Sentiment Analysis of Google Playstore App reviews NEGATIVE NEUTRAL POSITIVE

By: Saumya Jaiswal

Independent Study (MKTG 899)

Under the supervision of

Prof. Ian Clark S Sinapuelas

TABLE OF CONTENTS

1. Introduction	3
2. Data Collection	3
3. Data Wrangling	5
4. Exploratory Data Analysis	8
5. Data Modelling	10
6. Future Scope	14
7. Challenges	14
8 Code	14

INTRODUCTION

The Internet has transformed how we use Android applications. In the fast-paced world of online applications, we have a wealth of alternatives to choose from. As a result, users must rely heavily on application reviews to help them make better decisions about using any new application. However, consumers may find it difficult to look for and compare text reviews.

Sentiment analysis is the categorizing of a user's evaluations or remarks as good, negative, or neutral. Most organizations examine their consumers' sentiments about their products or services to find out what their customers want from them. Google play store includes millions of applications with their reviews; thus, it will be an excellent use case of sentiment analysis to assess the perceived sentiment of apps accessible on the google play store. So, this report will focus on the process of leveraging automation using software (Python) to analyze Google Play Store applications' sentiment.

Goal

Application developers desire to locate useful reviews as fast as possible using rating system during their decision-making process. Therefore, algorithms that can estimate the user rating from the text review are extremely significant. Getting a holistic perspective of a textual evaluation might in turn improve user experience. It may also assist developers grow sales and enhance products by understanding customer needs and wants. The user's reviews and ratings for various applications, as well as feedback on the user's experience with the app will be considered.

The major purpose for this project is to construct a model to predict whether a user liked an App or not based on their reviews?

The intention is to take the raw customer reviews and perform sentiment analysis on them to produce the sentiment score, which involved changing the string data type to a numerical data type and then feeding those sentiment scores into the classification model for prediction.

DATA COLLECTION

The data for this project was collected through methodologies employing web scrapping. For this study, a meta dataset comprising reviews and application details from the Google Play store was gathered. This dataset contains ratings, text, helpfulness votes, and application descriptions, as well as category information, price, developer details, and image attributes.

To scrape the real-time data, the Python library "Beautiful Soup" was utilized. Details on 797101 applications were recovered, with a total data size of 1.17 Gb. This metadata had the following columns:

Column	Details	Column	Details
App Name	Name of the App. E.g.: "TikTok"	Developer ID	Shows unique developer Id. E.g.: "56"
App Id	Unique Id of the App. E.g.:	Developer	Gives the link to the developer
	"ru.webvo.book.aaafb"	Website	website. E.g: ""
Category	Category to which the App belongs.	Developer	Shows the email id of the developer
	E.g.: "Books & Reference"	Email	

Rating	Rating for the Apps ranging from 0 to 5	Released	Gives the timestamp of the app when it was released to public
Rating	Total Count of the ratings given for	Last Updated	Shows the last updated timestamp of
Count	an app		the app Eg: "2/8/2022 8:25:55 AM"
Installs	Number of total installs for the app	Content Rating	Shows whether the app is for adults,
			kids, teen, or everyone
Minimum	Minimum number of installs	Privacy policy	Gives the link of page for the privacy
Installs			policy. Eg:
			"https://sites.google.com/privacy"
Free	Whether the App is Free or not	Ad Supported	Whether the App supports
	E.g.: "True" or "False"		advertisement or not E.g.: "True" or
			"False"
Price	Tells the price of the app if it is not	Scraped Time	Time when the data was scrapped. Eg
	free		: "6/14/2022 2:16:00 PM"
Currency	Shows the currency in which the price	e is mentioned	

AppName	appld	Category	Rating	Rating	installs	min Installs	free	price	currency	developerId	developer Website	developer Email	released	Last Updated	content Rating	privacy Policy		Scraped Time
пришне	appia	category		count	motano	motuno		price	currency	acreioperia		Lilian	reieuseu	opuuteu	· · · · · · · · · · · · · · · · · · ·	· oney	Supported	scrapea mile
Contempor	com.fel	Books & Re	0	0	5+	5	TRUE	0	USD	Human+Droid+	Apps	farukabdill	26-Dec-20	#########	Mature 17	https://d	TRUE	6/14/2022 14:1
Peribahasa	com.an	Books & Re	0	0	1,000+	1000	TRUE	0	USD	9.06813E+18	https://irv	irwankayer	19-Jun-15	########	Everyone	https://ir	TRUE	6/14/2022 14:1
Dua e Nudl	com.glo	Books & Re	0	0	10,000+	10000	TRUE	0	USD	5tan+Library	https://ya	glowingapp	15-Jun-17	********	Everyone	https://5	TRUE	6/14/2022 14:1
Learn Electi	com.qu	Books & Re	4.1818	337	100,000+	100000	TRUE	0	USD	SuperSimpleVio	http://ww	Team@sim	14-Apr-12	**********	Everyone	http://go	TRUE	6/14/2022 14:1
Maulid Al-E	com.alb	Books & Re	0	0	1,000+	1000	TRUE	0	USD	7.25499E+18	https://dja	qurotuluyu	6-Oct-19	**********	Everyone	https://d	TRUE	6/14/2022 14:1
Taariikhda	com.his	Books & Re	5	302	100,000+	100000	TRUE	0	USD	6.27254E+18	https://his	ismailahma	27-Jul-17	#########	Everyone	https://h	TRUE	6/14/2022 14:1
ĐÑ,ĐµÑ€Đ	ru.OlMa	Books & Re	0	0	100+	100	TRUE	0	USD	OlMal		olmal9691(24-Jan-20	#########	Everyone	https://s	TRUE	6/14/2022 14:1
The New W	com mo	Rooks & Ro	٥	0	500+	500	TRUE		LISD	7 170/6F±18	https://m/	mobleidew	25-Mar-21	*********	Everyone	https://m	TRUE	6/14/2022 14:1

Using this metadata, the top 35 applications based on total installs were chosen, with a focus on the gaming category. The names of the chosen apps are as follows:

Minecraft	Subway Surfer	Criminal Case	Tank stars	Cooking Madness
• Temple Run	• PUBG	• Jetpack	Crowd City	Clash of Clans
Geometry Dash	Hungry Shark Evolution	• Tiktok	Google Chrome	• Paper.io 2
• Instagram	Youtube	 Whatsapp 	• Roblox	Growtopia
BlockCraft	Angry Bird Transformer	• Zombie	• Tap Tap Dash	Dragon Mania Legends
Genshin Impact	Brother in Arms	Ant Smasher	Stickman	• Rider
Glow Hockey	• Ice Age Adventure	Doodle jump	• Leps World	Garena Free fire

Now, the reviews from the last 10 years (2012-2022) were scrapped for these mentioned apps. A total of 35 CSV files were created which had the following columns:

Column	Details	Column	Details
Review Id	Has alpha-numeric unique Id of the	Thumbs up Count	Number of likes received on the
	review		review
Username	Name of the user	Review created	The version of app when the
		version	review was posted
User Image	Thumb nail of the user	At	Timestamp of the review
Content	The text of the review which the	Reply content	The reply given to the review if
	user has posted		any.
Score	The rating that the user has given	Replied at	The timestamp of the reply given
	to the app		to the review

	reviewId	userName	userImage	content	score	thumbs Up Count	review Created Version	at	replyContent	repliedAt
0	be6a53e4-9b9e- 4ae6-86ea- 50b2d8096608	Charles Ojegbulu	https://play- lh.googleusercontent.com/a/Altbvm	Awesome	5	0	2.22.13.76	8/2/2022 17:00	NaN	NaN
1	eb61677d-f0ab-4f65- 84ea-898e745930e7	Linet Kendi	https://play- lh.googleusercontent.com/a/Altbvm	It was the best	5	0	2.22.3.77	8/2/2022 17:00	NaN	NaN
2	7a73726f-e86f-4026- 8afc-f6afb73874bc	Veronica James	https://play- lh.googleusercontent.com/a/Altbvm	Is so beautiful whatsapp	5	0	2.22.9.78	8/2/2022 17:00	NaN	NaN
3	33ccef53-d635-4dcf- 8613-1c06971e95d0	Ggbeko Shigmah	https://play- lh.googleusercontent.com/a/Altbvm	It really helpful and fast	5	0	NaN	8/2/2022 17:00	NaN	NaN
4	93566307-5fa6-4a39- 9fd5-b0f3aa87e9ac	Rudra Awasthi	https://play- lh.googleusercontent.com/a/Altbvm	Very useful for us no another words	5	0	2.22.15.74	8/2/2022 17:00	NaN	NaN

The average size of files was 170 mb with the minimum size being 6 mb and maximum size being 300 mb. The total data scrapped in this process was of 9 GB and the crawler crawled 1000s of google play store webpages.

Data Wrangling

Concatenating DataFrames:

The metadata obtained was as per categories, so to extract the top 35 apps based on installs it was necessary to merge the data frames. Concat() function simply adds DataFrames on top of each other. Since the columns names for all the files was same it was easy to perform this function.

Handling Duplicates, Missing Values:

- 1. Dropped rows which had missing values in "content" column.
- Dropped irrelevant columns which would not contribute to the Sentiment Analysis like: "reviewId", "userImage", "replyContent", "repliedAt".
- Checked Duplicate rows based on "username" "content" and "at" column
- 4. Ratings greater than or equal to 3 was categorized as "good" and less than 3 was classified as "bad". This would later help us in prediction of reviews through Machine learning models.
- 5. "At" was converted to datetime '%m %d %Y' format.

```
whatsappData.info()
RangeIndex: 804756 entries, 0 to 804755
Data columns (total 10 columns):
   Column
                         Non-Null Count
                                         Dtype
    reviewId
                         804752 non-null object
   userName
                         804756 non-null object
                         804756 non-null object
 2 userImage
                         804714 non-null object
3
   content
                         804756 non-null
   thumbsUpCount
                         804756 non-null int64
   reviewCreatedVersion 661675 non-null object
                         804756 non-null object
7 at
   replyContent
                         0 non-null
                                         float64
    repliedAt
                         0 non-null
                                         float64
dtypes: float64(2), int64(2), object(6)
memory usage: 61.4+ MB
```

Fig: WhatsApp Dataset information

- 6. Data types for columns were correctly defined.
- 7. Columns were renamed for clarity purpose.

Descriptive Statistics:

The summary statistics was obtained for all the 35 applications. The sample of whatsapp is as follows:

```
Number of reviews: 804714

Number of unique reviewers: 697501

Prop of unique reviewers: 0.867

Average rating score: 4.107
```

ass	rating_c	at	reviewCreatedVersion	thumbsUpCount	score	content	userName	
od	g	8/2/2022 17:00	2.22.13.76	0	5	Awesome	Charles Ojegbulu	0
od	g	8/2/2022 17:00	2.22.3.77	0	5	It was the best	Linet Kendi	1
od	g	8/2/2022 17:00	2.22.9.78	0	5	Is so beautiful whatsapp	Veronica James	2
od	g	8/2/2022 17:00	NaN	0	5	It really helpful and fast	Ggbeko Shigmah	3
od	g	8/2/2022 17:00	2.22.15.74	0	5	Very useful for us no another words	Rudra Awasthi	4

Fig: Code for converting rating as good or bad for WhatsApp.

Preprocessing Text:

Since, text is the most unstructured form of all the available data, various types of noise are present in it and the data is not readily analyzable without any pre-processing. The entire process of cleaning and standardization of text, making it noise-free and ready for analysis is known as text preprocessing. In this section, the following text preprocessing methods were applied.

1. Removing HTML tags

HTML tags typically do not add much value towards understanding and analyzing text. Hence, HTML words were removed from the text.

2. Removing accented characters

Accented characters/letters were converted and standardized into ASCII characters.

3. Expanding Contractions

Contractions are shortened version of words or syllables. They exist in either written or spoken forms. Shortened versions of existing words are created by removing specific letters and sounds. In case of English contractions, they are often created by removing one of the vowels from the word.

By nature, contractions do pose a problem for NLP and text analytics because, to start with, we have a special apostrophe character in the word. Ideally, we can have a proper mapping for contractions and their corresponding expansions and then use it to expand all the contractions in our text.

4. Removing Special Characters

One important task in text normalization involves removing unnecessary and special characters. These may be special symbols or even punctuation that occurs in sentences. This step is often performed before or after tokenization. The main reason for doing so is because punctuation or special characters often do not have much significance when we analyze the text and utilize it for extracting features or information based on NLP and ML.

5. Lemmatization

The process of lemmatization is to remove word affixes to get to a base form of the word. The base form is also known as the root word, or the lemma, will always be present in the dictionary.

6. Removing stop words

Stop words are words that have little or no significance. They are usually removed from text during processing to retain words having maximum significance and context. Stop words are usually words that end up occurring the most if you aggregate any corpus of text based on singular tokens and checked their frequencies. Words like a, the, me etc. are stop words.

7. Building a Text Normalizer

Based on the functions which we have written above and with additional text correction techniques (such as lowercase the text, and remove the extra newlines, white spaces, apostrophes), we built a text normalizer to help us to preprocess the new text document.

A clean dataset will allow a model to learn meaningful features and not overfit on irrelevant noise. After following these steps and checking for additional errors, we can start using the clean and labelled data to train models in the modeling section.

Review Text	Clean Text
This is my favorite game â៧¤រ៉េ ៧â៧¤រ៉េ ៧â៧¤រ៉េ ៧	favorite game
I really like this game and it does not even have ads	really like game not even ads

Clash Of Clans Game Taking Too Much Storage!! My clash clans game take much storage mobile Mobile Or Whose Players Mobile Is Smaller GB whose players mobile smaller gb not affordable play no space no game please minimize clash They Can't Affordable To Play No Space No Game, Please Minimize The Clash Of Clans Game clans game application inner mb big mb please Application inner 400Mb only it's Too Big 600+ Mb fix thank So Please Fix It Thank.. It's a very good game 🎮 good game Very bad experience i completed to many clan bad experience complete many clan game take games and i took reward but now I am board and reward board sad kind reward always reward Sad. what kind of this reward always in reward we get worth spell worth game reward gems game get worth spells and worth gemes đŸ'Ž in reward you get tree remove need game hero book ok call reward only 100 gems.100 gemes i can get by tree reward but experience go bad want real reward 🎄 remove.we all need 1000 gemes and 4 hero something change reward list ok we board book ok it's called reward..but now my experience worth reward going very bad .we all want real reward .do something and change reward list ok.we all are bo ard with this worth reward I PLAYED THIS GAME ALMOST 8YEARS AND THIS IS A play game almost years good game **GOOD GAME**

Exploratory Data Analysis

After collecting data and subsequently wrangling the same, exploratory analyses were carried out on the dataset. The following insights were explored through exploratory analyses.

Distribution of Rating:

Fig: WhatsApp Distribution of Rating

Fig: Most common words in the clean text

Word Cloud:

Fig: Word Cloud of Most common words

<u>Letter-Value Plots (or Boxenplots)</u>: These plots have been developed to overcome the problem of an inaccurate representation of outliers in boxplots. The wider a box in a boxen plot, the larger ratio of total population it contributes to.

Fig: Boxen plot based on sentiment score

Most Similar Words:

'Feel'	'name', 'turn', 'home', 'experience', 'right'
'Good'	'nice', 'useful', 'helpful', 'wonderful', 'love'
'Product'	'application', 'things', 'better', 'quick', 'touch'
'Cheap'	'unblock', 'password', 'despite', 'low', 'affordable'
'Bad'	'new', 'could', 'stop', 'something', 'notification'
'Great'	'amaze', 'like', 'awesome', 'use', 'better'

Data Modelling

SENTIMENT ANALYSIS:

Machine Learning models take numerical values as input. The reviews are made of sentences, so to extract patterns from the data; we need to find a way to represent it in a way that machine learning algorithm can understand, i.e., as a list of numbers.

FEATURE EXTRACTION:

Feature engineering is the process of using domain knowledge of the data to create features that make machine learning algorithms work. Features are usually numeric in nature and can be absolute numeric values or categorical features that can be encoded as binary features for each category in the list using a process called one-hot encoding. The process of extracting and selecting features is both art and science, and this process is called feature extraction or feature engineering.

DATA PREPROCESSING:

Due to computational considerations, top 10000 observations were only used for Modelling purposes. From the dataset, "clean text" and "rating class" were treated as "X" (feature) and "Y" (variable) respectively. Dataset were divided into 75% as training and 25% as testing.

MACHINE LEARNING:

In this project, the model needs to predict sentiment based on the reviews written by user for any application. This is a supervised binary classification problem. Python's Scikit libraries was used to solve this problem.

Following machine learning algorithms were implemented:

1. Logistic Regression: Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is also known in the literature as logit regression, maximum-

entropy classification (MaxEnt) or the log-linear classifier. In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function.

- 2. Random Forest Classifier: A random forest is a meta estimator that fits several decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is always the same as the original input sample size but the samples are drawn with replacement if bootstrap=True (default).
- 3. Naive Bayes: Naive Bayes implements the naive Bayes algorithm for multinomial distributed data, and is one of the two classic naive Bayes variants used in text classification (where the data are typically represented as word vector counts). This algorithm is a special case of the popular naïve Bayes algorithm, which is used specifically for prediction and classification tasks where we have more than two classes.
- **4. XGBoost Classifier:** XGBoost means eXtreme Gradient Boosting. XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework. In prediction problems involving unstructured data (images, text, etc.) artificial neural networks tend to outperform all other algorithms or frameworks. However, when it comes to small-to-medium structured/tabular data, decision tree based algorithms are considered best-in-class right now.
- **5.** CatBoost Classifier: CatBoost is an algorithm for gradient boosting on decision trees. "CatBoost" name comes from two words "Category" and "Boosting". the library works well with multiple Categories of data, such as audio, text, image including historical data.

EVALUATION METRICS:

Since we have a data imbalance in our case, the evaluation of the classifier performance must be carried out using adequate metrics to consider the class distribution and to pay more attention to the minority class. Based on this thought, f1 score was used, which is harmonic average of precision and recall as my evaluation metric. Understanding the types of errors our model makes are important. A good way to visualize that information is using a Confusion Matrix, which compares the predictions our model makes with the true label. With that in mind, confusion matrix was used besides our evaluation metric (f1 score).

MODELLING:

Since the ratings of the reviews were not distributed normally, rating classes from 1-2 were classified as 'Bad' and Rating 3-4-5 were classified as 'Good'. For feature selection, threshold for word occurrence with using min_df/max_df were applied. For feature engineering, CountVectorizer was applied to the text data to turn a collection of text documents into numerical feature vectors.

1. Bag of Words Model

The Bag of Words model is perhaps one of the simplest yet most powerful techniques to extract features from text documents. This specific strategy (tokenization, counting and normalization) is called the Bag of Words or "Bag of n-grams" representation. The essence of this model is to convert text documents into vectors such that each document is converted into a vector that represents the frequency of all the distinct words that are present in the document vector space for that specific document. The figure below shows that **XGBoost is the winner with 83% accuracy.**

Fig: Results of various Machine Learning models employed.

Fig: Average F1 score of Machine Learning models employed

CONCLUSION:

In this project, the rating scores based on the reviews left by the users were predicted using Count Vector, and Classification Models like: Logistic Regression, Random Forest Classifier, Naive Bayes, XGBoost Classifier, CatBoost Classifier. From the analyses, it was found that XGBoost with Count Vectorizing with accuracy of 83% & f1 score of 0.79 was the top models.

Future Scope

- The model can be used by Google play store for decreasing the negative comments by users by giving follow up questions to them to enhance their user experience.
- Recommendation system can be proposed using the sentiment analysis data.
- Implementation of Dask library for parallel processing to decrease run time.

Challenges

- Dealing with the size of the dataset.
- Learning about deploying code on Google cloud VM for running data mining at scale rather than personal PC.
- Tuning the parameters of ML model to increase the accuracy of predictions.

Code

Web scrapping: https://github.com/jsaumya20/Web scraping

Sentiment Analysis: https://github.com/jsaumya20/Sentiment-Analysis-