Exercise 4

Exercise 4. Let X_1, X_2 and X_3 be three discrete random variables with

$$\mathbb{P}[X_1 = 0] = \mathbb{P}[X_1 = 1] = \mathbb{P}[X_2 = 0] = \mathbb{P}[X_2 = 1] = \frac{1}{2}$$

and

$$\mathbb{P}[X_3 = 0] = 1.$$

(i) Characterize all possible coupling between X_1 and X_2 .

The parameters a,b,c,d have to Sulfill some properties such that the desine a valid probability measure:

(I)
$$a + b = c + d = a + c = b + d = \frac{1}{2}$$

which also implies: $a + b + c + d = 1$

(I)
$$a,b,c,d \ge 0$$

Which combined with (I) implies $a,b,c,d \in [0,\frac{1}{2}]$

Examples:

1)
$$a = 0$$
 => $b = c = 1$ => $d = 0$

2)
$$a = \frac{1}{4}$$
 \Rightarrow $b = c = \frac{1}{4}$ \Rightarrow $d = \frac{1}{4}$

These examples show that it is sufficient to gix one parameter to describe the coupling:

For instance: pick $a = P[X_1 = 0, X_2 = 0] \in [0, \frac{1}{2}]$, then you can compute: $b = \frac{1}{2} - a$

$$c = \frac{1}{2} - a$$

 $d = \frac{1}{2} - b = \frac{1}{2} - c = \frac{1}{2} - (\frac{1}{2} - a) = a$

 \rightarrow In the Sallowing we will express a specific coupling by parameter a.

(ii) Which coupling maximizes the correlation? Which coupling minimizes the correlation? Do you have an intuitive explanation why these couplings are the ones that minimize/maximize the correlation?

$$COST(X_1, X_2) = \frac{COV(X_1, X_2)}{\sqrt{Var(X_1) Var(X_2)}}$$

 $a^{*} = \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} \frac{\operatorname{cov}(X_{1}, X_{2})}{\sqrt{\operatorname{var}(X_{1})\operatorname{var}(X_{2})}} = \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} \operatorname{cov}(X_{1}, X_{2})$ $= \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} \left(\mathbb{E}[X_{1}X_{2}] - \mathbb{E}[X_{1}] \mathbb{E}[X_{2}] \right)$ $= \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} \mathbb{E}[X_{1}X_{2}]$ $= \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} \mathbb{E}[X_{1}X_{2}]$

 $\mathbb{E}\left[X_{1}X_{2}\right] = 0 \cdot \left(\mathbb{P}\left[X_{1}=0, X_{2}=0\right] + \mathbb{P}\left[X_{1}=0, X_{2}=1\right] + \mathbb{P}\left[X_{1}=1, X_{2}=0\right]\right) + 1 \cdot \mathbb{P}\left[X_{1}=1, X_{2}=1\right]$

$$=$$
 $0 + d = d$

In (i) we have seen that for a valid coupling a=d.

-> $a^* = \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} \mathbb{E}[X_1 X_2] = \underset{a \in [0, \frac{1}{2}]}{\operatorname{argmax}} a = \frac{1}{2}$

If a=d=12, we have b=c=0.

$$cor(x_1,x_2) = \frac{\mathbb{E}(x_1 \times 2) - \mathbb{E}(x_1)\mathbb{E}(x_2)}{\sqrt{\sqrt{\sqrt{x_1} \sqrt{\sqrt{x_2}}}}} = \frac{\sqrt{\sqrt{2} - \sqrt{2}}}{\sqrt{\sqrt{\sqrt{2} - \sqrt{2}}}} = 1$$

[E[X1] = E[X2] = 1/2

 $Vax(X_1) = Vax(X_2) = E[(X_2 - 1/2)^2] = (0 - 1/2)^2 \cdot 1/2 + (1 - 1/2)^2 \cdot 1/2$ = 1/4

$$a^* = \underset{a \in [0, \frac{1}{2}]}{\operatorname{cov}(X_1, X_2)} = \underset{a \in [0, \frac{1}{2}]}{\operatorname{cov}(X_1, X_2)} = \underset{a \in [0, \frac{1}{2}]}{\operatorname{cov}(X_1, X_2)}$$

=
$$argmin$$
 d = $argmin$ a = 0
 $a \in [0, \frac{1}{2}]$ $a \in [0, \frac{1}{2}]$

$$||g||_{a=d=0}$$
, we save $b=c=\frac{1}{2}$.

$$corr(X_1,X_2) = \frac{\mathbb{E}[X_1]\mathbb{E}[X_2]}{\sqrt{\sqrt{\sqrt{(X_1)}\sqrt{\sqrt{(X_2)}}}}} = \frac{O - \sqrt{\sqrt{2}}\sqrt{\sqrt{2}}}{\sqrt{\sqrt{\sqrt{2}}\sqrt{\sqrt{2}}}} = -1$$

In these two scenarios ($a = \frac{1}{2}$ and a = 0) we have $|\cos(x_1, x_2)| = 1$. In both cases it is sufficient to know the value of x_1 or x_2 to infer the value of the respective other RV.

In the case $a=\frac{1}{2}$, x_1 and x_2 always take on the same value, in the case a=0, they always take on a different value.

This means we have perfect correlation, with the difference that when a=0, we have perfect negative correlation.

(iii) Which coupling makes the two random variables uncorrelated?

$$=$$
) $COV(X_1, X_2) = 0$

$$\Leftrightarrow \mathbb{E}[X_1X_2] - \mathbb{E}[X_1]\mathbb{E}[X_2] = 0$$

$$\iff \mathbb{E}\left[\times_{1}\times_{2}\right] = \mathbb{E}\left[\times_{1}\right]\mathbb{E}\left[\times_{2}\right]$$

$$\Rightarrow$$
 $a = d = 1/4, b = c = 1/4$

Here, we have the apposite to the previous cases. If we know X_1 (or X_2), we cannot make any assumptions about X_2 (or respectively X_1). The two RVs are independent:

$$P[X_1 = X_1, X_2 = X_2] = \frac{1}{4} = P[X_1 = X_1] \cdot [X_2 = X_2] \quad \forall x_1, x_2 \in \{0,1\}$$

(iv) Do the tasks (i) - (iii) but for X_1 and X_3 .

× ₃	0	1		
0	1/2	1/2	1	prv 7
1	0	0	0	$\mathbb{R}\left[\times^{2}=\times\right]$
	1/2	1/2		
	N L		>	
	P [X	= × <u>]</u>		

-> There is aly one possible coupling

$$Corr(X_{1}X_{3}) = \frac{\mathbb{E}[X_{1}X_{3}] - \mathbb{E}[X_{1}]\mathbb{E}[X_{3}]}{\sqrt{Vor(X_{1})Vor(X_{2})}} = 0$$

$$E[X_1 \times_3] = 1 P[X_1 = 1, X_3 = 1] = 0$$

$$\mathbb{E}\left[\times_{1}\right] = \frac{1}{2}, \quad \mathbb{E}\left[\times_{3}\right] = 1$$

$$Var(X_1) = Y_4$$
, $Var(X_3) = 0$