Notation and Assumptions

Suppose $\mathcal{D} = \{z_i\}_{1:n}$ are independent and identically distributed observations. Consider a model for \mathcal{D} parameterized by $\boldsymbol{\theta}$. Let $\ell(\boldsymbol{\theta})$ denote the log likelihood:

$$\ell(oldsymbol{ heta}) = \sum_{i=1}^n \ell_i(oldsymbol{ heta}) = \sum_{i=1}^n \ell(oldsymbol{ heta}; oldsymbol{z}_i).$$

Denote the true value of $\boldsymbol{\theta}$ by $\boldsymbol{\theta}_0$. The score for $\boldsymbol{\theta}$ is:

$$\dot{\ell}_{\theta}(\boldsymbol{\theta}_{0}) \equiv \frac{\partial \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{0}}.$$

The Hessian for $\boldsymbol{\theta}$ is:

$$\ddot{\ell}_{\theta\theta'}(\boldsymbol{\theta}_0) \equiv \frac{\partial^2 \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_0}.$$

Partition $\boldsymbol{\theta} = (\boldsymbol{\beta}, \boldsymbol{\alpha})$, where $\boldsymbol{\beta}$ is the target parameter, and $\boldsymbol{\alpha}$ is a nuisance parameter. The null hypothesis will take the form $H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0$. Let $\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\alpha}})$ denote the unrestricted MLE of $\boldsymbol{\theta}$, which satisfies:

$$\dot{\ell}_eta(\hat{oldsymbol{eta}},\hat{oldsymbol{lpha}})=\mathbf{0}, \qquad \qquad \dot{\ell}_lpha(\hat{oldsymbol{eta}},\hat{oldsymbol{lpha}})=\mathbf{0}.$$

Let $\tilde{\boldsymbol{\theta}} = (\boldsymbol{\beta}_0, \tilde{\boldsymbol{\alpha}})$ denote the restricted MLE of $\boldsymbol{\theta}$, which satisfies:

$$\dot{\ell}_{\alpha}(\boldsymbol{\beta}_{0},\tilde{\boldsymbol{\alpha}})=\mathbf{0}.$$

Assume sufficient regularity that, under H_0 , the restricted and unrestricted MLEs are each \sqrt{n} -consistent:

$$\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta}_0 + \mathcal{O}(n^{-1/2}),$$
 $\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}_0 + \mathcal{O}(n^{-1/2}).$

The score equation converges in distribution as:

$$n^{-1/2}\dot{\ell}_{\theta}(\boldsymbol{\theta}_{0}) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\theta,i}(\boldsymbol{\theta}_{0}) \stackrel{\mathcal{L}}{\longrightarrow} N\{\boldsymbol{0}, \boldsymbol{B}(\boldsymbol{\theta}_{0})\},$$

where \boldsymbol{B} is the expected outer product of the score:

$$\boldsymbol{B}_0 \equiv \boldsymbol{B}(\boldsymbol{\theta}_0) \equiv E_Z \{ \dot{\ell}_{\theta,i}(\boldsymbol{\theta}_0) \otimes \dot{\ell}_{\theta,i}(\boldsymbol{\theta}_0) \}.$$

The negative Hessian converges in probability as:

$$-n^{-1}\ddot{\ell}_{\theta\theta'}(\boldsymbol{\theta}_0) = -\frac{1}{n}\sum_{i=1}^n \ddot{\ell}_{\theta\theta',i}(\boldsymbol{\theta}_0) = \boldsymbol{A}(\boldsymbol{\theta}_0) + o_p(1),$$

where \boldsymbol{A} is the expected information matrix:

$$\mathbf{A}_0 \equiv \mathbf{A}(\mathbf{\theta}_0) = E_Z \{ - \ddot{\ell}_{\theta\theta',i}(\mathbf{\theta}_0) \}.$$

Moreover, suppose sufficient regularity that:

$$-n^{-1}\ddot{\ell}_{\theta\theta'}(\tilde{\boldsymbol{\theta}}) = \boldsymbol{A}(\boldsymbol{\theta}_0) + o_p(1), \qquad -n^{-1}\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}}) = \boldsymbol{A}(\boldsymbol{\theta}_0) + o_p(1).$$

Let Ω_0 denote the covariance matrix:

$$oldsymbol{\Omega}_0 \equiv oldsymbol{\Omega}(oldsymbol{ heta}_0) = oldsymbol{A}(oldsymbol{ heta}_0)^{-1} oldsymbol{B}(oldsymbol{ heta}_0) oldsymbol{A}(oldsymbol{ heta}_0)^{-T}.$$

Within the exponential family $\boldsymbol{A}_0 = \boldsymbol{B}_0$ such that:

$$\mathbf{\Omega}_0 = \mathbf{A}_0^{-1},$$

which is the inverse expected information.

Wald Test

Proposition 2.1. Under $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$, the Wald statistic converges as:

$$n(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \boldsymbol{\Omega}_0^{-1} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{\mathcal{L}}{\longrightarrow} \chi_r^2,$$

where $r = \dim(\boldsymbol{\theta}_0)$.

Proof. Taylor expand of the score for θ about the truth:

$$\mathbf{0} = \dot{\ell}_{\theta}(\hat{\boldsymbol{\theta}}) = \dot{\ell}(\boldsymbol{\theta}_0) + \ddot{\ell}_{\theta\theta'}(\boldsymbol{\theta}_0)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \mathcal{O}_p(||\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0||^2)$$

Solving for $(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$:

$$(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = \left\{ -\ddot{\ell}_{\theta\theta'}(\boldsymbol{\theta}_0) \right\}^{-1} \dot{\ell}_{\theta}(\boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1}).$$

Scaling by \sqrt{n} :

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = \left\{ -n^{-1}\ddot{\ell}_{\theta\theta'}(\boldsymbol{\theta}_0) \right\}^{-1} n^{-1/2}\dot{\ell}_{\theta}(\boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-1/2})$$

$$= \boldsymbol{A}_0^{-1} n^{-1/2} \dot{\ell}_{\theta}(\boldsymbol{\theta}_0) + o_p(1)$$

$$\stackrel{\mathcal{L}}{\longrightarrow} N(\boldsymbol{0}, \boldsymbol{A}_0^{-1} \boldsymbol{B}_0 \boldsymbol{A}_0^{-T}).$$

Corollary 2.1. The Wald test of $H_0: \beta = \beta_0$ is:

$$n(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \Omega_{0,\beta\beta'}^{-1} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \stackrel{\mathcal{L}}{\longrightarrow} \chi_p^2,$$

where $p = \dim(\beta_0)$ and $\Omega_{0,\beta\beta'}$ is the sub-matrix of Ω_0 corresponding to β .

Remark 2.1. Within the exponential family $\Omega_{0,\beta\beta'}^{-1}$ is the efficient information for β :

$$\mathbf{\Omega}_{0\ etaeta'}^{-1} = \mathbf{A}_{etaeta'} - \mathbf{A}_{etalpha'}\mathbf{A}_{lphalpha'}^{-1}\mathbf{A}_{lphaeta'}.$$

Score Test

Proposition 3.1. Under $H_0: \theta = \theta_0$, the score statistic converges as:

$$\frac{1}{n}\dot{\ell}_{\theta}(\boldsymbol{\theta}_{0})'\boldsymbol{B}_{0}^{-1}\dot{\ell}_{\theta}(\boldsymbol{\theta}_{0}) \stackrel{\mathcal{L}}{\longrightarrow} \chi_{r}^{2},$$

where $r = \dim(\boldsymbol{\theta}_0)$.

Proposition 3.2. The score test of $H_0: \beta = \beta_0$ is:

$$\frac{1}{n}\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0},\tilde{\boldsymbol{\alpha}})'\left\{\boldsymbol{C}_{0}\boldsymbol{B}_{0}\boldsymbol{C}_{0}'\right\}^{-1}\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0},\tilde{\boldsymbol{\alpha}})'\overset{\mathcal{L}}{\longrightarrow}\chi_{p}^{2},$$

where $p = \dim(\boldsymbol{\beta}_0)$ and

$$oldsymbol{C}_0 = ig(oldsymbol{I}, -oldsymbol{A}_{etalpha'}oldsymbol{A}_{lphalpha'}^{-1}ig).$$

Proof. Taylor expand the scores for β and α about the constrained MLE:

$$\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \tilde{\boldsymbol{\alpha}}) = \dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) + \ddot{\ell}_{\beta\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0})(\tilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_{0}) + \mathcal{O}_{p}(n^{-1}),
0 = \dot{\ell}_{\alpha}(\boldsymbol{\beta}_{0}, \tilde{\boldsymbol{\alpha}}) = \dot{\ell}_{\alpha}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) + \ddot{\ell}_{\alpha\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0})(\tilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_{0}) + \mathcal{O}_{p}(n^{-1}).$$

Substituting the second expansion into the first:

$$\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \tilde{\boldsymbol{\alpha}}) = \dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) - \ddot{\ell}_{\beta\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) \left\{ \ddot{\ell}_{\alpha\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) \right\}^{-1} \dot{\ell}_{\alpha}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0})
= \left(\boldsymbol{I}, -\ddot{\ell}_{\beta\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) \left\{ \ddot{\ell}_{\alpha\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) \right\}^{-1} \right) \left(\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) \right)
= \left(\boldsymbol{I}, -n^{-1} \ddot{\ell}_{\beta\alpha'} \left\{ n^{-1} \ddot{\ell}_{\alpha\alpha'}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) \right\}^{-1} \right) \dot{\ell}_{\theta}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0})
= \left(\boldsymbol{I}, -\boldsymbol{A}_{\beta\alpha'} \boldsymbol{A}_{\alpha\alpha'}^{-1} \right) \dot{\ell}_{\theta}(\boldsymbol{\beta}_{0}, \boldsymbol{\alpha}_{0}) + o_{p}(1).$$

Let $C_0 = (I, -A_{\beta\alpha'}A_{\alpha\alpha'}^{-1})$, then:

$$\frac{1}{\sqrt{n}}\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0},\tilde{\boldsymbol{\alpha}}) = \boldsymbol{C}_{0}\cdot\frac{1}{\sqrt{n}}\dot{\ell}_{\theta}(\boldsymbol{\beta}_{0},\boldsymbol{\alpha}_{0}) + o_{p}(1) \stackrel{\mathcal{L}}{\longrightarrow} N(\boldsymbol{0},\boldsymbol{C}_{0}\boldsymbol{B}_{0}\boldsymbol{C}_{0}').$$

The asymptotic covariance is:

$$oldsymbol{C}_0 oldsymbol{B}_0 oldsymbol{C}_0' = oldsymbol{B}_{eta eta'} - oldsymbol{B}_{eta lpha'} oldsymbol{A}_{eta lpha'}^{-1} oldsymbol{A}_{eta lpha'}^T - oldsymbol{A}_{eta lpha'} oldsymbol{A}_{lpha lpha'}^{-1} oldsymbol{B}_{lpha eta'} oldsymbol{A}_{lpha lpha'}^{-1} oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'} oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'} oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'} oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'} oldsymbol{A}_{eta lpha'} oldsymbol{A}_{eta lpha'}^T oldsymbol{A}_{eta lpha'} oldsymbol{A}_{eta lp$$

Corollary 3.1. Within the exponential family:

$$C_0B_0C_0'=A_{etaeta'}-A_{etalpha'}A_{lphalpha'}^{-1}A_{lphaeta'}=\left(A_0^{-1}
ight)_{etaeta'}^{-1}$$

which is the efficient information for β .

Likelihood Ratio Test

Remark 4.1. This section assumes A_0 is symmetric and positive definite.

Proposition 4.1. Under the $H_0: \theta = \theta_0$, the likelihood ratio statistic converges as:

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\boldsymbol{\theta}_0)\} \xrightarrow{\mathcal{L}} \sum_{j=1}^r \lambda_j \chi_1^2,$$

where $(\lambda_1, \dots, \lambda_r)$ are the eigenvalues of $\mathbf{A}_0^{-1/2} \mathbf{B}_0 \mathbf{A}_0^{-1/2}$ and $r = \dim(\boldsymbol{\theta}_0)$.

Proof. Taylor expand the log likelihood at the truth about the unconstrained MLE:

$$\ell(\boldsymbol{\theta}_0) = \ell(\hat{\boldsymbol{\theta}}) + \dot{\ell}_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}})(\boldsymbol{\theta}_0 - \hat{\boldsymbol{\theta}}) + \frac{1}{2}(\boldsymbol{\theta}_0 - \hat{\boldsymbol{\theta}})\ddot{\ell}_{\boldsymbol{\theta}\boldsymbol{\theta}'}(\hat{\boldsymbol{\theta}})(\boldsymbol{\theta}_0 - \hat{\boldsymbol{\theta}}) + \mathcal{O}_p(n^{-3/2}).$$

Since $\dot{\ell}(\hat{\boldsymbol{\theta}}) = \mathbf{0}$, upon rearranging:

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\boldsymbol{\theta}_0)\} = (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)' \{-\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}})\} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-3/2})$$
$$= n(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)' \{-n^{-1}\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}})\} (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + \mathcal{O}_p(n^{-3/2})$$
$$= n(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)' \boldsymbol{A}_0 (\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + o_p(1).$$

Recall from the Wald statistic that:

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \stackrel{\mathcal{L}}{\longrightarrow} N(\boldsymbol{0}, \boldsymbol{A}_0^{-1} \boldsymbol{B}_0 \boldsymbol{A}_0^{-1}).$$

Consequently, the quadratic form

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\boldsymbol{\theta}_0)\} = n(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)' \boldsymbol{A}_0(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) + o_p(1)$$
$$= \{\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)\} \boldsymbol{A}_0 \{\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)\} \xrightarrow{\mathcal{L}} \boldsymbol{\omega}' \boldsymbol{A}_0 \boldsymbol{\omega}$$

where $\omega \sim N(\mathbf{0}, \mathbf{A}_0^{-1} \mathbf{B}_0 \mathbf{A}_0^{-1})$. Let $\mathbf{L} \mathbf{L}'$ denote the Cholesky decomposition of \mathbf{A}_0 , then:

$$oldsymbol{\omega}' oldsymbol{A}_0 oldsymbol{\omega} = oldsymbol{\omega}' oldsymbol{L} oldsymbol{L}' oldsymbol{\omega} \stackrel{d}{=} \sum_{j=1}^r \lambda_j \chi_1^2,$$

where $(\lambda_1, \dots, \lambda_r)$ are the eigenvalues of $\mathbf{L}' \mathbf{A}_0^{-1} \mathbf{B}_0 \mathbf{A}_0^{-1} \mathbf{L}$.

Corollary 4.1. Within the exponential family:

$$m{A}_0^{-1/2} m{B}_0 m{A}_0^{-1/2} = m{A}_0^{-1/2} m{A}_0 m{A}_0^{-1/2} = m{I}.$$

Consequently, $\lambda_j = 1$ for each j, and :

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\boldsymbol{\theta}_0)\} \xrightarrow{\mathcal{L}} \chi_r^2.$$

Proposition 4.2. The likelihood ratio test $H_0: \beta = \beta_0$ is:

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\tilde{\boldsymbol{\theta}})\} \xrightarrow{\mathcal{L}} \sum_{j=1}^{p} \lambda_j \chi_1^2,$$

where $(\lambda_1, \dots, \lambda_p)$ are the eigenvalues of:

$$ig(oldsymbol{A}_0^{-1}ig)_{etaeta'}^{1/2}oldsymbol{C}_0oldsymbol{B}_0oldsymbol{C}_0'ig(oldsymbol{A}_0^{-1}ig)_{etaeta'},$$

$$C_0 = (I, -A_{\beta\alpha'}A_{\alpha\alpha'}^{-1}), \text{ and } p = \dim(\beta_0).$$

Proof. Taylor expand the log likelihood at the constrained MLE about the unconstrained MLE:

$$\ell(\tilde{\boldsymbol{\theta}}) = \ell(\hat{\boldsymbol{\theta}}) + \dot{\ell}_{\theta}(\hat{\boldsymbol{\theta}})(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) + \frac{1}{2}(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}})'\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}})(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) + \mathcal{O}_p(n^{-3/2}).$$

Since $\dot{\ell}(\hat{\boldsymbol{\theta}}) = \mathbf{0}$, upon rearranging:

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\tilde{\boldsymbol{\theta}})\} = (\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})'\{-\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}})\}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) + \mathcal{O}_p(n^{-3/2})$$
$$= n(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})'\{-n^{-1}\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}})\}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) + \mathcal{O}_p(n^{-3/2})$$
$$= n(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})'\boldsymbol{A}_0(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) + o_p(1).$$

Taylor expand the score at the constrained MLE to obtain:

$$\dot{\ell}_{\theta}(\tilde{\boldsymbol{\theta}}) = \dot{\ell}_{\theta}(\hat{\boldsymbol{\theta}}) + \ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}})(\tilde{\boldsymbol{\theta}} - \hat{\boldsymbol{\theta}}) + \mathcal{O}_p(n^{-1}).$$

Since $\dot{\ell}(\hat{\boldsymbol{\theta}}) = \mathbf{0}$, upon rearranging:

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) = \left\{ -n^{-1}\ddot{\ell}_{\theta\theta'}(\hat{\boldsymbol{\theta}}) \right\}^{-1} \frac{1}{\sqrt{n}} \dot{\ell}_{\theta}(\tilde{\boldsymbol{\theta}}) + \mathcal{O}_{p}(n^{-1})$$

$$= \boldsymbol{A}_{0}^{-1} \frac{1}{\sqrt{n}} \dot{\ell}_{\theta}(\tilde{\boldsymbol{\theta}}) + o_{p}(1)$$

$$= \boldsymbol{A}_{0}^{-1} \frac{1}{\sqrt{n}} \begin{pmatrix} \dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \tilde{\boldsymbol{\alpha}}) \\ \dot{\ell}_{\alpha}(\boldsymbol{\beta}, \tilde{\boldsymbol{\alpha}}) \end{pmatrix} + o_{p}(1)$$

$$= \boldsymbol{A}_{0}^{-1} \frac{1}{\sqrt{n}} \begin{pmatrix} \dot{\ell}_{\beta}(\boldsymbol{\beta}_{0}, \tilde{\boldsymbol{\alpha}}) \\ 0 \end{pmatrix} + o_{p}(1).$$

Recall from the score statistic that:

$$\frac{1}{\sqrt{n}}\dot{\ell}_{\beta}(\boldsymbol{\beta}_{0},\tilde{\alpha}) \stackrel{\mathcal{L}}{\longrightarrow} N(\boldsymbol{0},\boldsymbol{C}_{0}\boldsymbol{B}_{0}\boldsymbol{C}'_{0}).$$

Thus:

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}) \stackrel{\mathcal{L}}{\longrightarrow} \boldsymbol{A}_0^{-1} \binom{N(\boldsymbol{0}, \boldsymbol{C}_0 \boldsymbol{B}_0 \boldsymbol{C}_0')}{\mathbf{0}}.$$

The limiting distribution of the quadratic form is:

$$\begin{split} 2\big\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\tilde{\boldsymbol{\theta}})\big\} &= n\big(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}\big)' \boldsymbol{L} \boldsymbol{L}' \big(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}\big) + o_p(1), \\ &= \big\{\sqrt{n}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})\big\}' \boldsymbol{A}_0 \big\{\sqrt{n}(\hat{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}})\big\} + o_p(1) \\ &\stackrel{\mathcal{L}}{\longrightarrow} \big(\boldsymbol{\omega}, \boldsymbol{0}\big)' \boldsymbol{A}_0^{-1} \boldsymbol{A}_0 \boldsymbol{A}_0^{-1} \begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{0} \end{pmatrix} &= \boldsymbol{\omega}' \big(\boldsymbol{A}_0^{-1}\big)_{\beta\beta'} \boldsymbol{\omega}, \end{split}$$

where $\boldsymbol{\omega} \sim N(\mathbf{0}, \boldsymbol{C}_0 \boldsymbol{B}_0 \boldsymbol{C}_0')$ and $(\boldsymbol{A}_0^{-1})_{\beta\beta'}$ is the $p \times p$ sub-matrix of \boldsymbol{A}_0^{-1} corresponding to $\boldsymbol{\beta}$. Let $\boldsymbol{L}\boldsymbol{L}'$ denote the Cholesky decomposition of $(\boldsymbol{A}_0^{-1})_{\beta\beta'}$. Then:

$$oldsymbol{\omega}'ig(oldsymbol{A}_0^{-1}ig)_{etaeta'}oldsymbol{\omega}=oldsymbol{\omega}'oldsymbol{L}oldsymbol{L}'oldsymbol{\omega}\stackrel{d}{=}\sum_{j=1}^p\lambda_j\chi_1^2,$$

where $(\lambda_1, \dots, \lambda_p)$ are the eigenvalues of $\mathbf{L}'\mathbf{C}_0\mathbf{B}_0\mathbf{C}'_0\mathbf{L}$.

Corollary 4.2. Within the exponential family $C_0B_0C_0'=(A_0^{-1})_{\beta\beta'}^{-1}$, such that:

$$(A_0^{-1})_{\beta\beta'}^{1/2}(A_0^{-1})_{\beta\beta'}^{-1}(A_0^{-1})_{\beta\beta'}^{1/2}=I.$$

Consequently, $\lambda_j = 1$ for each j, and:

$$2\{\ell(\hat{\boldsymbol{\theta}}) - \ell(\tilde{\boldsymbol{\theta}})\} \xrightarrow{\mathcal{L}} \chi_p^2.$$