

Contents

1	\mathbf{Intr}	roduction	3				
	1.1	Formal Problem Statement	3				
		1.1.1 A Linear Mixing Model	3				
	1.2	Overview	4				
2	Principal Component Analysis						
	2.1	Formal Statement	6				
		2.1.1 Singular Value Decomposition	6				
	2.2	PCA Application to Blind Source Separation	7				
3	Ind	ependent Component Analysis	10				
	3.1	Limitations of the ICA Model	10				
	3.2	ICA in the Linear Mixing Model	11				
		3.2.1 Equivalent Specifications of ICA	11				
		3.2.2 Derivation of ICA Log Likelihood Function	11				
		3.2.3 Derivation of Stochastic Gradient Descent for ICA	11				
		3.2.4 Preprocessing	11				
	3.3	BSS by ICA	12				
	3.4	Limitations and Comparison with PCA	12				
4	Sing	gle Sensor Blind Source Separation	14				
	4.1	Time Frequency Signal Representation	14				
	4.2	Factoral Hidden Markov Model for BSS	15				
		4.2.1 Initialization	16				
		4.2.2 Separation	16				
	4.3	Results	16				
5	Con	nclusion	17				
\mathbf{A}	$\operatorname{Lit}\epsilon$	erature Review	18				
	A.1	Introduction	18				
	A.2	Literature Review Process	19				
	A.3	Literature Overview	19				
		A.3.1 Independent Component Analysis	19				

		A.3.2	Factoral Hidden Markov Models	? 1
	A.4	Conclu	nsion	22
	.1	Resear	ch Agenda	23
		.1.1	Background	23
		.1.2	Research Questions	23
		.1.3	Search Strategy	23
A	Mat	hemat	cical Concepts 2	26
	A.1	Linear	Algebra	26
	A.2	Statist	ics and Optimization	26
		A.2.1	Maximum Likelihood Estimation	27
		A.2.2	Mathematical Optimization	27
	A.3	Spectr	al Analysis	27
		A.3.1	Formal statement	27
	A.4	Gaussi	an Mixture Models	28
	A.5	Hidder	n Markov Models	28

Chapter 1

Introduction

Blabla... gpp

1.1 Formal Problem Statement

We now provide a notation leading to a mathematical statement of the blind source separation (BSS) problem. We let $\mathbf{S}(t) \in \mathbf{R}^n$ for t > 0, n > 0 denote the signals generated by n sources. Similarly, let $\mathbf{X}(t) \in \mathbf{R}^m$ for t > 0, n > 0 the observed sensor readings resulting from the emitted signals. A mixing model $f(\mathbf{S}, t)$ defines the relationship between source and observed signal:

$$X = f(S, t) \tag{1.1}$$

As only the observed value X is known, we need to determine the inverse $f^{-1}(S,t)$, that is, the *unmixing model*.

Single Sensor Blind Source Separation

A particular instance of the BSS problem, is the single sensor blind source separation (SSBSS) problem, to which we will devote particular attention. In the SSBSS problem, we have one or more source signals, but the observed signal $\boldsymbol{X}(t)$ is a scalar. This introduces problems as this instance does not lend itself to solutions by means of the "standard" methods we consider in the standard BSS problem. Chapter 4 is devoted to the SSBSS problem.

1.1.1 A Linear Mixing Model

The simplest mixing model is a noiseless, stationary linear mixing model. The stationarity assumption means that the mixing model does not change as a function of time, so the t argument in Equation 1.1 can be omitted. With T measurements, N sources, and M sensors, this model can be defined as:

$$X = AS \tag{1.2}$$

With $X \in \mathbf{R}^{N \times T}$, $\mathbf{A} \in \mathbf{R}^{N \times M}$ and $\mathbf{S} \in \mathbf{R}^{M \times T}$. The problem of determining the unmixing model now consists of computing the inverse $\mathbf{W} = \mathbf{A}^{-1}$, so that the original signal:

$$S = WX \tag{1.3}$$

can be recovered. This is to say that the estimate of the original signal j at time t is computed as the jth row of W times the tth column of X.

From Equation 1.2, we can see that the blind source separation problem, even in the simplest case, is ill-poised, as we are trying to determine $M \times T + N \times M$ parameters (both A and S) given only $N \times T$ (X). This implies that we need to impose some kind of assumptions on the nature of the data. These assumptions, often called the *generative model*, state something about the nature of the signals and how they are mixed. As will be made apparent later, which assumptions are made, gives rise to different solution approaches. For the purpose of this study, we will be quite restrictive in what assumptions we are willing make, hence the term *blind* source separation. The type of assumptions made are primarily related to statistical properties of the sources. The textbook assumptions are uncorrelated and independendent sources, leading to the PCA and ICA solutions, respectively¹.

1.2 Overview

In the next chapters we will be looking at a few different algorithms for solving various instances of the BSS problem. Each algorithm has its own merits depending to a large extent on the assumptions we make about the data. An overview of these follow in the Table 1.1.

Data characteristic	Method	Description
Uncorrelated sources.	PCA	Blabla
Independent, non-gaussian sources.	ICA	blabla
Fewer sources than observations.	HMM	blabla

Table 1.1: Overview over the different approaches to blind source separation covered in this report.

¹Under the assumptions that the number of observations are greater than or equal to the number of sources.

Chapter 2

Principal Component Analysis

Principal component analysis [1] (PCA) is a eigenvector-based, non-probabilistic technique that uses orthogonal projection to represent data in a lower dimensional subspace spanned by the k first eigenvectors of the covariance matrix. The eigenvectors form an orthogonal basis for the data such that a projection onto the eigenvectors will decorrelate the data. In the next section we will derive this result by maximizing the variance of an axis of projection.

PCA is useful in several applications, hereunder visualization and detection of so-called *latent variables*. The principal components (PCs) are the basis of the subspace onto which the data is projected, and are such that the variance explained by each component is maximized; that is, the first PC explains a higher proportion of variance than the second PC and so forth. We can therefore, by retaining only the first few components acheive a representation of the data containing the most of the variance exhibited by the assumption that the PCs accounting for the smallest portion of variance are noise.

The next section presents PCA from two different but equivalent perspectives; first solving for the direction of maximal variation using the method of Lagrange multipliers, and subsequently by singular value decomposition which. The latter is the more computationally efficient, and the rationale for this approach is easy to see once the first perspective is known. We then proceed to looking at how PCA can be applied to the blind source problem and how the assumptions made about the data affect the results of a real-world mixing case.

2.1 Formal Statement

Let $x_i \in \mathbf{R}^n$ denote the *i*'th observation of a dataset of m observations. We now want to project our data onto a vector \mathbf{u} in \mathbf{R}^n so as to maximize the variance of the resulting projection $\sum_{i=1}^m \mathbf{x}_i^T \mathbf{u}$ subject to the constraint $|\mathbf{u}| = 1$. Under the assumption that \mathbf{X} is standardized to zero mean and unit variance, the Lagrangian is then given by Equation 2.1:

$$\mathcal{L}(u,\lambda) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{x}_{i}^{T} \boldsymbol{u})^{2} - \lambda (\boldsymbol{u}^{T} \boldsymbol{u} - 1)$$

$$= \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{u}^{T} \boldsymbol{x}_{i})^{T} (\boldsymbol{x}_{i}^{T} \boldsymbol{u}) - \lambda (\boldsymbol{u}^{T} \boldsymbol{u} - 1)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{u}^{T} (\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}) \boldsymbol{u} - \lambda (\boldsymbol{u}^{T} \boldsymbol{u} - 1)$$

$$= \frac{1}{m} \boldsymbol{u}^{T} \sum_{i=1}^{m} (\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}) \boldsymbol{u} - \lambda (\boldsymbol{u}^{T} \boldsymbol{u} - 1)$$

$$= \frac{1}{m} \boldsymbol{u}^{T} \boldsymbol{\Sigma} \boldsymbol{u} - \lambda (\boldsymbol{u}^{T} \boldsymbol{u} - 1)$$

$$(2.1)$$

Here, $\Sigma = \sum_{i=1}^{m} x_i x_i^T$ is the covariance matrix. Setting the gradient of 2.1 equal to zero yields Equation 2.2:

$$\nabla_{u} \mathcal{L}(\boldsymbol{u}, \lambda) = \boldsymbol{\Sigma} \boldsymbol{u} - \lambda \boldsymbol{u} = 0 \tag{2.2}$$

Equation 2.2 shows that the direction of maximum variance u, which we will refer to as the first principal component, is the first eigenvector of the covariance matrix of the dataset. By similar means it can be shown that the second eigenvector points in the direction of largest variance *orthogonal* to the first eigenvector and so forth. Finally it is worth noting that the portion of the total variance explained by a principal component is proportional to its associated eigenvalue.

2.1.1 Singular Value Decomposition

For a high dimensional dataset (e.g. n = 10,000), which is frequently the case working with for instance image or video data, the covariance matrix will have $10,000 \times 10,000 = 100,000,000$ entries, which is computationally untractable. Hence, PCA is usually implemented in terms of singular value decomposition (SVD). For an $m \times n$ matrix \boldsymbol{X} , the SVD is a factorization such that:

$$X = USV^T (2.3)$$

Here, $U \in \mathbf{R}^{m \times m}$, $S \in \mathbf{R}^{m \times n}$, and $U \in \mathbf{R}^{n \times n}$. The SVD relates to the eigenvalue problem (Equation 2.2) as follows:

• The columns of U form the projections of X onto the eigenvectors V.

- The entries s_{ii} on the leading diagonal of S are the eigenvalues of $\Sigma = X^T X$.
- The top k columns of V are the top k eigenvectors of $\Sigma = X^T X$

In MATLAB, we can perform SVD by a single line of code (subsequent to standardizing the data to zero mean and unit variance):

Figure 2.1: Matlab code for SVD.

We will not go into the derivation of this result as SCD is covered in most textbooks on linear algebra or basic numerical mathematics. Rather, we will proceed to show how PCA can be applied to BSS, and what assumptions it requires us to make about the data.

2.2 PCA Application to Blind Source Separation

The top graph of Figure A.1 shows two periodic signals s_1 and s_2 contaminated by an additive Gaussian white noise with standard deviation $\sigma = .2$.

$$s_1 = \sin(\pi x) \quad 0 < x < 5$$

 $s_2 = \cos(7\pi x) \quad 0 < 5 < x$ (2.4)

The signals are subsequently mixed, as shown in the middle part of Figure A.1 by the matrix:

$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \tag{2.5}$$

where $\alpha = \pi/4$. Here the mixing matrix A corresponds to a rotation operator that will rotate the data by α radians in counterclockwise direction.

- The lower part of Figure A.1 shows the recovered signal¹.
- Example where it works whyExample where it fails why

¹The estimated unmixing matrix here is $\hat{W} = \hat{A}^{-1} = \begin{bmatrix} .7071 & .7071 \\ -.7071 & .7071 \end{bmatrix}$ which is, as expected, the inverse of A for the value of α above.

Figure 2.2: PCA Source Separation.

Figure 2.3: Standardized data points vs eigenvectors.

Figure 2.4: Standardized data projected onto eigenvectors.

Chapter 3

Independent Component Analysis

PCA finds the basis of a subspace in which the variance is maximized in the direction of the basis vectors and the covariance between the data is zero. ICA seeks to find basis vectors that are statistically independent, which is a stronger property than simply being uncorrelated as independence implies uncorrelatedness, while the opposite is not true. ICA in contrast to PCA does not have analytic solutions in the general case, so a numerical optimization method is usually applied in computing the ICA transform.

3.1 Limitations of the ICA Model

ICA imposes a few critical assumptions about the nature of the sources and the extentent to which they can be recovered. As in PCA, we cannot recover the original ordering of the signals; i.e. the rows of the source matrix S may be swapped in the resulting \hat{S} . Furthermore, the correct scaling of the source compents, including their sign cannot be recovered. This can be seen in that X = AS = (.5A)(2S).

The final limitation of ICA is that the source signals must be non-Gaussian. To see why this must hold, we rely on the fact that the multivariate gaussian distribution is rotationally symmetric, and that to fully recover the sources, we must be able to "undo" any rotation caused by applying the mixing operator. Consider a single observation $\mathbf{x} = \mathbf{x}(t) = \mathbf{A}\mathbf{s}(t) = \mathbf{A}\mathbf{s}$. The covariance matrix of \mathbf{x} is

$$\mathbb{E}(\boldsymbol{x}\boldsymbol{x}^T) = \boldsymbol{A}\boldsymbol{s}(\boldsymbol{A}\boldsymbol{s})^T = \boldsymbol{A}\boldsymbol{s}\boldsymbol{s}^T\boldsymbol{A}^T = \boldsymbol{A}\boldsymbol{A}^T$$
(3.1)

Now, let R be a rotation operator and A' = AR.

3.2 ICA in the Linear Mixing Model

3.2.1 Equivalent Specifications of ICA

ICA can be derived by several different approaches:

- Maximum likelihood
- Kurtosis maximization
- Maximum differential entropy
- Blabla..

3.2.2 Derivation of ICA Log Likelihood Function

Let $p_s(s_i)$ be the probability density function for source i, then, assuming the sources are independent the joint distribution of all the n sources is given by the product of the marginals:

$$p(s) = \prod_{i=1}^{n} p_s(s_i) \tag{3.2}$$

We now substitute in the unmixing model (Equation 1.3) and obtain:

$$p(s) = \prod_{i=1}^{n} p_s(WX) \cdot |W| \tag{3.3}$$

The unmixing matrix is the target parameter of our maximum likelihood approach. That is, we seek set the coefficients of the unmixing matrix so as to maximize the likelihood of observing the actual data. If our dataset consists of T observations $X = \{x_1, x_2, ..., x_T\}$, the log-likelihood function is:

$$l(W) = \log Prob(X|W) = \sum_{t=1}^{T} \log p_s(WX) + \log |W|$$
 (3.4)

As the ICA is incompatible with a Gaussian source distribution, common choices for specifying P_s include the sigmoid $p_s(s) = \frac{1}{1+e^{-s}}$ and hyperbolic tangent $(\tanh(s))$.

3.2.3 Derivation of Stochastic Gradient Descent for ICA

Given the log likelihood function of Equation 3.4, we will now show how this can be maxmimized by stochastic gradient descent. This derivation leads directly to a working MATLAB implementation shown in Figure ??.

3.2.4 Preprocessing

Whitening transform...

STFT?

```
for i = 1:Niter
    w = update(x,w);
  end
  function w = update(x,w)
    x=x(:,perm);
    t=1;
    noblocks=fix(P/Blocks);
    BlocksI=Blocks*Id;
    for t=t:Blocks:t-1+noblocks*Blocks,
     u=w*x(:,t:t+Blocks-1);
11
     w=w+alpha * (BlocksI + ...
        (1-2*(1./(1+exp(-u))))*u') * w;
   end
14
  end
```

Figure 3.1: MATLAB code for ML ICA by stochastic block gradient descent.

3.3 BSS by ICA

3.4 Limitations and Comparison with PCA

Refer to section 2.2 in discussion.

Figure 3.2: ICA on a 2×2 BSS problem. Note the "sign reversal" for the blue sine wave (cf. Section 3.1).

Figure 3.3: Separating a speech signal (top left) from background music (top right) by ICA. Here we also observe that the sign of the original speech signal is reversed in the bottom right recovered signal.

Chapter 4

Single Sensor Blind Source Separation

Single sensor BSS¹ is a particularly important case of the BSS problem where the observed signal consists of only a scalar value at any point in time as if the source signals were recorded a sole microphone. This presents us with particular challenges, and we often need to make further assumptions about the data generating process – i.e. we need a more complex generative model.

In this chapter we present a solution to the single sensor BSS problem proposed by Roweis (XXXX)[2] that relies on a factoral hidden markov model system. The key idea put forward by Roweis is to learn the transition and sensor models for every source separately using a time-frequency representation of the original signal.

This chapter is structured as follows. Section 4.1 provides an introduction to the time-frequency domain signal representation which is common in most single channel audio separation models. Section 4.2 then describes the factoral hidden markov for blind source separation in terms of a two signal mixture before we conclude by looking at some results from our implementation of the model.

4.1 Time Frequency Signal Representation

A time frequency representation (TFR) is a redundant signal representation in comparison to a simple time domain representation that contains only the amplitude values at given point in time. A TFR is often preferred to a perfect frequency or Fourier domain representation as the latter contains no information about the temporal location of events.

|....|

¹Also called single channel BSS.

```
window = 256; noverlap=250; nfft=256; Freq = 16000; [S,F,T,P] = spectrogram(s1,window,noverlap,nfft,Freq);
```

Figure 4.1: MATLAB code for computing the short term Fourier transform of a signal sampled at 16kHz with given parameter. P is here the power spectral density (PSD) of the signal.

Figure 4.2: Spectrogram of male voice counting from one to ten.

4.2 Factoral Hidden Markov Model for BSS

We will now describe the factoral HMM for blind source separation as put forward by Roweis in a two signal setting. We adopt the following notation: for each timestep $t \in \{1, 2, 3, ..., T\}$, \mathbf{X}_t denotes the M-dimensional spectral vector of power spectral intensities over the finite set of frequency values \mathcal{F} . We note that while the set of frequencies are discrete, the intensities x_{it} are real-valued, hence we adopt a real valued emission model, as discussed later.

The FHMM is essentially a supervised learning method, and the learning process consists in estimating a separate HMM based on separate (clean) recordings of the particular source. That is to say, the learning part consists entirely in learning a probability model of each source.

For a given source, the training phase then consists in training a HMM with a discrete (latent) state space \mathcal{Z} , and a continuous emission distribution $\mathbf{P}(\mathbf{X}|\mathbf{Z})$. The emissions model will produce intensity vectors \mathbf{X}_t as described

in the preceding paragraph.

4.2.1 Initialization

The factoral hidden markov model consists of one HMM per speaker which is trained on separate non-mixed training data for each source.

The initialization of the FHMM training consists in estimating the emission probabilities P(X|Z) (see figure, lag figur). While Roweis operates with a finite state model for the latent variables, the observable variables are real valued intensities. This indicates that a mixture model may be appropriate in the inital estimate of the emission model (vis til andre artikler med samme greier).

We follow Roweis in estimating a Gaussian mixture model with a single shared covariance matrix Σ . For a spectrogram with N frequency bands, our approach is to estimate a GMM with k N-dimensional components or latent variables. The mean vector $\mu_i \in \mathbb{R}^N$ for each component i represents the expected intensity (power spectral density value) in each frequency band given that the system is in state i. The pair $(\{\mu_i\}, \Sigma)$ then forms the initial parametrization of the emissions model.

4.2.2 Separation

Next, consider the problem of recovering the original sources² $\mathbf{S} = \{S_1, S_2\}$ given the observed sequence $\{\mathbf{Y}(t)\}, t \in \{1, 2, 3, ..., T\}$ which we take to be spectral vectors as discussed above. As before, we let $z_k(t), i \in \{1, 2\}$ denote the value of the latent variable for each HMM.

A key question in the separation process is how the observable signal generated by full FHMM relates to the observable values for each of the underlying HMMs. This question addresses a property of the *data generating model*, and must reflect properties of the physical system we are trying to model. In the case of auditory signals, Roweis argues for model whereby the observed value equals the maximum value of the observable values $\mathbf{X}_k(t)$ of the underlying HMMs with an additive gaussian noise:

$$\mathbf{Y}(t) = \Phi(\{\mathbf{X}_1(t), \mathbf{X}_2(t)\}^+, \Sigma) \tag{4.1}$$

For a further discussion on the rationale behind the log-max approximation, see [REFERANSER].

4.3 Results

²For simplicity, we will here frame the problem in terms of two sources.

Chapter 5

Conclusion

todo.

Appendix A

Literature Review

A.1 Introduction

The blind source separation problem refers to the process of recovering one or more signals that have been mixed in some unknown manner and possibly also contamined by noise. Without any assumptions on the mixing process, this problem is ill-poised. In practice therefore, all BSS methods rely on some stylized fact about the nature of the signals and/or the mixing process. It is therefore useful to dichotomize BSS methods by these assumptions.

Arguably, two of the most important facts characterizing a mixing process, are its temporal dynamics and the number of degrees of freedom. The first point refers to whether the nature of the mixing process changes over time, that is if the mixing matrix at time t+k is different from that at time t for k>0. The number of degrees of freedom is the same concept as in linear algebra - the connection is apparent by seeing the mixing process as a system of linear equations. If m is the number of observed signals and n the number of sources, the system is said to be underdetermined if m < n and conversely overdetermined if m > n.

We can also differentiate between method based on the nature of input data. Early BSS research often considered the case of n=m, which allows one to work with data in the time domain. For undetermined systems, it is commonplace to work with some transformation of the data, which in the case of audio data a time-frequency representation. Common methods include the *short-term Fourier transform* and the *wavelet transform*.

The organization of this study is as follows. Section A.2 will briefly summarize the literature review process, which is further documented by the underlying research protocol given in Appendix .1. Section A.3 is a short description of the different techniques and methodologies found, summarised in section A.4.

Figure A.1: Stationary linear mixing process and separation.

A.2 Literature Review Process

The literature review process was conducted by searching the listed databases for published articles containing the predefined search terms. The table below shows the amount of results presented to us when using the more general of our search terms.

Search term	CiteSeerX	Google Scholar	SpringerLink
blind source separation	292581	698000	13143
blind audio source separation	28612	26000	1072
single channel blind source separation	275543	78600	5024

Table A.1: Magnitude of hits on the most general terms

Since the search terms we had defined gave us a large amount of results, we prioritized newer papers over older ones as per the Appendix .1.

A.3 Literature Overview

A.3.1 Independent Component Analysis

Among the most common approaches to blind source separation is independent component analysis (ICA). Common definitions of ICA use either the maximization of independence or minimization of mutual information between the source signals¹. Formally, we can state the ICA problem in terms

¹It should be noted that while this text presents ICA in terms of blind source separation, the method is applicable to a wide array of machine learning problems including dimension reduction, classification, and de-noising.

of a generative model of the observed signals \mathbf{x} , and the unknown a mixing matrix \mathbf{W} and source signals \mathbf{s} :

$$\mathbf{x} = \mathbf{W}\mathbf{s} \tag{A.1}$$

The AIM of the ICA process is to estimate the inverse mixing process along with the original signals.

The classical reference on ICA is [1], where the method of minimization of mutual information between sources is presented. [1] also presents an analysis of the ambiguities and limitations of ICA, hereunder the permutation of sources, scaling and non-gaussianity.

There are several equivalent statements of ICA, which yields different interpretations and computational models. [2] proposes minimizing mutual information between sources, as measured by differential entropy. In this implementation a feed-forward neural network structure is proposed. Other approaches include conventional maximum likelihood ([3]) and maximization of non-gausianity as measured by excess kurtosis. A popular approach is the FastICA algorithm ([6]) that minimizes mutual information expressed by negentropy by a fixed point method.

The classic studies on ICA focus to a large extent on developing the formal framework for ICA, and examples are largely centered on time domain analysis in systems of an equal number of sensors and sources². ICA has however been extended to underdetermined systems and the extreme case of single sensor systems.

Many of these extensions are to a lesser extent changes to the previously known algorithms; rather they involve transforming the observed signals from the time domain to some other basis, the most common of which are the frequency domain (Fourier transform), the time-frequency domain (short-term Fourier transform) and the wavelet domain. Compared to the time domain, the two latter are redundant representations, but they transform the data so as to be suited for ICA. [10] surveys variations on ICA as applied to single channel recordings, hereunder single channel ICA (SCICA) and wavelet ICA (WICA), in addition to proposing an algorithm that combines ICA with empirical mode decompostion (EMD). EMD decomposes a signal into independent components in the spectral domain and can be viewed as similar to STFT.

The abovementioned approaches represent a select set of common approaches to the BSS problem. Other approaches rely to a larger extent on direct application of knowledge about the human auditory system. As an example [5] focuses on the problem on single channel speech separation in the spectral domain by means of feature maps where the features roughly corresponds to "audible" features such as common onset, pitch, timbre and so forth.

²For a much more thorough survey on the classical literature on ICA, see [4].

A.3.2 Factoral Hidden Markov Models

The Hidden Markov modelling has been around since the late 1960s. Roweis[7] proposes a technique called refiltering, where the idea is to separate sources in a mixed or corrupted recording. This is achieved through non stationary masking of the different frequency sub-bands from the target recording. Different sources may be isolated in the recording by changing the masking parameters. Using regularities in the spectrogram produced by a recording, it is possible to set the masking parameters, eg. common onset and offset.

Figure A.2: Hidden Markov Model

Training speaker dependent HMMs on isolated data from the sources to be separated, these models are then combined together in an architecture called factorial-max HMMs. The different HMMs evolve independently and for each observation vector produced at time t by each HMM, the elementwise maximum is chosen to create an observation. This is because the log magnitude spectrogram of a mixture of sources is very similar to the elementwise maximum of the individual spectrograms³. Separation is performed by setting the various masking signals to 1 or 0, depending on the observation vector at time t for frequency band i.

The full generative model is given in Equations A.2 - A.4.

$$p(x_t = j | x_{t-1} = i) = T_{ij} (A.2)$$

$$p(z_t = j | z_{t-1} = i) = U_{ij} \tag{A.3}$$

$$p(y_t|x_t, z_t) = N(\max[a_{x_t}, b_{z_t}], R)$$
(A.4)

³This example was performed on two speakers. a_{xt} is the observation vector for speaker x at time t, likewise is b_{zt} the observation vector for speaker z at time t

Figure A.3: Factorial Hidden Markov Model

A.4 Conclusion

In this survey we have provided an overview over some techniques in blind source separation. Early work on blind source separation focused to a large extent on time domain ICA. In extending the BSS problem to multiple sources, the classical ICA method has been augmented by adopting different signal representations, where the time-frequency domain is particularly common. Different methods have also been introduced, some borrowing from the human auditory system attempting to hard-code domain specific knowledge. Others adopt different algorithms; one important example here being hidden markov models (HMMs). This is a very flexible approach to BSS as it allows for non-stationary mixing, and relaxes many of the stringent assumptions of classical ICA.

.1 Research Agenda

The aim of this study is to systematically review current technology for blind source separation (BSS), with particular emphasis on the particular subproblem of single channel blind source separation (SCBSS); that is, the recovery of several source signals from one observed signals.

.1.1 Background

The blind source separation problem consists transforming a set of observed signals that has undergone some particular mixing process back to the original unobserved signals. The "blind" part of the problem refers to the fact that the nature of the mixing process is unknown. From original research on the blind source separation problem, focus has shifted from the case where with as many, or more recording channels than original sources, to the case of fewer channels than original sources. An important subproblem that we wish to focus on is where we have only one recording and attempt to recover multiple sources.

Our approach is two-fold: firstly we wish to look at studies about the performance of current single channel separation methods. Secondly, we wish to gain a broader overview over the state of research on BSS.

.1.2 Research Questions

- 1. What are the different variations on the blind source separation problem, in particular as pertains to audio data.
- 2. Which methodologies and algorithms are applied to the different variations of the blind source separation problem as identified in Question 1.
- 3. What are the theoretical properties of the techniques identified in Question 2, and what assumptions do they make about the nature of the sources and the mixing process?
- 4. What empirical evidence is there to document the performance of the techniques identified in Question 2 as applied to the problems identified in Question 1?

.1.3 Search Strategy

In reviewing the BSS literature we conduct a search of the below databases based on a set of keywords listed below. To filter the results we introduce a set of criteria to judge the relevance and quality of the results.

Databases

- SpringerLink
- CiteSeerX
- Google Scholar

List of Search Terms

blind source separation, single channel blind source separation, single mixture blind source separation, hidden markov blind source, single microphone blind source separation, blind source separation review, blind source separation survey, pca blind source separation, ica blind source separation, principal component analysis blind source separation, independent component analysis blind source separation.

Inclusion and Quality Criteria

We wish to study how various methods and/or approaches by which blind source problem is solved, which constraints are imposed by these methods, and how well a BSS system based on these ideas perform on real-life data. To filter out the most important studies to this end, we adopt the following criteria.

Inclusion Criteria

- 1. The main concern of the study is the BSS problem.
- 2. The algorithmic design decisions in the study must be justified.
- 3. The study describes a reproducible algorithm/method.
- 4. The study focuses on blind source separation of auditory signals.

Quality Criteria

- 1. The study presents empirical results.
- 2. More recent studies are preferred.
- 3. The described test data set is reproducible.
- 4. The study should present novel theoretical approaches/methodologies OR empirical results about previously known methods.
- 5. Literature reviews should discuss single channel blind source separation.
- 6. The study should describe which other algorithms/methods the proposed solution can be compared with and the performance measure used in comparison.

Bibliography

- [1] Comon, P. (1994). "Independent Component Analysis: a new concept?", Signal Processing, 36(3):287–314
- [2] Bell, A.J. and Sejnowski, T.J. (1995)., "An information maximization approach to blind separation and blind deconvolution", Neural Computation, 7, 1129-1159
- [3] Pearlmutter, B. A. and Parra, L. C.(YYYY), "A Context-Sensitive Generalization of ICA".
- [4] Hyvarinen A (2001), "Independent Component Analysis", Neural Computing Surveys, Neural Computing Surveys, vol 2.
- [5] Bach, F.R. and Jordan, M.I. (2004), "Blind One-Microphone Speech Separation: A Spectral Learning Approach".
- [6] Hyvärinen, A. (1999), "Fast and Robust Fixed-Point Algorithms for Independent Component Analysis". IEEE Transactions on Neural Networks 10(3):626-634, 1999.
- [7] Sam T. Roweis(2001). "Neural Information Processing Systems 13" (NIPS'00). pp. 793-799
- [8] Davies, M.E. and James, C.J. (2007). "Source separation using single channel ICA", Signal Process., vol. 87, no. 8, pp. 1819–1832, 2007.
- [9] Cardoso, J. L.(1998), "Multidimensional Independent Component Analysis", Proceedings of ICASSP 1998.
- [10] Mijovic, B. De Vos, M., Gligorijevic, I., Taelman, J. and Van Huffel, S. (2010), "Source Separation From Single-Channel Recordings by Combining Empirical-Mode Decomposition and Independent Component Analysis", IEEE Transactions on Biomedical Engineering, vol. 57, no. 9, September 2010

Appendix A

Mathematical Concepts

In this appendix we will provide a brief background on some of the mathematical notions that are central to understanding the methods used in this report.

A.1 Linear Algebra

In this section we will define a few important concepts that are necessary. These concepts are particularly important for understanding PCA, but are also relevant in the analysis of markov models. With stationary transition probabilities, the steady state distribution of the system is the solution to the eigenvector-eigenvalue problem.

The Eigenvector - Eigenvalue Problem

Singular Value Decomposition

A.2 Statistics and Optimization

A large portion of machine learning relies on statistical methods; the methods considered in this report being no exception. As the learning problems having relevance in practical life are often far too complex to describe by analytic formulae, we therefore often need mathematical methods to find models that have the best fit to the observed data.

In this section, we therefore consider one very important method for finding "optimal" parameters in a given model; the maximum likelihood method which is presented in Section A.2.1. We then proceed to show how to actually solve the resulting maximization in Section A.2.2.

A.2.1 Maximum Likelihood Estimation

ML estimation is a method for determining the parameters of a statistical model by setting the parameters so as to maximize the *likelihood* of observing the actual data under the given model. Denoting $f(X|\Theta)$ the probability distribution of $X = \{x_1, x_2, ..., x_n\}$ with parameters $\Theta = \{\theta_1, \theta_2, ..., \theta_m\}$, the maximum likelihood estimate of Θ solves EquationA.1

$$\arg\max_{\Theta} f(\boldsymbol{X}|\boldsymbol{\Theta}) \tag{A.1}$$

An important case is if the x_i are i.i.d., where the joint density is the product of the marginal densities. This means we can write the likelihood function f as Equation A.2.

$$f(\boldsymbol{X}|\boldsymbol{\Theta}) = \prod_{i=1}^{n} f(x_i|\boldsymbol{\Theta})$$
 (A.2)

The solution to an optimization problem is the same under any monotone transformation. Therefore it is often times useful to deal with the log-likelihood function instead of f directly.

A.2.2 Mathematical Optimization

The Lagrange Multiplier Method

Gradient Descent

A.3 Spectral Analysis

In working with hidden markov models for blind source separation, we rely on a redundant signal representation in the time-frequency domain, rather than the standard representations in the time domain. Such a representation is advantageous in comparison with a pure spectral representation as the latter contains no information on when different components of a signal occur in time. While many different time-frequency representations exist, our presentation relies on the *short-term Fourier transform* (STFT).

The time-frequency representation, often called a *spectrogram* produced by the STFT maps the energies in various parts of the spectrum over the timespan of the signal. For a low amplitude portion of the signal will have its energy concentrated in the upper part of the spectrogram and vice versa. This is illustrated in Figure XX.

[[[[[[[[FIGURE HERE!!!]]]]]]]

A.3.1 Formal statement

Equation A.3 defines the discrete time STFT for the nth segment (which is centered around m):

$$STFT\{x[n]\}(m,\omega) = X(m,\omega) = \sum_{n=-\infty}^{\infty} x[n]\omega[n-m]e^{-i\omega n}$$
 (A.3)

Here, ω is a zero centered window function, typically uniform or gaussian. The window determines which part of the signal x is to be included in the spectrogram near m. In practice, the STFT is computed using the fast fourier transform (FFT). To better allow for visualization of the STFT, which is a complex number, the spectrogram is defined as the squared magnitude of the STFD (Equation A.4).

$$\operatorname{spectrogram}\{x[n]\}(m,\omega) = |X(m,\omega)|^2 \tag{A.4}$$

A.4 Gaussian Mixture Models

A gaussian mixture model (GMM) is latent variable model that gives a tractable representation of high-dimensional probability distribution. Let Z be a multinomial random variable taking on values $z \in \{1, 2, 3, ..., N\}$ and $\{X_i\}$, $i \in \{1, 2, 3, ..., N\}$ be a set of (multivariate) Gaussian random variables. If X and Z har the joint distribution (A.5) then we say X and Z has a gaussian mixture distribution:

$$\mathbb{P}(X,Z) = \mathbb{P}(X|Z)P(Z) = \sum_{i=1}^{N} \Phi(X_i, \mu_i, \Sigma_i) M n_N(Z)$$
 (A.5)

Here, $\Phi(X, \mu, \Sigma)$ denotes X having a gaussian distribution with expectation vector μ and covariance matrix Σ), and $Mn_N(Z)$ denotes Z having an N-valued multinomial distribution.

A common interpretretation of the gaussian mixture model is for Z to represent a latent or hidden variable describing the state of a system, while X is some observable quantity depending on the state of the system.

A.5 Hidden Markov Models

A hidden markov model (HMM) is a probabilistic model relating two sequences of discrete random variables $S = \{S_1, S_2, ..., S_T\}$ and $\mathcal{X} = \{X_1, X_2, ..., X_T\}$. We will refer to S as the *source* or *hidden* variable, and \mathcal{X} as the *observed* variable. Often, we assume there is some causal relationship whereby the hidden variable affects the observable, but this does not need be the case.

A HMM consists of two probabilistic statement; the *transition* model:

$$\mathbb{P}(S_t|S_{t-1}, S_{t-2}, ..., S_1) \tag{A.6}$$

and the sensor or observation model:

$$\mathbb{P}(X_t|S_t, S_{t-1}, X_{t-1}, ..., S_1, X_1) \tag{A.7}$$

The order of a markov model is the number of realizations of S conditioned on in the transition model. In order to make HMMs computationally tractable, we often operate with 1st order markov models:

$$\mathbb{P}(S_t|S_{t-1}, S_{t-2}, ..., S_1) = \mathbb{P}(S_t|S_{t-1}) \tag{A.8}$$

This can be stated as as "the future being conditionally independent of the past given the present". Another common simplification is known as the markov sensor model assumption:

$$\mathbb{P}(X_t|S_t, S_{t-1}, X_{t-1}, ..., S_1, X_1) = \mathbb{P}(X_t|S_t)$$
(A.9)

The sensor markov assumption states that the sensor is independent of everything else given the current value of the hidden variable.

Bibliography

- [1] Pearson, K. (1901). "On Lines and Planes of Closest Fit to Systems of Points in Space". Philosophical Magazine 2 (6): 559–572.
- [2] Roweis, S. T. (XXXX). "One Microphone Source Separation". ?????
- [3] Russell, S. and Norvig, P. (XXX). "Artificial Intelligence: A Modern Approach". XXXX