Math 135, Spring 2022

Lecture #22: PDEs and boundary value problems

Wednesday May 18th

Recap

• We finished the topic "Fourier Series".

So far we have covered

- Existence and uniqueness theory for ODEs
- Laplace transform
- Fourier series

And we are now going to deal with

Partial Differential Equations (PDEs)

Learning objectives

Today we will discuss:

Fourier series in an arbitrary domain.

ullet Derivation of the 1d wave equation as a model for a vibrating string.

 Solving the initial boundary value problem for the 1d wave equation by separation of variables.

Last topic on Fourier series

Scaling

Suppose that
$$f(x)$$
 is defined on $[-L,L]$, where $L>0$.
We want to construct the Fourier series for $f(x)$.
Let $g(t) = f(Lt/T_L)$ be defined on $[-T,T]$.
The Fourier series for $g(t)$ is
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \{a_n \cos(nt) + b_n \sin(nt) \}$$

shere

$$a_n = \frac{1}{u} \int_{-\pi}^{\pi} g(t) \cos(nt) dt \quad and \quad b_n = \frac{1}{11} \int_{-\pi}^{\pi} g(t) \sin(nt) dt$$

As $x = Lt/\pi$, take our Fourier series for f(x) to be $t = \frac{\pi}{L}x$

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left\{ a_n \cos(n \frac{\pi}{L}) + b_n \sin(n \frac{\pi}{L}) \right\}$$

where t= = = dx $a_{n} = \frac{1}{n} \int_{-\pi}^{\pi} \int (Lt_{\pi}^{\prime}) \cos(nt) dt = \frac{1}{L} \int_{-L}^{L} \int (x) \cos(n \frac{\pi x}{L}) dx$ $b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \int (Lt/\pi) \sin(nt) dt = \frac{1}{L} \int_{-\pi}^{L} \int (x) \sin(\frac{n\pi x}{L}) dx$ **Definition:** Let f(x) be an integrable function on the interval [-L, L], where L > 0. We define the **Fourier series** for f(x) on [-L, L] to be

$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right],$$

where

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi}{L}x) dx$$
 and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi}{L}x) dx$.

An example

Find the Fourier series for f(x) = x on [-1, 1].

Step 1: Use any available symmetries to simplify the computation.

Step 2: Compute

$$b_n = 2 \int_0^1 x \sin(n\pi x) dx$$

$$b_n = 2 \int_0^1 x \sin(n\pi x) dx$$

$$dx = 2 \int_0^1 x \sin(n\pi x) dx$$
even

As
$$u \ge 1$$
,
$$b_n = \left[-\frac{2}{u_{\overline{u}}} \times coj(u_{\overline{u}} \times 1) \right]_{x=0}^{x=1} + \int_{0}^{1} \frac{2}{u_{\overline{u}}} \cos(u_{\overline{u}} \times 1) dx$$

$$= -\frac{2}{u_{\overline{u}}} (-1)^n$$

$$= -\frac{2}{u_{\overline{u}}} (-1)^{n+1}$$

2002

So, the Fourier series for 1(x)=x on [-1,Dis

$$f(x) = x$$

$$S_4(x) = \sum_{n=1}^4 (-1)^{n+1} \frac{2}{n\pi} \sin(nx)$$

PDEs and boundary value

problems

at fine t The vibrating string

Let y=y(x,t) be the vertical displacement of a tight string constraint at its ends (y(x,t)

Assumptions:

- · Motion is strictly vertical
- · No resistance to bending
- 5 Small vibia Hous
- · Constant density s
- · Constant tarion T

The 1d wave equation

We are lead to consider the 1d wave equation:

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

with the **boundary conditions**

$$y(t,0) = 0 = y(t,\pi)$$

T tension

and the initial conditions

$$y(0,x) = f(x)$$
 and $\frac{\partial y}{\partial t}(0,x) = g(x)$.

Linearity

Theorem: If $y_1(t,x)$ and $y_2(t,x)$ are solutions of the linear wave equation

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$

with the **boundary conditions**

$$y(t,0)=0=y(t,\pi)$$

and C_1 , C_2 are constants, then so is

$$y(t,x) = C_1y_1(t,x) + C_2y_2(t,x).$$

Proof: Easy computation.

Separation of variables

Solity =
$$\frac{c}{2} \frac{d^2 x}{d^2 x} \frac{d^2 y}{d^2 y} = \frac{c}{2} \frac{d^2 x}{d^2 x} \frac{d^2 y}{d^2 y} = \frac{c}{2} \frac{d^2 x}{d^2 y} \frac{d^2 y}{d^2 y} = 0$$

Try to find a solution of the form
$$y(x,t) = v(t)u(x) \quad \text{where } u(0) = u(\pi) = 0$$

$$(educated y-ess)$$
Plog this into:
$$v''(t)u(x) = c^2 v(t)u''(x)$$

$$\frac{1}{c^2} \frac{v''(t)}{v(t)} = \frac{u''(x)}{u(x)} = -\lambda \quad \text{a constant}.$$

Spatial oscillations

$$\frac{u''(x)}{u(x)} = -\lambda$$

If $\lambda < 0$, what is the general solution of

velve proble

$$u''(x) + \lambda u(x) = 0$$

$$u''(x) + \lambda u(x) = 0$$
 ? $u(x) = u(x) = 0$

A)
$$C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x}$$

B)
$$C_1 \cos(\sqrt{-\lambda}x) + C_2 \sin(\sqrt{-\lambda}x)$$

C)
$$C_1x + C_2$$

D) None of the above

$$\mu^2 + \lambda =$$

$$\nu' = -\lambda > 0$$

"+ x 4=0 II > < 0: u(x) = c, e + < 2 e Doundary conditions: $0=u(0)=c_1+c_2 \longrightarrow c_2=-c_1$ $0 = U(\pi) = C_1 e + c_2 e$ $= C_1 (e - e) - \sqrt{-\lambda \pi}$ No non-trival solutions.

-> C1 = 0

If $\lambda > 0$, what is the general solution of

$$u''(x) + \lambda u(x) = 0$$
?

A)
$$C_1 e^{\sqrt{\lambda}x} + C_2 e^{-\sqrt{\lambda}x}$$

B)
$$C_1 \cos(\sqrt{\lambda}x) + C_2 \sin(\sqrt{\lambda}x)$$

C)
$$C_1x + C_2$$

D) None of the above

 $\begin{cases} u'' + \lambda u = 0 & \lambda > 0 \\ u(0) = u(\pi) = 0 \end{cases}$ 4(x)= C1 cos (JJXx) +C2 Sm(JJXx) $Q = u(0) = C_1$

0= 4(T)= (2 Sin (N) T) 1 Tf M∈ Z+={1,2,...}, i.e. λ=n2 /or n21

so we have non-trivial solution, u(x)= C2 sin(nx)

Eigenfunctions

• We have shown that we only have non-trivial solutions of the **boundary value problem**

$$\begin{cases} u'' + \lambda u = 0 & -\frac{d}{dx} u = \lambda u \\ u(0) = 0 = u(\pi) \end{cases}$$

when $\lambda=n^2$ for $n=1,2,\ldots$ [exercise: Check what happens when $\lambda=0$]

- We can think of $-\frac{d^2}{dx^2}$, together with the boundary conditions $u(0) = 0 = u(\pi)$ as a **linear operator**, i.e. $-\frac{d^2}{dx^2}: \mathcal{X} \to \mathcal{Y}$ where \mathcal{X}, \mathcal{Y} are certain space functions.
- We call the functions

$$u_n(x) = \sin(nx)$$

eigenfunctions of this operator and we call the values $\lambda_n = n^2$ the corresponding eigenvalues. L un = nun

We are trying to solve $\frac{v''}{c'v} = \frac{u''}{u} = -\lambda$ $\lambda = u^2, \quad \frac{u''}{u} = -u^2 \text{ has a non-trivial col.}$

Weed to I dos

$$\frac{U^{11}}{L^2N} = -N^2$$

v"+c2420=0

Time oscillation

What is the general solution of

$$v''(t) + c^2 n^2 v(t) = 0 ?$$

A)
$$C_1e^{nct} + C_2e^{-nct}$$

B)
$$C_1 \cos(nct) + C_2 \sin(nct)$$

C)
$$C_1 nct + C_2$$

D) None of the above

• Suppose we take
$$\frac{\partial y}{\partial t}(0,x)=g(x)=0$$
. (The case where $\int (x)=0$ $g(x)\neq 0$ is an the $H\omega$)

ullet Consequently, for each $n\geq 1$ we have a corresponding solution of

$$\begin{cases} v'' + n^2c^2v = 0\\ v'(0) = 0 \end{cases}$$

given by

$$v_n(t) = \cos(nct).$$

$$v_n(t) = \cos(nct) + \cos(nct) + \cos(nct)$$

 $M(x_{it}) = v(t)u(x)$, $\frac{\partial y}{\partial t}(x_{io}) = 0 = v'(t)u(x) = v'(t) = 0$ $v'(t) = -C_{1}uc_{1}s_{1}s_{1}(uct) + C_{2}uc_{1}c_{2}s_{1}(uct)$ $So, v'(o) = C_{2}uc_{1} = v(c_{2})c_{2}$

Solving our PDE

Trying to solve
$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial y}{\partial x^2}$$
$$y(o,t) = 0 = y(\pi,t)$$
$$\frac{\partial y}{\partial t}(x,t) = 0$$
$$y(x,0) = 1(x)$$

For each
$$n \ge 1$$
, $u_n(x) = \sin(nx)$ and $u_n(t) = \cos(nct)$
 $\sin(nx) = \frac{u_n}{u_n} = -u^2$

$$\frac{\partial u}{\partial v} = \frac{uv}{uv} = -u^{2}$$

$$y_{n}(x_{1}t) = v_{n}(t) u_{n}(t) i_{1} a_{3} sol$$

$$\int \frac{\partial^{2}y}{\partial t} = c^{2} \frac{\partial^{2}y}{\partial x^{2}}$$

$$y(0|t| = y(|t|) = 0$$

$$\int \frac{\partial^{2}y}{\partial t} = c^{2} \frac{\partial^{2}y}{\partial x^{2}}$$

But then, $y(x_1 t) = \sum_{k=1}^{\infty} b_k y_k(x_1 t) = \sum_{k=1}^{\infty} b_k (os(nct)sin(nx))$

and it solves

Inital condition: y(x,t)= = bn cos(nct) sn(ux) 1(x)= y(x,0) = = = busin(hx) The sine series for flx