Efficient Techniques for Manipulation of Non-deterministic Tree Automata

Lukáš Holík^{1,2} Ondřej Lengál¹ Jiří Šimáček^{1,3} Tomáš Vojnar¹

¹Brno University of Technology, Czech Republic ²Uppsala University, Sweden ³VERIMAG, UJF/CNRS/INPG, Gières, France

May 22, 2012

Outline

- Tree Automata
- 2 TA Downward Universality Checking
- 3 VATA: A Tree Automata Library
- 4 Conclusion

Trees

Very popular in computer science:

- data structures,
- computer network topologies,
- distributed protocols, . . .

In formal verification:

- e.g. encoding of complex data structures
 - doubly linked lists, . . .

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q...finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.

Example: $\Delta = \{$ $\frac{\underline{s} \xrightarrow{f} (r, q, r),}{r \xrightarrow{g} (q, q),}$ $q \xrightarrow{a}$ $\}$

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q...finite set of states,
 - Σ ... finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.

Example: $\Delta = \{ \\ \underline{s} \xrightarrow{f} (r, q, r), \\ r \xrightarrow{g} (q, q), \\ q \xrightarrow{a} \}$

Finite Tree Automaton (TA): $A = (Q, \Sigma, \Delta, F)$

- extension of finite automaton to trees:
 - Q... finite set of states,
 - Σ . . . finite alphabet of symbols with arity,
 - Δ ... set of transitions in the form of $p \stackrel{a}{\longrightarrow} (q_1, \ldots, q_n)$,
 - F ... set of initial/final (root) states.

Tree Automata

- can represent (infinite) sets of trees with regular structure,
- used in XML DBs, language processing, ...,
- ...formal verification, decision procedures of some logics, ...

Tree automata in FV:

- often large due to determinisation
 - often advantageous to use non-deterministic tree automata,
 - · manipulate them without determinisation,
 - even for operations such as language inclusion (ARTMC, ...),
- handling large alphabets (MSO, WSkS).

Efficient Techniques for Manipulation of Tree Automata

We focus on the problem of checking language inclusion.

- For simplicity, we demonstrate the ideas on finite automata,
- their extension to tree automata is quite straight.

PSPACE-complete

■ The Textbook algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Determinise $A \rightarrow A^D$.
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.

search for a reachable final state.

PSPACE-complete

■ The Textbook algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Determinise $A \to A^D$.
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.
- 3 Check $\mathcal{L}(\overline{\mathcal{A}^D}) \stackrel{?}{=} \emptyset$,
 - search for a reachable final state.

PSPACE-complete

■ The Textbook algorithm for checking

- 1 Determinise $A \to A^D$.
 - exponential explosion!

 $\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$

- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.

search for a reachable final state.

PSPACE-complete

■ The Textbook algorithm for checking

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Determinise $A \to A^D$.
 - exponential explosion!
- 2 Complement $\mathcal{A}^D o \overline{\mathcal{A}^D}$
 - by complementing the set of final states.
- 3 Check $\mathcal{L}(\overline{\mathcal{A}^D}) \stackrel{?}{=} \emptyset$,
 - search for a reachable final state.

Inclusion checking

$$\mathcal{L}(\mathcal{A})\stackrel{?}{\supseteq}\mathcal{L}(\mathcal{B})$$

Inclusion checking

$$\mathcal{L}(\overline{\mathcal{A}^D}) \cap \mathcal{L}(\mathcal{B}) \stackrel{?}{=} \emptyset$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- Perform on-the-fly determinisation, keep a workset of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$workset = \{$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- Perform on-the-fly determinisation, keep a workset of macrostates.
- **3** If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$workset = \{\underbrace{\{\underline{1}\}}^{lnit}$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse \mathcal{A} from the initial states.
- Perform on-the-fly determinisation, keep a *workset* of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$\textit{workset} = \{\underbrace{\{\underline{1}\}}^{\textit{lnit}}, \underbrace{\{\underline{2},3\}}_{\{1\}\stackrel{a}{\longrightarrow}}, \underbrace{\{\underline{2}\}}^{b}\}$$

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- 2 Perform on-the-fly determinisation, keep a *workset* of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

$$\mathcal{L}(\mathcal{A}) \stackrel{?}{=} \Sigma^*$$

- 1 Traverse A from the initial states.
- 2 Perform on-the-fly determinisation, keep a *workset* of macrostates.
- If encountered a macrostate P, such that $P \cap F = \emptyset$,
 - return false.
- 4 Otherwise, return true.

Optimisations:

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, R ⊆ S, are both in workset,
 - remove S from workset.

R has a bigger chance to encounter a non-final macrostate

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$\textit{workset} = \{$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$\textit{workset} = \{\underbrace{\{\underline{1}\}}^{\textit{Init}}$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$\textit{workset} = \{ \underbrace{\{\underline{1}\}}_{\{\underline{1}\}}, \underbrace{\{\underline{2},3\}}_{\{1\}}, \underbrace{\{\underline{2}\}}_{a} \}$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$workset = \{\underbrace{\{\underline{1}\}}^{lnit} , \underbrace{\{\underline{2}\}}^{b} \}$$

- The Antichains algorithm [De Wulf, Doyen, Henzinger, Raskin. CAV'06],
- keep only macrostates sufficient to encounter a non-final set:
 - if macrostates R and S, $R \subseteq S$, are both in *workset*,
 - remove S from workset.

$$workset = \{\underbrace{\{\underline{1}\}}^{lnit} , \underbrace{\{\underline{2}\}}^{b} , \underbrace{\{\underline{4}\}}^{a,b} \}$$

Optimisations:

■ The Antichains + Simulation algorithm [Abdulla, et al. TACAS'10],

Simulation

A preorder \leq such that

$$\left(\forall a \in \Sigma . q \xrightarrow{a} s \implies p \xrightarrow{a} r \land s \leq r\right)$$

 $q \prec p \implies$

Note that $q \leq p \implies \mathcal{L}(q) \subseteq \mathcal{L}(p)!$

- refine workset using simulation
 - if macrostates R and S, $R \leq^{\forall \exists} S$, are both in *workset*
 - ► remove *S* from *workset*,
 - further, minimise macrostates w.r.t. \leq : $\{p, q, x\} \Rightarrow \{p, x\}$

Tree Automata Universality Checking

- EXPTIME-complete
- Checking whether $\mathcal{L}(\mathcal{A}) \stackrel{?}{=} T_{\Sigma}$.
- The (upward) Textbook, On-the-fly, and Antichains algorithms:
 - straightforward extension of the algorithms for FA,
 - perform upward (i.e. bottom-up) determinisation of the TA,
 - need to find tuples of macrostates to perform an upward transition.
- The (upward) Antichains + Simulation algorithm:
 - needs to use upward simulation (implies inclusion of "open trees")
 - usually not very rich.

- TA Downward Universality Checking: [Holík, et al. ATVA'11]
- inspired by XML Schema containment checking:
 - [Hosoya, Vouillon, Pierce. ACM Trans. Program. Lang. Sys., 2005],
- does not follow the classic schema of universality algorithms:
 - can't determinise: top-down DTA are strictly less powerful than TA.

$$\mathcal{L}(q) = T_{\Sigma}$$
 if and only if

$$(\mathcal{L}(r) \times \mathcal{L}(r)) \cup (\mathcal{L}(s) \times \mathcal{L}(s)) = T_{\Sigma} \times T_{\Sigma}$$

(universality of tuples!)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = T_{\Sigma} \dots$ all trees over Σ)

Note that in general

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) \neq (\mathcal{L}(v_1) \cup \mathcal{L}(w_1)) \times (\mathcal{L}(v_2) \cup \mathcal{L}(w_2))$$

However, for universe \mathcal{U} and $G, H \subseteq \mathcal{U}$:

$$G \times H = (G \times \mathcal{U}) \cap (\mathcal{U} \times H)$$

(let $\mathcal{U} = \mathcal{T}_{\Sigma} \dots$ all trees over Σ)

Using distributive laws and some further adjustments, we get

$$(\mathcal{L}(v_1) \times \mathcal{L}(v_2)) \cup (\mathcal{L}(w_1) \times \mathcal{L}(w_2)) = T_{\Sigma} \times T_{\Sigma} \iff$$

$$(\mathcal{L}(\{v_1, w_1\}) = T_{\Sigma}) \qquad \wedge$$

$$((\mathcal{L}(v_1) = T_{\Sigma}) \qquad \vee \quad (\mathcal{L}(w_2) = T_{\Sigma})) \qquad \wedge$$

$$((\mathcal{L}(w_1) = T_{\Sigma}) \qquad \vee \quad (\mathcal{L}(v_2) = T_{\Sigma})) \qquad \wedge$$

$$(\mathcal{L}(\{v_2, w_2\}) = T_{\Sigma})$$

- Can be generalised to arbitrary arity
 - using the notion of choice functions.

Basic Downward Universality Algorithm

- DFS, maintain *workset* of macrostates.
- Start the algorithm from macrostate *F* (final states).
- Alternating structure:
 - for all clauses . . .
 - exists a position such that universality holds.
- Sooner or later, the DFS either
 - reaches a leaf, or
 - reaches a macrostate which is already in workset.

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains

- If a macrostate P is found to be non-universal, cache it;
 - do not expand any new macrostate $S \subseteq P$ (surely $\mathcal{L}(S) \neq T_{\Sigma}$).
- 2 For a macrostate R, check whether there is $S \subseteq R$ in workset
 - in case it is, return (if S is universal, R will also be universal).
- 3 Some more optimisations (if interested, see our paper!)

Optimisations of Downward TA Universality Algorithm

Optimisations: Antichains + Simulation

- Downward simulation
 - implies inclusion of (downward) tree languages of states,
 - · usually quite rich.

- In Antichains, instead of \subseteq use $\leq_{\mathcal{D}}^{\exists \forall}$.
- further, minimise macrostates w.r.t. \leq_D : $\{p, q, x\} \Rightarrow \{p, x\}$

Experiments

Size	50-250	400–600
Pairs	323	64
Timeout	20 s	60 s
Up	31.21%	9.38 %
Up+s	0.00%	0.00%
Down	53.50%	39.06%
Down+s	15.29%	51.56%
Avg up	1.71	0.34
Avg down	3.55	46.56

Size	50-250	400–600
Pairs	323	64
Timeout	20 s	60 s
Up+s	81.82%	20.31 %
Down+s	18.18%	79.69%
Avg up	1.33	9.92
Avg down	3.60	2116.29

including simulation computation time $(T_{sim} + T_{incl})$

without simulation computation time (*T_{incl}*)

VATA: A Tree Automata Library

VATA is a new tree automata library that

- supports non-deterministic tree automata,
- provides encodings suitable for different contexts:
 - explicit, and
 - · semi-symbolic,
- is written in C++,
- is open source and free under GNU GPLv3,
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/
 - or (shorter), http://goo.gl/KNpMH

Supported Operations

Supported operations:

- union,
- intersection,
- removing unreachable or useless states and transitions,
- testing language emptiness,
- computing downward and upward simulation,
- simulation-based reduction,
- testing language inclusion,
- import from file/export to file.

Simulations

Explicit:

- \blacksquare downward simulation \leq_D ,
- upward simulation \leq_U .

Work by transforming automaton to labelled transition systems,

- computing simulation on the LTS, [Holík, Šimáček. MEMICS'09],
- which is an improvement of [Ranzato, Tapparo. LICS'07].

Semi-symbolic:

 downward simulation computation based on [Henzinger, Henzinger, Kopke. FOCS'95].

Reduction according to downward simulation.

Conclusion

- A new tree automata library available
 - containing various optimisations of the used algorithms,
 - particularly AFAWK state-of-the-art inclusion checking algorithms.
- Support for working with non-deterministic automata.
- Easy to extend with own encoding/operations.
- The library is open source and free under GNU GPLv3.
- Available at

http://www.fit.vutbr.cz/research/groups/verifit/tools/libvata/

Future work

- Add new representations of finite word/tree automata,
 - that address particular issues, such as
 - ► large number of states, or
 - fast checking of language inclusion.
- Add missing operations,
 - · development is demand-driven,
 - if you miss something, write to us, the feature may appear soon.

Thank you for your attention.

Questions?