Exercice: (10 pts)

1- Soit la matrice de $M_3(\mathbb{R})$ définie par :

$$A_{\beta} = \left(\begin{array}{ccc} \beta & -2 & 0 \\ 0 & -2 & \beta \\ -1 & \beta & -1 \end{array} \right)$$

Déterminer det A_{β} .

2- Soit $\Phi_{\beta} \in End(\mathbb{R}^3)$ tel que $A_{\beta} = M_C(\Phi_{\beta})$ où C désigne la base canonique de \mathbb{R}^3 .

a/ Déduire de la question précédente les valeurs de β pour lesquelles Φ_{β} est un isomorphisme de \mathbb{R}^3 .

b/ Dans le cas où Φ_{β} est un isomorphisme de \mathbb{R}^3 , déterminer en utilisant les déter-

minants, la matrice associée à Φ_{β}^{-1} relativement à la base canonique de \mathbb{R}^3 . c/ Dans le cas où Φ_{β} n'est pas un isomorphisme de \mathbb{R}^3 , déterminer en utilisant les déterminants, et suivant les valeurs de β , $rg(\Phi_{\beta})$.

Exercice: (5 pts)

Soit $n \in \mathbb{N}$ tel que $n \ge 4$ et soit le déterminant d'ordre n suivant :

- 1- Trouver une relation de récurrence entre Δ_n, Δ_{n-1} et Δ_{n-2} , pour tout $n \geq 4$.
- **2-** En déduire Δ_n en fonction de n.