Floating point arithmetic. Present your solution to Exercise
 1.34 in Moler. Discuss aspects of the representation of real numbers using floating point arithmetic (based on the IEEE754-standard).

Numerical Analysis E2021

Institute of Mathematics
Aalborg University

Motivation

Arithmetic

Special Values

Examples

Spacing

Underflow & overflow

- Computers can only have finite representations
- Standardisation
- Studying algorithms
 - ► Best answers, speed, and reliable.
- ► Ensuring arithmetic results are accurate and reliable

Floating Point Arithmetic

Numerical Analysis E2021

Motivation

Floating Point Arithmetic

Special Values

opeciai vai

Opacing

Underflow & overflow

binary64 is a IEEE754 double-precision binary floating-point format specified by

- ▶ Base of b = 2,
- ▶ Precision of p = 53, where 52 bits are stored explicitly,
- ightharpoonup Exponent range of -1022 to 1023.

all 64-bit double-precision numbers are then of the form

$$(-1)^s (1.b_{51}b_{50}...b_0)_2 \times 2^{e-1023}$$
 (1)

where we use 1 bit for the sign, 52 on the mantissa, and 11 on the exponent. Note that we here have an exponent bias.

Thus we only have a finite number of floating-point numbers, which are a subset of the rationals.

Motivation

Floating Poi Arithmetic

Special Values

Evamples

Spacing

Underflow & overflow

▶ Zero

- ▶ is signed
- Infinity
 - ▶ is signed
- ► NaN
 - ► qNaN
 - ► sNaN
 - ► Not signed
- ► Subnormals
 - Numbers smaller than the smallest positive number.

6

Motivation

Floating Po Arithmetic

Special Vali

Examples

Spacin

Underflow & overflow

0 0	1111111111	000000000000000000000000000000000000
sign	exponent	mantissa
	1111111111 exponent	000000000000000000000000000000000000
	1111111111 exponent	000000000000000000000000000000000000
1 11	1111111111 exponent	000000000000000000000000000000000000

6

Special Values

Spacing

Underflow & overflow

Within each binary interval $2^e \le x \le 2^{e+1}$ all numbers will be equally spaced with an increment of 2^{e-52} . Thus

$$1 + \varepsilon = 1 \Rightarrow \varepsilon = 2^{-52} \tag{2}$$

This also leads to the highest relative error when rounding to be $\frac{\varepsilon}{2}$.

MATLAB Demo of floatqui.

A simple way to introduce large relative errors is by computing the difference between two nearly equal floating-point numbers.

MATLAB Demo of exercise 1.34

Motivation

Floating Poi Arithmetic

Special Values

Examples

Spacin

Underflow & overflow

Due to the construction of our numbers we are limited in how large, or how small, in absolute values, a floating-point number can be

- Underflow
 - ► Absolute value of a non-zero result is less than realmin.
- Overflow
 - Absolute value of a result is greater than the largest floating-point number.
 - ► Results in +∞
- ▶ Division by zero.

MATLAB Demo of exercise 4.11