Family Background, Academic Ability, and College Decisions in the 20th Century U.S.

Lutz Hendricks (UNC) Chris Herrington (VCU) Todd Schoellman (ASU)

July 8, 2015

Motivation

Big picture goal:

Understand changes in U.S. college enrollment over time.

Focus of this paper:

Changes in the composition of college students since 1920s.

- rich versus poor students
- high versus low ability students

The role of **financial** conditions

- student loans
- college costs
- college wage premium

Empirical Contribution

Compile 40+ historical data sources on college enrollment 1919 - 1980

Main finding:

- The role of student ability has increased.
- The role of family background has decreased.

Quantitative Modeling Contribution

Model college decisions of heterogeneous students.

Identify changes in financial conditions that drive changes in enrollment patterns.

Main finding:

- Unimportant: college costs and borrowing limits.
- Important: college wage premium.

Objective

The goal: Characterize how college entry varies with

- student ability
- family background

over the period 1930-1980.

Data Sources

Post 1960 data

- access to micro data
- Project Talent, NLSY
- ability measured by standardized test scores
- family background measured by income

Pre 1960 data

- no micro data
- published cross-tabulations of college entry rates
- ability: test scores or class rank
- ▶ family background: income or socioeconomic status

Example: Updegraff (1936)

Sample: 15% of Pennsylvania's 1933 graduating class.

Family background: socioeconomic status (6 bins)

Ability: test scores (6 bins)

Summarizing Historical Studies

Regress college entry rates on

- ability percentile $\rightarrow \beta_A$
- family background percentile $\rightarrow \beta_F$

Percentiles are bin midpoints.

Importance of Background vs. Ability

Family background

Ability

Coefficients from **univariate** regressions (entry rates on ability **or** family background)

Importance of Background vs. Ability

Family background

Ability

Coefficients from **bivariate** regressions (entry rates on ability **and** family background)

Comparability

Histories studies differ in

- sizes of percentile bins
- measures of ability and family background

Does lack of comparability affect the results?

To address this problem, we replicate each study in NLSY79 data.

Example: Updegraff (1936)

Entry rates: Updegraff (1936) and NLSY replication.

NLSY Replication Results

Variation in study design does not systematically affect β_A or β_F .

Key Empirical Finding

Large change in who attends college

- Academic ability has become more important
- Family background has become less important

Next step:

Develop a model to uncover why these changes occurred.

Model Overview

child

We follow one cohort from high school graduation to retirement.

Timing:

- Choose between college entry or work as high school graduate (HSG).
 family income is used for parental consumption or transfer to
- Years 1-2 in college: choose consumption, saving, leisure, work hours subject to a borrowing constraint
- 3. At the end of year 2: learn whether student graduates
- 4. Years 3-4 in college: similar to years 1-2
- 5. Work as CG starting in year 5

Endowments

Each family is endowed with a type $j \in \{1,...,J\}$ All agents of type j share the same values for

- parental income y_p
- college cost p
- ► ability signal *m*
- preference for college (details below)

Ability x is not observed until the start of work.

College Entry Decision

$$\max\{\underbrace{V_{HS}(j) + \bar{\eta} - \gamma \eta_{w}}_{\text{work as HSG}}, \underbrace{V_{entry}(j) - \gamma \eta_{c}}_{\text{enter college}}\}$$
 (1)

- $\bar{\eta}$: common preference for working as HSG
 - permits the model to match overall college entry rate for each cohort
- η_c, η_w : type I extreme value shocks (for computational reasons)

College Entry Decision

Value of working as HSG:

$$V_{HS}(j) = \max_{z_w \ge 0} T_c u_p (y_p - z_w) + \mathbb{E}_a \{ V_w (T_c z_w, HS, x) | j \}$$
 (2)

Divide parental income y_p between

- transfer to the child z
- ▶ parental consumption $y_p z$

Value of college entry:

$$V_{entry}(j) = \max_{z_{c}>0} T_{c} u_{p} (y_{p} - z_{c}) + V_{1} (T_{c} z_{c}, j)$$
 (3)

Years 1-2 In College

$$V_{1}(k,j) = \max_{k',c,l} (1+\beta) u \left(c + \overline{c}_{j}, 1 + \overline{l}_{j} - l\right) + \beta^{2} V_{m}(k',j)$$
 (4)

subject to

- ▶ budget constraint: $k' = Rk + 2(w_{coll}l p_j c)$
- ▶ borrowing constraint: $k' \ge k_{min,3}$

Continuation value:

$$V_m(k,j) = \mathbb{E}_x[(1-\pi[x]) V_w(k,x,CD) + \pi[x] V_3(k,j)]$$
 (5)

\bar{c}_j, \bar{l}_j : increasing in m

prevents high ability students from consuming too much in college

Years 3-4 In College

$$V_3(k,j) = \max_{k',c,l} (1+\beta) u(c+\bar{c}_j, 1+\bar{l}_j-l) + \beta^2 \mathbb{E}_x V_w(k', x, CG)$$

subject to

- budget constraint
- borrowing constraint

Work Phase

State vector:

- assets (or debts) k
- ability x
- ▶ schooling $s \in \{HSG, CD, CG\}$

Household problem:

$$V_w(k, x, s) = \max_{c_a} \sum_{a=1}^{A-A_s} \beta^{t-1} u_w(c_a)$$
 (6)

subject to a lifetime budget constraint

$$\sum_{a=1}^{A-A_s} R^{1-a} c_a = Y(s,x) + Rk \tag{7}$$

Calibration

Step 1:

- Calibrate all parameters to NLSY79 data
- ► High school graduates in 1979

Step 2:

Calibrate a subset of **time-varying** parameters for high school graduates in

- ▶ 1960: Project Talent data
- ▶ 1933: Updegraff (1936) data

Calibration Targets (NLSY79)

Median lifetime earnings by schooling (CPS)

College **entry** and graduation rates, by $[y_p, IQ]$ quartile

Colege **financing** (by y_p and IQ quartile):

- College costs
- 2. Parental transfers (High School & Beyond)
- 3. Parental income
- 4. Hours worked and earnings in college
- 5. Student loans

Calibrated Parameters

- Endowment distributions (college costs, parental income, abilities and signals)
- Preferences (consumption, leisure, parental altruism)
- ► Lifetime earnings
- Graduation rates

Fit

► College entry ► College graduation

Time-Varying Parameters

Parameter	Target
Mean college cost	Mean college cost
Borrowing limit	Federal student loan limits
Parental altruism	Share of college costs paid by "family c
$ar{Y}(s)$	Median lifetime earnings by scho
Preference for work as HSG, $\bar{\eta}$	College enrollment

also target: entry rates by iq, yp +++

College Entry Over Time

We characterize changes in college entry patterns by regressing entry rates on IQ and y_p quartiles.

$$ightarrow eta_A, eta_F$$

	eta_{IQ}	β_{yp}
Baseline		
Model	0.70	0.04
Data	0.71	0.07
Cohort 1940		
Model	0.54	0.15
Data	0.70	0.48
Cohort 1915		
Model	0.33	0.16
Data	0.21	0.68

Result: financial conditions account for x% of the variation in ability sorting, y% of the variation in income sorting

Accounting for Changing College Entry

Which exogenous driving forces account for the changes in college entry patterns?

One answer:

- 1. Start with the baseline (NLSY79) model.
- 2. One-by-one, change a forcing variable to match the value for an earlier cohort.

For ease of interpretation: The overall college entry rate is held fixed by adjusting the preference parameter $\bar{\eta}$.

Accounting for Changing College Entry

Table: regression coefficients for each change (1915 and 1940 cohort)

	Cohort 1961		Cohort 1961	
	eta_{IQ}	$oldsymbol{eta_{yp}}$	eta_{IQ}	$oldsymbol{eta_{yp}}$
Change college costs	0.70	0.04	0.70	0.04
Change borrowing limit	0.65	0.09	0.65	0.08
Change earnings profiles	0.29	0.25	-0.00	-0.00
Change parental altruism	0.33	0.18	-0.00	-0.00
Change college entry	0.33	0.16	0.54	0.15

Upshot:

- most of the change in IQ sorting is due to college premium
- same for yp sorting, but there borrowing limits play a role

Conclusion

Х

Detail Slides

Calibrated Parameters

Parameter

i arameter	Description	
Endowments		
$\alpha_{p,y}, \alpha_{p,m}, \alpha_{y,m}, \alpha_{\omega,m}$	Endowment correlations	-0.06, 0.34, 0.4
$\alpha_{a,m}$	Correlation, a, m	
μ_p,σ_p	Marginal distribution of p	3
σ_{IQ}	IQ noise	
Preferences		
ω_l	Weight on leisure	
$\omega_{\scriptscriptstyle W}$	Weight on $u(c)$ at work	
$\boldsymbol{\varphi}_p$	Curvature of parental utility	
$\hat{\mu_{\omega,p}}$	Weight on parental utility	
$\sigma_{\omega,p}$	Std of weight on parental utility	
$ar{\eta}$	Preference for HS	
MaxcColl	Max free consumption	
MaxlColl	Max free leisure	
Other		
ês	Log skill prices	-0.05, -0.0
		35/30

Description

College Entry Rates

College Graduation Rates

References I