Sales Prediction Using Python

****importing the libraries

```
In [2]: import numpy as np
   import pandas as pd
   import seaborn as sn
   import matplotlib.pyplot as plt
```

****loading the dataset

In [3]: df=pd.read_csv('E:\Advertising.csv',encoding='latin1')
df

\cap		+	ГЭΊ	т.
v	u	L	ı ə	1.

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [4]: df.head()

Out[4]:

	Onnamed: 0	1 V	Radio	Newspaper	Sales	
0	1	230.1	37.8	69.2	22.1	
1	2	44.5	39.3	45.1	10.4	
2	3	17.2	45.9	69.3	9.3	
3	4	151.5	41.3	58.5	18.5	
4	5	180.8	10.8	58.4	12.9	

In [5]: df.tail()

Out[5]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

In [6]: | df.describe()

Out[6]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	147.042500	23.264000	30.554000	14.022500
std	57.879185	85.854236	14.846809	21.778621	5.217457
min	1.000000	0.700000	0.000000	0.300000	1.600000
25%	50.750000	74.375000	9.975000	12.750000	10.375000
50%	100.500000	149.750000	22.900000	25.750000	12.900000
75%	150.250000	218.825000	36.525000	45.100000	17.400000
max	200.000000	296.400000	49.600000	114.000000	27.000000

In [7]: df.describe

Out[7]:

<bound meth<="" th=""><th>nod ND</th><th>Frame.de</th><th>escribe of</th><th>Unr</th><th>named: (</th><th>0 TV</th></bound>	nod ND	Frame.de	escribe of	Unr	named: (0 TV
Sales						
0	1	230.1	37.8	69.2	22.1	
1	2	44.5	39.3	45.1	10.4	
2	3	17.2	45.9	69.3	9.3	
3	4	151.5	41.3	58.5	18.5	
4	5	180.8	10.8	58.4	12.9	
• •			• • •		• • •	
195	196	38.2	3.7	13.8	7.6	
196	197	94.2	4.9	8.1	9.7	
197	198	177.0	9.3	6.4	12.8	
198	199	283.6	42.0	66.2	25.5	
199	200	232.1	8.6	8.7	13.4	

[200 rows $x \ 5 \ columns]$ >

Radio Newspaper

```
In [8]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 200 entries, 0 to 199
          Data columns (total 5 columns):
                             Non-Null Count Dtype
           #
               Column
                             -----
                                              ----
           0
               Unnamed: 0 200 non-null
                                              int64
           1
               TV
                             200 non-null
                                              float64
           2
               Radio
                             200 non-null
                                              float64
           3
               Newspaper
                             200 non-null
                                              float64
               Sales
                             200 non-null
                                              float64
          dtypes: float64(4), int64(1)
          memory usage: 7.9 KB
 In [9]: df.columns
 Out[9]: Index(['Unnamed: 0', 'TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
In [10]: | df.isnull().sum()
Out[10]: Unnamed: 0
                         0
          TV
                         0
                         0
          Radio
          Newspaper
                         0
          Sales
                         0
          dtype: int64
In [11]: |df.drop_duplicates()
Out[11]:
               Unnamed: 0
                             TV Radio Newspaper Sales
             0
                        1 230.1
                                  37.8
                                             69.2
                                                   22.1
             1
                        2
                                  39.3
                                                   10.4
                            44.5
                                             45.1
             2
                            17.2
                        3
                                  45.9
                                             69.3
                                                    9.3
             3
                        4 151.5
                                  41.3
                                             58.5
                                                   18.5
             4
                        5
                          180.8
                                  10.8
                                             58.4
                                                   12.9
                                               ...
           195
                      196
                            38.2
                                   3.7
                                             13.8
                                                    7.6
           196
                      197
                            94.2
                                   4.9
                                              8.1
                                                    9.7
           197
                      198 177.0
                                   9.3
                                              6.4
                                                   12.8
           198
                      199 283.6
                                  42.0
                                             66.2
                                                   25.5
           199
                      200 232.1
                                   8.6
                                              8.7
                                                   13.4
          200 rows × 5 columns
```

In [12]: df.drop('Unnamed: 0',axis=1,inplace=True)

In [13]: df

Out[13]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [14]: l=['TV','Radio','Newspaper']
    i1=df['TV'].mean()
    i2=df['Radio'].mean()
    i3=df['Newspaper'].mean()
    d=[i1,i2,i3]
    e=[0.2,0.2,0.2]

plt.pie(d,labels=l,autopct='%1.1f',explode=e,shadow=True)
    plt.title('sales of different products')
    plt.show()
```

sales of different products


```
In [15]: sn.heatmap(df.corr())
   plt.title("correlation between the products and sales ")
```

Out[15]: Text(0.5, 1.0, 'correlation between the products and sales ')


```
In [16]: sn.scatterplot(data=[df['TV'],df['Newspaper'],df['Radio']])
    #sn.scatterplot(data=df['Radio'])
    #n.scatterplot(data=df['Newspaper'])
    #snscatterplot(data=df['Sales'])
```

Out[16]: <Axes: >


```
In [43]:
    plt.figure(figsize=(8,6))
    plt.plot(df['TV'],label='TV')
    plt.plot(df['Newspaper'],label='Newspaper')
    plt.plot(df['Radio'],label='Radio')
    plt.plot(df['Sales'],label='Sales')

plt.legend()
```

Out[43]: <matplotlib.legend.Legend at 0x1bcc5d06b90>


```
In [31]: sn.kdeplot(data=[df['TV'],df['Newspaper'],df['Radio']])
    plt.figsize=(10,100)
#sn.scatterplot(data=df['Radio'])
```



```
In [51]: a=df.iloc[:,:3]
```

In [52]: print(a)

	TV	Radio	Newspaper
0	230.1	37.8	69.2
1	44.5	39.3	45.1
2	17.2	45.9	69.3
3	151.5	41.3	58.5
4	180.8	10.8	58.4
195	38.2	3.7	13.8
196	94.2	4.9	8.1
197	177.0	9.3	6.4
198	283.6	42.0	66.2
199	232.1	8.6	8.7

[200 rows x 3 columns]

```
In [70]: sn.violinplot(a,inner='quartile')
   plt.title('sales of different products')
   plt.show()
```



```
In [79]: sn.violinplot(df,inner='quartile')
    plt.title('sales of different products copared with total sales')
    plt.show()
```


In [72]: sn.stripplot(df)

Out[72]: <Axes: >

****combination of the both strip plot and violinplot provides a better visualization known as

"sinaplot"

<Figure size 1000x800 with 0 Axes>

^{***}let's see other insights in data

In [91]: sn.pairplot(df)
plt.show()

In [92]: sn.pairplot(df,hue='Sales')

Out[92]: <seaborn.axisgrid.PairGrid at 0x1bcd561eda0>

In [93]: from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import StandardScaler
 from sklearn.linear_model import LinearRegression
 from sklearn.metrics import mean_squared_error, r2_score

****inputvariabls:Tv,Radio,Newspaper ****target variable:sales

```
In [96]: x1=df.iloc[:,:3]
```

Out[96]:		TV	Radio	Newspaper
	0	230.1	37.8	69.2
	1	44.5	39.3	45.1
	2	17.2	45.9	69.3
	3	151.5	41.3	58.5
	4	180.8	10.8	58.4
	195	38.2	3.7	13.8
	196	94.2	4.9	8.1
	197	177.0	9.3	6.4
	198	283.6	42.0	66.2
	199	232.1	8.6	8.7

200 rows × 3 columns

```
In [104]: y1=df['Sales']
          у1
Out[104]: 0
                  22.1
                  10.4
          2
                  9.3
                  18.5
          3
          4
                  12.9
                  . . .
          195
                  7.6
          196
                  9.7
          197
                  12.8
                  25.5
          198
          199
                  13.4
          Name: Sales, Length: 200, dtype: float64
In [105]: x1_train,x1_test,y1_train,y1_test=train_test_split(x1,y1)
```

In [107]: x1_train

Out[107]:

	TV	Radio	Newspaper
124	229.5	32.3	74.2
21	237.4	5.1	23.5
68	237.4	27.5	11.0
141	193.7	35.4	75.6
190	39.5	41.1	5.8
187	191.1	28.7	18.2
155	4.1	11.6	5.7
193	166.8	42.0	3.6
101	296.4	36.3	100.9
131	265.2	2.9	43.0

150 rows × 3 columns

```
In [108]: y1_train
```

Out[108]: 124

19.7 21 12.5 68 18.9 141 19.2 190 10.8 . . . 187 17.3 3.2 155 193 19.6 23.8 101 131 12.7

Name: Sales, Length: 150, dtype: float64

In [109]: x1_test

Out[109]:

	TV	Radio	Newspaper
109	255.4	26.9	5.5
94	107.4	14.0	10.9
93	250.9	36.5	72.3
110	225.8	8.2	56.5
127	80.2	0.0	9.2
130	0.7	39.6	8.7
42	293.6	27.7	1.8
164	117.2	14.7	5.4
23	228.3	16.9	26.2
181	218.5	5.4	27.4
150	280.7	13.9	37.0
134	36.9	38.6	65.6
25	262.9	3.5	19.5
171	164.5	20.9	47.4
33	265.6	20.0	0.3
180	156.6	2.6	8.3
18	69.2	20.5	18.3
71	109.8	14.3	31.7
188	286.0	13.9	3.7
198	283.6	42.0	66.2
96	197.6	3.5	5.9
104	238.2	34.3	5.3
16	67.8	36.6	114.0
32	97.2	1.5	30.0
35	290.7	4.1	8.5
20	218.4	27.7	53.4
142	220.5	33.2	37.9
30	292.9	28.3	43.2
76	27.5	1.6	20.7
87	110.7	40.6	63.2
107	90.4	0.3	23.2
52	216.4	41.7	39.6
160	172.5	18.1	30.7
12	23.8	35.1	65.9
14	204.1	32.9	46.0
145	140.3	1.9	9.0

	TV	Radio	Newspaper
38	43.1	26.7	35.1
61	261.3	42.7	54.7
121	18.8	21.7	50.4
27	240.1	16.7	22.9
81	239.8	4.1	36.9
57	136.2	19.2	16.6
51	100.4	9.6	3.6
103	187.9	17.2	17.9
126	7.8	38.9	50.6
10	66.1	5.8	24.2
174	222.4	3.4	13.1
64	131.1	42.8	28.9
85	193.2	18.4	65.7
50	199.8	3.1	34.6

```
In [110]: y1_test
Out[110]: 109
                  19.8
           94
                  11.5
           93
                  22.2
           110
                  13.4
           127
                   8.8
           130
                   1.6
           42
                  20.7
           164
                  11.9
           23
                  15.5
           181
                  12.2
           150
                  16.1
           134
                  10.8
           25
                  12.0
           171
                  14.5
           33
                  17.4
           180
                  10.5
           18
                  11.3
           71
                  12.4
           188
                  15.9
           198
                  25.5
           96
                  11.7
           104
                  20.7
           16
                  12.5
           32
                   9.6
           35
                  12.8
           20
                  18.0
           142
                  20.1
           30
                  21.4
           76
                   6.9
           87
                  16.0
           107
                   8.7
           52
                  22.6
           160
                  14.4
           12
                   9.2
           14
                  19.0
           145
                  10.3
           38
                  10.1
                  24.2
           61
           121
                   7.0
           27
                  15.9
           81
                  12.3
           57
                  13.2
           51
                  10.7
                  14.7
           103
           126
                   6.6
           10
                   8.6
           174
                  11.5
           64
                  18.0
           85
                  15.2
           50
                  11.4
           Name: Sales, dtype: float64
```

```
In [114]: model=LinearRegression()
          print(model)
          LinearRegression()
In [131]: |x1_train=x1_train.astype(int)
          y1_train=y1_train.astype(int)
          x1_test=x1_test.astype(int)
          y1_test=y1_test.astype(int)
In [138]: | scale=StandardScaler()
          x1 train scaled=scale.fit transform(x1 train)
          x1_test_scaled=scale.fit_transform(x1_test)
In [140]: | model.fit(x1_train_scaled,y1_train)
Out[140]:
          ▼ LinearRegression
          LinearRegression()
In [141]: y1_predi=model.predict(x1_test_scaled)
In [144]: print(y1)
          0
                 22.1
          1
                 10.4
                 9.3
          3
                 18.5
                 12.9
          4
          195
                 7.6
          196
                 9.7
                 12.8
          197
          198
                 25.5
          199
                 13.4
          Name: Sales, Length: 200, dtype: float64
In [145]: print("Accuracy of the data is:",r2_score(y1_test,y1_predi)*100)
          Accuracy of the data is: 83.67322142617478
          # we got the the taccuracy of above 83 %
          # hence task is completed
```

In []:	