CURS V ELEMENTE DE TEORIA GRUPURILOR

§ 2. SUBGRUPURI

Subgrupuri

Fie G un grup în notație multiplicativă (G x G \rightarrow G, (x, y) \rightarrow xy) și H o submulțime nevidă a sa. Dacă oricare ar fi x, y \in H, avem xy \in H (produsul efectuat conform operației algebrice din G), atunci se obține o funcție H x H \rightarrow H, (x, y) \rightarrow xy, adică o operație algebrică pe H numită *operația indusă* pe H de operația din G. În acest caz se mai spune că operația din G induce o operație pe H.

Definiția 2.1. Se spune că o submulțime nevidă H a grupului G este *subgrup* al lui G, dacă operația algebrică din G induce pe H o operație algebrică față de care H este grup.

Notație. $H \leq G$

Propoziția 2.2. Fie G un grup și H o submulțime nevidă a sa. Atunci următoarele afirmații sunt echivalente:

- 1) H este subgrup al lui G;
- 2) i) Oricare ar fi $x, y \in H$, produsul xy (efectuat în G) este un element din H;
 - ii) $e \in H$ (e fiind elementul neutru al lui G);
 - iii) Oricare ar fi $x \in H$, x^{-1} (inversul lui x în G) aparține lui H;
- 3) Oricare ar fi x, y \in H, produsul xy⁻¹ (efectuat în G) aparține lui H.

Demonstrație. 1) \Rightarrow 2) Afirmația i) rezultă din faptul că operația din G induce pe H o operație algebrică. H fiind subgrup are un element neutru notat e'. Cum e este elementul neutru al lui G, avem în G relația

$$ee' = e' = e'e'$$
.

Simplificând la dreapta relația ee' = e'e' (adică o înmulțim la dreapta cu $(e')^{-1}$) obținem e = e'.

Fie $x \in H$, x^{-1} inversul în G al lui x, iar x' inversul în H al lui x. Atunci, conform celor de mai înainte, avem în G

$$xx^{-1} = xx' = e$$
.

Simplificând la stânga această relație, obținem $x' = x^{-1}$, deci $x^{-1} \in H$.

- 2) \Rightarrow 3) Dacă x, y \in H, conform cu iii), rezultă y $^{-1} \in$ H și din i), xy $^{-1} \in$ H.
- 3) \Rightarrow 2) Dacă $x \in H$, atunci $xx^{-1} = e \in H$ și $x^{-1} = ex^{-1} \in H$. De asemenea, dacă $y \in H$, cum $y^{-1} \in H$, se obține

$$xy = x(y^{-1})^{-1} \in H.$$

 $2) \Rightarrow 1)$ Asociativitatea operației de pe H rezultă din faptul că operația lui G este asociativă. Restul este imediat.

Observație. Dacă G este un grup abelian, orice subgrup al său este abelian.

Exemple.

- 1) Dacă G este un grup, atunci G însuşi este un subgrup al lui G, numit *subgrupul total* al lui G. De asemenea submulțimea {e} a lui G este subgrup numit *subgrupul trivial* al lui G. Subgrupul total și subgrupul trivial al unui grup G se numesc *subgrupuri improprii* ale lui G. Orice subgrup diferit de acestea se numește *subgrup propriu*.
- 2) Grupul aditiv \mathbf{Z} al numerelor întregi este subgrup al grupului aditiv \mathbf{Q} al numerelor raționale; grupul aditiv \mathbf{Q} este subgrup al grupului aditiv \mathbf{R} al numerelor reale; grupul aditiv \mathbf{R} este subgrup al grupului aditiv \mathbf{C} al numerelor complexe.

De asemenea, grupul multiplicativ \mathbf{Q}^* este subgrup al grupului multiplicativ \mathbf{R}^* iar ambele sunt subgrupuri ale grupului multiplicativ \mathbf{C}^* .

- 3) Grupul multiplicativ $\{-1, 1\}$ este subgrup al grupului multiplicativ \mathbf{Q}^* , iar grupul multiplicativ $\{-1, 1, -i, i\}$ este subgrup al grupului multiplicativ \mathbf{C}^* . Mai general, U_n este subgrup al grupului multiplicativ \mathbf{C}^* . (De fapt, orice subgrup finit al lui \mathbf{C}^* este egal cu un U_n .)
- 4) Fie M o mulțime, N \subset M o submulțime proprie a lui M, iar S(M) grupul permutărilor mulțimii M. Mulțimea H = $\{f \in S(M) \mid f(x) = x \text{ oricare ar fi } x \in M \setminus N\}$ este un subgrup al lui S(M).
- 5) Mulțimea automorfismelor interioare Int(G) ale unui grup G este subgrup al grupului automorfismelor Aut(G).
- 6) Fie \mathbf{Z} grupul aditiv al numerelor întregi, iar $n \in \mathbf{Z}$ un număr întreg oarecare. Submulțimea $n\mathbf{Z} = \{nk \mid k \in \mathbf{Z}\}$ a lui \mathbf{Z} este un subgrup al lui \mathbf{Z} . Într-adevăr, dacă $x, y \in \mathbf{Z}$, x = nh și y = nk cu $h, k \in \mathbf{Z}$, atunci

$$x - y = n(h - k) \in n\mathbf{Z}$$

și conform punctului 3) al propoziției precedente rezultă că n \mathbf{Z} este subgrup al lui \mathbf{Z} . Observăm că n $\mathbf{Z} = (-n)\mathbf{Z}$. Mai mult, propoziția următoare ne arată că orice subgrup al lui \mathbf{Z} este de acest tip.

Propoziția 2.3. Dacă H este un subgrup oarecare al grupului aditiv \mathbb{Z} , atunci există $n \in \mathbb{Z}$, $n \ge 0$, astfel încât $H = n\mathbb{Z}$.

Demonstrație. Fie $H \subseteq \mathbb{Z}$ un subgrup oarecare al grupului aditiv \mathbb{Z} .

Dacă $H = \{0\}$, adică H este subgrupul nul, atunci $H = 0\mathbf{Z}$.

Dacă $H \neq \{0\}$, atunci există $x \in H$, $x \neq 0$. Datorită punctului 2) al propoziției precedente, $-x \in H$. Rezultă că H conține numere întregi pozitive. Fie n cel mai mic număr întreg pozitiv din H. Avem că $0 \in H$, $n \in H$, $2n = n + n \in H$ și, în general, $kn \in H$ oricare ar fi k număr natural, după cum rezultă din punctul 1) al propoziției precedente. De asemenea, din punctul 2) al aceleiași propoziții, $kn \in H$ oricare ar fi k întreg negativ, deci $n\mathbf{Z} \subset H$.

Fie acum $x \in H$ un element oarecare. Conform teoremei împărțirii cu rest pentru numere întregi putem scrie x = nq + r, unde $0 \le r < n$. Deoarece x și nq sunt din H, rezultă că r = x - nq aparține lui H. Cum $0 \le r < n$, iar n este cel mai mic număr natural nenul din H, rezultă că r = 0, deci $x = nq \in n\mathbf{Z}$.

Aşadar $H \subseteq n\mathbb{Z}$, de unde $H = n\mathbb{Z}$.

Exercițiu. Determinați subgrupurile grupului lui Klein $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Nucleul și imaginea unui morfism de grupuri

Fie G și G' două grupuri, iar $f: G \to G'$ un morfism de grupuri. Fie $H \le G$ și $H' \le G'$ subgrupuri. Să considerăm

$$f(H) = \{x' \in G' \mid \text{ există } x \in H \text{ astfel încât } x' = f(x)\},$$

imaginea (directă a) lui H prin f și

$$f^{-1}(H') = \{x \in G \mid f(x) \in H'\},\$$

imaginea reciprocă a lui H' prin f.

Se notează Ker $f = f^{-1}(\{e'\})$ și se numește *nucleul* morfismului f. De asemenea, Im f = f(G) și se numește *imaginea* morfismului f. Deci

$$Ker f = \{x \in G \mid f(x) = e'\} \text{ si}$$

Im $f = \{x' \in G' \mid \text{ există } x \in G \text{ astfel încât } x' = f(x)\} = \{f(x) \mid x \in G\}.$

Propoziția 2.4. Fie $f: G \rightarrow G'$ un morfism de grupuri. Avem:

- 1) Dacă H este subgrup al lui G, atunci f(H) este subgrup al lui G'. (În particular, Im f este un subgrup al lui G');
- 2) Dacă H' este subgrup al lui G', atunci f $^{-1}$ (H') este subgrup al lui G. (În particular, Ker f este un subgrup al lui G).

Demonstrație. 1) Cum H $\neq \emptyset$ este evident că $f(H) \neq \emptyset$. Dacă x', y' $\in f(H)$, atunci există x, y $\in H$ astfel încât x' = f(x), y' = f(y). Avem

$$x'y'^{-1} = f(x)(f(y))^{-1} = f(x)f(y^{-1}) = f(xy^{-1})$$

și cum H este subgrup rezultă că $xy^{-1} \in H$ și deci $x'^{-1}y'^{-1} = f(xy^{-1}) \in f(H)$.

2) Cum e' \in H', iar f(e) = e', rezultă că e \in f⁻¹(H'), adică f⁻¹(H') \neq \emptyset . Dacă x, y \in f⁻¹(H'), atunci f(x), f(y) \in H'; cum H' este subgrup

$$f(xy^{-1})=f(x)f(y)^{-1}=f(x)f(y^{-1})\in H',$$

adică $xy^{-1} \in f(H')$.

Propoziția 2.5. Un morfism de grupuri $f: G \to G'$ este injectiv dacă și numai dacă nucleul său este trivial, adică Ker $f = \{e\}$.

Demonstrație. Să presupunem că f este morfism injectiv. Avem f(e) = e' și dacă $x \in \text{Ker } f$, atunci f(x) = e', adică f(x) = f(e). Cum funcția f este injectivă, rezultă x = e.

Reciproc, fie f(x) = f(y). Atunci $f(x)(f(y))^{-1} = e'$, adică $f(x)f(y^{-1}) = e'$ sau $f(xy^{-1}) = e'$ și deci $xy^{-1} = e$, de unde x = y. Rezultă că f este injectivă.

Observație. În mod evident avem că un morfism de grupuri $f: G \to G'$ este surjectiv dacă și numai dacă Im f = G'.

Teorema 2.6. (<u>Teorema de corespondență pentru subgrupuri</u>) Fie $f: G \to G'$ un morfism *surjectiv* de grupuri. Există o corespondență bijectivă între mulțimea subgrupurilor lui G care conțin Ker f și mulțimea tuturor subgrupurilor lui G', dată prin $H \to f(H)$.

Demonstrație. Mai întâi observăm că dacă H este un subgrup al lui G care conține Ker f, atunci $f^{-1}(f(H)) = H$. Într-adevăr, $H \subseteq f^{-1}(f(H))$ iar dacă $x \in f^{-1}(f(H))$, atunci $f(x) \in f(H)$, deci există $h \in H$ astfel încât f(x) = f(h). De aici rezultă că $f(xh^{-1}) = e'$, ceea ce înseamnă că $xh^{-1} \in Ker$ f. Cum însă Ker $f \subseteq H$ obținem $xh^{-1} \in H$, deci $x \in H$.

Acum rezultă imediat că aplicația dată este injectivă: dacă H și K sunt subgrupuri ale lui G care conțin Ker f și f(H) = f(K), atunci $f^{-1}(f(H)) = f^{-1}(f(K))$, deci H = K.

Pentru a demonstra că aplicația este surjectivă considerăm H' un subgrup al lui G' și fie $H = f^{-1}(H')$. Evident $H \supseteq Ker f$ și deoarece f este funcție surjectivă avem că f(H) = H'.

Subgrupul generat de o submulțime a unui grup

Observăm mai întâi că dacă $(H_i)_{i\in I}$ este o familie de subgrupuri ale unui grup G, atunci $\bigcap H_i$ este un subgrup al lui G. Într-adevăr, fie $x,y\in\bigcap H_i$. Atunci $x,y\in H_i$, $i\in I$ oricare ar fi $i\in I$, și cum fiecare H_i este un subgrup rezultă că $xy^{-1}\in H_i$, oricare ar fi $i\in I$. Deci $xy^{-1}\in\bigcap H_i$. $i\in I$

Definiția 2.7. Fie G un grup și X o submulțime a lui G. Intersecția tuturor subgrupurilor care conțin mulțimea X (această intersecție fiind un subgrup, conform celor precedente) se numește *subgrupul generat* de X în G. Vom nota acest subgrup cu <X>. Deci

$$< X > = \bigcap K$$

$$X \subseteq K$$

$$K \subseteq G \text{ subgrup}$$

Dacă H = <X>, adică H este subgrupul generat de X, se spune că X este un *sistem de generatori* pentru H sau că X *generează* pe H.

Observații.

- 1) <X> este cel mai mic subgrup al lui G care conține pe X.
- 2) Dacă $X = \emptyset$, atunci subgrupul generat de X este subgrupul trivial {e}.
- 3) Dacă X este un subgrup al lui G, atunci printre subgrupurile lui G care conțin pe X se găsește X însuși și deci subgrupul generat de X este chiar X. Cum subgrupul generat de un subgrup este subgrupul însuși, rezultă că orice subgrup al unui grup G are cel puțin un sistem de generatori.

Un subgrup H al lui G care admite un sistem finit de generatori se spune că este un subgrup *finit generat*. Un subgrup H al lui G care admite un sistem de generatori format dintr-un singur element se spune că este un subgrup ciclic. În acest caz vom scrie $H = \langle a \rangle$, unde $a \in H$.

Următoarea teoremă ne dă forma elementelor subgrupului generat de o submulțime nevidă X în G.

Teorema 2.8. Fie $X \neq \emptyset$ o submulțime a lui G. Atunci $\langle X \rangle$, subgrupul generat de X în G, este format din mulțimea elementelor lui G care se pot scrie sub forma

$$x_1^{\epsilon_1} x_2^{\epsilon_2} \dots x_k^{\epsilon_k}$$
, unde $k \ge 0$, $\epsilon_i = \pm 1$, $x_i \in X$, $1 \le i \le k$.

Demonstrație. Fie

$$H' = \{x \in G \mid x = x_1^{\varepsilon_1} x_2^{\varepsilon_2} \dots x_k^{\varepsilon_k}, \text{ unde } k \ge 0, \varepsilon_i = \pm 1, x_i \in X, 1 \le i \le k\}.$$

Arătăm că H' este subgrup al lui G care conține pe X. Într-adevăr, oricare ar fi $x \in X$, $x = x^1 \in H'$. Deci $X \subseteq H'$, de unde $H' \neq \emptyset$. Dacă $x, y \in H'$, atunci $x = x_1^{\epsilon_1} x_2^{\epsilon_2} \dots x_k^{\epsilon_k}$, $y = y_1^{\mu_1} y_2^{\mu_2} \dots y_s^{\mu_s}$, $\epsilon_i = \pm 1$, $\mu_j = \pm 1$, x_i , $y_j \in X$, $1 \le i \le k$, $1 \le j \le s$, și deci $xy^{-1} = x_1^{\epsilon_1} x_2^{\epsilon_2} \dots x_k^{\epsilon_k} y_s^{-\mu_s} \dots y_2^{-\mu_2} y_1^{-\mu_1} \in H'$.

Cum H' este un subgrup care conține pe X, rezultă că H' include intersecția tuturor subgrupurilor lui G care conțin pe X, adică $\langle X \rangle \subseteq H'$.

Reciproc, fie H este un subgrup al lui G care conține pe X. Dacă $x_1, x_2, \ldots, x_k \in X \subseteq H$, rezultă că $x_1^{\epsilon_1}, x_2^{\epsilon_2}, \ldots, x_k^{\epsilon_k} \in H$ și H fiind subgrup avem că $x_1^{\epsilon_1}, x_2^{\epsilon_2}, \ldots, x_k^{\epsilon_k} \in H$. Deci H conține pe H'. Cum H este un subgrup arbitrar care conține pe X, rezultă că H' este conținut în intersecția tuturor acestor subgrupuri, adică în <X>.

Observații. În cazul în care grupul G este comutativ avem că

$$< X > = \{ x \in G \mid x = x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}, \text{ unde } k \ge 0, n_i \in \mathbf{Z}, x_i \in X, 1 \le i \le k \}.$$

Dacă folosim scrierea aditivă, atunci

$$\langle X \rangle = \{ x \in G \mid x = n_1 x_1 + n_2 x_2 + \dots + n_k x_k, \text{ unde } k \ge 0, n_i \in \mathbb{Z}, x_i \in X, 1 \le i \le k \}.$$

Dacă H este subgrup ciclic generat de elementul a, atunci din teorema precedentă rezultă că

$$H = \langle a \rangle = \{a^n \mid n \in \mathbf{Z}\}.$$

În scriere aditivă avem

$$H = \langle a \rangle = \{ na \mid n \in \mathbf{Z} \}.$$

Elementul a se numește generator al subgrupului ciclic H.

Exemple.

- 1) Grupul aditiv (\mathbf{Z} , +) al numerelor întregi este ciclic generat de 1 sau de -1, adică (\mathbf{Z} , +) = <1> = <-1>, iar în acest caz aceștia sunt singurii generatori posibili.
 - 2) Dacă m, $n \in \mathbb{Z}$, atunci
 - (i) $m\mathbf{Z} \cap n\mathbf{Z} = [m, n]\mathbf{Z}$,
 - (ii) <m, n> = (m, n)**Z**,

unde [m, n] = c.m.m.m.c.(m, n) şi (m, n) = c.m.m.d.c.(m, n).

Să demonstrăm (i). Dacă $x \in m\mathbf{Z} \cap n\mathbf{Z}$, adică $x \in m\mathbf{Z}$ și $x \in n\mathbf{Z}$, atunci $m \mid x$ și

n | x. Deci [m, n] | x, adică $x \in [m, n]\mathbf{Z}$. Reciproc, dacă $x \in [m, n]\mathbf{Z}$, atunci [m, n] | x şi deci m | x şi n | x, adică $x \in m\mathbf{Z}$ şi $x \in n\mathbf{Z}$, de unde $x \in m\mathbf{Z} \cap n\mathbf{Z}$.

Să demonstrăm (ii). Din teorema precedentă, în scriere aditivă, rezultă $< m, n> = \{x \in \mathbf{Z} \mid x = mk + nl, unde k, l \in \mathbf{Z}\}$. Dacă $x \in < m, n>$, atunci x = mk + nl cu $k, l \in \mathbf{Z}$ și cum $(m, n) \mid m$ și $(m, n) \mid n$ rezultă că $(m, n) \mid mk + nl$, adică $(m, n) \mid x$, de unde $x \in (m, n)\mathbf{Z}$. Cum < m, n> este subgrup al lui \mathbf{Z} , rezultă că există $d \in \mathbf{Z}$ astfel încât $< m, n> = d\mathbf{Z}$. Dar $m, n \in < m, n>$, adică $m, n \in d\mathbf{Z}$ și deci $d \mid m$ și $d \mid n$. Fie acum $x \in (m, n)\mathbf{Z}$, adică $(m, n) \mid x$. Cum d este un divizor comun al numerelor m și n, rezultă $d \mid (m, n)$ și deci $d \mid x$, adică $x \in d\mathbf{Z} = < m, n>$.

Observăm că din (i) rezultă că orice două numere întregi au un c.m.m.m.c. Din (ii) rezultă că orice două numere întregi m și n au un c.m.m.d.c. și, mai mult, există $k, l \in \mathbf{Z}$ astfel încât (m, n) = mk + nl.

3) Grupul aditiv (\mathbf{Z}_n , +) al claselor de resturi modulo n este ciclic, generat de exemplu de [1], adică

$$(\mathbf{Z}_n, +) = < [1] >$$
.

Să arătăm că $[a] \in \mathbf{Z}_n$ este generator al grupului $(\mathbf{Z}_n,+)$ dacă și numai dacă a și n sunt prime între ele, adică (a,n)=1.

Într-adevăr, dacă a este generator al lui \mathbb{Z}_n , adică $\mathbb{Z}_n = \langle [a] \rangle$, atunci există $b \in \mathbb{Z}$, astfel încât [1] = b[a] sau [1] = [ba] deci $n \mid 1 - ba$, adică există $k \in \mathbb{Z}$ astfel încât 1 - ba = kn sau ab + nk = 1, ceea ce arată că (a, n) = 1.

Reciproc, dacă (a, n) = 1, atunci rezultă că $[a] \in U(\mathbf{Z}_n)$ și deci există $[b] \in \mathbf{Z}_n$ cu [a][b] = 1. Atunci, dacă $[x] \in \mathbf{Z}_n$, $[x] = [x \cdot 1] = [x][1] = [x][a][b] = [xb][a] = (xb)[a]$. Cum $xb \in \mathbf{Z}$ avem $[x] \in \langle [a] \rangle$. Așadar $\mathbf{Z}_n = \langle [a] \rangle$.

Exercițiu. Să se arate că grupul (**Z** x **Z**, +) este finit generat, dar nu este ciclic.

Exercițiu. (i) Să se arate că subgrupul lui $(\mathbf{Q}, +)$ generat de 1/2 și 1/3 este ciclic și să se determine un generator al acestuia.

- (ii) Mai general, să se arate că orice subgrup finit generat al lui (Q, +) este ciclic.
- (iii) Să se arate că grupul $(\mathbf{Q}, +)$ nu este finit generat.