Preuve par résolution

- Procédure générale pour faire de l'inférence
 - modus ponens et l'instantiation universelle sont des cas particuliers
- Cette procédure est correcte et complète (sous certaine condition, à voir plus tard)
- On aura besoin des outils suivants :
 - la substitution
 - l'unification
 - la transformation sous forme normale conjonctive

Unification

- Soit S = $\{\alpha_1, \alpha_2\}$ une paire de 2 littéraux, on aimerait trouver une substitution θ qui **unifie** α_1 et α_2 , c.-à-d. telle que $\alpha_1\theta = \alpha_2\theta$
 - \bullet ex. : { p(f(x),z), p(y,A) } sont unifiés par $\theta = \{y = f(x), z = A\}$ (A est un constante)

$$p(f(x),z) \theta = p(f(x),A)$$
 et $p(y,A) \theta = p(f(x),A)$

• ex. : { p(f(x),A), p(y,f(w)) } ne sont pas unifiables, puisqu'on ne peut pas substituer la constante A par f(w)

Unificateur le plus général

- Un unificateur θ de S est appelé unificateur le plus général (UPG) de S si pour tout unificateur σ de S, il existe une substitution γ telle que $\sigma = \theta \gamma$
 - ex. : $\theta = \{y = f(x), z = A\}$ est un UPG pour $\{p(f(x),z), p(y,A)\}$ » $p(f(x),z) \theta = p(y,A) \theta = p(f(x),A)$
 - ex. : $\sigma = \{y = f(A), x = A, z = A\}$ est unificateur mais pas UPG pour $\{p(f(x),z), p(y,A)\}$ » $p(f(x),z) \sigma = p(y,A) \sigma = p(f(A),A)$
 - la substitution $y = \{x = A\}$ permet d'obtenir $\sigma = \theta$ $y = \{y = f(A), x = A, z = A\}$
 - aucune substitution γ permet d'obtenir θ = σ γ
- On appelle ensemble de désaccord entre deux littéraux la paire des premiers termes des deux littéraux qui diffèrent (à partir de la gauche)
 - { p(f(x),z), p(y,A) } : I'ensemble de désaccord est { f(x), y }
 - { p(f(x),z), p(f(x),A) } : I'ensemble de désaccord est { z, A }

Unificateur le plus général

Algorithme UNIFICATEUR(S)

- 1. k=1; $\sigma_1 = \epsilon$
- 2. Si σ_k est unificateur pour S,
 Alors retourner σ_k comme UPG de SSinon calculer D_k l'ensemble de désaccord de $S\sigma_k$
- 3. Si il existe une paire (v, t) telle que v est une variable dans D_k qui n'apparaît pas dans t et $\{v = t\}$ est un unificateur pour D_k , alors $\sigma_{k+1} = \sigma_k \{v = t\}$, k=k+1; retourner à 2. Sinon exit; S n'est pas unifiable.

- Trouver l'UPG de p(x, f(x), y) et p(y, z, u)
- Itération k=1
 - 1. $\sigma_1 = \varepsilon = \{\}$ (σ_k est la valeur courante de l'UPG que l'on construit)
 - 2. σ_1 unifie-t-elle p(x, f(x), y) et p(y, z, u)
 - » non: $p(x, f(x), y) \sigma_1 \rightarrow p(x, f(x), y) \neq p(y, z, u) \leftarrow p(y, z, u) \sigma_1$
 - » alors cherche ensemble de désaccord $D_1 = \{x, y\}$
 - 3. Existe-t-il un substitution qui unifie les éléments de D_1
 - **» oui** : $\{x = y\}$ (on aurait aussi pu choisir $\{y = x\}$ à la place)
 - » alors met à jour UPG : $\sigma_2 = \sigma_1 \{x = y\} = \{x = y\}$

- Trouver l'UPG de p(x, f(x), y) et p(y, z, u)
- Itération k=2
 - 1. $\sigma_2 = \{x = y\}$
 - 2. σ_2 unifie-t-elle p(x, f(x), y) et p(y, z, u)
 - » non: $p(x, f(x), y) \sigma_2 \rightarrow p(y, f(y), y) \neq p(y, z, u) \leftarrow p(y, z, u) \sigma_2$
 - » alors cherche ensemble de désaccord $D_2 = \{f(y), z\}$
 - 3. Existe-t-il un substitution qui unifie les éléments de D_2
 - **»** oui : $\{z = f(y)\}$
 - » alors met à jour UPG : $\sigma_3 = \sigma_2 \{z = f(y)\} = \{x = y, z = f(y)\}$

- Trouver l'UPG de p(x, f(x), y) et p(y, z, u)
- Itération k=3
 - 1. $\sigma_3 = \{x = y, z = f(y)\}$
 - 2. σ_3 unifie-t-elle p(x, f(x), y) et p(y, z, u)
 - » non: $p(x, f(x), y) \sigma_3 \rightarrow p(y, f(y), y) \neq p(y, f(y), u) \leftarrow p(y, z, u) \sigma_3$
 - » alors cherche ensemble de désaccord $D_3 = \{y, u\}$
 - 3. Existe-t-il un substitution qui unifie les éléments de D_3
 - **» oui** : $\{y = u\}$ (on aurait aussi pu choisir $\{u = y\}$ à la place)
 - » alors met à jour UPG : $\sigma_A = \sigma_3 \{ y = u \} = \{ x = u, z = f(u), y = u \}$

- Trouver l'UPG de p(x, f(x), y) et p(y, z, u)
- Itération k=4
 - 1. $\sigma_4 = \{x = u, z = f(u), y = u\}$
 - 2. σ_4 unifie-t-elle p(x, f(x), y) et p(y, z, u)
 - » oui: $p(x, f(x), y) \sigma_a \rightarrow p(u, f(u), u) = p(u, f(u), u) \leftarrow p(y, z, u) \sigma_a$
 - » alors on retourne l'UPG σ_{A}

- Trouver l'UPG de p(f(y), x) et p(x, y)
- Itération k=1
 - 1. $\sigma_1 = \varepsilon = \{\}$ (σ_k est la valeur courante de l'UPG que l'on construit)
 - 2. σ_1 unifie-t-elle p(f(y), x) et p(x, y)
 - » non : p(f(y), x) $\sigma_1 \rightarrow p(f(y), x) \neq p(x, y) \leftarrow p(x, y) \sigma_1$
 - » alors cherche ensemble de désaccord $D_1 = \{f(y), x\}$
 - 3. Existe-t-il un substitution qui unifie les éléments de D_1
 - **»** oui : $\{x = f(y)\}$
 - » alors met à jour UPG : $\sigma_2 = \sigma_1 \{x = f(y)\} = \{x = f(y)\}$

- Trouver l'UPG de p(f(y), x) et p(x, y)
- Itération k=2
 - 1. $\sigma_2 = \{x = f(y)\}$
 - 2. σ_2 unifie-t-elle p(f(y), x) et p(x, y)
 - » non : p(f(y), x) $\sigma_2 \rightarrow p(f(y), f(y)) \neq p(f(y), y) \leftarrow p(x, y) \sigma_1$
 - » alors cherche ensemble de désaccord $D_2 = \{f(y), y\}$
 - 3. Existe-t-il un substitution qui unifie les éléments de D_2
 - **» non** : y = f(y) n'est pas valide puisque y apparaît à gauche et à droite
 - » alors retourne faux (n'a pas d'UPG puisque n'est pas unifiable)

Exercices

- Dire si un UPG existe pour les littéraux suivants, et si oui l'identifier

 - ightharpoonup p(x, z) et p(z, f(x))

Exercices

Dire si un UPG existe pour les littéraux suivants, et si oui l'identifier

```
ightharpoonup p(x, f(x)) \text{ et } p(x, y) \Rightarrow \{ y = f(x) \}
```

- $ightharpoonup p(x, z) \text{ et } p(z, f(x)) \Rightarrow \text{n'existe pas}$