Analysis of Populations in Clusters

- What changes when animals occur in clusters
- Size bias
- Methods to deal with size bias
- How to implement these methods in Distance

Clustered populations

$$\hat{D} = \hat{D}_s \times \hat{E}(s)$$
Mean cluster size

$$\left[cv(\hat{D})\right]^2 = \frac{\hat{V}(\hat{D})}{\hat{D}^2} \approx \left[cv(\text{encounterrate})\right]^2 + \left[cv(\text{detection function})\right]^2 + \left[cv(\text{cluster size})\right]^2$$

Mean cluster size estimation

Distance (x)

No Size Bias

Mean of observed sizes does not change with distance

Size Bias

- Smaller clusters less detectable at larger distances
- Mean observed cluster size increases with distance

Cluster size (s)

Effect of size bias on sample mean

If size bias is present, $\hat{E}(s) = \overline{s}$ will be positively biased:

Regression methods

Linear regression of s on x

Problems with the linear regression method

- **Problem**: Relationship between *s* and *x* is not linear no relationship when detection is certain (i.e. in the shoulder of the detection function).
 - Solution: Linearize by regressing s on $\hat{g}(x)$
- **Problem**: Variance in s increases with E(s) large cluster sizes distort the fit.
 - Solution: Regress log of cluster size on $\hat{g}(x)$

Regression of log cluster size on $\hat{g}(x)$

Estimating E(s) in Distance using regression methods

Regression estimate of cluster size

Mean cluster size from data

Line printer regression plot

Precision of estimate

Estimating *E*(*s*) in the presence of size bias

1. Regression methods

Default method in Distance

2. Include size in model for detection function

Multiple Covariate
Distance Sampling

- 3. Stratify by cluster size
- 4. Truncation of size-biased data

Rarely used now

5. Replace clusters by individuals

