

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian, Prof. Sven Bossuyt course assistant Zinan Li

Shape factor

- Efficient shapes: I-beams, tubes, etc.
- The shape factor and shape limits
- Material indices that include shape
- Graphical ways of dealing with shape

Shape factor: bending stiffness

- Take ratio of bending stiffness S of shaped section to that (S_o) of a neutral reference section of the same cross-section area
- Define a standard reference section: a solid square with area A = b²
- Second moment of inertia is I; stiffness constraint as EI.

$$I_{o} = \frac{b^{4}}{12} = \frac{A^{2}}{12}$$
Area A is constant

b

 $I = \int \gamma^2 \, dA$

Area A and modulus E unchanged

Define shape factor for elastic bending, measuring efficiency, as

$$\phi_e = \frac{S}{S_o} = \frac{EI}{EI_o} = 12\frac{I}{A^2}$$

Indices that include shape

]F

Function

Beam (shaped section).

Constraint

Bending stiffness = S:

$$S = \frac{CEI}{L^3}$$

$$p_e = 12 \frac{I}{A^2}$$
 $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Objective

Minimise mass, m, where:

$$m = AL\rho$$

$$m = \left(\frac{12 \text{ S L}^{5}}{C}\right)^{1/2} \left(\frac{\rho}{(\varphi_{e} E)^{1/2}}\right) \Box \rangle$$

m = mass

A = area

L = length

 ρ = density

b = edge length

S = stiffness

I = second moment of inertia

E = Youngs Modulus

Chose materials with smallest

$$\left(\frac{\rho}{(\varphi_e \mathsf{E})^{1/2}}\right)$$

Selection chart – with shaped-material index

Making your own records

Opening a data-table for editing

Editing a Record

- Select which properties to display with the 'Form' drop-down
- Closing the form automatically saves the data don't need to click 'Save'
- Ensure enter values in the unit displayed

 Or change the unit system:

 Tools > Options > General

 > Preferred Unit System
- Question mark? On the right indicates the value is estimated

Customize units

Adding a new unit

Database menu > Database settings > Units

• Conversions can be defined by their derivation from other base units, eg:

[Pa] = [newton] / [metre]^2 [inch] = 0.0254 * [metre]

Task 3.1.1 Second moment of area of I-beam – flange and web thickness

Task 3.1.2 calculation to include shape

Material property values	Reference shape (Profile a) φ _e = 1	Profile b φ _e = ?	Profile c φ _e = ?	Profile d φ _e = ?	Profile e φ _e = ?
Material X	Ex (GPa), ρx(kg.m-3)	Exb(GPa), ρxb($kg.m$ –3)	Exc(GPa), ρxc (<i>kg.m</i> –3)		
Material Y	Ey(GPa), ρy ($kg.m$ –3)	Eyb(GPa), ρyb ($kg.m$ –3)	Eyc(GPa), ρyc (kg.m-3)		
Material Z				•••	

Task 3.2.1 theoretical / empirical shape factor

Task 3.2.2 four-field chart (Figure 9.9)

Summary

- When materials carry bending, torsion or axial compression, the section shape becomes important.
- The "shape efficiency" is the amount of material needed to carry the load. It is measured by the shape factor, φ.
- If two materials have the *same* shape, the standard indices for bending (e.g. $\rho/E^{1/2}$) guide the choice.
- If materials can be made -- or are available -- in different shapes, then indices which include the shape (e.g. $\rho/(\phi E)^{1/2}$) guide the choice.

Demo - bending stiffness map w. shape

$\varphi_e = 1$	ρ (<i>kg.m</i> –3)	E (GPa)	
Plywood	700-800	5-8	
Mg Alloys	1500-1950	42-47	
CFRP	1500-1600	69-150	

$\rho^* = \rho / \varphi_e$
$E^* = E/\phi_e$

$\varphi_e = 5$	ρ (<i>kg.m</i> –3)	E (GPa)	
Plywood	140-160	1-1.6	
Mg Alloys	300-390	8.4-9.4	
CFRP	300-320	13.8-30	

$\varphi_e = 0.2$	ρ (<i>kg.m</i> –3)	E (GPa)
Plywood	3500-4000	25-40
Mg Alloys		•••
CFRP		•••