Deterministic Finite Automata

A (Real-Life?) Example

- Example: Kitchen scale
- P= Power button (ON/ OFF)

• Starts OFF in g mode

 A computational problem: Does a sequence of button presses in {P,U}* leave the scale ON in oz mode?

Machine Models

• <u>Finite Automata (FAs)</u>: Machine with a finite amount of unstructured memory

A DFA for the Kitchen Scale Problem

A DFA Recognizing Parity

The language recognized by a DFA is the set of inputs on which it ends in an "accept" state

Parity: Given a string consisting of a's and b's, does it contain an even number of α s?

$$\Sigma = \{a,b\}$$
 $L=\{w \mid w \text{ contains an even number of } ds\}$

Which state is reached by the parity DFA on input aabab?

- a) "even"
- b) "odd"

Anatomy of a DFA

3/19/2023

Some Tips for Thinking about DFAs

Given a DFA, what language does it recognize?

- Try experimenting with it on short strings. Do you notice any patterns?
- What kinds of inputs cause the DFA to get trapped in a state?

Given a language, construct a DFA recognizing it

- Imagine you are a machine, reading one symbol at a time, always prepared with an answer
- What is the essential information that you need to remember? Determines set of states.

What language does this DFA recognize?

Practice!

- Lots of worked out examples in Sipser
- Automata Tutor: https://automatatutor.model.in.tum.de/

Formal Definition of a DFA

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Qis the set of states
- Σ is the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the
- transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

A DFA for Parity

Parity: Given a string consisting of ds and bs, does it contain an even number of ds?

$$\Sigma = \{a,b\}$$

 $L=\{w \mid w \text{ contains an even number of } ds\}$

State set *Q*=

Alphabet $\Sigma =$

Transition function δ

δ	a	b
q_{0}		
$q_{\!\scriptscriptstyle 1}$		

Start state q_0 Set of accept states F=

Formal Definition of DFA Computation

```
A DFA M=(Q, \Sigma, \delta, q_0, F) accepts a string w=w_1w_2\cdots w_n\in \Sigma^* (where each w\in \Sigma) if there exist v_0,\ldots,v_n\in Q such that v_0=v_1v_2\cdots v_n\in \Sigma1 v_0=v_1v_2\cdots v_n\in \Sigma2 such that v_0=v_1v_2\cdots v_n\in \Sigma3 v_1=v_1v_2\cdots v_n\in \Sigma4 for each v_1=v_2\cdots v_n\in \Sigma9 if there exist v_1v_2\cdots v_n\in \Sigma9 if the exist v_1v_2\cdots v_n\in \Sigma9 if the exist v_1v_2\cdots v_n\in \Sigma9 if the exist v
```

12

Example: Computing with the Parity DFA

```
Let w = abba
Does M accept w?

What is \delta(r2,w3)?

a)q0
b)q1
```

```
A DFA M = (Q\Sigma, \delta, q_0 F) accepts a string w = w_1, w_2 \cdots w_n \in \Sigma^* (where each w_1 \in \Sigma) if there exist w_1, w_2, \dots, v_n \in Q such that
```

```
1 r_0 = q_0
2. \delta(r_i, w_{i+1}) = r_{i+1} for each i = 0, \dots, n-1, and r_n \in F
```

Regular Languages

Definition: A language is regular if it is recognized by a DFA

```
L=\{w \in \{a,b^*\} | w \text{ has an even number of } ds\} \text{ is regular}

L=\{w \in \{0,1\}^* | w \text{ contains } 001\} \text{ is regular}
```

Many interesting problems are captured by regular languages

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

Internet Transmission Control Protocol

Let TCPS = $\{w | w \text{ is a complete TCP Session}\}$ Theorem. TCPS is regular

Compilers

Comments:

```
Are delimited by /* */
Cannot have nested /* */
Must be closed by */
*/ is illegal outside a comment
```

COMMENTS = {strings over {0,1, /, *} with legal comments}

Theorem. **COMMENTS** is regular.

Genetic Testing

DNA sequences are strings over the alphabet $\{A, C, G, T\}$.

A gene g is a special substring over this alphabet.

A genetic test searches a DNA sequence for a gene.

GENETICTEST_g = {strings over $\{A, C, G, T\}$ containing g as a substring}

Theorem. GENETICTEST $_g$ is regular for every gene g.

Arithmetic

LET
$$\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

- A string over Σ has three ROWS (ROW₁, ROW₂, ROW₃)
- Each ROW $b_0 b_1 b_2 \dots b_N$ represents the integer

$$b_0 + 2b_1 + ... + 2^N b_N$$

• Let ADD = $\{S \in \Sigma^* \mid ROW_1 + ROW_2 = ROW_3\}$

Theorem. ADD is regular.

Readings

Sipser Ch 1.1-1.2