Chapter 4 General Vector Spaces

- 4.1. Real Vector Spaces
- 4.2. Subspaces
- 4.3. Spanning Sets
- 4.4. Linear Independence
- 4.5. Coordinates and Basis
- 4.6. Dimension
- 4.8. Row Space, Column Space, and Null Space
- 4.9. Rank, Nullity, and the Fundamental Matrix Spaces

Chapter 4.4

Linear Independence

Linear Independence

EXAMPLE 1

Consider R^2 : $\mathbf{i} = (1, 0)$ and $\mathbf{j} = (0, 1)$ are linearly independent.

Each vector in \mathbb{R}^2 can be expressed in exactly one way as a linearly combination of \mathbf{i} and \mathbf{j} .

Now, let $S = \{i, j, w\}$ where

$$\mathbf{w} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

EXAMPLE 1 Cont.

There are infinitely many ways to express vector (3, 2) as a linear combination of \mathbf{i} , \mathbf{j} , and \mathbf{w} . Thus S is a linearly dependent set.

Three possibilities are

$$(3,2) = 3(1,0) + 2(0,1) + 0\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = 3\mathbf{i} + 2\mathbf{j} + 0\mathbf{w}$$

$$(3,2) = 2(1,0) + (0,1) + \sqrt{2}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = 2\mathbf{i} + \mathbf{j} + \sqrt{2}\mathbf{w}$$

$$(3,2) = 4(1,0) + 3(0,1) - \sqrt{2}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = 4\mathbf{i} + 3\mathbf{j} - \sqrt{2}\mathbf{w}$$

In fact,
$$\mathbf{w} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$

DEFINITION 1

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ is a set of two or more vectors in a vector space V, then S is said to be a *linearly independent set* if no vector in S can be expressed as a linear combination of the others.

A set that is not linearly independent is said to be *linearly dependent*.

If *S* has only one vector, we will agree that it is linearly independent <u>if and only if</u> that vector is nonzero.

THEOREM 4.4.1

A nonempty set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ in a vector space V is linearly independent if and only if the only coefficients satisfying the vector equation

$$k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \cdots + k_r\mathbf{v}_r = \mathbf{0}$$

are
$$k_1 = 0, k_2 = 0, \dots, k_r = 0$$
.

EXAMPLE 2

$$\mathbf{v}_1 = (1, -2, 3),$$
 $\mathbf{v}_2 = (5, 6, -1),$
 $\mathbf{v}_3 = (3, 2, 1)$

Linearly independent or dependent in R^3 ?

Solution

$$k_1(1, -2, 3) + k_2(5, 6, -1) + k_3(3, 2, 1) = (0, 0, 0)$$

$$k_1 + 5k_2 + 3k_3 = 0$$

$$-2k_1 + 6k_2 + 2k_3 = 0$$

$$3k_1 - k_2 + k_3 = 0$$

$$k_1 = -\frac{1}{2}t,$$

$$k_2 = -\frac{1}{2}t,$$

$$k_3 = t$$

Thus, linearly dependent.

EXAMPLE 3

$$\mathbf{v}_1 = (1, 2, 2, -1),$$

 $\mathbf{v}_2 = (4, 9, 9, -4),$
 $\mathbf{v}_3 = (5, 8, 9, -5)$

Linearly independent or dependent in R^4 ?

Solution

$$k_1(1,2,2,-1) + k_2(4,9,9,-4) + k_3(5,8,9,-5) = (0,0,0,0)$$

$$k_1 + 4k_2 + 5k_3 = 0$$

 $2k_1 + 9k_2 + 8k_3 = 0$
 $2k_1 + 9k_2 + 9k_3 = 0$
 $-k_1 - 4k_2 - 5k_3 = 0$
 $k_1 = 0,$ Thus,
 $k_2 = 0,$ $\mathbf{v}_1, \mathbf{v}_2, \text{ and } \mathbf{v}_3$ are linearly independent.

EXAMPLE 4

$$\mathbf{p}_1 = 1 - x,$$
 $\mathbf{p}_2 = 5 + 3x - 2x^2,$
 $\mathbf{p}_3 = 1 + 3x - x^2$

Linearly independent or dependent in P_2 ?

Solution

$$k_1(1-x) + k_2(5+3x-2x^2) + k_3(1+3x-x^2) = 0$$

$$(k_1 + 5k_2 + k_3) + (-k_1 + 3k_2 + 3k_3)x + (-2k_2 - k_3)x^2 = 0$$

$$k_1 + 5k_2 + k_3 = 0$$

$$-k_1 + 3k_2 + 3k_3 = 0$$

$$-2k_2 - k_3 = 0$$

exe

has a nontrivial solutions Thus, linearly dependent.

THEOREM 4.4.2

- (a) A set with finitely many vectors that contains **0** is linearly dependent.
- (b) A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.

A Geometric Interpretation of Linear Independence

Two vectors in R^3

A Geometric Interpretation of Linear Independence

Three vectors in R^3

(a) Linearly dependent

(b) Linearly dependent

(c) Linearly independent

Linearly Dependent Set of Vectors

THEOREM 4.4.3

Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$ be a set of vectors in \mathbb{R}^n .

If r > n, then *S* is linearly dependent.

Proof

consider the equation $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + \cdots + k_r\mathbf{v}_r = \mathbf{0}$

This is a homogeneous system of n equations in the r unknowns k_1, \ldots, k_r . Since r > n, Theorem 1.2.2 implies that the system has nontrivial solutions, so $S = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r\}$ is a linearly dependent set.

Recall

THEOREM 1.2.2

A homogeneous linear system with more unknowns than equations has infinitely many solutions.

Linear Independence of Row Vectors

EXAMPLE 5

It is an important fact that the nonzero row vectors of a matrix in (reduced) row echelon form are linearly independent.

e.g.
$$R = \begin{bmatrix} 1 & a_{12} & a_{13} & a_{14} \\ 0 & 1 & a_{23} & a_{24} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denoting the row vectors by \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 , we must show that the only solution of the vector equation $c_1\mathbf{r}_1 + c_2\mathbf{r}_2 + c_3\mathbf{r}_3 = \mathbf{0}$ is the trivial solution $c_1 = c_2 = c_3 = 0$.

EXAMPLE 5 Cont.

Rewrite the equation in row-vector form

$$\begin{bmatrix} c_1 & c_1 a_{12} + c_2 & c_1 a_{13} + c_2 a_{23} & c_1 a_{14} + c_2 a_{24} + c_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

and comparing corresponding components.

The solution is $c_1 = c_2 = c_3 = 0$.

Chapter 4-4 Objectives

- Determine whether a set of vectors is linearly independent or linearly dependent.
- Express one vector in a linearly dependent set as a linear combination of the other vectors in the set.