TEORÍA DE LA COMPUTACIÓN Y VERIFICACIÓN DE PROGRAMAS 2025 Trabajo Práctico Nro 1

La máquina de Turing y la jerarquía de la computabilidad (clases 1 y 2)

Ejercicio 1. Responder breve y claramente los siguientes incisos:

- 1. Dados $\Sigma = \{a, b, c\}$ y L = $\{a^nb^nc^n \mid n \ge 0\}$, obtener $\Sigma^* \cap L$, $\Sigma^* \cup L$, y L^C (es decir, el complemento de L con respecto a Σ^*).
- 2. Definir el problema de la satisfactibilidad de las fórmulas booleanas en la forma de problema de búsqueda (visión de MT calculadora), de decisión (visión de MT reconocedora), y de enumeración (visión de MT generadora).
- 3. ¿Qué postula la Tesis de Church-Turing?
- 4. ¿Cuándo dos MT son equivalentes? ¿Cuándo dos modelos de MT son equivalentes?
- 5. ¿En qué se diferencian los lenguajes recursivos, los lenguajes recursivamente enumerables no recursivos, y los lenguajes no recursivamente enumerables?
- 6. Probar que $R \subseteq RE \subseteq \mathfrak{L}$. Ayuda: usar las definiciones.
- 7. Explicar por qué (a) el lenguaje Σ* de todas las cadenas, (b) el lenguaje vacío Ø, y (c) cualquier lenguaje finito, son recursivos. Alcanza con dar la idea general. Ayuda para (c): por cada cadena del lenguaje podría definirse un conjunto específico de transiciones.
- 8. Explicar por qué no es correcta la siguiente prueba de que si L ∈ RE, también L^C ∈ RE: dada una MT M que acepta L, entonces la MT M', igual que M pero con los estados finales permutados, acepta L^C.

Ejercicio 2. Explicar (dar la idea general) cómo una MT que en un paso no puede simultáneamente modificar un símbolo y moverse, puede simular (ejecutar) una MT que sí lo puede hacer.

Ejercicio 3. Describir la idea general de una MT con varias cintas que acepte, de la manera más eficiente posible (menor cantidad de pasos), el lenguaje $L = \{a^nb^nc^n \mid n \ge 0\}$.

Ejercicio 4. Probar:

- La clase R es cerrada con respecto a la operación de unión.
 Ayuda: la prueba es similar a la desarrollada para la intersección.
- 2. La clase RE es cerrada con respecto a la operación de intersección. Ayuda: la prueba es similar a la desarrollada para la clase R.

Ejercicio 5. Sean L_1 y L_2 dos lenguajes recursivamente numerables de números naturales codificados en unario (por ejemplo, el número 5 se representa con 11111). Probar que también es recursivamente numerable el lenguaje $L = \{x \mid x \text{ es un número natural codificado en unario, y existen y, z, tales que y + z = x, con y <math>\in L_1$, z $\in L_2$ }.

Ayuda: la prueba es similar a la vista en clase, de la clausura de la clase RE con respecto a la operación de concatenación.

Ejercicio 6. Dada una MT M_1 con alfabeto $\Gamma = \{0, 1\}$:

- 1. Construir una MT M₂, utilizando la MT M₁, que acepte, cualquiera sea su cadena de entrada, sii la MT M₁ acepta **al menos** una cadena.
- 2. ¿Se puede construir además una MT M₃, utilizando la MT M₁, que acepte, cualquiera sea su cadena de entrada, sii la MT M₁ acepta **a lo sumo** una cadena? Justificar.

Ayuda para la parte (1): Si M_1 acepta al menos una cadena, entonces existe al menos una cadena de símbolos 0 y 1, de tamaño n, tal que M_1 la acepta en k pasos. Teniendo en cuenta esto, pensar cómo M_2 podría simular M_1 considerando todas las cadenas de símbolos 0 y 1 hasta encontrar eventualmente una que la acepte M_1 (¡cuidándose de los casos en que M_1 entre en loop!).