Zlepki nad triangulacijami, DN 2

Andrej Kolar-Požun

March 13, 2023

1 Prva naloga

Naloga 2 [7. 3. - 14. 3.].

Naj bosta Å in $\mathbb B$ afina prostora s pripadajočima vektorskima prostoroma $\mathbb V$ in $\mathbb U$. Dokažite, da je vsaka afina preslikava $\varphi: \mathbb A \to \mathbb B$ oblike $\varphi(\boldsymbol p) = \boldsymbol b + \psi(\boldsymbol p - \boldsymbol a)$, kjer je $\boldsymbol a$ točka iz $\mathbb A$, $\boldsymbol b$ točka iz $\mathbb B$ in $\psi: \mathbb V \to \mathbb U$ linearna preslikava.

Dano imamo afino preslikavo φ . Za **a** vzamemo poljubno točko iz \mathbb{A} (če je ta prazen je trditev trivialno res). Za **b** vzamemo $\mathbf{b} = \varphi(\mathbf{a})$

Označimo $\mathbf{v} = \mathbf{p} - \mathbf{a}$. Po aksiomih afinih prostorov je to dobro definiran vektor za vsak \mathbf{p} . Seveda velja tudi $\mathbf{p} = \mathbf{a} + \mathbf{v}$.

Zveza iz naloge se v novih oznakah in definicijah glasi:

$$\varphi(\mathbf{a} + \mathbf{v}) = \varphi(\mathbf{a}) + \psi(\mathbf{v}),\tag{1}$$

kjer zaenkrat še ne vemo, ali je $\varphi(\mathbf{v})$ linearna. Vemo pa, da je to dobro definirana funkcija, ki slika iz \mathbb{V} v \mathbb{U} :

$$\psi(\mathbf{v}) = \varphi(\mathbf{a} + \mathbf{v}) - \varphi(\mathbf{a}),\tag{2}$$

saj velja $\mathbf{v} \in \mathbb{V}$ in $\varphi(\mathbf{a} + \mathbf{v}) - \varphi(\mathbf{a}) \in \mathbb{U}$.

Preverimo, da je $\psi(\mathbf{v})$ linearna:

Najprej moramo pokazati, da je $\psi(c\mathbf{v}) = c\psi(\mathbf{v})$ za vsak skalar c:

$$\psi(c\mathbf{v}) = \varphi(\mathbf{a} + c\mathbf{v}) - \varphi(\mathbf{a}) = \tag{3}$$

$$= (1 - c)\varphi(\mathbf{a}) + c\varphi(\mathbf{a} + \mathbf{v}) - \varphi(\mathbf{a}) = c(\varphi(\mathbf{a} + \mathbf{v}) - \varphi(\mathbf{a})) = c\psi(\mathbf{v}), \tag{4}$$

kjer smo pri prehodu v drugo vrstico $\mathbf{a} + c\mathbf{v}$ zapisali kot afino kombinacijo $(1-c)\mathbf{a} + c(\mathbf{a} + \mathbf{v})$ in upoštevali, da afine preslikave ohranjajo afine kombinacije: $\varphi((1-c)\mathbf{a} + c(\mathbf{a} + \mathbf{v})) = (1-c)\varphi(\mathbf{a}) + c\varphi(\mathbf{a} + \mathbf{v}).$

Pokazati moramo še, da za $\mathbf{u}, \mathbf{v} \in \mathbb{V}$ velja $\psi(\mathbf{u} + \mathbf{v}) = \psi(\mathbf{u}) + \psi(\mathbf{v})$:

$$\psi(\mathbf{u} + \mathbf{v}) = \varphi(\mathbf{a} + \mathbf{u} + \mathbf{v}) - \varphi(\mathbf{a}) = \tag{5}$$

$$=\varphi(\mathbf{a} + \mathbf{u}) + \varphi(\mathbf{a} + \mathbf{v}) - 2\varphi(\mathbf{a}) = \psi(\mathbf{u}) + \psi(\mathbf{v}), \tag{6}$$

kjer smo spet v prehodu v drugo vrstico $\mathbf{a} + \mathbf{u} + \mathbf{v}$ zapisali kot afino kombinacijo $(\mathbf{a} + \mathbf{u}) + (\mathbf{a} + \mathbf{v}) - \mathbf{a}$ in spet uporabili lastnost afine preslikave φ .

S tem smo pokazali, da je $\psi(\mathbf{v})$ linearna preslikava. Če se vrnemo na oznako $\mathbf{p}=\mathbf{a}+\mathbf{v}$ smo pokazali, da velja

$$\varphi(\mathbf{p}) = \varphi(\mathbf{a}) + \psi(\mathbf{p} - \mathbf{a}),\tag{7}$$

kjer je ψ linearna. Ker to velja za vsak ${\bf p}$ in vsako afino preslikavo φ je trditev s tem dokazana.