·TT1 marks! ·TT2: details & office hours Last time ... proving $\forall n \in \mathbb{N}, \forall x \in \mathbb{N}, x \leq 2^{n} - 1 \Rightarrow B(n, x)$ where B(n,x): 3bo, b,, ..., bn-1 & {0,1}, x=(bn-1 ... b_0)2 $(recall, (b_{n-1} \cdots b_{o})_{2} = \sum_{i=0}^{n-1} b_{i} 2^{i}).$ - P(n): $\forall x \in \mathbb{N}, x \leq 2^n - 1 \Rightarrow B(n, x)$ -BC: we proved P(0) [idea: 0=()2] - Ind. Hyp.: Let n ElN. Assume P(n): $\forall x \in \mathbb{N}, \ x \leq 2^{-1} \Rightarrow \mathcal{B}(n, x)$

- Ind. Step: WTS P(n+1): YXEN, X < 2-1 => B(n+1,x) WANT KNOW $\forall x \in \mathbb{N}, \ \chi \leq 2^{n+1} \Rightarrow \mathcal{B}(u+1,x)$ $n \in N$ Yx €1N, x €2-1 => B(n, x). : set up proof headers Let x EIN. Assume x < 2 -1. x∈W = 1 x≤2-1 B(n+l,x)IH does not apply IH applies Insight: either x < 2-1 or x > 2-1

Then, either $x \leq 2^n - ($ or $x > 2^n - 1$. Casel: Assume x < 2-1 Added: x < 2 -1 : By the IH (with $x_0=x$), we can conclude B(n,x): (KNOW) $\exists b_{0}, b_{1}, ..., b_{n-1} \in \{0,1\}, \ \alpha = (b_{n-1} ... b_{0})_{2}$ WTS: B(n+1,x): 3 10, bi, ..., bie {0,13, x=(bi...bo)2 (WANT) e.g.: x= (101)2 = 5 $\chi = (0161)_2 = 5$

Let
$$b'_{0} = b_{0}$$
, $b'_{1} = b_{1}$, ..., $b''_{n-1} = b_{n-1}$, $b''_{n} = O$
Then, $(b''_{n} \cdots b'_{0})_{2} = (Ob_{n-1} \cdots b_{0})_{2} = x$.
So $B(n+1, x)$ holds.
Recall: $(Ob_{n-1} \cdots b_{0})_{2} = \sum_{i=0}^{n} b'_{i} 2^{i} = O \cdot 2^{n} + \sum_{i=0}^{n-1} b_{i} 2^{i}$
Case 2: Assume $x > 2^{n} - 1$
done with $x \le 2^{n} - 1$ (can!) $(2^{n} - 1 < x)$
new assumption: $x > 2^{n} - 1$ $(= 2^{n} \le x)$
Then, $2^{n} \le x \le 2^{n} - 1 = 2^{n} \le 2^{n} - 1$
So $O \le x - 2^{n} \le 2^{n} - 1$

By the IH (with
$$x_0 = x - 2^n$$
)

we know $B(n, x - 2^n)$
 $\exists b_0, ..., b_{n-1} \in \{0,1\}, x - 2^n = (b_{n-1} ... b_0)_2$
 $\Rightarrow x - 2^n = \sum_{i=0}^{n-1} b_i 2^i$
 $\Rightarrow x = 1 \cdot 2^n + \sum_{i=0}^{n-1} b_i 2^i = (1 b_{n-1} ... b_0)_2$

So B(n+1, x) holds (by picking $b'_0 = b_0$) ..., $b'_{n-1} = b_{n-1}$, $b'_n = 1$).

We have proved: $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{N}, \ x \leq 2^{n} - 1 \Rightarrow B(n, x)$ Tums out the converse is also true: $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{N}, \ \mathbb{B}(n,x) \Rightarrow x \leq 2-1$ EXERCISE: prove this! Hint: you don't need induction... but you will need not your will need Fact: \fuelly, \sum_{i=0}^{-1} z^i = 2^n -1