HCS12 Instruction Set

Chapter 7

Part 1

M68HCS12 Instruction Set

- Categories
 - Load and Store
 - Stack
 - Transfer
 - Decrement and Increment
 - Clear and Set
 - Shift and Rotate
 - Arithmetic Instructions

Arithmetic Instructions

- Add and Subtract
- Decimal Arithmetic
- Negating Instruction
- Multiplication
- Division
- Logic
- Data Test
- Conditional Branch

Other Instructions

- Unconditional Jump and Branch
- Subroutines
- Interrupt
- Miscellaneous

HCS12 Instruction Set

TABLE 7-2 HCS12 Instruction Set^a

Mnemonic	Operation	Mnemonic	Operation
Load Registe	ers (see Section 7.5)		
LDAA	$(M) \rightarrow A$	LDAB	$(M) \rightarrow B$
LDD	$(M:M+1) \rightarrow D$	LDS	$(M:M+1) \rightarrow SP$
LDX	$(M:M+1) \rightarrow X$	LDY	$(M:M+1) \rightarrow Y$
LEAS	$EA \rightarrow SP$	LEAX	$EA \rightarrow X$
LEAY	$EA \rightarrow Y$		
PULA	$(SP) \rightarrow A$	PULB	$(SP) \rightarrow B$
PULD	$(SP:SP + 1) \rightarrow D$	PULC	$(SP) \rightarrow CCR$
PULX	$(SP:SP+1) \rightarrow X$	PULY	$(SP:SP + 1) \rightarrow Y$
Store Regist	ers (see Section 7.5)		
STAA	$A \rightarrow (M)$	STAB	$B \rightarrow (M)$
STD	$D \rightarrow (M:M+1)$	STS	$SP \rightarrow (M:M+1)$
STX	$X \rightarrow (M:M+1)$	STY	$Y \rightarrow (M:M+1)$
PSHA	$A \rightarrow (SP)$	PSHB	$B \rightarrow (SP)$
PSHD	$D \rightarrow (SP:SP + 1)$	PSHC	$CCR \rightarrow (SP)$
PSHY	$Y \rightarrow (SP:SP + 1)$	PSHX	$X \rightarrow (SP:SP + 1)$
Transfer/Exc	hange Registers (see Section 7.6	6)	
TFR	Any Reg → Any Reg	EXG	Any Reg $\leftarrow \rightarrow$ Any Reg
Move Memo	ry Contents (see Section 7.7)		
MOVB	$(M1) \rightarrow (M2)$	MOVW	$(M1:M1 + 1) \rightarrow (M2:M2 + 1)$

TABLE 7-2 Continued

Mnemonic	Operation	Mnemonic	Operation
Decrement/I	ncrement (see Section 7.8)		
DEC	$(M) - 1 \rightarrow (M)$	DECA	$A-1 \rightarrow A$
DECB	$B-1 \rightarrow B$	DES	$SP - 1 \rightarrow SP$
DEX	$X - 1 \rightarrow X$	DEY	$Y - 1 \rightarrow Y$
INC	$(M) + 1 \rightarrow (M)$	INCA	$A + 1 \rightarrow A$
INCB	$B + 1 \rightarrow B$	INS	$SP + 1 \rightarrow SP$
INX	$X + 1 \rightarrow X$	INY	$Y + 1 \rightarrow Y$
Clear/Set (se	e Section 7.9)		
CLR	$0 \rightarrow (M)$	CLRA	$0 \rightarrow A$
CLRB	$0 \rightarrow B$		
BCLR	$0 \rightarrow (M \text{ bits})$	BSET	$1 \rightarrow (M \text{ bits})$
Arithmetic (s	ee Section 7.11)		
ABA	$A + B \rightarrow A$	ABX	$B + X \rightarrow X$ (see LEAX)
ABY	$B + Y \rightarrow Y$ (see LEAY)	ADDA	$A + (M) \rightarrow A$
ADDB	$B + (M) \rightarrow B$	ADDD	$D + (M:M + 1) \rightarrow D$
ADCA	$A + (M) + C \rightarrow A$	ADCB	$B + (M) + C \rightarrow B$
DAA	Decimal adjust		
SUBA	$A - (M) \rightarrow A$	SBA	$A - B \rightarrow A$
SUBD	$D - (M:M + 1) \rightarrow D$	SUBB	$B - (M) \rightarrow B$
SBCB	$B - (M) - C \rightarrow B$	SBCA	$A - (M) - C \rightarrow A$
NEG	Two's complement (M)	NEGA	Two's complement → A
NEGB	Two's complement B	SEX	Sign extend A,B,CCR
MUL	Unsigned A * B → D	EMUL	Unsigned $D*Y \rightarrow Y:D$
EMULS IDIV	Signed D * Y \rightarrow Y : D	EDIV	Hariana IVD/V . VD
EDIVS	Unsigned D/X \rightarrow X,D		Unsigned Y:D/X \rightarrow Y,D
FDIV	Signed Y : $D/X \rightarrow Y,D$ Fractional $D/X \rightarrow X,D$	IDIVS	Signed D/X \rightarrow X,D
Logic (see Se			
ANDA	$A \cdot (M) \rightarrow A$	ANDB	P. (M) > P
ANDCC	$CCR \cdot (M) \rightarrow CCR$	ANDB	$B \cdot (M) \rightarrow B$
EORB	$B EOR (M) \rightarrow CCR$	EORA	$A EOR (M) \rightarrow A$
ORAB	$B OR(M) \rightarrow B$	ORAA	$A \cup A \cup A$ $A \cup A \cup A$
ORCC	$CCR OR (M) \rightarrow CCR$	OKAA	A OK (III) -> A
COM	Ones' complement (M)	COMA	Ones' complement A
COMB	Ones' complement B	Comi	ones complement?
	Shifts (see Section 7.10)		
ROL	Rotate Left (M)	ROLA	Rotate Left A
ROLB	Rotate Left B	ROR	Rotate Right (M)
RORA	Rotate Right A	RORB	Rotate Right B
ASL	Arith Shift Left (M)	ASLA	Arith Shift Left A
ASLB	Arith Shift Left B	ASLD	Arith Shift Left D
ASR	Arith Shift Right (M)	ASRA	Arith Shift Right A
ASRB	Arith Shift Right B		
LSLA	Logic Shift Left A	LSL	Logic Shift Left (M)
LSLD	Logic Shift Left D	LSLB	Logic Shift Left B
LSRA	Logic Shift Right A	LSR	Logic Shift Right (M)
LSRD	Logic Shift Right D	LSRB	Logic Shift Right B
Data Test (se	e Section 7.13)		
BITA	Test bits in A	BITB	Test bits in B
CBA	A - B	CMPA	A - (M)
CMPB	B - (M)	CPD	D - (M : M + 1)

X - (M : M + 1)	CPY	V OLVIII		
the state of the s	Cri	Y - (M : M + 1)		
SP - (M : M + 1)				
Test $(M) = 0$ or negative	TSTA	Test $A = 0$ or negative		
Test $B = 0$ or negative				
and Specialized Math (see Chapter 19)				
Membership function	REV	MIN-MAX Rule Evaluation		
		Weighted average		
		$MIN(D, (M: M + 1)) \rightarrow D$		
		$MIN(A, (M)) \rightarrow A$		
		$MAX(D, (M:M+1)) \rightarrow D$		
		$MAX(A, (M)) \rightarrow A$		
		Multiply and accumulate		
8-bit table interpolate	Linited	aut.p.y and accumulate		
Branch (see Section 7.14)				
Short branch minus	LBMI	Long branch minus		
		Long branch plus		
		Long branch two's-		
	2013	complement overflow set		
	LBVC	Long branch two's-		
	LBVC	complement overflow clear		
	IRIT	Long branch two's		
	LDLI	complement less than		
	LRGE	Long branch two's complement		
complement greater than or equal	LBGE	greater than or equal		
Short branch two's complement	LBLE	Long branch two's complement less		
less than or equal		than or equal		
Short branch two's complement	LBGT	Long branch two's complement		
greater than		greater than		
Short branch equal	LBEQ	Long branch equal		
Short branch not equal	LBNE	Long branch not equal		
Short branch higher	LBHI	Long branch higher		
Short branch lower or same	LBLS	Long branch lower or same		
Short branch higher or same	LBHS	Long branch higher or same		
Short branch lower	LBLO	Long branch lower		
Short branch carry clear	LBCC	Long branch carry clear		
Short branch carry set	LBCS	Long branch carry set		
ve (see Section 7.15)				
Decrement and branch = 0	DBNE	Decrement and branch <> 0		
Increment and branch = 0	IBNE	Increment and branch <> 0		
Test and branch = 0	TBNE	Test and branch <> 0		
anch (see Section 7.16)				
Jump to address				
Jump to subroutine	Call	Call subroutine		
Return to subroutine	RTC	Return from CALL		
Branch to subroutine				
Short branch never	LBRN	Long branch never		
Short branch always	LBRA	Long branch always		
Branch bits set				
Branch bits clear				
	Membership function Weighted rule evaluation MIN(D, (M: M + 1)) → (M: M + 1) MIN(A, (M)) → (M) MAX(D, (M: M + 1)) → (M: M + 1) MAX(A, (M)) → (M) 16-bit table interpolate 8-bit table interpolate 8-bit table interpolate 8-bit trace Section 7.14) Short branch minus Short branch plus Short branch two's complement overflow set Short branch two's- complement overflow clear Short branch two's- complement overflow clear Short branch two's- complement greater than or equal Short branch two's complement less than or equal Short branch two's complement greater than Short branch or equal Short branch higher Short branch higher or same Short branch lower or same Short branch higher or same Short branch carry clear Short branch carry set re (see Section 7.15) Decrement and branch = 0 Increment and branch = 0 Test and branch = 0 Test and branch = 0 Return to subroutine Branch to subroutine Branch bits set	Membership function Weighted rule evaluation MIN(D, (M : M + 1)) → (M : M + 1) MIN(D, (M : M + 1)) → (M : M + 1) MIN(D, (M : M + 1)) → (M : M + 1) MIN(A, (M)) → (M) MAX(D, (M : M + 1)) → (M : M + 1) MAX(D, (M : M + 1)) → (M : M + 1) MAX(A, (M)) → (M) MAXA 16-bit table interpolate Branch (see Section 7.14) Short branch minus LBMI Short branch plus LBPL Short branch two's complement overflow set Short branch two's complement overflow clear Short branch two's complement overflow clear Short branch two's complement overflow clear Short branch two's complement greater than or equal Short branch two's complement less than or equal Short branch two's complement less than or equal Short branch two's complement LBLE Short branch ot equal Short branch not equal Short branch higher Short branch higher Short branch lower or same LBLS Short branch lower or same LBLS Short branch carry clear Short branch carry clear LBCC Short branch carry set LBCS **Ref (see Section 7.15) Decrement and branch = 0 Increment subroutine RTC Branch (see Section 7.16) Jump to subroutine RTC Branch to subroutine Short branch bits set		

TABLE 7-2 Continued

Mnemonic	Operation	Mnemonic	Operation
Condition Co	ode (see Section 7.17)		
ANDCC	Clear CCR Bits ORCC Set CCR Bits		Set CCR Bits
Interrupt (se	e Chapter 12)		
CLI	Clear interrupt mask	SEI	Set interrupt mask
SWI	S/W interrupt	RTI	Return from interrupt
WAI	Wait for interrupt	TRAP	S/W interrupt
Miscellaneou	us (see Section 7.20)		
NOP	No operation	STOP	Stop clocks
BGND	Background debug mode		-

^a (M) indicates the instruction addresses memory using immediate, direct, extended, or index addressing. Register Name (A, B, D, X, Y, SP, PC) indicates the contents of that register. (SP) means on the stack. C denotes the contents of carry flag. CCR denotes the contents of the condition code register. EA means Effective Address.

Load Instructions

- Mnemonic Operation
 - LDAA Load Accumulator A
 - LDAB Load Accumulator B
 - LDD Load Accumulator D
 - LDS Load Stack Pointer
 - LDX Load Index X Register
 - LDY Load Index Y Register
- Addressing modes: All except INH
- Condition codes: N,Z and V=0

Addressing Modes

TABLE 7-5 Load Register Instructions

			Addressing Modes ^a						Condition Codes ^b			
Function	Opcode	Symbolic Operation	I M M		X	I D X	I D R	I N H	N	z	v	С
Load Accumulator A	LDAA	$(M) \rightarrow A$	х	х	x	х	х		\$		0	_
Load Accumulator B	LDAB	$(M) \rightarrow B$	X	x	x	x	x		1	‡	0	-
Load Accumulator D	LDD	$(M: M+1) \rightarrow D$	X	x	x	x	x		1	1	0	-
Load Stack Pointer	LDS	$(M: M+1) \rightarrow SP$	X	x	x	x	x		\$	\$	0	-
Load Index Register X	LDX	$(M: M+1) \rightarrow X$	X	x	x	x	x		\$	\$	0	-
Load Index Register Y	LDY	$(M:M+1) \rightarrow Y$	X	x	X	x	x		\$	\$	0	-
Load SP Effective Address	LEAS	$EA \rightarrow SP$				x			_	_	_	_
Load X Effective Address	LEAX	$EA \rightarrow X$				X			_	-	_	$^{\circ}$
Load Y Effective Address	LEAY	$EA \rightarrow Y$				X			_	_	-	-
Pull A from Stack	PULA	$(SP) \rightarrow A$						x	-	100	- T	-
Pull B from Stack	PULB	$(SP) \rightarrow B$						x	_	_	_	_
Pull CCR from Stack	PULC	$(SP) \rightarrow CR$						x	1	1	\$	1
Pull D from Stack	PULD	$(SP:SP+1) \rightarrow D$						x	_	_	_	_

Address Modes

- Immediate Mode
 - LDAA #\$02
- Direct Addressing Mode
 - LDAA \$02
- Extended Addressing Mode
 - LDAA \$1002
- Register Index
 - LDAA \$02, X
- Register Indirect
 - LDAA [1,X]

Store Instructions

- Mnemonic Operation
 - STAA Store Accumulator A
 - STAB Store Accumulator B
 - STD Store Accumulator D
 - STS Store Stack Pointer
 - STX Store Index X Register
 - STY Store Index Y Register
- Addressing modes: All except IMM and INH
- Condition codes: N,Z and V=0

Address Modes

- Immediate Mode
 - STAA #\$02 → (Illegal operation)
- Direct Addressing Mode
 - STAA \$02
- Extended Addressing Mode
 - STAA \$1002
- Register Index
 - STAA \$02, X
- Register Indirect
 - STAA [1,X]

TABLE 7-6 Store Register Instructions

			Addressing Modes						Condition Codes			
Function	Opcode	Symbolic Operation	I M M	D I R	E X T	I D X	I D R	I N H	N	z	v	С
Store Accumulator A	STAA	$A \rightarrow (M)$		х	х	х	х		\$	\$	0	-
Store Accumulator B	STAB	$B \rightarrow (M)$		x	x	x	X		\$	\$	0	_
Store Accumulator D	STD	$D \rightarrow (M: M+1)$		X	x	X	X		\$	\$	0	-
Store Stack Pointer	STS	$SP \rightarrow (M:M+1)$		x	x	x	x		\$	\$	0	-
Store Index Register X	STX	$X \rightarrow (M:M+1)$		X	X	x	X		1	1	0	-
Store Index Register Y	STY	$Y \rightarrow (M:M+1)$		X	X	X	X		1	1	0	_
Push A to Stack	PSHA	$A \rightarrow (SP)$						X	_	_	_	-
Push B to Stack	PSHB	$B \rightarrow (SP)$						x	-	-	_	_
Push CCR to Stack	PSHC	$CCR \rightarrow (SP)$						x	-	_	_	$(-1)^{-1}$
Push D to Stack	PSHD	$D \rightarrow (SP : SP + 1)$						x	-	_	-	-
Push X to Stack	PSHX	$X \rightarrow (SP : SP + 1)$						X	_	_	_	_
Push Y to Stack	PSHY	$Y \rightarrow (SP + SP + 1)$						X	_	_	_	_

Notation: Memory Locations

- \$C000: 12 34 56 78 9A BC DE F0
- This is read: memory location
- \$C000=\$12, \$C001=\$34, \$C002=\$56,
 \$C003=\$78, \$C004=\$9A, \$C005=\$BC,
 \$C006=\$DE, \$C007=\$F0

Notation: Memory Locations

\$C000: 12 34 56 78 9A
 BC DE F0

Address	Data
\$C000	\$12
\$C001	\$34
\$C002	\$56
\$C003	\$78
\$C004	\$9A
\$C005	\$BC
\$C006	\$DE
\$C007	\$F0

16-bit Load and Store

- For a 16-bit (2 byte) load and store, the high byte is stored at the lower address and the low byte is stored at the higher address.
- Ex: \$C000: 12 34 56 78 9A BC DE
- LDAA \$C001 $A \leftarrow (\$C001) = \34
- LDX \$C002 X ← \$5678
- STX \$C004 (\$C004) ← \$5678
- \$C000: 12 34 56 78 56 78

Stack Memory

- Stack Memory
 The Stack is a LIFO-Last In First Out Buffer
 - Stack is stored in RAM
 - Stack Instructions
 - PSH Push register data onto Stack
 - PSHA: Push Reg A on Stack
 - PSHB: Push Reg B on Stack
 - PSHD: Push Reg D on Stack
 - PSHX: Push Reg X on Stack
 - PSHY: Push Reg Y on Stack
 - PUL Pull register data from Stack
 - PULA: Pull Reg A from Stack
 - PULB: Pull Reg B from Stack
 - PULD: Pull Reg D from Stack
 - PULX: Pull Reg X from Stack
 - PULY: Pull Reg y from Stack

Notation-Stack (Indirect Addressing)

- Stack Pointer (SP) is a 16 bit address that points to "top" of the Stack
- Notation
 - Sp = the value or address stored in the stack pointer register
 - (Sp) = the contents of the memory location pointed to by Sp.

STACK POINTER
0

Stack Example (8-bit)

- Push (PSH?) Operation
 - 1. $SP \leftarrow SP 1$
 - 2. (Sp) \leftarrow Reg (A or B)
- Ex: Let A=\$23, B=\$1D, SP=\$2000,(\$2000) \$AA
- Execute: PSHA
- \blacksquare SP=SP-1=\$1FFF (SP) = (\$1FFF)=\$23,
- Execute: PSHB
- SP=SP-1=\$1FFE, (\$1FFE)=\$1D,

- Pull (PUL?) Operation
 - 1. Reg (A or B) \leftarrow (SP)
 - 2. SP ← SP + 1
- Ex: Let A=\$23, B=\$1D, SP=\$1FFE,
- \blacksquare (\$1FFE) = \$AA, (\$1FFF) = \$55, (\$2000) = \$3F
- Execute: PULA
- A \leftarrow (\$1FFE)=\$AA, SP=SP+1=\$1FFF,
- Execute: PULB
- We have: B ← (\$1FFE)=\$55, SP=SP+1=\$2000,

Stack Example (16 bit)

- Push (PSH?) Operation
 - 1. SP \leftarrow SP 1
 - 2. (SP) \leftarrow low byte of Reg (X,Y, or D)
 - 3. $SP \leftarrow SP 1$
 - 4. (SP) \leftarrow high byte of Reg (X, Y or D)

Ex: Let X=\$1234, Y=\$FEDC, SP=\$2000

- Execute: PSHX
- SP ← SP-1 = \$1FFF
- (SP)=(\$1FFF) = \$34 (low byte of X)
- SP \leftarrow SP -1 \$1FFE
- (SP) = (\$1FFE) = \$12 (high byte of X)

Stack Example (16 bit)

Ex: Let X=\$1234, Y=\$FEDC, SP=\$1FFE

- Execute: PSHY
- SP ← SP-1 = 1FFD
- (SP) = (\$1FFD) = \$DC (low byte of Y)
- SP \leftarrow SP -1 = \$1FFC
- (SP)=(\$1FFC) = \$FE (high byte of Y)

Stack Example (16-bit)

- Pull (PUL?) Operation
 - 1. High Byte of Reg (X or Y) \leftarrow (SP)
 - 2. SP ← SP + 1
 - 3. Low byte of Reg (X or Y) \leftarrow (SP)
 - 4. SP ← SP + 1
- Ex: Let X=\$1234, Y=\$FEDC, SP=\$1FFE,
- (\$1FFE) = \$AA, (\$1FFF) = \$55, (\$2000) = \$3F
- Execute: PULX
- (XH) \leftarrow (\$1FFE)= \$AA High byte of X (XH)
- SP=SP+1=\$1FFF,
- $(XL) \leftarrow (\$1FFF) = \55 Low byte of X (XL)
- SP←SP+1=\$2000,
- X ← \$AA55

Figure 7-3 Stack operations. (a) Stack pointer before stack operations. (b) Stack pointer after a push. (c) Stack pointer after a second push. (d) Stack pointer after a pull. (e) Stack pointer after a third push.

Example Code

Example Code #1 What's wrong with this code?

Mysub: PSHA ; Save registers on stack

PSHB

{subroutine code}

PULA

PULB

RTS; Return from subroutine

Example Code #1 What's wrong with this code?

Mysub: PSHA ; Save registers on stack

PSHB

{subroutine code}

PULA

PULB

RTS; Return from subroutine

On exit from the subroutine, registers A and B have been exchanged You need PUL in the reverse order of a PSH

Example Code -Corrected What's wrong with this code?

Mysub: PSHA ; Save registers on stack

PSHB

{subroutine code}

PULB

PULA

RTS; Return from subroutine

On exit from the subroutine, registers A and B have been exchanged You need PUL in the reverse order of a PSH

Example Code #2 What's wrong with this code?

LDX #Data

LDAA #MAX

Loop: LDAA 0,X

BEQ Spin

PSHA

ANDA #\$3F

STAA 1,X+

DBNE A, Loop

Done: BRA Spin

Example Code #2 What's wrong with this code?

LDX #Data

LDAA #MAX

Loop: LDAA 0,X

BEQ Spin

PSHA

ANDA #\$3F

STAA 1,X+

DBNE A, Loop

Done: BRA Spin

Unbalanced PSH and PUL instructions. We PSHA within the Loop but never PULA. You must balance PSH and PUL instructions or you will have a **STACK OVERFLOW**.

Example Code #2 -Corrected What's wrong with this code?

LDX #Data

LDAA #MAX

Loop: LDAA 0,X

BEQ Spin

PSHA

ANDA #\$3F

STAA 1,X+

PULA

DBNE A, Loop

Done: BRA Spin

Unbalanced PSH and PUL instructions. We PSHA within the Loop but never PULA again. You must balance PSH and PUL instructions or you will have a **STACK OVERFLOW**.

Example Code #3 What data are in the A,B, X, and Y registers after this code fragment executes?

LDS #\$0500

LDX #\$1234

LDY #\$4567

PSHX

PSHY

PULB

PULA

PULX

Example Code #3 - Solution What data are in the A,B, X, and Y registers after this code fragment executes?

LDS #\$0500 ; Sp ← \$0500

LDX #\$1234 ; X ← \$1234

LDY #\$4567 ; Y ← \$4567

PSHX ; $(\$04FE:\$04FF) \leftarrow \$1234:SP \leftarrow SP-2 = \$04FE$

PSHY ; (\$04FC:\$04FD) ←\$4567 :SP←SP-2 = \$04FC

PULB ; $B \leftarrow (\$04FC) = \$45 : SP \leftarrow SP + 1 = \$04FD$

PULA ; $A \leftarrow (\$04FD) = \$67 : SP \leftarrow SP + 1 = \$04FE$

PULX ; $X \leftarrow (\$04FE:\$04FF) = \$1234$

Transfer Instructions

Transfer Register Instructions

- Mnemonic Operation
 - TAB: Transfer A to B: B ← (A)
 - TBA: Transfer B to A: A ← (B)
 - TAP: Transfer A to CCR: (CCR) ← A
 - TPA: Transfer CCR to A: (A) ← CCR
 - TFR: Transfer Reg1 to Reg2: (Reg2) ← Reg1
 - EXG: Exchange Reg1 and Reg2: Reg1 ←→ Reg2
- Addressing modes: INH Only
- Condition codes: Check Table

TABLE 7-7 Transfer Register Instructions

		Addressing Modes						c	Condition Codes			
Function	Opcode	Symbolic Operation	I M M	D I R	E X T	I D X	I D R	I N H	N	z	٧	С
Transfer A to B	TAB	$A \rightarrow B$						х	\$	\$	0	_
Transfer A to CCR	TAP	$A \rightarrow CCR$						x	‡	\$	\$	\$
Transfer B to A	TBA	$B \rightarrow A$						x	1	1	0	_
Transfer Registers	TFR Reg,Reg	$Reg \rightarrow Reg$						X	-	_	-	_
Transfer Reg to CCR	TFR Reg,CCR	$Reg \rightarrow CCR$						x	\$	\$	\$	\$
Transfer CCR to A	TPA	$CCR \rightarrow A$						X	_	_	_	_
Exchange Registers	EXG Reg,Reg	$Reg \leftrightarrow Reg$						X	_	_	_	_

TABLE 7-23 The 8-bit and 16-bit Transfer and Exchange Instructions

Transfer	8-bit \rightarrow 16-bit	The 8-bit source is transferred to the low byte of the destination; the sign of the source is extended into the high byte of the destination; see the SEX instruction.
	16-bit → 8 -bit	The low byte of the 16-bit source is transferred to the 8-bit destination.
Exchange	8-bit \leftrightarrow 16-bit	The low bytes of the registers are exchanged and the high byte of the 16-bit register is set to \$00.


```
Example 7-12 Transfer Register Instructions
```

```
Metrowerks HC12-Assembler
(c) COPYRIGHT METROWERKS 1987-2003
Rel. Loc Obj. code Source line
   5 000000 180E
                          tab ; A -> B
   6 000002 180F
                          tba ; B -> A
   7 000004 B701
                          tfr a,b; A \rightarrow B
   8 000006 B710
                           tfr b,a; B \rightarrow A
   9 000008 B781
                           exg a,b; A < -> B
  10 00000A B750
                          tfr x, a ; Low byte X \rightarrow A
  11 00000C B705
                           tfr a,x; A sign extended -> X
                                 b,y ; B <-> Low Byte Y, High
  12 00000E B796
                            exq
                                      Byte Y = $00
```

Load Effective Address

- LEAS: Load Effective Address into SP: SP←EA
- LEAX: Load Effective Address into X: X←EA
- LEAY: Load Effective Address into Y: Y←EA
- Addressing modes: Register Index only
- Condition Codes: none changed

Load Effective Address Example

Example 7-11 Load Effective Address Instructions

Assume X = \$1234, Y = \$1000, and SP = \$0A00. Give the contents of each affected register after the following instructions are executed:

Instruction Result

```
leax 10,X X = X + 10_{10} = $1234 + $000A = $123E
leax $10,Y X = Y + $10 = $1000 + $0010 = $1010
leas -10,SP SP = SP - 10_{10} = $0A00 - $000A = $09F6
```

Move Byte or Word in Memory

- MOVB: Move Byte: (M2) ← (M1)
- MOVW:Move Word:(M2:M2+1)←(M1:M1+1)
- Addressing modes: Ext and Register Index
- Condition Codes: none changed

MOVB and **MOVW** Examples

Example 7-13 MOVB and MOVW Instructions

Increment Instructions

- Mnemonic Operation
 - INCA: Increment A: A ← (A) + 1
 - INCB : Increment B: B ← (B) + 1
 - INS : Increment SP: SP ← (SP) + 1
 - INX : Increment X : X ← (X) + 1
 - INY : Increment Y : Y ← (Y) + 1
- Addressing modes: INH Only
- Condition codes:
 - INCA,INCB: N,Z and V
 - INX, INY: Z
 - INS: none

Increment Instructions

- Mnemonic Operation
 - INC: Increment Mem: (M) ← (M) +1
- Addressing modes: All but INH
- Condition codes: N,Z and V

Decrement Instructions

- Mnemonic Operation
 - DECA : Decrement A: A ← (A) 1
 - DECB : Decrement B: B ← (B) 1
 - DES : Decrement SP: SP ← (SP) -1
 - DEX : Decrement X : X ← (X) 1
 - DEY : Decrement Y : Y ← (Y) 1
- Addressing modes: INH Only
- Condition codes:
 - DECA,DECB: N,Z and V
 - DEX, DEY: Z
 - DES: none

Decrement Instructions

- Mnemonic Operation
 - DEC : Decrement Mem: (M) ← (M) -1
- Addressing modes: All but INH
- Condition codes: N,Z and V

Clear Instructions

- Mnemonic Operation
 - CLR : Clear Memory: (M) ← 0
 - CLRA : Clear A: A ← 0
 - CLRB : Clear B: B ← 0
- Addressing modes:
 - CLR: EXT, IDX, INH
 - CLRA, CLRB: INH only
- Condition codes: N=0,Z=1,V=0,C=0

TABLE 7-9 Decrement and Increment Instructions

			ng Mode	es		Condition Codes						
Function	Opcode	Symbolic Operation	I M M	D I R	E X T	I D X	I D R	I N H	N	z	v	С
Decrement Memory	DEC	$(M) - 1 \rightarrow (M)$			х	х	х		\$	‡	\$	_
Decrement A	DECA	$A - 1 \rightarrow A$						X	‡	\$	1	i = 1
Decrement B	DECB	$B - 1 \rightarrow B$						X	1	1	1	-
Decrement X	DEX	$X - 1 \rightarrow X$						x	-	\$	_	
Decrement Y	DEY	$Y - 1 \rightarrow Y$						X	_	\$	_	_
Decrement SP	DES^a	$S - 1 \rightarrow S$						X	_		_	-
Increment Memory	INC	$(M) + 1 \rightarrow (M)$			X	X	x		1	\$	\$	-
Increment A	INCA	$A + 1 \rightarrow A$						X	\$	\$	\$	$r_{ij} = r_{ij}$
Increment B	INCB	$B + 1 \rightarrow B$						x	\$	\$	\$	-
Increment X	INX	$X + 1 \rightarrow X$						x	_	\$	_	_
Increment Y	INY	$Y + 1 \rightarrow Y$						X	_	\$	_	_
Increment SP	INS^a	$S + 1 \rightarrow S$						x	_	-	_	-

^a DES and INS are equivalent to LEAS −1,S and LEAS 1,S.

- Mnemonic Operation
 - BCLR : Clear Bits
 - BSET : Set Bits
- Addressing modes: EXT, IDX,IDR
- Condition codes: N,Z,V=0
- Example:
 - BCLR ADDRESS MASK(8 bits)
 - BCLR \$33 \$AA
 - Clear bits 2,4,6, and 8 at memory add \$33

TABLE 7-10 Clear and Set Instructions

				Addressing Modes						Condition Codes					
Function	Opcode	Symbolic Operation	I M M	D I R	E X T	I D X	I D R	I N H	N	z	v	С			
Clear Memory	CLR	$0 \rightarrow (M)$			х	х	х		0	1	0	0			
Clear A	CLRA	$0 \rightarrow A$						X	0	1	0	0			
Clear B	CLRB	$0 \rightarrow B$						X	0	1	0	0			
Clear Bits in Memory	BCLR				X	x	x		\$	\$	0	_			
Set Bits in Memory	BSET				X	X	X		\$	\$	0	_			

Figure 7-4 BCLR and BSET used for turning on and off LEDs.

Example 7-20 LED Program Using BCLR and BSET

(c) COPYRIGHT METROWERKS 1987-2003

Metrowerks HC12-Assembler

Rel.	Loc	Obj.	code	Source	line
4					

6

5 0000 0002 DDRA: EQU \$0002 ; Data direction

EQU

register

7

0000 0000 PTA:

8 000000 4C02 FF bset DDRA, %11111111 ; Make all lines

output

\$0000 ; Port A register

9 loop:

000003 4C00 FF bset PTA, %11111111 ; Set all bits, 10

LEDs off

000006 4D00 01 bclr PTA, %00000001; Clear bit 0, 11

LED on

000009 4D00 02 bclr PTA, %00000010 ; Clear bit 1 12

bclr PTA, %00000100 ; Clear bit 2 13 00000C 4D00 04

00000F 4D00 08 bclr PTA, %00001000 ; Clear bit 3 14

15 000012 4D00 10 bclr PTA, %00010000 ; Clear bit 4

16 000015 4D00 20 bclr PTA, %00100000 ; Clear bit 5

bclr PTA, %01000000 ; Clear bit 6 000018 4D00 40 17

18 00001B 4D00 80 bclr PTA, %10000000 ; Clear bit 7

00001E 20E3 19 loop ; Do it forever bra

Example Code #4 What data are in the A and B registers after this code fragment executes?

MASK EQU \$AA

LDX #\$00FF

STX \$0000

BSET \$00 MASK

BCLR \$01 MASK

LDD \$0000

$$A = B = X = Y =$$

Example Code #4 - Solution What data are in the A and B registers after this code fragment executes?

MASK EQU \$AA

LDX #\$00FF ; X ← \$00FF

STX \$0000 ; (\$0000:\$0001) = \$00FF

BSET \$00 MASK ; (\$0000) OR \$AA = \$00 OR \$AA = \$AA

BCLR \$01 MASK ; (\$0001) AND (\$55) = \$FF AND \$55 = \$55

LDD \$0000 ; D=(A,B); $A\leftarrow(\$00) = \$AA B\leftarrow(\$01) = \55

Shifting Instructions

Shift Bit Instructions - ASL

- Mnemonic Operation
 - ASL Arithmetic Shift Left Memory
 - ASLA: Arithmetic Shift Left A
 - ASLB: Arithmetic Shift Left B
 - ASLD: Arithmetic Shift Left D (16 bits)
- Addressing modes: INH or Direct, Index
- Condition codes: N,Z,V,C

Multiplies by 2

Shift Bit Instructions - ASR

- Mnemonic Operation
 - ASR Arithmetic Shift Right Memory
 - ASRA: Arithmetic Shift Right A
 - ASRB: Arithmetic Shift Right B
 - ASRD: Arithmetic Shift Right D (16 bits)
- Addressing modes: INH or Direct, Index
- Condition codes: N,Z,V,C

Sign bit preserved

Divides by 2

Shift Bit Instructions - LSL

- Mnemonic Operation
 - LSL Logical Shift Left Memory
 - LSLA: Logical Shift Left A
 - LSLB: Logical Shift Left B
 - LSLD: Logical Shift Left D (16 bits)
- Addressing modes: INH or Direct, Index
- Condition codes: N,Z,V,C

Shift Bit Instructions - LSR

- Mnemonic Operation
 - LSR Logical Shift Right Memory
 - LSRA: Logical Right Left A
 - LSRB: Logical Right Left B
 - LSRD: Logical Right Left D (16 bits)
- Addressing modes: INH or Direct, Index
- Condition codes: N=0,Z,V,C

- Mnemonic Operation
 - ROR Rotate Right Memory
 - RORA: Rotate Right A
 - RORB: Rotate Right B
- Addressing modes: INH or Direct, Index
- Condition codes: N,Z,V,C

- Mnemonic Operation
 - ROL Rotate Left Memory
 - ROLA: Rotate Left A
 - ROLB: Rotate Left B
- Addressing modes: INH or Direct, Index
- Condition codes: N,Z,V,C

TABLE 7-11 Shift and Rotate Instructions

			Addressing Modes						Condition Codes			
Function	Opcode	Symbolic Operation	I M M	D I R	E X T	D X	I D R	I N H	N	z	v	С
Arithmetic Shift Left Memory	ASL	Figure 7-5			х	х	х					
Arithmetic Shift Left A	ASLA							x	‡	‡	‡	\$
Arithmetic Shift Left B	ASLB							x	‡	‡	‡	\$
Arithmetic Shift Left D (16-bit)	ASLD							x	‡	‡	‡	\$
Arithmetic Shift Right Memory	ASR	Figure 7-6			X	X	X		‡	1	1	1
Arithmetic Shift Right A	ASRA							x	\$	\$	\$	\$
Arithmetic Shift Right B	ASRB							x	\$	\$	\$	\$
Arithmetic Shift Right D (16-bit)	ASRD							x	\$	\$	\$	\$
Logical Shift Left Memory	LSL	Figure 7-7			X	X	x		\$	\$	\$	\$
Logical Shift Left A	LSLA							x	\$	\$	\$	\$
Logical Shift Left B	LSLB							x	\$	\$	\$	\$
Logical Shift Left D (16-bit)	LSLD							x	‡	‡	\$	\$
Logical Shift Right Memory	LSR	Figure 7-8			X	X	x		0	\$	\$	\$
Logical Shift Right A	LSRA							x	0	\$	\$	\$
Logical Shift Right B	LSRB							x	0	\$	\$	\$
Logical Shift Right D (16-bit)	LSRD							x	0	\$	\$	\$
Rotate Left Memory	ROL	Figure 7-9			X	X	x		1	‡	\$	\$
Rotate Left A	ROLA							x	\$	\$	\$	\$
Rotate Left B	ROLB							x	\$	\$	\$	\$
Rotate Right Memory	ROR	Figure 7-10			X	X	X		\$	‡	‡	\$
Rotate Right A	RORA							x	\$	\$	\$	\$
Rotate Right B	RORB							x	\$	\$	\$	\$

Example 7-23

Assume the A value is \$A8. What is the result of each of the following instructions: ASLA, ASRA, LSRA, ROLA, RORA?

Solution: The easiest way to look at these instructions is to show the values in binary. Before each instruction is executed, A contains %1010 1000. After each instruction, then, we find the following:

	Before			<u>After</u>	
$\underline{\mathbf{C}}$	$\underline{\mathbf{A}} \underline{\mathbf{Reg}}$	Instruction	$\underline{\mathbf{C}}$	$\underline{\mathbf{A}} \ \underline{\mathbf{Reg}}$	<u>Comments</u>
X	1010 1000	ASLA	1	0101 0000	Zero shifted into bit 0.
X	1010 1000	ASRA	0	1101 0100	Sign bit is preserved.
X	1010 1000	LSLA	1	0101 0000	Same result as ASLA.
X	1010 1000	LSRA	O	0101 0100	Different from the ASRA.
C	1010 1000	ROLA	1	0101 000C	Carry bit is rotated into bit 0.
C	1010 1000	RORA	0	C101 0100	Carry bit is rotated into bit 7.

What is the value of D (in hex) after this code fragment executes?

LDD #100

PSHD

ASLD

ASLD

STD vTemp

PULD

ADDD vTemp

Spin: BRA Spin

vTemp DS.W 1

What is the value of D (in hex) after this code fragment executes?

LDD #100 ; D ← 100

PSHD ; Save D on stack

ASLD ; $D \leftarrow D^*2 = 200$ (or origD*2)

ASLD ; $D \leftarrow D^*2 = 400$ (or origD*4)

STD vTemp; Save D in memory (400)

PULD ; Pull original D from Stack (100)

ADDD vTemp ; D←D+vTemp, but this is just

; D←origD+origD*4 = 5*origD

; D ← 500

Spin: BRA Spin

vTemp DS.W 1 D=500=\$01F4

Logic Instructions

Logic Instructions

- Mnemonic Operation
 - ANDA: Logical A and mem: A ← A AND (M)
 - ANDB: Logical B and mem: B ← B AND (M)
 - ANDCC:Logical CCR and mem: CCR ← CCR AND (M)
 - EORA: Exclusive OR A and mem: A←A XOR (M)
 - EORB: Exclusive OR B and mem: B←B XOR (M)
 - ORAA: OR A or mem: A← A OR (M)
 - ORAB: OR B or mem: B← B OR (M)
 - ORCC: OR CCR or mem: CCR ← CCR OR (M)
- Addressing modes: All except IHN
- Condition codes: N,Z,V,C

Complement Instructions

- Mnemonic Operation
 - COM: 1's Complement of mem: (M) ← (M)'
 - COMA: 1's Comp of A: A ← (A)'
 - COMB: 1's Comp of B: B←(B)'
- Addressing modes: INH or EXT, X, Y (mem)
- Condition codes: N,Z,V=0,C=1

Arithmetic Operations

Arithmetic Instructions - ADD

- Mnemonic Operation
 - ABA: Add B to A: A ← (A) + (B)
 - ABX: Add B + X : X ← B + X
 - ABY: Add B+Y: Y ←B + Y
 - ADDA: Add memory to A: A ← (A) + (M)
 - ADDB: Add memory to B: B ← (B) + (M)
 - ADDD: Add memory to D: D ← (D) + (M:M+1)
 - ADCA: Add memory to A and C: A← (A)+ (M) +C
 - ADCB: Add memory to B and C: B← (B)+ (M) +C
- Addressing modes: INH or All except IHN
- Condition codes: N,Z,V,C (except X and Y)

Arithmetic Instructions - Sub

- Mnemonic Operation
 - SBA: Sub B from A: A ← (A) (B)
 - SUBA: Sub memory from A: A ← (A) (M)
 - SUBB: Sub memory from B: B ← (B) (M)
 - SUBD: Sub memory from D: D ← (D) (M:M+1)
 - SBCA: Sub memory and C from A: A←(A)-(M)-C
 - SBCB: Sub memory and C from B: B← (B)-(M)-C
- Addressing modes: INH or All except IHN
- Condition codes: N,Z,V,C

Arithmetic Instructions - Neg

- Mnemonic Operation
 - NEG: 2's comp memory: (M) ← -1*(M)
 - NEGA: 2's comp A : A ← -1*(A)
 - NEGB: 2's comp B : B ← -1*(B)
- Addressing modes: INH or Ext, Ix, Iy
- Condition codes: N,Z,V,C

Example 7-27 Negating Data

Assume A contains the following data before the HCS12 executes the NEGA instruction. What are the results in A and the N, Z, V, and C bits after the negation of each byte? A = \$00, \$7F, \$FF, \$80.

Solution:

<u>After</u>						
Before	A Reg	$\underline{\mathbf{N}}$	<u>Z</u>	$\underline{\mathbf{V}}$	<u>C</u>	Comments
\$00	\$00	0	0	0	0	Negating zero gives us zero
\$7F	\$81	1	0	0	0	Negating $+127$ give us -127
\$01	\$FF	1	0	0	0	Negating $+1$ gives us -1
\$FF	\$01	0	0	0	0	Negating -1 gives us $+1$
\$80	\$80	1	0	1	1	Negating -128 gives us -128 and overflow and carry

Explanation: The logic for the condition code register bits for all NEG instructions is as follows:

N: The N bit is set if the most significant bit of the result is set; it is cleared otherwise.

Z: Z is set if the result is \$00; it is cleared otherwise.

V: V is set if there is a two's-complement overflow from the implied subtraction from zero; it is cleared otherwise. Two's-complement overflow occurs only if the data being negated is \$80.

C: C is set if there is a borrow in the implied subtraction from zero and thus is set in all cases except when the data being negated is \$100.

Arithmetic Instructions – DAA Decimal Adjust

TABLE 7-24 DAA Instruction Correction Values

Initial C Bit	Value of A[7:4]	Initial H Bit	Value of A[3:0]	Correction Value	Corrected C Bit
0	0-9	0	0-9	00	0
0	0-8	0	A-F	06	0
0	0-9	1	0-3	06	0
0	A-F	0	0-9	60	1
0	9-F	0	A-F	66	1
0	A-F	1	0-3	66	1
1	0-2	0	0-9	60	1
1	0-2	0	A-F	66	1
1	0-2	1	0-3	66	1

Arithmetic Instructions – DAA Decimal Adjust

TABLE 7-24 DAA Instruction Correction Values

Initial C Bit	Value of A[7:4]	Initial H Bit	Value of A[3:0]	Correction Value	Corrected C Bit
0	0-9	0	0-9	00	0
0	0-8	0	A-F	06	0
0	0-9	1	0-3	06	0
0	A-F	0	0-9	60	1
0	9-F	0	A-F	66	1
0	A-F	1	0-3	66	1
1	0-2	0	0-9	60	1
1	0-2	0	A-F	66	1
1	0-2	1	0-3	66	1

TABLE 7-12 Arithmetic Instructions

		Addressing Modes						Condition Codes				
Function	Opcode	Symbolic Operation	I M M		I X	I D X	I D R	I N H	N	z	v	С
Add B to A	ABA	$A + B \rightarrow A$						х			‡	
Add Memory to A	ADDA	$A + (M) \rightarrow A$	X	X	X	X	X		\$	\$	1	\$
Add Memory to B	ADDB	$B + (M) \rightarrow B$	X	X	x	X	x		\$	‡	‡	\$
Add Memory to D (16-bit)	ADDD	$D + (M : M + 1) \rightarrow D$	X	X	X	X	x		\$	‡	1	\$
Add with Carry to A	ADCA	$A + (M) + C \rightarrow A$	X	X	X	X	X		\$	\$	‡	\$
Add with Carry to B	ADCB	$B + (M) + C \rightarrow B$	X	X	X	X	x		\$	‡	‡	\$
Decimal Adjust	DAA							X	\$	\$	\$	\$
Subtract B from A	SBA	$A - B \rightarrow A$						X	\$	\$	‡	\$
Subtract Memory from A	SUBA	$A - (M) \rightarrow A$	X	X	X	X	X		\$	\$	‡	\$
Subtract Memory from B	SUBB	$B - (M) \rightarrow B$	X	X	X	X	X		\$	\$	\$	\$
Subtract with Carry from A	SBCA	$A - (M) - C \rightarrow A$	X	X	X	X	X		\$	\$	‡	\$
Subtract with Carry from B	SBCB	$B - (M) - C \rightarrow B$	X	X	X	X	X		\$	\$	1	\$
Subtract Memory from D (16-bit)	SUBD	$D - (M: M+1) \rightarrow D$	X	X	X	X	X		\$	\$	‡	\$
Sign Extend A, B, CCR	SEX	See Example 7-30						X	_	_	_	_
Two's-Complement Memory	NEG	$-(M) \rightarrow (M)$			X	X	X		\$	\$	\$	\$

Multiplication Instructions

MUL Instruction

- MUL Multiply Instruction
 - Multiplies 8-bit unsigned numbers loaded into the A and B registers
 - D ← A*B
 - Max value = \$FF*\$FF = \$FE01 = 65,020

EMUL Instruction

- EMUL Multiply Instruction
 - Multiplies 16-bit unsigned numbers loaded into the D and Y registers
 - D:Y ← D*Y
 - Max value = \$FFFF*\$FFFF = \$FFFE0001 = 4,294,839,225

IDIV Instruction

- IDIV Integer Divide Instruction
 - Divides 16-bit unsigned D register by the 16-bit unsigned X register
 - Quotient is stored in the X register
 - X ← Integer portion of D/X
 - Remainder is stored in the D register
 - D ← D Integer portion of D/X
 - If X is \$0000, C← 1, and D ← \$FFFF
 - For signed division
 - Determine sign of A and B
 - (-)/(-)=+ (+)/(+)=+ (-)/(+)=(-) (+)/(-)=-
 - NEG negative numbers
 - IDIV, NEG (if, needed)

- Recall $2^0=1$, $2^1=2$, $2^2=4$,
- But, we can also go the other way
 - $2^{-1}=0.5$, $2^{-2}=0.25$, $2^{-3}=0.125$, $2^{-4}=0.0625$,...
- In general, we have 2⁻ⁿ=1/2ⁿ
- So, for example, to represent
 - 2.5 = %10.10 and 5.25 = %101.01
 - Check: 2+0+0.5+0=2.5
 - Check: 4+0+1+0+0.25=5.25

- We have
 - 2.5 = %10.10 and 5.25 = %101.01
- As 8 bit numbers, these become
 - %000010.10 and %000101.01
- Now, we really DON'T have a way to represent the decimal point in our numbers, so we have to **remember** where it is located.
- So really, we have
- 2.5 = %00001010 = \$0A
- 5.25 = %00010101 = \$15
- And we remember that we are using 2 bits for the fractional part.

- Let's use 16-bit numbers where 4-bits (or one nybble) are reserved for the fractional part
- So, Y = \$NNN.N
- Example, What is 375.875 in Hex?
- 375 → \$177
- 0.875 = 1*0.5+1*0.25+1*0.125+0*0.0625
 - = %1110 = \$E
- Or, 375.875 = \$177E

- Let's use 16-bit numbers where 4-bits (or one nybble) are reserved for the fractional part
- So, Y = \$NNN.N
- Example, What is \$24E3 as a fractional decimal?
- \$24E → 590
- \$3 = 0*0.5+0*0.25+1*0.125+1*0.0625=0.1875
- Or, \$24E3 = 590.1875

FDIV Instruction

- FDIV Fractional Divide Instruction
 - Divides 16-bit unsigned D register by the 16-bit unsigned X register
 - D register is assumed less than X register.
 (Answer is less than one)
 - Radix point is assumed to be the same
 - Fractional quotient is stored in the X register.
 Ex: %0.1010....
 - Remainder is stored in the D register
 - If X is \$0000, C← 1, and D ← \$FFFF

EDIV Instruction

- EDIV Extended Fractional Divide Instruction
 - Divides 32-bit unsigned Y:D register by the 16bit unsigned X register
 - Y←Quotient
 - D←Remander

EDIVS Instruction

- EDIV Extended Fractional Divide Instruction (Signed)
 - Divides 32-bit signed Y:D register by the 16-bit signed X register
 - Y←Quotient
 - D←Remander

TABLE 7-12 Continued

		Symbolic Operation	Addressing Modes						Condition Codes			
Function	Opcode		I M M	D I R	E X T	I D X	I D R	I N H	N	z	٧	С
Two's Complement A	NEGA	$-A \rightarrow A$						х		1		1
Two's Complement B	NEGB	$-B \rightarrow B$						X	†	†	†	†
Unsigned 8-bit Multiply A * B	MUL	$A * B \rightarrow D$						X	_	_	_	_
Unsigned 16-bit Multiply	EMUL	$D * Y \rightarrow Y : D$						х	1	1	_	1
Signed 16-bit Multiply	EMULS	$D * Y \rightarrow Y : D$						X	†	†	_	1
Unsigned 32/16-bit Division	EDIV	$Y: D/S \rightarrow Y.D$						X	Ì	†	1	†
Signed 32/16-bit Division	EDIVS	$Y: D/X \rightarrow Y,D$						X	†	†	†	1
Unsigned 16/16-bit Division	IDIV	$D/X \rightarrow X,D$						X	_	†	0	1
Signed 16/16-bit Division	IDIVS	$D/X \rightarrow X,D$						X	1	†	1	†
Fractional Division	FDIV	$D/X \rightarrow X,D$						X	_	†	‡	†

Branch Instructions

 A Branch Instruction typically follows a Compare instruction. The Branch instruction will branch if certain CCR bits are set or clear

Condition Code Register

6 5 4 3

Ζ Ν S X Н

S = Stop

X = X Interrupt Bit Z = Zero

I = Interrupt Mask

N = Negative

V = Overflow

C = Carry

H = Half Carry

Control Bits

Arithmetic Bits

Compare Instructions - CMP

- Mnemonic Operation
 - CBA: Compare B to A: A B
 - CMPA: Compare memory to A: A (M)
 - CMPB: Compare memory to B: B (M)
 - CMPD: Compare memory to D: D (M:M+1)
 - CMPX: Compare memory to X: X (M:M+1)
 - CMPY: Compare memory to Y: Y (M:M+1)
- Addressing modes: INH or All except IHN
- Condition codes: N,Z,V,C
 - Note: Only Condition Code Register (CCR) is changed by these instructions. All other registers unaffected.

Compare Instructions

TABLE 7-15 Data Test Instructions

			Addressing Modes							Condition Codes				
Function	Opcode	Symbolic Operation	I M M	D I R	E X T	I D X	I D R	I N H	N	z	v	С		
Test Bits in A	BITA	A AND (M)	x	x	х	x	х				0	_		
Test Bits in B	BITB	B AND (M)	X	X	X	X	X		\$	\$	0	_		
Compare A to B	CBA	A - B						X	\$	\$	\$	\$		
Compare A to Memory	CMPA	A - (M)	X	X	X	X	X		\$	\$	\$	\$		
Compare B to Memory	CMPB	B - (M)	X	X	X	X	X		1	\$	\$	\$		
Compare D to Memory (16-bit)	CPD	D - (M : M + 1)	X	X	X	X	X		\$	\$	\$	\$		
Compare X to Memory (16-bit)	CPX	X - (M : M + 1)	\mathbf{x}	X	X	X	X		\$	\$	\$	\$		
Compare Y to Memory (16-bit)	CPY	Y - (M : M + 1)	\mathbf{x}	X	X	X	X		\$	\$	\$	\$		
Compare S to Memory (16-bit)	CPS	S - (M : M + 1)	\mathbf{x}	X	X	X	X		\$	\$	\$	\$		
Test Memory for Zero or Negative	TST	(M) - 0			X	X	X		\$	\$	0	0		
Test A for Zero or Negative	TSTA	A - 0						X	‡	\$	0	0		
Test B for Zero or Negative	TSTB	B - 0						X	\$	\$	0	0		

Branch Instructions

- BRA Branch Always
 - Unconditional Branch (i.e. GoTo)
- BEQ Branch if equal
 - Z bit = 1
- BNE Branch if not equal
 - Z bit = 0
- BCC Branch if Carry Clear
 - C bit = 0
- BCS Branch if Carry Set
 - C bit = 1

Branch Instructions

- BMI Branch if Minus
 - Branch if N = 1
- BPL Branch if Positive
 - Branch if N = 0
- BVS Branch if Overflow Set
 - Branch if V=1
- BVC Branch if Overflow Clear
 - Branch if V=0

Branch Instructions Unsigned

- BHI Branch if High
 - Unsigned, Branch if C OR Z = 0
- BHS Branch if Higher or Same
 - Unsigned, Branch if C=0
- BLO Branch if Low
 - Unsigned, Branch if C = 1
- BLS Branch if Lower or Same
 - Unsigned, Branch if C OR Z = 1

Branch Instructions Signed

- BGE Branch if Greater Than or Equal
 - Signed, Branch if N XOR V = 0
- BGT Branch if Greater Than
 - Signed, Branch if Z OR (N XOR V) = 0
- BLE Branch if Less Than or Equal
 - Signed, Branch if Z OR (N XOR V) = 1
- BLT Branch if Less Than
 - Signed, Branch if (N XOR V) = 1

TABLE 7-26 Conditional Branch Instructions for Signed and Unsigned Data

Signed Data Tests			ned Data Tests	Unive	Universal Tests			
BMI	Minus							
BPL	Plus							
BVS	Two's-complement overflow	BCS	Carry set = unsigned overflow	BCS	Carry set			
BVC	No two's-complement overflow	BCC	Carry clear $=$ no overflow	BCC	Carry clear			
BLT	Less than	BLO	Lower than					
BGE	Greater than or equal	BHS	Higher or the same					
BLE	Less than or equal	BLS	Lower or the same					
BGT	Greater than	BHI	Higher than					
BEQ	Equal	BEQ	Equal	BEQ	Equal			
	Not equal	BNE	Not equal		Not Equal			

- Example 1
 - LDAA #\$F2 (-14, signed) (242 unsigned)
 - LDAB #\$F0 (-16 signed) (240 unsigned)
 - CBA (Compute A-B)
 - Result is F2-F0 = 02 (no borrow)
 - N bit = 0 (result is not negative)
 - Z bit = 0 (result is not zero)
 - V bit = 0 (2's comp overflow did not occur)
 - C bit = 0 (For a subtraction, C is set if we have a borrow)
 - Note: A >= B for both signed and unsigned numbers.
 - The following instructions will branch
 - BNE,BCC,BPL,BVC,BHI,BHS,BGE,BGT

- Example 2
 - LDAA #\$F2 (-14, signed) (242 unsigned)
 - LDAB #\$F2 (-14, signed) (242 unsigned)
 - CBA (Compute A-B)
 - Result is F2-F2 = 00
 - N bit = 0
 - Z bit = 1 (result is zero)
 - V bit = 0
 - C bit = 0 (no borrow)
 - Note: A = B for both signed and unsigned numbers.
 - The following instructions will branch
 - BEQ,BCC,BPL,BVC,BHS,BLS,BGE,BLE

- Example 3
 - LDAA #\$F2 (-14, signed) (242 unsigned)
 - LDAB #\$FF (-1, signed) (255 unsigned)
 - CBA (Compute A-B)
 - Result is \$F2-\$FF = \$F3 (with a borrow)
 - N bit = 1
 - Z bit = 0
 - V bit = 0
 - C bit = 1 (we have a borrow)
 - Note: A <= B for both signed and unsigned numbers.</p>
 - The following instructions will branch
 - •BNE,BCS,BMI,BVC,BLO,BLS,BLE,BLT

- Example 4
 - LDAA #\$F2 (-14, signed) (242 unsigned)
 - LDAB #\$02 (2, signed) (2 unsigned)
 - CBA (Compute A-B)
 - Result is \$F2-\$02 =\$F0
 - N bit = 1 (result is negative: signed, but positive unsigned)
 - Z bit = 0
 - V bit = 0
 - C bit = 0 (no borrow)
 - Note: A <= B for signed and A>=B unsigned numbers.
 - The following instructions will branch
 - BNE,BCC,BMI,BVC,BHI,BHS,BLE,BLT

- Example 5
 - LDAA #\$02 (2, signed) (2 unsigned)
 - LDAB #\$F2 (-14, signed) (242 unsigned)
 - CBA (Compute A-B)
 - Result is \$02-\$F2 =\$10 (with borrow)
 - N bit = 0 (result is positive for signed numbers)
 - Z bit = 0
 - V bit = 0
 - C bit = 1 (borrow)
 - Note: A >= B for signed and A<=B unsigned numbers.
 - The following instructions will branch
 - BNE,BCS,BPL, BVC, BLO,BLS,BGE,BGT,

- Example 6
 - LDAA #\$80 (-128 signed, +128 unsigned)
 - LDAB #\$7F (+127 signed, +127 unsigned)
 - CBA (Compute A-B)
 - Result is \$80-\$7F = \$01 (no borrow)
 - N bit = 0 (result is negative unsigned, positive signed)
 - Z bit = 0
 - V bit = 1 (Two's comp overflow)
 - C bit = 0 (not carry out)
- Two's comp overflow occurs when the borrow from MSB is not equal to the borrow out of the MSB. In this case, borrow out =1 and borrow in = 1
 - The following instructions will branch
 - BNE,BCC,BPL, BVS, BLE,BLT,BHI,BHS

Overflow bit (V bit) check

- You can also look at the result of the subtraction to determine of an overflow has occurred. If the result is greater than range, you have overflow.
- For example, given 8-bit
 - Signed range is -128 to +127
 - So, if the result of the subtraction is outside of the range, you have overflow.

TPS Quizzes

Quiz #1

- Let A=\$50 and (\$1000) = \$E0
- Given Code Fragment:
 - CMPA \$1000
- Indicate whether each of the following branches will be taken
- BPL,BMI, BCC, BCS, BVC, BVS, BGE, BLE, BGT, BLT, BEQ, BNE, BHS, BLS, BHI, BLO

Solution

- A=\$50, B=\$E0
 - A is 80 unsigned, and 80 signed.
 - B is 224 unsigned and -32 signed
 - So (A<B) unsigned, (A>B) signed
- (A-B) = \$50 \$E0 = \$70 (with borrow)
 - N = 0
 - Z = 0
 - V = 0 (A-B)=(80-(-32))=112 (in range)
 - C = 1 (borrow)

Branch executed in RED

- N=0, Z=0, V=0, C=1
- BPL (Z=0),BMI, BCC, BCS (C=1), BVC (V=0), BVS, BGE (N XOR V=0), BLE, BGT (N XOR V=0), BLT, BEQ, BNE (Z=0), BHS, BLS (C=1), BHI, BLO (C=1)

Quiz #2

- Let A=\$88 and (\$1000) = \$3F
- Given Code Fragment:
 - CMPA \$1000
- Indicate whether each of the following branches will be taken
- BPL,BMI, BCC, BCS, BVC, BVS, BGE, BLE, BGT, BLT, BEQ, BNE, BHS, BLS, BHI, BLO

Solution

- A=\$88, B=\$3F
 - A is 136 unsigned, and -120 signed.
 - B is 63 unsigned and 63 signed
 - So (A>=B) unsigned, (A<=B) signed
- (A-B) = \$88 \$3F = \$49 (with no borrow)
 - N = 0
 - Z = 0
 - V = 1 (A-B) = (-120-63) = -183 (out of range)
 - C = 0 (no borrow)

Branch executed in RED

- N=0, Z=0, V=1, C=0
- BPL (Z=0),BMI, BCC (C=0), BCS (C=1), BVS (V=1), BVC, BGE, BLE(N XOR V=1), BGT, BLT(N XOR V=0), BEQ, BNE (Z=0), BHS (C=0), BLS (C=1), BHI (C=0), BLO (C=1)

Loop Primitive Instructions

Loop Primitive Instructions

- Mnemonic Operation
 - DBEQ: Decrement Register and Branch if Zero
 - DBNE: Decrement Register and Branch if not Zero
 - IBEQ: Increment Register and Branch if Zero
 - IBNE: Increment Register and Branch if not Zero
 - TBEQ: Test Register and Branch if Zero
 - TBNE: Test Register and Branch if not Zero
- Addressing modes: REL
- Condition codes: Not Changed

Test Instructions - TST

- Test if Memory = 0
- Mnemonic Operation
 - TST: Test memory = 0: (m) 0
 - TSTA: Test A = 0 : A 0
 - TSTB: Test B = 0: B 0
- Addressing modes: INH or Ext, X, Y
- Condition codes: N,Z,V=0,C=0

Test Bits Instructions - BIT

- Mnemonic Operation
 - BITA: AND Register A with memory: A AND (MEM)
 - BITB: AND Register B with memory: B AND (MEM)
- Addressing modes: IMM,DIR, Ext, X, Y
- Condition codes: N,Z,C=V=0
- Note: Memory does NOT change, Only CCR

SubroutineInstructions

JMP/JSR/BSR/RTS

JMP Instructions

- Jump to Address
 - Similar to BRA but uses 16 bit absolute address
- Mnemonic Operation
 - JMP Address
- Addressing modes: EXT, X, Y
 - Condition codes: none
 - PC ← Address

JMP Example

Program EQU \$E000

Stack EQU \$00FF

ORG Program

E000: 8E 00 FF Top: LDS #Stack

E003: 7E E0 03 Done: JMP Done

****** Compare with

E000: 8E 00 FF Top: LDS #Stack

E003: 20 FE Done: BRA Done

Why use JMP instead of BRA?

Why use JMP instead of BRA?

We can only Branch up to -128 to +127 bytes from the current address. If we need to Branch to an address outside of this range, we'll need to use JMP instruction.

* EXAMPLE. Assume FAR_LABEL is +\$1000 bytes away from this address

TSTA

BEQ FAR LABEL

LDAA #NUMA ; This is the A<>0 code

- This code will give us an error (out of range)
- However, we'll see that there is a LBEQ instruction that we could use.

Why use JMP instead of BRA?

* We should use a JMP instead

TSTA

BNE L1; Use a BNE because the label

; is local.

JMP FAR_LABEL

L1: LDAA #NUMA ; This is the A<>0 code

JSR Instructions

- Jump to Subroutine
 - Similar to JMP except we have the ability to return to the calling program. Same as HLL.
- Mnemonic Operation
 - JSR Address
- Addressing modes: DIR, EXT, X, Y
 - Condition codes: none
 - PSH PC; Program Counter pushed onto stack
 - PC ← Address

JSR Instruction

- JSR
 - Pushes Program Counter onto Stack
 - Note: PC is pointing to the next instruction
 - Loads PC with Addressing of Subroutine
 - Starts executing program beginning at EA
 - How do we return from the subroutine?

RTS - Instruction

- RTS Return from Subroutine
 - PULL PC from Stack
 - Recall this contains the EA of the instruction following the original JSR/BSR
 - PC ← Value pulled from stack
 - Execute program
 - Note: You must POP anything you have PUSHed onto the stack or the RTS will start executing the wrong program

Subroutine Example

- * Subroutine Name: BCD2ASC
- * Input parameter list: A
- * Output parameter list:D
- * Registers changed list: A,B
- ************
- * This routine converts an Packed BCD
- * into an ASCII character.
- ***************
- Lower EQU \$0F
- Upper EQU \$F0
- ASCII EQU \$30
- Bcd2asc: PSHA : Save A value
- PULB ; Pull into B register
- ANDB #LOWER; Mask lower nybble
- ORAB #ASCII ; Convert to ASCII
- ANDA #UPPER ; Mask upper nybble
- ORAA #ASCII ; Convert to ASCII
- RTS ; Result is stored in D register

Using Subroutine

-; code fragment
- JSR BCD2ASC ; Call subroutine to do conversion
- E200: STDD Output.....; Do something with the result
-; More code

Done: BRA Done ; End of main program

Assume SP=\$0500

After JSR, SP=\$04FE

Stack memory looks like:

\$04FE: E2 00

If we PSH anything on the stack, we must PUL it off before the RTS instruction RTS instruction will place PC←\$E200

Arithmetic Examples

16-bit addition using a8-bit register


```
; Calculate Sum = Data1+Data2 using only the 8-bit A Register
```

Sum DS.B 2

Data1 DS.B 2

Data2 DS.B 2

LDS #Stack

CLI

LDAA Data1+1; Get low byte of Data1

ADDA Data2+1; Add low byte of Data2

STAA Sum+1; Store A in low byte of Sum

LDAA Data1 ; Get high byte of Data1 ADCA Data2 ; A ← Data1+Data2+C

STAA Sum ; Store A into high byte of Sum

16-bit addition using a16-bit register


```
; Calculate Sum = Data1+Data2 using the 16-bit d Register
```

Sum DS.B 2

Data1 DS.B 2

Data2 DS.B 2

LDS #Stack

CLI

LDD Data1 ; Get Data1

ADDD Data2 ; Add Data2

STD Sum ; Store Sum

32-bit addition using A and D registers


```
; Calculate 32-bit Sum = Data1+Data2 using the 16-bit D Register
```

Sum DS.W 2 ; Use DS.W to define a 32 bit memory location

Data1 DS.W 2

Data2 DS.W 2

LDS #Stack

CLI

LDD Data1+2 ; Get low word of Data1 ADDD Data2+2 : Add low word of Data2

STD Sum+2; Store D in low word of Sum

LDAA Data1+1 ; Get low byte of high word of Data1

ADCA Data2+1; Add low byte of high word of Data2 to carry

STAA Sum+1; Store low byte of high word of sum

LDAA Data1 ; Get high byte of high word of Data1

ADCA Data2; Add high byte of high word of Data2 to carry

STAA Sum ; Store high byte of high word of Sum

8-bit unsigned multiplication 16-bit result


```
; Calculate Result = Data1*Data2
```

Result DS.B 2

Data1 DS.B 1

Data2 DS.B 1

LDS #Stack

CLI

LDAA Data1 ; Get Data1

LDAB Data2 ; Get Data2 MUL : D ← A*N

MUL ; D \leftarrow A*N STD Result ; Store Sum

8-bit signed multiplication 16-bit result


```
; Calculate Result = Data1*Data2
```

Result DS.B 2

Data1 DS.B 1

Data2 DS.B 1

LDS #Stack

CLI

LDAA Data1 ; Get Data1

SEX A,Y ; Sign extend A into Y

LDAA Data2 ; Get Data2

SEX A,D ; Sign extend A into D

EMULS ; Signed Extended Multiply

STD Result ; D has low 16-bits of result

16-bit unsigned multiplication 32-bit result


```
Calculate Result = Data1*Data2
Result DS.B 4 ; Use 4 bytes for 32-bit result
Data1 DS.B 2
Data2 DS.B 2
           LDS #Stack
           LDD Data1
                            Get Data1
           LDY Data2
                            Get Data2
           EMUL
                            Y:D \leftarrow D*Y
           STD Result+2
                              ; Store low word of Result
                             ; Store high word of Result
           STY Result
           BRA Spin
  Spin:
```

16-bit signed multiplication 32-bit result


```
Calculate Result = Data1*Data2
Result DS.B 4 ; Use 4 bytes for 32-bit result
Data1 DS.B 2
Data2 DS.B 2
           LDS #Stack
           CLI
                           Get Data1
           LDD Data1
           LDY Data2
                           Get Data2
           EMULS
                           Y:D \leftarrow D^*Y
                             ; Store low word of Result
           STD Result+2
                            ; Store high word of Result
           STY Result
           BRA Spin
  Spin:
```

16-bit integer divide (unsigned)

```
; Calculate Result = Data2/Data1 Integer Divide
Result DS.B 2
Rem DS.B 2
Data1 DS.B 2
Data2 DS.B 2
           LDS #Stack
           CLL
           LDD Data2
                           : D ← Data2
           LDX Data1
                           : X ← Data1
                           ; X \leftarrow Int(D/X) D \leftarrow Remainder
           IDIV
                           ; Store remainder
           STD Rem
           STX Result
                            : Store result
           BRA Spin
   Spin:
```

16-bit integer divide (unsigned) Example

; What are **Result and Rem** after this code fragment executes

Result DS.B 2

Rem DS.B 2

Data1 DC.B \$00,\$0A

Data2 DC.B \$00,\$C2

LDS #Stack

CLI

LDD Data2 ; D ← Data2 LDX Data1 : X ← Data1

IDIV ; $X \leftarrow Int(D/X) D \leftarrow Remainder$

STD Rem ; Store remainder

STX Result ; Store result

16-bit integer divide (unsigned) Solution


```
D ← $00C2
```

IDIV ;
$$X \leftarrow Int(D/X) D \leftarrow Remainder$$

$$X \leftarrow Int(D/X) = Int(\$00C2/\$000A) = \$0013$$

$$D \leftarrow \text{Rem}(D/X) = \$04$$

Note:
$$D = 194$$
 and $X=10$, so $Int(D/X) = 19 = 13

$$Rem = 194 = 19*10 = 4$$

Special Arithmetic Operations

Hexadecimal Number System

Base 16

Sixteen Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• Example: EF56₁₆

Positional Number System

$$16^{n-1} \cdot \cdot \cdot 16^4 16^3 16^2 16^1 16^0$$

0000	0
0001	1
0010	2
0011	3

0100	4
0101	5
0110	6
0111	7

1000	8
1001	9
1010	А
1011	В

1100	С
1101	D
1110	Ш
1111	L

Binary Coded Decimals (Packed and UnPACKED BCDs)

- Use 4-bits 0-9 to represent a decimal number
- Example: 1234₁₀
 - As hex = \$4D2
 - As BCD =\$0102, \$0304
 - As Packed BCD = \$1234
- Example: 5137
 - As Hex = \$1411
 - As BCD = \$0501,\$0307
 - As Packed BCD = \$5137

Decimal Arithmetic Instruction

- DAA Decimal Adjust Instruction
 - Used to adjust the result of the addition of two packed BCDs
 - Use immediately after the ADDA instruction. Effects the A register
 - Example:
 - 34 = \$22 (hex) or \$34 as packed BCD
 - 29 = \$1D (hex) or \$29 as packed BCD
 - \$34+\$29 = \$5D (not a valid packed BCD)
 - DAA: $A \leftarrow (A) + \$06 = \63 (correct packed BCD)

Decimal Arithmetic Instruction

- DAA Decimal Adjust Instruction
 - Why do we add \$06?
 - Note:
 - \bullet \$01+\$09 = \$0A + \$06 = \$10
 - What about \$01+\$02 = \$03?
 - DAA checks CCR to determine if adjust is needed, so DAA: \$03+\$00 = \$03

TABLE 7-24 DAA Instruction Correction Values

Initial C Bit	Value of A[7:4]	Initial H Bit	Value of A[3:0]	Correction Value	Corrected C Bit
0	0-9	0	0-9	00	0
0	0-8	0	A-F	06	0
0	0-9	1	0-3	06	0
0	A-F	0	0-9	60	1
0	9-F	0	A-F	66	1
0	A-F	1	0-3	66	1
1	0-2	0	0-9	60	1
1	0-2	0	A-F	66	1
1	0-2	1	0-3	66	1

Miscellaneous Instructions

Miscellaneous Instructions

- Long Branch
 - LBXX Relative address is 16-bits
- Call/RTC
 - Jump to subroutine in extended memory
- SEX Sign Extend A,B, CCR
- Fuzzy Logic Instructions

NOP Instruction

- NOP No operation
 - Performs "no operation"
 - Can be used for "crude" timing routines
 - 2 Clock Cycles for each instruction
 - Also used for debugging
 - Insert NOPs in place of SWI
 - Software Interrupts

STOP Instruction

- STOP STOP operation
 - Puts the CPU "to sleep"
 - Can be "awakened" by using an interrupt
 - Can be disabled by setting the STOP bit

Interrupt Instructions

Interrupt Instructions

- CLI

 Clear Interrupt Mask
 - Clears I bit to 0
- SEI Set Interrupt Mask
 - Sets I bit to 0
- RTI Return from Interrupt
- SWI Software Interrupt
- WAI Wait for Interrupt

End of Section

