Représentation des nombres

Représentation des entiers Représentation des réels Opérations arithmétiques

Représentation des réels

- En virgule fixe
- En virgule flottante

Dans la suite, sauf indication contraire toutes les écritures de nombres sont en base dix

Représentation des nombres réels

En base dix, un nombre réel qui s'écrit $\pm d_m d_{m-1}....d_1 d_0, d_{-1} d_{-2}...d_{-n}$

Représente la valeur

$$\pm \sum_{-n}^{+m} d_i 10^i$$

En conséquence, en base dix on ne peut représenter exactement que des nombres fractionnaires de la forme n/10^k où n est un nombre entier

Par exemple impossible de donner une écriture finie exacte de 1/3 (0.333333....)

Mais impossible de donner une écriture finie exacte de un tiers en base 2 :

$$1/3$$
 $2x1/3 = 2/3 < 1$ $2x4/3 = 8/3 = 1 + 1/3$ $2x1/3 = 2/3$ 0, 0 1 0 0, 0

ni de un dixième:

$$1/10 \ 2/10 = 1/5 \ 2/5 \ 4/5 \ 8/5 = 1 + 3/5 \ 6/5 = 1 + 1/5 \ 2/5 \dots$$
 $0, 0 0 0 1 1 0 \dots$
 $0,0(0011)(0011)(0011)(0011) \dots$

Ce qui risque de générer des problèmes d'arrondis.

Virgule fixe

- 1 bit de signe
- m bits pour la partie entière
- n bits pour la partie fractionnaire

En complément à deux

Résolution et dynamique

- La plus petite valeur que l'on peut coder : -2^m
- La plus grande 2^m 2⁻ⁿ
- Dynamique : différence entre ces deux valeurs
- Résolution : écart minimum entre deux réels représentés : 2⁻ⁿ
- Pour obtenir la valeur représentée par une telle représentation :
 - 1. on considère que cette représentation est celle d'un entier en complément à 2 sur 1+m+n bits
 - 2. on calcule la valeur entière obtenue et on divise par 2ⁿ

Représentation en virgule flottante

- Un nombre réel est représenté par:
 - un signe s : sur 1 bit (0 positif, 1 négatif)
 - une mantisse (en base b) m
 - Un exposant e

La valeur du réel est : $(-1)^s m$ be

• Exemple : π

$$(-1)^0 \times 0.031 \times 10^2$$

 $(-1)^0 \times 3.142 \times 10^0$
 $(-1)^0 \times 31.42 \times 10^{-1}$
 $(-1)^0 \times 0.003 \times 10^3$

Plusieurs représentations approchées Pas la même précision

Représentation normalisée (et notation scientifique)

• Une représentation est *normalisée* si elle est sous la forme

 $(-1)^{s} M b^{e}$

Avec M qui est dans l'intervalle [1,b[

- On ne stocke que s, M et e .
 En Base 2 ça impose : M = 1,M'
 et c'est M' la pseudo mantisse que l'on stocke
- tout réel (non nul) a une unique notation scientifique
- Mais tout réel (non nul) n'a pas nécessairement une représentation normalisée exacte sur N_m bits pour représenter la mantisse et N_e bits pour représenter l'exposant e
- Étant donnés N_m bits pour représenter la mantisse et N_e bits pour représenter l'exposant e, la représentation normalisée donne meilleure précision possible pour ce réel
- 0 n'a pas de représentation normalisée!

Le système IEEE 754

 Un standard pour la représentation des nombres à virgule flottante en binaire

1+8+23=32 simple précision utilisée par exemple pour le type *float* java

1+11+52=64 double précision utilisée par exemple pour le type *double* java

Codage de l'exposant

- Il faut qu'il puisse être négatif!
- Plutôt que le choix du complément à deux, translation par une constante d'excentrement (ou biais)
- On passe de [0, 2 N_e 1] à [- 2 $^{N_e-1}$ +1, 2 $^{N_e-1}$] en translatant de 2 $^{N_e-1}$ -1
- Translation de 127 en simple précision, de 1023 en double précision

Exemple avec 8 bits

1 bit pour le signe, 3bits pour l'exposant, 4 bits pour la pseudo mantisse

L'exposant pourra varier entre -3 [000] et +4 [111] grâce à un excentrement de 3

Le bit de signe est à 0 : nombre positif

L'exposant vaut 3 : 6-excentrement

La pseudo mantisse est 1011

La mantisse est donc 1,1011

Le réel représenté écrit en base 2 est donc : **1101,1**

Soit **13,5**

Représenter le réel 3,125

- 11,001 [écrire en base 2]
- 1,1001 . 2¹ [normaliser]

Et le zéro

- Pas moyen d'utiliser une écriture normalisée pour 0
- Du coup on réserve le plus petit et le plus grand des exposants pour des écritures non normalisées (dont 0)

Codage de l'exposant, revisité pour inclure des nombres non normalisés

- On passe de $[0, 2^{N_e} 1]$ à $[-2^{N_e-1} + 1, 2^{N_e-1}]$ en translatant de $2^{N_e-1} 1$, mais on réserve
 - Le plus grand codé 1..1 pour représenter les valeurs spéciales
 - L'infini [pseudo mantisse à 00000000...00] le signe dira si positif ou négatif
 - NaN [NotANumber pseudo mantisse pas à 0]
 - Le plus petit codé 0..0 pour représenter :
 - Zéro [pseudo mantisse à 00000000...00] : deux codages en fait, positif ou négatif
 - Nombres dénormalisés avec mantisse non nulle
 - Les nombres normalisés ont donc un intervalle d'exposant possible un peu plus réduit

Nombres dénormalisés

Normalement, la valeur de l'exposant d'un nombre non normalisé devrait être :

0 – excentrement

Toutefois, pour assurer une meilleure transition entre les nombres normalisés et les non normalisés, l'exposant est calculé dans ces cas comme 1 - excentrement

Exemple sur 6 bits avec $N_e = 3$ et $N_m = 2$

- L'excentrement vaut $3 = 2^{3-1} 1$
- Il y a 64 mots de longueur 1+3+2 = 6 dont
 - 8 valeurs spéciales (exposant 111)
 - 48 = 2 x 6 x 4 nombres normalisés, dont 24 sont strictement positifs et 24 strictement négatifs (6 exposant 001 à 110) mantisse possible (00,01,10,11)
 - 8 nombres non normalisés (exposant 000) qui représentent 7 réels (dont zéro qui a deux écritures) tous entre 0 et le plus petit nombre positif normalisé

Exemple sur 6 bits avec N_e = 3 et N_m = 2

• Les valeurs spéciales (exposant 111)

Nombres non normalisés	Valeurs spéciales
0 111 00	+ infini
0 111 01	NaN
0 111 10	NaN
0 111 11	NaN
1 111 00	- infini
1 111 01	NaN
1 111 10	NaN
1 111 11	NaN

Nombre normalisés positifs

Nombre normalisé			Base 10				Base 10
0 001 00	+1,00. 2 -2	+0,01	0,25	0 100 00	+1,00.2 1	10	2
0 001 01	+1,01. 2 -2	+0,0101	0,3125	0 100 01	+1,01.2 1	10,1	2,5
0 001 10	+1,10. 2 -2	+0,011	0,375	0 100 10	+1,10.2 1	11	3
0 001 11	+1,11. 2 -2	+0,0111	0,4375	0 100 11	+1,11.2 1	11,1	3 ,5
0 010 00	+1,00.2-1	+0,1	0,5	0 101 00	+1,00.22	100	4
0 010 01	+1,01.2-1	+0,101	0,625	0 101 01	+1,01.22	101	5
0 010 10	+1,10.2-1	+0,11	0,75	0 101 10	+1,10.22	110	6
0 010 11	+1,11.2-1	+0,111	0,875	0 101 11	+1,11.22	111	7
0 011 00	+1,00 .20	+1	1	0 110 00	+1,00 .23	1000	8
0 011 01	+1,01 .20	+1,01	1,25	0 110 01	+1,01 .23	1010	10
0 011 10	+1,10 .20	+1,1	1,5	0 110 10	+1,10 .2 ³	1100	12
0 011 11	+1,11 .20	+1,11	1,75	0 110 11	+1,11 .23	1110	14

Nombres non normalisés

Les valeurs spéciales (exposant 000)

Nombres non normalisés			En base dix
0 000 00	0,00	0	0
0 000 01	+0,01 2-2	0,0001	0,0625
0 000 10	+0,10 2-2	0,001	0,125
0 000 11	+0,11 2-2	0,0011	0,1875
1 000 00	-0,00	0	0
1 000 01	-0,01 2 ⁻²	-0,0001	-0,0625
1 000 10	-0,10 2 ⁻²	-0,001	-0,125
1 000 11	-0,11 2 ⁻²	-0,0011	-0,1875

Arithmétique en virgule flottante

- On va avoir des problèmes d'arrondis
 - Soit parce qu'on veut utiliser un nombre qui a écriture finie en base dix mais pas en base deux, par exemple un dixième
 - Soit parce qu'il y a bien une écriture finie mais en base deux, mais qu'il faudrait plus de bits pour pouvoir stocker le nombre exact :
 - 8+5 = on peut espérer 12 ou 14 mais pas 13 !!

Addition de deux flottants positifs

- 1. Décaler à droite la mantisse (sans oublier le bit caché) du nombre possédant le plus petit exposant jusqu'à arriver à l'exposant de l'autre nombre
- 2. Additionner les mantisses
- 3. Normaliser le résultat
- 4. Arrondir

Exemple d'addition de flottant positifs

$$0\ 100\ 10\ +\ 0\ 011\ 10\ (3\ +\ 1,5)$$

 $1,1\ x\ 2^1\ +\ 1,1\ x\ 2^0$

- 1. $1,10 \times 2 + 0,11 \times 2$
- 2. 10,01 x2
- 3. $1,001 \times 2^2$
- 4. 1,00 x 2² (c'est-à-dire quatre !) parce qu'on a seulement deux chiffres après la virgule le résultat est donc 0 101 00

Il n'y aurait pas eu d'erreur d'arrondi dans ce cas si on avait eu $N_m >= 3$

Et 5+8 alors ?

- $1,01 \times 2^2 + 1,00 \times 2^3$
- 0,101 x 2³ + 1,00 x 2³ alignement des exposants
- 1,101 x 2³ addition des mantisses
- pas de normalisation à faire
- 1,10 x 2³ arrondi (car mantisse sur 2 bits)
- Résultat : 0 110 10 soit 12

Et 8+8 alors ?

- $1,00 \times 2^3 + 1,00 \times 2^3$
- $1,00 \times 2^3 + 1,00 \times 2^3$ alignement des exposants
- 10,00 x 2³ addition des mantisses
- 1,0 x 2⁴ on normalise
- pas d'arrondi
- Résultat : 0 111 00 une valeur spéciale, normal on a dépassé la plus grande valeur qu'on pouvait représenter (overflow)

Arrondi

- L'arrondi se fait à la valeur la plus proche possible
- En cas d'équidistance on va vers la valeur paire

Addition de flottants de signe différents (ou soustraction)

 Même principe que l'addition, mais si les signes sont différents l'addition se fait en complément à deux

Multiplication de flottants

- On détermine le signe du résultat
- On calcule la somme des exposants (sans oublier de corriger l'excentrement)
- On multiplie les mantisses (virgule fixe !)
- On gère les arrondis
- Et les éventuels dépassement de capacité (overflow ou underflow)

Multiplier par B, c'est seulement ajouter un à l'exposant!

Avantages de la norme

- les nombres flottants sont portables d'un système à l'autre
- les opérations sont uniquement définies
- les programmes ont un comportement unique
- les programmes numériques sont analysables