

AD-A047 169

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
A MICROPROCESSOR CONTROLLED AUTOMATIC DATA LOGGING SYSTEM (ADL)--ETC(U)
JUN 77 J D CASKO

F/G 9/2

UNCLASSIFIED

1 of 2
ADA
047-69

NL

| OF 2

ADA

047169

AD 047169

2

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

A MICROPROCESSOR CONTROLLED AUTOMATIC DATA LOGGING SYSTEM (ADL)

בג

John David Casko

June 1977

Thesis Advisor

David Caswell

Approved for public release; distribution unlimited.

ANSWER
AND FILE COPY

UNCLASSIFIED

A MICROPROCESSOR CONTROLLED AUTOMATIC DATA LOGGING SYSTEM (ADL).	
Master's Thesis	
John David Caske	
Naval Postgraduate School Monterey, California 93940	
Naval Postgraduate School Monterey, California 93940	
Naval Postgraduate School Monterey, California 93940	
Unclassified	

Approved for public release, distribution unlimited.

microprocessor, digital control, data logging,
data acquisition

This paper describes a digital, microprocessor controlled data acquisition system which optimizes man/machine communications. The processor provides digital feedback control, data collection over any number of channels (up to 8), 32 BIT floating point (7 significant digit) mathematics, and

~~UNCLASSIFIED~~

→ a variety of output formats. The main features of the device are the ability to work in any numerical unit desired by the user, mathematical noise filtering and automatic feedback control.

The particular application under consideration is automatic data collection and angle-of-attack control of a subsonic wind-tunnel. Data are presented to demonstrate the data logging capabilities of the system.

DD Form, 1473
S/N 0100-010-0001
(Page 2)

~~UNCLASSIFIED~~

Approved for public release; distribution unlimited.

A MICROPROCESSOR CONTROLLED AUTOMATIC DATA LOGGING

by

John David Cawthon
Lieutenant, United States Navy
S.S., University of West Florida, 1972

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AEROSPACE ENGINEERING

from the
NAVAL POSTGRADUATE SCHOOL
June 1977

Author:

John David Cawthon

Approved by:

Douglas Cawell

Henry V. Schmidt

Richard W. Hilt

Paul R. Dunn

ABSTRACT

This paper describes a digital, microprocessor controlled data acquisition system which optimizes man/machine communications. The processor provides digital feedback control, data collection over any number of channels (M_p to 8), 32 bit floating point (7 significant digits) mathematics, and a variety of output formats. The main features of the device are the ability to work directly in any numerical unit desired by the user, mathematical noise filtering and automatic feedback control.

The particular application under consideration is automatic data collection and angle-of-attack control of a subsonic wind-tunnel. Data are presented to demonstrate the data logging capabilities of the system.

TABLE OF CONTENTS

I.	INTRODUCTION.....	9
A.	BACKGROUND.....	9
B.	DISCUSSION.....	10
II.	SYSTEM DESCRIPTION.....	11
A.	REQUIREMENTS.....	11
B.	DEVICE SELECTION.....	12
C.	INPUT/OUTPUT DEVICES.....	12
D.	FUNCTIONAL ARCHITECTURE.....	13
1.	General.....	13
2.	Internal.....	14
III.	CURRENT CODES.....	20
A.	DATA DEFINITION.....	21
1.	BUILD.....	21
2.	WAIT.....	21
3.	SET SCAB.....	22
B.	ACQUISITION COMMANDS.....	22
1.	READ.....	22
2.	SCAB.....	23
3.	MOVE.....	23
4.	SUS.....	24
C.	FILE MAINTENANCE.....	25
1.	EDIT.....	25
2.	FILE.....	25
3.	BUFD.....	26
4.	TEST.....	26
5.	CTRL-A.....	26
6.	CTRL-B.....	27
7.	CTRL-C.....	27
8.	CTRL-Z.....	27
9.	DEBUG.....	27

D. SAMPLES.....	28
IV. WIND TUNNEL APPLICATION.....	30
V. SOFTWARE DESIGN.....	42
VI. RECOMMENDATIONS.....	99
Appendix A: GLOSSARY.....	101
Appendix B: VENDOR DATA.....	104
Appendix C: MATHEMATICS PACKAGE.....	113
LIST OF REFERENCES.....	122
INITIAL DISTRIBUTION LIST.....	123
LIST OF FIGURES.....	7

LIST OF FIGURES

1.	PROLOG SOS System layout.....	16
2.	ASL/SOS interface.....	17
3.	A/D conversion system.....	18
4.	Numerical data conversion methods.....	19
5.	Data definition examples.....	30
6.	SCAS and SBS examples.....	31
7.	Improper input example.....	32
8.	SDIT and FILE examples.....	33
9.	Wind-tunnel raw data.....	34
10.	Wind-tunnel data run.....	35
11.	Plot of wind-tunnel data.....	36
12.	Exponential format examples.....	37
13.	Photos of ASL components.....	40
14.	Angle-of-attack feedback loop.....	41
15.	Noise and glitch filter logic.....	43
16.	'UP' relay driver logic.....	44
17.	Overshoot/undershoot correction logic.....	45
18.	External device control logic.....	46
19.	SBS routine logic (part 1).....	47
20.	SBS routine logic (part 2).....	48

ACKNOWLEDGMENT

The author takes the opportunity to express his most sincere thanks to Mr. David Caswell, USM, thesis advisor, for his logistic support and patience; to Dr. Louis Schmidt, co-advisor for the physical design of the ABL system and wind tunnel interface; to Ted Dunton, chief technician for his tireless and cheerful troubleshooting.

Special thanks go to Charles Losko, president of CYBERDATA Corporation, Monterey, California for his generous loan of equipment and facilities during a period of hardware malfunction.

Most of all, thanks to my family for their endless support and understanding.

I. INTRODUCTION

A. BACKGROUND

The use of microprocessors (U-P) to control various analog and digital devices has grown exponentially in the past two years. Applications range from TV tennis games and 'smart' traffic lights, to industrial plant monitors and high speed data handling. The state-of-the-art U-P at the time of this writing is the INTEL 8748. This single integrated circuit contains:

1. Central Processing Unit (CPU)
2. 1K bytes of erasable, programmable, read-only memory (EPROM)
3. 64 bytes of random access memory (RAM)
4. 8-BIT interval timer/event counter
5. clock driver

In addition, this device draws only 150 milliamperes (mA) at 5 volts (V).

Microprocessors have greatly enhanced the important technological application called DISTRIBUTED INTELLIGENCE. For example, routine - but time consuming - chores such as parallel to serial data conversion, x-y plotting, equipment polling, etc. can be controlled on site. Engineering analysis of such large interconnected subsystems reduces to a 'black box' problem rather than the more complex problem

of centralized command and control.

B. DISCUSSION

This paper describes the development and construction of an automatic data logging system (ADL) which is configured via software to suit a particular application. The software modification is dynamic in nature, which means that the system operator needs only to type in a few simple commands to change the system input/output (I/O) to measure volts, feet, psi or any other quantity directly without external hardware modification or adjustment. The requirements for the system and an overall description of the ADL hardware are given in chapter II. Chapter III discusses the command words available along with examples of actual output. Chapter IV presents a specific application of the system. Guidelines for interfacing the digital feedback control function with various types of equipment are also given. Chapter V contains the software assembly listing as well as flowcharts and explanations of the more important routines. Chapter VI discusses the use of U-P development systems and gives recommendations for software development. Appendix A is a glossary of U-P and data acquisition terminology which is used throughout the paper.

II. SYSTEM DESCRIPTION

A. REQUIREMENTS

The purposes of a data logging system are twofold. First, the system must be able to take readings from a variety of physical devices. Second, these readings must be converted into a form suitable for data reduction and human interpretation. The obvious use of such a system is taking data over extremely long or extremely short time periods, filtering out noise, controlling external events and providing tabular and/or graphical output. With the above in mind, the following requirements are defined:

1. 8 channels of analog input.
2. 1 channel for digital feedback control of some external device.
3. Plain language man/machine interface via serial data transmission.
4. Manual and automatic data acquisition functions.
5. Limited data manipulation.
6. Multiplexed digital voltmeter function.
7. Limited test file storage and editing.

It should be pointed out that the above requirements were defined with the wind-tunnel control function in mind (Ch. IV). Nevertheless, the concepts may be extended to other applications with minor software modifications.

B. DEVICE SELECTION

A strictly hardware-oriented implementation of the system requirements was not a valid alternative due to the inherent inflexibility of such designs. Large scale computer installation was prohibitive from cost and under-utilization considerations. It was therefore decided to use an available microprocessor - the INTEL 8008 - to implement all logic and data manipulation functions. This I-P device is the heart of the PROLOG Corporation 805 microprocessor system. Figure 1 is a schematic of the 805 system layout as modified for this project. Appendix B presents vendor specifications for same. Figure 2 shows the overall system layout including the command and communications links between the system components and the operator.

C. INPUT/OUTPUT DEVICES

The man/machine interface was the most difficult task to implement. The major difficulty was not in the physical interface, but the language used for two-way communications. A software driven ASR-33 Teletype was used for command entry, data presentation, and test functions. Although teletype driving wastes CPU time, the time delays involved are still much less than the mechanical time delays of the relays and driving motors which the I-P is controlling.

A group of eight HEWLETT PACKARD 5002-7302 display lights was used to implement the digital voltmeter function. This display is used to set amplifier gains, set nulls and to verify that data present on a particular input are being

processed by the system. The light display is controlled via software to display data in volts.

Up to eight channels of analog data may be multiplexed (DATTEL 22-0) into the sample-and-hold unit (DATTEL 322-0), as shown in figure 3. The analog-to-digital (A/D) converter (DATTEL ADC-109) has 10-BIT resolution over a 20-volt range. These three devices are also driven via software in order to provide various time delays between data samples. The time delays are utilized to mathematically filter out low level noise and A/D glitches from the system. Appendix B contains vendor data for the above mentioned devices.

D. FUNCTIONAL ARCHITECTURE

1. General

The primary advantage of a software configured system is that its processing functions and I/O can be modified without external hardware adjustment. This implies that the system possesses a 'general purpose' quality. However, a compromise must be made between a completely general system and one which can be easily implemented by an operator who has little knowledge of the operating system (OS) software or of the dynamics of the system from which this person is collecting data. In order for the data logging system to be used effectively by students in a variety of engineering disciplines, the OS was set up to optimize man/machine interaction. Thus, the operator has no control over such parameters as relay and drive motor transportation lag. These particular system parameters are fixed (see chapter IV) but still provide wide applications such as probe placement and angle setting. Although obvious,

It is worth mentioning that the feedback controlled component of an external device may not be coincident with data acquisition and reduction, as the 8-P can perform only one function at a time. In general, the internal data handling of the microprocessor is transparent to the user.

2. INTERNAL

Figure 6 is a flowchart of the basic numerical data conversion processes. Note that two levels of conversion take place. The first level converts data from the 14-BIT binary provided by the A/D converter into a numerical voltage between -10 and +10 volts. This interpolation routine is called before any raw data are processed. The next level of conversion is accomplished with a scaling routine which changes voltage units into any unit desired by the user. If the user does not specify a particular scaling factor, the system defaults to volts for all I/O presentations. Scaling factors can be changed at any time, on any of the input channels; different channels may have different scaling factors.

The mathematics package used is from the INTEL Users Library and is discussed in Appendix C. Although the math package performs all operations with 7 significant digits, numerical output is rounded to 4 significant digits (with choice of decimal or exponential notation). This was done to improve readability of tabulated output and to permit all eight channels to be printed in the limited space provided by the teletype. The only exception is the DUMP routine (ch. III), which always outputs 7 digits. This is because scaling factors of up to 7 digits can be entered by the operator (also fig. 4).

The decimal format presents data between 0.0001 and

9999. The exponential format presents 6 significant digits between 1.000 E-20 and 10.00 E+27. All numerical entries by the operator can be in either format, with the exception of channel numbers, which are only single digit integers.

- A - 2K EPROM
- B - CPU
- C - 4K RAM
- D - Input ports
- E - Output ports
- F - Serial interface
- G - Power supply
- H - Sockets
- I - Card cage

Modular construction
of the U-P components
enhances expansion.

Figure 1 - PROLOG 805 SYSTEM LAYOUT

Figure 2 - ADL/805 INTERFACE

Figure 3 - A/D CONVERSION SYSTEM

Figure 4 - NUMERICAL DATA CONVERSION METHODS

III. COMMAND WORDS

This chapter defines the commands which the operator may use to communicate with the ABL. A brief explanation of the word is presented; then the rules for its usage and the ABL response is given. The commands are organized into three categories:

1. **BASIC PREPARATION** Used to set scaling and delay parameters, and to store the sequence of channels to be scanned.
2. **ACQUISITION**: These commands start various types of acquisition processes, including the voltmeter and feedback control routines.
3. **FILE MANAGEMENT**: These are convenience features which provide simple test editing and printing of repetitive table headings. They also provide abort capability and correction capability for misspelled words.

Note that command words are entered in upper case just as they appear in the following paragraphs. When the ABL is ready for a command, it prompts with the symbol >. The command word is then entered followed by pressing the RETURN key. In all examples given, the ABL-generated test is shown in parentheses for illustration purposes only. Section 3 of this chapter presents copies of actual printout from typical runs in order to further clarify the use of the commands.

A. DATA DEFINITION

1. UNIT

This command is normally the first used. It enables the user to specify a scaling factor so that all data I/O will be in any desired unit. A typical sequence of commands could appear as follows:

```
(>) UNIT  
(CHANNEL 0) 1  
(UNIT/VOLT) 10.5  
(CHANNEL 0) 6  
(UNIT/VOLT) .2  
(CHANNEL 0)  

```

Thus the user has specified a scaling factor of 10.5 for channel 1 and .2 for channel 6. The abort command was then used to terminate the routine. The ADL responded with > which again ready to accept commands. The result of the above is that, for example, a 3-volt input on all channels will print out as 3.000 on channels 0,2,3,4,5,7; as 31.50 on channel 1 and as .6000 on channel 6.

2. DELAY

This command is used to set a known time delay between sets of data points. The ADL takes 128 data points from each channel and computes an average before a value is printed. Thus, the effects of noise and A/D glitches are

stainized. Because it takes 1 millisecond (ms) for the A/D to set up the multiplexer for a different channel, the WAIT delay must be used with caution in an environment which exhibits periodic noise. If only one channel is scanned, the time between data points will be as entered. However, if all 8 channels are scanned the time between data points on any channel will be the desired time plus 8 ms (1 ms for each channel).

3. SET SCAN

SET SCAN is a dual purpose routine. First of all, if a WAIT command has not been issued it will default to 15 ms and send a message to the operator; otherwise, it proceeds to the next step. The operator is then given the opportunity to specify the type of output format, namely, exponential or decimal. Second, the A/D asks the operator to input the channels to be scanned in the desired sequence. Section 8 presents some typical examples of SET SCAN usage.

B. ACQUISITION COMMANDS

1. MEAS

This is the command used to start the voltmeter function. A typical entry would look like:

(CHANNEL #) 3

When the RETURN key is pressed, the digital display will follow the data on channel 3 (in volts). The display is updated every 10 ms and takes the data through a 0.3 microsecond window. Once the display is in operation, any

noise on the input will show up as a rapidly changing digit. This is unlike most digital voltmeters which integrate the input over a small time interval and present an average reading. This integration process may effectively soak any noise down to fairly low frequencies, depending on the voltmeter being used.

The main use of the above function is to set gain limits on the inputs. To transfer control back to the user, any key on the teletype can be pressed. The ADL responds with > and is then ready for another command.

2. SCAB

SCAB is used to manually control the tabulation of data. Upon command entry, the ADL checks to see if channel assignments have been made via the SET SCAB routine. If the check is negative, a message is sent to the operator and the routine is aborted. If the check is positive, headings are printed out with the proper spacing for the desired numerical format. The ADL then waits for a RETURN at which time a set of data is taken, averaged and printed out with the proper scaling factor applied. The printer carriage is then positioned at the end of the line of data so the user may enter any comments. The next set of data is taken when the RETURN key is pressed. Before each line of data is printed, a three digit counter, called the coordination number, is incremented automatically. The SET SCAB routine is used to reset this counter to zero (also automatic). Thus, repeated calls to SCAB or BUB will keep the counter indexing properly. The SCAB routine is terminated by entering the short command.

3. BUBS

Channel 0 was internally defined as the feedback channel for A/D control of some external device. The operator inputs the desired position (speed, angle, etc.) and the A/D will provide the logic necessary to drive the device to within ± A/D counts; 1 A/D count is equal to 1.22 millivolt (mV). A sample is taken every 0.6 sec so the maximum slew rate at the input is limited to 6.1 mV/sec in order to guarantee convergence. This routine is used mainly to ensure slew rates are not excessive and that external device movement does not exceed acceptable limits. Chapter 7 presents a detailed flowchart of the feedback logic used in the A/D.

B. BUP

BUP internally calls the SCAN and MOVE routines in repetition in order to automate the tabulation of data at many different positions of an external device. A typical data entry sequence for BUP could be:

```
(START POSIT *) 10.0  
(STOP POSIT *) 7.5  
(INCREMENT *) .5
```

Note that the start position does not need to be less than the stop position. Also note that the incremental movement is in absolute value. Upon execution (the RETURN key) the A/D prints out column headings as defined by the SET SCAN routine, slewed the external device to the start position and starts tabulating data at each of the positions between START and STOP. When the stop position data have been printed out, command is returned to the operator.

C. FILE MAINTENANCE

The following commands are used to input text information and comments.

1. EDIT

When the same heading information will appear as part of the documentation of each run, EDIT is used to enter this information for later use. After the desired text has been entered, the LINE FEED (L/P) key is pressed, followed by the RETURN key. The L/P is needed internally to mark the end of the file; this is the only routine that terminates with other than just the RETURN key. If the L/P key were not used, the entire buffer space (256 characters) would print out. At this time, if the END-OF-FILE symbol were not detected, an error message could be sent to the operator.

The EDIT mode can also be used to change or correct the text at any time. The routine is entered via the command word; the CONTROL and Z keys (CTRL-Z) are pressed simultaneously to step through the file. When the proper place in the text is reached, the BUBORT key is pressed, then the new character is entered. Note that this entry is not inserted between two characters, but rather it overwrites; any number of characters can be reentered. In order to exit the routine without using the L/P key (which would truncate the text), the CTRL-A keys are used. Section 9 shows the construction and edit of a file.

2. LIBS

The text entered with the EDIT command is printed out upon execution of FILE. Two lines are skipped automatically at the beginning and at the end of the file.

3. DUMP

Execution of DUMP will cause the contents of the conversion factor buffer to be printed on the teletype. This enables the user to verify the scaling factors which are being applied to each channel. Numbers are printed with 7 significant digits.

4. TEST

This command is executed automatically upon system reset or when power is applied. All the ram area is tested by first writing 00H to each location, reading it back and comparing the result with 00H; the same process is repeated with FFF (appendix C contains an explanation of hexadecimal notation). If an error were detected, the contents of the bad location would be printed out along with its address. This enables the operator to identify the particular circuit component which has malfunctioned. The routine can also be entered as a command, but use of this function resets all default values just as a system reset.

5. CLEAR

The abort command is used to terminate execution of all routines except RUM and READ. When the control-a keys are used, command is transferred back to the operator and the system responds with a >. The RUM routine can only be

terminated with a system reset; the READ routine is terminated by pressing any of the teletype keys.

6. ~~SCROLL~~

Pressing these two keys causes the phrase BUB BO. to be printed. The keyboard is then opened for the insertion of any desired alpha/numeric single line sequence.

7. ~~SCROLL~~

This command causes ~~xxxx~~ to be printed in order to flag a comment. Note that this is a command routine and can only be entered after a > prompt by the IDL.

8. ~~SCROLL~~

Pressing these keys causes an internal counter to advance forward through the input buffer. In this manner, the contents of memory can be displayed (see EDIT).

9. ~~REBOUT~~

This key is used mainly to correct spelling errors or to correct data entries without aborting a routine. For example, assume the operator wants to enter SCAB but notices that SCAS has been typed by mistake. The REBOUT key is pressed three times. Each time it is pressed, the previously entered character is printed and an internal counter counts backwards through the input buffer. The operator then retypes the correct letters (CAB) and the correction is complete. The teletype entries would then look like:

STABILIZING

When executed, the ADL will only see SCAB.

Command word recognition is accomplished by summing the binary codes of each of the letters of the word. The result is then compared with a list of valid sums which are contained in memory (check-sum). Since the result of a summation does not depend on the order of the addends, the letters of the command word may be entered in any order (e.g., SCAB, BACS, etc.). Although this method could lead to ambiguity problems, the vocabulary of the ADL is small enough to prevent such an inconsistency. Any command, test or data entry can be edited with the SUBROUT key at any time.

D. EXAMPLES

The figures following this section are copies of actual ADL sessions. All ADL-generated messages are underlined the first time they appear for illustration purposes only.

Figure 5 shows a DATA DEFINITION sequence. The UNIT command was used to override the volt default on channels 0,1 and 2. The SET SCAB routine was used to select decimal format and to sequence channels 6,7,0,3,6. Note that the channels do not need to be in any particular sequence and that one channel may be used more than once. The use of a channel more than once enables the user to check the effectiveness of the noise filtering algorithm in a particular application. In this case, data taken on the first channel 6 scan will be 19 ms out of phase with the second channel 6 scan (15 ms for the delay parameter and a 1 ms intercycle delay for each channel). The operator then used the unit routine to change the unit parameter to 3 ms.

The subsequent call to the SET SCAB routine did not produce the default message (labeled A on the previous call).

Figure 6 shows a typical SCAB sequence which resulted from the commands entered from fig. 5. SCAB was used to take 5 sets of data, then BUB was used to take 5 sets. It is important to note that channel 0 must be included in the SET SCAB definition before BUB is executed. This is because channel 0 is the feedback path for the digital control functions.

Figure 7 shows the ADL response to improper inputs. After a reset, the operator tried to execute SCAB without first defining the channel sequence. The next example in this figure shows an invalid command followed by some examples of using the DEBUG key to correct various entries.

In fig. 8 the operator did not use a LINE FEED/RETURN sequence to back the end of the test. The resulting call to PILE is then shown.

Figures 9 and 10 present the data from a wind tunnel calibration session. Figure 11 is a graph of the lift data (channel 2) versus angle-of-attack (AOA, channel 0). Notice that the scaling factors for channels 0 and 2 were selected so that their respective output could be read in degrees and pounds directly. Figure 12 shows a run which utilized exponential format.

NO. 2 UNIT ALL CHANNEL I/O IN "VOLTS" 000

2 UNIT

CHANNEL = 0
UNIT/VOLT = .1
CHANNEL = 1
UNIT/VOLT = .000.
CHANNEL = 2
UNIT/VOLT = 1.00
CHANNEL =

① → ▶ SET SCAN
~~ENTER DEFERRED DATA POINTS = 12.34 (LEAVE 0)~~
"E" FORMAT(Y OR N) ? Y
INPUT CHANNELS IN DESIRED ORDER
67. 0 3 6

WHEN READY TO TAKE DATA, TYPE "SCAN" OR RUN

▶ DALT
~~ENTER FACTORIAL~~
A
B
C
D
E
F
G
H

▶ SET SCAN
"E" FORMAT(Y OR N) ? N
INPUT CHANNELS IN DESIRED ORDER
6 1 2 3 4 5

WHEN READY TO TAKE DATA, TYPE "SCAN" OR RUN

Figure 5 - DATA DEFINITION EXAMPLES

• SCAN

#	CH. 0	CH. 1	CH. 2	CH. 3	CH. 4	CH. 5
001	.0097	-23.98	-1.308	-.0374	.0395	.0006
002	.0097	-23.93	-1.306	-.0374	.0397	.0006
003	.0097	-23.03	-1.324	-.0372	.0396	.0006
004	.1118	-23.67	-1.276	-.0441	.0424	.0006
005	.1119	-23.69	-1.163	-.0439	.0426	.0006

• RUN

START POSIT = .1
STOP POSIT = -.08
INCREMENT = .03

#	CH. 0	CH. 1	CH. 2	CH. 3	CH. 4	CH. 5
006	.0095	-23.86	-1.261	-.0368	.0371	.0006
007	.0096	-23.56	-106.0	-.3309	-.1286	.0006
008	.0396	-23.56	60.72	.1612	.0127	.0006
009	.0097	-23.41	27.17	-.0309	-.0434	.0005
010	-.0202	-23.32	-28.10	.0410	.0168	.0006

Figure 6 - SCAN AND RUN EXAMPLES

*** RESET: ALL CHANNEL I/O IN "VOLTS" ***
• SCAN
~~ALL CHANNELS NOT PREPARED~~
• SET SCAN/CAN
RELAY BETWEEN DATA POINTS = 15 MS (DEFAULT)
"T" FORMAT (OR W) 7 N
INPUT CHANNELS IN DESIRED ORDER
•
WHEN READY TO TAKE DATA, TYPE SCAN ON LINE

• RUN
START POSIT = 190001.190
STOP POSIT = .09
INCREMENT = .09
• CH. 0

CH1 : .1914
CH2 : .0004
CH3 : .0498

•

Figure 7 - IMPROPER INPUT SAMPLE

► **BLT**
THIS COMMAND IS USED TO INPUT
TEXT WHICH IS USED MANY TIMES
DURING A DATA LOGGING SESSION.

**THE "FILE" COMMAND IS USED TO
RECALL THE TEXT.**

• FILE

THIS COMMAND IS USED TO INPUT
TEXT WHICH IS USED MANY TIMES
URING A DATA LOGGING SESSION.

**THE "FILE" COMMAND IS USED TO
RECALL THE TEXT.**

- 71 -

**THIS COMMAND IS USED TO INPUT
TEXT WHICH IS USED MANY TIMES
DURING A DATA LOADING SESSION.**

**THE "FILE" COMMAND IS USED TO
RECALL THE TEXT.**

• 201

THE BLOOD TEST IS USELESS TO A FUL

• 111

THE MUSEUM IS USEFUL.

1

*** BEAST! ALL CHANNEL 1/0 IS "VALVE" ***

- 28 -

MINIMUM OF 1000 WORDS

• 241

UNITED STATES GOVERNMENT

• 111

***** CANTIL-E USED HERE*****
*** INVALID "FILE" TERMINATION

Figure 8 - EDIT AND FILE EXAMPLES

• 1183
 CHANDEL = 0
 VIT/VLT = 10
 CHANDEL = 1
 VIT/VLT = 0000225000
 CHANDEL = 2
 VIT/VLT = -00.156
 CHANDEL =
 • SET SENS
 LPLAT LTTTTT LMIN RCLT = 17 42 (LARVEL)
 "B" POSITION OF 01 02 2 4
 DVLG CHANNELS IN LSTABR ORDER
 012

012 STAB TO TAIL LMIN LSTABR SENS 01 02
 00000 012L OFF TANKS
 • SENS

	Ch. 0	Ch. 1	Ch. 2	
01	-0001	-0115	-0214	012L OFF TANK
• H%				
S1111 R0511 = -6				
S111 R0511 = 14				
L0CHB111 = 1				
	Ch. 0	Ch. 1	Ch. 2	
02	-0.015	-0135	-0266	
03	-0.072	-0123	-0227	
04	-0.100	-0138	-0212	
05	-0.100	-0107	-0229	
06	-0.000	-0151	-0203	
07	-0.040	-0194	-0239	
08	-0.001	-0112	-0330	
09	1.031	-0153	-0248	
010	2.014	-0160	-0261	
011	3.035	-0144	-0303	
012	4.022	-0212	-0270	
013	5.012	-0150	-0301	
014	6.017	-0184	-0274	
015	7.024	-0173	-0349	
016	8.013	-0221	-0195	
017	9.000	-0237	-0266	
018	10.00	-0230	-0254	
019	11.01	-0237	-0167	
020	12.00	-0265	-0150	
021	13.03	-0210	-0053	
022	14.02	-0217	-0057	

Figure 9 - WIND-TUNNEL TABLE DATA

Figure 11 - PLOT OF WIND-TUNNEL DATA

• FILE

THIS IS AN EXAMPLE OF DECIMAL
AND EXPONENTIAL FORMAT.

oooooooooooooooooooooo

• SET SCAN

RELAY BETWEEN DATA POINTS = 15 MS (DEFAULT)

"E" FORMAT(Y OR N) ? N

INPUT CHANNELS IN DESIRED ORDER

018

WHEN READY TO TAKE DATA. TYPE "SCAN" ON MON

• SCAN

* CH. 0 CH. 1 CH. 2

001 -9.036 -.0413 -.0019

002 -9.036 -.0413 -.0018

*

• SET SCAN

RELAY BETWEEN DATA POINTS = 15 MS (DEFAULT)

"E" FORMAT(Y OR N) ? Y

INPUT CHANNELS IN DESIRED ORDER

• SCAN

* CH. 0 CH. 1 CH. 2

001 -9.036 -4.160E-03 -3.110E-03

002 -9.036 -4.120E-03 -3.080E-03

*

Figure 12 - EXPONENTIAL FORMAT EXAMPLES

IV. WIND TUNNEL APPLICATION

The ADL system was constructed in order to facilitate data acquisition and documentation from the 3.5 x 5.0 foot subsonic wind-tunnel located in the Department of Aeronautics at the Naval Postgraduate School. Logging data by hand from the tunnel balance is time consuming, error inducing and produces somewhat biased and scattered results. Other related problems are:

1. Personnel communications in a noisy environment.
2. Meter reading while the quantity to be measured is subjected to random perturbations.
3. Tunnel heating due to long run times.
4. Time consuming AOA setting.

The ADL effectively eliminated all the above problems and in addition it proved to be versatile enough to be used as a data logger with other equipment. Figure 13 is a picture of the ADL installation. It fits compactly into a roll-around cabinet and requires only a standard 20 mA current loop, 110 baud I/O device (e.g., a teletype), and patch cords to connect it to the voltage sources it is to monitor. Five variable-gain, linear amplifier cards are included to provide low level signal buffering. Voltage sources can be connected to the ADL directly or patched through an amplifier, as long as the input excursions do not exceed -10V to +10V.

The feedback control function is implemented via two output lines - one labeled JP and the other labeled JOUE.

Each line carries an independent logic level voltage which is used to actuate a relay. The two relays in turn are used to control the direction of a motor. The desired feedback quantity (in this case position) is input to channel 0 which closes the digital control loop. Figure 14 is a detailed schematic of the AOA control as used in the wind tunnel system. To date, the ADL has used to calibrate the wind tunnel balance and the dynamic pressure transducer [1].

A - Amplifier cards and
A/D modules
B - 805 Microprocessor

C - 2K PROM memory
D - CPU
E - A/D, sample-and-hold
and multiplexer
F - Linear amplifier

Figure 13 - PHOTOS OF ADL COMPONENTS

FIGURE 16 - ANGLE-OF-ATTACK FEEDBACK LOOP

V. SOFTWARE DESIGN

The assembled program listing for the ADL is presented in this chapter along with flowcharts for the most important routines. Throughout the following paragraphs, frequent reference is made to the 'position' of an external device. 'Position' is used for illustration; speed, angle or many other attributes of the state of an external device can be used as a feedback parameter.

Figure 15 shows the averaging process used in the filter routine. A running sum is taken at 128 data points. This sum is then divided by 128, converted back to binary and stored as a two byte quantity in registers D and E. The binary representation of the current desired position of the external device is recalled from memory and stored in registers B and C. Upon exit from the routine, the registers are set up to compare the actual and desired positions in order to determine in which direction to move the external device. The 'UP' driver is next shown. It makes use of the previous subroutine to determine when the desired position has been reached. The position correction routine in fig. 17 determines if the position arrived at by the UP or DOWN routines has met predefined error criteria. There are also routines for the DOWN direction that are identical to figs. 16 and 17 (except for the direction of movement). The MOVE routine is in fig 18; it provides the logic necessary to properly call the UP and DOWN routines. Figures 19 and 20 are flowcharts of the RUN routine. RUN provides the automatic control function of the ADL by calling SCAN and MOVE at external device positions defined by the user.

Figure 15 - NOISE AND GLITCH FILTER LOGIC

Figure 16 - 'UP' RELAY DRIVER LOGIC

Figure 17 - OVERSHOOT/UNDERSHOOT CORRECTION LOGIC

Figure 10 - EXTERNAL DEVICE CONTROL LOGIC

Figure 19 - SUB ROUTINE LOGIC (PART 1)

Figure 20 - SUB ROUTINE LOGIC (PART 2)

The following software was developed in small independent subroutines. This was done so that future revisions to logic could be accomplished with a minimum of redesign. For example, if a line printer is added to the system, all references to subroutine CO (console output) are changed so that the new routine can be called. The EQS&72 tables at the start of each section of software are modified to reflect the address of the new routine, and the software is then reassembled. Similar procedures can be followed to alter I/O assignment, add new routines, etc. Memory requirements for the 83L software are as follows:

1. Pages 000 to 0P8, 808
2. Pages 208 to 278, 808
3. Pages 108 to 1P8, 847

This program was compiled on the INTELIC 8 microprocessor development system for the 6000 7-7.

UTILITY SUBROUTINES. THIS SECTION CONTAINS
SUBROUTINES COMMON TO ALL MAJOR SECTIONS
OF SOFTWARE.

		ORG 0	
002F	INIT	EQU 032DH	;F.P. INITIALIZATION
0030	LAD	EQU 033EH	;LOAD F.P. ACCUM
0031	STB	EQU 033EH	;PLACE CONTENTS OF ;F.P. ACCUM INTO ;MEMORY
0040	IBD	EQU 064DH	;CHANGE BCD DATA TO ;F.P. AND LOAD ACCUM.
070F	OMU	EQU 070FH	;CHANGE F.P. NUMBER ;TO BCD DATA STRING
0837	AD	EQU 0307H	;F.P. ADDITION
0838	SD	EQU 0304H	;F.P. SUBTRACTION
083C	MUL	EQU 030CH	;F.P. MULTIPLY
0834	DIV	EQU 0304H	;F.P. DIVIDE
0881	ABT	EQU 01H	;COMMAND EXIT ;(CONTROL A)
0000	SCHAR	EQU 0DH	;STOP CHAR
001A	SUBT	EQU 1AH	;CHARACTER SUBSTITUTION ;(CONTROL Z)
1000	STACK	EQU 1040H	;VARIABLE STORAGE
10FD	JUMP	EQU 10FDH	;VECTORED JUMP
00B7	TEST	EQU 0287H	;LIGHT TEST
00CA	BLANK	EQU 00CAH	;DISPL BLANKING
1060	DOPBD	EQU 1040H	;DECIMAL OPERAND BUFFER
1038	STORE	EQU 1038H	;TEMP BUFFER
1070	RESLT	EQU 1070H	;DECIMAL ABE BUFFER
0F80	TABLE	EQU 0F00H	;TABLE OF VALID COMMAND ;CODES AND VECTORS.
10C0	SCAMB	EQU 10COM	;OPERATIONS
1000	CFBUF	EQU 1000H	;BUFFER CONTAINING
007F	RDBUT	EQU 7FH	;CHANNEL SCAN INFO.
000E	WTEST	EQU 0E8EH	;CONVERSION FACTORS ;RUDOUT CHAR ;RAM MEMORY TEST
			; MESSAGES USED BY THIS SECTION ARE ANNOTATED ; AT THE END OF THE PROGRAM LISTING
2000	READY	EQU 2000H	
2001	LEIA	EQU 2003H	
2040	LDOST	EQU 264DH	
0000	CO	DD 000H	;FIRST INSTR : NOP
0001	00FF	HWI 4,007H	;RESET TTY BREAK
0003	91	OUT 8	
0004	44B702	CALL TEST	;CHECK DISPLAY
0007	44C900	CALL CI	;WAIT FOR OPERATOR
000A	44C101	CALL WTEST	;CHECK RAM

0009 4ECA02		CALL BLANK	;CHECK DISPLAY
0010 4E2F03	BOOT:	CALL INIT	;INITIALIZE MATH PAC ;AND DEFAULT VALUES.
0013 2E10367D		LXI H,RESLT+13	
0017 3E00		MVI H,SCHAR	
0019 2E1036C0		LXI H,SCANS	
001D 3E2A		MVI H,'.'	
001F 2E1036B0		LXI H,STACK+16	
0023 3E2A		MVI H,'.'	
0025 2E1036B0		LXI H,CFBUF	
0029 0E20		MVI B,32	
002B 3E00	LOOP1:	MVI H,0	
002D 30		IMR L	
002E 09		DCR B	
002F 4E2800		JNZ LOOP1	
0032 2E1036B0		LXI H,CFBUF	
0036 0E08		MVI B,8	
0038 3E81	LOOP2:	MVI H,8IN	;1.0=81000000H
003A 0E04		MVI A,4	
003C 06		ADD L	
003D F0		MOV L,A	
003E 09		DCR B	
003F 4E3600		JNZ LOOP2	
0042 4E8D00		JUP ROM	;START
<pre> ; 'CI' CONSOLE INPUT ROUTINE ; INPUT: NO RESTRICTIONS ; REGISTERS: A,B,C,D ; OUTPUT: A,B ASCII ; C,D = 0 </pre>			
0043 49	CI:	IN 4 ;GET START BIT	
0046 1A		RAR	
0047 604900		JC CI	
004A 4E6A00	START:	CALL HALF	;1/2 DELAY
004D 1608		MVI C,8	;BIT COUNT
004F 4E6900	RX:	CALL DELAY	;CENTER OF NEXT BIT
0052 49		IN 4	
0053 1A		RAR	;ROT INTO CARRY
0054 C1		MOV A,B	;SET BUILD-UP WORD
0055 1A		RAR	
0056 C8		MOV B,A	;STORE
0057 11		DCR C	;C=C-1
0058 4E4F00		JNZ RX	;CHECK FOR LAST BIT
005B 247F		ABI 7FH	;MASK OFF PARITY
005D C8		MOV B,A	
005E 4E6900		CALL DELAY	
0061 4E6900		CALL DELAY	
0064 07		RET	
<pre> ; 'DELAY' TTY DELAY LOOP ; DELAY PARAMETER IN 'D' ; PROVIDES 3MS DELAY. </pre>			
0069 1EC9	DELAY:	MVI D,0C9H	;1 BIT TIME
0067 4E6C00		JUP TIME	

006A 1E62	HALF:	MVI D,062H	;1/2 BIT TIME
006C 19	TIME:	DCR D	
006D 486C00		JNZ TIME	
0070 07		RET	
;			
; 'CRLF' OUTPUTS A CARRIAGE RET AND			
; LINE FEED.			
; INPUT: NO RESTRICTIONS			
; REGISTERS: A,B,C,D			
; OUTPUT: A:FFH, B:0AH; C,D:0			
0071 0E0D	CRLF:	MVI B,0DH	;CR
0073 467C00		CALL CO	
0076 0E0A		MVI B,0AH	;LF
0078 467C00		CALL CO	
007B 07		RET	
;			
; 'CO' CONSOLE OUTPUT ROUTINE			
; INPUT: WORD IS 7 BIT ASCII			
; STORED IN B			
; REGISTERS: A,B,C,D			
; OUTPUT: A:FFH, B IS SAVED, C,D : C			
;			
007C C1	CO:	MOV A,B	;FETCH WORD
007D B0		ORA A	;CLEAR CARRY
007E 1608		MVI C,11	;BIT COUNTER
0080 12		RAL	;START BIT
0081 91	SEND:	OUT S	;TX TO TTY
0082 466900		CALL DELAY	;WAIT 1 BIT TIME
0083 1A		RAR	;POSITION NEXT BIT
0086 3CFF		CPI OFFH	;SET STOP BIT
0088 11		DCR C	;C=C-1
0089 488100		JEZ SEND	;SEND IF NOT DONE
008C 07		RET	
;			
; MONITOR ENTRY POINT AFTER POWER ON OR RESET.			
;			
008D 467100	MON:	CALL CRLF	;RESET CARRIAGE
0090 2E263648		LXI H,LBOOT	;START INFORMATION
0094 46EB00		CALL LIST	
0097 467100	CTRL:	CALL CRLF	
0094 2E263600		LXI H,READY	;ACK
009E 46EB00		CALL LIST	
;			
; SET COMMAND WORD AND FORM JUMP VECTOR			
;			
00A1 46FB00	REC03:	CALL GET	
00A4 0E00		MVI B,0	;INIT CHECK SUM
00A6 2E103640		LXI H,DOPBD	;POINT TO INPUT BUFF
00A8 C7	RLOOP:	MOV A,H	;FETCH CHARACTER
00AB 3C00		CPI SCHAR	;IF DONE SEARCH
00AD 600600		JZ SRCH	;LOOK-UP TABLE
00B0 81		ADD B	;ELSE BUILD CHECK SUM
00B1 C8		MOV B,A	
00B2 30		IHR L	;STORE CK SUM

00B3 44AA00		JMP RLOOP	
00B6 2E0F3600	SRCH:	LXI H, TABLE	;POINT TO LOOK-UP
00BA C7	SRCHL:	MOV A,R	
00BB 3C00		CPI 0	VALIDITY CHECK
00BD 68DE00		JZ ERR	
00C0 B9		CMP B	
00C1 60CA00		JZ VCTR	;COMPARE CHECK SUM WITH
00C4 30		INR L	; TABLE. IF TRUE, JMP.
00C9 30		INR L	;ELSE SET NEXT
00C6 30		INR L	
00C7 44AA00		JMP SRCHL	
00CA 30	VCTR:	INR L	;POINT TO LOW ADD
00CB CF		MOV B,R	;SAVE
00CC 30		INR L	;POINT TO HI ADD
00CD D7		MOV C,R	;SAVE
00CE 2E1036FD		LXI H,JUMP	;POINT TO JUMP LOC
00D2 3E44		MVI R, 40H	
00D4 30		INR L	:LOAD VECTOR
00D5 F3		MOV R,B	
00D6 30		INR L	
00D7 FA		MOV R,C	
00D8 467100		CALL CRLF	
00D9 44FD10	EXEC:	JMP JUMP	:EXECUTE
00DE 2E263603	ERR:	LXI H,LERR	:ERROR MSG OUT
00E2 46EB00		CALL LIST	
00E3 449700		JMP CTRL	:TRY AGAIN
;			
; THIS ROUTINE IS USED TO OUTPUT			
; STRINGS OF ALFA-NUM CHARACTERS			
00E8 CF	LIST:	MOV B,R	;OUT REGISTER
00E9 C7		MOV A,R	
00EA 3C00		CPI SCHAR	;IF DONE RET
00EC 2B		RZ	
00ED 467C00		CALL CO	:PRINT CHAR
00F0 30		INR L	;POINT TO NEXT
00F1 46EB00		JNZ LIST	;CHECK FOR PAGE WRAP
00F4 28		INR H	
00F9 44EB00		JMP LIST	;GET NEXT
;			
; 'GET' IS USED TO LOAD NUM DATA			
; INTO DOPMD OR LABELS INTO			
; ANY DESIRED BUFFER. INSERTS			
; 'CR' AS THE STOP CHAR.			
; BUFFER CANNOT START AT XX00.			
; DOES NOT ECHO A CARRIAGE RET.			
; 'RUBOUT' ERASES PREVIOUSLY ENTERED			
; CHARACTERS IN SUCCESSION.			
; 'CONTROL Z' IS USED TO DISPLAY THE			
; CONTENTS OF THE NEXT MEMORY LOCATION.			
; RETURNS WITH LOW POINTER AT SCHAR.			
;			
00FB 2E103640	SET:	LXI H,DOPMD	;DEFAULT BUFFER
00FC E6	SETD:	MOV E,L	;DESIRED BUFFER ENTRY

00FD 464900	CNTU:	CALL CI CPI RROUT JZ ERASE CPI ABT JZ CNTRL CPI SUBT	;SAVE LO POINTER ;ITY INPUT ;IF RROUT ;THEN ERASE ;COMMAND EXIT
0100 3C7F			
0102 682C01			
0109 3C01			
0107 689700			
010A 3C1A			
010C 681E01		JZ CNTUA CPI SCHAR	;DISPLAY NEXT CELL ;TO ALLOW FOR ;SUBSTITUTION.
010F 3C0D		JNZ CNTUI	
0111 481601		MOV R,A	
0114 F8		RET	;IF DONE RETURN
0119 07			
0116 467C00	CNTUI:	CALL CO MOV R,B	;STORE STOP CHAR
0119 F9		IHR L	
011A 30		JMP CNTU	
011B 44FD00		MOV A,R	
011E C7	CNTUA:	CPI SCHAR	
011F 3C0D		CZ CRLF+9	
0121 6A7600		MOV B,R	
0124 CF			
0129 467C00		CALL CO	
012B 30		IHR L	
0129 44FD00		JMP CNTU	
;			
;	ERASE:	'ERASE' IS USED TO RUB OUT AN INCORRECTLY ENTERED CHAR.	
012C 31		DCR L	;POINT TO LAST INPUT
012D C6		MOV A,L	;CHECK TO ENSURE
012E BC		CMP E	: INPUT BUFER WILL
012F 403301		JNC ECHO	: NOT UNDERFLOW
0132 30		IHR L	: RESTORE LO POINT
0133 CF	ECHO:	MOV B,R	
0134 467C00		CALL CO	
0137 44FD00		JMP CNTU	
;			
;	STRIP:	'STRIP' CHANGES ASCII INTO SPECIAL BCD USED BY THE FLOATING POINT ROUTINE	
013A C7		MOV A,R	
013B 3C0D		CPI SCHAR	
013D 25		RZ	
013E 1430		SUI 30H	
0140 F8		MOV R,A	
0141 30		IHR L	
0142 443A01		JMP STRIP	
;			
;	DISPY:	'DISPY' CONVERTS SPECIAL BCD FROM THE FLOATING POINT ROUTINE TO ASCII.	

0149 2E103670	DISPY:	LXI H,RESLT	:POINT TO BUFF
0149 C7	DISPL:	MOV A,M	:FETCH
014A 3C00		CPI \$CHAR	:IF DONE RET
014C 28		RZ	
014D 0430		ADI 30H	:BCD TO ASCII
014F FB		MOV H,A	:STORE
0150 30		INR L	
0151 444901		JMP DISPL	

; 'BINPP' CHANGES RAW BINARY DATA
; TO FLOATING POINT

0154 C7	BINPP:	MOV A,M	:FETCH HI BYTE
0159 C8		MOV B,A	
015E 30		INR L	
015F D7		MOV C,M	:FETCH LO BYTE
0160 A0		ANL A	:CLEAR CARRY
0161 2611		MVI E,17	:RESET COUNT
0162 706D01	SHIFT:	JMP EXIT	:IF NEGATIVE
016E C8		MOV B,A	:DATA IS BORM
016F 21		DCR E	:SAVE HI
0170 6B8201		JZ DZER	:E:=E-1
0173 C2		MOV A,C	:IS 0
0174 A0		ANL A	:LOAD LO BYTE
0175 12		RAL	:CLEAR CARRY
0176 D0		MOV C,A	:TWO BYTE SHIFT
0177 C1		MOV A,B	:TO THE LEFT
0178 12		RAL	
0179 A0		ANL A	:SET CTRL BITS
0180 444901		JMP SHIFT	:NEXT SHIFT
0181 247F	EXIT:	ANI 7FH	:POS NUM MASK
0182 2E103699		LXI H,STORE+1	
0183 FB		MOV R,A	:RS FP BYTE
0184 30		INR L	
0185 FA		MOV R,C	:NEXT FP BYTE
0186 30		INR L	
0187 3E00		MVI H,0	:LS FP BYTE
0188 067F		MVI A,7FH	:EXP ADJUST
0189 84		ADD E	:BIAS-0SHIFTS
018A 2E103698		LXI H,STORE	
018B FB		MOV R,A	:STORE EXP
018C 07		RET	:NORMAL EXIT
018D 2E103698	DZER:	LXI H,STORE	:DATA=0
018E 3E00		MVI H,0	
018F 07		RET	:0 EXIT

; 'FPBIN' CHANGES FLOATING POINT
; TO BINARY. HL MUST POINT TO HIGH BYTE
; OF FP DATA UPON ENTRY
; RAW RESULT IS IN DE.

0190 C7	FPBIN:	MOV A,M	
0191 1400		SUI 80H	:STRIP EXCESS 80H
0192 C8		MOV B,A	:SAVE
0193 0610		MVI A,16	:2 BYTE BIAS

018F 91	SUB D	;COMPUTE + SHIFTS
0190 C8	MOV B,A	;SAVE
0191 30	IMR L	
0192 C7	MOV A,R	
0193 3480	ORI 00H	;FORM MSBYTE
0194 BB	MOV D,A	;SAVE IT
0195 30	IMR L	
0196 E7	MOV E,R	;GET LSBYTE
0197 C3	MOV A,D	;RESTORE
0198 80	ORA A	;SHIFT 2 BYTES
0199 1A	RAR	
019A BB	MOV D,A	
019B C4	MOV A,E	
019C 1A	RAR	
019D E0	MOV E,A	
019E 09	DCA D	;CHECK COUNTER
019F 489001	JNZ CNTUS	
01A0 07	RET	
0000	E80	

```

;
; DISPLAY LIGHT ROUTINES
; USED TO OUTPUT VOLTAGE DATA TO THE
; DISPLAY LITES. DATA IS OUTPUT IN
; 4 SIGNIFICANT FIGURES. THIS SECTION
; ALSO CONTAINS THE LITE TEST AND LITE
; BLANK FUNCTIONS WHICH ARE CALLED AS
; PART OF SYSTEM BOOT.
;

0000      ORG 0100H

;
; EQUATES NOT ANNOTATED IN THIS SECTION
; CAN BE FOUND IN PREVIOUS SECTIONS
;

1070      RESLT    EQU 1070H      ;DECIMAL RESULT
00FD      MINUS   EQU 0FDH      ;--- - 30H
00FE      DECPT    EQU 0FEH      ;--- - 30H
00FO      SPACE    EQU 0FOH      ;--- - 30H
106C      SSTAT    EQU 106CH      ;SIGN STATUS STORAGE
006C      STAT     EQU 06CH      ;SSTAT POINTER
0030      PLO      EQU 030H      ;POS SIGN/LATCH OFF
000A      LT       EQU 0AH       ;LITE TEST COMMAND
00FO      DOR      EQU 0FOH      ;DEC POINT OFF MASK
00E0      DPOL     EQU 0E0H      ;DP IN LITE #0
00D0      DP1L     EQU 0D0H      ;DP IN LITE #1
00B0      DP2L     EQU 0B0H      ;DP IN LITE #2
0070      DP3L     EQU 070H      ;DP IN LITE #3

;
; OUTPUT SIGN AND STORE AS A STATUS WORD
;

01C0 2E103670 DISPL: LXI H,RESLT      ;POINT TO RESULT
01C4 C7          MOV A,M      ;FETCH SIGN
01C9 366C        MVI L,STAT      ;IF - JUMP
01C7 3CFD        CPI MINUS
01C9 68D201      JZ SETR
01CC 0610        MVI A,10H      ;+ AND DISABLE
01CE 99          OUT 2>B
01CF 44D901      JRD CNTU
01D2 0630        MVI A,30H      ;- AND DISABLE
01D4 99          OUT 2>B
01D9 FB          CNTU:  MOV R,A      ;STORE STATUS

;
; FETCH DIGITS FROM RESULT BUFFER,
; AND OUTPUT TO DISPLAY LIGHTS
;

01D6 3671        MVI L,71H      ;GET FIRST DIGIT
01D8 C7          MOV A,M
01D9 3CFE        CPI DECPT
01D9 689802      JZ ZERO      ;IF DP, ADD LEADING 0'S
01D8 DF          MOV D,M      ;SAVE FIRST DIGIT
01D9 30          IMR L
01E0 C7          MOV A,M      ;FETCH NEXT
01E1 3CFE        CPI DECPT
01E3 682602      JZ LZERO     ;IF DP, JUMP

```

```

0186 0E00      MWI B,0          ;ELSE OUTPUT FIRST DIGIT
0188 469902    CALL BODP
0189 JCPE       CPI DECPT
018D 687F02    JZ BP1
0190 0E01      MWI B,1          ;CHECK 2ND DIGIT
0192 469902    CALL BODP
0193 JCPE       CPI DECPT
0197 689A02    JZ BP2
019A 0E02      MWI B,2          ;CHECK 3RD DIGIT
019C 469902    CALL BODP
019D JCPE       CPI DECPT
0201 689302    JZ BP3
0204 0E03      MWI B,3          ;CHECK 4TH DIGIT
0206 469902    JMP BODP      ;EXIT

; OUTPUT A DIGIT WITH NO DP.

0209 0EFO      BODP:   MWI A,D0R
020B B1         ORA D          ;ATTACH DATA
020C 461302    CALL LITE
020F DF         MOV D,R        ;OUT
0210 30         INR L          ;SAVE DIGIT
0211 C7         POV A,R        ;FETCH NEXT
0212 07         RET

; OUTPUT AND LATCH
; REGISTER B CONTAINS MUX ADD OF LITE

0213 E6         LITE:   MOV E,L          ;SAVE POINT
0214 2CFF       XRI OFFH
0216 97         OUT B>3        ;DATA OUT
0217 2E10366C   LXI H,SSTAT
021B C7         MOV A,R
021C B1         ORA B          ;ATTACH MUX INFO
021D 99         OUT B>2        ;MUX ADD S138 OUT
021E 2C10       XRI 10H
0220 99         OUT B>2        ;SET LATCH
0221 2C10       XRI 10H
0223 99         OUT B>2        ;LATCH OFF
0224 F4         MOV L,E        ;RESTORE
0225 07         RET

; OUTPUT LEADING ZEROS IF NEEDED
; TO CHANGE FROM SCIENTIFIC NOTATION
; TO FIXED POINT.

0226 367C      LZERO:  MWI L,07CH
0228 C7         MOV A,R        ;SET EXP
0229 JCFO       CPI SPACE
022B 463302    JNZ LZER1
022E 3672       MWI L,072H
0230 469C02    JMP DPO
0233 DF         MOV D,R        ;CONTINUE IF NOT ''
0234 3671       MWI L,71H     ;RESTORE

```

0236 0E00	MVI B,0		
0238 0E00	MVI A,DPOL	:O + 1 DP	
023A 461302	CALL LITE		
023D 08	IMR B		
023E 0EFO	MVI A,DOM	:C + 80 DP	
0240 461302	CALL LITE		
0243 19	DCR D		
0244 19	DCR D		
0245 689002	JZ OUT2Z		
0248 08	IMR B		
0249 0EFO	MVI A,DOM		
024B 461302	CALL LITE		
024E 19	DCP D		
024F 687702	JZ OUT2I		
0252 08	IMR B		
0253 0EFO	MVI A,DOM		
0255 441302	JMP LITE	:EXIT	
0258 3671	MVI L,71H		
025A 1E00	MVI D,0	:DATA	
;			
; INDIVIDUAL DIGIT OUTPUTS			
;			
029C 0E00	DPO:	MVI B,0	
029E 0E00		MVI A,DPOL	
029F B3		ORA D	:ATTACH DATA
0261 461302		CALL LITE	
0264 30	OUT3:	IMR L	
0269 C7		MOV A,R	
0266 34FO		ORI DOR	:ATTACH 80 DP
0268 0E01		MVI B,I	
026A 461302		CALL LITE	
026D 30	OUT2:	IMR L	
026E C7		MOV A,R	
026F 34FO		ORI DOR	
0271 0E02		MVI B,2	
0273 461302		CALL LITE	
0276 30	OUT1:	IMR L	
0277 C7	OUT2I:	MOV A,R	
0278 34FO		ORI DOR	
027A 0E03		MVI B,J	
027C 441302		JMP LITE	:EXIT
027F 0E01		MVI B,I	
0281 0E00	DP1:	MVI A,DPIL	
0283 B3		ORA D	:ATTACH DATA
0284 461302		CALL LITE	
0287 446002		JMP OUT2	
028A 0E02		MVI B,2	
028C 0E00		MVI A,DP2L	
028E B3		ORA D	
028F 461302		CALL LITE	
0292 447602		JMP OUT1	
0295 0E03		MVI B,J	
0297 0E70	DP3:	MVI A,DP3L	
0299 B3		ORA D	

0294 441302	JMP LITE	:EXIT
0290 C7	OUTZ2: MOV A,M	
029E 34F0	ORI D,0M	
02A0 0E02	MVI B,2	
02A2 461302	CALL LITE	
02A3 30	IMR L	
02A6 447602	JMP OUTI	
; OUTPUT CHANNEL NUMBERS		
02A9 0E07	CLITE: MVI B,7	:LITE ADDRESS
02AB 34F0	ORI D,0M	:ATTACH NO D.P.
02AD 461302	CALL LITE	:OUTPUT CHANNEL #
02B0 0E06	MVI B,6	
02B2 0EF0	MVI A,D,0M	:OUTPUT '0'
02B4 441302	JMP LITE	
; LIGHT TEST AND BLANK		
; CALLED DURING POWER-UP OR RESET		
; ACCUM CONTAINS THE DISPLAY DATA.		
; REGISTER B CONTAINS THE MUX LITE NUMBER		
02B7 0E07	TEST: MVI B,7	
02B9 2E10366C	LXI H,SSTAT	
02B0 3E10	MVI M,IOM	
02BF 1E0A	MVI D,LIT	
02C1 C3	MOV A,D	
02C2 461302	CALL LITE	
02C3 09	DCR B	
02C6 30C102	JP TESTL	
02C9 07	RET	
02CA 0E07	BLANK: MVI B,7	
02CB 2E10366C	LXI H,SSTAT	
02D0 3E30	M,PLO	
02D2 1EFF	MVI D,OFFH	:TURN OFF LITES
02D4 44C102	JMP TESTL	
0000	END	

PROGRAM SPACE 0300H TO 07FFH
IS USED FOR THE FLOATING POINT
PACKAGE. APPENDIX C PRESENTS
EXCERPTS FROM THE INTEL
USERS LIBRARY.

END

*; A/D SAMPLE AND HOLD
; THIS SECTION CONTAINS THE CODE TO PROPERLY
; DRIVE THE 'DATEL' (SEE TEXT) DATA
; ACQUISITION MODULES. ALSO INCLUDED IS THE
; "READ" ROUTINE WHICH GENERATES THE
; VOLTMETER OUTPUT ON THE DISPLAY LIGHTS.*

0000

ORG 0000H

*; EQUATES NOT ANNOTATED CAN BE FOUND IN
; PREVIOUS SECTIONS.*

0009	CMD	EQU 9	OUTPUT PORT 1
0007	LBYTE	EQU 7	INPUT PORT 1
0005	HBYTE	EQU 5	INPUT PORT 2
1060	RAU	EQU 1060H	RAW DATA INPUT BUFFER
106F	MUXCH	EQU 106FH	DEFAULT MUX CHANNEL STORE
0000	SCHAR	EQU 0DH	STOP CHAR
00E8	LIST	EQU 00E8H	OUTPUT 1 LINE OF TEXT
0071	CRLF	EQU 0071H	OUTPUT CARRAGE RET- LINE FEED
00F8	GET	EQU 00F8H	INPUT DATA FROM OPERATOR
013A	STRIP	EQU 013AH	BCD-ASCII
0134	BINFP	EQU 0134H	F.P.-BIN
01C0	DISPL	EQU 01C0H	OUTPUT DATA TO DISPLAY
02A9	CLITE	EQU 02A9H	OUTPUT CHAR 0 IS 'A' TO DISPLAY LIGHTS
0FF4	I2	EQU 0FF4H	10.0
0FF8	I3	EQU 0FF8H	819.19
0FFC	I4	EQU 0FFCH	8191.9
1040	DOPND	EQU 1040H	
1098	STORE	EQU 1098H	
1070	RESULT	EQU 1070H	
070F	OWU	EQU 070FH	
036E	LOD	EQU 036EH	
033E	STR	EQU 033EH	
0337	AD	EQU 0337H	
03D4	SB	EQU 03D4H	
038C	MUL	EQU 038CH	
03B4	DIV	EQU 03B4H	

; MESSAGES

2672 LREAD EQU 2672H

*; 'SHOLD' EXECUTES ONE SAMPLE AND HOLD
; CYCLE, AND INPUTS A DOUBLE BYTE
; OF RAW DATA.
; INPUT: ACUM CONTAINS MUX CHANNEL
; H,L POINT TO LSBYTE STORAGE*

; REGISTERS: A,L
 ; OUTPUT: 'A' DESTROYED. L=L-1

0800 3410	SHOLD:	ORI 10H	RESET A/D MODULE
0802 93		OUT CRD	
0803 3410		ORI 10H	;SAMPLE
0805 93		OUT CRD	
0806 2C10		XRI 10H	;HOLD
0808 93		OUT CRD	
0809 48	READY:	I8 MBYTE	
080A 2440		ANI 40H	;CHECK FOR END OF CONVERT
080C 400300		JNZ READY	
080F 47		I8 LBYTE	;INPUT RAW DATA
0810 2CFF		XRI OFFH	
0812 F8		MOV R,A	
0813 31		DCA L	
0814 48		I8 MBYTE	
0815 243F		ANI 3FH	
0817 2C3F		XRI 3FH	
0819 F8		MOV R,A	
081A 07		RET	
; "RVI" CHANGES RAW FLOATING POINT DATA ; TO VOLTAGE UNITS PROPORTIONAL ; TO THE RAW DATA FROM THE A/D. "VR1" ; PERFORMS THE INVERSE OPERATION.			
081B 2E103698	RVI:	LXI H,STORE	
081F 466E03		CALL LOO	IA=R
0822 2E0F36FB		LXI H,I3	
0826 468403		CALL DIV	IA=A/819.19
0829 2E0F36F4		LXI H,I2	
082D 46D403		CALL SB	IA=A-10.0
0830 07		RET	
0831 2E103698	VR1:	LXI H,STORE	
0835 466E03		CALL LOO	IA=R
0838 2E0F36FB		LXI H,I3	
083C 468C03		CALL MUL	IA=A*819.19
083F 2E0F36FC		LXI H,I4	
0843 46D703		CALL AD	IA=A*8191.9
0846 07		RET	
; 'READ' IS USED FOR CALIBRATION OF ; ANY DESIRED CHANNEL. OUTPUT IS ON THE ; DIGITAL DISPLAY IN VOLTAGE UNITS.			
0847 2E263672	READ:	LXI H,LREAD	;PROMPT
0848 46EB00		CALL LIST	
084E 46FB00		CALL GET	;INPUT CH. NO.
0851 467100		CALL CRLF	
0854 2E103640		LXI H,DOPBD	
0858 463A01		CALL STRIP	;BCD-ASCII
085B 2E103640		LXI H,DOPBD	
085F C7		MOV A,H	

0060	2E10366F	LXI H,PRCH	;STORE CH. NO.
0064	F8	MOV R,A	;DISPLAY CH. NO.
0069	46A902	CALL CLITE	;CONTINUE
006B	2E10366F	LXI H,PRCH	;RESTORE CH. NO.
006C	C7	MOV A,R	;POINT TO LSBYTE STORE
006D	2E10366E	LXI H,RAB+1	;SET DATA
0071	460008	CALL SHOLD	;CONVERT TO F.P.
0074	469001	CALL BINFP	;CHARGE TO VOLTS
0077	461808	CALL RVI	
007A	2E103670	LXI H,RESLT	
007E	460F07	CALL OUT	
0081	46C001	CALL DISPL	
0084	49	IN 4	
0085	1A	RAR	
0086	606008	JC NEXT	
0089	467100	CALL CRLF	
008C	444708	JMP READ	
0000		END	

; DATA ACQUISITION ROUTINES
 ; THESE ROUTINES ARE USED TO UPDATE NUMERICAL
 ; LABELS AND TO PROVIDE EDITING CAPABILITY
 ; FOR ANNOTATING ANY GIVEN RUB.
 ; IN ADDITION, THE "WAIT" ROUTINES
 ; PROVIDE FOR VARIABLE TIME DELAYS BETWEEN
 ; GROUPS OF SAMPLED DATA POINTS

0000

ORG 0000H

; EQUATES NOT ANNOTATED CAN BE
 ; FOUND IN PREVIOUS SECTIONS

0004	LF	EQU 00H	;LINE FEED
0000	SCHAR	EQU 00H	;STOP CHAR
1F00	BHEAD	EQU 1500H	;BUFF FOR "FILE"
0097	CTRL	EQU 0097H	;SYSTEM MONITOR
0069	DELAY	EQU 0069H	;MILL TIME LOOP
007C	CO	EQU 007CH	;CONSOLE OUT
00A1	RECOG	EQU 00A1H	;COMMAND RECOGNITION
00FC	SETD	EQU 00FCH	;INTC ANY BUFFER
0071	CRLF	EQU 0071H	
00E8	LIST	EQU 00E8H	
00F8	GET	EQU 00F8H	
013A	STRIP	EQU 013AH	
1040	DOPRD	EQU 1040H	
1070	RESLT	EQU 1070H	
10A0	STACK	EQU 10A0H	
00A9	DEUNO	EQU 0A9H	;LSB OF COORD NO.

; MESSAGES

2603	LERR	EQU 2603H	
267E	LWAIT	EQU 267EH	
2629	LERR2	EQU 2629H	
2793	LRUN	EQU 2793H	
279C	LCOM	EQU 279CH	

; "COORD" UPDATES THE COORDINATION
 ; NUMBER OF A GIVEN RUB.

00A0 2E1036A9 COORD: LXI H,STACK+9 ;LOAD COORDINATION
; NUMBER INTO
; A,B,C,D

00A4	C7	MOV A,R	
00A9	31	DCR L	
00A6	D7	MOV C,R	
00A7	31	DCR L	
00A8	DF	MOV D,R	
00A9	0401	ADI I	;INCREMENT AND ; DECIMAL ADJUST
00AB	3C3A	CPI JAH	; ASCII TO ?

08AD	40B408	JNC ADJ1	;JUMP IF TRUE
08B0	C8	MOV B,A	;ELSE RESTORE
08B1	44CD08	JMP DONE1	;EXIT
08B4	0E30	MVI B,'0'	;RESET UNITS DIGIT
08B6	C2	MOV A,C	;CHECK 10'S DIGIT
08B7	0401	ADI I	
08B9	3C3A	CPI SAM	
08BB	40C208	JNC ADJ2	
08BE	D0	MOV C,A	
08BF	44CD08	JMP DONE1	
08C2	1E30	MVI C,'0'	;RESET 10'S DIGIT
08C4	C3	MOV A,D	;CHECK 100'S DIGIT
08C5	0401	ADI I	
08C7	3C3A	CPI SAM	
08C9	40EB08	JNC ADJ3	
08CC	D8	MOV D,A	
08CD	36A9	MVI L,BEUNO	;STORE RUB NUMBER
08CF	F9	MOV R,E	
08D0	31	DCR L	
08D1	FA	MOV R,C	
08D2	31	DCR L	
08D3	F8	MOV R,D	
08D4	CF	MOV B,M	
08D5	467C00	CALL CO	
08D6	30	IMR L	
08D9	CF	MOV B,R	
08DA	467C00	CALL CO	
08DD	30	IMR L	
08DE	CF	MOV B,R	
08DF	467C00	CALL CO	
08E2	0E20	MVI B,' '	;OUTPUT 2 SPACES
08E4	467C00	CALL CO	
08E7	467C00	CALL CO	
08EA	07	RET	;BACK TO CALLER
08EB	1E30	MVI D,'0'	;OVERFLOW
08ED	44CD08	JMP DONE1	
; "RUNNO" PRINTS OUT "RUN NO." ; IT IS ENTERED WITH "CONTROL R", AND ; ENABLES THE USER TO INSERT DESIRED ; RUB NUMBER INFO.			
08F0	2E273693	RUNNO:	LXI H,LRUN ;"RUN NO."
08F4	46E800		CALL LIST
08F7	2E113600		LXI H,1100H ;BLANK PAGE
08FB	46FC00		CALL GETD
08FE	449700		JMP CNTRL
; "CNTRL" IS USED TO FLAG AND ENTER ; A ONE LINE COMMENT.			
0901	2E27369C	CNTRL:	LXI H,LCOM ;"*****"
0903	46E800		CALL LIST
0908	2E113600		LXI H,1100H ;BLANK PAGE

090C 46FC00	CALL GETD	;INPUT COMMENT
090F 449700	JMP CNTRL	;WHEN DONE, JUMP
;		
; "EDIT" FORMATS THE "FILE" INFORMATION FOR		
; LATER PRINT OUT. USES LF AS THE LAST		
; ENTRY TO TERMINATE THE RECORD.		
; "CONTROL F" IS USED TO EXIT THE ROUTINE ONLY		
; AFTER EDITING AN EXISTING FILE. "CONTROL Z"		
; IS USED TO STEP FORWARD THROUGH AN EXISTING		
; RECORD IN ORDER TO SUBSTITUTE CHARACTERS.		
; "RUBOUT" IS USED TO STEP BACKWARD THROUGH AN		
; EXISTING RECORD IN ORDER TO SUBSTITUTE		
; CHARACTERS ("RUBOUT" ALWAYS PRECEDES THE		
; NEW CHARACTER STRING).		
;		
0912 2E1F3601	EDIT: LXI H,BHEAD+1	;TOP OF BUFFER
0916 46FC00	ELoop: CALL GETD	
0919 467100	CALL CRLF	
091C 31	DCR L	;FETCH LAST ENTRY
091D C7	MOV A,M	
091E 3C0A	CPI LF	;IF LF, THEN DONE
0920 689700	JZ CNTRL	
0923 30	INR L	;ELSE CONTINUE ENTRIES
0924 30	INR L	
0925 441605	JMP ELoop	
;		
; "HDR" PRINTS OUT THE HEADER WHICH WAS		
; ENTERED BY THE ABOVE ROUTINE.		
; IT IS ALSO USED TO OUTPUT MULTI-LINE		
; RECORDS WHICH END WITH A SEPARATE LF CR		
; SEQUENCE. CONTAINS AN OVERRUN PROTECTION		
; TO PREVENT AN INFINITE OUTPUT LOOP		
; IN THE EVENT THAT THE FIRST CALL TO "EDIT"		
; WAS ENDED WITH "CONTROL F" RATHER THAN LF.		
; COMMAND WORD FOR ENTRY = "FILE"		
;		
0928 467100	HDR: CALL CRLF	
092B 467100	CALL CRLF	
092E 2E1F3601	LXI H,BHEAD+1	
0932 C7	MOV A,M	
0933 3C0D	CPI SCHAR	;CHECK FOR EO.
0935 684E05	JZ NEXT	
0938 3C0A	CPI LF	;CHECK FOR EO.
093A 689705	JZ DONE2	
093D C8	MOV E,A	;PRINT CHARACTER
093E 467C00	CALL CO	
0941 30	INR L	;GET ANOTHER
0942 C6	MOV A,L	;CHECK FOR OVERRUN
0943 3C00	CPI 0	
0945 689509	JZ ERR2	
0948 443209	JMP MLoop	
094B 467100	NEXT: CALL CRLF	;EOI
094E 444109	JMP HLI	
0951 467100	DONE2: CALL CRLF	

0954 07 RET
 ;
 0955 2E263629 ERR2: LXI H,LERR2 ;ERROR MSG OUT
 0959 46E800 CALL LIST
 0960 07 RET
 ;
 ; "FILE" IS USED AS THE ENTRY POINT FOR THE
 ; OUTPUT OF THE MULTI-LINE RECORD ENTERED
 ; WITH "EDIT". "HLOOP" IS THE ENTRY POINT
 ; FOR MULTI-LINE RECORDS POINTED TO
 ; WITH HL. ALL SUCH RECORDS MUST END WITH
 ; A LF CR SEQUENCE.
 ; IN ADDITION, ALL SUCH RECORDS MUST NOT
 ; CROSS PAGE BOUNDARIES.
 ;
 0960 462809 FILE: CALL HDR
 0960 449700 JMP CNTRL
 ;
 ; "WAIT" IS USED TO STORE A DELAY PARAMETER
 ; WHICH IS USED BY "SCAN" IN ORDER TO
 ; PROVIDE A DELAY BETWEEN DATA POINTS.
 ;
 0963 2E26367E WAIT: LXI H,LWAIT
 0967 463209 CALL HLOOP ;PROMPT
 096A 2E1036BC LXI H,STACK+16 ;RESET WAIT FLAG
 ;TO TURN OFF
 ;DEFAULT OPTION
 ;
 096E 3E00 MVI H,0
 0970 44A100 JMP RECOG ;SET WAIT FACTOR
 ;FROM OPERATOR
 ;
 0973 2E1036AE MS25: LXI H,STACK+14 ;STORE 25MS DELAY
 0977 3E93 MVI H,.83 ;FINE STORAGE
 0979 31 DCR L
 097A 3E02 MVI H,2 ;COARSE DELAY
 097C 449700 JMP CNTRL
 097F 2E1036AE MS15: LXI H,STACK+14 ;STORE 15MS DELAY
 0983 3E62 MVI H,.98
 0985 31 EXIT: DCR L
 0986 3E01 MVI H,1
 0988 449700 JMP CNTRL
 098B 2E1036AE MS3: LXI H,STACK+14 ;STORE 3MS DELAY
 098F 3E17 MVI H,.23
 0991 448909 JMP EXIT
 ;
 ; "VWAIT" VARIABLE WAIT SUBROUTINE
 ; CALLED BY THE SCAN ROUTINE TO PROVIDE
 ; A DELAY BETWEEN DATA POINTS.
 ;
 0994 2E1036AD VWAIT: LXI H,STACK+13 ;COARSE DELAY
 0998 E7 MOV E,R ;COUNTER
 0999 30 INR L ;FINE DELAY
 099A DF VLOOP: MOV R,R ;FINE DELAY COUNTER
 099B 456700 CALL DELAY+2
 099E 21 DCR E

099F 489409		JNZ VLOOP
09A2 07		RET
;		
; THESE ROUTINES ARE USED TO IMPROVE		
; OUTPUT READABILITY BY ROUNDING THE		
; RESULT BUFFER TO 4 SIG DIGITS.		
; "NOEX4" ASSUMES DATA NO LARGER THAN		
; + OR - 9999, AND IS USED MAINLY		
; FOR VOLTAGE OUTPUT. EITHER "YESEX"		
; OR "NOEX4" MUST BE CALLED AFTER "ROUND".		
;		
;		
; 'ROUND' IS USED TO OUTPUT 4 SIGNIFICANT		
; DIGITS FROM THE DISPLAY REGISTER.		
; A,B,E,H,L DESTROYED, NO INPUT RESTRICTIONS.		
; MATH IS IN ASCII		
;		
;		
09A3 2602	ROUND:	MVI E,2 ;ENTRY COUNTER
09A5 2E1036AF		LXI H,STACK+15 ;RESET OVERFLOW BIT
09A9 3E00		MVI M,0
09AB 2E103679		LXI H,RESLT+9
09AF 31	CONT1:	DCR L ;POINT TO LSD
09B0 C7		MOV A,M ;GET IT
09B1 3C2E		CPI .. ;IF DP, JUMP
09B3 68BF09		JZ CONT2
09B6 3E0D		MVI M,SCHAR ;ELSE INSERT CR
09B8 21		DCR E ;NEXT
09B9 48AF09		JNZ CONT1 ;IF E=0, DONE
09BC 44C609		JMP SIG ;COMPUTE DIGITS
09BF 31	CONT2:	DCR L
09C0 3E30		MVI M,30H ;INSERT ZERO
09C2 21		DCR E ;NEXT
09C3 48BF09		JNZ CONT2 ;IF E=0, DONE
09C6 31	SIG:	DCR L ;POINT AT DIGIT
09C7 C7		MOV A,M ;TO BE OPERATED ON
09C8 3C2E		CPI .. ;GET TRIAL DIGIT
09CA 48D909		JZ CONT3 ;IF DP SET NEXT
09CD 31		DCR L ;ELSE CONTINUE
09CE C7		MOV A,M
09CF 3E30		MVI M,30H ;INSERT 0
09D1 3C39		CPI 35H
09D3 60040A		JC EXIT5
09D6 44E009		JMP CONT5
09D9 3C39	CONT3:	CPI 35H ;IF < 5 DO NOT
09DB 60070A		JC EXIT1 ;ROUND
09DE 3E0D		MVI M,SCHAR ;ELSE INSERT CR
09E0 2603	CONT5:	MVI E,3 ;DIGIT COUNTER
09E2 31	CONT4:	DCR L ;POINT NEXT
09E3 C7		MOV A,P ;GET NEXT
09E4 3C2E		CPI .. ;IF DP GET NEXT
09E6 58E209		JZ CONT4

09E9	0401	ADI I	;ELSE INCR DIGIT
09EB	3C3A	CPI 3AH	;IF = 10 DONE
09ED	60090A	JC EXIT2	
09F0	3E30	MVI M,30H	;ELSE RIPPLE CARRY
09F2	21	DCR E	;NEXT DIGIT
09F3	48E209	JNZ CONT4	
;			
09F6	31	LAST: DCR L	;GET LAST DIGIT
09F7	C7	MOV A,M	
09F8	3C2E	CPI ..	;IF DP GET NEXT
09FA	68F60S	JZ LAST	
09FD	0401	AUI I	;INCR DIGIT
09FF	3C3A	CPI 3AH	;IF OVERFLOW JUMP
0A01	68130A	JZ EXIT3	
0A04	44090A	JMP EXIT2	;ELSE PRINT
;			
0A07	060D	EXIT1: MVI A,SCHAR	;NORMAL EXIT
0A09	F8	MOV R,A	
0A0A	2E103670	LXI H,RESLT	;SIGN OUT
0A0E	CF	MOV B,M	
0A0F	467C00	CALL CO	
0A12	07	RET	
0A13	3E30	EXIT3: MVI M,30H	;INSERT 0
0A15	2E103670	LXI H,RESLT	;DISPLAY BUFFER
0A19	CF	MOV B,M	;SIGN OUT
0A1A	467C00	CALL CO	
0A1D	0E31	MVI B,'1'	;OVERFLOW DIGIT
0A1F	467C00	CALL CO	
0A22	2E1036AF	LXI H,STACK+19	;SET OVERFLOW FLAG
0A26	3E01	MVI M,1	
0A28	07	RET	
;			
;"NOEX4" IS USED TO CHANGE FROM EXPONENTIAL			
;FORMAT TO DECIMAL FORMAT FOR NUMBERS			
;". . MUST NOT BE USED FOR RESULTS			
;-- OR - 9999. AS THE ROUTINE ASSUMES ONLY			
;SMALL NUMBERS ARE IN "E" FORMAT.			
;USED TO IMPROVE THE READABILITY OF			
;VOLTAGE OUTPUT.			
;SIGN IS ASSUMED ALREADY OUT.			
;			
0A29	2E1036AF	NOEX4: LXI H,STACK+19	;CHECK FOR OVERFLOW
0A2D	C7	MOV A,M	
0A2E	3C01	CPI I	
0A30	6A7E0A	CZ EXIT6	;OUTPUT CARRY
0A33	2E103679	LXI H,RESLT+9	;CHECK FOR E FORMAT
0A37	C7	MOV A,M	
0A38	3C49	CPI 'E'	
0A3A	48E90A	JNZ EXIT7	;IF NO, NORMAL EXIT
0A3D	2E10367C	LXI H,RESLT+12	;SET # DECIMAL PLACES
0A41	C7	MOV A,M	
0A42	2E1036AF	LXI H,STACK+19	;SCRATCH
0A46	1431	SUI '1'	;# LEADING 0'S
0A48	FB	MOV M,A	;SAVE

0A93	E0	MOV E,A	;COUNTER	
0A94	3C04	CPI 4		
0A9C	406FOA	JNC ZERO	;IF >3 0'S, NUMBER=0	
0A9F	466FOA	CALL ZERO	;OUTPUT LEADING 0'S	
0A92	2E1036AF	LXI H,STACK+15		
0A96	CF	MOV B,M	;RESTORE	
0A97	0604	MVI A,4	;0 SIS DIGITS	
0A99	91	SUB B	;DIGITS REMAINING	
0A9A	E0	MOV E,A	;COUNTER	
0A9B	2E103671	DGOUT:	LXI H,RESLT+1	;SKIP SIGN
0A9F	CF	DLOOP:	MOV B,M	
0A60	467C00	CALL CO	;DIGIT OUT	
0A63	30	SKIPD:	IMR L	
0A64	C7	MOV A,M		
0A69	3C2E	CPI ..	;SKIP DP	
0A67	68630A	JZ SKIPD		
0A6A	21	DCR E		
0A6B	483FOA	JNZ DLOOP		
0A6E	07	RET		
0A6F	0E2E	ZERO:	MVI B,..	;LEADING 0'S OUT
0A71	467C00	CALL CO		
0A74	0E30	MVI B,0.		
0A76	467C00	ZLOOP:	CALL CO	
0A79	21	DCR E		
0A7A	48760A	JNZ ZLOOP		
0A7D	07	RET		
0A7E	2E103679	EXIT6:	LXI H,RESLT+9	;TRUNCATE LS 0
0A82	3E00	MVI M,SCHAR		
0A84	07	RET		
0A85	2E103671	EXIT7:	LXI H,RESLT+1	;NORMAL EXIT
0A89	44E800	JMP LIST	;RET THROUGH "LIST"	
;				
; "YESEX" IS USED TO RETAIN "E" FORMAT IN				
; ORDER TO DISPLAY VERY LARGE OR VERY SMALL				
; RESULTS. SIGN ASSUMED OUT.				
;				
0A8C	2E1036AF	YESEX:	LXI H,STACK+15	;CHECK FOR CARRY
0A90	C7	MOV A,M		
0A91	3C01	CPI 1		
0A93	6A7EOA	CZ EXIT6		
0A96	2E103671	LXI H,RESLT+1	;OUTPUT MANTISSA	
0A9A	46E800	CALL LIST		
0A9D	2E103679	LXI H,RESLT+9	;OUTPUT EXP	
0AA1	44E800	JMP LIST		
0000		END		

```

;
;
; SCAN ROUTINES
; PROVIDES THE LOGIC NECESSARY TO TAKE
; 128 SETS OF DATA POINTS FOR UP EIGHT
; CHANNELS OF DATA (IN ANY ORDER) WITH USER
; DEFINED TIME DELAY. THE RESULT IS CONVERTED
; TO UNITS DEFINED BY THE USER.
;
; EQUATES NOT ANNOTATED CAN BE FOUND
; IN PREVIOUS SECTIONS.
;
1090    FOPND   EQU 1090H      ;FLOATING POINT
;OPERAND BUFFER
10A0    PAGE    EQU 10A0H      ;HIGH ADD FOR RAB
;DATA STORAGE
10C0    SCABB   EQU 10C0H      ;CHANNEL SEQUENCE BUFF
00C0    SCE     EQU 00C0H      ;START OF SCAN BUFF
10A0    STACK   EQU PAGE      ;START OF VARIABLE
;SCRATCH PAD
10A1    LINE    EQU PAGE+1    ;LOW ADD FOR RAB
;DATA STORAGE
10A2    CHNPT   EQU LINE+1    ;POINTS TO A LCB IN
;THE SCAN STORAGE BUFF
0080    CFB     EQU 0080H      ;START OF CF BUFFER
0090    SHOLD   EQU 0090H      ;SAMPLE/HOLD/CONVERT
;COMMANDS FOR A/D
0994    VBAIT   EQU 0994H      ;VARIABLE TIME DELAY
08A0    COORD   EQU 08A0H      ;UPDATE COORDINATION
09A3    ROUND   EQU 09A3H      ;ROUND OUTPUT BUFFER
;TO 4 SIG DIGITS
0A29    NOEX4   EQU 0A29H      ;CONVERT SMALL DOS.
;FROM "E" FORMAT
;TO "F" FORMAT
0ABC    YESEX   EQU 0ABC     ;RETAIN "E" FORMAT
;WITH 4 SIG DIGITS
;FOR NUMBERS LT .1
;OR ST 9999999.
;ASCII-BCD
0149    DISPY   EQU 0149H      ;CONSOLE INPUT
0049    CI      EQU 0049H      ;RAB DATA TO VOLTS
0818    RVI    EQU 0818H      ;INTERPOLATION
;1.0078125
0FE4    I9      EQU 0FE4H
00E8    LIST    EQU 00E8H
0071    CRLF    EQU 0071H
00F8    GET     EQU 00F8H
00FC    SETD    EQU 00FCH
1040    DOPAD   EQU 1040H
1090    STORE   EQU 1090H
007C    CO      EQU 007CH
0097    CTRL    EQU 0097H
0194    BIDFP   EQU 0194H
036E    LOD     EQU 036EH
033E    STR     EQU 033EH
03D7    AD      EQU 03D7H

```

038C	RUL	EQU 038CH	
1070	RESLT	EQU 1070H	
070F	OUU	EQU 070FH	
013A	STRIP	EQU 013AH	
0000	SCHAR	EQU 0DH	
	:		
0000		ORG 0AB0H	
	:		
	MESSAGES		
	:		
26A7	LSCAB	EQU 26A7H	
26C7	INFO	EQU 26C7H	
2610	LERR1	EQU 2610H	
26F3	C1	EQU 26F3H	
26F7	C2	EQU 26F7H	
26FF	C3	EQU 26FFH	
2704	DWAIT	EQU 2704H	
2730	EXP	EQU 2730H	
	:		
	'SCANS' TAKES 128 SETS OF DATA		
	POINTS AT VARIABLE INTERVALS.		
	:		
	MACRO DEFINITIONS		
	:		
	INRR MACRO POINT,N	;INCREMENT A REPORT	
	LXI H,POINT	;LOCATION & TIMES	
	MOV A,P		
	ADI N		
	MOV N,A		
	ENDP		
	:		
	COMMON SUBROUTINES		
	:		
0AB0 2E1036A2	INDF: LXI H,CHAPT		
		;INDIRECT FETCH AND STORE	
		;IN 'A'. CHAPT CONTAINS	
		;LOW ADD. DATA ASSUMED	
		;ON SAME PAGE	
0AB4 F7	MOV L,R		
0AB5 C7	MOV A,R		
0AB6 07	RET		
0AB7 2E1036A0	INDP: LXI H,PAGE		
		;INDIRECT POINTER	
		;STORED IN FIRST 2	
		;STACK POSITS.	
0ABD DF	MOV D,R		
0ABC 30	INR L		
0ABD F7	MOV L,R		
0ABE EB	MOV H,D		
0ABF 07	RET		
0AC0 2E1036A0	SCAN2: LXI H,PAGE		
0AC4 3E12	PVI R,12H		
0AC6 30	INR L		
0ACT 3E00	PVI R,0		
0AC9 30	INR L		

OACA 3EC0	MVI R,SCB	;START OF INFO BUFFER
OACC 07	RET	
	SKIP:	
OACD 2E1036A2	INRR CHNPT,I	;IGNORE DELIMITER
OADI C7	LXI H,CHNPT	
OAD2 0401	MOV A,M	
OADA FB	ADI 00001H	
	MOV R,A	
OADD 46B00A	CALL INDF	;TEST NEXT CHAR
OADE 3C08	CPI 8	
OADA 40CDOA	JNC SKIP	
OADD 07	RET	
OADE 2E1036A0 SCAN4:	LXI H,PAGE	;RE-INIT BETWEEN SCANS
OAE2 3E12	MVI R,12H	
OAE4 30	INR L	
OAE9 30	INR L	
OAE6 3EC0	MVI R,SCB	
OAE8 07	RET	
OAE9 46E70A DATA:	CALL INDP	;POINT TO RAW STORAGE
OAEc 469401	CALL BINFP	;CONVERT TO F.P.
OAEF 2E103698	LXI H,STORE	;LOAD AND POINT
		; TO OPERAND
OAF3 466E03	CALL LOD	
OAF6 2E103690	LXI H,FOPBD	
OAF8 07	RET	
	:	
	:	
	SCANS:	
OAFB 46B00A	CALL INDF	;SET DESIRED CHANNEL
OAFE 3C08	CPI SCHAR	
OB00 68220E	JZ COUNT	;IF ALL CHANNELS SCANNED
		; SET UP NEXT STORAGE
OB03 3C08	CPI 8	;AD=8 ?
OB05 42CDOA	CNC SKIP	;IF TRUE, JUMP
OB08 46E70A	CALL INDP	
OB0B 30	INR L	
OB0C 460008	CALL SHOLD	;INPUT RAW DATA
	INRM PAGE,I	;NEXT CHANNEL
OB0F 2E1036A0	LXI H,PAGE	
OB13 C7	MOV A,M	
OB14 0401	ADI 00001H	
OB16 FB	MOV R,A	
	INRR CHNPT,I	;NEXT VECTOR POINTER
OB17 2E1036A2	LXI H,CHNPT	
OB1B C7	MOV A,M	
OB1C 0401	ADI 00001H	
OB1E FB	MOV R,A	
	JMP SCANS	;SET NEXT DATA
OB1F 46FB0A	INRM LINE,2	;NEXT STORAGE
	LXI H,LINE	
OB22 2E1036A1	MOV A,M	
OB26 C7	ADI 00002H	
OB27 0402	MOV R,A	
OB29 FB		

082A 2B	RZ	;CHECK FOR END	
082B 469409	CALL VWAIT	;KILL TIME	
082E 46DE0A	CALL SCAN4	;GET ANOTHER SET	
0831 44FB0A	JMP SCANS		
	;		
	;		
	;		
	;'SCANS' TAKES SETS OF DATA FROM THE		
	: CHANNEL ASSIGNMENT DEFINED BY THE		
	: 'SET SCAN' ROUTINE.		
	;		
	;		
0834 46D10B	SCANS:	CALL COLMN	;PRINT COLUMNS HEADINGS
0837 467100		CALL CRLF	
083A 07		RET	;BACK TO CONTROLLER
083B 4671C0	RSCAN:	CALL CRLF	
083E 46A008		CALL COORD	;UPDATE COORDINATION
			;NUMBER
0841 46C00A	CNTU7:	CALL SCAN2	;INIT FOR NEXT SCAN
			;ALSO ENTRY POINT FOR
			;SCANNING WITHOUT
			;COL HEADINGS
			;TAKE SET OF DATA
0844 46FB0A	DONE:	CALL SCANS	
0847 46C00A		CALL SCAN2	
084A 46300A	AVE:	CALL INDF	;GET CHANNEL
			; COMPUTE AVERAGE
084D 3C0D		CPI SCHAR	
084F 2B		RZ	;RETURN TO CALLER
0850 3C08		CPI S	
0852 42CD0A		CNC SKIP	
0855 2E1036A6		LXI H,STACK+6	;STORAGE FOR CONVERSION
			;FACTOR VECTOR.
0859 D0		MOV C,A	;SAVE 'A'
085A B0		ORA A	;CLEAR CARRY
085B 12		RAL	
085C 12		RAL	
085D 0E80		MVI B,CFF	
			;START OF CONVERSION
085F 81		ADD B	;FACTOR BUFFER
0860 F8		MOV M,A	;COMPUTE VECTOR
0861 C2		MOV A,C	;STORE VECTOR
0862 46E90A		CALL DATA	;RESTORE 'A'
0865 463E03		CALL STR	;CONVERT AND STORE
	AVEL:	IHRM LINE,2	
0868 2E1036A1		LXI H,LINE	;NEXT RAB DATA
086C C7		MOV A,M	
086D 0432		ADI 00002H	
086F F8		MOV M,A	
0870 688306		JZ NEXTP	;IF DONE, OUT RESULTS
0873 46E90A		CALL DATA	;SETUP FOR NEXT SCAN
0876 46D703		CALL AD	;CONVERT AND STORE
			;RAB DATA POINT
			;ADD TO PREVIOUS

0879 2E103690	LXI H,FOPBD	;STORE PARTIAL SUM	
087D 463E03	CALL STR		
0880 446800	JMP AVEL		
0883 2E0F36E4	NEXTP:	LXI H,19	
		;COMPUTE AVERAGE	
		; AND CONVERT TO	
		; VOLTAGE UNITS	
		;A=.0076129	
0887 466E03	CALL LOO		
088A 2E103690	LXI H,FOPBD		
088E 468C03	CALL MUL		
0891 462208	CALL RVI+7		
0894 2E1036A6	LXI H,STACK+6		
0898 F7	MOV L,R		
0899 468C03	CALL MUL		
089C 2E103670	LXI H,RESLT		
08A0 460F07	CALL OUU	;CONVERT TO DECIMAL	
08A3 464901	CALL DISPLAY	;CONVERT TO ASCII	
08A6 46A309	CALL ROUND	;4 SIB DIBITS	
08A9 2E103681	LXI H,STACK+17	;FORMAT CHECK	
08AD C7	MOV A,P		
08AE 3C99	CPI 'Y'		
08B0 68290C	JZ EXP1	;IF TRUE, "E" FORMAT	
08B3 46290A	CALL NOEX4	;ELSE "F" FORMAT	
08B6 0E20	RVI B,' '	;OUTPUT 2 SPACES	
08B8 467C00	CALL CO		
08B9 467C00	CALL CO		
08BE 2E1036A0	INRR PAGE,1	;P=P+1	
08C2 C7	LXI H,PAGE		
08C3 0401	MOV A,P		
08C9 F8	ADI 00001H		
	MOV R,A		
08C6 2E1036A2	INRR CHNPT,1	;C=C+1	
08CA C7	LXI H,CHNPT		
08CE 0401	MOV A,M		
08CD F8	ADI 00001H		
08CE 444A08	MOV R,A		
	JMP AVE		
	;		
08D1 2E1036A2	COLPB:	LXI H,CHNPT	;LOAD POINTER WITH
08D9 3EC0		RVI R,SCB	;START OF SCAN BUFF
08D7 2E1036B1		LXI H,STACK+17	
08D8 C7		MOV A,P	
08DC 3C99		CPI 'Y'	;CHECK FOR
08DE 46F008		JNZ CNTUD	;"E" FORMAT
08E1 2E2636F3		LXI H,C1	;YES ? THEN CONTINUE
08E3 46E800		CALL LIST	;ELSE JUMP
08E8 0E0D		RVI B,SCHAR	;" "
08EA 467C00		CALL CO	;CARRIAGE RETURN

OC0D 44F706	JMP CLOOP		
OCFO 2E2636F3	LXI H,C1	; '0'	
OCF4 46E800	CALL LIST		
OCF7 46D00A	CALL INDF	; GET CHANNEL	
OCFA 3C0D	CPI SCHAR		
OCFC 28	RZ	; RET WHEN DONE	
OCFD 3C08	CPI S	; IGNORE DELIMITERS	
OCFF 42CD0A	CBC SKIP		
OC02 0430	ADI 30H		
OC04 E0	MOV E,A	; CONVERT TO ASCII	
OC05 2E1036B1	LXI H,STACK+17	; SAVE CH. NO.	
OC09 C7	MOV A,R		
OC0A 3C99	CPI 'Y'		
OC0C 682B0C	JZ EXP2	; CHECK FORMAT	
OC0F 2E2636F7	LXI H,C2		
OC13 46E800	CALL LIST		
OC16 CC	MOV B,E	; RECALL CH. NO.	
OC17 467C00	CALL CO		
OC1A 2E1036A2	INRM CHAPT,1	; OUTPUT	
OC1E C7	LXI H,CHAPT		
OC1F 0401	MOV A,R		
OC21 F8	ADI 00001H		
OC22 44F706	JMP CLOOP		
OC29 468C0A	CALL YESEX	; "E" FORMAT	
OC2B 46B60F	JMP CNTUS		
OC2D 2E2636FF	EXP2:	LXI H,C3	; "E" FORMAT COL ADJ
OC2F 46E800	CALL LIST		
OC32 44CF0C	JMP CNTUS		
	; 'SSCAN' SET SCAN ENTRY POINT. PRINTS ; INSTRUCTIONS AND STORES THE BUFFER ; AND SEQUENCE OF CHANNELS TO BE SCANNED. ; IT ALSO SETS THE COORDINATION BUFFER ; TO ZERO.		
OC39 2E1036A3	SSCAN:	LXI H,STACK+3	; RESET COORD +
OC39 3E30	MVI R,'0'		
OC3B 31	DCR L		
OC3C 3E30	MVI R,'0'		
OC3E 31	DCR L		
OC3F 3E30	MVI R,'0'		
OC41 2E1036B0	PRM1:	LXI H,STACK+16	; CHECK FOR WAIT FLAG
OC49 C7	MOV A,R		
OC4E 3C2A	CPI '0'		
OC4F 469E0C	JNZ CNTUS		
OC4F 2E1036A0	LXI H,STACK+13	; JUMP IF NOT SET	
OC51 3E01	MVI R,1		
OC51 30	INR L		
OC52 3E62	MVI R,38		
OC54 2E273604	LXI H,DWAIT	; ELSE LOAD DEFAULT	
OC58 46E800	CALL LIST	1OF 19RS	
	; INFORM OPERATOR		

OC90 467100	CALL CRLF	
OC9E 2E273630 CNTU9:	LXI H,EXP	;ASK QUESTION
OC62 46E800	CALL LIST	
OC69 2E1036B1	LXI H,STACK+17	;T" FORMAT FLAG STORE
OC69 464900	CALL CI	;GET VALUE
OC6C 467C00	CALL CO	;ECHO BACK
OC6F C1	MOV A,B	;RESTORE A
OC70 3C4E	CPI 'B'	
OC72 687A0C	J1 NOEXP	;JUMP IF "B"
OC79 3E99	MVI R,'Y'	;ELSE STORE "YES"
OC77 467C0C	JMP CNTU6	
OC7A 3E4E	MVI R,'N'	;ELSE STORE "NO"
OC7C 467100	CNTU6:	
OC7F 2E2636A7	CALL CRLF	;ASK QUESTION
OC81 46E800	LXI H,LSCAN	
OC86 467100	CALL LIST	
OC89 2E1036C0	CALL CRLF	
	LXI H,SCANE	;ENTER CHANNELS IN ; DESIRED ORDER IN ; THE SCAN BUFFER
OC8D 46FC00	CALL SETD	
OC90 2E1036C0	LXI H,SCANE	;CONVERT TO BCD
OC94 463A01	CALL STRIP	
OC97 467100	CALL CRLF	
OC9A 467100	CALL CRLF	
OC9D 2E2636C7	LXI H,INFO	;INSTRUCTIONS
OC9A 46E800	CALL LIST	
OC94 467100	CALL CRLF	
OC97 467100	CALL CRLF	
OC9A 449700	JMP CNTL	;BACK TO MONITOR
	; 'SCAN' EXECUTION POINT FOR MANUALLY SCANNING ; CHANNELS DEFINED ABOVE.	
OCAD 2E1036C0 SCAN:	LXI H,SCANE	;VALIDITY CHECK
OCB1 C7	MOV A,P	
OCB2 3C2A	CPI '0'	;BOOT DEFAULT
OCB4 68CA0C	JZ ERRI	
OCB7 467100	CALL CRLF	
OCBA 463A06	CALL SCANS	;START SCAN ROUTINE
OCBD 2E1036D0 LOOP:	LXI H,1000H	;WAIT FOR COMMAND ;FROM OPERATOR
OCCE 46FC00	CALL SETD	
OCCE 463B0E	CALL RSCAN	;RESCAN FOR ANOTHER ;SET OF DATA
OCCE 46E80C	JMP LOOP	;CONTINUE
OCDI 449700	LXI H,LEERR1	;RSS OUT
0000	END	

```

; EXTERNAL DEVICE DRIVER
; THIS SECTION CONTAINS THE LOGIC NECESSARY
; TO TURN ON TWO RELAYS ('UP' AND 'DOWN') IN
; ORDER TO CAUSE SOME PHYSICAL DEVICE TO
; MOVE TO A DESIRED LOCATION. SUBROUTINES
; LISTED HERE ARE ALSO USED BY THE SOFTWARE
; IN THE "RUN" SECTION IN ORDER TO
; PROVIDE AN AUTOMATIC CONTROL FUNCTION.
;

0000      ORG 0CE0H
; EQUATES NOT ANNOTATED CAN BE FOUND
; IN PREVIOUS SECTIONS.

1040      STACK    EQU 10A0H
1049      FCNT     EQU STACK+9      ; COUNTER IN NOISE
                                         ; FILTER ROUTINE
0009      CMD      EQU 8+1        ; OUTPUT PORT I
0030      CMDDUP   EQU 30H        ; ACTIVATE "UP" RELAY
0090      CMDDDN   EQU 50H        ; ACTIVATE "DOWN" RELAY
0010      OFF      EQU 10H        ; RELAYS OFF
0060      BUMP     EQU 60H        ; TRANSPORT DELAY
                                         ; (SEE TEXT)
1060      RAB      EQU 106DH
0AE9      DATA     EQU 0AE9H      ; RAB DATA INPUT BUFFER
                                         ; RAB DATA TO F.P.
                                         ; LOAD ACCUM AND POINT
                                         ; TO OPERAND
006A      HALF     EQU C06AH
0831      VRI      EQU 0831H      ; VOLT UNITS TO
                                         ; BINARY A/D COUNT
0818      RV1      EQU 0818H      ; BINARY A/D COUNT TO
                                         ; VOLTAGE UNITS
1080      CFBUF   EQU 1080H      ; CONVERSION FACTORS.
0841      CNTUT7  EQU 0841H      ; REMOTE ENTRY TO "SCAN"
                                         ; ROUTINES WITH COLUMN
                                         ; HEADINGS OFF
10C0      SCANE   EQU 10C0H      ; BUFFER CONTAINING
                                         ; CHANNELS TO BE SCANNED
                                         ; BIN-F.P.
0189      FPBIN   EQU 0189H
0800      SHOLD   EQU 0800H
000D      SCHAR   EQU 00DH
0069      DELAY   EQU 0069H
0071      CRLF    EQU 0071H
0097      CNTRL   EQU 0097H
00F8      GET     EQU 00F8H
013A      STRIP   EQU 013AH
0149      DISPY   EQU 0149H
00E8      LIST    EQU 00E8H
0154      BINFP   EQU 0154H
1040      DOPND   EQU 1040H
1050      FOPND   EQU 1050H
1058      STORE   EQU 1058H
033E      STR     EQU 033EH
036E      LOD     EQU 036EH

```

03D7	AD	EQU 03D7H	
038C	MUL	EQU 038CH	
03B4	DIV	EQU 03B4H	
064B	INN	EQU 064BH	
070F	OUU	EQU 070FH	
0FE4	IS	EQU 0FE4H	
;			
; MESSAGES			
;			
26FF	C3	EQU 26FFH	
277F	LMOVE	EQU 277FH	
;			
; COMMON SUBROUTINES			
;			
OCE0 C4	ST:	MOV A,E	; RETURNS CARRY SET ; IF BC>DE
OCE1 92		SUB C	
OCE2 C3		MOV A,D	
OCE3 99		SBE E	
OCE4 07		RET	
;			
;			
OCE5 46EB0C	LT:	CALL SWAP	; RETURNS CARRY SET ; IF BC<DE
OCE8 46E00C		CALL GT	
;			
OCEB C4	SWAP:	MOV A,E	; DE=BC=DE
OCEC E2		MOV E,C	
OCED D0		MOV C,A	
OCEE C3		MOV A,D	
OCEF D9		MOV D,E	
OCF0 C8		MOV B,A	
OCF1 07		RET	
;			
OCF2 3601	AE:	MVI L,01	; ABS(ACTUAL-DESIRED) ; L=1 IF ACTUAL> ; L=0 IF ACTUAL<
O CF4 46E00C		CALL GT	; IS DE>=BC ?
O CF7 40FE0C		JNC YES	; JUMP IF TRUE
O CFA 31		DCR L	; RESET FLAG
O CFE C2		MOV A,C	
O FCFC 94		SUB E	
O CFD 07		RET	
O CFE C4	YES:	MOV A,E	
O CFF 92		SUB C	
O D000 07		RET	; ACTUAL>DESIRED
;			
O D001 0510	DATA1:	MVI A,OFF	; RELAYS OFF
O D003 2E10365E	DATA2:	LXI H,RAW+1	; TAKE A SAMPLE FROM ; CHANNEL 0. RELAY DIR ; ASSUMED IN A

OD07 460008	CALL SHOLD	
OD0A DF	MOV D,P	;DE-SAMPLED DATA
OD0B 30	INR L	
OD0C E7	MOV E,R	
OD0D 31	DGR L	;POINT TO SAMPLED DATA
OD0E 07	RET	
;		
; "BUMPX" IS USED TO PROVIDE AN EXTERNAL SIGNAL		
; OF KNOWN TIME DURATION IN ORDER TO OBTAIN		
; EXTERNAL DEVICE MOVEMENT (OPEN LOOP) OF A		
; KNOWN AMOUNT. (SEE TEXT)		
; INPUT: A=CHANNEL 0 PLUS RELAY DIRECTION		
; D=DESIRED DELAY PARAMETER		
;		
OD0F 93	BUMPM: OUT CMD	;START RELAY
OD10 466700	CALL DELAY+2	;KILL TIME
OD13 0610	MVI A,OFF	;TURN RELAYS OFF
OD15 33	OUT CMD	
OD16 07	RET	
OD17 1E60	BUMPU: MVI D,BUMP	;MOVE UP A SHORT DIST
		;BUMP = DELAY
OD19 0630	MVI A,CMDUP	
OD1E 440F0D	JMP BUMPM	
OD1E 1E60	BUMPD: MVI D,BUMP	;MOVE DOWN A SHORT DIST
OD20 0630	MVI A,CMDDN	
OD22 440F0D	JMP BUMPM	
;		
OD25 3C06	ADJU: CPI 6	;IF LOCATION ERROR >5
	JNC UP	;COUNTS, MOVE UP
OD27 40980D	CPI 3	;IF LOCATION ERROR > 2
OD2A 3C03	JNC BUMPU	;COUNTS, BUMP UP
OD2C 40170D	RET	;CONVERGENCE EXIT
;		
OD30 3C06	ADJD: CPI: 6	;ERROR ADJUSTMENT (AS
		;ABOVE) FOR THE DOWN
		;RELAY
OD32 40E90D	JNC DOWN	
OD33 3C03	CPI 3	
OD37 401E0D	JNC BUMPD	
OD3A 07	RET	;CONVERGENCE EXIT
;		
OD3B 2E64	LONG: MVI H,100	;1.0 SEC DELAY TO GIVE
		;TIME FOR RELAY AND
		;DRIVE MOTOR TO STOP
		;INNER LOOP COUNTER
OD3D 36D0	LOOPA: MVI L,OD0H	
OD3F 31	LOOPS: DCP L	
OD40 4E5F0D	JNE LOOPB	
OD43 29	DGR H	
OD44 463D0D	JNZ LOOPA	

0047 07

RET

; ; "FLTR" IS USED TO FILTER OUT "GLITCHES" FROM
; ; THE A/D CONVERTER AND TO MINIMIZE THE EFFECT
; ; OF NOISE WHICH COULD MAKE THE
; ; EXTERNALLY CONTROLLED DEVICE STOP WITH AN
; ; ABSOLUTE ERROR (ACTUAL-DESIRED) GREATER THAN
; ; AN ACCEPTABLE AMOUNT.

0048 2E1036A9 FLTR: LXI H,F0NT ;N=COUNT=127
 004C 3E7F MVI H,127
 004E 46010D CALL DATA1 ;STOP AND TAKE A SAMPLE
 0051 466A00 CALL HALF ;RELAY REACTION TIME
 0054 462C0A CALL DATA-3 ;CONVERT/LOAD/POINT
 0057 463E03 CALL STR ;H=A(1)
 005A 460100 LOOP: CALL DATA1 ;TAKE 127 MORE SAMPLES
 ;FORMING RUNNING SUM
 005D 46EC0A CALL DATA-3
 0060 46D703 CALL AD ;A(N)=A(N)+ Δ
 0063 2E103650 LXI H,F0PND
 0067 463E03 CALL STR ;H=A(N)
 006A 2E1036A9 LXI H,F0NT
 006E CF MOV B,M ;SET COUNTER
 006F 09 DCR B ;N=N-1
 0070 F9 MOV M,B ;SAVE N
 0071 46540D JNZ LOOP ;IF N>0, JUMP
 0074 2E103650 FAVE: LXI H,F0PND
 0078 456E03 CALL LOD ;A=SUM(A(N))
 007B 2E0F3624 LXI H,19
 007F 468C03 CALL RUL ;A=A+.0078125
 0082 2E103650 LXI H,F0PND
 0086 463E03 CALL STR ;H=A
 0089 2E103650 LXI H,F0PND
 008D 468901 CALL FPB1P ;BINARY-F.P.
 0090 2E1036A7 LXI H, STACK+7 ;FETCH DESIRED ANGLE
 ;BC=M
 0094 CF MOV B,M
 0095 30 INR L
 0096 D7 MOV C,M
 0097 07 RET

; ; "UP" AND "DOWN" ACTIVATE THEIR RESPECTIVE
; ; RELAYS IN ORDER TO DRIVE POSITION ERROR
; ; TO "ZERO" (SEE TEXT)

0098 0630 UP: MVI A,CMDUP ;A=UP COMMAND
 009A 46030D CALL DATA2 ;TAKE SAMPLE
 009D 46200C CALL SB ;IF ACTUAL<DESIRED, UP
 00A0 609900 JC UP
 00A1 464800 CALL FLTR ;ELSE TURN OFF RELAY
 ;AND CHECK FOR NOISE
 00A4 46200C CALL ST ;IF UNDERSHOOT, JUMP
 00A7 609900 JC UP
 00A8 463B00 CALL LONG ;WAIT FOR DRIVE MOTOR

ODAF 46F20C	CALL AB	: TO STOP ; COMPUTE ABSOLUTE VALUE ; OF POSITION ERROR	
ODB2 31	DCR L	: TEST FLAG	
ODB3 48290D	JNZ ADJU	: UNDERSHOOT CORRECTION	
ODB6 44300D	JMP ADJD	: OVERSHOOT CORRECTION ; EITHER ADJU OR ADJD ; TESTS FOR CONVERGENCE	
: : THE ANNOTATION FOR THE "UP" ROUTINE APPLIES : ALSO TO THE FOLLOWING ROUTINE.			
ODB9 0650	DOWN:	MVI A,CMDDN ; DOWN CONTROL	
ODBB 46030D		CALL DATA2	
ODBE 46E50C		CALL LT	
ODC1 60B90D		JC DOWN	
ODC4 46480D		CALL FLTR	
ODC7 46E50C		CALL LT	
ODCA 60B90D		JC DOWN	
ODCD 46380D		CALL LONG	
ODD0 46F20C		CALL AB	
ODD3 31		DCR L	
ODD4 48290D		JNZ ADJU ; OVERSHOOT CORRECTION	
ODD7 44300D		JMP ADJD ; UNDERSHOOT CORRECTION	
: : "MOVE" SENDS A MESSAGE TO THE OPERATOR : AND READS IN THE DESIRED EXTERNAL : DEVICE POSITION. : INPUT: UNRESTRICTED : REGISTERS: ALL : OUTPUT: DESIRED POSITION IS IN DE : IN A/D BINARY UNITS			
ODDA 2E27367F	MOVE:	LXI H,LMOVE ; MESSAGE OUT	
ODEE 46E800		CALL LIST	
ODE1 467100		CALL CRLF	
ODE4 46FB00	MLOOP:	CALL SET ; IN=DESIRED POSITION ; IN USER UNITS	
ODE7 2E103640		LXI H,DOPND	
ODEB 463A01		CALL STRIP	; BCD-ASCII
ODEE 2E103640		LXI H,DOPND	
ODF2 464E05		CALL INN	; F.P.-BCD
ODFS 2E103680		LXI H,CFBUF	; CONVERSION FACTOR
ODF9 46B403		CALL DIV	; VOLTS-USER UNITS
ODFC 463808		CALL VRI+7	; ABSOLUTE-VOLTS
ODFF 2E103640		LXI H,DOPND	
OE03 463E03		CALL STR	; M-A
OE06 2E103640		LXI H,DOPND	
OE0A 468901		CALL FPBIN	; BINARY-F.P.
OE0D 07		RET	; BACK TO CONTROLLER
: : "CNTUA" AND "CNTUB" ARE A CONTINUATION : OF THE ABOVE SUBROUTINE FOR MANUAL CONTROL : OF THE EXTERNAL DEVICE.			

OE0E 2E1036A7	CNTUA:	LXI H,STACK+7	;H=BINARY
OE12 FB		MOV M,D	
OE13 30		INR L	
OE14 FC		MOV M,E	
OE15 46480D		CALL FLIR	
			;TAKE A SAMPLE TO ;DETERMINE DRIVE ;DIRECTION. ;(UP OR DOWN)
OE18 46E00C		CALL ST	
OE1B 603D0E		JC MOVEU	
OE1E 46E50C		CALL LT	
			;TURN ON "UP" RELAY
OE21 60430E		JC MOVED	
OE24 2E2636FF	CNTUE:	LXI H,CS	
OE28 46E800		CALL LIST	
OE29 2E1036C0		LXI H,SCANE	
			;LOAD CHANNEL 0 IN ;SCAN BUFFER
OE2F 3E00		XVI M,O	
OE31 30		INR L	
OE32 3E0D		XVI M,SCHAR	
			;STOP AFTER 1 CHANNEL ;SCAN
OE34 46410B		CALL CNTU7	
			;128 POINT AVERAGE ;WITH PREVIOUSLY ;DEFINED DELAY AND ;FORMAT. THEN PRINT ;ACTUAL POSITION
OE37 467100		CALL CRLF	
OE3A 444F0E		JMP MANCI	
			; "MOVEU" AND "MOVED" ARE THE ; ENTRY POINTS TO THE "UP" AND "DOWN" ; CONTROL SUBROUTINES. (MANUAL OPS).
OE3D 46980D		MOVEU: CALL UP	
OE4C 44240E		JMP CNTUB	
OE43 46E90D		MOVED: CALL DOWN	
OE46 44240E		JMP CNTUB	
			; "MANCI" IS THE ENTRY POINT FOR THE ; OPERATOR FOR MANUAL ACTUATION OF SOME ; MICROPROCESSOR CONTROLLED DEVICE.
OE49 46DA0D		MANCI: CALL MOVE	
OE4C 440E0E		JMP CNTUA	
OE4F 46E40D		MANCI: CALL MLOOP	
OE52 440E0E		JMP CNTUA	
0000		END	

; DIAGNOSTICS
 ; "DUMP" IS USED TO DISPLAY THE CONTENTS
 ; OF THE CONVERSION FACTOR BUFFER. "TEST"
 ; CHECKS ALL RAM BETWEEN 1000H AND 1FFFH BY
 ; WRITING OUT A BYTE TO EACH LOCATION,
 ; READING IT BACK, AND COMPARING TO THE
 ; ORIGINAL VALUE. IF AN ERROR IS DETECTED,
 ; THE TTY BELL IS RUNG AND A MESSAGE IS
 ; PRINTED OUT ALONG WITH THE CONTENTS OF THE
 ; BAD MEMORY LOCATION AND IT'S ADDRESS.
 ;

0000

; ORG 0E60H
 ; EQUATES NOT ANNOTATED CAN BE FOUND
 ; IN PREVIOUS SECTIONS.
 ;

0080

CFB	EQU 080H	:LOW ADD OF CONVERSION ;FACTOR BUFFER	
00A0	STX	EQU 0A0H	:LOW ADDRESS OF STACK
007C	CO	EQU 007CH	
10A0	STACK	EQU 1CA0H	
0071	CRLF	EQU 0071H	
00E8	LIST	EQU 00E8H	
0145	DISPY	EQU 0145H	
0097	CNTRL	EQU 0097H	
1070	RESLT	EQU 1070H	
036E	LOD	EQU 036EH	
070F	OUU	EQU 070FH	

; MESSAGES
 ;

27A9

RAM EQU 27A9H

0E60 2E1036A0	DUMP:	LXI H,STACK	
0E64 3E80		MVI R,CFB	:STARTING LOCATION
0E66 F7	DLOOP:	MOV L,M	:SET VECTOR
0E67 466203		CALL LOD	:A=CONVERSION FACTOR
0E6A 2E103670		LXI H,RESLT	
0E6E 460F07		CALL OUU	:DUMP TO OUTPUT ;BUFFER ;ASCII-BCD
0E71 464501		CALL DISPY	
0E74 2E103670		LXI H,RESLT	:PRINTOUT INFO
0E78 46E800		CALL LIST	:NEW LINE
0E7B 467100		CALL CRLF	
0E7E 2E1036A0		LXI H,STACK	
0E82 C7		MOV A,R	:FETCH VECTOR
0E83 0404		ADI 4	:A=A+4
0E85 FB		MOV R,A	:SAVE VECTOR
0E86 3CA0		CPI STK	:CHECK FOR LAST
0E88 689700		JZ CNTRL	:IF TRUE, DONE
0E8E 44660E		JPP DLOOP	:ELSE SET NEXT

;
 ;
 ;

```

;
;
; "TEST" IS USED TO CHECK EACH RAM LOCATION
; TO ENSURE IT IS ALL IN WORKING ORDER. IT
; ALTERNATELY WRITES ALL 0'S THEN ALL
; 1'S TO EACH CELL AND TESTS THAT THE VALUE
; READ BACK IS THE ONE IT SENT OUT.
;
OE8E 0600    RTEST: MVI A,0          ;FIRST TEST VALUE
OE90 2E103600 NEXT: LXI H,1000H   ;RAM START LOCATION
OE94 C8      LOOP:  MOV B,A        ;SAVE A
OE95 F8      MOV B,A        ;WRITE TEST VALUE
OE96 C7      MOV A,M        ;READ TEST VALUE
OE97 B9      CMP B          ;IS IT THE SAME ?
OE98 48860E   JNZ ERR3        ;IF NO JUMP
OE99 30      INR L          ;POINT TO NEXT
OE9C 68A20E   JZ PC          ;CHECK PAGE CROSSING
OE9F 44940E   JMP LOOP        ;TRY ANOTHER
OEAA 28      PC:   INR H          ;NEXT PAGE
OEAB C5      MOV A,H        ;
OEAC 3C20      CPI 20H        ;LAST PAGE ?
OEAD 6BAD0E   JZ NEW         ;IF YES, CHECK LAST
;
OEAE C1      MOV A,B        ;VALUE
OEAF 44940E   JMP LOOP        ;RESTORE
OEAD C1      NEW:  MOV A,B        ;GET CURRENT TEST
;
OEAE 3CFF      CPI OFFH        ;VALUE
OEBO 28      RZ              ;IS IT FFH
OEBI 06FF      MVI A,OFFH       ;IF TRUE, DONE
OEBS 44900E   JMP NEXT        ;ELSE SET NEW VALUE
;
OEBC 45D10E   ERR3: CALL HEXT      ;RETEST RAM WITH
OEBD 0E2F      MVI B,/*          ;NEW VALUE
OEBC 467C00      CALL CO          ;PRINT OUT BAD DATA
OEBE C5      MOV A,H        ;
OEBF 46D10E      CALL HEXT      ;ADDRESS OUT
OEC2 C6      MOV A,L        ;
OEC3 46D10E      CALL HEXT      ;TELL OPERATOR
OEC6 457100      CALL CRLF      ;
OEC9 2E2736A5      LXI H,RAM      ;TELL OPERATOR
OECB 46EB00      CALL LIST      ;
OED0 07      RET              ;DONE
;
;
; "HEXT" OUTPUTS HEX DATA IN ACCUM AS
; TWO ASCII DIGITS.
;
OEDI E0      HEXT:  MOV E,A        ;SAVE
OED2 1A      RAR             ;LO NIBBLE-HI NIBBLE
OED3 1A      RAR
OED4 1A      RAR
OED5 1A      RAR
OED6 46E40E   CALL HEX        ;OUTPUT ROUTINE
OED9 467C00   CALL CO          ;
OEDC C4      MOV A,E        ;RESTORE
OEDD 46E40E   CALL HEX

```

0EE0 467C00		CALL C0	
0EE3 07		RET	
0EE4 240F	HEX:	ANI 0FH	;MASK OFF HI NIBBLE
0EE6 3COA		CPI 10	;IS IT A NUMBER
0EE8 60ED0E		JC NUM	;IF TRUE, JUMP
0EEB 0407		ADI 7	;ELSE CONSTRUCT LETTER
0EED 0430	NUM:	ADI 30H	;ASCII BIAS
0EEF C8		MOV B,A	;OUTPUT REGISTER
0EF0 07		RET	
0000		END	

; THE AUTOMATIC CONTROL SECTION MAKES USE OF
 ; THE "MOVE" AND "SCAN" SECTIONS TO PROVIDE
 ; AUTOMATIC,INCREMENTAL STEPPING OF AN
 ; EXTERNAL DEVICE BETWEEN ARBITRARY LIMITS.
 ;
 0000 ORG 2000H
 ; EQUATES NOT ANNOTATED CAN BE FOUND
 ; IN PREVIOUS SECTIONS
 ;
 0CEB SWAP EQU OCEBH ;DE-BC-DE
 OCEO GT EQU OCEOH ;DE-BC,RES NOT SAVED
 OCES LT EQU OCESH ;BC-DE,RES NOT SAVED
 ODE4 MLOOP EQU ODE4H ;FETCH EXTERNAL
 ;POSIT,CONVERT, AND
 ;STORE IN DE
 ;
 OD4E FLTR EQU OD48H ;SLITCH AND NOISE
 ;FILTER
 ;
 0B3E RSCAN EQU 0B32H ;RE-SCAN DESIRED
 ;CHANNELS AND PRINT
 ;RESULTS
 ;
 0B34 SCANS EQU 0B34H ;PRINT OUT
 ;COLUMN HEADINGS
 ;
 OCCA ERRI EQU OCCAH ;TERMINAL ERROR
 OD98 UP EQU OD98H ;TURN ON UP DRIVE
 ODE9 DOWN EQU ODB9H ;TURN ON DOWN DRIVE
 1060 N EQU 1060H ;ITERATION COUNTER
 ;FLOATING POINT
 ;
 1064 TEMP EQU 1064H ;TEMPORARY PRODUCT
 ;
 1068 FINC EQU 1068H ;STORAGE
 ;F.P. REPRESENTATION
 ;OF INCREMENTAL DIST
 ;
 0FE0 I6 EQU 0FE0H ;1.0
 OFF0 II EQU OFF0H ;819.15
 ;
 000D SCHAR EQU 00H
 0071 CRLF EQU 0071H
 00EE LIST EQU 00E8H
 0097 CNTRL EQU 0097H
 00FB GET EQU 00F5H
 013A STRIP EQU 013AH
 0154 BINFP EQU 0154H
 0189 FPBIN EQU 0185H
 1040 DOPND EQU 1040H
 1058 STORE EQU 1058H
 10A0 STACK EQU 10A0H
 10C0 SCANB EQU 10C0H
 1080 CFEUF EQU 1080H
 0080 CFB EQU 080H
 033E STR EQU 033EH
 036E LOD EQU 035EH
 03D7 AD EQU 03D7H
 038C MUL EQU 038CH
 03B4 DIV EQU 03B4H

```

064B     ION      EQU 064BH
;
; MESSAGES
;
2672     LREAD    EQU 2672H
2746     START    EQU 2746H
2755     STOP     EQU 2755H
2764     INCRE    EQU 2764H
2772     LUNIT    EQU 2772H
;
; COMMON SUBROUTINES
;
; "LODXX" AND "STRXX" ARE USED FOR 2 WAY
; TRANSFER OF DATA BETWEEN CPU
; REGISTERS AND MEMORY.
;
2000 2E1036A7 STRD:   LXI H,STACK+7 ;CURRENT DESIRED
                        ;POSITION STORAGE
2004 F9      MBC:    MOV M,E
2005 30      INR L
2006 FA      MOV M,C
2007 07      RET
2008 2E1036A7 LODD:   LXI H,STACK+7 ;BC->P
200C CF      BCM:    MOV E,M
200D 30      INR L
200E D7      MOV C,M
200F 07      RET
2010 2E1036B2 STRST:  LXI H,STACK+18 ;START POSITION
2014 440420  JMP MBC  ;P->BC
2017 2E1036B2 LODST:  LXI H,STACK+18 ;BC->P
2018 440C20  JMP BCM
201E 2E1036B4 STRS:   LXI H,STACK+20 ;STOP POSITION
2022 FB      MDE:    MOV M,D
2023 30      INR L
2024 FC      MOV M,E
2025 07      RET
2026 2E1036B4 LODS:   LXI H,STACK+20 ;DE->P
202A DF      DEM:    MOV D,M
202B 30      INR L
202C E7      MOV E,M
202D 07      RET
202E 2E1036B5 STRI:   LXI H,STACK+22 ;INCREMENTAL POSITION
2032 442220  JMP MDE
2035 2E1036B5 LODI:   LXI H,STACK+22 ;DE->M
2039 442A20  JMP DEM
;
;
203C 2E103660 INCN:   LXI H,N      ;INCREMENT ITERATION
                        ;COUNTER (N)
2040 466E03  CALL LOD  ;A->N
2043 2E0F36E0  LXI H,IS
2047 46D703  CALL AD   ;A=A+1
204A 2E103560  LXI H,A
204E 463E03  CALL STR  ;N-A

```

2051 2E103668	LXI H,FINC	;GET INCREMENT (I)
2055 468C03	CALL MUL	;I=0!
2058 2E103664	LXI H,TEMP	;SAVE FACTOR
205C 463E03	CALL STR	
205F 2E103664	LXI H,TEMP	
2063 468901	CALL FPBIN	;BINARY-F.P.
2066 462E20	CALL STRI	;M=NEW INCREMENT
2069 463920	LOAD: CALL LODI	;LOAD START POSIT
		;AND INCREMENT
206C 441720	JMP LODST	
206F 460020	STOR: CALL STRD	;STORE NEXT POSIT
2072 442620	JMP LODS	;LOAD STOP POSIT
	:	
	:	"INCP" AND "DECP" ARE USED TO INCREMENT/
	:	DECREMENT THE VALUE OF "DESIRED POSITION"
	:	BY "INCREMENT" AMOUNT.
	:	THE ROUTINE RETURNS WITH:
	:	BC=START POSIT+INCREMENTION
	:	STACK+7=BC
	:	DE=STOP POSIT
	:	
2073 463C20	INCP: CALL INCN	;INPUT PARAMETERS
2078 C4	MOV A,E	;ADD BC+DE AND STORE
		;RESULT IN BC
2079 82	ADD C	
207A D0	MOV C,A	
207B C3	MOV A,D	
207C 89	ADC B	
207D C8	MOV B,A	
207E 446F20	JMP STOR	;EXIT THROUGH STORE
2081 463C20	DECPL: CALL INCN	;INPUT PARAMETERS
2084 C2	MOV A,C	;SUB DE-BC AND STORE
		;RESULT IN BC
2085 94	SUB E	
2086 D0	MOV C,A	
2087 C1	MOV A,B	
2088 9E	SBE D	
2089 C8	MOV B,A	
208A 446F20	JMP STOR	;EXIT
	:	
208D 2E1036B8	SSUE: LXI H,STACK +24	;SET SUET FLAG
2091 3E01	MVI M,I	
2093 441B21	JMP RUNL	;BACK TO "RUN LOOP"
	:	
	:	"RUN" IS THE OPERATOR ENTRY POINT TO
	:	TO THE AUTOMATIC CONTROL ROUTINE. IT
	:	PROVIDES REPEATED SCANNING OF UP TO
	:	8 CHANNELS AT SELECTED POSITIONS OF AN
	:	EXTERNAL DEVICE.
	:	
2096 2E1036C0	RUN: LXI H,SCANE	;VALIDITY CHECK
209A C7	MOV A,M	

2098	3C2A	CPI '0'	;BOOT DEFAULT
209D	68CA0C	JZ ERRI	
20A0	2E273646	LXI H,START	;GET START POSITION
20A4	46E800	CALL LIST	
20A7	46E40D	CALL MLOOP	;CONVERT TO BIN
20AA	46EE0C	CALL SWAP	;BC-DE
20AD	460020	CALL STRD	;H=START
20B0	461E20	CALL STRST	;H=START
20B3	467100	CALL CRLF	
20B6	2E273655	LXI H,STOP	;GET FINAL POSITION
20B8	46E800	CALL LIST	
20BD	46E40D	CALL MLOOP	;CONVERT TO BIN
20C0	461E20	CALL STRS	;H=STOP
20C3	467100	CALL CRLF	
20C6	2E273664	LXI H,INCRE	;GET INCREMENT
20CA	46E800	CALL LIST	
20CD	46F800	CALL GET	;INPUT-I
20D0	2E103640	LXI H,DOPND	
20D4	463A01	CALL STRIP	;BCD-ASCII
20D7	2E103640	LXI H,DOPND	
20DE	464606	CALL INN	;F.P.-ECD
20DE	2E103680	LXI H,CFBUF	
20E2	46B403	CALL DIV	;I=VOLT(I)
20E3	2E0F36F0	LXI H,II	
20E9	468C03	CALL MUL	;I=BIN(I)
20EC	2E103668	LXI H,FINC	
20F0	463E03	CALL STR	;M-I
20F3	2E103668	LXI H,FINC	
20F7	468901	CALL FPBIN	;DE=ABSOLUTE(M)
20FA	462E20	CALL STRI	;M=INCREMENT
20FD	2E103660	LXI H,N	;RESET COUNTER
2101	3E00	MVI H,O	
;			
2103	467100	CALL CRLF	
2106	46340E	CALL SCANS	;COL HEADINGS
2109	460620	CALL LODD	;GET START AND STOP
			;POSIT TO DETERMINE
			;INCREMENT DIRECTION
210C	462620	CALL LODS	
210F	46E00C	CALL GT	;START>STOP ?
2112	608D20	JC SSUE	;IF YES, SET FLAG
2115	2E103688	LXI H,STACK+24	;ELSE RESET FLAG
2119	3E00	MVI H,O	
211E	46480D	RUNL: CALL FLTR	;TAKE POSIT READINGS
211E	46E00C	CALL GT	
2121	604C21	JC INCR	;IF DESIRED>ACTUAL, ;MOVE UP
2124	46E50C	CALL LT	
2127	605221	JC DECR	;IF DESIRED<ACTUAL, ;MOVE DOWN
212A	463B0B	CNTUC: CALL RSCAN	;ELSE TAKE A SET OF ;CHANNEL READINGS
212D	2E103688	LXI H,STACK+24	;GET DIRECTION FLAGS
2131	C7	MOV A,M	

2132 3C01	CPI I		
2134 664321	JZ DECR1	;IF SET, DECREASE ;POSIT BY "I"	
2137 467520	INCR1:	CALL INCP	
213A 46E00C		CALL ST	
213D 605821	TEST:	JC EXIT	
2140 441B21		JMP RUBL	
2143 468120	DECRI:	CALL DECP	
2146 46E50C		CALL LT	
2149 443D21		JMP TEST	
214C 46980D	INCR:	CALL UP	
214F 442A21		JMP CNTUC	
2152 46B90D	DECR:	CALL DOWN	
2155 442A21		JMP CNTUC	
2158 467100	EXIT:	CALL CRLF	
215B 467100		CALL CRLF	
215E 449700		JMP CNTRL	
	:		
	:		
	:	: "UNIT" IS USED TO INPUT CONVERSION FACTORS	
	:	: WHICH CHANGE THE INTERNAL UNITS (VOLTS)	
	:	: TO ANY UNIT DEFINED BY THE USER. ALL I/O	
	:	: OPERATION IS THEN IN TERMS OF THESE	
	:	: NEW UNITS UNTIL RESET.	
	:		
2161 2E263672	UNIT:	LXI H,LREAD	;"CHANNEL = ?"
2165 46E800		CALL LIST	
2168 46F600		CALL GET	;INPUT CHANNEL
216B 2E103640		LXI H,DOPND	
216F 463A01		CALL STRIP	;BCD-ASCII
2172 2E103640		LXI H,DOPND	
2176 C7		MOV A,R	
2177 30		ORA A	;GET CHANNEL
2178 12		RAL	;CLEAR CARRY
2179 12		RAL	;MPY BY 4
217A 0480		ADI CFE	
217C 2E1036A6		LXI H,STACK+6	;COMPUTE VECTOR
2180 F8		MOV R,A	
2181 467100		CALL CRLF	
2184 2E273672		LXI H,LUNIT	;"UNIT/VOLT =?"
2188 46E800		CALL LIST	
218E 46F800		CALL GET	;SET CONVERSION FACTOR
2192 2E103640		LXI H,DOPND	
2192 463A01		CALL STRIP	;BCD-ASCII
2195 2E103640		LXI H,DOPND	
2195 46AE06		CALL INN	
219C 2E1036A6		LXI H,STACK+6	;F.P.-BCD
21A0 F7		MOV L,R	;SET VECTOR
21A1 463E03		CALL STR	;POINT TO STORAGE
21A4 467100		CALL CRLF	
21A7 446121		JMP UNIT	;M-FACTOR
0000	END		;SET NEXT

; ALL MESSAGES USED BY THE SYSTEM ARE
; CONTAINED IN THIS SECTION.
;
0000 ORG 2600H
;
000D SCHAR EQU 0DH ;STOP CHARACTER
000A LF EQU 0AH ;END OF RECORD
;
2600 3E2000 READY: DB ' ',SCHAR
2603 204E4F54 LERR: DB ' NOT DEFINED ',SCHAR
2607 20444546
260B 494E4544
260F 0D
2610 30313A20 LERR1: DE '01: CHANNELS '
2614 4348414E
2618 4E454C53
261C 20
261D 4E4F5420 DB 'NOT DEFINED ',SCHAR
2621 44454649
2625 4E45440D
2629 30323A20 LERR2: DB '02: INVALID '
262D 494E5641
2631 4C494420
2635 2246494C DB "FILET "
2639 452220
263C 5445524D DB 'TERMINATION ',SCHAR
2640 494E4154
2644 494F4E0D
2648 2A2A2A20 L200T: DE '*** RESET: ALL '
264C 52455349
2650 543A2041
2654 4C4C20
2657 4348414E DB 'CHANNEL I/O IN '
265E 4E454C20
265F 492F4F20
2663 494E20
2666 22564F4C DB "VOLTS" ***,SCHAR
266A 54532220
266E 2A2A2A0D
2672 20434841 LREAD: DE ' CHANNEL : ',SCHAR
2676 4E4E454C
267A 203D200D
267E 56414C49 LWAIT: DB 'VALID FACTORS: ',SCHAR
2682 44204641
2686 43524F52
268A 533A200D
268E 41203D20 DB 'A = 3MS ',SCHAR
2692 334D5300
2696 42203D31 DB 'E = 15MS ',SCHAR
269A 354D530D
269E 43203D32 DB 'C = 25MS ',LF,SCHAR
26A2 354D530A
26A6 0D

26A7 494E5055 LSCAN: DE 'INPUT CHANNELS'
26AB 54204348
26AF 414E4E45
26B3 4C53
26B5 20494E20 DE ' IN DESIRED '
26B9 44455349
26BD 52454420
26C1 4F524445 DE 'ORDER',SCHAR
26C5 520D
26C7 5748454E INFO: DE 'WHEN READY TO '
26C9 20524541
26CF 44592054
26D3 4F20
26D5 54414845 DE 'TAKE DATA, '
26D9 20444154
26DD 412C20
26E0 54595045 DE 'TYPE SCAN '
26E4 20205343
26E8 414E20
26EB 4F522052 DE 'OR RUN ',SCHAR
26EF 554E2000
26F3 20232000 C1: DE ' . ',SCHAR
26F7 20202043 C2: DE ' CH. ',SCHAR
26FE 482E2000
26FF 20202020 C3: DE ' . ',SCHAR
2703 0D
2704 44454C41 DWAIT: DE 'DELAY BETWEEN '
2708 59204245
270C 54574545
2710 4E20
2712 44415441 DE 'DATA POINTS : '
2716 20504F49
271A 4E545320
271E 3D20
2720 31352040 DE '15 MS (DEFAULT) ',SCHAR
2724 53202844
2728 45464155
272C 4C542500
2730 22452220 EXP: DE 'TER' FORMAT'
2734 464F5240
2738 4154
273A 2855204F DE '(Y OR N) ? ',SCHAR
273E 52204E25
2742 203F2000
2746 53344152 START: DE 'START POSIT : ',SCHAR
274A 5420504F
274E 53455420
2752 3D2000
2755 53344F50 STOP: DE 'STOP POSIT : ',SCHAR
2759 20504F53
275D 49542020
2761 3D2000

2764 494E4352 INCRE: DB 'INCREMENT = ',SCHAR
2765 454D454E
276C 5420203D
2770 2000
2772 554E4954 LUNIT: DB 'UNIT/VOLT = ',SCHAR
2776 2F564F4C
277A 54203D20
277E 0D
277F 44455349 LMOVE: DB 'DESIRED '
2783 52454420
2787 2E2E2E2E
278B 20
278C 41435455 DB 'ACTUAL',SCHAR
2790 414C0D
2793 32554E20 LRUN: DE 'RUN NO. ',SCHAR
2797 4E4F2E20
279E 0D
279C 2A2A2A2A LCOM: DE '***** ',SCHAR
27A0 2A202020
27A4 0D
27A5 07444154 RAM: DE 07H,'DATA/'
27A9 412F
27AB 4C4F4L41 DB 'LOCATION'
27AF 54494F4E
27B3 202E2E2E
27B7 2E2E2E20
27B8 42414420
27BF 52414D
27C2 070D DB 07H,SCHAR
0000 END

AD-A047 169

NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF
A MICROPROCESSOR CONTROLLED AUTOMATIC DATA LOGGING SYSTEM (ADL)--ETC(U)
JUN 77 J D CASKO

F/G 9/2

UNCLASSIFIED

2 OF 2
ADA
047169

NL

2 OF 2
ADA
047169


```

;
; JUMP TABLE
;
; THE RECOGNITION ROUTINE ("RECOG", 00A1H)
; COMPARES THE CHECK-SUM IT COMPUTES WITH
; EVERY THIRD ENTRY IN THIS TABLE. IF A
; MATCH IS FOUND, THE FOLLOWING TWO BYTES
; SHOW THE ENTRY POINT FOR THE DESIRED
; ROUTINE.
;
; OOH MARKS THE END OF THE TABLE.
;
0000      ORG 0FOOH
;
; EQUATES
;
0847      READ    EQU 0847H      ;VOLTMETER FUNCTION
08F0      CNTLR   EQU 08F0H      ;"RUN NO."
0901      CNTLC   EQU 0901H      ;***** " COMMENT
0912      EDIT    EQU 0912H      ;TEXT INPUT
095D      FILE    EQU 095DH      ;WRITE TEXT
0963      WAIT    EQU 0963H      ;DELAY FACTOR
098B      A1      EQU 098BH      ;3 MS DELAY
097F      B1      EQU 097FH      ;15 MS DELAY
0973      C1      EQU 0973H      ;25 MS DELAY
0C35      SSCAN   EQU 0C35H      ;SET SCAN ROUTINE
0CAD      SCAN    EQU 0CADH      ;TAKE DATA
0E49      MOVE    EQU 0E49H      ;MANUAL CONTROL
0E60      DUMP    EQU 0E60H      ;CONVERSION FACTORS
0E8E      MTEST   EQU 0E8EH      ;RAM CHECK
2096      RUN     EQU 2096H      ;AUTOMATIC CONTROL
2161      UNIT    EQU 2161H      ;INPUT SCALE FACTORS
;
0F00 1C    J1:    DB 1CH
0F01 4708   DW READ
0F03 12    J2:    DB 12H
0F04 F008   DW CNTLR
0F06 03    J3:    DB 03H
0F07 0109   DW CNTLC
0F09 26    J4:    DB 26H
0FOA 1209   DW EDIT
0FOC 20    J5:    DB 20H
0F0D 5D09   DW FILE
0FOF 35    J6:    DB 35H
0F10 6309   DW WAIT
0F12 41    J7:    DB 41H
0F13 8B09   DW A1
0F15 42    J8:    DB 42H
0F16 7F09   DW B1
0F18 43    J9:    DB 43H
0F19 7309   DW C1
0F1B 31    J10:   DB 31H
0F1C 350C   DW SSCAN

```

OF1E 25	J11:	DB 25H
OF1F ADOC		DW SCAN
OF21 37	J12:	DB 37H
OF22 490E		DW MOVE
OF24 36	J13:	DB 36H
OF25 600E		DW DUMP
OF27 8D	J14:	DB 8DH
OF28 8EOE		DW MTEST
OF2A F5	J15:	DB OF5H
OF2B 9620		DW RUN
OF2D 40	J16:	DB 40H
OF2E 6121		DW UNIT
OF30 00	STOP:	DB 00H

```
; CONSTANT STORAGE
; THE FOLLOWING DATA ARE THE FLOATING
; POINT REPRESENTATION OF CONSTANTS
; USED THROUGHOUT THE PROGRAM
;
OF31          ORG OFEOH
OFE0 81000000 I6:  DB 81H,0,0,0    ;1.0
OFE4 7A000000 I5:  DB 7AH,0,0,0    ;.0078125
;
OFE8          ORG OFFOH
OFF0 8A4C     I1:  DB 8AH,4CH
OFF2 C99A     DB 0C9H,9AH    ;819.15
OFF4 84200000 I2:  DB 84H,20H,0,0  ;10.0
OFF8 8A4C     I3:  DB 8AH,4CH
OFFA C99A     DB 0C9H,9AH    ;819.15
OFFC 8D7F     I4:  DB 8DH,7FH
OFFE FC00     DB 0FCH,0      ;8191.15
0000          END
```

VI. RECOMMENDATIONS

The ADL software was developed on an existing development system which used the following:

1. 110 baud teletype for program listing.
2. 110 baud paper tape punch for mass storage.
3. 1200 baud high speed paper tape reader.
4. 1200 baud CRT for program entry and editing.

While this system is a useful tool for writing and debugging small programs, it is not a viable system for large scale development. The percentages of time devoted to the creation of the ADL software package was 15% logic development, 5% manual entry, 15% debugging and 75% waiting for paper tape and teletype output. The last figure represents a significant and costly waste of manpower assets. The following system - while more expensive - could easily pay for itself in man-hour savings alone:

1. Floppy disk mass memory. This reduces an edit-assemble-reedit-reassembly cycle from up to eight hours (for the entire package) to less than five minutes (also for the entire package).
2. Line printer for producing source code and assembly listings.
3. Resident high level language such as BASIC or PL/M to enhance complex logic manipulations.

The Department of Aeronautics has recently acquired the

INTEL MDS 80 development system. This system contains the above components and is presently being used as a data acquisition system for an oscillating flow wind tunnel. In addition to data logging, this system can perform on-line fast fourier analysis of data taken in a highly turbulent and non-linear environment [2].

Microprocessor usage presents a unique problem; namely, better CPUs and more advanced peripherals appear on the market almost monthly. Therefore, a U-P oriented system rapidly becomes outdated. The software for the ADL was written using industry standard techniques. A change to the more advanced 8080 CPU can therefore be accomplished (with minor changes) by simply reassembling the program with an 8080 assembler. Such an update is recommended if the ADL is to be used to take higher frequency data.

APPENDIX A

GLOSSARY

1. **A/D:** analog to digital (adjective or noun)
2. **assembly:** A listing which contains both source code and machine code.
3. **BAUD:** A data transmission rate expressed in BITS per second.
4. **BIT:** BIrary digit. A single unit of information in a binary word.
5. **buffer:** A group of memory locations used to store specific data (input data, constants, output data, etc.).
6. **buffering:** A process by which electronic signals possessing different properties are made compatible.
7. **byte:** An eight-BIT word which is processed as a single quantity.
8. **CPU:** Central Processing Unit. The area of the microprocessor which computes and sequences all logic and arithmetic functions.
9. **coordination number:** A sequential, numerical label associated with a set of data points for a given run.
10. **CRT:** Cathod Ray Tube. Also used as the generic name for a television type display.
11. **D/A:** The inverse of the A/D process.

12. data logging: The acquisition and tabulation of data.
13. EPROM: erasable/programmable read only memory
14. driver: In a software context this term refers to a program used to control the actions of an external device.
15. external device: A physical device which is not an integral part of the microprocessor.
16. glitch: A missing BIT in a byte of data which can occur during data transmission or conversion.
17. H: A suffix which indicates a hexadecimal number (Appendix C).
18. I/O: input/output
19. K: A suffix which indicates a group of 1024 (2^{10}) items as in '4K of memory' meaning 4096 memory locations.
20. machine code: The BIT patterns actually used by the CPU in order to carry out its assigned logic function.
21. MUX: a multiplexing device
22. nibble: The upper or lower four BITS in one byte.
23. OS: Operating System. Another term for Software Package.
24. page: a 256 byte segment of memory
25. RAM: Random access memory. Volatile memory used for variable storage and data manipulation.
26. register: A storage location located in the CPU.
27. ROM: read only memory, non-volatile
28. software: The program which resides in the U-P's memory.

29. source code: The program written by the user.
30. U-P: microprocessor
31. 8008: An 8-BIT U-P device.
32. 8080: The next generation U-P from the 8008.

APPENDIX B

VENDOR DATA

The following specification sheets give the major properties of the hardware used in the ADL system. Also presented are the I/O pin assignments for the 805 processor as well as the pin-outs for the other connecters used throughout the system.

MPS 805 MICROPROCESSOR SYSTEM SPECIFICATIONS

Physical

Three 4 5" by 6 5" printed circuit cards

One 8111 CPU card

One 8114 Input card

- One 8115 Output card

- One 8116 ROM card

- One 8117 RAM card

Connector Requirement for each card

56 pin, 28 position dual reed-out on 0.125" centers

CPU Card includes

8008 CPU

Crystal clock

Address latches, date buffers, and control decode circuits.

Power-on and external restart.

DMA buffers.

ROM Card includes

One 1702A PROM (256 bytes) and eight PROM sockets

Socket for card expansion circuit (up to 8 cards)

RAM Card includes

Eight 112 RAM (1024 bytes) and thirty-two RAM sockets

Socket for card expansion circuit (up to 4 cards)

Input Card includes

12 TTL input selector circuits addressable in groups of 8

Socket for card expansion circuit (up to 2 cards)

Output Card includes

12 TTL output latch circuits addressable in groups of 8

Socket for card expansion circuit (up to 6 cards)

Operational

CPU

Executes all of the 8008 instructions.

4 microsecond time state cycle using 8008 (MPS 805).

2.8 microsecond time state cycle using 8008-I (MPS 805-I).

Memory for data or program storage card expandable to any combination of ROM and RAM to 16384 words

ROM, 2048 word capacity per card.

RAM, 4096 word capacity per card.

Input and Output

Input gates implement the INP instructions.

Output latches implement the OUT instructions.

Power-on External Restart

Single line, synchronized interrupt on CPU card can be optionally wired for multi-level interrupt or Power-on external restart.

Multi-level Interrupt: Control lines available for external interrupt such as 8118 priority interrupt card.

Power-on and external restart option: CPU starts at instruction location 0000 by wiring restart output from CPU card to Interrupt Request Input

DMA - Direct Memory Access

Data, address, and control lines are 3-state disconnected by the CPU following a HALT instruction allowing

DMA by peripherals. The CPU must be interrupted to continue following a HALT

Electrical Requirements

Refer to individual data sheets and schematics on the 8111, 8114, 8115, 8116, and 8117 for interface and wiring.

Power Requirements for the five card set fully loaded

+VCC = ±5% @ 3.3 Amp maximum (35mA per ROM, 50mA per RAM)

GND 0 volts

VDD = +9 volts ±5% ± 900 mA maximum (35 mA per ROM)

Hardware

Compatible with Series 8400 interface cards.

Fits CR5, CR10 or CR19 card racks

Use M273 power supply

PROM's programmable on Series 81 programmers

Software

MPS 800 hardware is fully compatible with any 8008 software assuming I/O and interrupt can be assigned compatibly. Teletype operating system and system monitor available. Assemblers, compilers and simulators available through computer time-sharing services

8 CHANNEL ANALOG MULTIPLEXER MODEL MM-8

FOR ANALOG TIME SHARING - \$69 each

FEATURES

- Small size 1" x 2" x 0.375"
- Low power consumption 300 milliwatts
- High transfer accuracy $\pm 0.01\%$
- Fast settling output 1 microsecond to $\pm 0.01\%$ of FS.
- Choice of input type Single ended or differential
- Completely self contained ... Includes 8 MOS-FET switches, drivers and decoding logic for channel selection

BLOCK DIAGRAM

SAMPLE AND HOLD MODEL SHM-4

FOR SIMULTANEOUS SAMPLE AND HOLD APPLICATIONS

FEATURES

- Fast Acquisition Time 6 μ sec
- Low Droop 20 μ V/msec
- Adjustable Aperture Delay To zero between units
- Low Gain Error $\pm .005\%$
- High Input Impedance 100 M Ω

BLOCK DIAGRAM - MODEL SHM-4

DESCRIPTION

The SHM-4 is ideally suited to simultaneous sample and hold applications, where the gain and aperture delay between units must be matched, and where the output droop of the sampled signal is minimized for time shared A/D conversion.

A double inversion circuit in the SHM-4 places the FET sampling switch near ground, which means that all variations of hold step and of aperture delay with input voltage are eliminated.

A unique closed loop design gives high accuracy and allows the rate error¹ to be factory nulled. Rate error is the delay by which the output lags an input ramp and may be expressed in nsec or in mV/V/ μ sec. For conventional sample and hold applications rate error is not serious because it merely causes an advance in the effective time of hold and tends to cancel out part of the aperture delay. However, for simultaneous applications the aperture delay minus the rate error must be matched between units so that the effective time of hold is the same for all. The SHM-4 accomplishes this by nulling the rate error to less than 1 nanosecond and for critical applications, by providing an external 5 nanosecond adjustment of aperture delay. Also, the high accuracy and low droop of the SHM-4 make it useful in conventional sample and hold applications.

Careful attention to circuit detail in eliminating leakage currents has decreased the output droop to less than 20 microvolts per millisecond allowing several SHM-4 modules to be time shared between one A/D converter.

¹ Dynamic Accuracy of Sample and Hold Circuits, Datel Systems, Inc., Application Note V1-1.

Datel's Model MM-8 is a complete eight channel solid state analog multiplexer designed for applications which require fast output settling and high transfer accuracy.

The entire multiplexer is self contained in a plastic module measuring 0.8 cubic inches. It contains eight MOS-FET switches with associated driver circuits, each having a current limiter pull-up FET to provide minimum propagation delay. Also included is all the necessary decoding logic to enable random channel addressing with a four bit parallel binary input. Two MM-8 multiplexers can be cascaded to provide up to sixteen channels under command from one 4-BIT address. The addressing logic inputs are compatible with DTL/TTL logic levels.

Full scale inputs can be either $\pm 5V$ or $\pm 10V$ with a transfer accuracy (input to output) of $\pm 0.01\%$, provided the output load is a minimum of 10 megohms. The high impedance amplifier provided with Datel's ADC E, ADC-L and ADC-M series analog/digital converters and SHM Series sample/hold's are quite suitable for this application.

Output settling time for each channel is one microsecond to $\pm 0.01\%$ of full scale and each channel can sequentially switch at a 500 KHz rate. The output of the eight channels is divided into two parallel groups of four.

As stated before, MM-8 is complete and requires only +5VDC, +15VDC and -15VDC (-20VDC) for operation.

MM-8 modules are 2" L x 1" W x 0.375" H in size come fully encapsulated, and feature dual in-line pinning (0.100" grid pin spacing).

HIGH RESOLUTION ANALOG-TO-DIGITAL CONVERTER

MODEL ADC-149

Datel Systems products are manufactured to the highest standards of quality and reliability. Our design and production facilities are continually being expanded to meet the needs of our rapidly growing customer base. Datel Systems offers a wide range of products, including data acquisition systems, data communication modules, and programmable controllers. We are committed to providing high quality products at competitive prices. For more information, contact your local Datel Sales Office or write to Datel Systems, Inc., 1000 University Avenue, Berkeley, CA 94710.

GENERAL DESCRIPTION

The ADC-149 is a 14 bit successive approximation type analog to digital converter for OEM use. It was specifically designed to give high resolution and accuracy at moderate cost for incorporation into precision instruments for process control systems and test and measurement systems.

The ADC-149 can resolve 1 part in 16,384 giving an operating dynamic range of 84.3dB. On the 10 volt full scale range it can detect an input change of less than 1 millivolt. Accuracy is adjustable to $\pm 0.005\%$ of full scale $\pm 1\text{LSB}$. The temperature coefficient is held to a low $+15\text{ppm}/^\circ\text{C}$ over the 0° to 70°C operating temperature range.

This converter accepts either unipolar or bipolar input voltages of 0 to -10V , 0 to -20V , $\pm 5\text{V}$, or $\pm 10\text{V}$ full scale by external pin connection and performs a 14 bit conversion in 50 μsec . Several output codes are available including straight binary for unipolar inputs and either offset binary or two's complement for bipolar inputs. Two's complement is obtained by using the MSB output pin. Reverse coding sense is used with the most negative analog input corresponding to full scale digital output. A serial data output is also provided and has a nonreturn-to-zero (NRZ) format. Logic outputs are DTL/TTL compatible and will drive 6 standard TTL loads.

ADL PIN CONNECTIONS

A/D Card Code...

22 Pin plug

Pin Ident.

No.

1	NC	
2	NC	
3	NC	
4	NC	
5	Ch. 0	
6	Ch. 1	
7	Ch. 2	
8	Ch. 3	Analog
9	Ch. 4	Voltage
10	Ch. 5	Inputs
11	Ch. 6	
12	Ch. 7	
13	NC	
14	Relay plug (spare)	
15	Relay plug (Alpha Relay)	
16	Relay plug (Alpha Relay)	
17	Relay plug (Gnd.)	
18	NC	
19	+5 VDC	
20	+15 VDC	Pwr. Supply
21	Gnd.	Buss line
22	-15 VDC	

From P3 on Prolog Rack
Input (Command) 16 pin socket

Pin Ident.

No.

1	MUX Ch. 001
2	MUX Ch. 010
3	MUX Ch. 100
4	S/H Command
5	A/D Start
6	Alpha Relay (Incr.)
7	Alpha Relay (Decr.)
8	Relay Plug (spare)

9 to 16 Not used

Relay Plug

A to	P14	Spare Relay
B	P17	Gnd. (Logic)
C	P15	alpha relay (incr.)
D	P16	alpha relay (decr.)
E	P21	Gnd. (Buss)

Output (Data) 16 pin socket

1	A/D Bit	14 (LSB)
2	" "	13
3	" "	12
4	" "	11
5	" "	10
6	" "	9
7	" "	8
8	" "	7
9	" "	6
10	" "	5
11	" "	4
12	" "	3
13	" "	2
14	" "	1 (MSB)
15	A/D E.O.C.	
16	Spare	

ADL PIN CONNECTIONS

PROLOG SYSTEM 44 Pin Output Plug (On Top of Card Rack)

CODE

Pin Ident.

No.

1	Out 1-8 to	P3-8	Relay Plug (spare)
2	" 1-7	P3-7	Alpha Relay (decr.)
3	" 1-6	P3-6	Alpha Relay (incr.)
4	" 1-5	P3-5	A/D Start
5	" 1-4	P3-4	S/H Command
6	" 1-3	P3-3	Analog MUX Ch. 100
7	" 1-2	P3-2	" MUX Ch. 010
8	" 1-1	P3-1	" MUX Ch. 001
9	NC		
10	Out 3-8	P4-15	DP (Dec. Pt., Lite Chip 03)
11	" 3-7	P4-14	DP (Lite Chip 02)
12	" 3-6	P4-13	DP (Lite Chip 01)
13	" 3-5	P4-12	DP (lite Chip 00)
14	" 3-4	P4-8	BCD Data 8 (to Lites)
15	" 3-3	P4-7	BCD Data 4
16	" 3-2	P4-6	BCD Data 2
17	" 3-1	P4-5	BCD Data 1
18	NC		
19	"		
20	"		
21	"		
22	"		
A	Out 0-8		
B	" 0-7		
C	" 0-6		
D	" 0-5		
E	" 0-4		
F	" 0-3		
H	" 0-2	TTY Card	JX-12/Jx-14
J	" 0-1	TTY Card	JX-11/JX-9
K	NC		
L	Out 2-8		
M	" 2-7		
N	" 2-6	to P4-10	(+/- Lite)
P	" 2-5	P4-9	Lite Enable
R	" 2-4	P4-4	Lite MUX 1000
S	" 2-3	P4-3	Lite MUX 0100
T	" 2-2	P4-2	Lite MUX 0010
U	" 2-1	P4-1	Lite MUX 0001
V	NC		
W	"		
X	"		
Y	"		
Z	"		

ADL PIN CONNECTIONS

PROLOG SYSTEM 44 Pin DIPUT PLUG (On Top of Card Back)

CODE.....

Pin Ident.
No.

1	In 1-8	to	P1-8, A/D Bit 7
2	" 1-7		P1-7, " " 8
3	" 1-6		P1-6, " " 9
4	" 1-5		P1-5, " " 10
5	" 1-4		P1-4, " " 11
6	" 1-3		P1-3, " " 12
7	" 1-2		P1-2, " " 13
8	" 1-1		P1-1, " " 14 (LSB)
9	NC		
10	In 3-8		NC
11	" 3-7		NC
12	" 3-6		NC
13	" 3-5	to	P2-5, Kyb'd Flag
14	" 3-4		P2-4, Kyb'd (1000)
15	" 3-3		P2-3, " (0100)
16	" 3-2		P2-2, " (0010)
17	" 3-1		P2-1, " (0001)
18	NC		
19	"		
20	"		
21	"		
22	"		
A	In 0-8		
B	" 0-7		
C	" 0-6		
D	" 0-5		
E	" 0-4		
F	" 0-3		
G	" 0-2		
J	" 0-1	to	TTY Card (JX-17)
K	NC		
L	In 2-8	to	P1-16 NC
M	" 2-7		P1-15, A/D EOC (end of conversion)
N	" 2-6		P1-14, A/D Bit 1 (MSB)
P	" 2-5		P1-13, " " 2
R	" 2-4		P1-12, " " 3
S	" 2-3		P1-11, " " 4
T	" 2-2		P1-10, " " 5
U	" 2-1		P1-09, " " 6
V	NC		
W	"		
X	"		
Y	"		
Z	"		

APPENDIX C
MATHEMATICS PACKAGE

Floating point (F.P.) binary numbers are used internally for most internal arithmetic functions. The method is fully explained in the following excerpts from the INTEL Users Library [3].

8008 BINARY FLOATING POINT SYSTEM ARITHMETIC AND UTILITY PACKAGE

THE ARITHMETIC AND UTILITY SUBROUTINE PACKAGE OF THE 8008 BINARY FLOATING POINT SYSTEM CONTAINS SUBROUTINES FOR PERFORMING THE BASIC ARITHMETIC AND UTILITY OPERATIONS AVAILABLE IN THE SYSTEM.

THE ARITHMETIC AND UTILITY PACKAGE IS CONTAINED IN 768 CONSECUTIVE WORDS OF MEMORY(3 BANKS OF ROM) AND DOES NOT REQUIRE THAT ANY OTHER SOFTWARE BE PRESENT IN MEMORY. THIS PACKAGE USES THE FIRST 54 WORDS OF A BANK OF RAM AS SCRATCHPAD MEMORY.

THE INDIVIDUAL SUBROUTINES INCLUDED IN THE ARITHMETIC AND UTILITY PACKAGE OF THE FLOATING POINT SYSTEM ARE DESCRIBED IN DETAIL BELOW.

8008 BINARY FLOATING POINT SYSTEM

THE 8008 BINARY FLOATING POINT SYSTEM CONSISTS OF A SET OF SUBROUTINES DESIGNED TO PERFORM OPERATIONS ON NUMERIC QUANTITIES REPRESENTED IN A SPECIFIC NOTATION. SUBROUTINES ARE PROVIDED TO PERFORM A VARIETY OF ARITHMETIC AND RELATED OPERATIONS.

THE SUBROUTINES ARE DESIGNED TO BE STORED AND EXECUTED IN READ-ONLY-MEMORY(ROM) AND REQUIRE THE FIRST PORTION OF A BANK OF READ-WRITE-MEMORY(RAM) FOR SCRATCHPAD MEMORY. THE SUBROUTINES ARE SEPARATED INTO A NUMBER OF PACKAGES. EACH CONTAINING SUBROUTINES FOR A GROUP OF RELATED OPERATIONS. THE AMOUNT OF MEMORY(ROM AND RAM) REQUIRED FOR INSTALLATION OF THE SYSTEM IS DEPENDENT UPON THE COMBINATION OF PACKAGES TO BE USED. SCRATCHPAD MEMORY IS INITIALIZED BY A UTILITY SUBROUTINE WHICH MUST BE EXECUTED BEFORE OTHER SUBROUTINES ARE EXECUTED THE FIRST TIME.

IN GENERAL, THE SUBROUTINES HAVE SIMILAR ENTRY AND EXIT CONDITIONS. UNLESS SPECIFIED DIFFERENTLY IN THE DESCRIPTION OF A SPECIFIC SUBROUTINE, THE SUBROUTINES HAVE THE FOLLOWING CHARACTERISTICS.

SUBROUTINES REQUIRING ONE OPERAND TAKE IT FROM AN INTERNAL FLOATING POINT ACCUMULATOR. SUBROUTINES REQUIRING TWO OPERANDS TAKE ONE FROM THE ACCUMULATOR AND THE OTHER FROM THE MEMORY LOCATION INDICATED BY THE CONTENTS OF THE H AND L REGISTERS UPON ENTRY. THE NUMERIC RESULT OF EACH OPERATION IS STORED IN THE ACCUMULATOR AND IS RETURNED TO THE CALLER IN THE A, B, C, AND D REGISTERS.

UPON EXIT FROM THE ARITHMETIC SUBROUTINES, THE PROPERTIES OF THE RESULT ARE INDICATED BY THE SETTINGS OF THE CONTROL BITS.

CARRY BIT = 1 THE RESULT EXCEEDS THE CAPACITY OF THE ACCUMULATOR. THE OTHER CONTROL BITS, THE CONTENTS OF THE HARWARE REGISTERS, AND THE CONTENTS OF THE ACCUMULATOR ARE MEANINGLESS. THIS SITUATION IS ALSO INDICATED BY A NON-ZERO QUANTITY BEING STORED IN A FLAG WORD.

CARRY BIT = 0 THE RESULT IS IN RANGE. THE ZERO AND SIGN BITS ARE PROPERLY SET, AND THE A, B, C, AND D REGISTERS CONTAIN A REPRESENTATION OF THE VALUE IN THE ACCUMULATOR.

ZERO BIT = 1 THE RESULT OF THE OPERATION IS ZERO OR A QUANTITY TOO SMALL TO BE REPRESENTED.

ZERO BIT = 0 THE RESULT IS NON-ZERO.

SIGN BIT = 1 THE RESULT IS NEGATIVE.

SIGN BIT = 0 THE RESULT IS POSITIVE.

DATA ARE REPRESENTED IN A NOTATION WHICH RECORDS EIGHT BITS OF EXPONENT, ONE BIT OF SIGN, AND TWENTY FOUR BITS OF FRACTION. THE LARGEST MAGNITUDE THAT CAN BE REPRESENTED IS APPROXIMATELY 3.6×10^{38} . THE SMALLEST NON-ZERO MAGNITUDE IS APPROXIMATELY 2.7×10^{-39} . THE RESOLUITION OF THE NOTATION IS APPROXIMATELY 6.2×10^{-9} , I.E., BETTER THAN SEVEN DECIMAL DIGIT PRECISION.

DATA VALUES ARE REPRESENTED IN FOUR CONSECUTIVE MEMORY WORDS WHICH MUST BE IN THE SAME BANK OF MEMORY. THE INTERPRETATION OF THESE WORDS IS SHOWN BELOW.

WORD 1

IF NON-ZERO, THIS WORD CONTAINS THE EXPONENT PLUS A BIAS OF 200 OCTAL. THE EXPONENT INDICATES THE POWER OF 2 BY WHICH THE FRACTION IS MULTIPLIED TO OBTAIN THE REPRESENTED VALUE. IF THIS WORD IS ZERO THE REPRESENTED VALUE IS ZERO AND WORDS 2, 3, AND 4 ARE MEANINGLESS.

WORD 2, BIT 7

THIS BIT INDICATES THE SIGN OF THE VALUE: 0 IF POSITIVE, 1 IF NEGATIVE.

WORD 2, BITS 6-0

THESE BITS PLUS AN ASSUMED 1 IN BIT 7 ARE THE MOST SIGNIFICANT BITS OF THE FRACTION. THE FRACTION IS STORED IN ABSOLUTE FORM (UNSIGNED) WITH THE RADIX POINT POSITIONED TO THE LEFT OF BIT 7. THE VALUE OF THE FRACTION IS THUS LESS THAN 1.0 AND EQUAL TO OR GREATER THAN 0.5.

WORD 3

THIS WORD CONTAINS THE SECOND MOST SIGNIFICANT EIGHT BITS OF THE FRACTION.

WORD 4

THIS WORD CONTAINS THE LEAST SIGNIFICANT EIGHT BITS OF THE FRACTION.

EXAMPLES OF DATA NOTATION.

VALUE	WORD1	WORD2	WORD3	WORD4	X = DONT CARE
0.0	000	XXX	XXX	XXX	X = DONT CARE
+1.0	201	000	000	000	
-1.0	201	200	000	000	
+0.1	175	114	314	314	
-100.1	207	310	063	063	

FLOATING POINT ACCUMULATOR.

THE FLOATING POINT ACCUMULATOR CONSISTS OF 5 SCRATCHPAD WORDS CONTAINING RESPECTIVELY THE ACCUMULATOR EXPONENT, THE ACCUMULATOR SIGN, AND THREE WORDS OF ACCUMULATOR FRACTION. THE EXPONENT IS RECORDED WITH A BIAS OF 200 OCTAL. AN EXPONENT WORD OF ZERO INDICATES THAT THE VALUE IN THE ACCUMULATOR IS ZERO AND THE REMAINING WORDS OF THE ACCUMULATOR ARE MEANINGLESS. THE SIGN WORD HOLDS 000 IF THE ACCUMULATOR IS NEGATIVE, 200 OCTAL IF POSITIVE. THE FRACTION IS RECORDED AS A NORMALIZED POSITIVE VALUE WITH THE RADIX POINT TO THE LEFT OF THE MOST SIGNIFICANT BIT OF THE FIRST FRACTION WORD.

OVERFLOW FLAG.

THE OVERFLOW FLAG WORD IS PROVIDED AS A CONVENIENCE TO THE USER OF THE FLOATING POINT SYSTEM. THE WORD IS INITIALLY SET TO ZERO AND MAY BE RESET TO ZERO BY THE USER AT ANY TIME. WHEN ANY OF THE SYSTEM SUBROUTINES DETECT AN OVERFLOW CONDITION THE OVERFLOW FLAG IS SET NON-ZERO. THUS THE USER MAY CLFAR THE FLAG, PERFORM A SEQUENCE OF FLOATING POINT OPERATIONS, AND CHECK THE FLAG TO DETERMINE IF AN OVERFLOW OCCURRED ANYWHERE IN THE SEQUENCE.

8008 BINARY FLOATING POINT SYSTEM

THE 8008 BINARY FLOATING POINT SYSTEM CONSISTS OF A SET OF SUBROUTINES DESIGNED TO PERFORM ARITHMETIC OPERATIONS ON NUMERIC QUANTITIES REPRESENTED IN MEMORY.

EACH NUMERIC QUANTITY OCCUPIES FOUR CONSECUTIVE WORDS (32 BITS) OF MEMORY. THE LARGEST MAGNITUDE THAT CAN BE REPRESENTED IS APPROXIMATELY 3.6 TIMES TEN TO THE 39TH POWER. THE SMALLEST NON-ZERO MAGNITUDE THAT CAN BE REPRESENTED IS APPROXIMATELY 2.7 TIMES TEN TO THE MINUS 39TH POWER. EACH NUMERIC QUANTITY IS REPRESENTED WITH A PRECISION OF ONE PART IN APPROXIMATELY 16,000,000.

THE SOFTWARE CONSTITUTING THE FLOATING POINT SYSTEM IS DIVIDED INTO TWO SECTIONS. EACH OF WHICH OCCUPIES 3 BANKS OF ROM OR RAM. SECTION 1 IS INDEPENDENT OF OTHER SOFTWARE. SECTION 2 IS OPERABLE ONLY WHEN SECTION 1 IS AVAILABLE IN MEMORY. IN ADDITION TO MEMORY REQUIRED FOR PROGRAM, 63 WORDS OF RAM ARE USED AS SCRAPCHPAD.

SOFTWARE SECTION 1 CONTAINS THE FOLLOWING SUBROUTINES:

- L00 - LOAD SPECIFIED DATA INTO THE FLOATING POINT ACCUMULATOR.
- ADD - ADD SPECIFIED DATA TO THE FLOATING POINT ACCUMULATOR.
- SUB - SUBTRACT SPECIFIED DATA FROM THE FLOATING POINT ACCUMULATOR.
- MUL - MULTIPLY SPECIFIED DATA TIMES THE FLOATING POINT ACCUMULATOR.
- DIV - DIVIDE SPECIFIED DATA INTO THE FLOATING POINT ACCUMULATOR.
- TST - SET CONTROL BITS TO INDICATE ATTRIBUTES OF THE FLOATING POINT ACCUMULATOR.
- CHS - CHANGE THE SIGN OF THE FLOATING POINT ACCUMULATOR.
- ABS - SET THE SIGN OF THE FLOATING POINT ACCUMULATOR POSITIVE.
- STR - STORE IN SPECIFIED MEMORY THE VALUE IN THE REGISTERS AS RETURNED BY OTHER SUBROUTINES.
- INIT - MOVE CODE FROM ROM TO RAM IN PREPARATION FOR EXECUTION OF THE MUL AND DIV SUBROUTINES.

SOFTWARE SECTION 2 CONTAINS SUBROUTINES WHICH ARE USED TO CONVERT DATA BETWEEN THE BINARY FLOATING POINT FORMAT AND A DECIMAL FORMAT SUITABLE FOR ENTRY OR DISPLAY ON INPUT/OUTPUT EQUIPMENT. THE DECIMAL FORMAT IS STORED IN MEMORY AS A SERIES OF CHARACTERS. RELATIVELY SIMPLE INPUT/OUTPUT ROUTINES MAY BE USED TO INTERFACE THE MEMORY-RESIDENT CHARACTER STRINGS WITH ANY TYPE OF PHYSICAL I/O DEVICE.

THE CHARACTER STRINGS CONSIST OF BCD REPRESENTATIONS OF DECIMAL DIGITS AND ARBITRARY REPRESENTATIONS OF ., -, +, AN EXPONENTIAL SIGN(LETTER E), AND SPACE. CHARACTER STRINGS MAY NOT CROSS MEMORY BANK HOUNDARIES. AN INPUT STRING IS THEREFORE LIMITED TO 256 CHARACTERS. AN OUTPUT STRING CONSISTS OF 13 CHARACTFRS.

THE OUT SUBROUTINE GENERATES CHARACTER STRINGS IN 2 FORMATS: THE CHOICE OF FORMAT DEPENDS ON THE MAGNITUDE OF THE VALUE REPRESENTED. MAGNITUDES BETWEEN .1000000 AND 9999999. ARE REPRESENTED BY A SPACE OR MINUS SIGN, SEVEN DECIMAL DIGITS AND AN APPROPRIATELY POSITIONED DECIMAL POINT, AND FOUR SPACES. MAGNITUDES OUTSIDE THE RANGE ARE REPRESENTED BY A SPACE OR MINUS SIGN, A VALUE BETWEEN 1.000000 AND 9.999999, AN EXPONENTIAL SIGN, AND A SIGNED TWO-DIGIT POWER OF TEN.

THE INP SUBROUTINE CONVERTS CHARACTER STRINGS IN EITHER OF THE ABOVE FORMATS, OR A MODIFIED VERSION OF THEM. THE LEADING SIGN MAY BE INCLUDED OR OMITTED. ANY NUMBER OF DIGITS MAY BE USED TO INDICATE THE VALUE, WITH OR WITHOUT AN INCLUDED DECIMAL POINT. IF A POWER-OF-TEN MULTIPLIER IS INDICATED IT MAY BE SIGNED OR UNSIGNED AND MAY CONTAIN ONE OR TWO DIGITS. AN INPUT STRING IS TERMINATED BY THE FIRST CHARACTER WHICH DEPARTS FROM THE FORMAT.

THE FOLLOWING ARE EXAMPLES OF INPUT AND CORRESPONDING OUTPUT CHARACTFR STRINGS.

3.141593	3.141543
- .000000000001	- 1.000000F-13
+ 1.6E5	160000.0
123456789	1.234568E+08
54321E-10	5.432100E-06
-2718281828F-9	-2.718282

8008 BINARY FLOATING POINT SYSTEM FORMAT CONVERSION PACKAGE

THE FORMAT CONVERSION PACKAGE OF THE 8008 BINARY FLOATING POINT SYSTEM CONTAINS SUBROUTINES FOR THE CONVERSION OF DATA BETWEEN THE FLOATING POINT SYSTEM NOTATION AND TWO OTHER FORMATS. THE NON-FLOATING-POINT FORMATS ARE FOUR WORD FIXED POINT FORMAT AND VARIABLE LENGTH CHARACTER STRING FORMAT.

THE FORMAT CONVERSION PACKAGE IS CONTAINED IN 512 CONSECUTIVE WORDS OF MEMORY (2 BANKS OF ROM) AND REQUIRES FOR ITS EXECUTION THAT THE ARITHMETIC AND UTILITY PACKAGE BE AVAILABLE IN MEMORY. THE COMBINATION OF THIS PACKAGE AND THE ARITHMETIC AND UTILITY PACKAGE USES THE FIRST 64 WORDS OF A BANK OF RAM AS SCRATCHPAD MEMORY.

THE FIXED POINT FORMAT DATA PROCESSED BY THIS PACKAGE CONSIST OF 32 BIT BINARY NUMBERS OCCUPYING FOUR WORDS. TWOS COMPLEMENT NOTATION IS USED TO REPRESENT NEGATIVE VALUES.

THE POSITION OF THE BINARY POINT RELATIVE TO THE BITS REPRESENTING THE VALUE IS DENOTED BY A BINARY SCALING FACTOR. THE BINARY SCALING FACTOR IS NOT NORMALLY RECORDED IN THE COMPUTER, BUT WHEN A FORMAT CONVERSION SUBROUTINE IS CALLED THE BINARY SCALING FACTOR MUST BE SPECIFIED (IN THE E REGISTER). A BINARY SCALING FACTOR OF ZERO INDICATES THE BINARY POINT IS IMMEDIATELY TO THE LEFT OF THE MOST SIGNIFICANT OF THE 32 BITS REPRESENTING THE VALUE. A BINARY SCALING FACTOR OF 32 INDICATES THE BINARY POINT IS IMMEDIATELY TO THE RIGHT OF THE LEAST SIGNIFICANT BIT. THE PERMISSIBLE RANGE OF THE BINARY SCALING FACTOR IS -128 (200 OCTAL) TO +127 (177 OCTAL).

THE CHARACTER STRING FORMAT DATA PROCESSED BY THIS PACKAGE CONSIST OF BINARY REPRESENTATIONS OF CHARACTERS OCCUPYING CONSECUTIVE WORDS OF MEMORY. A CHARACTER STRING MAY NOT CROSS A MEMORY BANK BOUNDARY. THE CHARACTERS WHICH MAY BE INCLUDED IN A CHARACTER STRING, AND THE CORRESPONDING OCTAL REPRESENTATIONS ARE LISTED BELOW.

DECIMAL DIGITS	0008-0118 BCD DIGITS
SPACE	3608
.	3738 PLUS
-	3758 MINUS
.	3768 DECIMAL POINT
	EXponential SIGN 0258 LETTER E

(THESE OCTAL REPRESENTATIONS CAN BE CONVERTED TO THE CORRESPONDING ASCII CHARACTERS BY ADDING 0408 TO EACH)

THE OUT SUBROUTINE GENERATES CHARACTER STRINGS IN TWO FORMATS, EACH CONSISTING OF 17 CHARACTERS. THE FORMAT USED IN A SPECIFIC CASE IS DEPENDENT UPON THE MAGNITUDE OF THE VALUE REPRESENTED.

SIGNIFICANCE INDEX

THE FLOATING POINT ADD AND SUBTRACT SUBROUTINES RETURN A SIGNIFICANCE INDEX TO THE USER WHEN THE RESULT OF THE OPERATION IS NOT ZERO. THIS INDEX GIVES AN INDICATION OF THE CHANGE IN THE VALUE OF THE ACCUMULATOR EXPONENT AS A RESULT OF THE ARITHMETIC OPERATION PERFORMED. IT IS USED PRIMARILY FOR COMPARISON OF TWO VALUES WHICH ARE EXPECTED TO BE EQUAL, BUT WHICH MAY DIFFER BY A SMALL AMOUNT DUE TO MEASUREMENT OR ROUND-OFF ERRORS. AS AN EXAMPLE, A SIGNIFICANCE INDEX OF 354 OCTAL (-20 DECIMAL) INDICATES THAT THE RESULT OF THE OPERATION IS SMALLER THAN THE OPERANDS BY A FACTOR OF APPROXIMATELY ONE MILLION (2^{20}).
THE FLOATING POINT TEST, COMPLEMENT AND ABSOLUTE SUBROUTINES RETURN THE SIGNIFICANCE INDEX FROM AN IMMEDIATELY PRECEDING ADD OR SUBTRACT OPERATION.

HEXADECIMAL NOTATION [4]

Hexadecimal Notation is a convenient way of representing all sixteen combinations of four bits of information with a single character. The most popular character set for displaying Hexadecimal data are the characters 0 thru 9 to represent the binary combinations 0 thru 9 and A B C D E and F to represent the binary combinations 10 thru 15.

Hexadecimal Characters	Binary Bits 8 4 2 1	Decimal Characters
0	0 0 0 0	0
1	0 0 0 1	1
2	0 0 1 0	2
3	0 0 1 1	3
4	0 1 0 0	4
5	0 1 0 1	5
6	0 1 1 0	6
7	0 1 1 1	7
8	1 0 0 0	8
9	1 0 0 1	9
A	1 0 1 0	10
B	1 0 1 1	11
C	1 1 0 0	12
D	1 1 0 1	13
E	1 1 1 0	14
F	1 1 1 1	15

As an extension of this technique, all 256 combinations of 8 bits can be represented by two hexadecimal characters as shown in the following examples.

Hexadecimal Characters	Binary Bits	Decimal Characters
00	0000 0000	0
01	0000 0001	1
3E	0011 1110	52
42	0100 0010	66
E1	1110 0001	225
FF	1111 1111	255

Going further, all 4096 combinations of 12 bits can be represented by three Hexadecimal characters. This technique can be extended indefinitely, adding a Hexadecimal character for each four bits of information.

LIST OF REFERENCES

1. Russell, R. W., A Design Study for a Center Plate Mount for a Wind-tunnel Model, M. S. Thesis, Naval Postgraduate School, Monterey, California, 1977.
2. Englehardt C. D., Data Acquisition System for Unsteady Aerodynamic Investigation, M. S. Thesis, Naval Postgraduate School, Monterey, California, 1977.
3. Intel Corporation, MCS User's Library, p. 8-7, Intel, 1972.
4. Biewer, M., The Designers Guide To Programmed Logic, p. 1-1 to 6-0, Prolog Corporation, 1975.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2. Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3. Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
4. CDR David Caswell, USN, Code 67C1 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
5. Professor L. V. Schmidt, Code 67Sx Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
6. LT John David Casko, USN 8 Meyers Street Putnam, Connecticut 06260	1

