Feuille d'exercice n° 21 : Espaces vectoriels de dimension finie

Exercice 1 () Dans \mathbb{R}^4 , on considère les familles de vecteurs suivantes $v_1 = (1, 1, 1, 1), v_2 = (0, 1, 2, -1), v_3 = (1, 0, -2, 3), v_4 = (2, 1, 0, -1), v_5 = (4, 3, 2, 1).$ $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (3, 4, 5, 16).$ $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (2, 1, 0, 11), v_4 = (3, 4, 5, 14).$

Ces vecteurs forment-ils:

- 1. Une famille libre ? Si oui, la compléter pour obtenir une base de \mathbb{R}^4 . Si non donner des relations de dépendance entre eux et extraire de cette famille au moins une famille libre.
- 2. Une famille génératrice ? Si oui, en extraire au moins une base de l'espace. Si non, donner la dimension du sous-espace qu'ils engendrent.

Exercice 2 ()

- 1. Montrer que l'application $\varphi: \mathbb{K}[X] \to \mathbb{K} \times \mathbb{K}[X]$ est un isomorphisme. $P \mapsto (P(0), P')$
- 2. En déduire que $\mathbb{K}[X]$ n'est pas de dimension finie.

Exercice 3 () Définir par leurs équations cartésiennes dans la base canonique les sous-espaces vectoriels :

- 1. F engendré par : $\{(3,1,2);(2,1,3)\}$ dans \mathbb{R}^3
- 2. G engendré par : (1,2,3) dans \mathbb{R}^3
- 3. H engendré par $\{(1,2,3,0); (4,-1,2,0); (2,1,-3,0)\}$ dans \mathbb{R}^4

Exercice 4 (\mathcal{O}) Soit (P_n) une suite de polynômes à coefficients dans \mathbb{K} , vérifiant $\forall n \in \mathbb{N}$, $\deg P_n = n$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, (P_0, \dots, P_n) est une base de $\mathbb{K}_n[X]$.
- 2. La famille (P_n) est-elle une base de $\mathbb{K}[X]$?

Exercice 5 ()

Montrer que la famille $((X-a)^i)_{0 \le i \le n}$ avec a fixé, est une base de $\mathbb{R}_n[X]$. Donner les composantes de $P \in \mathbb{R}_n[X]$ dans cette base.

Exercice 6 ()

Dans $\mathbb{R}_3[X]$, soit P le polynôme $P = X^3 + 2X - 1$ et soit Q le polynôme Q = 2X - 1. Déterminer une base B de $\mathbb{R}_3[X]$ dont P et Q sont éléments.

Exercice 7 () Soient $\mathbf{v}_1 = (1,0,0,-1), \mathbf{v}_2 = (2,1,0,1), \mathbf{v}_3 = (1,-1,1,-1), \mathbf{v}_4 = (7,2,0,-1)$ et $\mathbf{v}_5 = (-2,1,0,5)$. Donner une base du sous-espace vectoriel $F = \text{Vect}(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\mathbf{v}_4,\mathbf{v}_5)$. Déterminer un supplémentaire G de F dans \mathbb{R}^4 .

Exercice 8 ($^{\otimes}$) Soient E un espace vectoriel et F un sous-espace vectoriel de E de dimension finie. Soit f une application linéaire de E dans lui-même.

- 1. Montrer que, si $F \subset f(F)$ alors f(F) = F.
- 2. Montrer que, si f est injective et $f(F) \subset F$ alors f(F) = F.

Exercice 9 Soit E de dimension finie et $f \in \mathcal{L}(E)$. Montrer l'équivalence des trois propriétés :

- (i) $\operatorname{Ker} f = \operatorname{Ker} f^2$.
- (ii) $\operatorname{Im} f = \operatorname{Im} f^2$.
- (iii) $E = \operatorname{Ker} f \oplus \operatorname{Im} f$.

Exercice 10 Soit E un espace vectoriel de dimension finie, et $(f,g) \in \mathcal{L}(E)^2$ avec $E = \operatorname{Im} f + \operatorname{Im} g = \operatorname{Ker}(f) + \operatorname{Ker}(g)$. Montrer que ces sommes sont directes.

Exercice 11 (**(No)**) Soient E et F de dimensions finies et $u, v \in \mathcal{L}(E, F)$.

- 1. Montrer que $rg(u + v) \leq rg(u) + rg(v)$.
- 2. En déduire que $|rg(u) rg(v)| \le rg(u+v)$.

Exercice 12 Soient $E_0, E_1, ..., E_n$ n+1 espaces vectoriels sur un même corps commutatif \mathbb{K} , de dimensions respectives $\alpha_0, \alpha_1, ..., \alpha_n$. On suppose qu'il existe n applications linéaires $f_0, f_1, ..., f_{n-1}$ telles que :

$$\forall k \in \{0, ..., n-1\}, f_k \in \mathcal{L}(E_k, E_{k+1}).$$

et de plus :

- f_0 est injective;
- $-- \forall j \in \{1, ..., n-1\}, \text{Im } f_{j-1} = \text{Ker}(f_j);$
- f_{n-1} est surjective.

Montrer que

$$\sum_{j=0}^{n} (-1)^j \alpha_j = 0.$$

Exercice 13 Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ définie par f(P) = P + P' + P''.

- 1. Montrer que f est injective. En déduire que f est bijective.
- 2. On appelle φ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ définie par $\varphi(P) = P + P' + P''$. Montrer que φ est surjective puis bijective.

Exercice 14 Soit E un \mathbb{K} -espace vectoriel de dimension n. Montrer que

$$n \text{ est pair} \Leftrightarrow \exists f \in \mathcal{L}(E) \quad \text{Im } f = \text{Ker } f$$

Exercice 15 Soient F et G deux sous-espaces de E de dimension finie. Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme u tel que $\operatorname{Ker}(u) = F$ et $\operatorname{Im}(u) = G$. Soit $F = \{x + y + z = 0\}$ dans \mathbb{R}^3 et $G = \{\lambda(2, -1, -1)/\lambda \in \mathbb{R}\}$. Construire un tel endomorphisme u.

Exercice 16 (\nearrow) Soit E un espace vectoriel de dimension n et $f \in \mathcal{L}(E)$. Montrer $\operatorname{rg}(f^n) = \operatorname{rg}(f^{n+1})$

Exercice 17 Soient H_1 et H_2 deux hyperplans de E, espace vectoriel de dimension n. Montrer que :

$$\dim(H_1 \cap H_2) \geqslant n - 2.$$

Généraliser.

Exercice 18 Soient E un \mathbb{K} -espace vectoriel de dimension finie non nulle et F un sous-espace vectoriel de E distinct de E. Montrer que F est l'intersection d'un nombre fini d'hyperplans. (indication: on pourra interpréter F comme noyau d'une certaine application linéaire.)

Exercice 19 ($^{\infty}$) Soient $n \in \mathbb{N}$, $\alpha \in \mathbb{K}$ et $H = \{P \in \mathbb{K}_n[X] | P(\alpha) = 0\}$. Montrer que H est un hyperplan de $\mathbb{K}_n[X]$ et en déterminer une base.

Exercice 20 (Montrer que les formes linéaires $(x, y, z) \to x + 2y + 3z$ et $(x, y, z) \to x - 2y + 3z$ sont linéairement indépendantes.

