Lecture #21, March 2nd, 2022

- Will focus on chapters 8 (Feedback) and 10 (Stability and Compensation).
- Homework #4 due next Monday don't wait until the day before to start the homework.
- Project 2 due this Friday March 4th.
- Comments on the Project
- Today
 - Regulated Cascode
 - Common-Mode Feedback.
 - Different forms of Feedback
 - Series Series
 - Series Shunt
 - Shunt Shunt
 - Shunt Series

Project Discussion

Voltage-Voltage Feedback SERIES

- This topology senses the output voltage and returns the feedback signal as a voltage
- Feedback network is connected in parallel with the output and in series with the input. Sometimes referred to as Series – Shunt Feedback
- An ideal feedback network in this case has infinite input impedance (ideal voltmeter) and zero output impedance (ideal voltage source)

Voltage-Voltage Feedback

Also called "Series-Shunt" Feedback

$$V_F = \beta \cdot V_{DUT}$$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$
 $V_{DUT} = A_0 \cdot (V_{IN} - \beta \cdot V_{DGST})$

Voltage-Voltage Feedback

- As an example of voltage-voltage feedback, a differential voltage amplifier with single-ended output can be used as the forward amplifier and a resistive divider as the feedback network [Fig. (a)]
- The sensed voltage V_F is placed in series with the input to perform subtraction of voltages

Voltage-Voltage Feedback: Output Resistance

- If output is loaded by resistor R_L , in open-loop configuration, output decreases in proportion to $R_L/(R_L+R_{out})$
- In closed-loop V_{out} is maintained as a constant replica of V_{in} regardless of R_L as long as loop gain is much greater than unity
- Circuit "stabilizes" output voltage despite load variations, behaves as a voltage source and exhibits low output impedance

Voltage-Voltage Feedback: Output Resistance

Voltage-Voltage Feedback: Input Resistance

- Voltage-voltage feedback also modifies input impedance
- In Fig. (a) [open-loop], R_{in} of the forward amplifier sustains the entire V_{in} , whereas only a fraction in Fig. (b) [closed-loop]
- I_{in} is less in the feedback topology compared to open-loop system, suggesting increase in the input impedance

Voltage-Voltage Feedback: Input Resistance

- In the above model, $V_e = I_X R_{in}$ and $V_F = \beta A_0 I_X R_{in}$
- Thus, we have $V_e = V_X V_F = V_X \beta A_0 I_X R_{in}$
- Hence, $I_X R_{in} = V_X \beta A_0 I_X R_{in}$ and

$$\frac{V_X}{I_X} = R_{in}(1 + \beta A_0)$$

- Input impedance increases by the factor $1+\beta A_0$, bringing the circuit closer to an ideal voltage amplifier
- Voltage-voltage feedback decreases output impedance and increases input impedance, useful as a buffer stage

Current-Voltage Feedback

- This topology senses the output current and returns a voltage as the feedback signal
- The current is sensed by measuring the voltage drop across a (small) resistor placed in series with the output
- Feedback factor β has the dimension of resistance and is hence denoted by R_F

Current-Voltage Feedback

- A G_m stage must be terminated by a finite impedance to ensure it can deliver its output current
- If $Z_L = \infty$, an ideal G_m stage would sustain an infinite output voltage
- We write $V_F = R_F I_{out}$, $V_e = V_{in} R_F I_{out}$ and hence $I_{out} = G_m(V_{in} R_F I_{out})$
- It follows that

$$\frac{I_{out}}{V_{in}} = \frac{G_m}{1 + G_m R_F}$$

 Ideal feedback network in this case exhibits zero input and output impedances

Current-Voltage Feedback: Loop Gain

- To calculate the loop gain, the input is set to zero and the loop is broken by disconnecting the feedback network from the output and replacing it with a short at the output (if the feedback network is ideal)
- Test signal It is injected, producing $V_F = R_F I_t$ and hence $I_{out} = -G_m R_F I_t$
- Thus, loop gain is $G_m R_F$ and transconductance of the amplifier is reduced by $1+G_m R_F$ when feedback is applied

Current-Voltage Feedback: Output Resistance

- Sensing the current at the output increases the output impedance
- System delivers the same current waveform as the load varies, approaching an ideal current source which exhibits a high output impedance
- In the above figure, R_{out} represents the finite output impedance of the feedforward amplifier
- Feedback network produces V_F proportional to I_X , i.e., $V_F = R_F I_X$

Current-Voltage Feedback: Output Resistance

- The current generated by G_m equals $-R_F I_X G_m$
- As a result, $-R_F I_X G_m = I_X V_X / R_{out}$, yielding

$$\frac{V_X}{I_X} = R_{out}(1 + G_m R_F)$$

• The output impedance therefore increases by a factor of $1+G_mR_F$

Current-Voltage Feedback: Input Resistance

- Current-voltage feedback increases the input impedance by a factor of one plus the loop gain
- As shown in the above figure, we have $I_X R_{in} G_m = I_{out}$
- Thus, $V_e = V_X G_m R_F I_X I_{in}$ and
- Current-voltage feedback increases both the input and output impedances while decreasing the feedforward transconductance

Voltage-Current Feedback

- In this type of feedback, the output voltage is sensed and a proportional current is returned to the input summing point
- Feedforward path incorporates a transimpedance amplifier with gain R_0 and the feedback factor g_{mF} has a dimension of conductance
- Feedback network ideally exhibits infinite input and output impedances
- Also called "shunt-shunt" feedback

Voltage-Current Feedback

- Since $I_F = g_{mF}V_{out}$ and $I_e = I_{in} I_F$, we have $V_{out} = R_0I_e = R_0(I_{in} g_{mF}V_{out})$
- It follows that

$$\frac{V_{out}}{I_{in}} = \frac{R_0}{1 + g_{mF}R_0}$$

 This feedback lowers the transimpedance by a factor of one plus the loop gain

Voltage-Current Feedback: Output Impedance

- Voltage-current feedback decreases the output impedance
- Input resistance R_{in} of R_0 appears in series with the input port
- We write $I_F = I_X V_X/R_{in}$ and $(V_X/R_{in})R_0g_{mF} = I_F$
- Thus,

$$\frac{V_X}{I_X} = \frac{R_{in}}{1 + g_{mF}R_0}$$