Set Theory

Swayam Chube **Guide:** Prof. Bharat Adsul

December 2, 2023

Abstract

The main reference for this was [Kun80]. The SLP covered Chapters I through VII of the same. There are many proofs that have been omitted throughout this report. The reader is encouraged to read the source instead of these notes to gain a better understanding of the elements of Set Theory.

Contents

1	The Zermelo-Fraenkel Axioms		
	1.1	Axioms of Set Theory	2
	1.2	Consequences of the Axioms	3
	1.3	Relations, Functions and Well Ordering	
2	Ordinal Numbers		
	2.1	Transitive Sets	6
	2.2	Ordinals	6
	2.3	Transfinite Induction and Recursion	8
		2.3.1 Classes but informally	8
	2.4	Ordinal Arithmetic	9
	2.5	Equivalent forms of the Axiom of Choice	11
3	Caro	dinal Numbers	13
4	Well Founded Sets		
	4.1	Well Founded Relations	19
	4.2	The Axiom of foundation	21
	4.3	Induction and Recursion on Well-Founded Relations	21
5	Easy Consistency Proofs 24		
		Relativization	24
	5.2	Absoluteness	
	5.3	$H(\kappa)$	
6	Forcing 28		
	6.1	Some Infinitary Combinatorics	
	6.2	Some Technicalities about Forcing	
		Breaking CH	
		631 7FC + ¬CH is consistent	32

Chapter 1

The Zermelo-Fraenkel Axioms

1.1 Axioms of Set Theory

We shall discuss Zermelo-Fraenkel Set Theory, which is a first order theory, with signature $ZF = (\emptyset, \{ \in \})$. That is, there are no function symbols and the only predicate is the "belongs to" relation.

ZF0 (Nonempty Domain) There is at least one set.

$$\exists x(x=x)$$

This axiom is redundunt since **ZF7** guarantees the existence of an infinite set and thus the domain of discourse must be nonempty.

ZF1 (Extensionality) Informally speaking, a set is determined uniquely by its elements.

$$\forall x \forall y (\forall z (z \in x \iff z \in y) \implies x = y)$$

ZF2 (Foundation/Regularity) This states that any nonempty set contains an element that is disjoint from it.

$$\forall x \left[\exists y (y \in x) \Longrightarrow \exists y (y \in x \land \neg \exists z (z \in x \land z \in y)) \right]$$

ZF3 (Comprehension) Informally speaking, this axiom allows us to define sets in the set-builder notation. Let ϕ be a valid first order formula with free variables w_1, \ldots, w_n, x, z . Then

$$\forall z \forall w_1, \dots, w_n \exists y \forall x \ (x \in y \iff x \in z \land \phi)$$

Notice how this is the same as writing

$$y = \{ x \in z \mid \phi \}$$

ZF4 (Pairing) Informally, this states that given two sets x and y, there is a set $z = \{x, y\}$.

$$\forall x \forall y \exists z \forall w (w \in z \iff (w = x \lor w = y))$$

ZF5 (Union) This axiom allows us to take a union of a collection of sets.

$$\forall \mathscr{F} \exists A \forall y (x \in y \land y \in \mathscr{F} \Longrightarrow x \in A)$$

ZF6 (Replacement Scheme) Let ϕ be a valid formula without Y as a free variable. Then,

$$\forall A (\forall x \in A \exists ! y \phi(x, y) \Longrightarrow \exists Y \forall x \in A \exists y \in Y \phi(x, y))$$

Informally speaking, this allows us to replace the elements of a set to obtain a new set.

ZF7 (Infinity) There is an infinite inductive set.

$$\exists x (\varnothing \in x \land \forall y \in x (S(y) \in x))$$

ZF8 (Power Set) Every set has a set containing all its subsets. It is important to note that this need not be **the** power set.

$$\forall x \exists y \forall z (z \subseteq x \Longrightarrow z \in y)$$

ZF9 (Choice) Informally, given a collection of nonempty sets *X*, there is a choice function that chooses one element from each set in *X*.

$$\forall X \left(\varnothing \notin X \implies \exists f: X \to \bigcup X, \ \forall x \in X (f(x) \in x) \right).$$

We have been a bit sloppy in stating the axioms. Notice that our signature does not contain a predicate \subseteq or the successor function S, neither do we know, a priori, of the existence of **the** empty set.

To define the formula $\subseteq (x, y)$, use

$$\subseteq (x,y) := \forall z (z \in x \Longrightarrow z \in y)$$

As for the successor function, given any set x, using **ZF4**, there is a set $y = \{x\}$. Using **ZF5**, we may define $S(y) := x \cup y$. Finally, using **ZF0** and **ZF3**, we know of the existence of the empty set as

$$\exists x (x = x \land \exists y \forall z (z \in x \Longleftrightarrow z \in y \land z \neq z))$$

Further, due to **ZF1**, the empty set is unique.

1.2 Consequences of the Axioms

Theorem 1.1. There is no universal set. That is,

$$\neg \exists z \forall x (x \in z)$$

Proof. If there were a universal set, then using **ZF3**, we may construct the set $y = \{x \in z \mid x \notin x\}$. Then, it is not hard to argue that

$$y \in y \iff y \notin y$$
,

a contradiction.

Definition 1.2 (Power Set). Let x be a set. Due to **ZF8**, there is a set z containing all the subsets of x. Using Comprehension, we may construct

$$\mathscr{P}(x) := \{ y \in z \mid y \subseteq x \}.$$

This is known as the **power set** of x.

Definition 1.3. Let \mathscr{F} denote a set. Let A be a set satisfying **ZF5**. Define

$$\bigcup \mathscr{F} := \{ x \in A \mid \exists y \in \mathscr{F}(x \in y) \}$$

and

$$\bigcap \mathscr{F} := \{ x \in A \mid \forall y \in \mathscr{F}(x \in y) \}.$$

1.3 Relations, Functions and Well Ordering

Definition 1.4 (Ordered Pair). For sets x, y, define the ordered pair $\langle x, y \rangle$ by

$$\langle x, y \rangle := \{ \{x\}, \{x, y\} \}.$$

The set on the right is constructed by using the pairing axiom twice.

Definition 1.5 (Cartesian Product). Let *A* and *B* be sets. Using Replacement, we may define, for each $y \in B$,

$$A \times \{y\} := \{z \mid \exists x \in A(z = \langle x, y \rangle)\}.$$

Again, by Replacement, define the set

$$\mathscr{F} := \{ z \mid \exists y \in B(z = A \times \{y\}) \}.$$

Finally, define

$$A \times B := \bigcup \mathscr{F}.$$

Definition 1.6 (Relation, Function). Let A be a set. A relation R on A is a subset of $A \times A$. Define the domain and range of a relation as

$$dom(R) := \{ x \in A \mid \exists y (\langle x, y \rangle \in R) \} \qquad ran(R) := \{ y \mid \exists x (\langle x, y \rangle \in R) \}.$$

We write xRy to denote $\langle x, y \rangle \in R$.

A relation f is said to be a function if

$$\forall x \in \text{dom}(f) \exists ! y \in \text{ran}(f) (\langle x, y \rangle \in f).$$

We use $f : A \to B$ to denote a function f with dom(f) = A and $ran(f) \subseteq B$.

Definition 1.7 (Total Ordering, Well Ordering). A *total ordering* is a pair $\langle A, R \rangle$ where A is a set and R is a relation that is irreflexive, transitive and satisfies trichotomy.

We say *R* well-orders *A* if $\langle A, R \rangle$ is a total ordering and every non empty subset of *A* has an *R*-least element.

We use pred(A, x, R) to denote the set $\{y \in A \mid yRx\}$.

Lemma 1.8. *Let* $\langle A, R \rangle$ *be a well-ordering. Then for all* $x \in A$, $\langle A, R \rangle \not\cong \langle \operatorname{pred}(A, x, R), R \rangle$.

Proof. Suppose $\langle A, R \rangle \cong \langle \operatorname{pred}(A, x, R), R \rangle$ and let $f : A \to \operatorname{pred}(A, x, R)$ be the order isomorphism. Let x be the R-least element of the set

$${y \in A \mid f(y) \neq y},$$

which obviously exists since the aforementioned set is nonempty. If xRf(x), there is some $y \in A$ with yRx and $f(y) = x \neq y$ a contradiction to the choice of x. On the other hand, if f(x)Rx, then $f(f(x)) \neq f(x)$ since f is injective, a contradiction to the choice of x. This completes the proof.

Theorem 1.9. *Let* $\langle A, R \rangle$ *and* $\langle B, S \rangle$ *be two well-orderings. Then exactly one of the following holds:*

- (a) $\langle A, R \rangle \cong \langle B, S \rangle$.
- (b) $\exists y \in B (\langle A, R \rangle \cong \langle \operatorname{pred}(B, y, S), S \rangle).$
- (c) $\exists x \in A (\langle pred(A, x, R), R \rangle \cong \langle B, S \rangle).$

Proof. Let

$$f := \{ \langle v, w \rangle \mid v \in A, w \in B, \langle \operatorname{pred}(A, v, R), R \rangle \cong \langle \operatorname{pred}(B, w, S), S \rangle \}.$$

Due to the preceding lemma, if $\langle v_1, w \rangle$, $\langle v_2, w \rangle \in f$, then $v_1 = v_2$. Similarly, if $\langle v, w_1 \rangle$, $\langle v, w_2 \rangle \in f$, then $w_1 = w_2$. Hence, f is an injective function.

It is not hard to argue that f is an order isomorphism from an initial segment of A to an initial segment of B. Both these segments may not be proper else we could find another isomorphism from an initial segment of A to an initial segment of B by extending one of the isomorphisms in A. This completes the proof.

Chapter 2

Ordinal Numbers

2.1 Transitive Sets

Definition 2.1. A set x is said to be *transitive* if

$$\forall y \forall z (z \in y \land y \in x \implies z \in x).$$

Proposition 2.2. A set x is transitive if and only if

$$\forall y(y \in x \implies y \subseteq x).$$

Proof. Suppose x is transitive and $y \in x$. Since for all $z \in y$, $z \in x$, we must have $y \subseteq x$. The converse is trivial.

Proposition 2.3. *If* x *is a transitive set, then so is* $x \cup \{x\}$ *.*

Proof.

Proposition 2.4. *If* x *is a transitive set, then so is* $\mathcal{P}(x)$.

Proof.

Proposition 2.5. *If* \mathscr{F} *is a family of transitive sets, then so is* $\bigcup \mathscr{F}$.

Proof.

Proposition 2.6. *If* x *is a transitive set, then so is every* $z \in x$.

Proof.

2.2 Ordinals

Definition 2.7 (Ordinal). A set x is said to be an *ordinal* if it is transitive and well ordered by \in . That is, the pair $\langle x, \in_x \rangle$ is a well ordering, where

$$\in_{x} := \{ \langle v, w \rangle \in x \times x \mid v \in w \}.$$

Theorem 2.8 (Properties of Ordinals).

- (a) If x is an ordinal and $y \in x$, then y is an ordinal and y = pred(x, y).
- (b) If $x \cong y$ are ordinals, then x = y.
- (c) If x, y are ordinals, then exactly one of the following is true: x = y, $x \in y$ or $y \in x$.
- (d) If C is a nonempty set of ordinals, then $\exists x \in C \ \forall y \in C(x \in y \lor x = y)$. That is, every nonempty set of ordinals has a minimum element.

Proof. (a) Due to Proposition 2.6, *y* is a transitive and owing to it being the subset of a well ordered set, it is well ordered too, hence an ordinal.

(b) Let $f: x \to y$ be an isomorphism. Let

$$A := \{ z \in x \mid f(z) \neq z \}.$$

Suppose A is nonempty, then it has a least element, say $w \in x$. If $v \in w$, then $v = f(v) \in f(w)$ whence $w \subseteq f(w)$. On the other hand, if $v \in f(w)$, then there is some $u \in w$ such that $v = f(u) = u \in w$ and thus f(w) = w, a contradiction.

- (c) Follows from Theorem 1.9.
- (d) First note that it suffices to find $x \in C$ with $x \cap C = \emptyset$ for if $y \in C$ is another ordinal with $x \neq y$, then $y \notin x$ lest $x \cap C \neq \emptyset$.

Pick any $x \in C$. If $x \cap C = \emptyset$, then we are done. Else, let $x' \in x \cap C$ be the \in -least element. It is not hard to argue that $x' \cap C = \emptyset$ and we are done.

Lemma 2.9. *If A is a transitive set of ordinals, then A is an ordinal.*

Proof. We must first show that the membership relation \in_A is a linear order. This follows from Theorem 2.8 (c) and the fact that A is a transitive set. Lastly, to see that A is well ordered, simply invoke Theorem 2.8 (d).

Theorem 2.10. *If* $\langle A, R \rangle$ *is a well ordering, then there is a unique ordinal C such that* $\langle A, R \rangle \cong C$.

Proof. Let

$$B := \{ a \in A \mid \exists x_a(x_a \text{ is an ordinal } \land \langle \operatorname{pred}(A, a, R), R \rangle \cong x_a) \},$$

$$f := \{ \langle b, x_b \rangle \mid b \in B \}.$$

First, note that for all $b \in B$, x_b , since it exists must be unique and thus f is a well defined function with dom(f) = B.

Let $C = \operatorname{ran}(f)$. We contend that C is an ordinal. Let $y \in x \in C$ and $a \in B$ be such that $g : \operatorname{pred}(A, a, R) \to x$ is an isomorphism. Then, there is some $b \in \operatorname{pred}(A, a, R)$ with g(b) = y. It is not hard to see that the restriction $g : \operatorname{pred}(A, b, R) \to y$ is an isomorphism whence $y \in C$ and thus C is an ordinal due to the preceding lemma.

The function $f: B \to C$ is obviously a surjection. We contend that it is an isomorphism. Indeed, let $a,b \in B$ with aRb and $g: \operatorname{pred}(A,b,R) \to x_b$ be the isomorphism. If y = g(a), then the restriction $g: \operatorname{pred}(A,a,R) \to y$ is an isomorphism whence $f(a) = y \in x = f(b)$ and f is an order isomorphism.

Suppose $B \neq A$. Let $b \in A \setminus B$ be the R-least element. Then, $\operatorname{pred}(A,b,R) \subseteq B$. Now suppose $B \neq \operatorname{pred}(A,b,R)$, consequently, there is some $b' \in B \setminus \operatorname{pred}(A,b,R)$, then bRb' and if there is an order isomorphism from $\operatorname{pred}(A,b',R)$ to some ordinal x, then there must be one from $\operatorname{pred}(A,b,R)$ as we have argued earlier, a contradiction.

Thus, either B = A or $B = \operatorname{pred}(A, b, R)$ for some $b \in A$. In the latter case, the function f is an order isomorphism between $\operatorname{pred}(A, b, R)$ and an ordinal C whence $b \in B$, a contradiction. Thus B = A and the proof is complete.

Definition 2.11 (Type of a Well Ordering). If $\langle A, R \rangle$ is a well ordering, then type(A, R) is the unique ordinal C such that $\langle A, R \rangle \cong C$.

Henceforth, we use Greek letters α , β , γ , ... to vary over ordinals. That is, saying $\forall \alpha(...)$ is equivalent to saying $\forall x(x)$ is an ordinal ...). Further, since the ordinals are well ordered, we write $\alpha < \beta$ to denote $\alpha \in \beta$ and similarly, $\alpha \leq \beta$ means $\alpha \in \beta \lor \alpha = \beta$.

Definition 2.12. Let *X* be a set of ordinals. Define

$$\sup(X) := \bigcup X$$
 and $\min(X) := \bigcap X$.

Further, for an ordinal α , let $S(\alpha)$ denote the set $\alpha \cup \{\alpha\}$.

Lemma 2.13. (a) $\forall \alpha, \beta (\alpha \leq \beta \iff \alpha \subseteq \beta)$.

- (b) If X is a set of ordinals, $\sup(X)$ is the least ordinal \geq all elements of X and if $X \neq \emptyset$, $\min(X)$ is the least ordinal in X.
- *Proof.* (a) The forward direction is obvious. Suppose $\alpha \subseteq \beta$. If $\alpha = \beta$, then we are done. If not, let γ be the <-least element of $\beta \setminus \alpha$. We contend that $\gamma = \alpha$. Indeed, if $x \in \gamma$, then $x \notin \beta \setminus \alpha$ lest we contradict the minimality of γ consequently, $x \in \alpha$ whence $\gamma \subseteq \alpha$. On the other hand, since $\alpha = \operatorname{pred}(\beta, \alpha)$, we have $\alpha \le \gamma$ and thus $\alpha \subseteq \gamma$. This shows that $\alpha = \gamma \in \beta$ and the conclusion follows.

Lemma 2.14. For an ordinal α , $S(\alpha)$ is an ordinal, $\alpha < S(\alpha)$ and

$$\forall \beta (\beta < S(\alpha) \iff \beta \leq \alpha).$$

Definition 2.15 (Successor, Limit Ordinal). An ordinal α is said to be a *successor ordinal* if there is an ordinal β such that $\alpha = S(\beta)$. On the other hand, α is said to be a *limit ordinal* if $\alpha \neq \emptyset$ and α is not a successor ordinal.

2.3 Transfinite Induction and Recursion

2.3.1 Classes but informally

Informally speaking, a class is any collection of the form

$$\{x \mid \phi(x)\}$$

where $\phi(x)$ is a well defined first order formula. As we have seen earlier, the class

$$\{x \mid x = x\}$$

is not a set. A proper class is a class which is not a set. One uses boldface letters to denote classes.

Definition 2.16. Denote

$$V := \{x \mid x = x\}$$
 ON := $\{x \mid x \text{ is an ordinal}\}.$

To be completely formal, a class is simply a first order formula with one or more free variables. For example, the class of all ordinals can be thought of as the formula

$$\mathbf{ON}(x) = x$$
 is an ordinal.

We can extend this to define functions between classes **A** and **B**. A function $\mathbf{F} : \mathbf{A} \to \mathbf{B}$ is given by a first order logic formula in two variables $\mathbf{F}(x,y)$ such that

$$\forall x \mathbf{A}(x) \implies \exists ! y (\mathbf{B}(y) \wedge \mathbf{F}(x, y)).$$

Theorem 2.17 (Transfinite Induction on ON). *If* $C \subseteq ON$ *and* $C \neq \emptyset$, *then* C *has a least element.*

Proof. The proof is exactly like Theorem 2.8 (d).

One must note that there is a significant difference between Theorem 2.8 (d) and Theorem 2.17. The former is a single provable statement in ZFC while the latter is a theorem schema which represents an infinite collection of theorems. In particular, suppose the class C corresponded to a formula $C(x, z_1, \ldots, z_n)$, then Theorem 2.17 in this case says the following:

$$\forall z_1, \dots, z_n \Big\{ \left[\forall x (\mathbf{C}(x, z_1, \dots, z_n) \implies x \text{ is an ordinal}) \land \exists x \mathbf{C}(x, z_1, \dots, z_n) \right] \\ \implies \Big[\exists x \left(\mathbf{C}(x, z_1, \dots, z_n) \land \forall y (\mathbf{C}(y, z_1, \dots, z_n) \implies y \ge x) \right) \Big] \Big\}.$$

And Theorem 2.17 specifies one such formula for each well-formed sentence C.

Theorem 2.18 (Transfinite Recursion on ON). *If* $F:V\to V$, then there is a unique $G:ON\to V$ such that

$$\forall \alpha \left(\mathbf{G}(\alpha) = \mathbf{F}(\mathbf{G} \upharpoonright \alpha) \right).$$

The formal restatement of the above in terms of first order logic is the following:

$$\forall x \exists ! y \; \mathbf{F}(x,y) \implies \left[\forall \alpha \exists ! y \; \mathbf{G}(\alpha,y) \land \forall \alpha \exists x \exists y \left(\mathbf{G}(\alpha,y) \land \mathbf{F}(x,y) \land x = \mathbf{G} \upharpoonright \alpha \right) \right]$$

where

$$(x = \mathbf{G} \upharpoonright \alpha) := \text{function}(x) \land \text{dom}(x) = \alpha \land (\forall \beta \in \text{dom}(x) \ \mathbf{G}(\beta, x(\beta)))$$
.

Similarly, one can encode the uniqueness condition.

Proof.

2.4 Ordinal Arithmetic

Addition

Definition 2.19 (Ordinal Addition). If α , β are ordinals, then define $\alpha + \beta = \text{type}(\alpha \times \{0\} \cup \beta \times \{1\}, R)$ where

$$R = \{ \langle \langle \xi, 0 \rangle, \langle \eta, 0 \rangle \mid \xi < \eta < \alpha \} \cup \{ \langle \langle \xi, 0 \rangle, \langle \eta, 1 \rangle \rangle \mid \xi < \eta < \beta \} \cup [(\alpha \times \{0\}) \times (\beta \times \{1\})].$$

Informally speaking, we construct a new ordinal $\alpha + \beta$ by first "placing" α is a line and then placing β after it linearly. This is best visualized when α and β are finite ordinals.

To see that R indeed gives $\alpha \times \{0\} \cup \beta \times \{1\}$ the structure of a well order, let S be a nonempty subset. If $S \cap \alpha \times \{0\}$ is nonempty, then the minimal element of S exists and is the minimal element of $S \cap \alpha \times \{0\}$. On the other hand, if $S \cap \alpha \times \{0\} = \emptyset$, the minimal element of S exists and is the minimal element of $S \cap \beta \times \{1\}$.

Lemma 2.20. *For ordinals* α , β , γ ,

(a)
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$
.

- (b) $\alpha + 0 = \alpha$.
- (c) $\alpha + 1 = S(\alpha)$.
- (*d*) $\alpha + S(\beta) = S(\alpha + \beta)$.
- (e) If β is a limit ordinal, then $\alpha + \beta = \sup\{\alpha + \xi \mid \xi < \beta\}$.

Proof. We shall only prove (e) since the others are straightforward. First, note that $\alpha + \beta \ge \alpha + \xi$ for every $\xi < \beta$, which is easy to see by setting up an obvious order preserving injection.

Remark 2.4.1. One must note that ordinal addition is **not commutative**. Indeed,

$$1 + \omega = \sup\{1 + n \mid n < \omega\} = \omega$$

while

$$\omega + 1 = S(\omega) \neq \omega$$

where the last "non-equality" follows from the axiom of foundation. Thus, $1 + \omega \not\cong \omega + 1$.

Multiplication

Definition 2.21. If α , β are ordinals, define $\alpha \cdot \beta = \text{type}(\beta \times \alpha, R)$ where R is the dictionary order, given by

$$R = \left\{ \langle \langle \xi, \eta \rangle, \langle \xi', \eta' \rangle \rangle \mid \xi < \xi' \lor (\xi = \xi' \land \eta < \eta') \right\}.$$

We must first check that R is indeed a well ordering. That it is a strict linear order is clear. Let $S \subseteq \beta \times \alpha$ be a nonempty subset. Let S_1 be the projection of S onto β . This has a minimum element, say ξ . Consider now the set of all $\eta \in \alpha$ such that $\langle \xi, \eta \rangle \in S$. This is a nonempty subset of α and thus has a minimum element, say δ . Then, $\langle \xi, \delta \rangle$ is a minimum element of S.

Lemma 2.22. *For ordinals* α , β , γ ,

(a)
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$
.

- (*b*) $\alpha \cdot 0 = 0$.
- (c) $\alpha \cdot 1 = \alpha$.
- (*d*) $\alpha \cdot S(\beta) = \alpha \cdot \beta + \alpha$.
- (e) If β is a limit ordinal, then $\alpha \cdot \beta = \sup\{\alpha \cdot \xi \mid \xi < \beta\}$.
- (f) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$.

Exponentiation

Definition 2.23. For ordinals α , β , we define α^{β} by recursion on β as

- $\alpha^0 = 1$.
- $\alpha^{\beta+1} = \alpha^{\beta} \cdot \beta$.
- If β is a limit ordinal, $\alpha^{\beta} = \sup\{\alpha^{\xi} \mid \xi < \beta\}.$

Remark 2.4.2. Interestingly,

$$2^{\omega} = \sup\{2^n \mid n < \omega\} = \omega.$$

2.5 Equivalent forms of the Axiom of Choice

Theorem 2.24 (Well Ordering Theorem). For every nonempty set A, there is a relation $R \subseteq A \times A$ such that R well orders A.

$AC \implies WO$

Let A be a set. We shall explicitly construct a well ordering on X using the Axiom of Choice. First, let $f: \mathcal{P}(A) \setminus \{\emptyset\} \to A$ be a choice function and extend it to $f: \mathcal{P}(A) \to A \coprod \{\emptyset\}$ by defining $f(\emptyset) = \emptyset$. We shall now use transfinite recursion to define a function F on the ordinals as follows:

$$F(0) := f(A)$$

$$F(\alpha) := f\left(\left\{x \in A \mid \forall \beta \in \alpha(F(\beta) \neq x)\right\}\right).$$

First, note that if $F(\alpha) = F(\beta) \neq \emptyset$, then $\alpha = \beta$. Next, we contend that there must be an ordinal α with $F(\alpha) = \emptyset$. For if not, then we may apply the axiom of replacement and that of comprehension to obtain a set of all ordinals, a contradiction to the Burali-Forti paradox.

Let **C** denote the class of all ordinals α with $F(\alpha) = \emptyset$. Due to Theorem 2.17, there is a minimal such ordinal, say α_0 , then

$$f\left(\left\{x\in A\mid \forall\beta\in\alpha_0(F(\beta)\neq x)\right\}\right)=\varnothing\implies\left\{x\in A\mid \forall\beta\in\alpha_0(F(\beta)\neq x)\right\}=\varnothing.$$

Let $G: A \to \alpha_0$ denote the inverse function of F. Define the relation $R \subseteq A \times A$ by

$$R := \{ \langle x, y \rangle \mid G(x) \in G(y) \}.$$

That this is a well ordering is easy to see.

$WO \implies AC$

This direction, on the other hand, is much easier. Let X denote a collection of sets and let $Y = \bigcup X$. Let R be a well ordering on Y. Define the function $f: X \to Y$ by $f(x) = \min(x)$, the R-least element, which can be chosen since Y has been well ordered and $X \subseteq Y$.

$AC \implies Zorn$

Let *X* be a set and $P = (X, \leq)$ be a poset on it such that every chain in *P* has an upper bound. Let $f : \mathscr{P}(X) \setminus \{\emptyset\} \to X$ be a choice function.

Suppose P has no maximal element. Then, every chain in P must have a strict upper bound. Let \mathscr{C} be the set of all chains in P. Let $g:\mathscr{C}\to\mathscr{P}(X)$ map a chain in P to the set of all *strict* upper bounds. Consequently, $g(C)\neq\varnothing$ for every chain C in P.

We shall define a class function $F : \mathbf{ON} \to X$ using transfinite recursion. Begin with F(0) = F(X). Now, for any ordinal $\alpha \in \mathbf{ON}$, let C_{α} denote the chain $\{F(\beta) \mid \beta < \alpha\}$ and define

$$F(\alpha) := f(g(C_{\alpha})).$$

It is not hard to see that $F(\alpha) = F(\beta)$ if and only if $\alpha = \beta$ whence we may use Replacement to obtain a *set* of all ordinals, which is absurd.

$Zorn \implies AC$

Let *X* be a collection of sets and $Y = \bigcup X$. Let *P* be the poset of pairs (S, f) where $S \subseteq X$ and $f : S \to Y$

is a function with $f(s) \in s$ for each $s \in S$. We say $(S, f) \subseteq (S', f')$ if $S \subseteq S'$ and $f' \upharpoonright_S = f$. Let $C = \{(S_\alpha, f_\alpha)\}$ be a chain in P. Define the function $f: S:=\bigcup_\alpha S_\alpha \to Y$ by $f(x):=f_\alpha(x)$ if $x \in S_\alpha$. Then, (S, f) is an upper bound for the chain C. Thus, due to Zorn's Lemma, P contains a maximal element, say (\widetilde{S}, F) . We contend that $\widetilde{S} = X$. For if not, then there is $x \in X \setminus \widetilde{S}$ and the function *F* can be extended to $\hat{S} \cup \{x\}$ by simply choosing an element of *x* and assigning it to *x* under *F*. This contradicts the maximality of (\tilde{S}, F) and hence, F is the desired choice function.

Chapter 3

Cardinal Numbers

Definition 3.1. Sets A and B are said to be *equinumerous* if there is a bijection $f:A\to B$. This is denoted by $A\approx B$. On the other hand, if there is an injection $f:A\to B$, it is denoted by $A\preceq B$. We write $A\prec B$ if $A\preceq B$ and $B\not\preceq A$.

Theorem 3.2 (Cantor-Schröder-Bernstein). $A \leq B \wedge B \leq A \implies A \approx B$.

Definition 3.3. For a set A, |A| is the least α such that $\alpha \approx A$. α is a *cardinal* if and only if $\alpha = |\alpha|$.

From Theorem 2.24, there is a well ordering R on A and thus an ordinal α with an order preserving bijection between $\langle A, R \rangle$ and α , in particular, $A \approx \alpha$. Thus, |A| is defined for every set. Further, note that α is a cardinal if and only if $\forall \beta < \alpha (\beta \not\approx \alpha)$ and for any ordinal α , $|\alpha| \leq \alpha$.

Lemma 3.4. *If* $|\alpha| \le \beta \le \alpha$, then $|\beta| = |\alpha|$.

Proof. Since $\beta \le \alpha$, we have $\beta \subseteq \alpha$ and thus $\beta \preceq \alpha$. On the other hand, $|\alpha| \subseteq \beta$. Composing this inclusion with the bijection $\alpha \approx |\alpha|$, we have $\alpha \preceq \beta$. We are done due to Theorem 3.2.

Lemma 3.5. *If* $n \in \omega$ *, then*

- (a) $n \not\approx n + 1$.
- (b) $\forall \alpha (\alpha \approx n \implies \alpha = n)$.
- *Proof.* (a) Suppose not. Pick the smallest $n \in \omega$ such that $n \approx n+1$. Note that $n \neq 0$. We have an injective function $f: n+1 \to n$. Composing appropriately, we may suppose that f(n) = n-1 where $n \in n+1$ and $n-1 \in n$. The restriction $f \upharpoonright_n$ is an injective function from n to n-1 whence by Theorem 3.2, $n-1 \approx n$, a contradiction.
 - (b) If $n < \alpha$, then $n + 1 \le \alpha$ whence $n + 1 \le \alpha$. On the other hand, $\alpha \approx n < n + 1$, consequently $\alpha \approx n + 1$, a contradiction to (a).

Now suppose $\alpha < n$. Then, $|n| = |\alpha| \le \alpha \le \alpha + 1 \le n$, consequently, $|\alpha + 1| = |n|$. But since $\alpha + 1 \approx n + 1$, we have $n + 1 \approx n$, a contradiction to (a). Thus $\alpha = n$.

Corollary 3.6. ω is a cardinal and so is every ordinal $n < \omega$.

Definition 3.7. *A* is *finite* if and only if $|A| < \omega$. *A* is *countable* if and only if $|A| \le \omega$. We use the shorthand *infinite* to mean "not finite" and *uncountable* to mean "not countable".

Definition 3.8 (Cardinal Arithmetic). For cardinals κ and λ , define

$$\kappa \oplus \lambda := |\kappa \times \{0\} \cup \lambda \times \{1\}|, \quad \kappa \otimes \lambda := |\kappa \times \lambda|.$$

Unlike ordinal arithmetic, the operations \oplus and \otimes are commutative, which is obvious from the definition above. Furthermore, note that

$$|\kappa + \lambda| = |\lambda + \kappa| = \kappa \oplus \lambda$$
 and $|\kappa \cdot \lambda| = |\lambda \cdot \kappa| = \kappa \otimes \lambda$.

Lemma 3.9. For $m, n \in \omega$, $n \oplus m = n + m < \omega$ and $n \otimes m = n \cdot m < \omega$.

Proof.

Proposition 3.10. *Every infinite cardinal is a limit ordinal.*

Proof. Suppose $\kappa = \alpha + 1$ is a cardinal. Then, α is not a finite ordinal, that is, $\omega < \alpha$ and thus there is an ordinal β such that $\alpha = \omega + \beta$. Consequently, $1 + \alpha = 1 + \omega + \beta = \omega + \beta$ as we have seen previously that $1 + \omega = \omega$. Consequently,

$$|\kappa| = |\alpha + 1| = |1 + \alpha| = |\alpha|,$$

a contradiction to the fact that κ is a cardinal.

Theorem 3.11 (Tarski). *If* κ *is an infinite cardinal, then* $\kappa \otimes \kappa = \kappa$.

Proof. We shall prove this statement by transfinite induction on κ . That this statement holds for $\kappa = \omega$ is well known. Suppose now that $\kappa > \omega$ and the statement holds for each cardinal $\lambda < \kappa$.

Note that for an infinite ordinal $\alpha < \kappa$, we have $|\alpha| < \kappa$ and thus

$$|\alpha \times \alpha| = |\alpha| \otimes |\alpha| = |\alpha| < \kappa.$$

Let \prec denote the strict lexicographic ordering on $\kappa \times \kappa$. Define the relation \leq on $\kappa \times \kappa$ by $\langle \alpha, \beta \rangle \leq \langle \gamma, \delta \rangle$ if and only if

$$\max\{\alpha,\beta\} < \max\{\gamma,\delta\} \text{ or } \max\{\alpha,\beta\} = \max\{\gamma,\delta\} \text{ and } \langle \alpha,\beta \rangle \prec \langle \gamma,\delta \rangle.$$

That this relation is an ordering is immediate from the definition. We shall now show that this is a well ordering. Let $S \subseteq \kappa \times \kappa$ be nonempty. Using Replacement, construct the set S' which consists of $\max\{\alpha,\beta\}$ for all $\langle \alpha,\beta\rangle \in S$. Since $S' \subseteq \kappa$, it contains a minimum element, say α_0 . Using Comprehension, construct the set S'' consisting of all pairs $\langle \alpha,\beta\rangle$ such that $\max\{\alpha,\beta\} = \alpha_0$. Now, $S'' \subseteq \kappa \times \kappa$, and under the lexicographic order, it has a minimum element, which is also the minimum element of S under the ordering \unlhd .

Given any $\langle \alpha, \tilde{\beta} \rangle \in \kappa \times \kappa$, the set of all pairs preceding it in $\langle \kappa \times \kappa, \leq \rangle$ is a subset of

$$(\max\{\alpha,\beta\}+1)\times(\max\{\alpha,\beta\}+1)$$

Since κ is a limit ordinal, we have $\max\{\alpha,\beta\}+1<\kappa$ and due to the induction hypothesis, the cardinality of the above set is strictly smaller than κ whence $|\kappa\times\kappa|\leq\kappa$. There is an obvious injection from κ into $\kappa\times\kappa$, forcing $|\kappa\times\kappa|=\kappa$ due to Theorem 3.2.

Corollary 3.12. Let κ , λ be infinite cardinals. Then,

(a)
$$\kappa \oplus \lambda = \kappa \otimes \lambda = \max\{\kappa, \lambda\},\$$

(b)
$$|\kappa^{<\omega}| = \kappa$$
.

Proof.

Theorem 3.13 (Cantor). $\forall X (X \prec \mathscr{P}(X)).$

Proof. Suppose not, then $X \approx \mathscr{P}(X)$ for some X, which follows from Theorem 3.2 and the fact that there is a canonical injection from X to $\mathscr{P}(X)$. Let $f: X \to \mathscr{P}(X) \to X$ be a bijection. Using Comprehension, construct the set

$$S := \{ x \in X \mid x \notin f(x) \} \subseteq X.$$

Let $s \in X$ be the unique element such that f(s) = S. Then,

$$s \in S \iff s \notin S$$
,

a contradiction.

Theorem 3.14. $\forall \alpha \exists \kappa \ (\kappa > \alpha \ is \ a \ cardinal)$ is true in *ZF*.

If we were to work in ZFC then we could just well order $\mathscr{P}(\alpha)$ and consider its cardinality.

Proof. The statement is obvious for finite cardinals. Suppose now that $\alpha \geq \omega$. Let

$$W := \{ R \in \mathscr{P}(\alpha \times \alpha) \mid R \text{ well orders } \alpha \} S := \{ \text{type}(\langle \alpha, R \rangle) \mid R \in W \}.$$

Let $\beta = \sup(S)$. We contend that β is a cardinal and $\beta > \alpha$. First, note that if $\delta \in W$, then $S(\delta) \in W$, consequently, $\beta \notin W$. Further, $\beta \not\approx \alpha$ lest one could find a well ordering on α which is in order preserving bijection with β . Suppose β were not a cardinal. Then, there is some $\gamma < \beta$ with $\gamma \approx \beta$. By definition, there is η such that $\gamma \leq \eta < \beta$ with $\eta \in W$, consequently, $\eta \approx \beta$ but $\alpha \approx \eta$, a contradiction. This completes the proof.

Definition 3.15 (Successor, Limit Cardinals). Let α be an ordinal. Denote by α^+ the smallest *cardinal* strictly greater than α . A cardinal κ is said to be a *successor cardinal* if $\kappa = \alpha^+$ for some α . On the other hand, if $\kappa > \omega$ and is not a successor cardinal, then κ is said to be a *limit cardinal*.

Definition 3.16 (Aleph Numbers). Define the numbers \aleph_{α} by transfinite recursion on α .

- (a) $\aleph_0 := \omega$.
- (b) $\aleph_{\alpha+1} = (\aleph_{\alpha})^+$.
- (c) For a limit ordinal λ , define $\aleph_{\lambda} := \sup \{ \aleph_{\alpha} \mid \alpha < \lambda \}$.

Theorem 3.17. (a) Each \aleph_{α} is a cardinal.

- (b) Every infinite cardinal is equal to \aleph_{α} for some α .
- (c) If $\alpha < \beta$, then $\aleph_{\alpha} < \aleph_{\beta}$.
- (d) \aleph_{α} is a limit cardinal if and only if α is a limit ordinal.

(e) \aleph_{α} is a successor cardinal if and only if α is a successor ordinal.

Proof. All of these follow immediately from the definition above.

Remark 3.0.1. One often writes ω_{α} in place of \aleph_{α} . We adopt both conventions and use them interchangeably.

Lemma 3.18. *If there is a surjective function* $f: X \to Y$, then $|Y| \le |X|$.

Proof. Consider the set

$$S = \{ f^{-1}(y) \mid y \in Y \},\$$

which can be constructed using Replacement. Let $g: Y \to S$ be given by $g(y) = f^{-1}(y)$ and F be a choice function on S. Then, the composition $F \circ g$ is an injective function from Y to X, implying the desired conclusion.

Definition 3.19 (Cardinal Exponentiation). For sets *A* and *B*, define

$$A^B := {}^B A := \{ f \subseteq \mathscr{P}(B \times A) \mid f \text{ is a function} \}.$$

For cardinals κ and λ , define $\kappa^{\lambda} := |{}^{\lambda}\kappa|$.

Theorem 3.20. Let $2 \le \kappa \le \lambda$ and λ an infinite cardinal. Then, $\kappa^{\lambda} = 2^{\lambda}$.

Proof. Obviously, $^{\lambda}2 \approx \mathscr{P}(\lambda)$ which can be seen by looking at the characteristic function of each subset of λ . Then, we have

$$^{\lambda}k \leq ^{\lambda}\lambda \leq \mathscr{P}(\lambda \times \lambda) \leq \mathscr{P}(\lambda) \leq ^{\lambda}2.$$

The conclusion follows from Theorem 3.2.

Theorem 3.21. Let $\mathscr{B}(\mathbb{R})$ denote the Borel σ -algebra on \mathbb{R} with the standard topology. Then, $|\mathscr{B}(\mathbb{R})| = 2^{\aleph_0}$, the cardinality of the continuum.

Proof. That $\mathscr{B}(\mathbb{R})$ has cardinality at least that of the continuum is straightforward since it contains all singletons. Showing the reverse direction is a bit involved and requires transfinite recursion.

First, note that \mathbb{R} is second countable and thus has a countable abse for its topology, denote this by S_0 . For an ordinal $\alpha < \omega_1$, let $S_{\alpha+1}$ denote the collection of all unions of the form

$$\bigcup_i A_i \cup \bigcup_i (\mathbb{R} \backslash B_j)$$

where A_i and B_j are chosen from S_α . Note that if $|S_\alpha| \leq 2^{\aleph_0}$, then the number of these unions that can be formed is at most $(2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0}$ since there is a surjection from the set of all functions $\aleph_0 \to S_\alpha$ onto $S_{\alpha+1}$.

On the other hand, if α is a limit ordinal, define

$$S_{\alpha} = \bigcup_{\lambda < \alpha} S_{\lambda}.$$

We contend that $S = \bigcup_{\alpha < \omega_1} S_{\alpha}$ is a σ -algebra. Obviously, S contains \varnothing and \mathbb{R} , and is closed under complementation. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence in S. For each positive integer n, let $\alpha(n)$ denote the minimal ordinal λ such that $A_n \in S_{\lambda}$. Note that for each n, the cardinality $|\alpha(n)| \leq \omega$. Hence, if $\beta = \sup_{n < \omega} \alpha(n)$, then $|\beta| \leq \omega$, consequently, $\beta < \omega_1$ and $\{A_n \mid n < \omega\} \subseteq S_{\beta}$ implying that $\bigcup_{n=1}^{\infty} A_n \in S_{\beta+1} \subseteq S$.

As a result, S contains $\mathscr{B}(\mathbb{R})$ but the cardinality of S is at most

$$|\omega_1|\otimes 2^{\aleph_0}=\aleph_1\otimes 2^{\aleph_0}\leq 2^{\aleph_0}\otimes 2^{\aleph_0}=2^{\aleph_0}.$$

This completes the proof.

Theorem 3.22 (Mazurkiewicz, 1914). *There is a subset* $A \subseteq \mathbb{R}^2$ *which meets* every *line in the plane at* exactly 2 *points.*

Proof. Let \mathscr{L} denote the set of all possible lines in the plane. The cardinality of \mathscr{L} is at least 2^{\aleph_0} and atmost $2^{\aleph_0} \otimes 2^{\aleph_0} = 2^{\aleph_0}$. Since this is in bijection with 2^{\aleph_0} , it has an induced well ordering, which we denote by $\mathscr{L} = \{L_\alpha \mid \alpha < 2^{\aleph_0}\}$.

We shall, using transfinite recursion construct a chain X_{α} of subsets of \mathbb{R}^2 for $\alpha < 2^{\aleph_0}$ such that $|X_{\alpha}| < 2^{\aleph_0}$ and $|X_{\alpha} \cap L_{\beta}| \leq 2$ for each $\beta < 2^{\aleph_0}$.

Begin with $X_0 = \{x_0\}$ for any $x_0 \in \mathbb{R}^2$. Suppose now that the sequence has been constructed for each $\beta < \alpha$ where $\alpha > 0$. Let $Y_\alpha := \bigcup_{\beta < \alpha} X_\beta$. Let S_α denote the set of all lines between two points in Y_α . Note that the cardinality of S_α is strictly smaller than 2^{\aleph_0} .

Let γ be the smallest ordinal such that $|L_{\gamma} \cap Y_{\alpha}| \le 1$. If no such ordinal exists, then Y_{α} is the desired set. Suppose such a γ does exist. Then, the set

$$L_{\gamma} \setminus \underbrace{\left(\bigcup_{L \in S_{\alpha}} L \cup \bigcup_{\beta < \gamma} L_{\beta} \cup Y_{\alpha}\right)}_{T}$$

which is non empty, since the intersection of L_{γ} with T has cardinality strictly smaller than 2^{\aleph_0} . Let x_{α} be one such element in the above set and define $X_{\alpha} = Y_{\alpha} \cup \{x_{\alpha}\}$.

It is not hard to see that X_{α} satisfies the desired properties and thus we may continue this procedure and obtain $\{X_{\alpha} \mid \alpha < 2^{\aleph_0}\}$. Let $X = \bigcup_{\alpha < 2^{\aleph}_0} X_{\alpha}$. This is the required set.

Chapter 4

Well Founded Sets

Throughout this chapter, we shall work in ZF⁻, which is ZF without the axiom of foundation.

Definition 4.1. By transfinite recursion, deifne $R(\alpha)$ for each $\alpha \in \mathbf{ON}$ by

- (a) $R(0) = \emptyset$,
- (b) $R(\alpha + 1) = \mathscr{P}(R(\alpha))$,
- (c) $R(\alpha) = \bigcup_{\lambda < \alpha} R(\lambda)$ when λ is a limit ordinal.

Finally, define the first order formula

WF(
$$x$$
) := $\exists \alpha (x \in R(\alpha))$.

We denote by WF the class corresponding to the above formula.

Lemma 4.2. For each α ,

- 1. $R(\alpha)$ is transitive.
- 2. $\forall \xi \leq \alpha(R(\xi) \subseteq R(\alpha))$.

Proof. We prove both statements by transfinite induction on α . The base case with $\alpha=0$ is trivial. Suppose $\alpha=\beta+1$. Since $R(\beta)$ is transitive, so is its power set as we have seen earlier and obviously $R(\beta)\subseteq R(\alpha)$ since $R(\beta)\in R(\alpha)$. Finally, suppose α is a limit ordinal. Then, (b) is immediate and (a) follows from the fact taht the union of transitive sets is transitive.

Remark 4.0.1. *As a consequence of the definition of* **WF***, for any* $x \in$ **WF***, the least* α *for which* $x \in R(\alpha)$ *must be a successor ordinal.*

Definition 4.3. If $x \in WF$, then rank(α) is the *least* β such that $x \in R(\beta + 1)$.

Lemma 4.4. For any α ,

$$R(\alpha) = \{ x \in \mathbf{WF} \mid \operatorname{rank}(x) < \alpha \}.$$

Proof. Trivial.

Lemma 4.5. *If* $y \in WF$ *, then*

(a)
$$\forall x \in y (x \in \mathbf{WF} \land \mathrm{rank}(x) < \mathrm{rank}(y))$$
, and

(b) $\operatorname{rank}(y) = \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \}.$

Proof. Let $\alpha = \operatorname{rank}(y)$. Then, $y \in R(\alpha + 1) = \mathscr{P}(R(\alpha))$ and thus $y \subseteq \mathscr{R}(\alpha)$, consequently, $x \in R(\alpha)$ and $\operatorname{rank}(x) < \alpha$.

As for the second part, let $\alpha = \sup\{\operatorname{rank}(x) + 1 \mid x \in y\}$. From (a), we know that $\alpha \leq \operatorname{rank}(y)$. Further, each $x \in y$ has $\operatorname{rank} < \alpha$ and thus $y \subseteq R(\alpha)$ whence $y \in R(\alpha + 1)$, consequently, $\operatorname{rank}(y) \leq \alpha$.

Corollary 4.6. There is no $x \in WF$ such that $x \in x$.

Proof. If this were true, then rank(x) < rank(x), a contradiction.

Lemma 4.7. (a)
$$\forall \alpha \in \mathbf{ON}(\alpha \in \mathbf{WF} \wedge \mathrm{rank}(\alpha) = \alpha)$$
.

(b)
$$\forall \alpha \in \mathbf{ON}(R(\alpha) \cap \mathbf{ON} = \alpha)$$
.

Proof. We shall prove (a) using transfinite induction on α . That (a) holds for $\alpha=0$ is trivial. Now suppose (a) holds for each $\beta<\alpha$. Then, we have

$$rank(\alpha) = \sup\{rank(\beta) + 1 \mid \beta < \alpha\} = \sup\{\beta \mid \beta < \alpha\} = \alpha$$

which proves (a). It is easy to see that (b) is immediate from (a).

Lemma 4.8. $\forall x (x \in \mathbf{WF} \iff x \subseteq \mathbf{WF})$.

Proof. The forward direction follows from the transitivity of **WF**. As for the reverse direction, let $x \subseteq \mathbf{WF}$ and let

$$\alpha = \sup \{ \operatorname{rank}(y) + 1 \mid y \in x \}.$$

Then, $x \subseteq R(\alpha)$, consequently, $x \in R(\alpha + 1)$.

Lemma 4.9. (a)
$$\forall n \in \omega(|R(n)| < \omega)$$
.

(b)
$$|R(\omega)| = \omega$$
.

Proof. (a) is immediate from induction on n. Obviously, $\omega \subseteq R(\omega)$. On the other hand, note that $R(\omega)$ is a countable union of countable sets and is thus countable.

4.1 Well Founded Relations

Definition 4.10. A relation *R* is *well-founded* on a set *A* if

$$\forall X \subseteq A \left[X \neq \varnothing \implies \exists y \in X \left(\neg \exists z \in X \left(zRy \right) \right) \right].$$

For example, if $\langle A, R \rangle$ is a well-ordering, then *R* is well-founded on *A*.

Lemma 4.11. *If* $A \in WF$, then \in is well-founded on A.

Proof. Let $X \subseteq A$ be nonempty and $\alpha = \min\{\operatorname{rank}(y) \mid y \in X\}$. Choose some $y \in X$ with $\operatorname{rank}(y) = \alpha$. Then y is \in -minimal in X.

Lemma 4.12. *If* A *is transitive and* \in *is well-founded on* A*, then* $A \in \mathbf{WF}$.

Proof. Suppose not. Then equivalently, $A \nsubseteq WF$, whence $A \setminus WF$ is nonempty. Let $y \in A \setminus WF$ be the \in -least element of $A \setminus WF$. If $z \in y$, then $z \in A$ due to the transitivity of A but on the other hand, $z \notin A \setminus WF$ lest one contradicts the minimality of y. Therefore, $z \in WF$. Consequently, $y \subseteq WF$ whence $y \in \mathbf{WF}$, a contradiction.

Definition 4.13. Let

$$\bigcup_{i=0}^{0} A = A,$$

and for each $0 < n < \omega$, define, recursively,

$$\bigcup^{n+1} A = \bigcup \left(\bigcup^n A\right).$$

Finally, set

$$\bigcup^{n+1} A = \bigcup \left(\bigcup^{n} A\right).$$

$$\operatorname{trcl}(A) := \bigcup \left\{\bigcup^{n} A \mid n \in \omega\right\}.$$

Lemma 4.14. Let A be a set. Then,

- (a) $A \subseteq \operatorname{trcl}(A)$.
- (b) trcl(A) is transitive.
- (c) If $A \subseteq T$, and T is transitive, then $trcl(A) \subseteq T$.
- (d) If A is transitive, then trcl(A) = A.
- (e) $\operatorname{trcl}(A) = A \cup \bigcup \{\operatorname{trcl}(x) \mid x \in A\}.$

Proof. (a) Trivial.

- (b) If $x \in trcl(A)$, then there is some n such that $x \in \bigcup^n A$, therefore $x \subseteq \bigcup^{n+1} A$, whence $x \subseteq trcl(A)$. Thus trcl(A) is transitive.
- (c) We shall show by induction on n that $\bigcup^n A \subseteq T$. The base case is given to begin with. Suppose $\bigcup^n A \subseteq T$. Then, due to transitivity, $\bigcup^{n+1} A = \bigcup (\bigcup^n A) \subseteq T$. The conclusion follows.
- (d) Follows from (a) and (c) by taking T = A.
- (e) First, note that if $x \in A$, then $x \in trcl(A)$ and due to transitivity $x \subseteq trcl(A)$. From (c), we have $trcl(x) \subseteq trcl(A)$. Let

$$T = A \cup \bigcup \{ trcl(x) \mid x \in A \}.$$

Then, it is easy to see that T must be transitive and from what we concluded earlier, $T \subseteq trcl(A)$ but since $A \subseteq T$, from (c), we must have $\operatorname{trcl}(A) \subseteq T$ whence $\operatorname{trcl}(A) = T$.

Theorem 4.15. *For any set A, the following are equivalent:*

- (a) $A \in \mathbf{WF}$.
- (b) $\operatorname{trcl}(A) \in \mathbf{WF}$.
- (c) \in is well-founded on trcl(A).

Proof.

4.2 The Axiom of foundation

Recall the axiom of foundation

$$\forall x \left(x \neq \varnothing \implies \exists y \left(y \in x \land \neg \exists z \left(z \in x \land z \in y \right) \right) \right).$$

or equivalently,

$$\forall x \left(x \neq \varnothing \implies \exists y \left(y \in x \land y \cap x = \varnothing \right) \right).$$

Theorem 4.16. *The following are equivalent:*

- (a) the Axiom of Foundation.
- (b) $\forall A (\in is well-founded on A)$
- (c) $\mathbf{V} = \mathbf{W}\mathbf{F}$.

Proof. That (a) and (b) are equivalent is immediate from the definition of well-foundedness. Let $A \in V$. Then, \in is well founded on A and thus on trcl(A), consequently, $A \in WF$ and thus V = WF. The converse is trivial.

4.3 Induction and Recursion on Well-Founded Relations

We extend the notion of well-foundedness to classes as follows.

Definition 4.17. R is well founded on A if and only if

$$\forall X \subseteq \mathbf{A} \left[X \neq \varnothing \implies \exists y \in X \left(\neg \exists z \in X (z\mathbf{R}y) \right) \right].$$

Definition 4.18. R is *set-like* on **A** if for all $x \in \mathbf{A}$, $\{y \in \mathbf{A} \mid y\mathbf{R}x\}$ is a set. If **R** is set-like on **A**, then

- (a) $pred(\mathbf{A}, x, \mathbf{R}) = \{ y \in \mathbf{A} \mid y\mathbf{R}x \}.$
- (b) $\operatorname{pred}^{0}(\mathbf{A}, x, \mathbf{R}) = \operatorname{pred}(\mathbf{A}, x, \mathbf{R}).$
- (c) $\operatorname{pred}^{n+1}(\mathbf{A}, x, \mathbf{R}) = \bigcup \{\operatorname{pred}(\mathbf{A}, y, \mathbf{R}) \mid y \in \operatorname{pred}^{n}(\mathbf{A}, x, \mathbf{R})\}.$
- (d) $cl(\mathbf{A}, x, \mathbf{R}) = \bigcup \{pred^n(\mathbf{A}, x, \mathbf{R}) \mid n \in \omega \}.$

Lemma 4.19. *If* **R** *is set-like on* A *and* $x \in \mathbf{A}$, *then for each* $y \in \operatorname{cl}(\mathbf{A}, x, \mathbf{R})$, $\operatorname{pred}(\mathbf{A}, y, \mathbf{R}) \subseteq \operatorname{cl}(\mathbf{A}, x, \mathbf{R})$.

Proof. There is some nonnegative integer n such that $y \in \text{pred}^n(\mathbf{A}, y, \mathbf{R})$. Then,

$$\operatorname{pred}(\mathbf{A}, y, \mathbf{R}) \subseteq \operatorname{pred}^{n+1}(\mathbf{A}, x, \mathbf{R}).$$

The conclusion follows.

Theorem 4.20. If **R** is well-founded and set-like on **A**, then every non-empty subclass **X** of **A** has an **R**-minimal element.

Proof. Pick some $x \in X$. If this **R**-minimal, then we are done. If not, then consider $X \cap cl(A, x, R)$ is a nonempty *subset* of A, since cl(A, x, R) is a set. This means that it has an **R**-minimal element, say y. From the previous lemma, y must be **R**-minimal in X.

Remark 4.3.1. *Notice the similarity of the above with Theorem* **2.17**. *This in particular means that we can apply transfinite induction on well-founded set-like relations.*

Theorem 4.21 (Well-Founded Transfinite Recursion). *Assume* R *is well-founded and set-like on* A. *If* $F: A \times V \rightarrow V$, *then there is a unique* $G: A \rightarrow V$ *such that*

$$\forall x \in \mathbf{A} \left[\mathbf{G}(x) = \mathbf{F} \left(x, \mathbf{G} \upharpoonright \mathrm{pred}(\mathbf{A}, x, \mathbf{R}) \right) \right].$$

Definition 4.22. If **R** is well-founded and set-like on **A**, define

$$rank(x, \mathbf{A}, \mathbf{R}) = \sup\{rank(y, \mathbf{A}, \mathbf{R}) + 1 \mid y\mathbf{R}x \land y \in \mathbf{A}\}.$$

Lemma 4.23. *If* **A** *is transitive and* \in *is well-founded on* **A***, then* **A** \subseteq **WF** *and* rank(x, **A**, \in) = rank(x) *for all* $x \in A$.

Proof. We have already seen the proof of the first half. Now, consider an \in -minimal element of $\{x \in \mathbf{A} \mid \text{rank}(x, \mathbf{A}, \mathbf{R}) \neq \text{rank}(x)\}$. This would give an immediate contradiction since we have shown

$$rank(y) = \sup\{rank(x) + 1 \mid x \in y\}.$$

This completes the proof.

Definition 4.24. Let R be well-founded and set-like on A. Define the *Mostowski collapsing function*, G of A, R by

$$\mathbf{G}(x) = \{ \mathbf{G}(y) \mid y \in \mathbf{A} \land y \mathbf{R} x \}.$$

The Mostowski collapse, M of A, R is defined to be the range of G.

Lemma 4.25. With notation from the above definition.

- (a) $\forall x, y \in \mathbf{A}(x\mathbf{R}y \implies \mathbf{G}(x) \in \mathbf{G}(y))$.
- (b) **M** is transitive.
- (c) $\mathbf{M} \subseteq \mathbf{WF}$.
- (*d*) If $x \in \mathbf{A}$, then $\operatorname{rank}(x, \mathbf{A}, \mathbf{R}) = \operatorname{rank}(\mathbf{G}(x))$.

Proof. Both (a) and (b) are obvious. For (c), we contend that $\forall x \in \mathbf{A}(\mathbf{G}(x) \in \mathbf{WF})$. Consider the set $S = \{x \in \mathbf{A} \mid \mathbf{G}(x) \in \mathbf{WF}\}$. Suppose S is nonempty, then it has a \mathbf{R} -minimal element, say z. For every $y \in \mathbf{A}$ such that $y\mathbf{R}x$, $\mathbf{G}(y) \in \mathbf{WF}$, consequently, $\mathbf{G}(z) \subseteq \mathbf{WF}$ whence $\mathbf{G}(z) \in \mathbf{WF}$, a contradiction. For (d), first note that

$$\operatorname{rank}(\mathbf{G}(x)) = \sup \{\operatorname{rank}(v) + 1 \mid v \in \mathbf{G}(x)\} = \sup \{\operatorname{rank}(\mathbf{G}(y)) + 1 \mid y\mathbf{R}x\}.$$

Using well-founded induction on *x*, one can now conclude.

Definition 4.26. R is said to be *extensional* on **A** if

$$\forall x, y \in \mathbf{A} (\forall z \in \mathbf{A} (z\mathbf{R}x \iff z\mathbf{R}y) \implies x = y).$$

Informally, this is equivalent to saying that the Axiom of Extensionality is true in A if \in is interpreted as R.

Theorem 4.27 (Mostowski Collapsing Theorem). Suppose R is well-founded, set-like, and extensional on A, then there is a transitive class M and a bijective map $G: A \to R$ such that G is an isomorphism between (A,R) and (M,\in) . Furthermore, M and G are unique.

Proof. First, we shall show that **G** is injective. Suppose not. Let *x* be the **R**-minimal element of

$$\{x \in \mathbf{A} \mid \exists y \in \mathbf{A}(x \neq y \land \mathbf{G}(x) = \mathbf{G}(y))\}.$$

Then, there is some $y \in \mathbf{A}$ with $x \neq y$ and $\mathbf{G}(x) = \mathbf{G}(y)$. Recall that **R** is extensional.

Suppose first that there is some $z \in \mathbf{A}$ with $z\mathbf{R}x$ but $\neg(z\mathbf{R}y)$. Since $\mathbf{G}(z) \in \mathbf{G}(x) = \mathbf{G}(y)$, there is some $w\mathbf{R}y$ such that $\mathbf{G}(w) = \mathbf{G}(z)$ and $z \neq w$. This contradicts the minimality of x. A similar argument works for the other case. Thus, \mathbf{G} is injective.

That **G** is an isomorphism now follows from the fact that it is a surjection and maps **R** to \in . Lastly, we must show uniqueness of **G** and **M**. This follows from a simple well-founded induction on x to show that $\mathbf{G}(x) = \mathbf{G}'(x)$ for any other isomorphism \mathbf{G}' .

Chapter 5

Easy Consistency Proofs

5.1 Relativization

Definition 5.1. Let **M** be any class. For any formula ϕ , define $\phi^{\mathbf{M}}$, the *relativization* of ϕ to **M** by induction on ϕ , by

- (a) $(x = y)^{M}$ is x = y.
- (b) $(x \in y)^{\mathbf{M}}$ is $x \in y$.
- (c) $(\phi \wedge \psi)^{\mathbf{M}}$ is $\phi^{\mathbf{M}} \wedge \psi^{\mathbf{M}}$.
- (d) $(\neg \phi)^{\mathbf{M}}$ is $\neg \phi^{\mathbf{M}}$
- (e) $(\exists \phi)^{\mathbf{M}}$ is $\exists x (x \in \mathbf{M} \land \phi^{\mathbf{M}})$.

Lemma 5.2. Let S and T be two sets of sentences in the language of set theory under consideration, and suppose for some class \mathbf{M} , we can prove from T that $\mathbf{M} \neq 0$ and \mathbf{M} is a model for S. Then, $Con(T) \Longrightarrow Con(S)$.

Proof. Quite straightforward. Suppose S were inconsistent. Then, there is a sentence χ such that we could prove $\chi \land \neg \chi$ from S. Then, we could begin a formal proof from T and prove that S is true in M and hence, $\chi^M \land \neg \chi^M$, a contradiction. Thus, T is inconsistent.

Recall the Axiom of Extensionality,

$$\forall x, y \ (\forall z (z \in x \iff z \in y) \implies x = y).$$

Relativized to M, it looks like

$$\forall x, y \in \mathbf{M} \ (\forall z \in \mathbf{M} (z \in x \iff z \in y) \implies x = y).$$

Lemma 5.3. *If* **M** *is transitive, the Axiom of Extensionality is true in M*.

Proof. We have seen this in the previous chapter.

Lemma 5.4. *If for each formula* $\phi(x, z, w_1, ..., w_n)$ *with only the displayed variables free,*

$$\forall z, w_1, \ldots, w_n \in \mathbf{M} \left(\{ x \in z \mid \phi^{\mathbf{M}}(x, z, w_1, \ldots, w_n) \in \mathbf{M} \} \right),$$

then the Axiom of Comprehension is true in M.

Proof. Since the relativized instance of Comprehension is given by

$$\forall z, w_1, \ldots, w_n \in \mathbf{M} \exists y \in \mathbf{M} \left(x \in y \iff x \in z \land \phi^{\mathbf{M}}(x, z, w_1, \ldots, w_n) \right).$$

The conclusion is now obvious from the hypothesis.

Remark 5.1.1. *In particular, if* $\forall z \in \mathbf{M}(\mathscr{P}(z) \subseteq \mathbf{M})$ *, then the Comprehension Axiom is true in* \mathbf{M} *. This shall turn out to be useful later on.*

Theorem 5.5. Assume the consistency of ZF^- . If $\mathbf{M} = \{0\}$, then Extensionality + Comprehension + $\forall y(y=0)$ is consistent.

Proof. Extensionality is true in **M** since it is transitive while Comprehension is true in **M** from the preceding remark.

The above can be written as

$$Con(ZF^-) \implies Con (Extensionality + Comprehension + \forall y(y = 0))$$
.

Let us now look at the Power Set Axiom. Recall that this is

$$\forall x \exists y \forall z (z \subseteq x \implies z \in y).$$

We shall first see what $z \subseteq x$ becomes upon relativizing to \mathbf{M} . Note that $z \subseteq x$ is shorthand for $\forall w (w \in z \implies w \in x)$. This relativized to \mathbf{M} is $\forall w \in \mathbf{M} (w \in z \implies w \in x)$ which is equivalent to writing $z \cap \mathbf{M} \subseteq x$. We may now write down the relativized Power Set Axiom as

$$\forall x \in \mathbf{M} \exists y \in \mathbf{M} \forall z \in \mathbf{M} (z \cap \mathbf{M} \subseteq x \implies z \in y).$$

Suppose **M** is transitive. Then, $z \in \mathbf{M}$ implies $z \subseteq \mathbf{M}$ whence $z \cap \mathbf{M} = z$ nad hence, the Power Set Axiom holds in **M** if and only if

$$\forall x \in \mathbf{M} \exists y \in \mathbf{M} \forall z \in \mathbf{M} (z \subseteq x \implies z \in y).$$

In particular, we have the following.

Lemma 5.6. If **M** is transitive, the Power Set Axiom holds in **M** if and only if

$$\forall x \in \mathbf{M} \exists y \in \mathbf{M}(\mathscr{P}(x) \cap \mathbf{M} \subseteq y).$$

Lemma 5.7. If

$$\forall x, y \in \mathbf{M} \exists z \in \mathbf{M} (x \in z \land y \in z), \text{ and } \forall x \in \mathbf{M} \exists z \in \mathbf{M} (| | x \subseteq z),$$

then the Pairing and Union Axioms are true in M.

Proof. Obvious.

In particular, the Pairing and Union Axioms are true in $R(\omega)$ and **WF**, which is trivial to see. Next, we shall show that Replacement is also true in $R(\omega)$ and **WF**. First, a lemma.

Lemma 5.8. Suppose for each formula $\phi(x, y, A, w_1, ..., w_n)$ and each $A, w_1, ..., w_n \in \mathbf{M}$, if

$$\forall x \in A \exists ! y \in \mathbf{M} \phi^{\mathbf{M}}(x, y, A, w_1, \dots, w_n),$$

then

$$\exists Y \in \mathbf{M} \left(\{ y \mid \exists x \in A \phi^{\mathbf{M}}(x, y, A, w_1, \dots, w_n) \} \subseteq Y \right).$$

Then the Replacement Scheme is true in M.

Proof. Again, obvious.

Consider now the case $\mathbf{M} = R(\omega)$ or \mathbf{WF} and let Y be as defined in the lemma above. If $\mathbf{M} = \mathbf{WF}$, $Y \subseteq \mathbf{WF}$ and thus, $Y \in \mathbf{WF}$. On the other hand, if $\mathbf{M} = R(\omega)$, then |Y| is finte and hence, $Y \subseteq R(n)$ for some n, whence $Y \in R(n+1)$. This shows that replacement is true.

We now move onto foundation. The relativization of foundation to M is

$$\forall x \in \mathbf{M} (\exists y \in \mathbf{M} (y \in x) \implies \exists y \in \mathbf{M} (y \in x \land \neq \exists z \in \mathbf{M} (z \in x \land z \in y))).$$

Now, if $\mathbf{M} \subseteq \mathbf{WF}$ and $x \in \mathbf{M}$, pick $y \in \mathbf{M} \cap x$ with the smallest rank. It is routine to show that this satisfies the statement of the relativized axiom. This shows that Foundation is true in any $\mathbf{M} \subseteq \mathbf{WF}$. We now have the following.

Theorem 5.9. WF and $R(\omega)$ are models of ZF – Inf.

5.2 Absoluteness

Definition 5.10. Let ϕ be a formula with x_1, \ldots, x_n free.

(a) If $M \subseteq N$, then ϕ is *absolute* for M, N if and only if

$$\forall x_1,\ldots,x_n \in \mathbf{M}\left(\phi^{\mathbf{M}}(x_1,\ldots,x_n) \iff \phi^{\mathbf{N}}(x_1,\ldots,x_n)\right).$$

(b) ϕ is said to be *absolute* for **M** if it is absolute for **M**, **V**.

Obviously, if ϕ is absolute for **M** and **N**, and if **M** \subseteq **N**, then ϕ is absolute for **M**, **N**.

Remark 5.2.1. If $\mathbf{M} \subseteq \mathbf{N}$ and ϕ , ψ are both absolute for \mathbf{M} , \mathbf{N} , so are $\neg \phi$ and $\phi \land \psi$. This is trivial to prove. Further, note that x = y and $x \in y$ are absolute for all \mathbf{M} , and any formula without quantifiers is built using the aforementioned atomic formulae and \neg and \wedge . Therefore, a quantifier-free formula is absolute for any \mathbf{M} .

Lemma 5.11. *If* $\mathbf{M} \subseteq \mathbf{N}$ *are both transitive and* ϕ *is absolute for* \mathbf{M} , \mathbf{N} , *then so is* $\exists x \in y\phi$.

Proof. Trivial.

Definition 5.12. The collection Δ_0 of formulas are those built up inductively by:

- (a) $x \in y$ and x = y are Δ_0 .
- (b) If ϕ , ψ are Δ_0 , so are $\neg \phi$ and $\phi \wedge \psi$.
- (c) If ϕ is Δ_0 , so is $\exists x (x \in y \land \phi)$.

Corollary 5.13. If **M** is transitive and ϕ is Δ_0 , then ϕ is absolute for **M**.

Proof. This follows from the previous lemma applied to M, V and the above definition.

Lemma 5.14. Suppose $M \subseteq N$ are models for a set of sentences S, such that

$$S \vdash \forall x_1, \ldots, x_n \left(\phi(x_1, \ldots, x_n) \iff \psi(x_1, \ldots, x_n) \right)$$

then ϕ is absolute for **M**, **N** if and only if ψ is.

Proof. Follows immediately from the definition of absoluteness.

Note that a function $F(x_1, ..., x_n)$ can be defined through a formula in **M** if the following is true:

$$\forall x_1,\ldots,x_n\exists!y\;\phi(x_1,\ldots,x_n,y).$$

Definition 5.15. If $\mathbf{M} \subseteq \mathbf{N}$ and $F(x_1, \dots, x_n)$ is a defined function, we say that F is *absolute* for \mathbf{M} , \mathbf{N} if ϕ is.

Remark 5.2.2. There is now a tedious verification that almost all the operations that we use in set theory are absolute for a transitive model M that is a model for $ZF^- - P - Inf$.

Lemma 5.16. *Let* \mathbf{M} *be a transitive model for* $\mathsf{ZF}^- - \mathsf{P} - \mathsf{Inf}$ *. If* $\omega \in \mathbf{M}$ *, then the Axiom of Infinity is true in* \mathbf{M} .

Proof. Due to the remark above, 0 and S are absolute in M. The Axiom of Infinity relativized to M now looks like

$$\exists x \in \mathbf{M} (0 \in x \land \forall y \in x (S(y) \in x)),$$

which is seen to be true by taking $x = \omega$.

The same argument yields that the Axiom of Infinity is false in $R(\omega)$, since any $x \in \mathbf{WF}$ containing 0 and closed under S has infinite rank. Thus, we have:

Theorem 5.17. $R(\omega)$ *is a model of* ZFC $- Inf + (\neg Inf)$.

Proof. It only remains to check that AC holds, for which we need to come up with a well-ordering for any $A \in R(\omega)$. But A is finite and thus can be well ordered. Le $R \subseteq A \times A$ be a well-order. Then, R must lie in $R(\omega)$ due to transitivity. The proof is complete due to the following lemma.

Lemma 5.18. Suppose **M** is a transitive model of $ZF^- - P - Inf$. Let $A, R \in \mathbf{M}$ and suppose that R well-orders A. Then $(R \text{ well-orders } A)^{\mathbf{M}}$.

5.3 $H(\kappa)$

Definition 5.19. For an infinite cardinal κ , $H(\kappa) = \{x \mid |\operatorname{trcl}(x)| < \kappa\}$. Note that choice is not required for this definition, since we implicitly assume that $|y| < \kappa$ means that y is well-orderable and $|y| < \kappa$.

That each $H(\kappa)$ is a set and not a proper class follows from the following:

Theorem 5.20. *For any infinite* κ *,* $H(\kappa) \subseteq R(\kappa)$ *.*

Chapter 6

Forcing

6.1 Some Infinitary Combinatorics

Definition 6.1 (Cofinal). If $f : \alpha \to \beta$, then f maps α *cofinally* if and only if ran(f) is unbounded in β . The *cofinality* of β is the least α that can be cofinally mapped into β .

Lemma 6.2. There is a cofinal map $f : cf(\beta) \to \beta$ which is strictly increasing.

Proof. Let $\alpha = \operatorname{cf}(\beta)$ and $f : \alpha \to \beta$ be a cofinal map. Define the map $g : \alpha \to \beta$ by

$$g(\eta) = max\{f(\eta), \sup\{f(\xi) + 1: \xi < \eta\}\}.$$

It is not hard to argue that $g : \alpha \to \beta$ is cofinal.

Lemma 6.3. If α is a limit ordinal and $f: \alpha \to \beta$ is a strictly increasing cofinal map, then $cf(\alpha) = cf(\beta)$.

Proof. Upon composing f with a strictly increasing cofinal map $cf(\alpha) \to \alpha$, we see that $cf(\beta) \le cf(\alpha)$. Next, we would like to show that $cf(\alpha) \le cf(\beta)$. Let $g : cf(\beta) \to \beta$ be a strictly increasing cofinal map. Define $h : cf(\beta) \to \alpha$ by

$$h(\eta) = \inf_{\xi \in \alpha} f(\xi) > g(\eta).$$

It is not hard to see that h is a cofinal map. Therefore, $cf(\alpha) \le cf(\beta)$ and this completes the proof.

Definition 6.4. β is said to be *regular* if β is a limit ordinal and $cf(\beta) = \beta$.

Lemma 6.5. *If* β *is regular, then* β *is a cardinal.*

Proof. Cofinality is a cardinal.

Lemma 6.6. All successor cardinals are regular.

Proof. Suppose there is a strictly increasing cofinal map $f : \kappa \to \kappa^+$. For each $\alpha \in \kappa$, note that $|f(\alpha)| \le \kappa$ and due to cofinality, $\kappa^+ = \bigcup_{\alpha \in \kappa} f(\alpha)$. This is a cardinality contradiction.

Lemma 6.7 (Δ -system Lemma). Let $\mathscr A$ be an uncountable collection of finite sets. Then, there is an uncountable subcollection $\mathscr B$ of $\mathscr A$ and a set r such that for all $x,y\in \mathscr B$ with $x\neq y, x\cap y=r$.

Proof. There is a minimum cardinal $n < \omega$ such that there are uncountably many elements of \mathscr{A} with cardinality n. Let \mathscr{A}' denote the subcollection of these elements. We shall induct on the aforementioned unique n for \mathscr{A} .

If n=1, then there is nothing to prove since the elements of \mathscr{A}' are disjoint. Now, suppose n>1. If there is some a that is in uncountably many elements of \mathscr{A}' , then consider $\mathscr{A}''=\{x\setminus\{a\}\colon a\in x\in\mathscr{A}'\}$. We may now apply the induction hypothesis to find a subcollection \mathscr{B}'' of \mathscr{A}'' with the required property. Consider then the collection $\mathscr{B}=\{x\cup\{a\}\colon x\in\mathscr{B}''\}$.

On the other hand, suppose there is no such a that is in uncountably many elements of \mathscr{A}' . Begin with any $x_0 \in \mathscr{A}'$. Let $\alpha < \omega_1$ be an ordinal and suppose the sequence $(x_i)_{i < \alpha}$ has been constructed. The union $x = \bigcup_{i < \alpha} x_i$ is a countable set (being the countable union of finite sets). Now, every element of x is in countably many elements of \mathscr{A}' , consequently, there are uncountably many elements of \mathscr{A}' that are disjoint from x. Define x_α to be any one of these and continue this process.

The sequence $(x_i)_{i<\omega_1}$ is now an uncountable collection of pairwise disjoint elements of \mathscr{A}' and is our desired \mathscr{B} with $r=\varnothing$.

Definition 6.8. Let (\mathbb{P}, \leq) be a partial order. Elements $p, q \in \mathbb{P}$ are said to be *compatible* if there is an r with $r \leq p$ and $r \leq q$. An *antichain* is a collection of pairwise incompatible elements in \mathbb{P} .

6.2 Some Technicalities about Forcing

Throughout this section, let \mathbb{P} be a poset in M, a countable transitive model for ZFC.

Definition 6.9 (Forcing). Let $p \in \mathbb{P}$ and $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$. Let $\phi(x_1, \ldots, x_n)$ be a formula with all free variables shown. Then, we write $p \Vdash \phi(\tau_1, \ldots, \tau_n)$ if

$$\forall G \subseteq \mathbb{P}\left((G \text{ is generic} \land p \in G) \implies \phi^{M[G]}(\text{val}(\tau_1, G), \dots, \text{val}(\tau_n, G))\right).$$

Definition 6.10. If $E \subseteq \mathbb{P}$ and $p \in \mathbb{P}$, then E is said to be *dense below* p if $\forall q \leq p \ (\exists r \in E (r \leq q))$.

We now come to the ugliest definition of this article.

Definition 6.11. Let $\phi(x_1, ..., x_n)$ be a formula with all free variables shown, $p \in \mathbb{P}$ and $\tau_1, ..., \tau_n \in V^{\mathbb{P}}$.

• $p \Vdash^* \tau_1 = \tau_2$ if and only if for all $\langle \pi_1, s_1 \rangle \in \tau_1$,

$$\{q \leq p : q \leq s_1 \implies \exists \langle \pi_2, s_2 \rangle \in \tau_2 \ (q \leq s_2 \land q \Vdash^* \pi_1 = \pi_2)\}$$

is dense below p. And for all $\langle \pi_2, s_2 \rangle \in \tau_2$,

$$\{q \leq p \colon q \leq s_2 \implies \exists \langle \pi_1, s_1 \rangle \in \tau_1 \ (q \leq s_1 \land q \Vdash^* \pi_1 = \pi_2)\}$$

is dense below p.

• $p \Vdash^* \tau_1 \in \tau_2$ if and only if

$$\{q \colon \exists \langle \pi, s \rangle \in \tau_2 \ (q \le s \land q \Vdash^* \pi = \tau_1)\}$$

is dense below p.

- $p \Vdash^* (\phi(\tau_1, ..., \tau_n) \land \psi(\tau_1, ..., \tau_n))$ if and only if $p \Vdash^* \phi(\tau_1, ..., \tau_n) \text{ and } p \Vdash^* \psi(\tau_1, ..., \tau_n).$
- $p \Vdash^* \neg \phi(\tau_1, \dots, \tau_n)$ if and only if there is no $q \leq p$ such that $q \Vdash^* \phi(\tau_1, \dots, \tau_n)$.
- $p \Vdash^* \exists x \phi(x, \tau_1, \dots, \tau_n)$ if and only if

$$\{r \colon \exists \sigma \in V^{\mathbb{P}} \ (r \Vdash^* \phi(\sigma, \tau_1, \dots, \tau_n)) \}$$

is dense below p.

Lemma 6.12. Let $phi(x_1, ..., x_n)$ be a formula with all free variables shown and $\tau_1, ..., \tau_n \in M^{\mathbb{P}}$.

1. If
$$p \in G$$
 and $(p \Vdash^* \phi(\tau_1, \dots, \tau_n))^M$, then $(\phi(\text{val}(\tau_1, G), \dots, \text{val}(\tau_n, G)))^{M[G]}$.

2. If
$$\phi(\operatorname{val}(\tau_1, G), \dots, \operatorname{val}(\tau_n, G))^{M[G]}$$
, then $\exists p \in G(p \Vdash^* \phi(\tau_1, \dots, \tau_n))^M$.

Proof. Omitted due to length.

Theorem 6.13. Let $\phi(x_1,...,x_n)$ be a formula with all free variables shown and $\tau_1,...,\tau_n \in M^{\mathbb{P}}$. Then,

1. for all $p \in \mathbb{P}$,

$$p \Vdash \phi(\tau_1, \ldots, \tau_n) \iff (p \Vdash^* \phi(\tau_1, \ldots, \tau_n))^M$$
.

2. for all G that are \mathbb{P} -generic over M,

$$\phi(\text{val}(\tau_1, G), \dots, \text{val}(\tau_n, G))^{M[G]} \iff \exists p \in G (p \Vdash \phi(\tau_1, \dots, \tau_n)).$$

6.3 Breaking CH

Throughout this section, let *M* be a countable transitive model of ZFC.

Definition 6.14. Let $I, J \in M$. Define

$$\operatorname{Fn}(I,J) = \{p \colon p \text{ is a function } \land |p| < \omega \land \operatorname{dom}(p) \subseteq I \land \operatorname{ran}(p) \subseteq J\}.$$

Order Fn(I, J) by $p \le q$ if and only if $p \supseteq q$. Then, Fn(I, J) has a maximum element, 0, the empty function.

Lemma 6.15. *If* I, $J \in M$ *and* I *is infinite,* $J \neq \emptyset$, *and* G *is* Fn(I, J)-generic over M, then $\bigcup G$ is a surjective function $I \to J$.

Proof. That $\bigcup G$ is a function is trivial. For $i \in I$, let

$$D_i := \{ p \in \operatorname{Fn}(I, J) \colon i \in \operatorname{dom}(p) \}.$$

This is a dense set in $\operatorname{Fn}(I,J)$ and hence, intersects G. Thus, $i \in \operatorname{dom}(\bigcup G)$ and hence, $I = \operatorname{dom}(\bigcup G)$. Let $j \in J$ and consider the set

$$D_j := \{ p \in \operatorname{Fn}(I, J) \colon j \in \operatorname{ran}(p) \}.$$

This is dense in Fn(I, J) and hence, intersects G. Consequently, $J = ran(\bigcup G)$.

Lemma 6.16. If $\kappa \in M$ is a cardinal and G is $\operatorname{Fn}(\kappa \times \omega, 2)$ -generic over M, then $(2^{\omega} \ge |\kappa|)^{M[G]}$. Note that we must use $|\kappa|$ instead of κ since the extension may not preserve cardinals.

Proof. Let $\mathbb{P} = \operatorname{Fn}(\kappa \times \omega, 2)$. Then, $f = \bigcup G$ is a function $\kappa \times \omega \to 2$. Define for any $\alpha, \beta \in \kappa$,

$$D_{\alpha,\beta} = \{ p \in \mathbb{P} \colon \exists n \in \omega \ (\langle \alpha, n \rangle \in \text{dom}(p) \land \langle \beta, n \rangle \in \text{dom}(p) \land p(\alpha, n) \neq \text{dom}(\beta, n)) \}.$$

This is dense in \mathbb{P} and hence, $G \cap D_{\alpha,\beta}$ is non empty.

Now, let $g_{\alpha}: \omega \to 2$ by $g_{\alpha}(n) = f(\alpha, n)$. Due to the above argument, $g_{\alpha} \neq g_{\beta}$ whenever $\alpha \neq \beta$. Note that all the g_{α} 's are elements of M[G]. Consequently, there are at least κ many distinct functions from $\omega \to 2$ in M[G]. The conclusion follows.

Lemma 6.17. If I is any set and I is countable, then Fn(I, J) has the countable chain condition.

Proof. Let $\{p_{\alpha}\}$ be a collection in Fn(I, J). Let $a_{\alpha} = \text{dom}(p_{\alpha})$. Using the Δ-system lemma, there is a subcollection $X \subseteq \omega_1$ such that $a_{\alpha} \cap a_{\beta} = r$ for every $\alpha \neq \beta$ in X. Note that r must be a finite set.

Note that J^r is countable and hence, there is an uncountable subcollection $Y \subseteq X$ such that for all $\alpha \in Y$, $p_{\alpha} \upharpoonright r$ is the same. In particular, this meanas that all the p_{α} s for $\alpha \in Y$ are compatible. Thus, we cannot have an uncountable antichain in $\operatorname{Fn}(I, J)$.

Lemma 6.18. Let $\mathbb{P} \in M$, $(\mathbb{P} \text{ has c.c.c})^M$, and $A, B \in M$. Let G be \mathbb{P} -generic over M and let $f: A \to B$ be in M[G]. Then there is a map $F: A \to \mathcal{P}(B)$ with $F \in M$ such that

$$\forall a \in A(f(a) \in F(a))$$
 and $\forall a \in A(|F(a)| \le \omega)^M$.

Proof. Let τ be a \mathbb{P} -name in $M^{\mathbb{P}}$ such that $f = \tau_G$. Note that " τ is a function from $\hat{A} \to \hat{B}$ " is a true statement in M[G]. Therefore, there is a $p \in G$ that forces the above statement. Define

$$F(a) := \{ b \in B \colon \exists q \le p \left(q \Vdash \tau(\hat{a}) = \hat{b} \right) \}.$$

Since \Vdash is definable, $F \in M$.

Let $a \in A$ and b = f(a). Then, there is $r \in G$ such that $r \Vdash \tau(\hat{a}) = \hat{b}$. Since G is a filter, there is a $q \in G$ with $q \le r$ and $q \le p$. Consequently, $q \Vdash \tau(\hat{a}) = \hat{b}$, so $b \in F(a)$.

Lastly, we must show that $(|F(a)| \le \omega)^M$.

Definition 6.19. If $\mathbb{P} \in M$, then \mathbb{P} *preserves cardinals* if whenever G is \mathbb{P} -generic over M

$$\forall \beta \in o(M) \left((\beta \text{ is a cardinal})^M \iff (\beta \text{ is a cardinal})^{M[G]} \right).$$

Note that ω is absolute and hence, we need only worry about preservation of cardinals $\beta > \omega$.

Corollary 6.20. If $\mathbb{P} \in M$ and $(\mathbb{P} \text{ has c.c.c})^M$, then \mathbb{P} preserves cardinals.

Proof.

Definition 6.21. If $\mathbb{P} \in M$, then \mathbb{P} *preserves cofinalities* if whenever G is \mathbb{P} -generic over M and γ is a limit ordinal in M,

$$\mathrm{cf}(\gamma)^M=\mathrm{cf}(\gamma)^{M[G]}.$$

Lemma 6.22. *If* $\mathbb{P} \in M$ *and preserves cofinalities, then it preserves cardinals.*

Proof. If $\alpha \geq \omega$ is a regular cardinal of M, then

$$\operatorname{cf}(\alpha)^{M[G]} = \operatorname{cf}(\alpha)^M = \alpha$$
,

whence α is a regular cardinal (in particular, a cardinal) of M[G].

Now, suppose β is a limit cardinal in M. Then, every successor cardinal smaller than β is a regular cardinal and hence, remains a regular cardinal in M[G]. Consequently, β is also a limit cardinal in M[G]. This completes the proof.

Lemma 6.23. Let $\mathbb{P} \in M$. Suppose whenever G is \mathbb{P} -generic over M and κ is a regular uncountable cardinal of M, $(\kappa$ is regular) $^{M[G]}$. Then \mathbb{P} preserves cofinalities.

Proof. Let γ be a limit ordinal in M, and let $(\kappa = \mathrm{cf}(\gamma))^M$. Then, there is an $f : \kappa \to \gamma$ in M that is cofinal and strictly increasing. If $(\kappa = \omega)^M$, then it is absolute and hence $(\kappa = \omega)^{M[G]}$. On the other hand, if $\kappa > \omega$, then $(\kappa \text{ is regular})^{M[G]}$ according to the given hypothesis. Since $f \in M[G]$, we have $(\kappa = \mathrm{cf}(\gamma))^{M[G]}$. This completes the proof.

Theorem 6.24. If $\mathbb{P} \in M$ and $(\mathbb{P} \text{ has } c.c.c)^M$, then \mathbb{P} preserves cofinalities.

Proof. If not, then due to the previous lemma, there is a $\kappa \in M$ with $\kappa > \omega$, that is regular in M but not M[G]. Hence, there is an $\alpha < \kappa$ and a map $f \in M[G]$ $f : \alpha \to \kappa$ that is cofinal. Hence, there is a map $F : \alpha \to \mathscr{P}(\kappa)$ such that for all $\xi < \alpha$, $f(\xi) \in F(\xi)$ and $|F(\xi)| \le \omega$ in M.

Define $S = \bigcup_{\xi < \alpha} F(\xi)$. Then, $S \in M$ and is unbounded subset of κ , further, has cardinality $|\alpha|$. This is a contradiction to κ being regular in M.

6.3.1 ZFC $+ \neg$ CH is consistent

Let $\mathbb{P} = \operatorname{Fn}(\kappa \times \omega, 2)$, then \mathbb{P} has c.c.c in M and thus preserves cardinals. As we have seen earlier, if G is \mathbb{P} -generic, then $(2^{\omega} \ge \omega_2)^{M[G]}$ due to all the absoluteness results we have shown above.

Bibliography

[Kun80] Kenneth Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland, 1980.