Cálculo Diferencial e Integral II - Turma B

21 de Maio de 2015

Nome: _

Q:	1	2	3	4	5	6	7	Total
P:	20	10	30	20	20	10	10	100
N:								

Questão 1

Para cada função abaixo, calcule o gradiente.

(a)
$$10 f(x,y) = x^2 + xy - 4y^2$$

(b)
$$10 f(x, y, z) = x^2 - 2y^3 + 4z^2 - xyz$$

Questão 2

Calcule a seguinte derivada pela regra da cadeia

(a)
$$10$$
 $\frac{\mathrm{d}f}{\mathrm{d}t}$, onde $f(x,y) = e^x + xy^2$, onde $x = -t$ e $y = t^2$.

Considere a função $f(x, y, z) = 2x^2 + xy + y^2 + z^2 - 5x - 3y - 2z + 1$.

(a) |10| No ponto (0, -1, 1), qual a taxa de crescimento na direção que leva à origem?

(b) 20 Encontre os pontos críticos do problema de minimizar f sujeito a -2x+3y+4z=13.

Questão 4

Encontre e classifique os pontos críticos da função $f(x,y) = x^3 - 3x + 3xy^2$.

Considere as curvas de nível da função f, as elipses numeradas esboçadas abaixo, e uma curva h(x,y) = 0 também representada (sem numeração).

- (a) 5 Desenhe no gráfico representações para o gradiente nos pontos $(0,1), (-\frac{1}{2},-1)$ e (-1,1).
- (b) |15 | Pelo gráfico, indique os minimizadores e maximizadores locias e globais da função f com a restrição h(x,y) = 0, justificando. Estime os valores da função nesses pontos conjunto.

Questão 6

Calcule a integral dupla

$$\int_0^2 \int_0^3 x^2 y \mathrm{d}x \mathrm{d}y.$$

Calculo o volume da figura abaixo do plano 2x - 3y + z - 6 = 0 e acima do triângulo no plano

x-y de vértices (0,0), (1,0) e (0,1).

Derivadas

$$\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos(x)) = -\sin(x)$$
 • $\frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$

$$\bullet \ \frac{\mathrm{d}}{\mathrm{d}x}(e^x) = e^x$$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x)) = \cos(x)$$
 • $\frac{\mathrm{d}}{\mathrm{d}x}(\ln(x)) = \frac{1}{x}$

•
$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(x)) = \frac{1}{x}$$

Integrais

Regras

• Regra da cadeia com f(x, y), $x \in y$ dependendo de t.

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$