4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in <u>paper</u>.

1 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2	$0.2^2 \text{ or } 0.7 \times 0.1$: M1		
	=0.18 AG	A1 3	no errors seen NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0		
(ii)	$0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01$	M1	$\geq 2 \text{ terms correct (excl } 0 \times 0.49)$		
			÷ 5 (or 4 or 10 etc): M0		
	= 0.8 oe	A1			
	$0.28 + 2^{2} \times 0.18 + 3^{2} \times 0.04 + 4^{2} \times 0.01$ - "0.8" ²	M1	≥ 2 terms correct (excl $0^2 \times 0.49$)		
	- 0.8 = 0.88 oe	M1 A1 5	dep +ve result cao		
	0.00 00	711 3	$\Sigma(x-\mu)^2$: 2 terms: M1; 5 terms M2		
			$0.8^2 \times 0.49 + 0.2^2 \times 0.28 + 1.2^2 \times 0.18 + 2.2^2 \times 0.04 + 3.2^2 \times 0.01$		
T-4-1		0	SC Use original table, 0.4:B1 0.44: B1		
Total 2(i)(a)	8736 9 _ 202 × 245.3	8	correct sub in any correct formula for b		
2(1)(a)	$8736.9 - \frac{202 \times 243.3}{7}$ 1658 24	M1	T		
	$\frac{7}{202^2}$ or $\frac{1470.86}{1}$		$eg \frac{236.8921}{210.1249}$		
	$\frac{8/36.9 - \frac{7}{7}}{7300 - \frac{202^2}{7}} \text{ or } \frac{1658.24}{1470.86}$				
	= 1.127 $(= 1.13 AG)$	A1 2	1 107		
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1	must see 1.127; 1.127 alone: M1A1 or $a = \frac{245.3}{7} - 1.13 \times \frac{202}{7}$		
(b)	$y = \frac{77 - 1.13(x - \frac{77}{7})}{y = 1.1x + 2.5 \text{ (or } 2.4) \text{ or } y = 1.13x + 2.43}$	A1 2	$\begin{array}{cccc} \text{of } a = & 77 - 1.13 & 77 \\ 2 \text{ sfs suff.} \end{array}$		
	(01 2.1) 01 y 11.13% 12.13	111 2	(exact: $y = 1.127399x + 2.50934$)		
(ii)(a)	$(1.1() \times 30 + 2.5()) = 35.5 \text{ to } 36.5$	B1f 1			
(b)	$(1.1() \times 100 + 2.5()) = 112.4 \text{ to } 115.6$	B1f 1			
(iii)	(a) Reliable	B1	Both reliable: B1 (a) more reliable than (b) B1 because (a) within data		
	(b) Unreliable because extrapolated	B1 2	or (b) outside data B1		
	(1)		Ignore extras		
Total		8	Townson downson		
3(i)(a)	Geo stated	M1	or impl. by $(^{7}/_{8})^{n}(^{1}/_{8})$ or $(^{1}/_{8})^{n}(^{7}/_{8})$ alone		
	$\binom{7/8}{8}^2 \binom{1}{8}$ $\binom{49}{512}$ or 0.0957 (3 sfs)	M1 A1 3			
(b)	$(\frac{7}{18})^3$ alone	M2	or $1-(^{1}/_{8}+^{7}/_{8}\times^{1}/_{8}+(^{7}/_{8})^{2}\times^{1}/_{8})$: M2		
			one term incorrect, omit or extra: M1		
	$\frac{343}{512}$ or 0.670 (3 sfs) allow 0.67	A 1 2	$1 - (\frac{7}{8})^3$ or $(\frac{7}{8})^2$ alone: M1		
(ii)	343/ ₅₁₂ or 0.670 (3 sfs) allow 0.67	A1 3 B1 1			
(iii)	Binomial stated or implied	M1	eg by $(^{7}/_{8})^{a}(^{1}/_{8})^{b}$ $(a+b=15, a,b \neq 1)$, not just $^{n}C_{r}$		
	$^{15}\text{C}_2(^{7}/_8)^{13}(^{1}/_8)^2$	M1			
(T) ()	= 0.289 (3 sfs)	A1 3			
Total 4 (i)	1 2 3 4 5 or 5 4 3 2 1	10 M1	attempt ranks		
• (1)	3 5 4 1 2 3 1 2 5 3	A1	correct ranks		
	$\sum d^2$ (= 32)	M1dep	S_{xx} or $S_{yy} = 55 - 15^2 / _5 (=10)$ or $S_{yy} = 39 - 15^2 / _5 (=-6)$		
	$1 - \frac{6 \times 32}{5(25-1)}$	M1dep	$^{-6}/\sqrt{(10\times10)}$		
	- 0.6	A 1 - 5			
L	= - 0.6	A1 5	J		

(ii)	1 & 3	Blind	ft if $-1 < (i) < -0.9$, ans 1 & 2
	Largest neg r_s or large neg r_s or strong neg corr'n or close(st) to -1 or lowest r_s	B1dep	NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
		2	
Total		7	
5 (i)	68 75 – 59 = 16	B1 M1 A1 3	attempt 6 th & 18 th or 58-60, 74-76 & subtr must be from 75 – 59
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value	B1 1	NOT: by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class		NOT: shows freqs shows results more clearly B&W does not show freqs
	can find (or easier to read) frequs can find mean	B1	NOT. DeW socients commons
	Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR)	D1 0	NOT: B&W easier to compare B&W shows spread or variance or skew B&W shows highest & lowest

B1 2

В1

B1

8

Ignore extras

Restart mean or mean & sd:

Assume in order: Adv, Disadv, unless told Allow disadv of B&W for adv of S&L

& vice versa

68.1 or 68.087 & 9.7 or 9.73 B1 only

B&W shows med (or Qs or IQR) B&W easier to compare meds

NOT by restart

NOT by restart

m = 68.1

sd = 9.7 (or same)

(iv)

Total

<i>(</i> (*) ()		3.61	111 4n 0 3n · · · · · · · · · · · · · · · · · ·		
6 (i) (a)	8! - 40220	M1	Allow ⁴ P ₄ & ³ P ₃ instead of		
(I-)	$= 40320$ $\frac{4}{8} \times \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2}$	A1 2	3! & 4! thro'out Q6		
(b)		M1	$4! \times 4! \div 8!$ $4! \times 4! + 4! \times 4!$		
	$\times 2$	M1dep	×2 ÷8!		
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1 3	allow 1 – above for M1 only		
	- / ₃₅ 01 0.0280 (3 SIS)	Al 3	oe, eg $\frac{1152}{40320}$		
(ii)(a)	4! × 4!	M1	allow 4! × 4! × 2: M1		
. , , ,	= 576	A1 2			
(b)	$^{1}/_{16}$ or 0.0625	B1 1			
(c)	Separated by 5 or 6 qus stated or illus	M1	allow 5 only or 6 only or (4, 5 or 6)		
			can be impl by next M2 or M1		
	$1/_4 \times 1/_4 \times 3 \text{ or } 1/_{16} \times 3$	M2	$3! \times 3! \times 3$		
	$(^{1}/_{4} \times ^{1}/_{4} \text{ or } ^{1}/_{16} \text{ alone or } \times (2 \text{ or } 6):$		$(3! \times 3! \text{ alone or } \times (2 \text{ or } 6); \text{ or } (3! + 3!) \times 3: \text{M1})$		
	M1)		(÷ 576)		
	3.	A1 4			
	³ / ₁₆ or 0.1875 or 0.188		correct ans, but clearly B, J sep by 4: M0M2A0		
			1- P(sep by 0, 1, 2, 3, (4)) M1		
			$1 - 1 (3cp by 0, 1, 2, 3, (4))$ $1 - (\frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{2})$		
			or $1-(\frac{1}{4}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{2})$ or $1-(\frac{1}{4}\times\frac{1}{4}+\frac{1}{2}\times\frac{1}{4}+\frac{3}{4}\times\frac{1}{4}+1\times\frac{1}{4}+\frac{3}{4}\times\frac{1}{4})$ M2		
			(one omit: M1)		
			(one onni: ivii)		
Total		12			
	T	1			
7 (i)	Binomial	B1			
	n = 12, p = 0.1	B1	B(12, 0.1): B2		
	Plates (or seconds) independent oe	B1	NOT: batches indep		
	Prob of fault same for each plate oe	B1 4	Comments must be in context		
			Ignore incorrect or irrelevant		
(ii)(a)	$0.9744 - 0.8891 \text{ or } {}^{12}C_3 \times 0.9^9 \times 0.1^3$	M1			
()(••)	= 0.0852 or 0.0853 (3 sfs)	A1 2			
(b)	$1 - 0.2824$ or $1 - 0.9^{12}$	M1	allow 1 – 0.6590 or 1 – 0.9 ¹¹		
(·-)	=0.718 (3 sfs)	A1 2			
(iii)	"0.718" and 1 – "0.718" used	B1	ft (b) for B1M1M1		
	$(1-0.718)^4 + 4(1-0.718)^3 \times 0.718$				
	$+ {}^{4}\text{C}_{2}(1-0.718)^{2} \times 0.718^{2}$	M2	M1 for any one term correct		
			(eg opp tail or no coeffs)		
			1 – P(3 or 4) follow similar scheme M2 or M1		
			1 - correct wking (= 0.623) B1M2		
		1			

8 (i)	$^{1}/_{6} + 3 \times (^{1}/_{6})^{2}$	M2		or $3 \times ({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + ({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + 2({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + 4({}^{1}/_{6})^{2}$	
	•			or $\frac{1}{6} + 4(\frac{1}{6})^2$	M1
	$= \frac{1}{4}$	A 1	3		
(ii)	1/3	B1	1		
(iii)	3 routes clearly implied	M1			
	out of 18 possible (equiprobable) routes	M1		$\int or^{1}/_{3} \times {}^{1}/_{6} \times 3$	M2
				or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times 3$ or $\frac{1}{3} \times \frac{1}{3} \times 3$ or $\frac{1}{4}$ -	$^{1}/_{6}$ M1
				but $^{1}/_{6} \times ^{1}/_{6} \times 2$	M0
				$\frac{(\frac{1}{6})^2 \times 3}{\frac{1}{2}}$ or $\frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}}$ or $\frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}}$ oe	M2
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{prob}{\frac{1}{2}}$	M1
				Whatever 1 st , only one possibility on 2 nd	M2
				$^{1}/_{6}$, no wking M1M	[1 A 1
	1/6			¹ / ₁₂ , no wking	M0
	v	A1	3		
Total		7			

Total 72 marks