### Macroéconomie 1

Martín Valdez

IE1

Motivation

Le modèle de Solow de base présente un problème majeur : Le capital et la production par travailleur n'ont pas de croissance constante.

Production Graphique Capital Graphique Salaires Graphique Rapport Capital-Production Graphique

Fonction de Production

• Fonction de production :

$$Y_t = AF(K_t, Z_t N_t)$$

#### Fonction de Production

Fonction de production :

$$Y_t = AF(K_t, Z_t N_t)$$

- $Z_t$ : productivité augmentant le travail
- $Z_t N_t$ : unités d'efficacité du travail

#### Fonction de Production

• Fonction de production :

$$Y_t = AF(K_t, Z_t N_t)$$

- Z<sub>t</sub> : productivité augmentant le travail
- Z<sub>t</sub>N<sub>t</sub> : unités d'efficacité du travail
- Supposons que  $Z_t$  et  $N_t$  croissent avec le temps (valeurs initiales en période 0 normalisées à 1) :

$$Z_t = (1+z)^t$$
$$N_t = (1+n)^t$$

• Question : $Z_{t+1} = ?$ 

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

• Définissons  $\hat{k}_t = \frac{K_t}{Z_t N_t}$  et de manière similaire pour les autres variables.



- Définissons  $\hat{k}_t = \frac{K_t}{Z_t N_t}$  et de manière similaire pour les autres variables.
- Variables en minuscule : par capita.



4/19

- Définissons  $\hat{k}_t = \frac{K_t}{Z_t N_t}$  et de manière similaire pour les autres variables.
- Variables en minuscule : par capita.
- Variables en minuscule avec "chapeaux" : par unité d'efficacité.

< □ >

4 / 19

- Définissons  $\hat{k}_t = \frac{K_t}{Z_t N_t}$  et de manière similaire pour les autres variables.
- Variables en minuscule : par capita.
- Variables en minuscule avec "chapeaux" : par unité d'efficacité.
- On peut montrer que l'équation centrale modifiée du modèle est :

$$\hat{k}_{t+1} = rac{1}{(1+z)(1+n)}\left[sA_tf(\hat{k}_t) + (1-\delta)\hat{k}_t
ight]$$

• Même système qu'avant, multiplié par une constante  $\frac{1}{(1+z)(1+n)}$ .

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

# État Stationnaire Augmenté



## Point d'Équilibre et Taux de Croissance

- Par un raisonnement similaire, le point d'équilibre du système est donné par  $\hat{k}_{t+1} = \hat{k}_t$ .
- Dans ce nouvel état stationnaire, le stock de capital  $K_t$  croît à un taux de  $(1+z)(1+n)\approx z+n$ , et
- $\hat{k}_t$  croît à un taux de z.



## État Stationnaire et Faits de Kaldor

• À l'état stationnaire, nous avons les relations suivantes :

$$\frac{y_{t+1}}{y_t} = 1 + z$$

$$\frac{\hat{k}_{t+1}}{\hat{k}_t} = 1 + z$$

$$\frac{K_{t+1}}{Y_{t+1}} = \frac{K_t}{Y_t}$$

$$\frac{w_{t+1}N_{t+1}}{Y_{t+1}} = \frac{w_tN_t}{Y_t}$$

$$R_{t+1} = R_t$$

$$\frac{w_{t+1}}{w_t} = 1 + z$$

• Ce qui correspond aux six faits de Kaldor!

### Modèle de Consommation

Motivation pour un Modèle de Consommation Intertemporelle

 Dans le modèle de Solow, la consommation est fixe et n'est pas le résultat d'un comportement intertemporel des consommateurs.



8 / 19

### Modèle de Consommation

Motivation pour un Modèle de Consommation Intertemporelle

- Dans le modèle de Solow, la consommation est fixe et n'est pas le résultat d'un comportement intertemporel des consommateurs.
- Il est essentiel de développer un modèle qui capture les décisions de consommation des individus à travers le temps.



#### Modèle de Consommation

Motivation pour un Modèle de Consommation Intertemporelle

- Dans le modèle de Solow, la consommation est fixe et n'est pas le résultat d'un comportement intertemporel des consommateurs.
- Il est essentiel de développer un modèle qui capture les décisions de consommation des individus à travers le temps.
- Un tel modèle nous permettrait de mieux comprendre comment les consommateurs choisissent de répartir leur consommation entre le présent et le futur.

### Pourquoi un Modèle de Consommation ?

 Critique de Lucas: Les modèles doivent intégrer les comportements microéconomiques pour être crédibles et robustes face aux changements du monde réel.



9/19

## Pourquoi un Modèle de Consommation ?

- Critique de Lucas: Les modèles doivent intégrer les comportements microéconomiques pour être crédibles et robustes face aux changements du monde réel.
- Il est crucial de développer une théorie de la consommation pour comprendre les décisions des consommateurs.



## Pourquoi un Modèle de Consommation ?

- Critique de Lucas: Les modèles doivent intégrer les comportements microéconomiques pour être crédibles et robustes face aux changements du monde réel.
- Il est crucial de développer une théorie de la consommation pour comprendre les décisions des consommateurs.
- Nous n'aurons pas le temps de plonger profondément dans cette théorie, mais nous allons examiner rapidement un modèle à deux périodes pour illustrer l'idée.

• **Période 1:** Consommation  $C_1$ , Revenu  $Y_1$ , Épargne S



- **Période 1:** Consommation  $C_1$ , Revenu  $Y_1$ , Épargne S
- **Période 2:** Consommation  $C_2$ , Revenu  $Y_2$ , Retour sur l'épargne (1+r)S



- **Période 1:** Consommation  $C_1$ , Revenu  $Y_1$ , Épargne S
- **Période 2:** Consommation  $C_2$ , Revenu  $Y_2$ , Retour sur l'épargne (1+r)S
- Les consommateurs choisissent  $C_1$  et  $C_2$  pour maximiser leur utilité intertemporelle :

$$U = u(C_1) + \beta u(C_2)$$

Où  $\beta \in (0,1)$  est le taux de préférence temporelle (impatience).

• Sous les contraintes budgétaires :

$$C_1 + S = Y_1$$
  
 $C_2 = (1+r)S + Y_2$ 



- **Période 1:** Consommation  $C_1$ , Revenu  $Y_1$ , Épargne S
- **Période 2:** Consommation  $C_2$ , Revenu  $Y_2$ , Retour sur l'épargne (1+r)S
- Les consommateurs choisissent  $C_1$  et  $C_2$  pour maximiser leur utilité intertemporelle :

$$U = u(C_1) + \beta u(C_2)$$

Où  $\beta \in (0,1)$  est le taux de préférence temporelle (impatience).

• Sous les contraintes budgétaires :

$$C_1 + S = Y_1$$
  
 $C_2 = (1+r)S + Y_2$ 

 La solution est une équation appelée équation d'Euler, qui relie la consommation d'aujourd'hui à celle de demain.

### La Fonction de Consommation

• L'équation d'Euler relie la consommation d'aujourd'hui  $C_1$  à celle de demain  $C_2$ :

$$u'(C_1) = \beta(1+r)u'(C_2)$$

Comment y arriver ?



### La Fonction de Consommation

• L'équation d'Euler relie la consommation d'aujourd'hui  $C_1$  à celle de demain  $C_2$  :

$$u'(C_1) = \beta(1+r)u'(C_2)$$

Comment y arriver ?

 Cela permet de définir une fonction de consommation qui donne la consommation d'aujourd'hui en fonction du revenu d'aujourd'hui et du revenu de demain.

$$C_1 = f(Y_1, Y_2) = \frac{1}{1+\beta} \left[ Y_1 + \frac{1}{1+r} Y_2 \right]$$

• Consommation en fonction de leurs attentes concernant le revenu futur, le taux d'intérêt et leur taux de préférence temporelle.

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

• Arrêtons-nous ici, c'est assez d'informations pour le cours.



- Arrêtons-nous ici, c'est assez d'informations pour le cours.
- Résumé de notre cours:
  - Qu'est-ce que la Macroeconomie?
    - L'étude de l'activité économique agrégée.



12 / 19

- Arrêtons-nous ici, c'est assez d'informations pour le cours.
- Résumé de notre cours:
  - Qu'est-ce que la Macroeconomie?
    - L'étude de l'activité économique agrégée.
  - Définitions Clés:
    - Qu'est-ce que le PIB?



12 / 19

- Arrêtons-nous ici, c'est assez d'informations pour le cours.
- Résumé de notre cours:
  - Qu'est-ce que la Macroeconomie?
    - L'étude de l'activité économique agrégée.
  - Définitions Clés:
    - Qu'est-ce que le PIB?
  - Importance des Modèles:
    - Pourquoi Utiliser des Modèles?



12 / 19

#### Les Faits de Kaldor:

- Croissance soutenue de la production, du capital et des salaires.
- Stabilité du ratio K/Y et du rapport revenu du travail/revenu total wL/Y.



#### Les Faits de Kaldor:

- Croissance soutenue de la production, du capital et des salaires.
- Stabilité du ratio K/Y et du rapport revenu du travail/revenu total wL/Y.

#### Le Modèle de Solow:

- Modèle simple capturant certains faits de Kaldor.
- Rôle de la productivité dans la croissance.



13 / 19

#### Les Faits de Kaldor:

- Croissance soutenue de la production, du capital et des salaires.
- Stabilité du ratio K/Y et du rapport revenu du travail/revenu total wL/Y.

#### Le Modèle de Solow:

- Modèle simple capturant certains faits de Kaldor.
- Rôle de la productivité dans la croissance.

#### Le Modèle de Solow Augmenté:

• Intégration de la croissance soutenue dans le modèle de Solow.



13 / 19

#### Les Faits de Kaldor:

- Croissance soutenue de la production, du capital et des salaires.
- Stabilité du ratio K/Y et du rapport revenu du travail/revenu total wL/Y.

#### Le Modèle de Solow:

- Modèle simple capturant certains faits de Kaldor.
- Rôle de la productivité dans la croissance.

#### Le Modèle de Solow Augmenté:

• Intégration de la croissance soutenue dans le modèle de Solow.

#### Théorie de la Consommation:

• Vue rapide sur la théorie microéconomique de la consommation.

#### Croissance de la Production



Figure: Real GDP per Worker, US Economy Retour

#### Accumulation de Capital



Figure: Capital per Worker, US Economy Retour

#### Ratio Capital-Production



Figure: 'Stability' of Capital-Output Ratio, US Economy Retour



#### Répartition du Revenu

Martín Valdez



Figure: Labour Share of Income, US Economy Retour

Macroéconomie 1



IE1

17 / 19

#### Taux de Rendement



Figure: Return on Investment, US Economy Retour



Wage Growth



Figure: Real wages, US Economy Retour

