Déterminisation d'un AFN ou d'un AFNε

a) Calcul des clôtures :

- $CI(1) = \{1\}$
- $CI(2) = \{2,3,4\}$
- $CI(3) = \{3,4\}$
- $CI(4) = \{4\}$

- a) Calcul des clôtures :
- b) Calcul des transitions étendues

Q\Σ	а	b
1	2	X
2		
3		
4		

$$CI(1) = \{1\}$$

- a) Calcul des clôtures :
- b) Calcul des transitions étendues

Q\Σ	а	b
1	2	X
2	2	2,4
3		
4		

$$CI(1) = \{1\}$$

$$CI(2) = \{2,3,4\}$$

- a) Calcul des clôtures :
- b) Calcul des transitions étendues

Q\Σ	а	b
1	2	X
2	2	2,4
3	2	2,4
4		

$$CI(1) = \{1\}$$

$$CI(2) = \{2,3,4\}$$

$$CI(3) = \{3,4\}$$

- a) Calcul des clôtures :
- b) Calcul des transitions étendues

Q\Σ	а	b
1	2	X
2	2	2,4
3	2	2,4
4	2	4

$$CI(1) = \{1\}$$

$$CI(2) = \{2,3,4\}$$

$$CI(3) = \{3,4\}$$

$$CI(4) = \{4\}$$

- a) Calcul des clôtures :
- b) Calcul des transitions étendues
- c) États acceptants

Q\Σ	а	b
1	2	X
2	2	2,4
3	2	2,4
4	2	4

$$CI(1) = \{1\}$$
 $CI(2) = \{2,3,4\}$
 $CI(3) = \{3,4\}$
 $CI(4) = \{4\}$

2 hérite du caractère acceptant de 3 qui est dans sa clôture

3, non accessible, peut être émondé.

On renomme l'état 4

On obtient finalement un automate non déterministe :

Q\Σ	а	b
I = {1}	$II = \{2\}$	X

Q\Σ	а	b
I = {1}	$II = \{2\}$	X
II = {2}	II	$III = \{2,3\}$

Q\Σ	а	b
I = {1}	$II = \{2\}$	X
II = {2}	II	$III = \{2,3\}$
$III = \{2,3\}$	II	III

Q\Σ	а	b
I = {1}	$II = \{2\}$	X
II = {2}	II	$III = \{2,3\}$
(III)= {2,3}	II	III

D'où finalement l'AFD équivalent :

Q \ Σ	а	b
I = {1}	$II = \{2\}$	X
(I)= {2}	II	$III = \{2,3\}$
(III)= {2,3}	II	III

On remarque que 2 et 3 constituent un piège acceptant qui peut fusionner en un unique état. D'où l'automate équivalent final :

Comparons la lecture du mot « abba » par les trois automates :

Par l'automate initial, l'arbre de lecture conduisant à une lecture acceptante est le suivant :

Par l'automate initial, l'arbre de lecture conduisant à une lecture acceptante est le suivant :

b

Avec l'automate déterministe,

La résolution du problème de décision est donc beaucoup plus efficace!