

Vorlesung

Betriebssysteme

Teil 2
Einführung und Shell

Dozent

Prof. Dr.-Ing.

Martin Hoffmann

martin.hoffmann@fh-bielefeld.de

Raum D206 Ringstr. 94

Ziele der heutigen Vorlesung

- Betriebssysteme, Historie und Hintergründe
- Vorbereitung für das Praktikum: Shell
- Die verschiedenen Architekturen von Betriebssystemen kennenlernen
- Spezielle Betriebsarten wie Teilnehmer- und Teilhaberbetrieb, Application-Server-Betrieb und Terminalserver-Betrieb kennenlernen

Inhalt der Vorlesung

FH Bielefeld
University of
Applied Sciences

- Historie und Hintergründe
- Shell
- Betriebsmodi
 - Kern- und Benutzermodus
 - Hardware Grundlagen, Schutzebenen, Systemaufrufe
- Aufbau des Betriebssystems
 - Monolithisch, geschichtet, ...
 - Unix, Linux, Mac OS, Windows, Android

Einführung: Aufgaben

Aufgaben eines Betriebssystems:

- Verwaltung der Betriebsmittel (Ressourcen)
 - Prozessverwaltung (erzeugen, löschen, zuteilen, synchronisieren)
 - Speicherverwaltung
 - Verwaltung des Dateisystems
 - Verwaltung von Geräten
 - Verwaltung der Benutzer
- Abstraktion von der Hardware
 - Die Eigenschaften der Hardware werden vor dem Benutzer verborgen.
 - Die Benutzung der Hardware wird durch eine einheitliche Schnittstelle gewährleistet.
 - Die Hardware stellt zusammen mit dem Betriebssystem eine abstrakte Maschine dar, auf der die Benutzerprogramme aufsetzen.

Einführung: Historie

Historie von Betriebssystemen:

- erste Rechnergeneration (ca. 1945-1955):
 - Kein Betriebssystem (,Single Purpose Computers'),
 - Programmierung über Steckbrett oder Lochstreifen... keine Programmiersprachen.
- zweite Generation (ca. 1955-1965):
 - Stapelverarbeitung, einfache Job Control.
 - Programmiersprachen: Assembler, Fortran...
- dritte Generation (1965-1980):
 - Mehrbenutzer- und Multiprogrammbetrieb, Steuerung über Terminal (Tastatur und Bildschirm).
 - Programmiersprachen: C, Pascal...
- vierte Generation (ab ca. 1975):
 - Interaktive Systeme mit grafischer Benutzeroberfläche, verteilte Betriebssysteme
 Netzwerkbetriebssysteme,
 - Multiprozessorsysteme. Objektorientierte Programmiersprachen

Microsoft und Windows

- Gründung Microsoft 1975
- Erfolg: MS-DOS ("the day Gary Kildall went flying")
- 100.000 Mitarbeiter, 75 Mrd \$ Umsatz

MICROSOFT

95% Marktanteil auf PCs und Notebooks

FH Bielefeld University of Applied Sciences

Unix

Bell Labs:

Ken Thompson (1. Unix Version 1969, Sprache Assembler, später B),

Dennis Ritchie (Weiterentwicklung der Sprache B zu C), Brian Kernighan

Bild: Dennis Ritchie (stehend) und Ken Thompson bei der UNIX-Portierung auf die PDP-11 an 2 Teletype 33 Terminals (1970)

Linux

- Linus Torvalds 1991
 - Unix Betriebssystem für IBM PC
 - Tanenbaums Minix

Title	Duties	
Chief programmer	Performs the architectural design and writes the code	
Copilot	Helps the chief programmer and serves as a sounding board	
Administrator	Manages the people, budget, space, equipment, reporting, etc.	
Editor	Edits the documentation, which must be written by the chief programme	
Secretaries	The administrator and editor each need a secretary	
Program clerk	Maintains the code and documentation archives	
Toolsmith	Provides any tools the chief programmer needs	
Tester	Tests the chief programmer's code	
Language lawyer	Part timer who can advise the chief programmer on the language	

Linux

Smartphones

Smartphones

Umfrage Betriebssysteme WS 2012/2013

-	Windows	2
•	Android	25
•	iOS	4
•	Symbian	0
	Palm OS	0

Umfrage Betriebssysteme SoSe 2014

•	Windows	2
-	Android	22
-	iOS	8
-	Symbian	0
	Palm OS	0

Umfrage Betriebssysteme SoSe 2015

Windows	1
Android	30
iOS	4
Symbian	0
Palm OS	0

Einführung: Arten

Einteilung von Betriebssystemen:

- Nach Betriebsart:
 - Stapelverarbeitung (batch processing)
 - Programme werden einzeln gestartet und verarbeitet.
 - Klassische Großrechnerbetriebssysteme.
 - Time-Sharing-Betriebssystem
 - Die Rechenleistung wird in Zeitscheiben aufgeteilt.
 - Interaktives Arbeiten (auch mehrerer Benutzer) ist möglich.
 - Echtzeitbetriebssystem
 - Garantierte Antwortzeiten können für Prozesse angegeben werden.
- Nach Rechnerarchitektur
 - Einprozessorsystem
 - Multiprozessorsystem
 - Verteiltes System (Rechenknoten haben eigene CPU und eigenen Speicher)

Einführung: Arten (Forts.)

Einteilung von Betriebssystemen (Forts.):

- Nach Einsatzgebiet
 - Großrechnersysteme
 - Bsp. OS/390 (IBM)
 - Server
 - Solaris (SUN), Linux, BSD, Windows Server (Microsoft)
 - Multiprozessorsysteme
 - spezielle Varianten von Windows, UNIX (Solaris)
 - Personalcomputer
 - Windows (XP, Vista, 7), MacOS, Linux
 - Handheldcomputer / Smartphones:
 - Android, iOS, Symbian, Blackberry, Windows Mobile, Palm OS
 - Eingebettete Systeme:
 - QNX, VxWorks
 - Sensorknoten:
 - TinyOS, Java VM

Codeumfang von Betriebssystemen

Jahr	AT&T	BSD	Minix	Linux	Solaris	Win NT
1976	V6, 9K					
1979	V7, 21K					
1980		4.1, 38 K				
1982	Sys III, 58 K	4.2, 98 K				
1984		4.3, 179 K				
1987	SVR3, 92 K		1.0 13 K			
1989	SVR4, 280 K					
1991				0.01, 10 K		
1993		Free 1.0, 235 K				3.1, 6 M
1994		4.4 Lite, 743 K		1.0, 165 K	5.3, 850 K	3.5, 10 M
1996				2.0, 470 K		4.0, 16 M
1997			2.0, 62 K		5.6, 1.4 M	
1999				2.2, 1 M		
2000		Free 4.0, 1.4 M			5.8, 2.0 M	2000, 29 M
2007						Vista, 50 M

Windows 7: 70 M

Vgl. auch Tanenbaum, 2002: K = 1.000 LOC, M = 1000.000 LOC

Testfrage

- Nennen Sie die Basis- oder Kernelfunktionalitäten eines BS!
- Mögliche Antworten:

Prozessmanagement

Dateimanagement

Behandlung von Echtzeitereignissen

Bestimmung der Prozessreihenfolge

Userverwaltung

Verwaltung des virtuellen Speichers

Login

Nachrichtentransport

FH Bielefeld University of Applied Sciences

Fingerübung: Linuxkonsole

Dateien

- Eine UNIX-Datei ist eine Zeichenfolge (Bytefolge).
- Strukturierung durch den Benutzer
- 4 Dateiarten:
 - normale Dateien: Programme, Texte
 - Verzeichnisdateien (Directories): enthalten Verweise auf Dateien und weitere Verzeichnisdateien
 - Gerätedateien (special files)
 - Pipes

FH Bielefeld University of Applied Sciences

Verzeichnisse

- Dateien werden in Verzeichnissen (directories) abgelegt. Directories können weitere Directories enthalten: Hierarchie
- Das "höchste" Directory heißt Root Directory.

File-System (File-Baum)

Adressierung von Dateien

- Durch Angabe ihres Pfadnamens (path name), d. h. alle Directories, ausgehend von root, die bis zu der gesuchten Datei durchlaufen werden müssen.
- z.B. /Professoren/Prof_Weiss/Vorlesungen/Betriebssysteme
- Absolute Pfadnamen beginnen mit "/", also bei root.
- Genau ein Directory ist jeweils als "Working Directory" definiert.
- Relative Pfadnamen beginnen im Working Directory.
 z. B. Working Directory = /Professoren:
 rel. Pfadname: Prof_Weiss/Vorlesungen/Betriebssysteme

Testfrage

- Pfadnamen: Das Working Directory sei auf /homes/schroeder/fischer eingestellt. Wohin weist der Pfadname "/homes/stoiber/merkel,"
- Mögliche Antworten:

/homes/schroeder/fischer

/homes/schroeder/fischer/stoiber/merkel

/homes/stoiber/merkel

/homes/stoiber/merkel/schroeder/fischer

Schutzmechanismen

Jede Datei, jedes
 Directory erhält einen
 9-bit-Code
 (Schutzbits,
 Protection Code):

R (read): lesen

W (write): schreiben

X (execute): ausführen (für Verzeichnis: suchen)

Eine "1" bedeutet: das entsprechende Recht wird gegeben.

Beispiel: 111 101 001 heißt: rwx r-x --x

Eigentümer darf lesen, schreiben, ausführen

Gruppe darf lesen und ausführen alle anderen dürfen nur ausführen.

Überprüfung der Zugriffsberechtigung beim Öffnen der Datei.

Testfrage

- Eine Datei habe die Schutzbits "111 101 001". Sie sind nicht der Eigentümer, gehören aber zur Gruppe. Dürfen Sie schreiben?
- Mögliche Antwort:

ja

nein

cd, pwd

- Wie kommt man mit dem cd-Kommando ...
 - in sein home-Verzeichnis?
 - in das übergeordnete Verzeichnis?
 - in das root-Verzeichnis?
- Wie kann das aktuelle Arbeitsverzeichnis angezeigt werden?

Lösung zu cd, pwd

- cd
- cd ..
- cd /
- pwd

man

- Besorgen Sie sich Informationen zum man-Kommando.
 - Welches Programm wird zum Anzeigen der man-Pages verwendet (Pager)?
 - Wie kann man auf einer man-Page
 - rückwärts blättern?
 - nach einem Begriff suchen?
 - zur nächsten Fundstelle springen?
 - Wie verlässt man die man-Page?
 - Wie können Sie das man-Kommando verwenden, um herauszufinden, welche Kommandos das UNIX System für die Uhrzeit vorsieht?

Lösung man

- man man
 - liefert Informationen zum man-Kommando
- Pager: less;
 - Hilfe dazu über h
- CTRL-B
 - zurückblättern
- /<Suchbegriff>
 - sucht in der man-Page nach dem Suchbegriff
 - n Springt zur nächsten Fundstelle
 - q verlässt die man-Page
 - man -k <Schlüsselwort>
 - liefert Informationen zu einem gegebenen Schlüsselwort
 - z.B. man -k time liefert Informationen zu Funktionen für die Zeitmanipulation.

FH Bielefeld University of Applied Sciences

Texteditor

- Editor "nano" in der Shell
 - Sonderbefehle
 - Beenden des Editors mit Nachfrage zum Speichern
 - STRG-X
 - Speichern
 - STRG-O
 - Laden
 - STRG-R
 - Suchen
 - STRG-W
 - usw.

S

- Das Kommando Is hat verschiedene Optionen. Benutzen Sie das Kommando man, um festzustellen, mit Hilfe welcher Option das Folgende am Bildschirm ausgeben werden kann
 - alle, auch die mit . beginnenden Dateien eines Verzeichnisses
 - Dateien eines Verzeichnisses in unsortierter Reihenfolge (in der die Dateien auf der Festplatte gespeichert sind)
 - Langformat Auflistung mit Dateityp, Zugriffsrechten, Anzahl von Hardlinks, Besitzername, Dateigröße u.s.w.
 - die horizontale Auflistung von mit Komma getrennten Dateien.

Lösung zu Is

- -a
 - do not ignore entries starting with .
- -f
 - do not sort, enable -aU, disable -lst
- - use a long listing format
- -m
 - fill width with a comma separated list of entries
- -U
 - with -lt: sort by, and show, access time with -l: show access time and sort by name otherwise: sort by access time

mkdir, cp, mv, rm, rmdir

- Erstellen Sie das Verzeichnis texte in Ihrem Home-Verzeichnis.
 - Erstellen sie mittels nano eine Datei Text.txt mit beliebigem Inhalt
 - Kopieren Sie sich die Datei Text.txt ins Verzeichnis texte.
- Erstellen Sie das Unterverzeichnis text1 im Verzeichnis texte.
 - Verschieben Sie die Datei Text.txt ins Verzeichnis text1.
- Erstellen Sie das Unterverzeichnis text2 im Verzeichnis texte.
 - Kopieren Sie die Datei Text.txt aus dem Verzeichnis text1 ins Verzeichnis Text2.
- Löschen Sie die Datei Text.txt aus dem Verzeichnis text1.
- Löschen Sie das Verzeichnis text1.

Lösung 1 zu mkdir, cp, mv, rm, ...

- mkdir texte
- nano Text.txt
- cp Text.txt texte
- cd texte
- mkdir text1
- mv Text.txt text1
- mkdir text2
- cp text1/Text.txt text2
- cd text1
- rm Text.txt
- cd ..
- rmdir text1

FH Bielefeld University of Applied Sciences

Lösung 2 zu mkdir, cp, mv, rm, ...

- mkdir texte
- nano Text.txt
- cp Text.txt texte
- cd texte
- mkdir text1
- mv Text.txt text1
- mkdir text2
- cp text1/Text.txt text2
- cd text1
- rm Text.txt
- cd ..
- rmdir text1

Ausgabeumlenkung cat, more, sort

- Lenken Sie die Ausgabe des Kommandos Is -f /etc in die Datei Isf.txt um.
 - Geben Sie die Datei Isf.txt am Bildschirm aus.
 - Geben Sie die Datei Isf.txt seitenweise am Bildschirm aus.
 - Geben Sie die sortierte Datei Isf.txt am Bildschirm aus
 - Alphabetisch
 - Umgedreht alphabetisch
 - Sortiert sowie seitenweise

Lösung zu Ausgabeumlenkung cat, more, sort

- Is -f /etc > Isf.txt
- cat lsf.txt
- more lsf.txt
- cat lsf.txt | sort | more
- cat lst.txt | sort –r | more
- sort lsf.txt | more

Einführung: Modi

Kern- und Benutzermodus:

- Zum Schutz des Betriebssystems (und damit des Rechners) vor fehlerhaften (oder böswilligen) Applikationen und zum Schutz der Applikationen untereinander haben moderne leistungsfähige Prozessoren ein Privilegiensystem
 - Betriebssystem läuft im Kernmodus (kernel mode, supervisor mode),
 - die Applikationen im Benutzermodus (user mode)

	Modus		
Privileg	Benutzermodus	Kernmodus	
Ausführbare Maschinenbefehle	begrenzt	alle	
Hardwarezugriffe	nein	Vollzugriff	
Zugriff auf MMU	nein	ja	
Zugriff auf Systemcode bzw. Daten	keiner / lesend	ja	

Usermodus und Kernelmodus

- Usermodus (Benutzermodus)
 - Ablaufmodus für Anwendungsprogramme
 - Kein Zugriff auf Kernel-spezifische Code- und Datenbereiche
- Kernelmodus
 - Privilegierter Modus
 - Dient der Ausführung der Programmteile des Kernels
 - Schutz von Datenstrukturen des Kernels
- Umschaltung über spezielle Maschinenbefehle
- Aktueller Modus steht in einem Statusregister

Hardware-Grundlagen am Beispiel der Intel-Architektur

- Beispiel: x86-Architektur
 - Schutzkonzept über vier Privilegierungsstufen (Ring 0 3)
 - Prozess läuft zu einer Zeit in einem Ring
 - Meist werden aus Kompatibilitätsgründen zu anderen CPUs nur zwei Ringe unterstützt:
 - Ring 0: Kernelmodus (privilegiert, Zugriff auf Hardware möglich)
 - Ring 3: Usermodus (nicht privilegiert)
 - Übergang von Ring 3 nach Ring 0 über privilegierte Operation (int-Befehl)
 - Anmerkung: Ab x64/IA64 werden nur noch zwei Ringe unterstützt

Schutzebenen

- Die Schutzstufe eines Programms ist im PSW codiert.
- Wechsel zwischen den Schutzstufen (Ringen) nur mit CALLS möglich. Kein direkter Einsprung in niedrigeren Ring!
- Wechsel von Ring 3 nach Ring 0 über Kontextwechsel (Trap, Unterbrechung)

Schutzstufe	Typische Nutzung	
Ring 0	Betriebssystemkern (Kernel)	
Ring 1	Systemaufrufe	
Ring 2	Shared Libraries	
Ring 3	Benutzerprogramme	

Einführung: Systemaufrufe

Betriebssystemaufrufe

Um aus dem Benutzermodus in den Kernmodus zu gelangen, gibt es folgende Möglichkeiten:

- Hardware Unterbrechung (HW Interrupt), z.B.
 - Echtzeit-Uhr (Timer)
 - Anforderung eines E/A Gerät
 - Hardware Fehler (z.B. Stromversorgung, Speicherfehler...)
- Software Unterbrechung (SW Interrupt, Trap)
 - System Aufruf (System Call, Supervisor Call)
 - Software Fehler (z.B. Zugriff auf ungültige Adresse, ungültiger Befehl, Division durch 0 ...)

Einführung: Systemaufrufe (Forts.)

- Aufteilung in Benutzerebene (user) und Systemebene (kernel)
- Ablauf:
- 1. Anwender-Programm benötigt einen BS-Service: System Call.
- Parameter werden in Übergabebereich platziert.
- 3. Steuerung wird an den Systemkern übergeben: Kernel Call (auch: Supervisor Call).
- 4. Kernel: identifiziert Service-Routine und ruft sie auf.
- 5. Service-Routine läuft ab und gibt Ergebnis an den Auftraggeber (Anwender-Programm) zurück.
- Zweiteilung (user kernel) ergibt ungenügende Strukturierung.

Testfrage

- Zusammenarbeit zwischen Anwenderprogramm und BS: Welches sind die Ziele des Kernel-Call-Mechanismus?
- Mögliche Antworten:

Erhöhung der Geschwindigkeit

Vereinfachung der Programmierung

Schutz von Speicherbereichen

Einsparung von Energie

Senkung der Taktfrequenz

Entkopplung von User und System

Vorlesung

Vielen Dank für Ihre Aufmerksamkeit

Dozent

Prof. Dr.-Ing.

Martin Hoffmann

martin.hoffmann@fh-bielefeld.de

Raum D206 Ringstr. 94