Kernel Methods

Lecture 5: Hilbert Schmidt Independence Criterion Thanks to Arthur Gretton, Le Song, Bernhard Schölkopf, Olivier Bousquet

Alexander J. Smola

Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au

Machine Learning Summer School, Taiwan 2006

Course Overview

- Estimation in exponential families
 - Maximum Likelihood and Priors
 - Clifford Hammersley decomposition
- Applications
 - Conditional distributions and kernels
 - Classification, Regression, Conditional random fields
- Inference and convex duality
 - Maximum entropy inference
 - Approximate moment matching
- Maximum mean discrepancy
 - Means in feature space, Covariate shift correction
- 6 Hilbert-Schmidt independence criterion
 - Covariance in feature space
 - ICA, Feature selection

Course Overview

- Estimation in exponential families
 - Maximum Likelihood and Priors
 - Clifford Hammersley decomposition
- Applications
 - Conditional distributions and kernels
 - Classification, Regression, Conditional random fields
- Inference and convex duality
 - Maximum entropy inference
 - Approximate moment matching
- Maximum mean discrepancy
 - Means in feature space, Covariate shift correction
- Hilbert-Schmidt independence criterion
 - Covariance in feature space
 - ICA, Feature selection

Outline

- Measuring Independence
 - Covariance Operator
 - Hilbert Space Methods
 - A Test Statistic and its Analysis
- Independent Component Analysis
 - ICA Primer
 - Examples
- Feature Selection
 - Problem Setting
 - Algorithm
 - Results

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Problem

- Given $\{(x_1, y_1), \dots, (x_m, y_m)\} \sim \Pr(x, y)$ determine whether $\Pr(x, y) = \Pr(x) \Pr(y)$.
- Measure degree of dependence.

Applications

- Independent component analysis
- Dimensionality reduction and feature extraction
- Statistical modeling

Indirect Approach

- Perform density estimate of Pr(x, y)
- Check whether the estimate approximately factorizes

- Check properties of factorizing distributions
- E.g. kurtosis, covariance operators, etc.

Linear Case

For linear functions $f(x) = w^{\top}x$ and $g(y) = v^{\top}y$ the covariance is given by

$$\operatorname{Cov}\{f(x),g(y)\}=w^{\top}Cv$$

This is a bilinear operator on the space of linear functions.

Nonlinear Case

Define *C* to be the operator with $(f,g) \to \text{Cov } \{f,g\}$.

Theorem

C is a bilinear operator in f and g

Proof.

We only show linearity in f: Cov $\{\alpha f, g\} = \alpha$ Cov $\{f, g\}$. Moreover, for f + f' the covariance is additive.

Linear Case

For linear functions $f(x) = w^{\top}x$ and $g(y) = v^{\top}y$ the covariance is given by

$$\operatorname{Cov}\{f(x),g(y)\}=w^{\top}Cv$$

This is a bilinear operator on the space of linear functions.

Nonlinear Case

Define *C* to be the operator with $(f, g) \rightarrow \text{Cov } \{f, g\}$.

Theorem

C is a bilinear operator in f and g.

Proof.

We only show linearity in f: Cov $\{\alpha f, g\} = \alpha \text{Cov}\{f, g\}$. Moreover, for f + f' the covariance is additive.

Linear Case

For linear functions $f(x) = w^{\top}x$ and $g(y) = v^{\top}y$ the covariance is given by

$$\operatorname{Cov}\{f(x),g(y)\}=w^{\top}Cv$$

This is a bilinear operator on the space of linear functions.

Nonlinear Case

Define *C* to be the operator with $(f,g) \to \text{Cov } \{f,g\}$.

Theorem

C is a bilinear operator in f and g.

Proof.

We only show linearity in f: Cov $\{\alpha f, g\} = \alpha \text{Cov}\{f, g\}$. Moreover, for f + f' the covariance is additive.

Independent random variables

Dependent random variables

Or are we just unlucky?

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_{\mathsf{X}}, f \rangle = \mathsf{E}_{\mathsf{X}}[f(\mathsf{X})] \text{ and } \langle \mu_{\mathsf{Y}}, g \rangle = \mathsf{E}_{\mathsf{Y}}[g(\mathsf{Y})]$$

Covariance operator

$$f^{\top}C_{xy}g = \operatorname{Cov}\{f,g\} = \mathbf{E}_{x,y}\left[f(x)g(y)\right] - \mathbf{E}_{x}\left[f(x)\right]\mathbf{E}_{y}\left[g(y)\right]$$

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_{\mathsf{X}}, f \rangle = \mathsf{E}_{\mathsf{X}}[f(\mathsf{X})] \text{ and } \langle \mu_{\mathsf{Y}}, g \rangle = \mathsf{E}_{\mathsf{Y}}[g(\mathsf{Y})]$$

Covariance operator

$$f^{\top}C_{xy}g = \text{Cov}\{f,g\} = \mathbf{E}_{x,y}[f(x)g(y)] - \mathbf{E}_{x}[f(x)]\mathbf{E}_{y}[g(y)]$$

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_{\mathsf{x}}, f \rangle = \mathsf{E}_{\mathsf{x}}[f(\mathsf{x})] \text{ and } \langle \mu_{\mathsf{y}}, g \rangle = \mathsf{E}_{\mathsf{y}}[g(\mathsf{y})]$$

Covariance operator

$$f^{\top}C_{xy}g = \text{Cov}\{f,g\} = \mathbf{E}_{x,y}[f(x)g(y)] - \mathbf{E}_{x}[f(x)]\mathbf{E}_{y}[g(y)]$$

Criterion (Renyi, 1957)

Test for independence by checking whether C = 0.

Reproducing Kernel Hilbert Space

- Kernels k, l on $\mathfrak{X}, \mathfrak{Y}$ with associated RKHSs $\mathfrak{F}, \mathfrak{G}$.
- Assume bounded *k*, *l* on domain.

Mean operator

$$\langle \mu_{\mathsf{x}}, f \rangle = \mathsf{E}_{\mathsf{x}}[f(\mathsf{x})] \text{ and } \langle \mu_{\mathsf{y}}, g \rangle = \mathsf{E}_{\mathsf{y}}[g(\mathsf{y})]$$

Covariance operator

$$f^{\top}C_{xy}g = \operatorname{Cov}\{f,g\} = \mathbf{E}_{x,y}\left[f(x)g(y)\right] - \mathbf{E}_{x}\left[f(x)\right]\mathbf{E}_{y}\left[g(y)\right]$$

Hilbert Space Representation

Theorem

Provided that k, l are universal kernels $||C_{xy}|| = 0$ if and only if x, y are independent.

Proof.

- **Step 1:** If x, y are dependent then there exist some [0,1]-bounded range f^*, g^* with $Cov\{f^*,g^*\}=\epsilon>0$.
- **Step 2:** Since k, l are universal there exist ϵ' approximation of f^*, g^* in \mathcal{F}, \mathcal{G} such that covariance of approximation does not vanish.
- **Step 3:** Hence the covariance operator C_{xy} is nonzero.

A Test Statistic

Covariance operator

$$C_{xy} = \mathbf{E}_{x,y} \left[k(x,\cdot) l(y,\cdot) \right] - \mathbf{E}_{x} \left[k(x,\cdot) \right] \mathbf{E}_{y} \left[l(y,\cdot) \right]$$

Operator Norm

Use the norm of C_{xy} to test whether x and y are independent. It also gives us a measure of dependence.

$$HSIC(\Pr_{xy}, \mathcal{F}, \mathcal{G}) := \|C_{xy}\|^2$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm.

Frobenius Norm

For matrices we can define

$$\|M\|^2 = \sum_{ii} M_{ij}^2 = \operatorname{tr} M^{\top} M$$

Hilbert-Schmidt norm is generalization of Frobenius norm.

A Test Statistic

Covariance operator

$$C_{xy} = \mathbf{E}_{x,y} \left[k(x,\cdot) l(y,\cdot) \right] - \mathbf{E}_{x} \left[k(x,\cdot) \right] \mathbf{E}_{y} \left[l(y,\cdot) \right]$$

Operator Norm

Use the norm of C_{xy} to test whether x and y are independent. It also gives us a measure of dependence.

$$HSIC(\Pr_{xy}, \mathcal{F}, \mathcal{G}) := \|C_{xy}\|^2$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm.

Frobenius Norm

For matrices we can define

$$\|M\|^2 = \sum_{ij} M_{ij}^2 = \operatorname{tr} M^{\top} M$$

Hilbert-Schmidt norm is generalization of Frobenius norm.

A Test Statistic

Covariance operator

$$C_{xy} = \mathbf{E}_{x,y} \left[k(x,\cdot) l(y,\cdot) \right] - \mathbf{E}_{x} \left[k(x,\cdot) \right] \mathbf{E}_{y} \left[l(y,\cdot) \right]$$

Operator Norm

Use the norm of C_{xy} to test whether x and y are independent. It also gives us a measure of dependence.

$$\mathrm{HSIC}(\Pr_{xy}, \mathfrak{F}, \mathfrak{G}) := \|C_{xy}\|^2$$

where $\|\cdot\|$ denotes the Hilbert-Schmidt norm.

Frobenius Norm

For matrices we can define

$$\|M\|^2 = \sum_{ii} M_{ij}^2 = \operatorname{tr} M^{\top} M.$$

Hilbert-Schmidt norm is generalization of Frobenius norm.

Computing $\|C_{xy}\|^2$

Rank-one operators

For rank-one terms we have

$$||f \otimes g||^2 = \langle f \otimes g, f \otimes g \rangle_{HS} = ||f||^2 ||g||^2.$$

Joint expectation

By construction of C_{xy} we exploit linearity and obtain

$$\begin{split} \left\| \left. C_{xy} \right\|^2 &= \langle C_{xy}, C_{xy} \rangle_{HS} \\ &= \left\{ \mathsf{E}_{x,y} \mathsf{E}_{x',y'} - 2 \mathsf{E}_{x,y} \mathsf{E}_{x'} \mathsf{E}_{y'} + \mathsf{E}_{x} \mathsf{E}_{y} \mathsf{E}_{x'} \mathsf{E}_{y'} \right\} \\ &\qquad \left[\langle k(x,\cdot) l(y,\cdot), k(x',\cdot) l(y',\cdot) \rangle_{HS} \right] \\ &= \left\{ \mathsf{E}_{x,y} \mathsf{E}_{x',y'} - 2 \mathsf{E}_{x,y} \mathsf{E}_{x'} \mathsf{E}_{y'} + \mathsf{E}_{x} \mathsf{E}_{y} \mathsf{E}_{x'} \mathsf{E}_{y'} \right\} \\ &\qquad \left[k(x,x') l(y,y') \right] \end{split}$$

This is well-defined if *k*, *l* are bounded.

Estimating $\|\overline{C_{xy}^2}\|$

Empirical criterion

$$HSIC(Z, \mathcal{F}, \mathcal{G}) := \frac{1}{(m-1)^2} tr KHLH$$

where $K_{ij} = k(x_i, x_j), L_{ij} = l(y_i, y_j)$ and $H_{ij} = \delta_{ij} - m^{-2}$.

Theorem

$$\mathbf{E}_{Z}[\mathrm{HSIC}(Z,\mathfrak{F},\mathfrak{G})] = \mathrm{HSIC}(\Pr_{xy},\mathfrak{F},\mathfrak{G}) + O(1/m)$$

Proof: Sketch only.

Expand tr *KHLH* into terms of pairs, triples and quadruples of indices of non-repeated terms, which lead to the proper expectations and bound the rest by $O(m^{-1})$.

Estimating $\|\mathit{C}_{\scriptscriptstyle \mathit{X}\mathit{y}}^2\|$

Empirical criterion

$$HSIC(Z, \mathcal{F}, \mathcal{G}) := \frac{1}{(m-1)^2} tr KHLH$$

where $K_{ij} = k(x_i, x_j), L_{ij} = l(y_i, y_j)$ and $H_{ij} = \delta_{ij} - m^{-2}$.

Theorem

$$\mathbf{E}_{Z}[\mathrm{HSIC}(Z,\mathfrak{F},\mathfrak{G})] = \mathrm{HSIC}(\Pr_{xy},\mathfrak{F},\mathfrak{G}) + O(1/m)$$

Proof: Sketch only.

Expand tr *KHLH* into terms of pairs, triples and quadruples of indices of non-repeated terms, which lead to the proper expectations and bound the rest by $O(m^{-1})$.

Estimating $\|\mathit{C}_{\scriptscriptstyle \mathit{xy}}^{\scriptscriptstyle 2}\|$

Empirical criterion

$$HSIC(Z, \mathcal{F}, \mathcal{G}) := \frac{1}{(m-1)^2} tr KHLH$$

where $K_{ij} = k(x_i, x_j), L_{ij} = l(y_i, y_j)$ and $H_{ij} = \delta_{ij} - m^{-2}$.

Theorem

$$\mathbf{E}_{Z}[\mathrm{HSIC}(Z,\mathfrak{F},\mathfrak{G})] = \mathrm{HSIC}(\Pr_{xy},\mathfrak{F},\mathfrak{G}) + O(1/m)$$

Proof: Sketch only.

Expand tr *KHLH* into terms of pairs, triples and quadruples of indices of non-repeated terms, which lead to the proper expectations and bound the rest by $O(m^{-1})$.

Uniform convergence bounds for $\|C_{xy}^2\|$

Theorem (Recall Hoeffding's theorem for U Statistics)

For averages over functions on r variables

$$u:=\frac{1}{(m)_r}\sum_{i_r^m}g(x_{i_1},\ldots,x_{i_r})$$

which are bounded by $a \le u \le b$ we have

$$\Pr_{u}\left\{u - \mathbf{E}_{u}[u] \geq t\right\} \leq \exp\left(-\frac{2t^{2}\lceil m/r\rceil}{(b-a)^{2}}\right)$$

In our statistic we have terms of 2, 3, and 4 random variables.

Uniform convergence bounds for $\|C_{xy}^2\|$

Corollary

Assume that k, l <. Then at least with probability $1 - \delta$

$$\left| \mathrm{HSIC}(\boldsymbol{Z}, \mathfrak{F}, \mathfrak{G}) - \mathrm{HSIC}(\Pr_{\boldsymbol{x}\boldsymbol{y}}, \mathfrak{F}, \mathfrak{G}) \right| \leq \sqrt{\frac{\log 6/\delta}{0.24m}} + \frac{C}{m}$$

Proof.

Bound each of the three terms separatly via Hoeffding's theorem.

Outline

- Measuring Independence
 - Covariance Operator
 - Hilbert Space Methods
 - A Test Statistic and its Analysis
- Independent Component Analysis
 - ICA Primer
 - Examples
- Feature Selection
 - Problem Setting
 - Algorithm
 - Results

Blind Source Separation

Data

w = Ms, where all s_i are mutually independent.

The Cocktail Party Problem

Task

Recover the sources S and mixing matrix M given W.

Independent Component Analysis

Whitening

Rotate, center, and whiten data before separation. This is always possible.

Optimization

- We cannot recover scale of data anyway.
- Need to find orthogonal matrix U such that Uw = s leads to independent random variables.
- Optimization on the Stiefel manifold.
- Could do this by a Newton method.

Important Trick

- Kernel matrix could be huge.
- Use reduced-rank representation. We get

$$\operatorname{tr} H(AA^{\top})H(BB^{\top}) = \|A^{\top}HB\|^2$$
 instead of $\operatorname{tr} HKHL$.

Independent Component Analysis

Whitening

Rotate, center, and whiten data before separation. This is always possible.

Optimization

- We cannot recover scale of data anyway.
- Need to find orthogonal matrix U such that Uw = s leads to independent random variables.
- Optimization on the Stiefel manifold.
- Could do this by a Newton method.

Important Trick

- Kernel matrix could be huge.
- Use reduced-rank representation. We get

 $\operatorname{tr} H(AA^{\top})H(BB^{\top}) = \|A^{\top}HB\|^2$ instead of $\operatorname{tr} HKHL$.

Independent Component Analysis

Whitening

Rotate, center, and whiten data before separation. This is always possible.

Optimization

- We cannot recover scale of data anyway.
- Need to find orthogonal matrix U such that Uw = s leads to independent random variables.
- Optimization on the Stiefel manifold.
- Could do this by a Newton method.

Important Trick

- Kernel matrix could be huge.
- Use reduced-rank representation. We get

$$\operatorname{tr} H(AA^{\top})H(BB^{\top}) = \|A^{\top}HB\|^2$$
 instead of $\operatorname{tr} HKHL$.

ICA Experiments

n	m	Rep.	FICA	Jade	IMAX	RAD	CFIC	KCC	COg	COI	KGV	KMIg	KMII	HSICg	HSICI
2	250	1000	10.5±	9.5 ±	44.4±	$5.4 \pm$	7.2 ±	7.0 ±	7.8 ±	7.0 ±	5.3 ±	6.0 ±	5.7 ±	5.9 ±	5.8 ±
			0.4	0.4	0.9	0.2	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.3
2	1000	1000	6.0 ±	5.1 ±	11.3±	2.4 ±	3.2 ±	3.3 ±	3.5 ±	2.9 ±	2.3 ±	2.6 ±	2.3 ±	2.6 ±	2.4 ±
			0.3	0.2	0.6	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
4	1000	100	5.7 ±	5.6 ±	13.3±	$2.5 \pm$	3.3 ±	4.5 ±	$4.2~\pm$	$4.6~\pm$	$3.1~\pm$	$4.0~\pm$	$3.5~\pm$	$2.7~\pm$	$2.5 \pm$
			0.4	0.4	1.1	0.1	0.2	0.4	0.3	0.6	0.6	0.7	0.7	0.1	0.2
4	4000	100	$3.1~\pm$	2.3 ±	5.9 ±	$1.3 \pm$	1.5 ±	$2.4~\pm$	1.9 ±	1.6 ±	$1.4~\pm$	$1.4~\pm$	1.2 ±	$1.3 \pm$	$1.2 \pm$
			0.2	0.1	0.7	0.1	0.1	0.5	0.1	0.1	0.1	0.05	0.05	0.05	0.05
8	2000	50	$4.1~\pm$	3.6 ±	9.3 ±	$1.8 \pm$	2.4 ±	4.8 ±	$3.7~\pm$	5.2 ±	$2.6~\pm$	$2.1~\pm$	1.9 ±	$1.9 \pm$	$1.8 \pm$
			0.2	0.2	0.9	0.1	0.1	0.9	0.9	1.3	0.3	0.1	0.1	0.1	0.1
8	4000	50	$3.2 \pm$	$2.7 \pm$	6.4 ±	$1.3 \pm$	1.6 ±	2.1 ±	2.0 ±	1.9 ±	$1.7 \pm$	$1.4 \pm$	$1.3 \pm$	$1.4 \pm$	$1.3 \pm$
			0.2	0.1	0.9	0.05	0.1	0.2	0.1	0.1	0.2	0.1	0.05	0.05	0.05
16	5000	25	2.9 ±	3.1 ±	9.4 ±	$1.2 \pm$	1.7 ±	$3.7 \pm$	2.4 ±	2.6 ±	$1.7 \pm$	$1.5~\pm$	1.5 ±	$1.3 \pm$	$1.3 \pm$
			0.1	0.3	1.1	0.05	0.1	0.6	0.1	0.2	0.1	0.1	0.1	0.05	0.05

Outlier Robustness

Automatic Regularization

Mini Summary

Linear mixture of independent sources

- Remove mean and whiten for preprocessing
- Use HSIC as measure of dependence
- Find best rotation to demix the data

Performance

- HSIC is very robust to outliers
- General purpose criterion
- Best performing algorithm (Radical) is designed for linear ICA, HSIC is a general purpose criterion
- Low rank decomposition makes optimization feasible

Mini Summary

Linear mixture of independent sources

- Remove mean and whiten for preprocessing
- Use HSIC as measure of dependence
- Find best rotation to demix the data

Performance

- HSIC is very robust to outliers
- General purpose criterion
- Best performing algorithm (Radical) is designed for linear ICA, HSIC is a general purpose criterion
- Low rank decomposition makes optimization feasible

Outline

- Measuring Independence
 - Covariance Operator
 - Hilbert Space Methods
 - A Test Statistic and its Analysis
- Independent Component Analysis
 - ICA Primer
 - Examples
- Feature Selection
 - Problem Setting
 - Algorithm
 - Results

Feature Selection

The Problem

- Large number of features
- Select a small subset of them

Basic Idea

- Find features such that the distributions p(x|y=1) and p(x|y=-1) are as different as possible.
- Use a two-sample test for that.

Important Tweak

We can find a similar criterion to measure dependence between data and labels (by computing the Hilbert-Schmidt norm of covariance operator).

Recursive Feature Elimination

Algorithm

- Start with full set of features
- Adjust kernel width to pick up maximum discrepancy
- Find feature which decreases dissimilarity the least
- Remove this feature
- Repeat

Applications

- Binary classification (standard MMD criterion)
- Multiclass
- Regression

Algorithm 1 Feature Selection via Backward Elimination

Input: The full set of features S

Output: An ordered set of features S^{\dagger}

- 1. $S^{\dagger} \leftarrow \emptyset$
- 2: repeat
- 3: $\sigma_0 \leftarrow \operatorname{arg\,max}_{\sigma} \operatorname{HSIC}(\sigma, \mathcal{S})$
- 4: $i \leftarrow \operatorname{arg\,max}_i \operatorname{HISC}(\sigma_0, \mathcal{S} \setminus \{i\}), i \in \mathcal{S}$
- 5: $\mathcal{S} \leftarrow \mathcal{S} \setminus \{i\}$ 6: $\mathcal{S}^{\dagger} \leftarrow \mathcal{S}^{\dagger} \cup \{i\}$
- 7: until $S = \emptyset$

Comparison to other feature selectors

Synthetic Data

Table 1: Classification error (%) after selecting features using BAHSIC and 6 other methods.

ruoro r. v	Jidosiii edilioi	01101 (70) u	ttor sereetin	E routares a	mb Di miore	dina o our	or moundan
Method	Fisher	FSV	L0	MI	R2W2	RFE	BAHSIC
WL-6	10.0±4.5	2.0±2.0	0.0±0.0	6.0±3.1	0.0 ± 0.0	0.0±0.0	0.0±0.0
WN-2	57.0±3.7	58.0±5.3	2.0±1.3	18.0 ± 2.9	54.0 ± 6.5	2.0±1.3	1.0 ± 1.0

Brain Computer Interface Data

Table 2: Classification errors (%) on BCI data after selecting a frequency range.

Subject	aa	al	av	aw	ay
CSP(8-40Hz)	17.5±2.5	3.1±1.2	32.1±2.5	7.3±2.7	6.0±1.6
CSSP	14.9 ± 2.9	$2.4{\pm}1.3$	33.0 ± 2.7	5.4±1.9	6.2±1.5
CSSSP	$\textbf{12.2} {\pm} \textbf{2.1}$	$2.2 {\pm} 0.9$	31.8±2.8	6.3 ± 1.8	12.7 ± 2.0
BAHSIC	13.7±4.3	1.9±1.3	30.5±3.3	6.1±3.8	9.0 ± 6.0

Frequency Band Selection

Microarray Feature Selection

Goal

- Obtain small subset of features for estimation
- Reproducible feature selection

Results

Table 3: Comparison between SVM-RFE and BAHSIC for bioinformatics data. From top to bottom: data set description, classification errors in (%), and feature stability.

Dataset	Lympl	homa	Yea	ast	Colon	Berchuck	
Dim	402	26	79	9	2000	22283	
Sample	42/1	1/9	121/35/2	7/14/11	40/22	30/24	
	MC	OVR	MC	OVR			
SVM	32.4±6.9	32.4±6.9	5.3±2.1	5.8±1.8	17.6±5.1	43.3±6.9	
RFE	12.86±3.30	0.00 ± 0.00	$30.36{\pm}2.39$	6.76 ± 2.10	$22.38{\pm}6.05$	30.00±7.57	
BAHSIC	0.00 ± 0.00	0.00 ± 0.00	5.79 ± 1.99	$4.81{\pm}1.59$	15.71 ± 5.27	$19.33{\pm}6.30$	
RFE	0.77±0.09	0.46 ± 0.28	0.41±0.31	$0.39{\pm}0.32$	0.38±0.11	0.57±0.28	
BAHSIC	$0.96 {\pm} 0.03$	0.96 ± 0.03	$0.82 {\pm} 0.14$	$0.82 {\pm} 0.14$	$0.90 {\pm} 0.06$	0.73 ± 0.19	

Table 4: Root mean square error (RMSE) of support vector regression with and without HSIC

Table 4.	Table 4. Root mean square error (RIVISE) of support vector regression with and without risie									
Method	Sample	Dim	Feature	ϵ -SVR	RAND	BAHSIC				
Pyrim	55	27	5	0.112 ± 0.067	0.092 ± 0.073	$0.085{\pm}0.066$				
Triaz	186	60	2	0.147 ± 0.027	0.157 ± 0.036	0.144 ± 0.033				
Bodyfat	227	14	7	0.0019 ± 0.0026	0.0019 ± 0.0026	0.0019 ± 0.0024				

Summary

- Measuring Independence
 - Covariance Operator
 - Hilbert Space Methods
 - A Test Statistic and its Analysis
- Independent Component Analysis
 - ICA Primer
 - Examples
- Feature Selection
 - Problem Setting
 - Algorithm
 - Results

Shameless Plugs

Looking for a job ... talk to me!

Alex.Smola@nicta.com.au (http://www.nicta.com.au)

Positions

- PhD scholarships
- Postdoctoral positions, Senior researchers
- Long-term visitors (sabbaticals etc.)

More details on kernels

- http://sml.nicta.com.au
- http://www.kernel-machines.org
- http://www.learning-with-kernels.org
 Schölkopf and Smola: Learning with Kernels

