Day 6: Gaussian Processes and pre-Brownian Motions

Dain Kim

December 24th

Today's Reading

[L] Le Gall, Jean-François. Brownian motion, martingales, and stochastic calculus. Vol. 274. New York: Springer, 2016.

[L] Chapter 1,2

Gaussian variables

A real random variable X is a *standard Gaussian variable* if its density is

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

Gaussian variables

A real random variable X is a *standard Gaussian variable* if its density is

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

A real random variable Y is Gaussian with $N(m, \sigma^2)$ -distribution if

$$Y = \sigma X + m$$

or equivalently,

$$p_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-m)^2}{2\sigma^2}\right).$$

For any $\lambda \in \mathbb{R}$,

$$\mathbf{E}[e^{\lambda X}] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{-x^2/2} dx = e^{\lambda^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x-\lambda)^2/2} dx = e^{\lambda^2/2}.$$

For any $\lambda \in \mathbb{R}$,

$$\mathbf{E}[e^{\lambda X}] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{-x^2/2} dx = e^{\lambda^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x-\lambda)^2/2} dx = e^{\lambda^2/2}.$$

Since $\mathbf{E}[e^{zX}]$ is well defined for $z\in\mathbb{C}$ and holomorphic,

$$\mathbf{E}[e^{zX}] = e^{z^2/2}$$

for all $z \in \mathbb{C}$.

For any $\lambda \in \mathbb{R}$,

$$\mathbf{E}[e^{\lambda X}] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{-x^2/2} dx = e^{\lambda^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x-\lambda)^2/2} dx = e^{\lambda^2/2}.$$

Since $\mathbf{E}[e^{zX}]$ is well defined for $z \in \mathbb{C}$ and holomorphic,

$$\mathbf{E}[e^{zX}] = e^{z^2/2}$$

for all $z \in \mathbb{C}$. Let $z = i\xi$, $\xi \in \mathbb{R}$, then by Taylor expansion,

$$\mathbf{E}[e^{i\xi X}] = 1 + i\xi \mathbf{E}[X] + \dots + \frac{(i\xi)^n}{n!} \mathbf{E}[X^n] + O(|\xi|^{n+1})$$

as $\xi \to 0$.

For any $\lambda \in \mathbb{R}$,

$$\mathbf{E}[e^{\lambda X}] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{-x^2/2} dx = e^{\lambda^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x-\lambda)^2/2} dx = e^{\lambda^2/2}.$$

Since $\mathbf{E}[e^{zX}]$ is well defined for $z \in \mathbb{C}$ and holomorphic,

$$\mathbf{E}[e^{zX}] = e^{z^2/2}$$

for all $z \in \mathbb{C}$. Let $z = i\xi$, $\xi \in \mathbb{R}$, then by Taylor expansion,

$$\mathbf{E}[e^{i\xi X}] = 1 + i\xi \mathbf{E}[X] + \dots + \frac{(i\xi)^n}{n!} \mathbf{E}[X^n] + O(|\xi|^{n+1})$$

as $\xi \to 0$. On the other hand,

$$\mathbf{E}[e^{i\xi X}] = e^{-\xi^2/2} = \sum_{n=0}^{\infty} (-1)^n \frac{\xi^{2n}}{2^n n!}.$$

For any $\lambda \in \mathbb{R}$,

$$\mathbf{E}[e^{\lambda X}] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{\lambda x} e^{-x^2/2} dx = e^{\lambda^2/2} \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-(x-\lambda)^2/2} dx = e^{\lambda^2/2}.$$

Since $\mathbf{E}[e^{zX}]$ is well defined for $z \in \mathbb{C}$ and holomorphic,

$$\mathbf{E}[e^{zX}] = e^{z^2/2}$$

for all $z \in \mathbb{C}$. Let $z = i\xi$, $\xi \in \mathbb{R}$, then by Taylor expansion,

$$\mathbf{E}[e^{i\xi X}] = 1 + i\xi \mathbf{E}[X] + \dots + \frac{(i\xi)^n}{n!} \mathbf{E}[X^n] + O(|\xi|^{n+1})$$

as $\xi \to 0$. On the other hand,

$$\mathbf{E}[e^{i\xi X}] = e^{-\xi^2/2} = \sum_{n=0}^{\infty} (-1)^n \frac{\xi^{2n}}{2^n n!}.$$

Threfore.

$$\mathbf{E}[X^{2n}] = \frac{(2n)!}{2^n n!}, \quad \mathbf{E}[X^{2n+1}] = 0.$$

Gaussian Vectors

Let $E = \mathbb{R}^d$. A random variable X with values in E is a *Gaussian vector* if $\langle u, X \rangle$ is a Gaussian variable for every $u \in E$.

Example. A random vector $X = (X_1, \dots, X_d)$ consisting of d independent Gaussian variables is a Gaussian vector.

Gaussian Processes

A *(centered) Gaussian space* is a closed linear subspace of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ whose elements are all centered Gaussian variables.

Gaussian Processes

A *(centered) Gaussian space* is a closed linear subspace of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ whose elements are all centered Gaussian variables.

Example. If $X = (X_1, \dots, X_d)$ is a centered Gaussian vector, then

$$\mathsf{Span}\{X_1,\ldots,X_d\}$$

is a Gaussian space.

Gaussian Processes

A *(centered) Gaussian space* is a closed linear subspace of $L^2(\Omega, \mathcal{F}, \mathbf{P})$ whose elements are all centered Gaussian variables.

Example. If $X = (X_1, \dots, X_d)$ is a centered Gaussian vector, then

$$\mathsf{Span}\{X_1,\ldots,X_d\}$$

is a Gaussian space.

A real-valued stochastic process X(t), $t \in T$, is called a *(centered)* Gaussian process if any finite linear combination of the variables is centered Gaussian.

Gaussian White Noise

Let (E,\mathcal{E}) be a measurable space, μ a σ -finite measure. A *Gaussian white* noise with intensity μ is an isometry

 $G: L^2(E, \mathcal{E}, \mu) \to (a \text{ (centered) Gaussian space}).$

Gaussian White Noise

Let (E,\mathcal{E}) be a measurable space, μ a σ -finite measure. A *Gaussian white* noise with intensity μ is an isometry

$$G \colon L^2(E, \mathcal{E}, \mu) \to (a \text{ (centered) Gaussian space}).$$

That is, for $f \in L^2(E, \mathcal{E}, \mu)$, G(f) is centered Gaussian with variance

$$\mathbf{E}[G(f)^{2}] = ||G(f)||_{L^{2}(\Omega, \mathcal{F}, \mathbf{P})}^{2} = ||f||_{L^{2}(E, \mathcal{E}, \mu)}^{2} = \int f^{2} d\mu.$$

If $f, g \in L^2(E, \mathcal{E}, \mu)$, the covariance is

$$\mathbf{E}[G(f),G(g)] = \langle f,g \rangle_{L^2(E,\mathcal{E},\mu)} = \int fg d\mu.$$

Pre-Brownian Motions

If G is a Gaussian white noise on \mathbb{R}^+ with intensity its Lebesgue measure, the random process $(B_t)_{t\in(0,\infty)}$ defined by

$$B_t = G(\mathbb{1}_{[0,t]})$$

is a pre-Brownian motion.

The covariance is

$$\mathbf{E}[B_s B_t] = \mathbf{E}[G([0,s])G([0,t])] = \int_0^\infty \mathbb{1}_{[0,s]} \mathbb{1}_{[0,t]}(r) dr = \min(s,t).$$

Characterizations of pre-Brownian motions

Proposition

Let X(t), $t \ge 0$, be a real-valued stochastic process. The followings are equivalent:

- 1) X(t), $t \ge 0$, is a pre-Brownian motion
- 2) X(t), $t \ge 0$, is a centered Gaussian process with covariance $K(s,t) = \min(s,t)$

Characterizations of pre-Brownian motions

Proposition

Let X(t), $t \ge 0$, be a real-valued stochastic process. The followings are equivalent:

- 1) X(t), $t \ge 0$, is a pre-Brownian motion
- 2) X(t), $t \ge 0$, is a centered Gaussian process with covariance $K(s,t) = \min(s,t)$
- 3) X(0) = 0 a.s., and for every $0 \le s < t$, the random variable X(t) X(s) is independent of $\sigma(X(r), r \le s)$ and distributed according to N(0, t s).

Characterizations of pre-Brownian motions

Proposition

Let X(t), $t \ge 0$, be a real-valued stochastic process. The followings are equivalent:

- 1) X(t), $t \ge 0$, is a pre-Brownian motion
- 2) X(t), $t \ge 0$, is a centered Gaussian process with covariance $K(s,t) = \min(s,t)$
- 3) X(0) = 0 a.s., and for every $0 \le s < t$, the random variable X(t) X(s) is independent of $\sigma(X(r), r \le s)$ and distributed according to N(0, t s).
- 4) X(0) = 0 a.s., and for every $0 = t_0 < t_1 < ... < t_p$, the variables $X_{t_i} X_{t_{i-1}}$, $1 \le i \le p$, are independent, and are distributed according to $N(0, t_i t_{i-1})$.

Proof

1) \Rightarrow 2) and 3) \Rightarrow 4) are clear.

Theorem

Let H be a centered Gaussian space and $(H_i)_{i \in I}$ a collection of linear subspaces. The subspaces are pairwise orthogonal in L^2 if and only if $\sigma(H_i)$ are independent.

2) \Rightarrow 3) : Let $H_s = \text{Span}\{X_r : r \leq s\}$ and $\tilde{H}_s = \text{Span}\{X_{s+u} - X_s : u \geq 0\}$. These two subspaces are orthogonal as

$$\mathbf{E}[X_r(X_{s+u} - X_s)] = \mathbf{E}[X_r X_{s+u}] - \mathbf{E}[X_r X_s] = r - r = 0$$

for all $r \leq s$. Therefore, $X_t - X_s$ is independent of $\sigma(X(r), r \leq s)$. Note that

$$\mathbf{E}[(X_t - X_s)^2] = \mathbf{E}[X_t^2] - \mathbf{E}[X_t X_s] + \mathbf{E}[X_s^2] = t - \min(t, s) + s = t - s.$$

Therefore, $X_t - X_s \sim N(0, t - s)$.

Proof

4) \Rightarrow 1) : Let f be a step function $f = \sum_{i=1}^{n} \lambda_i \mathbb{1}_{(t_{i-1},t_i]}$, where $0 = t_0 < t_1 < \cdots < t_n$, and set

$$G(f) = \sum_{i=1}^n \lambda_i (X_{t_i} - X_{t_{i-1}}).$$

For any other step function g, we can see that

$$\mathbf{E}[G(f)G(g)] = \int_{\mathbb{R}^+} f(t)g(t)dt,$$

and the set of step functions is dense in L^2 , so G is a Gaussian White Noise. Moreover, by the construction,

$$G(\mathbb{1}_{[0,t]})=X_t.$$

Basic Propoerties

Let B_t , $t \geq 0$, be a pre-Brownian motion. For a choice $0 = t_0 < t_1 < \ldots < t_n$, the vector $(B_{t_1}, \ldots, B_{t_n})$ has density

$$p(x_1,\ldots,x_n) = \frac{1}{(2\pi)^{n/2}\sqrt{(t_1-t_0)\cdots(t_n-t_{n-1})}} \exp\left(-\sum_{i=1}^n \frac{(x_i-x_{i-1})^2}{2(t_i-t_{i-1})}\right)$$

Proposition

- 1) $-B_t$ is also a pre-Brownian motion
- 2) For every $\lambda > 0$, $B_t^{\lambda} = \frac{1}{\lambda} B_{\lambda^2 t}$ is a pre-Brownian motion
- 3) For every $s \ge 0$, $B_t^{(s)} = B_{s+t} B_s$ is a pre-Brownian motion and is independent of $\sigma(B_r, r \le s)$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ