A Systematic Description of the Wobbling Motion in Odd-Mass Nuclei Within a Semi-Classical Formalism

PhD CandidateRobert Poenaru^{1,2}

Scientific Supervisor Prof. Em. Dr. A. A. Raduta²

¹Doctoral School of Physics, UB ²Department of Theoretical Physics, IFIN-HH

A presentation for the degree of Doctor of Philosophy

May 10, 2023

TOC

Aim and Motivation

- 2 Introduction
 - Nuclear Shapes
 - Nuclear Triaxiality
 - Wobbling Motion

Aim

Research Objectives 🖪

- Extend the current interpretation of the nuclear triaxiality
- Provide new formalisms for the phenomena related to nuclear deformation.
- Exclusive to the thesis: provide a detailed theoretical background and context towards a better understanding of the underlying concepts for the reader.

Objective exclusive to the thesis 🖪

- Provide a detailed theoretical background and context towards a better understanding of the underlying concepts for the reader.
- A completely open-source project.

Motivation

Motivation

Nuclear Triaxiality has become a *hot topic* within the scientific community.

 Identifying nuclei with triaxial deformations represents a real experimental and theoretical challenge

Nuclear facilities

Figure: Gammasphere detector, ANL-ATLAS USA. *Source:* aps.org

Figure: a) IDS detector, CERN. *Source:* isolde.web.cern.ch b) JUROGAM II, Finland. *Source:* twitter.com

Text

Text

Text

Text

Text

Text

Thank you for your attention ∇

