Lectures by A. Stasinski Notes by Ben Napier 2020 Epiphany Term

Contents

1	Groups 1.1 Groups and symmetry	2 3	
2	Dihedral groups		
3	Generators and cyclic groups 3.1 Orders of groups of elements	6	
4	Symmetric group 4.1 Computations with permutations	8 10	
5	Subgroups, cosets, and Lagrange 5.1 Cosets	12 12 15	
6	Homomorphisms and isomorphisms 6.1 Normal subgroups, quotients, and the FIT	17 18	
7	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	21 21 22 23	
8	The alternating groups	24	
9	Linear groups	27	
10	Group actions 10.1 Orbits and stabilisers	28 29 30	
11	The Orbit-Stabiliser theorem 11.1 Cauchy's theorem	31 32	
12	Finite abelian cnd cyclic groups	33	

Groups

Lecture 1 On 14/1

Example (Familar examples of groups).

- (i) Every commutative ring is an abelian group under addition. Abelian means xy = yx for all x, y in the group.
- (ii) ${A \in M_n(F) : \det A \neq 0} = \operatorname{GL}_n(F)$ is a group for a field F.

Let's look at a formal definition.

Definition 1.1 (Group). A group G is a set with a binary operation (that is, a function $G \times G \to G$)

$$(g,h) \mapsto g * h$$

such that

(i) (identity) there exists an identity element $1 \in G$ such that

$$g * 1 = 1 * g = g;$$

(ii) (associativity) for all $x, y, z \in G$

$$(x * y) * z = x * (y * z);$$
 and

(iii) (inverse) for all $g \in G$ there exists $h \in G$ such that

$$g * h = 1 = h * g.$$

we typically denote $h = g^{-1}$.

Sometimes we write (G, *) for a group; however, this is not very common. The operator being used is typically clear from context.

Example (More examples of groups).

- (i) \mathbb{Z}/n under addition;
- (ii) the group of units $(\mathbb{Z}/n)^{\times}$ under multiplication;
- (iii) for any ring R, R^{\times} is a group (but may be non-abelian).

1.1 Groups and symmetry

A **symmetry** is a function $f: X \to X$ where X is some object. Often f is taken to be an isometry, then it is called **rigid**. There exists an identity Id which does not change X. We can compose two symmetries

$$f \circ g : X \xrightarrow{g} X \xrightarrow{f} X$$

and every symmetry is invertible.

CHAPTER 1. GROUPS

Dihedral groups

Lecture 2 On 16/1

A ${f dihedral\ group}$ is the group of symmetries of a regular polygon, which includes rotations and reflections.

We have the dihedral group D_3 , or the symmetry group of the regular triangle, defined as

$$D_3 = \{1, r, r^2, s, rs, r^2s\}.$$

To relate this to transformations on a triangle: r is a rotation of $\frac{2\pi}{3}$ and s is a reflection (in any of the lines of symmetry).

Remark. (i) D_3 is a non-abelian group.

(ii) You may object that not all symmetries are in the group; for example, the product $r^2(r^2s)$. However,

$$r^2(r^2s) = r^3rs = 1rs = rs \in D_3.$$

(iii) To describe D_3 completely, we need only r and s and three fundamental relations from which everything else follows:

$$D_3 = \langle r, s : r^3 = 1, s^2 = 1, srs = r^2 \rangle.$$

Δ

We can do a similar analysis for a square, and the group of symmetries here are called D_4 . Similarly, for a regular n-gon ($n \ge 3$) we get the dihedral group D_n . We define this as

$$D_n = \langle r, s : r^n = 1, s^2 = 1, srs = r^{-1} \rangle.$$

You can see the main difference here is that we have n rotations. This algebraic definition of D_n makes sense for $n \in \{1,2\}$; however, D_n clearly is not the symmetry group of an n-gon.

Lecture 3 On 21/1

Lemma 2.1. In D_n , any

$$r^{a_1}s^{b_1}r^{a_2}s^{b_2}\dots r^{a_m}s^{b_m}$$

can be written as $r^a s^b$ for $0 \le a \le n-1$ and $0 \le b \le 1$.

Proof. We use induction on the length m. We consider m=1, the base case, then we have

$$r^n = 1, \qquad s^2 = 1$$

so it is true. Now suppose the lemma is true for some $m \ge 1$. We want to prove it is true m+1. Consider an expression of length m+1

$$x = r^{a_1} s^{b_1} \dots r^{a_m} s^{b_m} r^{a_{m+1}} b^{b_{m+1}}.$$

Using $s^2 = 1$, we can reduce to the cases $b_i = 0$ or $b_i = 1$ for all i = 1, 2, ..., m+1. Cases:

- (i) if $b_{m+1}=0$, we can write (using $srs=r^{-1}\Longrightarrow sr^is=r^{-i}$) $x=r^{a_1}s^{b_1}\ldots r^{a_m+a_{m+1}}$ if $b_m=0$ or $x=r^{a_1}s^{b_1}\ldots r^{a_m+a_{m+1}}$ if $b_m=1$; and
- (ii) if $b_{m+1}=1$, we can write $x=r^{a_1}s^{b_1}\dots r^{a_m+a_{m+1}}s$ if $b_m=0$ and $x=r^{a_1}s^{b_1}\dots r^{a_m-a_{m+1}}$ if $b_m=1$.

All of these expressions have length m, so by induction x can be written in the required form.

Generators and cyclic groups

Definition 3.1. A set S of elements of a group G is said to be a set of generators if any element in G can be written as a product of elements in S (possibly together with inverses). We then write $G = \langle S \rangle$.

Example.

$$D_n = \langle r, s \rangle.$$

Definition 3.2 (Cyclic). A group which can be generator by a single element is called **cyclic**.

Example.

- (i) $\mathbb{Z}/n = \langle \overline{1} \rangle$.
- (ii) $\mathbb{Z} = \langle 1 \rangle$.

3.1 Orders of groups of elements

The word *order* can mean different properties depending on whether you are referring to a *group* or an *element*.

Definition 3.3 (Order). The **order** of a finite group G is the number of elements, written |G| or #G.

Definition 3.4 (Order of an element). The **order** of an element g of a group G, written $\operatorname{ord}(g)$, is the smallest integer $n \geq 1$ such that $g^n = 1$. If no such n exists, $\operatorname{ord}(g) = \infty$.

Remark. If G is finite, then any element $g \in G$ has finite order as if $\{1, g, g^2, \ldots\}$ were all distinct then G would be infinite; therefore, $g^i = g^j$ for some $0 \le i \le j$, and hence $g^{j-i} = 1$. Note $\operatorname{ord}(g) = 1 \iff g = 1$.

We can look at the order of an element $g \in G$ as the order of the cyclic group that it generates:

$$\langle g \rangle = \{1, g, g^2, \ldots\}.$$

Example. (i) In $\mathbb{Z}/6$, $\overline{1}$ and $\overline{5}$ both have order 6.

- (ii) In D_n , r has order n and s has order 2.
- (iii) The order of D_n is 2n.

•

Symmetric group

Lecture 4 On 23/1

Definition 4.1 (Permutation). A **permutation** of a set $S = \{1, 2, ..., n\}$ is a bijection $\sigma: S \to S$, often written

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Definition 4.2 (Cycle). A k-cycle is a permutation σ such that

$$\sigma(a_1) = a_2, \quad \sigma(a_2) = a_3, \quad \dots, \quad \sigma(a_k) = a_1$$

and $\sigma(a) = a$ for all $a \neq \{a_1, \ldots, a_k\}$. We use the shorthand

$$\begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_2 & a_3 & \dots & a_1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \dots & a_k \end{pmatrix}.$$

Example.

(i) A 3-cycle:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 4 & 6 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 5 & 6 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 5 \end{pmatrix}.$$

(ii) A 2-cycle:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} = (1\ 3);$$

we call 2-cycles **transpositions**.

Definition 4.3 (Disjoint cycle). Two cycles are **disjoint** if there members do not intersect.

Example. (1 2 3) and (4 5) are disjoint but (1 2 3) and (2 4) are not.

Proposition 4.4. For any $n \in \mathbb{N}$, the set of permutations

$$\sigma: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$$

is a group under composition, called the symmetric group S_n .

Proof. Let σ and τ be two bijections. Then $\sigma \circ \tau$ is also a bijection. Composition of functions is always associative. The identity bijection is Id: $a \to a$. Finally, every bijection σ has an inverse σ^{-1} such that $\sigma \circ \sigma^{-1} = 1$.

Remark. $\operatorname{ord}(S_n) = n!$. This is because we have n choices for the position of the first value, then n-1 for the next, and so on.

Example. $\sigma = (1 \ 2 \ 3) \in S_4$, and $\tau = (2 \ 4) \in S_4$. Then

$$\sigma \circ \tau = (2\ 4\ 3\ 1).$$

Example. Consider S_{10} with

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 3 & 2 & 1 & 4 & 8 & 9 & 7 & 6 & 10 \end{pmatrix}$$

Then we have

$$\sigma = (1\ 5\ 4) \circ (2\ 3) \circ (6\ 8\ 7\ 9) \circ (10).$$

Example. Let $\sigma = (1\ 2)$ and $\tau = (1\ 3)$ in S_3 . Then

$$(1\ 2)(1\ 3) = (1\ 3\ 2).$$

Proposition 4.5.

- (i) Disjoint cycles commute with each other.
- (ii) Every permutation is a product of disjoint cycles, and this is unique up to the order of the cycles and the different ways we can write the cycle.

Example. Write (1 2 5)(4 6 8 9) as a product of transpositions.

Lecture 5 On 28/1

Solution.

$$(1 \quad 2 \quad 5) (4 \quad 6 \quad 8 \quad 9) = (1 \quad 2) (2 \quad 5) (4 \quad 6 \quad 8 \quad 9)$$

$$= (1 \quad 2) (2 \quad 5) (4 \quad 6) (6 \quad 8 \quad 9)$$

$$= (1 \quad 2) (2 \quad 5) (4 \quad 6) (6 \quad 8) (8 \quad 9) .$$

Proposition 4.6. Every permutation is a product of transpositions (but not uniquely).

Proof. We know that every permutation is a product of disjoint cycles, so it suffices to show that any cycle is a product of cycles. Now

$$\begin{pmatrix} a_1 & a_2 & \dots & a_k \end{pmatrix} = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} a_2 & a_3 \end{pmatrix} \dots \begin{pmatrix} a_{k-1} & a_k \end{pmatrix}.$$

Example. Write $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \end{pmatrix}$ as a product of transpositions in two different ways.

Solution.

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} .$$

Note that the number of products in both factorisation are even, this is not a coincidence.

4.1 Computations with permutations

Example. Let $\sigma = \begin{pmatrix} 2 & 4 & 1 \end{pmatrix} \in S_5$. Then $\sigma(1) = 2$, $\sigma(2) = 4$, and $\sigma(4) = 1$. So if we take $\sigma \circ \sigma = \sigma^2$ we get the permutation: $1 \mapsto 4$, $2 \mapsto 1$, and $4 \mapsto 2$. Thus $\sigma^2 = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix}$. Considering σ^3 we have $1 \mapsto 1$, $2 \mapsto 2$, and $4 \mapsto 4$. Thus $\sigma^3 = 1$ so ord $\sigma = 3$. More generally, a k-cycle $(k \in \mathbb{N})$ has order k.

Lemma 4.7. Let $\sigma = \sigma_1 \dots \sigma_m$ be a product of disjoint cycles of length k_u . Then

$$\operatorname{ord}(\sigma) = \operatorname{lcm}(k_1, \dots, k_m).$$

Proof. Let $L = \text{lcm}(k_1, \dots, k_m)$. We know that $\text{ord}(\sigma_i) = k_i$ (see earlier example). So

$$\sigma^L = \sigma^L_1 = \ldots = \sigma^L_m = 1$$

П

and since disjoint cycles commute, $\operatorname{ord}(\sigma) \leq L$. Suppose $\sigma_i^N = 1$ for some $N \in \mathbb{N}$. Then we can express $N = k_i q + r$ for some $q, r \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ where $r < k_i$. So $\sigma_i^N = \sigma_i^r = 1$ but k_i is the smallest non-zero number with this property so r = 0. Therefore $k_i \mid N$. Now let $\sigma = \operatorname{ord}(\sigma)$.. Since disjoint cycles commute

$$1 = \sigma^N = \sigma^N_1 \dots \sigma^N_m = 1$$

and $\sigma_1^N, \ldots, \sigma_m^N$ are still disjoint so $\sigma_i^N = 1$ for $1 \leq i \leq n$. Thus $k_i \mid N$ and $L \mid N$. Therefore

$$L \le N = \operatorname{ord}(\sigma) \le L \implies N = L.$$

Example (Inverses). If $\sigma = \begin{pmatrix} 2 & 4 & 1 \end{pmatrix}$ then $\sigma^{-1} = \begin{pmatrix} 2 & 4 & 1 \end{pmatrix}$. In general, the inverse of a cycle is the cycle read backwards. That is,

$$(a_1 \ a_2 \ \dots \ a_k)^{-1} = (a_k \ a_{k-1} \ \dots \ a_1)^{-1}.$$

For a product $\sigma = \sigma_1 \dots \sigma_m$ then

$$\sigma^{-1} = \sigma_m^{-1} \dots \sigma_1^{-1}.$$

Lemma 4.8. Let $\sigma = \begin{pmatrix} a_1 & a_2 & \dots & a_k \end{pmatrix} \in S_n$ be a cycle and $\lambda \in S_n$. Then

$$\lambda \sigma \lambda^{-1} = (\lambda(a_1) \quad \lambda(a_2) \quad \dots \quad \lambda(a_k)).$$

Proof.

$$\lambda \sigma \lambda^{-1}(\lambda(a_1)) = \lambda \sigma(a_1) = \lambda(a_2)$$

$$\vdots$$

$$\lambda \sigma \lambda^{-1}(\lambda(a_k)) = \lambda \sigma(a_k) = \lambda(a_1).$$

Example. S_3 is generated by (1 2) and (2 3). We see:

$$(1 2)^2 = 1$$
$$(1 2)(2 3) = (1 2 3)$$
$$(1 2 3)^2 = (1 3 2)$$
$$(1 3 2)(1 2) = (1 3)$$

and as $ord(S_3) = 3! = 6$, we have all the elements.

Lecture 6 On 30/1

Subgroups, cosets, and Lagrange

Definition 5.1 (Subgroup). Let G be a group. $H \subset G$ is a **subgroup** of G if

- (i) $1 \in H$ where 1 is the identity of G;
- (ii) for all $h_1, h_2 \in H$, $h_1h_2 \in H$; and
- (iii) for any $h \in H$, $h^{-1} \in H$.

We refer to a subgroup $H \subset G$ as **proper** if $H \neq G$.

Example (Examples of subgroups).

- (i) $\langle \overline{2} \rangle = \{ \overline{0}, \overline{2}, \overline{4} \} \subset \mathbb{Z}/6;$
- (ii) $\langle r \rangle = \{1, r, r^2, \dots, r^n\} \subset D_n$; and
- (iii) $\langle 2 \rangle = 2\mathbb{Z} \subset \mathbb{Z}$.

Remark. It is interesting to note that, in the examples above, the order of the subgroup always divides the order of the group it is contained within. This is not a coincidence, and we will show that this always holds. \triangle

5.1 Cosets

Definition 5.2 (Coset). Let G be a group, $H \subset G$ be a subgroup, and $g \in G$. Then

$$gH = \{gh : h \in H\}$$

is called the **left coset** of H with respect to g. Similarly,

$$Hg = \{hg : h \in H\}$$

is called the **right coset** of H with respect to g.

Remark. If G is abelian, gH = Hg.

Example. Let $G = \mathbb{Z}$ and $H = 2\mathbb{Z}$. We will write our cosets additively here, so g + H (instead of gH). Now

$$\begin{aligned} 0 + H &= H \\ 1 + H &= \{1 + 2n : n \in \mathbb{Z}\} \\ 2 + H &= H \end{aligned}$$

so we see that there is only two distinct cosets: $2\mathbb{Z}$ and $1+2\mathbb{Z}$.

Example. Take $G = D_3$ and $H = \langle s \rangle = \{1, s\}$. The left cosets are

$$1H = H, \qquad rH, \qquad r^2H$$

as rsH = rH and $r^2sH = r^2H$ (from the fact that $s \in H$). We know that rH and r^2H are distinct as otherwise there would exist $h, h' \in H$ such that $rh = r^2h'$, but then $h(h')^{-1} = r$ which is a contradiction as $r \notin H$.

Remark. The last example provides the neat fact that if xH = yH then

$$y^{-1}x \in H$$
.

The converse is also true; therefore

$$xH = yH \iff y^{-1}x \in H.$$

Δ

Δ

Lemma 5.3. Let G be a group and $H \subset G$ be a subgroup. Then

$$G = \bigcup_{g \in G} gH$$

and for any two cosets gH and g'H either gH = g'H or $gH \cap g'H = \emptyset$.

Proof. For all $g \in G$, $g \in gH$; hence,

$$G = \bigcup_{g \in G} gH.$$

Now let gH and g'H be two distinct cosets and consider $x \in gH \cap g'H$. Then

$$x = gh = g'h'$$

where $g, g' \in G$ and $h, h' \in H$. Then

$$xH = ghH = gH = g'h'H = g'H$$

but gH and g'H are distinct; contradiction. Therefore, no such x can exist and so $gH \cap g'H = \emptyset$.

Theorem 5.4 (Lagrange). Let G be a finite group and $H \subset G$ be a subgroup. Then

$$|G| = m \cdot |H|$$

where m is the number of left cosets of H in G.

Proof. Let g_1H, g_2H, \ldots, g_mH be the distinct left cosets of H in G where $g_i \in G$. Then

$$G = \bigcup_{i=1}^{m} g_i H$$

and we know that each $g \in G$ lies in exactly one of these cosets. Thus

$$|G| = \sum_{i=1}^{m} |g_i H|.$$

We define the function

$$f: g_i H \to H, \qquad f(g_i h) = h.$$

f is clearly surjective and $f(g_ih) = f(g_ih') \implies h = h' \implies g_ih = g_ih'$ so f is injective; therefore, f is a bijection. Therefore $|g_iH| = |H|$ and so

$$|G| = \sum_{i=1}^{m} |g_i H| = m \cdot |H|.$$

Definition 5.5 (Index). Let G be a group and $H \subset G$ be a subgroup. Then we define the **index** of H in G as $\frac{|G|}{|H|}$ and it represents the number of cosets of H in G.

Lecture 7 On 4/2

Example. Find all subgroups of S_3 .

Solution. We have $|S_3|=6$; hence, if $H\subset S_3$ is a subgroup then $|H|\in\{1,2,3,6\}$.

- |H|=1 This must be the trivial subgroup: $\{1\}\subset S_3$.
- |H|=2 We must have $H=\{1,x\}$ where $x\in S_3$ has order 2. Thus x must have a representation as a product of disjoint transpositions; however, as we are in S_3 we cannot have a product of more than 1 transpositions. Hence

$$x \in \{(1\ 2), (1\ 3), (2\ 3)\}.$$

|H|=3 We must have $H=\{1,x,x^2\}$ where $x\in S_3$ has order 3. Here the only two distinct x are $(1\ 2\ 3)$ and $(1\ 3\ 2)$, but $(1\ 2\ 3)^2=(1\ 3\ 2)$ so we have one subgroup.

$$|H| = 3 \ H = S_3.$$

Hence we get the following subgroup structure for S_3 .

5.2 An application to number theory

An application of Lagrange's theorem (and some ring theory) is the *Fermat-Euler* theorem. We must define $\varphi(n)$ first, however.

Definition 5.6 (Euler's totient function). **Euler's totient function** $\varphi(n)$: $\mathbb{N} \to \mathbb{N}$ is the number of positive integers up to n that are coprime to n.

Theorem 5.7 (Fermat-Euler). Let $a, n \in \mathbb{N}$ be coprime, then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Proof. We have

$$a^{\varphi(n)} \equiv 1 \pmod{n} \iff a^{\varphi(n)} - 1 \in n\mathbb{Z} \iff \overline{a^{\varphi(n)}} = \overline{1} \qquad \text{in } (\mathbb{Z}/n)^{\times}.$$

From last term we have

$$\left| (\mathbb{Z}/n)^{\times} \right| = \varphi(n)$$

By Lagrange's theorem we have that $|\overline{a}|$ divides $\varphi(n)$. Thus $\operatorname{ord}(\overline{a})m = \varphi(n)$ for some $m \in \mathbb{Z}$. Therefore

$$\overline{a}^{\varphi(n)} = ((\overline{a})^{\operatorname{ord}(\overline{a})})^m = (\overline{1})^m = \overline{1}.$$

ic, orieri

Homomorphisms and isomorphisms

This content will be very familiar from the definitions for rings.

Definition 6.1 (Homomorphism). Let G and H be groups. A homomorphism $\varphi: G \to H$ is a function such that

$$\varphi(xy) = \varphi(x)\varphi(y)$$

for all $x, y \in G$.

If a homomorphism $\varphi: G \to H$ is bijective, it is an **isomorphism**. We denote $G \cong H$.

Remark. A point on notation: in the definition for a homomorphism we are using the binary operation in G for xy and the binary operation in H for $\varphi(x)\varphi(y)$. These are not necessarily the same.

Example. Any group of order 2 is isomorphic to $\mathbb{Z}/2$. To show that, we consider the group $\{e, x\}$ where e is the identity and $x \neq e$. If we define the function $e \mapsto \overline{0}$ and $x \mapsto \overline{1}$ we see that it is indeed an isomorphism, so $\{e, x\} \cong \mathbb{Z}/2$.

Example. Similarly to the last example, any group of order 3 is isomorphic to $\mathbb{Z}/3$. To see this, take the group $\{e, x, y\}$ with e identity. It is clear to see that xy = e as if xy = x then y = 1 and if xy = y then x = 1. Furthermore, we have that $x^2 = y$ as if $x^2 = 1$ then $x^2y = y$, but $x^2y = x(xy) = x = y$; a contradiction. Similarly $y^2 = x$. We define the map $\varphi : \{e, x, y\} \to \mathbb{Z}/3$ by

$$e \mapsto \overline{0}, \qquad x \mapsto \overline{1}, \qquad y \mapsto \overline{2}.$$

It is trivial to see that this is an isomorphism.

Example. We can relate D_n to \mathbb{Z}/n by defining the homomorphism

$$\varphi: D_n \to \mathbb{Z}/2, \qquad \varphi(r^i s^j) = \overline{j} \pmod{2}.$$

To confirm this, we just need to check that

$$\varphi(xy) = \varphi(x) + \varphi(y)$$

for all $x, y \in D_n$ (don't be confused by the notation, we use the additive notation for $\mathbb{Z}/2$ but the multiplicative notation for D_n as usual):

$$\varphi(r^a s^b \cdot r^c s^d) = \varphi(r^a s^b r^c (s^b s^b) s^d) = \varphi(r^{a-c} s^{b+d}) = \overline{b+d}$$

$$\varphi(r^a s^b) \varphi(r^c s^d) = \overline{b} + \overline{d} = \overline{b+d}.$$

Example. Prove that the map

$$\varphi: \mathbb{Z}/6 \to S_3, \qquad \varphi(\overline{a}) = (1\ 2\ 3)^a$$

is a homomorphism.

Solution. First, we must show that φ is well-defined. That is, if $\overline{a} = \overline{b}$ then $\varphi(\overline{a}) = \varphi(\overline{b})$. If $\overline{a} = \overline{b}$ then a - b = 6m for some $m \in \mathbb{Z}$. So

$$\phi(\overline{a}) = (1\ 2\ 3)^{\overline{a}} = (1\ 2\ 3)^{b+6m} = (1\ 2\ 3)^{b}((1\ 2\ 3)^{3})^{2m} = (1\ 2\ 3)^{b} = \varphi(\overline{b})$$

as a 3-cycle has order 3. So we have shown that φ is well-defined, now we must show that it is a homomorphism:

$$\varphi(\overline{a} + \overline{b}) = (1 \ 2 \ 3)^{a+b} = (1 \ 2 \ 3)^a (1 \ 2 \ 3)^b = \varphi(\overline{a}) \varphi(\overline{b}).$$

We define the **kernel** and **image** of a homomorphism identically to how we did last term in ring theory.

Lecture 8 On 6/2

Just as for rings, we see that a homomorphism φ is injective if and only if $\ker \varphi = \{1\}$ (the proof for this is the same again).

6.1 Normal subgroups, quotients, and the FIT

Recall that *ideals* are special kinds of subsets of a ring R such that the quotient R/I is again a ring. Moreover, we have seen that ideals are exactly the kernels of ring homomorphisms.

Analogously, we will define certain subgroups called *normal* such that we can form quotient groups. Moreover, the normal subgroups will be exactly the kernels of group homomorphisms.

Definition 6.2 (Normal). The subgroup $H \subset G$ is said to be **normal** (in G) if for every $g \in G$ and $h \in H$ we have

$$g^{-1}hg \in H$$
.

19

Example. The following examples are easy to show.

- (i) If G is abelian, any subgroup H is normal.
- (ii) The subgroup $\langle r \rangle$ of D_n is normal.

Definition 6.3 (Quotient group). Let N be a normal subgroup of a group G. The **quotient group** G/N is the group

$$G/N = \{gN : g \in G\}$$

with the operation (gN)(g'N)=gg'N. The identity in G/N is $1\cdot N=N$ and $(gN)^{-1}=g^{-1}N$.

Just ling for rings modulo ideals, we have a canonical surjective homomorphism

$$G \to G/N, \qquad g \mapsto gN$$

whose kernel is exactly N. Just like ideals are kernels, we thus deduce that normal subgroups are kernels.

Lemma 6.4. Let $\varphi: G \to H$ be a homomorphism of groups. Then $\ker \varphi$ is normal in G. Conversely, if N is a normal subgroup of G, then N is the kernel of a homomorphism.

Proof. For the first statement, let $x \in \ker \varphi$ and $g \in G$. Then

$$\varphi(gxg^{-1}) = \varphi(g)\varphi(g)^{-1} = 1$$

so $gxg^{-1} \in \ker \varphi$ and so φ is normal. The second statement comes directly from what we have noted about $G \to G/n$.

Lemma 6.5. Let G be a finite group and N be a normal subgroup. Then

$$|G/N| = \frac{|G|}{|N|}.$$

Proof. By Lagrane's theorem, we have that $\frac{|G|}{|N|}$ is the number of left cosets of N. By the definition of G/N, its order is the number of cosets of N. \square

Theorem 6.6 (FIT for groups). Let $\varphi:G\to H$ be a group homomorphism. Then

$$G/\ker\varphi\cong\operatorname{im}\varphi.$$

Proof. The proof is very similar to that of rings, so we omit most of it. We note that the isomorphism is given by the map $g \ker \varphi \to \varphi(g)$.

Example. Let φ be a homomorphism defined by

$$\varphi: D_n \to \mathbb{Z}/2, \qquad \varphi(r^i s^j) = \overline{j} \pmod{2}.$$

This map is clearly surjective and has kernel $\langle r \rangle$. Thus, $\langle r \rangle$ is normal in D_n (which we already knew). Moreover, FIT imlpies that

$$D_n/\langle r \rangle \cong \mathbb{Z}/2.$$

Example. Let

$$\varphi: \mathbb{Z}/6 \to S_3, \qquad \varphi(\overline{a}) = (1\ 2\ 3)^a$$

be a homomorphism. We see that

$$\operatorname{im} \varphi = \langle (1\ 2\ 3) \rangle, \qquad \ker \varphi = \{\overline{0}, \overline{3}\}$$

so

$$(\mathbb{Z}/6)/\{\overline{0},\overline{3}\}\cong\langle(1\ 2\ 3)\rangle.$$

Relating and identifying finite groups

Lecture 9 On 11/2

Recall that we have seen that any group of order 2 must be isomorphic to $\mathbb{Z}/2$, and similarly any group of order 3 must be isomorphic to $\mathbb{Z}/3$.

Lemma 7.1.

- (i) Let G be a cyclic group of order n. Then $G \cong \mathbb{Z}/n$.
- (ii) Let G be a group of prime order p. Then G is cyclic, so that $G \cong \mathbb{Z}/p$.

Proof.

- (i) Let G be cyclic of order n, and let g be a generator. It is easy to check that $g^i \mapsto \bar{i} \in \mathbb{Z}/n$ defines an isomorphism.
- (ii) Let G be a group of prime order p. Then the subgroup $\langle g \rangle \subset G$ for any $g \neq 1$ must be of order p by Lagrange's theorem and thus $\langle g \rangle = G$, so G is cyclic. By the previous part, $G \cong \mathbb{Z}/p$.

Among the finite groups, we have seen the cyclic groups \mathbb{Z}/n , the dihedral groups D_n , and the symmetric groups S_n . Note that there is some overlap between these, for example $\mathbb{Z}/1 \cong S_1$, $D_1 \cong \mathbb{Z}/2$, and $D_3 \cong S_3$.

7.1 Direct products

Definition 7.2 (Direct product). Let G, H be groups. Their **direct** product is

$$G \times H = \{(g, h) \in G \times H\}$$

where the binary operation is defined componentwise, in terms of the operations in G and H.

Example. Suppose that G is a group of order 4. If G is cyclic, then $G \cong \mathbb{Z}/4$. If G is not cyclic, then every element has order 1 or 2 (because then no element has order 4). Since only 1 has order 1, we have

$$G = \{1, a, b, c\},\$$

where a, b, c are distinct and have order 2. Since none of a, b, c are the identity, we must have $ab \in \{1, c\}$. If ab = 1 then $a^2b = a$ and so b = a; a contradiction. Thus ab = c. Similarly, ba = c. So ab = ba. By symmetry ac = ca and bc = cb; thus G is abelian. We can show (by constructing an isomorphism) that $G \cong \mathbb{Z}/2 \times \mathbb{Z}/2$. This group is often called the *Klein 4-group*. Since D_2 has order 4 and is not cyclic, we have proved that $D_2 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$.

Isomorphisms preserve the order of elements. Therefore, one can easily prove that groups are not isomorphic by showing that one has an element of a certain order, while another does not.

Example. Is
$$\mathbb{Z}/3 \times S_3$$
 isomorphic to D_9 ?

Solution. $|\mathbb{Z}/3 \times S_3| = 3 \cdot 6 = 18 = |D_9|$, so maybe. Every element of D_9 must have an order that divdes 9 or 2; on the other hand, in $\mathbb{Z}/3 \times S_3$ we have the element

$$(\overline{1}, (1\ 2))$$

that has order 6. Hence, $\mathbb{Z}/3 \times S_3 \ncong D_9$.

7.2 $D_3 \cong S_3$

In this section, we will provide two ways of proving this. One is a more direct hands-on approach while the other is more *structural*. The first method helps us to understand how to define a homomorphism using generators, while the second method helps to understand the *structural/ geometrical* connecting between dihedral groups and symmetric groups.

Method 1 We know

$$D_3 = \{1, r, r^2, s, rs, r^2s\}$$

and

$$S_3 = \{1, (1\ 2), (2\ 3), (1\ 3), (1\ 2\ 3), (1\ 3\ 2)\}.$$

Any homomorphism $\varphi: D_3 \to S_3$ is completely determined by the values $\varphi(r)$ and $\varphi(s)$ since all other values of D_3 are products of rs and ss, and φ is multiplicative. If φ is an isomorphism, it must preserve the order of elements. So

Table 7.1: A list of all the groups (up to isomorphisms) of order at most 8.

Order	Group
1	$\mathbb{Z}/1$
2	$\mathbb{Z}/2$
3	$\mathbb{Z}/3$
4	$\mathbb{Z}/4, D_2 \cong \mathbb{Z}/2 \times \mathbb{Z}/2$
5	$\mathbb{Z}/5$
6	$\mathbb{Z}/6, S_3 \cong D_3$
7	$\mathbb{Z}/7$
8	$\mathbb{Z}/8, \mathbb{Z}/2 \times \mathbb{Z}/4, D_4, Q_8$

 $\varphi(r)$ must have order 3 and $\varphi(s)$ must have order 2. So we define $\varphi:D_3\to S_3$ such that

$$\varphi(r) = (1 \ 2 \ 3), \qquad \varphi(s) = (1 \ 2).$$

If φ is a homomorphism, it follows that $\varphi(1) = 1$ and

$$\varphi(r^2) = \varphi(r)^2 = (1 \ 3 \ 2)$$

$$\varphi(r^2 s) = \varphi(r)^2 \varphi(s) = (1 \ 3 \ 2)(1 \ 2) = (2 \ 3)$$

$$\varphi(r s) = \varphi(r) \varphi(s) = (1 \ 2 \ 3)(1 \ 2) = (1 \ 3).$$

What remains to check is that φ is well-defined. We have the relation $srs = r^2$, so in order for φ to be a function we must have $\varphi(srs) = \varphi(r^2)$. But

$$\varphi(srs) = (1\ 2)(1\ 2\ 3)(1\ 2) = (1\ 3\ 2),$$

so this is true. We see that from its values that it is bijective, and hence is an isomorphism.

Second method D_3 acts on a triangle which was labelled by its vertices (1,2,3). Applying an element of D_3 to the triangle, we obtain a new triangle whose vertices have been permuted. Hence we obtain a function $\varphi:D_3\to S_3$ which sends any symmetry in D_3 to the corresponding permutation in S_3 . This map is well defined by construction, because given a n element in D_3 we have uniquely associated a permutation. The map is also a homomorphism by construction because composing two symmetries corresponds to composing the two corresponding permutations. The kernel of φ is $\{1\}$ because if a symmetry gives rise to the identity permutation, it means it is the identity symmetry. Thus φ is injective. Since $|D_6| = 6 = |S_3|$, any injection must be a bijection. Therefore, φ is an isomorphism.

7.3 List of groups of small order

Lecture 10 On 13/2

Table 7.1 shows a list of groups of small orders. We know from a previous lemma that the groups for 2, 3, 5, 7 are exhaustive. Furthermore, we know that $\mathbb{Z}/4$ is exhaustive from a previous example.

The alternating groups

Lecture 11

This chapter will introduce a family of normal subgrounds of the symmetric On 18/2 groups, called the *alternating groups*.

Let x_1, \ldots, x_n be indeterminates and consider the polynomial

$$F(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} (x_j - x_i).$$

For example, for n = 3 we have

$$F(x_1, x_2, x_3) = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).$$

Given $\sigma \in S_n$, we define F^{σ} by appling σ to the indices:

$$F^{\sigma}(x_1,\ldots,x_n) = \prod_{1 \le i < j \le n} (x_{\sigma(j)} - x_{\sigma(i)}).$$

For example, if $\sigma = (2 \ 3)$ then

$$F^{\sigma}(x_1, x_2, x_3) = (x_3 - x_1)(x_2 - x_1)(x_2 - x_3) = -F(x_1, x_2, x_3).$$

We always have

$$F^{\sigma}(x_1,\ldots,x_n) = (-1)^s F(x_1,\ldots,x_n)$$

for some integer s, and we call $(-1)^s$ the **sign** of σ and write $\operatorname{sgn}(\sigma) = (-1)^s$. We thus have a function $\operatorname{sgn}: S_n \to \{\pm 1\}$. The result of applying some σ_1 and then σ_2 to F is just the result of applying $\sigma_2 \sigma_1$ to F. That is,

$$(F^{\sigma_1}(x_1,\ldots,x_2))^{\sigma_2} = (\operatorname{sgn}(\sigma_1)F(x_1,\ldots,x_n))^{\sigma_2}$$

= $\operatorname{sgn}(\sigma_1)\operatorname{sgn}(\sigma_2)F(x_1,\ldots,x_n)$
= $F^{\sigma_2\sigma_1}(x_1,\ldots,x_n)$.

Hence $\operatorname{sgn}(\sigma_2\sigma_1)=\operatorname{sgn}(\sigma_2)\operatorname{sgn}(\sigma_1)$ and thus sgn is a group homomorphism.

Theorem 8.1. For a given permutation $\sigma \in S_n$, the number of factors in any factorisation of σ into transpositions is even if $sgn(\sigma) = 1$ and odd if $sgn(\sigma) = -1$.

Proof.

Claim We claim that for any transposition $\tau \in S_n$ we have

$$F^{\tau}(x_1,\ldots,x_n) = -F(x_1,\ldots,x_n),$$

and thus if σ is the product of s transpositions then

$$F^{\sigma}(x_1,\ldots,x_n) = (-1)^s F(x_1,\ldots x_n).$$

Proof of claim Let $\tau = (a \ b)$ such that a > b. Then

$$F^{\tau}(x_{1},...,x_{n}) = \prod_{1 \leq i < j \leq n} (x_{\tau(j)} - x_{\tau(i)})$$

$$= \prod_{j \in \{2,...,n\}} \prod_{i \in \{1,...,j-1\}} (x_{\tau(j)} - x_{\tau(i)})$$

$$= (x_{\tau(2)} - x_{\tau(1)}) \dots (x_{\tau(a)} - x_{\tau(b)}) \dots (x_{\tau(n)} - x_{\tau(n-1)})$$

$$= (x_{\tau(2)} - x_{\tau(1)}) \dots (-1) (x_{a} - x_{b}) \dots (x_{\tau(n)} - x_{\tau(n-1)})$$

$$= -F(x_{1},...,x_{n}).$$

This proves the claim. So if $\sigma \in S_n$ is factorised into transpositions, then

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \sigma \text{ has an even number of factors} \\ -1 & \text{otherwise.} \end{cases}$$

If $sgn(\sigma) = 1$ for $\sigma \in S_n$ then we say that σ is an **even** permutation. If $sgn(\sigma) = -1$ then we say that it is an **odd** permutation.

Example. (i) $(1\ 2\ 5) = (1\ 2)(2\ 5)$ is even.

- (ii) (4896) = (48)(89)(96) is odd.
- (iii) For any k-cycle $\sigma \in S_n$, we have

$$\operatorname{sgn}(\sigma) = (-1)^{k-1}$$

as every permutation is a product of transpositions.

We can now define the alternating groups.

Definition 8.2. The alternating group A_n is the subgroup of S_n consisting of even permutations.

Remark. In other words, A_n is the kernel of sgn.

Δ

Example. Recall the subgroups of S_3 , we have

$$A_3 = \langle (1\ 2\ 3) \rangle = \{1, (1\ 2\ 3), (1\ 3\ 2)\}.$$

We know that A_4 has 12 elements, so A_4 is the subgroup consisting of 1, all 3-cycles, and all products of 2-cycles.

Lecture 12

Example. How many 3-cycles are there in S_{10} ?

On 27/2

Solution. Consider the cycle $(a\ b\ c) \in S_{10}$. We have 10 choices for a, 9 choices for b, and 8 choices for c. The number of 3-cycles is

$$\frac{10\cdot 9\cdot 8}{3}$$

as we can shift each 3-cycle along twice, so we divide by 3 to get rid of duplicates.

Linear groups

 $Omitted\ due\ to\ strikes.$

Group actions

Example. The group S_n acts on the set $X = \{1, 2, ..., n\}$; that is, if $x \in X$, then an element $\sigma \in S_n$ sends x to $\sigma(x)$.

Example. D_3 acts on a regular triangle which we can encode as a set of ordered triples

$$\{(1,2,3),(1,3,2),\ldots\}$$

where 1, 2, and 3 denote the vertices of the triangle. This set is then all the different positions that the triangle can take. For example, we saw that $r \in D_3$ acts on (1,2,3) by sending it to (3,2,1).

Remark. One important notion of group actions is that if we first act by an element $h \in G$ and then by an element $g \in G$, that is the same as acting by the element $gh \in G$.

Definition 10.1 (Group action). Let G be a group and X a set. An action of G on X is a function

$$G\times X\to X, \qquad (g,x)\mapsto g*x$$

such that for all $g, h \in G$ and $x \in X$:

- (i) g * (h * x) = (gh) * x; and
- (ii) 1 * x = x.

We usually write g * x simply as gx.

Remark. We can think of a group actions as multiplying elements of the group onto points of a space. \triangle

Example. \mathbb{Z} can act on \mathbb{R} by translation. That is, for $n \in \mathbb{Z}$ and $x \in \mathbb{R}$ we can define

$$n * x = n + x$$
.

We have

(i)
$$m * (n * x) = m + (n + x) = (m + n) + x = (m * n) * x$$
; and

(ii)
$$0 * x = 0 + x = x.$$

Example. \mathbb{Z} can also act on \mathbb{R} in another way:

$$n * x = (-1)^n x.$$

We check that this is indeed an action:

(i) $m*(n*x) = m*(-1)^n x = (-1)^m (-1)^n *x = (-1)^{m+n} x = (m+n)*x; \text{ and }$

(ii)
$$0 * x = (-1)^0 x = x.$$

10.1 Orbits and stabilisers

Definition 10.2. Let G be a group acting on a set X. For any $x \in X$, we define the **orbit of** x as

$$Orb(x) = \{gx : g \in G\},\$$

and the **stabiliser of** x as

$$Stab(x) = \{ g \in G : gx = x \}.$$

Remark. Stab(x) is a subgroup of G, but in general there is no reason for Orb(x) to be a group (it should be thought of as a space).

Lecture 13 On 17/3

Example. Recall how \mathbb{Z} acts on \mathbb{R} as a translation. Let $x \in \mathbb{R}$. Then

$$Orb(x) = \{n + x : n \in \mathbb{Z}\} = \mathbb{Z} + x,$$
$$Stab(x) = \{n \in \mathbb{Z} : n + x = x\} = \{0\}.$$

Example. Recall the other way that showed that \mathbb{Z} could act on \mathbb{R} $(n * x = (-1)^n x)$. Then for $x \in \mathbb{R}$

$$\operatorname{Orb}(x) = \{(-1)^n x : n \in \mathbb{Z}\} = \{\pm x\},$$

$$\operatorname{Stab}(x) = \{n \in \mathbb{Z} : (-1)^n x = x\} = \begin{cases} 2\mathbb{Z} & \text{if } x \neq 0, \\ \mathbb{Z} & \text{otherwise.} \end{cases}$$

10.2Cosets and conjugacy classes as orbits

Any group G acts on itself: for $g \in G$ we have $x \mapsto gx$ for $x \in G$. Here

$$Orb(x) = G,$$

$$Stab(x) = 1.$$

Let $H \subset G$ be a subset of G and let it act on G as above. For $x \in G$ we have

$$Orb(x) = \{hx : h \in H\} = Hx,$$

a right coset of H.

Consider the action $x \mapsto gxg^{-1}$ for $g, x \in G$ of G on itself (easy exercise to check that this is an action). We call this action conjugation. Under tis action, the orbit

$$Orb(x) = \{gxg^{-1} : g \in G\}$$

is called a **conjugacy class** (of x). The stabiliser

$$\operatorname{Stab}(x) = \{ g \in G : gxg^{-1} = x \}$$

is called the **centraliser** (of x), and is usually denoted $C_G(x)$.

Example. Find the conjugacy classes in D_5 .

Solution.

- (i) $1 \in D_5$ is always fixed by any conjugations, hence $Orb(1) = \{1\}$.
- (ii) Now take $r \in D_5$, it is fixed by any power of r (that is, $r^i r r^{-i} = r$) and

$$(r^i s)r(r^i s)^{-1} = r^{-1} = r^4$$

SO

$$Orb(r) = \{r, r^4\}.$$

(iii) Now lets consider $r^2 \in D_5$. Again, conjugation by r^i on r^2 fixes r^2 , but

$$(r^i s)r^2(r^i s)^{-1} = r^{-2} = r^3$$

SO

$$Orb(r^2) = \{r^2, r^3\}.$$

(iv) Now finally we will consider $s \in D_5$. We have

$$(r^i)s(r^{-i}) = r^{2i}s,$$

$$(r^i s) s (r^i s)^{-1} = r^{2i} s.$$

Therefore,

$$Orb(s) = \{s, r^2s, r^4s, rs, r^3s\}$$

and we have exhausted all elements in D_5 , hence our conjugacy classes are

$$\{1\}, \{r, r^4\}, \{r^2, r^3\}, \{s, rs, r^2s, r^3s, r^4s\}.$$

The Orbit-Stabiliser theorem

Theorem 11.1. Let G be a group acting on a set X, and let $x \in X$. Then there is a bijection

$$\beta: \operatorname{Orb}(x) \to \{g\operatorname{Stab}(x): g \in G\}, \qquad \beta(gx) = g\operatorname{Stab}(x).$$

In particular, if G is finite then

$$|\operatorname{Orb}(x)| = \frac{|G|}{|\operatorname{Stab}(x)|}.$$

Example. Recall the conjugacy classes of D_5 . We saw that

$$Orb(r) = \{r, r^4\}.$$

Now

Stab
$$(r) = \{r^i s^j \in D_5 : (r^i s^j) r (r^i s^j)^{-1} = r\}$$

= $\langle r \rangle \cup \{r^i s \in D_5 : r^i s r s r^{-i} = r^{-1} = r\}$
= $\langle r \rangle$

so $|\operatorname{Orb}(r)|=2$ and $|\operatorname{Stab}(x)|=5$, which agrees with the Orbit-Stabiliser theorem. Moreover, $\operatorname{Orb}(s)$ has five elements, so $\operatorname{Stab}(x)$ must have 2 elements. Indeed

$$\begin{split} \mathrm{Stab}(s) &= \{r^i : r^i s r^{-i} = s\} \cup \{r^i s : r^i s s (r^i s)^{-1} = s\} \\ &= \{r^i : r^{2i} = 1\} \cup \{r^i s : r^{2i} = 1\} \\ &= \{1, s\}. \end{split}$$

11.1 Cauchy's theorem

Theorem 11.2 (Cauchy). Let G be a finite group and p be a prime such that p divides the order of G. Then G has a cyclic subgroup of order p (equivalently, G has an element of order p).

Example. D_{20} has a subgroup of order 5 as $|D_{20}| = 40 = 8 \cdot 5$.

Finite abelian cnd cyclic groups

Lecture 14 On 19/3

Theorem 12.1. Let G be a finite abelian group. Then G is isomorphic to

$$\mathbb{Z}/a_1 \times \mathbb{Z}/a_2 \times \ldots \times \mathbb{Z}/a_t$$

for some $t, a_i \in \mathbb{N}, a_1 \geq 2$ such that

$$a_1 \mid a_2 \mid \ldots \mid a_t$$
.

Moreover, the integers a_i are uniquely determined by G.

Proof. Omitted.

Theorem 12.2 (CRT). Suppose that $m, n \in \mathbb{N}$ are coprime. Then

$$\mathbb{Z}/mn \cong \mathbb{Z}/m \times \mathbb{Z}/n.$$

Proof. Omitted.

Example. (i) $\mathbb{Z}/6 \cong \mathbb{Z}/2 \times \mathbb{Z}/3$.

- (ii) $\mathbb{Z}/4 \ncong \mathbb{Z}/2 \times \mathbb{Z}/4$.
- (iii) Let $G = \mathbb{Z}/12$. We know that

$$\mathbb{Z}/12 \cong \mathbb{Z}/a_1 \times \ldots \times \mathbb{Z}/a_t$$

for some $t \in \mathbb{N}$ and $a_i \in \mathbb{Z}$. Moreover, we have

$$\mathbb{Z}/12 \cong \mathbb{Z}/4 \times \mathbb{Z}/3$$
,

but 4 /3 and 3 /4 so 3 and 4 cannot take our values of a_i stated above. We see that $\mathbb{Z}/12 \cong \mathbb{Z}/a_1$ where $a_i = 12$, and is unique. Hence there are no other decompositions of $\mathbb{Z}/12$. For example, if $a_1 = 2$ and $a_2 = 6$ then we know

$$\mathbb{Z}/12 \ncong \mathbb{Z}/2 \times \mathbb{Z}/6.$$

Example. Find (up to isomorphisms) all the abelian groups of order 16.

Solution. By the first theorem presented in the chapter, we need to find the groups of the form

$$\mathbb{Z}/2^{a_1} \times \mathbb{Z}/2^{a_2} \times \ldots \times \mathbb{Z}/2^{a_n}$$

with $a_1 \ge 1$ such that $a_1 + \ldots + a_n = 4$. We have five possibilities:

- (i) 1+1+1+1=4;
- (ii) 1+1+2=4;
- (iii) 1+3=4;
- (iv) 2 + 2 = 4; and
- (v) 4 = 4.

Hence are possible abelian groups are

- (i) $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$;
- (ii) $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/4$;
- (iii) $\mathbb{Z}/2 \times \mathbb{Z}/8$;
- (iv) $\mathbb{Z}/4 \times \mathbb{Z}/4$; and
- (v) $\mathbb{Z}/16$.

12.1 Cyclic groups

Theorem 12.3. Let G be a finite cyclic group, $x \in G$, and $a \in \mathbb{Z}$ with $a \neq 0$. Then the following hold.

- (i) If $n = \operatorname{ord}(x)$, then $\operatorname{ord}(x^a) = \frac{n}{\gcd(n,a)}$.
- (ii) $\langle x \rangle = \langle x^a \rangle$ if and only if gcd(n, a) = 1. Thus the number of generators of $\langle x \rangle$ is $\varphi(n)$ (Euler's totient function).

Proof. Omitted.

Example. We have $\mathbb{Z}/20 = \langle \overline{1} \rangle$ and an element $\overline{a} = a \cdot \overline{1}$ generates the whole group if and only if

$$\operatorname{ord}(\overline{a}) = \frac{20}{\gcd(20, a)} = 20 \qquad \iff \qquad \gcd(20, a) = 1.$$

•

Thus $\mathbb{Z}/20$ has $\varphi(20)=\varphi(4)\varphi(5)=2\cdot 4=8$ generators, namely $\overline{1},\overline{3},\overline{7},\overline{9},\overline{11},\overline{13},\overline{17},\overline{19}.$

Theorem 12.4. Let $H = \langle x \rangle$ be a fintile cyclic group of order n. Then every subgroup of H is cyclc and for each $a \in \mathbb{N}$ dividing n there is a unique subgroup of order a, namely $\langle x^{n/a} \rangle$.

Example. Find all the subgroups of $\mathbb{Z}/12$.

Solution. We know that every subgroup is cyclic and that for any positive divisor d of 12, there is a unique subgroup of order d generated by $\overline{12/d}$. The possible divisors are

We thus have the corresponding six subgroups:

$$\begin{split} & \langle \overline{12} \rangle = \{ \overline{0} \} \\ & \langle \overline{^{12}/2} \rangle = \{ \overline{0}, \overline{6} \} \\ & \langle \overline{^{12}/3} \rangle = \{ \overline{4}, \overline{8}, \overline{0} \} \\ & \langle \overline{^{12}/4} \rangle = \{ \overline{3}, \overline{6}, \overline{9}, \overline{0} \} \\ & \langle \overline{^{12}/6} \rangle = \{ \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{0} \} \\ & \langle \overline{^{12}/12} \rangle = \{ \overline{1} \} = \mathbb{Z}/12. \end{split}$$