P1 de Álgebra Linear I -2012.1

31 de Março de 2012.

Gabarito

1)

- a) Encontre, se possível, dois vetores não nulos \bar{u} e \bar{v} de \mathbb{R}^3 tais que os vetores $\bar{u} + \bar{v}$ e $\bar{u} \bar{v}$ tenham o mesmo módulo.
- b) Considere dois vetores \bar{u}_1 e \bar{u}_2 de \mathbb{R}^3 que têm módulo 13, isto é, $||\bar{u}_1|| = ||\bar{u}_2|| = 13$. Calcule o produto escalar $(\bar{u}_1 + \bar{u}_2) \cdot (\bar{u}_1 \bar{u}_2)$.
- c) Considere vetores não nulos \bar{u} , \bar{v} de \mathbb{R}^3 e defina $\bar{w} = \alpha \bar{u}$, $\alpha \in \mathbb{R}$. Determine α para que os vetores $(\bar{v} \bar{w})$ e \bar{u} sejam ortogonais. Note que o valor de α depende dos vetores \bar{u} e \bar{v} .

Resposta:

a) Observe se deve verificar $||\bar{u} + \bar{v}||^2 = ||\bar{u} - \bar{v}||^2$. Isto é,

$$\begin{aligned} ||\bar{u} + \bar{v}||^2 &= (\bar{u} + \bar{v}) \cdot (\bar{u} + \bar{v}) = \bar{u} \cdot \bar{u} + 2 \,\bar{u} \cdot \bar{v} + \bar{v} \cdot \bar{v} = \\ ||\bar{u} - \bar{v}||^2 &= (\bar{u} - \bar{v}) \cdot (\bar{u} - \bar{v}) = \bar{u} \cdot \bar{u} - 2 \,\bar{u} \cdot \bar{v} + \bar{v} \cdot \bar{v}. \end{aligned}$$

Simplificando obtemos,

$$\bar{u} \cdot \bar{v} = -\bar{u} \cdot \bar{v}, \quad 2\bar{u} \cdot \bar{v} = 0.$$

Ou seja, é suficiente que os vetores sejam ortogonais (perpendiculares). Portanto, é suficiente escolher dois vetores ortogonais, por exemplo (1,1,0) e (1,-1,0).

b) Observe que

$$(\bar{u}_1 + \bar{u}_2) \cdot (\bar{u}_1 - \bar{u}_2) = \bar{u}_1 \cdot \bar{u}_1 - \bar{u}_1 \cdot \bar{u}_2 + \bar{u}_2 \cdot \bar{u}_1 - \bar{u}_2 \cdot \bar{u}_2.$$

Observe que $\bar{u}_1 \cdot \bar{u}_2 = \bar{u}_2 \cdot \bar{u}_1$. Portanto,

$$(\bar{u}_1 + \bar{u}_2) \cdot (\bar{u}_1 - \bar{u}_2) = \bar{u}_1 \cdot \bar{u}_1 - \bar{u}_2 \cdot \bar{u}_2 = (13)^2 - (13)^2 = 0$$

c) Temos $\bar{v} - \bar{w} = \bar{v} - \alpha \bar{u}$. Para que este vetor seja ortogonal a \bar{u} , devemos ter

$$0 = (\bar{v} - \alpha \, \bar{u}) \cdot \bar{u} = \bar{v} \cdot \bar{u} - \alpha \, (\bar{u} \cdot \bar{u}).$$

Portanto,

$$\alpha = \frac{\bar{v} \cdot \bar{u}}{\bar{u} \cdot \bar{u}}.$$

- **2)** Considere os pontos A = (1,0,1), B = (0,2,2) e C = (2,1,2).
- a) Determine uma equação cartesiana do plano π que contém os pontos $A, B \in C$.
- b) Determine um ponto D tal que os pontos A, B, C e D formem um paralelogramo P.
- c) Determine a área do paralelogramo P do item anterior.

Resposta:

a) Considere os vetores $\overline{AB}=(-1,2,1)$ e $\overline{AC}=(1,1,1)$. Um vetor normal do plano π é

$$\overline{AB} \times \overline{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = (1, 2, -3)|.$$

Portanto, a equação cartesiana do plano é da forma

$$x + 2y - 3z = d,$$

onde d é determinado pela condição dos pontos A,B e C pertencer a π , ou seja: 1+0-3=d=-2.

b) Existem as seguintes possibilidades para o ponto D:

- \overline{AB} paralelo a \overline{CD} , isto é, $\overline{AB} = \pm \overline{CD}$,
- \overline{AC} paralelo a \overline{BD} , isto é $\overline{AC} = \pm \overline{BD}$

No primeiro caso podemos ter

$$\overline{AD} = \overline{AC} + \overline{AB}, \quad D = B + C - A = (0, 2, 2) + (2, 1, 2) - (1, 0, 1) = (1, 3, 3),$$

 $\overline{AD} = \overline{AB} - \overline{AC}, \quad D = B - C + A = (0, 2, 2) - (2, 1, 2) + (1, 0, 1) = (-1, 1, 1).$

No segundo caso podemos ter

$$\overline{AD} = \overline{AC} - \overline{AB}, \quad D = C - B + A = (2, 1, 2) - (0, 2, 2) + (1, 0, 1) = (3, -1, 1),$$

 $\overline{AD} = \overline{AB} - \overline{AC}, \quad D = B - C + A = (0, 2, 2) - (2, 1, 2) + (1, 0, 1) = (-1, 1, 1).$

- c) A área do paralelogramo P é o módulo do vetor $\overline{AB} \times \overline{AC} = (1, 2, -3)$, isto é, $|(1, 2, -3)| = \sqrt{14}$.
- 3) Considere as retas r_1 de equação paramétrica

$$x = 1 + t$$
, $y = 1 + 2t$, $z = 1 + 2t$, $t \in \mathbb{R}$

e r_2 cujas equações cartesianas são

$$y - z = 0$$
, $2x - y = 2$.

- a) Determine equações cartesianas da reta r_1 .
- b) Determine a equação cartesiana do plano ρ que contém o ponto Q = (1,0,0) e é ortogonal à reta r_1 .
- c) Determine, se possível, um ponto P da reta r_2 tal que a distância entre P e r_1 seja 1/3.
- d) Considere os pontos $A = (1, 1, 1) \in r_1$ e $B = (2, 2, 2) \in r_2$. Determine um ponto C de r_1 tal que o triângulo de vértices A, B, C seja retângulo e os lados AC e BC sejam seus catetos.

Resposta:

a) Temos que encontrar dois planos τ e τ' (não paralelos entre si) que contenham a reta r_1 ,

$$\tau : ax + by + cz = d, \quad \tau' : a'x + by + c'z = d.$$

Para isso os vetores diretores dos planos devem ser ortogonais ao vetor diretor da retas

$$(a,b,c) \cdot (1,2,2) = 0, \quad (a',b',c') \cdot (1,2,2) = 0$$

e os planos devem conter um ponto do plano (por exemplo (1,1,1). Podemos escolher (a,b,c)=(2,-1,0) e (a',b',c')=(0,1,-1) obtendo os planos

$$\tau : 2x - y + = 1, \quad \tau' : y - z = 0.$$

Logo

$$r_1: \begin{cases} 2x - y = 1, \\ y - z = 0. \end{cases}$$

b) O vetor normal \bar{n} do plano ρ é o vetor diretor de r_1 , $\bar{n}=(1,2,2)$. Logo

$$\rho$$
: $x + 2y + 2z = d$.

Como $(1,0,0) \in \rho$ temos

$$\rho$$
: $x + 2$, $y + 2z = 1$.

c) Observamos que as retas r_1 e r_2 são paralelas, para isso observamos que um vetor diretor de r_2 é $(0,1,-1)\times(2,-1,0)=(-1,-2,-2)$. Portanto todos os pontos de r_2 estão à mesma distância d de r_1 e esta distância é a distância entre as retas r_1 e r_2 .

Calcularemos esta distância. Observe que um ponto da reta r_2 é (1,0,0). O ponto P da reta r_1 mais próximo de $Q \in r_2$ é a interseção de r_1 e o plano ρ que contém o ponto Q = (1,0,0) e é ortogonal à reta r_1 (ou seja, o plano ρ do item anterior). A distância entre r_1 e r_2 é o módulo do vetor \overline{PQ} .

Para calcular $r_1 \cap \rho$, substituímos a equação de r_1 na de ρ , obtendo

$$(1+t)+2(1+2t)+2(1+2t)=1$$
, $9t+5=1$, $t=-4/9$.

Portanto,

$$P = (1 - 4/9, 1 - 8/9, 1 - 8/9) = (5/9, 1/9, 1/9).$$

Temos agora

$$\overline{PQ} = (4/9, -1/9, -1/9)$$

Portanto, a distância é $\sqrt{18}/9 = \sqrt{2}/\sqrt{9} = \sqrt{2}/3$.

Como as duas retas são paralelas, todos os pontos da reta r_2 estão a mesma distância $\sqrt{2}/3$ da reta r_1 . Como $1/3 < \sqrt{2}/3$ não existe nenhum ponto de r_2 a distância 1/3 de r_1 , pois $1/3 < \sqrt{2}/3$.

d) Observamos novamente que as retas r_1 e r_2 são paralelas. O ponto C é obtido considerando a interseção da reta r_1 e o plano α ortogonal a r_1 contendo B. Em tal caso, por construção, \overline{AC} é ortogonal a \overline{BC} e estes lados são os catetos do triângulo.

A equação do plano α é

$$\alpha$$
: $x + 2y + 2z = 10$.

A interseção de α e r_1 é obtida como segue:

$$(1+t) + 2(1+2t) + 2(1+2t) = 10, \quad 9t = 5, \quad t = 5/9.$$

Portanto o ponto C é

$$C = (14/9, 19/9, 19/9).$$

Verifique que $\overline{BC} = (4/9, -1/9, -1/9)$ é ortogonal a (1, 2, 2) (o vetor diretor de r_2).

4)

a) Considere os planos de equações cartesianas

$$\pi: 2x + y - z = 1, \quad \pi': x + 3y - z = -1.$$

Encontre um terceiro plano τ que contenha o ponto (1,0,0) e a interseção dos três planos π , π' e τ seja uma reta.

b) Considere os planos de π_1, π_2, π_3 de equações cartesianas

$$\pi_1$$
: $x + 2y + 3z = a$
 π_2 : $2x + 4y + z = b$
 π_3 : $3x + 2y + kz = c$.

Mostre que a interseção destes três planos sempre é um ponto, independentemente dos valores de a, b, c e k.

Resposta:

a) O plano τ deve conter o ponto (1,0,0) e reta r obtida como interseção dos planos π e π' . Escalonando o sistema

$$x + 3y - z = -1$$
, $2x + y - z = 1$,

obtemos

$$x + 3y - z = -1$$
, $-5y + z = 3$.

Fazendo y = t temos

$$z = 3 + 5t$$

e

$$x = -1 - 3t + 3 + 5t = 2 + 2t$$
.

Logo a equação paramétrica de r é

$$x = 2 + 2t$$
, $y = t$, $z = 3 + 5t$, $t \in \mathbb{R}$.

Portanto o plano contém os pontos A=(2,0,3) e B=(1,0,0) e seu vetor normal é

$$\overline{BA} \times (2,1,5) = (1,0,3) \times (2,1,5) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 3 \\ 2 & 1 & 5 \end{vmatrix} = (-3,1,1).$$

Portanto o plano τ é da forma

$$3x - y - z = d,$$

e como (1,0,0) pertence a τ temos

$$3x - y - z = 3$$
.

b) Escalonaremos, substituindo a segunda equação pela segunda menos 2×-primeira, e a terceira equação pela terceira menos 3×primeira:

Trocando a ordem da segunda e da terceira equação

$$\begin{array}{rclcrcr}
 x & + & 2y & + & 3z & = & a \\
 0x & - & 4y & + & (k-9)z & = & c - 3a \\
 0x & + & 0y & - & 5z & = & b - 2a
 \end{array}$$

temos um sistema escalonado, com solução única, independentemente dos valores de a,b,c e k,

$$z = \frac{2a - b}{5},$$

$$y = \frac{3a - c + (k - 9)\frac{2a - b}{5}}{4}$$

$$x = a - 2\frac{3a - c + (k - 9)\frac{2a - b}{5}}{4} - 3\frac{2a - b}{5}.$$

Outra possibilidade de resolução é ver que o determinante cujas linhas são os vetores normais dos planos π_1,π_2,π_3 é não nulo:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 4 & 1 \\ 3 & 2 & k \end{vmatrix} = 3(2-12) - 2(1-6) + k(4-4) = -30 + 10 = 20 \neq 0.$$

Nesse caso o sistema possui solução única.