Indexed and Fibred Sets

December 3, 2023

- **00AH** This chapter contains a discussion of the un/straightening equivalence in the context of sets, as well as a general discussion of indexed and fibred sets. In particular, it contains:
 - 1. A discussion of indexed sets (i.e. functors $K_{\text{disc}} \to \text{Sets}$ with K a set), constructions with them like dependent sums and dependent products, and their properties (Sections 1 and 2);
 - 2. A discussion of fibred sets (i.e. maps of sets $X \to K$), constructions with them like dependent sums and dependent products, and their properties (Sections 3 and 4);
 - 3. A discussion of the un/straightening equivalence for indexed and fibred sets (Section 5).

Contents

1	Indexed Sets		
	1.1	Foundations	2
	1.2	Morphisms of Indexed Sets	2
	1.3	The Category of Sets Indexed by a Fixed Set	3
	1.4	The Category of Indexed Sets	4
2	Co	nstructions With Indexed Sets	5
	2.1		
		Change of Indexing	5
	2.2	Dependent Sums	6
	2.2 2.3	Dependent Sums Dependent Products	6 7
	2.2 2.3	Dependent Sums	6 7

	3	Fibred Sets	9
		3.1 Foundations	9
		3.2 Morphisms of Fibred Sets	9
		3.3 The Category of Fibred Sets Over a Fixed Base	10
		3.4 The Category of Fibred Sets	11
	4	Constructions With Fibred Sets	12
			12
		4.2 Dependent Sums	14
		4.3 Dependent Products	16
		4.4 Internal Homs	19
		4.5 Adjointness for Fibred Sets	19
	5	Un/Straightening for Indexed and Fibred Sets	19
		, ,	20
		5.2 Unstraightening for Indexed Sets	23
		5.3 The Un/Straightening Equivalence	
	6	Miscellany	26
		6.1 Other Kinds of Un/Straightening	
	A	Other Chapters	27
00AJ	1	Indexed Sets	
00AK	1.	1 Foundations	
	Le	et K be a set.	
00AL	Definition 1.1.1.1. A K -indexed set is a functor $X: K_{disc} \to Sets$.		
00AM	Remark 1.1.1.2. By Categories, ??, a K -indexed set consists of a indexed collection $X^{\dagger} \colon K \to \mathrm{Obj}(Sets),$		
	of	sets, assigning a set $X_x^{\dagger} \stackrel{\text{def}}{=} X_x$ to each element x of K .	
00AN	1.	2 Morphisms of Indexed Sets	

Let $X \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

OOAP Definition 1.2.1.1. A morphism of K-indexed sets from X to Y^1 is a natural transformation

$$f \colon X \Longrightarrow Y, \qquad K_{\mathsf{disc}} \underbrace{f \downarrow}_{V} \mathsf{Sets}$$

from X to Y.

Remark 1.2.1.2. In detail, a **morphism of** K**-indexed sets** consists of a K-indexed collection

$$\{f_x\colon X_x\to Y_x\}_{x\in K}$$

of maps of sets.

00AR 1.3 The Category of Sets Indexed by a Fixed Set Let K be a set.

OOAS Definition 1.3.1.1. The category of K-indexed sets is the category $\mathsf{ISets}(K)$ defined by

$$\mathsf{ISets}(K) \stackrel{\mathrm{def}}{=} \mathsf{Fun}(K_{\mathsf{disc}},\mathsf{Sets}).$$

- **Remark 1.3.1.2.** In detail, the **category of** K**-indexed sets** is the category $\mathsf{ISets}(K)$ where
 - Objects. The objects of $\mathsf{ISets}(K)$ are K-indexed sets as in Definition 1.1.1.1;
 - Morphisms. The morphisms of ISets(K) are morphisms of K-indexed sets as in Definition 1.2.1.1;
 - Identities. For each $X \in \text{Obj}(|\mathsf{Sets}(K)|)$, the unit map

$$\mathbb{M}_X^{\mathsf{ISets}(K)} \colon \mathrm{pt} \to \mathrm{Hom}_{\mathsf{ISets}(K)}(X,X)$$

of $\mathsf{ISets}(K)$ at X is defined by

$$\mathrm{id}_X^{\mathsf{ISets}(K)} \stackrel{\mathrm{def}}{=} \{ \mathrm{id}_{X_x} \}_{x \in K};$$

• Composition. For each $X, Y, Z \in \text{Obj}(\mathsf{ISets}(K))$, the composition map

$$\circ^{\mathsf{ISets}(K)}_{X,Y,Z} \colon \mathrm{Hom}_{\mathsf{ISets}(K)}(Y,Z) \times \mathrm{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \mathrm{Hom}_{\mathsf{ISets}(K)}(X,Z)$$
 of $\mathsf{ISets}(K)$ at (X,Y,Z) is defined by

$$\{g_x\}_{x\in K}\circ_{X,Y,Z}^{\operatorname{ISets}(K)}\{f_x\}_{x\in K}\stackrel{\text{def}}{=}\{g_x\circ f_x\}_{x\in K}.$$

Further Terminology: Also called a K-indexed map of sets from X to Y.

00AU 1.4 The Category of Indexed Sets

Definition 1.4.1.1. The **category of indexed sets** is the category ISets defined as the Grothendieck construction of the functor ISets: Sets^{op} \rightarrow Cats of Proposition 2.1.1.4:

$$\mathsf{ISets} \stackrel{\mathrm{def}}{=} \int^{\mathsf{Sets}} \mathsf{ISets}.$$

- **Remark 1.4.1.2.** In detail, the **category of indexed sets** is the category ISets where
 - Objects. The objects of ISets are pairs (K, X) consisting of
 - The Indexing Set. A set K;
 - The Indexed Set. A K-indexed set $X: K_{\mathsf{disc}} \to \mathsf{Sets};$
 - Morphisms. A morphism of ISets from (K, X) to (K', Y) is a pair (ϕ, f) consisting of
 - The Reindexing Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Indexed Sets. A morphism of K-indexed sets $f: X \to \phi_*(Y)$ as in the diagram

$$f \colon X \to \phi_*(Y), \qquad \begin{matrix} K_{\mathsf{disc}} & \xrightarrow{\phi} K'_{\mathsf{disc}} \\ X & & & \\ X & & & \\ &$$

• Identities. For each $(K, X) \in \text{Obj}(\mathsf{ISets})$, the unit map

$$\mathbb{W}^{\mathsf{ISets}}_{(K,X)} \colon \mathsf{pt} \to \mathsf{ISets}((K,X),(K,X))$$

of ISets at (K, X) is defined by

$$id_{(K,X)}^{\mathsf{ISets}} \stackrel{\text{def}}{=} (id_K, id_X).$$

• Composition. For each $\mathbf{X}=(K,X),\ \mathbf{Y}=(K',Y),\ \mathbf{Z}=(K'',Z)\in \mathrm{Obj}(\mathsf{ISets}),$ the composition map

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{ISets}}\colon\mathsf{ISets}(\mathbf{Y},\mathbf{Z})\times\mathsf{ISets}(\mathbf{X},\mathbf{Y})\to\mathsf{ISets}(\mathbf{X},\mathbf{Z})$$

of ISets at (X, Y, Z) is defined by

$$(\psi, g) \circ (\phi, f) \stackrel{\text{def}}{=} (\psi \circ \phi, (g \circ id_{\phi}) \circ f),$$

as in the diagram

for each $(\phi, f) \in \mathsf{ISets}(\mathbf{X}, \mathbf{Y})$ and each $(\psi, g) \in \mathsf{ISets}(\mathbf{Y}, \mathbf{Z})$.

OOAX 2 Constructions With Indexed Sets

00AY 2.1 Change of Indexing

Let $\phi \colon K \to K'$ be a function and let X be a K'-indexed set.

OOAZ Definition 2.1.1.1. The change of indexing of X to K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X) \stackrel{\text{def}}{=} X \circ \phi_{\mathsf{disc}}.$$

00B0 Remark 2.1.1.2. In detail, the change of indexing of X to K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X)_x \stackrel{\mathrm{def}}{=} X_{\phi(x)}$$

for each $x \in K$.

OOB1 Proposition 2.1.1.3. The assignment $X \mapsto \phi^*(X)$ defines a functor

$$\phi^* \colon \mathsf{ISets}(K') \to \mathsf{ISets}(K),$$

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K'))$, we have

$$[\phi^*](X) \stackrel{\text{def}}{=} \phi^*(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K'))$, the action on Hom-sets

$$\phi_{X,Y}^* \colon \mathrm{Hom}_{\mathsf{ISets}(K')}(X,Y) \to \mathrm{Hom}_{\mathsf{ISets}(K)}(\phi^*(X),\phi^*(Y))$$

of ϕ^* at (X,Y) is the map sending a morphism of K'-indexed sets

$$f = \{f_x \colon X_x \to Y_x\}_{x \in K'}$$

from X to Y to the morphism of K-indexed sets defined by

$$\phi^*(f) \stackrel{\text{def}}{=} \left\{ f_{\phi(x)} \colon X_{\phi(x)} \to Y_{\phi(x)} \right\}_{x \in K}.$$

Proof. Omitted.

Proposition 2.1.1.4. The assignment $K \mapsto \mathsf{ISets}(K)$ defines a functor

$$\mathsf{ISets} \colon \mathsf{Sets}^\mathsf{op} \to \mathsf{Cats},$$

where

• Action on Objects. For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[\mathsf{ISets}](K) \stackrel{\text{def}}{=} \mathsf{ISets}(K);$$

• Action on Morphisms. For each $K, K' \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{ISets}_{K,K'} \colon \mathsf{Sets}^{\mathsf{op}}(K,K') \to \mathsf{Fun}(\mathsf{ISets}(K),\mathsf{ISets}(K'))$$

of ISets at (K, K') is the map defined by

$$\mathsf{ISets}_{K,K'}(\phi) \stackrel{\mathrm{def}}{=} \phi^*$$

for each $\phi \in \mathsf{Sets}^\mathsf{op}(K, K')$.

Proof. Omitted.

00B3 2.2 Dependent Sums

Let $\phi \colon K \to K'$ be a function and let X be a K-indexed set.

Definition 2.2.1.1. The **dependent sum of** X is the K'-indexed set $\Sigma_{\phi}(X)^2$ defined by

$$\Sigma_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(X),$$

and hence given by

$$\Sigma_{\phi}(X)_x \cong \coprod_{y \in \phi^{-1}(x)} X_y$$

for each $x \in K'$.

²Further Notation: Also written $\phi_*(X)$.

OOB5 Proposition 2.2.1.2. The assignment $X \mapsto \Sigma_{\phi}(X)$ defines a functor

$$\Sigma_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Sigma_{\phi}](X) \stackrel{\text{def}}{=} \Sigma_{\phi}(X);$$

• Action on Morphisms. For each $X,Y\in \mathrm{Obj}(\mathsf{ISets}(K)),$ the action on Hom-sets

$$\Sigma_{\phi|X,Y} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K')}(\Sigma_{\phi}(X),\Sigma_{\phi}(Y))$$

of Σ_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Sigma_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(f);$$

$$\cong \coprod_{y \in \phi^{-1}(X)} f_{y}.$$

Proof. Omitted.

00B6 2.3 Dependent Products

Let $\phi \colon K \to K'$ be a function and let X be a K-indexed set.

Definition 2.3.1.1. The **dependent product of** X is the K'-indexed set $\Pi_{\phi}(X)^3$ defined by

$$\Pi_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(X),$$

and hence given by

$$\Pi_{\phi}(X)_x \cong \prod_{y \in \phi^{-1}(x)} X_y$$

for each $x \in K'$.

³ Further Notation: Also written $\phi_!(X)$.

2.4 Internal Homs

8

OBS Proposition 2.3.1.2. The assignment $X \mapsto \Pi_{\phi}(X)$ defines a functor

$$\Pi_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have $[\Pi_{\phi}](X) \stackrel{\text{def}}{=} \Pi_{\phi}(X);$

• Action on Morphisms. For each
$$X,Y\in \mathrm{Obj}(\mathsf{ISets}(K)),$$
 the action on Hom-sets

 $\Pi_{\phi|X,Y} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K')}(\Pi_{\phi}(X),\Pi_{\phi}(Y))$

of Π_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

$$f\colon X\to Y$$

to the morphism of K'-indexed sets defined by

$$\Pi_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(f);$$

$$\cong \prod_{y \in \phi^{-1}(x)} f_{y}.$$

Proof. Omitted.

00B9 2.4 Internal Homs

Let K be a set and let X and Y be K-indexed sets.

OOBA Definition 2.4.1.1. The internal Hom of indexed sets from X to Y is the indexed set $\mathbf{Hom}_{|\mathsf{Sets}(K)}(X,Y)$ defined by

$$\mathbf{Hom}_{\mathsf{ISets}(K)}(X,Y) \stackrel{\text{def}}{=} \mathsf{Sets}(X_x,Y_x)$$

for each $x \in K$.

00BB 2.5 Adjointness of Indexed Sets

Let $\phi \colon K \to K'$ be a map of sets.

OOBC Proposition 2.5.1.1. We have a triple adjunction

$$(\Sigma_\phi\dashv\phi^*\dashv\Pi_\phi)\colon \ \ \mathsf{ISets}(K) \underbrace{\qquad \qquad }_{\Pi_\phi}^{\Sigma_\phi} \mathsf{ISets}(K').$$

Proof. This follows from Kan Extensions, ?? of ??.

00BD 3 Fibred Sets

00BE 3.1 Foundations

Let K be a set.

- **Definition 3.1.1.1.** A K-fibred set is a pair (X, ϕ) consisting of
 - The Underlying Set. A set X, called the **underlying set of** (X, ϕ) ;
 - The Fibration. A map of sets $\phi: X \to K$.

00BG 3.2 Morphisms of Fibred Sets

OOBH Definition 3.2.1.1. A morphism of K-fibred sets from (X, ϕ) to (Y, ψ) is a function $f: X \to Y$ such that the diagram⁵

commutes.

⁴Further Terminology: The fibre of (X, ϕ) over $x \in K$ is the set $\phi^{-1}(x)$ (also written ϕ_x) defined by

$$\phi^{-1}(x) \stackrel{\text{def}}{=} \operatorname{pt} \times_{[x],K,\phi} X, \qquad \phi^{-1}(x) \xrightarrow{J} X$$

$$\downarrow \qquad \qquad \downarrow \phi$$

$$\operatorname{pt} \xrightarrow{[x]} K.$$

⁵ Further Terminology: The transport map associated to f at $x \in K$ is the function

$$f_x^* : \phi^{-1}(x) \to \psi^{-1}(x)$$

given by the dashed map in the diagram

00BJ 3.3 The Category of Fibred Sets Over a Fixed Base

OOBK Definition 3.3.1.1. The category of K-fibred sets is the category FibSets(K) defined as the slice category Sets $_{/K}$ of Sets over K:

$$\mathsf{FibSets}(K) \stackrel{\mathrm{def}}{=} \mathsf{Sets}_{/K}.$$

OOBL Remark 3.3.1.2. In detail FibSets(K) is the category where

- Objects. The objects of FibSets(K) are pairs (X, ϕ) consisting of
 - The Fibred Set. A set X;
 - The Fibration. A function $\phi: X \to K$;
- Morphisms. A morphism of FibSets(K) from (X, ϕ) to (Y, ψ) is a function $f: X \to Y$ making the diagram

commute;

• Identities. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$, the unit map

$$\mathbb{M}^{\mathsf{FibSets}(K)}_{(X,\phi)} \colon \mathrm{pt} \to \mathrm{Hom}_{\mathsf{FibSets}(K)}((X,\phi),(X,\phi))$$

of FibSets(K) at (X, ϕ) is given by

$$\operatorname{id}_{(X,\phi)}^{\mathsf{FibSets}(K)} \stackrel{\text{def}}{=} \operatorname{id}_X,$$

as witnessed by the commutativity of the diagram

in Sets;

• Composition. For each $\mathbf{X} = (X, \phi), \ \mathbf{Y} = (Y, \psi), \ \mathbf{Z} = (Z, \chi) \in$

Obj(FibSets(K)), the composition map

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}(K)} \colon \mathrm{Hom}_{\mathsf{FibSets}(K)}(\mathbf{Y},\mathbf{Z}) \times \mathrm{Hom}_{\mathsf{FibSets}(K)}(\mathbf{X},\mathbf{Y}) \to \mathrm{Hom}_{\mathsf{FibSets}(K)}(\mathbf{X},\mathbf{Z})$$

of FibSets(K) at (X, Y, Z) is defined by

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}(K)} \stackrel{\text{def}}{=} \circ_{X,Y,Z}^{\mathsf{Sets}},$$

as witnessed by the commutativity of the diagram

in Sets.

00BM 3.4 The Category of Fibred Sets

00BN Definition 3.4.1.1. The category of fibred sets is the category FibSets defined as the Grothendieck construction of the functor FibSets: Sets^{op} \rightarrow Cats of Proposition 4.1.1.3:

$$FibSets \stackrel{\text{def}}{=} \int^{Sets} FibSets.$$

- **Remark 3.4.1.2.** In detail, the **category of fibred sets** is the category FibSets where
 - Objects. The objects of FibSets are pairs $(K, (X, \phi_X))$ consisting of
 - The Base Set. A set K:
 - The Fibred Set. A K-fibred set $\phi_X : X \to K$;
 - *Morphisms*. A morphism of FibSets from $(K, (X, \phi_X))$ to $(K', (Y, \phi_Y))$ is a pair (ϕ, f) consisting of
 - The Base Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Fibred Sets. A morphism of K-fibred sets

$$f \colon (X, \phi_X) \to \phi_Y^*(Y), \qquad \begin{matrix} X \stackrel{f}{\longrightarrow} Y \times_{K'} K \\ \phi_X & \swarrow pr_2 \\ K; \end{matrix}$$

• Identities. For each $(K, X) \in \text{Obj}(\mathsf{FibSets})$, the unit map

$$\mathbb{F}^{\mathsf{FibSets}}_{(K,X)} \colon \mathrm{pt} \to \mathsf{FibSets}((K,X),(K,X))$$

of FibSets at (K, X) is defined by

$$\operatorname{id}_{(K,X)}^{\mathsf{FibSets}} \stackrel{\text{def}}{=} (\operatorname{id}_K, \sim),$$

where \sim is the isomorphism $X \to X \times_K K$ as in the diagram

$$X \xrightarrow{\phi_X} X \times_K K$$

$$\downarrow^{\text{pr}_2}$$

$$K:$$

• Composition. For each $\mathbf{X} = (K, X), \mathbf{Y} = (K', Y), \mathbf{Z} = (K'', Z) \in \text{Obj}(\mathsf{FibSets})$, the composition map

$$\circ^{\mathsf{FibSets}}_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \colon \mathsf{FibSets}(\mathbf{Y},\mathbf{Z}) \times \mathsf{FibSets}(\mathbf{X},\mathbf{Y}) \to \mathsf{FibSets}(\mathbf{X},\mathbf{Z})$$

of FibSets at (X, Y, Z) is defined by

$$g \circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{FibSets}} f \stackrel{\text{def}}{=} (g \times_{K'} \mathrm{id}_K) \circ f$$

as in the diagram

for each $f \in \mathsf{FibSets}(\mathbf{X}, \mathbf{Y})$ and each $g \in \mathsf{FibSets}(\mathbf{Y}, \mathbf{Z})$.

OOBQ 4 Constructions With Fibred Sets

00BR 4.1 Change of Base

Let $f: K \to K'$ be a function and let (X, ϕ) be a K'-fibred set.

Definition 4.1.1.1. The **change of base of** (X, ϕ) **to** K is the K-fibred set $f^*(X)$ defined by

$$f^{*}(X) \stackrel{\operatorname{def}}{=} (K \times_{K'} X, \operatorname{pr}_{1}), \qquad f^{*}(X) \stackrel{\operatorname{pr}_{2}}{\longrightarrow} X$$

$$\downarrow^{\phi} \qquad K \xrightarrow{f} K'.$$

OOBT Proposition 4.1.1.2. The assignment $X \mapsto f^*(X)$ defines a functor

$$f^* : \mathsf{FibSets}(K') \to \mathsf{FibSets}(K),$$

where

• Action on Objects. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K'))$, we have

$$f^*(X,\phi) \stackrel{\text{def}}{=} f^*(X);$$

• Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \text{Obj}(\mathsf{FibSets}(K'))$, the action on Hom-sets

$$f_{X,Y}^* : \operatorname{Hom}_{\mathsf{FibSets}(K')}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K)}(f^*(X), f^*(Y))$$

of f^* at $((X,\phi),(Y,\psi))$ is the map sending a morphism of K'-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K-fibred sets given by the dashed morphism in the diagram

Proof. Omitted.

OOBU Proposition 4.1.1.3. The assignment $K \mapsto \mathsf{FibSets}(K)$ defines a functor

FibSets: Sets^{op}
$$\rightarrow$$
 Cats,

where

• Action on Objects. For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[\mathsf{FibSets}](K) \stackrel{\text{def}}{=} \mathsf{FibSets}(K);$$

• Action on Morphisms. For each $K, K' \in \text{Obj}(\mathsf{Sets})$, the action on Hom-sets

$$\mathsf{Sets}_{/(-)|K,K'} \colon \mathsf{Sets}^\mathsf{op} \big(K,K' \big) o \mathsf{Fun} \big(\mathsf{FibSets}(K),\mathsf{FibSets} \big(K' \big) \big)$$

of $\mathsf{Sets}_{/(-)}$ at (K,K') is the map sending a map of sets $f\colon K\to K'$ to the functor

$$\mathsf{Sets}_{f} \colon \mathsf{FibSets}(K') \to \mathsf{FibSets}(K)$$

defined by

$$\mathsf{Sets}_{/f} \stackrel{\mathrm{def}}{=} f^*.$$

Proof. Omitted.

00BV 4.2 Dependent Sums

Let $f: K \to K'$ be a function and let (X, ϕ) be a K-fibred set.

Definition 4.2.1.1. The **dependent sum**⁶ of (X, ϕ) is the K'-fibred set $\Sigma_f(X)^7$ defined by

$$\Sigma_f(X) \stackrel{\text{def}}{=} (\Sigma_f(X), \Sigma_f(\phi))$$
$$\stackrel{\text{def}}{=} (X, f \circ \phi).$$

OOBX Proposition 4.2.1.2. Let $f: K \to K'$ be a function.

$$\Sigma_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y);$$

see Item 2 of Proposition 4.2.1.2.

The name "dependent sum" comes from the fact that the fibre $\Sigma_f(\phi)^{-1}(x)$ of $\Sigma_f(X)$ at $x \in K'$ is given by

⁷ Further Notation: Also written $f_*(X)$.

00BY 1. Functoriality. The assignment $X \mapsto \Sigma_f(X)$ defines a functor

$$\Sigma_f \colon \mathsf{FibSets}(K) \to \mathsf{FibSets}(K'),$$

where

• Action on Objects. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$, we have

$$\Sigma_f(X,\phi) \stackrel{\text{def}}{=} (\Sigma_f(X), \Sigma_f(\phi));$$

• Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \text{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\Sigma_{f|X,Y} \colon \operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K)}(\Sigma_f(X),\Sigma_f(Y))$$

of Σ_f at $((X, \phi), (Y, \psi))$ is the map sending a morphism of K-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K'-fibred sets defined by

$$\Sigma_f(g) \stackrel{\text{def}}{=} g.$$

00BZ 2. Interaction With Fibres. We have a bijection of sets

$$\Sigma_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Indeed, we have

$$\Sigma_f(\phi)^{-1}(x) \stackrel{\text{def}}{=} \text{pt} \times_{[x], K', f \circ \phi} X$$

$$\cong \{(a, y) \in X \times K \mid f(\phi(a)) = x\}$$

$$\cong \coprod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

00C0 4.3 Dependent Products

Let $f: K \to K'$ be a function and let (X, ϕ) be a K-fibred set.

- OOC1 Definition 4.3.1.1. The dependent product⁸ of (X, ϕ) is the K'-fibred set $\Pi_f(X)^9$ consisting of $\Pi_f(X)^9$
 - The Underlying Set. The set $\Pi_f(X)$ defined by

$$\begin{split} \Pi_f(X) &\stackrel{\mathrm{def}}{=} \coprod_{x \in K'} \Gamma^\phi_{f^{-1}(x)} \left(\phi^{-1} \left(f^{-1}(x) \right) \right) \\ &\stackrel{\mathrm{def}}{=} \left\{ (x,h) \in \coprod_{x \in K'} \mathrm{Sets} \left(f^{-1}(x), \phi^{-1} \left(f^{-1}(x) \right) \right) \ \middle| \ \phi \circ h = \mathrm{id}_{f^{-1}(x)} \right\}; \end{split}$$

• The Fibration. The map of sets

$$\Pi_f(\phi) \colon \coprod_{x \in K'} \Gamma_{f^{-1}(x)}^{\phi} \left(\phi^{-1} \left(f^{-1}(x) \right) \right) \to K$$

defined by sending a map $h: f^{-1}(x) \to \phi^{-1}(f^{-1}(x))$ to its index $x \in K$.

- **©CC2** Example 4.3.1.2. Here are some examples of dependent products of sets.
 - 1. Spaces of Sections. Let K = X, K' = pt, and let $\phi \colon E \to X$ be a map of sets. We have a bijection of sets

$$\begin{split} \Pi_{!_X}(\phi) &\cong \Gamma_X(\phi) \\ &\cong \{h \in \mathsf{Sets}(X, E) \mid \phi \circ h = \mathrm{id}_X\}. \end{split}$$

2. Function Spaces. Let K = K' = pt. We have a bijection of sets

$$\mathsf{Sets}(X,Y) \cong \Pi_{!_{X}}(!_{X}^{*}(Y)).$$

QUC3 Proposition 4.3.1.3. Let $f: K \to K'$ be a function.

$$\Pi_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y);$$

see Item 2 of Proposition 4.3.1.3.

⁸The name "dependent product" comes from the fact that the fibre $\Pi_f(\phi)^{-1}(x)$ of $\Pi_f(X)$ at $x \in K'$ is given by

⁹ Further Notation: Also written $f_!(X)$.

 $^{^{10}}$ We can also define dependent products via the internal **Hom** in FibSets(K'); see Item 3

00C4 1. Functoriality. The assignment $X \mapsto \Pi_f(X)$ defines a functor

$$\Pi_f \colon \mathsf{FibSets}(K) \to \mathsf{FibSets}(K'),$$

where

- Action on Objects. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$, we have $\Pi_f(X, \phi) \stackrel{\text{def}}{=} \Pi_f(X);$
- Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \text{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\Pi_{f|X,Y} \colon \operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K')}(\Pi_f(X),\Pi_f(Y))$$

of Π_f at $((X, \phi), (Y, \psi))$ is the map sending a morphism of K-fibred sets

$$g: (X, \phi) \to (Y, \psi)$$

to the morphism of K'-fibred sets from

$$\Pi_f(X) \stackrel{\text{def}}{=} \bigg\{ (x,h) \in \coprod_{x \in K'} \mathsf{Sets} \big(f^{-1}(x), \phi^{-1} \big(f^{-1}(x) \big) \big) \ \bigg| \ \phi \circ h = \mathrm{id}_{f^{-1}(x)} \bigg\};$$

to

$$\Pi_f(Y) \stackrel{\mathrm{def}}{=} \bigg\{ (x,h) \in \coprod_{x \in K'} \mathsf{Sets} \big(f^{-1}(x), \psi^{-1} \big(f^{-1}(x) \big) \big) \ \bigg| \ \psi \circ h = \mathrm{id}_{f^{-1}(x)} \bigg\};$$

induced by the composition

$$\begin{split} \mathsf{Sets}\big(f^{-1}(x),\phi^{-1}\big(f^{-1}(x)\big)\big) &= \mathsf{Sets}\big(f^{-1}(x),[\psi\circ g]^{-1}\big(f^{-1}(x)\big)\big) \\ &= \mathsf{Sets}\big(f^{-1}(x),g^{-1}\big(\psi^{-1}\big(f^{-1}(x)\big)\big)\big) \\ &\xrightarrow{g_*} \mathsf{Sets}\big(f^{-1}(x),g\big(g^{-1}\big(\psi^{-1}\big(f^{-1}(x)\big)\big)\big)\big) \\ &\xrightarrow{\iota_*} \mathsf{Sets}\big(f^{-1}(x),\psi^{-1}\big(f^{-1}(x)\big)\big), \end{split}$$

where $\iota \colon g\big(g^{-1}\big(\psi^{-1}\big(f^{-1}(x)\big)\big)\big) \hookrightarrow \psi^{-1}\big(f^{-1}(x)\big)$ is the canonical

inclusion.¹¹

00C5 2. Interaction With Fibres. We have a bijection of sets

$$\Pi_f(\phi)^{-1}(x) \cong \prod_{y \in f^{-1}(x)} \phi^{-1}(y)$$

for each $x \in K'$.

00C6 3. Construction Using the Internal Hom. We have

where the bottom map is defined by

$$I(x) \stackrel{\text{def}}{=} \mathrm{id}_{f^{-1}(x)}$$

for each $x \in K'$.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Indeed, we have

$$\begin{split} \Pi_{f}(\phi)^{-1}(x) &\stackrel{\text{def}}{=} \{ (y,h) \in \Pi_{f}(X) \mid [\Pi_{f}(\phi)](h) = x \} \\ &\stackrel{\text{def}}{=} \{ (y,h) \in \Pi_{f}(X) \mid y = x \} \\ &\cong \left\{ h \in \mathsf{Sets} \big(f^{-1}(x), \phi^{-1} \big(f^{-1}(x) \big) \big) \mid \phi \circ h = \mathrm{id}_{f^{-1}(x)} \right\} \\ &\stackrel{\cong}{=} \prod_{y \in f^{-1}(x)} \phi^{-1}(y) \end{split}$$

for each $x \in K'$.

Item 3, Construction Using the Internal Hom: Omitted.

$$\psi \circ [\Pi_f(g)](h) \stackrel{\text{def}}{=} \psi \circ (g \circ h)$$
$$= (\psi \circ g) \circ h$$
$$= \phi \circ h$$
$$= \operatorname{id}_{f^{-1}(x)}.$$

¹¹ Note that the section condition is satisfied: given $(x,h) \in \Pi_f(X)$, we have

4.4 Internal Homs

19

00C7 4.4 Internal Homs

Let K be a set and let (X, ϕ) and (Y, ψ) be K-fibred sets.

- 00C8 Definition 4.4.1.1. The internal Hom of fibred sets from (X, ϕ) to (Y, ψ) is the fibred set $\mathbf{Hom}_{\mathsf{FibSets}(K)}(X, Y)$ consisting of
 - The Underlying Set. The set $\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)$ defined by

$$\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y) \stackrel{\mathrm{def}}{=} \coprod_{x \in K} \mathsf{Sets}\big(\phi^{-1}(x), \psi^{-1}(x)\big);$$

• The Fibration. The map of sets 12

$$\phi_{\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)} \colon \underbrace{\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)}_{x \in K} \to K$$

defined by sending a map $f: \phi^{-1}(x) \to \psi^{-1}(x)$ to its index $x \in K$.

00C9 4.5 Adjointness for Fibred Sets

Let $f: K \to K'$ be a map of sets.

OOCA Proposition 4.5.1.1. We have a triple adjunction

$$(\Sigma_f\dashv f^*\dashv \Pi_f)\colon \ \mathsf{FibSets}(K) \underbrace{\overset{\Sigma_f}{\vdash}}_{\Pi_f} \mathsf{FibSets}(K').$$

Proof. Omitted.

OOCB 5 Un/Straightening for Indexed and Fibred Sets

$$\phi_{\mathbf{Hom}_{\mathsf{FibSets}(K)}(X,Y)|x} \cong \mathsf{Sets}\big(\phi^{-1}(x),\psi^{-1}(x)\big)$$

for each $x \in K$.

¹²The fibres of the internal **Hom** of $\mathsf{FibSets}(K)$ are precisely the sets $\mathsf{Sets}(\phi^{-1}(x), \psi^{-1}(x))$, i.e. we have

00CC 5.1 Straightening for Fibred Sets

Let K be a set and let (X, ϕ) be a K-fibred set.

Definition 5.1.1.1. The **straightening of** (X, ϕ) is the K-indexed set

$$\operatorname{St}_K(X,\phi)\colon K_{\operatorname{disc}}\to\operatorname{\mathsf{Sets}}$$

defined by

$$\operatorname{St}_K(X,\phi)_x \stackrel{\text{def}}{=} \phi^{-1}(x)$$

for each $x \in K$.

OOCE Proposition 5.1.1.2. Let K be a set.

00CF 1. Functoriality. The assignment $(X, \phi) \mapsto \operatorname{St}_K(X, \phi)$ defines a functor

$$\operatorname{St}_K \colon \mathsf{FibSets}(K) \to \mathsf{ISets}(K)$$

• Action on Objects. For each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$, we have

$$[\operatorname{St}_K](X,\phi) \stackrel{\text{def}}{=} \operatorname{St}_K(X,\phi);$$

• Action on Morphisms. For each $(X, \phi), (Y, \psi) \in \text{Obj}(\mathsf{FibSets}(K)),$ the action on Hom-sets

$$\operatorname{St}_{K|X,Y} \colon \operatorname{Hom}_{\mathsf{FibSets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K)}(\operatorname{St}_K(X),\operatorname{St}_K(Y))$$

of St_K at (X,Y) is given by sending a morphism

$$f: (X, \phi) \to (Y, \psi)$$

of K-fibred sets to the morphism

$$\operatorname{St}_K(f) \colon \operatorname{St}_K(X, \phi) \to \operatorname{St}_K(Y, \psi)$$

of K-indexed sets defined by

$$\operatorname{St}_K(f) \stackrel{\text{def}}{=} \{f_x^*\}_{x \in K},$$

where f_x^* is the transport map associated to f at $x \in K$ of Definition 3.2.1.1.

00CG 2. Interaction With Change of Base/Indexing. Let $f: K \to K'$ be a map

of sets. The diagram

$$\begin{array}{ccc} \mathsf{FibSets}(K') \stackrel{f^*}{\longrightarrow} \mathsf{FibSets}(K) \\ & & & & \downarrow \\ \mathsf{St}_{K'} \downarrow & & & \downarrow \\ \mathsf{ISets}(K') \stackrel{f^*}{\longrightarrow} \mathsf{ISets}(K) \end{array}$$

commutes.

00CH 3. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{c|c} \mathsf{FibSets}(K) \xrightarrow{\Sigma_f} \mathsf{FibSets}(K') \\ \\ \mathrm{St}_K & & & \int \mathrm{St}_{K'} \\ \mathsf{ISets}(K) \xrightarrow{\Sigma_f} \mathsf{ISets}(K') \end{array}$$

commutes.

00CJ 4. Interaction With Dependent Products. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{Sets}_{/K} & \xrightarrow{\Pi_f} \mathsf{FibSets}(K') \\ \\ \mathsf{St}_K & & & & \mathsf{St}_{K'} \\ \mathsf{ISets}(K) & \xrightarrow{\Pi_f} \mathsf{ISets}(K') \end{array}$$

commutes.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Change of Base/Indexing: Indeed, we have

$$\operatorname{St}_{K}(f^{*}(X,\phi))_{x} \stackrel{\text{def}}{=} \operatorname{St}_{K}(K \times_{K'} X)_{x}$$

$$\stackrel{\text{def}}{=} \left(\operatorname{pr}_{1}^{K \times_{K'} X}\right)^{-1}(x)$$

$$= \left\{(k,y) \in K \times_{K'} X \mid \operatorname{pr}_{1}^{K \times_{K'} X}(k,y) = x\right\}$$

$$= \left\{(k,y) \in K \times_{K'} X \mid k = x\right\}$$

$$= \left\{(k,y) \in K \times X \mid k = x \text{ and } f(k) = \phi(y)\right\}$$

$$\cong \left\{y \in X \mid \phi(y) = f(x)\right\}$$

$$\stackrel{\text{def}}{=} f^{*}(\phi^{-1}(x))$$

$$\stackrel{\text{def}}{=} f^{*}(\operatorname{St}_{K'}(X,\phi)_{x})$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K'))$ and each $x \in K$, and similarly for morphisms.

Item 3, Interaction With Dependent Sums: Indeed, we have

$$\operatorname{St}_{K'}(\Sigma_f(X,\phi))_x \stackrel{\text{def}}{=} \Sigma_f(\phi)^{-1}(x)$$

$$\cong \coprod_{\substack{y \in X \\ f(y) = x}} \phi^{-1}(y)$$

$$\cong \Sigma_f(\phi^{-1}(x))$$

$$\stackrel{\text{def}}{=} \Sigma_f(\operatorname{St}_K(X,\phi)_x)$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used Item 2 of Proposition 4.2.1.2 for the first bijection, and similarly for morphisms.

Item 4, Interaction With Dependent Products: Indeed, we have

$$\operatorname{St}_{K'}(\Pi_f(X,\phi))_x \stackrel{\text{def}}{=} \Pi_f(\phi)^{-1}(x)$$

$$\cong \prod_{\substack{y \in X \\ f(y) = x}} \phi^{-1}(y)$$

$$\cong \Pi_f(\phi^{-1}(x))$$

$$\stackrel{\text{def}}{=} \Pi_f(\operatorname{St}_K(X,\phi)_x)$$

for each $(X, \phi) \in \text{Obj}(\mathsf{FibSets}(K))$ and each $x \in K'$, where we have used Item 2 of Proposition 4.3.1.3 for the first bijection, and similarly for morphisms.

00CK 5.2 Unstraightening for Indexed Sets

Let K be a set and let X be a K-indexed set.

OOCL Definition 5.2.1.1. The unstraightening of X is the K-fibred set

$$\phi_{\operatorname{Un}_K} \colon \operatorname{Un}_K(X) \to K$$

consisting of

• The Underlying Set. The set $Un_K(X)$ defined by

$$\operatorname{Un}_K(X) \stackrel{\text{def}}{=} \coprod_{x \in K} X_x;$$

• The Fibration. The map of sets

$$\phi_{\operatorname{Un}_K} : \operatorname{Un}_K(X) \to K$$

defined by sending an element of $\coprod_{x \in K} X_x$ to its index in K.

OOCM Proposition 5.2.1.2. Let K be a set.

00CN 1. Functoriality. The assignment $X \mapsto \operatorname{Un}_K(X)$ defines a functor

$$\operatorname{Un}_K \colon \mathsf{ISets}(K) \to \mathsf{FibSets}(K)$$

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\operatorname{Un}_K](X) \stackrel{\text{def}}{=} \operatorname{Un}_K(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on Hom-sets

 $\operatorname{Un}_{K|X,Y} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{FibSets}(K)}(\operatorname{Un}_K(X),\operatorname{Un}_K(Y))$

of Un_K at (X,Y) is defined by

$$\operatorname{Un}_{K|X,Y}(f) \stackrel{\text{def}}{=} \coprod_{x \in K} f_x^*.$$

00CP 2. Interaction With Fibres. We have a bijection of sets

$$\phi_{\operatorname{Un}_K}^{-1}(x) \cong X_x$$

for each $x \in K$.

00CQ 3. As a Pullback. We have a bijection of sets

$$\operatorname{Un}_K(X) \cong K_{\operatorname{disc}} imes_{\operatorname{Sets}} \operatorname{Sets}_*, \qquad \bigvee_{\stackrel{}{\swarrow}} \ \bigvee_{\operatorname{K}_{\operatorname{disc}}} o$$
 Sets.

00CR 4. As a Colimit. We have a bijection of sets

$$\operatorname{Un}_K(X) \cong \operatorname{colim}(X)$$
.

00CS 5. Interaction With Change of Indexing/Base. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{ISets}(K') & \stackrel{f^*}{\longrightarrow} & \mathsf{ISets}(K) \\ & & & \downarrow \mathsf{Un}_K \\ & & & \downarrow \mathsf{Un}_K \end{array}$$

$$\mathsf{FibSets}(K') & \xrightarrow{f^*} & \mathsf{FibSets}(K) \end{array}$$

commutes.

00CT 6. Interaction With Dependent Sums. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{ISets}(K) & \xrightarrow{\Sigma_f} & \mathsf{ISets}(K') \\ & & & & \downarrow^{\operatorname{Un}_{K'}} \\ \mathsf{FibSets}(K) & \xrightarrow{\Sigma_f} & \mathsf{FibSets}(K') \end{array}$$

commutes.

00CU 7. Interaction With Dependent Products. Let $f: K \to K'$ be a map of sets. The diagram

$$\begin{array}{ccc} \mathsf{ISets}(K) & \stackrel{\Pi_f}{\longrightarrow} & \mathsf{ISets}(K') \\ & & & & \downarrow^{\operatorname{Un}_{K'}} \\ \mathsf{FibSets}(K) & \underset{\Pi_f}{\longrightarrow} & \mathsf{FibSets}(K') \end{array}$$

commutes.

Proof. Item 1, Functoriality: Omitted.

Item 2, Interaction With Fibres: Omitted.

Item 3, As a Pullback: Omitted.

Item 4, As a Colimit: Clear.

Item 5, Interaction With Change of Indexing/Base: Indeed, we have

$$\operatorname{Un}_{K}(f^{*}(X)) \stackrel{\text{def}}{=} \operatorname{Un}_{K}(X \circ f)$$

$$\stackrel{\text{def}}{=} \coprod_{x \in K} X_{f(x)}$$

$$\cong \left\{ (x, (y, a)) \in K \times \coprod_{y \in K'} X_{y} \middle| f(x) = y \right\}$$

$$\cong K \times_{K'} \coprod_{y \in K'} X_{y}$$

$$\stackrel{\text{def}}{=} K \times_{K'} \operatorname{Un}_{K'}(X)$$

$$\stackrel{\text{def}}{=} f^{*}(\operatorname{Un}_{K'}(X))$$

for each $X \in \mathrm{Obj}(\mathsf{ISets}(K'))$. Similarly, it can be shown that we also have $\mathrm{Un}_K(f^*(\phi)) = f^*(\mathrm{Un}_{K'}(\phi))$ and that $\mathrm{Un}_K \circ f^* = f^* \circ \mathrm{Un}_{K'}$ also holds on morphisms.

Item 6, Interaction With Dependent Sums: Indeed, we have

$$\operatorname{Un}_{K'}(\Sigma_f(X)) \stackrel{\text{def}}{=} \coprod_{x \in K'} \Sigma_f(X)_x$$

$$\cong \coprod_{x \in K'} \coprod_{y \in f^{-1}(x)} X_y$$

$$\cong \coprod_{y \in K} X_y$$

$$\cong \operatorname{Un}_K(X)$$

$$\stackrel{\text{def}}{=} \Sigma_f(\operatorname{Un}_K(X))$$

for each $X \in \text{Obj}(\mathsf{ISets}(K))$, where we have used Item 2 of Proposition 4.2.1.2 for the first bijection. Similarly, it can be shown that we also have $\operatorname{Un}_{K'}(\Sigma_f(\phi)) = \Sigma_f(\phi_{\operatorname{Un}_K})$ and that $\operatorname{Un}_{K'} \circ \Sigma_f = \Sigma_f \circ \operatorname{Un}_K$ also holds on morphisms.

Item 7, Interaction With Dependent Products: Indeed, we have

$$\begin{split} \operatorname{Un}_{K'}(\Pi_f(X)) &\stackrel{\mathrm{def}}{=} \coprod_{x \in K'} \Pi_f(X)_x \\ &\cong \coprod_{x \in K'} \prod_{y \in f^{-1}(x)} X_y \\ &\cong \left\{ (x,h) \in \coprod_{x \in K'} \operatorname{Sets} \left(f^{-1}(x), \phi_{\operatorname{Un}_K}^{-1} \left(f^{-1}(x) \right) \right) \, \middle| \, \phi \circ h = \operatorname{id}_{f^{-1}(x)} \right\} \\ &\stackrel{\mathrm{def}}{=} \Pi_f \left(\coprod_{y \in K} X_y \right) \\ &\stackrel{\mathrm{def}}{=} \Pi_f(\operatorname{Un}_K(X)) \end{split}$$

for each $X \in \text{Obj}(\mathsf{ISets}(K))$, where we have used Item 2 of Proposition 4.3.1.3 for the first bijection. Similarly, it can be shown that we also have $\operatorname{Un}_{K'}(\Pi_f(\phi)) = \Pi_f(\phi_{\operatorname{Un}_K})$ and that $\operatorname{Un}_{K'} \circ \Pi_f = \Pi_f \circ \operatorname{Un}_K$ also holds on morphisms. \square

00CV 5.3 The Un/Straightening Equivalence

OOCW Theorem 5.3.1.1. We have an isomorphism of categories

$$(\operatorname{St}_K \dashv \operatorname{Un}_K)$$
: $\operatorname{\mathsf{FibSets}}(K) \underbrace{\downarrow}_{\operatorname{Un}_K} \operatorname{\mathsf{ISets}}(K)$.

Proof. Omitted.

00CX 6 Miscellany

00CY 6.1 Other Kinds of Un/Straightening

- **Remark 6.1.1.1.** There are also other kinds of un/straightening for sets, where Sets is replaced by **Rel** or Span:
 - Un/Straightening With **Rel**, I. We have an isomorphism of sets

$$Rel(A, B) \cong Sets(B \times A, \{true, false\}).$$

by the definition of a relation from A to B, Relations, Definition 1.1.1.1.

• Un/Straightening With **Rel**, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}}, \mathsf{Rel}) \overset{\mathrm{eq.}}{\cong} \mathsf{Cats}^{\mathsf{fth}}_{/K_{\mathsf{disc}}},$$

where $\mathsf{Cats}^\mathsf{fth}_{/K_\mathsf{disc}}$ is the full subcategory of $\mathsf{Cats}_{/K_\mathsf{disc}}$ spanned by the faithful functors; see [Nie04, Theorem 3.1].

• $Un/Straightening\ With\ \mathsf{Span},\ I.\ \mathsf{For\ each}\ A,B\in \mathsf{Obj}(\mathsf{Sets}),$ we have a morphism of sets

$$\mathsf{Span}(A,B) \to \mathsf{Sets}(A \times B, \mathbb{N} \cup \{\infty\})$$

which assemble into an equivalence of categories between Span(Sets) and the category MRel of "multirelations"; see Spans, Remark 7.5.1.1.

• Un/Straightening With Span, II. We have an equivalence of categories

$$\mathsf{LaxFun}(K_{\mathsf{disc}},\mathsf{Span}) \stackrel{\mathrm{eq.}}{\cong} \mathsf{Cats}_{/K_{\mathsf{disc}}};$$

see [nLa23, Section 3].

Appendices

A Other Chapters

Set Theory	11. Kan Extensions
1. Sets	Bicategories
2. Constructions With Sets	12. Bicategories
3. Pointed Sets	13. Internal Adjunctions
4. Tensor Products of Pointed Sets	Internal Category Theory
5. Indexed and Fibred Sets	14. Internal Categories
6. Relations	Cyclic Stuff
7. Spans	15. The Cycle Category
8. Posets	Cubical Stuff
Category Theory	16. The Cube Category
9. Categories	Globular Stuff
10. Constructions With Categories	17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids Probability Theory With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes