디지털시스템설계 Lab 3

손량(20220323)

Last compiled on: Saturday 1st April, 2023, 23:39

1 개요

이번 lab 3에서는 수업 시간에 배운 multi-input, multi-output 회로인 decoder와 multiplexer 의 기능을 이해하고, 이들을 이용하여 디지털 회로들을 설계해 본다.

2 이론적 배경

2.1 디코더

디코더는 n개의 입력을 받아 최대 2^n 개의 출력으로 mapping하는 소자이다. 이번 lab 3 에서는 binary decoder를 사용하는데, binary decoder는 n-bit 입력을 받아서 2^n 개의 출력을 한다. 2^n 개의 출력 중 n번째(0부터 세었을 때) 출력이 '참'에 해당되는 값을 갖는다. 우리가 사용하는 decoder에서는 enable input에 해당하는 EN 핀이 있다. EN에 '참'에 해당되는 값이들어갔을 때 디코더가 활성화되고, 그렇지 않은 경우 디코더는 비활성화되어 모든 출력에서 '거짓'에 해당되는 값이 나온다. 나중에 실험에서 할 것이지만, 이 EN을 활용하면 여러 개의 디코더를 연결하여 확장할 수 있다.

2.2 멀티플렉서

여러개의 입력 중 한 개의 입력을 선택하는 소자이다. 이번 lab 3에서 사용하는 멀티플렉서는 2^n 개의 입력 신호를 n 개의 선택 신호로 고르는 2^n -to-1 MUX이다.

멀티플렉서를 사용하면 SOP 형태의 식을 구현할 수 있다. 예를 들어, F라는 식을 minterm m_k 에 대해 다음과 같은 형태로 정리할 수 있다면

$$F = \sum_{k=0}^{2^{n}-1} m_k I_k \tag{1}$$

(1)의 m_k 를 선택 신호에, I_k 를 입력 신호에 할당하면 된다.

3 실험 준비

3.1 2-to-4 decoder를 활용한 4-to-16 decoder의 구현

4-to-16 decoder의 출력을 생각해 보자.

EN	I_3	I_2	I_1	I_0	Y_{15}	Y_{14}	Y_{13}	Y_{12}		Y_3	Y_2	Y_1	Y_0
1	Х	Х	Х	Х	1	1	1	1		1	1	1	1
0	0	0	0	0	1	1	1	1		1	1	1	0
0	0	0	0	1	1	1	1	1		1	1	0	1
0	0	0	1	0	1	1	1	1		1	0	1	1
0	0	0	1	1	1	1	1	1		0	1	1	1
:	÷	:	:	:	:	:	:	:	:	:	:	:	:
0	1	1	0	0	1	1	1	0		1	1	1	1
0	1	1	0	1	1	1	0	1		1	1	1	1
0	1	1	1	0	1	0	1	1		1	1	1	1
0	1	1	1	1	0	1	1	1		1	1	1	1

출력의 패턴을 관찰해 보자. $I_3=I_2=0$ 의 경우에는 $Y_{15}=Y_{14}=\cdots=Y_4=1$ 이고 Y_3,Y_2,Y_1,Y_0 에서 I_1,I_0 에 따른 출력이 나타나게 되며, 이들만 놓고 보면 2-to-4 decoder의 출력과 같다. $I_3=0,I_2=1$ 의 경우 Y_7,\ldots,Y_3 에서, $I_3=1,I_2=0$ 의 경우 $Y_{11},\ldots,Y_4,I_3=I_2=1$ 의 경우에는 Y_{15},\ldots,Y_{12} 에서 2-to-4 decoder의 출력이 나타날 것을 알 수 있다. 따라서, 2-to-4 decoder 5개를 사용해서, I_3,I_2 의 값에 따라 EN 핀에 입력을 주어 적당히 enable, disable하면 4-to-16 decoder를 만들 수 있을 것이다. (TODO: 여기에 회로도 추가)

3.2 4-bit 소수 판별기

4-bit 소수 판별기는 minterm 표기법으로 나타내면 다음과 같다.

$$F(A_0, A_1, A_2, A_3) = \sum m(0100_2, 1010_2, 1100_2, 1101_2, 1110_2)$$

Truth table을 그리면

A_0	A_1	A_2	A_3	Out
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0 1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	$\begin{array}{c} 0 \\ 1 \end{array}$
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

K-map을 그리면 다음과 같다.

A.A.	00	01	[]	10
00	0	0	Ø	O
0 (1	0	0	O
ΙΙ	I	(0	
10	0	0	0	(

EPI를 고르면 모든 1이 커버되므로, simplification한 대수식은 다음과 같다.

$$F(A_0, A_1, A_2, A_3) = A_0 A_1 A_2' + A_0 A_2 A_3' + A_1 A_2' A_3'$$

3.3 4-bit 배수 판별기

11의 배수는 0, 11이므로, K-map을 그리면

00	01	11	10
	0	0	0
Ø	O	0	0
O		0	0
đ	0	0	0
	0	0 0	

따라서 simplification 한 결과는 다음과 같다.

$$F_{11}(A_0, A_1, A_2, A_3) = A'_0 A'_1 A'_2 A'_3 + A_0 A_1 A'_2 A_3$$

7의 배수는 0, 7, 14이므로, K-map을 그리면

A.A.	00	01	11	10
00		0	0	0
0 (Ø	O		0
11	O	0	0	
10	đ	0	0	0

따라서 simplification 한 결과는 다음과 같다.

$$F_7(A_0,A_1,A_2,A_3)=A_0'A_1'A_2'A_3'+A_0A_1A_2A_3'+A_0'A_1A_2A_3$$
 5의 배수는 $0,\,5,\,10,\,15$ 이므로, K-map을 그리면

A.A.	00	01	11	10
00		0	0	0
0 (Ø		O	0
11	O	0	1	0
10	đ	0	0	

따라서 simplification 한 결과는 다음과 같다.

 $F_5(A_0,A_1,A_2,A_3)=A_0'A_1'A_2'A_3'+A_0A_1'A_2A_3'+A_0'A_1A_2'A_3+A_0A_1A_2A_3$ 3의 배수는 0,3,6,9,12,15이므로, K-map을 그리면

00	01	[]	10
	0		0
Ø	O	0	
l	0		0
đ	1	0	0
	0 		

따라서 simplification 한 결과는 다음과 같다.

$$F_3(A_0, A_1, A_2, A_3) = A'_0 A'_1 A'_2 A'_3 + A_0 A'_1 A_2 A'_3 + A'_0 A_1 A'_2 A_3$$

= $A_0 A'_1 A'_2 A_3 + A'_0 A'_1 A_2 A_3 + A_0 A_1 A_2 A_3$

2의 배수는 0, 2, 4, 6, 8, 10, 12, 14이므로, K-map을 그리면

A.A.	00	01	11	10
00		l	1	l
0 (1	ſ	ı	1
11	O	0	0	0
10	0	0	0	O

따라서 simplification 한 결과는 다음과 같다.

$$F_3(A_0, A_1, A_2, A_3) = A_0'$$

3.4 5-bit Majority Function

5-bit majority function의 truth table은 다음과 같다.

A	B	C	D	E	Out
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	1
0	1	1	0	0	0
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	0	1	0	1	1
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

SOP 형태로 바꾸면 다음과 같다.

$$F(A,B,C,D,E) = A'B'CDE + A'BC'DE + A'BCD'E$$

$$+ A'BCDE' + A'BCDE + AB'C'DE$$

$$+ AB'CD'E + AB'CDE' + AB'CDE$$

$$+ ABC'D'E + ABC'DE' + ABC'DE$$

$$+ ABCD'E' + ABCD'E + ABCDE' + ABCDE$$

한편, 이를 정리하면

$$F(A,B,C,D,E) = AB(C'D'E + C'DE' + CD'E')$$
$$+ (A+B)(C'DE + CD'E + CDE') + CDE$$

멀티플렉서의 선택 신호를 C,D,D로 하고, 입력 신호를 0,1,AB,A+B 중에서 적절히 고르면 F를 구현할 수 있을 것이다. 이를 나타내면 다음과 같다.

C	D	E	Input
0	0	0	0
0	0	1	AB
0	1	0	AB
0	1	1	A+B
1	0	0	AB
1	0	1	A+B
1	1	0	A+B
1	1	1	1

- 4 실험 결과
- 5 논의