

Roteiro • Engenharia de Requisitos; • Elicitação; • Gerência; • Documentação; • Validação; • Casos de Uso;

Entradas e saídas do processo • A seguir, as entradas e saídas do processo: Informações de sistemas existentes Necessidades do cliente Padrões organizacionais Regulamentos Informações de Eng. de Requisitos Regulamentos Informações de dominio

Engenharia de Software

Descrição das atividades

- Elicitação: Descoberta dos requisitos através de consultas aos usuários;
- Análise e negociação: Os requisitos são analisados em detalhes e as divergências são negociadas com os usuários;
- Documentação: Os requisitos são documentados de forma que todos os envolvidos os compreendam;
- Validação: Os requisitos são validados afim de evitar-se problemas futuros. Verifica-se nesta etapa se os requisitos estão completos e consistentes;
- Gerenciamento: Em paralelo com as atividades anteriores existe o gerenciamento dos requisitos o qual tem como objetivo gerenciar as mudancas.

Engenharia de Software

Processo de Engenharia de Requisitos

- O processo de Engenharia de Requisitos pode variar muito, desde um processo completamente não estruturado até um processo sistemático:
- Cada empresa deve definir um processo genérico de Engenharia de Requisitos o qual deve ser adaptado para a realidade de cada projeto;
- O processo é influenciado por:
- Maturidade técnica;
- · Disciplina;
- · Cultura organizacional;
- Domínio da aplicação.

Engenharia de Software

Elicitação de Requisitos

Engenharia de Software

Processo de Engenharia de Requisitos

 A seguir, o fluxo de atividades de um processo de Engenharia de Requisitos;

Engenharia de Software

(C) UNIVATES

Elicitação de Requisitos

- Elicitação de requisitos é um conjunto de atividades que envolvem a descoberta dos requisitos de um sistema;
- Também consiste em identificar os usuários do sistema, as tarefas que desempenham e como eles gostariam de desempenhar estas mesmas tarefas;
- Envolve a descoberta de requisitos que o software deve possuir para satisfazer as diversas necessidades do cliente;
- Analistas trabalham junto com clientes e usuários finais para entender o problema a ser resolvido através do detalhamento das funcionalidades e restrições do futuro sistema;
- Não se trata apenas de questionar os clientes e usuários sobre o que eles precisam, mas sim de uma análise da empresa, do domínio da aplicação e dos processos de negócio envolvidos.

Engenharia de Software

(D) UNIVATES

Entrevistas

 São utilizadas para obter o conhecimento por meio de perguntas realizadas aos usuários especialistas;

- Pode ser aplicado informalmente ou por meio de questionários com perguntas pré-definidas;
- Trazem um conjunto rico em informações, mas demandam grandes esforços de análise, por que trazem visões conflitantes;
- · Como vantagem, permitem um contato imediato com o usuário;
- Como desvantagem, não podem ser utilizadas como único meio de obter os requisitos, pois os usuários utilizam termos muito específicos para explicar suas tarefas, e acham desnecessário ou não conseguem explicar o que é óbvio para o seu trabalho.

Engenharia de Software

Dificuldades na Elicitação de Requisitos

- São dificuldades na Elicitação de Requisitos:
- As informações sobre o domínio da aplicação estão espalhadas em textos, manuais, na cabeça das pessoas que trabalham na área, etc;
- As pessoas que entendem do problema a ser resolvido estão muito ocupadas tentando resolvê-los e não tem tempo ou não desejam ajudar o analista;
- Diferentes interesses e políticas internas;
- Os clientes geralmente não sabem o que precisam ou sabem mas não conseguem explicar;
- Mudanças no negócio durante ou após a elicitação;
- Mudanças no pessoal envolvido durante o processo.

Engenharia de Software

Leitura de documentos

- Como vantagem, tem-se o fácil acesso e o volume de informações;
- Como desvantagem, tem-se a dispersão das informações.

Questionários

- Podem ser utilizados quando existe o conhecimento sobre um problema e vários usuários envolvidos;
- Permitem ter uma visão estatística de como alguns problemas são percebidos pelos usuários;
- Como vantagem, permite padronização das perguntas e estatísticas com as respostas;
- Como desvantagem, limita o conjunto de respostas e tem pouca interação.

Engenharia de Software

Técnicas de Elicitação de Requisitos

- Várias técnicas podem ser utilizadas na Elicitação de Requisitos:
- Entrevistas;
- · Leitura de documentos;
- · Questionários;
- · Observação;
- Reutilização de requisitos;
- · Cenários:
- Casos de uso.

Engenharia de Software

Observação (Etnografia)

- As pessoas geralmente acham difícil descrever
 o que elas fazem pois isto é muito natural para elas;
- As vezes, a melhor forma é observá-las no trabalho. A etnografia consiste em observar as pessoas em seu trabalho e construir uma imagem de como o trabalho é realizado;
- Os processo reais de trabalho geralmente diferem daqueles processos formais descritos;
- Como vantagem, permite uma visão mais completa do processo. Além disso, as pessoas preferem mostrar do que explicar como fazem suas tarefas;
- Como desvantagem, tem-se o elevado tempo gasto, baixa sistematização do processo e constrangimento na observação;
- É uma técnica complementar e não deve ser utilizada sozinha.

Engenharia de Software

Reuso de requisitos

- Considera requisitos que foram desenvolvidos para um sistema e usá-los em sistemas diferentes;
- O reuso de requisitos economiza tempo e esforço, pois requisitos reutilizados já foram analisados e validados em outros sistemas:
- Atualmente o reuso de requisitos é um processo informal;
- O reuso leva à uma maior consistência entre aplicações;
- A capacidade de se aproveitar análises anteriores que diferencia um analista experiente de um inexperiente;
- Como vantagem, tem-se maior produtividade e qualidade, uma vez que os requisitos já foram validados;
- Como desvantagem, tem-se uma dificuldade em se reutilizar um requisito sem que seja necessário sua modificação.

Engenharia de Software

(D) UNIVATES

Prototipação

- Um protótipo é uma versão inicial de um sistema;
- Seu objetivo é a validação de requisitos ainda em estágios iniciais de desenvolvimento;
- O protótipo de um sistema pode ser descartado ou evoluir para uma versão final do sistema;
- Os protótipos minimizam a distância na comunicação entre cliente e analista e constituem

 Uma forma concreta de mostrar

 | Marie | Marie

uma forma concreta de mostrar para o cliente os conceitos absorvidos.

Engenharia de Software

Cenários

- Um cenário é uma estória que explica como um sistema pode ser utilizado;
- Um cenário representa uma sessão que descreve a interação entre o usuário e o sistema:

- · Exemplo:
- 1) Aluno informa número de matrícula;
- 2) Aluno seleciona o curso;
- 3) Aluno seleciona as turmas a cursar;
- 4) Aluno seleciona os horários disponíveis;
- 5) O sistema salva a matrícula.

Engenharia de Software

Casos de uso

- Técnica para obtenção de requisitos criada em 1993 (Jacobson);
- Casos de Uso descrevem as interações entre o sistema e seus atores, trazendo à tona suas relações e os diferentes papéis desempenhados pelos usuários no sistema;
- Cenários provêm descrição de um determinado conjunto de atividades entre o sistema e o usuário, simulando o fluxo de interações entre os mesmos após um estado inicial§istema
- No diagrama de casos de uso os agentes são representados por bonecos e cada interação por uma elipse com um nome.

Engenharia de Software

(UNIVATES

Brainstorming

- É uma técnica que envolve reunião em grupo, e é baseada na geração de idéias;
- Envolve a reunião de especialistas de negócio e de sistema tendo em vista a criação de idéias para resolução de problemas;
- Envolve alguns princípios como a não-crítica e o nãojulgamento das idéias geradas;
- A técnica de Brainstorming pode ser aplicada no início da etapa de elicitação de requisitos quando o universo de requisitos conhecidos é pequeno, sendo necessário gerar novas idéias;
- As idéias são geradas de forma rápida, coletadas e então discutidas e avaliadas pelo grande grupo.

Engenharia de Software

(UNIVATES

Análise e Negociação

Engenharia de Software

Análise e Negociação

- São atividades que tem como objetivo descobrir problemas nos requisitos e obter um consenso na solução junto aos clientes;
- Na análise, os requisitos são analisados para detectar inconsistências e identificar requisitos faltantes;
- Na negociação ocorre a resolução de conflitos e priorização;
- A análise é feita após a primeira versão do documento de requisitos ficar pronta e envolve a revisão de todos os requisitos com o objetivo de detectar problemas.
- Nesta etapa, os usuários podem participar desde que estes tenham sido treinados em técnicas de modelagem;
- Ocorrem em forma de espiral junto com a elicitação. Os requisitos vão sendo descobertos, analisados e negociados.

Engenharia de Software

Documentação

Engenharia de Software

Análise e Negociação

- · Etapas da Análise:
- Análise de necessidade: a real necessidade dos requisitos propostos é avaliada:
- Análise de consistência e completeza: os requisitos são confrontados para evitar-se contradições e a omissões;
- Análise de viabilidade: a viabilidade dos requisitos é verificada em relação a prazo e orçamento;
- Etapas da Negociação:
- Discussão: os requisitos com algum tipo de problema são discutidos com os envolvidos;
- Priorização: os requisitos são priorizados;
- Aceitação: soluções para os requisitos problemáticos são acordadas.

Engenharia de Software

Documentação

 Na fase de documentação, é realizada a documentação dos requisitos, que utilizada para comunicar os requisitos do sistema entre cliente e desenvolvedor;

- A Especificação de Requisitos do Software é a declaração formal dos requisitos do sistema e pode conter apenas os requisitos de usuário ou os de usuário e os de sistema;
- É utilizada pelo cliente (para validar), pelo engenheiro de software (para entender o que deve ser desenvolvido), pelo engenheiro de testes (para planejar os testes), dentre outros.

Engenharia de Software

Análise e Negociação

- Pode ser elaborado um checklist para avaliar cada requisito:
 - ☑ Descrição incompleta;
 - ☑ Descrição ambígua;
 - ☑ Requisito desnecessário;
 - ☑ Não conformidade com os objetivos do negócio;
 - ☑ Não é viável técnicamente;
 - ☑ O prazo não permite;
 - $\ensuremath{\square}$ O custo não permite;
 - ☑ Não realista.

Engenharia de Software

Documentação

- Padrão sugerido:
- Prefácio: Público-alvo, histórico de versões;
- Sumário: Partes do documento e numeração de páginas;
- Introdução: Funções do sistema, propósito do documento, escopo do produto, referências, visão geral;
- Requisitos do usuário: requisitos do usuário (RF e RNF);
- Requisitos do sistema: requisitos do sistema (RF e RNF);
- Arquitetura do sistema: visão geral da arquitetura e distribuição de módulos;
- Evolução do sistema: Mudanças previstas devidas a necessidade de hardware, necessidades dos usuários, etc.

Engenharia de Software (UNIVATES Validação

Engenharia de Software

Revisão

- A revisão é a técnica mais usada para validar os requisitos;
- É realizada por um grupo de pessoas que se reunem para discutir os problemas encontrados e definir soluções;
- · Etapas do processo:
- 1) Planejamento: Definição de datas, local e pessoas envolvidas;
- 2) Distribuição: Documento é encaminhado para revisores;
- 3) Revisão: Cada revisor revisa o documento de SRS;
- 4) Reunião: Cada revisor expõe problemas encontrados;
- 5) Encaminhamento: O coordenador encaminha as ações de
- 6) Revisão: O documento de SRS é revisado e corrigido. Um requisito pode ser: reescrito, complementado, corrigido ou excluído.

Validação

- · A validação de requisitos tem como objetivo validar consistência, completeza e precisão dos requisitos a partir da documentação (SRS), a fim de descobrir problemas, omissões e ambiguidades;
- Na fase de validação, analistas e usuários devem validar os requisitos e avaliar o protótipo, o que muitas vezes leva à descoberta de novos requisitos;
- Este é um processo iterativo que se repete até que todos os requisitos sejam validados ou não existam mais requisitos a descobrir;
- · Nesta fase é verificada a consistência, completude e precisão dos requisitos, para garantir que não exista ambiguidade, inconsistências, erros e omissões nos requisitos.

Engenharia de Software

Revisão

- Para facilitar a revisão, um checklist pode ser elaborado:
- Cada requisito possui identificação única?
- Todos os termos específicos estão no glossário?
- É possível entender os requisito individualmente ?
- Há algum termo utilizado de diferentes formas ?
- Uma função aparece em mais de um requisito? • Existe alguma contradição entre os requisitos ?
- As relações entre os requisitos estão claras ?

Engenharia de Software

Validação x Análise

- · A análise e a validação de requisitos são atividades próximas,
- · A análise avalia os requisitos ainda incompletos e não aprovados pelos clientes;
- · A validação inicia somente após os requisitos estarem completos e aprovados pelos clientes.

Engenharia de Software

(C) UNIVATES

Gerenciamento

Gerenciamento

- Consiste em gerenciar as mudanças nos requisitos e garantir que elas ocorram de uma maneira controlável;
- Durante o ciclo de vida de um projeto, é necessário gerenciar as mudanças de requisitos;
- Os requisitos evoluem ao longo do tempo e sua própria definição gera um feedback contínuo, gerando novos requisitos e modificando os existentes.
- Dependências e relações entre os requisitos são controlados via matriz de rastreabilidade, que permite ao gerente conhecer quais outros requisitos serão afetados por uma mudança;
- Utiliza-se versionamento de requisitos, para que se mantenha o registro de quem solicitou a alteração do requisito, quais foram as alterações e qual foi o impacto decorrente.

Engenharia de Software

(C) UNIVATES

Mudança de requisitos

- São fases da mudança de requisitos:
- Requisição inicial: um membro da equipe submete uma proposta de mudança. O problema é identificado, analisado e descrito em termos da mudança proposta;
- Validação e Avaliação: a mudança é validada em termos de impactos em cronograma e avaliada e revisada;
- Implementação: a mudança aceita e aprovada é implementada e passa a ser parte integrante do sistema;
- Verificação: é verificado se a mudança foi implementada corretamente.

Engenharia de Software

Gerenciamento de Requisitos

- Para um efetivo gerenciamento de requisitos, cada requisito deve possuir algum tipo de identificação única (RF001);
- Quanto ao local, uma alternativa é armazenar todos os requisitos em um único documento;
- Entretanto, tem-se algumas desvantagens:
 - Dificuldades em manter informações de dependência;
 - A pesquisa é limitada às funções do processador de texto;
 - Dificuldade em manter versionamento dos requisitos;
 - Dificuldade na navegação entre requisitos relacionados.

Engenharia de Software

Análise de impactos

- A análise de impacto é a atividade que identifica o que deve ser alterado para que se implemente determinada mudança no sistema, identificando suas potenciais consequências;
- A análise de impacto identifica as entidades que são possivelmente afetadas por uma mudança proposta no sistema;
- Dentre algumas formas de realizar a análise de impacto, podese citar: a utilização de listagens cruzadas, relacionamentos de rastreabilidade, consulta à especificação, dentre outros;
- A análise de impacto é tida como de sucesso quando consegue identificar corretamente o conjunto das partes afetadas por uma mudança no sistema e é tida como falha se os testes revelarem que outras partes do sistema também necessitam ser alteradas.

Engenharia de Software

Mudança de requisitos

- · Alguns motivos para a mudança de requisitos são:
- Mudanças no negócio;
- Mudanças de legislação;
- Mudanças no processo;
- Evolução no entendimento;
- Problemas ou restrições técnicas;
- Restrições de prazo e de orçamento;
- Mudanças nas prioridades dos cliente;
- Erros, conflitos e inconsistências;

Engenharia de Software

Processo de Gerência da Mudança

Rastreabilidade

- A rastreabilidade de requisitos consiste em ligações entre as informações produzidas no desenvolvimento de software;
- Estas ligações são essenciais no desenvolvimento de sistemas, por causa do grande o volume de informações produzidas;
- Quando uma mudança ocorre é necessário estimar o custo e o escopo da mudança e a rastreabilidade é chave para isto;
- Tradicionalmente, esta análise de impacto tem sido conduzida de forma intuitiva pelos profissionais de software, por meio da análise de código-fonte e da documentação;
- Esta abordagem pode ser suficiente para projetos pequenos, mas não para projetos complexos;
- Além disso, mesmo profissionais experientes realizam estimativas erradas;

Engenharia de Software

Rastreabilidade

- · São vantagens da rastreabilidade:
- Estimativas de custos e prazos quando da inserção de uma nova funcionalidade:
- Verificação de alocação entre requisitos e sua implementação;
- Identificação das origens de requisitos conflitantes;
- Verificação de requisitos para os quais não foram previstos testes:
- Validação do sistema, verificando se o mesmo atende ao conjunto de requisitos proposto;
- Identificação de riscos que possam impactar os requisitos;
- Identificação de ligações entre código e documentos de análise.

Engenharia de Software

Casos de Uso

Engenharia de Software

Introdução

- Casos de uso são utilizados para captar e transmitir os requisitos funcionais de um software por meio da descrição das interações que ocorrem entre o sistema e seus usuários;
- Os casos de uso possibilitam apresentar os principais papéis que utilizam o sistema e quais tarefas estes desempenham;
- A técnica de casos de uso está fortemente baseada na idéia de cenários;
- Um cenário tratas-se de uma narrativa que descreve em etapas a sequência de interações entre um usuário e o sistema.

Um cenário

 Ex: O leitor vai até a biblioteca, onde seleciona os livros de seu interesse. Quando este finalizar, passa no balcão de empréstimos onde se identifica, é autorizado pelo atendente, que registra os empréstimos no sistema e lhe informa a data de devolucão.

Engenharia de Software

(C) UNIVATES

Casos de uso

- Um caso de uso deve ter um nome único, geralmente formado por um verbo e um objeto;
- Exemplo: Realizar empréstimo, Registrar devolução, Processar compra, Autenticar usuário;
- A escrita de um caso de uso geralmente inicia pelo caso de sucesso, ou seja,o caminho pelo qual a sequência de atividades objetivadas pelo ator atinge o êxito;
- A partir do caso de sucesso, são criadas extensões, que pondem indicar falhas (erros) ou caminhos alternativos de execução;
- Uma boa forma de identificar extensões é imaginar de que outras maneiras o processo poderia ser conduzido ou mesmo pensar quais etapas podem falhar.

Engenharia de Software

Cenários e Casos de uso

- Um cenário trata-se de uma descrição subjetiva. Ele é apenas uma das diversas alternativas que podem vir a ser realidades;
- Algumas etapas descritas em um cenário podem falhar e, neste caso, o cenário não nos diz como o sistema deve se comportar; Por exemplo, o leitor pode ter a senha rejeitada e neste caso, teríamos um novo cenário;
- Um caso de uso, de outra maneira, é uma descrição mais completa e detalhada de um cenário ou de vários cenários inter-relacionados;
- Dizemos que um caso de uso é um conjunto de cenários comum mesmo objetivo em comum.

Engenharia de Software

Casos de uso

- Os casos de uso são utilizados principalmente para representar os requisitos funcionais que serão implementados pelo sistema;
- Mas também podem ser utilizados para servirem de guias para os testes que serão realizados posteriormente;
- A descrição textual de um caso de uso é uma fonte muito rica para a execução de testes, observando principalmente as extensões;
- Para Fowler, o verdadeiro valor de um caso de uso está em seu conteúdo, sua descrição, e não em seu diagrama. O diagrama é apenas uma ferramenta para facilitar sua visualização;
- Além disto, os casos de uso podem ser utilizados para a montagem dos perfis de usuários e grupos que utilizarão o sistema após implantado.

Engenharia de Software

Atores (papéis)

- Os casos de uso são realizados por atores, usuários do sistema;
- Os atores são nomeados por papéis que desempenham no sistema e este papel tem relacionamento com a atividade desempenhada por ele;
- É comum encontrarmos atores chamados: atendente, cliente, administrador, etc. Um ator não precisa ser necessariamente uma pessoa, mas também um outro sistema da organização;
- É importante notar que um ator nunca faz parte do sistema, ele é externo ao sistema.

Engenharia de Software

Exemplo de Casos de uso

- Caso de uso: Empréstimo
- Fluxo principal:
 - 1.Leitor seleciona exemplares para retirar por empréstimo;
 - 2.Leitor se direciona ao balcão de empréstimos;
 - 3.Leitor se identifica por meio de documento próprio fornecido pela biblioteca;
 - 4. Atendente realiza autenticação do leitor no sistema;
 - 5. Atendente realiza leitura dos exemplares pelo leitor ótico;
 - 6.Sistema registra retirada;
 - 7. Sistema emite comprovante;

Exemplo de Casos de uso

- Extensões:
 - · 4a. A autenticação do leitor falha
 - 1.0 mesmo pode tentar digitar a senha novamente ou cancelar o empréstimo;
 - 2.0 leitor pode solicitar uma nova senha e reiniciar o processo.
 - 5a. Algum exemplar já esteja reservado para outro leitor
 - 1. O livro deverá ser devolvido ao acervo.

Engenharia de Software

Diagrama de Casos de uso

- Um Caso de uso é representado por uma elipse;
- Um Caso de uso é geralmente escrito no infinitivo + objeto;
- Um Caso de uso não é um módulo do sistema (substantivo);
- Para descobrir os Casos de uso, pergunte aos atores o que eles irão fazer;
- O ator é algo ou alguém externo ao sistema;
- Um ator interage com o sistema;
- Para descobrir os atores: "Quem interage com o sistema?"
- · Atores são representados por um StickMan;

Engenharia de Software

Detalhes de um caso de uso

- Um caso de uso poderá estar relacionado à outros casos de uso.
- O diagrama de casos de uso apresenta uma notação formal para isto. Entretanto, textualmente não há uma forma padronizada para esta indicação;
- Apesar disto, muitas ferramentas utilizam o estilo sublinhado para referenciar um caso de uso externo.
- Além do fluxo de atividades principal e das extensões, um caso de uso pode ter pré-condições, que descrevem algumas situações que devem ser garantidas antes da execução do fluxo principal.
- Já uma pós-condição ou garantia descreve alguma situação ou estado que o sistema deve atingir ou garantir ao final da execução do fluxo principal no caso deste ser executado com êxito.

Engenharia de Software

(D) UNIVATES

Diagrama de Casos de uso

Engenharia de Software

Diagrama de Casos de uso

- A UML apresenta o diagrama de casos de uso como uma notação gráfica que exibe os atores e os casos de uso que estes desempenham no sistema;
- É uma técnica que permite uma visão de alto nível sobre os papeis e suas ações no sistema;
- O diagrama de casos de uso não permite apenas apresentar as relações entre os atores e os casos de uso, mas também relações entre os casos de uso e permite conhecer os limites do sistema.

Engenharia de Software

(UNIVATES

Diagrama de Casos de uso

(D) UNIVATES

Bibliografia

- DALL'OGLIO, Pablo. Uma Ferramenta para Gerenciamento de Requisitos em Projetos Baseados em Extreme Programming;
- DALL'OGLIO, Pablo. Um Sistema Multi-Agente Colaborativo para Gestão da Mudança de Requisitos de Software;
- SOMMERVILLE. Software Engineering;