IN THE CLAIMS

The status of each claim in the present application is listed below.

Claims 1-49: (Canceled).

50. (New) A process for preparing a 1,3,5-triazine carbamate of the formula (I):

$$R^{3} \xrightarrow{X^{3}} N \xrightarrow{N} N \xrightarrow{N} Z^{2}$$

wherein

Z¹ is hydrogen or a group of formula -(CO)-O-R¹,

Z² is hydrogen or a group of formula -(CO)-O-R²,

X³ is oxygen, and

R¹ is the radical of an alcohol represented by the formula R¹OH,

R² is the radical of the alcohol represented by the formula R²OH,

R³ is the radical of an alcohol represented by the formula R³OH,

from an 1,3,5-triazine carbamate of the formula (II):

$$R^{6} \bigcirc \bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{N} Y^{2}$$

wherein

Y¹ is hydrogen or a group of formula -(CO)-O-R⁴,

Y² is hydrogen or a group of formula -(CO)-O-R⁵ and,

R⁴ is the radical of the alcohol represented by the formula R⁴OH,

 R^5 is the radical of the alcohol represented by the formula R^5OH , R^6 is the radical of the alcohol represented by the formula R^6OH , wherein R^4 , R^5 and R^6 are, independently, C_{1-4} alkyl,

wherein

- (1) if Z^1 is hydrogen then Y^1 is hydrogen,
- (2) if Z¹ is a group of formula -(CO)-O-R¹ then Y¹ is a group of formula -(CO)-O-R⁴,
- (3) if Z^2 is hydrogen then Y^2 is hydrogen, and
- (4) if Z^2 is a group of formula -(CO)-O-R² then Y^2 is a group of formula -(CO)-O-R⁵, comprising:

reacting the 1,3,5-triazine carbamate of formula (II) at a temperature of 40 to 120°C with an alcohol of the formula R³-OH and, optionally, with an alcohol of the formula R²-OH and/or R¹OH to produce the 1,3,5-triazine carbamate of the formula (I) and an alcohol of the formula R³OH and optionally an alcohol of the formula R⁴OH if Y¹ is a group of formula - (CO)-O-R⁴ and/or an alcohol of the formula R⁵OH if Y² is a group of formula -(CO)-O-R⁵,

in the presence of at least one catalyst selected from the group consisting of tin compounds, cesium salts, alkali metal (hydrogen)carbonates and tertiary amines,

wherein the alcohols R¹OH, R²OH and R³OH are, independently, selected from the group consisting of n-butanol, see-butanol, iso-butanol, tert-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol, 2-ethylhexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1,3-propanediol monomethyl ether, lauryl alcohol (1-dodecanol), myristyl alcohol (1-tetradecanol), cetyl alcohol (1-hexadecanol), stearyl alcohol (1-octadecanol), 9-cis-octadecen-1-ol (oleyl alcohol), 9-trans-octadecen-1-ol, 9-cis-octadecene-1,12-diol (ricinoleyl alcohol), all-cis-9,12-octadecadien-1-ol (linoleyl alcohol), all-cis-9,12,15-octadecatrien-1-ol (linolenyl alcohol), 1-eicosanol (arachidyl alcohol), 9-cis-eicosen-1-ol (gadoleyl alcohol), 1-docosanol (behenyl alcohol), 1,3-cis-docosen-1-ol, 1,3-

trans-docosen-1-ol (brassidyl alcohol), cyclopent-2-en-1-ol, cyclopent-3-en-1-ol, cyclohex-2-en-1-ol and allyl alcohol.

- 51. (New) The process of Claim 50, wherein Z^1 and Y^1 are hydrogen.
- 52. (New) The process of Claim 50, wherein Z^1 is a group of formula -(CO)-O-R¹ and Y^1 is a group of formula -(CO)-O-R⁴.
 - 53. (New) The process of Claim 50, wherein Z^2 and Y^2 are hydrogen.
- 54. (New) The process of Claim 50, wherein Z^2 is a group of formula -(CO)-O-R² and Y^2 is a group of formula -(CO)-O-R⁵.
 - 55. (New) The process of Claim 50, wherein

Y¹ is a group of formula -(CO)-O-R⁴ and

Y² is a group of formula -(CO)-O-R⁵.

- 56. (New) The process of Claim 50, wherein the lowest boiling point of the alcohols R¹OH, R²OH and R³OH has a different of at least 20°C from the highest boiling point of the alcohols R⁴OH, R⁵OH, and R⁶OH.
- 57. (New) The process of Claim 50, wherein the alcohol R³OH is an alkoxylated monool of formula:

$$R^{8}$$
-O-[- X_{i} -]_n-H

wherein

$$R^8$$
 is C_1 - C_{18} alkyl,

n is a positive integer between 1 and 50 and

each X_i for i = 1 to n can be selected independently of the others from the group consisting of -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl.

- 58. (New) The process of Claim 50, wherein the alcohol R³OH is a monool which carries at least one polymerizable group and one hydroxyl group.
- 59. (New) The process according to Claim 50, wherein the alcohol R³OH is a monool is represented by the formula:
 - (III) $H_2C=CR^9-CO-O-R^{10}-OH$,
 - (IV) $H_2C=CR^9-CO-O-[-X_{i-}]_k-H$ or
 - (V) $H_2C = CH O R^{10} OH$

wherein

R⁹ is hydrogen or methyl,

 R^{10} is a divalent linear or branched C_2 - C_{18} alkylene radical,

 X_i is -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl, and

k is a positive integer from 1 to 20.

60. (New) The process of Claim 50, wherein the alcohol is a polyetherol or polyesterol containing at least one polymerizable group and one hydroxyl group.

61. (New) The process of Claim 50, wherein R^3 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl, optionally interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or are C_2 - C_{18} alkenyl, C_6 - C_{12} aryl, C_5 - C_{12} cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, wherein said radicals are optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles, or else are radicals

$$-(CO)-R^7$$
, $-(CO)-O-R^7$ or $-(CO)-(NH)-R^7$,

in which

 R^7 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl, optionally interrupted by one or more oxygen and/or sulfur atoms and/or by one or more substituted or unsubstituted imino groups, or can be C_2 - C_{18} alkenyl, C_6 - C_{12} aryl, C_5 - C_{12} cycloalkyl or a five- or six-membered heterocycle containing oxygen, nitrogen and/or sulfur atoms, said radicals optionally substituted by aryl, alkyl, aryloxy, alkyloxy, heteroatoms and/or heterocycles.

- 62. (New) The process of Claim 50, wherein the alcohols R³OH and optionally R⁴OH and/or R⁵OH are separated by distillation from the reaction mixture.
 - 63. (New) The process of Claim 50, wherein the catalyst comprises a tin compound.
 - 64. (New) The process of Claim 50, wherein the catalyst comprises a cesium salt.
- 65. (New) The process of Claim 50, wherein the catalyst comprises an alkali metal (hydrogen)carbonate.

Application No. 10/593,308 Reply to Office Action of May 21, 2010

66. (New) The process according to Claim 50, wherein the catalyst comprises a tertiary amine,

wherein the alcohol R³OH is alkoxylated monool of formula:

$$R^{8}$$
-O-[-X_i-]_n-H

wherein

 R^8 can be C_1 - C_{18} alkyl,

n is a positive integer between 1 and 50 and

each X_i for i=1 to n can be selected independently of the others from the group consisting of -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl,

or wherein the alcohol is a monool and represented by the formula:

- (III) $H_2C=CR^9-CO-O-R^{10}-OH$,
- (IV) $H_2C=CR^9-CO-O-[-X_i-]_k-H$ or
- (V) $H_2C=CH-O-R^{10}-OH$

wherein

R⁹ is hydrogen or methyl,

 R^{10} is a divalent linear or branched C_2 - C_{18} alkylene radical,

 X_i is -CH₂-CH₂-O-, -CH₂-CH(CH₃)-O-, -CH(CH₃)-CH₂-O-, -CH₂-C(CH₃)₂-O-, -C(CH₃)₂-CH₂-O-, -CH₂-CHVin-O-, -CHVin-CH₂-O-, -CH₂-CHPh-O- and -CHPh-CH₂-O-, in which Ph is phenyl and Vin is vinyl, and

k is a positive integer from 1 to 20.