

×

X

Elementos de IACD Grupo 16

Daniela Leitão, Gonçalo Cruz, Leonor Ribeiro

DATA EXPLORATION

Nota:

Para além da matriz de correlação e estes plot diffs, fizemos também histogramas para todas as categorias, testes de relevância, etc. ×

A exploração dos dados permitiu identificar relações entre variáveis, destacar padrões e possíveis áreas de melhoria.

DATA PREPROCESSING

Para melhorar a qualidade dos dados e o desempenho dos métodos de machine learning:

Imputação de valores em falta

Substituição dos valores em falta pela moda da coluna correspondente

Remoção de colunas com base na correlação

Identificação de pares de colunas com alta correlação e eliminação das que possuem menor correlação com a variável alvo ('Class').

Remoção de colunas com base na frequência de 'Nan' e na variância

Identificação de colunas com mais valores em falta ('Nan') e mais baixa variância

Colunas removidas: Grams_day, Spleno, PHT, Dir_Bil, AST, Sat, Ferritin, Iron, Packs_year, Varices, Smoking, HBeAg, Endemic, HBcAb e Hemochro.

DATA MODELING

×

		: 16	
precision	recall	f1-score	support
0.83	0.45	0.59	11
0.76	0.95	0.84	20
		0.77	31
0.80	0.70	0.72	31
0.70	A 77	9 75	31
	on Report for precision 0.83 0.76	on Report for KNN: precision recall 0 0.83 0.45 0.76 0.95 0.89 0.70	precision recall f1-score 0.83 0.45 0.59 0.76 0.95 0.84 0.77

Confusion Matrix for KNN: [[5 6]

[1 19]]

Acurácia média com validação cruzada para KNN: 0.596666666666667

Imagem 4: Resultados do algoritmo KNN

Imagem 6: Curva ROC

Imagem 5: Gráfico de barras para exatidão da validação cruzada

Imagem 7: Matriz de confusão

DATA MODELING

×

	precision	recall	f1-ccore	support
	precision	recuir	11-30016	зиррог с
	0.56	0.45	0.50	11
	0.73	0.80	0.76	20
accuracy			0.68	31
macro avg	0.64	0.63	0.63	31
weighted avg	0.67	0.68	0.67	31
Confusion Mat	rix for Deci	sion Tree:		
[4 16]]				

Imagem 8: Resultados do algoritmo Decision Tree

Imagem 10: Curva ROC

Imagem 9: Gráfico de barras para exatidão da validação cruzada

Imagem 11: Matriz de confusão

DATA MODELING

×

	9 0.60	0.55	0.57	11
		0.80		20
accurac	y		0.71	31
macro av	g 0.68	0.67	0.68	31
weighted av	g 0.70	0.71	0.71	31
Confusion Ma	atrix for Rand	dom Forest		

Imagem 12: Resultados do algoritmo Random Forest

Imagem 14: Curva ROC

Imagem 13: Gráfico de barras para exatidão da validação cruzada

Imagem 15: Matriz de confusão

×

×

Со	mparison of	Classification	Metrics:
	Metric	Decision Tree	KNN
0	precision	0.666341	0.786022
1	recall	0.677419	0.774194
2	f1-score	0.668971	0.753532
3	AUC	0.627273	0.756818

Imagem 16: Comparação dos métodos de classificação

Imagem 17: Curva ROC com KNN e Decision Tree

DATA EVALUATION

×

Co	mparison of	Classification	Metrics:	
	Metric	Decision Tree	KNN	Random Forest
0	precision	0.666341	0.786022	0.704455
1	recall	0.677419	0.774194	0.709677
2	f1-score	0.668971	0.753532	0.706305
3	AUC	A 627273	0.756818	9.784991

Imagem 18: Comparação dos métodos de classificação

INTERPRETATION OF RESULTS

	Decision Tree	KNN	Random Forest
×	Precisão: 0.67Recall: 0.68F1-score: 0.67	Precisão: 0.79Recall: 0.77F1-score: 0.75	Precisão: 0.70Recall: 0.71F1-score: 0.71

O modelo Decision Tree tem um desempenho moderado, com precisão, recall e F1-score entre 0.67-0.68, ou seja, identifica corretamente cerca de 67-68% dos casos positivos.

O modelo KNN tem um desempenho relativamente bom, com precisão, recall e F1-score entre 0.75-0.79. Consegue identificar mais corretamente casos positivos e negativos. No entanto, possui um recall mais baixo em comparação com a sua precisão, o que pode indicar que pode perder alguns casos positivos.

O modelo Random Forest tem um desempenho semelhante ao KNN, com precisão, recall e F1-score entre 0.70-0.71. É equilibrado na identificação de casos positivos e negativos, e também possui um recall relativamente mais alto em comparação com a precisão, indicando que é melhor a capturar casos positivos do que <u>o KNN</u>.

INTERPRETATION OF RESULTS

Comparação dos algoritmos

×

- Precisão: KNN > Random Forest > Decision Tree
- Recall: KNN > Random Forest > Decision Tree
- F1-score: KNN > Random Forest > Decision Tree
- AUC: Random Forest > KNN > Decision Tree

De uma forma geral, podemos dizer que em termos de precisão, recall e F1-score, os algoritmos KNN e Random Forest superam a Decision Tree. No entanto, o Random Forest tem maior pontuação AUC, indicando um melhor desempenho geral para previsões de classificação.

Numa análise futura, poderíamos recorrer à escolha de um conjunto diferente de categorias/colunas para eliminar durante a etapa DATA PREPROCESSING, na tentativa de potenciar um melhor desempenho dos algoritmos usados, e tentar usar ainda outros algoritmos de classificação.

Assim, o método de classificação Random Forest parece ser o algoritmo mais eficaz para o nosso conjunto de dados, pois oferece um bom equilíbrio entre precisão, recall e desempenho preditivo geral.