Follow-ups Also Matter: Improving Contextual Bandits via Post-serving Contexts

Chaoqi Wang¹, Ziyu Ye¹, Zhe Feng², Ashwinkumar Badanidiyuru³, Haifeng Xu¹

> The University of Chicago¹ Google Research² Google³

> > NeurIPS 2023

Background

Provide follow-up context

Figure 1: Illustration of learning with post-serving contexts.

- ► **Motivation**: Post-serving contexts are prevalent in recommender systems.
- ► **Challenges**: Classical bandit algorithms often fall short in such scenarios.
- ► Research question: How to effectively utilize post-serving information in linear contextual bandits?

Problem Setup and Notations

- ▶ **Problem Setup**: Each time $t = 1, 2, \dots, T$:
 - ▶ The learner observes the context x_t .
 - ▶ The learner selects an arm $a_t \in [K]$.
 - ▶ The learner observes the reward r_{t,a_t} .
 - ▶ The learner observes the post-serving context z_t .

► Notations:

- ightharpoonup Actions space: A = [K].
- Pre-serving context: $x \in \mathbb{R}^{d_x}$; post-serving context: $z \in \mathbb{R}^{d_z}$. $z = \phi^*(x_t) + \epsilon_t, \text{ and } \phi^*(x) = \mathbb{E}[z \mid x]$
- ► Reward function:

$$r_a(x,z) = x^{\top} \theta_a^{\star} + z^{\top} \beta_a^{\star} + \eta$$
, where η is R_{η} -sub-Gaussian.

► Matrix representation:

$$lacksquare X_t = \sum_{s=1}^t x_s x_s^ op + \lambda I$$
 and $Z_t = \sum_{s=1}^t z_s z_s^ op + \lambda I$.

► Norm restrictions:

$$\forall a \in \mathcal{A}, \|\boldsymbol{\theta}_a^{\star}\|_2 \leq 1, \|\boldsymbol{\beta}_a^{\star}\|_2 \leq 1; \|\boldsymbol{x}\|_2 \leq L_x, \|\boldsymbol{z}\|_2 \leq L_z.$$

Our Contributions

- ▶ New framework:
 - Proposed a novel family of contextual bandits with post-serving contexts.
- ► Enhanced lemma:
 - Introduced the Generalized Elliptical Potential Lemma (EPL).
- ► Algorithm and theory:
 - Designed poLinUCB with a regret bound of $\widetilde{\mathcal{O}}(T^{1-\alpha}d_u^{\alpha}+d_u\sqrt{TK})$.
- ► Empirical validation:
 - Achieved SOTA performance on synthetic and real-world datasets.

Assumption: Generalized Learnability of $\phi^*(\cdot)$

Learnability Assumption

There exists an algorithm that, given t pairs of examples $\{(\boldsymbol{x}_s, \boldsymbol{z}_s)\}_{s=1}^t$ with arbitrarily chosen \boldsymbol{x}_s 's, outputs an estimated function of $\phi^\star: \mathbb{R}^{d_x} \to \mathbb{R}^{d_z}$ such that for any $\boldsymbol{x} \in \mathbb{R}^{d_x}$, the following holds with probability at least $1-\delta$,

$$e_t^{\delta} := \left\| \widehat{\phi}_t(\boldsymbol{x}) - \phi^{\star}(\boldsymbol{x}) \right\|_2 \le C_0 \cdot \left(\|\boldsymbol{x}\|_{\boldsymbol{X}_t^{-1}}^2 \right)^{\alpha} \cdot \log(t/\delta),$$

where $\alpha \in (0, 1/2]$ and C_0 is some universal constant.

- ▶ The larger the value of α , the faster the learning rate for $\phi^*(\cdot)$.
- ▶ The regret of our algorithm is tied to $O(T^{1-\alpha})$.
- ▶ For linear functions, $\alpha = 1/2$ is optimal, yielding a regret of $O(\sqrt{T})$.

Why Natural Attempts May be Inadequate?

▶ Similar to [Wang et al., 2016]¹, a natural idea is to fit $\widehat{\phi}(\cdot)$, and obtain the parameter estimate by solving:

$$\ell_t(\boldsymbol{\theta}_a, \boldsymbol{\beta}_a) = \sum_{s \in [t]: a_s = a} \left(r_{s,a} - \boldsymbol{x}_t^{\top} \boldsymbol{\theta}_a - \widehat{\boldsymbol{\phi}}_s(\boldsymbol{x}_s)^{\top} \boldsymbol{\beta}_a \right)^2 + \lambda \left(\|\boldsymbol{\theta}_a\|_2^2 + \|\boldsymbol{\beta}_a\|_2^2 \right).$$

- $\,\blacktriangleright\,$ The regret can be $\widetilde{\mathcal{O}}(T^{3/4})$ when initialized away from the global optimum.
- ▶ We propose to get the parameter estimate by solving:

$$\ell_t(\boldsymbol{\theta}_a, \boldsymbol{\beta}_a) = \sum_{s \in [t]: a_s = a} \left(r_{s,a} - \boldsymbol{x}_s^\top \boldsymbol{\theta}_a - \boldsymbol{z}_s^\top \boldsymbol{\beta}_a \right)^2 + \lambda \left(\|\boldsymbol{\theta}_a\|_2^2 + \|\boldsymbol{\beta}_a\|_2^2 \right).$$

► This requires modification over the original Elliptical Potential Lemma (EPL) to accommodate noise in contexts during learning.

¹Huazheng Wang, Qingyun Wu, and Hongning Wang. "Learning Hidden Features for Contextual Bandits". In: *CIKM*. 2016, pp. 1633–1642.

The Proposed Lemma: Generalized EPL

Generalized Elliptical Potential Lemma²

Suppose (1) $X_0 \in \mathbb{R}^{d \times d}$ is any positive definite matrix; (2) $x_1, \dots, x_T \in \mathbb{R}^d$ and $\max_t \|x_t\| \le L_x$; (3) $\epsilon_1, \ldots, \epsilon_T \in \mathbb{R}^d$ are independent bounded zero-mean noises satisfying $\max_t \|\boldsymbol{\epsilon}_t\| \le L_{\epsilon}$ and $\mathbb{E}[\boldsymbol{\epsilon}_t \boldsymbol{\epsilon}_t^{\top}] \succcurlyeq \sigma_{\epsilon}^2 \boldsymbol{I}$; and (4) $\widetilde{\boldsymbol{X}}_t$ is defined as:

$$\widetilde{\boldsymbol{X}}_t = \boldsymbol{X}_0 + \sum_{s=1}^t (\boldsymbol{x}_s + \boldsymbol{\epsilon}_s) (\boldsymbol{x}_s + \boldsymbol{\epsilon}_s)^{\top} \in \mathbb{R}^{d \times d}.$$

For any $p \in [0,1]$, the following inequality holds with probability at least $1-\delta$,

$$\sum_{t=1}^{T} \left(1 \wedge \|\boldsymbol{x}_{t}\|_{\widetilde{\boldsymbol{X}}_{t-1}^{-1}}^{2} \right)^{p} \leq 2^{p} T^{1-p} \log^{p} \left(\frac{\det \boldsymbol{X}_{T}}{\det \boldsymbol{X}_{0}} \right) + \frac{8L_{\epsilon}^{2} (L_{\epsilon} + L_{x})^{2}}{\sigma_{\epsilon}^{4}} \log \left(\frac{32dL_{\epsilon}^{2} (L_{\epsilon} + L_{x})^{2}}{\delta \sigma_{\epsilon}^{4}} \right).$$

7 / 12

²The original EPL corresponds to the specific case of p=1.

The Proposed Algorithm: poLinUCB

Algorithm 1 poLinUCB (Linear UCB with post-serving contexts)

- 1: **for** t = 0, 1, ..., T **do**
- 2: Receive the pre-serving context x_t .
- 3: Compute the optimistic parameters by maximizing the UCB objective:

$$\left(a_t, \widetilde{\phi}_t(\boldsymbol{x}_t), \widetilde{\boldsymbol{w}}_t\right) = \underset{(a, \phi, \boldsymbol{w}_a) \in [K] \times \mathcal{C}_{t-1}\left(\widehat{\phi}_{t-1}, \boldsymbol{x}_t\right) \times \mathcal{C}_{t-1}\left(\widehat{\boldsymbol{w}}_{t-1, a}\right)}{\arg \max} \begin{bmatrix} \boldsymbol{x}_t \\ \phi(\boldsymbol{x}_t) \end{bmatrix}^\top \boldsymbol{w}_a.$$

- 4: Play the arm a_t and receive the post-serving context z_t and the reward r_{t,a_t} .
- 5: Compute $\widehat{\boldsymbol{w}}_{t,a}$ for each $a \in \mathcal{A}$ using:

$$\ell_t\left(\boldsymbol{\theta}_a, \beta_a\right) = \sum_{s \in [t]: a_s = a} \left(r_{s,a} - \boldsymbol{x}_s^{\intercal} \boldsymbol{\theta}_a - \boldsymbol{z}_s^{\intercal} \beta_a\right)^2 + \lambda \left(\|\boldsymbol{\theta}_a\|_2^2 + \|\beta_a\|_2^2\right).$$

- 6: Compute the estimated post-serving context generating function $\widehat{\phi}_t(\cdot)$ using ERM.
- 7: Update confidence sets $C_t(\widehat{w}_{t,a})$ and $C_t(\widehat{\phi}_t, x_t)$ for each a.
- 8: end for

Regret Analysis

Settings	Ours
Ours	$\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^{\alpha} + d_u\sqrt{TK}\right)$ $\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^{\alpha}\sqrt{K} + d_u\sqrt{TK}\right)$
Action-dependent contexts	$\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^{\alpha}\sqrt{K}+d_u\sqrt{TK}\right)$
Same setting as in [Abbasi et al., 2011] ³	$\widetilde{\mathcal{O}}\left(T^{1-\alpha}d_u^\alpha + d_u\sqrt{T}\right)$

Table 1: Upper bound of regret of poLinUCB.

³Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. "Improved Algorithms for Linear Stochastic Bandits". In: Advances in neural information processing systems 24 (2011).

Experimental Results: The Synthetic Dataset

Our proposed poLinUCB consistently outperforms other strategies.
(Except for LinUCB (x and z) which equips with post-serving contexts in arm selection.)

Figure 2: Algorithms' cumulative regrets in three synthetic environments. The shaded area denotes the standard error computed using 10 different random seeds.

Experimental Results: The MovieLens Dataset⁴

▶ Our proposed poLinUCB consistently outperforms other strategies.

(Except for LinUCB (x and z) which equips with post-serving contexts in arm selection.)

Figure 3: Algorithms' cumulative regrets in the MoiveLens Dataset. The shaded area denotes the standard error computed using 10 different random seeds.

⁴F Maxwell Harper and Joseph A Konstan. "The MovieLens Datasets: History and Context". In: Acm Transactions on Interactive Intelligent Systems 5.4 (2015), pp. 1–19.

Thank you.

Please refer to our paper for more information:

https://arxiv.org/abs/2309.13896.

000