GAMES103: Intro to Physics-Based Animation

Smoothed Particle Hydrodynamics

Huamin Wang

Jan 2022

Topics for the Day

A SPH model

• SPH-based fluids

A SPH Model

A SPH Model

Consider a (Lagrangian) particle system: each water molecule is a particle with physical quantities attached, such as position \mathbf{x}_i , velocity \mathbf{v}_i , and mass m_i .

representation

typical visualization

Smoothed Interpolation – A Simple Model

- Suppose each particle j has a physical quantity A_i .
- The quantity can be: velocity, pressure, density, temperature....
- How to estimate the quantity at a new location \mathbf{x}_i ?

Problem with the Simple Model

Smoothed Interpolation – A Better Model

- Let us assume each one represents a volume V_i .
- So a better solution is:

$$A_i^{\text{smooth}} = \frac{1}{n} \sum_{j} V_j A_j$$
 For $\|\mathbf{x}_i - \mathbf{x}_j\| < R$

Problem with the Better Model

• One problem of this solution:

$$A_i^{\text{smooth}} = \frac{1}{n} \sum_{j} V_j A_j$$
 For $\|\mathbf{x}_i - \mathbf{x}_j\| < R$

• Not smooth! (7 -> 9!)

Smoothed Interpolation – Final Solution

- Final solution: $A_i^{\text{smooth}} = \sum_j V_j A_j W_{ij}$ For $\|\mathbf{x}_i \mathbf{x}_j\| < R$
- W_{ij} is called smoothing kernel.
- When $\|\mathbf{x}_i \mathbf{x}_j\|$ is large, W_{ij} is small.
- When $\|\mathbf{x}_i \mathbf{x}_j\|$ is small, W_{ij} is large.

Particle Volume Estimation

• But how do we get the volume of particle *i*?

$$V_{i} = \frac{m_{i}}{\rho_{i}}$$

$$\rho_{i}^{\text{smooth}} = \sum_{j} V_{j} \rho_{j} W_{ij} = \sum_{j} m_{j} W_{ij}$$

$$V_i = \frac{m_i}{\rho_i^{\text{smooth}}} = \frac{m_i}{\sum_j m_j W_{ij}}$$

Smoothed Interpolation – Final Solution

So the actual solution is:

$$A_i^{\mathbf{smooth}} = \sum_j V_j A_j W_{ij}$$

$$V_i = \frac{m_i}{\sum_j m_j W_{ij}}$$

$$A_i^{\text{smooth}} = \sum_j \frac{m_j}{\sum_k m_k W_{jk}} A_j W_{ij}$$

Why Smoothed Interpolation?

- We can easily compute its derivatives:
 - Gradient

$$A_i^{\text{smooth}} = \sum_j V_j A_j W_{ij} \qquad \nabla A_i^{\text{smooth}} = \sum_j V_j A_j \nabla W_{ij}$$

Laplacian

$$A_i^{\text{smooth}} = \sum_j V_j A_j W_{ij} \qquad \Delta A_i^{\text{smooth}} = \sum_j V_j A_j \Delta W_{ij}$$

A Smoothing Kernel Example

$$W_{ij} = \frac{3}{2\pi\hbar^3} \begin{cases} \frac{2}{3} - q^2 + \frac{1}{2}q^3 & (0 \le q < 1) \\ \frac{1}{6}(2 - q)^3 & (1 \le q < 2) \\ 0 & (2 \le q) \end{cases}$$
 particle of interest

$$q = \frac{\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|}{h}$$

h is called smoothing length

Kernel Derivatives

Gradient at particle i (a vector)

$$\nabla_{i} W_{ij} = \begin{bmatrix} \frac{\partial W_{ij}}{\partial x_{i}} \\ \frac{\partial W_{ij}}{\partial y_{i}} \\ \frac{\partial W_{ij}}{\partial z_{i}} \end{bmatrix} = \frac{\partial W_{ij}}{\partial q} \nabla_{i} q = \frac{\partial W_{ij}}{\partial q} \frac{\mathbf{x}_{i} - \mathbf{x}_{j}}{\|\mathbf{x}_{i} - \mathbf{x}_{j}\| h}$$

$$q = \frac{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|}{h}$$

$$q = \frac{\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|}{h}$$

$$W_{ij} = \frac{3}{2\pi\hbar^{3}} \begin{cases} \frac{2}{3} - q^{2} + \frac{1}{2}q^{3} & (0 \le q < 1) \\ \frac{1}{6}(2 - q)^{3} & (1 \le q < 2) \\ 0 & (2 \le q) \end{cases} \qquad \frac{\partial W_{ij}}{\partial q} = \frac{3}{2\pi\hbar^{3}} \begin{cases} -2q + \frac{3}{2}q^{2} & (0 \le q < 1) \\ -\frac{1}{2}(2 - q)^{2} & (1 \le q < 2) \\ 0 & (2 \le q) \end{cases}$$

Kernel Derivatives

Laplacian at particle i (a scalar)

$$\nabla_{i} \mathcal{W}_{ij} = \frac{\partial^{2} \mathcal{W}_{ij}}{\partial x_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial y_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} = \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} = \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} = \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} = \frac{\partial^{2} \mathcal{W}_{ij}}{\partial z_{i}^{2}} + \frac{\partial^{2} \mathcal{W}_{ij}}{\partial$$

$$\frac{\partial W_{ij}}{\partial q} = \frac{3}{2\pi\hbar^{3}} \begin{cases}
-2q + \frac{3}{2}q^{2} & (0 \le q < 1) \\
-\frac{1}{2}(2 - q)^{2} & (1 \le q < 2) \\
0 & (2 \le q)
\end{cases}
\qquad \frac{\partial^{2}W_{ij}}{\partial q^{2}} = \frac{3}{2\pi\hbar^{3}} \begin{cases}
-2 + 3q & (0 \le q < 1) \\
2 - q & (1 \le q < 2) \\
0 & (2 \le q)
\end{cases}$$

SPH-Based Fluids

Fluid Dynamics

- We model fluid dynamics by applying three forces on particle i.
 - Gravity
 - Fluid Pressure
 - Fluid Viscosity

Gravity Force

• Gravity Force is:

$$\mathbf{F}_{i}^{gravity} = mg$$

Pressure Force

- Pressure is related to the density
 - First compute the density of Particle i:

$$\rho_i = \sum_i m_j W_{ij}$$

• Convert it into pressure (some empirical function):

$$P_{i} = k \left(\left(\frac{\rho_{i}}{\rho_{\text{constaint}}} \right)^{7} - 1 \right)$$
High Pressure

Low pressure

Pressure Force

• Pressure force depends on the difference of pressure:

No pressure force!

Pressure force!

Pressure Force

Mathematically, the difference of pressure => Gradient of pressure.

$$\mathbf{F}_{i}^{pressure} = -V_{i}\nabla_{i}\mathbf{P}^{smooth}$$

• To compute this pressure gradient, we assume that the pressure is also smoothly represented:

$$P_i^{smooth} = \sum_j V_j P_j W_{ij}$$

• So:

$$\mathbf{F}_{i}^{pressure} = -V_{i} \sum_{j} V_{j} P_{j} \nabla_{i} W_{ij}$$

Viscosity Force

- Viscosity effect means: particles should move together in the same velocity.
- In other words, minimize the difference between the particle velocity and the velocities of its neighbors.

Viscosity Force

Mathematically, it means:

$$\mathbf{F}_{i}^{vis\cos ity} = -\nu m\Delta_{i}\mathbf{V}^{smooth}$$

• To compute this Laplacian, we assume that the velocity is also smoothly represented:

$$\mathbf{v}_{i}^{smooth} = \sum_{j} V_{j} \mathbf{v}_{j} W_{jj}$$

• So:

$$\mathbf{F}_{i}^{\textit{viscos ity}} = -\nu m_{i} \sum_{j} V_{j} \mathbf{v}_{j} \Delta_{i} V_{ij}$$

Algorithm

- For every particle i
 - Compute its neighborhood set
 - Using the neighborhood, compute:
 - Force = 0
 - Force + = The gravity force
 - Force + = The pressure force
 - Force + = The viscosity force
 - Update $v_i = v_i + t * Force / m_i$;
 - Update $x_i = x_i + t *v_i$;

What is the bottleneck of the performance here?

Exhaustive Neighborhood Search

- Search over every particle pair? O(N²)
- 10M particles means: 100 Trillion pairs...

Solution: Spatial Partition

- Separate the space into cells
- Each cell stores the particles in it
- To find the neighborhood of i, just look at the surrounding cells

Spatial Partition

- What if particles are not uniformly distributed?
- **Solution**: Octree, Binary Spatial Partitioning tree...

Fluid Display

Need to reconstruct the water surface from particles!

representation

typical visualization

Ongoing Research

conference: SIGGRAPH
journal: TOG

How to make the simulation more efficient?

差-点 IEEETPCG

How to make fluids incompressible?

• When simulating water, only use water particles, no air particles. So particles are sparse on the water-air boundary. How to avoid artifacts there?

Using AI, not physics, to predict particle movement?