Scikit-learn

Scikit-learn is an open source Python library that implements a range of machine learning, preprocessing, cross-validation and visualization algorithms using a unified interface.

A Basic Example

Loading The Data

Your data needs to be numeric and stored as NumPy arrays or SciPy sparse matrices. Other types that are convertible to numeric arrays, such as Pandas DataFrame, are also acceptable.

Preprocessing The Data

Standardization

Normalization

Binarization

Encoding Categorical Features

Imputing Missing Values

Generating Polynomial Features

Training And Test Data

Create Your Model

Supervised Learning Estimators

Support Vector Machines (SVM)

Naive Bayes

KNN

Unsupervised Learning Estimators

Principal Component Analysis (PCA)

K Means

Model Fitting

Supervised learning

Unsupervised Learning

Prediction

Supervised Estimators

Unsupervised Estimators

Evaluate Your Model's Performance

Classification Metrics

Accuracy Score

Classification Report

Confusion Matrix

Regression Metrics

Mean Absolute Error

Mean Squared Error

R² Score

Clustering Metrics

Adjusted Rand Index

Homogeneity

V-measure

Cross-Validation

```
In []:  print(cross_val_score(knn, X_train, y_train, cv=4))
2  print(cross_val_score(lr, X, y, cv=2))
```

Tune Your Model

Grid Search

Randomized Parameter Optimization

```
In [ ]:
                 from sklearn.grid_search import RandomizedSearchCV
         H
              2
                 params = {"n_neighbors": range(1,5), "weights": ["uniform", "distance"]}
              3
                 rsearch = RandomizedSearchCV(estimator=knn,
              4
                    param distributions=params,
              5
                   cv=4,
              6
                   n_iter=8,
              7
                   random_state=5)
                rsearch.fit(X_train, y_train)
                print(rsearch.best score )
```