

STATISTICAL MODELLING: Theory and practice

Project 2: Survival data

15 December 2020 DTU Compute Project 2: Survival data

GOALS: Binary data

AZT	AIDS_yes	Total
Yes	25	170
No	44	168

Assignment 1

- 1. Data overview
- 2. Fit a **binomial distribution** to the data
- 3. Fit the binomial separately to the two distributions and **test group difference**
- 4. Estimate parameters in the model using log odds-ratio and report confidence interval

Assignment 2

- 1. Fit a **logistic regression** for the binary outcome "AIDS" = yes vs "AIDS" = no and present the odds ratio for the AZT effect on AIDS.
- Test the hypothesis (H0) of no effect of AZT using:
 - a. Likelihood ratio test
 - b. Wald test
 - c. Score test

15 December 2020 DTU Compute Project 2: Survival data

Assignment 1: DATA OVERVIEW

Data overview

Is this visual difference significant?

$$H_0: p_{AZT} = p_{noAZT}$$

 $H_1: p_{AZT} \neq p_{noAZT}$

Test of equal proportions : p_AZT and p_noAZT

Based on this we can reject the null hypothesis

Assignment 1: FIT BINOMIAL DISTRIBUTION, TEST GROUP DIFFERENCE

All data regardless of treatment

$$L(\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}.$$

$$x = 338$$
, $n = 69$

Group data per treatment

$$L(\theta) = \binom{n}{x} \theta^x (1-\theta)^{n-x}$$

 $\theta_1 \rightarrow \text{Treatment}: \quad n = 25; \quad x = 170$

 $\theta_0 \rightarrow \text{No treatment : n = 44 ; x = 168}$

 $\theta_1 = 0.1470588$ $\theta_0 = 0.2619048$

CI = [0.09926, 0.2054156]CI = [0.199347, 0.331655]

BINARY DATA

Log odds-ratio

$$\begin{aligned} \mathbf{p_0} &= & \frac{e^{\eta}}{1 + e^{\eta}} \\ \mathbf{p_1} &= & \frac{e^{\theta + \eta}}{1 + e^{\theta + \eta}} \end{aligned}$$

Likelihood contour -1.5 -1.0 -0.50.0

Likelihood of Log odds-ratio

$$= e^{\theta x} e^{\eta(x+y)} (1 + e^{\theta+\eta})^{-m} (1 + e^{\eta})^{-n}$$

$$\widehat{\theta} = \log \frac{x/(m-x)}{y/(n-y)}.$$
 $\operatorname{se}(\widehat{\theta}) = \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{m-x} + \frac{1}{n-y}\right)^{1/2}$

$$\eta = -1.0360920$$
 $\theta = -0.7217664$

$$\eta$$
 = -1.0360920 θ = -0.7217664 CI = [-0.1643134, -1.279219]

 $L(\theta, \eta) =$

Assignment 2: FIT THE REGRESSION MODEL

AZT	AIDS_yes	Total
Yes	25	170
No	44	168

Logistic regression

$$p(x)=\sigma(t)=rac{1}{1+e^{-(eta_0+eta_1x)}}$$

Log-odds ratio

$$logit(p) = log(\frac{p}{1-p})$$

$$p = \frac{exp(\beta_0 + \beta_1 x_1 + ... + \beta_x x_x)}{1 + exp(\beta_0 + \beta_1 x_1 + ... + \beta_x x_x)}$$

AIC: 344.12

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.0361 0.1755 -5.904 3.54e-09 ***
x -0.7218 0.2787 -2.590 0.00961 **
```

AIC: 339.19

	Log-odds	2.5%	97.5%
model ₁	0.4859	0.2783	0.833

BINARY DATA

HYPOTHESIS TO TEST

$$H_0$$
: $model_0 = model_1$
 H_1 : $model_0 \neq model_1$

LIKELIHOOD RATIO TEST

$$\widetilde{Q} = -2\log\left(\frac{L(\theta_0)}{L(\theta_1)}\right) \longrightarrow \chi^2 \longrightarrow p\text{-value} = 0.00848 (df=2) **$$

WALD TEST

$$z = \frac{\widehat{\theta} - \theta_0}{se(\widehat{\theta})} \longrightarrow N(0,1) \longrightarrow p\text{-value} = 0.0048 **$$

BINARY DATA

SCORE TEST

HYPOTHESIS TO TEST $H_0: model_0 = model_1$ $H_1: model_0 \neq model_1$

1. Calculate probability of a patient having AIDS

$$\theta_{i} = \frac{exp(\beta_{0} + \beta_{1}x)}{1 + exp(\beta_{0} + \beta_{1}x)}$$

2. Calculate $S(\theta)$ and $I(\theta)$

3. Solve the equation:

transpose(S(
$$\theta$$
)) Information matrix (I(θ)) S(θ)
$$t(S(\widehat{\beta}))V(S(\widehat{\beta}))^{-1}S(\widehat{\beta})$$

4. Calculate p-value

$$\chi^2$$
 p-value = 0.0088 **

GOALS: Survival time series

Assignment 1

- 1. Overview of AIDS with treatment effect
- 2. Fit **exponential distribution** to time:
 - a. All data
 - b. For the two treatments
- 3. Likelihood comparison
- 4. Find MLE of a **log-odds model** and compare with previous model
- 5. Find **Wald interval** for the treatment parameter
- Derive theoretical results

Assignment 2

- 1. Descriptive statistics
- 2. Fit parametric survival models: Exponential, Weibull and Log-logistic
- 3. Choose best model:
 - a. Present model
 - b. Calculate Time ratio and hazard ratio
 - c. Asses model with Cox-Snell residual

Study length:

Treatment	Event	Number	Proportion
Yes	Yes	514	0.446
Yes	No	63	0.055
No	Yes	541	0.470
No	No	33	0.028

Event = AIDS or death Treatment = AZT

Assignment 1 FIT EXPONENTIAL DISTRIBUTION, GROUP DIFFERENCE

All data regardless of treatment

$$f(y) = \frac{1}{\lambda} e^{-y/\lambda}$$

$$LogL(x \mid \theta) = \sum_{i=1}^{n} ln(\theta) - \theta x_{i}$$

θ

Group data per treatment

$$LogL(x \mid \theta) = \sum_{i=1}^{n} ln(\theta) - \theta x_i$$

 $\theta_1 \rightarrow \text{Treatment}$

 $\theta_0 \rightarrow No Treatment$

Log odds-ratio

$$\pi_y = \frac{e^{\eta}}{1 + e^{\eta}}$$

$$\pi_x = \frac{e^{\theta + \eta}}{1 + e^{\theta + \eta}}$$

Likelihood of Log odds-ratio

$$L(\theta, \eta) = e^{\theta x} e^{\eta(x+y)} (1 + e^{\theta+\eta})^{-m} (1 + e^{\eta})^{-n}$$

$$\widehat{\theta} = \log \frac{x/(m-x)}{y/(n-y)}. \qquad \operatorname{se}(\widehat{\theta}) = \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{m-x} + \frac{1}{n-y}\right)^{1/2} \qquad \begin{array}{l} \eta = -1.0360920 \\ \theta = -0.7217664 \end{array} \quad \begin{array}{l} \operatorname{CI} = [\ 0.2780036 \ , \ 1.120342 \] \\ \operatorname{CI} = [\ 7.377432 \ , \ 7.871296 \] \end{array}$$

$$\eta$$
 = -1.0360920 CI = [0.2780036 , 1.120342 θ = -0.7217664 CI = [7.377432 , 7.871296]

13

Assignment 2:

SURVIVAL and **CUMULATIVE** incidence

Survival

Cumulative incidence

Event = AIDS or death Treatment = AZT

Assignment 2: SURVIVAL COMPARISON

Log-Rank test

$$Q = \frac{\left(\sum_{i=1}^{m} w_i (d_{1i} - \hat{e}_{1i})\right)^2}{\sum_{i=1}^{m} w_i \hat{v}_{1i}} \qquad w_i = 1,$$

```
Call:
    survdiff(formula = Surv(time, event == 1) ~ tx,
data = survival,
    rho = 1)
```

N Observed Expected (O-E)^2/E (O-E)^2/V tx=0 577 60.1 45.1 5.02 10.3 tx=1 574 31.7 46.8 4.84 10.3

Chisq= 10.3 on 1 degrees of freedom, p=0.001

Reject null hypothesis

HYPOTHESIS TO TEST

$$H_0: S(t)_{tx} = S(t)_{no_tx}$$

H₀ = Both groups survive the same, thus the treatment has no effect

EXPONENTIAL MODEL FITTING

Call:

```
Value Std. Error z p
(Intercept) 6.71473 0.15647 42.9 < 2e-16
cd4 0.01609 0.00251 6.4 1.5e-10
tx1 0.66680 0.21489 3.1 0.0019
```

Scale fixed at 1

Exponential distribution

Loglik(model) = -819.9 Loglik(intercept only) = -856.6 Chisq= 73.36 on 2 degrees of freedom, p= 1.2e-16 Number of Newton-Raphson Iterations: 7 n= 1151

EXPONENTIAL REGRESSION MODEL

$$S(t) = exp\left(-\frac{t}{exp(\beta_0 + \beta_1 x + \beta_2 x)}\right)$$

Confidence intervals

	2.5%	97.5%
b0	6.408	7.021
Cd4 (b1)	0.011	0.021
Tx (b2)	0.246	1.088

Call:

```
survreq(formula = Surv(time, event == 1) ~ cd4 + tx,
        data = survival, dist = "exponential")
```

```
Value Std. Error
(Intercept) 6.71473 0.15647 42.9 < 2e-16
        0.01609 0.00251 6.4 1.5e-10
cd4
tx1 0.66680 0.21489 3.1
                               0.0019
```

Scale fixed at 1

Exponential distribution

Loglik(model) = -819.9Loglik(intercept only) = -856.6Chisq= 73.36 on 2 degrees of freedom, p= 1.2e-16Number of Newton-Raphson Iterations: 7 n = 1151

WEIBULL REGRESSION MODEL

$$S(t) = exp\left(-t^{1/\sigma}exp\left(-\frac{1}{\sigma}x^{T}\beta\right)\right)$$

Confidence intervals

	2.5%	97.5%	
bo	6.563	7.552	
Cd4 (b1)	0.013	0.028	
Tx1 (b2)	0.27	1.4	

LOG-LOGISTIC MODEL FITTING

Call:

Scale= 1.22

Log logistic distribution

Loglik(model) = -815.8

Loglik(intercept only) = -852.7

Chisq= 73.73 on 2 degrees of freedom, p= 9.8e-17

Number of Newton-Raphson Iterations: 6

n= 1151

LOG-LOGISTIC REGRESSION MODEL

$$S(t) = \frac{1}{1 + exp\left(\frac{\log(t) - \left(\beta_0 + \beta_1 x + \beta_2 x\right)}{\sigma}\right)}$$

Confidence intervals

		2.5%	97.5%
bo		6.327	7.324
Cd4 (b1)	0.013	0.028
Tx1 (b2)	0.275	1.411

	AIC
Exponential	1645.838
Weibull	1640.671
Log-Logistic	1639.655

Exponential

Weibull

Log-logistic

15 December 2020 DTU Compute Project 2: Survival data 18

LOG-LOGISTIC MODEL

Time Ratio

	TR	2.5%	97.5%
Intercept	921.35	559.46	1517.33
cd4	1.021	1.013	1.028
tx	2.323	1.316	4.1
cd4*50	2.829	1.959	4.086

Hazard Ratio

	HR	2.5%	97.5%
Intercept	0.001	0.0007	0.002
cd4	0.979	0.972	0.99
tx	0.430	0.244	0.76
cd4*50	0.353	0.510	0.244

SURVIVAL DATA

Cox Snell Residuals = $r_i = -\log(S(t))$

Cox-Snell Diagnostic plot

19

 When we increase the CD4 (cells/ml) by 50 the median survival time increases by 2.829.

We can conclude that the more CD4 cells number is increased, the longer the patient will go without suffering an event

20

15 December 2020

References

Pawitan Y. In All Likelihood: Statistical Modelling and Inference Using Likelihood. OUP Oxford; 2001. (Oxford science publications)

Code for the project can be found at <u>Statistical Modelling</u>

15 December 2020 DTU Compute Project 2: Survival data

DTU

15 December 2020 DTU Compute Project 2: Survival data