CHAPITRE Nº4 Calcul de Probabilités

1) Espaces probabilisés:

1.1. Expérience aléatoire, espace fondamental et événements :

- Une expérience ou épreuve (E) est dite aléatoire si on ne peut pas prédire a priori son résultat.
- L'espace fondamental est l'ensemble de tous les résultats possibles qu'on peut avoir lors d'une expérience aléatoire, on le note Ω . Un élément (ou singleton) ω de Ω est dit résultat *élémentaire*. Le nombre d'éléments (ou cardinal) de l'ensemble Ω est noté $|\Omega|$ (ou bien card (Ω)).
- On appelle événement toute assertion logique sur une expérience aléatoire (tout sousensemble de Ω).

Exemples:

E1: Lancer une pièce de monnaie, alors $\Omega = \{F, P\}$ et $|\Omega| = 2$.

E2: Jeter un dé, alors $\Omega = \{1,2,3,4,5,6\}$ et $|\Omega| = 6$.

Remarques:

- Un événement qui contient un unique élément ω est un **événement élémentaire**. Il est noté $\{\omega\}$.
- L'espace fondamental Ω est l'événement certain.
- L'ensemble vide ϕ est l'événement impossible.

Exemple: Pour l'expérience aléatoire (E2), soient les événements:

A: « obtenir un nombre pair », alors $A = \{2,4,6\}$.

B: « obtenir un nombre impair », alors $B = \{1,3,5\}$.

C : « obtenir un multiple de 3 », alors $C = \{3,6\}$.

D: l'événement élémentaire « le plus petit nombre », alors $D=\{1\}$

1.2. Opérations et relations entre les événements

Soit Ω l'ensemble fondamental d'une expérience aléatoire, et soient A, B, C trois événements sur lesquels on peut appliquer les opérations habituelles de la théorie des ensembles.

L'intersection:

L'événement $A \cap B$ est réalisé si **les deux** événements A et B sont réalisés au même temps.

L'union:

L'événement $A \cup B$ est réalisé si **au moins un** des deux événements A **ou** B se réalise.

Le complémentaire :

Pour chaque événement A, on définit l'événement complémentaire \overline{A} (ou A^c) qui contient tous les éléments de Ω qui ne sont pas dans A.

Différence de deux événements :

On appelle différence de deux événements A et B notée $A \setminus B$ (ou A - B), l'événement qui se réalise quand A est réalisé et B ne l'est pas.

 $A \setminus B = \{ \omega \in \Omega / \omega \in A \text{ et } \omega \notin B \} = A \cap \overline{B}.$

Différence symétrique :

On appelle différence symétrique de deux événements A et B notée $A \Delta B$, l'événement qui est réalisé si **un et un seul des deux** événements est réalisé.

$$A \Delta B = (A \setminus B) \cup (B \setminus A).$$

Événements incompatibles ou exclusifs :

On dit que les événements A et B sont incompatibles ou disjoints s'ils ne peuvent pas être réalisés en même temps, alors $A \cap B = \emptyset$. (A et B n'ont pas d'éléments communs).

Inclusion:

Si A est inclus dans B, on écrit $A \subset B$. On dit que A implique B.

Exemple: Pour l'expérience aléatoire

(E2): Jet d'un dé, alors $\Omega = \{1,2,3,4,5,6\}$ et les événements suivants:

A: « obtenir un nombre pair », alors $A = \{2,4,6\}$.

B: « obtenir un nombre impair », alors $B = \{1,3,5\}$.

C: « obtenir un multiple de 3 », alors $C = \{3,6\}$.

Donner les événements $A \cap B$; $A \cup B$; $A \setminus B$; $A \triangle B$; $B \cap C$; $B \setminus C$; $A \triangle C$; $B \cup C$; \overline{A} ; \overline{B} ; \overline{C} .

1/ $A \cap B = \emptyset$ A et B sont alors incompatibles.

$$2/ A \cup B = \Omega$$

$$3/A \setminus B = A$$
 car $A \cap B = \emptyset$.

4/ $A \triangle B = (A \setminus B) \cup (B \setminus A) = A \cup B$ car A et B sont alors incompatibles.

5/
$$B \cap C = \{3\}.$$

6/
$$B \setminus C = B \cap \overline{C} = \{1,5\}.$$

7/
$$A \triangle C = (A \setminus C) \cup (C \setminus A) = (A \cap \overline{C}) \cup (C \cap \overline{A}) = \{2,4\} \cup \{3\} = \{2,4,3\}$$

8/
$$\boldsymbol{B} \cup \boldsymbol{C} = \{1,3,5\} \cup \{3,6\} = \{1,3,5,6\}.$$

9/
$$\overline{A}$$
={1,3,5} = B.

10/
$$\overline{B}$$
={2,4,6} = A.

11/
$$\overline{C}$$
={1,2,4,5}.

Tableau de correspondance entre le langage de la théorie des ensembles et celui des probabilités

Les opérations logiques sur les événements : « et », « ou », « négation » se traduisent par des opérations ensemblistes : intersection, réunion, passage au complémentaire. Voici un tableau de correspondance entre les deux langages.

Notation	Vocabulaire	Vocabulaire
	Ensembliste	Probabiliste
Ω	Ensemble plein	Ensemble fondamental
ω	Singleton ou élément	Événement élémentaire
A	Sous-ensemble	Événement
Ø	Ensemble vide	Événement impossible
ω ∈A	ω appartient à A	ω est une réalisation possible de A
$A \subset B$	A inclus dans B	La réalisation de A implique la réalisation de B
$A \cup B$	Réunion de A et de B	Au moins un des deux événements se réalise.
$A \cap B$	Intersection de A et B	Les deux événements se réalisent en même temps

$\overline{A} = A^c$	Complémentaire de A dans Ω	Événement contraire de A
$A \cap B = \emptyset$	A et B sont disjoints	A et B sont incompatibles
Card(Ω)	Nombre d'éléments de Ω	Nombre de cas possibles
Card(A)	Nombre d'éléments de A	Nombre de cas favorables

1-Espace probabilisable:

Ensemble des parties d'un ensemble :

On va associer à Ω l'ensemble $\mathcal{P}(\Omega)$ de toutes les parties (ou tous les sous-ensembles) de Ω .

Exemple: Si on jette une pièce de monnaie alors $\Omega = \{P, F\}$ et

$$\mathcal{P}(\Omega) = \{\emptyset, \{P\}, \{F\}, \{P, F\}\}.$$

<u>Définition d'une tribu (σ-algèbre)</u>:

Soit Ω un ensemble fondamental associé à une expérience aléatoire et soit \mathcal{B} un sous ensemble de $P(\Omega)$ (ensemble des parties de Ω). On dit que \mathcal{B} est une tribu (ou une σ -algèbre) si \mathcal{B} satisfait aux axiomes suivants :

- 1. $\Omega \in \mathcal{B}$
- 2. $\forall A_1, A_2, ... \in \mathcal{B} ((A_i)_{i=1}^{\infty})$ alors la réunion $\bigcup_{i \geq 1} A_i$ appartient à \mathcal{B}
- 3. $A \in \mathcal{B} \Longrightarrow A^{\mathsf{C}} \in \mathcal{B}$

Le couple (Ω, \mathcal{B}) s'appelle **espace probabilisable**

1. Espace probabilisé (probabilités):

Définition d'une Probabilité:

Soit Ω un ensemble fondamental associé à une expérience aléatoire et soit \mathcal{B} une tribu sur Ω . Soit \mathbf{P} une application de \mathbf{B} dans [0, 1] telle que :

$$P: \mathbf{B} \to [0,1]$$

- 1. $\forall A \in \mathcal{B}, 0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$
- 3. $\forall A_1, A_2, ... \in \mathcal{B}$, tel que $A_I \cap A_j = \emptyset$, (pour toute famille $(A_i)_{i \ge 1}$ d'événements deux à deux incompatibles)

On a pour
$$i \neq j$$
 $P(\bigcup_{i \geq 1} A_i) = \sum_{i \geq 1} P(A_i)$

On dit que le triplet (Ω, \mathcal{B}, P) est <u>un espace probabilisé ou espace de probabilité</u>.

Propriétés d'une probabilité :

- 1. $P(\emptyset) = 0$
- 2. Probabilité de l'événement contraire :

Soit A un événement alors
$$P(\overline{A})=1-P(A)$$

3. Une probabilité est une fonction croissante

Soient
$$A$$
 et $B \in \mathcal{B}$ si $A \subset B \Rightarrow P(A) \leq P(B)$

4. Probabilité de la différence de deux événements :

Soient A et B des événements:

$$P(A-B)=P(A)-P(A \cap B).$$

5. Probabilité de la différence symétrique :

$$P(A \Delta B) = P(A) + P(B) - 2P(A \cap B)$$
. Car $A \Delta B = (A - B) \cup (B - A)$.

6. Probabilité de l'union de deux événements :

Soient
$$A$$
 et $B \in \mathcal{B}$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

2. <u>Cas équiprobables (La probabilité uniforme) :</u>

Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace de probabilité fini. Comme Ω est fini alors on peut écrire Ω sous la forme :

 $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$ avec card $(\Omega) = n$ et les $\{\omega_i\}$ sont tous des événements élémentaires sur Ω .

$$P(\Omega) = P\left(\bigcup_{i=1}^{n} \{\omega_{i}\}\right) = \sum_{i=1}^{n} P\left(\omega_{i}\right) = 1$$

De la même manière, soit $A \subset \Omega$ tel que $\mathbf{A} = \{\omega_1, \omega_2, ..., \omega_k\} = (\bigcup_{i=1}^k \{\omega_i\})$

donc
$$P(A) = P(\bigcup_{i=1}^k \{\omega_i\}) = \sum_{i=1}^k (P\{\omega_i\})$$

On suppose que tous les événements $\{\omega_i\}$ sont équiprobables ou uniforme, c'est-à-dire que les événements élémentaires ont la même probabilité:

$$P(\{\omega_1\})=P(\{\omega_2\})=...=P(\{\omega_n\})=p$$
 alors on a:

$$P(\Omega) = \sum_{i=1}^{n} P\{\omega_i\} = np = 1 \Longrightarrow p = \frac{1}{n} = \frac{1}{card(\Omega)}$$

Et
$$P(A) = \sum_{i=1}^{k} (P\{\omega_i\}) = \sum_{i=1}^{k} \frac{1}{n} = \frac{k}{n} = \frac{card(A)}{card(O)}$$

Définition:

Si les résultats possibles d'une expérience, sont en nombre fini et équiprobables, la probabilité de réalisation d'un événement A associé à cette expérience est:

$$P(A) = \frac{k}{n} = \frac{nombre\ de\ cas\ favorables}{nombre\ de\ cas\ possibles} = \frac{Card\ A}{Card\ \Omega}.$$

Remarque:

Dans la pratique (les exercices), les mots « au hasard », « non truqué », « bien équilibré », ... assurent <u>l'équiprobabilité</u> de l'espace fondamental Ω .

Exemples

a. Quelle est la probabilité « d'obtenir un nombre pair » en lançant un dé à six faces ?

$$\Omega = \{1, 2, 3, 4, 5, 6\}; card(\Omega)=6$$

A = « Obtenir un nombre pair » =
$$\{2, 4, 6\}$$

$$P(A) = \frac{card(A)}{card(\Omega)} = \frac{3}{6} = \frac{1}{2} = 0.5$$

b. Quelle est la probabilité « d'obtenir deux fois le même côté » en lançant 2 fois une pièce de monnaie ?

$$\Omega = \{F, P\} \times \{F, P\} = \{(P, P), (P, F), (F, P), (F, F)\} \; ; \; card(\Omega) = 2^2 = 4$$

$$B = \text{``Avoir deux fois le même côté'} = \{(P, P), (F, F)\}$$

$$Card(B) = 2$$

$$P(B) = \frac{card(B)}{card(\Omega)} = \frac{2}{4} = \frac{1}{2}$$
=0.5

Probabilités conditionnelles

Définition:

Soit (Ω , \mathcal{B} , P) un espace de probabilité, et soit A un événement de probabilité non nulle $P(A) \neq 0$.

On appelle probabilité conditionnelle de B sachant A (ou probabilité conditionnelle de B sachant que A s'est réalisé) la probabilité notée $P_A(B)$ et donnée par:

$$P_A(B) = P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Axiomes de probabilités composées

1- Cas de deux événements :

Soit A et B des événement tq
$$P(A) \neq 0$$

 $P(A \cap B) = P(A) \cdot P(B \mid A)$
 $= P(B) \cdot P(A \mid B)$

Cette équation est appelée Formule des Probabilités Composées (FPC).

2- Cas de trois événements :

Soit A et B et C des événement tq
$$P(A \cap B)^{\neq 0}$$

 $P(A \cap B \cap C) = P(A) \cdot P(B \mid A) \cdot P(C \mid A \cap B)$.

Démonstration:

On pose :
$$D = A \cap B$$
.

$$P(D \cap C) = P(D) \cdot P(C/D)$$

$$= P(A \cap B) \cdot P(C/A \cap B)$$

$$= P(A)P(B/A)P(C/A \cap B)$$

3- Généralisation:

Soit A_i ; i=1,...,n des événements tq $P(A_n/A_1 \cap A_2 \cap ...A_{n-1}) \neq 0$

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1).P(A_2 / A_1).P(A_3 / A_1 \cap A_2)...P(A_n / A_1 \cap A_2 \cap ... A_{n-1})$$

Système complet

Définition: Soient (Ω, \mathcal{B}, P) un espace de probabilité associé à une expérience aléatoire et $A_1, A_2, ..., A_n$ n'événements sur Ω , vérifiant:

$$1/A_i \neq \emptyset$$
; $\forall i = 1,...,n$

$$2/A_1 \cup A_2 \cup ... \cup A_n = \Omega$$

 $3/A_i \cap A_j = \emptyset \quad \forall i \neq j \quad (\text{ \'ev\'enements incompatibles deux \'ev})$

On dit alors que la famille $\{A_1, A_2, ..., A_n\}$ forme un système complet d'événements sur Ω .

Formule des probabilités totales :

Soit (Ω, \mathcal{B}, P) un espace de probabilité, et A un événement quelconque.

Soit $A_1, A_2, ..., A_n$ une suite d'événements, qui forment un système complet de Ω . Alors :

$$P(A) = \sum_{i=1}^{n} P(A \cap A_i) = \sum_{i=1}^{n} P(A_i) \cdot P(A / A_i)$$

Cette dernière formule est appelée Formule des Probabilités Totale (FPT).

Démonstration:

Il suffit d'écrire : $A = A \cap \Omega$

$$P(A) = P(A \cap \Omega)$$

$$= P(A \cap \left[\bigcup_{i=1}^{n} A_i\right]) = P\left(\bigcup_{i=1}^{n} (A \cap A_i)\right)$$

$$= \sum_{i=1}^{n} P(A \cap A_i) = \sum_{i=1}^{n} P(A_i) P(A/A_i)$$

Formule de Bayes:

Soit (Ω, \mathcal{B}, P) un espace de probabilité, et soit A un événement quelconque.

Soit $A_1, A_2, ..., A_n$ une suite d'événements, qui forment un système complet de Ω . Alors :

$$P(A_i / A) = \frac{P(A_i)P(A / A_i)}{\sum_{i=1}^{n} P(A_i)P(A / A_i)}.$$

Démonstration:

$$P(A_i / A) = \frac{P(A_i \cap A)}{P(A)}.$$

$$P(A_i \cap A) = P(A_i)P(A/A_i).$$

Et d'après la formule de la probabilité totale, on a :

$$P(A) = \sum_{i=1}^{n} P(A_i) P(A/A_i)$$
 d'où la formule.

Exemples

Trois machines M1, M2 et M3 produisent respectivement 50%, 30% et 20% du nombre total de pièces fabriquées dans une usine. Chacune de ces machines fabrique 3%, 4% et 5% de pièces défectueuses, respectivement. On prend une pièce au hasard.

- 1. Quelle est la probabilité que cette pièce soit défectueuse?
- 2. Si la pièce choisie est défectueuse, quelle est la probabilité qu'elle provienne de la machine M1?

Solution

On décrit d'abord les événements associés au problème posé ainsi que les probabilités données : Posons

A= « La pièce est fabriquée par la machine M1 »

B= « La pièce est fabriquée par la machine M2 »

C= « La pièce est fabriquée par la machine M3 »

E= « La pièce est défectueuse »

On a alors
$$P(A)=0.5$$
 $P(B)=0.3$ $P(C)=0.2$ $P(E/A)=0.03$ $P(E/B)=0.04$ $P(E/C)=0.05$

1. On cherche à déterminer P(E)

i)On est certain que chaque machine produit des pièces car $P(A) \neq 0$, $P(B) \neq 0$, $P(C) \neq 0$ ce qui signifie que les 3 événements sont non vides: $A \neq \emptyset$, $B \neq \emptyset$, $C \neq \emptyset$

ii)La pièce choisie provient soit de la machine M1, soit de M2 soit de M3 donc:

$$A \cup B \cup C = \Omega$$
.

iii)De plus, lorsqu'on choisit une pièce, elle n'est fabriquée que par une et une seule des machines donc:

$$A \cap B = \emptyset$$
, $A \cap C = \emptyset$ et $B \cap C = \emptyset$.

Ce qui veut dire que la famille {A, B,C} forme bien un système complet d'événements.

D'après la FPT, on a

$$P(E) = P(A)P(E/A) + P(B)P(E/B) + P(C)P(E/C)$$

= $(0.5 \times 0.03) + (0.3 \times 0.04) + (0.2 \times 0.05)$
= 0.037

Il y a donc 3,7% de chance que la pièce soit défectueuse.

2. On cherche P(A/E)

On applique le théorème de Bayes :

$$P(A/E) = \frac{P(E/A)P(A)}{P(E)} = \frac{0.03 \times 0.5}{0.037} = 0.405$$

Si la pièce est défectueuse, il y a donc 40,5% de chance que la pièce provienne de la machine M1.

3. <u>Indépendance d'événements</u>:

a- <u>Indépendance de deux événements :</u> Définition :

Soit (Ω, \mathcal{B}, P) un espace de probabilité, et soit A et B deux événements de \mathcal{B} , avec $P(A) \neq 0$ et $P(B) \neq 0$. On dit que l'événement A est indépendant de l'événement B si

$$P(A/B) = P(A)$$
.

Conséquence :

Si A est indépendant de $B\Longrightarrow$ alors B est indépendant de A .

$$P(A \cap B) = P(B) \cdot P(A / B) = P(A) \cdot P(B / A)$$

= $P(B) \cdot P(A) = P(A) \cdot P(B / A)$

Alors: P(B) = P(B / A), d'où la définition suivante:

Définition:

Les événements A et B sont indépendants si et seulement si

$$P(A \cap B) = P(A) \cdot P(B)$$
.

b-Indépendance deux à deux :

Soit A_1 , A_2 ,...., A_n une suite d'événements d'une même algèbre. On dit que ces événements sont indépendants deux à deux si :

$$P(A_i \cap A_j) = P(A_i)P(A_j), \forall i \neq j.$$

Propriétés

Si A et B sont des événements indépendants alors :

- i) A et \bar{B} sont indépendants.
- ii) B et \bar{A} sont indépendants.
- iii) \bar{A} et \bar{B} sont indépendants.