MATEMÁTICA DISCRETA

Introducción a la Lógica Matemática (Parte II)

Introducción a la Lógica Matemática (Parte II)

- Tautologías y contradicciones.
- Equivalencia lógica.
- Proposiciones condicionales.

Ejercicio: Construye la tabla de verdad de las siguientes proposiciones.

a)
$$p \vee \neg (p \wedge q)$$
. b) $(p \wedge q) \wedge \neg (p \vee q)$.

b)
$$(p \wedge q) \wedge \neg (p \vee q)$$
.

p	q	$p \wedge q$	$\neg(p \land q)$	$p \lor \neg (p \land q)$
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

p	q	$p \wedge q$	$p \lor q$	$\neg(p \lor q)$	$(p \wedge q) \wedge \neg (p \vee q)$
V	V	V	V	F	F
V	F	F	V	F	F
F	V	F	V	F	F
F	F	V F F	F	V	F

- Una proposición es una tautología si contiene solo "V" en la última columna de su tabla de verdad.
- Una proposición es una contradicción si contiene solo "F" en la última columna de su tabla de verdad.

Teorema

Si p es una tautología, entonces $\neg p$ es una contradicción, y viceversa

Dos proposiciones p y q son equivalentes, y se denota como $p \equiv q$, si sus correspondientes tablas de verdad son iguales.

Ejemplo: Las proposiciones p y q satisfacen $\neg(p \land q) \equiv \neg p \lor \neg q$.

р	q	$p \wedge q$	$\neg(p \land q)$
V	V	V	F
V	F	F	V
F	V	F	V
F	F	F	V

p	q	$\neg p$	$\neg q$	$\neg p \lor \neg q$
V	V	F	F	F
V	F	F	V	V
F	V	V	F	V
F	F	V	V	V

Leyes del Álgebra de Proposiciones

$$p \lor p \equiv p$$

$$p \wedge p \equiv p$$

$$p \lor q \equiv q \lor p$$

$$p \wedge q \equiv q \wedge p$$

$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Ejemplo

Simplifica cada una de las siguientes proposiciones:

- a) $\neg (p \lor \neg q)$
- b) $\neg(\neg p \land q)$
- c) $\neg(\neg p \lor \neg q)$

Solución:

- a) $\neg (p \lor \neg q) \equiv \neg p \land \neg \neg q \equiv \neg p \land q$
- b) $\neg(\neg p \land q) \equiv \neg \neg p \lor \neg q \equiv p \lor \neg q$
- c) $\neg(\neg p \lor \neg q) \equiv \neg \neg p \land \neg \neg q \equiv p \land q$

Sean p y q dos proposiciones. La proposición

si p entonces q

se llama proposición condicional y se denota por p o q.

p	q	p o q
٧	V	V
V	F	F
F	V	V
F	F	V

Observación: La proposición $p \rightarrow q$ es verdadero excepto en el caso en que p sea verdadero y q sea falso.

Observación: En las proposiciones que incluyen a los operadores lógicos \land , \lor , \neg y \rightarrow , el operador condicional \rightarrow evalúa al final.

Ejemplo

Suponiendo que p es verdadera, q es falsa y r es verdadera, encuentre el valor de verdad de cada proposición.

- a) $p \wedge q \rightarrow r$ b) $p \vee q \rightarrow \neg r$ c) $p \wedge (q \rightarrow r)$
- a) Primero se evalúa $p \wedge q$, y se obtiene que es falsa. Por tanto, $p \wedge q \rightarrow r$ es verdadera (sin importar el valor de verdad de r).
- b) Primero se evalúa $\neg r$, y se obtiene que es falsa. Después se evalúa $p \lor q$, y se obtiene que es verdadera. Por tanto, la proposición $p \lor q \to \neg r$ es falsa.
- c) Observa que q o r es verdadera. Por tanto, $p \wedge (q o r)$ es verdadera.

Tablas de verdad de las proposiciones p o q y $\neg p \lor q$

p	q	$p \rightarrow q$		p			$\neg p \lor q$
V	V	V	-	V			V
V	F	F		V	F	F	F
F	V	V		F	٧	V	V
F	F	V		F	F	V	V

Consecuencia: $p \to q \equiv \neg p \lor q$. Es decir, la proposición $p \to q$ es un equivalente lógico de la proposición $\neg p \lor q$, la cual se compone solamente por los conectores $\lor y \neg$.

Ejemplo: La negación de $p \rightarrow q$ es un equivalente lógico de $p \land \neg q$.

Ejercicio: Comprueba que $(p \land q) \rightarrow (p \lor q)$ es una tautología.

Solución:

p	q	$p \wedge q$	$p \lor q$	$(p \wedge q) ightarrow (p ee q)$
V	V	V	V	V
V	F	F	V	V
F	V	F	V	V
F	F	F	F	V

Como el valor de verdad de $(p \land q) \to (p \lor q)$ es verdadero para todos los valores de p y q, entonces se tienen que $(p \land q) \to (p \lor q)$ es una tautología.

Sean p y q dos proposiciones. La proposición

se llama proposición bicondicional y se denota por $p \leftrightarrow q$.

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Observación: La proposición $p \leftrightarrow q$ es un equivalente lógico de la proposición $(p \rightarrow q) \land (q \rightarrow p)$.

p o q y otras proposiciones condicionales que contienen a p y q

p	q	$\neg p$	$ \neg q$	Condicional	Recíproco	Inverso	Contrarrecíproco
				ho o q	q o p	eg p ightarrow eg q	eg q o eg p
V	V	F	F	V	V	V	V
V	F	F	V	F	V	V	F
F	V	V	F	V	F	F	V
F	F	V	V	V	V	V	V

Observación: La proposición $p \to q$ y su contrarrecíproco $\neg q \to \neg p$ son equivalentes lógicos.

Ejercicio

Obtenga el Recíproco, Inverso y Contrarrecíproco de la siguiente implicación:

"El equipo gana siempre que llueve."

- Recíproco: "Si el equipo gana, entonces llueve."
- Inverso: "Si no llueve, entonces el equipo no gana."
- Contrarrecíproco: "Si el equipo no gana, entonces no llueve."

Paso del lenguaje natural al lenguaje formal (formalización)

Ejemplo

Formalice la siguiente frase:

"Puedes acceder a Internet desde el campus sólo si estudias Ingeniería Informática o no eres alumno de primero."

- p: "Puedes acceder a Internet desde el campus."
- q: "estudias Ingeniería Informática."
- r: "eres alumno de primero."

Formalización: $p \rightarrow (q \vee \neg r)$.