最適化理論

凸集合

凸集合

集合Cは \mathbb{R}^n の部分集合とする。任意の $x,y\in C$ と任意の $\theta\in\mathbb{R}(0\leq\theta\leq1)$ について

$$\theta x + (1 - \theta)y \in C$$

が成り立つとき、C は凸集合(convex set) である、という。

凸集合の定義の意味

 $\theta x + (1 - \theta)y$ は点x, y をつなぐ線分となるため、"C内の任意の2点をつなぐ線分が完全にCに含まれる場合、Cは凸である"ということになる。

重要な凸集合

これから取り上げる \mathbb{R}^n の部分集合はすべて凸集合である。

直線

相異なる $x_1, x_2 \in \mathbb{R}^n$ について、

$$x = \theta x_1 + (1 - \theta)x_2, \quad \theta \in \mathbb{R}$$

と表される集合を直線(line)と呼ぶ。

超平面(hyperplane)

 $a \in \mathbb{R}^n$ (法線ベクトル) $b \in \mathbb{R}$ に対して、集合

$$\{x \in \mathbb{R}^n : a^T x = b\}, \quad (a \neq 0)$$

を超平面と呼ぶ。

- n = 2: Pは直線(自由度1)
- n = 3: Pは平面(自由度2)

ベクトル a に直交する原点を通る超平面:

$$\{x \in \mathbb{R}^n : a^T x = 0\}$$

上の超平面を点 $c \in \mathbb{R}^n$ を通るようにシフトすると

$$\{x \in \mathbb{R}^n : a^T(x-c) = 0\}$$

となる。

$$a^{T}(x-c) = 0 \Leftrightarrow a^{T}x = b(b = a^{T}c)$$

アフィン集合

$$A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

$$\{x \in \mathbb{R}^n : Ax = b\}$$

直線、超平面を一般化した集合。

半空間 (halfspace)

 $a \in \mathbb{R}^n, b \in \mathbb{R}$ のとき、

$$\{x \in \mathbb{R}^n : a^T x \le b\}, \quad (a \ne 0)$$

支持超平面(supporting hyperplane)

集合 $C\subset\mathbb{R}^n$ の境界上の点 x_0 を通る超平面P:

$$P = \{x : a^T(x - x_0) = 0\}$$

が

$$\forall x \in C, \quad a^T(x - x_0) \le 0, a \ne 0$$

を満たすとき、P は集合C の点 x_0 における支持 超平面と呼ぶ。

Cが滑らかな集合(多様体)の場合、支持超平面は Cの接平面となる。

支持超平面定理

集合Cが凸集合の場合、Cの境界の任意の点において、支持超平面が存在する。

超球 (hypersphere) とノルム球

超球

$$B_2(x_c, r) \equiv \{x \in \mathbb{R}^n : ||x - x_c||_2 \le r\}$$

ノルム球

$$B_p(x_c, r) \equiv \{x \in \mathbb{R}^n : ||x - x_c||_p \le r\}$$

$$||x||_p \equiv \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad p \ge 1$$

凸錐

集合 $S \subset \mathbb{R}^n$ が

$$\forall x \in S, \forall \alpha \in \mathbb{R}_+ \Rightarrow \alpha x \in S$$

を満たすとき、Sを錐(cone)と呼ぶ。凸集合である錐を凸錐と呼ぶ。

凸結合と凸包

<u>凸結合</u> k個の点

$$S \equiv \{x_1, x_2, \dots, x_k\}, \quad x_i \in \mathbb{R}^n$$

について、点なが

$$x = \theta_1 x_1 + \dots + \theta_k x_k, \quad \theta_1 + \dots + \theta_k = 1, \theta_i \ge 0$$

と書けるとき、xは $\{x_1,\ldots,x_k\}$ の凸結合である、という。

凸包

$$S = \{x_1, x_2, \dots, x_k\}$$
 について、

$$\operatorname{conv}(S) \equiv \{x \in \mathbb{R}^n : x は S$$
 の凸結合 \}

を S の 凸 包 (convex-hull) と呼ぶ。 凸包は S を包含する最小 (集 合の包含関係における) の 凸集合となる。

多面体(polytope, polyhedra)

有限個の半空間の共通集合を多面体 (polyhedra) という。すなわち、 $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

$$P \equiv \{x \in \mathbb{R}^n : Ax \le b\}$$

である。不等号は要素ごとの不等号を表す。 半空間 H_i を

$$H_i = \{x \in \mathbb{R}^n : a_i x \le b_i, i = 1, 2, \dots, m\}$$

と定義する。 有界な polyhedra を polytope と呼ぶ。

多面体P:

$$P = H_1 \cap H_2 \cap \cdots \cap H_m$$

サブレベル集合

 $f:\mathbb{R}^n o\mathbb{R}$ について

$$C_{\alpha} \equiv \{x \in \text{dom} f : f(x) \le \alpha\}, \quad \alpha \in \mathbb{R}$$

をfのサブレベル集合と呼ぶ。凸関数のサブレベル集合は凸集合になる。

クイズ

 $f(x_1, x_2) \equiv x_1^2 + 2x_2^2$ について、サブレベル集合 C_1 を図示せよ。

凸集合の共通集合

 $C_1, C_2, \ldots, C_k \subset \mathbb{R}^n$ をそれぞれ凸集合とする。 それらの共通集合

$$C = C_1 \cap C_2 \cap \cdots \cap C_k$$

は凸集合となる。

無限個の凸集合の共通集合もやはり凸集合となる。

凸集合の半平面の共通集合としての表現

$$S = \bigcap_{i=1}^{\infty} H_i$$

 H_i はSの支持超平面からなる半空間

凸計画問題の標準形

 f_0, f_1, \ldots, f_m は凸関数。

minimize $f_0(x)$ subject to $f_i(x) \leq 0, \quad i=1,2,\ldots,m$ $a_i^T x = b, \quad i=1,2,\ldots,p$

$$\mathcal{F} \equiv \{x \in \mathbb{R}^n : f_i(x) \le 0, a_j^T x = b, i = 1, 2, \dots, m, j = 1, 2, \dots, p\}$$

凸計画問題の実行可能領域 F は凸関数のサブレベル集合とアフィン集合の共通集合であるので、 凸集合となる。

凸計画問題のもうひとつの見方

凸関数 f_0 を凸集合である実行可能領域 \mathcal{F} において、最小化する問題。

線形計画法

minimize $c^T x$

subject to
$$a_i^T x \leq b_i, \quad i = 1, 2, \dots, m$$

線形計画問題のもうひとつの見方

- ullet 目的関数 c^Tx を多面体である実行可能領域Fにおいて、最小化する問題。
- 凸計画問題のひとつのクラス