# Time Series Data Analysis and Forecasting

Muhammad Rasyid Ridha



9 November 2020

### Agenda

- Konsep time series dan forecasting
  - Pengertian time series dan forecasting
  - Tujuan forecasting
  - Contoh data time series
  - Pola data time series
- Metode forecasting
  - Tahapan membuat model forecasting
  - Metode tradisional (statistika)
  - Machine learning
  - Kelemahan forecasting
- Use case
  - Menggunakan data dari Google Trend
- Tanya jawab

# Konsep Time Series dan Forecasting

## Pengertian Time Series dan Forecasting

#### Time series

 Data yang berurutan berdasarkan waktu yang biasanya dapat diperoleh dalam interval waktu yang sama (jam, harian, mingguan, bulanan dan sebagainya)

#### Forecasting

 Proses membuat model berdasarkan nilai di masa lampau untuk memprediksi nilai masa depan

## Tujuan Forecasting

- Strategi dan Perencanaan Bisnis
- Deteksi dan Mitigasi Bencana
- Supply Chain
- Membuat data sintetis sebagai kontrol untuk kuasi-eksperimen

#### **Contoh Data Time Series**

- Data perekonomian
- Data permintaan (demand)
- Data penjualan (supply)
- Data terkait alam (curah hujan, suhu)



#### Indeks harga saham gabungan (IHSG)





#### **Pola Data Time Series**

- Tren
- Musiman
- Siklik
- Point change





#### Pola Data Time Series (Konsep Stasioneritas)

- Stasioner → rata-rata dan varians data tidak tergantung waktu
- Tren dan musiman → tidak stasioner
- Siklik → bisa stasioner,
  bisa tidak stasioner
- (d),(h),(i) musiman
- (a),(c),(e),(f),(i) tren
- (b) dan (g) stasioner



# Metode Forecasting

## Tahapan Pengembangan Model Forecasting



#### Time series cross validation



#### Time series error metrics

- RMSE
- MAE
- MAPE
- sMAPE
- MASE
- RMSSE

## Metode Tradisional (Statistika)

- Model forecasting sederhana
  - Metode rata-rata
  - Metode Naive
  - Metode Naive musiman
- Exponential Smoothing (ETS)
- ARIMA

### Model forecasting sederhana

Metode rata-rata

$$\hat{y}_{T+h|T}=ar{y}=(y_1+\cdots+y_T)/T$$

Metode Naive

$$\hat{y}_{T+h|T} = y_T$$

Metode Naive musiman

$$\hat{y}_{T+h|T} = y_{T+h-m(k+1)}$$

- Model paling sederhana seperti ini bisa dicoba pertama kali sebagai benchmark awal
- Untuk kasus tertentu, model yang lebih kompleks bisa lebih buruk dibandingkan model di atas

## **Exponential Smoothing**

| Komponen Tren        | Komponen Musiman |              |                    |  |  |
|----------------------|------------------|--------------|--------------------|--|--|
|                      | N (None)         | A (Additive) | M (Multiplicative) |  |  |
| N (None)             | (N,N)            | (N,A)        | (N,M)              |  |  |
| A (Additive)         | (A,N)            | (A,A)        | (A,M)              |  |  |
| Ad (Additive damped) | (Ad,N)           | (Ad,A)       | (Ad,M)             |  |  |

Parameter smoothing: alpha (level), beta (tren), gamma (musiman), phi (damped)

| Notasi | Metode                       | Parameter |      |       |     |                 |  |
|--------|------------------------------|-----------|------|-------|-----|-----------------|--|
|        |                              | Alpha     | Beta | Gamma | Phi | Seasonality (m) |  |
| (N,N)  | Simple exponential smoothing | ✓         |      |       |     |                 |  |
| (A,N)  | Holt's linear                | ✓         | ✓    |       |     |                 |  |
| (Ad,N) | Additive damped trend        | ✓         | ✓    |       | ✓   |                 |  |
| (A,A)  | Additive Holt-Winters'       | ✓         | ✓    | ✓     |     | ✓               |  |
| (A,M)  | Multiplicative Holt-Winters' | ✓         | ✓    | 1     |     | ✓               |  |
| (Ad,M) | Holt-Winters' damped         | ✓         | ✓    | 1     | ✓   | ✓               |  |

## Damped trend vs trend



#### **ARIMA**

#### • AR(p) autoregressive model

- Regresi menggunakan data masa lalunya sendiri sebagai input
- Ordo p ditentukan berdasarkan plot PACF (partial autocorrelation function)

#### I(d) integrated

- Apabila data deret waktu tidak stasioner (ada tren dan musiman) perlu dilakukan differencing (detrending) hingga data deret waktu menjadi stasioner
- o Ordo d ditentukan berdasarkan berapa kali differencing dilakukan

#### • MA(q) moving-average model

- $\circ \quad y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$
- o Regresi menggunakan eror di masa lampau sebagai input
- Ordo q ditentukan berdasarkan plot ACF (autocorrelation function)
- Model musiman memiliki ordo tambahan
  - $\circ$  ARIMA(p, d, q)(P, D, Q)[m]

## **Machine Learning**

- Model pohon
  - XGBoost
  - LightGBM
- Deep learning
  - o RNN
  - LSTM
  - o GRU

## Model Pohon (XGBoost dan LightGBM)



- Model nonlinear
- Gabungan dari banyak model decision tree (weak learner)
- Menggunakan algorithm boosting (model dilatih secara iteratif)
- Cepat dan lebih akurat dibandingkan satu model decision tree
- Flexibel (bisa menggunakan variabel kategorik sebagai input)
- Model pohon lainnya (Random Forest, Extra Trees, Catboost)

## **Deep Learning**

#### **Recurrent Neural Network (RNN)**





#### Long Short Term Memory (LSTM)



#### Gated Recurrent Unit (GRU)



## Kelemahan Forecasting

- Hasil prediksi tidak akurat karena tidak ada pola sama sekali dalam deret waktu seperti musiman, tren maupun siklik
- Hasil prediksi tidak akurat karena hanya tergantung dari data masa lampau maupun data tertentu saja yang dimasukkan ke dalam model
- Akurasi prediksi yang didapatkan tidak stabil dari waktu ke waktu karena adanya faktor eksternal yang tidak ditangkap di dalam model (faktor musiman yang sifatnya tidak tentu)



# Use Case

#### **Use Case**

- Mengambil data dari Google Trend <a href="https://trends.google.co.id/trends/?geo=ID">https://trends.google.co.id/trends/?geo=ID</a>
- Menggunakan R untuk membuat model
  - Memisahkan data menjadi dua bagian yaitu train dan test
  - Membuat model Naive menggunakan fungsi naive
  - Membuat model ARIMA menggunakan fungsi auto.arima
  - Membuat model ETS menggunakan fungsi ets

## Terima Kasih

Muhammad Rasyid Ridha rasyidstat@gmail.com

linkedin.com/in/rasyidridha

rasyidridha.com