

Simplified POMDP Planning with an Alternative Observation Space and Formal Performance Guarantees ISBR 2024

Author: Da Kong and Vadim Indelman Technion - Israel Institute of Technology

December 3, 2024

Motivation

 Decision making under uncertainty is critical for many robotics tasks.

Partial Observable Markov Decision Process (POMDP) is a promising mathematical framework, considering different sources of uncertainty.

Motivation

- Solving POMDP is PSPACE-hard:
 - Curse of History
 - Curse of Dimensionality
- Simplification with performance guarantees is essential

Recent Advances in POMDP Approximation

Approximation Approaches:

- Open-loop planning [1]
- QMDP approximation [2]
- Information state approximation [3]
- Finite memory policy [4]

Simplification with Guarantees:

- Observation model simplification [5]
- State/observation space reduction [6]
- Multi-level Simplification [7]
- Simplification in Multi-Agent Systems [8]

POMDP: Basic Model

Model Definition

POMDP tuple: $\langle \mathcal{X}, \mathcal{A}, \mathcal{Z}, \mathbb{P}_T, \mathbb{P}_Z, b_k, r \rangle$

Spaces

- State space: *X*
- Action space: A
- Observation space: Z

Transition Model

State evolution:

$$\mathbb{P}_T(x_{k+1}|x_k,a_k)$$

Observation Model

Measurement likelihood:

$$\mathbb{P}_{Z}(z_{k}|x_{k})$$

Reward Function

Bounded reward:

$$r: \mathcal{X}, \mathcal{A} \mapsto [-R_{\mathsf{max}}, R_{\mathsf{max}}]$$

Simplification by Alternative Observation Space and Model

Concept:

Switch to alternative observation space and model.

Only at certain levels and branches of the tree.

Alternative Observation Space: Contributions

- A novel definition of belief tree with Alternative Observation Topology.
- A novel simplification method of POMDP by switching to an alternative observation space.
- Performance guarantees by a novel bound.
- Significant speedup in experiments.

Alternative Observation Space

Main questions to address:

- How to decide online where to simplify in belief tree?
- How to provide formal performance guarantees?
- How to adaptively transition between the different levels of simplification?

Alternative Observation Space: Definitions

Example of Alternative Observation Topology belief tree:

Alternative Observation Space: Definitions

■ The topology τ , with topology-dependent history $h_t^{\tau-}$:

$$\beta^{\tau}(h_t^{\tau-}) \in \{0,1\}.$$

■ The augmented observation space:

$$ar{\mathcal{Z}}_t(h_t^{\tau-}, au) riangleq \left\{ egin{array}{ll} \mathcal{O}_t, & ext{if } eta^ au(h_t^{\tau-}) = 0, \ \mathcal{Z}_t, & ext{if } eta^ au(h_t^{\tau-}) = 1. \end{array}
ight.$$

■ The augmented observation model for any $\bar{z}_t \in \bar{\mathcal{Z}}_t$:

$$\mathbb{P}_{\bar{Z}}(\bar{z}_t|x_t,h_t^{\tau-},\tau) \triangleq \beta^{\tau}(h_t^{\tau-})\mathbb{P}_{Z}(\bar{z}_t|x_t) + (1-\beta^{\tau}(h_t^{\tau-}))\mathbb{P}_{O}(\bar{z}_t|x_t).$$

Alternative Observation Space: Guarantees

Can bound the difference of Q function:

$$\left|Q_{\tau}^{\pi^{\tau}}(b_k,a_k) - Q_{\tau_{\mathcal{I}}}^{\pi^{\tau_{\mathcal{I}}*}}(b_k,a_k)\right| \leq B(\tau,\pi^{\tau},b_k,a_k).$$

The upper and lower bounds only within topology τ :

$$\textit{lb}(\tau, \pi^{\tau}, \textit{b}_k, \textit{a}_k) \leq \textit{Q}_{\tau_Z}^{\tau_{\tau_Z}*}(\textit{b}_k, \textit{a}_k) \leq \textit{ub}(\tau, \pi^{\tau}, \textit{b}_k, \textit{a}_k),$$

where $lb(\tau, \pi^{\tau}, b_k, a_k) \triangleq Q_{\tau}^{\pi^{\tau}}(b_k, a_k) - B(\tau, \pi^{\tau}, b_k, a_k)$ and $ub(\tau, \pi^{\tau}, b_k, a_k) \triangleq Q_{\tau}^{\pi^{\tau}}(b_k, a_k) + B(\tau, \pi^{\tau}, b_k, a_k)$.

Alternative Observation Space: Guarantees

Performance Guarantees by comparing upper and lower bounds of Q function.

(a) Overlap for topology τ Cannot identify optimal action.

(b) No overlap for topology τ' Can identify optimal action a_k .

Alternative Observation Space: Guarantees

How to obtain the bound $B(\tau, \pi^{\tau}, b_k, a_k)$?

A general result by considering QDMP as the upper bound of POMDP:

$$B(au, \pi^{ au}, b_k, a_k) = \max_{\pi^{QMDP}} \left| Q_{ au}^{\pi^{ au}}(b_k, a_k) - Q^{\pi^{QMDP}}(b_k, a_k) \right|.$$

With specific choice of the alternative model and space, we can get a better bound.

Specific case: Full Observability

The alternative observation space \mathcal{O} and model $\mathbb{P}_{\mathcal{O}}(o \mid x)$ are defined as,

$$\mathbb{P}_{\mathcal{O}}(o \mid x) \triangleq \delta(o - x)$$
, where $o \in \mathcal{O} \triangleq \mathcal{X}$.

Complexity: Significantly reduced

Consider the expected state-dependent reward for a given action a_i and the given $b_i^{\tau-}$ at the depth of i+1,

$$\mathbb{E}_{x_i|b_i^{\tau}} \mathbb{E}_{\bar{z}_i|x_i,h_i^{\tau}} \mathbb{E}_{x_{i+1}|x_i,a_i}[r(x_{i+1})],$$

complexity is reduced from $|\mathcal{Z}||\mathcal{X}|^2$ to $|\mathcal{X}|^2$.

Alternative Observation Space: Topology Transition

- If bounds for τ overlap, cannot identify optimal action.
- Tighten the bounds by transitioning to τ' .

Figure: Incremental and adaptive transition from τ to τ' .

Alternative Observation Space: Experiments

Simulation Trajectory of our method in Goal-Reaching Task:

Runtime: 2x+ speedup with the same optimal actions identified

Method	Total Planning Time for 10 Steps (s)
Proposed	7.731
Full Problem	17.720

Conclusion

- A novel framework to simplify POMDP by selectively switching to alternative observation space and model.
- The definition of adaptive observation topology for belief tree.
- The novel bounds for the simplification method to maintain performance guarantees.
- Optimal actions identified with 2 times more speedup.

Bibliography

G. Flaspohler, N. A. Roy, and J. W. Fisher III, "Belief-dependent macro-action discovery in pomdps using the value of information," *Advances in Neural Information Processing Systems*, vol. 33, pp. 11108–11118, 2020.

K. Hauser, *Randomized Belief-Space Replanning in Partially-Observable Continuous Spaces*, pp. 193–209.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, "Approximate information state for approximate planning and reinforcement learning in partially observed systems," *Journal of Machine Learning Research*, vol. 23, no. 12, pp. 1–83, 2022.

A. D. Kara and S. Yuksel, "Near optimality of finite memory feedback policies in partially observed markov decision processes," *J. of Machine Learning Research*, vol. 23, no. 1, pp. 437–482, 2022.

I. Lev-Yehudi, M. Barenboim, and V. Indelman, "Simplifying complex observation models in continuous pomdp planning with probabilistic guarantees and practice," in *AAAI Conf. on Artificial Intelligence*, February 2024.

M. Barenboim and V. Indelman, "Online pomdp planning with anytime deterministic guarantees," in *Advances in Neural Information Processing Systems (NeurIPS)*, December 2023.

Bibliography

A. Zhitnikov, O. Sztyglic, and V. Indelman, "No compromise in solution quality: Speeding up belief-dependent continuous pomdps via adaptive multilevel simplification," *Intl. J. of Robotics Research*, 2024.

T. Kundu, M. Rafaeli, and V. Indelman, "Multi-robot communication-aware cooperative belief space planning with inconsistent beliefs: An action-consistent approach," in *IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS)*, 2024.