CS472 Module 8 Part A - Backtracking

Athens State University

March 13, 2016

Outline

Contents

1	Introduction	1
2	Example: The <i>n</i> -Queens Problem	2
3	Example: Sudoku puzzles	3
4	Key Points	5

1 Introduction

Get me out of here!

How do you (efficiently) find a way out of a garden maze?

Backtracking

- Let's start with a brute force approach
- But stop and place a marker when we find that we heading towards a dead end
- In general, we a problem we can express the set of solutions found via brute force in terms of a state space
 - And our attempts to solve the problem as being a depth-first traversal of that state space
 - * And we prune back (mark) the paths that don't lead us to a solution

The General Method

- The backtracking algorithm enumerates a set of *partial candidates* that could be *completed* in different ways to give all the possible solutions to a problem
- This is done incrementally by a sequence of candidate extension steps
- We represent partial candidates as a state space tree that we will call the potential search tree
 - This tree is ordered so that the each partial candidate is the parent of candidates that differ from it by a single extension step
- The algorithm will do a depth-first traversal of the search tree that checks at each node if we can reach a solution from that node
- If not, then it "prunes" the tree by skipping the whole sub-tree rooted at that node

The General Method

- We must provide a data set P and six helper functions:
 - 1. root(P): return the partial candidate at the root of the search tree
 - 2. reject(P,c): a Boolean function that returns true if the partial candidate c is not worth completing
 - 3. accept(P,c): a Boolean function that returns true if c is a solution of P and false otherwise
 - 4. first(P,c): generate the first extension of candidate c
 - 5. next(P,s): generate the next alternative extension of a candidate, after the extension s
 - 6. output(P,c): use the solution c of P, as appropriate to the problem

Algorithm 1: backtrack(): A general backtracking algorithm

2 Example: The *n*-Queens Problem

Example: The *n*-Queens Problem

- We ask the question "How can one place n queen pieces on a n-by-n chessboard so that no two queens threaten each other for any natural number n?"
 - The 8-by-8 queens problem fits the standard chess board

Consider the 8-queens problem

- There are $_{64}C_8 = 4,426,165,368$ possible arrangements of eight queens on a standard board but only 92 distinct solutions
- We can narrow the problem by constraining each queen to a single column or row so that we only have $8^8 = 16,777,216$ possible combinations
- \bullet By generating permutations, we can narrow the state space down to 8! = 40,320 possibilities that can be checked for diagonal attacks

A backtracking solution

```
Algorithm 2: solveNQueens: Backtracking algorithm for the n-queens problem
```

Indicate no queen can fit in this column by returning false;

3 Example: Sudoku puzzles

Example: Sudoku puzzles

• Sudoku puzzles are a logic-based combinatorial number-placement puzzle

- The objective is fill a 9x9 grid with digits so that each column, each row, and each of the nine 3x3 sub-grids that compose the puzzle contains all of the digits from 1 to 9
- Completed puzzles must meet additional constraints on contents of individual regions
 - For example, the same integer cannot appear twice in the same row, column, or in any of nin3 3x3 squares in the grid
- The author of the puzzle provides a partially completed grid, which assuming a well-posed puzzle, has a unique solution

Example: Sudoku puzzles

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9
		_	_		_	_		
5	3	4	6	7	8	9	1	2
5	3 7	4	<mark>6</mark>	7	8 5	9	1	2
-		-	-	-	-			-
6	7	2	1	9	5	3	4	8
6 1	<mark>7</mark> 9	<mark>2</mark> 8	1 3	9 4	5 2	3	<mark>4</mark> 6	8 7
6 1 8	7 9 5	2 8 9	1 3 7	9 4 6	5 2 1	3 5 4	4 6 2	8 7 3
6 1 8 4	7 9 5 2	2 8 9 6	1 3 7 8	9 4 6 5	5 2 1 3	3 5 4 7	4 6 2 9	8 7 3 1
6 1 8 4 7	7 9 5 2	2 8 9 6 3	1 3 7 8 9	9 4 6 5 2	5 2 1 3 4	3 5 4 7 8	4 6 2 9 5	8 7 3 1 6

A few additional facts about the math behind Sudoku:

- 1. A completed Sudoku grid is a special type of what in combinatorics is known as a *Latin square*: a n by n array filled with n different symbols occurring exactly once in each row and column.
- 2. The difference between a Sudoku grid and a Latin square is that one must also maintain the invariant of no repeated values in any of the 9 blocks of contiguous 3 by 3 squares.
- 3. It is has been proved that the number of classic Sudoku grids is approximately $6.67*10^{21}$. This is number is reduced to approximately $5.47*10^9$ if you consider only those solutions that are essentially different solutions
- 4. The number of minimal classic Sudoku puzzles is not precisely known. A minimal puzzle is one in which no clue can be deleted without losing uniqueness of the solution.
- 5. The maximum number of givens provided while still not rendering a unique solution is four short of a full grid. The inverse problem of the fewest number of givens that render a unique solution was only proved in 2012 as being 17 givens. Over 49,000 examples of such puzzles have been identified.
- 6. The general problem of solving Sudoku puzzles on n^2 by n^2 boards of n by n blocks is known to be NP-complete.

A Backtracking Algorithm for 9x9 Sudoku puzzles

```
Algorithm 3: Sudoku: A backtracking algorithm for 9x9 puzzles

Input: A 9x9 array grid with known values and a position

Output: The array grid with solution

if endOfGrid?() then

return true;

for x ∈ [1..9] do

grid[position] ← x;

if gridis Valid?() then

if Sodoku(nextPosition()) then

return (true);

gridPosition[position] = NULL;

return false;
```

A Theoretical Aside

- Sudoku is an example of a mathematical problem known as the exact cover problem
 - Given a collection S of subsets of a set X, an **exact cover** is a subcollection S^* of S s.t. each element of X is contained in *exactly one* subset in S^*
- In computer science, the exact cover problem is a decision problem to determine if an exact cover exists.
 - This problem is one of the classic *NP-complete* problems
 - Other examples of the exact cover problem include the tromino problem and (in a slightly more generalized form) the N-queens problem
 - There are more advanced algorithms (Knuth's DLX algorithm, for example) that can be used to get even better performance for these problems

4 Key Points

Key Points

- What is backtracking?
- What is the *n*-queens problem? How do we use backtracking to solve the problem?
- Use of backtracking for solving Suduku puzzles