

Chemistry: The Study of Change

Chapter 1

Chemistry: the central science

Chemistry: A Science for the 21st Century

- Health and Medicine
 - Sanitation systems
 - Surgery with anesthesia
 - Vaccines and antibiotics
 - Gene therapy

- Energy and the Environment
 - Fossil fuels
 - Solar energy
 - Nuclear energy

Chemistry: A Science for the 21st Century

- Materials and Technology
 - Polymers, ceramics, liquid crystals
 - Room-temperature superconductors?
 - Molecular computing?

- Food and Agriculture
 - Genetically modified crops
 - "Natural" pesticides
 - Specialized fertilizers

The Study of Chemistry

Chemistry is the study of matter and the changes it undergoes.

Matter is anything that occupies space and has mass.

Classification of Matter includes, substances, mixtures, elements, compounds, atoms & molecules.

A *substance* is a form of matter that has a definite composition and distinct properties.

liquid nitrogen

gold ingots

silicon crystals

A *mixture* is a combination of two or more substances in which the substances retain their distinct identities.

Two types:

1. **Homogenous mixture** – composition of the mixture is the same throughout.

soft drink, milk, solder

2. *Heterogeneous mixture* – composition is not uniform throughout.

Physical means can be used to separate a mixture into its pure components.

magnet

distillation

An *element* is a substance that cannot be separated into simpler substances by *chemical means*.

- 118 elements have been identified
 - 82 elements occur naturally on Earth gold, aluminum, lead, oxygen, carbon, sulfur

 36 elements have been created by scientists technetium, americium, seaborgium

TABLE 1.1 Some Common Elements and Their Symbols

Name	Symbol	Name	Symbol	Name	Symbol
Aluminum	Al	Fluorine	F	Oxygen	О
Arsenic	As	Gold	Au	Phosphorus	P
Barium	Ba	Hydrogen	Н	Platinum	Pt
Bismuth	Bi	Iodine	I	Potassium	K
Bromine	Br	Iron	Fe	Silicon	Si
Calcium	Ca	Lead	Pb	Silver	Ag
Carbon	C	Magnesium	Mg	Sodium	Na
Chlorine	C1	Manganese	Mn	Sulfur	S
Chromium	Cr	Mercury	Hg	Tin	Sn
Cobalt	Co	Nickel	Ni	Tungsten	W
Copper	Cu	Nitrogen	N	Zinc	Zn

A *compound* is a substance composed of atoms of two or more elements chemically united in fixed proportions.

Compounds can only be separated into their pure components (elements) by *chemical* means.

lithium fluoride

quartz

dry ice - carbon dioxide

Classifications of Matter

A Comparison: The Three States of Matter

Three States of Matter: Effect of a Hot Poker on a Block of Ice

Types of Changes

A *physical change* does not alter the composition or identity of a substance.

ice melting

sugar dissolving in water

A *chemical change* alters the composition or identity of the substance(s) involved.

hydrogen burns in air to form water

Extensive and Intensive Properties

An extensive property of a material depends upon how much matter is being considered.

- mass
- length
- volume

An *intensive property* of a material does not depend upon how much matter is being considered.

25°C

- density
- temperature
- color

Which one is extensive and which one is intensive property?

Length Extensive

Weight Extensive

Taste Intensive

Width Extensive

Boiling point Intensive

Volume Extensive

Mass Extensive

Colour Intensive

Surface area Extensive

Hardness Intensive

Melting point Intensive

Energy content Extensive

Density Intensive

Luster Intensive

Measurements

- Measurement quantitative observation consisting of two parts:
 - Number
 - Scale (unit)
- > Examples:
 - 20 grams
 - 6.63 × 10⁻³⁴ joule-seconds

Common Types of Laboratory Equipment Used to Measure Mass & Length

Common Types of Laboratory Equipment Used to Measure Liquid Volume

International System of Units (SI)

TABLE 1.2 SI Base Units

Base Quantity	Name of Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electrical current	ampere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

TABLE 1.3 Prefixes Used with SI Units

Prefix	Symbol	Meaning	Example
tera-	T	1,000,000,000,000, or 10 ¹²	1 terameter (Tm) = 1×10^{12} m
giga-	G	$1,000,000,000, \text{ or } 10^9$	1 gigameter (Gm) = 1×10^9 m
mega-	M	$1,000,000, \text{ or } 10^6$	1 megameter (Mm) = 1×10^6 m
kilo-	k	$1,000, \text{ or } 10^3$	1 kilometer (km) = 1×10^3 m
deci-	d	$1/10$, or 10^{-1}	1 decimeter (dm) = 0.1 m
centi-	c	$1/100$, or 10^{-2}	1 centimeter (cm) = 0.01 m
milli-	m	$1/1,000$, or 10^{-3}	1 millimeter (mm) = 0.001 m
micro-	μ	$1/1,000,000, \text{ or } 10^{-6}$	1 micrometer (μ m) = 1 × 10 ⁻⁶ m
nano-	n	$1/1,000,000,000$, or 10^{-9}	1 nanometer (nm) = 1×10^{-9} m
pico-	p	$1/1,000,000,000,000$, or 10^{-12}	1 picometer (pm) = 1×10^{-12} m

Matter - anything that occupies space and has mass.

mass – measure of the quantity of matter

SI unit of mass is the *kilogram* (kg)

$$1 \text{ kg} = 1000 \text{ g} = 1 \times 10^3 \text{ g}$$

weight – force that gravity exerts on an object

weight = $g \times mass$ on earth, $g = 9.81 \text{ m s}^{-2}$ on moon, $g \text{ is } \sim 1/6 \text{ of earth}$

A 1 kg bar will weigh
1 kg on earth
0.17 kg on moon

MKr has a mass of 63 kg weighs 618 Newtons! Taken g = 1

Volume – SI derived unit for volume is cubic meter (m³)

Volume: 1000 cm³; 1000 mL; 1 dm³; 1 L

Volume: 1 cm³; 1 mL

$$1 \text{ cm}^3 = (1 \text{ x } 10^{-2} \text{ m})^3 = 1 \text{ x } 10^{-6} \text{ m}^3$$

$$1 \text{ dm}^3 = (1 \text{ x } 10^{-1} \text{ m})^3 = 1 \text{ x } 10^{-3} \text{ m}^3$$

$$1 L = 1000 mL = 1000 cm^3 = 1 dm^3$$

 $1 \text{ mL} = 1 \text{ cm}^3$

Density – SI derived unit for density is kg/m^3 1 $g/cm^3 = 1$ g/mL = 1000 kg/m^3

density =
$$\frac{\text{mass}}{\text{volume}}$$
 $d = \frac{m}{V}$

A piece of platinum metal with a density of 21.5 g/cm³ has a volume of 4.49 cm³. What is its mass?

$$d = \frac{m}{V}$$

 $m = d \times V = 21.5 \text{ g/cm}^3 \times 4.49 \text{ cm}^3 = 96.5 \text{ g}$

TABLE 1.4

Densities of Some Substances at 25°C

Substance	Density (g/cm³)
Air*	0.001
Ethanol	0.79
Water	1.00
Mercury	13.6
Table salt	2.2
Iron	7.9
Gold	19.3
Osmium [†]	22.6

^{*}Measured at 1 atmosphere.

[†]Osmium (Os) is the densest element known.

A Comparison of Temperature Scales

$$K = {}^{0}C + 273.15$$

$$273 K = 0 {}^{0}C$$

$$373 K = 100 {}^{0}C$$

$$32 {}^{0}F = 0 {}^{0}C$$

$$212 {}^{0}F = 100 {}^{0}C$$

$${}^{0}C = ({}^{0}F - 32) \times \frac{100}{180}$$

$${}^{0}C = ({}^{0}F - 32) \times \frac{5}{9}$$

 ${}^{0}F = \frac{9}{5} \times {}^{0}C + 32$

Convert 172.9 °F to degrees Celsius.

$${}^{0}C = \frac{5}{9} \times ({}^{0}F - 32)$$

$$= \frac{5}{9} \times (172.9 - 32)$$

$$= 78.3$$

Chemistry in Action

On 9/23/99, \$125,000,000 Mars Climate Orbiter entered Mar's atmosphere 100 km (62 miles) lower than planned and was destroyed by heat.

1 lb 💥 1 N

1 lb = 4.45 N

"This is going to be the cautionary tale that will be embedded into introduction to the metric system in elementary school, high school, and college science courses till the end of time."

The meaningful digits in a measured or calculated quantity.

10.5583 g 10.55 g ? ±0.0001 g

Last digit is uncertain.

1.55 kg 1.5583 kg? ± 0.01 kg

- Any digit that is not zero is significant
 - 1.234 kg 4 significant figures
- Zeros between nonzero digits are significant
 - 606 m 3 significant figures
- Zeros to the left of the first nonzero digit are **not** significant
 0.08 L
 1 significant figure
- If a number is greater than 1, then all zeros to the right of the decimal point are significant
 - 2.0 mg 2 significant figures
- If a number is less than 1, then only the zeros that are at the end and in the middle of the number are significant
 - 0.00420 g 3 significant figures

How many significant figures are in each of the following measurements?

24 mL 2 significant figures

3001 g 4 significant figures

0.0320 m³ 3 significant figures

6.4 x 10⁴ molecules 2 significant figures

560 kg 2 or 3 significant figures

Addition or Subtraction

The answer cannot have more digits to the right of the decimal point than any of the original numbers.

Multiplication or Division

The number of significant figures in the result is set by the original number that has the *smallest* number of significant figures.

Exact Numbers

Numbers from definitions or numbers of objects are considered to have an infinite number of significant figures.

The average of three measured lengths; 6.64, 6.68 and 6.70?

$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333 = 6.67 = 7$$

Because 3 is an exact number

Accuracy and Precision

Accuracy – how close a measurement is to the **true** value.

Precision – how close a set of measurements are to **each other**.

Accuracy and Precision

Mass of a copper wire measured by three students.

	Student A	Student B	Student C
	1.964 g	1.972 g	2.000 g
	1.978 g	1.968 g	2.002 g
Average value	1.971 g	1.970 g	2.001 g

- > True mass = 2.000 g
- > Student B's result is more precise than student A, neither set is very accurate.
- > Student C's results are most precise and most accurate.
- Highly accurate measurements are usually precise too.
- Highly precise measurements do not necessarily accurate. (e.g., a faulty balance)

Dimensional Analysis Method of Solving Problems

- 1. Determine which unit conversion factor(s) are needed
- 2. Carry units through calculation
- 3. If all units cancel except for the **desired unit(s)**, then the problem was solved correctly.

given quantity x conversion factor = desired quantity

given unit
$$x = \frac{\text{desired unit}}{\text{given unit}} = \text{desired unit}$$

Dimensional Analysis Method of Solving Problems

How many mL are in 1.63 L?

Conversion Unit 1 L = 1000 mL

$$1.63 \text{ k/x} \quad \frac{1000 \text{ mL}}{1 \text{ k/}} = 1630 \text{ mL}$$

1.63 L x
$$\frac{1L}{1000 \text{ mL}} = 0.001630 \frac{L^2}{\text{mL}}$$

The speed of sound in air is about 343 m/s. What is this speed in miles per hour?

conversion units

meters to miles

seconds to hours

$$1 \min = 60 s$$

1 min = 60 s 1 hour = 60 min

$$343 \frac{\cancel{m}}{\cancel{8}} \times \frac{1 \text{ mi}}{1609 \text{ m}} \times \frac{60 \cancel{8}}{1 \text{ min}} \times \frac{60 \text{ min}}{1 \text{ hour}} = 767 \frac{\text{mi}}{\text{hour}}$$