

Observed Relations between Intra-Individual and Real-World Outcomes in a Sample of Autistic and Non-Autistic Youth

Kathryn M. Hauschild^{1,2}, Talena C. Day², Elliot G. Keenan², David A. Brocker¹, Brianna L. Gonzalez¹, Christian C. Luhmann², & Matthew D. Lerner^{2,3}

¹ Farmingdale State College, ² Stony Brook University, ³ Drexel University

BACKGROUND

- Research has begun to characterize the **relations between intra-individual and "real world" outcomes** for autistic and non-autistic adults (Morrison et al., 2020).
- However, very little research has directly linked these levels of analysis for autistic youth.
- An understanding of these relations is crucial for the development of precise and ecologically valid social intervention programs for autistic youth.

OBJECTIVE

To examine the relations between emotion recognition, mental state understanding, and ecologically valid measures of social behavior in a sample of autistic and non-autistic youth.

	Autistic $(n = 86)$		Non-Autistic $(n = 81)$		p
					-
Sex (Male n, %)	69	80.0%	51	63.0%	.01
Race (White n, %)	71	82.6%	73	90.1%	.16
Ethnicity (Hispanic n, %)	6	6.98%	10	12.3%	.24
Chronological Age in Years (M, SD)	14.3	2.04	13.6	1.80	.02
KBIT-2 Composite Score (M, SD)	100	16.8	107	14	.004
ADOS-2 CS (M, SD)	7.78	2.06	3.31	2.62	<.001
FER Number of Errors (M, SD)	12.3	5.34	11.6	5.51	.42
VER Number of Errors (M, SD)	15.2	5.34	12.5	5.10	.001
ToM Behavioral Accuracy (M, SD)	84.1%	18.2%	92.7%	7.69%	<.001
Peer Sociometric Ratings (M, SD)					
Reciprocated Friendships	.150	.225	.243	.225	.22
Peer Interaction Behaviors (M, SD)					
Positive	15.8	8.22	18.1	8.29	.10
Negative	.152	.588	.061	.324	.25
Low-level	11.6	5.62	11.9	5.34	.79

METHOD

- Autism feature levels were assessed using the Autism Diagnostic Observation Schedule (ADOS-2; Lord et al., 2012) Comparison Score (CS; Gotham et al., 2009; Hus & Lord, 2014).
- Facial emotion recognition (FER) and vocal emotion recognition (VER) were measured using the Diagnostic Analysis of Nonverbal Accuracy, volume 2 (DANVA-2; Nowicki, 2008).
- Theory of Mind (ToM) was assessed using the SELWeb measure of social cognition (Russo-Ponsaran et al., 2019).
- Proportion of **reciprocated friendships** was measured using peer-rated sociometric procedures (Coie et al., 1982) administered by primary teachers in a classroom setting.
- Positive, negative, and low-level peer interaction behaviors were measured by trained coders following a peer interaction assessment (McNair et al., 2023).

Figure 1. Correlations between intra-individual variables (emotion recognition, ToM) and social outcomes (autism feature level, peer interaction behaviors, sociometric-ratings) for Autistic Youth

Figure 2. Correlations between intra-individual variables (emotion recognition, ToM) and social outcomes (autism feature level, peer interaction behaviors, sociometric-ratings) for Non-Autistic Youth

Note. FER = facial emotion recognition; VER = vocal emotion recognition; ToM = Theory of Mind; Rfriend = reciprocated friendships; post = total positive behaviors; negT = total negative behaviors; lowT = total low-level behaviors; poU = positive behaviors during an unstructured activity; posV = positive behaviors during a minimally-structured verbal activity; negU = negative behaviors during an unstructured activity; negV = negative behaviors during a minimally-structured verbal activity; lowU = low-level behaviors during an unstructured activity; lowV = low-level behaviors during a minimally-structured verbal activity. * p < .05; *** p < .01; **** p < .001

RESULTS

CONCLUSIONS

- Results suggest a more complex and subtle relationship between emotion recognition, mental state understanding, and social outcomes than has been previously reported, and which differs between autistic and nonautistic youth.
- While **emotion recognition** (particularly vocal) correlated with social outcomes more strongly for some outcome measures, the overall pattern of effects suggest that **ToM** (mental state understanding) **was more consistently related to outcomes across measures in the autistic sample**, albeit not always in a positive direction.
- **Present findings** not only better elucidate the relation between intra-individual variables and "real world" social outcomes for autistic youth, but also **identify promising targets for the development of individualized social intervention programs.**

REFERENCES

Coie, J. D., Dodge, K. A., & Coppotelli, H. (1982). Dimensions and types of social status: A cross-age perspective. *Developmental psychology*, *18*(4), 557.

Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. *Journal of autism and developmental disorders*, *39*, 693-705. Hus, V., & Lord, C. (2014). The autism diagnostic observation schedule, module 4: revised algorithm and standardized severity scores. *Journal of autism and developmental disorders*, *44*, 1996-2012.

Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (2012). Autism diagnostic observation schedule. *Journal of Autism and Developmental Disorders*.

McNair, M. L., Keenan, E. G., Houck, A. P., & Lerner, M. D. (2023). Seeking contexts that promote neurodiverse social success: Patterns of behavior during minimally-structured interaction settings in autistic and non-autistic youth. *Development and Psychopathology*, 1-16.

Morrison, K. E., DeBrabander, K. M., Jones, D. R., Faso, D. J., Ackerman, R. A., & Sasson, N. J. (2020). Outcomes of real-world social interaction for autistic adults paired with autistic compared to typically developing partners. *Autism*, *24*(5), 1067-1080.

Nowicki, S., & Duke, M. P. (2008). Manual for the receptive tests of the diagnostic analysis of nonverbal accuracy 2 (DANVA2). *Atlanta, GA: Department of Psychology, Emory University*. Russo-Ponsaran, N. M., Lerner, M. D., McKown, C., Weber, R. J., Karls, A., Kang, E., & Sommer, S. L. (2019). Web-based assessment of social—emotional skills in school-aged youth with autism spectrum disorder. *Autism Research*, *12*(8), 1260-1271.

Project funded by the National Institute of Mental Health Grant 1R01MH110585