TEMA 4. CAMINO DE DATOS Y U. DE CONTROL DE UNA COMPUTADORA

INTRODUCCION

- Objetivos
 - Estudio de la técnicas de diseño de Unidades de Control
 - Unidad de Control Cableada
 - Unidad de Control Microprogramada
 - Aplicación a diferentes máquinas de cómputo
- Visión Global
 - La U. De Control como bloque de la Estructura Von Neuman
 - ➤ Unidad de Cálculo
 - ➤ Unidad de Memoria
 - ➤ Unidad de Entrada/Salida
 - ➤ Unidad de Control
- Función de la Unidad de Control
 - Asegurar la ejecución de los programas (en M. principal)
 - ➤ Generación de las secuencias de microordenes para la ejecución de todas y cada una de las instrucciones de la computadora
 - Ejecución de la siguiente Instrucción del programa

Técnicas de diseño de la Unidad de Control

CABLEADA

- Como Circuito Secuencial Síncrono
 - > Tedioso y rígido
 - Difícil de analizar
 - ➤ Dificultad de detectar errores
 - Minimiza el número de biestables
 - Es de ejecución rápida
- Mediante Registros de desplazamiento
 - > Mas sencillo
 - > Flexible
 - Fácil de analizar
 - Minimiza la lógica adicional
 - > Bastante rápida
- Mediante Decodificadores de Tiempo e Instrucción
 - > Sencilla de diseñar
 - ➤ Bastante flexible
 - Fácil de analizar
 - Posee bastante lógica combinacional
 - > Es rápida

MICROPROGRAMADA

- Mediante la utilización de una ROM de Control
 - ➤ Muy fácil de diseñar
 - ➤ Muy flexible
 - Fácil de analizar
 - Es costosa en circuitería (ROM, Registros y L.C.)
 - Es la mas lenta

DISEÑO DE UNA UNIDAD DE CONTROL CABLEADA

- Condiciones de partida
 - Conocimiento de la estructura de la máquina
 - Conocimiento del conjunto de Instrucciones
 - > Secuencia de microinstrucciones de cada una
 - ➤ La dependencia con la estructura
 - Registros, C Combinacionales, buses, etc...

Figura 9-12 Diagrama de bloque de un computador con procesador aritmético.

- Unidad de Control
 - Registros PC, OPR, SR de 12, 4 y 4 bits respectivamente
 - Decodificadores de:
- * Operación
- * Tiempo
- Módulo de compuertas de control lógico
- Estudio del modelo propuesto para la Unidad de Control
 - De tipo Cableada con decodificadores
 - Estructura
 - > Registros
 - * de Operación OPR
 - * de secuencia temporal SR
 - Contador * Cuenta hacia arriba
 - * Clear
 - * Carga paralela
 - Decodificador de Instrucciones 4 a 16
 - * Entrada: el contenido del OPR (el OP-CODE)
 - * Se activa qi de acuerdo con el código entrante
 - Decodificador de tiempos 4 a 16
 - * Genera la temporización de acuerdo con un reloj básico (t0, t1,...., t15)
 - * La instrucción mas larga consume menos de 16 pulsos

- Compuertas de control lógico
 - > Generación de las microordenes
 - * dependiendo de la instrucción (qi)
 - * dependiendo del tiempo (ti)
 - * dependiendo de alguna condición
 - > Expresión lógica de una microrden

$$M_n = c_i \& q_j \& t_k$$

" La microorden $\mathbf{M_n}$ se ejecutará (a 1) cuando se tenga la instrucción \mathbf{j} en el instante \mathbf{k} y solo si se cumple la condición \mathbf{i} "

- Especificación de las secuencias de microoperaciones
 - Ciclos de una Instrucción
 - ➤ De busqueda
 - * Idéntico para todas las Instrucciones
 - > De ejecución
 - * Específico para cada Instrucción

Ciclo de Búsqueda

- Objetivos
 - ➤ Situar el Op-code en el OPR
 - > Actualizar el PC
 - Posicionar el MAR
- Formato de la línea de macrooperación

EXPRESION RTL PARA EL CICLO DE BUSQUEDA

"Expr. lóg.de control Señales a activar Temporización"

Tablia 9-4. Enunciados de trasferencia de registro para el cíclo fetal

 $t_0: MAR \leftarrow PC,$ $SR \leftarrow SR + 1$

 $t_1: BR \leftarrow M, PC \leftarrow PC + 1, SR \leftarrow SR + 1$

 t_2 : $MAR \leftarrow BR(AD)$, $OPR \leftarrow BR(OP)$, $SR \leftarrow SR + 1$

Instrucciones ADD y SUB

- Identidad de los algoritmos de Suma y Resta
- Se define la variable x de igualdad de signos

x = As OR-EX Bs

- La secuencia se basa en el algoritmo correspondiente

Figura 9-4 Diagrama de flujo para las operaciones sumar y restar.

EXPRESION RTL PARA LAS INSTRUCCIONES ADD Y SUB

TABLA 9-5 Enunciados de trasferencia de registro para ADD y SUB

$(q_0 + q_1)t_3$:	$BR \leftarrow M$,	$SR \leftarrow SR + 1$. Lea el operando, vaya a $oldsymbol{t_4}$
$(x'q_0 + xq_1)t_4*$	$EA \leftarrow A + B$,	$SR \leftarrow SR + 1$	Sume las magnitudes, vaya a t_5
$(xq_0+x'q_1)t_4:$	$EA \leftarrow A + \bar{B} + 1, AVF \leftarrow 0,$	<i>SR</i> ← 0110	Reste las magnitudes, vaya a t ₆
$(q_0 + q_1)t_5$:	$AVF \leftarrow E$,	$SR \longleftarrow 0$	Coloque el sobreflujo y regrese a t_0
$E(q_0+q_1)t_6$:	Si $(A = 0)$ entonces $(A_s \leftarrow 0)$,	$SR \longleftarrow 0$	Coloque el signo y regrese a t_0
$E'(q_0 + q_1)t_6$:	$A \leftarrow \bar{A}$,	$SR \leftarrow SR + 1$	1 Complemente A , vaya a t_7 .
$(q_0+q_1)t_7$:	$A \leftarrow A + 1, A_s \leftarrow \bar{A}_s,$	<i>SR</i> ← 0	Incremente y regrese a t_0

 $[*]x = A_s \oplus B_s$.

Instrucción de multiplicación MULT

- Necesidad de implementar bucles
- Necesidad de microoperaciones condicionales

Tabla 9-6 Enunciados de trasferencia de registro para MULT

Lógica de control necesaria

Conjuntos de líneas a activar

$$PC \leftarrow PC + 1$$
 $MAR \leftarrow PC$
 $BR \leftarrow M$
 $MAR \leftarrow BR(AD)$
 $SR \leftarrow SR + 1$
 $EA \leftarrow A + B$
 $AVF \leftarrow E$
etc.

- Circuito para cada línea
 - > Suma de todas las expresiones lógicas que aparecen en las secuencias de microinstrucciones de las instrucciones
 - ➤ Ejemplo : incrementar el contenido de SR (SR <--- SR + 1)

$$f = t_0 + t_1 + t_2 + (q_0 + q_1) t_3 + q_2 t_3 + (x'q_0 + xq_1) t_4 + q_2 t_4 + q_2 t_5 + E' (q_0 + q_1) t_6 + \dots$$

> Seguramente se podría minimizar