Homework

- Use the CliffWalking domain from OpenAl gym
 - See Example 6.6, pg 132 in Sutton and Barto [2018]
- Modify the TD(λ) algorithm presented to implement SARSA(λ)
 - The only difference here is that there is an eligibility trace for each state-action pair!
 - Use ε -greedy policies with $\varepsilon=0.1$ and a learning rate of $\alpha=0.5$
 - Run SARSA(λ) on the domain for $\lambda = \{0, 0.3, 0.5\}$ for 200 episodes
 - Record the return for each episode
 - · Average your returns over 100 runs

By next week's lecture, submit on Moodle:

- 1. Perform a single run of the algorithm. After each episode plot the value function (take $\max Q(s,a)$) learned so far as a heatmap for each λ side by side. This should result in 200 separate plots/images. Turn these images into an animation/video and submit it.
- 2. A combined plot of average return over time for the different values of λ . Include error bars/shading indicating variance in your results
- 3. Your code