Code ▼

SVM S&P500 Monthly 01-01-2012 to 06-30-2018

#install.packages("quantmod")
#install.packages("e1071")

Hide

```
Loading required package: xts
Loading required package: zoo

Attaching package: <U+393C><U+3E31>zoo<U+393C><U+3E32>

The following objects are masked from <U+393C><U+3E31>package:base<U+393C><U+3E32>:

as.Date, as.Date.numeric

Loading required package: TTR

Version 0.4-0 included new data defaults. See ?getSymbols.

Learn from a quantmod author: https://www.datacamp.com/courses/importing-and-managing-financial-data-in-r
```

Hide

```
library(e1071)
# Importing the dataset
startDate = as.Date("2011-01-01")
endDate = as.Date("2018-06-30")
getSymbols("^GSPC",src="yahoo",from=startDate,to=endDate)
```

<U+393C><U+3E31>getSymbols<U+393C><U+3E32> currently uses auto.assign=TRUE by default, but will
use auto.assign=FALSE in 0.5-0. You will still be able to use
<U+393C><U+3E31>loadSymbols<U+393C><U+3E32> to automatically load data. getOption("getSymbols.en
v")
and getOption("getSymbols.auto.assign") will still be checked for
alternate defaults.

This message is shown once per session and may be disabled by setting
options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.

WARNING: There have been significant changes to Yahoo Finance data.

Please see the Warning section of <U+393C><U+3E31>?getSymbols.yahoo<U+393C><U+3E32> for details.

This message is shown once per session and may be disabled by setting options("getSymbols.yahoo.warning"=FALSE).

[1] "GSPC"

Hide

dataset=data.frame(to.monthly(GSPC))
dim(dataset)

[1] 90 6

Hide

head(dataset)

	GSPC.Open <dbl></dbl>	GSPC.High <dbl></dbl>	GSPC.L <dbl></dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted <dbl></dbl>
Jan 2011	1257.62	1302.67	1257.62	1286.12	92164940000	1286.12
Feb 2011	1289.14	1344.07	1289.14	1327.22	59223660000	1327.22
Mar 2011	1328.64	1332.28	1249.05	1325.83	89507640000	1325.83
Apr 2011	1329.48	1364.56	1294.70	1363.61	77364810000	1363.61
May 2011	1365.21	1370.58	1311.80	1345.20	81708980000	1345.20
Jun 2011	1345.20	1345.20	1258.07	1320.64	86122730000	1320.64
6 rows						

Hide

tail(dataset)

	GSPC.Open <dbl></dbl>	GSPC.High <dbl></dbl>	GSPC.L <dbl></dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted
Jan 2018	2683.73	2872.87	2682.36	2823.81	76860120000	2823.81
eb 2018	2816.45	2835.96	2532.69	2713.83	79579410000	2713.83
Mar 2018	2715.22	2801.90	2585.89	2640.87	76369800000	2640.8
Apr 2018	2633.45	2717.49	2553.80	2648.05	69648590000	2648.0
May 2018	2642.96	2742.24	2594.62	2705.27	75617280000	2705.2
Jun 2018	2718.70	2791.47	2691.99	2718.37	77439710000	2718.3

#RSI indicator
relativeStrengthIndex20=RSI(Op(dataset),n=8)
summary(relativeStrengthIndex20)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 30.38 60.81 69.47 68.64 78.78 94.41 8
```

Hide

plot(relativeStrengthIndex20)

Hide

tail(relativeStrengthIndex20)

[1] 91.86270 94.41305 74.15401 61.89350 62.71293 68.81637

Hide

dim(relativeStrengthIndex20)

NULL

Hide

ncol(relativeStrengthIndex20)

NULL

nrow(relativeStrengthIndex20)

NULL

Hide

Exponential Moving Average Indicator
exponentialMovingAverage20=EMA(Op(dataset),n=8)
head(exponentialMovingAverage20)

[1] NA NA NA NA NA NA

Hide

tail(exponentialMovingAverage20)

[1] 2540.936 2602.161 2627.285 2628.655 2631.834 2651.138

Hide

summary(exponentialMovingAverage20)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 1254 1485 1989 1875 2107 2651 7

Hide

plot(exponentialMovingAverage20)

Difference in Exponential Moving Average
exponentialMovingAverageDiff = (Op(dataset) - exponentialMovingAverage20)
head(exponentialMovingAverageDiff)

[1] NA NA NA NA NA NA

Hide

tail(exponentialMovingAverageDiff)

- [1] 142.794117 214.288735 87.934588 4.794664 11.125857
- [6] 67.562326

Hide

summary(exponentialMovingAverageDiff)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's -127.02 30.22 63.51 56.02 96.41 214.29 7

Hide

plot(exponentialMovingAverageDiff)


```
# MACD Indicator
MACD <- MACD(Op(dataset), fast = 3, slow = 8, signal = 5, type = "EMA", histogram = TRUE)
head(MACD)</pre>
```

```
macd signal
[1,]
       NA
               NA
[2,]
       NA
               NA
[3,]
               NA
       NA
[4,]
       NA
               NA
[5,]
       NA
               NA
[6,]
       NA
               NA
```

plot(MACD)

Hide

tail(MACD)

```
macd signal
[85,] 6.684577 5.796747
[86,] 7.231540 6.083705
[87,] 7.236006 6.314165
[88,] 6.893389 6.430010
[89,] 6.572852 6.458579
[90,] 6.476851 6.462233
```

Hide

summary(MACD)

```
signal
     macd
       :2.966
                        :3.560
Min.
                Min.
1st Qu.:4.780
                1st Qu.:4.461
Median :6.405
                Median :6.231
Mean
       :6.065
                Mean
                        :6.032
3rd Qu.:7.544
                3rd Qu.:7.633
       :8.601
Max.
                Max.
                        :8.258
                NA's
NA's
       :25
                        :33
```

```
MACDsignal <- MACD[,2]
plot(MACDsignal)</pre>
```


Hide

```
# Bollinger Band indicator
BollingerBands <- BBands(Op(dataset),n=8,sd=2)
head(BollingerBands)</pre>
```

```
dn mavg up pctB
[1,] NA
          NA NA
                   NΑ
[2,] NA
                   NA
          NA NA
[3,] NA
          NA NA
                   NA
[4,] NA
                   NΑ
          NA NA
[5,] NA
          NA NA
                   NΑ
[6,] NA
          NA NA
                   NA
```

Hide

tail(BollingerBands)

```
dn mavg up pctB
[85,] 2343.950 2528.975 2714.000 0.9181996
[86,] 2335.982 2579.075 2822.167 0.9882400
[87,] 2385.597 2614.554 2843.511 0.7198366
[88,] 2430.075 2634.097 2838.120 0.4984131
[89,] 2490.421 2655.165 2819.909 0.4629577
[90,] 2546.632 2679.852 2813.073 0.6458009
```

summary(BollingerBands)

dn mavg up Min. :1112 Min. :1254 Min. :1368 1st Qu.:1349 1st Qu.:1472 1st Qu.:1596 Median :1867 Median :1992 Median :2088 Mean :1748 Mean :1874 Mean :2000 3rd Qu.:2005 3rd Qu.:2085 3rd Qu.:2216 :2547 Max. Max. :2680 Max. :2844 NA's :7 NA s :7 NA's :7 pctB

Min. :-0.0484 1st Qu.: 0.6486 Median : 0.7843 Mean : 0.7189 3rd Qu.: 0.9027

Max. : 1.0238

NA's :7

Hide

plot(BollingerBands)


```
# % Change BB
PercentageChngpctB <- BollingerBands[,4]
head(PercentageChngpctB)</pre>
```

[1] NA NA NA NA NA NA

Hide

tail(PercentageChngpctB)

[1] 0.9181996 0.9882400 0.7198366 0.4984131 0.4629577 0.6458009

Hide

summary(PercentageChngpctB)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's -0.0484 0.6486 0.7843 0.7189 0.9027 1.0238 7
```

Hide

plot(PercentageChngpctB)


```
# Price (Closes above Open = 1, Closes below Open = 0)
Price=ifelse(dataset[4]>dataset[1], 1,0)
head(Price)
```

	GSPC.Clos
Jan 2011	1
Feb 2013	1
Mar 2013	. 0
Apr 2013	1
May 2013	. 0
Jun 2011	. 0

tail(Price)

	GSPC.Close
Jan 2018	1
Feb 2018	0
Mar 2018	0
Apr 2018	1
May 2018	1
Jun 2018	0

Hide

tail(dataset)

	GSPC.Open <dbl></dbl>	GSPC.High <dbl></dbl>	GSPC.L <dbl></dbl>	GSPC.Close <dbl></dbl>	GSPC.Volume <dbl></dbl>	GSPC.Adjusted <dbl></dbl>
Jan 2018	2683.73	2872.87	2682.36	2823.81	76860120000	2823.81
Feb 2018	2816.45	2835.96	2532.69	2713.83	79579410000	2713.83
Mar 2018	2715.22	2801.90	2585.89	2640.87	76369800000	2640.87
Apr 2018	2633.45	2717.49	2553.80	2648.05	69648590000	2648.05
May 2018	2642.96	2742.24	2594.62	2705.27	75617280000	2705.27
Jun 2018	2718.70	2791.47	2691.99	2718.37	77439710000	2718.37
6 rows						

Hide

plot(Price)

Hide dim(relativeStrengthIndex20) NULL Hide dim(exponentialMovingAverage20) NULL Hide dim(MACDsignal) NULL Hide dim(PercentageChngpctB) NULL Hide dim(Price) [1] 90 1

```
dataset1 = data.frame(relativeStrengthIndex20, exponentialMovingAverage20, MACDsignal, Percentag
eChngpctB, Price)
# Size of Data
str(dataset1)
'data.frame':
               90 obs. of 5 variables:
 $ relativeStrengthIndex20 : num NA NA NA NA NA ...
 $ exponentialMovingAverage20: num NA NA NA NA NA ...
 $ MACDsignal
                            : num NA NA NA NA NA NA NA NA NA ...
 $ PercentageChngpctB
                            : num NA NA NA NA NA ...
 $ GSPC.Close
                            : num 1101000001...
                                                                                             Hide
dim(dataset1)
[1] 90 5
                                                                                             Hide
#Checking for missing data
d3=dataset1
for(i in 1:ncol(d3))
   {
   print(colnames(d3[i]))
    print(sum(is.na(d3[i])))
   }
[1] "relativeStrengthIndex20"
[1] 8
[1] "exponentialMovingAverage20"
[1] 7
[1] "MACDsignal"
[1] 33
[1] "PercentageChngpctB"
[1] 7
[1] "GSPC.Close"
[1] 0
                                                                                             Hide
dataset1 = na.omit(dataset1)
#Checking for missing data again
dim(dataset1)
```

```
[1] 57 5
```

```
d3=dataset1
for(i in 1:ncol(d3))
    {
    print(colnames(d3[i]))
    print(sum(is.na(d3[i])))
}
```

```
[1] "relativeStrengthIndex20"
[1] 0
[1] "exponentialMovingAverage20"
[1] 0
[1] "MACDsignal"
[1] 0
[1] "PercentageChngpctB"
[1] 0
[1] "GSPC.Close"
[1] 0
```

```
colnames(dataset1)=c ("RSI20", "EMA20", "MACDsignal", "BB", "Price")
# Exploring the data set components
str(dataset1)
```

```
# Encoding the target feature as factor
dataset1$Price=as.factor(dataset1$Price)
# Splitting the dataset into the Training set and Test set
library(caTools)
set.seed(123)
split = sample.split(dataset1$Price, SplitRatio = 0.8)
training_set = subset(dataset1, split == TRUE)
test_set = subset(dataset1, split == FALSE)
# Feature Scaling (Normalization and dropping the predicted variable)
training_set[-5] = scale(training_set[-5])
test set[-5] = scale(test set[-5])
# Applying Kernel SVM Model on the Training set
library(e1071)
classifier = svm(formula = Price ~ .,
                 data = training set,
                 type = 'C-classification',
                 kernel = 'radial')
# Predicting the Test set results
predict val = predict(classifier, newdata = test set[-5])
# Confusion Matrix
cm = table(test_set[, 5], predict_val)
print(cm)
```

```
predict_val
0 1
0 0 4
1 1 6
```

```
# Evaluating Model Accuracy on test data set using Confusion Matrix
Model_Accuracy=(cm[1,1] + cm[2,2])/ (cm[1,1] + cm[1,2] + cm[2,1] + cm[2,2])
print("Model Accuracy is")
```

[1] "Model Accuracy is"

Hide

print(Model_Accuracy)

[1] 0.5454545