Introductory Astronomy

Week 4: Stars

Clip 5: Solar Structure

Studying the Sun

 Solar models together with helioseismology provide interior structure between core and photosphere

 Density, pressure, temperature increase with depth for hydrostatic equlibrium

Solar Structure - Core

• Core: $R \leq .25R_{\odot}$

$$1.57 \times 10^7 \,\mathrm{K} \ge T \ge 7 \times 10^6 \,\mathrm{K}$$

$$1.5 \times 10^5 \,\mathrm{kg/m^3} \ge \rho \ge 2 \times 10^4 \,\mathrm{kg/m^3}$$

$$M \sim 0.4 M_{\odot}$$

- Stable equilibrium: fusion rate decreases/increases: core contracts/expands increasing/decreasing rate
- Luminosity determined by mass

Solar Structure – Inner Mantle

Radiation Zone:

$$.25R_{\odot} \le R \le .7R_{\odot}$$

 $7 \times 10^6 \,\mathrm{K} \ge T \ge 2 \times 10^6 \,\mathrm{K}$

- $2 \times 10^4 \, \text{kg/m}^3 \ge \rho \ge 10^3 \, \text{kg/m}^3$
 - Heat transfer: Radiation diffusion in charged plasma
 - Transit time: 1.7×10^5 y

Solar Structure – Outer Mantle

Convection Zone:

$$.7R_{\odot} \le R \le R_{\odot}$$

 $2 \times 10^6 \,\mathrm{K} \ge T \ge 5780 \,\mathrm{K}$
 $10^3 \,\mathrm{kg/m^3} \ge \rho \ge 2 \times 10^{-4} \,\mathrm{kg/m^3}$

 Heat Transfer: Convection produces granular structure of photosphere

Solar Atmosphere

- Sun extends beyond photosphere
- Density low but temperature increases with altitude
- Chromosphere:

$$\begin{array}{c} h \leq 2000 \, \mathrm{km} \\ 5780 \, \mathrm{K} \leq T \leq 50,000 \, \mathrm{K} \\ 2 \times 10^{-4} \, \mathrm{kg/m^3} \geq \rho \geq 10^{-10} \, \mathrm{kg/m^3} \\ \text{Observe by} \, \mathrm{H_{\alpha} \, line} \end{array}$$

Corona

• Corona:

$$2000 \, \mathrm{km} \le h \le 1.3 \, R_{\odot}$$

 $T \sim 2 \times 10^6 \, \mathrm{K}$

$$\rho \sim 3 \times 10^{-12} \, \text{kg/m}^3$$

- Visible during Eclipse or with coronagraph
- Observed in UV, X-Ray
- High temperature allows escape: Solar wind

Credits

- Helioseismic p-mode: Wikimedia Commons <u>http://en.wikipedia.org/wiki/File:Helioseismology_pmode1.png</u>
- Solar Structure: Wikimedia Commons/Pbroks13 http://en.wikipedia.org/wiki/File:Sun_diagram.svg
- Photosphere Movie: Bruno Sanchez-Andrade Nuño, (IAG & MPS, NRL) http://apod.nasa.gov/apod/ap090405.html
- Chromosphere Movie: Luc Rouppe van der Voort, Oslo/Royal Swedish Academy of Sciences http://www.solarphysics.kva.se/
- Corona: UCAR/NCAR High Altitude Observatory http://solarscience.msfc.nasa.gov/images/Ecl1991a.jpg
- CME Movie: SOHO (ESA & NASA)
 http://sohowww.nascom.nasa.gov/gallery/Movies/series.html

