Introduction to Machine Learning Hierarchical Clustering and Large Data Set Clustering

Andres Mendez-Vazquez

January 26, 2023

Outline

- Hierarchical Clustering
 - Definition
 - Rasic Ideas

Agglomerative Algorithms Introduction

- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets Introduction

- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN Density Based Notion of Clusters
 - Bevond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - lacktriangle Finding ϵ and MinPts

Outline

Hierarchical Clustering

- Definition
- Basic Idea

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
- Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Concepts

Hierarchical Clustering Algorithms

They are quite different from the previous clustering algorithms.

Concepts

Hierarchical Clustering Algorithms

They are quite different from the previous clustering algorithms.

Actually

They produce a hierarchy of clusterings.

Dendrogram

Hierarchical Clustering

The clustering is obtained by cutting the **dendrogram** at a desired level:

• Each connected component forms a cluster.

Outline

Hierarchical Clustering

- Definition
- Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
- Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Delisity Based No
- Beyond K-NN Idea
 Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

Two Main Types

Agglomerative Algorithms.

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

- Agglomerative Algorithms.
 - Start with each item being a single cluster.

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - 2 Eventually all items belong to the same cluster.

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - 2 Eventually all items belong to the same cluster.
- ② Divisive Algorithms

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - Eventually all items belong to the same cluster.
- Oivisive Algorithms
 - Start with all items belong to the same cluster.

At each step t

A new clustering is obtained based on the clustering produced at the previous step $t-1\,$

- Agglomerative Algorithms.
 - Start with each item being a single cluster.
 - Eventually all items belong to the same cluster.
- Oivisive Algorithms
 - Start with all items belong to the same cluster.
 - Eventually each item forms a cluster on its own.

Remark

With hierarchical methods, divisions or fusions, once made

- They are irrevocable
 - ► Agglomerative algorithm has joined two individuals they cannot subsequently be separated.

Remark

With hierarchical methods, divisions or fusions, once made

- They are irrevocable
 - ► Agglomerative algorithm has joined two individuals they cannot subsequently be separated.
 - ▶ A divisive algorithm has made a split it cannot be undone.

Remark

With hierarchical methods, divisions or fusions, once made

- They are irrevocable
 - Agglomerative algorithm has joined two individuals they cannot subsequently be separated.
 - ▶ A divisive algorithm has made a split it cannot be undone.

As Kaufman and Rousseeuw (1990) colourfully comment (Similar to Forward Feature Selection)

• "A hierarchical method suffers from the defect that it can never repair what was done in previous steps."

Therefore

Given the previous ideas

It is necessary to define the concept of nesting!!!

Therefore

Given the previous ideas

It is necessary to define the concept of nesting!!!

After all given a divisive and agglomerative procedure

Nested Clustering

Definition

① A clustering \Re_i containing k clusters is said to be nested in the clustering \Re_{i+1} , which contains r < k clusters, if each cluster in \Re_i , it is a subset of a set in \Re_{i+1} .

Nested Clustering

Definition

- **1** A clustering \Re_i containing k clusters is said to be nested in the clustering \Re_{i+1} , which contains r < k clusters, if each cluster in \Re_i , it is a subset of a set in \Re_{i+1} .
- ② At least one cluster at \Re_i is a proper subset of a set in \Re_{i+1} .

Nested Clustering

Definition

- **1** A clustering \Re_i containing k clusters is said to be nested in the clustering \Re_{i+1} , which contains r < k clusters, if each cluster in \Re_i , it is a subset of a set in \Re_{i+1} .
- **2** At least one cluster at \Re_i is a proper subset of a set in \Re_{i+1} .

This is written as

 $\Re_i \sqsubset \Re_{i+1}$ (1)

We have

The following $set\{x_1, x_2, x_3, x_4, x_5\}.$

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

With the following structures

• $\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

With the following structures

- $\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$
- $\Re_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\}$

We have

The following set $\{x_1, x_2, x_3, x_4, x_5\}$.

With the following structures

- $\Re_1 = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$
- $\Re_2 = \{\{x_1, x_3, x_4\}, \{x_2, x_5\}\}$

Again

Hierarchical Clustering produces a hierarchy of clusterings!!!

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Initial State

ullet You have N clusters each containing an element of the data X.

Initial State

- ullet You have N clusters each containing an element of the data X.
 - ▶ At each step i, you have an \Re_i structure with N-i.

Initial State

- ullet You have N clusters each containing an element of the data X.
 - ▶ At each step i, you have an \Re_i structure with N-i.
 - ▶ Then, a new clustering structure \Re_{i+1} is generated.

Initial State

- ullet You have N clusters each containing an element of the data X.
 - ▶ At each step i, you have an \Re_i structure with N-i.
 - ▶ Then, a new clustering structure \Re_{i+1} is generated.

Thus

In that way...

We have

At each step, we have that each cluster \Re_i is a proper subset of a cluste in \Re_i or

$$\Re_i \sqsubset \Re_{i+1} \tag{2}$$

The Basic Algorithm for Agglomerative

For this

ullet We have a function $d\left(C_i,C_j\right)$ defined in all pair of cluster to measure similarity or dissimilarity.

The Basic Algorithm for Agglomerative

For this

- We have a function $d(C_i, C_j)$ defined in all pair of cluster to measure similarity or dissimilarity.
- t denotes the current level of the hierarchy.

The Basic Algorithm

We have

Initialization

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- 4 Repeat:

- Initialization
- **2** Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- Repeat:

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- Repeat:
- 0 t = t + 1
- Find one pair of clusters

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- Repeat:
- 0 t = t + 1
- Find one pair of clusters $(C_r,C_s) \text{ in } \Re_{t-1} \text{ such that} \\ d(C_i,C_j) = \max, \min \text{ of a similarity} \\ \text{ or dissimilarity function}$

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- Repeat:
- 0 t = t + 1
- Find one pair of clusters $(C, C) \text{ in } \Re$
 - (C_r, C_s) in \Re_{t-1} such that $d(C_i, C_i) = \max, \min$ of a similarity
 - or dissimilarity function
 - over all pairs

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- Repeat:
- 0 t = t + 1
- Find one pair of clusters $(C_r,C_s) \text{ in } \Re_{t-1} \text{ such that } \\ d(C_i,C_j) = \max,\min \text{ of a similarity}$
 - or dissimilarity function
 - over all pairs
- Until all vectors lay in a single cluster

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- Repeat:
- 0 t = t + 1
- Find one pair of clusters $(C_r,C_s) \text{ in } \Re_{t-1} \text{ such that } \\ d(C_i,C_j) = \max,\min \text{ of a similarity}$
 - or dissimilarity function
 - over all pairs
- Until all vectors lay in a single cluster

Additionally

Note the following

"We can say that if two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings."

Additionally

Note the following

"We can say that if two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings."

Thus

$$\Re_0 \sqsubset \Re_1 \sqsubset \Re_2 \sqsubset ... \Re_{N-1} \sqsubset \Re_N$$

(3)

Additionally

Note the following

"We can say that if two vectors come together into a single cluster at level t of the hierarchy, they will remain in the same cluster for all subsequent clusterings."

Thus

 $\Re_0 \sqsubset \Re_1 \sqsubset \Re_2 \sqsubset ... \Re_{N-1} \sqsubset \Re_N$

(3)

Which Enforces

The nesting property!!!

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Set

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Beyond K-NN Idea
 Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
- Complexity
- lacktriangle Finding ϵ and MinPts

Two Categories of Agglomerative Algorithms

There are two

Two Categories of Agglomerative Algorithms

There are two

- Matrix Theory Based.
- @ Graph Theory Based.

Outline

- - Definition
 - Basic Ideas

Agglomerative Algorithms

- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters

 - Beyond K-NN Idea Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \bigcirc Finding ϵ and MinPts

In Matrix Theory Based

Dissimilarity Matrix

As the name says, they are based in dissimilarity matrix $P_0=P\left(X\right)$ of $N\times N$.

In Matrix Theory Based

Dissimilarity Matrix

As the name says, they are based in dissimilarity matrix $P_0=P\left(X\right)$ of $N\times N$.

Merging Process

At each merging the matrix is reduced by one level $\Rightarrow P_t$ becomes a $N-t\times N-t$ matrix.

Matrix Updating Algorithmic Scheme (MUAS)

Initialization

Cinvestay

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
 - $P_0 = P(X)$
- Repeat

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
 - $P_0 = P(X)$
- Repeat
- 0 t = t + 1

Matrix Updating Algorithmic Scheme (MUAS)

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
- Repeat
- t = t + 1
- Find one pair of clusters

 (C_r, C_s) in \Re_{t-1} such that

- Initialization
- 2 Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
- Repeat
- t = t + 1
- Find one pair of clusters

$$(C_r,C_s)$$
 in \Re_{t-1} such that

$$d(C_i, C_j) = \min_{r,s=1,\dots,N,r\neq s} d(C_r, C_s)$$

- Initialization
- **2** Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
 - $P_0 = P(X)$
- t = 0
- Repeat
- t = t + 1
- Find one pair of clusters

$$(C_r,C_s)$$
 in \Re_{t-1} such that

$$d(C_i, C_i) = \min_{r,s=1,\dots,N,r\neq s} d(C_r, C_s)$$

8 Define
$$C_q = C_i \cup C_i, \Re_t = \Re_{t-1} - \{C_i, C_i\} \cup C_q$$

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
 - $P_0 = P(X)$
- Repeat
- t = t + 1
- Find one pair of clusters

$$(C_r,C_s)$$
 in \Re_{t-1} such that

$$d(C_i, C_i) = \min_{r,s=1,\dots,N,r\neq s} d(C_r, C_s)$$

- **o** Define $C_q = C_i \cup C_j, \Re_t = \Re_{t-1} \{C_i, C_j\} \cup C_q$
- **9** Define P_t by **STRATEGY**

- Initialization
- Choose $\Re_0 = \{Ci = \{x_i\} | i = 1, ..., N\}$
- $P_0 = P(X)$
- 0 t = 0
- S Repeat
- t = t + 1
- Find one pair of clusters

$$(C_r,C_s)$$
 in \Re_{t-1} such that

$$d(C_i, C_i) = \min_{r,s=1,\dots,N,r\neq s} d(C_r, C_s)$$

3 Define
$$C_q = C_i \cup C_i, \Re_t = \Re_{t-1} - \{C_i, C_i\} \cup C_q$$

- 9 Define P_t by **STRATEGY**
- Until all vectors lay in a single cluster

STRATEGY

Delete the two rows and columns that correspond to the merged clusters.

STRATEGY

- Delete the two rows and columns that correspond to the merged clusters.
- ② Add new row and a new column that contain the distances between the newly formed cluster and the old (unaffected at this level) clusters.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + ...$$
$$bd(C_i, C_j) + c |d(C_i, C_s)| - d(C_j, C_s)|$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + ...$$
$$bd(C_i, C_j) + c |d(C_i, C_s) - d(C_j, C_s)|$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

The single link algorithm.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + ...$$
$$bd(C_i, C_j) + c |d(C_i, C_s) - d(C_j, C_s)|$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- 2 The complete link algorithm.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + ...$$
$$bd(C_i, C_j) + c |d(C_i, C_s) - d(C_j, C_s)|$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- The complete link algorithm.
- 3 The weighted pair group method average.

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + ...$$
$$bd(C_i, C_j) + c |d(C_i, C_s) - d(C_j, C_s)|$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- The complete link algorithm.
- 3 The weighted pair group method average.
- The unweighted pair group method centroid.

Distance Used in These Schemes

It has been pointed out that there is only one general distance for these algorithms

$$d(C_q, C_s) = a_i d(C_i, C_s) + a_j d(C_j, C_s) + ...$$
$$bd(C_i, C_j) + c |d(C_i, C_s) - d(C_j, C_s)|$$

Where different values of a_i, a_j, b and c correspond to different choices of the dissimilarity measures.

Using this distance is possible to generate several algorithms

- The single link algorithm.
- The complete link algorithm.
- The weighted pair group method average.
- The unweighted pair group method centroid.
- 6 Etc...

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Density based Noi
 - Beyond K-NN Idea
 Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
- Complexity
- lacktriangle Finding ϵ and MinPts

Single Linkage

Let G and \overline{H} represent two such group sets

Single Linkage

Let G and H represent two such group sets

We have that

• Single linkage (SL) agglomerative clustering takes the intergroup dissimilarity to be that of the closest (**Least Dissimilar**) pair:

$$d_{SL}\left(G,H\right) = \min_{\boldsymbol{x}_i \in G, \boldsymbol{x}_j \in H} d\left(\boldsymbol{x}_i, \boldsymbol{x}_j\right)$$

Single Linkage

Let G and H represent two such group sets

We have that

• Single linkage (SL) agglomerative clustering takes the intergroup dissimilarity to be that of the closest (**Least Dissimilar**) pair:

$$d_{SL}\left(G,H\right) = \min_{\boldsymbol{x_i} \in G, \boldsymbol{x_i} \in H} d\left(\boldsymbol{x_i}, \boldsymbol{x_j}\right)$$

This is also known as

• This is also often called the nearest-neighbor technique.

For example

The single linkage clustering algorithm

This is obtained if we set $a_i = 1/2$, $a_j = 1/2$, b = 0, c = -1/2

For example

The single linkage clustering algorithm

This is obtained if we set $a_i = 1/2$, $a_i = 1/2$, b = 0, c = -1/2

Thus, we have

$$d\left(C_{q},C_{s}\right)=\min\left\{ d\left(C_{i},C_{s}\right),d\left(C_{j},C_{s}\right)\right\}$$

What clusters are produced?

First

- Distance Between closest elements in clusters
- ullet It produces long chains $x_{i_1}
 ightarrow x_{i_2}
 ightarrow x_{i_3}
 ightarrow x_{i_4}
 ightarrow x_{i_5}$

Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

$$d_{\min}\left(C_{i}, C_{j}\right) = \min_{\boldsymbol{x} \in C_{i}, \boldsymbol{y} \in C_{j}} \left\|\boldsymbol{x} - \boldsymbol{y}\right\|^{2}$$

Another Example of a Single Link Dissimilarity

This can be created using the following cluster distance

$$d_{\min}\left(C_{i},C_{j}\right)=\min_{\boldsymbol{x}\in C_{i},\boldsymbol{y}\in C_{j}}\left\|\boldsymbol{x}-\boldsymbol{y}\right\|^{2}$$

Nearest Neighborhood (Single Linkage)

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Set

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Complete linkage (CL)

Complete Linkage agglomerative clustering (furthest-neighbor technique)

 It takes the intergroup dissimilarity to be that of the furthest (most dissimilar) pair

$$d_{CL}\left(G,H\right) = \max_{\boldsymbol{x}_{i} \in G, \boldsymbol{x}_{i} \in H} d\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$$

- Distance between farthest elements in the clusters.
- ► Forces, Spherical clusters with consistent diameter.

Example

This can be created using the following cluster distance

$$d_{\max}\left(C_{i}, C_{j}\right) = \max_{\boldsymbol{x} \in C_{i}, \boldsymbol{y} \in C_{j}} \left\|\boldsymbol{x} - \boldsymbol{y}\right\|^{2}$$

Outline

- - Definition
 - Basic Ideas

Agglomerative Algorithms

- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters

 - Beyond K-NN Idea Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Finally, a compromise

Group average (GA)

• Group average (GA) clustering uses the average dissimilarity between the groups

$$d_{CL}\left(G,H\right) = \frac{1}{N_{G}N_{H}} \sum_{\boldsymbol{x_{i}} \in G} \sum_{\boldsymbol{x_{j}} \in H} d\left(\boldsymbol{x_{i}},\boldsymbol{x_{j}}\right)$$

Finally, a compromise

Group average (GA)

• Group average (GA) clustering uses the average dissimilarity between the groups

$$d_{CL}\left(G,H\right) = \frac{1}{N_{G}N_{H}} \sum_{\boldsymbol{x_{i}} \in G} \sum_{\boldsymbol{x_{j}} \in H} d\left(\boldsymbol{x_{i}},\boldsymbol{x_{j}}\right)$$

Something Notable

- Average of all the pairwise distances
- Less affected by outliers

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage

Graph Based Algorithms

- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Delisity Based Not
 - Beyond K-NN Idea
 Cluster and Noise Definition
 - Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Consider the following

lacksquare Each node in the graph G correspond to a vector.

Consider the following

- lacksquare Each node in the graph G correspond to a vector.
- ② Cluster are formed by connecting nodes.

Consider the following

- lacksquare Each node in the graph G correspond to a vector.
- 2 Cluster are formed by connecting nodes.
- \odot Certain property, h(k), needs to be respected.

Consider the following

- lacktriangle Each node in the graph G correspond to a vector.
- Cluster are formed by connecting nodes.
- **3** Certain property, h(k), needs to be respected.

Common Properties: Node Connectivity

- \bullet The ${\bf node}$ ${\bf connectivity}$ of a connected subgraph is the largest integer k
 - ightharpoonup All pairs of nodes are joined by at least k paths having no nodes in common.

Common Properties: Edge Connectivity

The **edge connectivity** of a connected subgraph is the largest integer k such that all pairs of nodes are joined by at least k paths having no edges in common.

Common Properties: Edge Connectivity

The **edge connectivity** of a connected subgraph is the largest integer k such that all pairs of nodes are joined by at least k paths having no edges in common.

Common Properties: Node Degree

The **degree** of a connected subgraph is the largest integer k such that each node has at least k incident edges.

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{d\left(x,y\right) \middle| Property\right\} \tag{5}$$

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{d\left(x,y\right) \middle| Property\right\}$$
 (5)

Property

The G subgraph defined by $C_r \cup C_s$ is

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{d\left(x,y\right) \middle| Property\right\} \tag{5}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

It is connected and either

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{d\left(x,y\right) | Property\right\} \tag{5}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

- It is connected and either
 - It has the property h(k) or

The function

$$d_{h(k)}\left(C_{r},C_{s}\right) = \min_{x \in C_{r}, y \in C_{s}} \left\{d\left(x,y\right) \middle| Property\right\} \tag{5}$$

Property

The G subgraph defined by $C_r \cup C_s$ is

- It is connected and either
 - **1** It has the property h(k) or
 - It is complete

Examples

Again

Single Link Algorithm

Examples

Again

- Single Link Algorithm
- Complete Link Algorithm

Examples

Again

- Single Link Algorithm
- 2 Complete Link Algorithm

There is other style of clustering

• Clustering Algorithms Based on the Minimum Spanning Tree

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms

Improving the Complexity

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Delisity based Not
- Beyond K-NN Idea
 Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

• At each level t, there are N-t clusters.

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

- At each level t, there are N-t clusters.
- ullet Thus at level t+1 the total number of pairs compared .

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

- At each level t, there are N-t clusters.
- ullet Thus at level t+1 the total number of pairs compared .

$$\begin{pmatrix} N-t \\ 2 \end{pmatrix} = \frac{(N-t)(N-t-1)}{2} \tag{6}$$

Problems with Schema of Agglomerative Algorithms

First - Related to Nesting Property

No way to recover from a "poor" clustering that may have occurred in an earlier level of the hierarchy.

Second, if we use a Naive Scheme - Full comparison at each level

- ullet At each level t, there are N-t clusters.
- ullet Thus at level t+1 the total number of pairs compared .

$$\begin{pmatrix} N-t \\ 2 \end{pmatrix} = \frac{(N-t)(N-t-1)}{2} \tag{6}$$

Total Number of pairs compared are

$$\sum_{t=0}^{N-1} \binom{N-t}{2} \tag{7}$$

Thus

We have that

$$\sum_{t=0}^{N-1} \binom{N-t}{2} = \sum_{k=1}^{N} \binom{k}{2} = \frac{(N-1)N(N+1)}{6}$$
 (8)

Thus

We have that

$$\sum_{t=0}^{N-1} {N-t \choose 2} = \sum_{k=1}^{N} {k \choose 2} = \frac{(N-1)N(N+1)}{6}$$
 (8)

Thus

The complexity of this schema is $O\left(N^3\right)$

Thus

We have that

$$\sum_{t=0}^{N-1} \binom{N-t}{2} = \sum_{k=1}^{N} \binom{k}{2} = \frac{(N-1)N(N+1)}{6}$$
 (8)

Thus

The complexity of this schema is $O\left(N^3\right)$

However

You still depend on the nature of d.

Then

We need to be able to improve the complexity of Aggregation

• From the Metric Algorithms and Data structures, there are possible solutions...

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Density based Not
- lacksquare Beyond $K ext{-NN Idea}$
- Cluster and Noise DefinitionSustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

The idea of using a middle point

In order to establish a better performance

- Every time, we join two clusters:
 - ▶ We can then use a representative for such join in the agglomeration

The idea of using a middle point

In order to establish a better performance

- Every time, we join two clusters:
 - ▶ We can then use a representative for such join in the agglomeration

Therefore, we need a data structure to be able to support these updates

• We may use a Kd-tree...

In this case, we assume a group average

We need a Kd-tree supporting insertions

• By Logarithmic Rebuilding...

In this case, we assume a group average

We need a Kd-tree supporting insertions

• By Logarithmic Rebuilding...

This was born from the fact that

• It is necessary to modify the Kd-tree dynamically to maintain certain performance.

Example

In order to keep performance, Logarithmic Rebuilding

We maintain at most $h = O(\log N)$ Kd-trees

- $T_0, T_1, ..., T_{h-1}$ such that the i^{th} $(i \in [1, h])$ tree stores precisely 2^i points.
- Each point is stored in only one Kd-tree.

Procedure

We have the following procedure

- ullet To insert a new point p, we
 - **1** Identify the smallest $i \geq 0$ such that T_i is empty
 - ② Destroy all of $T_0, T_1, ..., T_{i-1}$. Collect all the points there into a set S.
 - **3** Construct T_i in $S \cup \{p\}$
 - ▶ Note $|T_i| = 2^i$

Amortized Analysis

Construction of T_i

ullet It takes $O\left(2^i\log 2^i\right)$ time

Amortized Analysis

Construction of T_i

• It takes $O\left(2^i \log 2^i\right)$ time

Charge the cost on the 2^i points in T_i

• Each of which is amortized $O(\log 2^i) = O(\log N)$ time.

Amortized Analysis

Construction of T_i

• It takes $O(2^i \log 2^i)$ time

Charge the cost on the 2^i points in T_i

 \bullet Each of which is amortized $O\left(\log 2^i\right) = O\left(\log N\right)$ time.

Each point can be charged only $O\left(\log n\right)$ when moving to a bigger tree

ullet Amortized insertion time per point $O\left(\log^2 N\right)$

Querying the Structure

Simply

ullet Search all of the h trees $T_0, T_1, ..., T_{h-1}$

Querying the Structure

Simply

• Search all of the h trees $T_0, T_1, ..., T_{h-1}$

Query Time

$$O\left(\sqrt{2^{h-1}} + \sqrt{2^{h-2}} + \dots + \sqrt{2^0} + k\right) = O\left(\sqrt{N} + k\right)$$

• Similar to the search on the original Kd-tree.

What if we avoid comparing all the elements using a Kd-Tree

Generation of the Structure

ullet $O\left(N\log^2N\right)$ to get the data structure with space $O\left(N\right)$

What if we avoid comparing all the elements using a Kd-Tree

Generation of the Structure

 \bullet $O\left(N\log^2N\right)$ to get the data structure with space $O\left(N\right)$

Query

- We get to query in $O\left(\sqrt{N}+k\right)$ in the worst case scenario.
 - ▶ Here *k* is the number of elements being reported.

Therefore

At Each Level

At each level calculate the new centroid

- Insert it
 - ▶ Inserting takes $O(\log^2 N)$, but How many insertions?

We have...

Therefore

• We have total number of insertions assuming pair of them:

$$\frac{N}{2} + \frac{N}{2^2} + \dots + \frac{N}{2^{\log n}} = N\left(\frac{1 - \frac{1}{N}}{\frac{1}{2}}\right) - N = *$$

We have...

Therefore

• We have total number of insertions assuming pair of them:

$$\frac{N}{2} + \frac{N}{2^2} + \dots + \frac{N}{2^{\log n}} = N\left(\frac{1 - \frac{1}{N}}{\frac{1}{2}}\right) - N = *$$

Therefore

$$* = 2(N-1) - N = N-2$$

Final Complexity

Then, we have

The Clustering takes

$$O\left(N\log^2N\right) + O\left(N^{3/2} + Nk\right) = O\left(N^{3/2}\right)$$

Then, we have

The Clustering takes

$$O\left(N\log^2N\right) + O\left(N^{3/2} + Nk\right) = O\left(N^{3/2}\right)$$

Given that you need to build a tree for each centroid structure

$$N\log^{2} N + \frac{1}{2}N\log^{2} \frac{N}{2} + \dots + \frac{1}{2^{\log N}}\log^{2} \frac{N}{2^{\log^{2}}} = O\left(N\log^{2} N\right)$$

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Delisity Based Noi
- Beyond K-NN Idea
- Cluster and Noise DefinitionSustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Divisive Algorithms

Reverse Strategy

• Start with a single cluster split it iteratively.

Divisive Algorithms

Reverse Strategy

Start with a single cluster split it iteratively.

They are lees common than agglomerative methods

- However, Kaufman and Rousseeuw (1990) pointed out:
 - ▶ This is revealed when a divisive method is applied

Algorithm PROBLEM what is wrong!!!

- Initialization
- Choose $\Re_0 = \{X\}$

Algorithm PROBLEM what is wrong!!!

- $P_0 = P(X)$

Initialization

- t = 0
- Repeat
- 0 t = t + 1
- For i = 1 to t
- **8** Given a partition C_{t-1} , i
- Generate all possible clusters

Algorithm PROBLEM what is wrong!!!

```
Initialization
         Choose \Re_0 = \{X\}
     P_0 = P(X)
        t = 0
Repeat
        t = t + 1
0
         For i = 1 to t
8
                    Given a partition C_{t-1}, i
9
                    Generate all possible clusters
1
         next i
•
         Find the pair C_{t-1,i}^1, C_{t-1,i}^2 that
              maximize g
```

Algorithm PROBLEM what is wrong!!!

- Initialization Choose $\Re_0 = \{X\}$ $P_0 = P(X)$ t = 0Repeat t = t + 10 For i = 1 to t8 Given a partition C_{t-1} , i9 Generate all possible clusters 1 next i• Find the pair $C_{t-1,j}^1, C_{t-1,j}^2$ that maximize g12 Create
 - $\Re_t = \Re_{t-1} \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$

Algorithm PROBLEM what is wrong!!!

- Initialization
- Choose $\Re_0 = \{X\}$
- $P_0 = P(X)$
- t = 0
- Repeat
- t = t + 1
- 0 For i = 1 to t8
- 9
- Generate all possible clusters
- 1 next i
- Find the pair $C_{t-1,j}^1, C_{t-1,j}^2$ that
 - maximize g
- 12 Create

$$\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$$

Given a partition C_{t-1} , i

Until all vectors lie in a single cluster

Again, we need to be smart

- Initialization
- Choose $\Re_0 = \{X\}$

Again, we need to be smart

```
Initialization
```

Choose
$$\Re_0 = \{X\}$$

$$P_0 = P(X)$$

Repeat

$$t = t + 1$$

Given a partition
$$C_{t-1}$$
, i

9 Generate all possible clusters

Again, we need to be smart

```
Initialization
         Choose \Re_0 = \{X\}
     P_0 = P(X)
        t = 0
Repeat
        t = t + 1
         For i = 1 to t
8
                    Given a partition C_{t-1}, i
9
                    Generate all possible clusters
1
         next i
•
         Find the pair C_{t-1,i}^1, C_{t-1,i}^2 that
              maximize g
```

Again, we need to be smart

- Initialization
- Choose $\Re_0 = \{X\}$
- $P_0 = P(X)$
- t = 0
- Repeat

- **Given a partition** C_{t-1}, i
- 9 Generate all possible clusters
- $\mathbf{0}$ next i
- - maximize g
- Create

$$\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$$

Again, we need to be smart

- Initialization
- Choose $\Re_0 = \{X\}$
- $P_0 = P(X)$
- Sepeat
- Мереат
 - t = t + 1
- $oldsymbol{3}$ Given a partition C_{t-1}, i
- Generate all possible clusters
- $\mathbf{0}$ next i
- - $\mathsf{maximize}\ g$
- Create

$$\Re_t = \Re_{t-1} - \{C_{t-1,j}\} \cup \left\{C_{t-1,j}^1, C_{t-1,j}^2\right\}$$

Until all vectors lie in a single cluster

Outline

- - Definition
 - Rasic Ideas

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

- Introduction
- Possible Complexity Monothetic Divisive Methods

- Introduction
 - Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
 - Complexity
 - DBSCAN
 - Density Based Notion of Clusters
 - - Beyond K-NN Idea Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \bigcirc Finding ϵ and MinPts

Possible Complexity

This is computationally demanding

- ullet If all $2^{N_t^i}-1$ possible division are considered:
 - With N_t^i is the number of elements in the cluster.

Possible Complexity

This is computationally demanding

- ullet If all $2^{N_t^i}-1$ possible division are considered:
 - With N_t^i is the number of elements in the cluster.

However, for data consisting of d binary variables

- Relatively simple and computationally efficient methods exists
 - Monothetic divisive methods

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
 - Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Delisity based Not
- Beyond K-NN Idea
 Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Monothetic Divisive Methods

They are based on

- These generally divide clusters according to the presence or absence of each of the d variables.
 - ▶ At each stage cluster members contain or not certain attributes.

Monothetic Divisive Methods

They are based on

- These generally divide clusters according to the presence or absence of each of the d variables.
 - ▶ At each stage cluster members contain or not certain attributes.

Format of the data

The data is in the form of a two-mode (binary) matrix.

Then, if we define

f_k = It is the number of individuals having k^{th} attribute

• We can define the following homogeneity criterion (Information Content):

$$C = dN \log N - \sum_{k=0}^{d} \{ f_k \log f_k - (n - f_k) \log (n - f_k) \}$$

Then, if we define

f_k = It is the number of individuals having k^{th} attribute

• We can define the following homogeneity criterion (Information Content):

$$C = dN \log N - \sum_{k=1}^{n} \{ f_k \log f_k - (n - f_k) \log (n - f_k) \}$$

Therefore, if we split the original cluster into two groups A and B

• The reduction in C is $C_X - C_A - C_B$

Then, if we define

f_k = It is the number of individuals having k^{th} attribute

• We can define the following homogeneity criterion (Information Content):

$$C = dN \log N - \sum_{k=1}^{a} \{ f_k \log f_k - (n - f_k) \log (n - f_k) \}$$

Therefore, if we split the original cluster into two groups A and B

• The reduction in C is $C_X - C_A - C_B$

Therefore

ullet The ideal set of clusters would have members with identical attributes and C equal to zero.

Therefore

Clusters are split at each stage

 \bullet According to possession of the attribute which leads to the greatest reduction in C.

Therefore

Clusters are split at each stage

ullet According to possession of the attribute which leads to the greatest reduction in C.

Other possible splitting can be done using

• Association Analysis (Ecology Term)

For Example

For one pair of variables, v_i and $v_j \in [0, 1]$

	v_i	
v_j	1	0
1	f_{11}	f_{10}
0	f_{01}	f_{00}

• f_{ij} = the number of times v_i and v_j coincide or not.

For Example

For one pair of variables, v_i and $v_j \in [0, 1]$

	v_i	
v_j	1	0
1	f_{11}	f_{10}
0	f_{01}	f_{00}

ullet $f_{ij}=$ the number of times v_i and v_j coincide or not.

Some common measures of association

$$m_1(\mathbf{f}) = |f_{11}f_{00} - f_{10}f_{01}|$$

 $m_2(\mathbf{f}) = [f_{11}f_{00} - f_{10}f_{01}]^2$

69 / 130

Therefore

The split at each stage

- It is made according to the presence or absence of the attribute:
 - ▶ Thus, its association with the others is a maximum!!!

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

There are several

The CURE Algorithm

- The CURE Algorithm
- The DBSCAN Algorithm

- The CURE Algorithm
- The DBSCAN Algorithm
- The ROCK Algorithm

- The CURE Algorithm
- The DBSCAN Algorithm
- The ROCK Algorithm
- The Chameleon Algorithm

- The CURE Algorithm
- The DBSCAN Algorithm
- The ROCK Algorithm
- The Chameleon Algorithm
- The BIRCH Algorithm

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
 - Shrinking Process
 - CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Basic Idea

• Each cluster C_i has a set of representatives

$$R_{C_i} = \left\{ m{x}_1^{(i)}, m{x}_2^{(i)}, ..., m{x}_K^{(i)}
ight\}$$
 with $K > 1$.

Basic Idea

• Each cluster C_i has a set of representatives

$$R_{C_i} = \left\{ m{x}_1^{(i)}, m{x}_2^{(i)}, ..., m{x}_K^{(i)} \right\}$$
 with $K > 1$.

What is happening

 By using multiple representatives for each cluster, the CURE algorithm tries to "capture" the shape of each one.

Basic Idea

• Each cluster C_i has a set of representatives

$$R_{C_i} = \left\{ m{x}_1^{(i)}, m{x}_2^{(i)}, ..., m{x}_K^{(i)} \right\}$$
 with $K > 1$.

What is happening

 By using multiple representatives for each cluster, the CURE algorithm tries to "capture" the shape of each one.

However

• In order to avoid taking into account irregularities (For example, outliers) in the border of the cluster.

Basic Idea

• Each cluster C_i has a set of representatives

$$R_{C_i} = \left\{ m{x}_1^{(i)}, m{x}_2^{(i)}, ..., m{x}_K^{(i)} \right\}$$
 with $K > 1$.

What is happening

 By using multiple representatives for each cluster, the CURE algorithm tries to "capture" the shape of each one.

However

- In order to avoid taking into account irregularities (For example, outliers) in the border of the cluster.
 - ► The initially chosen representatives are "pushed" toward the mean of the cluster.

Therfore

This action is known

• As "Shrinking" in the sense that the volume of space "defined" by the representatives is shrunk toward the mean of the cluster.

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
- Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- ComplexityDBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

Then

 $\bullet \quad \text{For } i=2 \text{ to } \min \left\{ K, n_C \right\}$

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

Then

- **①** For i = 2 to $\min \{K, n_C\}$
- Oetermine $oldsymbol{y} \in C R_C$ that lies farthest from the points in R_C

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

Then

- For i = 2 to $\min \{K, n_C\}$
- ② Determine $oldsymbol{y} \in C R_C$ that lies farthest from the points in R_C
- $R_C = R_C \cup \{ \boldsymbol{y} \}$

Given a cluster C

• Select the point $x \in C$ with the maximum distance from the mean of C and set $R_C = \{x\}$ (the set of representatives).

Then

- For i = 2 to $\min \{K, n_C\}$
- ② Determine $oldsymbol{y} \in C R_C$ that lies farthest from the points in R_C
- $R_C = R_C \cup \{ \boldsymbol{y} \}$

Shrinking Process

Do the Shrinking

• Shrink the points ${\boldsymbol x} \in R_C$ toward the mean ${\boldsymbol m}_C$ in C by a factor $\alpha.$

Shrinking Process

Do the Shrinking

ullet Shrink the points $oldsymbol{x} \in R_C$ toward the mean $oldsymbol{m}_C$ in C by a factor lpha.

Actually

$$\boldsymbol{x} = (1 - \alpha) \, \boldsymbol{x} + \alpha \boldsymbol{m}_C \, \forall \boldsymbol{x} \in R_C$$

Resulting set R_C

Thus

• The resulting set R_C is the set of representatives of C.

Resulting set R_C

Thus

• The resulting set R_C is the set of representatives of C.

Thus the distance between two cluster is defined as

$$d\left(C_{i}, C_{j}\right) = \min_{\boldsymbol{x} \in R_{C_{i}}, \boldsymbol{y} \in R_{C_{i}}} d\left(\boldsymbol{x}, \boldsymbol{y}\right)$$

(10)

Outline

- - Definition
 - Rasic Ideas

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

- Introduction
- Possible Complexity
 - Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE) Shrinking Process
 - CURE Algorithm
- Complexity DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

 $Output: \ \mathcal{C} \ clusters$

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

Output : C clusters

 $oldsymbol{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oldsymbol{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- 2 $C_i.closest$ stores the cluster closest to C_i .

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oxed{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- 2 $C_i.closest$ stores the cluster closest to C_i .
- **3** All the input points are inserted into a K-d tree T.

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oxed{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- \bigcirc $C_i.closest$ stores the cluster closest to C_i .
- **3** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i .closest).

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- \bigcirc $C_i.closest$ stores the cluster closest to C_i .
- **3** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i .closest).
- **1** While size(Q) > C

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oxed{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- 2 $C_i.closest$ stores the cluster closest to C_i .
- **1** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i .closest).
- **1** While size(Q) > C
- **6** Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oxed{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- 2 $C_i.closest$ stores the cluster closest to C_i .
- **3** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and $C_i.closest$).
- While size(Q) > C
- Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- $\emph{ Then compute the new representative points for the merged cluster } C_k = C_i \cup C_j.$

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oxed{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- \bigcirc $C_i.closest$ stores the cluster closest to C_i .
- **3** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i .closest).
- While size(Q) > C
- Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- $\textbf{ Then compute the new representative points for the merged cluster } C_k = C_i \cup C_j.$
- **8** Also remove C_i and C_j from T and Q.

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oxed{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- \bigcirc $C_i.closest$ stores the cluster closest to C_i .
- **3** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i .closest).
- While size(Q) > C
- Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
- 8 Also remove C_i and C_j from T and Q.
- Also for all the clusters $C_h \in Q$, update $C_h.closest$ and relocate C_h .

Basic Algorithm

Input : A set of points $X = \{x_1, x_2, ..., x_N\}$

- $oldsymbol{0}$ For every cluster $C_i = \{x_i\}$ store $C_i.m_C = \{x_i\}$ and $C_i.R_C = \{x_i\}$
- 2 $C_i.closest$ stores the cluster closest to C_i .
- **1** All the input points are inserted into a K-d tree T.
- Insert each cluster into the heap Q. (Clusters are arranged in increasing order of distances between C_i and C_i .closest).
- While size(Q) > C
- Remove the top element of Q, C_i and merge it with $C_j == C_i.closest$.
- Then compute the new representative points for the merged cluster $C_k = C_i \cup C_j$.
- Also remove C_i and C_j from T and Q.
- Also for all the clusters $C_h \in Q$, update $C_h.closest$ and relocate C_h .
- $\mathbf{0}$ insert C_k into Q

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- lacktriangle Finding ϵ and MinPts

Complexity of Cure

Too Prohibitive

 $O\left(N^2 \log_2 N\right)$

(11)

Possible Solution

CURE does the following

• The technique adopted by the CURE algorithm, in order to reduce the computational complexity, is that of *random sampling*.

Possible Solution

CURE does the following

• The technique adopted by the CURE algorithm, in order to reduce the computational complexity, is that of *random sampling*.

Actually

That is, a sample set X' is created from X, by choosing randomly N' out of the N points of X.

Possible Solution

CURE does the following

• The technique adopted by the CURE algorithm, in order to reduce the computational complexity, is that of *random sampling*.

Actually

That is, a sample set X^\prime is created from X, by choosing randomly N^\prime out of the N points of X.

However, one has to ensure that the probability of missing a cluster of \boldsymbol{X} , due to this sampling

This can be guaranteed if the number of points N^\prime is sufficiently large.

Having estimated N'

CURE forms a number of $p=\frac{N}{N'}$ sample data sets by successive random samples.

Having estimated N'

CURE forms a number of $p=\frac{N}{N'}$ sample data sets by successive random samples.

In other words

ullet X is partitioned randomly in p subsets.

Having estimated N'

CURE forms a number of $p=\frac{N}{N'}$ sample data sets by successive random samples.

In other words

ullet X is partitioned randomly in p subsets.

For this a parameter q is selected

- \bullet Then, the points in each partition p are clustered until $\frac{N'}{q}$ clusters are formed.
- The distance between the closest pair of clusters to be merged in the next iteration step exceeds a user-defined threshold.

Once this has been finished

A second clustering pass is done

One the at most $p\frac{N'}{q} = \frac{N}{q}$ clusters from all the subsets.

Once this has been finished

A second clustering pass is done

One the at most $p\frac{N'}{q} = \frac{N}{q}$ clusters from all the subsets.

The Goal to apply the merging procedure described previously to all (at most) $\frac{N}{a}$

 \bullet Then, we end up with the required final number, C, of clusters.

Once this has been finished

A second clustering pass is done

One the at most $p\frac{N'}{a} = \frac{N}{a}$ clusters from all the subsets.

The Goal to apply the merging procedure described previously to all (at most) $\frac{N}{a}$

ullet Then, we end up with the required final number, C, of clusters.

Finally

ullet We have the following strategy to assign to $oldsymbol{x} \in X$ to a cluster.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE

• It is sensitive to parameter selection.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE

- It is sensitive to parameter selection.
 - Specifically K must be large enough to capture the geometry of each cluster.

First

A random sample of representative points from each of the ${\cal C}$ clusters is chosen.

Then

Then, based on the previous representatives the point \boldsymbol{x} is assigned to the cluster that contains the representative closest to it.

Experiments reported by Guha et al. show that CURE

- It is sensitive to parameter selection.
 - Specifically K must be large enough to capture the geometry of each cluster.
 - \blacktriangleright In addition, N' must be higher than a certain percentage $\thickapprox 2.5\%$ of N.

87 / 130

Not only that

The value of α (Shrinking Factors) affects also CURE

• Small values, CURE looks similar than a Minimum Spanning Tree clustering.

Not only that

The value of α (Shrinking Factors) affects also CURE

- Small values, CURE looks similar than a Minimum Spanning Tree clustering.
- Large values, CURE resembles an algorithm with a single representative.

Not only that

The value of α (Shrinking Factors) affects also CURE

- Small values, CURE looks similar than a Minimum Spanning Tree clustering.
- Large values, CURE resembles an algorithm with a single representative.

The worst-case execution time for CURE increases with the sample size N^\prime

$$O\left(N^{\prime 2}\log_2 N^{\prime}\right) \tag{12}$$

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

_Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

90 / 130

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable

• It is a density-based clustering algorithm:

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable

- It is a density-based clustering algorithm:
 - ► Given a set of points in some space, it groups together points that are closely packed together.

Density-based spatial clustering of applications with noise (DBSCAN)

• It is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.

Something Notable

- It is a density-based clustering algorithm:
 - ► Given a set of points in some space, it groups together points that are closely packed together.
 - ▶ Marking as outliers points that lie alone in low-density regions.

Furthermore

Something Notable

• In 2014, the algorithm was awarded the test of time award at the leading data mining conference, KDD.

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
 - Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

Looking at clusters

We notice easily those clusters of points and noise points

We are doing something quite human

The main reason why we recognize the clusters

• We use the higher densities to recognize the clusters

We are doing something quite human

The main reason why we recognize the clusters

• We use the higher densities to recognize the clusters

Definition (ϵ -neighborhood of a point)

• Given a distance dist : $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^+$, the ϵ -Neighborhood of a point x, denoted $N_{\epsilon}(x)$, is defined as

$$N_{\epsilon}\left(oldsymbol{x}
ight)=\left\{oldsymbol{y}\in\mathbb{R}^{d}|\mathsf{dist}\left(oldsymbol{x},oldsymbol{y}
ight)\leq\epsilon
ight\}$$

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Bevond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - \bigcirc Finding ϵ and MinPts

Why not to use the idea of K-NN?

We could use our well know K-NN method

ullet Thus, we naively could require for each point in a cluster there at least a minimum number (MinPts) of points in the neighborhood of such point

Why not to use the idea of K-NN?

We could use our well know K-NN method

ullet Thus, we naively could require for each point in a cluster there at least a minimum number (MinPts) of points in the neighborhood of such point

However, you have something more complex

- Points inside of the cluster (Core points)
- Points on the border of the cluster (Border points)

Example

Therefore

In General

• An ϵ -neighborhood of a border point contains significantly less points than an ϵ -neighborhood of a core point.

Therefore

In General

• An ϵ -neighborhood of a border point contains significantly less points than an ϵ -neighborhood of a core point.

Therefore

• MinPts varies in the presence of noise

Definition (Directly Density-Reachable)

ullet A point x is directly density reachable from a point y w.r.t. ϵ , MinPts if

Definition (Directly Density-Reachable)

- ullet A point x is directly density reachable from a point y w.r.t. ϵ , MinPts if
 - $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$

Definition (Directly Density-Reachable)

- ullet A point x is directly density reachable from a point y w.r.t. ϵ , MinPts if
 - $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$
 - $|N_{\epsilon}(y)| \ge MinPts$ (Core point condition)

Definition (Directly Density-Reachable)

- \bullet A point ${\pmb x}$ is directly density reachable from a point ${\pmb y}$ w.r.t. ϵ , MinPts if
 - $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$
 - $|N_{\epsilon}(y)| \geq MinPts$ (Core point condition)

Remarks

• Directly density-reachable is symmetric for pairs of core points.

Definition (Directly Density-Reachable)

- ullet A point x is directly density reachable from a point y w.r.t. ϵ , MinPts if
 - $\mathbf{0} \ \boldsymbol{x} \in N_{\epsilon} \left(\boldsymbol{y} \right)$
 - $|N_{\epsilon}(y)| \geq MinPts$ (Core point condition)

Remarks

- Directly density-reachable is symmetric for pairs of core points.
- It is not symmetric if one core point and one border point are involved.

Example

Density-reachable

Now, Density Reachable

Definition (Density-Reachable)

 \bullet A point x is density-reachable from a point y wrt. ϵ and MinPts if there is a chain of points:

$$oldsymbol{p}_1, oldsymbol{p}_2, ..., oldsymbol{p}_k$$
 with $oldsymbol{p}_1 = oldsymbol{x}, oldsymbol{p}_k = oldsymbol{y}$

such that p_{i+1} is directly density-reachable from p_i .

Therefore

Density-Reachability is a canonical extension of **Direct Density-Reachability**

• This relation is transitive, but it is not symmetric.

Then

Remark

- ullet Two border points of the same cluster C are possibly not density reachable from each other:
 - ▶ The core point condition might not hold for both of them.

Then

Remark

- ullet Two border points of the same cluster C are possibly not density reachable from each other:
 - ▶ The core point condition might not hold for both of them.

However

ullet There must be a core point in C from which both border points of C are density-reachable.

Density-Connected

Definition (Density-Connected)

- ullet A point $oldsymbol{x}$ is density-connected to a point $oldsymbol{y}$ w.r.t. ϵ and MinPts:
 - if there is a point o such that both, x and y are density-reachable from o w.r.t. ϵ and MinPts.

Density-Connected

Definition (Density-Connected)

- ullet A point $oldsymbol{x}$ is density-connected to a point $oldsymbol{y}$ w.r.t. ϵ and MinPts:
 - if there is a point o such that both, x and y are density-reachable from o w.r.t. ϵ and MinPts.

Example

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation

• Also for density reachable points, the relation of density-connectivity is also reflexive.

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation

• Also for density reachable points, the relation of density-connectivity is also reflexive.

We are ready to define the concept of Cluster

• From the point of view density-based

Symmetry in Density-Connectivity

Density-connectivity is a symmetric relation

 Also for density reachable points, the relation of density-connectivity is also reflexive.

We are ready to define the concept of Cluster

From the point of view density-based

Remark

- Intuitively, a cluster is defined to be a set of density-connected points which is maximal w.r.t. density-reachability.
- ullet Noise is simply the set of points in \mathbb{R}^d not belonging to any of its clusters.

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
 - Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity
- DBSCAN
 - Density Based Notion of Clusters
 - Beyond K-NN Idea
 - Cluster and Noise Definition
 - Sustaining the Algorithm
 - The DBSCAN Algorithm
 - Complexity
 - lacktriangle Finding ϵ and MinPts

Cluster Definition

Definition

- A cluster C w.r.t. ϵ and MinPts is a non-empty subset of \mathbb{R}^d satisfying the following conditions:
 - **1** $\forall x, y$: if $y \in C$ and x is density-reachable from y w.r.t. ϵ and MinPts then $x \in C$ (Maximality).
 - ② $\forall x, y \in C$, x is density-connected to y w.r.t. ϵ and MinPts (Connectivity).

Noise Definition

Definition

- Let $C_1,...,C_k$ be the clusters in \mathbb{R}^d w.r.t. parameters ϵ_i and $MinPts_i$, i=1,...,k.
 - ▶ Then we define the noise as the set of points in \mathbb{R}^d not belonging to any cluster C_i :

$$Noise = \{ \boldsymbol{x} \in \mathbb{R}^d | \forall i : \boldsymbol{x} \notin C_i \}$$

Remarks

Something Notable

ullet Since C contains at least one point $oldsymbol{x}.$

Remarks

Something Notable

- ullet Since C contains at least one point $oldsymbol{x}.$
- ullet x must be density-connected to itself via some point o.
 - ightharpoonup which may be equal to x.

Remarks

Something Notable

- Since C contains at least one point x.
- ullet x must be density-connected to itself via some point o.
 - ightharpoonup which may be equal to x.
- Thus, at least o has to satisfy the core point condition
 - Consequently, ϵ -Neighborhood of o contains at least MinPts

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity

DBSCAN

- Density Based Notion of Clusters
- lacksquare Beyond $K ext{-NN Idea}$
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- igcup Finding ϵ and MinPts

Supporting the idea of cluster

Lemma - Reachability

• Let y be a point in \mathbb{R}^d and $|N_{\epsilon}(y)| \geq MinPts$. Then

$$O = \left\{ oldsymbol{o} | oldsymbol{o} \in \mathbb{R}^d ext{ and } oldsymbol{o} ext{ is density-reachable from } oldsymbol{y} ext{ w.r.t. } \epsilon ext{ and } MinPts
ight\}$$

is a cluster w.r.t. ϵ and MinPts.

Given the definition of O

 \bullet We have the first part of the definition of Cluster w.r.t. ϵ and MinPts.

Given the definition of O

ullet We have the first part of the definition of Cluster w.r.t. ϵ and MinPts.

Given the that two points $oldsymbol{o}_1, oldsymbol{o}_2 \in O$ are density-reachable from $oldsymbol{y}$

• o_1, o_2 are density connected.

Given the definition of O

 \bullet We have the first part of the definition of Cluster w.r.t. ϵ and MinPts.

Given the that two points $oldsymbol{o}_1, oldsymbol{o}_2 \in O$ are density-reachable from $oldsymbol{y}$

• o_1, o_2 are density connected.

Then

• O is a cluster w.r.t. ϵ and MinPts.

Intuition

Given the parameters ϵ and MinPts, we can discover a cluster

• First, choose an arbitrary point from \mathbb{R}^d satisfying the core point condition as a seed.

Intuition

Given the parameters ϵ and MinPts, we can discover a cluster

• First, choose an arbitrary point from \mathbb{R}^d satisfying the core point condition as a seed.

Then

 Retrieve all points that are density-reachable from the seed obtaining the cluster containing the seed.

However, it is not enough

We need something else

ullet Given that it is not obvious that a cluster C w.r.t. ϵ and MinPts is uniquely determined by any of its core points.

However, it is not enough

We need something else

ullet Given that it is not obvious that a cluster C w.r.t. ϵ and MinPts is uniquely determined by any of its core points.

However

ullet Each point in C is density-reachable from any of the core points of C.

However, it is not enough

We need something else

ullet Given that it is not obvious that a cluster C w.r.t. ϵ and MinPts is uniquely determined by any of its core points.

However

- \bullet Each point in C is density-reachable from any of the core points of C.
- ullet A cluster C contains exactly the points which are density-reachable from an arbitrary core point of C.

Then

Lemma - Cluster Equality to O

- Let C be a cluster w.r.t. ϵ and MinPts. and let ${\pmb y}$ be any point in C with $|N_{\epsilon}({\pmb y})| \ge MinPts$
 - ► Then C equals to the set

$$O = \left\{ oldsymbol{o} | oldsymbol{o} \in \mathbb{R}^d ext{ and } oldsymbol{o} ext{ is density-reachable from } oldsymbol{y} ext{ w.r.t. } \epsilon ext{ and } MinPts
ight\}$$

Given $\boldsymbol{x} \in C$

We have two cases

Given $x \in C$

We have two cases

Case 1

 $m{x}$ is a Border point that is density reachable from $m{y}$ with $|N_{\epsilon}\left(m{y}
ight)| \geq MinPts$

Given $\boldsymbol{x} \in C$

We have two cases

Case 1

 $m{x}$ is a Border point that is density reachable from $m{y}$ with $|N_{\epsilon}\left(m{y}
ight)| \geq MinPts$

Then

• $x \in O$

Now

Case 2

• \boldsymbol{x} is a Core point then $|N_{\epsilon}\left(\boldsymbol{x}\right)| \geq MinPts$

Now

Case 2

• x is a Core point then $|N_{\epsilon}(x)| \geq MinPts$

Therefore

 \bullet By Definition ${\pmb x}$ is density reachable from any ${\pmb y}$ w.r.t. ϵ and MinPts.

Now

Case 2

• x is a Core point then $|N_{\epsilon}(x)| \geq MinPts$

Therefore

 \bullet By Definition \boldsymbol{x} is density reachable from any \boldsymbol{y} w.r.t. ϵ and MinPts.

Therefore

• $C \subset O$ the other contention is similar

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

3 Divisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- \bigcirc Finding ϵ and MinPts

DBSCAN Algorithm

$\mathsf{DBSCAN}(X, \epsilon, MinPts)$

- 2 for i = 1 to X.size
- $\mathbf{x} = SetOfPoints.get(i)$
- if x.ClId is UNCLASSIFIED:
- If ExpandCluster($SetPoints, x, ClusterId, \epsilon, MinPts$)
- ClusterId = nextId (ClusterId)

- 2 If seeds.size < MinPts Then
- $egin{aligned} egin{aligned} SetPoints.changeClId (Point, NOISE) \end{aligned}$
- 4 return FALSE

- 2 If seeds.size < MinPts Then
 - $oldsymbol{3}$ $SetPoints.changeClId\left(Point,NOISE
 ight)$
- 4 return FALSE
- else
 - SetPoints.changeClId (seeds, ClId)
- seeds.delete (Point)

- 2 If seeds.size < MinPts Then
 - $egin{aligned} egin{aligned} SetPoints.changeClId\left(Point,NOISE
 ight) \end{aligned}$
- 4 return FALSE
- else
 - SetPoints.changeClId (seeds, ClId)
- seeds.delete (Point)
- while $seeds \neq NULL$:
- 0 currentP = seeds.first()
- $result = SetOfPoints.regionQuery(currentP, \epsilon)$

 $seed = SetOfPoints.regionQuery(Point, \epsilon)$ If seeds.size < MinPts Then SetPoints.changeClId(Point, NOISE)return FALSE else SetPoints.changeClId (seeds, ClId) seeds.delete(Point)8 while $seeds \neq NULL$: currentP = seeds.first()10 $result = SetOfPoints.regionQuery(currentP, \epsilon)$ • if result.size() > MinPts then for i = 1 to result size:

```
seed = SetOfPoints.regionQuery(Point, \epsilon)
   If seeds.size < MinPts Then
        SetPoints.changeClId(Point, NOISE)
        return FALSE
   else
6
        SetPoints.changeClId (seeds, ClId)
        seeds.delete(Point)
8
        while seeds \neq NULL:
9
             currentP = seeds.first()
10
            result = SetOfPoints.regionQuery(currentP, \epsilon)
•
             if result.size() > MinPts then
12
                 for i = 1 to result.size:
B
                      resultP = result.qet(i)
14
                      if resultP.ClId \in \{NOISE, UNCLASSSIFIED\} and
                                      resultP.ClId = UNCLASSSIFIED
                          seeds.append(resultP)
```

- $seed = SetOfPoints.regionQuery(Point, \epsilon)$ If seeds.size < MinPts Then SetPoints.changeClId(Point, NOISE)return FALSE else 6 SetPoints.changeClId (seeds, ClId) seeds.delete(Point)8 while $seeds \neq NULL$: 9 currentP = seeds.first()10 $result = SetOfPoints.regionQuery(currentP, \epsilon)$ • if result.size() > MinPts then 12 for i = 1 to result.size: **B** resultP = result.qet(i)14 if $resultP.ClId \in \{NOISE, UNCLASSSIFIED\}$ and resultP.ClId = UNCLASSSIFIED◍ seeds.append(resultP)
 - SetPoints.changeClId (resultP, ClId)
 - $seeds.delete\left(currentP\right)$

- $seed = SetOfPoints.regionQuery(Point, \epsilon)$ If seeds.size < MinPts Then
 - SetPoints.changeClId(Point, NOISE)
- return FALSE
- else
- 6 SetPoints.changeClId (seeds, ClId)
- seeds.delete(Point)
- 8 while $seeds \neq NULL$:
- 9 currentP = seeds.first()
- 10 $result = SetOfPoints.regionQuery(currentP, \epsilon)$
- if result.size() > MinPts then
- 12 for i = 1 to result.size:
- **B** resultP = result.qet(i)
- 14 if $resultP.ClId \in \{NOISE, UNCLASSSIFIED\}$ and resultP.ClId = UNCLASSSIFIED
- ◍ seeds.append(resultP)
- SetPoints.changeClId (resultP, ClId)
- seeds.delete(currentP)
- return TRUF

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
- Two Categories of Agglomerative Algorithms
- Matrix Based Algorithms
- Single Linkage
- Complete Linkage
- Group Average Linkage
- Graph Based Algorithms
- Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
- Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- Complexity

DBSCAN

- Density Based Notion of Clusters
- lacksquare Beyond $K ext{-NN Idea}$
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity
- ullet Finding ϵ and MinPts

Complexity

xis a core point

• It can be implemented using kd-trees

Complexity

$oldsymbol{x}$ is a core point

• It can be implemented using kd-trees

Thus, given the complexities of Kd-trees

	Average	Worst case
Space	$O\left(n\right)$	$O\left(n\right)$
Search	$O(\log n)$	$O\left(n\right)$
Insert	$O(\log n)$	$O\left(n\right)$
Delete	$O(\log n)$	$O\left(n\right)$

The average Complexity of DBSCAN

- \bullet $O\left(dn\log n\right)$ to build the structure for query using a heapsort or mergesort
- $O\left(\left\{n^{1-\frac{1}{d}}+m\right\}\right)$ when m is the number of reported elements and d is the dimensionality of the points.

Outline

- Hierarchical Clustering
 - Definition
 - Basic Ideas

Agglomerative Algorithms

- Introduction
 - Two Categories of Agglomerative Algorithms
 - Matrix Based Algorithms
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
- Graph Based Algorithms
 - Problems with Agglomerative Algorithms
 - Improving the Complexity

Oivisive Algorithms

- Introduction
- Possible Complexity
 - Monothetic Divisive Methods

4 Algorithms for Large Data Sets

- Introduction
- Clustering Using REpresentatives (CURE)
- Shrinking Process
- CURE Algorithm
- CORE Algoritr
 Complexity

DBSCAN

- Density Based Notion of Clusters
- Beyond K-NN Idea
- Cluster and Noise Definition
- Sustaining the Algorithm
- The DBSCAN Algorithm
- Complexity Finding ϵ and MinPts

There is a problem

How do we estimate?

ullet ϵ and MinPts.

There is a problem

How do we estimate?

 \bullet ϵ and MinPts.

In the original paper

 \bullet They develop a heuristic to determine the parameters ϵ and MinPts of the "thinnest"

Heuristic

Let d be the distance of a point $oldsymbol{x}$

ullet to its k^{th} nearest neighbor.

Heuristic

Let d be the distance of a point x

ullet to its k^{th} nearest neighbor.

Then, the d-neighborhood of x contains exactly

• k+1 points for almost all points x.

Heuristic

Let d be the distance of a point x

ullet to its k^{th} nearest neighbor.

Then, the d-neighborhood of x contains exactly

• k+1 points for almost all points x.

The d-neighborhood of $oldsymbol{x}$ contains more than k+1 points

ullet Only if several points have exactly the same distance d from ${m x}$ which is quite unlikely.

Then

Furthermore

ullet Changing k for a point in a cluster does not result in large changes of d.

Then

Furthermore

 \bullet Changing k for a point in a cluster does not result in large changes of d.

This only happens if the k^{th} nearest neighbors of $oldsymbol{x}$

- for k = 1, 2, 3, ... are located approximately
 - on a straight line which is in general not true for a point in a cluster.

Then, we have

For a given k we define a function k-dist from \mathbb{R}^d to \mathbb{R}

ullet Mapping each point to the distance from its k^{th} nearest neighbor.

Then, we have

For a given k we define a function k-dist from \mathbb{R}^d to \mathbb{R}

ullet Mapping each point to the distance from its k^{th} nearest neighbor.

When sorting the points of the database in descending order of their k-dist values

• The graph of this function gives some hints concerning the density distribution in the database.

Example of 4-dist

For more in the heuristic look at the paper

 "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise" by Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

For more in the heuristic look at the paper

 "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise" by Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

However, the problem is the same

• Finding the correct number of hyperparameters for getting the correct number of clusters

For more in the heuristic look at the paper

 "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise" by Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu

However, the problem is the same

• Finding the correct number of hyperparameters for getting the correct number of clusters

More advanced methods of clustering exist

- Spectral Clustering Using the Graph Structure
- Dirichlet Processes Based in the Generation of a Distribution
- etc