Automatic diagnosis and feedback for lexical stress errors in non-native speech: Towards a CAPT system for French learners of German

Anjana Sofia Vakil

Department of Computational Linguistics and Phonetics University of Saarland, Saarbrücken, Germany

Master's Thesis Colloquium 16 April 2015

Lexical stress

Some syllable(s) in a word more accentuated/prominent¹

um·FAHR·en vs. UM·fahr·en to run over to drive around

- German: variable stress placement, contrastive stress¹
- ► French: no word-level stress, final syllable lengthening²

Goal: Computer-Assisted Pronunciation Training (CAPT) for lexical stress errors for French learners of German

¹A. Cutler. "Lexical Stress". In: *The Handbook of Speech Perception*. Ed. by D. B. Pisoni and R. E. Remez. 2005, pp. 264–289.

²M.-C. Michaux and J. Caspers. "The production of Dutch word stress by Francophone learners". In: *Proc. of the Prosody-Discourse Interface Conference (IDP)*. 2013, pp. 89–94.

Outline

Motivation

Lexical stress errors by French learners of German

Annotation of a learner speech corpus Inter-annotator agreement Frequency & distribution of errors

Diagnosis

Word prosody analysis
Diagnosis by comparison
Diagnosis by classification

Feedback

Implicit

Explicit

Self-assessment

The de-stress CAPT tool

Motivation [TODO move before outline?]

Figure: Criteria for selecting errors to target in a CAPT system.

Motivation [TODO remove?]

Lexical stress errors seem to be:

- ► Frequently produced by French learners of variable-stress languages^{1,2}
- More important for intelligibility in L2 German than other types of errors³
- Possible to identify automatically by comparison¹ or classification⁴

¹A. Bonneau and V. Colotte. "Automatic Feedback for L2 Prosody Learning". In: *Speech and Language Technologies*. Ed. by I. Ipsic. InTech, 2011.

²M.-C. Michaux. "Exploring the production and perception of word stress by French-speaking learners of Dutch". In: *Workshop on Crosslinguistic Influence in Non-Native Language Acquisition*. 2012.

³U. Hirschfeld. *Untersuchungen zur phonetischen Verständlichkeit Deutschlernender*. Vol. 57. Forum Phoneticum. 1994.

⁴Y.-J. Kim and M. C. Beutnagel. "Automatic assessment of American English lexical stress using machine learning algorithms". In: *SLaTE*. 2011, pp. 93–96.

Lexical stress errors in learner speech

- How reliably can human annotators identify errors in learner utterances?
- How frequently are errors actually produced by French learners of German?

Error annotation

Data: IFCASL corpus of French-German L1/L2 speech¹

- German utterances by French and German speakers
 - Adults (>18) and children (15-16)
 - Levels A2, B1, B2, C1 (children all A2/B1)
- Word- and phone-level segmentations (syllable level added automatically)
- Selected 12 word types (bisyllabic, initial stress)

Dataset for annotation:

668 word utterances by 55-56 L1 French speakers

¹C. Fauth et al. "Designing a Bilingual Speech Corpus for French and German Language Learners: a Two-Step Process". In: *9th Language Resources and Evaluation Conference (LREC)*. Reykjavik, Iceland, 2014, pp. 1477–1482.

Error annotation

15 Annotators, varying by: [TODO make this a matrix?]

- Native language (L1):
 - 12 German
 - 2 English (US)
 - 1 Hebrew
- Phonetics/phonology expertise:
 - 2 Experts
 - 10 Intermediates
 - 3 Novices

[TODO 5 labels, remove the below]

Each annotated 3 word types in one \sim 15 min. session (1 annotator did 6 word types in 2 sessions)

Error annotation: Method [TODO remove]

Figure: Praat annotation tool

1/168

Error annotation: Method [TODO remove]

Figure: Praat annotation tool

Inter-annotator agreement

How reliably can human annotators identify errors in learner utterances?

- Agreement calculated for each overlapping pair
- Quantified by:
 - Percentage agreement: N agreed/N both annotated
 - Cohen's Kappa 1 (κ): accounts for chance agreement
- [TODO remove?] Overall agreement represented by mean, minimum, median, and maximum of all pairwise values

¹J. Cohen. "A Coefficient of Agreement for Nominal Scales". In: *Educational and Psychological Measurement* 20.1 (Apr. 1960), pp. 37–46.

Inter-annotator agreement

Table: Overall pairwise agreement between annotators

	% Agreement	Cohen's κ
Mean	54.92%	0.23
Maximum	83.93%	0.61
Median	55.36%	0.26
Minimum	23.21%	-0.01

- Rather low agreement ("fair" mean κ)
- ► Large variability between annotators
- Not explained by L1/expertise groups

¹J. R. Landis and G. G. Koch. "The measurement of observer agreement for categorical data." In: *Biometrics* 33.1 (1977), pp. 159–174.

Choosing gold-standard labels

[TODO Find more graphical way to portray this? Remove?]

Need a single label for each utterance to analyze error frequency & evaluate automatic diagnosis

- 268 utterances: no disagreement
- 265 utterances: majority vote
- remaining 135 utterances decided by rules, e.g.:
 - favor Expert judgments
 - favor certainty ([correct],[incorrect]) over [none]
 - be generous to learners if [correct] vs. [incorrect]

Error distribution

How frequently are errors actually produced by French learners of German?

- Large variability across word types
- Beginners made more errors (vs. advanced)
- Children made more errors (vs. adult beginners)

Word prosody analysis

Requires word, syllable, and phone segmentations

- Automatically produced via forced alignment¹
- This work uses existing IFCASL segmentations
- Syllable segmentations derived from words & phones

[TODO segmentation screenshot]

¹L. Mesbahi et al. "Reliability of non-native speech automatic segmentation for prosodic feedback." In: *SLaTE*. 2011.

Word prosody analysis: Duration

Duration (DUR)

- Perceptual correlate: length/timing
- Best indicator of German stress¹
- Simple to extract from segmentations
- ► Features: Relative syllable & nucleus (vowel) lengths

¹G. Dogil and B. Williams. "The phonetic manifestation of word stress". In: *Word Prosodic Systems in the Languages of Europe*. Ed. by H. van der Hulst. Berlin: Walter de Gruyter, 1999. Chap. 5, pp. 273–334.

Word prosody analysis: F0

Fundamental frequency (F0)

- Perceptual correlate: pitch
- 2nd best indicator of stress after duration¹
- ▶ Pitch contours computed using JSnoori^{2,3}
- Features: relative syllable & nucleus:
 - Mean F0 (in voiced segments)
 - Maximum F0
 - Minimum F0
 - F0 range (max-min)

¹G. Dogil and B. Williams. "The phonetic manifestation of word stress". In: *Word Prosodic Systems in the Languages of Europe*. Ed. by H. van der Hulst. Berlin: Walter de Gruyter, 1999. Chap. 5, pp. 273–334.

²isnoori.loria.fr

³J. Di Martino and Y. Laprie. "An efficient F0 determination algorithm based on the implicit calculation of the autocorrelation of the temporal excitation signal". In: *EUROSPEECH*. Budapest, Hungary, 1999, p. 4.

Word prosody analysis: Intensity

Intensity (INT)

- Perceptual correlate: loudness
- Worse predictor than DUR or F0, but still may have effect on stress perception¹
- Energy contours computed using Jsnoori
- Features: relative syllable & nucleus:
 - Mean energy (over 60dB "silence threshold")
 - Maximum energy

¹A. Cutler. "Lexical Stress". In: *The Handbook of Speech Perception*. Ed. by D. B. Pisoni and R. E. Remez. 2005, pp. 264–289.

Diagnosis methods

[TODO Slide previewing comparison vs. classification?]

Diagnosis by comparison

Comparison to a single reference utterance

- Simplest approach, common in CAPT
- JSnoori (and predecessors) use this method¹
 - Assigns 3 scores (DUR, F0, INT)
 - ► Same syllable stressed?
 - ▶ Difference between stressed/unstressed syllables similar enough?
 - Overall score = weighted average of 3 scores
- Problem: extremely utterance-dependent!

¹A. Bonneau and V. Colotte. "Automatic Feedback for L2 Prosody Learning". In: *Speech and Language Technologies*. Ed. by I. Ipsic. InTech, 2011.

Diagnosis by comparison

Comparison to multiple reference utterances

- Less common in CAPT systems
- Less utterance-dependent than single comparison
- Overall score = average of one-on-one scores

Diagnosis by comparison

Options for selecting reference speaker(s)

- Manually
 - · Learner's choice
 - Teacher/researcher's choice
- Automatically
 - May be more effective to choose reference speaker most closely resembling the learner¹
 - Selected by comparing speakers' F0 mean and range (using all available recordings)

¹K. Probst et al. "Enhancing foreign language tutors - In search of the golden speaker". In: *Speech Communication* 37.3-4 (July 2002), pp. 161–173.

- More abstract representation of L1 pronunciation
- Not yet explored for German CAPT

Research questions:

- How well can lexical stress errors be classified?
- How does that compare with human agreement?
- Which features are most useful for classification?

Experiments:

- Trained CART classifiers using WEKA toolkit¹
- Used annotated L2 dataset for training/test data (gold-standard labels)
- Used L1 utterances of the same words as training data (all automatically labeled [correct])

Evaluated in terms of:

- Agreement (%, κ) with gold-standard labels
- Precision, Recall, F₁ and F₂ for [correct] class [TODO explain and/or put on handout]

¹www.cs.waikato.ac.nz/ml/weka

Which features are most useful for classification?

Feature set	Description
DUR F0 INT	Duration features Fundamental frequency features Intensity features
WD LV AG	Uttered word (e.g. <i>Tatort</i>) Speaker's L2 German skill level (A2 B1 B2 C1) Speaker's age/gender (Girl Boy Woman Man)

Diagnosis by classification [TODO redo chart

How well can lexical stress errors be classified?

Diagnosis by classification TODO redo chart

How well can lexical stress errors be classified?

Best performance using only prosodic features: DUR+F0

- % Accuracy: 69.77%
- κ: 0.29

How well can lexical stress errors be classified?

How well can lexical stress errors be classified?

How well can lexical stress errors be classified?

Best performance overall: WD+LV+DUR+F0+INT

- % Accuracy: 71.87%
- **κ**: 0.34

How does classification accuracy compare with human agreement?

	% agreement	κ
Best classifier vs. gold standard	71.87%	0.34
Mean human vs. human	54.92%	0.23

- Results are encouraging in this context
- ► Still want better performance for real-world use

Implicit feedback

Explicit feedback

Self-assessment

- ▶ Create Exercise
- Create DM
- ► Create Scorer?
- Create FM
- ▶ Show FB output