ME 615: Design Under Uncertainty Prof Hoyle, Spring 2020

HW 1

Assigned: 4/1/2020 Due: 4/15/2020

- 1. Find the following **mean** and **standard deviations** for the following distributions:
 - A lognormal distribution, in which the associated normal distribution has μ =5 and σ =1.25.
 - A beta distribution in which the shape parameters are α = 2 and β = 5.
 - A uniform distribution defined over the range a = 1 and b = 8.
- 2. Using the data in the zip file: data.xlsx
 - Create a normal probability plot.
 - Create a lognormal probability plot.
 - Create an extreme value probability plot
 - Which distribution looks to be the best fit?
- 3. The maximum daily temperature in Phoenix AZ in June is known to vary between 80°F and 110°F. The distribution of maximum daily temperature is modeled using a beta distribution with parameters $\alpha = 2$ and $\beta = 3$.
 - What is the probability that the daily maximum temperature will **exceed** 100°F? (*hint*: you will need to scale your data, and use Matlab or similar to compute the CDF)
 - Redo the problem above ($Pr\{T > 100^{\circ}F\}$), but now assume that the temperature is normally distributed with a mean of 95°F and std dev of 10°F.
- 4. The maximum temperature in Phoenix AZ in June is modeled as a normal distribution with mean of 95°F and std dev of 10°F, while the maximum humidity in June is modeled as a normal distribution with mean of 21% and std dev of 5%. Temperature and Humidity are positively correlated, with a covariance of 4.
 - What is the probability that the daily maximum temperature will be less than 99°F and the humidity will be less than 23%. (hint: you will need to use the Matlab function mvncdf)
 - Redo the problem above, but now assume the two entities are uncorrelated.