$\partial_{\theta}\mathcal{R}_{\alpha}^{\ \theta}_{\ \alpha}\right) - 4 \ f_{\alpha}^{\alpha} \ \partial_{\theta}\mathcal{R}^{\prime \, \theta}_{\ \ \ } - 2 \ \partial_{i}f^{\alpha \, i} \ \partial_{\theta}f_{\alpha}^{\ \theta} + 4 \ \partial^{i}f_{\alpha}^{\alpha} \ \partial_{\theta}f_{i}^{\ \theta} + 4 \ \mathcal{R}_{\alpha\theta \, i} \ \partial^{\theta}f^{\alpha \, i} - 2 \ \partial_{\alpha}f_{i\theta} \ \partial^{\theta}f^{\alpha \, i}$ $\partial_{\alpha}f_{\theta_{i}}\partial^{\theta}f^{\alpha_{i}} + \partial_{i}f_{\alpha\theta}\partial^{\theta}f^{\alpha_{i}} + \partial_{\theta}f_{\alpha_{i}}\partial^{\theta}f^{\alpha_{i}} + \partial_{\theta}f_{\alpha}\partial^{\theta}f^{\alpha_{i}} + \partial_{\theta}f_{\alpha}\partial^{\theta}f^{\alpha_{i}}) \Big][t, x, y, z] dz dy dx dt$

${\stackrel{0^{\scriptscriptstyle +}}{\cdot}}_{\cdot}\mathcal{H}{}^{\parallel} \quad {\stackrel{0^{\scriptscriptstyle +}}{\cdot}}_{\cdot}f^{\parallel} \quad {\stackrel{0^{\scriptscriptstyle +}}{\cdot}}_{\cdot}f^{\perp} \quad {\stackrel{0^{\scriptscriptstyle -}}{\cdot}}_{\cdot}\mathcal{H}{}^{\parallel}$

Wave operator

PSALTer results panel

$0^+\tau^{\parallel} + 0 - \frac{1}{2 k^2 \lambda} = 0$

 $0^+\tau^{\perp} \uparrow 0 0$

^{0−}σ^{||} † 0 0

Saturated propagator

			ωp	ωp	ωp		-	٠.	•			
	1. o	$\dagger^{\alpha\beta}$	0	Θ	0	0	0	0	0			
	$^{1^{+}}_{ullet}\sigma^{\perp}$	† ^{αβ}	0	0	0	0	0	0	0			
	1, ₁	$\dagger^{\alpha\beta}$	0	0	0	0	0	0	0			
	1-0	σ † ^α	0	0	0	0	0	0	0			
	1- c	r [⊥] † ^α	0	0	0	0	0	0	0			
	1-	r † ^α	0	0	0	0	0	0	0			
	1-1	± † ^α	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
		-							$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0
									$^{2^+_{ullet}} \tau^{\parallel} \uparrow^{lphaeta}$		$\frac{1}{k^2 \lambda}$.	0
									$^{2^{-}}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$	0	0	0
Source constraints												
Spii	n-parity form Covar	iant	form									

Spin-parity form		Marciplicities				
^{0−} σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1				
^{Θ+} τ [⊥] == Θ	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = 0$	1				
⁰⁺ σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1				
1- _t == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3				
1- _t ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3				
1- ₀ - ^{\alpha} == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$	3				
1- _σ ^α == 0	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi}{}^{\delta} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\chi\alpha}{} == \partial_{\delta}\partial_{\chi}\sigma^{\chi\alpha\delta}$	3				
1 _τ , η αβ == 0	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==$	3				
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$					
1 _* σ [⊥] αβ == 0	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3				
1 ⁺ _• σ αβ == 0	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	3				
$2^{-}\sigma^{\parallel}^{\alpha\beta\chi} = 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ \ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \alpha \delta} +$	5				
	$2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$					
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\alpha \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\delta} =$					
	$ 3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + $					
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$					
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$					
$2^+_{\bullet}\sigma^{\parallel}^{\alpha\beta} = 0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = $	5				
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma_{\chi}^{\chi \delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$					
Total expected gauge generators:						

Multiplicities

Massive spectrum

(No particles)

Massless spectrum

Pole residue: $\left| \frac{p^2}{\lambda} \right| > 0$

$\lambda . > 0$