CH620003 Process Modelling and Simulation

Assignment 2

Deadline to submit: 13 Feb 2025 (before 5 PM)

Q1: FUG TECHNIQUE

- (a) For the debutanizer shown here, estimate the N_{min} by the Fenske equation. Assume a uniform operating pressure of 80 psia (552 kPa) throughout and utilize the ideal K-values.
- (b) Estimate the product distributions for nonkey components by the Fenske equation.
- (c) Calculate the minimum reflux, based on Underwood equation.
- (d) Use the Gilliland chart (included below) to estimate the number equilibrium-stage required for the debutanizer, for a reflux 30% greater than the minimum reflux.

Q2: SIMULATANEOUS - CORRECTION (SC) METHOD

A reboiled absorber is used for the separation of a hydrocarbon vapour feed. Here the absorbent oil in *n*-decane. The 770 lbmol/h of bottom feed corresponds to the amount of C₃ and heavier in the two feeds, so the column is designed as a deethanizer. Calculate the stage temperatures, interstage vapour and liquid component flow rates, and reboiler duty using the SC method.

Sample solution for the stage temperature (for validating your calculations / results)

Q3: PINCH ANALYSIS AND HEAT EXCHANGER NETWORK INTEGRATION

- (a) Prepare the composite temperature-enthalpy curve for $\Delta T_{min} = 10^{\rm o} C$. Estimate the minimal heating and cooling loads, and identify the pinch temperature.
- (b) Estimate the pinch temperature from the temperature cascade procedure and check with the result from the T-H diagram.
- (c) Design an optimized heat exchanger network connection that requires minimal hot and cold utility energies.
- (d) Prepare a new process flowsheet integrating the heat exchangers in the process flow diagram.

Stream No.	Flowrate, ṁ (kg/s)	<i>C_p</i> (kJ/kg°C)	<i>T_{in}</i> (°C)	τ _{out} (°C)
1	10.00	0.8	300	150
2	2.50	0.8	150	50
3	3.00	1.0	200	50
4	6.25	0.8	190	290
5	10.00	0.8	90	190
6	4.00	1.0	40	190

IF THE COMPUTER CODES / PROGRAMS / HAND NOTES ARE COPIED, YOU WILL BE CALLED TO EXPLAIN YOUR WORK, FAILURE ON WHICH TO DO SO, YOUR SUBMISSION WILL NOT BE CONSIDERED.