

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

Практическая работа №2

по дисциплине «Численные методы»

Группа ПМ-92

Вариант 10

Студенты Кутузов Иван

Иванов Владислав

Преподаватель Задорожный А. Г.

Дата 08.10.2021

Новосибирск

Цель работы

Разработать программу решения СЛАУ методами Гаусса-Зейделя, Якоби с хранением матрицы в диагональном формате. Исследовать сходимость методов для тестовых матриц и ее зависимость от параметра релаксации. Изучить возможность оценки порядка числа обусловленности матрицы путем вычислительного эксперимента.

Вариант 10: 7-ми диагональная матрица с параметрами m - количество нулевых диагоналей, n - размерность матрицы.

Анализ

Пусть имеется система линейных алгебраических уравнений:

$$Ax = F$$

Выбирается начальное приближение $x^{(0)} = (x_1^0, x_2^0, x_n^0)$ (при отсутствии априорных данных для выбора приближения в качестве начального можно выбрать нулевой вектор).

Метод Якоби:

Каждое следующее приближение в методе Якоби рассчитывается по формуле:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left[f_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right], \quad i = 1, ..., n,$$

где k - номер текущей итерации.

Метод Гаусса-Зейделя:

Каждое следующее приближение рассчитывается по формуле:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{1}{a_{ii}} \left[f_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^{n} a_{ij} x_j^{(k)} \right], \quad i = 1, \dots, n.$$

Для ускорения сходимости итерационного процесса можно использовать параметр релаксации.

Метод Якоби с параметром релаксации:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[f_i - \sum_{j=1}^n a_{ij} x_j^{(k)} \right], \ 0 < \omega \le 1.$$

Метод Гаусса-Зейделя с параметром релаксации:

$$x_i^{(k+1)} = x_i^{(k)} + \frac{\omega}{a_{ii}} \left[f_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i}^n a_{ij} x_j^{(k)} \right], \ 0 < \omega < 2.$$

Условие выхода из итерационного процесса для рассмотренных методов:

• выход по относительной невязке:

$$\frac{\left\|F-Ax^{(k)}\right\|}{\left\|F\right\|}<\varepsilon\;;$$

• защита от зацикливания: k < maxiter, maxiter- максимальное количество итераций.

Текст программы

Программа была разбита на следующие модули:

common.h — содержит макрос, позволяющий быстро изменить точность вычисления (double или float).

io.h — содержит процедуры для чтения и записи данных в файл.

AlgebraicStructures.h — содержит определения структур данных векторов и матриц.

Source.c — содержит основные процедуры решения СЛАУ.

common.h

```
#ifndef FLOAT
          typedef double real;
          typedef double real_sum;
#endif
```

io.h

```
#pragma once
#include "common.h"
#include "AlgebraicStructures.h"

#define FLOAT

void ReadVectorReal(struct VectorReal* vector, const char* filePath);

void ReadBlockMatrix(struct BlockMatrix* matrix, const char* filePath);

void WriteVectorReal(struct VectorReal* vector, const char* filePath);

void WriteTable(real weight, int iteration, int conditionality, const char* filePath);
```

```
#include "io.h"
#include <stdio.h>
#include <corecrt malloc.h>
void ReadVectorReal(struct VectorReal* vector, const char* filePath)
       FILE* stream = NULL;
       fopen_s(&stream, filePath, "r");
       if (stream != NULL)
              fscanf_s(stream, "%d", &vector->n);
vector->data = malloc(sizeof(real) * vector->n);
              for (int i = 0; i < vector->n; i++)
                     fscanf s(stream, "%lf", (vector->data + i));
              fclose(stream);
void ReadBlockMatrix(struct BlockMatrix* matrix, const char* filePath)
       FILE* stream = NULL;
       fopen s(&stream, filePath, "a+");
       if (stream != NULL)
              fscanf_s(stream, "%d", &matrix->n);
fscanf_s(stream, "%d", &matrix->m);
              fclose(stream);
       }
void WriteVectorReal(struct VectorReal* vector, const char* filePath)
{
       FILE* stream = NULL;
       fopen s(&stream, filePath, "a+");
       if (stream != NULL)
              fprintf s(stream, "----\n'');
              for (int i = 0; i < vector -> n; i++)
                     fprintf s(stream, "%.15lf\n", vector->data[i]);
              fprintf s(stream, "----\n'');
              fclose(stream);
```

```
void WriteTable(real weight, int iteration, int conditionality, const char*
filePath)
{
    FILE* stream = NULL;
    fopen_s(&stream, filePath, "a+");
    if (stream != NULL)
    {
        fprintf_s(stream, "------\n");
        fprintf_s(stream, "weight: %.2lf\niteration: %d\nnumber of
conditionality: %d", weight, iteration, conditionality);
        fprintf_s(stream, "-----\n");
        fclose(stream);
    }
}
```

AlgebraicStructures.h

```
#pragma once
#include "common.h"
struct VectorReal
       int n;
      real* data;
};
struct BlockMatrix
      int n;
      int m;
      struct VectorReal* di;
      struct VectorReal* all;
      struct VectorReal* al2;
struct VectorReal* al3;
       struct VectorReal* aul;
      struct VectorReal* au2;
      struct VectorReal* au3;
};
struct VectorReal* AllocateMemoryForVector();
struct BlockMatrix* AllocateMemoryForMatrix();
void FreeVectorMemory(struct VectorReal* vector);
void FreeMatrixMemory(struct BlockMatrix* matrix);
```

AlgebraicStructures.c

```
#include "AlgebraicStructures.h"
#include <stddef.h>

struct VectorReal* AllocateMemoryForVector()
{
    struct VectorReal* vector = malloc(sizeof(struct VectorReal));
    vector->n = 0;
    return vector;
}
```

```
struct BlockMatrix* AllocateMemoryForMatrix()
      struct BlockMatrix* matrix = malloc(sizeof(struct BlockMatrix));
      matrix->n = 0;
      matrix->m = -1;
      matrix->di = AllocateMemoryForVector();
      matrix->al1 = AllocateMemoryForVector();
      matrix->al2 = AllocateMemoryForVector();
matrix->al3 = AllocateMemoryForVector();
      matrix->au1 = AllocateMemoryForVector();
      matrix->au2 = AllocateMemoryForVector();
      matrix->au3 = AllocateMemoryForVector();
      return matrix;
void FreeVectorMemory(struct VectorReal* vector)
      free(vector->data);
      vector->data = NULL;
      free (vector);
      vector = NULL;
void FreeMatrixMemory(struct BlockMatrix* matrix)
      FreeVectorMemory(matrix->di);
      FreeVectorMemory(matrix->all);
      FreeVectorMemory(matrix->al2);
      FreeVectorMemory(matrix->al3);
      FreeVectorMemory(matrix->au1);
      FreeVectorMemory(matrix->au2);
      FreeVectorMemory(matrix->au3);
      free (matrix);
      matrix = NULL;
```

Source.c

```
#include "io.h"
#include <stdio.h>
#include <math.h>
#include <corecrt malloc.h>
struct BlockMatrix* matrix;
struct VectorReal* F;
struct VectorReal* Fk;
struct VectorReal* xk;
struct VectorReal* xk1;
real FNorm;
const int maxiter = 100000;
const real error = 0.0000000000001;
const int iterations = 200;
real MultiplyLineByVector(int line)
      real result = 0.0;
       int m = matrix->m;
       int n = matrix->n;
       if (line > 0)
              result += matrix->all->data[line - 1] * xk->data[line - 1];
              if (line > m + 1)
              {
                    result += matrix->al2->data[line - m - 2] * xk->data[line - m
- 2];
                     if (line > m + 2)
                           result += matrix->al3->data[line - m - 3] *
xk->data[line - m - 3];
       result += matrix->di->data[line] * xk->data[line];
       if (line < n - 1)
              result += matrix->au1->data[line] * xk->data[line + 1];
              if (line < n - m - 2)
                     result += matrix->au2->data[line] * xk->data[line + m + 2];
                     if (line < n - m - 3)
                           result += matrix->au3->data[line] * xk->data[line + m
+ 3];
                     }
             }
       return result;
real CalculateEuclideanNorm(struct VectorReal* vector)
      real euclideanNorm = 0;
       for (int i = 0; i < vector->n; i++)
```

```
euclideanNorm += vector->data[i] * vector->data[i];
       return (real) sqrt (euclideanNorm);
real CalculateRelativeDiscrepancy()
       return CalculateEuclideanNorm(Fk) / FNorm;// || F - A*xk || / || F ||
int CalculateConditionalityNumber()//xk1 - становится вектором ошибки
      for (int i = 0; i < xk->n; i++)
             xk1->data[i] = xk->data[i] - (real)(i + 1);// x - x*
      return CalculateEuclideanNorm(xk1) / (FNorm *
CalculateRelativeDiscrepancy());
void SolveByJacobi(real w)
       for (int i = 0; i < matrix->n; i++)
             Fk->data[i] = F->data[i] - MultiplyLineByVector(i);
             xk1->data[i] = xk->data[i] + w * (Fk->data[i]) /
matrix->di->data[i];
      }
      real* swap = xk;
      xk = xk1;
      xk1 = swap;
void SolveByGaussSeidel(real w)
       for (int i = 0; i < matrix->n; i++)
             Fk->data[i] = F->data[i] - MultiplyLineByVector(i);
             xk-data[i] = xk-data[i] + w * (Fk-data[i]) / matrix-di-data[i];
int CalculateByIterationMethod(real w, void(*method)(real w))
      int i = 0;
       while (CalculateRelativeDiscrepancy() >= error && i < maxiter)</pre>
             method(w);
             i++;
       return i;
real FindOptimalWeight(void (*method) (real w))
      real optimalWeight, weight;
      int min = maxiter + 1;
       for (int i = 0; i <= iterations; i++)</pre>
```

```
weight = (real)i / 100.0;
                for (int j = 0; j < xk->n; j++)
                         xk->data[j] = 0.0;
                         xk1->data[j] = 0.0;
                         Fk->data[j] = F->data[j];
                iter = CalculateByIterationMethod(weight, method);
                if (iter < min)</pre>
                        min = iter;
                        optimalWeight = weight;
                if (i % 10 == 0)
                         int conditionality = CalculateConditionalityNumber();
                         WriteTable(weight, iter, conditionality, "Test\\table.txt");
                         WriteVectorReal(xk, "Test\\result.txt");
                }
        CalculateByIterationMethod(optimalWeight, method);
        int conditionality = CalculateConditionalityNumber();
        WriteTable(optimalWeight, min, conditionality, "Test\\table.txt");
        return optimalWeight;
int main()
{
        matrix = AllocateMemoryForMatrix();
        ReadBlockMatrix(matrix, "Test\\matrix.txt");
        ReadVectorReal(matrix->di, "Test\\di.txt");
ReadVectorReal(matrix->all, "Test\\all.txt");
       ReadVectorReal(matrix->all, "Test\\all.txt");
ReadVectorReal(matrix->al2, "Test\\al2.txt");
ReadVectorReal(matrix->al3, "Test\\al3.txt");
ReadVectorReal(matrix->au1, "Test\\au1.txt");
ReadVectorReal(matrix->au2, "Test\\au2.txt");
ReadVectorReal(matrix->au3, "Test\\au3.txt");
        F = AllocateMemoryForVector();
        ReadVectorReal(F, "Test\\vector.txt");
        Fk = AllocateMemoryForVector();
        Fk->n = F->n;
        Fk->data = malloc(sizeof(real) * Fk->n);
        xk = AllocateMemoryForVector();
        xk->n = F->n;
        xk->data = malloc(sizeof(real) * xk->n);
        xk1 = AllocateMemoryForVector();
        xk1->n = F->n;
        xk1->data = malloc(sizeof(real) * xk1->n);
        FNorm = CalculateEuclideanNorm(F);
        FindOptimalWeight(&SolveByJacobi);
        //FindOptimalWeight(&SolveByGaussSeidel);
        return 0;
```

Исследования на матрице с диагональным преобладанием

Исходная матрица:

7	-1	0	0	0	-2	-3	0	0	0		1		-28
-2	9	-4	0	0	0	-1	-2	0	0		2		-19
0	0	7	-4	0	0	0	-2	-1	0		3		-20
0	0	-4	13	-3	0	0	0	-2	-4		4		-33
0	0	0	-3	6	-2	0	0	0	-1	*	5	=	-4
-1	0	0	0	-4	5	0	0	0	0		6	_	9
0	-4	0	0	0	0	5	-1	0	0		7		19
0	-1	-3	0	0	0	-2	7	-1	0		8		22
0	0	-3	-2	0	0	0	-1	6	0		9		29
0	0	0	-2	-1	0	0	0	-2	5		10		19

Матрица с обратными знаками:

7	1	0	0	0	2	3	0	0	0		1		42
2	9	4	0	0	0	1	2	0	0		2		5 5
0	0	7	4	0	0	0	2	1	0		3		62
0	0	4	13	3	0	0	0	2	4		4		137
0	0	0	3	6	2	0	0	0	1	*	5	=	64
1	0	0	0	4	5	0	0	0	0		6	_	51
0	4	0	0	0	0	5	1	0	0		7		51
0	1	3	0	0	0	2	7	1	0		8		90
0	0	3	2	0	0	0	1	6	0		9		79
0	0	0	2	1	0	0	0	2	5		10		81

Число обусловленности для тестируемых матриц:

$$norm_e(A) = 56.17$$
 $norm_e(B) = 22.44$
 $norm_{l1}(A) = 59.33$
 $norm_{l1}(B) = 20.17$
 $norm_{l2}(A) = 32.68$
 $norm_{l2}(B) = 9.99$
 $\frac{\lambda max}{\lambda min} = 29.05$
 $\frac{\lambda max}{\lambda min} = 9.22$

Метод Якоби:

	Исходна	я матрица				Матрица с об	ратными знак	ами	
ω	х	$x - x^*$	max i	v(A)	ω	х	$x - x^*$	max i	v(A)
0.0	0.00000000000000 0.00000000000000 0.000000	1.000000000000000000000000000000000000	100000	1	0.0	0.00000000000000 0.00000000000000 0.000000	1.000000000000000000000000000000000000	100000	1
0.1	0.99999999908502 1.999999998894126 2.99999999889455 3.99999999889309 4.9999999998893806 5.999999998833179 7.999999999889333 9.999999998889246	0,0000000001498 0,000000000105880 0,000000000110550 0,000000000110700 0,000000000109510 0,000000000106200 0,000000000106830 0,000000000110671 0,0000000001110671 0,000000000111759	89419	49	0.1	0.99999999999401 2.00000000002527 2.999999999995288 4.000000000004005 4.99999999999748 6.00000000005957 6.999999999996201 8.00000000003674 9.00000000000563 9.99999999999999999	0,00000000000599 0,0000000000004720 0,0000000000004400 0,00000000005260 0,00000000005950 0,000000000003800 0,000000000003870 0,000000000000560 0,000000000001080	806	6
0.2	0.99999999908663 1.99999999884312 2.99999999889652 3.99999999889507 4.9999999983395 6.9999999983368 7.9999999981062 8.99999999889534 9.99999999889448	0,00000000091337 0,000000000105690 0,000000000110350 0,000000000110500 0,000000000109310 0,00000000106610 0,00000000106640 0,000000000110470 0,000000000110470 0,000000000110560	44703	48	0.2	0.99999999999391 2.00000000002572 2.999999999995205 4.000000000004075 4.999999999994655 6.0000000006063 6.99999999999132 8.000000000003737 9.00000000000574 9.99999999999911	0,0000000000000000 0,000000000002570 0,0000000000004800 0,0000000000005350 0,000000000000660 0,000000000003870 0,000000000000570 0,00000000000570 0,0000000000	397	6
0.3	0.99999999908567 1.99999999884200 2.99999999988935 3.99999999889391 4.99999999890576 5.999999998383 6.9999999983256 7.999999999889418 8.99999999889418 9.999999999889333	0,00000000091433 0,000000000105800 0,000000000110470 0,000000000110610 0,000000000109430 0,000000000106120 0,000000000106750 0,000000000109060 0,000000000110591 0,000000000110671	29796	48	0.3	0.99999999999399 2.000000000002537 2.999999999995271 4.000000000004019 4.99999999994729 6.000000000005978 6.9999999999185 8.00000000003686 9.00000000000567 9.999999999998925	0,0000000000000001 0,000000000002530 0,0000000000004730 0,0000000000005280 0,0000000000005970 0,0000000000003820 0,000000000003881 0,0000000000000660 0,000000000001080	261	6
0.4	0.99999999908797 1.99999999884466 2.99999999889813 3.999999999889670 4.99999999884150 6.99999999893523 7.999999999881221 8.99999999889697 9.999999999889614	0,00000000091203 0,000000000105540 0,000000000110190 0,000000000110330 0,000000000109150 0,000000000105850 0,000000000106480 0,000000000110310 0,000000000110310 0,000000000110390	22346	48	0.4	0.99999999999409 2.000000000002493 2.999999999995353 4.000000000003949 4.99999999994822 6.00000000005874 6.999999999996254 8.00000000003620 9.00000000000558 9.999999999999943	0,00000000000591 0,000000000002490 0,0000000000003940 0,00000000000580 0,000000000005870 0,000000000003750 0,000000000003750 0,00000000000551 0,000000000000551	193	6

0.5	0.9999999998764	0,000000000091236	17874	48	0.5	0.99999999999405	0,000000000000595	152	6
	1.9999999894428 2.99999999889773 3.99999999889629 4.9999999989814 5.999999999894112 6.99999999883485 7.999999999881182 8.99999999889656 9.99999999889573	0,000000000105580 0,000000000110230 0,000000000110380 0,000000000105890 0,000000000106520 0,000000000108820 0,000000000110351 0,0000000001110431				2.00000000002511 2.99999999999319 4.00000000003978 4.99999999994782 6.000000000005918 6.999999999996225 8.00000000003649 9.0000000000560 9.999999999998936	0,000000000002510 0,0000000000003970 0,000000000005220 0,0000000000005910 0,0000000000003780 0,0000000000003640 0,000000000000560 0,0000000000001069		
0.6	0.99999999998774 1.99999999894440 2.99999999889785 3.99999999889641 4.99999999880824 5.999999999894123 6.999999999881195 8.99999999889669 9.99999999889585	0,000000000091226 0,000000000105560 0,000000000110220 0,000000000110360 0,000000000109180 0,000000000105880 0,000000000106510 0,000000000108810 0,000000000110340 0,000000000110420	14893	48	0.6	0.99999999999437 2.00000000002375 2.99999999995573 4.00000000003762 4.99999999995066 6.00000000005597 6.99999999999430 8.00000000003450 9.00000000000529 9.99999999999999	0,000000000000563 0,0000000000002370 0,0000000000004430 0,0000000000004940 0,0000000000005590 0,0000000000003770 0,0000000000003450 0,000000000000520 0,0000000000001111	125	6
0.7	0.99999999908653 1.99999999884300 2.99999999889639 3.9999999889495 4.999999999883 6.99999999883356 7.999999999881051 8.99999999889521 9.999999999889438	0,00000000091347 0,000000000105700 0,000000000110370 0,000000000110510 0,000000000109320 0,000000000106020 0,000000000106650 0,000000000110481 0,000000000110569	12763	48	0.7	0.99999999999503 2.000000000002100 2.99999999996085 4.0000000003326 4.999999999996837 6.000000000004949 6.999999999998843 8.000000000003050 9.00000000000469 9.99999999999110	0,000000000000497 0,0000000000002100 0,000000000003320 0,0000000000004370 0,000000000004940 0,000000000003160 0,000000000003050 0,000000000000460 0,000000000000890	106	6
0.8	0.99999999908638 1.99999999884282 2.99999999889621 3.99999999889478 4.9999999998830663 5.99999999883338 7.999999999881032 8.99999999889505 9.999999999889422	0,00000000091362 0,000000000105720 0,000000000110380 0,000000000110530 0,000000000109340 0,000000000106040 0,000000000108970 0,000000000110500 0,000000000110580	11166	48	0.83	0.9999999999438 2.000000000002376 2.99999999995573 4.00000000003766 4.99999999999665 6.00000000005600 6.99999999994430 8.000000000003453 9.00000000000533 9.9999999999999	0,00000000000562 0,0000000000002370 0,0000000000003760 0,0000000000004940 0,000000000005600 0,00000000003570 0,000000000003570 0,00000000000529 0,000000000001011	87	6
0.9	0.99999999908651 1.99999999884297 2.99999999889636 3.99999999889492 4.999999999880677 5.99999999883352 7.999999999883352 7.999999999889519 9.999999999889434	0,00000000091349 0,000000000105710 0,000000000110370 0,000000000110510 0,000000000109330 0,000000000106020 0,000000000106650 0,000000000110489 0,000000000110569	9924	48	0.84	0.99999999999450 2.000000000002249 2.99999999995760 4.00000000003571 4.999999999995277 6.00000000005323 6.999999999996578 8.00000000003276 9.0000000000488 9.9999999999923	0,000000000000550 0,0000000000002240 0,0000000000003570 0,0000000000005320 0,000000000003430 0,000000000003270 0,00000000000480 0,000000000000981	86	6
1.0	0.99999999908809 1.99999999884480 2.999999999889827 3.99999999889683 4.999999999889667 5.99999999884164 6.99999999883538 7.9999999998891235 8.999999999889710 9.999999999889626	0,00000000091191 0,000000000105520 0,000000000110180 0,000000000110320 0,000000000109140 0,000000000105840 0,000000000106470 0,000000000108770 0,000000000110290 0,000000000110379	8931	48	0.85	0.9999999999441 2.00000000001475 2.99999999996696 4.00000000002441 4.999999999343 6.00000000003734 6.999999999997304 8.000000000002226 9.0000000000174 9.99999999999999	0,00000000000559 0,000000000001470 0,0000000000003310 0,0000000000002440 0,000000000003730 0,000000000002700 0,000000000002220 0,0000000000	88	6
1.14	0.99999999908944 1.99999999884636 2.99999999988989 3.9999999998847 4.9999999981028 5.99999999894318 6.99999999893696 7.99999999891397	0,00000000091056 0,000000000105370 0,000000000110020 0,000000000110160 0,000000000108980 0,000000000105690 0,000000000106310 0,000000000108610	7833	48	0.9	1.00000000000392 2.000000000000453 3.000000000000473 4.0000000000000473 5.0000000000000469 6.00000000000453 7.000000000000457 8.000000000000467	0,00000000000390 0,000000000000450 0,0000000000000470 0,0000000000000470 0,0000000000	133	0

	8.99999999889873 9.99999999889789	0,000000000110131 0,000000000110219				9.00000000000474 10.000000000000474	0,000000000000471 0,0000000000000400		
1.15	0.99999999908957 1.99999999884654 2.999999998890008 3.99999999889865 4.99999999881047 5.9999999983713 7.99999999891415 8.9999999989891 9.99999999889807	0,000000000091043 0,000000000105350 0,000000000110000 0,000000000110140 0,000000000108960 0,000000000105670 0,000000000106290 0,000000000110109 0,000000000110109 0,000000000110200	7765	48	1.0	0.99999999999562 1.99999999999493 2.99999999999472 3.99999999999477 5.99999999999477 5.9999999999947 6.9999999999488 7.9999999999471 9.9999999999471	0,00000000000438 0,00000000000510 0,000000000000530 0,0000000000000530 0,0000000000	10874	0
1.16	-165686722275687737911812 661354750471091418490332 369280565248.000000000000 000 6993480948271112215264421 015239305573324424204991 82895759360.000000000000000 00 -130363986555828874249729 572719760261598499417116 6677733998592.00000000000 110784612257097868868589 839413166218912598446406 8692343259136.00000000000 -145291205603986543843621 686650923388176607736616 2227212582912.00000000000 164809384571777671228970 010493943523716521945872 4782176993280.00000000000 -105141805767221904711271 618466685457127733611637 7309465804800.00000000000 000 101590861430094741014187 062083640378396442443423 2973796048896.00000000000 000 -156086985273774312710627 016030289142713373794236 963177365504.00000000000 000 -296390506943882801319397 331888948228309061651120 206961967104.000000000000 000		100000	0	1.1	-799045666911135943999 262754627644079102447 5592429311343348752449 294587405086659604401 2295197681175120764556 443799902414207532546 2067120938541601106862 787414456754547734024 666639844892420492469 807929083012205934823 874656172317139899454 495122122695778422482 733182176662470855705 934937661598244694978 6957381632.0000000000 -924599735091685746322 1113763332327991922421 5036693789256611274930 9601431810574282811870 551940596492368802136 745585701996627536004 6109067914187791148549 094545725526069279876 948687894980199404537 376854453517705401296 926726517414429191460 010763851396483819151 277164080774324869571 554692695887302994084 038180864.00000000000 000 -inf -nan(ind) -inf -p27372028192288519449 149540568565087736896 8482482926139891174257 7189673708202199581011 094331247660020808637 057105122709866773726 941057033636480073165 961683173705453602087 899842794567485527647 807265693333083582367 4783617487426721150931 013603859454890182291 366653716772581941602 521810917176621431836 154789880.00000000000 -932855238915755908370 2441975581322386776117 0415466077894592561308 031456318884995748144 785384263184265215813 0657792337183220637911 416199896902941032372 413736528253623521463 4919028414753600066920 464853698759255976558 964281016639942100542 1691133808113366302157 202974181022498275067		3922	-214 7483 648

						645248569014979834565 5743152128.00000000000 0000 -953026702585374715212 717227819108834848690 167815446269834986209 899083572551445062827 992612805034567553925 186305324732197767882 338614203509781013067 380960734538977453705 2115795113998048315889 513253818413635421445 321513373348351714806 764173864462214019206 057368219802196695891 453363891842433258189 682978586624.000000000 000000 -inff -inf			
--	--	--	--	--	--	--	--	--	--

Метод Гаусса-Зейделя:

	Исхо	одная матрица			Матрица с обратными знаками						
ω	х	$x - x^*$	max i	v(A)	ω	x	$x - x^*$	max i	v(A)		
0.0	0.00000000000000 0.000000000000000 0.00000000	1.000000000000000000000000000000000000	100000	1	0.0	0.00000000000000 0.000000000000000 0.00000000	1.000000000000000000000000000000000000	100000	1		
0.1	0.99999999909138 1.99999999884855 2.999999999890221 3.999999999880091 4.99999999831280 5.99999999834576 6.9999999983330 7.99999999981640 8.99999999980125 9.99999999980051	0,000000000090862 0,000000000105150 0,000000000109780 0,000000000109910 0,000000000105430 0,000000000105670 0,000000000108360 0,000000000109880 0,000000000109949	84997	46	0.1	0.99999999999490 2.000000000002641 2.999999999995115 4.000000000004089 4.99999999999966 6.00000000005828 6.999999999996085 8.00000000003730 9.00000000000622 9.99999999998861	0,00000000000510 0,000000000002640 0,0000000000004890 0,0000000000005240 0,000000000005820 0,000000000003920 0,000000000003730 0,000000000000620 0,000000000001140	783	6		
0.2	0.99999999910082 1.99999999885944 2.99999999881367 3.99999999881255 4.99999999885715 6.99999999885042 7.99999999882789 8.99999999881299 9.99999999881244	0,00000000089918 0,000000000104060 0,000000000108640 0,000000000108750 0,000000000107560 0,000000000104290 0,000000000104960 0,000000000107220 0,000000000108709 0,0000000000108759	40282	44	0.2	0.99999999999603 2.00000000002737 2.99999999999486 4.00000000004126 4.99999999994867 6.00000000005602 6.99999999999003 8.000000000003745 9.00000000000080 9.999999999999799	0,00000000000397 0,0000000000005230 0,0000000000004120 0,000000000005140 0,000000000005600 0,000000000004000 0,00000000003739 0,000000000000680 0,0000000000001210	374	6		
0.3	0.99999999911195 1.99999999887227 2.99999999882712 3.99999999882619 4.99999999883806 5.999999999887050 6.99999999886353 7.99999999984137 8.99999999892674 9.99999999982633	0,00000000088805 0,00000000102780 0,000000000107290 0,000000000107390 0,000000000106200 0,000000000102950 0,000000000103650 0,000000000105870 0,00000000107329 0,000000000107370	25379	41	0.3	0.99999999999757 2.000000000002605 2.99999999995288 4.000000000003803 4.99999999995416 6.000000000004887 6.999999999996266 8.000000000003428 9.000000000000680 9.999999999998847	0,00000000000243 0,000000000002600 0,0000000000003800 0,0000000000004720 0,0000000000004590 0,0000000000003740 0,00000000003419 0,0000000000000680 0,0000000000001160	238	5		
0.4	0.99999999912623 1.9999999988873 2.99999999884438 3.99999999894365 4.99999999885548 5.99999999888031 7.999999998861 8.99999999894431 9.999999999894410	0,00000000087377 0,000000000101130 0,000000000105570 0,000000000105640 0,000000000104460 0,000000000101970 0,000000000101970 0,000000000104140 0,000000000105571 0,000000000105590	17929	39	0.4	0.99999999999995 2.00000000002613 2.99999999995346 4.00000000003671 4.9999999999738 6.0000000004421 6.999999999996330 8.000000000003290 9.000000000000716 9.9999999998836	0,000000000000095 0,0000000000002610 0,0000000000003670 0,0000000000004270 0,000000000004420 0,000000000003670 0,00000000003670 0,000000000003290 0,000000000000711 0,000000000001171	169	5		

0.5	0.99999999914426 1.999999999900953 2.99999999896617 3.999999999896568 4.999999999897742 5.99999999900147 7.99999999900147 7.9999999988034 8.99999999886646 9.999999999896643	0,000000000085574 0,000000000099050 0,00000000103390 0,00000000103440 0,0000000000102260 0,00000000099110 0,00000000099860 0,00000000101970 0,00000000103361 0,000000000103361	13460	36	0.5	1.000000000000071 2.000000000002640 2.99999999995392 4.000000000003539 4.99999999999686 6.00000000003946 6.99999999999381 8.00000000003153 9.000000000000755 9.99999999998826	0,0000000000000070 0,0000000000002640 0,0000000000003530 0,000000000003940 0,000000000003940 0,000000000003620 0,000000000003149 0,000000000000750 0,000000000001180	127	5
0.6	0.99999999916579 1.99999999993437 2.999999999899219 3.99999999990357 5.99999999900357 5.99999999900627 4.999999999900627 8.999999999899304	0,000000000083421 0,0000000000096570 0,000000000100790 0,0000000000100810 0,000000000096560 0,000000000096560 0,000000000097330 0,000000000099380 0,000000000100719 0,000000000100700	10481	34	0.6	1.00000000000287 2.000000000002953 2.999999999994982 4.000000000003729 4.99999999999074 6.0000000003784 6.999999999996066 8.00000000003304 9.00000000000878 9.99999999998703	0,00000000000280 0,000000000002950 0,0000000000003720 0,000000000003780 0,000000000003780 0,000000000003940 0,000000000003300 0,000000000000870 0,0000000000001300	98	5
0.7	0.99999999919303 1.999999999906582 2.999999999902511 3.99999999903658 5.999999999906668 6.99999999905868 7.999999999903903 8.999999999902620 9.999999999902661	0,000000000080697 0,000000000093420 0,000000000097490 0,000000000097490 0,00000000009350 0,000000000093340 0,000000000094140 0,000000000094140 0,000000000097380 0,000000000097341	8354	31	0.7	1.00000000000523 2.000000000002957 2.99999999995152 4.00000000003457 4.9999999999603 6.00000000003105 6.99999999991195 8.000000000003050 9.000000000000008 9.999999999998732	0,00000000000520 0,000000000002950 0,0000000000003450 0,000000000003450 0,000000000003100 0,000000000003810 0,000000000003550 0,000000000000000000	77	5
0.8	0.999999999922567 1.999999999910350 2.999999999906456 3.999999999907609 5.99999999910517 6.99999999906693 7.999999999906608 9.999999999906674	0,000000000077433 0,000000000089650 0,000000000093550 0,0000000000093520 0,0000000000092400 0,00000000090310 0,00000000090310 0,000000000093401 0,000000000093330	6759	29	0.8	1.00000000000853 2.000000000003162 2.99999999995070 4.00000000003326 4.9999999997034 6.00000000002515 6.99999999996109 8.000000000002926 9.00000000000993 9.99999999999705	0,00000000000850 0,000000000003160 0,000000000003320 0,000000000002970 0,0000000000002510 0,000000000003900 0,000000000002920 0,000000000000989 0,000000000001300	60	4
0.9	0.999999999926269 1.999999999914625 2.999999999910929 3.99999999912085 5.999999999914879 6.99999999914031 7.999999999912269 8.999999999911129 9.999999999911221	0,000000000073731 0,000000000085380 0,000000000089080 0,000000000089010 0,000000000085130 0,000000000085970 0,000000000085740 0,000000000088880 0,000000000088781	5518	26	0.9	0.99999999999229 1.99999999997430 3.00000000003723 3.99999999997612 5.00000000001988 5.9999999999439 7.0000000000022953 7.99999999999997963 8.999999999999217 10.0000000000000940	0,00000000000771 0,0000000000002570 0,0000000000003720 0,0000000000002390 0,000000000001570 0,000000000002950 0,000000000002950 0,000000000000790 0,0000000000000001	43	4
1.0	0.99999999931005 1.999999999920099 2.99999999916653 3.99999999916751 4.99999999917802 5.99999999919578 7.999999999917950 8.99999999916902 9.999999999917021	0,000000000068995 0,000000000079910 0,000000000083350 0,000000000083250 0,000000000002200 0,000000000079560 0,000000000082050 0,000000000083100 0,000000000082981	4526	24	1.0	0.99999999999073 1.99999999998438 3.00000000001903 3.99999999999927 5.0000000000000152 5.99999999999841 7.00000000001642 7.9999999999984 8.9999999999527 10.000000000000492	0,00000000000927 0,000000000001570 0,000000000001900 0,00000000000000430 0,000000000000160 0,000000000001640 0,0000000000000920 0,000000000000480 0,0000000000000400	38	3
1.1	0.99999999936101 1.999999999925986 2.999999999922811 3.99999999922945 4.99999999923251 5.999999999925543 7.999999999925543 7.999999999923260	0,00000000063899 0,000000000074020 0,000000000077190 0,000000000077060 0,000000000073580 0,000000000074460 0,000000000075940 0,0000000000076890 0,0000000000076740	3713	21	1.1	1.0000000001366 2.0000000001120 2.99999999999677 3.999999999999641 5.00000000000060 5.99999999999978 6.99999999999238 7.99999999999944 9.0000000000000204 9.99999999999931	0,00000000001360 0,000000000001120 0,000000000000330 0,0000000000000060 0,0000000000	29	3

1.2	0.99999999942113 1.9999999999332933 2.999999999930074 3.999999999931193 5.99999999933470 6.99999999932577 7.999999999931259 8.99999999930427 9.999999999930603	0,00000000057887 0,000000000067070 0,000000000069930 0,000000000068810 0,000000000066530 0,0000000000667430 0,000000000068750 0,0000000000069580 0,0000000000069400	3035	19	1.11	1.00000000000741 1.999999999999016 3.000000000002448 3.99999999998073 5.00000000001382 5.99999999998539 7.00000000001309 7.99999999998766 8.999999999983 10.00000000000544	0,000000000000740 0,0000000000000990 0,0000000000001930 0,000000000001980 0,000000000001470 0,000000000001240 0,0000000000001240 0,000000000000419 0,000000000000419	28	3
1.3	0.99999999948901 1.999999999940780 2.99999999938278 3.999999999938483 4.99999999993361 5.99999999940518 7.99999999993387 8.99999999938880 9.999999999938884	0,00000000051099 0,000000000059220 0,000000000061730 0,000000000061520 0,000000000006640 0,000000000058590 0,000000000059490 0,00000000006620 0,000000000061320 0,0000000000061121	2460	16	1.12	0.9999999998889 1.9999999997059 3.00000000003395 3.9999999998272 5.0000000000004 7.999999999999647 7.00000000002690 7.99999999998678 8.99999999999204 10.00000000000718	0,00000000001111 0,0000000000002950 0,0000000000001730 0,00000000000000000 0,00000000000000	31	3
1.4	0.99999999956381 1.999999999949427 2.999999999947315 3.999999999948352 5.9999999999148352 6.99999999994264 7.99999999994264 9.9999999999947764 9.99999999999	0,000000000043619 0,000000000050580 0,000000000052690 0,000000000052450 0,000000000051650 0,000000000050740 0,000000000050740 0,000000000051670 0,000000000052241 0,000000000052010	1965	14	1.2	0.99999999998374 2.0000000000000689 3.0000000000000177 4.00000000000000294 6.000000000000201 6.99999999998886 8.000000000000103 8.99999999999705 10.00000000000057	0,00000000001626 0,0000000000000170 0,000000000000000000	37	1
1.5	0.99999999963968 1.99999999956482 3.999999999956758 4.999999999957472 5.999999999958136 7.99999999957410 8.99999999956977 9.999999999957234	0,00000000036032 0,000000000041800 0,000000000043520 0,0000000000043250 0,0000000000042530 0,000000000041870 0,000000000041870 0,000000000041870 0,000000000041870	1965	11	1.3	1.00000000002367 1.99999999998771 2.99999999999991 3.99999999999571 5.99999999999687 7.000000000022098 7.999999999999623 9.00000000000015 9.99999999999719	0,00000000002360 0,0000000000001230 0,0000000000000110 0,00000000000000110 0,00000000	68	1
1.6	0.99999999972010 1.999999999967500 2.999999999966199 3.999999999966503 4.999999999968378 6.99999999967534 7.999999999967021 8.99999999996727 9.999999999967008	0,000000000027990 0,000000000032500 0,000000000033810 0,000000000033500 0,000000000032880 0,000000000031630 0,000000000032470 0,000000000032980 0,000000000032980 0,000000000032999	1148	9	1.4	1.0000000001958 1.9999999998841 2.99999999999706 3.9999999999913 4.99999999999939 5.99999999999734 7.00000000002098 7.99999999999999 9.00000000000077 9.9999999999	0,00000000001950 0,000000000001160 0,000000000000000000	210	1
1.7	0.99999999980293 1.99999999977087 2.99999999976217 3.99999999977066 5.99999999977066 6.99999999977219 7.999999999976772 8.999999999977772 9.9999999999977065	0,00000000019707 0,000000000022920 0,0000000000023790 0,0000000000023460 0,0000000000022940 0,000000000022790 0,000000000022790 0,000000000023229 0,0000000000022940	800	6	1.5	-inf inf -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind)		7083	-2147 48364 8
1.79	0.99999999987351 1.99999999985252 2.999999999854746 3.999999999985549 5.999999999986263 6.999999999985475 7.999999999985359 8.99999999985336 9.99999999985651	0,000000000012649 0,000000000014750 0,000000000015260 0,000000000014900 0,00000000001460 0,000000000014530 0,000000000014650 0,000000000014669 0,000000000014349	501	1					

1.8	0.99999999996670 1.999999999996597 2.999999999996896 4.999999999996885 5.999999999997105 6.99999999996616 7.9999999999655 9.99999999997035	0,00000000003330 0,00000000003410 0,000000000003280 0,000000000003110 0,000000000000290 0,000000000003390 0,000000000003350 0,000000000003350 0,0000000000	491	1			
1.81	0.99999999999334 1.99999999999799 3.000000000000187 4.0000000000000234 5.0000000000000123 6.99999999999713 7.99999999999911 10.000000000000368	0,000000000000666 0,000000000000010 0,0000000000	633	0			
1.9	inf inf -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind) -nan(ind)		9625	-2147 48364 8			

Вывод:

В ходе работы было выяснено, что скорость сходимости зависит от параметра релаксации, причем для разных матриц оптимальный параметр релаксации отличается. Для метода Якоби в случае с первой матрицей наилучшим весом оказался $\omega=1.15$, для второй матрицы - $\omega=0.85$. Первая матрица методом Гаусса-Зейделя наиболее быстро сходится при $\omega=1.8$, вторая - при $\omega=1.12$. Следует также отметить, что в случае с методом Якоби наилучший вес оказался за пределами допустимых значений ($\omega=1.15$ для первой матрицы), а метод Гаусса-Зейделя расходился при параметре, лежащим в допустимом интервале ($\omega=1.5$ для второй матрицы).

Исследуем более подробно зависимость количества итераций от параметра релаксации:

По графикам можно наблюдать, что имеется один ярко выраженный минимум, что позволяет более точно вычислить значение оптимального веса.

В ходе работы было оценено число обусловленности с помощью относительной невязки. Как и ожидалось, результат отличается от реального значения числа обусловленности. Итеративный метод оценки обусловленности позволяет вычислить

не само число обусловленности, а всего лишь его оценку снизу. Взглянув на формулу оценки числа обусловленности,

$$v_A \ge \frac{\left\|x - x^*\right\|}{\left\|x^*\right\|} / \frac{\left\|F - Ax\right\|}{\left\|F\right\|} .$$

становится понятно, что оно зависит от точности получаемого решения, причем чем точнее решение, тем ниже граница оценки. Поэтому в таблице мы наблюдаем, что для разного значения ω , мы получаем разное значение оценки v(A). Также на точность оценки влияет и вычислительная ошибка.