B.Tech. DEGREE EXAMINATION, JUNE 2023

Sixth Semester

18ECE204J - ARM - BASED EMBEDDED SYSTEM DESIGN

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

r _	4	_	
เก	т	a	•

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B & Part C should be answered in answer booklet.

Time: 3 hours		Max. N	Aark	s: 1	00
$PART - A (20 \times 1 = 20 N)$	Aarks)	Marks	BL	co	РО
Answer ALL Questio	ons				
1. The type of instruction that has a feature code density with executions done by	-		1	1	1
	Variable execution Register transfer execution				
2. Any instruction that is applied on the rapplied to any of the registers from $r_0 - r_{13}$ as			2	1	1
	Orthogonality				
	Condensed				
3. The 16 bit instruction of ARM processor is	called as	1	1	1	1
(A) Thumb instruction (B)	ARM instruction				
(C) Jazele instruction (D)	Java byte code				
4. The type of architecture with a combined	data and instruction memory i	s ¹	2	1	1
$\overline{(A)}$ \overline{ARM} (B)	Thumb				
	Harvard				
5. The worst case quantization error in an AD	OC is half of .	1	2	2	3
	Resolution				
	Accuracy				
6. The hexa code to display 0 using 7 segmen	t LED is .	1	3	2	3
	0×07 H				
	0×80 H				
7. Value of resistors used for pull up in I2C in	nterface is	1	3	2	. 3
	2–4 kΩ				
	$2.2-4.7 \text{ k}\Omega$				

O COL Marida fam			1	1	2 1	
8. SCL stands for	(B)) Serial clock				
(A) Start clock) Service clock				
(C) Stop clock	(υ,) Betvice clock				
2 L LOD interfering DC register sele	oct =0	etands for	1	1	3	١
9. In LCD interfacing RS-register sele	(B)	Command register				
(A) Data register		Control register				
(C) Instruction register	(D)) Control register				
10 flag is used to check the c	ontrol	ler status in LCD interfacing	1	1	3	1
	Ontrol.	Status				
(A) Available						
(C) Busy	(D)	Check				
11 In Jacobs (V. V.) function V. V.			1	2	3	3
11. In locate (X,Y) function X,Y		Finds display surger position				
(A) Gets display cursor position						
(C) Resets display cursor position	(D)	Sets display cursor position				
12 A. 1. 1 2 40 177			1	2	3	2
12. An ultrasound signal of 40 kHz	is to	be digitized. Recommend the	1	2	3	3
minimum sampling frequency.						
(A) 20 kHz	(B)	40 kHz				
(C) 80 kHz	(D)	10 kHz				
· .						
13. The memory which does not retain	in its	data when power is removed is	1	1	4	1
called		•				
	(B)	Volatile				
(C) Flash		Dynamic memory				
	(2)	Dynamic memory				
14. Which of the following is the fastest	t mean	os of memory access for CDL12	1	1	4	1
(A) Registers		Cache	_	•	•	•
(C) Main memory	` '					
(c) Wall memory	(D)	Virtual memory				
15 The approximate communication a		C 1 1 7 1				
15. The approximate communication r	ange	for class I Bluetooth devices is	1	2	4	3
(A) 100	~.					
(A) 100 m	(B)	10 m				
(C) 1000 m	(D)	50 m				
16. FAT stands for			1	2	4	3
(A) File append table	(B)	File access table	•	2	7	3
(C) File allocation table						
(5) The unounon more	(D)	File assignment table				
17 In the instruction DWM aut and 100	01\ 5	•-				
17. In the instruction PWM out sound (P			1	1	5	3
(A) GND	(B)	VCC2				
(C) Input pin	(D)	Output pin				
Α	` /	I bwr				
18. 200 Hz wave is a						
(A) Regular 200 Hz sinewave	(D)	D 1 200	1	1	5	3
(C) Audio 200 Hz sine wave	(R)	Regular 200 Hz cosine wave				
(5) Fladio 200 Fiz sine wave	(D)	Video 200 Hz sine wave				
10 The and an City of						
19. The order of the filter is given by the	numh	per of		_		See 1
(A) Passive components		Capacitor used	1	2	5	3
(C) Frequencies used		Delays used				
1	(1)	DEIANG HEAD				

2	U. The value "note" represents notes on a plano keyboard which is a					
	(A) 16 bit value (B) 10 bit value (C) 7 bit value (D) 8 bit value					
	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	ВL	co	PO	
21	. Explain 5 shapes of pipelining in ARM cortex processor.	4	2	1	3	
22	. With suitable examples explain data processing instructions of LPC1768.	4	2	1	1	
23	. Write a program in MBED to glow red and green LED using switch input.	4	2	2	3	
24	Briefly explain the functions associated with PWM on MBED.	4	1	2	1	
25	Depict the Master – Slave configuration of I2C serial communication interface.	4	2	3	3	
26.	Write two functions and its format and summary of stdio library for accessing Data files with MBED.	4	2	4	1	i
27.	Write a program on MBED to read MIDI messages and display key and velocity data to a host terminal application.	4	3	5		4
	$PART - C (5 \times 12 = 60 Marks)$					
28. a.	Answer ALL Questions Explain ARM core data flow model with the deployment of ARM registers in user mode.	Marks 12	1 BL			P O
	(OR)					
b.	Explain the instruction set classification of ARM LPC1768 with suitable examples.	12	2	1		1
29. a.	Explain the concept of seven segment displays and their working with proper hexadecimal codes and program in detail.	12	3	2	2	3
	(OR)					
b.	What is the significance of ADC in embedded systems? With necessary coding and functions explain how to interface ADC to LPC1768 MBED in detail.		2	2	2	3
30. a.	How to communicate date synchronously using MBED controllers Explain the concepts and coding related to it in detail.	? 12	:	2	3	3
	(OR)					
b.	Explain the register formats associated with LCDs and also explain a code to display alphabets and characters in LCD.	12		3	3	•

31. a. How do you access data using external USB flash memory with MBED?

(OR)

b. Elucidate on the concepts of Bluetooth in wireless data communication in detail.

(OR)

3. 4 4

4. 5 3

4. 6

5. Implement a digital low pass filter in MBED and explain how it is used in digital audio filtering in detail.

* * * * *