Measurement of Glomerular Filtration Rate using Quantitative SPECT/CT and Deep-Learning based Kidney Segmentation

Abstract

- Quantitative SPECT/CT: useful for accurate and reliable measurement of GFR
 - Manual drawing of VOI in CT images: labor-intensive & time consuming
- ⇒ Aim of this study: develop fully automated GFR quantification method based on deeplearning approach to the 3D segmentation of kidney parenchyma in CT
- Proposed method
 - High Dice similarity coefficient (mean = 0.89)
 - Strongly correlated GFR (R2 = 0.96)
 - Absolute difference : 2.90%
 - Comparable performance in urolithiasis patients and kidney donors
 - Decrease individual GFR in symptomatic kidney vs normal
 - Fast and accurate GFR measurement

Introduction

- GFR: a flow rate of blood plasma which is filtered through glomerulus
- Kidney SPECT/CT with $^{99m}Tc DTPA$: method for measurement of GFR
 - Quantitative and reliable in measuring the renal clearance
 - VOI: drawn on each kidney for the quantification of absolute radioactivity
 - → necessity of manual drawing of VOI on the whole renal parenchyma in CT images

 Labor intensive, time consuming(take 15 min per scan)
- Aim of this study: develop automated GFR quantification method
 - Based on deep learning approach to 3D segmentation of kidney parenchyma in CT
- GFR quantification: need segmentation of the only functioning kidney parenchyma
- → deep CNN to learn end to end mapping between 3D CT volume and manually segmented VOI by experts

Method - dataset

- Data: $^{99m}Tc DTPA$ kidney SPECT/CT data of 393 patients training/validation
- Physician draw ROI -> automatic interpolation(by software) => exclude unwanted structure
- Quantitative kidney SPECT/CT : perform without iodine-contrast enhancement
 - Renal tumor patients: remained iodine contrast enhancement (22.6%)
- 1. Resampling to have same matrix for training: 256 X 256 X 232, 1.726 mm^3
- 2. Crop image to reduce memory consumption: 192 X 128 X 96
 - Large enough to include both kidneys
- 3. Apply 3D volume smoothing & morphological operation to manual VOIs
 - Reduce discontinuity in 3D space

Method – Neural Network architecture

- Use modified 3D U-net
 - End to end mapping between 3D CT and manually drawn renal parenchyma VOIs
- Contraction path : capture the context
 - 5 sequential layers
 - -3X3X3 conv → leaky ReLU → 2X2X2 strided conv → leaky ReLU → 3X3X3 conv → elementwise sum

Expansion path : enable precise localization

Pre-activation residual block

- 5 sequential layers
- Upsampling: 1X1X1 conv → leaky ReLU \rightarrow 2X2X2 deconv \rightarrow leaky ReLU \rightarrow 3X3X3 conv \rightarrow leaky ReLU
- Employ symmetric skip connection
- Use 3D spatial drop-out(rate 0.3)
 - Adjacent voxels : correlated compared with batch normalization

Method – Neural Network architecture

12X8X2

same

s=2

12X8X2

same

s=1

12X8X2

Method – Neural Network architecture

Method – Network Training/GFR estimation

- Training set: 315 patients / Validation set: 78 patients (randomly select)
- Input / Output dataset : 3D volume format
- Loss function : dice similarity coefficient
- Optimizer : Adam $(\beta_1 : 0.9, \beta_2 : 0.999, \epsilon : 0)$
- Learning rate: 0.0005 (reduced by half after 10 epochs if loss function not improve)
- Epoch: 80 (each epoch 272 iterations)
- $GFR(ml/min) = (\%id \times 9.1462) + 23.0653$
 - %id : calculated by applying the manual and automatic VOIs
- $Total\ GFR(ml/min/1.73m^2) = GFR(ml/min) \times (1.73/BSAm^2)$
 - $-BSAm^2 = 0.007184 \times (weight in kg)^{0.425} \times (height in cm)^{0.725}$

Method – Further Validation

- Patients with urinary stones & kidney donors as negative controls
 - 126 kidneys from 63 urinary stone patients (age higher than normal group)
 - 50 kidneys from 25 kidney donors
 - \Rightarrow 50 normal kidneys (from kidney donor patients)
 - 48 symptomatic kidneys (either ureter stone of any size or large renal stone/longest diameter>10mm)
 - 78 asymptomatic kidneys (either small renal stone or contralateral kidney
- GFR value for manual segmentation
 - Average of two independent measurement of GFR by four medical experts
- GFR value for automatic segmentation
 - Single measurement of GFR

Method – Data Analysis

- Evaluation : calculate Dice similarity coefficient
 - Assess correlation, mean absolute percentage error
- Perform 5 fold cross-validation
- Statistical analysis in urolithiasis patients
 - Evaluate normality of data : use D'Agnostino-Pearson test
 - Parametric : independent samples t-test / one-way analysis of variance
 - Nonparametric : Mann-Whitney test / Wilcoxon test / Kruskal-Wallis test
 - Chi-square test : analysis of categorical data
 - Multiple comparison correction for t-test: Bonferroni correction
 - Results with P-values less than 0.05

Results – Segmentation

- High Dice similarity coefficient : mean \pm SD = 0.89 \pm 0.03
- 3D kidney parenchyma VOIs: no discontinuity between slices (CNN trained to produce smooth 3D VOIs)
- Time requirement : a few seconds per patient
 - Manual segmentation : 15 min per scan
- Ablation study

Model	Version	Average Dice Score
3D U-Net	+ Down-sampling (x2) + Batch normalization (batch size = 2)	0.848
	+ Drop-out (P _{drop} * = 0.3)	0.862
	+ Residual block, Element-wise sum array	0.885
	+ Residual block, Element-wise sum array + Drop-out (P _{drop} = 0.3)	0.890

* Pdrop: Drop-out rate

Result

manual

segmentation

Seoul National University FMISL

Results – GFR Estimation

- GFR value: manual and proposed method strongly correlated for total kidney $R^2 = 0.96$
- Scattered(A) and Bland-Altman plots between GFR using manual and deep-learning

- Mean absolute percentage in all 5-fold cross validation
 - Absolute difference : 2.90 \pm 2.80% (left kidney : 3.12 \pm 2.99 %, right kidney : 3.13 \pm 2.80 %)
- Correlation coefficient R^2 for five sets: 0.95 to 0.96

Results – Validation

- Total GFR_{manual} in kidney donors: 120.39 \pm 19.26 ml/min/1.73 m^2 (P = 0.4432, Wilcoxon test)
- Total GFR_{CNN} in kidney donors : 119.25 \pm 18.35ml/min/1.73 m^2
- Total GFR_{manual} in urinary stone patients : 115.65 \pm 16.91ml/min/1.73 m^2 (P = 0.2387, paired t-test)
- Total GFR_{CNN} in urinary stone patients : 115.02 \pm 17.71ml/min/1.73 m^2

- Individual kidney GFR
 - GFR_{manual} : 61.01 \pm 8.10ml/min/1.73 m^2
 - GFR_{CNN} : 60.43 \pm 7.66ml/min
- Asymptomatic kidney GFR
 - GFR_{manual} : 59.72 \pm 9.46ml/min/1.73 m^2
 - *GFR_{CNN}* : 59.23 \pm 9.25ml/min/1.73 m^2
- Symptomatic kidney GFR
 - GFR_{manual} : 51.84 \pm 12.73ml/min/1.73 m^2
 - *GFR_{CNN}*: 51.76 \pm 13.69ml/min/1.73 m^2

Discussion

- Deep learning approach
 - highly accurate in renal parenchyma segmentation in CT
 - useful for automated measurement of GFR
- Automatically drawing VOIs only on renal parenchyma excluding cysts: several cases were not accurate
 - 1. Incorrectly included, renal pelvis well excluded

Smaller than others → insufficient data ⇒ GFR error low (radio activity in tumor very low)

2. Only a single kidney

3 single kidney case among training set

 \Rightarrow Additional dataset necessary

Discussion

3. Segmentation error in manual VOIs

Discontinuity in the perpendicular direction to the ROIs Subsequent inter-slice ROI-interpolation

- Further clinical validation
 - Use in more complicated cases such as multi-cystic dysplastic kidneys