La famille Rat(X*)

- **Définition**: La famille $Rat(X^*)$ est la plus petite famille de langages contenant les parties finies de X^* et fermée par union, produit et étoile.
 - il en découle que Rat(X*) est l'intersection de toutes les familles de langages possédant ces propriétés.
- **Propriété**: on peut donner une construction de cette famille :
 - prenons pour R₀ l'ensemble des parties finies de X*
 - soit pour i>0, $R_i = R_{i-1} \cup \{L^*, L \cup M, L.M / L \in R_{i-1} \text{ et } M \in R_{i-1}\}$

La proposition $Rat(X^*) = \bigcup_{i \ge 0} R_i$ a sa preuve dans le poly p47-48

Langages rationnels

• On dira qu'un langage est rationnel s'il appartient à la famille Rat(X*)

• Tout langage rationnel possède une expression sous la forme d'un nombre fini d'unions, produits et étoiles de parties finies.

$$L = ((ab, aa) * \cup (a, b)) * . (aaa, ba) *) \in R_4$$

Constructions similaires

• Soit F_0 un ensemble de variables propositionnelles, on peut construire l'ensemble F des formules défini comme le plus petit ensemble contenant F_0 et contenant les formules $(A \land B)$, $(A \lor B)$, $(A \Rightarrow B)$ et \neg A pour toutes formules A et B de F.

- soit pour i>0,
$$F_i = F_{i-1} \cup \{ \neg A, (A \land B), (A \lor B), (A \Rightarrow B) / A \in F_{i-1} \text{ et } B \in F_{i-1} \}$$

On a
$$F = \bigcup_{i \ge 0} F_i$$

• Soit R une relation binaire, on désigne par R* la fermeture réflexive et transitive de R. Cette nouvelle relation est constructible sur le même modèle. De plus, si R est une relation finie (graphe fini), l'union à calculer est une union finie (algorithme de Warshall)

Théorème de Kleene

- $Rec(X^*) = Rat(X^*)$
 - sens $Rat(X^*) \subseteq Rec(X^*)$: on a déjà vu que $Rec(X^*)$ contient les parties finies et est fermée par union, produit et étoile,

donc elle contient la plus petite famille contenant les parties finies et fermée par union, produit et étoile : $Rat(X^*)$.

- sens $Rec(X^*) \subseteq Rat(X^*)$

algorithme de M^c Naughton & Yamada ou résolution de systèmes d'équations (cf TD7).

Construction des expressions rationnelles à partir de l'automate

- $L_{pq}^{P} = \{f \in X^* / f \text{ est trace d'un chemin menant de p à q n'utilisant que P comme états intermédiaires} \}$
 - si card(P)=0 : $L_{pq}^{P} \subseteq X \cup \{\epsilon\}$; il est donc rationnel
 - si card(P)>0 : $L_{pq}^{\ P}$ se définit en utilisant un nombre fini d'opérations d'union, produit et étoile et de $L_{p'q}^{\ P'}$ avec P' \subset P
 - par induction sur la taille de P, tous ces langages sont rationnels
- $L(A) = \bigcup_{q \in F} L_{q_0q}^Q$ est donc rationnel

Application de l'algorithme de Mc Naughton & Yamada

• on peut calculer le langage reconnu par cet automate

•
$$L(A) = L_{01}^{\{0,1\}}$$

 $= (L_{00}^{\{1\}})^* . L_{01}^{\emptyset} . (L_{11}^{\emptyset})^*$
 $= (L_{00}^{\emptyset} \cup L_{01}^{\emptyset} . (L_{11}^{\emptyset})^* . L_{10}^{\emptyset})^* . L_{01}^{\emptyset} . (L_{11}^{\emptyset})^*$
 $= (\{\epsilon\} \cup \{a\} . \{b, \epsilon\}^* . \emptyset)^* . \{a\} . \{b, \epsilon\}^*$
 $= (\emptyset)^* . \{a\} . \{b\}^*$

Expressions rationnelles

- X étant un alphabet, $\mathbf{ER}(\mathbf{X})$ est le plus petit ensemble de mots sur X \bigcup { (,), +,.,*,0,1} vérifiant :
 - $-0 \in ER(X)$
 - pour tout $x \in X$, on a $x \in ER(X)$
 - pour tous $e_1, e_2 \in ER(X)$, on a $(e_1 + e_2) \in ER(X)$

$$(e_1 . e_2) \in ER(X)$$

et
$$e_1 * \in ER(X)$$

• Comme pour $Rat(X^*)$, on peut donner une construction de ER(X)

- On appelle ER(X) l'ensemble des expressions rationnelles définies sur X.
- Par raccourci de notation, 1 désigne 0*
- Langage dénoté par une expression rationnelle :

Le langage |e| dénoté par l'expression e est défini inductivement sur la structure de l'expression e :

- 0 dénote le langage vide,
- pour tout $x \in X$, l'expression x dénote le langage $\{x\}$
- pour tous $e_1, e_2 \in ER(X)$, l'expression $(e_1 + e_2)$ dénote le langage $|e_1| \cup |e_2|$

l'expression $(e_1 . e_2)$ dénote $|e_1|.|e_2|$

l'expression e₁* dénote |e₁|*

Exemples

- Que dénote l'expression ((a+b).0*)* ?
- Tout langage rationnel possède une expression rationnelle le dénotant

```
L = ( \{ab, aa\} * \cup \{a, b\} ) * . \{aaa, ba\} *
```

est dénoté par l'expression

$$(((a.b) + (a.a))^* + (a+b))^*$$
. $((a.(a.a)) + (b.a))^*$

soit, après suppression des parenthèses inutiles,

$$((ab + aa)^* + a + b)^*$$
 . $(aaa + ba)^*$

Équivalence d'expressions rationnelles

- e_1 et $e_2 \in ER(X)$ sont dites équivalentes si $|e_1| = |e_2|$
- on a:

$$-(e_1 + e_2) \equiv (e_2 + e_1)$$

$$-((e_1 + e_2) + e_3) \equiv (e_1 + (e_2 + e_3))$$

$$-((e_1 . e_2) . e_3) \equiv (e_1 . (e_2 . e_3))$$

$$-(e_1 \cdot (e_2 + e_3)) \equiv ((e_1 \cdot e_2) + (e_1 \cdot e_3))$$
 etc...

Résiduels

• soit L un langage sur X^* et u un mot de X^* , on appelle résiduel de L par rapport à u , et on le note $u^{-1}.L$, le langage

$$u^{-1}$$
. $L = \{ v \in X^* / u . v \in L \}$ (parfois noté dL/du dans la biblio)

- on a $(u \cdot v)^{-1} \cdot L = v^{-1} \cdot (u^{-1} \cdot L)$
- on étudie deux exemples :

$$L_{pi} = \{f \in \{a, b\}^*, |f|_a \text{ est pair et } |f|_b \text{ est impair}\}$$

$$puis L = \{a^n b^n, n \ge 0\}$$

Exemple 1

• soit $L = L_{pi} = \{f \in \{a, b\}^*, |f|_a \text{ est pair et } |f|_b \text{ est impair}\}, \text{ on a :}$

$$\mathcal{E}^{-1}.L = \{f \in \{a, b\}^*, |f|_a \text{ est pair et } |f|_b \text{ est impair}\} = L_{pi}$$

 $a^{-1}.L = \{f \in \{a, b\}^*, |f|_a \text{ est impair et } |f|_b \text{ est impair}\} = L_{ii}$

$$b^{-1}.L = \{f \in \{a, b\}^*, |f|_a \text{ est pair et } |f|_b \text{ est pair}\} = L_{pp}$$

 $(ab)^{-1}.L = \{f \in \{a, b\}^*, |f|_a \text{ est impair et } |f|_b \text{ est pair}\} = L_{ip}$

$$(abbb)^{-1}.L = (bbab)^{-1}.L = (babbbb)^{-1}.L = ... = (ab)^{-1}.L$$

L_{pi} possède exactement 4 résiduels distincts deux à deux.

Exemple 2

• soit $L = \{a^nb^n, n \ge 0\}$

 $(ab)^{-1}.L = (a^2b^2)^{-1}.L = (a^5b^5)^{-1}.L = ... = \{E\} : L \text{ possède une infinité de résiduels identiques}$

$$a^{-1}.L = \{a^mb^{m+1}, m \ge 0\}$$
 son mot le plus court est b^1 (aa) $^{-1}.L = \{a^mb^{m+2}, m \ge 0\}$ son mot le plus court est b^2 (a^k) $^{-1}.L = \{a^mb^{m+k}, m \ge 0\}$ son mot le plus court est b^k ...

L possède une infinité de résiduels distincts deux à deux

Critère de reconnaissabilité

• notation : l'ensemble des résiduels d'un langage L est noté *Res*(L)

$$Res(L) = \{u^{-1}.L, u \in X^*\}$$

par exemple,
$$Res(L_{pi}) = \{L_{pi}, L_{pp}, L_{ii}, L_{ip}\}$$

• Proposition : un langage est reconnaissable si et seulement si il possède un nombre fini de résiduels distincts.

Preuve du sens "seulement si"

- Soit L un langage reconnaissable
- Soit $A = \langle X, Q, q_0, F, \delta \rangle$ un aut. fini déterministe complet le reconnaissant,

pour $q \in Q$, notons $L_q = \{ v \in X^* / \delta(q,v) \in F \}$ l'ensemble des mots reconnus par A " à partir de l'état q"

Lemme : $Res(L) = \{L_q / q \in Q, q \text{ accessible}\}$

• idée:

• $u \in X^*$

- $q = \delta(q_0, u)$ alors u^{-1} . $L = L_0$
- $s \in Q$, accessible \longrightarrow $w \in X^*$ tel que $\delta(q_0, w) = s$ alors $L_s = w^{-1}$. L

• on a ainsi prouvé : si un langage L est reconnaissable alors il possède un nombre fini de résiduels distincts

• de plus, pour tout langage reconnaissable L et pour tout a.f.d.c. A=< X, Q, q_o , F, $\delta>$ reconnaissant L, on a

$$Res(L) = \{ \mathbf{L_q} / \mathbf{q} \in \mathbf{Q}, \mathbf{q} \text{ accessible} \}$$

donc, pour tout a.f.d.c.accessible reconnaissant L on a

$$|\mathbf{Q}| \ge |\{ \mathbf{L}_{\mathbf{q}} / \mathbf{q} \in \mathbf{Q} \}| = |Res(\mathbf{L})|$$

Preuve du sens "si": automate des résiduels

Soit L un langage possédant un nombre fini de résiduels

distincts, posons
$$A^{\mathbf{r}} = \langle X, Q, q_0, F, \delta \rangle$$
 avec

$$Q = \{ [u^{-1} . L] / u \in X^* \} = Res(L)$$

$$q_o = [E^{-1} L] = L$$

$$F = \{ [u^{-1} . L] / \epsilon \in u^{-1} . L \}$$

$$\delta([u^{-1},L],x) = [(ux)^{-1},L] = [x^{-1},(u^{-1},L)]$$
 pour le calcul

On vérifie ultérieurement la pertinence de cette définition et on montre que cet automate reconnaît L

Application à l'exemple 1

$$\begin{split} L &= \{f \in \{a,b\}^*, |f|_a \text{ est pair et } |f|_b \text{ est impair} \} \\ a^{-1}.L &= \{f \in \{a,b\}^*, |f|_a \text{ est impair et } |f|_b \text{ est impair} \} = L_{i\ i} \\ b^{-1}.L &= \{f \in \{a,b\}^*, |f|_a \text{ est pair et } |f|_b \text{ est pair} \} = L_{pp} \\ a^{-1}.L_{pp} &= \{f \in \{a,b\}^*, |f|_a \text{ est impair et } |f|_b \text{ est pair} \} = L_{i\ p} \end{split}$$

Pertinence de cette définition

• (1) on a bien défini un afdc :

$$Q = \{ [u^{-1}, L] / u \in X^* \} = Res(L)$$
 est fini par hypothèse !!!

$$\delta([u^{-1}.L],x) = [(ux)^{-1}.L]$$

$$= [x^{-1}.(u^{-1}.L)] \text{ lors du calcul}$$
ne dépend pas du choix de u! (donc A^r est déterministe)

- (2) pour tout mot u de X^* , $\delta(q_o, u) = [u^{-1}, L]$
- (3) cet automate reconnaît L

(1)

cette situation ne peut pas se produire

- Si u^{-1} . $L = v^{-1}$. L , alors pour tout $x \in X$, $(u \ x)^{-1}$. $L = (v \ x)^{-1}$. L,
 - donc δ ([u^{-1} . L] , x) = [(u x) $^{-1}$. L] ne dépend pas du choix de u
 - donc δ est une fonction totale : $Q \times X \to Q$,
 - ainsi $A^{\mathbf{r}}$ est un a.f. déterministe complet

(2)

pour tout mot u de X*, $\delta(q_o, u) = [u^{-1}, L]$

se montre par récurrence sur |u| en prenant u=v.x

- ainsi $A^{\mathbf{r}}$ est un a.f. déterministe complet accessible

(3)

Cet automate reconnaît L

```
pour tout mot u de X^*, \hat{\delta}(q_o\,,u\,)\in F ssi\,\left[\,u^{-1}\,.\,L\,\right]\in F\,(prop\,2) ssi\,\left(\,E\,\in\,u^{-1}\,.\,L\,\right)\,(définition\,de\,F) ssi\,\left(\,u\,\in\,L\,\right)\,(définition\,de\,u^{-1}\,.\,L\,)
```

• on a ainsi prouvé : si un langage L possède un nombre fini de résiduels distincts, alors il est reconnaissable

Le problème ...

- ce n'est pas forcément facile de calculer TOUS les résiduels d'un langage
- ce n'est pas forcément facile de s'assurer qu'ils sont distincts deux à deux
- exemples
 - L= $\{f \in \{a, b\}^*, f \text{ contient le facteur abaa}\}$
 - L= $\{f \in \{0, 1\}^*, f \text{ est l'écriture en base 2 d'un multiple de 3}\}$