Categorical Variables Transformations Interactions

GR 5205 / GU 4205 Section 3 Columbia University Xiaofei Shi

Categorical predictors

- Different states, different groups categories
- Different level of treatment ordered categories ordered

factor

Simplest case: binary categories
$$X_1 \in \{0,1\}$$

- Also sometimes called indicator variables or dummy variables.
- Usually we code them as qualitative categories with 0 or 1.

LRM with categorical predictors

Different intercept

• Different slope

Different slope and different intercept

Categorical variables with more than two levels

- One-hot representation vs 1,2,...k
 - design the value based on your needs
 - usually the one-hot representation is preferable
 - make sure only introduce k-1 columns to avoid multicollinearity
- Other thoughts?

- k-number of levels
- n-number of experiments repeated in each level

Summary of one-way ANOVA

- k-number of levels
- n-number of experiments repeated in each level

Source	Sum of Squares	df	Test statistics
Between	SS(B)=SS(full)	k-1	$F=rac{SS(B)/(k-1)}{SS(W)/k(n-1)}$
Within	SS(W)	k(n-1)	
Total	SS(B)+SS(W)=SS(reduced)	nk-1	

Single factor and one-way ANOVA

Data Table

Drug Dose			Libido			Sample Size	Sample Means	Sample Variance
Placebo (k_1)	3	2	1	1	4	5 (n_1)	2.2 $(ar{x}_1)$	1.7 (s_1^2)
Low (k_2)	5	2	4	2	3	5 (n_2)	$3.2(ar{x}_2)$	1.7 (s_2^2)
High (k_3)	7	4	5	3	6	$5\left(n_3 ight)$	5.0 $(ar{x}_3)$	$2.5 (s_3^2)$
Total ($k=3$)						15 (n_T)	3.5 (x ̄)	$3.1 (s^2)$

The model with the same slopes

$$Y = eta_0 + x^{(1)}eta_1 + x^{(2)}eta_2 + \epsilon$$

$$ullet$$
 For $x^{(1)}=0, \qquad Y=eta_0+x^{(2)}eta_2+\epsilon$

$$ullet$$
 For $x^{(1)}=1, \qquad Y=eta_0+eta_1+x^{(2)}eta_2+\epsilon$

Two parallel regression lines for different category

Two factor models

- k-number of levels for factor A
- s-number of levels for factor B
- n-number of experiments repeated in each level

Summary of two-way ANOVA

- k-number of levels for factor A
- s-number of levels for factor B
- n-number of experiments repeated in each level

Source	Sum of Squares	df	Test statistics
Factor A	SS(A)	k-1	$F_A=rac{SS(A)/(k-1)}{SS(R)/ks(n-1)}$
Factor B	SS(B)	s-1	$F_B=rac{SS(B)/(s-1)}{SS(R)/ks(n-1)}$
Factor A&B	SS(A&B)	(k-1)(s-1)	
Residual	SS(R)	sk(n-1)	$\left F_{A\&B} = rac{SS(A\&B)/(k-1)(s-1)}{SS(R)/ks(n-1)} ight $
Total	SS(Total)	nks-1	

Two factors and two-way ANOVA

Source of Variation	SS	df	MS	F	P-value
Seed	512.8667	2	256.4333	28.283	0.000008
Fertilizer	449.4667	4	112.3667	12.393	0.000119
Interaction	143.1333	8	17.8917	1.973	0.122090
Within	136.0000	15	9.0667		
Total	1241.4667	29			

The model with the same intercept

$$Y = eta_0 + x^{(1)} x^{(2)} eta_1 + x^{(2)} eta_2 + \epsilon$$

$$ullet$$
 For $x^{(1)}=0, \qquad Y=eta_0+x^{(2)}eta_2+\epsilon$

• For
$$x^{(1)}=1, \qquad Y=eta_0+x^{(2)}(eta_2+eta_1)+\epsilon$$

Two regression lines with different slopes but same intercept for different categories

R & Python

• R: factor(x); anova(full_model, reduced_model)

• Python: design your own design matrix x

use ols and anova_lm() function in statsmodel

Any other thoughts?

• Higher order effects: the model gets more complicated easily!

For example, in a model with 3 factors, the full model can be:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_1 X_2 + \beta_5 X_1 X_3 + \beta_6 X_2 X_3 + \beta_7 X_1 X_2 X_3 + \epsilon.$$

• Want both different slope and different intercept: separate the data!

Takeaways

ANOVA test:

Reduced model vs Full model

• How to model the linear dependence wrt categorical variables