

Using Matched Molecular Series as a Predictive Tool To Optimize Biological Activity

Noel O'Boyle and Roger Sayle

NextMove Software

Jonas Boström and Adrian Gill

AstraZeneca

MATCHED PAIRS & SERIES

MATCHED (MOLECULAR) PAIRS

Coined by Kenny and Sadowski in 2005*
Easier to predict **differences** in the values of a property than it is to predict the value itself

^{*} Chemoinformatics in drug discovery, Wiley, 271–285.

MATCHED PAIR USAGE

- Successfully used for:
 - Rationalising and predicting physicochemical property changes
 - Finding bioisosteres
- Not very successful in improving activity
 - Activity changes dependent on binding environment
- Various approaches to address this
 - Incorporate atom environment (WizePairZ and Papadatos et al JCIM, 2010, 50, 1872)
 - Incorporate protein environment (VAMMPIRE and 3D Matched Pairs)

LOOKING BEYOND MATCHED PAIRS

- Consider the following 'trivial' inference
 - If we know that [CI>F] in a particular case, it would increase the likelihood that [Br>F]

- Using known orderings of matched pairs, we can make improved inferences about other matched pairs
 - Not captured by matched pair analysis
- Matched (Molecular) Series

MATCHED SERIES OF LENGTH 2 = MP

MATCHED SERIES OF LENGTH 3

[Cl, F, NH₂]

MATCHED SERIES LITERATURE

- "Matching molecular series" introduced by Wawer and Bajorath JMC 2011, 54, 2944
 - Subsequent papers use MMS to investigate SAR transfer, mechanism hopping, visualisation of SAR networks and SAR matrices
- Only a single other paper on MMS
 - Mills et al Med Chem Commun 2012, 3, 174

ALGORITHM TO FIND MATCHED SERIES

- Hussain and Rea JCIM 2010, 50, 339
 - Fragment molecules at acyclic single bonds
 - Single-cut only, scaffold >= 5, R group <= 12
 - Index each fragment based on the other
 - A matched series will be indexed together

DATASET

Matched series from ChEMBL16 IC₅₀ binding assays

SAR TRANSFER

R Group	CHEMBL768956 (pIC ₅₀) CHEMBL772766 (pIC ₅₀)
SMe	??	5.92
NH ₂	??	5.88
OMe	6.68 Ra	ank order → 5.59
Me	6.10 ←	→ 4.82
CI	5.92 ←	→ 4.75
F	5.82 ←	→ 4.59
Et	5.81	→ 4.54
CF ₃	5.70	<4.00
Н	5.62	4.26
соон	4.23	<3.60

Potential SAR transfer

0.93 rank order correlation

STRENGTHS AND WEAKNESSES

- High confidence in predictions if sufficiently long series with correlated activities (or their rank order)
 - Not always able to find such a series
 - For short series will typically find 10s/100s/1000s
 of matching series with low confidence
- Suited to pairwise comparison within focused dataset
 - Dense SAR matrix from target with well-explored
 SAR

PREFERRED ORDERS IN MATCHED SERIES

PREFERRED ORDERS: HALIDES (N=2)

For an ordered matched series (i.e. A>B>C>...), there are N! ways of arranging the R Groups:

Series	Observations*	
F > H	8250	
H > F	7338	

Would expect 7794 for each assuming the order is random

We can calculate enrichment

^{*}Dataset is ChEMBL16 IC_{50} data for binding assays (transformed to pIC_{50} values)

PREFERRED ORDERS: HALIDES (N=2)

For an ordered matched series (i.e. A>B>C>...), there are N! ways of arranging the R Groups:

Series	Enrichment	Observations
F > H	1.06*	8250
H > F	0.94*	7338

Would expect 7794 for each assuming the order is random

We can calculate enrichment

^{*}Significant at 0.05 level according to binomial test after correcting for multiple testing (Bonferroni with N-1)

PREFERRED ORDERS: HALIDES (N=3)

Series	Enrichment	Observations
Cl > F > H	1.85*	1185
H > F > Cl	1.08	690
F > Cl > H	0.88*	566
Cl > H > F	0.79*	504
F > H > Cl	0.78*	503
H > Cl > F	0.63*	401

PREFERRED ORDERS: HALIDES (N=4)

Series	Enrichment	Observations
Br > Cl > F > H	5.62*	230
Cl > Br > F > H	2.79*	114
H > F > Cl > Br	1.69*	69
F > Cl > Br > H	1.47	60
Br > Cl > H > F	1.39	57
Cl > Br > H > F	0.88	36
H > F > Br > Cl	0.73	30
Cl > H > F > Br	0.49*	20
H > Br > F > Cl	0.49*	20
Cl > H > Br > F	0.46*	19
Br > F > H > Cl	0.44*	18
H > Cl > Br > F	0.44*	18
F > H > Br > Cl	0.42*	17
H > Cl > F > Br	0.37*	15
F > Br > H > Cl	0.34*	14
Br > H > F > Cl	0.22*	9

N=2: Max = 1.06, Min = 0.94

N=3: Max = 1.85, Min = 0.63

N=4: Max = 5.62, Min = 0.22

Longer series exhibit greater preferences

If [H>F>Cl] is observed, will Br increase activity further?

128 observations of [H>F>Cl] but only 9 where [Br>H>F>Cl]

Don't forget sampling bias

MATSY: PREDICTION USING MATCHED SERIES

FIND R GROUPS THAT INCREASE ACTIVITY

R Group	Observations	Obs that increase activity	% that increase activity
D	3	3	100
E	1	1	100
С	4	1	25
	•••		•••

EXAMPLE

R Group	Observations	% that increase activity
*	53	75
*	28	71
*	22	63
*	41	58
*	36	58

40 proteins including:

22 GPCRs (muscarinic acetylcholine, glucagon, endothelin, angiotensin) 5 oxidoreductases (cytochrome P450, cyclooxygenase) 3 acyltransferases 3 hydrolases

EXAMPLE

R Group	Observations	% that increase activity
*-	23	39
*	24	37
*—	97	35
*	21	33
*OH	21	33

9 proteins including:

3 proteases (HIV-1, cathepsin K)
2 kinases (serine/threonine
protein kinase ATR, CDK2)
1 GPCR

CHEMBL1953234
PARP-1 inhibition (Poly[ADP-Ribose] Polymerase 1)
[Me>Cl>H>F>CF₃]

Remove most active and predict: [?>Cl>H>F>CF₃]

Prediction ranked Me as 2nd most likely, on the basis of 23 observations of which 7 (30%) showed improvement

CHEMBL956577
Inverse agonist at Histamine H3
receptor
[Me>Cl>H>F>CF₃]

TOPLISS DECISION TREE

RATIONAL STEPWISE SCHEME FOR SUBSTITUTED PHENYL

Topliss, J. G. Utilization of Operational Schemes for Analog Synthesis in Drug Design. *J. Med. Chem.* **1972**, *15*, 1006–1011.

Bioorganic & Medicinal Chemistry

Volume 19, Issue 16, 15 August 2011, Pages 5031-5038

Novel benzofuroxan derivatives against multidrug-resistant Staphylococcus aureus strains: Design using Topliss' decision tree, synthesis and biological assay

Salomão Dória Jorge^{a,} ♣ ' ➡, Fanny Palace-Beri^a, Andrea Masunari^b, Cléber André Cechinel^c, Marina Ishii^a, Kerly Fernanda Mesquita Pasqualoto^a, Leoberto Costa Tavares^a

Bioorganic & Medicinal Chemistry Letters

Volume 21, Issue 21, 1 November 2011, Pages 6523-6526

Synthesis and preliminary biological evaluation of novel *N*-(3-aryl-1,2,4-triazol-5-yl) cinnamamide derivatives as potential antimycobacterial agents: An operational Topliss Tree approach

Manoj D. Kakwani^a, Nutan H. Palsule Desai^a, Arundhati C. Lele^a, Muktikant Ray^b, M.G.R. Rajan^b, Mariam S. Degani^a, ≜ · ≅ · ≅

DATA-DRIVEN STEPWISE SCHEME FOR SUBSTITUTED PHENYL

Using Matsy and ChEMBL 16 IC₅₀ binding data

DEMO OF DRAG-AND-DROP INTERFACE

	% > *	% >= [♦]	Counts •
**************************************	54	56	326
★ ────────────────────────────────────	52	56	431
*	48	51	186
*(-)	44	48	148
★ ─ ○ Br	44	48	124
*	39	40	215
*-(>-(>)	39	40	141
*— N;	38	39	296
*—C	37	40	556
*CI	36	39	157
Showing 1 to 10 of 34 entries			

Previous Next

IN SUMMARY

- Longer matched series (N>2) show an increased preference for particular activity orders
- This can be exploited to predict R groups that will increase activity
 - Predictions are typically based on data from a range of targets and structures
- Completely knowledge-based
 - Can link predictions to particular targets/structures
 - Predictions refined based on new results
 - Data-hungry

Using Matched Molecular Series as a Predictive Tool To Optimize Biological Activity

http://nextmovesoftware.com noel@nextmovesoftware.com

@nmsoftware

