Problem Set III

Saumitra Mazumder 500720916 Ryerson University November 20, 2017

I hereby declare that I am the sole author of this work.

$$w\hat{a}ge = 12.52 + 2.12 \times \text{male}, R^2 = 0.06, SER = 4.2$$

a)

$$w \hat{a} g e = 12.52 + 2.12 \times 0 = 12.52$$

 $w \hat{a} g e = 12.52 + 2.12 \times 1 = 13.64$
Hence, the wage gap is $13.64 - 12.52 = 2.12$

b)

$$H_0 : wage_1 = wage_2$$
 $H_1 : wage_1 \neq wage_2$
 $t = \frac{2.12}{0.36} = 5\frac{8}{9}$
 $p\text{-value} = 2\Phi\left(-\left|5\frac{8}{9}\right|\right) < 0.0001$

Hence at 95% confidence, ${\rm H}_0$ is rejected

c)

At 95% confidence:
$$2.12 \pm 1.96 \times 0.36 = (1.41, 2.83)$$

d)

The estimated mean wage of women is 12.52 The estimated mean wage of men is 13.64

e)

$$w\hat{a}ge = 13.64 - 2.12 \times \text{female}, R^2 = 0.06, SER = 4.2$$

 $w\hat{a}ge = 918.0 + 13.9 \times \text{Small Class Size}, R^2 = 0.01, SER = 74.6$

a)

 $test \hat{s}core = 918.0 + 13.9 \times 0 = 918.0$

 $test \hat{s}core = 918.0 + 13.9 \times 1 = 931.9$

Hence, the score gap is 931.9 - 918.0 = 13.9

The regression estimates that a smaller class size increases the test scores by 13.9 points

b)

 H_0 : test score₁ = test score₂

 $H_1 : test \ score_1 \neq test \ score_2$

$$t = \frac{13.9}{2.5} = 5.56 > 1.96$$

Hence, at 95% confidence, H_0 is rejected.

c)

At 99% confidence:

$$13.9 \pm 2.575 \times 2.5 = (7.46, 20.34)$$

5.8

$$\hat{Y} = 43.2 + 61.5 \times X, R^2 = 0.54, SER = 1.52$$

a)

$$t = \frac{43.2}{10.2} \approx 4.23$$

At 95% confidence:

$$43.2 \pm 1.96 \times 10.2 = (23.21, 63.19)$$

b)

$$H_0: \beta_1 = 55$$
 $H_1: \beta_1 \neq 55$
 $t = \frac{55}{7.4} \approx 7.43 > 1.96$
Hence, reject H_0

c)

$$H_0: \beta_1 = 55$$

 $H_1: \beta_1 > 55$
 $t = \frac{55}{7.4} \approx 7.43 > -1.645$

Hence, there is not sufficient evidence to reject ${\cal H}_0$

5.9

a)

$$\begin{split} \bar{\beta} &= \frac{\bar{Y}}{\bar{X}} \\ &= \frac{1}{n \times \bar{X}} \times [Y_1 +, \, ..., \, +Y_n] \\ &\text{Hence, } \bar{\beta} \text{is a linear function of } Y_1 +, \, ..., \, +Y_n] \end{split}$$

b)

$$E[\bar{\beta}|X_1, , ..., +Y_n] = E\left[\frac{1}{n \times \bar{X}} \times [Y_1 + , ..., +Y_n] | [X_1 + , ..., +X_n]\right]$$

$$= \frac{\beta \times [X_1 + , ..., +X_n]}{n \times \bar{X}}$$

$$= \beta$$

E5.1

a i)

reg earnings height

Source |

SS

df

MS

Number of obs = 17870

+-					F(1, 17868)	=	196.46
Model	1.4086e+11	1 1.	4086e+11		Prob > F	=	0.0000
Residual	1.2812e+13	17868 7	17020563		R-squared	=	0.0109
+-					Adj R-squared	=	0.0108
Total	1.2953e+13	17869 7	24863544		Root MSE	=	26777
earnings	Coef.	Std. Err		P> t	[95% Conf.	In	terval]
height	707.6716	50.48922			608.7078	8	06.6353
_cons	-512.7336	3386.856			-7151.299		125.832

 $\label{eq:p-value} \begin{aligned} \text{p-value} &= 0.0000 < 0.01 \\ \text{Hence, the regression is of significance.} \end{aligned}$

aii)

$$608.7078 \le \widehat{height} \le 806.6353$$

 $\mathbf{b} \ \mathbf{i})$ reg earnings height if sex == 0

Source	SS	df		MS		Number of obs		9974
Model Residual	1.9194e+10 7.1628e+12	1 9972	1.919 7182	4e+10 88013		<pre>F(1, 9972) Prob > F R-squared Adj R-squared</pre>	= =	26.72 0.0000 0.0027 0.0026
Total	7.1820e+12	9973	7201	40552		Root MSE	=	26801
earnings	Coef.	 Std.	Err.	t	P> t	[95% Conf.	In	 terval]
height _cons	511.2222 12650.86	98.89 6383.		5.17 1.98	0.000	317.3654 137.4364		05.0789 5164.28

p-value = 0.0000 < 0.01

Hence, the regression is of significance.

bii)

$$317.3654 \le \widehat{height} \le 705.0789$$

ci)

reg earnings height if sex ==1

Source	SS	df		IS		Number of obs = F(1, 7894) =	
Model Residual	1.1965e+11	7894 	71135 	7894		Prob > F = R-squared = Adj R-squared =	= 0.0000 = 0.0209
earnings	Coef.				P> t		[nterval]
height _cons	1306.86	100.7 7068.	662	12.97 -6.10	0.000	1109.332	1504.388 -29274.25

p-value = 0.0000 < 0.01Hence, the regression is of significance.

cii)

$$1109.332 \leq \widehat{height} \leq 1504.388$$

d)

$$H_0: \beta_{1,m} - \beta_{1,w} = 0$$

$$H_1: \beta_{1,m} - \beta_{1,w} \neq 0$$

$$t = \frac{1306.86 - 511.2222}{\sqrt{100.7662^2 + 98.89631^2}} \approx 5.635 > 1.96$$

Hence, there is not suficient evidence to reject H_0

d)

If 4.3 holds, then $E[X_i|u_i] = 0$. If it does not hold, then linear regression is inappropriate.

E5.2

a)

drop in 65
(1 observation deleted)

reg growth tradeshare

Source	l SS	df	MS	Number of obs =	64
	+			F(1, 62) =	2.90
Model	9.28031557	1	9.28031557	Prob > F = 0	0.0937
Residual	198.527844	62	3.20206201	R-squared = (0.0447
	+			Adj R-squared = 0	0.0292
Total	207.80816	63	3.29854222	Root MSE = 1	1.7894

growth | Coef. Std. Err. t P>|t| [95% Conf. Interval]

tradeshare | 1.680905 .9873624 1.70 0.094 -.2928046 3.654614

_cons | .9574107 .5803727 1.65 0.104 -.2027378 2.117559

p-value = 0.0937 < 0.1

Hence, cannot reject H_0 at 99% or 95% confidence. However can reject H_0 at 90%.

b)

p-value =
$$0.094 < 0.1$$

c)

$$-.2928046 \leq \widehat{tradeshare} \leq 3.654614$$

$$1: \bar{R}^2 = 1 - \frac{7440 - 1}{7440 - 2 - 1} \times (1 - 0.162) \approx 0.162$$
$$2: \bar{R}^2 = 1 - \frac{7440 - 1}{7440 - 3 - 1} \times (1 - 0.180) \approx 0.180$$
$$3: \bar{R}^2 = 1 - \frac{7440 - 1}{7440 - 6 - 1} \times (1 - 0.182) \approx 0.181$$

6.2

b)

$$\Delta TestScores = -5.82 \times 4$$

= -23.28

$$\widehat{TestScores}_{av} = 520.4 - 5.82 \times 21.4$$
$$= 395.852$$

6.3

a)

On average, a worker earns \$0.51 more for every year.

b)

$$1.87 + 8.32 \times 1 - 3.81 \times 1 + 0.51 \times 29 = 21.17$$

Sally predicted to earn \$ 21.17

$$1.87 + 8.32 \times 1 - 3.81 \times 1 + 0.51 \times 34 = 23.72$$

Betsy predicted to earn \$ 23.72

Hence the difference is \$2.55

Omitted variable bias occurs where X_1 is correlated with the omitted variable and said variable is a determinant of the dependent variable. β_1 does not have a omitted variable bias, since X_1 and X_2 are not correlated.

E6.1

a)

. reg birthweight smoker,r

Linear regression

Number of obs = 3000 F(1, 2998) = 89.21 Prob > F = 0.0000 R-squared = 0.0286 Root MSE = 583.73

| Robust birthweight | Coef. Std. Err. t P>|t| [95% Conf. Interval] | smoker | -253.2284 26.81039 -9.45 0.000 -305.797 -200.6597 | _cons | 3432.06 11.89053 288.64 0.000 3408.746 3455.374

The estimated effect on smoking is a lose of 253.22 grams

bi)

. reg birthweight smoker alcohol nprevist, r

Linear regression

Number of obs = 3000

F(3, 2996) = 59.48

Prob > F = 0.0000

R-squared = 0.0729

Root MSE = 570.47

Robust

birthweight | Coef. Std. Err. t P>|t| [95% Conf. Interval]

+						
·	-217.5801			0.000		-166.3894
alcohol	-30.49129	72.59671	-0.42	0.675	-172.8357	111.8531
nprevist	34.06991	3.608326	9.44	0.000	26.99487	41.14496
_cons	3051.249	43.71445	69.80	0.000	2965.535	3136.962

The variable smoker may be correlated with alcohol or nprevist. Furthermore, alcohol or nprevist may be determinants of birthweight. If both conditions are satisfied, then omitted bias occurs.

bii) The omitted variable has not substantially changed the effect of smoker on birthweight. Hence, there may not be omitted variable bias.

biii)

. reg birthweight smoker alcohol nprevist

Source	SS	df	= -	S		Number of obs		3000
Model Residual +- Total	76610831.2 975009173 1.0516e+09	3 2996 2999	255369 325436 350656	43.7 .974 		F(3, 2996) Prob > F R-squared Adj R-squared Root MSE	= =	78.47 0.0000 0.0729 0.0719 570.47
birthweight	Coef.	Std. I		t	P> t	[95% Conf.	In	terval]
smoker alcohol nprevist _cons	-217.5801 -30.49129 34.06991 3051.249	26.67 76.234 2.8549 34.019	796 105 994	-8.16 -0.40 11.93 89.70	0.000 0.689 0.000 0.000	-269.8923 -179.9677 28.47197 2984.552	1 3	65.2679 18.9851 9.66786 117.946

. predict bhat

(option xb assumed; fitted values)

. sort nprevist alcohol smoker

 $\widehat{birthweight} = 3106.228$

iv)

R-squared = 0.0729

Adj R-squared = 0.0719

The values are similar because there are few extraneous variables in the model.

 $\mathbf{c})$

. reg smoker alcohol nprevist

Source	SS	df		MS		Number of obs		3000
Model Residual +- Total		2 2997 	5.94 .152 	489803 553288		F(2, 2997) Prob > F R-squared Adj R-squared Root MSE	= = =	38.97 0.0000 0.0253 0.0247 .39058
smoker	 Coef.	 Std.	 Err. 	 t	P> t	[95% Conf.	In	 terval]
alcohol nprevist _cons	.334529 0111667 .3102729	.0518 .001 .0225	944	6.45 -5.74 13.74	0.000 0.000 0.000	.2328917 0149785 .2659807		4361662 0073549 3545651

. predict xhat, resid

. reg birthweight smoker alcohol nprevist

Source	SS	df	MS		Number of obs =	3000
+					F(3, 2996) =	78.47
Model	76610831.2	3	25536943.7		Prob > F =	0.0000
Residual	975009173	2996	325436.974		R-squared =	0.0729
+					Adj R-squared =	0.0719
Total	1.0516e+09	2999	350656.887		Root MSE =	570.47
birthweight	Coef.	Std. E	Err. t	P> t	[95% Conf. I	nterval]
+						
smoker	-217.5801	26.67	796 -8.16	0.000	-269.8923 -	165.2679
alcohol	-30.49129	76.234	105 -0.40	0.689	-179.9677	118.9851

${ t nprevist}$	34.06991	2.854994	11.93	0.000	28.47197	39.66786
_cons	3051.249	34.01596	89.70	0.000	2984.552	3117.946

. predict yhat, resid

. reg yhat xhat

Source	SS	df		MS		Number of obs	
Model Residual	975009173 975009173	1 2998 	3252 	0 19.871 11.428		R-squared Adj R-squared	= 0.00 $= 1.0000$ $= 0.0000$ $= -0.0003$ $= 570.28$
yhat	Coef.	Std.		t	P> t	[95% Conf.	Interval]
xhat _cons	7.07e-07 1.27e-07	26.6 10.41	707	0.00	1.000	-52.29472 -20.41509	52.29472 20.41509

•