Detect an object in an image based on its shape

Part A: Detecting Circles in an Image

Goal:

Identify objects in an image whose contours have a circular shape.

Idea:

- 1. Load Image (folder "images").
- 2. Isolate objects with a circular shape.
- 3. Draw red circles at the centers of these isolated objects and draw green circles around these isolated objects.
- 4. Visualize the result.

Hints:

- 1. OpenCV comes with a built-in method for detecting circles.
- 2. Finding the right parameters for the above method can be key to getting good results for you solution.
- 3. Post-processing the results from the built-in method can also improve overall results.
- 4. There should be only one circle per object and no circles for non-circular objects.
- 5. Initially train your solution on the image "circles_simple.png".
- 6. The quality of your solution will be graded based on your results from "circles_target.jpg".

Example:

Figure 1. Circle Detection Results (left: circles_simple.png. right: circles_target.jpg)

Part B: Detecting Lines and Line-Intersections in an Image

Goal:

Identify object-contours in an image which resemble a straight-line and identify the points at which they intersect with each other

Idea:

- 1. Load image (folder "images").
- 2. Isolate object contours resembling a straight line.
- 3. Draw a green line across the image along each of these isolated contours.
- 4. Calculate the intersections point between the each line.
- 5. Draw a small red circle around each of these intersection points.
- 6. Visualize the result.

Hints:

- 1. OpenCV comes with a built-in method for detecting lines.
- 2. Some pre-processing of the original image is required before using the above method.
- 3. Post-processing the results from the built-in method can improve overall results.
- 4. There should be only one line per straight object side and no lines for circular objects.
- 5. Initially train your solution on the image "lines_simple.png".
- 6. The quality of your solution will be graded based on your results from "lines_target.jpg".

Example:

Figure 2. . Line Detection Results (left: lines_simple.png. right: lings_target.jpg)

Helpful Methods:

Helpful Methods	Description
Circle Detection	<u>Link</u>
Line Detection	<u>Link</u>
Drawing Functions	<u>Link</u>
Feature Detections	<u>Link</u>
Image Filtering	<u>Link</u>