华东师范大学软件工程上机实践报告

课程名称:数字逻辑实践 年级:2023级 上机实践成绩:

指导教师:曹桂涛 姓名:张建夫 上机实践日期: 2023/12/04

实践编号:实验四 学号: 10235101477 上机实践时间: 2 学时

一、 实验名称

D 触发器的逻辑功能及其简单应用

二、实验目的

- (1) 掌握 74LS74 双 D 触发器的逻辑功能及测试方法。
- (2)了解 D 触发器的简单应用

三、 实验内容

(1)验证 74LS74 双 D 触发器的逻辑功能(只需对其中的一个 D 触发器测试功能)。

接引脚图接好线路,在 CP 端接 10kHz 的方波,使 SD=RD=1,在 D=0、D=1、D=Qn'三种情况下分别记录 Q 端(指示灯亮、暗情况)。注意时钟脉冲(CP)和输出脉冲的相位关系。

图 4.2 74LS74 双 D 触发器的引脚图和波形图 表 4.2

输		人		输 出		输入			输		出
SD	R_{D}	CP	D	Q _{s+1}	Q _{n+1}	Sp	R _D	CP	D	Q _{n+1}	Q _{n+}
0	1	Φ	Φ	1	0	1	1	1	1	1	0
1	0	Φ	Φ	0	1	1	1	1	0	0	1
0	0	Φ	Φ	1*	1*	1	1		Φ		

*表示输出状态不稳定

(2)用 D 触发器组成一个计数器。①按图 4.3 所示连接,时钟脉冲用 10kHz,采用指示灯的亮、暗情况,观察 CP、 QA、QB、QC、QD。 ②把图 4.3 中 CPB 接 QA',CPC 接 QB',CPD 接 QC',用指示灯的亮、暗情况,观察 CP、QA、QB、QC、QD。 根据指示灯的亮、暗情况,分析这两种计数器属于何种计数器。

实

图 4.3 用 D 触发器组成计数器

四、实验原理

D 触发器又称作数据触发器,图 4.1 是维持阻塞式(时钟上升沿触发翻转) D 触发器的逻辑电路,表 4.1 是其功能表。 SD 和 RD 是异步直接置"1"和直接置"0"端。这种触发器要求控制端 D 的信号应超前时钟上升边沿一段时间 ts (称为建立时间)=2tpd,在时钟脉冲触发边沿来到后继续维持一段时间 tH (称为保持时间)=1tpd,否则 Q 端的数据有可能会出错。用 D 触发器可以组成分频器和寄存器。

表 4.1

	输	输出				
R	S	R _D	S _D	СР	D	Q _{N+1}
1	1	1	1	1	0	0
1	1	1	1	1	1	1
0	1	1	1	Φ	Φ	0
1	0	1	1	Φ	Φ	1
1	1	0	1	Φ	Ф	0
1	1	1	0	Ф	Ф	1

图 4.1 维持阻塞式 D 触发器电原理图

注 D=D₁·D₂

图 4.2(a),(b)分别是 74LS74 双 D 触发器的引脚图和波形图,表 4.2 是其功能表。

五、实验过程

(1)

	输	λ		(1)	111
\overline{PR}	CLR	CK	D	!}	Q
0	1	φ	ø	1	0
1	0	φ	þ	(;	1
0	0	ф	φ	1.	1.
1	1	†	1	1	0
1	1	^	0	0	1
1	1	0	ф	Q.	\overline{Q}

48

接引脚图接好线路,在 CP 端接 1Hz 的方波,使 SD=RD=1,在 D=0、D=1、D=Qn'三种情况下分别记录 Q 端(指示灯亮、暗情况)。

电

实

(2) (1)

图 4.3 用 D 触发器组成计数器

将脉冲信号接在 1Hz 的时钟脉冲频率上,两片 74LS74 的引脚 1、13 都接在同一个逻辑开关上,分别将 QAQBQCQD 接到逻辑电平处,观察其功能。

2

将脉冲信号接在 1Hz 的时钟脉冲频率上,两片 74LS74 的引脚 1、13 都接在同一个逻辑开关上,分别将 QAQBQCQD 接到逻辑电平处,观察其功能。

六、实验结果及分析

图 4.2 74LS74 双 D 触发器的引脚图和波形图

输 人			输出		输		人		输 出		
S_{D}	R_{D}	CP	D	Q _{n+1}	Q _{n+1}	SD	R _D	CP	D	Q _{n+1}	Q _{n+}
0	1	Φ	Φ	1	0	1	1	1	1	1	0
1	0	Φ	Φ	0	1	1	1	1	0	0	1
0	0	Φ	Φ	1*	1*	1	1		Φ		

(1) 结果与

*表示输出状态不稳定

一致。

(2) ①变化图:

QD 到 QA 从左到右为高位到低位,由变化表可知每次二进制数减一,故这是一个减法计数器,其波形图为

QA 在每一次 CLK 上升沿到来时都改变一次状态, QB 每两次改变一次状态, QC 每四次改变一次状态, QD 每八次改变一次状态。

②变化图: QD 到 QA 从左到右为高位到低位, 由变化表可知每次二进制数加一,故 这是一个加法计数器,其波形图为

通过观察可发现, 灯的明灭情况都是在时钟信号上升沿发生改变(减1或加1), 而计到最小值或最大值时, 再有上升沿脉冲则恢复初始状态。

七、实验收获/心得体会

- (1) 实验开始时要利用 RD'置零,则应将两片 74LS74 的 1、13 引脚接在同一个逻辑开关处,这样可以同时置零, 达到预期效果,否则若分开接的话,一旦没有同时拨 1 则会导致灯的明灭无规律,观察困难。
- (2) 本实验还要注意高位和低位分别是哪个,如果弄反 了就不能直观地看出实验结果。
- (3) 原实验使用 10kHz 的时钟脉冲频率,频率过高,不易观察,应使用 1Hz 的时钟脉冲频率进行观察。