WHAT IS CLAIMED IS:

1	1. A method of oxidizing a phosphite ester linkage in a nucleic acid				
2	array to a phosphate linkage, comprising contacting said phosphite ester linkage with a				
3	solution of from about 0.005 M to about 0.05 M iodine in a mixture of water and organic				
4	solvent.				
1	2. A method of preparing a nucleic acid array on a support, wherein				
2	each nucleic acid occupies a separate known region of the support, said synthesizing				
3	comprising:				
4	(a) activating a region of the support;				
5	(b) attaching a nucleotide to a first region, said nucleotide having a				
6	masked reactive site linked to a protecting group;				
7	(c) repeating steps (a) and (b) on other regions of said support whereby				
8	each of said other regions has bound thereto another nucleotide comprising a masked				
9	reactive site link to a protecting group, wherein said another nucleotide may be the same				
10	or different from that used in step (b);				
11	(d) removing the protecting group from one of the nucleotides bound to				
12	one of the regions of the support to provide a region bearing a nucleotide having an				
13	unmasked reactive site;				
14	(e) binding an additional nucleotide to the nucleotide with an unmasked				
15	reactive site;				
16	(f) repeating steps (d) and (e) on regions of the support until a desired				
17	pluarlity of nucleic acids is synthesized, each nucleic acid occupying separate known				
18	regions of the support;				
19	wherein said attaching and said binding are each made by covalently forming a				
20	phosphite triester linkage between said nucleotides and said unmasked reactive site and				
21	further comprising oxidizing said phosphite triester linkage to a phosphate triester linkage				
22	with a solution of from about 0.005 M to about 0.05 M iodine in an aqueous solvent				
23	mixture.				
1	3. A method in accordance with claim 2, wherein said synthesizing				
2	comprises the sequential steps of:				
3	a) removing a photoremoveable protecting group from at least a first area				
4	of a surface of a substrate, said surface comprising immobilized nucleotides on said				

5 1,
removing a photoremoveable protecting group from at least a second area of said surface;
b) simultaneously contacting said first area and said second area of said
surface with a first nucleotide to couple said first nucleotide to said immobilized
nucleotides in said first area, and not in said second area, said first nucleotide capped with
said photoremovable protective group;
c) removing a photoremoveable protecting group from at least a part of

surface, said nucleotides capped with a photoremovable protective group, without

- c) removing a photoremoveable protecting group from at least a part of said first area of said surface and at least a part of said second area;
- d) simultaneously contacting said first area and said second area of said surface with a second nucleotide to couple said second nucleotide to said immobilized nucleotides in at least a part of said first area and at least a part of said second area;
- e) performing additional irradiating and nucleotide contacting and coupling steps so that a matrix array of at least 100 nucleic acids having different sequences is formed on said support;

with the proviso that the coupling steps further comprise oxidizing an initially formed phosphite ester linkage to a phosphate ester linkage using from about 0.005 M to about 0.05 M iodine in an aqueous solvent mixture.

- 4. A method in accordance with claim 3, wherein said aqueous solvent mixture comprises iodine in an amount of about 0.02 M.
- 5. A method in accordance with claim 3, wherein said nucleotides have the formula:

wherein B is a member selected from the group consisting of natural or unnatural adenine, natural or unnatural guanine, natural or unnatural thymine, natural or unnatural cytosine, and natural or unnatural uracil; R is a member selected from the group consisting of hydrogen, hydroxy, protected hydroxy, halogen and alkoxy; P is a phosphoramidite group; and PG is a photoremoveable protected group. .

3

4

THF.

1	6	ó.	A method in accordance with claim 5, wherein B is selected from		
2	the group consisting of adenine, guanine, cytosine and thymine and R is hydrogen.				
1	7	7.	A method in accordance with claim 5, wherein said array		
2	comprises at lea	st 10 d	lifferent nucleic acids.		
	1				
1	8	3.	A method in accordance with claim 5, wherein said array		
2	comprises at least 100 different nucleic acids.				
1	9).	A method in accordance with claim 5, wherein said array		
2	comprises at least 1000 different nucleic acids.				
1	1	n	A mathed in aggardance with aloins # with anoin gold amove		
1			A method in accordance with claim 5, wherein said array		
2	2 comprises at least 10,000 different nucleic acids.				
1	1	1.	A method in accordance with claim 5, wherein said array		
2	comprises at lea	st 100	,000 different nucleic acids.		
	T		,		
1	1	2.	A method in accordance with claim 5, wherein each different		
2	nucleic acid is in	n a reg	ion having an area of less than about 1 cm ² .		
1	1	3.	A method in accordance with claim 5, wherein each different		
2	nucleic acid is in	n a reg	ion having an area of less than about 1 mm ² .		
1	1	4.	A method in accordance with claim 5, wherein said solution is		
2	about 0.02 M iodine in a mixture of water, pyridine and THF.				
		_			
1			A method in accordance with claim 5, wherein B is selected from		
2	the group consisting of adenine, guanine, cytosine and thymine, R is hydrogen, and said				
3	solution is about 0.02 M iodine in a mixture of water, pyridine and THF.				
		_			
1	1	6.	A method in accordance with claim 5, wherein B is selected from		
2	the group consis	sting o	f adenine, guanine, cytosine and thymine, R is hydrogen, PG is		

1 17. A method in accordance with claim 5, wherein B is selected from 2 the group consisting of adenine, guanine, cytosine and thymine, R is hydrogen, PG is

MeNPOC and said solution is about 0.02 M iodine in a mixture of water, pyridine and

- 3 MeNPOC, P is -P(OCH₂CH₂CN)N(iPr)₂ and said solution is about 0.02 M iodine in a
- 4 mixture of water, pyridine and THF.