Aufgabe 1

a)

Sei $f = \sum_{k=0}^N a_k X^k \in \mathbb{C}[X]$ mit $a_k \in \mathbb{R}$ für $k \leq N \in \mathbb{N}$ und $\lambda \in \mathbb{C}$ eine Nullstelle, so ist die komplex konjugierte Zahl $\overline{\lambda} \in \mathbb{C}$ ebenfalls eine Nullstelle

Beweis. Gelte $\tilde{f}(\lambda)=0$. Wir nutzen im folgenden, dass für $z\in\mathbb{C}, a\in\mathbb{R}$ gilt

$$a \cdot \overline{z} = \overline{a \cdot z},$$
 $\overline{z} + \overline{z} = \overline{z + z},$ $\overline{z} \cdot \overline{z} = \overline{z \cdot z}.$

Also ist $\overline{\lambda} \in \mathbb{C}$ eine Nullstelle von f, denn:

$$\tilde{f}(\overline{\lambda}) = \sum_{k=0}^{N} a_k \overline{\lambda}^k = \sum_{k=0}^{\overline{N}} a_k \lambda^k = \overline{\tilde{f}(\lambda)} = \overline{0} = 0.$$