Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине: «ОМО» Тема:" Знакомство с анализом данных: предварительная обработка и визуализация."

Выполнил: Студент 3-го курса Группы АС-66 Осовец А.О. Проверил: Крощенко А.А. Цель: Получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 7

Выборка Auto MPG. Содержит технические характеристики различных автомобилей и данные о расходе топлива (миль на галлон). Задачи:

- 1. Загрузите данные. Обратите внимание, что пропуски в столбце horsepower могут быть обозначены знаком?
- 2. Преобразуйте столбец horsepower в числовой формат и заполните пропуски средним значением.
- 3. Постройте диаграмму рассеяния, чтобы изучить зависимость расхода топлива (mpg) от веса автомобиля (weight).
- 4. Преобразуйте категориальный признак origin (страна производства) в числовой.
- 5. Создайте новый признак age, рассчитав возраст автомобиля относительно года, когда были собраны данные (например, 1983 model year).
- 6. Визуализируйте распределение количества цилиндров (cylinders) с помощью столбчатой диаграммы.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# -----
# 1. Загрузка данных
# -----
url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data'
columns = ['mpg', 'cylinders', 'displacement', 'horsepower', 'weight',
      'acceleration', 'model year', 'origin', 'car name']
df = pd.read csv(url, names=columns, sep=r'\s+', na values='?')
# -----
# 2. Обработка пропусков
# -----
df['horsepower'] = df['horsepower'].astype(float)
df['horsepower'] = df['horsepower'].fillna(df['horsepower'].mean())
# 3. Исследовательский анализ
# -----
print("Типы данных:\n", df.dtypes)
print("\nКоличество пропусков:\n", df.isna().sum())
```

```
print("\nOсновные статистические показатели:\n", df.describe())
# -----
# 4. Преобразование категориального признака
# -----
df = pd.get dummies(df, columns=['origin'], prefix='origin')
# -----
# 5. Создание нового признака аде
# -----
df['age'] = 1983 - (1900 + df['model year'])
# -----
# 6. Визуализация данных
# -----
# 6.1 Расход топлива vs вес
plt.figure(figsize=(8,6))
plt.scatter(df['weight'], df['mpg'], alpha=0.7)
plt.title('mpg vs weight')
plt.xlabel('Вес автомобиля')
plt.ylabel('Расход топлива (mpg)')
plt.grid(True)
plt.show()
# 6.2 Распределение количества цилиндров
cylinder counts = df['cylinders'].value counts().sort index()
plt.figure(figsize=(8,6))
plt.bar(cylinder counts.index, cylinder counts.values, color='skyblue')
plt.title('Распределение цилиндров')
plt.xlabel('Количество цилиндров')
plt.ylabel('Количество автомобилей')
plt.show()
# 6.3 Гистограмма расхода топлива
plt.figure(figsize=(8,6))
plt.hist(df['mpg'], bins=15, color='lightgreen', edgecolor='black')
plt.title('Распределение расхода топлива (mpg)')
plt.xlabel('mpg')
plt.ylabel('Количество автомобилей')
plt.show()
# 6.4 Расход топлива vs horsepower
plt.figure(figsize=(8,6))
plt.scatter(df['horsepower'], df['mpg'], color='orange', alpha=0.7)
plt.title('mpg vs horsepower')
plt.xlabel('Мощность (horsepower)')
plt.ylabel('Расход топлива (mpg)')
plt.grid(True)
plt.show()
```

```
# 6.5 Расход топлива vs displacement
plt.figure(figsize=(8,6))
plt.scatter(df['displacement'], df['mpg'], color='red', alpha=0.7)
plt.title('mpg vs displacement')
plt.xlabel('Объём двигателя (displacement)')
plt.ylabel('Расход топлива (mpg)')
plt.grid(True)
plt.show()
# 6.6 Корреляционная матрица
plt.figure(figsize=(10,8))
corr = df[['mpg','cylinders','displacement','horsepower','weight','acceleration','age']].corr()
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Корреляционная матрица')
plt.show()
# 6.7 Boxplot веса автомобиля по количеству цилиндров
plt.figure(figsize=(8,6))
sns.boxplot(x='cylinders', y='weight', data=df, hue='cylinders', legend=False, palette='Set2')
plt.title('Вес автомобиля по количеству цилиндров')
plt.xlabel('Количество цилиндров')
plt.ylabel('Вес автомобиля')
plt.show()
```

Типы данных:		Количество про	Количество пропусков:	
mpg	float64	mpg	0	
cylinders	int64	cylinders	0	
displacement	float64	displacement	0	
horsepower	float64	horsepower	0	
weight	float64	weight	0	
acceleration	float64	acceleration	0	
model_year	int64	model_year	0	
origin	int64	origin	0	
car_name	object	car_name	0	
dtype: object		dtype: int64		

Основные статистические показатели:							
	mpg	cylinders		model_year	origin		
count	398.000000	398.000000		398.000000	398.000000		
mean	23.514573	5.454774		76.010050	1.572864		
std	7.815984	1.701004		3.697627	0.802055		
min	9.000000	3.000000		70.000000	1.000000		
25%	17.500000	4.000000		73.000000	1.000000		
50%	23.000000	4.000000		76.000000	1.000000		
75%	29.000000	8.000000		79.000000	2.000000		
max	46.600000	8.000000		82.000000	3.000000		

Графики:

Вывод: в результате выполнения данной лабораторной работы получили практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научились выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.