

Geotermalna energija

Pozadina i korištenje Energijske tehnologije FER 2008.

Sadržaj

- Porijeklo
- Potencijal

- Korištenje: Grijanje
 - Proizvodnja el. en.
 - Toplinske pumpe

Temperature u Zemlji

Unutrašnja kalorička energija Zemlje

- Enormna količina energije
 - Samo mali dio dostupan
- Na površini 0,06 W/m²
 - Izvorna toplina i drugi procesi (~60%)
 - Radioaktivni raspad (~40%; $U_{235,238}$, Th_{232} , K_{40}
 - Površina za 100W?
- Litosfera: kondukcija
 - prijelaz topline bez pomicanja materije
- Omotač: konvekcija
 - prijenos topline gibanjem materije (nema radioaktivnosti)

- Izvor za korištenje:
 - Vruće suhe stijene
 - Voda na velikim dubinama i pod velikim tlakom
 - Voda/para na manjim dubinama

Dobri i nedostupni izvori

Vruće suhe stijene

- Dubina i temperatura:
 - 2,5 do 6 km
 - od 150 do 300 °C
- Najveći i najteži izvor za korištenje
 - Stijene slabo vode toplinu
 - Potrebno je izlomiti stijene i dovesti vodu
 - Eksplozije (nuklearne!?)
 - Voda pod tlakom
- Istražuje se

Voda na velikoj dubini i velikom tlaku

- Dubina i temperatura:
 - 2,5 do 9 km
 - oko 160 °C i veliki tlak (>1000 bar)
- Ostale karakteristike
 - Velika slanost (4-10%)
 - Zasićeno prirodnim plinom
 - Najviše metana CH₄
 - Oko 5x više plina volumno
 - Potencijal za kombinirano korištenje
- Istražuje se

Voda/para na manjim tlakovima i dubinama

- Dubina, temperature i tlakovi:
 - do 5 km, do preko 300 °C, do 8 bara
- Parni izvori su najpoželjniji ali malobrojni
 - Para sama izlazi van iz bušotine (oko 200 °C)
 - Geysers (SAD) i Larderello (Italija)

Vodeni izvori se najčešće koriste

- Voda izlazi sama ili se pumpa
- Velike koncentracije otopina (i preko 25000 ppm)
- Komercijalno se koriste
 - ne zahtijevaju posebno napredne tehnologije za bušenje i eksploataciju

ppm – parts per million (dijelova u milijun)

Porast temperature u Zemlji

Geotermalne prilike i vodljivost tla određuju gradijent rasta temperature u tlu.

VAR. TOPLICE LUNJKOVEC Geotermalni resursi FERDINANDOVEC VEL.CIGLENA SV.NEDJELJA ZAGREB Temperatura stijena VIVANIĆ GRAD 96°C BIZOVAC na 5 km dubine **PREČICA** 96°C MANDARING 120°C (EEIG "Heat Mining", ERNESTINOVO 80°C TOPUSKO European Hot Dry Rock 65°C 125°C BABINA GREDA Project)" KATEGORIJA REZERVI: Dokazane (u proizv.) 65°-100°C Rock temperatures at ♥ Vjerojatne 65°-100°C Vjerojatne >120°C

INA od 1976. napravila više od 50 dubokih bušenja.

Temperaturni gradijent ide i do 0.07°C/m.

Temperature u rasponu od 40 - 170°C.

Procjene:

~50 MW_e $\sim 800 \text{ MW}_{t}$

Direktno korištenje

Najstariji način korištenja geotermalne energije:

- Samostalno ili
- Komplementarno proizvodnji el. en.

Direktno korištenje geotermalne energije

Kapaciteti u svijetu 2000.:

- Instalirano 15 GW_t
- Iskorišteno 191 PJ

Geotermalne elektrane

- Elektrane na suhu paru
- Elektrane sa separiranjem pare (*Flash steam*)
- Elektrane s binarnim ciklusom

Geotermalna električna energija

Porast od ~10%/god.

Potencijal:

- -Do 100 GW sa današnjom tehnologijom
- -Dvostruko više sa naprednim tehnologijama
- -Ukupno se procjenjuje na nekoliko tisuća GW

Elektrane na suhu paru

4 - izlaz iz turbine se miješa s recirkuliranom (5, 7) rashladnom vodom u kondenzatoru s direktnim kontaktom i višak se vraća u zemlju

Nekondenzibilni plinovi (CO₂, NH₄, H₂S)se moraju ukloniti iz kondenzatora zbog korozije i tlaka parnim ejektorom (za pogon se izdvaja dio pare).

Elektrane u pogonu (jedinice npr. 100 MW): Geysers (SAD), Larderello (Italija), Matsukawa (Japan)

Za smanjivanje potrebnog rashladnog protoka tlak u kondenzatoru je visok (~135 kPa) što uz male temperature dodatno umanjuje termički stupanj djelovanja.

1-234-5 su procesi prigušivanja uz konstantnu entalpiju

Problemi: Znatno veći potrebni protoci (utjecaj na okolno zemljište te dimenzije i degradiranje postrojenja zbog dodatnih sastojaka)

Elektrane u pogonu (jedinice od 10-50 MW): Italija, Japan, Novi Zeland, Meksiko, SAD Termički stupanj djelovanja još manji zbog niske temperature i niske kvalitete pare.

Elektrane s dvostrukim separiranjem pare "Flash steam"

Unapređenje za veći stupanj djelovanja dodatnim iskorištavanjem entalpije povratnog medija.

5 – povratni medij se vodi na dodatnu separaciju pare koja pogoni turbinu na nižem tlaku

Problemi: Znatno veći potrebni protoci (utjecaj na okolno zemljište te dimenzije i degradiranje postrojenja zbog dodatnih sastojaka)

Elektrane u pogonu (jedinice oko 50 MW): Japan

Termički stupanj djelovanja još manji zbog niske temperature i niske kvalitete pare.

Elektrane s binarnim ciklusom

Za manje kvalitetne izvore (ispod 200 °C)

Unapređenje za veći stupanj djelovanja.

Proces se provodi kao Rankineov organski – radni fluid ima nisku temperaturu isparivanja (izobutan C₄H₁₀, freon12, amonijak ili propan)

Vlastita potrošnja u elektrani je oko 35%.

Demonstracijske elektrane u pogonu (jedinice oko 10 do 50 MW) u SAD-u.

Rješenje za uvjete u HR.

Proračun za ovaj proces provodi se kao i za Rankineov s vodom, ali sa parametrima radnog.

Elektrana sa separiranjem pare i binarnim ciklusom

GEOTERMALNO POLJE VELIKA CIGLENA

Kombinirani procesi

Bolji stupanj djelovanja se može osigurati kombiniranim procesima:

- Dogrijavanjem medija iz geotermalnog izvora prirodnim plinom iz samog izvora ili nekim drugim gorivom
- Predgrijavanjem toplinskom energijom iz geotermalnog izvora kondenzata prije ulaska u generator pare konvencionalne termoelektrane

Bušenje, testiranje i korištenje izvora

- Bušotine od ~200 m do ~4 km za određivanje temp. gradijenta i karakteristika nalazišta.
- Nalazište može smanjiti toplinsku snagu nakon nekog vremena (5, 10, 15 godina) i tada treba dodati bušotinu ili koristiti manji kapacitet.
- Planirani radni vijek je oko 30 godina.

 Moderne metode bušenja smanjuju troškove: jedna široka (>60 cm) rupa oko 500 m i onda dvije kilometarske na razne strane za uzimanje i povrat vode

Toplinska pumpa i hlađenje

- Temperatura tla
 - konstantna od sunčevog zračenje i zbog slabe toplinske vodljivosti tla
 - konstantnija kroz godinu na većoj dubini i kod manje vlažnog tla
- Time je relativna razlika prema temperaturi okolice razmjerno velika tijekom većeg dijela godine
 - Pogodno za grijanje toplinskom pumpom i
 - Hlađenje klima uređajima

Razne vrste sustava toplinske pumpe

Horizontalni kružni:

zauzima najviše zemlje, jeftinije, male zgrade, ali temperatura dosta varira

jeftinije,

uvjetovani

lokacijom

Kružni u jezeru: problemi s vodom,

Otvoreni: jeftinije, problemi s vodom

> Vertikalni: stjenovito tlo, skuplji, treba manje zemlje, visoka efikasnost

Ovisno o izvedbi faktor preobrazbe iznosi oko 50% Carnotovog:

$$\mathbf{f.p.} = \mathbf{q_{dov}}/\mathbf{w_t}$$

Praktično se postiže faktor preobrazbe od 3 do 5.

Utjecaj na okoliš i recikliranje

- Agresivnost i velika koncentracija otopljenoga u vodi otežavaju rad postrojenja i smanjuju životni vijek
- Rješenje je u izdvajanju i korištenju:
 - H₂S za proizvodnju sumporne kiseline
 - Metali poput cinka kao sirovina
 - Različite naslage za građevinarstvo
- Utjecaj na okoliš se može minimizirati vraćanjem svega u bušotinu uz pozornost da to ne umanji prinos

Ukratko

Korištenje geotermalne energije može imati opravdanje kao cjeloviti gospodarske program koji uključuje proizvodnju el. en., turizam i poljoprivredu.

Ekonomičnost ovisi o karakteristikama bušotine i potporama – rizik može biti veliki.

Udio GE u proizvodnji el. en. nije veliki, ali postoji potencijal za povećanje.

Ekološki prihvatljiv izvor uz dužnu brigu.

Tehnologija je zrela i iskustvo je značajno.

Položaj izvora određuje mjesto korištenja.

Za ilustraciju i one koje zanima više

DODATNO

Presjek jednog geotermalnog nalazišta - Awibengkok, Indonezija

Imperial Valley, California

Podaci o poljima u HR iz kojih se koristi geotermalna energija

Mjesto	Područje	Ime bušotine	Kol. fluida kg/s		Temperatura na ušću buš.	Tlak na ušću buš.	
			prizv.	utisna	°C	proiz.	utisni
Bizovac	Bizovac Bizovac	Biz-2 Biz-4 Biz-2* SIk-1	5	5	- 96 - 85	- 2 - 2	50 - 20 -
Zagreb	Mladost	Mla-3 Mla-2 Mla-1	50	50 8	80 - -	3 -	- 10 15
Zagreb	Blato	KB-1A KB-1B* KB-2A* KB-3A*	5 50	25 25	70 80 - -	2 3 -	- 15 10
Ivanić	Ivanić	IvaT-1	2		62	2	-

Podaci o poljima u HR na kojima su izvršena ispitivanja

Mjesto	Područje	lme bušotine	Kol. fluida kg/s		Temperatur a na ušću buš.	Tlak na ušću buš.	
			proiz.	utis.	°C	proiz.	utisni
Lunjkovec	Lunjkovec	Lunj-1	23	23	120	12	
-Kutnjak	Kutnjak	Kt-1	23	23	131	14	
Velika	Velika	VC-1	30	30	-	-	1 -
Ciglena	Ciglena	VC-2	56	56	152	35	

Geotermalna elektrana na lokaciji Lunjkovec – Kutnjak

Parametri	Jedinica	Režim 1	Režim 2	Režim 3
Protok geotermalne vode	l/s	53	70	5 dana 53 l/s, 2 dana 70 l/s
Temperatura geotermalne vode	°C	140	140	140
Povratna temperatura geotermalne vode	°C	65 - 70	65 - 70	65 - 70
Rashladni sistem	-	voda iz Drave	voda iz Drave	voda iz Drave
Period rada sistema	h/god	7 884	7 884	7 884
Period rada sistema	%	90	90	90
Neto električna snaga (prag GTE)	kW	1 854	2 474	1 854 / 2 474
Proizvedena električna energija	kWh/god	16 327 779	21 564 991	17 824 125
Vlastita potrošnja*	kWh/god	2 957 406	3 765 518	3 188 295
Neto proizvedena električna energija	kWh/god	13 370 373	17 799 473	14 635 830
Prosječna efikasnost sistema	%	12,8	12,8	12,8

Geološki profil A-A' Geološki profil na lokaciji Lunjkovec – Kutnjak 546-1 h=16520 V01-4 h=1858m Q. 60 Sts. 22 St. F (III) No. H: 87. 2439 m KC Eb. 27934 m LEGENDA: Pjeskouta glim Belonit Granuska Vigins . Belemitra krola 2008. Fjetënrjek 8' B. Et matter Vojenovi dojomit

Kalina – kružni proces mješavine vode i amonijaka (85 i 15 težinski %)

-postiže se oko 50% bolji stupanj djelovanja u odnosu na čisti binarni proces

