Chi-Square Test of Independence

Popular kids

In the dataset popular, students in grades 4-6 were asked whether good grades, athletic ability, or popularity was most important to them. A two-way table separating the students by grade and by choice of most important factor is shown below. Do these data provide evidence to suggest that goals vary by grade?

Grades Popular Sports 63 31 25 88 55 33 96 55 32	Grades			Donilor
Popu	Sports	25	33	32
Grades 63 88 96	Popular	31	22	22
	Grades	63	88	96

Grades	Popular	Sports

419

417

Chi-square test of independence

The hypotheses are:

 H_0 : Grade and goals are independent. Goals do not vary by grade.

 H_{A} : Grade and goals are dependent. Goals vary by grade.

Chi-square test of independence

The hypotheses are:

 H_0 : Grade and goals are independent. Goals do not vary by grade.

 H_{A} : Grade and goals are dependent. Goals vary by grade.

The test statistic is calculated as

$$\chi^2_{df} = \sum_{i=1}^k \frac{(O-E)^2}{E}$$
 where $df = (R-1) \times (C-1)$,

where k is the number of cells, R is the number of rows, and C is the number of columns.

Note: we calculate df differently for one-way and two-way tables.

Chi-square test of independence

The hypotheses are:

 H_0 : Grade and goals are independent. Goals do not vary by grade.

 H_{A} : Grade and goals are dependent. Goals vary by grade.

The test statistic is calculated as

$$\chi_{df}^2 = \sum_{i=1}^k \frac{(O-E)^2}{E}$$
 where $df = (R-1) \times (C-1)$,

where k is the number of cells, R is the number of rows, and C is the number of columns.

Note: we calculate of differently for one-way and two-way tables.

The p-value is the area under the χ^2_{df} curve, above the calculated test statistic.

Expected Count = $\frac{\text{(row total)} \times (\text{column total)}}{\text{(column total)}}$ table total

Expected Count = $\frac{\text{(row total)} \times (\text{column total)}}{\text{(column total)}}$

table total

Gra	grades	Popular	Sports	lotal
	63	31	52	119
	88	22	33	176
	96	22	32	183
ATO CATE	247	141	06	478

Expected Count = $\frac{\text{(row total)} \times (\text{column total)}}{\text{(column total)}}$ table total

	Grades	Popular	Sports	Total
4^{th}	63		52	119
5^{th}	88		33	176
e_{th}	96	55	32	183
Total	247		06	478

$$E_{row 1,col 1} = \frac{119 \times 247}{478} = 61$$

Expected Count = $\frac{\text{(row total)} \times (\text{column total)}}{\text{(column total)}}$ table total

	Grades	Popular	Sports	Total
4^{th}	63		52	119
5^{th}	88		33	176
e_{th}	96	22	32	183
Total	247	-	06	478

$$E_{row 1,col 1} = \frac{119 \times 247}{478} = 61$$
 $E_{row 1,col 2} = \frac{119 \times 141}{478} = 35$

What is the expected count for the highlighted cell?

	Grades	Popular	Sports	Total
4^{th}	63	31	25	119
5th	88	55	33	176
e_{th}	96	55	32	183
Total	247	141	90	478

176 x 141 / 478

119 x 141 / 478

176 x 247 / 478 (c) (c) (d)

176 x 478 / 478

What is the expected count for the highlighted cell?

	Grades	Popular	Sports	Total
4^{th}	63	31		119
5th	88	55	33	176
$e_{t\mu}$	96	55	32	183
otal	247	141	90	478

176 x 141 / 478

119 x 141 / 478

176 x 247 / 478

→ 52

more than expected # of 5th graders have a goal of being popular

176 x 478 / 478 (p)

Calculating the test statistic in two-way tables

Expected counts are shown in blue next to the observed counts.

	Grades	Popular	Sports	Total
4^{th}	63 61	31 35	25 23	119
5th	88 91	55 52	33 33	176
e_{th}	96 92	55 54	32 34	183
Fotal	247	141	90	478

Calculating the test statistic in two-way tables

Expected counts are shown in blue next to the observed counts.

	Grades	Popular	Sports	Total
4^{th}	63 61	31 35	25 23	119
5th	88 91	55 52	33 33	176
e_{th}	96 98	55 54	32 34	183
Fotal	247	141	90	478

$$\chi^2 = \sum \frac{(63 - 61)^2}{61} + \frac{(31 - 35)^2}{35} + \dots + \frac{(32 - 34)^2}{34} = 1.3121$$

Calculating the test statistic in two-way tables

Expected counts are shown in blue next to the observed counts.

	Grades	Popular	Sports	Total
4th	63 61	31 35	25 23	119
5th	88 91	55 52	33 33	176
e^{th}	96 98	55 54	32 34	183
Total	247	141	90	478

$$\chi^2 = \sum \frac{(63 - 61)^2}{61} + \frac{(31 - 35)^2}{35} + \dots + \frac{(32 - 34)^2}{34} = 1.3121$$

$$df = (R-1) \times (C-1) = (3-1) \times (3-1) = 2 \times 2 = 4$$

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

$$X^2_{df} = 1.3121$$

$$df = 4$$

df = 4

1.3121

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

$$X^2_{df} = 1.3121$$

$$df = 4$$

df = 4

1.3121

I Inner tail								
יייי ייילקט	0.3	0.2	0.1	0.05	0.02	0.01		
df 1	1.07	1.64	2.71	3.84	5.41	6.63		
2	2.41	3.22	4.61	5.99	7.82	9.21		
က	3.66	4.64	6.25	7.81	9.84	11.34	12.84	16.27
4	4.88	5.99	7.78	9.49	11.67	13.28		
5	90.9	7.29	9.24	11.07	13.39	15.09		

Calculating the p-value

Which of the following is the correct p-value for this hypothesis test?

$$\chi^2_{df} = 1.3121$$

$$df = 4$$

Conclusion

Do these data provide evidence to suggest that goals vary by grade?

 H_0 : Grade and goals are independent.

Goals do not vary by grade.

 H_{A} : Grade and goals are dependent.

Goals vary by grade.

Conclusion

Do these data provide evidence to suggest that goals vary by grade?

 H_{o} : Grade and goals are independent.

Goals do not vary by grade.

 H_{A} : Grade and goals are dependent.

Goals vary by grade.

Since the p-value is large, we fail to reject H_0 . The data do not dependent. It doesn't appear that goals vary by grade. provide convincing evidence that grade and goals are