Exercises for Chapter 1

- 1. Suppose that $X_t = 10 + a_t + 0.3a_{t-1}$, $a_t \sim N(0, 1)$.
 - (a) Find $Var(X_t)$, $Cov(X_t, X_{t+1})$, $Corr(X_t, X_{t-1})$ and $Cov(X_t, X_{t+k})$ for $|k| \geq 2$.
 - (b) Let $\bar{X} = \sum_{t=1}^{100} X_t / 100$. Find $Var(\bar{X})$.
 - (c) Give an example (a value of \bar{X}) such that for the hypothesis $H_o: E(X_t) = 10$ verses $H_1: E(X_t) \neq 10$, the tests
 - 1) accounting for time dependence, and
 - 2) without accounting for time dependence, give different conclusions.
- 2. Design a filter such that a quadratic trend would not be distorted.
- 3. Let $\{a_{-2}, a_{-1}, a_0, a_1, a_2\}$ be a filter and $\{x_1, x_2, \dots, x_{10}\}$ be the observations.
 - a) If the filter is applied to the observations, what is the length of the filtered sequence?
 - b) Write, in terms of a_k and x_k s, the filtered value for the 6-th observation (x_6) .
 - c) Suppose that $a_0 = 0.5$, $a_1 = 0.2$, $a_2 = 0.05$ and the filter is symmetric. Does the filter pass through a linear trend without distortion? Does the filter passes through a quadratic trend without distortion?
 - d) If $a_0 = 0.5$, $a_1 = a_{-1} = a_2 = a_{-2} = 0.1$, do you think this filter is useful? Explain.
- 4. Use the following R-code to generate a series with trend, quarterly seasonal component and noise:

```
set.seed(6104) season.effect=c(-20,-10,60,-30) sea.com=rep(season.effect,20) t=1:80 trend=-2+0.3*t+0.025*(t\wedge2) noise=rnorm(80,0,10) data=trend+sea.com+noise ts.plot(data)
```

- (a) Decompose the series data into three components. Compare the true and the estimated components.
- (b) How many times of differencing should one take to obtain a stationary sequence?