Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Operational analysis:

Queueing Networks

Università degli studi di Roma Tor Vergata Department of Civil Engineering and Computer Science Engineering

> Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

Da un punto di vista degli analisti di sistema si è creato dello scetticismo, perché il modello era regolamentato da un approccio stazionario, le ipotesi richiedevano indipendenza stocastica tra i job, etc...

> **Analytical models** conceptual model

Analytical models

Queueing network (QN) modelling is a particular approach to computer system (CS) modeling in which the CS is represented as a network of queues which is evaluated analitically

- Many analists experienced doubts on its accuracy
- A series of assumptions:
 - √ the system is modeled by a stationary stochastic process;
 - ✓ jobs are stochastically independent;
 - ✓ job steps from device to device follow a *Markov chain*;
 - √the system is in stochastic equilibrium;
 - √ the service time requirements at each device conform to an exponential distribution;
 - \checkmark the system is $\emph{ergodic}$, i.e. long-term time averages converge to the values computed for stochastic equilibrium

Prof. Vittoria de Nitto Personè

Molte assunzioni erano "forzate" rispetto al caso in analisi.

Analytical models

Analytical models

Some of these concepts are difficult and cannot be proved to hold by observing the system in a finite time period Most can be disproved empirically

- ✓ parameters change over time
- ✓jobs are dependent
- ✓ systems are observable only for short periods

√..

3

Prof. Vittoria de Nitto Personè

oria de Nitto Personà

Analytical models

Analytical models

In applying or validating the results of Markovian QN theory, analists substituted operational values for stochastic parameters

directly measured

4

The Markovian QN equations are also valid among operational variables

They hold under different assumptions and apply to a large class of real systems¹

BUZEN, J.P. "Operational analysis: the key to the new generation of performance prediction tools," in Proc. IEEE COMPCON, 1976, IEEE, New York.

DENNING, P. J.; AND BUZEN, J. P. "Operational analysis of queueing networks," in Proc. Third Int. Symp. Computer Performance Modeling, Measurement, and Evaluation, 1977, North-Holland Publ. Co., Amsterdam, The Netherlands.

Prof. Vittoria de Nitto Personè

Operational Analysis Operational Analysis Three operational principles: 1. All quantities should be *precisely measurable* and all assumptions should be directly testable 2. The system must be flow balanced 3. The devices must be homogeneous, i.e., the routing must be independent of queue lengths (ql) the mean service time at a given device must not depend on ql of other devices the same mathematical equations but the operational assumptions can be tested much more confidence and understanding of the QN technology

Prof. Vittoria de Nitto Personè

5

Una ipotesi è testabile operazionalmente se può essere misurata da misure sul sistema

Le componenti sono il sistema su cui faccio le misure, e un intervallo di osservazione per il sistema.

Analytical models
Operational analysis

Operational Analysis

According to the operational approach, let us consider

Basic quantities

- T the length of the observation period (op)
- A the number of arrivals during op
- B the total amount of time during which the system is busy $B \le T$ during op
- C the number of completions during op

A/T = frequenza di arrivo, cioè lambda

C/T= frequenza di uscita, cioè X (ma per ora non lo chiamiamo throughput)

B/T= utilizzazione U

B/C= servizio medio S

Prof. Vittoria de Nitto Personè

/

7 Osserviamo che: U=C/C *B/T = C/T * B/C = X*S, legge dell'utilizzazione. Non ho fatto nessuna assunzione di equilibrio tra flussi, possiamo infatti derivare l'utilizzazione per una certa finestra, senza bisogno dell'equilibrio. E' valida per ogni finestra temporale. Ma cosa vuol dire bilanciamento dei flussi? Sarebbe A=C, tutto ciò che arriva è uguale a ciò che esce nella stessa finestra temporale T. Essa è una condizione facilmente testabile.

Tale assunzione è detta "job flow balance", allora A/T=C/T, allora lambda = X, ovvero solo sotto condizione di job balance. Allora l'utilizzazione è scrivibile come U = lambda * S, probabilità che ad un certo istante di tempo il sistema sia occupato.

Non è detto che il JFB valga per ogni finestra temporale, tuttavia si può fare sempre questa assunzione, senza particolari errori. Esso è valutabile con (A-C)/C, se A=C ovviamente ho errore 0, e cresce se A si discosta da C.

Operational analysis

Queueing Networks

The system is measured for an op of T seconds, the following data are collected for each device i=1, 2, ...K

 A_i the number of arrivals;

15

- B_i total busy time, during which $n_i > 0$
- C_{ij} number of times a job requests service at device j immediately after completing a service request at device *i*; note that it is possible $C_{ii} > 0$.

If we treat the "outside world" as device "0", we can define also

 A_{0j} number of jobs whose first service request is for device j; C_{i0} number of jobs whose last service request is for device i.

Prof. Vittoria de Nitto Personè

Operational analysis

17

Operational Equations

$$X_j = \sum_{i=0}^K X_i p_{ij}$$
 Job Flow Balance equations

$$\begin{cases} V_0 = 1 \\ V_j = p_{0\,j} + \sum_{i=1}^K V_i p_{ij} \end{cases}$$
 Visit Ratio equations

Prof. Vittoria de Nitto Personè

Operational analysis

18

Operational Equations

 $U_i = X_i S_i$ **Utilization Law**

 $X_{0} = \sum_{i=0}^{K} X_{i} p_{i0} \quad \text{Output Flow Law}$ $R = \sum_{i=1}^{K} V_{i} R_{i} \quad \text{Genc}$ General Response Time Law

 $R = M/X_0 - Z$ Interactive Response Time Formula (Assumes flow balance)

Prof. Vittoria de Nitto Personè

17

