DATA621-Homework3-HoddeFarrisBurmoodLin

Rob Hodde, Matt Farris, JeffreyBurmood, Bin Lin 3/28/2017

Problem Description

Explore, analyze and model a data set containing information on crime for various neighborhoods of a major city. Using the data set build a binary logistic regression model on the training data set to predict whether the neighborhood will be at risk for high crime levels. Provide classifications and probabilities for the evaluation data set using the developed binary logistic regression model.

Data Exploration

VAR	TYPE
zn	double
indus	double
chas	integer
nox	double
$_{ m rm}$	double
age	double
dis	double
rad	integer
tax	integer
ptratio	double
black	double
lstat	double
medv	double
target	integer

zn	indus	chas	nox	$_{ m rm}$	age
Min.: 0.00	Min.: 0.460	Min. :0.00000	Min. :0.3890	Min. :3.863	Min.: 2.90
1st Qu.: 0.00	1st Qu.: 5.145	1st Qu.:0.00000	1st Qu.:0.4480	1st Qu.:5.887	1st Qu.: 43.88
Median: 0.00	Median: 9.690	Median: 0.00000	Median: 0.5380	Median $:6.210$	Median: 77.15
Mean: 11.58	Mean $:11.105$	Mean $:0.07082$	Mean $:0.5543$	Mean $:6.291$	Mean: 68.37
3rd Qu.: 16.25	3rd Qu.:18.100	3rd Qu.:0.00000	3rd Qu.:0.6240	3rd Qu.:6.630	3rd Qu.: 94.10
Max. $:100.00$	Max. $:27.740$	Max. $:1.00000$	Max. $:0.8710$	Max. $:8.780$	Max. $:100.00$

dis	rad	tax	ptratio	black	lstat
Min.: 1.130	Min.: 1.00	Min. :187.0	Min. :12.6	Min.: 0.32	Min.: 1.730
1st Qu.: 2.101	1st Qu.: 4.00	1st Qu.:281.0	1st Qu.:16.9	1st Qu.:375.61	1st Qu.: 7.043
Median: 3.191	Median: 5.00	Median $:334.5$	Median $:18.9$	Median: 391.34	Median: 11.350
Mean: 3.796	Mean: 9.53	Mean $:409.5$	Mean:18.4	Mean $:357.12$	Mean $:12.631$
3rd Qu.: 5.215	3rd Qu.:24.00	3rd Qu.:666.0	3rd Qu.:20.2	3rd Qu.:396.24	3rd Qu.:16.930
Max. :12.127	Max. $:24.00$	Max. $:711.0$	Max. $:22.0$	Max. $:396.90$	Max. $:37.970$

Based on an analysis of the box plots, the following variables have some outliers that may, or may not, exert influence on the regression results.

- zn, rm, dis, black, lstat, medv

We'll next look at these variable mroe closely, starting with there histograms and frequency counts to better understand the nature of their distribution.

According to the description, the variables zn, indus, and age are area, or land, proportions. According to the statistical summary, the values for these variables are all within the range [1,100] as you would expect.

Based on our detailed review of the variables that contained outliers, the following variables could be problematic:

The predictor variable zn is highly right skewed, we can confirm this by comparing the median and mean where the median is 0.0, but the median is 11.58. The frequency count plot shows how poor the distribution is due to clustering of the data at one extreme.

The predictor variable black is highly left skewed. We can confirm this by comparing the median and mean where the median is 391.34 and the mean is 357.12. The frequency count plot shows how poor the distribution is due to clustering of the data at one extreme.

The predictor variable dis is slightly right skewed. We can confirm this by comparing the median and mean where the median is 3.191 and the mean is 3.796.

Fortunately, no missing data, or NAs, were found.

The following data corrections were identified in this section:

- (1) The predictor variable "chas" and the response variable "target" are supposed to be categorical (binary), so we need to convert them to factors.
- (2) Need to determine if there are other variables highly coorelated with the zn or black variable that don't have the severe skew and outliers. This would allow us to remove the zn or black variable from the model.

Data Preparation

The variable changes we identified so far include converting the predictor variable "chas" and the response variable "target" to factors.

	zn	indus	nox	rm	age	dis
zn	1.0000000	-0.5382664	-0.5170452	0.3198141	-0.5725805	0.6601243
indus	-0.5382664	1.0000000	0.7596301	-0.3927118	0.6395818	-0.7036189
nox	-0.5170452	0.7596301	1.0000000	-0.2954897	0.7351278	-0.7688840
rm	0.3198141	-0.3927118	-0.2954897	1.0000000	-0.2328125	0.1990158
age	-0.5725805	0.6395818	0.7351278	-0.2328125	1.0000000	-0.7508976
dis	0.6601243	-0.7036189	-0.7688840	0.1990158	-0.7508976	1.0000000
rad	-0.3154812	0.6006284	0.5958298	-0.2084457	0.4603143	-0.4949919
tax	-0.3192841	0.7322292	0.6538780	-0.2969343	0.5121245	-0.5342546
ptratio	-0.3910357	0.3946898	0.1762687	-0.3603471	0.2554479	-0.2333394

	zn	indus	nox	rm	age	dis
black	0.1794150	-0.3581356	-0.3801549	0.1326676	-0.2734677	0.2938441
lstat	-0.4329925	0.6071102	0.5962426	-0.6320245	0.6056200	-0.5075280
medv	0.3767171	-0.4961743	-0.4301227	0.7053368	-0.3781560	0.2566948

	rad	tax	ptratio	black	lstat	medv
zn	-0.3154812	-0.3192841	-0.3910357	0.1794150	-0.4329925	0.3767171
indus	0.6006284	0.7322292	0.3946898	-0.3581356	0.6071102	-0.4961743
nox	0.5958298	0.6538780	0.1762687	-0.3801549	0.5962426	-0.4301227
m rm	-0.2084457	-0.2969343	-0.3603471	0.1326676	-0.6320245	0.7053368
age	0.4603143	0.5121245	0.2554479	-0.2734677	0.6056200	-0.3781560
dis	-0.4949919	-0.5342546	-0.2333394	0.2938441	-0.5075280	0.2566948
rad	1.0000000	0.9064632	0.4714516	-0.4463750	0.5031013	-0.3976683
tax	0.9064632	1.0000000	0.4744223	-0.4425059	0.5641886	-0.4900329
ptratio	0.4714516	0.4744223	1.0000000	-0.1816395	0.3773560	-0.5159153
black	-0.4463750	-0.4425059	-0.1816395	1.0000000	-0.3533659	0.3300286
lstat	0.5031013	0.5641886	0.3773560	-0.3533659	1.0000000	-0.7358008
$\overline{\text{medv}}$	-0.3976683	-0.4900329	-0.5159153	0.3300286	-0.7358008	1.0000000

Based on the correlation table, the variable zn has a moderate correlation with the variable dis. The plot of the dis data shows a much better distribution of values. Consequently, one possibility is to remove the zn variable from the data set for modeling.

Build Models

One analysis of multiple regression models is to take a stepwise approach, and to begin this step, we first take our knowledge from the data exploration, and combine it with a logistic regression. The Univariate Logistic Regression is a useful tool to understand how each variable plays against our target variable. Looking at various statistics, we can which variable impacts are target the most.

var	p_val	aic	auc
zn	0.0000000	413.2878	0.7076814
indus	0.0000000	345.8163	0.8091513
chas1	0.3188437	518.3011	0.5452821
nox	0.0000000	212.6269	0.8710289
m rm	0.0010624	507.8644	0.5737316
age	0.0000000	317.3847	0.7937411
dis	0.0000000	307.0926	0.7970602
rad	0.0000015	330.3616	0.8440019
tax	0.0000000	353.7222	0.8319109
ptratio	0.0000011	493.3566	0.6600284
black	0.0000018	435.2948	0.7484590
lstat	0.0000000	416.8908	0.7015173

We took the p-value, the AIC statistic and then a measure of the Area under the curve to measure the variables potential in a multiple regression model. From the above table, we can see that the chas variable is least likely to be included in our model, as it isn't statistically signficant. From the above table, we can see 1 variable that has no significance and under a univariate regression model, and have high relative AIC, and accuracy that is barely higher than a random variable. The Chas variable is a viable candidate to remove from our modelling.

Model 1

A quick looke at the total model:

```
##
## Call:
## glm(formula = target ~ ., family = binomial(link = "logit"),
       data = train)
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                    3Q
                                            Max
  -1.7132 -0.0934
                      0.0000
                                0.0016
                                         3.4718
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -24.342449
                                      -2.493 0.012652 *
                            9.762679
                -0.038247
                                      -0.987 0.323420
## zn
                            0.038733
## indus
                -0.082035
                            0.066940
                                       -1.225 0.220391
                 1.189371
                            0.904623
                                        1.315 0.188587
## chas1
## nox
                53.285171
                           10.168667
                                        5.240 1.6e-07 ***
## rm
                -1.183564
                            0.917904
                                       -1.289 0.197252
## age
                 0.054774
                            0.016677
                                        3.284 0.001022 **
                            0.286890
## dis
                 0.710750
                                        2.477 0.013233 *
## rad
                 0.703069
                            0.203161
                                        3.461 0.000539 ***
## tax
                -0.010313
                            0.004648
                                       -2.219 0.026491 *
                                        3.097 0.001957 **
                 0.560259
                            0.180922
## ptratio
## black
                -0.044213
                            0.018559
                                       -2.382 0.017206 *
                                       -0.690 0.490500
## 1stat
                -0.046652
                            0.067660
## medv
                 0.187979
                             0.084565
                                        2.223 0.026223 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 515.31
                              on 371
                                      degrees of freedom
## Residual deviance: 130.18
                              on 358
                                      degrees of freedom
## AIC: 158.18
##
## Number of Fisher Scoring iterations: 9
## [1] 0.9506875
```

Model 2

We will attempt to create the simplest model possible by using only one variable - the one that provides us the highest overall AUC (performance) all by itself. We can plug in each variable separately and then select the highest result. The best variable is nox - the presence of nitrogen oxides (an industrial pollutant) on the property.

```
## [1] 0.8710289
```

By combining nos with all the remaining variables and selecting the highest resulting AUC result, we conclude that nox plus rad (access to radial highways) is the strongest combination of two variables.

```
## [1] 0.9338549
```

[1] 0.9279279

By combining three variables - nox, rad and zn - that is, the concentration of nitrogen oxides, access to radial highways and the proportion of land zoned for large lots, we can predict with 95.8% accuracy whether the crime rate at this property is above or below average. Since this is very close to the performance of the model using all variables (96%), we can be confident in using these three variables for our decision support process, and disregarding the others.

Model 3

MODEL 3 WITH NOX VARIABLE

```
## Start: AIC=158.18
## target ~ zn + indus + chas + nox + rm + age + dis + rad + tax +
       ptratio + black + lstat + medv
##
##
             Df Deviance
                             AIC
## - 1stat
                  130.66 156.66
## - zn
                  131.32 157.32
              1
## - indus
              1
                  131.71 157.71
## - rm
                  131.88 157.88
              1
## - chas
                  131.90 157.90
## <none>
                   130.18 158.18
## - medv
                  135.74 161.74
## - tax
              1
                  135.83 161.83
## - dis
                  137.13 163.13
              1
## - black
              1
                  141.32 167.32
## - ptratio
              1
                   141.36 167.36
## - age
              1
                   142.62 168.62
                   160.19 186.19
## - rad
              1
## - nox
                   179.04 205.04
              1
##
## Step: AIC=156.66
## target ~ zn + indus + chas + nox + rm + age + dis + rad + tax +
##
       ptratio + black + medv
##
##
             Df Deviance
                             AIC
## - rm
                  131.88 155.88
              1
## - zn
                   131.97 155.97
## - chas
                   132.07 156.07
              1
## - indus
                   132.13 156.13
                   130.66 156.66
## <none>
## - medv
                   135.85 159.85
              1
## - tax
              1
                  137.03 161.03
## - dis
              1
                  137.28 161.28
## - ptratio
              1
                  141.42 165.42
## - black
              1
                  141.78 165.78
## - age
              1
                  143.67 167.67
## - rad
              1
                  161.04 185.04
## - nox
              1
                  179.22 203.22
##
## Step: AIC=155.88
## target ~ zn + indus + chas + nox + age + dis + rad + tax + ptratio +
```

```
##
      black + medv
##
            Df Deviance
##
                        AIC
            1 133.18 155.18
## - indus
## - chas
             1
                133.31 155.31
             1 133.35 155.35
## - zn
## <none>
                 131.88 155.88
## - dis
           1 137.63 159.63
## - medv
             1
                138.52 160.52
## - tax
             1
                138.80 160.80
## - ptratio 1
                141.43 163.43
## - black
                143.36 165.36
             1
## - age
             1
                143.79 165.79
## - rad
                162.26 184.26
             1
## - nox
            1 179.24 201.24
##
## Step: AIC=155.18
## target ~ zn + chas + nox + age + dis + rad + tax + ptratio +
##
      black + medv
##
##
            Df Deviance
                          AIC
## - chas
            1 133.91 153.91
## - zn
             1 134.74 154.74
## <none>
                 133.18 155.18
## - dis
                138.30 158.30
             1
## - medv
             1
                139.50 159.50
## - ptratio 1
                141.70 161.70
## - black
                144.01 164.01
             1
## - age
             1
                144.79 164.79
## - tax
            1
                147.18 167.18
## - rad
             1 169.58 189.58
## - nox
             1 185.71 205.71
##
## Step: AIC=153.91
## target ~ zn + nox + age + dis + rad + tax + ptratio + black +
##
      medv
##
##
            Df Deviance
                         AIC
## <none>
                 133.91 153.91
## - zn
                135.92 153.92
             1
## - dis
            1
                138.75 156.75
## - medv
             1
                139.87 157.87
## - ptratio 1
                141.76 159.76
## - black
             1
                144.48 162.48
## - age
                146.79 164.79
             1
## - tax
             1
                149.18 167.18
             1 174.36 192.36
## - rad
## - nox
            1 185.81 203.81
##
## Call:
## glm(formula = target ~ zn + nox + age + dis + rad + tax + ptratio +
      black + medv, family = binomial(link = "logit"), data = train)
##
```

```
## Deviance Residuals:
##
       Min
                 10
                      Median
                                           Max
                                   3Q
  -1.8622 -0.1135
                      0.0000
                               0.0018
                                        3.3120
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -21.935844
                            9.197361
                                      -2.385 0.017078 *
                -0.048462
                                      -1.305 0.191848
## zn
                            0.037132
## nox
                44.193814
                            7.922146
                                       5.579 2.43e-08 ***
                 0.043782
                            0.013013
                                       3.364 0.000767 ***
## age
## dis
                 0.551173
                            0.260500
                                       2.116 0.034359 *
                 0.764131
                            0.188980
                                       4.043 5.27e-05 ***
## rad
                -0.013328
                            0.004197
                                      -3.176 0.001496 **
## tax
## ptratio
                 0.396941
                            0.145949
                                       2.720 0.006534 **
## black
                -0.041476
                            0.017228
                                      -2.408 0.016062 *
## medv
                 0.097180
                            0.042373
                                       2.293 0.021823 *
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 515.31 on 371 degrees of freedom
## Residual deviance: 133.91 on 362 degrees of freedom
## AIC: 153.91
##
## Number of Fisher Scoring iterations: 9
```


MODEL 3 WITHOUT NOX VARIABLE

```
## Start: AIC=205.04
## target ~ (zn + indus + chas + nox + rm + age + dis + rad + tax +
      ptratio + black + lstat + medv) - nox
##
##
            Df Deviance
                          AIC
                179.04 203.04
## - rm
            1
## - 1stat
                179.22 203.22
            1
## - medv
                179.49 203.49
             1
                179.50 203.50
## - ptratio 1
## - zn
                179.72 203.72
            1
## - chas
            1 180.12 204.12
                179.04 205.04
## <none>
            1 184.69 208.69
## - dis
## - indus
          1 185.26 209.26
## - tax
           1 189.25 213.25
## - age
             1 194.42 218.42
## - black 1 194.48 218.48
## - rad
             1 224.28 248.28
##
## Step: AIC=203.04
## target ~ zn + indus + chas + age + dis + rad + tax + ptratio +
      black + lstat + medv
##
            Df Deviance AIC
            1 179.24 201.24
## - lstat
## - ptratio 1 179.55 201.55
                179.74 201.74
## - zn
             1
## - chas
            1
                180.14 202.14
            1 180.33 202.33
## - medv
## <none>
                179.04 203.04
## - dis
           1 184.75 206.75
## - indus 1 185.26 207.26
## - tax
           1 189.48 211.48
## - black
          1 194.49 216.49
## - age
             1 199.65 221.65
## - rad
             1 224.29 246.29
## Step: AIC=201.23
## target ~ zn + indus + chas + age + dis + rad + tax + ptratio +
##
      black + medv
##
            Df Deviance
##
                         AIC
               179.66 199.66
## - ptratio 1
## - zn
            1
                179.94 199.94
## - chas
                180.24 200.24
             1
## - medv
               180.39 200.39
             1
                179.24 201.24
## <none>
## - dis
           1 184.87 204.87
## - indus 1 185.71 205.71
```

```
## - tax 1 189.73 209.73
## - black 1 194.65 214.65
## - age
        1 203.76 223.76
## - rad
            1 224.87 244.87
## Step: AIC=199.66
## target ~ zn + indus + chas + age + dis + rad + tax + black +
      medv
##
##
         Df Deviance
                       AIC
## - medv
         1 180.44 198.44
         1 180.84 198.84
## - chas
          1 180.88 198.88
## - zn
## <none>
             179.66 199.66
## - dis 1 184.91 202.91
## - indus 1 186.30 204.30
## - tax
          1 189.81 207.81
## - black 1 194.65 212.65
## - age
          1 203.82 221.82
        1
            224.87 242.87
## - rad
##
## Step: AIC=198.44
## target ~ zn + indus + chas + age + dis + rad + tax + black
##
         Df Deviance
                       AIC
## - zn
         1 181.18 197.18
## - chas 1 181.53 197.53
             180.44 198.44
## <none>
## - indus 1 186.61 202.61
## - dis
        1 190.36 206.36
          1 193.03 209.03
## - tax
## - black 1 195.03 211.03
## - age 1 203.82 219.82
## - rad
          1 229.86 245.86
## Step: AIC=197.18
## target ~ indus + chas + age + dis + rad + tax + black
##
         Df Deviance
                     AIC
## - chas 1 182.11 196.11
## <none>
             181.18 197.18
## - indus 1 187.57 201.57
## - dis 1 192.85 206.85
## - tax 1 193.44 207.44
## - black 1 196.02 210.02
## - age 1 206.37 220.37
## - rad 1 230.37 244.37
##
## Step: AIC=196.11
## target ~ indus + age + dis + rad + tax + black
##
##
         Df Deviance
                     AIC
## <none> 182.11 196.11
## - indus 1 187.66 199.66
```

```
## - tax
           1 193.45 205.45
           1 193.52 205.52
## - dis
## - black 1 196.74 208.74
           1 206.70 218.70
## - age
## - rad
           1
             231.11 243.11
##
## Call:
## glm(formula = target ~ indus + age + dis + rad + tax + black,
      family = binomial(link = "logit"), data = train)
##
## Deviance Residuals:
      Min
           10
                   Median
                                 3Q
                                         Max
                                      2.6900
## -2.3129 -0.3415
                   0.0000
                            0.0139
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 12.339156 5.329705 2.315 0.02060 *
## indus
              0.112098
                         0.050765 2.208 0.02723 *
                         0.010497 4.524 6.06e-06 ***
## age
              0.047489
## dis
              -0.475263
                         0.148846 -3.193 0.00141 **
## rad
              0.647494
                         0.160850 4.025 5.69e-05 ***
                         0.003676 -3.045 0.00232 **
## tax
              -0.011195
## black
              -0.039095
                        0.013024 -3.002 0.00268 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 515.31 on 371 degrees of freedom
## Residual deviance: 182.11 on 365 degrees of freedom
## AIC: 196.11
##
## Number of Fisher Scoring iterations: 9
```


[1] 0.8933144 All Done!