	Sinhgad Institutes SMT. KASHIBAI NAVALE COLLEGE OF ENGG. Department of Computer Engineering SEM I (2013-14) Oral Question bank	
1.	Explain the difference between 8086 and 8386	
2.	What are the features of 8086?	
3.	What are the features of 80386? Ans. Features of 80386 are given below: 275,000 transistors	
	Intel's first practical 32-bit microprocessor	
	32-bit data bus and memory address	
	4GB of memory	
	Memory management unit	
	Multitasking	
4.	What is an instruction queue? Explain?	
	Ans. This is introduced in 8086 processor. This queue is in the BIU and is used for storing	
	the predecoded instructions. This will overlap the fetching and execution cycle.	
	The E U will take the instructions from the queue for decoding and execution.	
5.	What is stack? Explain the use and operation of stack and stack pointer?	
	Ans. A stack is a portion of the memory used for the temporary storage. A stack is a last In first Out memory. A stack grows in the decreasing order. A stack will hold the	
	temporary information's push and pop are the instructions used for storing and	
	accessing data from the stack. Contents can be moved as 16 bit only using push and	
	pop instructions.	
6.	What are the flags in 8086?	
	Ans. In 8086 Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Overflow flag, Trap flag, Interrupt flag, Direction flag, and Sign flag.	
7.	What are the various interrupts in 8086? Explain.	
	Ans. Maskable interrupts, Non-Maskable interrupts.	
	i) An interrupt that can be turned off by the programmer is known as Maskable	
	interrupt.	
	ii) An interrupt which can be never be turned off (ie.disabled) by the programmer	
0	is known as Non-Maskable interrupt.	
8.	What are the flags in 80386?	
0	Explain each flags with its function Which interrupts are generally used for critical events?	
9.	Ans. Non-Maskable interrupts are used in critical events. Such as Power failure,	
	Emergency, Shut off etc.	
10.	Explain different types of registers in 8086 microprocessor arch.	
10.	Ans. Most of the registers contain data/instruction offsets within 64 KB memory segment.	
	There are four different 64 KB segments for instructions, stack, data and extra data. To	
	specify where in 1 MB of processor memory these 4 segments are located the processor	
	uses four segment registers:	
	Code segment (CS) is a 16-bit register containing address of 64 KB segment with	
	processor instructions. The processor uses CS segment for all accesses to instructions	
	referenced by instruction pointer (IP) register. CS register cannot be changed directly. The	
	CS register is automatically updated during far jump, far call and far return instructions.	
	Stack segment (SS) is a 16-bit register containing address of 64KB segment with program	

stack. By default, the processor assumes that all data referenced by the stack pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed directly using POP and LDS instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with program data. By default, the processor assumes that the DI register references the ES segment in string manipulation instructions. ES register can be changed directly using POP and LES instructions.

It is possible to change default segments used by general and index registers by prefixing instructions with a CS, SS, DS or ES prefix.

All general registers of the 8086 microprocessor can be used for arithmetic and logic operations. The general registers are:

Accumulator register consists of 2 8-bit registers AL and AH, which can be combined together and used as a 16-bit register AX. AL in this case contains the low-order byte of the word, and AH contains the high-order byte. Accumulator can be used for I/O operations and string manipulation.

Base register consists of 2 8-bit registers BL and BH, which can be combined together and used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH contains the high-order byte. BX register usually contains a data pointer used for based, based indexed or register indirect addressing.

Count register consists of 2 8-bit registers CL and CH, which can be combined together and used as a 16-bit register CX. When combined, CL register contains the low-order byte of the word, and CH contains the high-order byte. Count register can be used as a counter in string manipulation and shift/rotate instructions.

Data register consists of 2 8-bit registers DL and DH, which can be combined together and used as a 16-bit register DX. When combined, DL register contains the low-order byte of the word, and DH contains the high-order byte. Data register can be used as a port number in I/O operations. In integer 32-bit multiply and divide instruction the DX register contains high-order word of the initial or resulting number.

The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register indirect addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and register indirect addressing, as well as a destination data address in string manipulation instructions.

11. What are the different addressing modes of 80386 with examples.

Ans. Addressing modes of 80386: Register addressing: MOV ECX, EDX

Immediate addressing: MOV EBX, 12345678H

Direct addressing: MOV CX, LIST

Register indirect addressing: MOV AL, [ECX]
Base-plus-index addressing: MOV [EAX+EBX], CL
Register relative addressing: MOV AX, [ECX+4]

Base relative-plus-index addressing: MOV EAX, ARRAY [EBX+ECX]

Scaled-index addressing: MOV EDX, [EAX+4*EBX]

26.	What are the different segment descriptor table LDT, GDT, IDT
27.	Explain descriptor format of LDT,GDT,IDT
28.	What do you mean by flat model a "flat" model of memory organization, the applications programmer sees a single array of up to 232 bytes (4 gigabytes). While the physical memory can contain up to 4 gigabytes, it is usually much smaller; the processor maps the 4 gigabyte flat space onto the physical address space by the address translation mechanisms
29.	Explain in detail protection mechanism
30.	Explain the different privileged level.
31.	What are the different data types of 80386
32.	Discuss system descriptor and non-system descriptor
33.	What is descriptor cache?
34.	What do you mean by register operand and memory operand?
35.	How effective address can be calculate?
36.	Explain the algorithm of all assignments
37.	Explain difference between 16 bit, 32 bit and 64 bit programming.
38.	Explain int21 h and int80h w.r.t its function numbers.
39.	List different sys_call with its functions
40.	Explain the term page table, page table entry, page fault
41.	Discuss in detail 8086 and 80386 programing model
42.	How to run program using TASM and NASM
43.	How to run program of 32 bit and 64 bit program
44.	Explain in detail TLB
45.	Explain in detail Task state segment
46.	Explain in detail Task register
47.	What are the different gate descriptor There are four kinds of gate descriptors: • Call gates • Trap gates • Interrupt gates • Task gates
48.	Discuss stack switching
49.	Define the term clock, clock period, bus cycle, timing diagrams
50.	Explain in details instructions used in assignments