Step-1

If the columns of A are orthogonal to each other, then we have to say about A^TA , and also we have to say about A^TA if the columns of A are orthonormal to each other.

Step-2

Suppose $a = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, b = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ are the columns of A

Now

$$a^{T}b = (1,2) \begin{pmatrix} -2\\1 \end{pmatrix}$$
$$= -2 + 2$$

Therefore a and b are orthogonal columns of A.

Step-3

$$A = \begin{bmatrix} a, b \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$

$$A^{T} A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

Hence $A^T A$ is a diagonal matrix.

Since diagonal elements are equal, $A^T A$ is also a scalar matrix.

Step-4

$$a = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, b = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
 are the columns of A

Now

$$a^{T}b = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
$$= 0$$

Step-5

$$||a|| = ||b|| = 1$$

$$A = \begin{bmatrix} a, b \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Step-6

$$A^{T} A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

= I, which is the identity matrix

Therefore $A^T A$ is the identity matrix.