

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Nan, Guo-Ling
Nagai, Chifumi
- (ii) TITLE OF INVENTION: COMPOSITIONS AND METHODS FOR GENETIC TRANSFORMATION OF PINEAPPLE

(iii) NUMBER OF SEQUENCES: 6

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Medlen & Carroll, LLP
- (B) STREET: 220 Montgomery Street, Suite 2200
- (C) CITY: San Francisco
- (D) STATE: California
- (E) COUNTRY: United States of America
- (F) ZIP: 94104

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER: US 09/078,862
- (B) FILING DATE: 14-MAY-1998
- (C) CLASSIFICATION:

(vii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Carroll, Peter G.
- (B) REGISTRATION NUMBER: 32,837
- (C) REFERENCE/DOCKET NUMBER: UH-03321

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (415) 705-8410
- (B) TELEFAX: (415) 397-8338

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2145 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

AGATCTACAA TTATCGCAAC GTGTTACACA TTTTGTGCTA CAATATAACCT TCACCATT	60
GTGTATATAT AAAGGTTGCA TCTCTTCAAA CAAAAATCAC TCCATCACAA CACAATGTCT	120
TCTTCTTCTT CTATTACTAC TACTCTTCCT TTATGCACCA ACAAATCCCT CTCTTCTTCC	180
TTCACCAACCA CCAACTCATC CTTGTTATCA AAACCCCTCTC AACTTTCCCT CCACGGAAAGG	240
CGTAATCAAA GTTTCAAGGT TTCATGCAAC GCAAACAAACG TTGACAAAAA CCCTGACGCT	300

GTTGATAGAC GAAACGTTCT TTTAGGGTTA GGAGGTCTTT ATGGTGCAGC TAATCTTGCA	360
CCATTAGCGA CTGCTGCACC TATAACCACCT CCTGATCTCA AGTCTTGTGG TACTGCCCAT	420
GTAAAAGAAG GTGTTGATGT AATATACAGT TGTTGCCCTC CTGTACCCGA TGATATCGAT	480
AGTGTTCGCT ACTACAAGTT CCCTTCTATG ACTAAACTCC GCATCCGCC CCCTGCTCAT	540
GCGGCGGATG AGGAGTACGT AGCCAAGTAT CAATTGGCTA CGAGTCGAAT GAGGGAACCTT	600
GATAAAAGACC CCTTGACCC TCTTGGCTTT AAACAACAAG CTAATATTCA TTGTGCTTAT	660
TGCAACGGTG CTTACAAAGT TGGTGGCAA GAATTGCAAG TTCATTTCTC GTGGCTTTTC	720
TTTCCCTTTC ATAGATGGTA CTTGTACTTT TACGAAAGAA TTTTGGGATC ACTTATTAAT	780
GATCCAACCTT TTGCTTTACC TTACTGGAAT TGGGATCATC CAAAAGGCAT GCGTATAACCT	840
CCCATGTTG ATCGTGAGGG ATCATCTCTT TACGATGAGA AACGTAACCA AAATCATCGC	900
AATGGAACTA TTATTGATCT TGGTCATTTT GGTAAAGGAAG TTGACACACC TCAGCTACAG	960
ATAATGACTA ATAATTTAAC CCTAATGTAC CGTCAAATGG TTACTAATGC TCCTTGCCCT	1020
TCCCAATTCT TCGGTGCTGC TTACCTCTGG GTTCTGAACC CAAGTCCGGG TCAGGGTACT	1080
ATTGAAAACA TCCCTCATAC TCCGGTTCAC ATCTGGACCG GTGACAAACC TCGTCAAAAA	1140
AACGGTGAAG ACATGGGTAA TTTCTACTCA GCCGGTTTAG ATCCGATTTT TTACTGCCAC	1200
CATGCCAATG TGGACAGGAT GTGGAATGAA TGGAAATTAA TTGGCAGGAA AAGAAGGGAT	1260
TTAACAGATA AAGATTGGTT GAACTCTGAA TTCTTTTCT ACGATGAAAA TCGTAACCCCT	1320
TACCGTGTGA AAGTCCGTGA TGTTTTGGAC AGTAAAAAAA TGGGATTCGA TTACGCGCCA	1380
ATGCCCACTC CATGGCGTAA TTTAAACCA ATCAGAAAGT CATCATCAGG AAAAGTGAAT	1440
ACAGCGTCAA TTGCACCAGT TAGCAAGGTG TTCCCATTGG CGAAGCTGGA CCGTGCATT	1500
TCGTTCTCTA TCACGCGGCC AGCCTCGTCA AGGACAACAC AAGAGAAAAA TGAGCAGGAG	1560
GAGATTCTGA CATTCAATAA AATATCGTAT GATGATAGGA ACTATGTAAG GTTCGATGTG	1620
TTTCTGAACG TGGACAAGAC TGTGAATGCA GATGAGCTTG ATAAGGCGGA GTTGCAGGG	1680
AGTTATACTA GCTTGCCGCA TGTTCATGGA AGTAATACTA ATCATGTTAC CAGTGTACT	1740
TTCAAGCTGG CGATAACTGA ACTGTTGGAG GATATTGGAT TGGAAAGATGA AGATACTATC	1800
GCGGTGACTT TAATTCCAAA AGCTGGCGGT GAAGGTGTAT CCATTGAAAG TGTGGAGATC	1860
AAGCTTGAGG ATTGTTAAAG TCTGCATGAG TTGGTGGCTA TGGAGCCAAA TTTATGTTA	1920
ATTAGTATAA TTATGTGTGG TTTGAGTTAT GTTTATGTT AAAATGTATC AGCTCGATCG	1980
ATAGCTGATT GCTAGTTGTG TTAATGCTAT GTATGAAATA AATAAAATGGT TGTCTTCCAT	2040
TCAGTTTATC ATTTTTGTC ATTCTAATTA ACGGTTAACT TTTTTTCTA CTATTTATAC	2100
GAAGCTACTA TACTATGTAT ATCATTGGA AAATTATATA TTATT	2145

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3509 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATTCCGGC	GTGGCGCTG	GGCTAGTGCT	CCCGCAGCGA	GCGATCTGAG	AGAACGGTAG	60
AGTTCCGGCC	GGCGCGCGG	GAGAGGAGGA	GGGTCGGCG	GGGAGGATCC	GATGGCCGGG	120
AACGAGTGGA	TCAATGGGT	CCTGGAGGCG	ATCCTCGACA	GCCACACCTC	GTCGCGGGGT	180
GCCGGCGGCG	GCGGCGGCGG	GGGGGACCCC	AGGTCGCCGA	CGAAGGCGGC	GAGCCCCCGC	240
GGCGCGCAC	TGAACTTCAA	CCCCTCGCAC	TACTTCGTCG	AGGAGGTGGT	CAAGGGCGTC	300
GACGAGAGCG	ACCTCCACCG	GACGTGGATC	AAGGTCGTCG	CCACCCGCAA	CGCCCGCGAG	360
CGCAGCACCA	GGCTCGAGAA	CATGTGCTGG	CGGATCTGGC	ACCTCGCGCG	CAAGAAGAAG	420
CAGCTGGAGC	TGGAGGGCAT	CCAGAGAAC	TCGGCAAGAA	GGAAGGAACA	GGAGCAGGTG	480
CGTCGTGAGG	CGACGGAGGA	CCTGGCCGAG	GATCTGTCAG	AAGGCGAGAA	GGGAGACACC	540
ATCGGCGAGC	TTGCGCCGGT	TGAGACGACC	AAGAAGAAGT	TCCAGAGGAA	CTTCTCTGAC	600
CTTACCGTCT	GGTCTGACGA	CAATAAGGAG	AAGAAGCTTT	ACATTGTGCT	CATCAGCGTG	660
CATGGTCTTG	TTCGTGGAGA	AAACATGGAA	CTAGGTCGTG	ATTCTGATAC	AGGTGGCCAG	720
GTGAAATATG	TGGTCGAAC	TGCAAGAGCG	ATGTCAATGA	TGCCTGGAGT	GTACAGGGTG	780
GACCTCTTCA	CTCGTCAAGT	GTCATCTCCT	GACGTGGACT	GGAGCTACGG	TGAGCCAACC	840
GAGATGTTAT	GCGCCGGTTC	CAATGATGGA	GAGGGGATGG	GTGAGAGTGG	CGGAGCCTAC	900
ATTGTGCGCA	TACCGTGTGG	GCCGCGGGAT	AAATACCTCA	AGAAGGAAGC	GTTGTGGCCT	960
TACCTCCAAG	AGTTTGTGCA	TGGAGCCCTT	GCGCATATCC	TGAACATGTC	CAAGGCTCTG	1020
GGAGAGCAGG	TTGGAAATGG	GAGGCCAGTA	CTGCCTTACG	TGATACATGG	GCACTATGCC	1080
GATGCTGGAG	ATGTTGCTGC	TCTCCTTTCT	GGTGCCTGA	ATGTGCCAAT	GGTGCCTACT	1140
GGCCACTCAC	TTGGGAGGAA	CAAGCTGGAA	CAACTGCTGA	AGCAAGGGCG	CATGTCCAAG	1200
GAGGAGATCG	ATTGACATA	CAAGATCATG	AGGCGTATCG	AGGGTGAGGA	GCTGCCCTG	1260
GATGCGTCAG	AGCTTGTAA	CACGAGCACA	AGGCAGGAGA	TTGATGAGCA	GTGGGGATTG	1320
TACGATGGAT	TTGATGTCAA	GCTTGAGAAA	GTGCTGAGGG	CACGGCGAG	GCGCGGGGTT	1380
AGCTGCCATG	GTCGTTACAT	GCCTAGGATG	GTGGTGATTC	CTCCGGGAAT	GGATTCAGC	1440
AATGTGTAG	TTCATGAAGA	CATTGATGGG	GATGGTGACG	TCAAAGATGA	TATCGTTGGT	1500

TTGGAGGGTG CCTCACCCAA GTCAATGCCC CCAATTGGG CCGAAGTGAT GCGGTTCCCTG	1560
ACCAACCCTC ACAAGCCGAT GATCCTGGCG TTATCAAGAC CAGACCCGAA GAAGAACATC	1620
ACTACCCTCG TCAAAGCGTT TGGAGAGTGT CGTCCACTCA GGGAACTTGC AAACCTTA	1680
CTGATCATGG GTAACAGAGA TGACATCGAC GACATGTCTG CTGGCAATGC CAGTGTCC	1740
ACCACAGTTC TGAAGCTGAT TGACAAGTAT GATCTGTACG GAAGCGTGGC GTTCCCTAAG	1800
CATCACAATC AGGCTGACGT CCCGGAGATC TATCGCCTCG CGGCCAAAAT GAAGGGCGTC	1860
TTCATCAACC CTGCTCTCGT TGAGCCGTTT GGTCTCACCC TGATCGAGGC TGCGGCACAC	1920
GGACTCCCGA TAGTCGCTAC CAAGAATGGT GGTCCGGTCG ACATTACAAA TGCATTAAAC	1980
AACGGACTGC TCGTTGACCC ACACGACCAG AACGCCATCG CTGATGCACT GCTGAAGCTT	2040
GTGGCAGACA AGAACCTGTG GCAGGAATGC CGGAGAAACG GGCTGCGCAA CATCCACCTC	2100
TACTCATGGC CGGAGCACTG CCGCACTTAC CTCACCAGGG TGGCCGGGTG CGGGTTAAGG	2160
AACCCGAGGT GGCTGAAGGA CACACCAGCA GATGCCGGAG CCGATGAGGA GGAGTTCC	2220
GAGGATTCCA TGGACGCTCA GGACCTGTCA CTCCGTCTGT CCATCGACGG TGAGAAGAGC	2280
TCGCTGAACA CTAACGATCC ACTGTGGTTC GACCCCCAGG ATCAAGTGCA GAAGATCATG	2340
AACAACATCA AGCAGTCGTC AGCGCTTCCT CCGTCCATGT CCTCAGTCGC AGCCGAGGGC	2400
ACAGGCAGCA CCATGAACAA ATACCCACTC CTGCGCCGGC GCCGGCGCTT GTTGTCA	2460
GCTGTGGACT GCTACCAGGA CGATGGCCGT GCTAGCAAGA AGATGCTGCA GGTGATCCAG	2520
GAAGTTTCA GAGCAGTCCG ATCGGACTCC CAGATGTTCA AGATCTCAGG GTTCACGCTG	2580
TCGACTGCCA TGCCGTTGTC CGAGACACTC CAGCTTCTGC AGCTCGGCAA GATCCCAGCG	2640
ACCGACTTCG ACGCCCTCAT CTGTGGCAGC GGCAGCGAGG TGTACTATCC TGGCACGGCG	2700
AACTGCATGG ACGCTGAAGG AAAGCTGCGC CCAGATCAGG ACTATCTGAT GCACATCAGC	2760
CACCGCTGGT CCCATGACGG CGCGAGGCAG ACCATAGCGA AGCTCATGGG CGCTCAGGAC	2820
GGTTCAAGCG ACGCTGTCGA GCAGGACGTG GCGTCCAGTA ATGCACACTG TGTGCGTT	2880
CTCATCAAAG ACCCCCCAAA GGTGAAAACG GTCGATGAGA TGAGGGAGGC GCTGAGGATG	2940
CGTGGTCTCC GCTGCCACAT CATGTACTGC AGGAACTCGA CAAGGCTTCA GGTTGTCC	3000
CTGCTAGCAT CAAGGTACA GGCACTCAGG TATCTTCCG TGCGCTGGG CGTATCTGTG	3060
GGGAACATGT ATCTGATCAC CGGGGAACAT GGCGACACCG ATCTAGAGGA GATGCTATCC	3120
GGGCTACACA AGACCGTGAT CGTCCGTGGC GTCACCGAGA AGGGTTCGGA AGCACTGGT	3180
AGGAGCCCAG GAAGCTACAA GAGGGACGAT GTCGTCCCGT CTGAGACCCC CTTGGCTGCG	3240
TACACGACTG GTGAGCTGAA GGCGACGAG ATCATGCGGG CTCTGAAGCA AGTCTCCAAG	3300
ACTTCCAGCG GCATGTGAAT TTGATGCTTC TTTACATT TGTCCTTTTC TTCACTGCTA	3360

TATAAAATAA GTTGTGAACA GTACCGCGGG TGTGTATATA TATATTGCAG TGACAAATAA	3420
AACAGGACAC TGCTAACTAT ACTGGTGAAT ATACGACTGT CAAGATTGTA TGCTAAGTAC	3480
TCCATTCTC AATGTATCAA TCGGAATTG	3509

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "DNA"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AATTGGGCAC GAG 1.3

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "DNA"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

CTCGTGCCG 9

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 623 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "DNA"
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5

TATATACATA	CCCCCCCCTC	TCCTCCCATC	CCCCCAACCC	TACCACCACC	ACCACCA	60
CCTCCTCCCC	CCTCGCTGCC	GGACGACGAG	CTCCTCCCCC	CTCCCCCTCC	GCCGCCGCCG	120
GTAACCACCC	CGCGTCCCTC	TCCTCTTCT	TTCTCCGTTT	TTTTTTCCG	TCTCGTCTCG	180
ATCTTGGCC	TTGGTAGTTT	GGGGCGAGA	GGCGGCTTCG	TCGCCCAGAT	CGGTGCGCGG	240
GAGGGCGGG	ATCTCGCGGC	TGGGTCTCGG	CGTGCGGCCG	GATCCTCGCG	GGGAATGGGG	300
CTCTCGGATG	TAGATCTGAT	CCGCCGTTGT	TGGGGGAGAT	GATGGGGCGT	TTAAAATTTC	360
GCCATGCTAA	ACAAGATCAG	GAAGAGGGGA	AAAGGGCACT	ATGGTTTATA	TTTTTATATA	420

TTTCTGCTGC TGCTCGTCAG GCTTAGATGT GCTAGATCTT TCTTTCTTCT TTTTGTGGGT	480
AGAATTTGAA TCCCTCAGCA TTGTTCATCG GTAGTTTTC TTTTCATGAT TTGTGACAAA	540
TGCAGCCTCG TGCGGAGCTT TTTTGTAGGT AGAAGATGGC TGACGCCGAG GATGGGGGAT	600
CCCCGGGTGG TCAGTCCCTT ATG	623

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 16 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Ala Asp Ala Glu Asp Gly Gly Ser Pro Gly Gly Gln Ser Phe Met			
1	5	10	15

CLAIMS

1. A stably transformed transgenic pineapple-like totipotent body.
2. The stably transformed transgenic pineapple-like totipotent body of Claim 1, wherein said totipotent body is a protocorm-like body.
3. The stably transformed transgenic pineapple-like totipotent body of Claim 1, wherein said totipotent body is a callus.
4. The stably transformed transgenic pineapple-like totipotent body of Claim 1, wherein said totipotent body comprises undifferentiated cells.
5. The stably transformed transgenic pineapple-like totipotent body of Claim 1, wherein said totipotent body is a pineapple totipotent body.
6. A stably transformed transgenic pineapple-like plant.
7. The stably transformed transgenic pineapple-like plant of Claim 6, wherein said plant is derived from a transgenic pineapple-like totipotent body.
8. The stably transformed transgenic pineapple-like plant of Claim 7, wherein said totipotent body is a protocorm-like body.
9. The stably transformed transgenic pineapple-like plant of Claim 7, wherein said totipotent body is a callus.
10. The stably transformed transgenic pineapple-like plant of Claim 6, wherein said plant is a pineapple plant.

11. A method for producing a stably transformed transgenic pineapple-like totipotent body, comprising:

- a) providing:
 - i) a pineapple-like totipotent body; and
 - ii) a heterologous nucleic acid comprising an oligonucleotide sequence of interest; and
- b) introducing said oligonucleotide sequence of interest into said pineapple-like totipotent body under conditions such that a stably transformed transgenic pineapple-like totipotent body is produced.

12. The method of Claim 11, wherein said pineapple-like totipotent body is a callus.

13. The method of Claim 11, wherein said pineapple-like totipotent body is a protocorm-like body.

14. The method of Claim 11, further comprising c) selecting said transgenic pineapple-like totipotent body.

15. The method of Claim 14, wherein said selecting is in liquid medium.

16. The method of Claim 14, wherein said selecting comprises detecting said oligonucleotide in the genome of said stable transformed pineapple-like totipotent body.

17. The method of Claim 11, wherein said pineapple-like totipotent body is a pineapple totipotent body.

18. The method of Claim 11, wherein said oligonucleotide is introduced by bombarding said pineapple-like totipotent body with said oligonucleotide sequence of interest.

19. The method of Claim 11, wherein said oligonucleotide is introduced by infecting said pineapple-like totipotent body with *Agrobacterium* comprising said oligonucleotide sequence of interest.

20. The method of Claim 19, wherein said infecting comprises microwounding said pineapple-like totipotent body to produce a microwounded totipotent body, and infecting said microwounded totipotent body with said *Agrobacterium*.
21. The method of Claim 19, wherein said *Agrobacterium* is agropine-type.
22. The method of Claim 19, wherein said *Agrobacterium* is nopaline-type.
23. The method of Claim 19, wherein said *Agrobacterium* is octopine-type.
24. A method for producing a stably transformed transgenic pineapple-like plant, comprising:
- providing:
 - a pineapple-like totipotent body; and
 - a heterologous nucleic acid comprising an oligonucleotide sequence of interest;
 - introducing said oligonucleotide sequence of interest into said pineapple-like totipotent body under conditions such that a transgenic pineapple-like totipotent body is produced; and
 - culturing said transgenic pineapple-like totipotent body under conditions such that a stably transformed transgenic pineapple-like plant is produced.
25. The method of claim 24, wherein said oligonucleotide is introduced by bombarding said pineapple-like totipotent body with said oligonucleotide sequence of interest.
26. The method of Claim 24, wherein said oligonucleotide is introduced by infecting said pineapple-like totipotent body with *Agrobacterium* comprising said oligonucleotide sequence of interest.
27. The method of Claim 24, further comprising prior to step c) selecting said stably transformed transgenic pineapple-like totipotent body.
28. The method of Claim 27, wherein said selecting is in liquid medium.

29. The method of Claim 27, wherein said selecting comprises detecting said oligonucleotide in the genome of said stably transformed transgenic pineapple-like totipotent body.
30. The method of Claim 24, wherein said pineapple-like plant is a pineapple plant.
31. The method of Claim 24, wherein said sequence of interest is selected from the group consisting of oligonucleotides encoding sucrose phosphate synthase, CpTi, thaumatin, and ACC deaminase.
32. The method of Claim 24, wherein said sequence of interest is selected from the group consisting of antisense polyphenol oxidase and ACC oxidase.
33. A method for producing a pineapple-like protocorm-like body comprising maintaining said pineapple-like protocorm-like body in liquid medium.
34. The method of Claim 33, wherein said liquid medium substantially comprises PI medium.
35. The method of Claim 33, wherein said pineapple-like protocorm-like body is a pineapple protocorm-like body.

Figure 1

Figure 2

Figure 3

TATA Box
 -41 TATATACATACCCCTTCTCTCTCCATCCCCCAACCT ACCACCACCAACCACCCCT
 26 COCCCCTCGCTGCCGGACGACGAGCTCCTCCCCCTCCCGCTCGCCGCGCGCG /ataaccaccccg
 92 cgtccccctcccttttccgtttttttccgtctcgatcttgccctggatgg
 159 tggggg c gagaggcggcccgtcgccagatcggtgcgcggggggggggatcccgccggctgggg
 226 tcggcgtgcggccggatcccgtcgccggaaatggggcttcggatgtggatccgtccggccgttgcgg
 293 gggagatgatggggcgttaaaatttcgcctatgcctaaacaaagatcaggaagggggaaaggccact
 360 atggtttatattttatataatttcgtgtgtcgtaaggcttagatgtgtggatccttttcc
 427 tcctttgtgggtagaatttgaatccctcagcattgtcatcggtattttccatgatttt
 494 gaceaatgcagcctcgtgcggagctttttag/ GTAGAAG ATG GCT GAC GCC GAG GAT
 Met Ala Asp Ala Glu Asp
Sma I Bam HI Sma I
 561. GGG GGA TCC CCG GGT GGT CAG TCC CTT ATG
 Gly Gly Ser Pro Gly Gly Gln Ser Phe Met

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 14 (Contd.)

2401 acaggcagca ccatgaacaa atacccactc ctgcgccggc gccggcgctt gttcgltata
2461 gctgtggact gtaccaggaa cgatggccgt gcttagcaaga agatgcgtca ggtgtatccag
2521 gaagttttca gagcagtcgg atcggactcc cagatgttca agatctcagg gttcacgctg
2581 tcgactgccttgc tggcggttgc cggacactc cagcttcgtc agtcggcaa gatcccagcg
2641 accgacttcg acgcctcat ctgtggcggc ggcagcggagg ttgtactatcc tggcacggcg
2701 aactgcatgg acgttgtaagg aaagctgcgc ccagatcagg actatctgtat gcacatcagc
2761 caccgctggc cccatgacgg cgcgaggcag accatagcga agctcatggg cgctcaggac
2821 gggtcaggcg acgttgtca gcaggacgtg gcgtccagta atgcacactg tgtcgcgttc
2881 ctcataaaag accccccaaaaa ggtgaaaacg gtgtatgaga tgagggagcg gctgaggatg
2941 cgtggcttcc gctgccacat catgtactgc aggaactcga caaggctca gggtgtccct
3001 ctgtctatcat caaggtcaca ggcactcagg tatcttccg tgcgtgggg cgtatctgt
3061 gggaaacatgt atctgtatcac cggggaaacat ggcgacacccg atctagagga gatgttatcc
3121 gggctacaca agaccgtgtat ctgtccgtggc gtccaccgaga agggttcggg agcactggtg
3181 aggagcccgag gaagctacaa gagggacgtat gtctgtccgt ctgtggctgc
3241 tacacgactg gtgttgtaa ggcgcacggat atcatgcggg ctctgtggca agtctccaag
3301 acttccagcg gcatgtgaat ttgtgttgttttacattt tgcccttttc ttcatgtcta
3361 tataaaataa gtgtgtgaaca gtaccgggg ttttgtatata tatattgtcag tgacaaataa
3421 aacaggacac tgcttaactat actgggtgtat atacgactgtt caagattgtat tgctaaatgt
3481 tccatttctc aatgtatcaa tcggattc

Figure 15

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/10576

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : C12N 5/04, 15/63, 15/64, 15/82, 15/84; A01H 1/00, 1/04, 5/00

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please See Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, Agricola, Caplus

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	PENA et al. Agrobacterium-mediated Transformation Of Sweet Orange And Regeneration Of Transgenic Plants. Plant Cell Rep. 1995, Vol. 14, pages 616-619, especially pages 616-617, see entire document.	19-23, 26
Y	McCABE et al. Direct DNA Transfer Using Electric Discharge Particle Acceleration (ACCELL Technology). Plant Cell Tiss. Org. Cult. 1993, Vol. 33, pages 227-236, especially pages 227-228, 231-233.	1-18, 24, 25, 27-32
Y	GAMBORG, O.L. Plant Cell Cultures: Nutrition And Media. in Cell Culture and Somatic Cell Genetics of Plants. 1984, Vol. 1, pages 18-26, especially pages 18-19.	1-32

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

01 JULY 1999

Date of mailing of the international search report

10 SEP 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

ASHWIN MEHTA

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US99/10576

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	MAPES, M.O. Tissue Culture Of Bromeliads. The International Plant Propagators' Society Combined Proceedings. 1973, Vol. 23, pages 47-55, especially pages 48-50, see entire document.	2-4, 7-14, 17-27, 30-35
Y	CHIA et al. The Firefly Luciferase Gene As A Non-invasive Reporter For Dendrobium Transformation. Plant J. 1994, Vol. 6, No. 3, pages 441-446 especially page 446, see entire document.	18, 25
Y	RANGAN, T.S. Pineapple. In Handbook of Plant Cell Culture. P. K. Ammirato et al, eds. 1984, pages 373-382, especially pages 374-375, 379.	1-32
Y	ZHU et al. Isolation Of Genomic DNAs from Plants, Fungi And Bacteria Using Benzyl Chloride. Nucl. Acids Res. 1993, Vol. 21, No. 22, pages 5279-5280, see whole document.	16, 29
Y	SABELLI et al. Nucleic Acid Blotting And Hybridisation. Meth. Plant Biochem. 1993, Vol. 10, pages 79-100, see whole document.	16, 29
Y	WITTY, M. Thaumatin II: A Sweet Marker Gene for Use In Plants. Meth. Enzymol. 1992, Vol. 216, pages 441-447, especially pages 442-443.	31
Y	HAMILTON et al. Antisense Gene That Inhibits Synthesis Of The Hormone Ethylene In Transgenic Plants. Nature. 19 July 1990, Vol. 346, pages 284-287, see whole document.	32

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US99/10576**Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)**

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/10576

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/69.1, 410, 418, 419, 420, 430, 431, 430.1, 468, 469, 470; 800/278, 279, 283, 285, 286, 288, 293, 294, 295, 298, 301, 302

B. FIELDS SEARCHED

Minimum documentation searched

Classification System: U.S.

435/69.1, 410, 418, 419, 420, 430, 431, 430.1, 468, 469, 470; 800/278, 279, 283, 285, 286, 288, 293, 294, 295, 298, 301, 302

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-18, 24, 25, 27-32, drawn to a first product, a stably transformed transgenic pineapple-like totipotent body; first method of transforming a pineapple-like totipotent body via particle bombardment.

Group II, claim(s) 19-23, 26, drawn to a second method of transforming a pineapple-like totipotent body, via Agrobacterium.

Group III, claim(s) 33-35, drawn to a third method, for producing a pineapple-like totipotent body.

The inventions listed as Groups I-III do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: The special technical feature of plant transformation via particle bombardment is not shared nor required by the other groups. The special technical feature of plant transformation via Agrobacterium is not shared nor required by the other groups. The invention of group three does not share nor require the transformation methods of the other groups.