

095946- ADVANCED ALGORITHMS AND PARALLEL PROGRAMMING

Fabrizio Ferrandi

a.a. 2023-2024

Competitive Analysis

- Self-organizing lists
- Move-to-front heuristic
- . Competitive analysis of MTF

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

Example:

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

Example:

Accessing the element with key 14 costs 4.

- The operation ACCESS(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

Example:

Transposing 3 and 50 costs 1.

Definition. A sequence *S* of operations is provided one at a time. For each operation, an

on-line algorithm A must execute the operation immediately without any knowledge of future operations (e.g., Tetris). An off-line algorithm may see the whole sequence S in advance.

The game of Tetris

Goal: Minimize the total cost $C_A(S)$.

Worst-case analysis of self-organizing lists

An adversary always accesses the tail (nth) element of L. Then, for any on-line algorithm A, we have

$$C_A(S) = \Omega(|S| \cdot n)$$

in the worst case.

Average-case analysis of self-organizing lists

Suppose that element x is accessed with probability p(x). Then, we have

$$E[C_A(S)] = \sum_{x \in L} p(x) \cdot \operatorname{rank}_L(x)$$

which is minimized when L is sorted in decreasing order with respect to p.

Heuristic: Keep a count of the number of times each element is accessed, and maintain L in order of decreasing count.

Practice: Implementers discovered that the *move-to-front* (MTF) heuristic empirically yields good results.

IDEA: After accessing x, move x to the head of L using transposes:

$$\mathbf{cost} = 2 \cdot \mathbf{rank}_L(x) .$$

The MTF heuristic responds well to locality in the access sequence S.

Competitive analysis

Definition. An on-line algorithm A is α -competitive if there exists a constant k such that for any sequence S of operations,

$$C_A(S) \le \alpha \cdot C_{OPT}(S) + k$$
,

where **OPT** is the optimal off-line algorithm ("God's algorithm").

Theorem. MTF is 4-competitive for self-organizing lists.

Theorem. MTF is 4-competitive for self-organizing lists.

Proof. Let L_i be MTF's list after the *i*th access, and let L_i^* be OPT's list after the *i*th access.

Let $c_i = \text{MTF's cost for the } i \text{th operation}$ = $2 \cdot \text{rank}_{L_{i-1}}(x)$ if it accesses x; $c_i^* = \text{OPT's cost for the } i \text{th operation}$ = $\text{rank}_{L_{i-1}^*}(x) + t_i$,

where t_i is the number of transposes that OPT performs.

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i} x\}|$$

$$= 2 \cdot \# inversions.$$
| list with the optimal

Define the potential function $\Phi:\{L_i\}\to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{\ldots\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{(E,C), ...\}|$$

EC and CE are in the reverse order

Define the potential function $\Phi:\{L_i\}\to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), ...\}|$$

are in the reverse order

Define the potential function $\Phi:\{L_i\}\to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), ...\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), (E,B), ...\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), (E,B), (D,B)\}|$$

#inversions = $5 \Rightarrow phi(Li) = 2*5$

Define the potential function $\Phi:\{L_i\}\to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Example.

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), (E,B), (D,B)\}|$$

= 10.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Define the potential function $\Phi:\{L_i\}\to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Note that

- $\Phi(L_i) \ge 0$ for i = 0, 1, ...,
- $\Phi(L_0) = 0$ if MTF and OPT start with the same list. (because there are no inversions)

Define the potential function $\Phi:\{L_i\}\to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Note that

- $\Phi(L_i) \ge 0$ for i = 0, 1, ...,
- $\Phi(L_0) = 0$ if MTF and OPT start with the same list.

How much does **4** change from **1** transpose?

- A transpose creates/destroys 1 inversion.
- $\Delta \Phi = \pm 2$ because i'm reducing or adding an inversion.

What happens on an access?

Suppose that operation i accesses element x, and define

$$A = \{ y \in L_{i-1} : y \prec_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}} x x \},$$

$$B = \{ y \in L_{i-1} : y \prec_{L_{i-1}} x \text{ and } y \succ_{L_{i-1}} x x \},$$

$$C = \{ y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}} x x \},$$

$$D = \{ y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \succ_{L_{i-1}} x x \}.$$

items of A AND B

sto prendendo in considerazione la comparazione con la lista ottimale.

What happens on an access?

$$r^* = \operatorname{rank}_{L_{i-1}^*}(x)$$

We have
$$r = |A| + |B| + 1$$
 and $r^* = |A| + |C| + 1$.

cost of accessing X

position in list opt.

(accedo tutto gli elementi di A e poi di C)

cost of acessing X in the list Li-1

What happens on an access?

$$L_{i-1}$$
 $A \cup B$ $x \quad C \cup D$ $r = \operatorname{rank}_{L_{i-1}}(x)$ L_{i-1}^* $A \cup C$ x $B \cup D$

$$r^* = \operatorname{rank}_{L_{i-1}^*}(x)$$

We have r = |A| + |B| + 1 and $r^* = |A| + |C| + 1$.

When MTF moves x to the front, it creates |A| inversions and destroys |B| inversions. Each transpose by OPT creates ≤ 1 inversion. Thus, we have

$$\Phi(L_i) - \Phi(L_{i-1}) \leq 2(|A| - |B| + t_i)$$
 . this is the worst case

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1}) \\ \leq 2r + 2(|A| - |B| + t_i)$$

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})
\leq 2r + 2(|A| - |B| + t_i)
= 2r + 2(|A| - (r - 1 - |A|) + t_i)$$

(since
$$r = |A| + |B| + 1$$
)

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1})
\leq 2r + 2(|A| - |B| + t_{i})
= 2r + 2(|A| - (r - 1 - |A|) + t_{i})
= 2r + 4|A| - 2r + 2 + 2t_{i}$$

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1})
\leq 2r + 2(|A| - |B| + t_{i})
= 2r + 2(|A| - (r - 1 - |A|) + t_{i})
= 2r + 4|A| - 2r + 2 + 2t_{i}
= 4|A| + 2 + 2t_{i}$$

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1})
\leq 2r + 2(|A| - |B| + t_{i})
= 2r + 2(|A| - (r - 1 - |A|) + t_{i})
= 2r + 4|A| - 2r + 2 + 2t_{i}
= 4|A| + 2 + 2t_{i}
\leq 4(r^{*} + t_{i})$$

(since
$$r^* = |A| + |C| + 1 \ge |A| + 1$$
)

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1}) \\
\leq 2r + 2(|A| - |B| + t_{i}) \\
= 2r + 2(|A| - (r - 1 - |A|) + t_{i}) \\
= 2r + 4|A| - 2r + 2 + 2t_{i} \\
= 4|A| + 2 + 2t_{i} \\
\leq 4(r^{*} + t_{i}) \\
= 4c_{i}^{*}.$$

Thus, we have

$$C\sum_{i=1}^{|S|} c_i$$
MTF

Thus, we have

$$C \sum_{i=1}^{|S|} c_{i}$$

$$= \sum_{i=1}^{|S|} (\hat{c}_{i} + \Phi(L_{i-1}) - \Phi(L_{i}))$$

Thus, we have

$$C \sum_{i=1}^{|S|} c_{i}$$

$$= \sum_{i=1}^{|S|} (\hat{c}_{i} + \Phi(L_{i-1}) - \Phi(L_{i}))$$

$$\leq \left(\sum_{i=1}^{|S|} 4c_{i} *\right) + \Phi(L_{0}) - \Phi(L_{|S|})$$

Thus, we have

$$C \sum_{i=1}^{|S|} c_{i}$$

$$= \sum_{i=1}^{|S|} (\hat{c}_{i} + \Phi(L_{i-1}) - \Phi(L_{i}))$$

$$\leq \left(\sum_{i=1}^{|S|} 4c_{i} *\right) + \Phi(L_{0}) - \Phi(L_{|S|})$$

$$\leq 4 \cdot C_{OPT}$$

since $\Phi(L_0) = 0$ and $\Phi(L_{|S|}) \ge 0$.

If we count transpositions that move x toward the front as "free" (models splicing x in and out of L in constant time), then MTF is 2-competitive.

If we count transpositions that move x toward the front as "free" (models splicing x in and out of L in constant time), then MTF is 2-competitive.

What if $L_0 \neq L_0^*$?

- Then, $\Phi(L_0)$ might be $\Theta(n^2)$ in the worst case.
- Thus, $C_{\text{MTF}}(S) \leq 4 \cdot C_{\text{OPT}}(S) + \Theta(n^2)$, which is still 4-competitive, since n^2 is constant as $|S| \to \infty$.

Based on Introduction to Algorithms CLRS

Material adapted from Erik D. Demaine and Charles E. Leiserson slides

http://www.cs.cmu.edu/~sleator/papers/amortized-efficiency.pdf