Answer (u).

We need to compute
$$x*h$$
, where $\times \text{th}(t) = \int_{-\infty}^{\infty} \times (\tau) h(t-\tau) d\tau$

$$x(t) = \begin{cases} 2 - t & 1 \le t < 2 \\ 0 & \text{otherwise} \end{cases} \text{ and } h(t) = \begin{cases} -t - 2 & -3 \le t < -2 \\ 0 & \text{otherwise.} \end{cases}$$

First, we plot $x(\tau)$ and $h(t-\tau)$ versus τ in Figures (a) and (d), respectively.

Figure (e): +<-2 X*h(t)=0Figure (f): $-2 \le t < -1$ X*h(t) $=\int_{1}^{t+3} (2-T)(T-t-2) dT$ Figure (g): -1 ≤ t < ○ X* h(t) $=\int_{t+2}^{2} (2-\tau)(\tau-t-2) d\tau$ Figure (h): t≥0

xxh(t) = 0

This leads to four cases to consider as shown below.

From Figure (e), for t < -2 (i.e., t + 3 < 1), we have

$$x * h(t) = 0.$$

From Figure (f), for $-2 \le t < -1$ (i.e., $1 \le t + 3 < 2$), we have

$$x*h(t) = \int_1^{t+3} \underbrace{(2-\tau)(\tau-t-2)d\tau}_{\textbf{X(T)}}.$$
 From Figure (g), for $-1 \le t < 0$ (i.e., $1 \le t+2 < 2$), we have

$$x*h(t) = \int_{t+2}^{2} (2-\tau)(\tau-t-2)d\tau.$$
 From Figure (h), for $t>0$ (i.e., $t+2>2$), we have

$$x * h(t) = 0.$$

Simplifying, we obtain

$$x * h(t) = \begin{cases} \frac{1}{6}t^3 - t - \frac{2}{3} & -2 \le t < -1 \\ -\frac{1}{6}t^3 & -1 \le t < 0 \\ 0 & \text{otherwise.} \end{cases}$$