

Ontario High School Grade 11 Chemistry

Summer 2024, Chapter 5 Notes

Table of Contents

Chapter 5. Quantities in Chemistry

5.1. The Mole and Molar Mass

- 5.1.1. Moles
- 5.1.2. Example: Using Avogadro's Number
- 5.1.3. Practice Level 1
- 5.1.4. Practice Level 2
- 5.1.5. Practice Level 3

5.2. Empirical Formulas

- 5.2.1. Percent Composition
- 5.2.2. Empirical Vs Molecular Formulas
- 5.2.3. Example: Percent Composition using Experimental Mass
- 5.2.4. Practice Level 1
- 5.2.5. Practice Level 2
- 5.2.6. Practice Level 3

5. Quantities in Chemistry

5.1 The Mole and Molar Mass

5.1.1

Moles and Molar Mass

- A mole is the exact number of atoms in 12g of carbon
- The above value, 6.02×10^{23} is referred to as Avogadro's number (N_A)

$$N_A = 6.022 imes 10^{23} \ {
m mol}^{-1}$$

Molar Mass

- Molar mass is the mass of one mole of particles of that substance
- Units for molar mass are g/mol.
- Molar mass is abbreviated using the symbol M **Example:** Molar mass of elemental oxygen can be represented as M_{O_2}

Molar Mass of Elements

• Found in periodic table.

Example: Molar mass of sodium

• When looking at molar mass of molecular elements, you have to multiply the molar mass of the element by the number of atoms per molecule

Example: Molar mass of elemental chlorine

Molar Mass of Ionic and Molecular Compounds

• The molar mass of a compound is equal to the sum of the molar mass of each entity in the compound.

Example: Molar mass of sulfuric acid, H_2SO_4

Divide by Avogadro's constant

Multiply by Avogadro's constant

Divide by molar mass

Multiply by Multiply by molar mass

Example: Using Avogadro's Number

Calculate the number of Cu atoms if you have 0.635g of Cu.

5.1.3

Practice: Calculating Molar Mass

Calculate the molar mass of $\rm H_2O$. Give your answer rounded to the nearest whole integer; do not include units.

Answer

Practice: Using Avogadro's Number and Molar Mass

Fractice. Using Avogaaro's Namber and Molar Mass
Part 1 If we are told that a sample of $CO_2(s)$ weighs 11g, how many moles of CO_2 are present in the sample?
Answer
Practice: Using Avogadro's Number and Molar Mass
Part 2
How many molecules are present in the sample?
Answer
Allswei
Practice: Using Avogadro's Number and Molar Mass
Don't 2
Part 3 How many oxygen atoms there in this sample of CO ₂ ?
Thow many oxygen atoms there in this sample of CO2:
Answer

Practice: Converting Mass to Number of Atoms

Calculate the number of nitrogen atoms in 2.25 g of $Bi(NO_3)_3$.

1.03x10 ²² atoms	0
1.03x10 ²¹ atoms	0
3.43x10 ²¹ atoms	0
3.43x10 ²² atoms	0)

5.2 Empirical Formulas

5.2.1

Percent Composition

- The percent composition shows the amount that each element in a compound contributes to the overall mass of that compound.
- The law of definite proportions states that the elements in a chemical compound are always
 present in the same proportions by mass.
 Example: A pinch of salt will have the same percent composition as a cup of salt.
- To determine the percent composition of a compound, divide the mass of a particular element by the total mass of the compound and multiply by 100 to get a percentage

$$\% \ composition \ by \ mass = rac{mass \ contribution \ of \ element}{total \ mass \ of \ compound} imes 100\%$$

Example: Percent Composition using Chemical Formula What is the percent composition by mass of oxygen in sodium hydroxide, NaOH?				

Empirical Vs Molecular Formulas

•	Molecular formulas tell us exactly how many atoms make up a molecule.	
	Example: C ₆ H ₆ tells us that for each molecule of C ₆ H ₆ , there are C atoms and	Н
	atoms.	
•	Empirical formulas are the smallest possible "unit" of the molecular formula.	
	Example: The empirical formula of C ₆ H ₆ would be:	

• When a molecular formula cannot be reduced , the molecular formula and empirical formula of the compound are the same

Example: NO₂

Many molecules can have the same empirical formula
 Example: C₂H₂ and C₆H₆ have the same empirical formula of CH

Example: Percent Composition using Experimental Mass

A 27.0 g sample of a compound contains 7.20 g of carbon, 2.20 g of hydrogen and 17.6 g of oxygen. Calculate the percent composition of the compound.

Practice: Percent Composition

What percent of iron (III) hydroxide, $Fe(OH)_3$, is oxygen? Round your answer to the nearest whole integer; do not include any symbols.

Answer

Practice: Finding Empirical Formula

A compound has the following mass composition: C = 86.59%, H = 8.36% and N = 5.05%. What is the empirical formula of this compound?

($C_7H_8N_3$	0
	C ₂₀ H ₂₃ N	0
	$C_{87}H_8N_5$	0
	C ₃ H ₃ N	0
($C_{14}H_{14}N$	0

Practice: Finding Molecular Formula

A sample of a compound contains 1.52g of N atoms and 3.47g of O atoms. The molar mass of the compound is 92.02g/mol. Determine the molecular formula.

	N_2O_4	0
	NO	0
(N ₂ O	0
	N_2O_2	0
(NO ₂	0