M 361K Homework 2

Ishan Shah

October 7, 2022

3.3

5. Let $y_1 := \sqrt{p}$, where p > 0, and $y_{n+1} := \sqrt{p + y_n} \ \forall \ n \in \mathbb{N}$. Show that (y_n) converges and find the limit.

8. Let (a_n) be an increasing sequence, (b_n) be a decreasing sequence, and assume that $a_n \leq b_n \, \forall \, n \in \mathbb{N}$. Show that $\lim(a_n) \leq \lim(b_n)$, and thereby deduce the Nested Intervals Property 2.5.2 from the Monotone Convergence Theorem 3.3.2.

12. Establish the convergence and find the limits of the following sequences.

- (a) $((1+1/n)^{n+1})$
- (b) $((1+1/n)^2n)$

3.4

1. Give an example of an unbounded sequence that has a convergent subsequence.

4b. Show that the sequence $(\sin n\pi/4)$ is divergent.

10. Let (x_n) be a bounded subsequence and for each $n \in \mathbb{N}$, let $s_n := \sup\{x_k : k \ge n\}$ and $S := \inf\{s_n\}$. Show that there exists a subsequence of (x_n) that converges to S.

12. Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $\lim_{n \to \infty} (1/x_{n_k}) = 0$.

3.5

2. Show directly from the definition that the following are Cauchy sequences.

- (a) $\left(\frac{n+1}{n}\right)$
- (b) $\left(1 + \frac{1}{2!} + \cdots + \frac{1}{n!}\right)$

- 7. Let (x_n) be a Cauchy sequence such that x_n is an integer for every $n \in \mathbb{N}$. Show that (x_n) is ultimately constant.
- 8. Show directly that a bounded, monotone increasing sequence is a Cauchy sequence.

4.1

- **2.** Determine a condition on |x-4| that will assure that:
 - (a) $|\sqrt{x} 2| < \frac{1}{2}$
 - (b) $|\sqrt{x} 2| < 10^{-2}$
- **6.** Let I be an interval in \mathbb{R} , let $f: I \to \mathbb{R}$, and let $c \in I$. Suppose that there exists constants K and L such that $|f(x) L| \le K|x c|$ for $x \in I$. Show that $\lim_{x \to c} f(x) = L$.
- **9a.** Use either the ϵ - δ definition of a limit or the Sequential Criterion for limits to establish that $\lim_{x\to 2} \frac{1}{1-x} = -1$.
- **10a.** Use the definition of the limit to show that $\lim_{x\to 2}(x^2+4x)=12$.
- **15.** Let $f: \mathbb{R} \to \mathbb{R}$ be defined by setting f(x) := x if x is rational, and f(x) = 0 if x is irrational.
 - (a) Show that f has a limit at x = 0.
 - (b) Use a sequential argument to show that if $c \neq 0$, then f does not have a limit at c.

4.2

- 1. Apply theorem 4.2.4 to determine the following limits:
 - (a) $\lim_{x\to 1} (x+1)(2x+3)$ where $(x\in\mathbb{R})$
 - (b) $\lim_{x\to 1} \frac{x^2+2}{x^2-2}$ where (x>0)
 - (c) $\lim_{x\to 2} (\frac{1}{x+1} \frac{1}{2x})$ where (x>0)
 - (d) $\lim_{x\to 0} \frac{x+1}{x^2+2}$ where $(x\in\mathbb{R})$
- **4.** Prove that $\lim_{x\to 0}\cos(1/x)$ does not exist but that $\lim_{x\to 0}x\cos(1/x)=0$.
- 6. Use the definition of the limit to prove the first assertion in Theorem 4.2.4(a).

- 10. Give examples of functions f and g such that f and g do not have limits at a point c, but such that both f+g and fg have limits at c.
- 11. Determine whether the following limits exist at \mathbb{R} .
 - (a) $\lim_{x\to 0} \sin(1/x^2)$ where $(x \neq 0)$.
 - (b) $\lim_{x\to 0} x \sin(1/x^2)$ where $(x \neq 0)$.
 - (c) $\lim_{x\to 0} \operatorname{sgn} \sin(1/x)$ where $(x \neq 0)$.
 - (d) $\lim_{x\to 0} \sqrt{x} \sin(1/x^2)$ where (x > 0).