CoffeeTime - Firmware Overview

The **CoffeeTime** firmware is modular, ensuring **scalability, readability, and maintainability**. It integrates multiple **embedded system components** to automate coffee preparation, handling sensors, actuators, user interaction, and scheduling.

Functional Overview

Function	Description	Module
read_dht22()	Reads temperature and humidity from DHT22	sensors.c
rtc_get_time()	Retrieves the current time from the RTC	sensors.c
read_intensity()	Reads coffee intensity from potentiometer	sensors.c
grind_coffee()	Controls stepper motor for coffee grinding	actuators.c
servo_dispense_water()	Controls servo to dispense water	actuators.c
schedule_coffee()	Uses RTC to start coffee preparation at set time	state.c
ir_handle_input()	Processes IR remote input	ir_control.c
lcd_display_status()	Updates brewing status on LCD	lcd_i2c.c

State Machine Diagram

The **CoffeeTime** firmware operates as a **finite state machine**, transitioning through distinct states based on user input and system conditions:

Idle State (STATE_INITIAL_SCREEN)

- The system is waiting for user input.
- The LCD displays water and coffee bean levels, as well as temperature and humidity.
- The IR remote control is used to start the coffee-making process.
- Transitions to: STATE_SELECT_CUPS when PLAY is pressed.

Select Cups (STATE_SELECT_CUPS)

- The user chooses the number of cups (1-5).
- Transitions to: STATE_SCHEDULE_OR_NOW.

Schedule or Immediate Brewing (STATE_SCHEDULE_OR_NOW)

• The user selects:

Option 1 → Brew coffee **now** → STATE_BREWING.

Option 2 → Schedule coffee brewing → STATE_SCHEDULING.

Scheduling Coffee (STATE_SCHEDULING)

- The system prompts the user to **set a date and time** using the RTC.
- Once a valid time is set, the machine enters STATE_WAITING.

Waiting for Scheduled Time (STATE_WAITING)

- The system continuously **monitors the RTC** for the scheduled time.
- When the clock matches the scheduled time → Transition to STATE_BREWING.

Brewing Process (STATE_BREWING)

- **Grinding Phase:** The **stepper motor** grinds coffee beans.
- **Heating Phase:** The **water heater simulation** warms water to the desired temperature.
- Extraction Phase: The servo motors dispense water and ground coffee into the cup and the LED bar updates based on coffee strength.

• Transitions to: STATE_INITIAL_SCREEN once brewing is complete.

Final State

Once brewing is finished, the system returns to **Idle State**, displaying:

- "Coffee is Ready!" on the LCD.
- Buzzer melody signals completion.
- LED indicators turn off.

This state machine ensures a structured and modular coffee preparation process using sensors, actuators, and real-time scheduling.

Memory Organization

Variable	Purpose	Data Type
coffee_strength	Stores the selected coffee strength level	int
brew_temperature	Stores the brewing temperature in °C	float
scheduled_time	Holds the user-defined brewing time	struct
grind_active	Indicates if the grinder is running	bool
water_ml	Tracks available water volume	float
coffee_beans_g	Tracks remaining coffee beans	float

Example Code Snippet

```
void prepare_coffee(int cups) {
  int pressure = read_intensity();
  float desired_temp = read_desired_temperature();
  check_simulated_resources(cups);

  update_led_bar(pressure);
  simulate_water_heating(desired_temp);

  grind_coffee();
  servo_dispense_water();

  lcd_display_status("Brewing...");
  play_success_tone();
}
```

This document provides a structured overview of the **CoffeeTime** firmware, detailing:

- Project architecture & file structure
- Core functionalities of each module
- State machine logic
- Memory organization and variable usage

With this modular approach, CoffeeTime efficiently manages user interaction, coffee brewing, and automated scheduling.