[Solution Key] MATH-244 (Linear Algebra); Mid-term Exam; Semester 1 (1442)

Question 1: [Marks: 2+3]

a) Let
$$A = \begin{bmatrix} 1 & -1 & 4 & 5 \\ -2 & 1 & -11 & -8 \\ -1 & 2 & 2 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 3 & 2 \\ 0 & 1 & 4 & 1 \\ 1 & 0 & 8 & 6 \end{bmatrix}$. Then show that the matrices **A** and **B** are row equivalent to each other.

∴ A and B are row equivalent

b) Give any two matrices **A** and **B** that satisfy:

$$trace(\mathbf{A} + \mathbf{B}) = trace(\mathbf{A}) + trace(\mathbf{B})$$
 and $trace(\mathbf{A}\mathbf{B}) \neq trace(\mathbf{A}) trace(\mathbf{B})$.

Solution:

A simple choice is:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$:

Clearly, $\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; so, $trace(\mathbf{A} + \mathbf{B}) = 1 + 1 = trace(\mathbf{A}) + trace(\mathbf{B})$.

And
$$\mathbf{AB} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
; so, trace $(\mathbf{AB}) = 0 \neq 1 = 1 \times 1 = trace (\mathbf{A}) trace (\mathbf{B})$.

Question 2: [Marks: 2+3]

a) Let $A, B \in M_2(\mathbb{R})$ with |A| = 3 and |B| = 6. Then evaluate $|A|A^tB^2adj(A^2)$.

Solution: $||A|A^tB^2adj(A^2)| = |A|^2|A||B|^2|adj(|A|^2)|| = |A|^3|B|^2|A|^{4-2} = |A|^5|B|^2 = 4 \times 3^7$.

b) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & \delta \\ 2 & 1 & 2 + \delta \\ 2 & 3 & \delta^2 \end{bmatrix}$$
. Find the values of $\boldsymbol{\delta}$ if the matrix \mathbf{A} is not invertible.

Solution: The given non-invertibility of the matrix A means $|\mathbf{A}| = 0$.

Hence,
$$\delta^2 + \delta - 6 = |\mathbf{A}| = 0$$
.

Thus,
$$\delta = -3, 2$$
.

Question 3: [Marks: 2+4]

a) Find the values of
$$\mathbf{x}$$
 and \mathbf{y} if $\mathbf{A} = \begin{bmatrix} - & 2 & - \\ - & \mathbf{x} & - \\ - & \mathbf{y} & - \end{bmatrix}$ and $\mathbf{A}^{-1} = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ - & - & - \end{bmatrix}$

a) Find the values of
$$x$$
 and y if $\mathbf{A} = \begin{bmatrix} -2 & - \\ -x & - \\ -y & - \end{bmatrix}$ and $\mathbf{A}^{-1} = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ -y & - \end{bmatrix}$.

Solution:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I} = \mathbf{A}^{-1}\mathbf{A} = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ -y & - \end{bmatrix} \begin{bmatrix} -2 & - \\ -x & - \\ -y & - \end{bmatrix} = \begin{bmatrix} -6 - 2x + 2y & - \\ -4 + x + y & - \\ -y & - \end{bmatrix}$$

So that
$$\begin{cases} 6 - 2x + 2y = 0 \\ 4 + x + y = 1 \end{cases}$$
. Hence, $x = 0$ and $y = -3$.

b) Find the value/s of α such that the following linear system:

$$\begin{array}{rclcrcr}
 x & +2y & - & z & = 2 \\
 x & -2y & + & 3z & = 1 \\
 x & +2y & -(\alpha^2 - 3)z & = \alpha
 \end{array}$$

has: (i) no solution (ii) unique solution (iii) infinitely many solutions.
Solution:
$$\begin{bmatrix} 1 & 2 & -1 & \vdots & 2 \\ 1 & -2 & 3 & \vdots & 1 \\ 1 & 2 - (\alpha^2 - 3) & \vdots & \alpha \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & \vdots & 2 \\ 0 - 4 & 4 & \vdots & -1 \\ 0 & 0 & 4 - \alpha^2 & \vdots & \alpha - 2 \end{bmatrix}$$
. Hence, answer to the three parts are: (i) $\alpha = -2$ (ii) $\alpha \in \mathbb{R} \setminus \{-2,2\}$ (iii) $\alpha = 2$.

Question 4: [Marks: 2+3+3]

a) Let $S = \{(1,1,1,0), (1,2,3,1), (2,0,1,1)\}$ generates the subspace F of Euclidean space \mathbb{R}^4 . Show that $(1, 1, 1, 1) \notin \mathbf{F}$.

Solution: The set $S \cup \{(1, 1, 1, 1)\}$ is linearly independent in \mathbb{R}^4 .

But **S** generates **F**. Hence. $(1, 1, 1, 1) \notin \mathbf{F}$.

b) Let $\mathbf{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $\mathbf{C} = \{(1,1,1), (1,2,2), (1,1,2)\}$ be bases of the Euclidean space \mathbb{R}^3 and $[v]_{B} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$. Then find the transition matrix ${}_{C}P_{B}$ and $[v]_{C}$.

 $_{C}P_{B} = [[(1,0,0)]_{C} \quad [(0,1,0)]_{C} \quad [(0,0,1)]_{C}] = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$ **Solution:**

Hence,
$$[v]_{C} = {}_{C}P_{B}[v]_{B} = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$

c) Let $\mathbf{A}^T = \begin{bmatrix} 1 & 2 & 2 & 0 & 0 \\ 2 & 4 & 5 & 2 & 2 \\ 1 & 2 & 3 & 2 & 2 \\ 3 & 6 & 4 - 3 & -4 \end{bmatrix}$. Then find: (i) a basis of $col(\mathbf{A})$ (ii) $rank(\mathbf{A})$ (iii) $nullity(\mathbf{A})$.

Solution:
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 4 & 2 & 6 \\ 2 & 5 & 3 & 4 \\ 0 & 2 & 2 - 3 \\ 0 & 2 & 2 - 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ which is a REF of } \mathbf{A}.$$

- (i) $\{(1,2,2,0,0), (2,4,5,2,2), (3,6,4,-3,-4)\}$ is a basis of $col(\mathbf{A})$.
- (ii) $rank(\mathbf{A}) = dimension of <math>col(\mathbf{A}) = 3$.
- (iii) $nullity(\mathbf{A}) = \text{no. of columns in } \mathbf{A} rank(\mathbf{A}) = 4 3.$

Question 5: [Marks: 2+1+3]

Let $S = \{v_1 = (1, -1, 0, 1), v_2 = (1, 1, 1, 0), v_3 = (0, 1, 1, 1)\}$ generates the subspace W of the Euclidean space \mathbb{R}^4 . Then:

a) Show that **S** is a basis of **W**.

S is linearly independent because $\alpha(1, -1, 0, 1) + \beta(1, 1, 1, 0) + \gamma(0, 1, 1, 1) = (0, 0, 0, 0)$ **Solution:** implies $\alpha = \beta = \gamma = 0$.

Now, since **S** generates **W**, **S** is a basis of **W**.

b) Find the angle θ between the vectors v_1 and v_2 .

Solution: Since $\langle v_1, v_2 \rangle = 0$, v_1 and v_2 are orthogonal to each other. So, the asked $\theta = \frac{\pi}{2}$.

c) Apply the Gram-Schmidt process on **S** to obtain an orthonormal basis of **W**.

Solution: The asked orthonormal basis of **W** is:

$$\left\{\frac{1}{\sqrt{3}}(1,-1,0,1), \frac{1}{\sqrt{3}}(1,1,1,0), \frac{\sqrt{3}}{3\sqrt{5}}(-2,1,1,3)\right\}$$