Mechanics Map Formatting Guidelines

Terminology:

- Engineering Mechanics Collectively, the study of the interaction of forces, bodies, and motion
- Statics The study of rigid bodies in equilibrium
- Dynamics The study of rigid bodies in motion
- Strength of Materials The study of deformable bodies
- Particles A body where we assume all mass is concentrated at a single point.
 - $\circ\quad$ Alternatively we will talk about concurrent force systems, which we will approximate as particles
- Rigid Bodies A body that is assumed to not deform under loading and that has a distributed
 mass

Website Format:

- Webpage
 - $\circ\quad$ Each html page should have a title "Mechanics Map *Subject Title*"
 - O Use the <h1> tags for a visible title on the top of the page
 - Use the <h2> tag for section headings within the page
 - o Use the tags to bold important terms used for the first time.

Images

- o Use public domain images or self-generated images if possible.
- Images under a CC-BY-SA or CC-BY can also be used, with the source being attributed in the image caption.
- o Always include an image caption.
- $\circ\quad$ Images in the main content area should be no more than 600px in width (standard should be 500px)
- o Worked problem images should be no more than 500px in width

Equations

- $\circ\quad$ For accessibility reasons, all equations should be written in LaTEX using the MathJax pluggin
 - Use an equation table to organize and center the equation
 - The equation itself in the mathjax tags
 - \[*put LaTEX equation here* \]

Symbols:

- Body Physical Properties and points
 - o *m* − mass
 - C Centroid point for a 2D area
 - \circ \bar{x} and \bar{y} for the x and y coordinates of the centroid
 - *G* center of mass point
 - o *O* a fixed ground point, particularly for fixed axis rotation
 - Other points should generally be labeled A, B, C, etc

Vectors

Vectors use an rightward arrow over the variable (the \vec{} tag in LaTEX

Forces

- \circ F a force
- \circ F_A a force at point A
- \circ F_{AX} The x component of the force at A
- o F_g The gravity force
- \circ F_N A normal force
- T A tension force
- o F_k Force from a spring
- \circ F_c Force from a damper

Moments

- *M* a moment
- \circ M_A the moment about point A
- \circ M_{AX} the moment about point A about the x axis

• Moments of Inertia

- $\circ \ I_{\it G}$ Mass moment of inertia for 2D problems, always use subscript to denote point the moment of inertia is about.
- $\circ I_{xx} I_{yy}$ and I_{zz} for mass moments of inertia in 3D about the center of mass
- \circ $I_{xx\,0}$ $I_{yy\,0}$ and $I_{zz\,0}$ Add to the subscript if using a point other than the center of mass
- o K is used for the radius of gyration.

• Motion in one dimension

- \circ x position in one dimension
- o \dot{x} or v velocity in one dimension
- o \ddot{x} or a acceleration in one dimension

Motion in x − y coordinates

- \circ x and y position
- $\circ \quad \dot{x} \text{ or } v_x \text{ and } \dot{y} \text{ or } v_y \text{ velocities}$
- \circ \ddot{x} or a_x and \ddot{y} or a_y accelerations

- Motion in n t coordinates
 - \circ v_t velocity
 - $\circ \quad a_t \text{ or } \dot{v} \text{ and } a_N \text{ accelerations}$
- Motion in polar coordinates
 - o r and θ for position
 - $\circ v_r$ and $v_{ heta}$ for velocities
 - $\circ \quad a_r$ and $a_{ heta}$ for acceleration
- Relative Motion

0

- o $\vec{r}_{A/B}$ (position of A with respect to B)
- \circ $\vec{r}_{A/O}$ (position of A wrt origin)
- \circ $\vec{v}_{A/B}$ (velocity of A with respect to B)
- \circ $\vec{v}_{A/O}$ (velocity of A wrt origin)
- \circ $\vec{a}_{A/B}$ (acceleration of A with respect to B)
- o $\vec{a}_{A/O}$ (acceleration of A wrt origin)
- Coordinate systems for relative motion analysis
 - o x and y coordinates reserved for the fixed ground frame of reference
 - \circ Use r_1 and θ_1 coordinate directions for first coordinate system that rotates with the body (mirroring polar kinematics), up the subscript number for each additional rotating coordinate system that is required
- Work and Energy
 - o W Work
 - o KE kinetic energy
 - o PE potential energy
 - o P Power
 - \circ η efficiency
- Impulse Momentum
 - o \vec{J} Impulse (Use vector in for vector form, use subscripts (J_x) when discussing components
 - $\circ m\vec{v}$ Momentum (Use vector when in vector form, use subscripts for initial and final and for direction when breaking it down into components
 - o mv_{Afx} For 2D collisions, use subscripts (in this order) to describe the body, initial vs. final, and the direction.
 - o \vec{K} Impulse (Use vector in for vector form, use subscripts (J_x) when discussing components

0

- Vibrations
 - k spring constant

- $\begin{array}{ll} \circ & k_{eq} \textit{equivalent spring constant} \\ \circ & \textit{c} \textit{damping constant} \end{array}$
- \circ ω_0 = forced frequency
- \circ ω_n = natural frequency
- $\circ \quad \omega_d$ = damped natural frequency

Graphics:

Free body diagrams

- $\circ\quad$ Free body diagrams should show only the body (no background), with the body itself in black
- o Coordinate systems should be drawn as appropriate in black
- o The coordinate system should be drawn on the diagram, also in black.
- o Forces should be shown as red vectors
- o Moments in planar problems should be shown as purple curving vectors
- o If velocities or accelerations are shown, use a dashed blue vector
- o Key dimensions should be shown in blue

Commented [GU1]: Coordinate system definitions?

Commented [GU2R1]: What should they look like?

Video Formatting:

Videos

- o Videos should be uploaded to the group YouTube account
- Each video lecture should be titled "*Section Number* *Subject Name* Video Lecture - *Your initials*
- Each worked problem video should be titled "*Section Number* *Subject Name* -WP### - *Your Initials*
- Please have the problem itself shown at the beginning of the video and give a brief verbal recap of the problem
- Don't refer to the problem number in the video itself (just say "In this problem").
 This makes it easier if we add problems and change the numbers.