

Indian Association for the Cultivation of Science

(Deemed to be University under the *de novo* category)

Integrated Bachelor's-Master's Program

End-Semester (Sem-II) Examination-Spring 2020

Subject:Liner Algebra and Multivariable Calculus

Subject Code: MCS 1201 A

Full marks: 50 Time Alloted: 3 hours

- 1. Suppose $f:[0,1] \to [0,1]$ is a continuous function. Then show that f has a fixed point. I.e. there is an $x \in [0,1]$ such that f(x) = x.
- 2. Show that the function $f:[0,\infty)\to\mathbb{R}$ given by $f(x)=\sqrt{x}$ is uniformly continuous on $[0,\infty)$.
- 3. Suppose $f:[0,2]\to\mathbb{R}$ is a continuous function on [0,2] and differentiable on (0,2). Suppose $f(0)=0,\ f(1)=1$ and f(2)=1. Show that there is a $c\in(0,2)$ such that $f'(c)=\frac{1}{3}$.
- 4. Suppose $f:[0,1] \to \mathbb{R}$ is a continuous function with the property that $\int_0^x f = \int_x^1 f$ for all $x \in [0,1]$. Show that f(x) = 0 for every $x \in [0,1]$. [10]
- 5. Show that

$$\lim_{n \to \infty} \left[\frac{1}{n^{p+1}} \sum_{k=1}^{n} k^{p} \right] = \frac{1}{p+1}.$$

[10]