数值计算方法

第五章 常微分方程的数值解法

欧拉公式的导出

■ 由于 $y(x_0) = y_0$ 已给定,因而可以算出

$$y'(x_0) = f(x_0, y_0)$$

■ 设 x_1 – x_0 = h充分小,则近似地有

$$\frac{y(x_1) - y(x_0)}{h} \approx y'(x_0) = f(x_0, y_0)$$

记

$$y_i = y(x_i)$$
 $i = 0,1,\dots,n$

■ 从而我们可以取

$$y_1 = y_0 + hf(x_0, y_0)$$

欧拉公式的导出

作为 $y(x_1)$ 的近似值

■ 利用 y_1 及 $f(x_1, y_1)$ 又可以算出 $y(x_2)$ 的近似值

$$y_2 = y_1 + hf(x_1, y_1)$$

■ 一般地,在任意点 $x_{n+1} = (n+1)h + x_0 \pounds y(x)$ 的近似值由下式给出

$$y_{n+1} = y_n + hf(x_n, y_n)$$

■ 这就是欧拉法的计算公式,h称为步长

■ 例5.2.1: 用欧拉法求解初值问题

$$\begin{cases} y' = y - \frac{2x}{y}, & 0 \le x \le 1 \\ y(0) = 1 \end{cases}$$

■解: 求解该方程的欧拉公式为

$$y_{n+1} = y_n + h(y_n - \frac{2x_n}{y_n})$$

取步长h=0.1, n=0,1,...,9时,有

$$n = 0 y_1 = y_0 + h(y_0 - \frac{2x_0}{y_0})$$

$$= 1 + 0.1(1 - \frac{2 \times 0}{1}) = 1.1$$

$$n = 1 y_2 = y_1 + h(y_1 - \frac{2x_1}{y_1})$$

$$= 1.1 + 0.1(1.1 - \frac{2 \times 0.1}{11}) \approx 1.191818$$

x_n	y_n	$y(x_n)$	\boldsymbol{x}_n	y_n	$y(x_n)$
0.1	1.100000	1.095445	0.6	1.508966	1.483240
0.2	1.191818	1.183216	0.7	1.580338	1.549193
0.3	1.277438	1.264911	0.8	1.649783	1.612452
0.4	1.358213	1.341641	0.9	1.717779	1.673320
0.5	1.435133	1.414214	1.0	1.784771	1.732051

■ 例5.2.2: 用欧拉法求初值问题

$$\begin{cases} y' = -\frac{0.9}{1 + 2x} y \\ y(x_0) = 1 \end{cases} \quad x_0 = 0$$

当h = 0.02时在区间[0, 0.10]上的数值解

■ 解: 把 $f(x,y) = -\frac{0.9}{1+2x}y$ 代入欧拉法计算公式,就得

$$y_{n+1} = y_n - h \frac{0.9}{1 + 2x_n} y_n$$

$$= \left(1 - \frac{0.018}{1 + 2x_n}\right) y_n \qquad n = 0, 1, \dots, 5$$

■ 具体计算结果如下表

n	x_n	y_n	$y(x_n)$	$\varepsilon_n = y(x_n) - y_n$
0	0	1.0000	1.0000	0
1	0.02	0.9820	0.9825	0.0005
2	0.04	0.9650	0.9660	0.0005
3	0.06	0.9489	0.9503	0.0014
4	0.08	0.9336	0.9354	0.0018
5	0.10	0.9192	0.923	0.0021

■ 例5.2.3: 取步长 h=0.2 ,用欧拉法解初值问题

$$\begin{cases} y' = -y - xy^2 \\ y(0) = 1 \end{cases} \quad x \in [0, 0.6]$$

■解:用欧拉法求解公式,得

$$y_{n+1} = y_n + hf(x_n, y_n) = y_n + h(-y_n - x_n y_n^2)$$

取步长 $h=0.2$ 时, $x \in [0,0.6]$,有

$$n = 0 y_1 = y_0 + h(-y_0 - x_0 y_0^2) = 1 + 0.2(-1 - 0 \times 1^2) = 0.8$$

$$n = 1 y_2 = y_1 + h(-y_1 - x_1 y_1^2) = 0.8 + 0.2(-0.8 - 0.2 \times 0.8^2) = 0.6144$$

$$n = 2 y_3 = y_2 + h(-y_2 - x_2 y_2^2) = 0.6144 + 0.2(-0.6144 - 0.4 \times 0.6144^2) = 0.461321$$

- 欧拉公式是一种显式算法,计算量小,但精度 低
- 梯形公式虽然提高了精度,但它是一种隐式算法,需要迭代求解,计算量大,因此采取另外一种方法,即预报一校正系统
- 预报一校正系统
 - 在实际上,当h取值较小时,让梯形法的迭代公式 只迭代一次就结束
 - 先用欧拉公式求得一个初步近似值 \overline{y}_{n+1} ,称之为 预报值

■ 预报值的精度不高,用它替代梯形法右端的 y_{n+1} ,再直接计算得出 y_{n+1} ,并称之为校正值,这时得到预报一校正公式

$$\begin{cases} \overline{y}_{n+1} = y_n + h f(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] \end{cases}$$

■ 将预报一校正公式称为改进欧拉公式 , 这个公式还可写为

$$\begin{cases} y_{n+1} = y_n + \frac{1}{2}k_1 + \frac{1}{2}k_2 \\ k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + h, y_n + k_1) \end{cases} \begin{cases} y_{n+1} = \frac{1}{2}(y_p + y_c) \\ y_p = y_n + hf(x_n, y_n) \\ y_c = y_n + hf(x_{n+1}, y_p) \end{cases}$$

■改进欧拉法的程序流程图

- ■改进欧拉公式的截断误差
 - ■由于

$$k_1 = hf(x_n, y_n) = hf(x_n, y(x_n))$$
$$= hy'(x_n)$$

$$k_{2} = hf(x_{n} + h, y_{n} + k_{1})$$

$$= hf[x_{n} + h, y(x_{n}) + k_{1}]$$

$$= h\left\{f[x_{n}, y(x_{n})] + h\frac{\partial}{\partial x}f[x_{n}, y(x_{n})] + k_{1}\frac{\partial}{\partial y}f[x_{n}, y(x_{n})] + \cdots\right\}$$

$$= hf[x_n, y(x_n)] + h^2 \left\{ \frac{\partial}{\partial x} f[x_n, y(x_n)] + y'(x_n) \frac{\partial}{\partial y} f[x_n, y(x_n)] \right\} + \cdots$$

$$= hy'(x_n) + h^2y''(x_n) + \cdots$$

■ 代入,可得

$$y_{n+1} = y_n + \frac{h}{2}y'(x_n) + \frac{h}{2}y'(x_n) + \frac{h^2}{2}y''(x_n) + \cdots$$
$$= y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \cdots$$

■ $y(x_{n+1})$ 的二阶泰勒展开式为

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{1}{2}h^2y''(x_n) + O(h^3)$$

■因此有

$$y(x_{n+1}) - y_{n+1} = O(h^3)$$

■ 例5.2.4: 用欧拉法和改进欧拉法求

$$\begin{cases} \frac{dy}{dx} = y - \frac{2x}{y} \\ y(0) = 1 \end{cases}$$

区间为[0, 1.5],取h = 0.1

■解:用欧拉法计算公式如下

$$y_{n+1} = y_n + h \left(y_n - \frac{2x_n}{y_n} \right)$$
 $y_0 = 1, h = 0.1$

■ 用迭代一次的改进欧拉法计算公式如下

$$y_{n+1}^{(0)} = y_n + h \left(y_n - \frac{2x_n}{y_n} \right)$$

$$y_{n+1} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(0)}) \right]$$

$$= y_n + \frac{h}{2} \left[\left(y_n - \frac{2x_n}{y_n} \right) + \left(y_{n+1}^{(0)} - \frac{2x_{n+1}}{y_{n+1}^{(0)}} \right) \right]$$

$$y_0 = 1, \qquad h = 0.1$$

			准确解
x_n	欧拉法yn	改进欧拉法yn	$y(x_n) = \sqrt{1 + 2x_n}$
0	1	1	1
0.1	1.1	1.095909	1.095445
0.2	1.191818	1.184096	1.183216
0.3	1.277438	1.260201	1.264911
0.4	1.358213	1.343360	1.341641
0.5	1.435133	1.416102	1.414214
0.6	1.508966	1.482956	1.483240
0.7	1.580338	1.552515	1.549193
0.8	1.649783	1.616476	1.612452
0.9	1.717779	1.678168	1.673320
1.0	1.784770	1.737869	1.732051
1.1	1.85118	1.795822	1.788854
1.2	1.917464	1.852242	1.843909
1.3	1.984046	1.907323	1.897367
1.4	2.051404	1.9612538	1.949359
1.5	2.120052	2.014207	2.000000

■ 例5.2.5: 用欧拉预报-校正公式求解初值问题

$$\begin{cases} y' + y + y^2 \sin x = 0 \\ y(1) = 1 \end{cases}$$

要求步长h = 0.2, 计算y(1.2), y(1.4)的近似值

■ 解: 由题意知 $f(x,y) = -y - y^2 \sin x$, 改进欧拉法的具体形式为

$$\begin{cases} y_p = y_n + h(-y_n - y_n^2 \sin x_n) \\ y_c = y_n + h(-y_p - y_p^2 \sin x_{n+1}) \\ y_{n+1} = \frac{1}{2}(y_p + y_c) \end{cases}$$

■ 由 $y(1) = y_0 = 1$ 知 $x_0 = 1$,取步长h = 0.2,计算如下

■ *n*=0时

$$\begin{cases} y_p = y_0 + h(-y_0 - y_0^2 \sin x_0) = 1 + 0.2(-1 - 1^2 \sin 1) \approx 0.631706 \\ y_c = y_0 + h(-y_p - y_p^2 \sin x_1) = 1 + 0.2(-0.631706 - 0.631706^2 \sin 1.2) \\ \approx 0.799272 \\ y_1 = \frac{1}{2}(y_p + y_c) = \frac{1}{2}(0.631706 + 0.799272) \approx 0.715489 \end{cases}$$

■ *n*=1时

$$\begin{cases} y_p = y_1 + h(-y_1 - y_1^2 \sin x_1) \\ = 0.715489 + 0.2(-0.715489 - 0.715489^2 \sin 1.2) \approx 0.476964 \\ y_c = y_1 + h(-y_p - y_p^2 \sin x_2) \\ = 0.715489 + 0.2(-0.476964 - 0.476964^2 \sin 1.4) \approx 0.575259 \\ y_2 = \frac{1}{2}(y_p + y_c) = \frac{1}{2}(0.476964 + 0.575259) \approx 0.526112 \end{cases}$$

$$y(1.2) \approx y_1 \approx 0.715489$$
 $y(1.4) \approx y_2 \approx 0.526112$

- 显然,当r=1时,就是欧拉公式
- 下面导出r=2时的公式
 - 根据预报一校正的思想,首先在区间[x_n , x_{n+1}]内寻找两个点,即:

$$\begin{cases} x_n \\ x_{n+p} \end{cases} \qquad x_{n+p} = x_n + ph \qquad (0 \le p \le 1)$$

■ 如果两点的斜率分别为 k_1 与 k_2 ,则通过线性组合,可得到如下的预报一校正系统

$$\begin{cases} y_{n+1} = y_n + h(\lambda_1 k_1 + \lambda_2 k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_{n+p}, y_{n+p}) \end{cases}$$

$$(x_{n+p} = x_n + ph; y_{n+p} = y_n + phk_1)$$

■ 从公式中可以看出,先计算 k_1 ,再计算 y_{n+p} ,也就是 先算预报斜率,再算校正斜率,因此,可得下述计 算公式

$$\begin{cases} y_{n+1} = y_n + h(\lambda_1 k_1 + \lambda_2 k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + ph, y_n + phk_1) \end{cases}$$

■ 选择合适的 λ_1 , λ_2 , p等系数,使得下述公式

$$y(x_{n+1}) - y_{n+1}$$

的局部截断误差为 $O(h^3)$

■ 将 k_1 , k_2 在同一点 (x_n, y_n) 泰勒展开,则有

$$k_1 = f(x_n, y_n) = y'(x_n)$$

$$k_2 = f(x_n + ph, y_n + phk_1)$$

$$= f(x_n, y_n) + ph \left(\frac{\partial f}{\partial x} \Big|_{(x_n, y_n)} + \frac{\partial f}{\partial y} \Big|_{(x_n, y_n)} \cdot \frac{\partial y}{\partial x} \right) + O(h^2)$$

$$= f(x_n, y_n) + ph[f_x(x_n, y_n) + f(x_n, y_n)f_y(x_n, y_n)] + O(h^2)$$

$$= y'(x_n) + phy''(x_n) + O(h^2)^{-25}$$

■ k_1 , k_2 的表达式代入

$$y_{n+1} = y_n + (\lambda_1 k_1 + \lambda_2 k_2)h = y(x_n) + h[\lambda_1 y'(x_n) + \lambda_2 y'(x_n) + \lambda_2 phy''(x_n) + \lambda_2 O(h^2)]$$

$$= y(x_n) + h(\lambda_1 + \lambda_2)y'(x_n) + \lambda_2 ph^2 y''(x_n) + O(h^3)$$

■ 再对 $y(x_{n+1})$ 在 x_n 点进行泰勒展开

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{1}{2}h^2y''(x_n) + O(h^3)$$

$$\lambda_1 + \lambda_2 = 1 \qquad \lambda_2 p = \frac{1}{2}$$

■ 当取p = 2/3, $\lambda_1 = 1/4$, $\lambda_2 = 3/4$,则有

$$\begin{cases} y_{n+1} = y_n + \frac{1}{4}h(k_1 + 3k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_{n+\frac{2}{3}}, y_n + \frac{2}{3}hk_1) \end{cases}$$

这种方法称为休恩公式

■ 当取 p=1, $\lambda_1=1/2$, $\lambda_2=1/2$, 此即为改进欧拉公式

$$\begin{cases} y_{n+1} = y_n + \frac{1}{2}k_1 + \frac{1}{2}k_2 \\ k_1 = hf(x_n, y_n) \\ k_2 = hf(x_n + h, y_n + k_1) \end{cases}$$

■ 当取 p = 1/2, $\lambda_1 = 0$, $\lambda_2 = 1$,这时二阶龙格一库塔公式称为变形欧拉公式

$$\begin{cases} y_{n+1} = y_n + hk_2 \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_{n+\frac{1}{2}}, y_n + \frac{h}{2}k_1) \end{cases}$$

■ 二阶龙格—库塔公式的截断误差为O(h³)