Trip Duration Prediction and CO₂ Optimization

A Data Science Approach to Urban Sustainability

1. Motivation & Problem

NYC taxis emit 450,000 tons CO₂ annually

Inefficient routes result in 15-25x more emissions per mile

Green Rides Initiative at 100% zero-emission by 2030

3. Data Sources

NYC Taxi Trip Data

4

1.4M records

Weather & Holidays

OSRM Routing 0.15 kg/km

6. Ethical Considerations

- Data privacy no personal tracking
- Algorithmic fairness across boroughs
- Advisory optimization, not enforced

2. Research Questions

- Can ML models accurately predict trip durations?
- 2. Which features best explain variability (time, weather, geography?
- 3. How much CO₂ can optimized routing save?
- 4. Can we operationalize via a real-time dashboard?

4. Methodology

Feature Engineering

- time cycles
- · distances (Haversine/Manhattan)
- weather
- clustering

CO₂ Framework

- 0.15 kg/km
- · route reduction scenarios

Final RMSLE

.276

stacked ensemble

7. Future Directions

- · Integrate real-time traffic APIs
- · Pilot test with taxi flests
- Expansion to ride-sharing and last-mile delivery
- · API integration for smart cities