Appl. No. 10/615,410

Amdt. dated November 19, 2004

Reply to Office Action of August 20, 2004

Amendments to the Specification:

Please amend the specification as follows:

On page 4, between lines 14 and 15, insert --BRIEF SUMMARY OF THE INVENTION--.

On page 6, line 22, insert the following --BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS--.

On page 7, line 21, insert --DETAILED DESCRIPTION OF THE INVENTION--.

On page 11, please replace the paragraph beginning at line 30, and ending on page 12, line 5, with this amended paragraph:

The outer surface **34.3** of the hollow cylinder wall **34.2** of the apply piston **34** and an inwardly facing cylindrical contact surface **28.2** formed by the recess of the circular ring shaped recess **38.3 28.3** formed in radial direction R are provided adjacent to each other. Between these contact surfaces **28.2** and **34.4 34.3** there is in the above-described mode and manner provided a guide element/sealing element **38.1**, so that the apply piston is guided slideably supported by the balance piston **34** for sliding in the axial direction *ax*.

On page 13, please replace the paragraph beginning at line 31, and ending on page 14, line 4 with this amended paragraph:

Appl. No. 10/615,410 Amdt. dated November 19, 2004 Reply to Office Action of August 20, 2004

In contrast to the illustrative embodiment according to the state of the art (Fig. 1) now the cylinder shaped wall 14.3 of the balance piston 14 is not provided radially within the cylinder shaped wall 12.1 of the apply piston support device 12, but rather in the axial direction between the clutch hub 2 and the cylinder shaped wall 12.1 of the apply piston support device 12.

On page 14, please replace the paragraphs beginning at line 23, and ending on page 15, line 11 with these amended paragraphs:

As has already been discussed above, during rotating operation parabolic pressure profiles p_k p_A result in the radial direction r along the rotating surfaces **8.6**, **8.7** of the apply piston **28** in the apply piston space 15 and in the equalizing space **16**. Fig. 1c) shows the parabolic pressure profile p_K (r) in the piston space **15.**, which is represented in Fig. 16), Fig. 1d) Fig. 1d shows the parabolic pressure profile p_A (r) in the equalizing space **16**, which is likewise represented in Fig. 1b).

The pressure profiles p_K in the apply piston space 15 according to Figs. 1a 1c and 1b 1d, on the basis of its design being identical with the apply piston space 35 according to Figs. 2a and 2b, identical to the pressure profile p_K in the apply piston space 35 of the wet clutch 200 according to the state of the art.

In comparison thereto, the apply piston equalizing space 16 in the wet clutch 100 according to the invention is further expanded in the radial direction r. The coil wetted surface 8.7 of the apply piston 8 in the equalizing space 16 is thus, in comparison to the wetted surface 8.6 of the apply piston 8 in the apply piston space 15, further

Appl. No. 10/615,410

Amdt. dated November 19, 2004

Reply to Office Action of August 20, 2004

extended or expanded in the radial direction. In this further expanded area the pressure p_A^* in the equalizing space **16** will thus further rise. Thus in this case even higher compensation forces F_A^* can occur than those pressure forces F_K , which result on the basis of the pressure increase p_K in the apply piston space **15**.

On page 15, please replace the paragraph beginning at line 24, and ending on page 16, line 11, with this amended paragraph:

If the balance piston **14** is designed and provided in accordance with the invention, then the volume of the oil space **11** is substantially smaller than the oil space **31** according to the state of the art, as can be seen from Fig. 2. From this particular arrangement of the balance piston **14** alone there occurs a supplemental forced guidance of the oil, which supplementally supports the oil transport to the friction plates **4.6 4, 6** of the friction pack **3**.

From the state of the art it is known to provide for improvement of the oil transports to the friction plates, 24, 25.1, 25.2, 25.3, 26, 27.1, 27.2 of the friction pack 23, on the apply piston 28 facing side of the clutch hub 22 a radially inwardly directed oil collecting or retaining ring 30. An oil collecting ring of this type can be seen for example from the illustrative embodiment according to Figs. 2a) and 2b) representing the state of the art. Via this oil retaining ring 30 there is produced an inner side 22.1 of the clutch hub 22 a fluid ring 37 of oil, which is supplied by oil flung out of the oil space 31. Thereby the oil is comparatively efficiently guided through the above-described oil channels 29.1, 29.2, 29.3, 29.4 or the like in the clutch hub 22 to the friction plates 24, 25.1, 25.2, 25.3,

Appl. No. 10/615,410 Amdt. dated November 19, 2004 Reply to Office Action of August 20, 2004

26, 27.1, 27.2 of the friction pack 23. A higher oil volume is thereby detoured or bypassed to the clutch by overflowing the collecting ring 30.

On page 17, line 15, after "8.4", delete "Pressure device" and insert – Cylindrically shaped contact surface--.

On page 17, line 16, delete the whole line.

On page 18, line 9, after the word "piston" insert -space--.

On page 18, line 11, delete "ring" and insert --in oil space 11--.

On page 25, line 1, change "ABSTRACT" to --ABSTRACT OF THE DISCLOSURE--.