Ames Housing Data: Machine Learning Applications

Victoria Baker, Jan Forslow, Alice Lam, Josh Lee

The data, and our approach

🥍 The Data

- Feature counts:
 - 72 => 212 after processing
- Row counts:
 - 1460 test, 1459 train
- Features cover:
 - Size
 - Conditions rating
 - Utilities
 - Construction features
 - Community and neighborhood
- Data split for assessment:
 - Fit/Predict: mini_train (80%), dev (20%)
 - Cross validation on mini_train
 - Scoring: Root mean squared log error (RMSLE)

Our Approach

Looking for the best model

Experimenting with other models

Our Best Results (RMSLE)

RMSLE

What have we learned from the process?

Why some work while some don't?

From: EDA, Feature Processing

Impact of feature processing

Based on Basic LinearRegression() Performance:

Fit mini_train (N=1162) Pred dev (N = 291)

Feature processing

Taking Log of Y (SalePrice)

Outliers

Normalize skewness

From: Feature Engineering and GSCV

GSCV: Comparing across models

Best Param from GridsearchCV

Best Param:

LR: Normalize = False

Lasso: Normalize = True, Alpha = 0.0001 **Ridge**: Normalize = True, Alpha = 1.0

EN (Elastic Net): Fit_Intercept= True, Normalize = True, Alpha = 0.0001, L1_ratio = 0.9

KNN: N = 1

CART (Decision Tree Regressor): Max_features = 10, max_depth = 11, min_samples_split = 60

NB: alpha = 0.0001

GBR (Gradient Boosting Regressor): Learning_rate = 0.04, n_estimators = 100

Feature Engineering

From: Neural Network

NN on Regression Problem

From: Gradient Boosting & F Regression

Helpful for Feature Learning

From: Ensembles

Ensembles Hard to Find

- Tested three off-the-shelf ensemble modules
- Scikit-learn ensemble.VotingClassifier
 - Wraps models and averages the predictions
 - Not working for LR models
- mixtend.StackingRegressor
 - Individual regression models trained on complete training set; Meta-regressor LR fitted on the outputs
 - Combined LR, LASSO, EN, Ridge, CART and GBR
- mixtend.StackingCVRegressor
 - Using out-of-fold predictions to prepare the input data for the level-2 classifier; Avoids over-fitting
 - Achieved RMSLE of 0.11 on dev-set

From: One Drop Model & Decision Trees

Key Points

- 1. Feature processing is very important
- 2. Use "system" level not "unit" level metrics

<u>rr b</u>	Before FP	RR A	RR After FF		
	0		0		
count	212.000000	count	2.1e+02		
mean	0.418923	mean	2.4e-01		
std	0.000114	std	3.7e-02		
min	0.418449	min	1.4e-01		
25%	0.418919	25%	2.4e-01		
50%	0.418919	50%	2.5e-01		
75%	0.418919	75%	2.5e-01		
max	0.420471	max	3.3e-01		

Decision Tree: Information Gain & f-regression

DT Similar to GBR Feature Importance

GBR DT

OverallQual OverallQual

GrLivArea TotalBsmtSF

BsmtUnfSF GrLivArea

TotalBsmtSF GarageArea

> 1stFlrSF GarageFinish

BsmtFinSF1 GarageType Detchd

Idea

Why not use Decision Trees for feature selection...

And then perform regression on features that yield

greatest information gain!

Ways to improve further

- Problems meeting multicollinearity and homoscedasticity assumptions
- Difficult to combine/remove enough features to make an impact without losing potentially important data
- Feature engineering work should be informed by regression diagnostics, not limited by them

Further Improvements

- Use regression diagnostics to optimize One Drop and f-regression models
- Run One Drop model with more features being dropped
- Try using Gradient Descent and see if it improves basic linear regression
- Design our own ensemble function that combines all model types
- Use Independent Component Analysis to decompose features with high mutual information
- Adding jitter to the features in training data to test stability of OLS, Lasso, Ridge, and Elastic Net models

Reference:

- Effects of multicollinearity: http://blog.minitab.com/blog/adventures-in-statistics-2/what-are-the-effects-of-multicollinearity-and-when-can-i-ignore-them

Ames Housing Data: Machine Learning Applications

Victoria Baker, Jan Forslow, Alice Lam, Josh Lee

Additional — Slides

Mutual Information

Decision Tree: Classifier

Feature Engineering

RMSLE on Pred(Dev_Data) on 4 types of non-regression models

Our Best Results (RMSLE)

	Feature Engineering + GSCV ElasticNet	Neural Net	Gradient Boosting Regression	F_Regressio n	Ensembles (Stacking CV Regressor)	One Drop Lasso Model
Cross Validation	0.110	0.172	0.119	0.132	0.108	/
Dev_X	O.114	0.153	0.120	0.129	O.111	0.139
Kaggle Test (80% Train data)	0.178	0.261	O.181	0.167	O.181	
Kaggle Test (100% Train data)	0.160	0.252	0.185	0.159	0.156	