Oblig TMA4106 Kristian Herrevold

Oppgave 1: Fremoverdifferanse

Vi bruker formelen:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}, \quad f(x) = e^x, \quad x = 1.5$$

Eksakt verdi: $f'(1.5) = e^{1.5} \approx 4.4817$.

h	Tilnærming	Feil	Bemerkning
0.1	4.7134	0.2317	Stor feil
0.01	4.5042	0.0225	Mindre feil
0.001	4.4839	0.0022	God nœyaktighet
0.0001	4.4819	0.0002	Svært god næyaktighet
1e-16	_	_	Numerisk ustabilitet

Table 1: Fremoverdifferanse for f'(1.5)

Oppgave 2: Sentraldifferanse

Denne gir feil av orden $\mathcal{O}(h^2)$ og konvergerer derfor raskere. For *tilstrekkelig* liten h kan maskinpresisjonen forstyrre næyaktigheten.

Ved **Taylorutvikling** rundt x får vi:

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)}{2}h^2 + \frac{f^{(3)}(x)}{6}h^3 + \cdots$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)}{2}h^2 - \frac{f^{(3)}(x)}{6}h^3 + \cdots$$

Trekkes disse sammen:

$$\frac{f(x+h) - f(x-h)}{2h} = f'(x) + \frac{f^{(3)}(x)}{6}h^2 + \mathcal{O}(h^4)$$

Dermed ser vi at feilen inneholder et ledd proporsjonalt med h^2 , og derfor minker raskt når h blir mindre.

h	Tilnærming	Feil	Bemerkning
0.1	4.4818	0.0001	Nøyaktig
0.01	4.4817	0.0000	Svært Nøyaktig
0.001	4.4817	$< 10^{-4}$	Konvergerer raskt
0.0001	4.4817	$< 10^{-6}$	Fremdeles stabil
1e-14	_	_	Numerisk ustabil

Table 2: Sentraldifferanse for f'(1.5)

Oppgave 3: 4-punkts formel

Formel:

$$f'(x) \approx \frac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h}$$

Ved Taylorutvikling av hvert ledd ser vi at laveste ledd som ikke kanselleres er av orden h^4 , og feilen blir dermed:

$$\mathcal{O}(h^4)$$

Dette gir god nøyaktighet

h	Tilnærming	Feil	Bemerkning
0.1 0.01	4.4817 4.4817	0.0000 $< 10^{-6}$	Perfekt treff Svært presis
0.001	4.4817	$< 10^{-10}$	Maskinpresisjon dominerer

Table 3: 4-punkts difference for f'(1.5)

Oppgave 4: Eksplisitt Euler-metode

Vi diskretiserer varmelikningen:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad u(0,t) = u(1,t) = 0, \quad u(x,0) = \sin(x)$$

Diskret skjema:

$$u_i^{j+1} = u_i^j + \frac{k}{h^2}(u_{i+1}^j - 2u_i^j + u_{i-1}^j)$$

Ulike kombinasjoner av h og k

Sammenligning av flere kombinasjoner for h og k, og ser at dersom $\frac{k}{h^2} \leq \frac{1}{2}$ er skjemaet stabilt.

h	k	$\frac{k}{h^2}$	Stabil
0.10	0.00400	0.4	Ja
0.10	0.00600	0.6	Nei
0.10	0.01000	1.0	Nei
0.05	0.00125	0.5	$_{ m Ja}$
0.05	0.00250	1.0	Nei
0.20	0.00500	0.125	$_{ m Ja}$
0.20	0.01000	0.25	$_{ m Ja}$
0.20	0.02000	0.50	Ja

Table 4: Ulike kombinasjoner av h og k og vurdering av stabilitet

Oppgave 5: Implisitt Euler-metode

Vi bruker nå det implisitte skjemaet:

$$\frac{u_i^{j+1} - u_i^j}{k} = \frac{u_{i+1}^{j+1} - 2u_i^{j+1} + u_{i-1}^{j+1}}{h^2}$$

Dette omskrives til:

$$-\lambda u_{i-1}^{j+1} + (1+2\lambda)u_i^{j+1} - \lambda u_{i+1}^{j+1} = u_i^j, \quad \text{der } \lambda = \frac{k}{h^2}$$

Løser samme problem med ulike h og k:

h	k	λ	Kommentar
0.10	0.00400	0.4	Stabil, moderat demping
0.10	0.00600	0.6	Stabil, $moderat(++)$ demping
0.10	0.01000	1.0	Stabil, stor dempning
0.05	0.00125	0.5	Stabil, $moderat(+)$ demping
0.05	0.00250	1.0	Stabil, stor demping
0.20	0.00500	0.125	Stabil, minst dempet
0.20	0.01000	0.25	Stabil, litt dempet
0.20	0.02000	0.50	Stabil, $moderat(+)$ dempet
0.10 0.05 0.05 0.20 0.20	0.01000 0.00125 0.00250 0.00500 0.01000	1.0 0.5 1.0 0.125 0.25	Stabil, stor dempning Stabil, moderat(+) demping Stabil, stor demping Stabil, minst dempet Stabil, litt dempet

Table 5: Implisitt skjema med like parametre somtidligere

Vi ser at jo høyere λ jo mer dempet.

Observasjoner

- Løsningen dempes litt mer enn ved eksplisitt metode.
- Ingen ustabilitet selv for store λ .
- Tungvindt, må å løses i hvert steg.

Oppgave 6: Crank-Nicolson-metoden

Vi bruker nå Crank-Nicolson, som er midtpunktformelen mellom eksplisitt og implisitt:

$$\frac{u_i^{j+1} - u_i^j}{k} = \frac{1}{2} \left(\frac{u_{i+1}^j - 2u_i^j + u_{i-1}^j}{h^2} + \frac{u_{i+1}^{j+1} - 2u_i^{j+1} + u_{i-1}^{j+1}}{h^2} \right)$$

Dette gir:

$$-\frac{\lambda}{2}u_{i-1}^{j+1}+(1+\lambda)u_{i}^{j+1}-\frac{\lambda}{2}u_{i+1}^{j+1}=\frac{\lambda}{2}u_{i-1}^{j}+(1-\lambda)u_{i}^{j}+\frac{\lambda}{2}u_{i+1}^{j}$$

Den eksakte løsningen er:

$$u(x,t) = e^{-t}\sin(x)$$

h	k	λ	Kommentar
0.10	0.00400	0.4	Stabil og presis
0.10	0.00600	0.6	Stabil, litt mer demping
0.10	0.01000	1.0	Stabil, fortsatt god
0.05	0.00125	0.5	Svært presis
0.05	0.00250	1.0	Presis men dempet
0.20	0.00500	0.125	Stabil og effektiv
0.20	0.01000	0.25	Stabil og presis
0.20	0.02000	0.50	Noe dempet, men stabil

Table 6: Crank-Nicolson med samme parametre som tidliger

Observasjoner

- Crank-Nicolson kombinerer stabilitet og høy nøyaktighet
- Må løses for hvert tidssteg som implisitt.
- Generellt sett lav demping i forhold til implisitt Euler
- Alltid stabil