

EVALUATION OF DELAYS AND
ACCIDENTS AT INTERSECTIONS
FOR MEDIAN LANE CONSTRUCTION

SEPTEMBER, 1966
NO. 17

Joint
Highway
Research
Project

by
R.B. SHAW
H.L. MICHAEL

PURDUE UNIVERSITY
LAFAYETTE INDIANA

EVALUATION OF DELAYS AND ACCIDENTS AT INTERSECTIONS
FOR MEDIAN LANE CONSTRUCTION

To: G. A. Leonards, Director
Joint Highway Research Project

November 4, 1966

From: Harold L. Michael, Associate Director
Joint Highway Research Project

File: 8-4-31
Project: C-36-17EE

The attached Technical Paper "Evaluation of Delays and Accidents at Intersections for Median Lane Construction" has been prepared by Messrs Robert Shaw and Harold Michael. The paper was presented at the 1966 Annual Purdue Road School and is presented for approval of publication in the Proceedings of that School.

The paper summarizes the research report previously submitted to this Board which was prepared by Mr. Shaw under the direction of Professor Michael. The paper includes the development of predictive equations for delays and accident rates resulting to through traffic because of the absence of a median lane. Two examples of application of the equations to determine if median lane construction is warranted on an economic basis are given. The results of this research can be applied immediately to determine if construction of a median lane in any suburban or rural area is warranted.

The paper is presented to the Board for action.

Respectfully submitted,

Harold L. Michael
Harold L. Michael
Associate Director

HLM:jgs

Attachment

Copy:

F. L. Ashbaucher
J. R. Cooper
J. W. Delieur
W. L. Dolch
W. H. Goetz
W. L. Grecco
G. K. Hallock
F. S. Hill
J. F. McLaughlin

F. B. Mendenhall
R. D. Miles
J. C. Oppenlander
W. P. Privette
M. B. Scott
F. W. Stubbs
K. B. Woods
E. J. Yoder

A very faint, large watermark-like image of a classical building with four columns and a triangular pediment occupies the background of the page.

Digitized by the Internet Archive
in 2011 with funding from

LYRASIS members and Sloan Foundation; Indiana Department of Transportation

Technical Paper

**EVALUATION OF DELAYS AND ACCIDENTS AT INTERSECTIONS
FOR MEDIAN LANE CONSTRUCTION**

by

Robert B. Shaw, Graduate Assistant

Harold L. Michael, Associate Director

Joint Highway Research Project

File No: 8-4-31

Project No: C-36-17 EE

Purdue University

Lafayette, Indiana

November 4, 1966

the following year at the 2006 U.S. Open.
Bennetta's wife, Debbie,

survived breast cancer
and died in 2005.

He has three sons: Matt, 21, Mattie, 18, and Mattie, 16.

He is a member of the
Lafayette Rowing Club
and the U.S. Rowing

EVALUATION OF DELAYS AND ACCIDENTS AT INTERSECTIONS FOR MEDIAN LANE CONSTRUCTION

INTRODUCTION

The tremendous increase in motor vehicle usage during recent years in Indiana (7)* and in the United States (1) has greatly affected highway operation. This increase in motor vehicle usage has created an added demand on all components of the highway system resulting in increased operating costs to the motoring public. Intersections are an important component of this system and the increased travel volumes have created congestion at many approaches in the urban, suburban, and rural areas. Where the intersection is at grade, streams of turning and crossing vehicles must join and cross each other. The points within the intersectional area used in common by these intersecting streams are focal points of accidents and delay. Delays result when vehicles in different streams wish to pass through these focal points at the same time. Accidents result when drivers make mistakes in judgment of the time and place that intersecting movements will occur.

The time and place of conflicts at approaches to intersections may be altered by traffic controls or design. Channelization of intersections at grade has been defined (5) as the separation or regulation of conflicting traffic movements into definite paths of travel by the use of pavement markings, raised islands or other suitable means to facilitate

* The numbers in parenthesis refer to numbers in the bibliography.

the safe and orderly movement of both vehicles and pedestrians. Channelization is, therefore, used to control the place of conflict between intersecting traffic streams and to influence the time element by separating the conflict points and controlling the speeds at which these conflicts occur.

The median lane is one form of channelization used to separate the conflict points between left-turning vehicles and through vehicles. It provides a temporary, protected storage location for vehicles waiting to make a left-turn movement. This paper is a report on the results of a research project concerned with warrants for such median lanes.

The objective of the research was to evaluate the conditions for which the construction, maintenance, and interest costs for a median lane would be warranted at suburban and rural approaches to an intersection. To achieve this objective, delay times and accident rates to through vehicles caused by left-turning vehicles were analyzed in depth at three right-angle intersections which already possessed median lanes and at eight right-angle intersections which did not have median lanes. By evaluating the benefits from the reduction in delay times and accident rates realized by the presence of a median lane, a method was developed which can be used to determine when construction of a median lane is economically justified.

THE STUDY LOCATIONS

The eleven intersections used in this study are located within a sixty mile radius of Lafayette-West Lafayette, Indiana (Figure 1). These intersections are located on highways near the cities of Lafayette-West Lafayette, Kokomo, and Indianapolis. The approximate 1965 populations

FIGURE I - MAP OF INDIANA WITH RELATIVE LOCATIONS OF STUDY INTERSECTIONS.

of these urban areas were 65,000, 50,000, and 500,000, respectively. These eleven intersections possessed the following characteristics:

1. Signal or stop controlled,
2. Four approaches,
3. Right-angle,
4. Parking restricted on approaches, and
5. Located in suburban or rural areas.

A large percentage of the traffic using these intersections was through traffic destined for Chicago, Indianapolis, Fort Wayne, or South Bend. The 1965 major street weekday ADT's for the intersections ranged from 7,100 to 27,500. A summary of the characteristics for the study intersections is shown in Tables 1 and 2.

STUDY PROCEDURE

Delay Data

The delay time incurred to a through vehicle caused by a left-turning vehicle was determined at the eleven study intersections during daylight-weekday hours; 6 AM to 6 PM, Monday through Friday.

The method developed to collect the delay time data was designed to be simple, inexpensive, and easily adaptable for use by one or more observers. A typical field setup of the equipment used to study the delay time is shown in Figure 2. The equipment used in the collection of delay data consisted of traffic volume counters, 20-pen recorder, 12 volt battery, push-button box, junction box, pneumatic tubes, and electrical conducting wire.

TABLE 1

SUMMARY CHARACTERISTICS OF STUDY INTERSECTIONS WITHOUT MEDIAN LANES

Intersection	Location	Type of Area	Type of Signalization	Weekday Approach *	
				ADT Plus Weekday	Opposing ADT
U. S. 52 By-Pass & Union Street	Lafayette	Suburban	Fixed Time	17,500	
U. S. 52 By-Pass & S. R. 26	Lafayette	Suburban	Fixed Time	18,000	
U. S. 52 By-Pass & Salisbury Street	Lafayette	Suburban	Semi-Traffic Actuated	15,800	
U. S. 52 & U. S. 23 (S. R. 53)	Lafayette	Rural	Stop-Sign Controlled (Flasher)	7,100	
S. R. 100 & 56th Street	Indianapolis Rural		Fully-Traffic Actuated	10,500	
S. R. 100 & Fall Creek Road	Indianapolis Rural		Stop-Sign Controlled (Flasher)	7,600	
S. R. 100 & U. S. 31	Indianapolis Suburban		Fully-Traffic Actuated	12,900	
U. S. 35 (S. R. 22) & U. S. 31 By-Pass	Kokomo	Suburban	Fully-Traffic Actuated	9,500	

* Weekday ADT's based on 1965 volume data.

TABLE 2
SUMMARY CHARACTERISTICS OF STUDY INTERSECTIONS WITH MEDIAN LINES

Intersection	Location	Type of Area	Type of Signalization	Weekday Approach *	
				ADT	ADT Plus Weekday Opposing ADT
U. S. 31 & U. S. 35 (S. R. 22)	Kokomo	Suburban	Fully-Traffic Actuated	22,000	
U. S. 31 & S. R. 26	Kokomo	Rural	Fully-Traffic Actuated	15,100	
S. R. 100 & 30th Street	Indianapolis	Suburban	Fully-Traffic Actuated	27,500	

* Weekday ADT's based on 1965 volume data.

FIGURE 2 - TYPICAL FIELD SETUP OF EQUIPMENT TO STUDY
DELAY TIME AT AN INTERSECTION .

The placement of the traffic counters A and B varied in the suburban and rural areas. Traffic counter A was located prior to the point at which an approaching through vehicle was influenced by the presence of the intersection. Traffic counter B was located beyond the intersection at a point where the through vehicle had resumed its initial approach speed. As the approach speed increased, therefore, the distance between counters A and B increased. This distance between counters A and B was designated as the "zone of influence" and varied from about 800 to 1300 feet.

Approach speed was the determining factor to indicate whether the intersection approach was considered to be located in a suburban or a rural area. Intersection approaches were classified as suburban when the approach speed was greater than 30 miles per hour but less than 45 miles per hour. Rural intersections were those locations where the approach speed was greater than 45 miles per hour. Much greater development of the adjacent land, of course, also existed at the suburban intersections.

It was concluded very early from the field data that the delay time experienced by through vehicles was negligible at the three locations which had median lanes on their approaches. Further analysis, therefore, was limited to the delay time experienced by a through vehicle at the approaches to the eight intersections which did not have median lanes.

Accident Data

An almost five-year study period was chosen in order that an adequate sample of accidents could be obtained. Accident data were collected for the daylight-weekday hours at the eleven study intersections for the period January 1, 1961 through August 31, 1965.

Data on accidents for the three intersections with median lanes clearly indicated the almost total absence of accidents caused by left-turning vehicles. As a result, it was concluded that a median lane will substantially reduce accidents involving left-turning vehicles.

The accident analysis was limited to those accidents caused by left-turning vehicles which could have been prevented with the installation of a median lane. The types of accidents considered preventable for this study were the following:

1. Accidents involving a left-turning vehicle with opposing traffic,
2. Sideswipe overtaking accidents involving a left-turning vehicle, and
3. Rear-end accidents that probably resulted from a left-turn movement.

The accident data were analyzed on a yearly basis at each intersection approach to determine an accident rate, number of accidents per million vehicles caused by left-turning vehicles, at each of the eight intersections without median lanes. No accidents involving a fatal injury were included in this analysis because of the rarity of such accidents and the difficulty of establishing an economic benefit.

Volume

In delay and accident studies, volume has correlated well with delay times and accident rates. This volume can be represented as an hourly volume or as the annual average weekday traffic (ADT). In this study both the hourly volumes and the weekday ADT were used in the analysis.

The traffic volume counters, used as part of the equipment to measure delay time, were employed simultaneously to obtain the approach and

opposing volumes per hour for a given direction of travel. An observer was used to record the number of left-turning and right-turning vehicles, as well as the classification of vehicles entering the intersection approach during the hours of study. It was, therefore, possible to analyze volumes, turning movements, and commercial vehicles for the same period of time the delay data were collected.

The approach and opposing hourly volumes at the time the accident occurred and the weekday ADT's were correlated with the accident rate. Because volume counts were not available for the entire study period, these hourly volumes were estimated as indicated in the following paragraph.

The traffic volumes obtained at the time the delay data were collected were supplemented by volume data from the Division of Planning, Indiana State Highway Commission. Factors were determined from the volume data collected, from records of the Highway Commission, and from charts depicting the yearly, monthly, daily, and hourly variations in traffic volume during average conditions in Indiana (11). Therefore, by knowing the location, year, month, day, and hour of an accident, the hourly volumes at the time an accident occurred were estimated by applying the appropriate factors to the volume counts taken at each intersection approach.

Capacity

The practical capacity of each intersection was calculated by the method described in the 1965 Highway Capacity Manual (4).

Six of the signalized intersections had paved shoulders on the right side which allowed through vehicles to maneuver around a left-turning vehicle. These paved shoulders also acted as turning lanes but were not designated for this specific movement. In order to determine the effectiveness of the paved shoulders in increasing the practical capacities of

these six intersections, reference was made to a study (8) which indicated that each paved shoulder carried approximately one-third the capacity of a properly constructed and signed turning lane.

The practical capacity was calculated for an extra turning lane if more than one lane existed for a direction of travel. This lane was assumed to be a left-turn only lane if the predominant turning movement at that approach was left, and assumed to be a right-turn only lane if the predominant turning movement at that approach was right. If the additional lane was only a paved shoulder not constructed, signed, or used exclusively as a turning lane, only one-third of the turning lane capacity was added to the through lane capacity.

The two stop-controlled intersections were also protected with flashers. Although no precise method was available to evaluate the practical capacity of these two unsignalized intersections, it was assumed that the crossroad traffic interference caused a wave-like behavior to the through traffic which approached the behavior of traffic under signal control (2). Although the crossroad traffic interference did not result in interrupted flow, the practical capacities of these intersections were computed as if the intersections had been operated under traffic control signals with a green time to cycle length ratio of one.

ANALYSIS OF DATA

Multiple Linear Regression

Many variables possibly affecting the delay and accident data were analyzed by multiple linear regression. This method provided expressions for predicting the seconds of delay per hour caused by left turning vehicles

to the total volume of through vehicles per hour, and the number of accidents per million vehicles caused by left-turning vehicles at approaches to intersections in both the rural and suburban areas. The computer program used in this study for the multiple linear regression analysis was the BMD-2R, "Stepwise Regression" (9).

Tests were conducted on the resulting delay time and accident rate prediction equations to determine whether each independent variable in each equation was significant. The purpose of these tests was to develop simplified equations which would usually and adequately predict delay times and accident rates for both suburban and rural intersections by using a small number of independent variables. An option in the BMD-2R program provided for a summary table listing the order each independent variable entered the multiple linear regression equation and the corresponding increase in the multiple coefficient of determination (R^2) associated with each new variable. The F-test (3) was used to determine the first independent variable which did not add significantly to the increase in the multiple R^2 , given the other independent variable or variables already in the regression equation. For example, tests were conducted to determine whether a significant increase resulted from the addition of a second independent variable given the first independent variable, or from the addition of a third independent variable given the first two independent variables already in the regression equation.

The results of these tests are presented in Tables 4 and 6 as the simplified predictions equations for delay time and accident rates, respectively.

Delay Time

The variables listed in Table 3 represent the independent variables that were used in the final analysis to develop separate prediction equations for the suburban and rural areas. The coefficients of the variables used in these multiple linear regression equations are shown in Table 4. These two tables should be used for reference in the following discussion.

Suburban Area

The prediction equation explaining the greatest amount of variability in suburban delay time (Y_{DS}) and developed from the variable coefficients in Table 4 is shown in the following equation:

$$\begin{aligned}
 Y_{DS} = & 483.788 - 726.881 X_8 - 33.292 X_{10} - 338.278 X_{11} \\
 & - 4.157 X_{13} + 4.347 X_{17} - 3.635 X_{19} - 1027.246 X_{22} \\
 & + 1.984 X_{26}
 \end{aligned}$$

The multiple correlation coefficient equals 0.828. The variables in this equation explain approximately 69 percent (R^2) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a suburban intersection approach.

The variable that was the most significant in the multiple linear regression equation for suburban delay time is underlined in Table 4. This variable is the total volume per hour in the approach and opposing direction (X_{26}). Other important variables are the green time to cycle length ratio for the through approach (X_8), the percent grade of the approach (X_{10}), the number of approach lanes (X_{11}), the average speed

TABLE 3

**INDEPENDENT VARIABLES USED IN THE FINAL MULTIPLE LINEAR REGRESSION
ANALYSIS OF DELAY TIME DATA FOR SUBURBAN AND RURAL AREAS**

Number	Variable Description
8	Green Time to Cycle Length Ratio of Through Approach
10	Grade of Approach, Percent
11	Number of Approach Lanes
12	Width of the Approach Roadway at the Intersection, Feet
13	Average Speed Through the Intersection for a Non-Delayed Through Vehicle, Feet Per Second
15	Approach Volume Per Hour, Vehicles Per Hour
16	Opposing Volume Per Hour, Vehicles Per Hour
17	Number of Left-Turning Vehicles in Approach Direction Per Hour
19	Number of Commercial Vehicles in Approach Direction Per Hour
22	Ratio of Approach Volume Per Hour to Capacity of Approach Direction
23	Ratio of Opposing Volume Per Hour to Capacity of Opposing Direction
26	Total Volume Per Hour in Approach and Opposing Directions, Vehicles Per Hour

Год	Прирост населения	Сумма затрат на развитие и поддержку населения	Сумма затрат на развитие и поддержку населения в расчете на 1000 человек
1990	1,0	1000	1000
1991	-0,2	1000	1000
1992	-0,2	1000	1000
1993	-0,2	1000	1000
1994	-0,2	1000	1000
1995	-0,2	1000	1000
1996	-0,2	1000	1000
1997	-0,2	1000	1000
1998	-0,2	1000	1000
1999	-0,2	1000	1000
2000	-0,2	1000	1000
2001	-0,2	1000	1000
2002	-0,2	1000	1000
2003	-0,2	1000	1000
2004	-0,2	1000	1000
2005	-0,2	1000	1000
2006	-0,2	1000	1000
2007	-0,2	1000	1000
2008	-0,2	1000	1000
2009	-0,2	1000	1000
2010	-0,2	1000	1000
2011	-0,2	1000	1000
2012	-0,2	1000	1000
2013	-0,2	1000	1000
2014	-0,2	1000	1000
2015	-0,2	1000	1000
2016	-0,2	1000	1000
2017	-0,2	1000	1000
2018	-0,2	1000	1000
2019	-0,2	1000	1000
2020	-0,2	1000	1000
2021	-0,2	1000	1000
2022	-0,2	1000	1000
2023	-0,2	1000	1000
2024	-0,2	1000	1000
2025	-0,2	1000	1000
2026	-0,2	1000	1000
2027	-0,2	1000	1000
2028	-0,2	1000	1000
2029	-0,2	1000	1000
2030	-0,2	1000	1000
2031	-0,2	1000	1000
2032	-0,2	1000	1000
2033	-0,2	1000	1000
2034	-0,2	1000	1000
2035	-0,2	1000	1000
2036	-0,2	1000	1000
2037	-0,2	1000	1000
2038	-0,2	1000	1000
2039	-0,2	1000	1000
2040	-0,2	1000	1000
2041	-0,2	1000	1000
2042	-0,2	1000	1000
2043	-0,2	1000	1000
2044	-0,2	1000	1000
2045	-0,2	1000	1000
2046	-0,2	1000	1000
2047	-0,2	1000	1000
2048	-0,2	1000	1000
2049	-0,2	1000	1000
2050	-0,2	1000	1000
2051	-0,2	1000	1000
2052	-0,2	1000	1000
2053	-0,2	1000	1000
2054	-0,2	1000	1000
2055	-0,2	1000	1000
2056	-0,2	1000	1000
2057	-0,2	1000	1000
2058	-0,2	1000	1000
2059	-0,2	1000	1000
2060	-0,2	1000	1000
2061	-0,2	1000	1000
2062	-0,2	1000	1000
2063	-0,2	1000	1000
2064	-0,2	1000	1000
2065	-0,2	1000	1000
2066	-0,2	1000	1000
2067	-0,2	1000	1000
2068	-0,2	1000	1000
2069	-0,2	1000	1000
2070	-0,2	1000	1000
2071	-0,2	1000	1000
2072	-0,2	1000	1000
2073	-0,2	1000	1000
2074	-0,2	1000	1000
2075	-0,2	1000	1000
2076	-0,2	1000	1000
2077	-0,2	1000	1000
2078	-0,2	1000	1000
2079	-0,2	1000	1000
2080	-0,2	1000	1000
2081	-0,2	1000	1000
2082	-0,2	1000	1000
2083	-0,2	1000	1000
2084	-0,2	1000	1000
2085	-0,2	1000	1000
2086	-0,2	1000	1000
2087	-0,2	1000	1000
2088	-0,2	1000	1000
2089	-0,2	1000	1000
2090	-0,2	1000	1000
2091	-0,2	1000	1000
2092	-0,2	1000	1000
2093	-0,2	1000	1000
2094	-0,2	1000	1000
2095	-0,2	1000	1000
2096	-0,2	1000	1000
2097	-0,2	1000	1000
2098	-0,2	1000	1000
2099	-0,2	1000	1000
20100	-0,2	1000	1000

TABLE 4
COEFFICIENTS FOR MULTIPLE LINEAR REGRESSION EQUATIONS - DELAY TIME

Dependent Variable	Suburban		Rural	
	\bar{Y}_{DS}^{**}	\bar{Y}_{DS}	\bar{Y}_{DR}^*	\bar{Y}_{DR}
Constant	-620.838	483.788	-242.680	-66.469
x_8		-726.881		
x_{10}		- 33.292		50.673
x_{11}		-338.278		
x_{12}				-13.514
x_{13}		- 4.157		
x_{15}				1.003
x_{17}	3.505	4.347		5.017
x_{19}		- 3.635	- 9.119	- 2.735
x_{22}		-1027.246		547.598
x_{26}	0.886**	1.984	1.669	0.731
R	0.791	0.828	0.958	0.986

* This equation represents the simplified prediction equation.

** The coefficient underlined represents the variable that is most significant in the regression equation.

through the intersection for a non-delayed through vehicle (X_{13}), the number of left-turning vehicles per hour in the approach direction (X_{17}), the number of commercial vehicles per hour in the approach direction (X_{19}), and the ratio of the approach volume per hour to the capacity of the intersection approach (X_{22}).

The simplified prediction equation for suburban delay time is as follows:

$$Y_{DS} = - 620.838 + 3.505 X_{17} + 0.885 X_{26}$$

The multiple correlation coefficient equals 0.791. The variables in this simplified equation explain approximately 63 percent (R^2) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a suburban intersection approach.

The most significant variable in this simplified prediction equation is the total volume per hour in the approach and opposing directions (X_{26}). The other independent variable is the number of left-turning vehicles per hour in the approach direction (X_{17}).

Rural Area

The prediction equation explaining the greatest amount of variability in rural delay time (Y_{DR}) and developed from the variable coefficients in Table 4 is shown in the following equation:

$$Y_{DR} = - 44.469 + 50.673 X_{10} - 13.514 X_{12} + 1.003 X_{15} \\ + 5.017 X_{17} - 2.735 X_{19} + 547.598 X_{22} + 0.731 X_{26}$$

The multiple correlation coefficient equals 0.986. The variables in this equation explain approximately 97 percent (R^2) of the variation

and the other three dimensions of the general well-being construct, namely, physical well-being, social well-being, and psychological well-being, were found to have significant positive correlations with the total well-being score.

The results of the present study support the validity of the Chinese version of the WHOQOL-BREF. The instrument can be used to evaluate the quality of life of Chinese patients with chronic diseases.

However, the results of this study also indicate that the WHOQOL-BREF has some limitations. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the physical dimension was the lowest, and it is suggested that the number of items in this dimension be increased.

It is also suggested that the Cronbach's alpha coefficient of the social dimension be increased by increasing the number of items in this dimension. The Cronbach's alpha coefficient of the psychological dimension was the highest, and it is suggested that the number of items in this dimension be decreased.

It is also suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

It is suggested that the Cronbach's alpha coefficient of the total scale be increased by increasing the number of items in the total scale. The Cronbach's alpha coefficient of the total scale was 0.85, which is acceptable, but the Cronbach's alpha coefficients of the four dimensions were lower than those of the total scale.

in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a rural intersection approach.

The most significant variable in the multiple linear regression equation for rural delay time is the total volume per hour in the approach and opposing directions (X_{26}). Other important variables are the percent grade of the approach (X_{10}), the width of the approach roadway at the intersection (X_{12}), the approach volume per hour (X_{15}), the number of left-turning vehicles per hour in the approach direction (X_{17}), the number of commercial vehicles per hour in the approach direction (X_{19}), and the ratio of the approach volume per hour to the capacity of the intersection approach (X_{22}).

The simplified prediction equation for rural delay time is as follows:

$$Y_{DR} = -242.880 - 9.119 X_{19} + 1.669 X_{26}$$

The multiple correlation coefficient equals 0.958. The variables in this simplified equation explain approximately 92 percent (R^2) of the variation in the seconds of delay per hour caused by left-turning vehicles to the total volume of through vehicles per hour for a rural intersection approach.

The most significant variable in this simplified prediction equation is the total volume per hour in the approach and opposing directions (X_{26}). The other independent variable is the number of commercial vehicles per hour in the approach direction (X_{19}).

Accident Rate

The variables listed in Table 5 represent the independent variables that were used in the final analysis to develop separate prediction equations

TABLE 5

INDEPENDENT VARIABLES USED IN THE FINAL MULTIPLE LINEAR REGRESSION
ANALYSIS OF ACCIDENT RATE DATA FOR SUBURBAN AND RURAL AREAS

Number	Variable Description
7	Number of Approach Lanes
8	Width of Approach Roadway at the Intersection, Feet
10	Approach Volume Per Hour at Time the Accident Occurred, Vehicles Per Hour
11	Opposing Volume Per Hour at Time the Accident Occurred, Vehicles Per Hour
12	Weekday Approach ADT, Vehicles Per Day
13	Weekday Approach ADT Plus Weekday Opposing ADT, Vehicles Per Day
14	Total Intersection Weekday ADT, Vehicles Per Day
15	Ratio of Approach Volume Per Hour to Capacity of Approach Direction
16	Ratio of Opposing Volume Per Hour to Capacity of Opposing Direction
17	Average Speed Through the Intersection for a Non-Delayed Through Vehicle, Feet Per Second

for the suburban and rural areas. The coefficients of the variables used in these multiple linear regression equations are shown in Table 6. These two tables should be used for reference in the following discussion.

Suburban Area

The prediction equation explaining the greatest amount of variability in the suburban accident rate (Y_{AS}) and developed from the variable coefficients in Table 6 is shown in the following equation:

$$Y_{AS} = 1.2411 - 1.0882 \underline{X_7} + 0.0029 X_{10} + 1.3094 X_{12} \\ - 0.8496 X_{13} + 0.0824 X_{14} - 1.6262 X_{16} + 0.0443 X_{17}$$

The multiple correlation coefficient equals 0.781. The variables in this equation explain approximately 61 percent (R^2) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a suburban intersection approach.

The variable that was the most significant in the multiple linear regression equation for suburban accident rate is underlined in Table 6. This variable is the weekday approach ADT plus the weekday opposing ADT (X_{13}). Other important variables are the number of approach lanes (X_7), the approach volume per hour at the time the accident occurred (X_{10}), the weekday approach ADT (X_{12}), the total intersection weekday ADT (X_{14}), the ratio of the opposing volume per hour to the capacity of the opposing intersection approach (X_{16}), and the average speed through the intersection for a non-delayed through vehicle (X_{17}).

TABLE 6

COEFFICIENTS FOR MULTIPLE LINEAR REGRESSION EQUATIONS - ACCIDENT RATE

	Suburban		Rural	
Dependent Variable	\bar{Y}_{AS^*}	\bar{Y}_{AS}	\bar{Y}_{AR^*}	\bar{Y}_{AR}
Constant	3.6203	1.2411	1.1333	0.6411
x_7	-1.1407	-1.0892		-0.2848
x_8				-0.0110
x_{10}		0.0029	0.0015	0.0045
x_{11}				-0.0077
x_{12}	1.2446	1.3094		
x_{13}	<u>-0.7723**</u>	<u>-.08496</u>		0.8690
x_{14}	0.0371	0.0824	<u>-0.0497</u>	<u>-0.6018</u>
x_{15}				-2.9019
x_{16}		-1.6262		6.0704
x_{17}		0.0443		
R	0.743	0.781	0.609	0.825

* This equation represents the simplified prediction equation.

** The coefficient underlined represents the variable that is most significant in the regression equation.

1920-1921
1921-1922
1922-1923
1923-1924
1924-1925
1925-1926
1926-1927
1927-1928
1928-1929
1929-1930
1930-1931
1931-1932
1932-1933
1933-1934
1934-1935
1935-1936
1936-1937
1937-1938
1938-1939
1939-1940
1940-1941
1941-1942
1942-1943
1943-1944
1944-1945
1945-1946
1946-1947
1947-1948
1948-1949
1949-1950
1950-1951
1951-1952
1952-1953
1953-1954
1954-1955
1955-1956
1956-1957
1957-1958
1958-1959
1959-1960
1960-1961
1961-1962
1962-1963
1963-1964
1964-1965
1965-1966
1966-1967
1967-1968
1968-1969
1969-1970
1970-1971
1971-1972
1972-1973
1973-1974
1974-1975
1975-1976
1976-1977
1977-1978
1978-1979
1979-1980
1980-1981
1981-1982
1982-1983
1983-1984
1984-1985
1985-1986
1986-1987
1987-1988
1988-1989
1989-1990
1990-1991
1991-1992
1992-1993
1993-1994
1994-1995
1995-1996
1996-1997
1997-1998
1998-1999
1999-2000
2000-2001
2001-2002
2002-2003
2003-2004
2004-2005
2005-2006
2006-2007
2007-2008
2008-2009
2009-2010
2010-2011
2011-2012
2012-2013
2013-2014
2014-2015
2015-2016
2016-2017
2017-2018
2018-2019
2019-2020
2020-2021
2021-2022
2022-2023
2023-2024
2024-2025
2025-2026
2026-2027
2027-2028
2028-2029
2029-2030
2030-2031
2031-2032
2032-2033
2033-2034
2034-2035
2035-2036
2036-2037
2037-2038
2038-2039
2039-2040
2040-2041
2041-2042
2042-2043
2043-2044
2044-2045
2045-2046
2046-2047
2047-2048
2048-2049
2049-2050
2050-2051
2051-2052
2052-2053
2053-2054
2054-2055
2055-2056
2056-2057
2057-2058
2058-2059
2059-2060
2060-2061
2061-2062
2062-2063
2063-2064
2064-2065
2065-2066
2066-2067
2067-2068
2068-2069
2069-2070
2070-2071
2071-2072
2072-2073
2073-2074
2074-2075
2075-2076
2076-2077
2077-2078
2078-2079
2079-2080
2080-2081
2081-2082
2082-2083
2083-2084
2084-2085
2085-2086
2086-2087
2087-2088
2088-2089
2089-2090
2090-2091
2091-2092
2092-2093
2093-2094
2094-2095
2095-2096
2096-2097
2097-2098
2098-2099
2099-20100

The simplified prediction equation for the suburban accident rate is as follows:

$$\begin{aligned} Y_{AS} = & 3.6203 - 1.1407 X_7 + 1.2446 X_{12} - 0.7723 X_{13} \\ & + 0.0371 X_{14} \end{aligned}$$

The multiple correlation coefficient equals 0.743. The variables in this simplified equation explain approximately 55 percent (R^2) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a suburban intersection approach.

The most significant variable in this simplified prediction equation is the weekday approach ADT plus the weekday opposing ADT (X_{13}). Other independent variables are the number of approach lanes (X_7), the weekday approach ADT (X_{12}), and the total intersection ADT (X_{14}).

Rural Area

The prediction equation explaining the greatest amount of variability in the rural accident rate (Y_{AR}) and developed from the variable coefficients in Table 6 is shown in the following equation:

$$\begin{aligned} Y_{AR} = & 0.6411 - 0.2848 X_7 - 0.0110 X_8 + 0.0045 X_{10} \\ & - 0.0077 X_{11} + 0.8690 X_{13} - 0.6018 X_{14} - 2.9019 X_{15} \\ & + 6.0704 X_{16} \end{aligned}$$

The multiple correlation coefficient equals 0.825. The variables in this equation explain approximately 68 percent (R^2) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a rural intersection approach.

The most significant variable in the multiple linear regression equation for rural accident rate is the total intersection weekday ADT (X_{14}). Other important variables are the number of approach lanes (X_7), the width of the approach roadway at the intersection (X_8), the approach volume per hour at the time the accident occurred (X_{10}), the opposing volume per hour at the time the accident occurred (X_{11}), the weekday approach ADT plus the weekday opposing ADT (X_{13}), the ratio of the approach volume per hour to the capacity of the approach direction (X_{15}), and the ratio of the opposing volume per hour to the capacity of the opposing direction (X_{16}).

The simplified prediction equation for the rural accident rate is as follows:

$$Y_{AR} = 1.1333 + 0.0015 X_{10} - 0.0497 X_{14}$$

The multiple correlation coefficient equals 0.609. The variables in this simplified equation explain approximately 37 percent (R^2) of the variation in the number of accidents per million vehicles caused by left-turning vehicles on a rural intersection approach.

The most significant variable in this simplified prediction equation is the total intersection weekday ADT (X_{14}). The other independent variable is the approach volume per hour at the time the accident occurred (X_{10}). This simplified equation, however, does not adequately predict the accident rate at a rural intersection approach due to the low multiple correlation coefficient. As a result the full prediction equation should be used.

the first time, and the first time I have ever seen a man's face so pale and death-like. He was lying on his back, his head propped up by a large, round, white cushion. His eyes were closed, and his mouth was slightly open. He was wearing a dark suit and a white shirt. I could see his hands resting on his chest. I stood there for a moment, looking at him, before I realized that he was dead. I turned and ran out of the room, my heart racing with fear.

I ran down the hallway, my feet pounding against the floor. I heard a noise behind me and turned around, but there was no one there. I continued running, my mind racing with thoughts of what had just happened. I knew I had to get away from there, but I didn't know where to go. I ran through several rooms, each one more familiar than the last. I heard a voice calling my name, but I couldn't identify it. I turned around again, but there was no one there. I ran out of the house, my heart still racing with fear. I ran until I reached a park, where I sat down on a bench and took deep breaths. I tried to calm myself down, but it was difficult. I knew I had to get away from there, but I didn't know where to go.

I stayed at the park for a while, trying to collect my thoughts. I realized that I had been in a bad situation, and I needed to get help. I called a friend, who came to pick me up and took me to a safe place. I talked to her about what had happened, and she listened attentively. She assured me that I was safe now, and that we would figure out what to do next. I felt relieved, but still scared. I knew I had to be careful in the future, and I promised myself that I would never let anything like that happen again. I thanked my friend for her support, and we both left the park together, feeling better about the situation.

I have since learned that the man I saw was a relative of mine, and that he had passed away recently. I am grateful for the support of my friend, and I am trying to move forward from this experience. It has taught me the importance of being aware of my surroundings and taking care of myself.

APPLICATION OF PREDICTION EQUATIONS

General

The development of prediction equations for estimating the delay time and accident rate at rural and suburban intersections which is due to the absence of a median lane permits the evaluation of benefits to be expected from construction of such a lane. The application of these equations to such evaluation is a simple process which is outlined in the two examples which follow.

The application is limited to two extreme conditions under which median lanes might be proposed. It is assumed that a median lane is warranted when the costs of construction of such a lane is equal to or less than the economic benefits derived from such construction. Benefits are reduced delays to through vehicles and number of accidents attributed to left-turning vehicles. Use is made of the simplified prediction equations developed in this study to determine such reduction in delay and in accident rates.

The first example considers the case where adequate right-of-way exists on both approaches of a two-lane highway in a suburban area to a signalized intersection. The existing pavement on one or both sides of the highway must be widened for a specified distance on both approaches so that median lanes may be constructed and new through lanes designated.

The second example considers the case where a median strip at least 16 feet in width is located between the major approaches to a signalized intersection of a four-lane divided highway in a suburban area. The left-turn lanes will be constructed within the existing median and no changes to the existing through lanes are required.

The basic specifications and construction costs for median lanes were obtained from the Indiana State Highway Commission, Division of Traffic. Several contracts of intersection channelization projects were examined in order to obtain the representative 1965 costs presented in each example.

Actual cost of delay was determined for the southbound approach to the intersection of U. S. 52 By-Pass and S.R. 26 in Lafayette, Indiana. The cost of delay for the average vehicle type was calculated to be \$2.25 per hour of delay. This cost estimate includes time and fuel costs for deceleration, acceleration, and idling, and a time cost for comfort and convenience.

Average costs for an accident caused by left-turning vehicles were determined from the accident report forms collected for the period January 1, 1961 through August 31, 1965. The average cost of each injury in 1965 was set at \$1900 (10). The average accident costs, which included both property damage and injury costs, were calculated to be \$710 in suburban areas and \$1352 in rural areas.

A six percent interest rate was used to obtain the annual costs for construction and maintenance of the median lane based on 1965 unit costs.

The prediction equations used to estimate the seconds of delay per hour and the number of accidents per million vehicles to through vehicles caused by left-turning vehicles are based on weekday-daylight hours. These predicted delay times and accident rates, therefore, include only twelve hours per day for 260 days of the year. For a second calculation, it was assumed that the delay times and accident rates for the weekend-daylight hours are the same or greater than the delay times and accident rates for the weekday-daylight hours. With this assumption, computations are based on the twelve hours per day for 365 days of the year. In the

following two examples, annual cost estimates for delay times and accident rates are presented based on both 260 days and 365 days per year.

It is also assumed that all delays to through vehicles from the left-turn movement and all accidents involving left-turn vehicles will be eliminated by the construction of a median lane. Although this is not completely accurate, it is substantially correct. Furthermore, the prediction equations, by not considering the night hours, 6 PM to 6 AM, give conservative values for both delay and accidents.

Cost estimates for the installation of a median lane are based on construction costs at an existing intersection approach with no additional improvements at that intersection approach. Lower costs would result when additional improvements to an existing intersection are to be made in conjunction with the median lane or when a median lane is to be installed on the intersection approach of a completely new highway.

The following two examples may not be the best possible solutions to the chosen intersection approaches, but are only illustrative examples for the application of the simplified prediction equations developed in this study.

Example - 1

This example attempts to justify the construction of median lanes on both approaches to the intersection of U.S. 52 By-Pass and S.R. 26 in Lafayette, Indiana. The U.S. 52 By-Pass is a two-lane highway in a suburban area with adequate right-of-way for median lane construction existing on both approaches to the intersection. The conditions before and after construction of the median lanes are shown in Figure 3.

The annual construction, maintenance, and interest costs were determined based on 1965 unit construction costs. No attempt was made to

→ N

SCALE 1" = 200'

BEFORE

U.S. 52 BY-PASS → S.R. 26

AFTER

FIGURE 3 - CONDITIONS BEFORE AND AFTER CONSTRUCTION OF MEDIAN LANES AT U.S. 52 BY-PASS & S.R. 26.

improve the type of signalization nor to include any cost estimate for such improvement.

The number of daylight hours of delay per year attributed to left-turning vehicles was determined based on the simplified prediction equation developed for suburban areas. The equation is stated below with the following 1965 values for the variables:

$$Y_{DS} = -620.838 + 3.505 X_{17} + 0.886 X_{26}$$

	Northbound	Southbound
X_{17}	80	32
X_{26}	1107	1107

An annual increase in traffic of three percent was assumed to evaluate variables X_{17} and X_{26} for the succeeding five and ten year periods.

The number of accidents per year caused by left-turning vehicles during the daylight hours was determined based on the simplified prediction equation developed for suburban areas. This equation is stated below with the following 1965 values for the variables:

$$Y_{AS} = 3.6203 - 1.1407 X_7 + 1.2446 X_{12} - 0.7723 X_{13} + 0.0371 X_{14}$$

	Northbound	Southbound
X_7	1	1
X_{12}	8.80	9.20
X_{13}	18.0	18.0
X_{14}	26.3	26.3

An annual increase in traffic of three percent was also assumed to evaluate variables X_{12} , X_{13} , and X_{14} for the succeeding five and ten year periods.

and the other two were given the same treatment except that they were not exposed to the *Leishmania* infection.

The 30 *Leishmania*-infected mice were divided into three groups of 10 mice each.

Group I received 10 mg/kg of dexamethasone daily for 10 days starting 24 h after the *Leishmania* injection.

Group II received 10 mg/kg of dexamethasone daily for 10 days starting 24 h after the *Leishmania* injection and 10 mg/kg of prednisolone daily for 10 days starting 24 h after the *Leishmania* injection.

Group III received 10 mg/kg of prednisolone daily for 10 days starting 24 h after the *Leishmania* injection.

At the end of the 10-day period, the mice were killed and their spleens removed and weighed.

The results are shown in Table 1. It can be seen that the control group had a significantly larger spleen than the dexamethasone-treated group.

It is interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the control group.

It is also interesting to note that the prednisolone-treated group had a significantly larger spleen than the dexamethasone-treated group.

A summary of the annual cost estimates determined for median lane construction and the resulting reduction in delay time and number of accidents is presented in Table 7. The results indicate that the construction, maintenance, and interest costs for median lanes on both approaches to the intersection of U.S. 52 By-Pass and S.R. 26 can be justified over a five-year period using 365 days per year.

Example - 2

This example attempts to justify the construction of a median lane on the northbound approach to the intersection of U.S. 31 By-Pass and Lincoln Road in Kokomo, Indiana. The U.S. 31 By-Pass is a four-lane divided highway in a suburban area with an existing median 40 feet in width. The southbound approach to the intersection already possesses a left-turn lane. The conditions before and after construction of the median lane are shown in Figure 4.

The annual construction, maintenance, and interest costs were again determined based on 1965 unit construction costs. No attempt was made to improve the type of signalization nor to include any cost estimate for such improvement.

The number of daylight hours of delay per year attributed to left-turning vehicles was determined based on the prediction equation developed for suburban areas. The simplified equation is stated below - with the following 1965 values used for the variables:

$$Y_{DS} = -620.838 + 3.505 X_{17} + 0.886 X_{26}$$

Northbound	
X_{17}	7
X_{26}	890

TABLE 7

SUMMARY COST ESTIMATES FOR EXAMPLE - 1
(U.S. 52 By-Pass & S.R. 26)

	Costs	Annual Cost in Dollars			
		1965-1969		1965-1974	
		260 Days/Yr	365 Days/Yr	260 Days/Yr	365 Days/Yr
I. Median Lanes					
A. Preparation	\$ 1,462				
B. Construction	20,822				
C. Finishing	100				
D. Signs and Maintaining Traffic	3,000				
Total Cost	25,984				
E. Maintenance and Misc. (15.0%)	3,898				
Total Cost	\$29,882				
F. Annual Cost @ 6.0%					
Interest Rate (C _{MI})		6,078	6,078	4,061	4,061
II. Cost Reduction Estimates					
A. Delay Time (C _{DS})	2,450	3,439	2,838	3,984	
B. Accidents (C _{AS})	2,284	3,206	1,894	2,659	
Total Reduction Cost (C _{DS} + C _{AS})	4,734	6,645	4,732	6,643	
Difference (C _{DS} + C _{AS}) - (C + M + I)	-1,344*	+ 567** + 671	+2,582		

* A negative difference indicates that the annual cost to install median lanes cannot be justified by the annual savings in delay and accidents to through vehicles.

** A positive difference indicates that the annual cost to install median lanes can be justified by the annual savings in delay and accidents to through vehicles

FIGURE 4 - CONDITIONS BEFORE AND AFTER CONSTRUCTION OF A
MEDIAN LANE AT U.S. 31 BY-PASS & LINCOLN ROAD.

An annual increase in traffic of three percent was assumed to evaluate variables X_{17} and X_{26} for the succeeding five and ten year periods.

The number of accidents per year caused by left-turning vehicles during the daylight hours was determined based on the simplified prediction equation developed for suburban areas. This equation is stated below with the following 1965 values used for the variables:

$$Y_{AS} = 3.6203 - 1.1407 X_7 + 1.2446 X_{12} - 0.7723 X_{13} + 0.0371 X_{14}$$

Northbound	
X_7	2
X_{12}	9.5
X_{13}	17.4
X_{14}	20.6

An annual increase in traffic of three percent was also assumed to evaluate variables X_{12} , X_{13} , and X_{14} for the succeeding five and ten year periods.

A summary of the annual cost estimates determined for median lane construction and the resulting reduction in delay time and number of accidents is presented in Table 8. The results indicate that the construction, maintenance, and interest costs for the median lane on the northbound approach to the intersection of U.S. 31 By-Pass and Lincoln Road could be justified over both the five-year and the ten-year periods using either 260 weekdays or 365 days per year.

TABLE 8

SUMMARY COST ESTIMATES FOR EXAMPLE - 2
(U. S. 31 BY-PASS & LINCOLN ROAD)

Costs	Annual Cost in Dollars			
	1965-1969		1965-1974	
	260 Days/Yr	365 Days/Yr	260 Days/Yr	365 Days/Yr
I. Median Lane				
A. Preparation	\$ 40			
B. Construction	3,521			
C. Finishing	200			
D. Signs and Maintaining Traffic	1,000			
Total Cost	4,761			
E. Maintenance and Misc. (15.0%)	714			
Total Cost	\$5,475			
F. Annual Cost @ 6.0% Interest Rate (C+M+I)	1,114	1,114	744	744
II. Cost Reduction Estimates				
A. Delay Time (C_{DS})	473	664	607	853
B. Accidents (C_{AS})	314	1,427	717	1,007
Total Reduction Cost ($C_{DS} + C_{AS}$)	1,287	2,091	1,324	1,859
Difference ($C_{DS} + C_{AS}$) - (C + M + I)	+ 173*	+ 977	+ 580	+1,115

* A positive difference indicates that the annual cost to install a median lane can be justified by the annual savings in delay and accidents to through vehicles.

RESULTS AND FINDINGS

The results and findings of this study, which evaluated the conditions on which the construction of median lanes at intersection approaches in suburban and rural areas would be warranted, are summarized in the following paragraphs.

1. The presence of a median lane substantially reduces the number of accidents and eliminates delay time to through vehicles resulting from left-turning vehicles.
2. A warrant for the construction of a median lane which relates the annual cost for construction and maintenance of a median lane to the total estimated benefits derived from a reduction in delay and in accidents for suburban and rural areas is as follows:

$$C_{DS} + C_{AS} - C + M + I$$

$$C_{DR} + C_{AR} - C + M + I$$

where C_{DS} and C_{DR} are the annual cost reduction estimates for delay time in the suburban and rural areas, respectively,

C_{AS} and C_{AR} are the annual cost reduction estimates for accidents in the suburban and rural areas, respectively, and

$C + M + I$ is the annual construction, maintenance, and interest costs for the median lane.

3. Equations were developed to predict delay times and accident rates for the weekday daylight hours for through traffic at suburban and rural intersections that resulted from left turning vehicles and the absence of median lanes.

4. Using a life of only five years, it was shown that median lanes were warranted at two example intersections, namely (Example - 1) at the intersection of U.S. 52 BY-pass and S. R. 26 in Lafayette and (Example - 2) at the intersection of U.S. 31 By-pass and Lincoln Road in Kokomo. The benefits were found to be such that when compared with the cost of a median lane, almost every intersection on a divided highway with a median of sixteen feet or more and many intersections on other four and two lane highways possess the warrants for construction of median lanes.

and nothing with much less than 10% error and from 10-40% in general.
However, given the relatively modest size of the available data
samples, it is difficult to make quantitative statements about the
bias. Although the bias is likely to be largest near the center of the
range and to decay away from the center, it is not clear how
many samples are needed to obtain a reliable characterization.

REFERENCES

1. Accident Facts, Annual Publication, National Safety Council, Chicago, 1964.
2. American Association of State Highway Officials, A Policy on Geometric Design of Rural Highways, 1954.
3. Anderson, V. L., Statistical Analyses, Class Notes for Statistic 601, September, 1962.
4. Bureau of Public Roads, Highway Capacity Manual (December 1954 Draft), Bureau of Public Roads, 1965.
5. Highway Research Board, Channelization: The Designed Highway Intersections at Grade, Special Report 74, 1962.
6. Hurd, F. W., "The Designing of Intersection Channelization," Traffic Quarterly, Columbia University Press, January, 1950.
7. Indiana Traffic Crash Facts, Indiana Office of Traffic Safety, 1964.
8. Peterson, A. O., "An analysis of Traffic Accidents on a High-Volume Highway," Thesis, Purdue University, 1965.
9. "Stepwise Regression," BMD 2R, Statistical Laboratory, Library Program, Purdue University.
10. Vey, A. H., Traffic Engineering Handbook, Institute of Traffic Engineers, 1965.
11. Woods, K. B., Highway Engineering Handbook, New York, McGraw-Hill Book Company, Inc., 1960.

