李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

学习率 自注意力机

卷积神经网络 GAN

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉	
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n	

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]

Convolutional Neural Network (CNN)

Network Architecture designed for Image

Image Classification

(All the images to be classified have the same size.)

Image Classification

value represents intensity

Fully Connected Network

Do we really need "fully connected" in image processing?

Observation 1

Identifying some critical patterns

Perhaps human also identify birds in a similar way ... ©

https://www.dcard.tw/f/funny/p/233833012

Observation 1 A neuron does not have to see the whole image. Need to see the Input Laye Layer 2 whole image? χ_1 bird χ_{N} basic advanced detector detector

Some patterns are much smaller than the whole image.

Simplification 1

- Can different neurons have different sizes of receptive field?
- Cover only some channels?
- Not square receptive field?

Simplification 1 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Observation 2

The same patterns appear in different regions.

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Simplification 2 – Typical Setting

Each receptive field has a set of neurons (e.g., 64 neurons).

Each receptive field has the neurons with the same set of parameters.

Benefit of Convolutional Layer

- Some patterns are much smaller than the whole image.
- The same patterns appear in different regions.

Another story based on *filter* ©

Convolutional Layer

Consider channel = 1 (black and white image)

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	
-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	
	:		•

(The values in the filters are unknown parameters.)

Filter 1

stride=1

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

6 x 6 image

Do the same process for every filter

Multiple Convolutional Layers

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Comparison of Two Stories

The neurons with different receptive fields **share the parameters**.

Each filter convolves over the input image.

Neuron Version Story	Filter Version Story
Each neuron only considers a receptive field.	There are a set of filters detecting small patterns.
The neurons with different receptive fields share the parameters.	Each filter convolves over the input image.

They are the same story.

Observation 3

Subsampling the pixels will not change the object

Pooling – Max Pooling

	1	-1	-1			-1	1	-1	
	-1	1	-1	Filter 1		-1	1	-1	Filter
	-1	-1	1			-1	1	-1	
3	-1		-3	-1	-	1	-1	-1	-1
-3	1		0	-3	_	-1	-1	-2	1
-3	-3		0	1	-	-1	-1	-2	1
3	-2		-2	-1	-	-1	0	-4	3

The whole CNN

cat dog Convolution softmax **Pooling Fully Connected** Layers Convolution 00000000 Pooling Flatten

Application: Playing Go

48 channels in Alpha Go

Black: 1

white: -1

none: 0

Fully-connected network can be used

But CNN performs much better.

Why CNN for Go playing?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

• The same patterns appear in different regions.

Why CNN for Go playing?

Subsampling the pixels will not change the object

Pooling

How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Tabl 256 and 384 filters

Alpha Go does not use Pooling

More Applications

Speech

https://dl.acm.org/doi/10.110 9/TASLP.2014.2339736

Natural Language Processing

https://www.aclweb.org/anthology/S15-2079/

To learn more ...

• CNN is not invariant to scaling and rotation (we need data augmentation ⊕).

Spatial Transformer Layer

https://youtu.be/SoCywZ1hZak (in Mandarin)

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021): 课程资料包 @ShowMeAl

视频 中英双语字题 课件

笔记

代码

中英双语字幕 一键打包下载

官方笔记翻译 化

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1fM4v137M4

课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 Auto-encoder 生成式对抗网络 学 深度学习 _{卷积神经网络} GAN 自监督

批次标准化 神经网络压缩 强化学习 元学习 Transformer

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**句页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉	
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n	

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复[添砖加页]