NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

61 - 10.0.71

AgRISTARS

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereof"

Supporting Research

SR-LO-00476 CR -166865 JSC-16377

OCT 0 6 1980

A Joint Program for Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing

September 1980

PRELIMINARY EVALUATION OF THE ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN CROP CALENDAR SHIFT ALGORITHM FOR ESTIMATION OF SPRING WHEAT DEVELOPMENT STAGE

D. E. Phinney

(E81-10071) PRELIMINARY EVALUATION OF THE ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN CROP CALENDAR SHIFT ALGORITHM FOR ESTIMATION OF SPRING WHEAT DEVELOPMENT STAGE (Lockheed Engineering and Management) 20 p

N81-13427

Unclas G3/43 00071

Lockheed Engineering and Management Services Company, Inc. 1830 NASA Road 1, Houston, Texas 77058

NASA

Lyndon B. Johnson Space Center Houston, Texas 77058

1. Report No. SR-L0-00476, JSC-16377	2. Government Accession No.	3. Recipient's Catalog	No.		
4. Title and Subtitle Preliminary Evaluation of the Institute of Michigan Crop Ca for Estimation of Spring Whea	lendar Shift Algorithm	5. Report Date September 198 6 Performing Organiz			
7. Author(s) D. E. Phinney		8. Performing Organiza LEMSCO-15115	ition Report No		
9. Performing Organization Name and Address Lockheed Engineering and Mana- 1830 NASA Road 1 Houston, Texas 770	gement Services Company, Inc.	11. Contract or Grant NAS 9-15800 13 Type of Report an			
12. Sponsoring Agency Name and Address National Aeronautics and Space Lyndon B. Johnson Space Center Houston, Texas 77058	e Administration r echnical Monitor: J. D. Erickson	Technical Rep			
15, Supplementary Notes					
applied to 1978 spring wheat in Research Institute of Michigar by maximizing the cross-correl temporal pattern of Kauth-Thomestimation of crop development Evaluation studies showed that ical bias. Crop development so The algorithm was recommended	An algorithm for estimating spectral crop calendar shifts of spring small grains was applied to 1978 spring wheat fields. The algorithm, developed by the Environmental Research Institute of Michigan, provides estimates of the date of peak spectral response by maximizing the cross-correlation between a reference profile and the observed multi-temporal pattern of Kauth-Thomas greenness for a field. A methodology was developed for estimation of crop development stage from the date of peak spectral response. Evaluation studies showed that the algorithm provided stable estimates with no geographical bias. Crop development stage estimates had a root mean square error near 10 days. The algorithm was recommended for comparative testing against other models which are candidates for use in AgRISTARS experiments.				
17. Key Words (Suggested by Author(s)) crop stage estimation calendar shift algorithm peak spectral response Kauth-Thomas transformation	18. Distribution Stateme	nt			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 19	22, Price*		

PRELIMINARY EVALUATION OF THE ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN CROP CALENDAR SHIFT ALGORITHM FOR ESTIMATION OF SPRING WHEAT DEVELOPMENT STAGE

Job Order 73-315

This report presents Crop Stage Estimation/Crop Calendar Activities of the Supporting Research project of the AgRISTARS program.

PREPARED BY

D. E. Phinney

APPROVE® BY

D. E. Phinney, Supervisor
Agriculture Technology Section

Development and Evaluation Department

LOCKHEED ENGINEERING AND MANAGEMENT SERVICES COMPANY, INC.
Under Contract NAS 9-15800

For

Earth Observations Division

Space and Life Science Directorate

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

September 1980

CONTENTS

Sec	tion	Page
1.	INTRODUCTION	1
2.	BACKGROUND	2
3.	ESTIMATION OF PEAK SPECTRAL RESPONSE DATE	3
4.	ESTIMATION OF DEVELOPMENT STAGE	3
5.	EVALUATION OF DEVELOPMENT STAGE ESTIMATES	10
6.	RECOMMENDATIONS	13
7.	REFERENCES	14

OPPING PAGE BLANK NOT FILMED

TABLES

Table		Page
1	SUMMARY OF DATA FOR EVALUATION OF THE ERIM CROP CALENDAR SHIFT ALGORITHM	4
2	SUMMARY OF MODEL PERFORMANCES BY FIELD	5
3	RELATIONSHIP BETWEEN FEEKES DEVELOPMENT STAGE AND PERCENT OF NORMAL SEASON GROWTH FOR SPRING WHEAT	7
4	RESULTS OF REGRESSION BETWEEN STAGE AND DAYS FROM ESTIMATED TIME OF PEAK SPECTRAL RESPONSE	7
5	COMPARISON OF RESULTS FOR THE ERIM AND BADHWAR CROP CALENDAR SHIFT ALGORITHMS BY FEEKES DEVELOPMENT STAGE	11
6	SUMMARY OF RESULTS FOR THE ERIM AND BADHWAR CROP CALENDAR SHIFT ALGORITHMS WEIGHTED BY NUMBER OF OBSERVATIONS AND BY DURATION OF STAGE	12
	FIGURES	
Figure		Page
1	Plot of development stage versus days from time of peak spectral response for the ERIM crop calendar shift algorithm	8
2	Plot of development stage versus days from time of peak spectral response for the Badhwar crop calendar shift algorithm	g

ACRONYMS AND ABBREVIATIONS

ACQDAY acquisition date of the field ground truth

AgRISTARS Agriculture and Resources Inventory Surveys Through Aerospace

Remote Sensing

AID U.S. Agency for International Development

C/P Conservation and Pollution

DC/LC Domestic Crops and Land Cover

ERIM Environmental Research Institute of Michigan

EW/CCA Early Warning/Crop Condition Assessment

FCPF Foreign Commodity Production Forecasting

Landsat land observatory satellite

NASA National Aeronautics and Space Administration

PKDAY date of peak spectral response for the field

RMSE root mean square error

RRI Renewable Resources Inventory

SM Soil Moisture

SR Supporting Research

USDA U.S. Department of Agriculture

USDC U.S. Department of Commerce

USDI U.S. Department of Interior

YMD Yield Model Development

INTRODUCTION

The Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) is a 6-year program of research, development, evaluation, and application of aerospace remote sensing for monitoring agricultural resources beginning in fiscal year (FY) 1980. The AgRISTARS program is a cooperative effort of the national Aeronautics and Space Administration (NASA), the U.S. Agency for International Development (AID), and the U.S. Departments of Agriculture, Commerce, and the Interior (USDA, USDC, and USDI).

The goal of the program is to determine the usefulness, cost, and extent to which aerospace remote sensing data can be integrated into existing or future USDA systems to improve the objectivity, reliability, timeliness, and adequacy of information required to carry out USDA missions. The overall approach comprises a balanced program of remote sensing research, development, and testing which involves domestic resource management as well as commodity production information needs.

The technical program is structured into eight major projects as follows:

- Early Warning/Crop Condition Assessment (EW/CCA)
- 2. Foreign Commodity Production Forecasting (FCPF)
- Yield Model Development (YMD)
- 4. Supporting Research (SR)
- 5. Soil Moisture (SM)
- Domestic Crops and Land Cover (DC/LC)
- 7. Renewable Resources Inventory (RRI)
- 8. Conservation and Pollution (C/P)

The majority of these projects will make direct use of information on crop phenology. Phenological information will be pertinent to these several areas of the projects including classification, acreage and yield estimation, and detection of episodal events.

Recent research at a number of locations has been directed toward developing techniques for correcting variations in Landsat spectral signals caused by local differences in growth stages. The general technique consists of fitting an exponential equation to multitemporal spectral data. One result of such fits is an estimate of the date on which the maximum spectral response would have been observed if there had been daily spectral observations.

The original algorithms of this type were developed by Badhwar (1979, ref. 1). Work conducted at the Environmental Research Institute of Michigan (ERIM) by Cicone et al. (1979, ref. 2) resulted in the use of a different functional form for the fitted equation. For crop stage estimation, a simplified algorithm was developed.

This paper presents the results of a preliminary study of the characteristics of the ERIM algorithm. A methodology for using the calculated date of peak response to estimate growth stage was used to evaluate the algorithm and to provide a comparison with the Badhwar approach.

2. BACKGROUND

The ERIM crop calendar shift algorithm operates on the greenness component of the Kauth-Thomas transformation (Kauth et al., 1976, ref. 3). The day of peak response is determined by examining the cross-correlation between the observed values and the corresponding values of a reference profile. The program requires that three spectral acquisitions separated by at least 15 days in the emergence to preharvest period be available. The existing algorithm checks for these conditions and does not require manual selection of acquisitions. The data should be preprocessed to remove the effects of satellite calibration, Sun angle, and atmospheric haze. ERIM recommends the use of its spatially varying XSTAR algorithm and associated correction factors for preprocessing.

The basic algorithm was provided in the form of a Fortran subroutine (Horvath, 1980, ref. 4). Complete documentation of the program along with a user's guide and a series of test cases for program verification is given by Crist and Malila (1980, ref. 5).

For this study, a data set was constructed using spectral data collected over spring wheat test sites during the 1978 crop year in the U.S. northern Great Plains. Periodic ground-truth observations were available for selected fields on actual growth stages. Table 1 shows a summary of the data set. From 1 to 13 fields were available in each of 22 locations. A total of 681 growth stage observations were available. This data set was used previously (Cate et al., 1980, ref. 6) to evaluate the Badhwar crop calendar shift algorithm. Manual quality assurance had already been performed on the data. As a result, the only preprocessing employed in this evaluation was satellite calibration and Sun-angle correction.

3. ESTIMATION OF PEAK SPECTRAL RESPONSE DATE

The ERIM algorithm provides estimates of the date of peak spectral response. The program provides the value of the cross-correlation coefficient for those fields which have satisfactory acquisition histories. Table 2 summarizes the results of initial model runs. Estimates were made for approximately 65 percent of the fields in the original data set. The number of fields, number of Landsat acquisitions, and the average and range of observed R^2 values for the cross-correlation associated with the estimated peak response date are shown. Most fields had R^2 values in excess of 0.9, indicating that the profile fits were of a high quality. No geographical pattern was found in the distribution of the goodness of fit as measured by the R^2 values.

4. ESTIMATION OF DEVELOPMENT STAGE

Since the basic algorithm only provides estimates of the date of peak spectral response, an attempt was made to develop a technique for the estimation of individual growth stages. The ground-truth observations were taken on the

TABLE 1.- SUMMARY OF DATA FOR EVALUATION OF THE ERIM CROP CALENDAR SHIFT ALGORITHM

Segment	State	Number of fields
1392	N. Dak.	6
1394	N. Dak.	4
1457	N. Dak.	5
1461	N. Dak.	11
1473	N. Dak.	4
1518	Mont.	11
1537	Mont.	2
1542	Mont.	6
1544	Mont	4
1553	Mont.	3
1566	Minn.	6
1584	N. Dak.	4
1612	N. Dak.	5
1619	N. Dak.	8
1636	N. Dak.	9
1664	N. Dak.	1
1668	S. Dak.	6
1811	S. Dak.	12
1825	Minn.	13
1918	N. Dak.	2
1920	N. Dak.	7
1924	N. Dak.	3

TABLE 2.- SUMMARY OF MODEL PERFORMANCES BY FIELD

Segment	Number of fields	Number of acquisitions	Cross-co Average	rrelation, R ²
1392	5	3	0.944	0.873-0.995
1394	4	4-5	.978	.974984
1457	5	3-4	.982	.938999
1461	11	5-6	.935	.916963
1518	11	4	.858	.599990
1537	1	5	.970	.970
1542	6	3-5	.932	.824984
1544	2	4	.863	.752973
1553	2	5	.798	.753842
1566	2	3	.748	•649- •846
1584	4	3	•986	.980990
1636	y	3-5	.940	•870- •980
1668	2	3	.992	•992
1811	10	3-4	.911	.757980
1825	13	4	•979	.932998
1920	5	3-4	•919	·894- ·944
1924	2	5	. 967	.948985

Feekes scale (Large, 1941, ref. *). In previous work, Gate et al. (1980, ref. 6) developed a relationship between the toekes scale and the percent of the normal growing reason which had elapsed at each stage. Table 3 gives a recent revision of this relationship (Hadges, 1990, ref. 6). This table provides a vehicle for transforming the toekes observations into a quantity which is linear in time. The table shows the percent of the plant growth which had elapsed at the midwaint of each feekes stage as well as the stage duration.

The estimate of day of peak greenness was calculated for each available field. A regression between the ground-truth stage in percent and the days from date of peak greenness was run for the entire data sci. I similar analysis was carried out using peak date estimates obtained from the Badhwar algorithm. Table 4 gives the regression results. Plots for each algorithm are shown in figures 1 and 2.

The estimated growth stage for a given field on a particular acquisition was calculated using the following equation.

Stage (%) =
$$a_0 + a_1$$
 (PKDAY - ACDDAY)

where

Stage (%) = percent of the growing season

a₀,a₁ = intercept and slone, respectively, of the regression

PKDAY = date of peak spectral response for the field

ACQDAY = acquisition date of the field ground truth

Table 4 indicates that the models are estimating substantially different dates of peak spectral response. The ERIM algorithm peaks when 55 percent of the growing season has elapsed as opposed to 63 percent for the Badhwar algorithm. Table 3 shows that the peaks of the two algorithms are roughly a week apart; the peak of the ERIM algorithm occurs near the beginning of heading, and the peak of the Badhwar algorithm occurs near the end of heading.

TABLE 3.- RELATIONSHIP BETWEEN FEEKES DEVELOPMENT STAGE AND PERCENT OF NORMAL SFASON GROWTH FOR SPRING WHEAT

And the state of t	Normal %	of season	
Feekes stage	Stage midpoint	Stage duration	Description
0.0	0.0	8.33	Planted
1.0	13.88	11.11	Emergence
2.0	20.83	2.78	Beginning tillering
3.0	23.61	2.78	Tillers formed
4.0	26.85	3.70	Regin pseudostem erection
5.0	30.55	3.71	Pseudostem strongly erect
0.9	33.80	2.78	Jointing
7.0	37.04	3.70	Second node formed
8.0	40.28	2.78	Last leaf visible
0.6	43.52	3,70	Last leaf ligule visible
10.0	20.00	97.6	Boot
10.1	55.32	1.37	First heads visible
10.2	56.75	1.50	1/4 headed
10.3	57.90	.80	1/2 headed
10.4	59.15	1.70	3/4 headed
10.5	67.35	14.70	Headed
11,1	78.00	6.60	Milky ripe
11.2	84.65	02.9	Soft dough
11.3	91.22	6.44	Hard dough
11.4	97.22	5.56	Ripe
11.5	100.00		Harvest

0 4

TABLE 4.- RESULTS OF REGRESSION BETWEEN STAGE AND DAYS FROM ESTIMATED TIME OF PEAK SPECTRAL RESPONSE

Algorithm	R ²	Intercept	Slope
ERIM	16.0	55.01	0.927
Badhwar	88•	65.99	.920

Figure 1.- Plot of development stage versus days from time of peak spectral response for the ERIM crop calendar shift algorithm.

Figure 2.- Plot of development sta. versus days from time of peak spectral response for the Badhwar crop calendar shift algorithm.

During preliminary review of these results, it has been suggested that this variation may have been the result of differences in the data preprocessing employed with the two algorithms. Spectral greenness values often are negative during part of the growing season. The usual procedure is to add a constant value to greenness to ensure positive numbers. A constant value of 32 has been adopted. The ERIM algorithm subtracts 25 from the greenness, resulting in an effective offset of 7. The Badhwar algorithm was run with an offset equal to 32. This difference may partly explain the discrepancy between the two models.

5. EVALUATION OF DEVELOPMENT STAGE ESTIMATES

The ERIM algorithm calculated peak response dates for 92 of the 139 fields listed in table 1. A total of 489 of the possible 681 growth stage estimates were made. The Badhwar algorithm estimates were summarized for the same field-date combinations. The ground truth was converted to percent of season and the error of each estimate was calculated in percent. Table 5 compares the results obtained from the two algorithms summarizing the bias and root mean square error (RMSE) by growth stage. In general, the algorithm's performances were similar with the Badhwar algorithm showing higher RMSE for most stages.

The overall results were summarized in table 6 to provide a better measure of model performance. Two methods of summarization are shown. In the first case, the errors were weighted by the number of observations in each stage. All growth stages were used. The second method examined only the period between emergence and ripe. In this case, the errors were weighted by the duration of the stage as given in table 3. The ERIM algorithm again shows the best results, particularly in the second case. Since spring wheat has approximately a 100-day growing season, these errors may be interpreted broadly as errors in days. Thus, the ERIM algorithm results in a 1- to 1.5-day reduction in error for estimating the date of a given growth stage when compared with the Badhwar algorithm.

TABLE 5.- COMPARISON OF RESULTS FOR THE ERIM AND BADHWAR CROP CALENDAR SHIFT ALGORITHMS BY FEEKES DEVELOPMENT STAGE

	Number of	ER	IM	Вас	lhwar
Feekes stage	observations	Bias	RMSE	Bias	RMSE
0.0	7	-3.6	7.02	-3.3	8.57
1.0	45	1.2	7.95	2.8	11.04
2.0	. 22	1.3	9.16	2.6	10.49
3.0	17	-2.6	6.84	-1.0	9.74
4.0	34	4	8.50	1.2	9.98
5.0	34	-2.2	10.94	-1.4	10.91
6.0	9	-4.8	8.63	-5.4	8.56
7.0	8	4	9.05	-1.0	8.31
8.0	3	5.7	7.52	3.8	8.62
9.0	13	1	8.52	•8	10.89
10.0	12	.4	4.91	1.0	7.13
10.1	9	6.2	12.23	3.2	8.23
10.2	4	9.1	9.62	9.0	10.11
10.3	5	-1.3	1.45	- •5	10.45
10.4	3	9.8	12.23	22.1	23.32
10.5	47	3.4	8.50	5.2	12.16
11.1	80	3.9	9.88	5.2	11.38
11.2	16	-4.6	9.18	-1.6	7.60
11.3	11	1.0	7.61	3.5	8.96
11.4	32	-2.6	10.94	•3	9.08
11.5	78	-9.1	13.36	-8.5	11.89

TABLE 6.- SUMMARY OF RESULTS FOR THE ERIM AND BADHWAR CROP CALENDAR SHIFT ALGORITHMS WEIGHTED BY NUMBER OF OBSERVATIONS AND BY DURATION OF STAGE

Algorithm	Feekes stages	Weighting technique	Bias	RMSE
ERIM	A11	Number of observations	-0.7	9.92
Badhwar	A11	Number of observations	.5	10.79
ERIM	1.0 to 11.4	Stage duration	.9	8.63
Badhwar	1.0 to 11.4	Stage duration	2.3	10.42

Additional runs were made to determine the effect of relaxing the acquisition restrictions in the software. When a 9-day separation in acquisitions was allowed, a bias of 0.3 and an RMSE of 10.22 was observed, and the number of estimates increased to 590. When the definition of the growing season was increased to 110 days, as opposed to 90 days in the basic algorithms, the bias was -0.1, the RMSE was 10.38, and the number of estimates was 613. When a 110-day season and 9-day acquisitions were allowed, the bias was 0.3 days, the RMSE was 10.59 and the number of estimates was 681. Comparing these results to the baseline results — which showed a bias of -0.7, an RMSE of 9.92, and 489 estimates — indicates that, while some deterioration in performance occurs when the restrictions are relaxed, the increase in the number of estimates probably justifies the loss in accuracy.

6. RECOMMENDATIONS

The ERIM algorithm is recommended for testing with independent 1979 crop year data. The model should be tested in both the original configuration and with the relaxed restrictions, allowing 9-day acquisitions and an expanded definition of the growing season.

The performance of models of this type can probably be enhanced by using meteorological data from the date of peak spectral response to estimate the dates of other stages. It is recommended that the use of accumulated degree days be investigated for this purpose. One simple approach along these lines would be to develop an equation analogous to the one presented in the methodology section, which relates stage to the difference between the estimated peak day and the acquisition date.

7. REFERENCES

- 1. Badhwar, G. D.: A Semi-Automatic Technique for Multitemporal Classification of a Given Crop. NASA, Johnson Space Center, unpublished.
- 2. Cicone, R.; Crist, E.; Kauth, R.; Lambeck, P.; Malila, W.; and Richardson, W.: Development of Procedure M for Multicrop Inventory, with Test of a Spring-Wheat Configuration. ERIM 132400-16-F, Environmental Research Institute of Michigan (Ann Arbor, Mich.) 1979.
- 3. Kauth, R. J.; and Thomas, G. S.: The Tasselled Cap A Graphic Description of the Spectral Temporal Development of Agricultural Crops as Seen by Landsat. Proceedings of the Symposium on Machine Processing of Remote Sensing Data, Purdue Univ. (W. Lafayette, Ind.) 1976, pp. 48-41 to 48-51.
- 4. Horvath, R.: Personal communications, 1980.
- 5. Crist, E.; and Malila, W.: An Algorithm for Estimating Crop Calendar Shifts of Spring Small Grains Using Landsat Spectral Data. AgRISTARS Technical Report SR-E0-00459, (Ann Arbor, Mich.) 1980.
- 6. Cate, R. B.; Artley, J. A.; Doraiswamy, P. C.; Hodges, T.; Kinsler, M. C.; Phinney, D. E.; and Sestak, M. L.: Preliminary Evaluation of Spectral, Normal and Meteorological Crop Stage Estimation Approaches. Agristars Technical Report, LEMSCO 14640, NASA, Johnson Space Center, to be published.
- 7. Large, E. C.: Growth Stages in Cereals: Illustrations of Feekes' Scale. Plant Pathology, vol. 3, 1954, pp. 128-129.
- 8. Hodges, T.: Personal communications, 1980.