Cálculo I-C Slides de apoio às aulas Primitivas. Integrais indefinidos

Departamento de Matemática Universidade Aveiro

Slides com ligeiras adaptações de outros já existentes fortemente baseados nos textos da Prof.

Doutora Virgínia Santos (indicados na bibliografia).

Primitiva de uma função

Definição: Sejam I um intervalo não degenerado de \mathbb{R} (isto é, com mais do que um ponto) e $f:I\to\mathbb{R}$ uma função definida em I. Chama-se primitiva ou antiderivada de f a toda a função F diferenciável em I tal que, para todo o $x\in I$,

$$F'(x) = f(x).$$

Se f admite uma primitiva em I dizemos que f é primitivável em I.

Observação: Se I = [a, b] dizer que

 $F \colon I \to \mathbb{R}$ é diferenciável em I

significa dizer que F é diferenciável em]a,b[e que $F'_+(a)$ e $F'_-(b)$ existem e são finitas.

Observação: Toda a primitiva de uma dada função é uma função contínua.

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 2 / 30

Primitiva de uma função

Nota: O uso das regras de derivação em "sentido inverso" permite-nos determinar algumas primitivas que designamos por primitivas imediatas.

Exemplos:

- $F(x) = x^2$ é uma primitiva de f(x) = 2x, em \mathbb{R}
- $F(x) = e^x + 3$ é uma primitiva de $f(x) = e^x$, em \mathbb{R}
- $F(x) = \operatorname{sen} x$ é uma primitiva de $f(x) = \cos x$, em \mathbb{R}
- $F(x) = \cos x$ é uma primitiva de $f(x) = -\sin x$, em \mathbb{R}

Exercício: Indique uma primitiva da função $f(x) = \frac{1}{x}$, em \mathbb{R}^+ .

Integral indefinido

Proposição: Seja $f: I \to \mathbb{R}$ uma função e $F: I \to \mathbb{R}$ uma primitiva de f em I. Então, para cada $C \in \mathbb{R}$, G(x) = F(x) + C é também uma primitiva de f em I.

Proposição: Se $F: I \to \mathbb{R}$ e $G: I \to \mathbb{R}$ são duas primitivas de $f: I \to \mathbb{R}$, então existe $C \in \mathbb{R}$ tal que F(x) - G(x) = C, para todo o $x \in I$.

Definição: À família de todas as primitivas de f chama-se o integral indefinido de f e denota-se por $\int f(x)\,dx$. Dizemos que f é a função integranda e que x é a variável de integração.

A variável de integração é uma variável muda, pelo que podemos usar qualquer um dos símbolos:

$$\int f(x) dx$$
, $\int f(t) dt$, $\int f(z) dz$, ...

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 4 / 30

Integral indefinido

Observação: Atendendo à proposição anterior,

$$\int f(x) \, dx = F(x) + C, \ C \in \mathbb{R}$$

onde F é uma primitiva de f.

Nota: É evidente que se f é diferenciável, então

$$\int f'(x) dx = f(x) + C, \ C \in \mathbb{R}.$$

Integrais indefinidos imediatos

$$\int x^{p} dx = \frac{x^{p+1}}{p+1} + C , \quad C \in \mathbb{R} \text{ (onde } p \in \mathbb{R} \setminus \{-1\})$$

$$\int \frac{1}{x} dx = \ln|x| + C , \quad C \in \mathbb{R} \text{ (onde } x \in \mathbb{R}^{+} \text{ou } x \in \mathbb{R}^{-})$$

$$\int \operatorname{sen} x dx = -\cos x + C , \quad C \in \mathbb{R}$$

$$\int \cos x dx = \sin x + C , \quad C \in \mathbb{R}$$

$$\int \operatorname{sec}^{2} x dx = \operatorname{tg} x + C , \quad C \in \mathbb{R}$$

$$\int \operatorname{cosec}^{2} x dx = -\cot x + C , \quad C \in \mathbb{R}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

Integrais indefinidos imediatos

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C \,, \quad C \in \mathbb{R}$$

$$\int \frac{1}{1 + x^2} dx = \arctan x + C \,, \quad C \in \mathbb{R}$$

$$\int \sec x \, \operatorname{tg} x \, dx = \sec x + C \,, \quad C \in \mathbb{R}$$

$$\int \operatorname{cosec} x \, \cot x \, dx = -\operatorname{cosec} x + C \,, \quad C \in \mathbb{R}$$

$$\int e^x \, dx = e^x + C \,, \quad C \in \mathbb{R}$$

$$\int a^x \, dx = \frac{a^x}{\ln a} + C \,, \quad C \in \mathbb{R}, \quad a \in \mathbb{R}^+ \setminus \{1\}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

Propriedades

Proposição: Sejam f e g duas funções definidas em I e α e β duas constantes reais não simultaneamente nulas. Se f e g são primitiváveis em I, então a função $\alpha f + \beta g$ é primitivável em I e

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx.$$

Exemplos de aplicação:

$$\int \frac{3}{x} dx = 3 \int \frac{1}{x} dx = 3 \ln|x| + C, \quad C \in \mathbb{R}$$

$$\int (5 \cos x - \frac{\pi}{2} \sin x) dx = 5 \int \cos x dx - \frac{\pi}{2} \int \sin x dx$$

$$= 5 \sin x + \frac{\pi}{2} \cos x + C, \quad C \in \mathbb{R}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

Integração "quase imediata"

Proposição: Sejam I e J dois intervalos de números reais, $f: I \longrightarrow \mathbb{R}$ uma função primitivável e $g: J \longrightarrow \mathbb{R}$ uma função tal que a composta $f \circ g$ está definida. Se g é diferenciável em J, então $(f \circ g)g'$ é primitivável e tem-se

$$\int f(g(x))g'(x) dx = F(g(x)) + C, \ C \in \mathbb{R}$$

onde F é uma primitiva de f.

Exemplo de aplicação:

$$\int 2x \cos(x^2) dx = \operatorname{sen}(x^2) + C, \quad C \in \mathbb{R}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

Integrais indefinidos "quase imediatos"

$$\int g'(x)g^{p}(x) dx = \frac{g^{p+1}(x)}{p+1} + C , \quad C \in \mathbb{R} \text{ (onde } p \in \mathbb{R} \setminus \{-1\})$$

$$\int \frac{g'(x)}{g(x)} dx = \ln |g(x)| + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \operatorname{sen}(g(x)) dx = -\cos(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \cos(g(x)) dx = \operatorname{sen}(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \operatorname{sec}^{2}(g(x)) dx = \operatorname{tg}(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \operatorname{cosec}^{2}(g(x)) dx = -\cot(g(x)) + C , \quad C \in \mathbb{R}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

Integrais indefinidos "quase imediatos"

$$\int \frac{g'(x)}{\sqrt{1-(g(x))^2}} dx = \arcsin(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int \frac{g'(x)}{1+(g(x))^2} dx = \arctan(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \sec(g(x)) \operatorname{tg}(g(x)) dx = \sec(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \operatorname{cosec}(g(x)) \operatorname{cotg}(g(x)) dx = -\operatorname{cosec}(g(x)) + C , \quad C \in \mathbb{R}$$

$$\int g'(x) \operatorname{e}^{g(x)} dx = \operatorname{e}^{g(x)} + C , \quad C \in \mathbb{R}$$

$$\int g'(x) a^{g(x)} dx = \frac{a^{g(x)}}{\ln a} + C , \quad C \in \mathbb{R}, \quad a \in \mathbb{R}^+ \setminus \{1\}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

Exercício

Exercício: Mostre que

①
$$\int \frac{x^4}{1+x^5} dx = \frac{1}{5} \ln|1+x^5| + C$$
, $C \in \mathbb{R}$

②
$$\int \cos x \sin^n x \, dx = \frac{\sin^{n+1} x}{n+1} + C$$
, $C \in \mathbb{R}$, para todo o $n \in \mathbb{N}$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 12 / 30

Fórmulas trigonométricas úteis na determinação de integrais

Das fórmulas trigonométricas bem conhecidas do ensino secundário:

$$sen^{2}\alpha + cos^{2}\alpha = 1$$

$$sen(\alpha + \beta) = sen \alpha cos \beta + cos \alpha sen \beta$$

$$cos(\alpha + \beta) = cos \alpha cos \beta - sen \alpha sen \beta$$

podem obter-se as seguintes fórmulas trigonométricas

$$1 + tg^{2}\alpha = \sec^{2}\alpha$$
$$1 + \cot g^{2}\alpha = \csc^{2}\alpha$$
$$\sec (2\alpha) = 2 \sec \alpha \cos \alpha$$
$$\cos(2\alpha) = \cos^{2}\alpha - \sec^{2}\alpha$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 13 / 30

Fórmulas trigonométricas úteis na determinação de integrais

$$\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$$
$$\sin^2 \alpha = \frac{1 - \cos(2\alpha)}{2}$$
$$\cos \alpha \cdot \cos \beta = \frac{1}{2} \left(\cos(\alpha + \beta) + \cos(\alpha - \beta)\right)$$
$$\sin \alpha \cdot \sin \beta = \frac{1}{2} \left(\cos(\alpha - \beta) - \cos(\alpha + \beta)\right)$$
$$\sin \alpha \cdot \cos \beta = \frac{1}{2} \left(\sin(\alpha + \beta) + \sin(\alpha - \beta)\right)$$

que são muito úteis no cálculo de integrais.

Integrais indefinidos envolvendo funções trigonométricas

Exemplos:

①
$$\int \cos^2(2x) dx = \frac{1}{2} \int (1 + \cos(4x)) dx = \frac{x}{2} + \frac{1}{8} \operatorname{sen}(2x) + C$$
, $C \in \mathbb{R}$

$$=\frac{1}{4} \operatorname{sen}(2x) - \frac{1}{8} \operatorname{sen}(4x) + C, \quad C \in \mathbb{R}$$

$$\Im \int \sin^3 x \, dx = \int \sin x (1 - \cos^2 x) \, dx = \int \sin x \, dx - \int \sin x \cos^2 x \, dx$$

$$= -\cos x + \frac{\cos^3 x}{3} + C \; , \quad C \in \mathbb{R}$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 15 / 30

Método de integração por partes

Proposição (Integração por partes): Sejam f e g duas funções diferenciáveis em I. Então

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x)dx.$$

Exemplo de aplicação:

$$\int \underbrace{x}_{f'(x)} \underbrace{\ln x}_{g(x)} dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \frac{1}{x} dx$$
$$= \frac{x^2}{2} \ln x - \int \frac{x}{2} dx$$
$$= \frac{x^2}{2} \ln x - \frac{x^2}{4} + C, \quad C \in \mathbb{R}.$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 16 / 30

Método de integração por partes

- Esta fórmula é útil sempre que a função integranda se pode escrever como o produto de duas funções e além disso é conhecida uma primitiva de pelo menos uma delas.
- Sabendo primitivar apenas uma das funções, escolhe-se essa para primitivar e deriva-se a outra função.
- Quando conhecemos uma primitiva de cada função, devemos escolher para derivar a função que mais se simplifica por derivação (se alguma delas se simplificar!).
- Se conhecemos uma primitiva de cada função e se nenhuma das funções se simplifica por derivação, a escolha da função a primitivar é arbitrária. Por vezes é necessário efectuar uma segunda aplicação da fórmula de integração por partes, obtendo-se novamente o integral que se pretende determinar. Nesses casos, interpreta-se a igualdade obtida como uma equação em que a incógnita é o integral que se pretende determinar.

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 17 / 30

Método de integração por substituição

Proposição (Integração por substituição): Sejam I e J intervalos de \mathbb{R} , $f:I\longrightarrow\mathbb{R}$ uma função primitivável e $\varphi:J\longrightarrow\mathbb{R}$ uma função diferenciável e invertível tal que $\varphi(J)\subseteq I$. Então a função $(f\circ\varphi)\varphi'$ é primitivável e, sendo H uma primitiva de $(f\circ\varphi)\varphi'$, tem-se que $H\circ\varphi^{-1}$ é uma primitiva de f.

Observação: Nas condições da proposição anterior escrevemos (por abuso de linguagem)

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt = (H \circ \varphi^{-1})(x) + C, C \in \mathbb{R}$$

e dizemos que $\int f(x)dx$ foi obtido através da substituição de variável definida por $x = \varphi(t)$.

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 18 / 30

Método de integração por substituição

Exemplo de aplicação:

$$\int \frac{1}{1+\sqrt{2x}} \, dx$$

Substituição de variável: $\sqrt{2x} = t$, donde resulta $x = \frac{t^2}{2}$, $t \ge 0$.

Esta substituição está definida pela função $\varphi(t)=\frac{t^2}{2}$, tal que $D_{\varphi}=J$, sendo J um intervalo adequado de \mathbb{R}^+_0 . A função φ é diferenciável e invertível em J. Assim

$$\int \frac{1}{1+\sqrt{2x}} dx = \int \frac{t}{1+t} dt$$

$$= \int \left(1 - \frac{1}{1+t}\right) dt$$

$$= t - \ln|1+t| + C, \quad C \in \mathbb{R}$$

$$= \sqrt{2x} - \ln(1+\sqrt{2x}) + C, \quad C \in \mathbb{R}.$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 19 / 30

Integração de funções envolvendo radicais (usando substituições trigonométricas)

Tabela de substituições

Função com o radical:

1.
$$\sqrt{a^2 + x^2}$$
, $a > 0$

2.
$$\sqrt{a^2 - x^2}$$
, $a > 0$

3.
$$\sqrt{x^2 - a^2}, a > 0$$

4.
$$\sqrt{a^2 + b^2 x^2}$$
, $a, b > 0$

5.
$$\sqrt{a^2-b^2x^2}$$
, $a,b>0$

6.
$$\sqrt{-a^2+b^2x^2}$$
, $a,b>0$

7.
$$\sqrt{a^2x^2 + bx + c}$$
, $a \neq 0$ e $b, c \in \mathbb{R}$

Substituição:

$$x = a \operatorname{tg} t, \operatorname{com} t \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

$$x = a \operatorname{sen} t, \operatorname{com} t \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

$$x = a \operatorname{sen} t, \operatorname{com} t \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

$$x = a \operatorname{sec} t, \operatorname{com} t \in]0, \frac{\pi}{2}[$$

reduz-se a um dos anteriores.

$$\int \frac{3}{x^2 \sqrt{x^2 - 9}} \, dx = \int \frac{1}{x^2 \sqrt{\left(\frac{x}{3}\right)^2 - 1}} \, dx$$

Fazendo a mudança de variável $\frac{x}{3} = \sec t$, isto é, $x = 3 \sec t = \varphi(t)$ com $t \in \left[0, \frac{\pi}{2}\right[$, temos que φ é invertível, diferenciável e

$$\varphi'(t) = 3\sec t \operatorname{tg} t.$$

Observe-se que

$$f(\varphi(t)) = \frac{1}{9\sec^2 t \sqrt{\sec^2 t - 1}}.$$

Como
$$\sec^2 t - 1 = \operatorname{tg}^2 t \operatorname{e} t \in \left]0, \frac{\pi}{2}\right[, \operatorname{ent}\tilde{\operatorname{ao}}\right]$$

$$f(\varphi(t)) = \frac{1}{9\sec^2 t \operatorname{tg} t}.$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 21 / 30

Logo,

$$\int f(\varphi(t)) \, \varphi'(t) \, dt = \int \frac{1}{9 \sec^2(t) \, \lg t} \, 3 \sec t \, \lg t \, dt = \frac{1}{3} \int \cos t \, dt.$$

Primitivando vem

$$\frac{1}{3}\int\cos t\,dt = \frac{1}{3}\sin t + C, C \in \mathbb{R}.$$

Deveremos agora regressar à variável inicial x. Dado que a substituição é $x = 3 \sec t \operatorname{com} t \in \left]0, \frac{\pi}{2}\right[$, tem-se que

$$x = 3 \sec t \Leftrightarrow x = \frac{3}{\cos t} \Leftrightarrow \cos t = \frac{3}{x}.$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 22 / 30

Usando agora a fórmula fundamental da trigonometria podemos concluir que

$$\sin^2 t = 1 - \cos^2 t = 1 - \left(\frac{3}{x}\right)^2$$

e, portanto,

$$sen t = \sqrt{1 - \frac{9}{x^2}}, \ t \in \left]0, \frac{\pi}{2}\right[.$$

Logo

$$\int \frac{3}{x^2 \sqrt{x^2 - 9}} \, dx = \frac{1}{3} \sqrt{1 - \frac{9}{x^2}} + C = \frac{\sqrt{x^2 - 9}}{3x} + C, \ C \in \mathbb{R}.$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I

A seguir vamos ver como integrar funções do tipo

$$\frac{N(x)}{D(x)}$$

onde N e D são polinómios em x com coeficientes reais e D é não nulo. A este tipo de funções chamamos função racional.

- (1) Se grau(N) < grau(D) dizemos que $\frac{N(x)}{D(x)}$ é uma fracção própria.
- (2) Se $grau(N) \ge grau(D)$, existem polinómios Q e R tais que grau(R) < grau(D) e

$$N(x) = D(x)Q(x) + R(x) .$$

Aos polinómios Q e R chamamos, respectivamente, quociente e resto da divisão de N por D.

Uma vez que D é um polinómio não nulo, resulta da igualdade anterior

$$\frac{N(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}.$$

Consequentemente,

$$\int \frac{N(x)}{D(x)} dx = \int Q(x) dx + \int \frac{R(x)}{D(x)} dx.$$

Observação: Como toda a função polinomial tem uma primitiva imediata, a integração de funções racionais reduz-se à determinação de primitivas imediatas e à primitivação de fracções próprias.

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 25 / 30

Definição: Chamamos fracção simples a toda a fracção do tipo

$$\frac{A}{(x-\alpha)^p}$$
 ou $\frac{Bx+C}{(x^2+\beta x+\gamma)^q}$,

onde $p, q \in \mathbb{N}, A \in \mathbb{R} \setminus \{0\}, B, C \in \mathbb{R}$ não simultaneamente nulos e $\alpha, \beta, \gamma \in \mathbb{R}$ são tais que $\beta^2 - 4\gamma < 0$.

Exemplos de fracções simples:

$$\frac{2}{x-4}$$
, $\frac{1}{x^2+x+1}$, $\frac{1}{x^2+2x+1}$, $\frac{3x+5}{(x^2+x+1)^3}$

Proposição: Toda a fracção própria pode ser decomposta numa soma de fracções simples.

Decomposição em fracções simples de $\frac{R(x)}{D(x)}$ com grau(R) < grau(D)

1. Decompor o polinómio D(x) em factores irredutíveis. Isto é, escrever

$$D(x) = a(x - \alpha_1)^{p_1} \dots (x - \alpha_n)^{p_n} (x^2 + \beta_1 x + \gamma_1)^{q_1} \dots (x^2 + \beta_m x + \gamma_m)^{q_m}$$
 onde $a \in \mathbb{R} \setminus \{0\}, p_i, q_j \in \mathbb{N}, \alpha_i, \beta_j, \gamma_j \in \mathbb{R}, \text{com } \beta_j - 4\gamma_j < 0, \text{ para } i = 1, \dots, n \text{ e } j = 1, \dots, m.$

- 2. Fazer corresponder a cada factor de D(x) uma determinada fraccção simples de acordo com o seguinte:
 - (i) Ao factor de D(x) do tipo $(x \alpha)^r$ $(r \in \mathbb{N})$ corresponde

$$\frac{A_1}{x-\alpha} + \frac{A_2}{(x-\alpha)^2} + \dots + \frac{A_r}{(x-\alpha)^r}$$

onde A_1, \dots, A_r são constantes reais a determinar.

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 27 / 30

(ii) Ao factor de D(x) do tipo

$$(x^2 + \beta x + \gamma)^s$$
, com $\beta^2 - 4\gamma < 0$ e $s \in \mathbb{N}$

corresponde

$$\frac{B_1x + C_1}{x^2 + \beta x + \gamma} + \frac{B_2x + C_2}{(x^2 + \beta x + \gamma)^2} + \dots + \frac{B_sx + C_s}{(x^2 + \beta x + \gamma)^s}$$

onde B_i , C_i são constantes reais a determinar, $i = 1, \dots, s$.

3. Escrever $\frac{R(x)}{D(x)}$ como soma dos elementos simples identificados no ponto anterior e determinar as constantes que neles ocorrem, usando o método dos coeficientes indeterminados.

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 28 / 30

$$\int \frac{2x+1}{x^3+x} \, dx$$

Trata-se de uma fração própria que deverá ser decomposta em elementos simples:

$$\frac{2x+1}{x^3+x} = \frac{2x+1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

onde A, B e C são constantes reais a determinar.

Reduzindo as frações ao mesmo denominador conclui-se que:

$$2x + 1 = A(x^{2} + 1) + (Bx + C)x \Leftrightarrow 2x + 1 = (A + B)x^{2} + Cx + A$$

resultando que

$$A = 1$$
; $B = -1$ e $C = 2$.

Então

$$\int \frac{2x+1}{x^3+x} \, dx = \int \left(\frac{1}{x} + \frac{-x+2}{x^2+1}\right) \, dx = \int \left(\frac{1}{x} - \frac{x}{x^2+1} + \frac{2}{x^2+1}\right) \, dx.$$

Logo

$$\int \frac{2x+1}{x^3+x} dx = \ln|x| - \frac{1}{2}\ln(x^2+1) + 2\arctan x + C, \ C \in \mathbb{R}.$$

UA 2025/2026 Cálculo I - C Slides 2 - Parte I 30 / 30