Logic Circuit (2015)

Unit 12. Registers & Counters

Spring 2015

School of Electrical Engineering

Prof. Jong-Myon Kim

Objectives – To Learn

- 1. Explain the operation of registers. Understand how to transfer data between registers using tri-state bus.
- 2. Explain the shift register operation, how to build them and analyze operation. Construct a timing diagram for a shift register.
- 3. Explain the operation of binary counters, how to build them using F/F and gates and analyze operation.
- 4. Given the present state and desired next state of F/F, determine the required F/F inputs.
- 5. Given the desired counting sequence for a counter, derive F/F input equations.
- 6. Explain the procedures used for deriving F/F input equation.
- 7. Construct a timing diagram for a counter by tracing signals through the circuit.

Counters

- **♦** Counters
 - Simplest sequential networks
 - ❖ usually constructed from 2 or more F/F's
- Synchronous counter
 - operation of F/F's are synchronized by common input pulse
- Asynchronous counter
 - example : ripple counter the state change of current F/F affects the next F/F

Sync Binary Counter using T F/F

- ◆ Design a binary counter using 3 T F/F's to count clock pulses
- Counting sequence:
 - ❖ CBA: 000, 001, 010, 011, 100, 101, 110, 111, 000
- ◆ 1. Design a counter by inspection of the counting sequence
- Observe:
 - ❖ A changes state every time a pulse is received
 - ❖ B changes state every time a pulse is received only if A=1
 - ❖ C changes state every time a pulse is received only if B=A=1
- solution as in Fig 12-13
- Verify the operation by tracing signals

Redesign using a State Table

State Table for Binary Counter (Table 12-2)

Present State	Next State	Flip - Flop Inputs
C B A	C^+ B^+ A^+	T_C T_B T_A
0 0 0	0 0 1	0 0 1
0 0 1	0 1 0	0 1 1
0 1 0	0 1 1	0 0 1
0 1 1	1 0 0	1 1 1
1 0 0	1 0 1	0 0 1
1 0 1	1 1 0	0 1 1
1 1 0	1 1 1	0 0 1
1 1 1	0 0 0	1 1 1

Redesign using a State Table

- How to create the table in the previous slide?
 - ❖ If A and A+ differs, the status of Flip-Flop A is changed. So, T_A=1.
 Variable B and C are calculated from similar way of A
- Make a K-map from a state table : Fig 12-14(below)
- ◆ Derive F/F input equations

$$\star$$
 T_C=AB, T_B=A, T_A=1

same result as previous

Design of Binary Counters

Binary Counter with D Flip-Flops using conversion of D to T (Fig 11-24(b)

Redesign of Binary Counter

The D input equations derived from the maps are

$$D_{A} = A^{+} = A^{'}$$
 $D_{B} = B^{+} = BA^{'} + B^{'}A = B \oplus A$
 $D_{C} = C^{+} = C^{'}BA + CB^{'} + CA^{'} = C^{'}BA + C(BA)^{'} = C \oplus BA$

- ◆ Compare the above results with Figure 12-15
- ◆ Same Diagram?
- ightharpoonup why?? ightharpoonup A xor 1 = A'

The sequence of states of a counter is not in straight binary order.

State Graph for Counter

(Figure 12-21)

State Table for Figure 21.21 (Table 12-3)

C	В	A	\mathbf{C}^{+}	\mathbf{B}^{+}	A^{+}
0	0	0	1	0	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	-	-	-
1	1	0	-	-	-
1	1	1	0	1	0

- ◆ State graph
 - ❖ 임의의 순서를 나타냄
- ◆ State table
 - note : unspecified next state
 - ❖ 이전 예제처럼 state table을 완성하거나(as in Table 12-2)
 - ❖ next-state map을 먼저 plot한 후 이 map으로부터 T_A, T_B, T_C 유도
 - ❖ 편리한 방법

The next-state maps in Figure 12-22(a) are easily plotted from inspection of Table 12-3 \rightarrow <u>Use T-F/F</u>

Figure 12-22

(a) Next-state maps for Table 12-3

(b) Derivation of T inputs

- make next state maps how?
- derive T input maps from next-state map
- ◆ T=1 whenever Q+ is different from Q
- From the below table

$$T=(Q^+)'$$
 when $Q=1$

◆ Therefore, Copy Q=0 half, complement Q=1 half

Q	Q^{+}	T	
0	0	0	
0	1	1	$T = Q^+ \oplus Q$
1	0	1	
1	1	0	

Counter Using T Flip-Flops (Figure 12-23)

Timing Diagram for Figure 12-23 (Figure 12-24)

Figure 12-23

State Graph for

Counter

(Figure 12-25)

C=0, B=0, A=1 인경우

Tc=Tb=1, Ta=0

=>From Fig. 12-23

Procedure to design a counter using T F/F's:

- 1.Form a state table which gives the next F/F states for each combination of present F/F states.
- 2.Plot the next-state maps from the table.
- 3.Plot a T input map for each F/F.
- 4. Find the T input equations from the maps and realize the circuit.

Counter Design using D F/F

- ◆ Counting sequence : same as in Fig 12-21
- ◆ Q⁺=D → D input map is identical with next-state map
- $\begin{array}{l} \bullet \quad \mathsf{D}_{\mathsf{C}} = \mathsf{C}^{+} = \mathsf{B}' \\ \mathsf{D}_{\mathsf{B}} = \mathsf{B}^{+} = \mathsf{C} + \mathsf{B} \mathsf{A}' \\ \mathsf{D}_{\mathsf{A}} = \mathsf{A}^{+} = \mathsf{C} \mathsf{A}' + \mathsf{B} \mathsf{A}' = \mathsf{A}' (\mathsf{C} + \mathsf{B}) \end{array}$
- ♦ Result : Fig 12-26

Fig 12-26

Redesign Binary Counter Using D F/F's

- ◆ 1st method : by converting F/F's ™ Result Fig 12-15
- 2nd method:
 - ❖ State table (Table 12-2)
 - Next state maps
 - Flip-flop input maps
 - Flip-flop input equations
- For D flip-flops, next state map = flip-flop input map (since Q+=D)

Karnaugh Maps for D Flip-Flops from Table 12-2 (Figure 12-16)

Present State	Next State	Flip - Flop Inputs	C	$\setminus C$	C
C B A	C^+ B^+ A^+	T_C T_B T_A	BA	$BA \longrightarrow 0$	BA
0 0 0	0 0 1	0 0 1	00 0 1	00 0 0	00 1 1
0 0 1	0 1 0	0 1 1	0.1		0.1
0 1 0	0 1 1	0 0 1	01 0 1	01 1 1	01 0 0
0 1 1	1 0 0	1 1 1	11 (1) 0	11 0 0	TI 0 0
1 0 0	1 0 1	0 0 1	11 1 0	11 0 0	11 0 0
1 0 1	1 1 0	0 1 1	10 0 1	10 (1 1)	10 1 1
1 1 0	1 1 1	0 0 1			
1 1 1	0 0 0	1 1 1	D_C	D_B	D_A

Counter Design using S-R and J-K F/Fs

S	S-R FI	li <mark>p-Fl</mark>	op Inp	outs (Tab	le 12	2-5)						
S	R	Q	Q^{+}		Q	$Q^{\scriptscriptstyle +}$	S	R	Q	$Q^{\scriptscriptstyle +}$	S	R
0	0	0	0		0	0	$\int 0$	0	0	0	0	×
0	0	1	1				$\mid \int 0$	1	0	1	1	0
0	1	0	0		0	1	1	0	1	0	0	1
0	1	1	0		1	0	0	1	1	1	×	0
1	0	0	1		1	1	$\begin{bmatrix} 0 \end{bmatrix}$	0	-	_		J
1	0	1	1		-	•	1	0				
1	1	0	-)	Inputs not			1	O				
1	1	1	_ }	allowed								
		(a)					(b)			(c)		

Counter Design Using S-R F/Fs

With columns added for the S and R flip-flop inputs (Table 12-6)

Q	$Q^{\scriptscriptstyle+}$	S	R
0	0	0	×
0	1	1	0
1	0	0	1

C	В	\boldsymbol{A}	C^+	$B^{\scriptscriptstyle +}$	A^+	S_{C}	R_{C}	$S_{\scriptscriptstyle B}$	$R_{\scriptscriptstyle B}$	S_A	R_A
0	0	0	1	0	0	1	0	0	×	0	×
0	0	1	-	-	-	×	×	×	×	×	×
0	1	0	0	1	1	0	×	×	0	1	0
0	1	1	0	0	0	0	×	0	1	0	1
1	0	0	1	1	1	×	0	1	0	1	0
1	0	1	-	-	-	×	×	×	×	×	×
1	1	0	_	-	-	×	×	×	×	×	×
1	1	1	0	1	0	0	1	×	0	0	1

Counter Design using S-R Flip-Flops

BA

- **♦** S
 - ❖ Q=0 half : copy
 - Q=1 half : replace 1 with X
- **♦** R
 - Q=0 half : replace 0 with X, fill 0
 - ❖ Q=1 half : complement

(a) Next-state maps

(b) S-R flip-flop equations

Counter Design Using J-K Flip-Flops

J-K Flip-Flop Inputs (Table 12-7)

J	K	Q	$Q^{\scriptscriptstyle +}$	Q	$Q^{\scriptscriptstyle +}$	J	K
0	0	0	0	0	0	$\left\{ \begin{smallmatrix} 0 \\ 0 \end{smallmatrix} \right.$	0
0	0	1	1			$\int 0$	1
0	1		0	0	1	$\left\{\begin{array}{c}1\\1\end{array}\right.$	0
0	1	1	0				
1	0	0	1	1	0	$\left\{ egin{array}{l} 0 \\ 1 \end{array} ight.$	1
1	0	1	1			$\left\{\begin{array}{c}1\end{array}\right.$	1
1	1		1	1	1		
1	1	1	0			$\left\{egin{array}{c} 0 \\ 1 \end{array} ight.$	0

(a)

(b)

(c)

Counter Design using J-K Flip-Flops

With colu

											_ 0	O	O	×
umi	ns add	led for	the .	J and	K flip-	-flop	input	s (Ta	ble 1	2-8)	0	1	1	×
											1	0	×	1
' I	3 A	C^+	B^{+}	A^{+}	$oldsymbol{J}_C$	K_{C}	$J_{\scriptscriptstyle B}$	K_{B}	$J_{\scriptscriptstyle A}$	K_A	1	1	×	0
($\overline{0}$	1	0	0	1	\ \	0	Y	\mathbf{O}					

\boldsymbol{C}	В	\boldsymbol{A}	C^{+}	$B^{\scriptscriptstyle +}$	A^{+}	$J_{\scriptscriptstyle C}$	K_{C}	$J_{\scriptscriptstyle B}$	$K_{\scriptscriptstyle B}$	$J_{\scriptscriptstyle A}$	K_{A}
0	0	0	1	0	0	1	×	0	×	0	×
0	0	1	-	-	-	×	×	×	×	×	×
0	1	0	0	1	1	0	×	×	0	1	×
0	1	1	0	0	0	0	×	×	1	×	1
1	0	0	1	1	1	×	0	1	×	1	×
1	0	1	-	-	-	×	×	×	×	×	×
1	1	0	-	-	-	×	×	×	×	×	×
1	1	1	0	1	0	×	1	×	0	×	1

Counter Design using J-K Flip-Flops

♦ J

❖ Q=0 half : copy

❖ Q=1 half : X

◆ K

❖ Q=0 half : X

Q=1 half : complement

(a) Next-state maps

(b) J-K flip-flop input equations

Counter of Figure 12-21 Using J-K Flip-Flops (Figure 12-28)

(c) Logic circuit (omitting the feedback lines)

Derivation of Flip-Flop Input Equations-Summary

Determination of Flip-Flop Input Equations from Next-State Equations Using Karnaugh Maps (Table 12-9)

			Q:	Q = 0		= 1	Rules for Forming Input Map From Next-State Map*		
Type of		nput	$Q^+ = 0$	Q ⁺ = 1	$Q^{+} = 0$	Q ⁺ = 1	Q = 0 Half of Map	Q = 1 Half of Map	
Delay		D	0	1	0	1	no change	no change	
Trigger		T	0	1	\1	0	no change	complement	
Set-Re	set	S	0	1	0	×	no change	replace 1's with X's**	
		R	X	0	4	0	replace 0's with X's**	complement	
J-K		J	0	1	×	X	no change	fill in with X's	
	Į,	K	X	X	l t	X 0	fill in with X's	complement	

Q+ means the next state of Q

X is a don't care

^{*}Always copy X's from the next-state map onto the input maps first.

[&]quot;Fill in the remaining squares with 0's.

Table 12-9

- **◆** T
 - ❖ Q=0 half : copy
 - ❖ Q=1 half : complement
- **♦** S
 - ❖ Q=0 half : copy
 - Q=1 half : replace 1 with X
- **♦** R
 - Q=0 half : replace 0 with X, fill 0
 - ❖ Q=1 half : complement
- **♦** J
- ❖ Q=0 half : copy
- **❖** Q=1 half : X
- **♦** K
 - ❖ Q=0 half : X
 - ❖ Q=1 half : complement

Next-state map

AB Q	0	1	
00	0	1]
01	1	0	1
11	0	0	1
10	1	X	
D = Q'	A'B -	- QB	' + AB'

D input map

T = A'B + AB' + QB

T input map

00

01

11

10

Х

K = B

S = AB' + Q'A'B

S-R input maps

J-K input maps

Derivation of Flip-Flop Input Equations

Derivation of
Flip-Flop Input
Equations Using
4-Variable Maps
(Figure 12-29)

(a)

Analysis of Un-Down Counter

State Graph and Table for Up-Down counter (Figure 12-17)

When U=1, Up counting

When D=1, Down counting

$C^+B^+A^+$	
U	D
001	111
010	000
011	001
100	010
101	011
110	100
111	101
000	110
	U 001 010 011 100 101 110 111

Up-Down Counter

The up-down counter can be implemented using D F/F and gate

Binary Up-Down Counter

(Figure 12-18)

Up-Down Counter

The corresponding logic equations are

$$D_{A} = A^{+} = A \oplus (U + D)$$

$$D_{B} = B^{+} = B \oplus (UA + DA^{'})$$

$$D_{C} = C^{+} = C \oplus (UBA + DB^{'}A^{'})$$

When U=1 and D=0, \rightarrow Eq (12-2)

U=0 and D=1, these equations reduce to

$$D_A = A^+ = A \oplus 1 = A^-$$
 (A change state every clock cycle)
 $D_B = B^+ = B \oplus A^-$ (B change state when $A = 0$)
 $D_C = C^+ = C \oplus B^-A^-$ (C change state when $B = A = 0$)

Loadable Counter

Loadable Counter with Count Enable (Figure 12-19)

Loadable counter (Figure 12-19(a))

Summarizes the counter operation (Figure 12-19(b))

ClrN	Ld	Ct	C^{+}	$B^{\scriptscriptstyle +}$	A^{+}	
0		×				
1	1	×	D_{C}	$D_{\scriptscriptstyle B}$	$D_{\scriptscriptstyle A}$	(load) (no change)
1	0	0	C	В	\boldsymbol{A}	(no change)
1	0	1	pre	sent	state + 1	

Loadable Counter

- **♦** Ld=1
 - ❖ MUX selects D input
- ◆ Ld=0 & Ct=1
 - MUX selects one of F/F output

Design of Binary Counters

The next-state equations for the counter of Figure 12-20

$$A^{+} = D_{A} = (Ld^{'} \cdot A + Ld \cdot D_{Ain}) \oplus Ld^{'} \cdot Ct$$

$$B^{+} = D_{B} = (Ld^{'} \cdot B + Ld \cdot D_{Bin}) \oplus Ld^{'} \cdot Ct \cdot A$$

$$C^{+} = D_{C} = (Ld^{'} \cdot C + Ld \cdot D_{Cin}) \oplus Ld^{'} \cdot Ct \cdot B \cdot A$$

4-Bit D Flip-Flop Registers with Data, Load, Clear, and Clock inputs (Figure 12-1)

Grouped together D F/F
Using gated clock 12-1(a)

F/F with clock enable Figure 12-1(b)

Symbol for the 4-bit register using bus notation Figure 12-1(c)

Data Transfer Between Registers

Logic Diagram for 8-Bit Register with Tri-State Output

Data Transfer Using a Tri-State Bus

How data can be transferred?

The operation can be summarized as follows:

If EF = 00, A is stored in G(or H).

If EF = 01, B is stored in G(or H).

If EF = 10, C is stored in G(or H).

If EF = 11, D is stored in G(or H).

Parallel Adder with Accumulator

N-Bit Parallel Adder with Accumulator

Adder Cell with Multiplexer (Figure 12-6)

Right-Shift Register

0101→1010→1101→ 0110→1011

8-Bit Serial-in, Serial-out Shift Register

Typical Timing Diagram for Shift Register

Parallel-in, Parallel-Out Right Shift Register

(a) Block diagram

(b) Implementation using flip-flops and MUXes

Shift Register Operation (Table 12-1)

Inp	out	Next State	Action
Sh(Shift)	L(Load)	Q_3^+ Q_2^+ Q_1^+ Q_0^+	
0	0	Q_3 Q_2 Q_1 Q_0	no change
0	1	D_3 D_2 D_1 D_0	load
1	×	$SI Q_3 Q_2 Q_1$	right shift

Inp	out	Next State	Action
Sh(Shift)	L(Load)	Q_3^+ Q_2^+ Q_1^+ Q_0^+	
0	0	Q_3 Q_2 Q_1 Q_0	no change
0	1	D_3 D_2 D_1 D_0	load
1	×	$SI Q_3 Q_2 Q_1$	right shift

The Next-state equations for the F/F are

$$\begin{aligned} Q_{3}^{+} &= Sh^{'} \cdot L^{'} \cdot Q_{3} + Sh^{'} \cdot L \cdot D_{3} + Sh \cdot SI \\ Q_{2}^{+} &= Sh^{'} \cdot L^{'} \cdot Q_{2} + Sh^{'} \cdot L \cdot D_{2} + Sh \cdot Q_{3} \\ Q_{1}^{+} &= Sh^{'} \cdot L^{'} \cdot Q_{1} + Sh^{'} \cdot L \cdot D_{1} + Sh \cdot Q_{2} \\ Q_{0}^{+} &= Sh^{'} \cdot L^{'} \cdot Q_{0} + Sh^{'} \cdot L \cdot D_{0} + Sh \cdot Q_{1} \end{aligned}$$

Timing Diagram for Shift Register

Shift Register with Inverted Feedback (Figure 12-12) → Johnson Counter

(a) Flip-flop connections

000 010 011 110 101 101

(b) State graph

A 3-bit shift register 12-12(a)

Successive states 12-12(b)

$$.000 \Rightarrow 100 \Rightarrow 110 \Rightarrow 111 \Rightarrow 011 \Rightarrow 001 \Rightarrow 000 \dots$$

 $.010 \Rightarrow 101 \Rightarrow 010 \Rightarrow 101$