Probabilistic Interpretation

Probability Refresh

- Sample space S: set of possible outcomes
- Random Event E: subset of S
- Random Variable: maps event E to a real value (denoted by Capitals)
- **Conditional Probability**
 - **Events:** $P(E|F) = \frac{P(E \cap F)}{P(F)}$ when P(F) > 0 **RVs:** $P(X = x | Y = y) = \frac{P(X = x \text{ and } Y = y)}{P(Y = y)}$
- Chain Rule: P(X = x and Y = y) = P(X = x | Y = y)P(Y = y)
- Consequences of the Chain Rule
 - **Marginalisation:** Suppose RV Y takes values in $\{y_1, y_2, ..., y_n\}$ Then

-
$$P(X = x) = P(X = x \text{ and } Y = y_1) + ... + P(X = x \text{ and } Y = y_n)$$

$$- = \sum_{i=1}^{n} P(X = x | Y = y_i) P(Y = y_i)$$

- Bayes Rule: $P(X = x | Y = y) = \frac{P(Y = y | X = x)P(X = x)}{P(Y = y)}$
- **Independence:** Random variables X and Y are independent if...
 - P(X = x and Y = y) = P(X = x)P(Y = y)
 - For all x and y, in which case: P(X = x | Y = y) = P(X = x)

Continuous-valued random variables

- P(X = x) = 0 for continuous-valued random variables, so we consider intervals instead: $P(a \le X \le b)$
- $F_{Y}(y) := P(Y \le y)$ is the cumulative distribution function (CDF) and $P(a < Y \le b) = F_{\gamma}(b) - F_{\gamma}(a)$
- For a continuous-valued random variable, Y, there exists a **probability density function** $f_{y}(y) \ge 0$ such that:

$$- F_Y(y) = \int_{-\infty}^{y} f_Y(t)dt$$

- And so...

-
$$P(a < Y \le b) = \int_{-\infty}^{b} f_Y(t)dt - \int_{-\infty}^{a} f_Y(t)dt = \int_{a}^{b} f_Y(t)dt$$

The probability density function f(y) for random variable Y is not a probability (it can take values greater than 1) - the area under the PDF is the probability $P(a < Y \le b)$

$$- \int_{-\infty}^{\infty} f(y)dy = 1 \text{ (since } \int_{-\infty}^{\infty} f(y)dy = F_Y(\infty) = P(Y \le \infty) = 1)$$

- **CDF** for **X** and **Y**: $F_{XY}(x,y) = P(X \le x \text{ and } Y \le y)$
 - Well defined for both continuous and discrete valued RVs

- When X and Y are continuous-valued RVs there exists a PDF

$$f_{XY}(x,y) \ge 0$$
 such that: $F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,v) du dv$

- Define conditional PDF: $f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$
- Then the chain rule holds for PDFs:
 - $f_{XY}(x,y) = f_{X|Y}(x|y)f_Y(y) = f_{Y|X}(y|x)f_X(x)$
 - So marginalisation, Bayes rule and independence carry over to PDFs similarly to discrete-valued RVs
- Y is a Normal or Gaussian RV Y~N(μ , σ ²) when it has the PDF:

$$f_Y(y) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

$$\mu = 0, \, \sigma = 1$$

- E[Y] = μ, Var(Y) = σ²
- ullet Symmetric about μ and defined for all real-valued x

- Probabilistic Interpretation of Linear Regression

- Assume output Y is generated by:
 - $Y = \theta^T x + M = h_{\theta}(x) + M$
 - Where $h_{\theta}(x) = \theta^T x$ and M is Gaussian noise with mean 0 and variance 1
- So training data d is:
 - $\{(x^{(1)}, h_{\theta}(x^{(1)}) + M^{(1)}), (x^{(2)}, h_{\theta}(x^{(2)}) + M^{(2)}), ..., (x^{(m)}, h_{\theta}(x^{(m)}) + M^{(m)})\}$
 - Where $M^{(1)}, M^{(2)}, ..., M^{(m)}$ are independent RVs each of which is Gaussian with mean 0 and variance 1
- A Gaussian RV Z with mean μ and variance σ^2 has PDF:

$$- f_Z(z) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(Z-\mu)^2}{2\sigma^2}}$$

- So we are assuming:
 - $f_M(m) = \frac{1}{\sqrt{2\pi}} e^{-\frac{m^2}{2}} f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-h_\theta(x))^2}{2}}$

- The **likelihood** $f_{D|\Theta}(d|\theta)$ of the training data d is therefore:

$$- f_{D|\Theta}(d|\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}} e^{-\frac{(y^{(i)} - h_{\theta}(x^{(i)}))^2}{2}}$$

- Taking logs: $log f_{D|\Theta}(d|\theta) = log \; \frac{1}{\sqrt{2\pi}} \sum_{i=1}^m \frac{(y^{(i)} h_\theta(x^{(i)}))^2}{2}$
- And the maximum likelihood estimate of θ maximises:

-
$$max_{\theta} - \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}))^2$$

- I.e. it minimises:
$$\min_{\theta} \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)}))^2$$

- Why do we care about probabilistic interpretation?

- Probability is the reasoning about uncertainty, it would be strange if machine learning algorithms didn't make sense from a probability perspective
- Casting an ML approach within a statistical framework clarifies the assumptions we (implicitly) make e.g. in Linear Regression:
 - Noise is additive: $Y = \theta^T x + M$
 - Noise on each observation is independent and identically distributed
 - Noise is Gaussian this is what drives our usage of square loss.
 Changing the noise model would lead to a different loss function
- Allows us to utilise the results and approaches of probability/statistics, and perhaps gain new insights. E.g. in linear regression:
 - Without regularisation, our estimate of θ is the maximum likelihood estimate. Would a MAP (Maximum A Posteriori) estimate be more/less useful?

- Probabilistic Interpretation of Logistic Regression

- Assume

-
$$P(Y = y | \theta, x) = \frac{1}{1 + e^{-y\theta^T x}}$$

- And recall y = 1 or y = -1 only
- The **likelihood** of training data d is: $f_{D|\Theta}(d|\theta) = \prod_{i=1}^m rac{1}{1+e^{-y heta T_x}}$
- Taking logs: $log f_{D|\Theta}(d|\theta) = \sum\limits_{i=1}^{m} log \; rac{1}{1 + e^{-y heta^T x}}$
- And the maximum likelihood estimate of $\boldsymbol{\theta}$ minimises:

$$- \sum_{i=1}^{m} log \frac{1}{1 + e^{-y\theta^{T}x}} = \sum_{i=1}^{m} log(1 + e^{-y\theta^{T}x})$$

- Since -log(z)=log(1/z)
- The probabilistic formulation of logistic regression provides us with new insight:

-
$$P(Y = y | \theta, x) = \frac{1}{1 + e^{-y\theta^T x}}$$

- So in addition to our prediction $h_{\theta}(x) = sign(\theta^T x)$ we also have a confidence in the prediction: $\frac{1}{1+e^{-y\theta^T x}}$
 - When $\frac{1}{1+e^{-y\theta^Tx}}$ is close to 1 we are confident, close to zero we are less confident
- Probabilistic Interpretation of Regularisation

$$P(\Theta = \vec{\theta}|D = d) = \frac{P(D = d|\Theta = \vec{\theta})P(\Theta = \vec{\theta})}{P(D = d)}$$
posterior likelihood prior

- Bayes Rule:
 - **Likelihood:** probability of seeing the data d, given the model with parameter $\Theta = \theta$ where θ is a vector
 - **Prior:** Before seeing any data what is our belief of the model... i.e. what is probability of parameter values Θ
 - **Posterior:** after seeing the data, what is our belief about probability of parameter values ⊕ now that we have seen the data
- Maximum A Posteriori (MAP): estimate of vector θ is value that maximises $P(\Theta = \theta | D = d)$
- Maximum Likelihood estimation: Select value that maximises $P(D = d|\Theta = \theta)$
- Taking logs in Bayes rule:
 - $log P(\Theta = \theta | D = d) = log P(D = d | \Theta = \theta) + log P(\Theta = \theta) log P(D = d)$
 - Can drop the log P(D = d) as d is fixed, so we select θ to maximise:
 - $log P(D = d|\Theta = \theta) + log P(\Theta = \theta)$
 - Or for continuous-valued RVs:
 - $log f_{D|\Theta}(D = d|\Theta = \theta) + log f_{\Theta}(\Theta = \theta)$
- Ridge regression variant of linear regression:

- Y = Θx + M, M ~ N(0,1) as before.
- Θ_j , $\sim N(0, \sigma^2)$ (this is our prior on θ_j), j = 1, ..., n
- log-likelihood: $-\sum_{i=1}^{m} (y^{(i)} \theta^T x^{(i)})^2$
- log-prior: $-\theta_j^2/\sigma^2$
- So MAP estimate selects θ to maximise:

$$-\sum_{i=1}^{m}(y^{(i)}-\theta^{T}x^{(i)})^{2}-\sum_{j=1}^{n}\theta_{j}^{2}/\sigma^{2}$$

i.e. to minimise:

$$\sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2} + \sum_{j=1}^{n} \theta_{j}^{2} / \sigma^{2}$$