# On the computation and inversion of the Normal Inverse Gaussian cumulative distribution function

#### Guillermo Navas-Palencia

# g.navas.palencia@gmail.com

#### April 28, 2024

# Contents

| 1 | Introduction                                                                                                                                                                                                                                                                                                                     | 2           |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2 | $\begin{array}{lll} \textbf{Preliminaries} \\ 2.1 & \text{The function } \Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right) \\ & 2.1.1 & \text{Expansion } t \rightarrow 0 \\ & 2.1.2 & \text{Expansion } t \rightarrow \infty \\ & 2.1.3 & \text{Expansion } t \rightarrow u \\ & 2.2 & \text{Bessel-type expansions} \end{array}$ | 2<br>3<br>4 |
| 3 | Expansions: case $\beta=0$ 3.1 Expansions $ x-\mu \to 0$                                                                                                                                                                                                                                                                         | 5           |
| 4 | Expansions: general case 4.1 Expansions $ x - \mu  \to 0$ (option 1)                                                                                                                                                                                                                                                             | 5<br>6      |
| 5 | Numerical integration                                                                                                                                                                                                                                                                                                            | 7           |
| 6 | Inversion methods                                                                                                                                                                                                                                                                                                                | 9           |
| 7 | Numerical experiments                                                                                                                                                                                                                                                                                                            | g           |

#### 1 Introduction

Variance-mean mixture distribution

$$Z \sim \mathcal{IG}(\delta \gamma, \gamma^2), \quad X \sim \mathcal{N}(\mu + \beta Z, Z),$$
 (1)

where  $\gamma = \sqrt{\alpha^2 - \beta^2}$ . The domain of the parameters is

$$0 \le |\beta| < \alpha, \quad \mu \in \mathbb{R}, \quad \delta > 0. \tag{2}$$

The density function is given by

$$f(x; \alpha, \beta, \mu, \delta) = \frac{\alpha \delta}{\pi} \frac{K_1 \left(\alpha \sqrt{\delta^2 + (x - \mu)^2}\right)}{\sqrt{\delta^2 + (x - \mu)^2}} e^{\delta \gamma + \beta(x - \mu)}$$
(3)

The cumulative distribution function is given by

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{-\infty}^{x} \frac{K_1 \left(\alpha \sqrt{\delta^2 + (t-\mu)^2}\right)}{\sqrt{\delta^2 + (t-\mu)^2}} e^{\beta(t-\mu)} dt \tag{4}$$

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta}{\sqrt{2\pi}} \int_0^\infty \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{(\delta - \gamma t)^2}{2t}} dt$$
 (5)

Standard case  $\mu = 0$  and  $\delta = 1$ 

Case  $\mu = 0$ 

Case  $\delta = 0$ 

Case  $x = \mu$  If  $x = \mu$  and  $\beta = 0$  then  $F(x; \alpha, 0, \mu, \delta) = \frac{1}{2}$ .

#### 2 Preliminaries

In this section, we present some results to be used throughout this work.

# 2.1 The function $\Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)$

The function  $F(t; a, b) = \Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)$  is part of the integrand of the integral representation in (5). Given its relevance throughout this work, we introduce here some results that shall be used subsequently. F(t; a, b) has the following integral representation [1, §7.7.6]

$$F(t;a,b) = \frac{1}{2}\operatorname{erfc}\left(-\frac{\frac{a}{\sqrt{t}} + b\sqrt{t}}{\sqrt{2}}\right) = \sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{2t}} \int_{-b/\sqrt{2}}^{\infty} e^{-(tu^2 - \sqrt{2}au)} du$$
 (6)

#### **2.1.1** Expansion $t \to 0$

Let us consider the case a < 0, since we can use the mirror property  $\Phi(z) = 1 - \Phi(-z)$  otherwise. To obtain an expansion for  $t \to 0$ , we expand  $e^{-tu^2}$  and interchange summation and integration obtaining

$$F(t; a, b) = \sqrt{\frac{t}{\pi}} e^{-\frac{a^2}{2t}} \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} \int_{-b/\sqrt{2}}^{\infty} e^{\sqrt{2}au} u^{2k} du.$$

For a < 0 the integral can be expressed in closed-form in terms of the incomplete gamma function,  $\Gamma(a, x)$ 

$$\int_{-b/\sqrt{2}}^{\infty} e^{\sqrt{2}au} u^{2k} du = \frac{\Gamma(2k+1, -ab)}{(\sqrt{2}a)^{2k+1}},$$

and for the special case b=0, it reduces to

$$\int_0^\infty e^{\sqrt{2}au} u^{2k} \, du = \frac{\Gamma(2k+1)}{(\sqrt{2}a)^{2k+1}}.$$

Then, we obtain the series expansion valid for  $t \to 0$ ,  $a \to -\infty$  and fixed b

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} e^{-\frac{a^2}{2t}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1} t^k}{k!} \frac{\Gamma(2k+1,ab)}{(\sqrt{2}a)^{2k+1}}.$$
 (7)

Moreover, another expansion valid for large values of a > 0 and b can be obtained after expanding F(t; a, b) at t = 0. The first coefficients are

$$c_0 = \frac{1}{a}, \quad c_1 = \frac{ab+1}{a^3}, \quad c_2 = \frac{a^2b+3ab+3}{a^5}, \quad c_3 = \frac{a^3b^3+6a^2b^3+15ab+15}{a^7}$$
 (8)

and the expansion reads

$$F(t;a,b) = 1 + \frac{e^{-\frac{1}{2}\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)^2}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} (-1)^{k+1} c_k t^{k+\frac{1}{2}}.$$
 (9)

The coefficients are expressible in terms of Bessel polynomials  $y_k(x)$  [2, §A001498], and it follows that

$$F(t;a,b) = 1 + \frac{e^{-\frac{1}{2}\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right)^2}}{a\sqrt{2\pi}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k y_k \left(\frac{1}{ab}\right) t^{k+\frac{1}{2}},\tag{10}$$

where  $y_k(x)$  has an explicit formula

$$y_k(x) = \sum_{m=0}^k \binom{k}{m} (k+1)_m \left(\frac{x}{2}\right)^m.$$
 (11)

Using the connection of the Bessel polynomials with the modified Bessel function of the second kind  $K_k(x)$  given by [3, §33.1.3]

$$y_k(x) = \sqrt{\frac{2}{\pi x}} e^{1/x} K_{k+\frac{1}{2}} \left(\frac{1}{x}\right),$$
 (12)

the resulting expansion is represented as a Bessel-type expansion

$$F(t;a,b) = 1 + \frac{e^{-\frac{a^2}{2t} - \frac{b^2}{2}t}}{\pi} \sqrt{\frac{b}{a}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k K_{k+\frac{1}{2}}(ab) t^{k+\frac{1}{2}}.$$
 (13)

The expansion is convergent for t < 1. The convergence follows from the asymptotic estimate of  $(b/a)^k K_k(ab) \sim (b/a)^k \sqrt{\frac{\pi}{2ab}} e^{-ab}$  as  $|ab| \to \infty$ . The expansion can be seen as an asymptotic expansion for large a, or as a uniform asymptotic expansion for  $a \sim b$ . The coefficients can be computed by using a recurrence relation for the modified Bessel function.

#### **2.1.2** Expansion $t \to \infty$

Let us focus on the case  $t \to \infty$ . We can develop an asymptotic expansion after expanding the term  $e^{\sqrt{2}au}$  in (6), which yields

$$F(t; a, b) = \sqrt{\frac{t}{\pi}} e^{-\frac{a^2}{2t}} \sum_{k=0}^{\infty} \frac{(\sqrt{2}a)^k}{k!} \int_{-b/\sqrt{2}}^{\infty} e^{-tu^2} u^k du.$$

Considering the case b < 0 (again, we can use the mirror property), the integral has a closed-form

$$\int_{-b/\sqrt{2}}^{\infty} e^{-tu^2} u^k \, du = \frac{\Gamma\left(\frac{k+1}{2}, \frac{b^2}{2}t\right)}{2t^{\frac{k+1}{2}}}.$$

Thus,

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} \frac{e^{-\frac{a^2}{2t}}}{2} \sum_{k=0}^{\infty} \frac{(\sqrt{2}a)^k}{k!} \frac{\Gamma\left(\frac{k+1}{2}, \frac{b^2}{2}t\right)}{t^{\frac{k+1}{2}}}.$$
 (14)

The asymptotic behaviour of the terms in the series is

$$\frac{\Gamma\left(\frac{k+1}{2},\frac{b^2}{2}t\right)}{t^{\frac{k+1}{2}}} \sim \left(\frac{b^2}{2}\right)^{\frac{k+1}{2}} e^{-\frac{b^2}{2}t}, \quad t \to \infty.$$

In fact this series is convergent, as can be observed taking the asymptotic estimate of  $\Gamma(k,x)$  as  $k \to \infty$ . A simpler convergent expansion can be obtained transforming the integral in (6)

$$\sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{2t}}\int_{-b/\sqrt{2}}^{\infty}e^{-(tu^2-\sqrt{2}au)}\,du = \sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{2t}-ab-\frac{b^2}{2}t}\int_{0}^{\infty}e^{\sqrt{2}(a+bt)u}e^{-tu^2}\,dt,$$

and expanding  $e^{\sqrt{2}(a+bt)u}$  obtaining

$$F(t;a,b) = \sqrt{\frac{t}{\pi}} \frac{e^{-\frac{a^2}{2t} - ab - \frac{b^2}{2}t}}{2} \sum_{k=0}^{\infty} \frac{(\sqrt{2}(a+bt))^k}{k!} \frac{\Gamma\left(\frac{k+1}{2}\right)}{t^{\frac{k+1}{2}}}.$$
 (15)

Similarly to the expansion at  $t \to 0$ , we can obtain an asymptotic expansion expanding F(t; a, b) at  $t \to \infty$ . For b > 0, the first terms of the expansion are

$$c_0 = 1$$
,  $c_1 = 2 + 2ab + a^2b^2$ ,  $c_2 = 24 + 24ab + 12a^2b^2 + 4a^3b^3 + a^4b^4$ , (16)

$$F(t;a,b) = 1 + \frac{e^{-ab - \frac{b^2}{2}t}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^k k!} \frac{c_k}{b^{2k+1}} \left(\frac{1}{t}\right)^{k+\frac{1}{2}}.$$
 (17)

The coefficients  $c_k$  are expressible in terms of the incomplete gamma function, since

$$c_k = \sum_{j=0}^{2k} \frac{(2k)!}{j!} (ab)^j = e^{ab} \Gamma(2k+1, ab).$$

Rearranging terms, we get

$$F(t;a,b) = 1 + \frac{e^{-\frac{b^2}{2}t}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{2^k k!} \frac{\Gamma(2k+1,ab)}{b^{2k+1}} \left(\frac{1}{t}\right)^{k+\frac{1}{2}}.$$
 (18)

#### **2.1.3** Expansion $t \rightarrow u$

Lastly, we study the expansion of F(t; a, b) at t = u. This expansion shall be crucial when developing various Bessel-type asymptotic expansions later on. The first coefficients of the Taylor series are

$$c_0 = \Phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_0, \quad c_1 = \phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_1, \quad c_2 = -\phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_2, \quad c_3 = \phi\left(\frac{a}{\sqrt{u}} + b\sqrt{u}\right)d_3,$$

where

$$\begin{split} d_0 &= 1 \\ d_1 &= \frac{-a + bu}{2u^{3/2}} \\ d_2 &= \frac{a^3 - 3au - a^2bu + bu^2 - ab^2u^2 + b^3u^3}{8u^{7/2}} \\ d_3 &= \frac{-a^5 + 10a^3u + a^4bu - 15au^2 - 6a^2bu^2 + 2a^3b^2u^2 + 3bu^3 - 6ab^2u^3 - 2a^2b^3u^3 + 2b^3u^4 - ab^4u^4 + b^5u^5}{48u^{11/2}} \end{split}$$

and  $\phi(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}}$  is the probability density function of the standard normal distribution. Thus, we have

$$F(t; a, b) = \sum_{k=0}^{\infty} c_k (t - u)^k.$$
(19)

Additional terms satisfy the following recurrence

$$c_{k+4} = \frac{f_0(k)c_k + f_1(k)c_{k+1} + f_2(k)c_{k+2} + f_3(k)c_{k+3}}{f_4(k)}, \quad k \ge 0$$
(20)

where

$$f_0(k) = -kb^3$$

$$f_1(k) = -(1+k)b(1+2k-ab+3b^3u)$$

$$f_2(k) = (2+k)(5a+2ka+a^2b-8bu-6kbu+2ab^2u-3b^3u^2)$$

$$f_3(k) = -(3+k)(a^3-11au-4kau-a^2bu+13bu^2+6kbu^2-ab^2u^2+b^3u^3)$$

$$f_4(k) = 2(3+k)(4+k)u^2(-a+bu)$$

#### 2.2 Bessel-type expansions

# 3 Expansions: case $\beta = 0$

#### 3.1 Expansions $|x - \mu| \to 0$

We use the integral (5). For  $|x - \mu| \to 0$ , we use the series expansion of  $\Phi(x)$  given by

$$\Phi(x) = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{2^k k! (2k+1)}$$

$$\Phi(x) = \frac{1}{2} + \frac{e^{-x^2/2}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!!}$$

Use closed-form in terms of the modified Bessel function. Alternating series

$$F(x;\alpha,0,\mu,\delta) = \frac{1}{2} + \frac{\delta e^{\delta \gamma}}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k (x-\mu)^{2k+1}}{2^k k! (2k+1)} \left(\frac{\alpha}{\delta}\right)^{k+1} K_{k+1}(\alpha \delta).$$
(21)

Asymptotic analysis of  $K_{k+1}(\alpha\delta)$ . To obtain a series with positive term for  $x-\mu>0$ , use alternative expansion of  $\Phi(x)$ 

$$F(x; \alpha, 0, \mu, \delta) = \frac{1}{2} + \frac{\delta e^{\delta \gamma}}{\pi} \sum_{k=0}^{\infty} \frac{(x-\mu)^{2k+1}}{(2k+1)!!} \left(\frac{\alpha}{\omega}\right)^{k+1} K_{k+1}(\alpha \omega), \quad \omega = \sqrt{\delta^2 + (x-\mu)^2}.$$
 (22)

# 3.2 Expansion $|x - \mu| \to \infty$

For  $x - \mu < 0$ 

$$F(x;\alpha,0,\mu,\delta) = \frac{\delta e^{\delta\alpha}}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k+1} \Gamma(2k+1)}{2^k k! (x-\mu)^{2k+1}} \left(\frac{\omega}{\alpha}\right)^k K_k(\alpha\omega), \quad \omega = \sqrt{(x-\mu)^2 + \delta^2}.$$
 (23)

#### 3.3 Expansion $\alpha \to \infty$

#### 4 Expansions: general case

## 4.1 Expansions $|x - \mu| \to 0$ (option 1)

## 4.2 Expansions $|x - \mu| \to 0$ (option 2)

The starting point is the integral representation in (5) after expanding the exponential

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta\gamma}}{\sqrt{2\pi}} \int_0^\infty \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} dt,$$

and replacing  $\Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right)$  by the expansion in (14)

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta \gamma}}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k!} \int_0^{\infty} \Gamma\left(\frac{k+1}{2},\frac{\beta^2}{2}t\right) t^{-3/2-k/2} e^{-\frac{\omega^2}{2t} - \frac{\gamma^2}{2}t} \, dt,$$

where  $\omega = \sqrt{\delta^2 + (x - \mu)^2}$ . Consider the ascending series of the incomplete gamma function given by [1, §8.7]

$$\Gamma(a,x) = \Gamma(a) - \sum_{j=0}^{\infty} \frac{(-1)^j x^{a+j}}{j!(a+j)}.$$
 (24)

We proceed splitting the inner integral into two terms

$$T_1 = \Gamma\left(\frac{k+1}{2}\right) \int_0^\infty t^{-3/2 - k/2} e^{-\frac{\omega^2}{2t} - \frac{\gamma^2}{2}t} dt$$
 (25)

$$T_2 = \sum_{j=0}^{\infty} \frac{(-1)^j \left(\frac{\beta^2}{2}\right)^{\frac{k+1}{2}+j}}{j!(\frac{k+1}{2}+j)} \int_0^{\infty} t^{j-1} e^{-\frac{\omega^2}{2t} - \frac{\gamma^2}{2}t} dt, \tag{26}$$

and observe that both integrals are expressible in terms of modified Bessel function, resulting in the sums  $S_1$  and  $S_2$ , such that  $F(x; \alpha, \beta, \mu, \delta) = C(S_1 - S_2)$ , defined as follows

$$S_1 = \sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k!} \Gamma\left(\frac{k+1}{2}\right) 2K_{\frac{k+1}{2}}(\omega \gamma) \left(\frac{\gamma}{\omega}\right)^{\frac{k+1}{2}}$$

$$(27)$$

$$S_2 = \sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k!} \sum_{j=0}^{\infty} \frac{(-1)^j \left(\frac{\beta^2}{2}\right)^{\frac{k+1}{2}+j}}{j! (\frac{k+1}{2}+j)} 2K_j(\omega \gamma) \left(\frac{\omega}{\gamma}\right)^j.$$
 (28)

Interchanging the order of summation in  $S_2$ , we observe that the sum in k is convergent an expressible in terms of the lower incomplete gamma function  $\gamma(a, x)$ . Assuming  $\beta > 0$ 

$$\sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k! (\frac{k+1}{2}+j)} \left(\frac{\beta^2}{2}\right)^{\frac{k+1}{2}} = -\frac{\sqrt{2}}{(x-\mu)^{2j+1} \beta^{2j}} \gamma \left(2j+1, -(x-\mu)\beta\right). \tag{29}$$

Thus,

$$S_{2} = -2\sqrt{2} \sum_{i=0}^{\infty} \frac{(-1)^{j}}{j!} \frac{\gamma \left(2j+1, -(x-\mu)\beta\right)}{(x-\mu)^{2j+1}\beta^{2j}} \left(\frac{\beta^{2}}{2}\right)^{j} K_{j}(\omega \gamma) \left(\frac{\omega}{\gamma}\right)^{j}$$

Rearranging terms

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta\gamma}}{\pi\sqrt{2}} \left[ \sum_{k=0}^{\infty} \frac{2^{k/2} (x-\mu)^k}{k!} \Gamma\left(\frac{k+1}{2}\right) K_{\frac{k+1}{2}}(\omega\gamma) \left(\frac{\gamma}{\omega}\right)^{\frac{k+1}{2}} + \sqrt{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{\gamma \left(2k+1, -(x-\mu)\beta\right)}{(x-\mu)^{2k+1}} K_k(\omega\gamma) \left(\frac{\omega}{2\gamma}\right)^k \right]$$
(30)

If  $\beta < 0$  then  $F(x; \alpha, \beta, \mu, \delta) = 1 - F(-x; \alpha, -\beta, -\mu, \delta)$ . The expansion is convergent for small  $x - \mu$  and fixed values of the rest of parameters. Moreover, the convergence improves when  $\gamma \sim \omega$ , also valid for large values for these two parameters.

#### **4.3** Expansion $\alpha \to \infty, \delta \to \infty$

#### 4.4 Expansion $|x - \mu| \to \infty$

The expansion of  $\Phi\left(\frac{x-(\mu+\beta t)}{\sqrt{t}}\right)$  at  $t\to 0$  is given in terms of the Bessel polynomial  $y_k(x)$ . To simplify notation, we take  $a=x-\mu$  and  $b=-\beta$ . Then,

$$\Phi\left(\frac{a}{\sqrt{t}} + b\sqrt{t}\right) = 1 + \frac{e^{-a^2/(2t) - ab - b^2/2t}}{a\sqrt{2\pi}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k y_k \left(\frac{1}{ab}\right) t^{\frac{1}{2} + k}$$
(31)

Using the connection of the Bessel polynomials with the modified Bessel function of the second kind  $K_n(x)$  given by

$$y_n(x) = \sqrt{\frac{2}{\pi x}} e^{1/x} K_{n+\frac{1}{2}} \left(\frac{1}{x}\right),$$
 (32)

we replace in the integral, we obtain

$$F(x;\alpha,\beta,\mu,\delta) = 1 + \delta e^{\delta\gamma} \sqrt{\frac{b}{2a\pi^3}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{b}{a}\right)^k K_{k+\frac{1}{2}}(ab) \int_0^{\infty} t^{k-1} e^{-\frac{\delta^2 + a^2}{2t} - \frac{\gamma^2 + b^2}{2}t} dt \tag{33}$$

$$\int_0^\infty t^{k-1} e^{-\frac{\delta^2 + a^2}{2t} - \frac{\gamma^2 + b^2}{2}t} dt = 2K_k(\omega \alpha) \left(\frac{\omega}{\alpha}\right)^k, \tag{34}$$

where  $\omega = \sqrt{\delta^2 + (x - \mu)^2}$ . Rearranging terms

$$F(x;\alpha,\beta,\mu,\delta) = 1 + \delta e^{\delta\gamma} \sqrt{\frac{2\beta}{(\mu-x)\pi^3}} \sum_{k=0}^{\infty} (-1)^{k+1} \left(\frac{\beta\omega}{\alpha(\mu-x)}\right)^k K_{k+\frac{1}{2}}((\mu-x)\beta) K_k(\omega\alpha)$$
(35)

# 5 Numerical integration

For cases do not covered by the described expansions, we need to resort to numerical integration. The Laplace-type integral (5), whose integrand includes the complementary error function, should be faster to evaluate than the Bessel integral in (4).

To use numerical integration methods requiring a finite interval, we truncate the integral (5) at some point N, such that

$$I = \int_0^N \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} \, dt + \int_N^\infty \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t} \, dt,$$

and  $F(x; \alpha, \beta, \mu, \delta) = CI$ , where  $C = \frac{\delta e^{\delta \gamma}}{\sqrt{2\pi}}$ . The truncation error can be bounded by

$$\int_{N}^{\infty} \Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right) t^{-3/2} e^{-\frac{\delta^{2}}{2t} - \frac{\gamma^{2}}{2}t} dt \le \frac{e^{-\frac{\delta^{2}}{2N}}}{N^{3/2}} \int_{N}^{\infty} e^{-\frac{\gamma^{2}}{2}t} dt \le \frac{2e^{-\frac{\delta^{2}}{2N} - \frac{\gamma^{2}}{2}N}}{N^{3/2}\gamma^{2}}.$$

We can select N for a desired absolute tolerance  $\epsilon$  via a bisection procedure or by solving using root-finding methods the equation

$$\frac{2e^{-\frac{\delta^2}{2N} - \frac{\gamma^2}{2}N}}{N^{3/2}\gamma^2} = \frac{\epsilon}{C}.$$
 (36)

Moreover, a slightly lesser sharper bound allows a closed-form solution of the above equation in terms of the principal branch of the Lambert W function  $[1, \S4.13]$ 

$$\frac{2e^{-\frac{\gamma^2}{2}N}}{N^{3/2}\gamma^2} = \frac{\epsilon}{C} \longrightarrow N = \frac{3}{\gamma^2}W_0\left(\frac{\gamma^2}{3u}\right), \quad u = \left(\frac{\gamma^2\epsilon}{2C}\right)^{2/3}. \tag{37}$$

To accurately estimate N to achieve a relative tolerance, we need an estimate of the order of magnitude of I. First, we rewrite the integrand as  $e^{g(t)}$ , where

$$g(t) = -\frac{\delta^2}{2t} - \frac{\gamma^2}{2}t - \frac{3}{2}\log(t) + \log\left(\Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right)\right),$$

and

$$g'(t) = \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t} - \varphi(x; \beta, \mu), \quad \varphi(x; \beta, \mu) = \frac{1}{2} \left( \frac{x - \mu}{t^{3/2}} + \frac{\beta}{\sqrt{t}} \right) \frac{\phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right)}{\Phi\left(\frac{x - (\mu + \beta t)}{\sqrt{t}}\right)}$$

The saddle point  $t_0$  and maximum contribution  $e^{g(t_0)}$  of the integrand is obtained as the solution of the equation g'(t) = 0. Thus, N for relative tolerance can be estimated after replacing  $\epsilon$  with  $\epsilon e^{g(t_0)}$  in (37). For the case where  $\gamma$  and  $\delta$  are both large and  $\beta$  and  $x - \mu$  are fixed, the last term in g'(t) can be neglected, obtaining the quadratic equation

$$g'(t) \approx \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t}, \quad t_0 = \frac{-\frac{3}{2} + \sqrt{\frac{9}{4} + (\gamma \delta)^2}}{\gamma^2},$$
 (38)

taking the positive internal saddle point  $t_0$ . The case where  $\gamma$  and  $\delta$  are small requires further analysis. If  $x - \mu > 0$ , as  $x - \mu$  increases the contribution of  $\varphi(x; \beta, \mu)$  vanishes and (38) is valid. Contrarily, if  $x - \mu < 0$  and  $\beta \to 0$  (since  $|\beta| < \gamma < \alpha$ ),  $\varphi(x; \beta, \mu)$  can be approximated as follows

$$\frac{\phi\left(\frac{x-\mu}{\sqrt{t}}\right)}{\Phi\left(\frac{x-\mu}{\sqrt{t}}\right)} \approx -\frac{x-\mu}{\sqrt{t}}, \quad \varphi(x;\beta,\mu) \approx -\frac{(x-\mu)^2}{2t^2},$$

then, we have another quadratic equation

$$g'(t) \approx \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t} + \frac{(x-\mu)^2}{2t^2}, \quad t_0 = \frac{-\frac{3}{2} + \sqrt{\frac{9}{4} + \gamma^2 ((x-\mu)^2 + \delta^2)}}{\gamma^2}.$$

If  $\beta < 0$ , a better approximation is

$$g'(t) \approx \frac{\delta^2}{2t^2} - \frac{\gamma^2}{2} - \frac{3}{2t} + \frac{(x-\mu)^2}{2t^2} + \frac{\beta(x-\mu)}{2t}, \quad t_0 = \frac{h + \sqrt{h^2 + \gamma^2 \left((x-\mu)^2 + \delta^2\right)}}{\gamma^2}, \quad h = \frac{\beta(x-\mu) - 3}{2}.$$

The saddle point estimates  $t_0$  can also be used as a starting point for root-finding, however, for the purpose of approximating the order of magnitude of I, the approximations are sufficient.

- Gauss-Legendre
- Double-exponential tanh-sinh numerical integration

A double-exponential integration arises as follows. Because  $|\beta| < \alpha$ , we can write  $\beta = \alpha \tanh(\theta)$ . Substituting in (4)  $x - \mu = \delta \sinh(\theta + u)$  we obtain

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{-\infty}^{\tau} K_1(\alpha \delta \cosh(\theta + u)) e^{\beta \delta \sinh(\theta + u)} du, \tag{39}$$

where

$$\tau = \operatorname{arcsinh}\left(\frac{x-\mu}{\delta}\right) - \theta. \tag{40}$$

**Proposition 5.1** For  $x - \mu < 0$ , an incomplete Laplace-type integral representation in terms of modified Bessel function  $K_0(x)$  is given by

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\sqrt{2\delta}e^{\delta\gamma}}{\pi} \int_{\beta/\sqrt{2}}^{\infty} e^{\sqrt{2}(x-\mu)t} K_0\left(\sqrt{2\left((x-\mu)^2 + \delta^2\right)}\sqrt{\frac{\gamma^2}{2} + t^2}\right) dt,\tag{41}$$

and  $F(x; \alpha, \beta, \mu, \delta) = 1 - F(-x; \alpha, \beta, -\mu, \delta)$ , otherwise.

**Proof:** Consider the integral representation of the function  $\Phi\left(\frac{x-\mu}{\sqrt{t}} - \beta\sqrt{t}\right)$ 

$$\Phi\left(\frac{x-\mu}{\sqrt{t}} - \beta\sqrt{t}\right) = \sqrt{\frac{t}{\pi}} e^{-\frac{(x-\mu)^2}{2t}} \int_{\beta/\sqrt{2}}^{\infty} e^{-(tu^2 - \sqrt{2}(x-\mu)u)} du.$$

Replacing in (5) and interchanging the order of integration we obtain

$$F(x;\alpha,\beta,\mu,\delta) = \frac{\delta e^{\delta\gamma}}{\sqrt{2}\pi} \int_{\beta/\sqrt{2}}^{\infty} e^{\sqrt{2}(x-\mu)u} \int_{0}^{\infty} t^{-1} e^{-\frac{\left((x-\mu)^2+\delta^2\right)}{2t} - \left(\frac{\gamma^2}{2} + u^2\right)t} dt du.$$

The observation that the inner integral can be represented in terms of the modified Bessel function  $K_0(x)$ 

$$\int_0^\infty t^{-1} e^{-\frac{\left((x-\mu)^2+\delta^2\right)}{2t}-\left(\frac{\gamma^2}{2}+u^2\right)t}\,dt = 2K_0\left(2\sqrt{\frac{(x-\mu)^2+\delta^2}{2}}\sqrt{\frac{\gamma^2}{2}+t^2}\right).$$

**Proposition 5.2** For  $x - \mu > 0$ , a Fourier cosine transform integral representation in terms of the exponential integral  $E_1(x)$  is given by

$$F(x;\alpha,\beta,\mu,\delta) = 1 - \frac{\delta e^{\delta \gamma}}{\pi} \int_0^\infty E_1\left((x-\mu)(\sqrt{t^2 + \alpha^2} - \beta)\right) \cos(\delta t) dt.$$
 (42)

A Fourier sine transform integral representation in terms of basic functions is

$$F(x;\alpha,\beta,\mu,\delta) = 1 - \frac{e^{\delta\gamma}}{\pi} \int_0^\infty \frac{te^{-(x-\mu)\left(\sqrt{t^2 + \alpha^2} - \beta\right)}}{\sqrt{t^2 + \alpha^2}\left(\sqrt{t^2 + \alpha^2} - \beta\right)} \sin(\delta t) dt.$$
 (43)

**Proof:** 

$$\frac{K_1 \left(\alpha \sqrt{\delta^2 + z^2}\right)}{\sqrt{\delta^2 + z^2}} = \frac{1}{\alpha z} \int_0^\infty e^{-z\sqrt{t^2 + \alpha^2}} \cos(\delta t) dt.$$

$$F(x; \alpha, \beta, \mu, \delta) = 1 - \frac{\alpha \delta e^{\delta \gamma}}{\pi} \int_{x-\mu}^\infty \frac{e^{\beta z}}{\alpha z} \int_0^\infty e^{-z\sqrt{t^2 + \alpha^2}} \cos(\delta t) dt dz$$

$$\int_{x-\mu}^\infty \frac{1}{z} e^{-(\sqrt{t^2 + \alpha^2} - \beta)z} dz = E_1 \left( (x - \mu)(\sqrt{t^2 + \alpha^2} - \beta) \right).$$

#### 6 Inversion methods

Ideas:

- Central region
  - 1. The moment generating function is simple. The computation of its central moments is easy.
  - 2. Use multiple central moments to estimate the quantile using a Cornish-Fisher expansion.
- Tails (asymptotic methods) [3, §42]
  - 1. Direct application using the standard form integral representation (4).
- Root-finding: Halley's or Schwarzian-Newton method.

# 7 Numerical experiments

# References

- [1] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.14 of 2016-12-21. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
- [2] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.
- [3] N. M. Temme. Asymptotic Methods for Integrals, volume 6 of Series in Analysis. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.