robotics hw4 cv2

余承諺 r12922135

2023 / 12 / 09

Overleaf Link: https://www.overleaf.com/read/ynjwgqhqzdkw#f95c94

Regression

Extend camera matrix to homogeneous form 4 × 4 and denote as CameraMat. Objects position in base coordination, gripper coordination and image coordination are denoted as obj_base, obj_gripper and obj_img respectively. Under the pinhole camera, we can write the projection relation from base coordination to image coordination as.

$$\begin{bmatrix} \text{obj_img_w} \times \text{obj_img_d} \\ \text{obj_img_h} \times \text{obj_img_d} \\ \text{obj_img_d} \\ 1 \end{bmatrix} = \text{CameraMat} \times T_{\text{gripper to camera}} \times T_{\text{base to gripper}} \begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_y} \\ \text{obj_base_z} \\ 1 \end{bmatrix}$$

We have already known that

obj_img_d
$$\times \sqrt{\frac{\text{obj_area}}{\text{obj_area_factor}}} = \text{alpha}$$
 obj_img_d = alpha $\times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5}$

alpha only depends on object. Then

alpha only depends on object. Then
$$\begin{bmatrix} \text{obj_img_w} \times \text{alpha} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ \text{obj_img_h} \times \text{alpha} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ \text{alpha} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ 1 \end{bmatrix} = \begin{bmatrix} \text{alpha} & 0 & 0 & 0 \\ 0 & \text{alpha} & 0 & 0 \\ 0 & 0 & \text{alpha} & 0 \\ 0 & 0 & \text{obj_img_h}} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ (\frac{\text{obj_area_factor}}{\text{obj_area_factor}})^{-0.5} \\ (\frac{\text{obj_area_factor}}{\text{obj_area_factor}})^{-0.5} \\ 1 \end{bmatrix}$$
$$= \text{CameraMat} \times T_{\text{gripper to camera}} \times T_{\text{base to gripper}} \begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_x} \\ \text{obj_base_z} \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \text{alpha} & 0 & 0 & 0 \\ 0 & \text{alpha} & 0 & 0 \\ 0 & 0 & \text{alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \text{obj_img_w} \times \left(\frac{\text{obj_area}}{\text{obj_area_factor}}\right)^{-0.5} \\ \text{obj_img_h} \times \left(\frac{\text{obj_area}}{\text{obj_area_factor}}\right)^{-0.5} \\ \left(\frac{\text{obj_area}}{\text{obj_area_factor}}\right)^{-0.5} \end{bmatrix}$$

$$= \operatorname{CameraMat} \times T_{\operatorname{gripper\ to\ camera}} \times T_{\operatorname{base\ to\ gripper}} \left[\begin{array}{c} \operatorname{obj_base_x} \\ \operatorname{obj_base_y} \\ \operatorname{obj_base_z} \\ 1 \end{array} \right]$$

Merge alpha, CameraMat and $T_{gripper to camera}$ to $M_{camera_to_gripper}$. Then

$$T_{\text{base to gripper}}\begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_y} \\ \text{obj_base_z} \\ 1 \end{bmatrix} = \text{M_camera_to_gripper} \begin{bmatrix} \text{obj_img_w} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ \text{obj_area_factor} \\ (\frac{\text{obj_area_factor}}{\text{obj_area_factor}})^{-0.5} \\ (\frac{\text{obj_area_factor}}{\text{obj_area_factor}})^{-0.5} \\ 1 \end{bmatrix}$$

$$M_camera_to_gripper = T_{gripper}^{-1} \text{to camera} \text{CameraMat}^{-1} \begin{bmatrix} \text{alpha} & 0 & 0 & 0 \\ 0 & \text{alpha} & 0 & 0 \\ 0 & 0 & \text{alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Regressing to acquire M_camera_to_gripper. The regression process needs N cases ($N \ge 4$). Each case contains: 1. a captured image, 2. the transformation from base coordination to gripper coordination when the image is captured, 3. object locations in base coordination.

Inference

When inferring, $T_{\rm base\ to\ gripper}$ and M_camera_to_gripper show be known. obj_img and obj_area also can be detect from image. Then

$$\begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_y} \\ \text{obj_base_z} \\ 1 \end{bmatrix} = T_{\text{base to gripper}}^{-1} \text{M_camera_to_gripper} \begin{bmatrix} \text{obj_img_w} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ \text{obj_img_h} \times (\frac{\text{obj_area}}{\text{obj_area_factor}})^{-0.5} \\ (\frac{\text{obj_area_factor}}{\text{obj_area_factor}})^{-0.5} \\ 1 \end{bmatrix}$$