PC2R - Notes de TD

Jordi Bertran de Balanda

TD1 - Programmation Concurrente, Généralités

Ex1. Processus

Q1

- OS:
- décide de l'attribution des ressources
- dirige le matériel par le logiciel
- régit les différents agents du système
- Scheduler
- partie de l'OS
- distribue l'exécution entre les processus
- stoppe l'exécution d'un processus, charge le contexte et lance l'exécution d'un autre processus
- Concurrence:
- exécution simultanée de plusieurs processus
- course aux ressources
- Préemption:
- interromp un processus en cours d'exécution et donne la main à un autre processus

$\mathbf{Q2}$

Ordonnanceur: * Équitable * Vivacité/Progrès * Sur * Efficace

$\mathbf{Q3}$

```
S = [(x:=x+1;x;x:=x+1)||x:=2*x]

S' = [(x:=x+1;x:=x+1)||(wait(x=1);x:=2*x)]
```

• Séquence bloquante: $g_1; g_2$

- Séquence valeur 4: $g_1; d_1; g_2; d_2$
- Séquence valeur 3: $g_1; d_1; d_2; g_2$

Q4. Exemple d'ordonnancement

$$P1 = a_1; a_2; ...a_N, P2 = b_1; b_2; ...b_N$$

- Non-préemptif: une seule exécution possible
- Préemptif:
 - $-a_1;a_2;b_1;b_2$
 - $-b_1;b_2;a_1;a_2$
 - $-a_1;b_1;a_2;b_2$
 - $-a_1;b_1;b_2;a_2$
 - $-b_1; a_1; a_2; b_2$

 - $b_1; a_1; b_2; a_2$ En général: $\binom{M+N}{N} = \frac{(M+N)!}{N!+M!}$

Q5. Etats de processus

Cf. feuille, diag. à faire

Ex.2 Threads

$\mathbf{Q}\mathbf{1}$

Thread	Processus				
Mémoire entièrement partagée	Propre mémoire				
Meme PID	Propre PID				
Environnement partagé	Propre environnement				
CS peu couteux	CS couteux				

$\mathbf{Q2}$

Processus légers: pas de clonage, environnement partagé.

Q3. Gestion des threads

La gestion des threads est faite par le processus qui les a créés (!= threads noyau géré par le système, ordonnancés avec les processus).

Q4. Contraintes d'ordonnancement

- non déterminisme
- difficulté de compréhension
- gestion de la mémoire partagée
- problèmes de sureté (safety), interblocage, verrou actif (livelock) boucles non productives, lectures/écritures incohérentes
- vivacité (liveness)
- famine
- attente active

Ex3. Diner des philosophes

cf. feuille, diag à faire

```
P(g, d):
1
     SLEEP
2
     TAKE g
                 Attente
3
     TAKE d
                 Attente
4
     EAT
5
     RELEASE d
6
     RELEASE g
     GOTO 1
```

État d'interlocage: tous les philosophes prennent g.

$\mathbf{Q}\mathbf{1}$

Tous les processus n'exécutent pas le meme programme selon leur parité.

Les processus pairs commencent par prendre à droite et les impairs à gauche ou inversement.

Q2. Chandy-Misra Flags sur les fourchettes

TD2 - Ordonnanceur et Threads (POSIX/Fair)

Ex1. Chemin de fer

Q1.

```
typedef enum { ROUGE = 0; VERT = 1 } Feu;
typedef enum { ALLUME = 1; ETEINT = 0} Detecteur;
Feu feu1 = ROUGE;
Feu feu2 = ROUGE;
Detecteur in1 = ETEINT;
Detecteur in2 = ETEINT;
Detecteur out1 = ETEINT;
Detecteur out2 = ETEINT;
```

Q2.

 2^6 états possibles.

Q3.

- Incohérence: feu1 et feu2 verts, in1 et in2 allumés, out1 et out2 éteints
- Deadlock: feu1 et feu2 rouges, in1 et in2 allumés, out1 et out2 éteints

Q4.

État avec in1 allumé ne passant pas jusqu'à un état avec out1 allumé.

Ex2. Rappels fair threads

Q1.

- Fair Threads Coopératifs (A l'intérieur d'un scheduler!)
- Threads POSIX Préemptifs

Q2.

```
include "fthread.h"
```

```
void print1 (void *args) {
    while(1) {
        printf("Belle marquise ");
        ft_thread_cooperate();
}
void print2 (void *args) {
    while(1) {
        printf("vos beaux yeux ");
        ft_thread_cooperate();
    }
}
void print3 (void *args) {
    while(1) {
        printf("me font mourir ");
        ft_thread_cooperate();
    }
}
void print4 (void *args) {
    while(1) {
        printf("d'amour\n");
        ft_thread_cooperate();
}
int main () {
    ft_scheduler_t sched = ft_scheduler_create();
    ft_thread_create(sched, print1, NULL, NULL);
    ft_thread_create(sched, print2, NULL, NULL);
    ft_thread_create(sched, print3, NULL, NULL);
    ft_thread_create(sched, print4, NULL, NULL);
    ft_scheduler_start(sched);
    ft_exit();
    return 0;
}
```

Avec 4 schedulers: exécution comme sans les fair threads.

Ex3. Attentes actives

Q1.

```
int n = 0;
pthread_mutex_t mutex;
void *lecteur () {
    int my_n = 0;
    FILE * fic = fopen("/dev/urandom", "rb");
    for (;;) {
        pthread_mutex_lock(&fmutex);
        if (n != my_n) {
            int tmp, i;
            my_n = n;
            for (i = 0; i < n; i++) {
                fscanf(fic, "%d", &tmp);
                printf("%d", tmp);
            }
        pthread_mutex_unlock(&fmutex);
    }
}
void *requete () {
    int my_n = 0;
    int tmp;
    printf("nombre");
    scanf(%d, &tmp);
    pthread_mutex_lock(&fmutex);
    n = tmp;
    pthread_mutex_unlock(&fmutex);
}
int main () {
    . . .
}
```

Soucis: attente active dans le for du lecteur.

Solution: variables de condition.

```
Q2.
```

```
pthread_cond_t condition =PTHREAD_COND_INITIALIZER;
void * lecteur () {
   pthread_mutex_lock(&fmutex);
    pthread_cond_wait(&condition);
}
void * requete () {
    pthread_mutex_unlock(&fmutex);
    pthread_cond_signal(&condition);
}
Ex4. Envoi/Attente
Q1.
ft_event_t evt;
ft_thread_await(evt);
printf("Evènement reçu\n");
ft_thread_cooperate ();
Q2.
ft_thread_cooperate_n(7);
. . .
```

$\mathrm{TD3}$ - $\mathrm{Threads}$ $\mathrm{OCAML}/\mathrm{Java}$

Ex. 1 - Comptage au musée

```
let compteur = ref 0;
let cle = Mutex.create();
let rec entree nb =
   if nb > 0 then
      begin
```

```
Mutex.lock cle
compteur := !compteur + 1
Mutex.unlock cle
entrer (nb - 1)
end

let sortie =
while true do
if !compteur > 0 then
begin
Mutex.lock cle
compteur := compteur - 1
Mutex.unlock cle
end
```

Ex. 2 - Scanner et imprimante

TD4 - Sockets et Client/Serveur

Ex1. Serveur d'echo

Q1. Serveur

```
public class Serveur extends Thread {
   BufferedReader inchan;
   DataOutputStream outchan;
   ServerSocket serv;
    Socket client;
   public Serveur() {
        try {ecoute = new ServerSocket(port);}
        catch (IOException e) {
            System.out.println(e.getMessage());
            System.exit(1);
        System.out.println("Serveur en écoute ")
    }
   public static void main (String [] args) {
        try {
            int port = Integer.parseInt(args[0]);
            serv = new ServerSocket(port);
            while (true) {
                client = serv.accept();
```

```
try {
                    inchan = new BufferedReader(new InputStreamReader(client.getInputStream
                    outchan = new DataOutputStream(client.getOutputStream());
                    while (true) {
                        String command = inchan.readLine();
                        if (command.equals("")) {
                            System.out.println("Fin de connexion");
                            break;
                        outchan.write(command);
                    }
                } catch (IOException e) {
                    System.out.println("I/O error");
                    e.printStackTrace();
                client.close();
            }
        }
   }
}
```

Q2.

Pas de concurrence, un seul client à la fois. Les threads, c'est plus mieux.

Q3.

```
public class ServeurThread {
   ServerSocket serv;
    Socket client;
   public static void main (String [] args) {
        try {
            int port = Integer.parseInt(args[0]);
            serv = new ServerSocket(port);
            while (true) {
                client = serv.accept();
                Connection c = new Connection(client);
                c.start();
            }
        }
    } catch (IOException e) {
        System.out.println("I/O error");
        e.printStackTrace();
```

```
public class Connexion extends Thread {
   private Socket client;
    private BufferedReader in;
   private DataOutputStream out;
   public Connexion(Socket client_socket) {
        client = client_socket;
        try {
            inchan = new BufferedReader(new InputStreamReader(client.getInputStream()));
            outchan = new DataOutputStream(client.getOutputStream());
        } catch (IOException e) {
            try { client.close(); } catch (IOException e1)
                System.out.println("I/O error");
                e1.printStackTrace();
            }
            System.out.println("I/O error");
            e.printStackTrace();
        }
   }
   public void run () {
        while (true) {
            String command = inchan.readLine();
            if (command.equals("")) {
                System.out.println("Fin de connexion");
                break;
            }
            outchan.write(command);
        client.close();
   }
}
Q6.
public class EchoServerPool{
    Vector<Connexion> clients;
   Vector<Socket>
   public static void main (String [] args) {
```

}

```
int port = Integer.parseInt(args[0]);
        int capacity = Integer.parseInt(args[1]);
        EchoServer server = new EchoServer(port, capacity);
        server.start();
    }
}
public class EchoServer {
}
public class EchoClient {
}
Q8.
(* Compilation:
                    ocamlc -o server -thread -custom unix.cma threads.cma server.ml *)
let creer_serveur port max_con =
   let sock = Unix.socket Unix.PF_INET Unix.SOCK_STREAM 0
    and addr = Unix.inet_addr_of_string "127.0.0.1"
        Unix.bind sock (Unix.ADDR_INET(addr, port))
        Unix.listen sock max_con;
        sock;;
let serveur_process sock service =
    while true do
        let (s, caller) = Unix.accept sock
            ignore(Thread.create service (Unix.in_channel_of_descr s, Unix.out_channel_of_de
    done;;
let echo_service chans =
   let inchan = fst chans
    and outchan = snd chans
    in
        while true do
            let line = input_line inchan
                output_string outchan (line ^ "\n");
                flush outchan
        done;;
let main () =
```

TD5 - Events et Canaux Synchrones

Rappels - canaux synchrones

```
new_channel
receive : 'a channel -> 'a event
send: 'a channel -> 'a -> unit event
sync: 'a event -> 'a
```

Ex1. Mobilité - Vente en ligne

Q1.

Cf. feuille de TD.

Types des canaux:

- n: string channel
- c1, c2: string channel channel
- i: (string, string channel channel) channel
- s: (string, string channel) channel

Q2.

Vendeur (S)

```
let rec vendeur n =
  let (chan, prod) = sync (receive c_vendeur) in
      sync (send chan (prod ^ " " ^ (string_of_int n)));
  vendeur (n + 1)
```

Intermédiaire (I)

```
let chan_broker = new_channel ();;
let chan_seller = new_channel ();;
let rec intermediaire () =
    let (x, chan_buyer) = sync (receive chan_broker)
    and nu_c = new_channel () in
        sync(send chan_seller (nu_c, x));
        sync(send chan_buyer nu_c);
    intermediaire ()
Client (Cx)
let rec buyer args =
   let (a, n, c_buy, log, varlog) = args in
    if n == 0 then varlog := log else
    begin
        sync (send c_brok (a, c_buy))
        let chan = sync (receive c_buy) in
        let prod = sync (receive chan) in
        buyer (a, n-1, c_buy, log^prod^"\n", varlog)
    end
Main
let c_sell = new_channel ()
and c_brok = new_channel ()
and c_buy1 = new_channel ()
and c_buy2 = new_channel ()
and log1 = ref ""
and log2 = ref "";;
let main () =
    let _ = Thread.create seller 0 in
    let _ = Thread.create broker ()
    and t1 = Thread.create buyer ("thé", 3, c_buy1, log1)
    and t2 = Thread.create buyer ("café", 4, c_buy1, log1) in
   print_end_line !log1
   print_end_line !log2
Ex2.
let rec work (str, chan, n) =
   if n < max then
```

```
Thread.delay (float_of_int (3+(Random_int 10))) /. 5.0
       let _ = sync (send chan str^" "^(string_of_int n)) in
       work str chan (n+1)
    else ()
let rec consumer () =
   let x = select [receive c_p, receive c_b, receive c_o] in
   print_end_line x;
    consumer ()
Ex6. Futurs
type 'a' future = ('a channel * bool ref)
let spawn f arg =
    let c = new_channel ()
   and isdone = ref false in
   let run_future () =
       let res = f arg in
        isdone := true
        sync (send c res)
    Thread.create run_future ();
    (c, isdone)
let isDone future =
    !(fst future)
let get future =
    sync (receive (snd future))
TD6 - Introduction à Esterel
Exercice 1
Exercice 2
Question 3
module feux:
input ACEO, ACNS;
output RNS, VNS, ONS, RNSE, VNSE, ONSE, REO, VEO, ORO, REOE, VEOE, OEOE;
```

relation ACNS # ACEO;

```
await 5 tick;
  emit ACNS;
 run FEU [signal ACNS/AC, ACEO/ACA, RNS/R, VNS/V, ONS/O, RNSE/RE, ONSE/OE, VNSE/VE];
 run FEU [signal ACEO/AC, ACNS/ACA, REO/R, VEO/V, OEO/O, REOE/RE, VEOE/VE, OEOE/OE];
end module;
Question 4
module feux:
input ACEO, ACNS;
output RNS, VNS, ONS, RNSE, VNSE, ONSE, REO, VEO, ORO, REOE, VEOE, OEOE;
output DNS:integer, DEO:integer;
relation ACNS # ACEO;
  await 5 tick;
  emit ACNS;
 run FEU [signal ACNS/AC, ACEO/ACA, RNS/R, VNS/V, ONS/O, RNSE/RE, ONSE/OE, VNSE/VE, DNS/D]
 run FEU [signal ACEO/AC, ACNS/ACA, REO/R, VEO/V, OEO/O, REOE/RE, VEOE/VE, OEOE/OE, DEO/D]
  | |
 loop
    await RNS;
   var duree :=2 : integer in
      abort
        loop
     present AN then duree := duree + 1; end present;
     present AS then duree := duree + 1; end present;
    each tick
      when [not RNS]
    emit DNS(duree)
]
end module;
module FEU:
input AC;
output ACA, R, V, O;
input D:integer;
loop
```

abort

Producteurs-consommateurs: signaux valués multiples

Question 1

cf. feuille

Q2. Producteur

```
module prod:
input FIN;
output P, FP:integer;
input P_S;
var nbprod := 0 : integer in
 abort
    loop
      await 3 tick;
     nbprod := nbprod + 1;
     emit P;
      await immediate P_S;
    end loop
 when FIN
 emit FP;
end var
end module
```

Q3. Consommateur

```
module client:
input FIN, Ci, C_S:integer;
output C:integer, FC:integer;
constant numero:integer;
var nbconso := 0 : integer in
   abort
```

```
loop
    await Ci;
    emit C(numero);
    await immediate C_S;
    if (?CS = numero) then nbconso := nbconso + 1; end if
    end loop
    when FIN
    emit FC(nbconso);
end var
end module
```

Q4. Gérant

esterel module gerant: <Déclarations> var stock := 0 in abort var attend := false:boolean in signal MAX_L, VIDE_L, S:combine integer with +; loop if stock := max then emit MAX_L else if stock := 0 then emit VIDE_L end if [present C then present VIDE_L else emit S(-1); emit C_S(?C); end present; end present; || present P then present MAX_L then attend := true; else emit S(1); emit P_S; end present; end present;] present S then stock := stock + ?S; end if; end loop when FIN emit FS(stock); end var end module# TD7 - Introduction à Lustre

Ex1. Pre ou pas Pre

```
node udtqc (x : int) returns (y : int);
let
    y = 1 -> pre (2 -> pre (3 -> pre (4 -> 5)));
tel;
```

Commande	Output							
5	5	5	5	5	5	5	5	5
4	4	4	4	4	4	4	4	4
$4 \rightarrow 5$	4	5	5	5	5	5	5	5
$\operatorname{pre}(4 \to 5)$	Ø	4	5	5	5	5	5	5
3	3	3	3	3	3	3	3	3
$3 \to \operatorname{pre}(4 \to 5)$	3	4	5	5	5	5	5	5

Valeur finale: 1 2 3 4 5 5 5 5 5 ...

Ex2. Compteur dans un musée

```
node ces (in, out:bool) returns (compteur : int);
let
    var cin, cout : int,
    cin = if in then 1 else 0;
    cout = if out then -1 else 0;
    compteur = (cin + cout + (0 -> pre compteur);
tel;
Ex3. Fibonacci
Q1.
# Hack: nil par défaut dans un + a la valeur 0
node fib (x : bool) returns (y : int);
    let y = 1 \rightarrow (pre y) + (pre (pre y));
tel;
# Mieux
node fib (x : bool) returns (y : int);
    let y = 1 \rightarrow (pre 1 \rightarrow y + pre y);
tel;
# Équivalent:
node fib (x : bool) returns (y : int);
    let y = 1 \rightarrow (y + (0 \rightarrow pre y));
tel;
Q2.
node fib (max : int) returns (y : int);
let y =
    if (1 \rightarrow (pre y)) > max then
        1 \rightarrow (y + (0 \rightarrow pre y))
    else
        pre y;
tel;
```

Q3.

Ex4. When et Current

Q1.

X	1	2	3	4	5	6	7	8	9
Y	true	false	true	false	true	false	true	false	true
Z	true	true	false	false	true	false	false	true	false
A = X when Z	1	2			5			8	
B = Y when Z	true	${\rm false}$			true			${\rm false}$	
C = A when B	1				5				
$\operatorname{current}(\mathbf{C})$	1	1			5			5	

Q2.

```
node modulo_n (n : int) returns (nb, max_mul : int);
var inc : int;
let
   inc = 0 -> pre inc;
   (nb, max_mul) = (inc, current(inc when ((inc mod n) = 0)));
tel;
```

Q3.

```
node modulo_n (n : int) returns (nb, max_mul : int);
var inc : int, bool_clock : bool;
let
   bool_clock = ((inc mod n) = 0);
   inc = 0 -> pre inc;
   (nb, max_mul) = (current(foo (n when bool_clock, inc when bool_clock)), inc(inc, current tel;
```