

Service Cost per Passenger

based on 10,000 simulations

The Simulated Total Passenger Service Cost

based on 10,000 simulations

Service costing at RailWorks Company

Monte Carlo simulation of the passenger service cost for the RailWorks Company (WRC)

Unknown:

number of passenger cars hauled during a week (P) number of trips during a week (N)

Uncertainties:

N = Uniform(38,58) and P = Uniform(1620, 2620)

Calculated

The annual total passenger service cost (T)

$$T = 121,000,000 + 551,200N + 67,600P$$

The service cost per passenger (c)

$$c = (121,000,000 + 551,200N + 67,600P) / (3,120P)$$

The probability of service costs exceeding $\underline{£275 \text{ million}}$ p(X>=275) = 1- p(X<275) = 1- 0.27 = **73%** The probability of total passenger service costs exceeding £325 million p(X>=325) is **1.6%**

Break-even Passenger Load Factor

Distribution of PDOL

Cost Volume Profit (CVP) Analysis at RailWorks Company

Unknown:

- (P) number of passenger cars hauled during a week
- (N) number of trips during a week
- (S) the price per passenger ticket
 - - the break-even load factor
- (∏) The annual profit
- (DOL) the Degree of Operating Leverage

Uncertainties:

N = Uniform(38,58)

P = Uniform(1620, 2620)

S ~ Normal(40, 5^2)

L = Uniform(0.49, 0.85)

Calculated

T = 121,000,000 + 551,200N + 67,600P

c = (121,000,000 + 551,200N + 67,600P) / (3,120P)

DOL = 1 + (121,000,000/(4160PSL - 551200N - 27040P -54080PL)) \Box = 4160PSL - (121,000,000 + 31200N + 1040P + 1280PL + 520000N + 26000P + 41600PL)

L = (121,000,000 + 551,200N + 27,040P) / (4,160PS - 54,080P)

DOL = 1 + (121,000,000/(4160PSL - 551200N - 27040P -54080PL))

Conclusions:

The mean for DOL is 2.77 times with a SD of 332

The probability of break-even load factor L<100% is 72.9%

Probability of a break-even load factor 40% < L < 70% is **14.5%**

The highest relative positive DOL frequency is between 2 and 3 times, with 46.8%

Degree of operating leverage DOL = (sales - variable costs)/(sales - variable costs - fixed costs)