STAT 88: Lecture 33

Contents

Section 10.4: Normal Distribution Section 11.1: Bias and Variance

Warm up:

- (a) If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$, what distribution is \bar{X} ?
- (b) If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, \ldots, Y_m \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$ and two samples are independent, what distribution is $\bar{X} \bar{Y}$?
- (c) If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p)$, (approximately) what distribution is \bar{X} ?
- (d) If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p_X)$ and $Y_1, \ldots, Y_m \stackrel{\text{iid}}{\sim} \text{Bernoulli}(p_Y)$ and two samples are independent, (approximately) what distribution is $\bar{X} \bar{Y}$?

Last time

Continuous probability distributions:

Uniform

Let $X \sim \text{Unif}(a, b)$. Then the density is

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

We have E(X) = (a + b)/2 and $SD(X) = (b - a)/\sqrt{12}$.

Exponential

Let $X \sim \text{Exp}(\lambda)$. Then the density is

E.g. X= time until failure of a mechanical desire $f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x>0\\ 0 & \text{otherwise} \end{cases}$

2

We have $E(X) = \frac{1}{\lambda}$ and $SD(X) = \frac{1}{\lambda}$. The Half Life is $h = \log 2/\lambda$.

Normal

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then the density is

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{ for } -\infty < x < \infty.$$

We have $E(X) = \mu$ and $SD(X) = \sigma$. If $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ and Xand Y are independent, then

$$X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2).$$

This result extends to linear combinations of independent normal random variables.

10.4. The Normal Distribution

Confidence Interval for the Difference Between Means Suppose you have two independent samples as follows:

- X_1, X_2, \ldots, X_n are i.i.d. with mean μ_X and SD σ_X .
- Y_1, Y_2, \ldots, Y_m are i.i.d. with mean μ_Y and SD σ_Y .

You want to estimate the difference $\mu_X - \mu_Y$. Then $\bar{X} - \bar{Y}$ is an unbiased estimator for $\mu_X - \mu_Y$.

By CLT, we know

- \bar{X} is approximately $\mathcal{N}(\mu_X, \frac{\sigma_X^2}{n})$.
- \bar{Y} is approximately $\mathcal{N}(\mu_Y, \frac{\sigma_Y^2}{m})$.

Then $\bar{X} - \bar{Y}$ is approximately $\mathcal{N}($,) and an approximate 95% CI for $\mu_X - \mu_Y$ is given by

$$\bar{X} - \bar{Y} \pm 2\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}.$$

Example: Suppose you have drawn samples of people independently from two cities, and suppose you have collected the following data:

- The incomes of the 400 sampled people in City X have an average of 70,000 dollars and an SD of 40,000 dollars.
- The incomes of the 600 sampled people in City Y have an average of 80,000 dollars and an SD of 50,000 dollars.

Find a 95% CI for the difference between the mean incomes in the two citie

Test for the Equality of Two Means (A/B Test) We wish to determine if two independent populations have the same mean, i.e. $\mu_X - \mu_Y = 0$.

Example: Suppose you have drawn samples of people independently from two cities, and suppose you have collected the following data:

- The incomes of the 400 sampled people in City X have an average of 70,000 dollars and an SD of 40,000 dollars.
- The incomes of the 600 sampled people in City Y have an average of 80,000 dollars and an SD of 50,000 dollars.

 $H_0: \mu_X = \mu_Y$, the mean income in City X is the same as the mean income in City Y.

 $H_A: \mu_Y > \mu_X.$

Test statistic: $\bar{Y} - \bar{X}$. Our observed value is 10,000. We reject H_0 if $\bar{\gamma}$ - \bar{X} is large.

Under H_0 , we have

$$\bar{Y} - \bar{X} \sim \mathcal{N} \left(0, \frac{\sigma_X^2}{400} + \frac{\sigma_Y^2}{600} \right).$$

p-value:

Confidence Interval for the Difference Between Proportions This is a special case of the above where now populations are 0's and 1's.

- X_1, X_2, \ldots, X_n are i.i.d. from Bernoulli (p_X) ;
- Y_1, Y_2, \ldots, Y_m are i.i.d. from Bernoulli (p_Y) .

 $\bar{X} - \bar{Y}$ is an unbiased estimator for $p_X - p_Y$:

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(p_X - p_Y, \frac{p_X(1 - p_X)}{n} + \frac{p_Y(1 - p_Y)}{m}\right).$$

Example: Suppose we have independent samples from two cities, where sample sizes are n = 400 and m = 600 for City X and City Y, and:

- 37% of the City X sample are undecided about who they want as President;
- 28% of the City Y sample are undecided about who they want as President.

Find a 95% CI for $p_X - p_Y$.

Test for the Equality of Two Proportions Our hypotheses are:

• $H_0: p_X = p_Y = p$; here p is just a name we are giving to the common value of p_X and p_Y .

• $H_A: p_X > p_Y$.

Test statistic: $\bar{X} - \bar{Y}$. Under H_0 ,

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(0, \frac{p(1-p)}{n} + \frac{p(1-p)}{m}\right).$$

Example: Suppose we have independent samples from two cities, where sample sizes are n = 400 and m = 600 for City X and City Y, and:

- 37% of the City X sample are undecided about who they want as President;
- 28% of the City Y sample are undecided about who they want as President.

Test $H_0: p_X = p_Y$ vs $H_A: p_X > p_Y$ at level 5%.

11.1. Bias and Variance

Suppose we are trying to estimate a constant numerical parameter, θ , and our estimator is the statistic T. Below θ is red and T is blue for different samples.

What are the two best estimators?

Lets make a quantitative analysis.

Mean Squared Error The error in our estimate is $T - \theta$. Then

$$MSE_{\theta}(T) = E_{\theta} ((T - \theta)^2).$$

We are using θ as a subscript to remind us that the expectation is calculated under the assumption that θ is the true value of the parameter.

Think of this as the average distance squared of T from θ . We want $MSE_{\theta}(T)$ to be as small as possible.

Decomposition of Error

Deviation:

$$D_{\theta}(T) = T - E_{\theta}(T). \qquad \left(\begin{array}{c} \text{deviation of } T \\ \text{from the mean} \end{array} \right)$$

Is it random or constant?

Bias:

$$B_{\theta}(T) = E_{\theta}(T) - \theta.$$
 (Unblased means)

Is it random or constant?

We have a decomposition of the error as the sum of the deviation and the bias:

$$T - \theta = \underbrace{(T - E_{\theta}(T))}_{=D_{\theta}(T)} + \underbrace{(E_{\theta}(T) - \theta)}_{=B_{\theta}(T)}.$$

What is $E_{\theta}(D_{\theta}(T))$? What is $E_{\theta}(D_{\theta}^{2}(T))$?

Bias-Variance Decomposition

$$MSE_{\theta}(T) = E_{\theta} ((T - \theta)^{2})$$

$$= E_{\theta} ((D_{\theta}(T) + B_{\theta}(T))^{2})$$

$$= E_{\theta} (D_{\theta}^{2}(T) + 2B_{\theta}(T)D_{\theta}(T) + B_{\theta}^{2}(T))$$

$$= E_{\theta} (D_{\theta}^{2}(T) + B_{\theta}^{2}(T)D_{\theta}(T) + B_{\theta}^{2}(T))$$