

Institution Affiliated to Visvesvaraya Technological University, Belagavi New Delhi

Bachelor of Engineering (B.E) Scheme and Syllabus of VII & VIII Semesters **2018 SCHEME**

COMPUTER SCIENCE AND ENGINEERING

2021-2022

VISION

Leadership in Quality Technical Education, Interdisciplinary Research & Innovation, with a Focus on Sustainable and Inclusive Technology

MISSION

- 1. To deliver outcome based Quality education, emphasizing on experiential learning with the state of the art infrastructure.
- 2. To create a conducive environment for interdisciplinary research and innovation.
- 3. To develop professionals through holistic education focusing on individual growth, discipline, integrity, ethics and social sensitivity.
- 4. To nurture industry-institution collaboration leading to competency enhancement and entrepreneurship.
- 5. To focus on technologies that are sustainable and inclusive, benefiting all sections of the society.

QUALITY POLICY

Achieving Excellence in Technical Education, Research and Consulting through an Outcome Based Curriculum focusing on Continuous Improvement and Innovation by Benchmarking against the global Best Practices.

CORE VALUES

Professionalism, Commitment, Integrity, Team Work, Innovation

RV COLLEGE OF ENGINEERING®

(Autonomous Institution Affiliated to VTU, Belagavi) R.V. Vidyaniketan Post, Mysore Road Bengaluru – 560 059

Bachelor of Engineering (B.E.) Scheme and Syllabus of VII&VIII Semesters

2018 SCHEME

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT VISION

To achieve leadership in the field of Computer Science & Engineering by strengthening fundamentals and facilitating interdisciplinary sustainable research to meet the ever growing needs of the society.

DEPARTMENT MISSION

- To evolve continually as a centre of excellence in quality education in computers and allied fields.
- To develop state-of-the-art infrastructure and create environment capable for interdisciplinary research and skill enhancement.
- To collaborate with industries and institutions at national and international levels to enhance research in emerging areas.
- To develop professionals having social concern to become leaders in top-notch industries and/or become entrepreneurs with good ethics.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **PEO1:** Develop Graduates capable of applying the principles of mathematics, science, core engineering and Computer Science to solve real-world problems in interdisciplinary domains.
- **PEO2:** To develop the ability among graduates to analyze and understand current pedagogical techniques, industry accepted computing practices and state-of-art technology.
- **PEO3:** To develop graduates who will exhibit cultural awareness, teamwork with professional ethics, effective communication skills and appropriately apply knowledge of societal impacts of computing technology.
- **PEO4:**To prepare graduates with a capability to successfully get employed in the right role / become entrepreneurs to achieve higher career goals or takeup higher education in pursuit of lifelong learning.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO	Description
130	Description
PSO1	System Analysis and Design
	The student will be able to:
	1. Recognize and appreciate the need of change in computer architecture, data organization and analytical methods in the evolving technology.
	2. Learn the applicability of various systems software elements for solving design problems.
	3. Identify the various analysis & design methodologies for facilitating development of high quality system software products with focus on performance optimization.
	4. Display team participation, good communication, project management and document skills.
PSO2	Product Development
	The student will be able to:
	1. Demonstrate the use of knowledge and ability to write programs and integrate them with the hardware/software products in the domains of embedded systems, databases /data analytics, network/web systems and mobile products.
	2. Participate in planning and implement solutions to cater to business – specific requirements displaying team dynamics and professional ethics.
	3. Employ state-of-art methodologies for product development and testing / validation with focus on optimization and quality related aspects.

Lead Society: Institute of Electrical and Electronics Engineers (IEEE)

ABBREVIATIONS

Sl. No.	Abbreviation	Meaning
1.	VTU	Visvesvaraya Technological University
2.	BS	Basic Sciences
3.	CIE	Continuous Internal Evaluation
4.	SEE	Semester End Examination
5.	PE	Professional Core Elective
6.	GE	Global Elective
7.	HSS	Humanities and Social Sciences
8.	CV	Civil Engineering
9.	ME	Mechanical Engineering
10.	EE	Electrical & Electronics Engineering
11.	EC	Electronics & Communication Engineering
12.	IM	Industrial Engineering & Management
13.	EI	Electronics & Instrumentation Engineering
14.	СН	Chemical Engineering
15.	CS	Computer Science & Engineering
16.	TE	Telecommunication Engineering
17.	IS	Information Science & Engineering
18.	BT	Biotechnology
19.	AS	Aerospace Engineering
20.	PY	Physics
21.	CY	Chemistry
22.	MA	Mathematics

INDEX

	VII Semester					
Sl. No.	Course Code	Course Title	Page No.			
1.	18HS71	Constitution of India and Professional Ethics	1			
2.	18CS72	Computer Graphics and Virtual Reality	3			
3.	18CS73	Parallel Architecture and Distributed Programming	7			
4.	18CS74	Internship	10			
5.	18CS7FX	Elective F (PE)	12-22			
6.	18CS7GX	Elective G (PE)	23-32			
7.	18G7HXX	Elective H (GE)	33-65			

	VIIISemester					
Sl. No.	Sl. No. Course Code Course Title Page No.					
1.	1 18CSP81 Major Project 66					

	VII Semester PROFESSIONAL ELECTIVES (GROUP F)					
Sl. No.	Course Code	Course Title	Page No.			
1.	18CS7F1	Linux Internals	12			
2.	18CS7F2	Game Theory	14			
3.	18CS7F3	Information Storage Management	16			
4.	18CS7F4	Software Defined Networks	19			
5.	18CS7F5	Introduction to Optimization Techniques	21			

	VII Semester				
	PROFESSIONAL ELECTIVES (GROUP G)				
Sl. No.	Course Code	Course Title	Page No.		
1.	18CS7G1	Cyber Security for Industry 4.0	23		
2.	18CS7G2	Application Delivery Controller and Virtualization	25		
3.	18CS7G3	Fuzzy Graphs, Fuzzy Soft Sets and Petrinets	27		
4.	18CS7G4	Computer Vision	29		
5.	18IS7G5	Deep Learning	31		

			VII Semester	
		OP	EN ELECTIVES (GROUP H)	
Sl. No.	Course Code	Host	Course Title	Page No.
1.	18G7H01	AS	Unmanned Aerial Vehicles	33
2.	18G7H02	BT	Bioinformatics	35
3.	18G7H03	CH	Industrial Safety And Risk Management	37
4.	18G7H04	CS	Web Programming	39
5.	18G7H05	CV	Solid Waste Management And Statutory Rules	41
6.	18G7H06	EC	Image Processing And Machine Learning	43
7.	18G7H07	EE	Renewable Energy Sources And Storage System	45
8.	18G7H08	EI	Mems & Applications	47
9.	18G7H09	IM	Project Management	49
10.	18G7H10	IS	Cyber Forensics And Digital Investigations	51
11.	18G7H11	ME	Robotics And Automation	53
12.	18G7H12	TE	Space Technology And Applications	55
13.	18G7H13	PY	Introduction To Astrophysics	57
14.	18G7H14	CY	Materials For Advanced Technology And Spectroscopic Characterization	59
15.	18G7H15	HSS	Applied Psychology For Engineers	62
16.	18G7H16	HSS	Advanced Course In Entrepreneurship	64

RV COLLEGE OF ENGINEERING® (Autonomous Institution Affiliated to VTU, Belagavi) COMPUTER SCIENCE AND ENGINEERING

	SEVENTH SEMESTER CREDIT SCHEME							
Sl.	Course Code	e Course Title	BoS	Credit Allocation			Total	
No.				L	T	P	Credits	
1.	18HS71	Constitution of India and Professional Ethics	HSS	3	0	0	3	
2.	18CS72	Computer Graphics and Virtual Reality	CS	3	0	1	4	
3.	18CS73	Parallel Architecture and Distributed Programming	CS	3	1	1	5	
4.	18CS74	Internship *	CS	0	0	2	2	
5.	18CS7FX	Elective F (PE)	CS	3	0	0	3	
6.	18CS7GX	Elective G (PE)	CS	3	0	0	3	
7.	18G7HXX	Elective H (GE) **	Res. BOS	3	0	0	3	
	Total Number of Credits					4	23	
	-	Total number of Hours/Week	18	2	10			

Note: * Internship (6 weeks) is to be carried during the vacation after 6th semester and evaluation shall be conducted during 7th semester for 2 credits.

^{**} Students should take other department Global Elective courses.

	EIGHT SEMESTER CREDIT SCHEME							
Sl.	Course Code	BoS	Credit Allocation			Total		
No.	No.	Course Title	200	L	T	P	Credits	
1.	18CSP81	Major Project CS		0	0	16	16	
	Total Number of Credits					16	16	
	Total number of Hours/Week					32		

	VII Semester				
		PROFESSIONAL ELECTIVES (GROUP F)			
Sl. No.	Course Code	Course Title	Credits		
1.	18CS7F1	Linux Internals	03		
2.	18CS7F2	Game Theory	03		
3.	18CS7F3	Information Storage Management	03		
4.	18CS7F4	Software Defined Networks	03		
5.	18CS7F5	Introduction to Optimization Techniques	03		

	VII Semester				
		PROFESSIONAL ELECTIVES (GROUP G)			
Sl. No.	Course Code	Course Title	Credits		
1.	18CS7G1	Cyber Security for Industry 4.0	03		
2.	18CS7G2	Application Delivery Controller and Virtualization	03		
3.	18CS7G3	Fuzzy Graphs, Fuzzy Soft Sets and Petrinets	03		
4.	18CS7G4	Computer Vision	03		
5.	18IS7G5	Deep Learning	03		

			VII Semester	
		OP	EN ELECTIVES (GROUP H)	
Sl. No.	Course Code	Host	Course Title	Credits
1.	18G7H01	AS	Unmanned Aerial Vehicles	03
2.	18G7H02	BT	Bioinformatics	03
3.	18G7H03	CH	Industrial Safety And Risk Management	03
4.	18G7H04	CS	Web Programming	03
5.	18G7H05	CV	Solid Waste Management And Statutory Rules	03
6.	18G7H06	EC	Image Processing And Machine Learning	03
7.	18G7H07	EE	Renewable Energy Sources And Storage System	03
8.	18G7H08	EI	Mems & Applications	03
9.	18G7H09	IM	Project Management	03
10.	18G7H10	IS	Cyber Forensics And Digital Investigations	03
11.	18G7H11	ME	Robotics And Automation	03
12.	18G7H12	TE	Space Technology And Applications	03
13.	18G7H13	PY	Introduction To Astrophysics	03
14.	18G7H14	CY	Materials For Advanced Technology And	03
	100/1114	CI	Spectroscopic Characterization	
15.	18G7H15	HSS	Applied Psychology For Engineers	03
16.	18G7H16	HSS	Advanced Course In Entrepreneurship	03

Semester: VII								
CONSTITUTION OF INDIA AND PROFESSIONAL ETHICS								
				(Common to All Program	(S)			
Cou	rse Code	:	18HS71		CIE	:	100 Marks	
Cred	dits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Tota	d Hours	:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning	Ob	jectives: Th	e students will be able to				
1				e constitutional literacy to be	come aware of the	fun	damental rights	
	and duties in	the	eir role as Ei	ngineers.				
2	Understandi	ng o	of ethical an	d legal aspects of advertising,	consumer problems	an	d their redressal	
	mechanism i	ela	ted to produ	ct and service standards.				
3	Discuss the	kno	wledge of s	substantive Labor law and to	develop skills for l	ega	l reasoning and	
	statutory interpretations.							
4	4 Evaluate individual role, responsibilities and emphasize on professional/ engineering ethics in							
	shaping professions.							

Unit - I 10 Hrs

Indian Constitution- Salient features ofIndian Constitution ,Preamble to the Constitution of India; Provisions Relating to Citizenship in India- at the Commencement of the Constitution and Later with latest amendments, Modes of Acquisition and Termination of Citizenship of India. Scope & Extent of Fundamental Rights-Articles 14-32 with case studies; Right to Information Act, 2005 with Case studies.

Unit – II 10 Hrs

Directive Principles of State Policy- Significance of Directive Principles of State Policy, Fundamental Duties in the Constitution of India; Union Executive- President and State Executive-Governor; Parliament & State Legislature; Council of Ministers; Anti-defection law; Union and State Judiciary; Emergency provisions; Elections, Administrative tribunals. Human Rights & Human Rights Commission.

Unit –III 06 Hrs

Consumer Protection Law - Definition and Need of Consumer Protection; Consumer Rights under the Consumer Protection Act, 2019; Unfair Trade Practice, Defect in goods, Deficiency in services; Product liability and Penal Consequences, False and Misleading Advertisement, E-Commerce, Alternate dispute Redressal mechanism; Redresses Mechanisms under the Consumer Protection Act, 2019.

An overview of Indian Penal Code 1860 (Law Of Crimes)

Unit – IV 06 Hrs

Introduction to Labour Legislations - Industrial Relation, Labour Problem and Labour Policy in India; Labour Welfare and Social Security- Factories Act, 1948, Sexual Harassment of Women at Workplace (Prevention, Prohibition and Redressal) Act, 2013; the Child Labour (Prohibition and Regulation) Act, 1986, Maternity Benefit (Amendment) Act, 2017; Industrial Dispute Act, 1947, Reference of Disputes toBoards, Courts or Tribunals.

Unit –V 07 Hrs

Scope and aims of engineering ethics (NSPE Code of Ethics), Responsibility of Engineers, Impediments to responsibility. Honesty, Integrity and reliability, Risks, Safety and Liability in Engineering. Corporate Social Responsibility. Statutory Provision regarding prohibition and prevention of Ragging.

Course	e Outcomes: After completing the course, the students will be able to
CO1	Demonstrate the citizen's fundamental Rights, duties & consumer responsibility capability
	and to take affirmative action as a responsible citizen.
CO2	Identify the conflict management in legal perspective and judicial systems pertaining to
	professional environment, strengthen the ability to contribute to the resolve of human rights
	& Ragging issues and problems through investigative and analytical skills.
CO3	Understanding process of ethical and moral analysis in decision making scenarios and
	inculcate ethical behavior as a trait for professional development.
CO4:	Apply the knowledge to solve practical problems with regard to personal issues & business
	Enterprises.

Refer	ence Books
1	Dr. J. N Pandey, Constitutional Law of India, Central Law Agency, 2020 edition
2	Avtar Singh: Law of Consumer Protection: Principles and Practice, Eastern Book Company,
2	5 th Edition, 2015, ISBN -13:978-9351452461
2	S.C. Srivastava: Industrial Relation and Labour Laws, Vikas Publishing House, 6 th Edition,
3	2012, ISBN: 9789325955400
4	Jr. Charles E Harris, Michael. S. Pritchard and Michael J Rabins, Engineering Ethics,
4	Wadsworth Cengage Learning, 5 th Edition, 2009, ISBN-978-0495502791

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: VII							
	COMPUTER GRAPHICS AND VIRTUAL REALITY (Theory and Practice)							
Cou	rse Code	:	18CS72		CIE	:	100+50 Marks	
Credits: L:T:P		:	3:0:1		SEE	:	100+50 Marks	
Tota	l Hours	:	39L+35P		SEE Duration	:	3 Hrs + 3 Hrs	
Cou	rse Learning	Ob	jectives: The stude	ents will be able to				
1	Acquire the	ba	sic concepts of 21	D, 3D graphics at	nd Virtual reality,	unc	lerlying mathematical	
	aspects and	Al	gorithms such as	Line drawing, Cir	cle drawing, Poly	gon	filling, Clipping and	
	Transformat	ions	S.					
2	Understand	and	explore the conce	epts of Computer	Graphics and Virt	ual	reality using industry	
	standard software OpenGL/VR tools.							
3	Design and Implement real time projects using OpenGL/VR tools.							
4	Develop problem solving skills using advanced rendering techniques							

08 Hrs Unit-I

Introduction to Computer Graphics and Virtual Reality:

Application areas of Computer Graphics, Introduction to Graphics Programming with OpenGL, The openGL API: Graphics Functions, The Graphics Pipeline and state Machines, The openGL Interface, Primitives and Attributes, Polygon Basics: polygon types in openGL, Attributes, Color, RGB Color, Indexed Color, Control Functions, The Three- Dimensional Sierpinski Gasket. Display Lists Definition and execution of display Lists, Programming.

Introduction to Virtual Reality: The three I's of virtual reality, commercial VR technology and the five classic components of a VR system.

Unit – II 07 Hrs

angel, 106-115

VR pdfs-input -11pag

Input and Output Devices:

Input and Interaction: Input Devices. Physical Input Devices, Logical Devices. Measure and trigger. Input Modes. Event-Driven Input: Using the pointing device, Window events, and Keyboard events. Menus.

VR related Input Devices: Trackers, Navigation, and Gesture Interfaces; VR related Output Devices: sound displays & haptic feedback

2 VR pdfs-input -11page output - 13 pages, (hmd not there, so from + left out parts in textboo page:52-53

Unit –III

Raster graphics algorithms and Geometric Transformations:

Points and lines, line drawing algorithms, mid-point circle algorithm; Filled area primitives: Scan line polygon fill algorithm, boundary-fill and flood-fill algorithms.

2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland and Liang Barsky line clipping algorithms, Sutherland –Hodgeman polygon clipping algorithm.

Geometric Transformations: 2-D geometrical transformations: Translation, Scaling, Rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems.

> Unit -IV 08 Hrs

Geometric Transformations (contd..)

3-D Geometrical Transformations: Translation, Scaling, Rotation.

Viewing, Curves and Visible Surface Detection: Viewing pipeline: viewing coordinates, Aspect Ratio and view ports, view volume, 3-D clipping. *Projections*: Classification of planar geometric projections, Projections in openGL; Visible surface detection: Classification, back-face detection, depth-buffer, scan-line, depth sorting, BSP-tree methods, area sub-division and octree methods.

> Unit -V **07 Hrs**

Modelling in Virtual Reality:

Geometric modelling: Virtual Object Shape, Object Visual Appearance, Kinematics Modelling: Homogeneous Transformation Matrices, Object Position, Transformation Invariants, Object Hierarchies, Viewing the Three-Dimensional World, Physical Modelling: Collision Detection,

Surface Deformation, Force Computation, Force Smoothing and Mapping, Haptic Texturing, Behaviour modelling

Laboratory Component

PART-A

Implement the following programs in C/C++ with OpenGL Libraries:

- 1. Write a program to **generate a line using Bresenham'sline drawing technique.** Consider slopes greater than one and slopes less than one. User must able to draw as many lines and specify inputs through keyboard/mouse.
- 2. Write a program to **generate a circle using Bresenham's circle drawing.** User can specify inputs through keyboard/mouse.
- 3. Design and develop **an OpenGL application program to create two windows.** Draw a rectangle of specified width and height by setting four different colors to its corners in the *first window*. In the *second window*, draw the same rectangle and spin it continuously. Use the double buffer concept.
- 4. Design and develop C program using OpenGL libraries to create two windows: display a cylinder in one window and parallelepiped in second window.
 - **Note:** Create a cylinder and a parallelepiped by extruding a circle and quadrilateral respectively.
- 5. Write a program to recursively subdivides a tetrahedron to form 3D Sierpinski gasket. The number of recursive steps is to be specified at execution time.
- 6. Write a program to **demonstrate the approximation of a 3D sphere** with appropriate mathematical formulations. Write the complete C program to approximate a sphere using OpenGL primitives.
- 7. Write a program to fill any given 2D polygon using Scan-line area filling algorithm.
- 8. Write a program to implement the Cohen Sutherland line clipping algorithm. Make provision to specify the input for multiple lines, window for clipping and viewport for displaying the clipped image.
- 9. Write a program to **implement the Liang-Barsky line clipping algorithm.** Make provision to specify the input for multiple lines, window for clipping and viewport for displaying the clipped image.
- 10. Write a program to **implement theCohen-Hodgeman polygon clipping algorithm**. Makeprovision to specify the input polygon and window for clipping.
- 11. Write a program to create a house like figure and perform the following operations.
 - i. Rotate it about a given fixed point using OpenGL transformation functions.
 - ii. Reflect it about an axis y=mx+c using OpenGL transformation functions.
- 12. Write a program to **create a color cube and spin it** using OpenGL transformations. The output must be adjusted suitably when the window is resized or moved to a new position.

PART B

Open-Ended learning is to be demonstrated by Case study of any Virtual Reality tools(development of a small application or mini project using VR tools).

Case study of any Virtual Reality tool and Implementation

- Students to explore the tools which provide a VR or 360-degree experience at the primary, elementary and secondary levels.
- Demonstrate the Case-Study implemented.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and explore the basic concepts of Computer Graphics & Virtual Reality which
	illustrates the use of the pipeline architecture, OpenGL library, VR tools.
CO2:	Analyze and make an appropriate choice of methods required for computer representation of
	2D/3D objects and modelling in Virtual Reality.
CO3:	Design applications like games, etcwhich involve animation using OpenGL library & VR
	tools.
CO4:	Implement common geometric construction & VR techniques as a solution to Engineering
	applications.

R	eferen	ce Books
7	1	Computer Graphics with OpenGL, Donald D. Hearn, M. Pauline Baker, Warren Carithers, 4 th Edition, 2010, Pearson Education, ISBN-13: 978-0136053583.
		Interactive Computer Graphics: A Top-Down Approach Using OpenGL, Edward Angel, 5 th
J	2	Edition, 2010, Pearson Education, ISBN: 978131725306.
	2	Computer Graphics, Zhigang Xiang and Roy Plastock, 2 nd Edition, 2007, ASIN: 0070601658,
	3	Tata McGraw-Hill, ISBN-13: 978-0070601659.
7	4	Burdea, G. C. and P. Coffet. Virtual Reality Technology, 2 nd Edition. Wiley-IEEE Press, 2003/2006

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(O) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part A and Part B. Part A consists of objective type questions for 20 marks covering the complete syllabus. Part B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	-	-	-	-	-	2	2	-	1
CO2	3	3	3	3	1	-	-	-	3	3	-	1
CO3	3	3	3	3	2	-	-	-	3	-	-	1
CO4	3	3	3	1	2	-	-	-	3	2	-	1

High-3: Medium-2: Low-1

Semester: VII PARALLEL ARCHITECTURE AND DISTRIBUTED PROGRAMMING (Theory and Practice)								
Course Code		:	18CS73		CIE		100+50 Marks	
Credits: L:T:P		:	3:1:1		SEE	:	100+50 Marks	
Total Hours		:	39L+26T+35P		SEE Duration	:	3 Hrs + 3 Hrs	
Cours	se Learning	Ob	jectives: The stude	nts will be able to				
1	To review th	ie ti	ends in parallelism	programming.				
2	To demonstrate the basic ideas of multiprocessing and parallel operations with case studies.							
3	To focus on performance of different processor architectures.							
4	To demonstr	ate	parallel programmi	ng using OpemM	P. MPI. OpenCL a	nd C	UDA.	

Unit-I	08 Hrs

Fundamentals of computer design:

Introduction; Defining computer architecture; Dependability, Measuring, reporting and summarizing Performance attributes; Quantitative Principles of computer design

Pipelining: Introduction, pipeline hazards, Performance issues in pipelining

Instruction level parallelism(ILP): ILP basic concepts and challenges, basic complier techniques for exposing ILP, reducing branch costs with prediction, overcoming data hazards with dynamic scheduling, hardware based speculation. Exploiting ILP using multiple issues and static scheduling, Exploring ILP using dynamic scheduling, multiple issue and speculation.

Unit – II 08 Hrs

Multiprocessors and Thread level parallelism:

Introduction, Symmetric shared memory architectures; Performance of symmetric shared memory multiprocessors, Distributed shared memory and directory-based coherence, Basics of synchronization, Models of memory consistency.

Unit –III 08 Hrs

Data-Level Parallelism in Vector, SIMD, and GPU Architectures: Introduction, Vector Architecture, SIMD Instruction Set Extensions for Multimedia, Graphics Processing Units, Detecting and Enhancing Loop-Level Parallelism, Introduction to CUDA: Data Parallelism, CUDA Program Structure, A Matrix-Matrix Multiplication Example, Device Memories and Data Transfer. Self-Study: Kernel Functions and Threading.

Unit –IV 08 Hrs

Introduction to Parallel Programming:

Principles of Parallel Algorithm design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for containing Interaction Overheads, Parallel Algorithms Models.

Programming Using the Using Message Passing Paradigm:

Principles of Message Passing Programming, Building Blocks, MPI, Collective Communication and computation operations, Groups and Communicators.

Unit -V 06 Hrs

An Introduction to OpenCL:

Background, Data Parallelism Model, Device Architecture Kernel Functions, Device Management and Kernel Launch, Electrostatic Potential Map in OpenCL

Course	Course Outcomes: After completing the course, the students will be able to						
CO1:	Explore the fundamentals of parallel architecture.						
CO2:	Analyze the performance of parallel processors.						
CO3:	Design parallel computing constructs for different applications.						
CO4:	Demonstrate Parallel computing concepts for suitable applications.						

Refere	ence Books
$\sqrt{1}$	John L Hennessy, David A Patterson; "Computer Architecture: A Quantitative Approach", Elsevier, 6 th Edition; 2017, eBook ISBN: 9780128119068, Paperback ISBN: 9780128119051
/2	AnanthGrama, Anshul Gupta, George Karypis, VipinKumar: Introduction to Parallel Computing, Second Edition Pearson Education, 2013, ISBN 13: 9788131708071
√ 3	David B Reference Books: Wen-mei W. Hwu, Programming Massively Parallel Processors on Approach, Third edition, Elsevier and nvidia publishers 2016, Paperback ISBN: 9780128119860 eBook ISBN: 9780128119877
/ 4	CUDA Programming: A Developers Guide to Parallel Computing with GPUs, Shane Cook, First Edition, Morgan Kaufmann, 2013, ISBN:9780124159334.

Laboratory

Students are supposed to execute the programs on computationally intensive algorithms like compression, decompression, encoding, decoding, encryption and decryptions using OpenMP, MPI, CUDA and OpenCL

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Scheme of Continuous Internal Evaluation (CIE); Practical Test for 50 Marks

The Laboratory session is held every week as per the time table and the performance of the student is evaluated in every session. The average marks (AM) over number of weeks is considered for 30 marks. At the end of the semester a test (T) is conducted for 10 marks. The students are encouraged to implement additional innovative experiments (IE) in the lab and are rewarded for 10 marks. Total marks for the laboratory is 50.

Total CIE is 30(AM) + 10(T) + 10(IE) = 50 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

Scheme of Semester End Examination (SEE); Practical Exam for 50 Marks

SEE for the practical courses will be based on experiment conduction with proper results, is evaluated for 40 marks and Viva is for 10 marks. Total SEE for laboratory is 50 marks.

Semester End Evaluation (SEE): Theory (100 Marks) + Practical (50 Marks) = Total 150 Marks

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	3	1	-	-	1	1	2	-	2	
CO2	1	2	1	3	2	1	-	-	1	2	1	3	
CO3	1	2	3	3	3	L	2	1	2	3	1	3	
CO4	3	3	3	3	3	L	2	1	2	3	2	3	

High-3: Medium-2: Low-1

	SEMESTER: VII											
INTERNSHIP												
Course Code	:	18CS74	CIE Marks	:	50							
Credit L:T:P	:	0:0:2	SEE Marks	:	50							
Hours/week : 4 SEE Duration : 3 Hrs												
	-1		CHIDELINEC									

- **GUIDELINES**
- 1) The duration of the internship shall be for a period of 6/8 weeks on full time basis after IV semester final exams and before the commencement of VII semester.
- 2) The student must submit letters from the industry clearly specifying his / her name and the duration of the internship on the company letter head with authorized signature.
- 3) Internship must be related to the field of specialization of the respective UG programme in which the student has enrolled.
- 4) Students undergoing internship training are advised to report their progress and submit periodic progress reports to their respective guides.
- 5) Students have to present the internship activities carried out to the departmental committee and only upon approval by the committee, the student can proceed to prepare and submit the hard copy of the final internship report. However, interim or periodic reports as required by the industry / organization can be submitted as per the format acceptable to the respective industry /organizations.
- 6) The reports shall be printed on A4 size with 1.5 spacing and Times New Roman with font size 12, outer cover of the report (wrapper) has to be Ivory color for UG circuit Programs and Light Blue for Non-Circuit Programs.
- 7) The broad format of the internship final report shall be as follows
 - Cover Page
 - Certificate from College
 - Certificate from Industry / Organization
 - Acknowledgement
 - Synopsis
 - Table of Contents
 - Chapter 1 Profile of the Organization: Organizational structure, Products, Services, Business Partners, Financials, Manpower, Societal Concerns, Professional Practices,
 - Chapter 2 Activities of the Department
 - Chapter 3 Tasks Performed: summaries the tasks performed during 8-week period
 - Chapter 4 Reflections: Highlight specific technical and soft skills that you acquired during internship
 - References & Annexure

Course Outcomes:

After going through the internship the student will be able to:

CO1: Apply engineering and management principles

CO2: Analyze real-time problems and suggest alternate solutions

CO3: Communicate effectively and work in teams

CO4: Imbibe the practice of professional ethics and need for lifelong learning.

Scheme of Continuous Internal Evaluation (CIE):

The evaluation committee shall consist of Guide, Professor/Associate Professor and Assistant Professor. The committee shall assess the presentation and the progress reports in two reviews.

The evaluation criteria shall be as per the rubrics given below:

Reviews	Activity	Weightage
Review-I	Explanation of the application of engineering knowledge in industries, ability to	45%
	comprehend the functioning of the organization/ departments,	43%
Review-	Importance of resource management, environment and sustainability presentation	
II	skills and report writing	55%

Scheme for Semester End Evaluation (SEE):

The SEE examination shall be conducted by an external examiner (domain expert) and an internal examiner. Evaluation shall be done in batches, not exceeding 6 students per batch.

	Semester: VII											
				LINUX INTERN								
	(Group F: Professional Elective)											
Cou	rse Code	:	18CS7F1		CIE	:	100 Marks					
Credits: L:T:P		: 3:0:0			SEE		100 Marks					
Tota	l Hours	Hours : 39L			SEE Duration		3.00 Hours					
Cou	rse Learning	Ob	jectives: The stude	ents will be able to								
1	Reinforce th	e k	ernel level features	of Linux operating	g system.							
2	Develop and	l im	plement the systen	n calls.		•						
3	Gain knowle	edge	e about memory ma	anagement techniq	ues of the Linux O	S.						
4	Present an a	dea	uate programming	environment in Li	nux OS.							

Unit-I	8 Hrs
--------	-------

Introduction to the Linux Kernel

History of Unix, Along Came Linus: Introduction to Linux, Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels, Linux Kernel Versions, The Linux Kernel Development Community

Process Management

The Process, Process Descriptor and the Task Structure, Process Creation, The Linux Implementation of Threads, Process Termination.

Unit – II 9 Hrs

Process Scheduling

Multitasking, Linux's Process Scheduler, Policy, The Linux Scheduling Algorithm, The Linux Scheduling Implementation, Process Selection, Preemption and Context Switching, Real-Time Scheduling Policies, Scheduler-Related System Calls

System Calls

Communicating with the Kernel, APIs, POSIX, and the C Library, Syscalls, System Call Handler, System Call Implementation, System Call Context.

Unit –III 8 Hrs

Interrupts and Interrupt Handlers

Interrupts, Interrupt Handlers, Top Halves Versus Bottom Halves, Registering an Interrupt Handler, Writing an Interrupt Handler, Interrupt Context, Implementing Interrupt Handlers, /proc/interrupts, Interrupt Control.

Bottom Halves and Deferring work

Bottom Halves, A World of Bottom Halves, Softirqs, Tasklets, Work Queues, Which Bottom Half Should I Use?

Unit –IV 8 Hrs

Memory Management

Pages, Zones, Getting Pages, kmalloc(), vmalloc(), Slab Layer, Statically Allocating on the Stack, High Memory Mappings, Per-CPU Allocations, The New percpu Interface, Reasons for Using Per-CPU Data, Picking an Allocation Method.

The virtual File System

Common Filesystem Interface, Filesystem Abstraction Layer, Unix Filesystems

Unit –V 6 Hrs

Kernel Synchronization Methods

Atomic Operations, Spin Locks, Reader-Writer Spin Locks, Semaphores, Reader-Writer Semaphores, Mutexes, Completion Variables, BKL: The Big Kernel Lock

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Understand and Explore the fundamental concepts of Linux, kernel-level data-structure and
	Linux kernel development environments.
CO2:	Illustrate the use of data structures for process, memory, interrupt management and system calls
	within the Linux kernel
CO3:	Integrate the operating system concepts with relevant design issues associated with Linux
	kernel.
CO4:	Develop kernel modules using Linux Processes and Interrupt handling techniques with process
	synchronization.

Refer	ence Books
1	Robert Love; Linux Kernel Development; Pearson Education; 3 rd Edition; 2010, ISBN 8131758182.
2	M. Beck et.al; Linux Kernel Programming; Pearson Education; 3 rd Edition; 2002, ISBN-110-201-71975-4
3	Daniel Bovet; Understanding the Linux Kernel, O'Reilly, 3 rd Edition, 2005, ISBN-10: 0596005652.
4	Michael kerrish; Linux Programming Interface; 1 st Edition, 2010, ISBN-10159327220

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	1	2	2	1	-	-	-	1	-	1	1			
CO2	2	2	3	2	1	-	-	-	2	-	1	1			
CO3	2	2	3	2	1	-	-	-	2	-	1	1			
CO4	2	3	3	2	1	2	1	1	2	-	1	1			

High-3: Medium-2: Low-1

	Semester: VII											
	GAME THEORY											
	(Group F: Professional Elective)											
Cou	rse Code	: 18CS7F2			CIE	:	100 Marks					
Credits: L:T:P		:	3:0:0		SEE		100 Marks					
Tota	l Hours	: 39L			SEE Duration		3.00 Hours					
Cou	rse Learning	Ob	jectives: The stude	ents will be able to								
1	Compreheno	l th	e basics of strategic	c gaming and mixe	d strategic equilibi	ium	•					
2	Enable stude	ents	to develop skills o	n extensive gamin	g strategies.							
3	Analyze and	dis	scuss various gamin	ng models.								
4	Illustrate son	ne 1	real time situations									

Unit-I 8 Hrs

Introduction to Strategic Games: What is game theory?, The theory of rational choice, Interacting decision makers, Strategic games; Examples: The prisoner's dilemma, Bach or Stravinsky, Matching pennies; Nash equilibrium; Examples of Nash equilibrium; Best response functions; Dominated actions; Cournot's model of oligopoly; Equilibrium in a single population: symmetric games and symmetric equilibrium

Unit – II 9 Hrs

Mixed Strategy Equilibrium: Introduction; Strategic games in which players may randomize; Mixed strategy Nash equilibrium; Dominated actions; Pure equilibrium when randomization is allowed, Illustration: Expert Diagnosis; Equilibrium in a single population; The formation of players' beliefs; Extensions; Representing preferences by expected payoffs.

Unit –III 8 Hrs

Extensive Games: Extensive games with perfect information; Strategies and outcomes; Nash equilibrium; Sub game perfect equilibrium; Finding sub game perfect equilibria of finite horizon games: Backward induction; Illustrations: The ultimatum game, Stackelberg's model of duopoly.

Unit –IV 7 Hrs

Bayesian Games, Extensive Games with Imperfect Information: Motivational examples; General definitions; Two examples concerning information; Illustrations: Cournot's duopoly game with imperfect information, Providing a public good; Auctions: Auctions with an arbitrary distribution of valuations; Extensive games with imperfect information; Strategies.

Unit –V 7 Hrs

Competitive and Iterated Games, Bargaining: Strictly Competitive Games, Evolutionary Equilibrium: Strictly competitive games and maximization; Case Study. Repeated games: The main idea; Preferences; Repeated games; Finitely and infinitely repeated Prisoner's dilemma; Strategies in an infinitely repeated Prisoner's dilemma; Nash equilibrium of an infinitely repeated Prisoner's dilemma, Nash equilibrium payoffs of an infinitely repeated Prisoner's dilemma, Bargaining.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1: Interpret the basics of strategic gaming and extensive games.										
CO2:	Analyze gaming strategies on real-time incidence.									
CO3:	Designing models of gaming on real-time incidence.									
CO4:	Apply game theory in Economics, Political Science and Corporate world.									

Re	efere	ence Books
	1	An Introduction to Game Theory, Martin Osborne, Oxford University Press, First Indian Edition, 2009, 7 th impression, ISBN – 0195128958.
	2	Analysis of Conflict Game Theory, Roger B. Myerson, Re-print Edition, 2008, Harvard University Press, ISBN – 978-0674341166.
	3	Introduction to Operations Research: Concepts and Cases, Frederick S. Hillier and Gerald J. Lieberman, 9 th Edition; 2010, Tata McGraw Hill, ISBN – 0073376299.
4	4	An Introduction to Game Theory, Joel Watson; Strategy, 2 nd Edition, 2007, W.W. Norton &Company, ISBN – 9780393929348.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	1	1	1	-	1	-	2	-	-	-	2			
CO2	2	1	2	-	1	-	-	-	-	-	2	2			
CO3	-	2	1	2		-	-	-	-	-	-	2			
CO4	1	2	2	1	1	2	2	-	2	2	-	2			

High-3: Medium-2: Low-1

	Semester: VII									
	INFORMATION STORAGE MANAGEMENT									
	(Group F: Professional Elective)									
Cou	Course Code : 18CS7F3 CIE : 100 Marks									
Cred	dits: L:T:P	:	3:0:0		SEE	:	100 Marks			
Tota	Total Hours		39L		SEE Duration	:	3.00 Hours			
Cou	rse Learning	Ob	jectives: The stude	ents will be able to						
1	Understand	sto	rage architectures	and key data cent	er elements in clas	sic,	virtualized and cloud			
	environment	S.								
2	Understand	stoı	age networking tec	chnologies such as	FC SAN, NAS.		·			
3	3 Visualize storage virtualization functions in typical data center environment.									
4	Articulate b	usi	ness continuity sol	utions such as ba	ckup, replication a	nd	archive for managing			
	fixed conten	t.								

Intro to flash drives - 82-84 ISM

	mino to maon	a	
	Unit-I		06 Hrs
Storage Fundamentals:			

Computer system architecture: Memory Bandwidth requirements, Memory hierarchy of a computer

system Hard Disk Drive (HDD): Disk geometry and Disk characteristics; Disk Access time and Disk

performance parameters. Solid State Device (SSD): Flash Memory: NAND and NOR Organization,

R/W performance of Flash memory. Array of Disks: Disk Reliability and different RAID Levels

(0,1,2,3,4,5,6,1+0,0+1),RAID performance parameters, RAID Implementations Introduction to

information storage: Information storage, Evolution of storage architecture, Data center infrastructure,

ISM 39-51

one note online links

RAID -**Textboo**

slides 29-38?

2 usecase-44,45

last three slides

Virtualization and Cloud Computing.

Unit – II File Systems and I/O Methods: Unix file system as an example, Files and File descriptors, Virtual file system, and Local file system. Journaling Flash File System (JFFS) for SSDs: Wear level algorithm, Garbage collection. I/O Techniques: Polling, Interrupt, DMA and I/O Processors. Buses as data transporter: System Bus, I/O Bus, and PCI Bus protocol, SCSI Bus protocol and commands.

Network Attached Storage: ISM, NAS chapter full - 157-177

Network Attached Storage (NAS), NAS architectures and objectives, NAS File Server. Network File System protocol (NFS), Remote procedure call (RPC), NFS operation, NFS vs. CIFS (Common Internet File System) NFS performance issues, inconsistency

> 09 Hrs **Unit -III**

Storage Applications: Data storage networking: chapter 8, 289-313; See ppts for topic - study it from textbook

Data Replication Technologies: Synchronous vs. Asynchronous, Application Layer, Logical Volume Manager based Replication, Hypervisor based replication, and Array based replication, Asynchronous Replication: Snapshot and Journal based replication, Replication Topologies: Three site cascade, Three site multi-target, Three site triangle.

Storage Virtualization: Data storage networking

SNIA shared storage model, Host based and Network based, Storage and Controller based virtualization, Capacity Optimization, Thin and Thick Provisioning, Compression, De-duplication, Storage Tiering - Data storage networking - chapter 10 : 353-385; See ppts for topic - study it from textbook

> Unit -IV 08 Hrs

Storage Area Networks (SANs):

Fibre Channel Protocol Stack, SAN vs. NAS, Protocol layers, Components, FC-SAN ports and connectivity, Fibre Channel SAN, FC-SAN topologies, Hardware Components of FC-SAN,FC-SAN Configurations and Traffic Management, SAN Addressing ,Zoning and Multi-pathing, Trunking and LUN Masking. IP-SAN Solutions: iSCSI SAN, iFCP SAN,FCIP SAN, Storage Traffic over Ethernet (FCoE)

65-74 ISM 87-105 ISM

But, 1+0, 0+1 ella idya nodu

10 Hrs

Storage network S explaine d allide 1+0. 0+1 ella

[DSV Unit –V	06 Hrs
	Backup and Recovery:	
396-	Backup methods (Hot, Offline, LAN based, and SAN based)Backup types (F	ull, Incremental,
42	Differential, Synthetic Application aware), Backup retention policies and Archiving	
	Management Protocol (NDMP) Capacity Management Over provisioning, Trending	g, De-duplication
why	and compression Performance Management: Latency and Response time, Performance	e Metrics Storage
<i>3</i> 59°	performance factors Storage and the Cloud, Cloud storage model Data Durability	and Consistency
3-1	Model.	
	636-69h	

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Explore fundamentals of storage centric paradigm for large Data Centre.								
CO2:	Analyze techniques used for data access and maintenance using different evolving technologies								
	in SAN and NAS.								
CO3:	Realize storage virtualization on different levels and backup/recovery processes.								
CO4:	Evaluate various techniques used in intelligent storage systems.								

Refere	ence Books						
1	Storage Networking-Real World Skills for the CompTIA Storage+ Certification and Beyond by						
1	Nigel Poulton, Publishers, SYBEX a Wiley brand, 2015: ISBN-13: 978-8126557677						
2	Storage Networks Explained – by Ulf Troppens, Wolfgang Muller-Freidt, Rainer Wolafka, IBM						
	Storage Software Development, Germany. Publishers: Wiley						
3	Information storage and management- Somasundaram, Gnanasundaram, AlokShrivatsava, 2 nd						
3	Edition, 2015, Wiley publishing ISBN 978-81-265-3750-1.						
4	Storage Networks Explained – Ulf Troppens, Rainer Erkens and Wolfgang Muller, 2012, John						
-	Wiley & Sons, ISBN: 978-81-265-1832-6.						
5	Storage Networks: The Complete Reference – Robert Spalding, 2003, Tata McGraw Hill,						
3	ISBN: 978-007224764.						
	Introduction to Storage Area Networks - Jon Tate, Pall Beck, Hector Hugo, Ibarra						
6	ShanmuganathanKumaravel, Libor Miklas, 9 th Edition, December 2017, IBM Redbooks,						
	ISBN-13: 9780738442884.						

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	3	-	2	-	-	-	1	2	-	1
CO2	-	2	1	-	2	-	-	-	1	-	-	-
CO3	2	1	2	2	3	-	-	-	2	1	-	1
CO4	-	2	-	2	2	-	-	-		-	-	-

High-3: Medium-2: Low-1

	Semester: VII									
	SOFTWARE DEFINED NETWORKS									
			(Grou	up F: Professional I	Elective)					
(Common to CS & IS)										
Cou	rse Code	:	18CS7F4		CIE	:	100 Marks			
Credits: L:T:P		:	3:0:0	!	SEE	:	100 Marks			
Total Hours			39L	!	SEE Duration	:	3.00 Hours			
Cou	rse Learning	Ob	jectives: The stude	ents will be able to						
1	Explore defi	niti	ons, standards and	protocols for Softwa	are defined Netwo	orks	(SDN).			
2	Understanding SDN framework through its constituent elements.									
3	Design SDN	ap	plications using dif	fferent controllers an	nd network progra	ımm	able switches.			
4	Explore futu	re o	of network program	nming through advar	nces of SDN.					

Unit-I 07 Hrs

Introduction : The Modern Data Center, Traditional Switch Architecture, Autonomous and Dynamic Forwarding Tables, Can We Increase the Packet-Forwarding IQ? Open Source and Technological Shifts.

Why SDN? Evolution of Switches and Control Planes, Cost, SDN Implications for Research and Innovation, Data Center Innovation, Data Center Needs

Unit – II 10 Hrs

The Genesis of SDN: The Evolution of Networking Technology, Forerunners of SDN, Software Defined Networking is Born, Sustaining SDN Interoperability, Legacy Mechanisms Evolve Toward SDN, Network Virtualization.

How SDN Works: Fundamental Characteristics of SDN, SDN Operation, SDN Devices, SDN Controller, SDN Applications, Alternate SDN Methods

Unit –III 08 Hrs

The OpenFlow Specification - OpenFlow Overview, OpenFlow 1.0 and OpenFlow Basics, OpenFlow 1.1 Additions, OpenFlow 1.2 Additions, OpenFlow 1.3 Additions, OpenFlow Limitations.

Unit –IV 07 Hrs

SDN in the Data Center- Data Center Definition, Data Center Demands, Tunneling Technologies for the Data Center, Path Technologies in the Data Center, Ethernet Fabrics in the Data Center, SDN Use Cases in the Data Center, Open SDN versus Overlays in the Data Center, Real-World Data Center Implementations.

SDN in Other Environments - Consistent Policy Configuration, Global Network View, Wide Area Networks, Service Provider and Carrier Networks, Campus Networks, Hospitality Networks, Mobile Networks.

Unit –V 07 Hrs

SDN Applications- Reactive versus Proactive Applications, Reactive SDN Applications, Proactive SDN Applications, Analyzing Simple SDN Applications, A Simple Reactive Java Application, Background on Controllers, Using the Floodlight Controller, Using the Open Daylight Controller, Switch Considerations.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the fundamental definitions, standards and protocols for Software defined Networks							
	(SDN)							
CO2:	Explore network programmability through different components such as network programming							
	switches and controller that develop into SDN framework							
CO3:	Design network programmable applications using SDN frameworks							
CO4:	Analyze the applicability of SDN for future network programmability.							

Refer	rence Books
1	Software Defined Networks: A Comprehensive Approach, by Paul Goransson and Chuck Black, Morgan Kaufmann, June 2014, Print Book ISBN: 9780124166752, eBook ISBN: 9780124166844
2	SDN: Software Defined Networks, An Authoritative Review of Network Programmability Technologies, By Thomas D. Nadeau, Ken Gray Publisher: O'Reilly Media, August 2013, ISBN: 978-1-4493-4230-2, ISBN 10:1-4493-4230-2.
3	Network Innovation through OpenFlow and SDN: Principles and Design, Edited by Fei Hu, CRC Press, ISBN-10: 1466572094, 2014.
4	Software defined networks: Design and Deployment, Particia A. Morreale and James M. Anderson. CRC Press, 1 st edition, December 2014, ISBN: 9781482238631

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	-	-	-	-	-	-	-	-	1
CO2	3	2	2	1	2	-	-	-	-	-	-	1
CO3	3	3	2	2	2	-	-	-	-	-	-	1
CO4	3	3	3	2	2	-	-	-	-	-	-	1

High-3: Medium-2: Low-1

Semester: VII								
				N TO OPTIMIZA up F: Professional	ATION TECHNIC Elective)	UE	S	
Cou	rse Code	:	18CS7F5		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39L		SEE Duration	:	3.00 Hours	
Cou	rse Learning	Ob	jectives: The stude	ents will be able				
1	To explore t	the c	concepts of optimiz	zation techniques				
2	To learn the	mo	delling framework	s for solving probl	ems using optimiz	ation	techniques.	
3	To design and develop optimization models for real life situations.							
4	To generate	sol	itions using optim	ization methods for	r a given problem.			
5	To compare	mo	dels developed usi	ng various optimiz	ation techniques			

Unit-I	07 Hrs					
Introduction: Optimization Research (OR) Methodology, Definition of OR, Applicat	ion of OR to					
Engineering and Managerial problems, Features of OR models, Limitations of OR.						
Linear Programming: Definition, Mathematical Formulation, Standard Form, Soluti	on Space, Types					
of solution – Feasible, Basic Feasible, Degenerate, Solution through Graphical Method	d. Special cases in					
Linear programming.						
Unit – II	09 Hrs					
Simplex methods: Variants of Simplex Algorithm – Use of Artificial Variables. Dua	ality, Dual simplex					
method, Revised simplex method: Standard forms for Revised Simplex method	ds, Computational					
procedure for standard form, comparison of Simplex method and Revised simplex Method.						
Unit –III	08 Hrs					
Transportation Problem: Formulation of Transportation Model, Basic Feasible Solu						
West corner, Least Cost, Vogel's Approximation Method, Optimality Methods, Unbal	lanced					
Transportation Problem, Degeneracy in Transportation Problems, Variants in Transpo						
Assignment Problem: Formulation of the Assignment problem, solution method	•					
problem-Hungarian Method, Variants in assignment problem, Travelling Salesman Pr	oblem (TSP).					
Unit –IV	07 Hrs					
Queuing Theory : Queuing system and their characteristics, The M/M/I Queuing sy						
performance analysing of M/M/1 queuing models. Introduction to M/M/C and M/E _k /1 queuing models.						
Unit –V 08 Hrs						
Non-Linear Programming Methods: Introduction, The General Non-Linear Programming Problem,						
Graphical solution method, Quadratic Programming, Applications of Quadrat	tic Programming,					
Stochastic Programming.						

Course	Course Outcomes: After completing the course, the students will be able to											
CO1:	Explore the various optimization models and their areas of application.											
CO2:	Analyse various models through formulating and solving problems using optimization											
	techniques											
CO3:	Identify and apply the appropriate optimization techniques to solve real world problems											
CO4:	Develop models and create design solutions for engineering systems through optimization											
	techniques.											

Refer	ence Books
1	Taha H A, Operation Research an Introduction, PHI, 8 th Edition, 2009, ISBN: 0130488089.
2	J K Sharma, Operations Research Theory and Application, Pearson Education Pvt Ltd, 4 th Edition, 2009, ISBN 13: 978-0-23-063885-3.
3	Hiller, Liberman, Nag, Basu, Introduction to Operation Research, Tata McGraw Hill 9 th Edition, 2012, ISBN 13: 978-0-07-133346-7.
4	Philips, Ravindran and Solberg - Principles of Operations Research – Theory and Practice, John Wiley & Sons (Asia) Pte Ltd, 2 nd Edition, 2000, ISBN 13: 978-81-265-1256-0.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	2	2	1	-	1	-	2	1	1	1	2			
CO2	2	1	2	1	1	-	-	-	2	-	2	1			
CO3	-	2	1	-	2	-	-	-	1	-	-	1			
CO4	1	2	2	1	1	2	2	-	2	2	1	2			

High-3: Medium-2: Low-1

	Semester: VII											
	CYBER SECURITY FOR INDUSTRY 4.0 (Group G: Professional Elective)											
Cou	Course Code : 18CS7G1 CIE : 100 Marks											
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning	Ob	jectives: The stude	ents will be able to								
1	Understand	the	basic concepts of c	yber security and I	Industry 4.0.							
2	Apply the co	nce	epts of security at s	ystem and network	leves.							
3	Demonstrate	th	e understanding of	of system manage	ement and net wo	ork	management through					
	cryptographic and network security solutions.											
4	Use concept	s of	Threat and Incider	nt management by	forensic investigati	on.						

Unit-I 6 Hrs

Defining Cyberspace and Cybersecurity, The Value of Standards and Best Practices Documents, The Standard of Good Practice for Information Security, The ISO Suite of Information Security Standards, NIST Cybersecurity Framework and Security Documents, The CIS Critical Security Controls for Effective Cyber Defense, COBIT 5 for Information Security, Payment Card Industry Data Security Standard, ITU-T Security Documents, Effective Cybersecurity.

Unit – II 10 Hrs

Industrial Internet: Security in Manufacturing, PLCs and DCS, Securing the OT, Network Level: Potential Security Issues, System Level: Potential Security Issues, Identity Access Management. Introducing Industry 4.0: Defining Industry 4.0, Why Industry 4.0 and why now?, Four main characteristics of Industry 4.0, The Value chain, Industry 4.0 design principles, Building Blocks of Industry 4.0.

Unit –III 9 Hrs

System Management: Server Configuration, Virtual Servers, Network Storage Systems, Service Level Agreements, Performance and Capacity, Management, Backup, Change Management, System Management Best Practices. Network Communication: Network Management Concepts, Firewalls, Virtual Private Networks and IP Security, Security Considerations for Network Management, Electronic Communications, Network and Communications Best Practices.

Unit –IV 8 Hrs

Technical Security Management: Security Architecture, Malware Protection Activities, Malware Protection Software, Identity and Access Management, Intrusion Detection, Information Leakage Protection, Digital Rights Management, Cryptographic Solutions, Cryptographic Key Management, Public Key Infrastructure.

Unit –V 6 Hrs

Threat and Incident Management: Technical Vulnerability, Management, Security Event Logging, Security Event Management, Threat Intelligence, Cyber Attack Protection, Security Incident Management Framework, Security Incident Management Process, Emergency Fixes, Forensic Investigations, Threat and Incident Management, Best Practices.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	To understand the cybersecurity discipline and Industry 4.0							
CO2:	To define security governance, assess risks and manage strategy and tactics							
CO3:	To harden systems across the system development life cycle							
CO4:	To mitigate security risks and attacks using security measures							

Refere	ence Books
1	"Effective Cybersecurity", William Stallings, Pearson Education, 2019, ISBN-13:978-0-13-
	477280-6
2	"Industry 4.0: The Industrial Internet of Things", by Alasdair Gilchrist (Apress)2. 2016, ISBN-
	13 (pbk): 978-1-4842-2046-7
•	Cyber security: The Essential Body of Knowledge, Dan Shoemaker, Ph.D., William Arthur
3	Conklin, Wm Arthur Conklin, 2012 by cengage learning, ISBN13:978-1-4354-8169-5.
4	James Graham, Richard Howard, Ryan Olson- "Cyber Security Essentials" CRC Press, 2011by
4	Taylor and Francis Group. ISBN13: 978-1-4398-5126-5.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	-	-	-	-	-	-	-	1	-	1			
CO2	3	2	2	1	-	-	-	-	-	1	-	1			
CO3	3	3	2	2	-	-	-	-	-	1	-	1			
CO4	3	3	3	3	-	-	-	-	-	1	-	1			

High-3: Medium-2: Low-1

	Semester: VII											
	APPLICATION DELIVERY CONTROLLER AND VIRTUALIZATION											
	(Group G: Professional Elective)											
				(Industry Offered)								
Cou	rse Code	:	18CS7G2		CIE	:	100 Marks					
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning	g Ob	jectives: The st	idents will be able to								
1.	Understand	the	functionalities of	f various network funct	tions.							
2.	2. Analyze the design issues involved in load balancers, traffic management.											
3.	3. Introduce students the concept of Application delivery controller.											
4.	Illustrate th	e op	eration of cloud	and virtualization.								

Unit – I 8 Hrs.

Load balancers: Concepts of L4 load balancing, Managing application delivery using load balancers, L7 Load balancing, Persistence methods, Health monitoring

ADC: Introduction, Why ADC is needed and a brief introduction, How ADC is different from a legacy load balancer, Overview of broadened ADC use cases

Unit – II 9 Hrs.

SSL details, SSL offloading and acceleration, Deployment models for Enterprise Apps, Deep Packet Inspection, Web Application Firewalls (WAF), Intrusion prevention system (IPS), Difference Between an IPS and WAF, Deployment modes for NSX.

Unit – III 8Hrs.

Traffic Management: Core principles of traffic management, Multiprotocol Label Switching, DNS and global server load balancing, Content switching, AppQoE, TCP and SSL profiles, Introduction to Optimization and Security.

Unit – IV 7Hrs.

Virtualization and Cloud: Why virtualizing ADCs is important, Essentials of virtualization and cloud computing, Cloud computing infrastructure, Public clouds like AWS, Azure & Google cloud, How to deliver Apps through Cloud and virtual data centers.

Unit – V 7Hrs.

Micro services and Containers : Introduction to Micro services& Containers, Container Orchestration, Kubernetes, Monitoring, Logging & Tracing tools

Course	Course Outcomes: After completing the course, the students will be able to								
CO 1:	Understand and explore the importance of various network functionalities like load balancer,								
	offloading.								
CO 2:	Identify the components of application delivery controller and its importance								
CO 3:	Analyze the operation of internetwork and solve problems related to traffic management.								
CO 4:	Investigate the relevance of virtualization and cloud in the present business scenario.								

Refere	ence Books:
1.	Rick Roetenberg, Marius Sandbu, "Mastering NetScaler VPX", 2 nd edition, Packt Publishing, ISBN: 978-1-78528-898-2
2	
2.	Citrix ADC 13.0, Citrix Product Documentation dated May 28, 2021
3.	Citrix NetScaler Deployment Guide and Citrix whitepapers from Citrix website
4.	Deepak Vohra, "Kubernetes Microservices with Docker", ISBN-13: 978-1-4842-1906-5
5.	Instructor notes

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping														
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	-	2	-	-	-	1	1	-	1	-	-				
CO2	2	-	-	-	1		-	-	-	1	-	1			
CO3	2	-	2	ı	1	1	-	-	-	-	1	1			
CO4	-	-	-	1	-		-	1	1	-	-				

High-3: Medium-2: Low-1

	Semester: VII FUZZY GRAPHS, FUZZY SOFT SETS AND PETRINETS											
			(Grou	ıp G: Professional	Elective)							
Cou	Course Code : 18CS7G3 CIE : 100 Marks											
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39L		SEE Duration	:	3.00 Hours					
Cou	rse Learning	Ob	jectives: The stude	ents will be able to								
1	Learn basic	ski	lls of Fuzzy Graph	Theory, Fuzzy se	ets, Fuzzy graphs i	n D	atabase theory, Fuzzy					
	Decision tre	es a	nd Network Mode	ls using fuzzy grap	hs.							
2	Analyze con	stru	acting the fuzzy gra	aphs which gives t	he student a good i	insi	ght into various topics					
	like Trees, le	evel	cut, chords and ec	centricity.								
3	Know the l	Kno	wledge of differe	nt forms of fuzzy	graphs, interval-	valu	ed fuzzy graphs and					
	intuitionistic fuzzy graphs.											
4	Investigate of	othe	r forms of fuzzy gr	raphs like Petri nets	S.							

Unit-I 8 Hrs

Introduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak

Introduction to Fuzzy Graphs: Fuzzy graphs- partial fuzzy sub graphs, fuzzy sub graphs, weak isomorphism, co-weak isomorphism, isomorphism of fuzzy graphs, complement of a fuzzy graph, regular fuzzy graph and edge regular fuzzy graphs, Connectivity in Fuzzy Graphs: Path and connectedness, Connectivity in fuzzy graphs, Strong arcs, Bridges and cut vertices, Trees, Maximal Spanning tree, Fuzzy Spanning tree and cycles, Connectedness level, cut sets, fuzzy chords, fuzzy co trees, fuzzy twigs.

Unit – II 9 Hrs

Operations and characterization in fuzzy graphs: Operations on fuzzy graphs: union, intersection, join, Cartesian product and composition, fuzzy line graphs, Fuzzy interval graphs, Edge connectivity, vertex connectivity, Eccentricity of fuzzy graph and density of fuzzy graph.

Unit –III 8 Hrs

Applications of Fuzzy Graphs: Fuzzy node connectivity, Fuzzy arc connectivity, Cluster, cluster analysis, application to cluster analysis, fuzzy intersection equations, Intuitionistic fuzzy graph and properties of intuitionistic fuzzy graphs, Interval valued fuzzy graphs, Fuzzy graphs in Database theory, Fuzzy Decision trees, Network Models using fuzzy graphs.

Unit –IV 7 Hrs

Theory of Fuzzy Soft Relations: Fuzzy Soft set Relations, Operations on Fuzzy Soft Set Relations, Properties of Fuzzy Soft set Relations and Composition of fuzzy Soft Set relation.

Introduction to Rough sets: Definition of rough set, Approximations, Properties of approximations, Rough membership function, Reduct and core, Attribute dependency, Significance of attributes and approximate reducts.

Unit –V 7 Hrs

Petri nets: Petri nets, Petri nets for Rule – Based Decision making, Introduction to Petri nets, firing rule, firing sequences and reachability, Behavioral properties of Petri nets, Analysis methods, Covariability tree, reachability graph, Simple reduction rules, Characteristics of liveness and structural properties.

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand and explore the concepts like fuzzy graph, connectivity, operations, rough sets and							
	Petri nets.							
CO2:	Demonstrate and analyze applications of various methodologies like cluster analysis and its							
	applications by annualizing problems such as neural networks, database theory.							
CO3:	Apply fuzzy graph theory to draw Petri nets to various engineering applications.							
CO4:	Solve real world problems involving emerging technologies and multi-disciplinary tasks.							

Refere	ence Books
1	Fuzzy graphs, Basics Concepts and Applications, S Mathew and M S Sunitha, 2012, Lambert
	Academic Publishing ISBN:978-3-659-21234-5.
2	Application to Petrinets-Thesis submitted by Bucket YILMAZ for degree of Master of Science-
	2008.
3	Fuzzy Graphs and Fuzzy Hypergraphs, J. N. Mordeson and P.S. Nair, Physica- Verlag, 2000,
3	ISBN:3-7908-1286-2.
4	Fuzzy Discrete Structures, D.S. Malik and J.N. Mordeson, Physica - Verlag, 2000,
4	ISBN:3790813257.
	Modern Trends in Fuzzy Graph Theory, Pal, Madhumangal, Samanta, Sovan, Ghori, Ganesh,
5	2020, ISBN 978-981-15-8803-7
6	Research papers on Rough Sets by Pawlak

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	1	-	1	-	2	-	-	-	2
CO2	2	1	2	-	1	-	-	-	-	-	2	2
CO3	-	2	1	2		-	-	-	-	-	-	2
CO4	1	2	2	1	1	2	2	-	2	2	-	2

High-3: Medium-2: Low-1

	Semester: VII							
	COMPUTER VISION (Group G: Professional Elective)							
Cou	rse Code	:	18CS7G4		CIE	:	100 Marks	
Cred	lits: L:T:P	:	3:0:0		SEE	:	100 Marks	
Total Hours		:	39L		SEE Duration		3.00 Hours	
Cou	se Learning	Ob	jectives: The stude	ents will be able to				
1	Acquire kno	owl	edge on problem so	olving skills in Con	nputer Vision.			
2	Select app	rop	riate techniques	or methods for	Filtering, Segme	ntir	ng, Recognition and	
	classification.							
3	3 Describe basic feature and applications of Computer Vision in real time applications.							
4	Develop ski	lls t	o work or carry out	t task on multi-disc	ciplinary domains /	pro	jects.	
	_				-			

Unit-I 07 Hrs

Geometric Camera Models:

Image Formation: Pinhole Perspective, Weak perspective, Cameras with lenses; Geometric Camera Calibration: Linear approach to camera calibration, Non-Linear approach to camera calibration; Light and Shading:Modeling Pixel brightness: Reflection at surfaces, Sources and their effects, Lambertineaand Spectacular model, Area sources; Inferences from shading: Radiometric calibration and high dynamic range images, The Shape of Specularities , Inferring Lightness and Illumination, Photometric Stereo: Shape from Multiple Shaded Images.

Unit – II 08 Hrs

Early vision:

Linear Filters:Linear Filters and Convolution; Shift Invariant Linear Systems: Discrete Convolution, Continuous Convolution, Edge Effects in Discrete Convolution; Spatial Frequency and Fourier Transforms: Fourier Transforms; Sampling and Aliasing, Filters as Templates;

Stereopsis: Binocular Camera Geometry and the Epipolar constraint- Epipolar geometry, The essential matrix, The fundamental matrix; Binocular reconstruction: Image rectification.

Unit –III 08 Hrs

Mid level Vision: Segmentation by clustering, Human Vision: Grouping and Gestalt; Important applications; Image Segmentations by Clustering pixels; Segmentation, Clustering, and Graphs. **Grouping and Model Fitting:** The Hough transform, Fitting lines and planes; Fitting Curved Structure; Robustness; Fitting using Probabilistic models; Motion Segmentation by Parameter estimation.

Tracking: Simple Tracking strategies; Tracking using Matching; Tracking Linear dynamics models with Kalman filters.

Unit –IV 08 Hrs

High level Vision: Registration; Model based Vision: Registering Rigid Objects; Registering deformable objects.

Classifying images: Building good Image features; Classifying Images of Single Objects; Image Classification in practice.

Unit –V 08 Hrs

Detecting Objects in Images: Sliding Window method; Detecting Deformable Objects; The State of the Art of Detection

Object recognition: Basics of Object Recognition: Object Recognition System, Current Strategies, Categorization, Selection; Feature questions; Geometrical questions; Semantic questions.

Course Outcomes: After completing the course, the students will be able to							
CO1:	Explore and acquire knowledge on fundamentals of Computer Vision concepts.						
CO2:	Analyze and interpret the inherent difficulties encountered in Computer Vision.						
CO3:	Apply Computer Vision techniques to solve problems in the visible world around us.						
CO4:	Investigate and draw inferences by processing Image in real time applications.						

Refer	ence Books
1	Computer Vision: A Modern Approach, David Forsyth and Jean Ponce, 2 nd edition, 2015,
	Pearson Education India, ISBN-10: 9332550115, ISBN-13: 978-9332550117
2	Computer Vision: Algorithms and Applications, Richard Szeliski, Springer Verlag, 2013
	Edition, ISBN-13: 978-1848829343, ebook :http://szeliski.org/Book/
3	Digital Image Processing, Rafael C. Gonzalez, Richard E. Woods, 4 th Edition; 2018, Pearson
	Education, ISBN-10: 9353062985, ISBN-13: 978-9353062989
4	Introductory Computer Vision, Imaging Techniques and Solutions, Adrian Low, 2nd Edition,
	2010, BS Publications, ISBN-13 9788178001977

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-	PO Maj	pping					
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	1	1	1	-	-	-	-	1
CO2	-	2	-	1	1	1	1	-	-	-	-	2
CO3	1	1	1	1	1	1	-	1	-	-	-	2
CO4	2	1	-	3	2	1	1	1	1	1	-	2

High-3: Medium-2: Low-1

	Semester: VII							
	DEEP LEARNING							
				ip G: Professional				
			((Common to CS &	IS)			
Cou	rse Code	:	18IS7G5		CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks	
Tota	Total Hours		39L	SEE Du		:	3.00 Hours	
Cou	rse Learning	Ob	jectives: The stude	ents will be able to				
1	Understand t	the	basic concepts of n	neural networks and	its variants			
2	2 Use concepts of Convolutional Neural Networks to design computer vision applications							
3								
4								
5	Explore lear	nin	g algorithms for de	ploying various dee	ep learning model	s		

TI!4 T	00 11
Unit-I	08 Hrs
Neural Networks: What is a neural network, Models of a Neuron, Activation f	unctions, Network
Architectures, Knowledge representation, Learning Process.	
Deep Feedforward Networks: Multilayer Perceptron, Example: Learning XO	R, Gradient-Based
Learning, Hidden Units, Architecture Design, Back-Propagation Algorithm	
Unit – II	08 Hrs
Convolutional Networks: Convolution Operation, Motivation, Pooling, Convolution	and Pooling as an
Infinitely Strong Prior, Variants of the basic convolution function, Structured Ou	itputs, Data types,
Efficient Convolution Algorithms, Random or Unsupervised features, The Neuro	scientific basis for
convolutional networks.	
Unit –III	08 Hrs
Sequence Modeling: Recurrent and Recursive Nets: Unfolding Computational	Graphs, Recurrent
Neural Networks, Bidirectional RNNs, Encoder-Decoder Sequence-to-Sequence A	architectures, Deep
Recurrent Networks, Recursive Neural Networks, Echo State Networks, The Long Sl	nort-Term Memory
and Other Gated RNNs	
Unit –IV	08 Hrs
Autoencoders: Undercomplete Autoencoders, Regularized Autoencoders, Repre	sentational Power,
Layer Size and Depth, Stochastic Encoders and Decoders, Denoising Autoencoders	, Contractive Auto
encoders, Applications of Autoencoders, Variational Autoencoders	
Unit –V	07 Hrs
Pretrained models: Lenet, AlexNet, VGGNet, Densenet, Resnet, Transfer Learning	g, Improving Deep
Neural Networks- Hyperparameter Tuning, Regularization and Optimization. D	ata Augmentation
techniques.	
Other Architectures: Generative Adversarial Networks, Reinforcement Learning.	

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Explain the concepts of neural network, its applications and various learning models							
CO2:	Apply the knowledge of neural networks in various deep learning architecture (Convnet,							
	Recurrent and Nets and Auto-encoder models)							
CO3:	Analyze different deep Network Architectures, learning tasks for various applications							
CO4:	Evaluate and compare the solutions by various deep learning approaches for a given problem							

Refer	ence Books
1	Deep Learning (Adaptive Computation and Machine Learning Series), Ian Good Fellow,
	Yoshua Bengio and Aaron Courville, MIT Press (3 January 2017), ISBN-13: 978-0262035613.
2	Neural Networks and Learning Machines, Simon S. Haykin, 3rd Edition 2010, PHI Learning,
2	ISBN- 9789332586253, 933258625X.
2	Introduction to Artificial Neural Networks, Gunjan Goswami, S.K. Kataria & Sons; 2012
3	Edition, ISBN-13: 978-9350142967.
4	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms,
4	Nikhil Buduma, by O'Reilly Publications, 2016 Edition, ISBN-13: 978-1491925614.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	1	1	-	-	-	-	1	-	-		
CO2	3	2	2	2	2	2	-	-	-	1	-	-		
CO3	3	3	2	2	3	2	2	-	2	1	-	1		
CO4	3	3	3	3	3	2	2	-	2	1	-	1		

High-3: Medium-2: Low-1

Semester: VII											
	UNMANNED AERIAL VEHICLES										
		(Group H: 0	Global Elective)								
Course Code	:	18G7H01	CIE	:	100 Marks						
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks						
Hours	:	39L	SEE Duration:	:	3Hrs						

Cou	rse Learning Objectives: The students will be able to
1	Get an overview of the history of UAV systems
2	Understand the importance of aerodynamics, propulsion, structures and avionics in the design of UAV
3	Demonstrate ability to address the various mission payloads - on-board & off-board, propulsion systems, integration with manned systems
4	Comprehend the importance of guidance and navigation of a UAV

Unit-I	07 Hrs
--------	--------

Overview of Unmanned Aerial Vehicles and Systems: History of UAVs, Need of unmanned aerial systems, Overview of UAV Systems-System Composition, Classification of UAVs based on size, range and endurance, Basic working of fixed, rotary and flapping UAVs, Applications of UAVs.

Unit – II 08 Hrs

Aerodynamics of Unmanned Aerial Vehicles: Airfoil nomenclature and its characteristics, Basic aerodynamics equations, Aircraft polar, Types of drag, Aerodynamics of rotary and flapping wings, Airframe configurations-HTOL, VTOL and Hybrids.

Unit -III 08 Hrs

Structures of UAV: Mechanic loading, Load calculation, Materials used for UAV (general introduction), Selection criteria for structure, Types of structural elements used in UAV their significance and characteristics.

UAV Propulsion Systems: Thrust Generation, Powered Lift, Sources of Power for UAVs- Piston, Rotary, Gas turbine engines, electric or battery powered UAVs.

Unit -IV 08 Hrs

Payloads of UAVs: Non-dispensable Payloads- Electro-optic Payload Systems, Radar Imaging Payloads, Electronic Warfare Payloads, Dispensable Payloads and other payloads.

Launch and Recovery Systems for UAVs: UAV Launch Methods for Fixed-Wing Vehicles- Rail Launchers, Pneumatic Launchers, Hydraulic/Pneumatic Launchers, Zero Length RATO Launch of UAVs, UAV Recovery Systems-Conventional Landings, Vertical Net Systems, Parachute Recovery, VTOL UAVs, Mid-Air Retrieval, Shipboard Recovery.

Unit -V 08 Hrs

UAV Navigation and Guidance Systems

Navigation, Dead Reckoning, Inertial, Radio Navigation, Satellite—Way point Navigation, UAV Guidance, Types of guidance, UAV communication systems, Ground control station, Telemetry, UAS future.

	Course Outcomes: At the end of this course the student will be able to:						
CO1	Appraise the evolution of UAVs and understand the current potential benefits of UAVs						
CO2	Apply the principles of Aerospace Engineering in design and development of UAVs						
CO ₃	Determine and evaluate the performance of UAV designed for various Missions and applications						
CO4	Appreciate the guidance and navigation systems for enabling the versatility of UAV systems						

Ref	erence Books
1	Unmanned Aircraft Systems UAV design, development and deployment, Reg Austin, 1 st Edition, 2010, Wiley, ISBN 9780470058190.
2	Introduction to UAV Systems, Paul G Fahlstrom, Thomas J Gleason, 4 th Edition, 2012, Wiley, ISBN: 978-1-119-97866-4
3	Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy, Kimon P. Valavanis, 1 st Edition, 2007, Springer ISBN 9781402061141
4	Flight Stability and Automatic Control, Robert C. Nelson, 2 nd Edition, October 1, 1997, McGraw-Hill, Inc, ISBN 978-0070462731.
5	Design of Unmanned Air Vehicle Systems, Dr. Armand J. Chaput, 3 rd Edition, 2001, Lockheed Martin Aeronautics Company, ISBN: 978-1-60086-843-6

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1	1	3	2	2	-	-	-	1	
CO2	2	3	3	3	1	1	1	1	-	-	-	2	
CO3	1		3	3	-	-	-	-	-	-	-	2	
CO4	3	3	3	3	-	2	1	2	_	-	-	2	

High-3: Medium-2: Low-1

	Semester: VII												
	BIOINFORMATICS												
	(Group H: Global Elective)												
Cou	Course Code : 18G7H02 CIE : 100 Marks												
Cred	dits: L:T:P	:	3:0:0:0		SEE	:	100 Marks						
Tota	l Hours	:	39 L		SEE Duration	:	3.00 Hours						
Cou	rse Learning C	bje	ectives: The student	s will be able to	•								
1	Acquire the k	nov	vledge of biological	database and its role	in insilico research								
2	Understand th	ne e	ssential algorithms	behind the biologic	al data analysis suc	h as	Dynamic programming,						
	Dot plotting, l	Evo	lutionary and Cluste	ering algorithms alor	ng with their implem	nenta	tion.						
3				*			tures of both macro and						
	micro molecu	les	and study the dynan	nics of macromolecu	les and High Throu	ghpu	t Virtual Studies.						
4	Perform anno	tati	on of unknown Di	NA and Protein seq	uences and explore	the	principles of molecular						
	modelling												
5	Apply the k	nov	vledge towards an	alyzing the sequer	ces using progran	nmin	g languages and Drug						
	development												

Unit-I 08 Hrs

Biomolecules and Introduction to Bioinformatics:

Introduction to Biomolecules. Structure, Types and Functions of Carbohydrates, Lipids, Nucleic Acids and Proteins. Genetic code, Codon degeneracy, Genes and Genomes. Introduction to Bioinformatics, Goals, Scope, Applications in biological science and medicine. Biological databases – Sequence, structure, Special Databases and applications - Genome, Microarray.

Unit – II 08 Hrs

Sequence analysis: Introduction, Types of sequence alignments, Pairwise sequence alignment, Multiple sequence alignment, Alignment algorithms Needleman & Wunch, Smith & Waterman and Progressive global alignment, Database Similarity Searching- Scoring matrices — BLOSSUM and PAM, Basic Local Alignment Search Tool (BLAST), and FASTA. Next Generation Sequencing — Alignment and Assembly. **Molecular Phylogenetics:** Introduction, Terminology, Forms of Tree Representation. Phylogenetic Tree Construction Methods - Distance-Based, Character-Based Methods and Phylogenetic Tree evaluation

Unit –III 09 Hrs

Predictive and structural bioinformatics: Gene prediction programs – ab initio and homology based approaches. ORFs for gene prediction. Detection of functional sites and codon bias in the DNA. Predicting RNA secondary structure, Protein structure basics, structure visualization, comparison and classification. Protein structure predictive methods using protein sequence, Protein identity based on composition. Structure prediction - Prediction of secondary structure.

Unit –IV 07 Hrs

PERL: Introduction to Perl, writing and executing a Perl program, Operators, Variables and Special variables. Object Oriented Programming in Perl–Class and object, Polymorphism, inheritance and encapsulation. Data Types – Scalar, Array and Associative array. Regular Expressions (REGEX), Components of REGEX - Operators, Metacharacters and Modifiers.

Unit –V 07 Hrs

BioPERL: Introduction to BioPerl, BioPerl Modules, Applications of BioPerl – Sequence retrieval from Database and submission of sequence to online Database, Indexing and accessing local databases, Sequence alignments BioPerl and Sequence Analysis - Pair wise and Multiple sequence alignment, Parsing BLAST and FASTA results.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Demonstrate the knowledge of retrieval of the biological data in the essential formats and its analysis.								
CO2:	Analyse the gene, protein and RNA data to find the degree of similarities and identifying the patterns								
CO3:	Apply the drug designing methods for screening and inventing the new targets and drugs								
CO4:	Predict the structure of a compound and design the molecule.								

Refere	ence Books
1.	Essential Bioinformatics, Jin Xiong, 2006, Cambridge University Press, ISBN: 978-05-216-00828.
2.	Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins; D. Andreas Baxevanis and B. F; Francis Ouellette. 2009; Wiley-IEEE; 3rd edn; ISBN: 978-81-265-21920.
3	Bioinformatics: Sequence and Genome Analysis; D W Mount; 2014; CSHL Press; 2nd edn; ISBN: 9780879697129.
4	Computational Systems Biology; A Kriete and R Eils; 2006; Academic Press; Illustrated edn; ISBN: 978-01-208-87866.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	-	-	-	-	-	1	-	1		
CO2	3	2	2	1	-	-	-	-	-	1	-	1		
CO3	3	3	2	2	-	-	-	-	-	1	-	1		
CO4	3	3	3	3	-	-	-	-	-	1	-	1		

High-3: Medium-2: Low-1

	Semester: VII												
INDUSTRIAL SAFETY AND RISK MANAGEMENT													
(Group H: Global Elective)													
Cou	rse Code	:	18G7H03	(CIE	:	100 Marks						
Credits: L:T:P		:	3:0:0	S	SEE	:	100 Marks						
Total Hours		:	39L	S	SEE Duration		3.00 Hours						
Cou	rse Learning	, Ol	jectives: The s	students will be ab	ole to								
1	Select appro	pria	ate risk assessm	ent techniques.									
2	Analyze pub	olic	and individual j	perception of risk	•								
3													
4	Carry out ris	sk a	ssessment in pr	ocess industries									

Unit-I 08 Hrs

Introduction: Introduction to industrial safety engineering, major industrial accidents, safety and health issues, key concepts and terminologies, Hazard theory, Hazard triangle, Hazard actuation, Actuation transition, Causal factors, Hazard recognition.

Unit – II 08 Hrs

Risk assessment and control: Individual and societal risks, Risk assessment, Risk perception, Acceptable risk, ALARP, Prevention through design.

Hazard Identification Methods: Preliminary Hazard List (PHL): Overview, methodology, worksheets, case study. Preliminary Hazard Analysis (PHA): Overview, methodology, worksheets, risk index, example.

Unit –III 08 Hrs

Hazard analysis: Hazard and Operability Study (HAZOP): Definition, Process parameters, Guide words, HAZOP matrix, Procedure, Example. Failure Modes and Effects Analysis (FMEA): Introduction, system breakdown concept, methodology, example.

Unit –IV 08 Hrs

Application of Hazard Identification Techniques: Case of pressure tank, system breakdown structure, safety ontology, Accident paths, HAZOP application, risk adjusted discounted rate method, probability distribution, Hiller's model

Unit –V 07 Hrs

Safety in process industries and case studies: Personnel Protection Equipment (PPE): Safety glasses, face shields, welding helmets, absorptive lenses, hard hats, types of hand PPE, types of foot PPE, types of body PPE. Bhopal gas tragedy, Chernobyl nuclear disaster, Chemical plant explosion and fire.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Recall risk assessment techniques used in process industry.								
CO2:	Interpret the various risk assessment tools.								
CO3:	Use hazard identification tools for safety management.								
CO4:	Analyze tools and safety procedures for protection in process industries.								

Refe	rence Books
	Functional Safety in the Process Industry: A Handbook of practical Guidance in the
1	application of IEC61511 and ANSI/ISA-84, Kirkcaldy K.J.D Chauhan, 2012, North
	corolina, Lulu publication, ISBN:1291187235
2	Safety Instrumented Systems Verification Practical probabilistic calculations, Goble and
	William M., 2005, Pensulvania ISA publication, ISBN:155617909X
3	Industrial safety and risk Management, Laird Wilson and Doug Mc Cutche, 1st Edition,
	2003, The University of alberta press, Canada, ISBN: 0888643942.

4

Industrial Safety, Health and Environment Management Systems, R K Jain, Sunil S Rao, 4th Edition, 2005, Khanna Publishers, New Delhi, ISBN: 8174092102

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

SEE for 100 marksis executed by means of an examination. The Question paper for the course contains two parts, Part – A and Part – B. Part – A consists of objective type questions for 20 marks covering the complete syllabus. Part – B consists of five main questions, one from each unit for 16 marks adding up to 80 marks. Each main question may have sub questions. The question from Units I, IV and V have no internal choice. Units II and III have internal choice in which both questions cover entire unit having same complexity in terms of COs and Bloom's taxonomy level.

CO-PO Mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	103	1	105	1	1	1	10)	1010	1	1012
COI	2	3	-	1	-	1	1	1	-	-	1	-
CO2	2	3	1	-	1	1	-	-	-	-	-	-
CO3	3	2	1	1	2	-	1	-	-	1	1	-
CO4	3	-	1	-	-	-	1	ı	1	-	1	-

High-3; Medium-2; Low-1

	Semester: VII										
	WEB PROGRAMMING										
(Group H: Global Elective)											
Course Code : 18G7H04 CIE : 100 Marks							100 Marks				
Credits: L:T:P		••	3:0:0		SEE	:	100 Marks				
Tota	l Hours	••	39 L		SEE Duration	:	3.00 Hours				
Cou	rse Learning	Ob	jectives: The stude	ents will be able to							
1	Understand t	he	standard structure of	of HTML/XHTML	and its differences	S.					
2	Adapt HTM	L a	nd CSS syntax & se	emantics to build v	veb pages.						
3	Learn the de	fin	itions and syntax o	f different web pro	ogramming tools su	ıch	as JavaScript, XML				
	and Ajax to	des	ign web pages.								
4	Design and	de	evelop interactive,	client-side, serve	er-side executable	we	eb applications using				
	different tech	nnia	mes such as CSS 1	avaScript XML a	nd Aiax						

Unit-I	07 Hrs

Introduction to Web. HTML and XHTML:

Fundamentals of Web(Internet, WWW, Web Browsers and Web Servers, URLs, MIME, HTTP, Security, the Web Programmers Toolbox), XHTML: Basic syntax, Standard structure, Basic text markup, Images, Hypertext Links, Lists, Tables, Forms, Frames.

HTML 5:Core HTML attributes, headings, paragraphs and breaks, quotations, preformatted text, lists, horizontal rules, block-level elements, text-level elements The audio Element; The video Element; Organization Elements; The time Element, Syntactic Differences between HTML and XHTML.

Unit – II 08 Hrs

CSS (Cascading Style Sheet)

Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Color, Alignment of text, The box model, Background images, The and <div> tags, Conflict resolution.

The Basics of JavaScript:

Overview of JavaScript; Object orientation and JavaScript; General syntactic characteristics; Primitives, operations, and expressions; Screen output and keyboard input; Control statements.

Unit –III 09 Hrs

JavaScript (continued):

Object creation and modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts.

JavaScript and HTML Documents:

The JavaScript execution environment; The Document Object Model; Element access in JavaScript; Events and event handling; Handling events from the Body elements, Button elements, Text box and Password elements; The DOM 2 event model; The navigator object.

Unit –IV 08 Hrs

Dynamic Documents with JavaScript:

Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click; Slow movement of elements; Dragging and dropping elements.

Introduction to PHP:

Origins and uses of PHP; overview of PHP; General syntactic characteristics; Primitives, Operations and Expressions; Output; Control statements; Arrays; Functions; Pattern Matching; Form Handling; Cookies; Session Tracking.

Unit –V 07 Hrs

XML:Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets. **Ajax:** Overview of Ajax; Basics of Ajax: The Application; The Form Document; The Request Phase; The Response Document; The Receiver Phase.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the basic syntax and semantics of HTML/XHTML.								
CO2:	Apply HTML/XHTML tags for designing static web pages and forms using Cascading Style								
	Sheet.								
CO3:	Develop Client-Side Scripts using JavaScript and Server-Side Scripts using PHP and utilize the								
	concepts of XML & Ajax to design dynamic web pages.								
CO4:	Develop web based applications using PHP, XML and Ajax.								

Refer	ence Books
1	Programming the World Wide Web – Robert W. Sebesta, 7 th Edition, Pearson Education, 2013, ISBN-13:978-0132665810.
2	Web Programming Building Internet Applications – Chris Bates, 3 rd Edition, Wiley India, 2006, ISBN: 978-81-265-1290-4.
3	Internet & World Wide Web How to H program – M. Deitel, P.J. Deitel, A. B. Goldberg, 3 rd Edition, Pearson Education / PHI, 2004, ISBN-10: 0-130-89550-4
4	The Complete Reference to HTML and XHTML- Thomas A Powell, 4 th Edition, Tata McGraw Hill, 2003, ISBN: 978-0-07-222942-4.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	1	-	-	-	-	1
CO2	-	-	2	-	1	1	-	-	-	-	-	-
CO3	-	-	-	-	2	-	-	-	2	-	-	2
CO4	-	-	3	-	2	-	-	-	2	-	-	2

High-3: Medium-2: Low-1

	Semester: VII										
	SOLID WASTE MANAGEMENT AND STATUTORY RULES										
	(Group H: Global Elective)										
Cou	rse Code	:	18G7H05		CIE	:	100 Marks				
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks				
Total Hours		:	39 L		SEE Duration	:	3.00 Hours				
Cou	rse Learning ()bje	ectives: The stude	ents will be able to							
1	Impart the kr	ow	ledge of present	methods of solid was	te management sys	tem	and to analyze the				
	drawbacks.										
2	Understand va	ario	us waste manage	nent statutory rules for	the present system.						
3	Analyze diffe	rent	elements of soli	d waste management a	nd design and devel	op r	ecycling options for				
	biodegradab	le w	aste by composti	ng.							
4	Identify haza	rdo	us waste, e-wast	e, plastic waste and	bio medical waste	and	their management				
	systems.										

Unit-I 08 Hrs

Introduction: Present solid waste disposal methods. Merits and demerits of open dumping, incineration, pyrolysis, composting, sanitary landfill. Scope and importance of solid waste management. Definition and functional elements of solid waste management.

Sources: Sources of Solid waste, types of solid waste, composition of municipal solid waste, generation rate. Problems.

Collection and transportation of municipal solid waste: Collection of solid waste- services and systems, Municipal Solid waste (Management and Handling) 2016 rules with amendments. Site visit to collection system.

Unit – II 08 Hrs

Composting Aerobic and anaerobic composting - process description, process microbiology, Vermicomposting, Site visit to compost plant, Numerical problems.

Sanitary land filling: Definition, advantages and disadvantages, site selection, methods, reaction occurring in landfill- Gas and Leachate movement, Control of gas and leachate movement, Site visit to landfill site.

Unit –III 08 Hrs

Hazardous waste management: Definitions, Identification of hazardous waste, Classification of hazardous waste, onsite storage, collection, transfer and transport, processing, disposal, Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016 with amendments. Site visit to hazardous landfill site

Unit –IV 08 Hrs

Bio medical waste management: Classification of bio medical waste, collection, transportation, disposal of bio medical waste, Biomedical waste management (Management & Handling Rules) 2016 with amendments. Site visit to hospital to observe biomedical waste collection and transportation system and visit to biomedical waste incineration plant.

Unit –V 07 Hrs

E-waste management: Definition, Components, Materials used in manufacturing electronic goads, Recycling and recovery integrated approach. e-waste (Management) Rules 2016 and amendments. Site visit to e- waste treatment plant.

Plastic waste management: Manufacturing of plastic with norms. Plastic waste management. Plastic manufacture, sale & usage rules 2009 with amendments.

RV College of Engineering® – Bengaluru - 59

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the current solid waste management system and statutory rules.								
CO2:	Analyse drawbacks in the present system and provide recycling and disposal options for each type of waste in compliance to rules.								
CO3:	Distinguish Hazardous waste, Biomedical waste, E waste and to provide scientific management								
	system.								
CO4:	Evaluate and monitor the Biomedical waste, Hazardous waste, E waste, Plastic and Municipal								
	waste management as per the rules laid by Ministry of Environment, Forest and Climate change.								

Refere	ence Books :							
1	Integrated Solid Waste Management, George.C. Tchobanoglous, International edition ,1993,							
1	McGraw hill publication. ISBN 978-0070632370							
	Electronic waste management, R.E. Hester, Roy M Harrison, , Cambridge, UK, 2009, RSC							
2	Publication, ISBN 9780854041121							
3	Solid Waste Management Rules 2016, Ministry of Environment, Forest and Climate Change							
3	Notification, New Delhi, 8 th April 2016							
4	Hazardous and other wastes (Management and Transboundary Movement) Rules, 2016, Ministry							
7	of Environment, Forest and Climate Change Notification, New Delhi, 04 th April, 2016.							
5	Biomedical waste management (Management & Handling Rules) 2016,. Ministry of							
3	Environment & Forest Notification, New Delhi, amendment on 28 th March, 2016.							
6	E-waste (Management) Rules 2016, Ministry of Environment, Forest and Climate Change							
U	Notification, New Delhi, 23 rd March, 2016.							
7	Plastic Waste (Management and Handling) Rules, 2011 as amended in 2018, Ministry of							
/	Environment, Forest and Climate Change Notification, New Delhi, 27 th March, 2018							

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	-	-	-	2	2	1	-	1	-	2
CO2	2	2	2	2	-	1	2	1	-	-	-	-
CO3	1	-	2	2	-	1	2	1	-	1	-	-
CO4	2	-	-	3	-	1	2	1	-	-	-	1

High-3: Medium-2: Low-1

Semester: VII IMAGE PROCESSING AND MACHINE LEARNING (Group H: Global Elective)							
Cou	rse Code	:	18G7H06		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	40 L		SEE Duration		3.00 Hours
Cou	rse Learning Ol	bje	ctives: The st	udents will be able to			
1	Understand the	ma	ajor concepts	and techniques in image proce	essing and Machin	ne I	Learning
2	To explore, ma	nip	ulate and ana	lyze image processing technic	lues		
3 To become familiar with regression methods, classification methods, clustering methods.							
4 Demonstrate image processing and Machine Learning knowledge by designing and implementing							
	algorithms to solve practical problems						

08 Hrs

Introduction to image processing:

Introduction to image processing, Applications of image processing, Components of an image processing system, Fundamental steps in image processing, Image formation and representation, Color imagery, basic definitions, Pixels, Image resolution, PPI and DPI, Bitmap images, Lossless and lossy compression, Image file formats, Color spaces, Bezier curve, Ellipsoid, Gamma correction, Examples of zooming and shrinking in image processing Advanced image concepts.

Unit – II 08 Hrs

Basics of Python, Scikit image & Advanced Image Processing using Open CV:

Basics of python, variables & data types, data structures, control flow & conditional statements, uploading & viewing an image, Image resolution, gamma correction, determining structural similarities.

Unit –III 08 Hrs

Advanced Image processing using Open CV

Blending Two Images, Changing Contrast and Brightness Adding Text to Images Smoothing Images, Median Filter, Gaussian Filter, Bilateral Filter, Changing the Shape of Images, Effecting Image Thresholding, Calculating Gradients, Performing Histogram Equalization

Unit –IV 08 Hrs

Image Processing using Machine Learning

Feature mapping using SIFT algorithm, Image registration using the RANSAC algorithm, Image classification using Artificial Neural Networks, Image classification using CNNs, Image classification using machine learning Approaches.

Unit –V 08 Hrs

Real time use CASES

Exhaustive vs. Stochastic Search, Shapes, Contours, and Appearance Models. Mean-shift tracking; Contour-based models, finding palm lines, Face Detection / Recognition, Tracking movements.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	CO1: Gain knowledge about basic concepts of Image Processing					
CO2:	Identify machine learning techniques suitable for a given problem					
CO3:	Write programs for specific applications in image processing					
CO4:	Apply different techniques for various applications using machine learning techniques.					

Refe	Reference Books							
1	Digital Image Processing, Rafael C. Gonzalez and Richard E. Woods Pearson							
_	Education, 3 rd Edition, ISBN 978-81-317-2695-2.							
	Practical Machine Learning and Image Processing: For Facial Recognition, Object							
2	Detection, and Pattern Recognition Using Python, Himanshu Singh, 1 st Edition, Apress,							
	ISBN:978-1-4842-4149-3							
2	Pattern Recognition and Machine Learning, Christopher Bishop, 1st Edition Springer,							
3	2008, ISBN: 978-0387-31073-2							
	Computer Vision: A modern Approach, David Forsyth and Jean Ponce, 2 nd Edition,							
4	Prentice Hall India 2004, ISBN: 978-0136085928							

CIE is executed by way of quizzes (Q), tests (T) and Assignment. A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for assignment is 20. The total marks of CIE are 100.

Total CIE is 30(Q)+50(T)+20(EL)=100Marks

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO	PO2	PO3	PO4	PO	PO	PO	PO	PO	PO1	PO1	PO1
	1				5	6	7	8	9	0	1	2
CO1	3	3	2	3	2	-	-	-	-	-	-	1
CO2	-	3	-	1	2	-	-	1	2	-	-	1
CO3	3	-	2	1	3	-	-	1	1	1	-	1
CO4	3	3	3	3	2	-	-	1	1	1	-	1

High-3; Medium-2; Low-1

Semester: VII RENEWABLE ENERGYSOURCES AND STORAGE SYSTEM (Group H: Global Elective)							
Course Code		:	18G7H07		CIE	:	100 Marks
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks
Total Hours		:	39L		SEE Duration		3.00 Hours
Co	ourse Learning	Ob	jectives: The stud	dents will be able to			
1 Understand Concepts of nonconventional energy sources and allied technology required for energy conversion.							
2 Analyse the Basics of battery working and sizing of battery for a given application.							
3	3 Design aspects of solar and wind power systems.						
4	Energy storage techniques						

UNIT-I 08 Hrs

Basics of Renewable Energy: Energy balance of the earth, Solar radiation, wind energy, geothermal energy.

Geothermal Energy – principles, technical description, heat supply by hydro-geothermal systems, heat supply by deep wells, geothermal generation, economic and environmental analysis.

Biomass Energy: Biomass Production, Energy Plantation, Biomass Gasification, Theory of Gasification, Gasifier and Their Classifications, Updraft, Downdraft and Cross-draft Gasifiers, Applications of Biomass Gasifier.

Tidal Energy: Introduction, Tidal Energy Resource, Tidal Power Basin, Advantages and Disadvantages of Tidal Power.

Unit – II 08 Hrs

wind n solar p p no: 163 Photo Voltaic Systems: PV Cell, Module and array; Equivalent electrical circuit, Open —circuit ersustem Voltage and short circuit current, I-V and P-V curves, Array design, Peak power Tracking, System Components,

Grid Connected Solar PV Power System: Introduction to grid connected PV system, Configuration of Grid-connected solar PV system, Components of Grid –connected solar PV systems, Grid connected PV system Design for small power Applications, Grid-connected PV system design for power plants.

unit2 pdf - 48-83

Unit -III 08 Hrs

Wind Power: Introduction, site selection, Advantages and Disadvantages, Wind power installations in the world.

unit3 wind energy pdf(ppt) 1-36

Wind Speed and Energy: Speed and Power Relations, Power Extracted from the wind. Rotor-Swept Area, Air Density, Global Wind Patterns, Wind Speed Distribution, Weibull Probability, Distribution, Mode and Mean Speeds, Root Mean Cube Speed, Mode, Mean, and RMC Speeds, Energy Distribution, Digital Data Processing, Effect of Hub Height, Importance of Reliable Data, Wind Speed Prediction, Wind Energy Resource Maps.

unit 3 and 4 pdf till page 14

Wind Power Systems: System Components, Tower, Turbine, Blades, Speed Control, Turbine Rating, Power vs Speed and TSR.

unit3 wind energy 37-72

Unit –IV 08 Hrs

unit3 wind energy pdf 73-105 Wind Power Systems: Maximum Energy Capture, Maximum Power Operation Constant-TSR Scheme, Peak-Power-Tracking scheme, System-Design Trade-offs, Turbine Towers and Spacing, Number of Blades, Rotor Upwind or Downwind, Horizontal vs. Vertical Axis.

System Control Requirements: Speed Control, Rate Control.

Environmental Aspects: Audible Noise, Electromagnetic Interference (EMI), Effects on Birds.

14-24

RV College of Engineering® – Bengaluru - 59

wind and solar	power system Unit -V									
189	Energy storage									
	Batteries: Different types of batteries, Equivalent Electrical Circuit, Battery charge	ging, Battery								
	management									
	Flywheels: Energy Relations, Components, Benefits over battery									
Chapter 12 pdf	Other Storage devices: Superconducting magnetic energy storage, Compressed	air, Pumped								
5.13p13. 12p3.	storage hydropower, Hydrogen Energy storage									

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	CO1: Understand the concepts of power generation from various renewable sources.					
CO2:	Design the Size of the battery required for solar PV applications.					
CO3:	Design main components of solar and wind power systems.					
CO4:	Execute projects in renewable power generation.					

Refere	Reference Books						
1	Renewable energy: Technology, Economics and Environment, Martin Kaltschmitt, Wolfgang Streicher Andreas Wiese, Springer Publication, 2007, ISBN 978-3-540-70947-3						
2	Solar photo voltaic Technology and systems, Chetan Singh Solanki, third edition(2013), PHI, Learning private limited New Delhi ISBN: 978-81-203-4711-3						
3	Wind and solar power system design, Analysis and operation, Mukund R. Patel, 2 nd Edition. CRC Group ,Taylor and Francis group, New Delhi ,ISBN 978-0-8493-1570-1						
4	Power System Energy Storage Technologies, Paul Breeze, Academic Press, 2018, ISBN 978-0-12-812902-9						

Continuous Internal Evaluation (CIE); Theory (100 Marks)

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	2	-	-	-	-	-	1	-	1
CO2	3	3	2	1	1	2	-	-	-	1	-	1
CO3	3	2	2	2	2	2	2	1	-	1	-	1
CO4	3	3	3	3	2	3	1	1	1	3	1	3

High-3: Medium-2: Low-1

Semester: VII								
	MEMS AND APPLICATIONS							
			(0	Group H: Global Elective)				
Course Code		:	18G7H08		CIE	••	100 Marks	
Credits: L:T:P		:	3:0:0		SEE		100 Marks	
Total Hours		Hours : 39 L			SEE Duration		3.00 Hours	
Co	ourse Learning	Ob	jectives: The s	tudents will be able to				
1	Understand the	ruc	liments of Mic	ro fabrication techniques.				
2 Identify and associate the various sensors and actuators to applications.								
3	3 Analyze different materials used for MEMS.							
4 Design applications of MEMS to disciplines.								

Unit-I 06 Hrs

Overview of MEMS & Microsystems: MEMS and Microsystems, Typical MEMS and microsystem products, Evolution of micro fabrication, Microsystems and microelectronics, Multidisciplinary nature of Microsystems, Design and manufacture, Applications of Microsystems in automotive, healthcare, aerospace and other industries.

Working Principle of Microsystems: Biomedical and biosensors. Micro sensors: Acoustic, Chemical, Optical, Pressure, Thermal.

Unit – II 09 Hrs

Micro actuation: Using thermal forces, shape memory alloys, Piezoelectric crystals and electrostatic forces. MEMS with micro actuators: Microgrippers, micromotors, microvalves and micropumps, microaccelerometers, microfluidics.

Introduction to Scaling: Scaling in Geometry, Scaling in Rigid body dynamics, Scaling in Electrostatic forces, scaling in electromagnetic forces and scaling in fluid mechanics.

Unit –III 09 Hrs

Materials for MEMS and Microsystems: Substrates and wafers, Active substrate materials, Silicon as substrate material, Silicon Compounds, Si-Piezoresistors, GaAs, Quartz, Piezoelectric Crystals, Polymers and packaging materials. Three level of Microsystem packaging, Die level packaging, Device level packaging, System level packaging. Interfaces in microsystem packaging. Essential packaging technologies: die preparation, Surface bonding, Wire bonding, Sealing, 3D packaging.

Unit –IV 08 Hrs

Microsystem Fabrication Process: Introduction to microsystems, Photolithography, Ion Implantation, Diffusion, Oxidation, CVD,PVD-Sputtering, Deposition by Epitaxy, Etching, LIGA process: General description, Materials for substrates and photoresists, Electroplating and SLIGA process.

Unit –V 07 Hrs

Micro Sensors, Actuators, Systems and Smart Materials: An Overview

Silicon Capacitive Accelerometer, Piezo resistive Pressure sensor, Fibre-optic sensors, Conductometric Gas Sensor, Electrostatic Comb drive, Magnetic Microrelay, Portable blood analyzer, Piezo electric Inkjet Print head, Micromirror array for Video projection, Micro-PCR Systems, Smart materials and systems.

Course	Course Outcomes: After completing the course, the students will be able to					
CO1:	CO1: Understand the operation of micro devices, micro systems and their applications.					
CO2:	Apply the principle of material science to sensor design.					
CO3:	Analyze the materials used for sensor designs.					
CO4:	Conceptualize and design micro devices, micro systems.					

	Reference Books											
	1	MEMS & Microsystems Design and Manufacture, Tai-Ran Hsu, 2 nd Edition, 2002, Tata										
	1	McGraw Hill Education, New Delhi, ISBN-13:978-0-07-048709-3.										
I	2	Micro and Smart Systems, G.K. Ananthasuresh, K.J. Vinoy, K.N. Bhat, V.K. Aatre, 2015,										

	Wiley Publications, ISBN-:978-81-265-2715-1.
3	Foundations of MEMS, Chang Liu, 2012, Pearson Education Inc., ISBN-13:978-0-13-249736-7.
4	Smart Material Systems and MEMS, Vijay K Varadan, K. J. Vinoy, S. Gopalakrishnan, 2006, Wiley-INDIA, ISBN-978-81-265-3170-7.

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 60. The marks component for Assignment/Presentation/Project 10.

Total CIE is 30(Q) + 60(T) + 10(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	-	-	ı	ı	ı	-	ı	1	ı	1		
CO2	3	2	2	1	-	-	-		-	1	-	1		
CO3	3	3	2	2	1	-	-		-	1	-	1		
CO4	3	3	3	3	1	-	-		1	1	1	1		

High-3; Medium-2; Low-1

	Semester: VII											
	PROJECT MANAGEMENT											
(Group H: Global Elective)												
Course Code		:	18G7H09		CIE		100 Marks					
Cred	Credits: L:T:P		3:0:0		SEE	:	100 Marks					
Tota	l Hours	: 39L			SEE Duration		3.0 Hours					
Cour	rse Learning	Ob	jectives: The stude	ents will be able to								
1	To understar	nd t	he principles and co	omponents of proje	ect management.							
2	To appreciat	e th	ne integrated approa	ach to managing p	rojects.							
3	To explain d	iffe	erent process group	s and knowledge a	reas used to manag	ge pr	oject.					

Unit-I	07 Hrs									
Introduction: What is project, what is project management, relationships among portfolio management,										
program management, project management, and organizational project management, relationship										
between project management, operations management and organizational strategy, business value, role										
of the project manager, project management body of knowledge.										
Unit – II	09 Hrs									
Organizational influences & Project life cycle: Organizational influences on project	management,									
project state holders & governance, project team, project life cycle.										
Project Integration Management: Develop project charter, develop project manag	ement plan, direct									
& manage project work, monitor & control project work, perform integrated cha	nge control, close									
project or phase.										
Unit –III	09 Hrs									
Project Scope Management: Project scope management, collect requirements de	fine scope, create									
WBS, validate scope, control scope.										
Project Time Management: Plan schedule management, define activities, sequence activities, estimate										
activity resources, estimate activity durations, develop schedule, control schedule.										
activity resources, estimate activity durations, develop schedule, control schedule.										
Unit –IV	07 Hrs									
· · · · · · · · · · · · · · · · · · ·	07 Hrs									
Unit –IV	07 Hrs et, control costs.									
Unit –IV Project Cost management: Project Cost management, estimate cost, determine budge Project Quality management: Plan quality management, perform quality assurance, Unit –V	07 Hrs et, control costs. control quality. 07 Hrs									
Unit –IV Project Cost management: Project Cost management, estimate cost, determine budge Project Quality management: Plan quality management, perform quality assurance, Unit –V Project Risk Management: Plan risk management, identify risks, perform qualitation.	07 Hrs et, control costs. control quality. 07 Hrs									
Unit –IV Project Cost management: Project Cost management, estimate cost, determine budge Project Quality management: Plan quality management, perform quality assurance, Unit –V	07 Hrs et, control costs. control quality. 07 Hrs etive risk analysis,									

Course	Course Outcomes: After completing the course, the students will be able to										
CO1:	Understand the concepts, tools and techniques for managing large projects.										
CO2:	Explain various knowledge areas and process groups in the project management framework.										
CO3:	Analyze and evaluate risks in large and complex project environments.										
CO4:	Develop project plans for various types of organizations.										

Refer	ence Books
1	A Guide to the Project Management Body of Knowledge(PMBOK Guide), Project Management Institute, 5 th Edition, 2013, ISBN: 978-1-935589-67-9
2	Project Planning Analysis Selection Financing Implementation & Review, Prasanna Chandra, 7 th Edition, 2010, Tata McGraw Hill Publication, ISBN 0-07-007793-2.
3	Project Management A System approach to Planning Scheduling & Controlling, Harold Kerzner, 10 th Edition, 2009, CBS Publishers and Distributors, ISBN 047027806.
4	Strategic Project Management Made Simple: Practical Tools for Leaders and Teams, Terry Schmidt, 1st Edition, 2009, John Wiley & Sons, ISBN: 978-0470411582

procurements, close procurement.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20. Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2												
CO2	2	2		1	1								
CO3							1	1					
CO4	2		3		1								

Low-1 Medium-2 High-3

	Semester: VII											
	CYBER FORENSICS AND DIGITAL INVESTIGATIONS											
(Group H: Global Elective)												
Cou	rse Code	:	18G7H10		CIE	••	100 Marks					
Credits: L:T:P		:	3:0:0		SEE	:	100 Marks					
Tota	l Hours	:	39 L		SEE Duration		3.00 Hours					
Cou	rse Learning O	bje	ectives: The students	s will be able to								
1				ter forensics fundamentals	and comprehend th	ne i	mpact of					
	cybercrime an	d fo	orensics.									
2	Describe the n	not	ive and remedial me	asures for cybercrime, det	ection and handling	g.						
3	Demonstrate a	nd	investigate the use of	of Tools used in cyber fore	ensics.							
4	Analyse areas	aff	ected by cybercrime	and identify Legal Perspe	ectives in cyber sec	urit	у.					

Unit-I 09 Hrs

Introduction to Cybercrime: Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Who are Cybercriminals, Classifications of Cybercrimes, Cybercrime Era: Survival Mantra for the Netizens.

Cyber offenses: How Criminals Plan Them: How Criminals Plan the Attacks, Social Engineering, Cyberstalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing.

Unit – II 08 Hrs

Cybercrime: Mobile And Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for organizations, Organizational Measures for Handling Mobile devices, Organizational Security Policies and Measures in Mobile Computing Era, Laptops.

Unit –III 07 Hrs

Tools And Methods Used In Cybercrime: Introduction, Proxy Servers and Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, Attacks on Wireless Networks. **Phishing and Identity Theft**: Introduction, Phishing, Identity Theft (ID Theft).

Unit –IV 08 Hrs

Understanding Computer Forensics: Introduction, Historical Background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber forensics and Digital Evidence, Forensics Analysis of E-Mail, Digital Forensics Life Cycle, Chain of Custody Concept, Network Forensics, Approaching a Computer Forensics Investigation, Setting up a Computer Forensics Laboratory: Understanding the Requirements, Computer Forensics and Steganography, Relevance of the OSI 7 Layer Model to Computer Forensics, Forensics and Social Networking Sites: The Security/Privacy Threats, Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Techniques, Forensics Auditing, Anti-forensics.

Unit –V 07 Hrs

Cybercrime And Cyber Security: The Legal Perspectives-Introduction, Why Do We Need Cyberlaws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, Digital Signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.

Course	Course Outcomes: After completing the course, the students will be able to									
CO1:	Interpret the basic concepts of cyber security, cyber law and their roles.									
CO2:	Articulate evidence collection and legal challenges.									
CO3:	Discuss tool support for detection of various attacks.									
CO4:	Demonstrate through use of proper tools knowledge on the cyber security, Cybercrime and									
	forensics									

Refer	ence Books :
1	Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives, SunitBelapure and Nina Godbole, Wiley India Pvt Ltd, ISBN: 978-81-265-21791, 2013.
2	Introduction to information security and cyber laws, Dr. Surya PrakashTripathi, RitendraGoyal, Praveen Kumar Shukla, KLSI. Dreamtech Press, ISBN: 9789351194736, 2015.
3	Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrusions, Thomas J. Mowbray, Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978-1-118 84965-1
4	Cyber Forensics, Technical Publications, I. A. Dhotre, 1 st Edition, 2016, ISBN-13: 978-9333211475

CIE is executed by the way of Tests (T), Quizzes (Q),) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20.

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping													
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	-	-	-	-	-	-	3	1	-	-		
CO2	1	2	-	2	2	-	-	2	2	3	1	2		
CO3	2	3	-	2	2	2	-	2	3	2	-	-		
CO4	3	2	3	2	3	1	-	2	3	2	1	1		

High-3: Medium-2: Low-1

	Semester: VII						
			ROBO'	TICS AND AUTOMATIO	N		
			(Gı	roup H: Global Elective)			
Cour	se Code	:	18G7H11		CIE	:	100 Marks
Cred	Credits: L:T:P		3:0:0		SEE	:	100 Marks
Total	Total Hours		39 L		SEE	:	3.00 Hours
					Duration		
Cour	se Learning O	bj€	ectives: The stud	dents will be able to			
1	Understand th	ne c	oncepts of robo	tics and automation.			
2	2 Impart the knowledge of robotic programming and robotic operation control						
3	3 Selection and analysis of robot configuration and kinematics						
4	4 Importance of automation manufacturing techniques and processing industries						
5							

Unit-I 06 Hrs

Introduction - Basics of kinematics, Anatomy of robot, Robot configuration, Robot joints, Sensors and drive system, Control modes, Specification of robots, Robot programming methods.

Unit – II 09 Hrs

Robot Kinematics - Position and orientation of objects, Objects coordinate frame, Rotation matrix, Euler angles roll, pitch and yaw angles coordinate transformations, Joint variables and position of end effector, Homogeneous transformation.

D-H parameters and conventions, D-H matrix, Direct kinematic and inverse analysis of planar and 3 DoF robots.

Unit –III 10 Hrs

Trajectory planning - Introduction, Path versus trajectory, Joint-space versus Cartesian-space descriptions, Basics of trajectory planning, Joint-space trajectory planning, Third-order and Fifth-order polynomial trajectory planning.

Automation in Production Systems - Manufacturing support systems, Automation principles and strategies, Levels of Automation, Production Concepts and Mathematical models, Numericals.

Unit –IV 08 Hrs

Machine Vision - Object recognition by features, Basic features used for object identification, Moments, Template matching, Discrete Fourier descriptors, Computed Tomography (CT), Depth measurement with vision systems, Scene analysis versus mapping, Range detection and Depth analysis, Stereo imaging, Scene analysis with shading and sizes, Specialized lighting, Image data compression, Intraframe spatial domain techniques, Interframe coding, Compression techniques, Colour images, Heuristics, Applications of vision systems

Unit –V 06 Hrs

Flexible Manufacturing Systems - Introduction to FMS - concepts, integration in the data processing systems, FMS scheduling. Case studies.

Material Handling systems - Conveyors - AGVs - industrial robots in material handling - Automated Storage and retrieval system.

Distributed data processing in FMS - Database Management System and their applications in CAD/CAM and FMS - distributed systems in FMS - Integration of CAD and CAM

Course	Course Outcomes: After completing the course, the students will be able to							
CO1:	Understand the characteristics and working principle of robots.							
CO2:	Apply the related mathematical model to formulate the kinematics and trajectory planning of							
	industrial robot.							
CO3:	Analyse the machine vision for effective Flexible Manufacturing Systems.							
CO4:	Develop model and integrate drives for industrial robots and automation systems.							

Refer	ence Books
1	Mohsen Shahinpoor, "A Robot Engineering Textbook", Harper & Row Publishers, 3 rd Edition, New York, ISBN:006045931X
2	John J. Craig, "Introduction to Robotics", Pearson Education International, 3 rd Edition, ISBN:109876543, 1-13-123629-6
3	Mikell P Groover, "Automation, Production Systems, and Computer-integrated Manufacturing", Pearson Publishing, 3 rd Edition, 2014, ISBN 978 81 203 3418 2
4	Joseph Talavage, "Flexible Manufacturing Systems in Practice Design: Analysis and Simulation", CRC Press, 1987, ISBN 9780824777180

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	-	-	1	-	-	-	2	-	2
CO2	3	3	1	3	1	1	-	-	-	2	-	2
CO3	2	-	2	-	1	1	-	-	2	-	-	2
CO4	3	3	2	3	1	1	-	2	3	-	3	2

High-3: Medium-2: Low-1

	Semester: VII						
	SPACE TECHNOLOGY AND APPLICATIONS (GROUP H: GLOBAL ELECTIVE)						
Course Code : 18G7H12				CIE	:	100 Marks	
Credits: L:T:P		:	3:0:0	SEE	:	100 Marks	
Total Hours		:	39L	SEE Duration	:	3.00 Hours	
Cou	ırse Learning (Obj	ectives: The students will	be able to			
1	1 Define the earth environment and its behaviour, launching vehicles for satellites and its associated concepts.						
2	2 Analyse satellites in terms of technology, structure and communications.						
3	3 Use satellites for space applications, remote sensing and metrology.						
4	Apply the space technology, technology mission and advanced space systems to nation's growth.						

UNIT-I 08 Hrs

Earth's environment: Atmosphere, ionosphere, Magnetosphere, Van Allen Radiation belts, Interplanetary medium, Solar wind, Solar- Earth Weather Relations.

Launch Vehicles: Rocketry, Propellants, Propulsion, Combustion, Solid, Liquid and Cryogenic engines, Control and Guidance system, Ion propulsion and Nuclear Propulsion.

UNIT-II 07 Hrs

Satellite Technology: Structural, Mechanical, Thermal, Power control, Telemetry, Telecomm and Quality and Reliability, Payloads, Classification of satellites.

Satellite structure: Satellite Communications, Transponders, Satellite antennas.

UNIT-III 08 Hrs

Satellite Communications: LEO, MEO and GEO orbits, Altitude and orbit controls, Multiple Access Techniques.

Space applications: Telephony, V-SAT, DBS system, Satellite Radio and TV, Tele-Education, Telemedicine, Satellite navigation, GPS.

UNIT-IV 08 Hrs

Remote Sensing: Visual bands, Agricultural, Crop vegetation, Forestry, water Resources, Land use, Land mapping, geology, Urban development resource Management, and image processing techniques.

Metrology: Weather forecast (Long term and Short term), weather modelling, Cyclone predictions, Disaster and flood warning, rainfall predictions using satellites.

UNIT-V 08Hrs

Space Missions: Technology missions, deep space planetary missions, Lunar missions, zero gravity experiments, space biology and International space Missions.

Advanced space systems: Remote sensing cameras, planetary payloads, space shuttle, space station, Interspace communication systems.

Cours	Course Outcomes: After completing the course, the students will be able to							
CO1	Explain different types of satellites, orbit and associated subsystems.							
CO2	Apply the basics of launching vehicles, satellites and sub systems for space applications.							
CO3	Analyze the applications of satellite in the area of communication, remote sensing, metrology etc.							
CO4	Study technology trends, satellite missions and advanced space systems.							

Refe	Reference Books						
1	Atmosphere, weather and climate, R G Barry, Routledge publications, 2009, ISBN-10:0415465702.						
2	Fundamentals of Satellite Communication, K N Raja Rao, PHI, 2012, ISBN:9788120324015.						
3	Satellite Communication, Timothy pratt, John Wiley, 1986 ISBN: 978-0- 471- 37007 -9, ISBN 10: 047137007X.						
4	Remote sensing and applications, B C Panda, VIVA books Pvt. Ltd., 2009, ISBN: 108176496308.						

CIE is executed by the way of Tests (T), Quizzes (Q) and Experiential Learning (EL). Three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. Minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The marks component for experiential learning is 20

Total CIE is 50 (T) + 30 (Q) + 20 (EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

					CO-P	Э Марр	oing					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	-	-	-	1	-
CO2	2	2	1	1	-	-	-	-	-	-	1	-
CO3	2	2	1	-	-	-	-	-	-	-	1	-
CO4	2	2	1	-	-	-	-	_	-	-	1	-

High-3: Medium-2: Low-1

	Semester: VII							
	INTRODUCTION TO ASTROPHYSICS							
				(Group H: Global Elective)				
Co	urse Code	:	18G7H13	CIE	:	100 Marks		
Credits: L: T:P		:	3:0:0	SEE	:	100 Marks		
Tot	Total Hours		39 L	SEE Duration	:	3.00 Hours		
Co	urse Learning	Ob	jectives: The	students will be able to				
1	Familiarize w	ith	the various ce	elestial bodies and the laws governing their bo	havi	ior		
2	2 Understand the fundamental concepts of relativity and establish the relation between light and							
	matter							
3	3 Study the methods used to identify and investigate the nature of different stellar bodies							
4	4 Determine the characteristic features of any star by understanding its spectral properties							
5								

Unit-I	07 Hrs

Fundamental concepts in Astronomy:

Origin of the Universe, Major constituents of the universe, Cosmic Microwave Radiation (CMR) background, Geocentric Universe, Retrograde Motion of planets, Brief introduction to the Copernican Revolution, Positions of the Celestial Sphere: Altitude-Azimuth Coordinate System, Equatorial Coordinate System, Solar System, Planets - laws of motion of planets, inner planets, outer planets,

Unit – II 08 Hrs

Theory of Special Relativity:

Galilean Transformations, Failure of Galilean Transformations, Lorentz Transformations, Derivation, Time & Space in Special Relativity, Momentum & Energy in Relativity, Doppler Effect for light (Red & Blue Shift), The equivalence principle, the principle of minimal gravitational coupling, Schwarzschild spacetime, Past-Present-Future (Light Cone diagram).

Unit –III 08 Hrs

Stellar Astrophysics:

Blackbody radiation, Connection between Color and Temperature, Stellar Parallax, Magnitude Scale, Life cycle of stars (Birth, Life & Death), Hertzsprung-Russel Diagram, Classification of Binary Stars, Mass Determination using Visual Binaries, Eclipsing Spectroscopic Binaries, Formation of Spectral Lines, Schrodinger's time-dependent and independent equations, Boltzmann-Saha Equation, Chandrashekar's Limit, black holes (qualitatively).

Unit –IV 08 Hrs

Light and Matter:

Dispersion of light (Prism & Grating), Spectral Lines, de-Broglie's Wavelength and Frequency, Heisenberg's Uncertainty Principle, Broadening of Spectral lines

Spectral Characterization of Stars:

Description of the Radiation Field, Stellar Opacity, Transfer Equation, Profile of Spectral Lines, Optical Telescopes, Radio Telescopes (Case Studies)

Unit –V 08 Hrs

Galaxy Astronomy:

The Milky way Galaxy, Counting the Stars, Historical Models, Differential & Integrated Star Counts, Extrasolar planets, Methods of detection of extrasolar planets, Distance to the Galactic Centre, Galactic Coordinate System, Classification of Galaxies, Introduction to Elliptical galaxies, Irregular galaxies, Dwarf galaxies.

Course	e Outcomes: After completing the course, the students will be able to
CO1:	Contemplate the nature of our universe by identifying and studying the behavior of
	celestial bodies.
CO2:	Explain the usefulness of the theory of relativity, light and matter in establishing the
	fundamental behavior of stellar bodies.
CO3:	Utilize various techniques to discover the components of our universe and conclude their
	celestial properties.
CO4:	Interpret the spectral properties of any astronomical body to illustrate its properties.
CO5:	Inspect the milky way galaxy to identify the proponents and their characteristic features.

Ref	ference Books						
1	Carroll Bradley W, and Dale A Ostlie, An Introduction to Modern Astrophysics. Reading, 2 nd						
	Edition, 1995, MA: Addison-Wesley Pub, ISBN: 9780201547306.						
2	Padmanabhan, T, Theoretical Astrophysics, Vols.1-3, 2005, Cambridge University Press						
4	ISBN- 9780521016278.						
	Shu F, The Physical Universe, New Edition, 1982, University of California, ISBN- 978-						
3	0935702057.						
4	Harwit M, Astrophysical Concepts, 3rd Edition, 2000, Springer-verlag, ISBN- 978-						
4	0387949437.						
_	Shapiro, Stuart L, and Saul A Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, 1st						
5	Edition, 1983, Wiley, ISBN: 9780471873167.						

CIE is executed by way of quizzes (Q), tests (T) and Assignment/Presentation/Project (A). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for Assignment/Presentation/Project 20.

Total CIE is 30(Q) + 50(T) + 20(A) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping												
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	1	2	-	-	1	-	1	-	-	2	
CO2	3	2	2	2	-	-	1	-	1	-	-	2	
CO3	2	3	1	2	2	1	1	-	2	1	-	2	
CO4	3	3	1	2	2	1	2	-	3	3	-	2	

High-3, Medium-2, Low-1

Semester: VII									
MATERIALS FOR ADVANCED TECHNOLOGY AND SPECTROSCOPIC									
	CHARACTERIZATION								
	(Group H: Global Elective)								
Course Code	:	18G7H14	CIE	:	100 Marks				
Credits: L:T:P	:	3:0:0	SEE	:	100 Marks				
Total Hours	:	40L	SEE Duration	:	3.00 Hours				
Course Learning Objectives: The students will be able to									
1 Apply the basic concepts of Chemistry to develop futuristic materials for high-tech applications in the									

- area of Engineering.

 2. Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems
- 2 Impart sound knowledge in the different fields of material chemistry so as to apply it to the problems in engineering field.
- Develop analytical capabilities of students so that they can characterize, transform and use materials in engineering and apply knowledge gained in solving related engineering problems.

Unit-I 08 Hrs		Unit-I	08 Hrs
---------------	--	--------	--------

Coating and packaging materials

Surface Coating materials:

Synthesis and applications of Polymer coating materials: Teflon, Silicone films Polyvinyl chloride & its copolymers, Poly vinyl acetate, Poly ethylene-HDPE, LDPE, Polyurethane.

Properties required in a pigment and extenders.

Inorganic pigments-titanium dioxide, zinc oxide, carbon black, chromate pigments, molybdate orange, chrome green, ultramarine blue, iron blue, cadmium red.

Corrosion inhibiting pigments- zinc phosphate, zinc and barium chromate pigments, ceramic pigments, metal flake pigments, extenders.

Developments in new polymers such as dendrimers, biopolymers & biodegradable polymers.

Packaging materials:

Food products: Cellulosic and Polymeric packaging materials and their properties – including barrier properties, strength properties, optical properties. Glass, aluminum, tin, paper, plastics, composites.

Pharmaceutical products: Injectables and tablet packaging materials.

Unit – II 08 Hrs

Adhesives

Introduction-Classification of Adhesives-Natural adhesives, synthetic adhesives-drying adhesives, pressure sensitive adhesives, contact adhesives, hot adhesives. One-part adhesives, multi part adhesives. Adhesive Action. Development of Adhesive strength- Physical factors influencing Adhesive Action-surface tension, surface smoothness, thickness of adhesive film, elasticity and tensile strength. Chemical Factors Influencing Adhesive action - presence of polar groups, degree of polymerization, complexity of the adhesive molecules, effect of pH. Adhesive action- specific adhesive action, mechanical adhesive action, fusion adhesion. Development of adhesive strength- adsorption theory and diffusion theory. Preparation, curing and bonding Processes by adhesives-with reference to Epoxy, phenolics, Silicone, Polyurethane, Acrylic adhesives, Poly vinyl alcohol, Polyvinyl acetate.

Unit –III 08 Hrs

Optical fibre materials

Fiber Optics, Advantages of optical fiber communication over analog communication, Classification based on refractive index of the core- step index and graded index optical fibres, Classification based on core radius-single mode and multimode optical fibres, Fibre fabrication. -Methods to manufacture optical glass fibres. Double crucible method and preform methods. Manufacture of perform- Chemical Vapour Deposition (CVD), Modified vapour deposition (MCVD) Plasma activated vapour deposition (PCVD), Outside vapour deposition (OVD)-Vapour-phase axial deposition (VAD). Drawing the fibres from perform, coating and jacketing process.

Ion exchange resins and membranes

Ion exchange resins-Introduction, Types-cation and anion exchange resins, examples, physical properties, chemical properties-capacity, swelling, kinetics, stability, ion exchange equilibrium, regeneration. Applications of ion exchange resins-softening of water, demineralization of water, advantages and disadvantages of ion exchange resins-calcium sulphate fouling, iron fouling, adsorption

of organic matter, bacterial contamination. Ion exchange membranes, Types-anion and cation exchange membranes. Classification of ion exchange membranes based on connection way between charged groups and polymeric matrix-homogeneous and heterogeneous ion exchange membranes, examples. Fabrication of ion exchange cottons- anion exchange cotton and cation exchange cotton. Application of ion exchange membranes in purification of water by electro dialysis method.

Unit –IV 08 Hrs

Spectroscopic Characterization of materials:

Electromagnetic radiation, interaction of materials with electromagnetic radiation.

UV- visible spectrophotometry: **Introduction**-Electronic transitions- factors influencing position and intensity of absorption bands-absorption spectra of dienes, polyene and α,β -unsaturated carbonyl compounds, Working of UV-Vis spectrophotometer, Theoretical calculation of λ_{max} by using Woodward-Fieser rules- for cyclic and α,β -unsaturated carbonyl compounds.

IR Spectroscopy: Introduction, principle, molecular vibrations, vibrational frequency, number of fundamental vibrations, factors influencing fundamental vibrations, instrumentation of IR spectrophotometer, sampling techniques, application of IR spectroscopy in characterization of functional groups.

Unit –V 08 Hrs

NMR spectroscopy:

H¹ NMR Spectroscopy: Basic concepts- relaxation process. NMR spectrometer-FT NMR-Solvents used in NMR, internal standards-Chemical equivalence -Integrals and Integrations- chemical shift-Factors affecting chemical shifts- shielding and deshielding effects – chemical and magnetic equivalent – magnetic anisotropy-spin-spin splitting rules- Application of NMR on various compounds such as alkanes, alkenes, alkynes, alkyl halides, alcohols, ethers, amines, aldehydes, ketones, carboxylic acids, esters, amides & mono substituted aromatic compounds. Problems on prediction of structure of compounds. Application of NMR in magnetic resonance imaging (MRI).

Course	e Outcomes: After completing the course, the students will be able to								
CO1:	Identify sustainable engineering materials and understand their properties.								
CO2:	O2: Apply the basic concepts of chemistry to develop futuristic materials for high-tech applications								
	in different areas of engineering.								
CO3:	Analyze and evaluate the specific application of materials.								
CO4:	Design the route for synthesis of material and its characterization.								

Refere	ence Books
1	Materials Science by G.K.Narula, K.S.Narula & V.K.Gupta. 38 th Edtion, Tata McGraw-Hill
1	Publishing Company Limited-2015, ISBN: 9780074517963
2	Solar Lighting by Ramachandra Pode and Boucar Diouf, Springer e-book, 2011, ISBN: 978-1-
	4471-2133-6 (Print) 978-1-4471-2134-3 (Online).
	Spectroscopy of organic compounds by P.S.Kalsi, New Age International (P) ltd, Publisher, 2005,
3	ISBN 13: 9788122415438
4	Food Packaging Materials. Mahadeviah M & Gowramma RV, Tata McGraw Hill Publishing
4	Company Limited, 1996, ISBN :0074622382 9780074622384.

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping													
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1													
CO1	3	-	-	-	-	-	-	-	-	-	-	-		
CO2	3	-	-	-	-	2	2	-	-	1	-	-		
CO3	-	3	-	2	-	-	-	-	-	-	-	-		
CO4	-	-	3	-	-	1	1	-	-	-	-	1		

High-3: Medium-2: Low-1

	Semester: VII									
	APPLIED PSYCHOLOGY FOR ENGINEERS									
(Group H: Global Elective)										
Cour	Course Code : 18G7H15 CIE : 100 Marks									
Cred	its: L:T:P	:	3:0:0	SEE	<u> </u>	:	100 Marks			
Total	l Hours	:	39 L	SEE	Duration	:	3.00 Hours			
Cour	rse Learning O	oje	ctives: The stu	dents will be able to						
1	To appreciate	huı	nan behavior a	and human mind in the context of	of learner's in	nm	ediate society			
	and environme	nt.								
2	To understand	the	e importance o	f lifelong learning and personal	flexibility to	su	stain personal			
	and Profession	al (development a	s the nature of work evolves.			_			
3	To provide stu	ıde	nts with know	ledge and skills for building fir	m foundation	ı fo	or the suitable			
	engineering pr	ofe	ssions.							
4	To prepare stu	der	ts to function	as effective Engineering Psychol	logists in an I	ndı	ıstrial,			
	Governmental or consulting organization.									
5	To enable stud	ent	s to use psycho	ological knowledge, skills, and v	alues in occu	ıpat	tional pursuits			
	in a variety of	set	tings that meet	personal goals and societal need	ds.	-	-			

Unit-I 07 Hrs

Introduction to Psychology: Definition and goals of Psychology: Role of a Psychologist in the Society: Today's Perspectives (Branches of psychology). Psychodynamic, Behavioristic, Cognitive, Humanistic, Psychological Research and Methods to study Human Behavior: Experimental, Observation, Questionnaire and Clinical Method.

Unit – II 09 Hrs

Intelligence and Aptitude: Concept and definition of Intelligence and Aptitude, Nature of Intelligence. Theories of Intelligence – Spearman, Thurston, Guilford Vernon. Characteristics of Intelligence tests, Types of tests. Measurement of Intelligence and Aptitude, Concept of IQ, Measurement of Multiple Intelligence – Fluid and Crystallized Intelligence.

Unit –III 09 Hrs

Personality: Concept and definition of personality, Approaches of personality- psychoanalytical, Socio- Cultural, Interpersonal and developmental, Humanistic, Behaviorist, Trait and type approaches. Assessment of Personality: Self- report measures of Personality, Questionnaires, Rating Scales and Projective techniques, its Characteristics, advantages & limitations, examples. Behavioral Assessment. Psychological Stress: a. Stress- Definition, Symptoms of Stress, Extreme products of stress v s Burnout, Work Place Trauma. Causes of Stress – Job related causes of stress. Sources of Frustration, Stress and Job Performance, Stress Vulnerability-Stress threshold, perceived control

Unit –IV 07 Hrs

Application of Psychology in Working Environment: The present scenario of information technology, the role of psychologist in the organization, Selection and Training of Psychology Professionals to work in the field of Information Technology. Distance learning, Psychological consequences of recent developments in Information Technology. Type A and Type B Psychological Counseling - Need for Counseling, Types – Directed, Non- Directed, Participative Counseling.

Unit –V 07 Hrs

Learning: Definition, Conditioning – Classical Conditioning, Basics of Classical Conditioning (Pavlov), the process of Extinction, Discrimination and Generalization. Operant Conditioning (Skinner expt). The basics of operant conditioning, Schedules of reinforcement. Cognitive – Social approaches to learning – Latent Learning, Observational Learning, Trial and Error Method, Insightful Learning.

Course	Course Outcomes: After completing the course, the students will be able to								
CO1:	Understand the application of psychology in engineering and technology and develop a route to								
	accomplish goals in their work environment.								
CO2:	Define learning and compare and contrast the factors that cognitive, behavioral, and								
	Humanistic theorists believe influence the learning process.								
CO3:	Develop understanding of psychological attributes such as intelligence, aptitude, creativity,								
	resulting in their enhancement and apply effective strategies for self-management and self-								
	improvement.								
CO4:	Apply the theories into their own and others' lives in order to better understand their								
	personalities and experiences.								

Ref	Reference Books								
1	Understanding Psychology Feldman R. S, IV edition, (1996) McGraw Hill India								
2	Psychology Robert A. Baron, III edition (1995) Prentice Hall India.								
3	3. Organizational Behaviour , Stephen P Robbins Pearson Education Publications, 13^{th} Edition, ISBN $-81-317-1132-3$								
4	4. Organisational Behaviour : Human Behaviour at Work ,John W.Newstrem and Keith Davis. Tata McGraw Hill India, 10th Edition, ISBN 0-07-046504-5								

CIE is executed by way of quizzes (Q), tests (T) and experiential learning (EL). A minimum of three quizzes are conducted and each quiz is evaluated for 10 marks adding up to 30 marks. All quizzes are conducted online. Faculty may adopt innovative methods for conducting quizzes effectively. The number of quizzes may be more than three also. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(Q) + 50(T) + 20(EL) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	CO/PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester: VII										
	ADVANCED COURSE IN ENTREPRENEURSHIP										
	(Group H: Global Elective)										
Co	Course Code : 18G7H16 CIE : 100 Marks										
Credits: L:T:P		:	3:0:0	S	SEE	:	100 Marks				
To	otal Hours	:	39 L	S	SEE Duration	:	3.00 Hours				
Co	ourse Learning Ob	jec	tives: The students v	will be able to							
1	Acquire additional	kn	owledge and skills f	for developing early custome	er traction into a	repea	table business.				
2	Learn the tools an	d n	nethods for achievin	g sustainable growth, such	as by refining th	eir pi	roduct or service				
	and business mode	els,	building brand strate	egy, making a sales and fina	ancial plan	_					
3	e ev										
4											
	expand markets										

Unit-I	07 Hrs
Intro to building Products & Value Proposition: Diagnose: Where are you today on the Product Life Cy your Start-up's attractiveness	cle? Assess
Competition & testing: Conduct a Competition Analysis Identify your Competitive Advantage	
Unit – II	06 Hrs
Market Validation: Market validation, Customer Usability Interviews, Analyzing Customer feedback	
Delivering Value: Enlist marketing channels, Identify partners for your venture, Create a Sales plan	
Unit –III	07 Hrs
Customer acquisition & growth channels: Types of Marketing Channels: TargetingBlogs, Unconv Search EngineMarketing, Search EngineOptimization, Socialads, displayads and existing platforms, En ViralMarketing, Affiliate programs, Magazines, Newspaper, Radio and TVads, OfflineAds, TradeShows	
Unit –IV	10 Hrs
Business model: ReiterateandRefineyourBusinessModelCanvas, Choosetherightbusinessmodelforyourstart- Financial Planning: Forecastingsalesandrevenueprojections, Cash-flowstatement	up
Unit –V	09 Hrs
Pitching: Create your funding plan, Build your pitch deck and compose your pitch.	

Experiential Learning: Studentteams will present their practice ventures: business model, business plan, growth achieved, and key learnings to their classmates, faculty, and other entrepreneurs

Course Outcomes: After completing the course, the students will be able to						
CO1:	O1: Develop strategies to increase revenues and expand markets, Explore licensing and franchising					
	for business expansion.					
CO2:	D2: Leverage technologies and platforms for growth stage companies, Develop key metrics to track					
	progress.					
CO3:	3: Basics of registering a company, Understanding business regulations and compliances.					
CO4:	Advanced concepts of business finance, Financial planning.					

Reference Books								
1	Running Lean: Iterate from Plan A to a Plan That Works. O'Reilly Media, Maurya, A., 2012.							
2	Entrepreneurship. Roy, R., 2012. Oxford University Press							
3	Intellectual Property Law in India. Gupta, T. S., 2011. Kluwer Law International							
4	Flow: The Psychology of Optimal Experience. Czikszentmihalyi, M., 2008. Harper Perennial Modern Classics							

CIE is executed by way of tests (T) and Milestones (M). A minimum of four milestone submission have to be submitted and first three milestones (M1, M2, M3) are evaluated for 10 marks adding up to 30 marks and the final milestone (M4) is evaluated for 20 marks. All milestone submissions are online and as per format and portal prescribed by Wadhwani foundations. Faculty may adopt innovative methods for conducting quizzes effectively. The three tests are conducted for 50 marks each and the sum of the marks scored from three tests is reduced to 50. The marks component for experiential learning is 20.

Total CIE is 30(M1, M2 and M3) + 50(T) + 20(M4) = 100 Marks.

Semester End Evaluation (SEE); Theory (100 Marks)

	CO-PO Mapping											
CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	-	-	1	-	1
CO2	3	2	2	1	-	-	-	-	-	1	-	1
CO3	3	3	2	2	-	-	-	-	-	1	-	1
CO4	3	3	3	3	-	-	-	-	-	1	-	1

High-3: Medium-2: Low-1

	Semester VIII							
MAJOR PROJECT								
Cour	Course Code : 18CSP81 CIE : 100 Marks						100 Marks	
Credits: L:T:P : 0:0:16:0				100 Marks				
Total Hours :			32	SEE Dura	ation	:	3.00 Hours	
Course Learning Objectives: The students will be able to								
1.	Acquire the ab	ility	to make links across diffe	erent areas of knowledge and to	generate, de	evel	lop and evaluate	
	ideas and information so as to apply these skills to the project task.							
2.	Acquire the skills to communicate effectively and to present ideas clearly and coherently to a specific							
	audience in both written and oral forms.							
3. Acquire collaborative skills through working in a team to achieve common goals.								
4.	Self-learn, reflect on their learning and take appropriate action to improve it.							
5.	Prepare schedules and budgets and keep track of the progress and expenditure.							

Major Project Guidelines:

- 1. The project topic, title and synopsis have to be finalized and submitted to their respective internal guide(s) before the beginning of the 8th semester.
- 2. The detailed Synopsis (approved by the department *Project Review Committee*) has to be submitted during the 1st week after the commencement of 8th semester.

Batch Formation:

- > Students are free to choose their project partners from within the program or any other program.
- Each student in the team must contribute towards the successful completion of the project. The project may be carried out In-house / Industry / R & D Institution.
- The project work is to be carried out by a team of two to four students, in exceptional cases where a student is placed in a company and offered an internship through the competitive process or student is selected for internship at national or international level through competitive process, the student can work independently.
- The students are allowed to do either a project for full 5 days in the industry or full 5 days in the college.
- In case the project work is carried out outside Bengaluru, such students must be available during Project Evaluation process scheduled by the respective departments and they must also interact with their guide regularly through Email / Webinar / Skype etc.

Project Topic Selection:

The topics of the project work must be in the *field of respective program areas or in line with CoE's(Centre of Excellence) identified by the college* or List of project areas as given by industry/Faculty. The projects as far as possible should have societal relevance with focus on sustainability.

Students can select courses in *NPTEL* from the discipline of *Humanities and Social Sciences*, *Management*, *Multidisciplinary and Design Engineering*. The course chosen could be either of 4w/8w/12w duration. The students need to enrol for a course, register for the exam and submit the e-certificate to the department, as and when it is released by NPTEL. *The same will be considered as one of the components during project evaluation of phase 2 and phase 5*.

Project Evaluation:

- Continuous monitoring of project work will be carried out and cumulative evaluation will be done.
- > The students are required to meet their internal guides once in a week to report their progress in project work.
- ➤ Weekly Activity Report (WAR) has to be maintained in the form of a diary by the project batch and the same has to be discussed with the Internal Guide regularly.
- ➤ In case of *Industry project*, during the course of project work, the internal guides will have continuous interaction with external guides and will visit the industry at least twice during the project period.
- For CIE assessment the project groups must give a final seminar with the draft copy of the project report.
- ➤ The presentation by each group will be for 20-30 minutes and every member of the team needs to justify the contributions to the project.
- > The project team is required to submit Hard copies of the detailed Project Report in the prescribed format to the department.
- ➤ For CIE 50% weightage should be given to the project guide and 50% weightage to the project evaluation committee.
- ➤ Before the final evaluations the project group is required to produce a No dues certificate from Industry, Central Library and Department.

Cours	Course Outcomes of Major Project:							
1	Apply knowledge of mathematics, science and engineering to solve respective engineering domain problems.							
	1							
2	Design, develop, present and document innovative/multidisciplinary modules for a complete engineering							
	system.							
3	Use modern engineering tools, software and equipment to solve problem and engage in life-long learning to							
	follow technological developments.							
4	Function effectively as an individual, or leader in diverse teams, with the understanding of professional							
	ethics and responsibilities.							

CIE Assessment:

The following are the weightings given for the various stages of the project.

1.	Selection of the topic and formulation of objectives	10%
2.	Design and Development of Project methodology	25%
3.	Execution of Project	25%
4.	Presentation, Demonstration and Results Discussion	30%
5.	Report Writing & Publication	10%

SEE Assessment:

The following are the weightages given during Viva Examination.

1.	Written presentation of synopsis	10%
2.	Presentation/Demonstration of the project	30%
3.	Methodology and Experimental Results & Discussion	30%
4.	Report	10%
5.	Viva Voce	20%

Calendar of Events for the Project Work:

Week	Event		
Beginning of 7 th Semester	Formation of group and approval by the department committee.		
7 th Semester	Problem selection and literature survey		
Last two weeks of 7 th Semester	Finalization of project and guide allotment		
II Week of 8 th Semester	Synopsis submission and preliminary seminar		
III Week	First visit of the internal guides to industry (In case of project being carried out		
	in industry)		
III to VI Week	Design and development of project methodology		
VII to IX Week	Implementation of the project		
X Week	Submission of draft copy of the project report		
XI and XII Week	Second visit by guide to industry for demonstration. Final seminar by		
	Department project Committee and guide for internal assessment. Finalization		
	of CIE.		

Evaluation Scheme for CIE and SEE

Scheme of Evaluation for CII	E	Scheme of Evaluation for SEE			
Particulars	%Marks	Particulars	%Marks		
Project Evaluation I	10%	Project Synopsis (Initial Write up)	10%		
Project Evaluation II	25%	Project Demo / Presentation	30%		
Project Evaluation III	25%	Methodology and Results Discussion	30%		
Project Evaluation Phase-IV (Submission of Draft Project Report for Verification)	30%	Project Work Report	10%		
Project Evaluation Phase-V (Project Final Internal Evaluation)	10%	Viva-voce	20%		
Total	100	Total	100		

Curriculum Design Process

Academic Planning And Implementation

Process For Course Outcome Attainment

Final CO Attainment Process

Program Outcome Attainment Process

PROGRAM OUTCOMES (POs)

- 1. **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning:** Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.