Load and Extract zip File

```
In [7]: # Step 1: Mount Google Drive
        from google.colab import drive
        drive.mount('/content/drive')
        # Step 2: Extract the zip file
        import zipfile
        import os
        # Path to the zip file
        zip path = '/content/drive/MyDrive/archive (13).zip'
        # Directory to extract to
        extract dir = '/content/drive/My Drive/data/extracted/'
        # Create the directory if it doesn't exist
        os.makedirs(extract dir, exist ok=True)
        # Extract the zip file
       with zipfile.ZipFile(zip path, 'r') as zip ref:
            zip ref.extractall(extract dir)
       print(f"Files extracted to {extract dir}")
       Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.moun
```

Import Libraries

t("/content/drive", force remount=True).

Files extracted to /content/drive/My Drive/data/extracted/

```
In [8]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly.express as px
    from plotly.offline import iplot
    from plotly.subplots import make_subplots
    from sklearn import tree
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    import warnings
    warnings.filterwarnings('ignore')
```

Loading Data

```
In [9]: df = pd.read_csv('/content/drive/MyDrive/data/extracted/Titanic-Dataset.csv')
```

Exploring the Data

```
In [10]: df.head()
Out[10]: Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
```

```
Braund,
                                                                                   A/5
          0
                      1
                                0
                                                     male 22.0 1 0
                                                                                         7.2500
                                                                                                               S
                                       3 Mr. Owen
                                                                                                  NaN
                                                                                 21171
                                             Harris
                                           Cumings,
                                          Mrs. John
                                            Bradley
                      2
                                                    female 38.0
                                                                           0 PC 17599 71.2833
                                                                                                  C85
                                                                                                               C
                                           (Florence
                                             Briggs
                                               Th...
                                          Heikkinen,
                                                                              STON/O2.
          2
                      3
                                       3
                                                                                         7.9250
                                                                                                               S
                                              Miss.
                                                    female 26.0
                                                                                                  NaN
                                                                               3101282
                                              Laina
                                            Futrelle,
                                               Mrs.
                                            Jacques
          3
                      4
                                                    female 35.0
                                                                                113803 53.1000
                                                                                                               S
                                             Heath
                                           (Lily May
                                              Peel)
                                          Allen, Mr.
                      5
                                0
                                                                                                               S
          4
                                       3
                                                      male 35.0
                                                                                373450
                                                                                         8.0500
                                            William
                                                                                                  NaN
                                             Henry
          df.shape
In [12]:
          (891, 12)
Out[12]:
          df.duplicated().sum()
In [13]:
Out[13]:
          df.isnull().sum()
In [14]:
          PassengerId
                              0
Out[14]:
          Survived
                              0
          Pclass
                              0
          Name
                              0
          Sex
                              0
          Age
                            177
          SibSp
                              0
          Parch
                              0
          Ticket
                              0
          Fare
                              0
          Cabin
                            687
          Embarked
                              2
          dtype: int64
In [15]: df.groupby('Sex')['Age'].mean().reset_index()
Out[15]:
                         Age
               Sex
          0 female 27.915709
              male 30.726645
```

df['Age'].fillna(df['Age'].mean(), inplace=True)

df.drop('Cabin', axis=1,inplace=True)

In [17]:

In [18]:

```
df.info()
In [53]:
        <class 'pandas.core.frame.DataFrame'>
        Index: 889 entries, 0 to 890
        Data columns (total 11 columns):
           Column
                        Non-Null Count Dtype
                         _____
            PassengerId 889 non-null
         0
                                        int64
         1
           Survived
                        889 non-null int64
                        889 non-null int64
         2
           Pclass
                         889 non-null object
889 non-null object
           Name
         4
           Sex
         5
                        889 non-null float64
                        889 non-null
                                        int64
         6
           SibSp
         7
            Parch
                         889 non-null
                                        int64
         8
            Ticket
                         889 non-null
                                        object
         9
                         889 non-null
                                        float64
         10 Embarked 889 non-null
                                         object
        dtypes: float64(2), int64(5), object(4)
        memory usage: 83.3+ KB
```

Analysis & Visualization

df.head()

In [20]:

df.dropna(inplace=True)

```
PassengerId Survived Pclass
Out[20]:
                                                    Name
                                                             Sex Age SibSp Parch
                                                                                        Ticket
                                                                                                  Fare Embarked
                                          Braund, Mr. Owen
                                                                                          A/5
          0
                      1
                                0
                                                            male 22.0
                                                                           1
                                                                                  0
                                                                                                7.2500
                                                                                                               S
                                                    Harris
                                                                                        21171
                                             Cumings, Mrs.
                                              John Bradley
                       2
          1
                                                           female 38.0
                                                                                  0 PC 17599 71.2833
                                                                                                               C
                                            (Florence Briggs
                                                     Th...
                                            Heikkinen, Miss.
                                                                                     STON/O2.
          2
                       3
                                                           female 26.0
                                                                                                7.9250
                                                                                                               S
                                                     Laina
                                                                                      3101282
                                               Futrelle, Mrs.
          3
                                                                                                               S
                       4
                                       1
                                             Jacques Heath
                                                                                       113803 53.1000
                                                           female 35.0
                                             (Lily May Peel)
                                           Allen, Mr. William
                      5
                                                                                                               S
                                                            male 35.0
                                                                           0
                                                                                       373450
                                                                                                8.0500
                                                    Henry
          gender = df['Sex'].value counts()
In [21]:
          gender
          Sex
Out[21]:
          male
                      577
          female
                     312
          Name: count, dtype: int64
          plt.figure(figsize=(10,6))
In [22]:
          plt.pie(gender, labels=['Male', 'Female'] ,autopct='%.1f%%', colors=['lightblue','pink']
          plt.legend()
          plt.title('Male & Female')
          plt.show()
```



```
In [23]: sns.histplot(data=df, x='Age', bins=30, kde=True)
   plt.title('Age Distribution')
   plt.xlabel('Age')
   plt.ylabel('Frequency')
   plt.show()
```



```
In [24]: sv_sex = df[['Survived','Sex']].value_counts().reset_index()
sv_sex
```

Out[24]:		Survived	Sex	count
	0	0	male	468
	1	1	female	231
	2	1	male	109
	3	0	female	81

```
In [25]: plt.figure(figsize=(5,6))
    sns.barplot(data=sv_sex , x=sv_sex['Survived'], y=sv_sex['count'], hue=sv_sex['Sex'])
    plt.title('Survived Frequency')
    plt.xlabel('Survived')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [26]: Em_sex = df[['Embarked', 'Sex']].value_counts().reset_index()
Em_sex
```

Out[26]:		Embarked	Sex	count
	0	S	male	441
	1	S	female	203
	2	С	male	95
	3	C	female	73
	4	Q	male	41
	5	Q	female	36

```
In [27]: plt.figure(figsize=(7,6))
    sns.barplot(data=Em_sex , x=Em_sex['Embarked'], y=Em_sex['count'], hue=Em_sex['Sex'])
    plt.title('Embarked & Sex Frequency')
    plt.xlabel('Embarked')
    plt.ylabel('Frequency')
    plt.show()
```

Embarked & Sex Frequency


```
In [28]: sv_em = df[['Survived', 'Embarked']].value_counts().reset_index()
    sv_em
```

Out[28]:		Survived	Embarked	count
	0	0	S	427
	1	1	S	217
	2	1	С	93
	3	0	С	75
	4	0	Q	47
	5	1	Q	30

```
plt.figure(figsize=(8,6))
sns.barplot(data=sv_em , x=sv_em['Survived'], y=sv_em['count'], hue=sv_em['Embarked'])
plt.title('Survived & Embarked Frequency')
plt.xlabel('Survived')
plt.ylabel('Frequency')
plt.show()
```

Survived & Embarked Frequency


```
In [30]: sv_class = df[['Survived', 'Pclass']].value_counts().reset_index()
    sv_class
```

Out[30]:		Survived	Pclass	count
	0	0	3	372
	1	1	1	134
	2	1	3	119
	3	0	2	97
	4	1	2	87
	5	0	1	80

```
In [31]: plt.figure(figsize=(8,6))
    sns.barplot(data=sv_class , x=sv_class['Survived'], y=sv_class['count'], hue=sv_class['P
    plt.title('Survived & Pclass Frequency')
    plt.xlabel('Survived')
    plt.ylabel('Frequency')
    plt.show()
```

Survived & Pclass Frequency


```
In [32]: sibling = df['SibSp'].value_counts().reset_index()
    sibling
```

Out[32]:		SibSp	count
	0	0	606
	1	1	209
	2	2	28
	3	4	18
	4	3	16
	5	8	7
	6	5	5

```
In [33]: plt.figure(figsize=(8,6))
    sns.barplot(x=sibling['SibSp'], y=sibling['count'])
    plt.title('Siblings or Spouses Frequency')
    plt.show()
```

Siblings or Spouses Frequancy

In [34]: sv_sibling = df[['Survived', 'SibSp']].value_counts().reset_index()
 sv_sibling

Out[34]:		Survived	SibSp	count
	0	0	0	398
	1	1	0	208
	2	1	1	112
	3	0	1	97
	4	0	2	15
	5	0	4	15
	6	1	2	13
	7	0	3	12
	8	0	8	7
	9	0	5	5
	10	1	3	4
	11	1	4	3

```
In [35]: plt.figure(figsize=(8,6))
   sns.barplot(data=sv_sibling , x=sv_sibling['Survived'], y=sv_sibling['count'], hue=sv_si
```

```
plt.title('Survived & SibSp Frequency')
plt.legend(loc='upper right')
plt.xlabel('Survived')
plt.ylabel('Frequency')
plt.show()
```


Build The Model

```
In [36]: test = df.drop(['PassengerId','Name','Ticket'], axis=1)
test
```

Out[36]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	male	22.000000	1	0	7.2500	S
	1	1	1	female	38.000000	1	0	71.2833	С
	2	1	3	female	26.000000	0	0	7.9250	S
	3	1	1	female	35.000000	1	0	53.1000	S
	4	0	3	male	35.000000	0	0	8.0500	S
	•••								
	886	0	2	male	27.000000	0	0	13.0000	S
	887	1	1	female	19.000000	0	0	30.0000	S
	888	0	3	female	29.699118	1	2	23.4500	S

```
      889
      1
      1
      male
      26.000000
      0
      0
      30.0000
      C

      890
      0
      3
      male
      32.000000
      0
      0
      7.7500
      Q
```

889 rows × 8 columns

```
In [37]: label_encoder = LabelEncoder()
In [38]: test['Sex'] = label_encoder.fit_transform(test['Sex'])
    test['Embarked'] = label_encoder.fit_transform(test['Embarked'])
In [39]: test
```

Out[39]:		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	0	3	1	22.000000	1	0	7.2500	2
	1	1	1	0	38.000000	1	0	71.2833	0
	2	1	3	0	26.000000	0	0	7.9250	2
	3	1	1	0	35.000000	1	0	53.1000	2
	4	0	3	1	35.000000	0	0	8.0500	2
	•••								
	886	0	2	1	27.000000	0	0	13.0000	2
	887	1	1	0	19.000000	0	0	30.0000	2
	888	0	3	0	29.699118	1	2	23.4500	2
	889	1	1	1	26.000000	0	0	30.0000	0
	890	0	3	1	32.000000	0	0	7.7500	1

889 rows × 8 columns

```
In [40]: x= test.drop('Survived', axis=1)
y = test['Survived']
In [41]: X_train, x_test, Y_train, y_test = train_test_split(x,y,test_size=0.2,random_state=11)
```

Logistic Regression

```
In [46]: model_logistic.score(X_train,Y_train)
Out[46]: 0.7946554149085795
```

In [47]: model logistic.score(x test,y test)

Out[47]: 0.8426966292134831

Random Forest