RICERCA OPERATIVA

GRUPPO A

Soluzioni prova scritta del 22 Luglio 2008

1. Dato un grafo G = (V, E), siano U = V l'insieme universo e \mathfrak{I} una famiglia di sottoinsiemi di U così definita: $\mathfrak{I} = \{X \subseteq U : C \text{ è una clique}\}$. La coppia (U, \mathfrak{I}) è un matroide? Giustificare la risposta oppure fornire un controesempio.

La coppia (U, \Im) gode della proprietà di subclusione, ma non gode della proprietà di scambio. Si consideri il grafo formato da un arco $X = \{1,2\}$ e una clique $Y = \{3,4,5\}$, in cui i nodi 1, 2 non sono adiacenti ai nodi 3, 4, 5. Per la coppia $X, Y \in \Im$ non vale la proprietà di scambio.

si scrive

[A]
$$\max y_1 - 9y_2 + 3y_3$$
 [B] $\min -y_1 + 9y_2 - 3y_3$ [C] $\max y_1 + 9y_2 + 3y_3$ $-y_2 + y_3 \le 1$ $y_1 - y_2 - y_4 = -2$ $y_1 - y_2 + y_3 \le 1$ $y_1 - y_2 + y_4 = -2$ $y_1 - y_2 \ge -2$ $-2y_1 + y_2 + y_3 \le 1$ $y_1 - y_2 - y_3 \ge -1$ $y_1 - y_2 - y_3 \ge -1$ $y_1 - y_2 - y_3 \ge 0$

3. Applicare il metodo del simplesso per determinare (se esiste) una soluzione del problema (P) dell'esercizio 2.

Cambiando x_2 in $-x_2$ e aggiungendo variabili non negative di surplus/slack il problema si riscrive in forma standard

min
$$x_1 - 2x_2 + x_3$$

 $-x_2 - 2x_3 - w_1 = 1$
 $x_1 - x_2 - x_3 + w_2 = 9$
 $x_1 + x_3 = 3$
 $x_1, x_2, x_3, w_1, w_2 \ge 0$

La tabella

x_1	x_2	x_3	w_1	w_2	
1	-2	1	0	0	0
0	-1	-2	-1	0	1
1	-1	-1	0	1	9
1	0	1	0	0	3

non è in forma canonica. Risolviamo il problema ausiliario ottenuto aggiungendo due variabili z_1 , z_2 al primo e al terzo vincolo, e minimizzandone la somma:

x_1	x_2	x_3	w_1	w_2	z_1	z_2	
0	0	0	0	0	1	1	0
0	-1	-2	-1	0	1	0	1
1	-1	-1	0	1	0	0	9
1	0	1	0	0	0	1	3

La tabella di questo problema si rende canonica sottraendo alla riga 0 le righe 1 e 3:

x_1	x_2	x_3	w_1	w_2	z_1	z_2	
-1	1	1	1	0	0	0	-4
0	-1	-2	-1	0	1	0	1
1	-1	-1	0	1	0	0	9
1	0	1	0	0	0	1	3

Eseguendo un'operazione di pivot in colonna 1 si ha:

x_1	x_2	x_3	w_1	w_2	z_1	z_2	
0	1	2	1	0	0	1	-1
0	-1	-2	-1	0	1	0	1
0	-1	0	0	1	0	-1	6
1	0	1	0	0	0	1	3

La tabella ottenuta è ottima ma la variabile z_2 non è uscita dalla base. Dal momento che la funzione obiettivo vale 1, il problema (P) non ammette soluzione.

4. Applicando il metodo di Fourier-Motzkin dire se il seguente sistema lineare ammette un'unica soluzione ovvero ammette infinite soluzioni ovvero non ammette nessuna soluzione.

$$2x_1 - x_2 - x_3 \ge 1$$

$$x_2 - x_3 \ge -1$$

$$-x_1 + x_2 + x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<u>></u>
0	1	-1	0	-1
-1	1	0	1	2
1	-1	0	-1	-2
2	-1	-1	0	1
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>X</i> 4	>
0	1	0	0	-1
-1	1	0	1	2
1	-1	0	-1	-2
2	-1	0	0	1
1	0	0	0	0
0	1	0	0	0
0	0	0	1	0

<i>x</i> 1	<i>x</i> 2	х3	<i>x</i> 4	<u>></u>
0	1	0	0	-1
0	0	0	0	0
1	-1	0	0	-2
2	-1	0	0	1
1	0	0	0	0
0	1	0	0	0

Dall'ultima tabella, segue che $x_2 \ge 0$ e quindi il sistema ammette infinite soluzioni.

5. Chi beve birra...

Una fabbrica produce quattro tipi di birra: chiara e, scura; normale e doppio malto. Gli ingredienti della birra sono acqua, malto e luppolo. Produrre un ettolitro di birra richiede le quantità riportate in tabella (per gli ingredienti diversi dall'acqua si usano unità di misura venusiane)

ingrediente	normale chiara	normale scura	doppio malto chiara	doppio malto scura
acqua (hl)	1,20	1,12	1,20	1,12
malto (zq)	18	18	26	26
luppolo (zq)	3	2	3	2

La fabbrica dispone al giorno di 8.000 ettolitri di acqua, 98.000 zq. di malto e 10.000 zq. di luppolo. Una bottiglia da ¾ di birra si vende ai prezzi (in euro) indicati qui sotto

		normale chiara	normale scura	doppio malto chiara	doppio malto scura
р	orezzi (€)	1,20	1,80	2,10	2,40

D'altra parte uno zq. di malto costa 5€; la birra scura richiede malto tostato e la tostatura di uno zq. costa 1€; uno zq. di luppolo costa invece 11€. Qual è l'uso degli ingredienti che massimizza il guadagno giornaliero? Formulate il problema e impostatelo per la risoluzione con il metodo del simplesso producendo una tabella canonica iniziale e ricopiandola nello spazio seguente.

Indicando con $x_1, ..., x_4$ gli ettolitri giornalieri di birra dei quattro tipi prodotti il ricavo complessivo si scrive

$$R(\mathbf{x}) = 400(1,20x_1 + 1,80x_2 + 2,10x_3 + 2,40x_4)/3 = 160x_1 + 240x_2 + 280x_3 + 320x_4$$

D'altra parte ogni ettolitro di birra di un certo tipo consuma malto e luppolo in ragione del fabbisogno di quel tipo riprodotto in tabella. Il costo complessivo del malto è dato da

$$M(\mathbf{x}) = 5 \cdot (18x_1 + 26x_3) + 6 \cdot (18x_2 + 26x_4) =$$

e quello del luppolo da

$$L(\mathbf{x}) = 33 \cdot (x_1 + x_3) + 22 \cdot (x_2 + x_4)$$

Il guadagno giornaliero è perciò pari a

$$R(\mathbf{x}) - M(\mathbf{x}) - L(\mathbf{x}) = 37x_1 + 110x_2 + 117x_3 + 142x_4$$

problema si formula quindi

Si ha quindi immediatamente la tabella canonica

x_1	x_2	x_3	\mathcal{X}_4	w_1	w_2	w_3	
37	110	117	142	0	0	0	0
120	112	120	112	1	0	0	800.000
18	18	26	26	0	1	0	98.000
3	2	3	2	0	0	1	10.000

Proseguendo col metodo si conclude che la soluzione ottima consiste nel produrre solo birra scura: 4.000 ettolitri normale e 1.000 doppio malto. Il guadagno relativo è di 582.000 € al giorno.

6. I rettangoli

I rettangoli rappresentati in figura possono essere spostati dove si vuole, a patto che non siano ruotati e che l'angolo superiore sinistro coincida con uno degli incroci della griglia riportata a

tratteggio. Formulare come programmazione lineare 0-1 il problema di posizionare i rettangoli in modo da minimizzare la somma delle aree delle loro intersezioni a due a due.

Poniamo $x_{ih} = 1$ se e solo se il rettangolo i è posizionato all'incrocio h. Siano p = (i, j), q = (h, k) e sia a_{pq} l'area dell'intersezione della coppia di rettangoli p = (i, j) quando il rettangolo i (il rettangolo j) è posizionato all'incrocio h (all'incrocio k). Poniamo inoltre $y_{pq} = 1$ se $x_{ih} = x_{jk} = 1$, e $y_{pq} = 0$ altrimenti. Il problema si formula allora

min
$$\sum_{p} \sum_{q} a_{pq} y_{pq}$$

 $x_{ih} + x_{jk} - 1 \le y_{pq}$ per $p = (i, j), q = (h, k)$
 $x_{ih}, y_{pq} \in \{0, 1\}$