Modifying Turing Machines

COMPSCI 3331

Outline

- Modifying TMs: restricted tapes, workspaces.
- Alternate Model: Type-0 Grammars.
- Church-Turing thesis.
- Nondeterministic TMs.

Modifying TMs

The power of TMs is not affected by minor changes in the TM model. For example:

- We can insist that the TM is a one-way infinite tape (i.e., has a starting point).
- We can allow the TM to have several tapes (work space).
- Nondeterminism is also OK.

One-way Infinite Tape

From Two-way to One-way Infinite Tape

IDEA: Replace tape alphabet Γ with Γ^2 . Continue writing symbols on the left-infinite part (as necessary) of the tape underneath the right-infinite part.

```
T== r x r

when we're going left,

we'll loop to the underwah

type.

foing right is same

as a ewo-way type.
```

Multiple Tape TMs

- Input is always on the first tape.
- All other tapes are initially blank.

Action of a Multitape TM

At each step of a multitape TM:

- The state is updated.
- On each tape, the currently scanned symbol can be rewritten and the tape head moved (left, right or stationary).
- The tape heads can move independently: one head can move right, another left, etc.

Multitape TM Example

```
L = \{a^n b^{\lfloor \sqrt{n} \rfloor} : n \geq 1\} = \{ab, aab, aaab, aaaabb, \ldots\}.
tape 1: a^i b^j i, j \geq 1? not in this form, reject.

uppy b^j to tape 2.

write (b^j)^2 are tape 3.

add one b to tape 2.

write (b^{j+1})^2 on tape 4.

was pare number of a's on 1

to the number of b's on j.

Allept if j^2 \leq j \leq (j+1)^2.
```

Multitape TM to single-tape TM

IDEA: Simulate a *k*-tape TM by a single-tape TM with 2*k* 'tracks'.

c2V	ب ما يو	tte	er c	m	TM	l TV	ck.				▽× /	at least rk
	b	c	c	c	a	d	1 1 1	b	a	a		tape k
				▼			1 1 1					•
:	:	:	:	:	:	:		:	:	:		•
	a	a	b	b	c	c		d	d	e		tape 3
	b	b	a	d	d	d		a	d	d		tape 2
	a	a	b	c	a	d		b	a	c		tape 1
							1 1 1					

- ▶ To simulate one step of the k-tape TM takes O(m) time, where m is the length of the tape.
- Why? have to find each of the heads and simulate its action for one step.

Related Models

Even some models that are not TMs are equivalent to TMs:

```
PDA with two stacks.
```

- type-0 grammars.
- \triangleright λ -calculus.

Type-0 Grammars

A type-0 grammar is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is a finite set of non-terminals.
- \triangleright Σ is a finite alphabet.
- S is a distinguished start symbol.
- P is a finite set of productions of the form

$$\alpha \rightarrow \beta$$

where $\alpha, \beta \in (V \cup \Sigma)^*$ and $\alpha \neq \varepsilon$.

A word $w \in \Sigma^*$ is generated by G iff $S \Rightarrow^* w$.

Type-0 Grammars

Example (Hopcroft and Ullman 1979, p. 220):

```
S \rightarrow A CaB S \rightarrow ACaB \ aD \rightarrow Da \rightarrow A aa E Ca \rightarrow aaC AD \rightarrow AC \rightarrow A E aa CB \rightarrow DB aE \rightarrow Ea \rightarrow A E aa \rightarrow A E aa \rightarrow CB \rightarrow E \rightarrow CB \rightarrow CB \rightarrow E \rightarrow CB \rightarrow
```

Thm. The class of languages generated by type-0 grammars are exactly the class of languages recognized by TMs.

Church-Turing Thesis

- ► The Church-Turing thesis states that the TMs capture our notion of what is computable.
- Any of the models we prove are equivalent to TMs are also considered universal models of computation.
- Church proposed another universal model of computation: λ -calculus.

Computers and TMs

Simulating a TM on a computer:

- Encode states of the TM as strings.
- Create a lookup table of the transition of the TM.
- Simulate the transitions directly.

Simulating a computer with a TM:

► The TM simulates machine code execution: it stores all the information we need to execute this code (PC, registers, separate tapes for code, memory, stack, etc.)

TMs are **deterministic** by nature. We can also define nondeterministic TMs. In this case, $\delta: Q \times \Gamma \to 2^{Q \times \Gamma \times \{L,R,S\}}$.

- ► $\delta(q, \alpha) = \{(q_1, \beta_1, D_1), \dots, (q_n, \beta_n, D_n)\}$ for some $n \ge 0$.
- We can choose any transition to apply. We accept if there is any accepting path.

Thm. Let *M* be a nondeterministic TM. Then there exists a deterministic TM *M'* which accepts the same language.

Proof. Our TM M' performs a breadth-first search of all possible paths that M' could go down.

- ▶ We store a list of IDs of M on tape 1 of M'. $r^* Q r^{*}$.
- ightharpoonup We will use other tapes of M' to update the list of IDs.
- Initially, tape 1 contains the start ID: q_0x , where x is the input word.
- ▶ We then process each ID w_1qw_2 on tape 1 in turn.
- If $w_1 q w_2 \vdash_M w'_1 q' w'_2$, then we add $w'_1 q' w'_2$ to tape 1 of M'.

in non-determinatic TM.

- ▶ If M' finds an accepting ID of M on tape 1, then M' accepts.
- In this way, M' only accepts words that M accepts.
- ► If M accepts, then M' will eventually find the accepting path.
- This is because each ID can only have a finite number of IDs that can come after it. $(2^{3|Q||\Gamma|})$

Where to from here?

- We know how TMs function.
- We know that many different models that are equivalent to TMs.
- How can we describe the languages that can be accepted by a TM?