Ejercicio 20. Demuestra no existe ningún polinomio no constante $f(x) \in \mathbb{Z}[x]$ tal que f(a) sea primo para todo $a \in \mathbb{Z}$

Solución 20.

Sea f(x) un polinomio no constante, entonces f(x) es de la forma: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, donde los coeficientes $a_0, ..., a_n \in \mathbb{Z}$ y $n \ge 1$. Además, al menos uno de los coeficientes $a_i, 1 \le i \le n$, debe ser distinto de cero. Ahora bien, supongamos que $x = ka_i$, donde a_i es un coeficiente arbitrario no nulo $(i \in \{1, ..., n\})$ y concretamente a_0 si el polinomio tiene término independiente , entonces sustituyendo en la expresión anterior tenemos que

$$f(ka_0) = a_n(ka_0)^n + a_{n-1}(ka_0)^{n-1} + \dots + a_1ka_0 + a_0 = a_nk^na_0^n + a_{n-1}k^{n-1}a_0^{n-1} + \dots + a_1ka_0 + a_0$$

Observamos que cada término de la expresión $f(ka_0)$ tiene al menos un factor de a_0 , con lo que $f(ka_0)$ será divisible por a_0 , o lo que es equivalente, $a_0 \mid f(ka_0)$.

De esta manera, podremos sacar factor común a_0 y la expresión resultante $a_n k^n a_0^{n-1} + a_{n-1} k^{n-1} a_0^{n-2} + ... + a_1$ constituye otro factor. Y como k es un entero arbitrario, podemos tener infinitas combinaciones, de forma que al menos en una de ellas el segundo factor es diferente de cero y mayor que 1. Así, como tenemos dos factores diferentes de 1 y diferentes entre sí, deducimos que f(ka) no es primo. Y por lo tanto, siempre existirá un entero a tal que el polinomio f(a) no sea primo.