Calculus I Homework Review Trigonometry Lecture 2

- 1. The problem is too easy to appear on a quiz or test. Convert from degrees to radians.
 - (a) 15° .

(h) 120° .

(i) 135° .

(n) 305° .

(o) 360° .

(b) 30° .

answer: $\frac{\pi}{21} \approx 0.261799388$

answet: $\frac{2\pi}{3}$

answer: $\frac{61\pi}{36} \approx 5.323254$

 $877893523.0 \approx \frac{\pi}{8}$:19Weris

answet: $\frac{3\pi}{4}$

(c) 36° .

answer: $\frac{\pi}{5} \approx 0.628318531$

- (i) 150° .
- (p) 405° .

(r) -900° .

(s) -2014° .

(d) 45° .

E0189E387.0 ≈ \frac{\pi}{\pi} :Towere

- (k) 180° .
- answet: $\frac{6\pi}{6}$ (q) 1200° .

#Z HOWSUE

answer: $\frac{\pi}{4}$

(e) 60°.

π :Towsne

answer: $\frac{20\pi}{3}$

(f) 75° .

1337917 \pm 0.1 $pprox \frac{\pi}{8}$:19Wers

(l) 225°.

answet: $\frac{\pi}{4}$

πδ− ::answer

(g) 90° .

(m) 270° .

- $189031.38 \approx \pi \frac{7001}{99}$: Tawans
- 2. The problem is too easy to appear on a quiz or test. Convert from radians to degrees. The answer key has not been proofread, use with caution.
 - (a) 4π .

(d) $\frac{4}{3}\pi$.

(g) 5.

(b) $-\frac{7}{6}\pi$.

answer: 720° (e) $-\frac{3}{8}\pi$.

- - (h) -2014.

(c) $\frac{7}{12}\pi$.

suswer: 105°

answer: -362520°

 $_{\circ}987 \approx _{\circ} \left(\frac{100}{100}\right) \approx 580$

(f) 2014π .

answer: 362520°

- 3. Prove the trigonometry identities.
 - (a) $\sin \theta \cot \theta = \cos \theta$.
 - (b) $(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta).$
 - (c) $\sec \theta \cos \theta = \tan \theta \sin \theta$.
 - (d) $\tan^2 \theta \sin^2 \theta = \tan^2 \theta \sin^2 \theta$
 - (e) $\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$.
 - (f) $2\csc(2\theta) = \sec\theta\csc\theta$.

 - $(g) \tan(2\theta) = \frac{2\tan\theta}{1 \tan^2\theta}.$ $(h) \frac{1}{1 \sin\theta} + \frac{1}{1 + \sin\theta} = 2\sec^2\theta.$
 - (i) $\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$.

- (j) $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta}$
- (k) $\sin(3\theta) + \sin \theta = 2\sin(2\theta)\cos \theta$.
- (1) $\cos(3\theta) = 4\cos^3\theta 3\cos\theta$.
- (m) $1 + \tan^2 \theta = \sec^2 \theta$.
- (n) $1 + \csc^2 \theta = \cot^2 \theta$.
- (o) $2\cos^2(2x) = 2\sin^4\theta + 2\cos^4\theta \sin^2(2\theta)$.
- (p) $\frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 \tan\left(\frac{\theta}{2}\right)} = \tan\theta + \sec\theta.$
- 4. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.

(a)
$$2\cos x - 1 = 0$$
.
 $\frac{\varepsilon}{\mu G} = x$ so $\frac{\varepsilon}{\mu} = x$ signstif

(b)
$$\sin(2x) = \cos x$$
.
$$\frac{9}{2} = x \cdot 10^{\circ} \cdot \frac{9}{2} = x \cdot \frac{7}{2} = x \cdot \frac{7}{2} = x \cdot 10 \text{ assure}$$

(c)
$$\sqrt{3}\sin x = \sin(2x)$$
.

(d)
$$2\sin^2x=1$$
.
$$\frac{v}{wL}=x \text{ 10}, \frac{v}{wG}=x \cdot \frac{v}{w}=x \cdot \frac{v}{w}=x \text{ 120MSUR}$$

(e)
$$2+\cos(2x)=3\cos x$$
.
$$\frac{\varepsilon}{\frac{\pi}{2}}=x \text{ 10} \cdot \frac{\varepsilon}{\underline{\pi}}=x \cdot \underline{\pi}z=x \cdot 0=x \text{ Jansure}$$

(f)
$$2\cos x + \sin(2x) = 0$$
.

answer:
$$x = \frac{\pi}{2}$$
, $x = \frac{3\pi}{2}$

$$(\mathbf{g}) \ \ 2\cos^2 x - \left(1+\sqrt{2}\right)\cos x + \frac{\sqrt{2}}{2} = 0.$$

$$\frac{\frac{\mathfrak{p}}{ML} \cdot \frac{\mathfrak{E}}{MQ} \cdot \frac{\mathfrak{E}}{M} \cdot \frac{\mathfrak{E}}{M}}{2} \cdot \frac{\mathfrak{E}}{M} \cdot \frac{\mathfrak{p}}{M} = x \text{ idensite}}{2}.$$

$$\max_{x \in \mathcal{X}, \pi, 0, \frac{\pi}{\delta}} \frac{1}{\delta} \cdot \frac{\pi}{\delta} = x \text{ (b) } \left| \tan x \right| = 1.$$

$$\frac{\pi}{\delta} \cdot \pi \cdot 0, \frac{\pi}{\delta} = x \cdot \frac{\pi}{$$

(i)
$$3\cot^2 x = 1$$
.
$$\frac{\mathcal{E}}{\mathcal{E}\mathcal{E}} = x \cdot \frac{\mathcal{E}}{\mathcal{E}\mathcal{E}} = x \cdot \frac{\mathcal{E}}{\mathcal{E}} = x$$

(j)
$$\sin x = \tan x$$
.
 $\mu_{\zeta} = x \text{ 10} \cdot \mu = x \cdot_{0} = x \text{ :lowsup}$

Solution. 4.g Set $\cos x = u$. Then

$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0$$

becomes

$$2u^2 - (1 + \sqrt{2})u + \frac{\sqrt{2}}{2} = 0.$$

This is a quadratic equation in u and therefore has solutions

$$u_{1}, u_{2} = \frac{1 + \sqrt{2} \pm \sqrt{(1 + \sqrt{2})^{2} - 4\sqrt{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{1 - 2\sqrt{2} + 2}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{(1 - \sqrt{2})^{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm (1 - \sqrt{2})}{4} = \begin{cases} \frac{1}{2} & \text{or} \\ \frac{\sqrt{2}}{2} \end{cases}$$

Therefore $u = \cos x = \frac{1}{2}$ or $u = \cos x = \frac{\sqrt{2}}{2}$, and, as x is in the interval $[0, 2\pi]$, we get $x = \frac{\pi}{3}, \frac{5\pi}{3}$ (for $\cos x = \frac{1}{2}$) or $x = \frac{\pi}{4}, \frac{7\pi}{4}$ (for $\cos x = \frac{\sqrt{2}}{2}$).