

Swarm Intelligence Content

1 Swarm Intelligence
2 Particle Swarm Optimization
3 Ant Colony Optimization

Kecerdasan Komputasional | Swarm Intelligence

Swarm Intelligence

Koloni Makhluk Hidup

Koloni Makhluk Hidup

Burung

Semut

Kecerdasan Komputasional | Swarm Intelligence

PSO untuk permasalahan optimasi

Contoh permasalahan optimasi:
penjadwalan, pencarian rute terbaik, seleksi fitur,
pencarian fungsi optimal, dll

setiap burung dianggap sebagai agen untuk mencari
kandidat solusi dalam ruang pencarian

Kecerdasan Komputasional | Swarm Intelligence

Particle Swarm Optimization - PSO

- Burung dalam koloni direpresentasikan menjadi partikel dalam PSO
- Untuk permasalahan optimasi ini, partikel merupakan representasi kandidat solusi
- Inisialisasi dilakukan dengan cara membangkitkan sejumlah partikel secara acak
- Setiap partikel bergerak untuk menuju tujuan/solusi optimal

Kecerdasan Komputasional

Swarm Intelligence

7

Properti PSO

Partikel bergerak berdasarkan tiga kecepatan :

1

Inertia Velocity: kecepatan partikel 2

<u>Cognitive Velocity:</u>
posisi terbaik yang
pernah dimiliki
partikel

3

Social velocity:
posisi terbaik dari
suatu partikel pada
koloni

Fungsi Fitness: Fungsi yang menentukan keoptimalan posisi dari suatu partikel

(posisi terbaik partikel)

Kecerdasan Komputasional

Swarm Intelligence

Algoritma PSO

Update Partikel: $x_i(t+1) = x_i(t) + v_i(t+1)$ $x_i(t) : \text{Posisi Partikel ke-}i, \text{iterasi ke-}t$ $v_i(t+1): \text{velocity partikel ke-}i, \text{yang dipengaruhi}$ oleh cognitive, dan social velocity.

Algoritma PSO

Update Velocity:

$$v_i(t+1) = c_0 v_i(t) + c_1 r_1(t) [p_i(t) - x_i(t)] + c_2 r_2(t) [p_g(t) - x_i(t)]$$

 c_0 , c_1 dan c_2 : konstanta untuk inertia, cognitive, dan social velocity

 r_1 dan r_2 : elemen stochastic yang dibangkitkan secara acak antara [0..1]

p_i: Personal Best Position partikel ke-i, posisi terbaik yang pernah

dicapai oleh partikel ke-i, selama iterasi ke-1 sampai dengan

Iterasi ke-t

p_a : Global Best Postion adalah posisi terbaik diantara semua

partikel

Kecerdasan Komputasional | Swarm Intelligence

11

Algoritma PSO

Posisi terbaik ditentukan oleh Fungsi Fitness, yaitu nilai fitness terkecil

Personal Best Position (p_i) :

$$p_i(t) = \begin{cases} p_i(t-1), & \text{jika } f(x_i(t)) \ge f(p_i(t-1)) \\ x_i(t), & \text{jika } f(x_i(t)) < f(p_i(t-1)) \end{cases}$$

 $p_i(t)$: personal best position pada iterasi ke-t

 $p_i(t-1)$: personal best position sebelumnya

 $x_i(t)$: partikel pada iterasi ke-t

f(x): fungsi fitness

Kecerdasan Komputasional | Swarm Intelligence

Algoritma PSO

Global Best Position (p_g):

$$p_g(t) \in \{p_0(t), p_1(t), \dots, p_n(t)\} | f(p_g(t))$$

$$= min\{f(p_0(t), f(p_1(t), \dots, f(p_n(t)))\}$$

 $p_g(t)$: Global Best Position

 $p_0(t), p_1(t), \dots, p_n(t)$: personal best position dari partikel k-0, partikel ke-1,

sampai dengan partikel

ke-n.

Kecerdasan Komputasional

Swarm Intelligence

13

Algoritma PSO

- 00010101
- 1. Bangkitkan sejumlah n partikel (baik **posisi** dan **kecepatan**) secara acak
- 2. Selama kondisi terpenuhi, maka lakukan perulangan berikut

Untuk setiap partikel ke -i:

i. if
$$f(x_i) < f(p_i)$$
 then $p_i = x_i$

ii.
$$p_g = min(p_{neighbors})$$

iii.
$$v_i(t+1) = c_0 v_i(t) + c_1 r_1(t) [p_i(t) - x_i(t)] + c_2 r_2(t) [p_g(t) - x_i(t)]$$

iv.
$$x_i(t+1) = x_i(t) + v_i(t+1)$$

Kecerdasan Komputasional

Swarm Intelligence

Studi Kasus

Fungsi Matematika:

$$y = x^2 + 5x + 10$$

Tentukan nilai \boldsymbol{x} , agar nilai \boldsymbol{y} minimal

Kecerdasan Komputasional |

Swarm Intelligence

15

PSO

1. Bangkitkan n partikel, misal 5 partikel, antara lain :

$$x_1(0) = -6; v_1(0) = 0.1$$

$$x_2(0) = 4$$
; $v_2(0) = 0.1$

$$x_3(0) = -2; v_3(0) = 0.5$$

$$x_4(0) = -1; v_4(0 = 0.2)$$

$$x_5(0) = 2; v_5(0) = 0.7$$

Kecerdasan Komputasional

Swarm Intelligence

DSO								0101000101
PSO								00010101
101	3. Iter	asi k	e-1. laku	ıkan hal yanş	g sama :		47	00010101
91		a. Hitung Personal best position berdasarkan fungsi fitness,						0101 101
0001010	dan bandingkan dengan personal best position sebelumnya							
010101 310101		i	$p_i(0)$	$f(p_i(0))$	$x_i(1)$	$f(x_i)(1)$	$p_i(1)$	101000101
.0101		1	-6	16	-5.1	10.51	-5.1	101000101
2101		2	4	46	2.9	32.91	2.9	1010100016
101		3	-2	4	-1.5	4.75	-2	01010001010 1010001010
10100010		4	-1	18	-1	6	-1 01	01000101010
1000101		5	2	24	1.9	23.11	1.9	001010100
Kecerdasan Komputasional Swarm Intelligence								

