UNITED STATES DEPARTMENT OF COMMERCE

MONTHLY

WEATHER REVIEW

MARCH 1944

CONTENTS

Maps of Percentage 1	Pangumentan or Ther Box Mon		MO DE DE OGICAL AND CLIMATOLOGICAL DATA—C
Visher	(no Ministern (D. Penn.) Considera (no Ricco, Gric.) A. L. Shandi.	. 63	Rolling Rectation AND SUNSPOT DATA: Boler Rediction Observations.
METROROLOGICAL AND C	LENGTH OF THE STATE OF THE STAT		Positions Arese, and Counts of Sunspots Francisco at Relative Sunspot Numbers for Febru
River Stages and Fi		79	Grand I-XI

MONTHLY WEATHER REVIEW

Editor, EDGAR W. WOOLARD

Vol. 72, No. 3 W. B. No. 1413

MARCH 1944

CLOSED MAY 5, 1944 ISSUED JUNE 12, 1944

MAPS OF PERCENTAGE FREQUENCIES OF VERY DRY, MODERATE, AND VERY WET MONTHS

By STEPHEN S. VISHER [Professor of Geography, Indiana University, Bloomington, Ind., March 1944]

THE following 36 maps show the percentages of each month which have precipitations of less than 1 inch, of 2 to 4 inches, and of 5 inches or more, respectively. They are based on the State average records for 55 years, 1886-1940, given in 12 tables in J. B. Kincer's Normal Weather for the United States, Weather Bureau, Washing-

ton, 1943.
Although Kincer's 36-page publication presents many more details than do these maps, the maps are justified because they make conspicuous highly significant data on the relative frequency of exceptionally dry and exceptionally wet months and also reveal how often moderate amounts (2 to 4 inches) are received. They call atten-tion to Kincer's valuable publication, which tabulates also the frequencies of precipitation totals of 1-1.99, 2-2.99, 3-3.99, 4-4.99 inches, and presents for each month four maps, of average temperature and precipitation by States, of lowest temperature, and of average number of days with minima of zero or lower.

A monthly precipitation of less than one inch means

an arid condition except in months that are cold. Conversely, a monthly precipitation of 5 inches or more indicates a highly humid condition, except in months that are hot. Thus, 24 of these maps suggest the frequency of aridity and of super-humidity.

The other 12 maps show the relative frequency of months which have more moderate amounts of precipitation (2 to 4 inches). To be sure, in dry regions a monthly precipitation of nearly 4 inches is far above average, and hence not "moderate," and, conversely, in humid regions a monthly total of 2 inches is relatively dry, but as a compromise, 2 to 4 may be classed as moderate.

The numeral within each State is the percentage for that state as given by Kincer. The New England States are combined, as are Delaware and Maryland. The isolines and shading, while doubtless subject to criticism at various points, make the data much more readily visible, and hence increase their utility.

FREQUENCIES OF DRY MONTHS (STATE AVERAGES OF LESS THAN ONE INCH)

Map 1 (January) shows that during this month most of the East and Pacific Northwest nearly always receive more than 1 inch of precipitation, while much of the westcentral part of the country receives less than 1 inch during more than half of the Januaries. North Dakota has a January precipitation of less than 1 inch in 95 percent of the years. Nebraska is second in dryness, with 91 percent of the Januaries receiving less than 1 inch.

Map 2 (February) reveals some interesting contrasts to

January. The eastern and northwestern areas, always

receiving more than 1 inch, are much reduced. reduced is the region with many dry Februaries. South Dakota slightly exceeds North Dakota in the frequency of dry Februaries.

Map 3 (March) reveals that in only 1 year, in the 55 studied, did most of the eastern third of the country receive less than 1 inch of precipitation while in a large southwestern region and in a sizeable north-central one more than half of the years were that dry. North Dakota was most often that dry, followed by New Mexico.

Map 4 (April) reveals that precipitation totals of less

than I inch are far less common than in March or in the winter, except in the Southwest. They are almost lacking in the East, except part of the Southeast. They are most frequent in Arizona and Nevada, 89 and 71 percent,

respectively.

Map 5 (May) reveals an increase in the East and West in the frequency of excessively dry Mays and a decrease in the central zone. In Arizona 98 percent of the Mays receive less than 1 inch, in Navada 67 percent. The least arid part of the country in this month extends from Kansas to the Atlantic coast and from Tennessee to Wisconsin.

Map 6 (June) reveals that in nearly all of the eastern half of the country at least 1 inch of precipitation is received in June, but that in California and Arizona 95 percent of the Junes receive less than 1 inch.

Map 7 (July) shows an eastern migration of the line of "no month with a State average of less than 1 inch. The eastward shift is most notable in the northern half of the country. However, almost to the Rockies less than one July in 20 receives less than an inch of rain. In California and Nevada by contrast, 100 percent and 98 percent, respectively, of the Julies receive less than one inch. In Oregon and Idaho the percents are 87 and 85, respectively. New Mexico, however, is no oftener arid than is Arkansas.

Map 8 (August) indicates little change from July except that Minnesota and Iowa are far less often dry in August than in July while Michigan more often is very dry in August than in July. This suggests an increasing influence of the Great Lakes in checking thunderstorms.

Map 9 (September) shows increased aridity in the Corn Belt, Southeast and Southwest, except for California. In the eastern half of the country fewer than one-tenth of the Septembers receive less than 1 inch of rain while in a large western region more than half

of them are this dry.

Map 10 (October) shows a notable decrease in the frequency of precipitation totals of less than 1 inch on the Pacific slope but an increase in most of the rest of

the country. Only New England and Florida have had only 1 year so dry in the 55 years studied. More than half of the years are as dry in the Great Plains and

southern Rocky Mountain region.

Map 11 (November) extremely dry Novembers are not very rare in much of the East (2-20 percent of the years) and are normal (occuring in half the years) in a large central zone. They occur 93 percent of the time in Colorado and 87 percent in North Dakota. Washington, however, has such November averages only 3 percent of the time.

Map 12 (December) reveals a general lack of aridity in the East and Northwest, but that in a large central region three-fourths of the years or more receive a State average of less than 1 inch. North Dakota is driest (93 percent) followed closely by South Dakota (89

percent).

FREQUENCY OF VERY WET MONTHS (STATE AVERAGES OF FIVE INCHES OR MORE)

Maps 13-24 present the frequencies of months during which 5 inches or more of precipitations occur-State averages.

During January (map 13) most of the country did not have State averages of 5 inches once in the 55 years studied. However, a sizable area centering in Mississippi had such wet Januaries 40 percent of the time. A Pacific Coast belt was about equally wet.

During February (map 14) precipitation totals of 5 inches or more are distinctly more frequent than in January, despite the fact that February has about onetenth fewer days than January. The area which is this wet during half of the years is slightly to the east of the area which was wettest during January.

During March (map 15), precipitation totals of 5 inches or more for State averages continue to be lacking in most of the country. However in the Southeast, they are somewhat more frequent than in February, where from 18 to 60 percent of the Marches are that wet.

April (map 16) is more often wet than is March in the Midwest and Southern Plains regions. However, in the Pacific States and in the South Atlantic States such very wet months are distinctly less common than during March.

May (map 17) reveals that totals of 5 inches are lacking only in the western third of the country while they occur oftener than 1 year in 10 in most of the eastern half. More than a third of the Mays are this wet in an area extending from Missouri to Mississippi.

June (map 18) is distinctly less frequently very wet than is May, except in the western third of the country, where 5 inches is unknown as a State average. Very wet Junes are most common in Florida (84 percent of the years) and occur in about a third of the years in an extensive southeastern belt and in Missouri and Iowa.

July (map 19) is very wet less often than is June in the northern and central parts of the country but is more often wet in the Southeast and in Arizona. Florida receives 5 inches in July during 95 percent of the Julies and North Carolina and Louisiana in 71 percent.

August (map 20) receives 5 inches of rain distinctly less often than does July, except in Florida, where the decline is moderate (89 percent instead of 95).

September (map 21) is less often very wet than is August, except in an area extending from Wisconsin to Texas. In most of the Southeast, totals of 5 inches or more are less than half as frequent as in August.

During October (map 22), totals of 5 inches or more

appear in the Pacific States which have lacked such State averages since April. They are lacking in about half of the country and are rather rare elsewhere, except near the Atlantic coast.

November (map 23) is decidedly more often very wet in the Western States and in the Mississippi Valley than is October. Along the Atlantic coast south of New England, however, November is much less often very

wet than is October.

December (map 24) closely resembles January in the frequency of totals of 5 inches or more. However, such totals are distinctly less common in December than January in most of the wettest section (Arkansas to Florida). In about half of the country no December of the 55 studied had a State average of 5 inches or more. Only one December had such a total in New York, Ohio, and Missouri.

FREQUENCY OF MONTHS WITH 2 TO 4 INCHES OF PRECIPITATION

Maps 25-36 present the frequencies of months which receive a somewhat moderate amount of precipitation, amounts adequate, or nearly adequate, for most crops; conversely, flooding is not common with monthly totals of less than 4 inches, except locally during the cooler months.

Map 25 shows that in January only about one-sixth of the country ever receives less than 2 inches of precipitation (State average) while nearly two-thirds of it receives 2 to 4 inches during at least a third of the Januaries. These totals are most frequent in the Northeast.

During February (map 26) the frequency of totals of 2 to 4 inches is similar to that during January. The Midwest and much of the Southeast, however, show a decline.

March (map 27) nearly always receives 2 inches or more of precipitation in all parts of the country. Only one March in 55 was that dry in the driest States during that month, North Dakota and Montana. More than

40 percent of the Marches receive 2 to 4 inches in most of the East and the Pacific Coast States.

April (map 28) has an increased frequency of moderate wetness in the eastern two-thirds of the country, especially large in the north-central section. A decline is evident in the Southwest and near the Pacific.

During May (map 29), the Southwest receives 2 inches in less than one-tenth of the years, while 2 to 4 inches is received in about half of the years in most of the north-

eastern quarter of the country.

June (map 30) always receives in the Southwest less than 2 inches of rain (State average). In the northern half of the country east of the Rockies, however, totals of 2 to 4 inches are normal, occur in about half of the years.

July (map 31) reveals a northward extension of the dry Southwest to include the Northwest. However, Arizona and New Mexico much more frequently receive 2 to 4 inches in July than in June. The Southeast is much least likely to receive these moderate totals than is any other part of the eastern half of the country. (Florida had only one such July in the 55 studied.)

During August (map 32) moderate totals of rainfall (2-4 inches) are less common in the Northeast than in July, but occur in about half of the years. They are more frequent in a sizable western area in August than in July, where they occur in 0 to 10 percent of the years.

Map 33 (September) differs much more from August than August differs from July. Moderate totals of pre-cipitation are only about half as frequent in the Southwest

n

in September as in August but are many times more frequent in the Northwest. In most of the northeastern quarter from 50 to 70 percent of the Septembers have such totals.

October (map 34) has moderate totals of rainfall in 20-60 percent of the years in most of the country. Nevada and Montana, however, had such totals only once, or not at all, in the 55 years.

November (map 35) receives 2-4 inches during less than one-tenth of the years in a large western region but

receives them in 35 to 70 percent of the years in most of the eastern. Such a total is most common in Michigan (71) and New York (67).

The final map (36), shows that in December, two sizable areas, one in the Dakotas and the other in New Mexico, never receive as much as 2 inches of precipitation as State averages. The Pacific States and most of the eastern half of the country receive such totals in 20 to 75 percent of the years. Such totals are most frequent in New York (76).

THE HAIL-THUNDERSTORM RATIO 1

By A. L. SHANDS

[Hydrometeorological Section, U. S. Weather Bureau, Washington, D. C.]

ON pages 729 and 730 of the 1941 Yearbook of Agriculture, "Climate and Man," there are maps showing the average annual number of days with thunderstorms and days with hail, respectively. The highest frequencies of annual hail occurrence are eight at Cheyenne, five in the vicinity of Modena-Pocatello-Helena, four over an area including eastern Wyoming, eastern Colorado, Kansas, and Northern Oklahoma. About half the country has less than three annual occurrences. Comparing these frequencies with the annual number of thunderstorm days, the ratio of hail to thunderstorm occurrence becomes as high as 20 percent in some places, and much less in most places.

An examination of random monthly climatic summaries indicated, however, that the number of days on which hail occurred anywhere in a State was usually a much higher percentage than 20 of the number of days with thunderstorms in that State. Almost always the dates of occurrence were the same.

To check that indication the number of days with hail and also the number of days with thunderstorms were counted for the 25 years from 1916 to 1940, inclusive, in the State of Iowa and in the Maryland-Delaware-District of Columbia climatic section. Iowa was chosen because it had the best collection of climatic summaries and the other section was chosen because a comparison of the hail-thunderstorm ratio could be made with detailed data on the same for Washington, D. C. The data for Iowa were compared with the point data from Kansas City, Mo., because a complete, lengthy record from the latter was also available.2

Tables 1 and 2 show the data on days with thunderstorms, hail, and tornadoes in the two sections. Although the tornado totals are included in the tables they are not plotted in the accompanying figure showing the comparative annual variation of frequencies because the tornado numbers are too small for adequate representation. However, it may be said that, where the tornado occurrences are appreciable, as in Iowa, the monthly variation in average number of occurrences forms a curve which is a flattened version of the hail-variation curve. In the Maryland-Delaware-District of Columbia area, the tornado occurrences are too few and the resulting curve of monthly variation too flat to make comparison with the hail curve possible.

In the figure, titled "Comparative Hail-Thunderstorm Frequencies," the data for the station and the area are compared. For both point and area, the frequency of hail increases with the frequency of thunderstorms. However, the ratio of hail to thunderstorm occurrences varies in, generally, an opposite sense, reaching a minimum of the time of the maximum occurrence of both thunderstorm. at the time of the maximum occurrence of both thunderstorms and hail during the summer or as late as September. The greater ratios of the spring and winter months can be considered evidence that frontal rather than air-mass phenomena are most favorable to the production of hail in thunderstorms—but the relatively low altitudes of the zero isotherm must also be considered as an important contributing factor. At Cheyenne, for example, the low height of the zero isotherm (or, more accurately, the zero wet-bulb) above station elevation has much to do with

the hail maximum at that point. There is simply less opportunity for melting or evaporation of the hailstone. The negligible number of occurrences at Key West or other tropical stations also bears this out. However, even in the latter comparison, consideration of frontal activity would yield similar theoretical results.

The State-wide or section-wide days of occurrence of thunderstorms or hail exceed the occurrences as reported by the single station or, as a matter of fact, the occurrences reported by any station within the State or section. That this should be so is obvious from the consideration that if large enough an area—for instance, the area of the earth—were used, then every day would be a thunderstorm and a hail day—perhaps even a tornado day. However, this fact does not cancel the validity of the increase in occurrences observed in the State-wide data. The thunderstorm and, to a greater degree, the hailstorm are phenomena of small areal extent. Thunderstorms are officially reported only when thunder is heard and the audibility of thunder, according to C. E. P. Brooks ³, is 10 or 12 miles under favorable circumstances and, under normal circumstances, the area within which thunder can be heard is about 113 square miles, that is, the radius of audibility is 6 miles. Hence, if only first-order stations, widely spaced, are used to study frequency of occurrences, many occurrences of thunder will be missed. Fewer would be missed by such a sparse network if lightning were the phenomenon that had to be observed. Hail is neither seen nor heard at any appreciable distance, its total area of occurrence being often of the order of 20 square miles. A sparse network will thus miss more hailstorms than thunderstorms. The use of areal occurrences corrects these faults although the exact area to be used for a proper correction is problematical and an academic question in this case, since the areal data are limited to climatic sections or States. (In a study of "Lightning Storms and Forest Fires in the State of Washington" by G. W. Alexander in the March 1927 MONTHLY WEATHER REVIEW, it is shown that the use of a dense network in that region doubled, tripled and quadrupled the days with thunderstorms indicated by W. H. Alexander's isoceraunics for the period 1904-234).

Assuming, then, that the areas are not too large to be significant, in the two examples cited the thunderstorm frequencies are approximately doubled while the hail occurrences are increased five- to ten-fold. This results in increases in the hail-thunderstorm ratios-although the pattern of the monthly variation of the ratio is retained. Comparing Iowa and Kansas City, the latter's annual ratio is increased from about 8 to 42 percent. The peak station ratios are 22 and 24 in March and November; the peak state ratios are 63, 62, and 54 in February, April, and December, respectively. The minimum ratio is 2 percent in July-August at the station, and 25 in September in the State. Comparing Washington, D. C., with its climatic section, the former's annual ratio is increased from about 4 to 19 percent. The station peaks are 12 in February and 45 in December (the latter being unusually out of line) and the section

¹ Section of an extensive report on "Thunderstorm Rainfall" being prepared by the Hydrometeorological Section for the Corps of Engineers. War Department.

² Hamrick, A. M. and Martin H. H. "Fifty Years of Weather in Kansas City, Mo.", Mo. WEA. REV. Supplement No. 44, 1941.

³ Brooks, C. E. P., "The Distribution of Thunderstorms over the Globe," British Meteorological Office Geophysical Memoirs No. 24, 1925.

⁴ Alexander, William H., "The Distribution of Thunderstorms in the United States, 1904-1923," Mo. Wea. Rev., vol. 52, July 1924. The values are not changed appreciably in the same author's study for the period 1904-33 in the Mo. Wea. Rev., vol. 63, May 1935, nor in the "Climate and Man" chart.

peaks are 29 in April and 22 in November. The station minima range between 0 and 2 in January and June through September; the section minima are 4 in December

and 8 in both January and September.

It is worth mentioning that examination of the areal data reveals that in the winter and spring months, particularly the winter, the number of hail days often equals the number of thunderstorm days and sometimes even exceeds them. Some of this may be attributed to poor observation since it is well known that the layman often confuses hail with sleet, but the tendency is probably real and stresses the importance of the height of the zero isotherm (lowest in the winter) in influencing the production of hail and the possible production of hail without thunder, since the latter originates from an electrical discharge which arises from the breakup or motion of raindrops rather than frozen drops. Some of the winter hail occurrences are described by the observers as small hail, a hydrometeor apparently most frequent on the Pacific coast. For that section, incidentally, such occurrences have not been included in the hail-distribution chart on page 730 of "Climate and Man." Otherwise, as is evident from Lemons' hail maps, at least a secondary maximum would appear along the Pacific coast.

The particular suggestion that the present writer has to offer is that further study be made of the areal hail-thunderstorm ratio by climatic section centers. The evidence seems convincing that the commonly held notion that hail occurrences in thunderstorms are comparatively few is erroneous. Some indication of the validity of the areal method, when States of average size are used, is the following fact. While Iowa has an area of 56,000 and Maryland-Delaware-District of Columbia an area of only 12,700 square miles, the areal annual hail-thunderstorm ratio is in both cases about five times the point ratio. Further research may show that to hold elsewhere, in which case a fivefold increase of the point ratio would yield the proper ratio, approximately, for any area. It is interesting to note that five is also the ratio of the average area of thunder audibility to the average area of a hailstorm, as mentioned earlier in this paper. For any further investigation, however, inspection of State climatic summaries indicates that in most cases it will be necessary to go back to the original manuscript records of cooperative stations for the basic data needed for a summary of areal frequencies.

The control of the co

^{*} Lemons, Hoyt: "Semimonthly Distribution of Hail in the United States," Mo. Wea. Rev. vol. 71, July 1943.

U. S. DEPARTMENT OF COMMERCE

WEATHER BUREAU

HYDROMETEOROLOGICAL SECTION

TABLE 1-Thunderstorm-hail-tornado * frequencies

(A) MARYLAND-DELAWARE-DISTRICT OF COLUMBIA (1916-40) vs. (B) WASHINGTON, D. C. (1872-1943)

- The same of the same	1	Jan.		1	Feb.		3	Mar.			pr.		1	May		Ju	ne	
	Ιζ	н	T	R	н	т	r	н	т	ार	н	т	ार	н	Т	R	н	Т
Totals (A) Totals (B) Means (A) Means (B) Percent ratio H/[\(\zeta\) (B) Percent ratio H/[\(\zeta\) (B)	25 10 1. 0 0. 1	0 0.1 0 8.0 0	0 0	53 33 2. 1 0. 5	7 4 0.3 0.1 13.2 12.1	2 0.1	116 79 4.6 1.1	23 8 0.9 0.1 19.8 10.1	0 0	150 155 6. 2 2. 2	44 17 1.8 0.2 29.3 11.0	0.1 -	278 341 12.1 4.8	78 21 3.0 0.3 26.4 6.2	5 0.2	350 467 14. 6 6. 6	87 13 3. 5 0. 2 23. 8 2. 8	0.
- WOLL WEST	1	uly		1	lug.		8	ept.	30	(et.		1	lov.		D	ec.	
10 = 10 = 10 = 10 10 10 10 10	R	н	Т	R	н	T	r	н	т	ार	н	Т	R	н	т	R	H	Т
Totals (A)	414 554 17. 2 7. 8	73 8 2.9 0.1	5 0. 2	340 390 13.8	44 5 1.8 0.1	6 0.2	184 193 8.0 2.7	12 2 0.5 0.0	2 0.1	88 53 4.0	16 2 0.7 0.0	0.0	31 24 1. 5	7 3 0.3 0.0	3 0.1	26 11 1.1 0.2	1 8 0.0 0.1	0

[Z=Thunderstorms, H=hall, T=tornadoes (All: Days with —). *Tornado frequency for area only, 1850-1942.

TABLE 2 .- Thunderstorm-hail-tornado* frequencies

(C) IOWA (1916-40) vs. (D) KANSAS CITY, MO. (1889-1938)

(0)10"A	(1010	10/ 10	. (2)	TEAL TO	AD C	,	MO. (1	1000	900/									_
		Jan.			Feb.		1	Mar.			Apr.		2	May		J	une	
	R	н	Т	K	н	Т	R	н	T	R	н	T	R	н	т	R	- Н	Т
Totals (C) Totals (D) Means (C) Means (D) Percent ratio H/[\$\(\frac{1}{4}\)(C) Percent ratio H/[\$\(\frac{1}{4}\)(D)	31 24 1. 2 0. 5	0.5	0 -0 -	67 45 2. 7 0. 9	43 7 1.7 0.1 63.2 15.6	0.0	182 144 7.3 2.9	4.2	0.4	307 281 12. 3 5. 6	192 44 7.7 0.9 62.5 15.6	0.7	477 406 19. 1 8. 1	224 52 9. 0 1. 0 47. 0 12. 8	34 1.4	572 495 22.9 9.9	257 30 10, 3 0, 6 44, 9 6, 1	1.9
	1	luly			Aug.		s	ept.		(-)-	Oct.	-	N	lov.		I	Dec.	
	R	н	T	7	н	T	R	н	T	R	H	Т	R	н	T	R	н	Т
Totals (C). Totals (D). Means (C). Means (D). Percent ratio H/I4 (C).	559 439 22. 4 8. 8	239 11 9.6 0.2 42.8 2.5	28 1.1	548 435 21. 9 8. 7	157 11 6.3 0.2 28.6 2.5	13 0.5		109 10 4.4 0.2 24.7 3.2	14 0.6	243 148 9. 7 3. 0	69 14 2.8 0.3 28.4 9.4	7 0.3		34 7 1.1 0.1 29.8 23.3	0.0	24 18 1.0 0.4	13 1 0.5 0.0 54.2 5.6	0

[%-Thunderstorms, H=hail, T=tornadoes (all days with —). *Tornado frequency for area only, 1880–1942.

METEOROLOGICAL AND CLIMATOLOGICAL DATA FOR MARCH 1944 [Climate and Crop Weather Division, J. B. Kincer in charge]

AEROLOGICAL OBSERVATIONS

NOTICE.—RAOB tabular data for February 1944 (table 1) are shown hereunder; those for March 1944 will be published in the April Review.—EDITOR

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by radiosondes during February 1944

STATIONS AND ELEVATIONS IN METERS ABOVE SEA LEVEL

			y, N. Y m.)		Alb	uquero (16:	ue, N. 20 m.)	Mex.	A		icola, F m.)	la.			nta, Ga. 0 m.)		1		ring, To	X.	Bi		k, N. D. 5 m.)	ık.ª			Idaho 8 m.)	
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature	Relative bu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative bu-	Number of ob-	Pressure	Temperature	Relative bu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Surface	29 29 29 29 29 29 29 28 28 28 28 27 27 27 27 25 16 9	1, 007 955 896 840 787 738 691 606 529 461 400 345 297 255 219 188	-5.4 -6.0 -7.3 -8.8 -9.9 -11.0 -12.9 -16.9 -23.3 -29.8 -36.7 -43.4 -48.7 -52.2 -53.3 -52.6	75 72 72 72 66 62 58 57 45 41 44 44	25 25 25 25 25 25 24 23 19 13 9 5	798 750 704 620 543 474 413 357 309 267 229	4.0 0.6 -3.1 -10.3 -16.9 -23.8 -30.9 -38.4 -44.0 -49.6 -53.3	48 45 49 52 59 47 37	29 29 29 29 29 29 29 29 29 29 29 29 29 2	1, 020 962 907 855 805 713 630 556 488 428 373 324 280 242 208	16. 0 15. 3 13. 1 11. 8 9. 8 7. 3 5. 6 0. 6 -5. 7 -12. 2 -19. 4 -26. 9 -34. 4 -42. 0 -48. 4 -53. 4	90 74 58 41 40 36 26 23 29 26 36 42 44	27 27 27 27 27 27 27 27 27 26 25 24 21 20 20 17 11	985 961 905 852 802 754 709 625 550 483 422 368 319 275 237 203 174	9. 2 9. 3 8. 2 7. 3 5. 6 8. 9 1. 7 -3. 5 -9. 7 -16. 2 -23. 3 -30. 1 -45. 7 -51. 9 -56. 3 -57. 7 -60. 3	80 78 71 62 60 56 55 51 46 47 50 55 58	28 28 28 28 28 28 28 28 28 28 28 26 36 36 36 6	928 903 850 800 752 707 624 549 481 420 365 316 273 235 202	8.8 9.9 8.7 7.2 4.9 2.1 -4.7 -11.2 -17.8 -25.0 -32.3 -39.5 -46.7 -52.8 -57.0	71 59 49 42 38 37 37 37 36 43 48	29 29 29 29 29 28 25 23 19 15 6	957 898 842 788 739 602 605 528 460 399 345 296	-11.9 -8.9 -8.7 -10.0 -12.5 -18.1 -20.4 -26.0 -33.0 -39.5 -51.3	84 80 75 72 68 70 70 62 55 51	28 28 28 28 28 28 28 27 27 26 26 20 17 14 11 11 10 6	915 900 846 794 745 698 612 536 467 405 350 225 222 189 162 139 119	1. 1 1. 8 -0. 6 -4. 0 -7. 3 -10. 4 -16. 1 -22. 6 -29. 7 -36. 6 -49. 2 -53. 8 -54. 9 -54. 9 -54. 2 -55. 0	80 71 68 73 73 73 70 70 66 62
	B		ville, To m.)	ex.			o, N. Y l m.)		C		ı, Main m.)	е	CI		on, 8. C	1,2		Denve (1, 6	er, Colo 16 m.)		D	odge (78	ity, Ka 7 m.)	ins.		El Pa (1, 19	so, Tex. 5 m.)	
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	B	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu- midity
Surface	29 29 29 29 29 29 29 29 29 29 29 28 28 27 27 21	1, 016 959 904 853 803 757 713 631 556 489 428 374 281 242 208 178	18. 5 17. 4 15. 8 14. 8 13. 1 10. 9 8. 5 1. 9 -4. 8 -11. 5 -19. 2 -26. 7 -34. 3 -49. 1 -54. 8 -59. 4	89 79 58 42 33 32 29 28 29 29 35 46 47	25 25 25 25 25 25 25 25 25 25 25 21 19 12 10 7	991 957 898 841 788 739 692 606 529 461 309 345 296 254 218 188	-5.1 -5.3 -7.5 -9.0 -10.0 -11.7 -13.7 -18.4 -24.0 -30.4 -37.0 -44.1 -52.3 -51.9 -51.3	78 71 68 62 59 62 64 58 54 52 46	29 29 29 29 29 29 29 29 29 29 27 22 20 15 12	990 950 890 833 780 730 683 596 519 450 389 235 248 214 183	-12.5 -12.4 -13.9 -14.1 -15.4 -16.8 -18.4 -23.7 -29.0 -35.2 -41.8 -47.9 -50.3 -50.2 -47.8	80 76 75 65 62 56 54 51 48	29 29 29 29 29 29 29 29 28 28 28 25 24 21	1, 018 961 905 852 802 754 710 627 552 484 424 369 277 238	11. 3 12. 3 10. 8 8. 7 7. 2 4. 8 2. 5 -2. 7 -8. 8 -15. 4 -22. 2 -29. 6 -36. 7 -43. 7 -60. 4	83 72 69 62 57 52 45 42 42 41 41 42 39	28 28 28 28 28 28 28 28 24 19 13 10 7	795 747 700 616 539 471 408 354 305 200 221 190	-0.5 -3.3 -6.4 -13.3 -20.5 -27.2 -34.8 -41.4 -48.1 -52.3 -52.7 -50.8	57 56 53 54 53 45 48	29 29 29 29 28 28 28 28 28 27 17 13 11 9 6	925 901 847 796 747 702 617 542 473 412 357 309 267 228 194 166	1, 5 2, 9 2, 2, 2 1, 1 -1, 0 -3, 8 -10, 1 -16, 5 -23, 5 -30, 7 -38, 2 -43, 2 -50, 4 -55, 7 -54, 9 -64, 0	76 67 59 48 43 40 35 36 36 32	28 28 28 28 28 28 28 28 28 27 21 14 11 6	849 799 752 707 623 548 480 418 363 314 272 233 199 166	10.6 7.6 4.0 .8 -5.7 -12.3 -19.1 -26.1 -32.8 -40.2 -40.2 -46.7 -52.8 -54.7	39 39 42 38 43 37 33 40
			Nev.3 8 m.)		(Flasgor (648	w, Mon	t.	Gr	eat Fa (1, 1	lls, Moi 28 m.)	nt.	Gi		oro, N 3 m.)	c.	1		as, N. (m.)	3.	Hu		on, W. 2 m.)	Va.	Int	M	onal Fa inn. inn.	ills,
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature		Number of ob-	Pressure	Temperature		Number of ob-	Pressure		_ 44	Number of ob-	Pressure	Temperature		Number of ob- servations	Pressure	Temperature		Number of ob-	Pressure	Temperature		Number of ob-	Pressure	Temperature	Relative hu-
Surface	29 29 29 29 29 29 29 28 26 26 25 23 21 19 16 12 9 6	706 747 700 614 538 470 407 352 303 260 223 190 163 139 119 102 88	-4. 3 -3. 4 -5. 3 -8. 7 -14. 4 -20. 5 -27. 2 -34. 9 -42. 5 -55. 2 -55. 5 -56. 9 -55. 3 -57. 0 -57. 0 -60. 3	78 77 75 74 69 65 63 61	29 29 29 29 29 29 29 29 29 29 29 29 29 2	939 898 842 790 740 693 606 529 460 398 343 294 252 216 184 158 136	-5.5 -5.4 -7.3 -9.3 -11.9 -14.8 -20.4 -26.1 -32.4 -39.3 -47.2 -53.6 -55.5 -53.6 -50.5 -49.7 -51.1	72 70 68 63 64 64 64 63 47 47	29 29 29 29 29 29 28 28 28 27 26 22 18 16 14 13 9 5	884 791 742 695 608 532 463 400 345 295 2216 185 158 136 117	-4. 1 -4. 3 -7. 2 -10. 1 -13. 0 -18. 8 -31. 5 -46. 8 -33. 5 -46. 8 -53. 6 -54. 5 -51. 6 -50. 8 -49. 8 -61. 5	60 64 66 66 70 68 66 67 60	27 27 27 27 27 27 27 26 26 26 26 26 26 24 24 24 24 23 20 13 8	987 959 903 849 798 750 620 544 477 416 361 312 268 230 197 168 144 122 104	3.9 8.0 4.2 2.8 1.3 -0.7 -2.9 -13.6 -20.3 -27.2 -34.2 -41.7 -49.0 -54.5 -56.9 -60.3 -62.3 -63.4	79 70 62 56 51 46 38 40 44 44 50 55 54	29 29 29 29 29 29 29 29 29 29 29 26 25 24 20 20 13 10 8	1, 019 959 903 850 799 751 705 621 546 477 363 314 271 233 199 169 144 123 104	8. 5 8. 9 6. 7 4. 8 3. 1 1. 2 -1. 1 -6. 5 -12. 2 -18. 7 -25. 6 -32. 5 -33. 8 -47. 5 -53. 8 -57. 6 -58. 2 -62. 6 -65. 2	84 65 60 53 45 39 40 36 35 43 48 51	29 29 29 29 29 29 29 29 29 27 27 26 25 25 21 16 10	900 959 902 848 796 747 701 616 540 472 411 357 308 265 228 195 167	3. 2 3. 3 1. 1 -0. 7 -2. 5 -4. 2 -6. 4 -10. 9 -16. 5 -22. 5 -29. 3 -36. 1 -42. 7 -48. 9 -54. 2 -55. 4	75 66 66 59 54 53 51 42 48 52 57 62	29 29 29 29 29 29 29 29 29 29 29 29 29 2	839 785 735 688 601 523 454 392 339 291 248	-12.6 -12.1 -13.5 -13.7 -14.4 -15.9 -18.4 -228.9 -35.4 -42.2 -48.0 -52.6 -53.5 -50.6	74 70 70 63 51 80 50 54 51 52

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by radiosondes during February 1944—Continued

			et, Ill. 8 m.)		L		harles, l	La.	L		rst, N.	J.1	L		Rock, A	rk.		Louisy (16	ville, Ky 6 m.)		M	fazatls (80	an, Mea 0 m.)	ico	1	Medfor (40	rd, Oreg	g.3
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative bu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	. Pressure	Temperature	Relative hu-
Surface	29 29 29 29 29 29	997 957 899 844 792 696 611 535 466 405 350 302 224 191 164	-3.5 -2.5 -3.2 -3.8 -5.7 -8.0 -9.7 -15.3 -20.8 -27.5 -34.2 -40.6 -46.9 -51.8 -54.0 -52.8	87 75 66 57 51 50 44 46 46 47 47	29 29 29 29 29 29 29 29 29 29 29 29 27 25 22 218 112	1, 018 960 905 853 803 756 711 629 554 486 426 371 322 278 240 205 175 149	14. 8 14. 2 12. 7 11. 4 9. 4 7. 0 5. 1 -0. 3 -14. 4 -21. 5 -28. 7 -35. 9 -43. 5 -49. 6 -55. 2 -59. 5	888 78 65 52 50 47 41 32 31 37 46 56 56	24 24 24 24 24 23 23 21 19 19 18 17 16 14 10 8 6 5 5	1, 013 956 898 842 790 742 696 610 535 466 405 350 301 258 221 187 159 137	-1. 2 -1. 3 -3. 8 -4. 6 -6. 1 -7. 1 -9. 4 -15. 0 -20. 7 -27. 1 -34. 0 -40. 7 -47. 1 -53. 1 -56. 1 -57. 0 -57. 1	67 71 69 56 55 55 58 53 81 56 68	29 29 29 29 29 29 29 28 27 26 26 25 24 19 14	1, 009 959 903 850 799 751 706 623 548 480 419 364 315 271 234	8.7 8.2 7.3 6.3 4.8 2.9 0.6 -5.3 -12.0 0 -18.3 -25.3 -32.7 -39.9 -47.4 -53.2	82 71 63 53 51 50 52 48 48 52 51 48	29 29 29 29 29 29 29 29 24 16	999 959 902 848 796 748 702 617 542 474 413 359 311	4. 2 4. 0 2. 3 3. 0. 9 -0. 3 -2. 4 -4. 7 -9. 6 -15. 3 -21. 8 -28. 4 -34. 9 -41. 1	70 67 63 56 49 48 45 45 46 51	211 211 211 211 211 211 212 200 199 188 188 187 161 131 121 121 109 88	1, 008 960 905 854 805 758 714 631 557 489 374 325 2243 208 178 152 129 109 92	19. 5 20. 2 18. 9 16. 5 13. 4 9. 9 9. 6. 9 1. 1 -5. 0 -11. 7 -18. 4 -25. 9 -33. 3 -41. 0 -48. 5 -54. 9 -60. 0 -62. 1 -60. 1 -70. 0	83 58 45 37 37 40 39 40 44 47 47 57	299 299 299 299 299 299 299 298 288 277 277 266 244 233 211 155 9 7	968 957 900 846 794 745 699 613 537 468 406 351 303 259 222 190 162 139 118 101	5. 7 5. 7 3. 2 -0. 2 -6. 3 -9. 1 -14. 8 -21. 6 -28. 4 -35. 2 -42. 3 -47. 8 -52. 4 -56. 5 -55. 4 -54. 9	76 74 78 78 78 78 78 78 78 78 78 78 78 78 78
			ni, Fla.	1	1	Nashvi (18	lle, Ten	m.			olk, Va.	1			nd, Cali	ſ.		Ogde (1,3	n, Utah		1	ahoma (39	a City,	Okla.		Omah (30)	a, Nebi	r.
Altitude (meters) m. s. l.	Number of ob-		Temperature	Relative hu-	Number of ob-		Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Presure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Surface 500 1,000 1,000 1,500 2,000 2,500 8,500 5,000 5,000 1,000	29 29 29 29 29 28 28 27 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	1, 020 963 909 857 807 760 715 633 659 492 431 376 327 284 244 210 179 152 129 110	19. 2 18. 5 15. 5 12. 7 11. 2 10. 1 8. 1 2. 7 -3. 4 -10. 1 -17. 3 -24. 7 -32. 3 -39. 3 -46. 4 -53. 0 -66. 8 -70. 9	86 80 76 73 56 42 38 32 27 26 26 26 26	28 28 28 28 28 28 28 28 24 21 21 21 21 20 14 9	998 960 903 849 798 750 705 622 546 479 418 363 314 273 235	7. 8 7. 2 4. 7 3. 9 2. 8 1. 3 -1. 0 -6. 6 -12. 3 -18. 3 -25. 3 -32. 3 -32. 3 -32. 3 -32. 3	75 69 68 57 46 41 38 37 48 53 54 82	19 19 19 19 19 17 17 17 14 14 14 13 8 5	1, 017 987 900 846 794 745 699 615 539 471 409 355 307	6. 1 4. 3 2. 3 1. 2 -1. 8 -4. 6 -6. 7 -12. 0 -17. 1 -23. 9 -31. 1 -35. 5 -42. 1	73 59 55 57 57 45 42 38 33 43	29 29 29 29 29 29 29 29 29 28 28 27 26 25 18 15 13 9 6	1, 016 9056 900 846 795 746 700 616 539 471 409 354 305 262 225 193 166 142 122	10. 5 7. 6 4. 9 2. 1 -0. 6 -3. 2 -6. 0 -12. 1 -18. 7 -25. 9 -33. 4 -40. 8 -52. 2 -56. 1 -58. 2 -58. 9 -61. 4	75 67 62 63 54 50 50 43 35 36	29 29 29 29 29 29 29 29 20 20 29 29 29 29 21 21 21 21 21 21 21 21 21 21 21 21 21	863 848 796 746 700 614 537 468 406 351 302 328 222 189 162 138 118 101	-2.2 -1.5 -3.0 -6.7 -10.1 -15.7 -21.7 -28.6 -35.7 -43.3 -50.2 -54.6 -56.2 -54.8 -54.2 -55.0 -56.2	80 73 65 72 76 67 61 58 48	27 27 27 27 27 27 27 26 25 24 24 22 22 21 19 15 8	972 959 902 849 750 705 621 546 478 417 362 313 270 232 199	6. 1 6. 4 5. 2 4. 7 3. 6 1. 7 -0. 7 -13. 1 -20. 2 -27. 2 -27. 2 -33. 9 -40. 8 -47. 5 -54. 1	79 75 69 60 53 46 40 35 33 38 44	29 29 29 29 29 29 29 29 29 28 28 27 27 27 25 23 18 13 8	983 959 901 845 793 745 698 613 536 467 405 350 301 259 222 190 164	-1. 7 -2. 2 -2. 5 -2. 8 -4. 7 -7. 1 -9. 2 -15. 4 -21. 8 -28. 2 -35. 3 -42. 9 -48. 7 -51. 6 -53. 6	799 733 63 566 544 533 532 500 499 466
	1		ix, Ariz.		F		rgh, Pa		Po		, Main m.)	01	Raj	oid Cit (981	ty, S. D m.)	ak.			nis, Mo.		8	t. Pau (22)	l, Minr 5 m.)		Sa		onio, Te	ex.
Altitude (meters) m. s. L	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	ty.	Number of ob-	Pressure	Temperature	Relative hu- midity	Number of ob . servations	Pressure	Temperature	Relative hu- midity	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Jurface	29 29 29 29 29 29 29 29 29 29 29 29 29 2	975 957 901 848 798 749 704 619 544 475 414 359 309 266 229 196 167	10. 7 12. 7 9. 9 6. 2 2. 4 -0. 9 -3. 3 -16. 0 -22. 8 -30. 3 -43. 6 -49. 8 -54. 0	66 51 48 53 58 56 48 40 32 30 35	29 29 29 29 29 29 29 29 29 29 20 29 26 19 6	970 957 899 844 792 743 697 612 536 468 407 353 305 263 226	-0.1 -0.2 -1.6 -3.2 -4.8 -6.5 -8.7 -13.5 -18.9 -25.0 -31.7 -43.8 -49.9 -54.6	74 72 67 60 56 56 54 51 46 44 49 51	28 28 28 28 28 28 28 27 27 26 25 23 21 17 7	735 688 603 527 458 397 343 295 254	-6.3 -6.7 -8.8 -10.2 -11.4 -12.7 -14.2 -19.0 -24.6 -31.2 -37.7 -43.8 -48.8 -51.7	77 76 76 77 75 72 67 62 61 62 61	28 28 28 28 28 28 28 28 28 28 28 28 28 2	610 533 464 401 347 299 257	-6.0 -5.7 -4.1 -6.4 -9.0 -12.0 -18.0 -24.3 -31.1 -38.6 -45.7 -50.9 -54.3 -58.3	83 82 63 61 61 65 61 57 56 50	29 29 29 29 29 29 29 29 28 28 27 27 27 23 18 9	999 959 901 847 795 747 701 617 541 474 412 358 310 268	2. 4 2.0 1.0 0.6 -2.6 -4.7 -10.5 3-22.7 -30.0 -36.5 -42.7 -48.3	73 65 53 42 41 44 47 49 43 41 41	29 29 29 29 29 28 28 28 27 27 27 27 24 15 5	606 530 461 399 345 298	-5.8 -6.5 -7.7 -7.9 -8.7 -11.3 -13.9 -19.6 -25.6 -31.9 -38.7 -44.8 -49.5 -50.3	75 71 69 58 54 50 46 42 40 39 43	28 28 28 28 28 28 28 28 28 28 28 28 28 2	989 959 904 852 802 755 710 628 554 486 426 370 321 278 240	13.6 14.0 12.8 11.6 10.4 8.4 6.1 -0.3 -7.4 -14.0 -21.3 -23.5 -35.6 -43.4 -55.3	84 79 72 64 48 40 30 31 37 37 48 55 41

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees centigrade, and relative humidities in percent, obtained by radiosondes during February 1944—Continued

	St	an Die	go, Cal m.)	If.1	8		n, P. I m.)	R.	Sa		aria, Ca m.)	alif.			te. Mai (221 an				, Wash 2 m.)	,1	8	pokan (80	e, Was 8 m.)	h.			and, W (10 m.	
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Surface	22 22 20 20 20 20 20 19 17 17 17 10 10 8 6	1, 014 957 901 848 797 749 703 618 543 474 413 359 310 268 230	12. 9 9. 9. 9 7. 2 4. 0 0. 8 -0. 9 -3. 4 -9. 0 -15. 8 -23. 5 -30. 2 -36. 4 -43. 0 -48. 8 -55. 0	77 77 77 66 62 63 55 45	29 29 29 29 29 29 29 27 27 26 24 24 24 21 18 17 11 7	1, 017 962 908 856 806 759 714 633 558 491 431 377 328 284 245 210 180 153 130 110 93	23. 8 19. 7 16. 2 13. 3 11. 1 9. 3 7. 7 3. 5 -2. 5 -9. 1 -16. 3 -23. 5 -30. 8 -37. 5 -44. 5 -51. 1 -57. 6 -63. 6 -69. 8 -74. 9 -77. 3	76 79 73 63 63 51 39 23	28 28 28 28 28 28 28 28 28 28 28 22 28 22 21 16 11 11 9 8 5	1, 008 957 901 847 796 748 702 617 542 474 412 359 309 309 266 229 196 144 123 105 90	10. 2 8. 7 6. 0 3. 2 0. 4 -1. 8 -4. 2 -9. 5 -16. 2 -23. 5 -31. 2 -37. 9 -44. 5 -51. 1 -55. 6 1 -58. 1 -59. 7 -60. 7 -60. 7	79 68 60 59 53 45 41 30 35 37	24 24 24 24 24 24 22 22 22 21 20 10 18 13 9 8	990 956 896 896 839 785 735 688 602 524 457 395 341 294 252 218 185	-7. 7 -8. 2 -10. 6 -12. 6 -14. 2 -15. 4 -17. 0 -21. 5 -27. 2 -33. 0 -39. 7 -46. 1 -51. 6 -55. 1 -53. 8	84 84 83 84 81 79 74 67 64 60 49	16 16 16 16 16 16 16 16 15 12 12 10 8 7 7 5 5	1, 014 956 899 844 792 696 610 532 463 348 298 253 217	6, 6 3, 4 -0, 3 -3, 4 -6, 6 -9, 3 -12, 2 -17, 8 -24, 6 -31, 6 -37, 7 -45, 4 -50, 8 -55, 0	76 75 77 75 71 73 74 74 74 74	29 20 20 20 20 20 20 20 20 20 20 20 20 20	945 899 844 792 743 696 609 533 464 402 346 297 255 217 186 159 137 117	0. 2 -0. 5 -3. 6 -6. 9 -10. 1 -12. 6 -18. 3 -24. 2 -30. 5 -37. 8 -45. 3 -51. 5 -55. 8 -52. 4 -51. 3 -51. 7 -52. 4	81 70 89 73 77 76 70 65 65 65 88	29 20 29 29 29 29 20 28 28 26 26 26 24 24 24 23 21 21 17 14	1, 016 960 906 855 805 759 714 633 559 432 378 329 286 247 212 181 110 93 78 66	24. 5 21. 1 17. 7 14. 5 11. 3 9. 8 4. 8 -0. 9 -7. 8 -14. 4 -22. 0 -28. 7 -35. 9 -43. 7 -51. 4 -58. 5 -64. 7 -75. 0 -78. 2 -78. 6	
	T	acubay (2,3)	7a, Mex 06 m.)	ico	Тв	mpa,	Fla. (3 :	m.)	Ti	pachu (11	la, Mex 5 m.)	rico	Tate	osh Is	land, V	Vash.	Tol	edo, O	hio (191	m.)	Tor	gue P	oint, O m.)	reg.1	W	ashing (25	ton, D.	C.
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative inu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-	Number of ob-	Pressure	Temperature	Relative hu-
Surface	29 29 29 29 29 29 29 27 27 27 27 18	774 756 713 632 558 491 431 377 284 245 210	16. 4 15. 6 12. 5 4. 6 -2. 7 -8. 6 -15. 6 -23. 4 -30. 9 -38. 1 -45. 7 -52. 3	43 44 55 55 26 23 31 38	28 28 28 28 28 28 28 27 27 27 27 26 20 15 12 11 10 7	1, 021 963 909 857 806 759 715 632 857 490 429 375 325 282 243 208 177 150 127 108	17. 6 17. 5 14. 8 12. 6 10. 4 8. 9 6. 8 1. 7 -4. 4 -11. 1 -18. 2 -25. 5 -33. 0 -40. 6 -47. 5 -54. 2 -60. 4 -68. 2 -71. 7	87 60 56 51 43 27 23 20 20 23 24 31	29 29 29 29 29 29 29 29 28 28 28 28 28 28 28 28 18 13	999 956 903 852 803 757 713 632 559 492 433 378 329 286 247 212 182 155	25. 0 23. 8 21. 1 18. 0 15. 1 10. 2 4. 5 -5. 7 -13. 3 -21. 2 -29. 0 -36. 6 -43. 9 -50. 7 -57. 9 -65. 1	77 62 62 70 71 66 56 43	29 29 29 29 29 29 28 27 27 27 27 27 22 22 20 20 10 8 6	1, 012 956 899 844 793 744 697 611 535 466 404 349 300 258 221 188 118 101 86	6. 4 4. 1 1. 0 -2. 1 1. 4. 7 -7. 0 -9. 7 -16. 1 -22. 6 -29. 5 -36. 3 -43. 8 -44. 1 -56. 6 -55. 6 -53. 6 -53. 8 -53. 9 -54. 0	79 70 67 59 53 47 41 45 52 51 47	28 28 28 28 28 28 28 28 28 28 28 28 28 2	996 957 899 844 791 742 695 610 534 465 403 349 309 258 220 188 160	-2. 9 -2. 3 -4. 7 -5. 4 -6. 9 -8. 8 -10. 6 -15. 4 -21. 5 -28. 0 -34. 8 -41. 4 -46. 9 -51. 2 -53. 9 -53. 2 -51. 9	84 73 73 64 61 58 52 49 44 46 47	17 17 17 17 17 17 17 17 17 15 12 5 5	1, 014 956 899 845 793 743 697 611 534 465 404 346 297 255	7. 4 3. 9 0. 4 -3. 1 -5. 4 -8. 0 -10. 8 -17. 3 -24. 3 -36. 4 -44. 2 -48. 5 -52. 2	76 75 74 71 56 55 50 51 56 58	29 29 29 29 29 29 29 29 29 29 29 27 23 22 21 14	1, 016 958 900 846 794 745 699 614 538 470 409 355 307 265 226 193 164	2. 9 1. 2 -0. 1 -1. 4 -3. 5 -5. 3 -6. 9 -12. 2 -17. 9 -23. 8 -30. 4 -50. 5 -56. 5 -56. 8	44444

None of the means included in these tables are based on less than 15 surface or 5 standard-level observations.

Means for observations obtained by the electric hygrometer have been adjusted to compensate for the values occurring below the operating range of the humidity element.

 $^{^{\}rm 1}$ U. S. Navy. $^{\rm 2}$ Humidity data obtained by hair hygrometer, others using electric hygrometer.

All observations were taken near 11 p. m., E. S. T.
"Number of observations" refers to pressure only, as temperature and humidity data are sometimes missing for some observations at certain levels. Relative humidity data are not used in daily observations when the temperature is below -46° C.

Table 2.—Free-air resultant winds based on pilot-balloon observations made near 5 p. m. (75th meridian time) during March, 1944. Directions given in degrees from North (N=360°, E=90°, S=180°, W=270°) (velocities in meters per second)

		bile Ter 538	K.	9	buq jue, . Mes ,630	N.		Atlan Ga 299 z			Mon Mon ,095	t.	N	smar . De 512 n	ık.		Bois Idah 870 n	0	vil	rown le. T	ex.		uffa N. Y 220 n		B	on, V	ig. /t.	to	harlen, S.	C.	na	Cinci iti, O 152 n	in- hio n.)		env Colo ,627).	(1,	Tex.,196 1	n.)
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations !	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity
6urface	30 29 27 25 21 21 20 19 15	264 257 256 265 265 256	3 4.4 5.7	30 30 29 25 22	283 284 282 277 284	3. 8 5. 1 5. 3 7. 0 10. 2 14. 2 16. 3	26 26 25 23 20 19 15 13	278 278 281 273 263	4.1 4.7 6.0 6.4	31 28 26 21 14	291 298 299 297	3. 6 5. 2 6. 7 9. 1 10. 7 12. 1	29 22 16 15 13	317 305 300 303 303 311	7.2	31 31 30 26	307 306 301 310 317 327 328	4. 6 8. 1 5. 7 6. 4 7. 0 7. 2 10. 9 14. 9 13. 6	31 20 17 14 13 11 10		4. 7 4. 5 0. 4 1. 4 4. 4 6. 1 10. 7 16. 6	24 23 18 15 15	229 229 229 247 278 289 281	2. 5 3. 5 6. 1 6. 1 7. 1 9. 0 13. 0	30 30 27 25 21 15	279 249 268 286 295 291	1.6 2.8 4.8 7.0 9.7 11.6	27 27 27 23 22 19 17 13 13	273 287	1. 3 3. 6 5. 3 7. 3 11. 3 14. 4 15. 5 16. 8 20. 9 20. 3	29 24 20 14 11	269 244 223 236 243 255	1.8 3.3 4.7 8.7 10.1 10.7	29 25 21 18 16 15 11	337 302 284 296 296 290 273	2.4 3.1 3.9 6.9 9.0 13.1 15.0 23.0	31 31 31 31 31 30 24 18	259 256 261 260 261 262 261 268	4.3 6.3 7.8 7.2 9.0 13.4 14.6 17.6
	E)	y. Net Net 910	vev.	Ju (1,	Gran incti ,413 i	on, m.)		eensl N. C 271 n	ooro,		Havr Mon 167 m		vil	ckso le, F	la.		Jolie Ill. 178 n			s Ve Nev			tle R Ark 88 m			edfo Oreg			Mian Fla (15 m			lobii Ala.		1	shv Teni	n.		w Yo N. Y 15 m	
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction .	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity
Surface		312 312 317 333 327 323	9.9	30 30 30 30 28 17	273 273 277 266 264 297	1.9 2.3 3.4 4.3 4.6 8.0	24	232 239 262 272 273 275 270	2. 4 4. 5 5. 3 7. 0 10. 7 13. 8 16. 3 20. 3	30 29 22 19 17	294 293 298 299 301	12.0	30 29 26 23 20	266	2.3		255 261 236 246 248 258	2.1 2.4 3.6 4.5 7.2 9.5	25 25	70 303 317 323 325 324 326 324 335 324 335	14. 4 18. 4 18. 1		181 179 224 252 254 256 266 272 268	0. 5 1. 6 3. 2 6. 3 9. 1 11. 6 15. 4 18. 6 21. 4	29 29 29 28 24 22 17	335	6.3 13.5 14.4	111	146 140 153 187 216 242 243 255 250 258	3. 2 3. 4 3. 6 2. 0 3. 1 4. 9 5. 2 5. 0 6. 6 10. 2	28 28 22 20 19 17 11	205 207 244 261 273 275 267	0.7 1.8 2.3 4.7 7.0 9.0 8.1	29 26 24 21		1.7 3.2 5.6 6.7 9.3 13.2 15.6 17.5 21.6 24.3		291	2.3 3.4 6.5 9.1 10.6 11.0 13.4
		akla Cali (8 m	f.	O) Cit	inho y, O	oma kla. n.)		Omal Neb	r.		hoen Ariz 138 m		8	pid (Da 82 n	k.	St	. Lo Mo. 181 n	nis,	1	Pa Mini 125 m	1.	tor	an Anio, 7	rex.		n Die Calif 15 m			ult s Mari Mich 225 n	0,	1	leatt Wasi 12 m	h.		ooka Was 103 n	h.	tor	ashi n, D. (24 m	C.
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity
Surface	31 30 29 29 28 28 26 22 19 12	285 322 347 346 347 346 337 336 336 336	2.5 2.6 5.2 6.5 7.3 9.0 9.0 11.7	ii	193 196 208 249 267 268 267 265 269	4. 0 4. 0 5. 2 6. 4 10. 7 12. 9 15. 7 18. 6 23. 6	24 20 17 13 13	299 298 288 274 265 273	3. 1 2. 9 2. 7 3. 8 7. 8 9. 8	31 31 31 31 31 30 29 25 23 21 15	288 256 251 253 249 262 282 288 296 301 304	1.8 2.3 2.8 3.0		357 352 316 306 299 296 299	5.7 7.8 9.6 9.8 12.6 13.9	28 28 24 20 17 14 13 12	273	3.0	28 21 18 13	281 271 246 261 261	2.0 1.8 3.2 5.3 6.9	30 30 27 22 21 17 16 12 11 10	259 261 259 255	2.1 3.8 6.5 8.8	19	259 276 343 19 3 350 348 330 331 329	1.1 2.7 3.7 4.9	25 25 21 17 15 11 10	283 296	1.3 1.1 3.1 4.1 5.6 7.2	30 30 28 25 20 19 15	282 236 231 258 292 294 314	1.7 1.1 2.2 2.9 4.0 5.8 7.9	1 1	209 271 269 283 308 306 314	2.4 3.8 4.7 5.2 6.8 6.9 11.1	94	275	2.1 2.6 4.7 6.2 10.2 13.4 15.7 19.4 24.0

Table 3.—Maximum free-air wind velocities (m. p. s.) for different sections of the United States, based on pilot-balloon observations during

March 1944

		Surface	to 2,50	0 me	ters (m. s. l.)		Above 2	2,500 to	5,000	meters (m. s. l.)		A	bove 5,0	00 m	eters (m. s. l.)
Section	Marimum ve-	Direc- tion	Altitude (m) m. s. l.	Date	Station	Maximum ve-	Direc- tion	Altitude (m) m. s. l.	Date	Station	Maximum ve-	Direc- tion	Altitude (m) m. s. l.	Date	Station
Northeast 1 East-Central 2 Southeast 3 North-Central 4 Central 5 South-Central 4 Northwest 7 West-Central 8 Southwest 9	43, 2 40, 8 35, 6 38, 6 43, 4 40, 0 40, 6 37, 4 37, 0	WSW WSW WNW WSW WNW WNW	1, 908 730 951	8 19 6 6 4 10 23 5	New York, N. Y Hatteras, N. C Birmingham, Ala Milwaukee, Wis Sioux City, Iowa Memphis, Tenn Ellensburg, Wash Cheyenne, Wyo Roswell, N. Mex	66. 0 54. 4 45. 9 46. 0	WNW WNW WSW NW NNE W NSE	4, 438 5, 000 5, 000 (4, 024 4, 574 2, 518 4, 221	26 8 7 10 8 8 23 13 2	Portland, Maine Chattanooga, Tenn. Atlanta, Ga. Williston, N. Dak. Jomaha, Nebr Little Rock, Ark Ellensburg, Wash Redding, Calif Las Vegas, Nev	73. 6 74. 0 60. 2 60. 8 56. 8 64. 0 84. 0 69. 0 67. 0	NW W8W WSW WNW WSW N N SW	10, 640 11, 324 5, 244 7, 695 9, 715 7, 546 10, 142 6, 711 6, 514 9, 545	14 24 7 28 4 18 30 13 13 2	Mount Washington N. H. Washington, D. C. Atlanta, Ga. Sault Ste. Marle, Mich Wichita, Kans. Omaha, Nebr. Brownsville, Tex. Medford, Oreg. Redding, Calif. Albuquerque, N. Mes

Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and northern Ohio.
 Delaware, Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina.
 South Carolina, Georgia, Florida, and Alabama.
 Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota.
 Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri.

RIVER STAGES AND FLOODS

By C. R. JORDAN

PRECIPITATION during March was abnormally heavy from the Rocky Mountains eastward, except in a few relatively small areas. Amounts were unusually heavy in the Atlantic area, especially in southern sections, the Central and East Gulf and central Rocky Mountain States, and in a belt extending from central Kansas and northern Oklahoma northeastward to the Lakes region. Southeastern South Carolina and Georgia received three times the March normals. Amounts were considerably below normal in the Southwest, especially western Texas and eastern New Mexico, and also in the Pacific States.

The southern edge of the snow cover retreated con-

siderably during March and by the end of the month most ground in the United States was bare of snow. The ground was still covered in northern New England, the northern Lakes region and over most of Wisconsin and North Dakota. Considerable depths also remained in the higher elevations of the West.

Stream flow continued high in the Southeast and in the South Central States and was above normal over the eastern half of the country with the exception of New England and northern Michigan and Wisconsin. Stream flow continued sub-normal throughout the West except in Nevada and western Arizona. Floods in the southeastern States were the only overflow of consequence in the United States during the month and, in fact, since October 1943. In response to heavy rainfall late in February and frequently during March, especially during the latter part of the month, more-than-seasonal rises in stream flow occurred in an area extending from eastern Texas and Kansas to Virginia. Flood records of 50-years standing were broken in the Tombigbee River Basin in Mississippi, many long-standing deficiencies in reservoir storage, especially in Oklahoma, were made up during the month and light flooding occurred at scattered points throughout the country, east of the Divide.

Atlantic Slope Drainage.—Moderate rain near the middle

of March combined with some snow melt produced a rise in the headwater tributaries of the Susquehanna River and bankful stages were reached and exceeded slightly at a number of locations north of the Pennsylvania line. Bankful stages were also approached but not reached in Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and western

ennessee.

Montana, Idaho, Washington, and Oregon.

Wyoming, Colorado, Utah, northern Nevada, and northern California.

Southern California, southern Nevada, Arizona, New Mexico, and extreme west

the North and West Branches of the Susquehanna in

Pennsylvania. Moderate to heavy rainfall late in February and frequently during March caused a succession of rises in the Atlantic coastal streams from Virginia to southern Georgia, and light to moderate flooding occurred at intervals on all streams. No long time records for the area were broken. A number of crests were recorded at the upstream stations but the rainfall occurred at such intervals that runoff from previous rains on the larger streams had not been dissipated before the effect of later rains was felt and the slowly acting coastal-plain streams remained at fairly high stages throughout most of March. The monthly discharge of most streams in the area was unusually high. It has been estimated that damage amounting to \$350,000 resulted from the floods.

East Gulf of Mexico Drainage.—Heavy rains late in February caused most Gulf streams from western Georgia to the Mississippi River to exceed flood stages during the first few days of March. Thereafter, until about March 20, stages were generally falling. Heavy rains again fell over the area during the period March 20-23, and the effect of this storm had not passed by March 27, when heavy rainfall was again reported, with 3-day amounts of 8 inches or over in some sections. No maximum known stages were exceeded in Alabama but runoff was so well distributed throughout the month and over the State that monthly runoff for the State as a whole was one of the largest of record for any one month.

In the Tombigbee River Basin in northeast Mississippi, stages on the main stream and on some of the tributaries exceeded all recorded stages and in one instance at least, Buttahatchie River near Caledonia, Miss., the crest of the historic flood of 1892 was exceeded.

Severe flood stages were reached in the Pearl River in central and south central Mississippi. Greatest damage occurred in the Jackson area where the river rose 16.2 feet above flood stage. The flood continued into April.

Property damage was severe especially in the Tombigbee Basin. It was reported that 70 county bridges in Ita-wamba County alone were washed out. Damage was high both to crops already planted and as a result of the delay in planting caused by overflowed farm lands. Highway transportation was disrupted completely in some parts of the State and hundreds of people were evacuated from their homes. Several deaths are known

to have resulted from the flood. Many streams were still rising at the end of March and most of the flooding continued into April. No estimate of the damage sustained can be made at this time.

Upper Mississippi Basin.—Moderate to excessive rains occurred on March 13, 14, and 15, over southeastern Iowa and west-central Illinois, with a few heavy local rains over the upper portions of the Rock River Basin, with local amounts exceeding 3 inches. The Rock River was above flood most of the latter half of March but loss during the flood was comparatively small. There was a small amount of damage resulting from washing and from flooded cellars and lowlands and from suspension of business. Total loss is estimated at \$1,500. Rains of "cloudburst" proportions were reported in the vicinity of Darlington, Wis., on March 14, that rapidly transformed the Pecatonica River into a raging torrent that produced considerable overflow from Darlington to Gratiot, Wis.

Moderate rains beginning about the middle of March caused the Illinois River to rise to stages a little above bankful beginning in the upper portion on the 16th and continuing above flood stage at downstream stations at the end of the month. The crests during March did not exceed flood stage seriously and little damage resulted. The Mississippi River at Grafton, Ill., was 0.3 foot above

flood stage on the 20th and 21st.

Missouri Basin.—Ice jams and flooding were reported in southeastern Montana during the latter part of March. Ice moved out of the Tongue, Powder, and Little Missouri Rivers and resulted in ice jams in the Yellowstone River at Miles City, Crane, and Fairview. Considerable damage from flooding was reported at Miles City. The situation at Miles City was relieved late on the afternoon of March 21 when an Army Flying Fortress dropped sixteen 250-pound bombs along the 5-mile gorge below the city. The stage of the water above the jam dropped from 21.7 feet on March 21 to 6.3 feet on the 22d. Light flooding of the lowest lands along the Missouri River occurred from Sanish, N. Dak., westward to the Montana line. A resident of the bottom lands near Sanish lost cattle and hay valued at about \$2,000 on March 26, when his land was overflowed by floodwaters of the Missouri.

Heavy rains about the middle of March caused light flooding along portions of the Osage River. Stages were only slightly above flood stage and little damage resulted. It is estimated that \$1,500 damage resulted from the overflow, representing for the most part damage to growing

wheat.

Ohio Basin.—Light flooding occurred during March at widely scattered points in the tributary streams of the Ohio River Basin and in the Ohio itself from Tell City, Ind., to the mouth of the river near the close of the month. Damage was light. The lower portion of the Ohio remained above flood stage at the end of the month.

Arkansas and Red Basins.—Flood stages were reached at a few locations along the tributaries of the Arkansas and Red Rivers. Overflow was not great in any instance and losses were comparatively light. Losses are estimated at \$75,000 and occurred principally in the Neosho,

Ouachita, Verdigris, and Walnut River Basins.

Lower Mississippi Basin.—Flood stages were exceeded slightly at Rossville, Tenn., on the Wolf River and at Swan Lake, Miss., on the Tallahatchie River. No material damage resulted. The Tallahatchie, Yazoo, and the Mississippi Rivers reached flood stage at several stations during the last few days of March and remained above food at the close of the month.

West Gulf of Mexico Drainage. - Heavy rains near the

end of February over northern and eastern Texas produced light flooding along the Sabine, Elm Fork, East Fork, and Trinity Rivers during the early part of March. No damage of consequence resulted from these overflows.

Heavy rains fell over the Calcasieu River, Bayou des Cannes, Bayou Nezpique, and Bayou Vermillion watersheds on March 18-19. Streams rose rapidly but flood stage was exceeded only at Basile, La., on the Bayou

Nezpique. No damage resulted.

Generally heavy rains fell over the area comprising Harrison, Upshur, Gregg, Rusk, Panola, Nacogdoches, and Shelby Counties of Texas on March 28. Small streams in the area flooded causing an estimated loss of \$25,000 to livestock, \$30,000 damages to highways, bridges, and fences; destroyed approximately 2,000 acres of truck crops valued at \$20,000; and delayed the planting of corn and other crops for several weeks. The greatest damage occurred in Panola County. At least one man was drowned in Panola County while attempting to rescue cattle from the flood waters.

The Guadalupe River was slightly above flood stage at Victoria, Tex., on March 19. No losses were reported.

FLOOD-STAGE REPORT FOR MARCH 1944

[All dates in March unless otherwise specified]

River and station	Flood	Above stages-		C	rest 1
	stage	From-	То-	Stage	Date
st. Lawrence drainage Lake Erie St. Joseph: Fort Wayne, Ind	Feet 12	17	17	Feet 12.1	17
ATLANTIC SLOPE DRAINAGE					
Chenango:					
Sherburne, N. Y	8	17 24	18 28	9.3	17 25
Greene, N. Y	8	17 25	18 27	12.3	17 26
Susquehanna: Oneonta, N. Y. Unadilla, N. Y. Bainbridge, N. Y.	12 11 12	16 18 17	19 18 18	16.6 11.5 15.7	17 18 17
Vestal, N. Y.	1	14	19	19.9	18
Ronnoke:	-	24	28	16.1	27
Weldon, N. C	31	8 14 31	10 15	34. 8 33. 2	15
Williamston, N. C	10	(9)	(8)	11.3	20
Far: Rocky Mount, N. C	9 18 13	22 22 21	22 26 28	9. 1 20. 5 15. 6	22 24 25
Neuse: Neuse, N. C	14	{ 14 20 8	15 23 10	14. 2 16. 0 14. 2	14 21 9
Smithfield, N. C	13	14 20	17 26	15.8	15-16 22
Goldsboro, N. C	14	1 (2)	(7)	20. 9 15. 1	Feb. 28
Kinston, N. C	14	13	(3)	15.2	16
Cape Fear:				17.8	30
Fayetteville, N. C	35	\ \begin{cases} 14 \\ 21 \\ 8 \end{cases}	15 24 11	37. 2 42. 5 24. 3	14 22 9
Lock No. 2, Elizabethtown, N. C.	22	13 21 31	18 27	27.3 30.3	15 23
Lynches: Effingham, S. C	14	25	29	16.3	27
Waccamaw: Conway, S. C	7	8	Apr. 5	7.3 7.4 7.5	15-18 24-26,30,3
Cheraw, S. C	30	14 20 30	14 24 Apr. 1	31. 0 38. 6 34. 0	14 21 30
Mars Bluff Bridge, S. C	17	Feb. 14	4 Apr. 0	19.0 18.4 18.0 19.3 22.1	Feb. 21 1-2 12 18 27
Saluda:			100	20.3	Apr. 4
Pelzer, S. C	6	19 29	7 24 Apr. 2	10.1	7 20 30
Chapells, S. C	13	{ 20 29	24 Apr. 3	24.8 22.3 18.1	20 23 30
Pelzer, S. C		1 29 1 20	7 24 Apr. 2 24	{	20. 8 6. 0 10. 1 10. 0 24. 8 22. 3

FLOOD-STAGE REPORT FOR MARCH 1944—Continued FLOOD-STAGE REPORT FOR MARCH 1944—Continued

River and station	Flood		ve flood s—dates	C	rest 1	River and station	Flood		e flood —dates	0	rest 1
	stage	From-	To-	Stage	Date		stage	From-	То-	Stage	Date
ST. LAWRENCE DRAINAGE—continued Lake Erie—Continued Broad: Blairs, S. C		8 19 30 20	8 24 (7)	Feet 15. 0 25. 5 19. 0	8 20 31 21	MISSISSIPPI SYSTEM Upper Mississippi Basin Rock: Moline, Ill	Feet	f (*)	8	Feet 10.9	1-
Congare: Columbia, S. C	8	20 29 20 21	31	9.7 13.2	30	Fox: Wayland, Mo. Salt: New London, Mo		15 15 16	28 16 18	13. 5 16. 0 22. 5	10
Catawba, S. C. Wateree: Camden, S. C. Broad: Carlton, Ga. Savannah:	23 15	21 29 21	25 30	29. 1 16. 0 33. 9	20 21 30 21	Morris, Ill	17	{ 16 15 30 19	17 20 30	15.6 20.2 17.0 15.6	10 10 30 20-2
Augusta, Ga	21	21	22 26	25.4	22	Havana, Ill		20	8	15.0	21-2
Midville, Ga		(7) 23	31 3 21	9.4 7.5 7.7	Feb. 29 17-18	Keokuk, IowaQuincy, Iil. Hannibal, Mo	12 14 13	16 16	19 20 22	12.7 16.3 16.9	11
Ocmulgee:		21	(*)	12.4 22.4	28 20	Louisiana, Mo		(3) 4	7	12.3 12.2	Feb. 26
Macon, Ga		19 22 29 23 23 23	25 31 29	23. 0 22. 6 29. 7	24 30 26		18	15 27	23 30 21	16.2 12.2 18.3	28-2i 20-2
Abbeville, Ga	11	23	Apr. 11	17.7	28	Grafton, Ill	18	20	21	18.3	20-2
Milledgeville, Ga		20 29 23 24	Apr. 2	33. 1 23. 5	21 30 26	Grand: Chillicothe, Mo	18	15	17	26.2	10
Dublin, Ga	21 16	23 24	Apr. 9	28. 9 21. 9	26 28	Osage: Quenemo, Kans	30 25	17 18	17 19	30. 5 25. 6	17
Charlotte, Ga	12	16	17	24.8 17.0	31 16-17	La Cygné, Kans	24 20	19	20 25	25. 1 21. 3	19
Piney Bluff, Ga Doctortown, Ga	17 10	16 24 31	Apr. 6	10. 5	Apr. 2-3	Ohio Basin	-	_	-		
Everett City, Ga	10	29	(3)	14. 9	Apr. 4	Monongahela: Lock No. 2, Braddock, Pa	20. 5 17	25	25 8	20. 5 17. 2	25
Chattahoochee:	16	21	21	16.3	21	Scioto:	11	7		12.2	7
Norcross, GaColumbus, Ga	34	{ 21 30 23 23 30 24 31	34 23 26	17. 2 35. 0	30 23 25 31	La Rue, Ohio	14 16	7 7	8 8 9	15.7 18.4	18
Eufaula, Ala	40	{ 23 30	Apr. 2	49. 2 44. 8	25 31	Barren: Bowling Green, Ky	29 28	1	1 2	28. 1 30. 9	[2
Columbia, Ala	42	{ 24 31	Apr. 27	45. 6 43. 1	Apr. 1	Green: Lock No. 4, Woodbury, Ky Lock No. 2, Rumsey, Ky	33 34	1 25	4 27	36. 9 34. 5	3 26
Flint: Montezuma, Ga	20	{ 23	24 27	21. 4 22. 1	23	West Fork:	01	20	21	01.0	20
Albany, GaBainbridge, GaApalachicola:	20 25	23 25 23 26	Apr. 5 Apr. 8	31. 3 32. 9	23 26 25 30	Anderson, Ind	10	5 7 28	8 28	10.3 11.7 10.0	8 28
Chattahoochee, Fla	20	25	Apr. 7	24.8 25.6 17.8	Apr. 3 12-13	Elliston, Ind	18	28 7 6 28	28 10 13 31	19. 5 17. 4 14. 0	9 10 30
Blountstown, Fla	15	8 21	(7)	23.1	29	Wabash, Ind	12	7	7	12. 5	7
Newton, AlaGeneva, Ala	19 23	24 26	25 27	21. 3 24. 6	25 26	Wabash, IndLa Fayette, IndCumberland:	11	7	9	13. 2	8
Caryville, Fla	12	24	Apr. 5	{ 13.6 13.1	28 Apr. 3	Williamsburg, Ky	19 28	8	5	22. 0 38. 3	3
Conecuh: River Falls, Ala	35	{ 23 31	27	40.5	24		45.5	21	3	33. 8 46. 3	23
Brewton, Ala	17	24	Apr. 1 Apr. 5	36.0 { 19.8 19.8	31 28	Lock No. 5, Lebanon, Ky Nashville, Tenn Lock No. 2, Neptune, Tenn	40 40	8	8 4 5	40. 0 41. 3 48. 3	1
Black Warrior:		, m	1	52.0	Apr. 3 Feb. 29	Clarksville, Tenn	50	(6) 29	13	54.7	5 29
Lock No. 10, Tuscaloosa, Ala	47	(7) 28	(9) 6	62.0	30	Duck: Columbia, Tenn	32	29	(4)	34.7	30
Lock No. 7, Eutaw, Ala	35	22	(7)			Chattanooga, Tenn	30	8	30 8	31. 7 18. 1	30 8
Aberdeen, Miss	34	(7) 28	(3) 2	35. 2 43. 0	30	Florence, Ala Pickwick Landing, Tenn	43	28 29	Apr. 4 Apr. 5	25. 4 49. 6	Apr. 2
Columbus, Miss	29 36	(4) 30	8	37. 3	2	Savannah, Tenn	39	30 31	Apr. 5	44. 0 36. 5	Apr. 3 Apr. 4
Lock No. 4, Demopolis, Ala	39	(1) 29	(3)	51.3	4	Ohio: Tell City, Ind	38	25	28	38.6	26 27
Lock No. 3, Ala	33	(1) 22 21	(3) 15	52.6	5	Dam No. 47, Newburgh, Ind Evansville, Ind Dam No. 48, near Henderson, Ky.	38 37 38	24 25 25	Apr. 3 Apr. 2 Apr. 3	41. 5 39. 0 40. 0	28 29
Lock No. 2, Ala	46	(1) 23	(3) 13	53. 9	7	Mount Vernon, Ind	35	26	Apr. 4 Apr. 3	37. 2 37. 6	30 30-31
Lock No. 1, Ala	31	(1) 23	(7) 17	36. 5	9	Shawneetown, Ill	33	28 11 25	15 Apr. 6	34. 4 37. 5	13 31
hickashawhay: Enterprise, Miss	20	30	(9)			Dam No. 50, Fords Ferry, Ky	34	9	16 Apr. 8	36. 7 39. 9	13-14 31
Shubuta, Miss	30	Feb. 29 24 28	Feb. 29 26	30. 0 32. 0	Feb. 29 25	Paducah, Ky Dam No. 52, Brookport, Ill	39	24 31 5	(3)	41. 2 39. 0	Apr. 4
ascagoula: Merrill, Missogue Chitto: Franklinton, Laearl:	22 11	28 24 29	(a) 31 Apr. 1	31. 9	30	Dam No. 53, near Mound City, Ill.	42	24 5 23 5	(³) (³) 15	43. 1 43. 8 48. 0 41. 6	Apr. 5 11-12 Apr. 5 9-10
Edinburg, Miss	20 {	(1)	(3) 4	23. 1	Feb. 29	Cairo, Ill	40	21	(1)	45.6	Apr. 5
Jackson, Miss	18	(*)	(1) 15	28.3	8-7	White Basin White:					
Monticello, Miss	15	10 22 24	13	16. 0 18. 2	12 24	Georgetown, Ark	21 {	8 27	30	21. 0 21. 1	8-9 28-29
Columbia, Miss	17	24 24	(9)	18.6	25	Clarendon, Ark	26	11 25 16	(7) 16	26.2	12-14
Pearl River, La	12 {	(1)	(2) 7	13.7	3	St. Charles, Ark	25 {	16 26	(3) 21	25. 1	19

FLOOD STAGE REPORT EOR MARCH 1944-Continued

FLOOD STAGE REPORT FOR MARCH 1944-Continued

River and station	Flood		Above stages		Cr	rest 1	River and sta
,	stage	F	rom-	То-	Stage	Date	
Mississippi system—continued Arkonses Basin Verdigris: Claremore, Okla Cottonwood: Emporia, Kans Neosho: Neosho: Rapids, Kans Burlington, Kans Chanute, Kans Parsous, Kans Parsous, Kans Poteau: Poteau, Okla Petit Jean: Danville, Ark	23 15 20 24 17 21	{ {	16 17 24 17 17 17 25 19 18 19 10 10 10	23 18 25 17 19 26 20 20 22 23 23 3	Feet 34.3 21.5 22.4 22.5 27.4 24.8 17.6 23.1 25.0 27.0 23.3 23.2	23 17 24 17 18 25 19 20 21 20 21 21 21	Mississippi system— Lower Mississipp Wolf: Rossville, Tenn Big Lake Outlet: Manili Tallahatchie: Swan Lak Yazoo: Yazoo City, Mis Mississippi: New Madri west GULF OF MEXIC Nezpique Bayou: Basile Sabine: Logansport, La. East Fork: Rockwall, T
Red Busin		1					Trinity:
Little Missouri: Boughton, Ark Oachita: Arkadelphia, Ark Camden, Ark	20 17 26	-	(7) 18 29 1 20	21 2 22 29 10 29	21.8 19.4 23.5 17.0 30.2 34.2	20 1 19 29 5 24-25	Dailas, Tex. Rosser, Tex. Trinidad, Tex. Long Lake, Tex. Liberty, Tex. Guadalupe: Victoria, Te
Little: Whitecliffs, Ark	25	-	29 2 19	(*) 5 23	25. 6 26. 0	20-21	Provisional. Continued from Febral
Hagansport, Tex	38 22	1	19 2 20	22 12 Apr. 1	39. 9 39. 6 26. 3 27. 8	Feb. 29 19 4 23	

River and station	Flood	Above stages-		Cr	est 1
251703 8373 8535703	stage	From-	То-	Stage	Date
Mississippi system—continued Lower Mississippi Basin Wolf: Rossville, Tenn Big Lake Outlet: Manila, Ark Tallahatchie: Swan Lake, Miss	Feet 10 10 26	29 4 2	31 14 8	Feet 10. 9 10. 7 26. 6	20 9-10 4-5
Yazoo: Yazoo City, Miss	29 34	1 30 28 31	(8)	30. 8 35. 7	29 Apr. 5
Nezpique Bayou: Basile, La	18 25 10	{ (2) 30 (3) 4 19	25 12 (*) 3 7 21	23. 4 28. 8 14. 4 13. 1 14. 8	1-2 1 6 19
Trinity: Dallas, Tex	28	Feb. 29 2 2 2 9 19	3 6 9 6 15	32. 2 28. 1 29. 9 41. 0 24. 7 23. 6	1 4 7-8 4 12-13 19

bruary. f month.

CLIMATOLOGICAL DATA

CONDENSED CLIMATOLOGICAL SUMMARY OF TEMPERATURE AND PRECIPITATION BY SECTIONS

[For description of tables and charts, see REVIEW January 1943, p. 15]

In the following table are given for the various sections of the climatological service of the Weather Bureau the monthly average temperature and total rainfall; the stations reporting the highest and lowest temperatures, with dates of occurrence; the stations reporting the greatest and least total precipitation; and other data as indicated by the several headings.

The mean temperature for each section, the highest and lowest temperatures, the average precipitation, and the greatest and least monthly amounts are found by using all trustworthy records available.

The mean departures from normal temperatures and precipitation are based only on records from stations that have 10 or more years of observations. Of course, the number of such records is smaller than the total number of stations.

				Ten	pera	iture					Precipital	tion		
	8	E.		Mot	thly	extremes .			960	nom	Greatest monthly		Least monthly	
Section	Section aver	Departure from the normal	Station	Highest	Date	Station	Lowest	Date	Section average	Departure from the normal	Station	Amount	Station	Amount
	°F.	°F.		°F.			°F.		In.	In.		In.		In
Alabama Arizona Arkansas California Colorado	57. 7 48. 0 51. 3 50. 6 31. 3	-1.1 2	Corning	88 87 92	31 15 31 13	4 stations Fort Valley 2 stations Bridgeport (near) Taylor Park	-6	15 8 6	10.77 1.18 6.13 1.85 1.78	-1.99	Troy	16. 69 3, 54 11. 80 7. 63 8. 85	Utleyville	3.2
Florida	67. 9 56. 7 32. 1 37. 2 38. 1	+2.7 +.6 -3.6 -3.5 -2.5	Camp Stewart	88 73 82	26 26 30 1 14 15	HilliardBlairsvilleLandmarkFreeportGoshen	27 17 -35 -6	10	5, 58 10, 59 1, 03 4, 27 4, 31	+2.34 +8.57 72 +1.14 +.61	Crestview	11. 49 16. 37 4. 81 7. 21 8. 22	Homestead Atlanta AP Richfield Vandalia Farmersburg	2.8
Iowa Kansas. Kentucky Louisiana. Maryland-Delaware	30. 3 39. 2 45. 2 60. 8 40. 3	+.3	2 stationsdo	77 84 87	24 1 13 1 15 1 12 1 15	2 stations Camp Beauregard	2	19 9 8	2, 58 2, 96 5, 50 5, 75 5, 63	+.85 +1.52 +.77 +1.00 +1.90	Burlington	5, 20 5, 92 8, 21 13, 36 7, 57	Inwood	8. 1. 2.
Michigan Minnesota Mississippi Missouri Montana	26. 7 22. 4 57. 6 41. 4 26. 5	-2.9 -4.0 +.7 -2.4 -4.6	2 stations	85	1 24 23 7 14 1 23	Watersmeet	-32 23 6	9	2.76 1.19 9.44 3.78 .03	+. 67 01 +3. 62 +. 61 04	Mass Pigeon River Bridge Grenada Mexico Kings Hill	5. 90 2. 99 15. 29 8. 28 2. 75	Philadelphia Tecumseh	5.
Nebraska Nevada New England New Jersey New Mexico	38. 0 29. 4 37. 1	-2.7 -2.1	Benkelman Mesquite East Wareham, Mass. Belleplain	72 87 66 74 91	10 9 25 16 5	Hartington. Marlette Lake. Lake Frontiere, Maine Chatsworth. Eagle Nest	-6 -28	11	1. 58 64 4. 06 5. 68 36	+1.91	Falls City Marlette Lake 2 stations Ridgefield Chama	3. 83 3. 76 8. 50 7. 47 2. 93	Newport, Vt Layton	
New York North Carolina North Dakota Ohio Oklahoma.	28 8	9 -6.9 -2.0 -2.1	2 stations	83 83 87	1 26 31 15 31	Kenton	1 3	18	3. 41 7. 20 .81 4. 87 2. 91 1. 63	+.02 +1.45 +.77	Ironton	7. 63 12. 14 2. 41 7. 13 7. 62 9. 19	Oldsboro	
Pennsylvania South Carolina South Dakota Tennessee	34. 4 54. 0 23. 8 49. 5	7 -7.8	Orangeburg Pine Ridge	67	26 11	Cresars Head 2 stations.	-18	29	4. 69 8. 85 . 84 6. 95	+1. 17 +4. 83 27 +1. 57	Spearfish	8. 44 12. 53 2. 69 12. 20	Raymond Martin	- 3.1
Texas Utah Virginia Washington West Virginia	33. 9 43. 8 39. 8	-4.4 -1.9 -1.8	2 stations	76 86 79	1 12 1 15 1 30	Woodruff Mountain Lake Bumping Lake	-14	28 10 1 13	2.09	+1.89	Higley Peak	9, 22 9, 87 8, 24 16, 64 7, 70	Arborvale	2. 3.
Wisconsin	26. 2 26. 0	-2.9 -3.8	Fort Laramie	64 69		Rest Lake	-27 -31	19 28	2.02 1.55	+. 27 +. 40	2 stations Elk Mountain	3. 62 4. 27	AmeryPowell	1.
Alaska (February) Hawaii			Tree Point		16	Haleakala Ranger Sta-	-47 38	1 14 26	2. 16 9. 50	‡. 25 ‡. 80	Latouche	18. 24 27. 00		
Puerto Rico			4 stations	1	15	tion	****		1.39	-2.00	Calero Camp	4.63	7 stations	

¹ Other dates also.

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS

		ration		1	Pressur	•		Те	mpe	ratu	ire o	of the	air			- dew-		Pre	elpita	tion		144	Win	đ					ps		Lound	under-
	900 0	apone	apone			iormal	mean	ormal							range	ire of the	midity		normal	inch or	veloc-	lon		laxim veloci			days		ess, tenths		ice on ground	with the
District and station	Barometer abov	Thermometer	Abemometer	Station	Sea level	Departure from normal	Mean max. + min. + 2	Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	st daily	Mean temperature point	Mean relative humidity	Total	ture from	th 0.01	Average hourly ity	Prevailing direction	Miles per hour	Direction	Date	Clear days	Partly cloudy da	Cloudy days	Average cloudiness,	Total snowfall	nd of	90.5
New England	Ft.	Ft.	Pt.	Mbs.	Mbs.	Mbs.	°F.	°F. -1.4	°F.		°F.	°F.		°F.	°F.	°F.	% 69	In. 4.63	In. +1.2		Mi.								0-10	In.	In.	
Eastport	103 289 403 124 12 26 159	6 33 11 11 46 5	41 43 45 51	976. 1, 013. 1, 007. 1, 002.	2 1,016.6 3 1,017.6 5 1,018.6 1 1,018.6 1 1,018.6 2 1,018.3 1 1,018.3 1 1,019.0 1 1,019.3	+3.4 +2.7 +3.1	27. 4 20. 5 29. 1 28. 2 25. 4 34. 1 35. 8 35. 0 35. 6 33. 8 34. 4	-4.0 -2.7 9 -3.7	62	2501	34 32 38 38 34 42 42 41 43 43 42	3 0 -13 10 18 15 12 9	3 11 5	21 9 20 19 16 27 30 29 28 25 27	50 32 39	14 22 16	75 62 75	3. 92 1. 37 3. 92	+1.2 +.9 7 +.4 +2.7 +1.4 +1.5 +1.1	15 11 15 13 11 15	10. 4 8. 2 10. 5 13. 7 13. 2 18. 0 10. 2	nw. s. nw. n. n.	35 39 34	nw. se. ne. ne.	7 30 28 6 20 20 18 8 28 28	9 4 5 11 15	11 11 14 13 8	10 10 11 13	5. 0 5. 8 6. 5	5, 1 19, 1 13, 9 13, 4 3, 7 12, 7 8, 1 2, 8 8, 9 12, 2 7, 7	25. 0 . 5 T	
Middle Atlantic States							39, 4	-1.0									70	5, 18	+1.8										6,3			
Albany 1 Binghamton 1 New York. Harrisburg 1 Philadelphia 1 Reading Scranton Atlantic City Trenton Baltimore 3 Washington 3 Cape Henry Lynchburg Norfolk 2 Richmond	871 314 374 114 323 805 52 190 123 112 112	60 415 30 6 47 72 37 80 100 56 8 144 80	40 79 454 49 56 306 104 172 107 215 100 54 184 125 52	1, 015. 2 986. 1 1, 006. 8 1, 005. 1 1, 014. 9 1, 006. 8 1, 011. 9 1, 014. 2 980. 7 1, 017. 3 992. 9 1, 015. 2 1, 012. 9	1, 019. 3 1, 019. 6 1, 019. 0 1, 019. 0 1, 019. 6 1, 019. 3 1, 019. 3 1, 019. 3 1, 019. 3 1, 019. 3 1, 018. 6 1, 018. 6	+3.0 +3.0 +3.1 +2.4 +3.0 +2.7 +2.4 +2.0 +1.0 +2.4 +1.3	39. 6 37. 9 41. 8 43. 0 46. 4 45. 2 47. 9 45. 5	-2.0 7 -1.9 6 -2.7 -2.3 +1.0 -1.2 5 +.4 -2.1 3 -1.7	65 60 69 66 67 67 62 67	25 25 25 25 25 25 25 26	37 40 44 46 47 46 46 46 50 51 54 56 57 55	0 -3 15 12 17 15 10 20 19 20 21 27 16 28 19	5 6 5 6 6 6 2 5 5 5 8 10 2 10 2 10	21 21 30 29 30 30 25 33 30 34 34 39 35 39 36	37 46 27 36 33 32 36 22 31 23 31 37 45 34 38	18 20 22 26 28 32 26 28 28 38 32 37 33	71 59 70 70 70 80 68 66 64 76 68 76 76	2. 45 3. 20 6. 62 5. 47 5. 46 5. 47 2. 67 5. 32 5. 66 6. 04 5. 44 5. 56 5. 77 6. 97 8. 67	+.6 +3.0 +2.4 +2.1 +2.0 5 +1.7 +2.3 +1.7 +1.7 +2.2 +3.2 +2.0	15 12 15 15	10. 3 11. 0 8. 5 14. 4 8. 2 11. 6	w. n. se. n. nw. n. n. n. n.	33 19 54 35 30 40 26 51 32 33 29 38 26 29 30	nw. nw. nw. e. nw. se. nw. nw. nw. nw.	28 1 1 28 13 29 1 7 1 13 17 1 1 1 1 17	4 5 4 5 3 5 6 5 8 11	9 12 13 11 14 15 13 12 10 7	18 14 14 15 14 11 12 14 13 13 13 14	7.3 6.6 6.8 6.6 6.9 6.8 6.0 5.8 5.6	11. 7 11. 6 4. 2 7. 8 13. 9 5. 7 4. 9 6. 9 . 5 T 1. 6 T	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
South Atlantic States Asheville	2, 253	77	92	.937.7	1, 018. 3	+.3	54, 7 46, 4	+1.1	79	26	58	18	10	35	44	32		7, 66 5, 30		10	10. 0	nw.	33	se.	28	11	6	14		.1	.0	- 2
Asheville	376 72	73 11 70 18 62 73	86 56 50 69 107 92 91 36 77 152	989. 5 986. 1 1, 018. 0 1, 004. 4 1, 015. 9 1, 016. 3 1, 005. 4 980. 0 1, 011. 2 1, 016. 3	1, 018. 3 1, 019. 0 1, 018. 6 1, 019. 0 1, 019. 0 1, 018. 3 1, 018. 3 1, 018. 0 1, 018. 6 1, 018. 6	+1.3 +1.4 +1.4 +.3 +.3 +.6	51. 0 46. 0 51. 8 49. 4 55. 0 58. 7 54. 7 50. 5 56. 4 62. 0 65. 4	+.6 2 +.5 +1.7 +1.3 5 +.4 +3.0 +2.8	79 82 80 72 83 83 80 84 79 85 84 86	26 26 26 27 27 27 27 26 26 26 27 19	58 61 58 59 60 65 66 65 67 71 74	25 19 30 22 30 34 31 24 32 36 37	10 10 3 10 2 2 9 9 9	35 41 34 45 38 45 51 45 40 46 53 57	32 38 26 36 29 21 31 32 33 25 28	32 38 34 45 37 46 49 43 38 43 51 55	72 70 84 72 80 83 74 70 68 82 80	5. 30 8. 34 6. 94 4. 89 7. 18 6. 83 0. 51 6. 90 7. 43 9. 30 9. 96 7. 60	+4.2 +.6 +3.3 +3.7 +7.5 +3.5 +2.3 +5.2 +6.9 +4.7	13 13 12 12 13 14 12 16 15 15	9. 1 15. 1 10. 4 10. 3 10. 9 8. 9 11. 3 6. 0	ne. ne. sw. ne. sw. ne. sw. nw.	27 27 38 32 33 31 26 40 23 38 28	sw. ne. nw. w. sw. e. sw. ne. nw. n.	4 19 1 8 7 22 4 19 27 29	13	8 3 6 7 3 4	14	5. 5 5. 4 5. 5 5. 5 5. 8 5. 9 5. 4 5. 4 5. 4 5. 4 5. 4	. 0	.0	2 1 4 2 4 8 2 4 7 9 8
Florida Peninsula							72, 6	+2.7									79	2,38	+0, 2				-						4.8			
Key West ³ Miami ³ Fampa ¹	21 25 35	10 242 6	249	1, 016. 9	1, 017. 3 1, 018. 0 1, 018. 3	3 6 . 0		+3.5 +2.3 +2.3	86 86 87	30 24 26	81 77 77	61 50 44	9	71 68 61	17 22 31	64	81	2. 01 1. 34 3. 78	+1.4	8	0.8 4.6 1.4	Se.	31 32 30	nw. e. s.	11 11 7	20 15 7	- 9	7	3.4 4.8 6.1	.0	.0	1 4
Atlanta 1 Macon 2 Thomasville Apalachicola Pensacola Anniston Birmingham 1 Mobile 3 Mortgomery 3 Meridian 2 Vicksburg 2 New Orleans 4	1, 173 370 273 35 56 741 700 87 218 378 247 53	33 79 49 11 54 9 5 86 92 67 82 80	87 58 51 79 62 161 105 92 102	1, 004. 1 1, 007. 8 1, 016. 3 1, 015. 6 992. 2 1, 015. 2 1, 009. 5 1, 003. 4 1, 007. 1	1, 018. 0 1, 018. 0 1, 018. 0 1, 017. 6 1, 017. 6 1, 017. 6 1, 017. 3 1, 016. 9 1, 016. 3 1, 016. 6	4 4 7 7 1.0	59, 2 52, 9 57, 1 63, 2 64, 2 62, 0 55, 8 55, 0 61, 6 59, 0 57, 4 58, 6 63, 7	+1.4 +.9 +.4 +3.0 +2.6 +1.7 +1.7 +1.2 +1.9 +1.2 +.3 +.1 +1.9	80 83 78 76 83 82 79 80 83	18 26 12 26 26 26 14	63 68 75 71 70 68 66 70 68 68 68 72	27 31 35 40 39 25 27 39 33 30 36 44	9 9 9 9 9 9 1 9	46 52 57 54 44 44 53 50 47	32 31 35 22 25 39 37 28 28 34 31 29	40 46 56 54 44 53 47 47 46	70 75 1 83 81 1 72 84 1 72 1 74 75 1	8, 87 - 5, 93 - 2, 52 - 9, 64 - 4, 85 0, 43 - 9, 62 - 7, 17 - 1, 15 - 1, 04 - 7, 77 - 0, 39 - 5, 93 - 5	+. 5 +7. 6 +5. 6 +5. 7 +4. 0 +1. 5 +5. 2 +5. 0 +2. 5 +4. 8	15 13 9 11 10 13 13 11 14	1. 1 7. 3 9. 2 8. 3 9. 4 6. 9 7. 0 6. 9 9. 2 7. 2	e. 3e. nw. s. s. s.	26 27 37 28 25 24	s. e. se. nw. e. nw.	22 11 22 22 22 22 28	12 12 8 8 11 11 11 11 11 11 10 12	7 7 10 5 12 7 5 5 7	12 16	5,8 5,5 6,2 5,7 6,0 5,5 6,2 5,5 6,2 5,5	T .00 .00 .00 .00 .00 .00 .00 .00 .00	.0	5 9 7 5 6 5 7 8 6 8 8 7
West Gulf States							59, 1	-0.9										4, 70											6, 3			_
Fort Smith Little Rock Austin Brownsville Corpus Christi Dallas Fort Worth Galvaston Plouston Plouston Plouston Port Arthur San Antonlo Smith	249 463 357 605 57 20 512 679 54 138 510 34 693	57 5 10 5 4 5 5 3	82 58 41 54 33 45 56	998. 6 1, 003. 1 993. 6 1, 010. 8 1, 013. 2 996. 3 990. 9	1, 015. 6 1, 016. 3 1, 016. 3 1, 016. 3 1, 012. 5 1, 013. 9 1, 015. 2 1, 014. 0 1, 015. 2 1, 015. 2 1, 015. 2 1, 015. 2 1, 015. 2	-1.1 6	51. 0 51. 6 58. 6 69. 6 64. 8 55. 2 54. 9	-2.2 -1.8	81 82 81 90 82 83 83	14 14 26 22 26 26 26 26 26 28	61 62 69 78 72 66 66	36 28 32 45 41 29 28 42 38 33 40 29	8 8 8 20 29 31 29 20 20 20 20 30 30	41 48 61 57 44 44 57 54 48	39 37 36 30 31 35	40 42 50 62 58 44	67 74 75 81 82 73	7. 37 - 5. 18 - 7. 86 - 1. 83 1. 26 1. 69 - 4. 17 - 1. 30 - 8. 79 - 5. 28 - 3. 95 6. 75 - 3. 72 -	-2.2 -3.2 5 3	13 1 10 1 9 1 10 1 9 1 8 1 10 1 8 1 11 7 1	0.4 0.0 0.2 3.0 3.2 2.8 3.2 1.9 1.8 8.8 3.9	6. NW. S. 80. 80. 8. 80. 80. 80. 80. 80.	40 32 35 34 40 42 38 34 26 44	nw. nw. nw. nw. n.	7 7 28 29 28 3 3 10 10 28	7 8 8 7 9 9 8 7 9 10 10 7	10 8 5 9 4 5 6 8 3	14 15 18 15 18 17 17 17 16 19 18	6. 0 6. 2 6. 3 6. 4 6. 4 6. 3 6. 6 6. 2 6. 0 6. 2	.0	.0	7 565434164642

See footnotes at end of table.

See footnotes at end of table.

MONTHLY WEATHER REVIEW

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

	Elev			1	Pressure			Ten	nper	atur	re of	the	air			-web		Prec	ipitatio	on		W	7 ind	1					82		punoz	mder-
District and station	nove sea		apove			n normai	+ mean	n normal			8			m	2	iture of the	relative humidity		n normal		ly veloc-	direction	V	aximu			days		cloudiness, tenths		nd ice on g	ys with the
	Barometer abo	Thermometer	Anemometer	Station	Sea level	Departure from normal	Mean max. +	Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	Mesn minimum	Greatest daily	Mean temperature point	Mean relative	Total	Departure from normal		Average hourly ity	Prevailing dir.	Miles per hour	Direction	Date	Clear days	Partly cloudy	Cloudy days	Average cloud	Total snowfall	Snow, sleet, and ice on ground at end of month	Number of da
Ohio Valley and Tennessee	Ft.	Ft.	Ft.	Mbs.	Mbs.	Mbs.	°F. 42,2	°F. -1,1	°F.		F.	°F.		°F.	F.	°F.	% 73	In. 5, 27	In. +1.0		Mi								0-10	In.	In.	
Chattanooga 1 Knoxville 1 Memphis 4 Nashville 1 Lexington Louisville 2 Evansville 1 Indianapolis 1 Terre Haute 2 Cincinnati 2 Columbus 2 Vandalla 1 Elkins 2 Parkersburg Pittsburgh 1 Lower Lake Region	995 399 546 989 525 431 823 575	277 55 66 106 12 5 68 111 90 6 61 77	53 86 72 120 40 54 149 51 110 55 78	961. 4 1,002. 0 997. 0 981. 7 998. 0 1,001. 0 986. 1 995. 9 994. 2 967. 1 980. 0 947. 2	1, 017. 6 1, 017. 6 1, 016. 6 1, 016. 9 1, 019. 0 1, 017. 3 1, 017. 3 1, 017. 6 1, 017. 6 1, 017. 6 1, 018. 0 1, 018. 0	4 7 7 +1.4 3 .0 4 0 +.3	49. 4 52. 0 48. 8 42. 1 43. 2 42. 9 36. 8 39. 6 40. 4 37. 6 36. 0 38. 3	+.1 4 -1.6 -2.2 -1.5 -2.0 -2.1 5 -1.5 -2.7 -1.7 -2.4	82 80 80 81 80 79 73 74 82 77 74 83 75	26 26 14 15 15 15 15 15 15 15 15 15 15 15 15 15	62 60 63 60 54 52 54 47 49 50 46 45 49 50 45	22 23 28 22 10 20 17 11 17 15 12 10 2 13 10	9 10 9 9 9 9 9 9 9 9 9 9 10 10 9	39 39 411 38 31 34 32 27 30 30 29 27 28 30 27	42 38 32 29 43 36 39 33 35 37 35 34 44 45 35	40 38 41 38	76 72 71 70 78 72 74 74 77 78 71 71	7. 52 6. 08 5. 20 5. 81 5. 29 4. 72 4. 63 4. 20 2. 62 5. 40 5. 41 4. 70 5. 38 5. 52	+.7 +1.0 +.3 +.4 -1.1 +1.5 +1.9 +1.0 +1.6 +2.0 +2.5	16 14 15 16 16 12 15 11 17	9. 2 9. 7 9. 1 9. 9 10. 4 10. 8 13. 2 11. 8 9. 1 11. 7 14. 0 7. 8 7. 5 12. 0	ne. e. s. w. sw. s. w. sw. sw. sw.	48 45 28 36 32 34 38 31 27 34 40 29 30 35	W. W. S. W. W. 6. SW. 8.	27 7 7 4 4 7 26 7 25 29 6 4 29	13 11 12 11 5 5 4 6 4 4 4 3 8	2 8 5 10 12 8 7	16 14 19 18	5. 7 5. 6 5. 8 6. 2 6. 5 6. 6 7. 2 7. 1	TT T . 6 . 5 . 4 . 3 . 3 . 1 . 2 . 2 . 0 4 . 5 . 1 . 6 . 9 . 8	.0	5 6 4 3 2 4 3 2 4 2 2 4 2 1
Buffalo ¹ Canton Oswego Rochester Syracuse ¹ Erie ² Cleveland ¹ Sandusky Toledo ¹ Fort Wayne ¹ Detroit ¹	768 448 335 523 596 714 762 629 628 857 730	10 71 5 5 57 27 5 5 5 5	61 85 69 57 81	1, 001. 4 1, 005. 8 998. 6 996. 3 990. 9 988. 8 993. 6 993. 6	1, 018. 3 1, 018. 3 1, 019. 0 1, 019. 0 1, 019. 3 1, 018. 0 1, 018. 0 1, 018. 0 1, 018. 0 1, 018. 0	+2.7 +2.4 +2.7 +1.7 +1.1 +1.1 +1.1	25. 4 28. 8 29. 7 28. 8 32. 2 33. 8 31. 6 32. 0	-2.4 -2.4 1 9 -1.3 7 -1.3 -2.2 -4.1	60 64 67 64 69 68 67 61 59	25	36 38	3 -16 2 -4 -8 11 12 11 7 8 13	5 5 6 5 5 9 10 10 10 5	16	37 42 34 39 46 36 36 35 32 29 29	22 18 18 20 21 24 26 25 24	74 74 66 74 76 79 78 79 78 74	2. 91 1. 76 2. 76 2. 12 2. 90 3. 23 3. 12 2. 68 3. 25 2. 85	+.3 7 +.2 6 +.6 +.4 +.3 +.1	16 18 15 21 17 17 15 13 16	19. 7 11. 1 12. 3 11. 4 10. 5 13. 2 11. 4 14. 8 11. 1	se. w. sw. sw. sw. ne.	29 27 42 42 40 45 30 38 34	se. w. se. se. sw. w.	29 8 6 16 7 7 7 7 7	5	11 11 12 9 9 16 9 7 13 6	15 13 21 20 12 0 20 12	6.8 6.7 7.8 7.7 6.8 7.4 6.7 8.0	10. 5 8. 3 16. 6 7. 6 12. 6 10. 7 11. 2 7. 1 6. 2 3. 6 3. 9	.0.0TTT0.00.00.00.00.00	0 0 0 0 1 1 0
Upper Lake Region Alpena Escanaba Grand Rapids 3 Lansing 2 Ludington Marquette Eault Sainte Marie 1 Chicago 1 Green Bay Milwaukee 1 Duluth 3	609 612 707 878 637 734 614 673 617 681 1, 133	51 70 5 60 44 11 5 109 33	72 244 90 66 73 52 36 141	992, 9 990, 2 984, 1 987, 5 992, 9 991, 2 992, 6 990, 5	1, 016. 9 1, 016. 3 1, 016. 9 1, 017. 3 1, 016. 6 1, 016. 6 1, 016. 6 1, 015. 9 1, 016. 3 1, 015. 9	-1.4 3 3 -1.4 6	24. 5 30. 8 28. 8 20. 1 32. 3 26. 9 29. 4	-2.6 -3.4 -1.0 5 -2.2 -1.7 7	55 43 60 58	24	37 36		19 19 20 10 18 5 9 9		26 37 26 29 26 31 31 31 32 30 32		80 80 82 80 81 77 82 78 76 76 86	2. 59 1. 50 2. 60 2. 99	4 +.1 +.6 +.3 +.4 +2.0 2	12 14 17 19 18 17 15 16		nw. e. w. n. se. w.	47 29 45 26 32 46 34 30 43 42	6. SW. SW. 8. 80. W. SW. W.	29 29 6 6 6 7 30 6 7	5 4 2 1 5 2 4	8	20 22 19 22 22 23 21 22	7. 5 7. 7 7. 5 8. 5 7. 3 8. 1 7. 9 8. 4	16. 5 20. 4 9. 1 9. 6	5. 7 11. 6 T	0 0 0 0 3 0 0
North Dakota Fargo 1 Bismarck 1 Devils Lake Lemmon, S. Dak Grand Forks 1 Williston Upper Mississippi	940 1, 677 1, 478 2, 602 832 1, 878	11 4	44 38 41	955. 3 962. 1 921. 8 986. 1	1, 017. 3 1, 018. 6 1, 018. 3 1, 018. 0 1, 018. 3 1, 018. 0	‡.6 ‡.7	17. 8 15. 2 15. 8 17. 7 17. 9	-4. 1 -4. 6	50 48 46 42 48 48	23 31 23 10 23 31	29 - 27 - 25 - 26 - 27 - 28 -	-15 -17 -12 -11 -18 -15	9 18 18 18 9 12	11 8 5 6 8 8	36 36 34 35 40 36	16 14 12 14 14 14 12	82 80 91 78	1. 43 1. 32	5 +.2 +.2 +.6	8 11 7 15	11. 1	nw.	40 38 33 28	w. n.	7 11 29	7 4	10	19 19 20	7.4	13. 6 6. 6 13. 4 15. 0 24. 6 14. 7	1. 2 T 6. 0 2. 0 2. 2 T	0
Valley Minneapolis-St. Paul ¹ Springfield, Minn. La Crosse ¹ Madison. Charles City. Davenport ¹ Des Moines ² Dubuque. Burlington ¹ Cairo. Peoria ¹ Springfield, Ill. ³ St. Louis ¹	919 1, 025 714 974 1, 015 606 860 699 702 357 609 636 568	5 70 10 6 5 81 4 5 6	42 29 78 51 50 90 96	978. 3 989. 2 979. 7 979. 0 993. 9 984. 1 990. 2 990. 5 1, 003. 7 994. 2 992. 9	1, 016. 3 1, 016. 9 1, 016. 6 1, 016. 3 1, 017. 3 1, 017. 6 1, 016. 6 1, 016. 6 1, 016. 9 1, 016. 9 1, 016. 9	7 -1.0 3 +.7 7 7 8 4	25. 8 25. 4 27. 9 28. 0 28. 4 32. 6 31. 6 30. 8 34. 0 47. 5 34. 4 38. 1	-1.9 -2.6 -2.3 -2.2 -4.3 -3.2 -1.6 -2.1	48 53 49 58 - 52 65 57 63	23 24 24 23 24 23 24 23 24 24 15 24 14 14	32 34 34 35 40 38 38 42 57 42 46	-2 -2 0 2 0 8 7 5 8 25 10 16 18	9999999989888	19 19 22 22 26 25 24 26 38 27 30 33	30 30 35 35 38 36 36 33 33 35 38	20 20 22 22 22 24 24 24 26 	80 82 82 80 78 78 76 77	2.71 3.00 5.20 5.12 5.92	2 1 +.7	12 14 15 14 18 14 18 15 16 15 18	9. 6 7. 9 13. 1 11. 7 7. 3 13. 7 10. 8 12. 9 13. 6	nw. nw. ne. nw. e. n. nw. ne. w.	18 41 29 34 36	w. sw. nw. nw. nw. nw. nw. nw.	6 24 6 6 7 7 7 7 6 6 6	5 2 5	9	20 18 18 17 20 17 16 21 14 16 18	7.4 7.7 7.1 7.7 7.3 7.4 8.0 6.2 7.1 7.1	11. 1 8. 4 15. 2 11. 4 18. 1 4. 3 12. 8 16. 8 4. 7 . 1 2. 8 6. 3 2. 8	T .5 T .0 T .0 .0 .0 .0 .0	0 0 2 1 3 2 1 3 4 1 5
Missouri Valley Columbia, Mo. ² Kansas City ¹ St. Joseph ² Springfield, Mo. ¹ Topeka Lincoln ² Omaha ¹ Valentine. Sioux City ¹ Huron ¹	784 963 967 1, 324 987 1, 189 1, 108 2, 598 1, 138 1, 301	38 11 5 65 11	76 49	980. 7 967. 8 980. 0 972. 9 976. 0 922. 5 974. 9	1, 015. 9 1, 016. 3 1, 016. 3 1, 015. 9 1, 016. 3 1, 017. 3 1, 017. 3 1, 017. 6 1, 017. 3	3 7 +.7 0 +.7 3	39. 2 36. 6 42. 8 38. 6 31. 5 31. 1 24. 2 38. 4	-4.2 -2.5 -3.5 -3.9 8 -4.0 -6.0 -5.0 -8.1 -3.7	77 68 63 75 67 61 58 55 57	14 14 10 14 31 31 31 23 31 23	49 48 45 53 48 38 38 38 34 36 32	17 15 13 18 15 5 7 1 6 -2	8 8 8 8 8 8 8 27 19 18	32 31 29 33 30 24 24 14 21 16	35 36 37 37 33 33 35 36 30	28	74 76 76 78 79 84 82	3. 78 3. 26 4. 90 2. 24 1. 67 1. 38 1. 07	+.9 +2.8 +1.3 1 +2.8 +1.0 +.3 +.4 1	12 14 13 16 13 10 8	14. 8 10. 3 11. 2 13. 6 10. 3 12. 6	ne. nw. se. nw. n.	35 35 41 27 37 38 31 35	nw. w. nw. nw. nw.	4 7 7 7 4 7 7 5 7		5 4	13 19 17 17 20	5.8 6.3 6.7 7.6 7.0 6.6 7.3	5.6 1.5 7.6 6.2 8.1 15.5 13.4 11.9 11.0 9.5	.0	6 3 3 4 3 2 0
Northern Slepe Billings 1 Havre. Helena 1 Missoula 2 Kalispell Miles City 1 Rapid City 1 Cheyenne 1 Lander Sheridan 1 North Platte 2	3, 570 2, 507 4, 124 3, 205 2, 973 2, 371 3, 259 6, 094	16 11 5 80 48 5 5	67 43 91 56 28 63 40 68 38	926. 5 872. 3 902. 1 911. 6 930. 9 899. 4	1, 015. 9 1, 018. 6 1, 019. 0 1, 019. 0 1, 017. 3 1, 018. 0 1, 017. 6 1, 015. 2 1, 016. 6 1, 015. 6	+2.7 +2.7 +1.7 +1.4 +1.3	32. 4 30. 8 23. 6 22. 2 28. 0 26. 6	-3.9 -5.0 -3.3 -2.1 -9.4 -5.1 -5.8	58 62 56 57 56 56 56	30 9 29 30 31 23	35 - 38 - 41 40 34 - 32 39 39 38	$ \begin{array}{r} 0 \\ -3 \\ -5 \\ -3 \end{array} $	13 7 6 14 14 15 14 28 25 13 27	20 12 16 24 22 13 13 17 14	35 44 46 35 28 42 43 43 38 31	20 13 18 23 21 19 19 18 18 20	66 68 72 68 84 87 68 66 64	. 33 . 63 . 51 1. 24 . 84 . 96 1. 13 1. 98 2. 54 1. 90	+.1 3 +.3 1 +.2 +1.0 +1.4 +.7	10 11 13 13 10 11 11 11 9	9. 0 10. 4 6. 4 6. 1 15. 6 13. 9 5. 2	W. W. NW. NW. NW. SW.	42 38 34 27 52	nw. ne. nw. nw. sw. nw.	23 9 23 23 12 5 23 4 27 7	1 5 3 3 4 1 2 5 4	3 4 8 10 7 4 13 12 13 6 10	26 18 18 21 23 17 17 17	8.1 7.2 7.3 7.4 7.9 7.6 6.9 6.4	6. 5 7. 4 9. 7 10. 4 4. 9 3. 4 12. 7 22. 0 27. 2 17. 2	.0 .0 .0 .0 .0 3.4 .2	0 0 0 0 0 0 0 0 0

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

		vatio			Pressur	10		Te	mpe	rate	re o	f the	e air			dew-		Pre	cipita	tion			Win	đ					ST.		Punor	inder-
Tilesteles and atables	70 MG	above	above			from normal	mean	Bormal	1						range	are of the	umidity		n norm	inch or	veloc-	tion		faxim velocit			days		ess, tenths		lee on gr	with thu
District and station	Barometer above	Thermometer	Anemometer	Station	Sea level	Departure from	Mean max. + min. + 2	Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	st daily	Mean temperature	Mean relative humidity	Total	3	Days with 0.01 i	Average hourly ity	Prevailing direction	Miles per hour	Direction	Date	Clear days	Partly cloudy d	Cloudy days	Average cloudiness,	Total snowfall	Snow, sleet, and lee on ground at end of month	Number of days
Middle Slope	Ft.	Ft.	Ft.	Mbs.	Mbs.	Mbs.	°F.	°F.	°F.		°F	• F.		°F.	°F.	°F	. %	In. 3, 03	In. +1.5		Mi								0-10 6, 3	In.	In.	
Penver Pueblo Pu	5, 292 4, 690 1, 392 2, 509 1, 358 1, 214 674	80	SI 286	852. 965. 925. 965. 970.	1 1, 012.5 4 1, 012.5 8 1, 016.6 2 1, 014.5 8 1, 015.6 9 1, 014.5	+.3	38. 2 34. 6 38. 2 41. 0	-2.6 -6.4 -4.6 -4.1	72 63 66 70 77	16 13 31 17 31 31 31	53 43 50 51 59	6 9 13 14 19 21 24	28 22 8 29 29 29 8	24 23 27 26 30 36 36	34 52 31 39 33 37 38	20	62 58 75 76 72 71 72	2.75 1.36 3.55 1.41 4.58 3.82 3.77	+.5 +2.8 +1.8	11 10 12 7 9 7 8	8. 8 10. 6 9. 6 18. 9 16. 6 11. 2 13. 5	s. nw. nw. n. s. s. s.	30 40 30 50 44 29 38	sw. nw. nw.	5 13 7 26 28 28 28		9 9 11 8	15	6.6	32. 5 11. 5 23. 5 5. 4 2. 2 T	1 .0	
Southern Slope bilene 1 marillo 1 el Rio	1, 738 3, 676 960 3, 566	63	41 42 71 88	952. 885. 979. 889.	3 1, 013. 2 9 1, 012 9 3 1, 012. 2 6 1, 011. 2	-1.4 -1.3 -2.0 -1.3	63. 2	-0.5 -1.8 -1.1 3 3	87 76	26 17 26 24	66 60 74 67	24 13 35 19	29 29 29 29	40 28 52 35	46 47 40 49	28	58 65 63 60 44	0, 36 . 88 T . 45 . 11			11. 5 17. 4 10. 2 9. 9		29 48 34 38	s. sw. nw. ne.	14 3 19 18	10 14 8 15	10 7 9 12		5.0 5.5 4.9 5.8 4.0	.0 T .0	.0	
Southern Plateau Paso 1 buquerque 1 agstaff heenix 2 ucson 1	3, 778 5, 314 6, 907 1, 107 2, 555	6	88 48 51 47 30	834. 787. 974. 924.	5 1, 010. 8 4 1, 011. 2 7 1, 015. 6 5 1, 013. 2 5 1, 012. 8	+2.7 +.3	44. 4 33. 8 58. 0 56. 4	-1.8 -1.8 -2.7 -1.3	80 71 61	31	68 58 47 72 71 76	25 23 0 37 31	21 22	40 31 21 44 42 50	43 38 44 39 40	26 22 18 36 30 32	46 36 45 57 56 44	0,56 .15 .49 2.00 .95 1.01	2 .0 +.3	5 3	7.0	sw. n. e. nw.	30	w.	20 14	10 13 16 18	9 12 10 8 3	5 9 8	4.2 4.1 5.2 4.8 4.6 4.3 2.2	15. 7	1.1	
umandependence	3. 967	69	26	1, 009.	1, 013. 5	4	63. 2 37. 6	9		31	76	44	1	50	41	32	36	1, 47	1	4		n.	27	nw.	21	24	6				.0	
on one Prateau onopah innemucca odena dt Lake City '	4, 227 6, 090 4, 339 5, 473 4, 227 4, 602	5	46	813.8	2 1, 019. 0 3 1, 016. 9 3 1, 019. 3 0 1, 014. 6 0 1, 017. 3 5 1, 012. 5	+3.0	39. 6 36. 9 36. 4 35. 4	4 -3.6 -3.6	70	31 10 30 10 30 11	56 48 50 48 45 52	5 7 11 0 16 14	14 14 14 15 16 28	23 26 23 23 28 29	50 34 45 41 33 38	22 23 22 26 20	58 63 58	1.13	+.3 6 +.3 +1.9	3 6 7 7 13	8. 2 9. 8 10. 1	nw. nw. sw. w. nw. nw.	31 38 35 30	sw. sw. nw.	3 4 25 19 24	12 15 12 15 4 6	14 9 12 8 8 17	5 7 -	4.9 5.1 4.7 7.6 6.0	3.6 4.2 5.7 6.7 30.8 6.9	.0	:
Northern Plateau aker *	3, 471 2, 739 4, 478	36 8 5 27	54 49 31 42 65 67	921. 8 861. 8 948. 9	1,020.3 1,019.3 1,017.3 1,019.0 1,020.3 1,019.6	+8.4 +2.4 +1.0 +2.7 +3.7	38, 4 35, 0 38, 4 33, 7 37, 0 43, 8 42, 2	-2.4 -2.6 -3.0 -2.2 -2.7 -2.3 -1.9	63 65 58 64		46 50 44 47 53 54	13 13 12	14 14 14	24 27 23 27 35 30	38 36 33 36 29 36	24 26 24 26	66 64 68 64	. 52	8 -1.2	6	6.6 11.7 12.0 7.8 7.1 6.6	n. nw. sw. sw. sw.	23 37 38 40 28 30	nw. s. w. w.	13 12 4 23 9	6	12	13 14 18 16 16	6.5 6.2 6.2 7.1 6.8 5.9 6.6	4.0 T 6.3	.0	
North Pacific Coast Region							45, 5	-0.1									- 1	3, 08	-1.0						-	1			6,7			
orth Head	211 125 194 86 1, 329 154 510	5 90 172 9 29 68 45	321 201 53 58 106	1, 017. 3 1, 014. 6 1, 018. 6 973. 9 1, 017. 3	1,022.7 1,021.7 1,021.3 1,021.7 1,021.7 1,022.7 1,022.7	+6.1 +5.4 +7.1 +6.1	40, 21	-1.0 5 +.9 8 8	64 63 63 55 74 69 72	29 8 8 28 29 29 29	49 53 52 48 59 55 58	32 30 34 21	13 12 14 10 14 13 14	40 39 37 40 33 40 36	19 24 24 16 44 28 40	32	68 74 62	3. 88 - 1. 22 - 1. 77 - 8. 57 1. 57 2. 57 - 1. 98 -	1:1	10 11 15 6 13	9. 6 9. 3 15. 2	SW.	38 35	n. s. ne.	12 22 12 22 21 11 13	9 4 9 7	12 7 8	15 10 20 14 14	7.6 7.0 5.6 7.6 6.1 6.4 6.6	T .2 T T .0 .0 .0	.0	
Iiddle Pacific Ceast Region reka dding 1 gramento n Francisco 2	60 722 66 155	72 20 92	88	1,021.6	1, 022. 7 1, 018. 6 1, 018. 0 1, 019. 0	+4.7	53, 7 47. 7 55. 8		67	28	54 66 67 63	35	14 14 14 14	42 45 44	25 31 35 22		62	1, 50 - 2, 25 - 1, 48 - 1, 42 - 83 -	-2.4	11	8.9	n. nw.	32 33 32	n. nw.	13 19 13	10 9 13	9 8	12 14 3	5.0	.0	.0	
outh Pacific Coast Region	200	110	104	1,010.0	1,010.0	72.0	57.7	+1.4	10	-0				10	-	1		1, 15		0	0.1	w.	20	sw.		10			4.2			
sno 1	327 338 87	5 223 20	35 250 55	1, 605. 8 1, 004. 4 1, 013. 2	1, 017. 3 1, 015 9 1, 015. 9	+1.0 7 7	54. 8 59. 6 58. 7	+.4 +2.1 +1.7	80 82 82	9	68 69 69	29 4! 44	14 14 22	41 50 48	35 26 34	36 38 44	56 52 62	. 17 2. 47 . 80	3	1 5 6	5.9 7.2 6.5	nw. w. w.	25	nw. w. sw.	13	17 19 14	6 3 10	8 4 9 4 7 4	4.3 4.0 4.3	.0	.0	0
West Indies	82	10	54			*****																										
Panama Canal boa Heightsstobal	118 27	6 47	92 97		\$1,010.8 \$1,011.9		81. 7 81. 2	+.5	94 88	7 19	91	69 75	15 20	72 78	24	71 3	71	T .18 -	7	0	9.3	nw.	24 25	n.	1	16	13	2 3 3	3.8	.0	.0	0
Alaska		*	"		1,011.0									10	10	"	"	. 10	1.0			Me.		ne.								
chorage	132 455 80 22 28 32 75 20 331 1,718	6 4 6 25 7 5 60 8 5 5	62 21 56 31 32 90 31	998. 6 1, 011. 9 1, 018. 0 1, 016. 9 1, 021. 7 1, 015. 9 1, 018. 3 1, 004. 1	1, 012, 9 1, 016, 6 1, 014, 9 1, 018, 6 1, 018, 3 1, 022, 7 1, 016, 6 1, 019, 0 1, 017, 6		0. 1	-3.1 -2.8 -2.3 -2.4 -2.8 -1.9	45 42 44 35 42 33 50 31 40 46	26 14 17 25 15 25 8 1 17	31 - 19 - 38 15 - 18 - 10 - 43 6 - 19 - 20 -	19 40 15 26 28 16 25 35 32 45	30 30 4 28 29 10 26 31 –	10 -6 28 -2 1 -1 33 -11 -2 -3	44 28 31 42 31 20 30	4 25 4 10 4 30 -3 7	82 87 89 76 11	5. 75 1. 19 1. 45 . 47 8. 69	+. 2 +. 4 +. 6 6	14 17 18 19 12 1 24 13 14	5.8 10.8 8.5 9.7 8.0 8.3	n. w. e. ne. nw. n. se.	28 39 30 26 48 20	s. w. s. ne. s. ne. e.	8 24 9 15 16 5 8	9 2 5 6 11 2 6 5 5	7 3 7	15 5 22 8 26 8 19 7 19 7 14 6 24 8 21 7 21 7 20 7	5. 9 1 6. 2 1 6. 7 7. 1 7. 3 1 7. 3 1 7. 4 7. 5 1	5. 2 4. 1 4. 1 9. 5 3. 2 1 4. 5 3. 4 5. 8 1 4. 4 4. 4	3.8 22.5 T 24.1 18.3 18.0 T 12.4 10.0 8.7	000000000000000000000000000000000000000
Hawaiian Islands	38				1, 014, 2		72.4		80			62		68				. 45			8.7			sw.				16 6				

Data are airport records.

Barometric data (adjusted to old city elevation) and hygrometric data from airport; otherwise city office records.

Observations taken bihourly.

Observations taken bihourly.

Note,—Except as indicated by notes 1, 2, 4, and 5 data in table are city office records.

SEVERE LOCAL STORMS, MARCH 1944

(Compiled by Mary O. Souder)

[The table herewith contains such data as has been received concerning severe local storms that occurred during the month. A revised list of ternadoes will appear in the United States Meteorological Yearbook]

Place	Date	Time	Width of path, yards	Loss of life	Value of property destroyed	Character of storm	Remarks
Hugo, Okla	3	7:30 p. m	100	0	\$100,000	Tornado	\$35,000 damage to the Goodland Indian School buildings 100 homes and business houses slightly damaged or totally demolished. Unestimated damage to shade trees and timber
Tampa, Kans., vicinity	3	6 p. m	50	0	1,000	:do	Schoolhouse moved 11 feet from its foundation; farm property damaged; a man injured; path 6 miles long.
Toronto, Kans., vicinity of.	3	7:45 p. m	880		- 5,000	Wind	Windows and buildings and farm property damaged; path 6 miles long.
Westphalia, Kans	3	8 p. m	440		3,000	do	Damage to farm property; path 2 miles long.
Flatwoods, Va., and vi- cinity.	4	4:45 p. m		0	150, 000	Tornado	9 houses destroyed; about 20 barns damaged or wrecked; 30 persons injured. Property damage, \$100,000; loss in crops \$50,000.
Abingdon Va	4	6:45 p. m		0	500,000	do	About 50 buildings unroofed; 6 persons injured.
Abingdon, Va Bedford County, Va	4	8:15 p. m.			1,000	Electrical and wind	Interior of house damaged.
Delaware County, Ind	4	0.10 p			2, 500	Glaze	Wires down.
Jackson, Ohio, vicinity of.	4			0	3,000	Tornado	Property damaged.
South Dakota	5-7	*****************				Wind and snow	Snow flurries throughout the State with accompanying low temperatures were especially hard on stock which requires heavy feeding.
Denmark to Norway, S. C.	6	8 p. m	500	0	10,000	Tornado	Buildings damaged; many trees uprooted; path 25 miles long
Milwaukee, Wis	6-7	*******	********		10, 000	Wind	There were 28 chimney fires; one house burned to the ground and another considerably damaged.
Oswego County, N. Y	8-0	***************************************	*********		**********	Heavy snow	Through the use of snow plows, traffic was maintained or arterial highways, but many secondary roads were blocked School buses unable to carry rural students; some school closed.
South Dakota, northwest- ern portion.	10-31	******************				Snow	Snow blocked roads and made it difficult to reach rough stock feed piles and some stock suffered as a consequence. Traffic delayed and canceled: some schools closed.
Agricola, Fla., vicinity of.	11	9:30 p. m. eastern war time.	150	0	8,000	Tornado	Large barn totally destroyed and several houses damaged; 10 orange trees broken off or uproted and estimation of 50 boxes of oranges blown from trees; path 1 mile long.
Welcome, Fla	11	10 p. m., eastern war time.	150	0	5, 000	do	2 dwellings unroofed; about 200 orange trees uprooted with other damaged and about 1,000 boxes of fruit estimated to have blown off trees. Number of small buildings damaged; path 3 miles long.
Indiana, northeastern por- tion of the State.	14				5,000	Glaze	Wires and trees damaged.
Hillsboro, Peebles, Cir- cleville, and Jackson- ville, Ohio, and vicini-	19		*********		**********	do	Freezing rain coating wires and trees with ice, ranging upward to half an inch in thickness, damaged communication sys- tems and transmission lines.
ties. Memphis, southern and eastern portions, and Lynnville, Columbia, Jackson, Trenton, and Medina, Tenn.	26-27	***************************************	******	5	2, 000, 000	Hail	Damage to roofs, windows, greenhouses, automobiles, air planes, and utilities service lines; 7 persons injured, 1 seriously in Lynnville, house demolished, killing 5 persons, debri scattered over a wide area; Columbia, 2 large buildings badly damaged; Jackson, many houses unroofed and chiancy blown down; Trenton and Medina, houses unroofed and several persons injured and left homeless.
New York, western por- tion of State.	29				*********	High winds	Damage to buildings and trees, amount unestimated.

SOLAR RADIATION AND SUNSPOT DATA FOR MARCH 1944

[Solar Radiation Investigations Section, I. F. HAND in charge]

NOTE.—Tables 1 and 2 of SOLAR RADIATION OBSERVATIONS section were not received in time to include in this REVIEW but will appear in the next issue.—Editor.

[Communicated by Capt. J. F. Hellweg, U. S. N. (Ret.), Superintendent, U. S. Naval Observatory.] All measurements and spot counts were made at the Naval Observatory from plates taken at the observatories indicated. Difference in longitude is measured from the central meridian, positive toward the west. Latitude is positive toward the north. Areas are corrected for foreshortening and expressed in millionths of Sun's hemisphere. For each day, under longitude, latitude, area of spot or group, and spot count, are included assumed longitude of center of the disk, assumed latitude of center

					Heliog	raphic					
Date	ate a	rn ind- rd me	Mount Wilson group No.	Dif- ier- ence in longi- tude	Lon- gi- tude	Lat- itude	Dis- tance from een- ter of disk	Area of spot or group	Spot	Plate qual- ity	Observatory
1944 Mar. 1	A 10	35	(*)	+35	992 (257)	-4 (-7)	35	24	1	G	U. S. Naval
Mar. 2	10	48	******		Nos	pots		24	1	G	Do.
Mar. 3	11	18	(*)	+25 +27	256 258	+1 +1	27 29	12 6	1 1	F	Do.
				1	(231)	(-7)		18	2		
Mar. 5 Mar. 6	15 10	34 42			Nos					F	Do. Do.
Mar. 7 Mar. 8	10	22 36		*****	Nos	pots		******	*****	F	Mt. Wilson. U. S. Naval.
Mar. 9 Mar. 10	10	35		******	Nos	pots				F	Do. Do.
Mar. 11	10	19		*****	Nos	pots				G	Do.
Mar. 13	10	41	******	*****	Nos	pots			*****	G	Do.
Mar. 14	10	46			Nos	pots			*****	F	Do.
Mar. 15	10	34	7635	-87	16	-26	58	6	1	G	Do.
					(73)	(-7)		6	1		
Mar. 16	10	40	7635	-47	13	-27	40	6	1	G	U. S. Naval
			7635	-45	15	-25	47	6	1		
N. 17	11	11	2025	-33	(60)	(-7) -27	***	97	2	F	Do.
Mar. 17	11	11	7635 7635	-31	15	-20	39	48	5	-	Do.
					(46)	(-7)		145	16		
Mar. 18	11	10	7636 7636 7635 7635	-88 -88 -20 -17	305 305 13 16	-20 -24 -27 -26	88 88 28 25	121 485 121 48	1 14 7	F	Do.
					(33)	(-7)		775	24		
Mar. 19†.	12	0	7636 7635	-83 -8	296 11	$^{-23}_{-27}$	82 22	558 85			Mt. Wilson,
					(19)	(-7)		11643			
Mar. 20†.	13	15	7636 7635	-58 +6	308 12	-24 -29	59 23	485 73		****	Do.
					(6)	(-7)		††558			
Mar 21	12	22	7636 7636 7635 7635	-45 -45 +17 +23	308 308 10 16	-24 -20 -28 -27	47 46 27 30	364 61 48 24	9 1 5 2	F	U. S. Naval.
					(353)	(-7)		497	17		
Mar. 22	12	22	7636 7636 7637 7637 7635 7635	-32 -32 -20 -17 +30 +35	308 308 320 323 10 15	-24 -21 +8 +6 -27 -28	86 34 25 22 35 39	291 61 12 24 12 24	6 1 2 4 1 1 1	G	Do.
					(340)	(-7)		424	15		Do.
Mar. 23†.	10	0	7636 7637 7635	-19 -6 +49	300 322 17	-24 +6 -28	25 15 51	291 12 6			Mt. Wilson.

11309

(328) (-7)

POSITIONS, AREAS, AND COUNTS OF SUNSPOTS FOR POSITIONS, AREAS, AND COUNTS OF SUNSPOTS FOR MARCH 1944—Continued

					Heliog	raphic					o di perti
Date	sta a	nd- rd ne	Mount Wilson group No.	Dif- fer- ence in longi- tude	Lon- gi- tude	Lat- itude	Dis- tance from cen- ter of disk	Area of spot or group	Spot	Plate qual- ity	Observatory
1944 Mar. 24	A 10	m 47	7638 7636 7636 7637	-70 -6 -6 +9	244 308 308 323	-7 -20 -23 +6	70 15 17 16	12 61 291 36	3 2 9 8	G	U. S. Naval
					(314)	(-7)		400	22		
Mar. 25	10	39	7636 7636	+5 +7	306 308	-21 -24	15 18	48 267	10	G	Do.
					(301)	(-7)		315	11		
Mar. 26	11	21	7638 7636 7636 7636	-45 +18 +21 +21	243 306 309 309	-7 -24 -20 -24	45 25 25 27	12 12 24 267	3 3 1 5	G	Do.
					(288)	(-7)		315	12		
Mar. 27	14	2	7636	+36	309	-25	39	194	3	P	U. S. Naval.
					(273)	(-7)		194	3		
Mar. 28	10	28	7636	+48	310	-25	50	121	5	F	Do.
					(262)	(-7)		121	5		
Mar. 29†_	10	40	7636	+62	310	-25	62	12			Mt. Wilson.
					(248)	(-7)		††12			
Mar. 30	11	56			Nos	oots.				F	U. S. Naval.
Mar. 31	11	3			No s	pots.				G	Do.

Mean daily area for 25 days, exclusive of areas marked "††"=130

*Not numbered.
†Data from Mount Wilson chart.
VG=very good; G=good; F=fair; P=poor.
†Areas from drawings furnished by the Mount Wilson Observatory. Including these areas, the mean daily area for 29 days=165.

PROVISIONAL RELATIVE SUNSPOT NUMBERS FOR FEBRUARY 1944

[Based on observations at Zurich except as indicated by an asterisk. Data furnished through the courtesy of Prof. W. Brunner, Swiss Federal Observatory, Zurich, Switzerland]

February 1944	Relative numbers	February 1944	Relative numbers	February 1944	Relative numbers
1	.7	11	0	21	*(
2	*7	12	0	22	0
3					
1	0	14	0	24	
5	*0	15	*0	25	(
6	0	16	*0	26	0
7	0	17	0	27	0
3	0	18	0	28	0
9	0	19	0	29	
10	0	20	*0		

Mean, 28 days=0.5

*Observed at Arosa or Locarno.

HOURLY PERCENTAGES 100 Lines show amount of excess or deficiency Unshaded portions show deficiency Shaded portions show excess (+

Chart I. Departure (°F.) of the Mean Temperature from the Normal, and Wind Roses for Selected Stations, March 1944

Chart II. Tracks of Centers of Anticyclones, March 1944. (Inset) Departure of Monthly Mean Pressure from Normal

Circle indicates position of anticyclone at 7:39 a. m. (75th meridian time), with barometric reading. Dot indicates position of anticyclone at 7:39 p. m. (75th meridian time)

Describer Month

Circle indicates position of anticyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of anticyclone at 7:30 p. m. (75th meridian time)

Chart III. Tracks of Centers of Cyclones, March 1944. (Inset) Change in Mean Pressure from Preceding Month

Circle indicates position of cyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of cyclone at 7:30 p. m. (75th meridian time).

60 to 70 percen 50 to 60 percent 40 to 50 percen

Chart IV. Percentage of Clear Sky Between Sunrise and Sunset, March 1944

(Inset) Departure of Precipitation from Normal Chart V Total Precipitation, Inches. March 1944.

Scale of Shades I to 2 inches # 2 to 4 inches 4 to 6 inches 0 to I inch

(Inset) Departure of Precipitation from Normal Total Precipitation, Inches, March 1944. Chart V.

Chart VI. Isobars at Sea Level and Isotherms at Surface; Prevailing Winds, March 1944

(Inset) Depth of Snow on the Ground at 7:30 p. m., Monday, March 27, 1944 Total Snowfall, Inches. March 1944.

Chart VII.

TRACE

Chart VII. Total Snowfall, Inches, March 1944. (Inset) Depth of Snow on the Ground at 7:30 p. m., Monday, March 27, 1944

[. Isobars (mb) for 1,524 Meters (5,000 ft.), and Isotherms (°C.), and Resultant Winds for 1,500 Meters (m. s. l.) February 1944 Isobars and Isotherms based on radiosonde observations at 11:00 p. m. (E. S. T.) and winds based on pilot-balloon observations at 5:00 a. m. (E. S. T.). - 850 Chart VIII.

Isobars and Isotherms based on radiosonde observations at 11:00 p. m. (E. S. T.) and winds based on pilot-balloon observations at 5:00 a. m. (E. S. T.). Chart IX. Isobars (mb), Isotherms (°C.), and Resultant Winds for 3,000 Meters (m. s. l.) February 1944

Chart X. Isobars (mb), Isotherms (°C.), and Resultant Winds for 5,000 Meters (m. s. l.) February 1944

Chart X. Isobars (mb), Isotherms (°C.), and Resultant Winds for 5,000 Meters (m. s.l.) February 1944
Isobars and Isotherms based on radiosonde observations at 11:00 p. m. (E. S. T.) and winds based on pilot-balloon observations at 5:00 p. m. (E. S. T.).

Chart XI. Isobars (mb), Isotherms (°C.), and Resultant Winds for 10,000 Meters (m. s. l.) February 1944 Isobars and Isotherm's based on radiosonde observations at 11:00 p. m. (E. S. T.) and winds based on pilot-balloon observations at 5:00 p. m. (E. S. T.).

