	Name: Aditya Agrawal Entry No: 2021 AMI 0198 APL 3410
	ASSIGNMENT-2
11·(a)	The particle velocities are initialized remelemby from the uniform distribution (0,1) using the rand() function The velocities are then scaled to (-1,1) using $v_i = -1 + 2v_i$, $i = 1,, 2.56$. Next, the momentum of the system Pret is computed as Pret = $\sum_{i=1}^{25} m_i v_i$.
	Finally to ensure that system has O momentum, the inclinicles velocities are adjusted:
1	The Lenard - Jones "potential energy, Vint (r) = 48 (5)2-(5)6
	To incorporate the cutoff scheme, modified Vint:
	Vitte = {Vitter - Vitter cut } - (r-rest) (-f (rest)), r < rest vitte = {Vitter - Vitter - v
	where, $f(r_{\text{cut}}) = -\frac{dV_{\text{int}}(r_{\text{cut}})}{dr} = +\frac{48\varepsilon 6^{12} - 24\varepsilon 6}{v_{\text{cut}}^{13}}$
	For a continuous glorce with cutoff scheme, $f = \int (f_{int}(x_i) - f(x_{out})) x_i / x_i$, $x_i < x_{out}$
	where, $f_{\text{rut}}(r_{ij}) = -\frac{\text{olV}_{\text{t}}(r_{ij})}{\text{obr}} = 24 \text{ E} - 6 \left(2 - 1\right)$
	$\sum_{i} \hat{j}_{i} = \sum_{i} \hat{j}_{i} - \sum_{i} \hat{j}_{i}$
(c)	The instantaneous temperative is found wing the instantaneous binetic every values:
	Sinctic energy values: $K_{inst} = \sum_{j=1}^{256} \frac{1}{2} m_j V_j I^2$, $T_{inst} = \frac{Q}{3 \times 256 \times k_B} K_{inst}$, $K_b : 1-38 \times 10^{-23} \text{ T K}^{-1}$

	PAGE MO DATE
(d)	The nearest image convention is used as follows: [k] = \(\text{[k]} - \text{[k]} \)
	else of r; [k] > L/2 =) r; [k] = r, [k] - L else of r; [k] <-4/2 =) r; [k] = r; [k] + L
	To determine when the system is equilibrated, we montor the system's temperature of energy (kinetic, potential, and total energy over time. When these quantities fluctuate around stable average values, rather than showing a continuous increased decrease, the system is considered to attain equilibrium.
	Track system's kinetic energy and temperature for a few thousand timestypes. When these quantities do not change significant the system can be considered equilibrated.
(11)	After running the simulation, we observe that these quantities very quickly start fluctuating around a value of $T = 2.89 \times 10^{22} (E/R_{\odot})$
(4)	The septem's kinetic energy, potential energy total energy and instantaneous temperature were stored for every timestep at: where at = final time . & then plotted against time. No. of steps From the plot of total energy, we observe that it fluctuates
	From the plot of total energy, we observe that it fluctuates between (-1070.114, -1070.038) with a percentage variation of 0.015% from the mean Those fluctuations are attributed to machine precision errors and errors due to the discretized numerical integration.
(g)	Due to limitations in machine precusion, the initial total momentum of the system is non-zero. Thus, it fluctuates and grows slightly

