

弗兰克-赫兹实验

哈工大 (深圳) 物理实验中心

实验目的

1.了解弗兰克-赫兹实验的原理和方法。

2.测定氩原子的第一激发电位,验证原子能级的存在。

实验背景

1914年,<u>弗兰克(James Franck</u>,1882~1964)和<u>赫兹(Gustar Hertz</u>,1887~1975)在研究中发现电子与原子发生<u>非弹性碰撞</u>(电子速度减小)时能量的转移是量子化的。他们的精确测定表明,电子与汞原子碰撞时,电子损失的能量严格地保持4.9 eV,即汞原子只接收4.9 eV的能量。

- 这个事实直接证明了汞原子具有玻尔 所设想的那种"完全确定的、互相分 立的能量状态",是对玻尔的原子量 子化模型的第一个决定性的证据。
- ▶ 由于他们的工作对原子物理学的发展 起了重要作用,曾共同获得1925年的 物理学诺贝尔奖。

James Franck

Gustav Ludwig Hertz

波尔的原子能级理论

- 玻尔的原子理论指出,原子只能处于一系列不连续的 稳定能量状态(定态)。
- 这些状态具有分立的确定的能量值,称为能级。
- 其中,能级最低的状态称为基态。当原子吸收电磁波 或受到其他有足够能量的粒子碰撞时,可由基态跃迁 到能量较高的激发态。
- 原子从一个定态过渡到另一个定态称为跃迁,伴随着辐射或吸收电磁波。电磁波的频率由发生跃迁的两个定态能量*E*_m、*E*_n确定:

式中,h为普朗克常量。

Niels Bohr

弗兰克-赫兹实验原理

弗兰克-赫兹实验原理

原子实现能级跃迁的途径之一:与具有一定能量的电子的碰撞。

$I_{\Delta} - V_{G2K}$ 曲线: 反映氩原子与电子的能量交换

- 假设初速度为零的电子在电 势差为U的电场作用下,获 得能量eU,然后与稀薄气体 中的原子发生碰撞,发生能 量交换。
- E1: 氩原子基态能量
- E2: 氩原子第一激发态能量
- 能量传递:

$$eU_0 = E_2 - E_1$$

- 那么当电子与原子发生碰撞时,原子将从电子攫取能量而从基态跃迁到第一激发态。相应的电位差Uo就称为原子的第一激发电位。
- 1. 随着加速电压的增加,阳极电流出现一系列极大值与极小值。
- 2. 相邻两个极大值或极小值之间的间距为11.7 V。

示波器

HZDH® Franck-Hertz Tube(Ar) V_{G2}A V_{G2}K 12.5 VG1K FILAMENT F-H tube

实验装置

实验准备工作

(1) 按照示意图将夫兰 克-赫兹管测试架与测试 仪前面板上的四组电压输 出(第二栅压V_{G2K}, 拒斥 电压V_{G2A}, 第一栅压V_{G1K}, 灯丝电压) 分别对应连接; 将电流输入接口与测试架 上的微电流输出口相连。

注意: 仔细检查, 避免接错损坏夫兰克一赫兹管。

- 1. 微电流输出接口
- 2. 夫兰克赫兹管
- 3. 灯丝电压输入接口
- 4. 拒斥电压 VG2A 输入接口
- 5. 第二栅压 VG2K 输入接口
- 6. 第一栅压 *V*GIK 输入接口

图 1 夫兰克-赫兹管测试架示意图

实验准备工作(设定,预热)

- (2) 将夫兰克一赫兹实验仪前面板上"信号输出"接口与示波器CH1通道相连,"同步输出"与示波器触发端接口相连;
 - (3) 开启电源,默认工作方式为"手动"模式;
- (4)将电压设置依次切换为"灯丝电压"、第一栅压" V_{G1K} "、拒斥电压" V_{G2A} "第二栅压" V_{G2K} "设定设定,调节相应"电压调节",使与出厂参考值一致(详见夫兰克赫兹管测试架标示)。
- (5) 将电压设置切换选择为第二栅压 "V_{G2K}"设定,调节"电压调节"使输出为零。
 - (6) 预热仪器10-15分钟, 待上述电压都稳定后, 即可开始实验。

实验步骤-手动测量

- (1) 开机默认为"手动"工作状态;
- (2)将电压设置切换选择为第二栅压 " V_{G2K} " 设定,调节"电压调节",使第二栅压0V到90V按最小步进电压值(0.2V) 依次增加,一边调节,一边观察示波器上显示的波形曲线和实验仪面板上的电流示值,依次记录 V_{G2K} 和 I_A 数据。

注意:实验前,可以通过"电压调节"组合键设置V_{G2K}最小电压步进值为 0.1V, 0.2V或<u>0.5V</u>;实验过程中请不要再改变最小步进值,V_{G2K}从小到大单向调节,不可在过程中反复(恒正)。

(3) 求出各峰值所对应的电压值,用逐差法和最小二乘法求出氩原子第一激发电位,并与公认值相比较,求出相对误差。

注意事项

- 连线时注意A, K, G间的一一对应, 避免混接。
- 实验前,通过"电压调节"组合键设置V_{G2K}最小电压步进值 为0.2V;
- 实验过程中请不要再改变最小步进值;
- V_{G2K}从小到大单向调节,不可在过程中反复(恒正)。

数据记录

VG2K	T / A	VG2K		VG2K	T / A	VG2K	T / 1	VG2K	T / A	VG2K		VG2K	T / 1	VG2K	
/V	Ip/uA														
0.5	0	13	8.5	25.5	22.1	38	40.6	50.5	63.8	63	83.8	75.5	96.9	88	106.7
1	0	13.5	9.8	26	25.3	38.5	45.7	51	69.6	63.5	87.4	76	99.8	88.5	110.5
1.5	0	14	11.1	26.5	27.6	39	50	51.5	72.2	64	89.1	76.5	100.9	89	112.8
2	0	14.5	11.9	27	30.7	39.5	53.1	52	73.8	64.5	88.3	77	100	89.5	112
2.5	0	15	13.1	27.5	33.4	40	56.1	52.5	73.5	65	85.9	77.5	96.8	90	110.8
3	0	15.5	14.4	28	35.1	40.5	56.7	53	71.3	65.5	81.7	78	91.5	90.5	107.2
3.5	0	16	15.6	28.5	37	41	56.4	53.5	67.1	66	75.7	78.5	84.7	91	102.6
4	0	16.5	16.7	29	38.1	41.5	54.9	54	60.9	66.5	65.2	79	77.7	91.5	94.7
4.5	0	17	17.5	29.5	38.2	42	51.8	54.5	54	67	57.6	79.5	69.5	92	87
5	0	17.5	18.4	30	37.6	42.5	46.3	55	47	67.5	47.4	80	60.3	92.5	78.7
5.5	0	18	19.1	30.5	36.6	43	41.8	55.5	37.4	68	38	80.5	50.3	93	69.3
6	0	18.5	19.5	31	34.7	43.5	35.8	56	28.9	68.5	28.3	81	41.1	93.5	61.7
6.5	0	19	19.7	31.5	32.6	44	29.6	56.5	21.7	69	22.5	81.5	32	94	52.9
7	0	19.5	19.5	32	29.4	44.5	23.7	57	15.5	69.5	17.4	82	29.4	94.5	49.6
7.5	0	20	19.3	32.5	26	45	18.1	57.5	11.9	70	16.4	82.5	28.4	95	46.8
8	0	20.5	18.8	33	22.3	45.5	13.6	58	11	70.5	18.7	83	30.9		
8.5	0	21	17.9	33.5	19.3	46	11.4	58.5	13.4	71	23.9	83.5	36		
9	0.1	21.5	17.1	34	16.1	46.5	11.5	59	18.7	71.5	31.6	84	42.5		
9.5	0.5	22	15.8	34.5	14.5	47	14.4	59.5	27.9	72	41.2	84.5	51.8		
10	1.2	22.5	14.9	35	14.7	47.5	20.1	60	36	72.5	50	85	61.5		
10.5	2.2	23	14.3	35.5	16.4	48	29.2	60.5	45.8	73	58.4	85.5	69.1		
11	3.4	23.5	14.5	36	19.7	48.5	35.5	61	56.1	73.5	69	86	77.6		
11.5	4.6	24	15.4	36.5	24.4	49	43	61.5	63	74	77.4	86.5	87		
12	6	24.5	17.2	37	30	49.5	50.1	62	71.8	74.5	86.4	87	96.8		
12.5	7.3	25	19.3	37.5	35.3	50	57.6	62.5	78.9	75	92.9	87.5	101		

Ar 的 Ip-VG2K数据

数据处理: 逐差法/最小二乘法(每条曲线)

- 1. 计算氩原子第一激发电压。
- 2. 计算相对误差 (11.7 V)。

逐差法:

120 - 100 - 80 - 60 - 20 -	\nearrow	$\sqrt{\ }$			VG2	2K/V
0	20	40	60	80	100	
599/35		J Ip-VG2K 图	子像			

峰序号i	1	2	3	4	5	6
峰值电压 U _i /V	16.85	27.95	39.44	51.02	63.55	76.46

数据序号 i 1		2	3		
$(U_{i+3}$ - $U_i)/V$	34.17	35.60	37.02		

$$\overline{3U_g} = \frac{1}{3} \sum_{i=1}^{3} (U_{i+3} - U_i) = 35.60 V$$

$$\overline{U_g} = 11.87 V$$

数据处理: 逐差法/最小二乘法(每条曲线)

最小二乘法:

峰序号i	1	2	3	4	5	6
峰值电压 U _i /V	16.85	27.95	39.44	51.02	63.55	76.46

Ug=k=11.89V

思考题

- 1. 拒斥电压 "V_{G2A}"的大小对曲线有何影响?
- 2. 为什么电压变大变小多次改变会影响实验结果?
- 3. 为什么 I_A-U_{G2K} 曲线上的谷点电流随 U_{G2K} 的增大而增大?

请仔细阅读《实验指导书》中的 实验内容和要求