Random variables

Notable discrete distributions

Binomial distribution

Poisson distribution

Appears with the law of rare events. It can be seen as the limit of a binomial distribution B(n, p) where $n \to +\infty$, $p \to 0$ and $n^*p = \lambda$.

It also happens in queuing systems to model the number of arrivals to a service in a time interval. To have a Poisson distribution, the following conditions must be hold:

- The expected number of arrivals only depends on the length of the time interval
- The number of arrivals in different points of the interval are independent random variables
- The probability of two simultaneous arrivals is 0
 If this conditions holds, the distribution of the number of arrivals must be a Poisson distribution.

X follows a Poisson distribution with parameter λ . We denote it X~P(λ) and its probability mass function is P(P(λ) = K) = $e^{-\lambda} * \frac{\lambda^K}{K!}$ for K = 0, 1, 2, 3...

$$E(X) = \lambda = Var(X)$$

Exercises

5

P(being defective) = 0.05

a) probability of not having to inspect the whole batch:

P(NOT having to inspect the whole batch) \to P(at most 2 defective components out of 30) \to P(B(30, 0.05) \le 2) \to P(B(30, 0.05) = 0) + P(B(30, 0.05) = 1) + P(B(30, 0.05) = 2) \to **0.8121**.

b) the probability distribution of the random variable "number of components examined"

X	f(x)
30	0.8121
1000	1 - 0.8121 = 0.1879

c) expected number of components examined per batch

$$E(X) = 30*0.8121 + 1000*0.1879 = 212.263$$

7

The number of breakdowns in an information system is a random variable X following a Poisson distribution with parameter 2 (λ = 2)

- a) Expected number of breakdowns \rightarrow E(X) = 2
- b) What's the probability that the number of breakdowns is between 1.5 and 3.7

$$P(1.5 \le X \le 3.7) = P(X=2) + P(X=3) = e^{-2} * \frac{2^2}{2!} + e^{-2} * \frac{2^3}{3!}$$

c) P(-2.24
$$\leq$$
 X \leq 6.24) = $\sum_{k=0}^{6}$ P(X = K) = $\sum_{k=0}^{6} e^{-2} * \frac{2^k}{k!}$ = 0.9955

8

P(0.3*t)

a) Two incoming messages in a period of 2 sec

Two messages in 10 seconds follows ~P(0.3*10)

$$P(Y = 2) = e^{-3} * \frac{3^2}{2!} = 0.224$$

b) Number of messages in 5 messages between 2 and 4

It follows ~P(1.5)

$$\mathsf{P(2 \le Z \le 4)} \to \mathsf{P(Z = 2)} + \mathsf{P(Z = 3)} + \mathsf{P(Z = 4)} = e^{-1.5} * \tfrac{1.5^2}{2!} + e^{-1.5} * \tfrac{1.5^3}{3!} + e^{-1.5} * \tfrac{1.5^4}{4!}$$

c) P more than 4 seconds pass between two messages. This is the same as say that in 4 seconds there was no messages.

It follows $\sim P(0.3*4)$

$$P(P(1.2) = 0) = e^{-1.2} * \frac{1.2^0}{0!} = 0.301$$