点集拓扑作业 (11)

Problem 1 证明: 两个紧集的并是紧集, 在 Hausdorff 空间中, 两个紧集的交是紧集.

设 X,Y 是两个紧集,对任意 $X \cup Y$ 的开覆盖 $\{A_{\alpha} | \alpha \in J\}$,则 $\{A_{\alpha} \cap X | \alpha \in J\}$ 是 X 的开覆盖,所以存在有限子覆盖 $\{A_k \cap X | k = 1, \cdots, m\}$, $\bigcup_{k=1}^m (A_k \cap X) = X$. 同理可得, $\bigcup_{k=m+1}^n (A_k \cap Y) = Y$. 因此我们有 $\bigcup_{k=1}^n A_k \supseteq \bigcup_{k=1}^m (A_k \cap X) \cup \bigcup_{k=m+1}^n (A_k \cap Y) = X \cup Y$. 于是 $\bigcup_{k=1}^n A_k = X \cup Y$. 于是 $X \cup Y$ 是紧集.

对于 Hausdorff 空间上的紧子集 X,Y, 则 X,Y 是闭集, 所以 $X\cap Y$ 是闭集. 紧集的闭子集仍然是 紧集, 所以 $X\cap Y$ 是紧集.

Problem 2 设 X 关于拓扑 $\mathcal{T}, \mathcal{T}'$ 都是紧的 Hausdorff 空间. 证明:要么 $\mathcal{T} = \mathcal{T}'$,要么二者不可比较.

只需证明如果 $\mathcal{T} \subseteq \mathcal{T}'$,则 $\mathcal{T} = \mathcal{T}'$. 对于恒等映射 $id: (X,\mathcal{T}') \to (X,\mathcal{T}), id(x) = x, \forall x \in X$,对任意 (X,\mathcal{T}) 中的开集 $C,id^{-1}(C) = C \in \mathcal{T}'$,于是 id 是连续双射,又 (X,\mathcal{T}) 是 Hausdorff 空间, (X,\mathcal{T}') 是紧空间,所以 id 是同胚,进而 $\forall D \in \mathcal{T}', id(D) = D$ 是 (X,\mathcal{T}) 上的开集, $D \in \mathcal{T}$,所以 $\mathcal{T}' \subset \mathcal{T}$,因此我们可以得到 $\mathcal{T} = \mathcal{T}'$.

Problem 3 设 Y 是紧空间, 证明投影 $\pi: X \times Y \to X, \pi(x,y) = x$ 是闭映射.

orall A 是 X imes Y 的闭集, $\forall x \in X - \pi(A), \forall y \in Y, (x,y) \not\in A$. 由于 X imes Y - A 是开集, 所以 $\exists U_y \subseteq X, V_y \subseteq Y, (x,y) \in U_y imes V_y \subseteq X imes Y - A$. 对于 Y 的开覆盖 $\{V_y\}, \exists \{V_{y_i} | i=1,\cdots,n\}$ 是 Y 的有限子开覆盖. 令 $U = \bigcap_{i=1}^n U_{y_i} \supseteq \{x\}$, 因此 $\forall (u,y) \in U imes Y, \exists u \in U_{y_j}$, 使得

 $(u,y) \in U_{y_j} \times V_{y_j} \subseteq X \times Y - A, U \times Y \subseteq X \times Y - A$. 于是 $\forall x, x \in U = \pi(U \times Y) \subseteq \pi(X \times Y - A)$. 于是 $\pi(X \times Y - A) = X - \pi(A)$ 是开集, 进而 $\pi(A)$ 是闭集. 所以 π 是闭映射.

Problem 4 设 $f: X \to Y$ 是映射, Y 是紧的 Hausdorff 空间. 证明: f 连续的充分必要条件是 f 的图像 $G_f = \{(x, f(x)) | x \in X\}$ 是 $X \times Y$ 的闭集.

必要性: 假设 f 连续, 记映射 $F: X \times Y \to Y^2, F(x,y) = (f(x),y)$. 由于 $F = f \times id$, 而 f,id 均连续, 所以 F 连续. 注意到 $G_f = F^{-1}(\Delta)$ 是闭集, 命题得证.

充分性:假设 G_f 是闭集, $\forall C \subseteq Y$ 是闭集, $X \times Y - X \times C = X \times (Y - C)$ 是开集, 所以 $X \times C$ 是闭集. 于是 $\pi_X(G_f \cap (X \times C)) = \{x \in X | f(x) \in C\} = f^{-1}(C)$. 由于 π 是闭映射, 所以 $f^{-1}(C)$ 是闭集, 所以 f 连续.