东南大学电工电子实验中心 实验报告

课程名称:	电路实验	
~, , , , , , , ,		

第二次实验

头验名称:_	电十兀器/	件识别	参 <u>数</u> 测	试及 常用仪器使用
院 (系):	自动化	_ 专	业:	自动化
姓 名:	邹滨阳	学	号:	08022305
实验室:_		实验	组别:	_
同组人员:		实验	时间 _: 2	023年11月12日
评定成绩:			-]教师:	

一、 实验目的

- (1) 掌握电容、电感、二极管等常用电子元器件的分类、封装、参数范围、用途等特点。
- (2) 进一步掌握示波器的测量方法;掌握 DDS 信号源使用与调节方法,常见故障排除。
- (3) 运用欧姆定律,通过对测量误差的分析、推理,总结分析提高测量精度的方法。
- (4) 了解二极管、稳压二极管的特性与应用特点,掌握稳压管伏安特性测量方法。

二、 实验原理 (预习报告内容)

(1) 正弦波信号的参数定义如下:

VP-P: 峰峰值,指正弦波信号的最大电压值与最小电压值之差,也就是正弦波的最大振幅的两倍。

V: 电压,指正弦波信号在任意时刻的电压值,可以用数学公式表示为 $V = VP - P/2 * \sin(2\pi f * t + \Phi)$,其中 f 是频率,t 是时间, Φ 是相位。

T: 周期, 指正弦波信号完成一个完整的波形所需的时间, 与频率的关系为 T=1/f。

(2) 交流测量频率范围如下:

UT803 万用表的交流测量频率范围为 40 Hz 到 400 Hz SDM3055 万用表的交流测量频率范围为 20 Hz 到 100 kHz

功能	量程 20	频率范围	1 年精度 23℃ ±5℃	温度系数 0℃~18℃ 28℃-50℃	测量方法和其他特性 直连电压					
		20 Hz - 45 Hz	1.5+0.10	0.01 + 0.005	第八甲組	200 mV 和 2 V 重报 10 M D 成 > 10 G D 可追				
		45 Hz - 20 KHz	0.2 + 0.05	0.01 + 0.005	除入機用	20 V, 200 V 和 1000 V 重程 10 M 0 ± 2% <90 0A, 25° C 開催				
	200 mV	20 KHz - 50 KHz	1.0 + 0.05	0.01+0.005	\$6.5 GED	1000 V. 新口屋屋				
		50 KHz - 100 KHz	30+005	0.05 + 0.010	共興労働に	120xD (対于LO 5kgm 1KO 不平衡电阻,最大 ± 500 VDC)				
		20 Hz = 45 Hz	15+0.10	0.01 + 0.005		. 編. 指面料 60 mg				
		45 Hz - 20 KHz			常観知创社	打开"油油器"意識拉朗比號[0.20d8				
	2 V		0.2 + 0.05	0.01 + 0.005	电阻					
		20 KHz - 50 KHz	1.0 = 0.05	0.01 + 0.005	孫成方法	4 個地田県 2 他地田町 進				
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010	(会)、保証	1000 V, 航資票程				
		20 Hz - 45 Hz	1.5 + 0.10	0.01 + 0.005	重流电流					
E 数分级中国用 ²	20 V	45 Hz = 20 KHz	0.2 + 0.05	0.01 + 0.005		200 u A 執服簿电压 < 10 ml/ 2 mA 科數等电源 < 100ml/				
NA SCHOOL STATE	20.7	20 KHZ - 50 KHZ	1.0 + 0.05	0.01 + 0.005	分為电路器	2 mA, 200 mA 指版#用版 1 0				
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010		2 A, 10 A 档,取解模器 10m Ω				
		20 Hz = 45 Hz	1.5 + 0.10	0.01 + 0.005	输入保护	位于新高級的可要数 10 A,250 V 税間任 内部 12 A,250 V 機関性				
		45 Hz - 20 KHz	0.2 + 0.05	0.01 + 0.005	连续性 / 二极性测试	Mar or Wron A Meth				
	200 V	20 KHz - 50 KHz	1.0 + 0.05	0.01 + 0.005	発電力は	使用 1 mA = 5% 应在原始重电阻均用性				
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010	株式器	a a				
		20 Hz - 45 Hz	1.5 = 0.10	0.01 + 0.005	还喷性利值	गुल्				
		45 Hz - 20 KHz	0.2 + 0.05	0.01 + 0.005	1000年	1000 V				
	750 V	20 KHz - 50 KHz	1.0 + 0.05	0.01 + 0.005	真有效值交流电压					
		50 KHz - 100 KHz	3.0 - 0.05	0.05 + 0.010	用量方法	AC 独立其有效运用量。任意重度下可以有最高 1000V 直流偏置				
					五輪田原	羽星程活幅西京 × 3				
		20 Hz = 45 Hz	1.5 + 0.10	0.015 + 0.015	線入田武	所有重理下为 1M 0 ± 2% 并获 < 100 pF				
	20 mA	45 Hz - 2 KHz	0.50 ± 0.10	0.015 + 0.008	AC 波出震琴區 無疑知例比	20 Hz = 100 KHz 80 d9 (対于 LO 引致的 1K 0 不平衡地阻和 <80Hz、最大 ±800 VDC)				
		2 KHz = 10 KHz	2.50 + 0.20	0.015 + 0.006	草有效值交流电流	0008 DET CO SISSES IN SHIP WINDOWS CORP. MIC 2000 VOC.)				
		20 Hz - 45 Hz	1.5 + 0.10	0.015 + 0.005	用量 方法	直西灣合對何效此可分五用問題。AC 網合到真有效值用量(测量值入的 AC 成分)				
	200 mA	45 Hz - 2 KHz	0.50 + 0.10	0.015 + 0.005	沙維因素	第二日の日本日の100mの日本・ハン日日の日本日の日本日の日本(日本日ハイ)ハンルング 第二日でお出る安全3				
		2 KHz = 10 KHz	2.50 + 0.20	0.015 + 0.005	最大輸入	複合 DC 成分的 RMS 电旗 < 10A				
有效值交流电流》		20 Hz - 45 Hz	1.5 + 0.20	0.015 + 0.005	分為中間器	24,104 相为 0.01 0,20mA 和 200mA 相为 1 0				
	2 A	45 Hz - 2 KHz	0.50 + 0.20	0.015 ± 0.005	第 人保护	位于后面板的有瓷装 10 A 250 V 铁塔丝				
		2 KHz = 10 KHz	2.50 + 0.20	0.015 + 0.005		内部 12 A,250 V 煙塩丝				
		20 Hz - 45 Hz	1.5 + 0.15	0.015 + 0.005	緊挛和周期					
	10 a ^M	45 Hz = 2 KHz	0.50 + 0.15	0.015 + 0.005	無量 方法	須豐拉別信号並个區間的时间处經決算順中				
10.A**	~~				持重注意事故	所存赖平计数量在J·电压。 医 数信号时引入模型				

知量方法	利用图定电流站电路方电、效量等	RTLF的干约建率
ARM C	2 98	
阿尔	肝育重程 1000 V	
温度测量		
和豊 方法	支持的电话、影电器显变影響	
執发和存储器		
不律/能武	1 - 10000	
#EEEE	6ms - 10000ms 時度	
	输入程率	TTL 要容(输入场景空时为高)
MORETIE >	數沒条件	上州名/下降省可由
対象権の観べ	输入国抗	№ 20KG/400gF 直充耦合
	是小粉素	500 w S
	电平	TTL ##B
VMC Midd	输出模性	压免股份可查
	輸出區式	200日 美型
历史记录功能		
尼大社学問題	10K 使测量数据	
非思天性存储	1Gb Nand Flesh 总设置。海童	· 植以胃疫量文件和数据文件

(3)计算最大可测量频率下 0.01uF 电容的理论容抗值和 330uH 电感的理论感抗值如下:

 $X_C = \frac{1}{2\pi f C}$, 其中 f 是频率, C 是电容值。根据不同的万用表,最大可测量频率有所不同,因此容抗值也有所不同。以下是不同万用表下的容抗值: UT803 万用表的最大可测量频率为 400 Hz,因此 0.01uF 电容的理论容抗值为

$$X_C=rac{1}{2\pi imes400 imes0.01 imes10^{-6}}pprox 39.79\Omega$$

SDM3055 万用表的最大可测量频率为 100 kHz, 因此 0.01uF 电容的理论容抗值为

$$X_C = rac{1}{2\pi imes 100000 imes 0.01 imes 10^{-6}} pprox 0.16 \Omega$$

330uH 电感的理论感抗值为 $X_L = 2\pi f L$; ,其中 f 是频率, L 是电感值。根据不同的万用表,最大可测量频率有所不同,因此感抗值也有所不同。以下是不同万用表下的感抗值:

UT803 万用表的最大可测量频率为 400 Hz, 因此 330uH 电感的理论感抗值为

$$X_L = 2\pi imes 400 imes 330 imes 10^{-6} pprox 0.83\Omega$$

SDM3055 万用表的最大可测量频率为 100 kHz,因此 330uH 电感的理论感抗值为 $X_L=2\pi imes 100000 imes 330 imes 10^{-6} pprox 207.35\Omega$

- (4) 已了解 DDS 信号源作用,已了解基本功能和使用方法。
- (5) 二极管及稳压管的特性如下:

二极管是一种半导体器件,它允许电流只能沿一个方向流动,而在相反方向上阻断电流。它有两个端子,分别称为阳极和阴极,以及形成器件核心的 PN 结。阳极连接到电路的正极,阴极连接到电路的负极。当阳极电压高于阴极电压时,二极管正向偏置并导通电流。当阳极电压低于阴极电压时,二极管反向偏置并阻断电流。

稳压管是一种能够保持恒定输出电压的器件,不受输入电压或负载电流的变化的影响。它可以用来为需要特定电压水平的电子电路或设备提供稳定的电源。稳压管有两种类型:线性和开关。线性稳压管使用一个串联元件,如晶体管或电阻,来降低多余的电压并调节输出。开关稳压管使用一个开关元件,如晶体管或 MOSFET,来以高频率地开关输入电压,并通过控制占空比来调节输出。

(6) 了解分析稳压管伏安特性测量方法

伏安法是一种利用欧姆定律来测量稳压管的电压和电流的方法,它的基本原理是: 当稳压管的电压保持恒定时,电流随着电压源的变化而变化,反之亦然。因此,通过改变电压源的输出电压,可以得到稳压管的电压和电流的对应值,绘制出稳压管的伏安特性曲线。

伏安法的优点是原理简单,易操作,只需要一个可变电压源,一个电流表和一个电压表,就可以完成测量。这种方法适用于测量一般的稳压管,如齐纳二极管等,可以观察到稳压管的正向和反向特性,以及反向击穿区域的恒定电压。

伏安法的缺点是误差较大,因为电流表和电压表的内阻会影响测量结果。电流表的内阻会使电压源的输出电压降低,导致测量的稳压管电压偏小;电压表的内阻会使电路的总电阻增大,导致测量的电流偏小。因此,为了减小误差,应该选择内阻较小的电流表和内阻较大的电压表,或者使用其他更准确的测量方法,如等效法或直流电桥法。

(7) 绘制表格

信号	源	示波器测	量结果						万用表测 量结果
频 (Hz)	率	幅度	高电平电压	低 电 平电压	周期	频率	上升时 间	下 降时间	直流分量
20k									

测量方式		峰峰值			J	周期			有效值			频率		
a														
b														
							T				ī			
测量频率			容抗				测量频	测量频率				感抗		
	T >= 1 ==			\\		1	<u> </u>				41 4 114			
激励源频		测量对象		测量方	法	V	I				元件参数		误差%	
率(Hz)	(标	称值)											
	电容													
	电容													
	电感													
	电感													
测量稳	压二极	管的	伏多	安特性										
U													0	
1	-10													
U	0													
1													20	

三、实验仪器(实验过程中用到的仪器设备型号,使用情况,使用软件)

四、实验记录

是

五、实验分析 (根据实验记录分析描述各实验结果是否符合设计要求)

六、 实验小结(总结实验完成情况,对设计方案和实验结果做必要的讨论,简述实验 收获和体会)

七、 参考资料 (记录实验过程阅读的有关资料,包含资料名称、作者等)