

SAGE: A Storage-Based Approach for Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication

(ACM CIKM 2023)

25 October 2023

Presenter
Myung-Hwan Jang
Hanyang University
Republic of Korea

Graph

☐ Widely-used data structure to model real-world networks

Consisting of nodes (objects) and edges (their relationships)

Real-world networks

Importance of Graph Analysis

☐ We can obtain useful knowledge that helps improve downstream tasks

Recommendation systems

Matrix Representation

☐ A graph is generally represented as a *dense matrix*

Graph

Dst. nodes

	0	1	1	1	0	
Src. nodes	1	0	0	0	1	
	0	0	0	1	0	
	0	1	0	0	1	
	1	0	1	0	0	

Matrix

Generalized Matrix-Matrix Multiplication (GEMM)

- ☐ One of the key operations for analyzing graphs
- ☐ Critical challenge of GEMM
 - Real-world graphs tend to follow a power-law degree distribution
 - GEMM often requires an unnecessarily large amount of space/computational cost

Sparse GEMM (SpGEMM)

- □ Represents a graph as a *sparse matrix containing only existing edges*
- ☐ Adopts *row-wise product* for SpGEMM in many cases
 - Operations of multiplication are performed in a row-wise manner

$$M_{out}(i,;) = \sum_{j=1}^{n} M_{in}^{1}(i,j) \times M_{in}^{2}(j,;),$$

Existing SpGEMM Approaches

- ☐ Single-machine-based (i.e., in-memory-based) approach
- ☐ Distributed-system-based approach

Challenges with Large-Scale SpGEMM

- ☐ Limited main memory (i.e., *Not scalable*)
- ☐ Frequent network communication (i.e., *Not efficient*)

Limited main memory

Frequent network communication

Storage-Based Approach for SpGEMM (SAGE)

☐ Performs SpGEMM utilizing *external storage of a single machine*

- **Scalable:** Processing a large-scale graphs that does not fit in main memory
- *Efficient:* Requiring only intra-machine communication overhead

Overview of SAGE

☐ 3-layer architecture

- Storage layer
- **■** *In-memory layer*
- Operation layer

Overview of SAGE

Algorithm of SAGE (1/2)

□ Data loading

- (1) Checking whether the blocks having the required rows are in the input buffers
- (2) Loading the blocks into the input buffers

Algorithm of SAGE (2/2)

☐ Row-wise product

- (1) Multiplying a pair of rows in the loaded blocks
- (2) Aggregating the intermediate results into final results
- (3) Writing the final results to the storage

Performance-Critical Challenges

☐ Three challenges in processing *storage-memory I/Os*

- C1: Workload balancing
- **C2**: Intermediate handling
- **C3:** Memory management

C1: Workload Balancing

☐ Distributing workloads of SpGEMM evenly across multiple threads

- Real-world graphs tend to follow *power-law degree distribution*
- Row-based workload allocation could cause workload imbalance among threads

Op1: Block-Based Workload Allocation

☐ Assigns the *same number of blocks* to each thread

C2: Intermediate Handling

- ☐ Handling the storage-memory I/Os generated by the intermediate results
 - The output buffer may not be sufficient to store all intermediate results
 - The intermediate results should be *flushed to the storage multiple times*

Op2: In-memory Partial Aggregation

☐ Aggregates the intermediate results *directly in the output buffer*

C3: Memory management

- ☐ Allocating the main memory space to three input/output buffers
 - The size of main memory is limited in a single machine
 - The amount of the I/Os can vary depending on the proportions of the three buffers

Op3: Distribution-Aware Memory Allocation

☐ Adjusts the proportions based on the characteristics of real-world graphs

- (1) B_{in}^1 : Allocate the size that all threads can process its workload simultaneously
- (2) B_{out} : Allocate a portion of the size required for in-memory SpGEMM
- (3) B_{in}^2 : Allocate the remaining main memory

$$SAGE_mem(C, b, t, \alpha) = \begin{cases} b \times t, & B_{in}^{1} \\ C - (|B_{in}^{1}| + |B_{out}|), & B_{in}^{2} \\ \alpha \times max_row \times t, & B_{out}. \end{cases}$$

C, b: the size of the main memory and a block, respectively

t: the number of threads

 α : the hyperparameter to adjust the output buffer size

max_row: the maximum size of the intermediate results among all rows

Experimental Questions

☐ EQ1: Comparison with single-machine-based approach

■ Does SAGE improve the performance of SpGEMM, compared to the existing single-machine-based methods?

☐ EQ2: Comparison with distributed-system-based approach

■ Does SAGE improve the performance of SpGEMM, compared to the existing distributed-system-based methods?

☐ EQ3: Scalability

■ How does the SpGEMM performance of SAGE scale up with the increasing size of graphs?

□ EQ4: Effectiveness of optimization strategies

■ How effective are the proposed strategies of SAGE in improving the performance of SpGEMM?

Experimental Setup

□ Datasets

- 26 Real-world datasets
 - ☐ Ranging from 10MB to 60GB
- 42 Synthetic datasets
 - ☐ R-MAT (Graph500, SSCA, and ER)

☐ Parameters of SAGE

- # of threads t as 4
 - ☐ # of physical cores in the CPU
- Hyperparameter α as 12.5%

■ Evaluation protocols

- \blacksquare (1) SpGEMM of "the same two matrices" ($M \times M$)
- \blacksquare (2) SpGEMM of "two different matrices" ($M_1 \times M_2$ or $M \times M^T$)

☐ Competing methods

- Single-machine-based approach
 - ☐ Intel MKL
- Distributed-system-based approach
 - ☐ SpSUMMA
 - ☐ Graphulo
 - □gRRp

EQ1: Comparison with Single-Machine-Based Approach

☐ SpGEMM performance in real-world graphs

- SAGE successfully performs SpGEMM on very large datasets (i.e., Scalable)
 - ☐ Intel MKL could not handle SpGEMM on these datasets due to the limited main memory
 - ☐ SAGE also provides comparable performance to the Intel MKL

Dataset	Poisson3D	Enron	Epinions	Sphere	Filter3D	598a	Torso2	Cop20k	Cage12
Intel MKL SAGE	0.1131 0.3206	0.5792 0.7497	0.6343 0.7001	0.2521 0.5335	0.3921 0.7436	0.2660 0.5626	0.0940 0.3976	0.4120 0.7433	0.3669 0.6331
Difference (sec.)	0.2075↑	0.1705↑	0.0658↑	0.2814↑	0.3515↑	0.2966↑	0.3036↑	0.3313↑	0.2662↑
Dataset	Slashdot	Gowalla	Pokec	Youtube	Livejournal	Wikipedia	UK-2005	SK-2005	Yahoo
Intel MKL SAGE	1.9890 1.7558	7.8299 6.772	12.8732 10.6391	N/A, OOM 38.734	N/A, OOM 94.8283	N/A, OOM 2,276	N/A, OOM 616	N/A, OOM 3,709	N/A, OOM 12,994
Difference (sec.)	0.2332↓	1.0579↓	2.2341↓	-	-	-	-	-	-

EQ2: Comparison with Distributed-System-Based Approach

□ SpGEMM performance in synthetic graphs

☐ SpGEMM performance in real-world graphs

Dataset	Sphere	Filter3D	598a	Torso2	Cage12	144	Wave	Majorbasis	Scircuit	Mac	Offshore	Mario	Tmt_sym
	7.37		9.57	4.81	13.28			8.07	6.36	4.63	18.86	9.07	13.55
	0.36	$\frac{3.71}{0.77}$	$\frac{1.65}{0.34}$		$\frac{2.63}{0.54}$	$\frac{2.35}{0.48}$		$\frac{1.52}{0.25}$	$\frac{1.02}{0.18}$	$\frac{1.31}{0.25}$	3.89 0.93	$\frac{1.70}{0.30}$	$\frac{3.34}{0.62}$
Difference (sec.)	1.14↓	2.94↓	1.31↓	0.75↓	2.09↓	1.87↓	1.46↓	1.27↓	0.84↓	1.06↓	2.96↓	1.40↓	2.72↓

EQ3: Scalability

□ SpGEMM performance in synthetic graphs

■ SAGE provides (almost) linear scalability with the increasing sizes of graphs

EQ4: Effectiveness of Optimization Strategies

☐ Block-based workload allocation and in-memory partial aggregation

■ *Substantially improve* the performance of SAGE

■ Distribution-aware memory allocation

Helps reducing the amount of storage-memory I/Os

Conclusions

□ Problem

- Large-scale SpGEMM for graph analysis
- Existing approaches and challenges
 - Single-machine-based approach (i.e., Not scalable)
 - Distributed-system-based approach (i.e., Not efficient)

□ Proposed method

- SAGE: A storage-based approach
 - ☐ Block-based workload allocation
 - ☐ In-memory partial aggregation
 - ☐ Distribution-aware memory allocation

■ Evaluation

- Scalability
- Efficiency
- Effectiveness

Thank You!

