Fairness

Lecture #7 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

November 11, 2008

Overview Lecture #7

- ⇒ The Importance of Fairness
 - Fairness Constraints
 - Fairness Assumptions
 - Fairness and Safety Properties

Does this program always terminate?

Inc | | Reset

where

$$\begin{array}{lll} \operatorname{proc\ Inc} &=& \operatorname{while}\,\langle\, x\geqslant 0 \operatorname{\ do}\, x:=x+1\,\rangle \operatorname{\ od} \\ \operatorname{proc\ Reset} &=& x:=-1 \end{array}$$

 \boldsymbol{x} is a shared integer variable that initially has value 0

Is it possible to starve?

Process two starves

Is it fair that process two has infinitely many possibilities to enter the critical section, but never enters it?

Process two starves

Is it fair that process two has infinitely many possibilities to enter the critical section, but only enters it finitely often?

Fairness

Starvation freedom is often considered under process fairness

- ⇒ there is a fair scheduling of the execution of processes
- Fairness is typically needed to prove liveness
 - not for safety properties!
 - to prove some form of progress, progress needs to be possible
- Fairness is concerned with a fair resolution of nondeterminism.
 - such that it is not biased to consistently ignore a possible option
- Problem: liveness properties constrain infinite behaviours
 - but some traces—that are unfair—refute the liveness property

Fairness constraints

What is wrong with our examples?

Nothing!

- interleaving: not realistic as in no processor is infinitely faster than another
- semaphore-based mutual exclusion: level of abstraction
- Rule out "unrealistic" exectuions by imposing fairness constraints
 - what to rule out? ⇒ different kinds of fairness constraints
- "A process gets its turn infinitely often"
 - always
 - if it is enabled infinitely often
 - if it is continuously enabled from some point on

unconditional fairness strong fairness weak fairness

Fairness

This program terminates under unconditional (process) fairness:

$$\begin{array}{lll} \mathbf{proc} \; \operatorname{Inc} & = & \mathbf{while} \; \langle \, x \geqslant 0 \; \mathbf{do} \; x := x + 1 \, \rangle \; \mathbf{od} \\ \\ \mathbf{proc} \; \operatorname{Reset} & = & x := -1 \end{array}$$

 \boldsymbol{x} is a shared integer variable that initially has value 0

Overview Lecture #7

- The Importance of Fairness
- ⇒ Fairness Constraints
 - Fairness Assumptions
 - Fairness and Safety Properties

Fairness constraints

Unconditional fairness

an activity is executed infinitely often

Strong fairness

if an activity is *infinitely often* enabled (not necessarily always!) then it has to be executed infinitely often

Weak fairness

if an activity is *continuously enabled* (no temporary disabling!) then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

Fairness definition

For $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states, $A \subseteq Act$, and infinite execution fragment $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} \dots$ of TS:

- 1. ρ is *unconditionally A-fair* whenever: true $\implies \forall k \geqslant 0. \exists j \geqslant k. \ \alpha_j \in A$ infinitely often A is taken
- 2. ρ is strongly *A*-fair whenever:

$$\underbrace{(\forall k \geqslant 0. \, \exists j \geqslant k. \, \textit{Act}(s_j) \, \cap \, A \neq \varnothing)}_{\text{infinitely often A is enabled}} \implies \underbrace{\forall k \geqslant 0. \, \exists j \geqslant k. \, \alpha_j \in A}_{\text{infinitely often A is taken}}$$

3. ρ is weakly *A*-fair whenever:

$$\underbrace{(\exists k \geqslant 0. \, \forall j \geqslant k. \, \textit{Act}(s_j) \, \cap \, A \neq \varnothing)}_{A \text{ is eventually always enabled}} \implies \underbrace{\forall k \geqslant 0. \, \exists j \geqslant k. \, \alpha_j \in A}_{\text{infinitely often A is taken}}$$

where
$$\mathit{Act}(s) = \left\{ \alpha \in \mathit{Act} \mid \exists s' \in S. \ s \xrightarrow{\alpha} s' \right\}$$

Example (un)fair executions

Which fairness notion to use?

- Fairness constraints aim to rule out "unreasonable" runs
- Too strong? ⇒ relevant computations ruled out
 - verification yields:
 - "false": error found
 - "true": don't know as some relevant execution may refute it
- Too weak? ⇒ too many computations considered
 - verification yields:
 - "true": property holds
 - "false": don't know, as refutation maybe due to some unreasonable run

Relation between fairness constraints

 ${\tt unconditional} \ A{\textrm{-fairness}} \implies {\tt strong} \ A{\textrm{-fairness}} \implies {\tt weak} \ A{\textrm{-fairness}}$

Overview Lecture #7

- The Importance of Fairness
- Fairness Constraints
- ⇒ Fairness Assumptions
 - Fairness and Safety Properties

Fairness assumptions

- Fairness constraints impose a requirement on any $\alpha \in A$
- In practice: different constraints on different action sets needed
- This is realised by *fairness assumptions*

Fairness assumptions

• A fairness assumption for Act is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

with \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{\mathsf{Act}}$

- Execution ρ is \mathcal{F} -fair if:
 - it is unconditionally A-fair for all $A \in \mathcal{F}_{ucond}$, and
 - it is strongly A-fair for all $A \in \mathcal{F}_{strong}$, and
 - it is weakly A-fair for all $A \in \mathcal{F}_{weak}$

fairness assumption $(\varnothing, \mathcal{F}', \varnothing)$ denotes strong fairness; $(\varnothing, \varnothing, \mathcal{F}')$ weak, etc.

Fairness for mutual exclusion

Fairness for mutual exclusion

Fairness for mutual exclusion

in any \mathcal{F}'' -fair execution each process infinitely often requests access

Fair paths and traces

- Path $s_0 \rightarrow s_1 \rightarrow s_2 \dots$ is \mathcal{F} -fair if
 - there exists an \mathcal{F} -fair execution $s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \dots$
 - $FairPaths_{\mathcal{F}}(s)$ denotes the set of \mathcal{F} -fair paths that start in s
 - $FairPaths_{\mathcal{F}}(TS) = \bigcup_{s \in I} FairPaths_{\mathcal{F}}(s)$
- Trace σ is \mathcal{F} -fair if there exists an \mathcal{F} -fair execution ρ with $trace(\rho) = \sigma$
 - $FairTraces_{\mathcal{F}}(s) = trace(FairPaths_{\mathcal{F}}(s))$
 - $FairTraces_{\mathcal{F}}(TS) = trace(FairPaths_{\mathcal{F}}(TS))$

these notions are only defined for infinite paths and traces; why?

Fair satisfaction

TS satisfies LT-property P:

$$TS \models P$$
 if and only if $Traces(TS) \subseteq P$

- TS satisfies the LT property P if all its observable behaviors are admissible
- TS fairly satisfies LT-property P wrt. fairness assumption \mathcal{F} :

$$TS \models_{\mathcal{F}} P$$
 if and only if $FairTraces_{\mathcal{F}}(TS) \subseteq P$

- if all paths in TS are \mathcal{F} -fair, then $TS \models_{\mathcal{F}} P$ if and only if $TS \models_{\mathcal{F}} P$
- if some path in TS is not \mathcal{F} -fair, then possibly $TS \models_{\mathcal{F}} P$ but $TS \not\models P$

Fairness for mutual exclusion

 $TS \not\models$ "every process enters its critical section infinitely often"

and
$$TS \not\models_{\mathcal{F}'}$$
 "every . . . often"

but
$$TS \models_{\mathcal{F}''}$$
 "every . . . often"

Overview Lecture #7

- The Importance of Fairness
- Fairness Constraints
- Fairness Assumptions
- ⇒ Fairness and Safety Properties

Realizable fairness

For *TS* with set of actions *Act* and fairness assumption \mathcal{F} for *Act*.

 \mathcal{F} is *realizable* for TS if for any $s \in Reach(TS)$: FairPaths $_{\mathcal{F}}(s) \neq \varnothing$

every initial finite execution fragment of TS can be completed to a fair execution

The suffix property

If infinite execution fragment ρ is fair then all suffixes of ρ are fair.

If infinite execution fragment ρ is fair then any finite execution fragment continued with ρ is fair.

$$\underbrace{s_0' \xrightarrow{\beta_1} s_1' \xrightarrow{\beta_2} \dots \xrightarrow{\beta_n} s_n'}_{\text{arbitrary starting fragment}} = \underbrace{s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} s_2 \xrightarrow{\alpha_3} \dots}_{\text{fair continuation } \rho}$$

Realizable fairness and safety

For *TS* and safety property P_{safe} (both over *AP*)

and \mathcal{F} a realizable fairness assumption for TS:

$$TS \models P_{safe}$$
 if and only if $TS \models_{\mathcal{F}} P_{safe}$

Safety properties are thus preserved by realizable fairness assumptions

Non-realizable fairness may harm safety properties

Summary of fairness

- Fairness constraints rule out unrealistic executions
 - i.e., constraints on the actions that occur along infinite executions
 - important for the verification of liveness properties
- Unconditional, strong, and weak fairness constraints
 - unconditional \Rightarrow strong fair \Rightarrow weak fair
- Fairness assumptions allow distinct constraints on distinct action sets
- (Realizable) fairness assumptions are irrelevant for safety properties