Math 3070, Applied Statistics

Section 1

September 23, 2019

Lecture Outline, 9/23

Section 4.2

- Cumulative Distribution Functions
- Expected Value and Variance of a Continuous Random Variable

Preface

Most definitions for continuous random variables change \sum to \int and usually work the same way.

CDF of Continuous Random Variable

The cumulative distribution function (CDF), F(x), of a continuous random variable X is defined the same as in the discrete case:

$$F(x) = P(X \le x)$$

If X has pdf f(x), then this becomes

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

By the Fundamental Theorem of Calculus, F'(x) = f(x), if F'(x) exists at x.

Example, CDF of Unif(0,1)

Compute the CDF of $X \sim unif(0,1)$.

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1 \\ 0 & \text{otherwise} \end{cases}$$

When x < 0,

$$P(X < x) = \int_{-\infty}^{x} f(x)dx = \int_{-\infty}^{x} 0dx = 0.$$

When 0 < x < 1,

$$P(X < x) = \int_{-\infty}^{x} f(x)dx = \int_{0}^{x} 1dx = x.$$

When 1 < x,

$$P(X < x) = \int_{-\infty}^{x} f(x) dx = \int_{0}^{1} 1 dx = 1.$$

Example, CDF of Unif(0,1)

Compute the CDF of $X \sim unif(0,1)$.

$$F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1 \\ 1, & 1 \le x \end{cases}$$

Properties of CDFs

Useful for calculation:

•
$$P(X > a) = 1 - F(a)$$

•
$$P(a \le X \le b) = F(b) - F(a)$$

Useful for double-checking a function is a CDF:

- $\lim_{x \to -\infty} P(X < x) = 0$
- $\lim_{x \to \infty} P(X < x) = 1$
- CDFs of continuous random variables are continuous.

Percentiles and Median, Definition

Let p be a number between 0 and 1. The $(\mathbf{100p})^{\mathbf{th}}$ percentile of the distribution of a continuous random variable X is denoted by $\eta(p)$ and defined by

$$p = F(\eta(p)) = \int_{-\infty}^{\eta(p)} f(y) dy$$

Alternatively, $\eta(p) = F^{-1}(p)$ if F(x) is invertible. If it's not we usually take the smallest $\eta(p)$ that suffices. Won't need to consider that in this class.

The **median** \tilde{u} of a continuous random variable X is the 50^{th} percentile or the percentile with p = 0.5.

This corresponds to the median of a data set. Roughly half of the observations will be below \tilde{u} .

Example, Median

Calculate the median of a random varible with the following PDF:

$$f(x) = \begin{cases} e^{-x+1} & \text{if } 1 \le x \\ 0 & \text{otherwise} \end{cases}$$

When x < 1,

$$P(X < x) = \int_{-\infty}^{x} f(x) dx = 0$$

When $x \ge 1$,

$$P(X < x) = \int_{-\infty}^{x} f(x)dx = \int_{1}^{x} e^{-s+1}ds$$
$$= -e^{-s+1} \Big|_{s-1}^{x} = 1 - e^{-x+1}$$

Example, Median

Calculate the median of a random varible with the following PDF:

$$F(x) = \begin{cases} 1 - e^{-x+1}, & \text{if } 1 \le x \\ 0, & x < 1 \end{cases}$$

F(x) = 0.5 when $x \ge 1$. Need to invert the function in that region.

$$0.5 = 1 - e^{- ilde{u}+1}$$
 $0.5 = e^{- ilde{u}+1}$
 $\ln{(0.5)} = - ilde{u}+1$
 $1 - \ln{(0.5)} = ilde{u}$
 $ilde{u} pprox 1.69315$

Summary, Cumulative Density Function

- CDF: $F(x) = P(X < x) = \int_{-\infty}^{x} f(t) dt$
- F'(x) = f(x) when F'(x) exists.
- P(X > a) = 1 F(a)
- $P(a \le X \le b) = F(b) F(a)$
- $\lim_{x \to -\infty} P(X < x) = 0$
- $\lim_{x \to \infty} P(X < x) = 1$
- CDFs of continuous random variables are continuous.
- $100p^{th}$ percentile $\eta(p)$: $p = F(\eta(p))$
- median \tilde{u} , p = 0.5 percentile

Expected Value, Definition

The **expected value** or **mean** of a continuous random variable X with PDF f(x) is

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx.$$

If h(x) is a function then

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) \cdot f(x) dx.$$

Mean has the same interpretation as the discrete case or from data, a measure of center or location. And, it is also linear,

$$E[g(X) + ah(X) + b] = E[g(X)] + aE[h(x)] + b.$$

Why? Integrals are linear.

Variance, Definition

The **variance** of a continuous random variable X with PDF f(x) and $E[X] = \mu$ is

$$\sigma_X^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx = E[(X - \mu)^2].$$

The **standard deviation** (SD) of X is $\sigma_X = \sqrt{V(X)}$.

Same interpretation, average spread. Shorcut formula and linear transforms work the same too.

$$V(X) = E[X^2] - E[X]^2$$
$$V(aX + b) = a^2V(X)$$

Variance, Derivations for Shortcut Formula and Linear Transforms

Shortcut Formula:

$$V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx$$

=
$$\int_{-\infty}^{\infty} (x)^2 \cdot f(x) dx - 2\mu \int_{-\infty}^{\infty} x \cdot f(x) dx + \mu^2 \int_{-\infty}^{\infty} f(x) dx$$

=
$$E[X^2] - \mu^2 = E[X^2] - E[X]^2$$

Linear Transforms: Note: $E[aX + b] = aE[X] + b = a\mu + b$

$$V(aX + b) = \int_{-\infty}^{\infty} [ax + b - (a\mu + b)]^2 \cdot f(x) dx$$
$$= \int_{-\infty}^{\infty} a^2 [x - \mu]^2 \cdot f(x) dx$$
$$= a^2 V(X)$$

Example, Mean and Variance of the a Uniform RV

Compute the mean and variance of $X \sim unif(a, b)$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x < b \\ 0, & \text{otherwise} \end{cases}$$

guess.

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx = \int_{a}^{b} \frac{x}{b-a} dx$$
$$= \frac{x^{2}}{2(b-a)} \Big|_{a}^{b} = \frac{b^{2} - a^{2}}{2(b-a)}$$
$$= \frac{(b-a)(b+a)}{2(b-a)} = \frac{b+a}{2}$$

Example, Mean and Variance of the a Uniform RV

Compute the mean and variance of $X \sim unif(a, b)$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x < b \\ 0, & \text{otherwise} \end{cases}$$

$$V(X) = E[X^{2}] - E[X]^{2}$$

$$= \int_{a}^{b} \frac{x^{2}}{b - a} dx - \left(\frac{b + a}{2}\right)^{2} = \frac{1}{b - a} \frac{x^{3}}{3} \Big|_{x = a}^{b} - \left(\frac{b + a}{2}\right)^{2}$$

$$= \frac{b^{3} - a^{3}}{3(b - a)} - \left(\frac{b + a}{2}\right)^{2} = \frac{(b - a)(a^{2} + ab + b^{2})}{3(b - a)} - \left(\frac{b + a}{2}\right)^{2}$$

$$= \frac{(a^{2} + ab + b^{2})}{3} - \frac{b^{2} + 2ba + a^{2}}{4}$$

$$= \frac{(4a^{2} + 4ab + 4b^{2})}{12} - \frac{3b^{2} + 6ba + 3a^{2}}{12}$$

$$= \frac{a^{2} - 2ab + b^{2}}{12} = \frac{(b - a)^{2}}{12}$$

Example, Mean and Variance of the a Uniform RV

Compute the mean and variance of $X \sim unif(a, b)$.

$$E[X] = \frac{b+a}{2}$$

$$V(X) = \frac{(b-a)^2}{12}$$

Takeaway:

- The mean is the average of the end points.
- The variance is explictly related to the distance between the endpoints b − a.

Example, Modeling with a Uniform RV

A random number generator produces values that follow uniform random variable. Researchers take find a sample mean of 5 and a sample standard deviation of $\sqrt{12}$. Determine the minimum and maximum values assuming that the sample mean and variance are the true mean and standard deviation.

Using what was found in the previous problem,

$$\frac{b+a}{2} = 5 \text{ and } \frac{b-a}{\sqrt{12}} = \sqrt{12}$$

or

$$b + a = 10$$
 and $b - a = 12$

Using linear algebra,

$$b = 11$$
 and $a = -1$.

Maximum value = 11 and minimum value = -1.

Example, Modeling with a Uniform RV

A random number generator produces values that follow uniform random variable. Researchers take find a sample mean of 5 and a sample standard deviation of $\sqrt{12}$. Determine the minimum and maximum values assuming that the sample mean and variance are the true mean and standard deviation.

Closing note, P(X = b) = P(X = a) = 0 or it is impossible to observe the endpoints of a uniform random variable. Maximum and minimum values of the data set may not work as well as the sample mean and variance.

Summary, Expected Value and Variance

•
$$\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

•
$$E[h(X)] = \int_{-\infty}^{\infty} h(x) \cdot f(x) dx$$

•
$$E[g(X) + ah(X) + b] = E[g(X)] + aE[h(X)] + b$$

•
$$\sigma_X^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx = E[(X - \mu)^2]$$

•
$$V(X) = E[X^2] - E[X]^2$$

•
$$V(aX + b) = a^2V(X)$$

• If $X \sim unif(a, b)$

$$E[X] = \frac{b+a}{2}$$
 $V(X) = \frac{(b-a)^2}{12}$