Assignment 1

Fatemeh (Hoorad) Abootalebi

ROI

ROI or region of interest is a rectangular that select by specifying pixel location (X,Y) of the left-top pixel of ROI and (SX,SY) of the right-down pixel of ROI.

User can define at least 1 ROI per each image. There is no limit for number of ROIs.

ROIs should not have overlaps. All ROIs check by checkROI function. If there is an overlap, the process stops.

Add Gray:

This function add the intensity to each pixel of grayscale images.

Value added to each pixel in ROI. If the result is greater than 255, it sets 255.

Parameters:

src: Address of source image

tgt: Modified image is saved in this address

roi number: Number of defined ROI

Input Vector: value This value add to intensity of all pixels

ROI Target ROI of image

Example

SampleImages\Gray\baboon.pgm OutputImages\baboon_add.pgm add 2 70 0 0 100 400 100 300 150 500 500

Image	SampleImages\Gray\baboon.pgm	Address of input image
Address	OutputImages\baboon_add.pgm	Address of modified image
Function	add	Function name
ROI	2	Number of ROI
	70	Value of first ROI
First Input	0	X of first ROI
	0	Y of first ROI
	100	SX of first ROI
	400	SY of first ROI
	100	Value of second ROI
Second Input	300	X of second ROI
	150	Y of second ROI
	500	SX of second ROI
	500	SY of second ROI

Add gray with 2 ROIs (ROI1: left, ROI2: right)

Figure 1 (a) Original Image (b) Modified Image

- (a) Original image
- (b) Value = 70 for ROI1 Value = 100 for ROI2

Binarize:

This function creates a binary image from 2D grayscale image by replacing all values above the threshold with 255s and setting all other values to 0s.

Parameters:

src: Address of source image

tgt: Modified image is saved in this address

roi_number: Number of defined ROI

Input Vector: threshold All pixels above the threshold set to 255, otherwise set to 0

ROI Target ROI of image

Example

SampleImages\Gray\floor.pgm OutputImages\floor_binarize.pgm
binarize 3 120 0 0 500 100 160 100 200 300 300 89 420 150 500 360

Image	SampleImages\Gray\floor.pgm	Address of input image
Address	OutputImages\floor_binarize.pgm	Address of modified image
Function	binarize	Function name
ROI	3	Number of ROI
	120	Value of first ROI
	0	X of first ROI
First Input	0	Y of first ROI
	500	SX of first ROI
	100	SY of first ROI
Second Input	160	Value of second ROI
	100	X of second ROI
	200	Y of second ROI
	300	SX of second ROI
	300	SY of second ROI
Third Input	89	Value of third ROI
	420	X of third ROI
	150	Y of third ROI
	500	SX of third ROI
	360	SY of third ROI

Binarize with 3 ROIs (ROI1: top, ROI2: middle, ROI3: bottom-right)

Figure 2 (a) Original Image (b) Modified Image

- (a) Original image
- (b) Threshold = 120 for ROI1

Threshold = 160 for ROI2

Threshold = 89 for ROI2

Brightness:

This function decrease or increase the intensity of each pixel based on the threshold.

If the intensity is larger than the threshold, then increase the brightness by value1. If the intensity is lower than the threshold, then decrease the brightness by value2. Otherwise there is no change.

Parameters:

src: Address of source image

tgt: Modified image is saved in this address

roi number: Number of defined ROI

Input Vector: threshold All pixels above the threshold set to 255, otherwise set to 0

value1 Increase the brightness by value1 of the pixel with the

intensity larger than the threshold

value2 Decrease the brightness by value2 of the pixel with the

intensity smaller than the threshold

ROI Target ROI of image

Example

SampleImages\Gray\lena.pgm OutputImages\lena_brightness.pgm brightness 3 128 50 70 50 180 300 512 180 30 40 50 30 462 150 100 50 80 301 200 512 300

Image	SampleImages\Gray\lena.pgm	Address of input image
Address	OutputImages\lena_brightness.pgm	Address of modified image
Function	brightness	Function name
ROI	3	Number of ROI
	128	Threshold of first ROI
	50	Value1 of first ROI
	70	Value2 of first ROI
First Input	50	X of first ROI
	180	Y of first ROI
	300	SX of first ROI
	512	SY of first ROI
	180	Threshold of second ROI
	30	Value1 of second ROI
Casand	40	Value2 of second ROI
Second	50	X of second ROI
Input	30	Y of second ROI
	462	SX of second ROI
	150	SY of second ROI
Third Input	100	Threshold of third ROI
	50	Value1 of third ROI
	80	Value2 of third ROI
	301	X of third ROI
	200	Y of third ROI
	512	SX of third ROI
	300	SY of third ROI

Modify brightness with 3 ROIs (ROI1: top, ROI2: left, ROI3: right)

Figure 3 (a) Original Image (b) Modified Image

- (a) Original image
- (b) Threshold = 128 and Value1 = 50 and Value2 = 70 for ROI1

Threshold = 180 and Value1 = 30 and Value2 = 40 for ROI2

Threshold = 100 and Value1 = 50 and Value2 = 80 for ROI2

Smoothing:

Averaging is a special case of discrete convolution. For a 3×3 neighborhood, the convolution mask h is

Each kernel window convolve whit averaging matrix. The middle index of kernel matrix set to result of convolution.

The edge pixels remain the same as the original pixel value.

Parameters:

src: Address of source image

tgt: Modified image is saved in this address

roi_number: Number of defined ROI

Input Vector: window The window size, it could be 3 or 5

ROI Target ROI of image

Example

SampleImages\Gray\tree.pgm OutputImages\tree_smoothing.pgm smoothing $\frac{2}{3}$ 80 80 230 350 5 231 50 400 300

Image	SampleImages\Gray\tree.pgm	Address of input image
Address	OutputImages\tree_smoothing.pgm	Address of modified image
Function	smoothing	Function name
ROI	3	Number of ROI
	3	Window size of first ROI
First Input	80	X of first ROI
	80	Y of first ROI
	230	SX of first ROI
	350	SY of first ROI
	5	Window size of second ROI
Second Input	231	X of second ROI
	50	Y of second ROI
	400	SX of second ROI
	300	SY of second ROI

Output

Smoothing with 2 ROIs (ROI1: left, ROI2: right)

Figure 4 (a) Original Image (b) Modified Image

- (a) Original image
- (b) Window = 3 for ROI1 Window = 5 for ROI2

Color Brightness:

This function modify the intensity of each channel of each pixel based on the More-C.

The red channel multiplies by More-C ($R'=R_0 \times More-C$). The green and blue channels add by More-C ($G'=G_0+More-C$ and $B'=B_0+More-C$)

Parameters:

src: Address of source image

tgt: Modified image is saved in this address

roi number: Number of defined ROI

Input Vector: More-C Process each channel either add or multiple with More-C

ROI Target ROI of image

Example

SampleImages\Color\frog.ppm OutputImages\frog_brightness.ppm
brightness 3 100 100 0 230 200 10 250 30 480 260

	l = 1 - \c = 1 \c	
Image	SampleImages\Color\frog.ppm	Address of input image
Address	OutputImages\frog_brightness.ppm	Address of modified image
Function	cbrightness	Function name
ROI	3	Number of ROI
First Input	100	More-C of first ROI
	100	X of first ROI
	0	Y of first ROI
	230	SX of first ROI
	200	SY of first ROI
	10	More-C of second ROI
Second Input	250	X of second ROI
	30	Y of second ROI
	480	SX of second ROI
	260	SY of second ROI

Modify brightness with 2 ROIs (ROI1: left, ROI2: right)

Figure 5 (a) Original Image (b) Modified Image

- (a) Original image
- (b) More-C = 100 for ROI1 More-C = 10 for ROI2

Color Binarize:

This function modify each pixel to red, green, or white based on the threshold.

It calculate Euclidian distance each pixel in RGB space from (0, 0, 0) and named it as OTC.

If OTC is lower than TC, intensity of this pixel set to (255, 0, 0). If OTC is between TC and 2TC, intensity of this pixel set to (0, 255, 0). Otherwise it set to (255, 255, 255).

Parameters:

src: Address of source image

tgt: Modified image is saved in this address

roi number: Number of defined ROI

Input Vector: TColor Euclidian distance threshold

CR Defined channel red in RGB spaceC CG Defined channel green in RGB spaceCB Defined channel blue in RGB space

ROI Target ROI of image

Example

SampleImages\Color\flower.ppm OutputImages\flower_binarize.ppm cbinarize 4 150 10 10 10 0 0 100 100 200 0 255 0 230 80 430 280 100 20 180 20 0 270 100 374 200 0 255 0 430 310 500 374

Image	SampleImages\Color\flower.ppm	Address of input image
Address	OutputImages\flower_binarize.ppm	Address of modified image
Function	cbinarize	Function name
ROI	4	Number of ROI
	150	TC of first ROI
	10	CR of first ROI
	10	CG of first ROI
First Input	10	CB of first ROI
First Input	0	X of first ROI
	0	Y of first ROI
	100	SX of first ROI
	100	SY of first ROI
	200	TC of second ROI
	0	CR of second ROI
	255	CG of second ROI
Second	0	CB of second ROI
Input	230	X of second ROI
	80	Y of second ROI
	430	SX of second ROI
	280	SY of second ROI
	100	TC of third ROI
	20	CR of third ROI
	180	CG of third ROI
Third Innut	20	CB of third ROI
Third Input	0	X of third ROI
	270	Y of third ROI
	100	SX of third ROI
	374	SY of third ROI
Fourth Input	200	TC of fourth ROI
	0	CR of fourth ROI
	255	CG of fourth ROI
	0	CB of fourth ROI
	430	X of fourth ROI
	310	Y of fourth ROI
	500	SX of fourth ROI
	374	SY of fourth ROI

Color binarization with 4 ROIs (ROI1: top-left, ROI2: middle, ROI3: bottom-left, ROI4: bottom-right)

Figure 6 (a) Original Image (b) Modified Image

(a) Original image

(b) TC = 150 and C (10, 10, 10) for ROI1 and ROI4

TC = 200 and C (0, 255, 0) for ROI2

TC = 100 and C (20, 180, 20) for ROI2

Result

Figure 7 (a) Original image (b) Grayscale image (c) Add gray (d) Binarize (e) Brightness (f) Smoothing (g) Color binarize (h) Color brightness