



# Sistemas Criptográficos

- Técnicas que auxiliam a implementação dos serviços de segurança, principalmente:
  - Serviço de confidencialidade
  - Serviço de integridade
  - Serviço de autenticação
  - Serviço de irretratabilidade

3

# Sistemas Criptográficos (2)

- Sistemas básicos
  - Algoritmos de criptografia
  - Algoritmos de troca de chaves
  - Funções hash
  - Algoritmos de particionamento de chaves

### **CRIPTOGRAFIA**

# Agenda

Introdução

Por que Criptografia ?
O que è criptografia ?
Como funciona a Criptografia ?
Classificação

Modelos de Sistemas de Criptografia

Modelo de Chave Convencional

Modelo de Chave Pública



# Criptografia - O que é?

- Processo de transformação, através de uma chave secreta, de informação legível (mensagem) em informação ilegível (criptograma)
- Somente os indivíduos que conhecem a chave secreta tem capacidade de decifrar o criptograma e recriar a mensagem
- A dificuldade da decriptação reside em descobrir a chave secreta e não o segredo do método utilizado (algoritmo de criptografia).







### Mensagem:

- Informação na forma legível
- Nos sistemas de computação é representada por uma sequência de bits.
- Exemplo:
  - Texto em portugües, inglês, etc.
  - Programa fonte nalinguagem C
  - Programa fonte na linguagem Pascal
  - Programa executável
  - Imagem
  - Dados
  - Etc.

# Definições (3) Criptograma: Informação na forma ilegível Nos sistemas de computação é representada por uma seqüência de bits.

# Criptografia - Classificação

- Quanto ao tipo de operações de transformações
  - Substituição
  - Transposição
- Quanto ao Número de Chaves utilizadas
  - Simétrica
  - Assimétrica
- Quanto à forma de Processamento
  - Por bloco
  - Por stream (fluxo)

11

# Criptografia - Classificação Quanto ao Número de Chaves

- Simétrica, convencional ou de chave privada
  - Quando o remetente e o destinatário da informação utilizam a mesma chave
- Assimétrica, de chave pública ou de chave dupla
  - Quando o remetente e o destinatário da informação utilizam chaves diferentes





# Criptografia - Classificação Quanto à Forma de Processamento

### ■ Por Bloco:

 Processa um bloco de elementos por vez, produzindo assim um bloco de saída a cada vez.

### Stream:

 Processa os elementos de entrada de forma contínua (bit a bit, ou byte a byte).

15

# Criptografia - Classificação Quanto ao Tipo de Operações

### ■ Substituição:

 Quando cada elemento do plaintext (bit, letra, grupo de bits, grupos de letras, etc.) é mapeado em um lemento no ciphertext.

### ■ Transposição:

 Quando os elementos do plaintext tem sua posição alterada no ciphertext.

### Onde é útil a criptografia ?

- Na implementação de alguns serviços de segurança:
   Conclusão
  - · Confidencialidade:
    - Manter uma informação secreta
  - Autenticação
    - Autenticação de máquinas parceiras
    - Sistemas de autenticação de usuários baseados em chaves públicas

(Parcial)

- Integridade
  - Evitar alteração da informação de forma indevida
- Irretratabilidade
  - Impede que o emissor da mensagem alegue que não tenha enviado ou que o receptor alegue que não tenha recebido.

# Conclusão Parcial (2)

### Onde a criptografia não ajuda?

- Ataques destrutivos
- Informações não encriptadas
  - Antes da encriptação e/ou após a decriptação
- Senhas roubadas ou perdidas
- Traidores
- Criptoanálise realizada com sucesso

# Conclusão Parcial (3)

### O que é criptografia ?

- Processo de transformação, através de uma chave secreta de informação legível (plaintext) em informação ilegível (ciphertext).
- Somente os indivíduos que conhecem a chave podem decrifrar o ciphertext e criar novamente o plaintext.
- A dificuldade da decifragem reside em descobrir a chave secreta e não no segredo do método utilizado (algoritmo de criptografia).<sup>19</sup>

# Conclusão Parcial (3)

### Pergunta:

- Como a criptografia ajuda a implementar os serviços de segurança ?
- Veremos nos próximos módulos!

### Exercícios

- (1) Seja C o resultado da aplicação de um algoritmo de criptografia convencional sobre uma mensagem M utilizando-se uma chave K. O que é necessário para que uma entidade X possa decriptar esta mensagem ?
- (2) Seja C o resultado da aplicação de um algoritmo de criptografia de chave pública sobre uma mensagem M utilizando-se uma chave K. O que é necessário para que uma entidade X possa decriptar esta mensagem?

# Exercícios (2)

- (3) Sejam duas entidades A e B e CA o resultado da aplicação de um algoritmo de criptografia de chave pública sobre uma mensagem MA utilizando-se uma chave KA e CB o resultado sobre uma mensagem MB utilizando-se uma chave KB, cada uma com seu próprio par de chaves:
  - (a) CA pode ser decriptada com KA?
  - (b) CA pode ser decriptada com KB?
  - (c) CB pode ser decriptada com KB?
  - (d) CB pode ser decriptada com KA?
  - (e) O que é necessário para decriptar CA?
  - (f) O que é necessário para decriptar CB ?22















# Criptoanálise

### Criptoanálise:

 "Ciência que abrange os princípios, métodos e meios para se chegar à decriptação de um criptograma".

# ■ Possíveis Objetivos:

- Decifrar um criptograma específico
  - Se o oponente estiver interessado em somente nesta mensagem específica
- Decifrar a chave (K)
  - Se o oponente estiver interessado em decifrar várias mensagens.

### CRIPTOANÁLISE

# ■ Força do Algoritmo de Criptografia

 A Criptografia convencional se baseia no presuposto que seja impraticável decrifrar uma mensagem conhecendo somente o criptograma e o algoritmo.

11/22/2010

31

# TEMPO MÉDIO DE BUSCA EXAUSTIVA

| Tamanho da<br>Chave        | Número de<br>Chaves            | Tempo<br>Requerido<br>(1 cripto/µs) | Tempo Requerido (10 <sup>6</sup> cripto/μs) |
|----------------------------|--------------------------------|-------------------------------------|---------------------------------------------|
| 32                         | $2^{32} = 4,3 \times 10^9$     | 35,8 minutos                        | 2,15 milisegundos                           |
| 56                         | $2^{56} = 7,2x10^{16}$         | 1.142 anos                          | 10,01 horas                                 |
| 128                        | $2^{128} = 3,4 \times 10^{38}$ | 5,4x10 <sup>24</sup> anos           | 5,4x10 <sup>18</sup> anos                   |
| 26 Caracteres (permutação) | $26! = 4x10^{26}$              | 6,4x10 <sup>12</sup> anos           | 6,4x10 <sup>6</sup> anos                    |

11/22/2010

### **CUSTO COMPUTACIONAL PARA QUEBRA**

|           | Tamanho da Chave (bits) |        |         |           |         |         |  |  |
|-----------|-------------------------|--------|---------|-----------|---------|---------|--|--|
| Custo U\$ | 40                      | 56     | 64      | 80        | 112     | 128     |  |  |
| 100 K     | 2s                      | 35 h   | 1 ano   | 70000 ano | 10 e 14 | 10 e 19 |  |  |
| 1 M       | 200 ms                  | 3,5 h  | 37 dias | 7000 anos | 10 e 13 | 10 e 18 |  |  |
| 10M       | 20s                     | 21 m   | 4 dias  | 700 anos  | 10 e 12 | 10 e 17 |  |  |
| 100M      | 2 ms                    | 2m     | 9 h     | 70 anos   | 10 e 11 | 10 e 16 |  |  |
| 1G        | 200 us                  | 13 s   | 1 h     | 7 anos    | 10 e 10 | 10 e 15 |  |  |
| 10G       | 20 us                   | 1 s    | 5,4 m   | 245 anos  | 10 e 9  | 10 e 14 |  |  |
| 100G      | 2 us                    | 100 ms | 32 s    | 24 anos   | 10 e 8  | 10 e 13 |  |  |
| 1T;       | 0,2 us                  | 10 ms  | 3 s     | 2,4 anos  | 10 e 7  | 10 e 12 |  |  |
| 10T       | 0,02 us                 | 1 ms   | 300 ms  | 6 horas   | 10 e 6  | 10 e 11 |  |  |

Bruce Schneier, 1996

- \* O poder computacional dobra a cada 1,5 anos
- **☀** Obs. Tempo de duração do universo = 10 e 10.

11/22/2010

33

# Criptoanálise

# Sempre é possível decifrar uma mensagem!

Basta testar todas as chaves possíveis. É somente uma questão de tempo!

> Mas pode demorar mais que o tempo de duração do universo!



# Criptoanálise - Custos

- Custo computacional para quebra
  - Poder computacional dobra a cada 1,5 ano
  - Obs: Tempo de duração do universo = 10<sup>10</sup> anos

| 2000     | Tamanho da chave |        |         |             |                       |                       |  |  |  |
|----------|------------------|--------|---------|-------------|-----------------------|-----------------------|--|--|--|
| CustoU\$ | 40 bits 56 bits  |        | 64 bits | 80 bits     | 112 bits              | 128 bits              |  |  |  |
| 10 K     | 2 s              | 35 h   | 1 ano   | 70.000 anos | 10 <sup>14</sup> anos | 10 <sup>19</sup> anos |  |  |  |
| 100 k    | 200 ms           | 3,5 h  | 37 dias | 7.000 anos  | 10 <sup>13</sup> anos | 10 <sup>18</sup> anos |  |  |  |
| 1 M 📗    | 20 s             | 21 m   | 4 dias  | 700 anos    | 10 <sup>12</sup> anos | 10 <sup>17</sup> anos |  |  |  |
| 10 M     | 2 ms             | 2 m    | 9 h     | 70 anos     | 10 <sup>11</sup> anos | 10 <sup>16</sup> anos |  |  |  |
| 100 M    | 200 us           | 13 s   | 1 h     | 7 anos      | 10 <sup>10</sup> anos | 10 <sup>15</sup> anos |  |  |  |
| 1 G      | 20 us            | 1 s    | 5,4 m   | 245 anos    | 10 <sup>9</sup> anos  | 10 <sup>14</sup> anos |  |  |  |
| 10 G     | 2 us             | 100 ms | 32 s    | 24 anos     | 108 anos              | 10 <sup>13</sup> anos |  |  |  |
| 100 G    | 0,2 us           | 10 ms  | 3 s     | 2,4 anos    | 10 <sup>7</sup> anos  | 1012 anos             |  |  |  |
| 1 T      | .02 us           | 1 ms   | 300 ms  | 6 horas     | 10 <sup>6</sup> anos  | 10 <sup>11</sup> anos |  |  |  |

# Criptoanálise - Oponente

- Pode explorar vulnerabilidades do algoritmo
  - Necessita de conhecimentos de criptoanálise
- Pode estar a procura de pares mensagem-criptograma
  - Para tentar realizar ataque com força bruta
  - Para gerar livro código
- Pode tentar obter a chave no momento que é repassada para a entidade parceira
- Pode possuir um enorme poder computacional

3

# Criptoanálise - Exemplo

- Suponha um sistema onde as informações sejam criptografadas por um algoritmo qualquer. Um usuário mantém em um determinado diretório os seguintes arquivos:
  - arq1.cryptarq3.cryptarq2.cryptarq1.txt
- O arquivo arq1.txt não possue mensagem confidencial, portanto está aberto.
- Pergunta:
  - Existe algum problema?

# Criptoanálise - Exemplo

Existe a possibilidade de um oponente decifrar um criptograma (C) ou descobrir a chave (K) se:

- Vulnerabilidade do algoritmo
  - Os algoritmos de encriptação e decriptação forem vulneráveis
- Poder computacional
  - Possuir um enorme poder computacional
- Acesso à chave
  - Conseguir acesso ao valor da chave (K)

39

# Criptoanálise - Força da Criptografia

- Incondicionalmente segura
  - Não importa quanto do criptograma esteja disponível, não é possível inferir a mensagem original.
  - Somente ONE-TIME-PAD são incondicionalmente seguros
- Computacionalmente inviável (forte)
  - O custo para a quebra deve ser muito maior que o valor da informação
  - A demora da quebra deve ser muito maior que o tempo de vida útil da informação (OBS: Levar em conta a evolução do poder computacional)

### TIPOS DE ATAQUE

| Tipo de Ataque          | Conhecimento do Criptoanalista                                                                      |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Somente Texto Cifrado   | Algoritmo de Criptografia     Texto Cifrado                                                         |  |  |
| Texto Plano Conhecido   | Algoritmo de Criptografia     Texto Cifrado     Um ou mais pares de texto plano-cifrado             |  |  |
| Texto Plano Escolhido   | Algoritmo de Criptografia     Texto Cifrado     Escolha do texto plano                              |  |  |
| Texto Cifrado Escolhido | Algoritmo de Criptografia     Texto Cifrado     Escolha do texto cifrado                            |  |  |
| Texto Escolhido         | Algoritmo de Criptografia     Texto Cifrado     Escolha do texto plano     Escolha do texto cifrado |  |  |

41

### **TIPOS DE ATAQUE**

# (1) Somente Criptograma

- O criptoanalista possui como informação para decifrar um criptograma somente o próprio criptograma.
- Pode também ter conhecimento da ocorrência de um determinado padrão na mensagem
  - Exemplo: Arquivos Postscript sempre iniciam com "%!PS"
- Lembre-se que o algoritmo sempre é conhecido.

### TIPOS DE ATAQUE

# (2) Mensagem Conhecida

 O criptoanalista possui pares mensagemcriptograma.

43

### TIPOS DE ATAQUE

## (3) Mensagem Escolhida

- O criptoanalista possui pares mensagem-criptograma
- Porém, foi o próprio criptoanalista quem criou as mensagens, possivelmente com determinados padrões
- Estas mensagens escolhidas foram submetidas ao encriptador (utilizando a chave K que não é de seu conhecimento) gerando assim o correspondente criptograma

# TIPOS DE ATAQUE (4) Ciphertext Escolhido

- O criptoanalista possui pares mensagem-criptograma
- Porém, neste caso, o criptoanalista foi quem criou o criptograma, possivelmente com determinados padrões
- Este criptograma escolhido foi submetido ao decriptador (utilizando a chave K que não é de seu conhecimento) gerando assim a correspondente mensagem.

45

### TIPOS DE ATAQUE

### (5) Mensagem e Criptograma Escolhido

- O criptoanalista possui dois pares mensagemcriptograma
- Um par mensagem-criptograma cujo plaintext criado foi submetido ao encriptador gerando o criptograma associado
- Um par mensagem-criptograma cujo criptograma criado foi submetido ao decriptador gerando a mensagem associada

| Nome               | Tipo   | Tam. chave  | Tam. bloco   |
|--------------------|--------|-------------|--------------|
| DES                | bloco  | 56          | 64           |
| Triple DES (2 ch.) | bloco  | 112         | 64           |
| Triple DES (3 ch.) | bloco  | 168         | 64           |
| IDEA               | bloco  | 128         | 64           |
| BLOWFISH           | bloco  | 32 a 448    | 64           |
| RC5                | bloco  | 0 a 2040    | 32,64,128    |
| CAST-128           | bloco  | 40 a 128    | 64           |
| RC2                | bloco  | 0 a 1024    | 64           |
| RC4                | stream | 0 a 256     |              |
| Rijndael (AES)     | bloco  | 128,192,256 | 128, 192, 25 |
| MARS               | bloco  | variável    | 128          |
| RC6                | bloco  | variável    | 128          |
| Serpent            | bloco  | variável    | 128          |
| Twofish            | bloco  | 128,192,256 | 128          |



### **ALGORITMOS CLÁSSICOS**

- Baseados em Transposição: Na qual as letras do plaintext são trocadas de posição
- Baseados em Substituição:
  - Na qual as letras do plaintext são substituídas por outras letras, números ou símbolos
  - Se o plaintext for visto como uma seqüência de bits, então a substituição envolve a substituição de padrões de blocos de bits do plaintext por outro padrão de blocos de bits no ciphertext.

49

### **ALGORITMOS CLÁSSICOS**

- Baseados em Transposição:
  - Transposição de colunas
- Baseados em Substituição:
  - Cifra de César
  - Cifra Monoalfabética
  - Substituição Homofônica
  - Playfair
  - Cifra de Vigerère
  - Cifra de Vigerère com autochave
  - Máquina de rotação

## TÉCNICAS CLÁSSICAS CIFRADOR DE CÉSAR

Plano: meet me after the toga party cifrado: PHHW PH DIWHU WKH WRJD SDUWB

Plano: abcdefghijklmnopqrstuvwxyz cifrado: DEFGHIJKLMNOPQRSTUVWXYZABC

Encriptar  $C=E(p)=(p+3) \mod 26$   $C=E(p)=(p+k) \mod 26$ 

 $\begin{array}{c} \textit{Decriptar} \\ p = D(p) = (\text{C-k}) \bmod 26 \end{array}$ 

- 5

### CIFRADORES MONOALFABÉTICOS

Qualquer permutação de 26 caracteres alfanuméricos
 26! = 4x10<sup>26</sup> possíveis chaves

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHDMZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

| P | 13,33 | н   | 5,83 | F        | 3,33 | В        | 1,67 | C | 0,00 |
|---|-------|-----|------|----------|------|----------|------|---|------|
| Z | 11,67 | _ D | 5,00 | W        | 3,33 | G        | 1,67 | K | 0,00 |
| S | 8,33  | E   | 5,00 | Q        | 2,50 | Y        | 1,67 | L | 0,00 |
| U | 8,33  | V   | 4,17 | <b>T</b> | 2,50 | , , I, I | 0,83 | N | 0,00 |
| 0 | 7,50  | X   | 4,17 | Α        | 1,67 | J        | 0,83 | R | 0,00 |
| M | 6,67  |     |      |          |      |          |      |   | 52   |





# CRIPTOANÁLISE UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHDMZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ Criptoanálise It was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

CIFRADOR PLAYFAIR

2 em 2 letras

| M                   | O | N  | A   | R |
|---------------------|---|----|-----|---|
| C                   | Н | Y  | В   | D |
| E                   | F | G  | I/J | K |
| $\mathbf{L}_{\sim}$ | P | Q  | S   | Т |
| U                   | V | W_ | X   | Z |

Letras repetidas usa-se caracter preenchedor. Ex: x Letras na mesma linha trocadas pela seguinte Letras na mesma coluna trocadas pela seguinte Para o restante, usa-se a coluna do outro

departamento de informática CKSODZROGMPR CK AGPHMOSRBEB

**CIFRADORES** b c .. Z A B C Z **POLIALFABÉTICOS** B C D b A Vigenère - Auto Chave B Vernam - xor Joseph Mauborgne - one-time pad Z Z Y  $C_i = p_i \oplus k_i$  $p_i = C_i \oplus k_i$ deceptivedeceptive Exemplo: wearediscoveredsaveyourself ZICVTWQNGRZGVTWAVZHCQYGLMGJ



### TÉCNICAS DE TRANSPOSIÇÃO - 2

Chave: 4 3 1 2 5 6 7
Texto Plano: p e g u e a c

aixaazu ladapel amanhaq

Texto Cifrado: GXDAUAANEIAMPALAEAPHAZEACULQ

59

### ANÁLISE DA TRANSPOSIÇÃO

3 1 2 5 6 7 Pegue a caixa azulada pela manha q

p e g u e a c a i x a a z u l a d a p e l a m a n h a q

manhaq

4 3 1 2 5 6 7 g x d a u a a n e i a m p a l a e a p h a z e a c u l q 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 25

03 10 17 24 04 11 18 25 02 09 16 23 01 08

15 22 05 12 19 26 06 13 20 27 07 14 21 28

17 09 05 27 24 16 12 07 10 02 22 20 03 23 15 13 04 23 19 14 11 01 26 21 18 08 06 28

ou



# MÁQUINA DE ROTAÇÃO o Criptoanálise • Nchaves = 26³ = 17576 o (p/3 cilindros distintos) • N domínio = 26 • Ataques: o (1) Ciphertext somente: Força bruta o (2) Plaintext Conhecido: ? o (3) Plaintext selecionado: Direto, exemplo: o Plaintext: "aaaaaaaaaaa ...a", (26N vezes p/ N cilindros) o (4) Ciphertext Escolhido o Direto, exemplo: • Ciphertext: "aaaaaaaaaaa ... " (26N vezes p/ N cilindros)

### **EXERCÍCIOS**

- o (1) Criptografe o plaintext "exercício" utilizando os algoritmos e chaves apresentadas
- o (2) Dentre os algoritmos posicionais quais podem ser descobertos de forma direta pelo ataque com "plaintext Escolhido" onde é utilizada a seguinte mensagem:
  - "abcdefghijklmnopqrstuvwxyz"

63

## **EXERCÍCIOS (2)**

- o (3) Dentre os algoritmos vistos quais podem ser descobertos de forma direta pelo ataque com "Plaintext Escolhido" onde é utilizada a seguinte mensagem:
- o (4) Dentre os algoritmos vistos quais podem ser descobertos de forma direta pelo ataque "Plaintext Conhecido".
- o (5) A facilidade ao ataque pela força bruta também está relacionado ao número de chaves possíveis no algoritmo. Qual o número de chaves possíveis de cada um dos algoritmos apresentados?