Cálculo diferencial e integral I Ejercicios de práctica sobre funciones

Indicaciones: A continuación presentamos una serie de ejercicios cuya finalidad es que practiquen/refuercen los temas vistos recientemente. Esta lista de ejercicios se publica a petición de ustedes y solo es para practicar.

1. Sea $g(x) = x^2$, y sea

$$h(x) = \begin{cases} 0 & \text{si } x \text{ es racional,} \\ 1 & \text{si } x \text{ es irracional.} \end{cases}$$

- a) ¿Para cuáles y es h(y) < y?
- b) ¿Para cuáles y es h(y) < g(y)?
- c) ¿Qué es g(h(z)) h(z)?
- d) ¿Para cuáles w es g(w) < w?
- e) ¿Para cuáles ε es $g(g(\varepsilon)) = g(\varepsilon)$?
- 2. ¿Para qué números a, b, c y d la función $f(x) = \frac{ax+b}{cx+d}$ satisface f(f(x)) = x? (¿Para qué números dicha ecuación tiene sentido?)
- 3. Demuestre o dé un contraejemplo para cada una de las siguientes afirmaciones:
 - $a) \ f \circ (g+h) = f \circ g + f \circ h.$
 - $b) \ (g+h) \circ f = g \circ f + h \circ f.$
 - $c) \ \frac{1}{f \circ g} = \frac{1}{f} \circ g.$
 - $d) \ \frac{1}{f \circ g} = f \circ \left(\frac{1}{g}\right).$
- 4. Considere las funciones $f(x) = 1 + \sqrt[3]{x}$, g(x) = |x| y $h(x) = \frac{1}{x}$. Para cada una de las siguientes funciones, indique si es par, impar o ninguna de las dos. En el último caso, exprese a la función como suma de una función par y una impar. Justifique sus respuestas.
 - $a) \ (f\circ g)(x)$

- $b) (g \circ f)(x)$
- c) $(h \circ f)(x)$
- 5. Para cada una de las funciones siguientes, indique si es par, impar o ninguna de las dos. En el último caso, exprese a la función como suma de una función par y una impar. Justifique sus respuestas.

1

a)
$$f(x) = \frac{2}{1 - x^2}$$

b)
$$g(x) = \begin{cases} \sqrt{x} & \text{si } x \ge 0 \\ \sqrt{-x} & \text{si } x < 0 \end{cases}$$
 $c) h(x) = \frac{\sqrt{1-x}}{1+x^3}$

- 6. Sean $f(x) = \sqrt{1-x^2}$ y $g(x) = \frac{1}{1+x}$. Para cada una de las siguientes funciones diga si cumplen o no las siguientes propiedades: par, impar, inyectiva y suprayectiva sobre \mathbb{R} . Justifique sus respuestas.
 - a) 2g(x) + 1

 $b) f(x)^2 g(x)$

- c) $xq(x^2)$
- 7. Dibuje la gráfica de cada una de las siguientes funciones. Justifique sus respuestas.
 - a) $f(x) = \frac{1}{x}$

- b) $g(x) = \frac{1}{2-x}$ $c) h(x) = \frac{1-3x}{x}$
- 8. Considere la función $f(x) = x + \frac{1}{x}$. Dibuje la gráfica de cada una de las siguientes funciones. Justifique sus respuestas.
 - a) f(x) 1

c) $f\left(\frac{1}{x}\right)$

b) f(x+1)

 $d) f(x^2)$

¹Una función $f:A\subset\mathbb{R}\to\mathbb{R}$ es **inyectiva** si dados $x,y\in A$ con $x\neq y$ se cumple que $f(x)\neq f(y)$.

²Una función $f:A\subset\mathbb{R}\to\mathbb{R}$ es suprayectiva sobre \mathbb{R} si para toda $y\in\mathbb{R}$ (el codominio) existe $x\in A$ tal que f(x) = y.