Lecture #7: Naïve Bayes

Probabilistic Classifier Learning Approaches

 To learn a probabilistic classifier, there are two types of approaches

• Generative:

- ightharpoonup Learn P(y) and $P(\mathbf{x}|y)$
- \triangle Compute $P(y|\mathbf{x})$ using Bayes rule

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})} = \frac{P(\mathbf{x}|y)P(y)}{\sum_{y} P(\mathbf{x}, y)}$$

Discriminative:

- ightharpoonup Learn $P(y|\mathbf{x})$ directly
- Logistic regression is one of such techniques

Bayes Classifier

• Generative model learns p(y) and p(x|y)

Prediction is made by

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{\sum_{y} p(\mathbf{x}, y)}$$

 Often referred to as the Bayes Classifier due to using the Bayes rule

Joint Density Estimation

• More generally, learning $p(\mathbf{x}|y)$ is a density estimation problem, which is a challenging task

• Now we will consider the case where \mathbf{x} is a d-dimensional binary vector

• How to learn $P(\mathbf{x}|y)$ in this case?

The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

- 1. Make a truth table listing all combinations of values of your variables (M Boolean variables $\Rightarrow 2^M$ rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Learning a joint distribution

Build a JD table in which the probabilities are unspecified

A	В	C	Prob
0	0	0	?
0	0	1	?
0	1	0	?
0	1	1	?
1	0	0	?
1	0	1	?
1	1	0	?
1	1	1	?

Fraction of all records in which A and B are True but C is False

Then fill in each row with

$$\hat{P}(\text{row}) = \frac{\text{records matching row}}{\text{total number of records}}$$

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Example of Learning a Joint

 This Joint was obtained by learning from three attributes in the UCI "Adult" Census Database [Kohavi 1995]

UCI machine learning repository: http://www.ics.uci.edu/~mlearn/MLRepository.html

Learning Joint Distribution and Overfitting

• Let \mathbf{x} be a d-dimensional binary vector, and $y \in \{1,2,\ldots,k\}$

- Learning the joint distribution $P(\mathbf{x}|y=i)$ for i=1,...,k involves estimating $k \times (2^d-1)$ parameters
 - ightharpoonup For large d, this number is prohibitively large
 - Not enough data to estimate the joint distribution accurately
 - ^ Common to encounter the situation where no training examples have the exact $\mathbf{x} = [u_1, ..., u_d]^T$ value combination
 - ↑ Then $P(\mathbf{x} = [u_1, ..., u_d]^T | y = i) = 0$ for all values of i
 - This will lead to severe overfitting

Naïve Bayes Assumption

- Assumption: each feature is independent from one another given the class label
- **Definition:** x is **conditionally independent** of y given z, if the probability distribution governing x is independent of the value of y, given the value of z $\forall i, j, k \ P(x = i|y = j, z = k) = P(x = i|z = k)$ Often denoted as p(x|y,z) = p(x|z)

• Example:

```
p(thunder|raining, lightening)
= p(thunder|lightening)
```

Conditional Independence vs. Independence

Conditional Independence:

$$p(x,y|z) = p(x|z)p(y|z)$$

or equivalently: p(x|y,z) = p(x|z)

• Independence:

$$p(x,y) = p(x)(y)$$

or equivalently: p(x|y) = p(x)

Conditional independence ≠ independence

Naïve Bayes Classifier

Under Naïve Bayes assumption, we have:

$$p(\mathbf{x}|y) = \prod_{i=1}^{d} p(x_i|y)$$

No need to estimate the joint distribution

• We only need to estimate $p(x_i|y)$ for each feature i

- **Example:** with d binary features and k classes, we reduce the number of parameters from $k(2^d-1)$ to kd
 - Significantly reduces overfitting

Example: Spam Filtering

- Bag-of-words representation to describe emails
- Represent an email by a vector whose dimension = the number of words in our "dictionary"
- Example: Bernoulli feature
 - $x_i = 1$ if the *i*-th word is present
 - $x_i = 0$ if the *i*-th word is not present

- The ordering/position of the words does not matter
- "Dictionary" can be formed by looking through the training set and identifying all the words & tokens that have appeared at least once (with stop-words like "the", "and" removed)

MLE for Naïve Bayes with Bernoulli Model

Suppose our training set contains N emails,
 maximum likelihood estimate of the parameters are:

$$P(y=1) = \frac{N_1}{N}$$
, where N_1 is the number of spam emails

$$P(x_i = 1 | y = 1) = \frac{N_{i|1}}{N_1},$$

i.e., the fraction of spam emails where x_i appeared

$$P(x_i = 1 | y = 0) = \frac{N_{i|0}}{N_0}$$

i.e., the fraction of nonspam emails where x_i appeared

Naïve Bayes Prediction

• To make a prediction for a new example with feature $\mathbf{x} = [u_1, ..., u_d]^T$

$$P(y = 1|\mathbf{x})$$

$$= \frac{P(y = 1) \prod_{i=1}^{d} P(x_i = u_i|y = 1)}{\sum_{y' \in \{0,1\}} P(y = y') \prod_{i=1}^{d} P(x_i = u_i|y = y')}$$

$$\propto P(y = 1) \prod_{i=1}^{d} P(x_i = u_i|y = 1)$$

Discrete and Continuous Features

- Naïve Bayes can be easily extended to handle features that are not binary-valued
- Discrete: $x_i \in \{1, 2, ..., k_i\}$
 - ^ $P(x_i = j | y)$ for $j ∈ \{1,2,...,k_i\}$ categorical distribution in place of Bernoulli
- Continuous: $x_i \in R$
 - Discretize the feature, then build categorical distribution for each feature
 - When the feature does not follow Gaussian, this can result in a better classifier

Problem with MLE

- ullet Suppose you picked up a new word "Mahalanobis" in your class and started using it in your email x
- Because "Mahalanobis" (say it's the n+1 th word in the vocabulary) has never appeared in any of the training emails, the probability estimate for this word will be $P(x_{n+1} = 1 | y = 1) = P(x_{n+1} = 1 | y = 0) = 0$
- Now $P(\mathbf{x}|y) = \prod_i P(x_i|y) = 0$ for both y = 0 and y = 1
- Given limited training data, MLE can often result in probabilities of 0 or 1. Such extreme probabilities are "too strong" and cause problems

Laplace Smoothing

• Suppose we estimate a probability P(z) and we have n_0 examples where z=0 and n_1 examples where z=1 MLE estimate is

$$P(z=1) = \frac{n_1}{n_0 + n_1}$$

 Laplace Smoothing: Add 1 to the numerator and 2 to the denominator

$$P(z=1) = \frac{n_1 + 1}{n_0 + n_1 + 2}$$

If we don't observe any examples, we expect P(z=1) = 0.5, but our belief is weak (equivalent to seeing one example of each outcome).

MAP for Naïve Bayes Spam Filter

- When estimating $p(x_i|y=1)$ and $p(x_i|y=0)$
 - ▲ Bernoulli case:

$$P(x_i = 1 \mid y = 0) = \frac{N_{i|0}}{N_0} \Rightarrow P(x_i = 1 \mid y = 0) = \frac{N_{i|0} + 1}{N_0 + 2}$$
MLE

- When encounter a new word that has not appeared in training set, now the probabilities do not go to zero
- This is called Laplace Smoothing

Naïve Bayes Summary

- Generative classifier
 - ightharpoonup learn P($\mathbf{x}|\mathbf{y}$) and P(\mathbf{y})
 - ightharpoonup Use Bayes rule to compute P($y \mid x$) for classification

- Assumes conditional independence between features given class labels
 - Greatly reduces the numbers of parameters to learn

- MAP estimation (or Laplace smoothing) is necessary to avoid overfitting and extreme probability values
- In practice, a fast and solid baseline for text classification