- ****The following questions are concerned with Chapter 6: Polynomials and Codes.****
- **78** a) Show in general (and by contradiction) that if in a ring R we have $a \neq 0, b \neq 0$, but ab = 0, then there is no a^{-1} or b^{-1} in R.
 - b) Use $R = \mathbb{F}_2[x]/(x^3+x^2+x+1)$ to provide an example of this: for each (nontrivial) factor of x^3+x^2+x+1 , find all its multiples in R, to show that none of them is 1. (You are finding two rows of the multiplication table for R.)
- **79** Which elements of \mathbb{F}_5 are primitive? Which elements of \mathbb{F}_7 are primitive?
- **80** Working in \mathbb{F}_7 , express each non-zero element as a power of 3. If $a=3^i$ then what is a^{-1} , in terms of i? Now find a primitive element of \mathbb{F}_{11} , and answer the corresponding question.
- 81 In \mathbb{F}_7 , for which $1 \leq i \leq 6$ is 3^i a primitive element? In \mathbb{F}_{11} , for which $1 \leq i \leq 10$ is 2^i a primitive element? Can you generalise this idea? If a is a primitive element in \mathbb{F}_p , for which $1 \leq i \leq p-1$ is a^i a primitive element?
- 82 In lectures we used the field $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x+1)$. What happens if, instead, we divide $\mathbb{F}_2[x]$ out by other f(x) of degree 3 over \mathbb{F}_2 ? By considering polynomials of smaller degree, show that x^3+x+1 and x^3+x^2+1 are irreducible, but x^3+x^2+x+1 is reducible, and show how it factors. (It follows that $\mathbb{F}_2[x]/(x^3+x^2+1)$ is also the field \mathbb{F}_8 (see Q83) but $\mathbb{F}_2[x]/(x^3+x^2+x+1)$ is a ring (see Q78).)
- **83** a) Find all the powers of x in $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x^2+1)$. That is, make a table giving each $x^i, \ 0 \le i \le 7$, in the form $a_2x^2+a_1x+a_0$.
 - b) Use your table to find $x^4 + x^5$ in the form x^i , and $(x^2 + x + 1)(x^2 + x)$ in the form $a_2x^2 + a_1x + a_0$.
- 84 Consider $\mathbb{F}_3[x]/(x^2+1)$. Show that in this version of \mathbb{F}_9 , x is not a primitive element, but x+1 is a primitive element. (Thus, we say that x^2+1 is not a primitive polynomial over \mathbb{F}_3 .)
- By considering possible roots, show that x^3+2x+1 is irreducible in $\mathbb{F}_3[x]$. Use Proposition 6.9 to show that $\mathbb{F}_3[x]/(x^3+2x+1)$ is a field \mathbb{F}_q , and find q. By writing each $x^i, \ 0 \le i \le 13$, in the form $a_2x^2+a_1x+a_0$, show that x^3+2x+1 is a primitive polynomial over \mathbb{F}_3 . Why do we *not* need to calculate the $x^i, \ 14 \le i \le 26$, to know this?
- **86** Let a be a primitive element in the field \mathbb{F}_q , where the prime power $q=p^r$.
 - a) For which $1 \le i \le q-1$ is a^i a primitive element? (See Q81; explain if you can. For a formal proof, you need Lagrange's Theorem the order of a subgroup divides the order of the group.)
 - b) Show that if every $a \in \mathbb{F}_q$, $a \neq 0$, $a \neq 1$ is primitive, then p = 2.
 - c) Show that the converse is not true: for some values of r, \mathbb{F}_{2^r} has other non-primitive elements.
 - d) Show that any irreducible polynomial of degree 3 or 5 in $\mathbb{F}_2[x]$ is a primitive polynomial over \mathbb{F}_2 .
- **87** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2 + x + 1)$,
 - a) Construct a check-matrix, and then a generator-matrix for $Ham_4(2)$.
 - b) Decode the received word, y = (x, x, x + 1, 1, x).
 - c) Construct a generator-matrix and a check-matrix for the extended Hamming code $\widehat{\text{Ham}}_4(2)$.
 - d) Show that for $\widehat{\text{Ham}}_4(2)$, some received words do not have a unique nearest neighbour.
- **88** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, let $C \subseteq \mathbb{F}_4^4$ have check-matrix $H = \begin{pmatrix} 1 & x+1 & x & 1 \\ 0 & x+1 & 1 & x \end{pmatrix}$. Find d(C).

- **89** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, let $C = \langle (1,1) \rangle \subseteq \mathbb{F}_4^2$.
 - a) Make a decoding array for C and use it to decode (x,0), (1,x), (x+1,x), and (0,1).
 - b) C is transmitted over a 4-ary symmetric channel with symbol-error probability p. Find the chance that a received word is successfully decoded by your array.
 - c) Now make a syndrome look-up table for C, and decode the same words as in a). Does it decode them to the same codewords? If not, could you make a syndrome look-up table that *does* decode like the array?
- **90** Using $\mathbb{F}_4 = \mathbb{F}_2[x]/(x^2+x+1)$, let $C \subseteq \mathbb{F}_4^6$ have check-matrix $H = \begin{pmatrix} 1 & 0 & 0 & 1 & x & 0 \\ 0 & 1 & 0 & 0 & 1 & x \\ 0 & 0 & 1 & x & 0 & 1 \end{pmatrix}$.
 - a) Find d(C).
 - b) How many rows would there be in a syndrome look-up table for C? To cut the table shorter, let us only include syndromes $S(\mathbf{x})$ with $w(\mathbf{x}) \leq 1$. Also, we can condense several lines into one by using $\lambda \mathbf{e}_i$ as our \mathbf{x} 's, where λ stands for any non-zero element of \mathbb{F}_4 .
 - c) Make a shortened table like this and use it to decode (if possible) the received words (1, 1, 1, 1, 1, 1), (0, 0, 0, x, 1, x+1), (x, 1, 0, x+1, x, 1), (0, x+1, 0, x+1, x, 1), (0, x+1, 0, x+1, x, 1), (0, x+1, 0, x+1, x, 1).
 - d) How many received words can we decode using this table?
- **91** This question uses $\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3+x+1)$. To help you do arithmetic in this field, first make or find the table expressing each x^i , $0 \le i \le 7$, in the form $a_2x^2 + a_1x + a_0$.
 - a) Let $C = \langle \{(x, x^2, x^2 + x, x^2 + 1), (0, 0, x^2, x), (x + 1, x^2 + x, 0, x^2 + 1)\} \rangle \subseteq \mathbb{F}_8^4$. Find a generator- and a check-matrix for C, and its parameters [n, k, d].
 - b) Use your generator-matrix to encode (x^2, x^2+1) , and to channel-decode (x, x^2, x^2+x, x^2+1) .
- 92 This question uses $\mathbb{F}_9 = \mathbb{F}_3[x]/(x^2+x+2)$. To help you do arithmetic in this field, first make or find the table expressing each $x^i,\ 0 \le i \le 8$, in the form a_1x+a_0 . Let $C = \langle \{(0,x+1,2x+1,x,1),(1,0,0,2,x),(2,1,0,x+2,x)\} \rangle \subseteq \mathbb{F}_9^5$. Find a generatorand a check-matrix for C, and its parameters [n,k,d]. (To find d, it may help to re-write H with entries x^i .)
- 93 Prove that for f(x) in $\mathbf{R}_n = \mathbb{F}_q[x]/(x^n-1)$, its span $\langle f(x) \rangle$ is a cyclic code. (This is Proposition 6.14. Use Proposition 6.12 to prove it.)
- **94** Let $g(x) \in \mathbf{R}_n = \mathbb{F}_q[x]/(x^n-1)$ be monic, of degree r, and be a factor of x^n-1 .
 - a) By considering the check-polynomial h(x), show that any element of $C = \langle q(x) \rangle$ has degree $\geq r$.
 - b) Show that, with these conditions, g(x) is the generator-polynomial of $\langle g(x) \rangle$.
 - c) Deduce that there is a 1-1 correspondence between monic factors of $x^n 1$ and cyclic codes in \mathbf{R}_n .
- 95 Find all ternary cyclic codes of block-length 3. These can be regarded as both subrings (in fact, ideals) in the ring $\mathbf{R}_3 = \mathbb{F}_3[x]/(x^3-1)$ and subspaces of the vector space \mathbb{F}_3^3 . So, first find the generator-polynomial of each, and then a generator-matrix for each. Two of the codes are trivial. For the two which are not trivial, find their parameters [n,k,d]. How are they related?

- **96** a) By considering possible roots, factor $x^3 1$ in the ring of polynomials $\mathbb{F}_7[x]$.
 - b) Using these factors, find all the non-trivial 7-ary cyclic codes of block-length 3. (There are six of them). Give a generator-polynomial and a generator-matrix for each.
 - c) Let C be the one of these codes with generator-matrix $G = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$. By finding x_1 and x_2 such that $x_1(3,1,0) + x_2(0,3,1) = (1,2,6)$, show that $(1,2,6) \in C$. (In effect, you are channel decoding.) In the same way, show that (2,6,1) and (6,1,2) (the cyclic shifts of (1,2,6)) are in C, but (1,6,2) is not.
- 97 Consider the code C of Q96c. Write down its generator-polynomial g(x) and its check-polynomial h(x). Use Proposition 6.20 to find out which of these polynomials are in C: $a(x) = 6x^2 + 2x + 1$, $b(x) = 2x^2 + 6x + 1$. Do your answers agree with Q96c?
- 98 In lectures, we found all the ternary cyclic codes of length 4. The codes we found (see Example 54) come in dual pairs, C and C^{\perp} . Find these pairs, and show that they are duals,
 - a) by considering their generator- and check-matrices, and using ideas from Chapter 4,
 - b) by considering their generator- and check-polynomials and using Proposition 6.22. (Remember that a polynomial can generate a code even if it is not that code's unique, official generator-polynomial.)
- **99** a) In $\mathbb{F}_2[x]$, $x^7 1 = (x^3 + x + 1)(x^4 + x^2 + x + 1)$. Let $g(x) = (x^3 + x + 1) \in \mathbb{F}_2[x]$, and write out the generator-matrix G_1 for the cyclic code $C_1 = \langle g(x) \rangle \subseteq \mathbf{R}_7 = \mathbb{F}_3[x]/(x^7 1)$.
 - b) Using just 3 EROs, row-reduce G_1 to standard form $(A \mid I)$. Find a check matrix H_1 for C_1 , and explain why C_1 is a $\operatorname{Ham}_2(3)$ code.
 - c) Using Proposition 6.22 find a check-polynomial $h_1(x)$ for C_1 , and a generator-polynomial $g_2(x)$ for code $C_2 = C_1^{\perp}$. Write out a generator-matrix G_2 for the cyclic code C_2 .
 - d) But of course H_1 is also a generator-matrix for C_2 . Use just one ERO to change G_2 to H_1 .
- **100** In \mathbf{R}_n , let g(x) and h(x) be monic, and $g(x)h(x)=x^n-1$. Then we know by Q94b that g(x) and h(x) are the generator-polynomials for $C_1=\langle g(x)\rangle$ and $C_2=\langle h(x)\rangle$ respectively.
 - a) Specify polynomials which generate C_1^\perp and C_2^\perp respectively.
 - b) By considering generator-matrices for C_1 and C_2^{\perp} , show that these codes are equivalent.

(So, we might say that $C_1=\langle g(x)\rangle$ and $C_2=\langle h(x)\rangle$ are "almost dual" to each other.)

- c) Conclude that in general, if g(x) is monic and divides x^n-1 , then the codes $\langle g(x)\rangle$ and $\langle \overline{g}(x)\rangle$ are equivalent.
- **101** We can construct the Golay codes as cyclic codes. In $\mathbb{F}_2[x]$, $x^{23}-1$ factors as

$$(x-1)(x^{11}+x^{10}+x^6+x^5+x^4+x^2+1)(x^{11}+x^9+x^7+x^6+x^5+x+1)=(x-1)g_1(x)g_2(x).$$

Use Q100 to show that $\langle g_1(x) \rangle$ and $\langle g_2(x) \rangle$, cyclic codes in $R_{23} = \mathbb{F}_2[x]/(x^{23}-1)$, are equivalent. In fact, they are both equivalent to the binary Golay code \mathcal{G}_{23} of Section 5.3.

- **102** Let $\mathbf{a}=(1,0,4,7), \mathbf{b}=(1,2,3,4)\in \mathbb{F}_{11}^4$. Find the minimum distance and a basis for the Reed-Solomon code $\mathsf{RS}_3(\mathbf{a},\mathbf{b})\subseteq \mathbb{F}_{11}^4$.
- **103** Let $\mathbf{a} = (0, 1, 2, 3, 4), \mathbf{b} = (1, 1, 1, 1, 1) \in \mathbb{F}_7^5$. Find a generator-matrix for each code $\mathsf{RS}_k(\mathbf{a}, \mathbf{b}) \subseteq \mathbb{F}_7^5$, $1 \le k \le 4$. Then find a check-matrix for each code.
- **104** Let \mathbf{a}, \mathbf{b} , and \mathbf{b}' be vectors in \mathbb{F}_q^n . Show that if $\mathsf{RS}_k(\mathbf{a}, \mathbf{b})$ and $\mathsf{RS}_k(\mathbf{a}, \mathbf{b}')$ are two Reed-Solomon codes, they are (monomially) equivalent. Deduce from this and Proposition 6.25 that $[\mathsf{RS}_k(\mathbf{a}, \mathbf{b})]^{\perp}$ and $\mathsf{RS}_{n-k}(\mathbf{a}, \mathbf{b})$ are equivalent.

- **105** Let \mathbf{a}, \mathbf{a}' , and \mathbf{b} be vectors in \mathbb{F}_q^n , and $\mathsf{RS}_k(\mathbf{a}, \mathbf{b})$ and $\mathsf{RS}_k(\mathbf{a}', \mathbf{b})$ be two Reed-Solomon codes. How could we pick \mathbf{a} and \mathbf{a}' to make the codes (monomially) equivalent?
- 106 Of course, there are Reed-Solomon codes over non-prime fields. But we have a clash of notation: in Section 6.2 we used x as an element of \mathbb{F}_q , and now in 6.5 it is the variable for our polynomials $f(x) \in \mathbf{P}_k$. So here is just one small, easy question: Let $\mathbf{a} = (1, x, x+1), \mathbf{b} = (1, 1, 1) \in \mathbb{F}_4^3$. Find a generator-matrix and then a check-matrix for $\mathsf{RS}_2(\mathbf{a}, \mathbf{b}) \subseteq \mathbb{F}_4^3$,