# Лабораторная работа № 5.4.2 Исследование энергетического спектра $\beta$ -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Илья Прамский

Октябрь 2024

### 1 Теоретическая справка

Электронный  $\beta$ -распад:

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A} X + e^{-} + \widetilde{\nu} \tag{1}$$

Величина  $W(p_e)$  является плотностью вероятности. Распределение электронов по энергии может быть вычислено теоретически. Для разрешенных переходов вероятность  $\beta$ -распада просто попрорциональна сатистическому весу.

$$W(p_e)dp_e \propto p_e^2 (T_m - T_e)^2 dp_e. \tag{2}$$

Кинетическая энергия электрона и его импульс связаны друг с другом обычной формулой:

$$T = \sqrt{(p_e c)^2 + (m_e c^2)^2} - m_e c^2$$

Выражение (2) приводит к спектру, имеющему вид широкого колокола. Кривая плавно отходит от нуля и стольже плавно, по параболе, касается оси абсцисс в области максимального импульса электронов.

# 2 Экспериментальная установка

Блок-схема установки для изучения  $\beta$ -спектров изображена на схеме слева.



Экспериментальная установка.

Энергию  $\beta$ -частиц определяют с помощью  $\beta$ -спектрометров(схема справа). импульс сфокусированных электронов пропорционален величине тока:

$$p_e = kI. (3)$$

Связь между числом частиц, регистрируемых установкой, и функцией  $W(p_e)$  выражается формулой:

$$N(p_e) \propto W(p_e)p_e$$

откуда

$$\frac{\sqrt{N}}{p_e^{3/2}} \propto T_m - T \tag{4}$$

# 3 Ход работы

Полученные в результате эксперимента значения представлены на фото:

| #  | J, A | N     | N-Nф   | р, кэВ/с | Т, кэВ | mkFermi  |
|----|------|-------|--------|----------|--------|----------|
| 1  | 0,00 | 1,070 | 0,260  | 0,0      | 0,0    | 0,0000   |
| 2  | 0,20 | 0,930 | 0,120  | 49,4     | 2,4    | 996,2325 |
| 3  | 0,40 | 0,850 | 0,040  | 98,8     | 9,5    | 202,9283 |
| 4  | 0,60 | 0,990 | 0,180  | 148,2    | 21,1   | 234,9028 |
| 5  | 0,80 | 1,040 | 0,230  | 197,6    | 36,9   | 172,4891 |
| 6  | 1,00 | 1,280 | 0,470  | 247,0    | 56,6   | 176,4854 |
| 7  | 1,20 | 1,929 | 1,119  | 296,5    | 79,8   | 207,2805 |
| 8  | 1,40 | 2,779 | 1,969  | 345,9    | 106,0  | 218,1641 |
| 9  | 1,60 | 2,929 | 2,119  | 395,3    | 135,0  | 185,2389 |
| 10 | 1,80 | 3,689 | 2,879  | 444,7    | 166,4  | 180,9416 |
| 11 | 2,00 | 4,099 | 3,289  | 494,1    | 199,8  | 165,1236 |
| 12 | 2,20 | 3,959 | 3,149  | 543,5    | 235,0  | 140,0470 |
| 13 | 2,40 | 4,289 | 3,479  | 592,9    | 271,7  | 129,1894 |
| 14 | 2,60 | 4,309 | 3,499  | 642,3    | 309,8  | 114,9022 |
| 15 | 2,80 | 3,839 | 3,029  | 691,7    | 349,0  | 95,6613  |
| 16 | 3,00 | 3,279 | 2,469  | 741,1    | 389,2  | 77,8785  |
| 17 | 3,20 | 2,589 | 1,779  | 790,5    | 430,3  | 60,0101  |
| 18 | 3,40 | 1,729 | 0,919  | 840,0    | 472,2  | 39,3900  |
| 19 | 3,60 | 1,190 | 0,380  | 889,4    | 514,7  | 23,2308  |
| 20 | 3,80 | 1,450 | 0,640  | 938,8    | 557,8  | 27,8038  |
| 21 | 3,90 | 3,009 | 2,199  | 963,5    | 579,6  | 49,5861  |
| 22 | 4,00 | 4,309 | 3,499  | 988,2    | 601,5  | 60,2145  |
| 23 | 4,05 | 4,848 | 4,038  | 1000,5   | 612,5  | 63,4987  |
| 24 | 4,10 | 6,688 | 5,878  | 1012,9   | 623,5  | 75,2096  |
| 25 | 4,20 | 5,668 | 4,858  | 1037,6   | 645,6  | 65,9482  |
| 26 | 4,30 | 5,198 | 4,388  | 1062,3   | 667,8  | 60,5044  |
| 27 | 4,35 | 3,599 | 2,789  | 1074,6   | 678,9  | 47,4044  |
| 28 | 4,40 | 2,509 | 1,699  | 1087,0   | 690,1  | 36,3736  |
| 29 | 4,60 | 0,640 | -0,170 | 1136,4   | 735,0  | 0,0000   |
| 30 | 4,80 | 0,450 | -0,360 | 1185,8   | 780,2  | 0,0000   |
| 31 | 5,00 | 0,370 | -0,440 | 1235,2   | 825,7  | 0,0000   |

Графики зависимости N-N $\varphi$  от J,p,T:







#### График Ферми-Кюри:



Определим по нему значение  $T_{max}.\ k=-0,39\pm0,02$   $b=240\pm8$ 

$$T_{max}=-rac{b}{k}=620\pm40$$
кэВ

## 4 Вывод

В ходе лабораторной работы с помощью магнитного спектрометра был исследован энергетический спектр  $\beta$ -частиц при распаде ядер  $^{137}\mathrm{Cs}$ . При помощи графика Ферми-Кюри была также определена максимальная энергия  $T_{max}=620\pm40$  кэВ вылетающих электронов при  $\beta$ -распаде ядря  $^{137}\mathrm{Cs}$ . Истинное же значение равно  $T_{max}=624$  кэВ.