DLP Lab6 309553012 黃建洲

1. Result

dqn

(1) Test

(2) Episode Reward

(3) Elwa Reward

(4) Test Average Reward: 204.56

```
Step: 608990 Episode: 1199 Length: 366 Total reward: 265.95 Ewma reward: 218.18 Epsilon: 0.010
Start Testing
Average Reward 204.56857582614546

(pytorch) D:\desktop\dl_lab6>_
```

ddqn

(1) Test

(2) Episode Reward

(3) Elwa Reward

(4) Test Average Reward: 223.42

Step: 709679 - Episode: 1199 - Lo Start Testing Average Reward 223.42262112369548

ddpg:

(1) Test:

Test

(2) Episode Reward

(3) Elwa Reward

(4) Test Average Reward: 243.47

Step: 417430 Episode: 1199 Lengin: 279 10tal reward: 294.66 Ewma reward: 255.49 Start Testing [219.82496490038534, 254.00719274787846, 260.3636954112194, 247.15751532728504, 224.4380304889064, 257.67706832683746, 10.74288756409086, 265.4936725403695, 217.24635266796687, 277.78808969161344] Average Reward 243.4739469666553

2. Describe your major implementation of both algorithms in detail

DQN

(1) Network部分:

Implementation Details – LunarLander-v2:

Network Architecture

- Input: an 8-dimension observation (not an image)
- First layer: fully connected layer (ReLU)
 - input: 8, output: 32
- Second layer: fully connected layer (ReLU)
 - input: 32, output: 32
- Third layer: fully connected layer
 - input: 32, output: 4

Training Hyper-Parameters

- Memory capacity (experience buffer size): 10000
- Batch size: 128
- Warmup steps: 10000
- Optimizer: Adam
- Learning rate: 0. 0005
- Epsilon: $1 \rightarrow 0.1$ or $1 \rightarrow 0.01$
- Gamma (discount factor): 0.99
- Update network evert 4 iterations
- Update target network every 100 iterations

根據PDF給予的網路架構,建構三層帶有ReLU的全連接層。 程式碼如下:

```
def __init__(self, state_dim=8, action_dim=4, hidden_dim=32):
    super().__init__()
    self.firstLayer = nn.Linear(state_dim, hidden_dim)
    self.secondLayer = nn.Linear(hidden_dim, hidden_dim)
    self.fcLayer = nn.Linear(hidden_dim, action_dim)
    self.activation = nn.ReLU()

def forward(self, x):
    x = self.firstLayer(x)
    x = self.activation(x)
    x = self.secondLayer(x)
    x = self.activation(x)
    x = self.fcLayer(x)
    return x
```

(2) Select Action部分:

Deep Q-Network (DQN)

Algorithm 1 – Deep Q-learning with experience replay:

Initialize replay memory *D* to capacity *N*

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Deep Learning and Practice, Spring 2021, NYC

根據第一個藍框,將select action依照episilon的機率分成兩種:

第一種是隨機在4個動作中選取一個進行。 第二種則是透過behavior net來選擇動作。

- (3) Update behavior network 根據第二個藍框, 最主要我們要計算由behavior net和 currenct state所得到的Q值,與target net和next state所得到的Q'值(加上reward和各項係數)之間的MSE LOSS,並利用 這個Loss進行back propagation和update
- (4) Testing部分:

設定Max step為1000, 在每一個iteration中進行三個步驟, 第一是讓agent進行select action, 第二是根據選擇出的action對環境進行更新. 最後計算reward並累加。

```
for n_episode, seed in enumerate(seeds):
   total reward = 0
    env.seed(seed)
   state = env.reset()
   ## TODO ##
        if done:
             writer.add scalar('Test/Episode Reward', total reward, n episode)
    for i in range(1000):
        action = agent.select action(state, 0, action space)
        state, reward, done, _ = env.step(action)
        total reward += reward
        if done:
            writer.add scalar('Test/Episode Reward', total reward, n episode)
    rewards.append(total reward)
print('Average Reward', np.mean(rewards))
env.close()
```

DDPG

(1) Network部分:

Implementation Details - LunarLanderContinuous-v2:

Network Architecture

Actor

根據PDF, 與DQN相比網路部分多了一層hidden layer, 並調整neural數量。且分為Actor Net和Critic Net(我們需要更動的是Actor Net)

```
gclass ActorNet(nn.Module):
     def __init__(self, state_dim=8, action_dim=2, hidden dim=(400, 300)):
         super(). init ()
         ## TODO ##
         self.firstLayer = nn.Linear(state dim, 400)
         self.hiddenLayer = nn.Linear(400,300)
         self.fcLayer = nn.Linear(300, action dim)
         self.activation = nn.ReLU()
         self.fcAct = nn.Tanh()
     def forward(self, x):
         ## TODO ##
         x = self.firstLayer(x)
         x = self.activation(x)
         x = self.hiddenLayer(x)
         x = self.activation(x)
         x = self.fcLayer(x)
         x = self.fcAct(x)
         return x
```

(2) Select Action部分:

Deep Deterministic Policy Gradient (DDPG)

根據第一個藍框,由Actor Net來進行動作的選擇,並決定是否加上noise來促進探索的效果。

(3) Update behavior network

根據第二、三個藍框, 首先從critic Net與current state, action 計算出Q value後, 我們需要分別從target action net和target

critic net取得next action和next q value, 並利用next q value 與reward和一些超參數計算出g target。

接著利用Q value與Q target計算出MSE Loss後進行critic net的back propagation和update。

action net的部分則首先由action net與current state決定一個action後,將這個state與action交由critic net進行評估,此評估值作為action net的Loss進行back propagation和update(Action Net)

```
# q value = ?
 q value = critic net(state, action)
 with torch .no grad():
     a_next = target_actor_net(next_state)
     q next = target critic net(next state, a next)
     q target = reward + gamma * q next * (1 - done)
 criterion = nn.MSELoss()
 critic loss = criterion(q value, q target)
 # with torch.no grad():
 # a next = ?
     q_next = ?
    q target = ?
 # criterion = ?
 # critic loss = criterion(q value, q target)
 # optimize critic
 actor_net.zero_grad()
 critic net.zero_grad()
 critic loss.backward()
 critic opt.step()
 ## update actor ##
 # actor loss
 ## TODO ##
 # action = ?
 # actor loss = ?
 action = actor net(state)
 actor loss = -critic net(state, action).mean()
 #print(f"actor loss: {actor loss}")
# optimize actor
 actor net.zero grad()
 critic net.zero grad()
 actor_loss.backward()
 actor opt.step()
```

(4) Update Target Network部分:

每次進行update behavior network時將部分的值copy進 target Network, 避免target一直改動但又可以一點點對其進行更 def _update_target_network (target_net, net, tau):
 '''update target network by _soft_ copying from behavior network'''
 for target, behavior in zip(target_net.parameters(), net.parameters()):
 ## TODO ##
 target.data.copy (tau * behavior.data + (1.0 - tau) * target.data)

(5) Testing部分:

實作上基本與DQN的相同。

3. Describe differences between your implementation and algorithms

我沒有在DQN與DDPG中實作與演算法不同的部分,但在加分題的DDQN中我將DDPG裡面update target network的做法搬進來使用,作為soft update的用途。

4. Describe your implementation and the gradient of actor updating.

實作的部分於第2-3點已提過,因此這邊只說明gradient 根據下列公式

```
Update the actor policy using the sampled gradient: \nabla_{\theta^{\mu}\mu}|s_{i}\approx\frac{1}{N}\sum_{i}\nabla_{a}Q(s,a|\theta^{Q})|_{s=s_{i},a=\mu(s_{i})}\nabla_{\theta^{\mu}\mu}(s|\theta^{\mu})|s_{i}
```

其中可以看到我們取gradient的目標應是中間的Q(s,a|cQ)。 並且前面有1/N * Sum的標記說明我們使用的是mean的部分,因此code如下

```
actor_loss = -critic_net(state, action).mean()
我們可以使用該loss來計算出gradient
```

5. Describe your implementation and the gradient of critic updating.

Critic updating實作和gradient如何取用的部分已經於第2-3點提過了,因此這裡不再重打一次

6. Explain effects of the discount factor

discount factor的用途主要是用來決定未來的資訊對於現在的影響程度, 若discount factor為1, 則代表未來的所有資訊都跟現在一樣重要, 若discount factor小於1, 則每過一個iteration就將得到的資訊乘上一次discount factor後feedback回該時間點。

7. Explain benefits of epsilon-greedy in comparison to greedy action selection

epsilon-greedy的用途主要在解決eploration and exploitation, 若是一直依照Q值來進行動作的選擇,可能會因此而找不到更好的方案。因此epsilon-greedy的應用讓行為出現了一些隨機性,可以在各種狀況下進依照一定機率進行探索。

8. Explain the necessity of the target network.

不使用target network的話, behavior network和target network就相當於是同樣的東西, 對network進行調整的話會同時影響到target和prediction, 讓學習變得不穩定。使用target network的話會讓target在數個iteration才更新一次, 預測可以慢慢逼近這個目標, 使訓練過程相對穩定。

9. Explain the effect of replay buffer size in case of too large or too small

Replay buffer決定整個網路要保留多久以前的記憶, 到達上限時從最老的開始刪除, 因此若replay buffer size太大, 則有可能保存到太老的記憶, 這些記憶好一點可能沒有參考價值,慘一點甚至會影響到model的良率。而replay buffer size太小則可能導致存到的東西都是高度相關(同一場遊戲裡面), 不能學到一些比較沒有關聯性的經驗。