New Analysis of Adaptive Stochastic Optimization Methods via Supermartingales Part II: Convergence analysis for stochastic line search

Courtney Paquette

Joint work with Katya Scheinberg

Waterloo

Lehigh University TRIPODS/DIMACS 2018 August 15, 2018

(Deterministic) Backtracking Line Search

Classical problem

$$\min_{x} f(x)$$

 $f:\Omega \to \mathbf{R}$ is C^1 smooth w/ \emph{L} -Lipschitz continuous gradient, bounded below

Gradient descent: $x_{k+1} = x_k - \alpha \nabla f(x_k), \quad \alpha \in (0, 1/L]$

(Deterministic) Backtracking Line Search

Classical problem

$$\min_{x} f(x)$$

 $f:\Omega \to \mathbf{R}$ is C^1 smooth w/ \emph{L} -Lipschitz continuous gradient, bounded below

Gradient descent:
$$x_{k+1} = x_k - \alpha \nabla f(x_k), \quad \alpha \in (0, 1/L]$$

Backtracking Line Search Algorithm

- Compute $f(x_k)$ and $\nabla f(x_k)$
- Check sufficient decrease (Armijo '66)

$$f(x_k - \alpha_k \nabla f(x_k)) \le f(x_k) - \theta \alpha_k \|\nabla f(x_k)\|^2$$

- Successful: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$ and $\alpha_{k+1} = \alpha_k$
- Unsuccessful: $x_{k+1} = x_k$ and $\alpha_k \downarrow$

Stepsize
$$\alpha_k \approx \frac{1}{L}$$

Convergence Rate

Sufficient Decrease: $f(x_k - \alpha_k \nabla f(x_k)) \le f(x_k) - \theta \alpha_k \|\nabla f(x_k)\|^2$

	$\ \nabla f(x_k)\ < \varepsilon$	$f(x_k) - f^* < \varepsilon$
<i>L</i> -smooth	$rac{L}{arepsilon^2}$	-
<i>L</i> -smooth/convex	$\frac{L}{\varepsilon}$	$rac{L}{arepsilon}$
α -convex	$\frac{L}{\alpha} \cdot \log(\frac{1}{\varepsilon})$	$\frac{L}{\alpha} \cdot \log(\frac{1}{\varepsilon})$

Stochastic Line Search Question

Stochastic problem

$$\min_{x \in \mathbf{R}^n} f(x) = \mathbf{E}_{\xi}[\widetilde{f}(x;\xi)], \qquad \xi ext{ is a random variable}$$

Examples

- Empirical risk minimization: ξ_i is a uniform r.v. over training set
- More generally: ξ is any sample or set of samples from data distribution

Stochastic Line Search Question

Stochastic problem

$$\min_{x \in \mathbf{R}^n} f(x) = \mathbf{E}_{\xi}[\tilde{f}(x;\xi)], \qquad \xi \text{ is a random variable}$$

Examples

- Empirical risk minimization: ξ_i is a uniform r.v. over training set
- More generally: ξ is any sample or set of samples from data distribution

(Stochastic) Backtracking Line Search Algorithm

- Compute stochastic estimates $\underbrace{g_k}_{\nabla f(x_k)}$, $\underbrace{f_k^0}_{f(x_k)}$, and $\underbrace{f_k^s}_{f(x_k-\alpha_k g_k)}$
- Check sufficient decrease (Armijo '66)

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2$$

- Successful: $x_{k+1} = x_k \alpha_k g_k$ and $\alpha_k \uparrow$
- Unsuccessful: $x_{k+1} = x_k$ and $\alpha_k \downarrow$

(Friedlander-Schmidt '12; Mahsereci-Hennig '17, ...)

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2 \Rightarrow f(x_k - \alpha_k g_k) \le f(x_k) - \theta \alpha_k \|g_k\|^2$$

$$f(x_{k+1}) \le f(x_k)$$

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2 \Rightarrow f(x_k - \alpha_k g_k) \le f(x_k) - \theta \alpha_k \|g_k\|^2$$

$$f(x_{k+1}) \le f(x_k)$$

Challenges

Bad function estimates may ↑ objective value

Increase- $\alpha_k^2 \|g_k\|^2$

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2 \Rightarrow f(x_k - \alpha_k g_k) \le f(x_k) - \theta \alpha_k \|g_k\|^2$$

$$f(x_{k+1}) \le f(x_k)$$

Challenges

• Bad function estimates may ↑ objective value

Increase-
$$\alpha_k^2 \|g_k\|^2$$

• Stepsizes, α_k , become arbitrarily small

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2 \Rightarrow f(x_k - \alpha_k g_k) \le f(x_k) - \theta \alpha_k \|g_k\|^2$$

$$f(x_{k+1}) \le f(x_k)$$

Challenges

• Bad function estimates may ↑ objective value

Increase-
$$\alpha_k^2 \|g_k\|^2$$

• Stepsizes, α_k , become arbitrarily small

Question

Devise a line search for the stochastic problem with provable convergence guarantees using only knowable quantities.

Knowable quantities: e.g. bound on variance of $\nabla \tilde{f}$, \tilde{f}

Proposed stochastic line search

Algorithm

- Compute random estimate of the gradient, g_k
- Compute random estimate of $f_k^0 \approx f(x_k)$ and $f_k^s \approx f(x_k \alpha_k g_k)$
- Check the stochastic sufficient decrease

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2$$

- Successful: $x_{k+1} = x_k \alpha_k g_k$ and $\alpha_k \uparrow$
 - Reliable step: If $\alpha_k \|g_k\|^2 \ge \delta_k^2$, $\uparrow \delta_k$
 - Unreliable step: If $\alpha_k \|g_k\|^2 < \delta_k^2$, $\downarrow \delta_k$
- Unsucessful: $x_{k+1} = x_k$, $\alpha_k \downarrow$, and $\delta_k \downarrow$

What is δ_k ?

Bad function estimates may \uparrow objective value $\alpha_k \|g_k\|$

$$\delta \approx$$
 prediction of the size of $\alpha_k ||g_k||$
 \approx size of a "trust region"

$$\Rightarrow$$
 Largest \uparrow in objective is at most δ_k^2

- Reliable step: If $\alpha_k \|g_k\|^2 \ge \delta_k^2$,
- Unreliable step: If $\alpha_k \|g_k\|^2 < \delta_k^2$, $\downarrow \delta_k$

Stochastic Line Search

Algorithm

- Compute random estimate of the gradient, g_k
- Compute random estimate of $f_k^0 \approx f(x_k)$ and $f_k^s \approx f(x_k \alpha_k g_k)$
- Check the stochastic sufficient decrease

$$f_k^s \le f_k^0 - \theta \alpha_k \|g_k\|^2$$

- Successful: $x_{k+1} = x_k \alpha_k g_k$ and $\alpha_k \uparrow$
 - ▶ Reliable step: If $\alpha_k \|g_k\|^2 \geq \delta_k^2$, $\uparrow \delta_k$
 - ▶ Unreliable step: If $\alpha_k \|g_k\|^2 < \delta_k^2$, $\downarrow \delta_k$
- Unsucessful: $x_{k+1} = x_k, \alpha_k \downarrow$, and $\delta_k \downarrow$

• Accurate gradient G_k w/ prob. p_g :

$$\mathbf{Pr}(\|G_k - \nabla f(X_k)\| \le \kappa_g \mathcal{A}_k \|G_k\| \mid \text{past}) \ge p_g$$

• Accurate gradient G_k w/ prob. p_g :

$$\mathbf{Pr}(\|G_k - \nabla f(X_k)\| \le \kappa_g \mathcal{A}_k \|G_k\| \mid \text{past}) \ge p_g$$

• Accurate function estimates F_k^0 and F_k^s w/ prob. p_f :

$$\begin{aligned} \mathbf{Pr}(|f(X_k) - F_k^0| &\leq \varepsilon_f \mathcal{A}_k^2 \left\| G_k \right\|^2 \\ \text{and} \quad |f(X_k - \mathcal{A}_k G_k) - F_k^s| &\leq \varepsilon_f \mathcal{A}_k^2 \left\| G_k \right\|^2 |\operatorname{past}) \geq \underline{p_f} \end{aligned}$$

• Accurate gradient G_k w/ prob. p_g :

$$\Pr(\|G_k - \nabla f(X_k)\| \le \kappa_g A_k \|G_k\| | \text{past}) \ge p_g$$

• Accurate function estimates F_k^0 and F_k^s w/ prob. p_f :

$$\begin{aligned} \mathbf{Pr}(|f(X_k) - F_k^0| &\leq \varepsilon_f \mathcal{A}_k^2 \|G_k\|^2 \\ \text{and} \quad |f(X_k - \mathcal{A}_k G_k) - F_k^s| &\leq \varepsilon_f \mathcal{A}_k^2 \|G_k\|^2 \, |\operatorname{past}) \geq \underline{p_f} \end{aligned}$$

Variance condition

$$\mathbf{E}[|F_k^0 - F(X_k)|^2 \,|\, \mathrm{past}] \le \theta^2 \Delta_k^4 \qquad \text{(same for } F_k^s\text{)}.$$

Want to choose these probabilities (p_f, p_q) large enough

• Accurate gradient G_k w/ prob. p_g :

$$\mathbf{Pr}(\|G_k - \nabla f(X_k)\| \le \kappa_g \mathcal{A}_k \|G_k\| \mid \text{past}) \ge p_g$$

• Accurate function estimates F_k^0 and F_k^s w/ prob. p_f :

$$\begin{aligned} \mathbf{Pr}(|f(X_k) - F_k^0| &\leq \varepsilon_f \mathcal{A}_k^2 \|G_k\|^2 \\ \text{and} \quad |f(X_k - \mathcal{A}_k G_k) - F_k^s| &\leq \varepsilon_f \mathcal{A}_k^2 \|G_k\|^2 \, |\operatorname{past}) \geq \underline{p_f} \end{aligned}$$

Variance condition

$$\mathbf{E}[|F_k^0 - F(X_k)|^2 \,|\, \mathrm{past}] \le \theta^2 \Delta_k^4 \qquad \text{(same for } F_k^s\text{)}.$$

Want to choose these probabilities (p_f, p_g) large enough

 $p_f, p_g \ge 1/2$ at least, but p_f should be large.

Satisfying randomness assumptions

$$\min_{x \in \mathbf{R}^{\mathbf{n}}} f(x) = \mathbf{E}_{\xi}[\tilde{f}(x;\xi)]$$

and bound on variance

$$\mathbf{E}(\|\nabla \tilde{f}(x,\xi_i) - \nabla f(x)\|^2) \le V_g, \quad \mathbf{E}(|\tilde{f}(x;\xi_i) - f(x)|^2) \le V_f.$$

Satisfying randomness assumptions

$$\min_{x \in \mathbf{R}^{\mathbf{n}}} f(x) = \mathbf{E}_{\xi}[\tilde{f}(x;\xi)]$$

and bound on variance

$$\mathbf{E}(\|\nabla \tilde{f}(x,\xi_i) - \nabla f(x)\|^2) \le V_g, \quad \mathbf{E}(|\tilde{f}(x;\xi_i) - f(x)|^2) \le V_f.$$

Example: sampling

$$g_k = \frac{1}{|S_g|} \sum_{i \in S_g} \nabla f(x_k; \xi_i), \quad f_k^0 = \frac{1}{|S_f|} \sum_{i \in S_f} f(x_k; \xi_i).$$

How many samples do we need?

Satisfying randomness assumptions

$$\min_{x \in \mathbf{R}^{\mathbf{n}}} f(x) = \mathbf{E}_{\xi}[\tilde{f}(x;\xi)]$$

and bound on variance

$$\mathbf{E}(\|\nabla \tilde{f}(x,\xi_i) - \nabla f(x)\|^2) \le V_q, \quad \mathbf{E}(|\tilde{f}(x;\xi_i) - f(x)|^2) \le V_f.$$

Example: sampling

$$g_k = \frac{1}{|S_g|} \sum_{i \in S} \nabla f(x_k; \xi_i), \quad f_k^0 = \frac{1}{|S_f|} \sum_{i \in S} f(x_k; \xi_i).$$

How many samples do we need?

Idea: Chebyshev Inequality

$$V_{g} = V_{g} \sim \tilde{O} \left(V_{g} \right)$$

$$|S_g| pprox ilde{O}\left(rac{V_g}{\mathcal{A}_k^2 \left\|G_k
ight\|^2}
ight), \qquad |S_f| pprox ilde{O}\left(\max\left\{rac{V_f}{\mathcal{A}_k^4 \left\|G_k
ight\|^4}, rac{V_f}{ heta^2 \Delta_k^4}
ight\}
ight)_{10/19}$$

Dynamics of the stepsize

Deterministic	Stochastic
$lpha_k \leq 1/L \Rightarrow$ successful step	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success

Dynamics of the stepsize

Deterministic	Stochastic
$\alpha_k \leq 1/L \Rightarrow ext{successful step}$	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success
α_k bounded from 0	

When $\alpha_k \lesssim 1/L$, α_k move \uparrow and \downarrow like **random walk** with probability $p_g p_f$

Dynamics of the stepsize

Deterministic	Stochastic
$\alpha_k \leq 1/L \Rightarrow ext{successful step}$	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success
α_k bounded from 0	$\mathbf{Pr}(\limsup_k \mathcal{A}_k > 0) = 1$

When $\alpha_k \lesssim 1/L$, α_k move \uparrow and \downarrow like **random walk** with probability $p_g p_f$

Deterministic	Stochastic
$\alpha_k \leq 1/L \Rightarrow$ successful step	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success

Deterministic	Stochastic
$lpha_k \leq 1/L \Rightarrow$ successful step	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success
α_k bounded from 0	$\mathbf{Pr}(\limsup_{k} \mathcal{A}_{k} > 0) = 1$

Deterministic	Stochastic
$\alpha_k \leq 1/L \Rightarrow$ successful step	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success
α_k bounded from 0	$\mathbf{Pr}(\limsup_k \mathcal{A}_k > 0) = 1$
Function values decease each iteration	$\Phi_kpprox f(X_k)-f^*$ such that $\mathbf{E}[\Phi_{k+1}-\Phi_k \operatorname{past}]<0$

Deterministic	Stochastic
$\alpha_k \leq 1/L \Rightarrow$ successful step	Good gradient/function estimates & stepsize $\leq 1/L$, \Rightarrow success
α_k bounded from 0	$\mathbf{Pr}(\limsup_k \mathcal{A}_k > 0) = 1$
Function values decease each iteration	$\Phi_k pprox f(X_k) - f^*$ such that $\mathbf{E}[\Phi_{k+1} - \Phi_k \operatorname{past}] < 0$
Convergence rate: number of iterations until nearly optimal (e.g. $\ \nabla f(x)\ < \varepsilon$, $f(x) - f^* < \varepsilon$)	Convergence rate \Rightarrow stopping times e.g. $T = \inf\{k > 0 : \ \nabla f(X_k)\ < \varepsilon\},$ $T = \inf\{k > 0 : f(X_k) - f^* < \varepsilon\}$

Interested in $\mathbf{E}[T]$

Renewal and reward process

Random process $\{\Phi_k, \mathcal{A}_k, W_k\}$

- $\Phi_k \in [0, \infty)$ and $\mathcal{A}_k \in [0, \infty)$
- W_k biased random walk with probability p > 1/2

$$\Pr(W_{k+1}=1|\operatorname{past})=p\quad\text{and}\quad\Pr(W_{k+1}=-1|\operatorname{past})=1-p.$$

Renewal and reward process

Random process $\{\Phi_k, \mathcal{A}_k, W_k\}$

- $\Phi_k \in [0, \infty)$ and $\mathcal{A}_k \in [0, \infty)$
- W_k biased random walk with probability p > 1/2

$$\Pr(W_{k+1} = 1 | \text{past}) = p \text{ and } \Pr(W_{k+1} = -1 | \text{past}) = 1 - p.$$

Assumptions

(i) $\exists \bar{\mathcal{A}}$ with

$$\mathcal{A}_{k+1} \ge \min \left\{ A_k e^{\lambda W_{k+1}}, \bar{\mathcal{A}} \right\}$$

(ii) \exists nondecreasing $h:[0,\infty)\to(0,\infty)$ and constant Θ s.t.

$$\mathbf{E}[\Phi_{k+1}|\operatorname{past}] \leq \Phi_k - \Theta h(\mathcal{A}_k).$$

Renewal and reward process

Random process $\{\Phi_k, \mathcal{A}_k, W_k\}$

- $\Phi_k \in [0, \infty)$ and $\mathcal{A}_k \in [0, \infty)$
- W_k biased random walk with probability p > 1/2

$$\Pr(W_{k+1} = 1 | \text{past}) = p \text{ and } \Pr(W_{k+1} = -1 | \text{past}) = 1 - p.$$

Assumptions

(i) $\exists \bar{\mathcal{A}}$ with

$$A_{k+1} \ge \min \left\{ A_k e^{\lambda W_{k+1}}, \bar{A} \right\}$$

(ii) \exists nondecreasing $h:[0,\infty)\to(0,\infty)$ and constant Θ s.t.

$$\mathbf{E}[\Phi_{k+1}|\operatorname{past}] \leq \Phi_k - \Theta h(\mathcal{A}_k).$$

Thm: (Blanchet, Cartis, Menickelly, Scheinberg '17)

$$\mathbf{E}[T_{\varepsilon}] \le \frac{p}{2p-1} \cdot \frac{\Phi_0}{\Theta h(\bar{\mathcal{A}})} + 1.$$

Convergence Result: Line search

Key observation

$$\Phi_{k} = \nu(f(x_{k}) - f_{\min}) + (1 - \nu)\alpha_{k} \|\nabla f(x_{k})\|^{2} + (1 - \nu)\theta\delta_{k}^{2}$$

$$\Rightarrow \Phi_{k+1} - \Phi_{k} = \nu(f(x_{k+1}) - f(x_{k}))$$

$$+ (1 - \nu)\left(\alpha_{k+1} \|\nabla f(x_{k+1})\|^{2} - \alpha_{k} \|\nabla f(x_{k})\|^{2}\right)$$

$$+ (1 - \nu)\theta(\delta_{k+1}^{2} - \delta_{k}^{2})$$

Convergence Result: Line search

Key observation

$$\Phi_k = \nu(f(x_k) - f_{\min}) + (1 - \nu)\alpha_k \|\nabla f(x_k)\|^2 + (1 - \nu)\theta \delta_k^2$$

$$\Rightarrow \Phi_{k+1} - \Phi_k = \nu(f(x_{k+1}) - f(x_k)) + (1 - \nu) \left(\alpha_{k+1} \|\nabla f(x_{k+1})\|^2 - \alpha_k \|\nabla f(x_k)\|^2 \right) + (1 - \nu) \theta(\delta_{k+1}^2 - \delta_k^2)$$

Thm: (P-Scheinberg '18) If

$$p_g p_f > 1/2$$
 and p_f sufficiently large,

$$\mathbf{E}[\Phi_{k+1} - \Phi_k | \operatorname{past}] \le -\left(\mathcal{A}_k \|\nabla f(X_k)\|^2 + \theta \Delta_k^2\right)$$

Proof Idea:

- accurate gradient + accurate function estimates $\Rightarrow \Phi_k \ always \downarrow$
- all other cases $\Phi_k \uparrow$ by same amount

Convergence result, nonconvex

Stopping Time

$$T = \inf\{k : \|\nabla f(x_k)\| < \varepsilon\}$$

Convergence rate, nonconvex (P-Scheinberg '18)

If $p_g p_f > 1/2$ and p_f sufficiently large,

$$\mathbf{E}[T] \le \mathcal{O}\left(\frac{1}{\varepsilon^2}\right).$$

Convex case

$$\min_{x \in \Omega} f(x) = \mathbf{E}[\tilde{f}(x,\xi)]$$

where

- f is convex and $\|\nabla f(x)\| \leq L_f$ for all $x \in \Omega$
- $||x x^*|| \le D$ for all $x \in \Omega$

Stopping time: $T = \inf\{k : f(x_k) - f^* < \varepsilon\}$

Convex case

$$\min_{x \in \Omega} f(x) = \mathbf{E}[\tilde{f}(x,\xi)]$$

where

- f is convex and $\|\nabla f(x)\| \leq L_f$ for all $x \in \Omega$
- $||x x^*|| \le D$ for all $x \in \Omega$

Stopping time: $T = \inf\{k : f(x_k) - f^* < \varepsilon\}$

Key observation:

$$\Psi_k = \frac{1}{\nu\varepsilon} - \frac{1}{\Phi_k}$$

(Convergence rate, convex) (P-Scheinberg '18)

If $p_g p_f > 1/2$ and p_f sufficiently large,

$$\mathbf{E}[T] \le \mathcal{O}\left(\frac{1}{\varepsilon}\right)$$

Strongly convex case

$$\min_{x \in \Omega} f(x) = \mathbf{E}[\tilde{f}(x,\xi)]$$

where f is μ -strongly convex

Stopping Time:
$$T = \inf\{k : f(x_k) - f^* < \varepsilon\}$$

Strongly convex case

$$\min_{x \in \Omega} f(x) = \mathbf{E}[\tilde{f}(x,\xi)]$$

where f is μ -strongly convex

Stopping Time:
$$T = \inf\{k : f(x_k) - f^* < \varepsilon\}$$

Key observation:

$$\Psi_k = \log(\Phi_k) - \log(\nu\varepsilon)$$

Convergence rate, strongly convex (P-Scheinberg '18)

If $p_g p_f > 1/2$ and p_f sufficiently large,

$$\mathbf{E}[T] \le \mathcal{O}\left(\log\left(\frac{1}{\varepsilon}\right)\right)$$

Thank You

References

Paquette, C. and Scheinberg, K. (2017).

A Stochastic Line Search Method with Convergence Rate Analysis.

arXiv: 1807.07994.