Simulateur d'écosystème

Franck Willy SIMO PIUGIE; Celina BEDJOU; Ines GHOULI; Thierno BA

Université de Caen Normandie

May 5, 2022

- Introduction
- 2 Diagramme de classe
- 3 Versions du jeu
- 4 Élément techniques
 - Déplacements
- 5 Expérimentations et équilibre
 - Expérimentations
 - Equilibre
- **6** Conclusion

Introduction

Diagramme de classe

Version du jeu

Principe déplacement

Le simulateur se base principalement sur la fonction de déplacement d'un animal de la position (x,y) vers (a,b).

Le déplacement se fait grace à une succession d'incrémentations et de decrémentation de (x,y) jusqu'a ce qu'on arrive au coordonnées (a,b).

$$(2 - 1,3 + 1) = (1,4) \longrightarrow (1-1,4+1) = (0,5) \longrightarrow (0,5+1) = (0,6) \longrightarrow (0,6+1) = (0,7).$$

Type de déplacements

Durant la simulation deux type de déplacements presque similaires s'effectuent à chaque itération :

- Déplacement d'un animal pour qu'il puisse s'abreuver.
- Déplacer un animal pour qu'il puisse manger.

Déplacement pour boire

Déplacement pour manger

Interaction avec l'utilisateur

Expérimentations et équilibre

Expérimentations

Équations de Lokta-Voltera

$$\begin{cases} \frac{dx(t)}{dt} = x(t)(a - by(t)) \\ \frac{dy(t)}{dt} = y(t)(cx(t) - d) \end{cases}$$
 (1)

Ou x(t) est l'effectif des proies, y(t) celui des prédateurs les coefficients a,b,c et d à déterminer expérimentalement :

Les coefficients

- a le coefficient d'accroissement des proies indépendemment de prédateurs:
- b le taux de mortalité des proies du aux prédateurs
- c le coefficient d'accroissement des prédateurs en fonction des proies disponibles
- d le coefficient de mort des prédateurs en l'absence des proies

Expérimentations

Condition d'équilibre

$$\begin{cases} \frac{dy(t)}{dt} = 0\\ \frac{dx(t)}{dt} = 0 \end{cases} \tag{2}$$

Figure: Détermination de a

Figure: Détermination de a

Figure: Détermination de **b**

Figure: Détermination de a

Figure: Détermination de c

Figure: Détermination de **b**

Figure: Détermination de a

Figure: Détermination de c

Figure: Détermination de **b**

Figure: Détermination de d

Les résultats

Résultats

- \bullet a = 12,57
- b = 1.44
- c = 1.31
- d = 17.78

Avec ces résultats, nous avons lancé une simulation et après apparition des prédateurs, on affiché les variations de populations et les résultats ne correspondaient pas à l'évolution du système.

Les résultats

Résultats

- a = 12.57
- b = 1.44
- c = 1.31
- d = 17.78

Avec ces résultats, nous avons lancé une simulation et après apparition des prédateurs, on affiché les variations de populations et les résultats ne correspondaient pas à l'évolution du système.

courbe d'évolution

Figure: Aspect de la courbe d'évolution du système

Solution pour éuilibrer le système

Vu que les coefficients ne correspondaient pas, nous avons opté pour un rajout de nouvelles règles à notre système.

Equilibre

Solution

Equilibre

Solution

Conclusion

CONCLUSION