Thermodynamics Lesson 2: Quantifying Heat and Changing States

Mr Haynes

Gosford High School

April 7, 2025

Outline

- Review
- Specific Heat Capacity
- 3 Latent Heat
- 4 Heating Curves
- Calculations
- **6** Summary

Recap: Temperature and Heat Transfer

- Temperature measures average particle KE [N1].
- Heat is energy transferred due to ΔT .
- Mechanisms: Conduction, Convection, Radiation [N4].

Think/Pair/Share: Why does beach sand get much hotter than ocean water under the same sunlight?

Recap: Temperature and Heat Transfer

- Temperature measures average particle KE [N1].
- Heat is energy transferred due to ΔT .
- Mechanisms: Conduction, Convection, Radiation [N4].

Think/Pair/Share: Why does beach sand get much hotter than ocean water under the same sunlight?

• Answer Hint: Different substances require different amounts of energy to change temperature by the same amount.

P. Haynes (GHS) Thermo: Quantifying Heat

Heating Up: Specific Heat Capacity

- Definition: The amount of heat energy required to raise the temperature of 1 kg of a substance by 1 K (or 1 °C).
- Symbol: c
- Units: $J kg^{-1} K^{-1}$ or $J kg^{-1} {}^{\circ}C^{-1}$
- High 'c' (like water: \approx 4186): Takes a LOT of energy to heat up (and stores a lot).
- Low 'c' (like sand/metals: $\approx 800/400$): Heats up quickly with less energy.
- Formula: The heat energy (Q) needed for a temperature change (ΔT) depends on mass (m) and specific heat capacity (c):

$$Q = mc\Delta T$$

where $\Delta T = T_{final} - T_{initial}$.

Energy for Phase Changes: Latent Heat

Observation (Heating Curve): When a substance melts or boils, its temperature *remains constant* even though heat is being added. Why?

 Energy is used to overcome intermolecular forces (increase potential energy), not increase kinetic energy (temperature).

Definition: Latent heat (L) is the energy absorbed or released per unit mass during a phase change at constant temperature.

- Latent Heat of Fusion (L_f): Energy for solid \leftrightarrow liquid change.
- Latent Heat of Vaporization (L_{ν}): Energy for liquid \leftrightarrow gas change. (Typically $L_{\nu} > L_f$)

Formula: Heat energy (Q) for phase change of mass (m):

$$Q = mL$$

(Use L_f for melting/freezing, L_v for boiling/condensing)

P. Haynes (GHS)

Thermo: Quantifying Heat

5 / 9

Putting It Together: The Heating Curve

img/placeholder_heating_curve.png

Applying the Formulas

Example 1 (Specific Heat): Heat to warm 0.5 kg water from 10°C to 30°C? ($c_W = 4186$)

• $Q = mc\Delta T = (0.5)(4186)(30 - 10) = 41860 J$

Example 2 (Latent Heat): Heat to melt 0.1 kg ice at 0°C? $(L_{f,w} = 3.34 \times 10^5)$

• $Q = mL_f = (0.1)(3.34 \times 10^5) = 33400 \,\mathrm{J}$

See Worksheet 2 for practice problems.

Lesson 2 Summary

- Specific Heat Capacity (c) relates heat added to temperature change $(Q = mc\Delta T)$ [N3].
- Latent Heat (L) relates heat added to phase change (Q = mL) [N5].
- Heating curves show temperature changes (slopes) and phase changes (plateaus) [N5 Analyse].
- Energy added during phase change increases potential energy (breaks bonds), not kinetic energy (temperature).

Next Steps:

- Complete Worksheet 2 (Graph analysis, Calculations).
- Complete #MarkSense Quiz 2.
- Preview Lesson 3: Combining concepts in equilibrium problems, Efficiency.

P. Haynes (GHS) Thermo: Quantifying Heat

8 / 9

Thank you! Questions?