Modellek viselkedési ekvivalenciájának és finomításának ellenőrzése

dr. Majzik István

BME Méréstechnika és Információs Rendszerek Tanszék

Ismétlés: A formális modellek használata

Formális módszerek része:

A formális modellről ismeretet adó (matematikai) eljárás

- A formális modell végrehajtása
 - Szimuláció
- A formális modell ellenőrzése: Formális verifikáció
 - "Önmagában való" vizsgálat
 - Konzisztencia, ellentmondás-mentesség
 - Teljesség, zártság
 - "Megfelelés" vizsgálata
 - Modellek és elvárt tulajdonságok között (terv ↔ specifikáció)
 - Modellek között (eredeti terv ↔ módosított terv)
- A formális modell alapján történő szintézis:
 - Szoftver (programkód, konfiguráció) generálása
 - Hardver implementáció generálása

Ismétlés: Modellellenőrzés

Modellek ekvivalenciájának ellenőrzése

Használat: Tervezői döntések ellenőrzése

Ekvivalencia (megfelelőség) modellek között:

```
Módosított modell 

Referencia modell
```

Megvalósítás (konkrét) ↔ Specifikáció (absztrakt)

Nyújtott viselkedés ↔ Elvárt viselkedés (protokollban)

Hibatűrő rendszer hiba mellett ↔ Hibamentes rendszer

- Rendezés (finomítás) modellek között:
 - Referencia viselkedés megtartása, meghatározott bővítésekkel
 - Nemdeterminizmus csökkentése a viselkedésben

Használt matematikai relációk modellek között:

- Ekvivalencia: Reflexív, tranzitív, szimmetrikus
- Rendezés: Reflexív, tranzitív, antiszimmetrikus

Egy kétváltozós relációt akkor nevezünk antiszimmetrikusnak adott halmazon, ha a halmaz bármely két olyan a és b elemére, amelyre fennáll egyszerre, hogy a relációban áll b-vel és b relációban áll a-val, akkor az a és b azonos.

Viselkedési ekvivalencia relációk definiálása

- Alacsonyszintű modell: LTS = (S, Act, →)
 - LTS modellek az állapottérképekből is származtathatók
 - Akciók átnevezése, elrejtése szükséges lehet

Az ekvivalencia ellenőrzés formalizálása

Ekvivalencia ellenőrzés:

Referencia Vizsgált modell (LTS) modell (LTS) Ekvivalencia reláció Specifikus ellenőrző algoritmus

Ekvivalencia relációk:

A komponensek megfigyelhető viselkedése

- Megfigyelhető akciók
 - A vizsgált komponens (modul) interfészén megjelenő,
 a környezet számára érdekes (releváns) viselkedés
 - Metódus hívása, metódushívás fogadása
 - Üzenet küldése, üzenet fogadása
- Nem megfigyelhető belső akciók (τ, i)
 - Az interfészen nem megjelenő, vagy a környezet számára nem érdekes (nem releváns) viselkedés
 - Belső működés (pl. belső metódusok, aktivitások)
 - Figyelmen kívül hagyható hívások, üzenetek
- Nemdeterminizmus
 - Egy állapotból több átmenet indul azonos akcióval
 - Nem megfigyelhető belső akció, mint alternatíva

Megfigyelhető viselkedés

Komponens belső viselkedés: a,b,c,d,e,f akciók Komponens interfész: a,b,c akciók

Megfigyelhető viselkedés modellje: a,b,c akciók és τ

Belső akció hatása a megfigyelhető akciókra

Példa: Az akciók üzenetek fogadását modellezik.

Az a üzenet fogadása után a belső működéstől függ, hogy b vagy c üzenet fogadása következhet.

Az a üzenet fogadása után a belső működéstől függően megállás következhet; ugyanígy az a és b után is.

Viselkedési ekvivalencia relációk

Trace ekvivalencia: Jelölések

Minta: Automaták ekvivalenciája az elfogadott nyelvek alapján

$$A_1 = A_2$$
 ha $L(A_1) = L(A_2)$

- LTS-ek esetén analógia:
 - Minden állapot "elfogadó állapot"
 - Nyelv: Minden akciószekvencia (trace), ami elfogadó állapotba vezet
- Jelölések:

 $\alpha = a_1 a_2 a_3 a_4 ... a_n \in Act^*$ véges akciószekvencia (ε az üres)

$$s \xrightarrow{\alpha} s'$$
 ha $\exists s_0 s_1 ... s_n$ állapotsorozat ahol $s_0 = s$, $s_n = s'$, $s_i \xrightarrow{a_{i+1}} s_{i+1}$

 $\Lambda(s)$ egy s állapotból induló trace-ek halmaza: $\Lambda(s) = \left\{ \alpha \mid \exists s ' : s \xrightarrow{\alpha} s' \right\}$

 $\Lambda(T)$ egy s kezdőállapotú T LTS trace-einek halmaza: $\Lambda(T) = \Lambda(s)$

Trace ekvivalencia: Definíció és példák

- Legyen T₁ és T₂ két LTS, s₁ és s₂ kezdőállapottal
- Definíció:

$$T_1 \approx_{\Lambda} T_2$$
 a.cs.a. $\Lambda(T_1) = \Lambda(T_2)$ azaz $\Lambda(s_1) = \Lambda(s_2)$

Példák:

A trace ekvivalencia hátrányai

- Nem érzékeny a lehetséges megállásra
 - Trace ekvivalens LTS-ek különbözőképpen viselkedhetnek megállás szempontjából (pl. nemdeterminizmus miatt)

- Megoldás:
 - Azt is figyelni kell, hogy az azonos trace által elért állapotok azonos folytatásra adnak-e lehetőséget

Biszimuláció ekvivalenciák

- Informális definíció: Két LTS biszimuláció ekvivalens, ha kölcsönösen szimulálni tudják egymás akciósorozatait ekvivalens állapotokon keresztül
 - Szimuláció adott állapotokból: Azonos akciók végrehajtása
 - Ha az egyik LTS képes egy adott akcióra, akkor a szimuláló LTS is
 - Ekvivalens állapotok: Innen indulva egymást szimulálni tudják, azaz azonos akciókra képesek
- Két biszimuláció reláció
 - Erős biszimuláció: Azonos módon kezeli a megfigyelhető és a nem megfigyelhető akciókat is
 - Gyenge biszimuláció (megfigyelési ekvivalencia): Nem érzékeny a hatás nélküli nem megfigyelhető akciókra

Erős biszimuláció reláció állapotok között

Definíció az LTS-ek állapotpárjaira:

 $B \subseteq S \times S$ egy erős biszimuláció, ha minden $(s,t) \in B$ és bármely $a \in Act$, $s',t' \in S$ esetén teljesül:

- ha $s \xrightarrow{a} s'$ akkor $\exists t' : t \xrightarrow{a} t'$ és $(s', t') \in B$
- ha $t \xrightarrow{a} t'$ akkor $\exists s' : s \xrightarrow{a} s'$ és $(s', t') \in B$

Erős biszimuláció ekvivalencia LTS-ekre

Erős biszimuláció ekvivalencia ∼:

$$T_1 \sim T_2 \text{ a.cs.a. } \exists B : (s_1, s_2) \in B$$

- Ekvivalens modellek tudják szimulálni egymást
 - Egyező akciókkal címkézett tranzíciók ekvivalens állapotokból
 - Erős biszimuláció ekvivalencia implikálja a trace ekvivalenciát

Erős biszimuláció ellenőrzése LTS-ekre: Példa

Erős biszimuláció ellenőrzése LTS-ek között:

Ebből az állapotból a b vagy a c akció is következhet, de a bal oldali állapotokból egyszerre csak az egyik.

Erős biszimuláció ekvivalencia: Hátrányok

• Érzékeny a hatás nélküli belső akcióra:

 Egyes esetekben a belső akciónak nincs hatása a megfigyelhető viselkedésre, de az erős biszimuláció reláció különbséget tesz

Egyszerű példa:

Egy kevésbé érzékeny ekvivalencia relációra van szükség.

Gyenge biszimuláció (megfigyelési ekvivalencia)

- Két LTS gyenge biszimuláció ekvivalens, ha szimulálni tudják egymás megfigyelhető akciósorozatait ekvivalens állapotokon keresztül
 - Ekvivalens állapotok: Innen indulva egymást szimulálni tudják, azaz azonos megfigyelhető akciókat nyújtanak
 - Nem érzékeny a hatás nélküli belső átmenetekre
- Jelölések:

```
\alpha \in Act^* véges akciószekvencia (\varepsilon az üres)

\hat{\alpha} \in (Act - \tau)^* megfigyelhető akciószekvencia \alpha-ból \tau törlésével

ha \alpha = \tau akkor \hat{\alpha} = \varepsilon

s \Rightarrow s' ha \exists \alpha : s \xrightarrow{\alpha} s' és \beta = \hat{\alpha}
```


Gyenge biszimuláció reláció állapotokra

Definíció az LTS-ek állapotpárjaira:

 $WB \subseteq S \times S$ gyenge biszimuláció, ha minden $(s,t) \in WB$ és bármely $a \in Act$, $s',t' \in S$ esetén fennáll:

- ha $s \xrightarrow{a} s'$ akkor $\exists t' : t \xrightarrow{\hat{a}} t'$ és $(s', t') \in WB$
- ha $t \xrightarrow{a} t'$ akkor $\exists s' : s \Rightarrow s'$ és $(s', t') \in WB$

Extrém eset:

Gyenge biszimuláció ekvivalencia LTS-ekre

Gyenge biszimuláció (megfigyelési ekvivalencia) ≈

$$T_1 \approx T_2$$
 a.cs.a. $\exists WB : (s_1, s_2) \in WB$

Példák:

Ekvivalencia relációk számítási módszere (alapötlet)

- 1. Kezdetben minden állapotpár eleme a relációnak
- 2. Minden állapotpárra:
 - Ha az egyikből indulva van olyan átmenet, amit a másik nem tud szimulálni a definíció szerint, akkor
 - Az állapotpár kizárása a relációból (nem ekvivalensek)
 - Következmények végigvezetése a bejövő átmenetek végén lévő állapotokra:
 Nem ekvivalensek, mivel nem ekvivalens állapotokba kerülnek az átmenetekkel - kizárhatók
- 3. Ha már nincs változás: Végleges reláció adódik (állapotpárok, amelyek nem kerültek kizárásra)
 Ha a kezdőállapotok bennmaradtak a relációban, akkor az LTS-ek ekvivalensek

Viselkedés finomítási relációk

Lehetséges viselkedés szerinti rendezés

- Célkitűzés: A finomított LTS tartsa meg az eredeti LTS lehetséges megfigyelhető akciószekvenciáit
- Jelölések:

 $\beta \in (Act - \tau)^*$ megfigyelhető akciószekvencia τ törlésével

$$s \stackrel{\beta}{\Longrightarrow} s'$$
 ha $\exists \alpha \in Act^*: s \stackrel{\alpha}{\longrightarrow} s'$ és $\beta = \hat{\alpha}$

 $\Delta(s)$ az s-ből induló megfigyelhető akciószekvenciák halmaza:

$$\Delta(s) = \left\{ \beta \mid \exists s' : s \stackrel{\beta}{\Longrightarrow} s' \right\}$$

 $\Delta(T)$ egy s kezdőállapotú T LTS esetén: $\Delta(T) = \Delta(s)$

Lehetséges viselkedés szerinti rendezés: Definíció

• Lehetséges viselkedés szerinti rendezés:

$$T_1 \leq_{\Delta} T_2$$
 a.cs.a. $\Delta(T_1) \subseteq \Delta(T_2)$ azaz $\Delta(s_1) \subseteq \Delta(s_2)$

itt T_2 esetén több a megfigyelhető akciószekvencia

Példa:

$$\Delta(T1) = \{a, ab, ac\} \qquad \Delta(T2) = \{a, ab, ac, ad, ace\}$$

Kapcsolat a teszteléssel

- Itt: Az akciók az interakciókat modellezik egy teszt szekvencia során
 - Sikeres interakció (elvártan végrehajtja a tesztlépést): Az LTS képes rá, az aktuális állapot egy kimenő átmenetén megtalálható az akció
 - Elakad egy interakció: Az LTS nem képes az adott interakcióra, az aktuális állapot egy kimenetén sem található meg

Az a interakció mindig sikeres. Ezután lehetséges, hogy b sikeres, de el is akadhat (τ lépéstől függően).

Az a interakció mindig sikeres. Ezután a b és a c is mindig sikeres, egyik sem akadhat el.

- A $T_1 \leq_{\Lambda} T_2$ rendezés esetén:
 - Megfigyelhető trace-ek: A lehetséges sikeres interakciók sorozatai
 Természetesen a mindig sikeres interakció is a lehetségesek között van
 - Minden interakciósorozat, ami T₁ esetén lehetséges, T₂ esetén is lehetséges
 - Tesztekre: T₁ lehetséges sikeres teszt szekvenciái T₂ lehetséges sikeres teszt szekvenciái között vannak

Lehetséges viselkedés és szükséges viselkedés

• Lehetséges és mindig sikeres akciószekvenciák:

Az abc és az abd is lehetséges szekvencia, de egyik sem mindig sikeres (elakadhat az ab szekvencia után).

Újabb állapotokkal, átmenetekkel és akciókkal bővíthető a lehetséges viselkedés.

Az abc és az acb szekvencia is mindig sikeres (nem akadhat el).

A mindig sikeres viselkedés is bővíthető (nem lesz elakadás)

- A $T_1 \leq_{\Lambda} T_2$ rendezés:
 - Olyan finomítást definiál, amelynek során nem lesz kevesebb lehetséges megfigyelhető viselkedés
 - (Természetesen a mindig sikeres viselkedés is lehetséges viselkedés)
- Kitekintés: Egy másik rendezési reláció: Szükséges viselkedés szerint
 - A rendezés olyan finomítást definiál, amelynek során nem lesz kevesebb mindig sikeres viselkedés (mindenképpen szükséges viselkedés)

Mintapélda: Hibatűrés verifikációja ekvivalencia ellenőrzéssel

Mintapélda: Hibatűrés verifikációja

Rendszerarchitektúra

A Gateway referencia viselkedése

Állapotdiagram:

• LTS:

A Gateway viselkedése hibatűrő esetben

• Állapotdiagram:

return_voter(v) °C.reply(v)

return_voter(v) ^C.reply(v) <<concurrent>> Vote ^V.vote(e1, e2) Wait Request request(r) °S1.call(r) \$2.call(r) WaitServer1 WaitServer2 retlum(e1) retum(e2) error voter "\$3.call(r) error_server ^C.failure error_server ^C.failure error server ^C.failure error_voter ^C.failure Wait Server3 Vote3

return(e3) ^V3.vote(e1,e2,e3)

• LTS:

A Gateway viselkedése hibatűrő esetben

Állapotdiagram:LTS:

A Gateway viselkedése hibatűrő esetben

Viselkedési ekvivalencia igazolása

Gateway referencia viselkedés

Az ekvivalencia alapján kijelenthető: a kliens számára a hibatűrő mechanizmus működése transzparens.

Hibatűrő Gateway teljes viselkedése; minden olyan akció τ lesz, ami nincs a referencia viselkedésben!

Hibatűrés igazolása az első szerver adathibája esetén

Hibamentes Gateway

Az ekvivalencia alapján kijelenthető: Az adott hiba esetén a kliens szempontjából megvalósul a hibatűrés.

Hibatűrő Gateway az első szerver adathibája esetén; minden olyan akció τ, ami nincs a referencia viselkedésben

Összefoglalás

Motiváció

- Modellek közötti viselkedési ekvivalencia
- Modellek finomítása meghatározott reláció szerint
- Ekvivalencia relációk
 - Trace ekvivalencia
 - Megfigyelési ekvivalencia (gyenge biszimuláció)
- Finomítási relációk
 - Lehetséges viselkedés szerint
 - (Említve: szükséges viselkedés szerint)
- Esettanulmány
 - Hibatűrés vizsgálata

