Relational Database [RDBMS]

Database Management System (DBMS)

- Collection of components that support data acquisition[Process data are received by the automation system, either locally from the controllers in centralized control systems or distributed systems or remotely from server] dissemination [release to users of information obtained through a statistical activity], storage, maintenance, retrieval, and formatting
- Product variations

(1) Enterprise DBMSs

Oracle: dominates in Unix; strong in Windows

SQL Server: strong in Windows

DB2: strong in MVS and VM environments

Teradata: usage as a data warehouse platform

Amazon Web Services

SAP Sybase: possible challenge to Oracle

Significant open source DBMSs: MySQL, PostgreSQL, MongoDB, MariaDB, SQLite, Cassandra

Cloud-based and NoSQL: rapidly evolving

(2) Desktop DBMSs Access: dominates LibreOffice Base, Open Office Base, FileMaker

Pro

(3) Embedded DBMSs

Major part of information technology infrastructure

Database Management System

A database management system (DBMS) is a software that controls the storage, organization, and retrieval of data. Typically, a DBMS has the following elements:

- Kernel code
 This code manages memory and storage for the DBMS.
- Repository of metadata
 This repository is usually called a data dictionary.
- Query language
 This language enables applications to access the data.

Database solutions into two groups

1. Relational Database:

Microsoft SQL Server, Oracle Database, MySQL, and IBM DB2.

RDBMS's are mostly used in large enterprise scenarios

2. Non-relational Database: (NoSQL databases)

MongoDB, DocumentDB, Cassandra, CouchDB, Pnuts/Sherpa, HBase, Redis, Neo4, BigTable, Dynamo

Relational Database Concept

- The relational model consists of the following:
 - Collection of objects or relations
 - Set of operators to act on the relations
 - Data integrity for accuracy and consistency

A relational database is a collection of relations or two-dimensional tables A relational database can contain one or many tables. A *table* is the basic storage structure of an RDBMS. A table holds all the data necessary about something in the real world, such as employees, departments, invoices, or customers.

Relating Multiple Tables

- Each row of data in a table is uniquely identified by a primary key (PK).
- You can logically relate data from multiple tables using foreign keys (FK).

 Table Name: DEPARTMENTS

Primary key

Foreign key

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
174	Ellen	Abel	80
142	Curtis	Davies	50
102	Lex	De Haan	90
104	Bruce	Ernst	60
202	Pat	Fay	20
206	William	Gietz	110

Primary key

DEPARTMENT_ID DEPARTMENT_NAME MANAGER_ID LOCATION ID 10 Administration 200 1700 Marketing 201 1800 50 Shipping 124 1500 60 103 1400 Sales 2500 80 149 Executive 100 1700 110 Accounting 205 1700 190 Contracting 1700

Relational Database Terminology

2

3

4

EMPLOYEE_ID	LAST_NAME	FIRST_NAME	SALARY	COMMISSION_PCT	DEPARTMENT_ID
100	King	Steven	24000		90
101	Kochhar	Neena	17000		90
102	De Haan	Lex	17000		90
103	Hunold	Alexander	9000		60
104	Ernst	Bruce	6000		60
107	Lorentz	Diana	4200	5	60
124	Mourgos	Kevin	5800		50
141	Rajs	Trenna	3500		50
142	Davies	Curtis	3100	<u> </u>	50
143	Matos	Randall	2600		50
144	Vargas	Peter	2500		50
149	Zlotkey	Eleni	10500	.2	80
174	Abel	Ellen	11000	.3	80
176	Taylor	Jonathon	8600	.2	80
178	Grant	Kimberely	7000	.15	
200	Whalen	Jennifer	4400		10
201	Hartstein	Michael	13000		20
202	Fay	Pat	6000		20
205	Higgins	Shelley	12000		110
206	Gietz	William	8300		110

b

Water Utility Database

Organizational Roles

Database Specialists

- Database administrator (DBA)
 - More technical
 - DBMS specific skills
- Data administrator
 - Less technical
 - Planning role

Should I be using NoSQL/Relational Databases?

- NoSQL Data storage systems makes sense for applications that need to deal with very large semi-structured data
 - Log Analysis
 - Social Networking Feeds

- Most of us work on organizational databases, which are not that much large and have low or may regular update/query rates
 - regular relational databases are the correct solution for such applications

Operational Data Analytical Data Document Store (DocumentDB, MongoDB, ...) NoSQL Key/Value Store Big Data Analytics Technologies (Tables, Riak, ...) (HDInsight, Hadoop) Column Family Store (HBase, Cassandra ...) Relational Database **Relational Analytics** SQL (SQL Database, (SQL Server, Oracle, MySQL, ...) Technologies SQL Server, Oracle, MySQL, ...)

Managed service provided by Azure

Software that can run in Azure virtual machines

Planning and Organizing a Database

- Define the purpose of the database.
- Define the type of the database.
- Outline a database architectural design.
- Choose the database name.

Conceptual Level

☐ Mainly used for requirement analysis phase (ER-Diagram)

Representation level

☐ Choose a database model (RDBMS)

Physical level

☐ Built-In Database Objects

Relational Database Management System

An RDBMS moves data into a database, stores the data, and retrieves it so that it can be manipulated by applications.

- Logical operations
- Physical operations

Why is the relational data model commercially dominant?

Here are some examples of popular DBMS used these days:

- Oracle
- SQL Server
- IBM DB2
- PostgreSQL
- Amazon SimpleDB (cloud based)
- MySql etc.

Database Design (Schema)

• Covering database design with multiple tables, foreign keys, and the JOIN operation, which build a Physical Data Schema.

A database schema can be divided broadly into three categories

- **Physical Database Schema** This schema pertains to the actual storage of data and its form of storage like files, indices, etc. It defines how the data will be stored in a secondary storage.
- **Logical Database Schema** This schema defines all the logical constraints that need to be applied on the data stored. It defines tables, views, and integrity constraints.
- **View Schema-** This generally describes end user interaction with database systems.

Physical Data Schema..(Built-In Database Objects..)

- **Data dictionary**: Contains descriptions of the objects in the database
- **Dynamic performance tables**: Contains information used by the database administrator (DBA) to monitor and tune the database and instance
- **Database event triggers**: Triggers are procedures that execute implicitly whenever a table or view is modified, or when some user actions or database system actions occur

Data Dictionary Content

- Logical and Physical Database structures
- Definition and space allocation of objects
- Integrity constraints
- Users
- Roles
- Privileges

Oracle Database

• An Oracle database consists of operating system files, also known as database files, that provide the actual physical storage for database information.

Logical Structure

Tablespaces and Data Files

- Oracle stores data logically in tablespace and physically in data files.
- Can belongs to one database at a time
- Consists of one or more data files

Data files:

- Can belong to only one tablespace and one database
- Are a repository for schema object data

Types of Tablespace

- System tablespace
- 1. Created with the database
- 2. Required in all databases
- 3. Contains the data dictionary,
- 4. Should not contain user data, although it is allowed
 - Non-system tablespace
- Control the amount of space allocated to the user's objects
- 2. Enable more flexibility in database administration

Creating Tablespace

Create Tablespace userdata
DATAFILE '/uo1/oradata/userdatao1.db' SIZE

10G

Storage and Relationship Structure

Da	Database PROD															
TAI	BLE SY:			ES	3		USER_DATA					RBS			ТЕМР	
	TA K1			dk	of		DISK2/ DISK3/ USER1.dbf USER2.dbf					DISK1/ UNDO1.dbf			DISK1/ TEMP.dbf	
D.E	ble ta	D.I	D. dex dex	RE	3	S_DEPT Data Seg	S_I Dat Seç	ta	S_DEPT (cont'd) Data Seg	S_EMP FIRST_N AME Index Index Seg		RBS1 RB Seg	RBS2 RB Seg	RBS1 (cont'd) RB Seg	RBS2 (contrd) RB Seg	Temp Temp Seg
EX 1	TEI 2	NTS 1	2	1	2	1	1	2	2	1	FREE	1	1	2	2	1
Ora	acle	D/	ATA	В	L	оскѕ										

Write a query to display the current date. Label the column Date.

For each employee, display the employee number, last_name, total_salary, and salary increased by 15% and expressed as a whole number. Label the column New Salary

EMPLOYEE_ID	LAST_NAME	SALARY	New Salary
100	King	24000	27600
101	Kochhar	17000	19550
102	De Haan	17000	19550
103	Hunold	9000	10350

EMPLOYEE_ID	LAST_NAME	SALARY	New Salary	Increase
100	King	24000	27600	3600
101	Kochhar	17000	19550	2550
102	De Haan	17000	19550	2550
103	Hunold	9000	10350	1350
104	Ernst	6000	6900	900
107	Lorentz	4200	4830	630
124	Mourgos	5800	6670	870
141	Rajs	3500	4025	525
142	Davies	3100	3565	465
143	Matos	2600	2990	390

Display the date of the next Friday that is six months from the hire date. The resulting date should appear as Friday, August 13th, 1999. Order the results by hire date.

```
Next 6 Month Review
Friday, June 19TH, 1981
Friday, August 21ST, 1981
riday, August 28TH, 1981
riday, October 9TH, 1981
riday, November 6TH, 1981
riday, December 11TH, 1981
riday, March 12TH, 1982
riday, April 2ND, 1982
riday, May 21ST, 1982
riday, June 4TH, 1982
riday, June 4TH, 1982
```

SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS (hiredate, 6), 'FRIDAY') 'fmDay, Month DDth, YYYY') 'Next 6 Month Review' FROM emp ORDER BY hiredate

ENAME	SAL	COMM	AN_SAL
BLAKE	2850		34200
SCOTT	3000		36000
FORD	3000		36000
SMITH	800		9600
ALLEN	1600	300	5779200
WARD	1250	500	7515000
MARTIN	1250	1400	21015000
TURNER	1500	500	9018000
ADAMS	1100		13200
JAMES	950		11400
MILLER	1300		15600
ENAME	SAL	COMM	AN_SAL
KING	5000		60000
CLARK	2450		29400
JONES	2975		35700

SELECT ename, sal, comm, (sal*12) + (sal*12*nvl(comm,o)) AN_SAL FROM emp

ENAME No Manager

KING No Manager