Tytuł: Moje początki z TeX

1 Preliminaria

Hello World! To oczywiście tylko zabawa.

A to jest drugi akapit i można zobaczyć efekt działania.

Hello World! To oczywiście

tylko zabawa.

A to jest drugi akapit i można zobaczyć efekt działania.

A to jest kolejny akapit i można zobaczyć efekt działania.

Czasami zależy nam na zmianie stopnia pisma. Lubię duże, większe oraz bardzo duże litery.

Odmianą pochyłą składa się terminy definiowane, objaśniane lub tłumaczone.

Grzegorz ugotował *knedle*, rodzaj **pulpetów** z surowego <u>mięsa</u> Wyrównanie tekstu wymaga "pracy":

środek

do prawa

To samo tylko jeszcze lewo:

do lewa

środek

do prawa

Cudzysłowy pojawią się jeżeli je podwoimy "BASIA", pojedyncze dają śmieszny efekt 'BARBARA', a takie "Basia" świadczą podobno o typograficznym... .

Efekt specjalny, jeżeli chcemy coś wyróżnić w środowisku, to wtedy środowisko ${\tt quote}$

bardzo ładna poezja bardzo ładna poezja

Tutaj należy skończyć stronę (znaleźć jak).

2 Listy

Teraz pobawimy się listami; środowiska enumerate, itemize, description, "spróbować" osiągnąć efekt jak poniżej:

- 1. Taka lista:
 - wygląda
 - śmiesznie.
- 2. Pamiętaj:

Głupoty nie stają się mądrościami, gdy się je wyliczy.Mądrości można elegancko zestawiać w wyliczeniach

3 Matematyka

3.1 Proste wzory

I wreszcie "matematyka", którą należy po prostu napisać. Równanie (f(x)=2x) można zapisać:

$$f(x) = 2x$$

$$f(x) = 2x$$
 (1)
$$\Gamma(\gamma) \neq 1 \rightarrow \exists \hbar \forall \heartsuit$$

$$z_1 = x^{22} > 2^{2^2}$$

3.2 I bardziej skomplikowane

$$\sum_{i=a}^{b} F(x)\Delta x \approx \int_{a}^{b} f(x)dx$$

$$\sqrt[3]{\frac{a+b}{c-d}}$$

$$f'(x) = 2x \qquad \Rightarrow \qquad f(x) = x^{2} + C$$

3.3 Funkcja Riemanna: (cases,text)

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \begin{cases} \infty & \text{dla s} \le 1\\ -\infty & \text{dla s} > 1 \end{cases}$$
 (8)

3.4 Tabelki

Środowisko $\{array\}$ do tworzenia tabel i macierzy:

pierwsza

druga

$$\begin{array}{c|cccc}
1 & 22 & 3 \\
\hline
99 & 5 & x^2
\end{array}$$

trzecia

$$\left[\left(\begin{array}{ccc} 1 & 22 & 3 \\ 99 & 5 & x^2 \end{array} \right) + \frac{1}{2} \right]$$

i największa

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$(0; \frac{\pi}{2})$	$(\frac{\pi}{2};\pi)$	$(\pi; \frac{3\pi}{2})$	$\left(\frac{3\pi}{2};2\pi\right)$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	+	+	_	_

Spis treści

1	Preliminaria										
2	Listy Matematyka										
3											
	3.1	Proste wzory	3								
	3.2	I bardziej skomplikowane	3								
	3.3	Funkcja Riemanna: (cases,text)	3								
	3.4	Tabelki	4								