7 信号检测与处理电路7.1 电子系统概述

信号检测系统基本框图

计算机系统总线

上页

下页

提取测信号

进一步去除 无用信号 联系处理系 统的桥梁

传感器

放大器

滤波器

增益调整

采样保持

A/D 转换器

计算机系统总线

放大测量信号 抑制干扰信号

信号加工处理系统

控制电路

上页

下页 后退

7.2 信号检测系统中的放大电路

7.2.1 测量放大器

主要特点

输入抗阻高

共模抑制比高

常用于测量直流缓变微弱信号

应用: 热电偶、应变电桥、流量计、生物电测量等

上页下页后退

- 1. 三运放测量放大器
 - (1) 基本电路图

共模抑制比高 输入抗阻高

对电路要求:

- $a. 运放A_1$ 、 A_2 的特性一致性
- b. 电阻 R_3 、 R_4 、 R_5 、 R_6 要精密配合(R_3 = R_5 、 R_4 = R_6)

(2) 电路分析

由图可知

$$u_{\rm b1} = u_{\rm Id} + u_{\rm Ic}$$
$$u_{\rm b2} = u_{\rm Ic}$$

而
$$u_{\rm b1} - u_{\rm b2} = u_{\rm Id}$$

所以

$$u_{\text{O1}} - u_{\text{O2}} = \frac{R_1 + R_{\text{G}} + R_2}{R_{\text{G}}} u_{\text{Id}}$$

$$u_{\rm O} = (1 + \frac{R_4}{R_3}) \times \frac{R_6}{R_5 + R_6} u_{\rm O2} - \frac{R_4}{R_3} u_{\rm O1}$$

$$R_3 = R_4 = R_5 = R_6 = R$$

$$u_0 = (1 + \frac{R_4}{R_3}) \times \frac{R_6}{R_5 + R_6} u_{02} - \frac{R_4}{R_3} u_{01}$$

$$= -(u_{01} - u_{02})$$

$$= -(1 + \frac{R_1 + R_2}{R_3}) u_{1d}$$

输出信号共模信号u_{Ic}无关

因此, 放大器具有很高的抑制共模信号的能力。

测量放大器: 高增益、直接耦合、差动输入、单端输出、高输入阻抗、高共模抑制比的放大电路

一般
$$R_1 = R_2$$

$$u_{\rm O} = -(1 + \frac{R_1 + R_2}{R_{\rm G}}) u_{\rm Id}$$

$$= -(1 + \frac{2 R_1}{R_{\rm G}}) u_{\rm Id}$$

问: 1.如何改变增益最方便? RG

2. 电阻不一致如何调整?

例: 由三运放放大器组成的温度测量电路。

 R_{t} : 热敏电阻

集成化:仪表放大器

上页 下页 后退

2. 单片集成测量放大器AD521

集成化的三运放测量放大器。

性能指标:

- (1) 共模抑制比120dB
- (2) 输入阻抗3×10⁹Ω
- (3) 增益带宽大于2MHz
- (4) 电压放大倍数0.1~1000
- (5) 电源电压± (5~18)V
- (6) 过载能力较强, 动态特性好

(1) 引脚说明

上页 下页 后退

(2) 基本连接方式图

上页下页后退

7.2.2 隔离放大器

特点:

输入回路与输出回路之间是电绝缘的。

信号传递的主要方式:

一 电磁耦合,即经过变压器传递信号

光电耦合

1. 光电耦合隔离放大器

光电耦合器原理图

二极管——二极管型

二极管——三极管型

上页

下页

光电耦合器的特点

- a. 耦合器中的发光和光敏元件都是非线性器件。
- b. 非线性器件传输模拟信号将会导致信号失真。

克服非线性失真采取的主要措施

- a. 给非线性器件施加合适的直流偏置, 在小范围内线性传输信息。
- b. 采用负反馈技术

一种典型的光电耦合隔离放大器

上页

下页

下页

下页

下页

工作原理

上页

下页

下页

后退 上页 下页

实现信号传输

实现信号隔离

上页

下页

2. 变压器隔离放大器

放大器原理图

上页下页后退

调制

恢复原低频信号

两侧电源独立

给输入侧提供能量

上页

下页

变压器隔离放大器AD277原理图和引脚

上页

下页

7.3 有源滤波器

7.3.1 滤波器的基础知识

功能: 只允许某一部分频率的信号顺利的通过。

通带:能够通过信号的频率范围。

阻带:不能够通过信号的频率范围。

截止频率: 通带和阻带之间的分界频率。

滤波器的分类

a. 根据处理的信号不同 { 数字滤波器

b. 根据使用的滤波元件不同 \ LC型 RLC型

上页 下页 后退

RC型

c. 根据工作频率不同

低通滤波器 高通滤波器 带通滤波器 带阻滤波器

上页 下页 后退

理想滤波器的幅频特性

低 A_0 A_0 A

高通

上页

下页

实际低通滤波器的幅频特性

上页

下页

d. 根据滤器的阶数分

一阶滤波器

二阶滤波器

高阶滤波器

滤器的阶数越高, 性能越好。

e. 根据采用的元器件不同

无源滤波器

有源滤波器

上页 下页 后退

(a) 无源滤波器

组成: 由电阻、电容、电感等无源器件组成。

电路简单

尤点 | 高频性能好

工作可靠

 $C R \square R_{\mathrm{L}}$

无源高通滤波器

通带信号有能量损耗

点 一负载效应比较明显

体积和重量比较大,电感还会引起电磁感应。

上页

下页

(b) 有源滤波器:

组成:由电阻、电容和有源器件(如集成运放)组成

电路体积小、重量轻

通带内的信号可以放大

精度高、性能稳定、易于调试 优点

负载效应小

可以多级相联, 用低阶来构成高阶滤波器

上页 下页 后退 通带范围小

缺点-

需要直流电源

适用于低频、低压、小功率等场合。

上页 下页 后退

- 7.3.2 低通有源滤波器
- 1. 一阶低通有源滤波器
 - (1) 电路组成

- (2) 电路性能分析
 - a. 电路的传递函数 $A(s) = \frac{U_o(s)}{U_i(s)}$

$$A(s) = \frac{U_{o}(s)}{U_{i}(s)}$$

$$=-\frac{Z_2(s)}{Z_1(s)}$$

式中
$$Z_1(s) = R_1$$

$$Z_2(s) = R_2 / \frac{1}{sC} = \frac{R_2}{1 + sR_2C}$$

故

$$A(s) = -\frac{R_2}{R_1} \frac{1}{1 + sCR_2}$$

上页 下页 后退

$$A(s) = -\frac{R_2}{R_1} \frac{1}{1 + sCR_2}$$

$$\omega_{\rm c} = 1/(R_2C)$$

 A_0 ——滤波器的通带增益

w. ——滤波器的截止角频率

$$A(s) = A_0 \frac{\omega_c}{s + \omega_c}$$

$$A(s) = A_0 \frac{\omega_{\rm c}}{s + \omega_{\rm c}}$$

b. 滤波器的频率特性 令 s=jω

$$A(\mathbf{j}\omega) = A_0 \frac{\omega_c}{\mathbf{j}\omega + \omega_c}$$

$$= A_0 \frac{1}{1 + \mathbf{j} \frac{\omega}{\omega_c}}$$

$$= A_0 \frac{1}{1 + \mathbf{j} \frac{f}{\omega_c}}$$

$$A(j\omega) = A_0 \frac{1}{1 + j\frac{f}{f_c}}$$

式中

$$f_{\rm c} = \frac{\omega_{\rm c}}{2\pi} = \frac{1}{2\pi R_2 C}$$

称为滤波器的截止频率

因电路的频率特性与f的一次方有关

故称之为一阶RC低通有源滤波器

由
$$A(j\omega) = A_0 \frac{1}{1+j\frac{f}{f_c}}$$
 得

c. 滤波器的幅频特性

$$|A(j\omega)| = \frac{|A_0|}{\sqrt{1+(f/f_c)^2}}$$

d. 相频特性

$$\varphi(j\omega) = -180^{\circ} - \arctan \frac{f}{f_c}$$

模拟电子技术基础

$$|A(j\omega)| = \frac{|A_0|}{\sqrt{1+(f/f_c)^2}}$$

上页下页后退

- (3) 一阶滤波器特点
 - a. 电路简单
 - b. 过渡带输出的衰减慢,衰减速率20dB/十倍频

上页下页后退

2. 二阶有源低通滤波器

(1) 电路组成

上页下页后退

7.3.3 高通有源滤波器

- 1. 一阶高通有源滤波器
- (1) 低通与高通电路的对偶关系

(2) 一阶高通滤波器

- a. 高通滤波电路
- b. 电路分析
- (a) 传递函数

$$A(s) = \frac{U_{o}(s)}{U_{i}(s)}$$

$$=-\frac{Z_2(s)}{Z_1(s)}$$

$$Z_1(s) = R_1 + \frac{1}{sC}$$

$$Z_2(s) = R_2$$

模拟电子技术基础
$$A(s) = -\frac{R_2}{R_1 + \frac{1}{sCR_1}}$$

$$= -\frac{R_2}{R_1} \frac{1}{1 + \frac{1}{sCR_1}}$$

$$= -\frac{R_2}{R_1} \frac{s}{s + \frac{1}{CR_1}}$$

$$= A_0 \frac{s}{s + \omega_c}$$

式中

通带增益
$$A_0 = -R_2/R_1$$

截止角频率 $\omega_{c} = 1/(R_{1}C)$

(b) 频率特性

令
$$s = j\omega$$
 由 $A(s) = A_0 \frac{s}{s + \omega_c}$ 得

滤波器的频率特性

$$A(j\omega) = A_0 \frac{j\omega}{j\omega + \omega_c}$$

$$= A_0 \frac{1}{1 + j \frac{\omega_C}{\omega}}$$

$$= A_0 \frac{1}{1 - \mathbf{j} \frac{f_{\mathrm{C}}}{f}}$$

滤波器的截止频率

$$f_{\rm c} = \frac{\omega_{\rm c}}{2\pi} = \frac{1}{2\pi R_1 C}$$

上页

下页

(c) 滤波器的幅频特性

$$\mathbf{\dot{j}}(\mathbf{\dot{j}}\omega) = A_0 \frac{1}{1 - \mathbf{\dot{j}}\frac{f_c}{f}}$$

$$|A(j\omega)| = \frac{|A_0|}{\sqrt{1+(f_c/f)^2}}$$

$$\varphi(j\omega) = -180^{\circ} + \arctan \frac{f_{c}}{f}$$

幅频特性曲线

- 2. 二阶高通有源滤波器
- (1) 电路组成

上页 下页 后退

一阶低通

一阶高通

通带

增益

截止

$$A_0 = -R_2/R_1$$

$$C_{c} = \frac{1}{2\pi R_{2}C}$$
 高短低断

$$A_0 = -R_2/R_1$$

$$f_{\rm c} = \frac{1}{2\pi R_1 C}$$

模拟电子技术基础

一阶低通

一阶高通

电路

通带

增益

截止

频率

$$A_0 = 1 + R_2/R$$

$$f_{\rm c} = \frac{1}{2\pi RC}$$

高短低断

$$A_0 = 1 + R_2/R_1$$

$$f_{\rm c} = \frac{1}{2\pi RC}$$

7.3.4 带通和带阻有源滤波器

1. 二阶带通有源滤波器

(1) 电路组成

上页 下页 后退

带通滤波器 的幅频特性

上页下页后退

2. 二阶带阻有源滤波器

上页

上页 下页 后退

实际应用举例

- 心电检测中,测量的信号为mV级,需要进行信号 放大,要求放大倍数>30;
- · 信号的频率范围大致在0.1-110Hz之间,为了消除 高频干扰,需要设计滤波电路;
- 人体为大阻抗信号源,需要设计的放大器是高输入阻抗,高共模抑制比的放大电路。

如何运用我们学习过的知识解决此问题?

练习题

例1 在图示电路中,设各运放都具有理想特性。试求:

- (a) $\dot{A}_{u1} = \dot{U}_{o3} / \dot{U}_{i}$
- (b) 电路的中频电压放大倍数 $\dot{A}_{um}=\dot{U}_{o}/\dot{U}_{i}$

上页

下页

(c) 整个电路的上、下限截止频率 f_H 和 f_L 之值。

解 由图可知,运放 $A_1\sim A_3$ 构成三运放测量放大器,运放 A_4 构成一阶低通滤波器,电容器 C_2 和负载 R_L 构成高通滤波器。

上页下页后退

模拟电子技术基础

(a) 写出u_{O3}与u_i的关系

$$u_{03} = (1 + \frac{R_6}{R_4}) \times \frac{R_7}{R_5 + R_7} u_{02} - \frac{R_4}{R_3} u_{01}$$

$$= -(u_{01} - u_{02}) = \frac{R_1 + R_2 + R_3}{R_3} u_{1} = -3u_{1}$$

上页

下页

所以,
$$\dot{A}_{u1}$$
= \dot{U}_{o3} / \dot{U}_{i} =-3

(b) 电路的中频电压放大倍数

$$\dot{A}_{um} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{\dot{U}_{o3}}{\dot{U}_{i}} \frac{\dot{U}_{o}}{\dot{U}_{o3}} = \dot{A}_{u1} \left(-\frac{R_{9}}{R_{8}}\right) = -3 \times \left(-\frac{330}{33}\right) = 30$$

上页

下页

模拟电子技术基础

(c) 整个电路的上、下限截止频率分别为

$$f_{\rm H} = \frac{1}{2\pi R_9 C_1} \approx 102.6 {\rm Hz}$$

$$f_{\rm L} = \frac{1}{2\pi R_{\rm L} C_2} \approx 0.095 \text{Hz}$$

上页

下页

7.4 电压比较器

确定运放工作区的方法: 判断电路中有无负反馈。

上页 下页 后退

线性应用: 是指由运放组成的电路处于线性状态,输出与输入的关系 $u_0=f(u_1)$ 是线性函数。

反相比例器、加法器、积分器等

特点: 电路存在负反馈

"虚短"、"虚断"是分析工具

非线性应用: 是指由运放组成的电路处于非线性状态

,输出与输入的关系 $u_0 = f(u_1)$ 是非线性函数。

特点: 1. "虚短"不成立

- 2. 输入电阻仍可以认为很大,可用"虚断"
- 3. 输出电阻仍可以认为是0

上页

下页

7.4 电压比较器

功能: 用来比较输入电压相对大小的电路。

输入端的信号有

比较电压(基准电压或参考电平)

被比较的输入电压

输出端的信号状态——只有高电平和低电平。

工作原理—— 输入信号偏离参考电压时,输出电压将发生跃变。

将输出电压发生跃变的现象称为比较器翻转。

上页下页后退

7.4.1 单门限比较器

- 1. 零电平比较器
 - (1) 电路组成
- (2) 电路特点
 - a. 运放工作于开环状态

b.
$$u_{b1} = u_{I}$$
, $u_{b2} = 0$

c. 输出电压 $u_0 \approx \pm V_{CC}$

(3) 工作原理

a. 当
$$u_{\rm I} < 0$$
 时, $u_{\rm O} \approx + V_{\rm CC}$

b. 当
$$u_{\rm I} > 0$$
 时, $u_{\rm O} \approx -V_{\rm CC}$

(4) 传输特性

$$u_0 = f(u_1)$$

U₁与零电平(电位)进行比较,故称为零电平比较器。

(5) 实际应用

例:利用零电平电压比较器将正弦波变为方波。

上页 下页 后退

(5) 电路存在的问题

- a. 输出电压基本由电源电压确定。
- b. 输出电平易受电源波动、饱和深度的影响。
- c. 输出电平不易改变。

改进型的零电平比较器

传输特性

输入保护电路

双向限幅稳压管

输出电压 $u_0 = \pm U_z$

上页

下页

2. 非零电平比较器

(1) 电路组成

(2) 电路特点

a. 运放工作于开环状态

b. $u_{b1} = u_{I}$, $u_{b2} = u_{R}$

c. 输出电压 $u_0 \approx \pm U_Z$

(3) 工作原理

a. 当 $u_{\rm I} - U_{\rm R} < 0$,即 $u_{\rm I} < U_{\rm R}$ $\bar{\phi}$

$$u_{\rm o} \approx +U_{\rm z}$$

b. 当 $u_{\rm I} - U_{\rm R} > 0$ 时,即 $u_{\rm I} > U_{\rm R}$

$$u_{\rm o} \approx -U_{\rm z}$$

 $u_0 = f(u_1)$

上页

下页

(5) 实际应用

例: 利用零电平电压比 较器将正弦波变为 矩形波。

上页

零电平比较器

电路

工作原理

- a. 当 $u_{\rm I} < 0$ 时, $u_{\rm O} \approx + U_{\rm Z}$
- b. 当 $u_{\rm I} > 0$ 时, $u_{\rm O} \approx -U_{\rm Z}$

传输特性

- $u_{\rm O} \approx -U_{\rm Z}$
- b. 当 $u_{\rm I} > 0$ 时, $u_{\rm O} \approx + U_{\rm Z}$

非零电平比较器

电路

工作原理

a. 当 $u_{\rm I} < u_{\rm R}$ 时, $u_{\rm O} \approx + U_{\rm Z}$ b. 当 $u_{\rm I} > u_{\rm R}$ 时,

$$u_0 \approx -U_{\rm Z}$$

传输特性

a. 当 $u_{\rm I} < u_{\rm R}$ 时, $u_{\rm O} \approx -U_{\rm Z}$ b. 当 $u_{\rm I} > u_{\rm R}$ 时, $u_{\rm O} \approx +U_{\rm Z}$

电路:

是比较器吗?

运放处于线性状态,但外围 电路有非线性元件——稳压 二极管。

限幅器

上页

下页

问:零电平比较器非零电平比较器区别与联系?

只与一个电位比较:单门限

单门限电压比较器的特点

传输特性

电路简单 灵敏度高 抗干扰能力差

上页

下页

单门限比较器抗干扰性能差的波形图

上页下页

7.4.2 多门限比较器

上页下页

正反馈的作用

加速输出翻转过程

给电路提供双极性参考电平

上页 下页 后退

a. 工作原理

输出电压

$$u_{\rm O} = \pm U_{\rm Z}$$

反馈电压

$$U_{\rm R} = \pm K U_{\rm Z}$$

$$K = R_2/(R_2 + R_3)$$

传输特性

(a) 当
$$u_{\rm O} = U_{\rm Z}$$
时 $U_{\rm R} = {\rm K}U_{\rm Z}$

如果
$$u_{\rm I} < U_{\rm R}$$
 $u_{\rm O} \equiv U_{\rm Z}$

上页

下页

上页

下页

(c) 当 u_{O} =- U_{Z} 时 $U_{\text{R}} = -KU_{\text{z}}$

如果 $u_{\rm I} > U_{\rm R}$ $u_{\rm O} \equiv -U_{\rm Z}$

传输特性

上页

下页

传输特性

(d) 当 $u_{\rm I} < U_{\rm R} = -{\rm K}U_{\rm Z}$ 时, $u_{\rm O} = +U_{\rm Z}$ $-{\rm K}U_{\rm Z}$ 此时 $U_{\rm R} = {\rm K}U_{\rm Z}$ $u_{\rm O}$ 只要 $u_{\rm I} < U_{\rm R}$, $u_{\rm O} \equiv U_{\rm Z}$

上页

下页

反相输入迟滞比较器传输特性

上页

下页

实际应用

例:利用反相迟滞电压比较器将正弦波变为方波。

与单门限比较器有何不同?

两个翻转点!

上页

下页

说明迟滞比较器抗干扰性能的波形图

输入信号

输出信号

上页

下页

迟滞比较器的特点

(1) 提高了电路抗干扰能力。

(2) 降低了电路的灵敏度

不能分辨区

(3) 不能分辨 $2KU_Z$ 范围内变化的信号。

上页 下页 后退

传输特性的画法:

- 1. 画出坐标系
- 2. 标出特征点
- 3. 画出翻转曲线
- 4.标注翻转的方向

传输特性的要求:

一个中心, 四个基本点

坐标轴 翻转点

结果 方向

上页下

(2) 同相输入迟滞比较器

- a. 电路
- b. 特性分析

由图可知

$$u_{\rm b1} = 0$$

$$u_{\text{b2}} = \frac{R_3}{R_2 + R_3} u_{\text{I}} + \frac{R_2}{R_2 + R_3} u_{\text{O}}$$

$$u_{\rm O} = \pm U_{\rm z}$$

$$u_{b2} = \frac{R_3}{R_2 + R_3} u_1 + \frac{R_2}{R_2 + R_3} (\pm U_z)$$

根据比较器的特性, 当 $u_{b2} = u_{b1}$ 时电路翻转。

$$u_{b2} = \frac{R_3}{R_2 + R_3} u_{I} + \frac{R_2}{R_2 + R_3} (\pm U_{z}) = 0$$

得比较器的翻转电平为

$$U_{\mathrm{H}} = KU_{\mathrm{Z}}$$

$$U_{\mathrm{L}} = -KU_{\mathrm{Z}}$$

$$K = R_{2}/R_{3}$$

即当
$$u_{\rm I}$$
= $\pm KU_{\rm Z}$ 时 $u_{\rm b2}$ = 0

上页

下页

上页下页后退

上页 下页 后退

上页 下页 后退

c. 特性平移的迟滞比较器

$$u_{\rm b1} = u_{\rm I}$$

$$u_{b2} = \frac{R_3}{R_2 + R_3} U_R + \frac{R_2}{R_2 + R_3} u_O$$

$$u_0 = \pm U_z$$

$$\Rightarrow u_{b2} = u_{b1}$$

$$\mathbb{P} \frac{R_3}{R_2 + R_3} U_R + \frac{R_2}{R_2 + R_3} (\pm U_z) = u_I$$

得电路的翻转电平为

$$U_{\rm L} = U_{\rm R} R_3/(R_2 + R_3) - U_{\rm z} R_2/(R_2 + R_3)$$

$$U_{\rm H} = U_{\rm R} R_3/(R_2 + R_3) + U_{\rm z} R_2/(R_2 + R_3)$$

传输特性

迟滞回环沿着 坐标横轴平移 $U_{\rm M} = U_{\rm R} R_3/(R_2 + R_3)$

设 $U_{\rm R}>0$, 右移

上页 下页 后退

两种反相迟滞比较器对比:

上页

下页

两种同相迟滞比较器对比:

上页

下页

总 结

- 电压比较器的分析步骤:
- 1.观察运放的工作状态---(线性or非线性)
- 2.运放工作状态非线性—电压比较器
- 3.分析比较器类型(单门限or迟滞比较器)
- 4.同相输入or反相输入比较器(确定翻转的方向)
- 5.分析比较器的翻转点 $(U_{\rm L} \cup U_{\rm H})$
- 6. 画出传输特性(一个中心,四个基本点)
- 7.其它分析(若给出输入信号,画出输出波形等)

2. 窗口比较器

(1) 电路

上页 下页 后退

2. 工作原理

(设
$$U_{\rm H} > U_{\rm L} > 0$$
)

(a) 当 u_I > U_H 时

A₁输出高电平, A₂输出低电平。

 D_1 导通, D_2 截止

晶体管T饱和导通

输出电压 $u_0 = -V_{CC}$

(b) 当 $u_{\rm I} < U_{\rm L}$ 时

A₁输出低电平

A₂输出高电平

D₁截止,D₂导通

晶体管T饱和导通

輸出电压 $u_0 = -V_{CC}$

A₁输出低电平

A₂输出低电平

 D_1 截止, D_2 截止

晶体管T截止

输出电压 $u_0 = +V_{CC}$

传输特性

窗口比较器的主要应用

用于工业控制系统,测量温度、压力、液面等的范围。

7.4.3 集成电压比较器

LM111系列的封装形式和引脚排列

上页 下页 后退

LM111系列典型应用电路

基本应用电路

具有选通的接法

上页下了

LM111系列实现的施密特电路

传输特性

- 例1 电路如图所示,已知集成运A1、A2的性能理想。
- (1) 写出 u_{01} 与 u_{11} 、 u_{12} 关系式。
- (2) 设t=0时, $u_0=12V$, $u_C(0)=0V$ 。当 $u_{I1}=-10V$, $u_{I2}=0V$ 时,那么经过多长时间 u_0 翻转到-12V。

上页

下页

- (3) 从 u_0 翻转到-12V的时刻起 u_{II} =-10V, u_{I2} =15V,又经过多长时间 u_0 再次翻回12V。
 - (4) 画出 u_{11} 、 u_{12} 、 u_{01} 与 u_0 的波形。

解(1)由图可知,运放A₁组成了积分电路。故

$$u_{01} = -\frac{1}{R_1 C} \int_{-\infty}^{t} u_{11} dt - \frac{1}{R_2 C} \int_{-\infty}^{t} u_{12} dt$$

模拟电子技术基础

$$u_{01} = -\frac{1}{R_1 C} \int_{-\infty}^t u_{11} dt - \frac{1}{R_2 C} \int_{-\infty}^t u_{12} dt$$

$$= -\frac{1}{R_1 C} \int_{-\infty}^t (u_{11} + u_{12}) dt$$

$$= -\frac{1}{R_1 C} \int_{-\infty}^0 (u_{11} + u_{12}) dt - \frac{1}{R_1 C} \int_0^t (u_{11} + u_{12}) dt$$

$$= -10 \int_0^t (u_{11} + u_{12}) dt + u_{01}(0)$$

(2)由于运放 A_2 组成了反相输入迟滞电压比较器。故 u_0 翻转的条件是

$$u_{\text{O1}} = \frac{R_4}{R_4 + R_5} u_{\text{O}} = \frac{2}{2 + 10} \times (\pm 12) = \pm 2V$$

上页

下页

模拟电子技术基础

已知
$$t=0$$
时, $u_{\rm O}=12{\rm V}$, $u_{\rm C}(0)=0{\rm V}$ 。当 $u_{\rm II}=-10{\rm V}$, $u_{\rm I2}=0{\rm V}$ 时

$$u_{O1} = -10 \int_0^t (u_{I1} + u_{I2}) dt + u_{O1}(0)$$
$$= 100 t$$

上页 下页

$$\Leftrightarrow u_{01} = 100 t = 2V$$

得uo翻转到-12V的时间为

$$t_1 = 20 \text{ms}$$

(3) 当 $u_{01} = -2V$ 时 u_0 再次由-12V翻转到12V。

$$\mathbb{E} p -10 \times (-10+15)(t_2-t_1) + 2 = -2$$

解得
$$t_2 - t_1 = 80 \text{ms}$$

$(4) u_{11}, u_{i2}, u_{01} 与 u_0 的波形图$

上页下页后退

例2 在图示电路中,已知稳压管 D_{Z1} 、 D_{Z2} 的击穿电压分别为 U_{Z1} =3.4V, U_{Z2} =7.4V,正向压降皆为 U_{D1} = U_{D2} =0.6V,运放A具有理想的特性。画出 U_{I} 由-6V变至+6V,再由+6V变至-6V时电路的电压传输特性曲线。

上页 下页 后退

解 (a) 由图可知电路的输出电压极限值

$$U_{\text{omax}} = U_{Z1} + U_{D2} = 3.4 + 0.6 = 4V$$

$$U_{\text{omin}} = -U_{\text{D1}} - U_{\text{Z2}} = -0.6 - 7.4 = -8V$$

上页 下页 后退

(b) 运放反相输入端电压

$$U_{R} = \frac{R_{2}}{R_{1} + R_{2}} \times 12$$

$$= \frac{4.7}{24 + 4.7} \times 12$$

$$\approx 2V$$

同相输入端电压

$$u_{+} = \frac{R_{4}}{R_{3} + R_{4}} u_{I} + \frac{R_{3}}{R_{3} + R_{4}} u_{O}$$

当输入电压 u_I 由-6V向+6V方向变化时,如果同相输入端的电压 u_+ 低于 U_R ,输出电压 u_O 为 U_{omin} ;

当同相输入端的电压 u_+ 略高于 U_R 时,比较器翻转,输出电压 u_O 为 U_{omax} 。

设此时的输入电压为 U_{H}

由
$$u_{+} = \frac{R_{4}}{R_{3} + R_{4}} U_{H} + \frac{R_{3}}{R_{3} + R_{4}} U_{omin} = U_{R}$$
 得

$$U_{\rm H}$$
=5.3V

当 $u_{\rm I}$ 由+6V向-6V方向变化时,如果 u_{+} 高于 $U_{\rm R}$,输出电压 $u_{\rm O}$ 为 $U_{\rm omax}$;

设此时的输入电压为 $U_{
m L}$

由
$$u_{+} = \frac{R_{4}}{R_{3} + R_{4}} U_{L} + \frac{R_{3}}{R_{3} + R_{4}} U_{\text{omax}} = U_{R}$$
 符
$$U_{L} = 1.3 \text{V}$$

由此可画出电路的传输特性

传输特性

上页

下页