

Intro to *Flair*: Open Source NLP Framework

Alan Akbik **Zalando Research**

Berlin ML Meetup, December 2018

www.cocoandvera.com

www.cocoandvera.com

www.cocoandvera.com

Levis t-shirts for men Q

www.cocoandvera.com

DOCUMENT CLASSIFICATION

Document 1

[...] quick delivery as always. Thank you very much! [...]

Document 2

[...] waited for three days until the package finally arrived! [...]

Task: automatically categorize your documents into one or more classes

DOCUMENT CLASSIFICATION

Document 1

[...] quick delivery as always. Thank you very much! [...]

Document 2

[...] waited for three days until the package finally arrived! [...]

Classes

DELIVERY-FAST

DELIVERY-SLOW

Task: automatically categorize your documents into one or more classes

DOCUMENT CLASSIFICATION

Task: automatically categorize your documents into one or more classes

s jas palabras a los hechos. En Turingia, los tres socios q ujeren formar el nuevo gobierno han acordado una serie edidas para avanzar más en la cobertura social. En el pacto opone aumentar el número de plazas gratuitas de guarderi ertir más en educación y la formación de parados y refor políticas de igualdad de género. Asimismo, Die Linke, SP lerdes buscan formas para frenar la subida de los alquile lerar el cambio del modelo energético con más a ración de edificios. Todos estos planes, si tados a la situación financiera. "Die Line ete a mantener u esupuesto equilibra El antiguo sindi ta se ha trabajado u ie transciende pyo popular tradic eguntan por qué no mnista en la rev

How I style the basics that fill my wardrobe changes from season to season. And city to city, too, come to think of it. In Berlin, I paired this dress with a moto jacket and ankle boots, while in Paris, I added an oversized hat and classic pumps. For my evening shoot in downtown Winnipeg with Christa Wong, I chose all of my current wardrobe favourites, including Dior-inspired pumps from Zara and marble statement earrings from Olive + Piper. [...]

Fashion Entity Types

as palabras a los hechos. En Turingia, los tres socios q ujeren formar el nuevo gobierno han acordado una serie edidas para avanzar más en la cobertura social. En el pacto opone aumentar el número de plazas gratuitas de guarderi ertir más en educación y la formación de parados y refor políticas de igualdad de género. Asimismo, Die Linke, SP lerdes buscan formas para frenar la subida de los alquile lerar el cambio del modelo energético con más a ración de edificios. Todos estos planes, si tados a la situación financiera. "Die Line ete a mantener u esupuesto equilibra El antiguo sindi ta se ha trabajado u ie transciende pyo popular tradic eguntan por qué no mnista en la rev

How I style the basics that fill my wardrobe changes from season to season. And city to city, too, come to think of it. In Berlin, I paired this dress with a moto jacket and ankle boots, while in Paris, I added an oversized hat and classic pumps. For my evening shoot in downtown Winnipeg with Christa Wong, I chose all of my current wardrobe favourites, including Dior-inspired pumps from Zara and marble statement earrings from Olive + Piper. [...]

Fashion Entity Types

NamedLocation

e las palabras a los hechos. En Turingia, los tres socios q ujeren formar el nuevo gobierno han acordado una serie edidas para avanzar más en la cobertura social. En el pacto opone aumentar el número de plazas gratuitas de guarderi ertir más en educación y la formación de parados y refor políticas de igualdad de género. Asimismo, Die Linke, SP derdes buscan formas para frenar la subida de los alquile lerar el cambio del modelo energético con más a vación de edificios. Todos estos planes, si tados a la situación financiera. "Die Line ete a mantener u esupuesto equilibra El antiguo sindi ta se ha trabajado u ie transciende pyo popular tradic hos en el SPI eguntan por qué no mnista en la rev

How I style the basics that fill my wardrobe changes from season to season. And city to city, too, come to think of it. In Berlin, I paired this dress with a moto jacket and ankle boots, while in Paris, I added an oversized hat and classic pumps. For my evening shoot in downtown Winnipeg with Christa Wong, I chose all of my current wardrobe favourites, including Dior-inspired pumps from Zara and marble statement earrings from Olive + Piper. [...]

Fashion Entity Types

NamedLocation NominalProduct

e las palabras a los hechos. En Turingia, los tres socios q ujeren formar el nuevo gobierno han acordado una serie edidas para avanzar más en la cobertura social. En el pacto opone aumentar el número de plazas gratuitas de guarderi ertir más en educación y la formación de parados y refor políticas de igualdad de género. Asimismo, Die Linke, SP lerdes buscan formas para frenar la subida de los alquile lerar el cambio del modelo energético con más a ración de edificios. Todos estos planes, si tados a la situación financiera. "Die Lini ete a mantener u esupuesto equilibra El antiguo sindi ta se ha trabajado u ie transciende pyo popular tradic hos en el SPI eguntan por qué no mnista en la reu

How I style the basics that fill my wardrobe changes from season to season.

And city to city, too, come to think of it. In Berlin, I paired this dress with a moto jacket and ankle boots, while in Paris, I added an oversized hat and classic pumps. For my evening shoot in downtown Winnipeg with Christa Wong, I chose all of my current wardrobe favourites, including Dior-inspired pumps from Zara and marble statement earrings from Olive + Piper. [...]

Fashion Entity Types

NamedLocation NominalProduct NamedPerson

NamedOrganizationRetailer

FLAIR FRAMEWORK

a very simple framework for state-of-the-art natural language processing (NLP)

FLAIR FRAMEWORK

a very simple framework for state-of-the-art natural language processing (NLP)

• current **state-of-the-art** across many NLP tasks

FLAIR FRAMEWORK

a very simple framework for state-of-the-art natural language processing (NLP)

- current **state-of-the-art** across many NLP tasks
- **very simple** to use

1. New type of word embeddings

- 1. New type of word embeddings
- 2. New state-of-the-art scores across sequence labeling tasks

Task	Our approach	Previous best
NER English	93.09 ± 0.12	92.22±0.1 (Peters et al., 2018)
NER German	88.32 ± 0.2	78.76 (Lample et al., 2016)
Chunking	96.72 ± 0.05	96.37±0.05 (Peters et al., 2017)
PoS tagging	97.85 ± 0.01	97.64 (Choi, 2016)

- 1. New type of word embeddings
- 2. New state-of-the-art scores across sequence labeling tasks

Task	Our approach	Previous best
NER English	93.09 ± 0.12	92.22±0.1 (Peters et al., 2018)
NER German	88.32 ± 0.2	78.76 (Lample et al., 2016)
Chunking	96.72 ± 0.05	96.37±0.05 (Peters et al., 2017)
PoS tagging	97.85 ± 0.01	97.64 (Choi, 2016)

3. Introduce Flair framework

Talk Outline

Overview

Flair Embeddings

Limitations of classic word embeddings
Character-level neural language models
Comparative evaluation

Flair Framework

Usage Example

Talk Outline

Overview

Flair Embeddings

Limitations of classic word embeddings
Character-level neural language models
Comparative evaluation

Flair Framework

Usage Example

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem: Words are just strings

Each word gets a 1x9 vector representation

Try to build a lower dimensional embedding

emininity Vocabulary: Man Man, woman, boy, Woman girl, prince, Boy Girl princess, queen, Prince **Princess** king, monarch Queen King Monarch @shane a lynn | @TeamEdgeTier

research

Try to build a lower dimensional embedding

Each word gets a 1x3 vector

Similar words... similar vectors

@shane a lynn | @TeamEdgeTier

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ..

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ...

 Classic word embeddings conflate all meanings into single vector

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ...

- Classic word embeddings conflate all meanings into single vector
- Contextualized embeddings?

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ...

- Classic word embeddings conflate all meanings into single vector
- Contextualized embeddings?

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ...

- Classic word embeddings conflate all meanings into single vector
- Contextualized embeddings?

- What is a word? Tokenizer decides?
 - "48-year-old"
 - "Hotelzimmer" (hotel room)

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ...

- Classic word embeddings conflate all meanings into single vector
- Contextualized embeddings?

- What is a word? Tokenizer decides?
 - "48-year-old"
 - "Hotelzimmer" (hotel room)
- Long-tailed distribution of words
 - Rare words?
 - Out of vocabulary words?
 - o "coooooool"

Classic word embeddings learn a vector representation for each word in a fixed vocabulary

Problem 1: Word ambiguity

- "Washington"
 - Last name
 - State / city
 - Sports team
 - 0 ...

- Classic word embeddings conflate all meanings into single vector
- Contextualized embeddings?

- What is a word? Tokenizer decides?
 - "48-year-old"
 - "Hotelzimmer" (hotel room)
- Long-tailed distribution of words
 - Rare words?
 - Out of vocabulary words?
 - o "coooooool"
- Meaningful embeddings for any word?

We propose **contextual string embeddings** that are:

Contextualized by their usage in text

We propose **contextual string embeddings** that are:

- Contextualized by their usage in text
- Fundamentally model words as strings of characters

We propose **contextual string embeddings** that are:

- Contextualized by their usage in text
- Fundamentally model words as *strings of characters*
- Pre-trained on very large corpora

We propose **contextual string embeddings** that are:

- Contextualized by their usage in text
- Fundamentally model words as *strings of characters*
- Pre-trained on very large corpora

We produce these embeddings using neural character-level language modeling

Language modeling:

 Train recurrent neural network (RNN) to predict the next word in a sequence of words

Language modeling:

 Train recurrent neural network (RNN) to predict the next word in a sequence of words

Character-level language modeling:

- Train RNN to predict the next character in a sequence of characters
- No tokenization
- Small vocabulary

what is the next word?

because it was hungry, the cat ____

what is the next word?

because it was hungry, the cat ____ ate

what	is	the	next	WO	rd?
wilai	ıo	uic	IICXL	WU	ıu:

because it was hungry, the cat ____ ate

what is the next word?

because it was hungry, the cat ate

what is the next word?			
because it was hungry, the cat	ate		
what is th	e next word?		
because it was hungry, the cat ate	the		
what is	the next word?		
because it was hungry, the cat ate th	e		

what is the next wo	at is the next word?		
because it was hungry, the cat ate			
what is the next	word?		
because it was hungry, the cat ate	the		
what is the ne.	xt word?		
because it was hungry, the cat ate the			

The model learns

- Shallow syntax
 - o nouns, verbs, adjectives
 - tense, number
- Sentence-level syntax
 - constituents
 - subordinate clauses
 - punctuation, capitalization
- Shallow semantics
 - sentiment
 - o topic

WHAT DOES THIS NEURAL LANGUAGE MODEL KNOW?

We can sample the LM to **generate text**:

- (1) According to a giant external film crew, the visible food contained "weirdness or unknown" firestorms.
- (2) According to ADA attorney Stacy Baileil, prosecutors have requested that all of the county bend to him rather than require him to accept the legal fees.
- (3) Iran 's Deputy Marine Ministry inspector general last week criticised security forces for testing changes in a military base when attackers began putting metal plates in , he said .

INTERNAL LM REPRESENTATIONS

Model represents syntactic and semantic properties!

(Radfort et. al, 2017)

PROPOSED APPROACH

PROPOSED APPROACH

PROPOSED APPROACH

- Pass sentence as sequence of characters into two character-level language models
- Retrieve the internal states before first and after last character for each word
- Combine forward and backward states to form embedding

TRANSFER LEARNING

COMPARATIVE EVALUATION

Tasks:

- CoNLL-03 Named Entity Recognition for English and German
- CoNLL-2000 Chunking
- WSJ Part-of-Speech Tagging

COMPARATIVE EVALUATION

Tasks:

- CoNLL-03 Named Entity Recognition for English and German
- CoNLL-2000 Chunking
- WSJ Part-of-Speech Tagging

Setup:

- BiLSTM-CRF architecture (Huang et. al, 2015)
 - Only classic word embeddings (Huang et. al, 2015)
 - Word and character embeddings (Lample et. al, 2016)
 - ELMo embeddings (Peters et. al, 2017; 2018)

RESULTS

Approach	NER-English F1-score	NER-German F1-score	Chunking F1-score	POS Accuracy
proposed				
PROPOSED	91.97 ± 0.04	85.78 ± 0.18	96.68 ± 0.03	97.73 ± 0.02
PROPOSED+WORD	93.07 ± 0.10	88.20 ± 0.21	96.70 ± 0.04	97.82 ± 0.02
PROPOSED+CHAR	91.92 ± 0.03	85.88 ± 0.20	96.72 ± 0.05	97.8 ± 0.01
PROPOSED+WORD+CHAR	93.09 ± 0.12	88.32 ± 0.20	96.71 ± 0.07	97.76 ± 0.01
$PROPOSED_{+ALL}$	92.72 ± 0.09	n/a	96.65 ± 0.05	97.85 ±0.01
baselines				
HUANG	88.54 ± 0.08	82.32 ± 0.35	95.4 ± 0.08	96.94 ± 0.02
LAMPLE	89.3 ± 0.23	83.78 ± 0.39	95.34 ± 0.06	97.02 ± 0.03
PETERS	92.34 ± 0.09	n/a	96.69 ± 0.05	97.81 ± 0.02
best published				→
	92.22 ± 0.10	78.76	96.37 ± 0.05	97.64
	(Peters et al., 2018)	(Lample et al., 2016)	(Peters et al., 2017)	(Choi, 2016)
	91.93 ± 0.19	77.20	95.96 ± 0.08	97.55
	(Peters et al., 2017)	(Seyler et al., 2017)	(Liu et al., 2017)	(Ma and Hovy, 2016)
	91.71 ± 0.10	76.22	95.77	97.53 ± 0.03
	(Liu et al., 2017)	(Gillick et al., 2015)	(Hashimoto et al., 2016)	(Liu et al., 2017)
	91.21	75.72	95.56	97.30
	(Ma and Hovy, 2016)	(Qi et al., 2009)	Søgaard et al. (2016)	(Lample et al., 2016)

Takeaways [1]:

 Combination of Contextual String Embeddings and Classic Word Embeddings consistently gives us state-of-the-art results

[1] Contextual String Embeddings for Sequence Labeling. Alan Akbik, Duncan Blythe, Roland Vollgraf. 27th International Conference on Computational Linguistics, COLING 2018.

Takeaways [1]:

- Combination of Contextual String Embeddings and Classic Word Embeddings consistently gives us state-of-the-art results
- Task-trained character-level features not necessary

[1] Contextual String Embeddings for Sequence Labeling. Alan Akbik, Duncan Blythe, Roland Vollgraf. 27th International Conference on Computational Linguistics, COLING 2018.

Takeaways [1]:

- Combination of Contextual String Embeddings and Classic Word Embeddings consistently gives us state-of-the-art results
- Task-trained character-level features not necessary
- Character-level LM embeddings match or outperform word-level LM embeddings (ELMo)

[1] Contextual String Embeddings for Sequence Labeling. Alan Akbik, Duncan Blythe, Roland Vollgraf. 27th International Conference on Computational Linguistics, COLING 2018.

Takeaways [1]:

- Combination of Contextual String Embeddings and Classic Word Embeddings consistently gives us state-of-the-art results
- Task-trained character-level features not necessary
- Character-level LM embeddings match or outperform word-level LM embeddings (ELMo)
- Also state-of-the-art for Polish [2]

- [1] Contextual String Embeddings for Sequence Labeling. Alan Akbik, Duncan Blythe, Roland Vollgraf. 27th International Conference on Computational Linguistics, COLING 2018.
- [2] Approaching nested named entity recognition with parallel LSTM-CRFs. Łukasz Borchmann, Andrzej Gretkowski, Filip Graliński. Proceedings of the PolEval 2018 Workshop, PolEval 2018.

Talk Outline

Overview

Contextual String Embeddings

Limitations of classic word embeddings
Character-level neural language models

Sequence Labeling Experiments

Baselines and experimental setup
Results of comparative evaluation

OPEN SOURCE RELEASE

pip install flair

Flair is:

- A Python library installable through pip
- Built on Pytorch
- Currently at version 0.3.2

Use Flair to:

- Apply our pre-trained taggers on your text
- Train your own NLP models

TAG A SENTENCE

```
from flair.data import Sentence
from flair.models import
SequenceTagger
# make a sentence
sentence = Sentence('I love Berlin
.')
# load the NER tagger
tagger =
SequenceTagger.load('ner')
```

```
# run NER over sentence
tagger.predict(sentence)
```

```
print(sentence)

Sentence: "I love Berlin ." - 4 Tokens

print(sentence.to_tagged_string())
```

I love Berlin <S-LOC> .

SPAN ANNOTATIONS

```
# make a sentence
sentence = Sentence('George Washington was born in Washington .')

# run NER over sentence
tagger.predict(sentence)

for entity in sentence.get_spans('ner'):
    print(entity)
```

```
PER-span [1,2]: "George Washington"
LOC-span [5]: "Washington"
```


EMBED A SENTENCE

```
from flair.embeddings import
WordEmbeddings
# init embedding
glove_embedding =
WordEmbeddings('glove')
# create sentence.
sentence = Sentence('The grass is
green .')
# embed a sentence using glove.
glove embedding.embed(sentence)
```


FLAIR, ELMO AND BERT EMBEDDINGS

```
# contextual string embeddings
flair embedding = FlairEmbeddings('news-forward')
# ELMo embeddings (Peters et. al, 2018)
elmo embedding = ELMoEmbeddings('medium')
# Google's BERT embeddings (Devlin et. al, 2018)
bert embedding = BertEmbeddings('large-uncased')
# stacked embeddings
embedding = StackedEmbeddings([flair embedding, elmo embedding,
bert embedding])
```


TRAIN YOUR OWN MODELS

Data fetchers

- Automatically download publicly available NLP datasets
- Data readers for common NLP formats

Model trainer

- Training mechanisms: annealing, checkpointing, restarts, etc.
- Automatic hyperparameter selection

Tutorials online to get you started

JOIN THE TEAM!

Use it

Install through pip or clone

Help develop it

- Growing numbers of contributors
- New features / bug fixes / languages
- Frequent releases

THANK YOU!

Questions?

(BTW: we're hiring!)

ZALANDO AT A GLANCE

~4_4 billion EURO

net sales 2017

~16,000

employees in Europe

>50%

return rate across all categories

~214 million month

visits per

~24

million

active customers

~300,000

product choices

>2,000 brands

countries

TRAINING CHARACTER LANGUAGE MODELS

Hidden states, layers

• 1 GPU, 1 week

ELMo model:

• 32 GPUs, 5 weeks

QUALITATIVE INSPECTION

word	context	selected nearest neighbors
Washington	(a) Washington to curb support for []	 Washington would also take [] action [] Russia to clamp down on barter deals [] Brazil to use hovercrafts for []
Washington	(b) [] Anthony Washington (U.S.) []	(1) [] Carla Sacramento (Portugal) [] (2) [] Charles Austin (U.S.) [] (3) [] Steve Backley (Britain) []
Washington	(c) [] flown to Washington for []	(1) [] while visiting Washington to [] (2) [] journey to New York City and Washington [] (14) [] lives in Chicago []
Washington	(d) [] when Washington came charging back []	 (1) [] point for victory when Washington found [] (4) [] before England struck back with [] (6) [] before Ethiopia won the spot kick decider []
Washington	(e) [] said Washington []	(1) [] subdue the never-say-die Washington [] (4) [] a private school in Washington [] (9) [] said Florida manager John Boles []

DIRECT PROJECTION

Embedding + Architecture	NER-English F1-score	NER-German F1-score	Chunking F1-score	POS Accuracy
PROPOSED+WORD				
+BiLSTM-CRF	93.07 ± 0.10	88.20 ± 0.21	96.70 ± 0.04	97.82 ± 0.02
+Map-CRF	90.17 ± 0.06	85.17 ± 0.04	96.05 ± 0.04	97.62 ± 0.01
+Map	79.86 ± 0.12	76.97 ± 0.16	90.55 ± 0.05	97.35 ± 0.01
PROPOSED				
+BiLSTM-CRF	91.97 ± 0.04	85.78 ± 0.18	96.68 ± 0.03	97.73 ± 0.02
+Map-CRF	88.62 ± 0.15	82.27 ± 0.22	95.96 ± 0.05	97.53 ± 0.02
+Map	81.42 ± 0.16	73.90 ± 0.09	90.50 ± 0.06	97.26 ± 0.01
CLASSIC WORD EMBEDDINGS				
+BiLSTM-CRF	88.54 ± 0.08	82.32 ± 0.35	95.40 ± 0.08	96.94 ± 0.02
+Map-CRF	66.53 ± 0.03	72.69 ± 0.12	91.26 ± 0.04	94.06 ± 0.02
+Map	48.79 ± 0.27	57.43 ± 0.12	65.01 ± 0.50	89.58 ± 0.02

DISCLAIMER

This presentation and its contents are strictly confidential. It may not, in whole or in part, be reproduced, redistributed, published or passed on to any other person by the recipient.

The information in this presentation has not been independently verified. No representation or warranty, express or implied, is made as to the accuracy or completeness of the presentation and the information contained herein and no reliance should be placed on such information. No responsibility is accepted for any liability for any loss howsoever arising, directly or indirectly, from this presentation or its contents.

