

Universidad de Chile

Departamento de Ciencias de la Computación

Procesamiento de Lenguaje Natural

Apuntes de Clases

Felipe Bravo-Márquez

28 de junio de 2023

Índice general

1.	Intr	oducción	1
	1.1.	PLN y Lingüística Computacional	1
	1.2.	Niveles de descripción lingüística	3
		1.2.1. Fonética	3
		1.2.2. Fonología	3
		1.2.3. Morfología	3
		1.2.4. Sintaxis	4
		1.2.5. Semántica	4
		1.2.6. Pragmática	5
	1.3.	Procesamiento del Lenguaje Natural y Aprendizaje Automático	6
	1.4.		7
	1.5.	Ejemplo de tareas NLP	7
		1.5.1. Lingüística y Procesamiento del Lenguaje Natural (PNL)	9
	1.6.	Desafíos en el Procesamiento del Lenguaje Natural (PNL)	10
	1.7.		11
	1.8.	Ingeniería de características y Aprendizaje Profundo	12
	1.9.	Historia	13
	1.10	. Conclusiones	14
2.	Mod	lelo de Espacio Vectorial y Recuperación de Información	15
	2.1.		15
		2.1.1. Ley de Zipf	17
		2.1.2. Listas de publicaciones y el índice invertido	18
		2.1.3. Motores de búsqueda web	18
	2.2.	El modelo de espacio vectorial	19
		2.2.1. Similitud entre vectores	21
	2.3.		22
		2.3.1. K-Means	23
	2.4.	Conclusiones y Conceptos Adicionales	23
3.	Mod	delos de Lenguaje Probabilísticos	25
٠.		El Problema del Modelado del Lenguaje	25
	J.1.	3.1.1. ¿Por qué querríamos hacer esto?	26
		5.1.1. For the duernamos nacer esto:	20

	3.2.		ué los modelos de lenguaje son importantes?	27
			Un Método Ingenuo	28
	3.3.	Proces	os de Markov	29
		3.3.1.	Modelado de secuencias de longitud variable	29
	3.4.	Model	os de lenguaje trigram	30
			El problema de estimación trigram	30
	3.5.	Evalua	nción de un modelo de lenguaje: Perplejidad	31
		3.5.1.	El trade-off entre sesgo y varianza	32
		3.5.2.	Estimación de máxima verosimilitud y overfitting	32
		3.5.3.	Técnicas de regularización	33
	3.6.	Interpo	olación Lineal	33
	3.7.	Estima	ción de los Valores λ	34
	3.8.	Métod	os de Descuento	34
		3.8.1.	Modelos de Katz Back-Off (Bigramas)	35
	3.9.	Resum	nen	37
1	Tard	Classif	Cation and Nauva Parras	39
4.			ication and Naïve Bayes lassification: Definition	41
	4.1.		Classification Methods: Hand-coded rules	41
			Classification Methods: Supervised Machine Learning .	42
		4.1.2.	1	42
		4.1.3.		42
				43
	4.2	4.1.5.		43
	4.2.		Bayes Intuition	43
	4.2	4.2.1.	J 1 1	43
	4.3.		Bayes Classifier	44
		4.3.1.	Multinomial Naive Bayes Independence Assumptions .	45
		4.3.2.	,	43
		4.3.3.	Applying Multinomial Naive Bayes Classifiers to Text Classification	45
		4.3.4.	Problems with Multiplying Lots of Probabilities	46
			Learning the Multinomial Naive Bayes Model	46
		4.3.6.	Parameter Estimation	47
		4.3.7.	Zero Probabilities and the Issue of Unseen Words	47
		4.3.7.	Laplace (Add-1) Smoothing for Naïve Bayes	48
		4.3.9.	Multinomial Naïve Bayes: Learning	48
			Unknown Words	49
				49
	1.1		Stop Words	
	4.4.	vvorke	d Sentiment Example	49
	4.5.		Bayes as a Language Model	50 E1
	4.6.		The 2 has 2 Confusion Matrix	51 51
		4.6.1.	The 2-by-2 Confusion Matrix	51
		4.6.2.	Evaluation: Accuracy	52 52
		4.6.3.	Evaluation: Precision and Recall	52 52
		4.6.4.	Why Precision and Recall?	52
		4.6.5.	A Combined Measure: F-measure	53

		4.6.6.	Development Test Sets ("Devsets")	53
		4.6.7.	Cross-validation: Multiple Splits	53
		4.6.8.	Confusion Matrix for 3-class classification	55
		4.6.9.	Macroaveraging and Microaveraging	55
5.	Mod	lelos Li	neales	57
	5.1.	Superv	vised Learning	57
			Parameterized Functions	57
	5.2.	Linear	Models	58
		5.2.1.	Example: Language Detection	58
	5.3.	Log-lir	near Binary classification	60
	5.4.	Multi-	class Classification	62
	5.5.	Repres	sentations	62
	5.6.		Iot Vector Representation	64
	5.7.	Log-lir	near Multi-class Classification	65
	5.8.		ng	65
		5.8.1.	Gradient-based Optimization	66
		5.8.2.	Online Stochastic Gradient Descent	67
		5.8.3.	Mini-batch Stochastic Gradient Descent	68
		5.8.4.	Loss Functions	68
	5.9.	Regula	arization	70
		5.9.1.	L ₂ Regularization	71
		5.9.2.	L_1 Regularization	71
		5.9.3.	Elastic-Net	71
	5.10.	Beyon	d SGD	72
			Test, and Validation Sets	72
	5.12.	. A limi	tation of linear models: the XOR problem	7 3
		5.12.1.	Nonlinear input transformations	74
		5.12.2.	Trainable mapping functions	75

Índice de cuadros

2.1.	Matriz tf-idf																															22	
	111010112 01 1011	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		

Índice de figuras

1.1.	Reconocimiento de Entidades Nombradas	1	
2.1.	Ley de Zipf	18	
2.2.	Índice invertido	18	
2.3.	Los diversos componentes de un motor de búsqueda web [Manning	g et al., 2008]. 1	9
2.4.	Similitud del coseno.	21	
2.5.	Conjunto de documentos donde los grupos se pueden identifi-		
	car claramente	23	
2.6.	Algoritmo K-means	24	
4.1.	James Madison	40	
	Alexander Hamilton		

Capítulo 1

Introducción

El volumen de datos textuales digitalizados que se genera cada día es enorme (por ejemplo, la web, redes sociales, registros médicos, libros digitalizados). Por lo tanto, también crece la necesidad de traducir, analizar y gestionar esta avalancha de palabras y texto.

El procesamiento del lenguaje natural (PLN) es el campo que se encarga de diseñar métodos y algoritmos que toman como entrada o producen como salida datos de **lenguaje natural** no estructurado [Goldberg, 2017]. El PLN se centra en el diseño y análisis de algoritmos computacionales y representaciones para procesar el lenguaje humano [Eisenstein, 2018].

Una tarea común de PLN es el Reconocimiento de Entidades Nombradas (NER, por sus siglas en inglés). Por ejemplo:

Figura 1.1: Reconocimiento de Entidades Nombradas

El lenguaje humano es altamente ambiguo, como en las frases: Çomí pizza con amigos", Çomí pizza con aceitunas.º Çomí pizza con un tenedor". Además, el lenguaje está en constante cambio y evolución, como ocurre con los hashtags en Twitter.

1.1. PLN y Lingüística Computacional

PLN suele confundirse con otra disciplina hermana llamada Lingüística Computacional (LC). Si bien ambas están estrechamente relacionadas, tienen un foco distinto. La LC busca responder preguntas fundamentales sobre el lenguaje mediante el uso de la computación, es decir, cómo entendemos el lengua-

je, cómo producimos lenguaje o cómo aprendemos lenguaje. Mientras que en PLN el foco está en resolver problemas específicos, tales como las transcripción automática del habla, la traducción automática, la extracción de información de documentos y el análisis de opiniones en redes sociales. Es importante señalar que en PLN, el éxito de una solución se mide en base métricas concretas (Ej: qué tan similar es la traducción automática a una hecha por un humano) independientemente si el modelo hace uso de alguna teoría lingüística.

El procesamiento del lenguaje natural (PLN) desarrolla métodos para resolver problemas prácticos relacionados con el lenguaje [Johnson, 2014].

Algunos ejemplos son:

- Reconocimiento automático del habla.
- Traducción automática.
- Extracción de información de documentos.

La lingüística computacional (LC) estudia los procesos computacionales subyacentes al lenguaje (humano).

- ¿Cómo comprendemos el lenguaje?
- ¿Cómo producimos el lenguaje?
- ¿Cómo aprendemos el lenguaje?

El PLN y la LC utilizan métodos y modelos similares.

Aunque existe una superposición sustancial, hay una diferencia importante en el enfoque. La LC se centra en la lingüística respaldada por métodos computacionales (similar a la biología computacional o la astronomía computacional). En lingüística, el lenguaje es el objeto de estudio. El PLN se centra en resolver tareas bien definidas relacionadas con el lenguaje humano (como la traducción, la respuesta a consultas, las conversaciones). Si bien los conocimientos lingüísticos fundamentales pueden ser cruciales para realizar estas tareas, el éxito se mide en función de si y cómo se logra el objetivo (según una métrica de evaluación) [Eisenstein, 2018].

El procesamiento del lenguaje natural y la lingüística computacional están estrechamente relacionados y se superponen en muchos aspectos. Ambos campos utilizan métodos y modelos similares para abordar problemas relacionados con el lenguaje humano. Sin embargo, la diferencia principal radica en el enfoque: la lingüística computacional se centra en la lingüística respaldada por métodos computacionales, mientras que el procesamiento del lenguaje natural se centra en resolver tareas prácticas relacionadas con el lenguaje. Ambos campos son fundamentales para comprender y aprovechar el poder del lenguaje humano en la era digital.

1.2. Niveles de descripción lingüística

El campo de la descripción lingüística abarca diferentes niveles:

- Fonética y fonología: estudio de los sonidos del habla.
- Morfología: estudio de la estructura de las palabras.
- Sintaxis: estudio de la estructura de las oraciones.
- Semántica: estudio del significado de las palabras y oraciones.
- Pragmática: estudio del uso del lenguaje en el contexto.

El PLN puede abordar tareas en cada uno de estos niveles, pero a menudo se enfoca en niveles más altos de representación y comprensión.

1.2.1. Fonética

La fonética es la rama de la lingüística que se ocupa del estudio de los sonidos del lenguaje. Examina los órganos utilizados en la producción de sonidos, como la boca, la lengua, la garganta, la nariz, los labios y el paladar. Los sonidos del lenguaje se dividen en vocales y consonantes. Las vocales se producen con poca restricción del flujo de aire desde los pulmones, mientras que las consonantes implican alguna restricción o cierre en el tracto vocal [Johnson, 2014, Fromkin et al., 2018]. Además, el Alfabeto Fonético Internacional (AFI) proporciona una notación alfabética para representar los sonidos fonéticos.

1.2.2. Fonología

La fonología se centra en el estudio de cómo los sonidos del habla forman patrones y construyen significado. Los fonemas son las unidades básicas de sonido que diferencian el significado de las palabras. Por ejemplo, en inglés, la "pz la "b"son fonemas distintos porque cambian el significado de las palabras en las que se encuentran. La fonología también examina las variaciones en la pronunciación de los sonidos en diferentes contextos y dialectos [Fromkin et al., 2018].

1.2.3. Morfología

La morfología se ocupa del estudio de la estructura interna de las palabras. Los morfemas son las unidades mínimas de significado que componen las palabras. Por ejemplo, en la palabra "deshacer", los morfemas son "des-", "hacerz er". La morfología también se interesa por los procesos de formación de palabras, como la derivación, donde se agregan prefijos o sufijos a una palabra existente para formar una nueva palabra con un significado diferente [Johnson, 2014].

- La morfología estudia la estructura de las palabras (por ejemplo, re+estructur+ando, in+olvid+able) [Johnson, 2014]
- Morfema: el término lingüístico para la unidad más elemental de forma gramatical [Fromkin et al., 2018]. Por ejemplo, morfología = morf + ología (la ciencia de).
- Morfología derivativa: proceso de formar una nueva palabra a partir de una palabra existente, a menudo mediante la adición de un prefijo o sufijo.
- La morfología derivativa exhibe una estructura jerárquica. Ejemplo: re+vital+iz+ación

 El sufijo generalmente determina la categoría sintáctica (part-of-speech) de la palabra derivada.

1.2.4. Sintaxis

La sintaxis es el estudio de cómo las palabras se combinan para formar frases y oraciones gramaticales. Examina las reglas y estructuras que determinan la organización de las palabras en una oración y cómo influyen en el significado. La sintaxis también se ocupa de la relación entre las palabras y las funciones que desempeñan dentro de una oración. Por ejemplo, en la oración . El perro persigue al gato", . el perro. es el sujeto, "persigue. es el verbo y . al gato. es el complemento directo [Johnson, 2014].

- La sintaxis estudia las formas en que las palabras se combinan para formar frases y oraciones [Johnson, 2014]
- El análisis sintáctico ayuda a identificar quién hizo qué a quién, un paso clave para comprender una oración.

1.2.5. Semántica

La semántica es el estudio del significado de las palabras, frases y oraciones, examinando cómo se construye e interpreta este significado en el contexto del lenguaje. Además, la semántica se interesa por los roles semánticos, que

indican la función de cada entidad en una oración. Por ejemplo, en la oración .^{El} niño cortó la cuerda con una navaja", .^{el} niño.^{es} el agente, "la cuerda.^{es} el tema y üna navaja.^{es} el instrumento [Johnson, 2014].

La semántica se enfoca en el significado de las palabras, frases y oraciones. Estudia cómo se construye e interpreta este significado en el contexto del lenguaje. Además, dentro de la semántica, se analizan los roles semánticos, los cuales indican la función que desempeña cada entidad en una oración. Por ejemplo, en la oración .^{El} niño cortó la cuerda con una navaja", se identifican distintos roles semánticos: .^{el} niñoçomo el agente, "la cuerdaçomo el tema y una navajaçomo el instrumento utilizado [Johnson, 2014].

En resumen:

- La semántica estudia el significado de las palabras, frases y oraciones [Johnson, 2014].
- Dentro de la semántica, se analizan los roles semánticos, que indican el papel desempeñado por cada entidad en una oración.
- Algunos ejemplos de roles semánticos son: agente (la entidad que realiza la acción), tema (la entidad involucrada en la acción) y instrumento (otra entidad utilizada por el agente para llevar a cabo la acción).
- En la oración .^{El} niño cortó la cuerda con una navaja", se puede identificar el agente como el niño, el tema como la cuerda y el instrumento como una navaja.
- Además de los roles semánticos, la semántica también abarca las relaciones léxicas, que son las relaciones entre diferentes palabras [Yule, 2016].
- Algunos ejemplos de relaciones léxicas incluyen la sinonimia (conceal/hide), la antonimia (shallow/deep) y la hiponimia (perro/animal).

1.2.6. Pragmática

La pragmática se centra en cómo el contexto influye en la interpretación y el significado de las expresiones lingüísticas. Examina cómo se utilizan las expre-

siones lingüísticas en situaciones reales y cómo los hablantes interpretan el significado implícito. Por ejemplo, la oración "Hace frío aquí" puede interpretarse como una sugerencia implícita de cerrar las ventanas [Fromkin et al., 2018].

1.3. Procesamiento del Lenguaje Natural y Aprendizaje Automático

Comprender y producir el lenguaje computacionalmente es extremadamente complejo. La tecnología más exitosa actualmente para abordar PLN es el aprendizaje automático supervisado que consiste en una familia de algoritmos que "aprenden" a construir la respuesta del problema en cuestión en base a encontrar patrones en datos de entrenamiento etiquetados. Por ejemplo, si queremos tener un modelo que nos diga si un tweet tiene un sentimiento positivo o negativo respecto a un producto, primero necesito etiquetar manualmente un conjunto de tweets con su sentimiento asociado. Luego debo entrenar un algoritmo de aprendizaje sobre estos datos para poder predecir de manera automática el sentimiento asociado a tweets desconocidos. Como se podrán imaginar, el etiquetado de datos es una parte fundamental de la solución y puede ser un proceso muy costoso, especialmente cuando se requiere conocimiento especializado para definir la etiqueta.

Aunque los seres humanos somos grandes usuarios del lenguaje, también somos muy malos para comprender y describir formalmente las reglas que rigen el lenguaje.

Entender y producir lenguaje utilizando computadoras es altamente desafiante. Los métodos más conocidos para lidiar con datos de lenguaje se basan en el aprendizaje automático supervisado.

El aprendizaje automático supervisado consiste en intentar inferir patrones y regularidades a partir de un conjunto de pares de entrada y salida preanotados (también conocido como conjunto de datos de entrenamiento).

Conjunto de Datos de Entrenamiento: Datos de NER CoNLL-2003 Cada línea contiene un token, una etiqueta de parte de la oración, una etiqueta de sintagma y una etiqueta de entidad nombrada.

```
U.N.
          NNP I-NP I-ORG
official
          NN
              I-NP
                   0
Ekeus
          NNP I-NP I-PER
heads
         VBZ I-VP O
for
          IN
               I-PP O
Baghdad
          NNP I-NP I-LOC
               \cap
```

¹Fuente: https://www.clips.uantwerpen.be/conll2003/ner/

1.4. Desafíos del Lenguaje

Existen tres propiedades desafiantes del lenguaje: la discreción, la composicionalidad y la dispersión.

Discreción: no podemos inferir la relación entre dos palabras a partir de las letras que las componen (por ejemplo, hamburguesa y pizza).

Composicionalidad: el significado de una oración va más allá del significado individual de sus palabras.

Dispersión: la forma en que las palabras (símbolos discretos) pueden combinarse para formar significados es prácticamente infinita.

1.5. Ejemplo de tareas NLP

Clasificación de temas La clasificación de temas es una tarea de Procesamiento del Lenguaje Natural (PLN) en la cual se asigna a un documento una de varias categorías, como deportes, política, cotilleos o economía. Las palabras presentes en los documentos brindan pistas importantes sobre su tema. Sin embargo, redactar reglas para esta tarea es un desafío debido a la complejidad del lenguaje. La anotación de datos, en la cual los lectores clasifican los documentos por temas, puede ayudar a generar conjuntos de datos de entrenamiento para algoritmos de aprendizaje automático supervisado. Estos algoritmos aprenden patrones de uso de palabras que facilitan la categorización de los documentos.

- Clasificar un documento en una de las cuatro categorías: Deportes, Política, Cotilleos y Economía.
- Las palabras en los documentos proporcionan indicios muy sólidos.
- ¿Qué palabras brindan qué indicios?
- Elaborar reglas para esta tarea resulta bastante desafiante.
- No obstante, los lectores pueden categorizar fácilmente varios documentos según su tema (anotación de datos).
- Un algoritmo de aprendizaje automático supervisado puede identificar los patrones de uso de palabras que ayudan a categorizar los documentos.

Análisis de Sentimiento El análisis de sentimientos se refiere a la aplicación de técnicas de Procesamiento del Lenguaje Natural (PLN) para identificar y extraer información subjetiva de conjuntos de datos textuales. Un desafío común en el análisis de sentimientos es la clasificación de la polaridad a nivel de mensaje (MPC), donde las frases se clasifican automáticamente en categorías

positivas, negativas o neutrales. Las soluciones más avanzadas utilizan modelos de aprendizaje automático supervisado entrenados con ejemplos anotados manualmente.

En este tipo de clasificación, es habitual emplear el aprendizaje supervisado, siendo las Máquinas de Vectores de Soporte (SVM) una opción popular. El objetivo de las SVM es encontrar un hiperplano que separe las clases con el margen máximo, logrando la mejor separación entre las clases positivas, negativas y neutrales [Eisenstein, 2018].

- Aplicación de técnicas de PLN para identificar y extraer información subjetiva de conjuntos de datos textuales.
- Clasificación automática de frases en las categorías positiva, negativa o neutral.

 Las soluciones más avanzadas emplean modelos de aprendizaje automático supervisado, entrenados con ejemplos anotados manualmente [Mohammad et al., 2013].

Idea: Encontrar un hiperplano que separe las clases con el margen máximo (mayor separación).

• H_3 separa las clases con el margen máximo.

1.5.1. Lingüística y Procesamiento del Lenguaje Natural (PNL)

El conocimiento de las estructuras lingüísticas es fundamental para el diseño de características y el análisis de errores en el Procesamiento del Lenguaje Natural (PNL). Los enfoques de aprendizaje automático en PNL se basan en características que describen y generalizan las instancias de uso del lenguaje. El conocimiento lingüístico orienta la selección y el diseño de estas características, ayudando al algoritmo de aprendizaje automático a encontrar correlaciones entre el uso del lenguaje y las etiquetas objetivo [Bender, 2013].

- El conocimiento de las estructuras lingüísticas es importante para el diseño de características y el análisis de errores en PNL [Bender, 2013].
- Los enfoques de aprendizaje automático en PNL requieren características que puedan describir y generalizar el uso del lenguaje.
- El objetivo es guiar al algoritmo de aprendizaje automático para encontrar correlaciones entre el uso del lenguaje y el conjunto de etiquetas objetivo.
- El conocimiento sobre las estructuras lingüísticas puede influir en el diseño de características para los enfoques de aprendizaje automático en PNL.

El PNL plantea diversos desafíos, como los costos de anotación, las variaciones de dominio y la necesidad de actualizaciones continuas. La anotación manual requiere mucho trabajo y tiempo. Las variaciones de dominio implican aprender patrones diferentes para diferentes corpus de texto. Los modelos entrenados en un dominio pueden no funcionar bien en otro. Además, los modelos de PNL pueden volverse obsoletos a medida que el uso del lenguaje evoluciona con el tiempo.

1.6. Desafíos en el Procesamiento del Lenguaje Natural (PNL)

- Costos de Anotación: la anotación manual es laboriosa y consume mucho tiempo.
- Variaciones de Dominio: el patrón que queremos aprender puede variar de un corpus a otro (por ejemplo, deportes, política).
- ¡Un modelo entrenado con datos anotados de un dominio no necesariamente funcionará en otro!
- Los modelos entrenados pueden quedar desactualizados con el tiempo (por ejemplo, nuevos hashtags).

Variación de Dominio en el Análisis de Sentimiento

- 1. Para mí, la cola era bastante **pequeña** y solo tuve que esperar unos 20 minutos, ¡pero valió la pena! :D @raynwise
- 2. Extraña espacialidad en Stuttgart. La habitación del hotel es tan **pequeña** que apenas puedo moverme, pero los alrededores son inhumanamente vastos y largos bajo construcción.

Superando los costos de anotación de datos Supervisión Distant:

- Etiquetar automáticamente datos no etiquetados (API de Twitter) utilizando un método heurístico.
- Enfoque de Anotación de Emoticonos (EAA): los tweets con emoticonos positivos:) o negativos: (se etiquetan según la polaridad indicada por el emoticono [Read, 2005].
- El emoticono se **elimina** del contenido.
- Este enfoque también se ha ampliado utilizando hashtags como #anger y emojis.
- No es trivial encontrar técnicas de supervisión distante para todo tipo de problemas de PNL.

Crowdsourcing

- Confiar en servicios como Amazon Mechanical Turk o Crowdflower para solicitar a la multitud que anote datos.
- Esto puede resultar costoso.
- Es difícil garantizar la calidad de las anotaciones.

1.7. Estudio de caso: Clasificación de sentimientos en tweets

- En 2013, el taller de Evaluación Semántica (SemEval) organizó la tarea de .^Análisis de sentimientos en Twitter"[Nakov et al., 2013].
- La tarea se dividió en dos sub-tareas: el nivel de expresión y el nivel del mensaje.
- Nivel de expresión: se centró en determinar la polaridad del sentimiento de un mensaje según una entidad marcada dentro de su contenido.
- Nivel del mensaje: se debía determinar la polaridad según el mensaje en general.
- Los organizadores lanzaron conjuntos de datos de entrenamiento y prueba para ambas tareas [Nakov et al., 2013].

El sistema NRC

- El equipo que logró el mejor rendimiento en ambas tareas, entre 44 equipos, fue el equipo NRC-Canada [Mohammad et al., 2013].
- El equipo propuso un enfoque supervisado utilizando un clasificador SVM lineal con las siguientes características hechas a mano para representar los tweets:
 - 1. N-gramas de palabras.
 - 2. N-gramas de caracteres.
 - 3. Etiquetas de partes del discurso.
 - 4. Agrupaciones de palabras entrenadas con el método de agrupamiento de Brown [Brown et al., 1992].
 - 5. El número de palabras alargadas (palabras con un carácter repetido más de dos veces).
 - 6. El número de palabras con todas las letras en mayúscula.
 - 7. La presencia de emoticonos positivos o negativos.
 - 8. El número de negaciones individuales.
 - 9. El número de secuencias contiguas de puntos, signos de interrogación y signos de exclamación.
 - 10. Características derivadas de lexicones de polaridad [Mohammad et al., 2013]. Dos de estos lexicones se generaron utilizando el método PMI a partir de tweets anotados con hashtags y emoticonos.

1.8. Ingeniería de características y Aprendizaje Profundo

- Hasta 2014, la mayoría de los sistemas de PNL de última generación se basaban en ingeniería de características + modelos de aprendizaje automático superficiales (por ejemplo, SVM, HMM).
- Diseñar las características de un sistema de PNL ganador requiere mucho conocimiento específico del dominio.
- El sistema NRC se construyó antes de que el aprendizaje profundo se hiciera popular en PNL.
- Por otro lado, los sistemas de Aprendizaje Profundo se basan en redes neuronales para aprender automáticamente buenas representaciones.

Ingeniería de características y Aprendizaje Profundo

- El Aprendizaje Profundo proporciona resultados de última generación en la mayoría de las tareas de PNL.
- Grandes cantidades de datos de entrenamiento y máquinas GPU multicore más rápidas son clave en el éxito del aprendizaje profundo.
- Las redes neuronales y las incrustaciones de palabras desempeñan un papel fundamental en los modelos modernos de PNL.

Aprendizaje Profundo y Conceptos Lingüísticos

- Si los modelos de aprendizaje profundo pueden aprender representaciones automáticamente, ¿siguen siendo útiles los conceptos lingüísticos (por ejemplo, sintaxis, morfología)?
- Algunos defensores del aprendizaje profundo argumentan que estas propiedades lingüísticas inferidas y diseñadas manualmente no son necesarias, y que la red neuronal aprenderá estas representaciones intermedias (o equivalentes o mejores) por sí misma [Goldberg, 2016].
- Aún no hay un consenso definitivo al respecto.

- Goldberg cree que muchos de estos conceptos lingüísticos pueden ser inferidos por la red por sí misma si se le proporciona suficiente cantidad de datos.
- Sin embargo, en muchos otros casos no disponemos de suficientes datos de entrenamiento para la tarea que nos interesa, y en estos casos proporcionar a la red los conceptos generales más explícitos puede ser muy valioso.

1.9. Historia

Los orígenes de PLN se remontan a los años 50 con el famoso test de Alan Turing: una máquina será considerada inteligente cuando sea capaz de conversar con una persona sin que esta pueda determinar si está hablando con una máquina o un ser humano. A lo largo de su historia la disciplina ha tenido tres grandes períodos: 1) el racionalismo, 2) el empirismo, y 3) el aprendizaje profundo [Deng y Liu, 2018] que describimos a continuación.

El racionalismo abarca desde 1950 a 1990, donde las soluciones consistían en diseñar reglas manuales para incorporar mecanismos de conocimiento y razonamiento. Un ejemplo emblemático es el agente de conversación (o chatbot) ELIZA desarrollado por Joseph Weizenbaum que simulaba un psicoterapeuta rogeriano. Luego, a partir de la década de los 90s, el diseño de métodos estadísticos y de aprendizaje automático construidos sobre corpus llevan a PLN hacia un enfoque empirista. Las reglas ya no se construyen sino que se "aprenden" a partir de datos etiquetados. Algunos modelos representativos de esta época son los filtros de spam basados en modelos lineales, las cadenas de Markov ocultas para la extracción de categorías sintácticas y los modelos probabilísticos de IBM para la traducción automática. Estos modelos se caracterizaban por ser poco profundos en su estructura de parámetros y por depender de características manualmente diseñadas para representar la entrada.

A partir del año 2010, las redes neuronales artificiales, que son una familia de modelos de aprendizaje automático, comienzan a mostrar resultados muy superiores en varias tareas emblemáticas de PLN [Collobert et al., 2011]. La idea de estos modelos es representar la entrada (el texto) con una jerarquía de parámetros (o capas) que permiten encontrar representaciones idóneas para la tarea en cuestión, proceso al cual se refiere como "aprendizaje profundo". Estos modelos se caracterizan por tener muchos más parámetros que los modelos anteriores (superando la barrera del millón en algunos casos) y requerir grandes volúmenes de datos para su entrenamiento. Una gracia de estos modelos es que pueden ser pre-entrenados con texto no etiquetado como libros, Wikipedia, texto de redes sociales y de la Web para encontrar representaciones iniciales de palabras y oraciones (a lo que conocemos como word embeddings), las cuales pueden ser posteriormente adaptadas para la tarea objetivo donde sí se tienen datos etiquetados (Proceso conocido como transfer learning). Aquí destacamos modelos como Word2Vec [Mikolov 2013], BERT [Devlin 2018] y

GPT-3 [Brown 2020].

Este tipo de modelos ha ido perfeccionándose en los últimos años, llegando a obtener resultados cada vez mejores para casi todos los problemas del área [NLPProgress]. Sin embargo, este progreso no ha sido libre de controversias. El aumento exponencial en la cantidad de parámetros de cada nuevo modelo respecto a su predecesor, hace que los recursos computacionales y energéticos necesarios para construirlos sólo estén al alcance de unos pocos. Además, varios estudios han mostrado que estos modelos aprenden y reproducen los sesgos y prejuicios (ej: género, religión, racial) presentes en los textos a partir de los cuales se entrenan. Sin ir más lejos, la investigadora Timmnit Gebru fue despedida de Google cuando se le negó el permiso para publicar un artículo que ponía de manifiesto estos problemas [Bender 2021].

El progreso de la PNL se puede dividir en tres oleadas principales: 1) racionalismo, 2) empirismo y 3) aprendizaje profundo [Deng and Liu, 2018].

- 1950 1990 Racionalismo: se enfocaba en diseñar reglas hechas a mano para incorporar conocimiento y mecanismos de razonamiento en sistemas de PNL inteligentes (por ejemplo, ELIZA para simular a un psicoterapeuta Rogeriano, MARGIE para estructurar información del mundo real en ontologías de conceptos).
- 1991 2009 Empirismo: se caracteriza por la explotación de corpora de datos y modelos de aprendizaje automático y estadísticos (superficiales) (por ejemplo, Naive Bayes, HMMs, modelos de traducción IBM).
 - 2010 Aprendizaje Profundo: la ingeniería de características (considerada como un cuello de botella) se reemplaza con el aprendizaje de representaciones y/o redes neuronales profundas (por ejemplo, https://www.deepl.com/translator). Un artículo muy influyente en esta revolución: [Collobert et al., 2011].

1.10. Conclusiones

En este capítulo, hemos explorado el desafío de entender y producir lenguaje utilizando computadoras. El aprendizaje automático supervisado es una de las principales técnicas utilizadas para abordar este desafío. Además, hemos discutido las propiedades desafiantes del lenguaje, como la discreción, la composicionalidad y la dispersión. Estos aspectos nos muestran la complejidad inherente al procesamiento del lenguaje natural y nos desafían a encontrar soluciones efectivas.

¹Las fechas son aproximadas.

Capítulo 2

Modelo de Espacio Vectorial y Recuperación de Información

- ¿Cómo recupera un motor de búsqueda, como Duckduckgo o Google, los documentos relevantes a partir de una consulta dada?
- ¿Cómo puede una empresa procesar las reclamaciones dejadas por sus usuarios en sus portales web?

Estos problemas se estudian en los siguientes campos:

- Recuperación de Información: ciencia de buscar información en colecciones de documentos.
- Minería de Texto: extracción automática de conocimiento a partir de texto.

¡Ambos están estrechamente relacionados con el Procesamiento del Lenguaje Natural (NLP, por sus siglas en inglés)! (las fronteras entre estos campos no están claras).

2.1. Tokens y Tipos

Tokenización: la tarea de dividir una oración o documento en fragmentos llamados *tokens*.

Se pueden emplear transformaciones adicionales, como la eliminación de caracteres especiales (por ejemplo, puntuación), minúsculas, etc. [Manning et al., 2008].

Ejemplo Entrada: Me gustan los lenguajes humanos y los lenguajes de programación.

Tokens: [Me] [gustan] [los] [lenguajes] [humanos] [y] [los] [lenguajes] [de] [programación]

Tipos

- Un tipo es una clase de token que contiene una única secuencia de caracteres.
- Se obtienen identificando los tokens únicos dentro del documento.

Tipos para la oración anterior: [Me] [gustan] [los] [lenguajes] [humanos] [y] [de] [programación] El token *lenguajes* se repitió en la oración.

Extracción de Vocabulario

- Un término es un tipo normalizado.
- La normalización es el proceso de crear clases de equivalencia de diferentes *tipos*. Esto quedará claro en las siguientes diapositivas.
- El vocabulario V es el conjunto de términos (tokens únicos normalizados) dentro de una colección de documentos o corpus D.

Eliminación de stopwords

- Con el fin de reducir el tamaño del vocabulario y eliminar términos que no aportan mucha información, se eliminan los términos que ocurren con alta frecuencia en el corpus.
- Estos términos se llaman stopwords e incluyen artículos, pronombres, preposiciones y conjunciones. Ejemplo: [un, una, y, cualquier, tiene, hacer, no, hizo, el, en].

¡La eliminación de stopwords puede ser inconveniente en muchas tareas de procesamiento del lenguaje natural!

Ejemplo: No me gusta la pizza => pizza (se eliminaron "no", "mez "gusta")

Stemming Es un proceso de normalización de términos en el cual los términos se transforman a su raíz con el objetivo de reducir el tamaño del vocabulario. Se lleva a cabo aplicando reglas de reducción de palabras. Ejemplo: Algoritmo de Porter.

Ejemplo: d = Me gustan los lenguajes humanos y los lenguajes de programación => Me gustan los lenguaj y los program lenguaj¹

El vocabulario del documento d después de eliminar stopwords y realizar stemming:

¹http://9ol.es/porter_js_demo.html

termId	value
t1	human
t2	languag
t3	program

Lematización

- Otra estrategia de normalización de términos.
- También transforma las palabras en sus raíces.
- Realiza un análisis morfológico utilizando diccionarios de referencia (tablas de búsqueda) para crear clases de equivalencia entre tipos.
- Por ejemplo, para el token estudios, una regla de stemming devolvería el término estudi, mientras que a través de la lematización obtendríamos el término study².

2.1.1. Ley de Zipf

- La Ley de Zipf, propuesta por George Kingsley Zipf en [Zipf, 1935], es una ley empírica sobre la frecuencia de los términos dentro de una colección de documentos (corpus).
- Establece que la frecuencia f de un término en un corpus es inversamente proporcional a su posición r en una tabla de frecuencia ordenada:

$$f = \frac{cf}{r^{\beta}} \tag{2.1}$$

- Donde cf es una constante dependiente de la colección y $\beta > 0$ es un factor de decaimiento.
- Si $\beta = 1$, entonces f sigue exactamente la Ley de Zipf; de lo contrario, sigue una distribución similar a la de Zipf.
- La ley se relaciona con el principio del mínimo esfuerzo. A menudo utilizamos pocas palabras para expresar ideas.
- La Ley de Zipf es un tipo de distribución de ley de potencia (distribuciones de cola larga).
- Si trazamos un gráfico de log-log, obtenemos una línea recta con una pendiente de $-\beta$.
- Enumerar las palabras más frecuentes de un corpus se puede utilizar para construir una lista de *stopwords*.

Figura 2.1: Ley de Zipf

2.1.2. Listas de publicaciones y el índice invertido

Sea ${\cal D}$ una colección de documentos y ${\cal V}$ el vocabulario de todos los términos extraídos de la colección:

- La lista de publicaciones de un término es la lista de todos los documentos donde el término aparece al menos una vez. Los documentos se identifican por sus identificadores.
- Un índice invertido es una estructura de datos tipo diccionario que mapea los términos $t_i \in V$ con sus listas de publicaciones correspondientes.

< término >→< idDocumento >*

Brutus
$$\longrightarrow$$
 1 \longrightarrow 2 \longrightarrow 45 \longrightarrow 173 \longrightarrow 174
Calpurnia \longrightarrow 2 \longrightarrow 31 \longrightarrow 54 \longrightarrow 101

Figura 2.2: Índice invertido

2.1.3. Motores de búsqueda web

Un motor de búsqueda es un sistema de recuperación de información diseñado para buscar información en la web (satisfacer necesidades de información) [Manning et al., 2008]. Sus componentes básicos son:

Rastreador: un robot que navega por la web según una estrategia definida. Por lo general, comienza navegando por un conjunto de sitios web iniciales y continúa navegando a través de sus enlaces.

- Indexador: se encarga de mantener un índice invertido con el contenido de las páginas recorridas por el rastreador.
- Procesador de consultas: se encarga de procesar las consultas de los usuarios y buscar en el índice los documentos más relevantes para una consulta.
- Función de clasificación: la función utilizada por el procesador de consultas para clasificar los documentos indexados en la colección por relevancia según una consulta.
- Interfaz de usuario: recibe la consulta como entrada y devuelve los documentos clasificados por relevancia.

Figura 2.3: Los diversos componentes de un motor de búsqueda web [Manning et al., 2008].

2.2. El modelo de espacio vectorial

- Para clasificar consultas o medir la similitud entre dos documentos, necesitamos una métrica de similitud.
- Los documentos pueden ser representados como vectores de términos, donde cada término es una dimensión del vector [Salton et al., 1975].
- Documentos con diferentes palabras y longitudes residirán en el mismo espacio vectorial.
- Este tipo de representaciones se llaman *Bolsa de Palabras* (Bag of Words).
- En las representaciones de bolsa de palabras, se pierde el orden de las palabras y la estructura lingüística de una oración.

 El valor de cada dimensión es un peso que representa la relevancia del término t_i en el documento d.

$$d_i \to \overrightarrow{d_i} = (w(t_1, d_i), ..., w(t_{|V|}, d_i))$$
 (2.2)

¿Cómo podemos modelar la información que aporta un término a un documento?

Frecuencia de Término - Frecuencia Inversa de Documento

- Sea $tf_{i,j}$ la frecuencia del término t_i en el documento d_i .
- Un término que ocurre 10 veces debería proporcionar más información que uno que ocurre solo una vez.
- ¿Qué ocurre cuando tenemos documentos que son mucho más largos que otros?
- Podemos normalizar dividiendo por la frecuencia máxima del término en el documento.

$$ntf_{i,j} = \frac{tf_{i,j}}{\text{máx}_i(tf_{i,j})}$$

- ¿Un término que ocurre en muy pocos documentos proporciona más o menos información que uno que ocurre varias veces?
- Por ejemplo, el documento El respetado alcalde de Pelotillehue. El término Pelotillehue ocurre en menos documentos que el término alcalde, por lo que debería ser más descriptivo.
- Sea N el número de documentos en la colección y n_i el número de documentos que contienen el término t_i , definimos la frecuencia inversa de documento (idf) de t_i de la siguiente manera:

$$idf_{t_i} = \log_{10} \left(\frac{N}{n_i} \right)$$

- Un término que aparece en todos los documentos tendría idf=0, y uno que aparece en el $10\,\%$ de los documentos tendría idf=1.
- El modelo de puntuación tf-idf combina las puntuaciones de tf e idf, y resulta en los siguientes pesos w para un término en un documento:

$$w(t_i, d_j) = t f_i \times \log_{10} \left(\frac{N}{n_i}\right)$$

Las consultas de los motores de búsqueda también pueden ser modeladas como vectores. Sin embargo, en promedio, las consultas suelen tener entre 2 y 3 términos. Para evitar tener demasiadas dimensiones nulas, los vectores de consulta pueden suavizarse de la siguiente manera:

$$w(t_i, d_j) = (0.5 + 0.5 \times t f_{i,j}) \log_{10} \left(\frac{N}{n_i}\right)$$

2.2.1. Similitud entre vectores

- Representar consultas y documentos como vectores permite calcular su similitud.
- Un enfoque podría ser utilizar la distancia euclidiana.
- El enfoque común es calcular el coseno del ángulo entre los dos vectores.
- Si ambos documentos son iguales, el ángulo sería 0 y su coseno sería 1.
 Por otro lado, si son ortogonales, el coseno es 0.
- La similitud del coseno se calcula de la siguiente manera:

$$\text{similitud del coseno}(\vec{d1}, \vec{d2}) = \frac{\vec{d1} \cdot \vec{d2}}{|\vec{d1}| \times |\vec{d2}|} = \frac{\sum_{i=1}^{|V|} (w(t_i, d_1) \times w(t_i, d_2))}{\sqrt{\sum_{i=1}^{|V|} w(t_i, d_1)^2} \times \sqrt{\sum_{i=1}^{|V|} w(t_i, d_2)^2}}$$

- Esto se llama incorrectamente "distancia del coseno". En realidad, es una métrica de similitud.
- Observa que la similitud del coseno normaliza los vectores por su norma euclidiana $||\vec{d}||_2$.

Figura 2.4: Similitud del coseno.

Ejercicio

- Supongamos que tenemos 3 documentos formados a partir de las siguientes secuencias de términos: $d_1 \rightarrow t_4t_3t_1t_4$ $d_2 \rightarrow t_5t_4t_2t_3t_5$ $d_3 \rightarrow t_2t_1t_4t_4$
- Construye una matriz término-documento de dimensiones 5×3 utilizando pesos simples de tf-idf (sin normalización).
- Recomendamos que primero construyas una lista con el número de documentos en los que aparece cada término (útil para calcular los valores de *idf*).
- Luego, calcula los valores de idf para cada término.
- lacktriangle Rellena las celdas de la matriz con los valores de tf-idf.
- ¿Cuál es el documento más cercano a d_1 ?

	d1	d2	d3
t1	0.176	0.000	0.176
t2	0.000	0.176	0.176
t3	0.176	0.176	0.000
t4	0.000	0.000	0.000
t5	0.000	0.954	0.000

Cuadro 2.1: Matriz tf-idf

2.3. Agrupamiento de Documentos

- ¿Cómo podemos agrupar documentos que son similares entre sí?
- El agrupamiento es el proceso de agrupar documentos que son similares entre sí.
- Cada grupo de documentos se llama cluster o grupo.
- En el agrupamiento, intentamos identificar grupos de documentos en los que la similitud entre documentos en el mismo grupo se maximiza y la similitud de documentos en diferentes grupos se minimiza.
- El agrupamiento de documentos permite identificar temas en un corpus y reducir el espacio de búsqueda en un motor de búsqueda, es decir, el índice invertido se organiza según los grupos.
- K-means es un algoritmo de agrupamiento simple que recibe el número de grupos k como parámetro.

Figura 2.5: Conjunto de documentos donde los grupos se pueden identificar claramente.

- El algoritmo se basa en la idea de centroide, que es el vector promedio de los documentos que pertenecen al mismo grupo.
- Sea S un conjunto de vectores bidimensionales 3, 6, 1, 2, 5, 1, el centroide de S es (3+1+5)/3, (6+2+1)/3=3, 3.

2.3.1. K-Means

- 1. Comenzamos con *k* centroides aleatorios.
- 2. Calculamos la similitud entre cada documento y cada centroide.
- 3. Asignamos cada documento a su centroide más cercano formando un grupo.
- Se recalculan los centroides de acuerdo a los documentos asignados a ellos.
- 5. Este proceso se repite hasta la convergencia.

2.4. Conclusiones y Conceptos Adicionales

- Representar documentos como vectores es fundamental para calcular similitudes entre pares de documentos.
- Los vectores de "bag of wordsçarecen de estructura lingüística.
- Los vectores de "bag of words"son de alta dimensionalidad y dispersos.
- Los n-gramas de palabras pueden ayudar a capturar expresiones de múltiples palabras (por ejemplo, New York => new_york)
- Los sistemas modernos de recuperación de información van más allá de la similitud de vectores (PageRank, Retroalimentación de relevancia, Minería de registros de consultas, Grafo de conocimiento de Google, Aprendizaje automático).

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
  1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
  2 for k \leftarrow 1 to K
  3 do \vec{\mu}_k \leftarrow \vec{s}_k
  4 while stopping criterion has not been met
   5 do for k \leftarrow 1 to K
               do \omega_k \leftarrow \{\}
   6
               for n \leftarrow 1 to N
   7
  8
               \mathbf{do}\ j \leftarrow \arg\min_{j^l} |\vec{\mu}_{j^l} - \vec{x}_n|
               \omega_j \leftarrow \omega_j \cup \{\vec{x}_n\} (reassignment of vectors) for k \leftarrow 1 to K
   9
 10
11 do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
12 return \{\vec{\mu}_1, \dots, \vec{\mu}_K\}
```

Figura 2.6: Algoritmo K-means

• La recuperación de información y la minería de textos se preocupan menos por la estructura lingüística y más por producir algoritmos rápidos y escalables [Eisenstein, 2018].

Capítulo 3

Modelos de Lenguaje Probabilísticos

3.1. El Problema del Modelado del Lenguaje

- Tenemos un vocabulario (finito), digamos $V = \{el, un, hombre, telescopio, Beckham, dos, . . . \}$
- Tenemos un conjunto (infinito) de cadenas, V^* .
- Por ejemplo:
 - el STOP
 - un STOP
 - el fan STOP
 - el fan vio a Beckham STOP
 - el fan vio vio STOP
 - el fan vio a Beckham jugar para el Real Madrid STOP
- Donde STOP es un símbolo especial que indica el final de una oración.
- Tenemos una muestra de entrenamiento de ejemplos de oraciones en inglés.
- Necesitamos "aprender" una distribución de probabilidad *p*.
- *p* es una función que satisface:

$$\sum_{x \in V^*} p(x) = 1$$

$$p(x) \geq 0 \quad \text{para todo } x \in V^*$$

• Ejemplos de probabilidades asignadas a las oraciones:

$$p(\text{el STOP}) = 10^{-12}$$

$$p(\text{el fan STOP}) = 10^{-8}$$

$$p(\text{el fan vio a Beckham STOP}) = 2 \times 10^{-8}$$

$$p(\text{el fan vio vio STOP}) = 10^{-15}$$

 $p(el fan vio a Beckham jugar para el Real Madrid STOP) = 2 \times 10^{-9}$

- Idea 1: El modelo asigna una probabilidad más alta a las oraciones fluidas (aquellas que tienen sentido y son gramaticalmente correctas).
- Idea 2: Estimar esta función de probabilidad a partir del texto (corpus).
- El modelo de lenguaje ayuda a los modelos de generación de texto a distinguir entre buenas y malas oraciones.

3.1.1. ¿Por qué querríamos hacer esto?

- El reconocimiento del habla fue la motivación original.
- Considera las oraciones: 1) reconocer el habla y 2) arruinar una playa bonita.
- Estas dos oraciones suenan muy similares al ser pronunciadas, lo que dificulta que los sistemas automáticos de reconocimiento del habla las transcriban con precisión.
- Cuando el sistema de reconocimiento del habla analiza la entrada de audio e intenta transcribirlo, tiene en cuenta las probabilidades del modelo de lenguaje para determinar la interpretación más probable.
- El modelo de lenguaje favorecería p(reconocer el habla) sobre p(arruinar una playa bonita).
- Esto se debe a que la primera oración es más común y debería ocurrir con más frecuencia en el corpus de entrenamiento.

- Al incorporar modelos de lenguaje, los sistemas de reconocimiento del habla pueden mejorar
 - la precisión al seleccionar la oración que se alinea mejor con los patrones lingüísticos y el contexto, incluso cuando se enfrentan a alternativas que suenan similar.
- Problemas relacionados son el reconocimiento óptico de caracteres y el reconocimiento de escritura a mano.
- De hecho, los modelos de lenguaje son útiles en cualquier tarea de procesamiento del lenguaje natural que involucre la generación de lenguaje (por ejemplo, traducción automática, resumen, chatbots).
- Las técnicas de estimación desarrolladas para este problema serán MUY útiles para otros problemas en el procesamiento del lenguaje natural.

3.1.2. Los Modelos de Lenguaje son Generativos

- Los modelos de lenguaje pueden generar oraciones al muestrear secuencialmente a partir de las probabilidades.
- Esto es análogo a extraer bolas (palabras) de una urna donde sus tamaños son proporcionales a sus frecuencias relativas.
- Alternativamente, uno siempre podría extraer la palabra más probable, lo cual es equivalente a predecir la siguiente palabra.

3.2. ¿Por qué los modelos de lenguaje son importantes?

Los modelos de lenguaje son fundamentales en el procesamiento del lenguaje natural. Ayudan a abordar desafíos como el reconocimiento del habla, la transcripción automática y la generación de texto. Al comprender y estimar la probabilidad de ocurrencia de las secuencias de palabras, los modelos de

lenguaje mejoran la precisión y la calidad en diversas aplicaciones de procesamiento del lenguaje natural.

Los modelos de lenguaje permiten a los sistemas de reconocimiento del habla distinguir entre diferentes interpretaciones de palabras o frases que suenan similar pero tienen significados distintos. Esto es especialmente importante en situaciones en las que la ambigüedad podría llevar a una interpretación errónea. Al utilizar las probabilidades del modelo de lenguaje, los sistemas de reconocimiento del habla pueden seleccionar la interpretación más probable y coherente en función del contexto.

Además, los modelos de lenguaje son esenciales en tareas generativas, como la traducción automática, la generación de resúmenes y la creación de chatbots. Estos modelos ayudan a generar texto coherente y natural al muestrear secuencialmente palabras de acuerdo con sus probabilidades estimadas.

Las técnicas desarrolladas para el problema del modelado del lenguaje son también aplicables a otros desafíos en el procesamiento del lenguaje natural. Los avances en la estimación de probabilidades y en la generación de texto tienen un impacto significativo en campos como la inteligencia artificial, la lingüística computacional y la comunicación basada en texto.

En resumen, los modelos de lenguaje desempeñan un papel crucial en la comprensión y generación de texto, mejorando la precisión, la coherencia y la calidad en diversas aplicaciones de procesamiento del lenguaje natural. Son herramientas fundamentales para avanzar en la comprensión y la capacidad de interacción de las máquinas con el lenguaje humano.

3.2.1. Un Método Ingenuo

- Un método muy ingenuo para estimar la probabilidad de una oración es contar las apariciones de la oración en los datos de entrenamiento y dividirlo por el número total de oraciones de entrenamiento (N) para estimar la probabilidad.
- ullet Tenemos N oraciones de entrenamiento.
- Para cualquier oración $x_1, x_2, ..., x_n$, $c(x_1, x_2, ..., x_n)$ es el número de veces que se ha visto la oración en nuestros datos de entrenamiento.
- Una estimación ingenua:

$$p(x1, x2, \dots, xn) = \frac{c(x_1, x_2, \dots, x_n)}{N}$$

- Problema: A medida que el número de posibles oraciones crece de manera exponencial con la longitud de las oraciones y el tamaño del vocabulario, se vuelve cada vez más improbable que una oración específica aparezca en los datos de entrenamiento.
- En consecuencia, muchas oraciones tendrán una probabilidad cero según el modelo ingenuo, lo que lleva a una mala generalización.

3.3. Procesos de Markov

- Considera una secuencia de variables aleatorias X_1, X_2, \dots, X_n .
- Cada variable aleatoria puede tomar cualquier valor en un conjunto finito
 V.
- Por ahora, asumimos que la longitud n está fija (por ejemplo, n = 100).
- Nuestro objetivo: modelar $P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$

Procesos de Markov de primer orden Un proceso de Markov de primer orden asume que la probabilidad de que una variable aleatoria tome un valor depende únicamente del valor inmediatamente anterior en la secuencia. En el contexto del modelado del lenguaje, esto significa que la probabilidad de una palabra en una oración depende solo de la palabra anterior. La probabilidad conjunta de una secuencia de palabras se calcula multiplicando las probabilidades condicionales de las palabras sucesivas dado su predecesor inmediato. Esta es la suposición de Markov de primer orden:

$$P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1}) = P(X_i = x_i | X_{i-1} = x_{i-1})$$

Procesos de Markov de segundo orden Un proceso de Markov de segundo orden amplía la suposición de Markov de primer orden y considera el valor de dos variables anteriores en la secuencia. En el modelado del lenguaje, esto significa que la probabilidad de una palabra en una oración depende de las dos palabras anteriores. La probabilidad conjunta de una secuencia de palabras se calcula multiplicando las probabilidades condicionales de las palabras sucesivas dado sus dos predecesores inmediatos. La suposición de Markov de segundo orden es la siguiente:

$$P(X_i = x_i | X_1 = x_1, \dots, X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1}) = P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

3.3.1. Modelado de secuencias de longitud variable

Si queremos modelar secuencias de longitud variable, podemos considerar que la longitud de la secuencia, n, también es una variable aleatoria. Una forma simple de abordar esto es siempre definir $X_n = \text{STOP}$, donde "STOP. es un símbolo especial que marca el final de la secuencia. Luego, podemos usar un proceso de Markov como antes para modelar la probabilidad conjunta de las palabras en la secuencia:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

Aquí, asumimos que $x_0 = x_{-1} = *$ por conveniencia, donde "*. es un símbolo especial de ïnicio".

3.4. Modelos de lenguaje trigram

Un modelo de lenguaje trigram consiste en:

- 1. Un conjunto finito V de palabras.
- 2. Un parámetro q(w|u,v) para cada trigram u,v,w donde $w \in V \cup \{\text{STOP}\}$ y $u,v \in V \cup \{*\}.$

Para cualquier oración $x_1 \dots x_n$, donde $x_i \in V$ para $i = 1 \dots (n-1)$ y $x_n =$ STOP, la probabilidad de la oración según el modelo de lenguaje trigram es:

$$p(x_1 \dots x_n) = \prod_{i=1}^n q(x_i | x_{i-2}, x_{i-1})$$

Aquí, definimos $x_0 = x_{-1} = *$ por conveniencia.

Un ejemplo Para la oración "the dog barks STOP", tendríamos:

 $p(\mathsf{the\ dog\ barks\ STOP}) = q(\mathsf{the}|*,*) \times q(\mathsf{dog}|*,\mathsf{the}) \times q(\mathsf{barks}|\mathsf{the,\ dog}) \times q(\mathsf{STOP}|\mathsf{dog,\ barks})$

3.4.1. El problema de estimación trigram

El problema de estimación restante es determinar los valores de los parámetros $q(w_i|w_{i-2},w_{i-1})$. Por ejemplo:

$$q(\text{laughs}|\text{the, dog})$$

Una estimación natural (la .ºstimación de máxima verosimilitud") es la siguiente:

$$q(w_i|w_{i-2},w_{i-1}) = \frac{\mathsf{Count}(w_{i-2},w_{i-1},w_i)}{\mathsf{Count}(w_{i-2},w_{i-1})}$$

Por ejemplo:

$$q(\text{laughs}|\text{the, dog}) = \frac{\text{Count}(\text{the, dog, laughs})}{\text{Count}(\text{the, dog})}$$

Problemas de datos dispersos Una estimación natural (la .estimación de máxima verosimilitud") es la siguiente:

$$q(w_i|w_{i-2}, w_{i-1}) = \frac{\text{Count}(w_{i-2}, w_{i-1}, w_i)}{\text{Count}(w_{i-2}, w_{i-1})}$$

$$q(\text{laughs}|\text{the, dog}) = \frac{\text{Count}(\text{the, dog, laughs})}{\text{Count}(\text{the, dog})}$$

- Supongamos que el tamaño del vocabulario es N=|V|, entonces hay N^3 parámetros en el modelo.
- Por ejemplo, si N=20,000, entonces $20,000^3=8\times 10^{12}$ parámetros.

3.5. Evaluación de un modelo de lenguaje: Perplejidad

- Tenemos algunos datos de prueba, m oraciones: $s_1, s_2, s_3, ..., s_m$
- Podemos analizar la probabilidad bajo nuestro modelo $\prod_{i=1}^{m} p(s_i)$. O más convenientemente, la probabilidad logarítmica:

$$\log\left(\prod_{i=1}^{m} p(s_i)\right) = \sum_{i=1}^{m} \log p(s_i)$$

• De hecho, la medida de evaluación habitual es la perplejidad:

Perplejidad =
$$2^{-l}$$
 donde $l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i)$

■ *M* es el número total de palabras en los datos de prueba.

Algo de intuición sobre la perplejidad

• Supongamos que tenemos un vocabulario V, y N=|V|+1, y un modelo que predice:

$$q(w|u,v) = \frac{1}{N} \quad \text{para todo } w \in V \cup \{\text{STOP}\}, \text{ para todo } u,v \in V \cup \{*\}$$

Es fácil calcular la perplejidad en este caso:

$$\mathsf{Perplejidad} = 2^{-l} \quad \mathsf{donde} \quad l = \log \frac{1}{N} \Rightarrow \mathsf{Perplejidad} = N$$

- La perplejidad se puede ver como una medida del "factor de ramificación. efectivo.
- **Demostración:** Supongamos que tenemos m oraciones de longitud n en el corpus, y M es la cantidad de tokens en el corpus, $M = m \cdot n$.
- Consideremos el logaritmo (base 2) de la probabilidad de una oración $s = w_1 w_2 \dots w_n$ bajo el modelo:

$$\log p(s) = \log \prod_{i=1}^{n} q(w_i | w_{i-2}, w_{i-1}) = \sum_{i=1}^{n} \log q(w_i | w_{i-2}, w_{i-1})$$

■ Dado que cada $q(w_i|w_{i-2},w_{i-1})$ es igual a $\frac{1}{N}$, tenemos:

$$\log p(s) = \sum_{i=1}^{n} \log \frac{1}{N} = n \cdot \log \frac{1}{N} = -n \cdot \log N$$

$$l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i) = \frac{1}{M} \sum_{i=1}^{m} -n \cdot \log N = \frac{1}{M} \cdot -m \cdot n \cdot \log N = -\log N$$

• Por lo tanto, la perplejidad está dada por:

Perplejidad =
$$2^{-l} = 2^{-(-\log N)} = N$$

3.5.1. El trade-off entre sesgo y varianza

En el contexto de los modelos de lenguaje, el trade-off entre sesgo y varianza se refiere a la compensación entre la simplicidad del modelo y su capacidad para capturar la complejidad y la variabilidad de los datos de lenguaje.

- Modelos más simples, como los modelos de n-gramas de orden inferior, tienen un sesgo más alto pero una varianza más baja. Estos modelos asumen independencia condicional entre las palabras y simplifican la estructura del lenguaje.
- Modelos más complejos, como los modelos basados en redes neuronales, tienen una varianza más alta pero un sesgo más bajo. Estos modelos pueden capturar relaciones más complejas entre las palabras, pero también son más propensos a sobreajustar los datos de entrenamiento y tener dificultades para generalizar a nuevas muestras.

3.5.2. Estimación de máxima verosimilitud y overfitting

La estimación de máxima verosimilitud (MLE) es una técnica común para estimar los parámetros de un modelo de lenguaje. Sin embargo, los modelos de lenguaje basados en MLE pueden sufrir de overfitting (sobreajuste) a los datos de entrenamiento.

- Cuando se entrena un modelo de lenguaje con MLE, se maximiza la probabilidad de los datos de entrenamiento. Esto puede llevar a la asignación de probabilidades altas a secuencias específicas que aparecen en los datos de entrenamiento, incluso si esas secuencias son poco probables en la distribución real del lenguaje.
- Como resultado, el modelo puede tener un rendimiento deficiente en datos de prueba que contienen secuencias diferentes a las del conjunto de entrenamiento. Esto se debe a que el modelo se ha sobreajustado a los datos de entrenamiento y ha capturado sus características específicas en lugar de aprender patrones más generales del lenguaje.

3.5.3. Técnicas de regularización

Para abordar el problema del overfitting en modelos de lenguaje, se utilizan diversas técnicas de regularización. Estas técnicas ayudan a reducir la varianza del modelo y mejorar su capacidad de generalización.

Algunas técnicas comunes de regularización para modelos de lenguaje incluyen:

- Suavizado de Laplace (Laplace smoothing): Se agrega una cantidad pequeña a todas las cuentas de n-gramas para evitar la asignación de una probabilidad cero a n-gramas no observados en los datos de entrenamiento.
- Suavizado de interpolación (Interpolation smoothing): Se combina la distribución de probabilidad estimada por un modelo de n-gramas con las distribuciones estimadas por modelos de orden inferior. Esto permite incorporar información de n-gramas de orden inferior y reduce la varianza del modelo.
- Modelos de interpolación de Kneser-Ney (Kneser-Ney interpolation models): Estos modelos utilizan una técnica de suavizado específica (Kneser-Ney) que considera la frecuencia de unigramas y la frecuencia de n-gramas en context

os específicos para asignar probabilidades a n-gramas no observados.

Regularización de peso máximo (Weighted maximum likelihood regularization): Se aplica una regularización que reduce los pesos de las cuentas de n-gramas más frecuentes. Esto ayuda a reducir la varianza y mejorar el rendimiento en datos de prueba.

Estas técnicas de regularización ayudan a controlar la varianza del modelo y a mitigar el overfitting, permitiendo un mejor equilibrio entre el sesgo y la varianza y mejorando la generalización a nuevas muestras.

3.6. Interpolación Lineal

■ Tomamos nuestra estimación $q(w_i|w_{i-2},w_{i-1})$ como:

$$q(w_i|w_{i-2},w_{i-1}) = \lambda_1 \cdot q_{\mathsf{ML}}(w_i|w_{i-2},w_{i-1}) + \lambda_2 \cdot q_{\mathsf{ML}}(w_i|w_{i-1}) + \lambda_3 \cdot q_{\mathsf{ML}}(w_i)$$
 donde $\lambda_1 + \lambda_2 + \lambda_3 = 1$, y $\lambda_i \geq 0$ para todo i .

• Nuestra estimación define correctamente una distribución (definimos V' =

 $V \cup \{STOP\}$):

$$\begin{split} &\sum_{w \in V'} q(w|u,v) \\ &= \sum_{w \in V'} \left[\lambda_1 \cdot q_{\text{ML}}(w|u,v) + \lambda_2 \cdot q_{\text{ML}}(w|v) + \lambda_3 \cdot q_{\text{ML}}(w) \right] \\ &= \lambda_1 \sum_{w} q_{\text{ML}}(w|u,v) + \lambda_2 \sum_{w} q_{\text{ML}}(w|v) + \lambda_3 \sum_{w} q_{\text{ML}}(w) \\ &= \lambda_1 + \lambda_2 + \lambda_3 = 1 \end{split}$$

■ También podemos demostrar que $q(w|u,v) \ge 0$ para todo $w \in V'$.

3.7. Estimación de los Valores λ

- Reservamos parte del conjunto de entrenamiento como datos de validación.
- Definimos $c'(w_1, w_2, w_3)$ como el número de veces que se observa el trigram (w_1, w_2, w_3) en el conjunto de validación.
- Elegimos λ_1 , λ_2 , λ_3 para maximizar:

$$L(\lambda_1, \lambda_2, \lambda_3) = \sum_{w_1, w_2, w_3} c'(w_1, w_2, w_3) \log q(w_3 | w_1, w_2)$$

sujetos a $\lambda_1 + \lambda_2 + \lambda_3 = 1$, y $\lambda_i \ge 0$ para todo i, donde

$$q(w_i|w_{i-2},w_{i-1}) = \lambda_1 \cdot q_{\text{ML}}(w_i|w_{i-2},w_{i-1}) + \lambda_2 \cdot q_{\text{ML}}(w_i|w_{i-1}) + \lambda_3 \cdot q_{\text{ML}}(w_i)$$

3.8. Métodos de Descuento

- Consideremos los siguientes recuentos y estimaciones de máxima verosimilitud:
- Las estimaciones de máxima verosimilitud son altas, especialmente para los elementos con recuentos bajos.
- Definimos los recuentos "descontados" de la siguiente manera:

$$Recuento^*(x) = Recuento(x) - 0.5$$

Las nuevas estimaciones se basan en los recuentos descontados.

Frase	Recuento	$q_{\mathbf{ML}}(w_i w_{i-1})$
the	48	
the, dog	15	15/48
the, woman	11	11/48
the, man	10	10/48
the, park	5	5/48
the, job	2	2/48
the, telescope	1	1/48
the, manual	1	1/48
the, afternoon	1	1/48
the, country	1	1/48
the, street	1	1/48

Frase	Recuento	$Recuento^*(\mathbf{x})$	$\mathbf{q}_{\text{ML}}(\mathbf{w_i} \mathbf{w_{i-1}})$
the	48		
the, dog	15	14.5	14,5/48
the, woman	11	10.5	10,5/48
the, man	10	9.5	9,5/48
the, park	5	4.5	4,5/48
the, job	2	1.5	1,5/48
the, telescope	1	0.5	0,5/48
the, manual	1	0.5	0,5/48
the, afternoon	1	0.5	0,5/48
the, country	1	0.5	0,5/48
the, street	1	0.5	0,5/48

• Ahora tenemos cierta "masa de probabilidad faltante":

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\text{Recuento}^*(w_{i-1}, w)}{\text{Recuento}(w_{i-1})}$$

Por ejemplo, en nuestro caso:

$$\alpha(\text{the}) = \frac{10 \times 0.5}{48} = \frac{5}{48}$$

3.8.1. Modelos de Katz Back-Off (Bigramas)

• Para un modelo de bigrama, definimos dos conjuntos:

$$A(w_{i-1}) = \{w : \mathsf{Count}(w_{i-1}, w) > 0\}$$

 $B(w_{i-1}) = \{w : \mathsf{Count}(w_{i-1}, w) = 0\}$

• Un modelo de bigrama:

$$q_{\text{BO}}(w_i|w_{i-1}) = \begin{cases} \frac{\text{Count}^*(w_{i-1}, w_i)}{\text{Count}(w_{i-1})} & \text{si } w_i \in A(w_{i-1}) \\ \frac{\alpha(w_{i-1})q_{\text{ML}}(w_i)}{\sum_{w \in B(w_{i-1})} q_{\text{ML}}(w)} & \text{si } w_i \in B(w_{i-1}) \end{cases}$$

Donde:

$$\alpha(w_{i-1}) = 1 - \sum_{w \in A(w_{i-1})} \frac{\text{Count}^*(w_{i-1}, w)}{\text{Count}(w_{i-1})}$$

• Para un modelo de trigramas, primero definimos dos conjuntos:

$$A(w_{i-2}, w_{i-1}) = \{w : \mathsf{Count}(w_{i-2}, w_{i-1}, w) > 0\}$$

$$B(w_{i-2}, w_{i-1}) = \{w : \mathsf{Count}(w_{i-2}, w_{i-1}, w) = 0\}$$

Un modelo de trigramas se define en términos del modelo de bigramas:

$$q_{\text{BO}}(w_i|w_{i-2},w_{i-1}) = \begin{cases} \frac{\text{Count}^*(w_{i-2},w_{i-1},w_i)}{\text{Count}(w_{i-2},w_{i-1})} & \text{si } w_i \in A(w_{i-2},w_{i-1}) \\ \frac{\alpha(w_{i-2},w_{i-1})q_{\text{BO}}(w_i|w_{i-1})}{\sum_{w \in B(w_{i-2},w_{i-1})}q_{\text{BO}}(w|w_{i-1})} & \text{si } w_i \in B(w_{i-2},w_{i-1}) \end{cases}$$

■ Donde:

$$\alpha(w_{i-2},w_{i-1}) = 1 - \sum_{w \in A(w_{i-2},w_{i-1})} \frac{\mathsf{Count}^*(w_{i-2},w_{i-1},w)}{\mathsf{Count}(w_{i-2},w_{i-1})}$$

Los modelos de Katz Back-Off son una técnica utilizada en modelos de lenguaje para abordar el desafío de la escasez de datos. Estos modelos permiten estimar las probabilidades condicionales de palabras en función de contextos más pequeños cuando no hay suficientes datos disponibles para estimar directamente las probabilidades completas.

En un modelo de bigrama, se define el conjunto $A(w_{i-1})$ como el conjunto de palabras w para las cuales la frecuencia de aparición de la secuencia (w_{i-1},w) es mayor que cero, es decir, $\operatorname{Count}(w_{i-1},w)>0$. Por otro lado, el conjunto $B(w_{i-1})$ se define como el conjunto de palabras w para las cuales la frecuencia de aparición de la secuencia (w_{i-1},w) es igual a cero, es decir, $\operatorname{Count}(w_{i-1},w)=0$.

En un modelo de bigrama, la probabilidad condicional $q_{\mathrm{BO}}(w_i|w_{i-1})$ se calcula de la siguiente manera: si la palabra w_i está en el conjunto $A(w_{i-1})$, se utiliza una estimación basada en las frecuencias relativas de la secuencia (w_{i-1}, w_i) dividida por la frecuencia de w_{i-1} . Por otro lado, si w_i está en el conjunto $B(w_{i-1})$, se utiliza una estimación suavizada que combina una constante de suavizado $\alpha(w_{i-1})$ y las probabilidades condicionales de máxima verosimilitud $q_{\mathrm{ML}}(w_i)$ de las palabras en el conjunto $B(w_{i-1})$.

La constante de suavizado $\alpha(w_{i-1})$ se calcula restando la suma de las frecuencias relativas de las palabras en $A(w_{i-1})$ de uno.

En el caso de un modelo de trigramas, se definen conjuntos similares $A(w_{i-2},w_{i-1})$ y $B(w_{i-2},w_{i-1})$ para las secuencias trigramas. La probabilidad condicional $q_{\mathrm{BO}}(w_i|w_{i-2},w_{i-1})$ en un modelo de trigramas se calcula utilizando el modelo de bigrama correspondiente y aplicando la misma lógica de suavizado basado en los conjuntos $A(w_{i-2},w_{i-1})$ y $B(w_{i-2},w_{i-1})$.

Estos modelos de Katz Back-Off permiten aproximar las probabilidades condicionales en situaciones donde la información disponible es limitada, al aprovechar información de contextos más pequeños cuando no se dispone de suficientes datos para estimaciones directas.

3.9. Resumen

- La derivación de probabilidades en modelos de lenguaje probabilísticos implica tres pasos:
 - 1. Expandir $p(w_1, w_2, \dots, w_n)$ usando la regla de la Cadena.
 - 2. Aplicar las Asunciones de Independencia de Markov $p(w_i|w_1,w_2,\ldots,w_{i-2},w_{i-1})=p(w_i|w_{i-2},w_{i-1}).$
 - 3. Suavizar las estimaciones utilizando conteos de orden inferior.
- Otros métodos para mejorar los modelos de lenguaje incluyen:
 - Introducir variables latentes para representar temas, conocidos como modelos de temas. [Blei et al., 2003]
 - Reemplazar $p(w_i|w_1,w_2,\ldots,w_{i-2},w_{i-1})$ con una red neuronal predictiva y una çapa de embedding"para representar mejor contextos más grandes y aprovechar similitudes entre palabras en el contexto. [Bengio et al., 2000]
- Los modelos de lenguaje modernos utilizan redes neuronales profundas en su estructura principal y tienen un vasto espacio de parámetros.

Capítulo 4

Text Classification and Naïve Bayes

- Classification lies at the heart of both human and machine intelligence.
- Deciding what letter, word, or image has been presented to our senses, recognizing faces or voices, sorting mail, assigning grades to homeworks.
- These are all examples of assigning a category to an input.
- The goal of classification is to take a single observation, extract some useful features, and thereby classify the observation into one of a set of discrete classes.
- Most cases of classification in language processing are done via supervised machine learning.
- This slides are based on the course material by Daniel Jurafsky: https://web.stanford.edu/~jurafsky/slp3/4.pdf

Example 1: Spam Classification

Subject: Important notice!
From: Stanford University <newsforum@stanford.edu>
Date: October 28, 2011 12:34:16 PM PDT

To: undisclosed-recipients:;

Greats News!

You can now access the latest news by using the link below to login to Stanford University News Forum.

http://www.123contactform.com/contact-form-StanfordNew1-236335.html

Click on the above link to login for more information about this new exciting forum. You can also copy the above link to your browser bar and login for more information about the new services.

© Stanford University. All Rights Reserved.

Example 2: Who wrote which Federalist papers?

- 1787-8: Anonymous essays attempted to convince New York to ratify the U.S Constitution: Jay, Madison, Hamilton.
- Authorship of 12 of the letters is in dispute.
- 1963: Solved by Mosteller and Wallace using Bayesian methods.

Figura 4.1: James Madison

Figura 4.2: Alexander Hamilton

Example 3: What is the subject of this medical article?

Example 4: Positive or negative movie review?

- + ...zany characters and richly applied satire, and some great plot twists
- It was pathetic. The worst part about it was the boxing scenes...
- + ...awesome caramel sauce and sweet toasty almonds. I love this place!
- ...awful pizza and ridiculously overpriced...

Why sentiment analysis?

- Movie: Is this review positive or negative?
- Products: What do people think about the new iPhone?
- Public sentiment: How is consumer confidence?
- Politics: What do people think about this candidate or issue?
- Prediction: Predict election outcomes or market trends from sentiment.

Basic Sentiment Classification Sentiment analysis is the detection of attitudes.

- Simple task we focus on in this class
 - Is the attitude of this text positive or negative?

Summary: Text Classification Text classification can be applied to various tasks, including:

- Sentiment analysis
- Spam detection
- Authorship identification
- Language identification
- Assigning subject categories, topics, or genres
- **.**..

4.1. Text Classification: Definition

Input:

- A document d
- A fixed set of classes $C = \{c_1, c_2, \dots, c_J\}$

Output: A predicted class $c \in C$

4.1.1. Classification Methods: Hand-coded rules

Rules based on combinations of words or other features

- Spam: black-list-address OR ("dollars" AND "you have been selected")
- Accuracy can be high if rules carefully refined by experts
- But building and maintaining these rules is expensive

4.1.2. Classification Methods: Supervised Machine Learning

Input:

- A document d
- A fixed set of classes $C = \{c_1, c_2, \dots, c_J\}$
- A training set of m hand-labeled documents: $(d_1, c_1), (d_2, c_2), \ldots, (d_m, c_m)$

Output:

• A learned classifier $\gamma: d \to c$

Any kind of classifier can be used:

- Naïve Bayes
- Logistic regression
- Neural networks
- k-Nearest Neighbors

4.1.3. Supervised Learning Problems

- We have training examples $x^{(i)}$, $y^{(i)}$ for $i=1,\ldots,m$. Each $x^{(i)}$ is an input, each $y^{(i)}$ is a label.
- Task is to learn a function f mapping inputs x to labels f(x).
- Conditional models:
 - Learn a distribution p(y|x) from training examples.
 - For any test input x, define $f(x) = \arg \max_{y} p(y|x)$.

4.1.4. Generative Models

- Given training examples $x^{(i)}$, $y^{(i)}$ for i = 1, ..., m. The task is to learn a function f that maps inputs x to labels f(x).
- Generative models:
 - Learn the joint distribution p(x, y) from the training examples.
 - Often, we have p(x, y) = p(y)p(x|y).
 - Note: We then have

$$p(y|x) = \frac{p(y)p(x|y)}{p(x)} \quad \text{where} \quad p(x) = \sum_y p(y)p(x|y).$$

4.1.5. Classification with Generative Models

- Given training examples $x^{(i)}$, $y^{(i)}$ for i = 1, ..., m. The task is to learn a function f that maps inputs x to labels f(x).
- Generative models:
 - Learn the joint distribution p(x, y) from the training examples.
 - Often, we have p(x, y) = p(y)p(x|y).
- Output from the model:

$$\begin{split} f(x) &= \arg \max_{y} p(y|x) = \arg \max_{y} \frac{p(y)p(x|y)}{p(x)} \\ &= \arg \max_{y} p(y)p(x|y) \end{split}$$

4.2. Naive Bayes Intuition

Naive Bayes is a simple ("naive") classification method based on Bayes' rule.

Relies on a very simple representation of a document: Bag of words

The Bag of Words Representation

4.2.1. Bayes' Rule Applied to Documents and Classes

For a document d and a class c:

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

4.3. Naive Bayes Classifier

 MAP stands for "maximum a posteriori," which represents the most likely class:

$$c_{\text{MAP}} = \arg \max_{c \in C} P(c|d)$$

• To calculate the most likely class, we apply Bayes' rule:

$$= \arg \max_{c \in C} \frac{P(d|c)P(c)}{P(d)}$$

 Finally, we can drop the denominator since it remains constant for all classes:

$$= \arg \max_{c \in C} P(d|c) P(c)$$

■ To classify document *d*, we use the MAP estimate:

$$c_{\text{MAP}} = \arg \max_{c \in C} P(d|c)P(c)$$

- The document d is represented as a set of features x_1, x_2, \ldots, x_n .
- The classifier calculates the conditional probability of the features given a class and the prior probability of the class:

$$= \arg \max_{c \in C} P(x_1, x_2, \dots, x_n | c) P(c)$$

- The term $P(x_1, x_2, ..., x_n | c)$ represents the "likelihood.of the features given the class.
- The term P(c) represents the "prior" probability of the class.
- The Naïve Bayes classifier [McCallum et al., 1998] calculates the MAP estimate by considering the likelihood and prior probabilities:

$$c_{\text{MAP}} = \arg \max_{c \in C} P(x_1, x_2, \dots, x_n | c) P(c)$$

- The probability of the features given the class, $P(x_1, x_2, ..., x_n | c)$, can be estimated by counting the relative frequencies in a corpus.
- The prior probability of the class, P(c), represents how often this class occurs.
- Without some simplifying assumptions, estimating the probability of every possible combination of features in $P(x_1, x_2, ..., x_n | c)$ would require huge numbers of parameters and impossibly large training sets.
- Naive Bayes classifiers therefore make two simplifying assumptions.

4.3.1. Multinomial Naive Bayes Independence Assumptions

- Bag of Words assumption: We assume that the position of words in the document does not matter.
- Conditional Independence assumption: We assume that the feature probabilities $P(x_i|c_j)$ are independent given the class c_j .
- In the Multinomial Naive Bayes classifier, the probability of a document with features x_1, x_2, \ldots, x_n given class c can be calculated as:

$$P(x_1, x_2, ..., x_n | c) = P(x_1 | c) \cdot P(x_2 | c) \cdot P(x_3 | c) \cdot ... \cdot P(x_n | c)$$

4.3.2. Multinomial Naive Bayes Classifier

■ The Maximum A Posteriori (MAP) estimate for class *c* in the Multinomial Naive Bayes classifier is given by:

$$c_{\text{MAP}} = \arg \max_{c \in C} P(x_1, x_2, \dots, x_n | c) P(c)$$

• Alternatively, we can write it as:

$$c_{\text{NB}} = \arg \max_{c \in C} P(c_j) \prod_{x \in X} P(x|c)$$

- $P(c_j)$ represents the prior probability of class c_j .
- $\prod_{x \in X} P(x|c)$ represents the likelihood of the features x_1, x_2, \dots, x_n given class c.

4.3.3. Applying Multinomial Naive Bayes Classifiers to Text Classification

The Multinomial Naive Bayes classifier for text classification can be applied as follows:

$$c_{\text{NB}} = \arg \max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(x_i | c_j)$$

- $c_{\rm NB}$ represents the predicted class for the test document.
- *C* is the set of all possible classes.
- $P(c_i)$ is the prior probability of class c_i .
- $\prod_{i \in \text{positions}} P(x_i | c_j)$ calculates the likelihood of each feature x_i at position i given class c_j .
- The product is taken over all word positions in the test document.

1.3.4. Problems with Multiplying Lots of Probabilities

- Multiplying lots of probabilities can result in floating-point underflow, especially when dealing with small probabilities.
- Example: $0,0006 \times 0,0007 \times 0,0009 \times 0,01 \times 0,5 \times 0,000008...$
- Idea: Use logarithms, as $\log(ab) = \log(a) + \log(b)$.
- Instead of multiplying probabilities, we can sum the logarithms of probabilities.
- The Multinomial Naive Bayes classifier can be expressed using logarithms as follows:

$$c_{\text{NB}} = \arg \max_{c_j \in C} \left(\log(P(c_j)) + \sum_{i \in \text{position}} \log(P(x_i|c_j)) \right)$$

- By taking logarithms, we avoid the issue of floating-point underflow and perform calculations in the log space.
- The classifier becomes a linear model, where the prediction is the argmax of a sum of weights (log probabilities) and the inputs (log conditional probabilities):
- Thus, Naïve Bayes is a linear classifier, operating in the log space.

4.3.5. Learning the Multinomial Naive Bayes Model

First attempt: Maximum Likelihood Estimates

- The probabilities are estimated using the observed counts in the training data.
- The prior probability of a class c_i is estimated as:

$$\hat{P}(c_j) = \frac{N_{c_j}}{N_{\text{total}}}$$

where N_{c_j} is the number of documents in class c_j and N_{total} is the total number of documents.

• The estimate of the probability of word w_i given class c_i is calculated as:

$$\hat{P}(w_i|c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in V} \text{count}(w, c_j)}$$

where $w \in V$ represents a word in the vocabulary V.

■ The denominator is the sum of counts of all words in the vocabulary within class c_i .

4.3.6. Parameter Estimation

To estimate the parameters of the Multinomial Naive Bayes model, we follow these steps:

- Create a mega-document for each topic c_j by concatenating all the documents in that topic.
- We calculate the frequency of word w_i in the mega-document, which represents the fraction of times word w_i appears among all words in the documents of topic c_j .
- The estimated probability $\hat{P}(w_i|c_j)$ of word w_i given class c_j is obtained by dividing the count of occurrences of w_i in the mega-document of topic c_i by the total count of words in the mega-document:

$$\hat{P}(w_i|c_j) = \frac{\text{count}(w_i, c_j)}{\sum_{w \in V} \text{count}(w, c_j)}$$

Here, $count(w_i, c_j)$ represents the number of times word w_i appears in the mega-document of topic c_j , and $count(w, c_j)$ is the total count of words in the mega-document.

4.3.7. Zero Probabilities and the Issue of Unseen Words

- Consider the scenario where we have not encountered the word "fantastic" in any training documents classified as positive (thumbs-up).
- Using maximum likelihood estimation, the probability \hat{P} ("fantastic" | positive) would be calculated as:

$$\hat{P}(\text{``fantastic''} \mid \text{positive}) = \frac{\text{count}(\text{``fantastic''}, \text{positive})}{\sum_{w \in V} \text{count}(w, \text{positive})}$$

• In this case, the count of the word "fantastic" in positive documents is zero, leading to a zero probability:

$$\hat{P}(\text{``fantastic''} \mid \text{positive}) = \frac{0}{\sum_{w \in V} \text{count}(w, \text{positive})} = 0$$

- However, zero probabilities cannot be conditioned away, regardless of the other evidence present.
- This poses a problem when calculating the maximum a posteriori (MAP) estimate, which is used for classification:

$$c_{\text{MAP}} = \arg \max_{c} \left(\hat{P}(c) \prod_{i} \hat{P}(x_i \mid c) \right)$$

 With a zero probability for a word, the entire expression becomes zero, regardless of other evidence.

4.3.8. Laplace (Add-1) Smoothing for Naïve Bayes

Handling zero probabilities with Laplace (Add-1) smoothing

- To address the problem of zero probabilities, we can employ Laplace (Add-1) smoothing technique.
- The smoothed estimate $\hat{P}(w_i \mid c)$ is calculated as:

$$\hat{P}(w_i \mid c) = \frac{\text{count}(w_i, c) + 1}{\sum_{w \in V} (\text{count}(w, c) + 1)}$$

- Here, an additional count of 1 is added to both the numerator and the denominator.
- The denominator is adjusted by adding the size of the vocabulary *V* to ensure proper normalization.
- By doing so, we prevent zero probabilities and allow some probability mass to be distributed to unseen words.
- This smoothing technique helps to mitigate the issue of unseen words and avoids the complete elimination of certain classes during classification.

4.3.9. Multinomial Naïve Bayes: Learning

Learning the Multinomial Naïve Bayes Model

- In order to learn the parameters of the model, we need to calculate the terms $P(c_j)$ and $P(w_k \mid c_j)$.
- For each class c_i in the set of classes C, we perform the following steps:
 - Retrieve all the documents $docs_i$ that belong to class c_i .
 - Calculate the term $P(w_k \mid c_j)$ for each word w_k in the vocabulary V:

$$P(w_k \mid c_j) = \frac{n_k + \alpha}{n + \alpha \cdot |\text{Vocabulary}|}$$

where n_k represents the number of occurrences of word w_k in the concatenated document $Text_j$.

• Calculate the prior probability $P(c_i)$:

$$P(c_j) = \frac{|docs_j|}{| ext{total number of documents}|}$$

■ To calculate $P(w_k \mid c_j)$, we need to extract the vocabulary V from the training corpus.

4.3.10. Unknown Words

Dealing with unknown words in the test data:

- When we encounter unknown words in the test data that do not appear in the training data or vocabulary, we ignore them.
- We remove these unknown words from the test document as if they were not present at all.
- We do not assign any probability to these unknown words in the classification process.

Why don't we build an unknown word model?

- Building a separate model for unknown words is not generally helpful.
- Knowing which class has more unknown words does not provide useful information for classification.

4.3.11. Stop Words

Stop words are frequently used words like "the.and.a" that are often considered to have little or no significance in text classification. Some systems choose to ignore stop words in the classification process. Here is how it is typically done:

- Sort the vocabulary by word frequency in the training set.
- Create a stopword list by selecting the top 10 or 50 most frequent words.
- Remove all stop words from both the training and test sets, treating them as if they were never there.

However, removing stop words doesn't usually improve the performance of Naive Bayes classifiers. Therefore, in practice, most Naive Bayes algorithms use all words and do not utilize stopword lists.

4.4. Worked Sentiment Example

Training data:

Category	Text
Negative	Just plain boring, entirely predictable and lacks energy.
Negative	No surprises and very few laughs.
Positive	Very powerful.
Positive	The most fun film of the summer.

Test:

Category	Text
?	Predictable with no fun.

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

1. Prior from training:

$$\hat{P}(c_j) = \frac{N_{c_j}}{N_{total}} \qquad P(-) = 3/5$$

$$P(+) = 2/5$$

2. Drop "with"

3. Likelihoods from training:

5. Eikenmoods from training.
$$p(w_i|c) = \frac{count(w_i,c) + 1}{(\sum_{w \in V} count(w,c)) + |V|}$$
4. Scoring the test set:
$$P(\text{``predictable''}|-) = \frac{1+1}{14+20} \quad P(\text{``predictable''}|+) = \frac{0+1}{9+20}$$

$$P(\text{``no''}|-) = \frac{1+1}{14+20} \quad P(\text{``no''}|+) = \frac{0+1}{9+20}$$

$$P(\text{``fun''}|-) = \frac{0+1}{14+20} \quad P(\text{``fun''}|+) = \frac{1+1}{9+20}$$

$$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$$

$$\frac{P(-)P(S|-)}{5} = \frac{3}{5} \times \frac{2 \times 2 \times 1}{34^3} = 6.1 \times 10^{-5}$$

$$P(+)P(S|+) = \frac{2}{5} \times \frac{1 \times 1 \times 2}{29^3} = 3.2 \times 10^{-5}$$

4.5. Naive Bayes as a Language Model

- When using individual word features and considering all words in the text, naive Bayes has an important similarity to language modeling.
- Specifically, a naive Bayes model can be viewed as a set of class-specific unigram language models, in which the model for each class instantiates a unigram language model.
- The likelihood features from the naive Bayes model assign a probability to each word P(word|c), and the model also assigns a probability to each sentence:

$$P(s|c) = \prod_{i \in positions} P(w_i|c)$$

Consider a naive Bayes model with the classes positive (+) and negative (-) and the following model parameters:

$$\begin{array}{ccccc} \mathbf{w} & P(w|+) & P(w|-) \\ \mathbf{I} & 0.1 & 0.2 \\ \text{love} & 0.1 & 0.001 \\ \text{this} & 0.01 & 0.01 \\ \text{fun} & 0.05 & 0.005 \\ \text{film} & 0.1 & 0.1 \\ \dots & \dots & \dots \end{array}$$

 Each of the two columns above instantiates a language model that can assign a probability to the sentence I love this fun film":

$$P("I \text{ love this fun film"}|+) = 0.1 \times 0.1 \times 0.01 \times 0.05 \times 0.1 = 0.0000005$$

 $P("I \text{ love this fun film"}|-) = 0.2 \times 0.001 \times 0.01 \times 0.005 \times 0.1 = 0.0000000010$

As it happens, the positive model assigns a higher probability to the sentence:

 Note that this is just the likelihood part of the naive Bayes model; once we multiply in the prior, a full naive Bayes model might well make a different classification decision.

4.6. Evaluation

- Let's consider just binary text classification tasks.
- Imagine you're the CEO of Delicious Pie Company.
- You want to know what people are saying about your pies.
- So you build a "Delicious Pie"tweet detector with the following classes:
 - Positive class: tweets about Delicious Pie Co
 - Negative class: all other tweets

4.6.1. The 2-by-2 Confusion Matrix

	System Positive	System Negative
Gold Positive	True Positive (TP)	False Negative (FN)
Gold Negative	False Positive (FP)	True Negative (TN)

Recall (also known as **Sensitivity** or **True Positive Rate**):

$$\text{Recall} = \frac{TP}{TP + FN}$$

Precision:

$$Precision = \frac{TP}{TP + FP}$$

Accuracy:

$$\label{eq:accuracy} \text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN}$$

4.6.2. Evaluation: Accuracy

Why don't we use accuracy as our metric? Imagine we saw 1 million tweets:

- 100 of them talked about Delicious Pie Co.
- 999,900 talked about something else.

We could build a dumb classifier that just labels every tweet "not about pie":

- It would get 99.99 % accuracy!!! Wow!!!!
- But it would be useless! It doesn't return the comments we are looking for!

That's why we use precision and recall instead.

4.6.3. Evaluation: Precision and Recall

Precision measures the percentage of items the system detected (i.e., items the system labeled as positive) that are in fact positive (according to the human gold labels).

$$Precision = \frac{True\ Positives}{True\ Positives + False\ Positives}$$

Recall measures the percentage of items that were correctly identified by the system out of all the items that should have been identified.

$$Recall = \frac{True\ Positives}{True\ Positives + False\ Negatives}$$

4.6.4. Why Precision and Recall?

Consider our dumb pie-classifier that just labels nothing as .about pie."

- Accuracy = 99.99 % (it correctly labels most tweets as not about pie)
- Recall = 0 (it doesn't detect any of the 100 pie-related tweets)

Precision and recall, unlike accuracy, emphasize true positives:

They focus on finding the things that we are supposed to be looking for.

4.6.5. A Combined Measure: F-measure

The F-measure is a single number that combines precision (P) and recall (R), defined as:

 $F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$

The F-measure, defined with the parameter β , differentially weights the importance of recall and precision.

- $\beta > 1$ favors recall
- $\beta < 1$ favors precision

When $\beta=$ 1, precision and recall are equal, and we have the balanced ${\it F}_{1}$ measure:

 $F_1 = \frac{2PR}{P+R}$

4.6.6. Development Test Sets ("Devsets")

To avoid overfitting and provide a more conservative estimate of performance, we commonly use a three-set approach: training set, devset, and testset.

Training set Development Test Set Test Set

- Training set: Used to train the model.
- Devset: Used to tune the model and select the best hyperparameters.
- **Testset**: Used to report the final performance of the model.
- This approach ensures that the model is not tuned specifically to the test set, avoiding overfitting.
- However, it creates a paradox: we want as much data as possible for training, but also for the devset.
- How do we split the data?

4.6.7. Cross-validation: Multiple Splits

- Cross-validation allows us to use all our data for training and testing without having a fixed training set, devset, and test set.
- We choose a number k and partition our data into k disjoint subsets called folds.

- For each iteration, one fold is selected as the test set while the remaining k-1 folds are used to train the classifier.
- We compute the error rate on the test set and repeat this process k times.
- Finally, we average the error rates from these *k* runs to obtain an average error rate.
- 10-fold cross-validation, for example, involves training 10 models on 90 % of the data and testing each model separately.
- The resulting error rates are averaged to obtain the final performance estimate.
- However, cross-validation requires the entire corpus to be blind, preventing examination of the data for feature suggestion or understanding system behavior.
- To address this, a fixed training set and test set are created, and 10-fold cross-validation is performed within the training set.
- The error rate is computed conventionally in the test set.

4.6.8. Confusion Matrix for 3-class classification

gold labels					
		urgent	normal	spam	
	urgent	8	10	1	$\mathbf{precision}_{\mathbf{u}} = \frac{\frac{8}{8}}{8+10+1}$
system output	normal	5	60	50	$\mathbf{precision}_{n} = \frac{60}{5+60+50}$
	spam	3	30	200	precision s= $\frac{200}{3+30+200}$
		recallu =	recalln=	recalls =	
		8	60	200	
		8+5+3	10+60+30	1+50+200	

How to combine binary metrics (Precision, Recall, F_1) from more than 2 classes to get one metric:

- Macroaveraging:
 - Compute the performance metrics (Precision, Recall, F_1) for each class individually.
 - Average the metrics over all classes.
- Microaveraging:
 - Collect the decisions for all classes into one confusion matrix.
 - Compute Precision and Recall from the confusion matrix.

4.6.9. Macroaveraging and Microaveraging

Capítulo 5

Modelos Lineales

5.1. Supervised Learning

- The essence of supervised machine learning is the creation of mechanisms that can look at examples and produce generalizations. [Goldberg, 2017]
- We design an algorithm whose input is a set of labeled examples, and its output is a function (or a program) that receives an instance and produces the desired label.
- Example: if the task is to distinguish from spam and not-spam email, the labeled examples are emails labeled as spam and emails labeled as notspam.
- It is expected that the resulting function will produce correct label predictions also for instances it has not seen during training.
- This approach differs from designing an algorithm to perform the task (e.g., manually designed rule-based systems).

5.1.1. Parameterized Functions

- Searching over the set of all possible functions is a very hard (and rather ill-defined) problem. [Goldberg, 2017]
- We often restrict ourselves to search over specific families of functions.
- Example: the space of all linear functions with d_{in} inputs and d_{out} outputs,
- Such families of functions are called hypothesis classes.
- By restricting ourselves to a specific hypothesis class, we are injecting the learner with inductive bias.

- Inductive bias: a set of assumptions about the form of the desired solution.
- Some hypothesis classes facilitate efficient procedures for searching for the solution. [Goldberg, 2017]

5.2. Linear Models

• One common hypothesis class is that of high-dimensional linear function:

$$f(\vec{x}) = \vec{x} \cdot W + \vec{b}$$

$$\vec{x} \in \mathcal{R}^{d_{in}} \quad W \in \mathcal{R}^{d_{in} \times d_{out}} \quad \vec{b} \in \mathcal{R}^{d_{out}}$$
(5.1)

- The vector \vec{x} is the input to the function.
- The matrix W and the vector \vec{b} are the **parameters**.
- The goal of the learner is to set the values of the parameters W and \vec{b} such that the function behaves as intended on a collection of input values $\vec{x}_{1:k} = \vec{x}_1, \dots, \vec{x}_k$ and the corresponding desired outputs $\vec{y}_{1:k} = \vec{y}_1, \dots, \vec{y}_k$
- The task of searching over the space of functions is thus reduced to one of searching over the space of parameters. [Goldberg, 2017]

5.2.1. Example: Language Detection

- Consider the task of distinguishing documents written in English from documents written in German.
- This is a binary classification problem

$$f(\vec{x}) = \vec{x} \cdot \vec{w} + b \tag{5.2}$$

 $d_{out} = 1$, \vec{w} is a vector, and b is a scalar.

- The range of the linear function in is $[-\infty, \infty]$.
- In order to use it for binary classification, it is common to pass the output of f(x) through the sign function, mapping negative values to -1 (the negative class) and non-negative values to +1 (the positive class).
- Letter frequencies make for quite good predictors (features) for this task.
- Even more informative are counts of letter bigrams, i.e., pairs of consecutive letters.
- One may think that words will also be good predictors i.e., using a bag of word representation of documents.

- Letters, or letter-bigrams are far more robust.
- We are likely to encounter a new document without any of the words we observed in the training set.
- While a document without any of the distinctive letter-bigrams is significantly less likely. [Goldberg, 2017]
- We assume we have an alphabet of 28 letters (a–z, space, and a special symbol for all other characters including digits, punctuations, etc.)
- Documents are represented as 28×28 dimensional vectors $\vec{x} \in \mathbb{R}^{784}$.
- Each entry $\vec{x}_{[i]}$ represents a count of a particular letter combination in the document, normalized by the document's length.
- For example, denoting by \vec{x}_{ab} the entry of \vec{x} corresponding to the letter bigram ab:

$$\vec{x}_{ab} = \frac{\#ab}{|D|} \tag{5.3}$$

where #ab is the number of times the bigram ab appears in the document, and |D| is the total number of bigrams in the document (the document's length).

Character-bigram histograms for documents in English (left, blue) and German(right,green). Underscores denote spaces. Only the top frequent character-bigrams are showed.

Previous figure showed clear patterns in the data, and, given a new item, such as:

⁰Source:[Goldberg, 2017]

- We could probably tell that it is more similar to the German group than to the English one (observe the frequency of "th" and "ie").
- We can't use a single definite rule such as "if it has th its English" or "if it has ie its German".
- While German texts have considerably less "th" than English, the "th" may and does occur in German texts, and similarly the "ie" combination does occur in English.
- The decision requires weighting different factors relative to each other.
- We can formalize the problem in a machine-learning setup using a linear model:

$$\hat{y} = sign(f(\vec{x})) = sign(\vec{x} \cdot \vec{w} + b)$$

$$= sign(\vec{x}_{aa} \times \vec{w}_{aa} + \vec{x}_{ab} \times \vec{w}_{ab} + \vec{x}_{ac} \times \vec{w}_{ac} \cdots + b)$$
(5.4)

■ A document will be considered English if $f(\vec{x}) \ge 0$ and as German otherwise.

Intuition

- 1. Learning should assign large positive values to \vec{w} entries associated with letter pairs that are much more common in English than in German (i.e., "th").
- 2. It should also assign negative values to letter pairs that are much more common in German than in English ("ie", "en").
- 3. Finally, it should assign values around zero to letter pairs that are either common or rare in both languages.

5.3. Log-linear Binary classification

- The output $f(\vec{x})$ is in the range $[-\infty, \infty]$, and we map it to one of two classes $\{-1, +1\}$ using the sign function.
- This is a good fit if all we care about is the assigned class.

- We may be interested also in the confidence of the decision, or the probability that the classifier assigns to the class.
- An alternative that facilitates this is to map instead to the range [0,1], by pushing the output through a squashing function such as the sigmoid $\sigma(x)$:

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{5.5}$$

resulting in:

$$\hat{y} = \sigma(f(\vec{x})) = \frac{1}{1 + e^{-\vec{x} \cdot \vec{w} + b}}$$
 (5.6)

- The sigmoid function is is monotonically increasing, and maps values to the range [0, 1], with 0 being mapped to $\frac{1}{2}$.
- When used with a suitable loss function (discussed later) the binary predictions made through the log-linear model can be interpreted as class membership probability estimates:

$$\sigma(f(\vec{x})) = P(\hat{y} = 1|\vec{x})$$
 of \vec{x} belonging to the positive class. (5.7)

- We also get $P(\hat{y} = 0 | \vec{x}) = 1 P(\hat{y} = 1 | \vec{x}) = 1 \sigma(f(\vec{x}))$
- The closer the value is to 0 or 1 the more certain the model is in its class membership prediction, with the value of 0,5 indicating model uncertainty.

5.4. Multi-class Classification

- Most classification problems are of a multi-class nature: examples are assigned to one of k different classes.
- Example: we are given a document and asked to classify it into one of six possible languages: English, French, German, Italian, Spanish, Other.
- Possible solution: consider six weight vectors \vec{w}_{EN} , \vec{w}_{FR} , . . . and biases (one for each language).
- Predict the language resulting in the highest score:

$$\hat{y} = f(\vec{x}) = \operatorname{argmax}_{L \in \{EN, FR, GR, IT, SP, O\}} \quad \vec{x} \cdot \vec{w}_L + b_L$$
 (5.8)

■ The six sets of parameters $\vec{w}_L \in \mathcal{R}^{784}$ and b_L can be arranged as a matrix $W \in \mathcal{R}^{784 \times 6}$ and vector $\vec{b} \in \mathcal{R}^6$, and the equation re-written as:

$$\vec{\hat{y}} = f(\vec{x}) = \vec{x} \cdot W + \vec{b}$$

$$\text{prediction} = \hat{y} = \operatorname{argmax}_i \vec{\hat{y}}_{[i]}$$
(5.9)

■ Here $\vec{\hat{y}} \in \mathcal{R}^6$ is a vector of the scores assigned by the model to each language, and we again determine the predicted language by taking the argmax over the entries of $\vec{\hat{y}}$ (the columns with the highest value).

5.5. Representations

- Consider the vector $\vec{\hat{y}}$ resulting from applying a trained model to a document.
- The vector can be considered as a representation of the document.
- It captures the properties of the document that are important to us: the scores of the different languages.
- The representation \vec{y} contains strictly more information than the prediction $\operatorname{argmax}_i \vec{y}_{[i]}$.
- Example: \hat{y} can be used to distinguish documents in which the main language is German, but which also contain a sizeable amount of French words.
- Clustering documents based on \vec{y} could help to discover documents written in regional dialects, or by multilingual authors.
- The vectors \vec{x} containing the normalized letter-bigram counts for the documents are also representations of the documents.

- Arguably containing a similar kind of information to the vectors $\vec{\hat{y}}$.
- However, the representations in \hat{y} is more compact (6 entries instead of 784) and more specialized for the language prediction objective.
- Clustering by the vectors \vec{x} would likely reveal document similarities that are not due to a particular mix of languages, but perhaps due to the document's topic or writing styles.
- The trained matrix $W \in \mathcal{R}^{784 \times 6}$ can also be considered as containing learned representations.
- We can consider two views of W, as rows or as columns. Two views of

the W matrix. (a) Each column corresponds to a language. (b) Each row corresponds to a letter bigram. Source: [Goldberg, 2017].

- A column of *W* can be taken to be a 784-dimensional vector representation of a language in terms of its characteristic letter-bigram patterns.
- We can then cluster the 6 language vectors according to their similarity.
- Each of the 784 rows of *W* provide a 6-dimensional vector representation of that bigram in terms of the languages it prompts.
- Representations are central to deep learning.
- One could argue that the main power of deep-learning is the ability to learn good representations.
- In the linear case, the representations are interpretable.
- We can assign a meaningful interpretation to each dimension in the representation vector.
- For example: each dimension corresponds to a particular language or letter-bigram.

- Deep learning models, on the other hand, often learn a cascade of representations of the input that build on top of each other.
- These representations are often not interpretable.
- We do not know which properties of the input they capture.
- However, they are still very useful for making predictions.

5.6. One-Hot Vector Representation

- The input vector \vec{x} in our language classification example contains the normalized bigram counts in the document D.
- This vector can be decomposed into an average of |D| vectors, each corresponding to a particular document position i:

$$\vec{x} = \frac{1}{|D|} \sum_{i=1}^{|D|} \vec{x}^{D_{[i]}}$$
(5.10)

- Here, $D_{[i]}$ is the bigram at document position i.
- Each vector $\vec{x}^{D_{[i]}} \in \mathcal{R}^{784}$ is a one-hot vector.
- A one-hot vector: all entries are zero except the single entry corresponding to the letter bigram $D_{[i]}$, which is 1.
- The resulting vector \vec{x} is commonly referred to as an averaged bag of bigrams (more generally averaged bag of words , or just bag of words).
- Bag-of-words (BOW) representations contain information about the identities of all the "words" (here, bigrams) of the document, without considering their order.
- A one-hot representation can be considered as a bag-of-a-single-word.

One-hot vectors of words. Source: https://medium.com/@athif.shaffy/one-hot-encoding-of-text-b69124bef0a7.

5.7. Log-linear Multi-class Classification

- In the binary case, we transformed the linear prediction into a probability estimate by passing it through the sigmoid function, resulting in a loglinear model.
- The analog for the multi-class case is passing the score vector through the softmax function:

softmax
$$(\vec{x})_{[i]} = \frac{e^{\vec{x}_{[i]}}}{\sum_{j} e^{\vec{x}_{[j]}}}$$
 (5.11)

Resulting in:

$$\vec{\hat{y}} = \operatorname{softmax}(\vec{x} \cdot W + \vec{b})$$

$$\vec{\hat{y}}_{[i]} = \frac{e^{(\vec{x} \cdot W + \vec{b})_{[i]}}}{\sum_{j} e^{(\vec{x} \cdot W + \vec{b})_{[j]}}}$$
(5.12)

■ The softmax transformation forces the values in $\hat{\vec{y}}$ to be positive and sum to 1, making them interpretable as a probability distribution.

5.8. Training

• When training a parameterized function (e.g., a linear model, a neural network) one defines a loss function $L(\hat{y}, y)$, stating the loss of predicting \hat{y} when the true output is y.

$$L(f(\vec{x};\Theta),y)$$

- We use the symbol Θ to denote all the parameters of the model (e.g., W, \vec{b})
- The training objective is then to minimize the loss across the different training examples.
- Formally, a loss function $L(\hat{y}, y)$ assigns a numerical score (a scalar) to a predicted output \hat{y} given the true expected output y.
- The loss function should attain its minimum value for cases where the prediction is correct.
- We can also define a corpus-wide loss with respect to the parameters Θ as the average loss over all training examples:

$$\mathcal{L}(\Theta) = \frac{1}{n} \sum_{i=1}^{n} L(f(\vec{x}_i; \Theta), y_i)$$

■ The goal of the training algorithm is then to set the values of the parameters Θ such that the value of \mathcal{L} is minimized.

$$\hat{\Theta} = \operatorname{argmin}_{\Theta} \mathcal{L}(\Theta) = \operatorname{argmin}_{\Theta} \frac{1}{n} \sum_{i=1}^{n} L(f(\vec{x}_i; \Theta), y_i)$$

5.8.1. Gradient-based Optimization

- Functions are trained using gradient-based methods.
- They work by repeatedly computing an estimate of the loss *L* over the training set.
- The training method computes gradients of the parameters (Θ) with respect to the loss estimate, and moving the parameters in the opposite directions of the gradient.
- Different optimization methods differ in how the error estimate is computed, and how moving in the opposite direction of the gradient is defined.
- If the function is convex, the optimum will be a global one.
- Otherwise, the process is only guaranteed to find a local optimum.

 $^{^0} Source: \\ https://sebastianraschka.com/images/faq/closed-form-vs-gd/ball.png$

⁰[Goodfellow et al., 2016]

Figure 4.1: Gradient descent. An illustration of how the gradient descent algorithm uses the derivatives of a function to follow the function downhill to a minimum.

5.8.2. Online Stochastic Gradient Descent

- All the parameters are initialized with random values (Θ) .
- For each training example (x, y) we calculate the loss L with current values of Θ .
- Then we update the parameters with the following rule until convergence:
- $\Theta_i \leftarrow \Theta_i \eta \frac{\partial L}{\Theta_i}(\hat{y}, y)$ (for all parameters Θ_i)

```
Algorithm 2.1 Online stochastic gradient descent training.

Input:
- Function f(x; \Theta) parameterized with parameters \Theta.
- Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n.
- Loss function L.

1: while stopping criteria not met do
2: Sample a training example x_i, y_i
3: Compute the loss L(f(x_i; \Theta), y_i)
4: \hat{g} \leftarrow \text{gradients of } L(f(x_i; \Theta), y_i) \text{ w.r.t } \Theta
5: \Theta \leftarrow \Theta - \eta_t \hat{g}
6: return \Theta
```

■ The learning rate can either be fixed throughout the training process, or decay as a function of the time step *t*.

⁰Source:[Goldberg, 2017]

- The error calculated in line 3 is based on a single training example, and is thus just a rough estimate of the corpus-wide loss *L* that we are aiming to minimize.
- The noise in the loss computation may result in inaccurate gradients (single examples may provide noisy information).

5.8.3. Mini-batch Stochastic Gradient Descent

- A common way of reducing this noise is to estimate the error and the gradients based on a sample of *m* examples.
- This gives rise to the minibatch SGD algorithm

```
      Algorithm 2.2 Minibatch stochastic gradient descent training.

      Input:
      - Function f(x;\Theta) parameterized with parameters \Theta.

      - Training set of inputs x_1, \ldots, x_n and desired outputs y_1, \ldots, y_n.

      - Loss function L.

      1: while stopping criteria not met do

      2: Sample a minibatch of m examples \{(x_1, y_1), \ldots, (x_m, y_m)\}

      3: \hat{g} \leftarrow 0

      4: for i = 1 to m do

      5: Compute the loss L(f(x_i; \Theta), y_i)

      6: \hat{g} \leftarrow \hat{g} + \text{gradients of } \frac{1}{m}L(f(x_i; \Theta), y_i) \text{ w.r.t } \Theta

      7: \Theta \leftarrow \Theta - \eta_t \hat{g}

      8: return \Theta
```

- Higher values of *m* provide better estimates of the corpus-wide gradients, while smaller values allow more updates and in turn faster convergence.
- For modest sizes of m, some computing architectures (i.e., GPUs) allow an efficient parallel implementation of the computation in lines 3-6.

5.8.4. Loss Functions

■ Hinge (or SVM loss): for binary classification problems, the classifier's output is a single scalar \tilde{y} and the intended output y is in $\{+1, -1\}$. The classification rule is $\hat{y} = sign(\tilde{y})$, and a classification is considered correct if $y \cdot \tilde{y} > 0$.

$$L_{\mathsf{hinge}(\mathsf{binary})}(\tilde{y},y) = \max(0,1-y\cdot \tilde{y})$$

■ Binary cross entropy (or logistic loss): is used in binary classification with conditional probability outputs. The classifier's output \tilde{y} is transformed using the sigmoid function to the range [0,1], and is interpreted as the conditional probability P(y=1|x).

$$L_{\text{logistic}}(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$

⁰Source:[Goldberg, 2017]

- The logistic loss has a probabilistic interpretation:
- We assume that $P(y=1|\vec{x};\Theta) = \sigma(f(\vec{x})) = \frac{1}{1+e^{-\vec{x}\cdot\vec{w}+b}}$ and $P(y=0|\vec{x};\Theta) = 1-\sigma(f(\vec{x}))$
- We can write this is a more compact way:

$$P(y|\vec{x};\Theta) = \sigma(f(\vec{x}))^y \times (1 - \sigma(f(\vec{x})))^{1-y}$$

- The above expression is the probability mass function of the Bernoulli distribution.
- Now we replace $\sigma(f(\vec{x}))$ by \hat{y} :

$$P(y|\vec{x};\Theta) = \hat{y}^y \times (1-\hat{y})^{1-y}$$

• If we perform maximum likelihood estimation to this expression we would apply a logarithm function and maximize the parameters Θ :

$$y\log\hat{y} + (1-y)\log(1-\hat{y})$$

- Maximizing this expression is equivalent to minimizing the logistic loss!
- Many loss functions correspond to the negative log-likelihood of probabilistic models!
- Categorical cross-entropy loss: is used when a probabilistic interpretation of multi-class scores is desired. It measures the dissimilarity between the true label distribution \vec{y} and the predicted label distribution \vec{y} .

$$L_{\text{cross-entropy}}(\vec{\hat{y}}, \vec{y}) = -\sum_{i} \vec{y}_{[i]} \log(\vec{\hat{y}}_{[i]})$$

- When using the cross-entropy loss, it is assumed that the classifier's output is transformed using the softmax transformation.
- The softmax function squashes the k-dimensional output to values in the range (0,1) with all entries adding up to 1. Hence, $\vec{y}_{[i]} = P(y = i|x)$ represent the class membership conditional distribution.
- For hard-classification problems in which each training example has a single correct class assignment, \vec{y} is a one-hot vector representing the true class.
- In such cases, the cross entropy can be simplified to:

$$L_{\text{cross-entropy(hard classification)}}(\vec{\hat{y}}, \vec{y}) = -\log(\vec{\hat{y}}_{[t]})$$

where t is the correct class assignment.

5.9. Regularization

- Our optimization problem may admit multiple solutions, and, especially in higher dimensions, it can also over-fit.
- Scenario: In our language identification problem one of the documents in the training set (\vec{x}_O) is an outlier.
- The document is actually in German, but is labeled as French.
- In order to drive the loss down, the learner can identify features (letter bigrams) in \vec{x}_O that occur in only few other documents.
- The learner will give these features very strong weights toward the (incorrect) French class.
- This is a bad solution to the learning problem.
- The model is learning something incorrect.
- Test German documents which share many words with \vec{x}_O could be mistakenly classified as French.
- We would like to control for such cases by driving the learner away from such misguided solutions.
- Idea: it is OK to mis-classify a few examples if they don't fit well with the rest
- lacktriangle Regularization: we add a regularization term R to the optimization objective.
- The goal of this term: to control the complexity (large weights) of the parameter value (Θ) , and avoid cases of overfitting:

$$\hat{\Theta} = \operatorname{argmin}_{\Theta} \mathcal{L}(\Theta) + \lambda R(\Theta)$$

$$= \operatorname{argmin}_{\Theta} \frac{1}{n} \sum_{i=1}^{n} L(f(\vec{x}_i; \Theta), y_i) + \lambda R(\Theta)$$
(5.13)

- The regularization term considers the parameter values, and scores their complexity.
- The value of hyperparameter λ has to be set manually, based on the classification performance on a development set.
- In practice, the regularizers *R* equate complexity with large weights.
- They work to keep the parameter values (Θ) low.
- They drive the learner toward solutions with low norms of the parameter matrices (*W*).
- Common choices for R are the L_2 norm, the L_1 norm, and the elastic-net.

5.9.1. L₂ Regularization

- In L_2 regularization, R takes the form of the squared L_2 norm of the parameters.
- Goal: try to keep the sum of the squares of the parameter values low.

$$R_{L_2}(W) = ||W||_2^2 = \sum_{i,j} (W_{[i,l]})^2$$

- The L_2 regularizer is also called a Gaussian prior or weight decay.
- L_2 regularized models are severely punished for high parameter weights.
- Once the value is close enough to zero, their effect becomes negligible.
- The model will prefer to decrease the value of one parameter with high weight by 1 than to decrease the value of ten parameters that already have relatively low weights by 0.1 each.

5.9.2. L_1 Regularization

- In L_1 regularization, R takes the form of the L_1 norm of the parameters.
- Goal: try to keep the sum of the absolute values of the parameters low.

$$R_{L_1}(W) = ||W||_1 = \sum_{i,j} |W_{[i,l]}|$$

- In contrast to L_2 , the L_1 regularizer is punished uniformly for low and high values.
- It has an incentive to decrease all the non-zero parameter values toward zero.
- It thus encourages a sparse solutions—models with many parameters with a zero value.
- The L_1 regularizer is also called a sparse prior or lasso [Tibshirani, 1996].

5.9.3. Elastic-Net

■ The elastic-net regularization [Zou and Hastie, 2005] combines both L_1 and L_2 regularization:

$$R_{\text{elactic-net}}(W) = \lambda_1 R_{L_1}(W) + \lambda_2 R_{L_2}(W)$$

5.10. Beyond SGD

- While the SGD algorithm can and often does produce good results, more advanced algorithms are also available.
- The SGD+Momentum [Polyak, 1964] and Nesterov Momentum [Nesterov, 2018, Sutskever et al., 2013] algorithms are variants of SGD in which previous gradients are accumulated and affect the current update.
- Adaptive learning rate algorithms including AdaGrad [Duchi et al., 2011], AdaDelta [Zeiler, 2012], RMSProp [Tieleman and Hinton, 2012], and Adam [Kingma and Ba, 2014] are designed to select the learning rate for each minibatch.
- This sometimes done on a per-coordinate basis, potentially alleviating the need of fiddling with learning rate scheduling.
- For details of these algorithms, see the original papers or [Goodfellow et al., 2016](Sections 8.3, 8.4).

5.11. Train, Test, and Validation Sets

- When training a model our goal is to produce a function $f(\vec{x})$ that correctly maps inputs \vec{x} to outputs \hat{y} as evidenced by the training set.
- Performance on training data can be misleading: our goal is to train a function capable of generalizing to unseen examples.
- Held-out set: split training set into training and testing subsets (80 % and 20 % splits). Train on training and compute accuracy on testing.
- Problem: in practice you often train several models, compare their quality, and select the best one.
- Selecting the best model according to the held-out set's accuracy will result in an overly optimistic estimate of the model's quality.
- You don't know if the chosen settings of the final classifier are good in general, or are just good for the particular examples in the held-out sets.
- The accepted methodology is to use a three-way split of the data into train, validation (also called development), and test sets¹.
- This gives you two held-out sets: a validation set (also called development set), and a test set.

 $^{^1}$ An alternative approach is cross-validation, but it doesn't scale well for training deep neural networks.

- All the experiments, tweaks, error analysis, and model selection should be performed based on the validation set.
- Then, a single run of the final model over the test set will give a good estimate of its expected quality on unseen examples.
- It is important to keep the test set as pristine as possible, running as few experiments as possible on it.
- Some even advocate that you should not even look at the examples in the test set, so as to not bias the way you design your model.

5.12. A limitation of linear models: the XOR problem

- The hypothesis class of linear (and log-linear) models is severely restricted.
- For example, it cannot represent the XOR function, defined as:

$$xor(0,0) = 0$$
 $xor(1,0) = 1$
 $xor(0,1) = 1$
 $xor(1,1) = 0$
(5.14)

 $^{^{1}}source$: https://www.codeproject.com/KB/AI/1146582/validation.PNG

■ There is no parameterization $\vec{w} \in \mathbb{R}^2, b \in \mathbb{R}$ such that:

$$\begin{aligned} (0,0) \cdot \vec{w} + b &< 0 \\ (0,1) \cdot \vec{w} + b &\geq 0 \\ (1,0) \cdot \vec{w} + b &\geq 0 \\ (1,1) \cdot \vec{w} + b &< 0 \end{aligned}$$
 (5.15)

• To see why, consider the following plot of the XOR function, where blue Os denote the positive class and green Xs the negative class.

• It is clear that no straight line can separate the two classes.

5.12.1. Nonlinear input transformations

• If we transform the points by feeding each of them through the nonlinear function $\phi(x_1,x_2)=[x_1\times x_2,x_1+x_2]$, the XOR problem becomes linearly separable.

■ The function ϕ mapped the data into a representation that is suitable for linear classification.

• We can now easily train a linear classifier to solve the XOR problem.

$$\hat{y} = f(\vec{x}) = \phi(\vec{x}) \cdot \vec{w} + b \tag{5.16}$$

- Problem: we need to manually define the function ϕ .
- This process is dependent on the particular dataset, and requires a lot of human intuition.
- Solution: define a trainable nonlinear mapping function, and train it in con-junction with the linear classifier.
- Finding the suitable representation becomes the responsibility of the training algorithm.

5.12.2. Trainable mapping functions

- The mapping function can take the form of a parameterized linear model.
- Followed by a nonlinear activation function *g* that is applied to each of the output dimensions:

$$\hat{y} = f(\vec{x}) = \phi(\vec{x}) \cdot \vec{w} + b$$

$$\phi(\vec{x}) = q(\vec{x}W' + \vec{b}')$$
(5.17)

- $\qquad \qquad \textbf{By taking } g(x) = \max(0,x) \text{ and } W' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \vec{b}' = \begin{pmatrix} -1 & 0 \end{pmatrix}.$
- We get an equivalent mapping to $[x_1 \times x_2, x_1 + x_2]$ for the our points of interest (0,0), (0,1), (1,0), and (1,1).
- This successfully solves the XOR problem!
- Learning both the representation function and the linear classifier on top
 of it at the same time is the main idea behind deep learning and neural
 networks.
- In fact, previous equation describes a very common neural network architecture called a multi-layer perceptron (MLP).

Bibliografía

- [Bender, 2013] Bender, E. M. (2013). Linguistic fundamentals for natural language processing: 100 essentials from morphology and syntax. *Synthesis lectures on human language technologies*, 6(3):1–184.
- [Bengio et al., 2000] Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language model. *Advances in neural information processing systems*, 13.
- [Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. *Journal of machine Learning research*, 3(Jan):993–1022.
- [Brown et al., 1992] Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-based n-gram models of natural language. *Computational linguistics*, 18(4):467–479.
- [Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural language processing (almost) from scratch. *Journal of machine learning research*, 12(Aug):2493–2537.
- [Deng and Liu, 2018] Deng, L. and Liu, Y. (2018). *Deep Learning in Natural Language Processing*. Springer.
- [Duchi et al., 2011] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12(Jul):2121–2159.
- [Eisenstein, 2018] Eisenstein, J. (2018). Natural language processing. Technical report, Georgia Tech.
- [Fromkin et al., 2018] Fromkin, V., Rodman, R., and Hyams, N. (2018). *An introduction to language*. Cengage Learning.
- [Goldberg, 2016] Goldberg, Y. (2016). A primer on neural network models for natural language processing. *J. Artif. Intell. Res.(JAIR)*, 57:345–420.
- [Goldberg, 2017] Goldberg, Y. (2017). Neural network methods for natural language processing. *Synthesis Lectures on Human Language Technologies*, 10(1):1–309.

- [Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep learning*. MIT press.
- [Johnson, 2014] Johnson, M. (2014). Introduction to computational linguistics and natural language processing (slides). 2014 Machine Learning Summer School.
- [Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*.
- [Manning et al., 2008] Manning, C. D., Raghavan, P., and Schütze, H. (2008). *Introduction to Information Retrieval*. Cambridge University Press, New York, NY, USA.
- [McCallum et al., 1998] McCallum, A., Nigam, K., et al. (1998). A comparison of event models for naive bayes text classification. In *AAAI-98 workshop on learning for text categorization*, volume 752, pages 41–48. Madison, WI.
- [Mohammad et al., 2013] Mohammad, S. M., Kiritchenko, S., and Zhu, X. (2013). Nrc-canada: Building the state-of-the-art in sentiment analysis of tweets. *Proceedings of the seventh international workshop on Semantic Evaluation Exercises* (SemEval-2013).
- [Nakov et al., 2013] Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., and Wilson, T. (2013). Semeval-2013 task 2: Sentiment analysis in twitter. In *Proceedings of the seventh international workshop on Semantic Evaluation Exercises*, pages 312–320, Atlanta, Georgia, USA. Association for Computational Linguistics.
- [Nesterov, 2018] Nesterov, Y. (2018). *Lectures on convex optimization*, volume 137. Springer.
- [Polyak, 1964] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. *USSR Computational Mathematics and Mathematical Physics*, 4(5):1–17.
- [Read, 2005] Read, J. (2005). Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In *Proceedings of the ACL Student Research Workshop*, ACLstudent '05, pages 43–48, Stroudsburg, PA, USA. Association for Computational Linguistics.
- [Salton et al., 1975] Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic indexing. *Communications of the ACM*, 18(11):613–620.
- [Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization and momentum in deep learning. In *International conference on machine learning*, pages 1139–1147.
- [Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, 58(1):267–288.

- [Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. *COURSERA: Neural networks for machine learning*, 4(2):26–31.
- [Yule, 2016] Yule, G. (2016). The study of language. Cambridge university press.
- [Zeiler, 2012] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. *arXiv preprint arXiv*:1212.5701.
- [Zipf, 1935] Zipf, G. K. (1935). *The Psychobiology of Language*. Houghton-Mifflin, New York, NY, USA.
- [Zou and Hastie, 2005] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. *Journal of the royal statistical society: series B* (*statistical methodology*), 67(2):301–320.