Poglavje IX **Konceptualno načrtovanje**

Trije nivoji načrtovanja – trije modeli...

Trije nivoji načrtovanja – trije modeli

 Načrtovanje PB: od realnega sveta do fizične podatkovne baze za potrebe konkretnega problema

Kaj je konceptualno načrtovanje?..

- Konceptualno načrtovanje je opredelitev podatkovnih potreb oz. zahtev konkretnega problema s pomočjo konceptualnega modela
- Konceptualno načrtovanje preko konceptualnega modela poskrbi za opis pomena podatkov, potrebnih za reševanje konkretnega problema (običajno poslovnega)
- Konceptualno načrtovanje je v principu neodvisno od dejanskega podatkovnega modela (relacijski, ...)
- Konceptualnega načrtovanja ne moremo avtomatizirati, za njegovo izvedbo je odgovoren analitik. Gre za prenos pomena (semantike) v model.

Kaj je konceptualno načrtovanje?

- Je kritično, saj se napake narejene pri konceptualnem načrtovanju prenašajo naprej na naslednje modele
- Pri konceptualnem načrtovanju je zelo pomembno sodelovanje uporabnikov in interakcija z uporabniki. Uporabniki so nosilci znanja o problemu, poznavalci semantike in običajno vedo, kaj hočejo, a to težko natančno izrazijo
- Konceptualno načrtovanje mora upoštevati tudi t. i. poslovna pravila (kot omejitve modela)

- Percepcija
- Abstrakcija
 - Klasifikacija
 - Ureditev tipov
 - Agregacija

Percepcija

- Percepcija (zaznavanje) sveta, ki ga modeliramo s PB:
 - Svet (konkreten problem), ki ga modeliramo, si moramo najprej (pravilno) predstavljati, in sicer do vseh podrobnosti, ki jih želimo hraniti v PB oz. ki so za uporabnika zanimive.
 - Svet dojemamo kot posamezna dejstva in kot pravila, katerim se ta dejstva pokoravajo. Opis teh dejstev in pravil z uporabo konceptualnega modela imenujemo konceptualna shema.

Abstrakcija

- Postopku prepoznavanja pomembnega od nepomembnega pravimo abstrakcija.
- Abstrakcija je mentalni proces, s pomočjo katerega se pri opazovanju in razmišljanju o konkretnem problemu osredotočimo le na za nas pomembne karakteristike
- Za konceptualno načrtovanje so pomembne tri vrste abstrakcije:
 - Klasifikacija
 - Ureditev tipov
 - Agregacija

Klasifikacija

- Klasifikacija se uporablja za definiranje koncepta kot tipa objektov (dogodkov, predmetov, oseb, pravil, dejstev) na osnovi njihove podobnosti oz. skupnih lastnosti.
- Skupne lastnosti so podlaga za razvrščanje objektov v pripadajoče tipe – koncepte.
- Posamezni objekt lahko klasificiramo bodisi v le en tip, bodisi v več tipov hkrati.

Klasifikacija

Tehnike konceptualnega načrtovanja...

Klasifikacija v tipe (koncepte)

- <u>Ureditev tipov</u>: v okviru problema obstaja več tipov objektov, ki jih je možno urediti v delno urejeno množico z relacijo "*je podtip"*
- Tip B je podtip tipa A, če ob vsakem trenutku velja, da so vsi primerki tipa B hkrati tudi primerki tipa A.
- Množica tipov objektov je delno urejena zato, ker vseh tipov objektov ni možno urediti z relacijo "je podtip".
- Zaradi preglednosti ne prikazujemo tranzitivnih in rekurzivnih povezav med tipi objektov.

- \rightarrow
- Urejenost tipov objektov podpira tudi <u>dedovanje</u> lastnosti
- Vsak tip deduje vse lastnosti svojega neposrednega nadtipa in tranzitivno od vseh nadrejenih tipov
- Ko ima tip več neposrednih nadtipov, deduje lastnosti od vseh

- Posebna primera urejanja tipov sta generalizacija in specializacija
- Generalizacija je postopek prirejanja skupnega nadtipa dvema ali več obstoječim tipom. Nadtip prevzame skupne lastnosti podtipov.
- Specializacija je postopek, kjer posameznemu tipu priredimo enega ali več podtipov. Običajno temelji na določeni lastnosti nadtipa. Podtip vsebuje vse lastnosti nadtipa in še kakšno dodatno.

Tehnike konceptualnega načrtovanja...

Primera ureditve tipov:

Agregacija

Tehnike konceptualnega načrtovanja

- Preko agregacije definiramo nov agregiran (sestavljen) tip na osnovi obstoječih tipov
- Konceptualno ustreza agregaciji iz UML
- Primer:

 Kakšne je razlika z generalizacijo? Pojoči študent vsebuje VSE lastnosti agregiranih tipov in ne samo skupnih!

Lastnosti konceptualnega modela...

Glavne lastnosti konceptualnega modela:

- izraznost (možnost prikaza različnih konceptov za modeliranje različnih vidikov problema),
- preprostost (konceptualni model mora biti preprost, enostaven za uporabo ter lahko in nedvoumno razumljiv, saj služi tudi za komunikacijo med uporabnikom in analitikom),
- minimalnost (vsak koncept naj ima svoj enolično določen pomen, ni nepotrebnih sestavljenih konceptov),
- formalnost (vsak koncept mora imeti natančno, enoumno in dobro definiran pomen),
- grafična popolnost (vsak koncept mora imeti grafično predstavitev),
- berljivost (grafični simboli za posamezne koncepte se morajo jasno razlikovati med seboj).

Entitetno-relacijski (ER) model...

- Najpogosteje uporabljana tehnika za predstavitev konceptualnih modelov je entitetni model (model entiteta-razmerje)
- Nazivi, ki se uporabljajo:
 - Entitetni model
 - Model entitera-razmerje
 - Entitetno-relacijski (ER) model
- Obstaja tudi razširjeni model entiteta razmerje (vsebuje hierarhije tipov)

Gradniki entitetnega modela

- Entitetni tip
- Atribut
- Razmerje
- Identifikator entitetnega tipa
- Hierahija entitetnih tipov (razširjeni ER model)

- Običajni ER diagrami: vranja noga (crow foot)
 oznaka za nekatera razmerja (relacije)
 (v uporabi prevsem v Evropi)
- Chenovi diagrami: so bolj izrazni, vendar kompleksnejši in dopuščajo različne interpretacije razmerij (v uporabi prevsem v ZDA)
- UML (Unified Modeling Language) kompleksnost!

Angleški pregovor (17. stoletje): "Jack of all trades, master of none".

- Entitete so posamezni primerki tipov objektov iz konkretnega problema: dogodki, predmeti, osebe, pravila, dejstva
- O entitetah obstaja določena predstava o tem:
 - kakšne lastnosti dejansko imajo
 - kakšne lastnosti jim moramo določiti (morajo imeti), da bodo izpolnjevale zahteve entitetnega modela
- Na osnovi predstave o tem in percepcije, lahko entitete klasificiramo v entitetne tipe: vse entitete, ki ustrezajo določeni predstavi, pripadajo posameznemu entitetnemu tipu.

Entitetni tip - Entiteta

Entitetni model...

 V praksi se pogosto uporablja poenostavljen izraz entiteta, čeprav bi se moral uporabljati izraz entitetni tip

Ime entitetnega tipa.

Prostor za atribute

Atribut

- Entiteta ima praviloma veliko lastnosti, le del teh lastnosti je zanimiv oz. pomemben za opazovan problem (abstrakcija)
- Lastnosti, ki so pomembne za opazovani problem, vključimo v konceptualni model tako, da jih kot atribute določimo entitetnemu tipu.

Atribut

- Torej: z atributi opišemo pomembne lastnosti
- Poznamo več vrst lastnosti:
 - Entitetna imena: naziv, ime, opis
 - Prave entitetne lastnosti: višina, teža, cena, vrednost
 - Umetne lastnosti, ki jih določimo za potrebe konkretnega problema: EMŠO, davčna številka, ...
- Atribut določimo za tisto lastnost, ki je za opazovani problem pomembna
- Atribut ima določene lastnosti: kardinalnost (števnost), tip, dolžina

_	Totalni atribut	(1,n), kjer je n >= 1
_	Parcialni atribut	(0,n), kjer je n >= 1
_	Enovrednostni atribut	(m,1), kjer je m € {0,1}
_	Večvrednostni atribut	(m,n), kjer je m € {0,1} in n>1

 Minimalna števnost 0 pomeni, da je atribut lahko brez vrednosti (ni obvezen).

Atribut pripada določenemu <u>abstraktnemu</u> tipu:

numerični, znakovni, ...

 Za večino tipov je potrebno določiti tudi dolžino.

Atribut

Entitetni model...

Chenov diagram

Običajen ER diagram

Razmerje

- Entitetni tipi niso svet zase, medsebojno se povezujejo preko razmerij (relacij)
- Razmerje ima določen pomen
- Predstavitev razmerja v modelu entiteta-razmerje je povezava
- Med opazovanim parom (v splošnem podmnožici) entitet je lahko več razmerij: OSEBA, KRAJ – stalno bivališče, začasno bivališče

Razmerje

Razmerje

- Kardinalnost (števnost) razmerja predstavlja število entitet entitetnega tipa, ki so v razmerju glede na pomen razmerja.
- Minimalna in maksimalna števnost določata veljaven razpon števila entitet.
- Vsaka entitetni tip ima določeno kardinalnost v razmerju glede na svojo vlogo.

Razmerji med entitetnima tipoma OSEBA in KRAJ

Oznake za števnost:

- 0: --o-- (krožec na povezavi)
- 1: --|-- (pravokotna črta na povezavi)
- več (m ali n): vranja noga (crow foot)
- Razpon določimo z dvema številkama (minimalna, maksimalna) ali kombinacijo grafičnih oznak
- (1,1) se označuje kot --|-- ali --||--

В

Entitetni model...

Chenov diagram (omogoča tudi več kot dvomestna razmerja)

.

Razmerje - mandatornost

- Mandatornost (obveznost) razmerja pove, ali sta dve entiteti vedno v razmerju ali lahko tudi nista v razmerju: obvezno, neobvezno razmerje
- Mandatornost lahko obravnavamo pod okriljem števnosti, zaradi česar dodatno uvedemo števnost 0

Razmerje je atributivnega značaja

- Razmerje tudi opisuje lastnost entitete
- Primer: OSEBA, KRAJ
- Razmerje ima atributiven značaj
- Dilema: atribut (lastnost) ali razmerje?

- Identifikator entitetnega tipa (krajše: entitetni identifikator) je podmnožica lastnosti entitetenega tipa (atributov in razmerij do drugih entitetnih tipov), ki enolično razlikujejo posamezne entitete znotraj entitetnega tipa
- Z ozirom na to, ali tvorijo identifikator entitete le atributi entitete ali pa je v enoličnem identifikatorju tudi kakšno razmerje, ločimo med močnim entitetnim tipom in šibkim entitetnim tipom

Enolični identifikator entitete

Entitetni model...

 Izbrani – določeni identifikator je podlaga za primarni ključ v relacijskem modelu

Enolični identifikator entitete

Entitetni model...

Chenov diagram (pobarvamo piko ali pike)

Običajen ER diagram (podčrtamo atribut ali atribute)

Močni in šibki entitetni tip

- Močni entitetni tip: za identifikacijo entitet zadoščajo lastni atributi
- Šibki entitetni tip: za identifikacijo entitet ne zadoščajo samo lastni atributi, ampak potrebujemo tudi identifikator močnega entitetnega tipa, s katerim je v razmerju
- Večmestna razmerja in razmerja več-več se implementirajo kot šibek entitetni tip.

Močni in šibki entitetni tip

- Trikotnik ⇒ isibkega entitetnega tipa od močnega (v smetri trikotnika). Kardinalnost: (0,n)
- Identifikator močnega entitetnega tipa Oseba: EMSO Oseba(EMSO, Ime, Priimek, Naslov)
- Identifikator šibkega entitetnega tipa pes: Ime_psa in EMSO skupaj:
 - Pes(#EMSO, ime_psa, pasma)

Generalizacija in specializacija

Preslikava v logični model (relacije)

Entitetni model...

 Preslikave gradnikov so dobro definirane in avtomatizirane (CASE orodja, npr. PowerDesigner, MySQL Workbench):

