Deep Learning - 2

H M Sabbir Ahmad
Phd, Systems Engineering.
09/12/2024

The need for *shift invariance*

- In many problems the *location* of a pattern is not important
 - Only the presence of the pattern
- Conventional MLPs are sensitive to the location of the pattern
 - Moving it by one component results in an entirely different input that the MLP won't recognize
- Requirement: Network must be *shift invariant*

BOSTON UNIVERSITY

11

Modelling Series

- In many situations one must consider a *series* of inputs to produce an output
 - Outputs too may be a series
- Examples: ..

What did I say?

"To be" or not "to be"??

- Speech Recognition
 - Analyze a series of spectral vectors, determine what was said
- Note: Inputs are sequences of vectors. Output is a classification result

These are classification and prediction problems

- Consider a sequence of inputs
 - Input vectors
- Produce one or more outputs
- This can be done with neural networks
 - Obviously

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything by simple boxes
 - Each box actually represents an entire layer with many units

Representational shortcut

- Input at each time is a *vector*
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything by simple boxes
 - Each box actually represents an entire layer with many units

Representational shortcut

- Input at each time is a vector
- Each layer has many neurons
 - Output layer too may have many neurons
- But will represent everything as simple boxes

Boston University School/eoll Earo Impose actually represents an entire layer with many units

The stock prediction problem...

To invest or not to invest?

Stock market

 Must consider the series of stock values in the past several days to decide if it is wise to invest today

> BOSTON UNIVERSITY

Finite-response model

- This is a finite response system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

- This is a *finite response* system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, \dots, X_{t-N})$$

- This is a *finite response* system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

- This is a *finite response* system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

- This is a *finite response* system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

- This is a *finite response* system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

- This is a *finite response* system
 - Something that happens today only affects the output of the system for N days into the future
 - *N* is the *width* of the system

$$Y_t = f(X_t, X_{t-1}, ..., X_{t-N})$$

Finite-response model

- Something that happens today only affects the output of the system for N days into the future
 - Predictions consider N days of history
- To consider more of the past to make predictions, you must increase the "history" considered by the system

Finite-response

- Problem: Increasing the "history" makes the network more complex
 - No worries, we have the CPU and memory
 - Or do we?

Systems often have long-term dependencies

- Longer-term trends
 - Weekly trends in the market
 - Monthly trends in the market
 - Annual trends
 - Though longer historic tends to affect us less than more recent events..

An alternate model for infinite response systems:

the state-space model

$$h_t = f(x_t, h_{t-1})$$
$$y_t = g(h_t)$$

- h_t is the *state* of the network
- Need to define initial state h_{-1}
- The state an be arbitrarily complex

An alternate model for infinite response systems:

the state-space model

$$h_t = f(x_t, h_{t-1})$$
$$y_t = g(h_t)$$

- h_t is the *state* of the network
 - State summarizes information about the entire past
 - Model directly embeds the memory in the state
- Need to define initial state h____
- This is a fully recurrent neural network
 - Or simply a recurrent neural network

The simple state-space model

- The state (green) at any time is determined by the input at that time, and the state at the previous time
- An input at t=0 affects outputs forever Boston University School/college name here
- Also known as a recurrent neural net

Single hidden layer RNN

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

BOSTON UNIVERSITY

Multiple recurrent layer RNN

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

Multiple recurrent layer RNN

• We can also have skips..

A more complex state

- All columns are identical
- An input at t=0 affects outputs forever

Or the network may be even more complicated

- Shades of NARX
- All columns are identical
- An input at t=0 affects outputs forever

 Boston University School/college name here

The simplest structures are most popular

- Recurrent neural network
- All columns are identical
- An input at t=0 affects outputs forever

A Recurrent Neural Network

- Simplified models often drawn
- The loops imply recurrence

The detailed version of the simplified representation

Boston University School/college name here

Slide credit: Bhiksha Raj

Multiple recurrent layer RNN

Slide credit: Bhiksha Raj

Multiple recurrent layer RNN

Slide credit: Bhiksha Raj

Equations

 $\mathbf{h}^{(1)}(-1) = part\ of\ network\ parameters$

• Computation:

$$h^{(1)}(t) = f_1 (W^{(1)}X(t) + W^{(11)}h^{(1)}(t-1) + b^{(1)})$$

$$Y(t) = f_2 (W^{(2)}h^{(1)}(t) + b^{(2)})$$

• The recurrent state activation f_1 () is typically tanh()

Equations

Computation:

$$h^{(1)}(t) = f_1(W^{(1)}X(t) + W^{(11)}h^{(1)}(t-1) + b^{(1)})$$

$$Y(t) = f_2(W^{(2)}h^{(1)}(t) + b^{(2)})$$

• The recurrent state activation f_1 () is typically tanh()

Equations

$$h^{(1)}(-1)$$
 = part of network parameters

 $h^{(2)}(-1) = part \ of \ network \ parameters$

$$\mathbf{h}^{(1)}(t) = f_1 (\mathbf{W}^{(01)} \mathbf{X}(t) + \mathbf{W}^{(11)} \mathbf{h}^{(1)}(t-1) + \mathbf{b}^{(1)})$$

$$\boldsymbol{h}^{(2)}(t) = f_2 \big(\boldsymbol{W}^{(12)} \boldsymbol{h}^{(1)}(t) + \boldsymbol{W}^{(02)} \boldsymbol{X}(t) + \boldsymbol{W}^{(22)} \boldsymbol{h}^{(2)}(t-1) + \boldsymbol{b}^{(2)} \big)$$

$$Y(t) = f_3 (\mathbf{W}^{(23)} \mathbf{h}^{(2)}(t) + \mathbf{W}^{(13)} \mathbf{h}^{(1)}(t) + \mathbf{b}^{(3)})$$

Variants on recurrent nets

- 1: Conventional MLP
- 2: Sequence *generation*, e.g. image to caption
- 3: Sequence based *prediction or classification*, e.g. Speech recognition, text classification

Variants

- 1: Delayed sequence to sequence, e.g. machine translation
- 2: Sequence to sequence, e.g. stock problem, label prediction
- Etc...

The End

Thanks for your attention.

I would be glad if you have any question.

