Data Structures and Algorithms

Data Structures and Algorithms

Lecture 11 – Priority Queues-Binary Heaps

Miao Zhang

Priority Queues

- > Many applications require that we process records with keys in order, but not necessarily in full sorted order.
- ➤ Often we collect a set of items and process the one with the current minimum value.
 - > e.g. Cases in a hospital emergency room
 - > Operating system job scheduler in a multi-user environment
 - > Simulation environments
- > An appropriate data structure is called a *priority* queue.

Definition

A priority queue is a data structure that supports two basic operations: insert a new item and remove the highest priority item.

Priority Queues

- ➤ A priority queue is a collection of zero or more elements → each element has a priority or value
- ➤ Unlike the FIFO queues, the order of deletion from a priority queue (e.g., who gets served next) is determined by the element priority
- Elements are deleted by increasing or decreasing order of priority rather than by the order in which they arrived in the queue

Priority Queues

- > Operations performed on priority queues
 - 1) Find an element,
 - 2) insert a new element,
 - 3) delete an element, etc.
- > Two kinds of (Min, Max) priority queues exist
- ➤ In a Min priority queue, find/delete operation finds/deletes the element with minimum priority
- ➤ In a Max priority queue, find/delete operation finds/deletes the element with maximum priority

Simple Implementations

- ➤ A simple linked list:
 - \succ Insertion at the front (O(1)); delete minimum (O(N)), or
 - > Keep list sorted; insertion O(N), deleteMin O(1)
- > A binary search tree:
 - \triangleright This gives an O(log N) average for both operations.
 - > But BST class supports a lot of operations that are not required.
- **➢** Binary Heap
 - > will support both operations in O(logN) wost-case time.

Binary Heap

- The binary heap is the classic method used to implement priority queues.
- > We use the term heap to refer to the binary heap.
- > Heap has two properties:
 - >Structure property
 - **≻Ordering property**

Structure Property

A heap is a *complete binary tree*, represented as an array.

A complete binary tree is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Properties of a complete binary tree

- A complete binary tree of height h has between 2^h and $2^{h+1}-1$ nodes
- The height of a complete binary tree is log N.
- > It can be implemented as an array such that:
 - For any element in array position i:
 - \succ the left child is in position 2i,
 - the right child is in the cell after the left child (2i + 1), and
 - > the parent is in position $\lfloor i/2 \rfloor$.

Array Representing of A Complete Binary Tree

From node i:

left child: right child: parent:

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap-Order Property

- ➤ In <u>a min-heap</u>, for every node X with parent P, the key in P is smaller than or equal to the key in X.
- > Thus the minimum element is always at the root.
 - Thus we get the extra operation findMin in constant time.
- ➤ A max-heap supports access of the maximum element instead of the minimum, by changing the heap property slightly.

Examples

Two complete trees: (a) a min-heap; (b) not a heap

Min-Heap – Two views

Heaps

Max-Heap?

Min-Heap?

Heap Operations

- > Insert
- > Delete Min
- > Build Heap

Basic Heap Operations: Insert

- > To insert an element X into the heap:
 - > We create a hole in the next available location.
 - ➤ If X can be placed there without violating the heap property, then we do so and are done.
 - >Otherwise
 - we bubble up the hole toward the root by sliding the element in the hole's parent down.
 - ➤ We continue this until X can be placed in the hole.
- > This general strategy is known as a percolate up.

Min-Heap - Insert Operation (1)

MinHeap – Insert operation (2)

MinHeap - Insert operation (3)

MinHeap – Insert operation (4)

MinHeap – Insert operation


```
/**
1
          * Insert item x, allowing duplicates.
3
        void insert( const Comparable & x )
5
             if( currentSize == array.size( ) - 1 )
6
                 array.resize( array.size( ) * 2 );
8
                 // Percolate up
10
             int hole = ++currentSize;
11
             Comparable copy = x;
12
13
             array[ 0 ] = std::move( copy );
14
             for(; x < array[hole / 2]; hole /= 2)
                 array[ hole ] = std::move( array[ hole / 2 ] );
15
             array[ hole ] = std::move( array[ 0 ] );
16
17
```

Delete Minimum

- deleteMin is handled in a similar manner as insertion:
- > Remove the minimum; a hole is created at the root.
- The last element X must move somewhere in the heap.
 - > If X can be placed in the hole then we are done.
 - **➤** Otherwise,
 - ➤ We slide the smaller of the hole's children into the hole, thus pushing the hole one level down.
 - > We repeat this until X can be placed in the hole.
- > deleteMin is logarithmic in both the worst and average cases.

Heap – RemoveFirst

Basic Idea:

- 1. Remove root (that is always the min!)
- 2. Put "last" leaf node at root
- 3. Find smallest child of node
- 4. Swap node with its smallest child if needed.
- 5. Repeat steps 3 & 4 until no swaps needed.

MinHeap - RemoveFirst operation (1)

MinHeap – RemoveFirst operation (2)

MinHeap - RemoveFirst operation (3)

MinHeap - RemoveFirst operation (4)

Heap – Remove


```
/**
          * Remove the minimum item.
          * Throws UnderflowException if empty.
 5
         void deleteMin()
             if( isEmpty( ) )
 8
                 throw UnderflowException{ };
 9
10
             array[ 1 ] = std::move( array[ currentSize-- ] );
11
             percolateDown(1);
12
13
14
15
          * Remove the minimum item and place it in minItem.
16
          * Throws UnderflowException if empty.
17
18
         void deleteMin( Comparable & minItem )
19
20
             if( isEmpty( ) )
21
                 throw UnderflowException{ };
22
23
             minItem = std::move( array[ 1 ] );
24
             array[ 1 ] = std::move( array[ currentSize-- ] );
25
             percolateDown(1);
26
27
28
29
         * Internal method to percolate down in the heap.
30
          * hole is the index at which the percolate begins.
31
         */
         void percolateDown( int hole )
32
33
34
             int child;
35
             Comparable tmp = std::move( array[ hole ] );
36
37
             for( ; hole * 2 <= currentSize; hole = child )
38
39
                 child = hole * 2;
40
                 if( child != currentSize && array[ child + 1 ] < array[ child ] )
41
                     ++child;
                 if( array[ child ] < tmp )
42
43
                     array[ hole ] = std::move( array[ child ] );
                 else
45
                     break;
46
             array[ hole ] = std::move( tmp );
47
48
```


Building a Heap

- Construct heap from initial set of N items
- Solution 1
 - Perform N inserts
 - O(N log₂ N) worst-case
- Solution 2 (use buildHeap())
 - Randomly populate initial heap with structure property
 - Perform a sift-down from each internal node (H[size/2] to H[1])
 - O(N) worst-case
 - To take care of heap order property

Build a max-heap by insertion (1)

Two series of exchanges to build a max-heap

Pick a good rearrangement

Final stage in the heap-building algorithm. Both subtrees of node R are heaps. All that remains is to push R down to its proper level in the heap.

Build Min-Heap Example (2)

<u>Input:</u> { 150, 80, 40, 10, 70, 110, 30, 120, 140, 60, 50, 130, 100, 20, 90 }

Leaves are all valid heaps (implicitly)

- Arbitrarily assign elements to heap nodes
- Structure property satisfied
- Heap order property violated
- Leaves are all valid heaps (implicit)

So, let us look at each internal node, from bottom to top, and fix if necessary

Build Min-Heap Example (2)

- Randomly initialized heap
- Structure property satisfied
- Heap order property violated
- Leaves are all valid heaps (implicit)

Final Heap

Max-Heap Example

a[10]={20,12,35,15,10,80,30,17,2,1}

Max-Heap - step1

20	1
12	2
35	3
15	4
10	5
80	6
30	7
17	8
2	9
1	10
	•

Step2

Step3

Step4_0

20	1
12	2
80	3
17	4
10	4 5
35	6
30	7
15	8
2	9
1	10

Step 4_1

Step 5_0

i=1

20	1
17	2
80	3
15	4
10	5
35	6
30	7
12	8
2	9
1	10

Step 5_1

i=1,j=2i+1=3

80	1
17	2
20	3
15	4
10	5
35	6
30	7
12	8
2	9
1	10

Step 5_2

80	1
17	2
35	3
15	4
10	5
20	6
30	7
12	8
2	9
1	10
·	

Exercises

Key: $K = \{12, 14, 15, 19, 20, 17, 18, 24, 22, 26\}$, build a max-heap with the time complexity O(n)

Heap sort (2)

Ex, 49 38 65 97 76 13 27 50

1. Build a complete binary;

- 2. Adjustment to a minheap;
- 3. Get minimum 13
- 4. Delete 13, a new heap;
- 5. Get 27;
- 6. Delete 27, a new heap;
- 7. Get 38;

Build Heap (2)

- Time complexity O(n)
- ➤ Insert delete O(log n)
- > Search minimum/maxium O(1)

Homework

- > Please refer to Icourse, Huawei Cloud.
- > Due date for quiz: 23:30 2022/5/10
- **➤** Due date for homework: 23:30 2022/5/15
- > Due data for online lab assignment: 2022/5/15 23: 30