

Teoría de Juegos

Emilene A. Romero M. Guatemala, 10 de septiembre de 2016

Universidad de San Carlos de Guatemala

Tabla de Contenidos

- 1. Historia de la Teoría de Juegos
- 2. Teoría de Probabilidad
- 3. Teoría de la Utilidad
- 4. Conceptos básicos de la Teoría de Juegos

Historia de la Teoría de Juegos

Principales Aportaciones

- · John Von Neumann y Oskar Morgenstern (1944) The Theory of Games and Economic Behavior
- · James Waldegrave (1713) Teorema del Minimax
- · Ernst Zermelo (1913) El ajedrez está estrictamente determinado
- Emile Borel (1921-1927) "Solución Minimax", dos personas y 3-5 estrategias posbiles
- John Nash (1953) "Teoía de Juegos No cooperativos y a la teoría de negociación"

Teoría de Probabilidad

Teoría de la Utilidad

Conceptos básicos de la Teoría

de Juegos

Sean A y B jugadores, con intereses opuestos.

- · Juego
- · Tipos de Juego
- · Jugada
- · Tipos de Jugada

- · Estrategia
- · Resultado
- · Juego de suma cero
- · Juego de información perfecta

· Juegos de mxn

$A \setminus B$	B ₁	B ₂		B _n
A_1	a ₁₁	a ₁₂		a _{1n}
A_2	a ₂₁	a ₂₂		a _{2n}
:	:	:	٠	:
A _m	a _{m1}	a _{m2}		a _{mn}

- · Estrategia Óptima
- · Estrategia Mixta

• El Principio **minimax**:

$A \setminus B$	B ₁	B ₂	 Bn	α_i
A ₁	a ₁₁	a ₁₂	 a _{1n}	α_1
A ₂	a ₂₁	a ₂₂	 a _{2n}	α_2
A _m	a _{m1}	a _{m2}	 a _{mn}	α_{m}
β_j	β_1	β_2	 β_n	

- · maximin $\alpha = \max_i \min_j a_{ij}$
- minimax $\beta = \min_{i} \max_{i} a_{ij}$
- punto silla $\alpha = \beta$

• Ejemplo 1: Cada uno de los jugadores A y B escribe un número, 1,2 ó 3, simultáneamente e independientemente. Si la suma de los dos números es par, B paga a A la suma en quetzales; si la suma de los números es impar, A paga a B.

$A \setminus B$	B ₁	B ₂	В3	α_i
A_1	2	-3	4	-3
A_2	-3	4	-5	-5
A ₃	4	-5	6	-5
β_j	4	4	6	

• Ejemplo 2:

$A \setminus B$	B ₁	B ₂	B ₃	В4	α_i
A ₁	0.4	0.5	0.9	0.3	0.3
A ₂	0.8	0.4	0.3	0.7	0.3
A ₃	0.7	0.6	0.8	0.9	0.6
A ₄	0.7	0.2	0.4	0.6	0.2
β_j	0.8	0.6	0.9	0.9	