SYMULACJA ROZPRZESTRZENIANIA SIĘ OGNIA W LESIE

LIDER: RAFAŁ POPIEL DE CHOSZCZAK 284737, JAKUB OWOC 284724

REPOZYTORIUM GITHUB: https://github.com/RavQ7/projekt-po

SPIS TREŚCI

Opis projektu	3
Cel projektu	3
Architektura systemu	3
Hierarchia klas i dziedziczenie	3
Enkapsulacja	3
Polimorfizm	4
Wzorce projektowe	4
Komponenty systemu	5
Elementy terenu	5
Czynniki środowiskowe	5
Klasa Wiatr	5
System symulacji	6
Klasa Las	6
Interfejs użytkownika	6
Klasa Modified Las Frame	6
Klasa LasPanel	6
Klasa LegendPanel	6
Funkcjonalności symulacji	6
Rozprzestrzenianie ognia	6
Dynamika pożaru	6
Czynniki losowe	7
Analiza danych	7
Zbieranie statystyk	7
Eksport danych	7
Zastosowane techniki programistyczne	
IAVADOC	7
Diagramy	8
Diagram klas	
Diagram obiektów	
Diagram sekwencji	
Diagram Maszyny Stanów	
<u> </u>	

OPIS PROJEKTU

CEL PROJEKTU

Projekt realizuje symulację dynamiki pożaru w ekosystemie leśnym, reprezentowanym jako dwuwymiarowa siatka różnych elementów terenu. Symulacja umożliwia obserwację procesu rozprzestrzeniania się ognia w zależności od rodzaju terenu, wpływu czynników atmosferycznych oraz interakcji między obiektami.

ARCHITEKTURA SYSTEMU

HIERARCHIA KLAS I DZIEDZICZENIE

Projekt implementuje głęboką hierarchię klas opartą na dziedziczeniu, z abstrakcyjną klasą bazową ElementTerenu jako fundamentem systemu:

Schemat 1

Klasa abstrakcyjna ElementTerenu definiuje wspólny interfejs dla wszystkich obiektów występujących na mapie:

- Metody określające palność i możliwość podpalenia (isPalny, canBelgnited)
- Metodę symulacyjną nextStep realizującą logikę danego elementu w kolejnej epoce
- Metodę stworzKopie implementującą wzorzec projektowy Prototype

ENKAPSULACJA

Każda klasa enkapsuluje dane i zachowania właściwe dla danego typu obiektu:

- Drzewo zawiera stan drzewa (zdrowe, płonące, spalone), czas palenia i współczynnik palności
- Wiatr enkapsuluje kierunek (wektor) i siłę wiatru wraz z metodami modyfikującymi te wartości
- Las ukrywa implementację tablicy elementów terenu, udostępniając interfejs do zarządzania symulacją

POLIMORFIZM

Polimorfizm jest intensywnie wykorzystywany w projekcie poprzez:

- Przesłanianie metod abstrakcyjnych z klasy ElementTerenu przez konkretne implementacje
- Używanie referencji typu bazowego do obsługi obiektów różnych typów
- Dynamiczne wiązanie metod podczas wywoływania nextStep i innych metod polimorficznych

WZORCE PROJEKTOWE

W projekcie zastosowano następujące wzorce projektowe:

- 1. **Prototype** implementowany przez metodę stworzKopie w każdej klasie dziedziczącej po ElementTerenu
- 2. Model-View-Controller (MVC) separacja logiki:

Model: klasy Las, ElementTerenu i pochodne

Widok: klasy LasPanel, LegendPanel

Kontroler: klasa ModifiedLasFrame

KOMPONENTY SYSTEMU

ELEMENTY TERENU

KLASA ELEMENT TERENU

Abstrakcyjna klasa bazowa definiująca wspólne właściwości wszystkich elementów na mapie:

- Symbol do reprezentacji tekstowej
- Metody abstrakcyjne określające zachowanie podczas symulacji

KLASA DRZEWO

Rozszerza ElementTerenu i implementuje wspólną logikę dla wszystkich gatunków drzew:

- Definiuje stany drzewa jako enumerację StanDrzewa (ZDROWE, PLONACE, SPALONE)
- Implementuje logikę rozprzestrzeniania ognia, uwzględniając wpływ wiatru
- Parametryzuje czas palenia i współczynnik palności dla różnych gatunków

KLASY SOSNA I DAB

Konkretne implementacje drzew z własnymi parametrami:

- Sosna: średni czas palenia (5 kroków), wysoka palność (0.4)
- Dab: długi czas palenia (8 kroków), niższa palność (0.25)

KLASA TRAWA

Element terenu o niskiej odporności na ogień i krótkim czasie palenia (1 krok).

KLASA WODA

Niepalny element będący naturalną barierą dla ognia.

KLASA PUSTE

Reprezentuje puste pole, które nie może być podpalone.

CZYNNIKI ŚRODOWISKOWE

KLASA WIATR

Modeluje wpływ wiatru na rozprzestrzenianie się ognia:

- Kierunek wyrażony jako wektor dwuwymiarowy (dr, dc)
- Siła w skali 0-5
- Zwiększa prawdopodobieństwo zapłonu w kierunku zgodnym z wiatrem

SYSTEM SYMULACJI

KLASA LAS

Centralna klasa odpowiedzialna za przechowywanie i zarządzanie stanem symulacji:

- Dwuwymiarowa tablica elementów terenu
- Metody do inicjalizacji, symulacji kolejnych kroków i zbierania statystyk
- Eksport danych do pliku CSV dla późniejszej analizy
- Losowa inicjalizacja terenu z różnymi typami elementów

INTERFEJS UŻYTKOWNIKA

KLASA MODIFIEDLASFRAME

Główne okno aplikacji zawierające:

- Panel wizualizacji lasu
- Panel legendy kolorów
- Przyciski kontrolne do sterowania symulacją
- Etykiety wyświetlające statystyki i informacje o wietrze

KLASA LASPANEL

Komponent wizualizujący las jako siatkę kolorowych komórek, realizujący wzorzec MVC jako widok.

KLASA LEGENDPANEL

Panel wyświetlający legendę kolorów używanych w symulacji.

FUNKCJONALNOŚCI SYMULACJI

ROZPRZESTRZENIANIE OGNIA

- Ogień rozprzestrzenia się z określonym prawdopodobieństwem zależnym od typu elementu
- Wpływ wiatru zwiększa prawdopodobieństwo zapłonu w kierunku zgodnym z kierunkiem wiatru
- Każdy element o stanie PLONACE może podpalić sąsiednie palne elementy

DYNAMIKA POŻARU

- Drzewa przechodzą przez trzy stany: zdrowe → płonące → spalone
- Każdy gatunek drzewa ma różny czas palenia i współczynnik palności
- Trawa po spaleniu zamienia się w puste pole

• Woda stanowi barierę niemożliwą do przekroczenia przez ogień

CZYNNIKI LOSOWE

- Losowe rozmieszczenie elementów terenu przy inicjalizacji
- Losowy wybór punktu początkowego pożaru
- Losowy kierunek i siła wiatru w każdej epoce symulacji

ANALIZA DANYCH

ZBIERANIE STATYSTYK

- Zliczanie liczby drzew w poszczególnych stanach
- Śledzenie procentu spalonego lasu
- Monitorowanie długości trwania pożaru

EKSPORT DANYCH

Zapisywanie stanu symulacji do pliku CSV w formacie:

Epoka,Zdrowe,Plonace,Spalone

Możliwość dalszej analizy danych przy użyciu zewnętrznych narzędzi

ZASTOSOWANE TECHNIKI PROGRAMISTYCZNE

- **Dziedziczenie** dla tworzenia hierarchii klas
- Enkapsulacja danych i zachowań w klasach
- Polimorfizm do dynamicznego wyboru implementacji metod
- Abstrakcja dla definiowania wspólnych interfejsów
- Wzorce projektowe (Prototype, MVC)
- Programowanie zdarzeniowe w interfejsie graficznym
- Obsługa wyjątków dla zwiększenia niezawodności aplikacji
- Wątki do separacji logiki symulacji od interfejsu użytkownika

JAVADOC

W folderze JAVADOC znajduje się wygenerowana automatycznie dokumentacja do naszego projektu przez funkcję generate Javadoc w programie IntelliJ.

DIAGRAMY

Wszystkie diagramy również, załączamy w folderze diagramy w celu lepszej jakości zdjęć, gdzie można przybliżyć poszczególne diagramy i nie zachodzi żadna kompresja ani utrata jakości.

DIAGRAM KLAS

Diagram 1

DIAGRAM OBIEKTÓW

Diagram 2

DIAGRAM SEKWENCJI

DIAGRAM MASZYNY STANÓW

Diagram 4