Paper

• Title: On the Effects of Batch and Weight Normalization in Generative Adversarial Networks

• Authors: Sitao Xiang, Hao Li

• arXiv link: https://arxiv.org/abs/1704.03971

TL;DR

The paper presents a weight normalization technique for training GANs that improve the stability of the training and also a squared Euclidean reconstruction error on a test set to objectively assess performance of a GAN.

Weight Normalization

Salimans and Kingma (2016) suggested the following weight normalization: For a linear layer, $y = W^T x + b$, where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $W \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^m$, reparameterize W as with $V \in \mathbb{R}^{n \times m}$ and $g \in \mathbb{R}^m$ as:

$$w_i = \frac{g_i}{||v_i||_2} v_i$$

where w_i and v_i are the ith columns of W and V.

However, this paper proposes a different weight normalization due to the fact that the above method does not normalize the mean value of the input:

$$y = ReLU(\frac{w^t x}{w} - \alpha) + \alpha$$

where α is a learnable parameter.

Note that the activation used here is called "Translated ReLU (TReLU)":

$$TReLU_{\alpha}(x) = \begin{cases} x & x \ge \alpha \\ \alpha & x < \alpha \end{cases}$$

Evaluation Method

The evaluation method suggested here is inspired from the reconstruction error evaluation method of VAEs. The reconstruction loss of a Generator in GANs on a test set $X = \{x^1, ..., x^m\}$ is defined as:

$$\mathcal{L}_{rec}(G, X) = \frac{1}{m} \sum_{i=1}^{m} \min_{z} ||G(z) - x^{i}||_{2}^{2}$$

There is no way to infer z from x in a GAN setup so, after initializing z=0, the following is used to get the best possible reconstruction:

- 1. Using current z get G(z)
- 2. Backprop and update z using L2 loss between G(z) and X Repeat till convergence