Speech Signal Analysis

DEF (Dithering) Dithering adds noise to the signal which avoids the signal having zeros (which may be problematic when taking the log).

$$y[t] = x[t] + \epsilon[t]$$
 $\epsilon[t] \sim \mathcal{N}(0, \sigma^2)$

DEF (DC Offset) Most processing techniques assume that the signal is centered around 0.

$$y[t] = x[t] - \frac{1}{T}\mu_x$$
 $\mu_x = \frac{1}{T}\sum_{t=1}^{T}x[t]$

DEF (*Pre-emphasis*) Emphasize high frequency components.

$$y[t] = x[t] - \alpha x[t-1]$$

where α is a constant (usually 0.97)

DEF (Discrete Fourier Transform (DFT)) The dot product of the signal with the sinusoids of the frequency (Fourier basis).

$$X[k] = \sum_{t=0}^{T-1} x[t]e^{i2\pi kt/T}$$

DFT decomposes the signal into frequency components. Commonly ${\mathcal F}$ is used to denote the DFT operator.

THM (Properties of DFT)

• Linearity: $\mathcal{F}(a_1x_1 + a_2x_2) = a_1\mathcal{F}(x_1) + a_2\mathcal{F}(x_2)$ • Shift: If y[t] = x[t-m], then $Y[k] = e^{i2\pi km/T}X[k]$

DEF (Windowing) Given a signal x[t], a window function w[t] (Hamming, Hann, etc.)

$$y[t] = x[t]w[t]$$

DEF (Short-Time Fourier Transform (STFT)) Given a signal x[t], a window function w[t], and a hop size h, the STFT is given by:

$$X[k,m] = \sum_{t=0}^{T-1} x[t]w[t-m]e^{-i2\pi kt/T}$$

where m is the current frame index and k is the frequency index. This gives a complex spectrogram of the signal.

DEF (Complex Spectrogram) Given a frequency bin X[k] = a + bi,

• Real: $\mathcal{R}(X[k]) = a$

• Imaginary: $\Im m(X[k]) = b$

• Magnitude: $|X[k]| = \sqrt{a^2 + b^2}$

• Phase: $\angle X[k] = \arccos \frac{a}{\sqrt{a^2+b^2}}$ • Energy: $P[k] = |X[k]|^2$

DEF (Mel Spectrogram) After obtaining the spectrogram, X[k], and using the mel filter bank, $H_n[k]$, the mel spectrogram is given by:

$$Y[k,n] = \sum_{k=0}^{K-1} |X[k]| H_n[k]$$

DEF (Mel Frequency Cepstral Coefficients (MFCCs)) A common feature extraction technique for speech recognition which is able to capture speaker characteristics and phonetic content.

- 1. Extract the mel spectrogram Y[k, n]
- 2. Apply the Discrete Cosine Transform (DCT) to the mel spectrogram.
- 3. Take the first p coefficients (usually 13).

Hidden Markov Models

DEF (Objective of ASR) Given a sequence of acoustic feature vectors X, and W denotes a word sequence, ASR aims to find the most likely word sequence W^*

$$W^* = \operatorname*{arg\,max}_W P(W|X)$$

COR (Decomposition of P(W|X)) We can decompose P(W|X) with Bayes' theorem:

$$P(W|X) = \frac{P(X|W)P(W)}{P(X)} \propto P(X|W)P(W)$$

P(X|W) is the **Acoustic Model** and P(W) is the **Language** Model.

DEF (Modelling the Acoustic Model with HMMs) Commonly, the left-to-right HMM is used to model the acoustic model. As a word is composed of multiple phonemes, we can model each phoneme with a left-to-right HMM and then concatenate them to form a HMM for the word. For the phoneme HMMs, we typically use a left-to-right HMM with 3 states which as a consequence also enforces a minimum phone duration.

DEF (The three fundamental problems of HMMs)

- 1. **Likelihood** Determine the overall likelihood of an observation sequence $X = x_1, x_2, \dots, x_T$ given an HMM topology \mathcal{M}
- 2. Decoding Determine the most likely sequence of hidden states $Q = q_1, q_2, \dots, q_T$ given an observation sequence X = x_1, x_2, \ldots, x_T and an HMM topology \mathcal{M}
- 3. Training Given an observation sequence $X = x_1, x_2, \dots, x_T$ and an HMM topology \mathcal{M} , determine the optimal state occupation probabilities.

ALG (Forward Algorithm) The **Likelihood** problem is solved by the Forward Algorithm. The forward probability $\alpha_i(t)$ is the probability of observing the observation sequence x_1, \dots, x_t and being in state j at time t.

$$\alpha_j(t) = P(x_1, \cdots, x_t, q_t = j | \mathcal{M})$$

This can be computed recursively:

• Initialisation:

$$\alpha_j(0) = 1 \quad j = 0$$

$$\alpha_j(0) = 0 \quad j \neq 0$$

• Recursion:

$$\alpha_j(t) = \left(\sum_{i=0}^{J} \alpha_i(t-1)a_{ij}\right)b_j(x_t)$$

• Termination:

$$P(X|\mathcal{M}) = \alpha_E = \sum_{i=1}^{J} \alpha_i(T)a_{iE}$$

ALG (Viterbi Algorithm) The Decoding problem is solved by the Viterbi Algorithm. Define likelihood of the most probable partial path in state j at time t as $V_j(t)$ and the Viterbi backpointer as $B_j(t)$ (the most probable state at time t-1 that leads to state j at time t). Then the Viterbi algorithm can be described as:

• Initialisation:

$$V_0(0) = 1$$

 $V_j(0) = 0$ $j \neq 0$
 $B_j(0) = 0$

• Recursion:

$$V_j(t) = \max_{i=0}^{J} V_i(t-1)a_{ij}b_j(x_t)$$

$$B_j(t) = \operatorname*{arg\,max}_{i=0}^J V_i(t-1)a_{ij}$$

• Termination:

$$V_E = \max_{j=1}^{J} V_j(T) a_{jE}$$
$$B_E = \arg \max_{j=1}^{J} V_j(T) a_{jE}$$

ALG (Training: Hard Assignment with Viterbi Training) If we know the state-time alignment of the training data (i.e. the sequence of states that generated the observation sequence), then the transition and observation probabilities can be estimated as follows:

$$\begin{aligned} a_{ij} &= \frac{C(i \rightarrow j)}{\sum_k C(i \rightarrow k)} \\ \mu_j &= \frac{\sum_t z_{jt} x_t}{\sum_t z_{jt}} \\ b_j &= \mathcal{N}(x_t | \mu_j, \Sigma_j) \end{aligned}$$

where z_{jt} is an indicator variable that is 1 if the *t*-th observation was generated by the *j*-th state. $C(i \to j)$ is the number of times the transition from state *i* to state *j* is made.

DEF (Backward Algorithm) Similar to the forward probability, we can define the backward probability $\beta_j(t)$ as the probability of observing the observation sequence x_{t+1}, \dots, x_T given that the current

state is j at time t.

$$\beta_i(t) = P(x_{t+1}, \cdots, x_T | q_t = j, \mathcal{M})$$

This can be computed recursively:

• Initialisation:

$$\beta_i(T) = a_{iE}$$

• Recursion:

$$\beta_i(t) = \sum_{j=1}^{J} a_{ij} b_j(x_{t+1}) \beta_j(t+1)$$

• Termination:

$$P(X|\mathcal{M}) = \beta_0(0) = \sum_{j=1}^{J} a_{0j}b_j(x_1)\beta_j(1) = \alpha_E$$

DEF (State Occupation Probabilities) $\lambda_j(t)$ is the state occupation probability which is the probability of occupying state j at time t given the sequence of observations. It is expressed in terms of the **Forward** and **Backward** probabilities as follows:

 γ

ALG (Training: Soft Assignment with Baum-Welch Algorithm) The issue is that