CHE 1411L Week 10 Lab Assignment

Table of Contents

Problem 7.7	1
Problem 7.8	2

Problem 7.7

Use MATLAB to calculate the determinant of matrices A and B above. Does an inverse exist for each matrix? Check your results by calculating the determinants of matrices A and B by hand.

```
A = [1 \ 3 \ 0; \ 2 \ 1 \ 2; \ 4 \ 1 \ 3]
B = [0 \ 1 \ 1; \ 1 \ 3 \ 3; \ 2 \ 0 \ 3]
A_{det} = det(A)
B_det = det(B)
C = inv(A)
D = inv(B)
A =
      1
             3
                    0
      2
             1
                    2
             1
B =
      0
             1
                    1
      1
             3
                    3
      2
                    3
A det =
      7
B det =
     -3
C =
               -1.2857
                             0.8571
     0.1429
     0.2857
                 0.4286
                            -0.2857
```

$$-0.2857$$
 1.5714 -0.7143
 $D = \begin{bmatrix} -3.0000 & 1.0000 & 0 \\ -1.0000 & 0.6667 & -0.3333 \\ 2.0000 & -0.6667 & 0.3333 \end{bmatrix}$

Problem 7.8

Use MATLAB to show that $AA^{-1} = A^{-1}A$ for matrices A and B above.

Published with MATLAB® R2022b

A=	1 1 3	4 4 2	1 5 7	B=	0 5 8	6 2 0	1 7 1	B=	1 6 11
A2=	1 3 2	2 5 2	0 5 1	B2=	1 2 1	6 2 2	A2*B2=	5 18 7	10 38 18
k=	3				k*B2	!=	3 18 6 6 3 6		

A=	1 2 2	0 1 3	3 1 1	det(A)=	10
A^-1=	-0.2 0 0.4	0.9 -0.5 -0.3	-0.3 0.5 0.1		
A^-1*A=	1 0 5.55E-17	1.11E-16 1 5.55E-17	-5.6E-17 0 1		

Use excel to show that $AA^{-1} = A^{-1}A$ for matrices A and B.

A =	1 2 4	3 1 1	0 2 3	A^-1 =	0.14 0.29 -0.29	-1.29 0.43 1.57
AA^-1 =	1.00 0.00 0.00	0.00 1.00 0.00	0.00 0.00 1.00	A^-1A =	1.00 0.00 0.00	0.00 1.00 0.00

0.86

-0.29 -0.71

0.00

0.00

1.00

```
A=[1 0 2; 2 1 2; 0 2 1];
B=[1 0 1; 1 1 2; 3 3 1]
C1=A+B
C2=A*B
C3=2*C2
A1=[0 1 1; 2 3 1; 1 2 1]
B1=[1 2 2; 1 0 1]
%C2b=A1*B1 (this makes an error
B1=B1'
C2b=A1*B1
A2=[1 2 1; 0 2 0; 2 1 1]
B2=[1 2 3; 4 5 6; 7 8 9]
C4=inv(A2)
D=inv(B2)
detA2=det(A2)
detB2=det(B2)
A3=[1 2 1; 0 1 2]
B3=[1 2 0; 1 1 2]
C=inv(A3*B3')
B =
     1
          0
                1
          1
     1
                 2
     3
           3
                 1
C1 =
     2
           0
                3
     3
           2
                 4
     3
           5
                 2
C2 =
     7
                 3
           6
     9
           7
                 6
     5
           5
                 5
C3 =
    14
          12
                6
    18
          14
                12
    10
          10
                10
```

C4 =

 $\begin{array}{ccccc} -1.0000 & 0.5000 & 1.0000 \\ & 0 & 0.5000 & 0 \\ 2.0000 & -1.5000 & -1.0000 \end{array}$

Warning: Matrix is close to singular or badly scaled. Results may be inaccurate.

RCOND = 1.541976e-18.

D =

1.0e+16 *

 -0.4504
 0.9007
 -0.4504

 0.9007
 -1.8014
 0.9007

 -0.4504
 0.9007
 -0.4504

detA2 =

-2

detB2 =

6.6613e-16

A3 =

1 2 1 0 1 2

B3 =

1 2 0 1 1 2

C =

0.3333 -0.3333 -0.1333 0.3333

Published with MATLAB® R2022b