

Matrix Transformation

CE282: Linear Algebra

Computer Engineering Department

Sharif University of Technology

Hamid R. Rabiee

Maryam Ramezani

Linear Transformation

☐ Matrix is a linear transformation: map one vector to another vector

$$A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, y \in \mathbb{R}^m$$
: $y_{m \times 1} = A_{m \times n} x_{n \times 1}$
 $A : \mathbb{R}^n \to \mathbb{R}^m$

☐ Input-output

Linear Transformation

Domain, codomain, and range of $T: \mathbb{R}^n \to \mathbb{R}^m$

Linear Transformation

Example

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

- a. Find $T(\mathbf{u})$, the image of \mathbf{u} under the transformation T.
- b. Find an \mathbf{x} in \mathbb{R}^2 whose image under T is \mathbf{b} .
- c. Is there more than one \mathbf{x} whose image under T is \mathbf{b} ?
- d. Determine if \mathbf{c} is in the range of the transformation T.

Linear mapping

Theorem

A linear transformation (or a linear map) is a function $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^m$ that satisfies following properties:

1.
$$T(x + y) = T(x) + T(y)$$

2.
$$T(ax) = aT(x)$$

for any vectors \mathbf{x} , $\mathbf{y} \in \mathbb{R}^n$ and any scalar $a \in \mathbb{R}$.

Linear mapping

Example

Which are linear mapping?

- \square **zero** map $0: V \rightarrow W$
- \square identity map $I: V \rightarrow V$
- \square Let $T: \mathcal{P}(\mathbb{F}) \to \mathcal{P}(\mathbb{F})$ be the **differentiation** map defined as $T_{\mathcal{P}(z)} = \mathcal{P}(z)$
- \square Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map given by T(x,y) = (x-2y,3x+y)
- $\Box T(x) = e^x$
- \square $T : \mathbb{F} \to \mathbb{F}$ given by T(x) = x 1

Linear mapping

Theorem

Let $(v_1, ..., v_n)$ be a basis of V and $(w_1, ..., w_n)$ an arbitrary list of vectors in W. Then there exists a unique linear map

$$T: V \to W$$
 such that $T(v_i) = w_i$.

Example

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$

projects points in \mathbb{R}^3 onto the x_1x_2 -plane because

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

Transformation Image of the Unit Square Standard Matrix

Projection onto the x_1 -axis

 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Projection onto the x_2 -axis

 $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Definition

The *projection* of a vector $y \in \mathbb{R}^m$ onto the span of $\{x_1, ..., x_n\}$ is the vector $v \in span(\{x_1, ..., x_n\})$, such that v is as close as possible to y, as measured by the Euclidean norm $||v - y||_2$.

$$Proj(y; \{x_1, ..., x_n\}) = argmin_{v \in span(\{x_1, ..., x_n\})} ||y - v||_2.$$

Theorem

Suppose that *V* is a vector space and $P: V \rightarrow V$ is a linear transformation.

- a) If $P^2 = P$ then P is called a **projection**.
- b) If *V* is an inner product space and $P^2 = P = P^*$ then *P* is called an **orthogonal projection**.

We furthermore say that P **projects onto** range(P).

- □ Projection of vector v on:
 - ☐ Two orthogonal vectors
 - ☐ Two non-orthogonal vectors

Rotation

$$\square R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Projection on $\boldsymbol{\theta}$ line

$$P = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

$$P^2 = P$$

Reflection

$$\square R = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

$$R^2 = I$$

Reflection

Transformation

Image of the Unit Square

Standard Matrix

Reflection through the x_1 -axis

 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Reflection through the x_2 -axis

 $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$

Reflection through the line $x_2 = x_1$

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Reflection

Reflection through the line $x_2 = -x_1$

 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

Reflection through the origin

 $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Uniform Scaling

$$\square S = sI = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Non-uniform Scaling

$$\square S = \begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{y} \end{bmatrix}$$

Shearing

Example

Let
$$A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
. The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$

A typical shear matrix is of the form

$$S = \begin{pmatrix} 1 & 0 & 0 & \lambda & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

sheep

sheared sheep

Shearing

A shear parallel to the x axis results in $\dot{x} = x + \lambda y$ and $\dot{y} = y$. In matrix form:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Similarly, a shear parallel to the y axis has $\dot{x} = x$ and $\dot{y} = y + \lambda x$.

In matrix form:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Difference Matrix

Note

$$D_{(n-1)\times n} = \begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 1 & 0 & \cdots & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ 0 & 0 & \dots & -1 & 1 & 0 \\ 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix}$$

$$D: \mathbb{R}^n \to \mathbb{R}^{n-1} \quad \Rightarrow \quad D\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_n - x_{n-1} \end{bmatrix}$$

Example

$$\begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 3 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 - 0 \\ 3 - (-1) \\ 2 - 3 \\ 5 - 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \\ -1 \\ 3 \end{bmatrix}$$

Selectors

 \square an $m \times n$ selector matrix: each row is a unit vector (transposed)

$$A = \begin{bmatrix} e_{k_1}^T \\ \vdots \\ e_{k_m}^T \end{bmatrix}$$

multiplying by A selects entries of x:

$$Ax = (x_{k_1}, x_{k_2}, \dots, x_{k_m})$$

$$\Box A : \mathbb{R}^n \to \mathbb{R}^m \quad \Rightarrow \quad A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_{k_1} \\ x_{k_2} \\ \vdots \\ x_{k_m} \end{bmatrix}$$

Selectors

Example

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

- □Selecting first and last elements of vector:
- □Reversing the elements of vector:

Slicing

 \square Keeping m elements from r to s (m=s-r+1)

$$\begin{bmatrix} 0_{m \times (r-1)} & I_{m \times m} & 0_{m \times (n-s)} \end{bmatrix}$$

Example

☐ Slicing two first and one last elements:

$$\begin{bmatrix} -1\\2\\0\\-3\\5 \end{bmatrix} = \begin{bmatrix} 0\\-3 \end{bmatrix}$$

Down Sampling

□Down sampling with k: selecting one sample in every k samples

Example

$$K = 2?$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ \vdots \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \\ \vdots \end{bmatrix}$$

Applications

☐ Rotation matrix

(i)
$$\sin 2A = 2 \sin A \cos A$$

(ii)
$$\cos 2A = \cos^2 A - \sin^2 A$$

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \Rightarrow R^n = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n = \begin{bmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{bmatrix}$$

☐ Adjacency matrix

$$A = \begin{bmatrix} n1 & n2 & n3 & n4 & n5 & n6 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \qquad A^2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Multiple Transformation

$$\square \qquad x_{n \times 1} \xrightarrow{A_{m \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 1} \implies \begin{cases} y = Ax \\ z = By \end{cases} \implies z = B(Ax) = BAx$$

Example

☐ Difference Matrix

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \xrightarrow{D} y = \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ x_4 - x_3 \\ x_5 - x_4 \end{bmatrix} \xrightarrow{D} z = \begin{bmatrix} x_3 - x_2 - (x_2 - x_1) \\ x_4 - x_3 - (x_3 - x_2) \\ x_5 - x_4 - (x_4 - x_3) \end{bmatrix} = \begin{bmatrix} x_3 - 2x_2 + x_1 \\ x_4 - 2x_3 + x_2 \\ x_5 - 2x_4 + x_3 \end{bmatrix}$$

$$x \to z \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}_{3 \times 5}$$

$$x \rightarrow y \rightarrow z$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}_{3\times4} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}_{4\times5} = \begin{bmatrix} 1 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 1 & -2 & 1 \end{bmatrix}$$

Multiple Transformation

$$\square \qquad x_{n \times 1} \xrightarrow{A_{m \times n}} y_{m \times 1} \xrightarrow{B_{p \times m}} z_{p \times 1} \implies \begin{cases} y = Ax \\ z = By \end{cases} \implies z = B(Ax) = BAx$$

Example

☐ Rotation

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$x \to z \qquad z = R_{\delta + \theta} x \qquad \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix}$$

$$x \to y \to z \begin{cases} y = R_{\theta} x \\ z = R_{\delta} y \end{cases} \Rightarrow z = R_{\delta} R_{\theta} x \qquad \begin{bmatrix} \cos \delta & -\sin \delta \\ \sin \delta & \cos \delta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos \delta \cos \theta - \sin \delta \sin \theta & -\cos \delta \sin \theta - \sin \delta \cos \theta \\ \sin \delta \cos \theta + \cos \delta \sin \theta & -\sin \delta \sin \theta + \cos \delta \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\delta + \theta) & -\sin(\delta + \theta) \\ \sin(\delta + \theta) & \cos(\delta + \theta) \end{bmatrix}$$

Invertible Linear Transformations

Definition

A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is said to be **invertible** if there exists

a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

Invertible Linear Transformations

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying

$$S(T(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

$$T(S(\mathbf{x})) = \mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n