FORMULÁRIO

Alguns valores de funções trigonométricas

$$\cos 0 = 1 \qquad \sin 0 = 0 \qquad \tan 0 = 0 \qquad \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \qquad \sin \frac{\pi}{6} = \frac{1}{2} \qquad \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$$

$$\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} \qquad \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \qquad \tan \frac{\pi}{4} = 1 \qquad \cos \frac{\pi}{3} = \frac{1}{2} \qquad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \qquad \tan \frac{\pi}{3} = \sqrt{3}$$

$$\cos \frac{\pi}{2} = 0 \qquad \sin \frac{\pi}{2} = 1$$

Algumas relações trigonométricas

Funções exponenciais e logarítmicas - Algumas propriedades

$$a^{x+y} = a^x a^y; a^{xy} = (a^x)^y; a^{-x} = \frac{1}{a^x}; \log_a(xy) = \log_a x + \log_a y$$
$$\log_a(x^y) = y \log_a x; \log_a \frac{1}{x} = -\log_a x; \log_a \frac{x}{y} = \log_a x - \log_a y$$
$$\log_a 1 = 0; \log_a(a^x) = x; \frac{\log_a x}{\log_a b} = \log_b x$$

DERIVADAS

Reta tangente ao gráfico

• Se f é uma função derivável em a então f'(a) é o declive da recta tangente ao gráfico de f em (a, f(a)) e y = f(a) + f'(a)(x - a) é uma equação da recta tangente ao gráfico de f em (a, f(a)).

Algumas propriedades

- Se f é uma função derivável em a, então, para qualquer número real c (cf)'(a) = cf'(a)
- \bullet Se f e g são funções deriváveis em a, então
 - -f+g é derivável em a e (f+g)'(a)=f'(a)+g'(a)
 - $-f\cdot g$ é derivável em ae $(f\cdot g)'(a)=f'(a)\cdot g(a)+f(a)\cdot g'(a)$
 - Se $g(a) \neq 0$ então f/g é derivável em a e $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) f(a) \cdot g'(a)}{(g(a))^2}$.
- Se f é derivável em a e g é derivável em f(a), então $g \circ f$ é derivável em a e

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

• Se f é uma função contínua injectiva derivável em a e $f'(a) \neq 0$, então f^{-1} é derivável em f(a) e $(f^{-1})'(f(a)) = \frac{1}{f'(a)}$.

Derivadas de algumas funções

Se
$$f(x) = c$$
 então $f'(x) = 0$, para qualquer $c \in \mathbb{R}$; Se $f(x) = x^k$ então $f'(x) = kx^{k-1}$, para qualquer $k \in \mathbb{R}$; Se $f(x) = \sin x$ então $f'(x) = \cos x$; Se $f(x) = \cos x$ então $f'(x) = -\sin x$; Se $f(x) = \arccos x$ então $f'(x) = \frac{1}{\sqrt{1-x^2}}$; Se $f(x) = \arctan x$ então $f'(x) = \frac{1}{1+x^2}$; Se $f(x) = \arctan x$ então $f'(x) = \frac{1}{\cos^2 x}$; Se $f(x) = \log |x|$ então $f'(x) = e^x$; Se $f(x) = \log_a |x|$ então $f'(x) = \frac{1}{x \log_a x}$.

Lista de Primitivas Imediatas

$$\int k \, dx = kx + C \qquad \int x^n \, dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1.$$

$$\int \frac{1}{x} \, dx = \log_e(|x|) + C$$

$$\int e^x \, dx = e^x + C \qquad \int a^x \, dx = \frac{a^x}{\log_e a} + C, \, a >= 0.$$

$$\int \cos x \, dx = \sin x + C \qquad \int \sin x \, dx = -\cos x + C$$

$$\int \frac{1}{(\cos x)^2} \, dx = \operatorname{tg} x + C \qquad \int \frac{1}{\cos x} \, dx = \log(|\frac{1}{\cos x} + tgx|) + C$$

$$\int \frac{1}{\sqrt{1-x^2}} \, dx = \operatorname{arcsen} x + C \qquad \int -\frac{1}{\sqrt{1-x^2}} \, dx = \operatorname{arccos} x + C$$

$$\int \frac{1}{1+x^2} \, dx = \operatorname{arctg} x + C$$

Primitivação por Partes

Se F é uma primitiva de f em I e g é uma função diferenciável em I então

$$\int (f(x) \cdot g(x)) dx = F(x) \cdot g(x) - \int (F(x) \cdot g'(x)) dx.$$

Primitivação por substituição

Se g é uma função primitivável em I e $f:J\longrightarrow I$ é bijetiva e diferenciável então $g\circ f$ é uma função primitivável em J e

$$\int g(f(t)) \cdot f'(t) dt = \int g(x) dx.$$

Primitivação de funções racionais

• Qualquer fração racional $\frac{P(x)}{Q(x)}$, com $\operatorname{gr}(P(x)) < \operatorname{gr}(Q(x))$, pode ser escrita como soma de frações cujos denominadores sejam potências de polinómios irredutíveis, isto é, polinómios de grau 1 ou de grau 2 irredutíveis, os quais são factores da decomposição de Q(x) em produto de polinómios irredutíveis. Alm disso, os numeradores destas frações terão grau inferior ao do polinómio irredutível que aparece no denominador.

$$\bullet \int \frac{1}{x+a} \, dx = \log|x+a| + C$$

•
$$\int \frac{1}{(x+a)^n} = -\frac{1}{(n-1)(x+a)^{n-1}} + C$$
, para $n > 1$

•
$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$$
, para $a \neq 0$

$$\bullet \int \frac{1}{(x+b)^2 + a^2} = \frac{1}{a} \arctan \frac{x+b}{a} + C$$

•
$$\int \frac{2x}{x^2 + a^2} dx = \log(x^2 + a^2) + C$$

$$\bullet \int \frac{2x+b}{x^2+bx+c} dx = \log|x^2+bx+c| + C$$

•
$$\int \frac{2x+b}{(x^2+bx+c)^n} dx = -\frac{1}{(n-1)(x^2+bx+c)^{n-1}} + C, \ n \neq 1$$

•
$$\int \frac{1}{(x^2+a^2)^n} dx = \frac{x}{(2n-2)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{(2n-2)a^2} \int \frac{1}{(x^2+a^2)^{n-1}} dx$$
, $n > 1$