Coordinate Transforms in Robotics

Rotation Matrices and Properties

- 1. Calculate the matrices representing $+90^{\circ}$, $+180^{\circ}$, and -90° 2D rotations.
- 2. Prove that $R(\theta)^{-1} = R(-\theta)$ using linear algebra and geometric identities.
- 3. Prove that $R(\theta_1)R(\theta_2) = R(\theta_1 + \theta_2)$ using geometric identities.
- 4. Give examples of 3D rotation matrices for which $R_1R_2 \neq R_2R_1$.
- 5. Prove that vector length is preserved under rotation: $||R(\theta)\mathbf{x}|| = ||\mathbf{x}||$.
- 6. Use the above fact to prove that distance is preserved under rigid transforms.

Length-Preserving Transforms and Reflections

7. Prove that all length-preserving transforms in 2D are either rotations or rotations followed by a mirroring transform:

$$T(\mathbf{x}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x}$$

Rigid Transformations

- 8. Produce the transform (i.e., rotation matrix R and translation t) that rotates any point \mathbf{x} by 45° about the point (1,0).
- 9. What is the general form of a rotation of angle θ about a center point \mathbf{c} ?

Coordinate Frames and Transformations

- 10. A mobile robot has a coordinate convention where X is forward and Y is to the left. It has a sweeping laser sensor at point (0.7, 0.05) in the robot's X, Y frame, aligned so that 0° points in the X direction. At time t, the sensor detects an obstacle at 1m at the 15° reading. At t+1, the robot moves 0.5m forward, 0.1m to the left, and rotates 20° counterclockwise. Assuming the obstacle doesn't move, at which angle and distance will the sensor detect the obstacle?
- 11. A 3D camera produces points (x, y, z) where +x points to the right, +y upward, and +z forward. Is this a right-handed or left-handed coordinate system?
- 12. Suppose we wish to transform points from the camera so that:
 - The camera origin is at (1,0,2) in the world frame.
 - \bullet The camera's forward points in the world X direction.
 - Up in the image maps to world Z.
 - Left in the image maps to world Y.

Provide a transformation from camera to world points.

13. Prove:

$$T^{-1}(R,t) = T(R^T, -R^Tt)$$

Semantics of Points and Directions

15. The midpoint between positions P and Q is given by $M = 0.5 \cdot (P + Q)$, but this appears to violate the assumption that addition and scalar multiplication of positions are not meaningful. How can this equation be justified using meaningful operations?

Coordinate Management System Implementation

- 16. Implement a 2D coordinate management system in your programming language of choice. Each position must be annotated with a frame. The system should:
 - Allow creation of named frames and positions.
 - Retrieve coordinates of a position in any frame.
 - Define a Point structure with:
 - coords: coordinates in its frame.
 - frame: name of the reference frame.
 - Define a Directional structure similarly.
 - Implement Point.to(frame) and Directional.to(frame) methods.
- 17. Extend the system to enforce that geometric operations occur between objects in the same frame:
 - Point Point = Directional
 - Point + Directional = Point
 - Directional +/- Directional = Directional
 - Directional * scalar = Directional
- 18. Extend the system to include units for Point, Directional, and Frame structures. Supported units: 'm', 'mm', 'cm', 'km'.

Skeleton Code

```
class Frame:
    # TODO: what here?
    pass

named_frames = dict()

class Point:
    def __init__(self, coords, frame):
        self.coords = coords
        self.frame = frame
    def to(self, newframe):
        """Returns a Point expressing the same point in space,
        but represented in the new frame"""
        # TODO: what here?
        return Point(self.coords, newframe)
```

```
class Directional:
    def __init__(self, coords, frame):
        self.coords = coords
        self.frame = frame
    def to(self, newframe):
        """Returns a Directional expressing the same direction in space,
        but represented in the new frame"""
        # TODO: what here?
        return Point(self.coords, newframe)
```