如何缩代码、如何港记、如何骗分 以及如何进队

n+e

Tsinghua University

2017年1月22日

n+e

- 1 基础知识
- 2 无营养热身题

无营养热身题

基础知识

- 基础知识 数学 几何
- 2 无营养热身题
- 3 正常题
- 4 集训队题
- 5 省选题

排名不分先后。杳看代码

无营养热身题

- 快速幂
- exgcd、中国剩余定理
- 线性求逆元 (?)
- 线性筛
- Lucas
- Miller-Rabin + Rho
- 阶、原根、二次互反
- 高斯消元
- BSGS、exBSGS

- 矩阵快速幂
- 生成树计数
- K 阶线性递推-特征多项式。 $O(K \log K \log n)$
- 拉格朗日插值、牛顿插值
- 特殊多项式的线性插值
- $O(n^{2/3})$ 求 φ 、 μ 的前缀和
- 单纯形
- FFT、NTT、多项式求逆

知识点

xiǎo xué ào shù • 计数原理

无营养热身题

- · 高中数学(向量、平面几何、解析几何、……)
- 数论函数变换(反演)
- 组合数、卡特兰数、斯特林数、伯努利数、调和数、斐波那 契数、母函数

集训队题

- Pólva
- 博弈论 (SG、不平等)
- 概率与期望(DP)
- 数值方法与极值问题(二分、三分、牛顿迭代、多元函数求 偏导、拉格朗日乘子法、符号积分与数值积分)
- 线性代数相关 (矩阵、行列式、线性基)

- 基础知识 数学 几何
- 2 无营养热身题
- 3 正常题
- 4 集训队题
- 5 省选题

所有知识点

排名分先后。杳看代码

- 复数域上 Point 的定 义
- 二维凸包
- 几何特征构造 (切线、 外接圆、……)
- 旋转卡壳
- 最近点对
- 最小圆覆盖
- 半平面交
- 自适应辛普森积分

- K-D Tree
- 三维凸包
- 动态凸包
- 扫描线与周长、面积问题
- 曼哈顿距离最小生成树
- Delaunay 三角剖分与 Voronoi 图
- 平面图点定位

要特意交代的东西

- 以上内容 = 省选/NOI 最大出题范围
- 从近几年的 FJOI 情况来看, 如果今年命题组不变, 则每年 必有 1~2 道数学相关的题目, 比重还是相当大的。
- 个人认为 3h 拿来介绍知识点的话,介绍不了很多东西,除 非是省夏, 因此接下来将以题目讨论为主。
- 我真的不是标题党
- n+e 好菜啊请各位大佬轻虐

^顶 要特意交代的东西

基础知识

00000000

Rating变化通知

Trinkle 您好:

您在 UOJ Test Round #2 这场比赛后的Rating变化为-67, 当前Rating为 1905。

n+e

要特意交代的东西

基础知识

刀.何

其实数学几何知识点基本去 省冬的都能过吧。。。。 过不了也没救了。。。。

我都能过

fjoi最低水平

- 2 无营养热身题

无营养热身题

0000000000

UR#1-A

- 3 正常题
- 4 集训队题

- 2 无营养热身题 UR#1-A

无营养热身题

- 3 正常题
- 4 集训队题

- π+e 是一个热爱短代码的选手。自从看了《N 语言全书》之 后, 代码能力突飞猛进。在缩代码方面, 他可是身经百战, 见得多了。世界各地的 OJ 上, 很多题的最短解答排行榜都 有他的身影。这令他感到十分愉悦。
- 给定 n 和 ai, 最小化

$$f(x) = \sum_{i=1}^{n} a_i/x + a_i \bmod x$$

• $n, a_i < 10^6$

无营养热身题

0000000000

• 基础推式子练习题: 颞解

UR#1-A 以下内容节选自《N 语言全书》:

一般做法

全局变量用容易理解的名称, 局部变量 用短名称命名 函数用动词命名 用明确的描述文字命名 为结构加上合理的缩进 写成自然的形式 加上括号避免误读 把复杂的表达式分开

明确编写源代码 注意副作用 统一缩进、大括号的使用方式 以惯用写法确保一致性

短码做法

变量全部用一个字母命名

函数用一个字母命名 用一个字母命名 该缩进的地方也不要放进多余的空格 写成最短的形式 熟知运算符优先级,尽量不用括号 把复杂的表达式换成同等的简单表达 式或近似表达式 明确编写源代码 把副作用应用到极致 绝不缩进, 大括号能省就省 学会最短的惯用法,尽快转换成短码编 程想法

烂原始代码就别注释了, 重写比较快

长的源代码就别注释了, 缩短比较快

完全不用写注释

什么都不写是最明智的

一般做法 短码做法 不管是不是多重分支, 都使用条件运 多重分支使用 else-if 尽量不要使用宏功能 绝对不要用宏功能 宏自身的参数记得加上括号 就算非得使用宏, 还是千万别用括号 为魔术数字命名 魔术数字基本上维持原状 不要使用整数,使用字符串常量 整数、浮点数、字符串常量挑最短的 用语言计算对象大小 事先计算好对象大小 理所当然的事情就不要再写注释了 完全不用写注释 为函数与全局变量加上详细说明 完全不用写注释

注释不要与源代码冲突

明确注释,不要导致混乱

- 2 无营养热身题 UR#1-A POJ 3070

无营养热身题

- 3 正常题
- 4 集训队题

POJ 3070

• 求 Fib_n 的末四位。 $n \le 10^9$,多组数据。

POJ 3070

- 求 Fib_n 的末四位。n≤10⁹,多组数据。
- 裸的矩阵快速幂?

- 求 Fib_n 的末四位。n≤10⁹,多组数据。
- 裸的矩阵快速幂?找循环节

- 求 Fibn 的末四位。n < 10⁹, 多组数据。
- 裸的矩阵快速幂?找循环节
- C语言的效果大概长这样

```
main(a,b,n){
    for (; a=b=scanf("%d",&n),~n; printf("%d\n",a))
3
     for (:-n\%' u0' : a=(b-a)\%10000) b+=a:
4
```

集训队题

- 2 无营养热身题 UR#1-A HDU 5762

- 3 正常题
- 4 集训队题

ullet 每个测试点 50 组数据,点数、坐标范围 \in $[1,10^5]$,2000ms

- 美国曼哈顿市的街道呈整齐的"井"字形,现在统计学家把 各个位置上的建筑分布做成了一张表格、每座建筑按顺序标 号,位置都以(x, v)的坐标表示。你的任务是在这些建筑中 寻找两个建筑对 (A, B) 和 (C, D), 满足 A < B, C < D, $A \neq C$ 或者 $B \neq D$, 并且 A 到 B 的曼哈顿距离等于 C 到 D的曼哈顿距离。如果存在的话输出"YES",否则输出"NO"。
- 每个测试点 50 组数据,点数、坐标范围 ∈ [1,10⁵], 2000ms
- 为什么暴力就能过呢?

- 美国曼哈顿市的街道呈整齐的"井"字形,现在统计学家把 各个位置上的建筑分布做成了一张表格、每座建筑按顺序标 号,位置都以(x, v)的坐标表示。你的任务是在这些建筑中 寻找两个建筑对 (A, B) 和 (C, D), 满足 A < B, C < D, $A \neq C$ 或者 $B \neq D$, 并且 A 到 B 的曼哈顿距离等于 C 到 D的曼哈顿距离。如果存在的话输出"YES",否则输出"NO"。
- 每个测试点 50 组数据,点数、坐标范围 ∈ [1,10⁵], 2000ms
- 为什么暴力就能过呢?抽屉原理还记得吗?

无营养热身题

- Hihocoder 1164

 - 2 无营养热身题 UR#1-A Hihocoder 1164

- 大家对斐波那契数列想必都很熟悉,现在考虑如下生成的斐 波那契数列: $a_0 = 1$, $a_i = a_i + a_k$, i > 0, j, k 从 [0, i-1] 的 整数中随机选出 (j和 k独立)。
- 现在给定 n, 要求求出 *E*(a_n), 即各种可能的 a 数列中 a_n 的 期望值。

随机斐波那契

无营养热身题

- 大家对斐波那契数列想必都很熟悉,现在考虑如下生成的斐 波那契数列: $a_0 = 1$, $a_i = a_i + a_k$, i > 0, j, k 从 [0, i-1] 的 整数中随机选出(i和k独立)。
- 现在给定 n, 要求求出 $E(a_n)$, 即各种可能的 a 数列中 a_n 的 期望值。

$$f[n] = \frac{2}{n}(f[0] + f[1] + \dots + f[n-1]) = n+1$$

- 2 无营养热身题

无营养热身题

3 正常题

- 5 省选题

无营养热身题

3 正常题 **BZOJ 3707**

- 5 省选题

- 2 维平面上有 n 个点,取 3 个点使得围出的面积最小。
- 最小面积可以是 0。n ≤ 1000

- 2 维平面上有 n 个点,取 3 个点使得围出的面积最小。
- 最小面积可以是 0。n≤1000
- 暴力 n^3 不多说。但是有很多时候的情况是没有用的。于是我们把这些点分成 \sqrt{n} 块,块内暴力,轻松愉快。(不一定非要 \sqrt{n})
- 这样做不靠谱,所以我们可以随机旋转坐标系,rand个四五十次就可以把这题水过了。
- 正解网络上一搜一大堆。
- 最近点对的数据水的话,这种方法能够轻松拿 Rank 1

- 2 无营养热身题

- 3 正常题 HDU 5738
- 5 省选题

- 二维平面上有 n 个点,定义一个点集 P 为 best set 当且仅当 P 中至少有一对 best pair
- 两个点 $u, v \in P$ 被称作 best pair,当且仅当 $\forall w \in P, f(u, v) \geq g(u, v, w)$,其中 $f(u, v) = \sqrt{(x_u x_v)^2 + (y_u y_v)^2}$, $g(u, v, w) = \frac{1}{2}(f(u, v) + f(v, w) + f(w, u))$
- 求 best set 的个数

• $n \le 1000$, 4000ms

- xjb 推导一下可以知道 best set 一定是一些共线的点,于是问题变成问有多少个子集共线。
- 首先,把所有点按照 (x,y) 双关键字排序,然后枚举最左边的点 i, 那么其他点 j 一定满足 j > i。把在这个点右边的点都做下极角排序 (按照 $\frac{1}{gcd(dx,dy)}(dx,dy)$ 排序),统计下共线的就好了。
- 一条线段上有 k 个点,那么这条线段的总贡献即为 $C_k^2 + C_k^3 + \cdots + C_k^k = 2^k 1 k$
- 需要注意下对重点的处理。

- 2 无营养热身题

无营养热身题

- 3 正常题 HDU 5734
- 5 省选题

HDU 5734

- 给出一个向量 $W = (w_1, w_2, w_3, \dots, w_n)$, 求向量 $B = (b_1, b_2, \dots, b_n) | (b_i \in \{+1, -1\}))$ 和一个非负的权重因子 α , 使 $\|W \alpha B\|^2$ 最小。
- $||X|| = \sqrt{x_1^2 + \dots + x_n^2}, \ n \le 10^5$

• 把距离公式展开, 可以得到

$$n\alpha^2 - 2\alpha(b_1w_1 + b_2w_2 + \dots + b_nw_n) + \sum_{i=1}^n w_i^2$$

- 对于二次函数 $ax^2 + bx + c (a > 0)$ 有最小值 $c \frac{b^2}{4a}$
- 很显然当保证 biwi 全部同正负时,上式最小。代入化简得

$$MinVal = \sum_{i=1}^{n} w_i^2 - \frac{1}{n} (\sum_{i=1}^{n} |w_i|)^2$$

集训队题

- 2 无营养热身题

无营养热身题

3 正常题

BZOJ 2655

- 5 省选题

- 一个有序序列 a₁,···, a_n 是合法的, 当且仅当:
 - ① 长度为给定的 n
 - 2 其中的数两两不同
 - **3** $\forall i, a_i \in [1, A]$
- 一个序列的值 $value(a) = \prod_{i=1}^{n} a_i$,求所有不同序列的值的和 mod p
- $A, p < 10^9, n < 500$

100%的算法

让我们计算排个序之后的不同合法数列的和,再乘上n!. 让我们用do[A][n],表示答案. 注意到

$$\prod (a_i + A) = \sum_{s \subset \{0..n-1\}} A^{n-|s|} * \prod_{i \in s} a_i.$$
(1)

那么不妨考虑计算dp[2A][n].

不妨考虑在[1,A]中选了a个,在[A+1,2A]中选了n-a个数.

不妨令 a_i 表示[1, A]中选了i个的序列的和,即为do[A][i].

同时令 b_i 表示[A+1,2A]中选了i个的序列的和.根据之前的式子,可以推出

$$b_i = \sum_{j=0}^{j=i} A^{i-j} * a_j * {A - j \choose i - j}$$
(2)

不妨考虑1的右边,考虑计算 a_i 对 b_i 的贡献, A^{i-j} 是共有的系数,同时可以发现有(A^{-j})个长 度为i且包含某给定长度为j序列的串,故系数是 $\binom{A-j}{i-j}*A^{i-j}$

同时考虑化简(4-1)

$${\binom{A-j}{i-j}} = \prod_{k=1}^{k=i-j} \frac{A-j+1-k}{k} = \frac{\prod_{k=j}^{k=i-1} (A-k)}{(i-j)!}$$
(3)

不妨令 $m_i = \prod_{k=0}^{k=i-1} A - i, rm_i = (m_i)^{-1}$ 那么 $\binom{A-j}{i-j} = (i-j)!^{-1} * m_i * rm_j$ 那么我们进一步推出

$$b_i = m_i \sum_{j=i}^{j=i} A^{i-j} * a_j * rm_j * (i-j)!^{-1}$$
(4)

- 从原始 dp 的思路出发, f[i][j] 表示 1~i 中选取 j 个数的分数
- 写出 dp 方程 f[i][j]=f[i-1][j-1]×i×j+f[i-1][j]
 初始状态 f[0][0]=1
- 手玩 j 比较小的情况,容易发现,f[i][j] 实际上是一个最高次项为 2j 的多项式,那也就是说我们最终的答案 f[A][n] 就是一个 2n 次的多项式
- 这是个很好的性质,因为我们只用求出0到2n次项的系数就可以直接求答案了
- 随便贴一个插值板子

- CC AUG14 SIGFIB
 - 1 基础知识
 - 2 无营养热身题
 - 3 正常题

HDU 5738 HDU 5734

CC AUG14 SIGFIB

- 关于找规律
- 4 集训队题
- 5 省选题

集训队题

给定 n,m, 求

无营养热身题

$$\sum_{x+y+z=n,\ x,y,z\in N} 6xyz \times Fib_x \times Fib_y \times Fib_z \bmod m$$

多组数据。 $n \le 10^{18}$, $m \le 10^5$, 对于每个测试点, $\sum m \le 10^6$

• 听说可以用生成函数搞然而并不是很会做……

 由干斐波那契数列可以递推求解,故上式也应该是一个常系 数线性递推。经验证,该式为十二阶递推,可以直接递推求 解。

集训队题

- 使用特征多项式优化之后的复杂度: $O(k^2 \log n)$, 其中 k = 12
- 特征多项式 +FFT+CRT: O(klog klog n)
- 听说手动展开 FFT 的 for 循环就 Rank 1 了?

- 2 无营养热身题

- 3 正常题 关于找规律
- 5 省选题

请勿看答案

- 观察法 & 模式识别
- n次多项式差分 n+1 次之后就变成了 0. 可以返推回去
- 普通插值方法
- k 次方幂和本质上是一个 k+1 次关于 n 的多项式, 使用线性 插值的方法即可解决本问题
- 常系数递推多项式? 暴力枚举多少项递推, 然后高斯消元, 检验是否能接着递推
- 剩下的超几何函数我表示不会搞, 并没有研究过, 欢迎讨论

集训队题

- 1 基础知识
- 2 无营养热身题
- 4 集训队题

- 2 无营养热身题

- 4 集训队题 清华集训 2016 定向越野

清华集训 2016 定向越野

• 求平面上点 s 到 t 的最短路径,路径不能与给定的 n 个圆相 交。 $n \le 500$,坐标范围 ∈ [-1000, 1000]

集训队题

集训队题 ○00●0○○○○○ 省选题

清华集训 2016 定向越野

跟大家讲个鬼故事

Tsinghua University

跟大家讲个鬼故事

- 裸的三方暴力求切线是过不了的。需要一点小小的优化。
- zgg: 我想用我的 O(n² log n) 扫描线来卡常数, 资不资兹呀?
- 我: 当蓝资兹辣! 你必须要在我运行时间的 1/2 以下才行。
- 然后,我和 zgg 各自调了调常数,结果我跑的比他快。

清华集训 2016 如何暴力地求和

- 2 无营养热身题

- 4 集训队题 清华集训 2016 如何暴力地求和

有一个多项式函数 f(x),最高次幂为 x^m,定义变换 Q:

$$Q(f, n, x) = \sum_{k=0}^{n} f(k) \binom{n}{k} x^{k} (1 - x)^{n-k}$$

集训队题

现在给定函数 f 和 n, x, 求 $Q(f, n, x) \mod 998244353$ 。

- 出于某种原因,函数f由点值形式给出,即给定 a_0, a_1, \cdots, a_m 共 m+1 个数, $f(x) = a_x$ 。可以证明该函数唯
- $n < 10^9$, m < 20000

清华集训 2016 如何暴力地求和

无营养热身题

• 通过尝试可以发现答案是一个关于 n 和 x 的多项式,且最高次项为 m。并且变换 Q 有如下性质:

$$Q(f(x) = x^{\underline{c}}) = n^{\underline{c}}x^{c}$$

把 f 的点值表示用 FFT 转换成下降幂表示, 然后求个和即可

- 详细题解
- 以下有请 zzx 传授人生经验!

CC OCT12 MAXCIR

- 2 无营养热身题

- 4 集训队题 CC OCT12 MAXCIR

集训队题

0000000000

- 给出一个三角形 ABC,以及 N 个操作。第 i 个操作有两个 参数 x_i, y_i , 使用这个操作可以使得点 A 的 x 坐标增加 x_i , 并且 y 坐标增加 yi。
- 你可以使用最多 K 个操作,这些操作的影响叠加,同一个 操作不能重复使用, ABC 三个点允许共线或重合。最大化 三角形 ABC 的周长。
- K < N < 500, $|x_i|, |y_i| \le 10^6$, $|x_i|, |y| \le 10^9$

- 首先,|BC| 是定值可以被忽略。那么考虑最大化 |AC| + |BC|, 若得到的最大值为 ans, 那么对于所有解都满足 $|AC| + |BC| \le ans$, 也就是 A 点全部在一个椭圆内部。
- 记 A' 点为最优点, 那么 A' 就在椭圆的边界上, 考虑在 A' 点 的切线 f(x,y) = c, 那么对于所有在椭圆内部的点, 都满足 $f(x,y) \le c$, 于是, 只需要最大化 f(x,y) 即可找到这个 A 点。 也就是对于任意一条向量 v, 然后选取 op;*v 最大的 K 个向 量。
- 容易发现, 对于 (x₁, y₁), (x₂, y₂), 它们点乘一条向量的大小关 系变化的分界点是 (y_2-y_1,x_1-x_2) 。考虑处理出所有的分界 点,然后对这些临界向量极角排序,每次大小关系变化时更 新以下选择的操作即可得到答案。

- 1 基础知识
- 2 无营养热身题

5 省选题

FJOI2014 病毒防护带

FJOI2010 邮局选址

- 1 基础知识

无营养热身题

- 5 省选题

FJOI2010 邮局选址

52 / 77

FJOI2010 邮局选址

• 裸的最小圆覆盖。

n+e Tsinghua University

- 裸的最小圆覆盖。
- 不会的同学, 详见 NOIP2016 福建夏令营 我的课件

FJOI2012 字母识别

- 1 基础知识
- 2 无营养热身题

无营养热身题

- 5 省选题

FJOI2012 字母识别

54 / 77

- 现在给出若干书写的轨迹描述,问最终的图形是否为大写字 母A。如果两条轨迹在同一条直线上,并且拥有共同的坐标 点,则这两条轨迹可以合成一条,并且合成后的轨迹可以再 次合并。判定规则如下:
 - 最终的图形中,只看得到3条长度严格>0的轨迹;
 - 其中2条轨迹交于一个公共的交点(端点),所构成的夹角 $< 90^{\circ};$
 - ③ 假设 (2) 中的 2 条轨迹分别为 L_1 和 L_2 ,第三条轨迹 L_3 的 一个端点严格在 L_1 内部,另一个端点则严格在 L_2 内部(即 不能在端点上或者线段外部);
 - △ L3 的长度不得超过 L1, L2 长度之和的一半。

FJOI2012 字母识别

- 无脑码农题。
- 比起清华集训那道要简单。

- 1 基础知识
- 2 无营养热身题

- 5 省选题

FJOI2013 Grid

FJOI2014 病毒防护带

57 / 77

- 假设给定一个平面方形网格。网格上相邻网格点的边长为 e。 现在要在这个平面网格上分布 n 个处理器用于网格计算。处理器只能是分布在网格点处。如何规划处理器的合理分布才能使得网格计算的通信费用最小? $n \leq 100$
- 空间中任意两个点 p_1 与 p_2 之间的曼哈顿距离 $L_1(p_1,p_2)$ 定义为连接这 2 点的线段在各坐标轴产生的投影长度之和。例如在平面上,点 $p_1=(x_1,y_1)$ 与点 $p_2=(x_2,y_2)$ 之间的曼哈顿距离

$$L_1(p_1, p_2) = |x_1 - x_2| + |y_1 - y_2|$$

• 如果处理器分布在平面上 $n \land p_1, p_2, ..., p_n \lor$, 网格 点 p_i 的坐标为 (x_i, y_i) , $1 \le i \le n$,则 $n \land p_i$ 如果这间的通信费用可以用它们的平均曼哈顿距离来度量。

$$\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}L_1(p_i,p_j) = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}|x_i - x_j| + \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}|y_i - y_j|$$

- 正解玄学。连 oeis 最高纪录也才到 n=50
- 一种思路: 贪心的选择放下一个目标位置 (考场 60)
- 另一种思路: 先全部拍满处理器, 然后每次删掉代价最大的那个(考场70)
- 两个取 min: 刚好和 oeis 对上了
- 不是很懂古钱是怎么造的数据……据说有 $O(n^{7.5})$ 的神奇做法
- 反正我当时初三并不知道有省选这回事 233

FJOI2013 圆形游戏

- 1 基础知识

- 5 省选题

FJOI2013 圆形游戏

60 / 77

- 在一个无穷大的桌面上有 n 个圆形, 保证任意 2 个圆相离 或者相包含,不存在相切或相交。现在 Alice 和 Bob 在玩一 个圆形游戏,以 Alice 为先手,双方以如下步骤轮流游戏:
 - ❶ 选定一个圆 A, 把 A 以及所有完全在 A 内部的圆都删除;
 - ② 如果在自己回合无法找到可删除的圆,则输掉比赛。
- 假设 Alice 和 Bob 都非常聪明,请问最终谁能够取得胜利? 请编程输出最终获胜的人。n < 20000

- sg[fa]=1+(sg[son[1]]^ sg[son[2]]^ ···)
- 难点在于建树。扫描线 + 括号序列 + 平衡树维护 (真难写)

- sg[fa]=1+(sg[son[1]]^ sg[son[2]]^ ...)
- 难点在干建树。扫描线 + 括号序列 + 平衡树维护(真难写)
- 把坐标轴随机转一下,按照每个圆的左端点排序。
- 对于一个圆,在排完序里面的数组里面二分出它有可能控制 到的圆的区间, 然后暴力扫并且更新答案。
- 如果随机的话,期望重合的圆的个数在 $O(\sqrt{n})$ 个。
- 干是如果数据水的话就可以水过啦~
- 直接这么暴力就可以和标算运行效率差不多了,大家来思考 一下有没有什么能卡掉这个做法的数据。

FJOI2013 圆形游戏

FJOI2013 圆形游戏

FJOI2014 病毒防护带

- 1 基础知识
- 2 无营养热身题

- 5 省选题

FJOI2014 病毒防护带

• 求一条直线使得平面上所有点到这条直线的距离的平方和最小

$$\delta = \sum_{i=1}^{n} \frac{(kx_i - y_i + b)^2}{k^2 + 1}$$

FJOI2014 病毒防护带

求一条直线使得平面上所有点到这条直线的距离的平方和最小

$$\delta = \sum_{i=1}^{n} \frac{(kx_i - y_i + b)^2}{k^2 + 1}$$

$$\frac{\partial \delta}{\partial b} = \sum_{i=1}^{n} \frac{2(kx_i - y_i + b)}{k^2 + 1} = 0 \Rightarrow b = \bar{y} - k\bar{x}$$

$$\frac{\partial \delta}{\partial k} = 0 \Rightarrow \sum_{i=1}^{n} (k^2 + 1)(x_i - \bar{x}) = \sum_{i=1}^{n} k(k(x_i - \bar{x}) - (y_i - \bar{y}))$$

这是一个关于k的一元二次方程,直接解就好了。

当年的 AKF 是如何进队的

- 最小二乘法拟合出来的直线必过点(x, v),由题目样例猜想 这题应该也是有这个结论的。
- 当 k 确定之后, b 也随之确定
- 把坐标平面切成一块一块的, 每块暴力三分, 然后就大力 AC 了

FJOI2014 病毒防护带

当年的 AKF 是如何进队的

无营养热身题

• 最小二乘法拟合出来的直线必过点 (x, y), 由题目样例猜想 这题应该也是有这个结论的。

集训队题

- 当 k 确定之后, b 也随之确定
- 把坐标平面切成一块一块的,每块暴力三分,然后就大力 AC 7
- 细心观察, 大胆猜想, 不用证明!
- 加强版: CC SEPT13 Two Roads

集训队题

- 1 基础知识

无营养热身题

- 5 省选题

FJOI2015 最小覆盖双圆问题

• 给定平面上 n 个点, 找出 2 个半径相同的圆 R1 和 R2, 覆 盖给定的 n 个点, 且半径最小。

集训队题

• 给定平面上 n 个点, 找出 2 个半径相同的圆 R1 和 R2, 覆盖给定的 n 个点, 且半径最小。

• 正解玄学

当年的 n+e 是如何进队的

- 我会最小单圆覆盖!
- 两个圆的话,中间必然有一条直线能把点的归属分好类
- 如果这条直线垂直于 x 轴,那么从 x 坐标最小处移动到 x 坐标最大处的过程中, R1 一定是不断变大、R2 一定是不断 减小, 其中必定有分界点使得 R1=R2
- 大力转坐标 + 二分 + 最小圆覆盖

当年的 n+e 是如何进队的

- 我会最小单圆覆盖!
- 两个圆的话,中间必然有一条直线能把点的归属分好类
- 如果这条直线垂直于 x 轴,那么从 x 坐标最小处移动到 x 坐标最大处的过程中, R1 一定是不断变大、R2 一定是不断 减小, 其中必定有分界点使得 R1=R2
- 大力转坐标 + 二分 + 最小圆覆盖
- 这场比赛 100 分就能稳进了 233

FJOI2016 建筑师 HDU 4372

- 1 基础知识

无营养热身题

- 5 省选题

FJOI2016 建筑师 HDU 4372

n 幢楼高度分别为1到n,你需要排列这些楼的相对位置使 得从左看去恰好有 x 幢楼, 从右看去恰好有 y 幢楼, 问方案 数。

集训队题

• $n \le 50000$, $x, y \le 100$, $T \le 200000$

- n 幢楼高度分别为1到n,你需要排列这些楼的相对位置使 得从左看去恰好有 x 幢楼, 从右看去恰好有 y 幢楼, 问方案 数。
- n < 50000, x, y < 100, T < 200000
- $s(n-1, x+y-2) \times {x+y-2 \choose x-1}$
- 推不出来怎么办?

FJOI2016 建筑师 HDU 4372

当时我就写了个暴力

无营养热身题

• 把 ans(n, x, y) 打表打出来是这个样子的:

• 左边那列不就是斯特林数吗??? 这就 AC 了???

FJOI2017 交错和查询

- 1 基础知识

无营养热身题

- 5 省选题

FJOI2017 交错和查询

FJOI2017 交错和查询

• 你问我资兹不资兹,我只能回答说无可奉告

P2847 -- [FJOI2017]交错和查询 Top 25

n+e 3(我)	1.274s	15.71MB	2KB	G++
nealchen2003 2	2.116s	6.74MB	2.16KB	G++
E.Space 2	2.928s	7.25MB	2.82KB	G++
runzhe2000 2	3.285s	9.04MB	4.31KB	G++
Std	3.549s	16.65MB	3.73KB	G++
Paladin 2	3.98s	16.64MB	3.92KB	G++
dick32165401 2	4.162s	26.18MB	3.68KB	G++

• 闷声背代码, 那是坠吼的!

- 掌握一些套路固然是重要的, 比如: 计算几何中将元素有序 化, 能够解决很多问题。
- 但是, 我们也应该掌握一些 xib 乱搞的能力
- Aja Huang 在 CNN 上 xib 乱搞做了很多实验,最终才有围 棋连胜 60 局的成绩

FJOI2017 交错和查询

祝大家省选顺利!

Thank you for listening!

n+e