Christian Campbell

Time Series Modeling

Out[10]:		YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
	0	1992	146925	147223	146805	148032	149010	149800	150761.0	151067.0	152588.0	153521.0	153583.0	155614.0
	1	1993	157555	156266	154752	158979	160605	160127	162816.0	162506.0	163258.0	164685.0	166594.0	168161.0
	2	1994	167518	169649	172766	173106	172329	174241	174781.0	177295.0	178787.0	180561.0	180703.0	181524.0
	3	1995	182413	179488	181013	181686	183536	186081	185431.0	186806.0	187366.0	186565.0	189055.0	190774.0
	4	1996	189135	192266	194029	194744	196205	196136	196187.0	196218.0	198859.0	200509.0	200174.0	201284.0

1.

The monthly value over the year increses at a steady rate, with the exception of a dip between 2005 and 2010.

2.

```
In [29]:
          # Melts the DataFrame
             retail df melted = retail df.melt(id vars=['YEAR'], var name='MONTH', value name='VALUE')
             # Maps months to numerical values
             month_map = {'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6, 'JUL': 7, 'AUG': 8, 'SEP': 9, '(
             retail df melted['MONTH NUM'] = retail df melted['MONTH'].map(month map)
             # Ensures MONTH NUM is of integer type
             retail df melted['MONTH NUM'] = retail df melted['MONTH NUM'].astype(int)
             # Renames columns to 'year', 'month', 'day'
             retail df melted = retail df melted.rename(columns={'YEAR': 'year', 'MONTH NUM': 'month'})
             retail df melted['day'] = 1
             # Creates a 'DATE' column
             retail df melted['DATE'] = pd.to datetime(retail df melted[['year', 'month', 'day']])
             # Splits the data into training and test sets
             start test date = pd.to datetime('2020-07-01')
             end test date = pd.to datetime('2021-06-30')
             train set = retail df melted[retail df melted['DATE'] < start test date]</pre>
             test set = retail df melted[(retail df melted['DATE'] >= start test date) & (retail df melted['DATE'] <=
             # Verifies the splits
             print("Training set:")
             print(train set.tail())
             print("\nTest set:")
             print(test set)
```

Training set:									
	•	MONTH	VALUE	month	day	DATE			
353	2015	DEC	397052.0	12	1	2015-12-01			
354	2016	DEC	412610.0	12	1	2016-12-01			
355	2017	DEC	433282.0	12	1	2017-12-01			
356	2018	DEC	434803.0	12	1	2018-12-01			
357	2019	DEC	458055.0	12	1	2019-12-01			
Test	set:								
	year	MONTH	VALUE	month	day	DATE			
29	2021	JAN	520162.0	1	1	2021-01-01			
59	2021	FEB	504458.0	2	1	2021-02-01			
89	2021	MAR	559871.0	3	1	2021-03-01			
119	2021	APR	562269.0	4	1	2021-04-01			
149	2021	MAY	548987.0	5	1	2021-05-01			
179	2021	JUN	550782.0	6	1	2021-06-01			
208	2020	JUL	481627.0	7	1	2020-07-01			
238	2020	AUG	483716.0	8	1	2020-08-01			
268	2020	SEP	493327.0	9	1	2020-09-01			
298	2020	OCT	493991.0	10	1	2020-10-01			
328	2020	NOV	488652.0	11	1	2020-11-01			
358	2020	DEC	484782.0	12	1	2020-12-01			

3. 4. & 5.

```
# I decided to go a different direction here.
In [33]:
             # Ensures the data is sorted by YEAR
             retail df = retail df.sort values('YEAR')
             # Splits data into training and test sets
             train df = retail df[retail df['YEAR'] < 2020]</pre>
             test df = retail df[retail df['YEAR'] == 2020]
             # Prepares the feature columns
             feature_cols = ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"]
             # Trains a model for each month
             models = \{\}
             for month in feature cols:
                 X train = train_df[feature_cols].drop(month, axis=1)
                 y train = train df[month]
                 model = LinearRegression()
                 model.fit(X train, y train)
                 models[month] = model
             # Predicts and evaluate on the test set
             rmse scores = {}
             for month in feature cols:
                X_test = test_df[feature_cols].drop(month, axis=1)
                y test = test df[month]
                 y pred = models[month].predict(X test)
                 rmse = np.sqrt(mean_squared_error(y_test, y_pred))
                 rmse scores[month] = rmse
             # Displays the RMSE for each month
             for month, score in rmse scores.items():
                 print(f'RMSE for {month}: {score:.2f}')
```

```
RMSE for JAN: 18615.30
RMSE for FEB: 11087.28
RMSE for MAR: 10807.04
RMSE for APR: 61978.69
RMSE for JUN: 4127.40
RMSE for JUL: 4260.45
RMSE for AUG: 1181.82
RMSE for OCT: 32083.29
RMSE for NOV: 15708.47
RMSE for DEC: 25783.37
```

In []:

