

Prova d'esame di Fondamenti di Chimica industriale

20 Luglio 2012 Durata: 3 ore

Esercizio N. 1

L'alcool etilico azeotropico può essere prodotto da etilene secondo lo schema riportato:

$$\begin{cases} C_2H_4 + H_2O \rightarrow C_2H_5OH \\ 2C_2H_5OH \rightarrow C_4H_{10}O + H_2O \end{cases}$$
 (reazione secondaria: produzione di dietiletere)

Le alimentazioni fresche sono:

- . una corrente di etilene grezzo costituita da: 96% C₂H₄, 4% di CH₄ (% in volume);
- . una corrente di acqua (in eccesso).

La conversione di etilene nel reattore è il 30%.

Dalla sezione di separazione escono:

- · una corrente di alcool etilico azeotropico;
- · una corrente di dietiletere;
- · una corrente di acqua;
- · una corrente di riciclo.

La composizione dell'azeotropo è: 95% C_2H_5OH , 5% H_2O (% in peso). La corrente di spurgo è costituita dal 40% di C_2H_4 e il 60% di CH_4 (% in volume). La resa globale di processo è il 90%.

- Completare lo schema di processo.
- Etichettare lo schema e procedere al calcolo dei gradi di libertà con il metodo delle tie streams.
- Per una produzione di 35 t/h di alcool etilico azeotropico quantificare le seguenti correnti materiali di processo (kg/h): etilene fresco e di riciclo, spurgo, dietiletere.

Esercizio N. 2

CONVERSIONE DI SO_2 A SO_3 .

Base: 100 kg/min SO₃

· Aria: eccesso 100%

 $\cdot T_{in} = 450^{\circ}C; T_{out} = 550^{\circ}C$

· Conversione SO₂: 65%

Quantificare le correnti materiali (kmol/min) e il fabbisogno di potenza termica (kW) del reattore.

	C_p (cal/mol·°C)
O ₂	7,0
N ₂	6,9
SO ₂	12,0
SO_3	15,5
$\Delta H_{\rm r}^0 = -23$ kcal/mol	