

Software Resource Disaggregation for HPC with Serverless Computing

Marcin Copik, Marcin Chrapek, Alexandru Calotoiu, Torsten Hoefler

HPC System Utilization

Piz Daint, April 2022.

- XC50 nodes CPU + GPU, 64 GB memory.
- XC40 nodes CPU, 64/128 GB memory.

Query SLURM info every two minutes.

How long do nodes stay idle?

HPC System Utilization - CPU

80% and 70% of idle node events last less than 10 minutes.

HPC System Utilization - CPU

Short-term resource availability requires short-term allocations.

80% and 70% of idle node events last less than 10 minutes.

HPC System Utilization - Memory

HPC System Utilization - GPU

Learning from Five-year Resource-Utilization Data of Titan System

Feiyi Wang*, Sarp Oral[†], Satyabrata Sen [‡] and Neena Imam[§]

Oak Ridge National Laboratory

CLUSTER, 2019

Software Solution

Standard HPC Node

- High performance
- Inflexible architecture

Existing Coupled Hardware Systems

Hardware Disaggregation

- High efficiency
- **Solution** Cost, performance penalty

Software Abstraction for Disaggregation

We propose a software disaggregation approach to share node resources between

coarse-grained, long-running, and static batch jobs and

fine-grained, short-term, and dynamically allocated serverless functions.

Hardware Abstraction

Hardware Abstraction

Hardware Abstraction

Hardware Abstraction

Pay-as-you-go billing

Batch jobs

Batch jobs

Batch jobs + serverless functions

Batch jobs

Batch jobs + serverless functions

Batch jobs

Batch jobs + serverless functions

Evaluation

XC50 nodes - 12 CPU cores, GPU, 64 GB memory.

XC40 nodes - 36 CPU cores, 64/128 GB memory.

Cray Aries interconnect.

36 CPU cores, 377 GB memory. Ethernet with RoCEv2 support.

#1 CPU Sharing

LULESH

64 ranks, 2 nodes 32 out of 36 cores allocated.

NAS

1 – 4 ranksDistributed across nodes.

#2 Serving Remote Memory

#3 Co-locating GPU and CPU workloads

Co-located GPU application.

LULESH – 27 ranks, 3 nodes, 9 out of 12 cores allocated.

Rodinia – 1 MPI rank, 1 GPU.

Summary

"the goal of achieving near 100% utilization while supporting a real parallel supercomputing workload is unrealistic"

Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization James Patton Jones¹ and Bill Nitzberg¹ MRJ Technology Solutions NASA Ames Research Center, M/S 258-6 Moffett Field, CA 94035-1000 jjones@nas.nasa.gov

1999