

A426316B Series

Preliminary

64K X 16 CMOS DYNAMIC RAM WITH EDO PAGE MODE

Document Title

64K X 16 CMOS DYNAMIC RAM WITH EDO PAGE MODE

Revision History

Rev. No.HistoryIssue DateRemark0.0Initial issueNovember 15, 2000Preliminary

A426316B Series

Preliminary

64K X 16 CMOS DYNAMIC RAM WITH EDO PAGE MODE

Features

- Organization: 65,536 words X 16 bits
- Part Identification:
 - A426316B
 - A426316B-L (with self-refresh mode)
- High speed
 - 30/35/40 ns RAS access time
 - 16/18/20 ns column address access time
 - 10/11/12 ns CAS access time
- Low power consumption
 - Operating: 75mA (-30 max)
 - Standby: 3 mA (TTL)

Pin Configuration

■ SOJ

■TSOP

- Separate CAS (UCAS, LCAS) for byte selection
- Self refresh mode
- 256 refresh cycles, 4 ms refresh interval
- Read-modify-write, RAS -only, CAS -before- RAS , Hidden refresh capability
- TTL-compatible, three-state I/O
- JEDEC standard packages
 - 400mil, 40-pin SOJ
 - 400mil, 40/44 TSOP type II package
- Single 5V power supply/built-in VBB generator

Pin Descriptions

1

Symbol	Description
A0 – A7	Address Inputs
I/Oo - I/O15	Data Input/Output
RAS	Row Address Strobe
UCAS	Column Address Strobe/Upper Byte Control
LCAS	Column Address Strobe/Lower Byte Control
WE	Write Enable
ŌĒ	Output Enable
VCC	+5V Power Supply
VSS	Ground
NC	No Connection

Selection Guide

Symbol	Description	-30	-35	-40	Unit
trac	Maximum RAS Access Time	30	35	40	ns
taa	Maximum Column Address Access Time	16	18	20	ns
tcac	Maximum CAS Access Time	10	11	12	ns
toea	Maximum Output Enable (OE) Access Time	10	11	12	ns
trc	Minimum Read or Write Cycle Time	65	70	75	ns
tpc	Minimum EDO Page Mode Cycle Time		14	15	ns
lcc1	Maximum Operating Current	95	85	75	mA
lcc ₆	Maximum CMOS Standby Current	2	2	2	mA

Functional Description

The A426316B is a high performance CMOS Dynamic Random Access Memory organized as 65,536 words X 16 bits. The A426316B is fabricated with advanced CMOS technology and designed with innovative design techniques resulting in high speed, extremely low power and wide operating margins at component and system levels.

The A426316B features a high speed page mode operation in which high speed read, write and read-write are performed on any of the bits defined by the column address. The asynchronous column address uses an extremely short row address capture time to ease the system level timing constraints associated with multiplexed addressing. Output is tri-stated by a column

address strobe (\overline{UCAS} and \overline{LCAS}) which acts as an output enable independent of \overline{RAS} . Very EDO \overline{UCAS} and \overline{LCAS} to output access time eases system design.

All inputs are TTL compatible. EDO Page Mode operation allows random access up to 256 X 16 bits within a page, with cycle time as short as 12/14/15 ns.

The A426316B is best suited for graphics, digital signal processing and high performance peripherals.

The A426316B is available in JEDEC standard 40-pin plastic SOJ package and 40/44 TSOP type II package.

Block Diagram

Recommended Operating Conditions (Ta = 0° C to + 70° C)

Symbol	Description	Min.	Тур.	Max.	Unit
VCC	Supply Voltage	4.5	5.0	5.5	V
VSS		0.0	0.0	0.0	V
Viн	Input Voltage	2.4	-	VCC + 1	V
VIL		-1.0	-	0.8	V

Truth Table

Function	RAS	UCAS	LCAS	WE	ŌĒ	Address	I/Os	Notes
Standby	Н	Н	Н	X	Х	Х	High-Z	
Read: Word	L	L	L	Н	L	Row/Col.	Data Out	
Read: Lower Byte	L	Н	L	Н	L	Row/Col.	I/O ₀₋₇ = Data Out I/O ₈₋₁₅ = High-Z	
Read: Upper Byte	Г	L	Н	Н	L	Row/Col.	$I/O_{0-7} = High-Z$ $I/O_{8-15} = Data Out$	
Write: Word(Early)	L	L	L	L	Х	Row/Col.	Data In	
Write: Lower Byte(Early)	Г	Н	L	L	Х	Row/Col.	I/O ₀₋₇ = Data In I/O ₈₋₁₅ = X	
Write: Upper Byte(Early)	L	L	Н	L	Х	Row/Col.	I/O ₀₋₇ = X I/O ₈₋₁₅ = Data In	
Read-Write	L	L	L	H→L	L→H	Row/Col.	Data Out → Data In	1.2
EDO-Page-Mode Read: Hi-Z								
-First cycle	L	$H{ ightarrow} L$	H→L	Н	H→L	Row/Col.	Data Out	2
-Subsequent Cycles	L	$H{ ightarrow} L$	H→L	Η	H→L	Col.	Data Out	2
EDO-Page-Mode Write(Early)								
-First cycle	L	$H{ ightarrow} L$	H→L	L	Х	Row/Col.	Data In	1
-Subsequent Cycles	L	H→L	H→L	L	Х	Col.	Data In	1
EDO-Page-Mode Read-Write								
-First cycle	L	$H{ ightarrow} L$	H→L	$H{ ightarrow} L$	L→H	Row/Col.	Data In	1, 2
-Subsequent Cycles	L	H→L	H→L	H→L	L→H	Col.	Data In	1, 2
Hidden Refresh Read	$L{\rightarrow}H{\rightarrow}L$	L	L	Н	L	Row/Col.	Data Out	2
Hidden Refresh Write	$L\rightarrow H\rightarrow L$	L	L	L	Х	Row/Col.	Data In → High-Z	1
RAS -Only Refresh	L	Н	Н	Х	Х	Row	High-Z	
CBR Refresh	H→L	L	L	Х	Х	Х	High-Z	3
Self Refresh (L-ver only)	H→L	L	L	Х	Х	Х	High-Z	

Note: 1. Byte Write may be executed with either \overline{UCAS} or \overline{LCAS} active.

3. Only one $\overline{\text{CAS}}$ signal ($\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$) must be active.

^{2.} Byte Read may be executed with either $\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$ active.

Absolute Maximum Ratings*

Input Voltage (Vin)1.0V to +7.0V
Output Voltage (Vout)1.0V to +7.0V
Power Supply Voltage (VCC)1.0V to +7.0V
Operating Temperature (Topr) 0°C to +70°C
Storage Temperature (Tsтс)55°C to +150°C
Soldering Temperature X Time (Tsloder)
260°C X 10sec
Power Dissipation (Pb) 1W
Short Circuit Output Current (lout) 50mA
Latch-up Current

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of these specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics

 $(VCC = 5V \pm 10\%, VSS = 0V, Ta = 0^{\circ}C \text{ to } +70^{\circ}C)$

Symbol	Parameter	-:	30	-:	35	-4	10	Unit	Test Conditions	Notes
		Min.	Max.	Min.	Max.	Min.	Max.			
lı∟	Input Leakage Current	-10	+10	-10	+10	-10	+10	μΑ	0V ≤ Vin ≤ +5.5V Pins not under test = 0V	
Іоь	Output Leakage Current	-10	+10	-10	+10	-10	+10	μΑ	DOUT disabled, 0V ≤ Vout ≤ +5.5V	
lcc1	Operating Current	-	95	-	85	-	75	mA	RAS, UCAS, LCAS Address cycling trc = min.	1, 2
lcc2	TTL Standby Power Supply Current	-	3	-	3	-	3	mA	RAS = CAS ≥ V _{IH} All other inputs ≥ VSS	
lcc3	Refresh Current (RAS only Refresh)	-	95	-	85	-	75	mA	RAS cycling, UCAS=LCAS = V _I H, t _{RC} = min.	1
Icc4	EDO Page Mode Current	-	95	-	85	-	75	mA	RAS = VIL, UCAS, LCAS Address cycling tpc = min.	1, 2
lcc5	Refresh Current (CAS -before-RAS Refresh)	-	95	-	85	-	75	mA	RAS, UCAS, LCAS cycling trc = min.	1
lcc ₆	CMOS Standby Power Supply Current	-	2	-	2	-	2	mA	RAS = CAS ≥ VCC - 0.2V All other inputs ≥ VSS	
lcc7	Self Refresh Mode Current	-	3	-	3	-	3	mA	$\overline{RAS} = \overline{CAS} \le VSS + 0.2V$ All other inputs $\ge VSS$	
Vон	Output High Voltage	2.4	-	2.4	-	2.4	-	V	Ιουτ = -5.0mA	
Vol	Output Low Voltage	-	0.4	-	0.4	-	0.4	V	louт = 4.2mA	

AC Characteristics

(VCC = 5V \pm 10%, VSS = 0V, Ta = 0°C to +70°C)

#	Std Symbol	Parameter	-:	30	-:	35	-4	40	Unit	Notes
			Min.	Max.	Min.	Max.	Min.	Max.		
1	trc	Random Read or Write Cycle Time	65	-	70	-	75	-	ns	
2	trp	RAS Precharge Time	25	-	25	-	25	-	ns	
3	tras	RAS Pulse Width	30	75K	35	75K	40	75K	ns	
4	tcas	CAS Pulse Width	5	-	6	-	7	-	ns	
5	trcd	RAS to CAS Delay Time	15	20	16	24	17	28	ns	6
6	trad	RAS to Column Address Delay Time	10	14	11	17	12	20	ns	7
7	trsн	CAS to RAS Hold Time	10	-	10	-	10	-	ns	
8	tсsн	CAS Hold Time	30	-	35	-	40	-	ns	
9	tcrp	CAS to RAS Precharge Time	5	-	5	-	5	-	ns	
10	tasr	Row Address Setup Time	0	-	0	-	0	-	ns	
11	trан	Row Address Hold Time	5	-	6	-	7	-	ns	
	tτ	Transition Time (Rise and Fall)	2	50	2	50	2	52	ns	4, 5
	tref	Refresh Period	-	4	-	4	-	4	ms	3
12	tcLz	CAS to Output in Low Z	0	-	0	-	0	-	ns	8
13	trac	Access Time from RAS	-	30	-	35	-	40	ns	6,7
14	tcac	Access Time from CAS	-	10	-	11	-	12	ns	6, 13
15	taa	Access Time from Column Address	-	16	-	18	-	20	ns	7, 13
16	tar	Column Address Hold Time from RAS	26	-	28	-	30	-	ns	
17	trcs	Read Command Setup Time	0	-	0	-	0	-	ns	

AC Characteristics (continued)

(VCC = 5V \pm 10%, VSS = 0V, Ta = 0°C to +70°C)

#	Std Symbol	Parameter	-:	30	-3	35	-4	40	Unit	Notes
			Min.	Max.	Min.	Max.	Min.	Max.		
18	tксн	Read Command Hold Time	0	-	0	-	0	-	ns	9
19	trrh	Read Command Hold Time Reference to RAS	0	-	0	-	0	-	ns	9
20	tral	Column Address to RAS Lead Time	16	-	18	-	20	-	ns	
21	tсон	Output Hold After CAS Low	5	-	5	-	5	-	ns	
22	tops	Output Disable Setup Time	0	-	0	-	0	-	ns	
23	toff	Output Buffer Turn-Off Delay Time	0	6	0	6	0	6	ns	8, 10
24	tasc	Column Address Setup Time		-	0	-	0	-	ns	
25	tсан	Column Address Hold Time	5	-	5	-	5	-	ns	
26	trps	RAS Precharge Setup Time	50	-	60	-	70	-	ns	
27	twcs	Write Command Setup Time	0	-	0	-	0	-	ns	11
28	twcн	Write Command Hold Time	5	-	5	-	5	-	ns	11
29	twcr	Write Command Hold Time to RAS	26	-	28	-	30	-	ns	
30	twp	Write Command Pulse Width	5	-	5	-	5	-	ns	
31	trwL	Write Command to RAS Lead Time	10	-	11	-	12	-	ns	
32	tcw∟	Write Command to CAS Lead Time	10	-	11	-	12	-	ns	
33	tos	Data-in setup Time	0	-	0	-	0	-	ns	12
34	tон	Data-in Hold Time	5	-	5	-	5	-	ns	12
35	tdhr	Data-in Hold Time to RAS	26	-	28	-	30	-	ns	
36	trmw	Read-Modify-Write Cycle Time	100	-	105	-	100	-	ns	
37	trwd	RAS to WE Delay Time (Read-Modify-Write)	50	-	54	-	58	-	ns	11

AC Characteristics (continued)

(VCC = 5V \pm 10%, VSS = 0V, Ta = 0°C to +70°C)

#	Std Symbol	Parameter	-3	30	-3	35	-4	10	Unit	Notes
			Min.	Max.	Min.	Max.	Min.	Max.		
38	tcwp	CAS to WE Delay Time (Read-Modify-Write)	26	-	28	-	30	-	ns	11
39	tawd	Column Address to WE Delay Time (Read-Modify-Write)	32	-	35	-	35	-	ns	11
40	trass	RAS Pulse Width (Self Refresh Mode)	300	-	300	-	300	-	μs	
41	tcpn	CAS Precharge Time (CAS before RAS)	10	100K	10	100K	10	100K	ns	
42	tpc	Read or Write Cycle Time (EDO Page)	12	-	14	-	15	-	ns	14
43	tcpa	Access Time from CAS Precharge (EDO Page)		19	-	21	-	23	ns	13
44	tcp	CAS Precharge Time (EDO Page)	3	-	4	-	5	-	ns	
45	tprm	EDO Page Mode RMW Cycle Time	56	-	58	-	60	-	ns	
46	tcrw	EDO Page Mode CAS Pulse Width (RMW)	-	44	-	46	-	48	ns	
47	trasp	RAS Pulse Width (EDO Page)	30	75K	35	75K	40	75K	ns	
48	tcsr	CAS Setup Time (CAS -before-RAS)	0	-	0	-	0	-	ns	3
49	tchr	CAS Hold Time (CAS -before-RAS)	7	-	8	-	8	-	ns	3
50	trpc	RAS to CAS Precharge Time (CAS -before-RAS)	0	-	0	-	0	-	ns	
51	trон	RAS Hold Time Reference to OE	6	-	7	-	8	-	ns	
52	toea	OE Access Time	-	10	-	11	-	12	ns	
53	toed	OE to Data Delay	5	-	5	-	5	-	ns	
54	toez	Output Buffer Turn-off Delay from OE	0	5	0	6	0	6	ns	8

AC Characteristics (continued)

 $(VCC = 5V \pm 10\%, VSS = 0V, Ta = 0^{\circ}C \text{ to } +70^{\circ}C)$

#	Std Symbol	Parameter	-30		-35		-40		Unit	Notes
			Min.	Max.	Min.	Max.	Min.	Max.		
55	tоен	OE Command Hold Time	10	-	10	-	10	-	ns	
56	tсрт	CAS Precharge Time (CAS -before-RAS Counter Test)	20	-	20	-	20	-	ns	

Notes:

- 1. Icc1, Icc3, Icc4, and Icc5 depend on cycle rate.
- 2. Icc1 and Icc4 depend on output loading. Specified values are obtained with the outputs open.
- 3. An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS -before-RAS initialization cycles instead of 8 RAS cycles are required. 8 initialization cycles are required after extended periods of bias without clocks (greater than 8ms).
- 4. AC Characteristics assume $t\tau$ = 3ns. All AC parameters are measured with a load equivalent to one TTL loads and 50pF, ViL (min.) \geq GND and ViH (max.) \leq VCC.
- 5. Viн (min.) and ViL (max.) are reference levels for measuring timing of input signals. Transition times are measured between Viн and ViL.
- 6. Operation within the trcb (max.) limit insures that trac (max.) can be met. trcb (max.) is specified as a reference point only. If trcb is greater than the specified trcb (max.) limit, then access time is controlled exclusively by tcac.
- 7. Operation within the trad (max.) limit insures that trac (max.) can be met. trad (max.) is specified as a reference point only. If trad is greater than the specified trad (max.) limit, then access time is controlled exclusively by trad.
- 8. Assumes three state test load (5pF and a 380Ω Thevenin equivalent).
- 9. Either trch or trrh must be satisfied for a read cycle.
- 10. torr (max.) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels.
- 11. twcs, twch, trwb, tcwb and tawb are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.) and twch ≥ twch (min.), the cycle is an early write cycle and data-out pins will remain open circuit, high impedance, throughout the entire cycle. If trwb ≥ trwb (min.), tcwb ≥ tcwb (min.) and tawb ≥ tawb (min.), the cycle is a read-modify-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate.
- 12. These parameters are referenced to \overline{UCAS} and \overline{LCAS} leading edge in early write cycles and to \overline{WE} leading edge in read-modify-write cycles.
- 13. Access time is determined by the longer of taa or tcac or tcpa.
- 14. $tasc \ge tcr$ to achieve trc (min.) and tcra (max.) values.
- 15. These parameters are sampled and not 100% tested.

Word Read Cycle

Word Write Cycle (Early Write)

Word Write Cycle (Late Write)

Word Read-Modify-Write Cycle

EDO Page Mode Word Read Cycle

: High or Low

EDO Page Mode Early Word Write Cycle

EDO Page Mode Word Read-Modify-Write Cycle

RAS Only Refresh Cycle

Note: $\overline{\text{WE}}$, $\overline{\text{OE}}$ = Don't care.

: High or Low

CAS Before RAS Refresh Cycle

Note: $\overline{\text{WE}}$, $\overline{\text{OE}}$, A0 ~ A7 = Don't care.

: High or Low

Timing Waveform of CAS-before-RAS Refresh Counter Test Cycle

Hidden Refresh Cycle (Word Read)

Hidden Refresh Cycle (Early Word Write)

Self Refresh Mode (A426316B-L Only)

Note: \overline{WE} , \overline{OE} = Don't care.

: High or Low

- Self Refresh Mode.
- a. Entering the Self Refresh Mode:

The A426316B-L Self Refresh Mode is entered by using $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ cycle and holding $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ signal "low" longer than 300 μ s.

b. Continuing the Self Refresh Mode:

The Self Refresh Mode is continued by holding RAS "low" after entering the Self Refresh Mode.

It does not depend on CAS being "high" or "low" after entering the Self Refresh Mode continue the Self Refresh Mode.

c. Exiting the Self Refresh Mode:

The A426316B exits the Self Refresh Mode when the RAS signal is brought "high".

Capacitance¹⁵ (f = 1MHz, Ta = Room Temperature, VCC = $5V \pm 10\%$)

Symbol	Signals	Parameter	Max.	Unit	Test Conditions
CIN1	A0 – A7		5	pF	Vin = 0V
CIN2	RAS, UCAS, LCAS, WE, OE	Input Capacitance	7	pF	Vin = 0V
Cı/o	I/O ₀ - I/O ₁₅	I/O Capacitance	7	pF	Vin = Vout = 0V

Ordering Codes

Package\RAS Access Time	30ns	35ns	40ns	Self-Refresh
40L SOJ (400 mil)	A426316BS-30	A426316BS-35	A426316BS-40	No
40/44L TSOP type II (400mil)	A426316BV-30	A426316BV-35	A426316BV-40	No
40L SOJ (400mil)	A426316BS-30L	A426316BS-35L	A426316BS-40L	Yes
40/44L TSOP II (400mil)	A426316BV-30L	A426316BV-35L	A426316BV-40L	Yes

Package Information

SOJ 40L Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches			Dimensions in mm		
	Min	Nom	Max	Min	Nom	Max
Α	-	-	0.144	-	-	3.66
A1	0.025	-	-	0.64	-	-
A2	0.105	0.110	0.115	2.67	2.79	2.92
b ₁	0.026	0.028	0.032	0.66	0.71	0.81
b	0.016	0.018	0.022	0.41	0.46	0.56
С	0.008	0.010	0.014	0.20	0.25	0.36
D	1.020	1.025	1.030	25.91	26.04	26.16
Е	0.395	0.400	0.405	10.03	10.16	10.29
е	0.044	0.050	0.056	1.12	1.27	1.42
e 1	0.355	0.366	0.376	9.114	9.383	9.652
HE	0.430	0.440	0.450	10.92	11.18	11.43
L	0.081	0.093	0.105	2.083	2.39	2.70
S	-	-	0.050	-	-	1.27
у	-	-	0.004	-	-	0.10
θ	0°	-	10°	0°	-	10°

Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

Package Information

TSOP 40/44L (Type II) Outline Dimensions

unit: inches/mm

	Dimensions in inches			Dimensions in mm		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	-	-	0.047	-	-	1.20
A1	0.002	-	0.006	0.05	-	0.15
A2	0.037	0.039	0.041	0.95	1.00	1.05
В	0.013	0.015	0.017	0.32	0.37	0.42
С	0.003	0.005	0.009	0.08	0.13	0.23
D	0.720	0.725	0.730	18.28	18.41	18.54
Е	0.395	0.400	0.405	10.03	10.16	10.29
е	0.031 BSC			0.80 BSC		
HE	0.455	0.463	0.471	11.56	11.76	11.96
L	0.016	0.020	0.024	0.40	0.50	0.60
L1	-	0.031	-	-	0.80	-
S	-	-	0.035	-	=	0.90
у	-	-	0.004	-	-	0.10
θ	1°	3°	5°	1°	3°	5°

Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension S includes end flash.