Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Estatística

Classificação de Bons e Baus pagadores RegreAnálise de Risco

Douglas de Paula Nestlehner

Capítulo 1

Problema Apresentado

Em corporações financeiras, é de extremo interesse identificar o perfil de seus clientes, ou possíveis clientes, no intuito de predizer bons ou maus pagadores. Permitindo assim, traçar estratégias e tratamentos específicos para cada grupo.

Uma das técnicas mais utilizadas em situações de classificações de clientes (bons ou maus pagadores por exemplo), é a regressão logística, que consiste em descrever os dados e explicar a relação entre uma variável binária dependente e uma ou mais variáveis independentes.

Teremos como objetivo nesse trabalho, ajustar um modelo de regressão logística no intuito de classificar maus pagadores, para a base de dados disponibilizada, a qual contem informações de cliente de um determinado banco.

1.1 Dados

A base disponibilizada contem informações de 1000 clientes de um determinado banco, sendo essas informações apresentadas por meio de 20 covariáveis, e a variável resposta.

- V1: Variável indicativa de "Status de existência de conta corrente" (A11 : ... < 0 unidades monetárias; A12 : 0 ≤ ... < 200 unidades monetárias; A13 : ... ≥ 200 unidades monetárias/atribuições salariais por pelo menos 1 ano; A14 : sem conta corrente);
- V2: Variável numérica da duração em meses da conta corrente;
- V3: Variável indicativa do "Histórico de crédito" (A30: nenhum crédito recebido/todos os créditos pagos devidamente; A31: todos os créditos neste banco foram devidamente pagos; A32: créditos existentes pagos devidamente até agora; A33: atraso no pagamento no passado; A34: conta crítica/outros créditos existentes;
- V4: Variável indicativa do "Propósito" (A40: carro (novo); A41: carro (usado); A42: móveis/equipamentos; A43: rádio/televisão; A44: eletrodomésticos; A45: reparos; A46: educação; A47: férias; A48: reciclagem; A49: negócios; A410: outros);

- V5: Variável numérica da quantidade de crédito da conta corrente;
- V6: Variável indicativa da "Conta poupança/títulos" (A61: ... ; 100 unidades monetárias; $A62:100 \leq ... < 500$ unidades monetárias; $A63:500 \leq ... < 1000$ unidades monetárias; $A64:.. \geq 1000$ unidades monetárias; A65: desconhecido;
- V7: Variável indicativa do "Emprego atual desde" (A71: desempregado; A72: ... < 1 ano; $A73: 1 \le ... < 4$ anos; $A74: 4 \le ... < 7$ anos; $A75: ... \ge 7$ anos);
- V8: Variável continua "Taxa de prestação em percentagem do rendimento disponível";
- **V9**: Variável indicativa do "Status pessoal e sexo" (A91: masculino, divorciado/separado; A92: mulher, divorciada/separada/casada; A93: masculino, solteiro; A94: masculino, casado/viúvo; A95: feminino, solteiro);
- V10: Variável indicativa de "Outros devedores/fiadores" (A101: nenhum; A102: co-requerente; A103: fiador);
- V11: Variável numérica indicativa tempo em meses na residencia atual;
- V12: Variável indicativa de "Propriedade" (A121: imóveis; A122: se não A121: acordo de poupança da sociedade de construção/seguro de vida; A123: se não A121/A122: carro ou outro, não na Variável 6; A124: desconhecido/sem propriedade);
- V13: Variável numérica indicativa da idade em anos;
- V14: Variável indicativa de "Outros planos de parcelamento" (A141: banco; A142: lojas; A143: nenhum);
- V15: Variável indicativa de "Residência" (A151: aluguel; A152: própria; A153: de graça);
- V16: Variável numérica indicativa do numero de crédito disponivel no banco;
- V17: Variável indicativa de "Trabalho" (A171: desempregado/não qualificado não residente; A172: não qualificado residente; A173: funcionário/funcionário qualificado; A174: gestão/autônomo/funcionário/diretor altamente qualificado);
- V18: Variável numérica indicativa do numero de pessoas responsáveis pela manutenção;
- V19: Variável indicativa de "Telefone" (A191: nenhum; A192: sim, registrado em nome do cliente);
- V20: Variável indicativa de "Trabalhador estrangeiro" A201: sim; A202: não).
- Y: Variável resposta, indicativa se o cliente é 0: Bom pagador ou 1: Mau pagador.

Capítulo 2

Resultados

Nessa seção iremos apresentar todos os procedimentos realizados no intuito de se obter um modelo de classificação, para os dados apresentados.

2.1 Análise exploratória

Para se ter mais conhecimento das variáveis presentes na base, calculamos algumas medidas descritivas (min., max., média, mediana e quartis, para as variáveis continuas, e os fatores e suas respectivas frequências, para as variáveis categóricas). Na figura 2.1 temos representadas essas medidas.

A11:274 A12:269	-	A30: 40 / A31: 49 /	A43 :280 A40 :234	Min. : 250 1st Qu.: 1366	A61:603 A62:103	A71: 62 A72:172	
	Median :18.0 Mean :20.9			Median : 2320 Mean : 3271			
7471337	3rd Qu.:24.0			3rd Qu.: 3972			
	Max. :72.0			Max. :18424			
		1	(Other): 55				
V8	V9	V10	V11	V12	V13	V14	
Min. :1	.000 A91: 50	A101:907	Min. :1.00	0 A121:282	Min. :19	.00 A141:139	
1st Qu.:2	.000 A92:310	A102: 41	1st Qu.:2.00	0 A122:232	1st Qu.:27	.00 A142: 47	
Median :3	.000 A93:548	A103: 52	Median :3.00	0 A123:332	Median :33	.00 A143:814	
Mean :2	.973 A94: 92		Mean :2.84	5 A124:154	Mean :35	.55	
3rd Qu.:4.000		3rd Qu.:4.000 Max, :4.000			3rd Qu.:42.00		
Max. :4	.000		Max. :4.00	0	Max. :75	.00	
V15	V16	V17	V18	V19	V20	Υ	
A151:179	Min. :1.000					Bom pagador:700	
A152:713	1st Qu.:1.000	A172:200	1st Qu.:1.0	00 A192:404	A202: 37	Mau pagador:300	
A153:108	Median :1.000	A173:630	Median :1.0	00			
	Mean :1.407	A174:148	Mean :1.1	.55			
	3rd Qu.:2.000		3rd Qu.:1.0	00			
	Max. :4.000		Max. :2.0	000			

Figura 2.1: Medidas descritivas.

Para tornar a visualização dessas informações mais fáceis, construímos gráficos de proporções para as variáveis categóricas, e histogramas para as variáveis continuas, permitindo ter uma visão mais clara sobre cada variável da base. Temos representado na figura 2.2 os gráficos.

Figura 2.2: Descritiva quatro primeiras variáveis.

Observando as 4 primeiras variáveis, podemos notar características que apresentam maior frequência em bons e maus pagadores. Exemplo: na variável V1, apesar de maior frequência de conta correte "A14" existe uma maior frequência de maus pagadores quando a conta é "A11" e "A12". Na variável continua V2, notamos que a maioria de bons pagadores estão relacionados a um tempo de duração pequeno, enquanto os maus pagadores tendem a ter uma duração maior. A seguir temos os gráficos para as demais variáveis.

Figura 2.3: Descritiva V5 - V8

Figura 2.4: Descritiva V9 - V12

Figura 2.5: Descritiva V13 - V16

Figura 2.6: Descritiva V17 - V20

De modo geral, observamos que todas as variáveis possuem um certo comportamento (por menor que seja) que difere bons e maus pagadores. Assim sendo, o uso das mesmas, para a modelagem de classificação (iremos usar regressão logística) permitira trazer bons resultados.

Apenas no intuito de observarmos a frequência da variável resposta, construímos a figura ??.

Figura 2.7: Descritiva Y.

2.2 Ajuste do Modelo

Em modelos de regressão logística, podemos nos deparar com situações em que a variável resposta é binaria, ou categórica ordenada, ou categórica desordenada (não existe uma hierarquia). Para o caso em estudo, temos o caso de regressão logística binaria, em que a variável resposta binaria (1: bom pagador, 2:mau pagador).

Para realizar a previsão da variável resposta (no caso binario), teremos que valores com probabilidade acima de 0.50 sejam classificados ao grupo de interesse, e caso contrario no outro grupo. Para isso, realizamos a estimação dos coeficientes das varaiveis independentes, pelo logit ou razão de desiguladades, dados por:

$$Logit_i = log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 * V1 + \beta_{2V}2 + \dots + \beta_{20} * V20$$

Em que p é a probabilidade do evento. Lembrando que a descrição do modelo acima é apenas uma representação, como temos variáveis categóricas devemos representa-las com dummys (tendo muito mais β 's)

Para poder treinar o modelo e verificar se ele realmente é eficiente, iremos dividir (de forma aleatória) os dados em 70% para treinamento, e 30% para validação.

Desse modo, utilizando a função "glm()" do R, declarando distribuição da variável resposta como "binomial", realizamos o primeiro ajuste considerando todas as variáveis presentes na base. Na figura 2.8 temos representado as estimativas obtidas no modelo (Modelo 1).

```
Coefficients:
(Intercept)
                1.582e+00
                                1.442e+00
                                                 1.097
                 4.211e-01
                                 2.997e-01
                                                -1.405 0.159949
                -1.107e+00
-1.937e+00
V1 A1 3
                                                 -6.269
1.946
V1A14
                                                         0.051678
                  2.494e-02
                                   282e-02
V3A31
                  3.072e-01
                                   754e-01
                                                 0.396 0.691936
V3A32
V3A33
                -7.057e-01
-6.810e-01
                                   084e-01
661e-01
                                                -1 160
V3A34
                 -1.385e+00
                                   100e-01
                                                -2.271
                                                         0.023133
V4A41
                 -2.310e+00
                                   296e-01
                                                 -4.362 1.29e-05
V4A410
V4A42
V4A43
                -1.447e+00
-8.799e-01
-1.068e+00
                                                         0.140768
0.009294
0.001167
                                    824e-01
                                                 -3.247
                                   289e-01
V4 A44
                 -1.773e+00
                                    755e+00
                                                -1.011
                                                         0.312185
V4 A4 5
                  8.442e-01
                                    123e-01
                                                 1.185
                                                            235967
V4A46
V4A48
                 4.300e-03
-1.678e+01
                                    580e+02
                                                 -0.022
V4A49
                 -1.012e+00
                                   645e-01
                                                -2.178
                                                         0.029425
                 1.451e-04
-3.811e-01
-1.325e-01
                                   .843e-05
.954e-01
.980e-01
                                                         0.012994
V6A62
V6A63
                                                 -0.964
-0.266
V6A64
                 -1.563e+00
                                    899e-01
                                                -2.265
                                                          0.023507
V6A65
V7A72
V7A73
V7A74
                -8.788e-01
4.386e-01
                                    475e-01
897e-01
                                                          0.011437
                  5.236e-02
                                   561e-01
                                                 0.094
                                                          0.924992
                 -7.431e-01
                                    21.0e - 01.
                                                 -1.197
                                                         0.231476
V7A75
V8
V9A92
                                                -0.021
3.564
                 -1.154e-02
                                    519e-01
                                                         0.983320
                 4.230e-01
-4.961e-01
                                                         0.000366
                                    235e-01
V9 A9 3
                 -9.808e-01
                                   221e-01
                                                -1.878 0.060316
V9 A9 4
                 -4.637e-01
                                    173e-01
                                                          0.452563
V10A102
V10A103
                 9.655e-01
-1.184e+00
                                                            070600
                                    589e-01
                                                 -2.119
V11
                  3.506e-02
                                   144e-01
                                                 0.307
                                                          0.759138
V12A122
                  4.003e-01
                                   338e-01
                                                 1.199 0.230483
V12A123
V12A124
                  3.838e-01
8.531e-01
                                   .166e-01
.144e-01
                                                 1.212
                                                          0.164979
V13
                 -3.294e-02
                                   244e-02
                                                 -2.648 0.008090
V14A142
                 -3.805e-01
                                    776e-01
                                                -0.659
                                                          0.509989
V14A143
V15A152
                 -6.516e-01
                  7.301e-01
                                    156e-01
                                                 -2.314
V15A153
                 -3.242e-01
                                   941e-01
                                                -0.467
                                                         0.640481
V16
V17A172
V17A173
                  3.339e-01
                                   593e-01
                                                 1.288 0.197916
                                                 0.044 0.965009
-0.166 0.868106
                 -1.695e-01
                                   021e+00
V17A174
                 -1.488e-01
                                   017e+00
```

Figura 2.8: Estimativas modelo 1.

Afim de verificar quais parâmetros (efeitos fixos: variáveis) do modelo estão sendo significativos, realizamos o teste anova do tipo II, representado na Figura 2.9.

```
> anova(M1, test = "Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: Y
Terms added sequentially (first to last)
     Df Deviance Resid, Df Resid, Dev Pr(>Chi)
NULL
                       652
                               791.07
V1
      3
         94.665
                       649
                               696.40 < 2.2e-16 ***
                               677.07 1.100e-05 ***
V2
      1
         19.330
                       648
                                      0.002637 **
         16.304
                      644
                               660.77
V3
V4
      9
         41.257
                               619.51 4.492e-06 ***
                      635
V5
      1
          1.403
                       634
                               618.11
                                      0.236175
٧6
         12.479
                       630
                               605.63 0.014121
         15.074
                               590.56 0.004550 **
V7
                       626
٧8
      1
         10.504
                       625
                               580.05 0.001191 **
      3
V9
          6.875
                       622
                               573.18 0.075977
                               563.96 0.009981 **
V10
     2
          9.214
                       620
V11
     1
          0.729
                       619
                               563.23 0.393368
V12
      3
           4.996
                               558.24
                                       0.172063
                       616
V13
     1
           7.801
                       615
                               550.44
                                       0.005221
      2
           3.119
                       613
                               547.32
                                       0.210236
V15
      2
           6.169
                       611
                               541.15
                                       0.045748
                               539.22
                                       0.165489
V16
      1
           1.923
                       610
V17
      3
           0.600
                       607
                               538.62
                                       0.896458
V1 8
     1
           0.153
                       606
                               538.47
                                       0.695702
V19
     1
           0.659
                       605
                               537.81
                                       0.416867
V20
           7.272
                       604
                               530.54
                                       0.007004 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Figura 2.9: Estimativas Anova modelo 1.

Nota-se que com a inclusão da variável V5 o não foi significativa, poderíamos obtar por retira-la e observar novamente o comportamento do ajuste, entretanto observamos na descaritativa que a variável V5 é uma informação importante sobre os clientes, desse modo, seguiremos com o modelo completo.

Para poder verificar se o ajuste obtido apresenta bons resultados, realizamos a predição considerando os dados de testes, e comparamos os resultados obtidos. Na figura 2.11 temos representado uma tabela de contingencia, que relaciona a classificação de bons e maus pagadores reais, e as classificações obtidas pelo modelo (para os dados de teste).

```
classe Bom pagador Mau pagador
Bom pagador 175 36
Mau pagador 37 46
> |
```

Figura 2.10: Classificações reais x preditas

Notamos que, dentro das 212 classificações de bons pagadores o modelo conseguiu acertar 175, e dentro das 82 classificações de maus pagadores o modelo conseguiu acertar 46. Para poder quantificar o desempenho do modelo, calculamos o risco, que totalizou 0.2482, ou seja, o modelo vai estar errando aproximadamente 24,82% das classificações.

Outro método que permite verificar o desempenho do modelo, é a contrução da curva ROC, que tem como intuito mensurar a capacidade de predição do modelo proposto, através das predições da sensibilidade e da especificidade. Na figura ??, temos representado a curva ROC estimada para o modelo.

Figura 2.11: Curva ROC

De modo geral, assim como foi observado na tabela de contingencia e pelo risco estimado, a curva ROC mostra que o modelo teve um desempenho relativamente bom.

Para facilitar na interpretação dos resultados, podemos calcular a razão de chances (ODDS ratio), a qual permite trazer inferências sobre a influencia de cada parâmetro do modelo. Na figura 2.12 temos representado as estimativas obtidas:

> exp(M1\$coef	fficients)						
(Intercept)	V1A12	V1A13	V1A14	V2	V3A31	V3A32	V3A33
0.4421476	0.8409828	0.4142938	0.1631715	1.0401148	1.3918845	0.6177583	0.3196918
V3A34	V4A41	V4A410	V4A42	V4A43	V4A44	V4A45	V4A46
0.1297148	0.2151018	0.2795028	0.3487143	0.3396475	0.7319968	0.8443534	1.6933023
V4A48	V4A49	V5	V6A62	V6A63	V6A64	V6A65	V7A72
0.1087163	0.3595853	1.0001357	0.8965488	1.1677598	0.3295416	0.2507228	0.7688844
V7A73	V7A74	V7A75	V8	V9 A9 2	V9 A9 3	V9A94	V10A102
0.6739711	0.3749039	0.7862752	1.3258111	1.2355235	0.5739223	0.9286889	1.4293774
V10A103	V11	V12A122	V12A123	V12A124	V13	V14A142	V14A143
0.3155736	0.8385358	1.2757487	1.0767897	2.6838985	0.9946509	0.7029613	0.5416552
V15A152	V15A153	V16	V17A172	V17A173	V17A174	V18	V19A192
0.5558433	0.2533975	1.6244741	6.2069642	6.0764623	4.7885552	1.3454656	0.6197308
V20A202							
0.3459776							
>							

Figura 2.12: ODDS

Como exemplo de interpretação, podemos observar a variável V2 (Duração em Meses) com odds = 1.04, isso indica que para uma alteração em uma unidade (1 mes) em V2, a chance de que a observação seja classificada como sendo igual a 1 (mau pagador) aumenta em 4% ((1,04-1)*100).

Como exemplo para a variáveis categóricas, podemos observar variável V17A172 (variável 17 fator "A172") com odds = 6.0764, isso indica que a chance da resposta ser igual a 1 (mau pagador) é 6.0764 vezes maior quando a observação tem na variável V17 o fator "A172".