Research Methods II

Session 2: MLE & Limited Dependent Variables

Fernando Rios-Avila

Introduction to Maximum Likelihood Estimation

- This is something we have seen before.
- MLE is a method to estimate parameters of a model.
 - It can be used to estimate paramaters of linear and nonlinear models
- The idea is to find the values of the parameters that maximize the likelihood function.
 - But what does it mean?

The likelihood function is the probability of observing the data given the parameters of the model.

So, MLE tries to maximize that probability, under the assumption that we know the distribution of the data.

In other words, we try to identify distributions! (not only conditional mean functions)

Example

Data

MLE estimation

- To identify the parameters of the model, we need to impose assumptions about the distribution of the data.
- For simplicitly, lets make the assumption that the data is normally distributed.
- The likelihood function for a single observation is:

$$L_i(\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{y_i-\mu}{\sigma}\right)^2}$$

• And under independent observations assumptions, the Likelihood function for the sample is:

$$LL(\mu,\sigma) = \prod_{i=1}^n L_i(\mu,\sigma)$$

Graphical representation

How Good we did?

kernel = epanechnikov, bandwidth = 0.3958

LR as an MLE

• We already know that LR can be easily estimated using OLS.

$$\beta = (X'X)^{-1}X'y$$

- $\bullet~$ But we can also estimate it using MLE.
- Consider the following model:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i$$

• To estimate the parameters using MLE, we need to make assumptions about the distribution of the error term or the dependent variable.

$$Y_i \sim N(x_i'\beta, \sigma^2)$$

• Under that assumption, the likelihood function for a single observation is:

$$L_i(\beta,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{y_i - x_i'\beta}{\sigma}\right)^2}$$

- Which can be used to construct the MLE estimator for OLS.
- Plot-twist: The MLE estimator for OLS is the same as the OLS estimator.

Limited Dependent Variables

Limited Dependent Variables

- Limited dependent variables are variables that are limited in their range of values.
 - For example, binary variables, or variables that are bounded between 0 and 1.
 - Or variables that are bounded between 0 and some positive number.
 - Or variables bounded to take only positive values.
 - etc
- Very Special Case: Endogenous Sample Selection
 - Looks unbounded, but you only observe a subset of the population.

Binary Data: LPM/Probit/logit

- Probit and logit are two models that are used to model binary dependent variables. (Dummies)
 - You can also use OLS (LPM), but has drawbacks
 - You also need to make sure your Dependent Variable is binary!
- When your Dep variable is binary, your goal is determine the probability of observing a 1 (success) of something to happen given a set of covariates.

$$P(y_i=1|x_i)=G(x_i'\beta)$$

The choice of G is what makes the difference between LPM, a probit and logit.

Probit/Logit

LOGIT

$$G(Z) = \frac{e^Z}{1 + e^Z} = \Lambda(Z)$$

Probit

$$G(Z) = \int_{-\infty}^z \phi(v) dv = \Phi(Z)$$

- Both make sure that $0 \le G(Z) \le 1$, which does nt happen with LPM (G(Z) = Z)
- And with this, we can use MLE to estimate the parameters of the model.

$$LL(\beta) = \prod_{i=1}^{n} G(x_i'\beta)^{y_i} (1 - G(x_i'\beta))^{1-y_i}$$

One could also think of the probit and logit as a transformation of a latent variable Y^* .

$$Y_i^* = x_i'\beta + \epsilon_i$$

• The latent variable is not observed. However, when $Y_i^* > 0$, we observe $Y_i = 1$. Here the probabilty of observing a $Y_i = 1$ is:

$$\begin{split} P(y_i = 1|x_i) &= P(y_i^* > 0|x_i) = P(x_i'\beta + \epsilon_i > 0|x_i) \\ &= P(\epsilon_i > -x_i'\beta|x_i) = 1 - P(\epsilon_i < -x_i'\beta|x_i) \\ &= 1 - G(-x_i'\beta) \end{split}$$

And if G' is symetrical (logit/probit/lpm):

$$P(y_i = 1 | x_i) = G(x_i'\beta)$$

Marginal Effects and testing

- LPM estimates can be interpreted Directly as the change in P(y=1|X)
- For Logit and probit, we need to compute the marginal effects.

$$P(y_i = 1|x_i) = G(x_i'\beta)$$

$$\frac{\partial P(y_i = 1 | x_i)}{\partial x_{ij}} = g(x_i'\beta)\beta_j$$

- For testing,
 - You can use the t-test (or z-test for logit/probit) for coefficients or marginal effects
 - Or use LR test for joint significance of a set of coefficients.

$$LR = 1 - 2(LL_u r - LL_r) \sim \chi_g^2$$

Example Stata

Load the data

```
webuse nhanes2d, clear
des highbp height weight age female
sum highbp height weight age female i.race [w=finalwgt]
```

Va:	riable	Storage	Display	Value		_	
	name 	type 	format	label 	Variable labe	1 	
hi	ghbp	byte	%8.0g	*	High blood pr	essure	
he	ight	float	%9.0g		Height (cm)		
we	ight	float	%9.0g		Weight (kg)		
ag	е	byte	%9.0g		Age (years)		
fe	male	byte	%8.0g	female	Female		
	Variable		Weight		Std. dev.	Min	Max
	highbp					0	1
	height	10,351	117157513	168.4599	9.699111	135.5	200
	weight	10,351	117157513	71.90064	15.43281	30.84	175.88

age	1	10,351	117157513	42.25264	15.50249	20	74
female		10,351	117157513	.5206498	.4995975	0	1
 	-+-						
race	1						
White	1	10,351	117157513	.8791545	.3259634	0	1
Black		10,351	117157513	.0955059	.2939267	0	1
Other	1	10,351	117157513	.0253396	.1571621	0	1

Estimate mode: LPM using weights

reg highbp height weight age female i.race [pw=finalwgt]
* or svy: reg highbp height weight age female i.race

(sum of wgt is 117,157,513)

Linear regression	Number of obs	=	10,351
	F(6, 10344)	=	531.97
	Prob > F	=	0.0000
	R-squared	=	0.2110
	Root MSE	=	.42864

 highbp	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
height	006271	.0008179	-7.67	0.000	0078742	0046677
weight	.0097675	.000369	26.47	0.000	.0090441	.0104909
age	.0096675	.0002984	32.40	0.000	.0090826	.0102524
female	0794025	.0142293	-5.58	0.000	1072948	0515103
I						
race						
Black	.0647166	.0170488	3.80	0.000	.0312977	.0981355
Other	.0869917	.0381158	2.28	0.022	.0122775	.161706
I						
_cons	.347133	.1403729	2.47	0.013	.0719749	.622291

Estimate mode: Logit using weights

logit highbp height weight age female i.race [pw=finalwgt] * or svy: reg highbp height weight age female i.race

Iteration 0: log pseudolikelihood = -77110184 Iteration 1: log pseudolikelihood = -63830529 Iteration 2: log pseudolikelihood = -63604963 Iteration 3: log pseudolikelihood = -63604252 Iteration 4: log pseudolikelihood = -63604252

Logistic regression

Number of obs = 10,351 Wald chi2(6) = 1473.91 Prob > chi2 = 0.0000 Pseudo R2 = 0.1752

Log pseudolikelihood = -63604252

	I	Robust				
highbp	Coefficient	std. err.	Z	P> z	[95% conf.	interval]
	+					
height	0328739	.0045382	-7.24	0.000	0417687	0239791
weight	.0514503	.0022181	23.20	0.000	.0471028	.0557977
age	.0496323	.0017152	28.94	0.000	.0462706	.052994
female	4472131	.0777753	-5.75	0.000	5996498	2947764
	l					
race	l					
Black	.351346	.0915423	3.84	0.000	.1719264	.5307656
Other	.4929785	.1961652	2.51	0.012	.1085017	.8774552
	l					
_cons	7501284	.7683899	-0.98	0.329	-2.256145	.7558881

Joint significance test

test 2.race 3.race

- (1) [highbp]2.race = 0
- (2) [highbp]3.race = 0

chi2(2) = 20.25Prob > chi2 = 0.0000 Marginal Effects: You need to use margins command

margins, dydx(*)

Average marginal effects

Number of obs = 10,351

Model VCE: Robust

Expression: Pr(highbp), predict()

dy/dx wrt: height weight age female 2.race 3.race

	 dy/dx +	Delta-metho	-	P> z	[95% conf	. interval]
height	0059971	.0008145	-7.36	0.000	0075936	0044007
weight	.009386	.0003507	26.76	0.000	.0086985	.0100734
age	.0090543	.0002562	35.34	0.000	.0085522	.0095564
female	0815842	.0141075	-5.78	0.000	1092344	0539339
	I					
race	I					
Black	.0654291	.0173285	3.78	0.000	.0314659	.0993923
Other	.0925816	.03772	2.45	0.014	.0186517	.1665115

Note: dy/dx for factor levels is the discrete change from the base level.

Predicted Probabilities

```
predict pr_hat
histogram pr_hat
graph export s2fig2.png, replace width(1000)
```

From here, we could also predict HighBP

```
gen dpr_hat = pr_hat>.5
tab dpr_hat highbp [w=finalwgt]
```

```
| High blood pressure
| dpr_hat | 0 1 | Total
```

	61819680	
1	12160331	•
	73980011	

Tobit

Tobit

- Tobit models are to analyze data with censored information.
- Censored data means that the data is there... but you dont know the exact value.
- For example, if you have data on income, but you only know that some people earn less than 10K, but you dont know how much less.
- The fact that you can see the data, even if you do not know the exact value, helps you to estimate the parameters of the model.

Visualizing the problem

Visualizing the problem

Tobit Model

- The idea of the Tobit model is "model" not only why y changes when X changes, but also why y is censored.
 - Although you do that with the same parameters, under normality assumptions.
- When the data is censored, the likelihood function is similar to a probit model, when the data is not censored, the likelihood function is similar to a linear model:

$$\begin{split} L_i(\beta,\sigma) &= \Phi\left(\frac{y^c - x_i'\beta}{\sigma}\right) \text{if } y_i = y^c \\ L_i(\beta,\sigma) &= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y_i - x_i'\beta}{\sigma}\right)^2} \text{if } y_i > y^c \end{split}$$

Estimation Stata

In Stata, you can estimate a Tobit model using the tobit command.

tobit y x1 x2 x3, l1(#)

• y: dependent variable

 $\bullet\,$ x1 x2 x3: independent variable

• 11(#): is the value of the censoring point.

Visualizing the solution

Tobit: Interpretation

Latent Variable

• The easiest to interpret is the latent variable.

- For example, say that you are interested in the effect of education on wages, but wages are censored at 10.
- In this case the coefficients of the Tobit model are the same as the coefficients of the linear model.

tobit y x, 11(0)

• use margins if you have interactions or polynomial terms.

Data is Corner Solution:

- If data is corner solution, then you need to decide what to interpret.
 - For example, say you are interested in the effect of education hours of work
 - Hours of work cannot fall below 0.
 - But you know education has a positive effect (on something)
- Would you be interested in the effect on the probability of working?
- The effect on hours of work for those who work?
- The overall average effect on hours of work? (some will enter the labor force, some will work more hours)

Probability of Working

$$P(y_i > 0 | x_i) = \Phi\left(\frac{x_i'\beta}{\sigma}\right)$$

margins, dydx(x) predict(pr(0,.))

• predict(pr(0,.)) says you are interested in the probability that data was not censored...or in this case that was not a corner solution

E(Y|Y>0,X)

$$\begin{split} y_i &= x_i'\beta + \epsilon_i \ ||E(|y>0,X) \\ E(y_i|y_i>0,x_i) &= x_i'\beta + \sigma\lambda \left(\frac{x_i'\beta}{\sigma}\right) \\ \lambda(z) &= \frac{\phi(z)}{\Phi(z)} \end{split}$$

This is the expected value of the latent variable, conditional on the latent variable being positive.

margins, dydx(x) predict(e(0,.))

• predict(e(0,.)) says you are interested in the expected change only for those who currently work.

E(Y|X)

$$\begin{split} E(y_i|x_i) &= E(y_i|y_i > 0, x_i) * P(y_i > 0|x_i) + 0 * (1 - P(y_i > 0|x_i)) \\ E(y_i|x_i) &= \Phi\left(\frac{x_i'\beta}{\sigma}\right) \left(x_i'\beta + \sigma\lambda\left(\frac{x_i'\beta}{\sigma}\right)\right) \\ E(y_i|x_i) &= \Phi\left(\frac{x_i'\beta}{\sigma}\right) x_i'\beta + \sigma\phi\left(\frac{x_i'\beta}{\sigma}\right) \end{split}$$

margins, dydx(x) predict(ystar(0,.))

• predict(ystar(0,.)) says you are interested in the average effect considering those who work and those who do not work.

Visualizing the solution

Sample Selection: Heckman

Exogenous Sample Selection

- First: Samples already represent a selection of the population.
 - however, because the selection is random, all assumptions of OLS are satisfied. (if they are true for the population.)
- Second: Some times selection may not be random, but based on observed (and control) characteristics
 - Not a problem either. Since you could at least say something for those you observe.
 (if you have the right variables)
 - This was exogenous sample selection.

ie: You want to estimate the effect of education on wages, but you only have data for highly educated people.

Endogenous Sample Selection

- Third: Selection may be based on unobserved characteristics.
 - This is a problem. The reason why we do not observe data is for unknown reasons (part of the error).
 - Because we cannot control for it, it will bias our estimates. (like omitted variable bias)
 - $-\,$ This is endogenous sample selection.

ie: - You want to estimate the effect of education on wages, but you only have data for those who work. - Those who work do so because they may have been offer higher wages for unknown reasons. (high skill? high motivation?)

Heckman Selection Model

- The Heckman selection model is an estimation method that allows you to correct a specific kind of endogenous sample selection.
- Consider the following model:

$$y_i = x_i' \beta + \epsilon_i$$

- In absence of selection, we can assume standard assumtions and estimate the model using OLS.
- However, if we have endogenous selection, usually means that we have a second equation that determines the selection.

$$s_i^* = z_i' \gamma + \eta_i$$

The Full model:

$$y_i = x_i'\beta + \epsilon_i \text{ if } s_i^* > 0$$

$$s_i^* = z_i'\gamma + \eta_i$$

$$\epsilon \sim N(0, \sigma_\epsilon)$$

$$\eta \sim N(0, 1)$$

$$corr(\epsilon, \eta) = \rho$$

- x_i and z_i are not necessarily the same. But they are exogenous to the error terms.
- The selection equation depends on observable z_i and unobservable η_i factors.
- The unobserable factors are correlated with the error term of the main equation.
- The problem: if $\rho \neq 0$ then $E(\epsilon | s_i^* > 0, x_i) \neq 0$.

Solution

• The solution is to "control" for the unobserved factors that are correlated with ϵ .

$$\begin{aligned} y_i &= x_i'\beta + \epsilon_i \mid\mid E(*|x_i, s_i^* > 0) \\ E(y_i|x_i, s_i^* > 0) &= x_i'\beta + E(\epsilon_i|x, z, \eta, s_i^* > 0) \\ &= x_i'\beta + E(\epsilon_i|\eta, s_i^* > 0) \\ &= x_i'\beta + \rho \frac{\phi(z_i'\gamma)}{\Phi(z_i'\gamma)} \\ &= x_i'\beta + \rho \lambda(z_i'\gamma) \end{aligned}$$

Thus the new model is:

$$y_i = x_i'\beta + \rho\lambda(z_i'\gamma) + \varepsilon_i$$

where γ is estimated using a probit model.

Implementation

- Two options:
 - 1. Estimate both outcome and selection equation jointly using MLE.
 - Requires careful setup of the likelihood function.
 - Imposes the assumption of joint normality of the error terms.
 - 2. Estimate it using a two-step procedure. (Heckit)
 - Estimate the selection equation using probit. $z_i'\gamma$
 - Estimate the outcome equation using OLS, inclusing inverse mills ratio. $\lambda(z_i'\gamma)$
 - Std Errs need to be corrected
- Consideration: In contrast with IV, Heckman does not require an instrument, but having one is highly recommended.

Example Stata

Lets start by loading some data

webuse womenwk, clear describe

Contains data from https://www.stata-press.com/data/r17/womenwk.dta

Observations: 2,000

Variables: 6 3 Mar 2020 07:43

Variable	Storage	Display	Value	Variable label
name	type	format	label	
county age education married children wage	byte byte byte byte byte float	%9.0g %8.0g %8.0g %8.0g %8.0g %9.0g		County of residence Age in years Years of schooling 1 if married spouse present # of children under 12 years old Hourly wage; missing, if not working

Sorted by:

In Stata, we can use command heckman to estimate the Heckman selection model, but lets start by doing this manually

```
gen works = (wage!=.)
** Selection model
probit works married children educ age
predict zg, xb
```

Iteration 0: log likelihood = -1266.2225
Iteration 1: log likelihood = -1031.4962
Iteration 2: log likelihood = -1027.0625
Iteration 3: log likelihood = -1027.0616
Iteration 4: log likelihood = -1027.0616

Probit regression Number of obs = 2,000

LR chi2(4) = 478.32 Prob > chi2 = 0.0000 Pseudo R2 = 0.1889

Log likelihood = -1027.0616

works | Coefficient Std. err. z P>|z| [95% conf. interval]

married | .4308575 .074208 5.81 0.000 .2854125 .5763025

children	.4473249	.0287417	15.56	0.000	.3909922	.5036576
education	.0583645	.0109742	5.32	0.000	.0368555	.0798735
age	.0347211	.0042293	8.21	0.000	.0264318	.0430105
_cons	-2.467365	.1925635	-12.81	0.000	-2.844782	-2.089948

This selection equation can be interpreted the usual way

The outcome model:

```
gen mill = normalden(zg)/normal(zg)
reg wage educ age mill
est sto hkit
```

Source		df	MS		r of obs	s = =	1,343 173.01
Model	14904.6806	3	4968.22688	B Prob	> F	=	0.0000
Residual	38450.214 +	1,339	28.7156191 	-	ared -squared		0.2793 0.2777
Total	53354.8946	1,342	39.7577456	Root 1	MSE	=	5.3587
wage	Coefficient		t 	P> t		conf.	interval]
education		.0504982		0.000	.88346	516	1.08159
age	.2118695	.0206636	10.25	0.000	.1713	333	.252406
mill	4.001616	.5771027	6.93	0.000	2.8694	192	5.133739
_cons	.7340391	1.166214	0.63	0.529	-1.5537	766	3.021844

Lets compare the outcome with Stata's Heckman

```
set linesize 255
reg wag educ age
est sto ols
heckman wage educ age, select(works = married children educ age) twostep
est sto hecktwo
heckman wage educ age, select(works = married children educ age)
est sto heckmle
```

	OLS	Heckit	Hkm-two	Hkm-mle
main				
education	0.897***	0.983***	0.983***	0.990***
	(0.050)	(0.050)	(0.054)	(0.053)
age	0.147***	0.212***	0.212***	0.213***
	(0.019)	(0.021)	(0.022)	(0.021)
mill		4.002***		
		(0.577)		
_cons	6.085***	0.734	0.734	0.486
	(0.890)	(1.166)	(1.248)	(1.077)
works				
married			0.431***	0.445***
			(0.074)	(0.067)
children			0.447***	0.439***
			(0.029)	(0.028)
education			0.058***	0.056***
			(0.011)	(0.011)
age			0.035***	0.037***
			(0.004)	(0.004)
_cons			-2.467***	-2.491***
			(0.193)	(0.189)
/mills				
lambda			4.002***	
			(0.607)	
/				
athrho				0.874***
				(0.101)
lnsigma				1.793***
Č				(0.028)
N	 1343	1343	2000	2000

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

Interpretation

- It depends...
- but the most likely scenario is to interpret the outcomes for everyone (thus just look at coefficients of the outcome equation)
- But you can also obtain effects for those who work, or the average effect.
- The Mills ratio can be interpreted as the direction of the selection.
 - If positive, then those who work are those who earn more
 - If negative, then those who work are those who earn less

Extra example

```
frause oaxaca, clear
reg lnwage educ exper tenure
est sto ols
heckman lnwage educ exper tenure , select(lfp =educ age married divorced kids6 kids714)
est sto hk_mle
heckman lnwage educ exper tenure , select(lfp =educ age married divorced kids6 kids714) trest sto hk_two
```

esttab ols hk_mle hk_two, se(%9.3f) b(%9.3f) star(* 0.10 ** 0.05 *** 0.01) nogaps mtitle(OLS

	OLS	Heckit	Hkm-two
main			
educ	0.087***	0.091***	0.094***
	(0.005)	(0.005)	(0.006)
exper	0.011***	0.011***	0.010***
	(0.002)	(0.002)	(0.002)
tenure	0.008***	0.008***	0.007***
	(0.002)	(0.002)	(0.002)
_cons	2.140***	2.079***	2.024***
	(0.065)	(0.067)	(0.072)
lfp			
educ		0.168***	0.183***

		(0.025)	(0.025)
age		-0.028***	-0.029***
		(0.006)	(0.006)
married		-0.853***	-0.832***
		(0.191)	(0.185)
divorced		-0.324	-0.239
		(0.229)	(0.222)
kids6		-0.590***	-0.573***
		(0.069)	(0.070)
kids714		-0.318***	-0.307***
		(0.057)	(0.058)
_cons		1.454***	1.313***
		(0.336)	(0.355)
/			
athrho		0.343***	
		(0.082)	
lnsigma		-0.750***	
3		(0.020)	
/mills			
lambda			0.293***
			(0.066)
N	1434	1647	1647
Standard errors	s in parentheses		

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.01

The End...

Til next week