

STP12NM50FD-STP12NM50FDFP-STW14NM50FD

STB12NM50FD - STB12NM50FD-1

N-CHANNEL500V-0.32Ω-12ATO-220/FP/D²PAK/I²PAK/TO-247

FDmesh™ Power MOSFET (with FAST DIODE)

TYPE	V _{DSS}	R _{DS(on)}	I _D	P _w
STP12NM50FD	500 V	< 0.4 Ω	12 A	160 W
STP12NM50FDFP	500 V	< 0.4 Ω	12 A	35 W
STB12NM50FD	500 V	< 0.4 Ω	12 A	160 W
STB12NM50FD-1	500 V	< 0.4 Ω	12 A	160 W
STW14NM50FD	500 V	< 0.4 Ω	14 A	175 W

- TYPICAL R_{DS(on)} = 0.32 Ω
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- 100% AVALANCHE TESTED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL AND HIGH MANUFACTURING YIELDS

DESCRIPTION

The FDmesh™ associates all advantages of reduced on-resistance and fast switching with an intrinsic fast-recovery body diode. It is therefore strongly recommended for bridge topologies, in particular ZVS phase-shift converters.

APPLICATIONS

- ZVS PHASE-SHIFT FULL BRIDGE CONVERTERS FOR SMPS AND WELDING EQUIPMENT

INTERNAL SCHEMATIC DIAGRAM

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STP12NM50FD	P12NM50FD	TO-220	TUBE
STP12NM50FDFP	P12NM50FDFP	TO-220FP	TUBE
STB12NM50FD	B12NM50FD	D ² PAK	TUBE
STB12NM50FDT4	B12NM50FD	D ² PAK	TAPE & REEL
STB12NM50FD-1	B12NM50FD	I ² PAK	TUBE
STW14NM50FD	W14NM50FD	TO-247	TUBE

STP12NM50FD / STP12NM50FDFP / STB12NM50FD / STB12NM50FD-1 / STW14NM50FD

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value			Unit
		TO-220 / D ² PAK / I ² PAK	TO-220FP	TO-247	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500			V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	500			V
V _{GS}	Gate- source Voltage	± 30			V
I _D	Drain Current (continuous) at T _C = 25°C	12	12 (*)	14	A
I _D	Drain Current (continuous) at T _C = 100°C	7.5	7.5 (*)	8.8	A
I _{DM} (•)	Drain Current (pulsed)	48	48 (*)	56	A
P _{TOT}	Total Dissipation at T _C = 25°C	160	35	175	W
	Derating Factor	1.28	0.28	1.4	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	20			V/ns
V _{ISO}	Insulation Withstand Voltage (DC)	-	2500		V
T _j T _{stg}	Operating Junction Temperature Storage Temperature	- 65 to 150 - 65 to 150			°C °C

(•) Pulse width limited by safe operating area

(1) I_{SD} ≤ 12A, di/dt ≤ 400 μA, V_{DD} ≤ V_{(BR)DSS}, T_j ≤ T_{JMAX}.

(*) Limited only by maximum temperature allowed

THERMAL DATA

		TO-220 I ² PAK	D ² PAK	TO-220FP	TO-247	
R _{thj-case}	Thermal Resistance Junction-case Max	0.78		3.57	0.715	°C/W
R _{thj-pcb}	Thermal Resistance Junction-pcb Max (When mounted on minimum Footprint)		30			°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	62.5			30	°C/W
T _l	Maximum Lead Temperature For Soldering Purpose	300				°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	6	A
E _{AS}	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	400	mJ

STP12NM50FD / STP12NM50FDFP / STB12NM50FD / STB12NM50FD-1 / STW14NM50FD

ELECTRICAL CHARACTERISTICS (TCASE =25°C UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{(BR)DSS}$	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	500			V
I_{DSS}	Zero Gate Voltage Drain Current ($V_{GS} = 0$)	$V_{DS} = \text{Max Rating}$ $V_{DS} = \text{Max Rating}, T_C = 125^\circ\text{C}$			1 10	μA μA
I_{GSS}	Gate-body Leakage Current ($V_{DS} = 0$)	$V_{GS} = \pm 30\text{V}$			± 100	nA
$V_{GS(\text{th})}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250\mu\text{A}$	3	4	5	V
$R_{DS(\text{on})}$	Static Drain-source On Resistance	$V_{GS} = 10\text{V}, I_D = 6\text{A}$		0.32	0.4	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$g_{fs}(1)$	Forward Transconductance	$V_{DS} = 15 \text{ V}, I_D = 6 \text{ A}$		9.8		S
C_{iss} C_{oss} C_{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25\text{V}, f = 1 \text{ MHz}, V_{GS} = 0$		1027 205 24		pF pF pF
R_G	Gate Input Resistance	$f=1 \text{ MHz}$ Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		3.7		Ω

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{d(\text{on})}$ t_r	Turn-on Delay Time Rise Time	$V_{DD} = 250 \text{ V}, I_D = 6 \text{ A}$ $R_G = 4.7\Omega, V_{GS} = 10 \text{ V}$ (Resistive Load see, Figure 3)		19 10		ns ns
Q_g Q_{gs} Q_{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400\text{V}, I_D = 12 \text{ A},$ $V_{GS} = 10\text{V}$		27.5 8 12	38.5	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{r(V_{off})}$ t_f t_c	Off-voltage Rise Time Fall Time Cross-over Time	$V_{DD} = 400 \text{ V}, I_D = 12 \text{ A},$ $R_G = 4.7\Omega, V_{GS} = 10\text{V}$ (Inductive Load see, Figure 5)		39 18 29		ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{SD} $I_{SDM}(2)$	Source-drain Current Source-drain Current (pulsed)				12 48	A A
$V_{SD}(1)$	Forward On Voltage	$I_{SD} = 12 \text{ A}, V_{GS} = 0$			1.5	V
t_{rr} Q_{rr} I_{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 12 \text{ A}, di/dt = 100\text{A}/\mu\text{s}$ $V_{DD} = 30\text{V}, T_j = 150^\circ\text{C}$ (see test circuit, Figure 5)		224 1.3 12		ns μC A

Note: 1. Pulsed: Pulse duration = 300 μs , duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

STP12NM50FD / STP12NM50FDFP / STB12NM50FD / STB12NM50FD-1 / STW14NM50FD

Safe Operating Area For TO-220/D2PAK/I2PAK

Thermal Impedance For TO-220/D2PAK/I2PAK

Safe Operating Area For TO-220FP

Thermal Impedance For TO-220FP

Safe Operating Area For TO-247

Thermal Impedance For TO-247

STP12NM50FD / STP12NM50FDFP / STB12NM50FD / STB12NM50FD-1 / STW14NM50FD

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

STP12NM50FD / STP12NM50FDFP / STB12NM50FD / STB12NM50FD-1 / STW14NM50FD

Normalized Gate Threshold Voltage vs Temp.

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

Normalized BVDSS vs Temperature

STP12NM50FD / STP12NM50FDFP / STB12NM50FD / STB12NM50FD-1 / STW14NM50FD

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 2: Unclamped Inductive Waveform

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

D²PAK MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
B	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
C	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
M	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	0°		8°			

TO-262 (I²PAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
B	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
C	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
e	2.4		2.7	0.094		0.106
E	10		10.4	0.393		0.409
L	13.1		13.6	0.515		0.531
L1	3.48		3.78	0.137		0.149
L2	1.27		1.4	0.050		0.055

TO-247 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
E	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
H	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559		0.582
L4		34.6			1.362	
L5		5.5			0.217	
M	2		3	0.079		0.118

D²PAK FOOTPRINT

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

* on sales type

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© <http://www.st.com>