

BUNDESREPUBLIK DEUTSCHLAND

#7
9-18-01
DRS

Bescheinigung

Die Nigu Chemie GmbH in Waldkraiburg/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Gasgeneratortreibstoffe"

am 20. März 1998 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 06 D und C 06 B der Internationalen Patentklassifikation erhalten.

München, den 26. April 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Faust

Aktenzeichen: 198 12 372.8

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

4

Neue Deutsche Patentanmeldung
NIGU Chemie GmbH
Postfach 1620
D-84469 Waldkraiburg
5 U.Z.: 95-2

Zusammenfassung

10 Die Erfindung betrifft feste Gasgeneratortreibstoffe (gaserzeugende Mischungen), hauptsächlich für Gasgeneratortreibsätze für Airbags und Gurtstraffer auf Basis von stickstoffreichen und möglichst kohlenstoffarmen Brennstoffen, wobei die festen Gasgeneratortreibstoffe zusätzlich einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger in hochdisperser Form enthalten, der als internes Filter wirkt und die Entstehung und den Austritt von staubförmigen Teilchen aus dem Gasgeneratorgehäuse weitgehend verhindert. Ein Teil des hochdispersen Schlackenfängers kann als Trägersubstanz 15 für Katalysatormetalle dienen.

20.03.96.

5

Neue Deutsche Patentanmeldung
NIGU Chemie GmbH
Postfach 1620
D-84469 Waldkraiburg
5 U.Z.: 95-2

10

GASGENERATORTREIBSTOFFE

Die Erfindung betrifft feste Gasgeneratortreibstoffe (gaserzeugende Mischungen), hauptsächlich für Gasgeneratortreibsätze für Airbags und Gurtstraffer auf Basis von stickstoffreichen und möglichst kohlenstoffarmen Brennstoffen, wobei die festen Gasgeneratortreibstoffe zusätzlich einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger in hochdisperser Form enthalten, der als internes Filter wirkt und die Entstehung und den Austritt von staubförmigen Teilchen aus dem Gasgeneratorgehäuse weitgehend verhindert.

20 Die Erfindung betrifft somit ein Verfahren zum Abfangen der flüssigen bzw. festen Verbrennungsprodukte bzw. staubförmigen Schlackenteile innerhalb des Gasgeneratortreibsatzes ~~unmittelbar bei der Entstehung, so daß man mit einem einfach strukturierten Filterpaket im Gasgeneratorgehäuse auskommt.~~

Die Erfindung betrifft ferner die Verwendung von Katalysatoren auf der Basis von Platinmetallen (Ru, Os, Rh, Ir, Pd, Pt) oder Metallegierungen aus Platinmetallen oder Kupfer auf den Schlackenfängern als Träger in festen Gasgeneratortreibstoffen, insbesondere die Verwendung in festen Gasgeneratortreibsätzen für Airbags.

30 Ein Airbag besteht im wesentlichen aus einem Gasgeneratorgehäuse, das mit dem Gasgeneratortreibsatz, in der Regel in Tablettenform, gefüllt ist, und einem Initialzünder (squib) zur Zündung des Gasgeneratortreibsatzes, sowie einem Gassack. Geeignete Zünder sind beispielsweise in der US-PS 4,931,111 beschrieben. Der zunächst kleingefaltete Gassack wird nach der Initialzündung von den beim Abbrand des Gasgeneratortreibsatzes entstehenden 35 Gasen gefüllt und erreicht in einem Zeitraum von etwa 10-50 ms sein volles Volumen. Der

Austritt von heißen Funken, Schmelzen oder Festkörpern aus dem Gasgenerator in den Gas sack muß weitgehend verhindert werden, da er zu einer Zerstörung des Gassacks oder zur Verletzung von Fahrzeuginsassen führen könnte. Dies wird durch Binden und Filtrieren der Schlacke erreicht, die bei der Verbrennung des Gasgeneratortreibsatzes entsteht.

5

Herkömmliche Gasgeneratortreibsätze für die Verwendung in Airbags auf der Basis von Natriumazid sind seit längerem bekannt. Die Verwendung des hochtoxischen Natriumazids erfordert jedoch ein aufwendiges und kostspieliges Herstellungsverfahren der Gasgeneratortreibsätze. Zudem führt die weltweit ständig zunehmende Zahl von nicht abgebrannten Gas-

10

generatortreibsätzen in Alt-Kraftfahrzeugen zu einem Entsorgungs- und Sicherheitsproblem.

In den vergangenen Jahren wurden daher Anstrengungen unternommen, geeignete Ersatzstoffe für Natriumazid zu finden.

15

Aus der DE-A-44 35 790 sind Gasgeneratortreibstoffe auf der Basis von Guanidinverbindungen auf geeigneten Trägern bekannt, die im wesentlichen ein verbessertes Abbrandverhalten und eine verbesserte Schlackenbildung aufweisen. Die DE-A-44 35 790 gibt keine Hinweise auf die Verwendung von hochschmelzenden, im wesentlichen inerten Schlackenfängern in hochdisperser Form oder von Katalysatoren in Gasgeneratortreibsätzen.

20

Aus der EP-B-0 482 852 und dem dort zitierten Stand der Technik sind azidfreie Gasgeneratortreibsätze, insbesondere für Airbags, bekannt. Die in der EP-B-0 482 852 beschriebene, gaserzeugende Mischung enthält a) einen Treibstoff, ausgewählt aus Aminotetrazol, Tetrazol, Bitetrazol und Metallsalzen dieser Verbindungen und Triazolverbindungen und Metallsalzen

25

von Triazolverbindungen; b) eine sauerstoffhaltige Oxidationsverbindung, ausgewählt aus Alkalimetall-, Erdalkalimetall-, Lanthanid- und Ammoniumnitraten und -perchloraten und Alkalimetall- und Erdalkalimetallchloraten und -peroxyden; und entweder c) ein Hochtemperatur-Schlackenbildungsmaterial, ausgewählt aus Erdalkalimetalloxiden, -hydroxiden, -carbonaten, -oxalaten, -peroxyden, -nitraten, -chloraten und -perchloraten und Erdalkalimetallsalzen von Tetrazolen, Bitetrazolen und Triazolen, und d) ein Niedertemperatur-

30

Schlackenbildungsmaterial, ausgewählt aus Siliciumdioxid, Boroxid, Vanadiumpentoxid, natürlich vorkommenden Tonen und Talken, Alkalimetallsilikaten, -boraten, -carbonaten,

20.03.98

7

-nitraten, -perchloraten und -chloraten und Alkalimetallsalzen von Tetrazolen, Bitetrazolen und Triazolen; oder e) ein Hochtemperatur-Schlackenbildungsmaterial, ausgewählt aus Übergangsmetallociden, -hydroxiden, -carbonaten, -oxalaten, -peroxyden, -nitraten, -chloraten- und perchloraten; und f) ein Niedertemperatur-Schlackenbildungsmaterial, welches Siliciumdioxid ist; wobei die Menge von d) oder f) ausreicht, um zur Bildung einer kohärenten Masse oder Schlacke zu führen, aber nicht so hoch ist, daß eine Flüssigkeit mit niedriger Viskosität entsteht, wobei es sich versteht, daß ein einzelnes Material für mehr als eine der Kategorien dienen kann.

10 Der wesentliche Vorteil eines derartigen Gasgeneratortreibsatzes liegt in der günstigen Bildung einer Schlacke, die leicht von den gebildeten gasförmigen Abbrandprodukten abfiltriert werden kann. Ein weiterer Vorteil besteht in der hohen Gasausbeute.

15 Nachteile derartiger Gasgeneratortreibsätze sind jedoch, daß hinsichtlich der Bereitstellung eines Gasgeneratortreibsatzes mit einer möglichst günstigen Schlackenbildung Kompromisse beim Abbrandverhalten (Abbrandgeschwindigkeit), bei der Gasbildung, den Eigenschaften hinsichtlich der Herstellung der Pellets und anderen Verfahrensfaktoren und insbesondere bei der Gasqualität, d.h. dem Anteil von toxischen gasförmigen Abbrandprodukten eingegangen werden mußten. Weiterhin ist die Anzahl der geeigneten Treibstoffe relativ begrenzt.

20 In der EP-B-0 482 852 gibt es keine Hinweise darauf, wie diese Probleme durch eine Modifizierung der Zusammensetzung des Gasgeneratortreibsatzes gelöst werden können.

25 In der US-PS 4,948,439 wird von dem gleichen Erfinder auf die Problematik hinsichtlich der Bildung von toxischen gasförmigen Abbrandprodukten bei der Verwendung von Azid-Ersatzstoffen, wie Tetrazolverbindungen (z.B. Aminotetrazol und dessen Metallsalze) und deren Gemische in Gasgeneratortreibsätzen hingewiesen.

30 In der US-PS 4,948,439 wird jedoch kein Lösungsvorschlag beschrieben, wie der Anteil an toxischen gasförmigen Abbrandprodukten bei der Verbrennung von Gasgeneratortreibsätzen, die als Treibstoff Tetrazol- oder Triazolverbindungen, deren Metallsalze oder Gemische davon enthalten, reduziert werden könnte. Vielmehr wird ein Verfahren zum Aufblasen eines

8

Airbags beschrieben, bei dem zunächst ein Primärgasmisch durch die Zündung eines Gasgeneratortreibsatzes entsteht, der als Treibstoff mindestens eine Tetrazol- oder Triazolverbindung enthält und dieses Primärgemisch wird durch Vermischen mit Umgebungsluft derart verdünnt, daß der Gehalt an toxischen gasförmigen Abbrandprodukten aus dem Primärgasmisch auf ein toxikologisch akzeptables Maß gesenkt wird.

Das Vermischen mit der Umgebungsluft führt zu einer Verkomplizierung (Größe, Aufbau, etc.) des gesamten Airbag-Systems. Problematisch ist die Geschwindigkeit, mit der der Airbag aufgeblasen werden muß (10-50 ms), wenn zusätzlich noch Umgebungsluft angesaugt werden muß.

Aus der DE-C-44 01 213 sind gaserzeugende Mischungen aus einem Brennstoff, einem Oxidator, einem "Katalysator" und einem Kühlmittel, dadurch gekennzeichnet, daß der Oxidator Cu(NO₃)₂·3Cu(OH)₂ und der Katalysator ein Metalloxid oder eine Metalloxidmischung oder ein Metallmischoxid ist, bekannt.

Aus der DE-C-44 01 214 sind zudem gaserzeugende Mischungen ähnlicher Zusammensetzungen bekannt, bei denen der Katalysator aus einem Metall oder einer Metallellierung, vorzugsweise einem pyrophoren Metall oder einer pyrophoren Metallellierung auf einem Träger besteht. Bei dem Träger handelt es sich um ein Silikat, vorzugsweise ein Schicht- oder Gerüstsilikat. Als Metall hat sich insbesondere Ag bewährt. Zu den bekannten verwendeten Brennstoffen zählen Triaminoguanidinnitrat (TGN), Nitroguanidin (NIGU bzw. NQ), 3-Nitro-1,2,3-triazol-5-on und insbesondere Diguanidinium-5,5'-azotetrazolat (GZT).

Der wesentliche Vorteil der in den beiden vorstehenden deutschen Patentschriften beschriebenen gaserzeugenden Mischungen soll in der Herabsetzung der Verbrennungstemperatur und in der Erhöhung der Abbrandgeschwindigkeit liegen.

Die in der DE-C-44 01 213 und DE-C-44 01 214 beschriebenen gaserzeugenden Mischungen enthalten keine niedrig- und hochschmelzenden Schlackenbildner bzw. keine erfindungsgemäßen Schlackenfänger, vielmehr wird dort behauptet, daß auf Schlackenbildner verzichtet werden kann.

20.03.96. 9

Entgegen dieser Behauptung haben die Erfinder der vorliegenden Erfindung gefunden, daß die Verwendung von niedrig- und hochschmelzenden Schlackenbildnern, insbesondere der erfindungsgemäßen Schlackenfänger eine deutliche Reduzierung von toxischen gasförmigen
5 Abbrandprodukten bewirkt. Ein Teil des hochschmelzenden erindungsgemäßen Schlackenfängers kann hierbei als Träger für ein Platinmetall bzw. für eine Metallellierung aus Platinmetallen und somit als Katalysatorbestandteil fungieren.

In den beiden vorstehend genannten deutschen Patentschriften wird der Begriff "Katalysator"
10 in einem erweiterten Sinn verwendet und stellt einen aktiven Reaktionsbestandteil dar, der selbst umgesetzt werden kann und reaktionslenkend und/oder reaktionsbeschleunigend wirkt.

Es handelt sich demnach nicht um einen Katalysator im eigentlichen Sinn, da ein Katalysator bei einer Umsetzung keinen Reaktionsbestandteil darstellt. Ein Katalysator im eigentlichen
15 Sinn wird bei Umsetzungen nicht verbraucht, d.h. nicht umgesetzt.

Zur Definition des Katalysators gehört ferner, daß dieser in einer nur sehr geringen Konzentration dem Reaktionsgemisch beigemengt wird. In den beiden deutschen Patentschriften beträgt jedoch der Anteil an "Katalysator" in der gaserzeugenden Mischung bis zu 30
20 Massen-% und ist damit wesentlicher, auch anteilmäßig, Bestandteil der gaserzeugenden Mischung.

Aus dem zuvor gesagten ergibt sich, daß in der DE-C-44 01 213 und DE-C-44 01 214 zwar der Begriff "Katalysator" verwendet wird, aber, wie dies auch in den beiden Patentschriften
25 angedeutet ist, die Bedeutung nicht mit der herkömmlichen Definition eines Katalysators übereinstimmt.

Der vorliegenden Erfindung liegt gegenüber dem Stand der Technik die Aufgabe zugrunde, verbesserte Gasgeneratortreibstoffe, insbesondere für Airbags bereitzustellen, deren
30 Abbrandverhalten sich gezielt einstellen läßt und die insbesondere die Entstehung von

20.03.98

AC

toxischen Gasen und von lungengängigen, staubförmigen Anteilen, die aus dem Gasgeneratorgehäuse austreten können, auf ein Minimum beschränken.

Die aus den Gasgeneratortreibstoffen hergestellten Gasgeneratortreibsätze sollen thermisch
5 stabil, gut anzündbar, schnell - auch bei niedriger Temperatur - brennend und gut lagerfähig
sein und eine hohe Gasausbeute gewährleisten. Zudem sollen diese Gasgeneratortreibsätze
eine Verkleinerung, Reduzierung der Anzahl der Komponenten oder Vereinfachung der
Gasgeneratorgehäuse und somit deren Gewichtsverminderung im Vergleich zu bekannten
Generatoren ermöglichen.

10

Erfnungsgemäß werden diese Aufgaben durch einen Gasgeneratortreibstoff gelöst, umfassend

(A) mindestens einen Brennstoff aus der Gruppe umfassend Guanidiniumnitrat (GUNI;
15 GuNO_3), Dicyanamid, Ammoniumdicyanamid, Natriumdicyanamid (Na-DCA),
Kupferdicyanamid, Zinndicyanamid, Calciumdicyanamid (Ca-DCA),
Guanidiniumdicyanamid (GDCA), Aminoguanidiniumbicarbonat (AGB),
Aminoguanidiniumnitrat (AGN), Triaminoguanidiniumnitrat (TAGN), Nitroguanidin
(NIGU), Dicyandiamid (DCD), Azodicarbonamid (ADCA) sowie Tetrazol (HTZ), 5-
20 Aminotetrazol (ATZ), 5-Nitro-1,2,4-triazol-3-on (NTO), deren Salze und deren Gemische,

(B) mindestens ein Alkali- oder Erdalkalinitrat oder Ammoniumnitrat, -chlorat oder
-perchlorat,

25 (C) mindestens einen hochschmelzenden, im wesentlichen chemisch inerten Schlacken-
fänger, ausgewählt aus der Gruppe umfassend Al_2O_3 , TiO_2 und ZrO_2 in hochdisperser Form
oder Gemische davon, und

gegebenenfalls (D) mindestens einen Schlackenbildner, ausgewählt aus Alkali- und Erdal-
30 kalimetallcarbonaten und -oxiden, Silikaten, Aluminaten und Aluminiumsilikaten,
Eisen(III)oxid sowie Siliciumnitrid (Si_3N_4), das beim Abbrand Stickstoff (N_2) und
Siliciumdioxid (SiO_2) zur Weiterreaktion liefert und

20.03.96:

M

gegebenenfalls (E) mindestens ein in Wasser bei Raumtemperatur lösliches Bindemittel.

Bevorzugte Brennstoffe (Komponente (A)) sind Nitroguanidin (NIGU), 5-Aminotetrazol (ATZ), Dicyandiamid (DCD), Dicyanamid, deren Salze, insbesondere Natrium- und Calciumdicyanamid und Guanidiniumnitrat, und deren Gemische. Diese sind praktisch ungiftig, nicht hygroskopisch, wenig wasserlöslich, thermisch stabil, bei niedriger Temperatur verbrennend und von geringer Schlag- und Reibempfindlichkeit. Die Gasausbeute bei der Verbrennung ist hoch, wobei ein großer Anteil an Stickstoffgas entsteht.

10 Alkali- (Li, Na, K) und Erdalkalisalze (Mg, Ca, Sr, Ba) sind Beispiele für geeignete Salze von 5-Aminotetrazol.

Als Oxidationsmittel, Komponente (B), können Alkali- oder Erdalkalinitrate (wie Lithiumnitrat, Natriumnitrat, Kalumnitrat, Magnesiumnitrat, Calciumnitrat, Strontiumnitrat oder Bariumnitrat), Ammoniumnitrat, Alkali- oder Erdalkalichlorate oder -perchlorate (wie Lithium-, Natrium-, Kalium-, Magnesium-, Calcium-, Strontium- oder Bariumchlorat und Lithium-, Natrium-, Kalium-, Magnesium-, Calcium-, Strontium- oder Bariumperchlorat) sowie Ammoniumperchlorat und deren Gemische verwendet werden. Vorzugsweise wird Kalumnitrat und Strontiumnitrat verwendet. Strontiumnitrat ist nicht hygroskopisch, nicht 20 toxisch und ermöglicht beim Abbrand eine hohe Gasausbeute. Kalumnitrat weist zusätzlich eine niedrige Abbrandtemperatur auf.

Als hochschmelzende, im wesentlichen chemisch inerte Schlackenfänger, Komponente (C), können z.B. Al_2O_3 , TiO_2 und ZrO_2 in hochdisperser Form oder Gemische davon verwendet werden. Besonders bevorzugt sind Al_2O_3 mit einer BET-Oberfläche (in Anlehnung an DIN 25 66131) von $100 \pm 15 \text{ m}^2/\text{g}$ (Smp-Punkt ca. 2050°C), TiO_2 mit einer BET-Oberfläche von $50 \pm 15 \text{ m}^2/\text{g}$ (Smp-Punkt ca. 1850°C) und ZrO_2 mit einer BET-Oberfläche von $40 \pm 10 \text{ m}^2/\text{g}$ (Smp-Punkt ca. 2700°C). Diese hochdispersen Oxide sind z.B. unter den Handelsnamen Aluminiumoxid C, Titanoxid P25 und VP Zirkonoxid (Degussa AG) im Handel erhältlich.

30

Diese pyrogenen Oxide werden durch Umsetzung der Metallchloride mit H_2 und O_2 im entsprechenden Molverhältnis durch Gasphasenreaktion (Flammenhydrolyse) hergestellt. Sie

haben keine Poren und definierte Agglomerate, wie dies sonst bei der Herstellung im Naßverfahren der Fall ist.

Unter Schlackenfänger (Komponente (C)) im Sinne der vorliegenden Erfindung versteht man
5 hochschmelzende, im wesentlichen chemisch inerte Metalloxide in hochdisperser Form, d.h. diese Oxide weisen eine gegenüber den Oxiden in ihrer herkömmlichen Form sehr viel größere Oberfläche auf.

Zum Beispiel weisen herkömmliches Al_2O_3 als α -Oxid eine BET-Oberfläche von nur 5-10
10 m^2/g , herkömmliches Pigment- TiO_2 eine BET-Oberfläche von nur 5-10 m^2/g und herkömmliches ZrO_2 eine BET-Oberfläche von nur 3-8 m^2/g (für Feuerfest-Produkte) auf, wohingegen die in den Gasgeneratortrebsätzen der vorliegenden Erfindung verwendeten Metalloxide BET-Oberflächen von etwa 40 bis etwa 100 m^2/g , besonders bevorzugt etwa 50 bis etwa 100 m^2/g und insbesondere etwa 100 m^2/g aufweisen.

15

Ferner zeichnen sich die Schlackenfänger der vorliegenden Erfindung durch ihren hohen Schmelzpunkt von etwa 1850 bis etwa 2700°C aus. Diese hohen Schmelzpunkte führen dazu, daß die Schlackenfänger während der Umsetzung nicht schmelzen und somit als Feststoffe fungieren.

20

Des weiteren handelt es sich bei den Schlackenfängern der vorliegenden Erfindung um im wesentlichen chemisch inerte Verbindungen, d.h. die Schlackenfänger der vorliegenden Erfindung beteiligen sich nicht bei der Verbrennungsreaktion der Gasgeneratortrebsätze an chemischen Umsetzungen oder nur in einem geringen Maß an der Oberfläche der als
25 Schlackenfänger dienenden Metalloxide. Die hochaufgelösten Raumgitter, d.h. die große innere Oberfläche von z.B. Al_2O_3 , TiO_2 oder ZrO_2 bewirkt einerseits durch ihre Inaktivität die Abkühlung der Verbrennungsprodukte und lagert andererseits speziell flüssige und/oder feste Schlackenteile bzw. Partikel an, die bei der Verbrennung entstehen. Auf diese Weise bleibt die Tablettenform, in der die Gasgeneratortrebsätze verwendet werden, während und nach
30 dem Abbrand erhalten bzw. es lassen sich eventuell entstandene Bruchstücke leicht filtern. Das heißt, es bilden sich kaum Stäube, die bei der Verbrennung aus dem Gasgeneratortreibsatz und somit aus dem Gasgeneratorgehäuse austreten könnten. Die Schlackenfänger wirken

somit als internes Filter in den Gasgeneratortreibsätzen selbst, und verhindern somit weitgehend die Entstehung und den Austritt von staubförmigen Schlackenteilen aus dem Gasgeneratorgehäuse, wodurch auch eine wesentliche Filtervereinfachung des Gasgeneratorgehäuses erreicht wird, da auf zusätzliche (mechanische) Feinfilter im Gasgeneratorgehäuse teilweise verzichtet werden kann. Dies führt auch zu einer vorteilhaften Gewichtseinsparung beim Airbag-Gasgenerator.

Gleichzeitig wird durch die Bildung von Schlacken das Entstehen von lungengängigen staubförmigen Anteilen vermindert, die aus dem Gasgenerator eines Airbags austreten könnten. Lungengängige staubförmige Teilchen haben einen Durchmesser von etwa $6 \mu\text{m}$ oder kleiner.

Wahlweise können als Schlackenbildner, Komponente (D) Alkalimetall- und Erdalkalimetallcarbonate (wie Natriumcarbonat, Kaliumcarbonat, Magnesiumcarbonat, Calciumcarbonat, Strontiumcarbonat oder Bariumcarbonat), Alkalimetall- oder Erdalkalimetalloxide (wie Natrium-, Kalium-, Magnesium-, Calcium-, Strontium- oder Bariumoxid), Silikate (wie Hectorit), Aluminate (wie Natrium-beta-aluminat ($\text{Na}_2\text{O}_{11}\text{Al}_2\text{O}_3$) oder Tricalciumaluminat ($\text{Ca}_3\text{Al}_2\text{O}_6$)) oder Aluminiumsilikate (wie Bentonite oder Zeolithe) oder Eisen(III)oxid oder deren Gemische verwendet werden.

Komponente (D) dient dazu, beim Abbrand des Gasgeneratortreibstoffs eine leicht filtrierbare Schlacke zu bilden.

Die Schlackenbildner, Komponente (D), können zusätzlich noch als Kühlmittel wirken. Die Silikate, Aluminate und Aluminiumsilikate reagieren mit den Alkalimetall- und Erdalkalimetalloxiden, die beim Abbrand entstehen.

Die Erfindung betrifft ferner die Verwendung von Katalysatoren auf der Basis von Platinmetallen (Ru, Os, Rh, Ir, Pd, Pt) oder Metallegierungen aus Platinmetallen oder Kupfer auf den hochdispersen Schlackenfängern als Träger, in den festen Gasgeneratortreibstoffen der vorliegenden Erfindung, insbesondere die Verwendung in festen Gasgeneratortreibsätzen für Airbags.

Ein Teil des Schlackenfängers (Komponente (C)) kann als Träger dienen, auf dem ein Platinmetall oder eine Metallegierung aus Platinmetallen oder Kupfer in einer katalytisch wirksamen Schichtdicke aufgebracht ist.

5 Platinmetalle sind Ruthenium (Ru), Osmium (Os), Rhodium (Rh), Iridium (Ir), Palladium (Pd) und Platin (Pt). Die Katalysatoren, die in der vorliegenden Erfindung verwendet werden, basieren vorzugsweise auf Rh, Pd oder Pt und insbesondere auf Pt.

10 Beispiele für Metallegierungen aus Platinmetallen sind alle katalytisch wirksamen Metallegierungen der vorstehend genannten Platinmetalle, vorzugsweise Pt/Pd- und Pt/Rh-Legierungen.

15 Die Metalle oder Metallegierungen aus Platinmetallen sind in einer katalytisch wirksamen Schichtdicke, vorzugsweise in einer einatomigen Schicht ("monolayer") auf dem Träger aufgebracht.

Die Katalysatoren sind in nur katalytischen Mengen im Gasgeneratortreibsatz enthalten. Ihr Gewichtsanteil an der Komponente (C) beträgt 0,1-5 Gew.-%, vorzugsweise 0,2-1,2 Gew.-% der Komponente (C).

20

Bevorzugte Katalysatoren sind die, bei denen der hochdisperse Träger Al_2O_3 und das Metall Pt, Pd oder Cu, insbesondere Pt ist.

25 Geeignete Katalysatoren sind von der Degussa AG erhältlich, z.B. 1% Pt auf gamma- Al_2O_3 , oder 1% Pd + Pt auf gamma- Al_2O_3 .

Die Katalysatoren dienen dazu, die Reaktion dahingehend zu steuern, daß kaum toxische gasförmige Abbrandprodukte, wie Kohlenmonoxid (CO), Stickoxide (NO_x) und Ammoniak (NH_3) gebildet werden.

30

Die vorstehend genannten Katalysatoren sind besonders gut für die Verwendung in Gasgeneratortreibsätzen in Airbags geeignet.

Zusätzlich zu den Vorteilen, die sich aus der Verwendung der hochdispersen Metalloxide ergeben (Verringerung der festen Staubteilchen, d.h. von Grob- und Feinstaub) wird hier der ohnehin geringe Anteil an toxischen Gasen weiter reduziert.

5

Die Katalysatoren können aus ausgelösten, d.h. gebrauchten Airbags, als auch aus nicht ausgelösten, d.h. aus Airbags aus Alt-Kraftfahrzeugen nach bereits bekannten Verfahren recycelt werden. Dies führt zu einer Abfallentlastung der Umwelt und ermöglicht die Wiederverwendung der Katalysatormetalle. Das Katalysatormetall bzw. die Metalllegierung wird während des Abbrands nicht oxidiert.

10

Der Katalysator muß nicht als zusätzlicher Bestandteil dem Gasgeneratortreibsatz zugesetzt werden, sondern der Katalysator ist Bestandteil einer ohnehin im Gasgeneratortreibsatz vorhandenen Komponente (Komponente C)).

15

Komponente (A) liegt in einer Menge von etwa 20 bis 60 Gew.-%, vorzugsweise von etwa 28 bis 52 Gew.-% und insbesondere von etwa 45 bis 51 Gew.-% vor, Komponente (B) in einer Menge von etwa 38 bis etwa 63 Gew.-%, vorzugsweise von etwa 38 bis etwa 55 Gew.-% und insbesondere von etwa 39 bis 45 Gew.-% vor, Komponente (C) in einer Menge von etwa 5

20

bis 22 Gew.-%, vorzugsweise von etwa 8 bis 20 Gew.-% und insbesondere von etwa 9 bis 11 Gew.-% und Komponente (D), sofern enthalten, in einer Menge von etwa 2 bis 12 Gew.-%, vorzugsweise von etwa 4 bis 10 Gew.-% vor, jeweils bezogen auf die Gesamtzusammensetzung des Gasgeneratortreibsatzes.

25

Wahlweise kann der Gasgeneratortreibstoff ferner als Komponente (E) ein in Wasser bei Raumtemperatur lösliches Bindemittel enthalten. Bevorzugte Bindemittel sind Celluloseverbindungen oder Polymerisate aus einem oder mehreren polymerisierbaren olefinisch ungesättigten Monomeren. Beispiele für Celluloseverbindungen sind Celluloseether, wie Carboxymethylcellulose, Methylcelluloseether, insbesondere Methylhydroxyethylcellulose. Eine gut verwendbare Methylhydroxyethylcellulose ist CULMINAL® MHEC 30000 PR der Firma Aqualon. Geeignete Polymerisate mit Bindewirkung sind Polyvinylpyrrolidon, Polyvinylace-

30

tat, Polyvinylalkohol und Polyvinylbutyral, z.B. Pioloform® B (Firma Wacker Chemie, Burghausen).

Als Bindemittel, Komponente (E), kann auch ein in Wasser bei Raumtemperatur unlösliches

5 Metallsalz der Stearinsäure, wie Aluminiumstearat, Magnesiumstearat, Calciumstearat oder Zinkstearat verwendet werden.

Graphit ist ebenfalls als Bindemittel geeignet.

10 Komponente (E) liegt in einer Menge von 0 bis 2 Gew.-% und vorzugsweise von 0,3-0,8 Gew.-% vor.

Das Bindemittel, Komponente (E), dient als Desensibilisierungsmittel und als Verarbeitungshilfe bei der Herstellung von Granulat oder Tabletten (Pellets) aus dem Gasgenerator-treibstoff. Es dient ferner zur Verminderung der Hydrophilie und zur Stabilisierung der Gas-generator-treibsätze.

Herstellungsvorschrift:

20 Allgemein erfolgte die Herstellung der Gasgenerator-treibstoffe (Beispiele 1 bis 57 der nachstehenden Tabelle I) und Gasgenerator-treibsätze nach folgendem Vorgehen:

Die grob vorgemischten Rohstoffe (Komponenten (A), (B), (C) und gegebenenfalls (D) und (E)) wurden mittels einer Kugelmühle gemahlen bzw. vorverdichtet.

25 Das Granulieren der Gasgenerator-treibstoffmischung erfolgte in einem Vertikalmischer durch Zugabe von ca. 20 % Wasser beim Rühren und bei einer auf ca. 40°C erhöhten Temperatur.

Nach kurzem Ablüften wurde die erhaltene Mischmasse bei Raumtemperatur durch eine Durchreibemaschine mit einem 1 mm-Sieb gerieben. Das auf diese Weise erhaltene Granulat wurde ca. 2 Stunden in einem Trockenofen bei 80°C getrocknet.

30 Das fertige Granulat des Gasgenerator-treibstoffes (Kornverteilung 0-1 mm) wurde anschließend mit einer Rundläuferpresse zu Tabletten (Pellets) verpreßt. Diese Gasgenerator-treibsatzpellets wurden bei 80°C im Trockenofen nachgetrocknet.

Die in den Gasgeneratoren verwendeten Tabletten oder Pellets aus dem Gasgeneratortreibstoff können nach bekannten Verfahren hergestellt werden, etwa durch Strangpressen, Extrudieren, in Rundläuferpressen oder Tablettiermaschinen. Die Größe der Pellets oder Tabletten hängt von der gewünschten Brennzeit im jeweiligen Anwendungsfall ab.

Der erfindungsgemäße Gasgeneratortreibstoff besteht aus nicht-toxischen, leicht herstellbaren und kostengünstigen Komponenten, deren Verarbeitung unproblematisch ist. Die Komponente, die weniger kostengünstig ist, nämlich das Katalysatormetall, kann nach bekannten Verfahren recycelt werden. Die thermische Stabilität der Komponenten bewirkt eine gute Lagerfähigkeit. Die Anzündbarkeit der Gemische ist gut. Sie brennen schnell und liefern große Gasausbeuten mit sehr geringen CO-, NO_x- und NH₃-Anteilen, die unterhalb der zulässigen Höchstgrenze liegen. Die erfindungsgemäßen Gemische sind daher zur Verwendung als Gaserzeugungsmittel in den verschiedenen Airbag-Systemen, als Löschmittel oder Treibmittel besonders geeignet.

Die nachstehenden Beispiele 1 bis 57 veranschaulichen die Erfindung, schränken diese jedoch nicht ein. Bei den Beispielen 15, 18 und 21 handelt es sich um Vergleichsbeispiele, bei denen herkömmliches ZrO₂, TiO₂ und Al₂O₃ verwendet wurde.

Tabelle I:

Die in der Tabelle angegebenen Indizes haben folgende Bedeutung:

25	1	Titandioxid P25, Degussa AG
	2	Zirkonoxid VP, Degussa AG
	3	Aluminiumoxid C, Degussa AG
	4	Titandioxid Kronos 3025, Kronos Titan-GmbH
30	5	Zirkonoxid, Merck
	6	Aluminiumoxid NO 615-30 II 24, Nabaltec
	7	Oxid. Katalysator 1% Pt auf Gamma-Aluminiumoxid, Degussa AG
	8	Oxid. Katalysator 1% Pd + Pt auf Gamma-Aluminiumoxid, Degussa AG
	9	Eisenoxid, Bayoxide E8710, Bayer AG
35	10	Bentone EW, Rheox, Inc.
	11	CULMINAL MHEC 30000 PR, Aqualon

18

Tabelle I

Beispiel Nr.		1	2	3	4	5	6
A = ATZ	[%]	30,2	32,8	29,75	29,7	29,75	29,7
NIGU	[%]	-	-	-	-	-	-
Ca-DCA	[%]	-	-	-	-	-	-
Na-DCA	[%]	-	-	-	-	-	-
TAGN	[%]	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	-	-
<hr/>							
B = KNO ₃	[%]	49,8	-	50,25	-	50,25	-
Sr(NO ₃) ₂	[%]	-	57,2	-	54,8	-	54,8
NaNO ₃	[%]	-	-	-	-	-	-
<hr/>							
C = TiO ₂ ¹	[%]	-	-	20,0	15,0	-	-
ZrO ₂ ²	[%]	-	-	-	-	20,0	15,0
Al ₂ O ₃ ³	[%]	10,0	10,0	-	-	-	-
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-
Al ₂ O ₃ + 1% (Pd+Pt) ⁸	[%]	-	-	-	-	-	-
<hr/>							
D = Eisen(III)oxid ⁹	[%]	10,0	-	-	-	-	-
Aluminiumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	-	-
<hr/>							
E = Graphit	[%]	-	-	-	-	-	-
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	0,5	-	0,5
<hr/>							
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	17,8	19,3	17,6	21,7	17,6	18,0
Temperatur (p=135*10 ⁵ Pa)	[K]	1780	2420	1780	2370	1780	2520
<hr/>							
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	4000	2800	3000	3300	3000	3300
Stickoxide	[ppm]	150	300	200	350	200	250
Ammoniak	[ppm]	150	0	0	0	100	100
Grobstaub in der Kanne	[g]	1,2	0,6	1,2	1,0	1,1	1,2
Feinstaub in der Kanne	[g]	0,2	0,1	0,3	0,3	0,3	0,3

20.03.96

19

Beispiel Nr.		7	8	9	10	11	12
A = ATZ	[%]	29,75	32,8	29,75	32,8	21,5	25,6
NIGU	[%]	-	-	-	-	-	-
Ca-DCA	[%]	-	-	-	-	-	-
Na-DCA	[%]	-	-	-	-	-	-
TAGN	[%]	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	-	-
<hr/>							
B = KNO ₃	[%]	50,25	-	50,25	-	58,0	-
Sr(NO ₃) ₂	[%]	-	57,2	-	57,2	-	54,1
NaNO ₃	[%]	-	-	-	-	-	-
<hr/>							
C = TiO ₂ ¹	[%]	-	-	-	-	-	-
ZrO ₂ ²	[%]	-	-	-	-	-	-
Al ₂ O ₃ ³	[%]	10,0	-	10,0	-	10,0	10,0
Al ₂ O ₃ + 1%Pt ⁷	[%]	10,0	10,0	-	-	-	-
Al ₂ O ₃ + 1%(Pd+Pt) ⁸	[%]	-	-	10,0	10,0	-	-
<hr/>							
D = Eisen(III)oxid ⁹	[%]	-	-	-	-	-	5,0
Aluminiumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	10,0	5,0
<hr/>							
E = Graphit	[%]	-	-	-	-	0,5	-
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	-	-	0,3
<hr/>							
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	17,6	19,3	17,6	19,3	16,8	16,8
Temperatur (p=135*10 ⁵ Pa)	[K]	1780	2420	1780	2420	2120	2420
<hr/>							
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	2500	2300	2300	2100	4500	4000
Stickoxide	[ppm]	200	250	200	250	400	250
Ammoniak	[ppm]	0	0	0	0	200	150
Grobstaub in der Kanne	[g]	0,7	0,6	0,7	0,7	0,9	1,3
Feinstaub in der Kanne	[g]	0,2	0,2	0,2	0,1	0,3	0,5

Beispiel Nr.			13	14	15	16	17	18
A = ATZ	[%]		-	-	-	-	-	-
NIGU	[%]	48,2	47,0	47,0	48,5	47,0	47,0	
Ca-DCA	[%]	-	-	-	-	-	-	-
Na-DCA	[%]	-	-	-	-	-	-	-
TAGN	[%]	-	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	-	-	-
B = KNO ₃		[%]	41,3	-	-	41,0	-	-
Sr(NO ₃) ₂	[%]	-	42,5	42,5	-	42,5	42,5	
NaNO ₃	[%]	-	-	-	-	-	-	-
C = TiO ₂ ^{1 oder 4}	[%]	10,0 ¹	10,0 ¹	10,0 ⁴	-	-	-	-
ZrO ₂ ^{2 oder 5}	[%]	-	-	-	10,0 ²	10,0 ²	10,0 ⁵	
Al ₂ O ₃ ³	[%]	-	-	-	-	-	-	-
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-	-
Al ₂ O ₃ + 1% (Pd+Pt) ⁸	[%]	-	-	-	-	-	-	-
D = Eisen(III)oxid ⁹	[%]	-	-	-	-	-	-	-
Aluminumsilikat ¹⁰	[%]	-	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄ ¹¹	[%]	-	-	-	-	-	-	-
E = Graphit	[%]	-	0,5	0,5	-	0,5	0,5	
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	-	-
Polyvinylbutyral	[%]	0,5	-	-	0,5	-	-	-
<u>Theoretische Werte:</u>								
Gasausbeute (V=konstant)	[mol/kg]	23,8	23,1	23,1	23,9	23,1	23,1	
Temperatur (p=135*10 ⁵ Pa)	[K]	2030	2490	2490	2080	2550	2550	
<u>Gemessene Werte (in 60 dm³ Kanne):</u>								
Kohlenmonoxid	[ppm]	8000	6500	8000	6500	6500	8000	
Stickoxide	[ppm]	600	450	450	800	700	800	
Ammoniak	[ppm]	100	0	0	150	0	0	
Grobstaub in der Kanne	[g]	1,4	0,3	0,7	1,0	0,1	0,3	
Feinstaub in der Kanne	[g]	0,6	0,4	0,3	0,3	0,3	0,3	

20.03.90

21

Beispiel Nr.		19	20	21	22	23	24
A = ATZ	[%]	-	-	-	-	-	-
NIGU	[%]	50,6	46,0	46,0	46,5	50,6	46,5
Ca-DCA	[%]	-	-	-	-	-	-
Na-DCA	[%]	-	-	-	-	-	-
TAGN	[%]	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	-	-
<hr/>							
B = KNO ₃	[%]	39,4	-	-	-	39,4	-
Sr(NO ₃) ₂	[%]	-	43,5	43,5	38,5	-	38,5
NaNO ₃	[%]	-	-	-	-	-	-
<hr/>							
C = TiO ₂ ¹	[%]	-	-	-	-	-	-
ZrO ₂ ²	[%]	-	-	-	-	-	-
Al ₂ O ₃ ^{3 oder 6}	[%]	10,0 ³	10,0 ³	10,0 ⁶	15,0 ³	-	-
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	10,0	15,0
Al ₂ O ₃ + 1%(Pd+Pt) ⁸	[%]	-	-	-	-	-	-
<hr/>							
D = Eisen(III)oxid ⁹	[%]	-	-	-	-	-	-
Aluminiumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	-	-
<hr/>							
E = Graphit	[%]	-	0,5	0,5	-	-	-
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	-	-	-
<hr/>							
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	24,3	22,8	22,8	22,4	24,3	22,4
Temperatur (p=135*10 ⁵ Pa)	[K]	2050	2380	2380	2330	2430	2330
<hr/>							
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	5700	6000	8000	5000	4600	4200
Stickoxide	[ppm]	300	450	600	300	200	250
Ammoniak	[ppm]	0	0	0	0	0	0
Grobstaub in der Kanne	[g]	1,0	0,7	0,8	0,3	1,2	0,5
Feinstaub in der Kanne	[g]	0,4	0,1	0,3	0,3	0,3	0,3

22

Beispiel Nr.		25	26	27	28	29	30
A = ATZ	[%]	-	-	-	-	-	-
NIGU	[%]	50,6	46,5	43,5	37,4	48,0	-
Ca-DCA	[%]	-	-	-	-	-	-
Na-DCA	[%]	-	-	-	-	-	-
TAGN	[%]	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	-	51,7
<hr/>							
B = KNO ₃	[%]	39,4	-	45,9	-	41,4	-
Sr(NO ₃) ₂	[%]	-	38,5	-	52,1	-	37,8
NaNO ₃	[%]	-	-	-	-	-	-
<hr/>							
C = TiO ₂ ¹	[%]	-	-	-	-	-	-
ZrO ₂ ²	[%]	-	-	-	-	-	-
Al ₂ O ₃ ³	[%]	-	-	-	-	5,0	5,0
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-
Al ₂ O ₃ + 1% (Pd+Pt) ⁸	[%]	10,0	15,0	-	-	-	-
<hr/>							
D = Eisen(III)oxid ⁹	[%]	-	-	5,0	-	5,0	5,0
Aluminumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	5,0	10,0	-	-
<hr/>							
E = Graphit	[%]	-	-	0,6	0,5	0,6	-
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	-	-	0,5
<hr/>							
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	24,3	22,4	23,3	19,8	23,6	26,0
Temperatur (p=135*10 ⁵ Pa)	[K]	2430	2330	2130	2820	1970	2100
<hr/>							
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	4500	4000	6300	6700	8000	5500
Stickoxide	[ppm]	250	250	400	450	150	900
Ammoniak	[ppm]	0	0	0	0	250	10
Grobstaub in der Kanne	[g]	1,1	0,4	1,3	1,3	1,5	0,6
Feinstaub in der Kanne	[g]	0,2	0,3	0,4	0,5	0,3	0,4

20.03.98

23

Beispiel Nr.		31	32	33	34	35	36
A = ATZ	[%]	-	-	-	-	-	-
NIGU	[%]	-	43,0	17,7	9,0	18,1	16,0
Ca-DCA	[%]	27,8	3,0	17,7	23,8	-	-
Na-DCA	[%]	-	-	-	-	18,1	16,0
TAGN	[%]	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	-	-
B = KNO ₃	[%]	-	-	-	57,2	-	58,0
Sr(NO ₃) ₂	[%]	62,2	45,5	54,6	-	53,8	-
NaNO ₃	[%]	-	-	-	-	-	-
C = TiO ₂ ¹	[%]	-	-	-	-	-	-
ZrO ₂ ²	[%]	-	-	-	-	-	-
Al ₂ O ₃ ³	[%]	10,0	8,0	10,0	10,0	10,0	10,0
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-
Al ₂ O ₃ + 1%(Pd+Pt) ⁸	[%]	-	-	-	-	-	-
D = Eisen(III)oxid ⁹	[%]	-	-	-	-	-	-
Aluminumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	-	-
E = Graphit	[%]	-	-	-	-	-	-
Methylhydroxyethylcellulose ¹¹	[%]	-	0,5	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	-	-	-
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	11,4	22,5	15,8	14,0	17,4	14,7
Temperatur (p=135*10 ⁵ Pa)	[K]	2440	2470	2420	1780	2230	1780
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	2800	8000	3600	8000	10000	450
Stickoxide	[ppm]	700	1000	800	500	800	100
Ammoniak	[ppm]	0	0	0	50	3	2
Grobstaub in der Kanne	[g]	2,2	0,6	1,2	3,2	1,3	1,5
Feinstaub in der Kanne	[g]	0,5	0,3	0,4	0,4	0,2	0,3

Beispiel Nr.		37	38	39	40	41	42
A = ATZ	[%]	-	-	-	-	-	-
NIGU	[%]	-	-	-	-	-	-
Ca-DCA	[%]	26,0	28,7	-	-	-	-
Na-DCA	[%]	-	-	28,5	28,5	-	-
TAGN	[%]	-	-	-	-	48,6	22,7
GuNO ₃	[%]	-	-	-	-	-	22,7
<hr/>							
B = KNO ₃	[%]	-	61,3	-	61,0	41,4	34,6
Sr(NO ₃) ₂	[%]	59,6	-	61,5	-	-	-
NaNO ₃	[%]	-	-	-	-	-	-
<hr/>							
C = TiO ₂ ¹	[%]	14,0	10,0	10,0	10,0	-	-
ZrO ₂ ²	[%]	-	-	-	-	-	-
Al ₂ O ₃ ³	[%]	-	-	-	-	10,0	20,0
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-
Al ₂ O ₃ + 1%(Pd+Pt) ⁸	[%]	-	-	-	-	-	-
<hr/>							
D = Eisen(III)oxid ⁹	[%]	-	-	-	-	-	-
Aluminumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	-	-
<hr/>							
E = Graphit	[%]	-	-	-	-	-	-
Methylhydroxyethylcellulose ¹¹	[%]	0,4	-	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	0,5	-	-
<hr/>							
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	10,9	11,7	9,7	10,7	26,2	23,4
Temperatur (p=135*10 ⁵ Pa)	[K]	2400	1780	2240	1780	2140	1800
<hr/>							
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	1500	1800	2000	2500	3000	2700
Stickoxide	[ppm]	300	800	500	1000	150	350
Ammoniak	[ppm]	10	5	15	3	160	24
Grobstaub in der Kanne	[g]	1,0	1,7	1,1	1,5	1,4	0,8
Feinstaub in der Kanne	[g]	0,4	0,5	0,3	0,4	0,3	0,2

20.03.96

25

Beispiel Nr.		43	44	45	46	47	48
A = ATZ	[%]	17,7	-	-	-	-	-
NIGU	[%]	-	-	-	-	-	-
Ca-DCA	[%]	-	-	18,8	-	-	-
Na-DCA	[%]	-	-	-	-	-	-
TAGN	[%]	17,7	-	-	-	-	-
GuNO ₃	[%]	-	54,2	18,8	50,0	50,0	51,5
B = KNO ₃	[%]	44,6	35,8	52,4	-	-	-
Sr(NO ₃) ₂	[%]	-	-	-	39,4	39,4	38,0
NaNO ₃	[%]	-	-	-	-	-	-
C = TiO ₂ ¹	[%]	-	-	-	-	10,0	-
ZrO ₂ ²	[%]	-	-	-	-	-	10,0
Al ₂ O ₃ ³	[%]	20,0	5,0	10,0	10,0	-	-
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-
Al ₂ O ₃ + 1% (Pd+Pt) ⁸	[%]	-	-	-	-	-	-
D = Eisen(III)oxid ⁹	[%]	-	5,0	-	-	-	-
Aluminumsilikat ¹⁰	[%]	-	-	-	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	-	-
E = Graphit	[%]	-	-	-	0,6	0,6	-
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	0,5
Polyvinylbutyral	[%]	-	-	-	-	-	-
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	20,0	26,6	16,9	25,1	25,1	25,7
Temperatur (p=135*10 ⁵ Pa)	[K]	1810	1780	1780	2120	2130	2170
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	1000	5000	7000	6000	4000	3500
Stickoxide	[ppm]	150	400	150	800	100	500
Ammoniak	[ppm]	50	100	150	5	0	10
Grobstaub in der Kanne	[g]	1,0	2,0	1,8	1,5	1,0	0,5
Feinstaub in der Kanne	[g]	0,4	0,5	0,6	0,4	0,5	0,3

20.00.00

26

Beispiel Nr.		49	50	51	52	53	54
A = ATZ	[%]	29,75	30,2	30,2	26,5	26,8	33,7
NIGU	[%]	-	-	-	8,0	-	-
Ca-DCA	[%]	-	-	-	-	-	-
Na-DCA	[%]	-	-	-	-	-	-
TAGN	[%]	-	-	-	-	-	-
GuNO ₃	[%]	-	-	-	-	8,0	-
B = KNO ₃	[%]	50,25	49,8	49,8	32,5	32,2	56,3
Sr(NO ₃) ₂	[%]	-	-	-	-	-	-
NaNO ₃	[%]	-	-	-	15,0	15,0	-
C = TiO ₂ ¹	[%]	-	-	-	-	-	10,0
ZrO ₂ ²	[%]	3,0	10,0	-	-	-	-
Al ₂ O ₃ ³	[%]	14,0	10,0	10,0	18,0	18,0	-
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-	-	-	-
Al ₂ O ₃ + 1% (Pd+Pt) ⁸	[%]	3,0	-	-	-	-	-
D = Eisen(III)oxid ⁹	[%]	-	-	-	-	-	-
Aluminiumsilikat ¹⁰	[%]	-	-	10,0	-	-	-
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-	-	-	-
E = Graphit	[%]	-	-	-	-	-	-
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-	-	-	-
Polyvinylbutyral	[%]	-	-	-	-	-	-
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	17,6	17,8	19,3	19,4	19,7	19,8
Temperatur (p=135*10 ⁵ Pa)	[K]	1780	1780	1920	1800	1780	1820
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	2600	3000	4500	3500	6500	8000
Stickoxide	[ppm]	300	200	300	800	500	250
Ammoniak	[ppm]	23	50	50	0	5	300
Grobstaub in der Kanne	[g]	1,0	1,1	1,2	0,8	1,0	0,8
Feinstaub in der Kanne	[g]	0,2	0,4	0,5	0,2	0,2	0,3

20.03.98

27

Beispiel Nr.		55	56	57			
A = ATZ	[%]	30,35	31,66	29,75			
NIGU	[%]	-	-	-			
Ca-DCA	[%]	-	-	-			
Na-DCA	[%]	-	-	-			
TAGN	[%]	-	-	-			
GuNO ₃	[%]	-	-	-			
B = KNO ₃	[%]	49,65	-	50,25			
Sr(NO ₃) ₂	[%]	-	56,34	-			
NaNO ₃	[%]	-	-	-			
C = TiO ₂ ¹	[%]	-	-	-			
ZrO ₂ ²	[%]	-	-	-			
Al ₂ O ₃ ³	[%]	10,0	9,0	20,0			
Al ₂ O ₃ + 1%Pt ⁷	[%]	-	-	-			
Al ₂ O ₃ + 1%(Pd+Pt) ⁸	[%]	-	-	-			
D = Eisen(III)oxid ⁹	[%]	6,0	-	-			
Aluminiumsilikat ¹⁰	[%]	4,0	3,0	-			
Siliziumnitrid Si ₃ N ₄	[%]	-	-	-			
E = Graphit	[%]	-	-	-			
Methylhydroxyethylcellulose ¹¹	[%]	-	-	-			
Polyvinylbutyral	[%]	-	-	-			
Theoretische Werte:							
Gasausbeute (V=konstant)	[mol/kg]	18,2	18,8	17,6			
Temperatur (p=135*10 ⁵ Pa)	[K]	1780	2390	1780			
Gemessene Werte (in 60 dm ³ Kanne):							
Kohlenmonoxid	[ppm]	6000	7500	3500			
Stickoxide	[ppm]	100	250	400			
Ammoniak	[ppm]	150	0	0			
Grobstaub in der Kanne	[g]	1,5	0,7	0,7			
Feinstaub in der Kanne	[g]	0,4	0,3	0,3			

Die Abbrände wurden in einem praxisnahen Gasgeneratorgehäuse für den 60 Liter Fahrer-Airbag durchgeführt, mit Originalabmessungen, -anzünder und Filterpaket aus Edelstahl.

5 Das eingesetzte Gasgeneratortreibsatzgewicht betrug 50 bis 55 g, je nach Gasausbeute der jeweiligen Gasgeneratortreibstoff-Rezeptur.

Die Pellets hatten je nach Abbrandeigenschaften einen Durchmesser von 4 bis 6 mm, bei einer Pellethöhe von 1,5 bzw. 2,1 mm.

10 Die Gasausbeute und die Temperatur liegt im für Gasgeneratortreibstoffe für Airbags günstigen Bereich.

Bei der Angabe „Grobstaub“ und „Feinstaub“ in der Tabelle handelt es sich um den Schmutz in der Kanne nach der Verbrennung.

15

Die in der vorstehenden Tabelle angegebenen gemessenen Werte für CO, NO_x und NH₃ beziehen sich auf eine 60 Liter-Kanne. Hierbei handelt es sich um gute Werte für einen nicht optimierten Versuchsgasgenerator.

20 Aus dem Vergleich der Beispiele 14 mit 15, 17 mit 18 und 20 mit 21 ist der Effekt der hochdispersen Oxide im Vergleich zu den herkömmlichen Oxiden ersichtlich. Die Verringerung des Partikelausstoßes (Grob -und Feinstaub) betrug bei dem System Nitroguanidin/ Strontiumnitrat aufgrund der speziellen, erfindungsgemäß verwendeten hochdispersen Schlackenfänger (C) ca. 20 bis 40% im Vergleich zu den herkömmlichen

25 Oxiden gleicher chemischer Strukturformel, aber geringerer spezifischer Oberfläche. Ebenfalls ersichtlich ist die Verringerung der toxischen Gasanteile um ca. 10 bis 25% bedingt durch die Verbesserung der Verbrennung aufgrund der speziellen, erfindungsgemäß verwendeten Schlackenfänger (C) und deren Eigenschaften.

30 Weiterhin ist aus dem Vergleich, z.B. der Gasgeneratortreibstoffe der Beispiele 2 mit 8 und 10 der zusätzliche günstige Effekt bei der Verwendung von mit Katalysatoren dotierten hochdispersen Schlackenfängern (C) auf die Bildung von toxischen Gasanteilen ersichtlich.

20.03.98

29

Der Anteil an CO und NO_x liegt bei den Beispielen 8 und 10 (mit Katalysator) unter den in Beispiel 2 (ohne Katalysator, aber ansonsten mit gleicher Zusammensetzung) angegebenen Werte.

5 Besonders bevorzugte Zusammensetzungen sind die der Beispiele 14, 17 und 20.

Die thermodynamischen Daten der einzelnen Gasrezepteuren wurden auf den Sauerstoffbilanzüberschuß hin berechnet, der möglichst wenig toxische Gasentwicklung beim Abbrand versprach.

10

Neue Deutsche Patentanmeldung
NIGU Chemie GmbH
Postfach 1620
D-84469 Waldkraiburg
5 U.Z.: 95-2

Patentansprüche

1. Gasgeneratortreibstoff, umfassend

10

(A) mindestens einen Brennstoff aus der Gruppe bestehend aus Guanidiniumnitrat (GUNI; GuNO₃), Dicyanamid, Ammoniumdicyanamid, Natriumdicyanamid (Na-DCA), Kupferdicyanamid, Zinndicyanamid, Calciumdicyanamid (Ca-DCA), Guanidiniumdicyanamid (GDCA), Aminoguanidiniumbicarbonat (AGB), 15 Aminoguanidiniumnitrat (AGN), Triaminoguanidiniumnitrat (TAGN), Nitroguanidin (NIGU), Dicyandiamid (DCD), Azodicarbonamid (ADCA) sowie Tetrazol (HTZ), 5-Aminotetrazol (ATZ), 5-Nitro-1,2,4-triazol-3-on (NTO), deren Salze und deren Gemische,

15

(B) mindestens ein Alkali- oder Erdalkalinitrat oder Ammoniumnitrat, -chlorat oder -perchlorat,

20

(C) mindestens einen hochschmelzenden, im wesentlichen chemisch inerten Schlackenfänger, ausgewählt aus der Gruppe umfassend Al₂O₃, TiO₂ und ZrO₂ in hochdisperser Form oder Gemische davon.

25

2. Gasgeneratortreibstoff nach Anspruch 1, wobei Komponente (A) in einer Menge von etwa 20 bis 60 Gew.-%, vorzugsweise von etwa 28 bis 52 Gew.-% und insbesondere von etwa 45 bis 51 Gew.-%, Komponente (B) in einer Menge von etwa 38 bis etwa 63 Gew.-%, vorzugsweise von etwa 38 bis etwa 55 Gew.-% und insbesondere von etwa 39 bis 45 Gew.-%, Komponente (C) in einer Menge von etwa 5 bis 22 Gew.-%, vorzugsweise von etwa 8 bis 30 20 Gew.-% und insbesondere von etwa 9 bis 11 Gew.-% vorliegt.

3. Gasgeneratortreibstoff nach Anspruch 1 oder 2, wobei Komponente (A) ausgewählt ist aus der Gruppe bestehend aus Nitroguanidin, 5-Aminotetrazol, Dicyandiamid, Dicyanamid, Natrium- und Calciumdicyanamid und Guanidiniumnitrat, und deren Gemische.

5 4. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 3, wobei Komponente (B) ausgewählt ist aus der Gruppe bestehend aus Natrium-, Kalium- oder Strontiumnitrat.

10 5. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 4, wobei Komponente (C) ausgewählt ist aus der Gruppe bestehend aus hochdispersem Al_2O_3 , hochdispersem TiO_2 oder hochdispersem ZrO_2 .

15 6. Gasgeneratortreibstoff nach Anspruch 5, wobei Komponente (C) ausgewählt ist aus der Gruppe bestehend aus hochdispersem Al_2O_3 mit einer spezifischen Oberfläche von $100 +/- 15 \text{ m}^2/\text{g}$, hochdispersem TiO_2 mit einer spezifischen Oberfläche von $50 +/- 15 \text{ m}^2/\text{g}$ oder hochdispersem ZrO_2 mit einer spezifischen Oberfläche von $40 +/- 10 \text{ m}^2/\text{g}$.

20 7. Gasgeneratortreibstoff nach Anspruch 5, wobei ein Teil der Komponente (C) als Träger dient, auf dem ein Platinmetall oder eine Metallegierung aus Platinmetallen oder Kupfer in einer katalytisch wirksamen Schichtdicke aufgebracht ist.

25 8. Gasgeneratortreibstoff nach Anspruch 7, wobei das Platinmetall ausgewählt ist aus Ruthenium (Ru), Osmium (Os), Rhodium (Rh), Iridium (Ir), Palladium (Pd) oder Platin (Pt).

9. Gasgeneratortreibstoff nach Anspruch 7, wobei die Metallegierung aus Platinmetallen ausgewählt ist aus Pt/Pd- und Pt/Rh-Legierungen.

10. Gasgeneratortreibstoff nach einem der Ansprüche 7 bis 9, wobei der Gewichtsanteil des Katalysators an der Komponente (C) 0,1-5 Gew.-%, vorzugsweise 0,2-1,2 Gew.-% beträgt.

30 11. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 10, wobei Komponente (A) Nitroguanidin ist, Komponente (B) Strontiumnitrat ist und Komponente (C) hochdisperses Al_2O_3 , TiO_2 oder ZrO_2 ist.

12. Gasgeneratortreibstoff nach Anspruch 11, wobei Komponente (A) in einer Menge von 45 bis 51 Gew.-% vorliegt, Komponente (B) in einer Menge von 39 bis 45 Gew.-% vorliegt und Komponente (C) in einer Menge von 9 bis 11 Gew.-% vorliegt, jeweils bezogen auf die Gesamtzusammensetzung.

13. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 11, wobei zusätzlich Komponente (D) mindestens ein Schlackenbildner, ausgewählt aus Alkali- und Erdalkalimetallcarbonaten, Alkalimetall- oder Erdalkalimetalloxiden, Silikaten, Aluminaten, Aluminiumsilikaten, Siliciumnitrid (Si_3N_4) und Eisen(III)oxid anwesend ist.

14. Gasgeneratortreibstoff nach Anspruch 13, wobei Komponente (D) in einer Menge von etwa 2 bis 12 Gew.-%, vorzugsweise in einer Menge von etwa 4 bis 10 Gew.-% vorliegt.

15. Gasgeneratortreibstoff nach einem der Ansprüche 1 bis 14, wobei zusätzlich Komponente (E) mindestens ein in Wasser bei Raumtemperatur lösliches Bindemittel enthalten ist.

16. Gasgeneratortreibstoff nach Anspruch 15, wobei das Bindemittel ausgewählt ist aus der Gruppe bestehend aus Celluloseverbindungen, Polymerisaten aus einem oder mehreren polymerisierbaren olefinisch ungesättigten Monomeren, einem in Wasser bei Raumtemperatur unlöslichen Metallsalz der Stearinsäure oder Graphit.

17. Gasgeneratortreibstoff nach Anspruch 15 oder 16, wobei das Bindemittel in einer Menge von 0 bis 2 Gew.-%, vorzugsweise von 0,3-0,8 Gew.-% vorliegt.

18. Verwendung des Gasgeneratortreibstoffs nach einem der Ansprüche 1 bis 17 als Gaserzeugungsmittel in Airbags, als Löschmittel oder Treibmittel.