MATH 447, Differential Equations

Dr. Adam Larios

No calculators or notes

Answers without full, proper justification will not receive full credit.

Possibly useful formulas:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

1. (4 points) Let Q be a unitary matrix. Show that for any $\mathbf{x}, \mathbf{y}, (Qx, Qy) = (x, y), \text{ where } (\cdot, \cdot)$ denotes the inner-product.

$$(Q \times Q) = (x, Q \times Q) = (x, Iy) = (x, y)$$
adjoint
property

Since Q is unitary

2. (5 points) Let A be a positive-definite matrix. Show that its eigenvalues are positive.

Let x, & be an eigenpair for A, i.e. Ax=xx, x+0. Then

3. (10 points) Let A be an $n \times n$ matrix. Show that $||A||_2 \le \sqrt{n} ||A||_{\infty}$. (This was a homework $||A||_{\infty} = ||A||_{\infty}$)

$$||A||_{2} = \max_{x \neq 0} \frac{||Ax||_{2}}{||x||_{2}} = \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{2}}$$

$$\leq \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \lim_{x \to 0} \frac{||Ax||_{\infty}}{||x||_{\infty$$

Since Izillo 5 Izillo for vector norms

4. (10 points) Show that $||A||_2 = ||A||_F$ if and only if rank(A) = 1. (Hint: Consider the SVD of A.) Let of, , or be the singular values of A. Recall:

If
$$\sigma_{1} = ||A||_{2} = ||A||_{F} = \sqrt{\sigma_{1}^{2} + \cdots + \sigma_{r}^{2}}$$
, then we must have $\sigma_{2} = \sigma_{3} = \cdots = \sigma_{r} = 0$
Thus $rank(A) = 1$.

- 5. (12 points) Let A be a non-singular matrix.
 - (a) Show that A^*A is **self-adjoint** (i.e., Hermitian) and **positive-definite**.

(b) Find a Cholesky decomposition of A^*A (Hint: Use QR-factorization.)

- 6. (10 points) Let \mathbf{q} be a unit vector (i.e., $\|\mathbf{q}\|_2 = 1$). Define a Householder matrix via $H = I \alpha \mathbf{q} \mathbf{q}^*$, where I is the identity matrix and $\alpha > 0$. (Note: You don't have to understand the Householder algorithm to do these problems.)
 - (a) For which values of $\alpha > 0$ is H unitary?

$$H^*H = (I - \alpha qq^*)(I - \alpha qq^*) = (I - \alpha q^*q^*)(I - \alpha qq^*) = (I - \alpha qq^*)(I - \alpha qq^*)$$

$$= I - \lambda \alpha qq^* + \alpha^2 qq^*qq^* = I + (-\lambda \alpha + \alpha^2)qq^* = I$$
(b) Is H a projection? Show why or why not.

Note that $H^* = H$ (see above).

Note that $H^* = H$ (see above).

Thus
$$H^2 = H^*H = I + (-2\alpha + \alpha^2)qq^*$$

Thus $H^2 = H$ if and only if $-2\alpha + \alpha^2 = -\alpha \Rightarrow \alpha^2 = \alpha \Rightarrow \alpha = 0$ or 1.
 $\Rightarrow H$ is a projection only if $\alpha = 0$.

7. (15 points) Recall the ℓ^1 -norm of a vector $\mathbf{x} = (x_1, x_2, \dots, x_m)$, given by $\|\mathbf{x}\|_1 = \sum_{i=1}^m |x_i|$. Prove that it is a norm by showing that it satisfies the axioms of being a norm.

$$||\vec{x}||_1 = 0 \Rightarrow \underbrace{\tilde{x}}_{i=1} ||x_i||_2 = 0 \Rightarrow \text{ all } ||x_i||_2 = 0 \text{ for all } i \Rightarrow \vec{x} = (0, \dots, 0) = \vec{0}.$$

$$A|_{SO} \quad \vec{x} = \vec{0} \Rightarrow ||\vec{x}||_1 = \underbrace{\tilde{x}}_{i=1} ||0| = 0.$$

$$||x|| = \sum_{i=1}^{\infty} |x_i| = \sum_{i=1}^{\infty} |x_i| = |x| \sum_{i=1}^{\infty} |x_i| = |x| ||x|||$$

$$||\vec{x} + \vec{y}|| = \sum_{i=1}^{m} ||x_i + \vec{y}_i|| \leq \sum_{i=1}^{m} (|x_i| + |y_i|) = \sum_{i=1}^{m} ||x_i|| + \sum_{i=1}^{m} ||y_i|| = ||\vec{x}||_{L^{\infty}} ||\vec{y}||_{L^{\infty}}$$

$$||\vec{x} + \vec{y}||_{L^{\infty}} = \sum_{i=1}^{m} ||x_i||_{L^{\infty}} ||\vec{y}||_{L^{\infty}} ||\vec{y}||_{L^{\infty}}$$

8. (12 points) Let A and B be $m \times m$ matrices. Let $\|\cdot\|$ be a (vector) norm on \mathbb{C}^m , and let $\|\cdot\|_*$ be the induced (matrix) norm on $m\times m$ matrices. Show that

$$||AB||_* \le ||A||_* ||B||_*$$

9. (10 points) Let A an upper-triangular matrix with entries a_{ij} . Consider solving the problem $A\mathbf{x} = \mathbf{b}$ for \mathbf{x} by following back-substitution algorithm:

I division (10)
$$x_m = b_m/a_{m,m}$$

I mult , I div (20) $x_{m-1} = (b_{m-1} - a_{m-1,m}x_m)/a_{m-1,m-1}$
 a_{mn} | a_{m-1} | $a_{m-2,m-1}$ | $a_{m-2,m-1}$ | $a_{m-2,m-1}$ | $a_{m-2,m-2}$ | $a_{m-2,m-1}$ | $a_{m-1,m-1}$ | $a_{m-1,m-1$

10. (12 points) Let P be an orthogonal projection, and let y = Px and z = x - y. Show that

z and y are orthogonal.
$$P \stackrel{*}{=} P$$
, $P \stackrel{?}{=} P$

$$(z_{y}) = z^{*}y = (x-y)^{*}y = x^{*}y-y^{*}y = x^{*}(P_{x})-(P_{x})^{*}P_{x}$$

$$P^{*}=P$$

$$= \times^{*}P_{\times} - \times^{*}P^{*}P_{\times}$$

$$= \times^{*}P_{\times} - \times^{*}P^{*}$$

$$= \times^{*}P_{\times} - \times^{*}P^{\times}$$

$$= \times^{*}P_{\times} - \times^{*}P_{\times}$$