Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Teste de Hipótese

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Aula passada

- Teoria da amostragem
 - Amostra;
 - Tamanho da amostra;
 - Teorema Central do Limite;
 - Distribuição amostral;
 - Distribuição t de Student
 - Distribuição qui-quadrado
- Estimativa de parâmetros
 - Máxima Verossimilhança;
 - Intervalo de Confiança;
- Bootstrapping;
- Teste de hipótese
 - Teste do qui-quadrado;

Paradigmas

Fundamentos do método científico

→ crucial para análises de dados empíricos;

Processo de realizar decisões baseados em estatística;

Aleatoriedade → existência de uma margem de erro;

Passos

Etapas do teste de hipótese:

- Hipótese experimental é construído;
- 2. O experimento é executado;
- 3. Dados são coletados;
- Testes estatísticos baseados nos dados são realizados;
- Os resultados são comparados com a hipótese inicial;

Teoria básica

Construção de hipótese;

- hipótese nula (H₀)
 - Situação que pode ser traduzido facilmente a uma distribuição de probabilidade;
 - Exemplo: H_0 : $\mu = 0$
- hipótese alternativa (H_{Δ}) ;
 - Negação lógica da H_o;
 - Exemplo: H_{Δ} : $\mu \neq 0$
- Objetivo: Refutar a hipótese nula;
 - Mostrar que a média não é zero e que ela difere significativamente do zero baseado em um teste estatístico.

Hipótese alternativa → "Média diferente de zero":

- Bicaudal \Rightarrow H_{Δ} : $\mu \neq 0$
- Unicaudal \Rightarrow H_{Δ} : $\mu > 0$ ou H_{Δ} : $\mu < 0$

- O experimento é executado;
- Dados s\u00e3o coletados;
- Testes estatísticos baseados nos dados são realizados;
 - Teste-t;
 - Teste do qui-quadrado;
 - Teste Binomial;
 - Teste Wilcoxon;
 - Teste exato de Fisher;
- Os resultados s\u00e3o comparados com a hip\u00f3tese inicial para a tomada de decis\u00e3o;

Tomada de decisão → Aceitar ou rejeitar a hipótese nula:

Critério de corte para aceitar o rejeitar a hipótese nula:

nível α ou taxa de erro do tipo l

- Definido pelo pesquisador;
- Porcentagem da área sob a curva que consideramos como muito extremo para aceitar a hipótese nula;
- Valor comum:
 - teste-t unicaudal: 0,05
 - teste -t bicaudal: 0,025
- $\alpha = 0.05 \Rightarrow 5\%$ das vezes rejeitamos a hipótese nula;
- Quanto menor o α, maior é a estringência do teste;

Tomada de decisão → Quatro possíveis resultados:

	Real validade do H ₀		
		H ₀ é verdadeira	H ₀ é falsa
Decisão tomada	Aceitar H ₀	Verdadeiro negativo	Falso negativo (Erro tipo II)
	Rejeitar H ₀	Falso positivo (Erro tipo I)	Verdadeiro positivo

Erro tipo I → Rejeitar H₀ quando ela é verdadeira; Erro tipo II → Aceitar H₀ quando ela é falsa.

Erros do tipo I (alfa) e II (beta)

- Hipótese nula: paciente não está gestante;
- Hipótese alternativa: paciente está gestante;

Erros do tipo I (alfa) e II (beta)

- Inversamente proporcionais;
 - o Aumentar o alfa, diminui o beta;

Baseado na distribuição t de Student;

Apropriado para modelar as médias amostrais;

Tipos de teste T

- Amostra única;
- Amostras independentes
- Amostras dependentes (pareados);

$$t=rac{X-\mu}{rac{s}{\sqrt{n}}}$$
 $t=rac{X-Y}{\sqrt{rac{s_X^2}{n}+rac{s_Y^2}{m}}}$

$$t=rac{ar{d}}{rac{s_d}{\sqrt{n}}}$$

Amostra única → Compara um valor de uma média amostral com uma média hipotética sobre uma hipótese nula;

Hipótese nula: $\bar{X} = \mu$

Grau de liberdade: n-1

$$t=rac{X-\mu}{rac{s}{\sqrt{n}}}$$

Amostras independentes → Compara as médias amostrais de dois grupos (X e Y) independentes. Grau de liberdade = n + m -2

Hipótese nula → as médias dos dois grupos é a mesma:

•
$$H_0$$
: $\mu_X = \mu_Y$ ou $\mu_X - \mu_Y = 0$

S²_x e S²_y→ Variância amostral de X e Y;

n → número de amostras em X;

m → número de amostras em Y.

$$t=rac{ar{X}-ar{Y}}{\sqrt{rac{s_X^2}{n}+rac{s_Y^2}{m}}}$$

Amostras dependentes (pareados) → Utilizado para comparar dados pareados para determinar se a diferença entre os dados pareados são significativamente distintos;

$$H_0$$
: d = 0

Grau de Liberdade = n - 1

$$t=rac{d}{rac{s_d}{\sqrt{n}}}$$

d → Diferença entre os pares

Revisão

- 1. Definindo as hipóteses;
- 2. Coletar dados;
- Calcular o teste estatístico apropriado;
- 4. Tirar conclusão baseado no resultado do teste;