Problem 1.

(a) Take $\{(\phi_n, U_n)\}, \{(\psi_m, V_m)\}$ maximal atlases for M, N. For any choice of charts ϕ_i, ϕ_j, ψ_k we have that

$$\phi_{\mathfrak{i}}\circ\pi_{1}\circ(\phi_{\mathfrak{j}}^{-1},\psi_{k}^{-1})=\phi_{\mathfrak{i}}\circ\phi_{\mathfrak{j}}^{-1}\in C^{\infty}.$$

A similar computation for π_2 yields

$$\psi_{\mathfrak{j}}\circ\pi_{2}(\phi_{k}^{-1},\psi_{\mathfrak{i}}^{-1})=\psi_{\mathfrak{j}}\circ\psi_{\mathfrak{i}}^{-1}\in C^{\infty}.$$

(b) First we notice that $\dim(M^m \times N^n) = \dim(M^m) + \dim(N^n) = m + n$ so

$$\dim \left(\mathsf{T}(\mathsf{M}\times\mathsf{N})_{(x,y)}\right) = \dim \left(\mathsf{T}\mathsf{M}_x\right) + \dim (\mathsf{T}\mathsf{N}_y) = \dim (\mathsf{T}\mathsf{M}_x \oplus \mathsf{T}\mathsf{N}_y).$$

It is sufficient to show that the mapping f(v) defined by

$$\nu \mapsto \left(\left(\pi_1 \right)_{*(x,y)} \nu, \left(\pi_2 \right)_{*(x,y)} \nu \right)$$

has trivial kernel. Suppose that for some ν we have that $f(\nu) = 0$. Notably we have that $(\pi_1)_{*(x,y)}\nu = 0$. Viewed from the point of view of charts, we have that

$$0 = D\left(\varphi_{\mathfrak{i}} \circ \pi_{1}\left(\phi_{\mathfrak{j}}^{-1}, \psi_{k}^{-1}\right)\right)\nu = \left[D(\phi_{\mathfrak{i}} \circ \phi_{\mathfrak{j}}^{-1}) \ | \ 0\right]\nu.$$

Since $D(\varphi_i \circ \varphi_i^{-1})$ is an isomorphism, we have that

$$D(\phi_{\mathfrak{i}}\circ\phi_{\mathfrak{j}}^{-1})\pi_{x}(\nu)=0.$$

So the first m coordinates must be 0. A similar argument with $(\pi_2)_{*(x,y)}$ shows that the last n coordinates are 0. Therefore $\nu = 0$.

(c) By part b, we have the mapping $(i_y)_{*x} : TM_x \to TM_x \oplus TN_y$ given by

$$\nu \mapsto \left(\left(\pi_1\right)_{*(x,y)} \circ (\mathfrak{i}_y)_{*(x)} \nu, \left(\pi_2\right)_{*(x,y)} \circ (\mathfrak{i}_y)_{*(x)} \nu \right)$$

This simplifies to

$$\left(\left(\pi_{1}\circ\mathfrak{i}_{\mathfrak{y}}\right)_{*\mathsf{x}}\nu,\left(\pi_{2}\circ\mathfrak{i}_{\mathfrak{y}}\right)_{*\mathsf{x}}\nu\right)=(\nu,0),$$

since the first coordinate is the identity, and the second is constant.

(d) First note that $(f \times g)(x, y)$ is smooth since for any choice of charts on M, N, P, Q the function

$$(\lambda, \eta) \circ (f, g) \circ (\phi^{-1}, \psi^{-1}) = (\lambda \circ f \circ \phi^{-1}, \eta \circ g \circ \psi^{-1})$$

is smooth in both components. First, notice that the identity mapping on $T(M \times N)$ is of the form

$$id_{\mathsf{T}(P\times Q)} = (i_{g(y)})_{*f(x)} \circ (\pi_1)_{*(f(x),g(y))} + (i_{f(x)})_{*g(y)} \circ (\pi_2)_{*(f(x),g(y))}.$$

If we compose with $(f \times g)_{*(x,y)}$, using the chain rule we get

$$\begin{split} (f\times g)_{*(x,y)} &= id_{T(P\times Q)}\circ (f\times g)_{*(x,y)} \\ &= \left[(i_{g(y)})_{*f(x)}\circ (\pi_1)_{*(f(x),g(y))} + (i_{f(x)})_{*g(y)}\circ (\pi_2)_{*(f(x),g(y))} \right]\circ (f\times g)_{*(x,y)} \\ &= \left[(i_{g(y)})_{*f(x)}\circ (\pi_1)_{*(f(x),g(y))}\circ (f\times g)_{*(x,y)} \right] + \left[(i_{f(x)})_{*g(y)}\circ (\pi_2)_{*(f(x),g(y))}\circ (f\times g)_{*(x,y)} \right] \\ &= \left[(i_{g(y)}\circ\pi_1\circ (f(x),g(y)))_{*(x,y)} \right] + \left[(i_{f(x)}\circ\pi_2\circ (f(x),g(y)))_{*(x,y)} \right] \\ &= (f_{*x},0) + (0,g_{*y}) \\ &= (f_{*x},g_{*y}) \end{split}$$

Problem 2.

(a) When we restrict μ to $G \times \{e\}, \{e\} \times G$ we see that

$$\mu(e,g) = \mu(g,e) = g.$$

The multiplication map behaves like projection when restricted to these groups.

(b) For $u + v \in TG_e \oplus TG_e$ the inverse of the mapping given in 1b is

$$v + w \mapsto (i_e)_{*e}v + (i_e)_{*e}w.$$

Therefore by the chain rule,

$$\mu_{*(e,e)}(v,w) = \mu_{*(e,e)} \circ [(i_e)_{*e}v + (i_e)_{*e}w]$$

$$= \mu_{*(e,e)} \circ (i_e)_{*e}v + \mu_{*(e,e)} \circ (i_e)_{*e}w$$

$$= (\mu \circ i_e)_{*e}v + (\mu \circ i_e)_{*e}w$$

$$= \mu_{*(e \times G)}v + \mu_{*(G \times e)}w$$

$$= v + w$$

(c) We compute the composition $\mu \circ (id \times \iota) \circ \Delta$ as

$$\mu \circ (\text{id} \times \iota) \circ \Delta(g) = \mu \circ (\text{id} \times \iota)(g,g) = \mu(g,g^{-1}) = e.$$

(d) Since the mapping $\mu \circ (id \times \iota) \circ \Delta$ is constant, we have that

$$(\mu \circ (id \times \iota) \circ \Delta)_{*e} = 0.$$

Since $\Delta=id\times id$ we know that $\Delta_{*e}\nu=(id_{*e},id_{*e})\nu=(\nu,\nu)$. Thus by the chain rule and 2b,

$$0 = (\mu \circ (\mathrm{id} \times \iota) \circ \Delta)_{*e} \nu = \mu_{*(e,e)} \circ (\mathrm{id}_{*e}, \iota_{*e}) \circ \Delta_{*(e)} \nu = \mu_{*(e,e)} \circ (\mathrm{id}_{*e} \nu, \iota_{*e} \nu) = \nu + \iota_{*\nu} \implies \iota_{*e} \nu = -\nu$$

Problem 3.

(a) Since $\mu: G \times G \to G$ is a C^{∞} mapping, the restriction mapping $\mu_g: G \to G$ is also C^{∞} . Furthermore, μ_g is a diffeomorphism, since it is smooth and bijective, and has smooth inverse $\mu_{g^{-1}}$. Therefore the tangent mapping $(\mu_g)_{*\varepsilon}$ is an isomorphism of TG_{ε} into TG_{g} .

(b) Consider the mapping $f: TG \to G \times \mathbb{R}^n$ defined by $[g, v] \mapsto (g, (\mu_g)_{*e}^{-1}v)$. We claim that this is an isomorphism. Since $(\mu_g)_{*e}^{-1}$ is a linear isomorphism, this is a bijection. Furthermore, the following diagram commutes

Thus the tangent bundle of G must be trivial.

Problem 4.

Let $\mathscr{A} = \{(\varphi_i, U_i)\}$ be a maximal atlas on M. Then the charts on TM are of the form

$$\begin{split} f_i: U_i \times \mathbb{R}^n &\to \phi_i(U_i) \times \mathbb{R}^n \\ (\nu, p) &\mapsto (\phi_i(p), (\phi_i)_{*p} \nu). \end{split}$$

On a suitable domain, the transition maps are of the form $(\phi_j \circ \phi_i^{-1}(x), (\phi_i \circ \phi_j^{-1})_{*x}\nu)$, and the jacobian will be

$$D(\phi_j\circ\phi_{\mathfrak{i}}^{-1}(x),(\phi_{\mathfrak{i}}\circ\phi_{\mathfrak{j}}^{-1})_{*x}\nu)=\begin{bmatrix}(\phi_{\mathfrak{j}}\circ\phi_{\mathfrak{i}}^{-1})'(x)&0*&(\phi_{\mathfrak{j}}\circ\phi_{\mathfrak{i}}^{-1})_{*x}\end{bmatrix}.$$

Since $(\phi_j \circ \phi_i^{-1})'(x) = (\phi_j \circ \phi_i^{-1})_{*x}$ as linear maps, and are both nonsingular by the inverse function theorem,

$$Det(D(\phi_j\circ\phi_i^{-1}(x),(\phi_i\circ\phi_j^{-1})_{*x}\nu))=Det(\phi_j\circ\phi_i^{-1}(x))^2>0.$$

The transition mappings on TM have positive determinants hence TM is orientable.

Problem 5.

Let M be a nonorientable manifold. Suppose $TM \cong M \times \mathbb{R}^n$. By problem 4 we have that TM is orientable. Since some isomorphism f maps $TM \to M \times \mathbb{R}^n$, the orientation on TM gets pushed to an orientation of $M \times \mathbb{R}^n$. Then we must have that $M \times \mathbb{R}^n$ is orientable. Note however that charts on $M \times \mathbb{R}^n$ are of the form $\phi_i \times id$, where ϕ_i is a chart on M and id is the identity on \mathbb{R}^n . The transition maps on $M \times \mathbb{R}^n$ will be the product of transition maps on M with the identity. For some choice of charts ϕ_i , ϕ_j the tangent mapping $D(\phi_i \circ \phi_i^{-1}, id)$ will have negative determinant. Thus $M \times \mathbb{R}^n$ is not orientable, a contradiction.

Problem 6.

Given that the transition mappings of E are of the form:

$$\begin{split} \mathsf{T}\phi_{\mathfrak{i}}(U_{\mathfrak{i}}\cap U_{\mathfrak{j}}) &\to \mathsf{T}\phi_{\mathfrak{j}}(U_{\mathfrak{i}}\cap U_{\mathfrak{j}}) \\ (x,\nu) &\mapsto (\phi_{\mathfrak{j}}\circ\phi_{\mathfrak{i}}^{-1}(x),\Lambda_{\mathfrak{i}\mathfrak{j}}(x)\nu) \end{split}$$

For a smooth mapping $\Lambda_{ij}: \phi_i(U_i \cap U_j) \to GL(k,\mathbb{R})$. Note that $\Lambda_{ij}(x)$ induces a map $\Lambda_{ij}^*(x): (\mathbb{R}^k)^* \to (\mathbb{R}^k)^*$ by pullback i.e. $\Lambda_{ij}^*(\eta)(\nu) = \eta(\Lambda_{ij}(x)(\nu))$. So we have bundle charts with transition maps on E^* given by

$$\begin{split} T^*\phi_j(U_i\cap U_j) &\to T^*\phi_i(U_i\cap U_j) \\ (y,\eta) &\mapsto (\phi_i\circ\phi_j^{-1}(y),\Lambda_{ij}^*((\phi_i\circ\phi_j^{-1}(y))\eta) \end{split}$$

The transition maps induce an equivalence relation \sim on $\coprod T^*\phi_i(U_i)$ where $(x,\lambda)\sim (y,\eta)$ if for some i,j,j

$$(x,\lambda)=(\phi_{\mathfrak{i}}\circ\phi_{\mathfrak{j}}^{-1}(y),\Lambda_{\mathfrak{i}\mathfrak{j}}^{*}((\phi_{\mathfrak{i}}\circ\phi_{\mathfrak{j}}^{-1}(y))\eta).$$

By A2Q7 this gives a manifold structure to E^* . We have constructed a dual bundle (E^*, M, π) .

Problem 7.

(a) Recall from basic algebra, a root b of p(z) is of multiplicity greater than 1 if and only if it is a root of p'(z). Take a_0, \ldots, a_n so that $p(z) = a_0 + \cdots + a_{n-1}z^{n-1} + z^n$ has n distinct roots $\{b_1, \ldots, b_n\}$. We have that $p(b_i) - p'(b_i)$ is nonzero. Since p(z) - p'(z) is continous when viewed as a function of z, a_0, \ldots, a_n , there exists some ε ball B_ε around $(a_0, \ldots, a_n) \in \mathbb{C}^n$ so that $p'(b_i) - p(b_i)$ does not vanish for all $a \in B_\varepsilon$. Since the roots b_i smoothly vary with (a_0, \ldots, a_{n-1}) , M_n is an open set in \mathbb{C}^n , so it must be an n-manifold.

(b) This is not a smooth manifold. Consider when n=2. Let $A \subset \mathbb{C}^2 \cong \mathbb{R}^4$ be the space of polynomials with complex coefficients with at least one complex root. If we notate coordinates in \mathbb{C}^2 as (b_1, b_2, c_1, c_2) then A will be the union of subsets parametrized by $A_1 = (b_1, 0, c_1, c_2)$ and $A_2 = (b_1, b_2, c_1, 0)$. Open neighbourhoods of this subset will look like $(b_1 \pm \varepsilon, 0, c_1 \pm \varepsilon, c_2 \pm \varepsilon)$ and $(b_1 \pm \varepsilon, b_2 \pm \varepsilon, c_1 \pm \varepsilon, 0)$. However on $A_1 \cap A_2$, the open neighborhoods will look like $(b_1 \pm \varepsilon, 0, c_1 \pm \varepsilon, 0)$. These open sets are not of the same dimension hence this can not be a smooth manifold.