

AU A091592

DELAWARE RIVER BASIN,

ARROWHEAD LAKE DAM

LEVEL II

NDI NO. PA-00780
DER NO. 45-207

Perry
P.S.

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DACW 31-80-C-0019

DTIC
ELECTED
NOV 14 1980
S C

PREPARED FOR

DEPARTMENT OF THE ARMY

Baltimore District, Corps of Engineers
Baltimore, Maryland 21203

BY

Berger Associates, Inc.
Harrisburg, Pennsylvania

AUGUST 1980

THIS DOCUMENT IS BEST QUALITY PRACTICABLE.
THE COPY CONTAINED IN THIS DOCUMENT IS NOT CONTAINING A
SIGNIFICANT NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

DISTRIBUTION STATEMENT	
Approved for public release; Distribution Unlimited	

Original copy contains color
prints. All DFIC reproductions
will be in black and white.

8011 03 144

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

PREFACE

This report has been prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

DISTRIBUTION STATEMENT A

Approved for public release;
i Distribution Unlimited

PHASE I REPORT

NATIONAL DAM INSPECTION PROGRAM

BRIEF ASSESSMENT OF GENERAL CONDITIONS
AND RECOMMENDATIONS

Name of Dam: ARROWHEAD LAKE DAM
State & State No.: PENNSYLVANIA, 45-207
County: MONROE
Stream: TROUT CREEK
Date of Inspection: May 6, 1980

Based on the visual inspection, past performance and the available engineering data, the dam and its appurtenant structures appear to be in fair condition.

In accordance with the Corps of Engineers' evaluation guidelines, the size classification of this dam is intermediate and the hazard classification is significant. These classifications indicate that the Spillway Design Flood (SDF) should be in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. The recommended SDF for this dam is one-half the PMF. The spillway capacity is inadequate for passing the SDF peak inflow without overtopping the dam. When no failure occurs at the upstream dams, the project is capable of passing 43 percent of the PMF and is considered to be inadequate, but not seriously inadequate.

The following recommendations are made for immediate action by the owner:

1. That, to preclude the necessity of a detailed hydrologic and hydraulic study, the low areas in the embankment be filled and the crest be made uniform to the design crest elevation. This work should be performed under the direction of a professional engineer, experienced in the design and construction of dams.
2. That all brush and trees be removed from the embankment slopes and that a professional engineer, experienced in the design and construction of dams, be consulted for the removal of tree stumps and roots. The embankment shall be provided with an adequate vegetative cover.

3. That the downstream end of the blowoff pipe be uncovered and the pipe be made operable. This pipe should be modified to have an upstream control.
4. That the wet area downstream of the blowoff pipe be monitored on a regular basis noting and recording approximate volume and the clarity. If increase in volume or any turbidity is observed, immediate steps shall be taken to identify and correct the condition.
5. That the spillway discharge channel be cleared of derrick stone obstructions.
6. That voids under the end of the spillway slab be filled.
7. That a formal surveillance and downstream warning system be developed to be used during periods of heavy or prolonged rainfall.
8. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

SUBMITTED BY:

BERGER ASSOCIATES, INC.
HARRISBURG, PENNSYLVANIA

DATE: August 1, 1980

APPROVED BY:

James W. Peck
JAMES W. PECK
Colonel, Corps of Engineers
District Engineer
DATE 30 August 1980

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DEIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes _____	
Avail and/or Special	
Dist	Special
<i>J</i>	<i>23</i>

OVERVIEW

LAKE ARROWHEAD DAM

Photograph No. 1

TABLE OF CONTENTS

	<u>Page</u>
SECTION 1 - PROJECT INFORMATION	
1.1 GENERAL	1
1.2 DESCRIPTION OF PROJECT	1
1.3 PERTINENT DATA	2
SECTION 2 - ENGINEERING DATA	
2.1 DESIGN	6
2.2 CONSTRUCTION	6
2.3 OPERATION	6
2.4 EVALUATION	6
SECTION 3 - VISUAL INSPECTION	
3.1 FINDINGS	8
3.2 EVALUATION	9
SECTION 4 - OPERATIONAL PROCEDURES	
4.1 PROCEDURES	10
4.2 MAINTENANCE OF DAM	10
4.3 MAINTENANCE OF OPERATING FACILITIES	10
4.4 WARNING SYSTEM	10
4.5 EVALUATION	10
SECTION 5 - HYDROLOGY/HYDRAULICS	
5.1 EVALUATION OF FEATURES	11
SECTION 6 - STRUCTURAL STABILITY	
6.1 EVALUATION OF STRUCTURAL STABILITY	13
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS	
7.1 DAM ASSESSMENT	15
7.2 RECOMMENDATIONS	15

APPENDIX A - CHECK LIST OF VISUAL INSPECTION REPORT
APPENDIX B - CHECK LIST OF ENGINEERING DATA
APPENDIX C - PHOTOGRAPHS
APPENDIX D - HYDROLOGY AND HYDRAULIC CALCULATIONS
APPENDIX E - PLATES
APPENDIX F - GEOLOGIC REPORT

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

ARROWHEAD LAKE DAM

Number

(6) NDI-ID # PA-00780,
DER-ID # 45-207

Delaware River Basin Phase I Inspection Report

SECTION 1 - PROJECT INFORMATION

Monroe County
(Pennsylvania.)

(5) DACH31-80-C-0019

1.1 GENERAL

A. Authority

The Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspections of dams throughout the United States.

B. Purpose

The purpose of this inspection is to determine if the dam constitutes a hazard to human life and property.

1.2 DESCRIPTION OF PROJECT

A. Description of Dam and Appurtenances

Note: Project spillway crest elevation is 1657 (Appendix E, Plate III). The U.S.G.S. Quadrangle Sheet shows a reservoir elevation 1652.00. This U.S.G.S. elevation is used in this report as the top of spillway crest.

Arrowhead Lake Dam is an earthfill embankment with a cutoff trench and an impervious core. The maximum design height of the dam is about 18 feet above streambed. The dam has an overall length of about 450 feet. A 110 foot wide spillway is located near the right abutment. The concrete ogee weir has a crest elevation of 4.9 feet below the low point of the embankment and about 8 feet below the design crest elevation of the dam. There is a drop inlet structure near the center of the dam which is controlled with stoplogs. Removal of the stoplogs permits lowering of the pool level to about 9 feet below normal pool elevation. The drop inlet discharges through a 30-inch diameter pipe. Prior to construction of the stoplog structure, this pipe had a steel plate for closure at the upstream end. The dam was modified by the installation of a 24-inch outlet pipe on the right side of the spillway. This pipe has a gate valve at its downstream end.

4/1/03 mt

Fill was placed along the downstream toe of the dam to provide for a parking area. This fill was placed across the outlet channel for the stoplog structure. The outlet pipe has been extended.

- B. Location: Tobyhanna Township, Monroe County
U.S.G.S. Quadrangle - Thornhurst, Pa.
Latitude 41°-09.2', Longitude 75°-34.6'
Appendix E, Plates I & II
- C. Size Classification: Intermediate: Height - 18 feet
Storage - 2344 acre-feet
- D. Hazard Classification: Significant (Refer to Section 3.1.E.)
- E. Ownership: Mr. Joseph J. Malone, Vice President
All-American Realty Co., Inc.
155 Willowbrook Boulevard
Wayne, NJ 07470
- F. Purpose: Recreation
- G. Design and Construction History

The dam was designed by C.E. Ferris of Hamlin, Pennsylvania, and constructed by the Robbins Door and Sash Company, Scranton, Pennsylvania. Construction was started in 1950 and was completed in 1954. Records of the construction do not exist. Over the years, modifications were made consisting of replacing the steel plate on the outlet pipe with a stoplog structure; the downstream extension of the outlet pipe under the parking lot; the placement of fill at the downstream toe; and the installation of a second outlet pipe at the right abutment.

H. Normal Operating Procedures

The reservoir is used for recreational purposes including swimming, boating and fishing. Cottages are located near the water's edge. Normal pool level (top of spillway weir) is desirable for recreational purposes. All inflow above the spillway level is discharged through the spillway.

1.3 PERTINENT DATA

A. Drainage Area (square miles)

From files:	15.9
Computed for this report:	14.74
Use:	14.74

B. Discharge at Dam Site (cubic feet per second)
See Appendix D for hydraulic calculations

Maximum known flood, June 1972	435
Spillway capacity at pool Elev. 1656.9 (low point of dam)	4629
Stoplog structure capacity at Elev. 1656.9	84
Outlet works capacity at normal pool Elev. 1652	26

C. Elevation (feet above mean sea level)

Top of dam (low point)	1656.9
Top of dam (design)	1660
Spillway crest	1652
Bottom of stoplog structure	1643
Streambed at downstream toe (estimate)	1642

D. Reservoir (miles)

Length of normal pool (Elev. 1652.0)	1.1
Length of maximum pool (Elev. 1656.9)	1.2

E. Storage (acre-feet)

Spillway crest (Elev. 1652)	1077
Top of dam (Elev. 1656.9)	2344

F. Reservoir Surface (acres)

Top of dam (Elev. 1656.9)	364.6
Spillway crest (Elev. 1652)	217.6

G. Dam

Refer to Plate III in Appendix E for plan and section.

Type: Earthfill embankment with impervious core.

Length: 450 feet.

Height: 18 feet.

Top Width: 11 feet (surveyed).

Side Slopes: Design:

Upstream - 3H to 1V

Downstream - 2H to 1V

As surveyed:

Upstream - 3.3H to 1V (above water surface)

Downstream - 3.6H to 1V

Zoning: Impervious core.

Cutoff: Cutoff trench excavated four feet into impervious material, bottom width is ten feet.

Grouting: None.

H. Outlet Facilities

Stoplog Structure

Type: Drop inlet controlled by stoplogs.

Width of Stoplog Opening: 2.5 feet.

Location: Near center of dam.

Invert: 1643

Discharge Conduit: 30-inch CMP.

Blowoff Pipe

Type: Two foot diameter steel pipe through embankment.

Location: Near right abutment.

Control: Gate valve on downstream end.

Inlet Invert: 1648.0

Outlet Invert: 1647.0

I. Spillway

Type: Uncontrolled ogee weir.

Length of Weir: 110 feet.

Crest Elevation: 1652

J. Regulating Outlets

See Section 1.3.H. above.

SECTION 2 - ENGINEERING DATA

2.1 DESIGN

A. Hydrology and Hydraulics

Engineering data on the hydrologic and hydraulic design for these facilities were limited to statements in Report on the Application for Permit, and notes in the Pennsylvania Department of Environmental Resources (PennDER) files.

The spillway had a design capacity of 9600 cfs based on an eight foot depth, 110 foot length, and a "C" factor of 3.88. This capacity of 605 csm for a 15.9 sq.mi. drainage area exceeded the state's recommendation of 600 csm as the estimated maximum runoff.

B. Embankment and Appurtenant Structures

Design data for the embankment and appurtenant structures are not available. Construction drawings for the appurtenant structures and a typical section of the embankment are included in Appendix E.

2.2 CONSTRUCTION

Records of the construction of this dam are not available.

2.3 OPERATION

Records of operation have not been maintained. The reservoir has been drawn down on numerous occasions for removal of silt and shoreline debris.

2.4 EVALUATION

The only engineering data available for examination were contained in the files of PennDER, Division of Dam Safety. The data was limited to several drawings and a letter file.

A. Adequacy

While the available information contained in the files are limited, they are considered sufficient to make a reasonable assessment of the overall condition of the dam and its appurtenances.

B. Operating Records

Formal operating records have not been maintained for this dam.

C. Post Construction Changes

In 1966, a stoplog structure replaced the steel plate which was used for closure of the 30-inch diameter outlet pipe. This same pipe was extended downstream when fill was placed at the toe of the dam to create a parking area. In 1972, a second outlet pipe was installed adjacent to the right side of the spillway in the right abutment.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

A. General

The general appearance of Arrowhead Lake Dam is fair. This structure is an earthfill embankment. One tree is located on the downstream side of the embankment near the center of the dam (Photograph No. 2, Appendix C).

The reservoir is used for recreation, including fishing, boating and swimming. The dam and reservoir are owned by All-American Realty Co., Inc., who developed a cottage resort area around the lake and dam.

The visual inspection check list is in Appendix A of this report. This appendix also has several sketches made from survey information obtained by the inspection team. Included are a general plan, profile, typical section and several details. Photographs taken during the inspection are reproduced in Appendix C.

B. Embankment

The embankment is relatively short, about 250 feet to the left of the spillway and about 75 feet at the right side of the spillway. The embankment slopes are covered with grass with bare spots in places where heavy foot traffic occurs. The upstream slope has riprap at the water's edge over about three-quarters of its length. The remaining portion near the left abutment adjoins a swimming area where the embankment slope is relatively flat and is partially covered with sand. A boat launching area is located on the embankment near the center of the dam. This area has been worn bare. The top of the embankment is about 11 feet wide and has been worn bare by vehicular traffic. The downstream slope is fully protected by grass. One large tree is growing on the embankment. The area at the toe has been filled for use as a parking lot. This fill appears to be higher than the normal pool level, and no seepage could be detected. At the right side of the spillway the embankment is fully grass covered, except for several footpaths. Brush is growing along the right spillway wall. This area is the lowest part of the embankment and was excavated in 1972 for installation of a 24-inch pipe. Wet spots were noticed in the outlet swale downstream from this blowoff pipe.

C. Appurtenant Structures

The spillway is a 110 foot wide concrete ogee weir. A short concrete apron is downstream of the ogee section. Concrete walls abut

both sides of the ogee section and apron. All concrete is in good condition. The right spillway wall is one foot lower than the design elevation. There is a wide construction joint between the ogee section and the apron. A 2.5 foot drop-off is located at the downstream end of the apron. Cavitation has occurred at the end of the apron slab. The downstream channel has several large boulders along the banks just downstream of the apron. One of these has rolled into the channel (Photograph No. 6).

A stoplog structure is located near the center of the dam at the upstream toe of the embankment. The concrete is in fair condition. A wire fish screen is located on top of the stoplogs. This screen tends to accumulate debris. The outlet pipe from this structure terminates at the natural stream channel in an area that is heavily overgrown.

A two foot blowoff pipe is located to the right side of the spillway. This pipe has a gate valve at the downstream end. The top of the valve casing was the only part visible during the inspection. The outlet was buried and could not be inspected.

D. Reservoir Area

The reservoir area has flat banks which appear to be stable. The area is mostly wooded with cottages, homes and a swim beach near the water's edge. The reservoir has been drawn down several times to clear debris from the shoreline and remove silt on beaches.

E. Downstream Channel

The downstream channel is a typical mountain stream with tree lined overbanks. A maintenance building is located immediately downstream from the dam. About 1000 feet downstream there is a road crossing. The hazard category for this dam is considered to be "Significant."

3.2 EVALUATION

The visual inspection indicates that these facilities are in fair condition. Trees and brush on the embankment should be removed. Although seepage is occurring in the vicinity of the blowoff pipe, there is no serious concern as long as no fines are noticeable in the seepage water. This condition should, however, be monitored on a regular basis noting any change in volume of flow or clarity of the water. The area around the downstream end of the blowoff pipe should be cleared.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The operational procedures for Arrowhead Lake Dam are limited. The reservoir is used for recreation. Keeping the pool level at spillway weir elevation is the major concern. All inflow above that level is discharged over the spillway and the stoplogs.

4.2 MAINTENANCE OF DAM

The visual inspection of this dam indicates that the facility is maintained in good operating condition with the exception of the small trees along the right spillway wall and one large tree near the center of the dam on the downstream slope. The embankment is free of heavy brush except near the right spillway wall. The embankment is apparently below its design crest elevation.

4.3 MAINTENANCE OF OPERATING FACILITIES

The stoplog structure is in fair condition. The overall condition of the spillway is good. The blowoff pipe at the right side of the spillway is not operable. The outlet for this pipe is buried.

4.4 WARNING SYSTEM

Although daily observations are made, there is no formal surveillance plan or downstream warning system.

4.5 EVALUATION

The operational procedures should be expanded and should include the removal of trees and brush on the embankment. The bare areas should be seeded to provide a dense protective grass mat. The spillway should be inspected annually and any necessary repair work should be performed. The outlet end of the blowoff pipe should be uncovered and the valve inspected regularly and repaired when needed.

A formal surveillance plan and downstream warning system should be developed for implementation during high or prolonged precipitation.

SECTION 5 - HYDROLOGY/HYDRAULICS

5.1 EVALUATION OF FEATURES

A. Design Data

The hydrologic and hydraulic analyses available from PennDER for Arrowhead Lake Dam were not very extensive. No stage-discharge curve, stage-storage curve, unit hydrograph, or flood routings were contained in the PennDER files.

B. Experience Data

The greatest known flood at Arrowhead Lake Dam occurred in June, 1972, when the water level in the reservoir reached an elevation about one foot above the spillway crest. This storm was passed without difficulty.

C. Visual Observations

During the inspection, it was noted that the blowoff pipe was not operable. The fish screen at the stoplog structure tends to accumulate debris. No other conditions were observed that would indicate that the appurtenant structures of the dam could not operate satisfactorily during a flood event until the pool level would reach an elevation higher than the low point near the right abutment. There are three dams located upstream of Arrowhead Lake. These have been considered in the hydrologic analysis (Appendix D).

D. Overtopping Potential

Arrowhead Lake Dam has a total storage capacity of 2344 acre-feet at its present low point elevation and an overall height of 18 feet. These dimensions indicate a size classification of "Intermediate"; the hazard classification is "Significant" (See Section 3.1.E.).

The Spillway Design Flood (SDF) for a dam having the above classification is in the range of one-half the Probable Maximum Flood (PMF) to the full PMF. Based on the limited possibility of loss of life of transient people only, the recommended SDF for this dam is one-half the PMF. The SDF peak inflow is 6265 cfs (See Appendix D for HEC-1 inflow computations).

Comparison of the estimated SDF peak inflow of 6265 cfs with the estimated spillway discharge capacity of 4713 cfs, based on the low point elevation on the crest, indicates that a potential for overtopping of the Arrowhead Lake Dam exists.

An estimate of the storage effect of the reservoir and routing of the computed inflow hydrograph through the reservoir shows that this dam does not have the necessary storage available to pass the PMF without overtopping. The spillway-reservoir system can pass a flood event equal to 43% of a PMF without failure of any of the upstream dams.

E. Dam Break Evaluation

Although Arrowhead Lake Dam does not overtop until the magnitude of a flood event exceeds 43% of a PMF, an upstream dam at Brady Lake overtops with considerably less discharge. It was noted that the upstream dam has an earth embankment and is expected to attain water levels that would result in a breach when flood events of less magnitude than 43% of a PMF occurred. For this reason, it was assumed that the upstream dam would fail when the water level reached an elevation that would result in a breach. Being an earth embankment, it is judged that the breach would be completed within a 15 minute through two hour time interval. For this analysis, the most conservative condition, the 15 minute breach, was considered.

F. Spillway Adequacy

The intermediate size category and significant hazard category, in accordance with the Corps of Engineers' criteria and guidelines, indicates that the SDF for this dam should be in the range of one-half the PMF to the full PMF. For this dam the recommended SDF is one-half the PMF.

Calculations show that the combined spillway discharge capacity and reservoir storage capacity are capable of handling 43% of the PMF when the upstream Bradys Dam remains intact. When the upstream dam fails, Arrowhead Lake Dam has sufficient spillway discharge capacity and reservoir storage capacity to handle 18% of a PMF. If the top of Arrowhead Lake Dam would be made uniform at the design elevation, the project would be capable of passing 83% of a PMF without overtopping, and without breach of the upstream dam.

Since the combined spillway discharge and reservoir storage capacity cannot pass the PMF, and since the hazard category is significant, the spillway capacity is judged to be inadequate but not seriously inadequate.

The hydrologic analysis for this investigation was based upon existing conditions of the watershed. The effects of future development were not considered.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

A. Visual Observations

1. Embankment

The visual inspection of Arrowhead Lake Dam did not find any major signs of distress which would signify an unstable structural condition. The embankment is grass covered with the exception of a few bare spots where heavy foot traffic occurs. There are several small trees growing adjacent to the right spillway wall and one large tree on the downstream slope near the center of the dam. The only riprap visible was along the waterline. Fill was placed at the downstream toe to create a parking lot. This area has been raised above the normal pool level.

A low spot in the embankment is located to the right of the spillway. A wet area was noticed at the downstream toe of this portion of the embankment.

2. Appurtenant Structures

The appurtenant structures for this dam include the spillway, the stoplog structure and the outlet pipes.

The spillway is a concrete ogee type weir. There was no evidence of displacement of the weir. The apron downstream of the weir consists of concrete slabs. The construction joint between the ogee section and the apron is about one-half inch wide. Some cavitation has occurred below the downstream end of the slab. The concrete is in good condition.

The stoplog structure is in fair condition. No cracks appear above water level. Some deterioration was noticed in the bottom of the drop inlet. The access ladder was not secured. The outlet from this structure is a 30-inch CMP pipe. The downstream end of this pipe is partially obstructed by debris and trees.

The two foot diameter blowoff pipe is located at the right side of the spillway. The only portion of this pipe that is visible is the top of the valve casing. The outlet to this pipe is buried. The blowoff is inoperable.

B. Design and Construction

Design and construction data are limited to design drawings and some letters. A cutoff trench was excavated to a depth of four feet

into an impervious hardpan strata. The trench has a bottom width of ten feet. The center section of the embankment and the backfill in the trench consists of an impervious material. More pervious material was used in the outer shell. The existing slopes appear to be adequate for this dam.

The outlet pipe has two cutoff collars upstream from the trench. The concrete ogee section has an exposed height of about 3.5 feet and a base width of nearly seven feet. The downstream slab has been concreted and has a cutoff wall. The spillway walls are gravity type sections with a base width of 0.54 times the height. Anti-seepage fins were placed behind the walls. The drawing indicates an adequate design.

C. Operating Records

There are no formal operating records for this dam.

D. Post Construction Changes

Several changes have taken place since construction was completed in 1954. About 1966, repairs were made to the concrete ogee weir, the spillway walls and the apron slab. At about the same time, the drop inlet structure was altered and the stoplogs were installed. In 1970 the right embankment was restored. In 1972 the two foot blowoff pipe was installed in this area. Over the years fill has been placed at the downstream toe to create a parking lot. This fill reaches a level above the normal pool level.

E. Seismic Stability

This dam is located in Seismic Zone 1 and it is considered that the static stability is sufficient to withstand minor earthquake-induced dynamic forces. No studies or calculations have been made to confirm this assumption.

SECTION 7 - ASSESSMENT AND RECOMMENDATIONS

7.1 DAM ASSESSMENT

A. Safety

The visual inspection and the review of available information indicate that the dam and its appurtenant structures are in fair condition. The trees and brush on the embankment should be removed. Seepage exists near the downstream end of the blowoff. The water is clear at the present time. Close observation and monitoring of this condition is recommended.

In accordance with the Corps of Engineers' evaluation guidelines, the spillway is inadequate for passing the full PMF peak inflow without overtopping the dam. The combination of the storage and spillway capacity is sufficient for passing only 43 percent of the PMF; and although the spillway is inadequate, it is not considered to be seriously inadequate.

B. Adequacy of Information

Although the available engineering data are not sufficient to make a detailed analysis of the stability of the dam and its appurtenant structures, the available drawings, reports and the observed physical conditions are judged to be adequate for making a reasonable assessment of the overall condition of the dam.

C. Urgency

The recommendations presented below should be implemented immediately.

D. Necessity for Additional Studies

Additional studies are not required at this time if the low areas in the crest of the dam are filled to design elevation.

7.2 RECOMMENDATIONS

In order to assure the safe operation of this dam, the following recommendations are presented for implementation by the owner:

1. That, to preclude the necessity of a detailed hydrologic and hydraulic study, the low areas in the embankment be filled and the crest be made uniform to the design crest elevation. This work should be performed under the direction of a professional engineer, experienced in the design and construction of dams.

2. That all brush and trees be removed from the embankment slopes and that a professional engineer, experienced in the design and construction of dams, be consulted for the removal of tree stumps and roots.
3. That the downstream end of the blowoff pipe be uncovered and the pipe be made operable. This pipe should be modified to have an upstream control.
4. That the wet area downstream of the blowoff pipe be monitored on a regular basis. If an increase in volume or any turbidity is observed, immediate steps shall be taken to identify and correct the condition.
5. That the spillway discharge channel be cleared of large derrick stone obstructions.
6. That voids under the end of the spillway slab be filled.
7. That a formal surveillance and downstream warning system be developed to be used during periods of heavy or prolonged rainfall.
8. That an operation and maintenance manual be prepared for guidance in the operation of the dam during normal and emergency conditions, and that a schedule be developed for the annual inspection of the dam and its appurtenant structures.

APPENDIX A
CHECKLIST OF VISUAL INSPECTION REPORT

APPENDIX A

CHECK LIST

PHASE I - VISUAL INSPECTION REPORT

PA DER # 45-207

NDI NO. PA-00 780

NAME OF DAM ARROWHEAD LAKE DAM HAZARD CATEGORY Significant

TYPE OF DAM Earthfill

LOCATION Tobyhanna TOWNSHIP Monroe COUNTY, PENNSYLVANIA

INSPECTION DATE 5/6/80 WEATHER Sunny-Warm TEMPERATURE 70's

INSPECTORS: R. Houseal (Recorder) OWNER'S REPRESENTATIVE(s):

H. Jongsma Charles Roy

R. Shireman Del Bachman

A. Bartlett _____

NORMAL POOL ELEVATION: 1652.0 (U.S.G.S.) AT TIME OF INSPECTION:

BREAST ELEVATION: 1660.0 (Design) POOL ELEVATION: 1657.0

SPILLWAY ELEVATION: 1652.0 TAILWATER ELEVATION: _____

MAXIMUM RECORDED POOL ELEVATION: Est. 1.653.0 - 1972 (Agnes)

GENERAL COMMENTS:

Slide gate replaced with wet well in about 1965.

The general appearance of this facility is fair. It is used for recreation by the surrounding private residential development.

C.E. Ferris - Designer.

VISUAL INSPECTION
EMBANKMENT

OBSERVATIONS AND REMARKS	
A. SURFACE CRACKS	None observed.
B. UNUSUAL MOVEMENT BEYOND TOE	None observed.
C. SLOUGHING OR EROSION OF EMBANKMENT OR ABUTMENT SLOPES	None observed. Downstream slope (left side) is uneven at tree [(18") only one].
D. ALIGNMENT OF CREST: HORIZONTAL: VERTICAL:	Slightly curved. For vertical profile see Plate A-II. Note low profile in area at right end of embankment.
E. RIPRAP FAILURES	No exposed riprap on slope. Riprap is covered with soil and grass.
F. JUNCTION EMBANKMENT & ABUTMENT OR SPILLWAY	Abutments are sound. Embankment 9"-12" below top of wall on left side. Some erosion adjacent to spillway wall on left side - both upstream and downstream.
G. SEEPAGE	None on left side. Pipe on right side. Either buried valve leaking or seepage along pipe.
H. DRAINS	None.
J. GAGES & RECORDER	None.
K. COVER (GROWTH)	Mowed lawn on both slopes and crest. Some bare spots on crest.

VISUAL INSPECTION
OUTLET WORKS

OBSERVATIONS AND REMARKS	
A. INTAKE STRUCTURE	Concrete wet well drop structure. Open on top. Ladder of reinforcing steel for access to bottom. Ladder is not fixed. Unsafe for one person. Large rocks laying in bottom of well. Concrete in fair condition - no cracks above water level. Deterioration below water surface. Screen is blocking inflow below water surface.
B. OUTLET STRUCTURE	Outlet pipe CMP at existing end. This is an extension of originally installed pipe to accommodate the parking area. No endwall. Partially overgrown.
C. OUTLET CHANNEL	Natural stream. Outlet channel swale to creek is wet and soggy. No flow. Seepage probably from the area around unknown pipe.
D. GATES	Stoplog control at wet well - left of spillway. Valve of unknown size blowoff pipe on right side of spillway. Inoperable.
E. EMERGENCY GATE	Same as D. above.
F. OPERATION & CONTROL	Occasional use of stoplogs to maintain minimum flow in stream.
G. BRIDGE (ACCESS)	No bridge. Access directly from upstream slope at water's edge. Boat required if pool is high.

VISUAL INSPECTION
SPILLWAY

OBSERVATIONS AND REMARKS	
A. APPROACH CHANNEL	Directly from reservoir - unobstructed.
B. WEIR: Crest Condition Cracks Deterioration Foundation Abutments	Small concrete ogee with run-out slab. Concrete all in good condition. Minor deterioration. Open joint between slab and ogee section.
C. DISCHARGE CHANNEL: Lining Cracks Stilling Basin	Concrete slab to about 30' ± downstream from toe of ogee. Concrete wing walls. Discharge channel below concrete structure is the natural stream. Rock bottom. End of slab shows cavitation under slab over most of its length up to 8 inches deep. Large boulders on both sides of channel at end of wing walls. One big boulder at end should be removed. Some <u>rap protection to be placed at end of wing.</u>
D. BRIDGE & PIERS	None.
E. GATES & OPERATION EQUIPMENT	None - uncontrolled.
F. CONTROL & HISTORY	None - maximum flow estimated at about one foot over weir in June 1972 (Agnes).

VISUAL INSPECTION

OBSERVATIONS AND REMARKS	
<u>INSTRUMENTATION</u>	
Monumentation	None.
Observation Wells	None.
Weirs	None.
Piezometers	None.
Staff Gauge	None.
Other	None.
<u>RESERVOIR</u>	
Slopes	Relatively level - homes and cottages surround the lake.
Sedimentation	None reported.
Watershed Description	Flat slopes - wooded.
<u>DOWNTSTREAM CHANNEL</u>	
Condition	Mountain stream - stony bottom - wooded over banks.
Slopes	Moderate.
Approximate Population	2
No. Homes	Storage garage just below dam.

SCHEMATIC PLAN

APPENDIX B

CHECKLIST OF ENGINEERING DATA

APPENDIX B

CHECK LIST
ENGINEERING DATA

PA DER # 45-207

NDI. NO. PA-00 780

NAME OF DAM ARROWHEAD LAKE DAM

ITEM	REMARKS
AS-BUILT DRAWINGS	None.
REGIONAL VICINITY MAP	U.S.G.S. Quadrangle - Thornhurst See Plate II, Appendix E
CONSTRUCTION HISTORY	Construction started in 1950. Completed in 1954.
GENERAL PLAN OF DAM	Plate III, Appendix E.
TYPICAL SECTIONS OF DAM	Plate III, Appendix E.
OUTLETS: PLAN DETAILS CONSTRAINTS DISCHARGE RATINGS	Plans in PennDER files. See also plans in Appendix E.

ENGINEERING DATA

ITEM	REMARKS
RAINFALL & RESERVOIR RECORDS	No records.
DESIGN REPORTS	No records.
GEOLOGY REPORTS	Not located.
DESIGN COMPUTATIONS: HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None, except some calculations by PennDER to check spillway capacity. None. None.
MATERIALS INVESTIGATIONS: BORING RECORDS LABORATORY FIELD	None. Test pits.
POST CONSTRUCTION SURVEYS OF DAM	None.
BORROW SOURCES	Unknown.

ENGINEERING DATA

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	Spillway repaired and drop inlet structure modified to become stoplog structure about 1966. Portion of embankment raised in 1970. Blowoff pipe installed in 1972.
HIGH POOL RECORDS	No records.
POST CONSTRUCTION ENGINEERING STUDIES & REPORTS	None.
PRIOR ACCIDENTS OR FAILURE OF DAM Description: Reports:	None.
MAINTENANCE & OPERATION RECORDS	None.
SPILLWAY PLAN, SECTIONS AND DETAILS	Plate III, Appendix E.

ENGINEERING DATA

ITEM	REMARKS
OPERATING EQUIPMENT, PLANS & DETAILS	Stoplog structure. 24" diameter gate valve on blowoff pipe.
CONSTRUCTION RECORDS	None.
PREVIOUS INSPECTION REPORTS & DEFICIENCIES	Inspection called for spillway repairs in 1965. Inspected when repaired in 1970.
MISCELLANEOUS	

NDI NO. PA-00 780

CHECK LIST
HYDROLOGIC AND HYDRAULIC
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Mostly woodland

ELEVATION:

TOP NORMAL POOL & STORAGE CAPACITY: Elev. 1652 Acre-Feet 1077

TOP FLOOD CONTROL POOL & STORAGE CAPACITY: Elev. 1656.9 Acre-Feet 2344

MAXIMUM DESIGN POOL: _____ Elev. 1660

TOP DAM: Elev. 1656.9

SPILLWAY: **DROP INLET**

- a. Elevation 1652 1652

b. Type ogee weir stoplog structure

c. Width 110' 2.5'

d. Length --- ---

e. Location Spillover right abutment center of dam upstream toe

f. Number and Type of Gates none none

OUTLET WORKS:

- a. Type 24" diameter pipe with gate valve
 - b. Location at right side of spillway
 - c. Entrance inverts 1648
 - d. Exit inverts 1647
 - e. Emergency drawdown facilities 24" diameter pipe with gate valve

HYDROMETEOROLOGICAL GAGES:

- a. Type 'none'

b. Location

c. Records

MAXIMUM NON-DAMAGING DISCHARGE: 4629 cfs

APPENDIX C
PHOTOGRAPHS

APPENDIX C

Surveyed 5-6-80

**ARROWHEAD LAKE
DAM
PA.-00780
KEY MAP OF PHOTOGRAPHS
PLATE C-I**

DOWNTSTREAM SLOPE LEFT ABUTMENT - NO. 2

LOW AREA RIGHT OF SPILLWAY - NO. 3
NOTE VALVE IN FOREGROUND

PA-00780
Plate C-II

UPSTREAM SLOPE AND STOPLOG STRUCTURE - NO. 4

SPILLWAY - NOTE TREES FAR SIDE - NO. 5

PA-00780
Plate C-III

SPILLWAY LOOKING UPSTREAM - NO. 6

RIGHT SPILLWAY WINGWALL - NO. 7

PA-00780
Plate C-IV

FOREBAY OF SPILLWAY - NO. 8
NOTE MAINTENANCE BUILDING

OVERVIEW OF UPSTREAM SLOPE - NO. 9

PA-00780
Plate C-V

APPENDIX D
HYDROLOGY AND HYDRAULIC CALCULATIONS

APPENDIX D

SUMMARY DESCRIPTION
OF
FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION

The hydrologic and hydraulic evaluation for this inspection report has employed computer techniques using the Corps of Engineers computer program identified as the Flood Hydrograph Package (HEC-1) Dam Safety Version.

The program has been designed to enable the user to perform two basic types of hydrologic analyses: (1) the evaluation of the overtopping potential of the dam, and (2) the capability to estimate the downstream hydrologic-hydraulic consequences resulting from assumed structural failures of the dam. A brief summary of the computation procedures typically used in the dam overtopping analysis is shown below.

- Development of an inflow hydrograph to the reservoir.
- Routing of the inflow hydrograph(s) through the reservoir to determine if the event(s) analyzed would overtop the dam.
- Routing of the outflow hydrograph(s) of the reservoir to desired downstream locations. The results provide the peak discharge and maximum stage of each routed hydrograph at the outlet of the reach.

The output data provided by this program permits the comparison of downstream conditions just prior to a breach failure with that after a breach failure and the determination as to whether or not there is a significant increase in the hazard to loss of life as a result of such a failure.

The results of the studies conducted for this report are presented in Section 5.

For detailed information regarding this program refer to the Users Manual for the Flood Hydrograph Package (HEC-1) Dam Safety Version prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California.

BY RLS DATE 5/20/80
CHKD. BY _____ DATE _____
SUBJECT _____

BERGER ASSOCIATES

SHEET NO. 1 OF
PROJECT 09650

ARROWHEAD LAKE

SPILLWAY RATING

SECTION $C = 3.88$ (SMALL DAMS)

$$Q = C L H^{3/2}$$

$$H = 1656.9 - 1652 = 4.9'$$

$$Q = 3.88 \times 110 \times (4.9)^{1.5}$$

$$= 4629 \text{ cfs}$$

BY RLS DATE 5/20/80
CHKD BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 2 OF
PROJECT D9650

ARROWHEAD LAKE

DISCHARGE THROUGH OUTLET WORKS

STOP LOG STRUCTURE WITH FISH SCREEN

OUTLET PIPE 2.5' DIA

INVERT 1643'

$$Q = C \cdot A \sqrt{2gH} \quad C = 0.6$$

A = POOL ELEV 1656.9

$$H = 1656.9 - 1644.25 = 12.65'$$

$$Q = 0.6 \times \pi \times \frac{(2.5)^2}{4} \times (2 \times 32.2 \times 12.65)^{0.5}$$

$$= 74 \text{ CFS}$$

LOW FLOW (ON LOG) OVER STOP LOGS

$$Q = C L H^{3/2} \quad C = 3.3 \quad (\text{KINGS HOLE})$$

$$L = 2.5'$$

$$Q = 3.3 \times 2.5 \times (1)^{3/2}$$

$$= 8.2 \text{ CFS}$$

BY RLS DATE 5/29/80
CHKD. BY _____ DATE _____
SUBJECT _____

BERGER ASSOCIATES

SHEET NO. 3 OF 1
PROJECT D 9124

ARROWHEAD LAKE

COMBINED SPILLWAY AND STOP LOG STRUCTURE RISING CURVE

BY FLS DATE 5/22/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 4 OF
PROJECT D9651

DISCHARGE THRU OUTLET WORKS

2' DIA. STEEL PIPE WITH GATE VALVE

INVERT VARIATION = 1648

$$Q = C A \sqrt{2g H}$$

$$C = 0.6$$

AT NORMAL POS. ELEV 1652

$$H = 1652 - 1648 = 3'$$

$$Q = 0.6 \times \pi \times \frac{(2)^2}{4} \times (2 \times 32.2 \times 3)^{0.5}$$

$$= 26 \text{ CFS}$$

AT LOW POS. ELEV 1650

$$H = 1650 - 1648 = 1'$$

$$Q = 0.6 \times \pi \times \frac{(2)^2}{4} \times (2 \times 32.2 \times 1)^{0.5}$$

$$= 15 \text{ CFS}$$

BY ALS DATE 5/20/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 5 OF 15
PROJECT D9650

MAXIMUM KNOWN FLOOD AT DAM SITE

THE MAXIMUM KNOWN FLOOD AT ARROWHEAD LAKE
DAM OCCURRED IN JUNE 1972 WHEN THE WATER
LEVEL IN THE LAKE REACHED AN ELEVATION ABOUT
1.0' ABOVE THE SPILLWAY CREST

SPILLWAY

$$C = 3.88 \\ L = 110' \\ H = 1.0'$$

OUTLET WORKS

$$C_1 = 3.3 \\ L_1 = 2.5' \\ H_1 = 1.0'$$

$$Q = C L H^{3/2} + C_1 L_1 H_1^{3/2}$$

$$3.88 \times 110 \times (1.0)^{3/2} + 3.3 \times 2.5 \times (1.0)^{3/2}$$

$$= 435 \text{ CFS}$$

DESIGN FLOOD

SIZE CLASSIFICATION

MAXIMUM STORAGE = 2344 ACRE FEET

MAXIMUM HEIGHT = 18 FEET

SIZE CLASSIFICATION IS "INTERMEDIATE"

HAZARD CLASSIFICATION

A MAINTENANCE BUILDING IS LOCATED IMMEDIATELY
DOWNSTREAM OF THE DAM.

USE "SIGNIFICANT"

RECOMMENDED SPILLWAY DESIGN FLOOD

THE ABOVE CLASSIFICATIONS INDICATE USE OF
AN SDI EQUAL TO ONE-HALF PMS TO THE PROBABLE
MAXIMUM FLOOD.

BY RLS DATE 5/20/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

ARROWHEAD LAKE

SHEET NO. 6 OF
PROJECT D 965C

EMBANKMENT RATING

$$Q = C L H^{3/2}$$

$$C = 2.7 \text{ (KINGS HOBK.)}$$

AT ELEV. 1657.5

$$2.7 \times 25 \times (.3)^{3/2} = 11 \text{ cfs}$$

AT ELEV 1658

$$2.7 \times 25 \times (.8)^{3/2} = 48$$

$$2.7 \times 5 \times (.25)^{3/2} = 2$$

$$2.7 \times 1 \times (.25)^{3/2} = -$$

$$\Sigma = 50 \text{ cfs}$$

AT ELEV 1658.5

$$2.7 \times 25 \times (1.3)^{3/2} = 100$$

$$2.7 \times 11 \times (.8)^{3/2} = 11$$

$$2.7 \times 3 \times (.5)^{3/2} = 3$$

$$\Sigma = 114 \text{ cfs}$$

AT ELEV 1659

$$2.7 \times 25 \times (1.8)^{3/2} = 163$$

$$2.7 \times 14 \times (1.35)^{3/2} = 30$$

$$2.7 \times 20 \times (.15)^{3/2} = 3$$

$$2.7 \times 4 \times (.05)^{3/2} = -$$

$$2.7 \times 4 \times (.75)^{3/2} = 7$$

$$\Sigma = 203 \text{ cfs}$$

AT ELEV 1659.5

$$2.7 \times 25 \times (2.3)^{3/2} = 235$$

$$2.7 \times 14 \times (1.35)^{3/2} = 59$$

$$2.7 \times 20 \times (.65)^{3/2} = 28$$

$$2.7 \times 4 \times (.55)^{3/2} = 4$$

$$2.7 \times 88 \times (.4)^{3/2} = 60$$

$$2.7 \times 7 \times (.11)^{3/2} = 1$$

$$2.7 \times 6 \times (1)^{3/2} = 16$$

$$\Sigma = 403 \text{ cfs}$$

AT ELEV 1660

$$2.7 \times 25 \times (2.8)^{3/2} = 316$$

$$2.7 \times 14 \times (1.85)^{3/2} = 95$$

$$2.7 \times 20 \times (1.15)^{3/2} = 67$$

$$2.7 \times 4 \times (1.0)^{3/2} = 12$$

$$2.7 \times 88 \times (.9)^{3/2} = 203$$

$$2.7 \times 10 \times (.55)^{3/2} = 11$$

$$2.7 \times 22 \times (.2)^{3/2} = 5$$

$$2.7 \times 7 \times (1.2)^{3/2} = 26$$

$$\Sigma = 735 \text{ cfs}$$

BY RLS DATE 5/20/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 7 OF
PROJECT D 9650

ARROWHEAD LAKE

EMBANKMENT RATING (cont.)

AT ELEV. 1660.5

2.7 x 25 x (3.3) ^{1.5}	405
2.7 x 14 x (2.35) ^{1.5}	136
2.7 x 20 x (1.65) ^{1.5}	114
2.7 x 4 x (1.55) ^{1.5}	21
2.7 x 88 x (1.4) ^{1.5}	394
2.7 x 10 x (1.05) ^{1.5}	29
2.7 x 50 x (.45) ^{1.5}	41
2.7 x 9 x (1.9) ^{1.5}	45
	$\Sigma = 1185 \text{ cfs}$

AT ELEV. 1661

2.7 x 25 x (3.8) ^{1.5}	500
2.7 x 14 x (2.8) ^{1.5}	182
2.7 x 20 x (2.15) ^{1.5}	170
2.7 x 4 x (2.05) ^{1.5}	32
2.7 x 88 x (1.9) ^{1.5}	622
2.7 x 10 x (1.55) ^{1.5}	52
2.7 x 40 x (1.9) ^{1.5}	125
2.7 x 31 x (1.2) ^{1.5}	10
2.7 x 10 x (1.75) ^{1.5}	63
	$\Sigma = 1756 \text{ cfs}$

AT ELEV 1662

2.7 x 25 x (4.8) ^{1.5}	710
2.7 x 14 x (3.25) ^{1.5}	286
2.7 x 20 x (3.15) ^{1.5}	302
2.7 x 4 x (3.05) ^{1.5}	58
2.7 x 88 x (2.9) ^{1.5}	1173
2.7 x 10 x (2.5) ^{1.5}	110
2.7 x 50 x (1.1) ^{1.5}	156
2.7 x 19 x (1.35) ^{1.5}	11
2.7 x 13 x (2.25) ^{1.5}	112
2.7 x 50 x (1.9) ^{1.5}	368
	$\Sigma = 3292$

BY RLS DATE 7/28/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

ARROW HEAD LAKE

SHEET NO. 8 OF 1
PROJECT D9650

DISCHARGE SUMMARY

ELEV.	SPILLWAY Q (cfs)	CROP FIELD Q (cfs)	EMBANKMENT Q (cfs)	TOTAL Q (cfs)
1652	0	0	0	0
1652.5	151	3	0	154
1653	427	3	0	430
1653.5	784	15	0	799
1654	1207	23	0	1230
1655	2218	43	0	2261
1656	3414	66	0	3480
1656.9	4629	89	0	4718
1657.5	5505	86	11	5602
1658	6273	88	50	6411
1658.5	7073	89	119	7276
1659	7904	91	203	8198
1659.5	8764	92	407	9261
1660	9657	94	735	10486
1660.5	10577	95	1185	11857
1661	11524	97	1756	13377
1662	13497	100	3292	16889

BY RLS DATE 7/29/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

ARROWHEAD LAKE

SHEET NO. 9 OF
PROJECT D 9650

UPSTREAM RESERVOIRS

LOCUST LAKE - 10' HIGH DAM
1000' LONG

TOP OF DAM = 1715
EMBANKMENT C = 2.7

3' SQUARE DROP INLET, CREST ELEV. = 1712
BROAD OF 1000' W.E.R. C = 3.3
3' DIA. PIPE IN DROP INLET, INVERT = 1705
ORIFICE C = 0.6

ELEV.	SPILLWAY (cfs)	EMBANKMENT (cfs)	TOTAL (cfs)
1712	0	0	0
1712.5	14	0	14
1713	40	0	40
1713.5	73	0	73
1714	93	0	93
1715	99	0	99
1715.5	102	955	1057
1716	103	2700	2803
1716.5	108	4960	5068

BY RLS DATE 7/24/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 10 OF 1
PROJECT D 9650

ARROWHEAD LAKE

UPSTREAM RESERVOIRS

BRADY LAKE - 18' HIGH DAM
1350' LONG

LOW POINT, TOP OF DAM = 1717

SPILLWAY, CRIST ELEV. = 1716

BROADCRESTED WEIR C = 3.1
BOTTOM WIDTH = 41'

BRIDGE OVER WEIR - 2' CLEAR OPENING

STAGE DISCHARGE AND STAGE-STORAGE DATA FROM
PENNOCK FILES

ELEV.	DISCHARGE (cfs)	ELEV.	STORAGE (AC-FT)
1716	0	1699	0
1717	127	1704	78
1717.3	196	1709	300
1717.7	327	1714	830
1717.9	431	1716	1213
1718.3	652	1720	2553
1719	1267	1724	4741
1720	2736		
1721	4842		
1724	8224		

BY RLS DATE 7/29/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

ARROWHEAD LAKE

SHEET NO. 11 OF 1
PROJECT D9650

UPSTREAM RESERVOIRS

BRADY LAKE - BREACH ASSUMPTIONS

BREACH WIDTH = 50'

SIDE SLOPES (EARTH EMBANKMENT) = 1:1

FAILURE TIME (EARTH EMBANKMENT) =
BETWEEN 15 MIN. AND 2 HR.
USE: .25 HR.

POOL LEVEL AT FAILURE: EARTH EMBANKMENT
SAY 0.5 FT OVER TOP OF DAM

BY RLS DATE 7/28/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 12 OF 1
PROJECT D 9650

UPSTREAM RESERVOIRS

NORTH ARROWHEAD LAKE 21' HIGH DAM

2 EMBANKMENTS TOTALING 2100' LONG

SPILLWAY - CONCRETE OGEE SECTION C = 3.88
LENGTH = 60'
CALC ELEV. = APPROX 1668.2

TOP OF DAM, LOW POINT = 1671.7
EMBANKMENT C = 2.7

ELEV.	SPILLWAY (cfs)	EMBANKMENT (cfs)	TOTAL
1668.2	0	0	0
1669	167	0	167
1670	562	0	562
1671	1091	0	1091
1671.7	1524	0	1524
1672.5	2076	43	2119
1673	2448	172	2620
1674	3252	728	3980

BY RLS DATE 3/22/82
CHKD. BY _____ DATE _____
SUBJECT _____

BERGER ASSOCIATES

SHEET NO. 13 OF 15
PROJECT D9650

SPILLWAY CAPACITY CURVE

BY RLS DATE 5/22/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 14 OF 15
PROJECT P.9650

ARROWHEAD LAKE

SPILLWAY CAPACITY CURVE WITH BRADY DAM FAILURE

BY RLS DATE 6/5/80
CHKD. BY DATE
SUBJECT

BERGER ASSOCIATES

SHEET NO. 15 OF
PROJECT D.9650

ARROWHEAD LAKE

SPILLWAY CAPACITY CURVE (DESIGN)

HYDROLOGY AND HYDRAULIC ANALYSIS
DATA BASE

NAME OF DAM: ARROWHEAD LAKE RIVER BASIN: DELAWARE
PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.1 INCHES/24 HOURS⁽¹⁾

(FOR FOOTNOTES SEE NEXT PAGE)

STATION		1	2	3	4
STATION DESCRIPTION		LOCUST LAKE	LOCUST LAKE DAM	BRADY LAKE	BRADY LAKE DAM
DRAINAGE AREA (SQUARE MILES)		.42	-	7.53	-
CUMULATIVE DRAINAGE AREA (SQUARE MILE)		.42	.42	7.53	7.53
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) (2)	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 1	107 120 128 140 -		107 120 128 140 -	
SNYDER HYDROGRAPH PARAMETERS	ZONE ⁽³⁾ C_p / C_1 ⁽⁴⁾ L (MILES) ⁽⁵⁾ L_{co} (MILES) ⁽⁵⁾ $T_p = C_1 (L \cdot L_{co})^{0.3}$ (hours)	2 .45/2.1 .72 .38 1.42		2 .45/2.1 5.08 2.73 4.62	
DATA SPILLWAY	CREST LENGTH (FT.) FREEBOARD (FT.) DISCHARGE COEFFICIENT EXONENT ELEVATION		3 (dia.) 3 0.6 -		41 1 3.1 1.5 1712 1716
AREA ⁽⁶⁾ (ACRES)	NORMAL POOL ELEV. _____ ELEV. _____	18.4 1720 = 25.3		229	
STORAGE (ACRE - FEET)	NORMAL POOL ⁽⁷⁾ ELEV. _____ ⁽⁸⁾ ELEV. _____ ⁽⁸⁾ ELEV. _____ ⁽⁸⁾	61.3 1720 = 0		1213 1699 = .0 1720 = 2553 1724 = 4741	

HYDROLOGY AND HYDRAULIC ANALYSIS
DATA BASE

NAME OF DAM: ARROWHEAD LAKE DAM RIVER BASIN: DELAWARE
PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.1 INCHES/24 HOURS⁽¹⁾

(FOR FOOTNOTES SEE NEXT PAGE)

STATION	1	2	3	4
STATION DESCRIPTION	NORTH ARROWHEAD LAKE	NORTH ARROWHEAD LAKE DAM	ARROWHEAD LAKE	ARROWHEAD LAKE DAM
DRAINAGE AREA (SQUARE MILES)	.89		5.9	
CUMULATIVE DRAINAGE AREA (SQUARE MILE)	.89	.89	14.74	14.74
ADJUSTMENT OF PMP FOR DRAINAGE AREA (%) ⁽²⁾	6 HOURS 12 HOURS 24 HOURS 48 HOURS 72 HOURS Zone 1	107 120 128 140 —		107 120 128 140 —
SNYDER HYDROGRAPH PARAMETERS	ZONE ⁽³⁾ C_p / C_1 ⁽⁴⁾ L (MILES) ⁽⁵⁾ L_{co} (MILES) ⁽⁵⁾ $T_p = C_1 (L \cdot L_{co})^{0.3}$ (hours)	2 .45/2.1 1.82 .68 2.24		2 .45/2.1 5.49 2.19 4.43
SPILLWAY DATA	CREST LENGTH (FT.) FREEBOARD (FT.) DISCHARGE COEFFICIENT EXPONENT ELEVATION		60 3.5 3.88 1.5 1668.2	115 4.9 3.88 1.5 1652
AREA ⁽⁶⁾ (ACRES)	NORMAL POOL ELEV. _____ ELEV. _____	82.6 1680 - 96.4		217.6 1660 = 364.6 1680 = 649.2
STORAGE (ACRE-FEET)	NORMAL POOL ⁽⁷⁾ ELEV. _____ ⁽⁸⁾ ELEV. _____ ⁽⁸⁾ ELEV. _____	413 1653.2 = 0		1077 1637.2 = 0

- (1) Hydrometeorological Report 33 (Figure 1), U.S. Army, Corps of Engineers, 1956.
- (2) Hydrometeorological Report 33 (Figure 2), U.S. Army, Corps of Engineers, 1956.
- (3) Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's Coefficients (C_p and C_t).
- (4) Snyder's Coefficients.
- (5) L = Length of longest water course from outlet to basin divide.
 L_{ca} = Length of water course from outlet to point opposite the centroid of drainage area.
- (6) Planimetered area encompassed by contour upstream of dam.
- (7) PennDER files.
- (8) Computed by conic method.

FLORID HYDRO-MONI PACKAGE (HEC-1)

DAM SAFETY VERSION JULY 1978

LAST MODIFICATION 26 FEB 79

1	A1	ARROWHEAD LAKE DAM	****	TROUT CREEK									
2	A2	TOBYFANNIA TWP., MONROE COUNTY, PA.											
3	A3	NDI # PA-00780	PA DER # 45-207										
4	B	300	0	15	0	0	0	0	0	-4	0		
5	B1	5											
6	J	1	.9	1									
7	J1	1	.85	.7	.6	.5	.4	.3	.2	.1			
8	K		1										
9	K1	INFLOW HYDROGRAPH - LOCUST LAKE SUBAREA											
10	M	1	1	.42	14.74								
11	P	22.1	107	120	128	140							
12	T						1	.05					
13	W	1.42	.45										
14	X	-1.5	-.05	2									
15	K	1	2				1						
16	K1	RESERVOIR ROUTING - THRU LOCUST LAKE											
17	Y			1									
18	Y1	1											
19	Y4	1712	1712.5	1713	1713.5	1714	1715	1715.5	1716	1716.5			
20	Y5	0	14	40	73	93	99	1057	2805	5068			
21	\$A	0	18.4	25.3									
22	\$E	1702	1712	1720									
23	\$\$	1712											
24	\$D	1715											
25	K	1	3				1						
26	K1	ROUTING THRU REACH 2 - 3											
27	Y			1									
28	Y1	1											
29	Y6	.1	.09	.1	1673	1720	1100	.033					
30	Y7	0	1700	10	1700	100	1680	140	1673	150	1673		
31	Y7	170	1680	470	1700	860	1720						
32	K		4				1						
33	K1	INFLOW HYDROGRAPH - BRADY LAKE SUBAREA											
34	M	1	1	7.53	14.74								
35	P	22.1	107	120	128	140							
36	T						1	.05					
37	U	4.62	.45										
38	X	-1.5	-.05	2									
39	K	1	5				1						
40	M1	RESERVOIR ROUTING - THRU BRADY LAKE											
41	Y			1									
42	Y1	1											
43	Y4	1716	1717	1717.3	1717.7	1717.9	1718.3	1719	1720	1721	1724		
44	Y5	0	127	176	337	431	652	1267	2736	4842	8224		
45	\$\$	0	78	300	830	1213	2553	4741					
46	\$E	1699	1704	1709	1714	1716	1720	1724					
47	\$\$	1716											
48	\$D	1717.7											
49	K	1	6				1						
50	M1	ROUTING THRU REACH 5 - 6											
51	Y			1									
52	Y1	1											
53	Y6	.1	.08	.1	1701	1740	2500	.0043					
54	Y7	0	1740	10	1740	700	1720	910	1701	970	1701		
55	Y7	2820	1720	3900	1740	3910	1740						
56	K	1	7				1						
57	K1	ROUTING THRU REACH 6 - 7											
58	Y			1									

58 Y 1 1
 59 Y1 1
 60 Y6 .1 .1 .1 1684 1720 2950 .0058
 61 Y7 0 1720 10 1720 260 1700 1670 1684 1680 1684
 62 Y7 2275 1700 3690 1720 3700 1720
 63 K 1 8 1
 64 K1 ROUTING THRU REACH 7 - 8
 65 Y 1
 66 Y1 1
 67 Y6 .1 .09 .1 1663 1700 4650 .0045
 68 Y7 0 1700 10 1700 300 1680 480 1663 490 1663
 69 Y7 630 1680 1820 1700 1830 1700
 70 K 9 1
 71 K1 INFLOW HYDROGRAPH - NORTH ARROWHEAD LAKE SUBAREA
 72 M 1 1 .89 14.74
 73 P 22.1 107 120 128 140
 74 T 1 .05
 75 W 2.24 .45
 76 X -1.5 -.05 2
 77 K 1 10 1
 78 K1 RESERVOIR ROUTING - THRU NORTH ARROWHEAD LAKE
 79 Y 1
 80 Y1 1 413 -1
 81 Y41668.2 1669 1670 1671 1671.7 1672.5 1673 1674
 82 Y5 0 167 562 1091 1524 2119 2620 3980
 83 \$A 0 82.6 96.4
 84 \$E1653.2 1668.2 1680
 85 \$1668.2
 86 \$D1671.7
 87 K 11 1
 88 K1 INFLOW HYDROGRAPH - ARROWHEAD LAKE SUBAREA
 89 M 1 1 5.9 14.74
 90 P 22.1 107 120 128 140
 91 T 1 .05
 92 W 4.43 .45
 93 X -1.5 -.05 2
 94 K 4 12 1
 95 K1 COMBINE HYDROGRAPHS AT ARROWHEAD LAKE
 96 K 1 13 1
 97 K1 RESERVOIR ROUTING - THRU ARROWHEAD LAKE
 98 1 1
 99 Y1 1 1977 -1
 100 Y4 1652 1652.5 1653 1653.5 1654 1655 1656 1656.9 1657.5 1658
 1 101 Y41658.5 1659 1659.5 1660 1660.5 1661 1662
 102 Y5 0 154 435 799 1230 2261 3480 4713 5602 6411
 103 Y5 7276 8198 9261 10486 11857 13377 16889
 104 \$A 0 217.6 364.6 649.2
 105 \$E1637.2 1652 1660 1680
 106 \$1652
 107 \$D1656.9
 108 K 99

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
RUNOFF HYDROGRAPH AT	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
ROUTE HYDROGRAPH TO	7
ROUTE HYDROGRAPH TO	8

99	Y1	1						1077	-1		
100	Y4	1652	1652.5	1653	1653.5	1654	1655	1656	1656.9	1657.5	1658
101	Y41658.5		1659	1659.5	1660	1660.5	1661	1662			
102	Y5	0	154	435	799	1230	2261	3480	4713	5602	6411
103	Y5	7276	8198	9261	10486	11857	13377	16889			
104	SA	0	217.6	364.6	649.2						
105	SE1637.2		1652	1660	1680						
106	SS	1652									
107	SD1656.9										
108	K	99									

1

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
RUNOFF HYDROGRAPH AT	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
ROUTE HYDROGRAPH TO	7
ROUTE HYDROGRAPH TO	8
RUNOFF HYDROGRAPH AT	9
ROUTE HYDROGRAPH TO	10
RUNOFF HYDROGRAPH AT	11
COMBINE 4 HYDROGRAPHS AT	12
ROUTE HYDROGRAPH TO	13
END OF NETWORK	

 FLOOD HYDROGRAPH PACKAGE (HEC-1)
 DAM SAFETY VERSION JULY 1978
 LAST MODIFICATION 26 FEB 79

RUN DATE: 80/05/22.
 TIME: 07.54.21.

ARROWHEAD LAKE DAM 1444 TROUT CREEK
 TOBYHANNA TWP., MONROE COUNTY, PA.
 NDI # PA-00780 PA DER # 45-207

JOB SPECIFICATION											
N9	NHR	NMIN	IDAY	IHR	IMIN	METRC	IPLT	IFRT	MSTAN		
300	0	15	0	0	0	0	0	-4	0		
			JOPER	NUT	LROPT	TRACE					
			5	0	0	0					

MULTI-PLAN ANALYSES TO BE PERFORMED

NPLAN= 1 MRTIO= 9 LRTIO= 1

RTIOS= .1.00 .85 .70 .60 .50 .40 .30 .20 .10

***** ***** ***** ***** *****

SUB-AREA RUNOFF COMPUTATION

LOW HYDROGRAPH - LOCUST LAKE SURFACE

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH - LOCUST LAKE SUBAREA

ISTAO	ICOMP	IECON	ITAPE	JPLT	JFRT	INAME	ISTAGE	IAUTO
1	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

IHYD	IUNG	TAREA	SHAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	.42	0.00	14.74	0.00	0.009	0	0	0

PRECIP DATA

SFFE	FHS	66	R12	R24	R48	R72	R96
0.00	22.10	107.50	120.00	128.00	140.00	0.00	0.00

TRSPC COMPUTED BY THE PROGRAM IS .813

LOSS DATA

LROPT	STEAM	BLTKR	RTIOL	ERAIN	STRES	RTIJK	STIRL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TP= 1.42 CP= .45 NTA= 0

RECEDITION DATA

STRTO= -.150 DRCMN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 52 END-OF-PERIOD ORDINATES, LAG= 1.43 HOURS, CP= .45 VOL= 1.09

5.	20.	41.	63.	77.	85.	81.	73.	65.	59.
53.	47.	42.	38.	34.	31.	27.	25.	22.	20.
18.	16.	14.	13.	11.	10.	9.	8.	7.	7.
6.	5.	5.	4.	4.	3.	3.	3.	3.	2.
2.	2.	2.	1.	1.	1.	1.	1.	1.	1.
1.	1.								

0

END-OF-PERIOD FLOW

MD,DA	HR,MN	PERIOD	RAIN	EXCS	LOSS	COMP 0	MD,DA	HR,MN	PERIOD	RAIN	EXCS	LOSS	COMP 0
-------	-------	--------	------	------	------	--------	-------	-------	--------	------	------	------	--------

SUM	25.16	22.74	2.42	24871.
(639.)	(578.)	(61.)	(704.27)	

000000000 000000000 000000000 000000000 000000000

HYDROGRAPH ROUTING

RESERVOIR ROUTING - THRU LOCUST LAKE

ISTAO	ICOMP	IECON	ITAPE	JPLT	JFRT	INAME	ISTAGE	IAUTO
2	1	0	0	0	0	1	0	0

ROUTING DATA

OLOSS	CLOSS	Avg	IRES	ISAME	IDFT	IFPF	LSTR
0.0	0.000	0.00	1	0	0	0	0

MSTPS	MSTL	LAG	ANSAK	X	TSK	STORA	ISFRAT
1	0.	0	0.000	0.000	0.000	61.	-1

STAGE	1712.00	1712.50	1713.00	1713.50	1714.00	1715.00	1715.50	1716.00	1716.50
-------	---------	---------	---------	---------	---------	---------	---------	---------	---------

HYDROGRAPH ROUTING

RESERVOIR ROUTING - THRU LOCUST LAKE

	ISTAO 2	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPRT 0	INAME 1	ISTAGE 0	IAUTO 0
	ROUTING DATA								
	QLOSS 0.0	CLOSS 0.000	AVG 0.00	IRES 1	ISAME 0	IOPT 0	IPMF 0	LSTR 0	
	NSTPS 1	NSTDL 0	LAG 0	AMSNK 0.000	X 0.000	TSK 0.000	STORA 61.	ISPRAT -1	
STAGE	1712.00	1712.50	1713.00	1713.50	1714.00	1715.00	1715.50	1716.00	1716.50
FLOW	0.00	14.00	40.00	73.00	93.00	99.00	1057.00	2805.00	5068.00
SURFACE AREA=	0.	18.	25.						
CAPACITY=	0.	61.	235.						
ELEVATION=	1702.	1712.	1720.						
	CREL 1712.0	SPWID 0.0	COOW 0.0	EXPW 0.0	ELEV 0.0	COOL 0.0	CAREA 0.0	EXPL 0.0	
	DAM DATA								
	TOPEL 1715.0	COOD 0.0	EXFD 0.0	DAHWID 0.					

PEAK OUTFLOW IS 976. AT TIME 41.25 HOURS

PEAK OUTFLOW IS 830. AT TIME 41.25 HOURS

PEAK OUTFLOW IS 683. AT TIME 41.25 HOURS

PEAK OUTFLOW IS 586. AT TIME 41.25 HOURS

PEAK OUTFLOW IS 488. AT TIME 41.25 HOURS

PEAK OUTFLOW IS 378. AT TIME 41.50 HOURS

PEAK OUTFLOW IS 246. AT TIME 42.50 HOURS

PEAK OUTFLOW IS 95. AT TIME 44.00 HOURS

PEAK OUTFLOW IS 54. AT TIME 43.75 HOURS

***** HYDROGRAPH ROUTING *****

6

ROUTING THRU REACH 2 - 3

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
3	1	0	0	0	0	1	0	0
ROUTING DATA								
QLOSS	CLOSS	Avg	IRES	ISAME	IOPT	IPMP	LSTR	
0.0	0.000	0.00	1	0	0	0	0	
NSTPS	NSTDL		LAG	AMSKK	X	TSK	STORA	ISPRAT
1	0		0	0.000	0.000	0.000	0.	0

NORMAL DEPTH CHANNEL ROUTING

DN(1)	DN(2)	DN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0903	.1000	1673.0	1720.0	1100.	.03300

CROSS SECTION COORDINATES- A,ELEV,STA,ELEV--ETC

0.00	1700.00	10.00	1700.00	100.00	1680.00	1.0.00	1673.00	150.00	1673.00
170.00	1680.00	470.00	1700.00	860.00	1720.00				

STORAGE	0.00	1.29	3.90	7.86	14.25	23.66	36.07	51.51	69.95	91.4
	115.88	143.42	174.54	208.68	245.83	285.99	329.16	375.35	424.55	476.7
OUTFLOW	0.00	209.72	938.92	2466.74	5451.56	10079.83	16751.44	25814.27	37587.32	52369.5
	70444.30	91359.60	117183.20	147383.68	182166.44	221742.77	266325.30	316125.83	371354.31	432218.2
STAGE	1673.00	1675.47	1677.95	1680.42	1682.89	1685.37	1687.84	1690.32	1692.79	1695.2
	1697.74	1700.21	1702.68	1705.16	1707.63	1710.11	1712.58	1715.05	1717.53	1720.0
FLOW	0.00	209.72	938.92	2466.74	5451.56	10079.83	16751.44	25814.27	37587.32	52369.5
	70444.30	91359.60	117183.20	147383.68	182166.44	221742.77	266325.30	316125.83	371354.31	432218.2

MAXIMUM STAGE IS 1678.0

MAXIMUM STAGE IS 1677.6

MAXIMUM STAGE IS 1677.1

MAXIMUM STAGE IS 1676.8

MAXIMUM STAGE IS 1676.5

MAXIMUM STAGE IS 1676.1

MAXIMUM STAGE IS 1675.6

MAXIMUM STAGE IS 1674.1

MAXIMUM STAGE IS 1673.6

***** SUB-AREA RUNOFF COMPUTATION *****

INFLOW HYDROGRAPH - BRADY LAKE SUBAREA

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO
4	0	0	0	0	0	1	0	0

HYDROGRAPH DATA									
IHYDG	IUNG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL
1	1	7.53	0.00	14.74	0.00	0.000	0	0	0

PRECIP DATA									
SPFE	PMS	R6	R12	R24	R48	R72	R96		
0.00	22.10	107.00	120.00	128.00	140.00	0.00	0.00		

TRSPC COMPUTED BY THE PROGRAM IS .813

LOSS DATA											
LROPT	STRHR	DLTMR	RTIOL	ERAIN	STRMS	RTIOM	STRL	CNSTL	ALSHX	RTIMP	
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00	

UNIT HYDROGRAPH DATA
TP= 4.62 CP= .45 NTA= 0

RECEDITION DATA
STRTO= -1.50 ORCSM= -.05 RTIOR= 2.00

UNIT HYDROGRAPH100 END-OF-PERIOD ORDINATES, LAG= 4.66 HOURS, CP= .45 VOL= .95

5.	21.	43.	70.	100.	134.	169.	207.	246.	287.
327.	363.	395.	422.	445.	464.	477.	485.	486.	477.
461.	446.	431.	417.	403.	389.	376.	364.	352.	340.
328.	317.	307.	297.	287.	277.	268.	259.	250.	242.
234.	223.	218.	211.	204.	197.	191.	184.	178.	172.
166.	161.	155.	150.	145.	140.	136.	131.	127.	123.
118.	114.	111.	107.	103.	100.	97.	93.	90.	87.
84.	81.	79.	76.	74.	71.	69.	66.	64.	62.
60.	58.	56.	54.	52.	51.	49.	47.	46.	44.
43.	41.	40.	39.	37.	36.	35.	34.	33.	31.

END-OF-PERIOD FLOW													
MO,DA	HR,MN	PERIOD	RAIN	EXCS	LOSS	COMP 0	MO,DA	HR,MN	PERIOD	RAIN	EXCS	LOSS	COMP 0
0													

SUM 25.16 22.74 2.42 425146.
(639.)(578.)(61.)(12038.79)

***** HYDROGRAPH ROUTING *****

RESERVOIR ROUTING - THRU BRADY LAKE

ISTAO	ICOMP	IECON	ITAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO
5	1	0	0	0	0	1	0	0

ROUTING DATA									
GLOSS	CLOSS	AVG	IRES	ISAME	IOPT	IPHF		LSTR	
0.0	0.000	0.00	1	0	0	0		0	

***** HYDROGRAPH ROUTING

RESERVOIR ROUTING - THRU BRADY LAKE

	ISTAQ 5	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPRT 0	INAME 1	ISTAGE 0	IAUTO 0	
	ROUTING DATA									
QLOSS	CLOSS	AVG	IRES	ISAME	IOPT	IPMP		LSTR		
0.0	0.000	0.00	1	0	0	0		0		
	NSTPS 1	NSTDL 0	LAG 0	AMSKK 0.000	X 0.000	TSK 0.000	STURA 1213.	ISPRAT -1		
STAGE	1716.00	1717.00	1717.30	1717.70	1717.90	1718.30	1719.00	1720.00	1721.00	1724.00
FLOW	0.00	127.00	196.00	337.00	431.00	652.00	1267.00	2736.00	4842.00	8224.00
CAPACITY=	0.	78.	300.	830.	1213.	2553.	4741.			
ELEVATION=	1699.	1704.	1709.	1714.	1716.	1720.	1724.			
	CREL 1716.0	SPWID 0.0	COOW 0.0	EXPW 0.0	ELEV 0.0	COOL 0.0	CAREA 0.0	EXPL 0.0		
	DAH DATA									
	TOPEL 1717.7	COORD 0.0	EXFD 0.0	DAHWID 0.						

PEAK OUTFLOW IS 6078, AT TIME 47.75 HOURS

PEAK OUTFLOW IS 5333, AT TIME 47.50 HOURS

PEAK OUTFLOW IS 4556, AT TIME 47.25 HOURS

PEAK OUTFLOW IS 3860, AT TIME 47.25 HOURS

PEAK OUTFLOW IS 3157, AT TIME 47.25 HOURS

PEAK OUTFLOW IS 2427, AT TIME 47.75 HOURS

PEAK OUTFLOW IS 1636, AT TIME 48.50 HOURS

PEAK OUTFLOW IS 880, AT TIME 50.25 HOURS

(K OUTFLOW IS 291, AT TIME 53.25 HOURS

HYDROGRAPH ROUTING

4

ROUTING THRU REACH 5 ~ 6

ISTAQ	ICOMP	IECON	ITATE	JPLT	JPRT	I NAME	ISTAGE	IAUTO
6	1	0	0	0	0	1	0	0
ROUTING DATA								
QLOSS	CLOSS	Avg	IRES	ISAHIE	IOPT	IPHP	LSTR	
0.0	0.000	0.00	1	0	0	0	0	
NSTPS	NSTDL	LAG	AHS%	X	TSK	STORA	ISPRAT	
1	0	0	0.000	0.000	0.000	0.	0	

NORMAL DEPTH CHANNEL ROUTING

QN(1)	QN(2)	QN(3)	ELNVT	ELMAX	RLNTH	SEL
.1000	.0800	.1000	1701.0	1740.0	2500.	.00430

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	1740.00	10.00	1740.00	700.00	1720.00	910.00	1701.00	970.00	1701.00
2820.00	1720.00	3900.00	1740.00	3910.00	1740.00				

STORAGE	0.00	20.18	66.57	139.18	238.01	363.06	514.32	691.80	895.50	1125.41
	1380.22	1656.57	1954.33	2273.49	2614.05	2976.01	3359.37	3764.13	4190.30	4637.86
OUTFLOW	0.00	496.59	2465.20	6606.67	13522.99	23756.02	37806.14	56142.71	79210.57	107434.50
	147267.25	195226.55	249484.25	310225.70	377624.11	451849.16	533069.50	621453.44	717169.11	820384.33
STAGE	1701.00	1703.05	1705.11	1707.16	1709.21	1711.26	1713.32	1715.37	1717.42	1719.47
	1721.53	1723.58	1725.63	1727.68	1729.74	1731.79	1733.84	1735.89	1737.95	1740.00
FLOW	0.00	496.59	2465.20	6606.67	13522.99	23756.02	37806.14	56142.71	79210.57	107434.50
	147267.25	195226.55	249484.25	310225.70	377624.11	451849.16	533069.50	621453.44	717169.11	820384.33

MAXIMUM STAGE IS 1706.9

MAXIMUM STAGE IS 1706.5

MAXIMUM STAGE IS 1706.1

MAXIMUM STAGE IS 1705.8

MAXIMUM STAGE IS 1705.4

MAXIMUM STAGE IS 1705.1

MAXIMUM STAGE IS 1704.2

MAXIMUM STAGE IS 1703.5

MAXIMUM STAGE IS 1702.2

HYDROGRAPH ROUTING

10

ROUTING THRU REACH 6 - 7

	ISTAQ 7	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPT 0	I NAME 1	ISTAGE 0	IAUTO 0
ROUTING DATA									
QLLOSS 0.0	CLOSS 0.000	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IPMP 0	LSTR 0		
NSTPS 1	NSTDL 0	LAG 0	AHSKK 0.000	X 0.000	TSK 0.000	STORA 0.	ISPRAT 0		

NORMAL DEPTH CHANNEL ROUTING

QN(1) .1000	QN(2) .1000	QN(3) .1000	ELNUT 1684.0	ELMAX 1720.0	RLNTH 2950,	SEL .00580
----------------	----------------	----------------	-----------------	-----------------	----------------	---------------

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	1720.00	10.00	1720.00	260.00	1700.00	1670.00	1684.00	1680.00	1684.00
2275.00	1700.00	3690.00	1720.00	3700.00	3700.00	1720.00			

STORAGE	0.00 1523.80	16.52 1823.96	63.50 2144.36	140.95 2485.01	248.87 2845.89	387.25 3227.02	556.10 3628.38	735.42 4049.98	985.20 4491.83	1243.87 4953.91
OUTFLOW	0.00 124677.69	274.07 163838.56	1651.35 208247.39	4781.84 258065.33	10204.92 313450.16	18401.30 374558.57	29812.64 441546.73	44051.87 514570.31	63909.53 593784.43	90591.44 678656.45
STAGE	1684.00 1702.95	1685.89 1704.84	1687.79 1706.74	1687.68 1709.63	1691.58 1710.53	1693.47 1712.42	1695.37 1714.32	1697.26 1716.21	1699.16 1718.11	1701.05 1720.00
FLOW	0.00 124677.69	274.07 163839.56	1651.35 208247.39	4781.84 258065.33	10204.92 313450.16	18401.30 374558.57	29812.64 441546.73	44051.87 514570.31	63909.53 593784.43	90591.44 678656.45

MAXIMUM STAGE IS 1690.1

MAXIMUM STAGE IS 1689.9

MAXIMUM STAGE IS 1689.5

MAXIMUM STAGE IS 1689.1

MAXIMUM STAGE IS 1688.7

MAXIMUM STAGE IS 1688.3

MAXIMUM STAGE IS 1687.8

MAXIMUM STAGE IS 1686.7

MAXIMUM STAGE IS 1685.9

***** HYDROGRAPH ROUTING

ROUTING THRU REACH 7 - 8

ISTAO 8	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPRT 0	I NAME 1	I STAGE 0	IAUTO 0
ROUTING DATA								
QLOSS 0.0	CLOSS 0.000	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IPMP 0	LSTR 0	
NSTPS 1	NSTDL 0	LAG 0	AMSKK 0.000	X 0.000	TSK 0.000	STORA 0.	ISPRAT 0	

NORMAL DEPTH CHANNEL ROUTING

QN(1) .1000	QN(2) .0900	QN(3) .1000	ELNVT 1663.0	ELMAX 1700.0	RLNTH 4650.	SEL .00450
----------------	----------------	----------------	-----------------	-----------------	----------------	---------------

CROSS SECTION COORDINATES--STA,ELEV,STA,ELEV--ETC

0.00	1700.00	10.00	1700.00	300.00	1680.00	480.00	1663.00	490.00	1663.00
630.00	1680.00	1820.00	1700.00	1830.00	1700.00				

STORAGE	0.00 419.82	5.89 541.45	19.40 693.04	40.53 874.58	69.28 1086.08	105.65 1327.54	149.64 1598.96	201.24 1900.33	260.47 2231.66	328.14 2592.93
OUTFLOW	0.00 20827.96	68.30 28074.26	338.28 37025.89	905.64 47946.24	1852.66 61073.84	3253.38 76630.52	5176.21 94825.68	7685.28 115859.00	10841.42 139922.13	14978.51 166593.41
STAGE	1663.00 1682.47	1664.95 1684.42	1666.89 1686.37	1669.84 1688.32	1670.79 1690.26	1672.74 1692.21	1674.68 1694.16	1676.63 1696.11	1678.58 1698.05	1680.53 1700.00
FLOW	0.00 20827.96	68.30 28074.26	338.28 37025.89	905.64 47946.24	1852.66 61073.84	3253.38 76630.52	5176.21 94825.68	7685.28 115859.00	10841.42 139922.13	14978.51 166593.41

MAXIMUM STAGE IS 1675.4

MAXIMUM STAGE IS 1674.8

MAXIMUM STAGE IS 1674.0

MAXIMUM STAGE IS 1673.3

MAXIMUM STAGE IS 1672.6

MAXIMUM STAGE IS 1671.6

MAXIMUM STAGE IS 1670.3

MAXIMUM STAGE IS 1668.7

MAXIMUM STAGE IS 1666.5

SUB-AREA RUNOFF COMPUTATION

12

INFLOW HYDROGRAPH - NORTH ARROWHEAD LAKE SUBAREA

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JFRT	INAME	ISTAGE	IAUTO
9	0	0	0	0	0	1	0	0

HYDROGRAPH DATA

IHYDG	IUNG	TAREA	SNAP	TRSDA	TRSFC	RATIO	ISNOW	ISAME	LOCAL
1	1	.89	0.00	14.74	0.00	0.000	0	0	0

PRECIP DATA

SPFE	PMS	R6	R12	R24	R48	R72	R96
0.00	22.10	107.00	120.00	128.00	140.00	0.00	0.00

TRSPC COMPUTED BY THE PROGRAM IS .813

LOSS DATA

LROPT	STRR	DLTMR	RTIOL	ERAIN	STRAS	RTION	STRIL	CNSTL	ALSHX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

TF= 2.24 CP=.45 NTA= 0

RECEDITION DATA

STRTO= -1.50 ORCSN= -.05 RTIOR= 2.00

UNIT HYDROGRAPH 81 END-OF-PERIOD ORDINATES, LAG= 2.25 HOURS, CP= .45 VOL= 1.00

4.	14.	30.	47.	67.	86.	101.	112.	117.	115.
109.	101.	94.	89.	82.	76.	71.	66.	62.	58.
54.	50.	47.	44.	41.	38.	35.	33.	31.	29.
27.	25.	23.	22.	20.	19.	18.	16.	15.	14.
13.	12.	12.	11.	10.	9.	7.	8.	8.	7.
7.	6.	6.	5.	5.	5.	4.	4.	4.	3.
3.	3.	3.	3.	2.	2.	2.	2.	2.	2.
2.	2.	1.	1.	1.	1.	1.	1.	1.	1.
1.									

0	END-OF-PERIOD FLOW												
MD,DA	HR,MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	MD,DA	HR,MN	PERIOD	RAIN	EXCS	LOSS	COMP Q

SUM	25.16	22.74	2.42	52219.
(639.) (578.) (61.) (1478.68)				

HYDROGRAPH ROUTING

RESERVOIR ROUTING - THRU NORTH ARROWHEAD LAKE

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JFRT	INAME	ISTAGE	IAUTO
10	1	0	0	0	0	1	0	0

ROUTING DATA

QLOSS	CLOSS	Avg	IRES	ISAME	IOPT	IPMP	LSTR
0.0	0.000	0.00	1	0	0	0	0

NSTPS	NSTNL	LAG	AMSKA	X	TSK	STORA	ISPRAT
1	3	0	0.000	0.000	0.000	413.	1

HYDROGRAPH ROUTING

13

RESERVOIR ROUTING - THRU NORTH ARROWHEAD LKE

	ISTAO 10	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JPRT 0	I NAME 1	I STAGE 0	I AUTO 0
	ROUTING DATA								
	LOSS 0.0	CLOSS 0.000	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IPMF 0	LSTR 0	
	NSTPS 1	NSTOL 0	LAG 0	AMSKK 0.000	X 0.000	TSK 0.000	STORA 413.	ISPRAT -1	
STAGE	1668.20	1669.00	1670.00	1671.00	1671.70	1672.50	1673.00	1674.00	
FLOW	0.00	167.00	562.00	1091.00	1524.00	2119.00	2620.00	3980.00	
SURFACE AREA=	0.	83.	96.						
CAPACITY=	0.	413.	1468.						
ELEVATION=	1653.	1668.	1680.						
	CREL 1668.2	SPWID 0.0	COQW 0.0	EXFW 0.0	ELEV 0.0	COOL 0.0	CAREA 0.0	EXPL 0.0	
	DAM DATA								
	TOFEL 1671.7	COOD 0.0	EXPD 0.0	DAHWID 0.					
PEAK OUTFLOW IS	1310. AT TIME 43.75 HOURS								
PEAK OUTFLOW IS	1088. AT TIME 43.75 HOURS								
PEAK OUTFLOW IS	884. AT TIME 44.00 HOURS								
PEAK OUTFLOW IS	745. AT TIME 44.00 HOURS								
PEAK OUTFLOW IS	599. AT TIME 44.00 HOURS								
PEAK OUTFLOW IS	467. AT TIME 44.25 HOURS								
PEAK OUTFLOW IS	339. AT TIME 44.25 HOURS								
PEAK OUTFLOW IS	206. AT TIME 44.75 HOURS								
PEAK OUTFLOW IS	96. AT TIME 45.00 HOURS								

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH - ARROWHEAD LAKE SUBAREA

ISTAQ	ICOMP	IECON	ITAFE	JPLT	JFRT	I NAME	ISTAGE	IAUTO
11	0	0	0	0	0	10	0	0

HYDROGRAPH DATA										
IHYDG	IUHG	TAREA	SNAP	IRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL	
1	1	5.90	0.00	14.74	0.00	0.000	0	0	0	

PRECIP DATA							
SPFE	FMS	R6	R12	R24	R48	R72	R96
0.00	22.10	107.00	120.00	128.00	140.00	0.00	0.00

TRSFC COMPUTED BY THE PROGRAM IS .813

LOSS DATA

LROPT	STRMR	DLTRR	RTIOL	ERAIN	STRNS	RTIOK	STRTL	CNSTL	ALSMX	RTIMP
0	0.00	0.00	1.00	0.00	0.00	1.00	1.00	.05	0.00	0.00

UNIT HYDROGRAPH DATA

$T\bar{P} \equiv -4.43$ $\Gamma\bar{P} \equiv .45$ $NTA \equiv 9$

RECESSION DATA

UNIT HYPOGRAPH100 END-OF-PERIOD ORDINATES, LAG= 4.44 HOURS, CP= .45 VOL= .96

5.	18.	37.	6'.	87.	116.	147.	179.	214.	249.
281.	309.	335.	356.	373.	386.	394.	397.	390.	378.
365.	352.	340.	328.	317.	306.	295.	285.	275.	265.
256.	247.	239.	230.	222.	215.	207.	200.	193.	186.
160.	174.	169.	162.	156.	151.	146.	141.	136.	131.
126.	122.	118.	114.	110.	106.	102.	99.	95.	92.
89.	86.	83.	80.	77.	74.	72.	69.	67.	65.
62.	60.	58.	56.	54.	52.	50.	49.	47.	45.
44.	42.	41.	39.	38.	37.	35.	34.	33.	32.
31.	30.	29.	28.	27.	26.	25.	24.	23.	22.

END-OF-PERIOD FLOW																
0	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	0	MO.DA	HR.MN	PERIOD	RAIN	EXCS	LOSS	COMP Q	
												SUM	25.16	22.74	2.42	334992.
												(639.)	(528.)	(61.)	(948.92)	

.....

COMBINED HYDROGRAPHYS

COMBINE HYDROGRAPHS AT AERONAUTIC LANE

ISTAG	ICOMP	IECON	ITAPE	JPLT	JPT	INAME	ISTAGE	IAUTO
12	4	0	0	0	0	1	0	0

HYDROGRAPH ROUTING

RESERVOIR ROUTING - THRU ARROWHEAD LAKE

	ISTAQ 13	ICOMP 1	IECON 0	ITAPE 0	JPLT 0	JFRT 0	I NAME 1	I STAGE 0	I AUTO 0
	GLOSS 0.0	CLOSS 0.000	Avg 0.00	IRES 1	ISAME 0	IOPT 0	IFHP 0		LSTR 0
	NSTPS 1	NSTIL 0		LAG 0	AHSKK 0.000	X 0.000	TSK 0.000	STORA 1077.	ISPRAT -1
STAGE	1652.00 1658.50	1652.50 1659.00	1653.00 1659.50	1653.50 1660.00	1654.00 1660.50	1655.00 1661.00	1656.00 1662.00	1656.90	1657.
FLOW	0.00 7276.00	154.00 8198.00	435.00 9261.00	799.00 10486.00	1230.00 11857.00	2261.00 13377.00	3480.00 16889.00	4713.00	5602.
SURFACE AREA=	0.	218.	365.	649.					
CAPACITY=	0.	1073.	3377.	13379.					
ELEVATION=	1637.	1652.	1660.	1680.					
	CREL 1652.0	SPWID 0.0	CODW 0.0	EXPW 0.0	ELEV 0.0	COOL 0.0	CAREA 0.0	EXPL 0.0	

DAM DATA			
TOPCL 1656.9	CODD 0.0	EXPD 0.0	DAMVID 0.

PEAK OUTFLOW IS 11914. AT TIME 47.25 HOURS

PEAK OUTFLOW IS 10074. AT TIME 47.75 HOURS

PEAK OUTFLOW IS 8147. AT TIME 48.25 HOURS

PEAK OUTFLOW IS 6845. AT TIME 48.50 HOURS

PEAK OUTFLOW IS 5539. AT TIME 49.00 HOURS

PEAK OUTFLOW IS 4236. AT TIME 49.50 HOURS

PEAK OUTFLOW IS 2905. AT TIME 50.00 HOURS

PEAK OUTFLOW IS 1674. AT TIME 50.50 HOURS

PEAK OUTFLOW IS 668. AT TIME 49.75 HOURS

1

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	RATIOS APPLIED TO FLOWS									
			PLAN	RATIO 1	RATIO 2	RATIO 3	RATIO 4	RATIO 5	RATIO 6	RATIO 7	RATIO 8	RATIO 9
			1.00	.85	.70	.60	.50	.40	.30	.20	.10	
HYDROGRAPH AT	1	.42	1	982.	834.	687.	587.	491.	393.	294.	196.	98.
	(1.09)	(27.80)	(23.63)	(19.46)	(16.68)	(13.90)	(11.12)	(8.34)	(5.56)	(2.78)
ROUTED TO	2	.42	1	976.	830.	683.	586.	488.	378.	246.	95.	54.
	(1.09)	(27.63)	(23.49)	(19.34)	(16.58)	(13.81)	(10.72)	(6.98)	(2.68)	(1.52)
ROUTED TO	3	.42	1	977.	829.	678.	592.	510.	399.	259.	95.	54.
	(1.09)	(27.67)	(23.46)	(19.21)	(16.76)	(14.43)	(11.30)	(7.35)	(2.68)	(1.52)
HYDROGRAPH AT	4	7.53	1	8511.	7234.	5958.	5107.	4256.	3404.	2553.	1702.	851.
	(19.50)	(241.01)	(204.86)	(168.71)	(144.60)	(120.50)	(96.40)	(72.30)	(48.20)	(24.10)
ROUTED TO	5	7.53	1	6078.	5333.	4556.	3860.	3157.	2427.	1636.	880.	251.
	(19.50)	(172.11)	(151.02)	(129.02)	(109.31)	(87.41)	(68.73)	(46.33)	(24.93)	(8.23)
ROUTED TO	6	7.53	1	6075.	5330.	4552.	3856.	3155.	2423.	1633.	879.	250.
	(19.50)	(172.02)	(150.94)	(128.90)	(109.20)	(87.33)	(68.61)	(46.24)	(24.90)	(8.21)
ROUTED TO	7	7.53	1	6071.	5327.	4544.	3849.	3149.	2418.	1626.	877.	250.
	(19.50)	(171.90)	(150.84)	(128.67)	(109.00)	(87.16)	(68.47)	(46.04)	(24.83)	(8.21)
ROUTED TO	8	7.53	1	6067.	5323.	4537.	3843.	3142.	2412.	1621.	874.	250.
	(19.50)	(171.79)	(150.74)	(128.47)	(108.81)	(87.97)	(68.31)	(45.89)	(24.76)	(8.18)
HYDROGRAPH AT	9	.89	1	1630.	1386.	1141.	978.	815.	652.	489.	326.	163.
	(2.31)	(46.16)	(39.24)	(32.31)	(27.70)	(23.08)	(18.47)	(13.85)	(9.23)	(4.67)
ROUTED TO	10	.89	1	1310.	1069.	894.	745.	592.	467.	339.	206.	96.
	(2.31)	(37.09)	(30.81)	(25.02)	(21.08)	(16.96)	(13.22)	(9.61)	(5.84)	(2.72)
HYDROGRAPH AT	11	5.99	1	6871.	5841.	4610.	4123.	3436.	2749.	2061.	1374.	687.
	(15.28)	(194.58)	(165.39)	(136.20)	(116.75)	(97.29)	(77.63)	(58.37)	(38.92)	(19.42)
4 COMBINED	12	14.74	1	13133.	11234.	9153.	7709.	6265.	4765.	3183.	1826.	693.
	(38.18)	(371.88)	(318.11)	(259.09)	(218.29)	(177.41)	(134.64)	(90.13)	(51.70)	(25.27)
ROUTED TO	13	14.74	1	11914.	10974.	8147.	6845.	5539.	4236.	2905.	1674.	668.
	(38.18)	(337.38)	(285.27)	(230.70)	(193.84)	(156.83)	(119.95)	(82.25)	(47.41)	(18.50)

1

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1711.99	1712.00	1715.00
STORAGE	61.	61.	120.
OUTFLOW	0.	0.	99.

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1711.99	1712.00	1715.00
STORAGE	61.	61.	120.
OUTFLOW	0.	0.	99.

RATIO OF PNF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1715.46	.46	130.	976.	9.25	41.25	0.00
.85	1715.38	.38	128.	830.	8.50	41.25	0.00
.70	1715.30	.30	127.	683.	7.50	41.25	0.00
.60	1715.25	.25	126.	586.	6.50	41.25	0.00
.50	1715.20	.20	124.	468.	5.75	41.25	0.00
.40	1715.15	.15	123.	378.	4.75	41.50	0.00
.30	1715.08	.08	122.	246.	3.00	42.50	0.00
.20	1714.29	0.00	106.	95.	0.00	44.00	0.00
.10	1713.21	0.00	84.	54.	0.00	43.75	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	977.	1679.0	41.25
.35	829.	1677.6	41.25
.70	678.	1677.1	41.50
.60	592.	1676.8	41.25
.50	510.	1676.5	41.25
.40	399.	1676.1	41.75
.30	259.	1675.6	42.75
.20	95.	1674.1	44.00
.10	54.	1673.6	43.75

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1716.09	1716.00	1717.70
STORAGE	1213.	1213.	1792.
OUTFLOW	0.	0.	337.

RATIO OF PNF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1722.10	4.40	3703.	6073.	35.25	47.75	0.00
.85	1721.44	3.74	3338.	5333.	33.75	47.50	0.00
.70	1720.86	3.16	3036.	4356.	32.00	47.25	0.00
.60	1720.53	2.83	2845.	3860.	30.75	47.25	0.00
.50	1720.20	2.50	2662.	3157.	29.25	47.25	0.00
.40	1719.79	2.09	2483.	2427.	27.50	47.75	0.00
.30	1719.25	1.55	2302.	1636.	25.00	48.50	0.00
.20	1718.56	.86	2071.	890.	20.50	50.25	0.00
.10	1717.57	0.00	1738.	291.	0.00	53.25	0.00

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6075.	1706.9	48.00
.85	5330.	1706.5	47.75
.70	4562.	1706.1	47.25
.60	3856.	1705.8	47.50
.50	3155.	1705.4	47.50
.40	2423.	1705.1	46.00
.30	1633.	1704.2	48.75
.20	879.	1703.5	56.50
.10	290.	1702.2	53.75

PLAN 1 STATION 7

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6071.	1699.1	48.25
.85	5327.	1697.9	48.00
.70	4544.	1699.5	47.75
.60	3849.	1699.1	47.75
.50	3149.	1688.7	48.00
.40	2418.	1688.3	48.25
.30	1626.	1687.8	49.25
.20	877.	1686.7	51.00
.10	290.	1685.9	54.25

PLAN 1 STATION 8

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6067.	1675.4	48.50
.85	5323.	1674.8	48.25
.70	4537.	1674.0	48.00
.60	3843.	1673.3	48.00
.50	3142.	1672.6	48.25
.40	2412.	1671.6	48.75
.30	1621.	1670.3	49.75
.20	874.	1669.7	51.50
.10	289.	1668.5	53.00

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	INITIAL VALUE	SPILLWAY CEST	TOP OF DAM
ELEVATION	1666.20	1669.20	1671.20
STORAGE	413.	413.	709.
OUTFLOW	0.	0.	1524.

RATIO OF RESERVOIR F/F VS.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	CREATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1671.35	0.00	679.	1310.	0.00	43.75
.85	1670.97	0.00	649.	1093.	0.00	43.75

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE 1668.20	SPILLWAY CREST 1668.20	TOP OF DAM 1671.70
STORAGE	413.	413.	709.
OUTFLOW	0.	0.	1524.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1671.35	0.00	679.	1310.	0.00	43.75	0.00
.85	1670.99	0.00	648.	1098.	0.00	43.75	0.00
.70	1670.61	0.00	615.	884.	0.00	44.00	0.00
.60	1670.35	0.00	593.	745.	0.00	44.00	0.00
.50	1670.07	0.00	569.	599.	0.00	44.00	0.00
.40	1669.76	0.00	543.	467.	0.00	44.25	0.00
.30	1669.44	0.00	516.	337.	0.00	44.25	0.00
.20	1669.10	0.00	488.	206.	0.00	44.75	0.00
.10	1668.66	0.00	451.	96.	0.00	45.00	0.00

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE 1652.01	SPILLWAY CREST 1652.00	TOP OF DAM 1656.90
STORAGE	1076.	1073.	2344.
OUTFLOW	4.	0.	4713.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1660.52	3.62	3568.	11714.	17.25	47.25	0.00
.85	1659.83	2.93	3316.	10074.	15.25	47.75	0.00
.70	1658.97	2.07	3013.	8147.	12.50	48.25	0.00
.60	1658.25	1.35	2771.	6845.	10.25	48.50	0.00
.50	1657.46	.56	2515.	5539.	6.75	49.00	0.00
.40	1656.55	0.00	2239.	4236.	0.00	49.50	0.00
.30	1655.53	0.00	1945.	2905.	0.00	50.00	0.00
.20	1654.43	0.00	1651.	1674.	0.00	50.50	0.00
.10	1653.32	0.00	1375.	668.	0.00	49.75	0.00

FLOOD HYDROGRAPH PACKAGE (HEC-1)

DAM SAFETY VERSION JULY 1978

LAST MODIFICATION 26 FEB 79

EOI ENCOUNTERED.

N>

LAST MODIFICATION 26 FEB 79

26

 1 A1 ARROWHEAD LAKE DAH ***** TROUT CREEK
 2 A2 TOBYHANNA TWP., MONROE COUNTY, PA.
 3 A3 NDI # PA-00780 FA DER # 45-207
 4 B 300 0 15 0 0 0 0 0 -4 0
 5 B1 5
 6 J 1 .9 1
 7 J1 1 .85 .7 .6 .5 .4 .3 .2 .1
 8 K 1
 9 M1 INFLOW HYDROGRAPH - LOCUST LAKE SUBAREA
 10 H 1 1 .42 14.74
 11 P 22.1 107 120 128 140
 12 T 1 .05
 13 W 1.42 .45
 14 X -1.5 -.05 2
 15 K 1 2 1
 16 K1 RESERVOIR ROUTING - THRU LOCUST LANE
 17 Y 1
 18 Y1 1
 19 Y4 1712 1712.5 1713 1713.5 1714 1715 1715.5 1716 1716.5
 20 Y5 0 14 40 73 93 99 1057 2805 5068
 21 \$A 0 18.4 25.3
 22 \$E 1702 1712 1720
 23 \$\$ 1712 1
 24 \$D 1715
 25 K 1 3 1
 26 K1 ROUTING THRU REACH 2 - 3
 27 Y 1
 28 Y1 1
 29 Y6 .1 .09 .1 1673 1720 1100 .033
 30 Y7 0 1700 10 1700 100 1680 140 1673 150 1673
 31 Y7 170 1680 470 1700 860 1720
 32 K 4 1
 33 K1 INFLOW HYDROGRAPH - BRADY LAKE SUBAREA
 34 H 1 1 7.53 14.74
 35 P 22.1 107 120 128 140
 36 T 1 .05
 37 W 4.62 .45
 38 X -1.5 -.05 2
 39 K 1 5 1
 40 K1 RESERVOIR ROUTING - THRU BRADY LAKE
 41 Y 1
 42 Y1 1
 43 Y4 1716 1717 1717.3 1717.7 1717.9 1718.3 1719 1720 1721 1724
 44 Y5 0 127 196 337 431 652 127 2736 4842 8224
 45 \$S 0 78 300 830 1213 2553 4741
 46 \$E 1699 1704 1709 1714 1716 1720 1/24
 47 \$\$ 1716
 48 \$D 1717.7
 49 \$B 50 1 1704 .25 1716 1718.2
 50 K 1 6 1
 51 K1 ROUTING THRU REACH 5 - 6
 52 Y 1
 53 Y1 1
 54 Y6 .1 .08 .1 1701 1740 2500 .0043
 55 Y7 0 1740 10 1740 700 1720 910 1701 970 1701
 56 Y7 2820 1720 3900 1740 3910 1740
 57 K 1 7 1
 58 K1 ROUTING THRU REACH 6 - 7
 59 Y 1
 60 Y1 1

27

10 M1 ROUTING THRU REACH 6 - 7
 52 Y1 1
 60 Y6 .1 .1 .1 1684 1720 2950 .0058
 61 Y7 0 1720 10 1720 260 1700 1670 1684 1680 1684
 62 Y7 2275 1700 3690 1720 3700 1720
 63 K1 1 8
 64 K1 ROUTING THRU REACH 7 - 8
 65 Y1 1
 66 Y6 .1 .09 .1 1663 1700 4650 .0045
 67 Y7 0 1700 10 1700 300 1680 480 1663 490 1663
 68 Y7 630 1680 1820 1700 1830 1700
 69 K1 9
 70 K1 INFLOW HYDROGRAPH - NORTH ARROWHEAD LAKE SUBAREA
 71 M1 1 1 .89 14.74
 72 P 22.1 107 120 128 140
 73 T 1 .05
 74 W 2.24 .45
 75 X -1.5 -.05 2
 76 K1 10
 77 K1 RESERVOIR ROUTING - THRU NORTH ARROWHEAD LAKE
 78 Y1 1
 79 Y41668.2 1669 1670 1671 1671.7 1672.5 1673 1674
 80 Y5 0 167 562 1091 1524 2119 2620 3980
 81 \$A 0 82.6 96.4
 82 \$E1653.2 1668.2 1680
 83 \$\$1668.2
 84 \$01671.7
 85 K1 11
 86 K1 INFLOW HYDROGRAPH - ARROWHEAD LAKE SUBAREA
 87 M1 1 1 5.9 14.74
 88 P 22.1 107 120 128 140
 89 T 1 .05
 90 W 4.43 .45
 91 X -1.5 -.05 2
 92 K1 12
 93 K1 COMBINE HYDROGRAPHS AT ARROWHEAD LAKE
 94 K1 13
 95 K1 RESERVOIR ROUTING - THRU ARROWHEAD LAKE
 96 Y1 1
 97 Y4 1652 1652.5 1653 1653.5 1654 1655 1656 1656.9 1657.5 1658
 98 Y41658.5 1659 1659.5 1660 1660.5 1661 1662
 99 Y5 0 154 435 799 1230 2261 3480 4713 5602 6411
 100 Y5 7276 8198 9261 10486 11657 13377 16889
 101 \$A 0 217.6 364.6 649.2
 102 \$E1637.2 1652 1660 1680
 103 \$\$ 1652
 104 \$01656.9
 105 K1 99

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
RUNOFF HYDROGRAPH AT	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
ROUTE HYDROGRAPH TO	7
ROUTE HYDROGRAPH TO	8

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

RUNOFF HYDROGRAPH AT	1
ROUTE HYDROGRAPH TO	2
ROUTE HYDROGRAPH TO	3
RUNOFF HYDROGRAPH AT	4
ROUTE HYDROGRAPH TO	5
ROUTE HYDROGRAPH TO	6
ROUTE HYDROGRAPH TO	7
ROUTE HYDROGRAPH TO	8
RUNOFF HYDROGRAPH AT	9
ROUTE HYDROGRAPH TO	10
RUNOFF HYDROGRAPH AT	11
COMBINE 4 HYDROGRAPHS AT	12
ROUTE HYDROGRAPH TO	13
END OF NETWORK	

FLOOD HYDROGRAPH PACKAGE (HEC-1)
DAM SAFETY VERSION JULY 1978
LAST MODIFICATION 26 FEB 79

RUN DATE* 80/05/27.
TIME* 10.43.02.

ARROWHEAD LAKE DAH *** TROUT CREEK
TOBYHANNA TWP., MONROE COUNTY, PA.
NDI # PA-00780 FA DER # 45-207

JOB SPECIFICATION										
NQ	NHR	NMIN	IDAY	IHR	IMIN	METRC	IPLT	IPRT	INSTAN	
300	0	15	0	0	0	0	0	-4	0	
			JOPER	NWT	LROPT	TRACE				
				5	0	0	0			

MULTI-PLAN ANALYSES TO BE PERFORMED
NPLAN= 1 NRTIO= 9 LRTJO= 1
RTIOS= 1.00 .85 .70 .60 .50 .40 .30 .20 .10

SUB-AREA RUNOFF COMPUTATION

INFLOW HYDROGRAPH - LOCUST LAKE SUBAREA

ISTAQ	ICOMP	IECON	ITAPE	JPLT	JPRT	IENAME	ISTAGE	IAUTO
1	0	0	0	0	0	1	0	0

HYDROGRAPH DATA										
IHYDG	IUHG	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNOW	ISAME	LOCAL	
1	1	.42	0.00	14,74	0.00	0.000	0	0	0	

PRECIP DATA

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS									
				RATIO 1 1.00	RATIO 2 .85	RATIO 3 .70	RATIO 4 .60	RATIO 5 .50	RATIO 6 .40	RATIO 7 .30	RATIO 8 .20	RATIO 9 .10	
HYDROGRAPH AT	1	.42	1	982.	834.	687.	589.	491.	393.	294.	196.	98.	
	((1.09)	((27.80)	(23.63)	(19.46)	(16.68)	(13.90)	(11.12)	(8.34)	(5.56)	(2.78)	
ROUTED TO	2	.42	1	976.	830.	683.	586.	488.	378.	246.	95.	54.	
	((1.09)	((27.63)	(23.49)	(19.34)	(16.58)	(13.81)	(10.72)	(6.98)	(2.68)	(1.52)	
ROUTED TO	3	.42	1	977.	829.	678.	592.	510.	399.	259.	95.	54.	
	((1.09)	((27.67)	(23.46)	(19.21)	(16.76)	(14.43)	(11.30)	(7.35)	(2.68)	(1.52)	
HYDROGRAPH AT	4	7.53	1	8511.	7234.	5958.	5107.	4256.	3404.	2553.	1702.	851.	
	((19.50)	((241.01)	(204.86)	(168.71)	(144.60)	(120.50)	(96.40)	(72.30)	(48.20)	(24.10)	
ROUTED TO	5	7.53	1	10720.	10695.	10580.	10611.	10813.	10534.	10613.	10381.	291.	
	((19.50)	((303.55)	(302.85)	(299.58)	(300.48)	(306.18)	(298.29)	(300.52)	(293.97)	(8.23)	
ROUTED TO	6	7.53	1	9603.	9602.	9502.	9527.	9685.	9401.	9390.	9094.	290.	
	((19.50)	((271.93)	(271.91)	(269.08)	(269.78)	(274.25)	(266.20)	(265.90)	(257.52)	(8.21)	
ROUTED TO	7	7.53	1	9032.	9040.	8944.	8957.	9074.	8788.	8718.	8383.	290.	
	((19.50)	((255.77)	(255.98)	(253.27)	(253.64)	(256.95)	(248.85)	(246.86)	(237.39)	(8.21)	
ROUTED TO	8	7.53	1	8749.	8753.	8652.	8662.	8778.	8484.	8412.	8067.	289.	
	((19.50)	((247.75)	(247.87)	(244.98)	(245.27)	(249.58)	(240.24)	(238.21)	(228.42)	(8.18)	
HYDROGRAPH AT	9	.89	1	1630.	1386.	1141.	978.	815.	652.	489.	326.	163.	
	((2.31)	((46.16)	(39.24)	(32.31)	(27.70)	(23.08)	(18.47)	(13.85)	(9.23)	(4.62)	
ROUTED TO	10	.89	1	1310.	1089.	884.	745.	599.	467.	339.	206.	96.	
	((2.31)	((37.09)	(30.81)	(25.02)	(21.08)	(16.96)	(13.22)	(9.61)	(5.84)	(2.72)	
HYDROGRAPH AT	11	5.90	1	6871.	5841.	4810.	4123.	3436.	2749.	2061.	1374.	687.	
	((15.28)	((194.58)	(165.39)	(136.20)	(116.75)	(97.29)	(77.83)	(58.37)	(38.92)	(19.46)	
4 COMBINED	12	14.74	1	16602.	15353.	14361.	13752.	13079.	11876.	10699.	9243.	893.	
	((38.18)	((470.12)	(434.76)	(406.66)	(389.41)	(370.35)	(336.29)	(302.95)	(261.72)	(25.27)	
ROUTED TO	13	14.74	1	15340.	13527.	11584.	10364.	9198.	7859.	6653.	5292.	668.	
	((38.18)	((434.39)	(383.03)	(328.03)	(293.47)	(260.46)	(222.54)	(188.39)	(149.85)	(18.90)	

1

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELeVEL	1711.99	1712.00	1715.00
STORAGE	61.	61.	120.
OUTFLOW	0.	0.	00

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	STORAGE	1711.99	1712.00	1715.00
	OUTFLOW	61.	61.	120.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1715.46	.46	130.	976.	9.25	41.25	0.00
.85	1715.38	.38	128.	830.	8.50	41.25	0.00
.70	1715.30	.30	127.	683.	7.50	41.25	0.00
.60	1715.25	.25	126.	586.	6.50	41.25	0.00
.50	1715.20	.20	124.	488.	5.75	41.25	0.00
.40	1715.15	.15	123.	378.	4.75	41.50	0.00
.30	1715.08	.08	122.	246.	3.00	42.50	0.00
.20	1714.29	0.00	106.	95.	0.00	44.00	0.00
.10	1713.21	0.00	84.	54.	0.00	43.75	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	977.	1678.0	41.25
.85	829.	1677.6	41.25
.70	678.	1677.1	41.50
.60	592.	1676.8	41.25
.50	510.	1676.5	41.25
.40	399.	1676.1	41.75
.30	259.	1675.6	42.75
.20	95.	1674.1	44.00
.10	54.	1673.6	43.75

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
	STORAGE	1716.00	1716.00	1717.70
	OUTFLOW	1213.	1213.	1782.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1718.34	.64	1998.	10720.	2.00	40.25	40.00
.85	1718.32	.62	1991.	10695.	1.75	40.75	40.50
.70	1718.25	.55	1967.	10580.	1.50	41.25	41.00
.60	1718.27	.57	1973.	10611.	1.50	41.75	41.50
.50	1718.39	.69	2013.	10813.	1.75	42.50	42.25
.40	1718.24	.54	1962.	10534.	1.49	43.00	42.75
.30	1718.31	.61	1985.	10613.	1.74	44.25	44.00
.20	1718.22	.52	1956.	10381.	2.40	46.50	46.25
.10	1717.57	0.00	1738.	291.	0.00	53.25	0.00

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	9603.	1708.0	40.75
.85	9602.	1708.0	41.25
.70	9502.	1708.0	41.75
.60	9527.	1708.0	42.25
.50	9695.	1708.1	43.00
.40	9401.	1708.0	43.50
.30	9390.	1708.0	44.75
.20	9094.	1707.9	45.00
.10	290.	1702.2	53.75

PLAN 1 STATION 7

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	9032.	1691.2	41.25
.85	9040.	1691.2	41.75
.70	8944.	1691.1	42.25
.60	8957.	1691.1	42.75
.50	9074.	1691.2	43.50
.40	8788.	1691.1	44.00
.30	8718.	1691.1	45.25
.20	8383.	1690.9	47.50
.10	290.	1685.9	54.25

PLAN 1 STATION 8

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	8749.	1677.3	41.50
.85	8753.	1677.3	42.00
.70	8652.	1677.2	42.50
.60	8662.	1677.2	43.00
.50	8778.	1677.3	43.75
.40	8484.	1677.1	44.25
.30	8412.	1677.1	45.50
.20	8067.	1676.9	47.75
.10	289.	1666.5	55.00

1

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	INITIAL ELEVATION	SPILLWAY CREST	TOP OF DAM
	1668.20	1668.20	1671.70
	413.	413.	709.
	0.	0.	1524.

RATIO OF FNF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1671.35	0.00	679.	1310.	0.00	43.75	0.00
.85	1670.99	0.00	648.	1088.	0.00	43.75	0.00

26

1.00	8/49.	1677.3	41.50
.85	8753.	1677.3	42.00
.70	8652.	1677.2	42.50
.60	8662.	1677.2	43.00
.50	8778.	1677.3	43.75
.40	8484.	1677.1	44.25
.30	8412.	1677.1	45.50
.20	8067.	1676.9	47.75
.10	289.	1666.5	55.00

1

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
1668.20	1668.20	1671.70	
STORAGE	413.	413.	709.
OUTFLOW	0.	0.	1524.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1671.35	0.00	679.	1310.	0.00	43.75	0.00
.85	1670.99	0.00	648.	1088.	0.00	43.75	0.00
.70	1670.61	0.00	615.	894.	0.00	44.00	0.00
.60	1670.35	0.00	593.	745.	0.00	44.00	0.00
.50	1670.07	0.00	569.	599.	0.00	44.00	0.00
.40	1669.76	0.00	543.	467.	0.00	44.25	0.00
.30	1669.44	0.00	516.	339.	0.00	44.25	0.00
.20	1669.10	0.00	488.	206.	0.00	44.75	0.00
.10	1668.66	0.00	451.	96.	0.00	45.00	0.00

1

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
1652.01	1652.00	1656.90	
STORAGE	1076.	1073.	2344.
OUTFLOW	4.	0.	4713.

RATIO OF FMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1661.56	4.66	3961.	15340.	17.25	45.75	0.00
.85	1661.04	4.14	3764.	13527.	15.50	46.00	0.00
.70	1660.40	3.50	3524.	11584.	13.75	46.00	0.00
.60	1659.95	3.05	3359.	10364.	12.00	46.25	0.00
.50	1659.47	2.57	3187.	9198.	10.00	46.50	0.00
.40	1658.82	1.92	2960.	7859.	8.00	46.75	0.00
.30	1659.14	1.24	2734.	6653.	5.50	47.75	0.00
.20	1657.29	.39	2463.	5292.	2.50	- - - 49.75 - - -	0.00
.10	1653.32	0.00	1375.	668.	0.00	49.75	0.00

FLOOD HYDROGRAPH PACKAGE (HEC-1)

DAM SAFETY VERSION JULY 1978

LAST MODIFICATION 26 FEB 79

EOI ENCOUNTERED,

N>

1 A1 ARROWHEAD LAKE DAM *** TROUT CREEK
 2 A2 TORYHANNA TWP., MONROE COUNTY, PA.
 3 A3 NDI # PA-00780 FA DER # 45-207
 4 R 300 0 15 0 0 0 0 0 -4 0
 5 B1 5
 6 J 1 9 1
 7 J1 1 .85 .7 .6 .5 .4 .3 .2 .1
 8 K 1
 9 M INFLOW HYDROGRAPH - LOCUST LAKE SUBAREA
 10 H 1 1 .42 14.74
 11 P 22.1 107 120 128 140
 12 T
 13 W 1.42 .45
 14 X -1.5 -.05 2
 15 K 1 2
 16 M1 RESERVOIR ROUTING - THRU LOCUST LAKE
 17 Y 1
 18 Y1 1
 19 Y4 1712 1712.5 1713 1713.5 1714 1715 1715.5 1716 1716.5
 20 Y5 0 14 40 73 93 99 1057 2805 5068
 21 \$A 0 18.4 25.3
 22 \$E 1702 1712 1720
 23 \$\$ 1712
 24 \$B 1715
 25 K 1 3
 26 M1 ROUTING THRU REACH 2 - 3
 27 Y 1
 28 Y1 1
 29 Y6 .1 .09 .1 1673 1720 1100 .033
 30 Y7 0 1700 10 1700 100 1680 140 1673 150 1673
 31 Y7 170 1680 470 1700 860 1720
 32 K 4
 33 M1 INFLOW HYDROGRAPH - READY LAKE SUBAREA
 34 H 1 1 7.53 14.74
 35 P 22.1 107 120 128 140
 36 T
 37 W 4.62 .45
 38 X -1.5 -.05 2
 39 K 1 5
 40 M1 RESERVOIR ROUTING - THRU BRADY LAKE
 41 Y 1
 42 Y1 1
 43 Y4 1716 1717 1717.3 1717.7 1717.9 1718.3 1719 1720 1721 1724
 44 Y5 0 127 196 337 431 652 1267 2736 4842 8224
 45 \$\$ 0 78 300 830 1213 2553 4741
 46 \$E 1699 1704 1709 1714 1716 1720 1724
 47 \$\$ 1716
 48 \$01717.7
 49 K 1 6
 50 M1 ROUTING THRU REACH 5 - 6
 51 Y 1
 52 Y1 1
 53 Y6 .1 .08 .1 1701 1740 2500 .0043
 54 Y7 0 1740 10 1740 700 1720 910 1701 970 1701
 55 Y7 2820 1720 3900 1740 3910 1740
 56 K 1 7
 57 M1 ROUTING THRU REACH 6 - 7
 58 Y 1
 59 Y1 1
 60 Y6 .1 .1 .1 1684 1720 2950 .0058
 61 Y7 0 1720 19 1720 260 1700 1670 1684 1680 1684
 62 Y7 2225 1700 3620 1720 3700 1720

62 Y7 2275 1700 3690 1720 3700 1720 AVW AVW AVW AVW
 63 K 1 8 .1 1663 1700 4650 .0045
 64 M1 ROUTING THRU REACH 7 - 8
 65 Y 1
 66 Y1 1
 67 Y6 .1 .09 .1 1663 1700 4650 .0045
 68 Y7 0 1700 10 1700 300 1680 480 1663 490 1663
 69 Y7 630 1680 1820 1700 1830 1700
 70 K 9 .1
 71 K1 INFLOW HYDROGRAPH - NORTH ARROWHEAD LAKE SUBAREA
 72 M 1 1 .69 14.74
 73 P 22.1 107 120 128 140
 74 T 1 .05
 75 W 2.24 .45
 76 X -1.5 -.05 2
 77 K 1 10 .1
 78 K1 RESERVOIR ROUTING - THRU NORTH ARROWHEAD LAKE
 79 Y 1
 80 Y1 1 413 -1
 81 Y41668.2 1669 1670 1671 1671.7 1672.5 1673 1674
 82 Y5 0 167 562 1091 1524 2119 2620 3980
 83 \$A 0 82.6 96.4
 84 \$E1653.2 1668.2 1680
 85 \$\$1668.2
 86 \$D1671.7
 87 K 11 .1
 88 M1 INFLOW HYDROGRAPH - ARROWHEAD LAKE SUBAREA
 89 M 1 1 5.9 14.74
 90 P 22.1 107 120 128 140 .1 .05
 91 T 1 .05
 92 W 4.43 .45
 93 X -1.5 -.05 2
 94 K 4 12 .1
 95 M1 COMBINE HYDROGRAPHS AT ARROWHEAD LAKE
 96 M 1 13 .1
 97 M1 RESERVOIR ROUTING - THRU ARROWHEAD LAKE
 98 Y 1
 99 Y1 1 1077
 100 \$A 0 217.6 364.6 649.2
 1 101 \$E1637.2 1652 1660 1660
 102 \$\$ 1652 110 3.88 1.5
 103 \$D 1660 2.7 1.5 250
 104 K 99

1 PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

- RUNOFF HYDROGRAPH AT 1
- ROUTE HYDROGRAPH TO 2
- ROUTE HYDROGRAPH TO 3
- RUNOFF HYDROGRAPH AT 4
- ROUTE HYDROGRAPH TO 5
- ROUTE HYDROGRAPH TO 6
- ROUTE HYDROGRAPH TO 7
- ROUTE HYDROGRAPH TO 8
- RUNOFF HYDROGRAPH AT 9
- ROUTE HYDROGRAPH TO 10
- RUNOFF HYDROGRAPH AT 11
- COMBINE 4 HYDROGRAPHS AT 12
- ROUTE HYDROGRAPH TO 13
- END OF NETWORK

1

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS									
				RATIO 1 1.00	RATIO 2 .85	RATIO 3 .70	RATIO 4 .60	RATIO 5 .50	RATIO 6 .40	RATIO 7 .30	RATIO 8 .20	RATIO 9 .10	
HYDROGRAPH AT	1	.42	1	982.	834.	687.	567.	491.	393.	294.	196.	96.	
	((1.09)	((27.80)	(23.63)	(19.46)	(16.68)	(13.90)	(11.12)	(8.34)	(5.56)	(2.78)	
ROUTED TO	2	.42	1	976.	830.	683.	566.	488.	378.	246.	95.	54.	
	((1.09)	((27.63)	(23.49)	(19.34)	(16.58)	(13.81)	(10.72)	(6.98)	(2.69)	(1.52)	
ROUTED TO	3	.42	1	977.	829.	678.	592.	510.	399.	259.	95.	54.	
	((1.09)	((27.67)	(23.46)	(19.21)	(16.76)	(14.43)	(11.30)	(7.35)	(2.68)	(1.52)	
HYDROGRAPH AT	4	7.53	1	8311.	7234.	5956.	5107.	4256.	3404.	2553.	1702.	651.	
	((19.50)	((241.01)	(204.86)	(168.71)	(144.60)	(120.50)	(96.40)	(72.30)	(48.20)	(24.10)	
ROUTED TO	5	7.53	1	6078.	5333.	4556.	3860.	3157.	2427.	1636.	890.	291.	
	((19.50)	((172.11)	(151.02)	(129.02)	(109.31)	(89.41)	(68.73)	(46.33)	(24.93)	(8.23)	
ROUTED TO	6	7.53	1	6075.	5330.	4552.	3856.	3155.	2423.	1633.	879.	290.	
	((19.50)	((172.02)	(150.94)	(128.90)	(109.20)	(89.33)	(68.61)	(46.24)	(24.90)	(8.21)	
ROUTED TO	7	7.53	1	6071.	5327.	4544.	3849.	3149.	2419.	1626.	877.	290.	
	((19.50)	((171.90)	(150.84)	(128.67)	(109.00)	(89.16)	(68.47)	(46.04)	(24.83)	(8.21)	
ROUTED TO	8	7.53	1	6067.	5323.	4537.	3843.	3142.	2412.	1621.	874.	288.	
	((19.50)	((171.79)	(150.74)	(128.47)	(108.81)	(88.99)	(68.31)	(45.89)	(24.76)	(8.18)	
HYDROGRAPH AT	9	.89	1	1530.	1386.	1141.	978.	615.	652.	469.	326.	163.	
	((2.31)	((46.16)	(37.24)	(32.31)	(27.70)	(23.08)	(18.47)	(13.85)	(9.23)	(4.62)	
ROUTED TO	10	.89	1	1310.	1099.	864.	745.	599.	467.	339.	206.	96.	
	((2.31)	((37.09)	(30.81)	(25.02)	(21.08)	(16.96)	(13.22)	(9.61)	(5.84)	(2.72)	
HYDROGRAPH AT	11	5.30	1	6671.	5841.	4916.	4123.	3436.	2749.	2061.	1374.	687.	
	((15.28)	((194.58)	(165.39)	(136.20)	(116.75)	(97.29)	(77.83)	(58.37)	(39.92)	(19.44)	
4 COMBINED	12	14.74	1	13133.	11234.	9150.	7709.	6265.	4755.	3183.	1823.	893.	
	((38.18)	((371.88)	(318.11)	(259.09)	(216.29)	(177.41)	(134.64)	(90.13)	(51.70)	(25.27)	
ROUTED TO	13	14.74	1	11745.	9840.	5072.	6805.	5530.	4226.	2894.	1636.	569.	
	((38.18)	((332.59)	(278.63)	(228.57)	(192.69)	(156.60)	(119.65)	(81.96)	(47.18)	(18.96)	

1

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1711.99	1712.00	1715.00
STORAGE	61.	61.	120.
OUTFLOW	0.	0.	99.

RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1715.46	.46	130.	976.	9.25	41.25	0.00
.85	1715.38	.38	128.	830.	8.50	41.25	0.00
.70	1715.30	.30	127.	683.	7.50	41.25	0.00
.60	1715.25	.25	126.	586.	6.50	41.25	0.00
.50	1715.20	.20	124.	488.	5.75	41.25	0.00
.40	1715.15	.15	123.	378.	4.75	41.50	0.00
.30	1715.08	.08	122.	246.	3.00	42.50	0.00
.20	1714.29	0.00	106.	95.	0.00	44.00	0.00
.10	1713.21	0.00	84.	54.	0.00	43.75	0.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	976.	1676.0	41.25
.85	829.	1677.6	41.25
.70	678.	1677.1	41.50
.60	592.	1676.8	41.25
.50	510.	1676.5	41.25
.40	399.	1676.1	41.75
.30	259.	1675.6	42.75
.20	95.	1674.1	44.00
.10	54.	1673.6	43.75

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
STORAGE	1716.00	1716.00	1717.70
OUTFLOW	1213.	1213.	1263.
	0.	0.	337.

RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1722.10	4.40	3700.	6978.	35.25	47.75	0.00
.85	1721.44	3.74	3339.	5333.	33.75	47.50	0.00
.70	1720.96	3.16	3026.	4556.	32.00	47.25	0.00
.60	1720.53	2.83	2845.	3860.	30.75	47.25	0.00
.50	1720.20	2.50	2662.	3157.	29.25	47.25	0.00
.40	1719.79	2.09	2483.	2427.	27.50	47.75	0.00
.30	1719.25	1.55	2302.	1636.	25.00	48.50	0.00
.20	1718.56	.86	2071.	650.	20.50	50.25	0.00
.10	1717.57	0.00	1738.	291.	0.00	53.25	0.00

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6075.	1706.9	48.00
.85	5330.	1706.5	47.75
.70	4552.	1704.1	47.25

PLAN 1 STATION 6

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6075.	1706.9	48.00
.85	5330.	1706.5	47.75
.70	4552.	1706.1	47.25
.60	3856.	1705.8	47.50
.50	3155.	1705.4	47.50
.40	2423.	1705.1	48.00
.30	1633.	1704.2	48.75
.20	879.	1703.5	50.50
.10	290.	1702.2	53.75

PLAN 1 STATION 7

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6071.	1690.1	49.25
.85	5327.	1689.9	49.00
.70	4544.	1689.5	47.75
.60	3849.	1689.1	47.75
.50	3149.	1683.7	48.00
.40	2418.	1688.3	49.25
.30	1626.	1687.6	49.25
.20	977.	1686.7	51.00
.10	290.	1685.9	54.25

PLAN 1 STATION 8

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
1.00	6067.	1675.4	48.50
.85	5323.	1674.8	48.25
.70	4537.	1674.0	48.00
.60	3843.	1673.3	48.00
.50	3142.	1672.6	48.25
.40	2412.	1671.6	48.75
.30	1621.	1670.3	49.25
.20	974.	1668.7	51.50
.10	289.	1666.5	55.00

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1

ELEVATION	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
STORAGE	1668.20	1668.20	1671.70
OUTFLOW	413.	413.	709.
	0.	0.	1524.

RATIO OF F.M.F.	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1671.35	0.00	679.	1310.	0.00	43.75	0.00
.85	1670.99	0.00	648.	1088.	0.00	43.75	0.00
.70	1670.61	0.00	615.	984.	0.00	44.00	0.00

PLAN 1	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1665.20	1668.20	1671.70
STORAGE	413.	413.	709.
OUTFLOW	0.	0.	1524.

RATIO OF PMF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1671.35	0.00	679.	1310.	0.00	43.75	0.00
.85	1670.99	0.00	648.	1068.	0.00	43.75	0.00
.70	1670.61	0.00	615.	934.	0.00	44.00	0.00
.60	1670.35	0.00	593.	745.	0.00	44.00	0.00
.50	1670.07	0.00	569.	597.	0.00	44.00	0.00
.40	1669.76	0.00	543.	467.	0.00	44.25	0.00
.30	1669.44	0.00	516.	337.	0.00	44.25	0.00
.20	1669.10	0.00	488.	206.	0.00	44.75	0.00
.10	1668.66	0.00	451.	76.	0.00	45.00	0.00

SUMMARY OF DAM SAFETY ANALYSIS

PLAN I	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	1652.01	1652.00	1660.00
STORAGE	1076.	1073.	3377.
OUTFLOW	1.	0.	9657.

RATIO OF FRE	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FT	MAXIMUM OUTFLOW CFS	INFECTION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
1.00	1660.34	.34	3659.	11745.	7.25	47.50	0.00
.85	1650.99	.09	3416.	9340.	2.25	48.00	0.00
.70	1658.19	0.00	3057.	8072.	0.00	49.50	0.00
.60	1658.33	0.00	2798.	6695.	0.00	46.75	0.00
.50	1657.52	0.00	2534.	5530.	0.00	47.00	0.00
.40	1656.81	0.00	2257.	4226.	0.00	49.50	0.00
.30	1655.59	0.00	1950.	2894.	0.00	50.00	0.00
.20	1654.49	0.00	1654.	1656.	0.00	50.75	0.00
.10	1653.35	0.00	1382.	648.	0.00	49.75	0.00

[REDACTED]

11009 MITSUBISHI PACKAGE (REC-1)

EMERGENCY SESSION

1991 REPRODUCTION 24 SEP 72

1990-1991

EDU ENCONTRISTAS,

卷之三

APPENDIX E

PLATES

APPENDIX E

LOCATION PLAN

ARROWHEAD DAM

PA-00780

PLATE I

ROBBINS DOOR & SASH CO.
PROPOSED DAM FOR ~~MR. H. S. ROBBINS~~ 301 GREEN RIDGE ST. SCRANTON PA.
SITE LOCATED ON TROUT STREAM MONROE CO. PA.

5-350,658,000 Gals. Approx.

2

C. E. Femia C.E.

PA-00780

PLATE III

ELEVATION - SECTION B-B

Scale 1/2" = 1'-0"

ELEVATION - SECTION C-C

GENERAL NOTES

- Shaded portions indicate deteriorated areas of concrete to be cleaned by chipping and/or sandblasting and repaired by the gunite method.
- Approximate surface area to be repaired equals 730 square feet.
- Dimensions and details of structure are from drawings originally prepared by C.E. Ferris, C.E. and presumed to be on file with the Penna. Dept. of Forests and Waters.

PRELIMINARY PRINT
SUBJECT TO CHANGE

TOBYHANNA CREEK
PA 18382

AUGUST 1965

PROPL-5

AUGUST, 1965

SCALE AS NOTED

SHEET 1 OF 1

MONTGOMERY ENGINEERING, INC.

STROUDSBURG, PENNA.

FILE NR E-65044

J

5 August 1965

PA-0
PLAT

PLAN
Scale: 1"-0" - 0'

Bent Bar 1x6x6 welded
to angle 6" from each end
SECTION A-A
Scale: 3'-0" - 0'

REINFORCEMENT SCHEDULE			
MATERIAL	SIZE	NO.	LENGTH
B1	5	10	10'-9" B
B2	5	3	4'-0" S
B3	4	10	5'-6" S
B4	4	10	9'-0" S
D1	5	..	2'-0" S

* Bend 90° 6'9 pts.
** As required

RECEIVED IN THE OFFICE OF THE WATER & POWER
RESOURCES BOARD - DEPARTMENT OF FORESTS &
WATERS ON THE 23 DAY OF Mar. A.D. 1966
Curtis A. Darrow
Per Clerk

REQD. _____ FOR _____
SEE REPORT NO. _____

Div. Dams

L 3'8" x 6' x 6'-10"
Angle side and 45°
(See Sect on Q Pipe)

Bent Bar 1 1/8 x 6 welded
to angle 6" from each end

A-A
5'-1'-0"

SECTION B-B

Scale: 3' = 1'-0"

REINFORCEMENT SCHEDULE				
MATERIAL	SIZE	NO.	LENGTH	TYPE
B1	5	10	15'-9"	Bent
BE	5	3	4'-0"	Str.
B2	4	10	5'-6"	Str.
B4	4	10	9'-0"	Str.
DI	5	10	21'-0"	Str.

* Bend 90° @ 9 pts
** As required

Rear wall shall be poured
against cleaned face of
existing headwall but shall
be held at 8" min thickness.

- All concrete shall be Class A, 3500 psi, a minimum compressive strength of 24 cu.in.
- Reinforcement shall be galvanized steel, #10, 30 ft. long, 1/2" diameter, 1/2" cover, 1/2" spacing, 1/2" bend, 1/2" radius.
- Reinforcement shall consist of 1/2" diameter, 1/2" cover, 1/2" bend, 1/2" radius.
- Anchorage shall be 1/2" diameter, 1/2" bend, 1/2" radius, 1/2" cover, 1/2" spacing, 1/2" bend, 1/2" radius.
- Where reinforcement is to be placed in concrete, it shall be 1/2" from the face of the concrete.
- Reinforcement shall be 1/2" diameter, 1/2" bend, 1/2" radius, 1/2" cover, 1/2" spacing, 1/2" bend, 1/2" radius.
- Beams shall be 4x6x12" CFS or equivalent, 1/2" bend, 1/2" radius, 1/2" cover, 1/2" spacing, 1/2" bend, 1/2" radius.
- Lumber for a template to be of a grade not less than 1750 f.p.s. and is recommended by the architect to meet Lumber Association.
- Cove - Grade 7 or 8 design 6'-0" x 10'-0" x 2'-0" x 1'-0" and shall be such that it cannot be removed by unauthorized persons.
- Slope invert of floating block to match slope of 1'-0" - 4' - 0".

PRELIMINARY PRINT

SUBJECT TO CHANGE

<p>JOHN B. ARCHER President ALL AMERICAN REALTY COMPANY</p> <p><i>John B. Archer</i></p>		<p>ARROWHEAD LAKE Tobyhanna Township, Monroe County, Penna</p> <p>ALL AMERICAN REALTY COMPANY</p> <p>PROPOSED DROP GATE FOR DAM OUTLET CONDUIT</p> <p>October, 1965 Scale: As Noted Sheet 1 of 1</p>	
		<p>Monroe Engineering, Inc. Stroudsburg, Penna.</p>	<p>FILE NO. E-63048</p>

PA-0078
PLATE V

APPENDIX F
GEOLOGIC REPORT

APPENDIX F

GEOLOGIC REPORT

Bedrock - Dam and Reservoir

Formation Name: Duncannon Member of the Catskill Formation.

Lithology: Fine to coarse grained grayish red sandstone interbedded with red siltstone and graying red shale. Beds arranged in fining - upward sequences with some conglomerate at the base of the cycle.

Structure

The dam is located in the Pocono Plateau area and the beds are nearly flat lying.

Air photo fracture traces trend: N5°E, N-S, and N85°E.

Overburden

The site is within the limits of Pleistocene glaciation and variable thicknesses of glacial till and outwash sediments are present in the area. Plans for the dam indicate that test pits showed three feet of soil over "hardpan and clay." This last apparently refers to till.

Aquifer Characteristics

The rocks of the Catskill Formation are essentially impermeable and ground water movement is entirely along bedding planes and fractures. The most permeable aquifers in the area are the sands and gravel of the glacial outwash commonly found in the valleys.

Discussion

The plans indicate that a cutoff trench was to be dug four feet deep - that would be just barely into the clay foundation. Some leakage through the overburden, or along the N85°E fracture trace in the bedrock, appears possible.

Sources of Information

1. W.D. Sevon (1975), "Geology of the Tobyhanna and Buck Hill Falls Quadrangle," Pa. Geological Survey Bulletin A204ab.
2. Air Photographs, dated 1973. Scale 1:40,000.
3. Plans and reports in file.

GEOLOGIC MAP - Arrowhead Lake Dam

Dcd

Catskill Fm.- Duncannon member

— · — air photo fracture trace

SCALE 1:24000

1000 0 1000 2000 3000 4000 5000 6000 7000 FEET
1 KILOMETER

CONTOUR INTERVAL 20 FEET