PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 231/20, 401/12, A01N 43/56

A1

(11) International Publication Number:

WO 97/41106

(43) International Publication Date:

6 November 1997 (06.11.97)

(21) International Application Number:

PCT/JP97/01457

(22) International Filing Date:

25 April 1997 (25.04.97)

(74) Agents: YAMAMOTO, Ryozo et al.; Torimoto Kogyo Building, 38, Kanda-Higashimatsushitacho, Chiyoda-ku, Tokyo

101 (JP).

(30) Priority Data:

8/130879 8/227767

26 April 1996 (26.04.96)

9 August 1996 (09.08.96) JP (81) Designated States: BG, CA, CN, CZ, HU, KR, MX, PL, RO, RU, SI, SK, US, YU, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Applicant (for all designated States except US): ISHIHARA SANGYO KAISHA LTD. [JP/JP]; 3-15, Edobori 1-chome, Nishi-ku, Osaka-shi, Osaka 550 (JP).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MURAI, Shigeo [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP). KIKU-GAWA, Hiroshi [IP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsushi, Shiga 525 (JP). NAKAYAMA, Hitoshi [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome. Kusatsu-shi, Shiga 525 (JP). SANO, Makiko [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsu-shi, Shiga 525 (JP). ISOGAI, Akihiko [JP/JP]; Ishihara Sangyo Kaisha Ltd. Chuo Kenkyusho, 3-1, Nishi-shibukawa 2-chome, Kusatsushi, Shiga 525 (JP).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PYRAZOLE COMPOUNDS, PROCESSES FOR THEIR PRODUCTION AND HERBICIDES CONTAINING THEM

(57) Abstract

A pyrazole compound of formula (I) or its salt wherein R1 is an alkyl group, R2 is a hydrogen atom, a methyl group,
-A-R3, a phenyl group which may be
substituted, a pyridyl group which may
be substituted, or an allyl group which is substituted by a phenyl group, A is -SO₂-, -CO-, -CH(R₆)- or -CH(R₇)CO-, R₃ is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group (X)n(1)

which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R₆ and R₇ is a hydrogen atom or an alkyl group, X is a hydrogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, -SO2N(R8)R9, -N(R10)SO2R11, -CH2S(O)qR12 or -OSO2R13, each of R8, R9, R10, R11, R12 and R13 is an alkyl group, Z is an alkyl group, 1 is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when 1 is at least 2, a plurality of Z may be the same or different, and when n is at least 2, a plurality of X may be the same or different.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tqjikistan
Turkmenistan
Turkey
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

SI
SK
SN
SZ
TD
TG
TJ
TM
TR
TT
UA
UG
US
VN
YU
ZW

AL	Albania	ES	Spain	LS	Lesotno
AM	Armenia	FI	Finland	LT	Lithuania
AT	Austria	FR	Prance	ເປ	Luxembourg
AU	Australia	GA	Gabon	LV	Larvin
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova
BB	Barbados	GH	Ghana	MG	Madagascar
BE	Belgium	GN	Guinea	MK	The former Yugoslav
BF	Burkina Faso	GR	Greece		Republic of Macedonia
BG	Bulgaria	HU	Hungary	ML	Meli
BJ	Benin	IE.	treland	MN	Mongolia
BR	Brazil	IL	Israel	MR	Mauritania
BY	Belarus	IS	Iceland	MW	Malawi
CA	Canada	IT	Raly	MX	Mexico
CF	Central African Republic	JP	Japan	NE	Niger
CG	Congo	KE	Kenya	NL	Netherlands
CH	Switzerland	KG	Kyrgyzstan	NO	Norway
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zcaland
CM	Cameroon		Republic of Korea	PL	Poland
CN	China	KR	Republic of Korea	PT	Portugai
CU	Cuba	KZ	Kazakstan	RO	Romania
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation
DE	Germany	u	Liechtenstein	SD	Sudan
DK	Denmark	LK	Sri Lanka	SE	Sweden
BE	Estonia	LR	Liberia	SG	Singapore
RE	Estonia	LR	Liberia	SG	Singapore

1

DESCRIPTION

PYRAZOLE COMPOUNDS, PROCESSES FOR THEIR PRODUCTION AND HERBICIDES CONTAINING THEM

TECHNICAL FIELD

The present invention relates to novel pyrazole compounds useful as active ingredients for herbicides.

5

25

BACKGROUND ART

UK 2002375A and EP 282944A disclose pyrazole

derivatives having various substituents at the 3-position of a pyrazole ring. However, the pyrazole compounds of the present invention are clearly distinguished from such derivatives in that they have a cycloalkyl group substituted at the 3-position of a pyrazole ring.

15 Further, EP 638555A discloses pyrazole glycolic acid amide derivatives having various substituents at the 3-and 4-positions of a pyrazole ring. However, the pyrazole compounds of the present invention are clearly distinguished from such derivatives in that they have a substituted benzoyl group substituted at the 4-position of a pyrazole ring.

DISCLOSURE OF THE INVENTION

The present inventors have conducted various studies paying attention to pyrazole compounds to find out an excellent herbicide and as a result, have accomplished the present invention. Namely, the present invention provides novel pyrazole compounds of the formula (I) or

2

their salts:

5

10

15

20

25

$$(Z) \longrightarrow (X)_{n}$$

$$(X)_{n}$$

$$(X)_{n}$$

$$(X)_{n}$$

$$(X)_{n}$$

wherein R₁ is an alkyl group, R₂ is a hydrogen atom, a methyl group, -A-R3, a phenyl group which may be substituted, a pyridyl group which may be substituted, or an allyl group which is substituted by a phenyl group, A is $-SO_2-$, -CO-, $-CH(R_6)-$ or $-CH(R_7)CO-$, R_3 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R₆ and R₇ is a hydrogen atom or an alkyl group, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, Z is an alkyl group, 1 is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when 1 is at least 2, a plurality of 2 may be the same or different, and when n is at least 2, a

3

plurality of X may be the same or different; processes for their production; herbicides containing them; and novel intermediate compounds useful for producing them.

Now, the present invention will be described in detail with reference to the preferred embodiments.

10

The alkyl group or the alkyl moiety for R_1 and R_3 may be a C_{1-10} , preferably C_{1-5} , linear or branched alkyl group, and the alkyl group for R_6 and R_7 may be a C_{1-2} alkyl group. The alkyl group or the alkyl moiety for R_8 , R_9 , R_{10} , R_{11} , R_{12} , R_{13} , X and Z may be a C_{1-4} linear or branched alkyl group. Specific examples of such an alkyl group or moiety include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, octyl and decyl. The alkenyl group for R_3 may be a C_{2-10} linear or branched alkenyl group, such as vinyl, allyl, butadienyl or isopropenyl. The alkynyl group for R_3 may be a C_{2-10} linear or branched alkynyl group, such as ethynyl, propynyl or 2-penten-4-ynyl.

The substituent for the phenyl group which may be substituted or the pyridyl group which may be substituted, for R_2 , may be halogen, C_{1-4} haloalkyl or nitro. The number of substituents may be one or more, and when the number is at least 2, a plurality of such substituents may be the same or different.

The substituent for the alkyl which may be substituted, the alkenyl which may be substituted, the alkynyl which may be substituted, or the alkoxy group

4

which may be substituted, for R_3 , may be halogen, C_{1-4} alkoxy, C_{1-6} alkoxycarbonyl or cyano. The number of substituents may be one or more, and if it is at least 2, a plurality of such substituents may be the same or different.

The substituent for the phenyl group which may be substituted, for R_3 , may be halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{1-4} alkoxy, nitro or cyano. The number of substituents may be one or more, and if it is at least 2, a plurality of such substituents may be the same or different.

10

15

20

25

The halogen atom for X and the halogen as the substituent contained in R_2 , R_3 and X, may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom. The number of halogen atoms as substituents, may be one or more, and if it is at least 2, a plurality of halogen atoms may be the same or different.

Among pyrazole compounds of the formula (I), a compound wherein R_2 is a hydrogen atom, is capable of forming a salt. The salt may be any salt so long as it is agriculturally acceptable, and it may, for example, be an alkali metal salt such as a sodium salt or a potassium salt, an alkaline earth metal salt such as a magnesium salt or a calcium salt, or an ammonium salt such as a dimethylamine salt or a triethylamine salt.

The pyrazole compounds of the formula (I) or their salts (hereinafter referred to as the compounds of the

present invention) can be prepared in accordance with the following reactions (A) to (E) and conventional methods for producing salts.

(A) When R_2 is a hydrogen atom:

(B) When R_2 is a hydrogen atom:

(C) When R_2 is a hydrogen atom:

Condensation

(II) + HOOC $(X)_B$ reaction

(I - 1)

(D) When R_2 is a hydrogen atom:

(11)
$$\div$$
 T $\xrightarrow{(X)}$ \div CO $\xrightarrow{(I-1)}$

(E) When R_2 is other than a hydrogen atom:

(I-1)
$$\div$$
 Y-R₂'

(VII)

(Z) $\stackrel{?}{\iota}$

Condensation reaction

N
N
O-R₂'

(1-2)

Among the compounds of the present invention, those having certain predetermined substituents can be prepared in accordance with the following reactions (F) to (G) and conventional methods for preparing salts.

 $_{5}$ (F) When $_{2}$ is a hydrogen atom, and (X)n contains at least one alkylsulfinyl or alkylsulfonyl group:

PCT/JP97/01457 WO 97/41106

8

(G) When R_2 is other than a hydrogen atom, and (X)n contains at least one alkylsulfinyl or alkylsulfonyl group:

(Z)
$$\stackrel{\circ}{\downarrow}$$
 $\stackrel{\circ}{\downarrow}$ $\stackrel{\circ}{\downarrow}$

Now, the above reaction (A) will be described. In the reaction (A), R_1 , X, Z, l and n are as defined above, and Y is a halogen atom.

20

25

The condensation reaction in the reaction (A) can be carried out, if necessary, in the presence of a base. As such a base, one or more members may be suitably selected for use from carbonates such as potassium carbonate and sodium carbonate; hydrogencarbonates such as potassium hydrogencarbonate; metal hydrides such as potassium hydride and sodium hydride;

amines such as monomethylamine, dimethylamine and triethylamine; and pyridines such as pyridine and 4-dimethylaminopyridine.

Further, the condensation reaction in the reaction (A) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may be suitably selected for use from aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; cyclic or noncyclic aliphatic 10 hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; esters such as methyl acetate and ethyl acetate; polar aprotic 15 solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, Nmethylpyrrolidone, pyridine and hexamethylphosphoric triamide; nitriles such as acetonitrile, propionitrile 20 and acrylonitrile; ketones such as acetone and methyl ethyl ketone; and water.

Further, the condensation reaction in the reaction

(A) can be carried out, if necessary, in the presence of a phase transfer catalyst. As such a phase transfer catalyst, one or more members may be suitably selected for use from e.g. benzyltriethylammonium chloride, benzyltriethylammonium bromide, tetraethylammonium

25

10

chloride and tetraethylammonium bromide.

10

15

20

25

The reaction temperature of the condensation reaction in the reaction (A) is usually from 0 to 250°C, preferably from 15 to 150°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

The compound of the formula (IV) which can be produced by the condensation reaction in this reaction (A), is a novel intermediate compound useful for producing the compounds of the present invention.

The rearrangement reaction in the reaction (A) comprises the following two steps i.e. (1) a rearrangement reaction step and (2) a pH adjusting reaction step. The rearrangement reaction step is carried out usually in the presence of a base. As such a base, one or more members may be suitably selected for use from carbonates such as potassium carbonate and sodium carbonate; and calcium hydroxide. The base is used usually in an amount of from 0.5 to 5 mols per mol of the compound of the formula (IV).

Further, the rearrangement reaction step of the rearrangement reaction in the reaction (A) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may suitably be selected for use from aromatic hydrocarbons such as benzene, toluene, xylene and

11

chlorobenzene; ethers such as dioxane, tetrahydrofuran and diethyl ether; and polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylforamide, N-methylpyrrolidone, pyridine and hexamethylphosphoric triamide.

The rearrangement reaction step of the rearrangement reaction in the reaction (A) is preferably carried out under an azeotropic dehydrating condition, whereby the rearrangement reaction will effectively proceed. This is one of preferred embodiments of the present invention. By the rearrangement reaction step, a salt of the compound of the formula (I) is produced, and a method for producing such a salt is also one of embodiments of the present invention. Further, a compound of the abovementioned formula (I-2) can be produced by reacting a salt of the compound of the above formula (I) or a reaction mixture containing such a salt, obtained by this rearrangement reaction step, with a compound of the above formula (VII), under the reaction conditions for the reaction (D) which will be described hereinafter. This is also one of embodiments of the present invention.

10

15

20

25

The reaction temperature in the rearrangement reaction step is usually from 50 to 250°C, preferably from 50 to 150°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.5 to 24 hours.

The pH adjusting reaction step of the rearrangement reaction in the reaction (A) is a reaction to adjust the

12

pH value to at most 7, which is carried out usually in the presence of an acidic substance and water. As such an acidic substance, one or more members may suitably be selected for use from inorganic acids such as hydrochloric acid and sulfuric acid; and organic acids such as acetic acid.

The pH adjusting reaction step of the rearrangement reaction in the reaction (A) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may be suitably selected for use from those mentioned in the description of the rearrangement reaction step as the preceding step.

10

15

20

25

The pH adjusting reaction step of the rearrangement reaction in the reaction (A) may be carried out after isolating the reaction product obtained by the rearrangement reaction step as the preceding step, in accordance with a conventional method, or may be carried out in one pot by using the reaction mixture obtained by the rearrangement reaction step, as it is. When it is carried out in one pot, it is carried out by adding and reacting an acidic substance and water to the reaction mixture obtained by the rearrangement reaction step as the preceding step.

The reaction temperature for the pH adjusting reaction step is usually from 0 to 100°C, preferably from

13

0 to 60°C.

10

25

Now, the above-mentioned reaction (B) will be described. In the reaction (B), R₁, Z, l, n and (II) are as defined above, and X' is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, provided that when n is at least 2, a plurality of X' may be the same or different.

The condensation reaction in the reaction (B) is carried out usually in the presence of a Lewis acid. As such a Lewis acid, one or more members may suitably be selected for use from e.g. dry aluminum chloride and dry aluminum bromide.

Further, the condensation reaction in the reaction

(B) can be carried out, if necessary, in the presence of
a solvent. As such a solvent, any solvent may be used so
long as it is a solvent inert to the reaction, and one or
more members may suitably be selected for use from
halogenated aliphatic hydrocarbons such as carbon
tetrachloride, methylene chloride, chloroform,
dichloromethane, and dichloroethane.

The reaction temperature for the condensation reaction in the reaction (B) is usually from 0 to 80°C, and the reaction time is usually from 0.1 to 24 hours, preferably from 0.1 to 10 hours.

The hydrolytic reaction in the reaction (B) is carried out usually in the presence of an acidic

14

substance. As such an acidic substance, one or more members may suitably be selected for use from e.g. inorganic acids such as hydrochloric acid and sulfuric acid.

5

10

15

20

The hydrolytic reaction in the reaction (B) can be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may suitably be selected for use among those exemplified in the description of the condensation reaction as the preceding reaction.

The hydrolytic reaction in the reaction (B) may be carried out after isolating the reaction product obtained by the condensation reaction as the preceding reaction, in accordance with a conventional method, or may be carried out in one pot using the reaction mixture obtained by the condensation reaction as it is. In the case where it is carried out in one pot, post treatment such as removal of the Lewis acid may be applied, if necessary, to the reaction mixture obtained by the condensation reaction as the preceding reaction, and the acidic substance and water are added thereto to carry out the reaction.

The reaction temperature for the hydrolytic reaction
in the reaction (B) is usually from 20 to 100°C, and the
reaction time is usually from 0.1 to 24 hours, preferably
from 0.1 to 10 hours.

15

Now, the above-mentioned reaction (C) will be described. In the reaction (C), X, n, (II) and (I-1) are as defined above.

The condensation reaction in the reaction (C) is carried out usually in the presence of a condensing agent and a solvent. As such a condensing agent, N,N'-dicyclohexylcarbodiimide may, for example, be mentioned, and as such a solvent, any solvent may be used so long as it is a solvent inert to the reaction, and one or more members may suitably be selected for use among alcohols such as tert-butyl alcohol and tert-amyl alcohol.

10

20

The condensation reaction in the reaction (C) can be carried out, if necessary, in the presence of a base. As such a base, one or more members may suitably be selected for use from e.g. carbonates such as potassium carbonate and sodium carbonate.

The reaction temperature for the condensation reaction in the reaction (C) is usually from 50 to 100°C, and the reaction time is usually from 0.1 to 24 hours, preferably from 0.5 to 20 hours.

Now, the above-mentioned reaction (D) will be described. In the reaction (D), X, n, (II) and (I-1) are as defined above, and T is a chlorine atom, a bromine atom or an iodine atom.

25 The reaction (D) is carried out usually in the presence of a base and a metal catalyst. As a base, one or more members may suitably be selected for use from

16

e.q. alkali metals such as sodium and potassium; alkali metal alkolates such as sodium methylate, sodium ethylate and potassium tert-butylate; carbonates such as potassium carbonate and sodium carbonate; hydrogencarbonates such as potassium hydrogencarbonate and sodium hydrogencarbonate; metal hydroxides such as potassium hydroxide and sodium hydroxide; metal hydrides such as potassium hydride and sodium hydride; amines such as monomethylamine, dimethylamine and triethylamine; pyridines such as pyridine and 4-dimethylaminopyridine; and N,N-dimethylaniline. As the metal catalyst, a transition metal such as palladium, rhodium, ruthenium or platinum, may be mentioned. The ligand used against the metal of the metal catalyst is not particularly limited, but an organophosphine compound such as triphenylphosphine or tri-n-butylphosphine is preferred.

10

15

20

25

The reaction (D) may be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may suitably be selected for use among aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; esters such as methyl acetate and

17

ethyl acetate; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone and pyridine; nitriles such as acetonitrile, propionitrile and acrylonitrile; ketones such as acetone and methyl ethyl ketone; amines such as monomethylamine, dimethylamine and triethylamine; alcohols such as methanol, ethanol, propanol, and tert-butanol; organic acids such as acetic acid and propionic acid; aqueous ammonia; and water.

The reaction temperature for the reaction (D) is usually from 30 to 300°C, preferably from 50 to 200°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 1 to 24 hours.

Now, the above-mentioned reaction (E) will be described. In the reaction (E), R_1 , X, Y, Z, l, n and (I-1) are as defined above, and R_2 ' is a methyl group, $-A-R_3$, a phenyl group which may be substituted, a pyridyl group which may be substituted or an allyl group which is substituted by a phenyl group (wherein A and R_3 are as defined above).

The condensation reaction in the reaction (E) may be carried out, if necessary, in the presence of a base. As such a base, one or more members may suitably be selected for use from carbonates such as potassium carbonate and sodium carbonate; hydrogencarbonates such as potassium hydrogencarbonate; metal hydroxides such as potassium hydroxide and sodium

25

18

hydroxide; metal hydrides such as potassium hydride and sodium hydride; amines such a monomethylamine, dimethylamine and triethylamine; and pyridines such as pyridine and 4-dimethylaminopyridine.

The condensation reaction in the reaction (E) may be 5 carried out, if necessary, in the presence of a solvent . As such a solvent, any solvent may be used so long as it is inert to the reaction. For example, one or more members may suitably be selected for use from aromatic hydrocarbons such as benzene, toluene, xylene and 10 chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane, trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; esters such 15 as methyl acetate and ethyl acetate; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, Nmethylpyrrolidone, pyridine and hexamethylphosphoric triamide; nitriles such as acetonitrile, propionitrile 20 and acrylonitrile; ketones such as acetone and methyl ethyl ketone; and water.

The condensation reaction in the reaction (E) may be carried out, if necessary, in the presence of a phase transfer catalyst and/or potassium iodide. As such a phase transfer catalyst, one or more members may suitably be selected for use among those mentioned for the

19

condensation reaction in the above-mentioned reaction (A).

The reaction temperature for the condensation reaction in the reaction (E) is usually from 0 to 200°C, preferably from 15 to 150°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

Now, the above-mentioned reaction (F) will be described. In the reaction (F), R1, X, Z, 1 and n are as defined above, R₅ is an alkyl group, preferably a C₁₋₄ 10 alkyl group, X" is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, -SO2N(Rg)Rg, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_q$, R_{12} or $-OSO_2R_{13}$, wherein R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} are as defined above, m is 1 or 2, and q' is 1 or 2. In the reaction (F), the oxidation reaction for producing (IV-2) from (IV-1) and the oxidation reaction for producing (I-4) from (I-5) (hereinafter referred to simply as the oxidation 20 reaction) are carried out usually in the presence of an oxidizing agent and a solvent. As such an oxidizing agent, one or more members may suitably be selected for use from e.g. m-chloroperbenzoic acid and hydrogen peroxide. As the solvent, any solvent may be used so

25 long as it is a solvent inert to the reaction. For example, one or more members may suitably be selected for

20

use among those mentioned for the condensation reaction in the above-mentioned reaction (B).

The reaction temperature for the oxidation reaction in the reaction (F) is usually from 0 to 80°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

The rearrangement reaction in the reaction (F) can be carried out in accordance with the rearrangement reaction in the above-mentioned reaction (A).

Now, the above-mentioned reaction (G) will be described. In the reaction (G), R_1 , R_2 ', R_5 , X, X", Z, 1, m and n are as defined above.

15

20

The oxidation reaction in the reaction (G) can be carried out in accordance with the oxidation reaction in the above-mentioned reaction (F).

The compound of the formula (II) in the above reactions (A), (B), (C) and (D) is a novel intermediate compound which is useful for producing the compounds of the present invention and may be produced, for example, by a method such as the reaction (H).

(H)

Now, the reaction (H) will be described. In the reaction (H), R_1 , Y, Z and l are as defined above, and R_4 is a C_{1-6} alkyl group.

In the reaction (H), the cyclization reaction for producing (II) from (VIII) and the cyclization reaction for producing (IX) from (VIII) (hereinafter referred to simply as the cyclization reaction) may be carried out, if necessary, in the presence of a solvent. As such a solvent, any solvent may be used so long as it is a solvent inert to the reaction. For example, one or more members may suitably be selected for use from aromatic

WO 97/41106

hydrocarbons such as benzene, toluene, xylene and chlorobenzene; cyclic or noncyclic aliphatic hydrocarbons such as carbon tetrachloride, methylene chloride, chloroform, dichloromethane, dichloroethane,

22

PCT/JP97/01457

trichloroethane, hexane and cyclohexane; ethers such as dioxane, tetrahydrofuran and diethyl ether; polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone pyridine and hexamethylphosphoric triamide; nitriles such as acetonitrile, propionitrile and acrylonitrile; and water.

The cyclization reaction in the reaction (H) may be carried out, if necessary, under an azeotropic dehydration condition.

The reaction temperature for the cyclization reaction in the reaction (H) is usually from 0 to 200°C, preferably from 20 to 150°C, and the reaction time is usually from 0.1 to 48 hours, preferably from 0.1 to 24 hours.

The condensation reaction in the reaction (H) is carried out usually in the presence of a base and a solvent. As the base, one or more members may suitably be selected for use from carbonates such as potassium carbonate and sodium carbonate; and metal hydrides such as potassium hydride and sodium hydride. Particularly preferred is potassium carbonate.

As the solvent, any solvent may be used so long as it

23

is a solvent inert to the reaction. For example, one or more members may suitably be selected for use from ethers such as dioxane, tetrahydrofuran and diethyl ether; and polar aprotic solvents such as dimethylsulfoxide, sulfolane, dimethylacetamide, dimethylformamide, N-methylpyrrolidone, pyridine and hexamethylphosphoric triamide. Particularly preferred is hexamethylphosphoric triamide.

The reaction temperature for the condensation

10 reaction in the reaction (H) is usually from -20 to
+150°C, preferably from -15 to +60°C, and the reaction
time is usually from 0.1 to 24 hours, preferably from 0.1
to 10 hours.

The compound of the formula (IX) which can be prepared by the cyclization reaction in this reaction (H), is a novel intermediate compound which is useful for producing the compounds of the present invention.

15

20

25

The compounds of the present invention and the intermediate compounds useful for the production thereof, have the following isomers. Such various isomers (the respective isomers and mixtures of such isomers) are within the scope of the present invention.

(1) Among the compounds of the present invention represented by the above formula (I), compounds wherein R₂ is a hydrogen atom, and intermediate compounds represented by the above formulas (II) and (IX), have the following tautomers, respectively.

$$(Z) \stackrel{(X)_{n}}{\downarrow} \stackrel{(Z)}{\downarrow} \stackrel{$$

wherein R_1 , X, Z, l and n are as defined above.

5

(2) Among the compounds of the present invention represented by the above formula (I) and the intermediate compounds represented by the above formulas (II), (IV), (VIII) and (IX), compounds wherein 1 is at least 1, have optical isomers. Some examples will be given below, but it should be understood that the optical isomers in the present invention are not limited to such specific examples.

wherein R_1 , R_2 , R_4 , X, Z and n are as defined above.

In the specification of this application, such optical isomers are meant for a mixture of isomers (racemic modification) unless otherwise specified.

26

(3) Among compounds of the present invention represented by the above formula (I), compounds wherein R_2 is a $-A-R_3$, and R_3 is an alkenyl group which may be substituted, have geometrical isomers (E-isomer and Z-isomer).

5

10

The compound of the present invention exhibits excellent herbicidal effects when used as an active ingredient of a herbicide. It finds a wide range of applications to crop lands such as paddy fields, upland farms, orchards and mulberry fields, and non-crop lands such as forests, farm roads, playgrounds, and factory sites. The application method may suitably be selected from soil treatment application and foliar application.

The herbicidal composition containing the compound of the present invention is capable of controlling noxious 15 weeds including grasses (or gramineae) such as barnyardgrass (Echinochloa crus-galli L.), crabgrass (Digitaria sanguinalis L.), greenfoxtail (Setaria viridis L.), goosegrass (Eleusine indica L.), wild oat (Avena fatua L.), johnsongrass (Sorghum halepense L.), 20 quackgrass (Agropyron repens L.), alexandergrass (Brachiaria plantaginea), paragrass (Panicum purpurascens), sprangletop (Leptochloa chinensis) and red sprangletop (Leptochloa panicea); sedges (or Cyperaceae) such as rice flatsedge (Cyperus iria L.), purple nutsedge 25 (Cyperus rotundus L.), japanese bulrush (Scirpus juncoides), flatsedge (Cyperus serotinus), small-flower

umbrellaplant (Cyperus difformis), slender spikerush (Eleocharis acicularis), and water chestnut (Eleocharis (wiroguwai); alismataceae such as japanese ribbon wapato (Sagittaria pygmaea), arrow-head (Sagittaria trifolia) WO 97141106 and narrowleaf waterplantain (Alisma canaliculatum); pontederiaceae such as monochoria (Monochoria vaqinalis) and monochoria species (Monochoria korsakowii); scrophulariaceae such as false pimpernel (Lindernia Dopatrium junceum); lythraceae such as toothcup (Rotala indica) and red stem (Ammannia multiflora); and broadleaves such as velvetleaf (Abutilon theophiasti MEDIC.), tall morningglory (IPomoea purpurea L.), common lambsquarters (Chenopodium album L.), prickly sida (Sida Spinosa L.), common purslane (Portulaca Oleracea L.), slender amaranth (Amaranthus viridis L.), redroot pigweed (Amaranthus retroflexus L.) (Casaja Obtusifolia L.), black nightshade (Solanum nigrum L.), Pale smartweed (Folygonum lanathifolium L.), common (Xanthium Strumarium L.); flexuous bittercress (Cardamine chickweed (Stellaria media L.), common cocklebur flexuosa WITH.), henbit (Lamium amplexicaule L.) and threeseeded copperleaf (Acalypha australis L.). Accordingly, it is useful for controlling noxious weeds non-selectively or selectively in the cultivation of a crop plant such as corn (Zea mays L.), soybean (Glycine max Merr.), cotton (Gossypium spp.), wheat (Triticum spp.), rice (Oryza Sativa L.), barley (Hordeum 20 25

28

vulgare L.), oat (Avena sativa L.), sorgo (Sorghum bicolor Moench), rape (Brassica napus L.), sunflower (Helianthus annuus L.), sugar beet (Beta vulgaris L.), sugar cane (Saccharum officinarum L.), japanese lawngrass (Zoysia japonica stend), peanut (Arachis hypogaea L.) or flax (Linum usitatissimum L.) The compound of the present invention is particularly effective for selectively controlling noxious weeds in the cultivation of corn, wheat or rice, especially in the cultivation of corn.

5

10

15

20

25

The herbicidal composition containing the compound of the present invention is usually formulated by mixing the compound with various agricultural adjuvants and used in the form of a formulation such as a dust, granules, water-dispersible granules, a wettable powder, an emulsifiable concentrate, a water-based suspension concentrate, an oil-based suspension concentrate, water soluble granules (or powder), tablets or capsules. However, so long as it is suitable for the purpose of the present invention, it may be formulated into any type of formulation which is commonly used in this field.

Such agricultural adjuvants include solid carriers such as diatomaceous earth, slaked lime, calcium carbonate, talc, white carbon, kaoline, bentonite, a mixture of kaolinite and sericite, clay, sodium carbonate, sodium bicarbonate, mirabilite, zeolite and starch; solvents such as water, toluene, xylene, solvent

naphtha, dioxane, acetone, isophorone, methyl isobutyl ketone, chlorobenzene, cyclohexane, dimethylsulfoxide, dimethylformamide, N-methyl-2-pyrrolidone, and alcohol; anionic surfactants and spreaders such as a salt of fatty acid, a benzoate, an alkylsulfosuccinate, a dialkylsulfosuccinate, a polycarboxylate, a salt of alkylsulfuric acid ester, an alkyl sulfate, an alkylaryl sulfate, an alkyl diglycol ether sulfate, a salt of alcohol sulfuric acid ester, an alkyl sulfonate, an alkylaryl sulfonate, an aryl sulfonate, a lignin 10 sulfonate, an alkyldiphenyl ether disulfonate, a polystyrene sulfonate, a salt of alkylphosphoric acid ester, an alkylaryl phosphate, a styrylaryl phosphate, a salt of polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfate, a salt of 15 polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfuric acid ester, a polyoxyethylnee alkyl ether phosphate, a salt of polyoxyethylene alkyl aryl phosphoric acid ester, and a salt of a condensate of naphthalene sulfonate with 20 formalin; nonionic surfactants and spreaders such as a sorbitan fatty acid ester, a glycerin fatty acid ester, a fatty acid polyglyceride, a fatty acid alcohol polyglycol ether, acetylene glycol, acetylene alcohol, an oxyalkylene block polymer, a polyoxyethylene alkyl ether, 25 a polyoxyethylene alkylaryl ether, a polyoxyethylene styrylaryl ether, a polyoxyethylene glycol alkyl ether, a

5

10

15

20

25

30

polyoxyethylene fatty acid ester, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene glycerin fatty acid ester, a polyoxyethylene hydrogenated castor oil, and a polyoxypropylene fatty acid ester; and vegetable and mineral oils such as olive oil, kapok oil, castor oil, palm oil, camellia oil, coconut oil, sesame oil, corn oil, rice bran oil, peanut oil, cottonseed oil, soybean oil, rapeseed oil, linseed oil, tung oil, and liquid paraffins. Such adjuvants may be selected for use among those known in this field, so long as the purpose of the present invention can thereby be accomplished. Further, various additives which are commonly used, such as a filler, a thickener, an anti-settling agent, an anti-freezing agent, a dispersion stabilizer, a phytotoxicity reducing agent, and an anti-mold agent, may also be employed.

The weight ratio of the compound of the present invention to the various agricultural adjuvants is usually from 0.1:99.9 to 95:5, preferably from 0.2:99.8 to 85:15.

The dose of the herbicidal composition of the present invention can not generally be defined, since it may vary depending upon the weather condition, the soil condition, the type of the formulation, the types of the weeds to be controlled, the season for the application, etc.

However, it is usually applied so that the compound of the present invention would be applied in an amount of

31

from 0.5 to 5000 g/ha, preferably from 1 to 1000 g/ha, more preferably from 5 to 500 g/ha. The present invention covers such a method for controlling noxious weeds by application of such a herbicidal composition.

The herbicidal compositions of the present invention 5 may be used in admixture with or in combination with other agricultural chemicals, fertilizers or phytotoxicity-reducing agents. In such a case, they may exhibit even better effects or activities. As other agricultural chemicals, herbicides, fungicides, 10 antibiotics, plant hormones or insecticides may, for example, be mentioned. Especially with a mixed herbicidal composition having the compound of the present invention used in admixture with or in combination with one or more active ingredients of other herbicides, it is 15 possible to improve the herbicidal activities, the season for the application and the range of applicable weed types. Further, the compound of the present invention and an active ingredient of other herbicide may be separately formulated, so that they may be mixed for use 20 at the time of application, or both may be formulated together. The present invention covers such mixed herbicidal compositions.

The blend ratio of the compounds of the present
invention with the active ingredients of other herbicides
can not generally be defined, since it varies depending
upon the weather condition, the soil condition, the type

32

of the formulation, the season for the application, the manner of the application, etc. However, one active ingredient of other herbicide may be incorporated usually in an amount of from 0.001 to 10000 parts by weight, preferably from 0.01 to 1000 parts by weight, per part by weight of the compound of the present invention. Further, the total dose of all of the active ingredients is usually from 0.1 to 10000 g/ha, preferably from 0.2 to 5000 g/ha. The present invention covers a method for controlling noxious weeds by application of such herbicidal compositions.

As the active ingredients of other herbicides, the following (common names) may be mentioned.

10

25

- (1) Those which are believed to exhibit herbicidal effects by disturbing auxin activities of plants, including a phenoxy acetic acid type such as 2,4-D, MCPA, MCPB or naproanilide, an aromatic carboxylic acid type such as 2,3,6-TBA, dicamba, picloram or clopyralid, and others such as benazolin, quinclorac, quinmerac or diflufenzopyr.
 - (2) Those which are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants, including a urea type such as diuron, linuron, isoproturon or metobenzuron, triazine type such as simazine, atrazine, atratone, simetryn, prometryn, dimethametryn, metribuzin, terbuthylazine, cyanazine or ametryn, an uracil type such as bromacil or lenacil, an anilide type such as propanil

or cypromid, a carbamate type such as swep or phenmedipham, a hydroxybenzonitrile type such as bromoxynil, bromoxynil-octanoate or ioxynil, and others such as pyridate or bentazon.

- (3) A quaternary ammonium salt type such as paraquat or diquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant body and thus to exhibit quick herbicidal effects.
- effects by inhibiting chlorophyllbiosynthesis of plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, including a diphenyl ether type such as nitrofen, chlomethoxyfen, bifenox, acifluorfen-sodium, fomesafen or oxyfluorfen, a cyclic

(4) Those which are believed to exhibit herbicidal

- imide type such as chlorphthalim, flumioxadine,
 flumiclorac-pentyl, methyl [2-chloro-4-fluoro-5-(5,6,7,8tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4a]pyridazin-1-ylideneamino)phenylthio] acetate (compound
 disclosed at page 60 of proceedings of 19th Meeting of
- Pesticide Science Society of Japan), and others such as oxadiation, sulfentrazone, carfentrazone-ethyl, thidiazimin, ethyl 2-chloro-5-(4-chloro-5-difluoromethoxyl-1-methylpyrazol-3-yl)-4-fluorophenoxyacetate (compound disclosed at pages 70-71
- of proceedings of 21th Meeting of Pesticide Science Society of Japan).
 - (5) Those which are believed to exhibit herbicidal

WO 97/41106

34

PCT/JP97/01457

effects characterized by whitening activities by inhibiting chromogenesis of plants such as carotenoids, including a pyridazinone type such as norflurazon or metflurazon, a pyrazole type such as pyrazolate,

- pyrazoxyfen or benzofenap, and others such as fluridone, flurtamone, diflufenican, methoxyphenone, clomazone, sulcotrione, 2-(2'-nitro-4'-methylsulfonyl-benzoyl)-1,3-cyclohexanedione (compound disclosed in US Patent 5,506,195), isoxaflutole or difenzoquat.
- 10 (6) Those which exhibit herbicidal effects specifically to gramineous plants, including an aryloxyphenoxypropionic acid type such as diclofopmethyl, pyriphenop-sodium, fluazifop-butyl, haloxyfopmethyl, quizalofop-ethyl or cyhalofop-butyl, and a cyclohexanedione type such as alloxydim-sodium,
 - (7) Those which are believed to exhibit herbicidal effects by inhibiting an amino acid biosynthesis of plants, including a sulfonylurea type such as

clethodim, sethoxydim or tralkoxydim.

- chlorimuron-ethyl, sulfometuron-methyl, primisulfuronmethyl, bensulfuron-methyl, chlorsulfuron, metsulfuronmethyl, cinosulfuron, pyrazosulfuron-ethyl, azimsulfuron,
 flazasulfuron, rimusulfuron, nicosulfuron, imazosulfuron,
 cyclosulfamuron, prosulfuron, flupyrsulfuron,
- trisulfuron-methyl, halosulfuron-methyl or thifensulfuron-methyl, a triazolopyrimidinesulfoneamide type such as flumetsulam or metosulam, an imidazolinone

type such as imazapyr, imazethapyr, imazaquin, imazamox or imazameth or imazamethabenz, a pyrimidinylsalicylic acid type such as pyrithiobac-sodium, bispyribac-sodium or pyriminobac-methyl, and others such as glyphosate-ammonium, glyphosate-isopropylamine, glufosinate-ammonium or bialaphos.

- (8) Those which are believed to exhibit herbicidal effects by inhibiting cell mitoses of plants, including a dinitroaniline type such as trifluralin, oryzalin,
- nitralin or pendimethalin, an organic phosphorus type such as amiprofos-methyl, butamifos, anilofos or piperophos, a phenylcarbamate type such as chlorpropham or barban, a cumylamine type such as daimuron, cumyluron or bromobutide, and others such as asulam or dithiopyr.
- 15 (9) Those which are believed to exhibit herbicidal effects by inhibiting protein biosynthesis or lipid biosynthesis of plants, including a thiocarbamate type such as EPTC, butylate, molinate, dimepiperate, esprocarb, thiobencarb or pyributicarb, or
- chloroacetamide type such as alachlor, butachlor, pretilachlor, metolachlor, thenylchlor, dimethenamid, acetochlor or propachlor, and other compounds such as a ethobenzanide, mefenacet, thiafluamide, tridiphane, cafenstrole, 4-(2-chlorophenyl)-N-cyclohexyl-4,5-dihydro-
- N-ethyl-5-oxo-lH-tetrazol-l-carboxyamide (compound disclosed in JP-A-6-306061), oxaziclomefon, or 2-ethyl-2-[2-(3-chlorophenyl)-2,3-epoxypropyl]-indan-1,3-dione

36

(compound disclosed in JP-A-2-304043).

As is evident from Test Examples 1 and 2 given hereinafter, the compound of the present invention include those which show selectivity for effectively 5 controlling weeds, while showing safety to crop plants such as rice, wheat and corn. When the compound of the present invention is to be used in the cultivation of such crop plants, synergistic effects may be obtained by using it in admixture with or in combination with one or more of the following compounds among the above-mentioned active compounds of other herbicides.

In the cultivation of rice:

10

2,4-D, MCPA, MCPB, naproanilide, guinclorac, simetryn, prometryn, dimethametryn, propanil, swep, bentazon, nitrofene, chlomethoxyfen, bifenox, oxadiazon, 15 pyrazolate, pyrazoxyfen, benzofenap, methoxyphenone, cyhalofop-butyl, bensulfuron-methyl, cinosulfuron, pyrazosulfuron-ethyl, azimsulfuron, imazosulfuron, cyclosulfamuron, bispyribac-sodium salt, pyriminobacmethyl, anilofos, piperophos, daimuron, cumyluron, 20 bromobutide, dithiopyr, molinate, dimepiperate, esprocarb, thiobencarb, pyributicarb, thenylchlor, pretilachlor, butachlor, ethobenzanide, mefenacet, cafenstrole, 4-(2-chlorophenyl)-N-cyclohexyl-4,5-dihydro-N-ethyl-5-oxo-lH-tetrazole-l-carboxyamide, oxaziclomefon, 25 and 2-ethyl-2-[2-(3-chlorophenyl)-2,3-epoxypropyl]indane-1,3-dione.

5

In the cultivation of corn:

2,4-D, MCPA, dicamba, clopyralid, benazolin, diflufenzopyr, diuron, linuron, metobenzuron, simazine, atrazine, atratone, metribuzin, terbuthylazine, cyanazine, ametryn, cypromid, bromoxynil, bromoxynil-

octanoate, pyridate, bentazon, paraquat, oxyfluorfen,

flumiclorac-pentyl, methyl [2-chloro-4-fluoro-5-(5,6,7,8-tetrahydro-3-oxo-1H,3H-[1,3,4]thiadiazolo[3,4-a]pyridazin-1-ylideneamino)phenylthio] acetate,

fluridone, sulcotrione, 2-(2'-nitro-4'methylsulfonylbenzoyl)-1,3-cyclohexanedione,
isoxaflutole, carfentrazone ethyl, primisulfuron methyl,
rimusulfuron, nicosulfuron, prosulfuron, halosulfuronmethyl, thifensulfuron-methyl, flumetsulam, metosulam,

imazethapyr, glyphosate-ammonium salt, glyphosateisopropyl amine salt, glufosinate-ammonium salt, trifluralin, pendimethalin, EPTC, butylate, alachlor, metolachlor, acetochlor, propachlor, dimethenamid and tridiphane.

20 In the cultivation on wheat:

MCPB, quinmerac, linuron, isoproturon, prometryn, bromoxynil, bromoxynil-octanoate, pyridate, bifenox, carfentrazone-ethyl, thidiazimin, ethyl 2-chloro-5-(4-chloro-5-difluoromethoxyl-l-methylpyrazol-3-yl)-4-

25 fluorophenoxy acetate, flurtamone, diflufenican, sulcotrione, diclofop-methyl, tralkoxydim, chlorsulfuron, metsulfuron-methyl, prosulfuron, halosulfuron-methyl,

38

flumetsulam, metosulam, pendimethalin, barban and imazamethabenz.

Now, preferred embodiments of the present invention will be described.

5 (1) The pyrazole compound of the above formula (I) or its salt.

(2) The pyrazole compound or its salt according to Item 1, wherein the formula (I) is represented by the formula (I'):

10

15

20

25

wherein R_1 is an alkyl group, R_2 is a hydrogen atom or $-A-R_3$, A is $-SO_2-$, -CO-, $-CH_2-$ or $-CH_2CO-$, R_3 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, a cyano group or a phenyl group which may be substituted, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, and q is an integer of from 0 to 2.

(3) The pyrazole compound or its salt according to Item 2, wherein A is $-SO_2$ -, $-CH_2$ - or $-CH_2$ CO-, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group or a nitro group.

5

10

20

25

- (4) The pyrazole compound or its salt according to Item 3, wherein X^1 is an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and each of X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group or a nitro group.
- (5) A-herbicide containing the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4, as an active ingredient.
- (6) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4.
 - (7) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 to an upland field.
 - (8) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 to a corn field.
 - (9) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole

5

10

WO 97/41106 PCT/JP97/01457

compound or its salt as defined in Item 1, 2, 3, or 4 to a wheat field.

40

- (10) A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 to a paddy field.
- (11) A mixed herbicidal composition comprising at least one member selected from the pyrazole compound or its salt as defined in Item 1, 2, 3, or 4 and at least one member selected from active ingredient compounds of other herbicides.
 - (12) The compound of the above formula (II).
- (13) The compound according to Item 12, wherein 1 is 0.
- 15 (14) The compound of the above formula (IV).
 - (15) The compound according to Item 14, wherein 1 is 0.
 - (16) The compound according to Item 14, wherein the formula (IV) is represented by the formula (IV'):

$$\begin{array}{c|c}
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_1 & X_2 \\
 & X_1 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_1 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_1 & X_2 & X_2 \\
 & X_2 & X_2 & X_2 \\
 & X_1 &$$

10

wherein R_1 is an alkyl group, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, and q is an integer of from 0 to 2.

- (17) The pyrazole compound or its salt according to Item 16, wherein each of X¹, X² and X³ is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group or a nitro group.
- (18) The pyrazole compound or its salt according to Item 17, wherein X^1 is an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and each of X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group or a nitro group.

BEST MODE FOR CARRYING OF THE INVENTION

Now, the present invention will be described in

further detail with reference to Examples. However, it
should be understood that the present invention is by no
means restricted to such specific Examples. Firstly,
Preparation Examples for the compounds of the present
invention will be described.

PREPARATION EXAMPLE 1

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2
methylsulfonylbenzoyl)-5-hydroxy-l-methylpyrazole (after-

mentioned Compound No. a-11) and 3-cyclopropy1-4-(4-trifluoromethy1-2-methylsulfonylbenzoy1)-1-methy1-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12) (First method)

- 1) 1.4 g of methylhydrazine was added at room temperature to a solution having 5.53 g of tert-butyl 3-cylocopropyl-3-oxopropionate dissolved in 30 ml of tetrahydrofuran, and the mixture was reacted for about 2 hours under reflux.
- After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure to obtain 4.14 g of crude 3-cyclopropyl-5-hydroxy-l-methylpyrazole (aftermentioned Intermediate No. la-1).
- The melting point of this product was from 95 to

 121°C, and the NMR spectrum data are as follows.

 ¹H-NMR δppm [Solvent: CDCl₃]

 0.76-0.8 (m,2H), 0.9-0.99 (m,2H), 1.74-1.81 (m,1H), 3.06 (s), 3,26 (s,3H), 4.6 (bs)
- 2) A solution having 0.41 g of sodium carbonate
 20 dissolved in 30 ml of water, was added to a solution
 having 1 g of 3-cyclopropyl-5-hydroxy-1-methylpyrazole
 obtained in the preceding step dissolved in 30 ml of
 toluene, followed by stirring for 5 minutes. Then, 4trifluoromethyl-2-methylthiobenzoyl chloride
 25 preliminarily prepared by mixing and reacting under
 reflux for one hour, 1.52 g of 4-trifluoromethyl-2methylthiobenzoic acid, 5 ml of thionyl chloride and a

removal of excess thionyl chloride, was added thereto, and the mixture was reacted at 50°C for one hour.

After completion of the reaction, the reaction

mixture was cooled and put into water, and extracted with
ethyl acetate. The obtained ethyl acetate layer was
washed with a saturated sodium chloride aqueous solution
and then dried over anhydrous sodium sulfate, and the
solvent was distilled off under reduced pressure. The

obtained residue was purified by silica gel column
chromatography to obtain 0.8 g of oily 3-cyclopropyl-1methyl-5-pyrazolyl 4-trifluoromethyl-2-methylthiobenzoate
(after-mentioned Intermediate No. 2a-16). The NMR
spectrum data of the product are as follows.

15 ¹H-NMR δppm [Solvent: CDCl₃] 0.69-0.73 (m,2H), 0.86-0.91 (m,2H), 1.85-1.92 (m,1H), 2.53 (s,3H), 3.70 (s,3H), 5.94 (s,1H), 7.46 (d,1H), 7.53 (s,1H), 8.24 (d,1H)

3) 0.91 g of methachloroperbenzoic acid was dividedly
20 added at room temperature to a solution having 0.75 g of
3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2methylthiobenzoate obtained in the preceding step
dissolved in 30 ml of methylene chloride, and the mixture
was reacted for one hour within a range of from room
25 temperature to 40°C.

After completion of the reaction, the reaction mixture was put into water and extracted with methylene

44

chloride.

25

The obtained methylene chloride layer was washed with dilute alkali and then with water, and thereafter dried over anhydrous sodium sulfate, and methylene chloride was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 0.75 g of 3-cyclopropyl-1-methyl-5-pyrazolyl 4-trifluoromethyl-2-methylsulfonylbenzoate (after-mentioned Intermediate No. 2a-5) having a melting point of from 99 to 102°C. The

NMR spectrum data of the product are as follows.

1H-NMR &ppm [Solvent: CDCl3]

0.73-0.77 (m,2H), 0.86-0.94 (m,2H), 1.87-1.93 (m,1H),
2.05 (s,3H), 3,74 (s,3H), 5.95 (s,1H), 8.0 (d,1H), 8.06 (d,1H), 8.47 (s,1H)

4) A mixture comprising 0.7 g of 3-cyclopropyl-1methyl-5-pyrazolyl 4-trifluoromethyl-2methylsulfonylbenzoate obtained in the preceding step,
0.3 g of dry potassium carbonate, 25 ml of toluene and 5
ml of N,N-dimethylformamide, was reacted for one hour
under an azeotropic dehydration condition using a DeanStark azeotropic dehydration apparatus.

After completion of the reaction, the reaction mixture was cooled and put into water, and the aqueous layer was washed with ethyl acetate. The aqueous layer was acidified with concentrated hydrochloric acid and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous

solution and dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure to obtain the desired product 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-ll) as a viscous crude product. The NMR spectrum data of this product are as follows.

1H-NMR δppm [Solvent: CDCl₃]
0.42-0.45 (m,2H), 0.72-0.81 (m,2H), 0.95-1.05 (m,1H),
3.34 (s,3H), 3.67 (s,3H), 7.73 (d,1H), 8.0 (d,1H), 8.4
(s,1H)

The melting point of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-l-methylpyrazole as the above-mentioned viscous crude product, was from 83 to 93°C.

15

20

25

5) 0.155 g of p-toluene sulfonyl chloride was added to a mixture comprising 0.3 g of 3-cyloropropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-l-methylpyrazole obtained in the preceding step, 0.118 g of dry potassium carbonate, 0.002 g of tetraethyl ammonium bromide, 20 ml of toluene and 5 ml of N,N-dimethylformamide, and the mixture was reacted for about one hour within a range of from 40 to 50°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with water and further with a saturated sodium chloride

aqueous solution and then dried over anhydrous sodium sulfate, and ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.3 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12) as a viscous desired product. The NMR spectrum data of this product are as follows.

The melting point of the above viscous 3-cyclopropyl4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5pyrazolyl p-toluene sulfonate was from 67 to 70°C.

PREPARATION EXAMPLE 2

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (aftermentioned Compound No. a-ll) and 3-cyclopropyl-4-(4triflouromethyl-2-methylsulfonylbenzoyl)-1-methyl-5pyrazolyl p-toluene sulfonate (after-mentioned compound
No. a-l2) (Second method)

1) A mixture comprising 3.88 g of 3-cyloropropyl-125 methyl-5-pyrazolyl 4-trifluoromethyl-2methylsulfonylbenzoate (after-mentioned Intermediate No.
2a-5), 1.52 g of dry potassium carbonate, 100 ml of

47

toluene and 20 ml of N,N-dimethylformamide, was reacted for one hour under an azeotropic dehydration condition using a Dean-Stark azeotropic dehydration apparatus.

After completion of the reaction, the reaction mixture was cooled and put into water, followed by liquid separation. The obtained aqueous layer was acidified with concentrated hydrochloric acid and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with water and then with a saturated sodium chloride aqueous solution and dried over anhydrous sodium 10 Then, ethyl acetate was distilled off under sulfate. reduced pressure to obtain 3.88 g of viscous 3cyclopropyl-4-(4-trifluoromethyl-2methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole as a crude product. This product was left to stand to 15 sufficiently remove the solvent to obtain crystals of 3cyclopropyl-4-(4-trifluoromethyl-2methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (aftermentioned Compound No. a-ll) as the desired product, having a melting point of from 153 to 157°C. 20

2) 0.36 g of p-toluene sulfonyl chloride was added to a mixture comprising 0.7 g of crystals of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole obtained in the preceding step, 0.27 g of dry potassium carbonate, 0.005 g of tetraethylammonium bromide, 20 ml of toluene and 4 ml of N,N-dimethylformamide, and the mixture was reacted for about

25

48

1.5 hours within a range of from 40 to 50°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.7 g of crystals of 3-cyclopropyl-4-(4-triflouromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12) as the desired product, having a melting point of from 135 to 138°C.

15 PREPARATION EXAMPLE 3

Preparation of 3-cyclopropyl-4-(2,4-dichloro-3-methylbenzoyl)-5-hydroxy-1-methylpyrazole (aftermentioned Compound No. a-8)

1) 2.76 g of 3-cyclopropyl-5-hydroxy-l-methylpyrazole
20 (after-mentioned Intermediate No. 1a-1) and 3.9 g of 2,6dichlorotoluene were charged into 30 ml of 1,2dichloroethane, and 6.7 g of dry aluminum chloride was
dividedly added thereto at a temperature of not higher
than 50°C with stirring. After the addition, stirring
25 was continued for from 10 to 15 minutes within a range of
from 35 to 40°C. Then, a solution having 4.0 g of carbon
tetrachloride dissolved in 4 ml of 1,2-dichloroethane,

was dropwise added thereto at the same temperature.

After completion of the dropwise addition, the mixture was reacted for 1.5 hours at a temperature of from 40 to 45°C.

49

5 After completion of the reaction, the reaction mixture was put into 150 ml of ice water to separate a 1,2-dichoroethane layer.

2) 0.5 ml of water was added thereto, and the mixture was heated to 50°C, whereupon 3.5 ml of concentrated sulfuric acid was gradually dropwise added thereto.

After completion of the dropwise addition, the mixture was reacted for 1.5 hours under reflux.

After completion of the reaction, the reaction mixture was left to cool, and 150 ml of water was added thereto, followed liquid separation. The obtained 1,2-dichloroethane layer was washed with water and then extracted with an alkaline solution having 3.5 g of sodium hydroxide dissolved in 100 ml of water. Then, 50% sulfuric acid was added thereto to make the liquid weakly acidic and extracted with methylene chloride. The obtained methylene chloride layer was dried over anhydrous sodium sulfate, and methylene chloride was distilled off under reduced pressure to obtain 3.5 g of the desired product having a melting point of from 112 to 115°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

10

15

20

25

50

0.66-0.71 (m,2H), 0.93-0.99 (m,2H), 1.15-1.22 (m,1H),
2.72 (s,3H), 3.89 (s,3H), 7.34 (d,1H), 7.57 (d,1H)

Preparation Example 4

Preparation of 4-(2,4-dichlorobenzoyl)-3-cyclopropyl-1ethyl-5-hydroxypyrazole (after-mentioned Compound No. a18)

1) A solution having 0.87 g of dry hydrazine dissolved in 5 ml of dry tetrahydrofuran, was added to a solution having 5 g of tert-butyl 3-cyclopropyl-3-oxopropionate dissolved in 30 ml of dry tetrahydrofuran, and the mixture was reacted for one hour under reflux.

10

15

25

After completion of the reaction, tetrahydrofuran, etc. were distilled off under reduced pressure to obtain 3.3 g of 3-cyclopropyl-5-hydroxypyrazole (after-mentioned Intermediate No. 3-1) having a melting point of from 213 to 217°C. The NMR spectrum data of this product are as follows.

1H-NMR δppm [Solvent: heavy MDSO]
0.57-0.61 (m,2H), 0.81-0.86 (m,2H), 1.70-1.77 (m,1H), 5.1
20 (s,1H), 10.16 (bs,1H)

2) 1.61 g of 3-cyclopropyl-5-hydroxypyrazole obtained in the preceding step was mixed with a solution having 1.89 g of dry potassium carbonate dissolved in 20 ml of hexamethylphosphoric triamide, and the mixture was cooled within a range of from 0 to 2°C. Then, iodoethane was dropwise added thereto within a range of from 0 to 5°C over a period of about 15 minutes. Then, the mixture was

reacted for one hour at the same temperature and then further reacted for one hour within a range of from room temperature to 40°C.

3) 2.72 g of 2,4-dichlorobenzoyl chloride was added thereto at room temperature, and the mixture was reacted for 0.5 hour at the same temperature and further reacted for 0.5 hour at 40°C.

5

After completion of the reaction, the reaction mixture was put into water and extracted with toluene.

The obtained toluene layer was thoroughly washed with water and then with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, toluene was distilled off under reduced pressure, and the obtained residue was purified by silica gel

column chromatography to obtain 1.2 g of 3-cyclopropyl-1-ethyl-5-pyrazolyl 2,4-dichlorobenzoate (after-mentioned Intermediate No. 2a-7) having a melting point of from 61 to 63°C. The NMR spectrum data of this product are as follows.

- 1H-NMR δppm [Solvent: CDCl₃]
 0.69-0.73 (m,2H), 0.87-0.9 (m,2H), 1.4 (t,3H), 1.85-1.92
 (m,1H), 4.02-4.08 (q,2H), 5.92 (s,1H), 7.39 (d,1H), 7.55
 (s,1H), 7.94 (d,1H)
- 4) Using 1.1 g of 3-cyclopropyl-1-ethyl-5-pyrazolyl
 2,4-dichlorobenzoate obtained in the preceding step,
 0.843 g of the desired product having a melting point of
 from 74 to 77°C was obtained in the same manner as Step

52

4) in Preparation Example 1.

PREPARATION EXAMPLE 5

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl benzene sulfonate (after-mentioned Compound No. a-27)

1) 0.57 g of 3-cyclopropyl-1-methyl-5-pyrazolyl 4trifluoromethyl-2-methylsulfonyl benzoate (aftermentioned Intermediate No. 2a-5), 20 ml of toluene and 1
ml of N,N-dimethylformamide were charged into an

Erlenmeyer flask, and 0.11 g of potassium carbonate was
added thereto. The mixture was reacted for 15 hours
under an azeotropic dehydration condition to obtain a
reaction mixture containing a potassium salt of 3cyclopropyl-4-(4-trifluoromethyl-2-

15 methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole.

20

25

2) The reaction mixture obtained in the preceding step was left to cool, and 0.1 g of tetraethylammonium chloride and 0.1 g of potassium iodide were added thereto. Then, 0.27 g of benzene sulfonyl chloride was added thereto. The mixture was reacted for 5.5 hours at 55°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. Then, the extract was washed with water. The obtained organic layer was dried over anhydrous sodium sulfate, then concentrated and thereafter purified by silica gel column chromatography to obtain 0.49 g of the

desired product having a melting point of from 175 to 178°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

10

15

20

25

5 0.46-0.05 (m,2H), 0.73-0.81 (m,2H), 1.33-1.41 (m,1H),
3.27 (s,3H), 3.63 (s,3H), 7.53-7.58 (m,3H), 7.7 (t,1H),
7.85 (d,1H), 7.96 (d,2H), 8.27 (s,1H)

PREPARATION EXAMPLE 6

Preparation of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5-pyrazolyl n-

propanesulfonate (after-mentioned Compound No. a-89)

A mixture comprising 0.4 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-ll), 20 ml of toluene, 5 ml of N,N-dimethylformamide, 5 mg of tetraethylammonium bromide and 0.16 g of n-propanesulfonyl chloride, was reacted for about 12 hours at 40°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.34 g of the desired product having a melting point of from 128 to 131°C. The NMR

spectrum data of this product are as follows.

 1 H-NMR δ ppm [Solvent: CDCl₃]

0.43-0.51 (m,2H), 0.78-0.82 (m,2H), 1.12 (t,3H), 1.1-1.2

(m,1H), 2.0-2.1 (m,2H), 3.33 (s,3H), 3.53 (t,2H), 3.82

5 (s,3H), 7.70 (d,1H), 7.96 (d,1H), 8.38 (s,1H)

PREPARATION EXAMPLE 7

20

25

<u>Preparation of 5-benzyloxy-3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methylpyrazole</u>

(after-mentioned Compound No. a-94)

0.14 g of benzyl chloride was added to a mixture comprising 0.4 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-l-methylpyrazole (aftermentioned Compound No. a-11), 0.16 g of dry potassium carbonate, 5 mg of benzyltriethylammonium chloride, 5 mg of potassium iodide, 20 ml of toluene and 5 ml of N,N-dimethylformamide, and the mixture was reacted for 24 hours within a range of from 50 to 70°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 0.25 g of the desired product having a melting point of from 154 to 157°C. The NMR spectrum data of this product are as follows.

55

1_{H-NMR} δppm [Solvent: CDCl₃]
0.68-0.71 (m,2H), 0.85-0.88 (m,2H), 1.8-2.0 (m,1H), 3.35
(s,3H), 3.42 (s,3H), 5.00 (s,2H), 7.11-7.12 (m,2H), 7.26-7.30 (m,3H), 7.58-7.60 (d,1H), 7.58-7.88 (d,1H), 8.34
(s,1H)

PREPARATION EXAMPLE 8

5

20

25

Preparation of 5-(2-chloro-2-propenyloxy)-3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methylpyrazole (after-mentioned Compound No. a-213)

A mixture comprising 0.776 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-5-hydroxy-1-methylpyrazole (after-mentioned Compound No. a-11), 30 ml of toluene, 4 ml of N,N-dimethylformamide, 5 mg of tetraethylammonium bromide and 0.245 g of 2,3-dichloropropene, was reacted for 1 hour at room temperature, then reacted for 4 hours at a temperature of from 60 to 80°C with stirring.

After completion of the reaction, the reaction mixture was put into water and extracted with ethyl acetate. The obtained ethyl acetate layer was washed with a saturated sodium chloride aqueous solution and then dried over anhydrous sodium sulfate. Then, ethyl acetate was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 0.65 g of the desired product having a melting point of from 180 to 111°C. The NMR spectrum data of this product are as follows.

¹H-NMR δppm [Solvent: CDCl₃] 0.59-0.61 (m,2H), 0.84-0.86 (m,2H), 1.6-1.7 (m,1H), 3.38 (s,3H), 3.67 (s,3H), 4.68 (s,2H), 5.37-5.4 (d,2H), 7.62 (d,1H), 7.93 (d,1H), 8.38 (s,1H)

- PREPARATION EXAMPLE 9

 Preparation of 3-cyclopropyl-1-methyl-4-(2-methylthio-4trifluoronmethylbenzoyl)-5-hydroxypyrazole (aftermentioned Compound No. a-82), 3-cyclopropyl-1-methyl-4(2-methylthio-4-trifluoromethylbenzoyl)-5-pyrazolyl ptoluene sulfonate (after-mentioned Compound No. a-72) and
 - 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)l-methyl-5-pyrazolyl p-toluenesulfonate (after-mentioned Compound No. a-12)
- 1) Into a 200 ml autoclave, 1.59 g of 4-iodo-3
 methylthiobenzotrifluoride prepared in accordance with
 the following Preparation Example 10, 1.38 g of 3
 cyclopropyl-5-hydroxy-1-methylpyrazole (after-mentioned
 Intermediate No. 1a-1), 0.5 g of triethylamine, 3.1 g of
 potassium carbonate, 0.22 g of palladium (II)
- bis(triphenylphosphine) dichloride and 40 ml of dioxane were put and sealed, and the interior of the autoclave was flushed with carbon monoxide (pressure: 65 kg/cm²), followed by a reaction at 140°C for 8 hours. After completion of the reaction, the solvent was distilled off, and the residue was dissolved in water, and then insoluble matters were filtered off. The filtrate was

washed with dichloromethane. The washed product was

57

acidified (pH=1) with concentrated hydrochloric acid and extracted with dichloromethane. The obtained extract solution was dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 1.59 g of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-hydroxypyrazole (aftermentioned Compound No. a-82) as a reddish brown solid.

- 2) 1.59 g of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-hydroxypyrazole obtained in the preceding step was mixed, without purification, with 10 20 ml of toluene, 4 ml of N,N-dimethylformamide, 0.94 g of p-toluene sulfonyl chloride and 0.34 g of potassium carbonate, and the mixture was reacted at 60°C for 3 hours. After completion of the reaction, water was added to the reaction mixture, and the mixture was extracted 15 with ethyl acetate. The extract solution was dried over anhydrous sodium sulfate, and the solvent was distilled The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate/hexane=1/4) to obtain 0.53 g of 3-cyclopropyl-1-20 methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-72). The NMR spectrum data of this product are as follows.
- 25 ¹H-NMR δppm [Solvent: CDCl₃] 0.79 (m,2H), 0.90 (m,2H), 1.97 (m,1H), 2.39 (s,3H), 2.47 (s,3H), 7.23 (d,2H), 7.32 (d,1H), 7.48 (s,1H), 7.49

(d,lH), 7.53 (d,2H)

10

15

3). 0.46 g of 3-cyclopropyl-1-methyl-4-(2-methylthio-4-trifluoromethylbenzoyl)-5-pyrazolyl p-toluene sulfonate obtained in the preceding step was dissolved in 10 ml of dichloromethane, and 0.47 g of 85% methachloroperbenzoic acid was added thereto under cooling with ice. Then, the mixture was returned to room temperature and reacted over night with stirring. After completion of the reaction, an aqueous sodium hydrogen carbonate solution was added to the reaction mixture, and the mixture was extracted with dichloromethane. The extract layer was dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate/hexane=3/7) to obtain 0.49 g of 3-cyclopropyl-4-(4-trifluoromethyl-2-methylsulfonylbenzoyl)-1-methyl-5pyrazolyl p-toluene sulfonate (after-mentioned Compound No. a-12).

PREPARATION EXAMPLE 10

20 Preparation of 4-iodo-3-methylthiobenzotrifluoride

- 1) 123.85 g of sodium iodide was added to a solution having 42.23 g of 4-chloro-3-nitrobenzotrifluoride dissolved in 200 ml of N,N-dimethylformamide, and the mixture was reacted at 140°C for 17 hours.
- 25 After completion of the reaction, the reaction mixture was put into water and extracted with ethyl ether. The ethyl ether layer was washed with water and

WO 97/41106

59

PCT/JP97/01457

then dried over anhydrous sodium sulfate. Then, ethyl ether was distilled off. The obtained residue was purified by silica gel column chromatography to obtain 44.15 g of 4-iodo-3-nitrobenzotrifluoride. The NMR spectrum data of this product are as follows. ¹H-NMR δppm [Solvent: CDCl₃]

- 7.52 (dd,1H), 8.11 (s,1H), 8.22 (d,1H)
- 2) A solution having 30 g of 4-iodo-3nitrobenzotrifluoride obtained in the preceding step dissolved in 300 ml of acetic acid, was heated, and 26.43 10 q of reduced iron was added thereto over a period of 15 minutes at a temperature of from 85 to 95°C. Then, the mixture was reacted for further 5 minutes at the same temperature.
- After completion of the reaction, the reaction 15 mixture was cooled with ice, and insoluble matters were filtered off using celite. The filtration cake was thoroughly washed with ethyl acetate, and the washing liquid and the filtrate were mixed, followed by washing with water for 5 times. The obtained ethyl acetate layer 20 was dried over anhydrous sodium sulfate, and ethyl acetate was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 25.52 g of oily 3-amino-4iodobenzotrifluoride. The NMR spectrum data of this 25 product are as follows.

¹H-NMR δppm [Solvent: CDCl₃]

60

6.70 (dd,lH), 6.93 (d,lH), 7.73 (d,lH)

5

10

15

20

25

amino-4-iodebenzotrifluoride obtained in the preceding step, 16.75 g of dimethyldisulfide and 80 ml of chloroform, a solution having the rest (20.42 g) of 3-amino-4-iodebenzotrifluoride obtained in the preceding step dissolved in 20 ml of chloroform and 11.92 g of tert-butylnitrite, were simultaneously dropwise added at a temperature of from 25 to 30°C. After completion of the dropwise addition, the mixture was reacted at room temperature for 16 hours.

After completion of the reaction, 200 ml of methylene chloride was added to the reaction mixture, and the mixture was washed with an aqueous hydrochloric acid solution with pH 1 to 2. Then, the methylene chloride layer was washed with water and dried over anhydrous sodium sulfate. Then, methylene chloride and chloroform were distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography to obtain 19.89 g of the desired product as an oily substance. The NMR spectrum data of this product are as follows.

¹H-NMR δ ppm [Solvent: CDCl₃]

2.51 (s,3H), 7.08 (dd,1H), 7.26 (d,1H), 7.90 (dd,1H)

Other compounds of the present invention can be prepared in accordance with the above described Preparation Examples or the above described various

61

processes for producing the compounds of the present invention. Typical examples of the intermediate compound represented by the above formula (II) will be shown in Table 1, typical examples of the intermediate compound represented by the above formula (IV) will be presented in Tables 2a and 2b, typical examples of the intermediate compound represented by the above formula (IX) will be presented in Table 3, and typical examples of the compound of the present invention represented by the above formula (I) will be presented in Tables 4a and 4b.

Table 1

Inter- mediate	Rı	(2)	Physical properties
1 a - 1	СНэ		m.p. 95−121°C
1 a - 2	CH 2 CH 3		
1 a - 3	n-C ₃ H ₇		
1 a - 4	n-C4H9		
1 a - 5	CH(CH ₃) ₂		
1 b - 1	CH ₃	CH., ~~~	
1 b - 2	CH 2 CH 3	сн, ~~~	
1 b - 3	n-C ₃ H ₁	CH, ~~~	
1 b - 4	n-C4H9	CH3 ~~~	
1 b - 5	CH(CH ₃) ₂	CH3	

Table 2a

Inter- mediate No.	R :	(X)n	Physical properties
2 a - 1	СНэ	C1 -C1	
2 a - 2	CH ₃	NO 2	m.p. 84−87°C
2 a - 3	CH3	C1 —————SO2CH3	m.p.148—150℃
2 a - 4	CH ₃	C1 CH ₂ C1	
2 a - 5	СН₃	SO ₂ CH ₃ —CF ₃	m.p. 99-102°C
2 a - 6	CH ₃	ND ₂ —SCH ₃	
2 a - 7	CH₂CH₃	c1	m.p. 61−63°C
2 a - 8	CH ₃	NO ₂ —SO ₂ CH ₃	

Table 2a (continued)

Inter- mediate No.	R ı	(X)n	Physical properties
2 a - 9	CH 2 CH 3	CI——SO2CH3	m.p. 96—99℃
2 a - 10	CH ₃	CI——SCH ₃	Viscous
2 a - 11	CH 3	C1 C1	•
2 a - 12	CH₂CH₃	C1 CH ₃ SO ₂ CH ₃	
2 a - 13	n-C ₃ H ₇	CJ —SO2CH3	
2 a - 14	CH2CH3	SD,CH,	m.p.94−97°C
2 a - 15	CH(CH ₃) ₂	SD2CH3 —————CF3	
2 a - 16	СНэ	SCH, ————————————————————————————————————	Oily
2 a - 17	CH ₃	SO, CH,	m.p. 136-140 °C

Table 2a (continued)

Inter- mediate	R ı	(X)n	Physical properties
2 a - 18	CH,	C I	
2 a - 19	CH ₃	SCH.	m.p. 90—93°C
2 a - 20	CH 2 CH 3	ND ₂	
2 a - 21	CH3	SD2CH2CH3 -CF3	Viscous
2 a - 22	СНэ	SCH2CH3 ————————————————————————————————————	Viscous
2 a — 23	CH ₃	CF, SCH,	Viscous
2 a — 24	CH ₃	CF3 ————SO2CH3	m.p. 146 —149 °C
2 a — 25	CH ₃	C1 CH,	m.p. 125 −130 °C
2 a - 26	СНэ	SCH, CI	

Table 2a (continued)

Inter- mediate No.	R ı	(X)n	Physical properties
2 a — 27	СН₃	SOCH ₃ C1	
2 a — 28	СН₃	SO2CH3 C1 C1	m.p. 134 −136 °C
2 a — 29	СНз	SCH, F	
2. a — 30	СНз	SOCH ₃ F	
2 a - 31	CH 3	SO ₂ CH ₃ F F	
2 a - 32	CH ₃	SCH3	·
2 a - 33	CH ₃	SO, CH,	
2 a - 34	CH.	SCH, CH,	

Table 2a (continued)

Inter- mediate	R ı	(X)n	Physical properties
2 a - 35	СНз	SOCH, CH, CI	
2 a - 36	СНэ	SO, CH, CH,	
2 a - 37	СН₃	C1 C0, CH, S0, CH,	
2 a - 38	CH3	NO ₂ —CF ₃	
2 a - 39	СНз	0\$0,CH,	
2 a - 40	СН₃	CH₃SCH₃ 	
2 a - 41	CH ₃	CH2SOCH3 - CI	
2 a - 42	CH ₃	CH, SO, CH,	
2 a - 43	СН₃	SCH ₃	m.p. 118 - 122 ℃

Table 2a (continued)

Inter- mediate No.	R ı	(X)n	Physical properties
2 a - 44	CH ₃	SO2CH3	
2 a — 45	CH3	SCH ₃ Cl CF ₃	Viscous
2 a — 46	СН₃	SO ₂ CH ₃ C1 CF ₃	
2 a - 47	СН₃	SCH. CI	
2 a - 48	снэ	SOCH, C1	
2 a — 49	СН₃	SO ₂ CH ₃ C1	
2 a — 50	СНэ	N(CH ₃) SO ₂ CH ₃	
2 a - 51	СН₃	SCH ₃ ————————————————————————————————————	

Table 2a (continued)

Inter- mediate No.	R,	(X)n	Physical properties
2 a - 52	СН₃	SQCH; ————————————————————————————————————	
2 a - 53	CH ₃	SO2CH3 CI	·
2 a - 54	CH ₃	SCH.	
2 a - 55	СНэ	SOCH3 ————————————————————————————————————	
2 a - 56	СНэ	SO2CH3 ————————————————————————————————————	
2 a - 57	СН 3	C.I ————————————————————————————————————	
2 a — 58	СН₃	SOCH, CH,	
2 a - 59	CH₃	SDCH, ————————————————————————————————————	
2 a - 60	СНэ	CH, SO, CH,	

Table 2a (continued)

Inter- mediate No.	R ı	(X)n	Physical properties
2 a - 61	СН₃	SC ₃ H ₇ (iso) —CF ₃	
2 a - 62	CH3	SOC ₁ H ₇ (iso) —CF ₃	
2 a - 63	СНз	SQ ₂ C ₃ H ₇ (iso) ————————————————————————————————————	·
2 a - 64	СНэ	C1 C1	
2 a - 65	СН.	C1 C1 C1	

Inter- mediate No.	R,	(Z),	(X)n	Physical properties
2 b - 1	CH3	CH3 ~~~	SO ₂ CH ₃	Viscous
2 b - 2	CH₂CH₃	CH3 ~~~	SO ₂ CH ₃	
2 b - 3	CH3	CH3 ~~~	SO, CH,	
2 b - 4	СН₃	CH, ~~~	CF,	
2 b — 5	СН₃	CH, ~~~	SCH,	
2 b — 6	CH ₃	CH., ~~~	CI CH3 SO2CH3	

Inter- mediate No.	(2)	Physical properties
3 - 1		m.p. 2 i 3 - 2 l 7 °C
3 - 2	CH, ~~~	

Table 4a

Compound No.	R,	R 2	(X)n	Physical properties
a - 1	CH ₃	н	C1 -C1	m.p. 131-133℃
a - 2	СН₃	-SO ₂ -CH ₃	C1 — C1	Refractive index
a - 3	сн,	Н	NO 2	m.p. 65-70°C
a — 4	СН₃	-SO, -CH,	NO ₂	m.p. 130—133℃
a — 5	CH₃	Н	C1 SO2CH3	m.p. 163—166℃
a — 6	CH,	-202 - CH3	CI SO2CH2	m.p. 172−174°C
a - 7	СНэ	- C H 2 C - C	CI SO,CH,	m.p. 145—147℃
a - 8	СН.	Н	CI CH.	m.p. 112-115℃

74
Table 4a (continued)

		·		
Compound No.	R i	R 2	(X)n	Physical properties
a — 9	СНэ	-80; —CH;	CI CH3	m.p. 115-118°C
a - 10	CH3	- CH 2 C - CH 3	CI CH,	m.p. 126 - 129°C
a - 11	CH ₃	Н	SO;CH;	m.p. 153 - 157°C
a - 12	CH ₃	-SO2 — CH3	SO, CH,	m.p. 135 - 138℃
a - 13	CH ₃	- CH 2 C - O	SO, CH,	m.p. 124 - 127°C
a - 14	CH3	- CCH s II O	CI CH ₃	m.p. 112 - 115℃
a - 15	CH3	Н	NO ₂	m.p. 115 - 122°C
a - 16	СН₃	-so, -CH,	NO ₂	m.p. 146-148°C
a - 17	CH.	-CH,C-()	NO ₂	Viscous
a - 18	CH2CH3	Н	C1	m.p. 74 - 77°C

75
Table 4a (continued)

Compound No.	R,	R z	(X)n	Physical properties
a - 19	CH ₂ CH ₃	- CH 2 C - O	C1 — C1	Viscous
a - 20	СНз	- CH 2 C	NO ₂ —SO ₂ CH ₃	m.p. 181 ⁻ 183℃
a - 21	CH ₂ CH ₃	Н	CI SO, CH.	m.p. 158 - 161°C
a - 22	CH₂CH₃	-\$0 ₂ -CH ₃	C1 SO2CH3	m.p. 116 -118°C
a - 23	CH ₂ CH ₃	- CH 2 C - C	C1 SO, CH,	m.p. 146 - 148℃
a - 24	СН,	Н	C1 SCH ₃	m.p. 111 - 114°C
a - 25	СН₃	- CH 2 C - C	CI SCH.	Refractive index 46.6 n D 1.6001
a - 26	СНз	Н	NO ₂ SO ₂ CH ₃	m.p. 140 - 145℃
a — 27	CH,	-50,-	SO ₂ CH ₃	m.p. 175 - 178℃

76
Table 4a (continued)

Compound No.	R ı	R 2	(X)n	Physical properties
a - 28	СНэ	-S02-CH3	CI CI	
a - 29	СНз	-CH3C -	C1 - C1	
a - 30	CH.	- CH 2 C -	NO ₂	
a - 31	CH2CH3	-802	NO 2	
a - 32	CH2CH3	-502	CI SO ₂ CH ₃	
a - 33	CH ₃	-\$0 ₂ -C1	CI SO, CH,	
a - 34	CH ₃	-802 -CI	CI SO2CH,	
a - 35	CH ₃	-so ₂ -Cl	CI SO.CH.	
a - 36	CH ₃	-SO ₂ - OCH ₃	C1 ————————————————————————————————————	

77
Table 4a (continued)

Compound No.	R,	R:	(X)n	Physical properties
a - 37	СН₃	-S02-OCH3	CI SO2CH3	
a - 38	CH ₃	-50; -CF;	CI SO, CH,	
a - 39	CH ₃	-SO ₂ CH ₃	SO, CH,	m.p. 143 - 146°C
a 40	СН₃	-SO2CH2CH3	SO2CH3	m.p. 127 - 130.5℃
a - 41	CH ₃	-so₂ ← CH₃ CH₃	SO,CH,	m.p. 117 = 120°C
a - 42	СНз	-50 ₂ -C1	SO:CH:	m.p. 196 − 199°C
a — 43	СНэ	-so ₂ - C1	SO2CH3	m.p. 157 - 160°C
a — 44	CH3	-so ₂ - C1	SOzCH3	m.p. 168 - 171℃
a — 45	CH3	-\$0,-ОСН,	SO, CH,	m.p. 157 - 160°C
a - 46	СН,	-so; -\(\)	SO,CH,	

78
Table 4a (continued)

Compound No.	R,	R 2	(X)n	Physical properties
a - 47	СНз	-so, -CF,	SO, CH,	m.p. 185 - 188°C
a - 48	СНз	-50 ₂ - CF ₃	SO ₂ CH ₃	m.p. 124 - 127℃
a - 49	СН₃	-50 2 - F	SO, CH,	m.p. 152 - 155℃
a - 50	CH ₃	-50 ₂ - F	SO, CH,	
a — 51	СНз	-SO ₂ -CH ₃	SO2CH3	m.p. 166 - 169℃
a - 52	CH ₃	-S0 ₂ -CH ₃	SO2CH3	m.p. 145-149°C
a - 53	CH ₃	-SO₂C₄H₃(n)	SO2CH3	m.p. 142 - 145°C
a — 54	CH 2 CH 3	-502	SO2CH3	
a — 55	CH2CH3	- SO 2 - CH 3	SO ₂ CH ₃	m.p. 156 - 159℃
a — 56	CH ₂ CH ₃	-802 -C1	SO ₂ CH ₃	

79
Table 4a (continued)

Compound No.	Rı	R 2	(X)n	Physical properties
a - 57	CH 2 CH 3	-so, -C1	SO2CH3	
a - 58	CH2CH3	-CH2C-	SO ₂ CH ₃	m.p. 136 - 138℃
a — 59	CH ₃	-CH2C -CH3	SO, CH,	Viscous
a - 60	СН₃	-CH 5 C -C1	SO2CH3	Viscous
a - 61	CH(CH ₃) ₂	-502-	SO, CH,	
a - 62	CH(CH ₃) ₂	-\$0,2 -CH3	SO, CH,	
a - 63	n-C ₃ H ₁	-\$02 -CH3	SO, CH,	
a — 64	СНз	-SO2CH3	NO ₂ SO ₂ CH ₃	
a — 65	СНэ	-502	NO ₂ —SO ₂ CH ₃	
a - 66	CH ₃	-502 -CH3	NO ₂ —SO ₂ CH ₃	

80
Table 4a (continued)

Compound No-	R i	R 2	(X)n	Physical properties
z - 67	CH ₃	-\$0, -C1	NO ₂ SO ₂ CH ₃	
a - 68	CH ₃	-50 ₂ -NO ₂	NO ₂ —SO ₂ CH ₃	
a - 69	СНз	-502 - NO2	SO, CH,	m.p. 208 - 211℃
a - 70	СНз	-502 - NO2	C1 SO2CH3	
a - 71	n-C ₃ H ₇	-SO ₂ -CH ₃	CI SO2CH3	
a - 72	СНз	-SO ₂ -CH ₃	SCH ₃ — CF ₃	m.p. · 107 - 109℃
a - 73	СНз	-\$0, -CH,	SO2CH3	m.p. 158 - 164°C
a - 74	CH ₃	-\$0, -CH3	C I NO 2	
a - 75	CH ₃	-S02-CH3	SCH ₃	
z - 76	СН₃	-SO2-CH2CH3	SO, CH,	Viscous

81
Table 4a (continued)

Compound No.	R,	R 2	(X)n	Physical properties
a - 77	CH₃	н	SO ₂ CH ₃	m.p. 190 - 204°C
a - 78	CH3	-SO2CH3	SO ₂ CH ₃	m.p. 134 - 138°C
a - 79	СН₃	- CH * C -	SO ₂ CH ₃	m.p. 137 - 139℃
a - 80	- СН₃	Н	C1 CH;	m.p. 177 - 180°C
a — 81	CH3	H .	CF ₃ SO ₂ CH ₃	m.p. 141 −143°C
a — 82	CH ₃	н	SCH, CF,	m.p. 107-110°C
a — 83	СН₃	- C H 2 C - C H 3 II O	SO, CH,	Viscous
a — 84	CH.	-S0 ₂ F	SO ₂ CH ₃	m.p. 189 - 193°C
a — 85	СНэ	- C H 2 C - C	CF, SO, CH,	m.p. 113 - 115℃
a - 86	CH ₃	- CH 2 C - O	SCH ₃	m.p. 146 -148°C

82
Table 4a (continued)

	Table 4a (Continued)				
Compound No.	R,	, R:	(X)n	Physical properties	
a - 87	CH ₃	- C H 2 C - O	SOCH,	m.p. 148 - 151°C	
a - 88	СН₃	- c — O	SO ₂ CH ₃	m.p. 137 - 141°C	
a - 89	СНз	-SO ₂ C ₃ H ₇ (n)	SO2CH3	m.p. 128 - 131°C	
a - 90	СН₃	-802	C1 CH ₃ -SO ₂ CH ₃	Viscous	
a — 91	СНз	-SO ₂ -CH ₃	C1 CH, SO, CH,	m.p. 188-192℃	
a - 92	СНз	- \$0 2 - CH 3	CF ₃ —SO ₇ CH ₃	Viscous	
a - 93	CH;	- SO 2 - CH 3	SOCH,	m.p. 128-131℃	
a — 94	сн,	-CH2-	SO ₂ CH ₃	m.p. 154 - 157°C	
a — 95	СНз	- CH 2 CN	SO ₂ CH ₃	m.p. 135 - 140℃	
a — 96	СНз	- CH 2 CH = CH 2	SO ₂ CH ₃	Refractive index n b 1.5133	

Table 4a (continued)

Compound No.	R _i	R ₂	(X)n	Physical properties
a - 97	CH ₃	- C H 2 - C H 3	SO2CH3	m.p. 161 - 163℃
a — 98	СН₃	- CH ₂ CH ₃	SO, CH,	m.p. 163 - 166°C
a - 99	CH ₃	- C H 2 C ≡ C H	SO ₂ CH ₃	m.p. 123 - 127℃
a -100	CH3	- C H 2 C H 3	SO, CH,	m.p. 125- 128°C
a -101	СНэ	-CH, -CF,	SO, CH,	m.p. 159-161°C
a -102	СНз	-SO ₂ -CH ₃	SO2CH2CH3	m.p. 63 - 70°C
a -103	CH3	-SO ₂ C ₃ H ₇ (n)	SO, CH, CH,	m.p. 130 - 133℃
a -104	CH ₃	-CH2 -CI	SO2CH3	m.p. 151 - 154°C
a -105	CH ₃	- C H 2 - B r	SO, CH,	m.p. 160 - 163°C
a -106	СНз	Н	SO,CH,CH,	m.p. 140 - 143°C

Table 4a (continued)

Table 4a (continued)				
Compound No.	R ,	R:	(X)n	Physical properties
a -107	CH2CH3	Н	SO, CH,	m.p. 109-114°C
a -108	СНз	- C H 2 - F	SO ₂ CH ₃	
a -109	СНэ	- C H 2 - C 1	SO ₂ CH ₃	
a -110	CH ₃	- C H 2 - C I	SO, CH,	
a-lll	СНз	- CH 2 OCH 3	SO, CH,	
a -112	СН₃	- CH 2 O CH 2 CH 3	SO, CH,	
a -113	СНэ	O ∥ - CH 2 COCH 3	SO ₂ CH ₃	Viscous
a -114	СНэ	O II - CH 2 COCH 2 CH 3	SO ₂ CH ₃	
a -115	CH ₃	-СН3	SO ₂ CH ₃	
a -116	CH3	-C,H,(n)	SO, CH,	Viscous

85

Table 4a (continued)

		Table 4a (Cor	itinued)	
Compound No.	R ı	R:	(X)n	Physical properties
a -117	CH ₃	-C4H9(n)	SO2CH3	
a -118	CH3	O II - C C H 3	SO, CH,	m.p. 156 - 158°C
a -119	СНз	O II -CCH2CH3	SO2CH3	
a -120	¯CH₃	O II -C-C ₃ H ₇ (n)	SO ₂ CH ₃	m.p. 143 - 145°C
a -121	CH ₃	O II -C-C ₄ H ₉ (n)	SO;CH;	
a -122	СН₃	- c — Сн з	SO2CH3	m.p. 179-182℃
a -123	CH ₃	-c - C 1	SO ₂ CH ₃ —CF ₃	
a -124	СНз	-SO; — CH;	SCH2CH3 CF3	
a -125	CH3	-SO ₂ N(CH ₃) ₂	C1 SCH ₃	m.p. 116 - 118°C
a -126	СНэ	-SO2N(CH3)2	SO,CH,	m.p. 154 - 158°C

86
Table 4a (continued)

Compound No.	R,	R 2	(X)n	Physical properties
a -127	СНэ	-CON(CH ₃) ₂	CI SCH 3	m.p. 136 - 138°C
a -128	СН,	-CON(CH ₂) ₂	SO 2 CH 3	
a -129	CH.	- SO ₂ N(CH ₃) ₂	CI SOZCH,	m.p. 50 - 60°C
a -130	CH3	-CON(CH ₃) ₂	CI SO, CH,	m.p. 200 - 203℃
a -131	СНэ	-502 - CH3	SO ₂ CH ₂ C1	m.p. 57 - 60°C
a -132	СНз	-S02-CH3	SCH ₃ CI	Viscous .
a -133	СН₃	-\$0 ₂ -CH ₃	SCH ₃ F	m.p. 105107°C
a -134	сн₃	-\$0, -CH,	SOCH, F	m.p. 131 -133℃
a -135	CH3	-S0: -CH,	SO ₂ CH ₃ F F	m.p. 169-172°C

87
Table 4a (continued)

Compound No.	R ı	R 2	(X)n	Physical properties
a -136	СНз	-CH ₂ -	SCH, F	Oily
a -137	СНз	- CH 2 -	SOCH ₃ F	Viscous
a -138	CH ₃	- CH 2	SO ₂ CH ₃ F F	m.p. 125-128℃
а-139	CH.	Н	SCH, F	Oily
a -140	CH3	-CH-()	SO,CH,	m.p. 139-142°C
a -141	CH ₃	NO 2 NO 2	SOzCHJ CF3	m.p. 150-151℃
a -142	СНз	н	SCH.	m.p. 95-103℃
a -143	CH ₃	-SO ₂ - CH ₃	SCH.	m.p. 92 - 96℃
a -144	CH ₃	Н	SO, CH,	m.p. 60 - 70°C

88

Table 4a (continued)

Compound No.	R :	R 2	(X)n	Physical properties
a -145	СНз	-SO ₂ - CH ₃	SO, CH,	m.p. 75 - 80°C
a -146	CH ₃	Н	CF3 SCH3	m.p. 70 - 85℃
a -147	CH3	-802 -CH3	SO ₂ CH ₃ CH ₃	
a -148	CH3	-CHCO -CHCO -CHCO	SO2CH3	m.p. 152 - 153℃
a -149	CH₃	- C H 2 C H = C H - C	SO, CH,	Viscous
a -150	CH.	-CH 2 -	SCH3 CI	Viscous
a -151	СНэ	- CH 2 -	SOCH CI	Viscous
a -152	СНз	-CH 2	SO ₂ CH ₃ C1	m.p. 157 - 160℃
a -153	СНз	-SO ₂ C ₃ H ₇ (n)	SCH, CI	m.p. 82 - 85°C

Table 4a (continued)

Compound NO.	Rı	R 2	(X)n	Physical properties
a -154	СНэ	-SO₂C₃H;(n)	SOCH, CI	Viscous
a -155	CH ₃	-SO₂C₃H₁(n)	SO2CH3 C1	m.p. 165-169°C
a -156	СН₃	Н	SCH, CI	Viscous
a -157	CH₃	NO ₂	SCH, CI	Viscous
a -158	CH3	NO 2 NO 2	SO ₂ CH ₃ C1 C1	m.p. 120-130℃
a -159	СН₃	-CH ₂ NO ₂	SCH ₃ CI	Viscous
a -160	CH ₃	- C H 2 NO 2	SOCH, C1	m.p. 177 -178℃
a -161	CH3	- C H 2 NO 2	SO ₂ CH ₃ CI CI	m.p. 173 -175°C

Table 4a (continued)

		Table 4a (cont	inuea)	
Compound No.	R,	R 2	(X)n	Physical properties
a -162	СН,	-CH2-	SCH, CH,	Viscous
a -163	СНэ	- C H 2 -	SOCH 2 CH 3 C I	Viscous
a -164	СНэ	- CH 2 -	SO2CH2CH3 CI CI	m.p. 65- 75°C
a -165	CH ₃	H	C1. C0,CH,	m.p. 208°C (decomposition
a -166	CH ₃	-\$02 -CH3	C1 C0,CH,	m.p. 144 - 147°C
a -167	CH3	-SO ₂ -CH ₃	NO ₂	m.p. 120 - 14,1°C
a -168	CH ₃	-CH2CO-C(CH3)3	SO2CH3	m.p. 140-144°C
a -169	CH ₃	- CH 2 -	SO, CH, CH,	m.p. 119 - 122℃
a -170	CH.	- CH 2 C≡ CH	SO,CH,CH,	Oily
,				

91
Table 4a (continued)

Compound No.	R i	R z	(X)n	Physical properties
a -171	CH3	-CH 2	050,CH,	Viscous
a -172	СН₃	н	CH2SCH3	Oily
a -173	СН₃	- CH ₂ CN	SOCH3 CI	Viscous
a -174	СН₃	-CH₂CN	SO, CH, CI	Viscous
a -175	CH3	-so, — CH,	SCH,	m.p. 153-156℃
a -176	CH;	-SO, -CH,	SO2CH3	Viscous
a -177	СН,	-SO ₂ -CH ₃	SCH, CI	Viscous
a -178	СН₃	-SO2 -CH3	SO, CH, CI CF,	Viscous
a -179	CH3	-SO₂C₃H₁(n)	SO2CH3 CI CF3	m.p. 140 ⁻ 144 ℃

92

Table 4a (continued)

		14b16 44 (60%)		
Compound No.	R,	R 2	(X)n	Physical properties
a -180	СНз	- CH 2 -	CH2SCH3	Viscous
a -181	CH3	-C42 -	CH2SOCH3	Viscous
a -182	CH ₃	- CH 2 -	CH 2 SO 2 CH 3	m.p. 55 - 62℃
a -183	СНз	Н	SCH ₃ CI	Viscous
a -184	СНз	-CH2	SCH, CI	Viscous
a -185	CH3	-CH2-	SOCH ₃ CI	m.p. 154-155℃
a -186	СН₃	-CH 2 -	SO, CH, CI	m.p. 165-167°C
a -187	СНэ	н	N(CH ₃)SO ₂ CH ₃	m.p. 50 - 58°C

93
Table 4a (continued)

		10010 10 (001		
Compound No.	R,	R 2	(X)n	Physical properties
a -188	СНз	-SO ₂ C ₃ H ₇ (n)	N(CH3)SD2CH3	m.p. 181 -184°C
a -189	СН₃	-SO, -CH3	N(CH3)SO2CH3	m.p. 70 - 73°C
a -190	СНз	- CH 2 C == CH	SCH, CI	Viscous
a -191	- СН₃	-CH,C≡CH	SO ₂ CH ₃ C1 C1	m.p. 40 - 50°C
a -192	СН₃	н	SCH, CF,	Viscons
a -193	СН₃	-CH2-	SCH ₃ CI	m.p. 107 - 110℃
a -194	СН₃	-CH2-	SOCH ₃ CF ₃	m.p. 48− 52°C
a -195	СН.	-сн, —	SO, CH, CF,	m.p. 140 - 148℃
a -196	СНэ	н	SCH ₃	m.p. 115 - 130℃

Table 4a (continued)

Table 4a (continued)				
Compound No.	Rı	R 2	- (X)n	Physical properties
a -197	CH ₃	- CH 2	SCH ₃	m.p. 79- 93℃
a -198	CH ₃	-CH2-	SOCH,	m.p. 114 - 125°C
a -199	CH ₃	-CH2-	SO'CH'	m.p. 143 - 146°C
a -200	СН₃	- CH 2 CO -	SD,CH, CI	m.p. 173 - 178°C
a -201	СНэ	Н	CI CH,	m.p. 155-156℃
a -202	СНз	-so; -CH,	CI CH3	m.p. 150 - 151°C
a -203	CH.	-SO2CH2CH(CH3)2	SO,CH,	m.p. 183 −188°C
a -204	CH,	-CH 2 CO -	SOCH ₃ C1	Viscous
a -205	CH ₃	F CF,	SCH, CI	m.p. 111 - 126℃

Table 4a (continued)

Table 4a (Continued)							
Compound No.	R,	R 2	(X)n	Physical properties			
a -206	СН₃	- CH 2 C == CH	SOCH ₂ CH ₃ — CF ₃	Oily			
a -207	СНз	-SO ₂ C ₂ H ₇ (n)	SOCH2CH3	Viscous			
a -208	СНз	-SO ₂ C ₃ H ₇ (n)	SOCH, CF,	m.p. 134 - 135°C			
a -209	CH ₃	- C H 2 C ≡ C H	SOCH, CF,	Viscous			
a -210	СНэ	-CH2-	SOCH;	Viscous			
a -211	СНэ	н	SOCH;	m.p. 122 - 138℃			
a -212	CH ₃	-CH₃CN	SOCH 3	Viscous			
a -213	CH ₃	-CH2C=CH2	SO, CH,	m.p. 108-111°C			
a -214	СНз	-SO2(CH2)3CI	SO, CH,	m.p. 113 - 118°C			

Table 4a (continued)

Rı	R 2	(X)n	Physical properties	
СН₃	-CH2 -	CH2SO2CH2 C1	m.p. 50 - 60℃	
СН₃	-CO(CH ₂),Cl	SO ₂ CH ₃ —CF ₃	m.p. 133-135℃	
CH.	- CH 2 CH = CH 2 SOCH 2 CH 3 CF 3		Viscous	
CH ₃	- CH₂CN	SOCH, CH,	Viscous	
CH ₃	-CH ₂	SOCH 2 CH 3	Viscous	
СНэ	-S0,CH,	SOCH, CH,	m.p. 125-130℃	
СН₃	-CO2CH3	SOCH, CH,	Viscous	
CH ₃	Н	SOCH, CH,	m.p. 153 - 156°C	
СН,	-CH2CO2CH2CH3	SOCH, CH,	Viscous	
	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	CH ₃ -CH ₂ -CO(CH ₂) ₃ C1 CH ₃ -CH ₂ CH=CH ₂ CH ₃ -CH ₂ CN CH ₃ -CH ₂ CN CH ₃ -CH ₂ -CO ₂ CH ₃ CH ₃ H	CH3 -CH2 CH3 SO2CH3 CH3 -CO(CH2)3C1 SO2CH3 CH3 -CH2CH=CH2 SOCH2CH3 CH3 -CH2CH=CH2 SOCH2CH3 CH3 -CH2CH SOCH2CH3 CH3 -CH2CH3 SOCH2CH3 CH3 -SO2CH3 SOCH2CH3 CH3 -CO2CH3 SOCH2CH3 CH3 -CO2CH3 SOCH2CH3 CH3 -CH2CH3 SOCH2CH3 CH3 -CH2CH3 SOCH2CH3 CH4 -CH2CH3CH3CH3 SOCH2CH3	

97
Table 4a (continued)

Table 4a (conclined)							
Compound No.	Rı	R 2	(X)n	Physical properties			
a -224	CH.	н	NO ₂ - CF ₃				
a -225	CH3	Н	SCH ₃ NO ₂	Viscous			
a -226	CH³	-SO ₂ C ₃ H ₇ (n)	SCH, CI	Viscous			
a -227	СН₃	Н	SCH, CI -CF,	Oily			
a -228	СН₃	- СН 2 СН = СНС !	SO, CH,	m.p. 100 - 103°C			
a -229	СНз	- CH 2 C = CH 2 CH 3	SO ₂ CH ₃ CF ₃	m-p. 122-125℃			
a -230	CH ₃	- CH ₂ C = CH ₂ Br	SO ₂ CH ₃	Oily			
a -231	СН₃	-CH2CH=C(CH3)2	SO ₂ CH ₃ -CF ₃				
a -232	СНэ	-CH2CH=C(C1)2	SO ₂ CH ₃ -CF ₃	m.p. 142 - 145°C			
a -233	CH,	- C H 2 C H = C H C H 3	SO ₂ CH ₃	m.p. 101 - 106°C			

98
Table 4a (continued)

Compound No.	R,	R 2	(X)n	Physical properties
a -234	CH3	- CHCH = CH 2 CH 3	SO ₂ CH ₃	Oily
a -235	CH ₃	-CH2CON(CH3)2	SO, CH,	
a -236	CH ₂ CH ₃	- C H ₂ C = C H ₂ C	SO ₂ CH ₃	
a -237	CH2CH,	- C H ₂ C = C H ₂ C H ₃	SO, CH,	
a -238	СНэ	- C H 2 C = C H 2 C H 3	SO, CH, CH,	
a -239	СНз	-CH2C=CH2 Br	SO2CH2CH3	m.p. 124 - 126°C
a -240	СН₃	-CH2CH=C(CH3)2	SO ₂ CH ₂ CH ₃	
a -241	СН₃	-CHCH=CH2 CH3	SO2CH2CH3	Viscous
a -242	CH ₃	-SO ₂ CH ₂ CH ₃	SO, CH, CH,	
a -243	СНз	-SO ₂ C ₄ H ₀ (n)	SO, CH, CH,	

Table 4a (continued)

Compound No.	R,	R 2	(X)n	Physical properties		
a -244	СН₃	н	N(CH,)SO,CH,	m.p. 60 - 65°C		
a -245	СН₃	-SO ₂ C ₃ H ₇ (n)	N(CH ₃)SO ₂ CH ₃			
a -246	CH ₃	- C H 2 C = C H 2 C	N(CH ₃)SO ₂ CH ₃	·		
a -247	- CH₃	- CH 2 C = CH 2 C	SCH; CF;			
a -248	СНз	-CH2C=C(CH3)2 CH3	SO, CH,			
a -249	СН,	- C H 2 C H = C H 2	SO, CH, CH,	Viscous		
a -250	СНэ	-CH₂CN	SO ₂ CH ₂ CH ₃ — CF ₃	Viscous		
a -251	CH ₃	- C H 2 C = C H 2 C l	SOCH2CH3	Viscous		
a -252	CH ₃	- CH 2 CH = CHC I	SOCH, CH,	Viscous		
a -253	CH3	- CH 2 CH = CHC 1	SO, CH, CH,	Viscous		

100
Table 4a (continued)

			<u> </u>		
Compound No.	R ı	R,	(X)n	Physical properties	
a -254	CH ₃	- CH 2 C = CH 2 C	SO ₂ CH ₂ CH ₃ ————————————————————————————————————	m.p. 120 - 125℃	
a -255	CH ₃	- C H 2 C H = C H C H 3	SOCH2CH3	m.p. 97 - 105℃	
a -256	CH3	-CH2CH=CHCH3	SO, CH, CH,	m.p. 116 - 117°C	
a -257	CH3	-SO2CH2CH3	SC ₃ H ₇ (iso) 	Viscous	
a -258	CH ₃	-SO ₂ CH ₃	SOZCHZCH3 ————————————————————————————————————	m.p. 164 - 165℃	
a -259	СНз	-CH2CO2 CH2CH3	SO2CH2CH3	Viscous	
a -260	СН₃	-SO;CH;CH;	SOC, H, (iso)	m.p. 112-115°C	
a -261	СНз	-SO2CH2CH3	SO ₂ C ₃ H ₇ (iso) ————————————————————————————————————	Viscous	
a -262	CH ₃	-CH2CCH2CCH2CH3	SO, CH, CH,	Viscous	
a -263	CH ₃	-CH2CON(C2H3)2	SO, CH, CH,	Viscous	
1	1	1			

Table 4 (continued)

Compound No.	R ı	R :	(X)n	Physical properties
a -264	СН₃	-CH2CHCH2CI CH3	SO ₂ CH ₂ CH ₃ — CF ₃	m.p. 123~125°C
a265	CH ₃	-SO₂C₃H₁(n)	C1 C1	
a -266	СНз	-SO₂C₃H;(n)	C1 C1 C1	
a -267	СНз	-CH₂CH₂Cl	SO ₂ CH ₃	
a -268	СН₃	-CH2CH2C1	SO2CH2CH3	
a -269	СНэ	- COC = CH ₂ CH ₃	SO2CH3 CF3	
a -270	CH ₃	-SO2-CH3	N(CH ₃)SO ₂ CH ₃ ————————————————————————————————————	m.p. 67∼ 72°C
a -271	СН₃	-CH2CH=C(C1)2	SCH ₃ — CF ₃	Viscous

Comp.	R ı	(2)	R;		Physical properties
b-1	СНз	СН3~~	-S02-CH3	SO, CH,	m.p. 46- 56°C
b-2	СНэ	сн., ~~	-CH2 -	SO.CH.	Viscous
b-3	CH ₃	сн., ~	-c -C	SO, CH,	
b-4	СНз	CH.,~~	-SO ₂ C ₃ H ₇ (n)	SO, CH,	
b-5	СНэ	СНЗ	-CH2C-C1	SO, CH,	
b-6	CH.	CH,	Н	SO ₂ CH ₃	

WO 97/41106 PCT/JP97/01457

103

Now, the Test Examples of the present invention will be described.

TEST EXAMPLE 1

Upland field soil was put into a 1/150,000ha pot, and seeds of various plants were sown. Then, when the plants 5 reached predetermined leaf stages (1) barnyardgrass (Echinochloa crus-galli L.), EC: 1.3-2.6 leaf stage, ② crabgrass (Digitaria sanguinalis L.), DS: 1.0-2.5 leaf stage, 3 redroot pigweed (Amaranthus retroflexus L.), AR: 0.1-1.2 leaf stage, @ prickly sida (Sida spinosa 10 L.), SS: 0.1-1.2 leaf stage, 5 tall morningglory (Pharbitis purpurea L.), PP: 0.3-1.3 leaf stage, 6 common cocklebur (Xanthium strumarium L.), XS: 0.1-1.8 leaf stage, ① rice (Oryza sativa L.), OS: 1.0-2.5 leaf stage, (8) wheat (Triticum spp.), TR: 2.2-2.9 leaf stage, 15 (Glycine max Merr.), GM: primary leaf - 0.3 leaf stage), a wettable powder having the compound of the present invention formulated in accordance with a usual formulation method, was weighed so that the active 20 ingredient would be a predetermined amount, and diluted with water in an amount of 500 e/ha. To the diluted solution, 0.1 %(v/v) of an agricultural spreader was added. The herbicide thus adjusted was applied by a small size spray for foliage treatment. On the 18th to 25 30th days after the application of the herbicide, the growth of the respective plants was visually observed,

WO 97/41106 PCT/JP97/01457

104

and the herbicidal effects were evaluated by the growthcontrolling degrees (%) ranging from 0 (equivalent to the
non-treated area) to 100 (complete kill), whereby the
results shown in Table 5, were obtained. Compound Nos.
in Table 5 correspond to Compound Nos. in Table 4a and 4b
given hereinbefore.

Tab	le 5											
	Dose		Grow	th-c	ontro	lling	deg	ree (%)	 		_
Comp. No.	of active ingre- dient (g/ha)	EC	DS	AR	ss	PP	xs	os	TR	ZM	GM	Evalu- ation day
a-3	500	0	0	70	60	60	70	40	0	0	0	23
a-5	500	30	40	70	0	60	60	50	10	0	10	18
a-11	63 125 500	40 70 90	20 40 50	90 90 100	20 20 50	80 80 100	80 100 100	50 80 100	000	0 0 0	50 70 80	22
a-12	63 125 500	80 80 90	40 70 80	90 80 90	30 20 60	80 90 90	95 80 80	80 90 100	0 0	20 0 0	70 70 80	18
a-13	500	_ 80	60	90	6 0	80	100	90	0	0	60	18
a-24	500	40	50	80	10	60	80	50	-	10	30	18
a-25	500	70	90	80	10	70	90	50		30	60	18
a-27	500	60	20	100	20	80	80	50	0	0	40	20
a-39	63 125 500	70 80 90	30 60 80	80 90 90	20 30 30	60 60 70	80 100 100	50 70 70	0 0 10	10 10 20	60 60 80	20
a-40	63 125 500	90 90 1 0 0	30 40 90	90 90 100	10 30 60	90 90 90	80 90 100	90 100 100		30 50 70	50 70 70	18
a-41	63 125 500	90 90 100	20 40 90	90 90 100	20 20 40	90 90 100	70 80 100	90 90 100	1 1 1	0 0 20	50 70 90	18
a-42	500	60	40	100	30	70	80	50	10	20	50	20
a-43	125 500	50 70	30 80	90 100	20 30	60 80	80 100	40 70	0 20	20 20	50 70	20
a-44	63 125 500	80 90 90	50 70 90	80 80 90	20 20 30	60 70 90	80 90 100	60 80 80	-	0 20 20	60 70 80	18
a-45	125 500	40 70	30 50	80 90	20 20	80 80	60 100	10 20	10 20	40 20	50 50	20
a-47	125 500	40 80	40 50	90 100	30 60	60 80	80 80	20 70	-	0 30	0 40	18

106

Table 5 (continued)								, 				
	Dose		Growth-controlling degree (%)									
Comp.	of active ingre- dient (g/ha)	EC	DS	AR	ss	PP	xs	os	TR	2M	GM	Evalu- ation day
a-48	63 125 500	80 90 100	40 60 80	90 90 100	10 30 60	40 70 90	70 100 100	50 60 80	- - -	0 20 40	50 60 70	18
a-49	125 500	80 80	40 70	100 100	30 30	70 80	90 90	60 80	10 20	20 20	60 60	20
a-51	125 500	90 90	60 90	80 100	10 30	80 90	80 90	70 80	-	0 10	70 70	19
a-52	63 125 500	90 90 90	60 70 90	80 80 90	20 30 50	70 80 90	80 90 100	60 70 80	- - -	20 30 40	80 90 90	18
a-53	63 125 500	70 80 90	10 20 90	90 90 90	0 10 20	70 80 90	80 90 100	50 50 90	- - -	0 0 10	50 60 70	18
a-59	500	70	40	80	0	80	90	30	0	10	60	20
a-60	63 125 500	90 90 90	50 80 90	80 90 100	10 20 30	90 100 100	90 100 100	60 70 90	- -	0 20 60	100 90 90	19
a-69	500	40	40	90	50	70	100	60	0	10	40	20
a-72	125 500	70 100	20 30	80 90	0	60 70	90 100	50 80	-	0	40 60	19
a-73	500	60	30	90	40	70	80	10	-	30	50	18
a-76	63 125 500	70 80 90	30 60 90	90 90 100	0 20 40	80 80 100	90 90 100	70 70 70	0 10 20	10 20 40	70 70 80	20
a-77	125 500	90 90	30 60	80 90	10 30	70 70	70 90	50 90	-	10 30	60 70	18
a-78	63 125 500	80 80 100	40 40 50	70 90 100	20 20 40	60 90 90	80 90 100	40 60 60	- - -	10 20 50	60 70 70	18
a-79	500	60	30	100	50	80	90	30	-	0	70	18
a-80	. 	80	90	80	20	60	80	80	-	60	10	19

					10	7						
Table	e 5 (conti	nued	Growt	h-cor	trol	ling	degr	ee (%)		<u> </u>
	Dose of active ingre- dient (g/ha)	EC	DS	AR	SS	рp	xs	os	TR	ZM	GM	Evalu- ation day
a-81	125 500	60 90	60 90	90 90	10 30	90 90	40	10 40	-	0 10	30 50	19
a-82	125 500	40 80	30 30	80 90	20 20	60 90	100 100	60 80	-	0 10	60 70	19
a-83	63 125 500	50 60 90	60 70 90	80 80 90	30 40 40	70 80 90	100 100 90	60 60 80	1 1 1.	0 10 30	10 20 70	18
a-84	63 125 500	70 80 90	30 50 90	70 80 90	30 20 50	40 60 90	100 100 90	30 60 100	1 1	0 0 20	50 60 70	18
a-87	125 500	80 100	20 70	90 95	10 10	70 100	100	60 80	-	10 0	60 95	19
a-88	63 125 500	90 90 100	60 80 90	80 90 90	30 60 60	80 80 90	90 90 100	70 70 80	-	10 20 60	70 80 90	18
a-89	63 125 500	90 90 100	90 90 100	90 90 100	30 30 60	90 90 100	100 100 100	100 90 100	- - -	10 20 80	90 100 100	19
a-90	125 500	80 90	90 100	70 80	0 10	60 70	80 100	60 80	- -	40 80	10 70	19
a-92	500	80	90	90	20	90	-	50	-	0	20	19
a-93	125 500	60 80	40 50	95 100	0 20	60 100	100	10 70	- -	0	70 100	19
a-94	63 125 500	90 100 90	90 90 90	80 90 90	10 - 20	90 100 100	80 100 100	70 90 90	- - -	0 10 20	60 70 70	19
a-95	63 125 500	100 100 100	70 90 100	100 100 100	10 10 40	80 95 100	90 100 -	90 100 100	- - -	20 35 70	95 95 100	19
a-96	125 500	80 100	70 100	80 100	20 30	80 100	90 100	60 70	10 20	40 60	80 90	20
a-97	63 125 500	90 80 90	30 40 90	90 80 90	0 10 20	40 50 70	50 70 80	10 30 50	- - -	0 0 20	20 30 60	18

ጥable	5 (0	conti	nuedl			7 R						
			Gr	owth-	conti	rolli	ng de	gree	(%))	-	
ļ	Dose pf active ingre- dient (g/ha)	EC	DS	AR	ss	PP	xs	os	TR	ZM	GM	Evalu- ation day
a-98	63 125 500	90 90 90	30 40 90	90 100 90	0 30 30	60 80 90	70 70 100	30 40 100	-	0 0 20	40 50 60	18
a-99	63 125 500	90 100 100	40 60 100	100 100 100	40 40 70	80 90 100	80 100 100	70 90 100	-	40 50 80	70 70 100	18
a- 100	125 500	80 90	40 90	90 100	30 40	80 90	70 100	0 50	-	0 10	50 60	18
a- 101	125 500	90 90	30 40	90 90	0 30	30 30	20 60	0 0	- -	0 20	50 60	18
a- 102	63 125 500	90 95 100	40 60 90	90 90 100	20 30 70	70 80 90	80 80 80	80 100 90	-	0 10 20	100 60 100	19
a- 103	63 125 500	90 100 100	30 50 90	90 60 80	40 40 50	60 80 100	70 100 100	50 50 100		0 0 40	50 50 70	19
a- 104	125 500	80 90	20 20	90 100	0 10	10 10	0 .· 0	- 0 0	-	0	10 20	19
a- 105	63 125 500	90 90 100	30 40 80	100 100 80	30 0 30	40 60 90	20 80 -	10 30 50	1 1	10 0 80	40 50 90	19
a- 106	63 125 500	10 70 90	30 70 70	80 100 70	50 50 -	60 90 100	90 50	20 90 100	1 1 1	0 20 50	30 40 80	21
a- 116	125 500	50 50	10 50	100 90	30 20	70 90	- -	30 20	-	10 0	30 40	24
a- 118	63 125 500	70 80 90	30 50 80	100 80 100	30 30	70 80 100	90 - 100	100 100 100		10 40 60	70 100 100	21
a- 120	63 125 500	90 100 90	50 50 90	100 100	20 50 100	50 80 60	80 100 100	90 100 100	- -	0 0 70	70 80 100	21
a- 122	63 125 500	70 80 90	50 90 90	100 100 -	40 50 -	60 70 50	90 90 100	60 90 100	-	10 30 40	50 60 70	21

109

Table 5 (continued)									1			
	Dose		G	rowth	-con	troll	ing d	legre	e (9	b)]]
Comp.	of active ingre- dient (g/ha)	EC	DS	AR	ss	PP	xs	os	TR	ZM	GM	Evalu- ation day
a- 131	500	80	40	60	30	80	100	50	-	30	20	19
a- 132	125 500	80 90	70 90	60 60	20 20	90 90	50 50	10 40	-	30 70	0 10	19
a- 133	500	10	30	90	40	70	10	0	-	40	30	21
a- 136	125 500	20 100	30 100	90 80	50 30	70 70	- 50	0	-	40 100	40 50	21
a- 137	125 500	20 90	30 60	90 100	0 10	100 100	- 80	0 40	-	40 80	30 50	21
a- 138	500	100	80	90	70	100	20	0	-	90	50	21
a- 139	500	10	50	90	50	70	70	0	-	80	50	21
a- 140	63 125 500	90 90 100	10 30 90	100 100	10 20 30	40 80 100	70 80 80	0 20 90	1 1 1	0 10 0	30 40 50	21
a- 141	125 500	80 90	60 90	100	30 60	90 100	90 100	90 90	1 1	20 30	70 80	21
a- 143	500	90	30	50	20	80	100	20	-	20	60	18
a- 144	500	50	90	30	40	60	100	50	1	0	20	18
a- 146	125 500	20 60	30 80	80 80	40 40	80 90	50 100	40 60	-	20 30	40 70	19
a- 148	125 500	60 90	10 80	100 100	50 50	70 80	10 20	20 20	-	10 40	10 40	21
a- 149	63 125 500	60 90 100	20 30 80	90 80 100	40 50 70	80 80 100	- 100	0 40 100	-	10 20 60	60 70 90	21
a- 150	125 500	90 100	70 90	50 70	20 20	80 100	- 70	40 70	<u>-</u>	100 100	60 70	25

110

Table 5 (continued)

Table 5 (continued)												
	Dose		Gr	owth-	cont	colli	ng d€	gree	(%)			
Comp.	of active ingre- dient (g/ha)	EC	DS	AR	SS	PP	xs	os	TR	ZM	GM	Evalu- ation day
a- 151	125 500	100 100	90 90	40 100	30 30	80 100	30 80	20 20	<u>-</u>	50 90	30 50	25
a- 152	125 500	100 100	60 90	70 90	10 50	60 100	20 100	10 20	- -	60 50	10 40	25
a- 153	125 500	60 90	20 60	50 60	10 30	40 50	80 -	10 20	-	0 10	0 20	24
a- 154	500	90	70	70	10	70	60	50	-	0	30	25
a- 155	500	60	70	100	10	70	100	20	-	0	40	25
a- 156	250	90	70	20	20	70	-	20	-	10	40	21
a- 158	125 250	60 70	40 50	90 90	20 20	70 90	70 -	50 50	-	40 60	50 50	21
a- 162	500	60	20	0	10	80	-	10	0	10	0	21
a- 164	500	70	70	20	10	90	-	10	0	40	50	21
a- 165	63 125 500	100 100 100	95 95 100	100 100 100	40 100 100	100 100 100	50 - -	99 100 100	50 50 80	50 90 95	40 60 100	30
a- 166	63 125 500	95 100 100	80 95 100	100	40 50 50	90 100 100	20 20 -	70 100 100	10 50 50	40 40 70	40 40 50	30
a- 167	125 500	10 40	20 30	100 100	0 90	100 100	90 100	40 70	1	0 30	40 100	21
a- 168	63 125 500	90 100 100	60 70 100	100 100 100	50 60 60	90 100 100	90	100 100 100	-	40 70 100	50 70 100	21
a- 169	63 125	90 90	60 70	100 90	30 40	100 100	10 10	10 20	-	10 10	30 60	21
a- 170	63 125	90 90	60 80	80 100	20 50	100 100	70 70	90 100	-	10 60	90 100	21

Table 5 (continued)

Table	Dose		nued	Growt	h-co	ntrol	ling	degr	ee	(%)		_
Comp.	of active ingre- dient (g/ha)	EC	DS	AR	SS	PP	xs	os	TR	ZM	GM	Evalu- ation day
a- 171	500	40	10	40	0	80	-	0	0	0	60	21
a- 172	125 500	60 100	20 50	80 90	30 60	80 100	80	80 100	0	0 50	50 95	21
a- 173	125 500	70 90	30 60	30 40	10 30	80 100	30 -	100 100	0	0 40	50 60	21
a- 174	125 500	70 100	40 60	50 90	0 30	80 100	70 -	100 80	0	0 50	70 80	21
a- 177	500	80	50	30	0	90	-	10	0	20	40	21
a- 178	500	60	40	60	0	80	-	50	0	0	50	21
a- 179	500	70	70	90	90	70	-	50	0	0	80	21
a- 180	125 500	80 100	20 50	50 90	20 30	100 100	50	100 50	0	0 60	70 80	21
a- 181	125 500	70 100	20 40	70 60	10 20	100 100	70 -	50 90	0	0 40	70 80	21
a- 182	125 500	60 60	20 60	80 80	0 10	100 100	60	50 50	0	0 20	50 90	21
a- 183	500	0	40	10	10	100	100	0	0	10	40	21
a- 184	500	50	20	10	20	100	-	0	0	0	40	21
a- 187	500	70	20	100	40	95	-	50	0	0	60	21
a- 188	500	50	10	90	40	95	-	10	0	0	70	21
a- 189	500	90	10	100	40	95	-	90	0	0	70	21
a- 191	125 500	90 100	30 50	90 90	20 40	90 90	-	20 40	0	0	50 50	21

112

Tabl	Table 5 (continued)											
	pose		G	rowth	-cont	roll	ing c	degre	e (9	;)		į į
Comp.	of active ingre- dient (g/ha)	EC	DS	AR	SS	pр	ХS	os	TR	ZM	GM	Evalu- ation day
a- 192	500	30	0	30	0	80	90	30	0	10	60	21
a- 194	500	0	30	20	0	100	90	0	0	0	50	22
a- 200	500	70	50	95	20	100	90	20	0	0	40	26
a- 201	500	20	40	90	40	20	70	40	0	0	0	26
a- 203	125 500	20 70	60 80	90 100	10 50	80 100	80 95	20 90	0	0	60 90	22
a- 204	500	70	50	30	0	80	80	20	0	0	50	22
a- 206	125 500	80 100	30 80	30 100	20 50	100 100	100 100	90 100	0	0 70	90 100	22
a- 207	125 500	70 90	20 60	20 90	0 40	100 100	80 100	80 100	0 0	0 20	80 100	22
a- 208	125 500	30 70	40 60	90 70	10 40	80 90	100 100	50 95	0 0	0	50 60	22
a- 209	500	40	10	30	0	90	80	70	0	0	70	22
a- 210	125 500	90 100	60 90	70 · 100	10 40	90 100	90 90	90 90	0	0 60	80 100	27
a- 211	125 500	40 80	20 50	70 90	0 20	50 70	80 90	70 70	0	0	40 50	27
a- 212	125 500	70 100	0 10	40 70	0	0 90	70 80	60 80	0	C O	50 80	27
a- 213	125 500	100 100	80 100	95 100	30 70	100 100	100 100	80 100	0	20 70	95 100	26
a- 214	125 500	60 100	60 90	100 100	20 70	90 100	70 90	100 100	0	0	50 70	27
a- 215	500	0	0	90	20	90	80	0	0	С	40	23

113

Table 5 (continued)

Growth-controlling degree (%)												
ł	Dose of active ingre- dient (g/ha)	EC	D'S	AR	ss	PP	xs	os	TR	ZM	GM	Evalu- ation day
a- 216	125 500	50 90	- 70 90	90 100	10 60	70 80	70 100	50 100	0	0	40 70	23
a- 217	125 500	60 30	30 60	50 80	10 20	100 100	80 100	70 100	0	0 70	70 100	20
a- 218	125 500	70 90	20 60	10 50	10 20	90 100	70 80	70 90	0	0 40	80 100	20
a- 219	125 500	70 100	30 70	10 60	0 30	100 100	80 100	50 80	00	0 70	80 100	20
a- 220	125 500	10 70	10 30	10 30	0 20	70 90	80 80	10 60	0	0	40 40	20
a- 221	125 500	60 80	0 60	0 40	0 30	80 100	80 100	50 50	0	0	70 90	20
a- 222	125 500	30 80	10 50	30 80	10 50	80 90	70 90	20 70	0	0 10	40 60	20
a- 257	125 500	70 90	10 60	10 10	0 10	90 100	70 100	20 30	00	0 30	50 100	28
a- 258	125 500	50 90	10 70	30 80	0 30	90 100	70 100	10 50	00	0	40 70	28
a- 259	125 500	70 90	70 100	0 20	0	80 90	90 100	10 40	0	0	60 80	28
b-1	500	80	50	80	20	90	_	60	-	20	60	19
b-2	500	90	20	70	20	90	60	60	_	0	60	18

114

TEST EXAMPLE 2

10

15

20

25

Paddy field soil was put into a 1/1,000,000ha pot, and seeds of barnyardgrass (Echinochloa crus-galli L.) and japanese bulrush (Scirpus juncoides) were sown and slightly covered with soil. Then, the pot was left to stand still in a greenhouse in a state where the depth of flooding water was from 0.5 to 1 cm, and two days later, tubers of japanese ribbon wapato (Sagittaria pygmaea) were planted. Thereafter, the depth of flooding water was maintained at a level of from 3 to 4 cm, and when barnyardgrass and japanese bulrush reached a 0.5 leaf stage and japanese ribbon wapato reached to a primary leaf stage, an aqueous diluted solution of a wettable powder having the compound of the present invention formulated in accordance with a usual formulation method, was uniformly applied under submerged condition by a pipette so that the dose of the active ingredient would be at a predetermined level.

On the other hand, paddy field soil was put into a 1/1,000,000ha pot and puddled and leveled, and the depth of flooding water was from 3 to 4 cm. One day later, rice (Oryza sativa L. var. Nihonbare) of 2 leaf stage was transplanted in a depth of 3 cm. On the 4th day after the transplantation, the compound of the present invention was applied in the same manner as described above.

On the 14th days after the application of the

115

herbicide, the growth of barnyard grass, japanese burlrush and japanese ribbon wapato was visually observed and on the 21st day after the application the herbicide, the growth of rice was visually observed, and the herbicidal effects were evaluated by the growth—controlling degrees (%) ranging from 0 (equivalent to the non-treated area) to 100 (complete kill), whereby the results shown in Table 6 were obtained. Compound Nos. in Table 6 correspond to Compound Nos. in Table 4a and 4b given hereinbefore. The growth controlling degrees against rice of compounds Nos. a-101 et seq (except for a-131, a-132, a-145, a-146 and b-1) are mean values of two test results.

					_
ന	-	ъ	3	0	ĸ

	5				(0)
	Dose of active	Growth-	control	ling deg	ree (3)
	ingredient (g/ha)	EC	sJ	SP	os
a - 1	1 0 0 0 5 0 0	5 0 4 0	100	1 0 0	
a - 2	5 0 0 2 5 0	9 0 8 5	9 5 8 5	9 0 8 5	0
a - 3	1000	9 5 9 5	1 0 0	9 5 8 5	1 0
a - 4	5 0 0 2 5 0	1 0 0 1 0 0	8 5 5 0	8 5 6 0	0
a - 5	1000	4 0 0	8 5 8 5	8 5 7 0	9 0 3 0
a - 6	5 0 0 2 5 0	1 0 0 1 0 0	9 0 8 5	9 0 8 5	5 0 3 0
a - 7	5 0 0 2 5 0	1 U 0 9 9	1 0 0 9 5	8 5 8 5	8 0 7 0
a - 8	1 0 0 0 5 0 0	0 0	8 5 5 0	8 5 8 5	. 0 0
a - 9	5 0 0	1 0	5 0	7 0	3 0
a - 10	5 0 0 2 5 0	8 0 6 0	5 0 5 0	8 5 8 5	0 0
a - 11	2 5 0 1 2 5	1 0 0	9 5 9 0	9 0 8 5	1 0 0 1 0 0
a - 12	5 0 0 2 5 0	1 0 0	1 0 0	9. 0 9 0	100
a -13	5 0 0 2 5 0	1 0 0	1 0 0	9 0 9 0	1 0 0
a - 14	5 0 0 2 5 0	4 0 1 0	8 5 8 5	9 0 8 5	1 0
a - 15	5 0 0 2 5 0	100	8 5 7 0	7 0 7 0	0
a - 16	5 0 0 2 5 0	100	5 0 0	3 0 3 0	3 0
a - 17	5 0 0 2 5 0	1 0 0 9 9	8 5 5 0	5 0 5 0	2 0

Table	Table 6 (continued)								
Comp.	Dose of active	Growth-	controll	ing deq	ree (%)				
No.	ingredient (g/ha)	EC	SJ	SP	os				
a - 18	5 0 0	0	9 0	9 5	0				
	2 5 0	0	8 5	9 5	0				
a - 19	5 0 0 2 5 0	7 0 4 0	9 0 9 0	9 0 8 5	1 0				
a - 20	5 0 0	9 0	8 5	3 0	6 0				
	2 5 0	8 5	5 0	0	3 5				
a -21	5 0 0	5 0	9 5	9 0	3 0				
	2 5 0	3 0	9 0	5 0	3 0				
a -22	5 0 0	9 5	9 5	9 0	3 0				
	2 5 0	1 0 0	9 5	5 0	2 0				
a -23	5 0 0 2 5 0	1 0 0 5 0	9 9 9 9	9 0 5 0	0				
a -24	2 5 0	4 0	8 5	9 0	1 0				
	1 2 5	2 0	8 0	8 5	0				
a - 25	2 5 0	1 0 0	9 0	9 0	0				
	1 2 5	8 5	8 5	8 5	0				
a - 26	1 0 0 0	9 0	9 0	1 0	·1 0				
	5 0 0	5 0	9 0	1 0	0				
a - 27	2 5 0 1 2 5	1 0 0 1 0 0	9 5 9 0	9 0 8 5	1 0 0				
a - 39	1 2 5	1 0 0	9 0	8 5	3 5				
	6 3	1 0 0	8 5	5 0	3 0				
a - 40	1 2 5 6 3	1 0 0 1 0 0	1 0 0 9 9	9 0 9 0	8 0 4 0				
a -41	1 2 5 6 3	1 0 0 1 0 0	9 5 9 0	8 5 8 5	1 0 0 7 0				
a -42	2 5 0	1 0 0	9 0	9 0	9 0				
	1 2 5	1 0 0	9 0	0	9 0				
a - 43	2 5 0	1 0 0	9 0	9 0	9 0				
	1 2 5	1 0 0	8 5	5 0	9 9				
a - 44	2 5 0 1 2 5	1 0 0	9 5 9 0	9 0 8 5	9 5 8 0				
a - 45	2 5 0 1 2 5	1 0 0	9 9 9 0	8 5 5 0	1 0 0 9 0				

Table	6 (contin	ued)			
Comp.	Dose of active	Growth	-control	ling dec	ree (%)
No.	ingredient (g/ha)	EC	SJ	SP	os
a -47	2 5 0 1 2 5	1 0 0 1 0 0	100	9 5 6 0	9 9 7 0
a -48	2 5 0 1 2 5	1 0 0 9	9 5 8 5	9 0 5 0	9 5 5 0
a -49	2 5 0 1 2 5	1 0 0 1 0 0	9 0 9 0	8 5 5 0	1 0 0 1 0 0
a -51	2 5 0 1 2 5	1 0 0 1 0 0	9 9 9 5	8 5 1 0	9 0 6 0
a -52	2 5 0 1 2 5	1 0 0 1 0 0	9 9 9 0	3 0 3 0	100
a -53	1 2 5 6 3	1 0 0	9 5 9 0	9 0 9 0	8 0 0
a — 55	2 5 0 1 2 5	1 0 0 1 0 0	9 5 5 0	2 0	3 0 3 0
a - 58	2 5 0 1 2 5	100	8 5 7 0	5 0 5 0	4 0 4 0
a - 59	6 3 3 l	1 0 0 1 0 0	9 0 5 0	1 0	3 0 3 0
a - 60	2 5 0 1 2 5	1 0 0 1 0 0	1 0 0 9 5	7 0 3 0	9 5 7 0
a - 69	2 5 0 1 2 5	1 0 0 1 0 0	9 9 8 5	5 0 5 0	1 0 0 3 5
a -72	1 2 5 6 3	9 0 6 0	8 5 8 5	2 0 2 0	4 0 3 5
a -73	1 2 5 6 3	1 0 0 1 0 0	9 0 7 0	5 0 5 0	8 0 3 0
a - 76	1 2 5 6 3	1 0 0 1 0 0	9 0 8 5	3 0 0	0 0
a -77	1 2 5 6 3	9 0 7 0	8 5 5 0	5 0 3 0	7 0 4 0
a -78	2 5 0 1 2 5	1 0 0 8 5	8 5 6 0	8 5 8 5	8 0 3 0
a -79	2 5 0 1 2 5	1 0 0 1 0 0	9 5 8 5	9 0 5 0	9 0 4 0

Table							
Comp.	Dose of active	Growth-	control]	ling deg	ree (%)		
No.	ingredient (g/ha)	EC	SJ	SP	os		
a -80	5 0 0 2 5 0	100	1 0 0 1 0 0	9 5 9 5	9 0 9 0		
a -81	5 0 0	9 5	9 9	9 0	3 0		
	2 5 0	8 5	9 0	5 0	3 0		
a -82	1 2 5	4 0	8 5	5 0	3 5		
	6 3	2 0	1 0	0	2 0		
a -83	2 5 0	9 9	9 9	9 0	6 0		
	1 2 5	9 5	9 9	9 0	4 0		
a -84	2 5 0	1 0 0	9 9	5 0	9 0		
	1 2 5	1 0 0	9 5	5 0	5 0		
a - 85	2 5 0 1 2 5	100	8 5 7 0	5 0 0	2 0 2 0		
a -86	1 2 5	1 0	7 0	1 0	0		
	6 3	1 0	6 0	1 0	0		
a -87	2 5 0	1 0 0	9 0	3 0	· 40		
	1 2 5	1 0 0	8 5	0	30		
a - 88	2 5 0 1 2 5	1 0 0 1 0 0	9 0 9 0	5 0 2 0	100		
a -89	2 5 0 1 2 5	1 0 0 9 9	9 9 9 9	9 0 5 0	9 9 9 5		
a -90	2 5 0	9 9	9 5	9 0	8 0		
	1 2 5	9 9	9 0	8 5	7 0		
a -91	5 0 0	9 9	9 9	9 0	3 5		
	2 5 0	9 9	9 5	8 5	3 0		
a - 92	2 5 0	9 9	9 0	1 0	3 5		
	1 2 5	8 5	8 5	0	1 0		
a - 93	2 5 0 1 2 5	1 0 0	1 0 0 1 0 0	- 8 5	4 0		
a - 94	2 5 0	1 0 0	9 9	9 0	9 9		
	1 2 5	1 0 0	9 5	1 0	9 9		
a 95	2 5 0 1 2 5	1 0 0 1 0 0	1 0 0 1 0 0	- 8 5	-		
a - 96	2 5 0 1 2 5	1 0 0 1 0 0	9 5 9 0	8 5 1 0	100		

Table	6 (continu	ed)	120		
Comp.	Dose of		controll	ing degr	ee (%)
	ingredient (g/ha)	EC	SJ	SP	os
a -97	6 3 3 1	9 5 9 5	3 0	5 0	5 0 5 0
a - 98	6 3 3 1	1 0 0 1 0 0	8 0 6 0	7 0	6 0 3 0
a -99	1 2 5 6 3	1 0 0 1 0 0	9 5 -	5 0 5 0	1 0 0 1 0 0
a -100	1 2 5 6 3	5 0 1 0	7 0 1 0	1 0	3 0
a -101	6 3 3 1	1 0 0 8 0	1 0 0	0	4 0 3 0
a -102	6 3 3 1	9 5 8 5	8 5 5 0	5 0 0	4 0 2 5
a -103	6 3 3 1	9 5 8 5	9 0 1 0	5 0 3 0	6 5 1 0
a -104	6 3 3 1	9 9 9 9	0 0	0 0	3 0 3 0
a -105	6 3 3 1	9 5 9 0	0 0	0 0	4 0 1 0
a -106	2 5 0 1 2 5	1 0 0 9 9	7 0 3 0	7 0 5 0	5 0 1 5
a -118	2 5 0 1 2 5	1 0 0 1 0 0	9 0 7 0	6 0 6 0	9 5 5 5
a -120	2 5 0 1 2 5	1 0 0	9 9 9 0	5 0 4 0	9 8 9 0
a -122	2 5 0 1 2 5	1 0 0	100	7 0 6 0	9 5 1 0 0
a -127	1000	2 0	6 0	7 0	
a -131	2 5 0 1 2 5	1 0 0	9 0 8 5	9 0	8 0 5 0
a -132	2 5 0 1 2 5	1 0 0	8 5 5 0	_ 5 0	3 0
a -135	2 5 0 1 2 5	1 0 0 7 0	2 0 0	0	1 0
a -138	1 2 5 6 3	1 0 0 8 0	2 0	0	5 1 5

121

Table 6 (continued)

Table	6 (contin	ued)			
Comp.	Dose of active	Growth-	control:	ling deg	ree (%)
No.	ingredient (g/ha)	EC	SJ	SP	os
a -139	5 0 0 2 5 0	7 0 7 0	6 0 2 0	5 0 2 0	
a -140	2 5 0 1 2 5	1 0 0	9 0 9 0	3 0	9 8 3 5
a-141	2 5 0 1 2 5	1 0 0	1 0 0 1 0 0	3 0 0	100
a -143	5 0 0 2 5 0	1 0 0 1 0 0	1 0	3 0 1 0	<u> </u>
a-144	5 0 0 2 5 0	9 9 7 0	2 0 1 0	9 0 8 5	<u>-</u>
a -145	2 5 0 -1 2 5	1 0 0 1 0 0	6 0 5 0	5 0 4 0	0 1 0
a -146	5 0 0 2 5 0	9 0 6 0	9 0 7 0	9 0 7 0	3 0 0
a-148	1 2 5 6 3	1 0 0 1 0 0	7 0 7 0	0 0	· 0 0
a-149	1 2 5 6 3	9 0 8 5	3 0 1 0	0 0	0 0
a -150	2 5 0 1 2 5	1 0 0 9 5	5 0 0	6 0 3 0	0 5
a -151	2 5 0 1 2 5	1 0 0 1 0 0	0	_ 0	3 0 5
a -152	2 5 0 1 2 5	1 0 0 1 0 0	6 0 3 0	0 0	1 0 0
a -153	2 5 0 1 2 5	9 9 1 0 0	9 0 3 0	7 0 3 0	1 0 2 0
a -154	2 5 0 1 2 5	100	2 0	4 0	6 0 2 0
a -155	2 5 0 1 2 5	1 0 0	7 0 6 0	0	8 5 5 0
a -157	2 5 0 1 2 5	9 0 9 0	9 5 0	7 0 0	0
a -158	2 5 0 1 2 5	1 0 0 1 0 0	8 0 5 0	3 0 6 0	9 0 9 0

т	abl	e	6	(00	n t	Ξi	nu	ed	l)
-		-				_			_

rable 6	(continu	ed)			
Comp.	Dose of active	Growth-	controll	ing degr	ee (%)
No.	ingredient (g/ha)	EC	sj	SP	os
a -160	2 5 0 1 2 5	8 0 7 0	5 0 -	0 0	0
a -161	2 5 0 1 2 5	7 0 7 0	0 0	0 0	5 0
a -162	2 5 0 1 2 5	1 0 0 1 0 0	0	0 0	1 0
a -164	2 5 0 1 2 5	1 0 0 1 0 0	0 0	0 0	6 0 1 0
a -165	1 2 5 6 3	1 0 0 9 5	8 0 6 0	3 0 0	1 0 0 3 5
a -166	1 2 5 6 3	1 0 0 1 0 0	6 0 2 0	0	1 0 0 8 5
a -167	2 5 0 1 2 5	1 0 0 1 0 0	9 5 7 0	6 0 0	3 5 1 0
a-168	1 2 5 6 3	1 0 0 1 0 0	9 5 9 0	0 0	5 5 5 0
a -169	1 2 5 6 3	1 0 0 1 0 0	4 0 4 0	0 0	9 0 5 5
a -170	1 2 5 6 3	1 0 0 1 0 0	3 0 1 0	0 0	8 5 4 5
a -171	250	7 0	0	0	0
a -172	2 5 0	8 0	3 0	5 0	5 0
a -173	2 5 0 1 2 5	9 9 7 0	2 0 -	0	1 0 0 2 5
a -174	2 5 0 1 2 5	1 0 0 1 0 0	6 0 6 0	0	1 0 0
a -175	2 5 0 1 2 5	8 0 8 0	5 0 3 0	0	0
a -177	2 5 0 1 2 5	1 0 0 1 0 0	5 0 3 0	0	0
a -178	2 5 0 1 2 5	1 0 0	3 0 3 0	0	1 0
a -179	2 5 0 1 2 5	1 0 0	9 0 3 0	0	1 0 0 9 0

123

Table 6 (continued)

Table	6 (conti	nued)			
Comp.	Dose of active	Growth-	-control	ling deg	ree (%)
No.	ingredient (g/ha)	EC	SJ	SP	os
a -180	2 5 0 1 2 5	1 0 0 1 0 0	3 0 0	0	S 0 6 0
a -181	2 5 0	100	0	2 0	5 0
a -182	2 5 0 1 2 5	1 0 0 1 0 0	7 0 0	. 0	4 5 1 5
a -184	250	8 5	0	0	0
a -185	250	7 0	0	0	0
a-187	2 5 0 1 2 5	7 0 3 0	8 0 8 0	2 0 0	1 5 0
a -188	2 5 0 1 2 5	1 0 0 1 0 0	5 0 5 0	2 0	9 5 8 0
a -189	2 5 0 1 2 5	1 0 0	5 0 5 0	2 0 0	5 5 5 0
a -191	2 5 0 1 2 5	1 0 0 9 5	2 0	2 0 0	3 5 0
a -194	2 5 0	9 0	3 0	0	i 0
a -200	2 5 0 1 2 5	1 0 0 1 0 0	9 0 9 0	Q 0	7 0 8 0
a -202	2 5 0 1 2 5	1 0 0 8 5	7 0 2 0	0 0	1 0 1 0
a -203	2 5 0 1 2 5	1 0 0	1 0 0 9 5	9 5 9 5	1 0 0 1 0 0
a -204	2 5 0 1 2 5	100	3 0 0	3 0 0	1 0 5
a -205	250	8 5	0	0	5
a -206	2 5 0 1 2 5	100	0	6 0 7 0	1 0 0 9 0
a -207	2 5 0 1 2 5	9 5 8 0	0 0	6 0 8 0	5 0 2 5
a -208	2 5 0 1 2 5	1 0 0 1 0 0	3 0 0	7 0 6 0	8 0 5 0
a -210	2 5 0 1 2 5	1 0 0	4 0 7 0	7 0 6 0	100

124
Table 6 (continued)

Comp. Dose of Growth-controlling de			ing deg	ree (%)	
No.	ingredient (g/ha)	EC	ຮັງ	SP	os
a -213	2 5 0 1 2 5	1 0 0 1 0 0	5 0 2 0	0 0	9 5 6 5
a -214	2 5 0 1 2 5	100	6 0 6 0	2 0	6 0 1 5
a -216	2 5 0 1 2 5	1 0 0 1 0 0	8 0 4 0	0	9 5 1 5
a -217	2 5 0 1 2 5	100	2 0 0	0 0	100
a -218	2 5 0 1 2 5	1 0 0 7 0	7 0 3 0	2 0 0	100 85
a -219	2 5 0 1 2 5	1 0 0 1 0 0	3 0 0	0	100
a -230	6 3 3 1	1 0 0 1 0 0	0 0	0	
a -232	6 3 3 1	1 0 0 1 0 0	3 0 0	- 0	_
a -233	6 3 3 1	7 0 5 0	0 0	0 0	-
a -239	6 3 3 1	100	0	00	0 0
a -249	2 5 0 1 2 5	1 0 0	00	0	9 5 4 0
a -250	6 3 3 1	1 0 0	4 0 0	0	8 0 4 5
a -253	6 3 3 1	100	0	0	3 5 3 0
a -254	6 3 3 1	1 0 0 1 0 0	0 0	- 0	5 0
a -256	6 3 3 1	100	0 0	0 0	0
a -257	2 5 0 1 2 5	1 0 0 1 0 0	2 0 0	0 0	0
a -258	2 5 0 1 2 5	6 0 7 0	0	2 0	5 0

125
Table 6 (continued)

Comp.	Dose of active	Growth-	controll	ing degr	ee (%)
No.	ingredient (g/ha)	EC	ຮັງ	SP	os
a -259	2 5 0 1 2 5	1 0 0 1 0 0	0 0	0 0	1 0 0
a -260	2 5 0 1 2 5	1 0 0 8 5	0	2 0	1 0
a -261	2 5 0 1 2 5	1 0 0 7 0	0	4 0 4 0	5 0
a -262	2 5 0 1 2 5	1 0 0 1 0 0	1 0	0	1 0 0
a -263	2 5 0 1 2 5	1 0 0 9 5	0	0	1 0 0
a -264	2 5 0 1 2 5	8 5 7 0	0	0	3 0 1 5
a -271	6 3 3 1	100	0	0	
b - 1	2 5 0 1 2 5	1 0 0	8 5 5 0	5 0 5 0	5 0 2 0

.

٠

126

Now, Formulation Examples of the present invention will be given. Compound Nos. in Formulation Examples correspond to Compound Nos. in Table 4a to 4b given hereinbefore.

5 FORMULATION EXAMPLE 1

- (1) Compound No. a-12 75 parts by weight
- (2) Sodium N-methyl-N-oleoyl taurate (Geropon T-77, tradename, manufactured by Rhone-Poulenc) 14.5 parts by weight
- (3) NaCe 10 parts by weight
- 10 (4) Dextrin 0.5 part by weight

The above components are placed in a high-speed mixing granulator, admixed with 20 wt% of water, granulated, and dried to form water-dispersible granules.

FORMULATION EXAMPLE 2

15

(1) Kaolin

78 parts by weight

- (2) Condensate of sodium naphthalene sulfonate and formalin (Laveline FAN, tradename, manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) 2 parts by weight
- (3) Sodium polyoxyethylene alkylaryl
 ether sulfate-premix with white
 20 carbon (Sorpol 5039, tradename,
 manufactured by Toho Chemical
 Industry Co., Ltd.) 5 parts by weight
 - (4) White carbon (Carplex, tradename, manufactured by Shionogi Seiyaku Co., Ltd.)
 15 parts by weight
- The mixture of the above components (1) to (4) and Compound No. a-6 are mixed in a weight ratio of 9:1 to obtain a wettable powder.

127

FORMULATION EXAMPLE 3

5

20

25

(1) Talc micropowder (Hi-Filler No. 10, tradename, manufactured by Matsumura Sangyo Co., Ltd.)
33 parts by weight

- (2) Dialkyl sulfosuccinate-premixed
 with white carbon (Sorpol 5050,
 tradename, manufactured by Toho
 Chemical Industry Co., Ltd.) 3 parts by weight
- (3) A mixture of polyoxyethylene alkylaryl ether sulfate and a polyoxyethylene monomethyl ether carbonate, premixed with white carbon (Sorpol 5073, tradename, manufactured by Toho Chemical Industry Co., Ltd.)
 4 parts by weight

10 (4) Compound No. a-42 60 parts by weight

The above components (1) to (4) are mixed to obtain a wettable powder.

FORMULATION EXAMPLE 4

- (1) Compound No. a-27 4 parts by weight 15
- (2) Bentonite 30 parts by weight
 - (3) Calcium carbonate 61.5 parts by weight
 - (4) Polycarboxylic acid type surfactant (Toxanon GR-31A, tradename, manufactured by Sanyo Chemical Industries Co., Ltd.)

Co., Ltd.) 3parts by weight

(5) Calcium lignin sulfonate 1.5 parts by weight

Pulverized component (1) and components (2) and (3) are preliminarily mixed, and then components (4) and (5) and water are mixed thereto. The mixture is extruded and granulated, followed by drying and size-adjusting to obtain granules.

FORMULATION EXAMPLE 5

PCT/JP97/01457 WO 97/41106

128

	(1)	Compound No. a-22	30	parts	by v	veight
	(2)	A pulverized product of a mixture of kaolinite and sericite (Zieclite, tradename, manufactured by Zieclite Co., Ltd.)	60	parts	by v	weight
5	(3)	Alkyl naphthalene sulfonate (New Kalgen WG-1, tradename, manufactured by Takemoto Oils and Fats Co., Ltd.)	5	parts	py 4	weight
	(4)	Polyoxyalkylene allyl phenyl ether sulfate (New Kalgen FS-7, tradename, manufactured by Taken Oils and Fats Co., Ltd.)	noto 5	parts	by '	weight
10		Components (1), (2) and (3) are	mixe	ed and	pas	sed
	thre	ough a pulverizer, and then compo				
	the	reto. The mixture is kneaded and	d the	en ext	rude	d and
	gra	nulated, followed by drying and	size-	-adjus	ting	to
	obt	ain water-dispersible granules.				
15	FOR	MULATION EXAMPLE 6				
	(1)	Compound No. a-13	28	parts	bу	weight
	(2)	Triethanolamine salts of oxyethylated polyarylphenol phosphate (Soprophor FL, tradename, manufactured by Rhone-Poulenc)	2	parts	ь рх	weight
20	(3)	A mixture of polyoxyethylene styryl phenyl ether and alkyl aryl sulfonate (Sorpol 355, tradename, manufactured by Toho Chemical Industry Co., Ltd	ı .)	l part	by	weight
25	(4)	Isoparaffin hydrocarbon (IP solvent 1620, tradename, manufactured by Idemitsu Petrochemical Co., Ltd.)	32	? parts	в by	weight
	(5)	Ethylene glycol	6	5 parts	s by	weight
	16	N Water	31	L parts	s by	weight

(6) Water

129

The above components (1) to (6) are mixed and pulverized by a wet-grinding machine (Dyno-mill) to obtain a water-based suspension concentrate.

PCT/JP97/01457

130

CLAIMS

1. A pyrazole compound of the formula (I) or its salt:

$$(Z) \stackrel{(X)_n}{\underset{R_1}{\bigvee}} (X)_n$$

5

wherein R_1 is an alkyl group, R_2 is a hydrogen atom, a methyl group, -A-R3, a phenyl group which may be 10 substituted, a pyridyl group which may be substituted, or an allyl group which is substituted by a phenyl group, A is $-SO_2$ -, -CO-, $-CH(R_6)$ - or $-CH(R_7)CO$ -, R_3 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be 15 substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R_6 and R_7 is a hydrogen atom or an alkyl group, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an 20 alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, $-SO_{2}N(R_{8})R_{9}, -N(R_{10})SO_{2}R_{11}, -CH_{2}S(0)qR_{12} \text{ or } -OSO_{2}R_{13}, \text{ each }$ of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, Z is an alkyl group, 1 is an integer of from 0 to 5, n is an 25 integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when 1 is at least 2, a plurality of Z

PCT/JP97/01457

131

may be the same or different, and when n is at least 2, a plurality of X may be the same or different.

2. The pyrazole compound or its salt according to Claim 1, wherein the formula (I) is represented by the formula (I'):

$$\begin{array}{c|c}
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_2 \\
 & X_1 & X_2 \\
 & X_2 & X_$$

10

15

20

5

WO 97/41106

wherein R_1 is an alkyl group, R_2 is a hydrogen atom or $-A-R_3$, A is $-SO_2-$, -CO-, $-CH_2-$ or $-CH_2CO-$, R_3 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, a cyano group or a phenyl group which may be substituted, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, and q is an integer of from 0 to 2.

3. The pyrazole compound or its salt according to Claim 2, wherein A is $-SO_2-$, $-CH_2-$ or $-CH_2CO-$, each of X^1 , X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio

PCT/JP97/01457

132

group, an alkylsulfinyl group, an alkylsulfonyl group or a nitro group.

- 4. The pyrazole compound or its salt according to Claim 3, wherein X^1 is an alkylthio group, an alkylsulfinyl group or an alkylsulfonyl group, and each of X^2 and X^3 is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group or a nitro group.
- 5. A process for producing a pyrazole compound of the formula (I-1) or its salt:

10

$$(Z) \stackrel{!}{\swarrow} O \stackrel{O}{\parallel} C \stackrel{(X)_{\pi}}{\longrightarrow} O \stackrel{(X$$

15

20

25

wherein R_1 is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, and n is an integer of from l to 5, provided that when n is at least 2, a plurality of X may be the same or different, which comprises reacting a

133

compound of the formula (II):

5

20

$$(Z) \stackrel{!}{\swarrow}$$

$$N \qquad OH$$

wherein R_1 , Z and 1 are as defined above, with a compound of the formula (III):

$$Y - C \longrightarrow (X)u$$
(III)

wherein X and n are as defined above, and Y is a halogen atom, to obtain a compound of the formula (IV):

wherein R_1 , X, Z, l and n are as defined above, and subjecting the compound of the formula (IV) to a rearrangement reaction.

6. A process for producing a pyrazole compound of the formula (I-l') or its salt:

134

5

wherein R₁ is an alkyl group, Z is an alkyl group, 1 is an integer of from 0 to 5, provided that when 1 is at least 2, a plurality of Z may be the same or different, X' is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylsulfinyl group or an alkylsulfonyl group, and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X' may be the same or different, which comprises reacting a compound of the formula (II):

15

10

wherein R_1 , Z and l are as defined above, with a compound of the formula (V):

wherein X' and n are as defined above, and carbon tetrachloride, followed by a hydrolytic reaction.

7. A process for producing a pyrazole compound of the

135

formula (I-1) or its salt:

$$(Z) \stackrel{\downarrow}{\downarrow} \qquad (X) n$$

$$N \qquad O \qquad H$$

$$R_1 \qquad (X) n$$

wherein R₁ is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, -SO₂N(R₈)R₉,

 $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X may be the same or different, which comprises reacting a compound of the formula (II):

$$\begin{pmatrix} Z \end{pmatrix} \begin{pmatrix} I \\ N \\ N \\ R \end{pmatrix} \begin{pmatrix} I \\ I \end{pmatrix}$$

25

wherein R_1 , Z and l are as defined above, with a compound

136

of the formula (VI):

$$HOOC \longrightarrow (X)_U$$

5

wherein X and n are as defined above.

8. A process for producing a pyrazole compound of the formula (I-1) or its salt:

10
$$(Z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

wherein R, is an alkyl group, Z is an alkyl group, l is 15 an integer of from 0 to 5, provided that when 1 is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro 20 group, an alkoxycarbonyl group, -SO2N(R8)R9, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X may 25 be the same or different, which comprises reacting a compound of the formula (II):

137

wherein R_1 , Z and 1 are as defined above, with a compound of the formula (X):

wherein X and n are as defined above, and T is a chlorine atom, a bromine atom or an iodine atom, and carbon monoxide.

9. A process for producing a pyrazole compound of the formula (I-2) or its salt:

$$(Z) \stackrel{\bullet}{\downarrow} \qquad (X) n$$

$$0 \qquad (X) n$$

$$0 \qquad (X) n$$

$$0 \qquad (X) n$$

wherein R_1 is an alkyl group, R_2 ' is a methyl group, $-A-R_3$, a phenyl group which may be substituted, a pyridyl group which may be substituted or an allyl group which is substituted by a phenyl group, A is $-SO_2-$, -CO-, $-CH(R_6)-$ or $-CH(R_7)CO-$, R_3 is an alkyl group which may be

PCT/JP97/01457 WO 97/41106

138

substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R_6 and R_7 is a hydrogen atom or an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when 1 is at least 2, a plurality of Z may be the same or different, X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group and n is an integer of from 1 to 5, provided that when n is at least 2, a plurality of X may be the same or 15 different, q is an integer of from 0 to 2, which comprises reacting a compound of the formula (I-1):

10

$$(Z) \stackrel{!}{\underset{N}{\swarrow}} (X)_{n}$$

$$0 \qquad (X)_{n}$$

$$0 \qquad (X)_{n}$$

$$0 \qquad (X)_{n}$$

where R1, X, Z, n and l are as defined above, with a compound of the formula (VII): 25

> Y-R,' (VII)

wherein R2' is as defined above, and Y is a halogen atom.

139

10. A process for producing a pyrazole compound of the formula (I-4) or its salt:

5
$$(Z) \stackrel{!}{\downarrow} \qquad O \\ C \longrightarrow S \stackrel{(O) mR_5}{\downarrow} \qquad (I-4)$$

$$N \longrightarrow O H$$

$$R_1$$

wherein each of R_1 and R_5 is an alkyl group, Z is an alkyl group, 1 is an integer of from 0 to 5, provided 10 that when 1 is at least 2, a plurality of Z may be the same or different, X" is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, $-SO_2N(R_8)R_9$, 15 $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_q$, R_{12} or $-OSO_2R_{13}$, each of R_8 , R_9 , $\rm R_{10},\ R_{11},\ R_{12}$ and $\rm R_{13}$ is an alkyl group, q' is 1 or 2, m is 1 or 2, and n is an integer of from 1 to 5, provided that when n is at least 3, a plurality of X" may be the same or different, which comprises oxidizing a compound 20 of the formula (VI-1):

140

where R₁, R₅, Z, l and n are as defined above and X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, -SO₂N(R₈)R₉, -N(R₁₀)SO₂R₁₁, -CH₂S(O)_qR₁₂ or -OSO₂R₁₃, each of R₈, R₉, R₁₀, R₁₁, R₁₂ and R₁₃ is an alkyl group, provided that when n is at least 3, a plurality of X may be the same or different to obtain a compound of the formula (VI-2):

0 (Z) 2 (VI-2)

N O C S (O)mR;

(VI-2)

15

25

wherein R_1 , R_5 , Z, X'', 1, m and n are as defined above, and subjecting the compound of the formula (VI-2) to a rearrangement reaction.

11. A process for producing a pyrazole compound of the
20 formula (I-7) or its salt:

$$(Z) \stackrel{!}{\underset{N}{\bigvee}} O \stackrel{S}{\underset{N}{\bigvee}} (0) mR s$$

$$(X^{**}) n-1$$

$$| (I-7) | (I-7)$$

141

wherein each of R₁ and R₅ is an alkyl group, R₂' is a methyl group, -A-R3, a phenyl group which may be substituted, a pyridyl group which may be substituted or an allyl group which is substituted by a phenyl group, A is $-SO_2-$, -CO-, $-CH(R_6)-$ or $-CH(R_7)CO-$, R_3 is an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkoxy group which may be substituted, a cyano group, a dialkylamino group or a phenyl group which may be substituted, each of R6 and R7 is a hydrogen atom or an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, provided that when 1 is at least 2, a plurality of Z may be the same or different, m is 1 or 2, X" is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycarbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_g,R_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q' is 1 or 2, and n is an integer of from 1 to 5, provided that when n is at least 3, a plurality of X" may be the same or different, which comprises oxidizing a compound of the formula (I-6):

10

15

$$(Z) \stackrel{(Z)}{\longleftarrow} \stackrel{O}{\stackrel{\parallel}{\longleftarrow}} \stackrel{SR_s}{\stackrel{(X)}{\cap}} 1$$

$$(1-6)$$

Ä

25

142

PCT/JP97/01457

where R_1 , R_2 ', R_5 , Z, l and n are as defined above, and X is a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro

- group, an alkoxycarbonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_qR_{12}$ or $-OSO_2R_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, q is an integer of from 0 to 2, provided that when n is at least 3, a plurality of X may be the same or different.
- 12. A herbicide containing the pyrazole compound or its salt as defined in Claim 1, as an active ingredient.

 13. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1.
- 14. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to an upland field.
- 15. A method for controlling noxious weeds, which

 20 comprises applying an effective amount of the pyrazole
 compound or its salt as defined in Claim 1 to a corn
 field.
 - 16. A method for controlling noxious weeds, which comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to a wheat field.
 - 17. A method for controlling noxious weeds, which

143

comprises applying an effective amount of the pyrazole compound or its salt as defined in Claim 1 to a paddy field.

18. A mixed herbicidal composition comprising at least one member selected from the pyrazole compound or its salt as defined in Claim 1 and at least one member selected from active ingredient compounds of other herbicides.

19. A compound of the formula (II):

10

5

ů,

$$(Z) = \begin{pmatrix} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

15

wherein R_1 is an alkyl group, Z is an alkyl group and l is an integer of from 0 to 5, provided that when l is at least 2, a plurality of Z may be the same or different. 20. The compound of the formula (IV):

20

$$(Z) \stackrel{!}{\swarrow} O \stackrel{(X)_n}{\bigvee} O \stackrel{(X)_n}{\bigvee} O \stackrel{(IV)}{\bigvee} O$$

25

wherein R_1 is an alkyl group, X is a hydrogen atom, a

PCT/JP97/01457 WO 97/41106

144

halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a nitro group, an alkoxycabonyl group, $-SO_2N(R_8)R_9$, $-N(R_{10})SO_2R_{11}$, $-CH_2S(O)_qR_{12}$ or 5 $-\text{OSO}_2\text{R}_{13}$, each of R_8 , R_9 , R_{10} , R_{11} , R_{12} and R_{13} is an alkyl group, Z is an alkyl group, l is an integer of from 0 to 5, n is an integer of from 1 to 5, and q is an integer of from 0 to 2, provided that when 1 is at least 2, a plurality of Z may be the same or different, and when n is at least 2, a plurality of X may be the same or different.

INTERNATIONAL SEARCH REPORT

Inten eal Application No PCT/JP 97/01457

		PCI/UP 9	7/01737
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07D231/20 C07D401/12 A01N43,	/56	
According to	o International Patent Classification (IPC) or to both national cla	sufication and IPC	**************************************
	SEARCHED		· · · · · · · · · · · · · · · · · · ·
Minimum d IPC 6	ocumentation searched (classification system followed by classific CO7D	cation symbols)	
Documentat	non searched other than minimum documentation to the extent th	at such documents are included in the fields	searched
Electronic d	ista base consulted during the international search (name of data	base and, where practical, search terms used	d)
	MENTS CONSIDERED TO BE RELEVANT		T
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
X	CHEMICAL ABSTRACTS, vol. 114, n 18 February 1991	o. 7,	19
	Columbus, Ohio, US; abstract no. 62091m,	£	
	T. AONO ET AL.: "Preparation o pyrazolones and peroxylipid for	T Mation	-
	inhibitors, lipoxygenase inhibi		
	collagenase inhibitors containi page 690; column 2;	ng them."	
	XP002037186	nacte	
	see abstract; and Chemical Abst CHEMICAL SUBSTANCES, 12th Colle	racis, ctive	
	Index, vol. 106-115, 1987-1991,	page	1
	78553CS, the compounds with the [131645-10-8], [131645-56-2], a		
	[131645-19-7]		
	& JP 02 229 168 A (TAKEDA CHEMI INDUSTRIES, LTD.) 11 September		
		-/	*
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are list	ed in annex.
* Special ca	ategories of cited documents;	"T" later document published after the	international filing date
"A" docum	nent defining the general state of the art which is not dered to be of particular relevance	or priority date and not in conflict cited to understand the principle o invention	with the application but
filing		"X" document of particular relevance; to cannot be considered novel or can	the claimed invention not be considered to
which	nent which may throw doubts on priority claim(s) or a is cited to establish the publication date of another	involve an inventive step when the "Y" document of particular relevance;	document is taken alone
citatio	on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means	cannot be considered to involve ar document is combined with one or ments, such combination being ob	those other such docu-
'P' docum	nent published prior to the international filing date but than the priority date claimed	in the art. "&" document member of the same pat	•
	actual completion of the international tearch	Date of mailing of the international	
7	August 1997	2 6. 08. 97	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (- 31.70) 340-2040, Tx. 31 651 epo ni, Fax: (+ 31.70) 340-3016	Fink, D	

INTERNATIONAL SEARCH REPORT

1	Inten	لعہ	Application No			
1	PCT/	JΡ	97/01457			

		PCT/JP 97/01457
	non) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	US 4 063 925 A (KONOTSUNE TAKUO ET AL) 20 December 1977 see column 1, line 7 - column 2, line 10 see column 19; example 3	1-4, 12-18
Υ ΄	EP 0 638 555 A (NISSAN CHEMICAL IND LTD) 15 February 1995 cited in the application see page 149 - page 150; claims	1-4, 12-18
A	see page 149 - page 150; claims GB 2 002 375 A (ISHIHARA MINING & CHEMICAL CO) 21 February 1979 cited in the application see the whole document	1-20

1

Form PCT/ISA-218 (continuation of second short) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter. Anal Application No PCT/JP 97/01457

			JP 9//0145/
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 4063925 A	20-12-77	JP 1001829 C JP 50126830 A	19-06-80 06-10-75
		JP 54036648 B	10-11-79
		AU 7934175 A CA 1077944 A	23-09-76 20-05-80
		CA 1069329 A	08-01-80
		CA 1075030 A	08-04-80
		DE 2513750 A FR 2274219 A	09-10-75 09-01-76
		GB 1463473 A	02-02-77
		US 4414392 A	08-11-83
		US 4301293 A	17-11-81
		US 4508910 A US 4687858 A	02-04-85 18-08-87
•		US 4146726 A	27-03-79
		US 4261729 A	14-04-81
EP 0638555 A	15-02-95	AU 673505 B	14-11-96
		AU 2933092 A	15-06-93
		BR 9206728 A US 5545608 A	21-11-95 13-08-96
		CA 2123499 A	27-05-93
_		CN 1072177 A	19-05-93
		WO 9310099 A JP 6184115 A	27-05 - 93 05-07-94
		CN 1077450 A	20-10-93
GB 2002375 A	21-02-79	JP 1252061 C	26-02-85
		JP 54041872 A	03-04-79
		JP 56028885 B JP 1305551 C	04-07-81 28-02-86
		JP 54070269 A	05-06-79
		JP 60029388 B	10-07-85
		US 4230481 A	28-10-80

Form PCT/ISA/210 (patent family annex) (July 1992)