Lista IV

Tarefa de leitura:

- 1. GY seções 2.5 e 2.6
- 2. Texto complementar/alternativo: Sakurai seção 2.5
- Para um pouco mais de informação sobre a relação de incerteza tempoenergia leia a seção 3.8 do livro Quantum Mechanics de Auletta, Fortunato e Parisi.

Problemas para entregar dia 7 de maio

1. Calcule $\varphi(x,t)$, a função de onda de partícula livre evoluida no tempo, dado que

$$\varphi(x,0) = \frac{\sqrt{\sigma}}{\pi^{1/4}} \exp\left(ikx - \frac{1}{2}\sigma^2 x^2\right)$$

onde σ , k são constantes reais. Obtenha $\Delta x(t)$ e $\Delta p(t)$.

2. Considere uma partícula em uma dimensão sob a ação do potencial

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

- (a) Calcule $\langle x't'|xt\rangle$
- (b) Calcule $\langle x't'|pt\rangle$
- (c) Calcule $\langle p't'|pt\rangle$

Problemas para as discussões

1. A hamiltoniana de um sistema de dois níveis é dada por

$$H = \alpha \sum_{i=1}^{3} n_i \sigma_i$$

onde α e n_i são reais, σ_i são as matrizes de Pauli e $\sum_i n_i^2 = 1$. Obtenha o operador evolução temporal deste sistema.

Primeiro Semestre – 2017

2. Considere uma partícula movendo em um potencial linear em uma dimensão:

$$V(x) = a x$$

- (a) Calcule $J(x't';xt) = \langle x't'|xt\rangle$
- (b) Calcule $J(x't'; pt) = \langle x't'|pt\rangle$
- (c) Calcule $J(p't'; pt) = \langle p't'|pt \rangle$
- 3. A função de Green da equação de Schrödinger independente do tempo satisfaz

$$(E - H)G(x, x') = \delta(x - x').$$

Mostre que podemos escrever

$$G(x, x'; \epsilon) = \sum_{n\nu} \frac{\Psi_{n\nu}(x)\Psi_{n\nu}^*(x')}{E - E_n + i\epsilon}$$

no limite $\epsilon \to 0$. Aqui usamos que $H|n\nu\rangle = E_n|n\nu\rangle$.

- 4. Considere uma partícula em uma dimensão confinada a $x \in [a,b]$ (poço quadrado infinito) b
 - (a) Construa a função de Green G(x, y).
 - (b) Use o resultado do item (a) para determinar o espectro de H.
 - (c) Note que, usando

$$G(x,y) = \sum_{k=1}^{\infty} \frac{\phi_k(x)\phi_k^*(y)}{\omega_k - z},$$

o autoestado $\phi_k(x)$ normalizado pode ser obtido avaliando o resíduo de G no polo $z=\omega_k$. Faça esse cálculo e verifique que seu resultado está corretamente normalizado.

(d) Considere agora o limite $a \to -\infty, \ b \to \infty$. Mostre que, nesse limite,

$$G(x,y) = i\sqrt{\frac{m}{2z}} e^{i\rho|x-y|}$$
.