ÁLGEBRA I: PRÁCTICO 8 Polinomios

1. Sean $P, Q, R \in \mathbb{Z}[X]$ definidos por $P = 3 \cdot X^5 - 2 \cdot X^3 + X^2 - 5 \cdot X - 1$, $Q = 2 \cdot X^4 - 3 \cdot X^2 - X + 5$ y $R = -3 \cdot X^3 + X^2 - 1$. Determinar:

a)
$$P \cdot Q + R$$
.

b)
$$(P-R)\cdot(Q+R)$$
.

c)
$$P - Q^2 \cdot R$$
.

2. Realizar la división del polinomio A por el polinomio B para los siguientes casos. Usar la regla de Ruffini cuando sea posible.

a)
$$A = 3 \cdot X^3 + 4 \cdot X^2 + 5 \cdot X + 1$$
, $B = 2 \cdot X^2 + 6 \cdot X + 8$.

b)
$$A = 2 \cdot X^5 - 3 \cdot X^3 + 6 \cdot X^2 + X - 2$$
, $B = X - 3$.

c)
$$A = 3 \cdot X^4 + 5 \cdot X^3 + 3 \cdot X + 1, B = X + 1.$$

d)
$$A = X^5 - X^4 + 1$$
, $B = 2 \cdot X^3 - 2 \cdot X$.

e)
$$A = 2 \cdot X^4 - 3 \cdot X^3 + 4 \cdot X^2 - 5 \cdot X + 6, B = X^2 - 3 \cdot X + 1.$$

$$f) \ \ A = -4 \cdot X^3 + X^2, \, B = X + \frac{1}{2}.$$

3. Especializar el polinomio P en c, donde

a)
$$P = 2 \cdot X^2 - 1$$
, $c = 1$.

b)
$$P = (X+1)^2$$
, $c = -1$.

c)
$$P = X^3 - X^2 + X - 1$$
, $c = 2$.

d)
$$P = X^2 - 3 \cdot X + 2$$
, $c = -2$.

4. Los siguientes polinomios son divisibles por X-a. Calcular el valor de b en cada caso:

a)
$$P = 3 \cdot X^5 - 2 \cdot X^3 + b \cdot X^2 - 7, a = 1.$$

b)
$$P = 3 \cdot X^5 - 2 \cdot X^4 + b \cdot X - 5, a = -1.$$

c)
$$P = b \cdot X^4 - 2 \cdot X^3 + X^2 - X$$
, $a = 2$.

d)
$$P = X^6 - b \cdot X^5 + 3 \cdot X^2 - 4 \cdot X + 1, \ a = -\frac{1}{2}$$
.

5. Determinar el valor de b para el cual el polinomio $P=X^6+b\cdot X^3-5\cdot X^2-7$ tiene resto 3 en la división por X+2.

1

6. Determinar (si existen) las raíces racionales de los siguientes polinomios:

a)
$$P = 6 \cdot X^5 + 13 \cdot X^4 - 18 \cdot X^3 - 37 \cdot X^2 + 16 \cdot X + 20$$
.

b)
$$P = X^4 - 4 \cdot X^3 - 18 \cdot X^2 + 13 \cdot X + 10$$
.

c)
$$P = X^5 + 3 \cdot X^4 - 5 \cdot X^2 - 2 \cdot X + 1$$
.

d)
$$P = 2 \cdot X^4 + 13 \cdot X^3 + 21 \cdot X^2 + 2 \cdot X - 8$$
.

- 7. Factorizar los siguientes polinomios
 - a) $P = X^3 + 2 \cdot X^2 X 2$.
 - b) $P = X^4 1$.
 - c) $P = X^4 10 \cdot X^3 + 35 \cdot X^2 50 \cdot X + 24$.