

# COMPUTAÇÃO GRÁFICA



#### Performance

Vertex Buffer Objects



### **VBOs** - Initialization

- VBO Vertex Buffer Object
- Enable Buffer Functionality
  - Do once during initialization of the app

```
glEnableClientState(GL_VERTEX_ARRAY);
```



# **Data Preparation**

• Allocate and fill arrays with vertices and indices (optional)

```
// array for vertices
float *vertexB;
// fill arrays with vertex values
// array for indices
unsigned int *indices;
// fill arrays with indices
```



#### **Buffer Initialization**

Generate Vertex Buffer Objects



### **Index Buffer Initialization**

• Generate Index Buffer Object

```
// indexes is a global variable
GLuint indexes[1];
...
glGenBuffers(n, indexes);
```

Set buffer active

```
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexes[0]);
```

Fill buffer

```
glBufferData(GL_ELEMENT_ARRAY_BUFFER, arraySize, indices, GL_STATIC_DRAW);
```



## **VBOs - Drawing**

count – the number of vertices (not triangles) to draw

Step 1: Set buffer active and define the semantics
 glBindBuffer (GL\_ARRAY\_BUFFER, buffers[0]);
 glVertexPointer (3, GL\_FLOAT, 0, 0);
 Step 2: Draw VBOs

 With index list
 glBindBuffer (GL\_ELEMENT\_ARRAY\_BUFFER, indexes[0]);
 glDrawElements (GL\_TRIANGLES, count, GL\_UNSIGNED\_INT, NULL);
 Without index list
 glDrawArrays (GL\_TRIANGLES, first, count);
 first - the starting index



## Frames per Second

```
int time;
time = glutGet(GLUT_ELAPSED_TIME);
```

• Returns the number of milliseconds since GLUT has been initialized

```
frame++;
time=glutGet(GLUT_ELAPSED_TIME);
if (time - timebase > 1000) {
   fps = frame*1000.0/(time-timebase));
   timebase = time;
   frame = 0;
}
```

• Use function glutSetWindowTitle(char \*s) to display the fps counter(sprintf)



# **Practical Assignment**

- Define vertex buffers for the cylinder (without indices)
- Initialization:
  - Create the arrays with the suitable dimension for the vertices of the cylinder
    - Number of vertices = sides x 3 + sides x 6 + sides x 3
       top body bottom
    - Each vertex takes three floats
  - Fill the vertex array with the appropriate values to draw the cylinder
  - Generate and enable the VBOs



# **Practical Assignment**

- Render:
  - Bind the array
  - Define the semantic for the vertex buffer
  - Use glDrawArrays to draw the cylinder
- Compute the FPS values obtained with and without VBOs for several cylinders and fill the grid below:

| Mode\sides     | 4096 | 16384 | 65536 | 262144 |
|----------------|------|-------|-------|--------|
| Immediate mode |      |       |       |        |
| VBO            |      |       |       |        |



# Installing GLEW (Win)

Add the content of "glew.zip" to the toolkits folder such that the final configuration looks as follows:



Run Cmake and fill the TOOLKITS\_FOLDER field with the correct path



# Installing GLEW (Linux)

#### • Install GLEW

- sudo apt-get install libglew-dev



# OpenGL > 1.1 (Win & Linux)

• GLEW – library that facilitates access to OpenGL functionality post version 1.1 (Win)

```
#include <GL/glew.h> // before including glut.h
```

In the main function (after GLUT's callback registry):

```
glewInit(); // before calling any OpenGL function
```