

Apresentação e Introdução a Automação

Professor: Andouglas Gonçalves da Silva Júnior

Instituto Federal do Rio Grande do Norte

Curso: Técnico em Petróleo e Gás

Disciplina: CLP

Dados da disciplina

Curso: Técnico Subsequente em Petróleo e Gás.

Carga-horária: 60h (80h/a).

Ementa

- Princípios da Automação Industrial;
- Grafcet;
- Controladores Lógico Programáveis CLP;
- Programação de CLP;
- Sistemas Supervisórios;
- Noções de Redes Industriais;

Métodos Avaliativos

1° Bimestre

- Início: 27 de junho de 2016
- **Término:** 15 de agosto de 2016
- Laboratórios: 40% da nota *;
- Avaliação: 60% da nota *;

2° Bimestre

- Início: 22 de agosto de 2016
- **Término:** 24 de outubro de 2016
- Laboratórios: 40% da nota *;
- Avaliação: 60% da nota *;

^{*} Forma de avaliação e pesos podem ser modificados durante o semestre.

Métodos Avaliativos

2^a Chamada de Provas

Art. 247. Dar-se-á uma oportunidade de reposição ao estudante que deixar de comparecer à atividade avaliativa cujo resultado seja contabilizado para a nota do bimestre.

 \S 1°. Para a realização da reposição, o estudante deverá apresentar requerimento à Diretoria Acadêmica, no prazo de até 2 (dois) dias úteis após retornar às atividades acadêmicas, pelos seguintes motivos:

- tratamento de saúde, comprovado por meio de atestado médico;
- ausência de transporte (inter)municipal, comprovado por meio de declaração do órgão competente da prefeitura; ou
- plantão militar ou de trabalho, comprovado por meio de declaração do chefe imediato.
- $\S~2^{\rm o}$. Os motivos não previstos neste artigo deverão ser analisados pelo Coordenador do Curso em conjunto com o professor da disciplina.

Bibliografia

Bibliografia Básica

- MORAES, Cícero e CASTRUCCI, Plínio. Engenharia de Automação Industrial. LTC. 2001.
- SILVEIRA, Paulo e Santos, WINDERSON. Automação e Controle Discreto. Érica. 1998.

Bibliografia Complementar

• GROOVER, Mikell P. Automação Industrial e Sistemas de Manufatura. 3ª Ed. Pearson – São Paulo 2010

Horários de CA

- 3M34 Terça, manhã, terceiro e quarto horários;
- 3V12 Terça, tarde (vespertino), primeiro e segundo horários;

Contatos

- Email: andouglas.silva@ifrn.edu.br
- Na instituição: Laboratório de Automação Industrial Sala 65

Contextualização

O que é automação?

Em um contexto geral, toda e qualquer técnica que transforma um sistema manual (trabalho de seres humanos) para um sistema automático (trabalho realizado por máquinas).

Áreas mais comuns:

- Residencial
- Comercial
- Industrial

Contextualização

Figura: Automação Residencial

Figura: Automação Industrial

Evolução Histórica

Revolução Industrial

Conjunto de mudanças tecnológicas com profundo impacto no processo produtivo em nível econômico e social. Iniciada na Inglaterra Inglaterra em meados do século XVIII, expandiu-se pelo mundo a partir do século XIX;

- Henry Ford (década de 20) Linha de produção de automóveis;
- Microeletrônica Transistores (década de 60).

Objetivos da Automação

Qualidade

- Controle de qualidade eficiente;
- Compensação automática de deficiências do processo;
- Processos de fabricação sofisticados;

Flexibilidade

- Inovações frequentes no produto;
- Atedimento a especificidades do cliente;
- Produção de pequenos lotes.

Produtividade

- Produção de refugo zero;
- Redução dos estoques.

Viabilidade Técnica

- Processamento imediato de grande volume de informações;
- Limitações do homem.

Conceitos Importantes

- O que é controle?
- Quais os elementos básicos?
- Quais são os principais tipos de controle?

Processo

- Operação que evolui progressivamente;
- Se constitui por uma séries ações controladas;
- Objetiva um resultado particular.

Sensores

- Mede o desempenho do sistema;
- "Sente"as mudanças das variáveis monitoradas;
- Ex.: termômetros, velocímetros, sensores indutivos, capacitivos, etc.

Atuadores

- Elemento final em uma malha de controle;
- "Exerce ação"no processo;
- Comandado por um controlador

Controladores

- Objeto de estudo dessa disciplina;
- Responsável por receber os dados dos sensores, processa-los a partir de uma forma de controle e atuar na saída do sistema;

Controladores

Sistema de Controle

Malha Aberta

Aquele em que a saída ou resposta não possui nenhuma interferência sobre a entrada.

Malha Fechada

Aquele em que a saída ou resposta influencia a entrada do sistema.

Apresentação e Introdução

Sistema de Controle

Elementos que compõem os sistemas de controle

- Variável de Processo (PV)
- Set Point (SP)
- Variável Manipulada (MV)

Tipos de entradas e saídas dos sistemas de controle

- Entradas digitais
- Entradas analógicas
- Saídas digitais
- Saídas analógicas

CLP e Automação Industrial

- Inicialmente, utilizavam-se dispositivos eletromecânicos do tipo a relés e contadores no processo industrial;
- Com o passar dos anos, os circuitos lógicos tornaram-se mais rápidos, compactos e capazes de receber mais informações de entrada, atuando sobre um maior número de dispositivos de saída;
- Surge os microprocessadores (UCPs):
 - Responsáveis por receber informações da memória, dos dispositivos de entrada, e a partir dessas informações, desenvolver uma lógica para acionar saídas.
- Até o início da década de 60, a utilização de relés eletromecânicos era praticamente a única opção possível.

CLP e Automação Industrial

Figura: Painel à relé x CLP

CLP e Automação Industrial

- Com o advento dos dispositivos microprocessados, vieram os Controladores Lógicos Programáveis, onde a forma básica de programação é oriunda da lógica de programação dos diagramas elétricos a relés;
- Próprio para ambientes industriais, os controladores realizam uma rotina cíclica de operação, o que caracteriza seu princípio de funcionamento, e operam apenas variáveis digitais, efetuando controle discreto.

O que é?

- Controlador Lógico Programável
 - Equipamento eletrônico que usa uma memória programável para armazenar instruções e implementar funções como lógica, sequenciamento, temporização, contagem e aritméticas para o controle de máquinas e processos. (Bolton, 2010).
 - Segundo a ABNT: Equipamento eletrônico digital com hardware e software compatíveis com aplicações industriais.
- Substituiu os sistemas que usavam relé interconectados e sistemas de controle lógico de temporização.

Vantagens

- Menor espaço;
- Menor consumo de energia elétrica;
- Reutilizável;
- Programável;
- Maior confiabilidade;
- Maior flexibilidade;
- Maior rapidez na elaboração de projetos;
- Interfaces de comunicação com outros CLPs e computadores.

Tipos

Módulo Único

- Pequenos controladores (normalmente);
- Compacto e completo (Fonte, processador, memória e unidades de entrada/saída).
- 6, 8, 12 e 24 entradas <-> 4, 8 ou 16 saídas (normalmente);
- 300 a 1000 instruções armazenadas.

Figura: MELSEC FX3U - Mitsubishi

Tipos

Montados em Rack

- Modulares (Sistema separado para fonte, processador, entrada/saída, etc.);
- Montados em trilhos dentro de gabinetes metálicos;
- Conectados por soquetes;

Figura: CLP SIMATIC S7-300/400

CLP Estrutura

Figura: Estrutura

Estrutura Básica

Figura: Estrutura básica.

Pontos de Entrada

Considera-se cada sinal recebido pelo CLP, a partir de dispositivos e componentes externos como um ponto de entrada. Ex.: Micro-Chaves; Botões; Termopares; Relés; etc.

- Entradas Digitais: Possuem dois estados;
- Entradas Analógicas: Possuem um valor que varia dentro de uma determinada faixa (0 à 10V, -10 à 10V, 0 à 20mA e 4 à 20mA);

Pontos de Saída

Considera-se cada sinal produzido pelo CLP, para acionar dispositivos ou componentes do sistema de controle constitui um ponto de saída. Ex.: Lâmpadas, Solenóides, Motores.

- Saídas Digitais: Possuem dois estados;
- Saídas Analógicas: Possuem um valor que varia dentro de uma determinada faixa (0 à 10V, -10 à 10V, 0 à 20mA e 4 a 20mA).

Programa

É a lógica existente entre os pontos de entrada e saída e que executa as funções desejadas de acordo com o estado das mesmas.

- EEPROM: Memória que não perde seu conteúdo quando desligada a alimentação. Normalmente contém o programa do usuário.
- BIT: é a unidade para o sistema de numeração binário. Um bit é a unidade básica de informação e pode assumir 0 ou 1.
- Byte: é uma unidade constituída de 8 bits consecutivos. O estado das entradas de um módulo digital de 8 pontos pode ser armazenado em um Byte.
- Word: Uma word é constituída de dois Bytes. O valor das entradas e saídas analógicas podem ser indicados por words.
- CPU: é a unidade inteligente do CLP. Na CPU são tomadas as decisões para o controle do processo.

Processamentos de Entrada/Saída

É a lógica existente entre os pontos de entrada e saída e que executa as funções desejadas de acordo com o estado das mesmas.

- O CLP executa continuamente o programa e atualiza como resultado dos sinais de entrada;
- Cada loop -> Ciclo;
- Dois métodos:
 - Atualização contínua;
 - Varredura da CPU nos canais de entrada conforme as instruções do programa assim determinem;
 - Atraso de cerca de 3 ms;
 - Cópia em massa de entrada/saída.
 - Área específica da RAM é usada como buffer entre a lógica de controle e a unidade de entrada/saída;
 - Início do ciclo -> Leitura de todas as entradas -> Buscar, decodificar e executar todas as instruções do programa na sequência-> Atualizar todas as saídas-> Repetir a sequencia.

Como funciona?

Figura: Estrutura básica.

Figura: Estrutura básica.