Anéis - Continuação

José Antônio O. Freitas

MAT-UnB

16 de setembro de 2020

1/6

Definição

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

Proposição

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y \in B$ e $x \cdot y \in B$ para todos x, $y \in B$.

Prova: FAZER!!!!!

Exemplos

COLOCAR EXEMPLOS

Definição

Um homomorfismo do anel $(A, +, \cdot)$ no anel (B, \oplus, \otimes) é uma função $f: A \to B$ que satisfaz:

i)
$$f(x + y) = f(x) \oplus f(y)$$
, para todos x , $y \in A$;

ii)
$$f(x \cdot y) = f(x) \otimes f(y)$$
, para todos $x, y \in A$.

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo. Então:

$$i) \ f(0_A) = 0_B$$

ii)
$$f(-x) = -f(x)$$
, para todo $x \in A$.

Prova:

i) Fazendo $x = y = 0_A$, temos

$$f(0_A) = f(0_A + 0_A) = f(0_A) \oplus f(0_A)$$

Somando $-f(0_A)$ em ambos os lados obtemos

$$f(0_A) \oplus (-f(0_A)) = (f(0_A) \oplus f(0_A)) \oplus (-f(0_A))$$
$$0_B = f(0_A) \oplus 0_B$$
$$f(0_A) = 0_B$$

5/6

ii) Temos $0_B = f(0_A) = f(x + (-x)) = f(x) \oplus f(-x)$. Assim somando -f(x) em ambos os lados obtemos

$$0_B \oplus (-f(x)) = [f(x) \oplus f(-x)] + (-f(x))$$
$$-f(x) = f(-x) \oplus (f(x) \oplus (-f(x)))$$
$$f(-x) = -f(x)$$