Lista 4 Zadanie 5

Marcin Zubrzycki

3 lutego 2025

1 Treść Zadania

Należy wykazać, że następujące języki nie są bezkontekstowe

- $L_1 = \{a^i b^j c^k : i < j < k\}$
- $L_2 = \{a^i b^j : i = j^2\}$
- $L_3 = \{a^i : i \text{ jest liczbą pierwszą}\}$

2 Rozwiązanie

2.1 Język Pierwszy

Język składa się ze słów postaci $\underbrace{aa \dots a}_i \underbrace{bb \dots b}_j \underbrace{cc \dots c}_k$, gdzie i < j < k.

Słowo $z=a^nb^{n+1}c^{n+2}$ należy do języka. Jeśli język L_1 jest bezkontekstowy, to z może przybrać postać z=uvwxy, gdzie $vx\neq\epsilon$ i $|vwx|\geq n$. Ponieważ vwx ma co najwyżej n znaków, nie może zawierać jednozcześnie symboli a i c.

- Zawiera a: uv^3wx^3y zawiera co najmniej n+2 symboli a lub b. Wtedy $\#a \ge \#c$, więc słowo nie należy do języka
- Zawiera c: uwy zawiera n symboli a ale nie więcej niż 2n+2 symboli b i c. Niemożliwe, żeby w skład uwy wchodziło więcej b niż a i jednocześnie więcej c niż b.

Mamy sprzeczność niezależnie od sposobu rozkładu z na uvwxy. L_1 nie jest językiem bezkontekstowym.

2.2 Język Drugi

Język składa się ze słów postaci $\underbrace{aa\ldots a}_{j^2}\underbrace{bb\ldots b}_{j}$

Słowo $z=a^{n^2}b^n$ należy do języka. Jeśli język L_2 jest bezkontekstowy, to z może przybrać postać z=uvwxy, gdzie $vx\neq\epsilon$ i $|vwx|\geq n$. Ponownie mamy kilka przypadków rozbicia

- $\bullet \ vwx$ składa się tylko z $a\colon uwy$ ma n^2 symbolibi mniej niż nsymboli a. Nie jest częścią języka
- vwx składa się z zarówno a i b: v składa się jedynie z a. Uznajmy, że $v=a^k$ oraz $x=b^m$ składa się tylko z b. $uv^{i+1}wx^{i+1}y$ składa się z n+ik symboli a i n^2+im symboli b. Te wartości mają inne tempo wzrostu, więc nie jest możliwe żeby zawsze liczba $\#a=\#b^2$
- $\bullet \ vwx$ składa się tylko z $b \colon uwy$ ma n symboli bi mniej niż n^2 symboli a. Nie jest częścią języka

Mamy sprzeczność niezależnie od sposobu rozkładu z na uvwxy. L_2 nie jest językiem bezkontekstowym.

2.3 Język Trzeci

Język składa się ze słów postaci $\underbrace{aa\ldots a},$ gdzie pjestl iczbą pierwszą.

Jeśli język jest bezkontekstowy, to słowo $z\in L_3$ można rozbić na z=uvwxy, gdzie $vx\neq\epsilon$ i $|vwx|\geq n$. Jeśli |z|=p, to $v=a^q$ i $x=a^t$. Zgodnie z założeniami lematu o pompowaniu, q+t>0 Słowo uwy należy do języka i ma długość i=p-q-t. słowo uv^iwx^iy ma długość r+rq+rt=r(1+q+t) podzielną przez r i 1+q+t>1. Nie jest liczbą pierwszą jeśli r>1.

Dla
$$r = 0$$
: $|uw^2xy^2z| = 2p$
Dla $r = 1$: $|uv^{p+1}wx^{p+1}z| = 1 + (p+1)q + (p+1)t = 1 + (p+1)(q+t) = 1 + (p+1)(p-1) = p^2$

W każdym przypadku mamy sprzeczność. L_3 nie jest językiem bezkontekstowym