Final Assignment

BRAC University

Semester: Spring 2023 Course No: CSE251

Course Title: Electronic Devices and Circuits

Student IDs:

Set-1

(i)

In the circuit shown in Fig. the voltage at the emitter was measured and found to be -0.7 V. If $\beta = 50$, find I_E , I_B , I_C , and V_C .

(ii) Consider the circuit shown below. Does it follow the Static Discipline? Calculate the noise margins NM_0 and NM_1 .

Set-2

Consider an NMOS transistor fabricated with L = 0.18 μ m and W = 2 μ m. The process technology is specified to have $k_n'=387~\mu\text{A/V}^2$, and $V_T=0.5~\text{V}$. Find V_{GS} and V_{DS} that result in the MOSFET operating at the edge of the saturation region with $I_{DS}=100~\mu\text{A}$. If V_{GS} is kept constant, find V_{DS} that results in $I_D=50~\mu\text{A}$.

For MOSFET

$$I_{D} = 0, \text{ if } V_{GS} < V_{T}$$

$$I_{D} = k \left[(V_{GS} - V_{T}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right], \text{ if } V_{GS} \ge V_{T} \text{ and } V_{DS} < (V_{GS} - V_{T})$$

$$I_{D} = \frac{1}{2} k (V_{GS} - V_{T})^{2}, \text{ if } V_{GS} \ge V_{T} \text{ and } V_{DS} \ge (V_{GS} - V_{T})$$

Set-3

- (i) Draw the I-V graph of a **MOSFET**. Identify all the regions. [You have to draw for at least three V_{GS} values and mark V_{ov} on the graph.]
- (ii) Draw the I-V graph of a **BJT**. Identify all the regions. [You have to draw for at least three I_B values on the graph.]