Set: distinguishable collection. Element: distinguishable object in the set
Element x is in set A: $x \in A$
Cardinality is the number of element which the set has
$A = \{1, 2, 3\}$ A = card(A) = 3
Union of two sets A and B $A \cup B$
Intersection of two sets A and B $A\cap B$
If set A is sub set of set B: $A \subset B$
$A \subset A$ is true
If cardinality of A is smaller than B, A is proper subset of B
Difference set $A-B$
Complement set against entire set Ω A^C
$A^C = \Omega - A$
Null set ϕ has none element
$\phi \subset \text{all sets}$
Following is true $A \cap \phi = \phi$ $A \cup \phi = A$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$