Geometría analítica

MALLQUI BAÑOS Ricardo Michel 2020-02-24

Contents

1	Algebra vectorial	2
	1.1 Datos	2
	1.2 Acciones	2
2	Rectas	3
3	Lugar geométrico	4
4	Circunferencia	5
5	Parábolas	8
6	Elipse	11
7	Hiperbola	13

Algebra vectorial

1.1 Datos

Sean los datos que se prosiguen

- www
- wwwww

1.1.1 ff

WWWW fff WWWW wwwww

1.1.2 ff

This is a *sample* book written in **Markdown**. You can use anything that Pandoc's Markdown supports, e.g., a math equation $a^2 + b^2 = c_c^2$.

The **bookdown** package can be installed from CRAN or Github:

```
install.packages("bookdown")
# or the development version
# devtools::install_github("rstudio/bookdown")
```

Remember each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading .

To compile this example to PDF, you need XeLaTeX. You are recommended to install TinyTeX (which includes XeLaTeX): https://yihui.org/tinytex/.

1.2 Acciones

Sean los datos emph real Entonces

Capítulo 2 Rectas

Lugar geométrico

Here is a review of existing methods.

Circunferencia

Sea $\vec{a}=(a_1,a_2)$ entonces el vector escalado es $r\vec{a}\parallel\vec{a}$; el vector perpendicular a este es $\vec{a}^\perp=(-a_2,a_1)$ la norma del vector \vec{a} es $\|a\|=\sqrt{a_1^2+a_2^2}$ el vector unitario en la dirección de \vec{a} es $\vec{\mu}=\frac{\vec{a}}{\|\vec{a}\|}$ que es paralela a este. Dado dos puntos P_1 y P_2 estos definen un vector $\vec{P_1P_2}=P_2-P_1$. Los vectores en dirección de los ejes positivos son i=(1,0) y j=(0,1); cualquier vector se pueden expresar en términos de estos es decir $\vec{a}=(a_1,a_2)=a_1(1,0)+a_2(0,1)=a_1i+a_2j$. De acuerdo al ángulo de inclinación del vector se tiene la siguiente representación $\vec{a}=\|\vec{a}\|$ (cos θ , sin θ).

Theorem 4.1 (russ). Dada el espacio R y $r \in R$ se tiene que $\mathcal{R}(r) = \lim_{t \to \infty} g(y)_r$

 \sum

Figure 4.1: Elipse vectorial

Dos vectores son ortogonales $(\vec{a} \perp \vec{b})$ si $|\vec{a} - \vec{b}| = |\vec{a} + \vec{b}|$ y verifican

$$\left| \vec{b} \right|^2 + \left| \vec{b} \right|^2 + = \left| \vec{a} + \vec{b} \right|^2 \vec{a} \vec{b} = 0 \vec{a} \parallel \vec{b}^{\perp} \vec{a} \text{ y } \vec{b} \text{ son LI si y solo si } r \vec{a} + s \vec{b} = 0 \text{ implica}$$

$$r = 0 \text{ y } s = 0.$$

La proyección de \vec{a} sobre \vec{b} es otro vector $\operatorname{Proy}_{\vec{k}}\vec{a}$

 $\vec{a} = \operatorname{Proy}_{\vec{b}} \vec{a} + \operatorname{Proy}_{\vec{b}^{\perp}} \vec{a} \text{ si hacemos } \vec{a} = p\vec{b} + q\vec{b}^{\perp} \text{ entonces } q = \frac{\vec{a}\vec{b}}{\left\|\vec{b}\right\|^2} \text{ y } p = \frac{\vec{a}\vec{b}^{\perp}}{\left\|\vec{b}\right\|^2} \text{ pues }$ $\left\|\vec{b}\right\| = \left\|\vec{b}^{\perp}\right\| \text{ entonces } \operatorname{Proy}_{\vec{b}} \vec{a} = \frac{\vec{a}\vec{b}}{\left\|\vec{b}\right\|^2} \vec{b} = \frac{\vec{a}\vec{b}}{\left\|\vec{b}\right\|} \frac{\vec{b}}{\left\|\vec{b}\right\|} = \operatorname{Cp}_{\vec{b}} \vec{a} \frac{\vec{b}}{\left\|\vec{b}\right\|}; \operatorname{Cp}_{\vec{b}} \vec{a} = \frac{\vec{a}\vec{b}}{\left\|\vec{b}\right\|} \text{ recibe el nombre }$ de componente de \vec{a} en la dirección de \vec{b}

Dado P_0 y un vector \vec{a} entonces la recta se define como el conjunto de puntos $\mathcal{L} = \{P \in \mathbb{R}^2 / P = P_0 + t\vec{a}; t \in \mathbb{R}\}$ que recibe el nombre de ecuación vectorial de la recta.

Figure 4.2: Elipse vectorial

 $P \in \mathcal{L} \iff (P - P_0) \cdot \vec{a}^{\perp} = 0$. De la ecuación vectorial de la recta se tiene si P = (x.y); $P_0 = (x_0, y_0)$ y $\vec{a} = (a_1, a_2)$ se tiene la ecuación paramétrica de la recta. $x = x_0 + ta_1$; $y = y_0 + ta_2$ de esto se obtiene la ecuación simétrica de la recta

$$\frac{x-x_0}{a_1} = \frac{y-y_0}{a_2}.$$

Sea $\vec{n}=(a,b)=\vec{a}^\perp$ entonces se tiene que si $P\in\mathcal{L}$ entonces $(P-P_0)\cdot\vec{n}=0$ pues son perpendicualres; entonces $P\cdot\vec{n}=P_0\cdot\vec{n}\iff ax+by=-c\implies ax+by+c=0$ que recibe el nombre de ecuación general de la recta. Sea $Q=(x_1,y_1)$ un punto exterior a \mathcal{L} entonces la distancia de Q a \mathcal{L} se define como

$$d[Q; \mathcal{L}] = |\operatorname{Cp}_{\vec{n}}(Q - P_0)|$$

$$= \left| \frac{(Q - P_0) \cdot \vec{n}}{|\vec{n}|} \right|$$

$$= \left| \frac{Q \cdot \vec{n} - P_0 \cdot \vec{n}}{|\vec{n}|} \right|$$

$$= \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

Sean \mathcal{L}_1 y \mathcal{L}_2 dos rectas; con vectores directores $\vec{a}=(a_1,a_2)$ y $\vec{b}=(b_1,b_2)$ respectivamente; entonces $\mathcal{L}_1 \cap \mathcal{L}_2=(d_1,d_2)$ donde d_1 y d_2 satisfacen el sistema generado por las ecuaciones generales de \mathcal{L}_1 y \mathcal{L}_2 ; $a_1x+a_1y+k_1=0$ y $b_1x+b_1y+k_2=0$.

La pendiente de una recta se deduce de su vector director es decir si $\vec{a}=(a_1,a_2)$ entonces $m=\frac{a_2}{a_1}$; de esto se deduce $\vec{a}=(a_1,a_2)=a_1(1,\frac{a_2}{a_1})=a_1(1,m)$. El angulo generado por las \mathcal{L}_1 con pendiente m_1 y \mathcal{L}_2 con pendiente m_1 ; está dada por $\theta=\arctan\left(\frac{m_1-m_2}{1+m_1m_2}\right)$.

El círculo se define como el conjunto de punto P = (x, y) que satisfacen la ecuación

$$||P - C|| = r$$

r > 0 es el radio, C = (h, k) es el centro entonces la ecuación del círculo es

$$||P - C|| = r \iff (x - h)^2 + (y - k)^2 = r^2.$$

La ecuación de la recta tangente en $P_0=(x_0,y_0)$ ($P=P_0$ en el gráfico) está dada por

$$(Q - P_0) \cdot (P_0 - C) = 0$$

donde $Q = (x, y) \neq P$ cualquiera; entonces

$$(Q - P_0) \cdot (P_0 - C) = 0 \iff (x - x_0, y - y_0)(x_0 - h, y_0 - k) = 0$$

lo cual es equivalente a

$$(x-h)(x_0-h) + (x-k)(y_0-k) = r^2$$

Parábolas

Sean la recta \mathcal{L} y el punto F fijos; los puntos P que satisfacen

$$d[P; F] = d[P; \mathcal{L}] = |p|$$

la excentricidad es el cociente de estas dos distancias igual a 1.

 \mathcal{L} es la recta directriz cuya ecuación es x' = -p; F es el foco; V = (h, k) vértice, p parámetro de la parábola ; RR' lado recto de la parábola.

Figure 5.1: Elipse vectorial

$$P = (x, y) = V + x'\vec{u} + y'\vec{u}^{\perp} x' = [(x, y) - V]\vec{u} \text{ y } y' = [(x, y) - V]\vec{u}^{\perp}$$

$$\mathcal{L} = \{Q/Q = (V - p\vec{u}) + t\vec{u}^{\perp}, t \in \mathbb{R}\}; F = V + p\vec{u} \text{ luego}$$

$$d[P; \mathcal{L}] = \left| \operatorname{Cp}_{\vec{u}} \vec{PQ} \right| = \left| (Q - P) \cdot \vec{u} \right| = \left| x' + p \right|$$

$$d[P; F] = |P - F| = |(x' - p)\vec{u} + y'\vec{u}^{\perp}|$$

por lo tanto

$$d[P; F]^{2} = d[P; \mathcal{L}]^{2} \implies \left| (x' + p)\vec{u} + y'\vec{u}^{\perp} \right|^{2} = \left| x' + p \right|^{2}$$
$$\implies (x' - p)^{2} + y'^{2} = (x' + p)^{2}$$
$$\implies y'^{2} = 4px'$$

De este modo $P \in \mathcal{P}$ si P satisface la ecuacion vectorial

$$P = (x, y) = V + x'\vec{u} + y'\vec{u}^{\perp}$$
; donde $y'^2 = 4px'$; $|\vec{u}| = 1$

Cuando el eje es paralelo al eje x; $\vec{u}=i=(1,0)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^{\perp}=(h+x',k+y') \implies x'=x-h$ y y'=y-k en \$ y'^2=4px'\$ resulta $(y-k)^2=4p(x-h)$ ($y^2=4px$ si V está en el origen); entonces $F=V+p\vec{u}=(h+p,k)$; $\mathcal{L}:x=h-p$. Si p<1 la parábola se invierte simétricamente a la directriz.

Cuando el eje es paralelo al eje y; $\vec{u} = j = (0, 1)$ entonces $(x, y) = V + x'\vec{u} + y'\vec{u}^{\perp} = (h - y', k + x') \implies x' = y - k$ y y' = h - x en \$ y^2=4px'\$ resulta $(x - h)^2 = 4p(y - k)$ ($x^2 = 4py$ si V está en el origen); entonces $F = V + p\vec{u} = (h, k + p)$; $\mathcal{L} : x = k - p$. Si p < 1 la parábola se invierte simétricamente a la directriz.

La ecuación de la recta tangente a $y^2 = 4px$ en el punto $P_0 = (x_0, y_0)$ está dada por $y = \frac{2p}{y_0}(x + x_0)$ y la ecuación de la recta tangente a $(y - k)^2 = 4p(x - h)$ en el punto $P_0 = (x_0, y_0)$ está dada por $(y_0 - k)(x_0 - k) = 4p\left[\left(\frac{x + x_0}{2} - h\right)\right]$ similarmente la ecuación de la recta tangente a $(x - h)^2 = 4p(y - k)$ en el punto $P_0 = (x_0, y_0)$ está dada por $(x_0 - h)(x_0 - h) = 4p\left[\left(\frac{y + y_0}{2} - h\right)\right]$.

- 1. Al realizarse una transformacion de coordenadas, el eje de una parabola \mathcal{P} resulta orientada segun el vector (3,4). En x'y' un punto $Q'=(20,-20)'\in\mathcal{P}$ en els sistema xy el foco de \mathcal{P} E=(11,5). Determinar en el sistema xy un punto R de la parabola \mathcal{P} tal que el trinagulo QVR sea rectangulo en V vertice de la parábola.
- 2. La circunferencia $\mathcal{C}=(x-3)^2+(y-3)^2=25$ es tangente a una parábola \mathcal{P} en $P_0=(x_0,y_0),\,y_0>7$. La recta $\mathcal{L}:4x-3y+12=0$ es normal a \mathcal{P} y \mathcal{C} en P_0 y corta al eje focal de \mathcal{P} en el punto R. Si $\left|\overrightarrow{C_0P_0}\right|=\left|\overrightarrow{P_0R}\right|$ y si la distancia $d[P_0;$ eje focal] = 4, hallar la ecuación de la parábola \mathcal{P} . C_0 es el centro de la circunferencia y la absisa del vértice es menor que 6.

 $P_0 = C_0 \pm r \vec{u}_{\mathcal{L}}$ donde r = 5, $C_0 = (3,8)$ y $\vec{u}_{\mathcal{L}} = \frac{(3,4)}{5}$ es decir $P_0 = (3,8) \pm 5\frac{(3,4)}{5}$ de esto consideramos $P_0 = (x_0, y_0) = (6, 12)$ por condición del problema con esto la recta tangente a \mathcal{C} y \mathcal{P} es $\mathcal{L}_T : (x, y)(3, 4) = (3, 4)(6, 12)$ equivalentemente $\mathcal{L}_T : 3x + 4y = 66$.

Ya que $\left|C_0P_0\right|=5=\left|\overrightarrow{P_0R}\right|$ y $d[P_0;$ eje focal] = $d[P_0;Q]=4$ entonces el triángulo P_0QR es un triángulo rectángulo notable, por lo tanto $\left|\overrightarrow{QR}\right|=3$ por el Teorema de Pitágoras, además $\overrightarrow{P_0R}=\overrightarrow{P_0Q}+\overrightarrow{QR}$ es decir si $\overrightarrow{P_0Q}=(v_1,v_2)$ se tiene la ecuación $(3,4)=4(v_1,v_2)\pm 3(-v_2,v_1)$ que al resolverla se tiene $\overrightarrow{P_0R}=(v_1,v_2)=(1,0)$ o $\overrightarrow{P_0R}=(v_1,v_2)=\left(\frac{24}{25},\frac{7}{25}\right)$ entonces $Q=P_0+4(0,1)=(6,16)$ o $Q=P_0+4\left(\frac{24}{25},\frac{7}{25}\right)=\left(6+\frac{96}{25},12+\frac{28}{25}\right)$ esto indica considerar Q=(6,16) pues el vertice (tiene absisa menor que 6), debe estar a la derecha de P_0 pues la recta \mathcal{L}_T tiene pendiente negativa. Por lo tanto $\mathcal{L}_T\cap\mathcal{F}: x=16=\left(\frac{2}{3},16\right)$ y por propiedad de la tangente a una parábola se tiene el vértice $V=\left(\frac{\mathcal{L}_T\cap\mathcal{F}+Q}{2}\right)=\left(\frac{10}{3},16\right)$. La ecuación de la parabola en le sistema original es $(y-h)^2=4\rho(x-k)$ donde $(h,k)=\left(\frac{10}{3},16\right)$ y $(6,12)\in\mathcal{P}$ se tiene $(-4)^2=4\rho(8/3)$ de donde $\rho=\frac{3}{2}$ entonces la recta directriz pasa por $\left(\frac{10}{3},16\right)+\frac{3}{2}(1,0)=\left(\frac{7}{3},16\right)$ por tanto $\mathcal{L}_D: x=\frac{7}{3}$ y la ecuación de la parábola es

$$(y - 16)^2 = 4\rho \left(x - \frac{10}{3}\right)$$

por ser paralela al eje x.

2. Los puntos A = (60, 13) y B = (-4, 61) estan sobre una parábola \mathcal{P} además son simétricos con recpecto al eje focal. Desde un punto Q sobre el eje focal se traza un

recta tangente a \mathcal{P} que pasa por B, hallar la ecuación de \mathcal{P} y las ecuaciones de las rectas tangentes trazadas desde Q.

Ya que A y B son simétricas entonces $P_0 = \frac{A+B}{2} = (28,37) \in \mathcal{L}_F$ donde \mathcal{L}_F es el eje focal paralelo al vector $\overrightarrow{AB}^{\perp} = (B-A)^{\perp} = (-64,48) \parallel (-4,3) = \overrightarrow{v}_L$ es decir \overrightarrow{v}_F y P_0 nos genera la ecuación del eje focal $\mathcal{L}_F: 4x+3y=1$. De otro lado dado el punto $Q=(20,x)\in\mathcal{L}_F$ que al reemplazarlo en la recta del eje focal nos genera x=-27 de donde Q=(20,-27) ademas el vértice de la parabola es $V=\frac{Q+P_0}{2}=(4,5)$ por propiedad.

Con el objetivo de hallar el valor de ρ en la ecuación $y'^2 = 4\rho x'$ se halla las coordenadas de B en el nuevo sistema de coordenadas centrada en V con vector director $\vec{u} = \frac{(3,4)}{5}$, haciendo uso de la relación

$$(x, y) = V + x'\vec{u} + y'\vec{u}^{\perp}$$

se obtiene $x' = [B - V]\vec{u} = 40$ y $y' = [B - V]\vec{u}^{\perp} = 40$ por tanto reemplazando B = (-4, 61) = (40, 40)' en $y'^2 = 4\rho x'$ se tiene que $\rho = 10$

Los vectores directores de las rectas tangentes en el sistema x'y' son (2,1) y (2,-1) respectivamente por tanto sus ecuaciones son \mathcal{L}_A : 2y' = x' + 40 y $\mathcal{L}_B = -2y' = x' + 40$ estas ecuaciones en el sistema original con $x' = [(x,y) - (4,5)] \frac{(3,4)}{5}$ y $y' = [(x,y) - (4,5)] \frac{(-4,3)}{5}$ reemplazadas resultan \mathcal{L}_A : 2y - 11x - 166 = 0 y \mathcal{L}_B : 5x - 10y - 170 = 0

1. ww

Elipse

Dados dos puntos distintos F_1 y F_2 llamados focos; la elipse \mathcal{E} es el conjunto formado por los puntos P que satisfacen la ecuación

$$|P - F_1| + |P - F_2| = 2a$$
.

C=(h,k) es el centro de la elipse; x' eje focal, V_1 y V_2 son los vértices de la elipse; $\overline{V_1V_2}$ el eje mayor $\overline{RR'}$ el lado recto; $\overline{B_1B_2}$ el eje menor de longitud 2b. En el sistema x'y' se tiene $B_1=(0,b)'$; $B_2=(0,-b)'$; $F_1=(-c,0)'$; $F_2=(c,0)'$ y C=(0,0)'.

Figure 6.1: Elipse vectorial

La excentricidad e se define como

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e = \frac{d[P; F_2]}{d[P; \mathcal{L}_2]}$$

 $d[B_i; F_1] = d[B_i; F_2] = a \text{ y } d[V_i; C] = d[V_i; C] = a, i = 1, 2. \ d[C; \mathcal{L}_1] = d[C; \mathcal{L}_2] = \frac{a}{e} \text{ pues } \frac{d[B_i; F_1]}{d[B_i; \mathcal{L}_1]} = e \implies \frac{a}{d[B; \mathcal{L}_1]} = e. \text{ Sea } c = d[P; F_1] = d[P; F_2] \implies c = ae \text{ pues } \frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e \implies \frac{a-c}{\frac{a}{e}-a} = e \implies c = ae. \ a > b \text{ y } a^2 = b^2 + c^2; \text{ pues } a = d[B_1; F_2] = d[(0, b^2 + c^2)'; (c, 0)']^2 = \sqrt{b}; 0 < e < 1 \text{ debido a que } 0 < e = \frac{a}{e} < 1 \text{ y } a > c > 0.$

$$P = (x, y) = C + x'\vec{u} + y'\vec{u}^{\perp}; x' = [(x, y) - C]\vec{u}; y' = [(x, y) - C]\vec{u}^{\perp}$$

$$F_1 = C + c\vec{u} \text{ y } F_2 = C - c\vec{u} \text{ entonces}$$

$$|P - F_1| + |P - F_2| = |C + x'\vec{u} + y'\vec{u}^{\perp} - C + c\vec{u}| + |C + x'\vec{u} + y'\vec{u}^{\perp} - C - c\vec{u}| = \sqrt{(x' + c)^2 + y'^2} + \sqrt{(x' - c)^2 + y'^2} = 2a$$

por lo tanto resolviendo $\sqrt{(x'+c)^2 + y'^2} + \sqrt{(x'-c)^2 + y'^2} = 2a$ resulta $(a^2 - c^2)x'^2 + ay'^2 = a^2(a^2 - c^2) \implies b^2x'^2 + a^2y'^2 = a^2b^2$

De este modo $P \in \mathcal{E}$ si P satisface la ecuación vectorial

$$P = (x, y) = V + x'\vec{u} + y'\vec{u}^{\perp}$$
; donde $\frac{x'^2}{a^2} + \frac{y'^2}{b^2} = 1$; $|\vec{u}| = 1$

Cuando el eje es paralelo al eje x; $\vec{u}=i=(1,0)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^\perp=(h+x',k+y') \implies x'=x-h$ y y'=y-k en $\frac{x'^2}{a^2}+\frac{y'^2}{b^2}=1$ resulta $\frac{(y-k)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ $(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ si V está en el origen); entonces $F_1=C+c\vec{u}=(h+c,k)$; $\mathcal{L}_1:x=h+\frac{a}{e}$ y $\mathcal{L}_2:x=h-\frac{a}{e}$.

Cuando el eje es paralelo al eje y; $\vec{u}=j=(0,1)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^\perp=(h-y',k+x') \implies x'=y-k$ y y'=h-x en $\frac{x'^2}{a^2}+\frac{y'^2}{b^2}=1$ resulta $\frac{(y-k)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$ $(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ si V está en el origen); entonces $F_1=C+c\vec{u}=(h+c,k)$; $\mathcal{L}_1:x=k+\frac{a}{e}$ y $\mathcal{L}_2:x=k-\frac{a}{e}$.

Hiperbola

Los puntos de un hipérbola verifican la siguiente ecuación

$$||P - F_1| + |P - F_1|| = 2a$$

C=(h,k) es el centro de la hipérbola; V_1 y V_2 son los vértices; F_1 y F_2 son los focos; $\overline{V_1V_2}$ es el eje transversal; $\overline{B_1B_2}$ es el eje conjugado; x' es el eje focal

$$d[C; F_1] = d[C; F_2] = c$$

 $F_1 = (-c, 0)$; $F_1 = (c, 0)$ en el sistema coordenado x'y'; \mathcal{C} circunferencia con centro en C, radio c que pasa por los focos.

$$d[V_1; C] = d[V_2; C] = a$$

Figure 7.1: Elipse vectorial

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e = \frac{d[P; F_2]}{d[P; \mathcal{L}_2]}$$

c=ae; $d\left[C;\mathcal{L}_{1}\right]=d\left[C;\mathcal{L}_{2}\right]=\frac{a}{e}$ y e>1; en efecto

$$\frac{d\left[R;F_{1}\right]}{d\left[R;\mathcal{L}_{1}\right]} = \frac{\frac{b^{2}}{a}}{c-d\left[C;\mathcal{L}_{1}\right]} = \frac{c^{2}-a^{2}}{a(c-d\left[C;\mathcal{L}_{1}\right])}$$

$$\frac{d\left[V_2; F_1\right]}{d\left[V_2; \mathcal{L}_1\right]} = \frac{c - a}{a - d\left[C; \mathcal{L}_2\right]}.$$

De la primera

$$d[C; \mathcal{L}_2] = a - \frac{c - a}{e} \implies c - d[C; \mathcal{L}_2] = a - \frac{(c - a)(e + 1)}{e}.$$

De la segunda ecuación

$$c^{2} - a^{2} = ae \frac{(c-a)(e+1)}{e} \implies c + a = a(e+1) \implies c = ae$$

luego $d[C; \mathcal{L}_2] = a - \frac{(c-a)(ae+a)}{e} = \frac{a}{e}$ y el caso $d[C; \mathcal{L}_1]$ es similar. Finalmente $e = \frac{c}{a} > 1$ pues 0 < a < c.

$$P = (x, y) = C + x'\vec{u} + y'\vec{u}^{\perp} x' = [(x, y) - C]\vec{u} \text{ y } y' = [(x, y) - C]\vec{u}^{\perp}$$

$$F_1 = C + c\vec{u} \text{ y } F_2 = C - c\vec{u} \text{ tambien } V_1 = C + a\vec{u} \text{ y } V_2 = C - a\vec{u} \text{ entonces}$$

$$\frac{d[P; F_1]}{d[P; \mathcal{L}_1]} = e \iff d[P; F_1]^2 = e^2 d[P; \mathcal{L}_1]^2$$

haciendo uso de c = ae y $c^2 = a^2 + b^2$ se tiene lo siguiente

$$(x'-c)^2 + y'^2 = e^2 \left(x' - \left(\frac{a}{e}\right)\right)^2$$

$$(c^2 - a^2)x'^2 + a^2y'^2 = a^2(c^2 - a^2)$$

$$b^2x'^2 - a^2y'^2 = a^2b^2$$

De este modo $P \in \mathcal{H}$ si P satisface la ecuación vectorial

$$P = (x, y) = V + x'\vec{u} + y'\vec{u}^{\perp}$$
; donde $\frac{x'^2}{a^2} - \frac{y'^2}{b^2} = 1$; $|\vec{u}| = 1$.

Cuando el eje es paralelo al eje x; $\vec{u}=i=(1,0)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^\perp=(h+x',k+y') \implies x'=x-h$ y y'=y-k en $\frac{x'^2}{a^2}-\frac{y'^2}{b^2}=1$; resulta $\frac{(y-k)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$; $(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1)$; si V está en el origen); entonces $F_1=C+c\vec{u}=(h-\frac{a}{e},k)$ y $F_2=C+c\vec{u}=(h-\frac{a}{e},k)$; $\mathcal{L}_1:x=h-\frac{a}{e}$ y $\mathcal{L}_2:x=h+\frac{a}{e}$ y las asíntotas de $y'=\pm\frac{a}{b}x'$ se convierte en $(y-k)=\pm\frac{a}{b}(x-h)$.

Cuando el eje es paralelo al eje y; $\vec{u}=j=(0,1)$ entonces $(x,y)=V+x'\vec{u}+y'\vec{u}^\perp=(h-y',k+x')$ $\Longrightarrow x'=y-k$ y y'=h-x en $\frac{x'^2}{a^2}-\frac{y'^2}{b^2}=1$; resulta $\frac{(y-k)^2}{a^2}-\frac{(y-k)^2}{b^2}=1$; $(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1)$; si V está en el origen); entonces $F_1=C+c\vec{u}=(h+c,k)$; $\mathcal{L}_1:x=k+\frac{a}{e}$ y $\mathcal{L}_2:x=k-\frac{a}{e}$ y las asíntotas de $y'=\pm\frac{b}{a}x'$ se convierte en $(y-k)=\pm\frac{b}{a}(x-h)$.