Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1	1. (Original) A method for treating presbyopia in a patient, the method
2	comprising:
3	ablating a central zone of a corneal surface of a first eye of the patient to improve
4	the patient's ability to view near objects through the central zone of the first eye; and
5	ablating a peripheral zone of a corneal surface of a second eye of the patient to
6	improve the patient's ability to view near objects through the peripheral zone of the second eye.
1	2. (Original) A method as in claim 1, wherein the central zone produced
2	during the first ablating step comprises a substantially spherical surface.
1	3. (Original) A method as in claim 1, wherein the central zone produced
2	during the first ablating step comprises a multifocal aspheric surface.
1	4. (Original) A method as in claim 1, wherein ablating the central zone of
2	the corneal surface of the first eye comprises leaving a small central portion of the corneal
3	surface untreated.
1	5. (Original) A method as in claim 1, wherein the ablated central zone has
2	a diameter scaled to a diameter of a pupil of the first eye.
1	6. (Original) A method as in claim 1, wherein the ablated central zone has
2	an optical power of between about 0.5 and 4.0 Diopters.
1	7. (Original) A method as in claim 6, wherein the ablated central zone has
2	an optical power of between about 1.0 and 3.0 Diopters.

1	8. (Original) A method as in claim 6, wherein the ablated central zone has
2	an optical power of about 1.75 Diopters.
1	9. (Original) A method as in claim 1, further comprising ablating a
2	peripheral zone of the corneal surface of the first eye to improve the patient's ability to view far
3	objects through the peripheral zone of the first eye.
1	10. (Original) A method as in claim 9, wherein the peripheral zone of the
2	first eye extends radially outward from an outer boundary of the ablated central zone of the first
3	eye to a diameter approximately matching an outer boundary of a pupil of the first eye.
1	11. (Original) A method as in claim 9, further comprising ablating a
2	transition zone of the corneal surface of the first eye, the transition zone extending from an outer
3	boundary of the ablated peripheral zone of the first eye.
1	12. (Original) A method as in claim 1, wherein ablating the peripheral zone
2	of the comeal surface of the second eye comprises leaving a central zone of the corneal surface
3	of the second eye untreated to provide for vision of distant objects through the central zone.
l	13. (Original) A method as in claim 12, wherein the central zone of the
2	second eye has a diameter scaled to a diameter of a pupil of the second eye.
1	14. (Original) A method as in claim 1, further comprising ablating a central
2	zone of the corneal surface of the second eye to improve the patient's ability to view distant
3	objects through the central zone.
1	15. (Original) A method for performing laser eye surgery on a patient to
2	treat presbyopia, the method comprising:
3	determining a first ablative shape for a corneal surface, the first ablative shape
4	enhancing vision of near objects through a central zone of an eye:

5	ablating a corneal surface of a first eye of the patient according to the first
6	ablative shape;
7	determining a second ablative shape for a corneal surface, the second ablative
8	shape enhancing vision of near objects through a peripheral zone of an eye; and
9	ablating a corneal surface of a second eye of the patient according to the second
10	ablative shape.
1	16. (Original) A method as in claim 15, wherein the first ablative shape
2	comprises a central zone having a substantially spherical surface.
1	17. (Original) A method as in claim 15, wherein the first ablative shape
2	comprises a central zone having a multifocal aspheric surface.
1	18. (Original) A method as in claim 15, wherein the first ablative shape
2	comprises a small central portion of the central zone that remains untreated.
1	19. (Original) A method as in claim 15, wherein the central zone of the eye
2	according to the first ablation shape has a diameter scaled to a diameter of a pupil of the first eye
2	according to the first ablation shape has a diameter scaled to a diameter of a pupil of the first eye
1	20. (Original) A method as in claim 15, wherein the central zone of the eye
2	according to the first ablative shape has an optical power of between about 0.5 and 4.0 Diopters.
1	21. (Original) A method as in claim 20, wherein the central zone of the eye
2	according to the first ablative shape has an optical power of between about 1.0 and 3.0 Diopters.
1	22. (Original) A method as in claim 20, wherein the central zone of the eye
2	according to the first ablative shape has an optical power of about 1.75 Diopters.
-	
1	23. (Original) A method as in claim 15, wherein the first ablative shape
2	includes a peripheral zone, wherein the peripheral zone is shaped to provide for vision of distant
3	objects.

1	24. (Original) A method as in claim 23, wherein the first ablative shape
2.	further includes a transition zone, the transition zone extending from an outer boundary of the
3	peripheral zone.
1	25. (Original) A method as in claim 15, wherein the second ablative shape
2	includes an untreated central zone to provide for vision of distant objects.
1	26. (Original) A method as in claim 15, wherein the second ablative shape
2	includes a central zone shaped to improve the patient's ability to view distant objects.
1	27. (Currently amended) A laser eye surgery system for treating presbyopia
2	in a patient, the system comprising:
3	a laser device for emitting a beam of ablative energy; and
4	delivery system optics coupled to the laser device; and
5	a processor coupled with the laser device and the delivery system optics to direct
6	the beam of ablative energy to ablate a first ablative shape on a corneal surface of a first eye of
7	the patient and a second ablative shape on a corneal surface of a second eye of the patient,
8	wherein the first ablative shape enhances near vision through a central zone of the first eye, and
9	the second ablative shape enhances near vision through a peripheral zone of the second eye.
1	28. (Currently amended) A system as in claim 27, wherein the processor
2	includes an ablative shape module a tangible medium having a treatment table embodied thereon,
3	
	wherein the treatment table includes reference coordinates for directing the laser device to ablate
4	the first and second ablative shapes.
1	29. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the central zone of the first ablative shape comprises a
3	substantially spherical surface.
	· ·

1	o. (Currently amended) A system as in claim [[2/]]28, wherein the
2	treatment table is configured so that the central zone of the first ablative shape comprises a
3	multifocal aspheric surface.
_	
1	31. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the first ablative shape includes a small untreated central
3	portion within the central zone.
1	32. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the central zone of the first ablative shape has a diameter
3	scaled to a diameter of a pupil of the first eye.
J	scaled to a diameter of a pupir of the first eye.
1	33. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the central zone of the first ablative shape has an optical
3	power of between about 0.5 and 4.0 Diopters.
1	34. (Original) A system as in claim 33, wherein the central zone has an
2	optical power of between about 1.0 and 3.0 Diopters.
1	35. (Original) A system as in claim 34, wherein the central zone has an
2	optical power of about 1.75 Diopters.
	2 iopolo.
1	36. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the first ablative shape further comprises a peripheral zone
3	for viewing distant objects.
l	37. (Currently amended) A system as in claim 36, wherein the treatment
2	table is configured so that the first ablative shape further includes a transition zone, the transition
3	zone extending from an outer boundary of the peripheral zone.

1	38. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the second ablative shape includes an untreated central zone
3	to provide for vision of distant objects.
1	39. (Currently amended) A system as in claim [[27]]28, wherein the
2	treatment table is configured so that the second ablative shape includes a central zone shaped to
3	improve the patient's ability to view distant objects.
1	40. (New) A system as in claim 27, wherein the processor includes a module
2	having software comprising tangible media embodying machine-readable instructions for
3	directing the laser device to ablate the first and second ablative shapes.