Exam 6: Next Monday... 9:10 am. Sleep lots! (8/4)

Final Exam, next Friday (8/8), 8:30 am

Final Exam Review Lecture: Tues, 8/5, 8:30 am

LECTURE TODAY BEGINS 9:45 am

Week 6
$$H^+ \sim : NH_3 = NHY$$

July 28, 2014

An Introduction to Amines: Basicity of Nitrogen

What is an amine? Show some examples of amines.

What factors determine the **basicity** of an amine? Rank the following molecules in order of decreasing basicity (1 is the most basic), and explain your reasoning.

Reading: Section 23.5

Reactions of Amines with Carbonyl Compounds

You already know some reactions of amines. What reactions do you know in which amines react with carbonyl compounds?

border line, Conjugate Reading: Section 23.7

S_N2 Reactions of Ammonia and Amines

What happens if you combine ammonia with ethyl bromide? Show the mechanism and product(s) of this reaction.

Synthesis of 1° Amines

We **cannot** use the following $\underline{S_N2}$ reaction to synthesize a primary amine. Why?

The following sequence of reactions can be used to synthesize primary amines through an $S_N 2$ pathway. How does this work?

S_N2 pathway. How does this work?

$$\frac{\text{NaN}_3}{\text{Sodium}} \qquad \frac{\text{NaN}_3}{\text{Sodium}} \qquad \frac{\text{NaN$$

Primary amines can also be synthesized by the **reduction of nitriles**. Show how this process can be used to synthesize the following amine from bromocyclopentane:

Br

$$R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$$

NACH

 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1}{2} \frac{A \cdot W_{q}}{H^{2}} R^{2}$
 $R - C = N \frac{1$

Reading: Section 23.11

Synthesis of 2° & 3° Amines

Secondary and tertiary amines also cannot be synthesized by a direct S_N2 reaction. Why?

You already know one method for synthesizing 2° or 3° amines. What is that method, and how can it be used to synthesize the following amine?

Another very useful synthesis of 2° or 3° amines is **reductive amination**. Show the mechanism of this reaction. How can it be used in synthesis?

Amines from Conjugate Addition

You also know two ways to synthesize amines that involve conjugate addition to an α,β -unsaturated carbonyl compound. What are those methods?

obscure - but nifty

Week 6

July 28, 2014

Amines from Nitrile Enolates

The following amine is fairly challenging to synthesize. Why?

+B(NACN) XCIN H2, PJ/C
NH2
NH2
NH2

How can that amine be synthesized by a route that involves a nitrile enolate?

2° bromède -> 3° nitribe

131

The Mannich Reaction

The reaction between an enol and an iminium ion is called the **Mannich reaction**; provide a mechanism for this transformation:

Why only one iminium ion?

- 1) Aldehydes are more readive than ketones
- 2) Only one enolizable carbony

ketone + amine + aldehyde -> p-amino carbony

How can the Mannich reaction be used in synthesis?

Making Cocaine:

Part 1 – The Strategy

Here is the structure of the natural product **cocaine**. Let's do some retrosynthetic analysis:

How could the Mannich reaction be used in synthesis of cocaine?

Making Cocaine:

Part 2 – The Details

Show the detailed mechanism of the "Mannich synthesis" of this precursor to cocaine: