Dataframes and Series

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

Using data to answer questions

What is the average birth weight of babies in the United States?

- Find appropriate data, or collect it
- Read data in your development environment
- Clean and validate

National Survey of Family Growth (NSFG)

NSFG data, from the National Center for Health Statistics

"nationally representative of women 15-44 years of age in the ... United States

"information on family life, marriage and divorce, pregnancy, infertility, use of contraception, and general and reproductive health."

Reading data

```
import pandas as pd
nsfg = pd.read_hdf('nsfg.hdf5', 'nsfg')
type(nsfg)
```

pandas.core.frame.DataFrame

Reading data

```
nsfg.head()
```

	caseid	outcome	birthwgt_lb1	birthwgt_oz1	prglngth	nbrnaliv	agecon	\
0	60418	1	5.0	4.0	40	1.0	2000	
1	60418	1	4.0	12.0	36	1.0	2291	
2	60418	1	5.0	4.0	36	1.0	3241	
3	60419	6	NaN	NaN	33	NaN	3650	
4	60420	1	8.0	13.0	41	1.0	2191	
	agepreg	hpagelb	wgt2013_2015					
0	2075.0	22.0	3554.964843					
1	2358.0	25.0	3554.964843					
2	3308.0	52.0	3554.964843					
3	NaN	NaN	2484.535358					
4	2266.0	24.0	2903.782914					

Columns and rows

```
nsfg.shape
```

```
(9358, 10)
```

nsfg.columns

Columns and rows

BIRTHWGT_LB1 (46-47)

Variable Type : raw

BD-3: How much did (BABY'S NAME/this 1st baby) weigh at birth? (POUNDS)

value	label	Total
	INAPPLICABLE	2873
0-5	UNDER 6 POUNDS	936
6	6 POUNDS	1666
7	7 POUNDS	2146
8	8 POUNDS	1168
9-95	9 POUNDS OR MORE	474
98	Refused	1
99	Don't know	94
	Total	9358

Each column is a Series

```
pounds = nsfg['birthwgt_lb1']
type(pounds)
```

pandas.core.series.Series

Each column is a series

```
pounds.head()

0    5.0
1    4.0
2    5.0
3    NaN
4    8.0
Name: birthwgt_lb1, dtype: float64
```

Let's start exploring!

EXPLORATORY DATA ANALYSIS IN PYTHON

Clean and Validate

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

Selecting columns

```
pounds = nsfg['birthwgt_lb1']

ounces = nsfg['birthwgt_oz1']
```

```
pounds.value_counts().sort_index()
```

```
0.0
           6
1.0
          34
          47
2.0
          67
3.0
4.0
         196
5.0
         586
6.0
        1666
7.0
        2146
8.0
        1168
9.0
         363
10.0
          82
11.0
          17
12.0
13.0
           2
           2
14.0
17.0
98.0
99.0
          94
Name: birthwgt_lb1, dtype: int64
```


BIRTHWGT_LB1 (46-47)

Variable Type: raw

BD-3: How much did (BABY'S NAME/this 1st baby) weigh at birth? (POUNDS)

value	lahel	Total
value	IGDCI	
	INAPPLICABLE	2873
0-5	UNDER 6 POUNDS	936
6	6 POUNDS	1666
7	7 POUNDS	2146
8	8 POUNDS	1168
9-95	9 POUNDS OR MORE	474
98	Refused	1
99	Don't know	94
	Total	9358

Describe

```
pounds.describe()
```

```
6485.000000
count
            8.055204
mean
           11.178893
std
            0.000000
min
25%
            6.000000
50%
            7.000000
            8.000000
75%
           99.000000
max
Name: birthwgt_lb1, dtype: float64
```

Replace

```
pounds = pounds.replace([98, 99], np.nan)
pounds.mean()
```

6.703286384976526

```
ounces.replace([98, 99], np.nan, inplace=True)
```


Arithmetic with Series

```
birth_weight = pounds + ounces / 16.0
birth_weight.describe()
```

```
6355.000000
count
            7.120978
mean
            1.422236
std
            0.000000
min
25%
            6.375000
50%
            7.187500
75%
            8.000000
           17.937500
max
dtype: float64
```

Let's practice!

EXPLORATORY DATA ANALYSIS IN PYTHON

Filter and Visualize

EXPLORATORY DATA ANALYSIS IN PYTHON

Allen Downey
Professor, Olin College

Histogram

```
import matplotlib.pyplot as plt

plt.hist(birth_weight.dropna(), bins=30)

plt.xlabel('Birth weight (lb)')
plt.ylabel('Fraction of births')
plt.show()
```


Boolean Series

```
preterm = nsfg['prglngth'] < 37
preterm.head()</pre>
```

```
0 False
1 True
2 True
3 True
4 False
Name: prglngth, dtype: bool
```

Boolean Series

preterm.sum()

3742

preterm.mean()

0.39987176747168196

Filtering

```
preterm_weight = birth_weight[preterm]
preterm_weight.mean()
```

5.577598314606742

```
full_term_weight = birth_weight[~preterm]
full_term_weight.mean()
```

7.372323879231473

Filtering

Other logical operators:

- & for AND (both must be true)
- I for OR (either or both can be true)

Example:

```
birth_weight[A & B]  # both true
birth_weight[A | B]  # either or both true
```

Resampling

- NSFG is not representative
- Some groups are "oversampled"
- We can correct using resample_rows_weighted()

Finish it off!

EXPLORATORY DATA ANALYSIS IN PYTHON

