Collaborators: None

Sources: Lecture Notes

Q2 Projectors and reflections

Let $|\psi\rangle$ and $|\phi\rangle$ be two unit vectors in \mathcal{C}^d . We will be interested in $|Q| = |\phi\rangle\langle\psi|$, which is a $d\times d$ matrix, and can therefore be thought of as a transformation on d -dimensional vectors.

(a) Explicitly work out the matrix Q in the case $|\psi\rangle = |0\rangle$ and $|\phi\rangle = |+\rangle$, and also in the opposite case $|\psi\rangle = |+\rangle$ and $|\phi\rangle = |0\rangle$.

Ans:
$$|\psi\rangle = |0\rangle = \begin{bmatrix} 1,0 \end{bmatrix}^T$$
 ; $|\phi\rangle = |+\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \end{bmatrix}^T$ $|\phi\rangle\langle\psi| = \begin{bmatrix} 1,0 \end{bmatrix}^T \begin{bmatrix} \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}; 0,0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 \end{bmatrix}$

(b) What does the transformation Q map the vector $|\psi\rangle$ to, and what does it map every vector orthogonal to $|\psi\rangle$ to?

Ans: As $Q = |\phi\rangle\langle\psi|$, mapping vector $|\psi\rangle$ after transformation Q, the resultant vector $= (|\phi\rangle\langle\psi|) |\psi\rangle = |\phi\rangle(\langle\psi||\psi\rangle)$ (: Associtivity of tensors multiplication) $= |\phi\rangle(1) = |\phi\rangle$ (: unit – vector dot – product with itself gives 1 in real space.)

 $(Or | \phi \rangle * k, if | \psi \rangle lies in non - real space.)$

Similarly, mapping orthogonal vector $| \psi' \rangle$ after transformation Q, the resultant vector $= (| \phi \rangle \langle \psi |) | \psi' \rangle = | \phi \rangle \langle \langle \psi || \psi' \rangle)$ (: Associtivity of tensors multiplication)

= $|\phi\rangle(0) = [0,0,..(d-times)]^T$ (: unit – vector dot – product with its orthogonal vector gives 0.)

(C) Suppose now that $|\psi\rangle = |\phi\rangle$. Let $P = |\psi\rangle\langle\psi|$. Describe in (geometric) words the transformation P.

Ans: Let $|\psi\rangle = |\phi\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$ s.t. $|a|^2 + b|^2 = 1$

$$P = |\psi\rangle\langle\psi| = \begin{bmatrix} a \\ b \end{bmatrix}[a\ b] = \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix}$$
 Let $|\chi\rangle = \begin{bmatrix} c \\ d \end{bmatrix} \Rightarrow P |\chi\rangle = \begin{bmatrix} a^2 & ab \\ ab & b^2 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a^2c + abd \\ abc + b^2d \end{bmatrix} = (ac + bd) \begin{bmatrix} a \\ b \end{bmatrix} = (ac + bd) |\psi\rangle$

Similarly for n-dimensional vector, $P \mid \chi \rangle = |\psi\rangle(\langle \psi \mid |\chi \rangle) = (\langle \psi \mid |\chi \rangle) * |\psi\rangle$. Here $(\langle \psi \mid |\chi \rangle)$ is a constant.

So, $P = |\psi\rangle\langle\psi|$ is a projection operator. Geometrically, it projects any vector onto the one-dimensional subspace spanned by $|\psi\rangle$.

(d) Let I denote the identity matrix in \mathbb{R}^d . Describe in (geometric) words the transformation I–2P. Your description should include the words "hyperplane perpendicular to". Prove that this transformation is unitary.

Ans:
$$(I - 2P) \mid \chi \rangle = I \mid \chi \rangle - 2(P \mid \chi \rangle) = |\chi \rangle - 2(\langle \psi \mid |\chi \rangle) * |\psi \rangle$$

The resultant vector is a negative of reflection of $|\chi\rangle$ with respect to subspace spanned by $|\psi\rangle$.

To prove it's unitary, we need to show $(I - 2P)(I - 2P)^{\dagger} = I$:

$$(I - 2P)(I - 2P)^{\dagger} = (I - 2P)(I - 2P) = I - 4P + 4P^{2}$$

$$(\because (I - 2P)^{\dagger} = I^{\dagger} - 2P^{\dagger} = I - 2P \quad because \ (|\psi\rangle\langle\psi|)^{\dagger} = |\psi\rangle\langle\psi|$$

$$I - 4P + 4P^{2} = I - 4P + 4P = I \ (\because P^{2} = |\psi\rangle\langle\psi| * |\psi\rangle\langle\psi| = |\psi\rangle\langle\psi| = P$$

Thus, (I - 2P) is unitary transformation.

(e) Suppose we are interested in the change-of-(orthonormal-)basis operation U that takes the orthonormal basis $|\psi_1\rangle, ..., |\psi_d\rangle$ to the orthonormal basis $|\phi_1\rangle, ..., |\phi_d\rangle$. Show that U can be written as $U = |\phi_1\rangle\langle\psi_1| + \cdots + |\phi_d\rangle\langle\psi_d|$.

Ans: we want to show that the change-of-basis operation UUU, which takes the orthonormal basis $|\psi_1\rangle, ..., |\psi_d\rangle$ to the orthonormal basis $|\phi_1\rangle, ..., |\phi_d\rangle$, can be written as:

$$U = \sum_{i=1}^{d} | \phi_i \rangle \langle \psi_i |$$

Let v be any vector in \mathcal{C}^d . We can expand v in the basis $\langle \psi_i \mid$:

$$v = \sum_{i=1}^{d} \langle \psi_i \mid v \rangle \mid \psi_i \rangle$$

Applying U to v, we get:

$$Uv = \sum_{i=1}^{d} \langle \psi_i \mid v \rangle U \mid \psi_i \rangle$$
$$= \sum_{i=1}^{d} \langle \psi_i \mid v \rangle \mid \phi_i \rangle$$
$$= \left(\sum_{i=1}^{d} | \phi_i \rangle \langle \psi_i | \right) \mid v \rangle$$

Thus,
$$U = \left(\sum_{i=1}^{d} |\phi_i\rangle\langle\psi_i|\right)$$