Graphing Exponential Functions

ESSENTIALS

The function $f(x) = a^x$, where a is a positive constant different from 1, is called an **exponential function**, base a.

All functions $f(x) = a^x$ go through the point (0,1). That is, the y-intercept is (0,1).

Example

$$f(0) = \alpha^0 = 1$$

Graph the exponential function $f(x) = 2^x + 4$.

Construct a table of values. Plot the points and connect them with a smooth curve.

х	f(x)	0
0	5	2+4
1	6	2+4 21+4
2	8	2 ² +4
3	12	2 ² +4 2 ³ +4
-1	$4\frac{1}{2}$	2-1+4
-2	$4\frac{1}{4}$	2-2+4
-3	$4\frac{1}{8}$	23+4

GUIDED LEARNING

Textbook

Instructor

Video

EXAMPLE 1

Graph: $f(x) = \left(\frac{1}{3}\right)^{x} = 3^{-x}$.

List the function values in a table, plot the points, and connect them with a smooth curve.

х	f(x)
0	1
1	$\frac{1}{3}$
2	
3	$\frac{1}{27}$
-1	
-2	9
-3	

YOUR TURN 1

Graph: $f(x) = \left(\frac{1}{2}\right)^{x} = 2^{-x}$.

$f(0) = \tilde{Z}_0 = 1$
$f(1) = a^{-1} = \frac{1}{a}$
$f(2) = 2^{-2} = \frac{1}{4}$
$f(3) = 3^{-3} = 1$ $f(-1) = 3^{(-1)} = 2$
f(-2)=5 ⁽⁻²⁾ =4
$f(-3) = \sqrt{3} = 8$

EXAMPLE 2

Graph: $f(x) = 2^{x-1}$.

List function values in a table, plot the points, and connect them with a smooth curve.

and connect th	
x	f(x)
0	$\frac{1}{2}$
1	
2	2
3	2 4
-1	$\frac{1}{4}$
-2	
-3	$\frac{1}{16}$

YOUR TURN 2

Graph: $f(x) = 2^{x-3}$.

 $f(0) = 2^{-3} = \frac{1}{8}$ $f(1) = 2^{-3} = \frac{1}{4}$ $f(2) = 2^{-3} = \frac{1}{4}$ $f(3) = 2^{-3} = \frac{1}{4}$ $f(4) = 2^{4-3} = 2$ $f(5) = 2^{5-3} = 4$

YOUR NOTES W

Write your questions and additional notes.

Equations with x and y Interchanged

ESSENTIALS

Example

• Graph: $x = 3^y$.

Choose values for y, compute values for x, and list the results in a table. Then plot the points and connect them with a smooth curve.

the points and	
x	У
1	0
3	1
9	2
$\frac{1}{3}$	-1
$\frac{1}{9}$	-2

GUIDED LEARNING:

Textbook

Instructor

Video

EXAMPLE 1

Graph: $x = \left(\frac{1}{2}\right)^y$.

Note that $x = \left(\frac{1}{2}\right)^y = 2^{-y}$. Choose values for y

and compute values for x. Then plot the points and connect them with a smooth curve.

For
$$y = 0$$
, $x = 2^{-0} = 1$.

For
$$y = 1$$
, $x = 2^{-1} = \frac{1}{2}$.

For
$$y = 2$$
, $x = 2^{-2} = \frac{1}{2^2} = \frac{1}{4}$.

For
$$y = 3$$
, $x = 2^{-3} = \frac{1}{8}$.

For
$$y = -1$$
 $x = 2^{-(-1)} = 2^1 = 2$.

For
$$y = -2$$
, $x = 2^{-(-2)} = 2^{-1} = 4$

For
$$y = -3$$
, $x = 2^{-(-3)} = 2^3 = \boxed{ }$.

(continued)

YOUR TURN 1

Graph:
$$x = \left(\frac{3}{2}\right)^y$$
.

χ	y	$\left(\frac{3}{2}\right)^0 =$
	0	$-\left(\frac{3}{3}\right)^{\frac{1}{2}}$
_\(\frac{1.5}{2.5}\)	2	12/2
3·375 0·67	3	<u>S</u>
0.44	-2	$\left(\frac{2}{3}\right)_3 =$
0.296	-3	(~)

$$\left(\frac{3}{3}\right)^{-1} = \frac{1}{3\sqrt{3}} = \frac{2}{3} + \left(\frac{3}{3}\right)^{-2} = \left(\frac{3}{3}\right)^{-2}$$

Copyright © 2018 Pearson Education, Inc.

$$\left(\frac{3}{2}\right)^{-3} = 0.24$$

474 Section 9.2 | Exponential Functions

$ \begin{array}{c cc} x & y \\ \hline 0 & \\ \hline \frac{1}{2} & 1 \\ \hline \end{array} $	$x = (\frac{1}{2})^{y}$ $x = $	
$\frac{1}{8}$ 3	!i iiiiiii	
2 -1		
4 -2 -3		

YOUR NOTES Write your questions and additional notes.

Applications of Exponential Functions

ESSENTIALS

Example

- - a) Find a function for the amount in the account after t years.
 - b) Find the amount of money in the account at t = 0, t = 3, t = 6, and t = 10.
 - c) Graph the function.
 - a) If P = \$5000 and r = 5% = 0.05, we can substitute these values into the formula to get the following function:

$$A(t) = \$5000(1+0.05)^{t}$$
$$= \$5000(1.05)^{t}.$$

b) Find the function values.

$$A(0) = \$5000(1.05)^{0} \qquad A(3) = \$5000(1.05)^{3}$$

$$= \$5000(1) \qquad \approx \$5000(1.157625)$$

$$= \$5000; \qquad \approx \$5788.13;$$

$$A(6) = \$5000(1.05)^{6} \qquad A(10) = \$5000(1.05)^{10}$$

$$\approx \$5000(1.340095641) \qquad \approx \$5000(1.628894627)$$

$$\approx \$6700.48; \qquad \approx \$8144.47$$

c) We use the function values computed in part (a), and others if we wish, to draw the graph.

GUIDED LEARNING:

Textbook

Instructor

Video

EXAMPLE 1

Digital music sales, in billions of dollars, t years after 2010, can be approximated by $m(t) = 3.2(1.23)^{t}$.

- a) Estimate the digital music sales in 2010, 2013, and 2015.
- b) Graph the function.
- a) The years 2010, 2013, and 2015 are represented by t = 0, t = 3, and t = 5, respectively.

$$m(0) = 3.2(1.23)^{0}$$
 $m(3) = 3.2(1.23)^{3}$
= 3.2(1.860867)
= 3.2; ≈ 6 ;

$$m(5) = 3.2(1.23)^{5}$$

 $\approx 3.2(2.815305684)$
 ≈ 9.0

Digital music sales in 2010, 2013, and 2015 were \$3.2 billion, \$6 billion, and \$ 9 billion, respectively.

YOUR TURN 1

The percentage of smokers P who receive telephone counseling to quit smoking and are still successful t months later can be approximated by $P(t) = 21.4(0.914)^{t}$.

- a) Estimate the percentage of smokers receiving telephone counseling who are successful in quitting for 1 month, 4 months, and 10 months.
- b) Graph the function.

P(1) =
$$21.4 (0.914) = 19.56$$

P(4) = $21.4 (0.914)^{4} = 14.93$

P(10) = $21.4 (0.914)^{10} = 8.7$

Eq. (1920) (4915) (1099)

16

YOUR NOTES Write your questions and additional notes.

Practice Exercises

Readiness Check

Choose the word that best completes each sentence.

- 1. The graph of $f(x) = \left(\frac{1}{2}\right)^x + 5$ looks just like the graph of $f(x) = \left(\frac{1}{2}\right)^x$, but it is translated 5 units ______.
- 2. The graph of $f(x) = \left(\frac{1}{2}\right)^x 5$ looks just like the graph of $f(x) = \left(\frac{1}{2}\right)^x$, but it is translated 5 units ______.
- 3. The graph of $f(x) = \left(\frac{1}{2}\right)^{(x+5)}$ looks just like the graph of $f(x) = \left(\frac{1}{2}\right)^x$, but it is translated 5 units to the ______.
- 4. The graph of $f(x) = \left(\frac{1}{2}\right)^{(x-5)}$ looks just like the graph of $f(x) = \left(\frac{1}{2}\right)^x$, but it is translated 5 units to the ______.

Graphing Exponential Functions

Graph.

5.
$$f(x) = 3^x$$

$$7. \quad y = \left(\frac{2}{3}\right)^x$$

6.
$$f(x) = 3^x + 2$$

Equations with x and y Interchanged

Graph.

478

9.
$$x = 5^{-y}$$

10.
$$x = \left(\frac{1}{3}\right)^{\frac{1}{3}}$$

11. Graph the equations $y = 4^x$ and $x = 4^y$ on the same set of axes.

Applications of Exponential Functions

- 12. A laser printer is purchased for \$1400. Its value each year is about 60% of the value of the preceding year. Its value, in dollars, after t years is given by the exponential function $V(t) = 1400(0.6)^t$.
 - a) Find the value of the printer after 0 year, 1 year,2 years, 5 years, and 10 years.
 - b) Graph the function.

1) Solve for
$$x$$
: $y = \sqrt{\frac{z}{x}}$

$$y^2 = \frac{z}{x} \implies y^2 x = z \implies x = \frac{z}{y^2}$$

2) Rectangle with area 50 , length 5 more than width. Find the length and the width

Let width be x. Then length is x+5.

$$\chi(\chi+5)=50 \Rightarrow \chi^2+5\chi=50 \Rightarrow \chi^2+5\chi-50=0$$

$$\Rightarrow \chi^{2} + 10\chi - 5\chi - 50 = 0 \Rightarrow \chi(\chi + 10) - 5(\chi + 10) = 0$$

$$= (\chi - 5)(\chi + 10) = 0 \Rightarrow \chi = 5 \text{ or } -10$$

$$= \chi = 5 \text{ or } -10$$

$$= \chi = 5 \text{ or } -10$$

$$\Rightarrow$$
 width $= 5$ and length $= 5 + 5 = 10$