The Roofline Model

Msc. in Informatics and Computing Engineering (M.EIC), 2nd Year

Roofline Model

- Log-scale for axis
- Performance (e.g., GFlops/sec, Flops/cycle)
- Operator/Arithmetic Intensity (e.g., Flops/byte)

Samuel Williams, Andrew Waterman, and David Patterson. 2009. "Roofline: an insightful visual performance model for multicore architectures," Commun. ACM 52, 4 (April 2009), 65–76. DOI: https://doi.org/10.1145/1498765.1498785

S. Williams, "**The roofline model**", book chapter in Performance Tuning of Scientific Applications, Chapman & Hall/CRC Computational Science, CRC Press, Editor(s): David H. Bailey, Robert F. Lucas, Samuel Williams, Nov. 2010, pp. 195-215. https://escholarship.org/content/qt0qs3s709/qt0qs3s709.pdf

Roofline Model

- Log-scale for axis
- Performance (e.g., GFlops/sec, Flops/cycle)
- Operator/Arithmetic Intensity (e.g., Flops/byte)

- S. Williams, "**The roofline model**", book chapter in Performance Tuning of Scientific Applications, Chapman & Hall/CRC Computational Science, CRC Press, Editor(s): David H. Bailey, Robert F. Lucas, Samuel Williams, Nov. 2010, pp. 195-215. https://escholarship.org/content/qt0qs3s709/qt0qs3s709.pdf
- Samuel Williams, Andrew Waterman, and David Patterson. 2009. "Roofline: an insightful visual performance model for multicore architectures," Commun. ACM 52, 4 (April 2009), 65–76. DOI: https://doi.org/10.1145/1498765.1498785

Roofline Model: Example

From: G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato and M. Püschel, "Applying the roofline model," 2014 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2014, pp. 76-85, doi: https://doi.org/10.1109/ISPASS.2014.6844463.

Roofline model by Intel Advisor

> autovec example

Intel® Advisor

- ➤ Intel® Advisor Introduction | Intel Software
- https://www.youtube.com/watch?v=K4S5-q6ydi8 [6:13]
- > An Introduction to the Roofline Feature in Intel® Advisor 2017
- Roofline Analysis in Intel Advisor 2017: https://youtu.be/h2QEM1HpFgg
- Introduction to Intel® Advisor: Vectorization Workflow
- Intel® Advisor Tutorial: Use the Automated Roofline Chart to Make Optimization Decisions
 - https://www.intel.com/content/www/us/en/develop/documentation/advisortutorial-roofline/top.html
 - https://github.com/oneapi-src/oneAPI-samples

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html#gs.ebqvim

[VIDEO: 17'] https://www.intel.com/content/www/us/en/developer/videos/roofline-analysis-in-intel-advisor-2017.html

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html

https://www.intel.com/content/www/us/en/develop/documentation/advisor-tutorial-roofline/top.html

https://www.intel.com/content/www/us/en/developer/videos/introduction-to-intel-advisor-vectorization-workflow.html

EXERCISES FROM LABORATORY SCRIPT #2-

- > Two target machine models:
 - A: simple machine
 - 1 load/store unit
 - 1 arithmetic unit for add/sub/mul/mac
 - B: machine w/ SIMD and FMA units
 - Vector length of 512 bits (64 bytes)
 - Simultaneously load/store of 16 floats (memory contiguous)
 - Simultaneously load/store of 8 doubles (memory contiguous)
 - Simultaneously 16 float SIMD/FMA operations from vector registers to vector register
 - Simultaneously 8 double SIMD/FMA operations from vector registers to vector register

Target machine models

- > Main characteristics of the two Machine Models A and B
- Both machines without pipelining units

		Number of clock cycles (#ccs)						
		Machine A and B			Machine B			
Data type	Bytes	mul/add/sub	mac	Load/store	Load/store (1 vector lane)	SIMD	FMA	
float (single-precision floating-point)	4	1	1	1	1	1	1	
double (double-precision floating-point)	8	2	3	1	1	2	3	

Target machine models

> Roofline model bounds

		considering :	A and B (not SIMD/FMA and registers)	Мас	hine B
Data type	Bytes	β (bytes/cycle)	π (FLOPS/cycle)	β (bytes/cycle)	π (FLOPS/cycle)
float (single-precision floating-point)	4	8	2	64	32
double (double-precision floating-point)	8	4	1.5	64	5.33

Code examples

> Two simple code examples, considering float and double data types, and N=2048:

Roofline model

- > addvec and maddvec examples in Machine A
- > Bounds only show lines for single-precision floating-point

Roofline model

- addvec and maddvec examples in Machine B
- Comparison with SWP and loop vectorization using SIMD vs FMA
- Bounds only show lines for single-precision floatingpoint

Ex.	Varia nts	float	double	w/ mac	w/ SWP	w/ loop vectoriz.	w/ SIMD	w/ FMA
Addvec	(1)		\checkmark					
Addvec	(2)	\checkmark						
Maddvec	(3)		\checkmark	\checkmark				
Maddvec	(4)	\checkmark		\checkmark				
Addvec	(5)		\checkmark		\checkmark			
Addvec	(6)	\checkmark			\checkmark			
Maddvec	(7)		\checkmark	\checkmark	\checkmark			
Maddvec	(8)	\checkmark		\checkmark	\checkmark			
Addvec	(9)		\checkmark			\checkmark	\checkmark	
Addvec	(10)	\checkmark				\checkmark	\checkmark	
Maddvec	(11)		\checkmark			✓		✓
Maddvec	(12)	\checkmark				\checkmark		\checkmark

Roofline model

➤ Label each point in the Roofline model with the variant (1)...(12) of the table

Ex.	Varia nts	float	double	w/ mac	w/ SWP	w/ loop vectoriz.	w/ SIMD	w/ FMA
Addvec	(1)		\checkmark					
Addvec	(2)	\checkmark						
Maddvec	(3)		✓	✓				
Maddvec	(4)	\checkmark		✓				
Addvec	(5)		✓		✓			
Addvec	(6)	\checkmark			\checkmark			
Maddvec	(7)		✓	✓	✓			
Maddvec	(8)	\checkmark		✓	\checkmark			
Addvec	(9)		✓			\checkmark	\checkmark	
Addvec	(10)	\checkmark				\checkmark	\checkmark	
Maddvec	(11)		✓			\checkmark		✓
Maddvec	(12)	\checkmark				\checkmark		✓

