6.S085 Statistics for Research Projects

IAP 2014

Lecture 4: January 24

Lecturer: Ramesh Sridharan and George Chen Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 More Regression

If testing $H_0: \mu = 0$ vs. $H_1: \mu \neq 0$:

- construct 95% CI
- ask if 0 is in the CI
- if 0 not in the CI, then p-value is ; 0.05

4.2 Residual Analysis

Residual for *i*th point: $\hat{y} - y_i$

Intuitively, $\hat{y} - y_i$ versus \hat{y} should look like noise if the model is good

$$\hat{\epsilon} = y - \hat{y} \tag{4.1}$$

$$= y - X\hat{\beta} \tag{4.2}$$

$$= y - [X(X^T X)^{-1} X^T] y \qquad = (I - H) y \tag{4.3}$$

$$= (I - H)X\beta + (I - H)\epsilon \tag{4.4}$$

$$= (I - H)\epsilon \tag{4.5}$$

Standardized residuals: $\frac{-\hat{\epsilon}_i}{\sqrt{1-H_{ii}}}$

Standarized residuals will have variance σ^2

Model says that the standardized residuals should each have variance σ^2

Fact: Under the model, $\hat{y} - y_i$ is uncorrelated with \hat{y}_i

4.3 Outliers

Informally:

Outlier: point far away from the rest of the points

Leverage: How far point is from the rest of the points along the x axis

Influential Point: point (typically with high leverage) that substantially affects the estimated slope β_1

Leverage for ith point is defined H_{ii}

In 1D case:
$$H_{ii} = \frac{x_i^2}{\sum x_j^2}$$

4.3.1 Influence

Measured using Cook's distance:

For the *i*th point:

$$D_i = \frac{1}{p \cdot \text{MSE}} \frac{H_{ii}}{(1 - H_{ii})^2} \hat{\epsilon}^2$$

Higher leverage means higher influence $\left(\frac{H_{ii}}{(1-H_{ii})^2}\right)$

Higher fitting error means higher influence $(\hat{\epsilon}^2)$

4.4 Robust Regression

Can we be resilient to to outliers without manually removing them beforehand?

Recall: We are trying to minimize a cost function:

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2$$

$$(Y_i - X_i\beta)^2$$
 (squared "loss")

As the squared loss gets bigger, the loss function will become enormous, so the

Squared loss: $\rho(r) = r^2$

4.4.1 Least absolute deviation (LAD)

$$\rho(r) = |r|$$

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)$$

Large deviations don't hurt us as much

However, not stable: a change in x may dramatically impact β

4.4.2 Huber Loss

Close to the origin: squared loss

Lecture 4: January 24 4-3

Further away: grow linearly

4.4.3 Bisquare

When your points are really far away, may not even consider them

4.4.4 Probabilistic Interpretations

Different cost functions correspond to different distributions used (for ϵ) $\epsilon \sim N(0, \sigma^2) \text{ corresponds to squared loss (98\% of the probability mass is within 3 standard deviations)}$ $\epsilon \sim \text{Laplace corresponds to LAD (more probability mass further out)}$

4.4.5 RANSAC

Previous approaches we've talked about so far solve optimization problems

RANSAC (Random Sample Consensus) – widely used in practice

Randomly choose two points, fit a line, find and count inliers

- for iteration t=1...T:
 - choose random subset of points, I_t as "inliers"
 - fit model to points I_t
 - find all points that are within some α of the model and add to I_t
 - (Optional:) Refit model to points I_t
 - Compute score for model
- Choose model with the highest score

4.5 Sparse Regression

Imagine p (the number of predictors) is huge (e.g. $p \approx 10^6$) $y = \beta_1 x_1 + \beta_2 x_2 + ... + \beta_p x_p + \epsilon$

Want to figure out some small subset of predictors relevant to predicting y (want most $\hat{\beta}_k$'s to be 0 Why?

4.6 Logistic Regression