Guide to Computer Forensics and Investigations Sixth Edition

Chapter 8

Recovering Graphics Files

Objectives

- Describe types of graphics file formats
- Explain types of data compression
- Explain how to locate and recover graphics files
- Describe how to identify unknown file formats
- Explain copyright issues with graphics

Recognizing a Graphics File

- Graphic files contain digital photographs, line art, three-dimensional images, text data converted to images, and scanned replicas of printed pictures
 - Bitmap images: collection of dots
 - Vector graphics: based on mathematical instructions
 - Metafile graphics: combination of bitmap and vector
- Types of programs
 - Graphics editors
 - Image viewers

Understanding Bitmap and Raster Images

- Bitmap images
 - Grids of individual pixels
- Raster images also collections of pixels
 - Pixels are stored in rows
 - Better for printing
- Image quality
 - Screen resolution determines amount of detail
 - Software contributes to image quality (drivers)
 - Number of color bits used per pixel

Understanding Vector Graphics

- Characteristics of vector graphics
 - Uses lines instead of dots
 - Store only the calculations for drawing lines and shapes
 - Smaller than bitmap files
 - Preserve quality when image is enlarged
- CorelDRAW, Adobe Illustrator

Understanding Metafile Graphics

- Metafile graphics combine raster and vector graphics
- Example
 - Scanned photo (bitmap) with text or arrows (vector)
- Share advantages and disadvantages of both types
 - When enlarged, bitmap part loses quality

Standard graphics file formats

- Standard bitmap file formats
 - Portable Network Graphic (.png)
 - Graphic Interchange Format (.gif)
 - Joint Photographic Experts Group (.jpeg, .jpg)
 - Tagged Image File Format (.tiff, .tif)
 - Window Bitmap (.bmp)
- Standard vector file formats
 - Hewlett Packard Graphics Language (.hpgl)
 - Autocad (.dxf)

- Nonstandard graphics file formats
 - Targa (.tga)
 - Raster Transfer Language (.rtl)
 - Adobe Photoshop (.psd) and Illustrator (.ai)
 - Freehand (.fh11)
 - Scalable Vector Graphics (.svg)
 - Paintbrush (.pcx)
- Search the Web for software to manipulate unknown image formats

Understanding Digital Photograph File Formats (1 of 8)

- Witnesses or suspects can create their own digital photos
- Examining the raw file format
 - Raw file format
 - Referred to as a digital negative
 - Typically found on many higher-end digital cameras
 - Sensors in the digital camera simply record pixels on the camera's memory card
 - Raw format maintains the best picture quality

Understanding Digital Photograph File Formats (2 of 8)

- Examining the raw file format (cont'd)
 - The biggest disadvantage is that it's proprietary
 - And not all image viewers can display these formats
 - The process of converting raw picture data to another format is referred to as demosaicing
- Examining the Exchangeable Image File format
 - Exchangeable Image File (Exif) format
 - Commonly used to store digital pictures
 - Developed by JEITA as a standard for storing metadata in JPEG and TIF files

Understanding Digital Photograph File Formats (3 of 8)

- Examining the Exchangeable Image File format (cont'd)
 - Exif format collects metadata
 - Investigators can learn more about the type of digital device and the environment in which photos were taken
 - Viewing an Exif JPEG file's metadata requires special programs
 - Exif Reader, IrfanView, or Magnet Forensics AXIOM
 - Exif file stores metadata at the beginning of the file

Understanding Digital Photograph File Formats (4 of 8)

Exif picture file

JPEG picture file

Figure 8-1 Similar Exif and JPEG photos

Understanding Digital Photograph File Formats (5 of 8)

Figure 8-2 Differences in Exif and JPEG file header information

Source: X-Ways AG, www.x-ways.net

Understanding Digital Photograph File Formats (6 of 8)

		F	E	D	С	В	A	9	8	7	6	5	4	3	2	1	0	Offset
	øµàù[Sô¬¬ é¾	BE	05	E9	7F	0F	AO	AC	AC	F4	A7	5B	F9	E0	B5	F8	0.0	00019110
	übø ù ý∗ ®Đ¢ÅÆ	1D	C6	CO	A2	D0	AE	1B	2A	FD	0B	F9	7F	F8	62	FC	7F	00019120
	ZþIqá] ++(-w	77	AD	02	28	2B	2B	9E	9F	AO	8A	5D	E1	71	49	FE	5A	00019130
	x×2¼· îï÷∥ &iï∥s	73	95	EF	A1	26	8F	99	F7	EF	EE	0C	B7	BC	32	D7	78	00019140
	´d{ YYLFÂuÇÝ ∎ã=	3D	E3	82	15	DD	C7	75	C2	46	4C	59	59	81	7B	64	B4	00019150
	²²€ Óõ l¯b,∎ïÆÙī	D9	C6	EF	87	B8	62	AF	6C	19	F5	D3	08	80	B2	B2	16	00019160
	Ç~ó Q]J;Ñ< " Øê	18	EA	D8	16	22	09	3C	D1	3B	4A	5D	51	1F	F3	A8	C7	00019170
	gÐ∥ÊÊ ivªÈØÝ∥` A	41	20	60	89	DD	D8	C8	AA	76	A1	00	CA	CA	84	D0	67	00019180
	6H_8∎10¤[BüF°°∎!		80											F0				00019190
	7` #é[¬l´l¬¬ ¾		0D											17				000191A0
	G×ñ-y'Ì}k+(Å9Æk	6B												AD				000191B0
	0= *ÊÊ ó uæÑè++		2B											2A				000191C0
	(I c∖∎ âÉ»î. õ5		F5											19				000191D0
	II 'F ?J×8è++(28							3F								000191E0
	2ç8ÅjO¯éYY@ ∎Íee	65	65	CD	93	11	40	59	59	E9	AF	4F						000191F0
JPEG file EOI	е ÿЙ												D9	FF	7F	00	65	00019200
		F	E	D	С	В	A	9	8	7	6	5	4	3	2	1	0	Offset
	'I \$'I \$'I : ∎£ÅZ	5A	C5	A3	9E	3A	00	49	92	24	00	49	92	24	00	49	92	00001ED0
	"á ªnQ ÅÅ o £!!!	87	93	9E	A3	1A	6F	00	C2	C5	07	51	6E	AA	1A	E1	A8	00001EE0
	Cò^o ìôÔ!Óæ⅓ -r	87	72	AD	1E	BD	E6	D3	21	D4	F4	EC	86	6F	5E	F2	43	00001EF0
	VSrci.î.WØ? X[E¶	B6	45	5B	C3	01	3F	D8	57	86	CE	2E	CD	63	72	A7	56	00001F00
	1'6¶ N7&fS 5裫	AB	A3	E8	35	18	53	66	26	37	D1	18	B6	36	91	ED	12	00001F10
	u∥ÈÖÇ∥I∥¾Ê`"5T ∖	5C	19	54	35	22	60	CA	BE	89	49	82	C7	D6	C8	89	75	00001F20
	(3 E + % 4Zn, w	77	2C	6E	5A	34	8A	25	8F	2B	19	45	9B	33	9D	28	03	00001F30
	ZþÏS∎,{\$]m{7z@Sú	FA	A7	40	7A	37	7B	6D	5D	24	7B	2C	86	53	CF	FE	5A	00001F40
	~ÅZ°∥L áE)íZÌÄ %	25	81	C4	CC	5A	ED	29	45	E1	09	4C	83	B0	5A	C5	7E	00001F50
	ÆII cl] 6WB êè	90	0B	E8	EA	00	42	57	36	01	5D	80	63	AO	94	94	C6	00001F60
	I Ii%ÔI II\$I \I	49	5C	03	12	94	24	49	8C	01	94	D4	25	A1	80	14	9C	00001F70
	\$ 'I\$ 'I\$ zâH	02	48	E2	7A	AO	9C	00	24	49	92	00	24	49	92	00	24	00001F80
	* ú\$'] -2:z ô	F4	13	15	7A	3A	B2	AF	0C	9D	5D	92	24	FA	OA	8A	2A	00001F90
)\$°K³[+;dG¶ê ILº	BA	4C	49	12	EA	87	47	64	3B	2B	5B	B3	4B	B0	24	29	00001FA0
	+à&Ý∎ó é 'Z=?'W	57	91	3F	3D	5A	92	04	E9	7F	B3	C3	96	DD	26	E0	2B	00001FB0
	t OjêKb2±Áuq% ∥u	75	96	08	25	71	75	C1	B1	32	62	4B	EA	6A	4F	15	74	00001FC0
	=[\$[′I ¤′J@ÿÙ		D9	FF	40	4A	92	A4	0E	20	49	92	1C	80	24	89	3D	00001FD0
				•														

Figure 8-3 EOI marker FFD9 for all JPEG files

Source: X-Ways AG, www.x-ways.net

marker

Understanding Digital Photograph File Formats (7 of 8)

- Examining the Exchangeable Image File format (cont'd)
 - With tools such as Autopsy and Exif Reader
 - You can extract metadata as evidence for your case

Understanding Digital Photograph File Formats (8 of 8)

Figure 8-4 Autopsy displaying metadata from an Exif JPEG file

Understanding Data Compression

- Most graphics file formats compress their data
 - GIF and JPEG
- Others, like BMP, do not compress their data
 - Use data compression tools for those formats
- Data compression
 - Coding data from a larger to a smaller form
 - Types
 - Lossless compression and lossy compression

Lossless and Lossy Compression

Lossless compression

- Reduces file size without removing data
- Based on Huffman or Lempel-Ziv-Welch coding
 - For redundant bits of data
- Utilities: WinZip, PKZip, StuffIt, and FreeZip

Lossy compression

- Permanently discards bits of information
- Vector quantization (VQ)
 - Determines what data to discard based on vectors in the graphics file
- Utility: Lzip

Locating and Recovering Graphics Files

- Operating system tools
 - Time consuming
 - Results are difficult to verify
- Digital forensics tools
 - Image headers
 - Compare them with good header samples
 - Use header information to create a baseline analysis
 - Reconstruct fragmented image files
 - Identify data patterns and modified headers

Identifying Graphics File Fragments

- Carving or salvaging
 - Recovering any type of file fragments
- Digital forensics tools
 - Can carve from file slack and free space
 - Help identify image files fragments and put them together

Repairing Damaged Headers (1 of 4)

- When examining recovered fragments from files in slack or free space
 - You might find data that appears to be a header
- If header data is partially overwritten, you must reconstruct the header to make it readable
 - By comparing the hexadecimal values of known graphics file formats with the pattern of the file header you found

Repairing Damaged Headers (2 of 4)

- Each graphics file has a unique header value
- Example:
 - A JPEG file has the hexadecimal header value FFD8, followed by the label JFIF for a standard JPEG or Exif file at offset 6
- Exercise:
 - Investigate a possible intellectual property theft by a new employee of Superior Bicycles, Inc.

Repairing Damaged Headers (3 of 4)

Chris Robinson

From: Bob Aspen

Sent: Monday, July 10, 2017 3:32 PM

To: cr-superior@outlook.com

Subject: FW: More info

Chris,

I got cc'd this odd message from Terry Sadler.

Do you have any projects that might need some capital investment?

Bob

----Original Message----

From: Terry Sadler [mailto:t sadler@zoho.com]

Sent: Monday, July 10, 2017 3:28 PM

To: Jim Shu

Subject: Re: More info

Do you have a name for the project?

On 7/10/2017 3:04 PM, Jim Shu wrote:

> Terry,

>

> Here a few more photos from Tom.

>

> How much you willing to pay for these?

>

> Jim

>

Figure 8-5 An e-mail from Terry Sadler

Repairing Damaged Headers (4 of 4)

Chris Robinson

From: Tom Johnson <1060waddisonst@gmx.us>

Sent: Monday, July 10, 2017 2:40 PM

To: Jim Shu

Subject: You might be interested

Jim,

I had a tour of the new kayak factory. I think we can run with this to the other party interested in competing. I smuggled these files out, they are JPEG files I edited with my hex editor so that the email monitor won't pick up on them. So to view them you have to re-edit each file to the proper JPEG header of offset 0x FF D8 FF E0 and offset 6 of 4A. Then you have to rename them to a .jpg extension to view them.

Tom

Figure 8-6 The e-mail with attachments IT found

Searching for and Carving Data from Unallocated Space (1 of 6)

- Steps
 - Planning your examination
 - Searching for and recovering digital photograph evidence
 - Use Autopsy for Windows to search for and extract (recover) possible evidence of JPEG files
 - False hits are referred to as false positives

Searching for and Carving Data from Unallocated Space (2 of 6)

Figure 8-7 Processing options in the Configure Ingest Modules window

Searching for and Carving Data from Unallocated Space (3 of 6)

Figure 8-8 Parsing Exif metadata in Autopsy

Searching for and Carving Data from Unallocated Space (4 of 6)

Figure 8-9 The results of searching for "fif"

Searching for and Carving Data from Unallocated Space (5 of 6)

Figure 8-10 The altered file header

Searching for and Carving Data from Unallocated Space (6 of 6)

Figure 8-11 Viewing all sectors used by the gametour2.exe file

Rebuilding File Headers (1 of 6)

- Before attempting to edit a recovered graphics file
 - Try to open the file with an image viewer first
- If the image isn't displayed, you have to inspect and correct the header values manually
- Steps
 - Recover more pieces of file if needed
 - Examine file header
 - Compare with a good header sample
 - Manually insert correct hexadecimal values
 - Test corrected file

Rebuilding File Headers (2 of 6)

Figure 8-12 Error message indicating a damaged or an altered graphics file

Rebuilding File Headers (3 of 6)

Figure 8-13 Recover1.jpg open in WinHex

Source: X-Ways AG, www.xways.net

Rebuilding File Headers (4 of 6)

Figure 8-14 Inserting correct hexadecimal values for a JPEG file

Source: X-Ways AG, www.xways.net

Rebuilding File Headers (5 of 6)

Figure 8-15 ASCII equivalents of hexadecimal values

Rebuilding File Headers (6 of 6)

Figure 8-16 Fixed1.jpg open in an image viewer

Reconstructing File Fragments

- Locate the noncontiguous clusters that make up a deleted file
- Steps
 - Locate and export all clusters of the fragmented file
 - Determine the starting and ending cluster numbers for each fragmented group of sectors
 - Copy each fragmented group of sectors in their correct sequence to a recovery file
 - Rebuild the file's header to make it readable in a graphics viewer
 - Add a .txt extension on all the copied sectors

Identifying Unknown File Formats

- Knowing the purpose of each format and how it stores data is part of the investigation process
- The Internet is the best source
 - Search engines
 - Find explanations and viewers
- Popular Web sites
 - FileFormat.info
 - <u>Extension Informer</u>
 - The Graphics File Formats Page

Analyzing Graphics File Headers (1 of 3)

- Necessary when you find files your tools do not recognize
- Use a hexadecimal editor such as WinHex
 - Record hexadecimal values in the header and use them to define a file type
- Example:
 - XIF file format is old, little information is available
 - The first 3 bytes of an XIF file are the same as a TIF file
 - Build your own header search string

Analyzing Graphics File Headers (2 of 3)

Figure 8-17 A TIF file open in WinHex

Source: X-Ways AG, www.x-ways.net

Analyzing Graphics File Headers (3 of 3)

Figure 8-18 An XIF file open in WinHex

Source: X-Ways AG, www.x-ways.net

Tools for Viewing Images

- After recovering a graphics file
 - Use an image viewer to open and view it
- No one viewer program can read every file format
 - Having many different viewer programs is best
- Most GUI forensics tools include image viewers that display common image formats
- Be sure to analyze, identify, and inspect every unknown file on a drive

Understanding Steganography in Graphics Files (1 of 7)

- Steganography hides information inside image files
 - An ancient technique
- Two major forms: insertion and substitution
- Insertion
 - Hidden data is not displayed when viewing host file in its associated program
 - You need to analyze the data structure carefully
 - Example: Web page

Figure 8-19 A simple Web page displayed in a Web browser

Source: The Mozilla Foundation, www.mozilla.org

Understanding Steganography in Graphics Files (3 of 7)

Figure 8-20 The HTML code reveals hidden text

Source: The Mozilla Foundation, www.mozilla.org

Understanding Steganography in Graphics Files (4 of 7)

- Substitution
 - Replaces bits of the host file with other bits of data
 - Usually change the last two LSBs (least significant bit)
 - Detected with steganalysis tools (a.k.a steg tools)
- You should inspect all files for evidence of steganography
- Clues to look for:
 - Duplicate files with different hash values
 - Steganography programs installed on suspect's drive

Understanding Steganography in Graphics Files (5 of 7)

Table 8-1	Bit breakdown of a secret message		
Original Pixel	Altered Pixel		
1010 1010	1010 1001		
1001 1101	1001 1110		
1111 0000	1111 0011		
0011 1111	0011 1100		

Understanding Steganography in Graphics Files (6 of 7)

Figure 8-21 Original and altered images

Understanding Steganography in Graphics Files (7 of 7)

Country	Bank	Account No.	Passcode	Currency Amt.
Swiss	Swiss National SA	26845622	Y1115AQ	1.2 million CHF
Caymen Is.	Caribbean Intn. Bank Ltd.	5589999	SAMMM242	5.82 million KYD
Malta	Valletta Nat. Bank Limited	57896165	558TF558	2.3 million EUR
Hong Kong	Chan Wag Bank	A5AA59	665308888	8.9 million HKD
South Africa	Rand Bank of Cape Town	6982543	AAF8	0.53 million ZAL

Figure 8-22 A hidden message in the altered image

Using Steganalysis Tools

- Use steg tools to detect, decode, and record hidden data
- Detect variations of the graphic image
 - When done correctly you cannot detect hidden data in most cases
- Check to see whether the file size, image quality, or file extensions have changed

Understanding Copyright Issues with Graphics

- Steganography has been used to protect copyrighted material
 - By inserting digital watermarks into a file
- Digital investigators need to aware of copyright laws
- Copyright laws for Internet are not clear
 - There is no international copyright law
- Check the U.S. Copyright Office
 - U.S. Copyright Office identifies what can and can't be covered under copyright law in U.S.
- Fair use
 - Another guideline to consider

Summary (1 of 3)

- Three types of graphics files
 - Bitmap
 - Vector
 - Metafile
- Image quality depends on various factors
- Standard file formats: .gif, .jpeg, .bmp, and .tif
- Nonstandard file formats: .tga, .rtl, .psd, and .svg
- Some image formats compress their data
 - Lossless compression
 - Lossy compression

Summary (2 of 3)

- Digital camera photos are typically in raw and EXIF JPEG formats
- Recovering image files
 - Carving file fragments
 - Rebuilding image headers
- The Internet is best for learning more about file formats and their extensions
- Software
 - Image editors
 - Image viewers

Summary (3 of 3)

- Steganography
 - Hides information inside image files
 - Forms
 - Insertion
 - Substitution
- Steganalysis
 - Finds whether image files hide information
- Fair use allows using copyrighted material for noncommercial or educational purposes without having to compensate the material's originator or owner

