Graph Basics

- **□**Terminologies
- **□**Representations
- **□**Traversals

Seven Bridges of Königsberg

Seven Bridges of Königsberg

Data Structures

□ Eulerian path (trial) / Euler walk

visits every edge exactly once

- begin and end at the same vertex
- 0 node with odd degrees

 $\{\text{Euler walks}\} \supseteq \{\text{Euler tours}\}\$

Adjacency Matrix: Examples

Data Structures

In-degree vs. Out-degree

Adjacency List: Examples

Other Graph Representations

Data Structures

■ Mapping from vertex labels to array indices

PQRSTWXYZ 0 1 2 3 4 5 6 7 8

□ Sequential representation

 $R \longrightarrow Q$

undirected graph: |V|+2|E|+1

DFS in iterative form (stack)

Nata Structures iterativeDFS(Vertex v) **DFS** traversal sequence: **AB** BC BD s.createStack(); s.push(v);**If** (any visited vertex adjacent to u) Mark v as visited; Cycle is found! В while (!s.isEmpty() // at top of the stack $u = s_{ext}(0p());$ **if** (unvisited vertex w is adjacent to u) s.push(w); Mark w as visited; // output // backtrack else **s.pop()**;

BFS in *iterative* form (queue)

```
Nata Structures
                           BFS traversal sequence: AB AC BD
iterativeBFS(Vertex v)
                           DFS traversal sequence: AB BC BD
  q.createQueue();
  q.enqueue(v);
                       If (any visited vertex adjacent to u)
  Mark v as visited;
                                    Cycle is found!
  while (!q.isEmpty(
       for (each unvisited vertex w adjacent to u)
              Mark w as visited; // output
              q.enqueue(w);
                                 spanning trees
```

DFS and **BFS** Traversals

Graph App.

- **□**Topological Sort
- **□**Spanning Tree
- **□Shortest Paths**

Topological Sort: Examples

A Trace of topSort1 (concept)

Data Structures

□ List

- $-\underline{SP}$
- ALGO, SP
- DM, ALGO, SP
- PL, DM, ALGO, SP predecessor
- DS, DM, ALGO, SP
- AL, DS, DM, ALGO, SP
- CAL, AL, DS, DM, ALGO, SP

A Trace of topSort2

Spanning Tree: Definition

Data Structures

- ☐ To obtain a spanning tree from a connected undirected graph with cycles
 - Remove edges until there are no cycles

Prüfer Sequence

Data Structures

Prüfer sequence: A B B

☐ What is the **Prüfer sequence** of the following graph?

1. adaebcb

2. aebabcd

3. aebdcbaa

4. aebdcba

Minimum Spanning Tree: Definition

Data Structures

- □ Cost of spanning tree
 - Sum of the edge weights on a spanning tree
- ☐ A minimum spanning tree of a connected undirected graph has a minimal edge-weight sum
 - A particular graph could have several minimum spanning trees

DFS: 4+4+3=11

BFS: 4+2+5=11

MST: 4+2+3=9

Prim's Algorithm

Data Structures

Minimum Spanning Tree (MST): AC AB BD

PrimAlgorithm(Vertex v)

BD BC CA

```
Mark v as visited; count=0;
```

```
while (count < |V|-1)
```

(v,u) = the least-cost edge from visited to unvisited

Mark u as visited;

Add (v,u) into MST;

count++;

Kruskal's Algorithm

Data Structures

Minimum Spanning Tree (MST): AC BD AB

KruskalAlgorithm()

Assign a unique label to each vertex; count=0;

while (count < |V|-1)

(v,u)= the least-cost edge of two vertices with different labels

Assign the label min(u,v) to all vertices with these two labels;

Add (v,u) into MST;

count++;

Kruskal's Algorithm

Data Structures

Shortest Paths: Dijkstra's Algorithm

 ∞

Data Structures

Single-Source All-Destination Shortest Paths

Nata Structures DijkstraAlgorithm(Vertex v_0) *weight*[0..n] = {0, ∞ , ..., ∞ }; 8 $vertexSet = \emptyset;$ $v = v_0;$ **do** { Add v into vertexSet; **for** *edge* (*v*,*u*) *where u is not in vertexSet* $weight[u] = min\{weight[u],$ weight[v]+edgeWeight[v,u]; cheapest = ∞ ; for vertex u not in vertexSet if (weight[u] < cheapest)v = u; cheapest = weight[u];} while (cheapest $< \infty$);

P. 22

Shortest Paths: Demonstration

Data Structures

Shortest Path Tree vs. Minimum Spanning Tree

All-Pairs Shortest Paths

All-Pairs Shortest Paths: Floyd's Algorithm

Data Structures

Floyd-Warshall algorithm [Robert Floyd, 1962][S. Warshall, 1962]

- 1. Initialize distance matrix $D^{-1} = adjacency matrix$;
- 2. For k = 0 to |V|-1 $D^k \leftarrow D^{k-1}$; // Add vertex k into vertexSet

For
$$i = 0$$
 to $|V|-1$

For
$$j = 0$$
 to $|V| - 1$

$$D^{0}[1,2] = min \{D^{-1}[1,2], D^{-1}[1,0] + D^{-1}[0,2] \}$$

0 $\frac{2}{3}$ $\frac{1}{7}$	6
P. 26	$\frac{3}{1}$

D -1	0	1	2	3
0	0	8	3	8
1	2	0	8	8
2	8	7	0	1
3	6	∞	∞	0

\mathbf{D}^0	0	1	2	3
0	0	8	3	∞
1	2	0	5	∞
2	8	7	0	1
3	6	∞	∞	0

Path Finding: Comparisons

Data Structures \Box A* algorithm Dijkstra's algorithm

Graph Problems

- □Critical Path Analysis
- **■ Maximum Flow Problem**
- **□Other Difficult Problems**

Critical Path Analysis

Data Structures

- \square Earliest time of an activity/event: early(E) = 30
- \square Latest time of an activity/event: late(E) = 60 20 = 40
- \square Critical activity: late(F) = early(F) = 30

Critical Path Analysis: Example

Data Structures

- \square Activities: $a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8 \ a_9 a_{10}$
- **□** Dependencies among Activities

$$a_0 \rightarrow a_3$$
, $a_1 \rightarrow a_4$, $a_2 \rightarrow a_5$, $a_5 \rightarrow a_8$, $a_6 \rightarrow a_9$

 $a_3 a_4 \rightarrow a_6 a_7, a_7 a_8 \rightarrow a_{10}$

Critical Path Analysis: Forward

Data Structures

- \square earliest time of an activity: ea[0..10]
 - earlist time of an event: ee[0..8]
 - ea[x] = ee[i] if a_x is on the edge $\langle v_i, v_i \rangle$
 - $ee[j] = max\{ee[i] + duration \text{ of } \langle v_i, v_j \rangle\}$ for every v_i that is an immediate predecessor of v_i

<u>ea</u>[0]: 0[1]: 0[2]: 0

Critical Path Analysis: Forward

Data Structures

```
<u>ea</u>
```

[0]: 0

[1]: 0

[2]: 0

[3]: 5

[4]: 4

[5]: 6

[6]: 7

[7]: 7

[8]: 9

[9]: 16

[10]: 15

- ea[x] = ee[i] if a_x is on the edge $\langle v_i, v_i \rangle$
- $ee[j] = max\{ee[i] + duration \text{ of } \langle v_i, v_j \rangle\} \text{ for every } v_i$ that is an *immediate predecessor* of v_i

P. 32

Critical Path Analysis: Backward

Data Structures

- □ latest time of an activity: la[0..10]
 - latest time of an event: le[0..8]
 - $la[x] = le[j] duration of < v_i, v_j >, where <math>a_x$ is on $< v_i, v_j >$
 - $le[i] = min\{le[j] duration \text{ of } \langle v_i, v_j \rangle\}$ for every v_j that is

[9]: 16 [10]: 15

Critical Path Analysis: Backward

Nata Structures

- $la[x] = le[j] duration of < v_i, v_i>, where <math>a_x$ is on $\langle v_i, v_i \rangle$
- $le[i] = min\{le[j] duration \text{ of } \langle v_i, v_i \rangle\} \text{ for every } v_i$ that is an immediate successor of vi

- [0]: 0[1]: 2 [2]: 3
- [3]: 5
- [4]: 6
- [5]: 9
- [6]: 7
- [7]: 7
- [8]: 12
- [9]: 16
- [10]: 15

234

Critical Path Analysis: Results

Data Structure	25
----------------	----

<u>ea</u>	<u>la</u>	<u>la-ea</u>
[0]: 0	0	0
[1]: 0	2	2
[2]: 0	3	3
[3]: 5	5	0
[4]: 4	6	2
[5]: 6	9	3
[6]: 7	7	0
[7]: 7	7	0
[8]: 9	12	3
[9]: 16	16	0
[10]: 15	15	0

P. 35

□ la-ea is called (total) *float* or *slack*

 amount of time that a task can be delayed without causing a delay to project completion time

la-ea==0 means a critical activity

Critical Path Analysis: Results

Data Structures

□ Determine Critical Paths

- Delete all non-critical activities (nonzero slack)
- Generate all the paths from the start to the end

□ Speed up the activities on all critical paths

 resource can be concentrated on these activities in an attempt to reduce the project completion time

Maximum Flow Problem

Data Structures

□ What is the maximum flow?

flow f(u,v) / capacity c(u,v)

Residual Graph

Data Structures

$$s \rightarrow u \rightarrow t$$
: $c(s,u) = 2$, $c(u,t) = 4 \rightarrow flow(u,v) = 2$

$$s \rightarrow v \rightarrow t$$
: $c(s,v) = 4$, $c(v,t) = 2 \rightarrow flow(u,v) = 2$

$$s \rightarrow v \rightarrow u \rightarrow t$$
: flow(u,v) = $min\{2,6,2\} = 2$

☐ Residual graph

- residual capacity: $c_f(u,v) = c(u,v) - f(u,v)$, $c_f(v,u) = c(v,u) - f(v,u)$

Ford-Fulkerson algorithm

- 1. Initialize $c_f(u,v)$ for every edge;
- 2. Find a path P from s to t \ni $c_f(u,v)>0 \ \forall (u,v) \in P$;
- 3. $c_f(P) = min\{c_f(u,v): (u,v) \in P\};$
- 4. For each edge $(u,v) \in P$

6

P. 39

- $c_f(u,v) = c_f(u,v) c_f(P);$
- $c_f(v,u) = c_f(v,u) + c_f(P);$

	$\mathbf{c}_{\mathbf{f}}$	S	u	V	t
	S	0	0	0	0
\	u	2	0	2	$\begin{bmatrix} 0 \\ \mathbf{-} \end{bmatrix}$
	V	4	4	0	0
	t	0	4	2	0

u

smallest label first

Nata Structures

Edmonds-Karp algorithm

Data Structures

Bi-connected Graph: Definitions

Data Structures

□ Finding the articulation points

DFS-tree based algorithm

