

Physics-Informed Machine Learning for populational inverse problems

Yann Divet

Prof. Mark Girolami
Dr. Arnaud Vadeboncoeur

IIB Project Final Presentation

6th June 2025

Presentation Outline

1. Introduction

- 1.1 Motivation
- 1.2 Introduction to Hierarchical Bayes

2. Metholodogy

- 2.1 Damped Harmonic Oscillator Problem
- 2.2 Method 1: Hierarchical Bayes
- 2.3 Method 2: Distribution-matching

3. Results

- 3.1 Method 1: Hierarchical Bayes
- 3.2 Method 2: Distribution-matching
- 3.3 Comparison

4. Conclusion

Presentation Outline

1. Introduction

- 1.1 Motivation
- 1.2 Introduction to Hierarchical Bayes

2. Metholodogy

- 2.1 Damped Harmonic Oscillator Problem
- 2.2 Method 1: Hierarchical Bayes
- 2.3 Method 2: Distribution-matching

3. Results

- 3.1 Method 1: Hierarchical Bayes
- 3.2 Method 2: Distribution-matching
- 3.3 Comparison

4. Conclusion

Motivation

- ► Inverse problem: Model + Observations → Parameters
- Common to build models that use data from different systems
- Compare and contrast ML methods:
 - Hierarchical Bayes
 - Distribution-matching

Hierarchical problem structure

- ► Population has N = 3 different physical systems
- ► How do we learn their characteristics?

Fully Pooled Model leads to overfitting

Fully Pooled (every windmill has separate

model)

Unpooled Model leads to underfitting

Fully Pooled

(every windmill has separate model)

Unpooled

(no difference amongst windmills)

Partially Pooled (or Hierarchical Bayes) Model

- Solves overfitting and underfitting problems
- Each wind turbine has individual parameters influenced by population distribution

Presentation Outline

1. Introduction

- 1.1 Motivation
- 1.2 Introduction to Hierarchical Bayes

2. Metholodogy

- 2.1 Damped Harmonic Oscillator Problem
- 2.2 Method 1: Hierarchical Bayes
- 2.3 Method 2: Distribution-matching

3. Results

- 3.1 Method 1: Hierarchical Bayes
- 3.2 Method 2: Distribution-matching
- 3.3 Comparison

4. Conclusion

Damped Harmonic Oscillator Problem

Damped Harmonic Oscillator equation:

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega_0^2 x = 0$$

where:

- ► *x* corresponds to the displacement,
- the undamped angular frequency of the oscillator ω_0 ,
- $\gamma = 2\zeta\omega_0$, where ζ is the damping ratio.

Multi-layered structure

$$\mathbf{y}^{(n)} = \mathcal{G}(\mathbf{z}^{(n)}) + \epsilon^{(n)}, \ \epsilon \sim \eta := \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\mathbf{z}^{(n)} \sim \mathsf{LogNormal}(\boldsymbol{\mu}, \boldsymbol{ au})^2$$

- Observations
- Populations
- Hyperparameter

Method 1: Hierarchical Bayes

Explore posterior, an update of our prior beliefs of the hyperparameters and population-level parameters using the likelihood of our observed data:

$$p(\mathbf{z}^{(1:N)}, \boldsymbol{\alpha}|\mathbf{y}^{(1:N)}) \propto \prod_{i=1}^{N} p(\mathbf{y}^{(1:N)}|\mathbf{z}^{(1:N)}) p(\mathbf{z}^{(1:N)}|\boldsymbol{\alpha})$$

 Using Markov Chain Monte Carlo to sample from the posterior distribution

Method 2: Distribution-matching

▶ Obtain optimal α parameter that minimises objective function:

$$\alpha^* = \arg\min_{\alpha} J(\alpha)$$

► Objective = Data-fit term + Regularisation term

$$J(\alpha) = d_1(\nu, \eta * G_\# P^{\alpha}(z)) + d_2(P^{\alpha}(z), P^0(z))$$

Presentation Outline

1. Introduction

- 1.1 Motivation
- 1.2 Introduction to Hierarchical Bayes

2. Metholodogy

- 2.1 Damped Harmonic Oscillator Problem
- 2.2 Method 1: Hierarchical Bayes
- 2.3 Method 2: Distribution-matching

3. Results

- 3.1 Method 1: Hierarchical Bayes
- 3.2 Method 2: Distribution-matching
- 3.3 Comparison

4. Conclusion

Hierarchical Bayes (N = 1)

Hierarchical Bayes (N = 10)

Hierarchical Bayes (N = 100)

Hierarchical Bayes (N = 1000)

Distribution-matching (N = 1)

Distribution-matching (N = 1000)

Accuracy Comparison (Hyperparameters mean)

Accuracy Comparison (Hyperparameters std)

Runtime Comparison

Presentation Outline

1. Introduction

- 1.1 Motivation
- 1.2 Introduction to Hierarchical Bayes

2. Metholodogy

- 2.1 Damped Harmonic Oscillator Problem
- 2.2 Method 1: Hierarchical Bayes
- 2.3 Method 2: Distribution-matching

3. Results

- 3.1 Method 1: Hierarchical Bayes
- 3.2 Method 2: Distribution-matching
- 3.3 Comparison

4. Conclusion

Summary

- ► Hierarchical Bayes: uncertainty quantification
- Distribution-matching: better computational efficiency
- ► HBM when number of physical systems is smaller
- DM when number of physical systems is larger
- Generalise methodology to other elastic-dynamic problems

Main References

- A. Gelman, J. B. Carlin, H. S. Stern, & D. B. Rubin. Bayesian Data Analysis. 2013.
- ► A. Gelman. Multilevel (Hierarchical) Modeling: What It Can and Cannot Do. 2006.
- M. Betancourt, M. Girolami. Hamiltonian Monte Carlo for Hierarchical Models. 2013.
- ► M. Hoffman, A. Gelman, et al. *The No-U-Turn sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.* 2014.
- ▶ O. Deniz Akyildiz, M. Girolami, A. M. Stuart & A. Vadeboncoeur. Efficient Prior Calibration From Indirect Data. 2024.

Hyperpriors (mean)

Hyperpriors (std)

Pushforward - Prior on populational level

Lotka-Volterra Equation

$$\frac{dx}{dt} = \alpha x - \beta xy
\frac{dy}{dt} = \delta xy - \gamma y$$
(1)

Example with $\alpha =$ 1.1, $\beta =$ 0.4, $\gamma =$ 0.1, $\delta =$ 0.4 on next slide

Lotka-Volterra Model

Lotka-Volterra - Accuracy

MCMC vs SW Mu Hyperparameter Convergence Analysis

Lotka-Volterra - Runtime

Distribution of populational parameters (HBM)

Analogy with other systems

Translational mechanical	Rotational mechanical	Series RLC circuit	Parallel RLC circuit
Position x	Angle θ	Charge q	Flux linkage φ
Velocity dx/dt	Angular velocity $\frac{d\theta}{dt}$	Current dq/dt	Voltage $\frac{d\varphi}{dt}$
Mass m	Moment of inertia i	Inductance L	Capacitance C
Momentum p	Angular momentum L	Flux linkage φ	Charge q
Spring constant k	Torsion constant μ	Elastance 1 / C	Magnetic reluctance 1/L
Damping c	Rotational friction F	Resistance R	Conductance $G = 1/R$
Drive force $F(t)$	Drive torque $\tau(t)$	Voltage v	Current i
Undamped resonant frequency f _n :			
$\frac{1}{2\pi}\sqrt{\frac{k}{m}}$	$\frac{1}{2\pi}\sqrt{\frac{\mu}{I}}$	$\frac{1}{2\pi}\sqrt{\frac{1}{LC}}$	$\frac{1}{2\pi}\sqrt{\frac{1}{LC}}$
Damping ratio ζ:			
$\frac{c}{2}\sqrt{\frac{1}{km}}$	$\frac{\Gamma}{2}\sqrt{\frac{1}{I\mu}}$	$\frac{R}{2}\sqrt{\frac{C}{L}}$	$\frac{G}{2}\sqrt{\frac{L}{C}}$
Differential equation:			
$m\ddot{x} + c\dot{x} + kx = F$	$I\ddot{\theta} + \Gamma\dot{\theta} + \mu\theta = \tau$	$L\ddot{q} + R\dot{q} + q/C = v$	$C\ddot{\varphi} + G\dot{\varphi} + \varphi/L = i$