

NHD-0216K1Z-NS(RGB)FBW-REV1

Character Liquid Crystal Display Module

NHD- Newhaven Display 0216- 2 lines x 16 characters

K1Z- Model

NS- Transmissive (-)

RGB- Side backlight RED, GREEN, BLUE

F- FSTN (-) B- 6:00 view

W- Wide Temperature (-20°C ~ +70°C)

REV1- Revision 1

RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124

Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com

nhtech@newhavendisplay.com nhsales@newhavendisplay.com

Document Revision History

Revision	Date	Description	Changed by
0	1/23/2006	Initial Release	-
1	6/4/2009	User Guide Reformat	-
2	9/29/2009	Backlight Revision	BE
3	10/23/2009	Block Diagram/electrical/initialization Revision	BE
4	1/7/2010	Optical revised	BE
5	1/6/2011	Alternate controller information updated	AK
6	5/3/2011	Electrical characteristics updated	AK
7	11/29/2011	Mechanical drawing updated	TJ

Functions and Features

- 2 lines x 16 characters
- Built-in controller (ST7066U)
- Red, Green and Blue Backlights
- +5.0V power supply
- 1/16 duty, 1/5 bias
- RoHS Compliant

Pin Description and Wiring Diagram

Pin No.	Symbol	External	Function Description
		Connection	
1	Vss	Power Supply	Ground
2	V_{DD}	Power Supply	Power supply for logic (+5.0V)
3	Vo	Adj. Power Supply	Power supply for contrast (approx. 0.5V)
4	RS	MPU	Register select signal RS=1: DATA RS=0: COMMAND
5	R/W	MPU	Read/Write select signal RW=1: READ RW=0: WRITE
6	E	MPU	Operation enable signal Falling Edge Triggered
7-10	DB0 – DB3	MPU	Four low order bi-directional three-state data bus lines.
			These four are not used during 4-bit operation
11-14	DB4 – DB7	MPU	Four high order bi-directional three-state data bus lines.
15	LED-	Power Supply	Ground for Backlight
16	LED-RED	Power Supply	Power supply for backlight (2.2V)
17	LED-GREEN	Power Supply	Power supply for backlight (3.3V)
18	LED-BLUE	Power Supply	Power supply for backlight (3.3V)

Recommended LCD connector: 2.54mm pitch 1x18 pin header **Backlight connector:** Pins 15-18 of LCD connector **Mates with:** -

Electrical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Operating Temperature Range	Тор		-20	1	+70	°C
Storage Temperature Range	Tst		-30	-	+80	°C
Supply Voltage	VDD		4.7	5.0	5.5	V
Supply Current	IDD	Ta=25°C, VDD=5.0V	-	1.5	2.5	mA
Supply for LCD (contrast)	VDD-V0	Ta=25°C	-	4.5	-	V
"H" Level input	Vih		0.7 VDD	-	VDD	V
"L" Level input	Vil		0	-	0.6	V
"H" Level output	Voh		3.9	-	-	V
"L" Level output	Vol		-	-	0.4	V
Backlight Supply Voltage – RED	Vled	Ta=25°C	-	2.2	-	V
Backlight Supply Current – RED	lled	Ta=25°C, Vled=2.2V	-	20	30	mA
Backlight Supply Voltage – GREEN	Vled	Ta=25°C	-	3.3	-	V
Backlight Supply Current – GREEN	lled	Ta=25°C, Vled=3.3V	-	20	30	mA
Backlight Supply Voltage – BLUE	Vled	Ta=25°C	-	3.3	-	V
Backlight Supply Current – BLUE	lled	Ta=25°C, Vled=3.3V	-	20	30	mA

Optical Characteristics

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Viewing Angle – Vertical (top)	AV	Cr ≥ 3	-	20	-	0
Viewing Angle - Vertical (bottom)	AV	Cr ≥ 3	-	50	-	0
Viewing Angle - Horizontal (left)	AH	Cr ≥ 3	-	30	-	0
Viewing Angle – Horizontal(right)	AH	Cr ≥ 3	-	30	-	0
Contrast Ratio	Cr		3	5	-	-
Response Time (rise)	Tr	-	-	150	250	ms
Response Time (fall)	Tf	-	-	150	250	ms

Controller Information

Built-in ST7066. Download specification at http://www.newhavendisplay.com/app_notes/ST7066U.pdf

Display character address code:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Command Table

50 T.E.J. T.E.W. 1.115		55 8	3.	Inst	ructi	on (Code				CAST TO FOREST BUILDING	Description	
Instruction	RS	RS R/W		DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	Time (270KHz)	
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM. and set DDRAM address to "00H" from AC	1.52 ms	
Return Home	0	0	0	0	0	0	0	0	1	x	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.52 ms	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 us	
Display ON/OFF	0	0	0	0	0	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	37 us	
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	x	x	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data.	37 us	
Function Set	0	0	0	0	1	DL	N	F	x	x	DL:interface data is 8/4 bits N:number of line is 2/1 F:font size is 5x11/5x8	37 us	
Set CGRAM address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter	37 us	
Set DDRAM address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter	37 us	
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 us	
Write data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM)	37 us	
Read data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM)	37 us	

Built-in Font Table

Upper 4																
Lower Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	a	P	`	P				_	9	Ę	α	þ
xxxx0001	(2)		!	1	A	Q	a	9				7	Ŧ	4	ä	q
xxxx0010	(3)		Ш	2	В	R	b	r			Г	1	ij	×	F	0
xxxx0011	(4)		#	3	C	S	C	s			L	Ċ	Ť	ŧ	Ŵ	60
xxxx0100	(5)		\$	4	D	T	d	t			•	I	ŀ	t	Н	υ
xxxx0101	(6)		%	5	E	U	e	u			-	7	t	1	Œ	
xxxx0110	(7)		&	6	F	Ų	f	V			7	Ħ	_	3	ρ	Σ
xxxx0111	(8)		7	7	G	W	9	W			7	†	Z	ラ	9	π
xxxx1000	(1)		(8	H	X	h	X			4	2	*	IJ	J	$\overline{\times}$
xxxx1001	(2))	9	I	Υ	i	У			Ċ	ጛ	J	ιb	-1	y
xxxx1010	(3)		*	:	J	Z	j	Z			I		ıΊ	V	j	Ŧ
xxxx1011	(4)		+	;	K		k	{			7	#	E		×	75
xxxx1100	(5)		,	<	L	¥	1				t	5)	J	7	Φ.	Ħ
xxxx1101	(6)			=	М]	M)			ュ	Z	^	ン	Ł	÷
xxxx1110	(7)		•	>	N	^	n	÷			3	t	#	*	ñ	
xxxx1111	(8)		/	?	0		0	+			·y	y	7	0	Ö	

Example Initialization Program

```
4-bit Initialization:
/***********************
void command(char i)
     P1 = i;
                                 //put data on output Port
     D_I = 0;
                                 //D/I=LOW : send instruction
                               //R/W=LOW : Write
//Send lower 4 bits
//Shift over by 4 bits
//put data on output Port
     R_W = 0;
     Nybble();
     i = i << 4;
     P1 = i;
     Nybble();
                                 //Send upper 4 bits
void write(char i)
{
                                 //put data on output Port
     P1 = i;
     DI = 1;
                                 //D/I=HIGH : send data
     R_W = 0;
                                 //R/W=LOW : Write
                               //R/W=LOW : Write
//Clock lower 4 bits
//Shift over by 4 bits
     Nybble();
     i = i << 4;
     P1 = i;
                                 //put data on output Port
     Nybble();
                                 //Clock upper 4 bits
void Nybble()
     E = 1;
                                 //enable pulse width >= 300ns
     Delay(1);
     E = 0;
                                 //Clock enable: falling edge
void init()
     P1 = 0;
     P3 = 0;
     Delay(100);
                                 //Wait >15 msec after power is applied
     P1 = 0x30;
                                 //put 0x30 on the output port
     Delay(30);
                                  //must wait 5ms, busy flag not available
     Nybble();
                                  //command 0x30 = Wake up
     Delay(10);
                                 //must wait 160us, busy flag not available
                                 //command 0x30 = Wake up #2
     Nybble();
                                 //must wait 160us, busy flag not available
     Delay(10);
                                 //command 0x30 = Wake up #3
     Nybble();
     Delay(10);
                                 //can check busy flag now instead of delay
                               //can check busy flag now instead
//put 0x20 on the output port
//Function set: 4-bit interface
//Function set: 4-bit/2-line
//Set cursor
     P1 = 0x20;
     Nybble();
     command(0x28);
     command(0x10);
     command(0x0F);
                                 //Display ON; Blinking cursor
     command(0x06);
                                 //Entry Mode set
```

```
8-bit Initialization:
/***********************
void command(char i)
    P1 = i;
                             //put data on output Port
    D_I = 0;
                             //D/I=LOW : send instruction
    R_W = 0;
                             //R/W=LOW : Write
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
      E = 0;
                             //Clock enable: falling edge
void write(char i)
    P1 = i;
                             //put data on output Port
    D I = 1;
                             //D/I=LOW : send data
    RW=0;
                             //R/W=LOW : Write
    E = 1;
    Delay(1);
                             //enable pulse width >= 300ns
    E = 0;
                             //Clock enable: falling edge
void init()
{
    E = 0;
    Delay(100);
                             //Wait >15 msec after power is applied
    command(0x30);
                             //command 0x30 = Wake up
                             //must wait 5ms, busy flag not available
    Delay(30);
    command(0x30);
                             //command 0x30 = Wake up #2
    Delay(10);
                             //must wait 160us, busy flag not available
    command(0x30);
                             //command 0x30 = Wake up #3
                             //must wait 160us, busy flag not available
    Delay(10);
    command(0x38);
                             //Function set: 8-bit/2-line
    command(0x10);
                             //Set cursor
                             //Display ON; Cursor ON
    command(0x0c);
    command(0x06);
                             //Entry mode set
```

Quality Information

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	+80°C , 48hrs	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30°C , 48hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (voltage & current) and the high thermal stress for a long time.	+70°C 48hrs	2
Low Temperature Operation	Endurance test applying the electric stress (voltage & current) and the low thermal stress for a long time.	-20°C , 48hrs	1,2
High Temperature / Humidity Operation	Endurance test applying the electric stress (voltage & current) and the high thermal with high humidity stress for a long time.	+40°C, 90% RH, 48hrs	1,2
Thermal Shock resistance	Endurance test applying the electric stress (voltage & current) during a cycle of low and high thermal stress.	0°C,30min -> +25°C,5min -> +50°C,30min = 1 cycle 10 cycles	
Vibration test	Endurance test applying vibration to simulate transportation and use.	10-55Hz , 15mm amplitude. 60 sec in each of 3 directions X,Y,Z For 15 minutes	3
Static electricity test	Endurance test applying electric static discharge.	VS=800V, RS=1.5k Ω , CS=100pF One time	

Note 1: No condensation to be observed.

Note 2: Conducted after 4 hours of storage at 25°C, 0%RH.

Note 3: Test performed on product itself, not inside a container.

Precautions for using LCDs/LCMs

See Precautions at www.newhavendisplay.com/specs/precautions.pdf

Warranty Information and Terms & Conditions

http://www.newhavendisplay.com/index.php?main_page=terms