Institute of Telecommunications
Warsaw University of Technology
2019

internet technologies and standards

- Piotr Gajowniczek
- Andrzej Bąk
- Michał Jarociński

introduction

Internet – assumptions & definition

1974 – assumptions (Cerf & Kahn)

- minimalism & autonomy simple common protocol allows interconnecting separate networks without interfering with their internal structure
- stateless routers
- best effort service model
- no centralized management

• 1995 - definition

RESOLUTION: The Federal Networking Council (FNC) agrees that the following language reflects our definition of the term "Internet".

"Internet" refers to the global information system that --

- (i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons;
- (ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols; and
- (iii) provides, uses or makes accessible, either publicly or privately, high level services layered on the communications and related infrastructure described herein.

what is the Internet? infrastructure view

- Internet: "network of networks"
 - interconnected ISPs
- protocols control sending, receiving of msgs
 - data plane
 - control plane
 - management plane

protocols define format and order of messages sent and received among network entities, and actions taken on message transmission and receipt

- Internet standards
 - RFC: Request for comments
 - □ IETF: Internet Engineering Task Force

- network (switches, routers)access, aggregation,transport
- users (hosts, servers) applications

the network core

mesh of interconnected routers

what is the Internet: a service view

- infrastructure that provides services to applications:
 - Web, VoIP, email, games, ecommerce, social nets, ...
- provides programming interface to apps
 - hooks that allow sending and receiving app programs to "connect" to Internet

Internet applications

- Main categories
 - messaging
 - data retrieval
 - real-time / continuous media
- Main architectures
 - client/server
 - peer-to-peer (P2P)
- Main interaction patterns
 - request response
 - continuous media
 - event-based

structure of the Internet

Internet structure

- terminals / end systems connect to Internet via access ISPs (Internet Service Providers)
 - ISPs have various scales of operation
- access ISPs in turn have to be interconnected
 - with each other
 - with service / content providers (data centers)
 - to facilitate global data exchange

question: given millions of access ISPs, how to connect them together?

Internet structure: network of networks

- ISPs, content providers (e.g. Google, Netflix, Facebook...), CDNs (e.g. Akamai ...)
- public (IXP) or private peering

Internet structure: network of networks

- at center: small # of well-connected large networks
 - "tier-I" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g, Google): private network that connects its data centers to Internet, often bypassing tier-I, regional ISPs

content delivery and "net neutrality"

layered networking architecture

how to describe all this complexity?

networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

question:

is there any hope of organizing structure of network?

.... or at least our discussion of networks?

the concept of layering (aka protocol stack)

- functions are split into hierarchical groups called layers
- solution often used in engineering or service systems
 - a layer offers a set of services
 - services of upper layer are created on the base of services offered by a lower layer (protocol stack)
 - layer protocol rules of cooperation between same layer entities in remote systems
 - protocol standardization PDUs and data exchange scenarios

why a stack?

- layer = functionality + data structure(s)
- benefits
 - harnessing complexity by splitting a task into subproblems
 - allows implementing changes inside a layer without influencing others and the way how the whole system behaves
 - limiting data exchange between protocols
 - « black box »
 - allows to define "stable" interfaces
 - interface defines a layer "vertically"
- how many layers?
 - □ OSI model (reference) 7 layers
 - □ TCP/IP (Internet) stack 4 layers
 - □ "programmer" view − 2 layers

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack has these layers "incorporated" into application layer
- traditionally:
 - L2 (link)
 - \Box L3 (network = IP)
 - L4 (transport = TCP)
 - L7 (applications)
 - L2.5 = ?

application
presentation
session
transport
network
link

physical

Internet protocol stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link / phy: data transfer between neighboring network elements
 - □ Ethernet, 802. III (WiFi), PPP
 - bits "on the wire"

application

transport

network

link / phy

example

example

encapsulation

each protocol adds control information, creating new PDU