Homework 4 Ryan Cay he
1. a) Planck's Law does not depend on the material
and there 13 no midiation being detected from athen
So weez.
b) This con thou at the measurement because there is
By ht being detected from other sources

PlancksLaw

```
In [1]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
hc = 1.23984
kb = 8.617333 * 10**-5
2.\P
In [2]:
l1= np.linspace(0.1, 5, 1000)
t = [1000*i for i in range(1, 5)]
u = []
fig = plt.figure(0)
ax = fig.add_axes([0,0,1,1], title='Planck\'s Law Dependence on Temperature')
for i in range(4):
    u.append(8 * np.pi * hc / (l1 ** 5 * (np.exp(hc / (kb * l1 * t[i])) - 1)))
    ax.plot(l1, u[i], label='T={}'.format(t[i]))
    lmax = int(np.argmax(u[i]))
    ax.annotate("u = {:.4f}".format(u[i][lmax]), (l1[lmax] + 0.1, u[i][lmax]))
    ax.legend()
plt.savefig("fig1")
```


$3.\P$

```
In [3]:

12= np.linspace(0.1, 50, 1000)
for i in range(1,5):
    t.append(100*i)
fig = plt.figure(1)
ax = fig.add_axes([0, 0, 1, 1], title='Planck\'s Law Dependence on Temperature')
for i in range(4,8):
    u.append(8 * np.pi * hc / (12 ** 5 * (np.exp(hc / (kb * 12 * t[i])) - 1)))
    ax.plot(12, u[i], label='T={}'.format(t[i]))
    lmax = int(np.argmax(u[i]))
    ax.annotate("u = {:.3e}".format(u[i][lmax]), (12[lmax] + 0.1, u[i][lmax]))
    ax.legend()
plt.savefig("fig")
C:\Users\coyne\AppData\Local\Temp\ipykernel_15024\3256522897.py:7: RuntimeWarning: overflow
    u.append(8 * np.pi * hc / (12 ** 5 * (np.exp(hc / (kb * 12 * t[i])) - 1)))
```


$4.\P$

```
In [4]:
for i in range(4):
    print("{:.4e}".format(l1[np.argmax(u[i])] * t[i]/1000000))
for i in range(4):
    print("{:.4e}".format(l2[np.argmax(u[i+4])]*t[i+4]/100000))
2.8958e-03
2.8977e-03
2.8977e-03
2.8917e-02
2.8971e-02
2.8971e-02
2.8971e-02
2.8971e-02
2.8971e-02
```

$5.\P$

In [5]:

```
for i in range(8):
    if i < 4:
        etotal = np.trapz(u[i], l1)*2.998*10**14/4
    else:
        etotal = np.trapz(u[i], l2)*2.998*10**14/4
    sigma = etotal/(t[i]**4)
    print("{:.3f}".format(sigma))

0.224
0.324
0.343
0.349
0.224
0.324
0.343
0.349</pre>
```

6.a)
$$\lambda_{max} = \frac{2.899 \times 10^{-3} \text{ m. K}}{(871273) \text{ K}}$$

$$= 9.35 \times 10^{-6} \text{ m}$$

$$= 9.61 \times 10^{-6} \times 10^{-6} \text{ m}$$

$$= 9.61 \times 10^{-6} \times 10^{-6} \times 10^{-6} \text{ m}$$

$$= 9.61 \times 10^{-6} \times 10^{-6} \times 10^{-6} \text{ m}$$

$$= 1.9 \times 10^{-6} \times$$

c)
$$p = \frac{h}{\lambda}$$

= $\frac{4.136 \times 10^{-15} \text{ eV} \cdot \text{s}}{5 \times 10^{-7} \text{ m}}$
= $8.272 \times 10^{-9} \frac{\text{eV}}{\text{m/s}} \cdot \frac{\text{c}}{\text{c}}$
= $2.49 \times 10^{-6} \frac{\text{MeV}}{\text{c}}$

$$|0.u| k = h + - \beta$$

$$2.23eV = 4.14 \times 10^{-15} eV \cdot 5 \cdot \frac{c}{3 \times 10^{-7} m} - \beta$$

$$\phi = 2.23eV + 4.14 eV$$

$$= 6.37eV$$

$$\lambda' = \frac{h}{m_{c} c} (1 - cos \theta)$$

$$= \frac{4.14 \times 10^{-15} eV \cdot s}{5.11 \times 10^{5} eV} \cdot 2.914 \times 10^{3} m_{s} (1 - cos(35°)) + \lambda_{o}$$

$$= 4.56 \times 10^{-12} m_{s}$$

b)
$$F' = \frac{hc}{\lambda'}$$

= $\frac{4.14 \times 10^{-15} \text{ eV} \cdot \text{s} \cdot 2.419 \text{ m/s}}{4.56 \times 10^{-12} \text{ m}}$
= 2.72 MeV

$$E' = hf'$$

This implies 2'= 00 which isn't possible.

$$\frac{h^c}{\lambda_0} - \frac{h_c}{\lambda'} = 30 \ \text{KeV}$$

$$l = \lambda_0$$

 $a = hc = 1, 241 \times 10^{-6}$ $b = \frac{2.h}{m_e c}$
 $= 5.40 \times 10^{-21}$

$$\frac{a}{l} + \frac{a}{b+l} = c$$

$$\frac{a}{l} + \frac{a}{b+l} = c$$

$$\frac{a_1b+1}{l(b+l)} + \frac{a}{l} = c$$

$$-Cl^{2} + (2a-Cb)l + ab=0$$

$$l = \frac{2a-Cb}{2a-Cb} \pm \sqrt{\frac{4a^{2}}{4a^{2}}} + \frac{4ab^{2}}{2b^{2}} + \frac{2a-Cb}{2c}$$

$$= \frac{2a-Cb}{2c} \pm \sqrt{\frac{4a^{2}}{4a^{2}}} + \frac{2b^{2}}{2c}$$

$$\lambda_0 = 8.27 \times 10^{-11} \text{ m}$$

14. $u(5,T) = \frac{8\pi h f^3}{c^3} \left(e^{hf/k_BT} - 1 \right)^{-1}$ $f = \frac{c}{\lambda} \qquad df = \frac{c}{\lambda^2} d\lambda$
17. u(s,T)= = (e -1)
$f = \frac{c}{\lambda}$ $\lambda f = \frac{c}{\lambda^2} \lambda \lambda$
$U(f,T) df = U(\lambda,T) d\lambda$ $U(\lambda,T) = \frac{8 \times h}{\lambda^{5}} \left(e^{hc/\kappa_{B}\lambda T} - 1 \right)^{-1} \cdot \frac{c}{\lambda^{2}}$ $= \frac{8 \times hc}{\lambda^{5}} \left(e^{hc/\kappa_{B}\lambda T} - 1 \right)^{-1}$
(t, 1) at - ((x, 1) ax
$u(\lambda, 1) = \frac{1}{\lambda^3} \left(e^{-\lambda n_0 n_0} - 1 \right) \cdot \frac{1}{\lambda^2}$
$=\frac{n + n - (k_B + 1)}{\lambda^5} \left(k_B + (k_B + 1) \right)$