Share price Valuation model of Automotive Company in Indonesia

Cepi Pahlevi¹, Tarsimin², Mahlia Muis³

Abstract — Stock price valuation is a common thing done by a public company that sells its shares on the Stock Exchange or a company that will conduct mergers and acquisitions. This study aims to build a valuation model for automotive companies in Indonesia that trade their shares on the Indonesia Stock Exchange. The design of this study uses proposed sampling data of automotive companies on the Indonesia Stock Exchange. The results of the multivariate price to earnings ratio model showed that return on assets (P = 0.0081 < 0.5%) had a significant effect on price to earnings ratio while the other four variables dividend pay out ratio, cost of debt, debt to equity ratio, and risk (beta) the effect on the price to earnings ratio for automotive companies is less significant. The result of the determination test shows the R-square value = 0.1603 or around 16.03% the stock price is determined by the independent variable used in the study and the rest (83.97%) is determined by other factors this is because the variable used in this study is still purposed sampling of the financial historical data, so that researchers can then do valuations using variables other than those used in this study.

Keywords—Valuation, Free Cash Flow, Price to Earning, undervalued.

I. INTRODUCTION

The automotive market in Indonesia still has a growing potential because motorization rate is still low at level 82 compared to the global average condition which has

reached 187 car units per 1,000 population (OICA: Organization Internationale des Consturctuerus d'Automobiles, 2015).

Table 1. Growth of Automotive Market (OICA, 2017)

					Rat	a-Rata	Pertun	nbuhar	1	2016 vs 2006 (10 years)				
		Glob	al		3.4%					1.4 x				
		Indone	esia		10.0%					3.3 x				
No	No Negara 2006 2007 2008			2009	2010	2011	2012	2013	2014	2015	2016	2016 vs 2006		
1	China	7,215,972	8,791,528	9,380,502	13,644,794	18,061,936	18,505,114	19,306,435	21,984,0	79 23,499,001	24,661,602	28,028,175	388.4%	
2	Jepan	5,739,520	5,309,200	5,082,233	4,609,333	4,956,148	4,210,224	5,369,721	5,375,5	13 5,562,888	5,046,510	4,970,260	86.6%	
3	India	1,750,892	1,993,721	1,983,071	2,266,269	3,040,390	3,287,737	3,595,508	3,241,3	02 3,177,005	3,424,836	3,669,277	209.6%	
4	Kore a Selatan	1,176,919	1,278,624	1,246,086	1,461,865	1,511,373	1,586,405	1,532,087	1,543,5	64 1,661,868	1,833,786	1,823,041	154.9%	
5	Iran	971,000	1,037,900	1,190,000	1,320,000	1,642,843	1,688,194	1,044,430	804,7	50 1,287,600	1,222,000	1,448,500	149.2%	
6	Australia	962,666	1,049,982	1,012,165	937,328	1,035,574	1,008,437	1,112,032	1,136,2	27 1,113,230	1,155,408	1,178,133	122.4%	
7	Indonesia	318,904	433,341	603,774	486,088	764,710	894,164	1,116,230	1,229,8	1,195,409	1,031,422	1,048,135	328.7%	
8	Thailand	674,953	631,181	615,270	548,870	800,357	794,081	1,423,580	1,330,6	72 881,832	799,632	768,788	113.9%	
9	Sudi Arabia	556,100	554,400	540,000	520,000	600,000	590,000	705,000	740,0	00 828, 200	830,100	655,500	117.9%	
10	Malaysia	490,748	487,176	548,115	536,905	605,156	600,123	627,753	655,7	93 666,487	666,677	580,124	118.2%	
11	11 Global 68,347,350 71,557,035 68,308,254					74,958,974	78,157,371	82,116,462	85,594,3	07 88,325,620	89,707,322	93,905,634	137.4%	

This condition makes many brands of vehicles enter to Indonesia market to get the opportunity to enjoy the growth of the automotive market in Indonesia. According to (Joyce Dargay, Dermot Gately and Martin Sommer, 2015) who examined data based on 1960-2002 in 45 countries projected that vehicles in the world would increase from

^{1,3}Department of Management, Faculty of Economic and Business, Hasanuddin University, Makassar, Indonesia

²Operation Directorate, PT. Meka Adipratama, Indonesia

800 million units in 2002 to 2 billion units in 2030. GDP per capita also has a relationship with an increase in the number of vehicles (Joyce Dargay, 2015) when income the per capita income is between \$ 3,000, - - \$ 10,000, - the growth of vehicles is almost 2 times the growth of income while income per capita is \$ 10,000 - \$ 20,000 - growth is relatively the same as GDP growth.

Most of the companies on the Indonesia Stock Exchange (around 72%) offer their shares in a condition that is undervalued or lower than its intrinsic value (Paramitha et al., 2014) but other studies (Daljono, 2000), consider that company owners to avoid undervalued because of this will result in the transfer of wealth from the owner to the investor. This research will be interesting because it builds a model that will be used to assess the

stock prices of automotive companies both those already on the Indonesia Stock Exchange and those that will make an initial public offering.

II. MATERIALS AND METHODS

Location and Research Design

This research was conducted in companies listed on the Indonesia Stock Exchange. For this study begins with an analysis of the financial statements of 10 selected companies which are used as samples to determine the variables that will be used in the company's analysis to determine the intrinsic value of shares of automotive companies in the Indonesia Stock Exchange.

Table 2. Automotive Company in Indonesia Stock Exchange

No	Kode Saham	Nama Perusahaan	IPO Date
1	ASII	Astra International Tbk	04-Apr-90
2	AUTO	Astra Otoparts Tbk	15-Jun-98
3	IMAS	Indomobil Sukses Internasional Tbk	19-Sep-93
4	TURI	Tunas Redian Tbk	06-May-95
5	GDYR	Goodyear Indonesia Tbk	01-Dec-80
6	GJTL	Gajah Tunggal Tbk	08-May-90
7	INDS	Indospring Tbk	10-Aug-90
8	MASA	Multistrada Arah Sarana Tbk	09-Jun-05
9	NIPS	Nipress Tbk	24-Jul-91
10	SMSM	Selamat Sempurna Tbk	09-Sep-96

The valuation model used is the valuation of the multivariate regression model of price to earnings ratio (PE) by using 5 independent variables calculated from the financial ratios of 10 automotive companies on the Indonesia Stock Exchange namely proxy risk (BETA), debt to equity ratio, cost of debt, dividend pay-out ratio and operation-return on assets.

Population and Sample

The population is 10 automotive sector companies (Table 2) which are already on the Indonesia Stock Exchange which have automotive related business units both manufacturing, distribution and dealers. The method used

is purposive sampling / non probability sampling method, which means that the selection of 10 companies is done by ignoring the principles of probability, and only looking at the desired elements of existing data and with specific intentions. The selected company is a company that has made an initial offer (IPO) before December 31, 2005 to obtain sample adequacy on valuation using a multivariate regression model.

Data collection for fundamental top down approach analysis is done by retrieving the data of the website of the institution and department related to the automotive industry.

Table 3. Agency Websites and related research departments

Lembaga	Website
Bank Indonesia	www.bi.go.id
Badan Pusat Statistik	www.bps.go.id
Bursa Efek Indonesia	www.idx.co.id
Yahoo Finance	https://finance.yahoo.com

Data on economic growth and projections used are economic growth data issued by the International Monetary Fund (IMF, 2017) and automotive market growth data is taken based on data released by the Organization

Internationale des Consturctuerus d'Automobiles (OICA). The collection of sample data of financial statements was taken from the official website of the related company for the period 2006-2016.

Table 4. Website sources of financial statements of automotive companies

Nama Perusahaan	Website
Astra International Tbk	www.astra.co.id
Astra Otoparts Tbk	www.astra-otoparts.com
Indomobil Sukses Internasional Tbk	www.indomobil.com
Tunas Redian Tbk	www.tunasgroup.com
Goodyear Indonesia Tbk	www.goodyear-Indonesia.com
Gajah Tunggal Tbk	www.gt-tires.com
Indospring Tbk	www.indospring.co.id
Multistrada Arah Sarana Tbk	www.multistrada.co.id
Nipress Tbk	www.nipress.com
Selamat Sempurna Tbk	www.smsm.co.id
Bintraco Dharma, Tbk	www.bintracodharma.com

In addition to the financial statements of the related companies researchers also took stock price data at the end of each month from December 2005 to December 2016 (133)data) for each company from https://finace.yahoo.com. Financial report data and stock prices that have been collected are then processed using Microsoft excels software to obtain financial ratios used for multivariate regression analysis, namely price to earnings ratio (PE), risk proxy (BETA), debt to equity ratio (DER), interest rate (I_R), dividend pay-out ratio (POR) and operation return on assets (ROA). Characteristics of samples and to assess the relationship of independent variables with PE were processed using Microsoft excels and EViews® 10+. As a comparison, the application of the model was chosen by two automotive companies in the Indonesia Stock Exchange that conducted IPOs in 2015 for the manufacturing sector, namely PT. Garuda Metalindo, Tbk (BOLT) and PT. Bintraco Dharma, Tbk (CARS) for the trade sector.

III. RESULTS

Sample Characteristics

The sample data period from 2006-2016 passed several economic conditions including the global financial crisis in 2008, commodity price boom between 2010-2012 and the decline in commodity prices in 2014. Conditions resulted in some stock returns and earnings being negative during the global financial crisis and when a significant decline in commodity prices. In this condition the researcher eliminated all that resulted in negative price to earnings ratio (PE) from the sample, so that out of 110 samples (10 companies x 11 years) were reduced to 70 samples.

Proxy Risk (BETA) is calculated based on the slope of the value of market return on stock returns of each company based on monthly data in a particular year (Table 9), debt to equity is obtained based on debt and equity data in the year-end balance sheet, the interest rate is calculated based on the interest rate on loans paid in a certain year (in the income statement) to the value of the debt at the end of the year, dividend pay out ratio is obtained from the dividend value paid for a given year (cash flow statement) to the value of earnings (income statement) and operation return on assets is calculated from EBIT value compare to total assets based on the annual report of each company.

Table 5. Variable of Multivariate Regression

No	PE	BETA	DER	D_Int	Pay Out	ROA	No	PE	BETA	DER	D_Int	Pay Out	ROA
1	1,24	1,87	0,98	3,5%	53,4%	8,6%	36	24,21	1,59	0,14	12,0%	87,8%	2,6%
2	1,70	1,79	0,74	3,4%	27,9%	13,4%	37	23,63	1,61	0,10	12,4%	30,0%	3,1%
3	0,46	1,69	0,71	2,2%	34,5%	14,7%	38	0,60	1,49	0,45	6,1%	13,3%	7,6%
4	1,40	2,13	0,54	2,2%	34,7%	14,3%	39	2,58	0,74	0,28	6,5%	55,9%	2,8%
5	1,54	1,54	0,64	1,5%	44,5%	13,0%	40	2,69	0,79	0,07	6,0%	47,9%	3,3%
6	1,68	0,81	0,59	1,6%	46,1%	11,6%	41	28,01	1,51	0,10	15,9%	0,0%	3,4%
7	15,84	1,69	0,63	1,8%	50,3%	10,9%	42	1,77	0,45	1,51	10,4%	0,0%	12,9%
8	14,18	0,67	0,61	1,7%	51,6%	8,7%	43	9,54	1,51	1,10	9,8%	6,3%	12,4%
9	15,67	1,93	0,58	2,0%	53,2%	8,5%	44	14,78	1,36	0,86	9,1%	6,1%	8,7%
10	16,79	1,88	0,56	1,9%	73,2%	7,0%	45	54,59	2,32	1,08	9,3%	78,2%	8,9%
11	22,10	2,11	0,51	2,5%	53,7%	6,7%	46	17,98	2,39	1,13	9,7%	12,3%	7,3%
12	11,18	0,83	2,76	0,5%	119,3%	1,9%	47	6,40	5,84	1,27	10,0%	0,0%	8,4%
13	2,28	1,05	2,55	0,4%	3,9%	5,7%	48	2,83	2,14	0,71	7,9%	0,0%	16,7%
14	1,07	0,81	2,21	0,3%	31,3%	7,3%	49	5,88	1,13	0,33	9,2%	27,0%	12,8%
15	1,96	3,08	0,43	0,4%	75,5%	6,7%	50	7,16	1,13	0,15	11,3%	102,3%	9,3%
16	12,03	2,03	0,37	8,4%	8,3%	12,4%	51	7,20	0,98	0,15	10,0%	41,4%	8,0%
17	10,39	0,69	0,35	6,9%	8,7%	12,6%	52	10,95	2,16	0,13	11,2%	0,0%	3,6%
18	12,35	0,31	0,46	4,7%	9,3%	11,8%	53	6,85	0,15	0,44	8,8%	0,0%	9,1%
19	9,63	1,91	0,43	8,1%	25,8%	5,1%	54	9,67	2,29	0,56	3,7%	3,5%	8,5%
20	13,34	2,04	0,51	6,3%	22,0%	2,2%	55	21,39	0,37	1,32	4,2%	4,3%	6,0%
21	11,50	1,36	0,54	8,0%	23,0%	3,3%	56	0,50	2,51	0,98	4,3%	0,0%	4,2%
22	13,15	0,06	0,39	7,7%	20,2%	9,2%	57	0,29	1,90	1,31	5,4%	0,0%	6,6%
23	8,73	2,82	3,39	4,3%	0,0%	4,1%	58	0,11	0,22	1,12	9,5%	0,0%	9,6%
24	10,88	2,31	0,93	4,5%	4,4%	7,9%	59	6,66	3,37	1,98	6,7%	0,0%	9,6%
25	18,28	0,23	1,51	3,8%	20,3%	6,0%	60	20,60	0,56	1,49	4,7%	0,0%	5,4%
26	25,45	0,51	1,88	4,1%	15,1%	4,3%	61	9,71	0,51	0,71	7,7%	0,0%	6,7%
27	1,53	0,33	0,20	10,1%	31,4%	5,2%	62	1,69	0,60	0,26	9,7%	0,0%	16,1%
28	1,08	1,07	0,15	9,3%	15,3%	10,8%	63	1,38	0,39	0,35	31,2%	31,5%	22,9%
29	0,91	1,22	0,13	6,9%	43,6%	11,3%	64	2,30	2,28	0,33	5,6%	65,0%	20,2%
30	1,11	0,68	0,07	6,4%	30,0%	9,0%	65	2,54	2,18	0,54	8,5%	27,2%	21,4%
31	9,04	2,17	0,08	8,1%	43,0%	10,3%	66	2,87	0,22	0,39	10,3%	24,0%	24,7%
32	12,49	1,76	0,19	6,3%	44,7%	7,5%	67	3,70	0,62	0,44	8,1%	32,3%	25,2%
33	12,99	0,75	0,30	6,0%	27,5%	5,4%	68	4,29	1,41	0,23	11,0%	20,3%	
34	18,56	0,74	0,03	26,8%	55,4%	4,9%	69	3,60	0,05	0,22	8,1%	16,8%	
35	23,22	1,56	0,15	6,6%	47,3%	2,5%	70	11,25	0,71	0,10	9,8%	12,7%	29,6%

Source: Calculated by researcher based on financial statement and published share price

Table 6. Return rate to calculate beta

_									ne 0.		
No		at Penger					_		_		_
	IHSG	ASII	TURI	IMAS	AUTO	GJTL	GDYR		MASA	NIPS	INDS
1	- 0.00	- 0.06	- 0.06	0.32	0.04	-	- 0.01	0.27	-	-	-
2	0.08	0.17	-	- 0.40	0.02	0.03	0.02	- 0.13	-	-	- 0.43
3	0.11	0.04	0.16	0.25	0.03	0.08	- 0.02	0.15	0.09	0.25	0.40
4		- 0.18	- 0.05	- 0.12	- 0.03	- 0.23		- 0.03	- 0.11	- 0.07	0.12
5	- 0.01	- 0.01	- 0.01	-	- 0.03	- 0.04	- 0.16	-	0.06	-	0.13
6	0.03	0.58	0.02	-	0.19	0.04	0.67	0.02	- 0.01	-	ļ -
7	0.06	0.16	-	0.06	- 0.03	- 0.01	-	-	-	- 0.14	ļ -
8	0.07	0.12	0.03		0.04	0.13	0.01	0.29	-	0.24	<u> </u>
9	0.03	0.08	0.02	-	- 0.03	-	- 0.02	0.08	0.14	-	-
10	0.09	0.34	0.11	-	- 0.03	- 0.07	- 0.21	0.04	0.10	- 0.23	- 0.02
11	0.05	- 0.02	- 0.03	-	0.16	0.04	0.02	- 0.01	- 0.02	0.09	-
12	- 0.03	- 0.05	- 0.03	0.09	- 0.03	- 0.02	- 0.03	- 0.11	0.02	0.07	
13	- 0.01	- 0.05	- 0.07	-	- 0.04	- 0.05	0.13	-	0.02	0.85	0.20
14	0.05	- 0.06	0.05	-	- 0.04	- 0.06	0.19	-	0.07	- 0.08	-
15	0.09	0.09	0.15	-	0.07	0.06	0.14	- 0.03	- 0.06	- 0.13	- 0.22
16	0.04	0.14	0.18	- 0.20	0.07	0.06	- 0.03	0.02	0.09	- 0.20	0.81
17	0.03	0.03	- 0.04	-	- 0.02	0.05	0.03	0.02	- 0.04	0.09	-
18	0.10	0.35	0.03	-	0.24	- 0.02	0.05	-	0.00	0.09	0.07
19	- 0.07	- 0.05	0.02	0.16	- 0.08	- 0.11	- 0.05	0.18	- 0.15	- 0.16	- 0.27
20	0.08	0.08	0.02	0.27	0.06	0.02	- 0.07	0.28	0.13	- 0.06	1.56
21	0.08	0.33	0.14	0.27	0.05	0.02	0.07	0.12	0.12	0.17	- 0.17
22	0.12	0.04	0.09	- 0.22	0.03	- 0.10	0.03	- 0.03	- 0.15	- 0.14	0.04
23		}	§	ļ	}	ļ		····		·	†
	0.02	0.09	- 0.03	0.20	0.02	- 0.01	0.32	0.05	0.10	0.23	0.17
24	- 0.04	- 0.00	- 0.15	- 0.16	- 0.04	- 0.14	0.12	0.15	0.09	- 0.35	- 0.12
25	0.04	0.02	- 0.01	- 0.02	0.05	- 0.11	0.38	- 0.02	0.11	0.17	0.13
26	- 0.10	- 0.13	- 0.02	-	0.01	- 0.11	- 0.06	0.02	- 0.06		0.12
27	- 0.06	- 0.18	- 0.08	-	0.07	- 0.16	- 0.15	0.01	- 0.02	-	- 0.11
28	0.06	0.05	0.16		0.05	0.54	- 0.09	0.16	- 0.02	- 0.22	- 0.23
29	- 0.04	- 0.08	- 0.08	0.02	- 0.02	- 0.13	- 0.12	0.11	- 0.04	0.98	- 0.16
30	- 0.02	0.55	0.27		0.64	0.02	0.14	0.71	0.09	0.22	0.43
31	- 0.06	- 0.08	- 0.01	-	0.02	- 0.08	- 0.00	0.07	- 0.10	- 0.14	0.09
32	- 0.15	- 0.18		- 0.06	- 0.12	- 0.23	- 0.05	0.02	- 0.11	- 0.24	- 0.32
33	- 0.31	- 0.45	- 0.30	0.06	- 0.36	- 0.32	- 0.20	- 0.20	- 0.28	- 0.23	0.52
34	- 0.01	0.85	0.03	-	0.69	- 0.12	-	0.23	- 0.04	0.10	- 0.19
35	0.09	0.03	0.04	0.02	- 0.03	0.23	- 0.55	- 0.24	0.04	-	0.33
36	- 0.02	0.23	- 0.29	0.01	- 0.09	- 0.11	- 0.11	- 0.46	0.04	-	- 0.17
37	- 0.04	- 0.13	0.15	-	- 0.09	- 0.03	0.24	-	- 0.06	0.01	-
38	0.12	0.26	0.62	- 0.25	- 0.01	0.14	- 0.09	- 0.14	0.17	-	-
39	0.20	0.26	0.06	- 0.32	0.09	0.02	- 0.05	- 0.17	- 0.06	- 0.04	0.42
40	0.11	0.16	0.30	0.20	0.10	0.27	0.03	1.72	0.05	- 0.31	- 0.21
41	0.06	0.14	- 0.02	0.25	- 0.09	0.04	0.53	- 0.28	0.04	0.75	-
42	0.15	0.63	1.55	- 0.05	0.52	0.05	0.20	1.12	- 0.04	-	0.30
43	0.01	0.03	- 0.10	-	0.41	0.05	0.02	0.11	0.11	0.03	- 0.07
44	0.01	0.11	- 0.03	-	- 0.01	0.31	0.02	0.17	0.43	-	0.07
44	- 0.04	- 0.06	- 0.03	-	- 0.01	- 0.02	- 0.02	0.17	- 0.06	- 0.06	- 0.17
~~~		}	*	<del>-</del>	ş	ţ	0.12	ļ		0.00	0.07
46 47	0.02	0.14	0.03	-	0.20	0.06	}	- 0.00	- 0.13	0.15	0.07
	0.05	0.07	0.36	<del>-</del>	- 0.12	- 0.02	0.01	0.09		- 0.15	- 0.13
48	0.03	0.04	0.09	-	0.13	0.08		0.13	- 0.04	0.17	- 0.15
49	()	0.01	-	-	- 0.02	0.24	-	0.28	0.01	- 0.15	- 0.23
50	0.09	0.16	0.14	- 0.12	0.11	0.40	0.33	0.18	0.34	0.17	2.29
51	0.07	0.13	0.30	- 0.12	1.04	0.30	0.09	0.03	0.11	0.17	0.07
52		- 0.08	- 0.20	0.03	- 0.16	- 0.17	- 0.06	- 0.29	- 0.14	-	- 0.07
53	0.04	0.12	0.01	0.28	0.07	0.13	- 0.04	0.06	-	- 0.12	- 0.04
54	0.05	0.28	0.16	0.10	0.49	0.29	0.04	- 0.01	0.04	- 0.09	0.20
55	0.00	- 0.06	0.05	2.48	0.06	0.40	- 0.01	- 0.14	- 0.01	0.22	0.46
56	0.14	0.19	0.40	1.46	0.05	0.15	0.01	0.69	0.40	0.71	2.06
57	0.04	0.01	- 0.17	- 0.26	- 0.04	0.17	- 0.04	- 0.05	- 0.11	0.23	- 0.04
58		- 0.01	- 0.18	0.01	- 0.02	- 0.01	- 0.12	0.01	- 0.02	- 0.06	1.24
59	0.05	0.05	- 0.09	0.09	- 0.14	-	0.15	0.02	0.03	0.03	- 0.31
60	- 0.08	- 0.10	0.03	- 0.12	- 0.10	- 0.01	- 0.22	0.08	- 0.15	- 0.07	- 0.07
61	0.02	0.06	- 0.03	-	0.08	- 0.10	0.04	0.03	- 0.02	0.05	- 0.08
62	0.06	0.10	-	0.12	0.01	0.09	0.01	0.06	0.22	- 0.07	0.03
63	0.04	- 0.01	- 0.02	0.17	0.21	0.04	0.15	0.02	0.06	- 0.08	0.18
64	0.00	0.05	- 0.02	- 0.02	- 0.04	0.28	0.03	-	0.37	0.05	0.11
65	0.01	0.34	0.10	- 0.05	0.17	0.05	- 0.13	0.03	0.15	- 0.12	0.43
66	0.06	0.11	0.20	0.53	0.21	0.05	- 0.02	0.09	- 0.05	0.25	0.15
67		- 0.06	- 0.11	- 0.10	- 0.05	- 0.11	- 0.02	0.03	0.03	0.23	- 0.25
U/	·	- 0.06	0.02	- 0.10	- 0.05	-0.11	- 0.02	0.03	- 0.05	- 0.20	- 0.23
60		- 0.04	U.UZ	- 0.04	- U.1/	- U.15	- 0.02	0.00	- 0.05	- 0.20	- U.ZI
68 69	0.07	0.08	- 0.06	0.15	0.08	0.11	-	0.02	-	0.35	0.09

io ca		gkat Peng		ian hor	dacarka	n IUCC	dan ha	rga cah	2m 10 r	orucak	naan
No	IHSG	ASII	TURI	IMAS	AUTO	GJTL	GDYR	SMSM	MASA	NIPS	INDS
71	0.03	0.04	- 0.02	- 0.02	0.06	0.08	0.06	0.14	0.02	0.14	- 0.10
72	0.03	0.07	0.18	0.17	0.05	- 0.03	0.29	0.24	-	-0.14	0.03
73	0.01	- 0.10	-	- 0.04	- 0.06	- 0.05	-	0.02	0.18	- 0.01	- 0.03
74	0.03	0.04	0.04	0.05	- 0.01	- 0.03	- 0.02	0.03	0.05	0.13	0.18
75	0.01	- 0.04	0.05	0.18	0.08	- 0.04	- 0.08	0.16	- 0.08	- 0.09	0.39
76	- 0.08	- 0.09	0.04	- 0.10	- 0.06	- 0.05	0.07	- 0.04	- 0.12	0.10	0.01
77	0.03	0.33	- 0.05	- 0.11	0.05	- 0.07	- 0.07	0.03	0.04	0.06	- 0.02
78	0.05	0.02	0.06	- 0.13	0.06	0.03	-	- 0.01	- 0.08	- 0.02	0.20
79	- 0.02	- 0.04	- 0.03	- 0.07	0.03	0.04	0.20	0.15	- 0.15	- 0.08	- 0.09
80	0.05	0.10	0.08	-	0.04	- 0.06	0.06	0.20	- 0.02	0.05	- 0.01
81	0.02	0.09	0.07	- 0.11	- 0.01	- 0.04	- 0.11	0.08	- 0.06	0.35	0.07
82	- 0.02	- 0.09	- 0.06	0.03	- 0.01	0.01	- 0.05	0.05	- 0.11	- 0.06	- 0.07
83	0.01	0.04	0.07	-	- 0.07	-	0.03	- 0.06	0.28	- 0.15	0.04
84	0.03	- 0.03	- 0.01	- 0.02	0.05	0.02	- 0.02	0.04	- 0.14	-0.01	0.01
85 86	0.08	0.08	0.01	0.05	0.06	0.14	0.14	0.05	0.03	0.57 - 0.09	- 0.05
87	0.03	- 0.01	0.02	- 0.04	- 0.02	0.14	0.23	0.01	0.11	0.35	0.03
88	0.01	- 0.04	- 0.05	- 0.01	0.02	0.11	0.42	- 0.06	- 0.11	0.33	- 0.10
89	- 0.05	0.01	- 0.07	0.01	- 0.03	- 0.01	- 0.06	0.04	0.07	- 0.04	0.19
90	- 0.04	- 0.07	- 0.15	0.01	- 0.02	- 0.18	0.05	- 0.08	-	0.02	- 0.13
91	- 0.09	- 0.07	- 0.32	- 0.09	- 0.04	- 0.28	- 0.08	0.05	0.04	- 0.01	- 0.16
92	0.03	0.07	0.08	0.16	0.14	0.24	- 0.10	0.17	- 0.14	0.28	0.15
93	0.05	0.03	0.04	- 0.09	- 0.01	- 0.01	- 0.04	- 0.07	0.04	0.51	0.11
94	- 0.06	- 0.05	- 0.02	- 0.03	- 0.12	- 0.22	-	0.42	- 0.05	-0.22	- 0.07
95	0.00	0.09	- 0.04	- 0.01	- 0.05	- 0.07	-	- 0.04	0.11	-0.11	0.05
96	0.03	- 0.06	0.14	- 0.00	- 0.08	0.12	-	- 0.10	- 0.13	- 0.08	- 0.07
97	0.05	0.08	0.07	0.07	0.07	0.16	- 0.03	0.16	- 0.04	0.04	0.08
98	0.03	0.06	0.04	- 0.00	0.11	- 0.03	0.03	0.11	- 0.04	-0.10	
99	0.02	0.01	ļ <u>-</u>	- 0.05	-	- 0.10	- 0.03	- 0.10	- 0.01	- 0.03	0.01
100	0.01	- 0.05	- 0.02	- 0.01	- 0.06	- 0.08	- 0.03	0.15	0.01	- 0.09	0.05
101	- 0.00	0.05	0.05	0.03	0.04	0.04	0.03	0.07	- 0.01	- 0.02	0.04
102	0.04	0.06	0.07	- 0.10	0.01	- 0.01	- 0.10	0.08	- 0.04	0.07	- 0.00
103 104	0.01	- 0.02 - 0.07	- 0.04	0.05	0.03	- 0.02 - 0.12	- 0.01 0.02	- 0.14 0.15	0.10	0.11 -0.10	- 0.11
105	- 0.01	- 0.07	- 0.11	- 0.16	- 0.08	- 0.12	- 0.02	0.13	0.10	0.05	0.05
106	0.01	0.04	- 0.02	- 0.11	- 0.00	- 0.09	- 0.03	0.03	0.02	0.79	- 0.21
107	0.01	0.04	- 0.00	0.17	0.08	0.09	-	0.08	- 0.01	-	- 0.03
108	0.01	0.06	0.11	- 0.01	- 0.11	0.02	0.01	0.02	- 0.12	0.04	- 0.13
109	0.03	-	0.04	0.01	- 0.01	- 0.04	0.01	- 0.04	- 0.04	0.13	- 0.13
110	0.01	0.09	0.04	0.03	- 0.03	- 0.05	- 0.01	- 0.05	- 0.05	0.06	0.08
111	- 0.08	- 0.20	- 0.01	0.02	- 0.14	- 0.17	0.01	0.06	- 0.04	- 0.01	0.04
112	0.03	0.07	0.01	- 0.05	- 0.05	- 0.08	0.05	- 0.02	- 0.05	0.02	- 0.22
113	- 0.06	- 0.01	- 0.06	- 0.05	- 0.14	- 0.15	-	0.00	- 0.13	- 0.01	- 0.17
	- 0.02	- 0.06	- 0.05	-	- 0.04	- 0.12	0.15	0.05	0.03	-0.01	- 0.10
	- 0.06	- 0.11	- 0.20	- 0.18	- 0.39	- 0.33	0.09	0.02	- 0.12	- 0.32	- 0.26
116	- 0.06	- 0.12	- 0.01	-	0.06	0.05	- 0.10	- 0.08	- 0.06	0.05	- 0.33
117	0.05	0.14	0.07	- 0.03	0.09	0.12	0.01	0.10	- 0.00	-0.20	0.05
	- 0.00	0.00		- 0.15	*	- 0.09	0.69	0.03	0.00	0.17	- 0.13
119 120	0.03	0.01 0.07	0.10	- 0.08 - 0.09	0.01	- 0.01 - 0.05	- 0.01	0.03	0.53 - 0.41	0.06	0.04
121	0.00	0.07	0.23	- 0.03	0.01	- 0.03	-	0.03	- 0.41	-	0.07
122	0.02	0.03	-	- 0.07	0.06	0.52	-	0.03	0.08	0.39	0.19
ļ	- 0.00	- 0.07	0.26	- 0.05	0.04	0.08	- 0.12	- 0.02	0.06	- 0.01	0.15
	- 0.01	- 0.02	0.28	- 0.09	- 0.08	- 0.11	- 0.09	0.02	- 0.09	- 0.09	0.11
125	0.05	0.14	- 0.05	- 0.08	0.03	0.37	-	- 0.00	0.05	- 0.06	0.04
126	0.04	0.04	0.05	- 0.06	0.04	0.66	-	0.00	- 0.04	-	0.37
127	0.03	0.06	0.07	0.06	0.18	- 0.07	0.02	- 0.08	- 0.07	- 0.10	0.14
128	- 0.00	0.01	- 0.05	- 0.11	0.02	- 0.01	- 0.07	0.11	0.02	- 0.12	- 0.16
129	0.01	0.00	0.02	- 0.04	- 0.05	- 0.17	0.05	0.03	0.05	0.14	0.07
	- 0.05	- 0.08	- 0.08	0.07	- 0.07	- 0.20	- 0.09	- 0.12	0.61	-	- 0.04
131	0.03	0.10	0.02	- 0.06	- 0.00	0.15	- 0.05	- 0.01	- 0.13	0.04	0.02
132	- 0.00	- 0.04	0.04	- 0.01	0.05	- 0.00	- 0.20	- 0.10	- 0.12	- 0.17	- 0.06
133	0.02	0.03	- 0.00	- 0.01	0.30	0.10	0.45	0.11	- 0.15	- 0.05	0.02

Source : Calculated by researcher based on data from <a href="http://finance.yahoo.com">http://finance.yahoo.com</a>)

# Valuation of multivariate regression models

Model estimation results (Table 7) show that 16.03% (coefficient of determination R-square = 0.16028) PE value is affected by proxy risk (BETA), debt to equity ratio, cost of debt, dividend pay-out ratio and operation-return on assets. Those five variables that have a significant effect on

price to earnings ratio are return on assets (P = 0.0081 < 0.05) while the other independent variables have less significant effect (P > 0.05). Regression done with EViews® 10+ with the estimation equation as follows:

 $PE = 13.03 - 1.19 (BETA) - 0.58 (DER) + 1.00 (I_R) + 6.53 (POR) - 45.55 ROA$ 

Table 7. Equation estimateion based on multivariate regression of price to earnings ratio (PE)



# IV. DISCUSSION

The results of this study are in line with previous studies which stated that most of the companies on the Indonesia Stock Exchange (around 72%) offered their shares in an undervalued or lower than their intrinsic value (Paramitha et al. 2014). According to the efficient market hypothesis that a valuation can effectively explain the stock price on the exchange if the stock is included in an efficient market. This was explained by Fama (1970) that an efficient exchange is if the value of an asset or stock has reflected all available information, including information that is private.

# Valuation of multivariate regression models

The valuation model with multivariate regression is estimated using data from 10 automotive sector public companies on the Indonesia Stock Exchange (Table 1) and the resulting equation must be tested for classical assumptions before being declared feasible to be used as a model for the stock price valuation of automotive companies on the Indonesia Stock Exchange. The results of classical assumptions (linearity, multicollinearity, autocorrelation, normalization, heteroscedasticity) are all fulfilled.

Table 8 shows the results of the linearity-Ramsay Reset Test test showing that the Prob F value (0.1389) is greater than the 0.05 alpha level (5%) so the regression model meets linearity assumptions.

Table 8. Linierity test-Ramsay Reset Test



Table 9 describes the results of multicollinearity tests using Variance Inflation Factors (VIF) test and based on the classical assumption conditions of linear regression with OLS, a good linear regression model is free from the presence of multicollinearity.

Table 9. Multicolinierty test -VIF



Because the value of the VIF of the variable does not exist more than 10, it can be said that there is no multicolinerality in the independent variable.

Command Capture View Proc Object | Print Name Freeze | Estimate Forecast Stats Resids Breusch-Godfrey Serial Correlation LM Test: Null hypothesis: No serial correlation at up to 2 lags 2.818314 Prob. F(2,62) 0.0674 -statistic Obs*R-squared 5 833583 Prob. Chi-Square(2) # (F B S # 1 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 06/05/18 Time: 13:07 Sample: 170 Included observations: 70 Presample missing value lagged residuals set to zero. Std. Error t-Statistic Prob. Variable Coefficient 0.026162 3.922476 0.006670 0.9947 BETA 0.204626 2 073154 0.098703 0.9217 DER 0.456413 1.629125 -0.280158 0.7803 LR POR 0.018138 1.071712 4.234826 0.016925 -0.119799 0.9866 0.9050 0.135979 2.371228 ROA 2.207122 16.23130 0.8923 RESID(-1) 0.307414 0.129643 0.0209 RESID(-2) -0.092297 0.137245 -0.672495 0.5038 R-squared 0.083337 Mean dependent var 0.000000 Adjusted R-squared 0.020157 S.D. dependent var

8.599740

4585.243

245,6993

0.805232

0.586146

Table 10. Autocorellation testLM (Lagrange Multiplier) Test.

Table 10 shows the results of the autocorrelation test using the Brush-Godfrey or LM (Lagrange Multiplier) Test method and the result is the Prob value. F (2.22) of 0.0674 can also be referred to as the calculated F probability value.

Log likelihood

-statistic Prob(F-statistic)

S.E. of regression Sum squared resid

Prob value. F count is greater than alpha level 0.05 (5%), so that based on hypothesis testing, H₀ is accepted which means there is no autocorrelation.

7.248552

505522

350624

1.998039



Table 11. NormalityJarque-Bera (JB)

Akaike info criterion Schwarz criterion

Hannan-Quinn criter

Durbin-Watson stat

The results of the normality test using the JB (Jarque-Bera) method obtained a probability value of 0.879796 with a value of more than 0.05 (5%) meaning that the residuals were normally distributed. The last classic assumption test is heteroscedasticity test to find out whether the residuals and predictive values have a relationship or not, the results

of testing using the Heteroskedacity test of Breusch-Pagan Godfrey, Prob value. F-statistic (F count) 0.2160 means that it is greater than the alpha level of 0.05 (5%) then H₀ is accepted which means that heteroscedasticity does not occur.

Page | 284 www.ijaers.com

Table 12. Heteroscedasticity Test

View	Proc	Object	Print	Name	Freeze	Estima	ate	Forecast	Stats	Resids			
	Heteroskedasticity Test: Breusch-Pagan-Godfrey												
Null	Null hypothesis: Homoskedasticity												
F-sta	atistic			1.45	58029	Prob. F	F(5,	64)		0	.2160		
		uared			58029 58216			64) -Square(	5)	_	.2160		

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 06/05/18 Time: 13:11 Sample: 170 Included observations: 70

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-6.675951	87.15988	-0.076594	0.9392
BETA	-19.25126	46.46518	-0.414316	0.6800
DER	22.30419	36.31331	0.614215	0.5413
I R	35.12732	22.61128	1.553531	0.1252
POR	215.3796	95.33866	2.259100	0.0273
ROA	-103.5506	365.1187	-0.283608	0.7776
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.102260 0.032124 193.8636 2405318. -464.8901 1.458029 0.216003	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion nn criter.	71.45861 197.0545 13.45400 13.64673 13.53056 1.954329

After the five classical assumptions of this equation are fulfilled, the next test is the model feasibility test, in this case there are three tests to be carried out. First, the F test or model feasibility test (Table 7) shows the prob value. (F-statistic) 0.043592 is smaller than the error rate / error (alpha) 0.05 it can be said that the estimated regression model is feasible. Second, the t test in multiple linear regression is intended to test whether the parameters (regression coefficients and constants) that are supposed to estimate the equation / multiple linear regression model have been the right parameters or not. Right here is the parameter capable of explaining the behavior of independent variables in influencing the dependent variable. The results of the t test are seen in the prob value. t count for ROA 0.0081 < 0.05 means that ROA has a significant effect on the PE value of the automotive industry at 95% confidence level while for other variables prob. t counts greater than 0.05 means that the effect is less significant. Finally, the coefficient of determination explains the variation in the effect of independent variables on the dependent variable. Or it can also be said as a proportion of the influence of all independent variables on the dependent variable. In this study because it uses R- Squared and Adjusted R-Squared to determine the coefficient of determination, it can be seen that the values of R-Square = 0.16028 and Adjusted R-Squared = 0.094513 means the independent variable [risk (BETA) free variable, Debt to Equity Ratio (DER), Interest Rate (I_R), Dividend Payout Ratio (POR) and Operation-Return on Assets (ROA)] affect the price to earnings ratio of 16.03% and the remaining 84.97% is influenced by other variables not in the regression variable.

Based on the classical assumption testing and also the reliability test of the multivariate regression valuation model, PE estimation equations obtained can be applied to the valuation of automotive companies in the Indonesia Stock Exchange. For this reason, researchers applied the model obtained to assess the initial stock price of two automotive companies that were IPOs in 2015 and 2017. The selected companies represented automotive companies from the manufacturing and trading sectors, namely PT. Garuda Metalindo, Tbk for the manufacturing sector which conducted IPOs on July 7, 2015 and PT. Bintraco Dharma, Tbk for the trade sector which conducted an IPO on April 10, 2017.

			,								
	ASII	TURI	IMAS	AUTO	GJTL	GDYR	SMSM	MASA	NIPS	INDS	Total
Beta	1,51	1,54	0,59	1,12	1,38	0,41	0,92	0,64	0,83	1,53	
Equity (Industri)	139.906	2.823	6.710	10.537	5.848	760	1.581	4.576	843	2.068	175.651
Beta x Equity	211.071	4.345	3.964	11.762	8.057	312	1.454	2.926	702	3.170	247.762
Leverage Beta	1,41										
Debt (Industri)	70.910	1.097	16.538	1.005	7.444	75	157	2.724	595	274	100.819
D/E	0,51	0,39	2,46	0,10	1,27	0,10	0,10	0,60	0,71	0,13	
Unlevage Beta	0,99		D/E (BOLT)	0,08	==>	ï	everage Bet	a (BOLT) =	1,04		
D/E Industri	0,57										
Tax Rate	25,0%		D/E (CARS)	0,51	==>	L	everage Bet	a (CARS) =	1,36		

Table 13. Calculation of Beta in PT. Garuda Metalindo and PT. Bintraco Dharma

Source: Calculated by researcher based on financial statement

PE value for PT. Garuda Metalindo, Tbk obtained by the valuation model obtained in the study 8.5 times the earnings value of 192.3 billion rupiahs and the number of shares of 1.87 billion shares obtained the value of the stock price of Rp 870, -, while the initial stock price

of Rp 750, - For PT. Bintraco Dharma, Tbk PE value obtained from the above model is 10.9 times (Table 5) with an earning value of 245.2 billion rupiah and the number of shares of 1.35 billion shares, the share value of Rp. 1,980, -, while the initial share price of Rp. 1,750, -.

Table 14. Price to Earning Ratio (PE) Variable Calculation

SAHAM	BETA	DER	I_R	POR	ROA	PE
BOLT	1,36	0,51	10,8%	30,0%	5,1%	10,9
CARS	1,04	0,08	13,2%	67,6%	17,1%	8,5

Source: Calculated by researcher based on financial statement

The implementation of the model in the valuation of stock prices in two automotive companies both in the manufacturing and trading sectors showed that both were undervalued, in line with previous studies (Paramitha et al., 2014). Empirical data also shows that stock prices have an

increasing trend compared to the value of their initial share price when hold in the long term (Figure 1 and Figure 2) in accordance with efficient market theory where share prices will follow the information available on the market.



Fig.1: Share Price of PT. Garuda Metalindo, Tbksince IPO (https://finance.yahoo.com)



Fig.2: Share Price of PT. Bintraco Dharma, TbkSince IPO

(https://finance.yahoo.com)

### V. CONCLUSIONS AND RECOMMENDATIONS

Researchers concluded that the model obtained in this study could be applied in the valuation of automotive companies in the Indonesia Stock Exchange, both automotive company in the manufacturing sector and also the trade sector, because they had met the classical assumption test and the determination test. Based on the independent variables that the researcher uses in this research shows that the level of influence on the estimated value is still relatively low, because the variables used in this study focus on financial statement variables that are influenced by various past factors, so that further researchers can develop using different variables not only variables obtained from financial statements but also external factors that can affect stock prices.

# REFERENCES

- [1] Almilia L S., &Sulistyowati., D. (2007). AnalisaTerhadapRelevansiNilaiLaba, Arus Kas Operasidan Nilai Buku Ekuitaspada Periode Disekitar Krisiskeuanganpada Perusahaan manufaktur di BEJ. Proceeding Seminar Nasional.
- [2] Al-yahyaee K., Pham, T. M., & Walter, T. S. (2013). The Form of Debt and Stock Returns: Empirical Evidence from Oman. International Journal of Economics and Finance, 5(7): 9–21.
- [3] Ang, A., and Liu, J. (2004), How to discount cashflows with time-varying expected returns, Journal of Finance, 59, 2745–2783.

- [4] Bakshi, G., and Chen, Z. (2005), Stock valuation in dynamic economics, Journal of Financial Markets, 8, 111– 151.
- [5] Bernoulli, D. (1954), Specimen theoriae novae de mensurasortis', Commentarii Academiae Scientiarum Imperialis Petropolitanae, reprinted as: Exposition of a new theory on the measurement of risk, Econometrica, 22, 23– 36.
- [6] Bodie, Zvi, Alex Kane & Allan J. Markus. (2009). Investments (8 thed). Singapore: McGrawHill/Irwin.
- [7] Bogue, M., and Roll, R. (1974), Capital budgeting of risky projects with 'imperfect' markets for physical capital, Journal of Finance, 29, 601–613.
- [8] Benaji, R. M., 2011. Valuasinilaiwajarsahamperumpegadaianterkaitrencanaipo tahun 2012 denganmetode discounted freecash flow to equity. (Tesistidakdipublikasikan). Jakarta: Universitas Indonesia.
- [9] Cao M., Stanca N., Lio W, Tao X (2013), St John's University; Toyota Motor Corporation Valuation.
- [10] Daljono. 2000. AnalisisFaktor-faktor yang Mempengaruhi Initial Return Saham yang Listing Di BEJ Tahun 1990– 1997. Kumpulan Jurnal Simposium Nasional Akuntansi,III: 556–572.
- [11] Damodaran, A., 2002. Investment valuation: Tools and techniques for determining the value of any asset (2nd ed.). New York: John Wiley & Sons.
- [12] Damodaran, Aswath. (2001). The Dark Side of Valuation: Valuing Old Tech, New Tech, and New Economy Companies. New Jersey: Prentice Hall.
- [13] Ferro da Costa J A (2015). BMW AG Equity Valuation.
- [14] Hutapea E.C, Purnomoputri T.P, Sihombing P, 2008, Analisis Valuasi Nilai Wajar Saham PT. Adaro Energy,

- TbkMenggunakanMetode Free Cash Flow to Firm (FCFF), Journal of Applied Finance and Accounting, 5(2) 240-270
- [15] Gitman L.J, Zutter C.J, 2012, Principal of Managerial Finance, Global Edition, Thirteenth Edition, Pearson Eduction
- [16] Hutapea E C., Poernomoputri T P., Sihombing P (2012). Analisis ValuasiNilai Wajar Saham PT. Adaro Energy Tbk Menggunakan Metode Free Cash Flow to Firm (FCFF). Journal of Applied Finance and Accounting 5(2), 240-270
- [17] Kasim Y.Y, 2011, Valuasi Harga Saham PT. Garuda Indonesia (Persero), Tbkdengan Metode Present Value to EBITDAR Cash Flow dan Hidden Value, Tesis, Universitas Indonesia
- [18] Nilai Perusahaan: KeputusanKeuanganSebagaiVariabel Intervening. Jurnal Ekonomi Bisnis & Akutansi Ventura, 12(1): 71–86.
- [19] Permana, Y. 2008. Pengaruh Fundamental Keuangan, Tingkat Bungadan Tingkat Inflasiterhadap Pergerakan Harga Saham. Jurnal Akuntansi, 3 (12): 1–6. Pujiati, D. 2012. Pengaruh Struktur Kepemilikan Terhadap.
- [20] Paramitha A L., Hartoyo S., Maulana N A. (2014). The Valuation of Initial Share Price Using The Free Cash Flow to Firm Method and The Real Option Method in Indonesia Stock Exchange. Journal Management dan Kewirausahaan, Vol 16, No 1, Maret 2014; 9-16.
- [21] Simorangkir J.P.S., Simorangkir P.(2011) Valuasi Harga Saham PT. Bank Negara Indonesia (Persero) Tbkdengan Discounting Earnings Approach dan Price to Book Value Ratio, Perbanas.
- [22] Sujoko.,Soebiantoro U.,(2007). Pengaruh Struktur Kepemilikan Saham, Leverage, Faktor Intern danaktor Eksternterhadap Nilai Perusahaan. Jurnal Manajemendan Kewirausahaan, 9(1): 41–48.
- [23] Sukaran U. (2010).Research Methods For Business, A Skill Building Approach, Third Edition, Southern Illinois University at Carbonadale
- [24] Tandelilin, E. (2017). *Pasar Modal, Manajemen Portofolio & Investasi*, Penerbit PT. Kanisius, Yogyakarta.
- [25] Viebig J., Poddig T., Varmaz A., (2008). Equity Valuation :Models from Leading Investment Bank, New York: John Wiley & Sons
- [26] Winarno W W.(2011). Analisis Ekonometrikadan Statistikadengan Eviews. Yogyakarta: UPP STIM YKPN.
- [27] Yolanda R. (2009). Pengaruh Laba Akutansi, Arus Kas Operasidan NilaiBuku Ekuitasterhadap Harga Sahampada Perusahaan-perusahaan Manufaktur yang terdaftar di Bursa Efek Indonesia.
- [28] YuyuYusranKasim (2011); Valuasi Harga Saham PT. Garuda Indonesia (Persero) Tbkdenganmetode Present Valueto EBITDAR Cash Flow danHiden Value. Tesis, FakultasEkonomi, Universitas Indonesia.