На векторах $\overline{M_1M_2}$, \bar{a}_1 , \bar{a}_2 строим параллелепипед объема $V = |(\overline{M_1 M_2}, \bar{a}_1, \bar{a}_2)|.$

В качестве основания выбираем нижнюю часть параллелепипеда. На рис. Она отмечена штриховкой. Его площадь $S = |[\bar{a}_1, \bar{a}_2]|$. Расстояние h между скрещивающимися прямыми выражается через объем V и площадь S как:

$$h=rac{V}{S}=rac{|(\overline{M_1M_2},ar{a}_1,ar{a}_2)|}{|[ar{a}_1,ar{a}_2]|}.$$
 Или в развернутой форме

$$h = \frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end{vmatrix}}{\sqrt{\begin{vmatrix} p_1 & q_1 \\ p_2 & q_2 \end{vmatrix}^2 + \begin{vmatrix} p_1 & r_1 \\ p_2 & r_2 \end{vmatrix}^2 + \begin{vmatrix} q_1 & r_1 \\ q_2 & r_2 \end{vmatrix}^2}}$$

Задача 4. Написать уравнение общего перпендикуляра к двум скрещивающимся прямым.

$$l_1 : \frac{x - x_1}{p_1} = \frac{y - y_1}{q_1} = \frac{z - z_1}{r_1},$$

$$l_2 : \frac{x - x_2}{p_2} = \frac{y - y_2}{q_2} = \frac{z - z_2}{r_2}.$$

стве \bar{a} можно взять, например, $\bar{a} = [\bar{a}_1, \bar{a}_2]$. Действительно, из определения векторного произведения следует, что $\bar{a} \perp \bar{a}_1$ и $\bar{a} \perp \bar{a}_2$.

Пусть π_1 – плоскость, проходящая через прямые l и l_1 (см.рис.).

 π_1 : $(\overline{M_1M}, \bar{a}, \bar{a}_1) = 0$ – уравнение плоскости π_1 .

Аналогично, для произвольной точки $M(x,y,z) \in \pi_2$

 π_2 : $(\overline{M_2M}, \bar{a}, \bar{a}_2) = 0$ – уравнение плоскости π_2 .

Общий перпендикуляр l есть $l=\pi_1\cap\pi_2$. Тогда

$$l \colon \begin{cases} (\overline{M_1M}, \bar{a}, \bar{a}_1) = 0 \\ (\overline{M_2M}, \bar{a}, \bar{a}_2) = 0 \end{cases}$$
 – уравнение общего перпендикуляра

2.6 Кривые второго порядка

Здесь и далее ОХУ – прямоугольная декартова система координат. Рассмотрим многочлен 2-го порядка от двух переменных:

$$F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{10}x + 2a_{20}y + a_0,$$
 где $a_{11}^2 + a_{12}^2 + a_{22}^2 \neq 0$

Появление коэффициентов 2 при некоторых слагаемых объясняется удобством дальнейших вычислений.

Определение 2.14. Кривой второго порядка или алгебраической линией второго порядка называем множество точек, удовлетворяющий уравнению F(x,y) = 0 и только их.

Основной задачей для нас будет являться классификация алгебраических линий 2-го порядка. Для алгебраических линий 1-го порядка классификация была максимально проста: Алгебраические линии 1-го порядка это прямые и только они. В случае кривых 2-го порядка ситуация гораздо сложнее. Начнём рассмотрение с наиболее "знаменитых" кривых 2-го порядка и обсудим их свойства.

ЭЛЛИПС

Определение 2.15. Эллипсом называем кривую 2-го порядка уравнение которой в системе OXY есть:

$$\left. \begin{array}{l} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \\ \text{где } a \geqslant b > 0 \end{array} \right\} \tag{1}$$

Исследование формы эллипса

Из уравнения эллипса следует, что для любой точки M(x,y) эллипса выполняются условия $|x| \leqslant a$, $|y| \leqslant b$, т.е. все точки этой кривой 2-го порядка находятся внутри прямоугольника со сторонами $x = \pm a, y = \pm b.$

Такой прямоугольник называют ОСНОВ-НЫМ ПРЯМОУГОЛЬНИКОМ эллипса, а точки (a,0), (-a,0), (0,b), (0,-b) вершинами эллипса. Т.к. $a \ge b$, то "горизонтальные" стороны основного прямоугольника имеют длину 2a и называются большой осью эллипса, а "вертикальные" стороны длины 2b – малой осью эллипса. Соответственно a и b – большая и малая полуось эллипса.

Из уравнения эллипса следует, что если точка M(x,y) принадлежит эллипсу, то точки M'(-x,y), M''(x,-y) и M'''(-x,-y) также находятся на эллипсе. Последнее означает, что эллипс – кривая 2-го порядка симметричная относительно осей $X,\,Y$ и начало координат – центр эллипса. Следовательно, достаточно исследовать кривую в I-й четверти $(x,y\geqslant 0)$ и по симметрии эту линию можно продолжить в $II,\,III$ и IV четвертях. Из (1) получаем

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} \implies y^2 = \frac{b^2}{a^2} (a^2 - x^2)$$

и в I-й четверти это уравнение разрешается относительно y:

$$y=y(x)=rac{b}{a}\sqrt{a^2-x^2}$$
 Производная этой функции:

$$y' = -\frac{b}{a} \frac{x}{\sqrt{a^2 - x^2}} < 0.$$

Т.к. y(0) = b и y(a) = 0, то из условия y' < 0следует, что на отрезке [0,a] функция монотонно убывает от точки (0,b) к точке (a,0).

С эллипсом связываются две замечательные точки, называемые ФОКУСАМИ эллипса. Определим (положительное) число $c \geqslant 0$ равенством:

$$c^2 = a^2 - b^2$$

Зададим две точки $F_1(c,0), F_2(-c,0)$ называемые правым и левым фокусами, соответственно. Введём ещё одну характеристику эллипса:

$$\varepsilon_{\mathfrak{d}} = \frac{c}{a}$$
 – эксцентриситет эллипса.

$$T.$$
к. $c < a$, то

$$0 \leqslant \varepsilon_{2} < 1$$

Отметим, что если $\varepsilon_9=0$, то c=0, что означает a=b. Уравнение эллипса в этом случае перепишется в виде $\frac{x^2}{a^2}+\frac{y^2}{a^2}=1$, т.е. $x^2+y^2=a^2$.

Пусть в уравнении эллипса величина a фиксирована. Увеличение ε от 0 до 1 будет приводить к "сжатию" эллипса (вдоль оси OY). С этой точки зрения можно сказать, что величина эксцентриситета характеризует степень деформации эллипса.

Рассмотрим на эллипсе произвольную точку M(x, y).

Определим векторы

$$\bar{r}_1 = \overline{F_1 M}$$
 и $\bar{r}_2 = \overline{F_2 M}$,

которые называем:

ФОКАЛЬНЫМИ РАДИУС-ВЕКТОРАМИ точки M(x,y).

Модули этих векторов обозначаем как

$$r_1 = |\bar{r}_1|$$
 и $r_2 = |\bar{r}_2|$.

Теорема 2.6 (О модулях радиус-векторов эллипса). $r_1 = a - \varepsilon x$, $r_2 = a + \varepsilon x$.

Доказательство.
$$r_1=|\bar{r}_1|=|\overline{F_1M}|=\sqrt{(x-c)^2+y^2}$$
. Тогда $r_1^2=(x-c)^2+y^2=(x-c)^2+\frac{b^2}{a^2}(a^2-x^2)=x^2-2cx+c^2+b^2-\frac{b^2}{a^2}x^2=\frac{a^2-b^2}{a^2}x^2-2cx+c^2+b^2=(\text{т.к. }c^2=a^2-b^2)=\frac{c^2}{a^2}x^2-2cx+a^2=(\text{т.к. }c=\varepsilon a)=\varepsilon^2x^2-2\varepsilon ax+a^2=(\varepsilon x-a)^2=(a-\varepsilon x)^2.$

Так как $x \le a$ и $\varepsilon < 1$, то $a - \varepsilon x > 0$. Следовательно, $r_1 = a - \varepsilon x$.

Второе равенство $r_2 = a + \varepsilon x$ доказывается аналогично.

Теорема 2.7 (Критерий принадлежности точки эллипсу). Чтобы точка M(x,y) принадлежала эллипсу необходимо и достаточно $r_1 + r_2 = 2a$.

Доказательство. (1) Необходимость. Пусть точка M(x,y) принадлежит эллипсу. На основании предыдущей теоремы: $r_1 + r_2 = a - \varepsilon x + a + \varepsilon x = 2a$.

(2) Достаточность. Пусть для точки M(x,y) выполнено $r_1+r_2=2a$. Надо доказать, что точка $\overline{M(x,y)}$ принадлежит эллипсу. Вычислим r_1 и r_2 :

$$r_1 = |\bar{r}_1| = |\overline{F_1 M}| = \sqrt{(x-c)^2 + y^2},$$

$$r_2 = |\bar{r}_2| = |\overline{F_2 M}| = \sqrt{(x+c)^2 + y^2}.$$
 Тогда из $r_1 + r_2 = 2a$ следует $\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a$. Или
$$\sqrt{(x-c)^2 + y^2} = 2a - \sqrt{(x+c)^2 + y^2}.$$
 Возводим обе части равенства в квадрат:
$$(x-c)^2 + y^2 = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + (x+c)^2 + y^2 \implies$$

$$-2cx = 4a^2 - 4a\sqrt{(x+c)^2 + y^2} + 2cx \implies$$

$$a\sqrt{(x+c)^2 + y^2} = a^2 + cx.$$
 Возводим обе части равенства в квадрат:

$$\begin{array}{l} a^2(x^2+2cx+c^2+y^2)=a^4+2a^2cx+c^2x^2 \ \Rightarrow \\ a^2x^2+2a^2cx+a^2c^2+a^2y^2=a^4+2a^2cx+c^2x^2 \ \Rightarrow \\ a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2 \ \Rightarrow \\ (a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2). \ \text{Так как } a^2-c^2=b^2, \ \text{то} \\ b^2x^2+a^2y^2=a^2b^2. \ \text{Теперь делим на } a^2b^2 \ \text{и получаем} \\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \ \text{т.e. точка } M(x,y) \ \text{принадлежит эллипсу.} \end{array}$$

С эллипсом свяжем две прямые, называемые ДИРЕКТРИССАМИ:

Директриссы и фокусы, лежащие по одну сторону от OY называем соответствующими: d_1 и F_1 – соответствующие директрисса и фокус. Аналогично, d_2 и F_2 . На приведённом выше рисунке расстояние от точки M(x,y) до директрисы d_1 обозначено как $\hat{\delta}_1$. Расстояние от M(x,y) до d_2 есть δ_2 .

Теорема 2.8. Для того, чтобы точка M(x,y) принадлежала эллипсу необходимо и достаточно чтобы отношение её расстояния до фокуса к расстоянию до соответствующей директриссы равнялось эксцентриситету эллипса:

$$\frac{r_1}{\delta_1} = \varepsilon = \frac{r_2}{\delta_2}.$$

 \mathcal{A} оказательство. Ранее была получена формула расстояния от точки $M^*(x^*,y^*)$ до прямой l общее уравнение которой l: Ax + By + C = 0. Расстояние $= \frac{|Ax^* + By^* + C|}{\sqrt{A^2 + B^2}}$ Рассмотрим в качестве l директриссу d_1 : $x = \frac{a}{\varepsilon}$ общее уравнение которой $\varepsilon x - a = 0$

 $(A = \varepsilon, B = 0, C = -a)$. В качестве $M^*(x^*, y^*)$ рассматриваем точку M(x, y). Поэтому $\delta_1 = \frac{|\varepsilon x - a|}{\varepsilon}.$

По теореме о модулях радиус-векторов эллипса $r_1 = |a - \varepsilon x| = |\varepsilon x - a|$. Следовательно, $\frac{r_1}{\delta_1} = |\varepsilon x - a| \frac{\varepsilon}{|\varepsilon x - a|} = \varepsilon$.

Другое равенство $\frac{r_2}{\delta_2} = \varepsilon$ доказывается аналогично.

Уравнение касательной к эллипсу

Рассмотрим на эллипсе точку $M_0(x_0,y_0)$, где $y_0\neq 0$, т.е. точка M_0 не совпадает с вершинами эллипса (a,0) и (-a,0). Уравнение эллипса $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ удается разрешить относительно

(1)
$$y(x) \ge 0 \implies y(x) = \frac{b}{a} \sqrt{a^2 - x^2}$$
 (верхняя часть эллипса);

$$\begin{array}{ll} (1) \; y(x) \geqslant 0 \; \Rightarrow \; y(x) = \frac{b}{a} \sqrt{a^2 - x^2} \; \; \text{(верхняя часть эллипса);} \\ (2) \; y(x) \leqslant 0 \; \Rightarrow \; y(x) = -\frac{b}{a} \sqrt{a^2 - x^2} \; \; \text{(нижняя часть эллипса).} \end{array}$$

Рассмотрим первый вариант (см. рис).

Подставим $y(x) = \frac{b}{a}\sqrt{a^2 - x^2}$ в уравнение эл-

липса: $\frac{x^2}{a^2} + \frac{y(x)^2}{b^2} = 1$ и дифференцируем обе ча-

сти: $\frac{2x}{a^2} + \frac{2y(x)y'(x)}{b^2} = 0$. Подставим в это уравне-

$$y'(x_0) = -\frac{x_0}{a^2} \frac{b^2}{y_0}$$

 $M_0(x_0, y_0)$

Уравнение касательной к функции y = y(x) в точке $x = x_0$ есть (матем. анализ) $y - y_0 = y'(x_0)(x - x_0)$

В нашем случае
$$y-y_0=-\frac{x_0}{a^2}\frac{b^2}{y_0}(x-x_0) \Rightarrow a^2y_0y-a^2y_0^2=-b^2x_0x+b^2x_0^2$$
 (*)

Так как точка $M_0(x_0,y_0)$ принадлежит эллипсу, то $\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1 \Rightarrow b^2x_0^2+a^2y_0^2=a^2b^2$ и (*) принимает вид: $a^2y_0y+b^2x_0x=a^2b^2$. Делим на a^2b^2 и получаем $\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1$

Абсолютно такие же выкладки «проходят» для второго случая— нижней части эллипса. Общий итог:

$$\frac{x_0}{a^2}x + \frac{y_0}{b^2}y = 1$$
 – уравнение касательной эллипса в точке $M_0(x_0,y_0) \; (y_0 \neq 0)$

ГИПЕРБОЛА

 Γ иперболой называем кривую 2-го порядка, уравнение которой в системе OXY есть

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad (2)$$

Исследование формы гиперболы

Из (2) следует
$$y^2 = \frac{b^2}{a^2}(x^2 - a^2) \Rightarrow y(x) = \begin{cases} \frac{b}{a}\sqrt{x^2 - a^2} & \text{для } y \geqslant 0 \\ -\frac{b}{a}\sqrt{x^2 - a^2} & \text{для } y \leqslant 0 \end{cases}$$

Область определения обеих функций (верхняя часть $y \ge 0$ и нижняя часть $y \le 0$ гиперболы) $|x| \ge a$. Точки (a,0), (-a,0) называем <u>вершинами</u> гиперболы. Все точки кривой 2-го порядка для $x \ge a$ называем ПРАВОЙ ВЕТКОЙ гиперболы, а для $x \le -a$ — ЛЕВОЙ ВЕТКОЙ гиперболы.

Замечание 2.10. Гипербола – кривая 2-го порядка, состоящая из двух веток, но это одна и та же кривая!

Из уравнения (2) следует, что если точка M(x,y) принадлежит гиперболе, то точки M'(-x,y), M''(x,-y) и M'''(-x,-y) также лежат на гиперболе, т.е. гипербола – линия симметричная относительно координатных осей и начала координат. В силу симметрии, достаточно исследовать форму гиперболы в I-й четверти ($x \ge 0, y \ge 0$):

$$y=y(x)=rac{b}{a}\sqrt{x^2-a^2}$$
 и $x\geqslant a$. $y'(x)=rac{b}{a}rac{x}{\sqrt{x^2-a^2}}>0$ для $x>a$, следовательно, $y(x)$ возрастает при $a< x<+\infty$.

Рассмотрим точки пересечения гиперболы с прямой y=kx. Если точка M(x,y) принадлежит гиперболе, то ее координаты удовлетворяют уравнению $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Тогда $\frac{x^2}{a^2} - \frac{k^2x^2}{b^2} = 1$, т.е. $b^2x^2 - a^2k^2x^2 = a^2b^2 \implies x^2 = \frac{a^2b^2}{b^2 - a^2k^2} > 0 \implies b^2 - a^2k^2 > 0 \implies k^2 < \frac{b^2}{a^2}$. Т.к. рассматривается *I*-я четверть, то $k < \frac{\sigma}{a}$

Если $k < \frac{b}{a}$, то прямая y = kx пересекает гиперболу в одной точке, если $\frac{b}{a} \leqslant k < +\infty$, то пересечений НЕТ.

Вычислим расстояние от точки M(x,y) принадлежащей гиперболе (I-я четверть) до прямой $y=\frac{b}{a}x$. Для этого приведем уравнение прямой к общему виду:

bx+(-a)y+0=0 (здесь $A=b,\,B=-a,\,C=0$) и по формуле расстояния от точки до прямой: $\dfrac{|Ax+By+c|}{\sqrt{A^2+B^2}}=\dfrac{|bx-ay(x)|}{\sqrt{a^2+b^2}}=\dfrac{|bx-b\sqrt{x^2-a^2}|}{\sqrt{a^2+b^2}}.$ Если обозначить $f(x)=bx-b\sqrt{x^2-a^2},$ то

$$\lim_{x \to +\infty} f(x) = b \lim_{x \to +\infty} (x - \sqrt{x^2 - a^2}) = b \lim_{x \to +\infty} \frac{x^2 - x^2 + a^2}{x + \sqrt{x^2 - a^2}} = \lim_{x \to +\infty} \frac{a^2 b}{x + \sqrt{x^2 - a^2}} = 0.$$

Таким образом, при удалении точки M вправо расстояние от нее до прямой $y=\frac{b}{a}x$ неограниченно уменьшается, следовательно, $y = \frac{b}{a}x$ – АССИМПТОТА ГИПЕРБОЛЫ.

Распространяя (по симметрии) график на всю плоскость, мы получим вид гиперболы (см. рис):

Гипербола – кривая 2-го порядка, имеющая две ветки и две ассимптоты $y=\pm \overset{b}{-}x,$ которые проходят через противоположные вершины основного прямоугольника «шириной» 2a и «высотой» 2b.

Для гиперболы $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ введем величину c > 0 равенством

$$c^2 = a^2 + b^2$$

(не путать с одноименной величиной $c^2=a^2-b^2$ для эллипса!)

Определим фокусы гиперболы, как точки с координатами $F_1(c,0)$, $F_2(-c,0)$ и введем фокальные радиус-векторы

$$\bar{r}_1 = \overline{F_1 M}, \quad r_1 = |\bar{r}_1|,
\bar{r}_2 = \overline{F_2 M}, \quad r_2 = |\bar{r}_2|.$$

Для гиперболы введем понятие эксцентриситета $\varepsilon_{\rm r}$:

$$\varepsilon_{\Gamma} = \frac{c}{a}$$

(т.к. здесь c > a, то $\varepsilon > 1(!)$).

Теорема 2.9 (О модулях радиус-векторов гиперболы). $r_1 = |a - \varepsilon x|, r_2 = |a + \varepsilon x|.$

Доказательство. Разбиваем на два случая: для r_1 и для r_2 .

Случай 1.

Так как
$$\bar{r}_1=\{x-c,y\}$$
, то $r_1=\sqrt{(x-c)^2+y^2}$ и $r_1^2=(x-c)^2+y^2=x^2-2cx+c^2+y^2$. Подставляем $y=y(x)$: $r_1^2=x^2-2cx+c^2+\frac{b^2}{a^2}(x^2-a^2)=x^2-2cx+c^2+\frac{c^2-a^2}{a^2}(x^2-a^2)=x^2-2c$

Уточним это равенство. Рассмотрим два варианта:

- (a) Точка M(x,y) принадлежит правой ветке. Тогда $x\geqslant a$ и т.к. $\varepsilon>1$, то $a-\varepsilon x<0$.
- (б) Точка M(x,y) принадлежит левой ветке. Тогда $x\leqslant -a$ и т.к. $\varepsilon>1$, то $a-\varepsilon x>0$.

Следовательно,
$$r_1=|a-\varepsilon x|=egin{cases} \varepsilon x-a &$$
для правой ветки $a-\varepsilon x &$ для левой ветки

Спучай 2

Так как
$$\bar{r}_2 = \{x+c,y\}$$
, то $r_2 = \sqrt{(x+c)^2+y^2}$ и $r_2^2 = (x+c)^2+y^2 = x^2+2cx+c^2+y^2$. Подставляем $y=y(x)$: $r_2^2 = x^2+2cx+c^2+\frac{b^2}{a^2}(x^2-a^2)=x^2+2cx+c^2+\frac{c^2-a^2}{a^2}(x^2-a$

Уточним это равенство:

- (a) Точка M(x,y) принадлежит правой ветке. Тогда $x\geqslant a$ и т.к. $\varepsilon>1$, то $a+\varepsilon x>0$.
- (б) Точка M(x,y) принадлежит левой ветке. Тогда $x\leqslant -a$ и т.к. $\varepsilon>1$, то $a+\varepsilon x<0$.

Следовательно,
$$r_2=|a+\varepsilon x|=egin{cases} a+\varepsilon x & \text{для правой ветки} \\ -a-\varepsilon x & \text{для левой ветки} \end{cases}$$

Теорема 2.10 (Критерий принадлежности точки гиперболе). Точка M(x,y) принадлежит гиперболе тогда и только тогда, когда $|r_1 - r_2| = 2a$.

(а) Точка M(x,y) принадлежит правой ветке. Тогда $r_1-r_2=\varepsilon x-a-(a+\varepsilon x)=-2a$ и $|r_1-r_2|=2a$.

- (б) Точка M(x,y) принадлежит левой ветке. Тогда $r_1-r_2=a-\varepsilon x-(-a-\varepsilon x)=2a$ и $|r_1-r_2|=2a$.
 - (2) Достаточность. Пусть для точки M(x,y) выполнено условие $|r_1-r_2|=2a$.

Так как $r_1=\sqrt{(x-c)^2+y^2}$ и $r_2=\sqrt{(x+c)^2+y^2}$, то из $|r_1-r_2|=2a$ следует, что $|\sqrt{(x-c)^2+y^2}-\sqrt{(x+c)^2+y^2}|=2a$, т.е. $\sqrt{(x-c)^2+y^2}-\sqrt{(x+c)^2+y^2}=\pm 2a$ \Rightarrow $\sqrt{(x-c)^2+y^2}=\pm 2a+\sqrt{(x+c)^2+y^2}$ \Rightarrow $(x-c)^2+y^2=4a^2\pm 4a\sqrt{(x+c)^2+y^2}+(x+c)^2+y^2$ \Rightarrow $\pm a\sqrt{(x+c)^2+y^2}=-a^2-cx$ \Rightarrow $a^2(x^2+2cx+c^2+y^2)=a^4+2a^2cx+c^2x^2$ \Rightarrow $a^2x^2+2a^2cx+a^2c^2+a^2y^2=a^4+2a^2cx+c^2x^2$ \Rightarrow $a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2$ \Rightarrow $(a^2-c^2)x^2+a^2y^2=a^2(a^2-c^2)$. Поскольку $a^2-c^2=-b^2$, то получаем

 $-b^2x^2+a^2y^2=-a^2b^2$. Теперь делим на $(-a^2b^2)$: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, т.е. точка M(x,y) принадлежит гиперболе.

Директриссы гиперболы

Для гиперболы $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ определим две прямые $d_1\colon x=\frac{a}{\varepsilon},\,d_2\colon x=-\frac{a}{\varepsilon}$ – директриссы гиперболы (см. ри

Директиссы и фокусы лежащие по одну сторону от оси OY называем соответствующими. Пусть расстояние от точки M(x,y) до d_1 есть δ_1 , а до d_2 есть δ_2 .

Теорема 2.11. Точка M(x,y) принадлежит гиперболе тогда и только тогда, когда отношение расстояний до фокуса и до соответствующей директриссы есть величина равная ε :

$$\frac{r_1}{\delta_1} = \varepsilon = \frac{r_2}{\delta_2}.$$

Доказательство. Доказываем для правой ветки (для левой аналогично).

- (1) Пусть точка M(x,y) принадлежит правой ветке. Из рисунка следует, что $\delta_1=x-\frac{a}{\varepsilon}=\frac{\varepsilon x-a}{\varepsilon}=$ по формуле стр.59 = $\frac{r_1}{\varepsilon}$. Тогда $\frac{r_1}{\delta_1}=\varepsilon$.
- (2) Обратно. Пусть для точки M(x,y) выполнено условие $\frac{r_1}{\delta_1} = \varepsilon$. Докажем, что точка M(x,y) принадлежит гиперболе. Имеем $r_1 = \varepsilon \delta_1$, т.е. $\sqrt{(x-c)^2 + y^2} = \varepsilon \left(x \frac{a}{\varepsilon}\right) = \varepsilon x a$ $\Rightarrow \frac{c}{a}x a = \sqrt{(x-c)^2 + y^2} \Rightarrow \frac{c^2}{a^2}x^2 2cx + a^2 = (x-c)^2 + y^2 = x^2 2cx + c^2 + y^2 \Rightarrow \frac{c^2}{a^2}x^2 x^2 y^2 = c^2 a^2 \Rightarrow \frac{c^2 a^2}{a^2}x^2 y^2 = c^2 a^2$. Так как $c^2 a^2 = b^2$, то получаем

 $\frac{c^2}{a^2}x^2-x^2-y^2=c^2-a^2 \Rightarrow \frac{c^2-a^2}{a^2}x^2-y^2=c^2-a^2$. Так как $c^2-a^2=b^2$, то получаем $\frac{b^2}{a^2}x^2-y^2=b^2$. Осталось разделить на b^2 : $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, т.е. точка M(x,y) принадлежит гиперболе.

Уравнение касательной к гиперболе

Уравнение гиперболы $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ дифференцируем по x при условии, что y = y(x):

$$\frac{2x}{a^2} - \frac{2y(x)y'(x)}{b^2} = 0 \implies y'(x) = \frac{b^2}{a^2} \frac{x}{y(x)}.$$

Пусть точка M(x,y) принадлежит гиперболе. Полагая $y_0=y(x_0)$ значение производной при $x=x_0$ есть $y'(x_0)=\dfrac{b^2}{a^2}\dfrac{x_0}{y_0}.$

Уравнение касательной, проведённой в точке $M_0(x_0, y_0)$ к линии l: y = y(x) есть $y - y_0 = k(x - x_0)$, где $k = y'(x_0)$.

Для случая l – гипербола: $y-y_0=rac{b^2}{a^2}rac{x_0}{y_0}(x-x_0)$. Умножаем на a^2y_0 :

 $a^2y_0y-a^2y_0^2=b^2x_0x-b^2x_0^2.$ Так как точка $M_0(x_0,y_0)$ принадлежит гиперболе $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,$ то $b^2x_0^2-a^2y_0^2=a^2b^2.$ Следовательно, $b^2x_0x-a^2y_0y=a^2b^2.$ Делим на a^2b^2 :

$$\frac{x_0x}{a^2} - \frac{y_0y}{b^2} = 1$$
 – уравнение касательной к гиперболе в точке $M_0(x_0, y_0)$.

ПАРАБОЛА

Параболу определяем как линию, уравнение которой в OXY есть

$$y^2 = 2px$$
, где $p > 0$ (3)

Величину р называем ФОКАЛЬНЫМ ПАРАМЕТРОМ.

Исследование формы параболы

Функция $y^2 = 2px$ определена для $x \geqslant 0$, следовательно, парабола – кривая 2-го порядка, лежащая в правой полуплоскости. При x=0 будет y=0, т.е. точка O(0,0) принадлежит параболе. Эту точку называем вершиной параболы.

Если точка M(x,y) принадлежит параболе, то точка M'(x,-y) принадлежит параболе. Следовательно, ось OX – ось симметрии кривой. Поэтому достаточно рассмотреть функцию для случая $y\geqslant 0$: $y=y(x)=\sqrt{2px}$ $(x\geqslant 0)$.

$$y'(x) = \frac{\sqrt{p}}{\sqrt{2x}} > 0 \implies$$
 на интервале $(0, +\infty)$ функция $y(x)$ возрастающая.

Т.к. $\lim_{x\to +\infty} y(x) = +\infty$, то горизонтальных асимптот нет.

Если бы существовала наклонная асимптота y = kx + b, то $k = \lim_{x \to +\infty} \frac{y(x)}{x}$.

Здесь же $\lim_{x\to +\infty} \frac{y(x)}{x} = \lim_{x\to +\infty} \frac{\sqrt{2p}}{\sqrt{x}} = 0 \implies$ наклонных ассимптот нет.

С учётом симметрии график линии $y^2 = 2px$ есть (см. рис.)

На рисунке также изображена прямая $d: x = -\frac{p}{2}$ называемая директриссой параболы и точка $F\left(\frac{p}{2},0\right)$ – фокус параболы. Вектор $\bar{r}=\overline{FM}$ называют фокальным радиус-вектором точки M(x,y) параболы.

Его модуль
$$r=|\bar{r}|=\sqrt{\left(x-rac{p}{2}
ight)^2+y^2}$$

Расстояние от точки M(x,y) до директриссы, обозначаемое δ , будет (см. рис.) равно: $\delta = x + \frac{p}{2}$.

Теорема 2.12. Чтобы точка M(x,y) принадлежала параболе необходимо и достаточно, чтобы она была равноудалена от фокуса и директриссы: $r = \delta$.

Доказательство. (1) Пусть точка M(x,y) принадлежит параболе. Тогда из $r=\sqrt{\left(x-\frac{p}{2}\right)^2+y^2}$ следует $r^2=\left(x-\frac{p}{2}\right)^2+y^2=x^2-px+\frac{p^2}{4}+y^2$. Подставляем $y^2=2px$: $r^2=x^2-px+\frac{p^2}{4}+2px=x^2+px+\frac{p^2}{4}=\left(x+\frac{p}{2}\right)^2.$

Т.к. x > 0, p > 0, то $x + \frac{p}{2} > 0$ и из последнего равенства следует $r = x + \frac{p}{2}$.

Т.к. $\delta = x + \frac{p}{2}$, то $r = \delta$.

(2) Обратно. Пусть для некоторой точки M(x,y) выполнено условие $r=\delta$. Надо доказать, что точка M(x,y) принадлежит параболе. Из $r=\delta$ следует $\sqrt{\left(x-\frac{p}{2}\right)^2+y^2}=x+\frac{p}{2}$ $\Rightarrow \left(x-\frac{p}{2}\right)^2+y^2=\left(x+\frac{p}{2}\right)^2$ $\Rightarrow y^2-px=px$ $\Rightarrow y^2=2px$, т.е. точка M(x,y) принадлежит параболе.

Уравнение касательной

Пусть точка $M_0(x_0, y_0)$ принадлежит параболе. Находим уравнение касательной к параболе в точке M_0 . Дифференцируем уравнение параболы $y^2 = 2px$:

ференцируем уравнение параболы
$$y^2 = 2px$$
: $2y(x)y'(x) = 2p \implies y'(x) = \frac{p}{y(x)}$.

Полагая $y(x_0)=y_0$ получаем: $y'(x_0)=\frac{p}{y_0}$. Тогда уравнение касательной:

 $y-y_0=y'(x_0)(x-x_0) \Rightarrow y-y_0=rac{p}{y_0}(x-x_0) \Rightarrow yy_0-y_0^2=px-px_0$. Поскольку точка $M_0(x_0,y_0)$ принадлежит параболе, то $y_0^2=2px_0 \Rightarrow yy_0=2px_0+px-px_0=px+px_0$. В итоге получаем

 $yy_0 = p(x+x_0)$ – уравнение касательной к параболе в точке $M_0(x_0,y_0) \ (y_0 \neq 0)$.