

Cloud Computing Synopsis and Recommendations

Recommendations of the National Institute of Standards and Technology

Lee Badger Tim Grance Robert Patt-Corner Jeff Voas

8. Open Issues

Cloud computing is not a solution for all consumers of IT services, nor is it appropriate for all applications. As an emerging technology, cloud computing contains a number of issues, not all of which are unique to cloud, that are concerns for all IT hosted services. The purpose of this section is make the reader aware of how cloud computing relates to open issues in both locally-managed and outsourced IT computing services.

Some of these issues are traditional distributed computing topics that have remained open for decades but have now become more relevant because of the emergence of cloud computing. Other issues appear to be unique to cloud computing.

Complex computing systems are prone to failure and security compromise. Moreover, software that must accommodate complex requirements such as concurrency, dynamic configuration, and large scale computations, may exhibit higher defect densities than typical commercial grade software. With this in mind, it is important to understand that cloud systems, like all complex computing systems, will contain flaws, experience failures, and experience security compromises. This does not disqualify cloud systems from performing important work, but it does mean that techniques for detecting failures, understanding their consequences, isolating their effects, and remediating them, are central to the wide-scale adoption of clouds.

Cloud computing has potential to foster more efficient markets through swift leasing of computing resources. In some scenarios, cloud computing offers consumers the ability to forgo capital expenses (e.g., building internal computing centers) in exchange for variable service fees. Thus clouds offer consumers potential decreases in IT cash outflow. From a provider's perspective, cloud computing allows capital expenses to be leveraged into positive revenue streams after initial investments are made. These are familiar economic concepts that become mixed with the complexities of network and system configurations as well as the normal risks from exposing data and software assets to any external party.

The technical means of providing the quality of service promised by clouds are usually not disclosed to the consumer, thus raising questions about how consumers can verify that the promised quality of service has been provided. Additionally, efficient markets rely on consumers' ability to practically compare service offerings. This is difficult since service agreements do not all adhere to standard metrics, terminology, and vocabularies.

In summary, cloud computing raises a variety of issues that are grouped below into five areas in the remainder of this section: Computing Performance (Section 8.1), Cloud Reliability (Section 8.2), Economic Goals (Section 8.3), Compliance (Section 8.4), and Information Security (Section 8.5).

8.1 Computing Performance

Different types of applications require differing levels of system performance. For example, email is generally tolerant of short service interruptions, but industrial automation and real-time processing generally require both high performance and a high degree of predictability. Cloud computing incurs several performance issues that are not necessarily dissimilar from performance issues of other forms of distributed computing, but that are worth noting here.

8.1.1 Latency

Latency is the time delay that a system experiences when processing a request. Latency experienced by cloud consumers typically includes at least one Internet round-trip time, i.e., the time it takes for a request

message to travel to a provider plus the time it takes for the response message to be received by a consumer. Generally, Internet round-trip times are not a single expected number but instead a range, with a significant amount of variability caused by congestion, configuration error, or failures. These factors are often not under the control of a provider or consumer. However, wide area network optimization technologies and web application acceleration services exist that may be employed to mitigate unacceptable performance. The suitability of an application for such an environment requires a careful analysis of the application's criticality, its built-in tolerance for variations in network service response times, and possible remediation(s) that can be applied after the fact. Note that this last statement is not unique to clouds.

8.1.2 Off-line Data Synchronization

Access to documents stored in clouds is problematic when consumers do not have network connectivity. The ability to synchronize documents and process data, while the consumer is offline and with documents stored in a cloud, is desirable, especially for SaaS clouds. Accomplishing such synchronization may require version control, group collaboration, and other synchronization capabilities within a cloud.

8.1.3 Scalable Programming

Programming "in the large" using toolkits such as MapReduce [Dea04], BigTable [Cha06], or even scalable queue services requires a new examination of application development practices. The ability to dynamically request additional computing capacity brings well-researched computing models such as grid computing and parallel processing out of scientific research labs and into more general computing usage. Cloud users can leverage data- and task-parallelism to take advantage of additional computing capacity, as well as to better scale computationally intensive tasks. Applications will likely, however, need to be reengineered to realize the full benefits of the new computing capacity that is now available on demand.

8.1.4 Data Storage Management

When data storage is considered in the context of clouds, consumers require the ability to: (1) provision additional storage capacity on demand, (2) know and restrict the physical location of the stored data, (3) verify how data was erased, (4) have access to a documented process for securely disposing of data storage hardware, and (5) administer access control over data. These are all challenges when data is hosted by an external party.

8.2 Cloud Reliability

Reliability refers to the probability that a system will offer failure-free service for a specified period of time within the bounds of a specified environment. For the cloud, reliability is broadly a function of the reliability of four individual components: (1) the hardware and software facilities offered by providers, (2) the provider's personnel, (3) connectivity to the subscribed services, and (4) the consumer's personnel.

Note that measuring the reliability of a specific cloud by the provider or consumer will be difficult for two main reasons. Firstly, a cloud may be a composition of various components, each inheriting a particular degree of reliability when it was measured as a standalone entity. When these components are combined, the resulting reliability is difficult to predict and may wind up being too course-grained. Secondly, reliability measurement is a function of an environment, and it may not be possible to fully understand the entire environment in which a cloud operates. As stated, the traditional definition of reliability is based on a context (environment) and a specified period of time for expected failure-free operation. For clouds,

and most systems of significant scale, each component has a specific reliability given a specific context, and therefore understanding the union of the contexts is complex and possibly intractable.

8.2.1 Network Dependence

Cloud computing, as well as most enterprise applications, depends on network connectivity. For most clouds, the Internet must be continuously available for a consumer to access services. If a consumer is hosting a public network service using a provider, this dependence is similar to normal hosting in that supporting public network services are often accessed over the Internet. In the case of consumer-facing applications (e.g., webmail) entrusted to a cloud, this dependence is a risk whenever applications need continuous service. In numerous instances, consumer-facing applications either cannot access a cloud because of coverage limitations (e.g., subways, airplanes, remote locations) or are vulnerable to network disruption.

Network dependence implies that every application is a network application which suggests that the application is relatively complex: i.e., the risk of errors or security vulnerabilities will be higher than for non-networked, standalone applications. For example, cloud applications should typically cryptographically sign requests to providers and cryptographically protect consumer data in transit. In addition to normal outages or no-coverage zones, this dependence makes the application's normal operation sensitive to: (1) the health of the Internet's routing and naming infrastructure, (2) contention for local networking resources, and (3) force majeure events.

There have been several well-publicized regional Internet outages that have been the result of denial of service attacks, viruses infiltrating web servers, worms taking down DNS servers, failures in undersea cables, and fiber optic cables being damaged during earthquakes and subsequent mudslides. Although these outages are relatively infrequent, they can have an impact on network connectivity for hours. Contingency planning for these rare but often serious outages should be addressed as part of any organization's tactical IT plans. Most substantial applications are using the Internet today regardless of whether cloud computing is employed; therefore the reader should not assume that by avoiding a cloud a user automatically avoids risks associated with Internet outages.

8.2.2 Cloud Provider Outages

In spite of clauses in service agreements implying high availability and minimal downtimes for consumers, service or utility outages are inevitable due to man-made causes (e.g., malicious attacks or inadvertent administrator errors) or natural causes (e.g., floods, tornados, etc.).

Issues to be considered by consumers with regard to outages should be based on frequency of outages and expected recovery times. The two main considerations are:

- What is the frequency and duration of outages that the consumer can tolerate without adversely impacting their business processes?
- What are the resiliency alternatives a consumer has for contingency situations involving a prolonged outage?

8.2.3 Safety-Critical Processing

Safety-critical systems, both hardware and software, are a class of systems that are usually regulated by government authorities. Examples are systems that control avionics, nuclear materials, and medical devices. Such systems typically incur risks for a potential of loss of life or loss of property.

Such systems inherit "pedigree" as a byproduct of the regulations under which they are controlled, developed, and tested. Because of the current lack of ability to assess "pedigree" of one of these systems within a cloud (due to many distinct subcomponents that comprise or support the cloud), employing cloud technologies as the host for this class of applications is not recommended. However this does not suggest that for the development of safety-critical systems, cloud technologies should not be considered in supporting roles (e.g., employing a cloud to run a simulation of a safety-critical system under development).

More information on high-impact systems can be found in NIST FIPS 199.

8.3 Economic Goals

In public and outsourced scenarios, cloud computing offers an opportunity for consumers to use computing resources with small or modest up-front costs; furthermore, cloud computing promotes business agility by reducing the costs of pilot efforts, and may reduce costs to consumers through economies of scale. Although the benefits can be substantial, a number of economic risks must be considered as well.

8.3.1 Risk of Business Continuity

With on premises systems, consumers can continue to use products, even when the vendors have suspended support or have gone out of business. However for public or outsourced cloud computing, consumers depend on near real-time provisioning of services by providers. Since business shutdown is normal in any marketplace, this dependence is a risk to consumers with time-critical computing needs. Various approaches may be used to mitigate this risk, e.g., by employing redundant clouds, by monitoring the business health of providers, or by employing hybrid clouds.

8.3.2 Service Agreement Evaluation

As presented in Section 3, service agreements may define terms such as availability and security in specific and limited ways. Additionally, service agreements often place differing responsibilities on consumers to track changes in service agreements and to determine when to reevaluate service agreements.

Consumers need practical techniques to evaluate and compare service agreements. Currently, service agreements are human-generated and human-consumed. The commonality observed in current service agreement offerings, however, suggests that a basis exists for partial standardization of service agreement terminology. An open issue is how to design a service agreement template that would practically embody common service agreement terms. The specification of such templates could allow service agreements to be partially evaluated mechanically, thus reducing costs to consumers and increasing understanding into actual cloud service offerings.

Expressing service agreements in a machine-readable format using common ontologies might be a productive step in supporting automated evaluation of terms and conditions. A template defining common elements could support a query interface allowing potential consumers to quickly check and compare important components before investing the effort of manual evaluation of detailed terms and conditions. This then would support a more efficient cloud marketplace. The template could include standardized performance metrics that would allow consumers to compare service offerings in an objective manner.

8.3.3 Portability of Workloads

An initial barrier to cloud adoption is the need to move local workloads into a provider's infrastructure. For a consumer, this decision is less risky if a provider offers a practical method to move workloads (e.g., data workload or a fully encapsulated compute/storage/network workload) back to a consumer's premises on demand. Another issue is that a consumer should be able to move a workload from one provider to another on demand. These two needs would support a competitive cloud marketplace.

Portability relies on standardized interfaces and data formats. Cloud computing relies on both consensus and de facto standards such as TCP/IP, XML, WSDL, IA-64, x509, PEM, DNS, SSL/TLS, SOAP, REST, etc. Cloud service offerings that rent traditional computing resources (such as virtual machines or disk storage, i.e., IaaS) are closely related to existing standards, and hence some usage scenarios illustrating portability can be expressed using existing standards terminology.

Achieving portability is (and will remain) a challenge, because IaaS systems expose low-level details such as device interfaces, and any mismatch between such interfaces is an obstacle. In contrast, cloud service offerings that rent synthetic entities, such as access to a middleware stack (PaaS) or rights to use a given application (SaaS), are less well described by current standards, and hence even common terminology is lacking for describing how such entities might be transferred from one provider to another. While some low level details such as device interfaces are hidden by providers and thus helpful for mobility, the resource definitions are frequently vendor-specific.

8.3.4 Interoperability between Cloud Providers

For operations such as transferring a virtual machine image and data between providers, standardized formats for the data being transferred, billing, and identity management are needed. Some standards, such the Open Virtualization Format [DMT09] and the Cloud Data Management Interface [SNI10], have already been developed, but further development and experience is needed to reduce the costs of interoperation among providers. As a security example, a provider must be able to offer proper credentials to another provider before a transfer of consumer assets can be accomplished after a consumer requests the transfer. Further, once legitimacy is determined, the formats for the transferred objects must be compatible.

8.3.5 Disaster Recovery

Disaster recovery involves both physical and electronic mishaps with consumer assets. For natural disasters, replication of data at geographically distributed sites is advisable. For other physical disasters such as hardware theft, law enforcement involvement may offer the only remedy. For electronic mishaps, fault tolerance approaches such as redundancy, replication, and diversity are all applicable, depending on what type of electronic mishap is being protected against. Disaster recovery plans are applicable to all hosted IT services and should be documented and quickly executable. All of these traditional issues are complicated as consumers may not know where their workloads are hosted.

8.4 Compliance

When data or processing is moved to a cloud, the consumer retains the ultimate responsibility for compliance but the provider (having direct access to the data) may be in the best position to enforce compliance rules. A number of issues complicate compliance and should be addressed contractually. NIST and other US government agencies are evolving paths to help consumers with compliance issues, e.g., FEDRAMP [Fed10]. Also, see Section 3 and Appendix A.

8.4.1 Lack of Visibility

Consumers may lack visibility into how clouds operate. If so, they will likely be unable to tell if their services are being undertaken and delivered in a secure manner. Different models of cloud service delivery add or remove different levels of control from the consumer and provide different degrees of visibility. However, the option for a consumer to request that additional monitoring mechanisms are deployed at a provider's site is plausible and currently used in a variety of non-cloud systems.

8.4.2 Physical Data Location

Providers make business decisions on where to physically set up their data centers based on a number of parameters that may include construction costs, energy costs, safety and security concerns, availability of an educated work force, employee costs, and the quality of public infrastructure.

Consumers, however, may have to comply with international, Federal, or state statutes and directives that prohibit the storage of data outside certain physical boundaries or borders. Although technologists may have logical control over the data and employ cryptographic mechanisms to mitigate the risk of unauthorized disclosure, consumers must still comply with these statutes and regulations [NIST SP800-144].

8.4.3 Jurisdiction and Regulation

Consumers may be subjected to a variety of regulations such as the Sarbanes-Oxley Act (SOX), the Payment Card Industry Data Security Standard (PCI DSS), the Health Information Protection and Accountability Act (HIPAA), the Federal Information Security Management Act (FISMA) of 2002, or the Gramm-Leach-Bliley Act (GLBA). Consumers, who are ultimately responsible for their data processed on provider's systems, will need to require assurances from providers that they are aiding in compliance of the appropriate regulations.

Consumers also require assurance that appropriate legal jurisdiction exists for cloud services so that if providers fail to comply; legal remedies are understood in advance. These needs are complicated because providers typically view the implementation and configuration of their offerings as proprietary information, and do not offer consumers visibility into such details. This lack of visibility makes it difficult for consumers to be confident that providers are in compliance with regulations unless the provider obtains an independent audit from a trusted third party. Even here, the frequency of third party audits may limit the overall assurance offered, since a cloud system could quietly drift out of compliance, and continuous monitoring of cloud configurations and health may be desirable.

8.4.4 Support for Forensics

As part of an incident response effort, the goal of digital forensics is to: (1) discern what happened, (2) understand what portions of the system were affected, (3) learn how to prevent such incidents from happening again, and (4) collect information for possible future legal actions. Forensics in the cloud, however, raises a number of new issues, such as:

- How are incident handling responsibilities defined in service agreements? (see Appendix A)
- How are clocks synchronized across data centers to help reconstruct a chain of events?
- How are data breach notifications laws handled in different countries?
- What data can a cloud provider look at when capturing an image of a shared hard drive?

- What is the consumer allowed to see in an audit log, e.g., is information related to other cloud consumers protected?
- What is the responsibility of a consumer to report an incident in a PaaS model?
- Can a provider legally intervene in stopping an attack on an application in its cloud if it is only an indirect contractual relationship (e.g., three tiers of customers)?

Forensic analysis in a SaaS model may be the sole responsibility of a provider while forensic analysis in an IaaS model may be the primary responsibility of the consumer (with some collaboration with the provider). The PaaS model appears to split responsibilities between consumers and providers.

8.5 Information Security

Information security pertains to protecting the confidentiality and integrity of data and ensuring data availability. An organization that owns and runs its IT operations will normally take the following types of measures for its data security:

- Organizational/Administrative controls specifying who can perform data related operations such as creation, access, disclosure, transport, and destruction.
- Physical Controls relating to protecting storage media and the facilities housing storage devices.
- Technical Controls for Identity and Access Management (IAM), encryption of data at rest and in transit, and other data audit-handling requirements for complying with regulatory requirements.

When an organization subscribes to a cloud, all the data generated and processed will physically reside in premises owned and operated by a provider. In this context, the fundamental issue is whether a consumer can obtain an assurance that a provider is implementing the same or equivalent controls as to what the consumer would have implemented. The following issues arise when a consumer is trying to ensure coverage for these controls:

- Regulatory compliance requirements, with regard to data that a consumer is intending to move to a cloud, may call for specific levels and granularities of audit logging, generation of alerts, activity reporting, and data retention. Since these may not be a part of standard service agreements offered by providers, the issue becomes whether consumers are willing to: (1) include these procedures as part of their contractual data protection responsibilities, and (2) enforce them as part of their standard operating procedures.
- Even in cases where a provider meets the consumer's data protection requirements through contractual obligations and operational configurations, the provider should offer methods that the consumer can use to assess whether or not the requirements continue to be met.
- For encryption of data at rest, the strength of the encryption algorithm suite, the key management schemes a provider supports, and the number of keys for each data owner (individual or shared keys) should be known by the data owners.

Data processed in a public cloud and applications running in a public cloud may experience different security exposures than would be the case in an onsite-hosted environment. A number of considerations affect security of data and processing conducted in a cloud. For example, the quality of a cloud's implementation, the attack surface of a cloud, the likely pool of attackers, system complexity, and the expertise level of cloud administrators are a few considerations that affect cloud system security.

Unfortunately, none of these considerations is decisive regarding cloud security and there are no obvious answers when comparing cloud to non-cloud systems as to which is likely to be more secure in practice. One aspect that is pervasive in cloud systems, however, is reliance on "logical separation", as opposed to "physical separation" of user workloads, and the use of logical mechanisms to protect consumer resources. Although more traditional systems employ logical separation also, they also employ physical separation (e.g., physically separated networks or systems) and logical separation has not been shown to be as reliable as physical separation; e.g. in the past, some virtualization systems have experienced failures under stress testing [Orm07]. The following subsections briefly describe some security issues; NIST SP 800-144 also discusses security issues for public clouds.

8.5.1 Risk of Unintended Data Disclosure

Unclassified government systems are often operated in a manner where a single system is used to process PII, FOUO, or proprietary information, as well as to process non-sensitive, public information. In a typical scenario, a user will store sensitive and nonsensitive information in separate directories on a system or in separate mail messages on an email server. By doing so, sensitive information is expected to be carefully managed to avoid unintended distribution. If a consumer wishes to use cloud computing for non-sensitive computing, while retaining the security advantages of on premises resources for sensitive computing, care must be taken to store sensitive data in encrypted form only.

8.5.2 Data Privacy

Privacy addresses the confidentiality of data for specific entities, such as consumers or others whose information is processed in a system. Privacy carries legal and liability concerns, and should be viewed not only as a technical challenge but also as a legal and ethical concern. Protecting privacy in any computing system is a technical challenge; in a cloud setting this challenge is complicated by the distributed nature of clouds and the possible lack of consumer awareness over where data is stored and who has or can have access.

8.5.3 System Integrity

Clouds require protection against intentional subversion or sabotage of the functionality of a cloud. Within a cloud there are stakeholders: consumers, providers, and a variety of administrators. The ability to partition access rights to each of these groups, while keeping malicious attacks at bay, is a key attribute of maintaining cloud integrity. In a cloud setting, any lack of visibility into a cloud's mechanisms makes it more difficult for consumers to check the integrity of cloud-hosted applications.

8.5.4 Multi-tenancy

Cloud computing receives significant economic efficiencies from the sharing of resources on the provider's side. For IaaS clouds, different VMs may share hardware via a hypervisor; for PaaS, different processes may share an operating system and supporting data and networking services; for SaaS, different consumers may share the same application or database.

Because the sharing mechanisms employed at a provider's facility depend on complex utilities to keep consumer workloads isolated, the risk of isolation failure exists. Flaws in logical separation have been documented in the past [Orm07].

Building confidence that logical separation is a suitable substitute for physical separation is a long-standing research problem, but the issue can be somewhat mitigated by encrypting data before entering it into a cloud. (Note that if the data is encrypted, it will need to be unencrypted to be processed.) For clouds

that perform computations, mitigation can occur by limiting the kinds of data that are processed in the cloud or by contracting with providers for specialized isolation mechanisms such as the rental of entire computer systems rather than VMs (mono-tenancy), Virtual Private Networks (VPNs), segmented networks, or advanced access controls.

8.5.5 Browsers

Many cloud applications use the consumer's browser as a graphical interface. For example, a number of technologies (e.g., [Gar05, Ado11, Goo11-2, Mic11, Dja11]) allow consumer browsers to provide a cloud experience where the software "feels local" even though it runs in a cloud infrastructure. Although providers sometimes distribute client-side tools for cloud administration, browsers are also used for consumer account setup and resource administration, including the provisioning of financial information necessary to open and use an account with a provider. Unfortunately, browsers are complex, rivaling the complexity of early operating systems, and browsers have been shown to harbor security flaws and be vulnerable in nearly every public security challenge (e.g., [Por10, Mar09]). Providers interoperate with a diversity of consumer browsers and versions, and consumer-administered end systems and browsers may not be properly managed for security or may not be current. If a consumer's browser is subverted, all of the consumer's resources entrusted to a cloud provider are at risk.

Whenever browsers are the access points to a cloud, building confidence that browsers have not been subverted is important. Various approaches can be taken to build confidence, including accessing clouds from behind application gateway or network packet filtering firewalls, restricting the browser types that are approved for accessing a cloud, limiting browser plug-ins for browsers providing cloud access, ensuring that browsers are up-to-date, and locking down systems that access clouds via browsers. While practical and helpful, most of these techniques, however, raise costs, lower functionality, or reduce convenience.

8.5.6 Hardware Support for Trust

In some scenarios, hardware support can enable consumers to understand the trustworthiness of remote systems. As an example, a Trusted Platform Module (TPM)'s purpose is to store a set of checksums that are generated at system startup, and then attest when asked, that the system did in fact boot from known components. When virtual machines migrate, this would appear to weaken the trust chain in the TPM. Different groups have attempted to virtualize the TPM, or to construct an argument in which a reawakened VM can reestablish trust on different hardware, but this issue remains open.

8.5.7 Key Management

Proper protection of consumer cryptographic keys appears to require some cooperation from cloud providers. The issue is that unlike dedicated hardware, zeroing a memory buffer may not delete a key if: (1) the memory is backed by a hypervisor that makes it persistent, (2) the VM is having a snapshot taken for recovery purposes, or (3) the VM is being serialized for migration to different hardware. It is an open issue on how to use cryptography safely from inside a cloud.

Appendix D—References

The lists below provide examples of resources that may be helpful.

- [Ado11] Adobe Systems Inc., "Adobe Flex Framework Technologies", 2011, http://labs.adobe.com/technologies/flex.
- [Cha06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows., Tushar Chandra, Andrew Fikes, Robert E. Gruber, "Bigtable: A Distributed Storage System for Structured Data," 2006, Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation, Nov. 6-8, Seattle, WA.
- [Dea04] Jeffrey Dean and Sanjay Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters," Proceedings of the 6'th USENIX Symposium on Operating Systems Design and Implementation, Dec. 6-8, 2004, San Francisco, CA.
- [Dja11] Django Software Foundation, "django The Web framework for perfectionists with deadlines," 2011, http://www.djangoproject.com.
- [DMT09] Distributed Management Task Force, "Open Virtualization Format Specification, Version 1.0.0", 2009, online: http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.0.0.pdf.
- [Fed10] CIO Council, "Proposed Security Assessment and Authorization for U.S. Government Cloud Computing, Draft version 0.96, Nov. 2010. Online: www.FedRAMP.gov.
- [Gar05] Jesse James Garrett, "Ajax: A New Approach to Web Applications," 2005, http://www.adaptivepath.com/ideas/essays/archives/000385.php.
- [Goo11-2] Google, "Google Web Toolkit", Copyright 2011, http://code.google.com/Webtoolkit.
- [Mar09] Moxie Marlinspike, "New Tricks for Defeating SSL In Practice," 2009, http://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf.
- [Mic11] Microsoft, "Microsoft Silverlight," 2011, http://www.microsoft.com/silverlight.
- [Orm07] T. Ormandy, "An Empirical Study into the Security Exposure to Hosts of Hostile Virtualized Environments," CanSecWest, 2007, Vancouver, British Columbia.
- [Por10] Aaron Portnoy, "Pwn2Own2010", 2010, TippingPoint Digital Vaccine Laboratories, online: http://dvlabs.tippingpoint.com/blog/2010/02/15/pwn2own-2010.
- [SNI10] SNIA, "Cloud Data Management Interface Version 1.1f," Work In Progress, Copyright 2010 Storage Networking Industry Association, http://www.snia.org/tech_activities/publicreview/CDMI_Spec_v1.01f_DRAFT.pdf.
- [SP 800-144] NIST Special Publication 800-144, Guidelines on Security and Privacy in Public Cloud Computing, November 2011.