Abbie Pearson June Suh Jessica Warren STA4203 October 5, 2016

Homework 6

- 1. Using the uswages data, fit a model with log(wage) as the response and educ and exper as predictors.
 - a) Draw the partial regression plots

Code:

```
proc import out=uswages
datafile="/home/jes13j0/Homework/STA 4203/uswages.csv"
dbms = csv replace;
run;
data uswages;
set uswages;
LogWages = log(wage);
run;

proc reg data=uswages;
model Logwages = educ exper / partial;
run;
```


b) Draw the partial residual plots

proc reg data=uswages;

Code:

```
model logwages=educ exper;
output out=new r=resid;
run;
Quit;
data new;
set new;
resideduc = resid+0.09051*educ;
residexper = resid+0.01808*exper;
run;
proc reg data=new;
model resideduc = educ;
model residexper = exper;
run;
quit;
```

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	4.65032	0.07835	59.35	<.0001	
educ	1	0.09051	0.00517	17.52	<.0001	
exper	1	0.01808	0.00116	15.58	<.0001	

c) Find the cutoff value for the outliers.

Code:

data quantiles; cuttoff=abs(tinv(0.05/(2*2000),2000-3-1)); Run;

cuttoff 4.2247261627

Cutoff value is 4.2247

d) Based on the cutoff, find the outliers and report how many outliers you found.

Code:

```
proc reg data=new;

model resideduc = educ;

model residexper = exper;

model logwages=educ exper;

output out=new1 rstudent=rez;

run;

quit;

data outliers;

do i=1 to 2000 by 1;

set new1 point=i;

if (abs(rez)>4.2247) then output;

end;

stop;

run;
```

Total rows: 2	2 Total columns: 16	H	- +	Rows 1-2	\Rightarrow	⇒ I
esid	resideduc	residexper				rez
L367	3.5698591367	3.8952991367		5.43	8086	1597
5482	3.234115482	4.029305482		4.51	31568	8958

There are 2 outliers. This amount of outliers relative to the 2000 observations is not many this is probably because the data is clustered and outliers in a cluster model is hard to detect.

e) Remove the outliers, refit the model and report the R2 of the new model **Code**:

```
data outliers;
set new1;
if (abs(rez)>4.2247) then delete;
run;
proc reg data=outliers;
model logwages=educ exper;
run;
```

Root MSE	0.65346	R-Square	0.1852
Dependent Mean	6.16720	Adj R-Sq	0.1844
Coeff Var	10.59570		

The new model's R2 value is 0.1852.

Code:

Run;

f) Recompute the cutoff for the model from e). Find if there are any outliers left and report how many outliers you found.

data quantiles1; cuttoff=abs(tinv(0.05/(2*1998),1998-3-1)); run; proc reg data=outliers; model logwages=educ exper; output out=new2 rstudent=rez2; run; data outliers1;

data outliers i, do i=1 to 1998 by 1; set new2 point=i; if (abs(rez2)>4.2245) then output; end; stop;

New cutoff is 4.2245. There is one outlier.

g) Remove the outliers again, refit the model and report the R2 of the new model **Code**:

```
data outliers2;
set new2;
if (abs(rez2)>4.2245) then delete;
Run;
```

proc reg data=outliers2; model logwages=educ exper; Run;

Root MSE	0.65066	R-Square	0.1893
Dependent Mean	6.16822	Adj R-Sq	0.1885
Coeff Var	10.54861		

The R2 of the new model is 0.1893.