Smart Room

Group 23

Assumptions In The System

Initially no one is in the room.

Only one person is allowed to come at a time.

There are two separate doors for enter and exit from the room.

Indoor light intensity and outdoor light intensity is same.

No one is allowed to stay in-front of the passage.

Demonstration

Circuit Diagram

Lab-View

Ultra-Sonic Sensors

Working Voltage - DC 5 V
Working Current - 15mA
Working Frequency - 40Hz
Max Range - 4m
Min Range - 2cm
Measuring Angle - 15 degree
Trigger Input Signal - 10uS TTL pulse
Echo Output Signal - Input TTL lever signal and the range in proportion
Dimension - 45*20*15mm

Temperature Sensor

Specification of LM35 Temperature Sensor

- •Operating Voltage: 4 V to 30 V
- •Output Voltage: 10mV/°C
- •Sensitivity: 10mV/°C
- •Linearity Error: ±1°C (for 0°C to +100°C)
- •Operating Temperature: -55°C to +150°C
- •Output Impedance: 100 Ω
- •Power Consumption: 60 μA (typical)
- •Package Type: TO-92, TO-220, SOIC
- Output Type: Analog
- Accuracy: ±1°C (typical)

Sensor Calibration using LDR

Arduino LDR connections

```
int sensorPin = A0; // select the input pin for LDR

int sensorValue = 0; // variable to store the value coming from the sensor
void setup() {
   Serial.begin(9600); //sets serial port for communication
}

void loop() {
   sensorValue = analogRead(sensorPin); // read the value from the sensor
   Serial.println(sensorValue); //prints the values coming from the sensor on the scre

delay(100);
```


For 5v Arduino gives maximum reading as 1023 For 0 v it gives 0 as the reading

Plots

ldr		lux value
73	36	3700
74	13	4000
76	51	4500
78	39	5100
81	1	5400
70)1	3400
68	30	3060
66	59	2800
65	0	2550
62	23	2460
60	00	2110
58	30	1990
53	36	1420

501	1200	
488	1130	
486	1010	
480	926	
469	820	
428	714	
397	620	
382	570	
378	500	
353	450	
301	320	
244	247	
100	61.5	
74	40	

32	22	
22	16	
14	10	
1	2.5	

Variation of the intensity with the voltage

Light Intensity Sensor

Safety Precautions

- Measure the maximum and minimum voltage and current values of motor and make sure they are in the rated levels.
- Power is delivered using separate power supply which has self protection system.
- Use 1 $k\Omega$ resistor for the protection of LED bulb.

Why?

- Energy saving.
- High system durability.
- Convenience for the consumers.

