Zajęcia 1: Liczby rzeczywiste i zespolone

2024-10-14

Definicja 1. Zbiór liczb rzeczywistych \mathbb{R} to zbiór spełniający następujące aksjomaty:

- 1. Aksjomaty ciała, czyli określamy na $\mathbb R$ działania dodawania i mnożenia takie, że $(\mathbb R,+,\cdot)$ jest ciałem.
- 2. Aksjomaty porządku, czyli określamy na $\mathbb R$ relację silnego porządku <, który jest przechodni, silnie antysymetryczny i liniowy.
- 3. Aksjomaty zgodności działań z porządkiem, czyli

$$\forall_{x,y,z \in \mathbb{R}} \ (x < y) \implies (x + z < y + z)$$

$$\forall_{z,y,z \in \mathbb{R}} \ (x < y \land 0 < z) \implies (xz < yz).$$

4. Aksjomat ciągłości (zasada ciągłości Dedekinda), który mówi, że zbioru $\mathbb R$ nie można podzielić na dwa podzbiory A,B takie, że

$$A, B \neq \emptyset$$

$$\forall_{a \in A, b \in B} \ a < b$$

$$\forall_{a \in A} \ \exists_{\tilde{a} \in A} \ a < \tilde{a}$$

$$\forall_{b \in B} \ \exists_{\tilde{b} \in B} \ \tilde{b} < b.$$

 $\mbox{\sf Uwaga}.$ Można wykazać, że $\mathbb R$ jest jedynym zbiorem spełniającym te aksjomaty z dokładnością do izomorfizmu.

Twierdzenie 1. Niech $E \neq \emptyset$ będzie ograniczonym z góry (dołu) podzbiorem \mathbb{R} . Istnieje sup E (inf E).

Dowód. Niech B będzie zbiorem ograniczeń górnych zbioru E. Niech $A = \mathbb{R} \setminus B$. Zbiory A, B spełniają trzy pierwsze warunki z aksjomatu ciągłości (trzeci wynika z tego, że $a \in A$ nie jest ograniczeniem górnym E, a więc istnieje $x \in E$ taki, że a < x, a definiując $\tilde{a} = \frac{1}{2} (x + a)$ mamy $a < \tilde{a} < x$, gdzie z drugiej nierówności wynika $\tilde{a} \in A$). Zatem musi istnieć takie $b \in B$, że $\forall_{\tilde{b} \in B} b \leq \tilde{b}$. Takie b jest elementem najmniejszym zbioru B, a więc właśnie sup E. Analogicznie dowodzimy drugą wersję twierdzenia.

Twierdzenie 2. Niech $\emptyset \neq E \subseteq \mathbb{R}$ będzie zbiorem ograniczonym. Zachodzi

$$\inf E \leq \sup E$$

$$\inf E = \sup E \implies |E| = 1.$$

Dowód. Niech $e \in E$. Mamy inf $E \le e \le \sup E$. Gdyby E miał element $\tilde{e} > e$, to byłoby inf $E \le e < \tilde{e} \le \sup E$, a więc dla zbiorów wieloelementowych nie może zachodzić równość z wypowiedzi. \square

Definicja 2. Zbiór $I \subseteq \mathbb{R}$ nazywamy przedziałem, jeśli

$$\forall_{x,y,z \in \mathbb{R}} \ (x, z \in I \land x < y < z) \implies y \in I.$$

Twierdzenie 3. Każdy przedział w \mathbb{R} zalicza się do jednej z kategorii:

- 1. Przedział pusty \emptyset .
- 2. Niepusty przedział ograniczony [a, b], (a, b] i tak dalej (wszystkie kombinacje)
- 3. Niepusty przedział ograniczony z góry i nieograniczony z dołu $(-\infty, b], (-\infty, b)$
- 4. Niepusty przedział nieograniczony z góry i ograniczony z dołu $[a,+\infty),\,(a,+\infty)$
- 5. Niepusty przedział nieograniczony \mathbb{R} .

Dowód. Niech $I \subseteq \mathbb{R}$ będzie niepustym przedziałem. Jeśli jest nieograniczony z góry, to jego prawym końcem będzie $+\infty$. Jeśli jest, to niech $b = \sup I$. Zauważmy, że jeśli $x \in I$ oraz istnieje takie $y \notin I$, że x < y < b, to $[y,b] \nsubseteq I$, a więc cokolwiek z tego przedziału jest ograniczeniem górnym I, co daje sprzeczność z definicją b. Zatem każda liczba mniejsza od b należy do I (do kresu dolnego) i pozostaje tylko decyzją, przy przedział jest domknięty. Analogicznie dla lewego krańca.

Twierdzenie 4. Niech $a_n, b_n \in \mathbb{R}$, $a_n \leq b_n$ dla $n \in \mathbb{N}$. Zdefiniujmy $I_n = [a_n, b_n]$. Niech $I_0 \supset I_1 \supset \dots$ Zachodzi

$$\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset.$$

Dowód. Niech $A = \{a_n : a \in \mathbb{N}\}$. Weźmy $a = \sup A$. Mamy $\forall_{p \in \mathbb{N}} \ a_p \le a \text{ oraz } \forall_{q \in \mathbb{N}} \ a \le b_q$ (bo każde b_q jest ograniczeniem górnym A). Zatem $a \in \bigcap_{n \in \mathbb{N}} I_n$.

Twierdzenie 5 (Zasada minimum). Niech $E \subseteq \mathbb{N}$ będzie niepusty. Wtedy E ma element najmniejszy.

Dowód. E jest ograniczony z dołu przez 0, a więc ma infimum $m = \inf E \ge 0$. Musi być $[m, m + 1) \cap E \ne \emptyset$, bo inaczej m nie byłoby infimum. W tym przedziałe znajduje się dokładnie jedna liczba naturalna n, a więc $m = n \in E$.

Twierdzenie 6 (Zasada indukcji). Jeśli dla $E \subseteq \mathbb{N}$ zachodzi $0 \in E$ oraz $n \in E \implies n+1 \in E$, to $E = \mathbb{N}$.

Dowód. Przypuśćmy, że $\mathbb{N}\setminus E\neq\emptyset$. Wtedy ten zbiór ma element najmniejszy $k\neq0$. Zatem $k-1\in E$, a więc $k\in E$ – sprzeczność $\not z$.

Twierdzenie 7. Zbiór \mathbb{R} jest nieprzeliczalny.

Dowód. Przypuśćmy, że $\mathbb{R} = \{c_n : n \in \mathbb{N}\}$. Wybieramy ciąg przedziałów $\{I_n\}$ taki, że

$$I_0 = [a_0, b_0], c_0 \notin I_0$$

:

$$I_n = [a_n, b_n], c_n \notin I_n, I_n \subseteq I_{n-1}.$$

Możemy tak zrobić, bo jeśli $c_n \in [a_{n-1}, b_{n-1}]$, to wystarczy wziąć $b_n = \frac{1}{2}(a_{n-1} + c_n)$, $a_n = a_{n-1}$.

Teraz $\bigcap_{n\in\mathbb{N}} I_n = \emptyset$ (bo nie zawiera żadnej liczby rzeczywistej), ale wiemy, że takie przecięcie jest niepuste – \oint .

Wniosek. Każdy przedział $I \subseteq \mathbb{R}$ mający co najmniej dwa elementy jest nieprzeliczalny.

Definicja 3. Przestrzenią metryczną nazywamy parę (X,d), gdzie X jest zbiorem a funkcja

$$d: X \times X \ni (x, y) \to d(x, y) \in [0, +\infty)$$

jest nazywana metryką i spełnia własności:

- 1. $\forall_{x,y \in X} d(x,y) = 0 \iff x = y$
- 2. $\forall_{x,y \in X} d(x,y) = d(y,x)$ (symetria)
- 3. $\forall_{x,y,z\in X} d(x,z) \leq d(x,y) + d(y,z)$ (nierówność trójkąta).

Definicja 4. Jeśli (X,d) jest przestrzenią metryczną oraz $a \in X$ i $r \in (0,+\infty)$, to zbiory

$$K(a,r) = \{x \in X : d(x,a) < r\},\$$

$$\overline{K}(a,r) = \{x \in X : d(x,a) \le r\},\,$$

$$S(a,r) = \{x \in X : d(x,a) = r\}$$

nazywamy kolejno kulą otwartą, kulą domkniętą oraz sferą o środku a i promieniu r.

Definicja 5. Ustalmy przestrzeń metryczną (X,d). Zbiór $U\subseteq X$ nazywamy otwartym, jeśli

$$\forall_{a \in U} \exists_{r>0} K(a,r) \subseteq U.$$

Rodzinę wszystkich podzbiorów otwartych nazywamy topologią (X, d).

Definicja 6. Otoczeniem punktu $a \in X$ nazywamy każdy zbiór otwarty go zawierający.

Definicja 7. Zbiór $F \subseteq X$ nazywamy domkniętym w X, jeśli F^c jest otwarty w X.

Definicja 8. Dla $A \subseteq X$ wnętrzem zbioru A nazywamy zbiór

int
$$A = \bigcup \{U : U \text{ otwarty w } X, U \subseteq A\}$$
.

Elementy tego zbioru to punkty wewnętrzne A. Zauważmy, że ta suma jest niepusta, bo X jest zbiorem otwartym.

Definicja 9. Dla $A \subseteq X$ domknięciem zbioru A nazywamy zbiór

$$\overline{A} = \bigcap \{F : F \text{ domkniety w } X, a \subseteq F\}.$$

Definicja 10. Brzegiem zbioru A nazywamy zbiór

$$\partial A = \overline{A} \setminus \operatorname{int} A$$
.

Jego elementy nazywamy punktami brzegowymi A.

Propozycja 1. Zbiór int A jest otwarty, a \overline{A} i ∂A są domknięte.

Dowód. int A jest otwarty jako suma zbiorów otwartych. Podobnie A jest przecięciem zbiorów domkniętych. Mamy $\partial A = \overline{A} \cap (\operatorname{int} A)^c$, co jest przecięciem zbiorów domkniętych.

Definicja 11. Podzbiór A przestrzeni metrycznej (X, d) nazywamy:

- 1. ograniczonym, jeśli $\exists_{a \in X, r > 0} A \subseteq \overline{K}(a, r)$
- 2. brzegowym, jeśli int $A = \emptyset$
- 3. gęstym w X, jeśli $\overline{A} = X$
- 4. nigdziegestym, jeśli int $\overline{A} = \emptyset$

Propozycja 2. Jeśli A jest nigdziegęsty, to jest brzegowy.

Dowód. Mamy $A \subseteq \overline{A}$, bo \overline{A} jest przecięciem zbiorów, z których każdy zawiera A. Podobnie int $A \subseteq \operatorname{int} \overline{A}$, bo każdy zbiór otwarty zawierający się w A zawiera się też w \overline{A} .

Propozycja 3. Zbiór A jest brzegowy wtedy i tylko wtedy, gdy zbiór $X \setminus A$ jest gesty.

Dowód. (\Longrightarrow) Jeśli A jest brzegowy, to każde otoczenie dowolnego punktu z A zawiera punkt z A^c . Zatem $\overline{A^c}$ zawiera też wszystkie punkty z A, bo gdyby nie zawierał jakiegoś $a \in A$, to istnieje zbiór domknięty zawierający A^c , który nie zawiera a, a więc jego otwarte dopełnienie zawiera a i istnieje otoczenie a, w którym nie ma punktu z a^c .

(\Leftarrow) Zbiór $\overline{A^c}$ zawiera wszystkie punkty z A, a więc podobnie jak przedtem każde otoczenie każdego punktu z A zawiera punkt z A^c i int $A = \emptyset$.

Definicja 12. Element $a \in X$ nazywamy punktem skupienia zbioru A, jeśli dla każdego U będącego otoczeniem a zachodzi

$$(U \setminus \{a\}) \cap A \neq \emptyset.$$

Zbiór punktów skupienia oznaczamy A'. Punkty zbioru $A \setminus A'$ nazywamy punktami izolowanymi zbioru A.

Przykład (Metryka dyskretna). Określając na zbiorze X funkcję

$$d(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

dostajemy metrykę zwaną metryką dyskretną.

Przykład (Metryka przeniesiona przez injekcję). Niech (X,d) będzie przestrzenią metryczną a funkcja $\varphi:Y\to X$ injekcją . Przyjmując

$$g(x,y) = d(\varphi(x), \varphi(y))$$

dla $x, y \in Y$ dostajemy przestrzeń metryczną (Y, g).

Przykład (Iloczyn przestrzeni metrycznych). Jeśli $(X_1, d_1), \ldots, (X_m, d_m)$ są przestrzeniami metrycznymi, to dla krotek elementów z nich $x = (x_1, \ldots, x_m), y = (y_1, \ldots, y_m)$ określamy

$$d(x,y) = \sum_{i=1}^{m} d_i(x_i, y_i)$$

i otrzymujemy przestrzeń metryczną na iloczynie kartezjańskim.

Definicja 13. Dla przestrzeni metrycznej (X, d) oraz zbioru $Y \subseteq X$ funkcja $d \mid_{Y \times Y}$ jest metryką na Y zwaną metryką indukowaną. Parę $(Y, d \mid_{Y \times Y})$ nazywamy podprzestrzenią metryczną (X, d).

Definicja 14. Moduł liczby rzeczywistej x to funkcja

$$|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}.$$

Definicja 15. Metryką euklidesową na ℝ nazywamy funkcję

$$d: \mathbb{R} \times \mathbb{R} \ni (x, y) \to |x - y| \in [0, +\infty).$$

Jest ona metryką, a kule w niej to przedziały (odpowiednio otwarte i domknięte).

Twierdzenie 8 (O istnieniu pierwiastków). Niech $x \in [0, +\infty)$ oraz $n \in \mathbb{N} \setminus \{0\}$. Istnieje jedyny taki $y \in \mathbb{R}$, że $y \geq 0$ oraz $y^n = x$.

Dowód. Dla $0 \le y_1 \le y_2$ mamy $y_1^n \le y_2^n$. Zatem jedyność jest oczywista. Mamy $y^n = 0 \iff y = 0$. Wystarczy rozważyć x > 0.

Zauważmy, że dla 0 < a < b jest

$$b^{n} - a^{n} = (b - a) (b^{n-1} + b^{n-2}a + \ldots + a^{n-1}) \le (b - a) \cdot nb^{n-1}.$$

Określmy zbiór $E = \{t \in (0, +\infty) : t^n < x\}$. Kładąc $t_x = \frac{x}{x+1} < 1$ mamy $t_x^n < t_x < x$, a więc E jest niepusty. Jednocześnie x+1 jest jego ograniczeniem górnym, gdyż

$$t \in E \implies t^n < x \implies t^n < x+1 \implies t^n < (x+1)^n \implies t < x+1.$$

Zatem możemy określić $y = \sup E$. Pokażemy, że $y^n = x$.

Przypuśćmy, że $y^n < x$. Pokażemy, że istnieje takie h > 0, że $(y+h)^n < x$, co da sprzeczność z definicją y. Mamy

$$(y+h)^n = y^n + ((y+h)^n - y^n) \le y^n + hn(y+h)^{n-1}$$

a więc wystarczy znaleźć takie h, że

$$y^n + hn\left(y+h\right)^{n-1} < x,$$

co dla $h \in (0,1)$ jest spełnione przez dowolne $h < \frac{x-y^n}{n(y+1)^{n-1}} \le \frac{x-y^n}{n(y+h)^{n-1}}$, które oczywiście istnieje.

Przypuśćmy, że $y^n > x$. Pokażemy, że istnieje $h \in (0, y)$ takie, że $(y - h)^n > x$, a więc y nie jest najmniejszym ograniczeniem górnym. Podobnie jak przedtem dostajemy nierówność

$$y^n - hny^{n-1} > x,$$

a spełniające ją h na pewno istnieje.

Definicja 16. Liczbę $y \in [0, +\infty)$ taką, że $y^n = x$ dla $x \in [0, +\infty)$ nazywamy n-tym pierwiastkiem liczby x i oznaczamy ją $\sqrt[n]{x}$.

Definicja 17. Rozszerzony zbiór liczb rzeczywistych to zbiór $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, +\infty\}$, gdzie $\pm \infty \notin \mathbb{R}$ oraz $+\infty \neq -\infty$.

Definicja 18 (Porządek na $\overline{\mathbb{R}}$). Przyjmujemy $-\infty < +\infty$ oraz $\forall_{x \in \mathbb{R}} -\infty < x, x < +\infty$. To daje naturalną definicję przedziałów $[-\infty, x)$ i innych tego typu.

Propozycja 4. Każdy zbiór w $\overline{\mathbb{R}}$ jest ograniczony o kresach w $\overline{\mathbb{R}}$.

Dowód. Jeśli jest ograniczony w \mathbb{R} , to w \overline{R} ma taki sam kres, a jeśli nie, to jest nim jedna z nieskończoności.

Uwaga. Mamy $\inf \emptyset = +\infty$ oraz $\sup \emptyset = -\infty$.

Definicja 19. Dodawanie na elementach $\overline{\mathbb{R}}$ definiujemy tak, jak podpowiada intuicja. Dodatkowo (nie jest to standardowe) zakładamy, że $+\infty + (-\infty) = 0$.

Definicja 20. Definiujemy moduł $|+\infty| = |-\infty| = +\infty$.

Definicja 21. Metrykę na $\overline{\mathbb{R}}$ definiujemy za pomocą funkcji

$$\varphi(x) = \begin{cases} 1, & x = +\infty \\ \frac{x}{1+|x|}, & x \in \mathbb{R} \\ -1, & x = -\infty \end{cases}$$

która jest bijekcją. Teraz możemy zdefiniować $\overline{d}(x,y) := d(\varphi(x), \varphi(y)) = |\varphi(x) - \varphi(y)| \, \mathrm{dla} \, x, y \in \overline{\mathbb{R}}.$ W ten sposób mamy przestrzeń metryczną $(\overline{\mathbb{R}}, \overline{d})$, w której największa odległość to $\overline{d}(-\infty, +\infty) = 2$.

Definicja 22 (Liczby zespolone). W zbiorze \mathbb{R}^2 wprowadzamy strukture ciała:

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2), \quad z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$

dla $z_i = (x_i, y_i)$. Trójka $(\mathbb{R}^2, +, \cdot)$ jest ciałem o 0 := (0, 0) oraz 1 := (1, 0). Otrzymane ciało oznaczamy \mathbb{C} i nazywamy liczbami zespolonymi. Czesto piszemy (x, y) = x + iy.

Uwaga. Ciało \mathbb{R} zanurza się w \mathbb{C} za pomocą injekcji $x \to (x,0)$.

Definicja 23. Wprowadzamy metrykę na $\mathbb C$ za pomocą modułu:

$$d: \mathbb{C} \times \mathbb{C} \ni (z, w) \to d(z, w) = |z - w| \in p_0, +\infty$$
.

Moduł jest tu tożsamy z długością wektora $z \in \mathbb{C}$, a kule nazywamy często kołami, bo tak wyglądają na płaszczyźnie.

Twierdzenie 9 (Nierówność Cauchy'ego-Schwarza). Niech $z_1, \ldots, z_n, w_1, \ldots, w_n \in \mathbb{C}$. Zachodzi

$$\left| \sum_{k=1}^{n} z_k \overline{w_k} \right| \le \sqrt{\sum_{k=1}^{n} |z_k|^2} \cdot \sqrt{\sum_{k=1}^{n} |w_k|^2}.$$

Dowód. Kładziemy $A = \sum_{k=1}^{n} |z_k|^2$, $B = \sum_{k=1}^{n} |w_k|^2$, $C = \sum_{k=1}^{n} z_k \overline{w_k}$. Mamy

$$B=0 \iff w_1=\ldots=w_n=0$$

i wtedy obie strony nierówności się zerują. Teraz B>0 i przekształcamy

$$0 \le \sum_{k=1}^{n} |Bz_k - Cw_k|^2 = B^2 A + |C|^2 B - BC \sum_{k=1}^{n} \overline{z_k} w_k - B\overline{C} \sum_{k=1}^{n} z_k \overline{w_k}$$
$$= B^2 A + |C|^2 B - (BC\overline{C} + B\overline{C}C) = B (AB - |C|^2).$$

Zatem $AB - |C|^2 \ge 0$, a to daje tezę: $|C| \le \sqrt{A}\sqrt{B}$.

Definicja 24 (Sfera Riemanna). Wybieramy element $\infty \notin \mathbb{C}$ i określamy $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Taki zbiór nazywamy płaszczyzną domkniętą lub sferą Riemanna.

Definicja 25. Rozważmy zbiór $\mathbb{S} = \{((x,y),t) \in \mathbb{C} \times \mathbb{R} : x^2 + y^2 + t^2 = t\}$. Jest on sferą w \mathbb{R}^3 o środku w $(0,0,\frac{1}{2})$ i promieniu $\frac{1}{2}$. Możemy rzutować punkty płaszczyzny podporowej (zespolonej) na sferę, łącząc je z północnym biegunem sfery. Jest to odwracalne przekształcenie

$$h(z) = h(x, y) = \left(\frac{x}{1 + |z|^2}, \frac{y}{1 + |z|^2}, \frac{|z|^2}{1 + |z|^2}\right),$$

które uzupełniamy do bijekcji $H: \hat{\mathbb{C}} \to \mathbb{S}$ kładąc $H(\infty) = (0, 0, 1)$.

Po zastosowaniu na S metryki euklidesowej dostajemy na Ĉ metrykę przeniesioną przez bijekcję:

$$g(z, w) = \frac{|z - w|}{\sqrt{1 + |z|^2} \sqrt{1 + |w|^2}},$$

$$g(z,\infty) = \frac{1}{\sqrt{1+|z|^2}}.$$

Rysunek 1: Sfera Riemanna wraz z rzutem na płaszczyznę.

Zajęcia 2: Ciągi

2024-11-04

Definicja 26. Ciągiem w zbiorze X nazywamy dowolną funkcję $\mathbb{N} \ni n \to a_n \in X$.

Definicja 27. Jeśli $\{a_n\}$ i $\{b_n\}$ są ciągami w zbiorze X, to mówimy, że $\{b_n\}$ jest podciągiem $\{a_n\}$, jeśli istnieje ściśle rosnąca funkcja $\varphi: \mathbb{N} \to \mathbb{N}$ taka, że $b_n = a_{\varphi(n)}$ dla każdego $n \in \mathbb{N}$.

Definicja 28. Mówimy, że ciągi $\{a_n\}$ oraz $\{b_n\}$ różnią się wyrazami początkowymi, jeśli istnieje takie $N \in \mathbb{N}$, że $\forall_{n \geq N}$ $b_n = a_n$.

Definicja 29. Niech $\sigma: \mathbb{N} \to \mathbb{N}$ będzie bijekcją. Mówimy, że $\{b_n\}$ jest permutacją ciągu $\{a_n\}$, jeśli $b_n = a_{\sigma(n)}$ dla $n \in \mathbb{N}$. Jest to permutacja zadana przez σ .

Definicja 30. Niech (X, d) będzie przestrzenią metryczną, $\{a_n\}$ ciągiem w X oraz $a \in X$. Mówimy, że a jest granicą ciągu $\{a_n\}$, jeśli

$$\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} \forall_{n>N} d(a_n,a) < \varepsilon.$$

Ciąg $\{a_n\}$ nazywamy zbieżnym do granicy a, co zapisujemy $a_n \to a \ (n \to +\infty)$ albo

$$\lim_{n \to \infty} a_n = a.$$

Uwaga. Warunek $d(a_n, a) < \varepsilon$ jest równoważny $a_n \in K(a, \varepsilon)$. Zatem ciąg jest zbieżny do a, jeśli w dowolnym otoczeniu a leżą prawie wszystkie jego wyrazy.

Notacja. Napis $\exists_{N\in\mathbb{N}}\ \forall_{n\geq N}\$ często skracamy do zapisu $n\gg 1,$ co czytamy: dla odpowiednio dużych n.

Uwaga. Zachodzi

$$a_n \to a \iff d(a_n, a) \to 0.$$

Twierdzenie 10. Ciąg w przestrzeni metrycznej (X, d) może mieć co najwyżej jedną granicę.

Dowód. Załóżmy, że dla $b_1, b_2 \in X$ takich, że $b_1 \neq b_2$ mamy $a_n \to b_1$ oraz $a_n \to b_2$. Weźmy $\varepsilon = \frac{1}{2}d\left(b_1, b_2\right)$. W każdej z kul $K\left(b_1, \varepsilon\right)$, $K\left(b_2, \varepsilon\right)$ leżą prawie wszystkie wyrazy $\{a_n\}$, ale z nierówności trójkąta jest $K\left(b_1, \varepsilon\right) \cap K\left(b_2, \varepsilon\right) = \emptyset$, co daje sprzeczność.

Definicja 31. Mówimy, że a jest punktem skupienia ciągu $\{a_n\}$, jeśli

$$\forall_{\varepsilon>0,N\in\mathbb{N}} \exists_{n>N} d(a_n,a) < \varepsilon.$$

Zajęcia 2: Ciągi Strona 7/15

Słownie: dowolnie blisko a leży nieskończenie wiele elementów $\{a_n\}$.

Twierdzenie 11. Niech (X, d) będzie przestrzenią metryczną, $\{a_n\}$ ciągiem w $X, a \in X$. Punkt a jest punktem skupienia $\{a_n\}$ wtedy i tylko wtedy, gdy istnieje $\{b_n\}$ będący podciągiem $\{a_n\}$ taki, że $b_n \to a$.

Dowód. (\Longrightarrow) Zdefiniujmy $\{a_{n_k}\}$ w następujący sposób: dla każdego $k \in \mathbb{N}$ niech a_{n_k} będzie takim elementem ciągu $\{a_n\}$, że $d(a_{n_k}, a) < \frac{\varepsilon}{2^k}$ oraz $n_k > n_i$ dla każdego i < k. Taki element istnieje, bo a jest punktem skupienia. Określony ciąg oczywiście jest zbieżny do a.

(\Leftarrow) Jeśli podciąg $\{b_n\}$ jest zbieżny do a, to dla każdego $\varepsilon > 0$ prawie wszystkie elementy $\{b_n\}$ są odpowiednio blisko a. Zatem w szczególności istnieją dowolnie duże elementy będące odpowiednio blisko a.

Propozycja 5. W przestrzeni metrycznej (X,d) ciąg $\{a_n\}$ jest zbieżny do $a \in X$ wtedy i tylko wtedy, gdy z każdego jego podciągu da się wybrać podciąg zbieżny do a.

Dowód. (\Longrightarrow) Jeśli $\{a_n\}$ jest zbieżny do a, to każdy jego podciąg też.

 (\Leftarrow) Załóżmy, że $\{a_n\}$ nie jest zbieżny do a, czyli istnieje $\varepsilon > 0$ taki, że dla nieskończenie wielu elementów $\{a_n\}$ zachodzi $d(a_n,a) > \varepsilon$. Rozważmy podciąg składający się z tych elementów. Musi on mieć podciąg zbieżny do a, co daje sprzeczność, bo wszystkie jego wyrazy są oddalone od a o co najmniej ε .

Twierdzenie 12. Niech (X, d) będzie przestrzenią metryczną, niech $A \subseteq X$. A jest domknięty w X wtedy i tylko wtedy, gdy dla każdego ciągu $\{a_n\} \subseteq A$ o granicy a zachodzi $a \in A$.

Dowód. (\Longrightarrow) Niech $\{a_n\}\subseteq A$ będzie ciągiem, a $a\in X$ jego granicą. Jeśli $a\notin A$, to $U=A^c$ jest otwartym otoczeniem a. Zatem prawie wszystkie wyrazy $\{a_n\}$ leżą w U, czyli poza A – sprzeczność.

 (\Leftarrow) Jeśli A nie jest domknięty, to $\overline{A} \setminus A \neq \emptyset$. Wybieramy $a \in \overline{A} \setminus A$. Dla każdego $n \in \mathbb{N}$ mamy $A \cap K(a, 2^{-n}) \neq \emptyset$, bo do domknięcia należą te punkty, które mają dowolnie blisko siebie punkt z A. Wybierając $a_n \in A$ tak, by $a_n \in K(a, 2^{-n})$ dostajemy ciąg zbieżny do a, a więc powinno być $a \in A$ – sprzeczność.

Twierdzenie 13. Niech (X, d) będzie przestrzenią metryczną, $A \subseteq X$, $a \in X$. $a \in A'$ (jest punktem skupienia A) wtedy i tylko wtedy, gdy istnieje ciąg $\{a_n\} \subseteq A \setminus \{a\}$ taki, że $a_n \to a$.

Dowód. (\Longrightarrow) a jest punktem skupienia, a wiec dla każdego $n \in \mathbb{N}$ mamy

$$(K(a,2^{-n})\setminus\{a\})\cap A\neq\emptyset.$$

Biorąc a_n jako element tego zbioru dostajemy ciąg zbieżny do a.

(\Leftarrow) Dla każdego otoczenia a prawie wszystkie elementy $\{a_n\}$ do niego należą. Zatem dowolne otoczenie ma niepuste przecięcie z $A \setminus \{a\}$.

Twierdzenie 14. Niech (X,d) będzie przestrzenią metryczną, $A \subseteq X$. Zachodzi $\overline{A} = A \cup A'$.

Dowód. Mamy $A \cup A' \subseteq \overline{A}$, bo jeśli $a \in A'$, to istnieje ciąg w $A \setminus \{a\}$ zbieżny do a, a zatem jest to też ciąg w A i $a \in \overline{A}$ z domkniętości \overline{A} . Biorąc $a \in \overline{A}$ możemy znaleźć ciąg $\{a_n\}$ zbieżny do a, bo wystarczy brać elementy z $K(a, 2^{-n}) \cap A \neq \emptyset$. Jeśli $a \notin A$, to jest to ciąg w $A \setminus \{a\}$, a więc $a \in A'$. $\overline{A} \subseteq A \cup A'$.

Definicja 32. Średnicą zbioru $A \subseteq X$ nazywamy element zbioru $[0, +\infty]$ określony równością

$$\operatorname{diam}\,A = \left\{ \begin{array}{ll} 0, & A = \emptyset \\ \sup d\left(A \times A\right), & A \neq \emptyset \end{array} \right.,$$

gdzie supremum określamy w $\overline{\mathbb{R}}$.

Zajęcia 2: Ciągi Strona 8/15

Propozycja 6. Niech (X,d) będzie przestrzenią metryczną, $A\subseteq X$. Następujące warunki są równoważne:

- 1. A jest zbiorem ograniczonym
- 2. diam $A < +\infty$
- 3. $\forall_{a \in X} \exists_{r>0} \overline{K}(a,r) \supset A$.

Dowód. $(1 \implies 2)$ Jeśli A jest ograniczony to zawiera się w pewnej kuli K(b,r). Zatem dla dowolnych $a, a' \in A$ jest $d(a, a') \le d(a, b) + d(a', b) \le 2r$.

 $(2 \implies 3)$ Niech diam A=t. Niech $a' \in A$ (dla pustego A teza oczywista). Biorąc $r=d\left(a,a'\right)+t$ dostajemy odpowiednią kulę.

 $(3 \implies 1)$ Mamy $\overline{K}(a,r) \subseteq K(a,r+1)$, a więc A zawiera się w tej kuli otwartej i jest ograniczony.

Definicja 33. Ciąg $\{a_n\}$ w przestrzeni metrycznej (X, d) nazywamy ograniczonym, jeśli zbiór jego wyrazów $\{a_n \in X : n \in \mathbb{N}\}$ jest ograniczony.

Definicja 34 (Ciąg Cauchy'ego). Ciąg $\{a_n\}$ w przestrzeni metrycznej (X,d) nazywamy ciągiem Cauchy'ego, jeśli

$$\forall_{\varepsilon>0} \ \exists_{N\in\mathbb{N}} \ \forall_{p,q\geq N} \ d\left(a_p,a_q\right) < \varepsilon.$$

Mówimy o takim ciągu, że spełnia warunek Cauchy'ego.

Definicja 35 (Przestrzeń zupełna). Mówimy, że przestrzeń metryczna (X, d) jest zupełna, jeśli każdy ciąg Cauchy'ego w niej jest zbieżny.

Twierdzenie 15. Niech (X, d) będzie przestrzenią metryczną, a $\{a_n\}$ ciągiem w niej. Zachodzą następujące wynikania:

- 1. $\{a_n\}$ jest zbieżny $\implies \{a_n\}$ jest Cauchy'ego
- 2. $\{a_n\}$ jest Cauchy'ego $\implies \{a_n\}$ jest ograniczony
- 3. $\{a_n\}$ jest Cauchy'ego i ma podciąg zbieżny $\implies \{a_n\}$ jest zbieżny

Dowód. (1) Wybieramy $\varepsilon > 0$. Jeśli $a_n \to a$, to istnieje takie N, że dla $n \ge N$ jest $d(a_n, a) < \frac{\varepsilon}{2}$. Zatem dla $p, q \ge N$ jest $d(a_p, a_q) \le d(a_p, a) + d(a_q, a) \le \varepsilon$.

- (2) Niech $N \in \mathbb{N}$ będzie takie, że dla $p,q \geq N$ jest $d(a_p,a_q) < 1$. Dla $r = 1 + \sum_{n=0}^{N} d(a_n,a_N)$ wyrazy $\{a_n\}$ zawierają się w $\overline{K}(a_N,r)$.
- (3) Niech $\{b_n\}$ będzie podciągiem $\{a_n\}$ zbieżnym do b. Ustalmy N, \tilde{N} takie, że dla $n \geq N$ jest $d(b_n, b) < \frac{\varepsilon}{2}$ oraz dla $p, q \geq \tilde{N}$ jest $d(a_p, a_q) < \frac{\varepsilon}{2}$. Dla $p \geq M = \max\left\{N, \tilde{N}\right\}$ mamy

$$d(a_n, b) \le d(a_n, b_M) + d(b_M, b) < \varepsilon$$

bo $b_M = a_q$ dla pewnego $q \geq M$.

Uwaga. Zmiana początkowych wyrazów oraz permutacja ciągu nie mają wpływu na jego zbieżność, punkty skupienia, ograniczenie i warunek Cauchy'ego.

Twierdzenie 16. Dla ciągu $\{a_n\}$ w ciele \mathbb{K} zbieżnego do $a \in \mathbb{K}$ zachodzi:

- 1. $(-a_n) \to (-a)$
- 2. $||a_n|| \to ||a||$
- 3. jeśli $a \neq 0$, to $a_n \neq 0$ dla $n \gg 1$ oraz $\frac{1}{a_n} \to \frac{1}{a}$.

Dowód. (1) Wprost z $||(-a_n) - (-a)|| = ||a_n - a||$.

Zajęcia 2: Ciągi Strona 9/15

- (2) Podobnie, za pomocą odwróconej nierówności trójkąta $||||a_n|| ||a||| \le ||a_n a||$, którą dowodzimy rozpisując $||x|| = ||x y + y|| \le ||x y|| + ||y||$ i podobnie $||y|| \le ||y x|| + ||x||$, a więc $\pm (||x|| ||y||) \le ||x y||$.
- (3) Bierzemy $\varepsilon = \frac{\|a\|}{2}$. Mamy $\|a_n a\| < \varepsilon$ dla $n \gg 1$, a więc $\|a_n\| \ge \|a\| \|a_n a\| \ge \|a\| \varepsilon = \frac{\|a\|}{2} > 0$. Korzystając z tej nierówności $\left\|\frac{1}{a_n} \frac{1}{a}\right\| = \frac{\|a_n a\|}{\|a_n\| \|a\|} \le 2\frac{\|a_n a\|}{\|a\|^2} \to 0$.

Twierdzenie 17. Operacja granicy jest zgodna z czterema podstawowymi działaniami (z dzieleniem, o ile granica dzielnika nie jest zerowa).

Dowód. Pokażemy tylko $a_n \cdot b_n \to a \cdot b$. Dodawanie i odejmowanie oczywiste, dzielenie wynika z mnożenia. Mamy

$$||a_nb_n - ab|| \le ||a_nb_n - a_nb|| + ||a_nb - ab|| = ||a_n|| ||b_n - b|| + ||a_n - a|| ||b||,$$

a że ciągi zbieżne są ograniczone, to mamy $||a_n|| \leq \tilde{M}$ dla pewnego \tilde{M} . Biorąc $M = \max\left\{\tilde{M}, ||b||\right\}$ dostajemy $||a_nb_n - ab|| \leq M\left(||a_n - a|| + ||b_n - b||\right)$, co zmierza do 0.

Twierdzenie 18 (Bolzano-Weiserstrassa). Każdy ograniczony ciąg liczb rzeczywistych $\{a_n\}$ ma podciąg zbieżny.

Dowód. Z ograniczenia $\{a_n\}$ istnieje taki przedział $I_0 = [b_0, c_0]$, że $a_n \in I_0$ dla $n \in \mathbb{N}$. Mając ustalony $I_n = [b_n, c_n]$ rozważmy przedziały $[b_n, \frac{b_n + c_n}{2}]$ oraz $[\frac{b + c_n}{2}, c_n]$. Definiujemy jako I_{n+1} ten z nich, w którym leży nieskończenie wiele wyrazów $\{a_n\}$ (w którymś na pewno, bo początkowo w I_0 są wszystkie). Dostajemy rodzinę przedziałów zstępujących, a więc $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$. Weźmy $a \in \bigcap_{n \in \mathbb{N}} I_n$. Łatwo zauważyć, że $\bigcap_{n \in \mathbb{N}} I_n = \{a\}$, bo diam $I_n \to 0$. Dla ustalonego $\varepsilon > 0$ istnieje takie n, że $I_n \subseteq (a - \varepsilon, a + \varepsilon)$, czyli w tym przedziałe jest nieskończenie wiele wyrazów ciągu. A więc w dowolnym otoczeniu a są wyrazy ciągu, czyli a jest punktem skupienia. Z tego wynika, że istnieje podciąg o granicy w a.

Wniosek. Każdy ograniczony ciąg liczb rzeczywistych ma punkt skupienia w \mathbb{R} .

Twierdzenie 19. Przestrzeń $\mathbb R$ z naturalną metryką jest przestrzenią zupełną.

Dowód. Jeśli $\{a_n\}$ jest ciągiem Cauchy'ego, to jest ograniczony. Ciąg ograniczony ma podciąg zbieżny, a ciąg Cauchy'ego ze zbieżnym podciągiem jest zbieżny.

Twierdzenie 20. Niech $\{a_n\} \subseteq \mathbb{R}$ będzie rosnącym (malejącym) ciągiem ograniczonym z góry (dołu). Wtedy $\{a_n\}$ jest zbieżny.

Dowód. Rosnący ciąg ograniczony z góry jest ograniczony, więc ma punkt skupienia $a \in \mathbb{R}$. Zatem mamy

$$\forall_{\varepsilon>0,N\in N} \ \exists_{n>N} \ \|a_n-a\|<\varepsilon,$$

a że ciąg jest rosnący, to będzie to zachodziło dla każdej liczby większej niż n (jest $a_n < a$, bo inaczej będziemy się tylko od niego oddalać i nie będzie punktem skupienia).

Dowód drugiego wariantu analogiczny.

Lemat 1. Niech $\{a_n\}$ będzie ciągiem w \mathbb{R} , $a \in \mathbb{R}$. $\lim_{n\to\infty} a_n = a$ w \mathbb{R} wtedy i tylko wtedy, gdy $\lim_{n\to\infty} a_n = a$ w $\overline{\mathbb{R}}$.

Dowód. (\Longrightarrow) Mamy

$$\begin{split} \overline{d}\left(a_{n},a\right) &= \left\|\frac{a_{n}}{1+\left\|a_{n}\right\|} - \frac{a}{1+\left\|a\right\|}\right\| = \left\|\frac{a_{n}+a_{n}\left\|a\right\|-a-a\left\|a_{n}\right\|}{\left(1+\left\|a_{n}\right\|\right)\left(1+\left\|a\right\|\right)}\right\| \\ &\leq \left\|a_{n}-a\right\| + \left\|a_{n}\left\|a\right\|-a\left\|a_{n}\right\|\right\| = \left\|a_{n}-a\right\| + \left\|a_{n}\left\|a\right\|-a\left\|a\right\| + a\left\|a\right\|-a\left\|a_{n}\right\|\right\| \\ &\leq \left\|a_{n}-a\right\| + \left\|a\right\|\left\|a_{n}-a\right\| + \left\|a\right\|\left\|a\right\| - \left\|a_{n}\right\|\right\|, \end{split}$$

gdzie pierwsza nierówność to przeszacowanie mianownika przez 1 i nierówność trójkąta. Widzimy,

Zajęcia 2: Ciągi Strona 10/15

że ostatnie wyrażenie dąży do 0.

dzy \mathbb{R} a $\overline{\mathbb{R}}$ pokazanej wcześniej. Zakładając, że $\|\varphi(a_n) - \varphi(a)\| \to 0$ można pokazać jak wcześniej, że $\|\phi(\varphi(a_n)) - \psi(\varphi(a))\| \to 0$.

Lemat 2. Niech $\{a_n\}$ będzie ciągiem w $\overline{\mathbb{R}}$. Zbieganie $a_n \to +\infty$ $(-\infty)$ w $\overline{\mathbb{R}}$ jest równoważne temu, że

$$\forall_{C \in \mathbb{R}} \exists_{N \in \mathbb{N}} \forall_{n \geq N} C < a_n(a_n < C).$$

Dowód. Wynika wprost z wypisania wzoru na odległość w $\overline{\mathbb{R}}$ – ciąg zbiega do nieskończoności tylko, gdy przekracza każde możliwe ograniczenie górne.

Twierdzenie 21. Niech $\{a_n\}$ będzie ciągiem w $\overline{\mathbb{R}}$. Taki ciąg ma punkt skupienia.

Dowód. Jeśli nieskończenie wiele wyrazów $\{a_n\}$ ma wartości $\pm \infty$, to któraś z tych wartości jest jego punktem skupienia. Jeśli skończenie wiele wyrazów ma te wartości, to możemy je zamienić na liczbę 1 bez wpływu na punkty skupienia. Mamy teraz ciąg w \mathbb{R} . Jeśli jest nieograniczony z góry lub z dołu, to odpowiednia nieskończoność jest jego punktem skupienia. Inaczej jest ograniczony, a więc ma punkt skupienia w \mathbb{R} , czyli też w $\overline{\mathbb{R}}$.

Definicja 36. Dla ciągu $\{a_n\}\subseteq \overline{\mathbb{R}}$ definiujemy jego zbiór granic częściowych jako

$$\Gamma_{\{a_n\}} = \{a \in \overline{\mathbb{R}} : a \text{ jest punktem skupienia } \{a_n\} \le \overline{\mathbb{R}} \}.$$

Lemat 3. Dla ciągu $\{a_n\} \subseteq \overline{\mathbb{R}}$ zbiór $\Gamma_{\{a_n\}}$ jest niepusty i domknięty w $\overline{\mathbb{R}}$, a do tego

$$\inf \Gamma_{\{a_n\}}, \sup \Gamma_{\{a_n\}} \in \Gamma_{\{a_n\}}.$$

Dowód. Każdy ciąg w $\overline{\mathbb{R}}$ ma punkt skupienia. Dalej oznaczmy $\Gamma_{\{a_n\}}$ przez S. Jeśli $b \notin S$, to istnieje jego otoczenie U w $\overline{\mathbb{R}}$, w którym leży skończona liczba elementów ciągu. Zatem $U \subseteq S^c$, bo U jest otoczeniem każdego swojego elementu. Zatem S^c jest otwarty, czyli S jest domknięty.

Oznaczmy teraz $a=\sup S$ i przypuśćmy, że $a\notin S$. Mamy $S\neq\emptyset$, a więc $a\neq-\infty$. Do tego $[a,+\infty]\cap S=\emptyset$. Rozważamy przypadki. Jeśli $a=+\infty$, to istnieje takie R>0, że $(R,+\infty]\cap S=\emptyset$ (bo S^c jest otwarty), a z tego wynika, ze sup $S\leq R$ – sprzeczność. Podobnie, jeśli $a\in\mathbb{R}$, to istnieje takie r>0, że $(a-r,a+r)\cap S=\emptyset$, czyli ponownie sup $S\leq a-r$. Analogicznie pokazujemy dla infimum. Zauważmy, że to rozumowanie działa dla dowolnego zbioru domkniętego.

Definicja 37. Granicą górną (dolną) ciągu $\{a_n\}$ w $\overline{\mathbb{R}}$ nazywamy sup $\Gamma_{\{a_n\}}$ (inf $\Gamma_{\{a_n\}}$). Oznaczamy ją $\limsup_{n\to\infty} a_n$ ($\liminf_{n\to\infty} a_n$).

Twierdzenie 22.

Zajęcia 2: Ciągi Strona 11/15

Twierdzenie 23 (Kryterium asymptotyczne). Niech $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}\subseteq\mathbb{K}, x_n\neq 0$ dla $n\gg 1$ i $\frac{y_n}{x_n}\to\gamma\in\mathbb{K}$. Jeśli $\gamma\neq 0$, to $\sum_{n=1}^\infty x_n$ jest bezwzględnie zbieżny $\iff\sum_{n=1}^\infty y_n$ jest bezwzględnie zbieżny.

Jeśli $\gamma=0$, to $\sum_{n=1}^{\infty}\|x_n\|<+\infty$, to $\sum_{n=1}^{\infty}\|y_n\|<+\infty$. Przez kontrapozycję $\sum_{n=1}^{\infty}\|y_n\|=+\infty$ daje $\sum_{n=1}^{\infty}x_n=+\infty$.

Dowód.

Notacja. Piszemy $x_n \sim y_n \iff \frac{y_n}{x_n} \to 1$. Mówimy wtedy, że te ciągi są asymptotycznie równe.

Propozycja 7. Jeśli ciągi x_n, y_n, z_n są takie, że $x_n \sim y_n$ a $x_n z_n$ jest zbieżny, to zbieżny jest też $y_n z_n$ oraz $\lim_{n\to\infty} x_n z_n = \lim_{n\to\infty} y_n z_n$.

Dowód.

Twierdzenie 24 (Twierdzenie o tasowaniu). Niech $(x_n)_{n\in\mathbb{N}}$ będzie szeregiem bezwzględnie zbieżnym. Niech $\varphi: \mathbb{N} \to \mathbb{N}$ będzie bijekcją.

Zachodzi $\sum_{n=0}^{\infty} ||x_{\varphi(n)}|| < +\infty$ oraz $\sum_{n=0}^{\infty} x_{\varphi(n)} = \sum_{n=0}^{\infty} x_n$.

Dowód.

Definicja 38. Szereg $\sum_{n=0}^{\infty} x_n$ jest warunkowo zbieżny, jeśli jest zbieżny, ale nie jest bezwzględnie zbieżny.

Przykład. Szereg $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ jest warunkowo zbieżny, bo szereg harmoniczny nie jest zbieżny.

Twierdzenie 25 (Riemanna). Niech $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}$ będzie taki, że $\sum_{n=0}^{\infty}x_n$ jest warunkowo zbieżny. Niech $\alpha,\beta\in\overline{\mathbb{R}}:\alpha\leq\beta$.

Dowód. Notatka: jeśli różnica obu będzie zbieżna, to różnica modułów będzie zbieżna, a to sprzeczność.

Definicja 39 (Iloczyn Hadamarda). Dla szeregów $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$ ich iloczynem Hadamarda nazywamy szereg $\sum_{n=0}^{\infty} a_n b_n$.

Dla $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ badamy szereg $\sum_{n=0}^{\infty}a_nz^n$ dla $z\in\mathbb{C}$. Cauchy daje nam $\sqrt{n}\|a_n\|\|z\|^n=\|z\|\sqrt{n}\|a_n\|$. Oznaczymy lim sup $_{n\to\infty}$ tego drugiego przez γ . Dla $\gamma>1$ brak WK. Dla $\gamma<1$ szereg zbieżny. Dla $\gamma=1$ różnie.

Rozważmy przestrzenie topologiczne X, Y. Mamy daną funkcję $f: X \to Y$ oraz $a \in X$.

Definicja 40. Funkcja f jest ciągła w a, jeśli $\forall_{V \ni f(a):otwarte} \exists_{U \ni aotoczenieotwarte} f(U) \subseteq V$.

Twierdzenie 26. Niech X, Y będą przestrzeniami metrycznymi z metrykami d_X, d_Y odpowiednio. Następujące warunki są równoważne:

- 1. f jest ciągła w a
- 2. (definicja Weierstrassa) $\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x\in X} d_X(x,a) < \delta \implies d_Y(f(x),f(a)) < \varepsilon$
- 3. (definicja Heine'go) $\forall_{(x_n)_{n\in\mathbb{N}}\subseteq X}\ x_n\to a\implies f\left(x_n\right)\to f\left(a\right)$

Dowód. (1) \Longrightarrow (2). Ustalmy $\varepsilon > 0$. Dla otoczenia $K_Y(f(a), \varepsilon) := V$ weźmy otoczenie $a \in U$: $f(U) \subseteq V$.

- (2) \Longrightarrow (3). Ustalmy ciąg $(x_n)_{n\in\mathbb{N}}$ zbieżny do a. Ustalmy $\varepsilon > 0$. Dla niego znajdujemy $\delta > 0$ z założenia. Ze zbieżności $x_n \to a$ dostajemy $d_X(x_n, a) < \delta$ dla $n \gg 1$, a wtedy $d_Y(f(x_n), f(a)) < \varepsilon$.
- (3) \Longrightarrow (1). Nie wprost. Załóżmy, że istnieje takie $f(a) \in V$ będące otoczeniem, że Pokażemy, że dla otoczenia $V \ni f(a)$ zawsze istnieje $n \in \mathbb{N} : f\left(K_X\left(a, \frac{1}{n}\right)\right) \subseteq V$. Nie wprost dla każdego $n \in N$ mamy $f\left(K_X\left(a, \frac{1}{n}\right)\right) \setminus V = \neq \emptyset$. Wybieramy y_n z tego obrazu

Zajęcia 3: Szeregi funkcyjne

2024-12-02

Pomysł. Do zdefiniowania szeregu funkcyjnego potrzebne jest dodawanie i topologia (do zbieżności), które powinny być ze sobą powiązane – dodawanie ma być ciągłe w tej topologii. Z punktu widzenia analizy sensowne jest posiadanie przestrzeni unormowanej – przestrzeń wektorowa $\mathbb V$ nad ciałem $\mathbb K$ z normą. Wtedy d(v,w) = ||v-w|| daje metrykę, w której dodawanie jest ciągłe.

Definicja 41. Szeregiem $\sum_{n=0}^{\infty} x_n$ na przestrzeni wektorowej \mathbb{V} nad ciałem \mathbb{K} nazywamy parę $((x_n)_{n\in\mathbb{N}}, (s_n)_{n\in\mathbb{N}})$, gdzie $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{V}$ jest ciągiem wyrazów szeregu a $s_n=x_0+\ldots+x_n\in\mathbb{V}$ jest ciągiem jego sum częściowych. Gdy \mathbb{V} jest unormowana, możemy badać zbieżność.

Definicja 42. Szeregiem funkcyjnym nazywamy szereg nad przestrzenią wektorową $\mathbb{V}=W^X$, gdzie $X\neq\emptyset$ jest zbiorem a W przestrzenią wektorową nad ciałem \mathbb{K} . Wtedy \mathbb{V} ma naturalną strukturę przestrzeni wektorowej z działaniami na funkcjach. Do badania zbieżności potrzebujemy topologii na W, w której dodawanie jest ciągłe.

Uwaga. Zazwyczaj będziemy rozważać najprostszą przestrzeń wektorową $W = \mathbb{K}$.

Definicja 43. Szereg funkcyjny $\sum_{n=0}^{\infty} f_n$ jest:

- punktowo zbieżny do $f:X\to\mathbb{K},$ jeśli $s_n\to f$ punktowo. Podobnie jest zbieżny
- jednostajnie zbieżny, jeśli s_n zbiega jednostajnie do f $s \Rightarrow f$
- $\bullet\,$ lokalnie jednostajnie zbieżny, gd
yXjest topologią i s_n zbiega jednostajnie d
of
- \bullet niemal jednostajnie zbieżny, gdy Xjest zwarty lub przynajmniej T_2 i s_n zbiega jednostajnie do f

Twierdzenie 27 (Krytyrium porównawcze Weiserstraßa zbieżności jednostajnej). Niech $X \neq \emptyset$. Mamy ciąg funkcyjny $f_n : X \to \mathbb{K}$ dla $n \in \mathbb{N}_0$ i ciąg $M_n \geq 0$ taki, że $\sum_{n=0}^{\infty} M_n < +\infty$. Jeśli

$$\forall_{n \in \mathbb{N}_0} \ \forall_{x \in X} \ |f_n(x)| \le M_n,$$

to szereg $\sum_{n=0}^{\infty}$ jest jednostajnie zbieżny do pewnej $f: X \to \mathbb{K}$.

Dowód.

Uwaga. Stosując to kryterium lokalnie lub na zbiorach zwartych, otrzymujemy tezę dla zbieżności lokalnej jednostajnej lub niemal jednostajnej.

Pomysł. Szereg potęgowy to uogólnienie wielomianów. Wielomian (jednej zmiennej) to skończona suma jednomianów, czyli funkcji postaci $f(x) = ax^n$, gdzie $a \in \mathbb{K}$ jest współczynnikiem, $x \in \mathbb{K}$ jest zmienną a $n \in \mathbb{N}_0$. Wielomian z takich jednomianów jest wycentrowany w zerze. Równie dobrze można rozważać jednomiany typu $a(x-x_0)^n$ dla ustalonego $x_0 \in \mathbb{K}$. Wielomiany mają dużo fajnych własności, dlatego chcemy je stosować.

Definicja 44. Ustalmy ciało \mathbb{K} , $x_0 \in \mathbb{K}$, ciąg $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{K}$ i ciąg funkcyjny $f_n : \mathbb{K} \ni x \to a_n (x - x_0)^n \in \mathbb{K}$. Szereg funkcyjny $S = \sum_{n=0}^{\infty} f_n$ nazywamy szeregiem potęgowym o środku x_0 i współczynnikach a_n . Piszemy

$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n.$$

Z takim szeregiem wiążemy obiekty:

• $\lambda_s = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$

- promień zbieżności $R_s = \left\{ \begin{array}{ll} +\infty & \lambda_s = 0 \\ \frac{1}{\lambda_s} & \lambda_s \in (0; +\infty) \\ 0 & \lambda_s = +\infty \end{array} \right.$
- koło zbieżności $K_{\mathbb{K}}(S) = \{x \in \mathbb{K} : |x x_0| < R_s\}$
- zbi
ór punktów zbieżności $Z_{\mathbb{K}}\left(S\right)=\{x\in\mathbb{K}:\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^{n}\text{ jest zbieżny}\}$

Uwaga. Zawsze $x_0 \in Z_{\mathbb{K}}(S)$, bo sumy cząstkowe w $x = x_0$ redukują się do wyrazu wolnego a_0 .

Uwaga. Każdy rzeczywisty szereg potęgowy możemy traktować jak szereg zespolony, bo $\mathbb{R}\subseteq\mathbb{C}$.

Propozycja 8. Rozważmy $\varphi: \mathbb{C} \ni x \to x - x_0 \in \mathbb{C}$. Jest to izomorfizm afiniczny o odwrotności $\psi(x) = x + x_0$. Jeśli oznaczymy $T(y) = \sum_{n=0}^{\infty} a_n y^n$, to $S(x) = T(\varphi(x))$, a więc te szeregi mają te same promienie zbieżności oraz $K(S) = \psi(K(T)) = K(T) + x_0$ i $Z(S) = \psi(Z(T))$.

Dowód. Oczywisty. Ta propozycja pokazuje nam, że wystarcza rozważać szeregi ucentrowane w zerze.

Lemat 4 (Abel). Niech $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{K}$ oraz $w\in\mathbb{K}$ takie, że $(a_nw^n)_{n\in\mathbb{N}}$ jest ograniczony. Szereg $\sum_{n=0}^{\infty}a_nz^n$ jest zbieżny punktowo bezwzględnie i niemal/lokalnie jednostajnie w $K_{\mathbb{C}}(0,|w|)$.

Dowód. Ustalmy $z \in K_{\mathbb{C}}(0, |w|)$, czyli |z| < |w|. Z ograniczoności istnieje takie M, że $|a_n w^n| \le M$ dla każdego $n \in \mathbb{N}$. Przeliczamy

$$|a_n z^n| = |a_n w^n| \left| \frac{z^n}{w^n} \right| \le M\theta^n,$$

gdzie $\theta=\left|\frac{z}{w}\right|\in[0;1)$. Mamy $\sum_{n=0}^{\infty}M\theta^n<+\infty$, bo jest to szereg geometryczny. Z kryterium porównawczego mamy zbieżność punktową bezwzględną.

Dla dowodu reszty ustalamy $\theta \in (0;1)$ i rozważamy $K_{\mathbb{C}}(0,\theta |w|) \subseteq K_{\mathbb{C}}(0,|w|)$. W tym mniejszym kole mamy dla dowolnego z

$$|a_n x^n| = |a_n| |z^n| \le |a_n| \theta^n |w|^n = |a_n w^n| \theta^n \le M\theta^n.$$

Jest to jednostajna zbieżność w $K_{\mathbb{C}}(0, \theta | w|)$, a dla każdego z możemy wybrać takie koło o mniejszym promieniu, więc kończy to dowód.

Uwaga. W lemacie Abela ograniczoność wyrazów szeregu rzeczywistego daje nam punktową zbieżność w zespolonym kole.

Twierdzenie 28. Niech $z_0 \in \mathbb{K}$, $(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{K}$, $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$. Zachodzi:

- 1. $K_{\mathbb{K}}(S) = \operatorname{int} Z_{\mathbb{K}}(S) \subseteq Z_{\mathbb{K}}(S) \subseteq \{z \in \mathbb{K} : |z z_0| \leq R_S\}$
- 2. $S\left(z\right)$ jest bezwzględnie zbieżny w każdym punkcie $z\in K_{\mathbb{C}}\left(S\right)$ (nawet dla $\mathbb{K}=\mathbb{R}$).
- 3. $S|_{K_{\mathbb{K}}(S)}$ jest niemal/lokalnie zbieżny, o ile $K_{\mathbb{K}}(S) \neq \emptyset$.
- 4. jeśli $K_{\mathbb{K}}(S) \neq \emptyset$, to funkcja $f: K_{\mathbb{C}}(S) \ni z \to S(z) \in \mathbb{C}$ jest ciągła.

Dowód. Już wiemy, że $z_0 \in Z_{\mathbb{K}}(S)$, a $S(z_0)$ jest bezwzględnie zbieżny. Dla $z \neq z_0$ badamy S(z) za pomocą lematu Cauchy'ego:

$$\sqrt[n]{|a_n(z-z_0)^n|} = |z-z_0| \sqrt[n]{|a_n|},$$

skad

$$\limsup_{n \to \infty} \sqrt[n]{|a_n(z-z_0)^n|} = |z-z_0| \lambda_s.$$

Mamy $|z-z_0|$ $\lambda_S < 1 \iff |z-z_0| < R_S$. Jeśli $\lambda_S + \infty$, to $R_S = 0$ i $K_{\mathbb{K}}(S) = \emptyset$, $Z_K(S) = \{z_0\}$,

a więc 1. i 2. zachodzi.

Jeśli $\lambda_S=0$, to $R_S=+\infty$ i $K_{\mathbb C}(S)=\mathbb C=Z_{\mathbb C}(S)$. Znowu mamy 1. i 2. Jeśli $\lambda_S\in(0;+\infty)$, to $R_S=\frac{1}{\lambda_S}$ i jest $\{z\in\mathbb C:|z-z_0|< R_S\}\subseteq Z_{\mathbb C}(S)\,\mathbb C\,\{z\in\mathbb C:|z-z_0|\le R_S\}\,,$ a w kole $K_{\mathbb C}(z_0,R_S)$ mamy odpowiednią zbieżność

$$\{z \in \mathbb{C} : |z - z_0| < R_S\} \subseteq Z_{\mathbb{C}}(S) \mathbb{C} \{z \in \mathbb{C} : |z - z_0| \le R_S\},$$