

Autómatas finitos no deterministas (AFN)

- Un autómata finito "no determinista" (AFN) tiene la capacidad de estar en varios estados a la vez.
- Los AFN aceptan los lenguajes regulares, al igual que los AFD. Sin embargo, existen razones para estudiar los AFN, a menudo son más compactos y fáciles de diseñar que los AFD.

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

1

Autómatas finitos no deterministas (AFN)

- Al igual que el AFD, un AFN tiene:
 - Un conjunto finito de estados.
 - Un conjunto finito de símbolos de entrada.
 - Un estado inicial
 - Un conjunto de estados de aceptación.
 - También dispone de una función de transición, que denominaremos normalmente Δ .
- La diferencia entre los AFD y los AFN se encuentra en el tipo de función Δ. En los AFN, Δ es una función que toma un estado y símbolos de entrada como argumentos (al igual que la función de transición del AFD), pero devuelve un conjunto de cero, uno o más estados (en lugar de devolver exactamente un estado, como lo hacen los AFD).

<u>Teoría Computacional</u> Prof. Luis Enrique Hernández Olvera

2

Estado/Entra	da a	b
->q ₀	{q ₁ , q ₄ }	q_3
q_1	q_1	q_2
*q ₂	Ø	Ø
*q ₃	Ø	ø
*q ₄	Ø	q_4

LJe	ercicio 3:	AFN	
Estado/Entrad	da c	f	d
->q ₀	{q ₁ , q ₄ }	{q ₆ , q ₂ }	Ø
q_1	q_1	q_3	$q_{\scriptscriptstyle{4}}$
q_2	q_0	Ø	Ø
q ₃	q_3	q_3	Ø
q_4	q_4	q ₅	q ₅
q₅	q ₅	q_5	Ø
*q ₆	Ø	Ø	Ø

