

2

CS 3104 OPERATING SYSTEMS

CHAPTER 1

RESOURCE MANAGEMENT: IMPORTANT FACTS

An operating system is a resource manager.

- Resources that OS must manage:
 - o system's CPU
 - o memory space
 - o file-storage space
 - I/O devices

PROCESS MANAGEMENT

- Process:
 - o It is a program in execution.
 - It is a unit of work within the system
- Program is a passive entity
- Process is an active entity
- Process needs resources to accomplish its task:
 - o CPU, memory, I/O, Files
 - Initialization data (input)
- Important Note:
 - When the **process terminates**, the **OS will reclaim** any reusable resources.

PROCESS MANAGEMENT

- Single-threaded process has one program counter specifying location of the next instruction to execute
- Process executes instructions sequentially, one at a time, until completion
- Multithreaded process has one program counter per thread
- Typically, a system has many processes running concurrently on one or more CPUs.
 - Operating-system processes (those that execute system code)
 - **Output** User processes (those that execute user code)
 - o Concurrency is done by multiplexing the CPUs among the processes / threads

PROCESS MANAGEMENT ACTIVITIES

- The OS is responsible for the following activities in connection with process management:
 - Creating and deleting both user and system processes
 - Scheduling processes and threads on the CPUs
 - Suspending and resuming processes
 - Providing mechanisms for process synchronization
 - Providing mechanisms for process communication
 - Providing mechanisms for deadlock handling

MEMORY MANAGEMENT

- To execute a program, all (or part) of the instructions must be in memory
- All (or part) of the data that are needed by the program must be in memory
- Memory management determines:
 - o what is in memory and
 - when optimizing CPU utilization and computer's response to users
- Memory management activities:
 - o Keeping track of which parts of memory are currently being used and which process is using them
 - o Deciding which processes (or parts of processes) and data to move into and out of memory
 - Allocating and deallocating memory space as needed

FILE-SYSTEM MANAGEMENT

- OS provides uniform, logical view of information storage
 - OS abstracts physical properties to logical storage unit (**file**)
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include:
 - access speed
 - capacity
 - data-transfer rate
 - access method (sequential or random)
- File-System management:
 - Files usually organized into directories
 - Access control on most systems to determine who can access what
 - **OS** activities include:
 - Creating and deleting files
 - Creating and deleting directories to organize files
 - Supporting primitives for manipulating files and directories
 - Mapping files onto mass storage
 - Backing up files on stable (nonvolatile) storage media

MASS-STORAGE MANAGEMENT

- Usually, these are disks:
 - o used to store data that does not fit in main memory, or
 - o data that must be kept for a "long" period of time
- Proper management is of central importance
- Entire speed of computer operation hinges on disk subsystem and its algorithms

MASS-STORAGE MANAGEMENT

- OS activities with secondary storage management:
 - Mounting and unmounting
 - Free-space management
 - Storage allocation
 - Disk scheduling
 - Partitioning
 - Protection

- Some storage need not be fast
 - Tertiary storage includes magnetic tape, optical storage, and Blu-ray drives
 - Not crucial but still must be managed (by OS or applications)

CACHE MANAGEMENT

- Caching:
 - Important principle of computer systems
 - O Performed at many levels in a computer (in hardware, operating system, software)
- Information in use is copied from slower to faster storage temporarily
- Faster storage (cache) is checked first to determine if information is there
 - o If it is, information is used directly from the cache (fast)
 - o If not, information is copied to cache and it is used there
- Cache is smaller than the storage being cached
 - Cache management is important in design problem
 - Cache size and replacement policy are also considered

CHARACTERISTICS OF VARIOUS TYPES OF STORAGE

Level	1	2	3	4	5
Name	registers	cache	main memory	solid-state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25-0.5	0.5-25	80-250	25,000-50,000	5,000,000
Bandwidth (MB/sec)	20,000-100,000	5,000-10,000	1,000-5,000	500	20-150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

MIGRATION OF DATA "A" FROM DISK TO REGISTER

• Multitasking environments must be careful to use most recent value, no matter where it is stored in the storage hierarchy

- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache
- Distributed environment situation is even more complex
 - Several copies of a datum can exist
 - Various solutions are covered in Chapter 19

I/O SUBSYSTEM

- One purpose of OS is to hide peculiarities of hardware devices from the user
- Peculiarities of I/O devices are hidden from the bulk of the operating system itself by the I/O subsystem
- **I/O subsystem** is responsible for:
 - Memory management of I/O including;
 - **buffering** (storing data temporarily while it is being transferred),
 - caching (storing parts of data in faster storage for performance),
 - spooling (the overlapping of output of one job with input of other jobs)
 - General device-driver interface
 - Drivers for specific hardware devices

SECURITY AND PROTECTION

- Security: defense of the system against internal and external attacks
 - Huge range: denial-of-service, worms, viruses, identity theft, theft of service
- Protection: any mechanism for controlling access of processes or users to resources defined by the OS
- Systems generally first distinguish among users, to determine who can do what:
 - User identities (user IDs, security IDs) include name and associated number, one per user
 - User ID then associated with all files, processes of that user to determine access control
 - o Group Identifier (group ID) allows set of users to be defined and controls management, then also associated with each process, file
 - o Privilege escalation allows user to change to effective ID with more rights

VIRTUALIZATION

- The creation of a virtual (rather than actual) version of something, such as an operating system (OS), a server, a desktop, a storage device or network resources.
- A technology that allows us to abstract the hardware of a single computer into several different execution environments
- Creating the illusion that each separate environment is running on its own private computer
- Allows operating systems to run as applications within other Operating Systems
- Vast and growing industry

VIRTUALIZATION

- Virtualization software is one member of a class that also includes emulation
 - Emulation is used when source CPU type is different from target type
 - (i.e., PowerPC to Intel x86)
 - generally, it is the slowest method
 - emulated code may run much more slowly than the native code
- Virtualization: OS natively compiled for CPU, running guest Operating Systems also natively compiled
 - Consider VMware running WinXP guests, each running applications, all on native WinXP host OS
 - VMM (Virtual Machine Manager) provides virtualization services

VIRTUALIZATION

- Use cases that involve laptops and desktops running multiple Operating Systems for exploration or compatibility
 - Apple laptop running Mac OS X host, Windows as a guest
 - Developing apps for multiple Operating Systems without having multiple systems
 - QA testing applications without having multiple systems
 - Executing and managing compute environments within data centers
- VMM can run natively, in which case they are also the host
 - There is no general purpose host then (VMware ESX and Citrix XenServer)

COMPUTING ENVIRONMENTS: VIRTUALIZATION

A computer running (a) a single operating system and (b) three virtual machines.

DISTRIBUTED SYSTEMS

- Distributed computing: a field of computer science that studies distributed systems
- Distributed Systems:
 - Collection of physically separate, possibly heterogeneous computer systems networked together
 - Network is a communication path between 2 or more systems
 - TCP/IP is the most common network protocol used
 - **❖** Local Area Network (LAN)
 - **❖** Wide Area Network (WAN)
 - **❖** Metropolitan Area Network (MAN)
 - **❖** Personal Area Network (PAN)
- Network Operating System: provides features between systems across network
 - O Communication scheme allows systems to exchange messages
 - Illusion of a single system

Many similar to standard programming data structures:

Singly linked list

Doubly linked list

Circularly linked list

- Binary Search Tree: left <= right</p>
 - Search performance is O(n)
 - Balanced binary search tree is $O(\log n)$

- Hash function can create a hash map
- Hash Map:
 - which associates (or maps) [key:value] pairs using a hash function

• Hash function:

- takes data as its input, performs a numeric operation on the data, and returns a numeric value
- o this numeric value can then be used as an index into a table (typically an array) to quickly retrieve the data

Example:

Suppose that a user name is mapped to a password

- Password authentication then proceeds as follows: a user enters her user name and password
- Hash function is applied to the user name, which is then used to retrieve the password
- The retrieved password is then compared with the password entered by the user for authentication

- Bitmap:
 - \circ a string of *n* binary digits representing the status of *n* items
- Example:

Suppose we have several resources; availability of each resource is **indicated by the** value of a binary digit: 0 means resource is available, while 1 indicates that it is unavailable (or vice versa)

- Consider the **bitmap** shown below:001011101
 - Resources 2, 4, 5, 6, and 8 are unavailable
 - Resources 0, 1, 3, and 7 are available
- **Bitmaps:** commonly used when there is a need to represent the availability of a large number of resources.
- **Example:** Disk drives
 - Medium-sized disk drive is divided into several thousand individual units (disk blocks)
 - A bitmap can be used to indicate the availability of each disk block

LINUX KERNEL DATA STRUCTURES

- The data structures used in the Linux kernel are available in the kernel source code.
- The *include* file < linux/list.h > provides details of the linked-list data structure used throughout the kernel.
- A queue in Linux is known as a **kfifo**, and its implementation can be found in the **kfifo.c** file in the **kernel** directory of the source code.
- Linux also provides a balanced binary search tree implementation using red-black trees.
- **Details** can be found in the include file **linux/rbtree.h**.

COMPUTING ENVIRONMENTS: TRADITIONAL

- Stand-alone general-purpose machines
- But blurred, as most systems interconnect with others (i.e., the Internet)
- Portals provide web access to internal systems
- Network computers (thin clients) are like Web terminals
- Mobile computers interconnect via wireless networks
- Networking becoming ubiquitous (even home systems use firewalls to protect home computers from Internet attacks)

COMPUTING ENVIRONMENTS: MOBILE

- Handheld smartphones, tablets, etc.
- What is the functional difference between them and a "traditional" laptop?
- Extra feature more OS features (GPS, gyroscope)
- Allows new types of apps like augmented reality
- Use IEEE 802.11 wireless, or cellular data networks for connectivity
- Leaders are Apple iOS and Google Android

COMPUTING ENVIRONMENTS: CLIENT-SERVER

- Client-Server Computing:
 - Dumb terminals supplanted by smart PCs
 - Many systems now servers, responding to requests generated by clients
 - Compute-server system: provides an interface to client to request services (i.e., database)
 - File-server system: provides interface for clients to store and retrieve files

COMPUTING ENVIRONMENTS: PEER-TO-PEER

- Another model of distributed system
- P2P does not distinguish clients and servers
 - Instead all nodes are considered peers
 - May each act as client, server or both
 - Node must join P2P network
 - Registers its service with central lookup service on network, or
 - Broadcast request for service and respond to requests for service via *discovery protocol*
 - Examples include Napster and Gnutella, Voice over IP (VoIP) such as Skype

COMPUTING ENVIRONMENTS: CLOUD COMPUTING

- Delivers computing, storage, even apps as a service across a network
- Logical extension of virtualization because it uses virtualization as the base for its functionality
- Amazon EC2 has thousands of servers, millions of virtual machines, petabytes of storage available across the Internet, pay is based on usage

COMPUTING ENVIRONMENTS: CLOUD COMPUTING

Many types:

- **Public cloud:** available via Internet to anyone willing to pay
- o **Private cloud:** run by a company for the company's own use
- **Hybrid cloud:** includes both public and private cloud components
- Software as a Service (SaaS): one or more applications available via the Internet (i.e., word processor)
- Platform as a Service (PaaS): software stack ready for application use via the Internet (i.e., a database server)
- o Infrastructure as a Service (IaaS): servers or storage available over Internet (i.e., storage available for backup use)

COMPUTING ENVIRONMENTS: CLOUD COMPUTING

Cloud computing environments:

- composed of traditional Operating Systems, plus VMMs, plus cloud management tools
 - Internet connectivity requires security like firewalls
 - Load balancers spread traffic across multiple applications

COMPUTING ENVIRONMENTS

REAL-TIME EMBEDDED SYSTEMS

- Real-time embedded systems are the most prevalent form of computers
 - o Vary considerable, special purpose, limited purpose OS: real-time OS
 - Use expanding
- Many other special computing environments as well
 - Some have Operating System
 - Some perform tasks without an OS
- Real-time OS has well-defined fixed time constraints
 - Processing *must* be done within constraint
 - Correct operation only if constraints met

FREE AND OPEN-SOURCE OPERATING SYSTEMS

- Operating systems made available in source-code format rather than just binary closed-source and proprietary
- Counter to the **copy protection** and **D**igital **R**ights **M**anagement (**DRM**) movement
- Started by Free Software Foundation (FSF), which has "copyleft" GNU Public License (GPL)
 - Free software and open-source software are two different ideas championed by different groups of people

FREE AND OPEN-SOURCE OPERATING SYSTEMS

- Examples include GNU/Linux and BSD UNIX (including core of Mac OS X), and many more
- Can use VMM like VMware Player (Free on Windows), Virtualbox (open source and free on many platforms https://www.virtualbox.org)
 Used to run guest operating systems for exploration

2

CS 3104 OPERATING SYSTEMS

