Underveiseksamen i MAT1100 H14: Løsningsforslag

Oppgave 1. (2 poeng) Polarkoordinatene til det komplekse tallet $z = -2\sqrt{3}-2i$

A)
$$r = 4, \ \theta = \frac{5\pi}{4}$$

B)
$$r = 4$$
, $\theta = \frac{57}{3}$

C)
$$r = 4, \ \theta = \frac{7\pi}{6}$$

D)
$$r = 4, \ \theta = \frac{47}{53}$$

A)
$$r = 4$$
, $\theta = \frac{5\pi}{4}$
B) $r = 4$, $\theta = \frac{5\pi}{3}$
C) $r = 4$, $\theta = \frac{7\pi}{6}$
D) $r = 4$, $\theta = \frac{4\pi}{3}$
E) $r = 4$, $\theta = \frac{5\pi}{6}$

Riktig svar C: $r = 4, \frac{7\pi}{6}$.

Begrunnelse: Vi har $r = \sqrt{a^2 + b^2} = \sqrt{(-2\sqrt{3})^2 + (-2)^2} = \sqrt{12 + 4} = \sqrt{16} = 4$.

Videre er $\sin(\theta) = \frac{b}{r} = \frac{-2}{4} = -\frac{1}{2}$. Siden θ ligger i tredje kvadrant, betyr dette at $\theta = \frac{7\pi}{6}$.

Oppgave 2. (2 poeng) Det komplekse tallet $z = 3e^{-i\frac{\pi}{4}}$ er lik:

A)
$$\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$$

B)
$$-6\sqrt{2} - 6\sqrt{2}$$

A)
$$\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$$

B) $-6\sqrt{2} - 6\sqrt{2}$
C) $-\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$
D) $\frac{3\sqrt{3}}{2} - \frac{3}{2}i$
E) $1 - i$

D)
$$\frac{3\sqrt{3}}{2} - \frac{3}{2}i$$

E)
$$1 - i$$

Riktig svar A: $\frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$.

Begrunnelse: $z = 3e^{-i\frac{\pi}{4}} = 3\left(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})\right) = 3(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}) = \frac{3\sqrt{2}}{2} - \frac{3\sqrt{2}}{2}i$

Oppgave 3. (2 poeng) Ligningen 2z - i = 4 - iz har løsningen:

A)
$$z = \frac{9}{5} - 2i$$

A)
$$z = \frac{9}{5} - 2i$$

B) $z = -3 - \frac{2}{5}i$
C) $z = \frac{3}{2} - \frac{4}{5}i$
D) $z = \frac{9}{5} - \frac{2}{5}i$
E) $z = -3 - 2i$

C)
$$z = \frac{3}{2} - \frac{4}{5}i^5$$

D)
$$z = \frac{9}{5} - \frac{2}{5}i$$

E)
$$z = -3 - 2i$$

Riktig svar D: $z = \frac{9}{5} - \frac{2}{5}i$.

Begrunnelse: $2z - i = 4 - iz \Longrightarrow (2+i)z = 4 + i \Longrightarrow z = \frac{4+i}{2+i} = \frac{(4+i)(2-i)}{(2+i)(2-i)} = \frac{9-2i}{5}$.

Oppgave 4. (2 poeng) Mengden $A = \{z \in \mathbb{C} : 4 < |z+2| < 9\}$ består av disse punktene i det komplekse planet:

- A) Punktene som ligger over linjen y = 2x + 4 og under linjen y = 2x + 9
- B) Punktene som ligger mellom sirklene om -2 med radius 4 og 9

- C) Punktene som ligger mellom linjene y = 4x + 2 og y = 9x + 2
- D) Punktene inni trekanten med hjørner 2+4i, 4+9i og 9+2i
- E) Punktene på sirkelen om punktet 2 med radius $\frac{9}{4}$

Riktig svar B: Punktene som ligger mellom sirklene om -2 med radius 4 og 9. Begrunnelse: |z+2| = |z-(-2)| er avstanden fra punktet z til punktet -2. Denne avstanden skal ligge mellom 4 og 9.

Oppgave 5. (2 poeng) $\lim_{n\to\infty} \frac{n+3n^3-5n^4}{3+2n+n^3+2n^4}$ er lik:

- A) $\frac{1}{3}$

- B) ∞ C) $\frac{1}{2}$ D) $\frac{3}{2}$ E) $-\frac{5}{2}$

Riktig svar E: $-\frac{5}{2}$.

Oppgave 6. (2 poeng) $\lim_{x\to 0} \frac{1+3x-e^{3x}}{x^2}$ er lik:

- A) $-\frac{9}{2}$ B) 0
- C) -e
- D) $\frac{3}{2}$ E) $-\frac{1}{2}$

Riktig svar A: $-\frac{9}{2}$.

Begrunnelse: $\lim_{x\to 0} \frac{1+3x-e^{3x}}{x^2} \stackrel{L'H}{=} \lim_{x\to 0} \frac{3-3e^{3x}}{2x} \stackrel{L'H}{=} \lim_{x\to 0} \frac{-9e^{3x}}{2} = -\frac{9}{2}.$

Oppgave 7. (2 poeng) Den deriverte til $f(x) = \cot(\ln x)$ er:

- A) $\frac{1}{x\sqrt{1-x^2}}$ B) $-\frac{1}{\sin^2(\ln x)}$ C) $\frac{\tan(\ln x)}{x}$ D) $-\frac{x}{x\sin^2(\ln x)}$ E) $\frac{1}{x(1+x^2)}$

Riktig svar D) $-\frac{1}{x\sin^2(\ln x)}$.

Begrunnelse: Vi bruker kjerneregelen: $f'(x) = -\frac{1}{\sin^2(\ln x)} \cdot \frac{1}{x} = -\frac{1}{x \sin^2(\ln x)}$

Oppgave 8. (2 poeng) Den deriverte til $f(x) = \arctan e^x$ er:

- A) $-\frac{e^x}{\sin^2(e^x)}$ B) $\frac{e^x}{1+e^{2x}}$ C) $\frac{e^x}{\sqrt{1-e^{2x}}}$ D) $\frac{1}{1+e^{2x}}$ E) $-\frac{1}{\sin^2(e^x)}$

Riktig svar B) $\frac{e^x}{1+e^{2x}}$

Begrunnelse: Vi bruker kjerneregelen: $f'(x) = \frac{1}{1+(e^x)^2} \cdot e^x = \frac{e^x}{1+e^{2x}}$.

Oppgave 9. (2 poeng) $\lim_{x\to 0} \frac{\arcsin x}{\sin 2x}$ er lik:

- A) 1
- B) 2
- $\stackrel{\cdot}{\text{C}})\frac{1}{2}$
- D) ∞
- E) 0

Riktig svar C) $\frac{1}{2}$

Begrunnelse: $\lim_{x\to 0} \frac{\arcsin x}{\sin 2x} \stackrel{L'H}{=} \lim_{x\to 0} \frac{\frac{1}{\sqrt{1-x^2}}}{\frac{2\cos 2x}{\cos 2x}} = \frac{1}{2}$.

Oppgave 10. (2 poeng) Den omvendte funksjonen til $f(x) = e^{\sqrt{x}-3}$ er:

- A) $\ln(x) + \sqrt{3}$ B) $\ln(x)^2 + 3$ C) $\frac{1}{e^{\sqrt{x}-3}}$ D) e^{x^2+3}

- E) $(\ln(x) + 3)^2$

Riktig svar E): $(\ln(x) + 3)^2$

Begrunnelse: Vi løser ligningen $y=e^{\sqrt{x}-3}$ for x: $\ln y=\sqrt{x}-3 \Longrightarrow \sqrt{x}=$ $\frac{1}{\ln y + 3} \Longrightarrow x = (\ln y + 3)^2$

Oppgave 11. (3 poeng) Den deriverte til $f(x) = (x^2 + 1)^x$ er:

- A) $x(x^2 + 1)^{x-1}$ B) $2x(x^2 + 1)^x$ C) $(x^2 + 1)^x \ln(x^2 + 1)$ D) $2x^2(x^2 + 1)^{x-1}$
- E) $(x^2+1)^x \left(\ln(x^2+1) + \frac{2x^2}{x^2+1}\right)$

<u>Riktig svar</u> E): $(x^2 + 1)^x \left(\ln(x^2 + 1) + \frac{2x^2}{x^2 + 1} \right)$

Begrunnelse: Vi har $f(x) = (x^2 + 1)^x = e^{x \ln(x^2 + 1)}$, og kjerneregelen gir

$$f'(x) = e^{x \ln(x^2 + 1)} \left(1 \cdot \ln(x^2 + 1) + x \frac{1}{x^2 + 1} \cdot 2x \right) = (x^2 + 1)^x \left(\ln(x^2 + 1) + \frac{2x^2}{x^2 + 1} \right)$$

Oppgaven kan også løses ved logaritmisk derivasjon.

Oppgave 12. (3 poeng) 1 + i er en rot i polynomet $P(z) = z^4 - 2z^3 + 4z - 4$. De andre røttene er:

- A) 1 i, 1 og -2
- B) -1 + i, -1 og 2
- C) 1 i, -1 og 2
- D) 1 i, $-\frac{1}{2}$ og 4 E) 1 i, $\sqrt{2}$ og $-\sqrt{2}$

Riktig svar E): 1 - i, $\sqrt{2}$ og $-\sqrt{2}$

Begrunnelse: Siden polynomet er reelt, er det konjugerte tallet 1-i også en rot. Det betyr at P(z) er delelig med produktet $(z-(1+i))(z-(1-i))=z^2-2z+2$. Utfører vi divisjonen, får vi P(z): $(z^2 - 2z + 2) = z^2 - 2 = (z - \sqrt{2})(z + \sqrt{2})$. Følgelig er $P(z) = (z - (1+i))(z - (1-i))(z - \sqrt{2})(z + \sqrt{2})$ som viser at røttene er $1 + i, 1 - i, \sqrt{2}$ og $-\sqrt{2}$

Oppgave 13. (3 poeng) $\lim_{n\to\infty} (\sqrt{n^4-n^2}-n^2)$ er lik:

- A) -2
- B) $-\frac{1}{2}$ C) 0
- $\stackrel{\text{D})}{=} -\infty$ E) $-\sqrt{2}$

Riktig svar B): $-\frac{1}{2}$

Begrunnelse: Vi ganger med den konjugerte over og under brøkstreken:

$$\lim_{n \to \infty} \left(\sqrt{n^4 - n^2} - n^2 \right) = \lim_{n \to \infty} \frac{\left(\sqrt{n^4 - n^2} - n^2 \right) \left(\sqrt{n^4 - n^2} + n^2 \right)}{\sqrt{n^4 - n^2} + n^2}$$

$$= \lim_{n \to \infty} \frac{(n^4 - n^2) - n^4}{\sqrt{n^4 - n^2} + n^2} = \lim_{n \to \infty} \frac{-n^2}{n^2 \left(\sqrt{1 - n^{-2}} + 1 \right)}$$

$$= \lim_{n \to \infty} \frac{-1}{\left(\sqrt{1 - n^{-2}} + 1 \right)} = -\frac{1}{2}$$

Oppgave 14. (3 poeng) Funksjonen $f(x) = x \ln x - x^2$ er:

- A) Konveks på intervallet $(0,\frac{1}{2}]$, konkav på intervallet $[\frac{1}{2},\infty)$
- B) Konveks på intervallet $(0, \infty)$

- C) Konkav på intervallet $(0, \infty)$
- D) Konkav på intervallet $(0, \frac{1}{2}]$, konveks på intervallet $[\frac{1}{2}, \infty)$
- E) Konveks på intervallet (0,2], konkav på intervallet $[2,\infty)$

Riktig svar A): Konveks på intervallet $(0, \frac{1}{2}]$, konkav på intervallet $[\frac{1}{2}, \infty)$ Begrunnelse: Vi deriverer f to ganger:

$$f'(x) = 1 \cdot \ln x + x \cdot \frac{1}{x} - 2x = \ln x + 1 - 2x$$
$$f''(x) = \frac{1}{x} - 2 = \frac{1 - 2x}{x}$$

Vi ser $f''(x) \ge 0$ på intervallet $(0, \frac{1}{2}]$ og at $f''(x) \le 0$ på intervallet $[\frac{1}{2}, \infty)$.

Oppgave 15. (3 poeng) $\lim_{x\to\frac{\pi}{4}}(\tan x)^{\frac{1}{x-\frac{\pi}{4}}}$ er lik:

- A) 1
- B) $e^{\frac{16}{16+\pi^2}}$
- C) $e^{\frac{\pi}{4}}$
- D) ∞ E) e^2

Riktig svar E): e^2 Begrunnelse: Vi skriver

$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{x - \frac{\pi}{4}}} = \lim_{x \to \frac{\pi}{4}} e^{\frac{\ln(\tan x)}{x - \frac{\pi}{4}}}$$

Eksponenten er et " $\frac{0}{0}$ "-uttrykk, og vi kan bruke L'Hôpitals regel på den: Mellomregning:

$$\lim_{x \to \frac{\pi}{4}} \frac{\ln(\tan x)}{x - \frac{\pi}{4}} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{1}{\tan x} \cdot \frac{1}{\cos^2 x}}{1} = \lim_{x \to \frac{\pi}{4}} \frac{1}{\tan x} \cdot \lim_{x \to \frac{\pi}{4}} \frac{1}{\cos^2 x} = 1 \cdot 2 = 2$$

Dermed er

$$\lim_{x \to \frac{\pi}{4}} (\tan x)^{\frac{1}{x - \frac{\pi}{4}}} = \lim_{x \to \frac{\pi}{4}} e^{\frac{\ln(\tan x)}{x - \frac{\pi}{4}}} = e^{\lim_{x \to \frac{\pi}{4}} \frac{\ln(\tan x)}{x - \frac{\pi}{4}}} = e^2$$

siden eksponentialfunksjonen er kontinuerlig.

Oppgave 16. (3 poeng) Dersom g er den omvendte funksjonen til f(x) = $x \arctan x$, så er

- A) $g'(\frac{\pi}{4}) = \frac{4}{\pi}$ B) $g'(\frac{\pi}{4}) = 1 \frac{4}{\pi}$ C) $g'(\frac{\pi}{4}) = \frac{4}{\pi+2}$

D)
$$g'(\frac{\pi}{4}) = \frac{1}{2}$$

E) $g'(\frac{\pi}{4}) = \frac{\pi+2}{4}$

Riktig svar C): $g'(\frac{\pi}{4}) = \frac{4}{\pi+2}$

Begrunnelse: Vi observerer først at $f(1) = 1 \cdot \arctan 1 = \frac{\pi}{4}$. Dette medfører at $g'(\frac{\pi}{4}) = \frac{1}{f'(1)}$. Siden $f'(x) = 1 \cdot \arctan x + x \cdot \frac{1}{1+x^2} = \arctan x + \frac{x}{1+x^2}$, har vi $f'(1) = \frac{\pi}{4} + \frac{1}{2} = \frac{\pi+2}{4}$. Dermed er $g'(\frac{\pi}{4}) = \frac{1}{f'(1)} = \frac{4}{\pi+2}$.

Oppgave 17. (3 poeng) Dersom en følge $\{x_n\}$ er definert ved $x_1=4$ og $x_{n+1}=\frac{x_n^2+5}{6}$ for $n\geq 1$, så er

- A) $\lim_{n\to\infty} x_n = 1$
- B) $\lim_{n\to\infty} x_n = -\infty$
- C) $\lim_{n\to\infty} x_n = \infty$
- D) $\lim_{n\to\infty} x_n = 5$
- E) $\lim_{n\to\infty} x_n = 4$

Riktig svar A): $\lim_{n\to\infty} x_n = 1$.

Begrunnelse: Anta at $\lim_{n\to\infty} x_n = x$. Tar vi grenser på begge sider av ligningen $x_{n+1} = \frac{x_n^2 + 5}{6}$, får vi $x = \frac{x^2 + 5}{6}$. Denne annengradsligningen har løsningene x = 1 og x = 5, så dette er de eneste mulige grenseverdiene. Bruker vi induksjon med induksjonshypotesen

$$P_k: 1 < x_{k+1} < x_k,$$

viser vi at følgen $\{x_n\}$ er avtagende og begrenset av 1. Følgen må derfor konvergere, og siden $x_1 = 4 < 5$, er den eneste muligheten at $\lim_{n \to \infty} x_n = 1$.

Oppgave 18. (3 poeng) Ett av utsagnene nedenfor kan brukes som definisjon av den ensidige grenseverdien $\lim_{x\to a^+} f(x) = L$. Hvilket?

- A) For hver $\epsilon>0$ finnes det en $\delta>0$ slik at når $a-\delta< x< a+\delta,$ så er $|f(x)-L|<\epsilon.$
- B) Det finnes en $\delta > 0$ slik at for alle $\epsilon > 0$, så er $|f(x) L| < \epsilon$ når $a < x < a + \delta$.
- C) For hver $\delta>0$ finnes det en $\epsilon>0$ slik at når $a-\delta < x < a+\delta,$ så er $|f(x)-L|<\epsilon.$
- D) For hver $\epsilon > 0$ finnes det en $\delta > 0$ slik at når $a < x < a + \delta$, så er $|f(x) L| < \epsilon$.
- E) Det finnes en $\epsilon > 0$ slik at for alle $\delta > 0$, så er $|f(x) L| < \epsilon$ når $a < x < a + \delta$.

<u>Riktig svar</u> D): For hver $\epsilon > 0$ finnes det en $\delta > 0$ slik at når $a < x < a + \delta$, så er $|f(x) - L| < \epsilon$.

Begrunnelse: Dette alternativet fanger opp at vi bare er interessert i hva som

skjer når x > a, og det uttrykker dessuten at vi kan få f(x) så nær L vi ønsker ved å velge x tilstrekkelig nær (men større enn) a. Alternativ A definerer den vanlige, tosidige grensen, bortsett fra at man har glemt å unnta tilfellet x = a. De gjenværende alternativene er meningsløse.

Oppgave 19. (3 poeng) Figuren nedenfor viser et rektangel innskrevet i en likesidet trekant med sidekant 1. Hva er det største arealet et slikt rektangel kan ha?

- B) $\frac{\sqrt{2}}{6}$ C) $\frac{\sqrt{6}-\sqrt{2}}{3}$ D) $\frac{\sqrt{3}}{8}$ E) $2-\sqrt{3}$

Riktig svar D): $\frac{\sqrt{3}}{8}$ Begrunnelse: Innfører vix som vist på figuren nedenfor, ser vi at grunnlinjen til rektangelet er 1-2x og høyden er $\sqrt{3}x$ (husk at $\tan \frac{\pi}{3} = \sqrt{3}$). Arealet er dermed $A(x) = \sqrt{3}x(1-2x) = \sqrt{3}(x-2x^2)$. Derivasjon gir maksimum for $x = \frac{1}{4}$, og dermed er det maksimale arealet $A(\frac{1}{4}) = \sqrt{3} \cdot \frac{1}{4} \cdot (1 - 2 \cdot \frac{1}{4}) = \frac{\sqrt{3}}{8}$.

Oppgave 20. (3 poeng) En båt seiler på en rettlinjet kurs som passerer 200 meter fra et fyrtårn (se figur). Når vinkelen v mellom båtens kurs og siktelinjen mot fyret er $\frac{\pi}{4}$, øker den med 0.02 radianer per sekund. Hvor fort seiler båten?

- A) 6 meter per sekund
- B) $5\sqrt{3}$ meter per sekund
- C) 8 meter per sekund
- D) $5\sqrt{2}$ meter per sekund
- E) 7 meter per sekund

Riktig svar C): 8 meter per sekund

Begrunnelse: Figuren nedenfor viser den generelle situasjonen. Farten til båten $\overline{\text{er gitt ved (tallverdien til) den deriverte til } x}$.

Vi ser at $\cot v(t) = \frac{x(t)}{200}.$ Deriverer vi med hensyn på t på begge sider, får vi

$$-\frac{1}{\sin^2 v(t)}v'(t) = \frac{x'(t)}{200}$$

Dermed er $x'(t)=-\frac{200}{\sin^2v(t)}v'(t)$. Vi er interessert i øyeblikket der $\sin v=\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}$ og v'=0.02. Da blir $x'(t)=-\frac{200}{\frac{1}{2}}\cdot 0.02=8$. Det betyr at båten seiler med en fart på 8m/s.

Bemerkning: Man kan godt løse oppgaven med tangens isteden for cotangens, men det gir litt tyngre regninger.