

K. Wiegand, T. Stalljohann, T. Witt
Sommersemester 2025
Heidelberg, 17. Juni 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 10

Stichworte: Orientierung und Fundamentalgruppe

a) M ist orientierbar genau dann wenn es eine offene Überdeckung $(U_i)_{i\in I}$ von M und eine Familie $(\mathbf{X}^i)_{i\in I} = ((X_1^i, \dots, X_m^i))_{i\in I}$ von Rahmen¹ über $U_i, i\in I$, gibt, sodass

$$\mathbf{X}^{i}(p) \sim \mathbf{X}^{j}(p) \qquad \forall i, j \in I, p \in U_{i} \cap U_{j}$$
.

(~ bezeichent, wie in der VL, die Gleichorientiertheit von Vektorraumbasen.)

- b) Es gibt entweder keine oder genau zwei Orientierungen auf M.
- c) Sei angenommen, dass es Rahmen (U, \mathbf{X}) und (V, \mathbf{Y}) auf M über zusammenhängenden offenen Mengen U und V gibt sowie $p_1, p_2 \in U \cap V$ mit $\mathbf{X}(p_1) \sim \mathbf{Y}(p_1)$ und $\mathbf{X}(p_2) \not\sim \mathbf{Y}(p_2)$. Dann ist M nicht orientierbar.
- d) Seien $V_1, V_2 \subseteq V$ Untervektorräume eines endlich-dimensionalen Vektorraums V mit $V_1 \oplus V_2 = V$. Orientierungen auf V_1 und V_2 induzieren eine Orientierung auf V und umgekehrt induzieren Orientierungen auf V_1 und V eine Orientierung auf V_2 .
- e) Sei $M \subseteq \mathbb{R}^{m+1}$ eine Untermannigfaltigkeit. Dann ist M orientierbar genau dann wenn es ein glattes Vektorfeld Y entlang von M^2 gibt, sodass ||Y(p)|| = 1 und $Y(p) \perp T_p M$ für alle $p \in M$.
- f) Sei M orientiert und N eine weitere orientierte Mannigfaltigkeit. Sei $f:M\to N$ eine glatte Abbildung mit regulärem Wert $c\in N$. Dann trägt $f^{-1}(c)$ eine natürliche Orientierung.
- g) Beweisen Sie Satz 6.7 aus der VL: Ist M orientierbar und $\tau: M \to M$ eine fixpunktfreie Involution, dann ist M/τ genau dann orientierbar, wenn τ orientierungserhaltend ist.⁴

¹Erinnerung: Ein Rahmen $\mathbf{X} = (X_1, \dots, X_m)$ von TM über $U \subseteq M$ ist eine Familie von Vektorfeldern, sodass $(X_1(p), \dots, X_m(p))$ eine Basis für T_pM ist für jedes $p \in U$.

 $^{^2}$ d.h. Yist ein Schnitt des Pullback-Bündels $T\mathbb{R}^{m+1}|_M\to M$

³Das Skalarprodukt ist das euklidische Skalarprodukt und die Norm die vom euklidischen Skalarprodukt induzierte Norm.

⁴Analog zeigt man folgende Verallgemeinerung: Ist $\Phi: G \times M \to M$ eine freie und eigentliche glatte Gruppenwirkung einer diskreten Lie-Gruppe G auf der orientierbaren, zusammenhängenden Mannigfaltigkeit M, so ist die Quotientenmannigfaltigkeit M/G genau dann orientierbar, wenn $\Phi(g, \cdot): M \to M$ orientierungserhaltend ist für alle $g \in G$.

h) Der Totalraum $M=\mathbb{R}^2/\sim$ des Möbiusbündels (siehe Zusatzaufgabe 4 auf UB 3) ist nicht orientierbar.

Aufgabe 2 Basispunktwechsel bei Fundamentalgruppe (1+1+1+2+2+1 Punkte)

Gegeben ein topologischer Raum X und $x_0, x_1 \in X$ sowie ein stetiger Pfad $p:[0,1] \to X$ von x_0 nach x_1 . Bezeichne mit $p^-:[0,1] \to X$, $p^-(t):=p(1-t)$, den inversen Pfad. Definiere $h_p:\pi_1(X,x_1)\to\pi_1(X,x_0)$ durch $h_p([\gamma]_{x_1}):=[(p\star\gamma)\star p^-]_{x_0}$.

a) Zeigen Sie, dass dies ein wohldefinierter Gruppenhomomorphismus ist.

Zeigen Sie weiterhin

- b) Für einen weiteren Pfad $p': [0,1] \to X$ mit $p'(0) = x_1$ gilt $h_{p \star p'} = h_p \circ h_{p'}$.
- c) Ist $p':[0,1]\to X$ ein weiterer Pfad mit $p\simeq p'$ rel $\{0,1\}$, dann gilt $h_p=h_{p'}$.

Folgern Sie aus Teil a) und b), dass h_p ein Isomorphismus ist. Insbesondere ist die Fundamentalgruppe eines wegzusammenhängenden topologischen Raums bis auf Isomorphie unabhängig vom Basispunkt.

- d) Für eine Gruppe G und $a \in G$ bezeichne int $_a : G \to G$ die Konjugation mit a, d.h. int $_a(g) := aga^{-1}$. Sei nun $p' : [0,1] \to X$ ein weiterer Pfad mit $p'(0) = x_0$ und $p'(1) = x_1$. Zeigen Sie, dass es ein $a \in \pi_1(X, x_0)$ gibt mit int $_a \circ h_p = h_{p'}$.
- e) Bezeichne [S¹, X] die freie Homotopiegruppe von X.⁵ Auf $\pi_1(X, x_0)$ betrachten wir die Gruppenwirkung durch Konjugation

$$\pi_1(X, x_0) \times \pi_1(X, x_0) \to \pi_1(X, x_0)$$
, $([p]_{x_0}, [\gamma]_{x_0}) \mapsto h_p([\gamma]_{x_0}) = [p]_{x_0} \cdot [\gamma]_{x_0} \cdot [p]_{x_0}^{-1}$.

Zeigen Sie, dass die kanonische Abbildung $\pi_1(X, x_0) \to [\mathbb{S}^1, X]$, $[\gamma]_{x_0} \mapsto [\gamma]$ durch den Quotienten der Gruppenwirkung faktorisiert, d.h. eine wohldefinierte Abbildung

$$\pi_1(X, x_0)/\pi_1(X, x_0) \to [\mathbb{S}^1, X]$$

induziert.

Für den nächsten Aufgabenteil dürfen Sie den folgenden Fakt verwenden: Gegeben eine Homotopie $H: Y \times [0,1] \to X$ und fixes $y_0 \in Y$. Definiere den Pfad $p: [0,1] \to X$, $p(t) := H_t(y_0) = H(y_0,t)$. Dann kommutiert das folgende Diagramm:

f) Sei $f: X \to Y$ eine Homotopieäquivalenz⁶ und $x_0 \in X$. Dann ist

$$\pi_1(f): \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$

ein Isomorphismus.

⁵Dies ist die Menge der Äquivalenzklassen von Schleifen nach X, wobei zwei Schleifen $\gamma_1, \gamma_2 : \mathbb{S}^1 \to X$ äquivalent sind, wenn es eine Homotopie $H : \mathbb{S}^1 \times [0,1] \to X$ gibt mit $H_0 = \gamma_1$ und $H_1 = \gamma_2$. (Bemerke: Hier gibt es keine Bedinungen an die Schleifen sowie Homotopien, wohin der Basispunkt von \mathbb{S}^1 nach X abgebildet werden muss.)

⁶d.h. f ist stetig und es gibt eine stetige Abbildung $g: Y \to X$ mit $f \circ g \simeq \mathrm{id}_Y$ und $g \circ f \simeq \mathrm{id}_X$

Zusatzaufgabe 3 Fundamentalgruppe der Sphären (1+3 Bonuspunkte)

a) Sei $F:M\to N$ eine glatte Abbildung zwischen Mannigfaltigkeiten M und N mit $\dim(M)<\dim(N)$. Folgern Sie mit Sards Theorem, dass F nicht surjektiv ist.

Für den nächsten Aufgabenteil dürfen Sie verwenden: Sei M eine glatte Mannigfaltigkeit und $p \in M$ ein Punkt. Die kanonische Abbildung

$$\pi_1^{\infty}(M,p) \to \pi_1(M,p), \quad [\gamma]_p^{\infty} \mapsto [\gamma]_p$$

von der glatten Fundamentalgruppe⁷ $\pi_1^{\infty}(M,p)$ in die Fundamentalgruppe ist nach Whitneys-Approxitionssatz ein Isomorphismus.

b) Zeigen Sie, dass für n > 1 die Fundamentalgruppe $\pi_1(\mathbb{S}^n)$ der n-Sphäre trivial ist. Hinweis: Benutzen Sie Teil a) und $\mathbb{S}^n - \{ \text{pt.} \} \cong \mathbb{R}^n$.

Abgabe bis Dienstag, 24. Juni 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.

⁷die Gruppe der Äquivalenzklassen von glatten Schleifen (S¹, *) → (M, p); wobei zwei Schleifen äquivalent seien, wenn es eine glatte Homotopie (S¹ × [0, 1], {*} × [0, 1]) → (M, p) zwischen ihnen gibt