

Matematyka dyskretna

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka:-

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów : ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.120.01914.22

Języki wykładowe : polski

Przedmiot powiązany z badaniami naukowymi : Tak

Dyscypliny: Informatyka, Matematyka

Klasyfikacja ISCED: 0541 Matematyka, 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.MD.OL

Koordynator przedmiotu

Tomasz Krawczyk

Prowadzący zajęcia

Tomasz Krawczyk

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Okres Semestr 2 Forma prowadzenia i godziny zajęć

wykład: 45 ćwiczenia: 45

Liczba punktów ECTS 8.0

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	zna i rozumie najważniejsze pojęcia i twierdzenia z zakresu kombinatoryki oraz teorii grafów, w szczególności te wymienione w polu Treść sylabusa.	IAN_K1_W02	zaliczenie na ocenę, egzamin pisemny / ustny
Umiejętności – Student potrafi:			
U1	potrafi zdefiniować podstawowe pojęcia matematyki dyskretnej, oraz ilustrować je prostymi przykładami. Potrafi sformułować najważniejsze twierdzenia matematyki dyskretnej, oraz ilustrować je prostymi przykładami. Potrafi w sposób zrozumiały przedstawić rozumowanie matematyczne. Potrafi posługiwać się strukturami kombinatorycznymi w formułowaniu i rozwiązywaniu problemów informatycznych. Potrafi rozwiązać prosty problem kombinatoryczny oraz przedstawić rozwiązanie ustnie i pisemnie. Potrafi przedstawić omawiane na zajęciach zagadnienia i formułować pytania służące lepszemu zrozumieniu tematu.	IAN_K1_U01, IAN_K1_U02, IAN_K1_U21, IAN_K1_U22	zaliczenie na ocenę, egzamin pisemny / ustny
Kompetencji społecznych – Student jest gotów do:			
podchodzi ze stosowną rezerwą do opinii i stwierdzeń, K1 które nie zostały w sposób wystarczający uzasadnione.		IAN_K1_K01	zaliczenie na ocenę

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć
wykład	45
ćwiczenia	45
przygotowanie do ćwiczeń	105

przygotowanie do egzaminu	43	
uczestnictwo w egzaminie	2	
Łączny nakład pracy studenta	Liczba godzin 240	ECTS 8.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	1. Indukcja, rekurencja. 2. Zliczanie: współczynniki dwumianowe, liczby Stirlinga, liczby Bella, liczby Catallana, i inne. 3. Funkcje tworzące. Rozwiązywanie zależności rekurencyjnych. 4. Częściowe porządki. Tw Dilwortha. 5. Rodziny Spernera, Tw Erdosa-Ko-Rado. 6. Tw Ramseya. 7. Sieci przepływowe. 8. Teoria grafów: * drzewa, cykle, * grafy dwudzielne, skojarzenia, * k-spojnosc, twierdzenie Mengera, * kolorowanie grafów, twierdzenie Brooks'a, * grafy planarne, geometryczne grafy przecięć, * zależności między liczbą kolorującą, liczbą chromatyczną, listową liczbą chromatyczną, i innymi parametrami grafowymi.	

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, rozwiązywanie zadań, ćwiczenia przedmiotowe

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny / ustny	pozytywna ocena z egzaminu, poprzedzona dopuszczeniem doń na podstawie pozytywnej oceny z ćwiczeń
ćwiczenia	zaliczenie na ocenę	aktywność na zajęciach, rozwiązywanie zadań domowych

Wymagania wstępne i dodatkowe

zaliczone kursy Metod Formalnych Informatyki oraz Metod Algebraicznych Informatyki

Literatura

Obowiązkowa

- 1. V.Bryant, Aspekty kombinatoryki, Wydawnictwa Naukowo-Techniczne 1977.
- 2. R.L.Graham, D.E.Knuth, O.Patashnik, Matematyka Konkretna, Państwowe Wydawnictwo Naukowe, Warszawa 1996.
- 3. W.Lipski, Kombinatoryka dla programistów, Wydawnictwa Naukowo-Techniczne 2004.
- 4. K.A.Ross, Ch.R.B.Wright, Matematyka Dyskretna, Państwowe Wydawnictwo Naukowe, Warszawa 1996.
- 5. Z.Palka, A.Ruciński, Wykłady z kombinatoryki, Wydawnictwa Naukowo-Techniczne, Warszawa 1998.
- 6. R.J.Wilson, Wprowadzenie do teorii grafów, Państwowe Wydawnictwo Naukowe, Warszawa 1985.