Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1. In logistic regression given the input ${f x}$, and parameters $w\in \mathbb{R}^{n_x},b\in \mathbb{R}$, how do we generate the output \hat{y} ?

1 / 1 point

- $\bigcirc W \mathbf{x} + b$
- $\bigcirc \sigma(W \mathbf{x})$
- $\bigcap \tanh(W \mathbf{x} + b)$
- $\sigma(W \mathbf{x} + b)$

∠ Z Expand

✓ Correct

Right, in logistic regression we use a linear function $W\mathbf{x}+b$ followed by the sigmoid function σ , to get an output y, referred to as $\hat{\mathbf{y}}$, such that $0 < \hat{y} < 1$.

2. Which of these is the "Logistic Loss"?

1/1 point

- $\bigcirc \quad \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1 y^{(i)})\log(1 \hat{y}^{(i)}))$
- $\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- $\bigcirc \quad \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid^2$
- $\bigcirc \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} \hat{y}^{(i)})$

∠ Expand

✓ Correct

Correct, this is the logistic loss you've seen in lecture!

3. Consider the Numpy array x:

$$1/1$$
 point

x = np.array([[[1],[2]],[[3],[4]]])

What is the shape of x?

- (2, 2)
- (4,)
- (1, 2, 2)
- (2,2,1)

∠ Expand

✓ Correct

4.	Consider the	following	random	arrays a	ι and b .	and c :

 $a = np.random.randn(3,4) \, \# \, a.shape = (3,4)$

b = np.random.randn(1, 4) # b.shape = (1, 4)

$$c = a + b$$

What will be the shape of c?

- c.shape = (3, 4)
- \bigcirc c.shape = (1, 4)
- \bigcirc c.shape = (3, 1)
- The computation cannot happen because it is not possible to broadcast more than one dimension.

∠⁷ Expand

✓ Correct

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

5. Consider the two following random arrays \boldsymbol{a} and \boldsymbol{b} :

$$a = np.random.randn(4,3) \, \# \, a.shape = (4,3)$$

$$b = np.random.randn(1,3) \, \# \, b.shape = (1,3)$$

$$c = a * b$$

What will be the shape of c?

- c.shape = (4, 3)
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- c.shape = (1, 3)
- The computation cannot happen because the sizes don't match.

∠ Expand

Yes. Broadcasting is invoked, so row b is multiplied element-wise with each row of a to create c.

6.

Suppose you have n_x input features per example. If we decide to use row vectors \mathbf{x}_j for the features and $X = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_m \end{bmatrix}$

What is the dimension of X?

- \bigcap (n_x, n_x)
- \bigcap (n_x, m)
- ~ / \

1/1 point

1/1 point

1/1 point

(()	m.	n_r)

-		
	1	n_x
()	ь,	Ilor

∠⁷ Expand

Yes. Each \mathbf{x}_i has dimension $1 \times n_x$, X is built stacking all rows together into a $m \times n_x$ array.

7. Consider the following array:

a=np.array([[2,1],[1,3]])

What is the result of np.dot(a, a)?

- $\bigcirc \quad \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$
- $\bigcirc \quad \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$

∠⁷ Expand

⊘ Correct

Yes, recall that * indicates the element wise multiplication and that np.dot() is the matrix multiplication. Thus $\begin{pmatrix} (2)(2)+(1)(1) & (2)(1)+(1)(3) \\ (1)(2)+(3)(1) & (1)(1)+(3)(3) \end{pmatrix}.$

8. Consider the following code snippet:

 $a.shape=\left(3,4\right)$

b.shape = (4,1)

for i in range(3):

for j in range(4):

c[i][j] = a[i][j] + b[j]

How do you vectorize this?

- \bigcirc c = a + b.T
- \bigcirc c = a.T + b
- \bigcirc c = a.T + b.T
- \bigcirc c = a + b

∠⁷ Expand

⊘ Correct

9. Consider the following arrays:

a=np.array([[1,1],[1,-1]])

 $h = nn \operatorname{arrau}([9] [9])$

1/1 point

1/1 point

$$c = a + b$$

Which of the following arrays is stored in c?

- $\begin{pmatrix}
 3 & 3 \\
 3 & 1 \\
 4 & 4 \\
 5 & 2
 \end{pmatrix}$
- 3 3

⊘ Correct

Yes. The array b is a column vector. This is copied two times and added to the array a to construct the array c.

 ${\bf 10.}\ \ {\bf Consider}\ the\ following\ computational\ graph.$

1/1 point

What is the output of J?

- $\bigcirc \quad a^2 + b^2 c^2$
- $\bigcirc a^2-b^2$
- $a^2 c^2$
- $\bigcirc \quad (a-b)*(a-c)$

∠⁷ Expand

$$\bigcirc$$
 Correct Yes. $J=r+s=u*v+w*x=(a+b)*(a-b)+(b+c)*(b-c)=a^2-b^2+b^2-c^2=a^2-c^2$.