

(11) EP 1 380 621 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 14.01.2004 Bulletin 2004/03 (51) Int Cl.7: C09B 62/09, C09B 62/095

(21) Application number: 03015256.5

(22) Date of filing: 07.07.2003

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IT LI LU MC NL PT RO SE SI SK TR

Designated Extension States:

AL LT LV MK

(30) Priority: 10.07.2002 GB 0215982

(71) Applicant: DyStar Textilfarben GmbH & Co. Deutschland KG 65926 Frankfurt am Main (DE)

(72) Inventors:

• Ebenezer, Warren James, Dr. Stockport, Cheshire SK7 2JQ (GB)

Russ, Werner, Dr.
 65439 Fiörsheim-Wicker (DE)

- (54) Fibre reactive azo dyes
- (57) The present invention refers to dyestuffs of the formula I

$$\begin{array}{c} X_{1} \\ N \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} N \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\ N \\ N \\ N \end{array} = \begin{array}{c} X_{2} \\$$

wherein

each of R1, R2, R3, R4 and R5, independently, is H or an optionally substituted alkyl group;

each of X₁ and X₂, independently, is a labile atom or group;

each of x and y, independently, is 0 or 1 and at least one of x and y is 1; each of a and b is 2 to 5 and when each of x and y is 1, a > b; and

z is 0, 1, 2, 3 or 4; and

wherein the variables D_1 and D_2 are defined as given in claim 1, processes for their preparation and their use for dyeing and printing hydroxy- and/or carboxamido-containing fiber materials.

EP 1 380 621 A1

Description

5

10

15

30

35

40

45

50

[0001] The present invention relates to the field of fibre-reactive dyes.

[0002] Dyestuffs containing chromophores linked via a piperazine type linking unit are known from literature and are described for example in EP-A-0126265, EP-A-0693538, WO99/05224 and WO00/08104.

[0003] The inventor of the present invention has surprisingly found that dyestuffs with very strong and economic shades exhibiting excellent fastness properties can be obtained if piperazine type linking units are used to link two chromophores each selected from a specific range of chromophores as defined below.

[0004] The present invention claims dyestuffs of the formula I

 $\begin{array}{c} X_{1} \\ N \\ N \\ > = N \\ R^{1} \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ R^{3} \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ R^{5} \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ R^{5} \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{\theta} \\ N \\ N \end{array} \begin{array}{c} N - (CH_{2})_{$

20 wherein

each of R^1 , R^2 , R^3 , R^4 and R^5 , independently, is H or an optionally substituted alkyl group; each of X_1 and X_2 , independently, is a labile atom or group; each of x and y, independently, is 0 or 1 and at least one of x and y is 1; each of a and b is 2 to 5 and when each of x and y is 1, a > b; and

25 z is 0, 1, 2, 3 or 4;

D₁ is a group of the formula !!

*
$$N=N$$
 Ar_1 SO_3M (III)

wherein

B is H or SO₃M;

M is H, an alkali metal, an ammonium ion or the equivalent of an alkaline earth metal;

* indicates the bond to the triazinylamino group;

Ar₁ is a group of the formula III or of the formula IV

whereir

the or each Y independently is SO_3M or an alkyl group, c is 0, 1 or 2, M is defined as given above and # indicates the bond to the azo group; or

D₁ is a group of the formula IIa

$$\begin{array}{c} OH \\ N=N \end{array} \begin{array}{c} Ar_4 \\ SO_5M \end{array}$$
 (IIa)

wherein

B is H or SO₃M;

M is H, an alkali metal, an ammonium ion or the equivalent of an alkaline earth metal;

* indicates the bond to the triazinylamino group;

Ar4 is a group of the formula IIIa or of the formula IVa

15

20

25

30

10

$$SO_3M$$
 SO_3M SO_3

wherein

 Y^2 is - N = N-Ar₅, M is defined as given above and # indicates the bond to the azo group, wherein Ar₅ is a group of the formula IIIb or of the formula IVb

 SO_3M SO_3M SO_3M (IVb)

35

wherein the or each Y^3 independently is SO_3M or an alkyl group, d is 0, 1 or 2, M is defined as given above and # indicates the bond to the azo group; or D_1 is a group of the formula V

40

45

$$MO_3S$$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N=N$
 $N=N$

whereir

M, * and Ar₁ are defined as given above; or

D₁ is a group of the formula VI

$$\begin{array}{c}
(R_{\theta})_{n} \\
N-Ar_{2} \text{ (VI)}
\end{array}$$

wherein

* is defined as given above

n is 0, 1, 2 or 3;

the or each R_6 independently is H, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, NHCONH₂, NHCO(C_1-C_4)-alkyl, SO₃M or halogen;

Ar₂ is a group of the formula VII or of the formula VIII

15

10

wherein

the or each Y^1 independently is SO_3M or an alkyl group or - $N = N-Ar_3$, wherein Ar_3 is an optionally substituted phenylene or naphthylene moiety; c is 0, 1 or 2, M is defined as given above and # indicates the bond to the azo group; or

20 D₁ is a group of the formula XV

$$- \bigvee_{N-Ar_1}^{(R_e)_n} N_{N-Ar_1} (XV)$$

wherein R6, Ar1, n and * are defined as given above; or

30 D₁ is an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore;

D₂ is a group of the formula II, provided D₁ is not a group of the formula V; or

D₂ is a group of the formula lla; or

D₂ is a group of the formula IX

35

25

40

45

wherein

A and E are independently OH or NH_2 and A \neq E;

G is H, (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, SO₃M or halogen; and

Ar₁, M and * are defined as given above; or

D₂ is a group of the formula VI; or

D₂ is a group of the formula X

55

 $\mbox{ wherein M and * are defined as given above; or } \mbox{ D_2 is a group of the formula XI}$

10

20

25

35

40

45

50

55

 30 wherein M and * are defined as given above; or D_2 is a group of the formula XII

wherein

R⁷ is H or (C₁-C₄)-alkyl; L is a divalent moiety and

M and * are defined as given above; or

 D_2 is a group of the formula XIII

where

 $\rm R^8$ and $\rm R^9$, independently, are H, halogen, (C1-C4)-alkyl or (C1-C4)-alkoxy; and M, Ar1 and * are defined as given above; or

D₂ is a group of the formula XIV

wherein

10

15

20

35

40

45

M' is a metal atom;

Pc is a phthalocyanine chromophore;

e is < 4; and

M, L and R7 are defined as given above; or

D₂ is a group of the formula XV; or

D₂ is an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore.

[0005] Alkyl groups may be straight-chain or branched and are preferably (C_1-C_4) -alkyl groups, for example methyl, ethyl, n-propyl, i-propyl or n-butyl. Substituted alkyl groups are preferably substituted by hydroxyl, (C_1-C_4) -alkoxy, halogen or carboxyl groups.

The same logic applies for alkoxy groups, which are thus preferably (C₁-C₄)-alkoxy groups and particularly methoxy and ethoxy.

Substituted phenylene or naphthylene moieties standing for Ar₃ are preferably of the formulae III and IV above.

A divalent moiety L occurring in the groups of the formulae XII and XIV is preferably a phenylene or (C_1-C_6) -alkylene, preferably (C_1-C_4) -alkylene moiety. The phenylene moiety is optionally substituted by $(SO_3M)_{f_1}$ where f=0,1, or 2 and $(R_{16})_{0}$, where R_{16} is (C_1-C_4) -alkyl, (C_1-C_4) -alkoyy or halogen.

R¹ to R⁵ are preferably H or methyl. R³, R⁴ and R⁵ are especially preferably H.

 X_1 and X_2 are preferably halogen like fluorine and chlorine or optionally substituted pyridinium like 3- and 4-carbox-ypyridinium. X_1 and X_2 are especially preferably chlorine.

M is preferably H, an alkaline metal, like sodium, potassium and lithium and is especially preferably sodium. M' is preferably Cu, Ni or Al.

[0006] An azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore standing for D_1 or D_2 is preferably an optionally metallized monoazo chromophore of the formulae (XVIa) or (XVIb)

$$K-N = N-O-* (XVIa)$$

$$^*-K-N = N-O$$
 (XVIb)

wherein

* indicates the bond to the triazinylamino group in formula I; and

one of K and O is an acetoacetamidoaryl group wherein the aryl moiety is optionally substituted and wherein the azo linkage in the formulae XVIa and XVIb is linked to the methylene group of the acetoacetamidoaryl group; an optionally substituted pyridonly group; an optionally substituted pyrazolonyl group or an optionally substituted pyrimidinyl group; and the other of K and O is a phenyl or napthyl group which is unsubstituted or substituted by one to four substituents selected from the group consisting of (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, H_2 NCONH, CH₃CONH, NHCO(C_1-C_4), hydroxyl, amino, cyano, (C_1-C_4) -alkyl-amino, halogen, COOM, SO₃M, aminophenyl, aminonaphthyl, (C_1-C_4) -alkyl-aminophenyl, amidonaphthyl, sulphonamidophenyl and sulfonamidonaphthyl, wherein M is defined as given above.

[0007] An acetoacetamidoaryl group can be substituted in its aryl moiety preferably by (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, H_2 NCONH, CH_3 CONH or SO_3 M, wherein M is defined as given above. Preferred acetoacetamidoaryl groups are of the formulae XVII and XVIII

wherein

 R^{10} is H or (C_1-C_4) -alkyl;

P is an optionally substituted aryl group;

indicates the bond to the azo group of the monoazo chromophore of formulae (XVIa) and (XVIb); and

* indicates the bond to the triazinylamino group of the dyestuff of formula I.

P is preferably phenyl or naphthyl which is optionally substituted by (C₁-C₄)-alkyl, (C₁-C₄)-alkoxy, halogen, nitro,

H₂NCONH, CH₃CONH or SO₃M, wherein M is defined as given above.

An optionally substituted pyridonyl group is preferably of the formulae (XIX) or (XX)

wherein

20

25

35

40

45

 R^{12} is H, $(\mathsf{C_1}\text{-}\mathsf{C_4})$ -alkyl or phenyl;

R13 is H, (C1-C4)-alkyl, CN, CONH2 or CH2SO3M, wherein M is defined as given above;

 R^{14} is (C_1-C_4) -alkyl or phenyl;

q is zero or is 1-4;

indicates the bond to the azo group of the monoazo chromophore of formulae (XVIa) and (XVIb); and

* indicates the bond to the triazinylamino group of the dyestuff of the formula I.

[0008] An optionally substituted pyrazolonyl group is preferably of the formulae (XXI) or (XXII)

whereir

R¹⁵ is methyl, carboxyl or methoxycarbonyl;

X is OH or MH2;

the or each R^{11} , independently, is (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, halogen, H_2 NCONH, CH_3 CONH or SO_3 M, wherein M is defined as given above;

r is zero or 1-4, preferably zero or 1-3, still more preferably 0, 1 or 2, especially 1 or 2;

indicates the bond to the azo group of the monoazo chromophore of formulae (XVIa) and (XVIb); and

* indicates the bond to the triazinylamino group of the dyestuff of the formula I.

[0009] An optionally substituted pyrimidinyl group is preferably of the formula (XXIII)

wherein each of S, T and U, independently, is H, (C₁-C₄)-alkoxy, hydroxy, (C₁-C₄)-alkylthio, mercapto, amino, (C₁-C₄)-alkyl-amino or di-(C₁-C₄)-alkyl-amino; and # indicates the bond to the azo group of the monoazo chromophore of formulae (XVIa) and (XVIb).

[0010] Preferred dyestuffs of the formula (I) are bright orange dyestuffs, wherein D_1 and D_2 both are a group of formula (II), with the proviso, however, that $D_1 \neq D_2$ or $D_1 = D_2$ if $R^1 \neq R^2$.

In still more preferred bright orange dyestuffs of the formula (I)

X₁ and X₂ are both chlorine;

R3, R4 and R5 are H;

20

25

30

35

40

45

50

a = b = 2 with x = 0 and y = 1 or x = 1 and y=0; and

D₁ and D₂ are both a group of the formula (ila)

wherein B and M are defined as given above,

In especially preferred bright orange dyestuffs of the formula (I)

D₁ is a group of the formula (IIb)

$$MO_3S$$

OH

 $N:N$
 SO_3M

(IIb)

and D₂ is a group of formula (IIc)

$$\bullet \longrightarrow \begin{picture}(100,0) \put(0.00,0){\line(1,0){100}} \pu$$

or D_1 and D_2 are both a group of formula (IIc) and $R^1 \neq R^2$, especially one of R^1 and R^2 is H and the other methyl. [0011] Especially preferred bright orange dyestuffs of the formula (I) are of the formulae (Ia) and (Ib)

wherein

10

35

50

55

25 B is SO₃M and R¹ is H or B is H and R¹ is methyl and M is defined as given above.

[0012] Further preferred dyestuffs of the formula (I) are homogeneous black dyestuffs, wherein

D₁ is a group of the formula (II) and

D₂ is a group of the formula (IX).

30 In still more preferred homogeneous black dyestuffs of the formula (I)

X₁ and X₂ are both chlorine;

R³, R⁴ and R⁵ are H;

a = b = 2 with x = 0 and y = 1 or x = 1 and y = 0;

D₁ is a group of the formula (IIa)

40
 *
 $^{\bullet}$
 $^{\bullet$

wherein B and M are defined as given above; and D₂ is a group of the formula (IXa)

wherein A is OH and E is NH_2 or A is NH_2 and E is OH and Ar_1 and M are defined as given above. A is especially preferred NH_2 and E is OH.

Especially preferred homogeneous black dyestuffs of the formula (I) are of the formulae (Ic) and (Id)

wherein M is defined as given above.

[0013] Further preferred dyestuffs of the formula (I) are dull red dyestuffs, wherein D_1 is a group of the formula (V) and D_2 is a group of the formula (XV).

In still more preferred dull red dyestuffs of the formula (I)

 $0 X_1 and X_2 are both chlorine;$

R3, R4 and R5 are H;

10

25

35

40

45

50

a = b = 2 with x = 0 and y = 1 or x = 1 and y = 0;

D₁ is a group of the formula (Va)

$$MO_3S$$
 \longrightarrow $N=N$ Ar_1 SO_3M (Va)

wherein Ar_1 , M and * are defined as given above; and D_2 is a group of the formula (XVa)

wherein

⁵⁵ R_6 ' is H, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy or halogen;

R₆" is H, NHCONH₂, NHCO(C₁-C₄)-alkyl or SO₃M; and

Y, c and M are defined as given above.

Especially preferred dull red dyestuffs of the formula (I) are of the formula (Ie)

$$\begin{array}{c|c} CI & CI \\ \hline O & Me & N & N \\ \hline N & N & (NHCH_2CH_2)_b - N & (CH_2CH_2NH)_e & N & OH & N \\ \hline Ar_1 & N & N & OH & N \\ \hline N & N & N & OH \\ \hline N & N & N & OH$$

wherein

10

a is 1 and b is 0 or a is 0 and b is 1;

Ar, is 2-sulphophenyl, 2,5-disulphophenyl, 1-sulpho-2-naphthyl or 1,5-disulpho-2-naphthyl and

Ar₁" is 4,8-disulpho-2-naphthyl or 3,6,8-trisulpho-2-naphthyl.

15 [0014] Further preferred dyestuffs of the formula (I) are homogeneous green dyestuffs, wherein

 D_1 is a group of the formula (XV) or an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore; and

D₂ is a group of the formula (IX), a group of the formula (X), a group of the formula (XI), a group of the formula (XII), a group of the formula (XIV).

In still more preferred homogeneous green dyestuffs of the formula (I)

X₁ and X₂ are both chlorine;

R3, R4 and R5 are H; and

a = b = 2 with x = 0 and y = 1 or x = 1 and y = 0.

[0015] Further preferred dyestuffs of the formula (I) are yellow dyestuffs, wherein

 D_1 is a group of the formula (II), a group of the formula (VI) or an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore; and

 D_2 is a group of the formula (VI), or an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore.

30 In still more preferred homogeneous green dyestuffs of the formula (I)

X₁ and X₂ are both chlorine;

R3, R4 and R5 are H; and

a = b = 2 with x = 0 and y = 1 or x = 1 and y = 0.

The dyestuffs of the present invention can be present as a preparation in solid or liquid (dissolved) form. In solid form they generally contain the electrolyte salts customary in the case of water-soluble and in particular fibre-reactive dyes, such as sodium chloride, potassium chloride and sodium sulfate, and also the auxiliaries customary in commercial dyes, such as buffer substances capable of establishing a pH in aqueous solution between 3 and 7, such as sodium acetate, sodium borate, sodium bicarbonate, sodium citrate, sodium dihydrogenphosphate and disodium hydrogenphosphate, small amounts of siccatives or, if they are present in liquid, aqueous solution (including the presence of thickeners of the type customary in print pastes), substances which ensure the permanence of these preparations, for example mold preventatives.

[0016] In general, the dyestuffs of the present invention are present as dye powders containing 10 to 80% by weight, based on the dye powder or preparation, of a strength-standardizing colorless diluent electrolyte salt, such as those mentioned above. These dye powders may additionally include the aforementioned buffer substances in a total amount of up to 10%, based on the dye powder. If the dye mixtures of the present invention are present in aqueous solution, the total dye content of these aqueous solutions is up to about 50 % by weight, for example between 5 and 50% by weight, and the electrolyte salt content of these aqueous solutions will preferably be below 10% by weight, based on the aqueous solutions. The aqueous solutions (liquid preparations) may include the aforementioned buffer substances in an amount which is generally up to 10% by weight, for example 0.1 to 10% by weight, preference being given to up to 4% by weight, especially 2 to 4% by weight.

[0017] A dyestuff of the formula I may for example be prepared by reacting a piperazine compound of the formula XXIII

55

$$H = \begin{bmatrix} N - (CH_2)_a \\ \dot{R}^3 \end{bmatrix}_X + N \begin{bmatrix} (CH_2)_b - N \\ \dot{R}^4 \end{bmatrix}_y + (XXIII)$$

wherein R3, R4, R5, a, b, x, y, and z are defined as given above, with a compound of the formula XXIV

$$X_{3} \xrightarrow{N = \langle X_{2} \\ N} N$$

$$R^{2} \xrightarrow{N \cdot D_{2}} (XXIV)$$

wherein R^2 , X_2 and D_2 are defined as given above and X_3 is a labile atom or a group capable of reaction with an amine, preferably chlorine,

20 and with a compound of the formula XXV

5

10

15

25

35

40

50

55

wherein R¹, X₁ and D₁ are defined as given above and X₄ has one of the meanings of X₃.

It is possible to react a compound of formula XXIII first with a compound of the formula XXIV to form a compound of the formula XXVI

$$H = \begin{bmatrix} N - (CH_2)_b \\ N \end{bmatrix}_X + N = \begin{bmatrix} (CH_2)_b - N \\ N \end{bmatrix}_X + \begin{bmatrix} N - (CH_2)_b - N \\ N \end{bmatrix}_Y + \begin{bmatrix} N - (CH_2)_b$$

wherein all variables are defined as given above,

which is then reacted with a compound of the formula XXV to a dyestuff of the formula I.

As an alternative is it also possible to react a compound of the formula XXIII first with a compound of the formula XXVII to form the compound of the formula XXVII

$$\begin{array}{c}
X_{1} \\
N \\
N \\
P \\
N
\end{array}$$

$$\begin{array}{c}
N \\
R^{3}
\end{array}$$

$$\begin{array}{c}
N \\
R \\
N
\end{array}$$

$$\begin{array}{c}
N \\
R \\
N
\end{array}$$

$$\begin{array}{c}
N \\
R^{4}
\end{array}$$

wherein all variables are defined as given above,

which is then reacted with a compound of the formula XXIV to a dyestuff of the formula I.

In general, one mole of a compound of the formula XXIII is reacted with 1 mole of a compound of the formula XXIV

and 1 mole of a compound of the formula XXV in a manner known per se to a skilled person.

[0018] The compounds of the formulae XXIII, XXIV and XXV are known or can easily be prepared by a skilled person using methods which are known per se.

As an example, a compound of the formula XXIV, wherein X_2 is chlorine can be obtained by reacting cyanuric chloride with a compound of the formula XXVIII

wherein R² and D₂ are defined as given above.

10

20

25

[0019] The compounds of the formula XXVIII can be prepared by means of customary diazotization and coupling reactions in a manner familiar to those skilled in the art.

[0020] The dyestuffs of the instant invention are reactive dyestuffs suitable for dyeing and printing hydroxy- and/or carboxamido-containing fibre materials by the application and fixing methods numerously described in the art for fibre-reactive dyes. They provide exceptionally bright, exceptionally strong and economic shades. Such dyes especially when used for exhaust dyeing of cellulosic materials can exhibit excellent properties including build-up, aqueous solubility, light-fastness, wash off and robustness to process variables. They are also wholly compatible with similar dyes designed for high temperature (80-100° C) application to cellulosic textiles, and thus lead to highly reproducible application processes, with short application times.

[0021] The present invention therefore also provides for use of the inventive dyestuffs for dyeing and printing hydroxyand/or carboxamido-containing fibre materials and processes for dyeing and printing such materials using a dyestuff according to the invention. Usually the dyestuff is applied to the substrate in dissolved form and fixed on the fibre by the action of an alkali or by heating or both.

[0022] Hydroxy-containing materials are natural or synthetic hydroxy-containing materials, for example cellulose fiber materials, including in the form of paper, or their regenerated products and polyvinyl alcohols. Cellulose fiber materials are preferably cotton but also other natural vegetable fibers, such as linen, hemp, jute and ramie fibres. Regenerated cellulose fibers are for example staple viscose and filament viscose.

[0023] Carboxamido-containing materials are for example synthetic and natural polyamides and polyurethanes, in particular in the form of fibers, for example wool and other animal hairs, silk, leather, nylon-6,6, nylon-6, nylon-11, and nylon-4.

[0024] Application of the inventive dyestuffs is by generally known processes for dyeing and printing fiber materials by the known application techniques for fibre-reactive dyes. The dyestuffs according to the invention are highly compatible with similar dyes designed for high temperature (80-100° C) applications and are advantageously useful in exhaust dyeing processes.

Similarly, the conventional printing processes for cellulose fibers, which can either be carried out in single-phase, for example by printing with a print paste containing sodium bicarbonate or some other acid-binding agent and the colorant, and subsequent steaming at appropriate temperatures, or in two phases, for example by printing with a neutral or weakly acid print paste containing the colorant and subsequent fixation either by passing the printed material through a hot electrolyte-containing alkaline bath or by overpadding with an alkaline electrolyte-containing padding liquor and subsequent batching of this treated material or subsequent steaming or subsequent treatment with dry heat, produce strong prints with well defined contours and a clear white ground. Changing fixing conditions has only little effect on the outcome of the prints. Not only in dyeing but also in printing the degrees of fixation obtained with dye mixtures of the invention are very high. The hot air used in dry heat fixing by the customary thermofix processes has a temperature of from 120 to 200°C. In addition to the customary steam at from 101 to 103°C, it is also possible to use superheated steam and high pressure steam at up to 160°C.

[0025] The inventive dyestuffs can in addition be used to produce inks useful for printing the substrates described above, for example textiles, especially cellulosic textiles, and paper. Such inks can be used in all technologies, for example conventional printing, ink-jet printing or bubble-jet printing (for information on such printing technologies see for example Text. Chem. Color, Volume 19(8), pages 23 ff and Volume 21, pages 27 ff).

[0026] Acid-binding agents responsible for fixing the dyes to cellulose fibers are for example water-soluble basic salts of alkali metals and of alkaline earth metals of inorganic or organic acids, and compounds which release alkali when hot. Of particular suitability are the alkali metal hydroxides and alkali metal salts of weak to medium inorganic or organic acids, the preferred alkali metal compounds being the sodium and potassium compounds. These acid-binding agents are for example sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, potassium carbonate, sodium formate, sodium dihydrogenphosphate and disodium hydrogenphosphate.

[0027] Treating the dyestuffs according to the invention with the acid-binding agents with or without heating bonds the dyes chemically to the cellulose fibers. Especially the dyeings on cellulose, after they have been given the usual aftertreatment of rinsing to remove unfixed dye portions, show excellent properties.

[0028] The dyeings of polyurethane and polyamide fibers are customarily carried out from an acid medium. The dyebath may contain for example acetic acid and/or ammonium sulfate and/or acetic acid and ammonium acetate or sodium acetate to bring it to the desired pH. To obtain a dyeing of acceptable levelness it is advisable to add customary leveling auxiliaries, for example based on a reaction product of cyanuric chloride with three times the molar amount of an aminobenzenesulfonic acid or aminonaphthalenesulfonic acid or based on a reaction product of for example stearylamine with ethylene oxide. In general the material to be dyed is introduced into the bath at a temperature of about 40°C and agitated therein for some time, the dyebath is then adjusted to the desired weakly acid, preferably weakly acetic acid, pH, and the actual dyeing is carried out at temperature between 60 and 98°C. However, the dyeings can also be carried out at the boil or at temperatures up to 120°C (under superatmospheric pressure).

Example 1

15

20

25

30

35

40

45

50

55

[0029] 1-(2-aminoethyl) piperazine (2.6g, 0.02 mol) was added dropwise to a stirred suspension of the orange dichlorotriazinyl dye (3) (0.02 mol) in water (400 mls) at ambient temperature and pH6. The pH was then adjusted to 10 with sodium carbonate solution and maintained at this pH for 20 minutes, yielding a solution of the orange dye (5). To this solution was added the orange dichlorotriazinyl dye (4) (0.02 mol) and the solution was maintained at pH 10 and ambient temperature for 48 hours. The pH was adjusted to 6 with 2N HCl and the dye precipitated by the addition of NaCl. The precipitated dye was filtered off, salt removed by dialysis and dried to give the expected dye (1) (16.0g). ($\lambda_{max} = 491$ nm, $\epsilon = 65500$, $v_y = 115$ nm). Other analytical data were in full agreement with the expected structure.

Examples 2 - 4

[0030] Following exactly analogous procedures as described in Example 1 the following dyes were synthesised.

Example	Dye 1	Dye 2	λ max/ nm
2	a	С	495
3	а	b	493
4	b	а	491

[0031] 1-(2-aminoethyl) piperazine (1.4g, 0.011 mol) was added dropwise to a stirred suspension of the orange dichlorotriazinyl dye (7) (0.011 mol) in water (400 mls) at ambient temperature and pH6. The pH was then adjusted to 10 with sodium carbonate solution and maintained at this pH for 20 minutes, yielding a slurry of the orange dye (8). To this slurry was added the navy dichlorotriazinyl dye (9) (0.011 mol) and the solution was maintained at pH 10 and ambient temperature for 24 hours. The pH was adjusted to 6 with 2N HCI and the dye precipitated by the addition of methylated spirits. The precipitated dye was filtered off, and dried to give the expected dye (6) (18.0g).

 $(\lambda_{max} = 623$ nm, $\epsilon = 42500$, $v_{1/2} = 115$ nm). Other analytical data were in full agreement with the expected structure.

Examples 6-11

25

[0032] Following exactly analogous procedures as described in Example 5 the following dyes were synthesised.

ÇI	
йçй	ÇI
Dye NNN N	NŅN
\\N\	^N ^K N ^K Dye₂

Example	Dye 1	Dye 2	λ max/nm
6	С	f	614
7	С	е	619
8	а	f	613
9	С	h	618
10	Α	h	622
11	Α	d	608

[0033] 1-(2-aminoethyl) piperazine (1.0g, 0.0077 mol) was added dropwise to a stirred suspension of the red dichlorotriazinyl dye (11) (0.0077 mol) in water (300 mis) at ambient temperature and pH6. The pH was then adjusted to 10 with sodium carbonate solution and maintained at this pH for 20 minutes, yielding the red dye (12). To this solution was added the yellow dichlorotriazinyl dye (13) (0.0077 mol) and the solution was maintained at pH 10 and ambient temperature for 24 hours. The pH was adjusted to 6 with 2N HCl and the dye precipitated by the addition of methylated spirits. The precipitated dye was filtered off, and dried to give the expected dye (10) (10.6g).

 $_{30}$ (λ_{max} = 516nm, ϵ = 46000, $v_{1/2}$ = 115nm). Other analytical data were in full agreement with the expected structure.

Examples 13-27

[0034] Following exactly analogous procedures as described in Example 12 the following dyes were synthesised.

HO₃S HO₃S NH SO₃H

Example	Dye 1	Dye 2	λ max/nm
13	i	1	462
14	1	i	561
15	i	n	518
16	n	i	522
17	1	j	520
18	j	n	514
19	n	j	515
20	m	1	436
21	1	m	467
22	m	n	507
23	n	m	507

(continued)

Example	Dye 1	Dye 2	λ max/nm
24	k	1	504
25	1	k	473
26	k	n	506
27	n	k	499

Example 28

10

15

20

25

30

35

40

45

50

[0035] 1-(2-aminoethyl) piperazine (0.32g, 0.0025 mol) was added dropwise to a stirred suspension of the yellow dichlorotriazinyl dye (15) (0.0025 mol) in water (200 mls) at ambient temperature and pH6. The pH was then adjusted to 10 with sodium carbonate solution and maintained at this pH for 20 minutes, yielding the yellow dye (16). To this slurry was added the navy dichlorotriazinyl dye (17) (0.0025 mol) and the solution was maintained at pH 10 and ambient temperature for 4 hours. The pH was adjusted to 6 with 2N HCl and the dye precipitated by the addition of methylated spirits. The precipitated dye was filtered off, and dried to give the expected dye (14) (4.9g).

(λ_{max} = (415nm) and 614nm, ϵ = 36800, $\nu_{1/2}$ = 117nm). Other analytical data were in full agreement with the expected structure.

Examples 29-38

[0036] Following exactly analogous procedures as described in Example 28 the following dyes were synthesised.

NH O SO A

$$\begin{array}{c|c} O & N \\ O & N \\ O & N \\ \end{array} \begin{array}{c} SO_3H \\ \\ SO_2 \\ \\ W \end{array} \begin{array}{c} SO_3H \\ \\ \end{array}$$

HO₃S N SO₃H

Example	Dye 1	Dye 2	λ max/nm
29	1	u	420, 626
30	р	٧	416,616
31	1	t	440,622

(continued)

Example	Dye 1	Dye 2	λ max/nm
32	р	t	426,622
33	q	s	451,619
34	р	s	426, 623
35	r	s	620
36	1	w	454,601
37	q	w	452, 599
38	р	w	416,636

Example 39

[0037] 1-(2-aminoethyl) piperazine (2.6g, 0.02 mol) was added dropwise to a stirred suspension of the orange dichlorotriazinyl dye (19) (0.02 mol) in water (400 mls) at ambient temperature and pH6. The pH was then adjusted to 10 with sodium carbonate solution and maintained at this pH for 20 minutes, yielding a solution of the orange dye (20). To this solution was added the yellow dichlorotriazinyl dye (21) (0.02 mol) and the solution was maintained at pH 10 and ambient temperature for 48 hours. The pH was adjusted to 6 with 2N HCl and the dye precipitated by the addition of NaCl. The precipitated dye was filtered off, salt removed by dialysis and dried to give the expected dye (18) (16.0g). ($\lambda_{max} = 485$ nm, $\epsilon = 46000$, $\nu_{\chi} = 115$ nm). Other analytical data were in full agreement with the expected structure.

25

10

15

20

Examples 40-56

[0038] Following exactly analogous procedures as described in Example 39 the following dyes were synthesised.

55

CI N N CI Dye, N N N N N Dye,

Example	Dye 1	Dye 2	λ max/nm
40	b	x	458

(continued)

Example	Dye 1	Dye 2	λ max/nm
41	b	у	472
42	С	у	468
43	а	x	449
44	С	×	457
45	а	у	458
46	а	р	481
47	а	r	483
48	а	1	483
49	n	Р	435
50	С	n	485
51	n	С	486
52	n	1	441
53	1	n	444
54	р	r	416
55	1	r	416
56	1	р	424

[0039] The dyes of the following Examples 57 - 95 can be synthezised by one of the methods given above:

30 Example 57

[0040]

 λ max = 489 and 617 nm

Example 58

[0041]

5

10

HO₃S SO₃H HN NH₂ CI NH₂ CI NH₂ N

15 $\lambda \max = 419$

Example 59

[0042]

20

30

35

25

 $\lambda \text{ max} = 414.5$

Example 60

[0043]

40

 $\lambda \max = 431$

50

45

[0044]

10

15

20

 $\lambda max = 430$

Example 62

25 [0045]

40

 $\lambda max = 473$

Example 63

[0046]

45

50

55

 $\lambda \max = 423$

[0047]

5

10

15

SO₃H N.N.OH HN N.N.OH HN SO₃H SO₃H OH N.N.OH N.N.OH

20

 λ max = 431

Example 65

25 [0048]

30

 $O_{H_2N}^{HO_3S} O_{N}^{HO_3S} O_{N}^{HO_3$

35

40

 $\lambda \max = 416$

Example 66

[0049]

45

50

 $\lambda \max = 475$

Example 67

[0050]

J

10

15

 $\lambda \max = 470$

Example 68

[0051]

20

30

25

 $\lambda \text{ max} = 472$

Example 69

35 [0052]

HO₃S SO₃H CI

45

 $\lambda \max = 489$

50

Example 70

[0053]

5

10

15

HO₃S SO₃H

HO₃S SO₃H

HO₃S SO₃H

HO₃S SO₃H

HO₃S SO₃H

 $\lambda \max = 476$

Example 71

[0054]

20

25

SO₃HO N N N N N N SO₃H OHO₃S SO₃H

 $30 \quad \lambda \max = 492$

Example 72

[0055]

35

40

HO₃S

HO₃S

HO₃S

HO₃S

HO₃S

HO₃S

HO₃S

HO₃S

HO₃S

45 $\lambda \max = 484$

50

[0056]

5

15

10

SO₃H SO₃H

 $20 \quad \lambda \max = 479$

Example 74

[0057]

25

30

35

 $\lambda \max = 480$

45

50

55

SO₃H SO₃H SO₃H N CI HO₃S N H NH₂ SO₃H N N H NH₂ SO₃H

[0058]

5

10

15

 $\lambda \max = 511$

Example 76

[0059]

25

30

35

 $\lambda \max = 420$

Example 77

[0060]

45

50

55

SO₃HO₃S N_NOHHN N_NCI N_NN H N_NN H N_NN N_NH N_NN N_NH N_NN N_NN N_NH N_NN N_NN N_NH

 $\lambda \max = 425$

Example 78

[0061]

10

15

20 $\lambda \max = 507$

Example 79

[0062]

25

 $\lambda \max = 439$

45

40

50

Example 80

[0063]

5

10

15

20

 $\lambda \max = 478$

Example 81

25 [0064]

30

35

40

 $\lambda \text{ max} = 508$

45

50

55

HO,5 () HO () SO,H

[0065]

,

но. 10

HO,S OH HO,S SO,H HO,S SO,H

 $\lambda \max = 516$

Example 83

[0066]

25

20

30

 $\lambda \max = 506$

Example 84

[0067]

45

40

50

 $55 \quad \lambda \, \text{max} = 426$

Example 85

[0068]

10

 $\lambda \max = 443$

Example 86

[0069]

20

25

30

 $\lambda \max = 421$

Example 87

[0070] 35

40

45

 $\lambda \max = 449$

55

[0071]

10

15

20

HO,S HO,S HO,S HO,S SO,H H

 $\lambda \max = 501$

Example 89

[0072]

 $\lambda \max = 514$

Example 90

40 [0073]

35

45

HO,S

HO,S

HO,S

HO,S

HO,S

SO,H

HO,S

SO,H

HO,S

SO,H

HO,S

NAME

NA

 $\lambda \max = 509$

[0074]

5

15

10

 $\lambda \max = 495$

20 Example 92

[0075]

25

30

 $\lambda \max = 459$

40 Example 93

[0076]

45

35

50

 $55 \quad \lambda \, \text{max} = 511$

HO,S SO,H

OH NEW NHS

Example 94

[0077]

5

10

15

20

 $\lambda \max = 459$

Example 95

[0078]

25

30

 $35 \quad \lambda \, \text{max} = 512$

Claims

40 1. A dyestuff of the formula I

50 whereir

55

each of R^1 , R^2 , R^3 , R^4 and R^5 , independently, is H or an optionally substituted alkyl group; each of X_1 and X_2 , independently, is a labile atom or group; each of x and y, independently, is 0 or 1 and at least one of x and y is 1; each of a and b is 2 to 5 and when each of x and y is 1, a > b; and z is 0, 1, 2, 3 or 4.

D₁ is a group of the formula II

$$* \longrightarrow_{\mathsf{B}} \mathsf{OH} \mathsf{Ar}_{1}$$

$$\mathsf{SO}_{3}\mathsf{M} \tag{II}$$

wherein

10

15

20

25

30

35

40

45

50

55

B is H or SO₃M;

M is H, an alkali metal, an ammonium ion or the equivalent of an alkaline earth metal;

* indicates the bond to the triazinylamino group;

Ar₁ is a group of the formula III or of the formula IV

 SO_3M SO_3M $(Y)_c$ or (IV)

whereir

the or each Y independently is SO_3M or an alkyl group, c is 0, 1 or 2, M is defined as given above and # indicates the bond to the azo group; or

D₁ is a group of the formula IIa

*
$$\rightarrow$$
 OH \rightarrow N=N \rightarrow Ar₄ \rightarrow SO₃M (IIa)

wherein

B is H or SO₃M;

M is H, an alkali metal, an ammonium ion or the equivalent of an alkaline earth metal;

* indicates the bond to the triazinylamino group;

Ar4 is a group of the formula Illa or of the formula IVa

$$SO_3M$$

Y^2 or # Y^2
(IVa)

wherein

 Y^2 is - $N = N-Ar_{5}$. M is defined as given above and # indicates the bond to the azo group, wherein Ar_5 is a group of the formula IIIb or of the formula IVb

$$SO_3M$$
 FO_3M
 FO_3

wherein the or each Y^3 independently is SO_3M or an alkyl group, d is 0, 1 or 2, M is defined as given above and # indicates the bond to the azo group; or

D₁ is a group of the formula V

where

10

15

20

25

30

35

40

45

50

55

M, * and Ar_1 are defined as given above; or D_1 is a group of the formula VI

wherein

* is defined as given above

n is 0, 1, 2 or 3;

the or each R_6 independently is H, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, NHCONH₂, NHCO(C_1-C_4)-alkyl, SO₃M or halogen;

Ar2 is a group of the formula VII or of the formula VIII

$$SO_3M$$
 SO_3M
 $(Y^1)_c$ or SO_3M
 $(Y^1)_c$
 $(VIII)$

whereir

the or each Y^1 independently is SO_3M or an alkyl group or - $N = N-Ar_3$, wherein Ar_3 is an optionally substituted phenylene or naphthylene moiety; c is 0, 1 or 2, M'is defined as given above and # indicates the bond to the azo group; or

D₁ is a group of the formula (XV)

wherein R6, Ar1, n and * are defined as given above

D₁ is an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore;

 D_2 is a group of the formula II, provided D_1 is not a group of the formula V; or

 $\mathrm{D}_{\mathbf{2}}$ is a group of the formula lla; or

D₂ is a group of the formula IX

15 wherein

10

20

25

30

A and E are independently OH or NH_2 and $A \neq E$;

G is H, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, SO_3M or halogen; and Ar_1 , M and * are defined as given above; or

 D_2 is a group of the formula VI; or

D₂ is a group of the formula X

35

wherein M and * are defined as given above; or D₂ is a group of the formula XI

40

45

50

wherein M and * are defined as given above; or D₂ is a group of the formula XII

55

10

15

wherein
R⁷ is H or (C₁-C₄)-alkyl;
L is a divalent moiety and
M and * are defined as given above; or

D₂ is a group of the formula XIII

25

wherein

 R^8 and R^9 , independently, are H, halogen, (C_1-C_4) -alkyl or (C_1-C_4) -alkoxy; and M, Ar_1 and * are defined as given above; or

D₂ is a group of the formula XIV

30

35

40

45

55

wherein

M' is a metal atom;

Pc is a phthalocyanine chromophore;

e is < 4; and

M, L and R7 are defined as given above; or

D₂ is a group of the formula XV; or

D₂ is an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore.

- 2. A dyestuff of the formula I as claimed in claim 1, wherein D_1 and D_2 both are a group of the formula (II), with the proviso, however, that $D_1 \neq D_2$ or $D_1 = D_2$ if $R^1 \neq R^2$.
- 50 3. A dyestuff of the formula I as claimed in claim 1, wherein D_1 is a group of the formula (II) and D_2 is a group of the formula (IX).
 - A dyestuff of the formula 1 as claimed in claim 1, wherein D₁ is a group of the formula (V) and D₂ is a group of the formula (XV).
 - 5. A dyestuff of the formula I as claimed in claim 1, wherein

D₁ is a group of the formula (XV) or an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore; and

 D_2 is a group of the formula (IX), a group of the formula (X), a group of the formula (XII), a group of the formula (XIII) or a group of the formula (XIV).

6. A dyestuff of the formula I as claimed in claim 1, wherein

5

10

15

25

30

35

45

50

55

- D₁ is a group of the formula (II), a group of the formula (VI) or an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore; and
- D_2 is a group of the formula (VI), or an azoacetoacetamidoaryl, azopyridone, azopyrazolone or an azopyrimidine chromophore.
- 7. A dyestuff as claimed in one or more of claims 1 to 6, wherein X₁ and X₂ are halogen, preferably chlorine.
- 8. A dyestuff as claimed in one or more of claims 1 to 7, wherein M is H or an alkaline metal, preferably sodium.
- 9. A dyestuff as claimed in one or more of claims 1 to 8, wherein R3, R4 and R5 are H.
- 10. A dyestuff as claimed in one or more of claims 1 to 9, wherein a = b = 2 with x = 0 and y = 1 or x = 1 and y = 0.
- 20 11. A process for preparing a dyestuff of formula I as claimed in one or more of claims 1 to 10 by reacting a piperazine compound of the formula XXIII

$$H = \begin{bmatrix} N - (CH_2)_a \end{bmatrix}_X + \begin{bmatrix} N - (CH_2)_b - N - N \\ R_5 \end{bmatrix}_z$$

$$(XXIII)$$

wherein R3, R4, R5, a, b, x, y, and z are defined as given in claim 1, with a compound of the formula XXIV

$$X_{3} \xrightarrow{N=\langle X_{2} \\ N}$$

$$X_{3} \xrightarrow{N-\langle X_{2} \\ N-X_{2} \\ N-D_{2}}$$

$$(XXIV)$$

wherein R², X₂ and D₂ are defined as given in claim 1 and X₃ is a labile atom or a group capable of reaction with an amine, preferably chlorine, and with a compound of the formula XXV

wherein R^1 , X_1 and D_1 are defined as given in claim1 and X_4 has one of the meanings of X_3 .

12. A process for dyeing and printing hydroxy- and/or carboxamido-containing fibre materials in which a dyestuff of the formula I according to one or more of claims 1 to 10 is used.

EUROPEAN SEARCH REPORT

Application Number EP 03 01 5256

Category	Citation of document with India	ation, where appropriate,	Relevant	CLASSIFICATION OF THE	
Calegory	of relevant passage	28	to claim	APPLICATION (Int.CI.7)	
X,D	WO 99 05224 A (BASF A 4 February 1999 (1999 * claim 1; example 1	-02-04)	1-12	C09862/09 C09862/095	
X	DE 100 08 871 A (DYST & CO. DEUTSCHLAND KG, 11 October 2001 (2001 * page 13; figure X * * claim 1 *	GERMANY) -10-11)	3H 1-12		
x	WO 00 36025 A (CLARIA ;CLARIANT INT LTD (CH 22 June 2000 (2000-06 * page 7; example 21 * claim 1 *)) -22)	1-12		
X	WO 93 18224 A (CIBA G 16 September 1993 (19 * page 31-46; example 2-4,20,25,59,71,74,75 * claim 1 *	93-09-16) s	1-12	TECHNICAL FIELDS SEARCHED (Int.Cl.7)	
P,X	WO 02 092697 A (DYSTAR TEXTILFARBEN GMBH CO ; EBENEZER WARREN JAMES (GB)) 21 November 2002 (2002-11-21) * the whole document *		1-12	С09В	
X,D	EP 0 126 265 A (BASF / 28 November 1984 (198 * page 33; claim 1 *	1-12			
A	GB 2 308 379 A (ZENEC, 25 June 1997 (1997-06 * page 5; claim 1 *		1-12		
	The present search report has been	n Grawn up for all claims	_		
	Place of search	Date of completion of the search		Examiner cci D	
X : parti Y : parti docu A : techi	MUNICH ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with another ment of the same category notogical background written disclosure	E : earlier paten after the filling D : document cit L : document cit	nciple underlying the if document, but public g date ted in the application ed for other reasons	ished on, or	

EUROPEAN SEARCH REPORT

Application Number EP 03 01 5256

Category	Citation of document with in of relevant pass	dication, where appropriate,	Refevant to claim	CLASSIFICATION OF THE APPLICATION (InLCL7)	
A	WO 01 46321 A (DYST	AR TEXTILFARBEN GMBH & DE); PATSCH MANFRED)			
				,	
				TECHNICAL FIELDS SEARCHED (Inst.Cl.7)	
	The present search report has be			Examiner	
	Place of search MUNICH	Date of completion of the search 13 November 2003	Date of completion of the search 13 November 2003 Gras		
X : partk Y : partk docum	TEGORY OF CITED DOCUMENTS: utarly relevant if taken alone utarly relevant if combined with another ment of the same category tological background	T : theory or princt E : earlier patent of after the filling of D : document cited L : document cited	ple underlying the in ocument, but publis ate I in the application for other reasons	vention	

Application Number

EP 03 01 5256

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
1(part),2-4,5-12(part): Inventions 1-3
None of the further search fees have been pald within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims:

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 03 01 5256

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claim : 1(part)

Compounds according to claim 1 in which "D1" is a group of the formula (II) or (IIa) (the group of compounds is not unitary could, however, be searched without extra effort).

2. Claim: 1(part)

Compounds according to claim 1 in which "D1" is a group of the formula (V).

3. Claim : 1(part)

Compounds according to claim 1 in which "D1" is a group of the formula (VI) or (XV).

4. Claim: 1(part)

Compounds according to claim 1 in which "D1" is a azoacetoacetamidoaryl chromophore.

5. Claim : 1(part)

Compounds according to claim 1 in which "D1" is a azopyridone chromophore.

6. Claim: 1(part)

Compounds according to claim 1 in which "D1" is a azopyrazolone chromophore.

7. Claim: 1(part)

Compounds according to claim 1 in which "D1" is a azopyrimidine chromophore.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 03 01 5256

This annex lists the patent family members relating to the patent documents cited in the above—mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13-11-2003

WO	9905224	A	04-02-1999	BR CN	9811035 1102947		01-08-200
			5. 12 1 0.00				
					114/74/	В	12-03-200
				DE	69804105		11-04-200
				DE	69804105		14-11-200
				ĒΡ	0998531	A1	10-05-200
				ĒS	2173604	–	16-10-200
				WO	9905224		04-02-1999
				JP	2001510875	Ť	07-08-200
				PT	998531	Ť	30-08-200
				TR	200000227	•	21-09-2000
				ÜS	6248871		19-06-200
DE	10008871	A	11-10-2001	DE	10008871	A1	11-10-200
WO	0036025	Α	22-06-2000	AU	1403500	Α	03-07-2000
				BR	9916026		04-09-200
				EP	1137715	A1	04-10-2003
				WO	0036025	A1	22-06-2000
				JP	2002532606	T	02-10-2002
				TR	200101635	T2	22-10-2001
				US	6319290	B1	20-11-2001
				ZA	200104668	Α	07-06-2002
WO S	9318224	Α	16-09-1993	AU	677575		01-05-1997
				ΑU	3629793		05-10-1993
				BR	9306026	A	18-11-1997
				CA	2129750		07-09-1993
				DE	69307301		20-02-1997
				DE	69307301		15-05-1997
				DK	629249		27-01-1997
				MO	9318224		16-09-1993
				EP	0629249		21-12-1994
			•	ES	2098727		01-05-1997
				HK	1004573		27-11-1998
				JP	7504949		01-06-1995
				KR	266336		15-09-2000
				US	5525124	A 	11-06-1996
WO (02092697	A	21-11-2002	WO	02092697	A1	21-11-2002
EP (0126265	Α	28-11-1984	DE	3313725		18-10-1984
				DE	3325371		24-01-1985
				DE	3461099		04-12-1986
				EP	0126265	Al .	28-11-1984
				JP 	60035058	A	22-02-1985
			e Official Journal of the E				

47

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 03 01 5256

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

13-11-2003

	Patent docume cited in search re		Publication date		Patent family member(s)	. Publicatio date
GB	2308379	Α	25-06-1997	JP US	9217016 A 5773593 A	19-08-199 30-06-199
WO	0146321	A	28-06-2001	DE AU BR CA WO EP JP US	19962228 A1 2171301 A 0016552 A 2395370 A1 0146321 A2 1255789 A2 2003518188 T 2003163879 A1	28-06-200 03-07-200 17-09-200 28-06-200 28-06-200 13-11-200 03-06-200 04-09-200
)					04-05-200.
			Official Journal of the 8			