Monday Reading Assessment: Unit 4, Circular Motion

Prof. Jordan C. Hanson

October 21, 2024

1 Memory Bank

• $\Delta s = r\Delta \theta$

• $\omega = \frac{\Delta \theta}{\Delta t}$... Definition of angular velocity

• $v = r\omega$... Relationship between tangential velocity and angular velocity a distance r from the center

• $a_C = v^2/r = r\omega^2$... Centripetal acceleration

• $\omega = (2\pi)/T$... The orbital period, T, if ω is constant.

• Force of Gravity: The force of gravity between two objects of masses m_1 and m_2 separated by a distance r is

 $F_G = G \frac{m_1 m_2}{r^2} \tag{1}$

In Eq. 1, $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$.

2 Circular Motion

Figure 1: A blood centrifuge spinning counter-clockwise.

- 1. A diagram of a blood centrifuge is depicted in Fig. 1. It is spinning at an angular velocity of ω and tangential velocity v. In order to separate the contents in the vials (indicated with the mass m), the centripetal acceleration needs to be increased by a factor of 100. Which of the following actions will achieve this?
 - A: Doubling the angular velocity: $\omega \to 2\omega$.
 - B: Tripling the angular velocity: $\omega \to 3\omega$.
 - C: Quadrupling the angular velocity: $\omega \to 4\omega$.
 - D: Increasing the angular velocity by a factor of 10: $\omega \to 10\omega$.

- 2. Suppose the radius is 8 cm, and we measure v=15 m/s. (a) What is ω ? (b) What is a_C ? If solid contents of the vial have a mass m=10 grams, what is F_C ?
- 3. What is the rotational period of the motion? That is, how long does it take for m to go around the circle?
- 4. The mass of the Moon is estimated to be 7.35×10^{22} kg, and orbits the Earth at a distance of 384,000 km. Assuming that the centripetal force is provided by Eq. 1, solve for the orbital period of the moon.