Solutions to selected homework from chapter 12

12.5.10

Problem: Consider $f: \mathbb{N} \to \mathbb{Z}$ defined by

$$f(n) = \frac{(-1)^n (2n-1) + 1}{4}.$$

This function is bijective by a previous exercise. Find its inverse.

Solution: Because of the term $(-1)^n$, the values of this function depend heavily on whether or not n is even. If n is even then we can write n = 2k and we have

$$f(n) = \frac{2n-1+1}{4} = \frac{n}{2} = k.$$

In other words, if n is even, then f(n) is n/2. Since n is an even natural number, n/2 is a positive integer greater than or equal to 1.

To construct the inverse of this part of the function, we can start with a positive integer $k \ge 1$ and define $f^{-1}(k) = 2k$.

If n is odd, then we can write n = 2k + 1 and we have

$$f(n) = \frac{(1-2n)+1}{4} = \frac{2-2n}{4} = \frac{2-4k-2}{4} = -k$$

so if n is odd then f(n) is (1-n)/2. Since n is a natural number, (1-n)/2 will be a non-positive integer. So to reverse this part of the function, given a non-positive integer k, we can let n = 1 - 2k. This will be a positive odd natural number.

So putting the two parts together, we have

$$f^{-1}(k) = \begin{cases} 2k & k > 0\\ 1 - 2k & k \le 0 \end{cases}$$

Problem 12.6.6

Problem: Given a function $f: A \to B$ and a subset $Y \subset B$, is $f(f^{-1}(Y)) = Y$ always true? Prove or give a counterexample.

Solution: Notice that $f^{-1}(Y)$ is the subset of A consisting of elements $a \in A$ such that $f(a) \in Y$. So $f(f^{-1}(Y)) \subset Y$. The question is whether $f(f^{-1}(Y))$ might be *smaller* than all of Y; and indeed it can. Here is a simple example. Let $A = \{0\}$ and $B = \{0,1\}$. Suppose that $f = \{(0,0)\} \subset A \times B$ and let Y = B. Then $f^{-1}(B) = A$ since $f^{-1}(0) = 0$. But $f(A) = \{0\} \subset B$ which is smaller than all of B.

Problem 12.6.8

Problem: Given a function $f: A \to B$ and subsets $W, X \subset A$, then $f(W \cap X) = f(W) \cap f(X)$ is *false* in general. Give a counterexample.

Solution: Suppose $A = \{0,1\}$ and $B = \{0\}$. Suppose that $f = \{(0,0),(1,0)\} \subset A \times B$. Let $W = \{0\}$ and $X = \{1\}$. Then $W \cap X = \emptyset$ so $f(W \cap X) = \emptyset$. On the other hand, f(W) = B and f(X) = B so $f(W) \cap f(X) = B \neq \emptyset$.

Notice that you can find a counterexample in both of these cases using very small sets.

Problem 12.6.12

Problem: Consider $f:A\to B$. Prove that f is injective if and only if $X=f^{-1}(f(X))$ for all $X\subset A$. Prove that f is surjective if and only if $f(f^{-1}(Y))=Y$ for all $Y\subset B$.

Solution: Let's first notice that $X \subset f^{-1}(f(X))$ for any X and any f. To see this, suppose $x \in X$. Then $f(x) \in f(X)$. Since $f^{-1}(f(X))$ is the set of all elements a of A such that $f(a) \in X$, we have $x \in f^{-1}(f(X))$. Therefore $X \subset f^{-1}(f(X))$. Suppose that there exists $u \in f^{-1}(f(X))$ such that $u \notin X$. Then $f(u) \in f(X)$ so f(u) = f(x) for some $x \in X$, and $u \neq x$ since $u \notin X$. Therefore f is not injective. Thus we've proven that if $X \neq f^{-1}(f(X))$ then f is not injective.

Now suppose f is not injective, so there are two elements a and a' in A with f(a) = f(a'). Let $X = \{a\}$. Then $f(a) \in f(X)$, so $a' \in f^{-1}(f(X))$, and therefore $f^{-1}(f(X)) \neq X$ for this particular X. So if f is not injective then there is an X with $X \neq f^{-1}(f(X))$.

The surjectivity argument is similar, although everything is switched around. First notice that, for any f, $f(f^{-1}(Y)) \subset Y$. This is because if $a \in f^{-1}(Y)$, then $f(a) \in Y$ by definition. So suppose there is an element y of Y that is not in $f(f^{-1}(Y))$. If there were an x with f(x) = y, then x would be in $f^{-1}(Y)$, and so y = f(x) would be in $f(f^{-1}(Y))$. So there is no such x, and therefore f is not surjective.

On the other hand, suppose f is not surjective. Then there is a $b \in B$ for which there is no $a \in A$ with f(a) = b. Let $Y = \{b\}$. Then $f^{-1}(Y) = \emptyset$ and $f(f^{-1}(Y)) = f(\emptyset) = \emptyset$. Thus if f is not surjective, there is a subset Y for which $f(f^{-1}(Y)) \neq Y$.