Abstract Algebra

August, Evelyn

11/02/2021

```
proposition: 11 Let G = \mathbb{Z}_4 \bigoplus U(4) = \{(0,1), (0,3), (1,1), (1,3), (2,1), (2,3), (3,1), (3,3)\}, H = < (2,3) >= \{(2,3), (0,1)\}, \text{ and } K = < (2,1) >= \{(2,1), (0,1)\}. Show that G/H is not isomorphic to G/K.
```

Notice that [(3,1)K][(3,1)K] = [(3,1)(3,1)]K = (2,1)K = K. Hence the element order (3,1)K is 2. Likewise, $((1,1)K)^2 = (2,1)K = K$, $[(1,3)K]^2 = (2,1)K = K$, K is the identity hence its order is one, hence the orders of these elements are 2,2, and 1 respectively. Note that there are no elements of order 4.

Luckily, we only need to type one calculation to finish the proof. Notice that $[(1,1)H]^4 = H$. Also, none of the elements in the cycle for (1,1) are in H, besides (0,1) which is the identity. Hence for all elements in this cycle other than the identity $aH \neq H$. Hence the order of H is also the order of (1,1), which is four.

Since there is an element in G/H of order four, and since there isn't one in G/K, it follows since isomorphisms preserve element order that G/H is not isomorphic to G/K. Q.E.D.

proposition 55 In D_4 , let $K = \{R_0, D\}$ and let $L = \{R_0, D, D', R_{180}\}$. Show that K is normal in L and L is normal in D_4 , but K is not normal in D_4 , hence normality is not transitive.

proof Let us first show that K is normal in L. Let KL be defined as above. We have to show that $xKx^{-1} \subseteq K$, for all $x \in L$. We are thus going to look at all the elements separately. Obviously, for R_0 , it follows that $xR_0x^{-1} = xx^{-1} = R_0 \in K$ for all elements in L. Let us therefore consider D. The cases $x = R_0$ and x = D are clear and follow by properties of closure and inverses. Furthermore, by analyzing the caley table for D_4 we see that $D'DD'^{-1} = D'DD' = D \in K$ and $R_{180}DR_{180}^{-1} = R_{180}DR_{180} = D \in K$. Thus, K is normal in L.

Let us now show that L is normal in D_4 . Again, $xR_0x^{-1}=xx^{-1}=R_0\in L$ for all $x\in D_4$. We have already looked at the cases $x\in\{R_0,D,D',R_{180}\}$ in xDx^{-1} . It remains to show the cases such that $x\in\{R_{90},R_{270},V,H\}$. Therefore, consider $R_{90}DR_{90}^{-1}=R_{90}DR_{270}=D'\in L$, $R_{270}DR_{90}=D'\in L$, $VDV^{-1}=VDV=D'\in L$ and $HDH^{-1}=HDH=D'\in L$. Analogously, by replacing D by D', it follows that $xD'x^{-1}=y\in L$ for all $x\in D_4$. Lastly, we still need to consider $xR_{180}x^{-1}$ for all $x\in D_4$. Again, $x=R_0x=R_{180}$ follow by group properties. Consider: $R_{90}R_{180}R_{270}=R_{90}R_{180}R_{270}=R_{180}\in L$, and $xR_{180}x^{-1}xR_{180}x=R_{180}\in L$, for $x\in\{V,H,D,D'\}$. Hence, it follows that $xLx^{-1}\subseteq L$ for all $x\in D_4$ and L is normal in D_4 .

In order to show that K is not normal in D_4 , consider, for example, $R_{90}DR_{270} = D'$, which is not in K. Thus, K is not normal in D_4 and normality is not transitive.

proposition 68 If N is a characteristic subgroup of G, show that N is a normal subgroup of G.

proof Let G and N be defined as above. Consider the inner automorphism of G induced by $a \in G$: $\phi_a(y) = aya^{-1}$. Since ϕ_a is an automorphism, it follows by properties of characteristic subgroups that $\phi_a(N) = aNa^{-1} = N$ for some $a \in G$. Since this is exactly the definition of a normal subgroup, it follows that N is normal in G. qed.