Теорема Фалеса. Теорема о пропорциональных отрезках

ТЕОРЕМА ФАЛЕСА. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой стороне угла.

Рис. 1. Теорема Фалеса

Утверждение теоремы проиллюстрировано на рис. 1. Три параллельные прямые отсекают на стороне OA угла AOB равные отрезки A_1A_2 и A_2A_3 . Тогда на стороне OB эти прямые также отсекают равные отрезки B_1B_2 и B_2B_3 .

ДОКАЗАТЕЛЬСТВО. Пусть параллельные прямые A_1B_1 , A_2B_2 и A_3B_3 пересекают стороны угла AOB, причём $A_1A_2=A_2A_3$ (рис. 2). Требуется доказать, что $B_1B_2=B_2B_3$.

Рис. 2. К доказательству теоремы Фалеса

Проведём B_1L и B_2M параллельно OA (B_1L пересекает A_2B_2 в точке K). Четырёхугольники $A_1A_2KB_1$ и $A_2A_3MB_2$ — параллелограммы, поэтому $B_1K=A_1A_2$ и $B_2M=A_2A_3$. Значит, $B_1K=B_2M$.

Далее, углы B_1KB_2 , KLM и B_2MB_3 равны как соответственные при параллельных прямых. По той же причине равны углы KB_1B_2 и MB_2B_3 .

Таким образом, треугольники B_1KB_2 и B_2MB_3 равны по стороне и двум прилежащим к ней углам. Отсюда следует, что $B_1B_2 = B_2B_3$. Теорема Фалеса доказана.

Заметим, что теорема о средней линии треугольника является простым следствием теоремы Фалеса. Мы, однако, в листке «Средняя линия треугольника» предпочли доказать её непосредственно.

Важнейшим следствием теоремы Фалеса служит теорема о пропорциональных отрезках.

ТЕОРЕМА О ПРОПОРЦИОНАЛЬНЫХ ОТРЕЗКАХ. Параллельные прямые, пересекающие стороны угла, отсекают от его сторон пропорциональные отрезки.

Так, на рис. 3 прямые AC и BD параллельны. Утверждение теоремы состоит в том, что

$$\frac{OA}{OB} = \frac{OC}{OD}. (1)$$

Доказательство. Предположим, что равенство (1) не выполнено. Пусть, например,

$$\frac{OA}{OB} < \frac{OC}{OD}$$
,

то есть

$$OC > \frac{OA \cdot OD}{OB}$$
.

Отложим на луче OD отрезок

$$OE = \frac{OA \cdot OD}{OB} \,. \tag{2}$$

Точка E лежит между O и C, поскольку OE < OC (рис. 4).

Рис. 4. К доказательству теоремы о пропорциональных отрезках

Возьмём натуральное число n и разобьём отрезок OD на n равных отрезков. Пусть длина одного отрезка равна y; тогда OD = ny.

Через концы этих равных отрезков проведём прямые, параллельные BD. По теореме Фалеса они разобьют отрезок OB на n равных отрезков. Обозначим x длину каждого из полученных отрезков; тогда OB = nx.

При достаточно большом n внутри отрезка EC найдутся точки разбиения отрезка OD. Пусть M — такая точка и OM = my. Соответствующая прямая пересекает OB в точке K; тогда OK = mx. Имеем:

$$\frac{OM}{OD} = \frac{my}{ny} = \frac{m}{n} = \frac{mx}{nx} = \frac{OK}{OB} \,.$$

Теперь, поскольку OE < OM и OK < OA, получаем:

$$\frac{OE}{OD} < \frac{OM}{OD} = \frac{OK}{OB} < \frac{OA}{OB} \,,$$

откуда

$$OE < \frac{OA \cdot OD}{OB}$$

вопреки равенству (2). Полученное противоречие доказывает теорему.