr., Force(0,0) Coefficient = 0.9979 Response Ratio = 0.00000 + 0.49040 *A	19.42
46)	2-Chloroethyl vinyl 0.281 0.273 0.235 0.237 0.220 0.224 0.245 Linear regr., Force(0,0) Coefficient = 0.9992 Response Ratio = 0.00000 + 0.22441 *A	10.43

Page 4 of 7

Initial Calibration Summary Job Number: FA19358

VN3548-ICC3548 Sample: GSYNFLTI Geosyntec Consultants Lab FileID: N0080562.D Account:

Account: Project:	GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL	Lab FileID: N0080562.D	
47)	cis-1,3-Dichloropro 0.811 0.707 0.607	0.622 0.589 0.631 0.661	12.67
48) I 49) S 50) C	Toluene-d8 1.105 1.149 1.149		
51) 52)	2-Nitropropane 0.127 0.103 0.093 4-Methyl-2-pentanon 0.695 0.577 0.457 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.40	- Coefficient = 0.9971	
53)	trans-1,3-Dichlorop 0.765 0.687 0.592 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.62	- Coefficient = 0.9983	10.16
54)	Tetrachloroethene 0.969 0.833 0.638 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.61	- Coefficient = 0.9985	21.02
55)	1,1,2-Trichloroetha 0.607 0.465 0.357 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.34	- Coefficient = 0.9989	25.58
56)	Dibromochloromethan 0.755 0.626 0.526 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.55	- Coefficient = 0.9973	14.50
57)	1,3-Dichloropropane 1.152 0.904 0.711 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.70	- Coefficient = 0.9980	22.61
58)	1,2-Dibromoethane 0.660 0.581 0.458 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.47	- Coefficient = 0.9974	16.25
59)	2-hexanone 0.413 0.371 0.321 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.30		13.54
60)	1-Chlorohexane 0.833 0.810 0.694 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.70		8.73
61) C	Ethylbenzene 3.841 2.993 2.345 Linear regr., Force(0,0) Response Ratio = 0.00000 + 2.11		26.55
62) P	Chlorobenzene 2.323 1.827 1.397 Linear regr., Force(0,0) Response Ratio = 0.00000 + 1.28		26.66
63)	1,1,1,2-Tetrachloro 0.777 0.662 0.536 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.54	- Coefficient = 0.9971	16.65
64)	m,p-Xylene 2.574 2.179 1.745 Linear regr., Force(0,0) Response Ratio = 0.00000 + 1.52		22.73

Page 5 of 7

Initial Calibration Summary

Job Number: FA19358

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL Sample: VN3548-ICC3548 Lab FileID: N0080562.D

65)	o-Xylene 2.326 2.062 1.722 1.758 1.632 1.664 1.861 14.77 Linear regr., Force(0,0) Coefficient = 0.9992 Response Ratio = 0.00000 + 1.66601 *A
66) 67) P 68)	Styrene 1.677 1.746 1.538 1.593 1.490 1.549 1.599 6.00 Bromoform 0.483 0.413 0.351 0.383 0.363 0.398 0.398 11.79 Isopropylbenzene 2.884 2.741 2.314 2.355 2.104 2.148 2.424 13.15 Linear regr., Force(0,0) Coefficient = 0.9982 Response Ratio = 0.00000 + 2.15947 *A
69) I 70) S 71)	1,4-Dichlorobenzene-d
72)	Bromobenzene 2.163 1.641 1.236 1.212 1.135 1.177 1.427 28.35 Linear regr., Force(0,0) Coefficient = 0.9990 Response Ratio = 0.00000 + 1.17011 *A
73) P	1,1,2,2-Tetrachloro 1.862 1.310 0.974 0.940 0.883 0.914 1.147 33.44 Linear regr., Force(0,0) Coefficient = 0.9991 Response Ratio = 0.00000 + 0.90927 *A
74)	1,3,5-Trimethylbenz 5.172 4.585 3.613 3.553 3.237 3.213 3.896 20.54 Linear regr., Force(0,0) Coefficient = 0.9986 Response Ratio = 0.00000 + 3.26358 *A
75)	2-Chlorotoluene 4.986 4.028 3.025 2.885 2.607 2.627 3.360 28.34 Linear regr., Force(0,0) Coefficient = 0.9985 Response Ratio = 0.00000 + 2.65747 *A
76)	trans-1,4-Dichloro- 0.142 0.134 0.133 0.171 0.186 0.210 0.163 19.40 Linear regr., Force(0,0) Coefficient = 0.9905 Response Ratio = 0.00000 + 0.19750 *A
77)	1,2,3-Trichloroprop 0.506 0.386 0.299 0.301 0.278 0.297 0.345 25.45 Linear regr., Force(0,0) Coefficient = 0.9978 Response Ratio = 0.00000 + 0.29236 *A
78)	Cyclohexanone 0.009 0.014 0.016 0.019 0.019 0.020 0.016 26.15 Quadratic regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 0.01678 *A + 0.00033 *A^2
79)	4-Chlorotoluene 4.176 3.321 2.672 2.641 2.477 2.549 2.973 22.28 Linear regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 2.54097 *A
80)	tert-Butylbenzene 2.693 2.228 1.740 1.763 1.623 1.700 1.958 21.40 Linear regr., Force(0,0) Coefficient = 0.9985 Response Ratio = 0.00000 + 1.68539 *A
81)	1,2,4-Trimethylbenz 5.059 4.686 3.671 3.625 3.298 3.334 3.946 18.83 Linear regr., Force(0,0) Coefficient = 0.9987 Response Ratio = 0.00000 + 3.36129 *A
82)	sec-Butylbenzene 6.397 5.646 4.383 4.271 3.873 3.863 4.739 22.00 Linear regr., Force(0,0) Coefficient = 0.9985

Page 6 of 7

Initial Calibration Summary Job Number: FA19358

Job Number: FA19358 Sample: VN3548-ICC3548
Account: GSYNFLTI Geosyntec Consultants Lab FileID: N0080562.D

Project: LC-39B, KSC, FL

Project:	LC-39B, ASC, FL
	Response Ratio = 0.00000 + 3.91948 *A
83)	<pre>4-Isopropyltoluene 5.194 4.974 3.953 3.888 3.551 3.563 4.187 17.13 Linear regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 3.60196 *A</pre>
84)	1,3-Dichlorobenzene 3.327 2.764 2.162 2.174 2.013 2.102 2.424 21.32 Linear regr., Force(0,0) Coefficient = 0.9987 Response Ratio = 0.00000 + 2.08537 *A
85)	1,4-Dichlorobenzene 4.504 3.430 2.456 2.445 2.238 2.318 2.899 30.99 Linear regr., Force(0,0) Coefficient = 0.9987 Response Ratio = 0.00000 + 2.31186 *A
86) 87)	n-Butylbenzene 2.670 2.549 2.116 2.187 1.996 2.058 2.263 12.31 Benzyl Chloride 0.218 0.301 0.308 0.375 0.372 0.415 0.332 21.25 Linear regr., Force(0,0) Coefficient = 0.9944 Response Ratio = 0.00000 + 0.39616 *A
88)	1,2-Dichlorobenzene 3.692 2.851 2.182 2.169 1.982 2.072 2.491 26.65 Linear regr., Force(0,0) Coefficient = 0.9984 Response Ratio = 0.00000 + 2.05919 *A
89)	1,2-Dibromo-3-Chlor 0.217 0.175 0.133 0.151 0.140 0.152 0.161 19.18 Linear regr., Force(0,0) Coefficient = 0.9964 Response Ratio = 0.00000 + 0.14803 *A
90)	Hexachlorobutadiene 1.507 1.190 0.887 0.908 0.835 0.869 1.033 25.70 Linear regr., Force(0,0) Coefficient = 0.9986 Response Ratio = 0.00000 + 0.86400 *A
91)	1,2,4-Trichlorobenz 2.430 2.039 1.613 1.693 1.587 1.657 1.836 18.20 Linear regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 1.63979 *A
92)	Naphthalene 3.965 3.196 2.808 3.006 2.807 2.947 3.121 14.02 Linear regr., Force(0,0) Coefficient = 0.9987 Response Ratio = 0.00000 + 2.90901 *A
93)	1,2,3-Trichlorobenz 2.188 1.802 1.396 1.442 1.325 1.402 1.593 21.14 Linear regr., Force(0,0) Coefficient = 0.9981 Response Ratio = 0.00000 + 1.38437 *A
94) I	Tert Butyl Alcohol-dlISTD
95)	Ethanol 0.000 -1.00 Quadratic regr., Force(0,0) Coefficient = 0.0000 Response Ratio = 0.00000 + 0.00000 *A + 0.00000 *A^2
96)	acrolein 2.563 2.191 2.745 2.723 2.930 2.977 2.688 10.64 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 2.65088 *A + 0.16868 *A^2
97)	Tert Butyl Alcohol 3.151 2.281 1.640 1.672 1.574 1.622 1.990 31.51 Linear regr., Force(0,0) Coefficient = 0.9992 Response Ratio = 0.00000 + 1.61423 *A
98)	tert Amyl alcohol 1.932 1.518 1.315 1.419 1.338 1.458 1.497 15.09 Linear regr., Force(0,0) Coefficient = 0.9968 Response Ratio = 0.00000 + 1.41635 *A

Page 7 of 7

Initial Calibration Summary

Job Number:FA19358Sample:VN3548-ICC3548Account:GSYNFLTI Geosyntec ConsultantsLab FileID:N0080562.D

Project: LC-39B, KSC, FL

99) Isobutyl alcohol 0.000 -1.00

---- Linear regr., Force(0,0) ---- Coefficient = 0.0000

Response Ratio = 0.00000 + 0.00000 *A

100) 1,4-Dioxane 0.147 0.191 0.172 0.182 0.186 0.199 0.179 10.30

---- Linear regr., Force(0,0) ---- Coefficient = 0.9974

Response Ratio = 0.00000 + 0.19300 *A

101) 3,3-Dimethyl-1-buta 0.000 -1.00

(#) = Out of Range

8260nnew110114.m Sun Nov 02 16:46:52 2014

Page 1 of 3

Initial Calibration Verification

Job Number:FA19358Sample:VN3548-ICV3548Account:GSYNFLTI Geosyntec ConsultantsLab FileID:N0080566.D

Project: LC-39B, KSC, FL

Evaluate Continuing Calibration Report

MS Integration Params: Tiny.p

Method : C:\MSDchem\2\MET...8260nnew110114.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Sun Nov 02 16:39:22 2014
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev 2	Area%	Dev(mi	n)R.T.
1 I	Fluorobenzene	1.000	1.000	0.0	98	0.00	7.56
		Amount	Calc.	%Drift			
2	Dichlorodifluoromethane	40.000	36.624	8.4	85	0.02	2.67
3 P	Chloromethane	40.000	37.377	6.6	86	0.01	2.87
4 C	Vinyl Chloride	40.000	38.895	2.8	95	0.00	3.01
5	Bromomethane	40.000	44.182	-10.5	97	0.00	3.39
6	Chloroethane	40.000	44.599	-11.5	95	0.00	3.54
		_	CCRF	%Dev			
7	Trichlorofluoromethane	0.594	0.551	7.2	96	0.00	3.75
				%Drift			
8	Ethyl Ether	40.000		-6.0	100	0.00	4.01
9	1,2-Dichlorotrifluoroetha			-12.1	103	-0.01	4.24
10 C	1,1-Dichloroethene	40.000	43.614	-9.0	101	0.00	4.28
11	Freon 113	40.000		-3.8	95	-0.02	4.33
12	Carbon Disulfide	40.000	46.972	-17.4	107	0.00	4.36
13	Iodomethane	40.000	38.687	3.3	85	0.00	4.47
14	Methylene Chloride	40.000	42.211	-5.5	95	0.00	4.91
15	Acetone	200.000		-22.4#		0.00	4.94
16	Methyl acetate	200.000		16.5	77	0.00	5.04
17	trans-1,2-Dichloroethene	40.000		-5.6	95	0.00	5.07
18	Hexane	40.000		-7.6	97	0.00	5.12
19	Methyl Tert Butyl Ether	40.000		-4.8	98	0.00	5.17
20	Di-isopropyl ether	40.000		-5.6	98	0.00	5.54
21 P	1,1-Dichloroethane	40.000	39.859	0.4	91	0.00	5.72
		AvgRF	CCRF	%Dev			
22	Acrylonitrile	0.166	0.157	5.4	95	0.00	5.77
		Amount	Calc.	%Drift			
23	ETBE	40.000	41.924	-4.8	97	0.00	5.93
		AvgRF	CCRF	%Dev			
24	Vinyl acetate	0.543	0.785	-44.6#	142	0.00	5.93
				%Drift			
25	cis-1,2-Dichloroethene	40.000	40.860	-2.1	95	0.00	6.29
26	2,2-Dichloropropane	40.000	40.869	-2.2	95	0.00	6.42
27	Bromochloromethane	40.000	41.914	-4.8	96	0.00	6.50
28	Cyclohexane	40.000	41.151	-2.9	93	0.00	6.53

Initial Calibration Verification

Page 2 of 3 Job Number: FA19358 Sample: VN3548-ICV3548 GSYNFLTI Geosyntec Consultants Lab FileID: N0080566.D Account: LC-39B, KSC, FL **Project:**

 Chloroform
 40.000 40.593
 -1.5 93 0.00 6.55

 Tetrahydrofuran
 40.000 43.353
 -8.4 101 0.00 6.73

 29 C 30 0.272 0.271 %Dev ----- AvgRF CCRF 0.4 97 0.00 6.74 31 S Dibromofluoromethane 32 33 34 40.000 41.932 -4.8 98 0.00 6.91 1,1-Dichloropropene 35 36 tert-Butyl Formate ----NA-----37 Benzene 40.000 40.510 -1.3 92 0.00 7.16 38 TAME 40.000 41.900 -4.7 100 0.00 7.23 1,2-Dichloroethane-d4 0.294 0.286 2.7 96 0.00 7 2.7 96 0.00 7.29 39 S -2.9 97 0.00 7.36 -3.1 96 0.00 7.73 97 0.00 7.36 40 41 Methylcyclohexane 40.000 42.562 -6.4 97 0.00 7.74 Dibromomethane 40.000 40.419 -1.0 95 0.00 8.17 1,2-Dichloropropane 40.000 40.542 -1.4 97 -0.02 8.25 Bromodichloromethane 40.000 39.820 0.4 96 0.00 8.31 2-Chloroethyl vinyl ether 200.000 125.418 37.3# 58 0.00 8.82 42 43 44 C 45 46 cis-1,3-Dichloropropene 0.661 0.587 11.2 47 93 0.00 8.92
 1.000
 1.000
 0.0
 98
 0.00
 10.65

 1.153
 1.170
 -1.5
 98
 0.00
 9.10
 Chlorobenzene-d5 48 I 49 S Toluene-d8 ----- Amount Calc. %Drift -----50 C Toluene 40.000 41.383 -3.5 95 0.00 9.16 ----- AvgRF CCRF %Dev _____ 51 0.104 0.099 4.8 97 0.00 9.38 2-Nitropropane ----- Amount Calc. %Drift ------7.7 94 0.00 9.49 4-Methyl-2-pentanone 200.000 215.344 52 -4.2 102 0.00 9.55 53 trans-1,3-Dichloropropene 40.000 41.663 54 Tetrachloroethene 40.000 40.674 -1.7 95 0.00 9.55 1,1,2-Trichloroethane 55 40.000 41.170 -2.9 97 0.00 9.72 Dibromochloromethane 40.000 39.784 0.5 98 0.00 56 9.91 1,3-Dichloropropane 40.000 40.375 -0.9 97 0.00 10.00 -0.0 98 0.00 10.17 57 40.000 40.006 58 1,2-Dibromoethane 59 200.000 220.360 -10.2 100 0.00 10.31 2-hexanone 1-Chlorohexane 40.000 40.673 -1.7 99 0.00 10.60 60 40.000 42.112 61 C -5.3 95 0.00 10.67 Ethylbenzene Chlorobenzene 40.000 44.541 -11.4 102 0.00 10.67 62 P 1,1,1,2-Tetrachloroethane 40.000 39.850 m,p-Xylene 80.000 89.378 96 0.00 10.72 0.4 63 80.000 89.378 -11.7 98 0.00 10.81 40.000 44.061 -10.2 103 0.00 11.24 64 m,p-Xylene 65 o-Xylene CCRF ----- AvgRF %Dev 1.541 0.363 3.6 66 95 0.00 11.30 Styrene 1.599 67 P Bromoform 0.398 8.8 93 0.00 11.36 ----- Amount Calc. %Drift -----

Page 3 of 3

Initial Calibration Verification

VN3548-ICV3548 Job Number: FA19358 Sample: Account: GSYNFLTI Geosyntec Consultants **Lab FileID:** N0080566.D **Project:** LC-39B, KSC, FL Isopropylbenzene 40.000 44.926 -12.3 101 0.00 11.55 68

		AvaRF	CCRF	%Dev			
69 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	98	0.00	13.01
70 S	4-Bromofluorobenzene	0.783	0.769	1.8	97	0.00	11.87
		Amount	Calc.	%Drift			
71	n-Propylbenzene	40.000	45.363	-13.4	102	0.00	11.97
72	Bromobenzene	40.000	39.806	0.5	94	0.00	11.99
72 73 P	1,1,2,2-Tetrachloroethane		38.791	3.0	92	0.00	12.04
74	1,3,5-Trimethylbenzene	40.000	40.455	-1.1	91	0.00	12.16
75	2-Chlorotoluene	40.000	43.494	-8.7	98	0.00	12.16
76	trans-1,4-Dichloro-2-Bute		35.398	11.5	100	0.00	12.22
77	1,2,3-Trichloropropane	40.000	39.248	1.9	93	0.00	12.20
78	Cyclohexanone		715.588	-257.8		0.00	12.27
79	4-Chlorotoluene	40.000	43.569	-8.9	102	0.00	12.33
80	tert-Butylbenzene	40.000	42.127	-5.3	98	0.00	12.49
81	1,2,4-Trimethylbenzene	40.000	40.451	-1.1	92	0.00	12.56
82	sec-Butylbenzene	40.000	43.987	-10.0	99	0.00	12.67
83	4-Isopropyltoluene	40.000	43.209	-8.0	98	0.00	12.81
84	1,3-Dichlorobenzene	40.000	43.045	-7.6	101	0.00	12.95
85	1,4-Dichlorobenzene	40.000	40.071	-0.2	93	0.00	13.03
			CCRF	%Dev			
86	n-Butylbenzene	2.263	2.007	11.3	90	0.00	13.25
		Amount	calc.	%Drift			
87	Benzyl Chloride	40.000	33.225	16.9	86	0.00	13.27
88	1,2-Dichlorobenzene	40.000	42.397	-6.0	98	0.00	13.46
89	1,2-Dibromo-3-Chloropropa	40.000	36.758	8.1	88	0.00	14.22
90	Hexachlorobutadiene	40.000	37.714	5.7	88	0.00	14.76
91	1,2,4-Trichlorobenzene	40.000	37.363	6.6	88	0.00	14.81
92	Naphthalene	40.000	36.194	9.5	86	0.00	15.09
93	1,2,3-Trichlorobenzene	40.000	36.642	8.4	86	0.00	15.26
		AvgRF	CCRF	%Dev			
94 I	Tert Butyl Alcohol-d10	1.000	1.000	0.0	96	0.00	5.16
			_				
٥٢		Amount	Calc.	%Drift NA			
95 96	Ethanol acrolein	200 000	124.728		60	0.00	4.64
96 97				**		0.00	5.24
97	Tert Butyl Alcohol tert Amyl alcohol		447.275 411.468	-11.8 -2.9	99		5.24 7.40
99	Isobutyl alcohol	400.000		-2.9 NA			7.40
100	1,4-Dioxane	800 000	867.542	-8.4	110	0.00	8.49
100	I, I DIOMAIL	200.000	557.512	0.4		3.00	0.10
		AvgRF	CCRF	%Dev			
101	3,3-Dimethyl-1-butanol	0.000		0.0	0#	0.04	10.31

(#) = Out of Range SPCC's out = 0 CCC's out = 0 N0080562.D 8260nnew110114.m Sun Nov 02 16:46:38 2014

Page 1 of 3

Continuing Calibration Summary

Job Number: FA19358 Sample: VN3549-CC3548

Account: GSYNFLTI Geosyntec Consultants Lab FileID: N0080569.D

Project: LC-39B, KSC, FL

Evaluate Continuing Calibration Report

MS Integration Params: Tiny.p

Method : C:\MSDchem\2\MET...8260nnew110114.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Sun Nov 02 16:39:22 2014
Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	AvgRF	CCRF	%Dev 2	Area%	Dev(mi	n)R.T.
1 I	Fluorobenzene	1.000	1.000	0.0	102	0.00	7.56
		Amount	Calc.	%Drift			
2	Dichlorodifluoromethane	40.000	40.823	-2.1		0.01	2.67
3 P	Chloromethane	40.000	40.767	-1.9		0.01	2.87
4 C	Vinyl Chloride	40.000	40.017	-0.0	101	0.00	3.01
5	Bromomethane	40.000	44.226	-10.6	101	0.00	3.39
6	Chloroethane	40.000	47.354		104	0.00	3.53
				%Dev			
7	Trichlorofluoromethane	0.594	0.566	4.7	102	0.00	3.75
		Amount					
8	Ethyl Ether	40.000	42.446	-6.1		0.00	4.01
9	1,2-Dichlorotrifluoroetha		42.341	-5.9	101	-0.01	4.24
10 C	1,1-Dichloroethene	40.000	41.414	-3.5	100	0.00	4.28
11	Freon 113	40.000	42.113		100	-0.01	4.34
12	Carbon Disulfide	40.000	38.206	4.5	92	-0.01	4.35
13	Iodomethane	40.000	39.159	2.1		0.00	4.47
14	Methylene Chloride	40.000	41.492	-3.7		0.00	4.90
15	Acetone		257.441	-28.7#		0.00	4.93
16	Methyl acetate		213.654	-6.8		0.00	5.04
17	trans-1,2-Dichloroethene	40.000		-5.1		0.00	5.07
18	Hexane	40.000	43.041	-7.6		0.00	5.12
19	Methyl Tert Butyl Ether	40.000	41.598		101	0.00	5.17
20	Di-isopropyl ether	40.000	42.172			0.00	5.54
21 P	1,1-Dichloroethane	40.000	41.555	-3.9	99	0.00	5.72
		AvgRF	CCRF	%Dev			
22	Acrylonitrile	0.166		3.0	101	0.00	5.77
23	ETBE	40.000	42.088	-5.2	101	0.00	5.93
				%Dev			
24	Vinyl acetate	0.543	0.534	1.7	100	0.00	5.93
		Amount	Calc.	%Drift			
25	cis-1,2-Dichloroethene	40.000	40.217	-0.5		0.00	
26	2,2-Dichloropropane	40.000	42.162	-5.4	102	0.00	6.41
27	Bromochloromethane	40.000	41.151	-2.9	98	0.00	6.50
28	Cyclohexane	40.000	42.543	-6.4	100	0.00	6.53

Job Numb Account:	uing Calibration Summary ber: FA19358 GSYNFLTI Geosyntec Consulta LC-39B, KSC, FL			Sample: Lab FileID:		3549-CC3548 080569.D	Page 2 of 3
29 C 30	Chloroform Tetrahydrofuran	40.000	44.288			0.00 -0.01	6.55 6.72
31 S	Dibromofluoromethane	0.272	0.269	1.1	100	-0.01	
32 33 34 35 36 37 38	2-Butanone	40.000 200.000 40.000 40.000	229.861 41.600 42.731	-14.9	106 101 	0.00	6.80 6.85 6.91
39 S	1,2-Dichloroethane-d4	AvgRF 0.294			 101	0.00	 7.29
40 41 42 43 44 C 45 46	1,2-Dichloropropane Bromodichloromethane 2-Chloroethyl vinyl ether	40.000 40.000 40.000 40.000 40.000 200.000	42.373 42.455 42.350 41.335 41.364 41.269 215.922	-5.9 -6.1 -5.9 -3.3 -3.4	103 102 101 101 103	0.00 -0.02 0.00	7.36 7.73 7.74 8.17 8.25 8.30
47	cis-1,3-Dichloropropene				103	0.00	8.92
48 I 49 S	Chlorobenzene-d5 Toluene-d8	1.000 1.153	1.000 1.160		102 102		10.65 9.10
50 C	Toluene	40.000	42.457	-6.1		0.00	9.16
51	2-Nitropropane	AvgRF 0.104	0.105	-1.0	107	0.00	9.38
52 53 54 55 56 57 58 59 60 61 C 62 P 63 64 65	4-Methyl-2-pentanone trans-1,3-Dichloropropene Tetrachloroethene 1,1,2-Trichloroethane Dibromochloromethane 1,3-Dichloropropane 1,2-Dibromoethane 2-hexanone 1-Chlorohexane Ethylbenzene Chlorobenzene 1,1,1,2-Tetrachloroethane m,p-Xylene o-Xylene	200.000 40.000 40.000 40.000 40.000 40.000 200.000 40.000 40.000 40.000 80.000 40.000	224.653 40.978 42.213 41.764 40.179 41.447 40.978 235.875 40.669 43.135 42.751 40.219 89.033 42.070	-4.4 -0.4 -3.6 -2.4 -17.9 -1.7 -7.8 -6.9 -0.5 -11.3 -5.2	102 105 102 103 103 104 111 103 102 101 101	-0.01 0.00 0.00 0.00 0.00 0.00 0.00	9.49 9.55 9.55 9.72 9.91 10.00 10.17 10.31 10.60 10.67 10.67 10.81 11.24
66 67 P	Styrene Bromoform	0.398	1.577 0.384	1.4 3.5	101 103		11.30 11.36
		Amount	Calc.	%Drift			

Page 3 of 3 VN3549-CC3548

ob Num ccount: roject:	ber: FA19358 GSYNFLTI Geosyntec Consulta LC-39B, KSC, FL	unts		Sample: Lab FileID:		8549-CC35 80569.D	48
58	Isopropylbenzene	40.000	42.688	-6.7	100	0.00	11.5
		AvgRF	CCRF	%Dev			
59 I	1,4-Dichlorobenzene-d4	1.000	1.000	0.0	101	0.00	13.0
0 S	4-Bromofluorobenzene	0.783	0.765	2.3	100	0.00	11.8
				%Drift			
1	n-Propylbenzene	40.000	43.284	-8.2	100	0.00	11.9
2	Bromobenzene	40.000	41.022	-2.6	100	0.00	11.9
3 P	1,1,2,2-Tetrachloroethane	40.000	41.404	-3.5	101	0.00	12.0
4	1,3,5-Trimethylbenzene	40.000	43.059	-7.6	100	0.00	12.1
5	2-Chlorotoluene	40.000	42.667	-6.7	99	0.00	12.1
6	trans-1,4-Dichloro-2-Bute	40.000	45.942		134	0.00	12.2
7	1,2,3-Trichloropropane	40.000	40.948	-2.4	100	0.00	12.2
8	Cyclohexanone		199.981	0.0	97	0.00	12.2
9	4-Chlorotoluene	40.000	41.244		100	0.00	12.3
0	tert-Butylbenzene	40.000	41.562	-3.9	100	0.00	12.4
1	1,2,4-Trimethylbenzene	40.000	42.836	-7.1	100	0.00	12.5
2	sec-Butylbenzene	40.000	43.065	-7.7	100	0.00	12.6
3	4-Isopropyltoluene	40.000	43.148		101	0.00	12.8
34	1,3-Dichlorobenzene	40.000	41.501	-3.8	101	0.00	12.9
5	1,4-Dichlorobenzene	40.000	41.716	-4.3	100	0.00	13.0
		AvgRF	CCRF	%Dev			
16	n-Butylbenzene	2.263	2.129	5.9	98	0.00	13.2
				%Drift			
37	Benzyl Chloride	40.000	38.811	3.0	104	0.00	13.2
88	1,2-Dichlorobenzene	40.000	41.820	-4.6	100	0.00	13.4
39	1,2-Dibromo-3-Chloropropa	40.000	41.682	-4.2	103	0.00	14.2
0	Hexachlorobutadiene	40.000	41.612	-4.0	100	0.00	14.7
1	1,2,4-Trichlorobenzene	40.000	41.129	-2.8	101	0.00	14.8
2	Naphthalene	40.000	41.031	-2.6	100	0.00	15.0
3	1,2,3-Trichlorobenzene	40.000	41.253	-3.1	100	0.00	15.2
		AvgRF	CCRF	%Dev			
4 I	Tert Butyl Alcohol-d10	1.000	1.000	0.0	95	0.00	5.1
		Amount		%Drift			
5	Ethanol	000 000		NA			, -
16	acrolein			-20.8#		0.00	4.6
7	Tert Butyl Alcohol			-10.9		0.00	5.2
8	tert Amyl alcohol	400.000	425.295			-0.01	7.3
19	Isobutyl alcohol	000 000		NA			0 4
0	1,4-Dioxane	800.000	870.837	-8.9	109	0.00	8.4
1	3,3-Dimethyl-1-butanol	AvgRF		%Dev NA		 _	
, <u>+</u>	3,3-Dimechyl-1-Ducahor						

^{(#) =} Out of Range

(#) = Out of Range SPCC's out = 0 CCC's out = 0 N0080562.D 8260nnew110114.m Sun Nov 02 17:20:48 2014

		_				
Mis	C	$-\mathbf{H}_{i}$	\cap 1	rr	n	C

Custody Documents and Other Forms

(Accutest New Jersey)

Includes the following where applicable:

· Chain of Custody

/	AC	JT	ES	3T.

CHAIN OF CUSTODY

Page 1 of 1

	LABORATOR			4405 Vinela	and Rd, S	uite C-15,	Orlando,	FL 328	811					6	127	king# 27:	5D 5	479		Bol	tle Order	Control #			
				1EL. 40		00 FAX		5-0707						Accute	est Quo	le#				Acc	utest Joh	# د	FA193	58	
Compan	Client / Reporting Information	Project Name:		Project	t Inform	nation									R	Reques	ted An	alvsis	(see T	FST C	ODF s	heet)			Matrix C
l	utest Laboratories	Project Name:													T		T		1			iicct)	T	Т	IVIALITIX
Street A		Street		LC-	39B, K	SC, FL										İ				- 1				1 '	DW - Drinkin
1	5 Vineland Rd, Suite C-15	Street			-						_			7				- 1					- 1		GW - Groun WW - W
City	State	Zip City		State	Billing	Informati ny Name	on (if dif	erent f	from F	Report	to)			_				1					1		SW - Surfac SO - S
Orla	ndo FL 32811					.,												İ		1					SL- Slu
Project C		Project #		***************************************	Street /	Address								-				-							SED-Sed OI - C
andre																									LIQ - Other AIR - A
Phone #	425-6700	Fax # Client Purchase	e Order#		City				State			Zip		1											SOL - Othe
	(s) Name(s)	Phone Project Manage			<u> </u>														- 1			1			WP - W FB-Field E
MB		r none Project Manage	7		Attentio	n:							{	₹			İ			1					EB-Equipme RB- Rinse
	· · · · · · · · · · · · · · · · · · ·			Collection		Т	т	_	Mone			ed Bottl		9050					- 1				ļ		TB-Trip E
						1	ļ	\vdash		T	\neg	-	w T	- ≧											
Accutest Sample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled	Matrix	# of bottle	اوا	NOS NOS	2504	ONE	EOH	NCO	ALMS									1		
4F	39B-LOX-TA0012S-009.5-20141	022	10/22/14	1:23:00 PM	-	1		I	2 I	I	Ž	2 2	ū		+	-		+				\perp			LAB USE
4	39B-LOX-TA0012S-009.5-20141					AQ	1	\sqcup	-11	\perp	4	Ш		X	1			\perp							
-+	555-E5A-1M00123-003.5-20141	U44	10/22/14	1:23:00 PM	MB	AQ	1		1	Ш		\perp		Х						T	T				F(_
										11	Т		T						\neg	\top	\top	+-	+		
								П	T		1	\top	\top	1	\vdash	_	+	+-	_	+	+	+-	+	-+	
				1		-	_	+	+	Н	+	+	+	-	+		_	+-	-	+	-		\perp	\rightarrow	
\neg								+	+	Н	+	+	\perp		-	_					\perp				
-								\sqcup	┸	Ш	_										ļ				
										Ш															
								П	Γ	П	Т	П						1	_	_	+	+-	+	-	
								\vdash	1	\vdash	+	+	+		+-	+	+-	+-	-	+	+	+-	+-	\rightarrow	
								\vdash	+	\vdash	+	++	+	-	-	-	-	-		_	+	\bot	$\perp \perp$		
-								Н	+-	H	_	$\perp \downarrow$	_											- 1	
-																	1	1							
								П			Т	П									\top	+	+	-+	
	Turnaround Time (Business days)						Data	Delive	rable	Inform	natio	n			1				Co	mments	/ Spec	ial Instru	ctions		
	10 Day (business)	Approved By (Accu	rtest PM): / Date:			Commerci										ALN	J								
	5-7 Day					Commercia		evel 2,	Resul	ts + Q	C su	mmary)												
_	3 Day RUSH				-	REDT1 (L														RI	VE	'ISI	FD		
_	2 Day RUSH			1		OD FULT)												4 24	~ ∀	LUI	السلائد		
	1 Day RUSH					Other _										1		1-0	1	Sr .	lan	1. 1	2/4	- N - Q	-00
	other 7 sh T/A data available VIA Lablink					DD Form	at									11	^5 S	mmyl	اله ج	ris A	rii tit	7Y 1	(1 ITC	· 1) 7	-presei
			Sample Custo	dy must be do	cumento	ed below	each tin	e sam	nnles	chan	ne n	osses	eion :	includ!-			by	AL	-SE	14/2	9 1	<u>t</u>			
		ate/Tir		ED EV				Relinqu	ished	Вуј			31011,	neiudir	ıy cot	urier de	Date T	med		Receiv	ed By:		_		
Palipouie		10/28/14 1700	·	CD EX				2		re	9	EX.					10/2	1/14	10:10	2		\geq	1_		
		ate Time:	Received By: 3	/				Relinqui 1	ished	Ву:		/					Date Ti			Receiv	ed By:				\rightarrow
Relinquisi	hed by:		Received By:					Custody	y Seal	*			-	ntact	>	Presen	red where	annlie-t-	lo.	4					
			5							SE a	SIA	√ [*]	ο,	fot intact		riesen	#	аррисав	W.			On Içe		Cooler Ter	np. 1.60

FA19358: Chain of Custody
Page 1 of 3
Accutest New Jersey

CC	UT	ES	T

CHAIN OF CUSTODY

Page 1 of 1

				4405 Vinela	and Rd, S	uite C-15,	Orlando,	FL 328	111					61	27	2750	54	79			Order Con				
					00 FAX		-0707						6/27 2750 5479 Accutest Quote #						Accutest Job # FA19358						
	Client / Reporting Information			Inform										Rec	uestos	i Analu	oio (o	TEC							
Company		Project Name:												_	1109	Testet	Allaly	515 (51	ee res	TCOL	E snee	(t)	T T	Matr	ix C
	test Laboratories			LC-	39B, K	SC, FL								ĺ				İ				İ		DW - Dr	Jrinkin
Street Ad		Street												i	1	ĺ		İ				1	1 1	GW - G	Ground
	Vineland Rd, Suite C-15				Billing	Informati	on (if diff	erent fi	rom Re	port t	0)					1		1				1		SW - St	W - W. iurfaci
City	State Zip	City		State	Compa	ny Name								ĺ				1							O - S - Sluc
Orlan Project Co													ļ		İ			1						SED-	-Sedi
andrea		Project #			Street A	ddress								i	İ			1	İ	1	1			LIQ - C	Ol - C Other
Phone #		# Client Purchase	Order#		City				State					i			İ		1					AI AI	IR - A
407-4	25-6700	- John Hardings	order #		City				state			Zip						Ì			1				P - W
Sampler(s) Name(s) Pho	ne Project Manage	er		Attentio	2.							-	, '	ļ			l				l		FB-Fi EB-Equip	
MB					1							e cos	لجاتمه	9		l			ĺ					RB- Ri	inse
				Collection	J	Т	_	т —	Numbe	er of pre	eserved		-1	6020				1	1					TB-T	rip B
Acoutest						1		\Box	7	_	je j	_ "		Sby				l			1				
Sample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottle	호	HNO3	HZSO		MEOH		ALMS by											
4F	39B-LOX-TA0012S-009.5-20141022		10/22/14	1:23:00 PM			-	1-1:	- 11	+	X	2 "	+				<u> </u>		<u> </u>	<u> </u>	<u> </u>		\vdash	LAB U	SE
		-				AQ	1	\perp	1	1	1		Ш	Х										- 1	
-4	39B-LOX-TA0012S-009.5-20141022		10/22/14	1:23:00 PM	MB	AQ	1		1					Х		ĺ								F	7
			1					П					\Box											+	_
								+	+	+	+	+	+						_		-				
_		1	 					++	+	+	+	_	+						<u></u>						
		-																							
									11			ļ													
								\vdash		\top	\top	-	\vdash	$\overline{}$						-					
									+	+	+	+	+	-						ļ					
-		-						Ш	+	_	\perp	\perp	\sqcup										-	-	
												- [
								П			П												_		
								H	+	+	+	+	+	\rightarrow						_	-		-+		
		-						\vdash	++	+	\vdash	-	\vdash	\rightarrow											
	Turnaround Time (Business days)							LL	Ш														- 1		
	rumaround rime (Business days)	<u> </u>						Delive											Com	nents / S	Special	nstructi	ons		
	10 Day (business)	Approved By (Accu	itest PM): / Date:			ommerci									- 1	ALNJ									
-	5-7 Day					ommerci EDT1 (L		evel 2, I	Result	s + QC	Sumi	nary)			ĺ					-					
	3 Day RUSH					ULT1 (L													-	RE	VI	SF	D		
	2 Day RUSH					OD FULT		1)											-4	· Ondiged	A "H"	Prest dieses	1 Shad		
	1 Day RUSH			- 1	-	Other 1									l.	d.		1	, . 1	, , !	-1		1/200	200	
	other 7 h T/A data available VIA Lablink				E	DD Form	at									1115	5#1	nyie	24	> A11	CHOY	7	ILCIC	> / his	se!
	TOTAL STORES		Sample Custo	dy must he do	cumente	d balow	each tie	10 63***	nles :	har -							by_	ALS	<u>E</u>	10/29	TH			s 7 pres	
Relinquish	ned by Sampler: Date/Ti		Received By:	En C	cuntente	a pelow	each un	re sam Relinqui	ished B	:nang Yi	e pos	sessi	on, in	cluding	courie	er delive	ry. Date Time						_		
	10/2	814 1700	1 5	ed fX				2			S E	/				ľ	0/29/	4 /1	:/6	Received 2	ву:	\sim	1	"	
Relinquish	ned by Sampler: Date Ti	me:	Received By:					Relinqui	ished B	y:	1						ate Time:	1 10		Received	Ru:)
Relinquish	ed by: Date Ti	ne:	Received By:					4							*****					4					
	. Date 17		5					Custody		E e			Inta	act ot intact	P	reserved	whore ap	olicable				On Ice	Co	oler Temp.	10
									75	ے د	210		- Noi	R intact			/-					74		(,)	6

FA19358: Chain of Custody Page 2 of 3

7

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: FA	19358		Client:			Project:			
Date / Time Received: 10/2	29/2014			Delivery Me	thod:	Airbill #'s:			
Cooler Temps (Initial/Adjus	ted): <u>#1</u>	: (1.6/1.6	<u>); 0</u>						
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	<u>Y</u>	3. 0	COC Pres	sent:	Y or N V U	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for:	Y V V Y V V	or N Or N Or N Or N	
Quality Control Preservatio 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:		or N	N/A □ □			3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear:		or N	N/A
Comments						5. Filtering instructions clear:			V
Accutest Laboratories V:732.329.0200						IS Highway 130 32.329.3499			Dayton, New Jersey www/accutest.com

FA19358: Chain of Custody Page 3 of 3

Metals Analysis

QC Data Summaries

(Accutest New Jersey)

Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- · Initial and Continuing Calibration Checks
- High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

Methods: SW846 6020A

File ID: XA103114M1L.CSV Analyst: VC

Date Analyzed: 10/31/14 Run ID: MA35299

	.yst: VC meters: Al		Run ID: MA35299
Time		Dilution Factor	Comments
13:11	MA35299-STD1	1	STDA
13:15	MA35299-STD2	1	STDA
13:20	MA35299-STD3	1	STDB
13:25	MA35299-STD4	1	STDC
13:29	MA35299-STD5	1	STDD
13:34	MA35299-STD6	1	STDE
13:39	MA35299-STD7	1	STDF
13:43	MA35299-STD8	1	STDG
13:48	MA35299-STD9	1	STDH
13:53	MA35299-STD10	1	STDI
13:57	MA35299-STD11	1	STDJ
14:02	MA35299-STD12	1,	STDI
14:07	MA35299-ICV1	1,	60ppb Al only
14:11	MA35299-ICVA1	1	
14:16	MA35299-ICB1	1	
14:21	MA35299-CRIB1	1	
14:25	MA35299-CCVA1	1	
14:30	MA35299-CCB1	1	
14:34	MA35299-ICSA1	1	
14:39	MA35299-ICSAB1	1	
14:44	ZZZZZZ	1	
14:48	MP82882-MB1	2	
14:53	ZZZZZZ	10	
14:58	ZZZZZZ	2	
15:02	FA19358-4F	2	
15:07	ZZZZZZ	1	
	MA35299-CCVA2		
	MA35299-CCB2		
	ZZZZZZ		
	MA35299-CCVA3		
	MA35299-CCB3		
	ZZZZZZ		
15:39	ZZZZZZ	10	

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

	Gamala	Dilutin DC	
Time		Dilution PS Factor Recov	Comments
15:47	MP82882-B1	10	
15:51	FA19358-4	10	
15:56	ZZZZZZ	10	
16:04	FA19358-4F	10	Not needed.
16:09	ZZZZZZ	1	
16:13	ZZZZZZ	1	
16:18	ZZZZZZ	1	
16:23	MA35299-CCVA4	1	
16:27	MA35299-CCB4	1	
16:32	MA35299-CRIB2	1	
16:37	MP82882-S1	10	
16:41	MP82882-S2	10	
16:46	ZZZZZZ	1	
16:51	JB80352-2	2	(sample used for QC only; not part of login FA19358)
16:55	MP82882-SD1	10	
17:00	ZZZZZZ	2	
17:04	ZZZZZZ	2	
17:09	ZZZZZZ	2	
17:14	ZZZZZZ	1	
17:18	MA35299-CCVA5	1	
17:23	MA35299-CCB5	1	
17:28	MP82890-MB1	5	
17:32	MP82890-B1	25	
17:37	MP82890-S1	25	
17:41	MP82890-S2	25	
17:46	ZZZZZZ	1	
17:51	JB80261-1	5	(sample used for QC only; not part of login FA19358)
17:55	MP82890-SD1	25	
18:00	MP82890-PS1	5	
18:04	ZZZZZZ	1	
18:09	MA35299-CCVA6	1	
18:14	MA35299-CCB6	1	
18:18	MP82890-S1	100	

Login Number: FA19358 Account: ALSE - Accutest Laboratories Southeast, Inc. Project: GSYNFLTI: LC-39B, KSC, FL

Methods: SW846 6020A

File ID: XA103114M1L.CSV Analyst: VC

Date Analyzed: 10/31/14 Run ID: MA35299

	Time	Sample Description	Dilution PS Factor Recov	Comments
	18:23	MP82890-S2	100	
	18:28	JB80261-1	25	(sample used for QC only; not part of login FA19358)
	18:32	MP82890-SD1	125	
	18:37	MP82890-PS1	25	
	18:41	MP82882-S1	50	
	18:46	MP82882-S2	50	
	18:51	JB80352-2	50	(sample used for QC only; not part of login FA19358)
>	Last re	MP82882-SD1 eportable sample, ZZZZZZ	250 /prep for job FA19 1	358
	19:04	MA35299-CCVA7	1	
	19:09	MA35299-CCB7	1	
	19:14	MA35299-CRIB3	1	
	19:18	MP82891A-MB1	5	
	19:23	MP82891A-B1	10	
	19:28	MP82891A-S1	10	
	19:32	MP82891A-S2	10	
	19:37	ZZZZZZ	1	
	19:41	JB80133-1	5	(sample used for QC only; not part of login FA19358)
	19:46	MP82891A-SD1	25	
		ZZZZZZ	1	
	19:55	MA35299-CCVA8	1	
>	Last re	MA35299-CCB8 eportable CCB for ZZZZZZ	1 r job FA19358 5	
	20:09	ZZZZZZ	5	
	20:14	MP82923A-MB1	5	
	20:18	MP82923A-B1	10	
	20:23	MP82923A-S1	10	
	20:28	MP82923A-S2	10	
	20:32	ZZZZZZ	1	
	20:37	JB80133-1A	5	(sample used for QC only; not part of login FA19358)
		MP82923A-SD1	25	
	20:46	ZZZZZZ	1	
	20:51	MA35299-CCVA9	1	High RSD.

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

Methods: SW846 6020A

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14

Analyst: VC Run ID: MA35299 Parameters: Al

Lara	meters. Ar			
Time	-	Dilution Factor	PS Recov	Comments
20:55	MA35299-CCB9	1		
21:00	MP82925A-MB1	5		
21:05	MP82925A-B1	10		
21:09	MP82925A-S1	10		
21:14	MP82925A-S2	10		
21:19	ZZZZZZ	1		
21:23	JB80134-1A	5		(sample used for QC only; not part of login FA19358)
21:28	MP82925A-SD1	25		
21:33	ZZZZZZ	1		
21:37	ZZZZZZ	1		
21:42	MA35299-CCVA10	1		
21:46	MA35299-CCB10	1		
21:51	MA35299-CRIB4	1		Sb and Se out for DOD.
21:56	MA35299-CCVA11	1		
22:00	MA35299-CCB11	1		
22:05	ZZZZZZ	1		
22:09	ZZZZZZ	1		
22:14	ZZZZZZ	1		

Refer to raw data for calibration curve and standards.

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

	meters. Ar								
Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
13:11	MA35299-STD1	100	100	100	100	100	100	100	100
13:15	MA35299-STD2	100	100	100	100	100	100	100	100
13:20	MA35299-STD3	99.75	100.139	103.297	100.277	101.066	100.365	99.357	99.256
13:25	MA35299-STD4	100.91	100.005	103.518	100.31	100.283	101.314	100.583	99.855
13:29	MA35299-STD5	100.129	99.374	102.919	100.243	100.091	100.881	100.134	99.607
13:34	MA35299-STD6	99.793	99.833	101.555	98.167	100.964	99.395	97.614	98.806
13:39	MA35299-STD7	98.446	98.533	99.653	97.597	99.896	98.406	98.763	99.212
13:43	MA35299-STD8	97.768	98.021	100.219	98.246	97.716	98.166	97.52	97.009
13:48	MA35299-STD9	98.115	98.431	100.756	98.613	98.801	98.953	97.426	98.122
13:53	MA35299-STD10	97.939	98.846	96.954	97.604	98.431	93.948	98.628	98.297
13:57	MA35299-STD11	97.558	100.106	102.738	96.899	98.572	98.429	96.628	98.693
14:02	MA35299-STD12	99.345	100.516	103.732	97.092	99.313	100.144	96.873	99.448
14:07	MA35299-ICV1	99.433	99.941	102.028	97.367	100.094	100.116	98.585	99.941
14:11	MA35299-ICVA1	99.421	102.513	103.646	99.43	101.39	101.645	98.268	100.641
14:16	MA35299-ICB1	100.106	101.501	103.026	100.057	101.207	100.755	99.393	100.116
14:21	MA35299-CRIB1	99.771	101.283	104.931	100.442	100.374	101.51	99.205	100.297
14:25	MA35299-CCVA1	100.505	104.154	105.836	99.235	102.135	102.003	99.652	102.152
14:30	MA35299-CCB1	100.207	101.918	98.846	98.27	101.941	97.679	99.049	101.516
14:34	MA35299-ICSA1	94.165	99.849	102.782	97.836	99.597	99.34	96.523	95.844
14:39	MA35299-ICSAB1	93.519	101.918	103.121	98.633	101.658	100.178	97.428	98.052
14:44	ZZZZZZ	95.43	101.376	101.749	99.221	100.976	101.367	99.666	101.166
14:48	MP82882-MB1	91.09	96.82	97.429	97.682	100.731	100.197	101.309	100.203
14:53	ZZZZZZ	352.521 !	329.213 !	355.14 !	356.3 !	331.124 !	338.588 !	334.643 !	330.545 !
14:58	ZZZZZZ	360.419 !	333.371 !	347.708 !	322.436 !	334.35 !	331.895 !	303.958 !	336.151 !
15:02	FA19358-4F	75.847	88.712	109.142	103.6	85.666	98.707	94.85	83.601
15:07	ZZZZZZ	126.643	139.707 !	141.873 !	131.288 !	134.327 !	134.302 !	126.255	133.102 !
15:12	MA35299-CCVA2	117.789	122.162	122.411	112.926	119.365	116.326	110.73	118.737
15:16	MA35299-CCB2	109.463	113.997	113.68	104.872	111.9	112.49	105.342	112.165
15:21	ZZZZZZ	107.073	110.587	111.482	104.715	109.563	110.071	104.315	109.707
15:26	MA35299-CCVA3	104.246	108.097	110.434	101.179	106.849	108.294	101.709	107.4
15:30	MA35299-CCB3	104.579	108.11	107.863	103.47	107.361	107.77	104.056	107.125
15:35	ZZZZZZ	419.767 !	389.476 !	369.494 !	356.106 !	389.857 !	350.518 !	338.194 !	388.326 !
15:39	ZZZZZZ	385.068 !	351.61 !	358.939 !	335.197 !	353.659 !	342.362 !	316.948 !	353.994 !

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

	meters. Ar								
Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
15:47	MP82882-B1	106.321	108.939	110.327	101.171	107.224	109.26	99.989	107.589
15:51	FA19358-4	103.108	114.399	122.346	114.063	105.601	110.848	104.475	104.779
15:56	ZZZZZZ	121.242	123.456	121.308	110.532	120.844	118.815	110.166	119.912
16:04	FA19358-4F	No result	s reported	for the e	elements as	sociated w	ith this i	nternal st	andard.
16:09	ZZZZZZ	122.727	127.365	127.096	115.333	124.377	122.078	113.564	122.909
16:13	ZZZZZZ	115.496	115.889	116.682	109.69	113.94	115.039	109.084	112.143
16:18	ZZZZZZ	113.366	114.04	113.765	105.982	111.846	111.962	104.333	110.881
16:23	MA35299-CCVA4	108.298	110.501	109.545	101.669	108.748	107.148	101.461	107.985
16:27	MA35299-CCB4	106.327	108.557	107.296	102.003	106.686	108.627	101.985	106.602
16:32	MA35299-CRIB2	107.001	109.655	108.886	101.959	109.005	108.125	101.699	107.751
16:37	MP82882-S1	107.237	110.011	110.246	101.044	107.938	108.354	99.866	108.29
16:41	MP82882-S2	105.925	109.037	110.127	100.67	108.406	107.974	101.009	107.76
16:46	ZZZZZZ	101.462	105.065	105.616	99.6	105.226	105.264	99.97	103.525
16:51	JB80352-2	97.534	102.356	101.485	97.351	108.423	108.118	103.73	106.866
16:55	MP82882-SD1	106.693	109.505	111.429	107.794	110.028	110.833	108	109.206
17:00	ZZZZZZ	99.682	108.619	104.305	99.411	112.959	108.628	104.912	111.912
17:04	ZZZZZZ	95.624	102.247	99.991	96.131	106.64	105.045	103.247	105.712
17:09	ZZZZZZ	93.668	99.541	100.687	96.725	104.207	104.827	101.946	103.879
17:14	ZZZZZZ	101.8	105.817	106.615	99.583	104.776	105.096	100.014	104.598
17:18	MA35299-CCVA5	99.202	104.337	104.158	97.876	102.305	101.298	98.67	102.942
17:23	MA35299-CCB5	100.905	104.89	102.583	99.629	103.67	100.821	99.091	103.333
17:28	MP82890-MB1	101.491	104.384	105.947	100.237	104.974	105.332	100.296	105.399
17:32	MP82890-B1	107.659	111.954	111.466	101.51	109.988	110.411	100.899	110.304
17:37	MP82890-S1	106.627	110.437	110.602	101.767	108.05	107.702	100.361	108.919
17:41	MP82890-S2	106.792	110.243	113.15	105.401	108.406	109.095	102.228	107.599
17:46	ZZZZZZ	99.853	104.029	103.737	97.791	102.666	103.901	98.349	103.461
17:51	JB80261-1	101.276	109.878	109.688	101.371	106.398	106.312	100.44	105.493
17:55	MP82890-SD1	110.95	114.812	117.34	102.999	113.145	114.202	104.873	113.205
18:00	MP82890-PS1	103.685	111.997	110.802	102.906	108.432	106.978	101.19	107.534
18:04	ZZZZZZ	104.095	109.589	110.167	102.993	107.959	107.871	102.94	108.515
18:09	MA35299-CCVA6	103.619	110.047	108.104	100.726	107.957	105.908	98.997	107.374
18:14	MA35299-CCB6	103.616	108.672	108.199	101.155	106.714	105.254	100.78	106.145
18:18	MP82890-S1	111.109	115.439	117.354	105.775	113.501	113.803	106.263	112.626

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
18:23	MP82890-S2	112.084	115.706	117.226	105.098	113.804	114.783	104.905	113.814
18:28	JB80261-1	110.427	114.103	113.959	105.192	110.892	111.043	104.736	111.546
18:32	MP82890-SD1	111.592	115.881	117.715	105.936	115.186	116.014	106.131	113.717
18:37	MP82890-PS1	110.828	115.43	115.6	105.417	112.378	111.779	104.418	112.276
18:41	MP82882-S1	109.01	115.565	115.267	104.166	112.183	113.098	103.529	112
18:46	MP82882-S2	108.33	113.137	113.888	105.237	110.795	111.778	103.496	110.222
18:51	JB80352-2	97.749	96.98	114.28	103.39	99.191	111.668	103.562	98.306
18:55	MP82882-SD1	110.513	113.779	116.844	105.532	111.315	112.905	105.075	110.696
19:00	ZZZZZZ	101.608	106.822	106.659	100.429	105.084	104.639	101.142	104.437
19:04	MA35299-CCVA7	101.773	108.967	107.381	99.554	105.534	103.329	97.888	105.351
19:09	MA35299-CCB7	89.475	94.76	106.665	99.479	91.283	105.038	98.556	91.289
19:14	MA35299-CRIB3	101.641	107.005	107.703	100.311	104.335	104.328	99.559	103.517
19:18	MP82891A-MB1	101.916	108.852	104.266	98.354	106.477	105.216	99.272	109.16
19:23	MP82891A-B1	102.611	107.496	106.217	97.657	104.859	102.699	95.18	104.457
19:28	MP82891A-S1	101.81	105.607	107.222	96.026	102.525	101.386	95.621	102.708
19:32	MP82891A-S2	102.65	105.067	105.177	98.359	102.006	101.648	95.851	101.507
19:37	ZZZZZZ	99.064	102.91	102.27	95.948	101.238	99.832	96.131	100.562
19:41	JB80133-1	99.995	103.249	104.386	99.254	102.792	102.37	99.357	103.266
19:46	MP82891A-SD1	107.384	109.691	110.58	100.482	107.453	108.619	100.405	107.481
19:51	ZZZZZZ	100.427	104.985	102.169	88.995	102.383	102.694	90.653	102.479
19:55	MA35299-CCVA8	100.473	105.805	104.329	97.46	101.954	100.806	96.232	101.477
20:00	MA35299-CCB8	100.331	104.74	103.359	98.007	102.399	102.326	97.663	102.266
20:05	ZZZZZZ	96.739	102.008	101.819	96.718	100.697	99.433	95.417	99.482
20:09	ZZZZZZ	94.778	101.994	99.435	91.118	100.359	96.043	90.046	98.303
20:14	MP82923A-MB1	92.681	96.626	96.298	91.68	96.158	96.536	91.99	96.083
20:18	MP82923A-B1	99.166	103.927	104.979	97.228	100.657	102.44	95.997	100.568
20:23	MP82923A-S1	102.331	107.748	107.011	94.809	104.25	103.518	93.233	104.766
20:28	MP82923A-S2	102.288	107.082	106.57	98.918	104.136	103.463	95.75	104.628
20:32	ZZZZZZ	97.409	102.018	100.551	95.14	100.672	98.4	94.712	99.342
20:37	JB80133-1A	99.717	104.652	102.285	97.081	102.322	100.68	95.867	101.626
20:42	MP82923A-SD1	105.42	108.897	108.367	100.587	105.509	106.457	99.331	105.987
20:46	ZZZZZZ	98.006	102.829	99.428	95.011	100.443	98.046	94.029	100.974
20:51	MA35299-CCVA9	106.855	115.548	102.706	95.922	108.577	99.767	94.665	108.626

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

Analyst: VC Parameters: Al

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
20:55	MA35299-CCB9	85.119	91.793	102.31	95.851	88.243	100.543	95.988	87.665
21:00	MP82925A-MB1	94.18	103.028	102.983	99.572	98.391	98.513	94.575	97.605
21:05	MP82925A-B1	101.301	108.664	106.71	106.126	102.933	100.853	98.645	103.168
21:09	MP82925A-S1	98.811	106.151	105.983	97.889	101.742	101.634	95.779	101.631
21:14	MP82925A-S2	98.819	106.803	106.942	99.243	101.427	102.21	95.795	101.312
21:19	ZZZZZZ	98.736	103.367	101.154	95.142	101.069	99.776	94.975	100.707
21:23	JB80134-1A	94.986	103.294	104.602	97.409	98.682	100.151	94.729	98.519
21:28	MP82925A-SD1	105.43	110.602	110.882	101.267	107.589	109.017	101.042	106.571
21:33	ZZZZZZ	98.59	104.572	102.008	95.079	101.395	100.195	94.968	101.708
21:37	ZZZZZZ	98.08	101.875	99.99	93.892	99.626	99.234	94.06	99.263
21:42	MA35299-CCVA10	96.205	101.235	99.768	92.722	98.172	97.75	91.971	98.268
21:46	MA35299-CCB10	97.747	102.442	93.527	94.936	99.841	92.332	94.503	99.814
21:51	MA35299-CRIB4	97.404	102.74	100.088	94.945	99.746	99.96	94.12	98.811
21:56	MA35299-CCVA11	96.347	101.308	99.094	92.574	97.927	97.192	91.79	98.115
22:00	MA35299-CCB11	97.615	102.51	99.607	94.529	99.843	98.724	94.86	98.753
22:05	ZZZZZZ	98.233	102.141	99.606	94.942	99.652	98.393	94.294	99.902
22:09	ZZZZZZ	97.803	102.975	100.12	95.375	100.052	99.082	94.715	99.467
22:14	ZZZZZZ	98.245	102.156	101.247	94.652	99.463	99.337	94.297	99.605

! = Outside limits.

LEGEND:	Parameter	Limits	CCV/CCB Limits
Istd#1	Lithium	70-130 %	70-130 %
Istd#2	Scandium (45-1)	70-130 %	70-130 %
Istd#3	Scandium (45-2)	70-130 %	70-130 %
Istd#4	Scandium (45-3)	70-130 %	70-130 %
Istd#5	Germanium (72-1)	70-130 %	70-130 %
Istd#6	Germanium (72-2)	70-130 %	70-130 %
Istd#7	Germanium (72-3)	70-130 %	70-130 %
Istd#8	Germanium (74-1)	70-130 %	70-130 %

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

Run ID: MA35299

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14 Methods: SW846 6020A

File ID: XA103114M1L.CSV Analyst: VC Parameters: Al

Time	Sample Description	Istd#9	Istd#10	Istd#11	Istd#12	Istd#13	Istd#14	Istd#15	Istd#16
13:11	MA35299-STD1	100	100	100	100	100	100	100	100
13:15	MA35299-STD2	100	100	100	100	100	100	100	100
13:20	MA35299-STD3	100.741	99.956	100.823	101.879	99.39	100.847	100.924	100.8
13:25	MA35299-STD4	101.428	99.483	101.226	101.929	99.278	100.514	101.023	101.183
13:29	MA35299-STD5	101.527	99.558	101.346	100.978	99.82	100.187	100.245	100.554
13:34	MA35299-STD6	100.21	98.563	100.284	100.443	98.145	99.367	100.264	100.414
13:39	MA35299-STD7	98.955	98.622	100.103	98.681	96.951	98.619	98.222	100.765
13:43	MA35299-STD8	99.181	98.154	98.784	98.749	97.78	99.211	100.608	99.778
13:48	MA35299-STD9	98.46	97.082	98.878	99.651	96.743	99.064	99.776	100.046
13:53	MA35299-STD10	93.19	97.388	98.014	93.023	95.152	98.367	93.882	99.472
13:57	MA35299-STD11	98.807	96.672	97.48	95.834	93.462	98.54	97.933	101.41
14:02	MA35299-STD12	100.08	97.166	100.025	98.626	95.069	100.347	99.815	101.995
14:07	MA35299-ICV1	100.364	98.256	101.604	100.756	98.65	101.224	100.249	101.131
14:11	MA35299-ICVA1	101.725	98.472	99.913	98.499	95.788	100.357	99.467	101.891
14:16	MA35299-ICB1	101.354	99.592	102.548	102.493	98.76	102.59	101.861	101.39
14:21	MA35299-CRIB1	102.116	99.116	102.411	102.482	99.549	102.46	102.301	102.782
14:25	MA35299-CCVA1	101.879	99.118	102.045	99.755	96.617	102.025	101.654	102.895
14:30	MA35299-CCB1	96.696	98.888	103.211	98.353	98.725	102.328	97.305	102.411
14:34	MA35299-ICSA1	96.894	93.274	91.409	88.087	84.425	95.082	92.561	98.214
14:39	MA35299-ICSAB1	97.582	94.533	93.373	89.062	85.123	96.761	93.822	100.316
14:44	ZZZZZZ	101.898	99.602	104.114	103.212	100.425	104.147	101.922	104.325
14:48	MP82882-MB1	100.474	101.021	100.38	99.792	98.935	100.136	97.491	101.246
14:53	ZZZZZZ	336.433 !	334.424 !	342.135 !	366.275 !	371.262 !	354.715 !	373.051 !	371.613 !
14:58	ZZZZZZ	332.599 !	305.29 !	344.915 !	359.621 !	332.591 !	357.428 !	367.003 !	375.366 !
15:02	FA19358-4F	98.093	94.788	65.93 !	63.774 !	64.007 !	70.138	78.044	68.9 !
15:07	ZZZZZZ	134.228 !	124.766	130.996 !	124.335	118.658	130.246 !	127.6	119.637
15:12	MA35299-CCVA2	117.29	109.902	116.666	111.74	108.246	117.362	113.184	114.758
15:16	MA35299-CCB2	111.182	104.975	113.812	112.477	105.231	114.071	110.869	112.448
15:21	ZZZZZZ	110.443	105.08	112.321	111.112	105.298	112.204	110.096	110.867
15:26	MA35299-CCVA3	107.688	102.171	107.092	105.505	100.62	108.393	107.154	109.271
15:30	MA35299-CCB3	108.456	103.744	108.9	108.625	104.325	109.545	107.546	110.041
15:35	ZZZZZZ	350.642 !	338.153 !	395.528 !	376.282 !	370.186 !	405.574 !	386.739 !	421.452 !
15:39	ZZZZZZ	343.13 !	317.102 !	361.959 !	364.976 !	349.733 !	373.363 !	377.936 !	384.334 !

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc. Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

rara	meters. Ar								
Time	Sample Description	Istd#9	Istd#10	Istd#11	Istd#12	Istd#13	Istd#14	Istd#15	Istd#16
15:47	MP82882-B1	107.815	100.221	109.532	106.709	100.23	109.685	107.84	111.055
15:51	FA19358-4	111.062	104.836	98.105	94.695	90.034	102.658	104.464	102.551
15:56	ZZZZZZ	117.588	109.624	118.648	113.309	105.711	120.232	116.436	116.749
16:04	FA19358-4F	No result	s reported	for the e	elements as	sociated w	ith this i	internal st	andard.
16:09	ZZZZZZ	122.375	112.792	123.174	118.65	111.141	122.172	118.778	117.326
16:13	ZZZZZZ	114.974	108.776	114.818	112.88	106.787	114.331	112.282	112.549
16:18	ZZZZZZ	111.741	104.764	113.289	111.652	104.891	113.167	110.644	111.104
16:23	MA35299-CCVA4	107.555	101.489	107.878	105.203	99.156	108.931	105.618	109.995
16:27	MA35299-CCB4	108.114	102.586	109.905	107.934	102.379	109.785	107.797	109.13
16:32	MA35299-CRIB2	107.954	101.918	109.907	109.367	102.955	110.128	108.113	109.631
16:37	MP82882-S1	108.234	100.524	108.961	105.476	98.842	108.713	105.585	109.26
16:41	MP82882-S2	108.032	100.754	108.587	106.16	98.015	109.797	106.59	110.627
16:46	ZZZZZZ	105.89	99.282	107.344	107.311	100.494	107.697	104.765	107.199
16:51	JB80352-2	107.663	104.134	101.172	100.373	94.966	103.338	99.219	105.365
16:55	MP82882-SD1	111.108	107.255	110.373	109.156	106.746	111.368	109.306	111.148
17:00	ZZZZZZ	109.349	104.547	104.949	99.974	94.523	108.625	99.64	110.624
17:04	ZZZZZZ	105.917	101.856	100.465	99.203	94.036	102.8	97.605	105.6
17:09	ZZZZZZ	106.505	102.177	99.857	99.523	95.507	100.751	97.594	104.144
17:14	ZZZZZZ	105.477	100.621	108.359	106.916	100.923	107.857	105.354	108.237
17:18	MA35299-CCVA5	102.264	98.12	103.473	101.467	95.868	104.587	100.953	106.374
17:23	MA35299-CCB5	101.676	99.64	107.259	103.295	99.724	107.42	101.2	106.79
17:28	MP82890-MB1	104.452	100.866	107.032	105.917	100.198	107.049	103.168	106.825
17:32	MP82890-B1	109.361	100.918	111.992	108.819	100.249	112.601	108.837	110.925
17:37	MP82890-S1	108.562	100.122	109.314	106.078	98.937	109.5	107.288	109.529
17:41	MP82890-S2	108.881	102.284	109.748	107.81	101.934	110.6	108.266	109.202
17:46	ZZZZZZ	103.273	98.154	106.737	104.857	98.04	105.76	102.988	106.721
17:51	JB80261-1	104.806	99.924	107.073	104.322	97.622	108.015	104.146	108.017
17:55	MP82890-SD1	113.637	103.894	114.629	111.814	100.63	114.452	112.101	111.611
18:00	MP82890-PS1	106.367	99.814	108.599	104.581	97.095	108.326	104.172	108.722
18:04	ZZZZZZ	108.186	102.151	110.871	108.72	101.695	110.554	107.049	108.893
18:09	MA35299-CCVA6	105.912	99.631	107.679	104.024	96.158	107.943	102.523	108.535
18:14	MA35299-CCB6	106.421	100.997	109.899	106.765	99.752	108.42	104.618	107.989
18:18	MP82890-S1	114.814	104.598	114.209	111.941	102.838	113.757	112.148	111.1

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc. Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC

Parameters: Al

Date Analyzed: 10/31/14 Run ID: MA35299

Methods: SW846 6020A

Para	meters: Al								
Time	Sample Description	Istd#9	Istd#10	Istd#11	Istd#12	Istd#13	Istd#14	Istd#15	Istd#16
18:23	MP82890-S2	115.571	104.777	115.338	112.037	102.322	113.995	112.488	112.115
18:28	JB80261-1	111.149	104.437	113.748	108.987	102.501	113.679	108.965	111.578
18:32	MP82890-SD1	115.676	106.337	115.637	113.051	103.169	115.061	113.114	111.203
18:37	MP82890-PS1	112.417	103.817	114.043	110.623	101.235	113.844	110.915	111.673
18:41	MP82882-S1	113.387	103.845	114.64	111.25	101.625	114.894	111.292	111.826
18:46	MP82882-S2	112.148	103.303	112.524	108.938	101.629	112.39	110.028	110.62
18:51	JB80352-2	112.734	102.314	97.259	110.438	100.949	97.375	111.161	94.656
18:55	MP82882-SD1	114.077	104.605	114.425	111.511	102.321	113.493	112.339	110.211
19:00	ZZZZZZ	104.885	100.542	108.314	106.771	98.651	108.143	102.942	105.541
19:04	MA35299-CCVA7	104.481	98.875	106.152	102.832	95.621	106.425	101.907	107.335
19:09	MA35299-CCB7	104.652	98.317	95.849	105.583	97.854	95.387	102.716	94.013
19:14	MA35299-CRIB3	104.922	98.808	107.599	105.947	97.87	107.207	103.666	105.407
19:18	MP82891A-MB1	104.953	98.711	110.235	103.947	97.022	109.519	100.872	109.006
19:23	MP82891A-B1	101.961	95.093	106.352	102.282	93.851	106.817	100.835	106.399
19:28	MP82891A-S1	102.534	94.048	105.734	103.746	92.267	105.327	101.171	106.573
19:32	MP82891A-S2	102.533	95.985	105.072	101.451	94.469	105.287	98.714	105.592
19:37	ZZZZZZ	101.105	96.368	104.042	102.662	95.957	104.556	99.509	104.754
19:41	JB80133-1	101.904	99.559	107.504	104.822	98.624	106.917	101.048	106.114
19:46	MP82891A-SD1	107.793	100.322	112.288	109.387	100.945	112.727	106.862	109.075
19:51	ZZZZZZ	102.11	90.499	106.559	102.63	91.073	106.404	99.548	106.19
19:55	MA35299-CCVA8	101.417	95.34	103.583	100.619	92.819	105.39	98.666	105.954
20:00	MA35299-CCB8	102.4	97.543	106.947	103.551	96.642	105.67	100.804	105.704
20:05	ZZZZZZ	99.773	95.306	101.185	99.291	92.372	102.945	95.892	104.301
20:09	ZZZZZZ	95.68	87.862	100.844	95.076	85.207	102.614	92.1	104.622
20:14	MP82923A-MB1	96.808	93.306	101.078	98.721	92.678	100.983	95.451	101.584
20:18	MP82923A-B1	102.26	95.84	104.963	101.668	94.363	104.869	100.042	105.491
20:23	MP82923A-S1	103.656	93.599	106.496	102.867	91.094	106.997	101.774	107.495
20:28	MP82923A-S2	102.864	96.79	106.304	102.459	93.109	107.515	100.756	108
20:32	ZZZZZZ	98.907	95.036	103.636	101.438	94.458	104.053	98.01	104.114
20:37	JB80133-1A	100.559	96.786	105.77	103.887	96.072	107.088	99.173	105.851
20:42	MP82923A-SD1	106.065	99.299	109.761	107.967	98.89	110.718	105.733	108.707
20:46	ZZZZZZ	98.725	94.305	105.385	101.535	94.511	105.533	98.025	104.497
20:51	MA35299-CCVA9	98.331	94.955	114.242	97.924	92.071	115.541	96.104	116.579

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

Analyst: VC Parameters: Al

Time	Sample Description	Istd#9	Istd#10	Istd#11	Istd#12	Istd#13	Istd#14	Istd#15	Istd#16
20:55	MA35299-CCB9	100.573	94.651	92.947	102.073	95.338	92.664	98.05	91.882
21:00	MP82925A-MB1	97.999	94.955	97.328	94.572	89.021	100.1	94.352	100.78
21:05	MP82925A-B1	100.352	99.164	101.72	96.318	97.584	103.807	96.761	104.495
21:09	MP82925A-S1	102.243	95.507	100.077	95.01	87.727	102.111	96.118	103.679
21:14	MP82925A-S2	101.77	95.374	99.689	96.161	88.674	101.594	96.988	104.346
21:19	ZZZZZZ	99.121	94.786	104.298	101.327	93.12	104.714	97.259	104.004
21:23	JB80134-1A	99.489	94.425	96.229	93.072	87.914	99.29	93.982	102.178
21:28	MP82925A-SD1	108.368	100.406	107.773	103.695	95.144	109.881	104.586	108.54
21:33	ZZZZZZ	99.977	94.366	104.885	101.278	94.227	104.707	98.389	103.757
21:37	ZZZZZZ	99.3	94.203	104.203	100.545	93.659	104.157	96.366	103.903
21:42	MA35299-CCVA10	98.136	92.85	100.469	96.447	89.924	100.86	94.324	102.723
21:46	MA35299-CCB10	92.909	94.234	103.92	94.568	93.934	104.197	90.53	103.145
21:51	MA35299-CRIB4	100.272	93.707	104.07	100.73	92.755	104.052	96.801	102.62
21:56	MA35299-CCVA11	97.173	92.505	100.28	96.85	89.913	101.482	94.419	102.898
22:00	MA35299-CCB11	99.129	94.152	103.547	100.479	93.087	103.303	96.921	103.798
22:05	ZZZZZZ	98.006	94.423	104.109	100.721	93.368	103.606	96.589	102.27
22:09	ZZZZZZ	98.55	94.477	103.832	101.959	93.831	103.926	97.545	103.825
22:14	ZZZZZZ	98.829	93.293	104.341	100.626	93.113	103.733	96.015	103.119

! = Outside limits.

LEGEND:			CCV/CCB
Istd#	Parameter	Limits	Limits
Istd#9	Germanium (74-2)	70-130 %	70-130 %
Istd#10	Germanium (74-3)	70-130 %	70-130 %
Istd#11	Rhodium (103-1)	70-130 %	70-130 %
Istd#12	Rhodium (103-2)	70-130 %	70-130 %
Istd#13	Rhodium (103-3)	70-130 %	70-130 %
Istd#14	Indium (115-1)	70-130 %	70-130 %
Istd#15	Indium (115-2)	70-130 %	70-130 %
Istd#16	Terbium (159-1)	70-130 %	70-130 %

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc. Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

Analyst: VC Parameters: Al

Para	meters: Al						
Time	Sample Description	Istd#17	Istd#18	Istd#19	Istd#20	Istd#21	Istd#22
13:11	MA35299-STD1	100	100	100	100	100	100
13:15	MA35299-STD2	100	100	100	100	100	100
13:20	MA35299-STD3	101.871	100.481	101.022	101.905	100.035	101.363
13:25	MA35299-STD4	102.232	99.672	101.604	102.055	101.447	101.491
13:29	MA35299-STD5	101.65	100.274	100.336	101.463	101.364	101.74
13:34	MA35299-STD6	101.65	99.179	100.784	101.36	101.592	101.758
13:39	MA35299-STD7	100.538	99.034	100.222	100.87	101.024	101.713
13:43	MA35299-STD8	101.61	99.486	99.896	100.832	99.291	100.139
13:48	MA35299-STD9	101.572	99.453	100.134	101.513	100.525	100.531
13:53	MA35299-STD10	97.02	98.615	100.076	95.872	98.177	95.943
13:57	MA35299-STD11	100.769	98.061	100.908	101.514	96.836	96.338
14:02	MA35299-STD12	102.694	98.962	101.49	101.934	100.172	98.402
14:07	MA35299-ICV1	100.135	99.013	100.418	99.936	100.187	100.265
14:11	MA35299-ICVA1	101.792	99.409	101.576	102.174	99.454	99.232
14:16	MA35299-ICB1	102.412	100.257	101.553	102.392	101.328	102.263
14:21	MA35299-CRIB1	103.251	100.781	102.271	102.147	102.138	101.794
14:25	MA35299-CCVA1	102.943	100.073	103.14	103.474	100.15	100.03
14:30	MA35299-CCB1	98.387	99.693	102.174	97.105	102.738	100.517
14:34	MA35299-ICSA1	96.503	92.021	97.946	96.447	90.312	87.767
14:39	MA35299-ICSAB1	97.667	93.009	100.01	96.945	91.123	87.496
14:44	ZZZZZZ	104.765	102.67	103.918	103.612	104.709	102.597
14:48	MP82882-MB1	101.504	101.05	101.259	100.588	108.621	112.573
14:53	ZZZZZZ	388.64 !	385.203 !	373.068 !	388.568 !	369.764 !	410.673 !
14:58	ZZZZZZ	382.513 !	347.143 !	376.392 !	383.11 !	374.993 !	403.884 !
15:02	FA19358-4F	71.109	65.486 !	68.634 !	70.862	57.201 !	55.812 !
15:07	ZZZZZZ	117.673	113.605	118.479	115.121	112.856	117.257
15:12	MA35299-CCVA2	112.542	109.866	114.296	112.796	108.174	110.756
15:16	MA35299-CCB2	111.333	107.601	112.002	110.926	109.608	117.583
15:21	ZZZZZZ	111.796	108.467	110.407	111.509	109.728	117.076
15:26	MA35299-CCVA3	109.16	106.408	109.657	109.216	105.713	110.633
15:30	MA35299-CCB3	108.679	107.068	109.591	108.585	108.698	115.241
15:35	ZZZZZZ	399.327 !	386.756 !	419.872 !	398.735 !	414.523 !	422.331 !
15:39	ZZZZZZ	388.886 !	363.572 !	385.263 !	389.58 !	381.665 !	409.5 !

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

	illeters. Ar						
Time	Sample Description	Istd#17	Istd#18	Istd#19	Istd#20	Istd#21	Istd#22
15:47	MP82882-B1	110.5	104.346	110.355	109.399	109.21	114.972
15:51	FA19358-4	100.313	96.311	101.405	99.505	86.288	84.567
15:56	ZZZZZZ	113.686	110.156	116.143	113.677	111.979	118.024
16:04	FA19358-4F	No result	s reported	for the e	elements as	sociated v	with this internal standard.
16:09	ZZZZZZ	113.875	111.172	116.57	112.967	111.514	118.484
16:13	ZZZZZZ	112.214	109.819	111.634	111.421	110.559	117.377
16:18	ZZZZZZ	110.339	107.642	110.289	110.109	108.761	115.763
16:23	MA35299-CCVA4	109.207	105.425	109.05	109.681	105.342	110.046
16:27	MA35299-CCB4	108.583	106.007	108.23	108.687	108.21	114.88
16:32	MA35299-CRIB2	108.964	106.515	108.582	108.667	107.468	115.547
16:37	MP82882-S1	108.626	104.289	109.123	108.294	107.07	110.46
16:41	MP82882-S2	109.333	103.629	109.172	108.496	107.553	111.127
16:46	ZZZZZZ	107.391	104.681	106.148	107.211	106.925	111.551
16:51	JB80352-2	105.674	102.942	105.09	105.037	106.73	102.58
16:55	MP82882-SD1	111.294	112.071	109.618	111.421	109.587	116.856
17:00	ZZZZZZ	104.893	103.528	109.745	105.591	107.692	103.621
17:04	ZZZZZZ	103.977	102.727	105.856	104.768	104.067	99.988
17:09	ZZZZZZ	103.863	103.105	103.907	104.529	101.959	99.38
17:14	ZZZZZZ	107.896	105.678	107.697	107.684	107.173	113.358
17:18	MA35299-CCVA5	105.189	102.405	106.067	105.525	103.326	101.557
17:23	MA35299-CCB5	103.159	103.785	106.522	103.693	106.07	107.397
17:28	MP82890-MB1	106.456	104.648	106.938	105.105	107.722	110.189
17:32	MP82890-B1	109.258	104.56	110.129	109.362	108.53	116.34
17:37	MP82890-S1	108.146	103.383	109.368	107.773	108.55	111.857
17:41	MP82890-S2	107.882	106.972	108.835	108.891	108.045	115.156
17:46	ZZZZZZ	105.646	101.912	106.276	105.097	105.884	102.473
17:51	JB80261-1	106.993	102.168	107.81	106.089	107.218	106.647
17:55	MP82890-SD1	112.034	103.786	110.682	110.432	112.167	119.097
18:00	MP82890-PS1	107.21	102.102	107.85	106.774	106.103	103.811
18:04	ZZZZZZ	108.091	104.317	108.423	107.54	106.943	106.751
18:09	MA35299-CCVA6	106.562	102.081	107.455	105.89	103.462	100.328
18:14	MA35299-CCB6	107.397	103.908	107.26	106.188	105.99	112.43
18:18	MP82890-S1	111.995	106.239	110.757	111.513	108.824	118.361

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Analyst: VC Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

Para	meters: Al						
Time	Sample Description	Istd#17	Istd#18	Istd#19	Istd#20	Istd#21	Istd#22
18:23	MP82890-S2	111.152	105.804	111.338	111.119	108.478	117.919
18:28	JB80261-1	109.381	105.597	110.416	109.246	110.594	112.996
18:32	MP82890-SD1	112.005	105.878	110.628	111.428	106.097	118.242
18:37	MP82890-PS1	110.222	104.665	111.427	109.775	110.243	116.737
18:41	MP82882-S1	110.374	104.566	111.107	109.578	107.13	115.639
18:46	MP82882-S2	110.296	105.728	109.937	108.947	106.898	114.713
18:51	JB80352-2	110.428	103.829	94.109	110.192	94.663	114.636
18:55	MP82882-SD1	110.416	104.898	109.902	109.291	103.525	114.503
19:00	ZZZZZZ	105.972	102.388	104.836	104.767	105.071	101.579
19:04	MA35299-CCVA7	105.168	101.417	107.07	105.069	102.692	98.809
19:09	MA35299-CCB7	105.961	101.175	93.455	104.789	91.972	104.029
19:14	MA35299-CRIB3	104.97	102.588	104.947	104.452	104.759	108.196
19:18	MP82891A-MB1	104.266	101.604	108.03	104.126	109.194	105.78
19:23	MP82891A-B1	103.628	99.746	105.723	103.397	103.865	99.269
19:28	MP82891A-S1	105.918	98.309	106.667	105.777	106.154	107.993
19:32	MP82891A-S2	105.364	100.754	105.347	104.598	106.353	104.974
19:37	ZZZZZZ	103.435	100.709	104.032	103.913	103.801	106.396
19:41	JB80133-1	105.022	103.304	105.186	104.401	107.979	110.939
19:46	MP82891A-SD1	108.622	103.679	109.327	108.094	110.737	117.944
19:51	ZZZZZZ	102.584	92.641	105.342	102.19	104.353	98.497
19:55	MA35299-CCVA8	103.635	99.603	105.183	103.22	101.062	96.543
20:00	MA35299-CCB8	103.602	101.237	105.004	104.152	104.121	99.453
20:05	ZZZZZZ	102.547	99.401	103.711	102.342	119.029	124.529
20:09	ZZZZZZ	99.036	91.978	103.966	98.941	105.718	98.265
20:14	MP82923A-MB1	101.336	98.933	101.46	100.41	104.343	98.984
20:18	MP82923A-B1	103.81	100.193	105.723	103.662	105.115	99.27
20:23	MP82923A-S1	105.572	96.85	107.332	105.653	105.033	104.714
20:28	MP82923A-S2	103.934	99.7	107.254	104.271	105.415	100.314
20:32	ZZZZZZ	101.193	99.34	103.58	101.615	103.226	97.666
20:37	JB80133-1A	103.17	100.907	105.688	103.48	106.829	101.116
20:42	MP82923A-SD1	107.378	104.792	108.215	107.11	109.598	116.57
20:46	ZZZZZZ	102.071	99.54	104.121	101.206	103.665	97.643
20:51	MA35299-CCVA9	101.189	99.346	115.887	101.156	110.664	94.989

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14 Methods: SW846 6020A

Analyst: VC Parameters: Al Run ID: MA35299

	meters. Ar						
Time	Sample Description	Istd#17	Istd#18	Istd#19	Istd#20	Istd#21	Istd#22
20:55	MA35299-CCB9	103.024	99.907	91.922	102.419	90.274	97.968
21:00	MP82925A-MB1	99.022	97.575	100.796	98.828	94.458	89.238
21:05	MP82925A-B1	100.473	104.849	104.419	100.171	98.769	91.616
21:09	MP82925A-S1	101.999	98.164	103.807	101.448	97.584	91.677
21:14	MP82925A-S2	102.541	98.078	104.157	101.66	97.575	92.204
21:19	ZZZZZZ	101.135	98.637	103.695	100.31	102.26	96.772
21:23	JB80134-1A	99.678	98.331	101.651	99.954	95.399	89.75
21:28	MP82925A-SD1	106.952	102.238	108.485	106.429	104.363	98.74
21:33	ZZZZZZ	101.757	99.688	103.104	101.584	102.376	97.003
21:37	ZZZZZZ	100.932	99.188	102.974	100.351	101.461	95.628
21:42	MA35299-CCVA10	101.187	97.758	102.292	100.158	99.034	93.68
21:46	MA35299-CCB10	94.625	99.351	103.257	94.295	102.906	93.191
21:51	MA35299-CRIB4	101.162	98.677	102.266	100.698	102.706	94.835
21:56	MA35299-CCVA11	100.68	97.271	101.864	100.367	99.645	93.186
22:00	MA35299-CCB11	101.533	98.816	102.77	100.986	102.11	96.649
22:05	ZZZZZZ	100.606	98.493	102.199	100.696	102.324	95.883
22:09	ZZZZZZ	100.629	99.677	103.147	100.686	101.435	95.52
22:14	ZZZZZZ	101.241	98.608	102.842	100.049	102.284	95.716

! = Outside limits.

LEGEND:					CCV/CCB
Istd#	Paramete	er	 Limits		Limits
Istd#17	Terbium	(159-2)	70-130	용	70-130 %
Istd#18	Terbium	(159-3)	70-130	용	70-130 %
Istd#19	Holmium	(165-1)	70-130	용	70-130 %
Istd#20	Holmium	(165-2)	70-130	용	70-130 %
Istd#21	Bismuth	(209-1)	70-130	용	70-130 %
Istd#22	Bismuth	(209-2)	70-130	용	70-130 %

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: result < LOD

Date Analyzed: 10/31/14 Run ID: MA35299

Methods: SW846 6020A Units: ug/l

Time: Sample ID:		TDI	100	14:16 ICB1	<i>5</i> i 1	14:30 CCB1	£41	15:16 CCB2	<i>5</i> :1	
Metal	RL	IDL	LOD	raw	final	raw	final	raw	final	
Aluminum	25	.43	20	0.17	<25	0.071	<25	0.10	<25	
Antimony	0.50	.13	0.50							
Arsenic	0.50	.028	0.40							
Barium	1.0	.0077	0.50							
Beryllium	0.50	.0035	0.25							
Boron	5.0	1.6	2.5							
Cadmium	0.50	.023	0.30							
Calcium	250	1.7	50							
Chromium	1.0	.027	0.50							
Cobalt	0.50	.0045	0.25							
Copper	1.0	.027	0.50							
Iron	25	.26	13							
Lead	0.50	.0077	0.25							
Magnesium	250	.29	130							
Manganese	1.0	.026	0.50							
Molybdenum	1.0	.017	0.50							
Nickel	1.0	.011	1.0							
Potassium	250	2.2	50							
Selenium	0.50	.034	0.50							
Silver	0.50	.0059	0.25							
Sodium	250	1.2	50							
Strontium	5.0	.0057	2.5							
Thallium	0.50	.0051	0.35							
Tin	5.0	.038	2.5							
Titanium	1.0	.059	0.50							
Vanadium	1.0	.026	0.50							
Zinc	2.0	.059	1.5							

(*) Outside of QC limits (anr) Analyte not requested

Page 1

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: result < LOD

Date Analyzed: 10/31/14 Methods: SW846 6020A Run ID: MA35299

Units: ug/l

QC LIMICS: Fesuit < LOD					ID: MA3525		onics. ug		
Time: Sample ID: Metal	RL	IDL	LOD	15:30 CCB3 raw	final	16:27 CCB4 raw	final	17:23 CCB5 raw	final
Aluminum	25	. 43	20	0.23	<25	0.17	<25	0.27	<25
Antimony	0.50	.13	0.50						
Arsenic	0.50	.028	0.40						
Barium	1.0	.0077	0.50						
Beryllium	0.50	.0035	0.25						
Boron	5.0	1.6	2.5						
Cadmium	0.50	.023	0.30						
Calcium	250	1.7	50						
Chromium	1.0	.027	0.50						
Cobalt	0.50	.0045	0.25						
Copper	1.0	.027	0.50						
Iron	25	.26	13						
Lead	0.50	.0077	0.25						
Magnesium	250	. 29	130						
Manganese	1.0	.026	0.50						
Molybdenum	1.0	.017	0.50						
Nickel	1.0	.011	1.0						
Potassium	250	2.2	50						
Selenium	0.50	.034	0.50						
Silver	0.50	.0059	0.25						
Sodium	250	1.2	50						
Strontium	5.0	.0057	2.5						
Thallium	0.50	.0051	0.35						
Tin	5.0	.038	2.5						
Titanium	1.0	.059	0.50						
Vanadium	1.0	.026	0.50						
Zinc	2.0	.059	1.5						

(*) Outside of QC limits (anr) Analyte not requested

99 of 111 ACCUTEST

FA19358

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc. Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: result < LOD Date Analyzed: 10/31/14 Run ID: MA35299 Methods: SW846 6020A Units: ug/l

Time: Sample ID: Metal		IDL	LOD	18:14 CCB6 raw	final	19:09 CCB7 raw	final	20:00 CCB8 raw	final	
Aluminum	25	. 43	20	0.18	<25	0.39	<25	0.23	<25	
Antimony	0.50	.13	0.50							
Arsenic	0.50	.028	0.40							
Barium	1.0	.0077	0.50							
Beryllium	0.50	.0035	0.25							
Boron	5.0	1.6	2.5							
Cadmium	0.50	.023	0.30							
Calcium	250	1.7	50							
Chromium	1.0	.027	0.50							
Cobalt	0.50	.0045	0.25							
Copper	1.0	.027	0.50							
Iron	25	.26	13							
Lead	0.50	.0077	0.25							
Magnesium	250	. 29	130							
Manganese	1.0	.026	0.50							
Molybdenum	1.0	.017	0.50							
Nickel	1.0	.011	1.0							
Potassium	250	2.2	50							
Selenium	0.50	.034	0.50							
Silver	0.50	.0059	0.25							
Sodium	250	1.2	50							
Strontium	5.0	.0057	2.5							
Thallium	0.50	.0051	0.35							
Tin	5.0	.038	2.5							
Titanium	1.0	.059	0.50							
Vanadium	1.0	.026	0.50							
Zinc	2.0	.059	1.5							

(*) Outside of QC limits (anr) Analyte not requested

100 of 111
ACCUTEST

FA19358

LABORATORIES

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: 90 to 110 % Recovery Date Analyzed: 10/31/14 Run ID: MA35299 Methods: SW846 6020A Units: ug/l

Time: Sample ID: Metal		14:07 ICV1 Results	% Rec	ICVA True	14:11 ICVA1 Results	% Rec	CCVA True	14:25 CCVA1 Results	% Rec
Aluminum	60	56.9	94.8	5500	5580	101.5	5000	5020	100.4
Antimony									
Arsenic									
Barium									
Beryllium									
Boron									
Cadmium									
Calcium									
Chromium									
Cobalt									
Copper									
Iron									
Lead									
Magnesium									
Manganese									
Molybdenum									
Nickel									
Potassium									
Selenium									
Silver									
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Vanadium									
Zinc									

(*) Outside of QC limits (anr) Analyte not requested

101 of 111
ACCUTEST

FA19358

LABORATORIES

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: 90 to 110 % Recovery Date Analyzed: 10/31/14 Run ID: MA35299

Methods: SW846 6020A Units: ug/l

Time: Sample ID: Metal		15:12 CCVA2 Results	% Rec	CCVA True	15:26 CCVA3 Results	% Rec	CCVA True	16:23 CCVA4 Results	% Rec	
Aluminum	5000	4980	99.6	5000	4930	98.6	5000	4970	99.4	
Antimony	anr									
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Boron										
Cadmium	anr									
Calcium	anr									
Chromium	anr									
Cobalt	anr									
Copper	anr									
Iron	anr									
Lead	anr									
Magnesium	anr									
Manganese	anr									
Molybdenum										
Nickel	anr									
Potassium	anr									
Selenium	anr									
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Vanadium	anr									
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: 90 to 110 % Recovery Date Analyzed: 10/31/14 Run ID: MA35299

Methods: SW846 6020A Units: ug/l

Time: Sample ID: Metal	CCVA True	17:18 CCVA5 Results	% Rec	CCVA True	18:09 CCVA6 Results	% Rec	CCVA True	19:04 CCVA7 Results	% Rec
Aluminum	5000	4980	99.6	5000	4990	99.8	5000	4940	98.8
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Boron									
Cadmium	anr								
Calcium	anr								
Chromium	anr								
Cobalt	anr								
Copper	anr								
Iron	anr								
Lead	anr								
Magnesium	anr								
Manganese	anr								
Molybdenum									
Nickel	anr								
Potassium	anr								
Selenium	anr								
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Vanadium	anr								
Zinc	anr								

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: 90 to 110 % Recovery Date Analyzed: 10/31/14 Run ID: MA35299

Methods: SW846 6020A Units: ug/l

20 11100 30	00 110 0	110001017	
Time: Sample ID: Metal	CCVA True	19:55 CCVA8 Results	% Rec
Aluminum	5000	4940	98.8
Antimony	anr		
Arsenic	anr		
Barium	anr		
Beryllium	anr		
Boron			
Cadmium	anr		
Calcium	anr		
Chromium	anr		
Cobalt	anr		
Copper	anr		
Iron	anr		
Lead	anr		
Magnesium	anr		
Manganese	anr		
Molybdenum			
Nickel	anr		
Potassium	anr		
Selenium	anr		
Silver	anr		
Sodium	anr		
Strontium			
Thallium	anr		
Tin			
Titanium			
Vanadium	anr		
Zinc	anr		

(*) Outside of QC limits (anr) Analyte not requested

104 of 111 ACCUTEST FA19358

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.
Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV Date Analyzed: 10/31/14 Methods: SW846 6020A QC Limits: 80 to 120 % Recovery Run ID: MA35299 Units: ug/1

QC LIMILLS. 60	CO 120 %	Recovery		Kuii 1	D. MA3529	9	units. ug	/ 1	
Time: Sample ID: Metal		14:21 CRIB1 Results	% Rec	16:32 CRIB2 Results	% Rec	19:14 CRIB3 Results	% Rec		
Aluminum	25	23.4	93.6	24.0	96.0	23.4	93.6		
Antimony	0.50								
Arsenic	0.50								
Barium	1.0								
Beryllium	0.50								
Boron	5.0								
Cadmium	0.50								
Calcium	250								
Chromium	1.0								
Cobalt	0.50								
Copper	1.0								
Iron	25								
Lead	0.50								
Magnesium	250								
Manganese	0.50								
Molybdenum	1.0								
Nickel	1.0								
Potassium	250								
Selenium	0.50								
Silver	0.50								
Sodium	250								
Strontium	5.0								
Thallium	0.50								
Tin	5.0								
Titanium	1.0								
Vanadium	1.0								
Zinc	2.0								

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: FA19358 Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

File ID: XA103114M1L.CSV QC Limits: 80 to 120 % Recovery

Date Analyzed: 10/31/14 Run ID: MA35299

Methods: SW846 6020A Units: ug/l

Time: Sample ID: Metal		ICSAB True	14:34 ICSA1 Results	% Rec	14:39 ICSAB1 Results	% Rec
Aluminum	100000	100000	92400	92.4	91800	91.8
Antimony			0.044		0.054	
Arsenic		20	0.041		19.2	96.0
Barium			0.092		0.12	
Beryllium			0.015		0.014	
Boron			0.66		-0.0043	
Cadmium		20	0.46		19.1	95.5
Calcium	100000	100000	92300	92.3	91900	91.9
Chromium		20	1.3		20.3	101.5
Cobalt		20	0.010		18.6	93.0
Copper		20	0.42		17.8	89.0
Iron	100000	100000	91500	91.5	91100	91.1
Lead			0.20		0.24	
Magnesium	100000	100000	91500	91.5	90600	90.6
Manganese		20	0.43		19.6	98.0
Molybdenum	2000	2000	2150	107.5	2140	107.0
Nickel		20	0.14		17.9	89.5
Potassium	100000	100000	93400	93.4	93900	93.9
Selenium		20	0.032		22.7	113.5
Silver		20	0.029		18.2	91.0
Sodium	100000	100000	93500	93.5	93100	93.1
Strontium			0.66		0.66	
Thallium			0.0065		0.0076	
Tin			0.049		0.047	
Titanium	2000	2000	1980	99.0	1980	99.0
Vanadium		20	-0.13		20.1	100.5
Zinc		20	0.77		18.4	92.0

(*) Outside of QC limits (anr) Analyte not requested

106 of 111
ACCUTESTS
A19358
LABORATORIES

FA19358

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA19358

Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

QC Batch ID: MP82882 Matrix Type: AQUEOUS Methods: SW846 6020A Units: ug/l

Prep Date:

10/30/14

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	.87	3.2	4.1	<50
Antimony	1.0	. 25	.12		
Arsenic	1.0	.055	.23		
Barium	2.0	.015	.2		
Beryllium	1.0	.007	.026		
Boron	10	3.2	1.3		
Cadmium	1.0	.047	.22		
Calcium	500	3.4	8.5		
Chromium	2.0	.053	.3		
Cobalt	1.0	.009	.038		
Copper	2.0	.054	.22		
Iron	50	.53	6.3		
Lead	1.0	.015	.027		
Magnesium	500	.58	.73		
Manganese	2.0	.052	.11		
Molybdenum	2.0	.033	.17		
Nickel	2.0	.022	.062		
Potassium	500	4.4	6.7		
Selenium	1.0	.067	.087		
Silver	1.0	.012	.1		
Sodium	500	2.4	4.9		
Strontium	10	.011	.028		
Thallium	1.0	.01	.17		
Tin	10	.075	.25		
Titanium	2.0	.12	.84		
Vanadium	2.0	.053	.23		
Zinc	4.0	.12	.93		

Associated samples MP82882: FA19358-4, FA19358-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

QC Batch ID: MP82882 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

10/30/14 Prep Date:

<u>-</u>					
Metal	JB8035 Origin		Spikelo MPSPK	% Rec	QC Limits
Aluminum	6.8	25500	25000	102.0	75-125
Antimony					
Arsenic	anr				
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Iron	anr				
Lead					
Magnesium					
Manganese	anr				
Molybdenum					
Nickel					
Potassium					
Selenium					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP82882: FA19358-4, FA19358-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

QC Batch ID: MP82882 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

Prep Date:

10/30/14

Metal	JB80352-2 Original MSD	Spikelo MPSPK	t % Rec	MSD RPD	QC Limit
Aluminum	6.8 25800	25000	103.2	1.2	20
Antimony					
Arsenic	anr				
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Iron	anr				
Lead					
Magnesium					
Manganese	anr				
Molybdenum					
Nickel					
Potassium					
Selenium					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				

Associated samples MP82882: FA19358-4, FA19358-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

QC Batch ID: MP82882 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

Prep Date: 10/30/14

			,, -	
Metal	BSP Result	Spikelot MPSPK	% Rec	QC Limits
Aluminum	24300	25000	97.2	80-120
Antimony				
Arsenic	anr			
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	anr			
Lead				
Magnesium				
Manganese	anr			
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP82882: FA19358-4, FA19358-4F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA19358
Account: ALSE - Accutest Laboratories Southeast, Inc.

Project: GSYNFLTI: LC-39B, KSC, FL

QC Batch ID: MP82882 Methods: SW846 6020A Matrix Type: AQUEOUS Units: ug/l

Prep Date: 10/30/14

Frep Date.			10/30/14	
Metal	JB80352-: Original	2 SDL 2:10	%DIF	QC Limits
Aluminum	6.83	11.1	61.9 (a)	0-10
Antimony				
Arsenic	anr			
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron	anr			
Lead				
Magnesium				
Manganese	anr			
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			

Associated samples MP82882: FA19358-4, FA19358-4F

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

11/04/14

Technical Report for

Geosyntec Consultants

LC-39B, KSC, FL

FR1352C

Accutest Job Number: FA19407

Sampling Date: 10/23/14

Report to:

Geosyntec Consultants 6770 South Washington Ave Suite 3 Titusville, FL 32780

RDaprato@Geosyntec.com; Elawson@GeoSyntec.com

ATTN: Rebecca Daprato

Total number of pages in report: 69

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Norm Farmer Technical Director

Client Service contact: Andrea Colby 407-425-6700

 $\begin{array}{l} \text{Certifications: FL (E83510), LA (03051), KS (E-10327), IA (366), IL (200063), NC (573), NJ (FL002), SC (96038001) } \\ \text{DoD ELAP (L-A-B L2229), CA (04226CA), TX (T104704404), PA (68-03573), VA (460177), } \end{array}$

AK, AR, GA, KY, MA, NV, OK, UT, WA

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	
Section 4: Sample Results	7
4.1: FA19407-1: 39B-LOX-TA0001S-013.0-20141023	8
4.2: FA19407-2: 39B-LOX-TA0002S-013.0-20141023	10
4.3: FA19407-3: 39B-LOX-TA0002I-030.0-20141023	12
4.4: FA19407-4: 39B-LOX-IW0009S-014.5-20141023	14
4.5: FA19407-5: 39B-LOX-IW0009SI-025.0-20141023	16
4.6: FA19407-6: 39B-LOX-IW0013S-008.5-20141023	18
4.7: FA19407-7: 39B-LOX-IW0013I-013.0-20141023	20
Section 5: Misc. Forms	
5.1: Chain of Custody	23
Section 6: GC/MS Volatiles - QC Data Summaries	
6.1: Method Blank Summary	26
6.2: Blank Spike Summary	29
6.3: Matrix Spike/Matrix Spike Duplicate Summary	32
6.4: Instrument Performance Checks (BFB)	35
6.5: Internal Standard Area Summaries	
6.6: Surrogate Recovery Summaries	43
6.7: Initial and Continuing Calibration Summaries	44

4.

4

U.

0

Sample Summary

Job No:

FA19407

Geosyntec Consultants

LC-39B, KSC, FL Project No: FR1352C

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
FA19407-1	10/23/14	17:42 MB	10/25/14	AQ	Ground Water	39B-LOX-TA0001S-013.0- 20141023
FA19407-2	10/23/14	10:57 MB	10/25/14	AQ	Ground Water	39B-LOX-TA0002S-013.0- 20141023
FA19407-3	10/23/14	10:02 MB	10/25/14	AQ	Ground Water	39B-LOX-TA0002I-030.0- 20141023
FA19407-4	10/23/14	12:31 MB	10/25/14	AQ	Ground Water	39B-LOX-IW0009S-014.5- 20141023
FA19407-5	10/23/14	13:20 MB	10/25/14	AQ	Ground Water	39B-LOX-IW0009SI-025.0- 20141023
FA19407-6	10/23/14	15:49 MB	10/25/14	AQ	Ground Water	39B-LOX-IW0013S-008.5- 20141023
FA19407-7	10/23/14	15:08 MB	10/25/14	AQ	Ground Water	39B-LOX-IW0013I-013.0- 20141023

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Job No: FA19407 Geosyntec Consultants

Site: LC-39B, KSC, FL Report Date: 11/4/2014 2:57:51 PM

7 Sample(s) were collected on 10/23/2014 and were received at Accutest SE on 10/25/2014 properly preserved, at 3 Deg. C and intact. These Samples received an Accutest job number of FA19407. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AO Batch ID: VI538

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA19473-14MS, FA19473-14MSD were used as the QC samples indicated.

Matrix Spike Duplicate Recovery(s) for cis-1,3-Dichloropropene, trans-1,3-Dichloropropene are outside control limits. Probable cause is due to matrix interference. For method performance in a clean matrix, refer to Blank Spike. % RPD was within control limits in MS/MSD.

FA19407-1: Sample was treated with an anti-foaming agent.

FA19407-2: Sample was treated with an anti-foaming agent.

FA19407-4: Sample was treated with an anti-foaming agent.

FA19407-5: Sample was treated with an anti-foaming agent.

FA19407-7: Sample was treated with an anti-foaming agent.

Batch ID: VZ1145 Matrix: AO

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) FA19400-1MS, FA19400-1MSD were used as the QC samples indicated.

FA19407-1: Sample was treated with an anti-foaming agent.

FA19407-2: Sample was treated with an anti-foaming agent.

FA19407-3: Sample was treated with an anti-foaming agent.

FA19407-5: Sample was treated with an anti-foaming agent.

FA19407-7: Sample was treated with an anti-foaming agent.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:

Kim Benham, Client Services (signature on file)

FΔ10407

Date: November 4, 2014

Summary of Hits Job Number: FA19407

Account: Geosyntec Consultants
Project: LC-39B, KSC, FL

Collected: 10/23/14

I ah Sampla ID	Client Sample ID	Recult/						
Analyte	Cheft Sample ID	Qual	PQL	MDL	Units	Method		
FA19407-1	FA19407-1 39B-LOX-TA0001		23					
1,1-Dichloroethy	rlene ^a	1.1	1.0	0.25	ug/l	SW846 8260B		
cis-1,2-Dichloroe		16.9	1.0	0.33	ug/l	SW846 8260B		
trans-1,2-Dichlor	roethylene ^a	2.1	1.0	0.34	ug/l	SW846 8260B		
Toluene a		0.27 I	1.0	0.20	ug/l	SW846 8260B		
Trichloroethylen	e ^a	17.4	1.0	0.30	ug/l	SW846 8260B		
Vinyl chloride ^a		34.5	1.0	0.33	ug/l	SW846 8260B		
FA19407-2	39B-LOX-TA0002	2S-013.0-201410	23					
cis-1,2-Dichloro	ethylene ^a	16.1	1.0	0.33	ug/l	SW846 8260B		
trans-1,2-Dichlor		11.0	1.0	0.34	ug/l	SW846 8260B		
Trichloroethylen		9.2	1.0	0.30	ug/l	SW846 8260B		
Vinyl chloride ^a		48.2	1.0	0.33	ug/l	SW846 8260B		
FA19407-3	39B-LOX-TA0002	2I-030.0-2014102	23					
cis-1.2-Dichloro	cis-1,2-Dichloroethylene		1.0	0.33	ug/l	SW846 8260B		
trans-1,2-Dichlor		7.4 2.8	1.0	0.34	ug/l	SW846 8260B		
Toluene	,	0.28 I	1.0	0.20	ug/l	SW846 8260B		
Trichloroethylen	e	3.0	1.0	0.30	ug/l	SW846 8260B		
Vinyl chloride ^a		16.8	1.0	0.33	ug/l	SW846 8260B		
FA19407-4	39B-LOX-IW0009	S-014.5-201410	23					
cis-1,2-Dichloroe	ethylene ^a	32.7	1.0	0.33	ug/l	SW846 8260B		
trans-1,2-Dichlor		10.1	1.0	0.34	ug/l	SW846 8260B		
Toluene a	,	0.27 I	1.0	0.20	ug/l	SW846 8260B		
Trichloroethylen	e ^a	9.6	1.0	0.30	ug/l	SW846 8260B		
Vinyl chloride		94.6	2.0	0.65	ug/l	SW846 8260B		
FA19407-5	39B-LOX-IW0009	SI-025.0-201410	023					
cis-1,2-Dichloroe	ethylene ^a	4.8	1.0	0.33	ug/l	SW846 8260B		
trans-1,2-Dichlor	•	8.9	1.0	0.34	ug/l	SW846 8260B		
Trichloroethylen		3.4	1.0	0.30	ug/l	SW846 8260B		
Vinyl chloride ^a			1.0	0.33	ug/l	SW846 8260B		
FA19407-6	FA19407-6 39B-LOX-IW0013S-008.5-20141023							
1,1-Dichloroethy	lene	0.58 I	1.0	0.25	ug/l	SW846 8260B		
cis-1,2-Dichloro		94.1	1.0	0.33	ug/l	SW846 8260B		
trans-1,2-Dichlor		10.2	1.0	0.34	ug/l	SW846 8260B		
Toluene		0.38 I	1.0	0.20	ug/l	SW846 8260B		
					J			

Summary of Hits Job Number: FA19407

Account: Geosyntec Consultants **Project:** LC-39B, KSC, FL

Collected: 10/23/14

Lab Sample ID Client Sample II Analyte	D Result/ Qual	PQL	MDL	Units	Method	
Trichloroethylene	42.6	1.0	0.30	ug/l	SW846 8260B	
Vinyl chloride	97.1	2.0	0.65	ug/l	SW846 8260B	
FA19407-7 39B-LOX-IW00	13I-013.0-2014	1023				
cis-1,2-Dichloroethylene ^a	38.3	1.0	0.33	ug/l	SW846 8260B	
trans-1,2-Dichloroethylene ^a	9.3	1.0	0.34	ug/l	SW846 8260B	
Toluene ^a	0.26 I	1.0	0.20	ug/l	SW846 8260B	
Trichloroethylene a	14.4	1.0	0.30	ug/l	SW846 8260B	
Vinvl chloride a	52.9	1.0	0.33	ug/l	SW846 8260B	

⁽a) Sample was treated with an anti-foaming agent.

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: 39B-LOX-TA0001S-013.0-20141023

 Lab Sample ID:
 FA19407-1
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	I24932.D	1	11/01/14	EG	n/a	n/a	VI538
Run #2 a	Z29653.D	1	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	1.1	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	16.9	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	2.1	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.27	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	17.4	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

 $PQL = \ Practical \ Quantitation \ Limit$

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-TA0001S-013.0-20141023

 Lab Sample ID:
 FA19407-1
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	34.5 b 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%	107%	83-1 79-1		
17060-07-0 2037-26-5	1,2-Dichloroethane-D4 Toluene-D8	110% 102%	106% 94%	85-1	/ -	
460-00-4	4-Bromofluorobenzene	106%	109%	83-1	18%	

⁽a) Sample was treated with an anti-foaming agent.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value V = Indicates analyte found in associated method blank$

⁽b) Result is from Run# 2

Report of Analysis

Client Sample ID: 39B-LOX-TA0002S-013.0-20141023

 Lab Sample ID:
 FA19407-2
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	I24933.D	1	11/01/14	EG	n/a	n/a	VI538
Run #2 a	Z29654.D	1	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	16.1	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	11.0	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.20 U	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	9.2	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-TA0002S-013.0-20141023

 Lab Sample ID:
 FA19407-2
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	48.2 ^b 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	99%	110%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	111%	106%	79-1	25%	
2037-26-5	Toluene-D8	101%	93%	85-1	12%	
460-00-4	4-Bromofluorobenzene	108%	109%	83-1	18%	

⁽a) Sample was treated with an anti-foaming agent.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value V = Indicates analyte found in associated method blank$

⁽b) Result is from Run# 2

Report of Analysis

Client Sample ID: 39B-LOX-TA0002I-030.0-20141023

 Lab Sample ID:
 FA19407-3
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	I24934.D	1	11/01/14	EG	n/a	n/a	VI538
Run #2 a	Z29655.D	1	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	7.4	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	2.8	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.28	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	3.0	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-TA0002I-030.0-20141023

 Lab Sample ID:
 FA19407-3
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	16.8 ^b 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%	107%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	117%	108%	79-1	25%	
2037-26-5	Toluene-D8	103%	96%	85-1	12%	
460-00-4	4-Bromofluorobenzene	99%	108%	83-1	18%	

⁽a) Sample was treated with an anti-foaming agent.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value V = Indicates analyte found in associated method blank$

⁽b) Result is from Run# 2

Report of Analysis

Client Sample ID: 39B-LOX-IW0009S-014.5-20141023

 Lab Sample ID:
 FA19407-4
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1 a	I24935.D	1	11/01/14	EG	n/a	n/a	VI538
Run #2	Z29656.D	2	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	32.7	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	10.1	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.27	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	9.6	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

 $PQL = \ Practical \ Quantitation \ Limit$

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: 39B-LOX-IW0009S-014.5-20141023

 Lab Sample ID:
 FA19407-4
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	94.6 b 0.66 U	2.0 3.0	0.65 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	105% 113%	109% 109%	83-1 79-1		
2037-26-5	Toluene-D8	102%	95%	85-1		
460-00-4	4-Bromofluorobenzene	107%	110%	83-1	18%	

⁽a) Sample was treated with an anti-foaming agent.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value V = Indicates analyte found in associated method blank$

⁽b) Result is from Run# 2

Report of Analysis

Client Sample ID: 39B-LOX-IW0009SI-025.0-20141023

 Lab Sample ID:
 FA19407-5
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	I24936.D	1	11/01/14	EG	n/a	n/a	VI538
Run #2 a	Z29657.D	1	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	4.8	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	8.9	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.20 U	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	3.4	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

 $PQL = \ Practical \ Quantitation \ Limit$

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-IW0009SI-025.0-20141023

 Lab Sample ID:
 FA19407-5
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	12.4 ^b 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%	108%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	112%	107%	79-1	25%	
2037-26-5	Toluene-D8	103%	94%	85-1	12%	
460-00-4	4-Bromofluorobenzene	109%	109%	83-1	18%	

⁽a) Sample was treated with an anti-foaming agent.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated value V = Indicates analyte found in associated method blank$

⁽b) Result is from Run# 2

Report of Analysis

Client Sample ID: 39B-LOX-IW0013S-008.5-20141023

Lab Sample ID: FA19407-6 **Date Sampled:** 10/23/14 Matrix: **Date Received:** 10/25/14 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	I24937.D	1	11/02/14	EG	n/a	n/a	VI538
Run #2	Z29658.D	2	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.58	1.0	0.25	ug/l	I
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	94.1	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	10.2	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.38	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	42.6	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated valueV = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: 39B-LOX-IW0013S-008.5-20141023

 Lab Sample ID:
 FA19407-6
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No. Compound		Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	97.1 ^a 0.66 U	2.0 3.0	0.65 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	102% 116% 104% 100%	108% 110% 95% 107%	79-1 85-1	18% 25% 12% 18%	

(a) Result is from Run# 2

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-IW0013I-013.0-20141023

 Lab Sample ID:
 FA19407-7
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	I24938.D	1	11/02/14	EG	n/a	n/a	VI538
Run #2 a	Z29659.D	1	11/03/14	MM	n/a	n/a	VZ1145

	Purge Volume
Run #1	5.0 ml
Run #2	5.0 ml

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
67-64-1	Acetone	11 U	25	11	ug/l	
71-43-2	Benzene	0.24 U	1.0	0.24	ug/l	
75-27-4	Bromodichloromethane	0.26 U	1.0	0.26	ug/l	
75-25-2	Bromoform	0.38 U	1.0	0.38	ug/l	
108-90-7	Chlorobenzene	0.24 U	1.0	0.24	ug/l	
75-00-3	Chloroethane	0.50 U	2.0	0.50	ug/l	
67-66-3	Chloroform	0.31 U	1.0	0.31	ug/l	
75-15-0	Carbon disulfide	0.20 U	2.0	0.20	ug/l	
56-23-5	Carbon tetrachloride	0.40 U	1.0	0.40	ug/l	
75-34-3	1,1-Dichloroethane	0.26 U	1.0	0.26	ug/l	
75-35-4	1,1-Dichloroethylene	0.25 U	1.0	0.25	ug/l	
107-06-2	1,2-Dichloroethane	0.24 U	1.0	0.24	ug/l	
78-87-5	1,2-Dichloropropane	0.36 U	1.0	0.36	ug/l	
124-48-1	Dibromochloromethane	0.36 U	1.0	0.36	ug/l	
156-59-2	cis-1,2-Dichloroethylene	38.3	1.0	0.33	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
156-60-5	trans-1,2-Dichloroethylene	9.3	1.0	0.34	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	0.28 U	1.0	0.28	ug/l	
591-78-6	2-Hexanone	2.0 U	10	2.0	ug/l	
108-10-1	4-Methyl-2-pentanone	1.0 U	5.0	1.0	ug/l	
74-83-9	Methyl bromide	0.54 U	2.0	0.54	ug/l	
74-87-3	Methyl chloride	0.53 U	2.0	0.53	ug/l	
75-09-2	Methylene chloride	2.0 U	5.0	2.0	ug/l	
78-93-3	Methyl ethyl ketone	1.5 U	5.0	1.5	ug/l	
100-42-5	Styrene	0.23 U	1.0	0.23	ug/l	
71-55-6	1,1,1-Trichloroethane	0.34 U	1.0	0.34	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.27 U	1.0	0.27	ug/l	
79-00-5	1,1,2-Trichloroethane	0.32 U	1.0	0.32	ug/l	
127-18-4	Tetrachloroethylene	0.26 U	1.0	0.26	ug/l	
108-88-3	Toluene	0.26	1.0	0.20	ug/l	I
79-01-6	Trichloroethylene	14.4	1.0	0.30	ug/l	

U = Not detected MDL = Method Detection Limit

 $PQL = \ Practical \ Quantitation \ Limit$

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: 39B-LOX-IW0013I-013.0-20141023

 Lab Sample ID:
 FA19407-7
 Date Sampled:
 10/23/14

 Matrix:
 AQ - Ground Water
 Date Received:
 10/25/14

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: LC-39B, KSC, FL

VOA TCL List

CAS No.	Compound	Result	PQL	MDL	Units	Q
75-01-4 1330-20-7	Vinyl chloride Xylene (total)	52.9 ^b 0.66 U	1.0 3.0	0.33 0.66	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%	113%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	118%	113%	79-1	25%	
2037-26-5	Toluene-D8	102%	95%	85-1	12%	
460-00-4	4-Bromofluorobenzene	108%	110%	83-1	18%	

⁽a) Sample was treated with an anti-foaming agent.

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

⁽b) Result is from Run# 2

Misc.	Forms			

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

FA	19	407
----	----	-----

Accutest Job #:

CHAIN OF CUSTODY

4405 Vineland Rd., Suite C15
Orlando, FL 32811

	407.425.6700, fax 407.425.0707											Accutest Quote #: AC8/2014-610							
Client Information	Fac	lity Information	n					**			Analytica	Inform	ation	(CONTRACTOR)	NO.	****		or calls	W the same
													1					STATE OF THE PERSON NAMED IN	A CONTRACTOR OF THE PARTY OF TH
Name Geosyntec Consultants	Project Name	LC39B													ŀ	i I			
Address	Location	LC38B					\dashv	_			1		l	1					
6770 South Washington Ave Suite 3		KSC, FL						88			1.		ĺ		1				ĺ
City State Zip F Titusville, FI 32780	Project No.	FR1352C						8260B)						ļ	l	Ì			
Send Report to Rdaprato@Geosyntec.com		FR 13520					ᅥ	346						-					
Phone #: 321-795-1303	FAX #: 321-269-	5813						(SW846			ł l			ľ	1				1
	Collection		Pr	eserv) s (ļ	İ .			1
Field ID / Point of Collection Date	Sampled Time By	Matrix bottle		₹ Ş	ğ	ž ž	g	VOCs											
39B-LOX-TA0001S-013.0-20141023 10/23/2014	1742 MB	GW 3	3	Т	П	7		3						<u> </u>					
39B-LOX-TA0002S-013.0-20141023 10/23/2014	1057 MB	GW 3	3	T	П		11	3											
39B-LOX-TA0002I-030.0-20141023 10/23/2014	1002 MB	GW 3	3		П	Т	П	3											_
39B-LOX-IW0009S-014.5-20141023 10/23/2014	1231 MB	GW 3	3		П	Т	П	3											
39B-LOX-IW0009SI-025.0-20141023 10/23/2014	1320 MB	GW 3	3		П	T	П	3						ļ					
39B-LOX-IW0013S-008.5-20141023 10/23/2014	1549 MB	GW 3	3	T	П	T	П	3					,						
39B-LOX-IW0013I-013.0-20141023 10/23/2014	1508 MB	GW 3	3		П	T		3					· · · · · · · · · · · · · · · · · · ·					-	
					П		П												
			\Box	T	П		П							1					
					П	Т	11												
Tumeround Information		Da Da	ta Deliv	erable	Info	matic	on			77 W			nts / Rem		hanne Will				2.005.45
21 Day Standard Approved By:	☐ NJ Re	duced		Comm	nerck	al "A"				1) All vi	als' san	ple ID:	do not	contail	n the su	ffix of "-	201410	23"	
X 14 Day	NJ Fu	ı		Comn	nercla	ıl "B"													·
7 Daya EMERGENCY	FULL	CLP		ASP C	stego	ry B													
Other (Days)	Diek D	eliverable		State	Form				l										
RUSH TAT is for FAX data	X Other	(Specify)	NAS	SA KE	DD														
Data unless previously approved.	1																		
Sample Custody must be document Refinquished by Sampler: Date Time:	Report of 1					ourier	r deliv	ery.			Data 71		-		<i>"</i>				
10/24/14	/ / / / / / /		10.	24-14			popla !		Zlor	<u>م</u> ا	Date Time:	1 18	145-	Received B	WW2	U-	20.20	714 8	-0
Relinquished by Sampler: Date Time: 3	Received By	:			B	elinqu	zished 8	By:			Date Time:			Received B	ly:				
Relinquished by Sampler: Date Time:	Received By	:			8	eal#			Pro	sserved wh	ere applicab	le		On Ice:					
5	5				i							-			3-	0			!

FA19407: Chain of Custody

Page 1 of 2

ACCUTEST'S JOB NUMBER: FA 19407 CLIENT	F. GEOSYAHEC PROJECT: LC398
DATE/TIME RECEIVED: 10-25-14 800 (MM/DD/Y)	Y 24:00} NUMBER OF COOLERS RECEIVED:
METHOD OF DELIVERY: FEDEX UPS ACCUT	EST COURTER GREYHOUND DELIVERY OTHER
AIRBILL NUMBERS:	
COOLER INFORMATION	TEMPERATURE INFORMATION
CUSTODY SEAL NOT PRESENT OR NOT INTACT	IR THERM ID CORR. FACTOR - 41.4
CHAIN OF CUSTODY NOT RECEIVED (COC)	OBSERVED TEMPS: 2-6
ANALYSIS REQUESTED IS UNCLEAR OR MISSING	CORRECTED TEMPS: 3-0
SAMPLE DATES OR TIMES UNCLEAR OR MISSING	SAMPLE INFORMATION 4
TEMPERATURE CRITERIA NOT MET	INCORRECT NUMBER OF CONTAINERS USED
·	SAMPLE RECEIVED IMPROPERLY PRESERVED
TRIP BLANK INFORMATION	INSUFFICIENT VOLUME FOR ANALYSIS
TRIP BLANK PROVIDED	DATES/TIMES ON COC DO NOT MATCH SAMPLE LABEL
TRIP BLANK NOT PROVIDED	ID'S ON COC DO NOT MATCH LABEL
TRIP BLANK NOT ON COC	VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)
TRIP BLANK INTACT	BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED
TRIP BLANK NOT INTACT	NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED
RECEIVED WATER TRIP BLANK	UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS
RECEIVED SOIL TRIP BLANK	SAMPLE CONTAINER(S) RECEIVED BROKEN
	5035 FIELD KITS NOT RECEIVED WITHIN 48 HOURS
MISC. INFORMATION	BULK VOA SOIL JARS NOT RECEIVED WITHIN 48 HOURS
NUMBER OF ENCORES ? 25-GRAM 5-GRAM	% SOLIDS JAR NOT RECEIVED
NUMBER OF 5035 FIELD KITS ?	RESIDUAL CHLORINE PRESENT
NUMBER OF LAB FILTERED METALS ?	(APPICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS)
SUMMARY OF COMMENTS:	
4	01/11/
ECHNICIAN SIGNATURE/DATE KUUL 102519	REVIEWER SIGNATURE/DATE
	confirmation 041514.xls

FA19407: Chain of Custody

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Instrument Performance Checks (BFB)
- Internal Standard Area Summaries
- Surrogate Recovery Summaries
- Initial and Continuing Calibration Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample VI538-MB	File ID I24919.D	DF 1	Analyzed 11/01/14	By EG	Prep Date n/a	Prep Batch n/a	Analytical Batch VI538

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	25	11	ug/l
71-43-2	Benzene	ND	1.0	0.24	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.26	ug/l
75-25-2	Bromoform	ND	1.0	0.38	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l
75-00-3	Chloroethane	ND	2.0	0.50	ug/l
67-66-3	Chloroform	ND	1.0	0.31	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.20	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.40	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.26	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.25	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.24	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.36	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.36	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.33	ug/l
10061-01-5		ND	1.0	0.21	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.34	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.28	ug/l
591-78-6	2-Hexanone	ND	10	2.0	ug/l
108-10-1	4-Methyl-2-pentanone	ND	5.0	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.54	ug/l
74-87-3	Methyl chloride	ND	2.0	0.53	ug/l
75-09-2	Methylene chloride	ND	5.0	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	5.0	1.5	ug/l
100-42-5	Styrene	ND	1.0	0.23	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.34	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.27	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.32	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.26	ug/l
108-88-3	Toluene	ND	1.0	0.20	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.30	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.66	ug/l

Method: SW846 8260B

Method Blank Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample VI538-MB	File ID 124919.D	DF 1	Analyzed 11/01/14	By EG	Prep Date n/a	Prep Batch n/a	Analytical Batch VI538

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	97%	83-118%
17060-07-0	1,2-Dichloroethane-D4	107%	79-125%
2037-26-5	Toluene-D8	102%	85-112%
460-00-4	4-Bromofluorobenzene	96%	83-118%

Method: SW846 8260B

Method Blank Summary

Job Number: FA19407

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VZ1145-MB	File ID Z29648.D	DF 1	Analyzed 11/03/14	By MM	Prep Date n/a	Prep Batch n/a	Analytical Batch VZ1145

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
75-01-4	Vinyl chloride	ND	1.0	0.33	ug/l
CAS No.	Surrogate Recoveries		Limit	ts	

1868-53-7	Dibromofluoromethane	107%	83-118%
17060-07-0	1,2-Dichloroethane-D4	105%	79-125%
2037-26-5	Toluene-D8	94%	85-112%
460-00-4	4-Bromofluorobenzene	103%	83-118%

Method: SW846 8260B

Blank Spike Summary Job Number: FA19407

GSYNFLTI Geosyntec Consultants Account:

LC-39B, KSC, FL **Project:**

Sample	File ID	DF	Analyzed 11/01/14	By	Prep Date	Prep Batch	Analytical Batch
VI538-BS	I24917.D	1		EG	n/a	n/a	VI538

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
67-64-1	Acetone	125	178	142	50-147
71-43-2	Benzene	25	24.7	99	81-122
75-27-4	Bromodichloromethane	25	26.9	108	79-123
75-25-2	Bromoform	25	29.2	117	66-123
108-90-7	Chlorobenzene	25	29.3	117	82-124
75-00-3	Chloroethane	25	31.9	128	62-144
67-66-3	Chloroform	25	26.4	106	80-124
75-15-0	Carbon disulfide	25	33.9	136	66-148
56-23-5	Carbon tetrachloride	25	28.9	116	76-136
75-34-3	1,1-Dichloroethane	25	26.6	106	81-122
75-35-4	1,1-Dichloroethylene	25	32.6	130	78-137
107-06-2	1,2-Dichloroethane	25	27.6	110	75-125
78-87-5	1,2-Dichloropropane	25	25.0	100	76-124
124-48-1	Dibromochloromethane	25	27.2	109	78-122
156-59-2	cis-1,2-Dichloroethylene	25	25.1	100	78-120
10061-01-5	cis-1,3-Dichloropropene	25	25.2	101	75-118
156-60-5	trans-1,2-Dichloroethylene	25	25.8	103	76-127
10061-02-6	trans-1,3-Dichloropropene	25	27.6	110	80-120
100-41-4	Ethylbenzene	25	27.6	110	81-121
591-78-6	2-Hexanone	125	159	127	61-129
108-10-1	4-Methyl-2-pentanone	125	134	107	66-122
74-83-9	Methyl bromide	25	34.5	138	59-143
74-87-3	Methyl chloride	25	31.7	127	50-159
75-09-2	Methylene chloride	25	26.9	108	69-135
78-93-3	Methyl ethyl ketone	125	155	124	56-143
100-42-5	Styrene	25	26.2	105	78-119
71-55-6	1,1,1-Trichloroethane	25	27.1	108	75-130
79-34-5	1,1,2,2-Tetrachloroethane	25	25.4	102	72-120
79-00-5	1,1,2-Trichloroethane	25	27.4	110	76-119
127-18-4	Tetrachloroethylene	25	28.0	112	76-135
108-88-3	Toluene	25	25.6	102	80-120
79-01-6	Trichloroethylene	25	27.1	108	81-126
1330-20-7	Xylene (total)	75	86.3	115	80-126

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike Summary Job Number: FA19407

GSYNFLTI Geosyntec Consultants Account:

LC-39B, KSC, FL **Project:**

Sample VI538-BS	File ID I24917.D	DF 1	Analyzed 11/01/14	By EG	Prep Date n/a	Prep Batch n/a	Analytical Batch VI538

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	96%	83-118%
17060-07-0	1,2-Dichloroethane-D4	107%	79-125%
2037-26-5	Toluene-D8	96%	85-112%
460-00-4	4-Bromofluorobenzene	90%	83-118%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike Summary Job Number: FA19407

Account: **GSYNFLTI** Geosyntec Consultants

LC-39B, KSC, FL **Project:**

Sample VZ1145-BS	File ID Z29646.D	DF 1	Analyzed 11/03/14	By MM	Prep Date n/a	Prep Batch n/a	Analytical Batch VZ1145

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
75-01-4	Vinyl chloride	25	30.3	121	69-159

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	105%	83-118%
17060-07-0	1,2-Dichloroethane-D4	101%	79-125%
2037-26-5	Toluene-D8	94%	85-112%
460-00-4	4-Bromofluorobenzene	96%	83-118%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA19473-14MS	I24939.D	5	11/02/14	EG	n/a	n/a	VI538
FA19473-14MSD	I24940.D	5	11/02/14	EG	n/a	n/a	VI538
FA19473-14 a	I24925.D	5	11/01/14	EG	n/a	n/a	VI538

The QC reported here applies to the following samples:

		FA1947	3-14	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
67-64-1	Acetone	130 U		625	463	74	625	460	74	1	50-147/21
71-43-2	Benzene	5.0 U		125	118	94	125	113	90	4	81-122/14
75-27-4	Bromodichloromethane	5.0 U		125	128	102	125	115	92	11	79-123/19
75-25-2	Bromoform	5.0 U		125	104	83	125	93.5	75	11	66-123/21
108-90-7	Chlorobenzene	5.0 U		125	133	106	125	133	106	0	82-124/14
75-00-3	Chloroethane	10 U		125	147	118	125	152	122	3	62-144/20
67-66-3	Chloroform	5.0 U		125	130	104	125	127	102	2	80-124/15
75-15-0	Carbon disulfide	10 U		125	168	134	125	147	118	13	66-148/23
56-23-5	Carbon tetrachloride	5.0 U		125	140	112	125	124	99	12	76-136/23
75-34-3	1,1-Dichloroethane	5.0 U		125	124	99	125	120	96	3	81-122/15
75-35-4	1,1-Dichloroethylene	5.0 U		125	164	131	125	162	130	1	78-137/18
107-06-2	1,2-Dichloroethane	5.0 U		125	139	111	125	138	110	1	75-125/14
78-87-5	1,2-Dichloropropane	5.0 U		125	115	92	125	110	88	4	76-124/14
124-48-1	Dibromochloromethane	5.0 U		125	115	92	125	104	83	10	78-122/19
156-59-2	cis-1,2-Dichloroethylene	4.3	J	125	120	93	125	115	89	4	78-120/15
10061-01-5	cis-1,3-Dichloropropene	5.0 U		125	97.9	78	125	82.5	66*	17	75-118/23
156-60-5	trans-1,2-Dichloroethylene	5.0 U		125	125	100	125	117	94	7	76-127/17
10061-02-6	trans-1,3-Dichloropropene	5.0 U		125	103	82	125	89.9	72*	14	80-120/22
100-41-4	Ethylbenzene	5.0 U		125	130	104	125	127	102	2	81-121/14
591-78-6	2-Hexanone	50 U		625	546	87	625	599	96	9	61-129/18
108-10-1	4-Methyl-2-pentanone	25 U		625	565	90	625	612	98	8	66-122/16
74-83-9	Methyl bromide	10 U		125	157	126	125	160	128	2	59-143/19
74-87-3	Methyl chloride	10 U		125	117	94	125	134	107	14	50-159/19
75-09-2	Methylene chloride	25 U		125	129	103	125	126	101	2	69-135/16
78-93-3	Methyl ethyl ketone	25 U		625	506	81	625	518	83	2	56-143/18
100-42-5	Styrene	5.0 U		125	126	101	125	123	98	2	78-119/23
71-55-6	1,1,1-Trichloroethane	5.0 U		125	142	114	125	134	107	6	75-130/16
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U		125	116	93	125	116	93	0	72-120/14
79-00-5	1,1,2-Trichloroethane	5.0 U		125	121	97	125	124	99	2	76-119/14
127-18-4	Tetrachloroethylene	5.0 U		125	135	108	125	127	102	6	76-135/16
108-88-3	Toluene	5.0 U		125	120	96	125	121	97	1	80-120/14
79-01-6	Trichloroethylene	5.0 U		125	134	107	125	131	105	2	81-126/15
1330-20-7	Xylene (total)	15 U		375	403	107	375	395	105	2	80-126/15

^{* =} Outside of Control Limits.

Page 2 of 2

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
FA19473-14MS	I24939.D	5	11/02/14	EG	n/a	n/a	VI538
FA19473-14MSD	I24940.D	5	11/02/14	EG	n/a	n/a	VI538
FA19473-14 ^a	I24925.D	5	11/01/14	EG	n/a	n/a	VI538

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	MS	MSD	FA19473-14	Limits
1868-53-7	Dibromofluoromethane	102%	102%	102%	83-118%
17060-07-0	1,2-Dichloroethane-D4	114%	111%	109%	79-125%
2037-26-5	Toluene-D8	94%	98%	103%	85-112%
460-00-4	4-Bromofluorobenzene	89%	89%	98%	83-118%

⁽a) Sample was not preserved to a pH < 2.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA19400-1MS	Z29665.D	1	11/03/14	MM	n/a	n/a	VZ1145
FA19400-1MSD	Z29666.D	1	11/03/14	MM	n/a	n/a	VZ1145
FA19400-1	Z29649.D	1	11/03/14	MM	n/a	n/a	VZ1145

The QC reported here applies to the following samples:

CAS No.	Compound	FA19400-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
75-01-4	Vinyl chloride	1.0 U	25	24.1	96	25	26.5	106	9	69-159/18
CAS No.	Surrogate Recoveries	MS	MSD	FA	19400-1	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	108% 108% 87% 94%	109% 108% 90% 97%	106 104 95% 100	%	83-1189 79-1259 85-1129 83-1189	6 6			

^{* =} Outside of Control Limits.

Instrument Performance Check (BFB)

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VI527-BFB
 Injection Date:
 10/22/14

 Lab File ID:
 I24618.D
 Injection Time:
 09:25

Instrument ID: GCMSI

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	49987	20.2	Pass
75	30.0 - 60.0% of mass 95	118325	47.9	Pass
95	Base peak, 100% relative abundance	247040	100.0	Pass
96	5.0 - 9.0% of mass 95	16673	6.75	Pass
173	Less than 2.0% of mass 174	1403	0.57 (0.62)) ^a Pass
174	50.0 - 100.0% of mass 95	227648	92.2	Pass
175	5.0 - 9.0% of mass 174	16692	6.76 (7.33)) ^a Pass
176	95.0 - 101.0% of mass 174	220480	89.2 (96.9)) ^a Pass
177	5.0 - 9.0% of mass 176	13747	5.56 (6.24)) b Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VI527-IC527	I24619.D	10/22/14	09:46	00:21	Initial cal 1
VI527-IC527	I24620.D	10/22/14	10:11	00:46	Initial cal 2
VI527-IC527	I24621.D	10/22/14	10:36	01:11	Initial cal 3
VI527-ICC527	I24622.D	10/22/14	11:02	01:37	Initial cal 4
VI527-IC527	I24623.D	10/22/14	11:27	02:02	Initial cal 5
VI527-IC527	I24624.D	10/22/14	11:53	02:28	Initial cal 6
VI527-ICV527	I24626.D	10/22/14	12:44	03:19	Initial cal verification 4
VI527-BS	I24627.D	10/22/14	13:09	03:44	Blank Spike
VI527-MB	I24629.D	10/22/14	14:16	04:51	Method Blank
ZZZZZZ	I24630.D	10/22/14	14:41	05:16	(unrelated sample)
FA19174-2	I24631.D	10/22/14	15:06	05:41	(used for QC only; not part of job FA19407)
ZZZZZZ	I24632.D	10/22/14	15:32	06:07	(unrelated sample)
ZZZZZZ	I24633.D	10/22/14	15:57	06:32	(unrelated sample)
ZZZZZZ	I24634.D	10/22/14	16:22	06:57	(unrelated sample)
ZZZZZZ	I24635.D	10/22/14	16:47	07:22	(unrelated sample)
ZZZZZZ	I24636.D	10/22/14	17:12	07:47	(unrelated sample)
ZZZZZZ	I24637.D	10/22/14	17:38	08:13	(unrelated sample)
ZZZZZZ	I24638.D	10/22/14	18:03	08:38	(unrelated sample)
ZZZZZZ	I24639.D	10/22/14	18:28	09:03	(unrelated sample)
ZZZZZZ	I24640.D	10/22/14	18:54	09:29	(unrelated sample)
ZZZZZZ	I24641.D	10/22/14	19:19	09:54	(unrelated sample)
ZZZZZZ	I24642.D	10/22/14	19:45	10:20	(unrelated sample)
ZZZZZZ	I24643.D	10/22/14	20:10	10:45	(unrelated sample)
ZZZZZZ	I24644.D	10/22/14	20:35	11:10	(unrelated sample)

⁽b) Value is % of mass 176

Page 2 of 2

Instrument Performance Check (BFB)

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VI527-BFB
 Injection Date:
 10/22/14

 Lab File ID:
 I24618.D
 Injection Time:
 09:25

Instrument ID: GCMSI

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
ZZZZZZ	I24645.D	10/22/14	21:00	11:35	(unrelated sample) Matrix Spike Matrix Spike Duplicate Continuing cal 4
FA19174-2MS	I24646.D	10/22/14	21:25	12:00	
FA19174-2MSD	I24647.D	10/22/14	21:50	12:25	
VI528-CC527	I24651.D	10/23/14	10:06	24:41	

Instrument Performance Check (BFB)

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VI538-BFB
 Injection Date:
 11/01/14

 Lab File ID:
 I24915.D
 Injection Time:
 14:00

Instrument ID: GCMSI

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abunda		Pass/Fail
50	15.0 - 40.0% of mass 95	37795	23.6		Pass
75	30.0 - 60.0% of mass 95	82104	51.3		Pass
95	Base peak, 100% relative abundance	160000	100.0		Pass
96	5.0 - 9.0% of mass 95	11024	6.89		Pass
173	Less than 2.0% of mass 174	890	0.56	(0.61) a	Pass
174	50.0 - 100.0% of mass 95	146560	91.6		Pass
175	5.0 - 9.0% of mass 174	10850	6.78	(7.40) a	Pass
176	95.0 - 101.0% of mass 174	144464	90.3	(98.6) a	Pass
177	5.0 - 9.0% of mass 176	8908	5.57	(6.17) ^b	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VI538-CC527	I24916.D	11/01/14	14:18	00:18	Continuing cal 4
VI538-BS	I24917.D	11/01/14	15:08	01:08	Blank Spike
VI538-MB	I24919.D	11/01/14	16:40	02:40	Method Blank
ZZZZZZ	I24920.D	11/01/14	17:05	03:05	(unrelated sample)
ZZZZZZ	I24921.D	11/01/14	17:31	03:31	(unrelated sample)
ZZZZZZ	I24922.D	11/01/14	17:57	03:57	(unrelated sample)
ZZZZZZ	I24923.D	11/01/14	18:22	04:22	(unrelated sample)
ZZZZZZ	I24924.D	11/01/14	18:47	04:47	(unrelated sample)
FA19473-14	I24925.D	11/01/14	19:12	05:12	(used for QC only; not part of job FA19407)
ZZZZZZ	I24926.D	11/01/14	19:37	05:37	(unrelated sample)
ZZZZZZ	I24927.D	11/01/14	20:02	06:02	(unrelated sample)
ZZZZZZ	I24928.D	11/01/14	20:28	06:28	(unrelated sample)
ZZZZZZ	I24929.D	11/01/14	20:53	06:53	(unrelated sample)
ZZZZZZ	I24930.D	11/01/14	21:19	07:19	(unrelated sample)
ZZZZZZ	I24931.D	11/01/14	21:44	07:44	(unrelated sample)
FA19407-1	I24932.D	11/01/14	22:09	08:09	39B-LOX-TA0001S-013.0-20141023
FA19407-2	I24933.D	11/01/14	22:35	08:35	39B-LOX-TA0002S-013.0-20141023
FA19407-3	I24934.D	11/01/14	23:00	09:00	39B-LOX-TA0002I-030.0-20141023
FA19407-4	I24935.D	11/01/14	23:25	09:25	39B-LOX-IW0009S-014.5-20141023
FA19407-5	I24936.D	11/01/14	23:50	09:50	39B-LOX-IW0009SI-025.0-20141023
FA19407-6	I24937.D	11/02/14	00:15	10:15	39B-LOX-IW0013S-008.5-20141023
FA19407-7	I24938.D	11/02/14	00:40	10:40	39B-LOX-IW0013I-013.0-20141023
FA19473-14MS	I24939.D	11/02/14	01:05	11:05	Matrix Spike
FA19473-14MSD	I24940.D	11/02/14	01:30	11:30	Matrix Spike Duplicate

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VZ1144-BFB
 Injection Date:
 11/01/14

 Lab File ID:
 Z29630.D
 Injection Time:
 12:03

Instrument ID: GCMSZ

m/e	Ion Abundance Criteria	Raw Abundance	% Relati Abundar		Pass/Fail
50	15.0 - 40.0% of mass 95	45784	24.8		Pass
75	30.0 - 60.0% of mass 95	79739	43.2		Pass
95	Base peak, 100% relative abundance	184725	100.0		Pass
96	5.0 - 9.0% of mass 95	11871	6.43		Pass
173	Less than 2.0% of mass 174	1528	0.83	$(0.90)^{a}$	Pass
174	50.0 - 100.0% of mass 95	169984	92.0		Pass
175	5.0 - 9.0% of mass 174	11700	6.33	(6.88) a	Pass
176	95.0 - 101.0% of mass 174	162795	88.1	(95.8) a	Pass
177	5.0 - 9.0% of mass 176	10367	5.61	(6.37) b	Pass

⁽a) Value is % of mass 174

Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed	Hours Lapsed	Client Sample ID
VZ1144-IC1144	Z29632.D	11/01/14	13:45	01:42	Initial cal 1
VZ1144-IC1144	Z29633.D	11/01/14	14:07	02:04	Initial cal 2
VZ1144-IC1144	Z29634.D	11/01/14	14:29	02:26	Initial cal 3
VZ1144-ICC1144	Z29635.D	11/01/14	14:52	02:49	Initial cal 4
VZ1144-IC1144	Z29636.D	11/01/14	15:14	03:11	Initial cal 5
VZ1144-IC1144	Z29637.D	11/01/14	15:36	03:33	Initial cal 6
VZ1144-ICV1144	Z29638.D	11/01/14	15:58	03:55	Initial cal verification 7

⁽b) Value is % of mass 176

Instrument Performance Check (BFB)

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Sample:
 VZ1145-BFB
 Injection Date:
 11/03/14

 Lab File ID:
 Z29641.D
 Injection Time:
 07:42

Instrument ID: GCMSZ

m/e	Ion Abundance Criteria	Raw Abundance	% Relative Abundance	Pass/Fail
50	15.0 - 40.0% of mass 95	45824	23.8	Pass
75	30.0 - 60.0% of mass 95	83291	43.3	Pass
95	Base peak, 100% relative abundance	192149	100.0	Pass
96	5.0 - 9.0% of mass 95	11736	6.11	Pass
173	Less than 2.0% of mass 174	1484	0.77 (0.83)	a Pass
174	50.0 - 100.0% of mass 95	178944	93.1	Pass
175	5.0 - 9.0% of mass 174	13527	7.04 (7.56)	a Pass
176	95.0 - 101.0% of mass 174	174080	90.6 (97.3)	a Pass
177	5.0 - 9.0% of mass 176	11313	5.89 (6.50)	b Pass

⁽a) Value is % of mass 174

Lab	Lab	Date	Time	Hours	Client
Sample ID	File ID	Analyzed	Analyzed	Lapsed	Sample ID
VZ1145-CC1144	Z29642.D	11/03/14	08:10	00:28	Continuing cal 4 Blank Spike Method Blank (used for QC only; not part of job FA19407)
VZ1145-BS	Z29646.D	11/03/14	10:09	02:27	
VZ1145-MB	Z29648.D	11/03/14	11:19	03:37	
FA19400-1	Z29649.D	11/03/14	11:41	03:59	
ZZZZZZ ZZZZZZ ZZZZZZ	Z29650.D Z29651.D Z29652.D	11/03/14 11/03/14 11/03/14 11/03/14	12:03 12:26 12:48	04:21 04:44 05:06	(unrelated sample) (unrelated sample) (unrelated sample)
FA19407-1 FA19407-2 FA19407-3	Z29653.D Z29654.D Z29655.D	11/03/14 11/03/14 11/03/14 11/03/14	13:10 13:32 13:55	05:28 05:50 06:13	39B-LOX-TA0001S-013.0-20141023 39B-LOX-TA0002S-013.0-20141023 39B-LOX-TA0002I-030.0-20141023
FA19407-5 FA19407-5 FA19407-6	Z29656.D Z29657.D Z29658.D	11/03/14 11/03/14 11/03/14 11/03/14	14:17 14:39 15:02	06:35 06:57 07:20	39B-LOX-IW0009S-014.5-20141023 39B-LOX-IW0009SI-025.0-20141023 39B-LOX-IW0013S-008.5-20141023
FA19407-7	Z29659.D	11/03/14	15:24	07:42	39B-LOX-IW0013I-013.0-20141023
ZZZZZZZ	Z29660.D	11/03/14	15:46	08:04	(unrelated sample)
ZZZZZZ	Z29661.D	11/03/14	16:08	08:26	(unrelated sample)
ZZZZZZ	Z29662.D	11/03/14	16:31	08:49	(unrelated sample) (unrelated sample) (unrelated sample) (unrelated sample)
ZZZZZZ	Z29663.D	11/03/14	16:53	09:11	
ZZZZZZ	Z29664.D	11/03/14	17:16	09:34	
FA19400-1MS	Z29665.D	11/03/14	17:38	09:56	Matrix Spike Matrix Spike Duplicate
FA19400-1MSD	Z29666.D	11/03/14	17:58	10:16	

⁽b) Value is % of mass 176

Volatile Internal Standard Area Summary

Job Number: FA19407

Account: **GSYNFLTI** Geosyntec Consultants

Project: LC-39B, KSC, FL

Check Std: VI538-CC527 **Injection Date:** 11/01/14 Lab File ID: I24916.D **Injection Time:** 14:18

Instrument ID: GCMSI Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT
Initial Cal ^a	1420265	7.55	1228507	10.66	676645	13.03	78540	5.17
Check Std b	1241863	7.55	1047814		598406		80485	5.16
Upper Limit ^c	2483726	8.05	2095628		1196812		160970	5.66
Lower Limit d	620932	7.05	523907	10.16	299203	12.53	40243	4.66
Lab	IS 1		IS 2		IS 3		IS 4	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT
VI538-BS	1283934	7.55	1071745	10.66	628337	13.03	71758	5.16
VI538-MB	1215481	7.55	913456	10.66	458389	13.03	65075	5.17
ZZZZZZ	1035937	7.55	771787	10.66	386754	13.03	57431	5.14
ZZZZZZ	1089926	7.55	834372	10.66	394203	13.03	57257	5.16
ZZZZZZ	1024087	7.55	809986	10.66	391074	13.03	49909	5.15
ZZZZZZ	965327	7.55	748961	10.66	362272	13.03	47225	5.15
ZZZZZZ	979144	7.55	745566	10.66	368821	13.03	44915	5.15
FA19473-14	940035	7.55	724036	10.66	361925	13.03	46092	5.16
ZZZZZZ	949492	7.55	726820	10.66	359860	13.03	47878	5.16
ZZZZZZ	935484	7.55	737438	10.66	347595	13.03	45161	5.15
ZZZZZZ	921662	7.55	706712	10.66	345661	13.03	47193	5.16
ZZZZZZ	923718	7.55	722467	10.66	345768	13.03	48726	5.18
ZZZZZZ	886240	7.55	698777	10.66	345337	13.03	45783	5.16
ZZZZZZ	905913	7.55	693131	10.66	335384	13.03	52805	5.16
FA19407-1 ^e	897059	7.55	697224	10.66	360033	13.03	48610	5.16
FA19407-2 ^e	915992	7.55	725815	10.66	377518	13.03	48666	5.15
FA19407-3	877959	7.55	691310	10.66	349071	13.03	55527	5.16
FA19407-4 ^e	894156	7.55	705592	10.66	363359	13.03	48632	5.15
FA19407-5 ^e	878903	7.55	683115	10.66	351919	13.03	50031	5.14
FA19407-6	887364	7.55	685270	10.66	341882	13.03	43519	5.14
FA19407-7 ^e	857423	7.55	680972	10.66	338717	13.03	52067	5.16
FA19473-14MS	940238	7.55	813434	10.66	464015	13.03	52530	5.15
FA19473-14MSD	1000650	7.55	843056	10.66	471902	13.03	60506	5.16

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 IS 4 = Tert Butyl Alcohol-D10

- (a) Initial Cal is: VI527-ICC527 I24622.D 10/22/14 11:02
- (b) Check Std Limit = -50 to + 100% of initial cal area.
- (c) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (d) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Internal Standard Area Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Check Std:
 VI538-CC527
 Injection Date:
 11/01/14

 Lab File ID:
 I24916.D
 Injection Time:
 14:18

Instrument ID: GCMSI **Method:** SW846 8260B

Lab IS 1 IS 2 IS 3 IS 4

Sample ID AREA RT AREA RT AREA RT AREA RT

(e) Sample was treated with an anti-foaming agent.

Volatile Internal Standard Area Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

 Check Std:
 VZ1145-CC1144
 Injection Date:
 11/03/14

 Lab File ID:
 Z29642.D
 Injection Time:
 08:10

Instrument ID: GCMSZ Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT
nitial Cal ^a	921803	7.74	827013	10.84	473635	13.20	96321	5.27
Check Std b	1039338	7.74	1033732	10.84	606552	13.20	130915	5.26
Upper Limit ^c	2078676	8.24	2067464		1213104		261830	5.76
Lower Limit d	519669	7.24	516866	10.34	303276	12.70	65458	4.76
Lab	IS 1		IS 2		IS 3		IS 4	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT
Z1145-BS	878349	7.74	881092	10.84	524739	13.20	111664	5.25
/Z1145-MB	790764	7.74	767289	10.84	409341	13.20	94729	5.27
FA19400-1	739883	7.74	721927	10.84	401257	13.20	74043	5.26
ZZZZZZ	776095	7.74	746024	10.84	415540	13.20	83055	5.27
ZZZZZZ	766617	7.74	727247	10.84	405897	13.20	87422	5.26
ZZZZZ	738902	7.74	708629	10.84	376170	13.20	84774	5.27
FA19407-1 ^e	703167	7.74	676173	10.84	394610	13.20	76338	5.27
A19407-2 ^e	711074	7.74	695665	10.84	391344	13.20	78422	5.26
FA19407-3 ^e	714854	7.74	664284	10.84	365850	13.20	100713	5.27
FA19407-4	672587	7.74	647033	10.84	354837	13.20	67006	5.27
FA19407-5 ^e	662730	7.74	637921		341840	13.20	70606	5.25
A19407-6	611341	7.74	585939		310792	13.20	56247*	5.25
FA19407-7 ^e	598272	7.74	570985	10.84	306031		74412	5.25
ZZZZZ	565633	7.74	554793	10.84	294008*	13.20	58731*	5.27
ZZZZZZ	555484	7.74	542449	10.84	284312*	13.20	54650*	5.27
ZZZZZ	533788	7.74	526379	10.84	289787*	13.20	59838*	5.27
ZZZZZ	531307	7.74	524631	10.84	279518*	13.20	66196	5.25
ZZZZZ	526674	7.74	526458	10.84	276867*	13.20	59701*	5.27
A19400-1MS	623955	7.74	665187	10.84	409084	13.20	78344	5.27
FA19400-1MSD	740834	7.74	766110	10.84	455037	13.20	93955	5.27

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 IS 4 = Tert Butyl Alcohol-D10

- (a) Initial Cal is: VZ1144-ICC1144 Z29635.D 11/01/14 14:52
- (b) Check Std Limit = -50 to + 100% of initial cal area.
- (c) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.
- (d) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (e) Sample was treated with an anti-foaming agent.

Volatile Surrogate Recovery Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL

Method: SW846 8260B Matrix: AQ

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	S1	S2	S3	S4
FA19407-1	Z29653.D	107	106	94	109
FA19407-1	I24932.D	104	110	102	106
FA19407-2	Z29654.D	110	106	93	109
FA19407-2	I24933.D	99	111	101	108
FA19407-3	Z29655.D	107	108	96	108
FA19407-3	I24934.D	104	117	103	99
FA19407-4	Z29656.D	109	109	95	110
FA19407-4	I24935.D	105	113	102	107
FA19407-5	Z29657.D	108	107	94	109
FA19407-5	I24936.D	104	112	103	109
FA19407-6	Z29658.D	108	110	95	107
FA19407-6	I24937.D	102	116	104	100
FA19407-7	Z29659.D	113	113	95	110
FA19407-7	I24938.D	104	118	102	108
FA19400-1MS	Z29665.D	108	108	87	94
FA19400-1MSD	Z29666.D	109	108	90	97
FA19473-14MS	I24939.D	102	114	94	89
FA19473-14MSD	I24940.D	102	111	98	89
VI538-BS	I24917.D	96	107	96	90
VI538-MB	I24919.D	97	107	102	96
VZ1145-BS	Z29646.D	105	101	94	96
VZ1145-MB	Z29648.D	107	105	94	103

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 83-118%

 S2 = 1,2-Dichloroethane-D4
 79-125%

 S3 = Toluene-D8
 85-112%

 S4 = 4-Bromofluorobenzene
 83-118%

Initial Calibration Summary

Job Number:FA19407Sample:VI527-ICC527Account:GSYNFLTI Geosyntec ConsultantsLab FileID:124622.D

Project: LC-39B, KSC, FL

Response Factor Report MSVOA16

Method : C:\msdchem\2\METHODS\8260i102214.m (RTE Integrator)

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed Oct 22 13:04:07 2014 Response via : Initial Calibration

Calibration Files

L =124619.D 2 =124620.D 3 =124621.D 4 =124622.D

5 = I24623.D 6 = I24624.D

Compound 1 2 3 4 5 6 Avg %RSI

- 1) I Fluorobenzene ------ISTD------
- 2) Dichlorodifluoromet 0.417 0.387 0.424 0.429 0.458 0.450 0.428 5.96
 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9994
 Response Ratio = 0.00000 + 0.43253 *A + 0.01042 *A^2
- 3) P Chloromethane 0.593 0.496 0.582 0.591 0.625 0.611 0.583 7.75 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9994 Response Ratio = 0.00000 + 0.61217 *A
- 4) C Vinyl Chloride 0.498 0.463 0.551 0.559 0.593 0.598 0.544 9.80 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9994 Response Ratio = 0.00000 + 0.59173 *A
- 5) Bromomethane 0.420 0.352 0.397 0.387 0.410 0.404 0.395 6.00 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9996 Response Ratio = 0.00000 + 0.40388 *A
- 6) Chloroethane 0.299 0.261 0.316 0.306 0.333 0.322 0.306 8.27
 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9988
 Response Ratio = 0.00000 + 0.32340 *A
- 7) Trichlorofluorometh 0.722 0.656 0.761 0.744 0.821 0.835 0.756 8.74
 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9995
 Response Ratio = 0.00000 + 0.72586 *A + 0.05639 *A^2
- 8) Ethyl Ether 0.280 0.237 0.255 0.279 0.283 0.298 0.272 8.08
 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998
 Response Ratio = 0.00000 + 0.25468 *A + 0.02164 *A^2
- 10) C 1,1-Dichloroethene 0.565 0.508 0.561 0.618 0.605 0.638 0.582 8.08
 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9987
 Response Ratio = 0.00000 + 0.62417 *A
- 12) Carbon Disulfide 1.130 0.940 1.019 1.144 1.109 1.189 1.088 8.46
 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9979
 Response Ratio = 0.00000 + 1.15731 *A
- 13) Iodomethane 0.828 0.702 0.749 0.814 0.808 0.848 0.792 6.94

Page 2 of 7

Initial Calibration Summary Job Number: FA19407

Sample: VI527-ICC527

GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL Lab FileID: I24622.D Account:

Project:	LC-39B, KSC, FL
	Linear regr., Force(0,0) Coefficient = 0.9989 Response Ratio = 0.00000 + 0.83068 *A
14)	Methylene Chloride 0.647 0.460 0.498 0.538 0.520 0.529 0.532 11.85 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.51773 *A + 0.00519 *A^2
15)	Acetone 0.029 0.018 0.017 0.019 0.018 0.019 0.020 22.63 Linear regr., Force(0,0) Coefficient = 0.9992 Response Ratio = 0.00000 + 0.01880 *A
16)	Methyl acetate 0.038 0.033 0.034 0.036 0.036 0.038 0.036 6.21 Linear regr., Force(0,0) Coefficient = 0.9990 Response Ratio = 0.00000 + 0.03734 *A
17)	trans-1,2-Dichloroe 0.491 0.420 0.451 0.503 0.483 0.506 0.476 7.08 Linear regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 0.49771 *A
18)	Hexane 0.268 0.235 0.256 0.266 0.269 0.267 0.260 5.14 Linear regr., Force(0,0) Coefficient = 0.9999 Response Ratio = 0.00000 + 0.26740 *A
19)	Methyl Tert Butyl E 0.631 0.572 0.642 0.701 0.685 0.711 0.657 8.01 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.65685 *A + 0.02636 *A^2
20)	Di-isopropyl ether 1.135 0.956 1.104 1.205 1.191 1.210 1.134 8.54 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 1.20143 *A
21) P	1,1-Dichloroethane 0.550 0.500 0.557 0.608 0.594 0.600 0.568 7.19 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.59809 *A
22)	Acrylonitrile 0.104 0.076 0.073 0.071 0.075 0.075 0.079 15.39 Linear regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.07459 *A
23)	ETBE 0.815 0.727 0.832 0.933 0.912 0.965 0.864 10.27 Quadratic regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.84734 *A + 0.05733 *A^2
24)	Vinyl acetate 0.516 0.423 0.424 0.409 0.415 0.430 0.436 9.12 Linear regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.42182 *A
25)	cis-1,2-Dichloroeth 0.384 0.311 0.352 0.377 0.367 0.377 0.361 7.44 Linear regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.37328 *A
26)	2,2-Dichloropropane 0.430 0.383 0.433 0.473 0.454 0.468 0.440 7.51 Quadratic regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.44747 *A + 0.00963 *A^2
27)	Bromochloromethane 0.167 0.150 0.170 0.188 0.182 0.188 0.174 8.52 Linear regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 0.18585 *A
28)	Cyclohexane 0.507 0.505 0.587 0.658 0.637 0.670 0.594 12.40

Page 3 of 7

Initial Calibration Summary Job Number: FA19407 Sample: VI527-ICC527

GSYNFLTI Geosyntec Consultants **Account:** Lab FileID: I24622.D

Project: LC-39B, KSC, FL

rroject:	LC-39B, K3C, FL
	Linear regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 0.65714 *A
29) C	Chloroform 0.616 0.526 0.585 0.644 0.622 0.637 0.605 7.25 Linear regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.63197 *A
30)	Tetrahydrofuran 0.079 0.048 0.056 0.057 0.055 0.059 0.059 18.08 Quadratic regr., Force(0,0) Coefficient = 0.9987 Response Ratio = 0.00000 + 0.05230 *A + 0.00312 *A^2
31) S 32)	Dibromofluoromethan 0.278 0.302 0.315 0.291 0.312 0.278 0.296 5.39 Carbon Tetrachlorid 0.418 0.397 0.446 0.484 0.473 0.498 0.453 8.75 Linear regr., Force(0,0) Coefficient = 0.9989 Response Ratio = 0.00000 + 0.48824 *A
33)	1,1,1-Trichloroetha 0.451 0.426 0.470 0.521 0.500 0.518 0.481 7.95 Linear regr., Force(0,0) Coefficient = 0.9992 Response Ratio = 0.00000 + 0.51151 *A
34)	2-Butanone 0.099 0.081 0.085 0.095 0.092 0.094 0.091 7.32 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.08975 *A + 0.00044 *A^2
35)	1,1-Dichloropropene 0.411 0.378 0.406 0.449 0.435 0.448 0.421 6.66 Linear regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.44336 *A
36)	Benzene 1.314 1.094 1.214 1.326 1.310 1.325 1.264 7.39 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 1.31809 *A
37)	TAME 0.660 0.586 0.683 0.755 0.748 0.792 0.704 10.73 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.68634 *A + 0.05169 *A^2
38) S 39)	1,2-Dichloroethane- 0.248 0.268 0.280 0.252 0.274 0.238 0.260 6.19 1,2-Dichloroethane 0.396 0.329 0.348 0.374 0.368 0.368 0.364 6.33 Linear regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 0.36802 *A
40)	Trichloroethene 0.340 0.294 0.324 0.354 0.359 0.369 0.340 8.11 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 0.33414 *A + 0.01748 *A^2
41)	Methylcyclohexane 0.490 0.475 0.541 0.613 0.614 0.639 0.562 12.42 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.56324 *A + 0.03807 *A^2
42)	Dibromomethane 0.170 0.158 0.178 0.198 0.194 0.193 0.182 8.74 Linear regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.19305 *A
43) C	1,2-Dichloropropane 0.351 0.293 0.321 0.356 0.350 0.355 0.338 7.48 Linear regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.35240 *A
44)	Bromodichloromethan 0.403 0.340 0.403 0.444 0.446 0.451 0.414 10.20 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.44733 *A

Page 4 of 7

Initial Calibration Summary

Job Number: FA19407 Sample: VI527-ICC527

Account: GSYNFLTI Geosyntec Consultants Lab FileID: I24622.D

Project: LC-39B, KSC, FL

Project:	LC-39B, KSC, FL
45)	2-Chloroethyl vinyl 0.136 0.128 0.153 0.173 0.178 0.182 0.158 14.53 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.16212 *A + 0.00206 *A^2
46)	cis-1,3-Dichloropro 0.436 0.418 0.485 0.539 0.546 0.554 0.496 11.94 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.51255 *A + 0.02151 *A^2
47) I 48) S 49) C	Chlorobenzene-d5ISTD
50)	2-Nitropropane 0.046 0.043 0.049 0.054 0.054 0.056 0.050 10.25 Linear regr., Force(0,0) Coefficient = 0.9990 Response Ratio = 0.00000 + 0.05529 *A
51)	4-Methyl-2-pentanon 0.248 0.225 0.235 0.253 0.250 0.259 0.245 5.08 Linear regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.25537 *A
52)	trans-1,3-Dichlorop 0.473 0.397 0.466 0.495 0.504 0.521 0.476 9.22 Linear regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 0.51231 *A
53)	Tetrachloroethene 0.480 0.408 0.419 0.448 0.441 0.453 0.442 5.81

- 53) Tetrachloroethene 0.480 0.408 0.419 0.448 0.441 0.453 0.442 5.81
 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998
 Response Ratio = 0.00000 + 0.42688 *A + 0.01288 *A^2
- 54) 1,1,2-Trichloroetha 0.299 0.234 0.249 0.263 0.255 0.258 0.260 8.35
 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9998
 Response Ratio = 0.00000 + 0.25756 *A
- 55) Dibromochloromethan 0.322 0.315 0.358 0.378 0.390 0.399 0.360 9.75
 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9995
 Response Ratio = 0.00000 + 0.39328 *A
- 56) 1,3-Dichloropropane 0.505 0.449 0.480 0.501 0.499 0.505 0.490 4.50 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9999 Response Ratio = 0.00000 + 0.50188 *A
- 58) 2-hexanone 0.171 0.141 0.163 0.176 0.176 0.179 0.168 8.39
 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998
 Response Ratio = 0.00000 + 0.16877 *A + 0.00106 *A^2
- 60) C Ethylbenzene 2.004 1.748 1.846 1.994 2.052 2.095 1.957 6.77
 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9999

 Response Ratio = 0.00000 + 1.89782 *A + 0.10104 *A^2

Page 5 of 7

Initial Calibration Summary Job Number: FA19407

77)

Cyclohexanone

Job Number:FA19407Sample:VI527-ICC527Account:GSYNFLTI Geosyntec ConsultantsLab FileID:124622.D

Account: Project:	GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL	Lab FileID: 124622.D
61) P	Chlorobenzene 1.248 1.062 1.08 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 1.1	
62)	1,1,1,2-Tetrachloro 0.388 0.354 0.39 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 0.3	Coefficient = 0.9998
63)	m,p-Xylene 1.311 1.193 1.35 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 1.3	
64)	o-Xylene 1.284 1.166 1.28 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 1.2	
65)	Styrene 1.039 0.970 1.16 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 1.1	
66) P	Bromoform 0.224 0.192 0.20 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 0.2	
67)	Isopropylbenzene 1.586 1.458 1.68 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 1.7	Coefficient = 0.9997
68) I 69) S 70)	1,4-Dichlorobenzene-d	05 0.796 0.888 0.776 0.854 6.46 02 4.129 4.250 4.240 3.994 7.81 Coefficient = 0.9996
71)	Bromobenzene 1.096 0.831 0.88 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.9	
72) P	1,1,2,2-Tetrachloro 0.855 0.679 0.64 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.6	Coefficient = 0.9997
73)	1,3,5-Trimethylbenz 3.005 2.623 2.93 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 3.0	Coefficient = 0.9997
74)	2-Chlorotoluene 2.886 2.353 2.48 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 2.6	
75)	trans-1,4-Dichloro- 0.136 0.145 0.15 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.1	Coefficient = 0.9990
76)	1,2,3-Trichloroprop 0.184 0.149 0.16 Linear regr., Force(0,0) Response Ratio = 0.00000 + 0.1	Coefficient = 0.9997

 $0.030\ 0.017\ 0.016\ 0.015\ 0.016\ 0.016\ 0.018\ 30.30$

Page 6 of 7

Initial Calibration Summary Job Number: FA19407 Sample: VI527-ICC527

GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL Lab FileID: I24622.D Account:

Project:	LC-39B, KSC, FĽ
	Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.01509 *A + 0.00012 *A^2
78)	4-Chlorotoluene 2.464 2.030 2.211 2.375 2.462 2.464 2.334 7.65 Linear regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 2.44848 *A
79)	tert-Butylbenzene 1.510 1.238 1.410 1.541 1.540 1.562 1.467 8.46 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 1.47531 *A + 0.04424 *A^2
80)	1,2,4-Trimethylbenz 3.113 2.661 2.991 3.224 3.321 3.358 3.111 8.31 Quadratic regression Coefficient = 0.9998 Response Ratio = -0.04154 + 3.18769 *A + 0.09926 *A^2
81)	sec-Butylbenzene 3.713 3.270 3.617 3.959 3.980 4.020 3.760 7.69 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 3.80706 *A + 0.11054 *A^2
82)	<pre>4-Isopropyltoluene 2.993 2.596 2.934 3.230 3.272 3.315 3.057 8.95 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 3.08641 *A + 0.11850 *A^2</pre>
83)	1,3-Dichlorobenzene 2.037 1.532 1.637 1.746 1.779 1.810 1.757 9.74 Linear regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 1.79024 *A
84)	1,4-Dichlorobenzene 2.369 1.735 1.830 1.950 1.967 1.991 1.974 10.98 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 1.97566 *A
85)	n-Butylbenzene 1.870 1.573 1.789 2.019 2.033 2.086 1.895 10.19 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 1.88981 *A + 0.09954 *A^2
86)	Benzyl Chloride 0.215 0.177 0.231 0.262 0.278 0.285 0.241 17.16 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.24298 *A + 0.02174 *A^2
87)	1,2-Dichlorobenzene 1.817 1.438 1.527 1.616 1.639 1.630 1.611 7.89 Linear regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 1.62818 *A
88)	1,2-Dibromo-3-Chlor 0.112 0.078 0.076 0.084 0.079 0.076 0.084 16.74 Quadratic regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.08404 *A + -0.00380 *A^2
89)	Hexachlorobutadiene 0.884 0.533 0.609 0.654 0.610 0.571 0.644 19.40 Quadratic regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 0.68353 *A + -0.05525 *A^2
90)	1,2,4-Trichlorobenz 1.712 1.053 1.131 1.231 1.168 1.045 1.223 20.40 Quadratic regression Coefficient = 0.9986 Response Ratio = -0.02688 + 1.38947 *A + -0.16184 *A^2
91)	Naphthalene 2.829 1.441 1.631 1.804 1.674 1.473 1.809 28.60 Quadratic regr., Force(0,0) Coefficient = 0.9979 Response Ratio = 0.00000 + 1.97014 *A + -0.24158 *A^2
92)	1,2,3-Trichlorobenz 1.796 0.831 0.890 0.972 0.840 0.722 1.009 39.11

Page 7 of 7

Initial Calibration Summary

Job Number:FA19407Sample:VI527-ICC527Account:GSYNFLTI Geosyntec ConsultantsLab FileID:124622.D

Project: LC-39B, KSC, FL

---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9979 Response Ratio = $0.00000 + 1.08012 *A + -0.17696 *A^2$ 93) I Tert Butyl Alcohol-d1 -----ISTD-----ISTD----acrolein 6.109 4.224 4.478 3.940 4.013 3.996 4.460 18.66 94) ---- Linear regr., Force(0,0) ---- Coefficient = 0.9994 Response Ratio = 0.00000 + 4.00721 *A95) Tert Butyl Alcohol 1.810 1.286 1.255 1.263 1.238 1.245 1.349 16.76 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9999 Response Ratio = 0.00000 + 1.24494 *A 96) tert Amyl alcohol 1.406 0.962 0.964 1.052 1.042 1.051 1.080 15.31 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9997 Response Ratio = 0.00000 + 1.04672 *A97) 0.291 0.125 0.138 0.144 0.142 0.137 0.163 38.73 1,4-Dioxane ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9995 Response Ratio = $0.00000 + 0.14708 *A + -0.00119 *A^2$ _____ (#) = Out of Range

8260i102214.m Thu Oct 23 08:55:56 2014

Initial Calibration Verification

Job Number: FA19407 VI527-ICV527 Sample: Lab FileID: I24626.D

GSYNFLTI Geosyntec Consultants Account:

LC-39B, KSC, FL Project:

Evaluate Continuing Calibration Report

Data File : C:\msdchem\2\DATA\102214\I24626.D Vial: 8

Acq On : 22 Oct 2014 12:44 pm Operator: darshnap Sample : icv527-4 chem Misc : MS28709,VI527,,,,, Inst : MSVOA16 Multiplr: 1.00

MS Integration Params: Tiny.p

: C:\msdchem\2\METHODS\8260i102214.m (RTE Integrator) Method

: SW-846 Method 5030B/8260B & EPA 624 Title

Last Update : Wed Oct 22 13:04:07 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound	_	CCRF	%Dev Area%	Dev(mi	n)R.T.
1 I	Fluorobenzene	1.000	1.000	0.0 122	0.00	7.55
		Amount	Calc.	%Drift		
2	Dichlorodifluoromethane	40.000	37.739	5.7 118	0.00	2.71
3 P	Chloromethane	40.000	36.369	9.1 115	0.00	2.88
4 C	Vinyl Chloride	40.000	37.348	6.6 120	0.00	3.01
5	Bromomethane	40.000	38.939	2.7 124	0.00	3.41
6	Chloroethane	40.000	37.606	6.0 121	0.00	3.55
7	Trichlorofluoromethane	40.000	37.450	6.4 118	-0.03	3.71
8	Ethyl Ether	40.000	41.651	-4.1 124	0.00	4.00
9	1,2-Dichlorotrifluoroetha	40.000	41.554	-3.9 121	0.00	4.24
10 C	1,1-Dichloroethene	40.000	38.501	3.7 119	0.00	4.27
11	Freon 113	40.000	39.391	1.5 114	0.00	4.33
12	Carbon Disulfide	40.000	45.131	-12.8 139	0.00	4.33
13	Iodomethane	40.000	39.289	1.8 122	0.00	4.45
14	Methylene Chloride	40.000	39.975	0.1 118	0.00	4.89
15	Acetone	200.000	315.910	-58.0# 193	0.00	4.94
16	Methyl acetate	200.000	183.025	8.5 115	0.00	5.05
17	trans-1,2-Dichloroethene	40.000	37.888	5.3 114	0.00	5.06
18	Hexane	40.000	41.467	-3.7 127	0.00	5.11
19	Methyl Tert Butyl Ether	40.000	40.448	-1.1 119	0.00	5.17
20	Di-isopropyl ether	40.000	39.933	0.2 121	0.00	5.53
21 P	1,1-Dichloroethane	40.000	40.015	-0.0 120	0.00	5.71
22	Acrylonitrile	200.000	192.381	3.8 123	0.00	5.77
23	ETBE	40.000	40.256	-0.6 118	0.00	5.92
24	Vinyl acetate	200.000	236.949	-18.5 149	0.00	5.93
25	cis-1,2-Dichloroethene	40.000	38.831	2.9 117	0.00	6.28
26	2,2-Dichloropropane	40.000	41.404	-3.5 121	0.00	6.41
27	Bromochloromethane	40.000	39.023	2.4 118	0.00	6.49
28	Cyclohexane	40.000	36.819	8.0 112	0.00	6.50
29 C	Chloroform	40.000	39.104	2.2 117	0.00	6.54
30	Tetrahydrofuran	40.000	39.182	2.0 114	0.00	6.72
				%Dev		
31 S	Dibromofluoromethane	0.296	0.284	4.1 119	0.00	6.73
			Calc.			
32	Carbon Tetrachloride	40.000		3.7 118		
33		40.000		-0.8 121	0.00	6.78
34	2-Butanone		250.061		0.00	6.85
35	1,1-Dichloropropene	40.000		-2.3 123	0.00	6.89
36	Benzene	40.000	39.381	1.5 119	0.00	7.15

Initial Calibration Verification Job Number: FA19407 Sample: VI527-ICV527 GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL Lab FileID: I24626.D Account: **Project:**

37	TAME	40.000	39.699	0.8	117	0.00	7.22
		<i>Nic</i> PE	CCRF	%Dev			
38 S	1,2-Dichloroethane-d4	0.260	0.248		120	0.00	7.28
		Amount	t Calc.	%Drift			
39	1,2-Dichloroethane	40.000			125	0.00	7.35
40	Trichloroethene	40.000			119	0.00	7.72
41	Methylcyclohexane	40.000			117	0.00	7.72
42	Dibromomethane	40.000			119	0.00	8.16
43 C	1,2-Dichloropropane	40.000			120	0.00	8.25
44	Bromodichloromethane 2-Chloroethyl vinyl ether	40.000			123	0.00	8.30 8.83
45 46	cis-1,3-Dichloropropene	40.000	40.370		110 121	0.00	8.92
		AvgRF	CCRF	%Dev			
47 I	Chlorobenzene-d5	1.000	1.000	0.0	118	0.00	10.66
48 S	Toluene-d8	1.209	1.153	4.6	119	0.00	9.10
		Amount	t Calc.	%Drift			
49 C	Toluene	40.000	40.285		120	0.00	9.15
50	2-Nitropropane		194.271		118	0.00	9.39
51	4-Methyl-2-pentanone		202.564		121	0.00	9.50
52	trans-1,3-Dichloropropene				135	0.00	9.55
53	Tetrachloroethene	40.000			121	0.00	9.54
54 55	1,1,2-Trichloroethane Dibromochloromethane	40.000			120 128	0.00	9.72 9.91
56	1,3-Dichloropropane	40.000			122	0.00	10.00
57	1,2-Dibromoethane	40.000			125	0.00	10.17
58	2-hexanone	200.000	251.393	-25.7#	147	0.00	10.33
59	1-Chlorohexane	40.000			113	0.00	10.61
60 C	Ethylbenzene	40.000			121	0.00	10.67
61 P	Chlorobenzene	40.000			131	0.00	10.67
62 63	1,1,1,2-Tetrachloroethane				123 126	0.00	10.73
64	m,p-Xylene o-Xylene	80.000			132	0.00	10.81 11.25
65	Styrene	40.000			123	0.00	11.31
66 P	Bromoform	40.000			122	0.00	11.36
67	Isopropylbenzene	40.000	45.027		130	0.00	11.56
6 0 -		AvgRF	CCRF	%Dev			
68 I	1,4-Dichlorobenzene-d4	1.000	1.000		114	0.00	13.03
69 S	4-Bromofluorobenzene	0.854	0.832	2.6	119	0.00	11.88
		11110 0111		%Drift			
70	n-Propylbenzene	40.000	45.040		128	0.00	11.98
71	Bromobenzene 1,1,2,2-Tetrachloroethane	40.000	41.421		121	0.00	12.00
72 P 73	1,1,2,2-Tetrachioroethane 1,3,5-Trimethylbenzene	40.000	44.109 40.773		126 115	0.00	12.06 12.17
73 74	2-Chlorotoluene	40.000	44.568		126	0.00	12.17
75	trans-1,4-Dichloro-2-Bute	40.000	38.047		111	0.00	12.24
76	1,2,3-Trichloropropane	40.000	43.690		129	0.00	12.22
77	Cyclohexanone		152.915	23.5#	88	0.00	12.28
78	4-Chlorotoluene	40.000	45.579		134	0.00	12.34
79	tert-Butylbenzene	40.000	45.528		127	0.00	12.51
80	1,2,4-Trimethylbenzene	40.000	41.793		119	0.00	12.58
81	sec-Butylbenzene	40.000	45.820		129	0.00	12.69
82	4-Isopropyltoluene	40.000	44.904	-12.3	126	0.00	12.83

Initial Calibration Verification Page 3 of 3 **Job Number:** FA19407 Sample: VI527-ICV527 GSYNFLTI Geosyntec Consultants Lab FileID: I24626.D Account: LC-39B, KSC, FL Project: 1,3-Dichlorobenzene 40.000 45.513 -13.8 133 0.00 12.95 1,4-Dichlorobenzene 40.000 41.528 -3.8 120 0.00 13.05 n-Butylbenzene 40.000 40.829 -2.1 113 0.00 13.27 83 84 n-Butylbenzene 40.000 40.829 -2.1 113 0.00 13.27 Benzyl Chloride 40.000 40.755 -1.9 115 0.00 13.29 1,2-Dichlorobenzene 40.000 45.734 -14.3 131 0.00 13.48 85 86 87 1,2-Dibromo-3-Chloropropa 40.000 43.411 -8.5 119 0.00 14.23 Hexachlorobutadiene 40.000 43.141 -7.9 119 0.00 14.78 1,2,4-Trichlorobenzene 40.000 41.842 -4.6 118 0.00 14.83 Naphthalene 40.000 43.001 -7.5 119 0.00 15.12 1,2,3-Trichlorobenzene 40.000 43.609 -9.0 118 0.00 15.28 88 89 90 91 92

		Amount Calc.	%Drift			
94	acrolein	200.000 155.323	22.3#	91	0.00	4.64
95	Tert Butyl Alcohol	400.000 427.506	-6.9	121	0.00	5.23
96	tert Amyl alcohol	400.000 476.265	-19.1	136	0.00	7.39
97	1,4-Dioxane	800.000 820.430	-2.6	117	0.00	8.49

SPCC's out = 0 CCC's out = 0

0.0 115 -0.01 5.16

^{(#) =} Out of Range I24622.D 8260i102214.m Thu Oct 23 08:55:41 2014

VI538-CC527

I24916.D

GSYNFLTI Geosyntec Consultants Account:

LC-39B, KSC, FL Project:

Evaluate Continuing Calibration Report

Sample:

Lab FileID:

Vial: 1

Data File : C:\msdchem\2\DATA\110114\I24916.D Acq On : 1 Nov 2014 2:18 pm Operator: eileeng Sample : cc527-4 Misc : MS28810,VI538,,,,, Inst : MSVOA16 Multiplr: 1.00

MS Integration Params: Tiny.p

: C:\msdchem\2\METHODS\8260i102214.m (RTE Integrator) Method

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed Oct 22 13:04:07 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

1 Fluorobenzene 1.000 1.000 0.0 87 0.00 7.55		Compound	AvgRF	CCRF	%Dev Are	ea% Dev(m	nin)R.T.
Dichlorodifluoromethane	1 I			1.000	0.0	0.00	7.55
Dichlorodifluoromethane			Amount	Calc.	%Drift		
3 P Chloromethane	2					0.00	2.71
4 C Vinyl Chloride 40.000 44.374 -10.9 103 0.00 3.01 5 Bromomethane 40.000 50.632 -26.6# 115 -0.01 3.54 6 Chloroethane 40.000 48.562 -21.4# 112 -0.01 3.54 7 Trichlorofluoromethane 40.000 55.051 -37.6# 128 0.00 3.74 8 Ethyl Ether 40.000 46.087 -15.2 96 0.00 4.00 9 1,2-Dichlorotrifluoroethane 40.000 46.087 -15.2 96 0.00 4.24 10 C 1,1-Dichloroethene 40.000 44.232 -10.6 98 0.00 4.27 11 Freon 113 40.000 34.456 -8.6 90 0.00 4.27 11 Freon 113 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.89 15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.88</td>							2.88
5 Bromomethane 40.000 50.632 -26.6# 115 -0.01 3.40 6 Chloroethane 40.000 48.562 -21.4# 112 -0.01 3.54 7 Trichlorofluoromethane 40.000 55.051 -37.6# 128 0.00 3.74 8 Ethyl Ether 40.000 48.605 -21.5# 105 0.00 4.00 9 1,2-Dichlorotrifluoroetha 40.000 46.087 -15.2 96 0.00 4.27 11 Freon 113 40.000 43.456 -8.6 90 0.00 4.32 12 Carbon Disulfide 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.727 -1.8 86 0.00 4.89 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 260.429 -30.2# 118 0.00 5.04 16 Methyl acetate	4 C	Vinyl Chloride	40.000	44.374			3.01
7 Trichlorofluoromethane 40.000 55.051 -37.6# 128 0.00 3.74 8 Ethyl Ether 40.000 48.605 -21.5# 105 0.00 4.00 9 1,2-Dichlorotrifluoroetha 40.000 48.605 -21.5# 105 0.00 4.00 10 1,2-Dichloroethene 40.000 44.232 -10.6 98 0.00 4.27 11 Freon 113 40.000 43.456 -8.6 90 0.00 4.32 12 Carbon Disulfide 40.000 40.103 -0.3 89 0.00 4.33 13 Iodomethane 40.000 40.727 -1.8 86 0.00 4.89 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 260.429 -30.2# 118 0.00 4.93 16 Methyl acetate 200.000 39.661 0.8 86 0.00 5.06 18 <t< td=""><td>5</td><td>Bromomethane</td><td>40.000</td><td>50.632</td><td>-26.6# 11</td><td>5 -0.01</td><td>3.40</td></t<>	5	Bromomethane	40.000	50.632	-26.6# 11	5 -0.01	3.40
8 Ethyl Ether 40.000 48.605 -21.5# 105 0.00 4.00 9 1,2-Dichlorotrifluoroetha 40.000 46.087 -15.2 96 0.00 4.24 10 C 1,1-Dichloroethene 40.000 44.232 -10.6 98 0.00 4.32 11 Freon 113 40.000 43.2456 -8.6 90 0.00 4.32 12 Carbon Disulfide 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.45 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 206.429 -30.2# 118 0.00 4.93 16 Methyl acetate 200.000 36.611 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.16 <tr< td=""><td>6</td><td>Chloroethane</td><td>40.000</td><td>48.562</td><td>-21.4# 11</td><td>2 -0.01</td><td>3.54</td></tr<>	6	Chloroethane	40.000	48.562	-21.4# 11	2 -0.01	3.54
8 Ethyl Ether 40.000 48.605 -21.5# 105 0.00 4.00 9 1,2-Dichlorotrifluoroetha 40.000 46.087 -15.2 96 0.00 4.24 10 C 1,1-Dichloroethene 40.000 44.232 -10.6 98 0.00 4.32 11 Freon 113 40.000 43.2456 -8.6 90 0.00 4.32 12 Carbon Disulfide 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.45 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 206.429 -30.2# 118 0.00 4.93 16 Methyl acetate 200.000 36.611 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.16 <tr< td=""><td>7</td><td>Trichlorofluoromethane</td><td>40.000</td><td>55.051</td><td>-37.6# 12</td><td>28 0.00</td><td>3.74</td></tr<>	7	Trichlorofluoromethane	40.000	55.051	-37.6# 12	28 0.00	3.74
10 C 1,1-Dichloroethene 40.000 44.232 -10.6 98 0.00 4.27 11 Freon 113 40.000 43.456 -8.6 90 0.00 4.32 12 Carbon Disulfide 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.45 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.06 19 Methyl Tert Butyl Ether 40.000 38.092 4.8 83 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.0	8		40.000	48.605	-21.5# 10	0.00	4.00
10 C 1,1-Dichloroethene 40.000 44.232 -10.6 98 0.00 4.27 11 Freon 113 40.000 43.456 -8.6 90 0.00 4.32 12 Carbon Disulfide 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.45 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.06 19 Methyl Tert Butyl Ether 40.000 38.092 4.8 83 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.0	9	1,2-Dichlorotrifluoroetha	40.000	46.087	-15.2	0.00	4.24
12 Carbon Disulfide 40.000 39.195 2.0 87 0.00 4.33 13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.45 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.06 19 Methyl Tert Butyl Ether 40.000 38.092 4.8 83 0.00 5.16 20 Di-isopropyl ether 40.000 40.188 -0.5 86 0.00 5.71 21 P.1,1-Dichloroethane 40.000 41.707 -4.3 88 0.00	10 C	1,1-Dichloroethene	40.000	44.232	-10.6		4.27
13 Iodomethane 40.000 40.103 -0.3 89 0.00 4.45 14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.06 19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.33 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.40 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 22 Carbon	11	Freon 113	40.000	43.456	-8.6	0.00	4.32
14 Methylene Chloride 40.000 40.727 -1.8 86 0.00 4.89 15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.06 19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.53 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 43.640 -9.1 92 0.00 6.40 28 Cyclohexane 40.000 41.069 -2.7 89 0.00 6.50 29 C Chloroform 40.000 41.069 -2.7 89 0.00 6.50 29 C Chloroform 40.000 41.000 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.385 -11.0 98 0.00 6.71 31 S Dibromofluorometha	12	Carbon Disulfide	40.000	39.195	2.0 8	0.00	4.33
15 Acetone 200.000 201.817 -0.9 88 0.00 4.93 16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.10 19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.33 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.92 24 Vinyl acetate 200.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 41.069 -2.7 89 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 31 S Dibromofluoromethane 0.296 0.305 -3.0 92 0.00 6.71 32 Carbon Tetrachloride 40.000 44.385 -11.0 98 0.00 6.71 33 1,1,1-Trichloroethane 40.000 43.184 -8.0 93 -0.01 6.77 34 2-Butanone 200.000 223.330 -11.7 95 0.00 6.85 35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.85	13	Iodomethane	40.000	40.103	-0.3	0.00	4.45
16 Methyl acetate 200.000 260.429 -30.2# 118 0.00 5.04 17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.10 19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.53 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 41.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.900 -2.7 89 0.00 6.50 29 C Chloroform 40.000 44.104 -10.3 93 0.00 6.72	14	Methylene Chloride	40.000	40.727	-1.8	36 0.00	4.89
17 trans-1,2-Dichloroethene 40.000 39.661 0.8 86 0.00 5.06 18 Hexane 40.000 36.471 8.8 80 0.00 5.10 19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.53 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropromethane 40.000 41.069 -2.7 89 0.00	15	Acetone	200.000	201.817	-0.9	38 0.00	4.93
18 Hexane 40.000 36.471 8.8 80 0.00 5.10 19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.53 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 41.069 -2.7 89 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00	16	Methyl acetate	200.000	260.429	-30.2# 11	0.00	5.04
19 Methyl Tert Butyl Ether 40.000 44.236 -10.6 94 0.00 5.16 20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.53 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.92 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.40 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72	17	trans-1,2-Dichloroethene	40.000	39.661	0.8	36 0.00	5.06
20 Di-isopropyl ether 40.000 38.092 4.8 83 0.00 5.53 21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 31 S Dibromofluoromethane 0.296 0.305 -3.0 92 0.00 6.73 32 Carbon Tetrachloride 40.000 44.385 -11.0 98 0.00 6.71 33 1,1,1-Trichloroethane 40.000 43.184 -8.0 93 -0.01 6.77 34 2-Butanone 200.000 223.330 -11.7 95 0.00 6.85 35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.89	18	Hexane	40.000	36.471	8.8	0.00	5.10
21 P 1,1-Dichloroethane 40.000 40.188 -0.5 86 0.00 5.71 22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.73 31 S Dibromofluoromethane 0.296 0.305 -3.0 92 0.00 6.71 32 Carbon Tetrachloride 40.000 44.385<	19	Methyl Tert Butyl Ether	40.000	44.236	-10.6	0.00	5.16
22 Acrylonitrile 200.000 210.421 -5.2 97 0.00 5.77 23 ETBE 40.000 41.707 -4.3 88 0.00 5.92 24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 31 S Dibromofluoromethane 0.296 0.305 -3.0 92 0.00 6.73 32 Carbon Tetrachloride 40.000 44.385 -11.0 98 0.00 6.71 33 1,1,1-Trichloroethane 40.000 43.184 -8.0 93 -0.01 6.77 34 2-Butanone 200.000 223.330 -11.7 95 0.00 6.85 35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.89	20		40.000	38.092	4.8	33 0.00	5.53
23 ETBE	21 P	1,1-Dichloroethane	40.000	40.188		36 0.00	5.71
24 Vinyl acetate 200.000 154.814 22.6# 70 0.00 5.93 25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 AvgRF CCRF %Dev	22	Acrylonitrile	200.000	210.421	-5.2	0.00	5.77
25 cis-1,2-Dichloroethene 40.000 39.455 1.4 85 0.00 6.27 26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72	23	ETBE	40.000	41.707	-4.3	38 0.00	5.92
26 2,2-Dichloropropane 40.000 43.640 -9.1 92 0.00 6.40 27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 AvgRF CCRF *Dev	24	Vinyl acetate	200.000	154.814	22.6# 7	70 0.00	5.93
27 Bromochloromethane 40.000 41.069 -2.7 89 0.00 6.49 28 Cyclohexane 40.000 35.878 10.3 78 0.00 6.50 29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72 AvgRF CCRF %Dev	25	cis-1,2-Dichloroethene	40.000	39.455	1.4 8	35 0.00	6.27
28 Cyclohexane	26	2,2-Dichloropropane	40.000	43.640	-9.1	0.00	6.40
29 C Chloroform 40.000 41.900 -4.7 90 0.00 6.54 30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72	27	Bromochloromethane	40.000	41.069	-2.7	0.00	6.49
30 Tetrahydrofuran 40.000 44.104 -10.3 93 0.00 6.72	28		40.000	35.878			6.50
AvgRF CCRF %Dev	29 C	Chloroform	40.000	41.900	-4.7	0.00	6.54
31 S Dibromofluoromethane 0.296 0.305 -3.0 92 0.00 6.73	30	Tetrahydrofuran	40.000	44.104	-10.3	0.00	6.72
31 S Dibromofluoromethane 0.296 0.305 -3.0 92 0.00 6.73			3D.F.	CODE	9.D		
	21 0						6 72
32 Carbon Tetrachloride 40.000 44.385 -11.0 98 0.00 6.71 33 1,1,1-Trichloroethane 40.000 43.184 -8.0 93 -0.01 6.77 34 2-Butanone 200.000 223.330 -11.7 95 0.00 6.85 35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.89	31 2	DIDIOMOTIUOIOMECHANE	0.290	0.305	-3.0	0.00	0.73
33 1,1,1-Trichloroethane 40.000 43.184 -8.0 93 -0.01 6.77 34 2-Butanone 200.000 223.330 -11.7 95 0.00 6.85 35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.89			Amount	Calc.	%Drift		
34 2-Butanone 200.000 223.330 -11.7 95 0.00 6.85 35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.89	32	Carbon Tetrachloride	40.000	44.385		0.00	
35 1,1-Dichloropropene 40.000 41.077 -2.7 89 0.00 6.89	33	1,1,1-Trichloroethane	40.000	43.184	-8.0	93 -0.01	6.77
	34	2-Butanone	200.000	223.330	-11.7	0.00	6.85
36 Benzene 40.000 40.103 -0.3 87 0.00 7.14	35	1,1-Dichloropropene	40.000	41.077		0.00	6.89
	36	Benzene	40.000	40.103	-0.3	0.00	7.14

Page 2 of 3

82

4-Isopropyltoluene

40.000 42.138

-5.3

92

0.00

12.83

Continu Job Numb Account: Project:	GSYNFLTI Geosyntec Consulta			Sample: Lab FileID:		38-CC527 916.D	Page 3 of 3
83	1,3-Dichlorobenzene	40.000	40.881	-2.2	93	0.00	12.95
84	1,4-Dichlorobenzene	40.000	41.533	-3.8	93	0.00	13.05
85	n-Butylbenzene	40.000	43.035	-7.6	93	0.00	13.27
86	Benzyl Chloride	40.000	48.508	-21.3#	108	0.00	13.29
87	1,2-Dichlorobenzene	40.000	42.720	-6.8	95	0.00	13.48
88	1,2-Dibromo-3-Chloropropa	40.000	51.709	-29.3#	110	0.00	14.23
89	Hexachlorobutadiene	40.000	46.049	-15.1	98	0.00	14.78
90	1,2,4-Trichlorobenzene	40.000	45.258	-13.1	99	0.00	14.83
91	Naphthalene	40.000	47.057	-17.6	100	0.00	15.12
92	1,2,3-Trichlorobenzene	40.000	46.552	-16.4	97	0.00	15.28
		AvgRF	CCRF	%Dev			
93 I	Tert Butyl Alcohol-d10	1.000		0.0	102	0.00	5.16
		Amount	Calc.	%Drift			
94	acrolein	200.000	138.622	30.7#	72	0.00	4.63
95	Tert Butyl Alcohol	400.000		**		0.00	
96		400.000	427.153	-6.8	109	0.00	7.39
97	1,4-Dioxane	800.000	887.282	-10.9	113	0.00	8.49

(#) = Out of Range SPCC's out = 0 CCC's out 124622.D 8260i102214.m Mon Nov 03 14:08:11 2014

SPCC's out = 0 CCC's out = 0

Initial Calibration Summary

Job Number: FA19407 VZ1144-ICC1144 Sample:

GSYNFLTI Geosyntec Consultants Lab FileID: Z29635.D Account:

LC-39B, KSC, FL **Project:**

Response Factor Report MSVOA15

Method : C:\msdchem\1\METHODS\826011014.M (RTE Integrator)
Title : EPA 624 & SWA 5030B/8260B
Last Update : Mon Nov 03 11:06:23 2014 Response via : Initial Calibration

Calibration Files

1 =z29632.D 2 =z29633.D 3 =z29634.D 4 =z29635.D

=z29636.D 6 =z29637.D

1 2 3 4 5 6 Compound Avq %RSD

- 1) I Fluorobenzene -----ISTD-----ISTD-----
- 2) Dichlorodifluoromet 0.741 0.614 0.611 0.584 0.566 0.550 0.611 11.20 ---- Quadratic regr., Force(0,0) ---- Coefficient = 1.0000 Response Ratio = $0.00000 + 0.61075 *A + -0.03084 *A^2$
- 3) P Chloromethane 1.162 0.899 0.939 0.871 0.876 0.859 0.934 12.31 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9997 Response Ratio = 0.00000 + 0.86716 *A
- 4) C Vinyl Chloride 0.750 0.554 0.576 0.557 0.579 0.578 0.599 12.48 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9997 Response Ratio = 0.00000 + 0.57654 *A
- 5) 0.451 0.331 0.339 0.282 0.291 0.264 0.326 20.69 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9978 Response Ratio = $0.00000 + 0.32607 *A + -0.03034 *A^2$
- 0.378 0.268 0.274 0.246 0.231 0.217 0.269 21.34 6) Chloroethane ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9997 Response Ratio = $0.00000 + 0.27029 *A + -0.02689 *A^2$
- Trichlorofluorometh 0.722 0.615 0.676 0.647 0.658 0.671 0.665 7)
- Ethyl Ether 0.332 0.348 0.394 0.377 0.386 0.400 0.373 8)
- 9) 1,2-Dichlorotrifluo 0.473 0.428 0.482 0.459 0.457 0.455 0.459 3.97
- 10) Freon 113 0.415 0.404 0.436 0.429 0.419 0.421 0.421 2.65
- 11) C 1,1-Dichloroethene 0.528 0.511 0.612 0.586 0.599 0.607 0.574 7.55
- 0.184 0.121 0.134 0.124 0.132 0.138 0.139 16.67 12) Acetone
- ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9996 Response Ratio = $0.00000 + 0.11956 *A + 0.00184 *A^2$
- 13) 0.667 0.632 0.754 0.725 0.760 0.783 0.720 Iodomethane ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio = $0.00000 + 0.70403 *A + 0.03951 *A^2$
- Carbon Disulfide 0.962 0.936 1.095 1.052 1.051 1.055 1.025 6.03 Methyl acetate 0.399 0.382 0.477 0.444 0.487 0.500 0.448 10.83 14)
- 15) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9995 Response Ratio = $0.00000 + 0.43449 *A + 0.00664 *A^2$
- Methylene Chloride 0.824 0.739 0.832 0.785 0.792 0.795 0.795 16)
- Methyl Tert Butyl E 0.862 0.901 1.067 1.019 1.070 1.087 1.001 17) 9.60 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9995 Response Ratio = 0.00000 + 1.07498 *A
- trans-1,2-Dichloroe 0.569 0.513 0.619 0.593 0.611 0.608 0.585 18)
- 19) Acrylonitrile 0.152 0.126 0.187 0.171 0.190 0.193 0.170 15.50

Page 2 of 5

Initial Calibration Summary

Job Number:FA19407Sample:VZ1144-ICC1144Account:GSYNFLTI Geosyntec ConsultantsLab FileID:Z29635.D

Project: LC-39B, KSC, FL

---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9990 Response Ratio = $0.00000 + 0.17020 *A + 0.00233 *A^2$ 20) 0.796 0.850 1.028 1.005 1.026 1.039 0.957 11.06 Hexane ---- Linear regr., Force(0,0) ---- Coefficient = 0.9998Response Ratio = 0.00000 + 1.03141 *A Di-isopropyl ether 1.302 1.416 1.820 1.767 1.880 1.928 1.686 15.50 21) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio = $0.00000 + 1.71464 *A + 0.10827 *A^2$ Vinyl acetate 0.483 0.587 0.822 0.806 0.870 0.886 0.742 22.43 22) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9996 Response Ratio = $0.00000 + 0.78323 *A + 0.01057 *A^2$ 23) P 1,1-Dichloroethane 0.737 0.708 0.799 0.760 0.787 0.777 0.761 24) 0.960 1.091 1.388 1.390 1.439 1.494 1.294 16.64 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9999 Response Ratio = $0.00000 + 1.32128 *A + 0.08624 *A^2$ 25) 0.048 0.162 0.228 0.214 0.239 0.238 0.188 39.43 2-Butanone ---- Quadratic regression ---- Coefficient = 0.9990 Response Ratio = $-0.02387 + 0.22536 *A + 0.00162 *A^2$ 2,2-Dichloropropane 0.459 0.434 0.500 0.470 0.480 0.475 0.470 26) cis-1,2-Dichloroeth 0.369 0.372 0.475 0.446 0.465 0.459 0.431 27) 11.09 Bromochloromethane 0.219 0.229 0.267 0.249 0.257 0.256 0.246 7.50 28) 29) Tetrahydrofuran 0.124 0.100 0.131 0.131 0.137 0.138 0.127 11.11 0.653 0.699 0.761 0.725 0.746 0.725 0.718 30) C Chloroform 5.29 31) S Dibromofluoromethan 0.319 0.308 0.315 0.309 0.306 0.303 0.310 1.91 32) 1,1,1-Trichloroetha 0.496 0.520 0.593 0.566 0.569 0.571 0.553 6.59 33) 0.624 0.633 0.855 0.875 0.877 0.887 0.792 Cyclohexane ---- Linear regr., Force(0,0) ---- Coefficient = 0.9999 Response Ratio = 0.00000 + 0.88208 *A Carbon Tetrachlorid 0.558 0.532 0.590 0.568 0.561 0.565 0.562 3.29 34) 1,1-Dichloropropene 0.331 0.397 0.484 0.464 0.483 0.480 0.440 35) 14.24 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio = 0.00000 + 0.47907 *A36) S 1,2-Dichloroethane- 0.302 0.299 0.288 0.285 0.286 0.276 0.289 0.659 0.747 1.013 1.011 1.071 1.103 0.934 19.72 37) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio = $0.00000 + 0.96697 *A + 0.06894 *A^2$ 1.227 1.295 1.564 1.506 1.540 1.540 1.445 38) Benzene 1,2-Dichloroethane 0.521 0.527 0.562 0.524 0.547 0.549 0.538 39) 3.08 40) Trichloroethene 0.388 0.356 0.415 0.395 0.399 0.406 0.393 5.23 Methylcyclohexane 0.477 0.520 0.692 0.698 0.688 0.701 0.629 41) 16.26 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio = 0.00000 + 0.69626 *A 42) C 1,2-Dichloropropane 0.382 0.364 0.456 0.433 0.445 0.463 0.424 9.71 Dibromomethane 0.254 0.253 0.290 0.267 0.275 0.283 0.270 43) 5.58 Bromodichloromethan 0.444 0.452 0.542 0.513 0.531 0.535 0.503 44) 2-Chloroethyl vinyl 0.138 0.181 0.272 0.262 0.280 0.292 0.237 45) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9997 Response Ratio = $0.00000 + 0.24865 *A + 0.00438 *A^2$ 46) 0.075 0.097 0.125 0.115 0.123 0.127 0.110 18.40 2-Nitropropane

Page 3 of 5

Initial Calibration Summary Job Number: FA19407

VZ1144-ICC1144 Sample:

GSYNFLTI Geosyntec Consultants LC-39B, KSC, FL Z29635.D Lab FileID: Account:

Project:

1 Toject.	EC 37B, RBC, TE
	Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.11305 *A + 0.00135 *A^2
47)	cis-1,3-Dichloropro 0.440 0.523 0.635 0.617 0.643 0.664 0.587 14.85 Quadratic regr., Force(0,0) Coefficient = 0.9999 Response Ratio = 0.00000 + 0.59578 *A + 0.03401 *A^2
48)	4-Methyl-2-pentanon 0.353 0.368 0.518 0.487 0.520 0.537 0.464 17.65 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 0.47221 *A + 0.00651 *A^2
49) I 50) S 51) C 52)	Chlorobenzene-d5ISTD
53) 54) 55)	1,1,2-Trichloroetha 0.307 0.356 0.387 0.352 0.363 0.364 0.355 7.43 Tetrachloroethene 0.410 0.429 0.515 0.488 0.491 0.500 0.472 8.95 2-hexanone 0.251 0.250 0.383 0.363 0.402 0.410 0.343 21.40 Quadratic regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 0.35423 *A + 0.00579 *A^2
56) 57)	1,3-Dichloropropane 0.570 0.559 0.677 0.627 0.654 0.667 0.626 8.05 Dibromochloromethan 0.439 0.437 0.546 0.503 0.541 0.556 0.504 10.75 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.49418 *A + 0.03120 *A^2
58) 59)	1,2-Dibromoethane 0.315 0.367 0.444 0.412 0.446 0.452 0.406 13.49 1-Chlorohexane 0.381 0.445 0.633 0.625 0.639 0.656 0.563 21.00 Quadratic regression Coefficient = 0.9998 Response Ratio = -0.00818 + 0.62143 *A + 0.01879 *A^2
60) P	Chlorobenzene 1.238 1.169 1.338 1.271 1.294 1.307 1.270 4.69 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 1.27156 *A + 0.01728 *A^2
61) C 62)	Ethylbenzene 1.889 1.915 2.256 2.130 2.184 2.215 2.098 7.52 1,1,1,2-Tetrachloro 0.377 0.437 0.523 0.494 0.497 0.489 0.469 11.38 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 0.50861 *A + -0.00969 *A^2
63)	m,p-Xylene 1.111 1.260 1.620 1.555 1.596 1.624 1.461 15.05 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 1.53395 *A + 0.02228 *A^2
64)	o-Xylene 0.917 1.061 1.494 1.507 1.554 1.575 1.351 21.15 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 1.46699 *A + 0.05550 *A^2
65)	Styrene 0.721 0.890 1.355 1.343 1.414 1.445 1.195 25.81 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 1.29787 *A + 0.07483 *A^2
66) P	Bromoform 0.308 0.301 0.362 0.346 0.372 0.382 0.345 9.78 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.33703 *A + 0.02281 *A^2

Page 4 of 5

Initial Calibration Summary

Job Number: FA19407

Account: GSYNFLTI Geosyntec Consultants

Project: LC-39B, KSC, FL VZ1144-ICC1144 Sample:

Z29635.D Lab FileID:

67) I	1,4-Dichlorobenzene-dISTD
68)	Isopropylbenzene 2.131 2.470 3.374 3.428 3.466 3.731 3.100 20.66 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 3.11404 *A + 0.29984 *A^2
69)	Cyclohexanone 0.010 0.020 0.023 0.021 0.020 0.019 0.019 24.11 Linear regr., Force(0,0) Coefficient = 0.9978 Response Ratio = 0.00000 + 0.01989 *A
70) S 71) P	4-Bromofluorobenzen 0.796 0.749 0.735 0.743 0.758 0.822 0.767 4.48 1,1,2,2-Tetrachloro 1.319 1.051 1.153 1.036 1.043 1.089 1.115 9.77 Quadratic regr., Force(0,0) Coefficient = 0.9991 Response Ratio = 0.00000 + 1.02049 *A + 0.03086 *A^2
72)	trans-1,4-Dichloro- 0.247 0.242 0.322 0.309 0.334 0.367 0.303 16.44 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.27448 *A + 0.04571 *A^2
73) 74)	n-Propylbenzene 3.426 3.440 4.224 4.128 4.260 4.592 4.012 11.83 Bromobenzene 0.964 0.966 1.114 1.045 1.103 1.194 1.064 8.49 Quadratic regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 0.96291 *A + 0.11275 *A^2
75) 76)	1,2,3-Trichloroprop 0.356 0.270 0.301 0.275 0.280 0.293 0.296 10.67 1,3,5-Trimethylbenz 2.041 2.517 3.228 3.155 3.190 3.267 2.900 17.42 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 3.23193 *A
77) 78)	2-Chlorotoluene 2.218 2.406 2.926 2.782 2.885 2.996 2.702 11.69 4-Chlorotoluene 1.818 1.965 2.496 2.466 2.551 2.711 2.334 15.27 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 2.28980 *A + 0.20673 *A^2
79)	tert-Butylbenzene 1.008 1.156 1.582 1.542 1.542 1.574 1.400 17.97 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 1.56090 *A
80)	1,2,4-Trimethylbenz 1.853 2.552 3.367 3.213 3.234 3.292 2.919 20.54 Linear regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 3.26843 *A
81)	sec-Butylbenzene 2.517 3.072 4.041 3.932 3.896 3.901 3.560 17.43 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 3.94073 *A + -0.02185 *A^2
82)	4-Isopropyltoluene 1.776 2.297 3.354 3.225 3.192 3.174 2.836 22.71 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 3.26231 *A + -0.04512 *A^2
83)	1,3-Dichlorobenzene 1.454 1.578 1.933 1.838 1.882 1.896 1.763 11.23 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 1.83922 *A + 0.02859 *A^2
84)	1,4-Dichlorobenzene 2.207 1.860 2.182 2.050 2.103 2.124 2.088 5.98 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 2.05579 *A + 0.03361 *A^2
85)	Benzyl Chloride 0.312 0.309 0.447 0.413 0.435 0.423 0.390 16.05 Quadratic regr., Force(0,0) Coefficient = 0.9992

Page 5 of 5

Initial Calibration Summary

Job Number:FA19407Sample:VZ1144-ICC1144Account:GSYNFLTI Geosyntec ConsultantsLab FileID:Z29635.D

Project: LC-39B, KSC, FL

Response Ratio = $0.00000 + 0.43105 *A + -0.00311 *A^2$ 0.587 0.651 0.918 0.930 0.932 0.917 0.823 19.33 86) n-Butylbenzene ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio = $0.00000 + 0.93633 *A + -0.00848 *A^2$ 87) 1,2-Dichlorobenzene 1.656 1.554 1.938 1.766 1.725 1.636 1.713 7.75 1,2-Dibromo-3-Chlor 0.160 0.123 0.147 0.118 0.090 0.076 0.119 27.09 88) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9945 Response Ratio = $0.00000 + 0.14331 *A + -0.03449 *A^2$ 1,2,4-Trichlorobenz 0.894 0.963 1.196 0.998 0.681 0.517 0.875 27.64 89) ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9911 Response Ratio = $0.00000 + 1.24964 *A + -0.37271 *A^2$ 90) Hexachlorobutadiene 0.614 0.554 0.621 0.541 0.393 0.319 0.507 24.35 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9951 Response Ratio = $0.00000 + 0.65371 *A + -0.17043 *A^2$ 91) Naphthalene 2.442 2.054 2.794 2.132 1.367 0.987 1.963 34.30 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9809 Response Ratio = $0.00000 + 2.77363 *A + -0.91147 *A^2$ 92) 1,2,3-Trichlorobenz 1.025 0.911 1.106 0.816 0.479 0.349 0.781 38.88 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9618 Response Ratio = $0.00000 + 1.06160 *A + -0.36590 *A^2$ 93) I Tert Butyl alcohol-d1 ------ISTD-----94) 4.784 2.186 2.377 1.888 2.262 2.045 2.590 42.01 Acrolein ---- Linear regr., Force(0,0) ---- Coefficient = 0.9922 Response Ratio = 0.00000 + 2.10102 *A 95) Tert-Butyl Alcohol 1.951 1.633 1.586 1.487 1.572 1.562 1.632 10.02 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9995 Response Ratio = 0.00000 + 1.55864 *A96) Tert amyl alcohol 0.960 1.024 1.242 1.211 1.285 1.289 1.169 12.08 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9995 Response Ratio = 0.00000 + 1.27892 *A97) 0.118 0.162 0.151 0.154 0.161 0.149 12.01 ______ (#) = Out of Range

826011014.M Mon Nov 03 11:09:15 2014

Initial Calibration Verification

Job Number: FA19407 VZ1144-ICV1144 Sample:

GSYNFLTI Geosyntec Consultants Lab FileID: Z29638.D Account:

LC-39B, KSC, FL Project:

Evaluate Continuing Calibration Report

Vial: 8

Data File : C:\msdchem\1\DATA\110114\z29638.D Acq On : 1 Nov 2014 3:58 pm Operator: melissam Sample : icv1144-4 Misc : ms28798,vz1144,,,,, Inst : MSVOA15 Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\msdchem\1\METHODS\826011014.M (RTE Integrator) Method

: EPA 624 & SWA 5030B/8260B Title Last Update : Mon Nov 03 11:06:23 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

	Compound		CCRF	%Dev Area%	Dev(min)R.T.
1 I	Fluorobenzene		1.000	0.0 124	0.00 7.74
		Amount	Calc.	%Drift	
2	Dichlorodifluoromethane				0 00 2 64
3 P	Chloromethane	40.000	36.720	8.2 113	0.00 2.64 0.00 2.85
4 C		40.000		_2 7 132	0 00 2 99
5	Bromomethane	40.000	40.770		0.00 3.41
6	Chloroethane	40.000	42.954	-7.4 134	0.00 3.41 0.00 3.57
		AvgRF	CCRF	%Dev	
7	Trichlorofluoromethane		0.633		0.00 3.80
8	Ethyl Ether	0.373	0.412	-10.5 136	0.00 4.09
9	1,2-Dichlorotrifluoroetha	0.459	0.496	-8.1 134	0.00 4.33
10	Freon 113	0.421	0.412	2.1 119	0.00 4.43
11 C	1,1-Dichloroethene	0.574	0.629	-9.6 133	0.00 4.37
		Amount	Calc.	%Drift	
12	Acetone	200.000	199.878	0.1 127	0.00 5.04
13	Iodomethane	40.000	41.249	-3.1 130	0.00 4.56
14	Carbon Disulfide	1.025	1.264	-23.3# 149	0.00 4.44
		Amount	Calc.	%Drift	
15	Methyl acetate	200.000	163.818	18.1 104	0.00 5.16
		AvgRF	CCRF	%Dev	
16	Methylene Chloride	0.795	0.797	-0.3 126	0.00 5.02
		Amount	Calc.	%Drift	
17	Methyl Tert Butyl Ether	40.000	40.329	-0.8 132	0.00 5.30
18	trans-1,2-Dichloroethene	0.585	0.602	-2.9 126	0.00 5.20
19	Acrylonitrile	200.000		-1.7 132	0.00 5.89
20	Hexane	40.000	40.681	-1.7 130	0.00 5.28
21	Di-isopropyl ether			-5.4 134	
22	Vinyl acetate	200.000	297.156	-48.6# 194	0.00 6.08
		AvgRF	CCRF	%Dev	

Initial Calibration Verification

Page 2 of 4 **Job Number:** FA19407 VZ1144-ICV1144 Sample: GSYNFLTI Geosyntec Consultants Lab FileID: Z29638.D Account: LC-39B, KSC, FL **Project:** 23 P 1,1-Dichloroethane 0.761 0.739 2.9 121 0.00 5.87 24 ETBE 25 2-Butanone 26 27 28 29 30 C 31 S 32 2.1 122 0.00 6.71 33 Cyclohexane 34 35 - AvgRF CCRF %Dev ------0.289 0.278 3.8 121 0.00 7.46 ----- AvgRF 36 S 1,2-Dichloroethane-d4 ------ Amount Calc. %Drift ------ 40.000 42.214 -5.5 133 0.00 7.41 37 TAME ----- Avarf 38 Benzene 1,2-Dichloroethane 39 40 Trichloroethene ----- Amount Calc. %Drift ------ Methylcyclohexane 40.000 40.355 -0.9 125 0.00 7. 41 -0.9 125 0.00 7.94 42 C 43 44 ----- Amount Calc. %Drift -----45 2-Chloroethyl vinyl ether 200.000 121.997 39.0# 75 0.00 8.99 -1.0 129 0.00 9.54 46 2-Nitropropane 200.000 202.081 cis-1,3-Dichloropropene 40.000 38.448 4-Methyl-2-pentanone 200.000 201.015 3.9 120 0.00 47 9.10 48 -0.5 128 0.00 9.66 ----- AvgRF CCRF %Dev _____ Chlorobenzene-d5 1.000 1.000 0.0 121 0.00 10.84 49 I 1.123 1.843 1.6 122 0.00 1.141 1.123 9.28 50 S Toluene-d8 1.9 120 0.00 51 C Toluene 1.878 9.34 ----- Amount Calc. %Drift ------ trans-1,3-Dichloropropene 40.000 41.591 -4.0 129 0.00 9 52 -4.0 129 0.00 9.72 %Dev ----- AvgRF CCRF 0.3 122 0.00 9.89 53 1,1,2-Trichloroethane 0.355 0.354

Job Numb Account:	Calibration Verification er: FA19407 GSYNFLTI Geosyntec Consulta LC-39B, KSC, FL	ants		Sample: Lab FileID:	VZ1144-ICV Z29638.D	Page 3 of 4
54	Tetrachloroethene	0.472	0.483	-2.3	120 0.00	9.74
55	2-hexanone	Amount 200.000	Calc. 203.825	%Drift -1.9	129 0.00	
56	1,3-Dichloropropane	0.626	0.639	-2.1	124 0.00	
57	Dibromochloromethane	40.000	41.508	-3.8	130 0.00	
58	1,2-Dibromoethane				126 0.00	
59 60 P	1-Chlorohexane Chlorobenzene	Amount 40.000 40.000	40.742	-1.9	124 0.00 128 0.00	10.79
61 C	Ethylbenzene			%Dev 0.1	120 0.00	
62 63 64 65 66 P	1,1,1,2-Tetrachloroethane m,p-Xylene o-Xylene Styrene Bromoform	40.000 80.000 40.000	40.232 81.210 42.465 37.947	-0.6 -1.5 -6.2 5.1	124 0.00 124 0.00 130 0.00	10.91 10.99 11.43 11.48
67 I	1,4-Dichlorobenzene-d4					13.20
68 69	Isopropylbenzene Cyclohexanone					
70 S	4-Bromofluorobenzene	AvgRF 0.767	CCRF 0.741	%Dev 3.4	121 0.00	12.05
71 P 72	1,1,2,2-Tetrachloroethane trans-1,4-Dichloro-2-Bute	40.000	Calc. 37.307 39.622	6.7	114 0.00	
73	n-Propylbenzene	AvgRF 4.012	CCRF 4.345		128 0.00	12.16
74	Bromobenzene	Amount 40.000	Calc. 39.070		119 0.00	
75	1,2,3-Trichloropropane	AvgRF 0.296	CCRF 0.268		118 0.00	
76	1,3,5-Trimethylbenzene	Amount 40.000	Calc. 37.146			12.34
77	2-Chlorotoluene	AvgRF 2.702	CCRF 2.872		125 0.00	
78	4-Chlorotoluene	Amount 40.000	Calc. 41.825		127 0.00	12.52

Initial Calibration Varification

Job Numb Account:	Calibration Verification er: FA19407 GSYNFLTI Geosyntec Consulta LC-39B, KSC, FL	nts		Sample: Lab FileID:		1144-ICV11 638.D	Page 4 of 4
79	tert-Butylbenzene	40.000	40.633	-1.6	125	0.00	12.69
80	1,2,4-Trimethylbenzene	40.000	37.200	7.0	115	0.00	12.75
81	sec-Butylbenzene	40.000	41.247	-3.1	125	0.00	12.87
82	4-Isopropyltoluene	40.000	40.581	-1.5	123	0.00	13.00
83	1,3-Dichlorobenzene	40.000	41.235	-3.1	127	0.00	13.14
84	1,4-Dichlorobenzene	40.000	37.662	5.8	116	0.00	13.22
85	Benzyl Chloride	40.000	36.932	7.7	116	0.00	13.45
86	n-Butylbenzene	40.000	38.112	4.7	116	0.00	13.44
		AvgRF	CCRF	%Dev			
87	1,2-Dichlorobenzene	1.713	1.826	-6.6	125	0.00	13.64
88	1,2-Dibromo-3-Chloropropa	40.000	38.749			0.00	14.39
89	1,2,4-Trichlorobenzene		39.579		115	0.00	14.98
90	Hexachlorobutadiene	40.000	40.580	-1.4	117	0.00	14.94
91	Naphthalene	40.000	39.796	0.5	116	0.00	15.26
92	1,2,3-Trichlorobenzene	40.000	40.728	-1.8	116	0.00	15.43
		AvaRF	CCRF	%Dev			
93 I		1.000	1.000		133	0.00	5.26
		Amount	Calc.	%Drift			
94	Acrolein					-0.01	
95	Tert-Butyl Alcohol	400.000	420.576	-5.1	146	0.00	5.35
96	Tert amyl alcohol	400.000	413.599	-3.4	145	0.00	7.55
97	1,4-Dioxane	0.149	0.166	-11.4	146	0.00	8.66

(#) = Out of Range SPCC's out = 0 CCC's out = 0 z29635.D 826011014.M Mon Nov 03 11:27:45 2014 (#) = Out of Range

VZ1145-CC1144

Z29642.D

Lab FileID:

Job Number: FA19407

GSYNFLTI Geosyntec Consultants Account:

LC-39B, KSC, FL Project:

Evaluate Continuing Calibration Report

Vial: 1

Data File : C:\msdchem\1\DATA\110314\z29642.D Acq On : 3 Nov 2014 8:10 am Operator: melissam Sample : cc1144-4 Misc : ms28789,vz1145,,,,, Inst : MSVOA15 Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\msdchem\1\METHODS\826011014.M (RTE Integrator) Method

Title : EPA 624 & SWA 5030B/8260B Last Update : Mon Nov 03 11:06:23 2014 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

Compound			CCRF	%Dev A	%Dev Area%		Dev(min)R.T.	
1 I	Fluorobenzene		1.000	0.0	113	0.00	7.74	
		Amount	Calc.	%Drift				
2	Dichlorodifluoromethane		26 000	7 -		0.00		
3 P	Chloromethane	40.000	43.035		121	0.00		
4 C		40.000	44.933		131			
5	Bromomethane	40.000	46.381					
6	Chloroethane	40.000	47.048			0.00	3.57	
			CCRF					
7	Trichlorofluoromethane		0.653			0.00		
8	Ethyl Ether					0.00	4.08	
9	1,2-Dichlorotrifluoroetha	0.459	0.485			0.00	4.32	
10	Freon 113		0.434			-0.01	4.43	
11 C	1,1-Dichloroethene	0.574	0.619	-7.8	119	0.00	4.37	
		Amount	Calc.	%Drift				
12	Acetone			-7.9				
13	Iodomethane			-9.6				
		AvgRF	CCRF	%Dev				
14	Carbon Disulfide	1.025	1.078	-5.2	116	0.00	4.44	
		Amount	Calc.	%Drift				
15	Methyl acetate					0.00	5.16	
		AvgRF	CCRF	%Dev				
16	Methylene Chloride	0.795	0.825	-3.8	119	0.00	5.01	
		Amount	Calc.	%Drift				
17	Methyl Tert Butyl Ether					0.00	5.29	
		AvgRF	CCRF	%Dev				
18	trans-1,2-Dichloroethene		0.641					
		Amount	Calc.	%Drift				
19	Acrylonitrile	200.000	220.269	-10.1	131	0.00	5.89	
20	Hexane	40.000		-4.3	121	0.00	5.28	
21	Di-isopropyl ether	40.000			126			
22	Vinyl acetate	200.000	184.044	8.0	106			
		AvgRF	CCRF	%Dev				

Job Numl	uing Calibration Summary ber: FA19407 GSYNFLTI Geosyntec Consulta LC-39B, KSC, FL	Sample: Lab FileID:	VZ1145-CC1144 Z29642.D	Page 2 of 4		
23 P	1,1-Dichloroethane	0.761	0.829	-8.9	123 0.00	5.86
24 25	ETBE 2-Butanone		42.722	-6.8		6.08
26 27 28	2,2-Dichloropropane cis-1,2-Dichloroethene Bromochloromethane		0.523	-11.3 -12.8		6.58 6.45
29 30 C 31 S 32	Tetrahydrofuran Chloroform Dibromofluoromethane	0.127 0.718	0.144 0.784 0.319	-13.4	123 0.00 122 0.00 116 0.00	6.89 6.71 6.90
33	Cyclohexane	40.000	40.949	-2.4	116 0.00	
34	Carbon Tetrachloride			%Dev -6.4	119 0.00	6.91
35	1,1-Dichloropropene	Amount 40.000	Calc. 41.990	%Drift -5.0	122 0.00	7.08
36 S	1,2-Dichloroethane-d4				111 0.00	
37	TAME		Calc. 43.196		124 0.00	 7.41
38 39 40	Benzene 1,2-Dichloroethane Trichloroethene	AvgRF 1.445 0.538 0.393	1.620 0.570	-12.1 -5.9		7.33
41	Methylcyclohexane				115 0.00	 7.94
42 C 43 44	1,2-Dichloropropane Dibromomethane Bromodichloromethane	AvgRF 0.424 0.270 0.503	0.286	-11.3	123 0.00 121 0.00 120 0.00	8.43 8.34 8.47
45 46 47 48	2-Chloroethyl vinyl ether 2-Nitropropane cis-1,3-Dichloropropene 4-Methyl-2-pentanone	200.000 200.000 40.000	208.909	-6.1 -6.2	120 0.00 123 0.00 121 0.00 127 0.00	8.99 9.54 9.09 9.66
49 I 50 S 51 C	Chlorobenzene-d5 Toluene-d8 Toluene	AvgRF 1.000 1.141 1.878	CCRF 1.000 1.050 1.817	%Dev 0.0 8.0 3.2	125 0.00 117 0.00 121 0.00	 10.84 9.28 9.34
52	trans-1,3-Dichloropropene			%Drift 4.5	121 0.00	 9.72
53	1,1,2-Trichloroethane	AvgRF 0.355	CCRF 0.342	%Dev 3.7	122 0.00	 9.89

Continuing	Calibration	Summary
-------------------	-------------	----------------

Job Number: FA19407 Sample: VZ1145-CC1144 **GSYNFLTI** Geosyntec Consultants Lab FileID: Z29642.D Account: LC-39B, KSC, FL **Project:** 54 Tetrachloroethene 0.472 0.463 1.9 118 0.00 9.74 ----- Amount Calc. %Drift 55 200.000 193.964 3.0 126 0.00 10.48 2-hexanone ----- AvgRF %Dev CCRF _____ 56 0.626 0.623 0.5 124 0.00 10.17 1,3-Dichloropropane ----- Amount Calc. %Drift -----40.000 38.528 57 Dibromochloromethane 3.7 124 0.00 10.08 ----- AvgRF CCRF %Dev _____ 58 1,2-Dibromoethane 0.406 0.409 -0.7 124 0.00 10.34 ----- Amount Calc. %Drift -----59 1-Chlorohexane 40.000 38.595 3.5 121 0.00 10.79 60 P 40.000 37.593 6.0 119 0.00 Chlorobenzene ----- AvgRF CCRF %Dev _____ 61 C Ethylbenzene 2.098 2.030 3.2 119 0.00 10.85 ----- Amount Calc. %Drift -----1,1,1,2-Tetrachloroethane 40.000 38.034 4.9 121 0.00 10.91 62 5.6 119 0.00 63 80.000 75.533 10.99 m,p-Xylene 121 64 o-Xylene 40.000 38.644 3.4 0.00 11.43 5.4 119 0.00 65 Styrene 40.000 37.860 11.48 39.391 66 P Bromoform 40.000 1.5 126 0.00 11.54 ----- AvgRF CCRF %Dev 1,4-Dichlorobenzene-d4 1.000 0.0 128 0.00 13.20 67 I 1.000 %Drift ---------- Amount Calc. 68 40.000 38.318 4.2 120 0.00 Isopropylbenzene 11 74 0.00 69 Cyclohexanone 200.000 184.654 7.7 110 12.44 ----- AvgRF CCRF %Dev -----70 S 0.767 2.1 129 0.00 12.05 4-Bromofluorobenzene 0.751 ----- Amount Calc. %Drift -----71 P 1,1,2,2-Tetrachloroethane 40.000 37.047 7.4 119 0.00 12.22 72 trans-1,4-Dichloro-2-Bute 40.000 37.257 6.9 119 0.00 12.39 ----- AvgRF CCRF %Dev _____ 73 3.790 5.5 118 0.00 12.16 n-Propylbenzene 4.012 ----- Amount Calc. %Drift -----5.1 122 0.00 12.18 74 40.000 37.953 Bromobenzene ----- AvgRF CCRF %Dev _____ 75 13.2 120 0.00 12.38 1,2,3-Trichloropropane 0.296 0.257 ----- Amount Calc. %Drift -----9.0 119 0.00 12.34 76 1,3,5-Trimethylbenzene 40.000 36.411 ----- AvgRF CCRF %Dev 77 2-Chlorotoluene 2.702 2.555 5.4 118 0.00 12.34 ----- Amount Calc. %Drift -----78 4-Chlorotoluene 40.000 37.532 6.2 119 0.00 12.52

		Sample: Lab FileID:	VZ1145-CC1144 Z29642.D		Page 4 of 4		
79	tert-Butylbenzene	40.000	36.656	8.4	119	0.00	12.69
80	1,2,4-Trimethylbenzene	40.000	36.531	8.7	119	0.00	12.75
81	sec-Butylbenzene	40.000	36.499	8.8	117	0.00	12.87
82	4-Isopropyltoluene	40.000	36.743	8.1	118	0.00	13.00
83	1,3-Dichlorobenzene	40.000	36.795	8.0	119	0.00	13.14
84	1,4-Dichlorobenzene	40.000	36.532	8.7	119	0.00	13.22
35	Benzyl Chloride	40.000	39.583	1.0	131	0.00	13.45
86	n-Butylbenzene	40.000	37.009	7.5	118	0.00	13.44
		AvgRF	CCRF	%Dev			
37	1,2-Dichlorobenzene	1.713	1.663	2.9	121	0.00	13.64
		Amount	Calc.	%Drift			
88	1,2-Dibromo-3-Chloropropa	40.000	37.065	7.3	119	0.00	14.38
89	1,2,4-Trichlorobenzene	40.000			117		14.98
90	Hexachlorobutadiene	40.000	36.467		114		14.94
91	Naphthalene	40.000	35.422	11.4	113		15.26
92	1,2,3-Trichlorobenzene	40.000	33.307	16.7	107	0.00	15.43
		AvgRF	CCRF	%Dev			
93 I	Tert Butyl alcohol-d10	1.000	1.000	0.0	136	0.00	5.26
		Amount	Calc.	%Drift			
94	Acrolein	200.000	170.134	14.9	129	-0.01	4.72
95	Tert-Butyl Alcohol	400.000	367.539	8.1	131	-0.01	5.33
96	Tert amyl alcohol	400.000	369.555		133	0.00	
				%Dev			
97	1,4-Dioxane	0.149	0.149	0.0	134	-0.01	8.65

APPENDIX C RIS COMPLETION TICKETS

TtNUS Data Checker Page 1 of 1

DATA CHECKER

Completion Ticket

On 11/24/2014 at 3:33 PM the following files were submitted to TtNUS

Completion_GSTTI_39B_20141124.txt

Lithology_GSTTI_39B_20141124.txt

Location_GSTTI_39B_20141124.txt

Project_GSTTI_39B_20141124.txt

Result_GSTTI_39B_20141124.txt

Sample_GSTTI_39B_20141124.txt

Water_GSTTI_39B_20141124.txt

The following comment was provided with this submission: \mathbf{OCT} 2014 \mathbf{PM} \mathbf{LTM}

If you need to identify this session at a later date you may use the Ticket Key:

Repository20141124_3669113_kedd_GSTTI

You may print this page by clicking on the "Print This Page" button

Thank you for using the Data Checker, to upload more files click the "Upload Files" link in the

Print this Page

39B AnlGWMR2014 – Appendix D Revision: 0 July 2015

APPENDIX D

O&M FORMS

Technician: J.	. Bartlett			Date: 1/10/14 Time: 1505						
			Maintena	nce & Monitori	ng					
Item			Frequency	Completed (yes/no)		Comments or Notes				
System operationa	l on arrival (yes	s/no)	Weekly	Yes						
System operationa			Weekly	Yes						
Battery charge ren			Weekly	See note	Battery 1: 12.4 V	7; 87%				
Inspect wiring and	connection		Monthly	Yes	Battery 2: 12.5 V	'; 94%				
Inspect piping and	connections fo	or leaks	Monthly	Yes						
Inspect sediment b	olocks (inside pa	ad)	Monthly	No						
Clean pump impel			Bi-weekly	No						
Clean solar panels			As Needed	No						
Clean flow regulat	tors		Monthly	No						
Clear Vegetation a	around piping, t	railer and wells	As Needed	No						
Clean injection and	d extraction we	ell screens	Monthly	No						
J					•					
	Flow R	ates (gpm)		Est	imated Volum	e Produced (gallons	s)			
Extraction Well #1	1.2	Extraction Well #2	0.5	Extraction Well #1	17,971	Extraction Well #2	7,488			
Нс	Hour meter - number of hours that pumps have been running 12,061									
	T	ask that need	to be compl	eted during the	next schedul	led visit				
			C	comments						
E (1 1	1 11	1 (1 1)	1: (250.1	`						
Estimated volume	produced based	d on the hour meter	reading (250 hour	is)						
Geos	yntec nsultants	50								

Technician: J.	Bartlett			Date: 1/24/14 Time: 1455					
			Maintenar	nce & Monitori	ing				
Item			Frequency	Completed (yes/no)		Comments or Notes			
System operational	on arrival (yes/	'no)	Weekly	No					
System operational		res/no)	Weekly	Yes					
Battery charge rema			Weekly	See note	Battery 1: 13.8 V;	y 1: 13.8 V; 100%			
Inspect wiring and o			Monthly	Yes	Battery 2: 13.9 V;	3.9 V; 100%			
Inspect piping and o			Monthly	Yes					
•	Inspect sediment blocks (inside pad)			Yes	no accumulation of	oserved			
lean pump impellers			Bi-weekly	No					
Clean solar panels			As Needed	No					
Clean flow regulato		2 111-	Monthly	No					
Clear Vegetation ar			As Needed	No					
Clean injection and	extraction well	screens	Monthly	No	generator/compress	sor malfunctioning			
	Flow Ra	otes (anm)		T Est	imated Volume	Produced (gallo	ng)		
Extraction Well	Flow Rates (gpm) xtraction Well Extraction Wel								
#1	0.8	#2	0.8	Extraction Well #1	24,127	Extraction Well #2	10,053		
Ног	ur meter - numb	per of hours that pur	mps have been run	nning	12,396				
	T	oak that need	to be comple	eted during the	novt schedule	d vicit			
Congretor will not y						compressor's plug is b	-alvan		
						compressors prug is o	токеп,		
may be causing sno	ort circuit signai.	. Need to repair co	mpressor plug. w	Vells screens not clear	ned.				
			Co	omments					
Both pumps operati	ing, but no sucti	ion observed from i	nlets. Pumps mov	ve water when manua	ally operated using o	check valve on inlet.	When		
manually operation	with check val	ve stopped, pump s	tops pumping wat	er even though still r	orimed. No leaks in	plumbing, electrical v	viring fine.		
				e pumps remain in th		<u> </u>			
			<u> </u>						
After replacing pun	nps, water pump	ped immediately at	recorded flows wi	ith check valve conne	ected to inlets, ensur	ring no problem with			
plumbing or electric	cal wiring.								
Estimated volume p	produced based	on the hour meter r	reading (335 hours	s) and previous flow	rates				
Geosy	mtec	D							
	4.0								
cor	nsultants								

Technician: J	. Bartlett			Date: 02/07/14		Time: 1400	
			Maintena	nce & Monitori	ing		
Item			Frequency	Completed (yes/no)		Comments or Notes	
System operationa	al on arrival (yes	s/no)	Weekly	Yes			
System operational			Weekly	Yes			
Battery charge rer			Weekly	See note	Battery 1: 12.3 V	7; 74%	
Inspect wiring and			Monthly	Yes	Battery 2: 12.4 V		
Inspect piping and	d connections for	r leaks	Monthly	Yes			
Inspect sediment	blocks (inside pa	nd)	Monthly	No			
Clean pump impellers			Bi-weekly	No			
Clean solar panels			As Needed	No			
Clean flow regula	tors		Monthly	No			
Clear Vegetation	around piping, tr	railer and wells	As Needed	No			
Clean injection ar	nd extraction wel	ll screens	Monthly	No			
J							
	Flow R	ates (gpm)		Est	imated Volum	ne Produced (gallon	s)
Extraction Well #1	1.0	Extraction Well #2	0.9	Extraction Well #1	15,756	Extraction Well #2	14,180
Н	our meter - numl	ber of hours that pu	mps have been ru	inning	12,658		
			C	comments			
Estimated volume	produced based	on the hour meter	reading (263 hour	rs)			
	r-oddeod oddod	The mountaineter	200 100	-~/			
Geos	yntec	D					

Technician: J	. Bartlett			Date: 02/28/14		Time: 1430		
			Maintena	nce & Monitori	ing			
Item			Frequency	Completed (yes/no)		Comments or Notes		
System operations	al on arrival (yes	s/no)	Weekly	Yes				
System operations			Weekly	Yes				
Battery charge rea			Weekly	See note	Battery 1: 13.6 V	'; 100%		
Inspect wiring and			Monthly	Yes		y 2: 13.7V; 100%		
Inspect piping and	d connections for	r leaks	Monthly	Yes	3			
Inspect sediment	blocks (inside pa	nd)	Monthly	Yes	no accumulation observed			
Clean pump impe			Bi-weekly	No				
Clean solar panels			As Needed	No				
Clean flow regula	itors		Monthly	No				
Clear Vegetation	around piping, tr	railer and wells	As Needed	No				
Clean injection ar	nd extraction wel	ll screens	Monthly	Yes	10X each at 80 p	si.		
J					1			
	Flow R	ates (gpm)		Est	imated Volum	e Produced (gallon	ıs)	
Extraction Well #1	1.0	Extraction Well #2	1.0	Extraction Well #1	29,220	Extraction Well #2	29,220	
Н	our meter - numl	ber of hours that pu	mps have been ru	ınning	13,145			
			•	eted during the				
			C	comments				
Estimated volume	produced based	on the hour meter	reading (487 hou	rs)				
-	-		<u> </u>					
Geos	syntec	D						

Technician: I). Sizemore			Date: 03/12/14		Time: 1400				
			Maintena	nce & Monitori	ing					
Item			Frequency	Completed (yes/no)		Comments or Notes				
System operations	al on arrival (yes	/no)	Weekly	Yes						
System operations			Weekly	Yes						
Battery charge rea		·	Weekly	See note	Battery 1: 13.7 V	'; 100%				
Inspect wiring and			Monthly	No	Battery 2: 13.2 V					
Inspect piping and	d connections for	r leaks	Monthly	No						
Inspect sediment	Inspect sediment blocks (inside pad) Monthly No									
Clean pump impellers			Bi-weekly	Yes						
Clean solar panels			As Needed	No						
Clean flow regula	itors		Monthly	No						
Clear Vegetation	around piping, tr	ailer and wells	As Needed	No						
Clean injection ar	nd extraction wel	l screens	Monthly	No						
J										
	Flow R	ates (gpm)		Est	imated Volum	e Produced (gallon	s)			
Extraction Well #1	1.0	Extraction Well #2	1.0	Extraction Well #1	16,602	Extraction Well #2	16,602			
Н	Hour meter - number of hours that pumps have been running 13,422									
			C	Comments						
Estimated volume	nroduced based	on the hour meter	reading (277 hour	rs)						
Lorinated voiding	produced based	on the notif meter	Touring (277 Hou	,						
Geos	syntec onsultants	D								

Technician: J	. Bartlett			Date: 03/26/14		Time: 1540		
			Maintena	nce & Monitori	ng			
Item			Frequency	Completed (yes/no)		Comments or Notes		
System operation	al on arrival (yes	s/no)	Weekly	Yes				
System operation			Weekly	Yes				
Battery charge re			Weekly	See note	Battery 1: 13.2 V	⁷ ; 100%		
Inspect wiring an			Monthly	Yes	Battery 2: 13.5 V	2: 13.5 V; 100%		
Inspect piping and	d connections for	r leaks	Monthly	Yes				
Inspect sediment	blocks (inside pa	ad)	Monthly	Yes	no accumulation observed			
Clean pump impe			Bi-weekly	No				
Clean solar panel			As Needed	No				
Clean flow regula	ators		Monthly	No				
Clear Vegetation	around piping, tr	railer and wells	As Needed	No				
Clean injection as	nd extraction we	ll screens	Monthly	Yes	10X each at 80 p	si		
Jeer a								
	Flow R	ates (gpm)		Est	imated Volum	ne Produced (gallons	s)	
Extraction Well #1	1.1	Extraction Well #2	0.7	Extraction Well #1	21,450	Extraction Well #2	13,650	
Н	our meter - num	ber of hours that pu	mps have been ru	ınning	13,747			
			C	Comments				
Estimated volume	e produced based	d on the hour meter	reading (325 hour	rs)				
	FIGURE CUBCC			-~/				
Geos	syntec	D						

	•		Date: 04/11/14		Time: 1515	
		Maintenar	nce & Monitori	ng		
em		Frequency	Completed (yes/no)		Comments or Notes	
ystem operational on arrival	(yes/no)	Weekly	No	pumps running, no	suction	
ystem operational on departi	ure (yes/no)	Weekly	Yes			
attery charge remaining		Weekly	See note	Battery 1: 12.9 V;	100%	
spect wiring and connection		Monthly	Yes	Battery 2: 12.9 V;	100%	
spect piping and connection		Monthly	Yes			
spect sediment blocks (inside pad) Monthly			No			
lean pump impellers		Bi-weekly	No			
lean solar panels		As Needed	No			
clean flow regulators		Monthly	No			
Clear Vegetation around pipir	ng, trailer and wells	As Needed	No			
Clean injection and extraction	n well screens	Monthly	No			
Flov	w Rates (gpm)		Est	imated Volume	Produced (gallons	s)
Extraction Well #1 0.2	Extraction Well #2	0.6	Extraction Well #1	23,753	Extraction Well #2	15,116
	Task that need	to be comple	tied during the	next schedule	tu visit	-
		C	omments			
'umps running, but no suction	n observed at inlet. Che			neck and cleaned in	npellers; still no suction.	Flow
		ecked wiring and o	checked for leaks. Ch		-	
Pumps running, but no suction only observed when tubing mubing stopped, pump did not	nanually moved up and c	ecked wiring and clown with check v	checked for leaks. Chyalve attached to tubin		-	
only observed when tubing mubing stopped, pump did not	nanually moved up and of produce flow. Pumps h	ecked wiring and of down with check whave reached end of	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin the second s	ng in extraction we	II. Once manual movem	
only observed when tubing m	produce flow. Pumps hereviously used pumps that	ecked wiring and of down with check whave reached end of at were completely	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin of useful life. y disassembled, clean	ng in extraction we	II. Once manual movem	
nly observed when tubing mubing stopped, pump did not eplaced both pumps with pro-	produce flow. Pumps hereviously used pumps that	ecked wiring and of down with check whave reached end of at were completely	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin of useful life. y disassembled, clean	ng in extraction we	II. Once manual movem	
nly observed when tubing making stopped, pump did not replaced both pumps with pro-	produce flow. Pumps hereviously used pumps that	ecked wiring and of down with check whave reached end of at were completely	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin of useful life. y disassembled, clean	ng in extraction we	II. Once manual movem	
nly observed when tubing mubing stopped, pump did not explaced both pumps with present pumps (used) present pumps	produce flow. Pumps hereiously used pumps that	down with check value reached end of at were completely. Pumps need to be	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin of useful life. y disassembled, clean of replaced.	ng in extraction we	reassembled.	
only observed when tubing mubing stopped, pump did not Replaced both pumps with pro-	produce flow. Pumps hereiously used pumps that	down with check value reached end of at were completely. Pumps need to be	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin of useful life. y disassembled, clean of replaced.	ng in extraction we	reassembled.	
only observed when tubing mubing stopped, pump did not Replaced both pumps with proceedings (used) proceedin	produce flow. Pumps he reviously used pumps that roduced very low flows.	down with check value reached end of at were completely. Pumps need to be	checked for leaks. Checked for leaks. Checked for leaks. Checked to tubin of useful life. y disassembled, clean of replaced.	ng in extraction we	reassembled.	

Technician: J.	Bartlett			Date: 04/25/14		Time: 1410	
			Maintenai	nce & Monitori	ng		
tem			Frequency	Completed (yes/no)	Comments or Notes		
System operational	on arrival (ye	s/no)	Weekly	No	pumps running, n	o suction	
System operational	on departure	(yes/no)	Weekly	Yes			
Battery charge rema			Weekly	See note	Battery 1: 12.7 V	; 100%	
nspect wiring and			Monthly	Yes	Battery 2: 12.7 V	; 100%	
nspect piping and o	pect piping and connections for leaks Monthly				broken tee conne	ction	
nspect sediment ble		ad)	Monthly	Yes	no accumulation	observed	
lean pump impelle	ers		Bi-weekly	No			
Clean solar panels			As Needed	No			
Clean flow regulato			Monthly	No			
Clear Vegetation ar	ound piping, t	trailer and wells	As Needed	Yes	cleared around se	ediment blocks	
Clean injection and	extraction we	ell screens	Monthly	Yes	10X each at 80 ps	si	
	Flow R	Rates (gpm)		Est	imated Volum	e Produced (gallons	3)
Extraction Well	11011 1	Extraction Well		250		gunon	,
#1	1.4	#2	1.0	Extraction Well #1	4,014	Extraction Well #2	12,042
// 1		112					
	Т	ask that need	to be comple	eted during the	next schedul	ed visit	
			C	omments			
Existing pumps wer	re used pumps	s that were disassemb	oled and cleaned t	that did not perform v	vell when reinstall	ed last O&M (04/11/14).	
Both pumps replace	ed with new pr	umps. Installed SHU	JRflo In-line strai	iner (50-mesh stainles	ss steel screen, mo	del# 15-085-00 - 255-313), as
suggested by manuf							
Restart system.							
. court of stein.							
No snare numns rer	nain in trailer	- will order addition	al hackun numns				
spare pamps rei		., in order additions	ouexup pumps.	•			
Lee connection brol	ken on FW-1	Bypassed. Will rep	olace next O&M 4	event			
100 connection of of	CH OH L W-1.	Dypussed. Will lep	Juce Heat Octivi (o , 011t.			
Catimated 1		d on the bearing	100 din a (225 li	na) and flavor 1	1 an marri 0 0 1	A arrant (04/11/14)	
Estimated volume p	noduced base	u on the nour meter i	eading (335 hour	rs) and flows recorded	ı on previous O&N	vi event (04/11/14).	
0		D					
Geosy	mtec						
	nsultant						
COI	isultants	5					

Technician: J. I	Bartlett			Date: 05/09/14		Time: 1345						
			Maintenai	nce & Monitori	ng							
Item			Frequency	Completed (yes/no)		Comments or Notes						
System operational	on arrival (yes	s/no)	Weekly	Yes								
System operational	on departure (yes/no)	Weekly	Yes								
Battery charge rema	ining		Weekly	See note	Battery 1: 12.6 V;	100%						
Inspect wiring and c	connection		Monthly	Yes	Battery 2: 12.7 V;							
Inspect piping and c	connections for	r leaks	Monthly	Yes								
Inspect sediment blo	ocks (inside pa	ad)	Monthly	No								
Clean numn impelle	ers		Bi-weekly	No								
Clean solar panels Clean flow regulators			As Needed	No								
Clean flow regulator	rs		Monthly	No								
Clear Vegetation are	ound piping, t	railer and wells	As Needed	Yes								
Clean injection and			Monthly	No								
Cream injection and			menuny	110								
	Flow Rates (gpm) Estimated Volume Produced (gallons)											
Extraction Well #1	1.4	Extraction Well #2	1.0	Extraction Well #1	26,040	Extraction Well #2	18,600					
Hour meter - number of hours that pumps have been running 14,751 Task that need to be completed during the next scheduled visit												
			C	omments								
				omments								
Replaced broken tee	in EW 1 nini	ing that was by page	and during praviou	us O&M avant								
			sed during previou	us Oxivi event.								
Replaced brittle tee	ın EW-2 pıpır	ıg.										
Estimated 1		1 41 1										
Estimated volume pr	roduced based	on the nour meter	reading (310 hour	rs).								
Geosy	/ntec	D										
con	sultants	5										

Technician: D. Sizemore Date: 5/23/14 Time: 1345									
			Maintenar	nce & Monitori	ng				
Item			Frequency	Completed (yes/no)		Comments or Notes			
System operational of	on arrival (yes	s/no)	Weekly	Yes	No suction on EW	-1			
System operational of	n departure (yes/no)	Weekly	Yes					
Battery charge remai	ning		Weekly	See note	Battery 1: 12.7 V;	100%			
Inspect wiring and co			Monthly	Yes		tery 2: 12.8 V; 100%			
Inspect piping and co	onnections for	r leaks	Monthly	Yes		-			
Inspect sediment blo	cks (inside pa	ad)	Monthly	Yes	no accumulation of	bserved			
Clean pump impeller	'S		Bi-weekly	Yes					
Clean solar panels			As Needed	No					
Clean flow regulator	S		Monthly	No					
Clear Vegetation aro	und piping, tr	railer and wells	As Needed	No					
Clean injection and e	extraction we	ll screens	Monthly	Yes	10X each at ~80 ps	si			
				- 77					
	Flow P	ates (gpm)		Feti	mated Volume	Produced (gallon	(s)		
Extraction Well	110W K	Extraction Well		Esti	macca voiume	Troudeed (ganon	<i>)</i>		
#1	1.5	#2	1.5	Extraction Well #1	27,009	Extraction Well #2	27,009		
Hour meter - number of hours that pumps have been running 15,052									
	Т	ask that need	to be comple	eted during the	next schedule	d visit			
		usir that need	to be comple	tea adming the	near seneaure	a visit			
			C	omments					
No suction observed	from EW-1 1	ınon arrival Manu	ally primed nump	and flow resumed					
1 to suction observed	HOME W 1 C	apon unit van. Triunu	any primed pump	and now resumed.					
Estimated volume pr	oduced based	on the hour meter	reading (300 hour	8)					
Lamacca volume pr	oduccu Dascu	on the noti meter	caumg (500 nour	<i></i>					
Geosy	ntec	D							

Technician: J.	Technician: J. Bartlett Date: 06/06/14 Time: 1350									
			Maintenan	nce & Monitori	ng					
Item			Frequency	Completed (yes/no)		Comments or Notes				
System operationa	al on arrival (yes	/no)	Weekly	Yes	No suction observe	ed from EW-2				
System operationa	al on departure (yes/no)	Weekly	Yes						
Battery charge ren	naining		Weekly	See note	Battery 1: 12.8 V;	100%				
Inspect wiring and			Monthly	Yes	Battery 2: 12.9 V;					
Inspect piping and	l connections for	leaks	Monthly	Yes	broken/cracked Te	e in EW-2 line				
Inspect sediment b	olocks (inside pa	d)	Monthly	No						
Clean pump impel	llers		Bi-weekly	No						
Clean solar panels	1		As Needed	No						
Clean flow regular	tors		Monthly	No						
Clear Vegetation a	around piping, tr	ailer and wells	As Needed	No						
Clean injection an	d extraction wel	1 screens	Monthly	No						
	Flow Ra	ates (gpm)		Esti	imated Volume	Produced (gallor	ns)			
Extraction Well #1	1.1	Extraction Well #2	0.4	Extraction Well #1	21,417	Extraction Well #2	7,788			
Но	our meter - numb	per of hours that pu	mps have been rur	nning	15,376					
	T	ask that need	to be comple	ted during the	next schedule	d visit				
			C	omments						
Broken tee in EW	-2 line replaced.	Crack in line may	be reason for no/l	ow suction.						
Manually primed	pump and flow r	esumed.								
		ws. Will monitor a	and evaluate renlac	rement next O&M						
rump for E to 2 co	amoung 10 w 110	WS. WIII IIIOIIIIO	and evarante replace	cement next occur						
Estimated1	nuodussad 1 1	on the hour	roading (205 1 -	a)						
Esumated volume	produced based	on the hour meter	reading (323 hours	8).						
Geos	vntec	D								
со	nsultants	;								

Technician: J. l	Bartlett		Date: 6/20/14	Time: 1025					
			Maintenar	nce & Monitori	ng				
Item			Frequency	Completed (yes/no)		Comments or Notes			
System operational	on arrival (yes	s/no)	Weekly	Yes	No suction from I	EW-2			
System operational	on departure (yes/no)	Weekly	Yes					
Battery charge rema	iining		Weekly	See note	Battery 1: 12.6 V;	1: 12.6 V; 100%			
Inspect wiring and c	connection		Monthly	Yes	Battery 2: 12.7 V;	ry 2: 12.7 V; 100%			
Inspect piping and c	connections for	r leaks	Monthly	Yes					
Inspect sediment blo	ocks (inside pa	ad)	Monthly	Yes	No accumulation	observed.			
Clean pump impelle	ers		Bi-weekly	No					
Clean solar panels Clean flow regulator			As Needed	No					
Clean flow regulator	rs		Monthly	No					
Clear Vegetation are	ound piping, t	railer and wells	As Needed	No					
Clean injection and	extraction we	ll screens	Monthly	Yes	10X each at 80 ps	i.			
J			j		1				
	Flow R	ates (gpm)		Esti	imated Volum	e Produced (gallon	ıs)		
Extraction Well #1	1.0	Extraction Well #2	0.2	Extraction Well #1	19,794	Extraction Well #2	3,959		
Hour meter - number of hours that pumps have been running 15,706									
	T	ask that need	to be comple	eted during the	next schedule	ed visit			
			<u></u>	<u> </u>					
			C	omments					
No suction observed	from EW-2.	Manually primed p	oump.						
Pump for EW-2 will	l be replaced v	with new pump next	O&M event.						
Estimated volume p	roduced based	on the hour meter	reading (330 hour	rs).					
_									
Geosy	ntec	D							
ar turkika Ar									

Technician: J. E	echnician: J. Bartlett Date: 7/7/14 Time: 0910										
			Maintenar	nce & Monitori	ng						
Item			Frequency	Completed (yes/no)		Comments or Notes					
System operational of	on arrival (ye	s/no)	Weekly	Yes							
System operational of	on departure ((yes/no)	Weekly	Yes							
Battery charge remain			Weekly	See note	Battery 1: 12.2 V;	76%					
Inspect wiring and co	onnection		Monthly	Yes	Battery 2: 12.2 V;	75%					
Inspect piping and co	onnections fo	or leaks	Monthly	Yes							
Inspect sediment blo		ad)	Monthly	No							
Clean pump impeller	rs		Bi-weekly	No							
Clean solar panels			As Needed	No							
Clean flow regulator	S		Monthly	No							
Clear Vegetation aro	ound piping, t	railer and wells	As Needed	No							
Clean injection and e	extraction we	ell screens	Monthly	No							
3			,								
	Flow Rates (gpm) Estimated Volume Produced (gallons)										
Extraction Well #1	1.0	Extraction Well #2	0.8	Extraction Well #1	24,372	Extraction Well #2	4,874				
Hour	meter - num	ber of hours that pu	mps have been rui	nning	16,112						
	TT.					7					
	1	ask that need	to be comple	eted during the	next schedule	ed visit					
			C	omments							
				01111101100							
Pump EW-2 still exh	nibiting low f	lows: ~0.2 gpm. Pu	mp nearing end of	f useful life. Replace	EW-2 pump and re	esume flow.					
				_							
One new replacemen	nt pump rema	ins in trailer.									
Estimated volume pr	oduced calcu	lated based on flow	rate from previou	is O&M event (0.2 gp	om).						
			-								
Estimated volume pr	oduced base	d on the hour meter	reading (406 hour	rs).							
Geosy	ntec										

Technician: J.	. Bartlett			Date: 7/18/14		Time: 1140			
			Maintena	nce & Monitori	ng				
Item			Frequency	Completed (yes/no)		Comments or Notes			
System operationa	ıl on arrival (ye	es/no)	Weekly	Yes					
System operational			Weekly	Yes					
Battery charge ren	naining		Weekly	See note	Battery 1: 12.8 V	'; 100%			
Inspect wiring and	connection		Monthly	Yes	Battery 2: 13.0 V	'; 100%			
Inspect piping and	connections for	or leaks	Monthly	Yes					
Inspect sediment b	olocks (inside p	oad)	Monthly	Yes	no accumulation	o accumulation observed			
Clean pump impel			Bi-weekly	No					
Clean solar panels			As Needed	No					
Clean flow regular	tors		Monthly	No					
Clear Vegetation a	around piping,	trailer and wells	As Needed	Yes	cleared vegetation around sediment blocks and trailer				
Clean injection an	d extraction we	ell screens	Monthly	Yes	10X each at 80 psi				
	Flow F	Rates (gpm)		Est	imated Volum	e Produced (gallons	s)		
Extraction Well #1	0.8	Extraction Well #2	1.0	Extraction Well #1	12,672	Extraction Well #2	15,840		
Но		nber of hours that pur			16,378				
	<u>'</u>	ask that need	to be comple	eted during the	next schedul	led visit			
			C	comments					
Estimated volume	produced base	d on the hour meter i	reading (264 hou	rs).					
			- ·						
Geos	yntec nsultant	s s							

Technician: J.	Bartlett			Date: 08/01/14		Time: 1415			
			Maintena	nce & Monitori	ng				
Item			Frequency	Completed (yes/no)		Comments or Notes			
System operationa	l on arrival (ve	s/no)	Weekly	Yes					
System operationa			Weekly	Yes					
Battery charge ren			Weekly	See note	Battery 1: 12.6 V	7; 98%			
Inspect wiring and			Monthly	Yes	Battery 2: 12.4 V				
Inspect piping and	connections for	or leaks	Monthly	Yes					
Inspect sediment b	locks (inside p	ad)	Monthly	No					
Clean pump impel	lers		Bi-weekly	No					
Clean solar panels			As Needed	No					
Clean flow regulat	ors		Monthly	No					
Clear Vegetation a	round piping,	trailer and wells	As Needed	No					
Clean injection and	d extraction we	ell screens	Monthly	No					
3					•				
Flow Rates (gpm) Estimated Volume Produced (gallons)									
Extraction Well #1	0.9	Extraction Well #2	1.4	Extraction Well #1	14,396	Extraction Well #2	22,394		
Но	our meter - num	ber of hours that pu	mps have been ru	nning	16,644				
	1	Task that need	to be compl	eted during the	next schedul	led visit			
			C	comments					
Estimated volume	nroduced base	d on the hour meter	reading (267 hour	rs)					
Lotinated volume	produced base	a on the nour meter	(207 1100)	10).					
Geos	ynteo	S							

Technician: J. l	Bartlett			Date: 08/18/14		Time: 1210					
			Maintenar	nce & Monitori	ing						
Item			Frequency	Completed (yes/no)		Comments or Notes					
System operational	on arrival (yes	s/no)	Weekly	Yes							
System operational	on departure (y	yes/no)	Weekly	Yes							
Battery charge rema	aining		Weekly	See note	Battery 1: 12.3 V;	76%					
Inspect wiring and o	connection		Monthly	Yes	Battery 2: 12.5 V;	90%					
Inspect piping and c	connections for	r leaks	Monthly	Yes							
Inspect sediment blo	ocks (inside pa	ad)	Monthly	Yes	no accumulation of	bserved; SB3 under sta	anding water				
Clean pump impelle	ers		Bi-weekly	No							
Clean solar panels			As Needed Monthly	No							
Clean flow regulator	Clean flow regulators Clear Vegetation around piping, trailer and wells			No							
=			As Needed	Yes		around sediment block	KS				
Clean injection and	extraction wel	Il screens	Monthly	Yes	10X each at ~80 ps	si					
	Flow Rates (gpm) Estimated Volume Produced (gallons)										
Extraction Well		Extraction Well									
#1	1.0	#2	1.4	Extraction Well #1	18,738	Extraction Well #2	26,233				
Hou		ber of hours that pur			16,957						
	T	ask that need	to be comple	eted during the	next schedule	d visit					
			C	omments							
				Ulling and a second							
Estimated volume p	roduced based	on the hour meter	reading (312 hours	s).							
Geosy	yntec	D									
con	nsultants	}									

Technician: J. F	Bartlett			Date: 08/29/14		Time: 1415	
			Maintenar	nce & Monitor			
tem			Frequency	Completed (yes/no)		Comments or Notes	
System operational of	on arrival (yes	/no)	Weekly	Yes	no suction observ	ed from EW-1	
System operational of	on departure (y	/es/no)	Weekly	Yes			
Battery charge remai	ining	·	Weekly	See note	Battery 1: 13.2 V	; 100%	
nspect wiring and co	onnection		Monthly	Yes	Battery 2: 13.2 V	; 100%	
nspect piping and co	onnections for	leaks	Monthly	Yes			
nspect sediment blo	cks (inside pa	d)	Monthly	No			
Clean pump impeller	rs		Bi-weekly	Yes			
Clean solar panels			As Needed	No			
Clean flow regulator			Monthly	No			
Clear Vegetation aro	ound piping, tr	ailer and wells	As Needed	No			
Clean injection and e	extraction wel	l screens	Monthly	No			
	FI D			T		D 1 1/ 11	,
- · · · · · · · · · · · · · · · · · · ·	Flow Ra	ates (gpm)		Est	timated Volum	e Produced (gallon	S)
Extraction Well #1	1.4	Extraction Well #2	0.4	Extraction Well #1	13,680	Extraction Well #2	5,472
		<u> </u>			L	<u> </u>	
Цон	matar numb	per of hours that pu	mne hava baan ru	nnina	17,185		
Hour	i ilicici - liullii	ber of hours that pu	mps have been rui	mmig	17,163		
	T	ask that need	to be comple	eted during the	next schedul	ed visit	
			C	omments			
No suction observed	from EW-1.	Checked wiring an	d cleaned impeller	rs on pump - still no	suction. Pump for	EW-1 has reached the er	nd of it's
useful life.							
Replaced pump for I	FW-1 Restart	ed system and coll	ected readings				
Acplaced pullip 101 I	z 11-1. IXCSIAII	ed system and com	cica readings.				
ow flow observed	n FW-2 may	indicate numn is no	paring and of usef	ful life If low flows	nergist for EW-2	vill replace pump next O	&M
	11 L W -2, 111ay	marcate pump is in	Juring Cha or user	arme. Ir low nows	persist for E w -2, w	in replace pump next O	W1V1
event.							
No spare pumps rem	ain in trailer.						
Estimated volume pr	oduced for EV	W-1 calculated base	ed on flow rate fro	om previous O&M e	vent (1.0 gpm).		
Estimated volume pr	oduced based	on the hour meter	reading (228 hour	s).			
1							
Coor	mtoo	D					
Geosy	THEC						
	sultants						

Launch Complex 39B O&M

Launch Complex 39B, SWMU #9 Kennedy Space Center, Florida

Technician: J.	. Bartlett, B.	Coppenger		Date: 9/12/14		Time: 1015	
			Maintena	nce & Monitori	ng		
Item			Frequency	Completed (yes/no)		Comments or Notes	
System operationa	al on arrival (yes	s/no)	Weekly	Yes			
System operationa	al on departure (yes/no)	Weekly	Yes			
Battery charge ren	naining		Weekly	See note	Battery 1: 90%;	12.4 V	
Inspect wiring and			Monthly	Yes	Battery 2: 90%;	12.4 V	
Inspect piping and			Monthly	Yes			
nspect sediment b		nd)	Monthly	Yes	no accumulation	observed	
Clean pump impel			Bi-weekly	No			
Clean solar panels			As Needed	No			
Clean flow regular			Monthly	No			
Clear Vegetation a	around piping, to	railer and wells	As Needed	Yes		n around trailer and sedir	nent blocks
Clean injection an	d extraction we	ll screens	Monthly	Yes	10X each at 80 p	osi	
	Flow R	ates (gpm)		Est	imated Volum	ne Produced (gallons	s)
Extraction Well #1 1.3 Extraction Well #2 1.9 Extraction Well #1 10,140 Extraction Well #2							4,363
					ı	_	
Но	our meter - num	ber of hours that pu	ımps have been ru	ınning	17,366		
			C	Comments			
Sediment Block 3	under standing	water.					
Extraction Well 1	piping destroye	d by mowers (9/8/1	4). System shutd	lown for repair.			
Piping run for EW	7-1 replaced. Ca	aution tape wrapped	d around exposed	secondary containment	nt piping and arou	nd EW-1. System restart	ed.
No suction observ	ed from pump E	EW-2. Checked wi	ring and piping - s	still no suction. Pump	has reached end	of useful life. Pump repla	iced.
System restarted a			5 11 5	·		r 7r-v	
- , 100 mi tod d							
2 chara numba ran	ngin in trailar						
2 spare pumps ren	nam m traffer.						
	1 10 7	XX7 1 1 1 · · · · · ·	1 1201	6	11	c · · · ·	11 1
discussion with SO	C Jones [damage	ed on 8 Sept 2014])).			efore piping was damaged	d based on
	-			ved during previous O	&M event (0.4 gp	m).	
Estimated volume	produced for E	W-2 based on the h	our meter reading	g (182 hours).			
Geos	yntec	D					
	neultante						

consultants

Technician: J. l	Bartlett		Date: 09/26/14	4 Time: 1300			
			Maintenai	nce & Monitori	ng		
Item			Frequency	Completed (yes/no)		Comments or Notes	
System operational	on arrival (yes	s/no)	Weekly	Yes			
System operational of Battery charge rema	on departure (yes/no)	Weekly	Yes			
Battery charge rema	ining		Weekly	See note	Battery 1: 12.3 V;	; 80%	
Inspect wiring and c	connection		Monthly	Yes	Battery 2: 12.4 V:		
Inspect piping and c	onnections for	r leaks	Monthly	Yes			
Inspect sediment blo	ocks (inside na	ad)	Monthly	No			
Clean pump impelle	ers		Bi-weekly	No			
Clean solar panels			As Needed	No			
Clean flow regulator	rs		Monthly	No			
Clean pump impelle Clean solar panels Clean flow regulator Clear Vegetation are	ound piping, tr	railer and wells	As Needed	No			
Clean injection and			Monthly	No			
			,				
	Flow R	ates (gpm)		Feti	imated Volum	e Produced (gallon	15)
Extraction Well	TIOW IX	Extraction Well		Esti	mateu voium		15)
#1	1.5	#2	1.5	Extraction Well #1	16,308	Extraction Well #2	16,308
Hou	r meter - numl	ber of hours that pu	mps have been ru	nning	17,548		
	Т	ask that need	to be comple	eted during the	next schedul	ed visit	
		usir that heed	to be compi	etta daring me	next senedul	ca visit	
			C	omments			
Estimated volume p	roduced based	on the hour meter	reading (181 hour	rs).			
Lominated volume p.		. on the hour meter					
Geosy	/ntec	D					
con	sultants	3					

Technician: J. I	Bartlett		Date: 10/10/14		Time: 1000				
			Maintenar	nce & Monitori	ng				
Item			Frequency	Completed (yes/no)		Comments or Notes			
System operational of	on arrival (yes	s/no)	Weekly	Yes					
System operational of	on departure (yes/no)	Weekly	Yes					
Battery charge rema	ining		Weekly	See note	Battery 1: 12.2 V;	61%			
Inspect wiring and c	onnection		Monthly	Yes	Battery 2: 12.2 V;	61%			
Inspect piping and c	onnections for	r leaks	Monthly	Yes					
Inspect sediment blo	ocks (inside pa	nd)	Monthly	Yes	no accumulation ol	bserved			
Clean pump impelle	rs		Bi-weekly	No					
Clean solar panels			As Needed	No					
Clean flow regulator	rs		Monthly	No					
Clear Vegetation arc	ound piping, tr	railer and wells	As Needed	No	cleared vegetation	around sediment block	S		
Clean injection and	extraction wel	ll screens	Monthly	Yes	10X each at 80 psi				
,			,						
Flow Rates (gpm) Estimated Volume Produced (gallons)									
Extraction Well #1	1.3	Extraction Well #2	1.5	Extraction Well #1	14,953	Extraction Well #2	17,253		
Hou	r meter - num	ber of hours that pu	mps have been rui	nning	17,739				
	Т	ack that need	to be comple	eted during the	novt sobodulo	d vigit			
	1	ask mat neeu	to be comple	teu uuring the	Hext Schedule	u visit			
			C	omments					
sediment block 3 un	der standing v	vater							
Estimated volume pr	roduced based	on the hour meter	reading (192 hour	8)					
Estimated volume pi	oduced baset	on the noti meter.	192 11001	<i></i>					
Geosy	/ntec	D							
COH	sunants	,							

Technician: J.	. Bartlett			Date: 10/24/14		Time: 1130	
			Maintena	nce & Monitori	ng		
Item			Frequency	Completed (yes/no)		Comments or Notes	
System operationa	ıl on arrival (ye	s/no)	Weekly	Yes			
System operationa			Weekly	Yes			
Battery charge ren			Weekly	See note	Battery 1: 12.6 V	'; 96%	
Inspect wiring and	l connection		Monthly	Yes	Battery 2: 12.6 V	'; 100%	
Inspect piping and	connections fo	or leaks	Monthly	Yes			
Inspect sediment b	olocks (inside pa	ad)	Monthly	No			
Clean pump impel			Bi-weekly	No			
Clean solar panels			As Needed	No			
Clean flow regulat	Clean flow regulators			No			
Clear Vegetation a	around piping, t	railer and wells	As Needed	No			
Clean injection and	d extraction we	ell screens	Monthly	No			
,				_			
	Flow R	ates (gpm)		Est	imated Volum	e Produced (gallons	s)
Extraction Well #1	1.3	Extraction Well #2	1.4	Extraction Well #1	14,976	Extraction Well #2	16,128
Но		aber of hours that pu			17,931		
	T	ask that need	to be compl	eted during the	next schedul	ed visit	
			C	omments			
				01111101110			
Estimated volume	produced based	d on the hour meter	reading (192 hour	rs).			
Geos	yntec	S					

Technician: D	echnician: D. Sizemore Date: 11/7/14 Time: 1000						
Maintenance & Monitoring							
Item			Frequency	Completed (yes/no)		Comments or Notes	
System operationa	al on arrival (yes	s/no)	Weekly	Yes			
System operational on departure (yes/no)		Weekly	Yes				
Battery charge remaining		Weekly	See note	Battery 1: 12.7 V;	97%		
Inspect wiring and	d connection		Monthly	yes	Battery 2: 12.7 V;	99%	
Inspect piping and	connections for	r leaks	Monthly	Yes			
Inspect sediment b		ad)	Monthly	Yes	no accumulation o	bserved	
Clean pump impel			Bi-weekly	Yes			
Clean solar panels			As Needed	Yes			
Clean flow regula			Monthly	Yes			
Clear Vegetation a	around piping, t	railer and wells	As Needed	Yes	cleared around sed	liment blocks	
Clean injection an	d extraction we	ll screens	Monthly	Yes	10x each @ 80 psi		
July 1					<u> </u>		
	Flow R	ates (gpm)		Est	imated Volume	Produced (gallon	s)
Extraction Well		Extraction Well			<u> </u>	I guille	- /
#1	1.5	#2	1.5	Extraction Well #1	15,750	Extraction Well #2	21,933
Н	our meter - num	ber of hours that pu	mps have been ru	nning	18,175		
		р		8	55,275		
	T	ask that need	to be comple	eted during the	next schedule	d visit	
			~				
				omments			
Extraction well 1	(EW-1) piping of	destroyed by land cl	earing activities (11/3/14). Piping repl	aced for EW-1 duri	ng O&M event (11/7/14	ł).
D.: . 1 1	1 16 5	337.1 1 1 . 11	1 1751	<u> </u>	11 . 11 .		1)
Estimated volume	produced for E	W-1 calculated base	ed on 1/5 hours of	f operation (estimated	hours operated bei	fore piping was damage	d).
Estimated volume produced based on the hour meter reading (244 hours).							
Consumtor							
	Geosyntec						
CO	nsultants	5					
30		50					

Launch Complex 39B O&M

Launch Complex 39B, SWMU #9 Kennedy Space Center, Florida

Technician: Ben Coppenger			Date: 11/21/14		Time: 1500	
	M	laintenan	ice & Monitorii	ng		
Item	Fr	requency	Completed (yes/no)		Comments or Notes	
System operational on arrival (yes/no)		Weekly	Yes	no suction observe	ed from EW-2	
System operational on departure (yes/no)		Weekly	Yes			
Battery charge remaining		Weekly	See note	Battery 1: 12.2 V;	66%	
Inspect wiring and connection	1	Monthly	Yes	Battery 2: 12.5 V;		
Inspect piping and connections for leaks		Monthly	Yes			
Inspect sediment blocks (inside pad)		Monthly	No			
Clean pump impellers		i-weekly	Yes			
Clean solar panels		s Needed	No			
Clean flow regulators	1	Monthly	No			
Clear Vegetation around piping, trailer and		s Needed	No			
Clean injection and extraction well screen		Monthly	No			
Flow Rates (g	pm)		Esti	mated Volume	Produced (gallor	ns)
	tion Well #2	0.6	Extraction Well #1	12,918	Extraction Well #2	19,377
Hour meter - number of ho	ours that pumps h	nave been run	nning	18,390		
Task th	at need to b	e comple	eted during the	next schedule	d visit	
Re-check pump batteries to see if batteries		-				
Monitor flow rates to see if decrease in flo		rrespond to b	hatteries going had			
11011101 11011 14000 00 000 1- 1-1-1-1-1	W 14465	Trespone	June 100 50			
		~				
			omments			
No suction from pump for extraction well					no suction. Pump man	ually
primed with water - still no suction from p	oump. Pump has	reached end	of useful life. Replace	ced pump EW-2.		
Estimated volume produced for EW-2 calc	culated using flow	w observed fr	rom previous O&M e	event (1.5 gpm).		
1 spare pump remains in trailer.						
	1.	(21.7.1	`			
Estimated volume produced based on the hour meter reading (215 hours).						
Geosyntec [▶]						
consultants						

Technician: B. Coppenger Date: 12/5/14 Time: 1345						
	Maintenan	ice & Monitori	ng			
Item	Frequency	Completed		Comments or Notes		
C		(yes/no)		-16 EW 2		
System operational on arrival (yes/no) System operational on departure (yes/no)	Weekly Weekly	Yes Yes	no suction observe	a from EW-2		
Battery charge remaining	Weekly	See note	Battery 1: 12.0 V;	3004		
Inspect wiring and connection	Monthly	Yes	Battery 2: 12.5 V;			
Inspect piping and connections for leaks	Monthly	Yes	Battery 2. 12.3 V,	9470		
Inspect sediment blocks (inside pad)	Monthly	Yes	no accumulation of	hserved		
Clean pump impellers	Bi-weekly	Yes	no accumulation o	- Serveu		
Clean solar panels	As Needed	Yes				
Clean flow regulators	Monthly	Yes				
Clear Vegetation around piping, trailer and wells	As Needed	Yes				
Clean injection and extraction well screens	Monthly	Yes	10X each at 80 ps	i		
			1			
Flow Rates (gpm)		Esti	imated Volume	e Produced (gallon	ns)	
Extraction Well #1 0.8 Extraction Well #2	0.6	Extraction Well #1	6,456	Extraction Well #2	4,842	
Hour meter - number of hours that pu	amps have been rur	ıning	18,525			
Task that need	to be comple	ted during the	next schedule	ed visit		
Pump for extraction well #1 (EW-1) operational, but					eries to	
see if voltage has increased or if they need replaceme		TION HOME GREAT CYCH	t due to low observ	- Techeck batte	2105 10	
see it voltage has increased of it they need replacement	int.					
		omments				
Pump for extraction well #2 (EW-2) operational upon			11 0	• • •	<u> </u>	
still no water being pumped. Replaced EW-2 pump	with the last remain	ning spare pump and	restarted system.	Water pumping through	ı EW-2	
after replacement.						
EW-1 is operational, but flow is than observed flow:	from prior O&M e	vents. EW-1 pump n	nay need to be repla	aced next O&M event.		
Need to order more spare pumps.						
Estimated volume produced based on the hour meter reading (135 hours).						
Geosyntec consultants						

Technician: I	3. Coppenge	r		Date: 12/19/201	14	Time: 1025	
			Maintena	nce & Monitori	ing		
Item			Frequency	Completed (yes/no)		Comments or Notes	
System operational on arrival (yes/no)		Weekly	Yes				
System operation	al on departure	(yes/no)	Weekly	Yes			
Battery charge re			Weekly	See note	Battery 1: 12.01 V	; 39%	
Inspect wiring an			Monthly	Yes	Battery 2: 12.92 V	; 100%	
Inspect piping an			Monthly	Yes			
Inspect sediment	, 1	oad)	Monthly	NA			
Clean pump impe			Bi-weekly	No			
Clean solar panel			As Needed	No			
Clean flow regula			Monthly	No			
Clear Vegetation			As Needed	No			
Clean injection ar	nd extraction we	ell screens	Monthly	No			
	T21 T			T 1		D 1 1/ 11	
	Flow b	Rates (gpm)		Est	imated Volume	Produced (gallo	ns)
Extraction Well #1	0.2	Extraction Well #2	0.2	Extraction Well #1	7,109	Extraction Well #2	1,777
Н		nber of hours that pu		eted during the	18,673	d vioit	
		- WOA2 V2200V 220 V V				- V152V	
			C	comments			
1025-system oper	ration upon arriv	val. Low flow and ob		1 pump-not running a	t full capacity. Repla	aced with new pump.	Very little flow
				the trailer rotting. Re			
				ver but little flow still			
				Still little flow. EW2			
-							
				on well to EW1 extrac			
				EW1 also if possible.			y. Recommend
				one new replacement p			
Need to try to rep	lace wiring for	Battery 1, if not com	pletely replace B	attery 1. This is the se	econd O&M that Ba	ttery 1 had approxima	itely 39%.
Battery 2 recharg	Battery 2 recharged to 100%.						
1150-left site							
Estimated volume	e produced base	d on the hour meter	reading (148 hour	rs).			
			<i>U</i> \	,			
Geos	synteo	CD					
	ngultant						

39B AnlGWMR2014 – Appendix E Revision: 0 July 2015

APPENDIX E

TREND GRAPHS

APPENDIX F MEETING MINUTES

Meeting Minutes Report

Attendees:

(Geosyntec) Jim Langenbach, (FDEP) John Armstrong, (Geosyntec) Rebecca C. Daprato, (NASA) Mike Deliz, (Geosyntec) Melissa Hensley, (IHA) Tim Mrdjenovich, (NASA) John Matthews, (NASA) Rosaly Santos-Ebaugh, (Geosyntec) Lane Dorman, (Tetra Tech) Mark Speranza, (Jacobs Engineering) Guy Fazzio, (NASA) Harry Plaza, (NASA) Dinh Vo, (Tetra Tech) Mark Jonnet, (IHA) Michele Cielukowski, (NASA) Anne Chrest, (Tetra Tech) Chris Hook, (IHA) Amanda Beatty, (IHA) Dan Sciarini, (Geosyntec) Emily Lawson, (FECC) Gordon Kirkland, (Tetra Tech) Jennifer Buel, (Geosyntec) Michael Burcham, (CORE Engineering and Construction) Harlan Faircloth, (Geosyntec) Crystal Towns, (Geosyntec) Whitney Morrison

April 2015 Team Meeting

Meeting Date From: 4/23/2015 To: 4/24/2015

Meeting ID: 1504

Location Description: Kennedy Space Center-FL

Meeting Type: Full Partnering Team Meeting

Meeting Topic:	Minutes				
Minute: 1504-M1	Site:	Goal:	Discussion:		
Presenter: TEAM, TEAM	CENTERWIDE		Team consensus reached that January 2015 revision 1 meeting minutes are final.		
Decision:1	Team consensus reached that January 2015 revision 1 meeting minutes are final.				

Meeting Topic: Vehicle Assembly Building Re-Assessment Area (VABRA)				
Minute: 1504-M2	Site:	Goal:	Discussion:	
Presenter: Daprato, Rebecca C.	VAB AREA RE-ASSESSMENT	Present Step 1A and 1B Engineering Evaluation (EE) for Hot Spots 3 and 4	This is a Ground Systems Development & Operations project to evaluate absence/presence of affected soil (around electrical equipment only) and groundwater The VABRA study area occupies approximately 112 acres. During the August 2013 team meeting, so sampling results and path forward were presented. Team consensus was reached for no further action (NFA) in 14 areas. So was delineation completed in three areas and additional soil sampling was needed for delineation in two areas. During the August 2013 team meeting, groundwater sampling results and path forward were presented. Hot Spot 3 (Western Mobile Launch Platform [MLP] H Spot) was identified as a new hot spot. Team consensus reached to install a monitoring well to confirm presence of polycyclic aromatic hydrocarbons (PAH) exceedances (Hot Spot 4). Team consensus was reached to install monitori wells in Hot Spot 3 to characterize area of affected groundwater and evaluate chlorinated volatile organic compound (CVOC) concentrations at depth. Team consensus was reached to install monitori wells to confirm extent of dissolved-phase constituents in Hot Spot 3. Hot Spots 1 and 2 were identified during MLP/VAB assessment activities. Hot Spot is currently being addressed through an air sparge interim measure (IM). Hot Spots 3 and 4 were identified during VABRA activities.	

Meeting Minutes Report

Presenter: Hook, Chris	LC-39A (SWMU 008) - 21ST CENTURY	Present Step 4 EE, quarterly and annual performance construction completion. monitoring with the addition of adding 39A-21ST-MW0020I to the quarterly sampling plan.			
Decision:31	Team consensus reached to continue IM operations conduct routine OM&M, perform quarterly and annual performance monitoring with the addition of adding 39A-21ST-MW0020I to the quarterly sampling plan.				

Meeting Topic:	LC39B Lox Area (SWMU 009)		
Minute: 1504-M8	Site:	Goal:	Discussion:
Presenter: Daprato, Rebecca C.	LC-39B, J7-0337 (SWMU 009)	Present results from the 2014 MNA sampling, 2014 performance monitoring, summary of O&M activities, and obtain team consensus on recommendations.	Annual MNA sampling was conducted in October 2014. Two monitoring wells were sampled that are outside the current assessment area (IW0012 cluster). Samples collected from the wells were analyzed for CVOCs and one the sample from monitoring well IW0012Swas analyzed for total and dissolved aluminum. Monitoring well 39B-LOX-IW0012 cluster is outside the assessment area and the monitoring wells are considered point of compliance wells. Since initiation of MNA sampling (January 2006) the TCE, cDCE, and VC concentrations have been less that detection limits in this well. The results suggest that CVOC plume is not expanding
			Sample concentrations of aluminum in 39B LOX-IW0012S (total 3,920 µg/L and dissolved 3,840 µg/L) are above upper range of KSC background (280 µg/L). Aluminum concentrations increased after decreasing since September 2011. This sampling event utilized EPA Method 6020A instead of EPA Method 6010C since EPA Method 6010C can bias aluminum concentrations high when chloride concentrations are high (39B-LOX-IW0012 generally has 20% salinity due to its location). The aluminum concentrations measured at 39B-LOX-IW0012S were with range of historic observations at this location.
			Two mowing/clearing events damaged/destroyed injection wells in September 2009 and November 2014. Clearing event in November 2014 left mulc layer across site (up to 2 feet; buried injection wells). Not practical, or potentially possible, to locate destroyed injection wells at site. Injection wells will not be used again.
			Annual performance monitoring conducted in October 2014. Maximum concentrations detected: TCE 42.6 μg/L at IW13S (below site-wide clean up criteria, but not well-specific criteria [PQL]), cDCE 222 μg/L at TA03S (below clean-up criteria), and VC 195 μg/L at TA03S. VC is the only constituent above clean-up criteria.
ine 30, 2015			Recirculation system operated approximately 81% of time (not designed to operate 24 hours per day) and recirculated 780,000 gallons of groundwater (January through December 2014). No sediment

Meeting Minutes Report

Presenter: Daprato Rebecca C.	p, LC-39B, J7-0337 (SWMU 009)	Present results from the 2014 MNA sampling, 2014 performance monitoring, summary of O&M activities, and obtain team consensus on recommendations.	accumulation was observed behind sediment blocks in 2014. Team consensus reached to consider destroyed injection wells as abandoned and plan to abandon remaining wells (wells that are not damaged) in future. Team consensus reached to discontinue the operation of the recirculation system and performance monitoring. The area will be included in the Engineering Evaluation Process with the supplemental assessment data being presented at the June 2015 meeting. Team consensus reached to continue MNA sampling as follows: 39B-LOX-IW0012S and 12I analyzed for CVOCs and 39B-LOX-IW0012S analyzed for aluminum (conduct metal analysis method via EPA Method 6020A [mass spec]).		
Decision:32	Team consensus reached to consider destr remaining wells (wells that are not damage				
Decision:33	Team consensus reached to discontinue the operation of the recirculation system and performance monitoring. The area will be included in the Engineering Evaluation Process with the supplemental assessment data being presented at the June 2015 meeting.				
Decision:34 Team consensus reached to continue MNA sampling as follows: 39B-LOX-IW0012S and 12I analyzed for CVOCs and 39B-LOX-IW0012S analyzed for aluminum (conduct metal analysis method via EPA Method 6020A [mass spec]).					

Meeting Topic:	Hydrocarbon Burn Facility (SWMU 007)	Meeting Topic: Hydrocarbon Burn Facility (SWMU 007)				
Minute: 1504-M9	Site:	Goal:	Discussion:			
Presenter: Hook, Chris	HYDROCARBON BURN FACILITY, L7-0888 (SWMU 007)	Present Step 2 EE and obtain team consensus on path forward.	The Step 1A EE was presented to KSCRT in January 2015. Groundwater is medium of concern. TCE, cDCE, VC, and benzene are the constituents of concern. Team consensus was achieved at the January 2015 meeting that the VOC plume Low Concentration Plume (LCP)/High Concentration Plume (HCP)/Hot Spot (HS) were delineated. Step 1B EE technologies retained were air sparging, ARD with bioaugmentation, and MNA. Hot Spot only and high concentration/Hot Spot were to be evaluated for air sparging and ARD alternative. MNA would evaluate Hot Spot/HCP/LCP.			
			Alternative G1 Air Sparging of Hot Spot: this will target the Hot Spot plume reducing concentrations to less than NADC with transition to MNA in 1.5 years. Technology is limited due to air distribution in the heterogeneous lithology. Site management would continue as a result of the persisting LCP/HCP. Some of the advantages to			
			choosing this option: effective technology a well-defined sites, large reduction in concentration within a short timeframe, technology is well developed, lowest lifecycle cost per pound of active alternatives, and the capital cost can be reduced using existing AS systems. Some disadvantages are that the technology is energy intensive, potential preferential			