

Tópicos em Computação Evolucionária Otimização Multi-objetiva Parte 1/2

Gisele L. Pappa

Otimização Multi-objetiva

- Grande parte dos problemas requer a otimização de dois ou mais critérios (objetivos)
- Abordagem convencional para tratar desse problema:
 - Agregação de objetivos: Combinar os objetivos em uma fórmula, atribuindo pesos a diferentes objetivos
 - Fitness = 2/3 Objective1 + 1/3 Objective2 (assumindo que os objetivos estão normalizados para retornar valores dentro do mesmo intervalo, como 0..1)

Otimização de Um ou Muitos Objetivos

 Otimização de um objetivo é um caso particular da otimização de múltiplos objetivos

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

DCC

Otimização Multi-objetiva

- Desvantagens da abordagem convencional
 - Objetivos diferentes são normalmente não-comensuráveis medem aspectos diferentes da qualidade de uma solução, que não deveriam ser adicionados ou subtraídos em uma mesma fórmula
 - Retorna uma solução, enquanto em problemas MO pode ser conveniente retornar um conjunto de soluções, representando diferentes configurações (trade-offs) entre os objetivos
- Solução: Algoritmos Multi-Objetivos baseados na dominância de Pareto

Otimização Multi-objetiva

- Exige que o algoritmo funcione em dois passos:
 - 1. Busca
 - Algoritmos evolucionários ou qualquer outro algoritmo
 - Baseada no conceito de dominância de Pareto
 - 2. Tomada de Decisão
 - Escolha de uma solução entre o conjunto de soluções retornadas

Dominância de Pareto

- Um solução S₁ domina uma solução S₂ se e apenas se:
 - S₁ não é pior que S₂ em nenhum objetivo
 - S₁ é obrigatoriamente melhor que S₂ com respeito a pelo menos um objetivo
- O conjunto de soluções não-dominadas é chamado fronte (fronteira) de Pareto

Conceito de Dominância de Pareto

 Minimizar o custo de produção e o número de bugs encontrados em um programa

Conceito de Dominância de Pareto

maximize $f_1(x_i), f_2(x_i)$

DE PUTAÇÃO

Processo de tomada de Decisão

• Após o processo de busca, uma solução deve ser escolhida pelo usuário

Processo de tomada de Decisão

- Deve incluir informações sobre as preferências do usuário, já que isso não é considerado durante a busca do algoritmo
- Essa informação de preferências pode ser fornecida pelo usuário em 3 momentos:
 - A priori gera uma otimização de um objetivo ou baseada em pesos.
 - A posteriori busca encontra múltiplas soluções
 - Progressivamente durante a busca
 - Combinação das 3 anteriores.

Otimização Multi-objetiva

Fórmula combinando objetivos

Usuário escolhe pesos para cada objetivo

Algoritmo busca por uma única solução ótima

Retorna uma única solução ao usuário

MO baseada em Pareto

Busca por um conjunto de soluções não-dominadas

Retorna soluções não-dominadas ao usuário

Usuário escolhe a solução de seu interesse

Perspectiva Histórica

Primeiros algoritmos (agregação de funções)

Schaffer (1985) – VEGA Kursawe (1990) –VOES

Clássicos

Fonseca and Fleming (1993) – MOGA Srinivas and Deb (1994) – NSGA Horn, Nafpliotis and Goldberg (1994) – NPGA

Elitistas

Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2 Deb and co-authors (2000) – NSGA-II Knowles and Corne (2000) – PAES, PESA

Incorporação de preferências

Fleisher (2003) – Simulating Annealing Zitzler and Künzli, (2004) – IBEA Emmerich et al. (2005) – SMS-EMOA Zitzler et al. (2008) – SPAM

O que muda em relação a um AG tradicional?

Algoritmos Evolucionários Multiobjetivos

- Quando se fala em MOEAs, queremos:
 - Guiar a busca na direção do fronte de Pareto

Fitness

Algoritmos Evolucionários Multiobjetivos

DC

Manter um conjunto diverso de soluções não-dominadas

Estimar a densidade

Não deixar que soluções não dominadas sejam perdidas

Elitismo

Algoritmos Evolucionários Multiobjetivos

- Cálculo da fitness e seleção
- 3 esquemas principais de seleção:
 - Seleção por Pareto cálculo da fitness baseado no conceito de dominância de Pareto- várias abordagens
 - Seleção de Objetivos "por Troca" (Switching objectives) a cada seleção, um objetivo diferente é considerado como fitness
 - Seleção por Agregação com parâmetros variados cada objetivo recebe um peso, mas esse peso varia de indivíduo para indivíduo dentro de uma mesma geração

Perspectiva Histórica

Primeiros algoritmos (agregação de funções)

Schaffer (1985) – VEGA Kursawe (1990) –VOES

Clássicos

Fonseca and Fleming (1993) – MOGA Srinivas and Deb (1994) – NSGA Horn, Nafpliotis and Goldberg (1994) – NPGA

Elitistas

Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2 Deb and co-authors (2000) – NSGA-II Knowles and Corne (2000) – PAES, PESA

Incorporação de preferências

Fleisher (2003) – Simulating Annealing Zitzler and Künzli, (2004) – IBEA Emmerich et al. (2005) – SMS-EMOA Zitzler et al. (2008) – SPAM

Algoritmos Clássicos

- MOGA (Fonseca e Fleming 1993) FFGA
 - Propõe um rank baseado em Pareto
 - Utiliza niching para manter diversidade
- O ranking de um indivíduo é igual ao número de indivíduos na população pelos quais ele é dominado + 1
- Atribui um valor de fitness através de interpolação
- A fitness final é calculada utilizando fitness sharing de todos os indivíduos com o mesmo ranking

Algoritmos Clássicos

Step 1- Ranking Function

FO(Front 1) > FO(Front 2) > FO(Front 3)

→ Step 2- Sharing

$$FO_i' = \frac{FO_i}{m_i'}$$

M_i é o número de indivíduos no fronte i

Perspectiva Histórica

Primeiros algoritmos (agregação de funções)

Schaffer (1985) – VEGA Kursawe (1990) –VOES

Clássicos

Fonseca and Fleming (1993) – MOGA Srinivas and Deb (1994) – NSGA Horn, Nafpliotis and Goldberg (1994) – NPGA

Elitistas

Zitzler and Thiele (1999) – SPEA, (2001) – SPEA2 Deb and co-authors (2000) – NSGA-II

Knowles and Corne (2000) – PAES, PESA

Incorporação de preferências

Fleisher (2003) – Simulating Annealing Zitzler and Künzli, (2004) – IBEA Emmerich et al. (2005) – SMS-EMOA Zitzler et al. (2008) – SPAM

Leitura Recomendada

- SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization, E. Zitzler and K. Giannakoglou and D. Tsahalis and J. Periaux and K. Papailiou and T. Fogarty, 2002.
- A fast and elitist multiobjective genetic algorithm: NSGA-II, K Deb, A Pratap, S Agarwal, T Meyarivan, Evolutionary Computation, IEEE Transactions on 6 (2), 182-197

Tópicos em Computação Evolucionária Otimização Multi-objetiva

Gisele L. Pappa

