

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.2a

Introduzione e metodo di Bisezione

Radici di equazioni non lineari (Introduzione)

- Risoluzione numerica di equazioni non lineari:
 Contesto generale: una funzione non lineare arbitraria (e.g., polinomio)
- Obiettivo: determinare gli zeri (o radici) dell'equazione
 - Radici di un'equazione: i valori reali per i quali la funzione si annulla
- Introduzione di metodi numerici per il calcolo degli zeri
 - Calcolo degli zeri: metodi in grado di calcolare o approssimare la soluzione

Approssimare la soluzione:

costruire una successione di valori reali che converge, all'infinito, alla radice cercata

Radici di equazioni non lineari (Formulazione del problema)

- Impostazione in termini generali del problema
- Consideriamo una **funzione** f(x) definita su un *intervallo* I della retta reale

$$f(x):I\subset\mathbb{R}\to\mathbb{R}$$

• Vogliamo determinare, se esiste, il valore $lpha \in I$ tale per cui

$$f(\alpha) = 0$$

$$\alpha \in \mathbf{I} \text{ t.c. } f(\alpha) = 0$$

• Se tale $\, lpha \,$ valore esiste, viene chiamato zero della funzione

Radici di equazioni non lineari (Interpretazione geometrica)

Analizziamo ora il problema da un punto di vista geometrico

Nessuna radice: la funzione non interseca mai l'asse delle $\,x\,$ nell'intervallo f I

Radici multiple: la funzione ha due o più radici che intersecano l'asse $\,x\,$ nell'intervallo I

Radice singola: la funzione attraversa l'asse x in un unico punto x=lpha all'interno di ${f I}$

Radici di equazioni non lineari (Successione convergente)

■ Nella maggior parte dei casi, le radici delle equazioni non lineari non possono essere determinate esattamente in forma chiusa

- Costruire una successione di valori che converge alla radice, ottenendo così un'approssimazione sempre più accurata della soluzione.
- \checkmark Generare una **successione di numeri reali** x_k tale che, al tendere di k all'infinito, il suo limite sia uguale a α

$$\lim_{k \to \infty} x_k = \alpha$$

 \checkmark Costruire una successione che converge alla soluzione x dell'equazione

$$f(x) = 0$$

Paradigma dei metodi numerici (successione convergente)

ightharpoonup Costruire una successione che converge alla soluzione x=lpha dell'equazione

$$f(x) = 0$$

$$\lim_{k \to \infty} x_k = \alpha$$

Consideriamo questo approccio come il paradigma dei metodi numerici che utilizzeremo. L'obiettivo sarà sempre quello di costruire successioni che, idealmente, convergano alla soluzione del problema matematico che vogliamo risolvere.

Metodo di Bisezione (ricerca degli zeri di equazioni non lineari)

- Metodo di Bisezione: uno dei metodi più tradizionali e diffusi
- Basato su un importante risultato dell'analisi reale

Teorema degli Zeri delle Funzioni Continue (TZFC)

• Se una funzione f(x) è continua in un intervallo [a,b] e assume valori di segno opposto agli estremi (f(a)f(b)<0) allora esiste α che appartiene all'intervallo (a,b) tale che $f(\alpha)=0$

Data una funzione
$$f(x):[a,b]\to\mathbb{R}$$
 continua in $[a,b]$ e tale che $f(a)f(b)<0$ allora $\exists \alpha\in(a,b)$ tale che $f(\alpha)=0$

Teorema degli Zeri delle Funzioni Continue (geometricamente)

Metodo di Bisezione è basato sul TZFC

Data una funzione $f(x):[a,b]\to\mathbb{R}$ continua in [a,b] e tale che f(a)f(b)<0 allora $\exists \alpha\in(a,b)$ tale che $f(\alpha)=0$

