МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.3.6

Влияние магнитного поля на проводимость полупроводников

Б03-102 Куланов Александр

- Цель работы: Измерение влияния магнитного поля на полупроводники
- В работе используются: Стабилизированный источник постоянного тока и напряжения, электромагнит, цифровой вольтметр, амперметр, миллиамперметр, реостат, измеритель магнитной индукции III1-10, образцы (InSb) монокристаллического антимонида индия n-типа

1 Описание установки

Рис. 1: Схема установки

В зазоре электромагнита создаётся постоянное магнитное поле. Ток питания магнита подаётся от источника постоянного напряжения GPR-11H30D, регулируется ручками управления источника (R_1) и измеряется амперметром источника A_1 . Магнитная индукция в зазоре электромагнита определяется при помощи измерителя магнитной индукции Ш1-10 (описание прибора расположено на установке).

Образец в форме кольца (диск Корбино) или пластинки, смонтированный в специальном держателе, подключается к источнику постоянного напряжения 5 В. При замыкании ключа К сквозь образец течёт ток, величина которого измеряется миллиамперметром A_2 и регулируется реостатом R_2 Балластное сопротивление R_0 ограничивает ток через образец. Измеряемое напряжение подаётся на вход цифрового вольтметра B7 - 78/1

2 Теоретические сведения

3 Обработка результатов

Калибровка магнита

По данным из таблицы 1 построим график зависимости $B(I_m)$

В, мТл	I, A
42	0.04
95.2	0.10
178.5	0.18
277	0.29
333	0.39
365	0.48
378	0.55

Таблица 1: Зависимость $B(I_m)$

Рис. 2: Зависимость $B(I_m)$

Пластинка

Полученные данные занесем в таблицу 2

Перпендикулярно		Параллельно	
U, мВ	I, A	U, мВ	I, A
0.688	0	0.688	0
0.722	0.06	0.701	0.06
0.789	0.11	0.729	0.11
0.966	0.20	0.800	0.20
1.193	0.30	0.887	0.31
1.324	0.42	0.940	0.42
1.375	0.5	0.965	0.5
1.414	0.57	0.978	0.56
1.416	0.58	0.980	0.57

Таблица 2: Зависимости U(I)

Найдем теперь B^2 и R, учитывая, что ток через образец в обоих случаях $10\,$ мА и нанесем результат на график $3\,$

Диск Корбино

Полученные данные занесем в таблицу:

U, мВ	I, A
0.712	0
0.794	0.06
1.016	0.12
1.527	0.20
2.319	0.30
2.940	0.41
3.199	0.49
3.356	0.55
3.409	0.58

Таблица 3: Данные для диска Корбино

Аналогично пластике, найдем B^2 и R, но ток в данном случае 23,5 A, нанесем результаты на график 3

Рис. 3: Зависимость $R(B^2)$

4 Приложение