20240319_Statistik_WIN2

Verteilungstabellen

Standardnormalverteilung

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

$$P(X>85) = P(X>10) = P(Z>1) =$$

$$1 - P(X<1)$$

$$= 1 - P(Z<1) = 1 - 0'8413 = 15'87'/.$$

Thung 2.3.

Daver
$$X \sim N(60, 15)$$
; $P(X \le 45)$
 $V = 60$
 $P(\frac{X-60}{15} \le \frac{45-60}{15}) = P(Z \le -1) = 1 - P(Z \le 1)$
 $V = 45$

$$= P(Z(1) - [1 - P(Z(1)] = 2 P(Z(1)) - 1 = 68'27'.$$
Zwischen 20 werte Kriegen wir 68'27'. der Daten.

(*) 2. 0.8413 - 1 = 0.6827

Whong 2.5.

X Einstellungstest ~ N (50,5)

Um zu den beten 10/ der Bewerber zu gehören, suchen wir den Z-Score in der Tabelle der dem 90. Percentil entzpicht Dies wird beim Z-Score = 1/28 erreicht. Die erforderliche Punktzahl berechnet sich als:

 $Z = \frac{x - \mu}{\sigma} \rightarrow x = Z \cdot \sigma + \mu = 1/28 \cdot 5 + 50 = 56'4$ Ein Bewerber benotigt 56'4 Punkte um zu den besten 10i/. zu gehoren.

tubung 2.6.

Schlasdawer XNN(7,1) P(X5) $P\left(\frac{X-7}{1} \leqslant \frac{5-7}{1}\right) = P(Z \leqslant -2) = P(Z > 2) = 1 - P(Z < 2) =$

$$= 1 - 0'9772 = 2'28'/. = 0'0228$$

Thing 2.7.

Ausgaben
$$\times N N(250, 50)$$
 $P(\times > 350)$

$$P(\frac{x-250}{50} > \frac{350-250}{50}) = P(Z > 2) = 2^{1}28^{1}/28$$

Thung 2.8

Funkte
$$X \sim N(2000, 300)$$
 $P(X < 1700 - 2000)$
 $P(\frac{X - 2000}{300} < \frac{1700 - 2000}{300}) = P(Z < -1) = P(Z > 1) = 15 87 \%$

Tibung 2.9

Zeit Aufgenben
$$X \sim N(120, 30) P(X > 150)$$

$$P(\frac{X-120}{30} > \frac{150-120}{30}) = P(Z > 1) = 1 - P(Z < 1) = 15/87$$

$$P\left(\frac{120-180}{45} < \frac{x-186}{45} < \frac{240-180}{45}\right) = P\left(-\frac{1}{33} < \frac{2}{5} < \frac{1}{33}\right) = P\left(-\frac{1}{33} < \frac{1}{33} < \frac{1}{33}\right) = P\left(-\frac{1}{33} < \frac{1}{33} < \frac{1}{33}\right)$$

$$= p(z < 1/33) - \left[1 - p(z < 1/33)\right] = 2p(z < 1/33) - 1 =$$

$$= 2 \cdot 0'9082 - 1 = 81'64'.$$

Thing 3.1

Gegeben ist n=100 (Besucher), p=0/10 (Erfolgs.W),
gesucht wird die W für mindestens 15 downloads.

Lösungsweg: wir berechnen die kunnulative W für weiniger als 13 Erfolge und substrahieren diese von 1.

$$P(X > 15) = 1 - P(X < 14) = 1 - [P(X = 0) + P(X = 1) + P(X = 2)]$$

$$+ \dots + P(X = 14)$$

$$P(X < X) = {\binom{N}{X}} p^{(1-p)^{N-X}} P(X = 0) = {\binom{100}{0}} {\binom{10}{0}} {\binom{10}{0}} {\binom{10}{0}} = 0$$

$$P(X = 1) = {\binom{100}{1}} {\binom{100}{0}} {\binom{100}{0}} {\binom{100}{0}} = 0$$

$$P(X = 1) = {\binom{100}{1}} {\binom{100}{0}} {\binom{100}{0}} {\binom{100}{0}} = 0$$

$$P(X = 14) = {\binom{100}{14}} {\binom{100}{0}} {\binom{100}{0}} = 0$$

$$P(X = 14) = {\binom{100}{14}} {\binom{100}{0}} {\binom{100}{0}} = 0$$

$$P(X = 14) = {\binom{100}{14}} {\binom{100}{0}} {\binom{100}{0}} = 0$$

$$P(X = 14) = {\binom{100}{14}} {\binom{100}{0}} {\binom{100}{0}} = 0$$

$$P(X = 14) = {\binom{100}{14}} {\binom{100}{0}} = 0$$

$$P(X =$$

Thomas.2.

Georgeben n=12(# Hersuche) p=0'5 (Erfolgs.W)

Georgeben wird W. Fürgerau 8 richtige Antworken:

$$P(\bar{x}=8) = \binom{n}{x} \stackrel{\times}{p} (1-p)^{n-x} = \binom{|2|}{8} 0^{1} \stackrel{\times}{s} (1-0^{1}5)^{12} - 8$$

$$\sim 0^{1} 1208 = 12^{1} 08^{1} / .$$

Thomas 3.3.

Gegeben n=20, p=0'25 Gesucht wird W. jor 5 geteilte Beitrage

Mang 3.4. 4-Antwert woodichkeiten

Gegeben n=15, p=0'25 Gesucht wird die W. For weniger a/s 4 richtige

$$P(X<4) = P(X=0) + P(X=1) + P(X=2) + P(X=3)$$

$$P(X=0) = {15 \choose 0} 0'25 (0'75)^{15}$$

$$P(X=1) = {15 \choose 1} 0'25' (0'75)^{14}$$

P(X<4) 204613

Thing 35. Gegeben n=10, p=08

thbung 3.6.

Gegeben
$$n=25$$
, $p=0.6$

Goucht W. Turgenau 20 Unterstutzer.

 $p(x=20) = {25 \choose 20} p^{20} (1-p)^{25-20} \sim 0.0199$

tibing 3.

Geneben
$$n=3$$
, $p=0'3$
Geneben $n=3$, $p=0'3$
 $p=0'3$

Ubung 3.8.

Gegelsen
$$n=30$$
, $p=0'05$
Gesucht W. For genan 2 Anstalk.
 $P(X=2) = {30 \choose 2} 0'05^2 (1-0'05)^{20-2} = 0'2586$

Thung 3.9.

Gegelen
$$n = 50$$
; $p = 0'02$
Gesucht W. In genan 1 Gewinnlos.
 $P(X=1) = {50 \choose 1} 0'02 (1-0'02)^{50-1} \sim 0'3716$

thbung 3.10.

Gesucht W. p_{x} mindestens 6 gewonnene Spiele P(X>/6) = 1 - P(X<5) = 1 - [P(X=0) + P(X=1) + ... + P(X=5)] = ... = 0.6785 = = P(X=6) + P(X=7) + P(X=8)