AI ASSIGNMENT-3 Bayesian Networks

Mugdha Abhyankar - 20161041 Samyak Agrawal - 20161180

Key	Nodes/Variables	Values
MR	Movie Reviews	<3 star, >=3 star
W	Weather	Rainy, Normal
DH	Distance From Home	<5Km, 5-15Km, >15Km
WG	Willingness To Watch	Yes,No
PV	PVR	Yes,No
IM	IMAX	Yes,No
CI	CinePolis	Yes,No
TM	Time Of Movie	3-6PM, 6-9PM, 9-12PM
M	Money	Afford, Cannot Afford

CPT Tables Time

Time	3:00pm – 6:00pm	6:00pm-9:00pm	9:00pm-00:00am
P(Time)	0.2	0.3	0.5

Distance from Home

DH	<5Km	5-15Km	>15Km
p(DH)	0.2	0.6	0.2

Weather

W	Rainy	Other
P(W)	0.1	0.9

Movie Reviews

MR	<3 star	>=3star
P(MR)	0.3	0.7

Money

Money	Enough	Not-Enough
P(Money)	0.6	0.4

Willingness To Go

MR	W	DH	P(Yes)
<3 Star	Rainy	<5km	0.3
<3 Star	Other	<5km	0.4
<3 Star	Rainy	5-15km	0.2
<3 Star	Other	5-15km	0.25
<3 Star	Rainy	>=15km	0.1
<3 Star	Other	>=15km	0.15
>=3 Star	Rainy	<5km	0.6
>=3 Star	Other	<5km	0.85
>=3 Star	Rainy	5-15km	0.55
>=3 Star	Other	5-15km	0.65
>=3 Star	Rainy	>=15km	0.5
>=3 Star	Other	>=15km	0.55

<u>PVR</u>

WG	TM	M	P(Yes)
Yes	3-6PM	Afford	0.7
No	3-6PM	Afford	0.2
Yes	6-9PM	Afford	0.8
No	6-9PM	Afford	0.3
Yes	9-12PM	Afford	0.85
No	9-12PM	Afford	0.4
Yes	3-6PM	Cannot Afford	0.5
No	3-6PM	Cannot Afford	0.1
Yes	6-9PM	Cannot Afford	0.55
No	6-9PM	Cannot Afford	0.15
Yes	9-12PM	Cannot Afford	0.65
No	9-12PM	Cannot Afford	0.2

IMAX

WG	TM	M	P(Yes)
Yes	3-6PM	Afford	0.6
No	3-6PM	Afford	0.3
Yes	6-9PM	Afford	0.6
No	6-9PM	Afford	0.25
Yes	9-12PM	Afford	0.9
No	9-12PM	Afford	0.3
Yes	3-6PM	Cannot Afford	0.5
No	3-6PM	Cannot Afford	0
Yes	6-9PM	Cannot Afford	0.6

No	6-9PM	Cannot Afford	0.11
Yes	9-12PM	Cannot Afford	0.6
No	9-12PM	Cannot Afford	0.05

Cinepolis

WG	TM	M	P(Yes)
Yes	3-6PM	Afford	0.6
No	3-6PM	Afford	0.45
Yes	6-9PM	Afford	0.8
No	6-9PM	Afford	0.4
Yes	9-12PM	Afford	0.95
No	9-12PM	Afford	0.4
Yes	3-6PM	Cannot Afford	0.6
No	3-6PM	Cannot Afford	0.2
Yes	6-9PM	Cannot Afford	0.6
No	6-9PM	Cannot Afford	0.3
Yes	9-12PM	Cannot Afford	0.6
No	9-12PM	Cannot Afford	0.25

Justifications

Key	Nodes/Variables	Justification
MR	Movie Reviews	Movie reviews help in determining whether we want to watch a movie or not.
W	Weather	Weather has a huge impact on your willingness to go and watch a movie. If

		weather is bad we would not want to go and watch the movie.
DH	Distance From Home	Distance of theater from our home plays a role. If a good movie in a theater is at a considerable distance from our house we would rather go and watch that movie in place of a less popular movie which is at a small distance from our home.
WG	Willingness To Go	Willingness to go depends on the three factors mentioned- How the movie is critically acclaimed(movie rating), whether (good or bad)and distance from home.
PV	PVR	This is one of the choices for movie theaters. This is preferable when we want to watch a movie with good seating space, in good quality and we do not have any money constraint. Also distance of the theater matters.
IM	IMAX	This is one of the choices for movie theaters. This is preferable when we want to watch a 3D movie in good quality and we do not have any money constraint.
CI	Cinepolis	This is one of the choices for movie theatres. This is preferable when we want to watch a movie cheaply, almost half the price of the two movie theatres.
TM	Time Of Movie	We students generally prefer the 9-12PM slots, then 6-9PM and then 3-6PM in that order.
M	Money	Money is an important constraint which apart from affecting the willingness to go also affects the type of theater in which we want to watch the movie.

```
Query
                                P(PVR=Yes \mid Willingness to go(WG) = No,
                                MovieReviews(MR) is \geq = 3 star)
                                query of the form P(X | p(X), p(p(X))).
                                P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willingness to go(WG) = No \land P(PVR = Yes \mid (Willi
                                MovieReviews (MR) is \geq 3 star))
                                 =P((PVR = Yes) \land (WG = No) \land (MR is >= 3 star)) / P((WG =
    No) \land (MR is \ge 3 star))
    =(P((PVR = Yes) | (WG = No) \land (MR is > 3 star)) * P((WG =
No) \land (MR is \geq= 3star))) \land P((WG = No) \land (MR is \geq= 3star))
    [ By bayes formula P(A \cap B) = P(A \mid B) * P(B) ]
P((WG = No) \land (MR \text{ is } \ge 3 \text{ star})) gets canceled in numerator and
denominator.
    Now by bayesian network, we can say that going to PVR depends only on
    WG and not on MR. So
    P((PVR = Yes) | (WG = No) \land (MR is >= 3 star))
    = P((PVR = Yes) | (WG = No))
    P((PVR = Yes) | (WG = No))
    = P((PVR = Yes) \land (WG = No)) / P(WG = No)
First finding P((PVR = Yes) \land (WG = No)) \rightarrow P((PVR = Yes) \land P((PVR = Yes)) \rightarrow P((PVR = Yes)
(WG = No)) =
summation for t belonging to TM(summation for m belong to M(P((PVR = 
Yes)
((WG=No) \land (TM=t) \land (M=m))) * P(WG=No)*P(M=m) * P(TM=t)))
    =P(WG=No)*summation for t belonging to TM(summation for m belong to
```

 $M(P((PVR = Yes) | ((WG = No) \land (TM = t) \land (M = m)))$

$$P(M=m) * P(TM = t))$$

P(M = Afford) = 0.8 P(M = Cannot Afford) = 0.2 [From CPT table of M]

```
P(TM = 18:00 - 21:00) = 0.3
    P(TM = 21:00 - 00:00) = 0.5
    [ From CPT table of TM ]
    P((PVR = Yes) \land (WG = No))
= P(WG=No)*(P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 - 19:00 \land P(PVR = Yes | (WG = No \land TM = 16:00 - 19:00 \land 
M = Afford) * P(TM = 16:00 - 19:00) * P(M = Afford) + P(PVR = 16:00 - 19:00)
Yes | (WG = No ^TM = 16:00 - 19:00 ^ M = Cannot Afford)) *
P(TM = 16:00 - 19:00) * P(M = CannotAfford) + P(PVR = Yes | P(TM = 16:00 - 19:00) | P(TM = 16:00) | P(TM = 1
(WG = No \land TM = 18:00 - 21:00 \land M = Afford)) * P(TM = 18:00)
-21:00) * P(M = Afford) + P(PVR = Yes | (WG = No \land TM =
 18:00 - 21:00 \land M = Cannot Afford) * P(TM = 18:00 - 21:00) *
P(M = Cannot Afford) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver)) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = 21:00 - P(M = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = No \land TM = Ver))) + P(PVR = Yes | (WG = Ver))) + P(PV
00:00 \land M = Afford) * P(TM = 21:00 - 00:00) *P(M = Afford) +
P(PVR = Yes | (WG = No \land TM = 21:00 - 00:00 \land M = 1))
    CannotAfford) * P(TM = 21:00 - 00:00) * P(M = Cannot Afford))
    P((PVR = Yes) \land (WG = No))
     = P(WG=No)*(0.2*0.2*0.6+0.1*0.2*0.4+0.3*0.3*0.6
 +0.15*0.3*0.4+0.4*0.5*0.6+0.2*0.5*0.4
P((PVR = Yes) \land (WG = No)) = P(WG=No)*(0.264)
    Now we'll calculate P(WG = No) \rightarrow
    P(WG = No) = summation over MR(summation over
DH( summation over W (P(WG= No | (MR = m \land DH = d \land d)
W=w) * P(MR = m) * P(DH = d) * <math>P(W = w))
P(MR is > 3 star) = 0.7
P(MR is < 3 star) = 0.3 [
From CPT table of MR 1
```

P(TM = 16:00 - 19:00) = 0.2

```
P(DH < 5 \text{ km}) = 0.2
P(DH \text{ in } 5-15 \text{ km}) = 0.6
P(DH > 15 \text{ km}) = 0.2
[From CPT table of DH]
P(W = rainy) = 0.1
P(W = normal) = 0.9
P(WG = No)
= 0.1 * 0.4 * 0.3 * 0.3 + 0.4 * 0.1 * 0.3 * 0.9 + 0.2 * 0.3 * 0.5 *
0.1 + 0.25 * 0.3 * 0.5 * 0.9 + 0.1 * 0.3 * 0.2 * 0.3 + 0.15 * 0.1 *
0.2 * 0.9 + 0.6 * 0.9 * 0.3 * 0.3 + 0.85 * 0.7 * 0.3 * 0.9 + 0.55 *
0.6 * 0.5 * 0.3 + 0.65 * 0.9 * 0.5 * 0.7 + 0.5 * 0.6 * 0.2 * 0.3 +
0.55 * 0.9 * 0.2 * 0.7
P(WG = N_0) = 0.5151
P((PVR = Yes) \land (WG = No))
= P(WG=No)*(0.264)
=(0.5151)*(0.264)
=0.1359864
P((PVR = Yes) \land (WG = No)) = 0.1359864
P((PVR = Yes) | (WG = No \land MR is >= 3 star))
= P((PVR = Yes) \mid WG = No) / P(WG = No)
 = 0.1359864/0.5151
= 0.264
So, P(PVR=Yes \mid Willingness to go(WG) = No,
MovieReviews(MR) is >= 3 star)
=0.264
```