Embedded Linux

ECE 373

• I'll take "Gizmos" for \$200, please, Alex

They're called Embedded Computers

Embedded Computers

- computer system designed to do one or a few dedicated and/or specific functions
- often with real-time computing constraints
- part of a complete device often including hardware and mechanical parts

Simple drone for repetitive jobs

- While (have power)
 - Sleep 10
 - Read temperature sensor
 - If too hot
 - Turn on air conditioner
 - Else If too cold
 - Turn on heat
 - Else
 - Turn off heat
 - Turn off air conditioner

Some not so simple

Count the embedded controllers

•Radisys T40 ATCA

Count the embedded controllers

•Radisys T40 ATCA

- 2 Failover SCMs
 - System Control Modules
- 14 BMC per SBC
 - Board Management Controller
 - Single Board Computer
- 14 40GbE per SBC
 - Network between SBCs
- 14 RTM per SBC
 - Rear Transition Module
- Other devices?
- ...at least 44 per platform

8051

PB051AH 0203

J8408

GINTEL '82

Www.cpu-world.com

- Small, cheap, simple
- Created 1980, still used now
- ½ of all little devices
 by some estimates
- Everything you need for a basic microcontroller

"Edison"

Typical Requirements

- Inexpensive
- Reliable
- Non-stop
- Low power
- Fast start
- Secure

Inexpensive Hardware

- SoC or small motherboard
- Small low power CPU
- EEPROM and/or SDRAM
- No hard drive, but maybe SIM or SD chip
- JTAG for debug, maybe a serial output
- No big video or sound (Raspberry Pi?)
- Maybe some LEDs, relays on GPIOs, etc.

Small SW Footprint

- Less memory = less cost
- Less memory forces less SW
- Remove unnecessary modules
 - SCSI? Fancy Communications?
 - Multiprocessor?
 - 20 different network chip drivers?
 - Printer support?
 - Fancy memory allocation schemes?
- See Linux kernel config file

Compact boot loaders

Common loaders

- LILO early and simply Linux kernel boot
- grub current standard kernel boot
- RedBoot tuned by Redhat
- YAMON MIPS
- U-Boot ARM and PowerPC
- Extlinux Flexible, simple

Typical actions

- Chip reset vector to rom (bios or bootloader)
- Copy OS loader from flash, jump to it
- OS loader continues startup

PC - Fast Start?

PC BIOS

- Enable video, keyboard
- Check memory size
- Probe busses

BIOS

- Find boot device
- Load MBR
- Load secondary loader
- Load OS
- Layout memory

OS

- Probe busses and devices
- Load dynamic drivers
- Start user programs

Embedded fast start

PC BIOS

- Enable video, keyboard
- Check memory size
- Probe buses
- © Find boot device
 - Load MBR
 - Load secondary loader
 - Load OS
 - Layout memory
- Ö- Probe buses and devices
 - Load dynamic drivers
 - Start user programs

Redboot or ...

Self check

Start OS

Start LEDs, buttons etc

Start main program

Minimal Configuration

PC BIOS

- Enable video, keyboard
- Check memory size
- Probe buses
- © Find boot device
 - Load MBR
 - Load secondary loader
 - Load OS
 - Layout memory
- Ö- Probe buses and devices
 - Load dynamic drivers
 - Start user programs

Redboot or ...

- Self check
- Start OS
- Start LEDs, buttons etc
- Start main program
- Known config
 - No HW probing needed
 - No unnecessary drivers
 - Pre-loaded OS image

Low power

- Low power devices
 - Smaller devices
 - Slower CPU clock
 - No heat sink needed
 - No hard drive
- Low power demand from SW
 - Fewer interrupts to allow CPU to sleep more
 - Trade latency for power
 - Tricks to not compute things e.g. Data tables
 - Trade memory space for power

Non-stop

- Battery backup (low power)
- No memory leaks
- No counter overflow
- Fast error recovery
- Environmental error handling
 - Too hot or too cold
 - Battery runs low
 - Other sensor issues?

How secure do you need it?

- Relaxed
 - Mini PC with removeable SIMM as HD
 - Network connection?
- Common
 - Small board
 - Serial connection for updates and/or debug
- Tight
 - Crypto protections on firmware
 - Soldered EEPROM
 - Dipped in epoxy
 - Hard to debug and update

SW Development

- Edit source in comfort
 - Standard editor
 - Embedded SW toolset
 - Often includes HW debug goodies

- Cross compile on fast PC
 - ARM or other target compilers on x86 desktop
 - Copy image to target device
 - Burn new eeprom? Load thru serial connection?

Test and Debug

- Serial output trace
- Blinky lights
- JTAG control for host control and src debug
- Live command line on target

Fakin' It

Virtual Machines

- Run "HW" in desktop environment
- Vmware, KVM, VirtualBox, others...

Emulators

- QEMU x86, ARM, PowerPC, MIPS, Sparc
- android SDK
- MAME arcade game hw
- PalmOS emulator (POSE)

Linux specifically embedded

- Wind River
- MontaVista
- BusyBox
- uClinux
- OpenWRT
- Moblin/MeeGo
- Android
- VMware ESX
- Many more...

NetBSD Toaster

Readings

- ELDD: Chapter 18; Chapter 21 pg 605-609
- •
- Other (optional):
 - O'Reilly Books: Building Embedded Linux Systems
 - Embedded Linux Primer: A Practical Real-World Approach (2nd Edition)
 - Tutorials from vendor websites