1 Lebesgue Integral

Definition:- A random variable $s:\Omega\to[0,\infty)$ is defined by $s(\omega)=\sum_{i=1}^n a_i \mathcal{X}_{A_i}(\omega),\ \omega\in\Omega$, where n is some positive integer, a_1,a_2,\cdots,a_n are non-negative real-numbers, $A_i\in\mathcal{F}$ for every $i;\ A_i\cap A_j=\emptyset$ for $i\neq j$ and $\bigcup_{i=1}^n A_i=\Omega$. Such a function s is called a non-negative simple random variable. We say that $\sum_{i=1}^n a_i \mathcal{X}_{A_i}(\omega)$ is the standard representation of s if a_1,a_2,\cdots,a_n are all distinct. We denote by \mathbb{L}^+_0 the class of all non-negative simple random variables on (Ω,\mathcal{F}) .

Examples:

- If $s(\omega) \equiv c$ for some $c \in [0, \infty)$, then $s \in \mathbb{L}_0^+$.
- For $A \subset \Omega$, consider $\mathfrak{X}_A : \Omega \to [0, \infty)$, the indicator function of the set A, i.e.,

$$\mathfrak{X}(\omega) = \begin{cases} 0 \text{ if } \omega \notin A \\ 1 \text{ if } \omega \in A. \end{cases}$$

Then $\mathfrak{X}_A \in \mathbb{L}_0^+$ iff $A \in \mathfrak{F}$.

- Let $A, B \in \mathcal{F}$. then $s = \mathcal{X}_A \mathcal{X}_B \in \mathbb{L}_0^+$ since $s = \mathcal{X}_{A \cap B}$.
- Let $A, B \in \mathcal{F}$. If $A \cap B = \emptyset$, then clearly, $\mathfrak{X}_A + \mathfrak{X}_B = \mathfrak{X}_{A \cup B} \in \mathbb{L}_0^+$.

Definition:- For $s \in \mathbb{L}_0^+$ with a representation $s = \sum_{i=1}^n a_i \mathfrak{X}_{A_i}$, we define $\int_{\Omega} s(\omega) d\mathbb{P}(\omega)$, the integral of s with respect

to
$$\mathbb{P}$$
, by $\int_{\Omega} s(\omega) d\mathbb{P}(\omega) := \sum_{i=1}^{n} a_{i} \mathbb{P}(A_{i}).$

We should check that $\int_{\Omega} s(\omega) d\mathbb{P}(\omega)$ is well defined i.e., if $s = \sum_{i=1}^{n} a_i \mathfrak{X}_{A_i} = \sum_{j=1}^{m} b_i \mathfrak{X}_{B_j}$ where $\{A_1, A_2, \cdots, A_n\}$ and $\{B_1, B_2, \cdots, B_m\}$ are partitions of Ω by elements of \mathcal{F} , then

$$\sum_{i=1}^{n} a_i \mathbb{P}(A_i) = \sum_{b=1}^{m} b_j \mathbb{P}(B_j).$$

For this, we note that we can write

$$s = \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \mathfrak{X}_{A_i \cap B_j} = \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \mathfrak{X}_{A_i \cap B_i}.$$

Thus if $A_i \cap B_j \neq \emptyset$ then $a_i = b_j$. Hence using finite additivity of \mathbb{P} ,

$$\sum_{i=1}^{n} a_i \mathbb{P}(A_i) = \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \mathbb{P}(A_i \cap B_j)$$
$$= \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \mathbb{P}(A_i \cap B_j) = \sum_{j=1}^{m} b_j \mathbb{P}(B_j).$$

Thus $\int_{\Omega} s(\omega) d\mathbb{P}(\omega)$ is independent of the representation of $s = \sum_{i=1}^{n} a_i \mathfrak{X}_{A_i}$.

Proposition 1.1. For $s, s_1, s_2 \in \mathbb{L}_0^+$ and $\alpha \in \mathbb{R}$ with $\alpha \geq 0$, the following hold:

(i)
$$0 \le \int_{\Omega} s \ d\mathbb{P} < +\infty$$

(ii)
$$\alpha s \in \mathbb{L}_0^+$$
 and $\int_{\Omega} (\alpha s) \ d\mathbb{P} = \alpha \int_{\Omega} s \ d\mathbb{P}$

(iii)
$$s_1 + s_2 \in \mathbb{L}_0^+$$
 and $\int_{\Omega} (s_1 + s_2) d\mathbb{P} = \int_{\Omega} s_1 d\mathbb{P} + \int_{\Omega} s_2 d\mathbb{P}$.

Proof. Statements (i) and (ii) are obvious.

For (iii), let
$$s_1 = \sum_{i=1}^n a_i \chi_{A_i}$$
 and $s_2 = \sum_{j=1}^m b_j \chi_{B_j}$. Then we can write $s_1 = \sum_{i=1}^n \sum_{j=1}^m a_i \chi_{A_i \cap B_j}$ and $s_2 = \sum_{i=1}^n a_i \chi_{A_i \cap B_i}$

$$\sum_{i=1}^n \sum_{j=1}^m b_j \mathcal{X}_{A_i \cap B_j}. \text{ Thus } s_1 + s_2 = \sum_{i=1}^n \sum_{j=1}^m (a_i + b_j) \mathcal{X}_{A_i \cap B_j}. \text{ Hence } s_1 + s_2 \in \mathbb{L}_0^+ \text{ and using these representations, it is clear that } \int_{\Omega} (s_1 + s_2) d\mathbb{P} = \int_{\Omega} s_1 d\mathbb{P} + \int_{\Omega} s_2 d\mathbb{P}.$$

Excercise:- Let $s_1, s_2 \in \mathbb{L}_0^+$. Then prove the followings

- 1. Let $s_1 \geq s_2$. Set $\phi = s_1 s_2$. Show that $\phi \in \mathbb{L}_0^+$.
- 2. If $s_1 \geq s_2$, then $\int s_1 d\mathbb{P} \geq \int s_2 d\mathbb{P}$.

Proposition 1.2. Let $X: \Omega \to \mathbb{R}$ a non-negative bounded random variable, then there exists a sequence $\{s_n\}_{n\geq 1}$ of random variables in \mathbb{L}_0^+ such that $\mathbb{P}\{\omega \in \Omega : \lim_{n\to\infty} s_n(\omega) = X(\omega)\} = 1$.

Proof. Let X be bounded by M. Then the sets $A_k^n = \{\omega : \frac{(k-1)M}{2^n} \le X(\omega) < \frac{kM}{2^n}\}, 1 \le k \le 2^n$. Then $\{A_k^n\}$ are disjoint, $A_k^n \in \mathcal{F}$ and have union $\bigcup_{k=1}^2 A_k^n = \Omega$. We define function s_n on Ω by

$$s_n(\omega) = \sum_{k=1}^{2^n} \frac{M(k-1)}{2^n} \mathfrak{X}_{A_k^n}(\omega).$$

Clearly, $s_n \in \mathbb{L}_0^+$ and it is easy to check that for every n,

$$s_n(\omega) \le s_{n+1}(\omega), \ \forall \omega \in \Omega.$$

If $\omega \in A_k$ for some $k, 1 \le k \le 2^n$. Then

$$s_n(x) = \frac{(k-1)M}{2^n}$$

and $X(\omega) \in \left[\frac{(k-1)M}{2^n}, \frac{kM}{2^n}\right)$. Thus we have $s_n(\omega) \leq X(\omega)$ and $X(\omega) - s_n(\omega) \leq \frac{M}{2^n}$. In other words, $\lim_{n \to \infty} s_n(\omega) = X(\omega)$.

Consider the case n=1

Then
$$A_1^1 = [a, a_1] \cup (a_2, b]$$

$$A_2^1 = [a_1, a_2]$$

$$s_1 = 0.\mathfrak{X}_{A_1^1} + \frac{M}{2}\mathfrak{X}_{A_2^1}.$$

Consider the case n=2

$$A_{1}^{2} = [a, a_{2}^{'}) \cup (a_{2}^{''}, b], A_{2}^{2} = [a_{2}^{'}, a_{1}) \cup (a_{2}, a_{2}^{''}], A_{3}^{2} = [a_{1}, c_{2}) \cup (c_{2}^{'}, a_{2}], A_{4}^{2} = [c_{2}, c_{2}^{'}].$$

Figure 1:

Figure 2:

$$s_2 = 0.\chi_{A_1^2} + \frac{M}{4}\chi_{A_2^2} + \frac{M}{2}\chi_{A_3^2} + \frac{3M}{4}\chi_{A_4^2}$$

$$\int_{\Omega} s_1 d\mathbb{P}(\omega) = 0.\mathbb{P}(A_1') + \frac{M}{2}\mathbb{P}(A_2')$$
$$= \frac{M}{2}[a_2 - a_1].$$

$$\int_{\Omega} s_2 \ d\mathbb{P}(\omega) = \frac{M}{4}[(a_1 - a_2^{'}) + (a_2^{''} - a_2)] + \frac{M}{2}[(c_2 - a_1) + (a_2 - c_2^{'})] + \frac{3M}{4}(c_2^{'} - c_2).$$

Set $\mathbb{L}^+ = \{f : \Omega \to [0, \infty) : \exists$ an increasing sequence of random variables $\{s_n\}_{n \geq 1}$ in \mathbb{L}_0^+ such that $s_n(\omega)$ converges to $s(\omega)$ almost surely $\}$. For $f \in \mathbb{L}^+$, we define the integral of f w.r.t. \mathbb{P} by

$$\int_{\Omega} f(\omega) d\mathbb{P}(\omega) := \lim_{n \to \infty} \int_{\Omega} s_n(\omega) d\mathbb{P}(\omega).$$

Proposition 1.3. If $f \in \mathbb{L}^+$ and $s \in \mathbb{L}_0^+$ are such that $0 \leq s \leq f$, then $\int_{\Omega} s(\omega) d\mathbb{P}(\omega) \leq \int_{\Omega} f(\omega) d\mathbb{P}(\omega)$ and $\int_{\Omega} f(\omega) d\mathbb{P}(\omega) = \sup\{\int_{\Omega} s d\mathbb{P} | 0 \leq s \leq f, s \in \mathbb{L}_0^+\}.$

Now for any random variable X, define

$$X^{+}(\omega) = \max\{X(\omega), 0\}, X^{-} = \max\{-X(\omega), 0\}.$$

Then

$$X = X^+ - X^-.$$

We can define $\int_{\Omega} X^+ d\mathbb{P}(\omega)$ and $\int_{\Omega} X^- d\mathbb{P}(\omega)$ provided both of them are not infinite. Then we define

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \int_{\Omega} X^{+}(\omega) d\mathbb{P}(\omega) - \int_{\Omega} X^{-}(\omega) d\mathbb{P}(\omega).$$

We say that X is integrable if both $\int_{\Omega} X^+(\omega) d\mathbb{P}(\omega)$ and $\int_{\Omega} X^-(\omega) d\mathbb{P}(\omega)$ are finite. If both are infinite, then $\int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ is not defined. If $\int_{\Omega} X^+(\omega) d\mathbb{P}(\omega)$ is finite and $\int_{\Omega} X^-(\omega) d\mathbb{P}(\omega) = \infty$ then $\int_{\Omega} X(\omega) d\mathbb{P}(\omega) = -\infty$. If $\int_{\Omega} X^-(\omega) d\mathbb{P}(\omega)$ is finite and $\int_{\Omega} X^+(\omega) d\mathbb{P}(\omega) = \infty$ then $\int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \infty$.

2 Comparison of Riemann and Lebesgue integrals:-

Let f be a bounded function defined on \mathbb{R} , and let a < b be numbers.

- 1. The Riemann integral $\int_a^b f(x)dx$ is defined iff the set of points $x \in [a,b]$ where f(x) is not continuous has Lebesgue measure zero.
- 2. If the Riemann integral $\int_a^b f(x)dx$ is defined, then f is Borel measurable and so the Lebesgue integral $\int_a^b f(x)dx$ is also defined and the Riemann and Lebesgue integrals agree.

Definition:- Let X be an integrable random variable. Then the expectation of X is defined by $\mathbb{E}[X] := \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$.

If X > 0, then $\mathbb{E}[X]$ is always defined [can be $+\infty$ as well].

Examples:-

1. Consider the infinite independent coin-toss space $(\Omega_{\infty}, \mathcal{F}_{\infty}, \mathbb{P}_{\infty})$ with $p = \frac{1}{2}$. Let

$$Y_n(\omega) = \begin{cases} 1 \text{ if } \omega_n = H \\ 0 \text{ if } \omega_n = T. \end{cases}$$

$$\mathbb{E}[Y_n] = 1 \cdot \mathbb{P}(Y_n = 1) + 0 \cdot \mathbb{P}(Y_n = 0)$$
$$= 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{2}.$$

2. Let $\Omega = [0, 1], \mathcal{F} = \mathcal{B}[0, 1]$ and let \mathbb{P} be the Lebesgue measure on [0, 1]. Consider the random variable

$$X(\omega) = \begin{cases} 1 \text{ if } \omega \text{ is irrational} \\ 0 \text{ if } \omega \text{ is rational.} \end{cases}$$

$$\begin{split} \mathbb{E}[X] = & 1 \cdot \mathbb{P}(X = 1) + 0 \cdot \mathbb{P}(X = 0) \\ & = 1 \cdot \mathbb{P}(\omega \in [0, 1] \backslash \mathbb{Q}) + 0 \cdot \mathbb{P}(\omega \in [0, 1] \cap \mathbb{Q}) \\ & = 1 \cdot 1 + 0 \cdot 0 = 1. \end{split}$$

Properties:-

1. If X takes only finitely many values x_0, x_1, \dots, x_n , then

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) d\mathbb{P}(\omega) = \sum_{k=0}^{n} x_k \mathbb{P}(X = x_k).$$

- 2. The random variable X is integrable iff $\int_{\Omega} |X(\omega)| d\mathbb{P}(\omega) < \infty$.
- 3. If $X \leq Y$ and X and Y are integrable then

$$\int_{\Omega} X(\omega) d\mathbb{P}(\omega) \le \int_{\Omega} Y(\omega) d\mathbb{P}(\omega).$$

Note:
$$|X| = X^+ + X^-, X^+ \le |X|, X^- \le |X|$$
.

4. If α and β are real constant and X and Y are integrable or if α , β are non-negative constant and X and Y are non-negative. Then

$$\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y].$$

Two important convergence theorems:-

Definition:- Let $X_1, X_2, \cdots, X_n, \cdots$ be a sequence of random variables, all defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let X be another random variable defined on the same space. We say that X_1, X_2, \cdots converges to X almost surely and write $\lim_{n\to\infty} X_n = X$ a.s. if $\mathbb{P}\{\omega : \lim_{n\to\infty} X_n(\omega) = X(\omega)\} = 1$.

Monotone convergence theorem:- Let X_1, X_2, \cdots be a sequence of random variables converging almost surely to another random variable X. If $0 \le X_1 \le X_2 \le X_3 \cdots$ almost surely, then

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X].$$

Corollary 2.1. Suppose the non-negative random variable X takes countable many values $x_0, x_1 \cdots$, then

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} x_k \mathbb{P}(X = x_k).$$

Proof. Let $A_k = \{X = x_k\}$. Then X can be written as

$$X = \sum_{k=0}^{\infty} x_k \mathfrak{X}_{A_k}.$$

Define

$$X_n = \sum_{k=0}^n x_k \mathfrak{X}_{A_k}.$$

Then $0 \le X_1 \le X_2 \le \cdots$ and $\lim_{n\to\infty} X_n = X$. Note that

$$\mathbb{E}[X_n] = \sum_{k=0}^n x_k \mathbb{P}(X = x_k).$$

Using Monotone convergence theorem, we obtain

$$\mathbb{E}[X] = \lim_{n \to \infty} \mathbb{E}[X_n] = \lim_{n \to \infty} \sum_{k=0}^n x_k \mathbb{P}(X = x_k) = \sum_{k=0}^\infty x_k \mathbb{P}(X = x_k).$$

Dominated Convergence Theorem:- let X_1, X_2, \cdots be a sequence of random variables converging almost surely to a random variable X. If there is another random variable Y such that $\mathbb{E}[Y] < \infty$ and $|X_n| \le Y$ almost surely for every n, then

$$\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X].$$

1. Consider the space $(\Omega, \mathcal{B}[0,1], \mathcal{L})$, where \mathcal{L} is the Lebesgue measure. Define

$$X_n(\omega) = \begin{cases} n \text{ if } \omega \in [0, \frac{1}{n}) \\ 0 \text{ otherwise.} \end{cases}$$

Then $\lim_{n\to\infty} X_n(\omega) = 0$ a.s.

$$\lim_{n \to \infty} \int_0^1 X_n(\omega) d\mathbb{P}(\omega) = \lim_{n \to \infty} n \cdot \frac{1}{n} = 1 \neq 0 = \int_0^1 \lim_{n \to \infty} X_n(\omega) d\mathbb{P}(\omega)$$

2. Consider a sequence of normal densities, each with mean zero and and the n^{th} having variance $\frac{1}{n}$.

$$f_n(x) = \sqrt{\frac{n}{2\pi}} e^{\frac{-nx^2}{2}}.$$

If $x \neq 0$, then $\lim_{n\to\infty} f_n(x) = 0$ but

$$\lim_{n \to \infty} f_n(0) = \lim_{n \to \infty} \sqrt{\frac{n}{2\pi}} = \infty.$$

Therefore

$$f_n(x) \to 0$$
 a.s.

and

$$\int_{-\infty}^{\infty} f_n(x)dx = 1 \neq 0 = \int_{-\infty}^{\infty} \lim_{n \to \infty} f_n(x)dx.$$