CSE-571 Robotics

Probabilistic Motion Models

Probabilistic Kinematics

- Robot moves from $\langle \bar{x}, \bar{y}, \bar{\theta} \rangle$ to $\langle \bar{x}', \bar{y}', \bar{\theta}' \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\begin{split} \delta_{trans} &= \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2} \\ \delta_{rot1} &= \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\ \delta_{rot2} &= \bar{\theta}' - \bar{\theta} - \delta_{rot1} \end{split}$$

$$\delta_{rot2} = \delta_{rot2} = \delta_{rot2} = \delta_{rot2} = \delta_{rot2} = \delta_{rot3} = \delta_{rot3}$$

CSE-571 - Robotics

Noise Model for Motion

• The measured motion is given by the true motion corrupted with noise.

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \varepsilon_{\alpha_1 | \delta_{rot1}| + \alpha_2 | \delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \varepsilon_{\alpha_3 | \delta_{trans}| + \alpha_4 | \delta_{rot1} + \delta_{rot2}|} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \varepsilon_{\alpha_1 | \delta_{rot2}| + \alpha_2 | \delta_{trans}|} \end{split}$$

CSE-571 - Robotics

Probabilistic Kinematics

• Odometry information is inherently noisy.

Sample Odometry Motion Model

1. Algorithm **sample_motion_model**(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

- 1. $\hat{\delta}_{ror1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$ 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 \delta_{trans} + \alpha_4 (| \delta_{rot1} | + | \delta_{rot2} |))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$ 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
- 6. $\theta' = \theta + \hat{\delta}_{rot} + \hat{\delta}_{rot}^2$
- 7. Return $\langle x', y', \theta' \rangle$

CSE-571 - Robotics

