MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 - MARCH 2017 SOLUTION KEY

Round 2

A) For nonzero integer values of k, $\frac{k}{2k-1}$ produces an integer value only for $k = \underline{\mathbf{1}}$.

Now, we need to look at fractional exponents which will produce an integer result.

Since
$$8^{\frac{1}{3}} = 2$$
 and $8^{\frac{2}{3}} = 4$, we have
$$\frac{k}{2k-1} = \frac{1}{3} \Rightarrow 3k = 2k-1 \Rightarrow k = \underline{-1}$$
$$\frac{k}{2k-1} = \frac{2}{3} \Rightarrow 3k = 4k-2 \Rightarrow k = \underline{2}$$

- B) Remember: $x+7 \ge 0$, since the square root on the left side of the equation must be non-negative. Squaring both sides, $2x^2 + 21x 11 = x^2 + 14x + 49 \Leftrightarrow x^2 + 7x 60 = (x-5)(x+12) = 0$ $\Rightarrow x = 5$.
- C) (x,y) = (7,1), (6,2), (5,3), (4,4)

The units digits of positive integer powers of 2 are cyclic with a period of 4, i.e. they repeat in blocks of 4. $2^1, 2^2, 2^3, 2^4, 2^5, 2^6... \Rightarrow 2,4,8,6,2,4,...$

The rightmost digit of $2^{71} + 2^{17}$ is the same as that of $2^3 + 2^1 = 10$.

The rightmost digit of $2^{62} + 2^{26}$ is the same as that of $2^2 + 2^2 = 08$.

The rightmost digit of $2^{53} + 2^{35}$ is the same as that of $2^1 + 2^3 = 10$.

The rightmost digit of $2^{44} + 2^{44}$ is the same as that of $2^0 + 2^0 = 02$.

Thus, $2^x + 2^y = 2^7 + 2^1 = 130$, $2^5 + 2^3 = 40$.