Esercitazione Dynamic Programming ASD mod. 2 16/04/2024

• Input: una stringa S di n caratteri.

• **Goal:** eliminare da *S* dei caratteri (anche nessuno) in modo tale che la sottostringa risultante *S** sia **palindroma** e di **lunghezza massima**.

• OPT: massima lunghezza sottostringa palindroma.

$$S^* = \begin{bmatrix} A & L & G & O & R & I & T & M & O \end{bmatrix}$$

$$OPT = 3$$

Sottoproblema:

OPT[i, j] = massima lunghezza sottostringa palindroma di S[i ... j]

Sottoproblema:

OPT[i, j] = massima lunghezza sottostringa palindroma di S[i ... j]

· Caso base:

If
$$i > j \rightarrow OPT[i, j] = 0$$

OPT[i, i] = 1

Sottoproblema:

OPT[i, j] = massima lunghezza sottostringa palindroma di S[i ... j]

· Caso base:

If
$$i > j \rightarrow OPT[i, j] = 0$$

OPT[i, i] = 1

Soluzione:

Formula ricorsiva:

$$OPT[i,j] = \begin{cases} 2 + OPT[i+1,j-1] & \text{se } S[i] = S[j] \\ \\ max \{ OPT[i+1,j], OPT[i,j-1] \} & \text{altrimenti} \end{cases}$$

Formula ricorsiva:

$$OPT[i,j] = \begin{cases} 2 + OPT[i+1,j-1] & \text{se } S[i] = S[j] \\ \\ max \{OPT[i+1,j], OPT[i,j-1]\} & \text{altrimenti} \end{cases}$$

$$Rimuovo S[i]$$

• Formula ricorsiva:

$$OPT[i,j] = \begin{cases} 2 + OPT[i+1,j-1] & \text{se } S[i] = S[j] \\ \max \{ OPT[i+1,j], OPT[i,j-1] \} & \text{altrimenti} \end{cases}$$

$$Rimuovo S[j]$$

	Α	L	G	O	R	I	Т	М	O
Α	0	0	0	0	0	0	0	0	0
L	0	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	0	0	0
O	0	0	0	0	0	0	0	0	0
R	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	0	0	0	0
Т	0	0	0	0	0	0	0	0	0
М	0	0	0	0	0	0	0	0	0
O	0	0	0	0	0	0	0	0	0

Inizializzazione tabella

	Α	L	G	O	R	I	Т	М	O
Α	1	0	0	0	0	0	0	0	0
L	0	1	0	0	0	0	0	0	0
G	0	0	1	0	0	0	0	0	0
O	0	0	0	1	0	0	0	0	0
R	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	1	0	0	0
Т	0	0	0	0	0	0	1	0	0
М	0	0	0	0	0	0	0	τ	0
0	0	0	0	0	0	0	0	0	1

Casi base

	Α	L	G	0	R		Т	М	0
Α	1	1	0	0	0	0	0	0	0
L	0	1	1	0	0	0	0	0	0
G	0	0	1	1	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0
R	0	0	0	0	 	<u> </u>	0	0	0
	0	0	0	0	0	1	1	0	0
Т	0	0	0	0	0	0	1	1	0
M	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1

Caso generale

Attenzione: da riempire in diagonale! Perché?

	Α	L	G	0	R	1	Т	М	0
Α	1	1	1	1	1	1	1	1	3
L	0	1	1	1	1	1	1	1	3
G	0	0	1	1	1	1	1	1	3
Ο	0	0	0	1	1	1	1	1	3
R	0	0	0	0	1	1	1	1	1
I	0	0	0	0	0	1	1	1	1
Т	0	0	0	0	0	0	1	1	1
М	0	0	0	0	0	0	0	1	1
O	0	0	0	0	0	0	0	0	1

Valore ottimo

	Α	L	G	0	R	ı	Т	М	0	
Α	1	1	1	1	1	1	1	1	3	
L	0	1	1	1	1	1	1	1	3	
G	0	0	1	1	1	1	1	1	3	
Ο	0	0	0	1	1	1	1	1	3	Valore ottimo
R	0	0	0	0	1	1	1	1	1	
I	0	0	0	0	0	1	1	1	1	
Т	0	0	0	0	0	0	1	1	1	
М	0	0	0	0	0	0	0	1	1	Time O(n²)
Ο	0	0	0	0	0	0	0	0	1	

```
def opt(s: str) -> int:
    n = len(s)
    M = [[0] * n for in range(n)]
    for i in range(n):
        M[i][i] = 1
    for d in range(1, n):
        for i in range(n - d):
            j = i + d
            if s[i] == s[j]:
                M[i][j] = 2 + M[i + 1][j - 1]
            else:
                M[i][j] = max(M[i + 1][j], M[i][j - 1])
    return M[0][n - 1]
```

Implementazione in python con approccio **tabulation** (bottom-up)

Studente di informatica

Implementazione in python con approccio **memoization** (top-down)

Come ricavare la soluzione dai valori dell'ottimo

```
def solution(s: str, OPT: dict, i: int, j: int) -> str:
    if i > j:
        return ""
    elif i == j:
        return s[i]
    elif s[i] == s[j]:
        return s[i] + solution(s, OPT, i + 1, j - 1) + s[j]
    elif OPT[i + 1, j] > OPT[i, j - 1]:
        return solution(s, OPT, i + 1, j)
    else:
        return solution(s, OPT, i, j - 1)
```

• Input: una collezione di n libri di spessore $t_1, ..., t_n \in \mathbb{N}$.

• Goal: vuoi comprare due scaffali S_1 ed S_2 , entrambi di lunghezza $W \in \mathbb{N}$, per disporre tutti i tuoi libri.

• OPT: lunghezza minima necessaria per gli scaffali S_1 ed S_2 .

Inptu: { 2, 1, 2, 2, 1, 1, 2, 1, 4, 1, 3, 1 }

OPT: 11

Sottoproblema:

OPT[i, w] = minimo spazio usato sullo scaffale S_1 se sullo scaffale S_2 ho a disposizione spazio w e voglio piazzare *i* libri di spessore $t_1, ..., t_i$.

· Caso base:

OPT[
$$0, w$$
] = 0

Soluzione:

min W tale che OPT[n, W] \leq W

Sottoproblema:

OPT[i, w] = minimo spazio usato sullo scaffale S_1 se sullo scaffale S_2 ho a disposizione spazio w e voglio piazzare *i* libri di spessore $t_1, ..., t_i$.

· Caso base:

OPT[
$$0, w] = 0$$

Soluzione:

$$W \le T = \sum_{i=1}^{N} t_{i}$$
min W tale che OPT[n, W] \le W

• Space: O(n T) dove $T = \sum_{i} t_i$

• Space: O(n T) dove $T = \sum_{i} t_i$

• **Time:** *O(n T)*, ogni volta devo combinare un numero costante di sottoproblemi.

• Space: O(n T) dove $T = \sum_{i} t_i$

• **Time:** *O(n T)*, ogni volta devo combinare un numero costante di sottoproblemi.

• Formula ricorsiva:

• Formula ricorsiva:

 t_i non entra nello scaffale S_2 , quindi lo devo mettere per forza in S_1

• Formula ricorsiva:

$$OPT[i, w] = \begin{cases} t_i + OPT[i-1, w] & \text{se } t_i > w \\ \\ min \{t_i + OPT[i-1, w], \boxed{OPT[i-1, w-t_i]} \} & \text{altrimenti} \\ \\ \\ Inserisco t_i \text{ nello scaffale } S_2 \end{cases}$$

• Formula ricorsiva:

$$OPT[i, w] = \begin{cases} t_i + OPT[i-1, w] & \text{se } t_i > w \\ \\ min \{t_i + OPT[i-1, w], OPT[i-1, w-t_i]\} & \text{altrimenti} \end{cases}$$

$$Inserisco t_i nello scaffale S_1$$

• Esercizio 1: implementare l'algoritmo con approccio bottom-up (tabulation) e top-down (memoization).

• Esercizio 2: adattare l'algoritmo nel caso in cui si hanno a disposizione 3 scaffali S_1 , S_2 ed S_3 .