Esercizio 12 p.232

Siano dati i seguenti linguaggi:

 $L_1 = S((ab)^*) \text{ ed } L_2 = S(a(ba+a)^*)$

Costruire un FSA M tale che $T(M) = L_1 \cup L_2$.

Descriviamo $L_1 \cup L_2 = S((ab)^*) \cup S(a(ba+a)^*) = (S(ab))^* \cup S(a) S((ba+a)^*) = \{ab\}^* \cup \{a\}\{ba, a\}^* = \{\lambda, a, aa, ab, ba ... \}$

Determiniamo una grammatica G_1 tale che $L(G_1)=L_1$.

Consideriamo

Applichiamo il teorema di chiusura della classe di linguaggi lineari destri rispetto all'iterazione:

G1: S1->
$$\lambda$$
, S'1-> a A, A-> b ,
S1-> a A, A-> b S1
per cui si ha
G1: S1-> $\lambda|a$ A, A-> $b|b$ S1
(S'1 è un nonterminale inutile)

Determiniamo una grammatica G_2 tale che $L(G_2) = L_2$.

Consideriamo

$L'_2 = \{a\}$	G'2: S'2->a
$L''_2 = \{ba, a\}^*$	Applico nuovamente il teorema di chiusura della classe di linguaggi lineari destri rispetto all'iterazione.

Innanzitutto determino una grammatica G₃ per $L_3 = \{ba, a\}$:

 G_3 : S_3 -> $a \mid b$ B, B->a

Posso ora applicare nuovamente il teorema di chiusura della classe di linguaggi lineari destri rispetto all'iterazione:

$$G''_2$$
: S''_2 -> λ , S_3 -> $a \mid bB$, B -> a , S''_2 -> $a \mid bB$, S_3 -> aS''_2 , B -> aS''_2 , S''_2 -> aS''_2 tale che $L(G''_2)$ = L''_2 = $\{ba,a\}^*$

Osserviamo che S₃ è un nonterminale inutile per cui possiamo semplificare G''_2 ottenendo: G''_2 : S''_2 -> $\lambda |a|bB|aS''^2$, B-> $a|aS''_2$,

Posso ora determinare G_2 applicando la proprietà costruttiva della dimostrazione del teorema di chiusura della classe di linguaggi lineari destri rispetto alla concatenazione in quanto $L_2 = \{a\}\{ba, a\}^* = L'_2 L''_2$

G2: $S'_2 -> aS''_2$, $S''_2 -> \lambda |a|bB|aS''_2$, $B->a|aS''_2$

Determiniamo infine una grammatica G tale che $L(G)=L_1 \cup L_2$.

Applichiamo allo scopo la parte costruttiva del teorema di chiusura della classe di linguaggi lineari destri rispetto all'unione:

G: S-> $\lambda |aA|aS''2$, S1-> $\lambda |aA, A-> b|bS1$, S'2->aS''2, S"2-> $\lambda |a|bB|aS''2$, B->a|aS''2 tale che L(G)= L_1 U L_2 .

Osserviamo che S'_2 è un nonterminale inutile per cui possiamo semplificare G:

$$G: S \rightarrow \lambda |aA|aS"2$$
, $S_1 \rightarrow \lambda |aA, A-> b|bS_1$, $S"2 \rightarrow \lambda |a|bB|aS"2$, $B \rightarrow a|aS"2$,

Applichiamo l'Algoritmo 7.1 che costituisce la parte costruttiva del Teorema di Kleene per definire un FSA M tale che $T(M)=L_1$ U L_2 .

$$M = (Q, \delta, q_0, F)$$

 $Q = V \cup \{q\} = \{S, A, S''_2, S_1, B, q\}$
 $F = \{q\} \cup \{S, S_1, S''_2\}$
 $q_0 = S$

S -> aA S-> aS"2	dà luogo a dà luogo a	$A \in \delta(S, a)$ $S''_2 \in \delta(S, a)$
S1-> aA	dà luogo a	$A \in \delta(S_1, a)$
A->b $A->b$ S ₁	dà luogo a dà luogo a	$q \in \delta(A, b)$ $S_1 \in \delta(A, b)$
S"2-> a S"2-> bB S"2-> aS"2	dà luogo a dà luogo a dà luogo a	$q \in \delta(S''_2, a)$ $B \in \delta(S''_2, b)$ $S''_2 \in \delta(S''_2, a)$
B-> <i>a</i> B-> <i>a</i> S"2	dà luogo a dà luogo a	$q \in \delta(B, a)$ S"2 $\in \delta(B, a)$

Per esercizio: costruire il diagramma di transizione dell'FSA M' equivalente (applicando l'Algoritmo che costituisce la parte costruttiva del teorema di equivalenza delle classi di linguaggi a stati finiti deterministici e non deterministici) ad M.