CSCI 2824 - CU Boulder, 2019 Summer

Lecture 6: Rational Number Proofs, Divisibility, and Induction

11 June 2019

Lecturer: J. Marcus Hughes

Content is borrowed from Susanna Epp's <u>Discrete Mathematics with Applications</u> and Andrew Altomare's notes.

1 Review

We learned about writing proofs. Let's practice with some ideas on rational numbers and divisibility.

2 Rational Number Proofs

What is a rational number? You may have heard it defined as a decimal that terminates or repeats in your early math days, but we are going to use a more formal definition.

Definition: Rational Number

A (real) number r is **rational** if, and only if, it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is is **irrational**. More formally, if r is a real number, then

$$r$$
 is rational $\leftrightarrow \exists a,b \in \mathbb{Z}$ such that $r = \frac{a}{b}, b \neq 0$

What are some examples of rational numbers? Well integers are! Let's prove it.

Theorem 2.1. Every integer is a rational number

Proof. Let n be an arbitrary integer. Then $n = \frac{n}{1}$ so n is a rational number.

It's quite straight forward, but we are utilizing the idea of the generic particular. We do not specify what n is but show that for any arbitrary n we can make this argument. Seems pretty straight forward.

Now, try applying the same idea to show that any sum of rational numbers is rational.

Theorem 2.2. The sum of two rational numbers is rational.

Proof. Suppose r and s are rational numbers. Then, by the definition of rational, r=a/b and s=c/d for some $a,b,c,d\in\mathbb{Z}$ where $b\neq 0$ and $d\neq 0$. Thus,

$$r + s = \frac{a}{b} + \frac{c}{d}$$
$$= \frac{ad + bc}{bd}$$

Let p=ad+bc and q=bd. Then, p and q are integers because products and sums of integers are integers and because $a,b,c,d\in\mathbb{Z}$. Also $q\neq 0$ by the zero product property. Thus, $r+s=\frac{p}{q}$ where p and q are integers and $q\neq 0$. Therefore, r+s is rational by the definition of a rational number.

We can thus say that the rational numbers are closed under addition. Closed (in computer science lingo) means that performing that operation with a given input type always yields the same output type.

Can you show that any integer multiple of a rational number is rational? Is the product/quotient/difference of any two rational numbers also rational? What about the average?

3 Divisibility

Do you remember in elementary school when you talked about division? You knew that 12 wasn't divisible by 5 since it didn't go into it evenly. It may seem simplistic, but divisibility is a central idea in number theory; something so elementary is in advanced math! We can practice our proof writing skills in this domain too.

Definition: Divisible

If n and d are integers and $d \neq 0$ then, n is **dibisible by** d if, and only if, n equals d times some integer. The notation d|n is read "d divides n". Symbolically for $n, d \in \mathbb{Z}$ and $d \neq 0$:

$$d|n \leftrightarrow \exists k \in \mathbb{Z} \text{ such that } n = dk$$

We call a number the divides another number a divisor of it. What do we know about divisors.

Exercise

For all integers a and b, if a and b are positive and a|b, then $a \le b$.

Suppose $a,b \in \mathbb{Z}^+$ and a|b. Then, $\exists k \in \mathbb{Z}$ such that b=ak. From algebra (Property T25 of Appendix A), k must be positive because both a and b are positive. Then, $1 \le k$ because every positive integer is greater than or equal to 1. Multiplying both sides by a gives $a \le ka = b$ because multiplying both sides of an inequality by a positive number preserves the inequality property (T20 in Appendix A). Thus $a \le b$.

The above is a nice universal proof to know.

Exercise

Prove: The only divisors of 1 are 1 and -1.

Since $1 \times 1 = 1$ and (-1)(-1) = 1 both 1 and -1 are divisors of 1. Now suppose m is any integer that divides 1. Then $\exists n \in \mathbb{Z}$ such that 1 = mn. By Theorem T25 in Appendix A, either both m and n are positive or both m and n are negative. If both m and n are positive, then m is a positive integer divisor of 1. By Tthe previous theorem, $m \le 1$, and since the only positive integer that is less than or equal to 1 is 1 itself, it follows that m = 1. On the other hand, if both m and n are negative, then by Theorem T12 in Appendix A, (-m)(-n) = mn = 1. In this case, -m is a positive integer divisor of 1, and so by the same reasoning -m = 1 and thus m = -1. Therefore, there are only two possibilities: either m = 1 or m = -1. So the only divisors of 1 are 1 and -1.

Exercise

Problem: For all integers a, b, and c if a divides b and b divides c, then a divides c.

Suppose a, b, and c are integers such that a divides b and b divides c. By definition of divisibility $\exists r, s \in \mathbb{Z}$ such that b = ar and c = bs. Then,

$$c = bs$$

$$= (ar)s$$

$$= a(rs)$$

Let k = rs. Then, k is an integer since it is a product of integers and therefore c = ak. Thus, a divides c by definition of divisibility.

Exercise

Prove: Any integer n > 1 is divisible by a prime number.

Suppose n is an integer that is greater than 1. If n is prime, then n is divisible by itself, a prime number, and we are done. If n is not prime, then $n = r_0 s_0$ where r_0 and s_0 are integers and $1 < r_0 < n$ and $1 < s_0 < n$. It follows from the definition of divisibility that $r_0|n$. If r_0 is prime, then r_0 is a prime number that divides n and we are done. If r_0 is not prime, then, $r_0 = r_1 s_1$ where $r_1, s_1 \in \mathbb{Z}$ and $1 < r_1 < r_0$ and $1 < s_1 < r_0$. IT follows that $r_1|r_0$. But we already know that $r_0|n$. So by the previous proof $r_1|n$.

We may continue factoring in this way, until we find a prime factor. We must succeed in a finite number of steps because each new factor is both less than the previous one and greater than 1, and there are fewer than n integers strictly between 1 and n. Thus, we obtain a sequence $r_0, r_1, r_2, \ldots, r_k$ where $k \geq 0$, $1 < r_k < r_{k-1} < \ldots < r_2 < r_1 < r_0 < n$ and $r_i | n$ for each $i = 0, 1, \ldots, k$. The condition for termination is that r_k should be prime. Hence, r_k is a prime number that divides n.

Is the following statement true? For all integers a and b if a|b and b|a then a=b. No. find a counterexample with a=2 and b=-2.

A very powerful theorem is:

Theorem 3.1. Given any integer n > 1, there exists a positive integer k, distinct prime numbers p_1, p_2, \ldots, p_k and positive integers e_1, e_2, \ldots, e_k such that $n = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k}$ and any other expression for n as a product of prime numbers is identical to this, except, perhaps, for the order in which the factors are written. We call this the standard factored form of n when $p_1 < p_2 < \ldots < p_k$.

We will come back to proving this later.

4 Mathematical Induction

We introduced the idea of mathematical induction yesterday. We will define two forms of

Definition: Weak Induction

Let S_n denote a statement regarding an integer n and let $k \in \mathbb{Z}$ be fixed. If

- 1. S_k holds and
- 2. for every m > k, $S_m \to S_{m+1}$

then for every $n \geq k$, the statement S_n holds.

Definition: Strong Induction

Let S_n denote a statement regarding an integer n. If

- 1. S_k holds and
- 2. For every $m \geq k$, $[S_k \wedge S_{k+1} \wedge \ldots \wedge S_m] \rightarrow S_{m+1}$

then for every $n \geq k$, the statement S_n is true.

Exercise

Show that strong and weak induction are equivalent.

Let S_n be our statement we wish to prove.

First suppose that strong induction holds for our statement. This means that S_1 holds and whenever $n \le k$, it must hold for n = k + 1. This implies that n = k holds and n = k + 1 holds, the criteria for weak induction. Therefore, weak induction follows from strong induction.

Now, suppose that weak induction works, also specifically for our statement. This means that S_1 holds and for n=k, it must be that n=k+1 holds. Let Q_k be the statement " S_n is true for all $n \le k$." We will prove Q_n is true for all positive integers n by weak induction. Since we have S_1 then we also have the base case of Q_1 . Suppose the inductive hypothesis of Q_k , i.e. S_k is true for all $n \le k$. This tells us that S_{k+1} is also true by the outer induction proof. This then implies that Q_{k+1} holds since S_{k+1} and Q_k hold. This establishes the inductive step for statement Q_n . Therefore, this holds for all positive integers n. This is the same conclusion as strong induction makes for S_n meaning it is equivalent.

Exercise

Prove that $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$.

We could prove this directly by using Euler's trick of folding the sequence $1,2,3,\ldots,n$ on itself and creating pairs $(1,n),(2,n-1),(3,n-2),\ldots,(n/2-1,n/2+1)$ which each sum to n+1. There are n/2 such pairs so the total sum is $\frac{n(n+1)}{2}$.

However, you might not have that insight and thus rely on mathematical induction. Let S_n be the statement that $1+2+\ldots+n=\frac{n(n+1)}{2}$. Then, S_1 says $1=\frac{1(1+1)}{2}=1$ which holds. Now assume the inductive hypothesis that statement S_k holds for some $k\geq 1$, i.e. $1+2+\ldots+k=\frac{k(k+1)}{2}$. Then, we will show the inductive step that S_{k+1} follows.

$$1+2+\ldots+(k-1)+k+(k+1)=[1+\ldots+(k-1)+k]+(k+1) \qquad \text{regrouping}$$

$$=\frac{k(k+1)}{2}+k+1 \qquad \text{by inductive hypothesis}$$

$$=\frac{k(k+1)+2k+2}{2} \qquad \text{algebra}$$

$$=\frac{k^2+3k+2}{2} \qquad \text{algebra}$$

$$=\frac{(k+1)(k+2)}{2} \qquad \text{algebra}$$

Therefore, we have proven the inductive step and by mathematical induction the theorem is proven.

Exercise

Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture using mathematical induction.

First, we think about the conjecture. We might make a table like follows:

n	Integers	Sum
1	1	$1 = 1^2$
2	1, 3	$4 = 2^2$
3	1, 3, 5	$9 = 3^2$
4	1, 3, 5, 7	$16 = 4^2$

Thus, it seems we want to prove the sum of the first n positive odd integers is n^2 .

Let S_n be the statement that the sum of the first n positive odd integers is n^2 . The base case is then S_1 , which holds since $1 = 1^2$.

Suppose the inductive hypothesis that S_k holds, i.e. the sum of the first k odd integers is k^2 . Another way to state this is that $1+3+5+\ldots+(2k-1)=k^2$. Now we show that S_{k+1} holds.

$$1+3+5+\ldots+(2k-1)+(2k+1)=k^2+2k+1$$
$$=(k+1)(k+1)=(k+1)^2$$

Therefore, the inductive step holds and we have proven the claim.

Exercise

Use mathematical induction to show that $1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$.

Let S_n be the statement that $2^0 + 2^1 + 2^2 + \ldots + 2^n = 2^{n+1} - 1$. The base case, S_0 , holds since $2^0 = 1 = 2^{0+1} - 1$.

Suppose the inductive hypothesis that S_k holds, i.e. $1+2+2^2+\ldots+2^k=2^{k+1}-1$. Then, we wish to show S_{k+1} holds:

$$1 + 2 + 2^{2} + \ldots + 2^{k} + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$$
$$= 2(2^{k+1}) - 1$$
$$= 2^{k+2} - 1$$

Thus, the inductive step holds and we have proven the claim.

Exercise

Prove that for all $n \in \mathbb{Z}^+$ that $3|n^3 - n$.

We could try the clever direct proof by noting that $3|n^3-n$ is the same as saying 3|(n-1)n(n+1) if we factor the polynomial. Since n-1, n, and n+1 are consecutive one of them must be divisible by three meaning that we have a factor of three multiplied into the polynomial and thus we have our proof.

We could alternatively write an inductive proof. Then, S_n is the statement $3|n^3 - n$. The base case is S_1 , i.e. $3|1^3 - 1$. We can let k = 0 to satisfy 0 = 3k and prove the base case holds.

Now suppose the inductive hypothesis of $3|k^3 - k$. We wish to prove the inductive step S_{k+1} . Note:

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$
$$= (k^3 - k) + 3(k^2 + k)$$

We know that $3|k^3-k$ by the inductive hypothesis and thus $\exists m \in \mathbb{Z}$ such that $3m=k^3-k$. So by substitution we get $3m+3(k^3+k)$ which factors to $3(m+k^3+k)$. Since integers are closed under multiplication and addition $m+k^3+k$ is an integer and we have shown that $(k+1)^3-(k+1)$ is indeed divisible by 3.