Аксиомы	Правило сечения
$\overline{\Gamma,A} \vdash A,\!\Delta$	$\frac{\Gamma \vdash \Delta, A A, \Gamma \vdash \Pi}{\Gamma \vdash \Delta, \Pi}$
«Левые» правила	«Правые» правила
$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} (\land \vdash)$	$\frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \lor B, \Delta} (\vdash \lor)$
$\frac{\Gamma, A \vdash \Delta \Gamma, B \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} (\lor \vdash)$	$\frac{\Gamma \vdash A, \Delta \Gamma \vdash B, \Delta}{\Gamma \vdash A \land B, \Delta} (\vdash \land)$
$\frac{\Gamma \vdash A, \Delta \Gamma, B \vdash \Delta}{\Gamma, A \to B \vdash \Delta} (\to \vdash)$	$\frac{\Gamma, A \vdash B, \Delta}{\Gamma \vdash A \to B, \Delta} (\vdash \to)$
$\frac{\Gamma \vdash A, \Delta}{\Gamma, \neg A \vdash \Delta} (\neg \vdash)$	$\frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \neg A, \Delta} (\vdash \neg)$
$\frac{\Gamma, A(t \diagup x), \forall x A \vdash \Delta}{\Gamma, \forall x A \vdash \Delta} \qquad (\forall \vdash)$	$\frac{\Gamma \vdash A(y \diagup x), \Delta}{\Gamma \vdash \forall x A, \Delta} (\vdash \forall)$
$\frac{\Gamma, A(y / x) \vdash \Delta}{\Gamma, \exists x A \vdash \Delta} (\exists \vdash)$	$\frac{\Gamma \vdash A(t/x), \exists x A, \Delta}{\Gamma \vdash \exists x A, \Delta} (\vdash \exists)$