

Optimization:	
min fo(n)	
s.t. fi(x) €0 i≥1,2,,m	
$h'(n) = 0$ $i \ge 1, 2,, k$	
hard due to:	
1) regult in local opt.	
2) finding a feasible point	
3) stopping criteria in general aptimizati	9
algorithe are arbitrary.	
(4) opt. algorithe on home poor convergence	PA.
Convex:	ity)
Convex set: f: R " 18m	
a function is affine if it has the	
\rightarrow form of $f(n) = An + b$	
form of $f(n) = An + b$ extension $f: R^{n} \rightarrow R^{pxq}$ is affine if	
\rightarrow form of $f(n) = An + b$	K_nX

Recal subspace SCR" if it contains the plane through any two points & origin n,y & S Amel = Anthes Example: notrix range (A) = {Aw | wer} [4,92, ...,99] nullspace (+) = { w | Aw = 0 } Two common representation for affine set 1 range of affine S= {Az+b|ze'R9} 3 solution a set of linear equations, i.e. 8 = {x | b,Tx = d, , ... , b, Tx = dn} A set is Convex if it contains the line Styment joining any of its points, i.e. x,yes, h,m>0 => hx+myes

(2)

The convexity of differentiable f: 1R" -, R can be characterized by its gradient of & Hessian p2f first order of Taylor expansion f(n) ~ f(n) + of (x0) + (x-no) condition for convexity; Convex

(6)

- point_aise supremum	
fa(x) is convex	
W	
- sup fx (n) is convex	(corresponds the interse
dek	the interse
f 12	of epigraph
1	

-affine transformation of domain	-
f is convex $\Longrightarrow f(An+b)$ is convex	ĸ
Example: $f(n) = \max_{i} f(n^{-1} + b)$	