

DATA EXPLORATION

STATUS GROUP

TARGET LABELS

FEATURES

amount_tsh	gps_height	latitude	basin	region_code
date_recorded	waterpoint_type_group	wpt_name	subvillage	district_code
funder	management_group	num_private	region	lga
longitude	extraction_type_group	id	management	installer
quantity	extraction_type_class	source	source_type	source_class
permit	extraction_type	water_quality	quality_group	recorded_by
construction_year	scheme_management	payment_type	quantity_group	scheme_name
ward	population	public_meeting	payment	waterpoint_type

FEATURES NUMERICAL

amount_tsh	gps_height	latitude	basin	region_code
date_recorded	waterpoint_type_group	wpt_name	subvillage	district_code
funder	management_group	num_private	region	lga
longitude	extraction_type_group	id	management	installer
quantity	extraction_type_class	source	source_type	source_class
permit	extraction_type	water_quality	quality_group	recorded_by
construction_year	scheme_management	payment_type	quantity_group	scheme_name
ward	population	public_meeting	payment	waterpoint_type

FEATURES CATEGORICAL

amount_tsh	gps_height	latitude	basin	region_code
date_recorded	waterpoint_type_group	wpt_name	subvillage	district_code
funder	management_group	num_private	region	lga
longitude	extraction_type_group	id	management	installer
quantity	extraction_type_class	source	source_type	source_class
permit	extraction_type	water_quality	quality_group	recorded_by
construction_year	scheme_management	payment_type	quantity_group	scheme_name
ward	population	public_meeting	payment	waterpoint_type

FEATURES REDUNDANCY

amount_tsh	gps_height	latitude	basin	region_code
date_recorded	waterpoint_type_group	wpt_name	subvillage	district_code
funder	management_group	num_private	region	lga
longitude	extraction_type_group	id	management	installer
quantity	extraction_type_class	source	source_type	source_class
permit	extraction_type	water_quality	quality_group	recorded_by
construction_year	scheme_management	payment_type	quantity_group	scheme_name
ward	population	public_meeting	payment	waterpoint_type

FEATURES REDUNDANCY

amount_tsh	gps_height	latitude	basin	region_code
date_recorded	waterpoint_type_group	wpt_name	subvillage	district_code
funder	management_group	num_private	region	lga
longitude	extraction_type_group	id	management	installer
quantity	extraction_type_class	source	source_type	source_class
permit	extraction_type	water_quality	quality_group	recorded_by
construction_year	scheme_management	payment_type	quantity_group	scheme_name
ward	population	public_meeting	payment	waterpoint_type

DATA PREPROCESSING

CATEGORICAL

empty string ('')

unknown

- -
- 0
- not known
- unknown
- none
- no

NUMERICAL

0 Invalid?

Median

Geographic mean

NUMERICAL

Invalid?MedianGeographic mean

NUMERICAL

0 → Invalid? → Median

Geographic mean

NUMERICAL

0 → Invalid? → Median

Geographic mean

FEATURE ENGINEERING

CREATION & MODIFICATION

Creation

- pump_age
 - = date_recorded[year] construction_year
- season
 - = seasonal binning of date_recorded[month]

Modification

- Manual splits/merges
- Low-frequency merging (< 1%)

FEATURE ENGINEERING

CREATION & MODIFICATION

Creation

- pump_age
 - = date_recorded[year] construction_year
- season
 - = seasonal binning of date_recorded[month]

Modification

- Manual splits/merges
- Low-frequency merging (< 1%)

FEATURE SELECTION FILTER

Manual selection

Dropping redundant features

Automatic selection

- One-hot encoded features
- Maximum Relevancy Minimum Redundancy (80 features)

PREPROCESSING PIPELINE

TRAINING DATA

PREPROCESSING PIPELINE

OPTIONAL SETTINGS

TUNING MODELS

TUNING MODELS

Preprocessing used:

- One Hot Encoding
- Scaling
- mRMR
- K = number of neighbours
- Distance = Euclidean

Accuracy of 77.5 % +/- 0.2 %

Prediction ->	Functional	Functional Needs repair	Non Functional
Functional	87.3%	2.2%	10.5%
Functional Needs repair	53.7%	28.8%	17.2%
Non Functional	26.2%	1.9%	71.9%

- Preprocessing used:
 - One Hot Encoding
 - Scaling
 - mRMR
- Size of the hidden layer
- Decay

- Preprocessing used:
 - One Hot Encoding
 - Scaling
 - mRMR
- Size of the hidden layer
- Decay

Accuracy of 77.4 % +/- 0.4 %

Prediction ->	Functional	Functional Needs repair	Non Functional
Functional	86.8%	2.2%	11%
Functional Needs repair	54.9%	26.2%	18.9%
Non Functional	25.0%	1.8%	73.2%

RANDOM FOREST

HYPERPARAMETER TUNING

- Preprocessing needed:
 - Categorical Data
- Number of variables per tree
- Number of trees per forest

RANDOM FOREST

HYPERPARAMETER TUNING

- Preprocessing needed:
 - Categorical Data
- Number of variables per tree
- Number of trees per forest

RANDOM FOREST

MODEL ANALYSIS

Accuracy of 81.2 % +/- 0.1 %

Prediction ->	Functional	Functional Needs repair	Non Functional
Functional	90.0%	2.0%	8.0%
Functional Needs repair	53.4%	32.4%	14.2%
Non Functional	21.0%	1.3%	77.6%

COMPARISON OF ALL THE TUNED MODELS

Model	Accuracy +/- SD
ElasticNet	73.8 +/- 0.6
Decision Tree	78.7 +/- 0.4
Random Forest	81.2 +/- 0.1
kNN	77.5 +/- 0.3
SVM	77.9 +/- 0.5
Neural Network	77.4 +/- 0.4

Woohoo! We processed your submission!

Your score for this submission is:

0.8172

ALTERNATIVE MODELS

ALTERNATIVE MODELS

GRADIENT BOOSTING TREES

HYPERPARAMETER TUNING

- Nrounds
- Eta
- Max depth
- Min child weight
- Colsample Bytree

GRADIENT BOOSTING TREES

MODEL ANALYSIS

Accuracy of 81.4 % +/- 0.2 %

Prediction ->	Functional	Functional Needs repair	Non Functional
Functional	91.4%	1.6%	7.1%
Functional Needs repair	56.1%	29.9%	14.1%
Non Functional	21.9%	1%	77.1%

ENSEMBLE OF MODELS

- 1. Gradient Boosting Trees
- 2. Gradient Boosting / Random Forest
- 3. Gradient Boosting + Balancer

ENSEMBLE OF BOOSTING TREES

Gradient Boosting Trees

Learner	Accuracy
XGBTree 1	81.34 +/- 0.40 %
XGBTree 2	81.29 +/- 0.38 %
XGBTree 3	81.34 +/- 0.44 %
XGBTree 4	81.30 +/- 0.42 %
XGBTree 5	81.36 +/- 0.40 %
Ensemble	81.35 +/- 0.38 %

Gradient Boosting & Random Forest

Learner	Accuracy
XGBTree 1	81.34 +/- 0.40 %
XGBTree 2	81.29 +/- 0.38 %
RF 1	81.13 +/- 0.33 %
RF 2	81.15 +/- 0.37 %
Ensemble	81.37 +/- 0.36 %

Gradient Boosting + Balanced Tree

Learner	Accuracy
XGBTree 1	81.32 +/- 0.34 %
XGBTree 2	81.38 +/- 0.46 %
XGBTree 3	81.27 +/- 0.46 %
XGBTree 4	81.31 +/- 0.40 %
XGBTree (Bal.)	74.73 +/- 1.04 %
Ensemble	81.37 +/- 0.43 %

KNN WITH PCA

KNN simple model, performed well

Curse of high dimensionality

- PCA

CONCLUSION

- Extensive Feature Analysis, a lot of redundant data
- Tree based models performed best but no free lunch.
- Class imbalance had a big effect, bad performance on functional needs repair class
- Ensemble as final model

Woohoo! We processed your submission!

Your score for this submission is:

0.8180

