Tree-Based Methods

HI 743

Ryan Gallagher

Department of Health Informatics and Administration Zilber College of Public Health University of Wisconsin - Milwaukee

March 13th, 2025

Overview

- 1. Regression Trees
- 2. Tree Pruning
- 3. Cross-Validation
- 4. Classification Trees
- 5. Trees vs. Linear Models

Introduction to Decision Trees

- Tree-based methods are non-parametric approaches used for both classification and regression tasks.
- They partition the feature space into distinct regions and make predictions based on the majority class (classification) or average response (regression).
- Decision trees provide an intuitive and interpretable way to model relationships between variables.

Tree Structure and Terminology

- Each split in the tree creates two branches, dividing the predictor space into regions.
- The final partitions are known as **terminal nodes** or **leaves**.
- Internal nodes define the decision rules based on feature values.
- The process of growing a tree continues until stopping criteria (such as minimum node size) are met.

Regression Trees

- Regression trees are used when the response variable is continuous.
- The predictor space is recursively split into distinct and non-overlapping regions.
- Each split is chosen to minimize the residual sum of squares (RSS) within each region.
- The predicted value for each region is the mean response of the training observations in that region.

FIGURE 8.1. For the **Hitters** data, a regression tree for predicting the log salary of a baseball player, based on the number of years that he has played in the major leagues and the number of hits that he made in the previous year. At a given internal node, the label (of the form $X_j < t_k$) indicates the left-hand branch emanating from that split, and the right-hand branch corresponds to $X_j \ge t_k$. For instance, the split at the top of the tree results in two large branches. The left-hand branch corresponds to Years>4.5, and the right-hand branch corresponds to Years>4.5. The tree has two internal nodes and three terminal nodes, or leaves. The number in each leaf is the mean of the response for the observations that fall there.

Tree Pruning

- Decision trees tend to overfit the training data, resulting in high variance and poor generalization to unseen data.
- **Pruning** is a technique used to simplify trees by removing branches that do not improve predictive performance.
- Cost complexity pruning (also known as *weakest link pruning*) selects a subtree that minimizes a balance between the RSS and tree complexity:

$$\sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$
 (1)

• The parameter α controls the trade-off between model complexity and fit (tuning parameter).

Types of Pruning

- **Pre-pruning** (early stopping): Stops tree growth when a criterion is met (e.g., minimum number of observations in a node).
 - Prevents overly complex trees but risks missing meaningful structure.

- **Post-pruning** (cost complexity pruning): Grows a large tree and prunes back using cross-validation to select the best subtree.
 - More computationally intensive but generally leads to better models.

Cross-Validation

- Cross-validation is a technique used to estimate model performance and avoid overfitting.
- The data is split into multiple subsets (folds), and the model is trained and tested across these folds.
- In pruning, cross-validation helps determine the optimal complexity parameter α by selecting the subtree that minimizes prediction error.
- Common choices include **k-fold cross-validation** (e.g., 10-fold CV) to balance bias and variance.

Cross-Validation for Pruning & Advantages

Cross Validation:

- The optimal subtree is selected using cross-validation.
- A sequence of pruned trees is generated using different values of α .
- The tree minimizing the cross-validation error is selected.

Advantages of Pruning:

- Reduces overfitting, leading to better generalization to unseen data.
- Produces simpler and more interpretable models.
- Reduces variance, improving stability of the predictions.

Classification Trees

- Used for predicting categorical responses rather than continuous values.
- Each observation is assigned to the most common class in the corresponding terminal node.
- Provides both class predictions and class probabilities for interpretability.
- Recursive binary splitting is used to partition the feature space.

Evaluation Measures for Classification Trees

- Classification Error Rate: Measures misclassification frequency but is not sensitive enough for tree growth.
- Gini Index: Measures total variance across classes:

$$G = \sum_{k=1}^{K} \hat{\rho}_{mk} (1 - \hat{\rho}_{mk}) \tag{2}$$

• **Entropy:** Measures uncertainty:

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk} \tag{3}$$

 Both Gini Index and Entropy provide better sensitivity to node purity compared to classification error.

Comparing Classification Trees with Other Methods

- Classification trees provide an intuitive and interpretable model.
- However, they tend to have higher variance and lower accuracy compared to ensemble methods.
- Alternative classification methods include:
 - Logistic Regression (for linear decision boundaries)
 - K-Nearest Neighbors (for non-linear decision boundaries)
 - Support Vector Machines (for high-dimensional spaces)

Figure: Hitters Classification Tree (unpruned)

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross-validation error, training, and test error, for different sizes of the pruned tree. Bottom Right: The pruned tree corresponding to the minimal cross-validation error.

Trees vs. Linear Models

• Linear models assume a linear relationship:

$$f(X) = \beta_0 + \sum_{j=1}^{p} \beta_j X_j \tag{4}$$

• Trees partition the predictor space into regions and fit a constant in each region:

$$f(X) = \sum_{m=1}^{M} c_m \cdot 1(X \in R_m)$$
 (5)

 Trees work well for capturing complex, nonlinear relationships, while linear models excel when a linear structure is appropriate.

When to Use Trees vs. Linear Models

- Use **linear models** when:
 - The relationship between predictors and response is approximately linear.
 - Interpretability and inferential understanding are important.
 - The number of predictors is small and well-structured.
- Use **decision trees** when:
 - The relationship between predictors and response is highly nonlinear.
 - There are complex interactions between features.
 - Handling missing data and categorical variables directly is beneficial.