

Topic 14: Computational Learning Theory (cont.) Min Zhang z-m@tsinghua.edu.cn

Review: How many examples will ε - exhaust the $VS_{H,D}$?

Theorem ε - exhausting the version space (version space的 ε -详尽化)

- If the hypothesis space H is finite, and D is a sequence of $m \ge 1$ independent randomly drawn examples of some target concept c
- Then for any $0 \le \epsilon \le 1$, the probability that the version space $VS_{H,D}$ is **not** ϵ -exhausted (with respect to ϵ) is **less than**

$$|H|e^{-\varepsilon m}$$

- Interesting! This **bounds** the probability that any consistent learner will output a hypothesis h with $error_{\mathcal{O}}(h) \ge \varepsilon$
- If we want this probability to be below δ ($0 \le \delta \le 1$),

$$|H|e^{-cm} \le \delta$$
 then: $m \ge \frac{1}{\varepsilon}(\ln|H| + \ln|1/\delta|)$

How many training examples are sufficient to assure that any consistent hypothesis will be probably (with probability 1- δ) approximately correct (within error ε).

— PAC Learning 可能近似正确学习

Review: PAC learning -- "approximately" "probably"

- $error_{\mathcal{D}}(h)$ cannot be 0 all the time
- Do not require a hypothesis with zero true error
 - Require that *error*_Φ(h) is bounded by some constant ε, that can be
 made arbitrarily small
 - & is the error parameter
- Approximately correct (近似正确)
- Do not require that the learner succeed on every sequence of randomly drawn examples
 - Require that its probability of failure is bounded by a constant, δ , that can be made arbitrarily small
 - \bullet δ is the confidence parameter
- Probably (可能)

introduction to machine learning: computational learning theory

Review: PAC learnable (PAC可学习性) • For all $c \in C$ distributions \mathcal{D} over X (instance length: n-complexity ofthe instance space, not the number of the instances), ε such that $0 < \varepsilon < \frac{1}{2}$ Have nothing to do δ such that $0 < \delta < \frac{1}{2}$ with |D|?? • *L* will output a hypothesis $h \in H$ with [1] probability \geq (1 - δ) Effectiveness $\operatorname{error}_{\mathcal{D}}(h) \leq \varepsilon$ Efficiency [2] in time that is polynomial in $1/\epsilon$, $1/\delta$, n, and size(c). → C is PAC-learnable (PAC可学习的) by L using H introduction to machine learning: computational learning theory

Review: PAC learnable (PAC可学习性)

- If *L* requires some minimum processing time per training example
 - then for *C* to be PAC-Learnable, *L* must learn from a polynomial number of training examples.
- A typical approach to show some concept is PAC-Learnable usually consists of two steps:
 - [1] Show that each target concept in C can be learned from a polynomial sample complexity
 - [2] Show that the processing time per training example is also polynomially bounded

6

introduction to machine learning: computational learning theory

Review

- Finite hypothesis space (有限假设空间)
 - Consistent learner (一致学习器) $m \ge \frac{1}{\varepsilon} (\ln |H| + \ln \frac{1}{\delta})$ Agnostic learner (不可知学习器) $m \ge \frac{1}{2\varepsilon^2} (\ln |H| + \ln(1/\delta))$
- Infinite hypothesis space(无限假设空间): VC dimension

$$m \ge \frac{1}{\varepsilon} \left(4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon) \right)$$

The Vapnik-Chervonenkis Dimension VC(H) of hypothesis space H defined over instance space X

- is the size of the largest finite subset of X shattered by H.
- if arbitrarily large finite sets of X can be shattered by H, then $VC(H)\equiv \infty$
- * If we find **ONE** set of instances of size d that can be shattered, then $VC(H) \ge d$.
- *To show that $VC(H) \le d$, we must show that **NO** set of size d can be shattered.

introduction to machine learning: computational learning theory

Mistake Bound Framework (出错界限模型)

Mistake Bound Framework

- So far: how many examples needed?
- What about: how many mistakes before convergence?
- Let's consider similar setting to PAC learning:
 - ullet Instances drawn at random from X according to distribution ${\mathcal D}$
 - Learner must classify each instance before receiving correct classification from teacher
 - Can we bound the number of mistakes learner makes before converging?

introduction to machine learning: computational learning theory

Mistake Bound Framework - example

- Weighted Majority Algorithm
 - *k*: minimal number of mistakes

for
$$\beta = \frac{1}{2}$$
, $M \le 2.4(k + \log_2 n)$ (See Ensemble Learning)

for any
$$0 \le \beta < 1$$
, $M \le \frac{k \log_2 \frac{1}{\beta} + \log_2 n}{\log_2 \frac{2}{1 + \beta}}$

• Why? -- please analyze it by yourself.

introduction to machine learning: computational learning theor

Optimal mistake bound

• Let $M_A(C)$ be the max number of mistakes made by algorithm A to learn concepts in C. (maximum over all possible c \in C, and all possible training sequences)

$$M_A(C) \equiv \max_{c \in C} M_A(c)$$

Definition: Let C be an arbitrary non-empty concept class. The optimal mistake
bound for C, denoted Opt(C), is the minimum over all possible learning algorithms A
of M_A(C).

$$Opt(C) \equiv \min_{A \in learning\ algorithms} M_A(C)$$

$$VC(C) \le Opt(C) \le M_{Halving}(C) \le log_2(|C|).$$

11

Overview: Questions for Learning Algorithms

- Sample complexity (样本复杂度)
 - How many training examples do we need to converge to a successful hypothesis with a high probability?
- Computational complexity (计算复杂度)
 - How much computational effort is needed to converge to a successful hypothesis with a high probability?
- Mistake Bound (出错界限)
 - How many training examples will the learner misclassify before converging to a successful hypothesis?

introduction to machine learning: computational learning theory

Overview

- PAC learning (可能近似正确学习)
 - Probably (success probability 1- δ)
 - Approximately (error ε)
 - Sample complexity + Computational complexity
- Sample complexity (样本复杂度)
 - Finite hypothesis space (有限假设空间)
 - Consistent learner (一致学习器)
 - $m \ge \frac{1}{\varepsilon} (\ln|H| + \ln\frac{1}{\delta})$ $m \ge \frac{1}{2\varepsilon^2} (\ln|H| + \ln(1/\delta))$ • Agnostic learner (不可知学习器)
 - Infinite hypothesis space (无限假设空间): VC dimension

$$m \ge \frac{1}{\varepsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon))$$

Mistake bound (出错界限)

introduction to machine learning: computational learning theory

Recommended Exercises: 7.2, 7.4, 7.5 (p227,

En.)

No Submission requirement

Mistake Bound Framework

- Proof:
 - [1] The best algorithm make k mistakes \rightarrow it's final weight is $(\beta)^k$.
 - [2] The sum of all algorithms' final weights is at most $n \ (1\text{-}(1\text{-}\beta)/2)^M.$
 - [3] $(\beta)^k \le n (1-(1-\beta)/2)^M$

$$M \le \frac{k \log_2 \frac{1}{\beta} + \log_2 n}{\log_2 \frac{2}{1+\beta}}$$

15

introduction to machine learning; computational learning theor