Национальный исследовательский университет ИТМО Факультет систем управления и робототехники

Задача №3 «Синтез и моделирование унифицированного контура регулирования момента» по дисциплине «Системы управления в электроприводе» Вариант №14

Подготовили: Марухленко Д.С

Группа: R34352

Преподаватель: Демидова Г.Л.

1 Цель работы

- 1. Рассчитать коэффициент датчика момента из условия поддержания номинального момента при величине напряжения задания 10В.
- 2. параметры ПИ-регулятора момента из условия настройки системы на технический оптимум.
- 3. Реализовать математическую модель контура в пакете MATLAB.
- 4. Снять реакции M(t), $U_y(t)$, $\varepsilon(t)$ на скачкообразное изменение задающего воздействия при нулевых начальных условиях, исключив влияние эл. /мех. связи. Определить параметры M(t): время первого согласования $t_{\rm p1}$, перерегулирование, время переходного процесса $t_{\rm n}$ и сравнить с параметрами эталонной кривой.
- 5. Выполнить программу п.4 с учетом эл./мех. связи.

2 Данные варианта

- Nππ: 14
- $\omega_{0\text{HOM}}$: 706 (1/c)
- M_{HOM}: 13.7 (H_M)
- $M_{\rm m}$: 24.7 (H_M)
- J_1 : 0.008 (KГМ²)
- J_2 : 0.0025 (KГМ²)
- C_{12} : 300
- T_a : 50 (мс)
- $T_{\rm np}$: 10 (мс)
- $K_{\rm np}$: 15
- M_{c1}: 10 (H_M)
- M_{c2}: 3.7 (H_M)

3 Марериалы работы

3.1 Расчет переходных процессов

Так как нам известна электромагнитная постоянная, рассчитаем электромеханическую постоянную и статическую жесткость.

$$\beta = \frac{M_{\text{II}}}{\omega_{\text{HOM}}} = 0.035$$

$$T_M = \frac{J_1 + J_2}{\beta} = 0.3001$$

Из отношения $4T_9 < T_{\rm M}$ имеем два вещественных корня передаточной функции. Составим характеристическое уравнение и найдем его корни:

$$T_{9}T_{M}\lambda^{2} + T_{M}\lambda + 1 = 0$$
$$\lambda_{1} = -4.2242$$
$$\lambda_{2} = -15.7758$$

Определим время переходного процесса:

$$t_{\rm n} = \frac{3}{|\lambda_1|} = 0.7102$$

3.2 Одномассовый механизм

Запишем математическую модель ДПТ с одномассовым механизмом в виде системы дифференциальных уравнений

$$\begin{cases} \dot{M} = \frac{\beta}{T_{\text{s}}} \omega_0 - \frac{1}{T_{\text{s}}} M - \frac{\beta}{T_{\text{s}}} \omega_1 \\ \dot{\omega}_1 = \frac{M}{\beta T_M} - \frac{M_c}{\beta T_M} \end{cases}$$

Преобразуем уравнения в систему вида вход-состояние-выход в матричной форме

$$\begin{bmatrix} \dot{M} \\ \dot{\omega}_1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{T_{\text{\tiny 9}}} & -\frac{\beta}{T_{\text{\tiny 9}}} \\ -\frac{1}{\beta T_{\text{\tiny M}}} & 0 \end{bmatrix} \begin{bmatrix} M \\ \omega_1 \end{bmatrix} + \begin{bmatrix} \frac{\beta}{T_{\text{\tiny 9}}} & 0 \\ 0 & \frac{1}{\beta T_{\text{\tiny M}}} \end{bmatrix} \begin{bmatrix} \omega_0 \\ M_c \end{bmatrix}$$

Проведем моделирование системы при $\omega_0=0,\,M_c=0.1M_{\mbox{\scriptsize Hom}}$

Рис. 1: Результат моделирования системы при $\omega_0=0,\,M_c=0.1M_{\mbox{\scriptsize Hom}}$

Проведем моделирование системы при $\omega_0 = 0.1 \omega_{\text{ном}}, \, M_c = 0$

Рис. 2: Результат моделирования системы при $\omega_0 = 0.1 \omega_{\text{ном}}, \, M_c = 0$

3.3 Двухмассовый механизм

Запишем математическую модель ДПТ с двухмассовым механизмом в виде системы дифференциальных уравнений

$$\begin{cases} \dot{M} = \frac{\beta}{T_{\text{3}}}\omega_{0} - \frac{\beta}{T_{\text{3}}}M - \frac{\beta}{T_{\text{3}}}\omega_{1} \\ \dot{\omega}_{1} = \frac{M}{J_{1}} - \frac{M_{12}}{J_{1}} - \frac{M_{c1}}{J_{1}} \\ \dot{M}_{12} = C_{12}\omega_{1} - C_{12} - \omega_{2} \\ \dot{\omega}_{2} = \frac{M_{2}}{J_{2}} - \frac{M_{c2}}{J_{2}} \end{cases}$$

Преобразуем уравнения в систему вида вход-состояние-выход в матричной форме

$$\begin{bmatrix} \dot{M} \\ \dot{\omega}_1 \\ \dot{M}_{12} \\ \dot{\omega}_2 \end{bmatrix} = \begin{bmatrix} -\frac{\beta}{T_3} & -\frac{\beta}{T_3} & 0 & 0 \\ \frac{1}{J_1}0 - \frac{1}{J_1}0 & & & \\ 0 & C_{12} & 0 & -C_{12} \\ 0 & 0 & J_2 & 0 \end{bmatrix} \begin{bmatrix} M \\ \omega_1 \\ M_{12} \\ \omega_2 \end{bmatrix} + \begin{bmatrix} \frac{\beta}{T_3} & 0 & 0 \\ 0 & -\frac{1}{J_1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \frac{1}{J_2} \end{bmatrix} \begin{bmatrix} \omega_0 \\ M_{c1} \\ M_{c2} \end{bmatrix}$$

Проведем моделирование системы при $\omega_0=0,\,M_c=0.1M_{\mbox{\scriptsize Hom}}$

Рис. 3: Результат моделирования системы при $\omega_0=0,\,M_c=0.1M_{\mbox{\scriptsize Hom}}$

Проведем моделирование системы при $\omega_0 = 0.1 \omega_{\mbox{\tiny Hom}},\, M_c = 0$

Рис. 4: Результат моделирования системы при $\omega_0=0,\,M_c=0.1M_{\mbox{\scriptsize Hom}}$

4 Вывод

Сравнивая графики, полученные при моделировании одномассовой и двухмассовой системы, можно увидеть разницу поведения систем при одинаковых условиях. Установившиеся значения в обоих случаях одинаковые, как и характер переходного процесса, однако при моделировании двухмассовой системы появляются колебания вследствие нежесткости механической упругой связи между массами.

Время переходного процесса соответствует расчетному.