L2 Informatique, UE INF403 Gestion de données relationnelles et applications

Mario Cortés-Cornax

Université Grenoble Alpes – UFR IM²AG

2022/2023

Equipe pédagogique

- Mario CORTES-CORNAX (MCF UGA, LIG)
 mario.cortes-cornax@univ-grenoble-alpes.fr
- Catherine VIGOUROUX (MCF UGA, VERIMAG) catherine.vigouroux@univ-grenoble-alpes.fr
- Quentin Nivon (PhD UGA, LIG) quentin.nivon@inria.fr
- Florent TALLERIE (PhD UGA, GSCOP)
 florent.tallerie@univ-grenoble-alpes.fr
- Philip SCALES (PhD UGA, LIG)
 philip.scales@univ-grenoble-alpes.fr

2/33

Evaluation

CC1 = 2 comptes rendus	cr1 (12,5%), projet (12,5%)
CC2 = partiel	cc2 (25%)
Examen	ex (50%)

- Le **partiel** a lieu entre le lu. 13/03/2023 et le ve. 17/03/2023
- Les comptes rendus de TP sont à rendre sur caseine : https://moodle.caseine.org/course/view.php?id=624
- Les TPs sont faits en binôme, un seul compte rendu par binôme
- L'examen a lieu entre le lu. 15/05/2023 et le mer. 17/05/2023

3/33

"Règles du jeux"

- Assiduité
- Retards
- CM pratique
- Inscription aux groupes sur Caseine
 (https://moodle.caseine.org/course/view.php?id=624)

4/33

©M. Cortes (UGA) BD & Applications 2022/2023

Objectifs

Maîtriser le modèle relationnel de données et SQL.

Etre sensibilisé à la mise en œuvre d'une application, au dessus d'un Système de Gestion de Bases de Données.

- Le modèle relationnel de données
- Un langage relationnel : SQL
- La conception d'une BD avec UML
- Les bases de la mise en œuvre d'une application de BD avec Python

5/33

Notion de Bases de Données

Une base de données contient des informations (d'une fraction) de la réalité, conçues pour répondre à des besoins particuliers afin qu'elles soient interrogées, modifiées, éventuellement supprimées dans le futur.

Exemples:

- *Un carnet d'adresses* : les noms, prénoms, adresses et téléphones de mes amis, sont enregistrés dans mon carnet d'adresses (quelques kilos octets)
- World Data Centre for Climate : 220 terabytes¹ de données disponibles sur le web 6 petabytes² d'autres données

 $^{^{1}1 \}text{ tera} = 10^{12}$

 $^{^{2}1 \}text{ peta} = 10^{15}$

Systèmes de Gestion de Bases de Données

Un Système de Gestion de Bases de Données (SGBD) est un ensemble de modules logiciels responsable du stockage et de l'accès à des informations.

2022/2023

7/33

Un système de gestion de bases de données. A quoi ça sert?

Un système logiciel conçu pour être la base des applications de bases de données.

Un système de gestion de bases de données. A quoi ça sert?

Un système logiciel conçu pour être la base des applications de bases de données.

- permettant un accès aux données indépendant de leur implantation (modèle relationnel, SQL)
- offrant un stockage et une recherche efficace (gestion de la mémoire et des disques)
- capable de gérer de nombreux accès simultanés (gestion des privilèges, des accès concurrents)
- capable d'exécuter de très nombreuses opérations (gestion des transactions)
- assurant une gestion fiable des données (sauvegarde, restauration)

Les SGBDs répondent à des problèmes similaires à ceux traités par les systèmes d'exploitation.

© M. Cortes (UGA) BD & Applications 2022/2023 8/33

Chapitre 2 – Le modèle relationnel de données

- Le modèle relationnel
 - Introduction
 - Les relations
 - Définitions et Notations
 - Contraintes
 - Spécification d'un schéma de relations

9/33

Un peu de culture

Le Modèle Relationnel de Données...

- A été introduit en 1970 par Ted Codd,
- Est attractif grâce à sa simplicité et ses fondements mathématiques,
- Utilise le concept de relation mathématique pour modéliser l'information,
- Ne peut pas être ignoré à cause de sa popularité.

Ted Codd (1923 - 2003)

https://en.wikipedia.org/wiki/Edgar_F._Codd

Origine de SQL

Origine de SQL

Ted Codd reçoit le Prix Turing en 1981

Ted Codd reçoit le Prix Turing en 1981

Polularité des Modèles de Bases de Données

© 2022, DB-Engines.com

source : https://db-engines.com/en/ranking_categories

14/33

Vocabulaire

- Une TABLE = une RELATION
- On pourra faire référence à un attribut d'une relation en utilisant la notation : Relation Attribut

Premières Observations

- Une base de données est constituée d'un ensemble de relations
- Chaque relation contient les données relatives à des entités de même nature
- Chaque ligne d'une relation reprend les données relatives à une entité
- Les lignes d'une relation sont distinctes
- O Chaque colonne d'une relation décrit une propriété commune des entités
- On évite de stocker les informations qui peuvent être calculées

©M. Cortes (UGA) BD & Applications 2022/2023 16/33

Interroger des relations

	firstname	salary	address	dept
	John	120	Randwick	Toys
Employees	Mary	130	Wollongong	Furniture
	Peter	110	Randwick	Garden
	Tom	120	Botany Bay	Toys

• Projection : Quels sont les noms de rayon ?

• Sélection : Donner les employés qui gagnent plus ou égal à 120

• **Sélection** + **projection** : Quelle est l'adresse de Tom ?

• Agrégation : Combien d'employés travaillent au rayon Toys ?

Interroger des relations

	firstname	salary	address	dept
	John	120	Randwick	Toys
Employees	Mary	130	Wollongong	Furniture
	Peter	110	Randwick	Garden
	Tom	120	Botany Bay	Toys

- Projection: Quels sont les noms de rayon?
 Employees[dept] → {<Toys>, <Furniture>, <Garden>}
- Sélection : Donner les employés qui gagnent plus ou égal à 120

- **Sélection** + **projection** : Quelle est l'adresse de Tom ?
- Agrégation : Combien d'employés travaillent au rayon Toys ?

Interroger des relations

	firstname	salary	address	dept
	John	120	Randwick	Toys
Employees	Mary	130	Wollongong	Furniture
	Peter	110	Randwick	Garden
	Tom	120	Botany Bay	Toys

- Projection: Quels sont les noms de rayon?
 Employees[dept] → {<Toys>, <Furniture>, <Garden>}
- Sélection: Donner les employés qui gagnent plus ou égal à 120
 Employees:salary >= 120 → {<John, 120, Randwick, Toys>, <Mary, 130, Wollongong, Furniture>, <Tom, 120, Botany Bay, Toys>}
- Sélection + projection : Quelle est l'adresse de Tom ?
- Agrégation : Combien d'employés travaillent au rayon Toys ?

Interroger des relations

	firstname	salary	address	dept
	John	120	Randwick	Toys
Employees	Mary	130	Wollongong	Furniture
	Peter	110	Randwick	Garden
	Tom	120	Botany Bay	Toys

- Projection: Quels sont les noms de rayon?
 Employees[dept] → {<Toys>, <Furniture>, <Garden>}
- Sélection: Donner les employés qui gagnent plus ou égal à 120
 Employees:salary >= 120 → {<John, 120, Randwick, Toys>, <Mary, 130, Wollongong, Furniture>, <Tom, 120, Botany Bay, Toys>}
- Sélection + projection : Quelle est l'adresse de Tom ?
 Employees: firstname = 'Tom'[address] → {<Botany Bay>}
- Agrégation : Combien d'employés travaillent au rayon Toys ?

 M. Cortes (UGA)
 BD & Applications
 2022/2023
 17/33

Interroger des relations

	firstname	salary	address	dept
	John	120	Randwick	Toys
Employees	Mary	130	Wollongong	Furniture
	Peter	110	Randwick	Garden
	Tom	120	Botany Bay	Toys

- Projection: Quels sont les noms de rayon?
 Employees[dept] → {<Toys>, <Furniture>, <Garden>}
- Sélection: Donner les employés qui gagnent plus ou égal à 120
 Employees:salary >= 120 → {<John, 120, Randwick, Toys>, <Mary, 130, Wollongong, Furniture>, <Tom, 120, Botany Bay, Toys>}
- **Sélection** + **projection** : Quelle est l'adresse de Tom ? *Employees:firstname* = 'Tom'[address] → {<Botany Bay>}
- **Agrégation** : Combien d'employés travaillent au rayon Toys ? $\longrightarrow \{<2>\}$

Mettre à jour une relation

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	130	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys

• Le salaire de Mary a augmenté de 10%

©M. Cortes (UGA) BD & Applications 2022/2023 18/33

Mettre à jour une relation

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	130	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys

- Le salaire de Mary a augmenté de 10%
- Phil est maintenant employé au magasin, son salaire est 140, il est affecté au rayon Furniture, son adresse est à Newtown.

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	143	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys
Phil	140	Newtown	Furniture

Ajouter un nouveau type d'information

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	143	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys
Phil	140	Newtown	Furniture

Chaque rayon est dirigé par un employé

©M. Cortes (UGA) BD & Applications 2022/2023 19/33

Ajouter un nouveau type d'information

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	143	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys
Phil	140	Newtown	Furniture

Chaque rayon est dirigé par un employé

Deux solutions..... ajouter une(des) colonne(s) ajouter une(des) relation(s)

2022/2023

19/33

Ajouter une colonne $(\sharp 1)$:

• Ajouter une marque pour chaque employé

firstname	boss	salary	address	dept
John	yes	120	Randwick	Toys
Mary	yes	143	Wollongong	Furniture
Peter	yes	110	Randwick	Garden
Tom	no	120	Botany Bay	Toys
Phil	no	140	Newtown	Furniture

Dur à lire et à décoder ...

Ajouter une colonne (#2):

• Ajouter un nom de chef à chaque rayon

firstname	salary	address	dept	boss
John	120	Randwick	Toys	John
Mary	143	Wollongong	Furniture	Mary
Peter	110	Randwick	Garden	Peter
Tom	120	Botany Bay	Toys	John
Phil	140	Newtown	Furniture	Mary

Redondance des données...et problématique de maintient de la coherence "John est le chef du rayon Toys" est dit deux fois

Ajouter une relation

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	130	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys

boss	dept	
John	Toys	
Mary	Furniture	
Peter	Garden	

Les requêtes sont un peu plus compliquées ... "Donner le salaire du chef du rayon Toys"

Ensemble : définition et quelques opérations

• Un **ensemble** est une collection d'éléments (entre accolades) différents deux à deux et reliés à un domaine particulier.

```
\begin{aligned} \mathsf{A} &= \{\text{'Furniture', 'Toys', 'Garden'}\} \\ \mathsf{F} &= \{\mathsf{p} \in \mathsf{ThePersons: Sexe}(\mathsf{p}) = \text{'female'}\} \end{aligned}
```

Ensemble : définition et quelques opérations

• Un **ensemble** est une collection d'éléments (entre accolades) différents deux à deux et reliés à un domaine particulier.

```
\begin{aligned} \mathsf{A} &= \{\text{'Furniture', 'Toys', 'Garden'}\} \\ \mathsf{F} &= \{\mathsf{p} \in \mathsf{ThePersons: Sexe}(\mathsf{p}) = \text{'female'}\} \end{aligned}
```

• Appartenance : $3 \in \{1, 3, 5, 6\}, 8 \notin \{1, 3, 5, 6\}$

• Produit cartésien d'ensembles (noté X): {1, 6, 3, 5} X {'Furniture', 'Toys', 'Garden'} = { <1, 'Furniture'>, <1, 'Toys'>, <1, 'Garden'>, <3, 'Furniture'>, <3, 'Toys'>, <3, 'Garden'>, <5, 'Furniture'>, <5, 'Toys'>, <5, 'Garden'>, <6, 'Furniture'>, <6, 'Toys'>, <6, 'Garden'> } • Produit cartésien d'ensembles (noté X): {1, 6, 3, 5} X {'Furniture', 'Toys', 'Garden'} = { <1, 'Furniture'>, <1, 'Toys'>, <1, 'Garden'>, <3, 'Furniture'>, <3, 'Toys'>, <3, 'Garden'>, <5, 'Furniture'>, <5, 'Toys'>, <5, 'Garden'>, <6, 'Furniture'>, <6, 'Toys'>, <6, 'Garden'> }

• Intersection : $\{1, 3, 5, 6\} \cap \{10, 5, 3, 9\} = \{5, 3\}$

© M. Cortes (UGA) BD & Applications 2022/2023 24/33

• **Produit cartésien** d'ensembles (noté X) :

- Intersection : $\{1, 3, 5, 6\} \cap \{10, 5, 3, 9\} = \{5, 3\}$
- Union :

$$\{1,\,3,\,5,\,6\}\ \cup \{10,\,5,\,3,\,9\} = \{1,\,5,\,3,\,6,\,10,\,9\}$$

• **Produit cartésien** d'ensembles (noté X) :

- Intersection : $\{1, 3, 5, 6\} \cap \{10, 5, 3, 9\} = \{5, 3\}$
- Union :

$$\{1, 3, 5, 6\} \cup \{10, 5, 3, 9\} = \{1, 5, 3, 6, 10, 9\}$$

• Différence (asymétrique) :

$${1, 3, 5, 6} - {10, 5, 3, 9} = {1, 6}$$

 ${10, 5, 3, 9} - {1, 3, 5, 6} = {10, 9}$

© M. Cortes (UGA) BD & Applications 2022/2023 24/33

• **Produit cartésien** d'ensembles (noté X) :

$$\begin{array}{l} \{1,\, 6,\, 3,\, 5\} \; X \; \{\text{'Furniture'}, \; \text{'Toys'}, \; \text{'Garden'}\} = \\ \{ <1, \text{'Furniture'}>, <1, \text{'Toys'}>, <1, \text{'Garden'}>, \\ <3, \text{'Furniture'}>, <3, \text{'Toys'}>, <3, \text{'Garden'}>, \\ <5, \text{'Furniture'}>, <5, \text{'Toys'}>, <5, \text{'Garden'}>, \\ <6, \text{'Furniture'}>, <6, \text{'Toys'}>, <6, \text{'Garden'}> \} \end{array}$$

- Intersection : $\{1, 3, 5, 6\} \cap \{10, 5, 3, 9\} = \{5, 3\}$
- Union :

$$\{1, 3, 5, 6\} \cup \{10, 5, 3, 9\} = \{1, 5, 3, 6, 10, 9\}$$

• Différence (asymétrique) :

$${1, 3, 5, 6} - {10, 5, 3, 9} = {1, 6}$$

 ${10, 5, 3, 9} - {1, 3, 5, 6} = {10, 9}$

Inclusion :

```
 \left\{ \begin{array}{l} \big\{ \ \big\} \subseteq \big\{ 10, \, 5, \, 3, \, 9 \big\} \ \left( \left\{ \begin{array}{l} \big\} \ \text{est aussi noté} \ \emptyset \right) \\ \big\{ 9, \, 10 \big\} \subseteq \big\{ 10, \, 5, \, 3, \, 9 \big\} \\ \big\{ 9, \, 10 \big\} \subset \big\{ 10, \, 5, \, 3, \, 9 \big\} \\ \big\{ 9, \, 10, \, 3, \, 5 \ \big\} \not\subset \big\{ 10, \, 5, \, 3, \, 9 \big\} \\ \big\{ 1, \, 9, \, 10, \, 3, \, 5, \, 7 \big\} \not\subseteq \big\{ 10, \, 5, \, 3, \, 9 \big\} \\ \end{array}
```

Produit Cartésien:

$$\{1,\,3\}\,\,X\,\,\{2,\,1\} =$$

A.
$$\{ <1, 2>, <1,1>, <3,2>, <3,1> \}$$

B.
$$\{ <1, 2>, <3,1> \}$$

C.
$$\{ <1, 3, 2, 1> \}$$

→ M. Cortes (UGA)

Produit Cartésien:

$$\{1, 3\} X \{2, 1\} = \{ <1, 2>, <1,1>, <3,2>, <3,1> \}$$

A.
$$\{$$
 <1, 2>, <1,1>, <3,2>, <3,1> $\}$

Intersection: $\{1, 2, 5, 7\} \cap \{5, 3, 1\} =$

- A. {1, 2, 5, 7, 3}
- B. {2, 7}
- C. {1, 5}

26 / 33

Intersection: $\{1, 2, 5, 7\} \cap \{5, 3, 1\} = \{1, 5\}$

- A. {1, 2, 5, 7, 3}
- B. {2, 7}
- C. {1, 5}

Union: $\{2, 1, 4, 7\} \cup \{1, 5, 3\} =$

- A. {2, 4, 7}
- B. {1}
- C. {2, 1, 4, 7, 5, 3}

⊙M. Cortes (UGA)

Union: $\{2, 1, 4, 7\} \cup \{1, 5, 3\} = \{2, 1, 4, 7, 5, 3\}$

- A. {2, 4, 7}
- B. {1}
- C. {2, 1, 4, 7, 5, 3}

⊙M. Cortes (UGA) BD & Applications

Minus (asymétrique):

$$\{1, 2, 5, 7\} - \{5, 3, 1\} =$$

- A. {2, 7, 3}
- B. {2, 7}
- **C**. {3}

Minus (asymétrique):

$$\{1, 2, 5, 7\} - \{5, 3, 1\} = \{2, 7\}$$

- A. {2, 7, 3}
- B. {2, 7}
- **C**. {3}

28 / 33

Inclusion:

$$\begin{array}{l} \{2,\,1,\,4,\,7\} \subset \{7,\,2,\,1,\,4\} \; \mbox{(Vrais ou Faux?)} \\ \{4,\,2\,\} \not\subseteq \{7,\,2,\,1,\,4\} \; \mbox{(Vrais ou Faux?)} \\ \end{array}$$

- A. Vrais et Vrais
- B. Faux et Vrais
- C. Faux et Faux

→ M. Cortes (UGA)

Inclusion:

 $\{2,\,1,\,4,\,7\} \subset \{7,\,2,\,1,\,4\} \text{ (Vrais ou Faux?) } F \\ \{4,\,2\,\} \not\subseteq \{7,\,2,\,1,\,4\} \text{ (Vrais ou Faux?) } F$

- A. Vrais et Vrais
- B. Faux et Vrais
- C. Faux et Faux

2022/2023

29 / 33

⊚M. Cortes (UGA) BD & Applications

• Un **domaine** est un ensemble de valeurs atomiques (chaînes, nombres,..). {'Furniture', 'Toys', 'Garden'}, entiers > 100

 (a) M. Cortes (UGA)
 BD & Applications
 2022/2023
 30 / 33

- Un **domaine** est un ensemble de valeurs atomiques (chaînes, nombres,..). {'Furniture', 'Toys', 'Garden'}, entiers > 100
- Une **relation** est un sous-ensemble du produit cartésien d'un ensemble de domaines. $\{<'John', 120>, <'Mary', 130>, <'Peter', 110>, <'Tom', 120>\} \subseteq \{'John', 'Mary', 'Peter', 'Tom'\} X entiers > 100$

© M. Cortes (UGA) BD & Applications 2022/2023 30/33

- Un **domaine** est un ensemble de valeurs atomiques (chaînes, nombres,..). {'Furniture', 'Toys', 'Garden'}, entiers > 100
- Une **relation** est un sous-ensemble du produit cartésien d'un ensemble de domaines. $\{<'John',120>,<'Mary',130>,<'Peter',110>,<'Tom',120>\}\subseteq \{'John','Mary','Peter','Tom'\}\ X\ entiers>100$
- Un **attribut** indique le rôle joué par un domaine dans une relation. *domaine(Salary) = entiers > 100*

ロト (個) (重) (重) (重) の(で

- Un **domaine** est un ensemble de valeurs atomiques (chaînes, nombres,..). {'Furniture', 'Toys', 'Garden'}, entiers > 100
- Une **relation** est un sous-ensemble du produit cartésien d'un ensemble de domaines. $\{<'John',120>,<'Mary',130>,<'Peter',110>,<'Tom',120>\}\subseteq \{'John','Mary','Peter','Tom'\}$ X entiers >100
- Un **attribut** indique le rôle joué par un domaine dans une relation. *domaine(Salary) = entiers > 100*
- La structure de la relation (**schéma**) est donnée par son nom et par un ensemble d'attributs. *Employees (firstname, salary, address, dept)*

Interprétation / Spécification

L'interprétation ou spécification d'une relation est un prédicat :

Employees (firstname, salary, address, dept)
/* <n, s, a, d> ∈ Employees ⇔ l'employé identifié par son nom n gagne un salaire s. Il habite à l'adresse a et est affecté au rayon d. */

Le prédicat est utile pour comprendre le schéma de la relation et le documenter.

© M. Cortes (UGA) BD & Applications 2022/2023 31/33

Contraintes Relationnelles

 Contraintes de domaine : domain(A)=T spécifie que les valeurs de A doivent être du type T.

© M. Cortes (UGA) BD & Applications 2022/2023 32/33

Contraintes Relationnelles

- Contraintes de domaine : domain(A)=T spécifie que les valeurs de A doivent être du type T.
- Contraintes d'identification :
 X spécifie une contrainte d'unicité telle que les n-uplets de la relation sont distincts deux à deux pour X (X un ensemble d'attributs).

Contraintes Relationnelles

- Contraintes de domaine : domain(A)=T spécifie que les valeurs de A doivent être du type T.
- Contraintes d'identification :
 X spécifie une contrainte d'unicité telle que les n-uplets de la relation sont distincts deux à deux pour X (X un ensemble d'attributs).
- Contraintes d'intégrité référentielle :
 R projetée sur l'attribut X se réfère à S projetée sur l'attribut Y : tous les n-uplets de R, restreints à X doivent avoir un n-uplet correspondant dans S restreinte à Y. Ce que l'on note R[X] ⊆ S[Y].
- Autres

©M. Cortes (UGA) BD & Applications 2022/2023 32/33

Exemple

```
Employees (<u>firstname</u>, salary, address, dept) /* firstname est l'identifiant */
    /* < n, s, a, d> ∈ Employees ⇔ l'employé identifié par son nom n gagne un salaire s. Il habite à l'adresse a et est affecté au rayon d. */
Leaderships (<u>boss</u>, <u>dept</u>) /* 2 identifiants : boss et dept */
    /* < b, d> ∈ Leaderships ⇔ l'employé b est responsable du rayon d. */
Contraintes d'intégrité référentielle :
    Leaderships[boss, dept] ⊂ Employees[firstname, dept]
```

firstname	salary	address	dept
John	120	Randwick	Toys
Mary	130	Wollongong	Furniture
Peter	110	Randwick	Garden
Tom	120	Botany Bay	Toys

boss	dept	
John	Toys	
Mary	Furniture	
Peter	Garden	

© M. Cortes (UGA) BD & Applications 2022/2023 33/33