

INTRODUCTION

Long COVID: persistence of symptoms post-COVID-19

 Our dataset: Headaches, Fatigue, Shortness of breath, Anxiety, Heart problems, Muscle aches, Dizziness

Goals: build a classifier for long COVID and identify risk factors of long COVID

- Gender: Women have 2x likelihood compared to men (Nabavi, 2020)
- Age: Mean age of long COVID patients = mean of non-long COVID patients + 4 (Nabavi, 2020)
- Comorbidities (Osmanov et al., 2021)

Dataset: COVID-19 Fall 2020 & Winter 2021 Community Supplement, MCBS (Medicare Current Beneficiary Survey)

5 Most Common Symptoms

(López-León et al., 2021)

Fatigue (58%)

Headache (44%)

Attention disorder (27%)

Hair loss (25%)

Shortness of breath (24%)

Prevalence (Carfì et al., 2020)

35% of COVID outpatients 87% of inpatients

• 1-2 symptoms: 32%

• 3+ symptoms: 55%

TABLE OF CONTENTS

Feature selection and extraction

MODEL

Build a classifier that accurately classifies whether a patient has long COVID

ANALYZING RISK FACTORS

Identify the most defining risk factors for long COVID

DIMENSIONALITY REDUCTION

FEATURE SELECTION

Discard noisy or useless features

For example...

- → The user_id of the subject
- The week in which the subject completed the survey

We also discarded features that are shown to have trivial importance

FEATURE EXTRACTION

Produce a new set of features from the old ones

For example...

Do experts recommend hand-washing?

... wearing masks?

... avoiding gatherings?

... staying at home?

... medical attention for short breath?

Knowledge of COVID measures recommended by experts

RESAMPLING THE DATA

UPSAMPLING/ OVERSAMPLING

It's important to note that we're **only** performing upsampling on the **training set**!

Our testing set stays the same

TABLE: ACCURACY OF DIFFERENT MODELS

	INITIAL MODEL ACCURACY	AVG TUNED TESTING ACCURACY
Logistic Regression	0.660	0.686
Decision Tree	0.626	0.624
Random Forest	0.723	0.720
SVM	0.668	0.693
Naive Bayes	0.618	0.654

CONFUSION MATRICES AFTER TUNING

TUNING ON PRECISION

- number of estimations = 75, max depth = 5, max leaf nodes = 15, max leaf nodes = 15, max features = 50% and min samples leaf = 25
- Performing a hold-out validation on this model yields accuracy = 0.723, precision = 0.815, recall = 0.768, and f1-score= 0.791

NORMALIZED CONFUSION MATRIX

GINI IMPORTANCE FOR RANDOM FORESTS

The Gini importance for a feature θ is defined as:

The total decrease in node impurity when $\boldsymbol{\theta}$ is chosen to split the node , averaged over all trees in the forest

IDENTIFYING RISK FACTORS

- 1. SEVERITY OF CV19 SYMPTOMS
- 2. SOUGHT MEDICAL CARE FOR CV19

PERCENTAGES BY VALUE

CONCLUSION

- Random Forest Classifier with 0.723 accuracy and 0.815 precision
- Most prominent risk factors: "Severity of COVID-19 Symptoms" and "Sought medical care for COVID-19"
- More severe COVID symptoms ⇒ greater likelihood of long COVID
- Patients who sought medical care for COVID are more likely to have long COVID
- Patients can still get long COVID with mild or even no COVID symptoms.

CONCLUSION

Implications

- Reinforce the importance of existing research dedicated to preventing and minimizing severe COVID-19.
- Indicate potential need for public health messaging to emphasize risk of long
 COVID even for patients with no or mild COVID symptoms

Future Directions

- Develop more ways to alleviate severe COVID
- Reconsider definition of "fully recovered from COVID-19"

REFERENCES

- Nisar, Riddhi. "(Visually) Interpreting the Confusion-Matrix: | by Riddhi Nisar | Analytics Vidhya | Medium."
 Medium, Analytics Vidhya, 1 Nov. 2020,
 https://medium.com/analytics-vidhya/visually-interpreting-the-confusion-matrix-787a70b65678.
- Chen, Denise. "Statistical Learning: Data Sampling & Resampling." Medium, Towards Data Science, 12 Apr. 2020, https://towardsdatascience.com/statistical-learning-ii-data-sampling-resampling-93a0208d6bb8.
- "320000+ Environmental Cartoons Images, HD Pictures and Stock Photos for Free Download." LovePik, https://lovepik.com/images/environmental-cartoons.html.
- Mahendrakumaran, Kayathiri. "Dealing with Imbalanced Data." Medium, தழலி, 20 Dec. 2020, https://medium.com/%E0%AE%A4%E0%AE%B4%E0%AE%B2%E0%AE%BF/dealing-with-imbalanced-data-aca93c421fff.
- López-León, Sandra, et al. "More than 50 Long-Term Effects of COVID-19: A Systematic Review and Meta-Analysis." SSRN Electronic Journal, 20 Jan. 2021, https://doi.org/10.2139/ssrn.3769978.
- Osmanov, Ismail M, et al. "Risk Factors for Long Covid in Previously Hospitalised Children Using the ISARIC Global Follow-up Protocol: A Prospective Cohort Study." European Respiratory Journal, 2021, p. 2101341., https://doi.org/10.1183/13993003.01341-2021.
- Nabavi, Nikki. "Long Covid: How to Define It and How to Manage It." BMJ, 2020, p. m3489., https://doi.org/10.1136/bmj.m3489.
- Carfì, Angelo, et al. "Persistent Symptoms in Patients after Acute COVID-19." JAMA, vol. 324, no. 6, 11 July 2020, p. 603., https://doi.org/10.1001/jama.2020.12603.

THANK YOU!

