Introduction/Motivation Implementation Results Plug Flow Reactor Results Sydney Bluff-Body Flame (HMI) Conclusion References

# Implementation of an Alternate Chemistry Library into OpenFOAM<sup>TM</sup>

Bernhard F.W. Gschaider<sup>1</sup> Markus Rehm<sup>2</sup> Peter Seifert<sup>2</sup>
Bernd Meyer<sup>2</sup>

<sup>1</sup>ICE Strömungsforschung Leoben, Austria

<sup>2</sup>Institute of Energy Process Enineering and Chemical Engineering, TU Bergakademie Freiberg, Germany



Open Source CFD International Conference 4th/5th December



Introduction/Motivation Implementation Results Plug Flow Reactor Results Sydney Bluff-Body Flame (HM1) Conclusion References

### **Outline**

1 Introduction/Motivation

Current status

Cantera

Desired behaviour

**2** Implementation

Alternate Chemistry Library

Transient Solver

Steady Solver

Other topics

**3** Results Plug Flow Reactor

Transient PFR

Steady-state PFR

Results Sydney Bluff-Body Flame (HM1)

Results HM1

Discussion HM1

6 Conclusion



Summary

Availibility

Outlook/Future Work

Acknowledgements



### The chemistryModel-class

- Part of the OPENFOAM<sup>TM</sup>-distribution
  - Solves a set of chemical reactions and returns a reaction-rate
  - Used in the solvers dieselFoam and reactingFoam
- Chemical reactions can be specified in two formats:
  - A generic OPENFOAM<sup>TM</sup>-format (allows the inclusion of non-standard reaction rates)
  - The CHEMKIN<sup>TM</sup>-format which is very "FORTRAN"
- Both formats are converted to the same internal representation
- ... and are solved using a number of different solvers





### CANTERA

CANTERA [1] is a open-source chemical kinetics package

- Very **flexible** and easy to handle
- Important functions for chemical species, (heterogeneous) kinetics, equilibrium, transport, diffusion, heat conduction are available and efficiently implemented
- Kernel written in C++; accessible via PYTHON, MATLAB, FORTRAN and of course C/C++
- Good CHEMKIN<sup>TM</sup>-Lexer
- A set of ideal reactors is available
- Uses the CVODE-Solver of the Sundials Suite [2] for integration of the ODEs.

bgschaid, mrehm



### Goals of this work

As mentioned in the Milan presentation [3], CANTERA would be benefitial for the development of solvers for reacting flows:

- Flexible exchange of chemistry engines without the necessity to change the solver
- Easy access to thermochemical functions
- Better stability (JANAF-error)
- Stationary chemistry solver





# The Alternate Chemistry Library

- A Library that provides a framework for adding further chemistry solvers
- Should require only minimal changes to existing solvers
  - Solvers should be implementation-agnostic (by using the RunTime-selection mechanism)
- This is achieved by replacing the chemistryModel object (usually called chemistry) in the solvers with a autoPtr<alternateChemistryModel>
  - Direct subclassing of chemistryModel is not possible because necessary properties are private
  - Usually every call chemistry.xxxx() is replaced by a chemistry().xxxx()





### **Interface**

 Only a small part of the original chemistryModel-interface is needed by the solvers:

solve Solve the reaction system

RR Access the reaction rates

tc Access the chemical time-scale

- Only these have to be implemented by a new chemical solver class
- In addition to these the methods

calcDQ for the calculation of dQ

tf Access the flow time-scale (described later)

were added to the interface



### chemistryModelProxy

- Provides access to the functionality of the original chemistryModel-class
- Has a private chemistryModel-object
- Calls are passed through to the chemistryModel-object
  - solve() and tc()
  - calcDQ() implemented after example from original solvers
- With this chemistry model implementation the solver is equivalent to the original reactingFoam





### The CANTERA-model

- Implements interface to the CANTERA-package
- Requires the thermoType to be a hMixtureThermo<CanteraMixture>
  - Instead of the usual hMixtureThermo<reactingMixture>
  - Currently required to have consistent calculations of the mixture and the chemistry
  - Calculation of thermophysical properties is done in CanteraThermo a wrapper to the CANTERA-class IdealGasMix
- Reactions are read from a cti-file (CANTERA Input)
  - Also the thermophysical data of the species. Thus the requirement on the thermoType
- Calculations in solve() are done via the Reactor/ReactorNet-classes of CANTERA
  - Solution of the ODEs is done via CVODE



### Class overwiew







# alternateReactingFoam

Solver almost unchanged. Basis: reactingFoam. Remember the Chalmers **PaSR-Model** for turbulent combustion:

$$\kappa = \frac{dT + tc}{dT + tc + tk} \tag{1}$$

Where *tc* is the **chemical time scale** and *tk* is the **turbulent** time scale.

- Implementation of tc()-method for the CANTERA calculation necessary.
- For the CANTERA solver no ODE solver from OF necessary (choice of the ODE solver in chemistryProperties doesn't have any effect).



# alternateSteadyReactingFoam

Steady solvers are a must when simulating large-scale chemical reactors or burners.

Necessary changes from the transient case:

- Usage of the SIMPLE-algorithm for p-U-coupling
- Coupling of chemistry to the flow-time
- **Stabilization** of the solution by reduction of  $\kappa$  if  $|Y_i^{old} Y_i^{new}|$  is too large (only at start-up!)





### Flow time scale

In **unsteady** calculations Co < 1 and integration time equals dT. For **steady-state** solvers Co >> 1. So we limit the integration time by the residence time in the cell i:

$$tf_i = \frac{D_i}{U_i} \tag{2}$$

and hence we substitute dT in (1) by df:

$$\kappa = \frac{tf + tc}{tf + tc + tk} \tag{3}$$



We define the **flow time scale** tf.



Introduction/Motivation Implementation Results Plug Flow Reactor Results Sydney Bluff-Body Flame (HM1) Conclusion References

Alternate Chemistry Library Transient Solver Steady Solver Other topics

### **CVODE**

An OF library that makes use of the  $\mathrm{CVODE} ext{-}\mathsf{Solver}$  of the Sundials Suite [2] was written.





# Plug flow reactor (PFR) test case

Simple test case, which is easily comparable to ideal PFR models as available in CHEMKIN<sup>TM</sup> or CANTERA:

- Ignitable premixed composition at inlet:  $Y_{H2} = 0.009$ ,  $Y_{O2} = 0.026$ ,  $Y_{Ar} = 0.965$ , T = 1600 K, p = 1 bar
- Tube idealized as 2D-domain  $x_{max}=1$  m,  $y_{max}=0.1$  m, 10x100 cells, inlet left patch, outlet right patch, upper and lower patch symmetry
- $H_2 O_2$  mechanism with 9 species and 27 reactions





# PFR alternateReactingFoam

For the transient simulations we were interested in

- Behaviour of the Cantera chemistry library
- Choice of ODE solvers and their performance

All plots were done along the **x direction**. The ideal Solution was obtained by calculating the time into a position with U and  $\rho$ .





# PFR alternateReactingFoam ODE-solvers (T)

ODESIBS: ODE SIBS; EI: Euler Implicit; CV: CVODE







# PFR alternateReactingFoam ODE CPUTime







# PFR alternateReactingFoam Summary

#### Transient PFR results:

- With implementation of CANTERA chemistry and tc() results for both chemistry engines give identical results for PFR.
- ODE SIBS results deviate sligtly from the others (EI, CV) (due to semi-impliciteness?)
- CVODE more stable than SIBS, EI but sometimes slower
- CVODE benefits from larger integration steps (internal time-stepping). → So use higher Co, if results aren't affected.
- Compared to ideal reactor solvers are 'faster' and there is a temperature difference of 5 K. Possibly induced by discretisation errors or idealisation.



# PFR alternateSteadyReactingFoam

The following aspects for the runs of the **steady-state simulations** are of particular interest:

- A Performance and stability of the steady-state implementation in relation to transient case and the ideal case.
- **B** Influence of the implementation of  $\kappa$
- C Influence of Cmix

Plots are similar to the transient ones but scaling was changed.





# PFR alternateSteadyReactingFoam (T)

#### A Transient vs. steady







# PFR alternateSteadyReactingFoam (H2)

#### A Transient vs. steady







# PFR alternateSteadyReactingFoam (T)

#### B Influence of $\kappa$







# PFR alternateSteadyReactingFoam (H2)

#### B Influence of $\kappa$







# PFR alternateSteadyReactingFoam (T)

#### C Influence of Cmix







# PFR alternateSteadyReactingFoam (H2)

#### C Influence of Cmix







# PFR alternateSteadyReactingFoam (OH)

#### C Influence of Cmix







# **PFR Steady Summary**

#### A:

 Transient/Steady solutions do not agree totally but refinement reduces deviation

#### B+C:

- Definition of new  $\kappa$  according to (3) brings no changes for small values of Cmix. But for Cmix=1 the solution seems closer to ideal solution.
- However, no clear conclusion could be drawn.





# Sydney Bluff-body Flame (HM1)





Data from Sandia bluff-body flame HM1 conducted at Sydney university [4].



### HM1 case set-up







### HM1 set-up

#### **Boundary Conditions:**

- Diameters:  $D_{jet} = 3.6$ mm;  $D_{channel} = 150$ mm (300mm),  $D_{bluffbody} = 50$ mm
- Turbulence: 8.5 % (2.5%) turbulence intensity, 0.135 mm (5.625 mm) mixing length for jet (co-flow)
- Mesh: from blockMesh with 1095

#### Inlet conditions:

• HM1:  $U_{iet} = 118 \text{m/s} \ U_{coflow} = 40 \text{m/s}$ 

#### Other models:

- $k \epsilon$  turbulence model, ATRMech (reduced GRI 3.0)
- OF used KRR4 ODE solver for chemistry



### **HM1 Plots & Points of Measurement**

- Plots of radius against measurement values (Exp HM1) at different x-positions are shown together with simulation results.
- EDC referes to the EDCSimpleFoam solver [3].
- CAN and OF mark CANTERA- and OPENFOAM<sup>TM</sup>-solution
- **K1** and **K2** stands for  $\kappa_1$  and  $\kappa_2$





### **HM1 Plots & Points of Measurement**





### HM1 results T

200

0.2 0.4 0.6 0.8

r/R\_b



0.2 0.4 0.6 0.8

r/R b





200

1

### HM1 results H2



0.2 0.4 0.6 0.8 1

r/R b





0.2 0.4 0.6 0.8

r/R b

1 1.2

1.2

### HM1 results H2O



0.2 0.4 0.6 0.8

r/R b





1 1.2

0.2 0.4 0.6 0.8

r/R b

0

1

### HM1 results CO



0.2 0.4 0.6 0.8

r/R b





1 1.2

0.2 0.4 0.6 0.8

r/R b

1.2

### HM1 results CO2



0.2 0.4 0.6 0.8

r/R b





1 1.2

0.2 0.4 0.6 0.8

r/R b

- 1

### HM1 results OH



0.2 0.4 0.6 0.8

r/R b





1 1.2

0.2 0.4 0.6 0.8

r/R b

1 1.2

### **Discussion HM1**

Why are all the resuls **so similar**? (No influence of  $\kappa$ -implementation or Cmix (not shown))

- In case Cmix=0.005 no difference in  $\kappa$  notable too fast mixing as in PFR case.
- Furthermore, in the domain close to the inlets  $\kappa \approx 1$  in every case and influence of Cmix can only be seen further downstream where no measurements are available.
- Comparison with **transient simulation** of HM1 indicates that  $\kappa_2$  seems more appropriate (see next slide)
- Still, further testing is needed





# **HM1** comparison $\kappa_1, \kappa_2$ for Cmix=1







### **Conclusion HM1**

- Flame was rendered with acceptable quality by the new solvers
- Steady solvers are very robust if the right ODE solvers are used (CVODE for CANTERA, KRR4 for OF)
- Checking of  $dY_i$  provides further stability and and prevents composition from being driven to unphysical states.
- Solutions for a finer grid (20000 cells) are still not available flame blows off very easily.





# **Summary**

The implementation of the Cantera chemistry into OpenFOAM<sup>TM</sup> can be considered successful and provides:

- A flexible interface to access a wide range of thermophysical data, and chemistry functions
- Robust solvers for transient and steady-state calculations
- Valuable test-cases for validation and further investigation
- Collaborators are welcome to test the code and contribute own developments.





### How to get the library

 $\bullet$  The libraries and solvers presented here will be made available on the openfoam-extend-SVN on sourceforge.net

**Libraries** Two independent libraries:

alternateChemistryModel The general

framework an the  $OPENFOAM^{TM}$ -interface

canteraChemistryModel The interface to

CANTERA

**Solvers** The steady and the transient solver with the test-cases PFR and HM1

URL will be given on the WIKI



 Interfaces to other chemistry libraries, more solvers, critique, and improvements are encouraged



### **Future Work**

#### There is always room for improvement:

- Both chemistry solvers read the same input files
  - Converter between CANTERA and OPENFOAM<sup>TM</sup>-format
- Make the CANTERACHEMISTRYMODEL independent of canteraMixture
- Implementation of reduction/tabulation techniques for more time-efficient solution.
- More combustion models.





# **Acknowledgements**

A part of the development and implementation work was done by the IEC in the context of the research project "Grosstechnisch bertragbare Untersuchungen zur Weiterentwicklung der IGCC-Kohlekraftwerkstechnik mit CO2-Abtrennung - COORAMENT". This project is supported by the German Federal Ministry of Economics and Technology (Project ID 0327113B).

Furthermore we thank N. Nordin for a valuable posting regarding the tc()- implementation, all developers who contributed to  $\mathrm{OPENFOAM}^{\mathsf{TM}},$  and people who inspired that work.





### **Bibliography**

- [1] DG Goodwin. Cantera: Object-oriented software for reacting flows. Technical report, California Institute of Technology, 2002.
- [2] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, and C.S. Woodward. SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software (TOMS), 31(3):363–396, 2005.
- [3] M. Rehm, P. Seifert, and B. Meyer. Towards a CFD Model for Industrial Scale Gasification Processes. In *OpenFOAM Workshop 2008, Milan*, 2008.
- [4] BB Dally, AR Masri, RS Barlow, and GJ Fiechtner. Instantaneous and Mean Compositional Structure of Bluff-Body Stabilized Nonpremixed Flames. *Combustion and Flame*, 114(1-2):119–148, 1998.