Lab 3 Report

PB22020514 郭东昊

一、 实验目的与内容

实验内容

编写以下五个序列检测状态机,每个状态机都能够正确识别非重叠的 10101011 序列

Mealy 型两段式顺序码状态机

Mealy 型两段式独热码状态机

Moore 型一段式顺序码状态机

Moore 型两段式顺序码状态机

Moore 型三段式顺序码状态机

实验目的

理解 Mealy 型和 Moore 型时序电路的区别

熟练掌握 Verilog 描述有限状态机(FSM)的方法

熟练掌握利用 EDA 工具,进行逻辑电路的设计、仿真、调试、下载测试等基本方法

熟练掌握查看生成电路及其性能和资源使用情况

二、 逻辑设计

Mealy 型状态机的状态图

S 0	<u>S0 S1</u>
S1	<u>\$2 \$1</u>
S2	<u>\$0 \$3</u>
S 3	<u>\$4 \$1</u>
S4	<u>\$0 \$5</u>
S 5	<u>\$6 \$1</u>
S 6	<u>\$0 \$7</u>
S7	S6 S0

状态	S 輸出X = 0 X =1
S 0	0.0
S1	00
S2	0.0
S 3	00
\$4	00
\$5	0.0
S 6	0.0
S7	0.1

图 1 Mealy 型状态机的状态图、状态表、输入输出表

Moore 型状态机的状态图

S0	<u>S0 S1</u>
S1	<u>\$2 \$1</u>
S2	<u>\$0 \$3</u>
S 3	<u>\$4 \$1</u>
S4	<u>\$0 \$5</u>
S 5	<u>\$6 \$1</u>
S 6	<u>\$0 \$7</u>
S7	<u>\$6 \$8</u>
S8	S0 S1

2	状态 对应输出	
S0	0	
S1	0	
S2	0	
S 3	0	
S4	0	
\$5	0	
S 6	0	
S 7	0	
S8	1	

图 2 Moore 型状态机的状态图、状态表、输入输出表

三、 Verilog 代码实现

Mealy 型两段式顺序码状态机

Mealy型,状态+输入

两段式状态机,就是将状态状态更新和状态转移、输出分开进行描述,见以 下代码注释:

```
//状态定义,顺序码采用八进制书写,代码简洁
parameter S0 = 4'o0;
parameter S1 = 4'o1;
parameter S2 = 4'o2;
parameter S3 = 4'o3;
parameter S4 = 4'o4;
parameter S5 = 4'o5;
parameter S6 = 4'o6;
parameter S7 = 4'o7;

//状态更新
always @(posedge clk, negedge rstn) begin
    if (!rstn) cs <= S0;
    else cs <= ns;
end
```

//状态转移与输出

```
always_comb begin
   out = 0;
   ns = cs;
   case(cs)
       S0:begin

if (in == 0) begin
       out = 0;
       ns = S0;
   end
   else begin
       out = 0;
       ns = S1;
   end
  end
end
```

示意图如下:

Mealy 型两段式独热码状态机

实现思路同上,在//状态定义处将状态编码改为独热码即可。

Moore 型两段式顺序码状态机

这里注意 Mealy 型与 Moore 型在代码实现上的区别,在 case(cs)语句中

```
S0:begin
   if (in == 0) begin
        out = 0;
        ns = S0;
   end
   else begin
        out = 0;
        ns = S1;
   end
   end
end
```

Mealy 型

```
S0:begin

out = 0;

if (in == 0)begin

ns = S0;

end

else begin

ns = S1;

end

end
```

Moore 型

Moore 型一段式顺序码状态机

一段式状态机,在代码中与两段式、三段式的最大区别就是没有 ns 这个中间变量,对 cs 直接赋(下一个状态的)值,其余大同小异。

Moore 型三段式顺序码状态机

三段式状态机使用寄存器进行输出,示意图如下

代码实现上,每一个 always 语句块的职能都更加清晰,可以说,三段式将二段式的第二段又裂为两段:

```
S8:begin
            if (in == 0)
                ns = S0;
                ns = S1;
        end
always @(posedge clk, negedge rstn) begin
        out <= 0;
        case(ns)
            S0: out <= 0;
            S2: out <= 0;
            S3: out <= 0;
            S4: out <= 0;
            S6: out <= 0;
            S7: out <= 0;
            S8: out <= 1;
            default;
        endcase
end
endmodule
```

四、 电路设计与分析

略。

五、 测试结果与分析

检查通过, 略。

六、 总结

通过本实验,我学会了状态机的 Verilog 书写,了解到在代码实现上,状态机有一段式、两段式、三段式的分别,并认识到不同的代码实现实际上对应着不同的硬件结构。本实验加深了我对 Verilog 这门硬件语言的理解,序列状态检测机的成功上板也让我获得了不小的成就感。