

An ensemble learning-based approach to autonomous COVID19 detection using transfer learning with the help of pre-trained Deep Neural Network models

A PRESENTATION FOR PAPER ID:64

Our Team

Faiza Anan Noor

Ishrakul Munzerin

A.M Asif Iqbal

Tanima Islam

Mr. Emam Hossain

Assistant Professor

Ahsanullah University if Science and
Technology

The Contents

- 01 Introduction
- **02** Motivation
- 03 Methodology
- **04** Result Analysis
- **05** Future Works
- 06 Conclusion
- **07** References

Introduction

- COVID-19 has left a catastrophic and horrifying effect on our lives in every way and the aftermath is hard to undo
 - Our Motivation of this paper arose from the need to assist doctors by easing out their burdensome task

Summary of Related Works

Paper Number	Dataset	Methodology	Result
[3]	NIH dataset & images from different websites	CNN- LSTM, CNN	Accuracy:99.4%, Specificity: 99.2%, Sensitivity:99.3%, F1-score: 98.9%.
[4]	Covid-19 image data collection.	DeTraC -CNN	Accuracy: 95.12%, Sensitivity: 97.91%, Specificity: 91.87%, Precision: 93.36%.
[5]	Covid-19 image data collection.	ResNet50V2, InceptionV3, Vgg16, VGG19, DenseNet, DeepCNN	Accuracy : 96.03%, Precision : 96.15%, F1-score : 96%.
[6]	Kaggle , Github Repository by Dr.Joseph Cohen,Latest Covid-19 Information,	AlexNet, DenseNet201, GoogleNet, InceptionV3, ResNet18, ResNet50, ResNet101, VGG16, VGG19, XceptionNet, Inceptionresnetv2	Accuracy:95.38%, Specificity: 93.47%, Sensitivity:92.29%, F1-score: 95.52%.
[7]	Github Repository by Dr.Joseph Cohen, ChestX-ray8 database by Wang	Dark Covid Net	Accuracy:87.02% Specificity: 92.18%, Sensitivity:85.35%, F1-score: 87.37%, Precision: 89.96%.
[8]	CXR images	Ensemble Deep Learning, Covid-Net	Accuracy:95%, Sensitivity:96%, Precision:94.1%.

[9]	COVIDx Dataset,	COVID-ResNet, Covid-Net	Accuracy: 96.23%, Sensitivity: 100%, F1-score: 100%, Precision: 100%.
[10]	Covid Chest X-ray dataset	ResNet 152, DenseNet121, ResNet152+DenseNet121, Vgg19, DeTrac, Resnet50, Xception+Resnet50	Accuracy:98.43% Specificity: 99.23%, Sensitivity:98.71%.
[14]	Covid-19 Image data Collection, ChestX-Ray8, Chest X-ray Images(Pneumonia)	ResNet50, InceptionV3, Inception-ResNetV2, ResNet101, ResNet152	Accuracy: 99.7%, Recall: 99.7%, Specificity: 99.9%, Precision: 98.9%.
[15]	COVID-19 Image Data Collection, COVID-19 Chest X-ray dataset,ActualMed COVID-19 Chest X-ray, RSNA Pneumonia Detection Challenge dataset, COVID-19 radiography database	COVID-Net, VGG-19, ResNet-50	Accuracy: 99.3%, Sensitivity: 91.0%, Precision: 98.9%.
[16]	Dr. Joseph Cohen's Github repository, Chest X-Ray Pneumonia Dataset, COVID19 XRay Dataset	VGG16, VGG19, MobileNetV2, InceptionV3 Xception, Densenet201, InceptionResNetV2, ResNet152V2, NASNetLArge	Accuracy:95.88% Specificity: 98%, Sensitivity:96%, F1-score: 96%, Precision: 96%.
[18]	covid-19 Image Data Collection , Covid Data Save Lives (COVIDDSL) and PadChest-covid Dataset	Novel Deep Learning	Accuracy:97.6% Specificity: 95.2%, Sensitivity:98.1%, F1-score: 93.5%, AUC-score: 98.6%.

Datasets Collection

Dataset Used: COVID19_Pneumonia_Normal_Chest_Xray_PA_Dataset

	COVID + IMAGES	PNEUMONIA	NORMAL	TOTAL
Data	2313	2313	2313	6939

Training: 80%

✓ Validating : 20%

Testing: 20%

- Image Preprocessing and Augmentation
- Convolutional Neural Network (CNN)

Transfer Learning

Reference CNN models for transfer learning

O1 Inceptionv3

Reference CNN models for transfer learning

02 VGG19

Reference CNN models for transfer learning

O3 Densenet201

04 Ensembled

Tools Used

- Google Colab platform used for training and testing
- GPU Tesla K80
- Keras library of TensorFlow version 2.2.0 and python 3.8 for model formation

Evaluation metrics

	Number of epochs	Time needed	Total training
Model Name	needed	per epoch	time
		(sec)	(hours)
InceptionV3	50	115	1.59
VGG19	50	567	7.87
Densenet201	50	127	1.76

Evaluation metrics

	Model Name				
Parameters	InceptionV3	VGG19	Densenet201		
Learning Rate	0.0001	0.0001	0.0001		
Number of epochs	50	50	50		
Training batch size	64	64	16		
Validation batch size	64	64	16		
Total number of parameters	25M	58M	38M		
Optimizer	Adam	Adam	Adam		

InceptionV3

x = number of epochs

y = accuracy
left
y = loss

Training and validation accuracy of InceptionV3

Training and validation loss of InceptionV3

InceptionV3

Confusion Matrix

ROC curve of InceptionV3

InceptionV3

Classification report of InceptionV3

	precision	recall	f1-score	support
0	0.95	0.95	0.95	454
1	0.95	0.95	0.95	463
accuracy			0.95	917
macro avg	0.95	0.95	0.95	917
weighted avg	0.95	0.95	0.95	917

VGG19

x = number of epochs
y = accuracy
left
y = loss

Training and Validation accuracy of VGG19

Training and validation loss of VGG19

VGG19

Confusion Matrix

ROC curve of VGG19

VGG19

Classification report of VGG19

precision	recall	f1-score	support
0.97	0.97	0.97	454
0.97	0.97	0.97	463
		0.97	917
0.97	0.97	0.97	917
0.97	0.97	0.97	917
	0.97 0.97	0.97 0.97 0.97 0.97 0.97 0.97	0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Densenet201

x = number of epochs
y_{left} = accuracy
y_{right} = loss

Training and Validation accuracy of Densenet201

Training and validation loss of Densenet201

Densenet201

Confusion Matrix

ROC curve of Densenet201

Densenet201

Classification report of Densenet201

	precision	recall	f1-score	support
0	0.99	0.93	0.96	454
1	0.94	0.99	0.96	463
accuracy			0.96	917
macro avg	0.96	0.96	0.96	917
weighted avg	0.96	0.96	0.96	917

Ensemble of Inception V3, VGG 19, Densenet 201

Ensemble of Inception V3, VGG 19, Densenet 201

Classification report of Ensemble learning method

	precision	recall	f1-score	support	
0	0.99	0.96	0.97	454	
1	0.96	0.99	0.98	463	
accuracy			0.97	917	
macro avg	0.98	0.97	0.97	917	
weighted avg	0.98	0.97	0.97	917	

Comparative Results and Discussions

Model	Accuracy	Precision	Recall	F1-score
Model	(%)	(%)	(%)	(%)
InceptionV3	95.2	95.2	95.2	95.2
VGG19	96.9	97.1	96.7	96.9
Densenet201	96.7	99.3	94	96.6
Ensemble	97.5	98.6	96.3	97.4

28

Comparative Results and Discussions

Comparision with other papers

Studies	Methods	Accuracy(%)	Others(%)
[5]	ResNet50V2, InceptionV3, VGG16, VGG19, DenseNet, DeepCNN	96.03%	Precision : 96.15%, F1-score : 96%.
[6]	AlexNet, DenseNet201, GoogleNet, InceptionV3, ResNet18, ResNet50, ResNet101, VGG16, VGG19, XceptionNet, Inceptionresnetv2	95.38%	Specificity : 93.47%, Sensitivity :92.29%, F1-score : 95.52%,
[10]	ResNet 152, DenseNet121, ResNet152+DenseNet121, Vgg19, DeTrac, Resnet50, Xception+Resnet50	98.43%	Specificity : 99.23%, Sensitivity :98.71%.
[14]	ResNet50, InceptionV3, Inception-ResNetV2, ResNet101, ResNet152	99.7%	Recall : 99.7%, Specificity : 99.9%, Precision : 98.9%.
[15]	COVID-Net, VGG-19, ResNet-50	99.3%	Sensitivity : 91.0%, Precision : 98.9%.
[16]	VGG16, VGG19, MobileNetV2, InceptionV3, Xception, Densenet201, InceptionResNetV2, ResNet152V2, NASNetLArge	95.88%	Specificity : 98%, Sensitivity :96%, F1-score : 96%, Precision : 96%.
This study	InceptionV3, Vgg19, Densenet201, InceptionV3+Vgg19+ DenseNet201	97.5%	Precision:99.3%, Recall:96.7% F1-Score:97.4%;

Future Works

- Collection of more data
- Improve the Recall rate and Precision
- Explore more pre-trained models

Conclusion

Taking all of the limitations and constraints in mind we have come up with the idea of our proposed system which is to detect covid19 using chest x ray images. We believe that our proposed system will go a long way in achieving this goal and will help doctors and medical personnel and will add a significant value to the medical field.

References

- [1] wikipedia, "Covid-19 Pandemic." https://en.wikipedia.org/wiki/COVID19 pandemic, 2020. [Online; accessed 24 Feb 2021].
- [2] Amanullah Asraf, "COVID19 Pneumonia Normal Chest Xray PA Dataset." https://www.kaggle.com/amanullahasraf/covid19-pneumonia-normal-chest-xray-pa-dataset, 2020. (Online accessed May 2021).
- [3] M. Z. Islam, M. M. Islam, and A. Asraf, "A combined deep cnn-lstm network for thedetection of novel coronavirus (covid-19) using x-ray images, "Informatics in medicineunlocked, vol. 20, p. 100412, 2020.
- [[4] A. Abbas, M. M. Abdelsamea, and M. M. Gaber, "Classification of covid-19 in chestx-ray images using detrac deep convolutional neural network," Applied Intelligence, vol. 51, no. 2, pp. 854–864, 2021.
- [5] T. Gao, "Chest x-ray image analysis and classification for covid-19 pneumonia detec-tion using deep cnn," medRxiv, 2020. .
- [6] P. K. Sethy, S. K. Behera, P. K. Ratha, and P. Biswas, "Detection of coronavirus disease(covid-19) based on deep features and support vector machine," 2020.
- [7] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. R. Acharya, "Au-tomated detection of covid-19 cases using deep neural networks with x-ray images," Computers in biology and medicine, vol. 121, p. 103792, 2020.
- [8] S. Tang et al., "EDL-COVID: Ensemble Deep Learning for COVID-19 Case Detection From Chest X-Ray Images," in IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 6539-6549, Sept. 2021, doi: 10.1109/TII.2021.3057683.

References

- [9] Farooq, Muhammad, and Abdul Hafeez. "Covid-resnet: A deep learning framework for screening of covid19 from radiographs." arXiv preprint arXiv:2003.14395 (2020).
- [10] Rafi, Taki Hasan. (2020). An ensemble deep transfer-learning ap-proach to identify COVID-19 cases from chest X-ray images. 10.1109/CIBCB48159.2020.9277695.
- [11] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
- [12] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
- [13] Huang, Gao, et al. "Densely connected convolutional networks." Pro ceedings of the IEEE conference on computer vision and pattern recognition. 2017.
- [14] A. Narin, C. Kaya, and Z. Pamuk, "Automatic detection of coronavirus disease (covid19) using x-ray images and deep convolutional neural networks. arxiv 2020," arXiv preprint arXiv:2003.10849, 2003.
- [15] L. Wang, Z. Q. Lin, and A. Wong, "Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images," Scientific Reports, vol. 10, no. 1, pp. 1–12, 2020.
- [16] A. Makris, I. Kontopoulos, and K. Tserpes, "Covid-19 detection from chest x-ray images using deep learning and convolutional neural net works," in 11th Hellenic Conference on Artificial Intelligence, pp. 60–66, 2020.

Thank You

