Final Project

蕭泓佐 林胤辰 方淑玲 王俊閔

Computational Storage Device (CSD) - SmartSSD

Scale internal bandwidth with # of CSDs

Smart-Infinity

Problem Statement

- Workload: Heterogeneous (GPU+CPU+SSD) mixed precision DL training
- Existing method (storage-offload training) comes at the cost of storage bandwidth bottleneck

Existing Method (ZeRO-Infinity)

Mixed precision training iteration for a layer.

Fig. 1: A conceptual diagram of the storage-offloaded LLM training. Overview of (a) the forward pass, (b) the backward pass, and (c) the update (step) procedure.

Bottleneck Analysis

Existing Method (ZeRO-Infinity)

Scaling node (i.e. PCIe lane) is proposed as the solution in ZeRO-Infinity

→ Smart-Infinity: scale CSDs instead of compute nodes

	1		ABBICBACC MICHIOTY (TD)		GPU-GPU	,			
						Bandwidth	(GB/s)	
I.	Nodes	GPUs	GPU	CPU	NVMe	(GB/s)	GPU	CPU	NVMe
	1	1	0.032	1.5	28.0	N/A	600-900	12.0	12.0
l.	1	16	0.5	1.5	28.0	150-300	600-900	3.0	1.6
I.	4	64	2.0	6.0	112.0	60-100	600-900	3.0	1.6
	16	256	8.0	24.0	448.0	60-100	600-900	3.0	1.6
	64	1024	32.0	96.0	1792.0	60-100	600-900	3.0	1.6
	96	1536	48.0	144.0	2688.0	60-100	600-900	3.0	1.6

(b)

		ZeRO Infinity	1	
GPUs	Data Type	Required	NVMe memory	CPU Memory
1024	Params/Grads	60 GB/s	70 GB/s	70 GB/s
1024	Optimizer States	1500 GB/s	1792 GB/s	4096 GB/s
1024	Activations	4 GB/s	1.75GB/s	4GB/s

Smart Update

- By offloading parameter update to CSDs, we can scale bandwidth with # of CSDs.
- Gradient & Param transfer still goes through CPU-PCIe
 → The CSD scaling upper bound occur when gradient and param transfer become the new bottleneck.

Fig. 4: Update procedure of the storage-offloaded training with (a) baseline [96] and (b) SmartUpdate.

TABLE I
SYSTEM INTERCONNECT TRAFFIC FOR STORAGE-OFFLOADED TRAINING
WITH ADAM OPTIMIZER.

Type	Optimi	zer States	Gradients	
SSD Operation	Read	Write	Read	Write
ZeRO-Inf [96]	6M	6M	2M	2M
SmartUpdate	2M	_	_	2M
SmartComp (c%)	2M	-	-	$c\% \times 2M$

Internal bandwidth Scales
linearly with # of CSDs
(Scale CSDs instead of
compute nodes)

* Gradient and Pavam transfer

Still goes through CPU-PCIe

⇒ The CSD Scaling upper bound

Occur when gradient and

Pavam transfer bocome new

bottleneck.

Environment - System Configuration

Hardware

- 1. NVIDIA RTX 3090-GPU (24GB)
- 16-core Intel I7 12700 CPU
- 3. 128GB RAM
- 4. Samsung SmartSSD

Software

- 1. Ubuntu 20.04 with Linux kernel 5.4.0-164
- 2. CUDA 11.6
- 3. PyTorch 1.13
- 4. DeepSpeed v0.9.3

Environment - Challenges

System Support

- 1. The SmartSSD product line has been discontinued, making it difficult to find systems with compatible configurations or support.
 - \rightarrow We find the compatible system configuration by trial and error.

Cooling

- 1. The SmartSSD is designed for installation in servers with controlled airflow for effective cooling, which makes local installation in a standard PC challenging due to potential overheating.
 - →We use a external fan to cooldown the SmartSSD.

Experiment Result

- As we only have one SmartSSD device we conduct a scalability analysis to verify the result from the paper.
- 2. From configuration 2, we can observe that most time spent during an iteration is in optimizer step.
- 3. From configuration 1 and 2, we can derived that most of the time spent during optimizer step is used in IO not computation.

Scalability Analysis

There are no data-dependencies between each parameter in optimizer step

→ Optimizer step scales linearly with # of CSDs.

For each Parameter w^j

 $(j\ subscript\ dropped\ for\ clarity)$

$$\nu_{t} = \beta_{1} * \nu_{t-1} - (1 - \beta_{1}) * g_{t}$$

$$s_{t} = \beta_{2} * s_{t-1} - (1 - \beta_{2}) * g_{t}^{2}$$

$$\Delta\omega_{t} = -\eta \frac{\nu_{t}}{\sqrt{s_{t} + \epsilon}} * g_{t}$$

$$\omega_{t+1} = \omega_t + \Delta\omega_t$$

Scalability Analysis

Weakly Parallelizable: Scaling upper bounded by PCIe bandwidth

1. FPGA → CPU Communication

Parallelizable: Scale linearly with # of CSDs

- 1. FPGA computation
- 2. NVME→FPGA communication
- 3. FPGA→NVMe communication

Scalability Analysis

$$T_{opt,n} = max(\frac{T_{opt}}{n}, \frac{T_{param_swap}}{min(n, \frac{B_{pcle}}{B_{SSD}})})$$

$$T_{total, n} = T_{opt, n} + T_{fwd} + T_{bwd}$$

n: number of CSDs

 T_{ont} : time of optimizer step using 1 CSD

 T_{fwd} : time of forward pass

 T_{bwd} : time of backward pass

 $T_{\mathit{opt},\,n}$: time of optimizer step using n CSDs

 $T_{\mathit{param_swap}}$: time of swapping in parameters to CPU

 B_{PCIe} : PCIe bandwidth

 B_{SSD} : SSD bandwidth

