МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Схемотехника»

Тема: «Исследование RC-цепей»

Студентка гр. 0301	 Реймхен А.А.
Студентка гр. 0301	 Рудницкая А.А.
Студент гр. 0301	 Спиридонов А.В
Преподаватель	 Андреев В.С.

Санкт-Петербург

Цель работы: Исследование RC-фильтров нижних и верхних частот во временной и частотной областях.

Теоретическая информация

Фильтры — это схемы, которые пропускают без затухания (ослабления) определенную полосу частот и подавляют все остальные частоты. Частота, на которой начинается подавление, называется частотой среза f_c .

Простейшим среди фильтров является *R*-фильтр. Принцип его работы основан на том, что при изменении частоты реактивное сопротивление конденсатора изменяется обратно пропорционально частоте, а сопротивление резистора остается неизменным. На схеме (Рисунок 2) конденсатор соединен последовательно с резистором. При подаче на вход такого фильтра низкочастотного сигнала реактивное сопротивление конденсатора С будет гораздо больше, чем сопротивление резистора R. В результате чего, падение напряжения V_c на конденсаторе будет большим, а на резисторе V_r — малым. При подаче на вход этого фильтра высокочастотного сигнала картина будет обратная: V_c будет малым, а V_r — большим. Если теперь представить эту схему, как на (Рисунок 1. (б)), где падение напряжения на конденсаторе является выходным, то в выходном сигнале будут преобладать нижнечастотные составляющие, а высокочастотные будут сильно ослабляться. Другими словами, мы получили фильтр нижних частот. И наоборот, если выходное напряжение снимать с резистора (Рисунок 1. (а)), то получим фильтр верхних частот. Значения R и C определяют частоту среза фильтра.

Рисунок 1. Схемы простейших *R*-фильтров

Ход работы

Построим компьютерную модель RC-фильтра нижних частот в среде NI Multisim.

Рисунок 2. Компьютерная модель RC-фильтра нижних частот в среде NI Multisim.

Исследуем реакцию модели при подаче на вход гармонических сигналов с помощью виртуального осциллографа.

Рисунок 3. Результат работы виртуального осциллографа.

Построим амплитудно-частотную характеристику (АЧХ) модели с помощью виртуального плоттера Боде.

Рисунок 4. Амплитудно-частотная характеристика модели, построенная с помощью виртуального плоттера Боде.

Сконструируем схему RC-фильтра нижних частот из реальных компонентов на макетной плате учебной станции NI ELVIS.

Исследуем реакцию модели при подаче на вход гармонических сигналов с помощью осциллографа учебной станции NI ELVIS.

Рисунок 5. Результат работы осциллографа учебной станции NI ELVIS.

Построим амплитудно-частотную характеристику (АЧХ) модели с помощью плоттер Боде учебной станции NI ELVIS.

Рисунок 6. Амплитудно-частотная характеристика модели, построенная с помощью плоттера Боде учебной станции NI ELVIS.

Построим компьютерную модель RC-фильтра высоких частот в среде NI Multisim.

Рисунок 7. Компьютерная модель RC-фильтра высоких частот в среде NI Multisim.

Исследуем реакцию модели при подаче на вход гармонических сигналов с помощью виртуального осциллографа.

Рисунок 8. Результат работы виртуального осциллографа.

Построим амплитудно-частотную характеристику (AЧX) модели с помощью виртуального плоттера Боде.

Рисунок 9. Амплитудно-частотная характеристика модели, построенная с помощью виртуального плоттера Боде.

Сконструируем схему RC-фильтра высоких частот из реальных компонентов на макетной плате учебной станции NI ELVIS.

Исследуем реакцию модели при подаче на вход гармонических сигналов с помощью осциллографа учебной станции NI ELVIS.

Рисунок 10. Результат работы осциллографа учебной станции NI ELVIS.

Построим амплитудно-частотную характеристику (АЧХ) модели с помощью плоттер Боде учебной станции NI ELVIS.

Рисунок 11. Амплитудно-частотная характеристика модели, построенная с помощью плоттера Боде учебной станции NI ELVIS.

Выводы

В ходе выполнения лабораторной работы нами были исследованы RC-фильтры нижних и верхних частот во временной и частотной областях как на компьютерной модели, спроектированной с среде NI Multisim, так и на сконструированных схемах из реальных компонентов на макетной плате учебной станции NI ELVIS.

Результаты, полученные в ходе компьютерного модулирования и в ходе действительного эксперимента, отличаются в рамках допустимой погрешности, вызванной собственными погрешностями как компонентов схемы, так и средств измерения.