ELEKTROMAGNETSKA POLJA

1. laboratorijske vježbe – izlazni test – 2007./08.

- 1) Zračni pločasti kondenzator spojen je na izvor napona U. Ako kondenzatoru povećamo razmak između ploča, naboj na pločama kondenzatora će se:
 - A. povećati x
 - B. smanjiti
 - C. neće se promijeniti 🗶
 - D. Ne želim odgovoriti x

$$C = \varepsilon \frac{S}{d}$$

$$C = \frac{Q}{U}$$

izjednacimo:

$$\frac{Q}{U} = \varepsilon \frac{S}{d}$$

i gledamo ovisno o onome sto nam treba jer ovo drugo ostaje konstanta, znaci u ovom primjeru:

 $Q = \varepsilon \cdot S \cdot \frac{U}{d}$, odnosno, ako povecamo razmak, naboj ce se smanjiti

- 2) Ako je raspodjela naboja neovisna o vremenu za divergenciju strujnog polja vrijedi:
 - 🌣 a. Divergencija strujnog polja je veća od nule. 🗶
 - 6 b. Divergencija strujnog polja je manja od nule. 🗶

 - 6 d. Nema dovoljno podataka za odgovor na pitanje. 🗴
 - e. Ne želim odgovoriti 🗶
- 3) Prostorna gustoća naboja zadana je s: $\rho(x,y,z)=\epsilon_0(x-y+3z)$. Koliki je div **E** u točki (1,3,1)?
 - A.1
 ✓
 - © B.2 x
 - € C.3 x
 - @ D.4 X
 - € E.5 x
 - 6 F.6 X
 - G. Ne želim odgovoriti x

<u>formula</u>: $\rho = \varepsilon_0$ div **E**

4) Četiri točkasta naboja nalaze se na udaljenosti a od ishodišta prema slici. Za komponentu sile na pozitivni pokusni naboj u točki P u smjeru osi z koordinatnog sustava vrijedi:

5) U nekoj točki na površini vodiča nabijenog naboje plošne gustoće σ, postoji:

6) Četiri točkasta naboja nalaze se na udaljenosti a od ishodišta prema slici. Za električni potencijal u točki P vrijedi:

7) Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d_1 =10 cm, d_2 =10 cm, d_3 =5 cm. Jakost električnog polja u Vm⁻¹ u točki C je:

Ovo se racuna po formuli $E = \frac{U}{d}$ [pise negdje među zadacima]

dakle, trazimo naboj tocke u odnosu na nulu, s tim da su sve na polovici puta između ekvipotencijala, pa ih je lako ocitati : A je na 75, B na 37.5, a c na 12.5 isto tako i udaljenost racunamo npr. za $d_A=d_1/2+d_2+d_3$ OPREZ! udaljenost je u cm

- 8) Dvoslojni pločasti pločasti kondenzator kojemu je granica izolacija paralelna pločama ispunjen je izolatorima koji imaju omjer (ϵ_1/ϵ_2) < 1. Za električno polje vrijedi:
 - A. Električno polje veće je u sredstvu 1 √
 - B. Električno polje veće je u sredstvu 2 👗
 - C. Električno polje je jednako u sredstvu 1 i sredstvu 2 🕺
 - D. Ništa od navedenog X
 - E. Ne želim odgovoriti 🕺

$$C = \varepsilon \frac{S}{d} \to \frac{Q}{U} = \varepsilon \frac{S}{d}, \ E = \frac{U}{d} \to \frac{Q \cdot d}{\varepsilon \cdot S} = E \cdot d \to E = \frac{Q}{\varepsilon \cdot S}$$

9) Na granici dva sredstva dielektricnosti ϵ_{r1} =2 i ϵ_{r2} =1 na kojoj se nalazi slobodni naboj plošne gustoće σ =2 ϵ_0 nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: E_{n1} =1, E_{t1} =3 (V/m). Okomita komponenta električnog polja u sredstvu 2 je:

ovo se rjesava pomocu uvjeta na granici...

kada se trazi tangencijalna komponenta, ona se jednostavno izjednaci jer da bi

vrijedilo
$$\vec{n} \times (\vec{E}_2 - \vec{E}_1 = 0)$$
 mora $|E_{2tang}| = |E_{1tang}|$

a kada se trazi normalna (okomita) komponenta, onda se racuna po:

$$\vec{n}\cdot(\vec{D}_2-\vec{D}_1)=\sigma$$
 , pa prezive samo normalne komponente od E:

$$\varepsilon_0 \cdot \left(\varepsilon_2 \vec{E}_{n2} - \varepsilon_1 \vec{E}_{n1} \right) = \sigma$$

i sad je sigma zadana preko epsilon nula pa se on pokrati i blablabla, lako se izracuna

10)Tri točkasta naboja iznosa Q₁=-Q, Q₂=-Q i Q₃=Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja **E**=E_x**a**_x+E_y**a**_y+E_z**a**_z u težištu trokuta (točka P) vrijedi:

11)Homogeno električno polje jakosti E usmjerno je prema slici. Nabijena čestica upada u područje homogenog polja početnom brzinom prema slici. Koja je moguća putanja čestice ako zanemarimo gravitaciju?

ako negativan naboj uletava u polje on se zakreće prema pozitivnom naboju (izvoru polja), tj. + i - se privlače (ako pozitivni uletava on se zakreće prema negativnom naboju odnosno prema ponoru polju)

12)Tri točkasta naboja iznosa Q₁=Q, Q₂=0.5Q i Q₃=-Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

samo se zbroje sva tri naboja i gleda se da li se dobije + - ili 0, jer su svi jednako udaljeni od tezista

13)U statičkom električnom polju vrijedi: rot **E**=

14)Dvoslojni pločasti pločasti kondenzator kojemu je granica izolacija paralelna pločama ispunjen je izolatorima koji imaju omjer $(\epsilon_1/\epsilon_2) > 1$. Za električno polje vrijedi:

0	A. Električno polje veće je u sredstvu 1 🗶
0	B. Električno polje veće je u sredstvu 2 🗸
0	C. Električno polje je jednako u sredstvu 1 i sredstvu 2 🗶
0	D. Ništa od navedenog 🗶
0	E. Ne želim odgovoriti 🗶

15)Na granici dva sredstva dielektricnosti ϵ_{r1} =3 i ϵ_{r2} =1 na kojoj se nalazi slobodni naboj plošne gustoće σ =4 ϵ_0 nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: E_{n1} =2, E_{t1} =6 (V/m). Tanfencijalna komponenta električnog polja u sredstvu 2 je:

16)Tri točkasta naboja iznosa Q₁=Q, Q₂=-0.5Q i Q₃=-0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja **E**=E_x**a**_x+E_y**a**_y+E_z**a**_z u težištu trokuta (točka P) vrijedi:

17)Tri točkasta naboja iznosa Q₁=Q, Q₂=-Q i Q₃=-Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja **E**=E_x**a**_x+E_y**a**_y+E_z**a**_z u težištu trokuta (točka P) vrijedi:

18)Za zatvorenu površinu S prema slici, za zadane naboje Q_1 =1nc, Q_2 =-3nc, Q_3 =2nc i Q_4 =2nC vrijedi:

naboji unutar površine se samo trebaju pozbrajati

19)Četiri točkasta naboja nalaze se na udaljenosti a od ishodišta prema slici. Za električni potencijal u točki P vrijedi:

20)Tri točkasta naboja iznosa Q_1 =-0.5Q, Q_2 =-0.5Q i Q_3 =Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja $\mathbf{E}=E_x\mathbf{a_x}+E_y\mathbf{a_y}+E_z\mathbf{a_z}$ u težištu trokuta (točka P) vrijedi:

21)Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki D je:

dakle ima formula $\vec{E} = -\nabla \varphi$. ∇ nije nista drugo nego operator deriviranja, pa se zadatak zapravo svodi na to da se gleda kakva je derivacija u tockama A, B, C, D, E pritom pazeci na minus u gore navedenoj formuli; za tocku A pozitivan nagib, ali zbog minusa ide u smjeru -x osi, tocka B je maximum pa je derivacija nula, u C je nagib negativan ali zbog minusa ispred ide u +x smjeru, D je minimum pa je derivacija opet nula, E ima pozitivan nagib pa zbog minusa ide u -x smjeru....

22)U statičkom električnom polju vrijedi:

$\oint_{c} \vec{E} \cdot d\vec{l} =$		
Choose one answer.	0	A.0 🗸
		B. >0 🗶
		C. <0 💥
	(0)	D. Q 🗶
		EQ 🗶
	0	F. ovisi o c 🗶
		G. ništa od navedenog 🗶
		H. Ne želim odgovoriti 🗶

E električno polje – V/m

D gustoća električnog toka V/m^2

električna polarizacija == volumna gustoća dipolih momenata - C/m^2

Epsilon0 dielerična konsanta/permitivnost vakuuma – F/m

Sigma plošna gustoća naboja – C/m^2

C' kapacitet po jedinici duljine

SUSCEPTIBILNOST - bezdimenzionalna

Pločasti kondenzator; ploče spojene pravcem: E = const.; C ovisi o = Episilon0*S/d; AKO U = const ->d raste, A pada; AKO naboj pomičemo po pravcu -> potencijal i E = const; U se mijenja linearno;

Povećanjem udaljenosti ploča, U raste, Q i C padaju E = const.

E=U/d

E=Q/(Epsilon*)

Tangencijalna komponenta E polja | Etan1|=|Etan2|

Normalna (okomita) komponenta E polja Epislon0*(Epsilon2*En2-Epsilon1*En1)=Sigma

3 točkasta naboja na jednakostranicnom trokutu Ex=2-3 (L-D), Ey=-1

Ako raspodjela Q ne ovisi o vremenu, divergencija strujnog polja je nula.

MINUS Q probija E polje sa zakretom suprotno od smjera silnica (okomito)

PLUS Q probija E polje sa zakretom u smjeru silnica (okomito)

PLUS Q u smjeru polja => Ep pada, Ek raste (suprotno – suprotno)

MINUS Q suprotno od smjera polja => Ep pada, Ek raste (suprotno – suprotno)

Statičko električno polje: rotE=0 kruzni integral E*dl=0

Naboji unutar zatvorene kruznice: suma svih naboja

Pločasti kondenzator nekaj raste; energija (A) raste. A=(CU^2)/2

Graf potencijal-x E u točkama: E=-derivacijaPotencijala (ekstremni nule, porast ili pad :D)

Na površini vodiča u nekoj točki s nabojem plošne gustoće Sigma postoji **okomita komponenta električnog polja**

• Na granicu dva sredstva dielektričnosti $\varepsilon_{r1} = 3$ i $\varepsilon_{r2} = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 4\varepsilon_0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: $E_{n1} = 2$, $E_{t1} = 2$ (V/m). Tangencijalna komponenta električnog polja u sredstvu 2 je:

Odg: 2
$$\vec{n} \times (\vec{E}_2 - \vec{E}_1) = 0$$
 |E2tang|=|E1tang|

• Prostorna gustoća naboja zadana je s: $\rho(x,y,z) = \varepsilon_0 * (x-y+3z)$ Koliki je div(E) u točki (1,3,1):

Odg: 1 uvrštavanje

• Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 10 cm, d2 = 10 cm, d3 = 5 cm. Jakost električnog polja u Vm⁻¹ u točki C je:

Odg: 500
$$E = U/d = 12.5V/2.5 \text{ cm} = 500 \text{ V/m}$$

• Zračni pločasti kondenzator spojen je na izvor napona U. Ako kondenzatoru povećamo razmak između ploča, naboj na pločama kondenzatora će se:

Odg: smanjiti
$$Q = \epsilon \frac{S \cdot U}{d}$$

• Tri točkasta naboja iznosa Q₁ = -Q, Q₂ = Q, Q₃ = -0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

Odg: Potencijal je manji od nule zbrajanje

 Zračni pločasti kondenzator nabijen je nabojem ± Q i odspojen od izvora. Ako kondenzatoru povećamo razmak između ploča, napon između ploča će se:

Odg: povećati
$$Q = e^{\frac{SU}{d}}$$

• Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki A je:

• Na granicu dva sredstva dielektričnosti $\varepsilon_{r1} = 2$ i $\varepsilon_{r2} = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 2\varepsilon_0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: $E_{n1} = 1$, $E_{t1} = 3$ (V/m). Okomita komponenta električnog polja u sredstvu 2 je:

Odg: 4
$$\epsilon_0(\epsilon_{r2}E_{n2}-\epsilon_{r1}E_{n1})=\sigma$$

• Zračni pločasti kondenzator nabijen je nabojem ± Q i odspojen od izvora. Ako kondenzatoru povećamo razmak između ploča, kapacitet kondenzatora će se:

Odg: smanjiti
$$Q = e^{\frac{G \cdot U}{d}}$$
 $C = Q / U$

• Tri točkasta naboja iznosa $Q_1 = Q$, $Q_2 = -Q$ i $Q_3 = -Q$ nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja $E = E_x \mathbf{a}_x + E_y \mathbf{a}_y + E_z \mathbf{a}_z$ u težištu trokuta (točka P) vrijedi:

Odg:
$$E_x = 0$$
, $E_y < 0$ na osi $x => Q_1 + Q_2 = 0$, na osi $y => Q_3 < 0$

• U statičkom električnom polju vrijedi rot(E)=

Odg: 0

• Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki D je:

Odg: jednako nuli (nagib)*(-1)

• Za zatvorenu površinu S prema slici, za zadane naboje $Q_1 = 1nC$, $Q_2 = -3nC$, $Q_3 = 8nC$, $Q_4 = 2nC$ vrijedi :

Odg: 8 nC pozbrajati

Zračni pločasti kondenzator nabijen je nabojem ± Q i odspojen od izvora. Ako kondenzatoru povećamo
razmak između ploča, električno polje između ploča će se:

Odg: neće se promijeniti $E = Q / (\epsilon S)$

• U nekoj točki na površini vodiča nabijenog nabojem plošne gustoće σ, postoji:

Odg: Okomita komponenta električnog polja

• Dvoslojni pločasti kondenzator kojemu je granica izolacija paralelna pločama ispunjen je izolatorima koji imaju omjer $(\varepsilon_1 / \varepsilon_2) > 1$. Za el. polje vrijedi:

Odg: veće je u sredstvu 2 $E = Q / (\epsilon S)$

 4 naboja (istih iznosa i različitih predznaka) na vrhovima kvadrata, i pita se u kojem je smjeru sila na pokusni naboj koji se nalazi na koordinatnoj osi

Odg: a malo gledati dal se šta poništava, često je 0

ako se dvoplo kond. bla bla d se povećava što se događa s Energijom?

Odg: povećava
$$A_{energija} = (CU^2) / 2$$

ako raspodjela naboja ne ovisi o vremenu, kakva je divergencija strujnog polja?

Odg: 0

• neko električno polje prikazano silnicama i sad elektron ulazi u to polje okomito. ponuđena su mislim 4 smjera kako se elektron kreče u polju?

Odg: elektron se giba po paraboli suprotno od smjera polja

• kad se pomjera naboj u električnom polju suprotno od smjera el. polja, kako mu se mijenja potencijalna energija?

Odg:
$$+Q$$
 u smjeru polja $=> E_P \downarrow$, $E_K \uparrow$; $+Q$ suprotno smjeru polja $=> E_P \uparrow$, $E_K \downarrow$; $-Q$ suprotno smjeru polja $=> E_P \downarrow$, $E_K \uparrow$; $-Q$ suprotno smjeru polja $=> E_P \downarrow$, $E_K \uparrow$;

- 1. Valna dužina u sredstvu bez gubitaka: pada s frekvencijom
- 2. Električno polje stvaraju: slobodni naboji i vrem. prom. mag. Polje
- 3. Brzina širenja vala u nekom sredstvu ovisi o: permeabilnosti i dielektričnosti
- 4. Inducirani napon se javlja: zbog vrem promj MAGNETSKOG toka
- 5. U maxwell. jedn. za vrem. PROMJENJIVA polja jedn. za el i mag polje:

međusobno su povezana pa ih treba SIMULTANO RJEŠAVATI

6. Snaga koju prenosi direktni val koji se širi u sredstvu BEZ gubitaka:

NE ovisi o udaljenosti

7. Vrtložne struje sprječavamo:

materijal LAMELIZIRAMO u ravnini koja je OKOMITA na mag polje

- 8. Konstanta PROSTIRANJA u realnom sredstvu je: **KOMPLEKSNI broj**
- 9. Iznos ind. napona u vodljivoj petlji koja rotira u vrem. nepromjenjivom mag. polju ovisi o: **SVEMU**
- 10. Omjer struja primara i sekundara transf. je:

OBRNUTO srazmjeran broju zavoja

11. Maxwell. jedn. za vrem. NEPROMJENJIVA polja jedn. za el. i mag. polje:

razdvojene i ne ovise jedna o drugoj

- 12. Rješenja maxwellove jedn. koja ovise o vremenu i samo jednoj prostornoj varijabli nazivamo: **RAVNI VALOVI**
- 13. Fazna KONSTANTA vala u sredstvu:

RASTE s frekvencijom

14. Mag. polje stvaraju:

SLOBODNE STRUJE KROZ VODIĆE I VREMENSKI PROMJENJIVO EL. POLJE

- 15. Valna imp. u sredstvu bez gubitaka je: **REALNI broj**
- 16. Omjer napona na primaru i sekundaru je: srazmjeran broju zavoja
- 17. Omjer električnog i magnetnog polja u nekoj točki je: valna impedancija
- 18. Mjerna jedinica za faznu konstantu beta je: rad/m
- 19. Mjerna jedinica za prigušnu konstantu alfa je: **1/m**

valna impedancija
$$Z=\sqrt{rac{\mu}{arepsilon}}=rac{E}{H}$$

prigušna konstanta

fazna konstanta
$$eta=\omega\sqrt{rac{\mu}{arepsilon}}$$

$$\alpha = \frac{\omega}{\sqrt{2c}} \sqrt{1 + \left(\frac{\kappa}{\omega \varepsilon}\right)^2 - 1}$$

Pitanje 2

Dielektrični materijal je linearan ako je:

Select one:

- a. iznos dielektričnosti ovisan o položaju točke unutar materijala
 b. ne želim odgovoriti
 c. u materijalu ovisnost napona i jakosti električnog polja linearna.
- d. iznos dielektričnosti neovisan o položaju točke unutar materijala
- e. dielektričnost konstanta u svakoj točki materijala 🗸

Pitanje 3

U statičkom električnom polju vrijedi:

 $rot \mathbf{E} =$

Select one:

- ^ A. <0
- [™] B. >0
- C. 0 √
- D. Ne želim odgovoriti
- © E.-Q
- ° F. Q

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki E je:

	ect one:			
0	A. u +x smjeru			
0	B. jednako nuli			
0	C. Ne želim odgovoriti			
•	D. u -x smjeru ✓			
Pitanje 5				
Električna polarizacija materijala definira se kao: Select one:				
0	a. površinska gustoća slobodnog naboja na granici metal - dielektrik			
0	b. rotor električnog polja u materijalu			
•	c. volumna gustoća dipolnih momenata 🗸			
0	d. ne želim odgovoriti			
0	e. divergencija električne indukcije u materijalu			
Pi	tanje 6			
pro Sel	prostoru se nalazi usamljena šuplja metalna kugla, polumjera R, nabijena nabojem Q. U storu unutar kugle jakost električnog polja: ect one:			
0	a. precizno su izmjerili Končarevi inženjeri Ivan Bukvić i Marko Javorović			
0	b. pada od središta kugle prema radijusu R			
•	c. ima iznos nula unutar kugle 🗸			
0	d. Ne želim odgovoriti			
0	e. može se mjeriti vektorskim voltmetrom Gronkovom metodom			
0	f. raste od središta kugle prema radijusu R			

Pitanje 1

Mjerna jedinica za električnu susceptibilnost je: Select one:

a. ne želim odgovoriti

```
b. električna susceptibilnost je bezdimenzionalna konstanta √
c. (V * s) / m
d. F / m
e. C / (V * m)
```

Dielektrični materijal je linearan ako je:

Select one:

- a. iznos dielektričnosti ovisan o položaju točke unutar materijala
 b. ne želim odgovoriti
 c. u materijalu ovisnost napona i jakosti električnog polja linearna.
 d. iznos dielektričnosti neovisan o položaju točke unutar materijala
- e. dielektričnost konstanta u svakoj točki materijala 🗸

Pitanje 3

U statičkom električnom polju vrijedi:

 $rot \mathbf{E} =$

Select one:

- O A. <0
- B.>0
- © C. 0 ✓
- D. Ne želim odgovoriti
- © E. -Q
- ° F. Q

Pitanje 4

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki E je:


```
^{\circ} e. C / (V * m)
```

Dielektrični materijal je linearan ako je:

Select one:

- a. iznos dielektričnosti ovisan o položaju točke unutar materijala
- b. ne želim odgovoriti
- c. u materijalu ovisnost napona i jakosti električnog polja linearna.
- d. iznos dielektričnosti neovisan o položaju točke unutar materijala
- 🍷 e. dielektričnost konstanta u svakoj točki materijala 🗸

Pitanje 3

U statičkom električnom polju vrijedi:

 $rot \mathbf{E} =$

Select one:

O A. <0

[©] B. >0

[©] C. 0 **√**

D. Ne želim odgovoriti

© E.-Q

° F. Q

Pitanje 4

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki E je:

Select one:

A. u +x smjeru

B. jednako nuli

C. Ne želim odgovoritiD. u -x smjeru √

Pitanje 5

Električna polarizacija materijala definira se kao: Select one:

f. raste od središta kugle prema radijusu R

a. površinska gustoća slobodnog naboja na granici metal - dielektrik
b. rotor električnog polja u materijalu
c. volumna gustoća dipolnih momenata ✓
d. ne želim odgovoriti
e. divergencija električne indukcije u materijalu

Pitanje 6

U prostoru se nalazi usamljena šuplja metalna kugla, polumjera R, nabijena nabojem Q. U prostoru unutar kugle jakost električnog polja: Select one:

a. precizno su izmjerili Končarevi inženjeri Ivan Bukvić i Marko Javorović
b. pada od središta kugle prema radijusu R
c. ima iznos nula unutar kugle √
d. Ne želim odgovoriti
e. može se mjeriti vektorskim voltmetrom Gronkovom metodom

- 1) Na granicu dva sredstva dielektričnosti $\epsilon r1 = 3$ i $\epsilon r2 = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 4\epsilon 0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: En1 = 2, Et1 = 2 (V/m). Tangencijalna komponenta električnog polja u sredstvu 2 je: Odg: **2**
 - 2) Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\epsilon 0$ (x-y+3z) Koliki je div E u točki (1,3,1). Odg: 1
 - 3) Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 10 cm, d2 = 10 cm, d3 = 5 cm. Jakost električnog polja u Vm-1 u točki C je:

Odg: 500

4) Zračni pločasti kondenzator spojen je na izvor napona U. Ako kondenzatoru povećamo razmak između ploča, naboj na pločama kondenzatora će se: Odg: **smanjiti**

5) Tri točkasta naboja iznosa Q1 = -Q, Q2 = Q, Q3 = -0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

Odg: Potencijal je manji od nule

Evo i moje zadace (u 3 dijela):

1

Prostoma gustoća naboja zadana je s: $\rho(x,y,z) = \epsilon_0(x-y+3z)$

Marks: 1 Koliki je div E u točki (3,3,1).

Choose one answer.

- a. 1
- o b. 2
- o c. 6
- d. 3
- e. 5 0
- f. 4

Točno Marks for this submission: 1/1.

2

Za zatvorenu površinu S prema slici, za zadane naboje $\mathbb{Q}_1=1$ nC, $\mathbb{Q}_2=-3$ nC, $\mathbb{Q}_3=4$ nC, $\mathbb{Q}_4=2$ nC vrijedi:

Marks: 1

$$\iint\limits_{\mathbb{S}} \vec{D} \cdot \vec{n} \cdot \mathrm{d}\mathcal{S}$$

Choose one answer.

- a. 2 nC
- b. 10 nC
- c. 8 nC 0
- d. 6 nC 0
- e. 4 nC

Nastavi

3) Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d $1=10\,$ cm, d $2=10\,$ cm, d $3=5\,$ cm. Jakost električnog polja u Vm-1 u točki C je:

Kako to dobiti? Fala!

U homogenom el. polju je E = U/d = 12,5V/2,5 cm = 500 V/m. Inače ova formula slijedi iz formule za napon, U = integral E po dl, pa ako je E = konst. onda taj integral iznosi E*l, tj. E*d.

1

Zračni pločasti kondenzator nabijen je nabojem \pm Q i odspojen od izvora. Ako kondenzatoru povećamo razmak između ploča, napon između ploča će se:

Choose one answer.

a. smanjiti

b. povećati

c. neće se promijeniti

2

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki A je:

Choose one answer.

a. u -x smjeru

b. jednako nuli

c. u +x smjeru

3

Prostorna gustoća naboja zadana je s: $\rho(x,y,z) = \varepsilon 0(x-y+3z)$

Koliki je div E u točki (3,3,1).

Choose one answer.

- a. 6
- b. 2c. 3
- d. 4
- e. 5
- f. 1

4

Za zatvorenu površinu S prema slici, za zadane naboje Q1 = 1nC, Q2 = -3nC, Q3 = 8nC, Q4 = 2nC vrijedi:

Choose one answer.

- a. 8 nC
- b. 2 nC
- c. 10 nC
- d. 6 nC
- e. 4 nC

5

Tri točkasta naboja iznosa Q1 = -0.5Q, Q2 = Q, Q3 = -0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

Choose one answer.

- a. Potencijal je veći od nule
- b. Potencijal je manji od nule
- c. Potencijal je jednak nuli

1

Na granicu dva sredstva dielektričnosti $\varepsilon r1 = 2$ i $\varepsilon r2 = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 2\varepsilon 0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: En1 = 1, Et1 = 3 (V/m). Okomita komponenta električnog polja u sredstvu 2 je:

Choose one answer.

- a. 4
- b. 2
- c. 8
- d. 10
- e. 6

2

Zračni pločasti kondenzator nabijen je nabojem \pm Q i odspojen od izvora. Ako kondenzatoru povećamo razmak između ploča, kapacitet kondenzatora će se:

Choose one answer.

a. neće se promijeniti

b. smanjiti

c. povećati

3

Marks: 1

Tri točkasta naboja iznosa Q1 = Q, Q2 = -Q i Q3 = -Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja E = Exax + Eyay + Ezaz u težištu trokuta (točka P) vrijedi:

Choose one answer.

- a. Ništa od navedenog
- b. Ex < 0, Ey > 0
- c. Ex = 0, Ey < 0
- d. Ex > 0, Ey > 0
- e. Ex < 0, Ey < 0

Marks: 1

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki E je:

Choose one answer.

a. u -x smjeru

b. jednako nuli

c. u +x smjeru

5

U statičkom električnom polju vrijedi:

Choose one answer.

a. ovisi o c

b. 0

c. <0

d. Q

e. -Q

f. > 0

g. ništa od navedenog

Tri točkasta naboja iznosa $Q_1 = Q$, $Q_2 = 0.5$ Q, $Q_3 = -Q$ nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

- a. Potencijal je manji od nule
- b. Potencijal je jednak nuli
- c. Potencijal je veći od nule

Zračni pločasti kondenzator nabijen je nabojem \pm Q i odspojen od izvora. Ako kondenzatoru povećamo razmak između ploča, napon između ploča će se:

- a. povećati
- O b. smanjiti
- C. neće se promijeniti

3

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki D je:

Choose one answer.

- a. jednako nuli
- O b. u +x smjeru
- C. u -x smjeru

4

Za zatvorenu površinu S prema slici, za zadane naboje $Q_1 = 1nC$, $Q_2 = -3nC$, $Q_3 = 8nC$, $Q_4 = 2nC$ vrijedi:

- a. 10 nC
- b. 4 nC
- c. 8 nC
- O d. 6 nC
- e. 2 nC

U statičkom električnom polju vrijedi:

 $rot \mathbf{E} =$

Choose one answer.

- a. <0
- b. -Q
- © c.>0
- O d. Q
- e. 0
 - 1) Na granicu dva sredstva dielektričnosti er1 = 3 i er2 = 1 na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 4\epsilon 0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: En1 = 2, Et1 = 2 (V/m). Tangencijalna komponenta električnog polja u sredstvu 2 je: $\text{Odg: } \mathbf{2}$
 - 2) Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\epsilon 0$ (x-y+3z) Koliki je div E u točki (1,3,1). Odg: **1**
 - 3) Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 10 cm, d2 = 10 cm, d3 = 5 cm. Jakost električnog polja u Vm-1 u točki C je:

Odg: 500

4) Zračni pločasti kondenzator spojen je na izvor napona U. Ako kondenzatoru povećamo razmak između ploča, naboj na pločama kondenzatora će se:

Odg: smanjiti

Tri točkasta naboja iznosa Q1 = -Q, Q2 = Q, Q3 = -0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

Odg: Potencijal je manji od nule

1 Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki A je:

Marks: 1

Točno Marks for this submission: 1/1.

2 U nekoj točki na površini vodiča nabijenog nabojem plošne gustoće σ, postoji:

Marks: 1

Choose one a. Tal answer.

- a. Tangencijalna komponenta električnog polja
- b. Okomita komponenta električnog polja
- o c. Nema električnog polja

Netočno

3 Za zatvorenu površinu S prema slici, za zadane naboje $\mathbb{Q}_1 = 1 \text{nC}$, $\mathbb{Q}_2 = -3 \text{nC}$, $\mathbb{Q}_3 = 6 \text{nC}$, $\mathbb{Q}_4 = 2 \text{nC}$ vrijedi:

Marks: 1

$$\iint_{\vec{n}} \vec{D} \cdot \vec{n} \cdot dS$$

Choose one answer.

- o a. 10 nC
- C b. 2 nC
- o c.4 nC
- d.8 nC
- e.6 nC

Točno

Marks for this submission: 1/1.

4 Tri točkasta naboja iznosa $\mathbb{Q}_1 = -\mathbb{Q}$, $\mathbb{Q}_2 = \mathbb{Q}$, $\mathbb{Q}_3 = -\mathbb{Q}$ nalaze se u vrhovima istostraničnog trokuta stranice α prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

Tečne

Marks for this submission: 1/1.

5 Zračni pločasti kondenzator nabijen je nabojem ± ℚ i odspojen od izvora. Ako kondenzatoru povećamo razmak između ploča, električno polje između ploča će se:

B

Choose one a. povećati

⊕ b. neće se promijeniti

o c. smanjiti

Tečne

answer.

Marks for this submission: 1/1.

Na granicu dva sredstva dielektričnosti $\varepsilon r1 = 2$ i $\varepsilon r2 = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 2\varepsilon 0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: En1 = 1, Et1 = 3 (V/m). Okomita komponenta električnog polja u sredstvu 2 je:

Odg: 4

Na granicu dva sredstva dielektričnosti $\varepsilon r1 = 3$ i $\varepsilon r2 = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 4\varepsilon 0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: En1 = 2, Et1 = 2 (V/m). Tangencijalna komponenta električnog polja u sredstvu 2 je: Odg: 2

ع

e - epsilon

Normalna komponenta:

e0(e2E2-e1E1)=sigma

konkretno za prvi slucaj: e0(e2E2-e1E1)=2*e0 E2=(2+e1*E1)/e2

tangencijalna - cini mi se da na granici ostaje ista

Edit : do 13. posta + moj test

Pitanje 1

Na granici dva materijala za koje vrijedi $\mu_2 > \mu_1$ za vektorski magnetski potencijal pri prijelazu iz sredstva (1) u sredstvo (2) vrijedit će:

a. $|A_I| > |A_2|$ na granici dva materijala

b. Na pitanje se ne može odgovoriti ako nije zadan strujni oblog *K*.

c. ne želim odgovoriti

d. $|A_I| < |A_2|$ na granici dva materijala

e. $|A_1| = |A_2|$ na granici dva materijala \checkmark

Pitanje 2

Da bi se dobila navedena jednadžba za vektorski magnetski potencijal potrebno je primijeniti:

a. ne želim odgovoriti

b. Epsteinove transformacije

c. Lorentzovo baždarenje

d. Hallovu formu

e. Gaussovo baždarenje

f. Coulombovo baždarenje √

Pitanje 3

Jedinica za vektorski magnetski potencijal A je

```
a. [A m]
b. [Wb m<sup>-1</sup>] ✓
c. [Wb m]
d. ne želim odgovoriti
e. [A m<sup>-1</sup>]
```

Pitanje 4

Negativan iznos magnetske susceptibilnosti imaju:

Select one:

- a. feromagnetici
 b. dijamagnetici ✓
 c. ne želim odgovoriti
 d. lamelirani silikonski čelici
 e. paramagnetici .
- Na granicu dva sredstva dielektričnosti $\epsilon r_1 = 3$ i $\epsilon r_2 = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 4\epsilon_o$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: En1 = 2, Et1 = 2 (V/m). Tangencijalna komponenta električnog polja u sredstvu 2 je: **2**
- Zračni pločasti kondenzator spojen je na izvor napona U. Ako kondenzatoru povećamo razmak između ploča, naboj na pločama kondenzatora će se **SMANJITI**
- Tri točkasta naboja iznosa Q1 = -Q, Q2 = Q, Q3 = -0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

Potencijal je manji od nule

- Kako djeluje nesto u krugu (uglavnom, tako da povecava induktivitet)
- Magnetnomotrona sila u feromag. krugu sa zrač rasporom potrebna je za **magnetiziranje zrač. raspora**
- Okomita komponenta vektora gustoće struje granicu 2 vodića različitih vodljivosti u stat. struj. polju prelazi: **Kontinuirano**
- Materijal kojem je mag. susceptibilnost -10⁻⁵je: **dijamagnet**
- Gustoća mag. toka element. liniojske struje koaj je u ishodištu i usmjerena prema z u P(-1,1,1)ima smjer: **0.707ax-0.707ay**
- Između 2 vodič protjecana strujom suprotnog smjera djeluje sila: **odbojna**
- Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\varepsilon 0$ (x-y+3z) Koliki je div E u točki (1,3,1): **1**

- Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 10 cm, d2 = 10 cm, d3 = 5 cm. Jakost električnog polja u Vm-1 u točki C je: (Slika 100|d1,A |50|d2, B|25|d3, C|0V): **500**
- Zračni pločasti kondenzator nabijen je nabojem ± Q i odspojen od izvora.
 Ako kondenzatoru povećamo razmak između ploča, napon između ploča će se: Povećati
- Zračni pločasti kondenzator nabijen je nabojem....električno polje će se: **neće se promijeniti**
- Dvoslojni kond kojemu je granica izolacije paralelna pločama ispunjen je izolatorima koji imaju omjer (e1/e2)>1. Za ele. polje vrijedi

Električno polje veće je u sredstvu 2

- Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki A je: u –x smjeru
- Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki D je: **0**
- Prostorna gustoća naboja zadana je s: ρ (x,y,z) = ε0 (x-y+3z) Koliki je div E u točki (3,3,1): **3**
- Za zatvorenu površinu S prema slici, za zadane naboje Q1 = 1nC, Q2 = 3nC, Q3 = 8nC, Q4 = 2nC vrijedi: **8 nC**
- Tri točkasta naboja iznosa Q1 = -0.5Q, Q2 = Q, Q3 = -0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi: **Potencijal je jednak 0**
- Na granicu dva sredstva dielektričnosti $\varepsilon r1 = 2$ i $\varepsilon r2 = 1$ na kojoj se nalazi slobodni naboj plošne gustoće $\sigma = 2\varepsilon 0$ nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: $\varepsilon r1 = 1$, $\varepsilon r1 = 3$ (V/m). Okomita komponenta električnog polja u sredstvu 2 je: **4**
- U nekoj točki na površini vodiča nabijenog nabojem plošne gustoće sigma postoji: Okomita komponenta ele. polja
- Zračni pločasti kondenzator nabijen je nabojem ± Q i odspojen od izvora.
 Ako kondenzatoru povećamo razmak između ploča, kapacitet kondenzatora će se: smanjiti
- Tri točkasta naboja iznosa Q1 = Q, Q2 = -Q i Q3 = -Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja E = Exax + Eyay + Ezaz u težištu trokuta (točka P) vrijedi: **Ex=0, Ey<0**
- Koercitivno polje feromagnetskog materijala je: polje kod remanentne indukcije
- Odnos apsolutnih vrijednosti vektora gustoće struje u statičkom strujnom polju prikazanom linijama strujnog toka na slici je: J1>J2
- Između dva vodiča protjecana strujom suprotnog smjera djeluje sila: **privlačna**
- Valna dužina u sredstvu bez gubitaka: Ne ovisi o frekvenciji
- Električno polje stvaraju: slobodni naboji
- Brzina širenja vala u nekom sredstvu ovisi o: Permeabilnosti i dielektričnosti
- Inducirani napon se javlja: bog vremenski promjenjivog magnetskog toka
- U Maxwellovim jednadžbama za vremenski promjenjiva polja jednadžbe za električno i magnetsko polje su: međusobno povezane pa ih treba simultano rješavati
- -Snaga koju prenosi direktni val koji se širi u +z smjeru u sredstvu bez gubitaka: **ne ovisi o udaljenosti**

- Iznos induciranog napona u vodljivoj petlji koja rotira u vremenski nepromjenjivom magnetskom polju ovisi o: **magnetskoj indukciji**
- 1. Valna dužina u sredstvu bez gubitaka: pada s freq
- 2. El polje stvaraju : sl. naboji I vrem. prom mag polj
- 3. Bzr širenja vala u nekom sredstvu ovisi o : permeabilnosti I dielektričnosti
- 4. Ind napon se javlja: zbog vrem promj MAGNETSKOG toka
- 5. U max jedn za vrem PROMJENJIVA polja jedn za el i mag polje : međ su povezana pa ih treba SIMULTANO RJEŠAVATI
- 6. Snaga koju prenosi direkni val koji se širi... u sredstvu BEZ gubitaka: NE ovisi o udaljenosti
- 7. Vrtložne struje sprečavamo : materijal LAMELIZIRAMO u ravnini koja je OKOMITA na smjer magn polja
- 8. Konstsnta PROSTIRANJA u realnom sredstvu je KOMPLEXNI broj
- 9. Iznos ind napona u vodljivoj petlji koja rotira u vrem nepromjenjivom magn polju ovisi o :SVEMU mag ind, broju zavoja, površ petlje, brzini vrtnje
- 10. Omjer struja primara i sekundara transf je : OBRNUTO srazmjeran broju zavoja
- 11. max jedn za vrem NEPROMJENJIVA polja jedn za el i mag polje : razdvojene i neovise jedna o drugoj
- 12. El polje stvaraju : slob naboji i vrem promj magn polje
- 13. Rj max jedn koja ovise o vremenu i samo jednoj prostornoj varijabli nazivamo : RAVNI VALOVI
- 14. Fazna KONSTANTA vala u sredstvu : RASTE s frekvencijom
- 15. Magn polje stvaraju : SLOBODNE STRUJE KROZ VODIČE I I VREM PROMJ ELE POLJE
- 16. Konstanta prostiranja u realnom sredstvu je : KOMPLEXNI broj
- 17. Valna imp u sredstvu bez gubitaka je : REALNI broj

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki B je: Select one:

A. jednako nuli

B. Ne želim odgovoriti

C. u +x smjeru

D. u -x smjeru

Pitanje 2

Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\epsilon 0$ (5x+2y-3z)

Koliki je div **E** u točki (1,1,1).

Select one:

A. 4

B. 2

C. 1

D. 5

E. Ne želim odgovoriti

F. 6

G. 3

Pitanje 3

Mjerna jedinica za električku polarizaciju materijala je:

Select one:

a. volt po metru kvadratnom [V / (m * m)]

b. volt po metru [V / m]

- c. kulon po metru kvadratnom [C / (m * m)]
- d. ne želim odgovoriti
- e. kulon po metru [C/m]

Pitanje 4

Kapacitet pločastog kondenzatora ovisi:

Select one:

- a. o kvadratu naboja na pločama
- b. ne želim odgovoriti
- c. linearno o naboju na pločama
- d. ovisi o dimenzijama ploča, njihovom razmaku i vrsti dielektrika
- e. linearno o naponu na pločama

Pitanie 5

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru izvan kugle električno polje:

Select one:

- a. Ne želim odgovoriti
- b. nula je u okolini kugle
- c. pada s kvadratom udaljenosti od središta kugle (1/r^2)
- d. konstantno je u okolini kugle. Predznak ovisi o tome da li je naboj pozitivan ili negativan
- e. pada s udaljenosti od središta kugle (1/r)

Pitanje 6

Dielektrični materijal je homogen ako je:

Select one:

- a. iznos dielektričnosti neovisan o položaju točke unutar materijala
- b. iznos dielektričnosti ovisan o položaju točke unutar materijala
- c. polarizacija definirana u svakoj točki materijala
- d. u materijalu ovisnost napona i jakosti električnog polja linearna.
- e. ne želim odgovoriti

Potencijal je u elektrostatskim problemima određen do na konstantu ako su propisani:

Select one:

a. uvjeti da je u beskonačnosti potencijal jednak nuli

b. Neumannovi rubni uvjeti

- c. ne želim odgovoriti
- d. Dirichletovi rubni uvjeti
- e. Mješoviti rubni uvjeti

Kapacitet pločastog kondenzatora ovisi:

Select one:

- a. o kvadratu naboja na pločama
- b. linearno o naboju na pločama
- c. ne želim odgovoriti
- d. ovisi o dimenzijama ploča, njihovom razmaku i vrsti dielektrika
- e. linearno o naponu na pločama

Negativni točkasti naboj giba se suprotno smjeru električnog polja konstantnom brzinom. Potencijalna energija naboja pri tome:

Select one:

A. Pada

- B. Ne želim odgovoriti
- C. Raste
- D. Ne mijenja se

Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\epsilon 0$ (x-y+3z)

Koliki je div E u točki (3,3,1).

Select one:

A. 3

B. 4

C. 6

D. Ne želim odgovoriti

E. 5

F. 2

G. 1

Mjerna jedinica za električnu susceptibilnost je:

Select one:

a. C / (V * m)

b. F / m

c. (V * s) / m

d. električna susceptibilnost je bezdimenzionalna konstanta

e. ne želim odgovoriti

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru izvan kugle električno polje:

Select one:

- a. pada s udaljenosti od središta kugle (1/r)
- b. nula je u okolini kugle
- c. pada s kvadratom udaljenosti od središta kugle (1/r^2)
- d. Ne želim odgovoriti

e. konstantno je u okolini kugle. Predznak ovisi o tome da li je naboj pozitivan ili negativan

Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 5 cm, d2 = 5 cm, d3 = 1 cm. Jakost električnog polja u Vm-1 u točki B je:

Select one:

A. 250

B. 2500

C. Ne želim odgovoriti

D. Ništa od navedenog

E. 500

F. 1000

U nekoj točki na površini vodiča nabijenog nabojem plošne gustoće σ, postoji:

Select one:

A. Tangencijalna komponenta električnog polja

B. Nema električnog polja

C. Ne želim odgovoriti

D. Okomita komponenta električnog polja

Kapacitet pločastog kondenzatora ovisi:

Select one:

a. ovisi o dimenzijama ploča, njihovom razmaku i vrsti dielektrika

b. linearno o naponu na pločama

c. o kvadratu naboja na pločama

d. linearno o naboju na pločama

e. ne želim odgovoriti

Dielektrični materijal je homogen ako je:

Select one:

a. polarizacija definirana u svakoj točki materijala

b. u materijalu ovisnost napona i jakosti električnog polja linearna.

c. ne želim odgovoriti

d. iznos dielektričnosti ovisan o položaju točke unutar materijala

e. iznos dielektričnosti neovisan o položaju točke unutar materijala

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru unutar kugle električni potencijal:

Select one:

a. ima konstatnan iznos različit od nule

b. raste od središta kugle prema radijusu R

c. Ne želim odgovoriti

d. jednak je nuli

e. raste prema središtu kugle

Mjerna jedinica za električku polarizaciju materijala je:

Select one:

a. kulon po metru kvadratnom [C / (m * m)]

b. ne želim odgovoriti

c. kulon po metru [C/m]

d. volt po metru kvadratnom [V / (m * m)]

e. volt po metru [V / m]

U nekoj točki na površini vodiča nabijenog nabojem plošne gustoće σ, postoji:

A. Tangencijalna komponenta električnog polja

B. Ne želim odgovoriti

C. Nema električnog polja

D. Okomita komponenta električnog polja

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru unutar kugle električni potencijal:

- a. ima konstatnan iznos različit od nule
- b. raste prema središtu kugle
- c. Ne želim odgovoriti
- d. jednak je nuli
- e. raste od središta kugle prema radijusu R

Negativni točkasti naboj giba se suprotno smjeru električnog polja konstantnom brzinom. Potencijalna energija naboja pri tome:

- A. Pada
- B. Ne želim odgovoriti
- C. Ne mijenja se
- D. Raste

Mjerna jedinica za električku polarizaciju materijala je:

- a. kulon po metru kvadratnom [C / (m * m)]
- b. kulon po metru [C/m]
- c. volt po metru [V / m]
- d. volt po metru kvadratnom [V / (m * m)]
- e. ne želim odgovoriti

Pločasti kondenzator spojen je na izvor napona U. Zadan je pravac koji spaja dvije ploče pločastog kondenzatora i okomit je na njih. Električni potencijal se duž pravca:

- a. ne želim odgovoriti
- b. mijenja linearno
- c. mijenja eksponencijalno
- d. ne mijenja
- e. mijenja logaritamski

Potencijal je u elektrostatskim problemima određen do na konstantu ako su propisani:

- a. ne želim odgovoriti
- b. Neumannovi rubni uvjeti
- c. Mješoviti rubni uvjeti
- d. uvjeti da je u beskonačnosti potencijal jednak nuli
- e. Dirichletovi rubni uvjeti

Električna polarizacija materijala definira se kao:

- a. ne želim odgovoriti
- b. divergencija električne indukcije u materijalu
- c. površinska gustoća slobodnog naboja na granici metal dielektrik
- d. rotor električnog polja u materijalu
- e. volumna gustoća dipolnih momenata

Pitanje 2

Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\epsilon 0$ (x-y+3z) Koliki je div E u točki (2,3,1).

Select one: A. 6

B. 2

C. 5

D. 3 E. 4

F. Ne želim odgovoriti

G. 1

Pitanje 3

Potencijal je u elektrostatskim problemima određen do na konstantu ako su propisani:

- a. ne želim odgovoriti
- b. Dirichletovi rubni uvjeti
- c. Mješoviti rubni uvjeti

d. Neumannovi rubni uvjeti

e. uvjeti da je u beskonačnosti potencijal jednak nuli

Pitanje 4

Pločasti kondenzator spojen je na izvor napona U. Zadan je pravac koji spaja dvije ploče pločastog kondenzatora i okomit je na njih. Električni potencijal se duž pravca:

Select one:

a. mijenja linearno

- b. mijenja logaritamski
- c. ne mijenja
- d. mijenja eksponencijalno
- e. ne želim odgovoriti

Pitanje 5

U prostoru se nalazi usamljena šuplja metalna kugla, polumjera R, nabijena nabojem Q. U prostoru unutar kugle jakost električnog polja:

- a. raste od središta kugle prema radijusu R
- b. pada od središta kugle prema radijusu R
- c. Ne želim odgovoriti
- d. precizno su izmjerili Končarevi inženjeri Ivan Bukvić i Marko Javorović

e. ima iznos nula unutar kugle

f. može se mjeriti vektorskim voltmetrom Gronkovom metodom

Pitanje 6

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki B je:

A. jednako nuli

- B. Ne želim odgovoriti
- C. u +x smjeru
- D. u -x smjeru

Pitanje 1

Dielektrični materijal je linearan ako je:

- a. dielektričnost konstanta u svakoj točki materijala –tako je po službenim rješenjima (kvačica)
- b. iznos dielektričnosti ovisan o položaju točke unutar materijala
- c. u materijalu ovisnost napona i jakosti električnog polja linearna.
- d. iznos dielektričnosti neovisan o položaju točke unutar materijala
- e. ne želim odgovoriti

Pitanje 2

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru izvan kugle potencijal:

Select one:

- a. konstantan je u okolini kugle. Predznak ovisi o tome da li je naboj pozitivan ili negativan.
- b. pada s udaljenosti od središta kugle (1/r)
- c. nula je u okolini kugle
- d. Ne želim odgovoriti
- e. pada s kvadratom udaljenosti od središta kugle $(1/r^2)$

Pitanje 3

Pozitivni točkasti naboj giba se suprotno smjeru električnog polja konstantnom brzinom. Potencijalna energija naboja pri tome:

Select one:

A. Ne želim odgovoriti

B. Pada

C. Ne mijenja se

D. Raste

Pitanje 4

Pločasti kondenzator spojen je na izvor napona U. Zadan je pravac koji spaja dvije ploče pločastog kondenzatora i okomit je na njih. Električni potencijal se duž pravca:

Select one:

- a. ne mijenja
- b. mijenja logaritamski
- c. mijenja eksponencijalno

d. mijenja linearno

e. ne želim odgovoriti

Pitanje 5

U nekoj točki na površini vodiča nabijenog nabojem plošne gustoće σ, postoji: Select one:

- A. Tangencijalna komponenta električnog polja
- B. Nema električnog polja
- C. Okomita komponenta električnog polja
- D. Ne želim odgovoriti

Pitanje 6

Kapacitet pločastog kondenzatora ovisi:

Select one:

- a. linearno o naponu na pločama
- b. ovisi o dimenzijama ploča, njihovom razmaku i vrsti dielektrika
- c. ne želim odgovoriti
- d. linearno o naboju na pločama
- e. o kvadratu naboja na pločama

Pločasti kondenzator spojen je na izvor napona U. Zadan je pravac koji spaja dvije ploče pločastog kondenzatora i okomit je na njih. Električni potencijal se duž pravca:

Select one:

a. mijenja linearno

- b. mijenja logaritamski
- c. mijenja eksponencijalno
- d. ne mijenja
- e. ne želim odgovoriti

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru unutar kugle električni potencijal:

Select one:

a. raste prema središtu kugle

b. ima konstatnan iznos različit od nule

- c. Ne želim odgovoriti
- d. raste od središta kugle prema radijusu R
- e. jednak je nuli

Pitanje 3

Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki D je:

Select one:

A. u -x smjeru

B. u +x smjeru

C. jednako nuli

D. Ne želim odgovoriti

Pitanje 4

Kapacitet pločastog kondenzatora ovisi:

Select one:

- a. linearno o naponu na pločama
- b. o kvadratu naboja na pločama
- c. ne želim odgovoriti
- d. linearno o naboju na pločama
- e. ovisi o dimenzijama ploča, njihovom razmaku i vrsti dielektrika

Pitanje 5

U statičkom električnom polju vrijedi:

Select one:

A. Ne želim odgovoriti

B. -Q

C.Q

D. ništa od navedenog

E. >0

F. 0

G. ovisi o c

H. <0

Pitanje 6

Dielektrični materijal je linearan ako je:

Select one:

- a. ne želim odgovoriti
- b. u materijalu ovisnost napona i jakosti električnog polja linearna.
- c. iznos dielektričnosti ovisan o položaju točke unutar materijala
- d. dielektričnost konstanta u svakoj točki materijala
- e. iznos dielektričnosti neovisan o položaju točke unutar materijala

1.pitanje

Mjerna jedinica za električnu susceptibilnost je:

Select one:

- a. (V * s) / m
- b. ne želim odgovoriti
- c.F/m
- d. C / (V * m)

e. električna susceptibilnost je bezdimenzionalna konstanta

2. pitanje

Prostorna gustoća naboja zadana je s: ρ (x,y,z) = $\epsilon 0$ (x+y+3z)

Koliki je div **E** u točki (1,1,1).

Select one:

- A. 1
- B. 3
- C. 6
- D. 2
- E. 4
- F. 5

3. pitanje

Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 10 cm, d2=10 cm, d3 = 5 cm. Jakost električnog polja u Vm-1 u točki C je:

A. Ništa od navedenog

B. 2500

C. 1000

D. 500

E. 250

F. Ne želim odgovoriti

4. pitanje

Mjerna jedinica za električku polarizaciju materijala je:

Select one:

a. kulon po metru kvadratnom [C / (m * m)]

- b. volt po metru [V / m]
- c. kulon po metru [C/m]
- d. ne želim odgovoriti
- e. volt po metru kvadratnom [V / (m * m)]

5. pitanje

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru izvan kugle električno polje:

Select one:

- a. konstantno je u okolini kugle. Predznak ovisi o tome da li je naboj pozitivan ili negativan
- b. pada s udaljenosti od središta kugle (1/r)

c. pada s kvadratom udaljenosti od središta kugle (1/r^2)

- d. nula je u okolini kugle
- e. Ne želim odgovoriti

6. pitanje

Dielektrični materijal je linearan ako je:

a. ne želim odgovoriti

b. dielektričnost konstanta u svakoj točki materijala

- c. u materijalu ovisnost napona i jakosti električnog polja linearna.
- d. iznos dielektričnosti neovisan o položaju točke unutar materijala
- e. iznos dielektričnosti ovisan o položaju točke unutar materijala

Pitanje 1

Mjerna jedinica za električnu susceptibilnost je:

Select one:

a. ne želim odgovoriti

b. (V * s) / m

c. električna susceptibilnost je bezdimenzionalna konstanta

d. C / (V * m)

e. F / m

Pitanje 2

U prostoru se nalazi usamljena šuplja metalna kugla, radijusa R, nabijena nabojem Q. U prostoru unutar kugle električni potencijal:

Select one:

a. ima konstatnan iznos različit od nule

- b. raste prema središtu kugle
- c. Ne želim odgovoriti
- d. raste od središta kugle prema radijusu R
- e. jednak je nuli

Pitanje 3

Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d1 = 5 cm, d2 = 5 cm, d3 = 1 cm.

Jakost električnog polja u Vm-1 u točki A je:

Select one:

A. Ne želim odgovoriti

B. 250

C. Ništa od navedenog

D. 1000

E. 100

F. 500

Pitanje 4

Dielektrični materijal je homogen ako je:

Select one:

a. iznos dielektričnosti neovisan o položaju točke unutar materijala

- b. ne želim odgovoriti
- c. polarizacija definirana u svakoj točki materijala
- d. iznos dielektričnosti ovisan o položaju točke unutar materijala
- e. u materijalu ovisnost napona i jakosti električnog polja linearna.

Pitanje 5

Kapacitet pločastog kondenzatora ovisi:

Select one:

a. ne želim odgovoriti

b. ovisi o dimenzijama ploča, njihovom razmaku i vrsti dielektrika

- c. linearno o naboju na pločama
- d. o kvadratu naboja na pločama
- e. linearno o naponu na pločama

Pitanje 6

Prostorna gustoća naboja zadana je s: $\rho(x,y,z) = \epsilon 0(x-y+3z)$

Koliki je div **E** u točki (3,3,1).

Select one:

- A. 1
- B. **3**
- C. Ne želim odgovoriti D. 2
- E. 5
- F. 4
- G. 6