Family list
1 family member for:
JP4056168
Derived from 1 application.

1 THIN-FILM TRANSISTOR AND ITS MANUFACTURE Publication Info: JP4056168 A - 1992-02-24

Data supplied from the esp@cenet database - Worldwide/

THIN-FILM TRANSISTOR AND ITS MANUFACTURE

Patent number:

JP4056168

Publication date:

1992-02-24

Inventor:

SANO HIROYUKI; IMASHIRO SHINICHI; TOKO YASUO

Applicant:

STANLEY ELECTRIC CO LTD

Classification:

- international:

(IPC1-7): H01L29/784

- european:

Application number: JP19900163744 19900621 Priority number(s): JP19900163744 19900621

Report a data error here

Abstract of JP4056168

PURPOSE:To easily control the etching operation of a semiconductor layer, to eliminate a drop in the insulation of a gate insulating film and to enhance reliability and productivity by a method wherein the gate insulating film is formed of a three-layer laminated structure in which adjacent layers are formed of mutually different materials and the semiconductor layer is formed on it. CONSTITUTION: A gate electrode 20 for a transistor is formed and patterned on a glass substrate 10. In addition, three layers by a first gate insulating film 30, a second gate insulating film 40 and a third gate insulating film 50 in the order from the side close to the substrate 10 are laminated on it. An amorphous silicon semiconductor layer (a-Si) 60 constituting a channel is formed on the third gate insulating film 50 so as to face the gate electrode 50. The film 50 is formed of a siliocn nitride film by a plasma CVD method. When an etching operation is shifted from the semiconductor layer to the film 50, the plasma luminous peak of nitrogen is detected and an etching end point is detected. Thereby, a thinfilm transistor in which a source is not shortcircuited with a gate, whose insulating property is excellent and whose characteristic is stable can be manufactured with good reproducibility.

Data supplied from the esp@cenet database - Worldwide

⑩日本国特許庁(JP)

① 特許出願公開

@ 公開特許公報(A) 平4-56168

®int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成4年(1992)2月24日

H 01 L 29/784

9056-4M H 01 L 29/78

311 G

審査請求 有

請求項の数 4 (全4頁)

60発明の名称 蒋膜トランジスタおよびその製造方法

②特 顧 平2-163744

②出 顧 平2(1990)6月21日

砂発明者 佐野

寛 幸

神奈川県大和市南林間 8 - 10- 5 - 101

@発明者 今城

慎 一

神奈川県川崎市麻生区虹ケ丘2-3-2-702

@ 発明者 都甲 康夫

神奈川県横浜市緑区荏田南2-17-8-202

の出 顔 人 スタンレー電気株式会

東京都目黒区中目黒2丁目9番13号

社

四代理人 弁理士 高橋 敬四郎

131

明細音

- 1. 免明の名称 推薦トランジスタおよびその製造方法
- 2. 特許請求の範囲
- (1)。透明絶線基板と、

前記透明絶録基板上に形成したゲート電極層 と、

前記ゲート電極層と前記基板の上に形成した ゲート絶象層と、

前記ゲート総録層の上に形成した半導体層と、 前記半導体層の上に形成したソース/ドレイ ン電振磨とを有し、

前記ゲート絶録層は隣接する層が互いに異なる材料で形成された3層の複層を含む薄膜トラングスタ。

(2)、前記ゲート総数層は前記ゲート電極層に近い 限に第1地線層、第2地線層及び第3地線層を 含み、前記第2地線層が前記第3地線層よりも 耐エッチング性に優れる材料で構成される請求 項1記載の意識トランジスタ。

(3)、透明絶縁基板上にゲート電極層を形成する 工程と、

前記ゲート電極層と前記透明絶録基板の上に 三層の被層構造を含むゲート機能層を形成する 工程であって、前記3層の第1層と第2層とは 異なる成膜法で形成する工程と、

前紀ゲート絶録層の上に半導体層を形成する 工程と、

前記半導体層の所定領域をエッチングする工程と、

前記半導体層の上にソース電優とドレイン電 極の層を同時に形成する工程と、

・を含む薄膜トランジスタの製造方法。

(4).前記ゲート絶録層の8層の形成工程は、プラ ズマCVD法による変化シリコン膜で第1層を 形成し、スパッタ法による酸化シリコン膜で第 2層を形成することを含む請求項4記載の薄膜 トランジスタの製造方法。

3. 発明の詳細な説明

【産業上の利用分野】

本発明は薄膜トランジスタに係わり、特に液晶 ディスプレイ等のアクティブマトリックス表示素 子の画素駆動に好適な信頼性と生産性の高い薄膜 トランジスタおよびその製造方法に関する。

〔従来の技術〕

経験の厚さが所望の値よりも薄くなり、絶縁低下 やソース・ゲート短絡の原因となる。

また、第1のゲート地級膜30に窒化シリコン(SiNx)を使用し、第2のゲート地級膜40に酸化シリコン膜(SiOx)又は、酸化タンタル(TaOx)を使用した場合には、半導体層60、70、80のエッチング終点検出がしにくく、半導体層60、70、80がブラズマダメージを受ける。さらに、酸化シリコンや酸化タンタルは窒化シリコンに比べ半導体層との界面単位が不安定である欠点があった。

本発明の目的は、半導体層のエッチング制御が しやすく、絶縁膜の絶縁低下のない、高信観性の 生産性の高い薄膜トランジスタとその製造方法と を提供することである。

〔課題を解決するための手段〕

本発明によれば、慈襲トランジスタにおいて、 隣接する層は互に異なる材料で形成された3層の 積層構造を用いてゲート絶縁膜を形成し、その上 ランジスタの一素子が構成されている。半等体層60、70、80の形成工程におけるエッチング工程は、例えばCF。及びO。ガスを用いてのドライエッチングで行われる。エッチング条件は、たとえば高周波電力約10~300W、圧力約1~100Paである。さらに、ドレイン電極100の一部と接触し、ゲート絶縁異40上に延在して面景となる透明電極110が形成される。

【発明が解決しようとする課題】

第1のゲート絶縁襲80に数化シリコン膜(SiOx)又は、酸化タンタル(TaOx)を使用し、第2ゲート絶縁襲40に窒化シリコン(SiNx)を使用した場合、半導体層60、70、80のパターニング工程のエッチング処理におい、窒化シリコンのエッチングレートが非常に違い。このため、半導体層がエッチングされた後に続いて急速に第2ゲート絶縁襲40の変化シリコンもエッチングされる。これにより第2ゲート絶縁襲40のオーパエッチングを引き起こし、ゲート絶

に半導体層を形成する。

(作用)

半導体層のエッチング処理工程において、半導体層がエッチングされると次に3層からなるゲート絶縁層の半導体層に最も近い第3層目が最初にエッチングされるが、異なる材料の第2層と第1層でオーバエッチングが防止され、第2層と第1層によって絶縁が保たれる。また第3層目がエッチングされることで半導体層のエッチング終点検出が可能となる。

〔実施例〕

次に、本発明による薄膜トランジスタの実施例を図面を参照して説明する。

第1図にアクティブマトリックス素子に利用した本発明の実施例による存襲トランジスタの新面構造を示す。ガラス基板10上にトランジスタのゲート電極20が形成され、パターニングされ、その上にさらに基板10に近い側から順に第1ゲ

特周平4-56168 (3)

ここで、第2ゲート絶縁酸40は、第8ゲート 絶縁膜50に比べ耐エッチング性に優れた材料を 使用することが好ましい。例えば、第2ゲート絶 縁膜40は、スパッタ法またはプラズマCVD法 により散化シリコン(Si9x)膜または散化タ ンタル(Ta0x)膜で形成する。第1ゲート絶 緑膜80は、絶縁耐性の優れている変化シリコン

極 2 0 上に、 1 0 0 0 ~ 4 0 0 0 n m の 膜厚の 室 化シリコン膜で第1ゲート絶縁膜30を形成し、 500~2000nmの膜厚の微化シリコン膜で 第2ゲート絶縁襲40を形成し、さらに500~ 2000nmの製厚の蜜化シリコン酸で第8ゲー ト絶経験50をそれぞれ積層形成する。さらに、 第3ゲート地級膜堆積後回一真空内でチャネル半 導体層60、コンタクト半導体層70、80を進 統堆積する。その後、CF。及びO。ガスを用い てドライエッチングで半導体層60、70、80 をパターニングする。ここで、エッチングが半導 体層から窒化シリコンの第3ゲート絶縁襲50に 移行した際に窒素のプラズマ発光ピークを検出す ることによりエッチング終点を検出した。これに より、ソース・ゲート短絡もなく絶縁性にすぐれ、 特性も安定な薄屋トランジスタが再現性よく製造 できた。

以上、実施例に沿って本発明を説明したが、本 発明はこれらに制限されるものではない。たとえ ば、種々の変更、改良、組合せ等が可能なことは (SiNx) 膜をプラズマCVD法で形成する。また、第1ゲート絶縁膜30に、酸化シリコンや酸化タンタルも使用可能である。この際、第1ゲート絶縁膜30と第2ゲート絶縁膜40とは、膜のピンホール等の欠陥防止のため互いに異なる成膜法で形成することが絶縁効果の点で好ましい。

第3ゲート絶縁襲50は、プラズマCVD法により窓化シリコン膜で形成される。

第1ゲート絶縁譲30は、高誘電率絶縁譲としての特性を有し、第2ゲート絶縁膜40は、第1ゲート絶縁膜30のピンホール等の欠陥防止および半導体層60、70、80のエッチングの際のオーパエッチングを防止するストッパの役目をし、第3ゲート絶縁膜50は、半導体層60、70、80のエッチングの際の終点検出および半導体層60の界面単位を安定化させる役目をそれぞれ有する。

ここで、本発明の実施例によって実際に製造した薄膜トランジスタの例を説明する。 裏厚300 0nmに成膜され、パターニングされたゲート電

当業者に自明であろう。

(発明の効果)

本発明によれば、ゲート絶殺器に8層 機器構造 を用いたことによって、半導体器のエッチング工 程における絶殺器のオーバエッチングを防止でき る。

ゲート絶録層の第3層目に変化シリコン膜を用いているため、エッチングが半導体層から第8ゲート絶録器に移行した際に変素のブラズマ発光ピークを検出することで容易にエッチング終点が検出可能である。

第2ゲート絶縁層に第3ゲート絶縁層よりも耐 エッチング性に使れた材料を使用することにより、 エッチングストッパの役目を果たし、絶縁層のオ ーパエッチング防止が可能となる。

第3ゲート絶縁層にブラズマCVD法による實化シリコン膜を用いているため、真空を破らず、 半等体シリコン層の連続成膜が行えるので、ゲート絶縁層と半等体層との間に不純物が振入せず、

特閒平4-56168 (4)

界面単位の安定なものを形成できる。

4. 図面の簡単な説明

第1図は本発明の実施例による薄膜トランジス 夕の断面構造図、

第2回は従来の技術による薄膜トランジスタの 断面構造図である。

図において、

1 0 ガラス芸板 2 0 ゲート電極

第1ゲート絶縁層 8 0

4 0 第2ゲート鉄経局 5 0

第3ゲート絶縁層 60,70,80

9 0 ソース電極

100 ドレイン電極

透明電極層 特許出願人 スタンレー電気株式会社

高档数四郎 代理人 弁理士

50 60 100 70 - 30

本見明の実施例による存置トランジスク 第1四

従来の技術による薄膜トランジスタ 第 2 図

手続補正書(自発)

特朴片美官

- 平成 2年特許顧第163744号 1. 事件の表示
- 薄膜トランジスタおよびその製造方法 2. 発明の名称

3. 福正をする者

革件との関係 **钟許出顧人**

京京都目風区中目風2丁目9番13号 住所

(230) スタンレー電気株式会社

4. 代 環 人

平103 京京都中央区日本橋小兵長期1-3 住所 日本日ニシキビル702 : 5502-0084 |4| 弁理士 古典 登拉底

(9134) 弁理士 氏名

5. 補正の対象 明編書の売明の詳細な説明の額

6. 補正の内容 別紙の違り

- (1).明細書第 8頁第19~20行 「3000mm」を「300mm」と補正する。
- (2).明細書第 9頁第1行 f1000-4000nm; & f100-400nm; と補正する。・
- (3).明總書第 9頁第3行 1500~2000nm; & \$50~200nm; と補正する。
- (4).明超書第 9頁第4~5行 1500~2000nmj & \$50~200nmj と補正する。

7.30

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.