Question - Calculate the Optimal Weights which Minimizes Variance

Given $\{x_1, x_2, \dots, x_m\}$ where $x_i \in \mathbb{R}^n$ find $w \in \mathbb{R}^m$ which minimized the Variance of y given by $y = w_1x_1 + w_2x_2 + \dots + w_mx_m$ where $\forall i \ w_i \geq 0$ and $\sum_{i=1}^m w_i = 1$.

Remark. The question is given at Question 44984132 on StackOverflow.

Answer - Calculate the Optimal Weights which Minimizes Variance

The above can be written as following:

$$\arg\min_{w} \quad \frac{1}{2} \left\| Xw - \frac{1}{m} e^{T} Xw e \right\|_{2}^{2}$$
subject to $w \succeq 0$
$$e^{T} w = 1$$

Where X is composed by $\{x_1, x_2, \dots, x_m\}$ as its columns, $w = [w_1, w_2, \dots, w_m]^T$ and $e = [1, 1, \dots, 1]^T$, $e \in \mathbb{R}^m$.

The above is a Convex Problem where the solution is limited to the Unit Simplex.

A method to solve is using Projected Sub Gradient Method. The idea is to apply a Sub Gradient step and project the result onto the Unit Simplex.

In order to so one have to calculate the following:

- The Sub Gradient (Gradient in the case above as the function is smooth) of the Objective Function.
- The Projection onto the unit simplex.

The Gradient of the Objective Function

$$\begin{split} \frac{\partial}{\partial w} f\left(w\right) &= \frac{\partial}{\partial w} \left(\frac{1}{2} \left\| Xw - \frac{1}{m} e^T Xwe \right\|_2^2 \right) \\ &= \frac{\partial}{\partial w} \left(Xw - \frac{1}{m} e^T Xwe \right) \frac{\partial}{\partial \left(Xw - \frac{1}{m} e^T Xwe \right)} f\left(w\right) \\ &= \left(X^T - \frac{1}{m} \frac{\partial}{\partial w} \left(e^T Xwe \right) \right) \left(Xw - \frac{1}{m} e^T Xwe \right) \\ &= \left(X^T - \frac{1}{m} X^T ee^T \right) \left(Xw - \frac{1}{m} e^T Xwe \right) \end{split}$$

The Projection onto the Unit Simplex

There are 2 options to apply this:

- Solving the Projection Minimization as done in MathExchange Answer 2338491.
- Iteratively projecting onto the Non Negative Half Space and the set of vectors which their sum is 1.

Remark. The answer (With MATLAB code) is given at Answer 195787 on StackOverflow.