MATH 337 - Fall 2024 T.-P. Nguyen

9 Lecture 9: Linear Transformations

9.1 Definitions and examples

Let $\mathbf{U} \subset \mathbb{R}^n$ and $\mathbf{V} \subset \mathbb{R}^m$ be two subset in \mathbb{R}^n and \mathbb{R}^m , respectively. A **transformation** (or **function** or **mapping**) f from \mathbf{U} to \mathbf{V} , denoted $f: \mathbf{U} \to \mathbf{V}$, is a rule that assigns to each vector $\mathbf{x} \in \mathbf{U}$ a vector $f(\mathbf{x})$ in \mathbf{V} . The set \mathbf{U} is called the **domain**, and \mathbf{V} is called the **codomain**. For each $\mathbf{x} \in \mathbf{U}$, the vector $f(\mathbf{x})$ is called the **image** of \mathbf{x} (under the action of f). The set of all images $f(\mathbf{x})$ is called the **range** of f.

Definition 9.1. A transformation f is **linear** if

- (i) $f(\mathbf{u} + \mathbf{v}) = f(u) + f(\mathbf{v})$, for all \mathbf{u}, \mathbf{v} in the domain of f
- (ii) $f(c\mathbf{u}) = f(\mathbf{u})$, for all constant c and for all \mathbf{u} in the domain of f.

Note, two condition (i) and (ii) in the definition of linear transformations can be written equivalently, as

$$f(c_1\mathbf{x}_1 + c_2\mathbf{x}_2) = c_1f(\mathbf{x}_1) + c_2f(\mathbf{x}_2), \text{ and } f(\mathbf{0}) = \mathbf{0}.$$

Example 9.1. For each matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ given by

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

is a linear transformation.

Indeed, by the linearity of the matrix vector multiplications, for any $c_1, c_2 \in \mathbb{R}$ and $\mathbf{x}_1, x_2 \in \mathbb{R}^n$,

$$f(c_1\mathbf{x}_1 + c_2\mathbf{x}_2) = \mathbf{A}(c_1\mathbf{x}_1 + c_2\mathbf{x}_2) = c_1\mathbf{A}\mathbf{x}_1 + c_2\mathbf{A}\mathbf{x}_2 = c_1f(\mathbf{x}_1) + c_2f(\mathbf{x}_2)$$

 $f(\mathbf{0}) = \mathbf{A}\mathbf{0} = \mathbf{0}$

Example 9.2. Given the linear transformation $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that $f \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and

$$f\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}. Calculate f\left(\begin{bmatrix}3\\3\end{bmatrix}\right)$$

Solution: Since

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

by the linearity of the transformation f:

$$f\left(\begin{bmatrix} 3\\3 \end{bmatrix}\right) = f\left(3\begin{bmatrix}1\\0 \end{bmatrix} + 3\begin{bmatrix}0\\1 \end{bmatrix}\right) = 3f\left(\begin{bmatrix}1\\0 \end{bmatrix}\right) + 3f\left(\begin{bmatrix}0\\1 \end{bmatrix}\right)$$
$$= 3\begin{bmatrix}1\\3 \end{bmatrix} + 3\begin{bmatrix}2\\3 \end{bmatrix} = \begin{bmatrix}3\\9 \end{bmatrix} + \begin{bmatrix}6\\9 \end{bmatrix} = \begin{bmatrix}9\\18\end{bmatrix}.$$

MATH 337 - Fall 2024 T.-P. Nguyen

9.2 The matrix of a linear transformation

For each linear transformation $f: \mathbb{R}^n \to \mathbb{R}^m$, there exists a unique matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ such that

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, for all $\mathbf{x} \in \mathbb{R}^n$.

Moreover, the matrix **A** is given by

$$\mathbf{A} = \begin{bmatrix} f(\mathbf{e}_1) & f(\mathbf{e}_2) & \dots & f(\mathbf{e}_n) \end{bmatrix}, \tag{9.1}$$

where \mathbf{e}_j is the j^{th} column of the identity matrix in \mathbb{R}^n . The matrix **A** defined in (9.1) is called the standard matrix for the linear transformation f.

Example 9.3. Find the standard matrix for the linear transformation $f(\mathbf{x}) = 2\mathbf{x}$ for $x \in \mathbb{R}^2$.

Solution: We write

$$f(\mathbf{e}_1) = 2\mathbf{e}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad f(\mathbf{e}_2) = 2\mathbf{e}_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Thus

$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

Matrix of composite transformation

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation given by $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $g: \mathbb{R}^p \to \mathbb{R}^n$ be a linear transformation given by $g(\mathbf{x}) = \mathbf{B}\mathbf{x}$ with $\mathbf{B} \in \mathbb{R}^{n \times p}$. Define the composite transformation (or composition of transformation)

$$h(\mathbf{x}) = f \circ g(\mathbf{x}) = f(g(\mathbf{x})).$$

Then $h: \mathbb{R}^p \to \mathbb{R}^m$ and h is given by $h(\mathbf{x}) = \mathbf{ABx}$.

Thus, a matrix-matrix multiplication is the standard matrix of a composite transformation.

9.3 Geometric Linear Transformations of \mathbb{R}^2

We here consider the geometry of some special kind of linear transformations.

9.3.1 Horizonal dilation (or expansion) and constriction

The linear transformation if of the form

$$f(\mathbf{x}) = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x},\tag{9.2}$$

where,

- k > 1 for dilation
- 0 < k < 1 for constriction.

That is, the geometric of an object in \mathbb{R}^2 is scaled by k along x_1 —direction under the transformation f given by (9.2).

MATH 337 - Fall 2024 T.-P. Nguyen

9.3.2 Vertical dilation (or expansion) and constriction

The linear transformation if of the form

$$f(\mathbf{x}) = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix} \mathbf{x},\tag{9.3}$$

where,

- k > 1 for dilation
- 0 < k < 1 for constriction.

That is, the geometric of an object in \mathbb{R}^2 is scaled by k along x_2 —direction under the transformation f given by (9.3).

9.3.3 Rotation

The linear transformation producing **counterclockwise rotation** through an angle θ is of the form

$$f(\mathbf{x}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x},\tag{9.4}$$

9.3.4 Reflection

The linear transformation producing the reflection through a line, which passes through the origin and makes an angle θ with the x_1 - axis is of the form

$$f(\mathbf{x}) = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix} \mathbf{x},\tag{9.5}$$

See more examples and graphics in the Matlab script file "L_I9_F24.mlx" on Canvas (the common course).