DSS5202 Sustainable Systems Analysis Solutions to Assignment 1

Question 1

Functional Unit: 1 serving of Creamy Chicken Spaghetti (CCS)

Question 2

Production System Diagram

Question 3

Inventory Analysis

Reference value for product flows:

 1. CCS:
 1 serving

 2. Chicken:
 0.200 kg

 3. Spaghetti:
 0.100 kg

 4. Cream:
 0.050 kg

1. Production of Ingredients

1.1 Chicken production

Chicken:	0.20	kg of chicken
Water:	$2000 \text{ L/kg} \times 0.20 \text{ kg} = 400$	L of water
Energy:	$10 \text{ MJ/kg} \times 0.20 \text{ kg} = 2$	MJ of energy
CO2:	$6.9 \text{ kg/kg} \times 0.20 \text{ kg} = 1.38$	kg of CO2
CH4:	$0.3 \text{ kg/kg} \times 0.20 \text{ kg} = 0.06$	kg of CH4

1.2 Spaghetti production

Spaghetti:	0.10	kg of spaghetti
Water:	$1200 \text{ L/kg} \times 0.10 \text{ kg} = 120$	L of water
Energy:	$5 \text{ MJ/kg} \times 0.10 \text{ kg} = 0.5$	MJ of energy
CO2:	$4.8 \text{ kg/kg} \times 0.10 \text{ kg} = 0.48$	kg of CO2

1.3 Cream production

Cream:	0.05	kg of cream
Water:	$1500 \text{ L/kg} \times 0.05 \text{ kg} = 75$	L of water
Energy:	$8 \text{ MJ/kg} \times 0.05 \text{ kg} = 0.4$	MJ of energy
CO2:	$0.05 \text{ kg/kg} \times 4.8 \text{ kg} = 0.24$	kg of CO2

Total for Production of Ingredients

400 + 120 + 75 = 595	L of water
2 + 0.5 + 0.4 = 2.9	MJ of energy
1.38 + 0.48 + 0.24 = 2.1	kg of CO2
0.06	kg of CH4
	2 + 0.5 + 0.4 = 2.9 1.38 + 0.48 + 0.24 = 2.1

2. Transportation

 $\begin{array}{lll} \mbox{Total goods:} & 0.2 + 0.1 + 0.05 = 0.35 & \mbox{kg of goods} \\ \mbox{Energy:} & 0.1 \times 0.35 \mbox{ kg} = 0.035 & \mbox{MJ of energy} \\ \mbox{CO2:} & 0.05 \mbox{ kg/kg} \times 0.35 \mbox{ kg} = 0.0175 & \mbox{kg of CO2} \\ \end{array}$

3. Cooking

4. Consumption

Food consumed: 0.35 kg of food Waste: $0.086 \text{ kg/kg} \times 0.35 \text{ kg} = 0.030$ kg of waste

5. Waste treatment

Waste treated: 0.030 kg

CO2: $0.1 \text{ kg/kg} \times 0.03 \text{ kg} = 0.003$ kg of CO2 CH4: $0.05 \text{ kg/kg} \times 0.03 \text{ kg} = 0.0015$ kg of CH4 Energy: $18 \text{ MJ/kg} \times 0.03 \text{ kg} = 0.54$ MJ of energy

Effluent: $1 \text{ kg/kg} \times 0.030 \text{ kg} = 0.030 \text{ kg}$

Summary of Inventory Analysis

	Life Cycle Phase	CO2	CH4	Water	Energy
1	Production of Ingredients	2.10	0.06	595	2.9
2	Transportation	0.0175	0	0	0.035
3	Cooking	0.1	0.0025	0	1.8
4	Consumption	0	0	0	0
5	Waste treatment	0.0030	0.0015	0	0.54
	Total Life Cycle	2.2206	0.0640	595	5.277

Question 4

Life Cycle Impact Analysis

Global warming potentials (GWP)

1. Production of ingredients: $1.38 \text{ kg CO2} + 0.06 \text{ kg CH4} \times 28 \text{ kg/kg}$

+ 0.48 kg CO2 + 0.24 kg CO2 = 3.78 kg CO2 eq

2. Transportation: = 0.0175 kg CO2 eq

3. Cooking: $0.1 \text{ kg CO2} + 0.0025 \text{ kg CH4 kg} \times 28 \text{ kg/kg} = 0.170 \text{ kg CO2 eq}$

5. Waste treatment: $0.003 \text{ kg CO2} + 0.0015 \times 28 \text{ kg/kg}$ = 0.00452 kg CO2 eq

Total: 4.0127 kg CO2 eq

Water consumption

1. Production of ingredients: 595 L of water

Total: 595 L of water

Energy consumption

Production of ingredients:
 Transportation:
 Cooking:
 Waste treatment:
 MJ
 MJ
 MJ
 MJ

Total: 5.277 MJ

Summary of Impact Analysis

	Life Cycle Phase	GWP	Water	Energy
1	Production of Ingredients	3.780	595	2.9
2	Transportation	0.0175	0	0.035
3	Cooking	0.17	0	1.8
4	Consumption	0	0	0
5	Waste treatment	0.0452	0	0.542
	Total Life Cycle	4.0127	595	5.277

Comments:

- Production of ingredients contributes the most significantly towards all the 3 impact categories.
- Cooking also contributes a significant amount to GWP.
- Waste treatment also consults a significant amount of Energy.

Question 5

Some major limitations are:

- The environmental impact of Energy consumption is not considered. Energy can be modelled as a product flow in the system and its environmental flows considered.
- Other gas emissions from the various processes have been omitted. These could also have significant impacts on the environments in other categories.