Determinación de Órbitas Elípticas El Método de Laplace

Simón López Vico

Doble Grado en Matemáticas e Ingeniería Informática Universidad de Granada

Septiembre de 2020

Índice

- Introducción
- 2 El Método de Laplace
- 3 La Órbita Completa
- 4 Bondad del método

Introducción

Bondad del método

S

Introducción

 ${}^{ullet}E$

La Órbita Completa

S

Introducción

Introducción

El Método de Laplace

Aproximando las derivadas

Tres observaciones: $(\lambda_1, \mu_1, \nu_1)$, $(\lambda_2, \mu_2, \nu_2)$, $(\lambda_3, \mu_3, \nu_3)$.

Tres observaciones: $(\lambda_1, \mu_1, \nu_1)$, $(\lambda_2, \mu_2, \nu_2)$, $(\lambda_3, \mu_3, \nu_3)$.

Diferencia regresiva $(t_2 > t_1)$

$$\lambda_{12}' = \frac{\lambda_2 - \lambda_1}{t_2 - t_1}$$

Diferencia progresiva ($t_2 < t_3$)

$$\lambda_{23}' = \frac{\lambda_3 - \lambda_2}{t_3 - t_2}$$

Diferencia centrada $(t_2 - t_1 = t_3 - t_2)$

$$\lambda_2' = \frac{\lambda_{12}' + \lambda_{23}'}{2}$$

Introducción

Soluciones para ϕ :

$$\sin^4\phi = M\sin\left(\phi + m\right)$$

$$\sin^4 \phi = M \sin \left(\phi + m \right)$$

Condiciones:
$$\begin{cases} \phi \in (0, \pi) \\ \phi < \pi - \psi \end{cases}$$

Valores para ϕ

Utilizamos los valores calculados

$$\rho' = \frac{D_2}{D} \left(\frac{1}{R^3} - \frac{1}{r^3} \right)$$

Utilizamos los valores calculados

$$\rho' = \frac{D_2}{D} \left(\frac{1}{R^3} - \frac{1}{r^3} \right)$$

Posición:

$$\begin{cases} x = \rho \lambda - X \\ y = \rho \mu - Y \\ z = \rho \nu - Z \end{cases}$$

Velocidad:

$$\begin{cases} x' = \rho'\lambda + \rho\lambda' - X' \\ y' = \rho'\mu + \rho\mu' - Y' \\ z' = \rho'\nu + \rho\nu' - Z' \end{cases}$$

Elementos orbitales

Utilizando r = (x, y, z) y v = r' podemos obtener $(a, e, i, \omega, \Omega)$.

Elementos orbitales

Utilizando r = (x, y, z) y v = r' podemos obtener $(a, e, i, \omega, \Omega)$.

Elipse:
$$(a\cos\theta + ae, a\sqrt{1 - e^2}\sin\theta, 0), \quad \theta \in (0, 2\pi)$$

Posición de la órbita

Bondad del método

Herramientas para el desarrollo

- Python: Numpy, Matplotlib, Astropy, etc.
- Tkinter