

Artificial Intelligence & Machine Learning

Aprendizado não supervisionado

K-means / EM / Regras de Associação

Algoritmos Hierárquicos

Hierarquia: Conceitos Básicos

Hierarquias são comumente usadas para organizar informação

Web Site Directory - Sites organized by subject

Suggest your site

Business & Economy

B2B Finance Shopping Jobs ...

Regional Countries, Regions, US States...

Computers & Internet

Internet, WWW, Software, Games...

Society & Culture

Hierarquia: Conceitos Básicos

Exemplo: árvores filogenéticas em biologia

Métodos Clássicos para Agrupamento Hierárquico

Bottom-Up (aglomerativos):

- Iniciar colocando cada objeto em um cluster
- Encontrar o melhor par de clusters para unir
- Unir o par de clusters escolhido
- Repetir até que todos os objetos estejam reunidos em um só cluster

Top-Down (divisivos):

- Iniciar com todos objetos em um único cluster
- Sub-dividir o cluster em dois novos clusters
- Aplicar o algoritmo recursivamente em ambos, até que cada objeto forme um cluster por si só

Métodos Clássicos para Agrupamento Hierárquico

Algoritmos hierárquicos podem operar somente sobre uma matriz de distâncias.

٨			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0	8	8	7	7
		0	2	4	4
			0	3	3
				0	1
					0

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
p2 p3						
р4						
р5						

- MIN
- MAX
- Group Average
- •

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
p2 p3						
р4						
р5						

- MIN
- MAX
- Group Average
- ...

Single Linkage (Florek, 1951)

- Dissimilaridade entre clusters é dada pela menor dissimilaridade entre 2 objetos (um de cada cluster)
 - Originalmente baseado em Grafos: menor aresta entre dois vértices de subconjuntos distintos

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
рЗ						
p4						
p5						

- MIN
- MAX
- Group Average
- ..

Complete Linkage (Sorensen, 1948)

- Dissimilaridade entre clusters é dada pela <u>maior</u> dissimilaridade entre 2 objetos (um de cada cluster)
 - Originalmente baseado em Grafos: maior aresta entre dois vértices de subconjuntos distintos

Como definir Inter-Cluster (Dis)similaridade

Matriz de Distância

	p1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
p2 p3						
р4						
р5						

- MIN
- MAX
- **Group Average**

Complete Linkage (Sokal R and Michener C, 1958)

- Dissimilaridade entre clusters é dada pela <u>distância média</u> entre cada par de objetos (um de cada cluster)
- Também conhecido como UPGMA Unweighted Pair Group Method using Arithmetic averages

Dendrograma = Hierarquia + Dissimilaridade entre Clust

A dissimilaridade entre dois clusters (possivelmente **singletons**) é representada como a altura do nó interno mais baixo compartilhado

Dendrograma

Prof. Dr. Vinicius F. Caridá

Dendrograma -> Grupos

Partições são obtidas via **cortes** no dendrograma

- cortes horizontais
- no. de grupos da partição = no. de interseções

Dendrograma -> Grupos

Pode-se examinar o dendrograma para tentar estimar o número mais natural de clusters.

Dendrograma -> Outlier

Pode-se examinar of dendrograma para tentar detectar a presença de outliers.

Hierárquico

#Carrega os dados

data(iris)

dist hclust (*, "average")

Questions and Feedback

Thank you!

Obrigado!

Vinicius Fernandes Caridá vfcarida@gmail.com

Copyright © 2018 Prof. Vinicius Fernandes Caridá Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).