Sebastian Kopf

Wintersemester 2016/17

Analysis 2

Inhaltsverzeichnis

1 Topologische Grundlagen					
	1.1	Norm	ierte Vektorräume	5	
		1.1.1	Offene Mengen	5	
		1.1.2	Konvergente Folgen	9	
		1.1.3	Abgeschlossene und kompakte Mengen	12	
	1.2	Stetig	ge Abbildungen	18	
2	Diff	ferenti	iation im \mathbb{R}^n	25	

1

Topologische Grundlagen

1.1 Normierte Vektorräume

1.1.1 Offene Mengen

Definition 1.1.1.1

Sei V ein \mathbb{R} -Vektorraum. Unter einer Norm auf V verstehen wir eine Funktion $\|\cdot\|:V\to[0,\infty[$ mit:

(N1)

$$||x|| = 0 \Leftrightarrow x = 0 \forall x \in V$$

(N2)

$$||tx|| = |t| ||x|| \forall x \in V \forall t \in \mathbb{R}$$

(N3)

$$||x + y|| \le ||x|| + ||y||$$

Beispiel

i)
$$V = \mathbb{R}, ||x|| := |x|, x \in \mathbb{R}.$$

ii)
$$V = \mathbb{R}^n$$
, $||x||_{\infty} := \max_{1 \le l \le n} |x|_l$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, definiert eine Norm auf \mathbb{R}^n .

iii)
$$V = \mathbb{R}^n$$
, $||x||_1 := \sum_{l=1}^n |x_l|$, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, definiert eine Norm auf \mathbb{R}^n .

iv)

$$V = C^0([a,b]) = \{f : [a,b] \to \mathbb{K} \mid f \text{ stetig}\}\$$

 $(\mathbb{K} = \mathbb{R} \text{ oder } \mathbb{K} = \mathbb{C}) \text{ Für } f \in V \text{ sei}$

$$\|f\| = \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} |f(x)|$$

eine Norm auf V.

//

Definition 1.1.1.2

V sei ein \mathbb{R} -Vektorraum. Unter einem Skalarprodukt auf V verstehen wir eine Funktion $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ mit

i)

$$\langle x, y \rangle = \langle y, x \rangle, x, y \in V$$

ii)

$$\langle x+\lambda y,u\rangle=\langle x,u\rangle+\lambda\langle y,u\rangle,\lambda\in\mathbb{R},x,y,u\in V$$

iii)

$$\langle x, y + \lambda z \rangle = \langle x, y \rangle + \lambda \langle x, z \rangle, \lambda \in \mathbb{R}, x, y, z \in V$$

iv)

$$\langle x, x \rangle \ge 0, x \in V$$
 $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

In diesem Fall setze $||x|| = \sqrt{\langle x, x \rangle}$.

Lemma 1.1.1.3 Cauchy-Schwarzsche Ungleichung

Sei V wie bisher und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt. Dann

$$|\langle x, y \rangle| \le ||x|| \, ||y|| \, \forall x, y \in V.$$

Dabei gilt Gleichheit, genau dann, wenn x = ty für ein $t \in \mathbb{R}$.

Beweis: $a, b \in \mathbb{R}$. Dann ist

$$\|a+b\|^2 = \langle a+b,a+b\rangle = \langle a,a+b\rangle + \langle b,a+b\rangle = \langle a,a\rangle + \langle a,b\rangle + \langle b,a\rangle + \langle b,b\rangle = \|a\|^2 + \|b\|^2 + 2\langle a,b\rangle.$$

Ist y = 0, so ist nichts zu tun. Sei also $y \neq 0$ (||y|| > 0).

$$0 \leq \left\| x - \frac{\langle x, y \rangle}{\|y\|^2} y \right\|^2 = \|x\|^2 + \frac{\langle x, y \rangle^2}{\|y\|^2} - 2\left\langle x, \frac{\langle x, y \rangle y}{\|y\|^2} \right\rangle = \|x\|^2 + \frac{\langle x, y \rangle^2}{\|y\|^2} - 2\langle x, y \rangle \frac{1}{\|y\|^2} \langle x, y \rangle = \|x\|^2 - \frac{\langle x, y \rangle^2}{\|y\|^2}$$

Umstellen liefert

$$\langle x, y \rangle^2 \le \|x\| \|y\|^2.$$

Gilt Gleichheit, so ist $\left\|x - \frac{\langle x, y \rangle}{\|y\|^2}\right\| = 0$, also $x = \frac{\langle xx, y \rangle}{\|y\|^2}y =: t$. Ist x = ty, so $\langle x, y \rangle = t \|y\|^2$.

Lemma 1.1.1.4

 $(V, \langle \cdot, \cdot \rangle)$ sei ein \mathbb{R} -Vektorraum mit Skalarprodukt. Dann definiert $||x|| = \sqrt{\langle x, x \rangle}, \ x \in V$, eine Norm auf V.

Beweis:

(N1), (N2) klar. (N1) folgt aus d), (N2):

$$\sqrt{\langle tx,tx\rangle} = \sqrt{t^2\langle x,x\rangle} = |t|\,\|x\|\,\forall t\in\mathbb{R}\,\forall x\in V$$

(N3)
$$||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x, y \rangle \le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2$$

Beispiel

Auf \mathbb{R}^n definiere $\langle x, y \rangle = x_1 y_1 + ... + x_n y_n$. Dann ist $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf \mathbb{R}^n .

$$\|x\| = \sqrt{\sum_{l=1}^n x_l^2}$$

ist die euklidische Norm. //

Definition 1.1.1.5

Sei $(V, \|\cdot\|)$ ein normierter Vektorraum, dann definiere für $a \in V, r > 0$ die Kugel um a mit Radius r als

$$B(a,r) := \langle x \in V \mid \|x - a\| < r \rangle.$$

Beispiel

- i) $V = \mathbb{R}, \|\cdot\| = |\cdot|, B(a,r) =]a r, a r[.$
- ii) $V = \mathbb{R}^n$, $\|\cdot\|$ = euklidische Norm, $B_2(a,r)$ = Kreisscheibe um a mit Radius r.
- iii) $V = \mathbb{R}^n$, $\|\cdot\| = \|\cdot\|_{\infty}$,

$$B_n(a,r) = \{x \in \mathbb{R}^n \mid \|x - a\|_{\infty} < r\} = \{x = (x_1,...,x_n) \mid |x_l - a_l| < r \, \forall \, 1 \le l \le n\}$$

//

Definition 1.1.1.6

 $(V, \|\cdot\|)$ sei ein normierter Raum. Sei $M \subset V$ nicht leer. $x \in M$ heißt innerer Punkt von M, wenn ein $\delta > 0$ existiert, so dass $B(x, \delta) \subset M$.

$$\mathring{M} := \{x \in M \mid x \text{ innerer Punkt von } M\}$$

Wir nennen eine Menge $U \subset V$ offen, wenn $\mathring{U} = U$.

Lemma 1.1.1.7

Sei $(V, \|\cdot\|)$ ein normierter Vektorraum. Dann ist für $a \in V$ und r > 0 die Kugel B(a, r) offen. Genauer ist $y \in B(a, r)$, so $B(y, \rho) \subset B(a, r)$, wenn nur $0 < \rho < r - \|a - y\|$.

Beweis: Sei $y \in B(a,r), z \in B(y,\rho)$.

$$||z-a|| = ||y-a+z-y|| \le ||y-a|| + ||z-y|| < ||y-a|| + \rho < r$$

П

so bald $\rho < r - ||y - a||$.

Lemma 1.1.1.8

 $(V, \|\cdot\|)$ wie zuvor, $M, M_1, M_2 \subset V$. Dann gilt:

- i) Ist $U \subset M$ offen, so $U \subset \mathring{M}$.
- ii) $(M_1 \cap M_2)^\circ = \mathring{M}_1 \cap \mathring{M}_2, (M_1 \cup M_2)^\circ \supset \mathring{M}_1 \cup \mathring{M}_2.$

1.1.2 Konvergente Folgen

 $(V, \|\cdot\|)$ sei ein normierter Vektorraum.

Definition 1.1.2.1

i) Wir nennen eine Folge $(x_k)_{k \in V}$ konvergent gegen $x_0 \in V$, wenn

$$\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N} : x_k \in B(x_0, \varepsilon) \text{ für } k \geq n_{\varepsilon}.$$

In diesem Falle:

$$x_0 = \lim_{k \to \infty} x_k$$
.

ii) Sei $(x_n)_n \subset V$. Dann heißt $a \in V$ Häufungswert für $(x_n)_n$, wenn für unendlich viele n gilt $x_n \in B(a, \varepsilon)$, wie auch immer $\varepsilon > 0$ gewählt war. Konvergiert $(x_n)_n$ gegen a, so ist a der einzige Häufungswert für $(x_n)_n$.

Lemma 1.1.2.2

 $(x_n)_n \subset V$ sei eine Folge. Dann konvergiert $(x_n)_n$ gegen $x_0 \in V$ genau dann, wenn

$$\lim_{n\to\infty}\|x_n-x_0\|=0.$$

Konvergiert $(x_n)_n$ gegen $y_0 \in V$, so $y_0 = x_0$.

Lemma 1.1.2.3

Genau dann ist $a \in V$ ein Häufungswert der Folge $(x_n)_n$, wenn $(x_n)_n$ eine Teilfolge $(x_{n_k})_k$ mit Grenzwert a hat.

Beweis:

- i) Eine Teilfolge $(x_{n_k})_k \subset (x_n)_n$ konvergiere gegen a. Zu $\varepsilon > 0$ wähle $k_{\varepsilon} \in \mathbb{N}$ mit $x_{n_k} \in B(a, \varepsilon)$ für $k \ge k_{\varepsilon}$. Somit ist a ein Häufungswert.
- ii) Sei $a \in V$ ein Häufungswert für $(x_n)_n$. Zu $\varepsilon := \frac{1}{k}$ gibt es $x_{n_k} \in B\left(a, \frac{1}{k}\right)$. Dann ist aber $a = \lim_{k \to \infty} x_{n_k}$.

Bemerkung Notation

Für $x = (x_1, ..., x_n) \in \mathbb{R}^n$ setzen wir

$$|x| \coloneqq \sqrt{\sum_{l=1}^n x_l^2}.$$

Lemma 1.1.2.4

 $(x_k)_k \subset \mathbb{R}^n$ konvergiert gegen $a \in \mathbb{R}^n$ genau dann, wenn

$$\lim_{k\to\infty}x_{k,l}=\alpha_l, 1\leq l\leq n.$$

Beweis:

$$|x_{k,l} - a_l| \le |x_k - a| \le \sum_{l=1}^n |x_{k,l} - a_l|$$

Lemma 1.1.2.5

i) Sind die Folgen $(x_k)_k, (y_k)_{\subset}V$ konvergent, so

$$\lim_{k\to\infty}(x_k+\alpha y_k)=\lim_{k\to\infty}x_k+\alpha\lim_{k\to\infty}y_k.$$

ii) Wird $\|\cdot\|$ durch ein Skalarprodukt $\langle\cdot,\cdot\rangle$ induziert, so

$$\lim_{k \to \infty} \langle x_k, y_k \rangle = \langle x_0, y_0 \rangle$$

wenn $x_k \to x_0$, $y_k \to y_0$.

Beweis:

i)

$$||x_k + \alpha y_k - (x_0 + \alpha y_0)|| \le ||x_k - x_0|| + |\alpha| ||y_k - y_0|| \xrightarrow{k \to \infty} 0$$

ii)

$$\begin{aligned} |\langle x_k, y_k \rangle - \langle x_0, y_0 \rangle| &= |\langle x_k - x_0, y_k \rangle + \langle x_0, y_k - y_0 \rangle| \\ &\leq \|x_k - x_0\| \|y_k\| + \|x_0\| \|y_k - y_0\| \end{aligned}$$

$$\leq \|x_k - x_0\| (\|x_0\| + \|y_k - y_0\|) + \|x_0\| \|y_k - y_0\| \xrightarrow{k \to \infty} 0$$

Definition 1.1.2.6

- i) $(x_n)_n \subset V$ heißt Cauchy-Folge, wenn $\forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N}$ mit $||x_k x_l|| < \varepsilon$, wenn $k, l \ge n_{\varepsilon}$.
- ii) Wir nennen eine Folge $(x_n)_n$ beschränkt, wenn ein R existiert mit $||x_n|| \le R$ für alle n.

Lemma 1.1.2.7

- i) Jede in V konvergente Folge $(x_n)_n$ ist eine Cauchy-Folge.
- ii) Jede Cauchy-Folge $(x_n)_n$ ist beschränkt.
- iii) Ist a ein Häufungswert der Cauchy-Folge $(x_n)_n$, so ist $a = \lim x_n$.

Beweis:

i) Sei $x_0 = \lim x_k$. Zu $\varepsilon > 0$ wähle $n_{\varepsilon} \in \mathbb{N}$ mit

$$||x_n - x_0|| < \frac{\varepsilon}{2} \forall n \ge n_{\varepsilon}.$$

Für $k, l \ge n_{\varepsilon}$ wird dann

$$||x_k - x_l|| \le ||x_k - x_0|| + ||x_l - x_0|| < \varepsilon.$$

ii) Cauchy-Kriterium für $\varepsilon = 1$:

$$\exists n_1 \in \mathbb{N} : ||x_n - x_{n_1}|| \le 1 \forall n \ge n_1.$$

$$||x_n - x_{n_1}|| \le R := 1 + \sum_{p=1}^{n_1} ||x_p - x_{n_1}|| \ \forall n \ge 1.$$

iii) Wähle Teilfolge $(x_{n_k}) \subset (x_n)_n$, $\lim_{k \to \infty} x_{n_k} = a$. Zu $\varepsilon > 0$ sei $p_\varepsilon \ge 1$:

$$\|x_r-x_s\|<\frac{\varepsilon}{2},r,s\geq p_\varepsilon$$

$$||x_r - a|| \le ||x_r - x_{n_{k_0}}|| + ||x_{n_{k_0}} - a||$$

Wähle $k_0 \gg 1$ und $n_{k_0} \ge p_\varepsilon$ mit $\left\| x_{n_{k_0}} - a \right\| < \frac{\varepsilon}{2}$. Dann ist $\| x_r - a \| < \varepsilon$, wenn $r \ge n_{k_0}$.

Definition 1.1.2.8

 $(V, \|\cdot\|)$ heißt vollständig (Banachraum), wenn jede Cauchy-Folge $(x_k)_k \subset V$ in V einen Grenzwert hat.

Satz 1.1.2.9

Der Raum \mathbb{R}^n ist mit $|\cdot|$ vollständig.

Beweis:

n=1: Ana 1; angenommen $(\mathbb{R}^{n-1},|\cdot|)$ sei vollständig. Ist $(x_k)_k$ eine Cauchy-Folge in \mathbb{R}^n , so schreibe $x_k=(x_k',x_{k,n})$. Da

$$\frac{|x_k' - x_l'| + |x_{k,n} - x_{l,n}|}{2} \le |x_k - x_l| \le |x_k' - x_l'| + |x_{k,n} - x_{l,n}|$$

sind $(x'_k)_k$ und $(x_{k,n})_k$ Cauchy-Folgen, haben also einen Grenzwert x' bzw. x_n .

$$|x_k - x| \le |x_k' - x'| + |x_{k,n} - x_n| \xrightarrow{k \to \infty} 0$$

1.1.3 Abgeschlossene und kompakte Mengen

 $(V, \|\cdot\|)$ sei ein normierter Vektorraum.

Definition 1.1.3.1

- i) $A \subset V$ heißt abgeschlossen, wenn $V \setminus A$ offen ist.
- ii) A heißt beschränkt, wenn $A \subset B(0,R)$ für geeignetes R > 0.
- iii) A heißt kompakt, wenn zu jeder Familie $(U_i)_{i\in I}$ offener Mengen mit $A\subset \bigcup_{i\in I}U_i$ eine endliche Menge $J\subset I$ mit $A\subset \bigcup_{j\in J}U_j$ gefunden werden kann.
- iv) A heißt folgenkompakt, wenn jede Folge $(x_n)_n \subset A$ einen Häufungswert $a_0 \in A$ hat.

Definition 1.1.3.2

- i) $A \subset V$ sei eine Menge. Dann heißt $a_0 \in V$ Häufungspunkt von A, wenn $\forall r > 0$ die Menge $A \cap (B(a_0, r) \setminus \{a_0\}) \neq \emptyset$ ist.
- ii) $A \subset V$, dann $\bar{A} :=$ Durchschnitt aller abgeschlossenen Mengen F mit $A \subset F$ (abgeschlossene Hülle von A).

Lemma 1.1.3.3

 $A \subset V$. Dann sind äquivalent:

- i) A ist abgeschlossen.
- ii) Jeder Häufungspunkt von A liegt in A.

Beweis:

- *i)*⇒*ii)* Sei $a_0 \in V$ Häufungspunkt von A, aber $a_0 \notin A$. Dann ist $a_0 \in V \setminus A$ mit $V \setminus A$ offen. Also $\exists r > 0 : B(a_0, r) \subset V \setminus A$ und $A \cap B(a_0, r) = \emptyset$. \nleq
- $ii)\Rightarrow i)$ Sei $a_0\in V\setminus A$, gäbe es kein r>0 mit $B(a_0,r)\subset V\setminus A$, so wähle zu $r\coloneqq \frac{1}{k}$ ein $x_k\in A\cap B\left(a_0,\frac{1}{k}\right)$, sogar $x_k\neq a_0$. Is $\delta>0$ beliebig, so wähle $k>\frac{1}{\delta}$. Dann ist $x_k\in (B(a_0,\delta)\setminus\{a_0\})\cap A$. Also ist a_0 Häufungspunkt für A, also $a_0\in A$. $\not=$

Bemerkung

Äquivalent:

- i) $A \subset V$ abgeschlossen.
- ii) Ist $a_0 \in V$, $(a_k)_k \subset A$, $a_0 = \lim_{k \to \infty} a_k$, so $a_0 \in A$.

Lemma 1.1.3.4

Sei $A \subset V$, dann ist

 $\overline{A} = B := A \cup \{a_0 \in V \mid a_0 \text{ ist Häufungspunkt von } A\}.$

Beweis: *B* ist abgeschlossen: Sei b_0 ein Häufungspunkt für *B*. Zeige: $b_0 \in B$.

Sei r > 0 beliebig. Sei $b_0 \notin A$. Wähle $y \in B \cap (B(b_0, \frac{r}{2}) \setminus \{b_0\})$, ist $y \in A$, so $A \cap (B(b_0, \frac{r}{2}) \setminus \{b_0\}) \ni y$. Dann ist b_0 Häufungspunkt von A.

Sei $y \notin A$, da $y \in B$, ist y Häufungspunkt von A. Da $y \neq b_0$ existiert

$$\delta \coloneqq \frac{1}{2} \|y - b_0\| > 0.$$

Sei $\rho = \min \left\{ \delta, \frac{r}{2} \right\}$. Wähle $x \in (B(y, \rho) \setminus \{y\}) \cap A$. Dann

$$||x-b_0|| \le ||x-y|| + ||y-b_0|| < \rho + \frac{\delta}{2} \le r.$$

Wäre $x = b_0$, so

$$2\delta = ||y - b_0|| = ||y - x|| < \rho \le \delta$$

Also ist $x \in (B(b_0,r) \setminus \{b_0\}) \cap A$. In beiden Fällen ist $(B(b_0,r) \setminus \{b_0\}) \cap A \neq \emptyset$. Also ist b_0 Häufungspunkt von A, also $b_0 \in B$. Somit ist $\bar{B} = B$, $A \subset B$ und $\bar{A} \subset B$.

Zeige noch: $B \subseteq \bar{A}$. Sei F abgeschlossen, $A \subseteq F$. Sei $b \in B$, $b \in A$. Dann ist $b \in F$. Ist $b \notin A$, so $\exists F$ olge $(b_k)_k \subseteq A$, $b = \lim_{k \to \infty} b_k$. Da $b_k \in F$ für alle k, folgt aus der Bemerkung $b \in F$. Also $B \subseteq F$. Wähle $F = \bar{A}$, so ist $B \subseteq \bar{A}$.

Definition 1.1.3.5

 $A \subset V$, dann heißt $\partial A := \bar{A} \setminus \mathring{A}$ der Rand von A.

Bemerkung

Für $A \subset V$ ist stets

$$\partial A = \bar{A} \cap \overline{A^c} = \bar{A} \cap (\overline{V \setminus A}).$$

Beispiel

i)
$$A = B_2(0, r) \Rightarrow \partial A = \{x \in \mathbb{R}^2 \mid |x| = r\}.$$

ii)
$$V = \mathbb{R}, A = \mathbb{Q} \Rightarrow \partial A = \mathbb{R}.$$

Bemerkung Erinnerung

 $K \subset V$ heißt folgenkompakt, wenn jede Folge $(x_v)_v \subset K$ eine in K konvergente Teilfolge hat. $K \subset V$ heißt überdeckungskompakt, wenn es für jede Überdeckung $(U_i)_{i \in I}$ von K durch offene Mengen $U_i \subset V$ $i_1, ..., i_m$ gibt, so dass $K \subset U_{i_1} \cup ... \cup U_{i_m}$.

Lemma 1.1.3.6

 $K \subset V$ sei kompakt. Dann ist

- i) K beschränkt.
- ii) K abgeschlossen.
- iii) K folgenkompakt.

Beweis:

- i) $(B(0,n))_{n\geq 1}$ ist offene Überdeckung für K. Dann $B(0,n_0)\supset K$ für genügend großes n_0 .
- ii) Sei $(x_n)_n \subset K$ eine Folge, so dass $x_0 = \lim_{n \to \infty} x_n$ existiert. Dann ist $x_0 \in K$, anderenfalls wäre $x_0 \notin K$, so wäre $(U_{\varepsilon})_{\varepsilon > 0}$ eine offene Überdeckung für K, wenn $U_{\varepsilon} \coloneqq \{x \in V \mid \|x x_0\| > \varepsilon\}$. Aber dann ist $K \subset U_{\varepsilon_0}$ für ein genügend klein gewähltes $\varepsilon_0 > 0$, $\|x_n x_0\| \ge \varepsilon_0$. $\midexi{}$
- iii) Sei $(x_n)_n \subset K$ eine Folge ohne Häufungspunkt in K. Dann sind unendlich viele der x_n paarweise verschieden. Ist $x \in K$, so gibt es $\varepsilon_x > 0$ so dass $B(x, \varepsilon_x)$ nur endlich viele der x_n enthält. Dann ist $(B(x, \varepsilon_x))_{x \in K}$ eine offene Überdeckung von K, also finden wir $\tilde{x}_1, ..., \tilde{x}_r \in K$ mit $K \subset \bigcup_{l=1}^r B(\tilde{x}_k, \varepsilon_{\tilde{x}_l})$. Aber die linke Seite enthält unendlich viele der x_n , die rechte nur endlich viele. $\frac{1}{2}$

Lemma 1.1.3.7

Sei $K \subset V$ folgenkompakt und $(U_i)_{i \in I}$ eine Überdeckung von K durch offene Mengen $U_i \subset V$. Dann gibt es ein $\delta > 0$ mit:

$$\forall x \in K \exists i = i_x \in I \text{ mit } B(x, \delta) \subset U_{i_x}.$$

Beweis: Sonst gäbe es zu $k \in \mathbb{N}$ ein $x_k \in K$ mit $B\left(x_k, \frac{1}{k}\right) \not\subset U_i$ für alle $i \in I$. Wähle $(x_{k_l})_l \subset (x_n)_n$ mit $x_0 = \lim_{l \to \infty} x_{k_l} \in K$, sei $i_0 \in I$, $x_0 \in U_{i_0}$. Wähle $\varepsilon > 0$ mit $B(x_0, 2\varepsilon) \subset U_{i_0}$. Ist dann $y \in B\left(x_{k_l}, \frac{1}{k_l}\right)$, so

$$\|y-x_0\| \le \|x_0-x_{k_l}\| + \|y-x_{k_l}\| \le \|x_0-x_{k_l}\| + \frac{1}{k_l} < \varepsilon + \frac{1}{k_l} < 2\varepsilon.$$

Dann gilt $B\left(x_{k_l}, \frac{1}{k_l}\right) \subset B(x_0, 2\varepsilon) \subset U_{i_0}$.

Satz 1.1.3.8

Jede folgenkompakte Menge $K \subset V$ ist kompakt.

Beweis: Sei $K \subset \bigcup_{i \in I} U_i$, U_i offen. Es gibt ein $\delta > 0$ mit:

$$\forall x \in K \exists i_x \in I : B(x, \delta \subset U_{i_x}).$$

Behauptung: Für geeignete $x_1,...,x_N \in K$ ist schon $K \subset \bigcup_{l=1}^N B(x_l,\delta)$.

Angenommen, es sei nicht so. Dann $K \not\subset B(z_1, \delta)$ ($z_1 \in K$ beliebig). Also $\exists z_2 \in K$ mit $\|z_1 - z_2\| \ge \delta$. Auch $K \not\subset B(z_1, \delta) \cup B(z_2, \delta)$, wähle $z_3 \in K$ mit $\|z_3 - z_l\| \ge \delta$, l = 1, 2, induktiv definiere $z_1, ..., z_r \in K$ mit $\|z_i - z_j\| \ge \delta$ für $i \ne j$.

Die Folge $(z_n)_n \subset K$ hat dann keinen Häufungswert. $\mbox{$\frac{1}{2}$}$

Satz 1.1.3.9 Bolzano-Weierstraß

In $(\mathbb{R}^n, |\cdot|)$ hat jede beschränkte Folge $(x_k)_k$ einen Häufungswert.

Beweis: $x_k = (x_{k,1}, ..., x_{k,n})$, wähle aus $(x_{k,1})_k$ eine konvergente Teilfolge $(x_{k_{l,1},1})_l$ aus. Dann ist $(x_{k_{l,1},2})_l$ beschränkt, hat also eine konvergente Teilfolge $(x_{k_{l,2},2})_l$. Aus $(x_{k_{l,2},3})_l$ wähle konvergente Teilfolge $(x_{k_{l,3},3})_l$ aus. So fahre fort und erhalte Teilfolge $(x_{k_{l,n}})_l$, so dass $(x_{k_{l,n},j})_j$ konvergiert für alle $1 \le j \le n$.

Alternativer Beweis: Induktion nach *n*.

$$n=1:\sqrt{}$$

Angenommen der Satz gelte in \mathbb{R}^{n-1} . Schreibe $x_k = (x_k', x_{k,n}) \in \mathbb{R}^{n-1} \times \mathbb{R}$, dann sind $(x_k')_k \subset \mathbb{R}^{n-1}$ und $x_{k,n} \subset \mathbb{R}$ beschränkt. Wähle Teilfolge $(x_{k_l}')_l \subset (x_k')_k$, die konvergiert, etwa gegen x_0' , $(x_{k_l,n})_l$ hat ebenfalls eine gegen ein $x_{0,n} \in \mathbb{R}$ konvergente Teilfolge $(x_{k_l}, n)_p$. Dann konvergiert $(x_{k_l}, n)_p$ gegen $(x_0', x_{0,n})$.

Satz 1.1.3.10 Heine-Borel

Im \mathbb{R}^n ist jede Menge $K \subset \mathbb{R}^n$ genau dann kompakt, wenn sie abgeschlossen und beschränkt ist.

Beweis: Zu zeigen: Ist K abgeschlossen und beschränkt, so hat jede Folge $(x_k)_k \subset K$ einen Häufungswert $x^* \in K$.

Nach 1.1.3.9 Hat $(x_k)_k$ einen Häufungswert $x^* \in \mathbb{R}^n$ (da K beschränkt). K abgeschlossen, $x^* \in K$.

П

Beispiel

Sei $U \subset \mathbb{R}$ offen.

$$BC^0(U)\coloneqq \{f\colon U\to \mathbb{R}\:|\:f\:\:\mathrm{stetig\:und\:beschr\"{a}nkt}\}$$

ist ein \mathbb{R} -Vektorraum,

$$||f|| := \sup\{|f(x)| \mid x \in U$$

definiert auf $BC^0(U)$ eine Norm. $(BC^0(U), \|\cdot\|)$ ist sogar vollständig. Speziell: $U = \mathbb{R}, K := \{f \in BC^0(U) \mid \|f\| \le 1\}$ ist abgeschlossen und beschränkt. Sei jetzt

$$f_0(x) := \begin{cases} x, & 0 \le x < 1 \\ 1, & 1 < x < 2 \\ 3 - x, & 2 \le x \le 3 \end{cases}, \quad f_n(x) := f_0(x + 3n).$$

$$0, & x \notin [0,3]$$

Dann $(f_n)_n \subset K$, aber $||f_k - f_n|| = 1$ für $k \neq n$. $(f_n)_n$ hat keine konvergente Teilfolge. Also ist K nicht kompakt. $/\!\!/$

Definition 1.1.3.11

Eine offene Menge $\Omega \subset V$ heißt zusammenhängend oder Gebiet, wenn gilt: Sind $U_1, U_2 \subset V$ offen, $U_1 \cap U_2 = \emptyset$, so folgt aus $\Omega = U_1 \cup U_2$ schon $U_1 = \Omega$ oder $U_2 = \Omega$.

Lemma 1.1.3.12

Sei $\Omega \subset V$ ein Gebiet, die Funktion $f: \Omega \to \mathbb{R}$ habe die Eigenschaft: Ist $a \in \Omega$, so gibt es r > 0 mit $B(a,r) \subset \Omega$ und f(x) = f(a) für $x \in B(a,r)$. Dann ist f konstant auf Ω .

Beweis: Sei $a_0 \in \Omega$, $U_1 := \{x \in \Omega \mid f(x) = f(a_0)\}$, $U_2 := \Omega \setminus U_1$ sind offen (Ist das gezeigt, haben wir $U_1 \cup U_2 = \Omega$, $U_1 \cap U_2 = \emptyset$, also $U_1 = \Omega$, da $U_1 \ni a_0$, $U_1 \neq \emptyset$).

Ist $x_1 \in U_1$, r > 0 mit $B(x_1, r) \subset \Omega$ und $f(x) = f(x_1)$ auf $B(x_1, r)$, also $B(x_1, r) \subset U_1$. Also ist U_1 offen.

Ist $x_2 \in U_2$, $r_2 > 0$ mit $B(x_2, r_2) \subset \Omega$ und $f = f(x_2)$ auf $B(x_2, r_2)$. Somit $B(x_2, r_2) \subset U_2$. Also ist auch U_2 offen.

1.2 Stetige Abbildungen

Sei $(V, \|\cdot\|)$ stets ein normierter Vektorraum.

Definition 1.2.1

Sei $(Y, \|\cdot\|_Y)$ ein normierter Vektorraum. Ist $M \subset V$, $f: M \to Y$ eine Abbildung, so heißt f stetig in $x_0 \in M$, wenn zu jedem $\varepsilon > 0$ ein $\delta > 0$ gefunden werden kann, so dass für alle $x \in M \cap B(x_0, \delta)$ gilt $f(x) \in B(f(x_0), \varepsilon)$. Alternativ:

$$||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \varepsilon \forall x \in M.$$

Satz 1.2.2

Sei $M \subset V$, $x_0 \in M$, $f: M \to Y$. Dann ist f in x_0 stetig, wenn für alle $(x_k)_k \subset M$, $\lim x_k = x_0$, gilt $\lim f(x_k) = f(x_0)$.

Beweis:

- '\(\sigma\) '\(\sigma\) \(\sigma\) (x_k)_k \(\subset M\), \(\lim x_k = x_0\).

 Zeige: $f(x_k) \xrightarrow{k \to \infty} f(x_0)$. Sei $\varepsilon > 0$ beliebig. Es gibt $\delta > 0$ mit $f(x) \in B(f(x_0), \varepsilon)$, wenn $x \in M \cap B(x_0, \delta) \exists k_0 \in \mathbb{N}$ mit $||x_k x_0|| < \delta$ für alle $k \ge k_0$. Also $f(x_k) \in B(f(x_0), \varepsilon) \forall k \ge k_0$, also $||f(x_k) f(x_0)|| < \varepsilon \forall k \ge k_0$.
- '\(=\)': Sei f in x_0 unstetig. Dann gibt es ein $\varepsilon > 0$, so dass $f(M \cap B(x_0, \delta)) \subset B(f(x_0), \varepsilon)$ für kein $\delta > 0$. Also gilt $\forall k \geq 1 \exists x_k \in M \cap B\left(x_0 \frac{1}{k}\right)$ mit $||f(x_k) f(x_0)|| \geq \varepsilon$. Aber $\lim x_k = x_0$, ohne dass $(f(x_k))_k$ gegen $f(x_0)$ konvergiert.

Lemma 1.2.3

Seien $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ normierte Vektorräume und $f: M \to S$, $g: S \to Z$ Abbildungen, $M \subset V$, $S \subset Y$. Wenn dann f in $x_0 \in M$ und g in $y_0 \coloneqq f(x_0)$ stetig ist, so ist $g \circ f$ in x_0 stetig.

Lemma 1.2.4

Folgenkriterium anwenden.

Lemma 1.2.5

 $U \subset V$ sei offen und $f: U \to Y$ ($(Y, \|\cdot\|_Y)$ normierter Vektorraum.). Dann ist f auf U stetig genau dann, w(enn $f^{-1}(W)$ offen ist für jede offene Menge $W \subset Y$.

Beweis:

'\(\sigma': S \sigma Y\) sei offen, $x_0 \in f^{-1}(W)$, $y_0 \coloneqq f(x_0)$. W\(\text{ahle } \varepsilon > 0\) mit $B(y_0, \varepsilon) \subset W$, $\exists \delta > 0$ mit $f(B(x_0, \delta)) \subset B(y_0, \varepsilon)$. Dann ist $B(x_0, \delta) \subset f^{-1}(B(y_0, \varepsilon)) \subset f^{-1(W)}$. Also ist $f^{-1(W)}$ offen.

' \Leftarrow ': Sei $x_1 \in U$, $y_1 \coloneqq f(x_1)$. Da $B(y_1, \varepsilon) \subset Y$ offen, ist $f^{-1}(B(y_1, \varepsilon))$ es auch. Da $x_1 \in f^{-1}(B(y_0, \varepsilon))$ $\exists \delta > 0 \text{ mit } B(x_1, \delta) \subset f^{-1}(B(y_0, \varepsilon))$.

Lemma 1.2.6

 $(Y, \|\cdot\|_Y)$ sei normierter Vektorraum.

i) Genau dann ist eine lineare Abbildung $f: V \to Y$ stetig, wenn eine Zahl c > 0 mit

$$||f(x)||_V \le c ||x|| \forall x \in V$$

existiert.

ii) Jede lineare Abbildung $f: \mathbb{R}^n \to \mathbb{R}^d$ ist stetig.

Beweis:

i) Es gebe eine Konstante c>0 mit $\|f(x)\|_Y\leq c\,\|x\|$ für alle $x\in V$. Dann ist f in 0 stetig nach dem Folgenkriterium.

Sei $x_0 \in V$.

$$\|f(x) - f(x_0)\|_Y = \|f(x - x_0)\|_Y \le c \, \|x - x_0\|$$

Also ist f stetig in x_0 .

Angenommen, f sei stetig, aber $||f(x)||_Y \le c ||x||$ gelte für kein c > 0, dann wähle $x_k \in V$ mit $||f(x_k)||_Y \ge k ||x_k||$.

$$v_k := \frac{x_k}{k} \Rightarrow ||v_k|| \le \frac{1}{k} \text{ und } ||f(v_k)|| = \frac{||f(x_k)||}{k} \ge 1$$

Dann wäre f in 0 unstetig. $\frac{1}{2}$

ii) Sei f(x) = Ax mit $A \in \mathbb{R}^{d \times n}$.

$$A = (a_{ij})_{\substack{i=1,\dots,d\\j=1,\dots,n}} \Rightarrow f(x) = \begin{pmatrix} \langle A_1, x \rangle \\ \vdots \\ \langle A_d, x \rangle \end{pmatrix}, A_i := (a_{i1}, \dots, a_{in})$$

$$|f(x)|^2 = \sum_{i=1}^d \langle A_i, x \rangle^2 \le \left(\sum_{i=1}^d |A_i|^2\right) |x|^2$$

 $c \coloneqq \sqrt{\sum_{i=1}^d |A_i|^2}$ erfüllt das Kriterium aus i).

Lemma 1.2.7

Jede Norm $\mathcal{N}: V \to \mathbb{R}^+$ auf einem Vektorraum V über \mathbb{R} ist stetig, wenn $\dim_{\mathbb{R}} V < \infty$.

Beweis: Sind $x, y \in V$, so

$$\mathcal{N}(x) = \mathcal{N}(y + x - y) \le \mathcal{N}(y) + \mathcal{N}(x - y)$$

$$\Rightarrow \mathcal{N}(x) - \mathcal{N}(y) \le \mathcal{N}(x - y)$$

$$\Rightarrow \mathcal{N}(y) - \mathcal{N}(x) \le \mathcal{N}(x - y)$$

$$\Rightarrow |\mathcal{N}(x) - \mathcal{N}(y)| \le \mathcal{N}(x - y).$$

Lemma 1.2.8

 $(V, \|\cdot\|)$ und $(Y, \|\cdot\|_Y)$ seien normierte Räume. Sei $U \subset V$ offen, $K \subset U$ kompakt, ist dann $f: U \to Y$ stetig, so ist auch f(K) kompakt.

Beweis: Sei $(W_i)_{i \in I}$ eine Überdeckung von f(K) durch offene Mengen. Dann folgt

$$K \subset \bigcup_{i \in I} f^{-1}(W_i).$$

Wähle $i_1,...,i_n \in I$ aus mit $K \subset \bigcup_{k=1}^n f^{-1}W_{i_k}$. Hieraus folgt dann die Behauptung:

$$f(K) \subset \bigcup_{k=1}^{n} W_{i_k}$$
.

Satz 1.2.9

 $(V, \|\cdot\|)$ wie zuvor, ist $K \subset V$ kompakt, und $f: U \to \mathbb{R}$ stetig, so gibt es $x_+, x_- \in K$ mit $f(x_-) \le f \le f(x_+)$.

Beweis: f(K) ist kompakt, also abgeschlossen und beschränkt. $\inf_{x \in K} f(x)$ und $\sup_{t \in K} f(t)$ sind definiert und es gibt Folgen $(x'_n)_n$, $(x''_n)_n \subset K$ mit $f(x'_n) \to \inf_{x \in K} f(x)$, $f(x''_n) \to \sup_{t \in K} f(t)$,

wenn $n \to \infty$. OEdA seien $(x'_n)_n$ und $(x''_n)_n$ konvergent gegen $x_-, x_+ \in K$. Dann ist $f(x_-) = \inf_{x \in K} f(x)$ und $f(x_+) = \sup_{t \in K} f(t)$.

Satz 1.2.10

Ist V ein endlich erzeugter \mathbb{R} -Vektorraum, so gibt es zu 2 Normen \mathcal{N}_1 , \mathcal{N}_2 : $V \to [0, \infty[$ eine Zahl c > 0, so dass

$$\frac{1}{c}\mathcal{N}_1 \le \mathcal{N}_2 \le c\mathcal{N}_1.$$

Beweis: Sei $n = \dim V$ und $\{b_1, ..., b_n\}$ eine \mathbb{R} -Basis für V. Dann gibt es Linearformen $b_1^*,, b_n^* \colon V \to \mathbb{R}$ mit $x = \sum_{l=1}^n b_l^*(x)b_l \forall x \in V$.

 $F(x) = (b_1^*(x), ..., b_n^*(x)), F: V \to \mathbb{R}^n$ isomorph. $\tilde{\mathcal{N}}_j(y) \coloneqq \mathcal{N}_j(F^{-1}(y))$ sind Normen auf \mathbb{R}^n . Zeige: $\exists c > 0$:

$$\frac{1}{c}\tilde{\mathcal{N}}_1 \le \tilde{\mathcal{N}}_2 \le x\tilde{\mathcal{N}}_1.$$

Für $y \in \mathbb{R}^n$ ist

$$\tilde{\mathcal{N}}_1(y) = \tilde{\mathcal{N}}_1\left(\sum_{j=1}^n y_j e_j\right) \leq \sum_{j=1}^n |y_j| \tilde{\mathcal{N}}_1(e_j) \leq |y| \sqrt{\sum_{j=1}^n \tilde{\mathcal{N}}_1(e_j)^2} = c_1'|y|.$$

 $\tilde{\mathcal{N}}_1 \colon \mathbb{R}^n \to [0, \infty[$ ist stetig, $K \coloneqq \{y \in \mathbb{R}^n \mid |y| = 1\}$ ist abgeschlossen und beschränkt, also kompakt. Dann existiert ein $y_* \in K$ mit $\tilde{\mathcal{N}}_1(y) \ge \tilde{\mathcal{N}}_1(y_*)$ ffür alle $y \in K$. Für alle $y \in \mathbb{R}^n$ gilt dann

$$\tilde{\mathcal{N}}_1(y) = \tilde{\mathcal{N}}_1\left(|y|\frac{y}{|y|}\right) = |y|\tilde{\mathcal{N}}_1\left(\frac{y}{|y|}\right) \ge \tilde{\mathcal{N}}_1(y_*)|y|.$$

Hiermit folgt:

$$\tilde{\mathcal{N}}_1(y) \le c_1'|y| \le \frac{1}{\tilde{\mathcal{N}}_1(y_*)} \tilde{\mathcal{N}}_1(y).$$

Genauso $(\gamma_{**} \in K)$:

$$\tilde{\mathcal{N}}_2(y) \le c_2'|y| \le \frac{1}{\tilde{\mathcal{N}}_2(\gamma_{**})} \tilde{\mathcal{N}}_2(y).$$

Es folgt:

$$\tilde{\mathcal{N}}_1(y) \le c_1'|y| \le \frac{c_1'}{c_2'\tilde{\mathcal{N}}(y_{**})}\tilde{\mathcal{N}}_2(y)$$

$$\frac{c_2'}{c_1'}\tilde{\mathcal{N}}_2(y_{**})\tilde{\mathcal{N}}_1 \leq \tilde{\mathcal{N}}_2$$

$$\tilde{\mathcal{N}}_2(y) \leq c_2'|y| \leq \frac{c_2'}{c_1'\tilde{\mathcal{N}}_1(y_*)}\tilde{\mathcal{N}}_1(y)$$

$$c\coloneqq \max\left\{\frac{c_1'}{c_2'}\frac{1}{\tilde{\mathcal{N}}_2(y_*)}, \frac{c_2'}{c_1'}\frac{1}{\tilde{\mathcal{N}}_1(y_*)}\right\}$$

liefert das Verlangte.

Lemma 1.2.11

 $(V,\|\cdot\|)$ sei normierter Vektorraum, ebenso $(Y,\|\cdot\|_Y)$. $f:V\to Y$ sei auf einer kompakten Menge $K\subset V$ stetig. Dann ist f auf K gleichmäßig stetig, d.h. zu jedem $\varepsilon>0$ gibt es $\delta>0$, so dass $\|f(x')-f(x'')\|_Y\leq \varepsilon$, wenn immer $x',x''\in K$ mit $\|x'-x''\|\leq \delta$ sind.

Beweis: Zu $\varepsilon > 0$ und $\tilde{x} \in K$ wähle $\delta_{\tilde{x}} > 0$ mit $f(B(\tilde{x}, \delta_{\tilde{x}} \subset B(f(x), \varepsilon/2))$. Dann überdeckt $(B(\tilde{x}, \delta_{\tilde{x}}/2))_{\tilde{x} \in K} K$. Wähle $\tilde{x}_1, ..., \tilde{x}_N \in K$ mit

$$K\subset \bigcup_{j=1}^N B(\tilde{x}_j,\delta_{\tilde{x}_j}/2),\quad \delta\coloneqq \frac{1}{2}\min\{\delta_{\tilde{x}_j},...,\delta_{\tilde{x}_N}\}.$$

Sind jetzt $x', x'' \in K$, $||x' - x''|| < \delta$, für ein $j \in \{1, ..., N\}$ ist dann $x'' \in B(\tilde{x}_j, \delta_{\tilde{x}_j}/2)$. Dann ist

$$\begin{aligned} \left\| x' - \tilde{x}_j \right\| & \le \left\| x' - x'' \right\| + \left\| x'' - \tilde{x}_j \right\| \le \delta_{\tilde{x}_j}. \\ \left\| f(x') - f(x'') \right\|_Y & \le \left\| f(x') - f(\tilde{x}_j) \right\| + \left\| f(\tilde{x}_j) - f(x'') \right\| < \varepsilon \end{aligned}$$

Definition 1.2.12

 $(V, \|\cdot\|)$ sei normierter Raum, $f: V \to V$ heißt kontrahierend, wenn $\exists 0 < x < 1$ mit $\|f(x') - f(x'')\| \le c \|x' - x''\|$ für $x', x'' \in V$.

Satz 1.2.13 Banachscher Fixpunktsatz

 $(V, \|\cdot\|)$ sei vollständiger normierter Vektorraum, $f: V \to V$ sei kontrahierend. Dann hat f genau einen Fixpunkt $x_0 \in V$, also $f(x_0) = x_0$.

Beweis: $x_1 \in V$ sei beliebig, induktiv definiere: $x_{n+1} := f(x_n)$. Dann ist

$$||x_{n+1} - x_{n+1}|| = ||f(x_{n+1} - f(x_n))|| \le c ||x_{n+1} - x_n||.$$

Somit:

$$||x_{n+1} - x_n|| \le c^{n-1} ||x_2 - x_1||.$$

Für m > k gilt dann:

$$\|x_m - x_k\| = \left\| \sum_{l=k}^{m-1} (x_{l+1} - x_l) \right\| \le \sum_{l=k}^{m-1} \|x_{l+1} - x_l\| \le \left(\sum_{l=k}^{m-1} c^{l-1} \right) \|x_2 - x_1\| \le \frac{c^{k-1}}{1-c} \|x_2 - x_1\|.$$

Also bildet $(x_n)_n$ eine Cauchyfolge, es existiert x_0 : $\lim x_n$. Da f stetig ist, gilt

$$f(x_0) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = x_0.$$

Ist $y_0 \in V$ und $f(y_0) = y_0$, so

$$||x_0 - y_0|| = ||f(x_0) - f(y_0)|| \le c ||x_0 - y_0|| \Rightarrow x_0 - y_0 = 0.$$

Ergänzung:

$$||x_m - x_k|| \le \frac{c^{k-1}}{1-c} ||x_2 - x_1|| \Rightarrow ||x_k - x_0|| \le \frac{c^{k-1}}{1-c} ||x_2 - x_1||$$

$\mathbf{2}$ Differentiation im \mathbb{R}^n