MIT 18.06 Exam 2 Solutions, Fall 2022 Johnson

Problem 1 [(5+5)+10 points]:

These two parts are answered independently:

(a) Consider the 2d "plane" S spanned by

$$a_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \ a_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

(i) Give an **orthonormal basis** for S.

Solution: We just need to do Gram-Schmidt:

$$q_1 = \frac{a_1}{\|a_1\|^2} \overline{\frac{1}{2}} \left[\begin{array}{c} 1\\1\\1\\1 \end{array} \right]$$

and

$$q_2 = \frac{a_2 - q_1 q_1^T a_2}{\| \cdots \|}^{\frac{1}{2}} = \frac{\frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}}{\| \cdots \|^{1}} = \boxed{\frac{1}{2} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}}.$$

(Although this is the most obvious approach, there are infinitely many other orthonormal bases we chould have chosen. For example, we could have done Gram-Schmidt in the opposite order, on a_2, a_1 .)

(ii) Find the **closest point** in S to the (column vector) y = [-2, 4, -6, 8].

Solution: This is just the orthogonal projection p of y onto S, which is easy to do using the orthonormal basis from (a):

$$p = q_1 q_1^T y + q_2 q_2^T y = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -1 \\ 3 \end{pmatrix}.$$

Note that we could also have computed the projection matrix $P = QQ^T = q_1q_1^T + q_2q_2^T$ and then multiplied it by y, but this is much more work (matrices require more arithmetic than vectors)! Even more work would be using $A = \begin{pmatrix} a_1 & a_2 \end{pmatrix}$ and then using $A(A^TA)^{-1}A^T$, i.e. solving the normal equations $A^TA\hat{x} = A^Ty$ and then finding $p = A\hat{x}$.

(b) Suppose that we have 100 measurements (p_k, v_k) of the volume v of a gas vs. its pressure p, and we want to fit it to a function of the form $v(p) = \frac{c_1}{p} + c_2$ for unknown constants c_1, c_2 . Write down the 2×2 system of equations you would solve to find c_1, c_2 in order to minimize the sum of the squared errors $\sum_k [v(p_k) - v_k]^2$. You can write your answer (left-and right-hand sides) as products of matrices and/or vectors, as long as you specify what each term is (in terms of the unknowns c_1, c_2 and/or the data p_1, \ldots, p_{100} and v_1, \ldots, v_{100}).

Solution: This is a least-square problem, so the answer is to solve the normal equations $A^TAc = A^Tb$ for $c = \begin{pmatrix} c_1 & c_2 \end{pmatrix}^T$ where

$$A = \begin{pmatrix} \frac{1}{p_1} & 1\\ \frac{1}{p_2} & 1\\ \vdots & \vdots\\ \frac{1}{p_{100}} & 1 \end{pmatrix} \text{ and } b = \begin{pmatrix} v_1\\ v_2\\ \vdots\\ v_{100} \end{pmatrix}$$

so that
$$Ac$$
 is the "model" $\begin{pmatrix} v(p_1) \\ v(p_2) \\ \vdots \\ v(p_{100}) \end{pmatrix}$ and b are the data we are fitting to, so that $\sum_k [v(p_k) - v_k]^2 = \|Ac - b\|^2$.

Problem 2 [4+4+4+4+4+4 points]:

These parts can be answered independently:

(a) The matrix $\frac{a_1 a_1^T}{a_1^T a_1} + \frac{a_2 a_2^T}{a_2^T a_2}$ is the projection matrix onto the span of $a_1, a_2 \in \mathbb{R}^m$ if a_1 and a_2 are (circle all true answers): independent, orthogonal, parallel, orthonormal, singular, length-1.

Solution: orthogonal or orthonormal. (They *must* be orthogonal for this to be a projection—that's the only way you can project one vector at a time via dot products. Their normalization is irrelevant because we are dividing each term by the length², but it's fine if they are normalized to length 1.)

Ideally, this problem should have specified explicitly that the **vectors** a_1, a_2 **are nonzero** (zero vectors are orthogonal to everything, including themselves), but this is implicit in the problem statement since the formula $\frac{a_1a_1^T}{a_1^Ta_1} + \frac{a_2a_2^T}{a_2^Ta_2}$ makes no sense for zero vectors $(\frac{0}{0}?)$.

(b) If \hat{x} is the least-square solution minimizing ||Ax - b|| over x, then $A\hat{x} - b$ must lie in **which** fundamental subspace of A?

Solution: $C(A)^{\perp} = N(A^T)$, i.e. the **left nullspace** of A. $A\hat{x}$ is the projection onto C(A), and the error $b - A\hat{x}$ is orthogonal to C(A).

(c) A, B are 10×3 matrices, and $b \in \mathbb{R}^{10}$. If we want to find the vector $\hat{y} \in \mathbb{R}^3$ for which $A\hat{y} - b \in C(B)^{\perp}$, then \hat{y} satisfies the 3×3 system of equations _____ (in terms of A, B, b, \hat{y}).

Solution: $C(B)^{\perp} = N(B^T)$, so we just need $B^T(A\hat{y} - b) = 0 \implies B^TA\hat{y} = B^Tb$

Note that this is very similar to how we derived the normal equations, by requiring that $A\hat{x} - b$ be orthogonal to C(A); that is, you get the normal equations if you set B = A.

(d) A, B are matrices with C(A) = C(B), and we have solved $A^T A \hat{x} = A^T b$ for \hat{x} and $B^T B \hat{y} = B^T b$ for \hat{y} . Circle statements (if any) that *must* be true: $\hat{x} = \hat{y}$, $A\hat{x} = B\hat{y}$, and/or $\hat{x}^T b = \hat{y}^T b$.

Solution: $A\hat{x} = B\hat{y}$, since these are the orthogonal projections onto C(A) = C(B); the column spaces are the same, so the projections are the same. (But the *coefficients* of the projection \hat{x} in the A basis don't need to match the coefficients \hat{y} in the B basis!)

(e) Q is a 5×3 matrix with orthonormal columns. Circle which **must** be true: ||Qx|| = ||x|| for $x \in \mathbb{R}^3$, $||Q^Ty|| = ||y||$ for $y \in \mathbb{R}^5$.

Solution: $\boxed{\|Qx\| = \|x\|}$, since $\|Qx\| = \sqrt{(Qx)^T(Qx)} = \sqrt{x^TQ^TQx}^I = \|x\|$. In contrast, $\|Q^Ty\| = \sqrt{(Q^Ty)^T(Q^Ty)} = \sqrt{y^TQQ^Ty}$, but $QQ^T \neq I$ since Q is not square—it is a 5×5 projection matrix onto the 3-dimensional subspace C(Q).

(f) If A is a 3×3 matrix with det(A) = 3, then $det[A^T A^{-1}] + det(2A) = \underline{\hspace{1cm}}$

Solution: Using the properties of determinants, we find:

$$\det[A^T A^{-1}] + \det(2A) = \underbrace{\det(A^T)}_{\det A = 3} \underbrace{\det(A^{-1})}_{(\det A)^{-1} = \frac{1}{3}} + \underbrace{\det(2A)}_{2^3 \det(A) = 24} = \boxed{25}.$$

3

Problem 3 [(3+3+3)+5 points]:

These two parts are answered independently:

(a) If A is a 10×3 matrix has an SVD $U\Sigma V^T$ with $\Sigma = \begin{pmatrix} 100 & & \\ & 10 & \\ & & 1 \end{pmatrix}$, then

(i) U is a ____ \times ___ matrix, V is a ____ \times ___ matrix, and A has rank ____.

Solution: U is a $\boxed{10\times3}$ matrix, V is a $\boxed{3\times3}$ matrix (this is the standard size of the "thin" SVD we covered in class, but these are also the only possible sizes that will give the correct 10×3 size for A!), and the rank is $\boxed{3}$ (the number of nonzero singular values $\sigma_1=100, \sigma_2=10, \sigma_3=1$.

(ii) The projection matrix onto C(A) is _____ and the projection onto $C(A^T)$ is _____ (simplest answers in terms of U, Σ, V, I).

Solution: U is an orthonormal basis for C(A), so the projection is UU^T . V is an orthonormal basis for $C(A^T)$, so the projection is VV^T , but to get full credit you should notice that V is square and hence unitary, so $VV^T = I$. (Alternatively, since A is 10×3 with full column rank, the row space is all of \mathbb{R}^3 , so the projection must be I.)

Note that we could also compute the projection onto C(A) by the formula $A(A^TA)^{-1}A^T$ if we substitute $A = U\Sigma V^T$ and use the fact that V is square and hence $V^T = V^{-1}$: $U\Sigma V^T(V\Sigma^TU^TU\Sigma V^T)^{-1}V\Sigma^TU^T = U\Sigma V^T(V^T)^{-1}\Sigma^{-2}(V)^{-1}V\Sigma U^T = UU^T$; not only is this a lot more work, but it also doesn't exploit the fact that we *know* that U is an orthonormal basis for C(A). Similarly, we could use $A^T(AA^T)^{-1}A$ to project onto $C(A^T)$ and simplify, but this is even tricker to get the algebra right with because $AA^T = U\Sigma^2U^T$ but U is not invertible (it isn't square!).

(iii) A good rank-2 approximation for A is _____ (in terms of U, V)

Solution: We get a good rank-2 approximation (in some sense the "best" rank-2 approximation) by setting the third singular value to zero, i.e.

$$\boxed{ U \left(\begin{array}{ccc} 100 & & \\ & 10 & \\ & & \mathbf{0} \end{array} \right) V^T } = \boxed{ \begin{bmatrix} 100u_1v_1^T + 10u_2v_2^T \end{bmatrix} }$$

where u_1, u_2 are the first two columns of U and v_1, v_2 are the first two columns of V.

(b) If $f(x) = (x^T y)^2$ for $x, y \in \mathbb{R}^n$, then give a formula for ∇f (in terms of y and/or x).

Solution: Using the product rule,

$$df = d(x^{T}y)(x^{T}y) + (x^{T}y)d(x^{T}y) = 2(x^{T}y)(dx^{T}y) = \underbrace{2(x^{T}y)y^{T}}_{(\nabla f)^{T}}dx$$

so $\nabla f = 2(x^T y)y$. Alternatively, we could have used the power rule $df = 2(x^T y)d(x^T y)$.

Note that the parentheses are important here. If we write it without parentheses, we might be tempted to write $2x^Tyy = 2x^Ty^2$, but this is nonsense—you can't multiply $yy = y^2$ because y is a column vector. To get an expression that is associative (i.e., which works regardless of where/whether we put parentheses), we would have to write the gradient as something like $\nabla f = 2yx^Ty$ or $\nabla f = 2yy^Tx$, using the fact that $x^Ty = y^Tx$ is a scalar that we can move around freely.

4