Probabilidad

Definiciones

Experimento aleatorio

Aquel del cual repitiéndolo en las mismas condiciones, **no puedo predecir el resultado**.

Espacio muestral

Conjunto de todos los posibles resultados de un experimento aleatorio.

Suceso

Subconjunto del espacio muestral.

Contrario de un suceso

Conjunto de valores que **no** están en el conjunto de sucesos. Se expresa como \hat{A} o A^c .

Operaciones con conjuntos

Unión

Conjunto de los elementos que están en A, en B, o en ambos. Se expresa con $A \cup B$.

Intersección

Conjunto de elementos que están en A y en B. Se expresa como $A \cap B$.

Leyes de De Morgan

El contrario de la unión es la intersección de contrarios, y el contrario de la intersección es la unión de contrarios.

$$A \, ar{\cup} \, B = ar{A} \cap ar{B}$$

$$A \, ar \cap \, B = ar A \cup ar B$$

• Ejemplo: lanzar un dado.

Espacio muestral:

$$E = \{1, 2, 3, 4, 5, 6\}$$

Suceso:

 $A: ext{ sacar un número par.} = \{2,4,6\}$

B: sacar número mayor a dos $=\{3,4,5,6\}$

Unión:

$$A \cup B = \{2, 3, 4, 5, 6\}$$

Intersección:

$$A \cap B = \{4, 6\}$$

Contrario de un suceso:

$$\bar{A}=\{1,3,5\}$$

Cálculo de probabilidades

Regla de Laplace

Dado un suceso A de un experimento aleatorio, se define p(A) como la **probabilidad** de que ocurra el suceso A, y se calcula como:

$$p(A) = rac{ ext{número de casos favorables}}{ ext{número de casos totales}}$$

Axiomática de Kolmogorov

- 1. Probabilidad de que ocurra un suceso: $p(A) \geq 0$
- 2. Probabilidad de que ocurra algo del experimento: p(E) = 1
- 3. Si dos sucesos son incompatibles o mutuamente excluyentes:

$$A \cap B = \emptyset$$

Propiedades de la probabilidad

- 1. $p(\bar{A}) = 1 p(A)$
- $2.0 \le p(A) \le 1$
- 3. $p(\varnothing) = 0$
- 4. Si $A \subset B \implies p(A) \leq p(B)$
- 5. $p(A B) = p(A \cap \bar{B}) = p(A) p(A \cap B)$
- 6. $p(A \cup B) = p(A) + p(B) p(A \cap B)$

Teorema de Bayes - Probabilidad condicionada

La probabilidad de que ocurra un suceso **después** de que ocurra otro primero. Dados 2 sucesos A y B, la probabilidad de que ocurra A si ha ocurrido B es:

$$p(A/B) = rac{p(A\cap B)}{p(B)} = rac{p(B/A)\cdot p(A)}{p(B)}$$

Sucesos independientes

Si el hecho de que ocurra A no depende de que ocurra B, decimos que A y B son independientes.

$$p(A/B) = p(A) = rac{p(A\cap B)}{p(B)}$$

$$p(A)\cdot p(B)=p(A\cap B)$$

Si se cumple ese producto, dos sucesos independientes.

Teorema de la probabilidad total y regla de Bayes

Ejemplo: un médico observa que el 40% de sus pacientes son fumadores. De estos, el 75% son hombres. Entre los que no fuman, el 60% son mujeres. F: "fuman" - H: "hombre" - M: "mujer"

Diagrama de árbol

a) Probabilidad de que sea mujer - aplicando probabilidad total

$$p(M) = p(F \cap M) + p(ar{F} \cap M) = p(F) \cdot p(M/F) + p(ar{F}) \cdot p(M/ar{F}) = 0.4 \cdot 0.25 + 0.6 \cdot 0.6 = 0.46$$

b) Probabilidad de fumar y ser hombre

$$p(F \cap H) = p(F) \cdot p(H/F) = 0.4 \cdot 0.75 = 0.3$$

c) Probabilidad de que fume sabiendo que es mujer

$$p(F/M) = rac{p(F\cap M)}{p(M)} = p(F) \cdot rac{p(M/F)}{p(M)} = rac{0.4 \cdot 0.25}{0.46} =$$

Distribución Normal

• Variables aleatorias: aquellas que pueden tomar cualquier valor de un conjunto de valores de forma aleatoria. Pueden clasificarse en:

- Discretas
- Continuas
- Dentro de las continuas, la más famosa es la distribución normal:

 μ : media

 $\underline{\sigma}$: desviación típica

Esta gráfica representa la función de distribución de probabilidad de la normal:

$$A=\int_{-\infty}^{\infty}f(x)\,dx=1$$

$$f(x) = \frac{1}{ \left(x - \frac{1}{\sin \left(2 \right)} \right)} e^{\frac{-(x-\mu)^{2}} }$$

$$\left(2 \sin ^{2} \right)$$

Portanto, la probabilida des:

Tabla de la normal $N(\mu=0,\sigma=1)$

STANDADD NODMAI	DISTRIBUTION, Tob	le Velues Depresent	AREA to the LEFT of the Z score.
STANDAKU NUKWAL	A DISTRIBUTION: Tab	ie values Kebresent	AREA to the LEFT of the Z score.

STANDAL	XD NOKI	IAL DIST	KIDUTI	m. rabic	v aiues K	epi esent z	MEA to t	He LEFT	or the Z sc	orc.
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

1.
$$p(Z \leq 2.13)$$
 $(Z \leq N/N > 0)$

$$p(Z \leq z) = \int_{-\infty}^{Z} f(x) \, dx$$

En la tabla, $p(Z \le 2.13) = 0.98341$

2. $p(Z \ge 2.13)$

$$p(Z \geq z) = \int_{Z}^{\infty} f(x) \, dx$$

En la tabla, $p(Z\geq 2.13)=1-p(Z\leq 2.13)=0.0166$

3. $p(Z \le -2.13)$

$$p(Z \leq -2.13) = \int_{-\infty}^Z f(x) \, dx$$

 $p(Z\leq -2.13)=p(Z\leq 2.13)=1-p(Z\leq 2.13)=0.0166$

4. $p(Z \ge -2.13)$

$$p(Z \geq -2.13) = \int_Z^\infty f(x) \, dx$$

 $p(Z\leq 2.13)=p(Z\leq 2.13)=0.98341$

5. $p(1 \le Z \le 3)$

$$p(1\leq Z\leq 3)=\int_1^3 f(x)\,dx$$

\$p(1\leq Z\leq 3)=p(Z\leq 3)-p(Z\leq 1)=0.998650.84134=0.15741\$

Ejemplo: Ej.9

El número de horas de vida de una bacteria tipo 9 tiene una media $\mu=110(h)$ y una desviación media de $\sigma=0.75$

X es una variable aleatoria que sigue una distribución normal.

$$\mathbb{X}pprox N(110,0.75) \mathop{
ightarrow}_{ ext{tipificar}} z = rac{x-\mu}{\sigma}/Z pprox N(0,1)$$

a) $p(X \ge 112.25)$

$$p(\mathbb{X} \geq 112.25) = p\left(Z \geq rac{112.25 - 110}{0.75}
ight) = p(Z \geq 3) = 1 - p(Z \leq 3) = 1$$

b)

$$p(\mathbb{X} \leq 109.25) = p\left(Z \leq rac{109.25 - 110}{0.75}
ight) = p(Z \leq -1) = p(Z \geq 1) = 1 - p(Z \leq -1)$$

c) Una bacteria tipo B tiene una normal $N(110,\sigma)$. Una bacteria de tipo B viva $p(\mathbb{X} \geq 125) = 0.1587$

$$p(\mathbb{X} \geq 125) = 1 - p(\mathbb{X} \leq 125) = 0.1587 \implies p(\mathbb{X} \leq 125) = 0.8413$$

 $p\left(Z \leq \frac{125 - 110}{\sigma}\right) = 0.8413 \implies p\left(Z \leq \frac{15}{\sigma}\right) = 0.8413$
 $0.8413 = 1.00 \implies \frac{15}{\sigma} = 1 \implies \sigma = 15$