차세대 표적항암제 플랫폼:프로탁(PROTACs)

KDB미래전략연구소 산업기술리서치센터 고 대 경(inodko@kdb.co.kr)

- ◆ 기존 표적항암제의 기술 한계로 발생하는 암세포의 저항 문제를 프로탁이 해결해 줄 수 있을 것으로 기대되어 차세대 표적항암제 플랫폼 기술로 부상
- ◆ 프로탁은 초기단계 기술이며, 플랫폼 기술로 활성화되기 위해서는 신약개발에 대한 적용 가능성 검증 및 구조적 안정성을 검증할 수 있는 기술 등이 함께 발전해야함

□ 기존 표적항암제의 효과에도 불구하고 암세포의 저항 문제 발생

- 최초의 항암제는 일반세포와 암세포 구분없이 파괴해 큰 부작용이 동반되었으며, 이후 암세포에 대한 연구를 바탕으로 암세포만 공격하는 표적항암제 개발
 - 대표적인 표적항암제 플랫폼인 저분자화합물 및 단일클론항체는 암세포의 효소나 수용체에 결합하여* 암세포의 증식, 물질대사를 억제하거나 암세포 사멸을 촉진하는 등의 방법으로 2000년대 이후 지금까지 표준 치료제로 사용
 - * 암세포의 효소나 수용체는 특정한 외부 신호물질에 의해 암세포를 성장할 수 있게 하는 기능을 하며, 구조적으로 특정 물질들이 결합하기 쉬운 형태로 되어 있음
- 기존 표적항암제는 효소나 수용체를 제거하지 못하고 결합을 통해 기능을 통제 하기 때문에 장기간 복용시 암세포가 표적항암제에 저항
 - 암세포는 자신의 세포 내 효소나 수용체에 표적항암제가 결합할 수 없도록 결합 부위에 돌연변이를 발생시키거나, 효소 및 수용체를 과발현시키는 등의 방법으로 표적항암제 기능을 상실시켜 저항/재발하는 현상이 발생

□ 프로탁의 작동원리, 단백질 분해능력 등의 특성이 기존 표적항암제 플랫폼과 차별화

- 세포 내에는 문제 단백질을 분해하는 UPS(Ubiquitin Proteasom system)이* 존재하며, 프로탁은 암세포 내에서 UPS 시스템이 우리가 원하는 단백질(목적 단백질, Protein of Interest, POI)을 분해하도록 유도
 - * 특정 효소가(E3 ligase) 문제 단백질에 유비큐틴을 표지시키고(유비큐티네이션) 유비큐틴이 표지된 문제 단백질을 프로테아좀이 분해하는 세포내 시스템
- 프로탁은 POI에 결합하는 부분(ligand)과 E3 ligase에 결합하는 부분(ligand), 두 부분을 연결하는 링커로 구성되어 있으며, POI와 E3 ligase가 프로탁에 결합하면 POI에 유비큐틴이 표지되고 프로테아좀에 의해 분해됨
- 프로탁이 작동하기 위해서는 POI-PROTAC-E3ligase의 3차원 구조 안전성, E3 ligase의 종류, linker의 길이 등이 중요한 역할을 하는 것으로 알려져 있음*
 - * CM Crews(2019), "Targeted protein degradation: elements of PROTAC design", Current Opinion in Chemical Biology 50;111-119

프로탁 구조 및 작동원리

자료: Signal Transduction and Targeted Therapy(2019), "PROTACs: great opportunities for academia and industry"

- 프로탁은 작동 조건의 차이, 물리화학적 구조로 인한 장점, 목적 단백질을 제거 하는 특성으로 다른 표적항암제 플랫폼 기술 대비 차별성이 있음
- 암세포와 결합력에 의존하는 표적항암제는 최근 각광받는 전사인자, 스캐폴드를 공략하기 어렵지만 3차원 구조의 안정성이 중요한 프로탁은 약한 결합으로 공략 가능*
 - * JH Bushweller(2019), "Targeting transcription factors in cancer-from undruggable to reality", Nat Rev Cancer 19(11);611-624
- 프로탁은 경구투여 및 세포 내 침투가 가능하지만 siRNA 및 CRISPR는 안정성이 낮아 경구투여가 어렵고 항체의약품은 큰분자량 문제로 세포내 침투가 불가능

- 암세포의 효소나 수용체와 결합에 의해 POI를 통제하는 표적항암제는 다양한 저항/재발 문제가 발생하지만 프로탁은 단백질을 근본적으로 제거하기 때문에 현재 발생하는 문제점을 개선할 수 있을 것으로 기대

주요 표적항암제 플랫폼 비교

구분	프로탁	저분자화합물	항체의약품	siRNA	CRISPR					
세포 내 표적	0	0	×	0	0					
전신 수송	0	0	0	×	0					
조직 투과성	0	0	Poor	Poor	0					
스캐폴드 타겟팅	0	×	0	0	0					
질병 단백질 제거	0	×	×	0	0					
경구 생체이용률	0	0	×	×	×					
효소 기능	0	×	×	0	0					
출시된 신약	임상 진입	0	0	0	임상 진입					

자료: Signal Transduction and Targeted Therapy(2019)

□ 프로탁 기술은 연구된 역사가 짧으며, 대부분의 기업이 연구개발 단계에 있음

- 2001년 최초로 개념이 입증된 이후 조금씩 관심도가 증가했으며, 2013년 동물 실험으로 in vivo(체내)에서 적용 가능성이 입증된 이후 본격적으로 연구
 - 소수의 연구자들에 의해 신약으로서 가능성을 입증하기 위해 세포막 투과성 시험, 저분자화합물로만 구성된 프로탁 개발 등의 연구가 수행되어 왔으며, 동물실험 성공 이후 관심이 증가해 2019년에는 107개 논문이 발표됨

PROTAC 연구 동향(논문수 및 주요 연구결과)

자료: Signal Transduction and Targeted Therapy(2019), Drug Discovery Today: Technologies(2019), "PROteolysis TArgeting Chimeras(PROTACs)-Past, present and future"

- 프로탁 기술을 보유한 벤처기업은 사업화 초기 단계로 대부분 후보물질 발굴 및 전임상 단계이며 POI나 E3 ligase 종류가 적거나 미공개이나, 신기술에 대한 기대감으로 많은 투자를 받음
 - First Mover인 Arvinas는 5개의 E3 Ligase를 확보 및 2019년 세계 최초로 임상에 진입했으며, 국내 기업들은 Arvinas 보다는 다소 늦으나 Fast Follower 수준임

국내외 주요 프로탁 기업 현황

구분	회사명	설립	투자단계	총투자	기술이전	개발단계	E3 ligase
해외	Arvinas	2013	IPO	\$232M	Merck, Pfizer 등	1상	5 type
	C4 Therapeutics	2016	Series A	\$73M	RocheCalico	전임상	CRBN
	Nurix	2009	Series C	\$45M	Celgene	전임상	미공개
	Kymera	2016	Series B	\$95M	GSK	전임상	미공개
	Cedilla	2018	Series A	\$56M	_	탐색	미공개
	Cullgen	2018	Series A	\$16M	-	탐색	CRBN, VHL
국내	유빅스테라퓨틱스	2018	Series A	40억원	_	탐색	CRBN
	핀테라퓨틱스	2017	Series A	60억원	_	탐색	미공개

자료 : 각사 홈페이지 및 기사 등을 참고하여 당행작성

□ 프로탁의 활성화를 위해서는 신약개발 성공 사례 및 관련 기술 개선 등이 필요

- 신약개발 플랫폼으로 입지를 공고히 하기 위해서는 신약개발 성공 사례가 발생 하거나 최소한 PoC(Proof of Concept) 입증 필요
 - 최근 Arvinas에서 양호한 임상 1상 중간결과를 발표했으나, 임상 2a 결과까지 지켜봐야함*
 - * PoC입증을 위해서는 Phase1(안정성)/Phase 2a(제한적 인원으로 유효성 검증) 통과 필요
- 후보물질 스크리닝 기술, 다양한 E3 ligase ligand 확보, 항암제 이외의 치료제 혹은 질환 동물모델 개발 등의 다양한 분야로의 확대 필요
 - 기존의 스크리닝 기술은 결합력에 최적화된 모델로 3차원 구조 안정성, 세포내 유비큐티네이션 및 분해능력을 검증할 수 있는 스크리닝 모델 필요*
 - * Drug Discovery Today: Technologies(2019)
 - E3 ligase 종류에 따라 분해 가능한 POI가 다르며, RING(~600개), HECT(~30개), RBR(~12개) type 중 현재는 10개 내외의 RING type ligand만 사용되고 있음*
 - * Morreael et al(2016), "SnapShot:Types of Ubiquitin ligases", Cell 165
 - 프로탁의 Protein Knockdown(단백질 제거) 효과를 활용해 동물모델을 개발 하거나, 퇴행성신경질환의 주요 원인 단백질을 제거하는 후보물질 발굴 진행 중*
 - * Signal Transduction and Targeted Therapy(2019)