CS 395T Computational Learning Theory

Lecture 20: November 19, 2008 Lecturer: Adam Klivans

Scribe: Vishvas Vasuki

20.1 Introduction to hardness of learning results

There are two classes of hardness of learning results:

- 1. Hardness results for proper learning: Usually, using the $RP \neq NP$ assumption, we prove that proper learning a representation class is hard. For example, for $k \geq 3$, learning k-term DNF formulae and producing a k-term DNF as a hypothesis is intractable.
- 2. Cryptographic hardness of learning results: Here, typically using the assumption that factoring is hard, you show that a certain concept class is hard to learn, even if the learner is allowed to produce a hypothesis which does not belong to the same representation class as the target concept.

In this lecture, we will show the following cryptographic hardness of learning result: If factoring is hard, learning the concept class of polynomial sized circuits of log depth is hard.

First, we make some definitions.

20.2 Introducing some notions

Definition 1 A Function Family is an exponential sized set $F = \{f_i | i \in I\}$ of polynomial sized boolean circuits with input length n, equipped with a samplable index set I; such that there exists an algorithm S which does the following:

S accepts as input $i \in I$ and simulates the input/ output behavior of f_i : that is, it accepts x and returns $f_i(x)$ in polynomial time.

Definition 2 Let RAND be the set the set of all boolean functions over $\{0,1\}^n$.

Definition 3 A Distinguisher D is a polynomial time algorithm which, when given black box access to a function f, outputs 1 or 0.

In the context of the present lecture, D will output 1 if it thinks that f is not chosen uniformly at random from RAND.

Definition 4 A function family F is Pseudorandom Function Family (PFF) if for every distringuisher D, $Pr_{f \in URAND}(D^f = 1) - Pr_{i \in UI}(D^{f_i} = 1) < O(e^{-n})$. This property of F is called the Indistinguishability property.

The following notion, from David Zuckerman's Randomized Algorithms course is also helpful.

Definition 5 A function $G: \{0,1\}^l \to \{0,1\}^n$, computable in time poly(l), is an $(\epsilon, s(n))$ Pseudorandom Generator if, for all circuits c of size s(n), the following property holds: $Pr_{y \in \{0,1\}^n}[c(y) = 1] - Pr_{x \in \{0,1\}^l}[c(G(x)) = 1] \le \epsilon$.

Fact 1 From a result due to Goldreich, Goldwasser and Micali, we know that if one way functions exist (that is, if factoring is hard), then pseudorandom function families exist.

Definition 6 The Blum-Blum-Shub (BBS) pseudorandom generator is an algorithm with the following behavior:

- 1. It accepts as input the following:
 - An n bit integer N = pq, where p and q are prime numbers which are equivalent to $3 \mod 4$. An intial seed s_0 of length n bits.
- 2. It outputs a stream of poly(n) bits b_i , each of which is the least significant bit of the number s_i calculated as follows: $s_i = s_{i-1}^2 \mod N = s_0^{2^i} \mod N$.

Fact 2 If factoring is hard, no polynomial time algorithm can distinguish between a truly random m bit string and an m bit string obtained by choosing the seed s_0 at random and running a BBS generator.

20.3 Hardness of learning circuits which compute the ith bit of the output of a BBS generator

Definition 7 Let \mathbb{C} represent any circuit class which contains circuits $f_{s_0,N,t}$ with the following behavior:

- 1. $\forall i > t : f_{s_0, N, t}(i) = 0.$
- 2. $\forall i \leq t : f_{s_0,N,t}(i) = b_i$, the ith bit output by the BBS pseudorandom generator specified by N and the seed s_0 .

Theorem 1 If \mathbb{C} is efficiently learnable, then the BBS generator can be broken.

Sketch of Proof If \mathbb{C} is efficiently learnable, then there exists an $O(n^{ck})$ time algorithm A to learn \mathbb{C} with error $\leq 2^{-1} - n^{-k}$; where k and c are constants. Let d be any integer such that $dc \neq 1$.

We show that, using A, you can build a distinguisher D which, given a string b of $n^{(d+1)ck}$ bits, can distinguish a BBS generated string from random string. This distinguisher works as follows:

Let b_i be the ith bit of b. Then, tuples of the form (i,b_i) are referred to as examples. Using the Uniform Distribution over the examples, D draws n^{ck} examples. Using A with this sample, D then obtains a hypothesis h with error $\leq 2^{-1} - n^{-k}$.

D then picks uniformly at random another bit index j. It then tries predicting b_j using h. If its guess turns out to be correct, it outputs 1, which stands for the identification of b as the output of a 'generator'.

On truly random b, $Pr(D^{rand}=1) \geq 2^{-1} + \frac{n^{ck}}{n^{(d+1)ck}}$; but $Pr(D^{f_{s_0,N,t}}=1) \geq 2^{-1} + n^{-k}$. The difference between these, $n^{-dck} - n^{-k}$ is not negligible.

20.4 Hardness of learning small cirrcuits

Let the order of the group Z_N^* be $\varphi(N) = (p-1)(q-1)$.

Consider the circuit $f_{s_0,N,t}$. On input i, it needs to compute $f_{s_0,N,t}(i) = s_0^{2^i} \mod N = s_0^{2^i} \mod N$.

If we know the precomputed values of $2^0, 2^1, 2^2$. $\operatorname{mod}\varphi(N)$, given any number k, we can find $j=2^k \operatorname{mod}\varphi(N)$ by multiplying together the appropriate precomputed powers of 2. Similarly, if we know precomputed values s_0^0, s_0^1, s_0^2 . $\operatorname{mod} N$, we can find s_0^j for any j by multiplying together the appropriate powers of s_0 .

Thus, our circuit to compute $f_{s_0,N,t}$ must be able to remember these precomputed values, and should be able to multiply n n-bit numbers. Thus, $f_{s_0,N,t}$ can be realized using a polynomial sized circuit of depth $O(\log n)$.

Thus, using the theorem we proved earlier, we see that classes of circuits of polynomial size and log depth are hard to learn.