

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Cornélio Procópio

AULA 9

TRANSMISSÃO POR CORRENTES

Professor: Dr. Paulo Sergio Olivio Filho

CONTEÚDO DA AULA

- Tipo de Transmissão por corrente
- Características e Manutenção
- Aplicações e dimensionamento

TRANSMISSÕES FLEXÍVEIS – CORRENTES **UTr**pr

 As transmissões por correntes são utilizadas nos locais em que as transmissões por meio de engrenagens ou correias não sejam possíveis.

TRANSMISSÕES FLEXÍVEIS - CORRENTES

 Quando for necessário o acionamento de vários eixos por um único eixo motor, é fundamental que todas as rodas dentadas pertençam ao mesmo plano

NOMENCLATURA E RELAÇÕES GEOMÉTRICAS

 Na tabela abaixo apresentam-se os principais parâmetros que definem a geometria de uma transmissão por corrente.

p	Passo – distância entre eixos de dois pinos adjacentes.
γ/2	Ângulo de inclinação – ângulo de que rodam os elos quando entram em contacto com o pinhão.
V _m	velocidade média da corrente
d	diâmetro do rolo
D_1, D_2	diâmetros primitivos do pinhão e da roda
Z_1, Z_2	número de dentes do pinhão e da roda
n ₁ , n ₂	velocidade de rotação do pinhão e da roda
A	largura entre placas
В	Distância entre centros de rolos (corrente dupla e tripla)
C	entre-eixos

TRANSMISSÕES FLEXÍVEIS – CORRENTES

- As correntes de rolos (que são as de maior aplicação prática) resultam da associação alternada de elos interiores e exteriores.
- Correntes de Rolos;
- Corrente de Buchas;
- Corrente de Passo Alongado*;
- Corrente de Dentes*;

*Pouco Utilizadas

CORRENTES DE ROLOS

 São compostas de elementos internos e externos, onde as talas são permanentemente ligadas através de pinos e buchas; sobre as buchas são ainda colocados rolos. Existem também as correntes de rolos duplas ou triplas de rolos para maiores potências.

Figura 26.7 – Corrente simples de rolos: 1 pino; 2 tala externa e interna; 3 bucha remachada na tala interna 2: 4 rólo, com rotação livre sôbre a bucha 3

Figura 26.8 - Corrente dupla e tripla de rolos

CORRENTES DE ROLOS SILENCIOSAS

CORRENTES DE BUCHA

 As buchas e os pinos podem ser executados um pouco mais grossos, de tal forma que a carga de ruptura para o mesmo passo de corrente é maior do que no caso das correntes de rolos. Em compensação, o ruído e o desgaste são um pouco maiores, por isso prefere-se utilizar, na maioria dos casos, a corrente de rolos.

CARACTERÍSTICAS DAS CORRENTE

- Necessita lubrificação;
- Grande distância entre eixos paralelos;
- Transmissão da potência sem escorregamento;
- Funcionamento algo ruidoso (alto nível de ruído);
- Menor custo em relação às engrenagens (85%);
- Custo intermédio entre as correias e as engrenagens;

CARACTERÍSTICAS DAS CORRENTE

- Exigem o perfeito alinhamento do pinhão e da roda;
- Acionam apenas eixos paralelos (rigidez transversal);
- Acionamento de vários eixos com uma única corrente;
- Peso próprio da corrente também deve ser considerado;
- Transmite potência a uma razão de velocidade constante.

CARACTERÍSTICAS DAS CORRENTE

- Vida menor que as engrenagens (desgaste nas articulações);
- Possibilidade de transmitir movimento a vários veios simultaneamente;
- Vantajosas em relação às engrenagens para grandes distâncias entre centros;

Dados:

relação de transmissão: até 6;
 velocidade tangencial: até 17 m/s;

potência: até 5.000 Cv;rendimento: 98% a 99%;

rotação: até 5.000 rpm;
 força tangencial: até 28.000 Kgf.

MANUTENÇÃO DAS CORRENTES

- Para a perfeita manutenção das correntes, os seguintes cuidados deverão ser tomados:
- lubrificar as correntes com óleo, por meio de gotas, banho ou jato;
- inverter a corrente, de vez em quando, para prolongar sua vida útil;
- nunca colocar um elo novo no meio dos gastos; não usar corrente nova em rodas dentadas velhas;
- para efetuar a limpeza da corrente, lavá-la com querosene;

MANUTENÇÃO DAS CORRENTES

- enxugar a corrente e mergulhá-la em óleo, deixando escorrer o excesso;
- armazenar a corrente coberta com uma camada de graxa e embrulhada em papel;
- medir ocasionalmente o aumento do passo causado pelo desgaste de pinos e buchas.
- medir o desgaste das rodas dentadas;
- verificar periodicamente o alinhamento.

DANOS TÍPICOS DAS CORRENTES

EFFITOO OALIOAO

 Os erros de especificação, instalação ou manutenção podem fazer com que as correntes apresentem vários defeitos.

DEFEITOS CAUSAS	CAUSAS
Excesso de ruído	desalinhamento; folga excessiva; falta de folga; lubrificação inadequada; mancais soltos; desgaste excessivo da corrente ou das rodas dentadas; passo grande demais.
Mau assentamento entre a corrente e as rodas dentadas	rodas fora de medida; desgaste; abraço insuficiente; folga excessiva; depósito de materiais entre os dentes da roda.
Chicoteamento ou vibração da corrente	folga excessiva; carga pulsante; articulações endurecidas; desgaste desigual.
Endurecimento (engripamento da corrente)	lubrificação deficiente; corrosão; sobrecarga; depósito de
Quebra de pinos, buchas ou roletes	choques violentos; velocidade excessiva; depósito de materiais nas rodas; lubrificação deficiente; corrosão; assentamento errado da corrente sobre as rodas.
Superaquecimento	excesso de velocidade; lubrificação inadequada; atrito contra obstruções e paredes.
Queda dos pinos	vibrações; pinos mal instalados.
Quebra dos dentes das rodas	choques violentos; aplicação instantânea de carga; velocidade excessiva; depósito de material nas rodas; lubrificação deficiente; corrosão; assentamento errado da corrente nas rodas; material da roda inadequado para a corrente e o serviço.

LUBRIFICAÇÃO

- As articulações onde falta o lubrificante desgastar-se-ão muito rapidamente. Por outro lado, o atrito entre as articulações faz crescer bastante a perda de energia sob a forma de calor, que se traduz numa perda de potência e num rendimento fraco.
- O lubrificante mais aconselhável é um óleo mineral puro com viscosidade escolhida de acordo com a temperatura ambiente.

Temperatura Ambiente [°C]	Classificação SAE
-5 a 25	SAE 30
25 a 45	SAE 40
45 a 56	SAE 50

LUBRIFICAÇÃO

 Apresenta-se na tabela abaixo os quatro tipos básicos de lubrificação, com indicação dos respectivos campos de aplicação. A figura abaixo exemplifica estes quatro tipos de lubrificação.

- a) manual;
- b) gota a gota;
- c) banho de óleo;
- d) bomba de óleo;

TRANSMISSÃO POR CORRENTE

Dimensionamento

Número de dentes

Número mínimo de dentes \rightarrow Zmín \geq 9 Número máximo de dentes \rightarrow Zmáx \leq 120

Velocidade periférica

Velocidade periférica máxima permitida

 \rightarrow Vp \leq 12m/s

TRANSMISSÃO POR CORRENTE

Dimensionamento

Número Mínimo de Dentes:

Tipo do Corrento	Relação de Transmissão							
Tipo de Corrente	1	2	3	4	5	6		
Corrente de rolos	31	27	25	23	21	17		
Corrente Silenciosa	40	35	31	27	23	19		

• O rendimento para este tipo de transmissão é de 0,97 a 0,99.

$$0.97 \le \eta_C \le 0.99$$

Passo da Corrente:

Passo	1/2"	5/8"	3/4''	1"	1 1/4"
RPM máx	3300	2650	2200	1650	1300

Velocidade Periférica:

•
$$v_c = \frac{Z_1.t.n_1}{60000}$$

Corrente de Rolos < 12m/s;

Corrente dentadas < 16m/s;

- Fator de Operação k:
- $k = k_s.k_l.k_{po}$

FATOR DE SERVIÇO k _S	
$\mathbf{k}_{\mathrm{S}} = 1,0$	Carga constante, operação intermitente
$\mathbf{k}_{\mathrm{S}} = 1,3$	Com impactos, operação contínua
$\mathbf{k}_{\mathrm{S}} = 1,5$	Impactos fortes, operação contínua

FATOR DE	LUBRIFICAÇÃO k ₍₁₎	
	$k_{(1)} = 1,0$	Lubrificação contínua
	$k_{(1)} = 1,3$	Lubrificação periódica
FATOR DE	POSIÇÃO k _{no}	
	Quando a linha de centro da	transmissão é horizontal ou possui uma
$\mathbf{k}_{\mathrm{po}} = 1,0$	inclinação de até 45° com relação	à horizontal.
l _r _ 1 2	Quando a linha de centro da trans	smissão possui uma inclinação superior a 45°
$\mathbf{k}_{\mathrm{po}} = 1.3$	com relação à horizontal.	

Carga Tangencial na Corrente:

•
$$F_T = \frac{P}{v_c}$$

•
$$F_T = \frac{2M_T}{d_o}$$

Carga máxima na Corrente:

- Corrente de Rolos:
- $F_{m\acute{a}x} = \frac{F_{rup}}{n_s k}$
- Corrente Dentada:

•
$$F_{m\acute{a}x} = \frac{F_{rup}.b}{10.n_{s.}k}$$

• Coeficiente de Segurança:

TABELA - Coeficiente de segurança ns									
PASSO	RPM da engrenagem menor								
	50	200	400	600	800	1000	1200	1600	2000
Corrente de rolos \rightarrow 1/2" - 5/8"	7,0	7,8	8,6	9,4	10,2	11,0	11,7	13,2	14,8
Corrente de rolos \rightarrow 3/4" - 1 1/4"	7,0	8,2	9,4	10,3	11,7	12,9	14,0	16,3	
Corrente de rolos \rightarrow 1 1/4" - 1 1/2"	7,0	8,6	10,2	13,2	14,8	16,3	19,5		

Verificação da Distância entre Centros:

•
$$C = (30 \ a \ 50)t$$

• Número de Elos:

•
$$y = \frac{Z_1 + Z_2}{2} + \frac{2C}{t} + (\frac{Z_2 - Z_1}{2\pi})^2 \cdot \frac{t}{C}$$

Distância entre Centros Exata:

•
$$C = \frac{t}{4} \cdot \left[y - \frac{Z_1 + Z_2}{2} + \sqrt{\left(y - \frac{Z_1 + Z_2}{2} \right)^2 - 8\left(\frac{Z_2 - Z_1}{2\pi} \right)^2} \right]$$

RODA DENTADA PARA CORRENTES

Diâmetro primitivo ->

$$d_o = \frac{t}{sen (180^{\circ}/z)} \qquad \alpha = \frac{360^{\circ}}{2 \cdot Z}$$

$$\alpha = \frac{360^{\circ}}{2 \cdot Z}$$

Diâmetro de base -

$$d_g = d_o \cdot \cos \alpha$$

Diâmetro interno

$$d_f = d_o - 1.01 \cdot d_r$$

Diâmetro externo

$$\begin{split} &d_k \, = d_o \, + 0.70 \cdot d_r \, \, (Z < 12) \\ &d_k \, = d_o \, + 0.83 \cdot d_r \, \, (12 < Z < 25) \\ &d_k \, = d_o \, + 0.87 \cdot d_r \, \, (25 < Z < 38) \\ &d_k \, = d_o \, + 0.90 \cdot d_r \, \, (Z > 38) \end{split}$$

Onde:

 $d_r \equiv diametro do rolo [mm];$

Z ≡ número de dentes [adimensional];

LUBRIFICAÇÃO

TIPO	MÉTODO	INTERVALOS/QUANTIDADE LUBRIFICAÇÃO	CUIDADO
	Escova Lubrificadora	Realizar periódica usando um lubrificador ou escova pelo menos uma vez por dia.	Enquanto gira a corrente lentamente, lubrifique todo o comprimento uniformemente três a quatro vezes. Tenha cuidado para não deixar que a sua mão ou roupa fique presa pela corrente durante a lubrificação. Observe que o óleo extra será espalhado quando a operação é iniciada.
A	Lubrificação por gotejamento	Fornecer cerca de 5 a 20 gotas de óleo por minuto.	Neste caso, uma vez que o óleo extra é disperso, recomenda-se instalar uma caixa simples

LUBRIFICAÇÃO

	Lubrificação com banho de óleo			
B		Mantenha a corrente imersa em óleo, cerca de 10 mm abaixo da superfície do óleo. Se a imersão for muito profunda, o óleo ficará anormalmente quente.	O recipiente deve ser à prova de fugas. Antes de usar o recipiente pela primeira vez, lave bem o interior para	
	Lubrificação de disco	Um disco é usado para aplicar óleo à corrente. Mantenha o disco imerso em óleo, a uma profundidade de cerca de 20 mm. Mantenha a velocidade periférica acima de 200 m/min.	remover pó e outras substâncias estranhas.	
C	Lubrificação forçada CAIXA DA CORRENTE BOMBA	A quantidade de lubrificação deve ser ajustada para evitar aquecimento anormal. Em geral, a quantidade de óleo deve ser ajustada a um nível que não permita a alta temperatura da corrente acima de 60 ° C.	O recipiente de óleo deve ser à prova de vazamento. Ao utilizar o recipiente pela primeira vez, lave bem o interior para remover toda a poeira e substâncias estranhas.	

Processo de Lubrificação	Manual	Gota a Gota	Banho de Óleo	Reservatório e Bomba de óleo
Potências	Baixas	Até 37 KW	Até 37 KW	Quaisquer condições, mas essencialmente para potências
Velocidades	Baixas	Até 6 m/s	Até 10 m/s	superiores a 37 KW

Type of lubrication		A	, В		c			
Chain No. Atmospheric temperature	-10°C~0°C	0 °C ~40°C	40°C~50°C	50°C~60°C	-10°C~0°C	0 °C ~40°C	40°C~50°C	50°C~60°C
DID 25~DID 50	SAE10W	SAE20	SAE30	SAE40	CATION	C.1.F00	27.500	CARAG
DID 60~DID 80	SAE20	C4E30	SAE40		SAE10W	SAE20	SAE30	SAE40
DID 100	SAE2U	E20 SAE30		SAE50	CAEOD	EAE20	54540	CAEEO
DID 120~DID 240	SAE30	SAE40	SAE50	1	SAE20	SAE30	SAE40	SAE50

Special kind of lubricant must be applied when ambient temperature is -10°C or lower or 60°C or higher. Please consult us for appropriate selection of lubricant.

Um compressor será acionado por uma transmissão por corrente, por um motor de 15 kW (~20CV), que possui uma rotação nominal de 1200rpm e uma rotação efetiva de 1160rpm.

O volante do compressor deve girar com 290 rpm. A distância entre centros estimada em 600 mm.

Considerar:

- desprezar as perdas na transmissão;
- trabalho é considerado normal;
- considere a linha de centros com inclinação inferior a 45º em relação à horizontal;
- a lubrificação é contínua;

Temp. 40 a 50°C.

Pede-se

Dimensionar o tipo de corrente a ser utilizado na transmissão o número de elos e o comprimento da corrente.

1º PASSO – Relação de transmissão "i"

Neste caso de redução de velocidade:

 $Z_1 = Z_{\text{dentes do pinhão}}$

 $Z_2 = Z_{\text{dentes da coroa}}$

 $n_1 = n_{\text{motora}} = n_{\text{eixo intermediário}} \rightarrow \text{rotação maior}$

 $n_2 = n_{movida} = n_{ventilador}$ \rightarrow rotação menor

$$i = \frac{Z_2}{Z_1} = \frac{n_1}{n_2}$$

2º PASSO – Número de dentes do pinhão e da coroa:

O número de dentes mínimo do pinhão é determinado da tabela abaixo em função do tipo de corrente e da relação de transmissão.

TABELA - DETERMINAÇÃO DO NÚMERO DE DENTES									
Tipo de Corrente	RELAÇÃO DE TRANSMISSÃO								
	1	2	3	4	5	6			
Corrente de rolos	31	27	25	23	21	17			
Corrente silenciosa	40	35	31	27	23	19			

3º PASSO – Passo da corrente:

O pinhão possui $Z_1 = 23$ dentes e gira com n = 1160 rpm. A tabela abaixo indica que, com exceção do passo t = 30 mm, qualquer outro passo pode ser utilizado.

TABELA 4 - Número máximo de rotações [rpm]									
		Passo da corrente "t" [mm]							
TIPO	Nº DE DENTES	12	15	20	25	30			
DE CORRENTE	DO PINHÃO	Passo da corrente "t" ["]							
		12,70	15,875	19,05	25,40	31,75			
		Número máximo de rotações [rpm]							
ROLOS	15	2300	1900	1350	1150	1000			
	19	2400	2000	1450	1200	1050			
	23	2500	2100	1500	1250	1100			
CILINDRÍCOS	27	2550	2150	1550	1300	1100			
	30	2600	2200	1550	1300	1100			
ELOS DENTADOS	15 a 35	3300	2650	2200	1650	1300			

Quanto menor o passo, melhor para a transmissão, pois diminuem os choques, a força centrífuga e o atrito. Por essas razões, escolhe-se o passo:

$$t = \frac{1}{2}$$
" = 12,7 mm

4º PASSO – Velocidade periférica:

Será confirmada a questão da velocidade periférica limitada no máximo a 12 m/s (v_P < 12 m/s)

$$v_P = \frac{Z_1 \cdot t \cdot n_1}{60 \cdot 1000}$$

5º PASSO – Fator de operação k:

$$k = k_S \cdot k_{(l)} \cdot k_{po}$$

FATOR DE SERVIÇO k _S							
$k_S = 1,0$ Carga constante, operação intermitente							
$k_S = 1,3$	Com impactos, operação contínua						
k _S = 1,5 Impactos fortes, operação contínua							

FATOR DE LUBRIFICAÇÃO k _(l)						
$k_{(l)} = 1,0$	Lubrificação contínua					
$k_{(1)} = 1,3$	Lubrificação periódica					

‡ •		FATOR DE POSIÇÃO k _{po}								
L										
	k _{po} = 1,0 Quando a linha de centro da transmissão é horizontal ou possui inclinação de até 45° com relação à horizontal.									
	$k_{po} = 1.3$	Quando a linha de centro da transmissão possui uma inclinação superior a 45° com relação à horizontal.								

6º PASSO – Carga tangencial na corrente:

$$F_T = \frac{P[w]}{v_P[m/s]}$$

7º PASSO – Carga de ruptura da corrente:

Primeiro temos que definir o coeficiente de segurança "n_S" definido pela tabela

abaixo: TABELA - Coeficiente de segurança ns **RPM** da engrenagem menor **PASSO** 50 200 400 600 800 1000 1200 1600 2000 Corrente de rolos→ 1/2" - 5/8" 11,7 7,0 7,8 8.8 9,4 10,2 11,0 13,2 14,8 Corrente de rolos \rightarrow 3/4" - 1 1/4" 9.4 11.7 14.0 7,0 8.2 10.3 12.9 16.3 Corrente de rolos $\rightarrow 1 \frac{1}{4}$ " - 1 $\frac{1}{2}$ " 7.0 8,8 10,2 13,2 14,8 16.3 19,5 Corrente dentadas \rightarrow 1/2" - 5/8" 20,0 22,2 24,4 28.7 29,0 31.0 33,4 37,8 42,0 Corrente dentadas \rightarrow 3/4" - 1 1/4" 23,4 20.0 26,7 30.0 33,4 36,8 40,0 46.5 53,5

$$F_{RUP} = F_{MAX}.n_s.K = 2654,86.11,7.1 = 31061,862 N$$

7º PASSO – Carga de ruptura da corrente:

Consultando o catálogo da GKW, tabela abaixo:

GKW Nº	ASA	Passo	Rolo		Lateral			Largura	
	N ₅		Largura B	Diámetro D	Espessura T	Altura H=mm	Piso G	L/LL mm	Carga de ruptura N
				SIM	PLEX				
Import.	40	1/2"	5/16*	5/16*	1,5 mm	12,0	5/32*	15,5	15.000
Import.	50	5/8*	3/8*	0,400*	2,0 mm	15,2	3/16"	20,2	20.000
S 401	60	3/4"	1/2"	15/32*	2,5 mm	18,4	1/4*	24,6	25.000
S 501	80	1*	5/8	5/8*	1/3*	24,4	5/16*	32,5	43.000
S 601	100	1 1/4"	3/4	3/4"	3/16*	29,0	3/8"	41,5	70.000
S 701	120	1 1/2"	1*	7/8*	3/18*	34,0	7/16*	48,5	100.000
S 801	140	13/4"	1"	1"	1/4"	42,0	1/2"	57,0	135.000
S 901	160	2"	1 1/4"	1 1/8"	1/4*	47,6	9/16"	63,5	170.000
S 901 R	160 H	2*	1 1/4*	1 1/8"	5/16*	47,6	9/16*	70,0	200.000
S 901 RR		2'	1 1/4*	1 1/8*	3/8*	47,6	3/4"	77,0	260.000
S 1001	200	2 1/2"	1 1/2"	1 9/16*	5/16"	57.0	51/64*	76,0	275.000
				DUF	LEX			133.	
Import.	D 40	1/2"	5/16*	5/16"	1,5 mm	12,0	5/32*	31,5	25.000
Import.	D 50	5/8*	3/8*	0,400*	2,0 mm	15,2	3/16*	39,2	40.000
\$ 402	D 60	3/4"	1/2*	15/32"	2,5 mm	18,4	1/4*	47,2	50.000
S 502	D 80	1"	5/8"	5/8*	1/8"	24,4	5/16*	65,0	86.000

Observa-se que podemos utilizar as seguintes correntes:

7º PASSO – Carga de ruptura da corrente:

– Corrente GKW SIMPLEX ASA 40 F_{RUP} = 15000 N
<u>Não podemos utilizar!!!</u>

– Corrente GKW DUPLEX ASA 40 F_{RUP} = 25000 N
<u>Não podemos utilizar!!!</u>

Consultando o catálogo da GKW, observa-se que se as correntes de $t = \frac{1}{2}$ " = 12,7 mm forem utilizadas, o projeto perde sua qualidade com a diminuição do coeficiente de segurança.

Portanto devemos volta ao "3º PASSO – Passo da corrente" e especificar um passo maior!!!

3B^o PASSO – Passo da corrente:

O pinhão possui $Z_1 = 23$ dentes e gira com n = 1160 rpm. A tabela abaixo indica que, com exceção do passo t = 30 mm, qualquer outro passo pode ser utilizado.

Tipo de corrente	№ de dentes do	Passo da corrente t (mm)							
	pinhão	12	15	20	25	30			
	15	2300	1900	1350	1150	1000			
rolos	19	2400	2000	1450	1200	1050			
	23	2500	2100	1500	1250	1100			
ailía dásas	27	2550	2150	1550	.1300	1100			
cilíndricos	30	2600	2200	1550	1300	1100			
		12,70	15,87	19,05	25,40	31,75			
elos dentado	3300	2650	2200	1650	1300				

Quanto menor o passo, melhor para a transmissão, pois diminuem os choques, a força de centrífuga e o atrito. Por essas razões, escolhe-se o passo:

$$t = 5/8$$
" = 15.875 mm

4B° PASSO – Velocidade periférica:

Será confirmada a questão da velocidade periférica limitada no máximo a 12 m/s (v_P < 12 m/s)

$$v_P = \frac{Z_1 \cdot t \cdot n_1}{60 \cdot 1000} = \frac{23 \cdot 15,875 \cdot 1160}{60 \cdot 1000} = 7,06 \ m/s$$
 $v_P = 7,06 \ m/s \Leftrightarrow v_P < 12 \ m/s \qquad \rightarrow \qquad \text{confirmada a condição.}$

5B° PASSO – Fator de operação k:

O fator de operação leva em consideração as condições de trabalho:

$$k = k_S \cdot k_{(l)} \cdot k_{po}$$

FATOR DE SERVIÇO k_S $-k_S = 1,0$

FATOR DE LUBRIFICAÇÃO $k_{(l)}$ $-k_{(l)} = 1,0$

FATOR DE POSIÇÃO k_{po} $-k_{po} = 1,0$

$$k = 1$$

6B° PASSO – Carga tangencial na corrente:

$$F_T = \frac{P[w]}{v_P[m/s]} = \frac{1,5 \times 10^3}{7,06} = 2124,64 \ N$$

 $F_T \cong 2125 \text{ N}$ (carga máxima atuante na corrente)

7B° PASSO – Carga de ruptura da corrente:

Primeiro temos que definir o coeficiente de segurança "n_S" definido pela tabela abaixo:

TABELA - Coeficiente de segurança ns											
PASSO		RPM da engrenagem menor									
FASSU	50	200	400	600	800	1000	1200	1600	2000		
Corrente de rolos → 1/2" - 5/8"	7,0	7,8	8,6	9,4	10,2	11,0	11,7	13,2	14,8		
Corrente de rolos → 3/4" - 1 1/4"	7,0	8,2	9,4	10,3	11,7	12,9	14,0	16,3			
Corrente de rolos → 1 1/4" - 1 1/2"	7,0	8,6	10,2	13,2	14,8	16,3	19,5				
Corrente dentadas → 1/2" - 5/8"	20,0	22,2	24,4	28,7	29,0	31,0	33,4	37,8	42,0		
Corrente dentadas → 3/4" - 1 1/4"	20,0	23,4	26,7	30,0	33,4	36,8	40,0	46,5	53,5		

Portanto $n_S = 11,7$

$$F_{RUP} = F_{MdX} \cdot n_S \cdot k = 212511,7 \cdot 1 = 248625 N$$

 $F_{RUP} = 24862 N$

Consultando o catálogo da GKW, tabela abaixo:

GKW Nº	ASA	Passo	Rolo		Lateral			Largura	
	Nº		Largura B	Diámetro D	Espessura T	Altura H=mm	Piso G	L/LL mm	Carga de ruptura N
	24.			SIM	PLEX				
Import.	40	1/2"	5/16*	5/16*	1,5 mm	12,0	5/32*	15,5	15.000
Import.	50	5/8*	3/8*	0,400*	2,0 mm	15,2	3/16*	20,2	20.000
\$ 401	60	3/4"	1/2"	15/32"	2,5 mm	18,4	1/4*	24,6	25.000
S 501	80	1*	5/8	5/8*	1/3*	24,4	5/16"	32,5	43.000
S 601	100	1 1/4"	3/4	3/4"	3/16*	29,0	3/8*	41,5	70.000
S 701	120	1 1/2"	1'	7/8*	3/13*	34,0	7/16*	48,5	100.000
S 801	140	13/4"	1"	1"	1/4"	42,0	1/2*	57,0	135.000
S 901	160	2*	1 1/4"	1 1/8"	1/4"	47,6	9/16"	63,5	170.000
\$ 901 R	160 H	2*	1 1/4*	1 1/8"	5/16*	47,6	9/16*	70,0	200.000
S 901 RR		2"	1 1/4*	1 1/8"	3/8*	47,6	3/4"	77,0	260.000
S 1001	200	2 1/2"	1 1/2"	1 9/16*	5/16"	57,0	51/64*	76,0	275.000
				DUF	Y.EX				
Import.	D 40	1/2"	5/16*	5/16"	1,5 mm	12,0	5/32*	31,5	25.000
Import.	D 50	5/8*	3/8*	0,400*	2,0 mm	15,2	3/16"	39,2	40.000
\$ 402	D 60	3/4"	1/2"	15/32"	2,5 mm	18,4	1/4*	47,2	50.000
\$ 502	D 80	1"	5/8"	5/8*	1/8"	24,4	5/16*	65,0	86.000

Observa-se que podemos utilizar as seguintes correntes:

Observa-se que podemos utilizar as seguintes correntes:

- Corrente GKW SIMPLEX ASA 50 t = 5/8" $F_{RUP} = 20000 \text{ N}$

- Corrente GKW DUPLEX ASA D50 t = 5/8" $F_{RUP} = 40000 \text{ N}$ <u>UTILIZADA!!!</u>

8º PASSO – Verificação da distância entre centros: (3ª CONSIDERAÇÃO) $C = \begin{pmatrix} 30 & a & 50 \end{pmatrix} \cdot t$

9° PASSO – Número de elos:

$$y = \frac{Z_1 + Z_2}{2} + \frac{2 \cdot C}{t} + \left(\frac{Z_2 - Z_1}{2 \cdot \pi}\right)^2 \cdot \frac{t}{C}$$

10° PASSO – Comprimento da corrente:

$$l = y \cdot t$$

EXERCÍCIO - PROGRAMA

- 2) O acionamento de um redutor é efetuado pela transmissão por correntes, movido por um motor elétrico de potência P=22kW (~30CV) e rotação n=1180rpm. A rotação do eixo de entrada do redutor é 600rpm.
- Considerar:
- desprezar as perdas na transmissão;
 trabalho é considerado normal;
- a distância entre centros admitida em 500mm;
 considere a linha de centro na vertical;
 a lubrificação é contínua;

- Será utilizada a corrente de rolos cilíndricos por ser mais simples e possuir o mento custo. A v_p fica limitada a 12m/s (v_p <12m/s)
- Pede-se
- Dimensionar o tipo de corrente a ser utilizado na transmissão o número de elos e o comprimento da corrente.