Yue Gao

RESEARCH INTERESTS

Trustworthy Machine Learning (adversarial robustness, black-box evasion attacks and defenses) **System Security** (machine learning systems, web-based applications and services)

EDUCATION

University of Wisconsin-Madison

Madison, WI

Ph.D. Candidate in Computer Science

Sep 2018 - May 2024 (expected)

• Advisor: Prof. Kassem Fawaz

• Thesis: Characterizing the Limitations of Defenses in Adversarial Machine Learning

Shanghai University

Shanghai, China

Sep 2014 – Jul 2018

B.S. in Computer Science and Technology

• Major GPA: 3.99/4.00 (ranked 1/292)

• Advisor: Prof. Xiaodong Yue

• Thesis: A Deep Neural Network based Image Compression Method

WORK EXPERIENCE

Research Assistant @ University of Wisconsin-Madison

Madison, WI

Advised by Prof. Kassem Fawaz

Nov 2018 – present

- Explore the weaknesses of evasion attacks and defenses for ML-based systems.
- Improve the security analysis of ML-based and web-based systems in black-box settings.

Research Intern @ Microsoft Research

Redmond, WA

Mentored by Dr. Jay Stokes and Dr. Emre Kiciman

Jun 2021 - Sep 2021

- Explore data-centric solutions for backdoor attacks on language models with domain knowledge.
- Design auditing frameworks for the continual update of backdoor-free language models.

Research and Development Intern @ TuCodec

Shanghai, China

Mentored by Dr. Chunlei Cai

Jan 2018 – Jul 2018

- Optimize learning-based image compression algorithms.
- Develop DNN-based applications on mainstream operating systems and deploy them to cloud services.
- Winner of the CVPR 2018 Challenge on Learned Image Compression.

SELECTED PROJECTS

The Role of Randomization in Adversarial Robustness

Feb 2022 - May 2022

- Characterize the limitations of using randomization to defend ML models.
- Theoretically explain the source of robustness for randomized defenses against evasion attacks.

Trustworthy Machine Learning in Real-World Systems

Sep 2020 - Jan 2021

- Explore the security of ML systems under threats from multiple components.
- Propose plug-and-play techniques to enable system-level black-box attacks.
- Demonstrate amplified threats from the interplay between multiple vulnerabilities.

Defending against Evasion Attacks in Multimodal Scenarios (Collaborative)

Since 2019 (semiannual)

- Improve adversarial robustness with physical constraints.
- Design defenses for multimodal tasks (e.g., remote sensing satellites and autonomous driving).
- Develop a usable code base for team members with varying tracks and technical backgrounds.

Conference

- [1] I Know Your Triggers: Defending Against Textual Backdoor Attacks With Benign Backdoor Augmentation Yue Gao, Jack W. Stokes, Manoj Prasad, Andrew Marshall, Kassem Fawaz, and Emre Kiciman *IEEE Military Communications Conference (MILCOM)*, 2022
- [2] On the Limitations of Stochastic Pre-processing Defenses

 Yue Gao, Ilia Shumailov, Kassem Fawaz, and Nicolas Papernot

 Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS), 2022
- [3] Rethinking Image-Scaling Attacks: The Interplay Between Vulnerabilities in Machine Learning Systems Yue Gao, Ilia Shumailov, and Kassem Fawaz

 Proceedings of the 39th International Conference on Machine Learning (ICML), 2022

 Oral Presentation (Top 2%)
- [4] Experimental Security Analysis of the App Model in Business Collaboration Platforms Yunang Chen*, **Yue Gao***, Nick Ceccio, Rahul Chatterjee, Kassem Fawaz, and Earlence Fernandes 31st USENIX Security Symposium (USENIX Security), 2022

 Bug Bounty (\$1500)

Workshop

[1] Variational Autoencoder for Low Bit-rate Image Compression Lei Zhou*, Chunlei Cai*, **Yue Gao**, Sanbao Su, and Junmin Wu Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018 Winner of the first Challenge on Learned Image Compression

Preprints

[1] Analyzing Accuracy Loss in Randomized Smoothing Defenses **Yue Gao***, Harrison Rosenberg*, Kassem Fawaz, Somesh Jha, and Justin Hsu *arXiv*, 2020

SELECTED HONORS & AWARDS

Slack Bug Bounty: Medium Severity, \$1500	2022
Top 10% Reviewers Award: NeurIPS	2022
CVPR Competition Winner: Challenge on Learned Image Compression	2018
National Scholarship: China	2017
Top 100 Elite Collegiate Award: China Computer Federation	2017
Scholarship for Exceptional Leadership: Shanghai University	2017
City Scholarship: Shanghai	2016
Outstanding Student Award: Shanghai University	2016
Outstanding Volunteer Award: ACM ICPC Asia Regional Contest	2016
Scholarship for Exceptional Innovation: Shanghai University	2016
Scholarship for Exceptional Academic Achievements: Shanghai University	2015 - 2018
Bronze Prize for Programming Contest: ACM ICPC Asia East-Continent Final Contest	2015
Bronze Prize for Programming Contest: ACM ICPC Asia Shanghai Regional Contest	2015

PROFESSIONAL ACTIVITIES

Reviewer: NeurIPS and ICML	2022 - 2023
External Reviewer: USENIX Security Symposium	2021 - 2022
External Reviewer: IEEE Symposium on Security and Privacy	2021 - 2022
External Reviewer: ACM Conference on Computer and Communications Security	2019
Team Leader : Collegiate ICPC Team at Shanghai University	2016 – 2017

-	ay Between Vulnerabilities in Machine Learning Systems ung Scientist Seminars (virtual)	Apr 202.
2. On the Lim	itations of Stochastic Pre-processing Defenses f Southern California (virtual)	Oct 202.
	ay Between Vulnerabilities in Machine Learning Systems	Sep 202.
4. Experimen <i>USENIX Sec</i>	tal Security Analysis of the App Model in Business Collaboration Platforms urity 2022	Aug 202.
5. The Interp l <i>ICML 2022</i>	ay Between Vulnerabilities in Machine Learning Systems	Jun 202.
TEACHING AN	ID MENTORING	
Guest Lectu	sistant: CS 368 (C++ for Java Programmers), University of Wisconsin–Madison rer: Advanced Algorithms & Data Structures, Shanghai University signer: Undergraduate Programming Contests, Shanghai University	Fall 2018 2015 – 2017 2015 – 2017
	ntor: Undergraduate Computer Science Coursework, Shanghai University	2015 – 2017
TECHNICAL S	KILLS	
Python PyTorch Docker	Research (2018 – present), System Optimization (2018), Backend Development (Research (2019 – present), Distributed Training (2020 – 2022). Research (2018 – present), Computing Cluster (2017 – 2018).	2016 – 2017).
C / C++	Kernel Development (2019), System Optimization (2018), Programming Contest	(2014 – 2018).
TensorFlow	Service Deployment (2018).	(2011 2010)
Java EE	Backend Development (2016).	
ARTICLES ANI	D MEDIA COVERAGE	
CleverHans.	Can stochastic pre-processing defenses protect your models?	2022
USENIX logi	in. Experimental Security Analysis of the App Model in Business Collaboration Plat	forms 2022

CleverHans. Can stochastic pre-processing defenses protect your models?	2022
USENIX login . Experimental Security Analysis of the App Model in Business Collaboration Platforms	2022
Wired. Slack's and Teams' Lax App Security Raises Alarms	2022