

## OUTLINE

- STATE SPACE MODEL
- SYNTHETIC SIMULATIONS
  - SISR
  - AUXILIARY
- REAL DATA
- IMPROVEMENTS AND FUTURE WORK

### MEASUREMENT MODEL

**GARMIN FORERUNNER 235** 

LONGITUDE (m)
LATITUDE (m)



$$y_{n} = \begin{bmatrix} vincenty(lon_{n}) \\ vincenty(lat_{n}) \end{bmatrix} + [u_{n}]$$

$$where \ u_{n} \sim N_{2}(0, \Sigma_{u})$$

### PROCESS MODEL

LONGITUDE (m) LATITUDE (m) **HEADING** (rad) VELOCITY (m/s) AVG VELOCITY (m/s)



#### PRIOR KNOWLEDGE

RUNNER ON KNOWN PATH

2 BEHAVIORS: - NEARLY CONSTANT VELOCITY STOPPED TO REST

POPULATION PACE AVERAGES

$$x_{n+1} = \begin{bmatrix} lon_{n+1} \\ lat_{n+1} \\ \theta_{n+1} \\ v_{n+1} \\ m_{n+1} \end{bmatrix} = \begin{bmatrix} lon_n + v_n * \cos(\theta_n) \\ lat_n + v_n * \sin(\theta_n) \\ A(lon_n, lat_n) \\ \beta * m_n \\ \alpha * m_n + (1-\alpha) * v_n \end{bmatrix} + \begin{bmatrix} w_{lon} \\ w_{lat} \\ w_{\theta} \\ w_v \\ w_m \end{bmatrix}$$

$$w_n = \begin{bmatrix} w_{lon} \sim N(0, \sigma^2_{lon}) \\ w_{lat} \sim N(0, \sigma^2_{lat}) \\ w_{\theta} \sim N(0, \sigma^2_{\theta}) \\ w_v \sim N(0, \sigma^2_{\psi}) \\ w_m = 0 \end{bmatrix}$$

$$w_{lon} \sim N(0, \sigma_{lon}^{2})$$

$$w_{lat} \sim N(0, \sigma_{lat}^{2})$$

$$w_{\theta} \sim N(0, \sigma_{\theta}^{2})$$

$$w_{v} \sim N(0, \sigma_{v}^{2})$$

$$w_{m} = 0$$

A= nearest neighbor approximation

 $\beta$  = binomial random variable with a p ( $\beta$  = 1) = 0.9

 $\alpha = 0.95$ 

# HEADING APPROXIMATION

|             | $\int lon_{n+1}$          |   | $\int lon_n + v_n * \cos(\theta_n)$              |   | $\begin{bmatrix} w_{lon} \end{bmatrix}$ |
|-------------|---------------------------|---|--------------------------------------------------|---|-----------------------------------------|
|             | $lat_{n+1}$               |   | $lat_n + v_n * \sin(\theta_n)$                   |   | $W_{lat}$                               |
| $x_{n+1} =$ | $\theta_{n+1}$            | = | $A(lon_n, lat_n)$                                | + | $w_{\theta}$                            |
|             | $V_{n+1}$                 |   | $eta * m_{_n}$                                   |   | $w_{v}$                                 |
|             | $\lfloor m_{n+1} \rfloor$ |   | $\left[ \alpha * m_n + (1-\alpha) * v_n \right]$ |   | $\begin{bmatrix} w_m \end{bmatrix}$     |



## VELOCITY INITIALIZATION

|             | $\int lon_{n+1}$                        |   | $lon_n + v_n * cos(\theta_n)$     |   | $\begin{bmatrix} w_{lon} \end{bmatrix}$ |
|-------------|-----------------------------------------|---|-----------------------------------|---|-----------------------------------------|
| $x_{n+1} =$ | $lat_{n+1}$                             |   | $lat_n + v_n * \sin(\theta_n)$    |   | $W_{lat}$                               |
|             | $\theta_{n+1}$                          | = | $A(lon_n, lat_n)$                 | + | $w_{\theta}$                            |
|             | $V_{n+1}$                               |   | $eta * m_n$                       |   | $w_v$                                   |
|             | $\begin{bmatrix} m_{n+1} \end{bmatrix}$ |   | $\alpha * m_n + (1-\alpha) * v_n$ |   | $\begin{bmatrix} w_m \end{bmatrix}$     |



http://www.pace-calculator.com/5k-pace-comparison.php

### PARAMETER VALUES

#### MEASUREMENT MODEL

$$y_{n} = \begin{bmatrix} vincenty(lon_{n}) \\ vincenty(lat_{n}) \end{bmatrix} + [u_{n}]$$

$$where \ u_{n} \sim N_{2}(0, \Sigma_{u})$$

$$\Sigma_u = \begin{bmatrix} 9m^2 & 0 \\ 0 & 9m^2 \end{bmatrix}$$

#### **PROCESS MODEL**

$$x_{n+1} = \begin{bmatrix} lon_{n+1} \\ lat_{n+1} \\ \theta_{n+1} \\ v_{n+1} \\ m_{n+1} \end{bmatrix} = \begin{bmatrix} lon_n + v_n * \cos(\theta_n) \\ lat_n + v_n * \sin(\theta_n) \\ A(lon_n, lat_n) \\ \beta * m_n \\ \alpha * m_n + (1-\alpha) * v_n \end{bmatrix} + \begin{bmatrix} w_{lon} \\ w_{lat} \\ w_{\theta} \\ w_{v} \\ w_m \end{bmatrix}$$

$$w_n = \begin{bmatrix} w_{lon} \sim N(0, \sigma^2_{lon}) \\ w_{lat} \sim N(0, \sigma^2_{lon}) \\ w_{\theta} \sim N(0, \sigma^2_{\theta}) \\ w_{v} \sim N(0, \sigma^2_{\theta}) \\ w_{v} \sim N(0, \sigma^2_{v}) \\ w_{m} = 0 \end{bmatrix}$$

$$w_{n} = \begin{bmatrix} w_{lon} \sim N(0, \sigma^{2}_{lon}) \\ w_{lat} \sim N(0, \sigma^{2}_{lat}) \\ w_{\theta} \sim N(0, \sigma^{2}_{\theta}) \\ w_{v} \sim N(0, \sigma^{2}_{v}) \\ w_{m} = 0 \end{bmatrix}$$

$$\sigma_{lon}^{2} = 2m^{2}$$

$$\sigma_{lon}^{2} = 2m^{2}$$

$$\sigma_{lon}^{2} = 2m^{2}$$

$$\sigma_{\theta}^{2} = 0.75rad^{2}$$

$$\sigma_{v}^{2} = 0.9m^{2}/s^{2}$$

**FILTER** 

= 1000

= PRIOR

= 100

# 50 SIMULATIONS: 100 TIMES STEPS, 1000 PARTICLES



## SIMULATION - SYNTHETIC DATA



# SIMULATION POSTERIOR PDF









## REAL DATA RESULTS

GARMIN FORERUNNER 235
936 DATA POINTS
IRREGULAR TIME INTERVALS
TRAVERSES ENTIRE LENGTH OF LEIF ERIKSON

#### SEQUENTIAL IMPORTANCE SAMPLING

#### **AUXILIARY**





## REAL DATA RESULTS

936 DATA POINTS
IRREGULAR TIME INTERVALS
TRAVERSES ENTIRE LENGTH OF LEIF ERIKSON

#### SEQUENTIAL IMPORTANCE SAMPLING

#### **AUXILIARY**







### IMPROVEMENTS & FUTURE WORK

- BETTER HEADING APPROXIMATION
- SIMPLER PROCESS MODEL

$$x_{n+1} = \begin{bmatrix} lon_{n+1} \\ lat_{n+1} \\ \theta_{n+1} \\ v_{n+1} \end{bmatrix} = \begin{bmatrix} lon_{n} + v_{n} * \cos(\theta_{n}) \\ lat_{n} + v_{n} * \sin(\theta_{n}) \\ \theta_{n} \\ v_{n} \end{bmatrix} + \begin{bmatrix} w_{lon} \\ w_{lat} \\ w_{\theta} \\ w_{v} \end{bmatrix}$$

$$w_{n} = \begin{bmatrix} w_{lon} \sim N(0, \sigma_{lon}) \\ w_{lat} \sim N(0, \sigma_{lon}) \\ w_{lat} \sim N(0, \sigma_{lon}) \\ w_{\theta} \sim wC(0, \sigma_{\theta}) \\ w_{v} \sim N(0, \sigma_{v}) \end{bmatrix}$$

- MORE PARTICLES (5K or 10K)