

Ministry of Justice Patent Office

משרד המשפטים לשכת הפטנטים

4

This is to certify that annexed hereto is a true copy of the documents as originally deposited with the patent application of which particulars are specified on the first page of the annex.

זאת לתעודה כי רצופים בזה העתקים נכונים של המסמכים שהופקדו לכתחילה עם הבקשה לפטנט לפי הפרטים הרשומים בעמוד הראשון של הנספח.

דהיום ממונה על הביהנים ממונה על הביהנים רשם הפטנטים

Commissioner of Patents

נתאשר Certified

לשימוש הלשכה (4) For Office Use

	For Office Use	
מספר: Number	. 141527	
תאריך: Date	2 0 -02- 2001	-
הוקדם/נדח Post-dated		1

בקשה לפטנט

Application for Patent

20 -02- 2001	Date התקדם' t-dated I (Name and addre	מקום התאגדותו) as of applicant, and, in	- ולגבי נוף מאומר case of a body corpor	אני, (שם המבקש, מענו – ate, place of incorporation)
Chemergy Ltd.	e Park - Technio	n City Haifa	32000	
	C Chunne I TCH'	r		כמרגי בע"מ בנין גוטוירט –
	3 ,	2000 112 11		הממציא: פרופי ט
				בעל אמצאה מכח הדי ז
ששמח חוא Owner, by virtue of Law			of an inv	ention, the title of which is:
. **	ים אלקליים	גן עבור מצבר:	ל מלח כסף-מנ	(בעברית) קתודות ש (Hebrew)
SILVER MANGAN	ESE SALT CATHODE	S FOR ALKALI	NE BATTERIES	(באנגלית) (English)
hereby apply for a patent to be g - בקשת חלוקה -	בקשת פטנט מוסף		פטנט. דרישת דין קדימת Priority Claim	מבקש בזאת כי ינתן לי עליה
Application for Division מבקשת פטנט	Application for Patent of Addition • לבקשח/לפטנס	מספר/סימן Number/Mark	תאריך Datė	מרינת האיגור Convention Country
from Application	to Patent/Appl.	Mundenwark		
NooN	מטים מטים			
dated מיום מיום מיום מיום מיום מיום מיום מיום	• יפוי כח: כללי/מיוחד			
P.O.A.: general / specific -	attached / to be theo later		·	·
	חוגש בענין			
פטנטים (21421)	המען למסירת הודעות ומסמכי Address for Service in Israel שמעון לביא, עורך			
31061	11. 6202, חיפה	}		
Simon Lavie, P.	0.Box 6202, Haif			יום 18 בתרמע 17.5
_	חתימת חמבקש Signature of Applicant	This	of .	יום 18 בתודש פבר
				לשימוש חלשכת For Office Use
	_ 1	रत्यापट्ट	73/1	Por Office 5.33

Simon Lavie

שמעון לבלאא

COLUMN TO THE PARTY OF THE PART

÷

1/2

SILVER MANGANESE SALT CATHODES FOR ALKALINE BATTERIES

Inventor: Stuart Licht

Assignee: CHEMERGY

Date: February 18, 2001

SILVER MANGANESE SALT CATHODES FOR ALKALINE BATTERIES

The present invention relates to electric storage batteries. More particularly, the invention relates to a novel alkaline electric storage battery with a cathode formed from a silver manganese compound.

BACKGROUND OF THE INVENTION

1.1

41

110

MnO₂ is the common active cathode material in primary alkaline batteries. As an alternative to MnO₂, a variety of permanganate compounds have been considered for cathode materials due to their high oxidation state which, in principle permits significant storage and release of electrical charge. However, as described by J. Epstein and C. C. Liang, U. S. Patent, 3,799,959 (Oct. 12, 1971), most permanganates salts are overly soluble in alkaline solution and this solubility can be destructive to the battery performance. In addition, most permanganate salts do not discharge effectively in the solid phase, although as described by S. Licht and C. Marsh, United States Patent 5,549,991, (Aug. 27, 1996), in the solution phase they can support high currents.

Compared to the manganese dioxide alkaline cathode reaction, both manganates and permanganates can have a significantly higher faradaic capacity and higher cathodic potential. The thermodynamic potential for the 1er permanganate to manganate reduction in aqueous alkaline media is:

$$MnO_4^- + 1e^- \rightarrow MnO_4^{2-}$$
 $E = 0.56V \text{ vs SHE}$ (1)

and manganate also can exhibit a direct discharge to manganese dioxide, summarized as the 2e- reduction:

$$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^- E = 0.58V \text{ vs SHE}$$
 (2)

and alternately permanganate also can exhibit a direct discharge to manganese dioxide, summarized as the 3e- reduction:

$$MnO_4^{2} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^- \qquad E = 0.58V \text{ vs SHE}$$
 (3)

In addition, the MnO₂ product can undergo a further 1e- reduction, as utilized in the conventional commercial alkaline (Zn anode / MnO₂ cathode) cell:

$$2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^- E = 0.35V \text{ vs SHE}$$
 (4)

Manganate salts, being in the less oxidized manganese valence state of Mn(VI), will store less charge in principle, than the permanganates. This lower valence state would also suggest that they would be considered to be less chemically active. In principal, as described by equations 2 and 4, permanganate salts can undergo a total of a 4e⁻ alkaline cathodic reduction, and by equations 3 and 4 manganate salts can undergo a total of a 3e⁻ alkaline cathodic reduction. Yet the manganate and permanganate salts have not replaced the widely used commercial alkaline MnO2 cathode due to a general perception that these salts are too soluble (creating a tendency to react and decompose the anode), and that they exhibit only inefficient, and/or low current density, charge transfer.

The absorbance spectra and Xray diffraction of AgMnO₄ has been characterized [W. P. Doyle, I. Kirkpatrick, Spectrochimica Acta, 24A (1968) 1495]. AgMnO₄ is not a traditional Mn(VII) permanganate salt and the manganese evidently exists in a valence state between VI and

40

VII, while the silver exists in a valence state between I and II [L. F. Mehne, B. B. Wayland, J. Inorg. Nucl. Chem., 37 (1975) 1371]. In principle, silver (per)manganate, AgMnO4, represent a substantial cathodic charge source for electrochemical storage, but high rate charge transfer has been inefficient. Independent of whether AgMnO4 is Ag(I)Mn(VII)O4, described as silver permanganate, peroximanganate, Ag(II)Mn(VI)O4, or as a mixed intermediate valence, where 0 < x < 1) for $Ag(I+x)Mn(VII-x)O_4$, $AgMnO_4$, can in principal provide a higher cathodic charge capacity than other permanganate or In addition to the manganese reduction, AgMnO4 manganate salts. permits the alkaline reduction, as Ag(I) (or if Ag(MnO₄)₂ had been used as Ag(II)) in the same potential domain, and exemplified by the silver oxide reductions:

$$Ag_2O + H_2O + 2e^- \rightarrow 2Ag + 2OH^-$$
 E = 0.35V vs SHE (5)

$$2AgO + H_2O + 2e^- \rightarrow Ag_2O + 2OH^-$$
 E = 0.57V vs SHE (6)

Hence, independent of the Ag(I)/Mn(VII) or Ag(II)/Mn(VI) starting point, the alkaline cathodic reduction AgMnO₄ is consistent with an overall 5 electron reduction to Ag(0) and Mn(III) at thermodynamically potential, $E \ge 0.35V$ vs SHE, for example as:

$$AgMnO_4 + 5/2H_2O + 5e^- \rightarrow Ag + 1/2Mn_2O_3 + 5OH^- E \ge 0.35V_-vs SHE (7)$$

It is an object of the present invention to provide an additive to the cathode in alkaline batteries which provides a practical storage capacity greater than the theoretical capacity known for these cathode materials. A novel electrochemically active solid cathode is demonstrated using silver permanganate.

BRIEF DESCRIPTION OF THE INVENTION:

The invention relates to an electrical storage cell, so-called alkaline battery, comprising two half-cells which are in electrochemical contact with one another through an electrically neutral alkaline ionic conductor, wherein one of said half-cells comprises an anode and the other half-cell comprises a cathode, whereby electrical storage is accomplished via electrochemical reduction of the cathode and oxidation of the anode. The cathode contains an electrochemically active silver manganate or silver permanganate compound.

BRIEF DESCRIPTION OF THE FIGURES:

Figure 1 is a diagrammatic illustration of the fluorinated, polymer graphite containing cathode battery according to the invention; and

Figures 2 to 7: illustrate graphically performance of various battery aspects according to the invention as described in the Examples.

DETAILED DESCRIPTION OF THE INVENTION

The novel battery according to the present invention is based on the addition of an electrochemically active silver manganate material or silver permanganate material to form a cathode in an alkaline battery.

The phrase "theoretical charge capacity " refers to the calculated charge capacity of that cathode material in accord with the known number

of faradays (moles electrons) stored per mole of that material. The theoretical charge capacity is calculated through equation 8 and where n is the number of discharge electrons, F is the Faraday's constant = 26.801 Amp hour per mol, and Fw is the formula weight:

Theoretical charge capacity =
$$n \times F / Fw$$
 (9)

For any specified known cathode material, discharged at low current density rate, the phrase "conventional cathode storage capacity" is specifically the theoretical charge capacity of that cathode material. At higher rates of current density, this "conventional cathode storage capacity" is less than the theoretical charge capacity, and refers to the maximum amount of cathode storage capacity previously attainable for the cathode material at this discharge condition. Table 1 presents the theoretical storage capacity of various cathode materials calculated in accord with equation 2 through 8.

The anode of the battery may be selected from the known list of metals capable of being oxidized, typical such as zinc, cadmium, lead, iron, aluminum, lithium, magnesium, calcium; and other metals such as copper, cobalt, nickel, chromium, gallium, titanium, indium, manganese, silver, cadmium, barium, tungsten, molybdenum, sodium, potassium, rubidium and cesium.

The anode may also be of other typical constituents capable of being oxidized, examples include, but are not limited to hydrogen, (including but not limited to metal hydrides), inorganic salts, and organic compounds including aromatic and non-aromatic compounds. The anode may also be of other typical constituents used for lithium-

ion anodic storage, examples include, but are not limited to lithium-ion in carbon based materials and metal oxides.

<u>Table 1 - Theoretical charge capacity of several known cathode materials,</u> determined with equation 2

cathode ma	terial cathode name	n	Fw	Charge capacity
			kg/mole	Amp hour/kg
MnO_2	manganese dioxide	1	86.9	308
NiOOH	nickel oxyhydroxide	1	91.7	289
Ag ₂ O	silver oxide	2	231.7	231
HgO	mercury oxide	2	216.6	247
AgMnO ₄	silver(I) manganate	5	226.8	591
$Ag(MnO_4)_2$	silver permanganate	10 ·	345.7	775

The electrically neutral alkaline ionic conductor utilized in the battery according to the present invention, comprises a medium that can support current density during battery discharge in an alkaline medium. A typical representative ionic conductor is an aqueous solution preferably containing a high concentration of a hydroxide such as KOH. In other typical embodiments, the electrically neutral ionic conductor comprises a high concentration of NaOH.

An electric storage battery according to the invention may be rechargeable by application of a voltage in excess of the voltage as

measured without resistive load, of the discharged or partially discharged cell.

According to another embodiment of the invention, means are provided to inneede transfer of chemically reactive species, or prevent electric contract between the anode and cathode. Said means includes, but is not limited to a non-conductive separator configured with open channels, a membrane, a ceramic frit, grids or pores or agar solution; such means being so positioned as to separate said half cells from each other.

DETAILED DESCRIPTION OF FIGURE 1

Figure 1 illustrates schematically an electrochemical cell 10 based on a cathode which contains a silver manganese compound half cell, an electrically neutral alkaline ionic conductor and an anode. The cell contains an electrically neutral alkaline ionic conductor 22, such as a concentrated aqueous solution of KOH, in contact with a cathode which contains a fluorinate, polymer graphite 14. Reduction of the cathode, is achieved via electrons available from the electrode 14. The anode electrode 12, such as in the form of metal is also in contact with the electrically neutral ionic conductor 22. Electrons are released in the oxidation of the anode. Optionally, the cell may contain a separator 20, for minimizing the non-electrochemical interaction between the cathode and the anode.

The invention will be hereafter illustrated in further detail with reference to the following non-limiting examples, it being understood that the Examples are presented only for a better understanding of the invention without implying any limitation thereof, the invention being covered by the claims. Although the examples used AAA cells, it will be appreciated by those skilled in the art that the increase in

performance near be obtained regardless of the cell size. It will be understood by those who practice the invention and by those skilled in the art, that various modifications and improvements may be made to the invention without departing from the spirit of the disclosed concept.

Example 1

Salts which are less soluble are preferred as cathodic materials. In water the solubility of AgMnO₄ is relatively low (60 millimolar); eight fold less soluble than KMnO₄, 10 to 100 times less than lithium, sodium, ammonium, calcium, strontium and barium permanganates. In the storage cell, low solubility, or insolubility is preferred to minimize parasitic cathode/anode interactions. An experiment was carried out, the object being to demonstrate the low solubility of silver manganate in potassium hydroxide solutions of concentrations similar to those used in alkaline batteries. As measured in Figure 2, the solubility of silver permanganate is very low compared to that of the other permanganate is very low compared to that of most manganate salts, and is similar to the low solubility of potassium manganate salt.

Example 2

An experiment was carried out, the object being to demonstrate that the silver manganate, prepared as a cathode mix under the same conditions as the common permanganate salt, KMnO₄, discharges to a substantially higher fraction of it's theoretical cathodic charge, particularly when a hydroxide salt is added. Salts that can discharge to a higher percentage

of their theoretical cathodic charge, are preferred as alkaline cathodic salts.

Cells are prepared with identical zinc anodes and separators, as removed from commercial AAA alkaline cells. Cell potential and energy capacity of alkaline super-iron AAA cells were measured during discharge at a constant load rate of 75 Ω. Cells contain either 3.5 g KMnO₄, or 4.1 g AgMnO₄ in the 9 weight percent graphite mix, and 9 weight percent 13.5 molar KOH electrolyte. In addition to these cells, those indicated as 32% graphite cathodes, contains 2.3 g KMnO₄, and 2.6 g AgMnO₄ in the respective cathode mixes.

Permanganates and manganese salts represent a substantial source of cathodic charge, but discharge ineffectively in traditional alkaline batteries. As summarized in Figure 3, a cathode consisting of KMnO₄ alone, or AgMnO₄ alone, or KMnO₄ and KOH together, discharge ineffectively in a conventional AAA cell configuration. In the same cell configuration the pure AgMnO₄ cathode discharges less effectively, than a pure manganate or pure potassium permanganate cathode. However, a cathode of AgMnO₄ and KOH together discharges effectively to a high discharge capacity of 1.8 Wh. Evidently the intimate mixture of these reaction products are substantially more electrochemical active than silver permanganate alone.

A cathode which discharges to a high total energy, is preferred. Figure 4, presents the higher discharge energy measured for the silver manganate cathode, compared to a KMnO₄ cathode under the same conditions. The figure summarizes the measured discharge of NaMnO₄, or KMnO₄ compared to the AgMnO₄ cathode alkaline AAA cells. Despite the lower intrinsic Mn(VI \rightarrow IV) capacity of the silver

manganate salt, this salt's cathode approaches 1.0 Wh, yielding a higher discharge capacity than the sodium or potassium permanganate cathode cells. As is evident in the figure, the measured discharge capacity is higher, despite the lower intrinsic 4e- capacities, for the heavier alkali cation permanganates compared to the lighter alkali permanganates. The measured capacity of sodium, and potassium permanganate cathodes is ~0.45 Wh and 0.8 Wh. The sodium permanganate discharge required a higher fraction (32 weight percent) of graphite to generate a discharge.

Compared to the AgMnO₄ cell, the pure KMnO₄ cathode cell in Figure 2, exhibits a lesser, but significant, improvement with KOH In the presence of KOH, this enhanced Mn(VII) charge addition. transfer indicated for KMnO4 containing KOH, is attributed to the improved conductive matrix that this Fe(VI) salt provides. The cathode reduction is supported by a conductive matrix provided through inclusion of graphite in the cathode mix. Figure 5, probes the AgMnO₄), efficiency, experimental 4e (for KMnO₄) or 5e (for determined by comparison of the measured cumulative discharge ampere hours, as a fraction of the intrinsic charge determined from the mass of the salt. The Percent Storage Capacity is determined by the measured cumulative ampere hours, compared to the theoretical capacity. In this figure utilization of higher weight fraction (employing 32 weight percent, rather than 9 weight percent) graphite greatly improves the percent storage capacity of the KMnO3, and reductive charge transfer appears to be limited by an insufficient conductive matrix. This is not the case for the AgMnO₄ cathode which is already conductive, and as seen in Figure 5, added graphite results only in a

marginal improvement in storage efficiency. Silver, in addition, to being an excellent metallic conductor, sustain effective conductance's of it's cations through it's oxides. As the AgMnO₄/KOH discharges, the concentration of reduced silver grows and provides a growing conductive matrix to increasingly facilitate the manganese reduction. In the more efficient KOH activated AgMnO₄ discharge, distinct voltage plateaus are observed in Figure 5 at 1.7 and 1.5 volts, equivalent to approximately one third and two thirds of the discharge. Each of these potential steps is presumably a mixed potential related to portions of the overall 5 electron transfer.

Under these conditions, and as seen in the figure middle, a cathode comprised of only KMnO₄, exhibits less than half of the capacity of the AgFeO₄ cathode. Figure 5, shows that silver manganate, prepared as a cathode mix under the same conditions as the common permanganate salts, KMnO₄, discharges to a substantially higher fraction of it's theoretical cathodic charge.

Figure 6 demonstrates that both for the, low and high rate discharge domains, the KOH activated AgMnO₄ cathode discharges more effectively than the pure AgMnO₄, or other permanganate, cathodes alone.

Example 3

An experiment was carried out, the object being to demonstrate that the silver permanganate cathode can also be used in combination with other cathode salts. AgMnO₄ mixed with a Fe(VI) salt cathode discharges effectively alkaline cathode. Figure 7, presents the discharge of alkaline cells with a mixed cathode which includes the

Fe(VI) salt, BaFeO₄, and silver permanganate, and it is evident that the mixed AgMnO₄/Fe(VI) cathode can also attain a high discharge capacity. The AgMnO₄ / barium super-iron cathode mixture generates the high power (averaging 0.7 to 0.8 W during this high rate discharge). At this 2.8Ω discharge, the generated energy is 0.56 Wh. The KOH activated AgMnO₄ discharges to this 0.9 Wh under the 2.8Ω load, but at a lower average power of 0.5 W.

Example 4

In a alternate configuration $Ag(MnO_4)_2$ can also be used as an alkaline cathode, and we find is formed by the mixture of $AgMnO_4$ and oxidizing agent, or the mixture of a permanganate salt other than $AgMnO_4$, a silver salt, other than $AgMnO_4$, and an oxidizing agent.

C AIMS:

- 1. A battery comprising two half-cells which are in an electrochemical contact with one another through an electrically neutral alkaline ionic conductor, wherein one of said half-cells comprises an anode and the other half-cell comprises a cathode, whereby electrical discharge is accomplished via reduction of the cathode and oxidation of the anode, and whereby said cathode includes silver permanganate and a hydroxide salt.
- 2. The battery according to Claim 1 whereby said silver permanganate is in the form of AgMnO₄.
- 3. The battery according to Claim 1 whereby said silver permanganate is in the form of $Ag(MnO_4)_2$.
- 4. The battery according to Claim 1 whereby said silver permanganate is formed from the mixture of silver salt, and a permanganate salt other than silver permanganate.
- 5. The battery according to Claim 4 whereby said silver salt is AgNO₃.
- 6. The battery according to Claim 4 whereby said silver salt is a silver halide.
- 7. The battery according to Claim 4 whereby said mixture also includes an oxidizing agent.
- 8. The battery according to Claim 7 whereby said oxidizing agent is a hypochlorite salt.
- 9. The battery according to Claim 7 whereby said oxidizing agent is a peroxydisulfate salt.
- 10. The battery according to Claim 1 whereby said hydroxide salt is potassium hydroxide.
- 11. The battery according to Claim 1 whereby said silver permanganate comprises at least 1% of weight of the cathode mass.

- 12. The battery according to Claim 1 whereby said silver permanganate comprises at least 5% of weight of the cathode mass.
- 13. The battery according to Claim 1 whereby said silver permanganate comprises at least 25% of weight of the cathode mass.
- 14. The battery according to Claim 1 whereby said hydroxide salt comprises at least 1% of weight of the cathode mass.
- 15. The battery according to Claim 1 whereby said hydroxide salt comprises at least 5% of weight of the cathode mass.
- 16. The battery according to Claim 1 whereby said hydroxide salt comprises at least 25% of weight of the cathode mass.

ABSTRACT

An electric storage alkaline battery comprising an electrically neutral alkaline ionic conductor, an anode and a cathode, whereby electric storage is accomplished via electrochemical reduction of the cathode and oxidation of the anode, whereby said cathode includes at electrochemically active silver permanganate salts.

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Discharge Energy, Wh

Figure 7