Solution for PS10-1.

a. If we pick just one kind of candy (two pieces of it), there are 6 choices. If we pick two distinct kinds of candy, there are $\binom{6}{2}$ choices.

Together, there are $6 + \binom{6}{2} = 21$ choices.

- b. We break this down into three disjoint cases and add up the results.
 - All three pieces of candy are of the same kind: $\binom{6}{1}$ choices.
 - We pick exactly two kinds of candy: this gives us $\binom{6}{2}$ to choose the two kinds, following which we have to choose which of the two kinds we're going to pick two pieces of. By the generalized product principle, there are $\binom{6}{2} \cdot 2$ choices overall.
 - We pick three distinct kinds of candy: $\binom{6}{3}$ choices.

Solution for PS10-2.

- **b.** $\binom{20}{5}$, the number of ways to place 5 separators in a list of 20 items (books + separators).
- **c.** Applying the book/separator model, there are t books, and n-1 separators. The final count is $\binom{t+n-1}{n-1}$.

Solution for PS10-3.

a. Use
$$f(x_1, x_2, ..., x_k) = \underbrace{000 \cdots 0}_{x_1} 1 \underbrace{000 \cdots 0}_{x_2} 1 \cdots \underbrace{000 \cdots 0}_{x_k} 1 \underbrace{000 \cdots 0}_{n - (x_1 + \cdots + x_k)}$$

b. Use
$$g(y_1, y_2, ..., y_k) = (y_1, y_2 - y_1, y_3 - y_2, ..., y_k - y_{k-1})$$
.

c.
$$|S_{n,k}| = |L_{n,k}| = \binom{n+k}{k}$$
.

Solution for PS10-4.

а.

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n \cdot (n-1)!}{k \cdot (k-1)!(n-k)!} = \frac{n}{k} \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} = \frac{n}{k} \binom{n-1}{k-1}$$

b.

$$\binom{n}{m}\binom{m}{k} \cdot 1 = \frac{n!}{m!(n-m)!} \cdot \frac{m!}{k!(m-k)!} \cdot \frac{(n-k)!}{(n-k)!} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{(m-k)!(n-k-(m-k))!} = \binom{n}{k}\binom{n-k}{m-k}$$

Solution for PS10-5.

a. Let x = 1, y = 1. By the binomial theorem,

$$2^{n} = (1+1)^{n} = (x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{n-k} y^{k}$$
$$= \sum_{k=0}^{n} {n \choose k} 1^{n-k} 1^{k} = \sum_{k=0}^{n} {n \choose k}.$$

b. Let x = -1, y = 1. Applying the binomial theorem,

$$0 = (1-1)^n = (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$
$$= \sum_{k=0}^n \binom{n}{k} 1^{n-k} (-1)^k = \sum_{k=0}^n (-1)^k \binom{n}{k}.$$

Solution for PS10-6.

a. By the binomial theorem,

$$3^{n} = (1+2)^{n} = \sum_{k=0}^{n} {n \choose k} 2^{k} 1^{n-k} = \sum_{k=0}^{n} {n \choose k} 2^{k}.$$

b. Starting with the binomial theorem on $(1+1)^{n-1}$,

$$(1+1)^{n-1} = \sum_{k=0}^{n-1} \binom{n-1}{k}$$

$$n2^{n-1} = \sum_{k=0}^{n-1} n \binom{n-1}{k}$$

$$multiplying by n$$

$$n2^{n-1} = \sum_{k=0}^{n-1} (k+1) \frac{n}{k+1} \binom{n-1}{k}$$

$$n2^{n-1} = \sum_{k=0}^{n-1} (k+1) \binom{n}{k+1}$$

$$by PS10-4a$$

$$n2^{n-1} = \sum_{k=1}^{n} k \binom{n}{k}$$

$$reindexing$$

$$n2^{n-1} = \sum_{k=0}^{n} k \binom{n}{k}$$
adding a term at $k = 0$ whose value is 0

We have derived the statement to be proven.

Solution for PS10-7.

- *a.* Both sides of the equation equal the number of subsets of an arbitrary n-element set S. The total number of subsets is well known to be 2^n . The sum on the left hand side, counts, for each $0 \le k \le n$, the number of subsets of S containing k elements, and sums the result. Since all subsets of S are counted exactly once on the left hand side, the left hand side counts all subsets of S, and equals the right hand side. □
- **b.** The equation is equivalent to the claim that the number of odd subsets of a given n-element set equals the number of even subsets. This is true by the previous homework problem $PS2-5^{HW}$.
- c. There is a well-known committee-chairperson fable. Both expressions indicate the number of ways to pick a k person committee from n candidates, with a single designated chairperson. Using Generalized Product Principle, $k\binom{n}{k}$ is the number of ways $\binom{n}{k}$ to pick a committee, multiplied by the number of ways to then pick a chairperson from that committee $\binom{n}{k-1}$ is the number of ways to pick a chairperson $\binom{n}{k}$ times the number of ways to pick everyone else in the committee $\binom{n-1}{k-1}$.
- **d.** A generalization of the committee-chairperson story. Given a set A of n elements, both sides express the number of ways to pick an m-element subset B of A, and a k-element subset C of B. The $\binom{n}{m}\binom{n}{k}$ is the number of ways to pick the subset B as a subset of A first, and then pick C as a subset of B; the $\binom{n}{k}\binom{n-k}{m-k}$ is the number of ways to pick C as a subset of A, and then pick B-C as a subset of A-C.

- **e.** For a given set S with n elements, 3^n is the number of functions from S to 0,1,2. For each such function f, we can define a function $g:R(f)\to 0,1$ on the set $R(f)=\{x\in S:f(x)\in\{1,2\}\}$ by g(x)=f(x). Counting the number of functions g, we find that for each size k of the domain for g, there are $\binom{n}{k}$ possible k-element domains that are subsets of S, and 2^k possible functions.
 - Viewed in terms of the hint, there are two methods to find the number of possible sets A,B for which $B \subseteq A \subseteq \{1,2,\ldots,n\}$. First, for each $i \in \{1,2,\ldots,n\}$, there are three possible states relative to A and B: either $i \notin A$, $i \in B$, or $i \in A B$. From this one can derive a total count of 3^n . An argument, partitioning by the size of A, as in the previous paragraph will also give $\sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n$.
- f. Both sides indicate the number of ways to pick a committee (with at least one person) from a set of n candidates. One could first pick a chairperson (n choices), and then pick the rest of the committee (2^{n-1} choices). Alternatively, one could, for each size of a committee, first pick a committee ($\binom{n}{k}$ choices), and then pick a chairperson (k choices); adding the product over all possible committee sizes gives $\sum_{k=0}^{n} k \binom{n}{k}$.

Solution for PS10-8.

a. For each k, we prove the identity by induction over n. Let $P_k(n)$ be the proposition that the equation

$$\sum_{m=k}^{n} \binom{m}{k} = \binom{n+1}{k+1}.$$

is true. We will show by induction that $P_k(n)$ is true for all $n \ge k$. Base case. This is $P_k(k)$, which is true since

$$\sum_{m=k}^{k} {m \choose k} = {k \choose k} = 1 = {k+1 \choose k+1}$$

Induction step. We seek to prove $P_k(n)$, for n > k, assuming that $P_k(n-1)$ is true. Since by $P_k(n-1)$,

$$\sum_{m=k}^{n-1} {m \choose k} = {n \choose k+1},$$

adding $\binom{n}{k}$ to both sides produces

$$\sum_{m=k}^{n-1} {m \choose k} + {n \choose k} = {n \choose k+1} + {n \choose k}$$

$$\sum_{m=k}^{n} {m \choose k} = {n \choose k+1} + {n \choose k}$$

$$\sum_{m=k}^{n} {m \choose k} = {n+1 \choose k+1},$$

where the last line follows by Pascal's identity.

b. Let $V = \{1, 2, \dots, n+1\}$. Then the number of ways to pick a k+1 element set $J \subset V$ is $\binom{n+1}{k+1}$. One can also pick a such a subset J by first picking the *smallest* element i_{min} of J, and then the remainder of J, $(J - \{i_{min}\},$ a set of k elements), for which there are $\binom{n+1-i_min}{k}$ choices. As the possible values of i_{min} range from 1 to n+1-k, combining the number of sets produced for each value of i_{min} gives the sum $\sum_{m=1}^{n+1-k} \binom{n+1-m}{k} = \sum_{m=k}^{n} \binom{m}{k}$. \square

Solution for PS10-9. If p is a prime, 0 < k < p,

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$

Since $p! = p \cdot (p-1) \cdots 2 \cdot 1$, p|p!. On the other hand, since k < p, $p \nmid i$, for all $1 \le i \le k$, so by iterated applications of the contrapositive of Euclid's lemma, $p \nmid k!$. Similarly, as p - k < p, $p \nmid (p - k)!$.

Let a=n!, b=k!(p-k)!. Since we know $\frac{a}{b}\in\mathbb{Z}$, there is some constant $c\in\mathbb{Z}$ for which a=bc. Since $p\mid a$, and $p\nmid b$, by Euclid's lemma, $p\mid c$. Defining $d=\frac{c}{p}\in\mathbb{Z}$, we find $\frac{a}{b}=\frac{pdb}{b}=pd$. Since p is a factor of the integer product pd, it is a factor of $\frac{a}{b}=\binom{p}{k}$.