Міністерство освіти і науки України НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ"

Кафедра прикладної математики

ЕТАП №3

«Вирішення контрольних прикладів РОЗРАХУНКОВО-ГРАФІЧНОЇ РОБОТИ»

з дисципліни: «Програмування» 1-й семестр на тему: «Програмаобчисленнявизначених інтегралів за квадратурнимиформулами (формули Сімпсона)»

Виконав: Хавронюк Богдан Андрійович Група КМ-02, факультет ФПМ

Керівник: Олефір О.С.

контрольні приклади

Розглянемо для прикладу завдання:

Обчислити наближено визначений інтеграл за формулою Сімпсона з точністю до 0,001. Розбиття почати з двох відрізків 2n=2

$$I = \int_{12}^{2} \sqrt{1 + 2x^2 - x^3} dx$$

Починаємо вирішувати. Якщо у нас два відрізки розбиття, то вузлів буде на один більше: x_0 , x_1 , x_2 . І формула Сімпсона приймає вельми компактний вигляд:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f(x_0) + f(x_2) + 4f(x_1)]$$

Порахуємо крок розбиття :
$$h = \frac{(b-a)}{2n} = \frac{(2-1,2)}{2} = \frac{0,8}{2} = 0,4$$

Заповнимо розрахункову таблицю:

i	0	1	2
X_t	1,2	1,6	2
$f(x_i)$	1,466970	1,422674	1

В результаті:

$$\int_{12}^{2} \sqrt{1 + 2x^2 - x^3} dx \approx \frac{0.4}{3} [1,466970 + 1 + 4 \cdot 1,422674] \approx 1,087689 \qquad (I_2)$$

первинний результат отримано. Тепер подвоюємо кількість відрізків до чотирьох: 2n = 4. Формула Сімпсона для даного розбиття приймає наступний вигляд:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \Big[f(x_0) + f(x_4) + 2f(x_2) + 4(f(x_1) + f(x_3)) \Big]$$

Порахуємо крок розбиття:

$$h = \frac{(b-a)}{2n} = \frac{(2-1,2)}{4} = \frac{0,8}{4} = 0,2$$

Заповнимо розрахункову таблицю:

i	0	1	2	3	4
x_i	1,2	1,4	1,6	1,8	2
$f(x_i)$	1,466970	1,475127	1,422674	1,283745	1

таким чином:

$$\int_{12}^{2} \sqrt{1 + 2x^2 - x^3} dx \approx \frac{0.2}{3} [1,466970 + 1 + 2 \cdot 1,422674 + 4 \cdot (1,475127 + 1,283745)] \approx 1,089854$$
 (I₄)

Знайдемо абсолютне значення різниці між наближеннями:

$$|I_4 - I_2| \approx |1,089854 - 1,087689| = 0,002165$$

Далі можна, застосувати правило Рунге, адже при використанні в методі трапецій воно дає похибку всього в одну третю

$$\frac{1}{15} |I_4 - I_2| \approx \frac{1}{15} \cdot 0,002165 = 0,000144 < 0,001$$

$$I = \int_{1.2}^{2} \sqrt{1 + 2x^2 - x^3} dx \approx I_4 \approx 1,089854 \approx 1,090$$

Або можна використати класичний метод:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \Big[f(x_0) + f(x_3) + 2(f(x_2) + f(x_4) + f(x_6)) + 4(f(x_1) + f(x_3) + f(x_5) + f(x_7)) \Big]$$

$$_{\text{Крок}}$$
: $h = \frac{(b-a)}{2n} = \frac{(2-1,2)}{8} = \frac{0,8}{8} = 0,1$

таблиця:

i	0	1	2	3	4	5	6	7	8
X_{j}	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
$f(x_i)$	1,466970	1,477498	1,475127	1,457738	1,422674	1,366382	1,283745	1,166619	1

$$\begin{split} \int_{1,2}^2 \sqrt{1+2x^2-x^3} dx \approx \frac{0,1}{3} \begin{bmatrix} 1,466970 & +1+2\cdot(1,475127 & +1,422674 & +1,283745 &)+\\ +4\cdot(1,477498 & +1,457738 & +1,366382 & +1,166619 &) \end{bmatrix} = \\ \mathcal{L}_{\text{Aлi}} : & = \frac{0,1}{3} \cdot (2,466970 & +8,363090 & +21,872948 &) = \frac{0,1}{3} \cdot 32,703008 & =1,090100 & (I_8) \end{split}$$

$$\approx \frac{0.1}{3} \begin{bmatrix} 1,466970 & +1+2 \cdot (1,475127 & +1,422674 & +1,283745 &) & + \\ +4 \cdot (1,477498 & +1,457738 & +1,366382 & +1,166619 &) \end{bmatrix} = 1,090100$$

Похибка : $|I_8 - I_4| \approx |1,090100 - 1,089854| = 0,000247$

Похибка менше необхідної точності:. Залишилося взяти найбільш точне значення, округлити його до трьох знаків після коми і записати:

$$I = \int\limits_{1,2}^2 \sqrt{1 + 2x^2 - x^3} dx \approx 1,090$$
 Відповідь :