Equity/Interest-rates ESGs - Implementation, Statistical analysis & Parameter influence

Final project presentation - Cutting-Edge project

Amal BACHA - Dalia BARBI - Khalil BATTIKH - Lucas RODRIGUEZ - Naïm SOUNI Group 2

May 16th, 2023

MASTER IN QUANTITATIVE FINANCE (M2QF)

→ Overview of academic deliverables

As of today, 6 documents:

- 1. Technical report
- 2. Slides
- 3. GitHub repository 12
- 4. Online project homepage³
- 5. Online documentation 4
- 6. Architecture charts (UML classes & packages)

^{1.} https://github.com/lcsrodriguez/CuttingEdge-Milliman

^{2.} https://github.dev/lcsrodriguez/CuttingEdge-Milliman

 $^{{\}bf 3.\ https://lcsrodriguez.github.io/qf/cutting-edge/}$

Quick outline

- 1. Introduction, Project's assumptions & General Framework
- 2. Implementation of :
 - Interest rates
 - Equity prices
- 3. In-depth study of the impact of parameters

(model & simulation)

4. Conclusion, Critiques & Further extensions

Introduction

Problem definition

Context

- Financial market \mathcal{M} on $(\Omega, \mathcal{F}, \mathbb{F} := (\mathcal{F}_t)_{t \in \mathbb{R}^+}, \mathbb{P})$
- Continuous-time modeling

Objectives

- State-of-the-art of existing Python libraries
- ▶ Implementation of several ESGs for interest rates & equity prices
- Implementation of European and Asian pricers
- ▶ Parameters influence study & Statistical analysis
- Final analysis & Conclusions

Constraints

- Python & Jupyter Notebook
- OOP architecture
- ► Adoption of a highly-professional framework

Financial framework

Hypothesis of research project

- 1. Underlying perfectly divisible
- 2. Friction-less market
- 3. No calibration ⁵

^{5.} Possible extension of the current project

Technical framework

Development environment

General informations

► Development : Python 3.10+

► Environment : Jupyter Notebook (local, Google Colab, Kaggle)

▶ Dependencies tracking : pip ⁶ & Dependabot

Version control : Git/GitHub⁷

LATEX report writing

Data handling & Numerical analysis: NumPy, Pandas & PyArrow

▶ Plotting : Matplotlib, Pyplot & Seaborn

UML & Class diagram

Pyreverse

CI/CD workflow : GitHub Actions

UML, Dependabot, release

⇒ Professional development framework for best implementation quality

^{6.} See complete list of dependencies on GitHub

^{7.} GitHub project repo: https://github.com/lcsrodriguez/CuttingEdge-Milliman

Technical framework

Simplified UML graph & Class diagram

Figure – Simplified class diagram of the project ⁸

Complete diagrams 9

- UML class diagram
- UML package diagram

^{8.} As of May 14th (final version)

^{9.} See https://github.com/lcsrodriguez/CuttingEdge-Milliman

Implementation: Interest rates

Considered models

- Vasicek
- Cox-Ingersoll-Ross (CIR)
- Hull & White

As a refinement of Vasicek

Extensions: Ho-Lee, Black-Karakinski 10

 $\label{lem:lementation:1} \textbf{Implementation}: 1 \ \text{class for } 1 \ \text{model, all depending from the abstract class}$

RatesModel

Simulation : Euler-Maruyama & Milstein numerical schemes

^{10.} Used for hyprid credit/rates models

Implementation: Equity rates

Considered models

- Black-Scholes
- Heston

Stochastic rates, constant diffusion

As a refinement of BS

Simulation: Euler-Maruyama & Milstein numerical schemes Same as rates simulation

Implementation: Simulation of $k \ge 2$ Brownian motions (1/3)

Context:

- Simulation of several correlated Brownian motions for each combination
- ▶ In this project, $k \in \{2,3\}$

Solution : --- Use of Cholesky technique

Example

$$\Sigma := \begin{bmatrix} \rho_{11} & \rho_{12} & \rho_{13} \\ \rho_{21} & \rho_{22} & \rho_{23} \\ \rho_{31} & \rho_{32} & \rho_{33} \end{bmatrix} = \begin{bmatrix} 1 & \rho_{21} & \rho_{31} \\ \rho_{21} & 1 & \rho_{32} \\ \rho_{31} & \rho_{32} & 1 \end{bmatrix} \in \mathcal{S}_3^{++}$$
 (1)

where : $\forall (i,j) \in \{1,2,3\}^2, \ \rho_{ij} := \text{Cov}(W^i, W^j)$

Implementation: Simulation of $k \ge 2$ Brownian motions (2/3)

Simulation of 3 Gaussian increments series

Figure – Brownian increments for k=3 and a given $\Sigma\in\mathcal{S}_3^{++}$

Implementation : Simulation of $k \ge 2$ Brownian motions (3/3)

Simulation of 3 correlated Brownian motions

Figure – Brownian cumulative sums \sim BMs trajectories for k=3 and a given $\Sigma \in \mathcal{S}_3^{++}$

Implementation: European & Asian option pricing (1/2)

Context : Option prices → Relevant analysis

Studies: Implementation of 2 pricers

European

$$C^{\text{EUR}}(T,K) := \mathbb{E}\left[e^{-\int_0^T r_u \, du} (S_T - K)_+\right]$$
 (2)

Asian

$$C^{\text{ASIAN}}(T,K) := \mathbb{E}\left[e^{-\int_0^T r_u \, du} \left(\frac{1}{T} \int_0^T S_u \, du - K\right)_+\right] \tag{3}$$

with maturity date T>0 and strike (exercise price) K>0

Numerical implementation: Use of Monte-Carlo experiment

MC

Motivated by the previously-developed equity path-generators

Implementation: European & Asian option pricing (2/2)

Results

- ▶ $N_{MC} \in [10^2, 10^4]$ \Longrightarrow Good performance
- ▶ Main constraint : Desired samples number : $N_{MC} \in \llbracket 10^5, 10^6 \rrbracket$
- ► Serial MC ⇒ Bad overall performance

Solution: Speed-up MC computations

- 1. GPU acceleration
- 2. 0. 0 4000.0.41.0.
- 2. Multi-threading
- 3. Multi-processing

- CUDA, OpenCL, ...
 - I/O-bound tasks
 - CPU-bound tasks

Results : Speed-up by \sim 3 times with 7 CPU logical cores $^{11~12}$ involved \implies N_{MC} \sim 10^6 reachable

Additional features :

- ► Confidence intervals computations ¹³
- OOP architecture
- Pre-computed simulations to improve overall performances
- 11. See quantitative study in Appendix
- 12. MacBook Pro i7 8 logical cores
- 13. Implemented for several Z-scores: 80, 85, 90, 95, 99, 99.5, 99.9

Parameters impact : Overview (1/2)

Context: Relevant and easy-to-use simulation framework

Studies outline

Equity	Interest rates	Studied?
Black-Scholes	Vasicek CIR Hull-White	Studied Studied Studied
Heston	Vasicek CIR Hull-White	Studied Not studied Not studied

Table - Potential combinations for future studies

For each combination, \longrightarrow relevant selection of parameters to be studied

Parameters : Divided into 2 families : Model parameters & Simulation parameters

Parameters impact : Overview (2/2)

Method

- Fixed randomness to clearly compare relevant trends
- ▶ Selection of 4 parameters max. per combination
- ▶ Study over simulation (equity + index) & derivatives pricing results

Analysis: Black-Scholes + Vasicek

Combination 1

Models 14

$$\begin{cases} dr_t = \kappa(\theta - r_t)dt + \eta dB_t \\ r(0) = r_0 & \text{deterministic} \end{cases}$$
 (4)

$$\begin{cases} \frac{\mathrm{d}S_t}{S_t} = r_t \mathrm{d}t + \sigma \mathrm{d}W_t \\ S_0 \ge 0 \end{cases} \tag{5}$$

Studied parameters We change the model's parameters : κ , θ , σ , T and N .

^{14.} Generation of 2 correlated BMs needed : $(B_t)_t \& (W_t)_t$

Simulation of 8 paths of BS+Vasicek

Effect of κ on the asset price S_t and interest rate r_t

Figure – Effect of κ

Effect of θ on the asset price S_t and interest rate r_t

Figure – Effect of θ

Effect of the volatility σ on the asset price S_t and interest rate r_t

Figure – Effect of σ

Effect of number de steps N on the asset price S_t and interest rate r_t

Figure - Effect of number of steps

Effect of the horizon T on the asset price S_t and interest rate r_t

Figure - Effect of time

Joint Distribution

Figure – Simulation of the joint distribution

Analysis: Black-Scholes + CIR

Combination 2

Models 15

$$\begin{cases} dr_t = \kappa(\theta - r_t)dt + \sigma\sqrt{r_t}dB_t \\ r(0) = r_0 & \text{deterministic} \end{cases}$$
 (6)

$$\begin{cases} \frac{\mathrm{d}S_t}{S_t} = r_t \mathrm{d}t + \sigma \mathrm{d}W_t \\ S_0 \ge 0 \end{cases}$$
 (7)

Studied parameters:

- ► Model : κ , θ , ρ
- Simulation : joint distribution

Simulation of one path of the CIR model

Figure – Simulation of one path of the CIR model

Simulation of 8 paths of the CIR model

Figure – Simulation of 8 paths of the CIR model

Effect of κ on the asset price S_t and interest rates r_t

Figure – Effect of κ

Effect of θ on the asset price S_t and interest rates r_t

Figure – Effect of θ

Effect of ρ on the asset price S_t and interest rates r_t

Figure – Effect of ρ

Simulation of the joint distribution

Figure – Simulation of the joint distribution

Analysis: Black-Scholes + Hull & White

Combination 3

Models 16

$$\begin{cases} dr_t = (\theta(t) - ar_t)dt + \sigma dB_t \\ r(0) = r_0 & \text{deterministic} \end{cases}$$
 (8)

$$\begin{cases} \frac{\mathrm{d}S_t}{S_t} = r_t \mathrm{d}t + \sigma \mathrm{d}W_t \\ S_0 \ge 0 \end{cases} \tag{9}$$

Results: We chose different functions for $\theta(t)$, such as:

- $ightharpoonup \theta(t)$ constant
- \triangleright $\theta(t)$ exponential
- $\triangleright \theta(t)$ logarithmic
- $\triangleright \theta(t)$ sinusoidal

^{16.} Generation of 2 correlated BMs needed : $(B_t)_t \& (W_t)_t$

Simulation of 8 paths of Hull-White

Effect of the volatility σ on the asset price S_t and interest rates r_t

Effect of the mean reversion $\theta(t)$

Combination 4

Models 17

$$\begin{cases} dr_t = \kappa(\theta - r_t)dt + \eta dB_t \\ r(0) = r_0 & \text{deterministic} \end{cases}$$
 (10)

$$\begin{cases} \frac{\mathrm{d}S_t}{S_t} = r_t \mathrm{d}t + \sqrt{V_t} \mathrm{d}W_t \\ S_0 \ge 0 \end{cases} \tag{11}$$

$$\begin{cases} dV_t = \kappa(\theta - V_t)dt + \eta \sqrt{V_t} d\widetilde{W_t} \\ V_0 \ge 0 \end{cases}$$
 (12)

Studied parameters

- Assumption : Fixing Heston parameters to respect Feller conditions $2\kappa \theta > \eta^2$
- Strategy of study: Compute the mean and the variance of the trajectories studied for every simulation

^{17.} Generation of 3 correlated BMs needed : $(B_t)_t$, $(W_t)_t$ and $(W_t)_t$

Combination 4

Results

Figure – Effect of the correlation (with the variance)

Combination 4

Results

Figure – Effect of θ (with the variance)

Combination 4

Results

Figure – Effect of κ (with the underlying)

Conclusion & Perspectives

Criticism

- Use of independent parameters for the study , and could do some more technical work on the influence of the parameters
- Truncated study due to complexity and high number of parameters pool
- Complex organization with internships and other deadlines

Synthesis

- ▶ State-of-the-art of existing Python/R libraries for ESGs implementation
- Implementing rates, then equity models
- Implementation of efficient EURO & ASIA pricers
- In-depth analysis for the impact of model/simulation parameters

Conclusion & Perspectives

Extensions

- Introduce better parallelism/multithreading to speed up MC pricing
- Use of cloud computing instances with larger CPU cores AWS Lambda, SageMaker
- Exploit other ways to speed up the study of parameters impacts
- ▶ Building a REST API ¹⁸ to automate in a *user-friendly* UI the strategy runs
- ▶ Building a CLI ¹⁹ for strategies running automation

^{18.} Flask, FastAPI

^{19.} Click, argparse, ...

Appendices

Appendix : Euler & Milstein schemes (1/2)

Context (SDE)

$$dX_t := a(t, X_t)dt + b(t, X_t)dW_t$$
(13)

with $X_0 = x_0 \in \mathbb{R}$ and time horizon in [0, T] with T > 0.

Euler-Maruyama scheme

$$\forall n \in [0, N-1], \ Y_{n+1} := Y_n + a(t_n, Y_n) \Delta t + b(t_n, Y_n) \Delta W_n$$
 (14)

Milstein scheme

$$\forall n \in [0, N-1], \ Y_{n+1} := Y_n + a(t_n, Y_n) \Delta t + b(t_n, Y_n) \Delta W_n + \frac{1}{2} b(t_n, Y_n) b'(t_n, Y_n) \left((\Delta W_n)^2 - \Delta t \right)$$
(15)

Framework

$$0 =: t_0 < t_1 < \ldots < t_N := T$$
 and $\Delta t := \frac{T}{N}$ and $t_k = k\Delta t$

and $\Delta W_n := W_{t_{n+1}} - W_{t_n}$ independent and identically distributed normal random variables with zero mean and variance equals to Δt .

Appendix : Euler & Milstein schemes (2/2)

Euler-Maruyama scheme

- ▶ Strong error of order $\mathcal{O}(\sqrt{\Delta t})$
- Weak error of order $\mathcal{O}(\Delta t)$

Milstein scheme

- Strong error of order $\mathcal{O}(\Delta t)$
- Weak error of order $\mathcal{O}(\Delta t)$

Appendix: Multi-processing efficiency wrt CPU logical cores

Figure - Monte-Carlo experiment - Confidence intervals

Appendix: Confidence intervals

Figure - Monte-Carlo experiment - Confidence intervals

Appendix: MC convergence analysis

Figure – Monte-Carlo experiment - Convergence study for $N_{MC}\uparrow +\infty$