Tarea 2

Francisco Cuevas

Fecha de entrega: 26 de Abril 2024

1. Considere la función de covarianza estacionaria

$$C_0(h;\alpha,\nu) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\alpha}\right)^{\nu} K_{\nu} \left(\frac{h}{\alpha}\right).$$

Sea $\gamma(h) = \sigma^2 - C_0(h; \alpha, \nu)$. Encuentre $\tau > 0$ tal que el límite

$$\lim_{h^+ \to 0} \frac{\gamma(h)}{h^\tau},$$

exista y sea distinto de 0.

- 2. Determine cual de las siguiente funciones es una covarianza para un proceso Gaussiano definido en \mathbb{R} :
 - (a) $\varphi_1(h) = \exp\{-|h|\}\cos(h)$,
 - (b) $\varphi_2(h) = \exp\{-|h|\}(1-|h|),$
 - (c) $\varphi_3(h) = (1 h^2).$
- 3. Sea X un campo aleatorio Gaussiano con función de medias $\mathbb{E}[X(s)] = \mu(s) = 0$ y función de covarianzas $\text{Cov}(X(s), X(s')) = C_0(s s')$. Calcule la covarianza y el variograma del proceso $Y(s) = X^2(s)$. Describa si sus resultados cambian si $\mu(s) = \mu_0$.