ÁLGEBRA (Grado en Ingeniería Informática)

CURSO 2016/17. Convocatoria Ordinaria 2.					
Nombre: _			DNI :	Gr. Teoría:	Gr. Práct.:
Evaluación continua	□ Sí □ No	□ Polinomios. Nota: □ El Grupo Simétrico. Nota: _ □ Teoría de Grafos. Nota:		□ Ev. contin □ Or	ua. Nota dinaria 2
a) (7 pu $\mathbb{Z}_5[x]$.	ntos) Sabien intos) Defini	do que $p(x)$ no tiene raíces enteras r irreducible en el anillo de polino $\mathbb{Z}[x]$ y $\mathbb{R}[x]$.	, factorizar y calcular s	sus raíces en $\mathbb{C}[x]$, \mathbb{R}	
a) (5 pu	ntos) Razon	os el grupo \mathbb{C}^3 y el subconjunto Har si H es subgrupo de \mathbb{C}^3 . ar un subgrupo propio de H.	={ $(x,y,z) : x + i z = 0$ }	}.	
Se pide: a) (3 pu b) (1 pu c) (1 pu d) (1 pu e) (4 pu de geodésicas of 4. (14 puntos) pide a) (4 pu b) Sea V	ntos) Calcul into) Definir into) Definir into) Definir intos) Aplica que hay entre En el espac intos) Enunc W el subespa b.1. (3 punto b.2. (2 punto	ar la matriz de adyacencia del missi y calcular su número cromático. ar el teorema del número de camin geodésica y distancia entre dos vér las consecuencias del teorema de el primer y segundo vértice y entre dio vectorial de las matrices de M_2 diar las propiedades del producto es acio generado por $S=\{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ os) Calcular su dimensión, una basos) Calcular la matriz de Gram respos) $\xi \to S_W$ ortogonal? Utilizar Gra	mo, A, y A^2 os. rtices. el número de caminos pre el primer y último vé ((R) consideramos el primer y demostrar dos el 12 y $\begin{pmatrix} -2 & -3 \\ 0 & 3 \end{pmatrix}$, $\begin{pmatrix} -2 & -3 \\ 0 & -6 \end{pmatrix}$) e, B_W , ecuaciones par pecto de la base B_W ob	para calcular la distar frtice de G. producto escalar < A de ellas de ellas camétricas e implícita tenida en el apartado	ncia y el número $C > = tr(AC^t), \text{ se}$ as de W. o anterior.
a) (2 puntos) D b) (1 punto) Ca c) (0.75 puntos d) (3 puntos) C e) (1 punto) ¿S f) (1.5 puntos) g) (0.75 puntos	emostrar que lcular la mat) Clasificar f alcular dime on isomorfos Calcular la n)¿Que relaci	riz asociada a f respecto de las bas nsión, base, ecuaciones paramétric s $P_3(\mathbb{Z}_2)$ y \mathbb{Z}_2^3 ? Razonar la respues natriz asociada a f respecto de las l ón existe entre las matrices de los	ses canónicas. cas e implícitas de Ker(ta cases $B=\{x, x^2, 1, x^3\}$ apartados b) y f)?	y B'={(0,0,1), (0,1	
6. (6 puntos) E	estudiar, segí	in los valores de a ∈ \mathbb{R} , si la matriz	$A = \begin{bmatrix} 0 & a & 0 & 0 & 0 \\ 0 & a & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ es } 0$	liagonalizable por se	emejanza.