

ESC201: Introduction to Electronics

Module 4: Non-Linear Elements

Dr. Shubham Sahay,
Assistant Professor,
Department of Electrical Engineering,
IIT Kanpur

Recap

I-V Characteristics- Nonlinear Behavior

Let us ignore breakdown region, assuming that our circuit does not generate large negative voltages

applied voltage = v_D

diode current:

$$i_D = I_S \left(\exp\left(\frac{v_D}{nV_T}\right) - 1 \right)$$

 I_S : Reverse saturation current

n: ideality factor (= 1 for ideal diodes)

$$V_T = \frac{kT}{q} \approx 26m\text{V at T} = 300\text{K}$$

10 mA - "Knee" v_D

How to analyze circuits containing diodes?

Forward Bias

$$I_D = I_S \left(\exp\left(\frac{v_D}{V_T}\right) - 1 \right)$$

$$v_d >> V_T = 26mV$$

$$i_D \approx I_S \times \exp\left(\frac{v_d}{V_T}\right)$$

Reverse Bias

$$I_D = I_S \left(\exp\left(\frac{v_D}{V_T}\right) - 1 \right)$$

$$v_d = -v_R$$

$$|v_R| >> V_T$$

$$i_D = I_S \left(\exp\left(-\frac{v_R}{V_T}\right) - 1 \right) \approx -I_S$$

Analysis

$$V_S = IR + V_D$$

$$I = I_S \left(\exp\left(\frac{V_D}{V_T}\right) - 1 \right)$$

2 equations, 2 variables

Numerical methods, graphical method, etc.

- •Analysis using a non-linear diode model is relatively difficult and time consuming.
- •It also does not give a symbolic expression that can provide insight and help in the design of the circuit.

Need SIMPLER and LINEAR Device Models

Piecewise Linear Approximation

• Diode is clearly a non-linear device

• We can however approximate its behavior with that of a piecewise linear system

• IV graph is made by joining two or more straight lines

Model A: Ideal

• Simplest possible approximation: acts as an ideal valve

Model B: Constant Voltage Drop

• Simplest possible approximation: acts as an ideal valve with a drop in voltage

Model C: Piecewise Linear

 V_{ν} is called cut-in or turn-n voltage and depends on nature of diode and range of current considered

 $V_v = 0.7V$ and $r_f \sim 10\Omega$

Summary: approximations

Analysis using ideal diode model

open circuit

$$I = \frac{10}{1k} = 10mA$$

Analysis with a constant voltage diode model

$$I = \frac{10 - 0.7}{1k} = 9.3mA$$

Analysis with a constant voltage plus resistor diode model

$$I = \frac{10 - 0.7}{1000 + 10} = 9.208 mA$$

Analysis: 'assumed' states

- How to know in which state diode is?
 - Easier if the voltage is known.
 - Otherwise
 - Analyze circuit assuming diode is forward biased
 - Check assumption (*l* > 0 ?)
 - Analyze circuit assuming diode is reverse biased
 - Check assumption (V < 0?)
 - Select the consistent one.
- What if 2 diodes: 4 possible circuits, only 1 will be valid
- N diodes => 2^N circuits, only one will be valid

Find the current through the 5k resistor using ideal diode model

Is the diode forward biased? - Not Sure!!

Assume that it is forward biased

Carry out analysis and then check if current through the diode is in appropriate direction.

If not, diode is reverse biased and we carry out the analysis again!! Dr. Shubham Sahay ESC201

16

Assume forward bias

$$-2mA + \frac{-10}{5K} + i_D = 0$$

$$i_D = 4mA$$

Current is positive, so our assumption is correct

Find the current through the 5k resistor using ideal diode model

Assume forward bias

$$-2mA + \frac{-10}{5K} - i_D = 0$$

$$i_D = -4 \quad mA$$

Therefore, our assumption is incorrect

Assume reverse bias

$$-2mA + \frac{V_1}{5k} + \frac{V_1 + 10}{5k} = 0$$

$$V_1 = 0$$

$$V_2 = 10V$$

Therefore, our assumption is correct,

$$I_{5K} = 2A$$

DC power supply

21

Strategy 1

Power supply: block diagram

Half-wave rectifier

RMS: 220 V

 \rightarrow

Peak value: 311.13

Peak value: 311.1 - 0.7 = 310.4 V

Half-wave rectifier

For V_O to be 12V, the input V_{IN} should be ~12.7V

$$V_S = 220V \times \sqrt{2}$$
$$= 311.127V \ peak \ value$$

Step-down transformer

$$\frac{N_1}{N_2} = \frac{311}{12.7} = 24.5$$

$$\frac{V_S}{V_{IN}} = \frac{N_1}{N_2}$$

Step 1

Want to hold that voltage during negative half cycle

Filtering

Want to hold that voltage during negative half cycle

Filtered output

Output has a ripple

Approximate ripple calculation

- Capacitor discharges from V_M to V_L
- Recall: $v_C(t)=v_C(\infty)+\left(v_C(0^+)-v_C(\infty)\right)e^{-\frac{t}{RC}}$ $v_C(t)=V_M\,e^{-\frac{t}{RC}}$
- Suppose it discharges for time t_1

$$V_L = V_M \times e^{-\frac{t_1}{R_L C}}$$

Ripple Voltage: $V_r = V_M - V_L$

$$V_r = V_M \times \left(1 - e^{-\frac{t_1}{R_L C}}\right)$$

Design circuit such that $t_1 << R_L C$

$$V_r \cong V_M \times \left\{ 1 - \left(1 - \frac{t_1}{R_L C} \right) \right\}$$
$$= \frac{V_M t_1}{R_L C}$$

$$t_1 \approx T$$

$$V_r \approx \frac{V_M T}{R_L C}$$