دراسة الدوال

A– الأنـشطة

<u>مرىن1</u>

. و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية . f

$$f(x) = \sqrt[3]{x^3 - x}$$
 - $f(x) = x - \arctan x$ - $f(x) = x(x-3)^2$ - $f(x) = x(x-3)^2$

$$x^3 + 2x^2 - 7x + 1 = 0$$
 حدد عدد جذور المعادلة -2

<u>تمرين 2</u>

. (ان كان ممكنا) منحنى الدالة و حدد نقط انعطافه في الحالتين التاليتن C_f منحنى

$$f(x) = x^4 - 2x^3 - 13x$$
 - 1

($O(0\;;0)$ و مع ذلك تقبل نقطة انعطاف في f(x)=x و مع ذلك تقبل نقطة انعطاف في f(x)=x ج- $f(x)=\cos x-\sin x$

<u>تمرين 3</u>

حدد المقاربات إن وجدت - أعط الاتجاهات المقاربة في الحالات التالية

$$f(x) = \frac{x^2 + 2x}{x - 1} \quad \text{--s} \quad f(x) = \sqrt[3]{x + 1} \quad \text{--j} \quad f(x) = \frac{x^2 + 1}{-2x^2 + x + 3} \quad \text{--j}$$

$$f(x) = x + \sin 2\pi x \quad \text{--j} \quad f(x) = x + \sqrt{x} \quad \text{--j}$$

تمرین4

$$C_f$$
 مركز تماثل للمنحنى A (1;2) بين ان $f(x) = x^3 - 3x^2 + x + 3$ نعتبر -1

$$f(x) = (x-1)(x-2)(x-3)(x-4)$$
نعتبر -2

 C_f محور تماثل للمنحنى $\mathbf{x} = \frac{5}{2}$ معادلته بين ان المستقيم الذي

B- تذكير مع بعض الاضافات

1- تقعر منحنى دالة -- نقطة انعطاف

1-1<u>تعــرىف</u>

 I لتكن f قابلة للاشتـــقاق على مجال

نقول إن المنحنى $\left(C_{f}
ight)$ محدب إذا كان يوجد فوق جميع مماســاته

نقول إن المنحنى $\left(C_{_{f}}
ight)$ مقعر إذا كان يوجد تحت جميع مماسـاته

2-1 <u>تعـــرىف</u>

 $M_0ig(x_0;fig(x_0)ig)$ في النقطة $ig(C_fig)$ مماسا للمنحنى ور $C_fig)$ في النقطة \overline{PM} في \overline{PM} في \overline{PM} و \overline{PM} و \overline{PM} انعدم \overline{PM} في \overline{PM} في \overline{PM} نقطتين لهـــــما نفس الافصول وينتميان على التوالي إلى \overline{PM} و \overline{PM} انعدم \overline{PM} في \overline{PM} تغيرت إشارته في مجال مفتوح مركزه \overline{PM} فان النقــــــطة \overline{PM} نقطة انعطاف للمنحنى \overline{PM}

3-1 خــاصيات

 ${
m I}$ دالة قابلة الاشـتـــــقاق مرتين على مجال f

- I موجبة على ا فان (C_f) يكون محدبا على *
- I الله على f "يكون مقعرا على f الله *
- $egin{aligned} & \left[x_{0},x_{0}+lpha
 ight] & x_{0} \end{array}$ من الـمجال ا وكان يـوجد $lpha\in\mathbb{R}_{+}^{*}$ بحيث إشارة " من الـمجال ا وكان يـوجد $M_{0}\left(x_{0};f\left(x_{0}
 ight)
 ight)$ فقطة انعطاف للمنحنى $\left[x_{0}-lpha,x_{0}
 ight]$ مخالـفة لإشارة " على $\left[x_{0}-lpha,x_{0}
 ight]$ فان $\left[x_{0}-lpha,x_{0}
 ight]$ نقـطة انعطاف للمنحنى المنحنى ومخالـفة لإشارة " على المنحنى الم

 $oldsymbol{\mathsf{a}}$ ملاحظ مع ذلك لمبيانها نقطة انعطاف مرتين ويكون مع ذلك لمبيانها نقطة انعطاف

<u>الفروع اللانهـــائية</u>

2-1 <u>تعرىف</u>

إذا آلت إحدى إحداثـــيتي نقـطة من C منحني دالة إلى اللانهاية فإننا نقول إن C يقبل فرعا لانهائيا.

2-2 <u>مستقيم مقارب لمنحني</u>

 C_f اذا كان $\pm \infty = a$ أو $\pm \infty = 1$ $\pm \infty$ فان المستقيم الذي معادلته $\pm \infty$ مقارب ل $\pm \infty$

روب ل y=b مقارب ل $\lim_{x \to \pm \infty} f(x) = b$ إذا كان $\lim_{x \to \pm \infty} f(x) = b$

** يكون المستقيم الذي معادلته y =ax + b مقارب للمنحني Cf إذا وفقط إذا كان

$$\lim_{x \to a} (f(x) - (ax + b)) = 0$$

دا م ة

يكون المستقيم ذو المعادلة y=ax+b مقارب لمنحنى C_f إذا وفقط إذا كان

$$\left(\lim_{x\to-\infty} \left(f\left(x\right) - ax\right) = b \quad ; \quad \lim_{x\to-\infty} \frac{f\left(x\right)}{x} = a\right) \quad \text{if} \quad \left(\lim_{x\to+\infty} \left(f\left(x\right) - ax\right) = b \quad ; \quad \lim_{x\to+\infty} \frac{f\left(x\right)}{x} = a\right)\right)$$

ملاحظة دراسة إشارة (f (x) – (ax + b)) تمكننا من معرفة وضع المنحنى ((C_f) بالنسبة للمقارب المائل.

2- 3- الاتحاهات المقاربة

تعاريف

أ – إذا كان
$$\sum_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$$
 يقبل محور الأراتيب كاتجاه مقارب. $\lim_{x \to \pm \infty} \frac{f(x)}{x} = \pm \infty$ يقبل محور الأراتيب كاتجاه مقارب.

. ب - إذا كان
$$\infty$$
 - ∞ - الفاصيل كاتجاه مقارب. $\lim_{x \to \pm \infty} \frac{f\left(x\right)}{x} = 0$ $\lim_{x \to \pm \infty} f\left(x\right) = \pm \infty$ ب - إذا كان ∞ - إذا كان كاتجاه مقارب.

ج - إذا كان
$$\lim_{x \to \pm \infty} f(x) - ax = \pm \infty$$
 و $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a$ $\lim_{x \to \pm \infty} f(x) = \pm \infty$ نقول إن $\lim_{x \to \pm \infty} f(x) = \pm \infty$ يقبل

المستقيم ذا المعادلة y= ax كاتجاه مقارب

<u>ىصفة عامة</u>

إذا كان
$$(C_f)$$
 يقبل المستقيم ذا المعادلة $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a$ $\lim_{x \to \pm \infty} f(x) = \pm \infty$ إذا

y= ax كاتجاه مقارب.

3 - <u>مرکز ثماثل – محور تماثل</u>

:- 1 <u>خاصىة</u>

في معلم متعامد , يكون المستقيم الذي معادلته x=a محور تماثل لمنحنى دالة f إذا وفقط إذا كان $\forall x \in D_f$ f(2a-x)=f(x)

2-3 <u>خاصىة</u>

 $\forall x \in D_f$ f(2a-x)=2b-f(x) في معلم ما,تكون النقطة (a ;b) مركز تماثل لدالة f إذا وفقط إذا كان

4- <u>الدالة الدورية</u>

1-4 <u>تعریف</u>

نقول أن f دالة دورية إذا وجد عدد حقيقي T موجب قطعا بحيث المرتب المرتب المرتب المرتب المرتب المرتب المرتب المرتب

 $\forall x \in D_f$ $x + T \in D_f$; $x - T \in D_f$ f(x + T) = f(x)

العدد T يسمى دور الدالة f .اصغر دور موجب قطعا يسمى دور الدالة f

4- 2 <u>خاصىة</u>

$$\forall x \in D_f \,, \forall n \in \mathbb{Z} \qquad f\left(x+nT\right)=f\left(x\right)$$
 إذا كانت للدالة f دور T فان

4-3 <u>خاصىة</u>

 $D_f \cap igl[x_0 + nT; x_0 + (n+1)T igl[$ اذا كانت T دالة دورية و T دورا لها فان منحنى الــدالة T على T_i هـو صورة منحنى الدالة على $D_f \cap igl[x_0, x_0 + T igr]$ وسيطة الإزاحة ذات المتجهة $T_i \cdot i$ حيث T_i عدد صحيح نســبي