Encoding Categorical variables

Feature Engineering:

- i. Feature Scaling
- ii. Encoding Categorical Data

Data types:

- (i) Nominal Data: Data in which there is no relationship or order in categories For ex: State (Maharashtra, Gujarat, Uttar Pradesh, Haryana, Rajasthan, Madhya Pradesh) Domain (Computer Science, Artificial Intelligence, Information Technology, Electronics)
- (ii) Ordinal Data: Data in which there is relationship between categories. For ex: Graduate in High School Review (Excellent, Very Good, Good, Poor, Very Poor) this shows Excellent is at high level, Very Poor at low.

How to Encode Categorical Data? Mostly categorical data is in form of string and our ML algorithm expects numbers. As a Machine Learning Engineer, Data Scientist its our responsibilty to convert the category to numbers. There are lot of ways to convert categories to numbers, there are lot of techniques for encoding. Mainly: (i) Ordinal Encoding (ii) One-Hot Encoding (iii) Label Encoding

###Label Encoding: In ordinal encoding, in our data there is/are input columns X and output columns y

In this input columns (X), whenever we have values in column which is Ordinal Encoding there.

But if output variable (Y) is Categorical (like Classification), (0/1) then we don't go for Ordinal Encoding.

Then what to use?

So in this scenario, we use Label Encoding.

It does the same thing which Ordinal Encoding does, this is applied/designed just for output variable 'Y'.

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
In [2]: df = pd.read_csv('customer_dataset.csv')
```

In [3]: df

Out[3]:

	age	gender	review	education	purchased
0	30	Female	Average	School	No
1	68	Female	Poor	UG	No
2	70	Female	Good	PG	No
3	72	Female	Good	PG	No
4	16	Female	Average	UG	No
5	31	Female	Average	School	Yes
6	18	Male	Good	School	No
7	60	Female	Poor	School	Yes
8	65	Female	Average	UG	No
9	74	Male	Good	UG	Yes
10	98	Female	Good	UG	Yes
11	74	Male	Good	UG	Yes
12	51	Male	Poor	School	No
13	57	Female	Average	School	No
14	15	Male	Poor	PG	Yes
15	75	Male	Poor	UG	No
16	59	Male	Poor	UG	Yes
17	22	Female	Poor	UG	Yes
18	19	Male	Good	School	No
19	97	Male	Poor	PG	Yes
20	57	Female	Average	School	Yes
21	32	Male	Average	PG	No
22	18	Female	Poor	PG	Yes
23	96	Female	Good	School	No
24	16	Female	Average	PG	Yes
25	57	Female	Good	School	No

	age	gender	review	education	purchased
26	53	Female	Poor	PG	No
27	69	Female	Poor	PG	No
28	48	Male	Poor	School	No
29	83	Female	Average	UG	Yes
30	73	Male	Average	UG	No
31	22	Female	Poor	School	Yes
32	92	Male	Average	UG	Yes
33	89	Female	Good	PG	Yes
34	86	Male	Average	School	No
35	74	Male	Poor	School	Yes
36	34	Female	Good	UG	Yes
37	94	Male	Average	PG	Yes
38	45	Female	Good	School	No
39	76	Male	Poor	PG	No
40	39	Male	Good	School	No
41	23	Male	Good	PG	Yes
42	30	Female	Good	PG	Yes
43	27	Male	Poor	PG	No
44	77	Female	Average	UG	No
45	61	Male	Poor	PG	Yes
46	64	Female	Poor	PG	No
47	38	Female	Good	PG	Yes
48	39	Female	Good	UG	Yes
49	25	Female	Good	UG	No

```
In [4]: df.head()
```

Out[4]:

	age	gender	review	education	purchased
0	30	Female	Average	School	No
1	68	Female	Poor	UG	No
2	70	Female	Good	PG	No
3	72	Female	Good	PG	No
4	16	Female	Average	UG	No

In [5]: df.tail()

Out[5]:

	age	gender	review	education	purchased
45	61	Male	Poor	PG	Yes
46	64	Female	Poor	PG	No
47	38	Female	Good	PG	Yes
48	39	Female	Good	UG	Yes
49	25	Female	Good	UG	No

In [6]: df.isna().sum()

Out[6]: age

age 0 gender 0 review 0 education 0

purchased (

dtype: int64

```
In [7]: df.describe()
```

Out[7]:		age
	count	50.000000
	mean	54.160000
	std	25.658161
	min	15.000000
	25%	30.250000
	50%	57.000000

Ordinal Encoding:

75% 74.000000 **max** 98.000000

For converting 'X' i.e independent variables into numbers we use Ordinal Encoding.

Ex:

Education

High School (HS)

High School (HS)

Post Graduate (PG)

Post Graduate (PG)

Under Graduate (UG)

UnderGraduate (UG)

Here, we can easily see the relationship:

PG > UG > HS, hence 2 > 1 > 0. So we encode PG as 2, UG as 1 and HS as 0.

As we can observe here,

'Gender' is categorical, 'Review' is categorical, 'Education' is categorical. Except 'Age' which is non-categorical.

Gender --> Nominal categorical

Review --> Ordinal categorical

Education --> Ordinal categorical

Purchased --> Nominal categorical

So, we can apply:

One Hot Encoder on 'Gender'

Ordinal Encoder on 'Review' and 'Education'

Label Encoder on 'Purchased'

Now the thing is as we will have to do different encoding techniques on different individual columns (One-Hot, Ordinal, Nominal) and then asemble the models/result.

So to prevent fro these kind of problems we can use Column Transformer technique which is available in sci-kit learn.

Then building pipelines for individual data columns through Column Transformer.

This all I will pperform later

But for now, I will ignore columns 'Age' and 'Gender'

So left columns will be 'Review', 'Education' and 'Purchased'

Because there are two input columns which shows relationship, 'review' and 'education' and the target variable is 'purchased', So we will select columns 'review', 'education' and 'purchased'

```
In [8]: df = df[['review', 'education', 'purchased']]
```

In [9]: df

Out[9]:

	review	education	purchased
0	Average	School	No
1	Poor	UG	No
2	Good	PG	No
3	Good	PG	No
4	Average	UG	No
5	Average	School	Yes
6	Good	School	No
7	Poor	School	Yes
8	Average	UG	No
9	Good	UG	Yes
10	Good	UG	Yes
11	Good	UG	Yes
12	Poor	School	No
13	Average	School	No
14	Poor	PG	Yes
15	Poor	UG	No
16	Poor	UG	Yes
17	Poor	UG	Yes
18	Good	School	No
19	Poor	PG	Yes
20	Average	School	Yes
21	Average	PG	No
22	Poor	PG	Yes
23	Good	School	No
24	Average	PG	Yes
25	Good	School	No

review	education	purchased
Poor	PG	No
Poor	PG	No
Poor	School	No
Average	UG	Yes
Average	UG	No
Poor	School	Yes
Average	UG	Yes
Good	PG	Yes
Average	School	No
Poor	School	Yes
Good	UG	Yes
Average	PG	Yes
Good	School	No
Poor	PG	No
Good	School	No
Good	PG	Yes
Good	PG	Yes
Poor	PG	No
Average	UG	No
Poor	PG	Yes
Poor	PG	No
Good	PG	Yes
Good	UG	Yes
Good	UG	No
	Poor Poor Average Average Good Average Poor Good Average Good Average Good Average Foor Good Average Foor Good Average Good Average Good Foor Good Good Good Good Good Good Good G	Poor PG Poor School Average UG Average UG Average UG Average UG Good PG Average School Good UG Average PG Good School Good School Poor PG Good PG Average PG Good PG Average UG

Now, I will implement Train Test Split on dataset in ratio 80% and 20% i.e, test_size=0.2 X_train will be 'Review' and 'Education' y train will be 'Purchased'

```
In [10]: from sklearn.model_selection import train_test_split

In [11]: from sklearn.preprocessing import OrdinalEncoder

In [12]: X = df[['review', 'education']]
    y = df['purchased']

In [13]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
```

In [14]: X_train

Out[14]:

	review	education
12	Poor	School
24	Average	PG
25	Good	School
19	Poor	PG
47	Good	PG
13	Average	School
41	Good	PG
43	Poor	PG
20	Average	School
30	Average	UG
44	Average	UG
27	Poor	PG
4	Average	UG
7	Poor	School
17	Poor	UG
0	Average	School
38	Good	School
6	Good	School
9	Good	UG
49	Good	UG
33	Good	PG
48	Good	UG
35	Poor	School
32	Average	UG
18	Good	School
42	Good	PG

	review	education
40	Good	School
1	Poor	UG
14	Poor	PG
26	Poor	PG
45	Poor	PG
29	Average	UG
37	Average	PG
8	Average	UG
34	Average	School
22	Poor	PG
10	Good	UG
15	Poor	UG
28	Poor	School
23	Good	School

In [15]: y_train

```
Out[15]: 12
                No
         24
               Yes
         25
                No
         19
               Yes
         47
               Yes
         13
                No
         41
               Yes
         43
                No
         20
               Yes
         30
                No
         44
                 No
         27
                 No
                 No
         4
         7
               Yes
         17
               Yes
         0
                No
         38
                No
                 No
         6
         9
               Yes
         49
                No
         33
               Yes
         48
               Yes
         35
               Yes
         32
               Yes
         18
                No
         42
               Yes
         40
                 No
         1
                No
         14
               Yes
         26
                No
         45
               Yes
         29
               Yes
         37
               Yes
         8
                No
         34
                No
         22
               Yes
         10
               Yes
         15
                No
         28
                 No
         23
                 No
```

Name: purchased, dtype: object

```
In [16]: X_test
Out[16]:
               review education
          39
                 Poor
                           PG
                           PG
          21 Average
                           UG
          36
                Good
          11
                Good
                           UG
                           PG
          46
                Poor
          16
                Poor
                           UG
                           PG
           2
                Good
          31
                 Poor
                        School
           5 Average
                        School
                           PG
                Good
In [17]: y_test
Out[17]: 39
                 No
         21
                 No
         36
                Yes
         11
                Yes
         46
                 No
         16
                Yes
         2
                 No
         31
                Yes
                Yes
          5
                 No
         Name: purchased, dtype: object
```

Lets implement Ordinal Encoder on values of categorical values of X_train

Out[19]: OrdinalEncoder()

```
In [18]: OE_A = OrdinalEncoder()
In [19]: OE_A.fit(X_train)
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [20]: | OE_A.transform(X_train)

```
Out[20]: array([[2., 1.],
                 [0., 0.],
                 [1., 1.],
                 [2., 0.],
                 [1., 0.],
                 [0., 1.],
                 [1., 0.],
                 [2., 0.],
                 [0., 1.],
                 [0., 2.],
                 [0., 2.],
                 [2., 0.],
                 [0., 2.],
                 [2., 1.],
                 [2., 2.],
                 [0., 1.],
                 [1., 1.],
                 [1., 1.],
                 [1., 2.],
                 [1., 2.],
                 [1., 0.],
                 [1., 2.],
                 [2., 1.],
                 [0., 2.],
                 [1., 1.],
                 [1., 0.],
                 [1., 1.],
                 [2., 2.],
                 [2., 0.],
                 [2., 0.],
                 [2., 0.],
                 [0., 2.],
                 [0., 0.],
                 [0., 2.],
                 [0., 1.],
                 [2., 0.],
                 [1., 2.],
                 [2., 2.],
                 [2., 1.],
                 [1., 1.]])
```

In the above line code,

OE = OrdinalEncoder(categories=[['Poor', 'Average', 'Good'], ['School', 'UG', 'PG']]) If I didn't had declared categories=[['Poor', 'Average', 'Good'], ['School', 'UG', 'PG']]

then it would had randomly categorized the data. So we give this in order like Poor < Average < Good. Same for School < UG < PG Here we declared the level of each value in order.

Now, I will fit model on X train

```
In [24]: OE.fit(X_train)
```

Out[24]: OrdinalEncoder(categories=[['Poor', 'Average', 'Good'], ['School', 'UG', 'PG']])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Now, as I fit the model on X train, lets transform the values into categorical values/numbers

```
X_train = OE.transform(X_train)
X_test = OE.transform(X_test)
```

```
In [25]: X_train = OE.transform(X_train)
X_test = OE.transform(X_test)
```

In [26]: X_train

```
Out[26]: array([[0., 0.],
                 [1., 2.],
                 [2., 0.],
                 [0., 2.],
                 [2., 2.],
                 [1., 0.],
                 [2., 2.],
                 [0., 2.],
                 [1., 0.],
                 [1., 1.],
                 [1., 1.],
                 [0., 2.],
                 [1., 1.],
                 [0., 0.],
                 [0., 1.],
                 [1., 0.],
                 [2., 0.],
                 [2., 0.],
                 [2., 1.],
                 [2., 1.],
                 [2., 2.],
                 [2., 1.],
                 [0., 0.],
                 [1., 1.],
                 [2., 0.],
                 [2., 2.],
                 [2., 0.],
                 [0., 1.],
                 [0., 2.],
                 [0., 2.],
                 [0., 2.],
                 [1., 1.],
                 [1., 2.],
                 [1., 1.],
                 [1., 0.],
                 [0., 2.],
                 [2., 1.],
                 [0., 1.],
                 [0., 0.],
                 [2., 0.]])
```

OE.categories --> Gives categories of X train data

```
In [27]: OE.categories
Out[27]: [['Poor', 'Average', 'Good'], ['School', 'UG', 'PG']]
          OE.categories_ --> Gives categories along with their data type of X train data
In [28]: OE.categories
Out[28]: [array(['Poor', 'Average', 'Good'], dtype=object),
           array(['School', 'UG', 'PG'], dtype=object)]
          Now, Lets apply LabelEncoder on column 'Purchased' i.e, y variable.
          (Label Encoding is specifically used for Nomminal output or y variable data)
          Encode target labels with values between 0 and n-classes -1.
          This transformer must be used to encode target values, i.e., only 'y' and not 'X'
In [29]: from sklearn.preprocessing import LabelEncoder
          LE = LabelEncoder()
          Stored our model label encoder into variable LE
          Then I will fit this transformation technique on y train
In [30]: LE.fit(y train)
Out[30]: LabelEncoder()
          In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
```

#ONE HOT ENCODING#

This technique is used to handle Nominal categorical data (No intrinsic order)

Work Flow:

One Hot Encoding --> Dummy variable Trap --> One Hot Encoding using frequent variables --> Examples

+	+
Color	Target
+	+
Yellow	0
Yellow	1
Blue	1
Yellow	1
Red	1
Yellow	0
Red	1
Red	0
Yellow	1
Blue	0
+	+

We can observe we have 3 types of color categories Yellow, Blue and Red and there is no relationship / intrinsic order among them. And hence when we convert these into number, we won't use Ordinal Encoding else our Machine Learning Algorithm will think that one individual color is more important than other individuals.

Hence I encode it as:

Kinda we converted into vectors

As:

[1, 0, 0] --> Yellow

[0, 1, 0] --> Blue

[0, 0, 1] --> Red

Even if I have 50 different categories, I will use this method.

I know Dimensionality will increase, but this is the only way.

After this we remove one column among these independent variable columns.

Like if we have n number of columns, we keep n-1 columns.

The reason is Multicollinearity.

Multicolinearity:

Our input columns (independent variables). Is there any mathematical relation?

If yes, then these columns are dependent on each other and this should be avoided.

In Machine Learning our input columns 'X' must be inependent eith each other.

If we observe in our table each row's summation comes out to 1. This thing creates difficulty when we are working with linear models like: Linear Regressi, Logistic Regression, etc.

So it must be always remember that columns must not be dependent with each other.

For this reason we only keep n-1 columns.

Ex:

Yellow --> [1, 0, 0]

Blue --> [0, 1, 0]

Red --> [0, 0, 1]

Now the Question comes to our mind is:

Even if we removed column 'Yellow', how will we get to know that the color was 'Yellow'?

The answer is if both 'Blue' and 'Red' are 0 i.e., False, it means color is 'Yellow'.

If we observe, we can easily see there is multicolinearity among columns 'Yellow', 'Blue' and 'Red'. That is why it is called as Dummy variable Trap.

To prevent this there is only way to remove one column.

If suppose we are working with Car Dataset.

```
In [35]: car dataset = pd.read csv('cars dataset.csv')
In [36]:
          car dataset.head()
Out[36]:
                brand km_driven
                                               owner selling_price
                                   fuel
                         145500
                                 Diesel
                                           First Owner
                                                           450000
           0
                Maruti
                Skoda
                         120000
                                        Second Owner
                                                           370000
                                 Diesel
               Honda
                         140000
                                 Petrol
                                          Third Owner
                                                           158000
                         127000
                                           First Owner
                                                           225000
              Hyundai
                                 Diesel
                         120000
                                  Petrol
                                           First Owner
                                                           130000
                Maruti
In [37]:
          car dataset.isna().sum()
Out[37]: brand
                              0
          km_driven
                              0
          fuel
          owner
          selling price
          dtype: int64
```

So I can say its a good dataset as there is not a single null value.

'brand' --> Nominal Categorical (As many as brand individuals are, the more will be Dimensionality and processing gets slow) So in this scenario we keep some frequent categories whhich are important and others we declare as others.

For ex:

category 1 is Hyundai

category 2 is Honda category 3 is Toyota category 4 is Tata category 5 is others

So in this others

In [38]: car_dataset.value_counts()

	_	_				
Out[38]:	brand	km_driven	fuel	owner	selling_price	
	Jaguar	45000	Diesel	First Owner	3200000	34
	Lexus	20000	Petrol	First Owner	5150000	34
	Toyota	68089	Petrol	First Owner	2000000	32
	Honda	56494	Petrol	First Owner	550000	32
	Toyota	79328	Diesel	Second Owner	750000	31
	Jeep	12000	Diesel	First Owner	1500000	1
		10000	Petrol	First Owner	1520000	1
	Jaguar	70000	Diesel	Second Owner	3000000	1
		35000	Diesel	First Owner	3500000	1

So in our dataset

Volvo 72500

car_dataset['brand'].value_counts()

Length: 6450, dtype: int64

This gives us the count for each values of each individual brand car_dataset['brand'].nunique()

Diesel Second Owner 1200000

This gives us overall different categories of brand Same for other columns.

###One Hot Encoding using Pandas###

In [39]: pd.get_dummies(car_dataset,columns=['fuel','owner'])

Out[39]:

	brand	km_driven	selling_price	fuel_CNG	fuel_Diesel	fuel_LPG	fuel_Petrol	owner_First Owner	owner_Fourth & Above Owner	owner_Second Owner	owner_Test Drive Car	
0	Maruti	145500	450000	0	1	0	0	1	0	0	0	
1	Skoda	120000	370000	0	1	0	0	0	0	1	0	
2	Honda	140000	158000	0	0	0	1	0	0	0	0	
3	Hyundai	127000	225000	0	1	0	0	1	0	0	0	
4	Maruti	120000	130000	0	0	0	1	1	0	0	0	
8123	Hyundai	110000	320000	0	0	0	1	1	0	0	0	
8124	Hyundai	119000	135000	0	1	0	0	0	1	0	0	
8125	Maruti	120000	382000	0	1	0	0	1	0	0	0	
8126	Tata	25000	290000	0	1	0	0	1	0	0	0	
8127	Tata	25000	290000	0	1	0	0	1	0	0	0	

8128 rows × 12 columns

4

pd.get_dummies(car_dataset, columns=['fuel', 'owner'])

This is ultimately OHE but here we didn't applied it on column 'brand' for now as it will increase more number of columns and hence dimensionality will increase.

###K-1 One Hot Encoding###

pd.get_dummies(car_dataset, columns=['fuel', 'owner'], drop_first=True)

So in this technique it will remove 1 column after One Hot Encoding. As I mentioned earlier.

So it will remove 1 column from each One Hot Encoding result of 'fuel' and 'owner'.

In [40]: pd.get_dummies(car_dataset, columns=['fuel', 'owner'], drop_first=True)

Out[40]:

	brand	km_driven	selling_price	fuel_Diesel	fuel_LPG	fuel_Petrol	owner_Fourth & Above Owner	owner_Second Owner	owner_Test Drive Car	owner_Third Owner
0	Maruti	145500	450000	1	0	0	0	0	0	0
1	Skoda	120000	370000	1	0	0	0	1	0	0
2	Honda	140000	158000	0	0	1	0	0	0	1
3	Hyundai	127000	225000	1	0	0	0	0	0	0
4	Maruti	120000	130000	0	0	1	0	0	0	0
8123	Hyundai	110000	320000	0	0	1	0	0	0	0
8124	Hyundai	119000	135000	1	0	0	1	0	0	0
8125	Maruti	120000	382000	1	0	0	0	0	0	0
8126	Tata	25000	290000	1	0	0	0	0	0	0
8127	Tata	25000	290000	1	0	0	0	0	0	0

8128 rows × 10 columns

Problem:

For Data Analysis we don't use get_dummies, pandas.

But for Machine Learning we can't do this using pandas.

Reason:

Pandas don't remember that what or which column is at what position.

Solution:

We use class sci-kit learn for One Hot Encoding.

Firstly we proceed with train test split.

Then we import class One Hot Encoder from sci-kit learn.

from sklearn.preprocessing import OneHotEncoder

###One Hot Encoding using sklearn###

In [41]: car_dataset

Out[41]:

	brand	km_driven	fuel	owner	selling_price
0	Maruti	145500	Diesel	First Owner	450000
1	Skoda	120000	Diesel	Second Owner	370000
2	Honda	140000	Petrol	Third Owner	158000
3	Hyundai	127000	Diesel	First Owner	225000
4	Maruti	120000	Petrol	First Owner	130000
8123	Hyundai	110000	Petrol	First Owner	320000
8124	Hyundai	119000	Diesel	Fourth & Above Owner	135000
8125	Maruti	120000	Diesel	First Owner	382000
8126	Tata	25000	Diesel	First Owner	290000
8127	Tata	25000	Diesel	First Owner	290000

8128 rows × 5 columns

In [42]: X_train_car, X_test_car, y_train_car, y_test_car = train_test_split(car_dataset.iloc[:, 0:4], car_dataset.iloc[:, -1],

In [43]: X_train_car

Out[43]:

	brand	km_driven	fuel	owner
6518	Tata	2560	Petrol	First Owner
6144	Honda	80000	Petrol	Second Owner
6381	Hyundai	150000	Diesel	Fourth & Above Owner
438	Maruti	120000	Diesel	Second Owner
5939	Maruti	25000	Petrol	First Owner
5226	Mahindra	120000	Diesel	First Owner
5390	Maruti	80000	Diesel	Second Owner
860	Hyundai	35000	Petrol	First Owner
7603	Maruti	27000	Diesel	First Owner
7270	Maruti	70000	Petrol	Second Owner

6502 rows × 4 columns

In [44]: X_test_car

Out[44]:

	brand	km_driven	fuel	owner
1971	Honda	110000	Petrol	Third Owner
4664	Tata	291977	Diesel	First Owner
5448	Maruti	70000	Diesel	First Owner
3333	Honda	120000	Petrol	Second Owner
2316	Maruti	69000	Diesel	Second Owner
1149	BMW	8500	Diesel	First Owner
5002	Maruti	40000	Petrol	First Owner
6008	Hyundai	54043	Petrol	First Owner
2283	Tata	70000	Petrol	First Owner
5428	Chevrolet	110000	Petrol	Second Owner

1626 rows × 4 columns

```
In [45]: y_train_car
```

```
Out[45]: 6518
                 520000
         6144
                 300000
         6381
                 380000
         438
                 530000
         5939
                 335000
                  . . .
         5226
                 475000
         5390
                 530000
                 576000
         860
         7603
                 770000
         7270
                 155000
```

Name: selling_price, Length: 6502, dtype: int64

```
In [46]: y_test_car
Out[46]: 1971
                   198000
          4664
                   500000
          5448
                   425000
          3333
                   150000
         2316
                   525000
                   . . .
         1149
                  5500000
          5002
                   370000
         6008
                   374000
          2283
                   575000
          5428
                   140000
         Name: selling price, Length: 1626, dtype: int64
         from sklearn.preprocessing import OneHotEncoder
In [47]:
         OHE = OneHotEncoder()
In [48]:
```

We are not applying One Hot Encoding on all columns as 'km_driven' is not categorical and for 'brand' we will be applying One Hot Encoding later (Reason is not to increase Dimensionality for now).

So I just apply One Hot Encoding on columns 'fuel' and 'owner'.

So firstly we have to seperate the columns 'fuel' and 'owner' from dataset and then apply One Hot Encoding and then asemble the result columns with dataset again.

This takes lot of time as to seperate first, then apply One Hot Encoding then again asemble.

So to save the time and efforts we can use Column Transformer where we can apply transformer technique as per our own individual column choice.

For now I will be using the lengthy method which is without Column Transformer.

We take columns 'fuel' and 'owner' for training because 'km' is not Nominal Categorical and 'brand' will increase Dimensionality for now. and then fit transformation technique on selected columns, as here we can see it seems the output is in form of sparse matrix, hence I will make it in array format like:

Same I did for X test car data

Now to append the X_train_car_new and X_test_car_new with the column 'brand' and 'km' I will use hstack. we do,

```
In [54]: np.hstack((X train car[['brand', 'km driven']].values, X train car new))
Out[54]: array([['Tata', 2560, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Honda', 80000, 0.0, ..., 1.0, 0.0, 0.0],
                 ['Hyundai', 150000, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Hyundai', 35000, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Maruti', 27000, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Maruti', 70000, 0.0, ..., 1.0, 0.0, 0.0]], dtype=object)
In [55]: np.hstack((X test car[['brand', 'km driven']].values, X test car new))
Out[55]: array([['Honda', 110000, 0.0, ..., 0.0, 0.0, 1.0],
                 ['Tata', 291977, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Maruti', 70000, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Hyundai', 54043, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Tata', 70000, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Chevrolet', 110000, 0.0, ..., 1.0, 0.0, 0.0]], dtype=object)
         To remove one column from each transformed column (as discussed earlier 'n-1')
         we do some changes as:
         OHE = OneHotEncoder(drop='first')
         And then run the code again.
In [56]: OHE 1 = OneHotEncoder(drop='first')
In [57]: OHE 1.fit transform(X train car[['fuel', 'owner']])
Out[57]: <6502x7 sparse matrix of type '<class 'numpy.float64'>'
                 with 8718 stored elements in Compressed Sparse Row format>
```

In [58]: X train car 1 = OHE 1.fit transform(X train car[['fuel', 'owner']]).toarray()

```
In [59]: | X train car 1
Out[59]: array([[0., 0., 1., ..., 0., 0., 0.],
                [0., 0., 1., ..., 1., 0., 0.],
                [1., 0., 0., ..., 0., 0., 0.]
                [0., 0., 1., ..., 0., 0., 0.],
                [1., 0., 0., ..., 0., 0., 0.],
                [0., 0., 1., ..., 1., 0., 0.]])
In [60]: OHE 1.transform(X test car[['fuel', 'owner']])
Out[60]: <1626x7 sparse matrix of type '<class 'numpy.float64'>'
                 with 2192 stored elements in Compressed Sparse Row format>
In [61]: X test car 1 = OHE 1.transform(X test car[['fuel', 'owner']]).toarray()
In [62]: X test car 1
Out[62]: array([[0., 0., 1., ..., 0., 0., 1.],
                [1., 0., 0., ..., 0., 0., 0.]
                [1., 0., 0., ..., 0., 0., 0.],
                [0., 0., 1., ..., 0., 0., 0.],
                [0., 0., 1., ..., 0., 0., 0.],
                [0., 0., 1., ..., 1., 0., 0.]])
In [63]: | np.hstack((X train car[['brand', 'km driven']].values, X train car 1))
Out[63]: array([['Tata', 2560, 0.0, ..., 0.0, 0.0, 0.0],
                ['Honda', 80000, 0.0, ..., 1.0, 0.0, 0.0],
                ['Hyundai', 150000, 1.0, ..., 0.0, 0.0, 0.0],
                 ['Hyundai', 35000, 0.0, ..., 0.0, 0.0, 0.0],
                ['Maruti', 27000, 1.0, ..., 0.0, 0.0, 0.0],
                ['Maruti', 70000, 0.0, ..., 1.0, 0.0, 0.0]], dtype=object)
```

```
In [64]: np.hstack((X test car[['brand', 'km driven']].values, X test car 1))
Out[64]: array([['Honda', 110000, 0.0, ..., 0.0, 0.0, 1.0],
                 ['Tata', 291977, 1.0, ..., 0.0, 0.0, 0.0],
                 ['Maruti', 70000, 1.0, ..., 0.0, 0.0, 0.0],
                 ['Hyundai', 54043, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Tata', 70000, 0.0, ..., 0.0, 0.0, 0.0],
                 ['Chevrolet', 110000, 0.0, ..., 1.0, 0.0, 0.0]], dtype=object)
In [64]:
         If we don't want sparse matrix then just implement 'sparse=False'
         And to avoid float or double values just implement 'dtype=int32'
In [65]: OHE 2 = OneHotEncoder(drop='first', sparse=False, dtype='int32')
In [66]: OHE 2.fit transform(X train car[['fuel', 'owner']])
         /usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/ encoders.py:868: FutureWarning: `sparse` was renamed t
         o `sparse output` in version 1.2 and will be removed in 1.4. `sparse output` is ignored unless you leave `sparse` to
         its default value.
           warnings.warn(
Out[66]: array([[0, 0, 1, ..., 0, 0, 0],
                 [0, 0, 1, \ldots, 1, 0, 0],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 . . . .
                 [0, 0, 1, ..., 0, 0, 0],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 1, ..., 1, 0, 0]], dtype=int32)
In [67]: X train car 2 = OHE 2.fit transform(X train car[['fuel', 'owner']])
         /usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/ encoders.py:868: FutureWarning: `sparse` was renamed t
         o `sparse output` in version 1.2 and will be removed in 1.4. `sparse output` is ignored unless you leave `sparse` to
         its default value.
           warnings.warn(
```

```
In [68]: | X train car 2
Out[68]: array([[0, 0, 1, ..., 0, 0, 0],
                 [0, 0, 1, \ldots, 1, 0, 0],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 1, \ldots, 0, 0, 0],
                 [1, 0, 0, ..., 0, 0, 0],
                 [0, 0, 1, ..., 1, 0, 0]], dtype=int32)
In [69]: OHE 2.transform(X test car[['fuel', 'owner']])
Out[69]: array([[0, 0, 1, ..., 0, 0, 1],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 1, \ldots, 0, 0, 0],
                 [0, 0, 1, \ldots, 0, 0, 0],
                 [0, 0, 1, ..., 1, 0, 0]], dtype=int32)
In [70]: X test car 2 = OHE 2.transform(X test car[['fuel', 'owner']])
In [71]: X_test_car_2
Out[71]: array([[0, 0, 1, ..., 0, 0, 1],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [1, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 1, \ldots, 0, 0, 0],
                 [0, 0, 1, \ldots, 0, 0, 0],
                 [0, 0, 1, ..., 1, 0, 0]], dtype=int32)
```

Now waiting is over, let's encode the column 'brand'

One Hot Encoding with top categories

As I already discussed to reduce dimensionality I will be choosing frequent categories which seems more important and for rest I will be going as 'others'

So we will set threshold

```
In [74]: counts = car_dataset['brand'].value_counts()
```

Stored all the counts of brand

```
In [75]: counts
Out[75]: Maruti
                          2448
         Hyundai
                          1415
         Mahindra
                           772
         Tata
                           734
                           488
         Toyota
         Honda
                           467
         Ford
                           397
         Chevrolet
                           230
         Renault
                           228
         Volkswagen
                           186
         BMW
                           120
         Skoda
                           105
         Nissan
                            81
                            71
         Jaguar
                            67
         Volvo
         Datsun
                            65
         Mercedes-Benz
                            54
                            47
         Fiat
         Audi
                            40
         Lexus
                            34
         Jeep
                            31
         Mitsubishi
                            14
         Force
                             6
         Land
                             6
         Isuzu
                             5
         Kia
         Ambassador
                             4
         Daewoo
                             3
         MG
                             3
         Ashok
                             1
         Opel
                             1
                             1
         Peugeot
         Name: brand, dtype: int64
In [76]: car_dataset['brand'].nunique()
```

localhost:8888/notebooks/ML_Day_7(A)_of_30.ipynb

Out[76]: 32

Out[79]:

```
In [77]: threshold=100
```

Found out unique values of brand and set variable 'threshold' with value 100

In [78]: repl = counts[counts<=threshold].index</pre>

In [79]: |pd.get_dummies(car_dataset['brand'].replace(repl, 'uncommon'))

	BMW	Chevrolet	Ford	Honda	Hyundai	Mahindra	Maruti	Renault	Skoda	Tata	Toyota	Volkswagen	uncommon
0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	0	0
2	0	0	0	1	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	1	0	0	0	0	0	0
8123	0	0	0	0	1	0	0	0	0	0	0	0	0
8124	0	0	0	0	1	0	0	0	0	0	0	0	0
8125	0	0	0	0	0	0	1	0	0	0	0	0	0
8126	0	0	0	0	0	0	0	0	0	1	0	0	0
8127	0	0	0	0	0	0	0	0	0	1	0	0	0

8128 rows × 13 columns

Here I fetched the brands whose count is less than 100 and stored in repl And from the above count:

Maruti 2448

Hyundai 1415

Mahindra 772

Tata 734

Toyota 488

Honda 467

Ford 397

Chevrolet 230

Renault 228

Volkswagen 186

BMW 120

Skoda 105

These brand are having count more than 100 and rest others we count as uncommon.

Now I will be applying One Hot Encoding on 'brand' just wherever count of the particular brand is less than 100 it will be said/renamed as uncommon (as less than 100 brand we stored in repl) So all the repl brand will be named as uncommon.

Now let's discuss the technique which takes less efforts and saves time.

Let's understand how Column Transformer works which I already mentioned above.

#COLUMN TRANSFORMER#

```
In [81]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [82]: covid_dataset = pd.read_csv('covid.csv')
```

In [83]: covid_dataset

Out	[Q 2]	
out	[ده]	•

	age	gender	fever	cough	city	has_covid
0	60	Male	103.0	Mild	Kolkata	No
1	27	Male	100.0	Mild	Delhi	Yes
2	42	Male	101.0	Mild	Delhi	No
3	31	Female	98.0	Mild	Kolkata	No
4	65	Female	101.0	Mild	Mumbai	No
95	12	Female	104.0	Mild	Bangalore	No
96	51	Female	101.0	Strong	Kolkata	Yes
97	20	Female	101.0	Mild	Bangalore	No
98	5	Female	98.0	Strong	Mumbai	No
99	10	Female	98.0	Strong	Kolkata	Yes

100 rows × 6 columns

In [84]: covid_dataset.isna().sum()

Out[84]: age

age 0 gender 0 fever 10 cough 0 city 0 has_covid 0 dtype: int64

In [85]: covid_dataset.describe()

Out[85]:

	age	fever
count	100.000000	90.000000
mean	44.220000	100.844444
std	24.878931	2.054926
min	5.000000	98.000000
25%	20.000000	99.000000
50%	45.000000	101.000000
75%	66.500000	102.750000
max	84.000000	104.000000

Suppose we have data as:

where Age have 20 missing values.

Age --> Simple Imputer

City --> Nominal Encoding

Gender --> Nominal Encoding

Review --> Ordinal Encoding

Here we can observe that for individual columns we need to apply different transformer techniques.

So to save the time we use column transformer

Simple Imputer:

Replace missing values using descriptive statistics (e.g., mean, median, most frequent) along each column or using constant value.

After importing dataset check value counts for each column (It will help us to show different categories).

So for column 'gender' and 'city' we will apply One Hot Encoding and for column 'cough' we will use ordinal encoding as it shows relationship or intrinsic order.

So as we have 10 missing values of fever, gender --> One Hot Encoding fever --> Simple Imputer cough --> Ordinal Encoding city --> One Hot Encoding has cough --> Label Encoding

(has cough has label encoding because it is target variable and its nominal)

Lets train test split data with ratio 80%-20%.

```
In [86]: X_train_covid, X_test_covid, y_train_covid, y_test_covid = train_test_split(covid_dataset[[ 'age', 'gender', 'fever'])
```

In [87]: X_train_covid

Out[87]:

	age	gender	fever	cough	city
55	81	Female	101.0	Mild	Mumbai
88	5	Female	100.0	Mild	Kolkata
26	19	Female	100.0	Mild	Kolkata
42	27	Male	100.0	Mild	Delhi
69	73	Female	103.0	Mild	Delhi
60	24	Female	102.0	Strong	Bangalore
71	75	Female	104.0	Strong	Delhi
14	51	Male	104.0	Mild	Bangalore
92	82	Female	102.0	Strong	Kolkata
51	11	Female	100.0	Strong	Kolkata

80 rows × 5 columns

In [88]: X_test_covid

Out[88]:

	age	gender	fever	cough	city
83	17	Female	104.0	Mild	Kolkata
53	83	Male	98.0	Mild	Delhi
70	68	Female	101.0	Strong	Delhi
45	72	Male	99.0	Mild	Bangalore
44	20	Male	102.0	Strong	Delhi
39	50	Female	103.0	Mild	Kolkata
22	71	Female	98.0	Strong	Kolkata
80	14	Female	99.0	Mild	Mumbai
10	75	Female	NaN	Mild	Delhi
0	60	Male	103.0	Mild	Kolkata
18	64	Female	98.0	Mild	Bangalore
30	15	Male	101.0	Mild	Delhi
73	34	Male	98.0	Strong	Kolkata
33	26	Female	98.0	Mild	Kolkata
90	59	Female	99.0	Strong	Delhi
4	65	Female	101.0	Mild	Mumbai
76	80	Male	100.0	Mild	Bangalore
77	8	Female	101.0	Mild	Kolkata
12	25	Female	99.0	Strong	Kolkata
31	83	Male	103.0	Mild	Kolkata

###Without Using Column Trasformer###

Simple Impuuter -> fever

import Simple Imputer from sci-kit learn

Then transform column 'fever' using simple imputer in both X_train_covid and X_test_covid and then store in variable from X_train_fever and

```
In [89]: from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.preprocessing import OrdinalEncoder

In [90]: SI = SimpleImputer()

In [91]: X_train_fever = SI.fit_transform(X_train_covid[['fever']])
```

In [92]: X_train_fever

```
Out[92]: array([[101.],
                  [100.],
                  [100.],
                  [100.],
                  [103.],
                  [103.],
                  [102.],
                  [101.],
                  [101.],
                  [101.],
                  [ 98.],
                  [104.],
                  [103.],
                  [104.],
                  [100.],
                  [101.],
                  [104.],
                  [102.],
                  [102.],
                  [103.],
                  [104.],
                  [102.],
                  [101.],
                  [104.],
                  [102.],
                  [101.],
                  [ 99.],
                  [101.],
                  [104.],
                  [102.],
                  [100.],
                  [ 98.],
                  [ 98.],
                  [101.],
                  [100.],
                  [100.],
                  [101.],
                  [104.],
                  [101.],
                  [103.],
                  [101.],
```

```
[ 98.],
[ 99.],
[ 99.],
[101.],
[ 99.],
[101.],
[104.],
[ 98.],
[101.],
[103.],
[101.],
[ 98.],
[ 99.],
[ 98.],
[ 99.],
[102.],
[101.],
[101.],
[104.],
[100.],
[ 98.],
[100.],
[101.],
[100.],
[100.],
[ 98.],
[101.],
[ 98.],
[101.],
[101.],
[104.],
[104.],
[ 98.],
[ 98.],
[102.],
[104.],
[104.],
[102.],
[100.]])
```

```
In [93]: X_test_fever = SI.fit_transform(X_test_covid[['fever']])
In [94]: X test fever
Out[94]: array([[104.
                               ],
                  [ 98.
                  [101.
                  [ 99.
                  [102.
                  [103.
                  [ 98.
                  [ 99.
                  [100.26315789],
                  [103.
                  [ 98.
                  [101.
                  [ 98.
                  [ 98.
                  [ 99.
                  [101.
                  [100.
                  [101.
                 [ 99.
                  [103.
                               ]])
In [95]: X train fever.shape
Out[95]: (80, 1)
          Ordinal Encoding -> cough
          Then transform column 'cough' using Ordinal Encoder from both X_train_covid, X_test_covid and store in variable X_train_cough, X_test_cough
In [96]: OE = OrdinalEncoder(categories=[['Mild', 'Strong']])
In [97]: X_train_cough = OE.fit_transform(X_train_covid[['cough']])
```

In [98]: X_train_cough

```
Out[98]: array([[0.],
                  [0.],
[0.],
                  [0.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [1.],
                  [0.],
                  [0.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [1.],
                  [0.],
                   [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [0.],
                  [1.],
                  [1.],
```

[1.], [0.], [0.], [0.], [0.], [0.], [1.], [1.], [0.], [0.], [0.], [1.], [1.], [1.], [1.], [0.], [1.], [1.], [0.], [0.], [1.], [0.], [1.], [0.], [1.], [0.], [0.], [0.], [1.], [0.], [1.], [0.],

[0.], [1.], [1.], [0.], [1.], [1.]])

localhost:8888/notebooks/ML_Day_7(A)_of_30.ipynb

```
In [99]: X_test_cough = OE.fit_transform(X_test_covid[['cough']])
In [100]: X test cough
Out[100]: array([[0.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [0.],
                  [1.],
                  [0.],
                  [1.],
                  [0.],
                  [0.],
                  [0.],
                  [1.],
                  [0.]])
In [101]: X_train_cough.shape
Out[101]: (80, 1)
In [101]:
```

One Hot Encoding -> gender, city

Then transform column 'gender' and 'city' using One Hot Encoding from both X_train_gender_city and X_test_gender_city. Removing first column after encoding and setting sparse matrix as false.

In [104]: X_train_gender_city

```
Out[104]: array([[0., 0., 0., 1.],
                  [0., 0., 1., 0.],
                  [0., 0., 1., 0.],
                  [1., 1., 0., 0.],
                  [0., 1., 0., 0.],
                  [1., 0., 1., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 1., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 1., 0.],
                  [0., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [0., 0., 0., 0.],
                  [1., 0., 1., 0.],
                  [1., 0., 1., 0.],
                  [0., 0., 0., 0.],
                  [1., 0., 1., 0.],
                  [0., 0., 0., 0.],
                  [0., 0., 0., 0.],
                  [0., 0., 1., 0.],
                  [1., 0., 0., 1.],
                  [1., 0., 0., 1.],
                  [0., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 0., 0.],
                  [1., 1., 0., 0.],
                  [1., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [1., 0., 0., 0.]
                  [0., 0., 1., 0.],
                  [0., 0., 1., 0.],
                  [0., 1., 0., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 0., 0.],
                  [1., 0., 0., 0.],
                  [1., 0., 0., 0.]
                  [1., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [1., 0., 0., 0.],
                  [1., 0., 1., 0.],
```

```
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[1., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[0., 0., 1., 0.],
[1., 0., 1., 0.],
[1., 0., 0., 1.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[1., 0., 1., 0.],
[0., 1., 0., 0.],
[1., 0., 1., 0.],
[0., 0., 1., 0.],
[1., 0., 0., 0.]
[0., 0., 0., 1.],
[1., 0., 1., 0.],
[0., 0., 0., 1.],
[1., 1., 0., 0.],
[0., 0., 0., 0.],
[1., 0., 0., 0.]
[1., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.]
[1., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.]
[1., 0., 1., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.]
[0., 0., 1., 0.],
[0., 0., 1., 0.]])
```

```
In [105]: X_test_gender_city = OHE_A.fit_transform(X_test_covid[['gender','city']])
```

/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.

warnings.warn(

In [106]: X_train_gender_city

```
Out[106]: array([[0., 0., 0., 1.],
                  [0., 0., 1., 0.],
                  [0., 0., 1., 0.],
                  [1., 1., 0., 0.],
                  [0., 1., 0., 0.],
                  [1., 0., 1., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 1., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 1., 0.],
                  [0., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [0., 0., 0., 0.],
                  [1., 0., 1., 0.],
                  [1., 0., 1., 0.],
                  [0., 0., 0., 0.],
                  [1., 0., 1., 0.],
                  [0., 0., 0., 0.],
                  [0., 0., 0., 0.],
                  [0., 0., 1., 0.],
                  [1., 0., 0., 1.],
                  [1., 0., 0., 1.],
                  [0., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 0., 0.],
                  [1., 1., 0., 0.],
                  [1., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [1., 0., 0., 0.],
                  [0., 0., 1., 0.],
                  [0., 0., 1., 0.],
                  [0., 1., 0., 0.],
                  [0., 1., 0., 0.],
                  [0., 0., 0., 0.],
                  [1., 0., 0., 0.],
                  [1., 0., 0., 0.]
                  [1., 0., 0., 1.],
                  [0., 0., 0., 0.],
                  [1., 0., 0., 0.],
                  [1., 0., 1., 0.],
```

```
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[1., 1., 0., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 1., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[0., 0., 1., 0.],
[1., 0., 1., 0.],
[1., 0., 0., 1.],
[1., 0., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 0.],
[1., 0., 1., 0.],
[0., 1., 0., 0.],
[1., 0., 1., 0.],
[0., 0., 1., 0.],
[1., 0., 0., 0.]
[0., 0., 0., 1.],
[1., 0., 1., 0.],
[0., 0., 0., 1.],
[1., 1., 0., 0.],
[0., 0., 0., 0.],
[1., 0., 0., 0.]
[1., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.]
[1., 1., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.]
[1., 0., 1., 0.],
[1., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 1., 0., 0.],
[1., 0., 0., 0.]
[0., 0., 1., 0.],
[0., 0., 1., 0.]])
```

```
In [107]: X train gender city.shape
Out[107]: (80, 4)
In [107]:
           Concatenate all these
           Step-1: Extract 'age' column
           Step-2: Concatenate 'X train age', 'X train fever', 'X train cough', 'X train gender city' and store concatenation in X train transformed.
           Step-3: Concatenate 'X test age', 'X test fever', 'X test cough', 'X test gender city' and store concatenation in X test transformed.
In [108]: X train age = X train covid.drop(columns=['gender', 'fever', 'cough', 'city']).values
           X test age = X test covid.drop(columns=['gender', 'fever', 'cough', 'city']).values
           X train age.shape
Out[108]: (80, 1)
In [109]: X train transformed = np.concatenate((X train age, X train fever, X train gender city, X train cough), axis=1)
           X_test_transformed = np.concatenate((X_test_age,X_test_fever,X_test_gender_city,X_test_cough),axis=1)
           X train transformed.shape
Out[109]: (80, 7)
In [109]:
           ###Using Column Transformer###
           import Column Transformer from sci-kit learn and store this in object, let's say CT.
In [110]: from sklearn.compose import ColumnTransformer
```

Now, I will pass list for transformers

```
In [111]: CT = ColumnTransformer(transformers=[])
```

In list we give name for each transformation technique we are applying on individual columns

Then I will pass remainder,

Remainder -> We don't apply transformation technique sometimes on all columns, so the remaining columns will have two options

(i) drop the columns (ii) remain those as it is

for drop:

CT = ColumnTransformer(transformers=[], remainder='drop')

for remaining it as it is

CT = ColumnTransformer(transformers=[], remainder='passthrough')

In 'tnf1' I simply applied SimpleImputer() technique on column 'fever'

In 'tnf2' I applied OrdinalEncoder on column 'cough' where we declared level for the categories as: Mild < Strong

In 'tnf3' I applied OneHotEncoder on columns 'gender' and 'city'and set sparse matrix as False and after getting implemented we set drop='first' so that it will drop first column from each individual columns result after implementation of OneHotEncoder on 'gender' and 'city'.

```
In [113]: CT.fit_transform(X_train_covid).shape
    /usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was renamed t
    o `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to
    its default value.
        warnings.warn(

Out[113]: (80, 7)

In [114]: CT.transform(X_test_covid).shape

Out[114]: (20, 7)
```

```
In [114]:
```

#PIPELINES#

Pipelines chains together multiple steps so that the output of each step is used as input to the next step. Pipelines makes it easy to apply the same pre-processing to train and test.

Let's understand what efforts do we need if we don't use Pipeline

###Without using Pipeline###

So here I will be using Titanic Dataset.

Firstly I will import all the necessary libraries

```
In [115]: import numpy as np import pandas as pd
```

```
In [116]: from sklearn.model_selection import train_test_split
    from sklearn.compose import ColumnTransformer
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.pipeline import Pipeline,make_pipeline
    from sklearn.feature_selection import SelectKBest,chi2
    from sklearn.tree import DecisionTreeClassifier
```

Now I will import dataset

In [117]: | titanic_dataset = pd.read_csv('titanic_dataset.csv')

In [118]: titanic_dataset

Οι	ıt	[1	.1	8	:
		_		_	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

In [119]: titanic_dataset.head()

Out	[119]	

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [120]: titanic_dataset.tail()

Out[120]:

		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
8	86	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
8	87	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
8	88	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
8	89	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
8	90	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

Let's find missing values for our dataset

```
In [121]: titanic_dataset.isna().sum()
Out[121]: PassengerId
                             0
           Survived
                             0
           Pclass
           Name
           Sex
           Age
                           177
           SibSp
           Parch
                             0
           Ticket
           Fare
           Cabin
                           687
           Embarked
                             2
           dtype: int64
           Now I will drop 'Passengerld', 'Name', 'Ticket', 'Cabin' as it won't show anything much informative
          titanic dataset.drop(columns=['PassengerId','Name','Ticket','Cabin'],inplace=True)
In [122]:
           Now I will train, test, split the dataset
           Target variable --> 'Survived'
In [123]: X_train,X_test,y_train,y_test = train_test_split(titanic_dataset.drop(columns=['Survived']), titanic_dataset['Survived'])
```

In [124]: X_train

Out[124]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
331	1	male	45.5	0	0	28.5000	S
733	2	male	23.0	0	0	13.0000	S
382	3	male	32.0	0	0	7.9250	S
704	3	male	26.0	1	0	7.8542	S
813	3	female	6.0	4	2	31.2750	S
106	3	female	21.0	0	0	7.6500	S
270	1	male	NaN	0	0	31.0000	S
860	3	male	41.0	2	0	14.1083	S
435	1	female	14.0	1	2	120.0000	S
102	1	male	21.0	0	1	77.2875	S

712 rows × 7 columns

In [125]: X_test

Out	[125]	:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
709	3	male	NaN	1	1	15.2458	С
439	2	male	31.0	0	0	10.5000	S
840	3	male	20.0	0	0	7.9250	S
720	2	female	6.0	0	1	33.0000	S
39	3	female	14.0	1	0	11.2417	С
433	3	male	17.0	0	0	7.1250	S
773	3	male	NaN	0	0	7.2250	С
25	3	female	38.0	1	5	31.3875	S
84	2	female	17.0	0	0	10.5000	S
10	3	female	4.0	1	1	16.7000	S

179 rows × 7 columns

```
In [126]: y_train
```

```
Out[126]: 331
```

Name: Survived, Length: 712, dtype: int64

```
In [127]: y_test
Out[127]: 709
                   1
           439
                   0
           840
                   0
           720
                   1
           39
                   1
           433
                   0
           773
                   0
           25
                   1
                   1
           84
           10
                   1
           Name: Survived, Length: 179, dtype: int64
           Now I must check missing values for chosen features.
In [128]: titanic_dataset.isnull().sum()
Out[128]: Survived
                           0
           Pclass
                           0
           Sex
                           0
           Age
                        177
           SibSp
           Parch
           Fare
           Embarked
           dtype: int64
           As here we can see column 'Age' has 177 missing values and column 'Embarked' has 2 missing values.
           Those columns which have missing values and which are not categorical must be transformed or filled using Simple Imputer.
```

In [129]: SI 1 = SimpleImputer()

SI_2 = SimpleImputer(strategy='most_frequent')

SI 1 --> Simple Imputer where missing values will be filled with mean value.

SI 2 --> Simple Imputer where missing values will be filled with most frequent values.

Apply SI 1 on X train['Age'] and store in any variable lets say X train age.

then apply SI 2 on X train['Embarked'] and store in any variable lets say X train embarked and then transform.

```
In [130]: X_train_age = SI_1.fit_transform(X_train[['Age']])
          X train embarked = SI 2.fit_transform(X_train[['Embarked']])
          X_test_age = SI_1.transform(X_test[['Age']])
          X test embarked = SI 2.transform(X test[['Embarked']])
In [131]: X_train_age
Out[131]: array([[45.5
                              ],
                  [23.
                  [32.
                  [26.
                  [ 6.
                  [24.
                  [45.
                  [29.
                  [29.49884615],
                  [29.49884615],
                  [42.
                  [36.
                  [33.
                  [17.
                  [29.
                  [50.
                  [35.
                  [38.
                  [34.
```

```
In [132]: X train embarked
Out[132]: array([['S'],
                   ['S'],
                   ['S'],
                   ['S'],
                   ['S'],
                  ['C'],
                   ['S'],
                  ['C'],
                  ['S'],
                   ['S'],
                  ['S'],
                   ['S'],
                   ['S'],
                  ['S'],
                   ['S'],
                  ['S'],
                   ['S'],
                   ['C'],
                   ['S'],
```

###One Hot Encoding###

As column Sex and Embarked needs One Hot Encoding because they are Nominal and which are not target variable.

So we will store OneHotEncoder in object OHE and set sparse as False and missing or unknown values as ignore.

Then I apply OHE on X train['Sex'] and store it in X train Sex.

Then I apply OHE on X_train['Embarked'] and store it in and then transform.

```
In [133]: OHE_sex = OneHotEncoder(sparse=False,handle_unknown='ignore')
OHE_embarked = OneHotEncoder(sparse=False,handle_unknown='ignore')
```

```
In [134]: X train sex = OHE sex.fit transform(X train[['Sex']])
          X train embarked = OHE embarked.fit transform(X train embarked)
          X test sex = OHE sex.transform(X test[['Sex']])
          X test embarked = OHE embarked.transform(X test embarked)
          /usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was renamed t
          o `sparse output` in version 1.2 and will be removed in 1.4. `sparse output` is ignored unless you leave `sparse` to
          its default value.
            warnings.warn(
          /usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/ encoders.py:868: FutureWarning: `sparse` was renamed t
          o `sparse output` in version 1.2 and will be removed in 1.4. `sparse output` is ignored unless you leave `sparse` to
          its default value.
            warnings.warn(
In [135]: X train sex
Out[135]: array([[0., 1.],
                 [0., 1.],
                 [0., 1.],
                  . . . ,
                 [0., 1.],
                 [1., 0.],
                 [0., 1.]])
In [136]: X train embarked
Out[136]: array([[0., 0., 1.],
                 [0., 0., 1.],
                 [0., 0., 1.],
                 [0., 0., 1.],
                 [0., 0., 1.],
                 [0., 0., 1.]])
```

```
In [137]: X_test_sex
Out[137]: array([[0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [1., 0.],
                  [0., 1.],
                  [1., 0.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.],
                  [1., 0.],
                  [0., 1.],
                  [0., 1.],
                  [1., 0.],
                  [0., 1.],
                  [1., 0.],
                  [0., 1.],
```

```
In [138]: X_test_embarked
Out[138]: array([[1., 0., 0.],
                  [0., 0., 1.],
                 [0., 0., 1.],
                  [0., 0., 1.],
                  [1., 0., 0.],
                  [0., 0., 1.],
                  [0., 1., 0.],
                  [0., 0., 1.],
                  [0., 1., 0.],
                  [0., 0., 1.],
                  [0., 0., 1.],
                  [0., 0., 1.],
                  [0., 0., 1.],
                  [1., 0., 0.],
                  [0., 0., 1.],
                  [0., 0., 1.],
                  [0., 0., 1.],
                  [0., 1., 0.],
                  [0., 0., 1.],
```

In [139]: X_train

Out[139]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
331	1	male	45.5	0	0	28.5000	S
733	2	male	23.0	0	0	13.0000	S
382	3	male	32.0	0	0	7.9250	S
704	3	male	26.0	1	0	7.8542	S
813	3	female	6.0	4	2	31.2750	S
106	3	female	21.0	0	0	7.6500	S
270	1	male	NaN	0	0	31.0000	S
860	3	male	41.0	2	0	14.1083	S
435	1	female	14.0	1	2	120.0000	S
102	1	male	21.0	0	1	77.2875	S

712 rows × 7 columns

```
In [139]:
```

Now I am going to create an object where I will be storing remaining columns and not affecting them / not making any changes in them.

```
In [140]: X_train_rem = X_train.drop(columns=['Sex','Age','Embarked'])
In [141]: X_test_rem = X_test.drop(columns=['Sex','Age','Embarked'])
In [141]:
In [141]:
```

Now let's concatenate the results.

```
In [142]: X train transformed = np.concatenate((X_train_rem, X_train_age,X_train_sex, X_train_embarked), axis=1)
In [143]: X train transformed
Out[143]: array([[1., 0., 0., ..., 0., 0., 1.],
                  [2., 0., 0., \ldots, 0., 0., 1.],
                  [3., 0., 0., ..., 0., 0., 1.],
                  [3., 2., 0., ..., 0., 0., 1.],
                  [1., 1., 2., ..., 0., 0., 1.],
                  [1., 0., 1., ..., 0., 0., 1.]]
In [144]: X_test_transformed = np.concatenate((X_test_rem, X_test_age,X_test_sex, X_test_embarked), axis=1)
In [145]: X test transformed
Out[145]: array([[3., 1., 1., ..., 1., 0., 0.],
                  [2., 0., 0., ..., 0., 0., 1.],
                  [3., 0., 0., ..., 0., 0., 1.],
                  [3., 1., 5., \ldots, 0., 0., 1.],
                  [2., 0., 0., ..., 0., 0., 1.],
                  [3., 1., 1., ..., 0., 0., 1.]])
          Simply what I did is created transformation and concatenated its result with the remaining columns left.
          Same we did for X test
In [146]: X_test_transformed.shape
Out[146]: (179, 10)
In [147]: from sklearn.tree import DecisionTreeClassifier
```

just imported DecisionTreeClassifier and stored model in object DTC.

```
In [148]: DTC = DecisionTreeClassifier()
```

Now let's fit the model for X train transformed and y train

```
In [149]: DTC.fit(X_train_transformed, y_train)
```

```
Out[149]: DecisionTreeClassifier()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Let us create an object where we will store the predicted values for X_test_transformed, after X_train_transformed fit on DecisionTreeClassifier algorithm so that it will understand the data accordingly and will apply the same algorithm on it.

So we create an object named 'y_prediction' where I will be storing all the predicted values.

Then I will predict the predicted output for input **X_test_transformed**.

```
In [150]: y_prediction = DTC.predict(X_test_transformed)
```

Lets look at our predicted values.

0, 1, 1])

I will be now checking the accuracy so I will just import model accuracy_score from metrics which is available in sklearn.

Then apply this accuracy score on y train and y prediction that how much of them is similar (in percentage).

```
In [152]: from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_prediction)
```

Out[152]: 0.7877094972067039

Here we can see that accuracy is around 70%.

Now I want that after taking new input from user and based in that input I want to predict output.

To take our model on web page we use pickle.

Why is pickle used?

In simple words pickle I am using here for exporting models.

```
In [153]: import pickle
In [154]: import os
```

```
In [155]: from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
In [156]: directory_path = '/content/drive/My Drive/Colab Notebooks/'
```

So I will be exporting transform of One Hot Enncoding of column Sex and Embarked only.

Because 'Age' and 'Embarked' although we used for transforming, but we did Simple Imputer transformation on it as there were missing values but while taking input from user we don't need Simple Imputer model and hence we won't export it.

```
In [157]: pickle.dump(OHE_sex, open(directory_path + 'OHE_sex.pkl', 'wb'))
    pickle.dump(OHE_embarked, open(directory_path + 'OHE_embarked.pkl', 'wb'))
    pickle.dump(DTC, open(directory_path + 'DTC.pkl', 'wb'))

Let's go to new file...
In [157]:
```