

- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)

# Когнитивная радиооптика (cognitive radio optics) ЭМИИА

 машинное зрение на принципах радиооптики с применением искусственных нейронных сетей. Детекция, распознавание образов, вычисление координат и скорости динамических объектов посредством радиоволн, в том числе и за радиопрозрачными преградами.

| # | Программно-<br>аппаратные<br>решения | Стоимость<br>решений от<br>(руб.) | Соответствие<br>санитарным<br>нормам | Лицензирование<br>частотного<br>диапазона | Программная интеграция в IoT/IIoT | Нейронная<br>сеть<br>(Online) | Нейронная<br>сеть<br>(Offline) | Интернет-<br>ресурс<br>проекта |
|---|--------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------|--------------------------------|--------------------------------|
| 1 | ЭМИИА<br>(EMIIA.AI)<br>Россия        | 3 000                             | Соответствует                        | Не требуется                              | +                                 | +                             | +                              | Ссылка                         |
| 2 | Данник-5 СКБ<br>ИРЭ Россия           | 200 000                           | *Не<br>соответствует                 | Требуется                                 | :=                                | -                             | ·=                             | Ссылка                         |
| 3 | РО-900 ГЕОТЕХ<br>Россия              | 300 000                           | *Не<br>соответствует                 | Требуется                                 | -                                 |                               | -                              | Ссылка                         |
| 4 | EMERALD<br>WiTrack MIT<br>США        | 70 000                            | Соответствует                        | Не требуется                              |                                   | +                             | _                              | Ссылка                         |

<sup>\*</sup>Используются лицензированные спектры частот, требуется получение лицензии. Электромагнитное излучение превышает допустимые нормы, для возможности применения в жилых помещениях.

# ПРЯМЫЕ КОНКУРЕНТЫ (ПРОГРАММНО-АППРАТНЫЕ РЕШЕНИЯ)

| Сравнительные характеристики программно-аппаратных решений<br>Направление: радиооптика, прямые конкуренты | Цена от<br>(руб.) | Соответствие санитарным нормам использование в промышленных и бытовых помещениях | Интеграция технологии в бытовые и промышленные устройства loT/lloT | Нейронная сеть<br>Online | Нейронная сеть<br>Offline |
|-----------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|---------------------------|
| Встраиваемые контроллеры и<br>модули ЭМИИА<br>Разработчик: ЭМИИА Россия                                   | 3 000             | +                                                                                | +                                                                  | +                        | _                         |
| Радиолокатор Данник-5<br>Разработчик: ФГУП СКБ ИРЭ РАН Россия                                             | 200 000           | - <u>-</u>                                                                       | _                                                                  | _                        | _                         |
| Портативный радар РО-900<br>Разработчик: ЛОГИС-ГЕОТЕХ Россия                                              | 300 000           | _                                                                                | _                                                                  |                          | _                         |
| Прибор EMERALD на базе Wi-Fi роутера<br>Разработчик: Массачусетский<br>технологический институт МIT США   | 70 000            | +                                                                                | +                                                                  | +                        | _                         |



**ЭМИИА:** <a href="https://www.emiia.ru/p/radiooptics.html">https://www.emiia.ru/p/radiooptics.html</a>



EMERALD: <a href="https://www.emeraldinno.com/">https://www.emeraldinno.com/</a>



#### PO-900:

http://www.geotech.ru/safety equipment/bezopasnost/radary - obnaruzhiteli lyudej za stenami stenovizory/portativnyj radar dlya operativnogo obnaruzh eniya obektov za zhelezobetonnymi i raznesennymi stenami ro900/



#### Данник-5:

http://www.sdbireras.ru/produkcziya/blizhnyaya-radiolokacziya/radiolokator-dlya-obnaruzheniya-lyudei-za-stenami-dannik-5

# ПРЯМЫЕ КОНКУРЕНТЫ (ПРОГРАММНЫЕ РЕШЕНИЯ)

| Сравнительные характеристики программных решений Направление: нейронные сети для задач машинного зрения на принципах радиооптики (когнитивная радиооптика), прямые конкуренты | Цена от<br>(руб.) | Активная<br>фазированная<br>антенная решетка | Нейросетевая модель,<br>(Offline самообучение) | Нейросетевые фильтры<br>(обработка<br>цифровых сигналов Offline) | Требуемые<br>вычислительные<br>мощности                                                                       | Размер<br>нейросетевых<br>инструментов<br>датасеты, скрипты,<br>библиотеки, архивы |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Встраиваемые нейросетевые<br>элементы на базе контроллеров и<br>модулей ЭМИИА<br>Разработчик: ЭМИИА Россия                                                                    | 200               |                                              | _                                              | _                                                                | от 1 MFLOPS до 30 GFLOPS<br>CPU/GPU/NPU, ARM 32,64<br>Linux, Android<br>(в зависимости от задач<br>и формата) | 100-300 MB                                                                         |
| Нейросетевые элементы в приборе<br>EMERALD на базе Wi-Fi роутера<br>Разработчик: Массачусетский<br>технологический институт МІТ США                                           | 5 000             | +                                            |                                                | _                                                                | 140-300 GFLOPS<br>CPU/GPU/NPU, ARM 32,64<br>Linux                                                             | 1.7 GB                                                                             |

# НАУЧНЫЕ ПУБЛИКАЦИИ/ЦИТИРУЕМОСТЬ ЭМИИА

### Цитирование Учебник для магистратуры "Криминология цифрового мира"

В. С. Овчинский. — М. : Норма : ИНФРАМ, 2018. — 352 с. **(стр. 316, раздел IV)** 

https://emiia.github.io/1/Criminology.pdf

#### Цитирование

Сборник научных трудов по материалам I Международной научнопрактической конференции «Ключевые проблемы и передовые разработки в современной науке».

— Международный научно-информационный центр «Наукосфера». Смоленск: ООО «Новаленсо», 2017. 238 с.

(ЭМИИА стр. 122, раздел V)

https://emiia.github.io/1/Klyuch-probl-i-per-razrab-okt-2017.pdf

### Публикации

### Сборник материалов научно-технической конференции с

представителями сектора исследований и разработок, коммерческого сектора, высшего профессионального образования Крымского федерального округа в рамках участия в 2015 году в реализации федеральных целевых программ и внепрограммных мероприятий, заказчиком которых является Минобрнауки России, г. Севастополь, 01-02 декабря 2015 г. / Редакция Е.Б. Мелков, В.А. Куликов, А.С. Слепокуров. – Севастополь: СРО ВОИР, 2017. – 167 с.

(ЭМИИА, В.В. Старостин, А.Н. Люман, Н.В. Филиппова, стр. 164, раздел I)

https://emiia.aithub.io/1/CollectionMON.pdf



Scholar Google Citations
Список публикаций/цитирований
Профиль проекта и авторов с разделом соавторы:
<a href="https://scholar.google.ru/citations?user=ffHMwpwAAAAJ&hl">https://scholar.google.ru/citations?user=ffHMwpwAAAAJ&hl</a>

## РАЗРАБОТАН ОПЫТНЫЙ ОБРАЗЕЦ УСТРОЙСТВА НА ПРОГРАММНО-АППАРАТНОЙ БАЗЕ ВСТРАИВАЕМОГО SMART КОНТРОЛЛЕРА ЭМИИА MONOCLE (ТЕСТОВАЯ МОДЕЛЬ В КРУГЛОМ КОРПУСЕ)



- Autonomous Neural Network (ANN)
- Fog/Edge Computing, Wi-Fi Meshnet
- Cognitive radio optics (Machine vision)
- 4 SPI, 2 I2S, 2 I2C, 3 UART, CAN
- VPN/P2P/M2M/WLAN/LAN-IPv6
- GSM/GPS/GLONASS/RFID (option)
- SSD/SD, Battery (option)



## Transmitting antenna T<sub>1</sub>



Transmitting antenna T<sub>2</sub>

$$T_1 = -L_2$$
  $T_2 = L_1$ 

Damping Effect compensated. Zero forcing.









Встраиваемый модуль ЭМИИА #emonocle/MONOCLE (микроконтроллерный блок)

Аппаратно-программное решение: встраиваемый Smart контроллер с модулем ЭМИИА.

Четыре группы антенн G1, G2, G3, G4, осуществляют обнаружение и захват восьми движущихся объектов.

В одной группе G1 три направленных антенны: две антенны используются для передачи сигнала (Transmitting) T1, T2 в противофазе, и одна для приема (Receive) R1.

Компенсация эффекта затухания радиоволн Damping Effect Compensated (DEC) достигается посредством аппаратного элемента X в системе (подлежит патентованию) и обнуления MIMO Zero forcing (ZF), реализуется с использованием программных фильтров для статических объектов. Что позволяет вычислять радиоволны H2 которые отразились от движущихся объектов сквозь оптически непрозрачные преграды и материалы. А также более точно отслеживать координаты объектов с применением техники обратного радиолокационного синтезирования апертуры.

T1=-L2 T2=L1 Эффект затухания радиоволн компенсирован. Обнуление радиоволн отраженных от статических объектов.



Радиоволны проходят сквозь препятствия и их неметаллические элементы НЗ Н4, отражаются от движущихся объектов Н2 и несут информацию к приемнику. Принцип действия аналогичный радару или гидролокатору.

Волна проходит через группу антенн G1, таким образом сигналы H1 отраженные от неподвижных объектов не принимаются к обработке приемной антенной R1 (программные фильтры). В общем линейном потоке H2 регистрируются только те данные которые отразились от движущихся объектов, аппаратный элемент X компенсируют эффект затухания радиоволн, а программные фильтры выполняют обнуление MIMO ZF (статические объекты). Модуль использует алгоритм сканирования для определения параметров объектов вычисляя время и мощность отраженного сигнала, рассчитывает последовательность пространственных меток.

Поляризация обнаружения движущихся объектов: вертикально-горизонтальная. Визуализация интерфейса 2D.

t=0,90m – максимальные значение в коммерческом применении, компенсация эффекта затухания радиоволн DEC и обнуления ZF. Общая максимальная толщина стен, архитектурных конструкций, оптически непрозрачных преград и материалов в метрах.

d=9m – максимальное значение в коммерческом применении, компенсация эффекта затухания радиоволн DEC и обнуления ZF. Вертикально-горизонтальный радиус обнаружения и захвата движущихся объектов в метрах.



Для вывода всех параметров обязательным условием является применение осциллографа, программной среды MATLAB, спецоборудования и программного обеспечения.

Рис. Скриншот параметров системы на мониторе компьютера



Рис. Скриншот видео тестирования работы системы.

Видео: <a href="https://youtu.be/cHT3bFJCbSo">https://youtu.be/cHT3bFJCbSo</a>



id="path818" d='m 94.87779,47.028008 c 0.0.336925 -0.263607,0.601613 -0.5991,0.601613 -0.359462,0 -0.623066,-0.264688 -0.623066, -0.601613 0,-0.336911 0,263604, -0.625678 0,623066,-0.625678 0,335493,0 0.5991, 0.88767 0,5991,0.625678 z"

id="path820" d="m 86.706063,53.357054 c 0.0.336911 -0.263604,0.601613 -0.623064,0.601613 -0.335496,0 -0.599099,-0.264702 -0.599099,-0.601613 0,-0.336911 0.263603,-0.625692 0.599099,-0.625692 0.35946, 0 0.623064,0.288781 0.623064,0.625692 2"

id="path826" d="m 101.63564,47.028008 c 0,0.336925 -0.28757.0.601613 -0.62307.0.601613 -0.33549.0 -0.5991,-0.264688 -0.5991,-0.601613 0 -0.336911 0.26361, -0.625678 0.5991,-0.625678 0,3355,0 0.62307, 0.288767 0.62307,0.625678 z"

id="poth828" d="m 103.81636.53.597704 c 0.0.360963 -0.2636.0.625679 -0.5991.0.625679 -0.35946, 0 -0.62306.-0.264716 -0.62306.-0.625679 0.-0.336911 0.2636, -0.601613 0.62306.-0.601613 0.3355,0 0.5991, 0.264702 0.5991,0.601613 z"

id="path822" d="m 94.87779,52.009423 c 0,0.336911 -0.263607.0.61627 -0.5991,0.601627 -0.359462,0 -0.623066,-0.264716 -0.623066,-0.601627 0,-0.360962 0.263604 -0.625691 0.623066,-0.625691 0.335493,0 0.5991, 0.264729 0.5991,0.625691 z"

id="path824" d="m 89,413996,49,434488 c 0,0.336911 -0.263603,0.625678 -0.5991,0.625678 -0.335496, 0 -0.623064,-0.288767 -0.623064,-0.625678 0, -0.336884 0,28754,0.625678 0,623064,-0.625678 0,335497 0 5.991,0.288794,0.5991,0.625678 7;

Цифровая векторная модель ML, псевдо 3D, 2-10 Kbyte, HTML5/JS/JSON, без включения аналоговой растровой графики

 $\rightarrow$  ТЕСТОВЫЙ КОД МОДЕЛИ ML



Data Set size (fragment 2D) of standard models ML: 100 Kbyte

Size of the Data Set (fragment 2D) of the EMIIA models ML: 2-10 Kbyte

Raster Analog Graphics ML

EMIIA Vector Digital Graphics ML

Сравнительные характеристики фрагментов растрового датасета (слева), и векторного датасета ЭМИИА (справа), при масштабировании и сжатии.

Входные данные радиоволн преобразованные в дискретный код формируются в структуру SVG (Scalable Vector Graphics - язык разметки масштабируемой векторной графики) для обработки, хранения и машинного обучение. на SVG (XML) данных. В некоторых случаях вес моделей не превышает 1 Мб и включает в себя всю необходимую информацию для решения задач машинного зрения. Малый размер позволяет интегрировать инструменты для работы с искусственными нейронными сетями непосредственно на аппаратную базу большинства электронных устройств (контроллеры, микрокомпьютеры, сетевое оборудование). Что дает возможность системе не использовать облачные ресурсы функционировать без интернет-соединения в автономном режиме. Данный метод не требует создания и хранения громадного количества фото/видео примеров с трудоемким процессом по их разметке правильными ответами, а также больших вычислительных мощностей для последующей обработки данных.

Необходимым условием для задач радиооптики является два микроконтроллера с Wi-Fi IEEE 802.11 b/g/n интерфейсом на каждый микроконтроллер и их взаимодействием между собой, как на программном, так и на аппаратном уровне. Мощность электромагнитного излучения на один микроконтроллер должна быть в пределах 20 dBm или более

Система (когнитивная радиооптика) вычисляет объем объекта по образцу цифровой контурной маски радиоволн, маркерам x,y,z в SVG и распознает его. В процессе самообучения нейронная сеть способна автономно дополнять и изменять общие модели SVG образов, следовательно более точно определять типы движущихся объектов, подстраиваться к границам пространства, конкретным пользователям и задачам, а также принимать самостоятельно операционные действия относительно автоматизации процессов.

\*Моделирование системы осуществляется посредством инструментов MATLAB с дальнейшим компилированием кода для среды машинного обучения TensorFlow Lite.

Цифровая контурная маска в SVG формате с маркерами по значениям хуг (движение человека), модель для обучения нейронной сети, сгенерированная программными инструментами МАТLАВ, устройствами вывода и ввода, аппаратными средствами и специализированным ПО для анализа и преобразования данных.

В процессе получения данных были устранены радио-шумы посредством программных фильтров.

Объект: взрослый человек. Время фиксации движения: четыре секунды, с детекцией на 1-й секунде и распознавании образа, определение скорости и координат на 2-й секунде.



Рис. Радиограммы с маркерами контуров без цифровых значений (2D).

HTML (XML) код SVG модели движения взрослого человека с цифровыми маркерами, контурами, значениями и координатами х,у,х (емкость объекта): http://www.emiia.ru/p/version1.html



Разнесенные группы направленных антенн горизонтально-вертикальной поляризации: Блок #1 передняя часть устройства (три координатных сектора)
Блок #2 задняя часть устройства (три координатных сектора)

#### SVG (Scalable Vector Graphics)

id="line32003" y2="4752.7202" x2="119.94" y1="4744.7598" x1="16243"

56,-46.32 -847.87,364.18 -427.91,412.06

- -603.35,318.5
- -864.5,179.2 -55.12,-29.4 -114.12,-60.87
- -179.96,-89.9
- -212.13,-93.51 -282.15,-89.81 -450.94,-80.89
- -64.53,3.41
- -143.49,7.59 -250.35,7.42 -265.2,-0.42
- -461.79,-188.08
- -646.27,-364.19 -161.92,-154.57 -314.4701,-300.2
- -494.8389,
- -300.48 -193.92997,-0.3 -329.48997,75.18
- -459.14997,147.38
- -119.79,66.69 -234.61,130.63 -386.00001,130.4
- -28.79,-0.05
- -56.16,-0.23 -82.23,-0.51 z«

Фрагмент кода цифровой модели движения взрослого человека с цифровыми маркерам и значениям: <a href="https://emiia.ru/neuralmodel1.txt">https://emiia.ru/neuralmodel1.txt</a>



Рис. Радиограмма с цифровыми маркерами контуров и цифровыми значениями х,у,z **(векторы, 2D).** 

(микроконтроллерный блок #emonocle offline)

3.

Определение емкости и распознавание объекта по цифровым маркерам и значениям SVG контуров модели х.у.z (нейронная сеть ЭМИИА online/offline в зависимости от аппаратной части)

2....

Детекция-зафиксировано движение в границах наблюдения, скорость и координаты объекта вычислены посредством прошивки и направленных разнесенных групп антенн. (микроконтроллерный блок #emonocle offline)

4.

Самообучение нейронной сети ЭМИИА
усовершенствование и модификация
SVG модели конкретного объекта.
(online/offline в зависимости от аппаратной части)



Используются дециметровые и сантиметровые волны ультравысокой и сверхвысокой частоты (СВЧ и УВЧ) в частотных диапазонах 2,4 ГГц, 5 ГГц.

G<sub>1</sub> - первая группа антенн модуля сканирования:

T₁ - передающая антенна №1 L₁ - радиолиния №1

L<sub>2</sub> - радиолиния №2 Т<sub>2</sub> - передающая антенна №2

Н, - отраженные радиоволны от статических оптически непрозрачных объектов.

 $H_2$  - отраженные радиоволны от динамических объектов за оптически непрозрачными преградами и материалами.

Н<sub>3</sub> - цифровое значение (сила сигнала, время отклика, пространственные метки) радиоволны до прохождения статических оптически непрозрачных преград и материалов.

 $H_4$  - цифровое значение (мощность сигнала, время отклика, пространственные метки) отраженные радиоволны от динамических объектов после прохождения статических оптически непрозрачных преград и материалов.

X- аппаратный элемент позволяющий в комплексе с программно-аппаратными средствами компенсировать эффект затухания радиоволн DEC и выполнить обнуление ZF.

Включение дополнительного аппаратного элемента X позволяет выявить задержки субнаносекундной длительности на линиях  $L_1$  -  $L_2$ , что дает возможность фильтрации радиоволн, **не применяя энергоемкого гигагерцевого оборудования**, задействованы допустимые для бытового использования частоты в диапазоне от 2,4 - 5 ГГц с мощностью более 20 dBm, Wi-Fi сигналы OFDM в открытом диапазоне частот ISM и типичные Wi-Fi чипсеты MIMO.



Radio signal attenuation (Brick & Concrete wall)

Одним из ключевых факторов является поглощение радиоволн в строительных конструкциях внутри здания. Этот фактор накладывает ограничение как на дальность радиосвязи, так и на возможный диапазон частот радиосвязи, поскольку практически все среды, включая и строительные материалы, характеризуются монотонно возрастающим с ростом частоты поглощением радиоволн. При проектировании системы необходимо принимать в расчет поглощение радиоволн на выбранной частоте в «типовой» стене здания. Поглощение радиоволн происходит и в других элементах строительных конструкций (двери, окна, деревянные перегородки), однако на частотах до 10 ГГц ослабление сигнала в них не превышает 1–5 дБ, т.е. существенно меньше, чем в стенах и межэтажных перекрытиях, и если система спроектирована с учетом прохождения сигнала через стену или межэтажное перекрытие, она будет заведомо работоспособна при прохождении радиосигнала через окна и двери.

Анализ: Ослабление сверширокополосных хаотических сигналов диапазона 3-5 ГГц при прохождении через стены зданий: <a href="http://www.emiia.ru/p/35.html">http://www.emiia.ru/p/35.html</a>