4

درس رقم/7

الأستاذ: نجيب عثماني

المادة: الرياضيات

ملخص لدرس: الدوال العددية

ثانوية ابن خلدون التأهيلية

مستوى الجذع مشترك أدبى

I. مفهوم دالة عددية

 \mathbb{R} نیکن D جزءا من

 \overline{f} دالة عددية معرفة على D (أو f دالة من D نحو \mathbb{R}), كل علاقة تربط كل عنصر x من D بعنصر وحيد من \mathbb{R} , يرمز له بالرمز f(x).

f(x) = -2x: المعرفة كالتالى: عتبر الدالة العددية المعرفة كالتالى:

أنقل و أتمم الجدول التالي:

			ي		٠ ١	
		$\frac{5}{2}$			1	x
13	$\frac{2}{7}$		-1	-6		f(x)

II. مجموعة تعريف دوال عددية:

<u>تعریف:</u>

 $\frac{1}{x}$ دالة عددية لمتغير حقيقى $\frac{1}{x}$

مجموعة تعريف الدالة f(x) هي المجموعة المكونة من جميع الأعداد الحقيقية x بحيث f(x) موجود أي f(x) قابلة للحساب. و يرمز لها غالبا بالرمز f(x) بمعنى: $f(x) \in \mathbb{R}$ تكافئ f(x) تكافئ f(x) .

Aنقول إن f دالة عددية معرفة على A إذا كان A جزءا من f

 $f:D o \mathbb{R}$: الله عددية معرفة على D نكتب لتكن f دالة عددية معرفة على

$$x \to f(x)$$

- . f المجموعة D تسمى مجموعة تعريف الدالة
 - y = f(x): لیکن x عنصرا من D, بحیث x
 - . f بالدالة χ بالدالة y
 - y العنصر χ يسمى سابق العنصر χ
- الدالة f تسمى كذلك دالة عددية لمتغير حقيقي. f

المستوى المنسوب إلى معلم $(o; \vec{i}; \vec{j})$ غالبا يكون متعامدا ممنظما

 $f(x) = \frac{2x}{4x^2 - 1}$: المعرفة كالتالي: $f(x) = \frac{2x}{4x^2 - 1}$

f مجموعة تعريف الدالة D_f حدد

III. التمثيل المبياني لدالة عددية:

<u>ريف:</u>

 \mathbb{R} الله عددية معرفة على جزء D من D التكن

التمثيل المبياني C_f للدالة f (أو منحنى الدالة f) هو مجموعة النقط المبياني المستوى بحيث:

- . D الأفصول x يتغير في مجموعة التعريف
 - . f الأرتوب y هو صورة x بالدالة

. y = f(x) و $x \in D$ بمعنى

الأستاذ: عثماني نجيب

. $y=f\left(x\right)$ و $x\in D$ فان $M\left(x,y\right)\in C_f$ و التعریف یعنی: اذا کان $X\in D$ فان $Y=f\left(x\right)$ فان $X\in D$ اذا کان $X\in D$

 $(o;\vec{i};\vec{j})$ العلاقة (c_f) في المعلم عادلة ديكارتية للمنحنى (c_f) في المعلم العلاقة العلاقة المعلم العلاقة الع

 $f(x) = x^2$:نعتبر الدالة f المعرفة كالتالي:

f أرسم التمثيل المبياني للدالة

IV. الدالة الزوجية ـ الدالة الفردية:

أ) الدالة الزوجية:

تعریف: لتکن f داله عددیهٔ لمتغیر حقیقی x و D_f مجموعهٔ تعریفها.

نقول إن f دالة زوجية إذا تحقق الشرطان التاليان:

- D_f لكل D_f من D_f لدينا: D_f من D_f ككل
- f(-x) = f(x) لکن x من D_f من x ککل

خاصية: (التأويل المبياني لدالة زوجية)

 $(o;\vec{i};\vec{j})$ دالة عددية لمتغير x حقيقي و منحناها في معلم متعامد ممنظم لتكن f

. C_f دالة زوجية إذا و فقط إذا كان محور الأراتيب محور تماثل المنحنى f

ملاحظة: إذا كانت f دالة زوجية (على التوالي فردية) فانه يكفي إنشاء $C_f \cap \mathbb{R}^+$ على $D_f \cap \mathbb{R}^+$ و بالتماثل بالنسبة لمحور الأراتيب (على التوالى بالنسبة لأصل المعلم) نحصل على المنحنى $C_f \in \mathcal{C}_f$ بكامله.

لكل x من, x لكل

بالنسبة للعدد0.

الى D_f يعني أن الله يعني أل

ب) الدالة الفردية:

 C_f و X و منطم متعامد ممنظم X و منحناها في معلم متعامد ممنظم X و التكن X دالة عددية لمتغير حقيقي

تعریف:

 D_f و مجموعة تعريفها لتكن T_f محموعة تعريفها

نقول أن f دالة فردية إذا تحقق الشرطان التاليان:

- D_f من D_f لدينا: X تنتمي إلى D_f
- f(-x) = -f(x) لاينا: D_f من D_f من

خاصية: (التأويل المبياني لدالة فردية)

 $(o;\vec{i};\vec{j})$ دالة عددية لمتغير حقيقي و منحناها في معلم متعامد ممنظم $(o;\vec{i};\vec{j})$ دالة عددية لمتغير

. C_f مركز تماثل المنحنى f كانت النقطة f مركز تماثل المنحنى . f

V. تغيرات دالة عددية:

1. <u>تعریف:</u>

. I دالة عددية معرفة على المجال f

- $f(x_1) \prec f(x_2)$ فان $x_1 \prec x_2$ فان لكل, إذا و فقط إذا كان لكل, إذا و فقط إذا كان أيدية قطعا (تناقصية قطعا على المجال $f(x_1) \prec f(x_2)$ فان $f(x_1) \prec f(x_2)$
 - $f\left(x_{1}\right)=f\left(x_{2}\right)$ الدالة $f\left(x_{1}\right)=f\left(x_{2}\right)$ ثابتة على المجال $f\left(x_{1}\right)$ إذا و فقط إذا كان لكل x_{2} و x_{1} من x_{2} من x_{3} الدينا:

2. جدول تغيرات دالة:

لتكن f دالة عددية لمتغير حقيقي x و D_f مجموعة تعريفها.

دراسة منحى تغيرات الدالة f, يعني تجزيء المجموعة D_f إلى أكبر مجالات ممكنة تكون فيها الدالة f تزايدية أو تناقصية قطعا أو ثابتة. و نلخص نتائج هذه الدراسة في جدول, يسمى جدول تغيرات الدالة f, بحيث السهم (تصاعدي) يعني أن f تزايدية قطعا, و السهم (تنازلي) يعنى أن تناقصية f قطعا و السهم (أفقى) يعنى أن f ثابتة.

د. رتابة دالة f على مجال:

الأستاذ: عثماني نجيب

لتكن دالة عددية معرفة على مجال [.

. I نقول إن f رتيبة قطعا على المجال I إذا كانت تزايدية قطعا على I أو تناقصية قطعا على

VI. دراسة بعض الدوال الاعتيادية

 $(a \neq 0)$ $x \mapsto ax + b$ الدالة:

 $f\left(x\right)=2x+1$:مثال 1:نعتبر الدالة العددية f المعرفة على $\mathbb R$ بما يلي

f أرسم التمثيل المبياني للدالة

ملاحظة: التمثيل المبياني للدالة f هو مستقيم

f(x) = 4x : 2 مثال

و تحديد جدول التغيرات.

 $(a \neq 0)$ $x \mapsto ax^2$

ليكن عددا حقيقيا غير منعدم.

نعتبر الدالة العددية f المعرفة على $\mathbb R$ بما يلي: $f(x)=ax^2$ و $f(x)=ax^2$ تمثيلها المبياني في معلم متعامد ممنظم.

زوجية الدالة f:

ليكن $x \in \mathbb{R}$ الدينا $x \in \mathbb{R}$ دالة زوجية. f(-x) = f(x) اذن $f(-x) = a(-x)^2$ و منه $f(-x) = a(-x)^2$

خاصية

 $a \succ 0$ الحالة:

- .] $-\infty$, 0] الدالة a>0 و تناقصية قطعا على a>0 و تناقصية قطعا على إذا كانت
- $[-\infty,0]$ و تزایدیة قطعا علی $[0,+\infty]$ و تناقصیة قطعا علی $[0,+\infty]$ و الدالة [a]

$$a \prec 0$$
 الحالة:

التمثيل المبياني للدالة

بما أن f دالة زوجية فانه يكفى أن نمثلها على \mathbb{R}^+

ثم نتمم المنحنى (P) باستعمال التماثل المحوري بالنسبة لمحور الأراتيب

تعریف: المنحنی الممثل للدالة $ax^2 \mapsto ax^2$ يسمی شلجما.

النقطة أصل المعلم تسمى رأس الشلجم.

كل منحنى يقبل معادلة على شکل $Y = aX^2$ فی معلم $(\Omega; \vec{i}; \vec{j})$ یسمی شلجما رأسه Ω و محور تماثله هو محور (ΩY) الأراتيب

 $\overline{a} \prec 0$ حالة:

الأستاذ: عثماني نجيب

$$\underbrace{(a \neq 0)}_{x} \times \mapsto \frac{a}{x}$$

الدالة العددية للمتغير الحقيقي x و المعرفة بما يلي: $f(x) \mapsto \frac{a}{x}$ الدالة العددية للمتغير الحقيقي x و المعرفة بما يلي: $f(x) \mapsto \frac{a}{x}$

 $D_f = \left] - \infty, 0 \right[\bigcup \left] 0, + \infty \right[:$ هي الدالة f هيموعة التعريف: مجموعة تعريف الدالة مجموعة التعريف الدالة مجموعة التعريف الدالة ا

زوجية الدالة f(-x)=f(x) ينيا D_f , لدينا D_f , لدينا D_f باذن D_f دالة فردية.

- $[-\infty,0]$ و $[0,+\infty]$ فان الدالمة f تناقصية قطعا على كل من المجالين $a\succ 0$ و
 - .] $-\infty,0$ [و] $0,+\infty$ [الدالة f تز ايدية قطعا على كل من المجالين $a\prec 0$ فان الدالة و الدالة أ

a < 0 الحالة: $a \succ 0$ الحالة:

التمثيل المبياتي للدالة f: بما أن f على f على f على f على إf على الدالة f على باستعمال التماثل المركزي الذي مركزه f أصل بما أن f دالة فردية فانه يكفي أن نمثل f على f على f ثم نتمم منحنى الدالة f على باستعمال التماثل المركزي الذي مركزه f أصل

y=0 و x=0 منحنى الدالة $rac{a}{r} \mapsto (a
eq 0)$ يسمى هذلو لا مركزه a أصل المعلم و مستقيماه المقاربان هما

 $a \prec 0$:الحالة

 $a \succ 0$ عالة:

 $f(x) = \frac{2}{x}$: در اسة و تمثیل الدالة f المعرفة ب

 $f(x) = \frac{-3}{2}$ دراسة و تمثیل الدالة f(x) المعرفة ب:

 $x \mapsto ax^2 + bx + c$ التمثيل المبياني و تغيرات الدالة:

 $f(x) = 2x^2 + 4x - 2$: مثال: نعتبر الدالة العددية f المعرفة كالتالى: 1. أنقل و أتمم الجدول التالي:

الأستاذ: عثماني نجيب

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
 2. أرسم التمثيل المبياني للدالة f.
$S\left(-1;0 ight)$ و محوره $x=-1$ و محوره f يُسمى شلجما رأسه $S\left(-1;0 ight)$ و محوره المبياني للدالة f