

TEST REPORT

No. I19D00117-SRD03

For

Client: Micronet

Production: A9 PCBA module

Model Name: A9

Brand Name: TREQ

FCC ID: U80-A9

IC ID: 12186A-A9

Hardware Version: C801_V1.00_PCB

Software Version: SC_10.2.0.0

Issued date: 2019-09-12

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
- 3. KDB558074 has not been accredited by A2LA.
- 4. For the test results, the uncertainty of measurement is not taken into account when judging the compliance with specification, and the results of measurement or the average value of measurement results are taken as the criterion of the compliance with specification directly.

Test Laboratory:

East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: +86 21 63843300 FAX: +86 21 63843301

E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
I19D00117-SRD03	00	2019-09-12	Initial creation of test report

CONTENTS

1. TEST L	ABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2. CLIEN	Γ INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3. EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4. REFER	ENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5. TEST F	RESULTS	10
5.1.	SUMMARY OF TEST RESULTS	10
5.2.	STATEMENTS	11
6. TEST E	QUIPMENTS UTILIZED	12
6.1.	CONDUCTED TEST SYSTEM	12
6.2.	RADIATED EMISSION TEST SYSTEM	12
6.3.	CONDUCTED TEST SOFTWARE	12
6.4.	RADIATED TEST SOFTWARE	12
7. MEASU	JREMENT UNCERTAINTY	13
8. TEST E	NVIRONMENT	14

ANNEX A.	DETAILED TEST RESULTS	15
ANNEX A.1.	OUTPUT POWER-CONDUCTED	15
ANNEX A.2.	PEAK POWER SPECTRAL DENSITY	17
ANNEX A.3.	OCCUPIED 6DB BANDWIDTH	25
ANNEX A.4.	BAND EDGES COMPLIANCE	32
ANNEX A.5.	TRANSMITTER SPURIOUS EMISSION-CONDUCTED	37
ANNEX A.6.	TRANSMITTER SPURIOUS EMISSION-RADIATED	51
ANNEX B.	ACCREDITATION CERTIFICATE	74

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications
Address	7-8/F., Area G, No.668, Beijing East Road, Shanghai, China
Postal Code	200001
Telephone	+86 21 63843300
Fax	+86 21 63843301
FCC registration No	CN1177

1.2. Testing Environment

Normal Temperature	15℃-35℃
Relative Humidity	20%-75%

1.3. Project Data

Project Leader	Zhou Yan
Testing Start Date	2019-08-06
Testing End Date	2019-08-08

1.4. Signature

Wang Liang

(Prepared this test report)

Fan Songyan

(Reviewed this test report)

Zheng Zhongbin (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	Micronet
Address	1865 West 2100 South, Suite 2 Salt Lake City, Utah 84119 United States
Telephone	+1-801-990-8700
Postcode	84119

2.2. Manufacturer Information

Company Name	Micronet
Address	1865 West 2100 South, Suite 2 Salt Lake City, Utah 84119 United States
Telephone	+1-801-990-8700
Postcode	84119

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	A9 PCBA module
Model name	A9
WLAN Frequency(2.4G)	2412MHz-2462MHz
WLAN Channel(2.4G)	Channel1-Channel11
WLAN type of modulation	802.11b:DSSS
	802.11g/n: OFDM
Additional Communication	BT/BLE/2.4G WLAN 802.11 b/g/n20/n40/5G WLAN 802.11
Function	a/n20/n40/ac20/ac40
Extreme Temperature	-20/+70℃
Nominal Voltage	3.8V
Extreme High Voltage	4.2V
Extreme Low Voltage	3.7V
Maximum of Antenna Gain	WIFI2.4Ghz: 6dBi

Note:

- a. Photographs of EUT are shown in ANNEX A of this test report.
- b. The value of the antenna gain is provided by the customer. For specific antenna information, please check the antenna specifications of the customer.

3.2.Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N19	1	C801_V1.00_PCB	SC_10.2.0.0	2019-07-22
N20	/	C801_V1.00_PCB	SC_10.2.0.0	2019-07-22

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
AE1	RF cable		AE1

^{*}AE ID: is used to identify the test sample in the lab internally.

Page Number: 9 of 74

Report Issued Date: Sept. 12, 2019

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version	
	FCC CFR 47, Part 15, Subpart C:		
	15.205 Restricted bands of operation;	2018-10-01	
FCC Part15	15.209 Radiated emission limits, general requirements;		
	15.247 Operation within the bands 902-928MHz,		
	2400-2483.5MHz, and 5725-5850MHz.		
ANCI 62 40	American National Standard of Procedures for Compliance Testing	2012	
ANSI 63.10	of Unlicensed Wireless Devices	2013	
Guidance for Performing Compliance Measurements on		V0Er02	
Digital Transmission Systems (DTS) Operating Under §15.247		v05r02	
	Digital Transmission Systems (DTSs), Frequency Hopping		
RSS-247	Systems (FHSs) and Licence-Exempt Local Area Network	2017	
	(LE-LAN) Devices		
RSS-Gen	General Requirements for Compliance of Radio Apparatus	2018	

5. Test Results

5.1. Summary of Test Results

Measurement Items	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.247(a)	RSS-247,6.2	Р
Peak Power Spectral Density	15.247(e)	RSS-247,6.2	Р
Occupied 6dB Bandwidth	15.247(d)	RSS-247,6.2	Р
Band Edges Compliance	15.247(b)	RSS-247,6.2	Р
Transmitter Spurious Emission-Conducted	15.247	RSS-GEN,8.8	Р
Transmitter Spurious Emission-Radiated	15.247,15.209,	RSS-GEN,8.8	Р
AC Powerline Conducted Emission	15.107,15.207	RSS-247,3.2	Р

Note: please refer to Annex A in this test report for the detailed test results.

Please refer to part 5 for detail.

The measurements are according to Public notice KDB558074 and ANSI C63.10.

Terms used in Verdict column

The following terms are used in the above table.

Р	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by ECIT.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

Test Conditions

Tnom	Normal Temperature
Tmin	Low Temperature
Tmax	High Temperature
Vnom	Normal Voltage
Vmin	Low Voltage
Vmax	High Voltage
Hnom	Norm Humidity
Anom	Norm Air Pressure

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Temperature	Tnom	25℃
Voltage	Vnom	3.8V
Humidity	Hnom	48%
Air Pressure	Anom	1010hPa

5.2. Statements

The A9 is an initial product for testing.

ECIT only performed test cases which identified with P/NP/NA/F results in Annex A.

ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

6. Test Equipments Utilized

6.1.Conducted Test System

Item	Instrument Name	Туре	SN	Manufacturer	Cal. Date	Cal. interval
1	Vector Signal Analyzer	FSQ26	101091	R&S	2019-05-10	1 year
2	DC Power Supply	ZUP60-14	LOC-220Z0 06-0007	TDL-Lambda	2019-05-10	1 year

6.2. Radiated Emission Test System

Item	Instrument Name	Туре	SN	Manufacturer	Cal. Date	Cal. interval
1	Universal Radio Communication Tester	CMU200	123123	R&S	2019-05-10	1 year
2	EMI Test Receiver	ESU40	100307	R&S	2019-05-10	1 year
3	TRILOG Broadband Antenna	VULB9163	VULB9163- 515	Schwarzbeck	2017-02-25	3 years
4	Double- ridged Waveguide Antenna	ETS-3117	00135890	ETS	2017-01-11	3 years
5	2-Line V-Network	ENV216	101380	R&S	2019-05-10	1 year

6.3. Conducted Test Software

Software Name	Version
Eagle1.0	20181112

6.4. Radiated Test Software

Software Name	Version
EMC32	V10.35.02

Anechoic chamber

Fully anechoic chamber by ETS

7. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in ECIT documents . The detailed measurement uncertainty is defined in ECIT documents.

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Peak Output Power-Conducted	2412MHz-2462MHz	95%	\pm 0.544dB
Peak Power Spectral Density	2412MHz-2462MHz	95%	±0.544dB
Occupied 6dB Bandwidth	2412MHz-2462MHz	95%	\pm 62.04Hz
Frequency Band Edges-Conducted	2412MHz-2462MHz	95%	±0.544dB
Conducted Emission	30MHz-2GHz	95%	\pm 0.90dB
Conducted Emission	2GHz-3.6GHz	95%	±0.88dB
Conducted Emission	3.6GHz-8GHz	95%	\pm 0.96dB
Conducted Emission	8GHz-20GHz	95%	\pm 0.94dB
Conducted Emission	20GHz-22GHz	95%	\pm 0.88dB
Conducted Emission	22GHz-26GHz	95%	±0.86dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	±5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	±4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	±5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	±5.20dB
AC Power line Conducted Emission	0.15MHz-30MHz	95%	$\pm 3.66\mathrm{dB}$

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Page Number: 15 of 74

Report Issued Date: Sept. 12, 2019

ANNEX A. Detailed Test Results

ANNEX A.1. Output Power-Conducted

A.1.1 Measurement Limit and method:

Standard	Limit(dBm)
FCC CRF 15.247(b)	<30

A.1.2 Test procedure

The measurement is according to ANSI C63.10 clause 11.2

- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Set RBW ≥ OBW(1MHz), VBW ≥ 3RBW(3MHz).

4. Span: 80MHz

5. Detector : Peak/RMS.6. Trace mode: Max Hold

7. Spectrum Analyzer setting: Meas—channel PWR ACP—CP/ACP Config—channel bandwidth— 20/40MHz

A.1.4 Maximum Average Output Power-conducted

802.11b/g mode

		Test Result(dBm)	
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462MHz (Ch11)
802.11b	17.04	17.47	17.21
802.11g	17.24	17.24	16.81
		EIRP (dBm)	
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462MHz (Ch11)
802.11b	23.04	23.47	24.71
802.11g	23.24	23.24	24.31

802.11n mode

		Test Result(dBm)	
Mode	2412MHz (Ch1)	2437MHz (Ch6)	2462MHz (Ch11)
802.11n(20MHz)	16.81	17.01	16.75

	EIRP 2412MHz(Ch1)	EIRP 2437MHz(Ch6)	EIRP 2462MHz(Ch11)
802.11n(20MHz)	22.81	23.01	22.75
		Test Result(dBm)	
Mode	2422MHz (Ch3)	2437MHz (Ch6)	2452MHz (Ch9)
802.11n(40MHz)	17.82	18.34	16.63
		EIRP (dBm)	
Mode	2422MHz (Ch3)	2437MHz (Ch6)	2452MHz (Ch9)
802.11n(40MHz)	23.82	24.34	22.63

Conclusion: PASS

ANNEX A.2. Peak Power Spectral Density

A.2.1 Measurement Limit:

Standard	Limit
FCC CFR Part 15.247(e)	< 8dBm/3 KHz

A.2.2 Test procedures

The measurement is according to ANSI C63.10 clause 11.10.

- The output power of EUT was connected to the spectrum analyzer. The path loss was compensated
 to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Set analyzer center frequency to DTS channel center frequency.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- 6. Set the VBW \geq [3 \times RBW].
- 7. Detector = peak.
- 8. Sweep time = auto couple.
- 9. Trace mode = max hold.
- 10. Allow trace to fully stabilize.
- 11. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 12. If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

Measurement Results:

802.11b/g mode

Mode	Channel	Power Sp Density(dBı		Conclusion
	1	Fig 1.	5.711	Р
802.11b	6	Fig 2.	5.667	Р
	11	Fig 3.	4.659	Р
	1	Fig 4.	-0.193	Р
802.11g	6	Fig 5.	0.225	Р
	11	Fig 6.	-0.653	Р

802.11n mode

Mode	Channel	Power Sp Density(dBı		Conclusion
	1	Fig 7.	-0.297	Р
802.11n(20MHz)	6	Fig 8.	-0.067	Р
	11	Fig 9.	-0.984	Р
	3	Fig 10.	0.887	Р
802.11n(40MHz)	6	Fig 11.	1.201	Р
	9	Fig 12.	0.217	Р

Conclusion: PASS
Test graphs as below:

Fig 1. Power Spectral Density (802.11b,Ch1)

Date: 6.AUG.2019 09:44:59

Date: 6.AUG.2019 09:48:07

Fig 2. Power Spectral Density (802.11b,Ch6)

Date: 6.AUG.2019 09:49:34

Fig 3. Power Spectral Density (802.11b,Ch11)

Date: 6.AUG.2019 09:51:02

Fig 4. Power Spectral Density (802.11g,Ch1)

Date: 6.AUG.2019 09:58:56

Fig 5. Power Spectral Density (802.11g,Ch6)

Date: 6.AUG.2019 10:00:25

Fig 6. Power Spectral Density (802.11g,Ch11)

Date: 6.AUG.2019 10:02:03

Fig 7. Power Spectral Density (802.11n-20MHz,Ch1)

Date: 6.AUG.2019 10:04:45

Fig 8. Power Spectral Density (802.11n-20MHz,Ch6)

Date: 6.AUG.2019 10:05:56

Fig 9. Power Spectral Density (802.11n-20MHz,Ch11)

Date: 6.AUG.2019 10:07:18

Fig 10. Power Spectral Density (802.11n-40MHz,Ch3)

Date: 6.AUG.2019 10:10:28

Fig 11. Power Spectral Density (802.11n-40MHz,Ch6)

Date: 6.AUG.2019 10:11:32

Fig 12. Power Spectral Density (802.11n-40MHz,Ch9)

ANNEX A.3. Occupied 6dB Bandwidth

A.3.1 Measurement Limit:

Standard	Limit(KHz)
FCC 47 CFR Part 15.247(a)	≥500

A.3.2 Test procedure

The measurement is according to ANSI C63.10 clause 11.8.

- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Set RBW = 100 kHz.
- 4. Set the VBW \geq [3 \times RBW].
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize.
- 9. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measurement Result:

802.11b/g mode

002.11b/g 1110dc		T .		1
Mode	Channel	Occupied 6dB Ba	ndwidth(MHz)	Conclusion
	1	Fig 13.	7.88	Р
802.11b	6	Fig 14.	8.27	Р
	11	Fig 15.	7.69	Р
	1	Fig 16.	16.47	Р
802.11g	6	Fig 17.	16.54	Р
	11	Fig 18.	16.54	Р

802.11n mode

Mode	Channel	Occupied 6dB Ba	ndwidth(MHz)	Conclusion
	1	Fig 19.	17.69	Р
802.11n(20MHz)	6	Fig 20.	17.69	Р
	11	Fig 21.	16.54	Р

	3	Fig 22.	35.13	Р
802.11n(40MHz)	6	Fig 23.	35.26	Р
	9	Fig 24.	35.26	Р

Conclusion: PASS
Test graphs as below:

Date: 6.AUG.2019 07:36:37

Fig 13. Occupied 6dB Bandwidth (802.11b, Ch1)

Date: 6.AUG.2019 07:37:39

Fig 14. Occupied 6dB Bandwidth (802.11b, Ch6)

Date: 6.AUG.2019 07:39:06

Fig 15. Occupied 6dB Bandwidth (802.11b, Ch11)

Date: 6.AUG.2019 07:40:09

Fig 16. Occupied 6dB Bandwidth (802.11g, Ch1)

Date: 6.AUG.2019 07:41:40

Fig 17. Occupied 6dB Bandwidth (802.11g, Ch6)

Date: 6.AUG.2019 07:42:40

Fig 18. Occupied 6dB Bandwidth (802.11g, Ch11)

Date: 6.AUG.2019 07:43:35

Fig 19. Occupied 6dB Bandwidth (802.11n-20MHz, Ch1)

Date: 6.AUG.2019 07:44:34

Fig 20. Occupied 6dB Bandwidth (802.11n-20MHz, Ch6)

Date: 6.AUG.2019 07:47:11

Fig 21. Occupied 6dB Bandwidth (802.11n-20MHz, Ch11)

Date: 6.AUG.2019 07:48:45

Fig 22. Occupied 6dB Bandwidth (802.11n-40MHz, Ch3)

Date: 6.AUG.2019 07:49:46

Fig 23. Occupied 6dB Bandwidth (802.11n-40MHz, Ch6)

Date: 6.AUG.2019 07:50:44

Fig 24. Occupied 6dB Bandwidth (802.11n-40MHz, Ch9)

ANNEX A.4. Band Edges Compliance

A.4.1 Measurement Limit:

Standard	Limited(dBc)
FCC 47 CFR Part 15.247(d)	>20

A.4.2 Test procedures

The measurement is according to ANSI C63.10 clause11.13.

- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Set instrument center frequency to the frequency of the emission to be measured (must be within 2MHz of the authorized band edge).
- 4. Set span to 2 MHz.
- 5. RBW = 100 kHz.
- 6. VBW \geq [3 \times RBW].
- 7. Detector = peak.
- 8. Sweep time = auto.
- 9. Trace mode = max hold.
- 10. Allow sweep to continue until the trace stabilizes

Measurement results

802.11b/g mode

<u></u>			
Mode	Channel	Test Results	Conclusion
802.11b	1	Fig 25.	Р
	11	Fig 26.	Р
802.11g	1	Fig 27.	Р
	11	Fig 28.	Р

802.11n mode

Mode	Channel	Test Results	Conclusion
802.11n(20MHz)	1	Fig 29.	Р
	11	Fig 30.	Р
802.11n(40MHz)	3	Fig 31.	Р
	9	Fig 32.	Р

Conclusion: PASS
Test graphs as blew:

Date: 6.AUG.2019 10:14:31

Fig 25. Band Edges (802.11b, Ch1)

Date: 6.AUG.2019 10:24:20

Fig 26. Band Edges (802.11b, Ch11)

Date: 6.AUG.2019 10:30:23

Fig 27. Band Edges (802.11g, Ch1)

Date: 6.AUG.2019 10:35:42

Fig 28. Band Edges (802.11g, Ch11)

Date: 6.AUG.2019 10:39:51

Fig 29. Band Edges (802.11n-20MHz, Ch1)

Date: 6.AUG.2019 10:45:12

Fig 30. Band Edges (802.11n-20MHz, Ch11)

Date: 6.AUG.2019 10:48:53

Fig 31. Band Edges (802.11n-40MHz, Ch3)

Date: 6.AUG.2019 11:04:49

Fig 32. Band Edges (802.11n-40MHz, Ch9)

ANNEX A.5. Transmitter Spurious Emission-conducted

A.5.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(d)	20dB below peak output power in 100KHz bandwidth

A.5.2 Test procedures

This measurement is according to ANSI C63.10 clause 11.11.

- 1. The output power of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.

Reference level measurement

- Set instrument center frequency to DTS channel center frequency.
- 4. Set the span to \geq 1.5 times the DTS bandwidth.
- 5. Set the RBW = 100 kHz.
- 6. Set the VBW \geq [3 \times RBW].
- 7. Detector = peak.
- 8. Sweep time = auto couple.
- 9. Trace mode = max hold.
- 10. Allow trace to fully stabilize.
- 11. Use the peak marker function to determine the maximum PSD level.

Emission level measurement

- 12. Set the center frequency and span to encompass frequency range to be measured.
- 13. Set the RBW = 100 kHz.
- 14. Set the VBW \geq [3 \times RBW].
- 15. Detector = peak.
- 16. Sweep time = auto couple.
- 17. Trace mode = max hold.
- 18. Allow trace to fully stabilize.
- 19. Use the peak marker function to determine the maximum amplitude level.

Measurement Result:

802.11b/g mode

Mode	Channel	Frequency Range	Test Results	Conclusion
	1	2.412GHz	Fig 33.	Р
902 116	000 445	30MHz~26GHz	Fig 34.	Р
002.110	802.11b 6	2.437GHz	Fig 35.	Р
		30MHz~26GHz	Fig 36.	Р

	11	2.462GHz	Fig 37.	Р
	11	30MHz~26GHz	Fig 38.	Р
	802.11g 6	2.412GHz	Fig 39.	Р
		30MHz~26GHz	Fig 40.	Р
902.44~		2.437GHz	Fig 41.	Р
602.11g		30MHz~26GHz	Fig 42.	Р
11	2.462GHz	Fig 43.	Р	
	30MHz~26GHz	Fig 44.	Р	

802.11n mode

Mode	Channel	Frequency Range Test Results		Conclusion
	4	2.412GHz	Fig 45.	Р
	1	30MHz~26GHz	Fig 46.	Р
802.11n(20MH	6	2.437GHz	Fig 47.	Р
z)	0	30MHz~26GHz	Fig 48.	Р
	11	2.462GHz	Fig 49.	Р
		30MHz~26GHz	Fig 50.	Р
	802.11n(40MH	2.422GHz	Fig 51.	Р
		30MHz~26GHz	Fig 52.	Р
802.11n(40MH		2.437GHz	Fig 53.	Р
z)	6	30MHz~26GHz	Fig 54.	Р
	0	2.452GHz	Fig 55.	Р
9	30MHz~26GHz	Fig 56.	Р	

Conclusion: PASS

Test graphs as below:

Date: 6.AUG.2019 10:13:56

Fig 33. Conducted Spurious Emission (802.11b, Ch1)

Date: 6.AUG.2019 10:15:03

Fig 34. Conducted Spurious Emission (802.11b, Ch1, 30MHz~26GHz)

Date: 6.AUG.2019 10:18:59

Fig 35. Conducted Spurious Emission (802.11b, Ch6)

Date: 6.AUG.2019 10:24:52

Fig 36. Conducted Spurious Emission (802.11b, Ch6, 30MHz~26GHz)

Date: 6.AUG.2019 10:23:45

Fig 37. Conducted Spurious Emission (802.11b, Ch11)

Date: 6.AUG.2019 10:24:52

Fig 38. Conducted Spurious Emission (802.11b, Ch11, 30MHz~26GHz)

Date: 6.AUG.2019 10:26:08

Fig 39. Conducted Spurious Emission (802.11g, Ch1)

Date: 6.AUG.2019 10:36:14

Fig 40. Conducted Spurious Emission (802.11g, Ch1, 30MHz~26GHz)

Date: 6.AUG.2019 10:29:44

Fig 41. Conducted Spurious Emission (802.11g, Ch6)

Date: 6.AUG.2019 10:30:55

Fig 42. Conducted Spurious Emission (802.11g, Ch6, 30MHz~26GHz)

Date: 6.AUG.2019 10:35:07

Fig 43. Conducted Spurious Emission (802.11g, Ch11)

Date: 6.AUG.2019 10:36:14

Fig 44. Conducted Spurious Emission (802.11g, Ch11, 30MHz~26GHz)

Date: 6.AUG.2019 10:39:17

Fig 45. Conducted Spurious Emission (802.11n-20MHz, Ch1)

Date: 6.AUG.2019 10:40:24

Fig 46. Conducted Spurious Emission (802.11n-20MHz, Ch1, 30MHz~26GHz)

Date: 6.AUG.2019 10:41:42

Fig 47. Conducted Spurious Emission (802.11n-20MHz, Ch6)

Date: 6.AUG.2019 10:42:53

Fig 48. Conducted Spurious Emission (802.11n-20MHz, Ch6, 30MHz~26GHz)

Date: 6.AUG.2019 10:44:37

Fig 49. Conducted Spurious Emission (802.11n-20MHz, Ch11)

Date: 6.AUG.2019 10:45:44

Fig 50. Conducted Spurious Emission (802.11n-20MHz, Ch11, 30MHz~26GHz)

Date: 6.AUG.2019 10:48:19

Fig 51. Conducted Spurious Emission (802.11n-40MHz, Ch3)

Date: 6.AUG.2019 10:49:26

Fig 52. Conducted Spurious Emission (802.11n-40MHz, Ch3, 30MHz~26GHz)

Date: 6.AUG.2019 10:50:27

Fig 53. Conducted Spurious Emission (802.11n-40MHz, Ch6)

Date: 6.AUG.2019 10:51:39

Fig 54. Conducted Spurious Emission (802.11n-40MHz, Ch6, 30MHz~26GHz)

Date: 6.AUG.2019 11:04:15

Fig 55. Conducted Spurious Emission (802.11n-40MHz, Ch9)

Date: 6.AUG.2019 11:05:22

Fig 56. Conducted Spurious Emission (802.11n-40MHz, Ch9, 30MHz~26GHz)

ANNEX A.6. Transmitter Spurious Emission-Radiated

A.6.1 Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247,15.205,15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in 25.205(a), must also comply with the radiated emission limits specified in 15.209(a)(see 15.205(c)).

The measurement is according to ANSI C63.10 clause 11.11 and 11.12.

A.6.2 Limit in restricted band:

Frequency of emission(MHz)	Field strength(uV/m)	Field strength(dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

A.6.3 Test procedures

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a nonconducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.4-2013 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During testing, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emission from the EUT. This maximization process was repeated with the EUT positioned in each of its three rthogonal orientations.

	<u>-</u>	
Frequency of emission (MHz)	RBW/VBW	Sweep Times (s)
30~1000	100KHz/300KHz	5
1000~4000	1MHz/3MHz	15
4000~18000	1MHz/3MHz	40
18000~26500	1MHz/3MHz	20

802.11b/g mode

Mode	Channel	Frequency Range	Test Results	Conclusion
	Bandedge (low)	2.31GHz~2.5GHz	Fig 57.	Р
	Bandedge (high)	2.31GHz~2.5GHz	Fig 58.	Р
802.11b		30MHz~1GHz	Fig 59.	Р
	11	1GHz~3GHz	Fig 60.	Р
		3GHz~18GHz	Fig 61.	Р
	Bandedge (low)	2.31GHz~2.5GHz	Fig 62.	Р
	Bandedge (high)	2.31GHz~2.5GHz	Fig 63.	Р
802.11g		30MHz~1GHz	Fig 64.	Р
	11	1GHz~3GHz	Fig 65.	Р
		3GHz~18GHz	Fig 66.	Р

802.11n mode

Mode	Channel	Frequency Range	Test Results	Conclusion
	Bandedge (low)	2.31GHz~2.5GHz	Fig 67.	Р
	Bandedge (high)	2.31GHz~2.5GHz	Fig 68.	Р
802.11n(20MHz)		30MHz~1GHz	Fig 69.	Р
	11	1GHz~3GHz	Fig 70.	Р
		3GHz~18GHz	Fig 71.	Р
	Bandedge (low) Bandedge (high)	2.31GHz~2.5GHz	Fig 72.	Р
802.11n(40MHz)		2.31GHz~2.5GHz	Fig 73.	Р
		30MHz~1GHz	Fig 74.	Р
	9	1GHz~3GHz	Fig 75.	Р
		3GHz~18GHz	Fig 76.	Р

Conclusion: PASS

Note:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

ARpi = Cable loss + Antenna Gain-Preamplifier gain

Result = P_{Mea} + Cable loss + Antenna Gain-Preamplifier gain = P_{Mea} + ARpi .

802.11b mode

Ch11 30MHz~1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
35.7	17.86	-27.2	45.06	V
49.1	17.76	-25.2	42.96	V
143.6	17.83	-31.2	49.03	Н
245.3	28.13	-26.8	54.93	V
529.4	27.48	-21.3	48.78	V
654.8	25.58	-18.7	44.28	Н

Ch11 1GHz~3GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2569.1	53.94	3.6	50.34	Н
2663.3	54.5	4.5	50	Н
2740.6	54.63	4.3	50.33	V
2828.2	54.63	4.8	49.83	Н
2919.5	55.61	5.6	50.01	Н
2994.2	55.97	5.6	50.37	V

Ch11 1GHz~3GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2663.3	42.28	4.5	37.78	Н
2740.6	42.01	4.3	37.71	V
2828.2	42.65	4.8	37.85	Н

2919.5	43.43	5.6	37.83	Н
2994.2	43.33	5.6	37.73	V

Ch11 3GHz~18GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
13787.3	54.01	18.4	35.61	V
14684.9	55	21	34	Н
15387.0	55.66	22.6	33.06	Н
16013.5	59.03	25.3	33.73	V
16732.0	58.56	26.3	32.26	V
17477.5	59.5	27.3	32.2	Н

Ch11 3GHz~18GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
13787.3	41.59	18.4	23.19	V
14684.9	43	21	22	Н
15387.0	43.77	22.6	21.17	Н
16013.5	47.03	25.3	21.73	V
16732.0	46.77	26.3	20.47	V

802.11g Ch11 30MHz~1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
35.1	17.88	-27.4	45.28	V
48.4	19.93	-25.2	45.13	V
74.1	16.7	-30.6	47.3	V
244.9	28.23	-26.8	55.03	V
530.8	26.69	-21.3	47.99	V
656.9	25.84	-18.6	44.44	Н

Ch11 1GHz~3GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2542.7	54.03	3.4	50.63	V
2608.1	55.03	3.9	51.13	V
2673.2	54.38	4.5	49.88	V
2727.2	54.5	4.4	50.1	Н
2811.9	54.84	4.5	50.34	Н
2880.6	54.95	5.6	49.35	Н

Ch11 1GHz~3GHz(Average)

· · · · · · · · · · · · · · · · · · ·					
Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity	
2542.7	41.34	3.4	37.94	V	
2608.1	41.93	3.9	38.03	V	
2673.2	42.37	4.5	37.87	V	
2727.2	42.24	4.4	37.84	Н	
2811.9	42.3	4.5	37.8	Н	
2880.6	43.22	5.6	37.62	Н	

Ch11 3GHz~18GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
13750.2	53.45	18.1	35.35	Н
14308.7	54.73	20.7	34.03	Н
15162.9	56.45	21.2	35.25	Н
16024.5	59.97	25.3	34.67	Н
16813.0	59.86	27.2	32.66	V
17617.2	60.16	27.6	32.56	Н

Ch11 3GHz~18GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14308.7	42.63	20.7	21.93	Н
15162.9	42.78	21.2	21.58	Н
16024.5	46.91	25.3	21.61	Н
16813.0	47.72	27.2	20.52	V
17617.2	47.88	27.6	20.28	Н

802.11n-20MHz Ch11 30MHz~1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
35.0	15.06	-27.4	42.46	V
74.1	16.63	-30.7	47.33	Н
163.2	19.61	-30	49.61	Н
241.5	28.32	-26.9	55.22	V
530.8	26.89	-21.3	48.19	V
657.2	24.1	-18.6	42.7	Н

Ch11 1GHz~3GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2631.5	54.46	4.1	50.36	Н
2721.1	54.58	4.5	50.08	V
2803.7	54.23	4.4	49.83	V
2861.9	55.06	5.3	49.76	V
2912.2	55.12	5.7	49.42	V
2975.0	55.05	5.5	49.55	Н

Ch11 1GHz~3GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2631.5	41.86	4.1	37.76	Н
2721.1	42.27	4.5	37.77	V
2803.7	42.11	4.4	37.71	V
2861.9	42.79	5.3	37.49	V
2912.2	43.1	5.7	37.4	V
2975.0	42.83	5.5	37.33	Н

Ch11 3GHz~18GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
13789.6	53.74	18.5	35.24	Н
14317.7	55.11	20.5	34.61	V
15049.9	55.08	21	34.08	V
16085.7	58.94	24.9	34.04	V
16973.0	60.14	27.1	33.04	V
17778.6	60.73	28.2	32.53	Н

Ch11 3GHz~18GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14317.7	42.34	20.5	21.84	V
15049.9	42.77	21	21.77	V
16085.7	46.57	24.9	21.67	V
16973.0	47.88	27.1	20.78	V
17778.6	48.43	28.2	20.23	Н

802.11n-40MHz Ch9 30MHz~1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
34.8	16.7	-27.5	44.2	V
73.4	18.68	-30.5	49.18	Н
142.9	15.76	-31.2	46.96	Н
244.2	29.14	-26.9	56.04	V
398.5	15.14	-23.6	38.74	Н
656.6	25.49	-18.6	44.09	Н

Ch9 1GHz~3GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2572.9	54.34	3.6	50.74	V
2654.1	54.7	4.4	50.3	Н
2732.0	54.59	4.4	50.19	Н
2792.4	54.67	4.4	50.27	Н
2858.4	55.44	5.2	50.24	V
2948.3	54.47	5.4	49.07	Н

Ch9 1GHz~3GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2572.9	41.63	3.6	38.03	V
2654.1	42.21	4.4	37.81	Н
2732.0	42.22	4.4	37.82	н
2792.4	42.16	4.4	37.76	Н
2858.4	42.8	5.2	37.6	V
2948.3	42.78	5.4	37.38	Н

Ch9 3GHz~18GHz(Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
5993.5	48.76	2.3	46.46	V
12398.1	52.22	15.9	36.32	Н
13765.8	53.15	18.2	34.95	V
14840.9	55.19	20.5	34.69	Н
15697.2	57.02	23.2	33.82	V
16820.3	60.68	27.2	33.48	Н

Ch9 3GHz~18GHz(Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14840.9	42.71	20.5	22.21	н
15697.2	44.65	23.2	21.45	V
16820.3	47.91	27.2	20.71	Н

Note: Only the worst case is written in the report.

Test graphs as below:

Peak detector

AV detector Fig 57. Bandedge: 802.11b, low channel

AV detector Fig 58. Bandedge: 802.11b, high channel

Fig 59. Radiated Spurious Emission (802.11b,Ch11,30MHz~1GHz)

Fig 60. Radiated Spurious Emission (802.11b,Ch11,1GHz~3GHz)

Fig 61. Radiated Spurious Emission (802.11b,Ch11,3GHz~18GHz)

AV detector Fig 62. Bandedge: 802.11g, low channel

AV detector Fig 63. Bandedge: 802.11g, high channel

Fig 64. Radiated Spurious Emission (802.11g,Ch11, 30MHz~1GHz)

Fig 65. Radiated Spurious Emission (802.11g,Ch11,1GHz~3GHz)

Fig 66. Radiated Spurious Emission (802.11g,Ch11,3GHz~18GHz)

AV detector
Fig 67. Bandedge: 802.11 n-20MHz, low channel

AV detector Fig 68. Bandedge: 802.11 n-20MHz, high channel

Fig 69. Radiated Spurious Emission (802.11 n-20MHz,Ch11,30MHz~1GHz)

Fig 70. Radiated Spurious Emission (802.11 n-20MHz,Ch11, 1GHz~3GHz)

Fig 71. Radiated Spurious Emission (802.11 n-20MHz,Ch11, 3GHz~18GHz)

Average detector

Fig 72. Bandedge: 802.11 n-40MHz, low channel

Average detector

Fig 73. Bandedge: 802.11 n-40MHz, high channel

Fig 74. Radiated Spurious Emission (802.11 n-40MHz,Ch9,30MHz~1GHz)

Fig 75. Radiated Spurious Emission (802.11 n-40MHz,Ch9, 1GHz~3GHz)

Fig 76. Radiated Spurious Emission (802.11 n-40MHz,Ch9, 3GHz~18GHz)

All Channel

ANNEX B. Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

Vice President, Accreditation Service: For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

*********END OF REPORT*******