Progressive House を対象とした IGA によるメロディ生成システム

大谷 紀子 研究室 1872067 中尾 圭吾

1. 背景と目的

Progressive House は, Electronic Dance Music (以下 EDM) のサブジャンルのひとつである. EDM とは、Digital Audio Workstation (以下DAW) や シンセサイザを用いて作曲し、人々を踊らせるこ とを目的とした楽曲のジャンルである. EDM ジャ ンルの中でも Progressive House は, Beats Per Minute (以下 BPM) が 128 前後のテンポで, 高音 の電子音のリードを短いメロディパターンで繰り 返し演奏する点が特徴である. メロディパターン は、音高パターンとリズムパターンの組み合わせ で表現される.一般的な Progressive House のリ ードにおいて、音高パターンは4小節ごとに繰り 返され、リズムパターンは1~2小節ごとに繰り返 される. したがって、Progressive Houseのメロ ディを考案する場合, 短いメロディパターンを考 える必要がある. 作曲家による一般的な作業手順 では、はじめにサビのメロディを考案し、メロデ ィに基づいたスケールからベースやパッドを考案 する. メロディ考案時には有名な既存曲を参考に することが多いため、作曲したメロディが有名な 既存曲と類似する可能性がある. 短いメロディパ ターンを繰り返す点が特徴であることから,一部 が類似すると曲全体が類似し, 独自性に欠けると いう問題点が挙げられる.

本研究では、Progressive House の作曲におけるメロディの独自性向上、および作業時間の短縮を目的として、ユーザの感性に基づいたメロディ生成システムを構築する.

2. システム概要

本システムは、対話型遺伝的アルゴリズム(IGA; Interactive Genetic Algorithm) により Progressive House のメロディを生成する. IGA は, 遺伝的アルゴリズム (GA; Genetic algorithm) の 一種である. GA は、生物の進化過程を模倣した最 適解探索アルゴリズムであり、IGA は、人間が持 つ感性を評価関数とし、最適解を求める手法であ る. はじめに、有名な Progressive House の既存 曲から獲得したメロディルールに基づいて、既存 曲と類似しない8種類のメロディを生成し、初期 世代の個体とする. 生成したメロディを Web ブラ ウザ上で再生し、ユーザに好みかどうかを5段階 で評価させ、ユーザの評価を適応度とする. 適応 度に応じて親個体を選択し, 交叉と突然変異によ って次世代の個体を生成する. 生成された個体が 既存曲と類似したメロディである場合は、新たに 作り直す. ユーザが終了を指示するまで世代交代 を繰り返し、最終世代において最も評価の高いメ ロディを MIDI ファイルとして出力する.

3. メロディルール獲得

メロディルールとは、メロディ生成において Progressive House らしさを表現する際に使用するメロディの特徴データである。特徴データは、各音高と曲のキーの差分データ、リズムデータ、16小節内のメロディ繰り返し回数データ、繰り返しごとのメロディ変異データの4つの組み合わせで構成される。

本研究は、有名な Progressive House の既存曲 のサビ部分を 16 小節のみ MIDI データにしたもの を学習データとして使用する. 学習データをもと に、メロディルールを獲得する手順を以下に示す.

- ① 学習データのメロディからスケールを算出 し、曲のキーを特定する.特定したキーを もとに、各音高がキーの音高とどれくらい 離れているかを数値で表現することで、音 高の差分データを取得する
- ② 学習データの各音が、どのようなタイミン グで鳴るかを取得し、リズムデータとする.
- ③ 学習データのメロディを 4 分割し、それぞれの音高とリズムの類似度を計測する.類似度がともに 60%以上の場合、メロディは4回繰り返されているものとする. 60%未満の場合、メロディを 2 分割して同様に類似度を計測する. 60%以上の場合、メロディは2 回繰り返されているものとする. これらに該当しないメロディは繰り返されていないものとして、メロディ繰り返し回数データを取得する.
- ④ 学習データのメロディを繰り返し回数分に 分割し、それぞれの音数や音高、リズムを 比較して差分を計測する.計測した差分を メロディ変異データとして取得する.

4. ルールを適用した初期生成

本システムは、メロディルールに基づいて初期 生成する。メロディは、繰り返し回数、音数、リ ズム、音高、メロディ変異データを組み合わせて 生成する。初期生成手順を以下に示す。

- ① メロディルールから、繰り返し回数、音数を ランダムにひとつ取得し、決定する.
- ② メロディルールから、リズム、音高を音数分 取得する. これまで取得したデータを組み合 わせ、ベースとなるメロディを生成する.
- ③ メロディルールから、メロディ変異データを ランダムに取得する.上記で生成したメロディに適用することで、初期生成が完了する.

5. IGA による世代交代

世代交代において、二点交差や一様交叉などを

採用すると、前世代の特徴が損なわれてしまう可能性が高いため、一点交叉を採用する。また、繰り返し回数をNとし、ランキング選択によって選択された 2 つの親個体を 16/N 小節ごとに交叉することで、メロディの繰り返し数を維持する。

6. 評価実験

レーベルからリリース経験のある Progressive House 作曲家 7 名を被験者として,評価実験を実施した.本システムを使用した上で,メロディの独自性や作曲時間の短縮見込み時間,作曲意欲の変化など,9項目をアンケート形式で回答させた.

7. 考察

評価実験の結果,全ての質問項目で肯定的な評 価を得られた. 作曲時間短縮については、被験者 の作曲時間は約20時間~2週間であるのに対し、 約 5%~20%の短縮が見込まれるという評価を得ら れた. また、メロディアイデアが思い浮かんだか という質問に対しては、85.7%の人が「はい」と回 答した. 以上のことから、本システムを使用する ことでメロディアイデアを思いつき、作曲時間を 短縮できたと考えられる. メロディの独自性につ いては、独自性が高いかという質問に 57.1%の人 が「はい」と回答した. 自由記述の項目に、オリ ジナリティはあるが Progressive House のメロデ ィであると感じないメロディが多かったという記 述があった. 以上のことから, 既存曲との類似は しないが,システムが生成したメロディに Progressive House らしさがあまりないという問 題があると考えられる. 今後の課題として、初期 生成をランダムではなく、 学習データの音高の変 化に基づくことで、Progressive House らしさが 強まると考えられる。また、ペンタトニックを考 慮した突然変異をすることで, より自然なメロデ ィの生成ができると考えられる.

本システムは、作曲活動に役に立ちそうかという質問に対して、100%の人が「はい」と回答したことから、本システムは有用性があるといえる.