

Química Nivel superior Prueba 1

Miércoles 16 de mayo de 2018 (tarde)

1 hora

Instrucciones para los alumnos

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

								Та	bla pe	Tabla periódica	ä							
	-	7	ო	4	2	9	7	∞	တ	10	7	12	5	1	15	16	17	18
_	1,01			Nú.	Número atómico Elemento	ojico						1						2 He 4,00
8	3 Li 6,94	4 Be 9,01		Masa	Masa atómica relativa	elativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
က	11 Na 22,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,07	17 CI 35,45	18 Ar 39,95
4	19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,90
rð.	37 Rb 85,47	38 Sr 87,62	39 × 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,96	43 Tc (98)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 I 126,90	54 Xe 131,29
ဖ	55 Cs 132,91	56 Ba 137,33	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 Os 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
	87 Fr (223)	88 Ra (226)	89‡ Ac (227)	104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (281)	112 Cn (285)	113 Unt (286)	114 Uug (289)	115 Uup (288)	116 Uuh (293)	117 Uus (294)	118 Uuo (294)
			+	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,93	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,05	71 Lu 174,97	
			++	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

- **1.** ¿Cuál es el número de átomos de oxígeno en 2,0 mol de carbonato de sodio hidratado, $Na_2CO_3 \cdot 10H_2O$? Constante de Avogadro, L o N_A : $6,02 \times 10^{23} \, \text{mol}^{-1}$
 - A. 6
 - B. 26
 - C. $3,6 \times 10^{24}$
 - D. $1,6 \times 10^{25}$
- 2. ¿Cuál es el volumen de la solución final, en cm³, si se diluyen $100 \,\mathrm{cm}^3$ de una solución que contiene $1,42\,\mathrm{g}$ de sulfato de sodio, $\mathrm{Na_2SO_4}$, hasta una concentración de $0,020\,\mathrm{mol\,dm}^{-3}$? $M_r\,(\mathrm{Na_2SO_4}) = 142$
 - A. 50
 - B. 400
 - C. 500
 - D. 600
- 3. ¿Cuál es el rendimiento porcentual cuando se forman 2,0 g de eteno, C_2H_4 , a partir de 5,0 g de etanol, C_2H_5OH ? M_r (eteno) = 28; M_r (etanol) = 46
 - A. $\frac{2,0}{28} \times \frac{5,0}{46} \times 100$
 - B. $\frac{2.0}{28} \times 100$
 - C. $\frac{28}{2,0} \times \frac{5,0}{46} \times 100$
 - D. $\frac{28}{\frac{2,0}{5,0}} \times 100$

4. ¿Qué transición electrónica emite energía de mayor longitud de onda?

5. La gráfica muestra las energías de primera ionización de algunos elementos consecutivos.

¿Qué enunciado es correcto?

- A. Y está en el grupo 3
- B. Y está en el grupo 10
- C. X está en el grupo 5
- D. X está en el grupo 18

6. ¿Qué aumenta a lo largo de un periodo de izquierda a derecha?

A.	Radio iónico	Electronegatividad
B.	Radio atómico	Radio iónico
C.	Energía de primera ionización	Radio atómico
D.	Energía de primera ionización	Electronegatividad

- 7. ¿Qué elemento está en el bloque p?
 - A. Pb
 - B. Pm
 - C. Pt
 - D. Pu
- **8.** A continuación se muestra parte de la serie espectroquímica para los complejos de los metales de transición.

$$I^- < Cl^- < H_2O < NH_3$$

¿Qué enunciado se puede deducir correctamente a partir de la serie?

- A. El H_2O aumenta la separación p-d más que el Cl^- .
- B. El H₂O aumenta la separación d–d más que el Cl⁻.
- C. La probabilidad de ser azul es mayor en un complejo con Cl⁻ que en uno con NH₃.
- D. Los complejos con agua son siempre azules.
- 9. ¿Cuál es la fórmula del nitruro de magnesio?
 - A. MgN
 - B. Mg₂N₃
 - C. Mg₃N
 - D. Mg_3N_2

10.	¿Qué especie	tiene mayor	longitud de	enlace	carbono	oxígeno?

- A. CO
- B. CH₃OH
- C. CH₃CO₂
- D. H₂CO
- 11. ¿Cuáles son las geometrías de dominio electrónico alrededor del átomo de carbono y de ambos átomos de nitrógeno en la urea, (NH₂)₂CO, aplicando la TRPEV?

	Átomo de carbono	Átomos de nitrógeno
A.	Plana trigonal	Pirámide trigonal
B.	Plana trigonal	Tetraédrica
C.	Tetraédrica	Tetraédrica
D.	Pirámide trigonal	Plana trigonal

- **12.** ¿Qué molécula tiene un octeto expandido?
 - A. CO
 - B. CO₂
 - C. SF₂
 - D. SF₄

- 13. ¿Qué solapamiento de orbitales atómicos conduce solo a la formación de un enlace sigma (σ) ?
 - I. s-p
 - II. p-p
 - III. s-s
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- 14. ¿Qué enunciado describe la reacción que muestra el siguiente perfil de energía potencial?

- A. La reacción es endotérmica y la entalpía de los productos es mayor que la de los reactivos.
- B. La reacción es endotérmica y la entalpía de los reactivos es mayor que la de los productos.
- C. La reacción es exotérmica y la entalpía de los productos es mayor que la de los reactivos.
- D. La reacción es exotérmica y la entalpía de los reactivos es mayor que la de los productos.

15. Dos soluciones acuosas de 100 cm³, una contiene 0,010 mol de NaOH y la otra 0,010 mol de HCl, están a la misma temperatura.

Cuando las dos soluciones se mezclan, se produce una elevación de temperatura de y °C.

Suponga que la densidad de la solución final es de $1,00\,\mathrm{g\,cm^{-3}}$. Capacidad calorífica específica del agua = $4,18\,\mathrm{J\,g^{-1}}$ K⁻¹

¿Cuál es la variación de entalpía de neutralización en kJ mol⁻¹?

A.
$$\frac{200 \times 4,18 \times y}{1000 \times 0,020}$$

B.
$$\frac{200 \times 4,18 \times y}{1000 \times 0,010}$$

C.
$$\frac{100 \times 4,18 \times y}{1000 \times 0,010}$$

D.
$$\frac{200 \times 4,18 \times (y + 273)}{1000 \times 0,010}$$

16. ¿Qué valor representa la entalpía de red, en kJ mol⁻¹, del cloruro de estroncio, SrCl₂?

A.
$$-(-829) + 164 + 243 + 550 + 1064 - (-698)$$

B.
$$-829 + 164 + 243 + 550 + 1064 - 698$$

C.
$$-(-829) + 164 + 243 + 550 + 1064 - 698$$

D.
$$-829 + 164 + 243 + 550 + 1064 - (-698)$$

- 17. ¿Qué sistema tiene la variación de entropía, ΔS , más negativa para la reacción directa?
 - A. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - B. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
 - $\text{C.} \hspace{0.5cm} 2\text{S}_2\text{O}_3^{\ 2^-}(\text{aq}) + \text{I}_2(\text{aq}) \rightarrow \text{S}_4\text{O}_6^{\ 2^-}(\text{aq}) + 2\text{I}^-(\text{aq})$
 - D. $H_2O(l) \rightarrow H_2O(g)$
- **18.** El perfil de energía potencial para la reacción reversible, $X + Y \rightleftharpoons Z$ se muestra a continuación.

Coordenada de reacción

¿Qué flecha representa la energía de activación de la reacción inversa, $Z \to X + Y$, en presencia de un catalizador?

- 19. ¿Qué factores pueden afectar la velocidad de reacción?
 - I. Tamaño de partículas del reactivo sólido
 - II. Concentración de la solución reaccionante
 - III. Presión del gas reaccionante
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

20. Cuando X reacciona con Y para dar Z, se obtiene la siguiente gráfica. ¿Qué se puede deducir de la gráfica?

- A. La concentración de X es directamente proporcional al tiempo.
- B. La reacción es de primer orden total.
- C. La reacción es de orden cero con respecto a X.
- D. La reacción es de primer orden con respecto a X.

21. ¿Qué enunciado es correcto?

- A. El valor de la constante de velocidad, k, es independiente de la temperatura y se deduce de la constante de equilibrio K_c .
- B. El valor de la constante de velocidad, *k*, es independiente de la temperatura y el orden total de la reacción determina sus unidades.
- C. El valor de la constante de velocidad, k, depende de la temperatura y se deduce de la constante de equilibrio K_c .
- D. El valor de la constante de velocidad, *k*, depende de la temperatura y el orden total de la reacción determina sus unidades.
- 22. ¿Qué factor **no** afecta la posición de equilibrio en esta reacción?

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$
 $\Delta H = -58 \text{ kJ mol}^{-1}$

- A. Variación de volumen del recipiente
- B. Variación de temperatura
- C. Adición de un catalizador
- D. Variación de presión

23. ¿Qué sucede cuando se aumenta la presión sobre el equilibrio dado a temperatura constante?

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$
 $\Delta H = +180 \text{ kJ}$

- A. K_c aumenta y la posición de equilibrio se desplaza hacia la derecha.
- B. K_c permanece invariable y la posición de equilibrio no cambia.
- C. K_c permanece invariable y la posición de equilibrio se desplaza hacia la izquierda.
- D. K_c disminuye y la posición de equilibrio se desplaza hacia la izquierda.
- 24. Serie de actividades de elementos seleccionados:

¿Cuáles reaccionan con ácido sulfúrico diluido?

- I. Cu
- II. CuO
- III. CuCO₃
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- 25. ¿Qué enunciado es correcto?
 - A. Un ácido fuerte es un buen donante de protones y su base conjugada es fuerte.
 - B. Un ácido débil es un pobre receptor de protones y su base conjugada es fuerte.
 - C. Un ácido fuerte es un buen donante de protones y su base conjugada es débil.
 - D. Una base fuerte es una buena donante de protones y su ácido conjugado es débil.

- 26. ¿Cuál es un ejemplo de una base de Lewis?
 - A. Un electrófilo
 - B. BF₃
 - C. CH₄
 - D. Un nucleófilo

27. ¿Cuál es el orden de acidez creciente?

Ácido	р <i>К</i> _а
HClO	7,4
HIO ₃	0,8

Ácido	K _a
HF	$5,6 \times 10^{-4}$
CH ₃ CH ₂ COOH	$1,3 \times 10^{-5}$

- A. $HClO < CH_3CH_2COOH < HF < HIO_3$
- B. HClO < HF < CH₃CH₂COOH < HIO₃
- ${\rm C.} \qquad {\rm HIO_3 < HF < CH_3CH_2COOH < HClO}$
- D. HIO₃ < CH₃CH₂COOH < HF < HClO
- 28. ¿Qué describe la oxidación?
 - A. Pérdida de hidrógeno
 - B. Disminución del número de oxidación
 - C. Ganancia de electrones
 - D. Pérdida de oxígeno

29. ¿Cuáles son los productos de la electrólisis del bromuro de cinc fundido?

	Electrodo negativo (cátodo)	Electrodo positivo (ánodo)
A.	Cinc	Bromo
B.	Hidrógeno	Bromo
C.	Bromo	Cinc
D.	Bromo	Hidrógeno

30. Dos celdas en las que se realiza electrólisis se conectan en serie.

Si se depositan xg de plata en la celda 1, ¿qué volumen de oxígeno, en dm³ medido a PTN, se desprende en la celda 2?

 $A_r(Ag) = 108$; Volumen molar de un gas ideal a PTN = 22,7 dm³ mol⁻¹

A.
$$\frac{x}{108} \times \frac{1}{4} \times 22,7$$

B.
$$\frac{x}{108} \times 4 \times 22,7$$

$$C. \frac{x}{108} \times \frac{1}{2} \times 22,7$$

D.
$$\frac{x}{108} \times 2 \times 22,7$$

31. ¿Cuáles son los productos principales de la electrólisis de yoduro de potasio acuoso concentrado, KI (aq)?

	Electrodo negativo (cátodo)	Electrodo positivo (ánodo)
A.	Potasio	Yodo
B.	Hidrógeno	Yodo
C.	Hidrógeno	Oxígeno
D.	Potasio	Oxígeno

- 32. ¿Qué compuestos pertenecen a la misma serie homóloga?
 - A. CHCCH₂CH₃, CHCCH₂CH₂CH₃
 - B. CH₃CH₂CH₂CH₂OH, CH₃CH₂OCH₂CH₃
 - C. CH₂CHCH₃, CH₃CH₂CH₂CH₃
 - D. CH₃COCH₃, CH₃CH₂OCH₃
- 33. ¿Cuál es el nombre de este compuesto de acuerdo con las normas de la IUPAC?

- A. Ácido 1,1-dimetilpropanoico
- B. Ácido 3,3-dimetilpropanoico
- C. Ácido 2-metilbutanoico
- D. Ácido 3-metilbutanoico
- **34.** ¿Cuáles son isómeros estructurales?
 - I. CH₃CH₂OH y CH₃OCH₃
 - II. HOCH₂CH₃ y CH₃CH₂OH
 - III. CH₃COOH y HCOOCH₃
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

35. ¿Cuál es la combinación correcta de los mecanismos de las reacciones de sustitución?

	CI CI	CH ₃ CH ₂ Cl
	Mecanismo de reacción	Mecanismo de reacción
A.	Electrófilo	Radicales libres
B.	Nucleófilo	Nucleófilo
C.	Radicales libres	Electrófilo
D.	Radicales libres	Nucleófilo

36. El propeno reacciona primero con cloruro de hidrógeno para producir X, que reacciona con hidróxido de sodio acuoso para dar Y. Finalmente, Y reacciona con exceso de solución ácida de dicromato de potasio.

$$CH_{3}CHCH_{2} \xrightarrow{\qquad \qquad } X \xrightarrow{\qquad NaOH \ (aq) \qquad } Y \xrightarrow{\qquad H^{+}/Cr_{2}O_{7}^{\ 2^{-}} \ (aq) \qquad } Z$$

¿Cuál es el producto principal, Z?

- A. CH₃CH(OH)CH₃
- B. CH₃COCH₃
- C. CH₃CH₂CHO
- D. CH₃(CH₂)₂COOH
- 37. ¿Qué isómeros existen en forma de imágenes especulares no superponibles?
 - A. Los isómeros cis-trans
 - B. Los diastereoisómeros
 - C. Los enantiómeros
 - D. Los isómeros estructurales

- **38.** ¿Cómo son las incertidumbres de dos cantidades combinadas cuando las cantidades se multiplican entre sí?
 - A. Las incertidumbres se suman.
 - B. Los % de las incertidumbres se multiplican.
 - C. Las incertidumbres se multiplican.
 - D. Los % de las incertidumbres se suman.
- **39.** Se estudia la velocidad de una reacción a diferentes temperaturas.

¿Cuál es la mejor forma de graficar los datos?

	Eje x	Tipo de variable en el eje x
A.	Velocidad	Dependiente
B.	Velocidad	Independiente
C.	Temperatura	Independiente
D.	Temperatura	Dependiente

40. A continuación se dan los espectros IR del polieteno de baja densidad (LDPE), polieteno de alta densidad (HDPE), polipropeno (PP), y politetrafluoretileno (PTFE). (No necesariamente en ese orden.)

¿Cuál es el espectro del PTFE?

A.

Eliminado por motivos relacionados con los derechos de autor

B.

Eliminado por motivos relacionados con los derechos de autor

C.

Eliminado por motivos relacionados con los derechos de autor

D.

Eliminado por motivos relacionados con los derechos de autor