

NOVEMBER 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARKAGHIME

MAXINUM MARK: 50

SYLLABUS/COMPONENT :9709 /7, 8719 /7

MATHEMATICS (Probability and Statistics 2)

		20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ±	
Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	7

37.4	Ml		~
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		Calculation of correct form $\frac{\overline{x} \pm z \frac{s}{\sqrt{n}}}{\sqrt{n}}$
$49.8 < \mu < 52.6$	Bl		Using $z = 2.576$
$49.8 < \mu < 32.0$	A1	3	
	<u> </u>		Or equivalent statement
2 (i) $0.015n = 2.55$	MI		For equation linking n, p and mean
n = 170	A1	2	For correct answer
(ii) mean = 210×0.015 (=3.15)			
$e^{-3.15}\left(1+3.15+\frac{3.15^2}{2}\right)$	Bl		For new mean
P(0) + P(1) + P(2) = 2 = 0.390 or 0.391	M1		For evaluating Poisson $P(0) + P(1) + P(2) + [P(3)]$
SR use of Binomial scores B1 for final correct		~	F
answer 0.389	Al	3	For correct answer
64.3-65	Ml		Format and adjains a service of 1/1 000 to 1/2
$\begin{vmatrix} z = \frac{64.3 - 65}{4.9 / \sqrt{n}} \\ -1.807 \end{vmatrix} = -1.807$	M1		For standardising equation = +/-1.807 with n or \sqrt{n}
	Al	3	Solving for n
n = 160		J	For correct answer CWO.
	B1		
(ii) H_0 : $\mu = 65$ H_1 : $\mu < 65$	B1		For H ₀ and H ₁
Critical Value +/-1.645	ı		For +/-1.645 (or ft +/- 1.96 for two tail test)
Significant growth decrease	M1		Comparing given statistic with their CV
	Al	4	Correct conclusion
4 (i) H_0 : $\lambda = 4.8$ H_1 : $\lambda < 4.8$	B1		For both H ₀ and H ₁
Under H ₀ P(0) = $e^{-4.8}$ (=0.00823)	Ml		For evaluating P(0) and P(1) and P(2)
P(1) = 0.0395	1011		For evaluating $F(0)$ and $F(1)$ and $F(2)$
	M1		For stating/showing that $P(0) + P(1) + P(2) > 10\%$
P(2) = 0.0948	1		For critical region.
Critical region is $X = 0$ or 1	Al		To Critical Togion,
Not enough evidence to say road sign has		_	Correct conclusion
decreased accidents	A1	5	Correct conclusion
SR If M0, M0 allow M1 for stating / showing			
P(0) + P(1) < 10%			P 11 10
(ii) $P(Type\ I\ error) = P(0) + P(1)$	Ml		For identifying correct outcome
= 0.0477	Al	2	For correct answer
5 (i) new mean = 5.6	Bl		For new mean
$P(X+Y>3)=1-\{P(0)+P(1)+P(2)+P(3)\}$	MI		For evaluating 1 – some Poisson probabilities
	1411		1 to evaluating 1 – some 1 oisson probabilities
$= 1 - \frac{e^{-5.6} (1 + 5.6 + \frac{5.6^2}{2!} + \frac{5.6^3}{3!})}{1}$	Al		For correct expression
= 1 - 2! 3!		4	<u>-</u>
= 0.809	Al	4	For correct answer
2.5			
$\overline{X} \sim N(2.5, \frac{2.5}{80})$ or equiv. method using			, p
(ii) or equiv. memou using	M1		For using normal distribution with mean 2.5 / 200
totals N(200, 200)	Al		For correct variance
$P(X<2.4) = \Phi\left(\frac{2.4-2.5}{\sqrt{(2.5/80)}}\right) \text{ or }$	[
1/(2.5/80)	Ml		For standardising and using normal tables
P(X<2.4) = (V(2.5, 0.5)) or	Į		
$\Phi\left(\frac{192-200}{\sqrt{200}}\right)$			
Ψ			
(4)	[
$=\Phi(-0.566)$	Al	4	For correct answer
= 1 - 0.7143 = 0.286		-	
	<u></u>		<u> </u>

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	7

28 f	M1		For equating to 1 and attempt to integrate
$k \int_{6}^{20} \frac{1}{x^2} dx = 1$			Correct integration
6 (i) 20 x			Correct integration
$k \left[\frac{-1}{x} \right] = 1$.	
			- 1. 1
$k\left[\frac{1}{20} - \frac{1}{28}\right] = 1 \qquad \Rightarrow k = 70$	A 1	3	For given answer correctly obtained (no decimals seen).
_			
(ii) $E(X) = \int_{20}^{28} \frac{1}{x} dx = k[\ln x]$	II.		$\int_{0}^{28} \frac{70}{x} dx$
(ii) $E(X) = {}^{20} = k[\ln x]$			For attempt to evaluate 20
$= 23.6, 23.5, 70 \ln 1.4, 70 \ln (7/5)$	A 1	_	For correct integration
23.55	Al	3	For correct answer
$\int_{0}^{\infty} \frac{70}{x^2} dx$			f 70
(iii) $P(X < E(X)) = 20$	MI		For attempt to evaluate $\int_{x^2}^{70} dx$ between their
= 0.528 (accept 0.534 from 23.6) (0.521 23.5)			limits (<28)
(0.521 25.5)	Al	2	For correct answer
(iv) Greater	Blft		For correct statement
Prob in (iii) is > 0.5	Blft	2	For correct reason. Follow through from (iii)
			or calculating med. = 23.3
7 (i) W~N(17.6, 0.133(2))	Bl		For correct mean
0 $(18-17.6)$	B1		For correct variance
$\Phi\left(\frac{18-17.6}{\sqrt{0.1332}}\right) \ (= 0.8633)$	M1		For standardising and using tables
$\Phi\left(\frac{17-17.6}{\sqrt{0.1332}}\right) = 1 - 0.9499 \ (= 0.0501)$	M1		For standardising and using tables
$\sqrt{\sqrt{0.1332}}$ = 1 - 0.9499 (= 0.0501)			
0.8633 - 0.0501 = 0.813	Al	5	For correct answer
(ii) Wt diff $D \sim N(0, 0.0072)$	Bl		For correct mean and variance
$1 - \Phi\left(\frac{0.05}{\sqrt{0.0072}}\right)$	Ml		For standardising and using tables
$P(D>0.05) = \sqrt{0.00727} = 1 - \Phi(0.589)$	A1		For 0.278 (could be implied)
= 0.278 $P(D < 0.05) = 0.278$	M1		For finding the other probability
0.278 + 0.278 = 0.556	Al	5	For correct answer