

Multi-Agent Systems

Assignment Project Exam Help

https://eduassistpro.github.io/ Dr. Nestor eo,

Add WeChat edu_assist_pro

- Researcher CONSUS (Crop Optimisation through Sensing, Understanding & viSualisation),
- School of Computer Science
- University College Dublin (UCD)

Lecture V Learning Objectives

- ☐ Review the characteristics and elements of Agent Oriented
- **Programming and Object Oriented Programming**
 - Assignment Project Exam Help
- Review the differenc ent and an Object https://eduassistpro.github.io/
- ☐ Understand the elem Add WeChat edu assist pro
- **Programming Language**
- □Understand how Belief Management occurs on a MAS and the temporality of Beliefs
- ☐ Understand and identify the different Commitment States

Agent Oriented Programming

Introduced in 1993 by Yoav Shoham (Stanford).

Based on the idea of programming agents as mental entities.

A complete AOP System includes three primary components:

• a restricted formal

r syntax and see

- a restricted formal
 res
- •an **interpreted programming** edu_assist_prowhich to define and program agents, with primitive s (such as request and inform).
- an "agentifier" (method), converting neutral devices into programmable agents.

Shoham illustrated this through a prototype AOP language, Agent-0.

Agents Vs Objects

- Silva defines an agent as "an extension of an object with additional features"
- Extends the definition of state and behaviour
- Agents have the "freedom" worth of airs to hange their behaviors.
- Agents are autonomous. https://eduassistpro.github.io/
- Methods are made available for invectati edu_assist_pro desired;
- Agents do not invoke methods but make "
- Objects have nothing to say about differing deductive models like reactive or exhibit social abilities
- Agents are each considered to have their "own thread of control".
- In standard object systems there is merely one thread

Active vs Passive Objects

- Objects do not require external stimuli to carry out their jobs.
 Assignment Project Exam Help
- Agents active elem passive ones. https://eduassistpro.github.io/
- Active Objects blur Add WeChat edu_assist_pro
- Active objects have their own thread of control and can in some senses be considered autonomous.
- They exhibit some behaviours without actually being operated upon.

OOP and AOP, a comparison

OOP

AOP

- 1. abstract class
- 2. Class
- 3. member variable
- 4. Method
- 5. collaboration (uses)
- 6. composition (has)
- 7. inheritance (is)
- 8. instantiation
- 9. polymorphism

Assignment Project Framer Helple

https://eduassistpro.github.io/led belief

Add WeChat edu_assistypro

- 5. Negotiation
- 6. holonic agents
- 7. role multiplicity
- 8. domain specific role + individual knowledge
- 9. service matchmaking

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Typical applications of agent programming

- Mobile computing
- Mobility

Assignment Project Exam Help

Concurrent pro

https://eduassistpro.github.io/

Proxy Handling

Add WeChat edu_assist_pro

- Communication traffic ro
- Information scouts

Non-Exhaustive List of APLs

1993	Agent-0
1995	PLACA / AgentSpeak(L)
1998	JACK / 3APUssignment Project Exam Help
2002	GOAL / AF-AP
2004	Jason https://eduassistpro.github.io/
2008	2APL Add WeChat edu_assist_pro
2010	AF-AgentSpeak
2011	simpAL
2012	ASTRA
2014	Blueprint

"A cohesive framework that
supports a structure of Project Exam Help
approach to thttps://eduassistpro.github.io/
development Add WeChat edu_assist_pro
deployment of multi-agent
systems"

- 1. Programming Language
- 2. Run-Time Environmein Project Exam Help
- 3. Development Environhttps://eduassistpro.github.io/
- 4. Software Engineering Add WeChat edu_assist_pro Methodology

- 1. Programming Language
 - Declarative Assignment Project Exam Help
 - Formalised through https://eduassistpro.github.io/logic
 - Agent-specific Constructs Add WeChat edu_assist_pro
- 2. Run-Time Environment
- 3. Development Environment
- 4. Software Engineering Methodology

- 1. Programming Language
- 2. Run-Time Environment Project Exam Help
 - Distributed https://eduassistpro.github.io/
 - FIPA Compliant
 Add WeChat edu_assist_pro
 - Agent Platforms + Infrastructure
 - System Agents: AMS + DF
- 3. Development Environment
- 4. Software Engineering Methodology

- 1. Programming Language
- 2. Run-Time Environmein Project Exam Help
- 3. Development Envirohttps://eduassistpro.github.io/
 - AF-APL Compiler Add WeChat edu_assist_pro
 - Netbeans & Eclipse Plugins
 - VIPER Protocol Editor
- 4. Software Engineering Methodology

- 1. Programming Language
- 2. Run-Time Environmein Project Exam Help
- 3. Development Environhttps://eduassistpro.github.io/
- 4. Software Engineering Method of edu_assist_pro

What is Agent Factory?

- 1. Agent Programming Language
- 2. Run-Time Environmein Project Exam Help
- 3. Development Environhttps://eduassistpro.github.io/
- 4. Software Engineering Add WeChat edu_assist_pro Methodology
- Implemented in Java:
- Open Source

- AF-APL Programs define:
 - Actuators

Perceptors

Assignment Project Exam Help

Modules

https://eduassistpro.github.io/

Commitment Rules

Add WeChat edu_assist_pro

Initial Mental State

Executing AF-APL

- AF-APL is executed on a purpose-built agent interpreter.
 - •The agent class is loaded into the interpreter when the agent is created.
 - •Control functions can be used to support of the operation of the aghtes://eduassistpro.github.io/
- •The interpreter processes

 the environment (beliefs) Adah Werhalt edu_assistions about how to act (commitments).
- Two problems arise from this:
 - How to ensure that the model of the environment is up-to-date?
 - •How to make the decision about how and when to act?
- •These problems are known as the belief management and commitment management problems, respectively.

Belief Management = Belief Update + Belief Query

- Belief Update.
 - Dynamic Environment Transitory beliefs
 - Persistence can be supported Chat edu_assist_pro through temporal operators (e.g. ALWAYS, NEXT)
 - Belief update = gathering perceptions + updating the temporal beliefs.

- Belief Query.
 - Beliefs = Facts + Implications (Belief Rules).
 - Resolution-based reasoning to rojectent abelief p

Representing Beliefs in AF-APL

- AF-APL supports three forms of belief:
 - Current Beliefs. Beliefs that are true at the current time point.
 - Temporal Beliefs. Beliefs that persist over more than one time point.
 Belief Rules. Rules that define inferences that can be made on the
 - Belief Rules. Rules that define interences that can be made on the current beliefs.
 https://eduassistpro.github.io/
- •In AF-APL a belief is re within a BELIEF operator: Add WeChat edu_assist_pro
 - BELIEF(happy(rem)) a belief that rem is happy
 - BELIEF(likes(?person, beer)) a belief that some person likes beer
 - BELIEF(bid(fred, 50)) a belief that fred has bid 50
- These beliefs are current beliefs and apply only at the current time point.
 As a consequence, they are wiped at the start of each iteration of the AF-APL interpreter.

Temporal Beliefs

- ALWAYS the belief is a current belief and will persist until the temporal belief is dropped.
 - ALWAYS(BELIEF(happy(greg))) always believe that greg is happy

 ITIL the belief is a will persist until either the
- •UNTIL the belief is a will persist until either the temporal belief is droppe https://eduassistpro.gidmdition is satisfied.

UNTIL(BELIEF(drinking(wine greedu_assist=f(available(wine))) – believe that greg is drinking do not believe that there

- is wine available.
- **NEXT** the belief will be a current belief at the next time point. **NEXT(BELIEF(finished(wine)))** – at the next time point belief that the wine is finished.
- These beliefs are maintained until they are explicity dropped.

Belief Rules

 Belief Rules define inferences that can be made over the current beliefs of the agent.

Assignment Project Exam Help

•They take the for https://eduassistpro.gitatloip/s:

```
BELIEF(likes(?food)) (Shat edu_assist_as()?food)) =>
BELIEF(wa ))
```

BELIEF(has(rem, icecream)) => BELIEF(happy(rem))