MOwNiT - aproksymacja średniokwadratowa trygonometryczna

Paweł Podedworny

24.04.2024

1 Opis ćwiczenia

Dla funkcji $f(x) = e^{-k \cdot sin(mx)} + k \cdot cos(mx)$, gdzie k = 2, m = 2 na przedziale $x \in [-\pi, 2\pi]$, wyznaczyć jej wartości w n
 dyskretynych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując aproksymacje średniokwadratową trygonometryczną.

Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów bazowych zawierających różną liczbę funkcji. Oszacować błędy przybliżenia. Graficznie zilustrować interesujące przypadki.

2 Dane techniczne

Komputer z systemem Windows 10 x64 Procesor: AMD Ryzen 5 3600 3.60GHz

Pamięć RAM: 16GB 3200MHz Środowisko: DataSpell 2023.3.4

Język: Python 3.11 z biblioteką numpy oraz matplotlib

3 Wykres funkcji

Rys. 1: Wykres funkcji f(x) dla $x \in [-\pi, 2\pi], k = 2, m = 2$

4 Aproksymacja średniokwadratowa wielomianami algebraiczynymi

4.1 Szukanie wielomianu uogólnionego

Szukamy wielomianu uogólnionego:

$$f(x) = \sum_{j=0}^{m} a_j \varphi_j(x)$$

Zakładamy, że aproksymowana funkcja F(x) jest funkcją ciągłą, okresową o okresie podstawowym 2π , znamy jej wartości w węzłach x_0, x_1, \dots, x_{n-1} będących punktami odcinka $[-\pi, \pi]$ oraz $F(-\pi) = F(\pi)$. Możemy wtedy aproksymować funkcje okresowe przy użyciu funkcji trygonometrycznych, przyjmując za bazę:

$$(\varphi_k(x)) = 1, \sin(x), \cos(x), \sin(2x), \cos(2x), \cdots, \sin(mx), \cos(mx)$$

Wielomian trygonometryczny o okresie 2π ma postać:

$$Q_n(x) = \frac{a_0}{2} + \sum_{k=1}^{m} (a_k \cos(kx) + b_k \sin(kx))$$

Z racji, że funkcja f(x) jest określona na dyskretnym zbiorze n równoodległych punktów:

$$x_i = \frac{2\pi}{n-1}i - \pi, \quad i = 0, 1, \dots, n-1$$

otrzymujemy:

$$\sum_{i=0}^{n-1} \sin(lx_i)\sin(kx_i) = \begin{cases} 0 & \text{dla } m \neq k \\ \frac{n}{2} & \text{dla } l = k \neq 0 \\ 0 & \text{dla } l = k = 0 \end{cases}$$

$$\sum_{i=0}^{n-1} \cos(lx_i)\cos(kx_i) = \begin{cases} 0 & \text{dla } l \neq k \\ \frac{n}{2} & \text{dla } l = k \neq 0 \\ n & \text{dla } l = k = 0 \end{cases}$$

$$\sum_{i=0}^{n-1} \cos(lx_i)\sin(kx_i) = 0, \quad l, k - dowolne$$

Zatem szukamy wielomianu postaci:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{m} (a_k \cos(kx) + b_k \sin(kx))$$

gdzie:

$$a_k = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \cdot \cos(kx_i)$$

$$b_k = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \cdot \sin(kx_i)$$

Przy pomocy powyższych wzorów możemy wyznaczyć wielomian aproksymacyjny. Aby problem był dobrze uwarunkowany, (żeby liczba funkcji bazowych nie przekraczała liczby węzłów aproksymacyjnych), stopień wielomianu m powinien wynosić:

$$m \leqslant \left\lfloor \frac{n-1}{2} \right\rfloor$$

4.2 Przekształcenie przedziału $[-\pi, 2\pi]$ na $[-\pi, \pi]$

Do przeskalowania dowolnego przedziału z [a,b] na [c,d] należy skorzystać ze wzoru:

$$x_i' = \frac{x_i - a}{b - a} \cdot (d - c) + c$$

Następnie podstawiając interesujące nas przedziały $[a,b]=[-\pi,2\pi]$ oraz $[c,d]=[\pi,\pi]$:

$$x_i' = \frac{x_i - (-\pi)}{2\pi - (-\pi)} \cdot (\pi - (-\pi)) + (-\pi) = \frac{2}{3}x - \frac{1}{3}\pi$$

gdzie:

- \bullet x_i węzeł aproksymacji przez przed przekształceniem,
- x_i' węzeł aproksymacji po przekształceniu,

4.3 Wzory po przekształceniu

$$a_k = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \cdot \cos(kx_i')$$

$$b_k = \frac{2}{n} \sum_{i=0}^{n-1} f(x_i) \cdot \sin(kx_i')$$

5 Obliczanie dokładności przybliżeń

5.1 Maksymalna różnica

Największa różnica jaka występuje pomiędzy funkcją, a wielomianem interpolującym:

$$\max_{k} |f(x_k) - P_n(x_k)|$$

5.2 Błąd średni kwadratowy

Suma kwadratów różnic pomiędzy wartościami funkcji i funkcji sklejanych podzielonych przez liczbę punktów N, gdzie N=1000:

$$\frac{1}{N} \sum_{i=1}^{N} (f(x_i) - P_n(x_i))^2$$

6 Wyniki aproksymacji

6.1 5 węzłów

$6.1.1 \quad m = 2$

Rys. 2: Wykresy aproksymacji dla 5 węzłów i 2 stopnia wielomianu

\mathbf{m}	Maksymalna różnica	Średni błąd kwadratowy		
2	9.3685	16.7802		

Tabela 1: Porównanie błędu i maksymalnej różnicy dla aproksymacji wielomianowej dla drugiego stopnia wielomianu przy 5 węzłach.

6.2 10 węzłów

6.2.1 m = 3, 5

Rys. 3: Wykresy aproksymacji dla 10 węzłów i różnych stopni wielomianów

\mathbf{m}	Maksymalna różnica	Średni błąd kwadratowy
3	2.8322	1.7483
5	3.0532	2.1137

Tabela 2: Porównanie błędów i maksymalnych różnic dla aproksymacji wielomianowej dla różnych wartości m przy 10 węzłach.

6.3 15 węzłów

$6.3.1 \quad m = 3, 6$

Rys. 4: Wykresy aproksymacji dla 15 węzłów i różnych stopni wielomianów

\mathbf{m}	Maksymalna różnica	Średni błąd kwadratowy
3	2.6060	1.3129
6	2.7211	0.7224

Tabela 3: Porównanie błędów i maksymalnych różnic dla aproksymacji wielomianowej dla różnych wartości m przy 15 węzłach.

6.4 20 węzłów

$6.4.1 \quad m = 3, 6$

Rys. 5: Wykresy aproksymacji dla 20 węzłów i różnych stopni wielomianów

\mathbf{m}	Maksymalna różnica	Średni błąd kwadratowy
3	2.3515	1.1715
6	1.8830	0.3797

Tabela 4: Porównanie błędów i maksymalnych różnic dla aproksymacji wielomianowej dla różnych wartości m przy 20 węzłach.

6.5 30 węzłów

$6.5.1 \quad m = 4, 6, 11$

Rys. 6: Wykresy aproksymacji dla 30 węzłów i różnych stopni wielomianów

m	Maksymalna różnica	Średni błąd kwadratowy
4	2.1844	1.1233
6	1.3769	0.2222
11	2.1031	0.2344

Tabela 5: Porównanie błędów i maksymalnych różnic dla aproksymacji wielomianowej dla różnych wartości m przy 30 węzłach.

6.6 50 węzłów

6.6.1 m = 4, 7, 11, 24

Rys. 7: Wykresy aproksymacji dla 50 węzłów i różnych stopni wielomianów

\mathbf{m}	Maksymalna różnica	Średni błąd kwadratowy
4	2.0817	1.0741
7	1.0514	0.1486
11	1.2252	0.0879
24	2.8800	0.1826

Tabela 6: Porównanie błędów i maksymalnych różnic dla aproksymacji wielomianowej dla różnych wartości m przy 50 węzłach.

6.7 100 węzłów

$6.7.1 \quad m = 4, 7, 11, 24$

Rys. 8: Wykresy aproksymacji dla 100 węzłów i różnych stopni wielomianów

\mathbf{m}	Maksymalna różnica	Średni błąd kwadratowy
5	5.4670	7.0423
8	4.4903	2.5151
11	2.1133	0.8361
30	3.8813	1.1994

Tabela 7: Porównanie błędów i maksymalnych różnic dla aproksymacji wielomianowej dla różnych wartości m przy 100 węzłach

6.8 Komentarz

6.8.1 5 węzłów

Aby aproksymacja została dobrze uwarunkowana dla 5 węzłów, obliczenia wykonujemy tylko dla 2 stopnia wielomianu. Z rysunku 2. możemy zauważyć, że wyznaczona funkcja bardzo dobrze odzwierciedla położenie tak małej liczby węzłów.

6.8.2 10 węzłów

Dla 10 równomiernie rozmieszczonych węzłów możemy zobaczyć, że wyznaczone interpolacje dobrze odwierciedlają położenie zadanych punktów. Jednak z racji, że wśród wyznaczonych węzłów żaden nie pokrywa wyższych partii f(x), te miejsca pozostają ominięte.

6.8.3 15 węzłów

Dla 15 węzłów widzimy, że dzięki ich gęstszemu rozmieszczeniu, aproksymacja ma więcej informacji, dzięki czemu zwrócony wielomian coraz dokładniej przybliża zadaną funkcję przy niskim stopniu.

6.8.4 20 węzłów

Im więcej węzłów tym coraz bardziej dokładniejsza funkcja aproksymująca oraz coraz niższe wartości błędów.

6.8.5 30 węzłów

Przy 30 węzłach możemy zobaczyć, że korzystająć z aproksymacji trygonometrycznej dla takiej funkcji jak naszaf(x), możemy uzyskać bardzo dobre wyniki przy niskim stopniu wielomianu. Pokazuje nam to w tym przypadku wielomian dla m=6.

6.8.6 50 węzłów

Patrząc na wyniki dla 50 węzłów możemy odnieść wrażenie, że dla wyższych stopni uzyskujemy niemal interpolacje. Dla mniejszych zaś wyniki również są bardzo satysfakcjonujące.

6.8.7 100 węzłów

W tym przypadku widzimy, że większe odstępstwa od zadanej f(x) widzimy tylko dla niskich stopni wielomianu. Dla wyższych jedyne nieprawidłowości ukazują się na brzegach przedziału.

7 Wielomian najlepiej przybliżający funkcję

Przeprowadzono testy dla różnych kombinacji n i m takich że 3 <= m < n <= 100 oraz $m \leqslant \left\lfloor \frac{n-1}{2} \right\rfloor$ i wyszukano najlepsze przybliżenie patrząc na a) najmniejszą wartość bezwględnej różnicy oraz b) najmniejszy błąd średniokwadratowy. Dodatkowo dla wyliczonego stopnia wielomianu sprawdzono czy dla okolicznych -5 i +5 węzłów błąd faktycznie jest stopniowo mniejszy, czy mamy doczynienia z błędem arytmetyki komputera.

7.1 Bezwględna różnica

Rys. 9: Aproksymacja dla 93 węzłów i 32 stopnia wielomianu

n	Maksymalna różnica
95	0.48110226866764005
96	0.47538270807747907
97	0.46983309065498924
98	0.4643967307309187
99	0.45907019625985646
100	0.45385019247821967

Tabela 8: Porównanie maksymalnych różnic dla 9 stopnia wielomianu od 95. do 100. węzłow

7.2 Błąd średniokwadratowy

Rys. 10: Aproksymacja dla 90 węzłów i 40 stopnia wielomianu

n	Maksymalna różnica
95	0.024034800480417395
96	0.023646394763107505
97	0.023269951403158847
98	0.022904984400492576
99	0.022551032183126117
100	0.02220765614858004

Tabela 9: Porównanie średniego błędu kwadratowego dla 9 stopnia wielomianu od 95. do 100. węzłow

7.3 Komentarz

Po przeprowadzonych testach możemy zobaczyć, że najlepsze przybliżenie w obu sprawdzanych przypadkach dostajemy dla 9 stopnia wielomianu przy 100 węzłach. Po dodatkowych obliczeniach z tabeli 8. oraz 9. możemy wywnioskować, że wartości błędów w okolicy podobnej ilości błędów widocznie maleją w kierunku wyznaczonych wartości. Utwierdza nas to w przekonaniu, że uzyskane wyniki są poprawne.

8 Porównanie błędów

8.1 Maksymalna różnica

$m \backslash n$	5	10	15	20	30	50	100
2	9.3685	5.8017	5.7266	5.5217	5.4297	5.3560	5.3007
3	X	2.8322	2.6060	2.3515	2.2100	2.0971	2.0126
4	X	2.8304	2.9689	2.5040	2.1844	2.0817	2.0049
5	X	3.0532	3.4739	2.7928	2.3382	1.9843	1.9545
6	X	X	2.7211	1.8830	1.3769	0.9928	0.7272
7	X	X	3.0266	2.2106	1.5091	1.0514	0.7462
8	X	X	X	2.4775	1.6527	1.1094	0.7600
9	X	X	X	2.7025	1.7074	0.9874	0.4539
10	X	X	X	3.0517	1.9067	1.1060	0.5083
11	X	X	X	X	2.1031	1.2252	0.5660
15	X	X	X	X	3.0000	1.8031	0.9031
24	X	X	X	X	X	2.8800	1.4400
30	X	X	X	X	X	X	1.8000

Tabela 10: Porównanie maksymalnej różnicy dla różnych kombinacji liczby węzłów (n) i stopni wielomianu (m)

8.2 Średni błąd kwadratowy

$m \backslash n$	5	10	15	20	30	50	100
2	16.7802	8.4620	8.3020	8.1876	8.1379	8.1121	8.1013
3	X	1.7483	1.3129	1.1715	1.1025	1.0665	1.0512
4	X	1.9306	1.3938	1.2180	1.1233	1.0741	1.0531
5	X	2.1137	1.5550	1.2645	1.1441	1.0818	1.0551
6	X	X	0.7224	0.3797	0.2222	0.1412	0.1071
7	X	X	0.8044	0.4596	0.2427	0.1486	0.1089
8	X	X	X	0.5060	0.2632	0.1560	0.1108
9	X	X	X	0.4622	0.1935	0.0730	0.0222
10	X	X	X	0.5905	0.2142	0.0804	0.0241
11	X	X	X	X	0.2344	0.0879	0.0259
15	X	X	X	X	0.3130	0.1129	0.0282
24	X	X	X	X	X	0.1826	0.0457
30	X	X	X	X	X	X	0.0576

Tabela 11: Porównanie średniego błędu kwadratowego dla różnych kombinacji liczby węzłów (n) i stopni wielomianu (m)

8.3 Komentarz

Dla wyników błędów z tabel 10. i 11. możemy zauważyć, że w obrębie danego stopnia wielomianu wartości błędów maleją proporcjonalnie do liczby węzłów. Kiedy zaś patrzymy w obrębie danej liczby węzłów możemy spostrzec, iż zasadniczo wartości błędów do pewnego momentu zaczynają spadać, następnie zaczynają oscylować, by na końcu ponownie zwracać większe wartości.

9 Wnioski

Po przeprowadzonych testach dla różnych liczby węzłów oraz stopnia wielomianów możemy zauważyć pewne różnice w stosunku do aproksymacji wielomianami algebraicznymi.

Po pierwsze widzimy, że w tym przypadku nie ma aż takiego znaczenia dobór odpowiednich wartości n i m. Z tabel 10. i 11. możemy wywnioskować, że wartości błędów utrzymują się na całkiem akceptowalnym poziomie dla stosunkowo wysokiego stopnia wielomianu.

Mimo wszystko, jeżeli chcemy uzyskać jak najlepsze przybliżenie, dalej powinniśmy stosować stopnie w okolicy m=10.

Trzeba podkreślić, że w związku z tym iż zadana funkcja f(x) opiera się na funkcjach trygonometrycznych, zastosowanie aproksymacji wielomianami trygonometrycznymi ma bardzo duży potencjał. Dla niskich stopni wielomianów aproksymujących jesteśmy w stanie uzyskać całkiem obiecujące niskie wartości błędów.