Assignments 6.2

一、阅读 (Reading)

- 1. 阅读教材.
- 2. 课外阅读:
- Application of Transitive Closures in Medicine and Engineering.pdf

 Set Theory (2) -by Gerard O' Regan.pdf

 C + 1 2

二、问题解答 (Problems)

- 1. 设 R₁, R₂ 为 A 上关系, 判断并证明下述命题:
 - (1) R₁反对称⇒t(R)反对称;

反例:设 A={1,2,3}, A 上的二元关系 R={(1,2),(2,3),(3,1)}是反对称关系,

但 t(R)={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}不是反对称关系.

(2) $r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$;

 $r(R_1 \cup R_2) = R_1 \cup R_2 \cup I_A = (R_1 \cup I_A) \cup (R_2 \cup I_A) = r(R_1) \cup r(R_2).$

(3) $s(R_1 \cup R_2) = s(R_1) \cup s(R_2);$

 $s(R_1 \cup R_2) = (R_1 \cup R_2) \cup (R_1 \cup R_2)^{-1} = (R_1 \cup R_2) \cup (R_1^{-1} \cup R_2^{-1}) = (R_1 \cup R_1^{-1}) \cup (R_2 \cup R_2^{-1}) = s(R_1) \cup s(R_2).$

(4) $t(R_1 \cup R_2) \subseteq t(R_1) \cup t(R_2)$;

由 $R_1 \subseteq (R_1 \cup R_2)$, $R_2 \subseteq (R_1 \cup R_2)$,有 $t(R_1) \subseteq t(R_1 \cup R_2)$, $t(R_2) \subseteq t(R_1 \cup R_2)$,进而 $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$, $t(R_2) \subseteq t(R_1 \cup R_2)$,

(5) $t(R_1 \cup R_2) = t(R_1) \cup t(R_2)$;

反例: 令 A={0,1,2}, R₁={(0,1)}, R₂={(1,2)}, 则 $t(R_1)\cup t(R_2)$ ={(0,1), (1,2)}, 而 $t(R_1\cup R_2)$ ={(0,1), (1,2), (0,2)}。 因此 $t(R_1\cup R_2)\neq t(R_1)\cup t(R_2)$ 。

(6) $R_1 \subseteq R_2 \Rightarrow r(R_1) \subseteq r(R_2)$;

注意到 r(R₁)=R₁UI_ACR₂UI_A=r(R₂).

(7) $R_1 \subseteq R_2 \Rightarrow s(R_1) \subseteq s(R_2)$;

由 $R_1 \subseteq R_2$,则 $R_1^{-1} \subseteq R_2^{-1}$,有 $s(R_1) = R_1 \cup R_1^{-1} \subseteq R_2 \cup R_2^{-1} = s(R_2)$,于是 $s(R_1) \subseteq s(R_2)$.

(8) $R_1 \subset R_2 \Rightarrow t(R_1) \subset t(R_2)$.

先证在 $R_1 \subseteq R_2$ 时,对任意 $n \in N$, $R_1 \cap \subseteq R_2$ ⁿ,对 n 进行归纳.

n=0 时显然, n=1 时为题设, 显然真。设 n=k 时真, 现证 n=k+1 时亦真.

设 $(x,y) \in R_1^{k+1} = R_1^k \circ R_1$,于是存在一 z, $z \in A$,并且 $(x,z) \in R_1^k$, $(z,y) \in R_1$,根据归纳假设有 $(x,z) \in R_2^k$, $(z,y) \in R_2$,所以 $(x,y) \in R_2^k \circ R_2 = R_2^{k+1}$. 从而 $R_1^{k+1} \subseteq R_2^{k+1}$ 得证.

于是对任意 n∈N, R₁ⁿ⊆R₂ⁿ.

再证 $t(R_1) \subseteq t(R_2)$.设 $(x,y) \in t(R_1)$,于是存在一 m, $(x,y) \in R_1^m$.由于 $R_1^m \subseteq R_2^m$,所以 $(x,y) \in R_2^m$, $(x,y) \in t(R_2)$,故 $t(R_1) \subseteq t(R_2)$.

三、项目实践 (Programming) (Optional)

1. 编写程序,设计并实现关系闭包求解算法.