Mixed Integer Linear Programming for Aircraft Carrier Deck Operations

I. PERSONNEL

Green Maintainers: repair the aircraft

Red: load and unload weapons on the aircraft

Grape: fuel the aircraft Brown: plane Captains Blue: chocks and chains

Yellow: escort the aircraft from parking station to the nearest

catapult available while avoiding collision Green Checkers: checks weight of an aircraft

Green Operators: catapult repair and hold back bar installation

Yellow catapult officer

II. EQUATIONS

In the following equations i is used for indexing planes; j indexes over operations; k indexes over machines of some type K which is fixed for each operation j; J represents the phase which some operation j belongs to; and p represents the position of some operation/phase for some plane on a particular machine.

Table I describes all the operations and Table II lists all the phases and the operations that lie within each phase.

TABLE I JOB OPERATIONS

Operation ID	Operation	
0	Maintain	
1		
1	Ordnance	
2	Fuel	
3	Chocks	
4	Direct	
5	Catapult operate	
6	Weight check	
7	Catapult Officer	
8	Flying	
9	Land gear	
10	Landing	
11	Parking	
12	Chaining	
13	Unloading Equipment	

The constants t_K^j denote the time it takes for the j^{th} operation to be performed on machines of type K. We also define indicator constants, O_j^J which indicates that whether j^{th} operation belongs to phase J according to Table II.

$$O_{j}^{J} = \begin{cases} 1 & \text{if } j^{th} \text{ operation belongs to } J^{th} \text{ phase} \\ 0 & \text{otherwise} \end{cases} \tag{1}$$

 Z^j_{ikp} is the indicator variable (binary) when the j^{th} operation of plane i is performed on machine $k \in K_j$ at

TABLE II PHASES

Phase ID	Phase	Operations
0	Startup	0,1,2
1	Chock-n-Chain	3
2	Director	4
3	Catapult Launch	5,6,7
4	Fly	8
5	Landing Gear	9
6	Land	10
7	Park	11
8	Chock-n-Chain	12
9	Unload Weapon	13

 p^{th} position. For the catapult, captain and landing track, we similarly define $Z_{ikp}^{catapult}$, $Z_{ikp}^{captain}$ and $Z_{ikp}^{landing}$ respectively. M_{kp} is the start time of some operation that machine $k \in \mathbb{R}^{n}$

 M_{kp} is the start time of some operation that machine $k \in K$ performs at p^{th} position. For the catapults, captains and landing track, this is denoted by $M_{kp}^{catapult}$, $M_{kp}^{captain}$, and $M_{kp}^{landing}$ respectively.

 B_i^{pJ} represents the start time of the J^{th} phase for i^{th} plane. t_{ikp}^{j} represents the time that k^{th} machine takes to perform j^{th} operation for i^{th} plane at p^{th} position.

 y_{p_i,p_j}^{c1} is the indicator variable (binary) that the launch of a plane which is at position p_i on catapult c_1 occurs before the launch of plane at position p_j on catapult c_2 , and vice versa for y_{p_i,p_j}^{c2} . We define y_{p_i,p_j}^{c3} and y_{p_i,p_j}^{c4} similarly. V is a very large number.

$$\sum_{k \in K} \sum_{p} Z_{ikp}^{j} = 1, \quad \forall i, j$$

$$\sum_{k \in K} \sum_{p} Z_{ikp}^{catapult} = 1, \quad \forall i$$

$$\sum_{k \in K} \sum_{p} Z_{ikp}^{captain} = 1, \quad \forall i$$

$$\sum_{k \in K} \sum_{p} Z_{ikp}^{land_track} = 1, \quad \forall i$$
(2)

$$t^{j}_{ikp} = Z^{j}_{ikp} t^{j}_{K}$$
, where k is a machine of type K (3) $\forall i,j,K,p$

$$O_j^J t_{ikp}^j \le B_i^{J+1} - B_i^J, \qquad \forall J \tag{4}$$

$$\sum_{i} Z_{ikp}^{j} \le 1, \qquad \forall j, k, p \tag{5}$$

Fig. 1. Aircraft Carrier Deck

Fig. 2. Aircraft Carrier Deck catapults (taken from [2])

$$\sum_{i} Z_{ikp}^{j} \ge \sum_{i} Z_{ik(p+1)}^{j}, \qquad \forall j, k, p$$
 (6)

We have similar constraints on $Z_{ikp}^{catapult}$, $Z_{ikp}^{captain}$ and $Z_{ikp}^{landing}$ for catapult, captain and landing track respectively.

$$t_{ikp}^{j} \le M_{k(p+1)} - M_{kp}, \qquad \forall k, p \tag{7}$$

We have similar constraints for $M_{kp}^{catapult}$, $M_{kp}^{captain}$, $M_{kn}^{landing}$ for catapult, captain and landing track respectively.

$$M_{k(p+1)} - B_i^J - t_{ikp}^j + V(1 - Z_{ikp}^j) \ge 0$$
 (8a)

 $\forall i, j, k, p \text{ and } J^{th} \text{ phase has the } j^{th} \text{ operation}$

$$B_i^{J+1} - M_{kp} - t_{ikp}^j + V(1 - Z_{ikp}^j) \ge 0 \tag{8b}$$

 $\forall i, j, k, p \text{ and } J^{th} \text{ phase has the } j^{th} \text{ operation}$

$$B_i^J - M_{kp}^{catapult} + V(1 - Z_{ikp}^{catapult}) \ge 0 \quad (9a)$$

$$\forall i,k,p \text{ and } J \text{ is the catapult phase}$$

$$M_{k(p+1)}^{catapult} - B_i^{J'} + V(1 - Z_{ikp}^{catapult}) \geq 0 \quad \text{(9b)}$$

 $\forall i, j, k, p$ and J' is the phase after the catapult phase

We have similar constraints on $B_i^{captain}$, $M_{kp}^{captain}$ and $B_i^{landing}$, $M_{kp}^{landing}$ for the duration of the captain, and landing track required respectively.

$$y_{n_i,n_i}^{c1} + y_{n_i,n_i}^{c2} = 1$$
 (10a)

$$M_{1,n+1}^{catapult} - M_{0,n}^{catapult} - V(1 - y_{n+n}^{c1}) \le 0$$
 (10b)

$$y_{p_{i},p_{j}}^{c1} + y_{p_{i},p_{j}}^{c2} = 1$$
 (10a)
$$M_{1,p_{j}+1}^{catapult} - M_{0,p_{i}}^{catapult} - V(1 - y_{p_{i},p_{j}}^{c1}) \leq 0$$
 (10b)
$$M_{0,p_{i}+1}^{catapult} - M_{1,p_{j}}^{catapult} - V(1 - y_{p_{i},p_{j}}^{c2}) \leq 0$$
 (10c)
$$\forall p_{i},p_{i}$$

We have similar constraints for catapults 3 and 4.

REFERENCES

- [1] Ku, W. Y., & Beck, J. C. (2016). Mixed Integer Programming models for job shop scheduling: A computational analysis. *Computers & Operations Research*, 73, 165–173. https://doi.org/10.1016/j.cor.2016.04.006
- [2] Ross, W. (2016). Investigating the Tradespace between Increased Automation and Optimal Manning on Aircraft Carrier Deck. Master of Science Thesis.
- [3] Aubert, M., Ross, W., Mazzari, S., Stimpson, A. J., Cummings, M. L. (2016) Interaction Design Considerations for an Aircraft Carrier Deck Agent-based Simulation. *IEEE Aerospace Conference*, pp. 1-7, doi: 10.1109/AERO.2016.7500894.