

Этикетка

КСНЛ.431279.001 ЭТ

Микросхема 1564ЛН7Т1ЭП

Микросхема интегральная 1564ЛН7Т1ЭП Функциональное назначение: Шесть инверсных буферов с 3-мя состояниями

Таблица назначения выводов

№	Обозначение	Назначение вывода	$N_{\underline{0}}$	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	1EZ	Вход управления	9	1Q3	Выход
2	1D0	Вход	10	1D3	Вход
3	1Q0	Выход	11	2Q0	Выход
4	1D1	Вход	12	2D0	Вход
5	1Q1	Выход	13	2Q1	Выход
6	1D2	Вход	14	2D1	Вход
7	1Q2	Выход	15	2EZ	Вход управления
8	0V	Общий	16	V_{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25 ± 10 °C)

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, U_{IH}=1,5 \text{ B} I_{O}=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 mkA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 6,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 7,8 mA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2,0 \text{ B}, U_{IL}=0,3 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} = 20 mKA		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, I_{O} = 20 мкА		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, I_{O} =6,0 mA		3,98	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_0=7.8 \text{ mA}$		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$ m I_{IH}$	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	4,0
6. Выходной ток низкого и высокого уровня в состоянии «Выключено»,	I_{OZH}		
мкА, при:	I_{OZL}	-	0,5
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}$			

7. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, \text{ f} = 10 \text{ M}\Gamma_{\text{II}}$	I_{OCC}		
$U_{1EZ} = U_{2EZ} = U_{IH} = U_{CC}$		-	1,0
$U_{1EZ} = U_{2EZ} = U_{IL} = 0$		=	20,0
8. Время задержки распространения при включении и выключении, нс,			
- от входа 1D01D3, 2D0, 2D1 к выходам 1Q01Q3, 2Q0, 2Q1,нс при:	$t_{ m PHL}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{\rm PLH}$	-	82
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	19
$U_{CC} = 6.0 \text{ B}, C_L = 50 \Pi \Phi$		-	16
1D01D3, 2D0, 2D1 к выходам 1Q01Q3, 2Q0, 2Q1 при:			
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ п}\Phi$		-	107
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ m}\Phi$		-	26
$U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ п}\Phi$		-	22
9. Время задержки распространения при переходе из третьего состояния в			
состояние низкого и высокого уровня, нс, при:	t_{PZL}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi, R_L = 1 \text{ кOm}$	t_{PZH}	-	172
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ п}\Phi, R_L = 1 \text{ кOm}$		-	38
$U_{CC} = 6.0 \text{ B}, C_L = 50 \pi\Phi, R_L = 1 \kappa\text{Om}$		-	35
$U_{CC} = 2.0 \text{ B. } C_1 = 150 \text{ n}\Phi. R_1 = 1 \text{kOm}$			187
$U_{CC} = 4.5 \text{ B}, C_1 = 150 \text{ n}\Phi, R_1 = 1 \text{kOm}$		-	46
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ n}\Phi, R_L = 180\text{ m}$ $U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ n}\Phi, R_L = 180\text{ m}$		-	42
ОСС — 0,0 В, С <u>Г</u> — 130 ПФ, К <u>Г</u> — 1кОм		-	42
10. Время задержки распространения при переходе из состояния низкого и			
высокого уровня в третье состояние, нс, при:	t_{PLZ}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$	t_{PHZ}	-	117
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$		-	35
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ пФ}, R_L = 1 \text{ кОм}$		-	31
11. Входная емкость, $\pi\Phi$, при: $U_{CC} = 0$ В	C_{I}	-	10
12. Выходная ёмкость в состоянии «Выключено», пФ, при:			
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	C_{OZ}	-	20

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г. в том числе: золото г/мм на 16 выводах длиной мм.

2 НАЛЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{\rm CC} = 5 B \pm 10\%$ - не менее 120000ч.

 $2.2~\Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте 3ИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-17ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛН7Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-17ТУ и признаны годными для эксплуатации.

Приняты по от		
(извещение, акт и др.)	(дата)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепроверка	произведена	у (дата)
Приняты по (извещение, акт и др.) от (дата)	
Место для штампа ОТК		Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.