CusToM Workshop

Kinematic tutorial

Charles Pontonnier, Pierre Puchaud 20/12/2019

Pre-Work

Go in Examples\1_Walking\POC0980A_normal_Anthropo

It contains:

Generate Parameters of the Model

>> GenerateParameters

• Size : 1.74 m

• Mass: 64 Kg

- Osteo-articular model full body
 - Pelvis
 - Pelvis LowerTrunk
 - Leg
 - Arms
- Marker Set
 - MarkerSet_2 (M2S makerset)
 - 1 markers on hand
- Lower Limb muscles

AnalysisParameters

Only Inverse Kinematic Active Step

- Levenberg-marquardt
- 5Hz filter butterworh 2nd order zero lag

What CusToM is Doing?

```
Anthropometric Model Generation ...

... Anthropometric Model Generation done
```

The osteoarticular model comes from cadaveric data.

Anthropometric scaling:

- Segments lengths
- Anatomical landmarks

$$k_0 = \frac{size \ of \ the \ subject}{size \ of \ the \ cadaver}$$

What CusToM is Doing?

Preliminary Computations ...
... Preliminary Computations done

A priori known location of anatomical landmarks are computed in the global reference frame R_0 function of joint coordinates \boldsymbol{q}

Jacobian matrix **J** are computed analytically

 For Inverse kinematics using Levenberg-Marquardt algorithms

$$J = J_{f,q} + J_{f,cut} * (J_{cut,cut} * J_{cut,q})$$

What CusToM is Doing?

```
Inverse kinematics (ChgtDirection04) ...
... Inverse kinematics (ChgtDirection04) done
```

Euclidian distance minization between experimental markers $^{R_0}X_{exp,i}$ and a priori know location of anatomical landmarks $^{R_0}X_{mod,m}(q)$ in the global frame R_0

$$\min_{\boldsymbol{q}} \sum_{i}^{N_{markers}} \left\| {^{R_0}\boldsymbol{X}_{exp,i}} - {^{R_0}\boldsymbol{X}_{mod,m}}(\boldsymbol{q}) \right\|^2$$

We get the joint coordinates q.

Levenberg-marquardt : $(J^T J + \lambda.diag(J^T J)) \Delta q = J^T (X_{exp} - X_{mod}(q))$

More details in Muller, A., 2017. Contributions méthodologiques à l'analyse musculo-squelettique de l'humain dans l'objectif d'un compromis précision performance. École normale supérieure de Rennes.

First results – Kinematic residuals

>> PostProcessingKinematic_Anthropo

First results – Joint coordinates

>> PostProcessingKinematic_Anthropo

What about the quality of the model? – Right Shank length

>> PostProcessingKinematic_Anthropo

What about the quality of the model?

For a same size, segment lengths can vary between subjects.

Pre-Work

Go in Examples\1_Walking\POC0980A_normal_Geometric_Calibration

It contains:

We will add a geometric calibration step

Same previous steps, except for AnalysisParameters.

Geometrical Calibration step

- Frames used
 - Selection method of frames: UniformlyDistributed
 - Number of frames: 20
- Body length
 - Homethetic factors of Clavicles are linked to homothetic factor of the Thorax
- Marker Position
 - Direction of markers to optimize in local frames (Z is medio-lateral)
- Axis of rotation
 - Orientation of Joint axis can be optimized to fit subject-specific joint axis.
 - For example knee axis. Two rotation angles have to be introduced.

```
Geometrical Calibration ...
... Geometrical Calibration done
```

A priori known location of anatomical landmarks are computed in the global reference frame R_0 , function of:

- joint coordinates q,
- homothetic factors k,
- variation of marker position Δp ,
- rotation of joint axis α .

 $R_0 X_{marker}$ $= f(\mathbf{q}, \mathbf{k}, \Delta \mathbf{p}, \alpha)$


```
Geometrical Calibration ...
... Geometrical Calibration done
```

Uniformely distributed frames

Frames are chosen equally spaced in ROM.c3d

Body Length

Linear Constraints of homothetic factors.

$$\begin{cases} k_{R_{Clavicle}} - k_{Thorax} = 0 \\ k_{L_{Clavicle}} - k_{Thorax} = 0 \end{cases}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized RKNE is trusted for x,y,z direction

In this case:

•RKNE is trusted for x,y,z direction

RKNE

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized RKNE is trusted for x,y,z direction

In this case:

•RKNE is trusted for x,y,z direction

RKNE

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized RKNE is trusted for x,y,z direction

In this case:

•RKNE is trusted for x,y,z direction

RKNE

Geometrical Calibration ...

... Geometrical Calibration done

Axis of rotation

$$^{R_i}X_{marker} = ^{R_i}p_A + ^{R_i}\Delta p$$

Some location of markers are optimized RKNE is trusted for x,y,z direction

In this case:

•RKNE is trusted for x,y,z direction

•RKNI is trusted for x direction and optimized for y and z direction


```
Geometrical Calibration ...
... Geometrical Calibration done
```

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

 $\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$ $\overrightarrow{a_z}'' = Rot(\alpha_2, \overrightarrow{a_y}') * \overrightarrow{a_z}' \alpha_1$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

 α_1

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

 $\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$ $\overrightarrow{a_z}'' = Rot(\alpha_2, \overrightarrow{a_y}') * \overrightarrow{a_z}' \alpha_1$ $\overrightarrow{a_z}'' = Rot(\alpha_2, \overrightarrow{a_y}') * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$

 α_1

Geometrical Calibration ...
... Geometrical Calibration done

Axis of rotation

 $\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$ $\overrightarrow{a_z}'' = Rot(\alpha_2, \overrightarrow{a_y}') * \overrightarrow{a_z}' \alpha_1$ $\overrightarrow{a_z}'' = Rot(\alpha_2, \overrightarrow{a_y}') * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$

 α_1

Geometrical Calibration ...
... Geometrical Calibration done

$$\overrightarrow{a_z}' = Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$

$$\overrightarrow{a_z}^{\prime\prime} = Rot(\alpha_2, \overrightarrow{a_y}^{\prime}) * \overrightarrow{a_z}^{\prime\prime}$$

$$\overrightarrow{a_z}^{"} = Rot(\alpha_2, \overrightarrow{a_y}) * Rot(\alpha_1, \overrightarrow{a_x}) * \overrightarrow{a_0}$$


```
Geometrical Calibration ...
... Geometrical Calibration done
```


Regression method Based on height RM

```
Geometrical Calibration ...
... Geometrical Calibration done
```


Geometrical Calibration Geometrical Calibration done Equally spaced sets of frames:

```
... Geometrical Calibration done
                                          Equally spaced sets of frames:
                                                     N_f
                                 X_{mod,1}^{global}
```

Geometrical Calibration ...

Geometrical Calibration Geometrical Calibration done Equally spaced sets of frames: $X_{mod,1}^{global}$ Inverse kinematics q_2 Lu and O'Connor et al. 1999 q_3

What is CusToM Doing?

```
Geometrical Calibration ...
... Geometrical Calibration done
```

$$\begin{split} \Phi &= \sum_{f}^{N_f} \sum_{m}^{N_m} ||\mathbf{X}_{exp,m}(t_f) - \mathbf{X}_{mod,m}^{R_{global}}(\mathbf{q}(t_f), \mathbf{k}, \boldsymbol{\alpha}, \boldsymbol{\Delta}\mathbf{p})||^2 \\ & \underset{\mathbf{k}, \boldsymbol{\alpha}, \boldsymbol{\Delta}\mathbf{p}}{\min} \quad \Phi(\mathbf{q}(t_f), \mathbf{k}, \boldsymbol{\alpha}, \boldsymbol{\Delta}\mathbf{p}) \\ & \text{s.t.} \qquad \forall \; s \; \in \llbracket 1; N_s \rrbracket, \; |\frac{k_s}{k_s^0} - 1| < 20 \; \% \\ & \forall \; a \; \in \llbracket 1; N_\alpha \rrbracket, \; \alpha_{a,min} < \alpha_a < \alpha_{a,max} \\ & \forall \; m \in \llbracket 1; N_m \rrbracket, \; |\boldsymbol{\Delta}p_m| < 0.05 \; m \end{split}$$

$$\epsilon = rac{\Phi_i - \Phi_{i-1}}{\Phi_{i-1}}$$

>> PostProcessingCalibration

All contained in a struct:

BiomechanicalModel.GeometricalCalibration
« .Crit »

>> PostProcessingCalibration

Biomechanical Model. Geometrical Calibration

1x5 cell

« .errorm »

>> PostProcessingCalibration

Biomechanical Model. Geometrical Calibration

Variation of the homothetic coefficient from the anthopometric estimation.

Reminder:

$$k_0 = \frac{\text{size of the subject}}{\text{size of the cadaver}}$$

From the initial musculoskeletal model:

$$k_{final} = k_0 * k_{calib}$$

15

'ThoraxSkul...

16

>> PostProcessingCalibration

Displacement of the marker in local frames.

What about the quality of the model? Geometrical Calibration Results - Right Shank length

Kinematical Results

Decreasing of the mean reconstruction error over the side step trial.

Kinematical Results

Kinematical Results

Take home message

To ensure the quality of the model and kinematic results

- Check your reconstruction errors
 - on your calibration trial
 - on your inverse kinematic trials
 - 4 to 40 mm reconstruction error mean have been reported. [Begon et al. 2017]

Begon, M., Andersen, M.S., Dumas, R., 2017. Multibody kinematic optimization for the estimation of upper and lower limb human joint kinematics: a systematic review. J. Biomech. Eng. 140, 1–11.

- Be sure you chose the right constraints to ensure the geometrical calibration
 - Enough frames (20-100)
 - Homothetic constraints (equality)
 - Displacement of markers
 - Rotation of joint axis

Perspectives for scaling in CusToM

Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data

P.Puchaud^{a,b,c}, C. Sauret^d, A. Muller^{a,e}, N. Bideau^b, G. Dumont^a, H. Pillet^d, C. Pontonnier^{a,c}

Figure 5. Kinematic errors (mean and standard deviation) on hip- and knee-joint functional movements withblue five models: HB, MB, MB_{l.a.m.}, MB_{a.m.*}, EB and EB_{a.m.*}, · · , · · · · · · · · · · indicated respective p-values < 0.05, < 0.005, < 0.001 with respect to Tukey's honest significant difference criterion.</p>

STEPS

- 1. Scaled bones based on markers locations
- 2. Optimize marker locations and joint axis orientations

BENEFITS

- 1. Consistent segment lengths (inter-hip sitance, femur, shank) compared with radiographies
- 2. Low kinematic residuals consistent with EOS models
- 3. Joint angles consistent with EOS models

Pre-Work

Go in Examples\1_Walking\POC0980A_altered

It contains:

⊕ Marche.c3d	16/12/2019 11:29	Fichier C3D
Normalize Abscisse Curve 100.m	30/01/2019 16:48	MATLAB Code
PostProcessing Kinematic_Walking.m	16/12/2019 17:39	MATLAB Code
⊕ ROM01.c3d	28/01/2019 14:14	Fichier C3D

Ankle Sprain over the world 1/10,000 people /day $_{Katcherian\ D.\ 1994}$

Ankle Sprain over the world 1/10,000 people /day $_{Katcherian\ D.\ 1994}$

Treating the ankle sprain grade III:

•Immobilization

Mohammadi et al. 2013

Ankle Sprain over the world 1/10,000 people /day $_{Katcherian\ D.\ 1994}$

Treating the ankle sprain grade III:

Immobilization

Functional treatment

Mohammadi et al. 2013

Ankle Sprain over the world

1/10,000 people /daxatcherian D. 1994

Treating the ankle sprain grade III:

- •Immobilization
- Functional treatment

Mohammadi et al. 2013

A kinematic analysis with CusToM

VS

with an ankle brace

Ankle Sprain over the world

1/10,000 people /daxatcherian D. 1994

Treating the ankle sprain grade III:

- •Immobilization
- Functional treatment

Mohammadi et al. 2013

A kinematic analysis with CusToM

VS

with an ankle brace

Research Question:

What are the kinematical compensation strategies?

Generate Parameters of the Model

>> GenerateParameters

• Size: 1.74 m

• Mass: 62,5 Kg

- Osteo-articular model full body
 - Leg Leg without Ankle
- Marker Set
 - MarkerSet_2 (M2S makerset)
 - 1 markers on hand
- Leg Muscles

1 subject

1 subject

1 subject

A modified plug-in-gait markerset

45 reflective markers

A modified plug-in-gait markerset

45 reflective markers

A modified plug-in-gait markerset

45 reflective markers

Run


```
Inverse kinematics (Marche) ...
Inverse kinematics (Marche) done
```

Altered and normal gait comparison

>> PostProcessingKinematic Walking

Visualization Tutorial

>> GenerateAnimate

Video

3D Animation Figure

Moerman, (2018). GIBBON: The Geometry and Image-Based Bioengineering add-On. Journal of Open Source Software, 3(22), 506, https://doi.org/10.21105/joss.00506

.Gif Export

Moerman, (2018). GIBBON: The Geometry and Image-Based Bioengineering add-On. Journal of Open Source Software, 3(22), 506, https://doi.org/10.21105/joss.00506