Announcements

- Webwork due on Friday
- Test 3 one week from Friday!
 - I'll aim to have study materials and old tests up by this weekend
 - Our Sun through stars
 - Probably finish content on Monday
- Polling: rembold-class.ddns.net

A bit of review...

A friend is telling you about main sequence stars they have been observing of different masses, a few of which include a $0.03M_{\odot}$, $0.5M_{\odot}$, $1M_{\odot}$,and a $120M_{\odot}$ star. Which would you be most skeptical about?

- **A**. $0.03 M_{\odot}$
- **B**. $0.5 M_{\odot}$
- C. $1M_{\odot}$
- D. $120M_{\odot}$

A bit of review...

A friend is telling you about main sequence stars they have been observing of different masses, a few of which include a $0.03M_{\odot}$, $0.5M_{\odot}$, $1M_{\odot}$,and a $120M_{\odot}$ star. Which would you be most skeptical about?

- **A**. 0.03*M*_⊙
- **B**. $0.5 M_{\odot}$
- C. $1M_{\odot}$
- D. $120M_{\odot}$

A Massive Undertaking

- A star's mass is likely its most influential property
- Determines:
 - Luminosity
 - Temperature
 - Lifetime
- Catagorize:
 - Low-mass: stars born with a mass $< 2M_{\odot}$
 - Intermediate-mass: stars born with mass between 2 and 8 M_{\odot}
 - High-mass: stars born with mass $> 8M_{\odot}$

A Massive Undertaking

- A star's mass is likely its most influential property
- Determines:
 - Luminosity
 - Temperature
 - Lifetime
 - And its ultimate fate!
- Catagorize:
 - Low-mass: stars born with a mass $< 2 M_{\odot}$
 - Intermediate-mass: stars born with mass between 2 and 8 M_{\odot}
 - ullet High-mass: stars born with mass $> 8 M_{\odot}$
- We'll look at low mass star lifetimes first, then look at intermediate and high mass lifetimes together

The Main Sequence

- Happily creating energy by fusing hydrogen into helium
- Equilibrium between gravity and gas pressure
- Balanced between energy created and energy released
- Provides a steady source of energy
- Spends about 90% of its total lifetime on the main sequence
 - Billions of years

A Fateful Day

- We feel fairly decent at this point about the main sequence
- Our key question is what happens after that?
- Linked to running out of hydrogen to fuse, but what does that imply for our star?

A Delicate Balance...

- The core runs out of hydrogen
 - Gas pressure lessens \Rightarrow gravity wins
 - Core compresses

A Delicate Balance...

- The core runs out of hydrogen
 - Gas pressure lessens ⇒ gravity wins
 - Core compresses
- Outer layers still have hydrogen
- Core contraction brings the innermost of these layers into the "fusing zone"
- Hydrogen shell actually "burns hotter"!

A Broken Thermostat...

- Increase of fusion rate releases lots more energy
 - Increases gas pressure
 - Outer layers puff up
 - Solar winds start blowing away material

A Broken Thermostat...

- Increase of fusion rate releases lots more energy
 - Increases gas pressure
 - Outer layers puff up
 - Solar winds start blowing away material
- As the hydrogen shell fuses, its helium is added to the core
 - Increased mass compresses it further
 - New shell burns even hotter
 - Outer layers puff up more

A Broken Thermostat...

- Increase of fusion rate releases lots more energy
 - Increases gas pressure
 - Outer layers puff up
 - Solar winds start blowing away material
- As the hydrogen shell fuses, its helium is added to the core
 - Increased mass compresses it further
 - New shell burns even hotter
 - Outer layers puff up more

Helium Fusion!

- At temperatures of about 100 million K, helium starts fusing to Carbon
 - Uses a two step process
 - Need such high temperatures because ⁸Be is very unstable
 - Need it to combine with another Helium before it decays
- Helium fusion actually causes the star to shrink some in size!
- Some Oxygen also created (adding another Helium to Carbon)

Helium Fusion!

- At temperatures of about 100 million K, helium starts fusing to Carbon
 - Uses a two step process
 - Need such high temperatures because ${}^8\mathrm{Be}$ is very unstable
 - Need it to combine with another Helium before it decays
- Helium fusion actually causes the star to shrink some in size!
- Some Oxygen also created (adding another Helium to Carbon)

Helium Fusion!

- At temperatures of about 100 million K, helium starts fusing to Carbon
 - Uses a two step process
 - ullet Need such high temperatures because ${}^8{
 m Be}$ is very unstable
 - Need it to combine with another Helium before it decays
- Helium fusion actually causes the star to shrink some in size!
- Some Oxygen also created (adding another Helium to Carbon)

- Energy from initial helium fusion rapidly expands core (Helium Flash)
 - Pushes out hydrogen burning shell

- Energy from initial helium fusion rapidly expands core (Helium Flash)
 - Pushes out hydrogen burning shell
- Star actually shrinks some and warms back up

- Energy from initial helium fusion rapidly expands core (Helium Flash)
 - Pushes out hydrogen burning shell
- Star actually shrinks some and warms back up
- Reaches stability and undergoes helium fusion
 - Lasts maybe 10-20% as long as hydrogen fusion

- Energy from initial helium fusion rapidly expands core (Helium Flash)
 - Pushes out hydrogen burning shell
- Star actually shrinks some and warms back up
- Reaches stability and undergoes helium fusion
 - Lasts maybe 10-20% as long as hydrogen fusion
- When run out of helium, a repeat occurs, but even worse

Game Over

- What happens when the star runs out of helium?
- Another growth surge:
 - Core cools, and constricts
 - Now there are two fusing shells, one of helium and one of hydrogen
 - Heats outer layers and causes star to puff up even bigger!
- Core collapses inward until supported by degeneracy pressure
- Not massive enough to squeeze carbon atoms close enough together to start carbon fusion
- Internal energy source turns off
- Most gas outside the core has been blown away
- Becomes a white dwarf
- Outgoing radiation excites expelled gases, creating planetary nebula!

Understanding Check

Which of the following HR Diagrams would show the path of our Sun's lifetime?

The Heavy Hitters November 7, 2018 Jed Rembold 12 / 18

Understanding Check

Which of the following HR Diagrams would show the path of our Sun's lifetime?

The Heavy Hitters November 7, 2018 Jed Rembold 12 / 18

Time to get Massive

- Now we'll shift our attention to the more massive stars
- ullet Talking stars with masses greater that $2M_{\odot}$

The Boring Part

- Like their low mass bretheren, high mass stars start out on the main sequence
- Burning hydrogen
- Larger mass means:
 - Blue (Hotter)
 - Brighter (Greater Luminosity)
- Fuses through a CNO cycle instead of Proton-Proton chains

The Boring Part

- Like their low mass bretheren, high mass stars start out on the main sequence
- Burning hydrogen
- Larger mass means:
 - Blue (Hotter)
 - Brighter (Greater Luminosity)
- Fuses through a CNO cycle instead of Proton-Proton chains

The CNO Cycle

When the H runs out...

- The hotter temperatures and CNO cycle fuse the hydrogen much quicker than in low mass stars
- The effects of running out of hydrogen in the core is similar to low mass stars:
 - The core begins to cool and contract
 - Hydrogen shell burning begins and puffs out the outer layers
 - The core contracts and heats until hot enough for helium fusion
- Becomes a Supergiant!
- When Helium fusion activates, there is no helium flash.
 - Core still hot enough to support with gas pressure
- Outer layers slower to react means the luminosity stays about the same

When the (Insert Element Here) runs out...

- Things get exciting!
- Core contracts again
 - This time there is enough mass and heat to start carbon fusion
 - Repeats the same cycle as with helium fusion
 - But even shorter timescales this time
 - Carbon fuses into Neon, Sodium, and Magnesium
- Then the carbon runs out!
 - Core contracts again until hot enough for Oxygen or Neon fusion to begin
- Cycle keeps repeating each time the core runs out of fuel
 - Each cycle results in larger elements being produced
 - Each cycle is shorter, as there is less of the heavier element
 - At some point we reach Iron

Our Onion Star

At this point we have multiple layers of shell fusion happening throughout the star

The Heavy Hitters November 7, 2018 Jed Rembold 18 / 18