ECE 2050 Autumn 2023 Homework 2 Due 5:00 pm, Friday Sept 8, 2023 upload to Carmen as a single PDF document

BC:2.1 For each of the continuous time sinusoids below, sampled at spacing $T_s = \Delta t = 2.5 \ \mu s$, find the values for A, $\hat{\omega}_o$ (in radians) and θ_o (in degrees) for the sampled version of the signal that has the form:

$$f[n] = A\cos(\hat{\omega}_o n + \theta_o)$$

where $\hat{\omega}_o$ represents the (positive) normalized radial frequency (in radians) of the *principal zone* (principal alias) representation of the sampled sinusoid.

- a.) $f(t) = 13\cos(1300000\pi t 30^{\circ})$
- b.) $f(t) = 0.5 \cos(960000\pi t 15^{\circ})$
- c.) $f(t) = 200 \cos(720000\pi t + 45^{\circ})$
- d.) $f(t) = 125 \cos(540000\pi t 25^{\circ})$
- e.) $f(t) = 0.001 \cos(120000\pi t 37^{\circ})$

BC:2.2 Given the continuous time signal,

$$f(t) = 140\cos(200\pi t - 25^{\circ})$$

for each of the sampling periods in parts (a–e) listed below, sketch the two sided spectrum vs the normalized radial frequency, $\hat{\omega}$, including all aliases between -4π and 4π . Include the complex coefficients for each spectral line as magnitude and phase angle (in degrees). For each of parts (a–e) below, identify the normalized radial frequency, $\hat{\omega}_o$ (in radians) and corresponding angle, θ_o (in degrees), for the principal zone (principal alias) description of the sampled cosine that has the form $f[n] = A\cos(\hat{\omega}_o n + \theta_o)$. For each case, identify whether the sampled signal is oversampled or undersampled and justify your choice.

a.)
$$T_s = \Delta t = 18 \text{ ms}$$

b.)
$$T_s = \Delta t = 13.5 \text{ ms}$$

c.)
$$T_s = \Delta t = 7.5 \text{ ms}$$

d.)
$$T_s = \Delta t = 3.75 \text{ ms}$$

e.)
$$T_s = \Delta t = 1.5 \text{ ms}$$

BC:2.3 Express the following sampled signals using a sum of weighted *impulses (delta functions)*. If the weights are complex valued (not purely real), then express the weights in polar form with the angle in degrees. (You can use the "summation" symbol: Σ and specify limits of the summation.)

a.) $f_a[n] = \begin{cases} \sin(0.55\pi n + 17^o) & \text{for } |n| \le 5 \\ 0 & \text{otherwise} \end{cases}$

b.) $f_b[n] = \begin{cases} \sin(0.55\pi n + 17^o) & \text{for } -3 \le n \le 8 \\ 0 & \text{otherwise} \end{cases}$

c.) $f_c[n] = \begin{cases} \left(-0.25j/(0.5 - 0.5j) \right)^{n-1} & \text{for } n \ge 0 \\ 0 & \text{otherwise} \end{cases}$

d.) $f_d[n] = \begin{cases} \left(\frac{2}{1+j\sqrt{3}}\right)^{n-1} & \text{for } n \ge -5\\ 0 & \text{otherwise} \end{cases}$

e.) $f_e[n] = \begin{cases} \left(0.5 + \frac{\sqrt{3}j}{2}\right)^{1-n} & \text{for } n \geq 3\\ 0 & \text{otherwise} \end{cases}$

BC:2.4 Use weighted unit step functions of the form u[n] and/or $u[n-n_o]$ to express the following sampled signals. If the weights are complex valued (not purely real), then express the weights in polar form with the angle in degrees.

 $f_a[n] = \begin{cases} \sin(0.55\pi n + 17^o) & \text{for } |n| \le 5\\ 0 & \text{otherwise} \end{cases}$

a.)

$$f_b[n] = \begin{cases} \sin(0.55\pi n + 17^o) & \text{for } -3 \le n \le 8\\ 0 & \text{otherwise} \end{cases}$$

$$f_c[n] = \begin{cases} \left(-0.25j/(0.5 - 0.5j) \right)^{n-1} & \text{for } n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$f_d[n] = \begin{cases} \left(\frac{2}{1+j\sqrt{3}}\right)^{n-1} & \text{for } n \ge -5\\ 0 & \text{otherwise} \end{cases}$$

$$f_e[n] = \begin{cases} \left(0.5 + \frac{\sqrt{3}j}{2}\right)^{1-n} & \text{for } n \ge 3\\ 0 & \text{otherwise} \end{cases}$$