

Readings for today

 Gold, J. I., & Shadlen, M. N. (2007). The neural basis of deci-sion making. Annu. Rev. Neurosci., 30, 535-574.

Topics

- Information accumulation
- The drift diffusion model

Information accumulation

Elements of making a decision

Cued dot motion task

Serial evaluation of evidence

Sequential analysis framework

Symmetric random walk

Log-likelihood ratio (logLR) test

$$\log LR_{12} \equiv \log \frac{P(e_1, e_2, \dots, e_n | h_1)}{P(e_1, e_2, \dots, e_n | h_2)}$$
$$= \sum_{i=1}^n \log \frac{P(e_i | h_1)}{P(e_i | h_2)}.$$

Given *n* samples of evidence (*e*), what is the likelihood that the evidence was generated under one of two competing hypotheses (*h*)?

Problem: When have you accumulated enough evidence to make a decision?

The sequential probability ratio test (SPRT)

1. On each sample *i*, evaluate logLR

$$w_i = \log \left(\frac{P(e_i \mid h_1)}{P(e_i \mid h_2)} \right)$$

2. Sum all logLR tests up to current observation

$$y_n = \sum_{i=1}^n w_i$$

3. Determine stopping rule

$$y_n \ge \log \frac{1-\alpha}{\alpha}$$
, then select h_1
 $y_n \le \log \frac{\beta}{1-\beta}$, then select h_2
 $\log \frac{\beta}{1-\beta} \le y_n \le \log \frac{1-\alpha}{\alpha}$, continue sampling

The drift diffusion model

The Drift Diffusion Model (DDM)

heta : evidence (decision) variable.

$$\theta(0) = z \rightarrow \text{initialized with value } z \text{ at } t = t_{er}$$

Continuous time for (Stochastic Diff Eq)

$$d\theta = vdt + \sigma dW$$

dW: Wiener noise process

 σ : diffusion constant (noise scalar)

Discrete time form

$$\theta(t + \Delta t) = \theta(t) + v\Delta t + \sigma\sqrt{\Delta t}\epsilon(t)$$

 $\epsilon \sim N(0,1)$: Gaussian noise

 Δt : timestep

Two critical properties of the DDM

1. Parameters are *identifiable* (e.g., recoverable) from behavioral data (RT distributions and choice accuracy)

2. Parameters are reliably modulated by specific task variables, capturing sensible links between internal decision mechanisms and external task

environmental demands

Parameter identifiability

Example: How do we distinguish between behavioral effects caused by a change in drift-rate (v) and change in boundary height (a)?

Links between variables & task parameters

- boundary height (a): evidence criterion
 - o reflects internal strategy or priorities of agent
 - liberal strategy or prioritize speed (reduce *a*)
 - cautious strategy or prioritize accuracy (raise a)
- drift-rate (v): relative strength of evidence for two alt. choices
 - typically depends on environment (externally controlled)
 - higher motion coherence => increase in *v*
 - greater difference in associated value of alt. actions
 increase in v
- starting-point (z): initial value of evidence, bias
 - o reflects internal biases or expectations of agent
 - anticipate left motion, move z closer to "left" decision >>> boundary
 - anticipate right motion, move z closer to "right" decision boundary
- non-decision time (tr) sensory and motor delays:
 - o traditionally viewed as a "nuisance" parameter (i.e., capturing internal and/or external variables related to sensory or motor but *not* decision computation)

Take home message

- At any given moment, the ratio of likelihoods is the optimal method for evaluating two hypotheses (when probabilities are known).
- Accumulation of evidence optimally occurs via a sequential probability ratio test (SPRT), which follows an information diffusion process.
- Models like the drift diffusion model reflect operationalizations of the SPRT that can be fit to empirical data.

Lab 4: Evidence accumulation

URL: https://github.com/CoAxLab/BiologicallyIntelligentExploration/tree/main/Labs

