THỰC HÀNH NHẬP MÔN MẠCH SỐ - LỚP PH002.N14 BÀI THỰC HÀNH 3: PHÂN TÍCH VÀ THIẾT KẾ MẠCH SỐ

Giảng viên hướng dẫn	Đỗ Trí Nhựt		ÐIỂM
Sinh viên thực hiện 1	Lại Quan Thiên	22521385	
Sinh viên thực hiện 2			

1. Mục tiêu

- Phân tích, thiết kế, đánh giá mạch số từ đặc tả kỹ thuật
- Làm quen với IC7447 để hiện thị giá trị của một số BCD

2. Nội dung

b. Thực hành trên lớp (làm theo nhóm)

Câu 1: Khảo sát IC7447.

- Vẽ sơ đồ mạch trên Quartus: □

- Nạp thiết kế xuống DE2 KIT và điền giá trị hiện thị trên LED 7 đoạn vào bảng bên dưới: □

SW[3]	SW[2]	SW[1]	SW[0]	Giá trị hiện thị
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6

0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Câu 3: Thiết kế mạch số có tính năng cộng 2 số hạng 2 bits theo dạng:

$$\{C, R1, R0\} = \{A1, A0\} + \{B1, B0\}$$

- Hoàn thành bảng chân trị bên dưới: □

A1	A0	B1	B0	C	R1	R0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

- Viết biểu thức luận lý (không rút gọn luận lý): □
 - ightharpoonup C = A1'A0B1B0 + A1A0'B1B0' + A1A0'B1B0 + A1A0B1'B0 + A1A0B1B0' + A1A0B1B0
 - > **R1** = A1'A0'B1B0' + A1'A0'B1B0 + A1'A0B1'B0 + A1'A0B1B0' + A1A0'B1'B0' + A1A0'B1'B0 + A1A0B1'B0' + A1A0B1B0
 - > **R0** = A1'A0'B1'B0+ A1'A0'B1B0 +A1'A0B1'B0' + A1'A0B1B0' + A1A0'B1'B0 + A1A0'B1B0 + A1A0B1'B0' + A1A0B1B0'
- Rút gọn luận lý bằng phương pháp Đại số Bool hoặc K-map, cố gắng đưa biểu thức về các phép toán XOR nếu có thể: □

Rút gọn bằng phương pháp K-map

Arr C = A1'A0B1B0 + A1A0'B1B0' + A1A0'B1B0 + A1A0B1'B0 + A1A0B1B0' + A1A0B1B0

B1B0 A1A0	00	01	11	10
00				
01			1	
11		1		1
10			1	1

- \Rightarrow C = (A1B1) + (A1A0B0) + (A0B1B0)
- > **R1** = A1'A0'B1B0' + A1'A0'B1B0 + A1'A0B1'B0 + A1'A0B1B0'+A1A0'B1'B0' + A1A0'B1'B0 + A1A0B1'B0' + A1A0B1'B0

B1B0 A1A0	00	01	11	10
00			1	1
01		1	(1
11	1		1	
10	1	1		

 $\mathbf{R1} = \overline{A1'A0'B1 + A1A0'B1' + A1'B1B0' + A1B1'B0' + A1'A0B1'B0} + A1A0B1B0$ = A0'(A1'B1 + A1B1') + B0'(A1'B1 + A1B1') + A0B0(A1'B1' + A1B1)

- = (A0'+B0')(A1'B1 + A1B1') + A0B0(A1 xor B1)'
- \Rightarrow (A0B0)'(A1 xor B1) + A0B0(A1 xor B1)'
- > **R0** = A1'A0'B1'B0+ A1'A0'B1B0 +A1'A0B1'B0' + A1'A0B1B0' + A1A0'B1'B0 + A1A0'B1B0 + A1A0B1'B0' + A1A0B1B0'

B1B0 A1A0	00	01	11	10
00		1	1	
01	T			1
11	1			1
10		1	1	

 \Rightarrow **R0** = (A0'B0) + (A0B0') = A0 xor B0

Vẽ sơ đồ mạch trên Quartus (sử dụng LED 7 đoạn để hiện thị 2 số hạng và tổng số): □
Mạch C:

Mạch R1:

Mạch R0:

Đóng gói mạch lần 1:

Đóng gói mạch lần 2 => mạch hoàn chỉnh

Mô phỏng mạch:

-[Tùy chọn] Nạp thiết kế xuống DE2 KIT và điền kết quả thực nghiệm trên LED 7 đoạn vào bảng sau: □

Số hạng A	Số hạng B	Tổng số R (kèm bit nhớ)
0	0	0
0	1	1
0	2	2
0	3	3
1	0	1

1	1	2
1	2	3
1	3	4
2	0	2
2	1	3
2	2	4
2	3	5
3	0	3
3	1	4
3	2	5
3	3	6