

Super Baum

Gegeben ist ein gewurzelter Baum mit n Knoten, mit Indizes $0,\ldots,n-1$. Die Wurzel hat den Index 0. Für $i\in\{0,\ldots,n-1\}$ wird dem Knoten i (d.h. dem Knoten mit dem Index i) eine ganze Zahl a_i zugewiesen. Sei f_v der Wert des bitweisen AND (fortan mit & bezeichnet) der Werte a_i auf dem Pfad vom Knoten v zur Wurzel. (Beachte, dass der Pfad von einem Knoten v zu einem Knoten v sowohl v als auch v einschliesst.)

Die Stärke des Baums ist definiert als

$$\sum_{0 \leq u,v \leq n} f_u \cdot f_v$$

und die Superstärke des Baums ist definiert als

$$\sum_{0 \le u < v \le n} f_u \cdot f_v$$

(beachte den Unterschied in den Bereichen von u und v).

Für ein erläuterndes Beispiel siehe die Erklärung der Beispieltestfälle unten.

Wir sagen, dass ein Knoten u zum *Teilbaum eines Knotens* v gehört, wenn v zum Pfad vom Knoten u zur Wurzel gehört. Beachte, dass der Teilbaum eines Knotens x den Knoten x selbst einschliesst.

Es werden q Updates vorgelegt. Jedes Update wird durch zwei ganze Zahlen, v und x, beschrieben und verlangt $a_u := a_u \,\&\, x$ für jeden Knoten u im Teilbaum des Knotens v zu setzen. Nach jedem Update soll die Stärke und Superstärke des aktuellen Baums ausgeben werden.

Da die Ausgabewerte gross sein können, gib sie modulo $10^9 + 7\,\mathrm{aus}.$

Eingabeformat

Die erste Zeile der Eingabe enthält die ganzen Zahlen n und q.

Die zweite Zeile der Eingabe enthält n-1 Ganzzahlen, nämlich $p_1, p_2, \ldots, p_{n-1}$, welche die Struktur des Baums bestimmen. Für $i \in \{1, \ldots, n-1\}$ ist p_i der Index des Elternknotens von Knoten i, und es gilt $0 \le p_i < i$.

Die dritte Zeile der Eingabe enthält n ganze Zahlen, nämlich a_0 , a_1 , ..., a_{n-1} . Dies sind die den Knoten zugewiesenen Werte.

Jede der folgenden q Zeilen enthält zwei ganze Zahlen, v ($0 \le v < n$) und x. Diese beschreiben die einzelnen Updates.

Ausgabeformat

Gib q+1 Zeilen aus. Jede Zeile sollte zwei, durch ein Leerzeichen getrennte, ganze Zahlen enthalten. In der ersten Zeile gib die Stärke und die Superstärke (modulo 10^9+7) des ursprünglichen Baums aus. In der i-ten Zeile, der verbleibenden q Zeilen ($i \in \{1,\ldots,q\}$), gib die Stärke und die Superstärke (modulo 10^9+7) des Baums nach dem i-ten Update aus.

Limits

- $1 \le n, q \le 10^6$.
- $0 \le a_i < 2^{60}$ für $i \in \{0, \dots, n-1\}$.
- $0 \le x < 2^{60}$ für jedes Update (v, x).

Bewertung

Für einen gegebenen Testfall erhältst du 50% der Punkte, wenn du alle Stärkewerte korrekt berechnest, aber mindestens einen Superstärkewert für diesen Testfall falsch berechnest.

Ebenso werden 50% der Punkte für einen gegebenen Testfall vergeben, wenn du alle Superstärkewerte für diesen Testfall korrekt berechnest, aber mindestens einen Stärkewert falsch berechnest.

Teilaufgaben

- 1. (4 Punkte) n = 3.
- 2. (7 Punkte) n, q < 700.
- 3. (13 Punkte) $n, q \leq 5000$.
- 4. (6 Punkte) $n \leq 10^5$, $p_i=i-1$ (für $i\in\{1,\ldots,n-1\}$), und $a_i,x<2^{20}$ (für $i\in\{0,\ldots,n-1\}$ und für jedes Update (v,x)).
- 5. (7 Punkte) $p_i = i 1$ (für $i \in \{1, \dots, n-1\}$).
- 6. (12 Punkte) $a_i, x < 2^{20}$ (für $i \in \{0, \dots, n-1\}$ und für jedes Update (v, x)).
- 7. (14 Punkte) $n \le 10^5$.
- 8. (11 Punkte) $n \le 5 \cdot 10^5$.
- 9. (26 Punkte) Keine zusätzlichen Einschränkungen.

Beispieltestfall 1

Eingabe

3 3

0 0

7 3 4

1 6

2 2

0 3

Ausgabe

196 61

169 50

81 14

25 6

Erklärung

Zu Beginn haben wir

$$f_0 = 7, \ f_1 = 7\&3 = 3, \ f_2 = 7\&4 = 4.$$

Deshalb ist die Stärke des Baums gleich

$$f_0 \cdot f_0 + f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_0 + f_1 \cdot f_1 + f_1 \cdot f_2 + f_2 \cdot f_0 + f_2 \cdot f_1 + f_2 \cdot f_2 =$$

$$= 7 \cdot 7 + 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 7 + 3 \cdot 3 + 3 \cdot 4 + 4 \cdot 7 + 4 \cdot 3 + 4 \cdot 4 = 196.$$

Die Superstärke entspricht

$$f_0 \cdot f_1 + f_0 \cdot f_2 + f_1 \cdot f_2 = 7 \cdot 3 + 7 \cdot 4 + 3 \cdot 4 = 61.$$

Nach dem ersten Update:

$$a_0 = 7, \ a_1 = 3\&6 = 2, \ a_2 = 4;$$
 $f_0 = 7, \ f_1 = 2, \ f_2 = 4.$

Nach dem zweiten Update:

$$a_0=7,\; a_1=2,\; a_2=4\&2=0;$$
 $f_0=7,\; f_1=2,\; f_2=0.$

Nach dem dritten Update:

$$a_0=7\&3=3,\; a_1=2\&3=2,\; a_2=0\&3=0;$$
 $f_0=3,\; f_1=2,\; f_2=0.$

Testfall Beispiel 2

Eingabe

4 2 0 0 1 6 5 6 2 1 2 0 3

Ausgabe

256 84 144 36 16 4

Erklärung

Zu Beginn haben wir

$$f_0=6,\ f_1=6\&5=4,\ f_2=6\&6=6,\ f_3=2\&5\&6=0.$$

Nach dem ersten Update:

$$a_0=6,\ a_1=5\&2=0,\ a_2=6,\ a_3=2\&2=2;$$
 $f_0=6,\ f_1=0,\ f_2=6,\ f_3=2\&0=0.$

Nach dem zweiten Update:

$$a_0=7,\ a_1=2,\ a_2=4\&2=0;$$
 $f_0=7,\ f_1=2,\ f_2=0.$

Testfall Beispiel 3

Eingabe

```
7 3
0 0 1 1 2 2
7 6 5 7 3 4 2
4 4
3 3
2 1
```

Ausgabe

```
900 367
784 311
576 223
256 83
```