

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 24 décembre 2003 (24.12.2003)

PCT

Rec'd PCT/PTO 09 DEC 2005

(10) Numéro de publication internationale

WO 03/106428 A1

- (51) Classification internationale des brevets⁷:

 C07D 233/54, A61K 31/4164, 31/18, A61P 25/04,
 C07D 239/06, 409/12, C07C 311/16, C07D 249/08
- (21) Numéro de la demande internationale : PCT/FR03/01763
- (22) Date de dépôt international: 12 juin 2003 (12.06.2003)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 02/07387 14 juin 2002 (14.06.2002) FR
- (71) Déposant (pour tous les États désignés sauf US): LAB-ORATOIRES FOURNIER SA [FR/FR]; 42, rue de Longvic, F-21300 Chenove (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): BARTH, Martine [FR/FR]; 20, rue Claude Deschault, F-21380 Asnières les Dijon (FR). BONDOUX, Michel [FR/FR]; 7, allée des Montereys, F-21121 Fontaine les Dijon (FR). DODEY, Pierre [FR/FR]; 10, rue des Champs d'Aloux, F-21121 Fontaine les Dijon (FR). MASSARDIER, Christine [FR/FR]; 5, rue Nicolas Frochot, F-21000 Dijon (FR). LUCCARINI, Jean-Michel [FR/FR]; 9, rue de Cronstadt, F-21000 Dijon (FR).

- (74) Mandataires: NEVANT, Marc etc.; Cabinet Beau de Loménie, 158, rue de l'Université, F-75340 Paris Cedex 07 (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont recues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

- (54) Title: NOVEL ARYLSULPHONAMIDE DERIVATIVES AND USE THEREOF AS THERAPEUTIC AGENTS
- (54) Titre: NOUVEAUX DERIVES D'ARYLSULFONAMIDES ET LEUR UTILISATION EN THERAPEUTIQUE

$$\begin{array}{c|c}
R_1 & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

- (57) Abstract: The invention relates to novel arylsulphonamide compounds as given by formula (I) and in the description, the method for preparation and use thereof as a therapeutic agent.
- (57) Abrégé: La présente invention concerne de nouveaux composés arylsulfonamide, définis par la formule (I) et la description, ainsi que leur procédé de préparation et leur utilisation en thérapeutique.

DERIVES D'ARYLSULFONAMIDES ET LEUR UTILISATION EN TANT QUE ANTAGONISTES AU RECEP EUR B1 DE LA BRADYKININE

La présente invention concerne des nouveaux composes de type aryisultonamide, leur procédé de préparation et leur utilisation pour obtenir des compositions pharmaceutiques.

Ces nouveaux composés sont utiles en thérapeutique, particulièrement pour le traitement de la douleur.

Art antérieur

5

10

15

20

25

30

On connaît déjà des composés comportant dans leur structure un groupement du type arylsulfonamide. Par exemple on peut citer selon EP 236 163 et EP 236 164 des dérivés N- α -arylsulfonylaminoacyl-p-amidino-phényl-alaninamides qui sont des inhibiteurs sélectifs de la thrombine et sont utiles comme anti-thrombotiques. On connaît aussi, selon EP 614 911, des composés de structure assez proche des précédentes, comportant simultanément un groupe arylsulfamoyle et un groupe phénylamidine substitué, qui ont la propriété de se fixer sur les récepteurs du neuropeptide Y et qui peuvent présenter une utilité pour soigner l'hypertension, l'angine de poitrine, l'athérosclérose, la dépression, l'anxiété, l'inflammation, l'allergie ou les surcharges graisseuses.

EP 558 961 suggère également l'utilisation de composés du type arylsulfonamide d'acides aminés substitués pour le traitement de la thrombose en raison de propriétés anticoagulantes.

Des études relatives aux propriétés antithrombotiques de composés présentant dans leur structure un groupe arylsulfonamide et un groupe phénylamidine, ont également été publiées dans Pharmazie 1984 vol. 39 (5) pages 315-317 et Pharmazie 1986 vol 41 (4) p 233-235.

Dans un même domaine d'activité pharmacologique, WO 92/16549 A1 décrit des dérivés de la phénylalanine comportant un groupe arylsulfonamide, qui sont des inhibiteurs de protéinase, notamment des inhibiteurs de la thrombine.

On connaît aussi, selon WO 97/25315, des composés de structure N-(arylsulfonyl)amino-acides, utiles pour traiter les maladies inflammatoires.

Dans un domaine thérapeutique différent, WO 00/34313 décrit des peptides qui peuvent comporter en extrémité de chaîne un groupe arylsulfonyl et qui sont revendiqués pour leur aptitude à inhiber la procollagène-C-protéinase. On connaît également par la publication J. Chem. Soc., Perkin Trans. 1(1986), (9) p 1655-64 des composés de structure proche qui sont présentés comme des inhibiteurs de l'élastase pancréatique porcine.

Parmi les documents de l'art antérieur proposant des éléments de structure de type arylsulfonamide, on peut citer WO 96/40639, WO 97/24349, WO 98/03503, WO 98/24783 et WO 99/00387, relatifs à des composés antagonistes du récepteur B₂ de la bradykinine.

I

Objet de l'invention

L'invention concerne de nouveaux composés comportant l'enchaînement arylsulfonamide substitué, lesdits composés étant notamment utiles en tant que principes actifs de médicaments destinés au traitement de la douleur, particulièrement les hyperalgésies et les algésies majeures.

Description

5

10

15

20

25

30

Selon la présente invention, on propose en tant que produit industriel nouveau, un composé de type arylsulfonamide caractérisé en ce qu'il est choisi parmi l'ensemble constitué par

i) les composés de formule:

dans laquelle

 R_1 représente un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C_1 - C_3 , alcoxy en C_1 - C_3 , nitro, cyano, trifluorométhyl ou trifluorométhoxy,

R₂ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄ éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor,

 R_3 représente un atome d'hydrogène, un groupe hydroxy, ou forme avec R_4 un groupe

-CH=N- ou un groupe alkylène en C2-C4 linéaire ou ramifié,

R₄ représente un atome d'hydrogène ou forme avec R₃ un groupe -CH=N- ou un groupe alkylène en C₂-C₄ linéaire ou ramifié,

 R_5 représente un atome d'hydrogène ou un groupe alkyle en $C_1\text{-}C_3$,

R₆ représente un atome d'hydrogène ou un halogène,

Y représente un groupe alkylène en C₂-C₄, saturé ou insaturé, linéaire ou ramifié, éventuellement interrompu entre deux atomes de carbone par un atome d'oxygène,

ii) les sels d'addition des composés de formule I ci-dessus avec un acide.

Selon l'invention, on préconise aussi un procédé pour la préparation des composés de formule I ainsi que de leurs sels d'addition.

On préconise également l'utilisation d'une substance choisie parmi les composés de formule I et leurs sels d'addition non toxiques pour la préparation d'un médicament, utile en thérapeutique humaine ou animale, destiné à la prévention ou au traitement de pathologies liées à la douleur, notamment les hyperalgésies consécutives à un état inflammatoire ou les algésies majeures liées à d'autres états pathologiques tels que, par exemple, le cancer.

Description détaillée

5

10

15

20

25

30

Dans la formule I, on entend par groupe alkyle en C₁-C₄ une chaîne hydrocarbonée ayant de 1 à 4 atomes de carbone, linéaire, ramifiée, ou bien encore cyclique. Un tel groupe est notamment un groupe méthyle, éthyle, propyle, butyle, 1-méthyl-éthyle, 1-méthylpropyle, 2-méthylpropyle, 1,1-diméthyléthyle, cyclopropyle et cyclopropylméthyle.

On entend par groupe alkyle en C_1 - C_4 substitué par un groupe phényle un groupe alkyle en C_1 - C_4 dont l'un des atomes d'hydrogène est remplacé par un groupe phényle. Un tel groupe est notamment un groupe phénylméthyle, un groupe 2-(phényl)-éthyle, un groupe 1-(phényl)éthyle, un groupe phénylpropyle ou un groupe phénylbutyle.

On entend par groupe alkyle en C₁-C₄ substitué par un groupe CONH₂ un groupe alkyle en C₁-C₄ dont l'un des atomes de carbone est remplacé par un groupe CONH₂. Un tel groupe est par exemple un groupe -CH₂-CONH₂, -(CH₂)₂-CONH₂, -CH(CH₃)-CH₂-CONH₂, ou encore - (CH₂)₄-CONH₂.

On entend par halogène un atome de fluor, de chlore ou de brome et, préférentiellement, un atome de fluor ou de chlore.

Par noyau aromatique, on entend un noyau phényle, un noyau 1- ou 2-naphtyle ou un noyau 2- ou 3-thiényle.

Par groupe alcoxy en C₁-C₃, on comprend un groupe OR dans lequel R est un groupe alkyle en C₁-C₃, le terme alkyle ayant la signification donnée ci-dessus. Un tel groupe est par exemple un groupe méthoxy, éthoxy, propoxy ou 1-méthyléthoxy.

Par groupe alkylène en C₂-C₄ saturé, il faut comprendre un groupe —(CH₂)_n- dans lequel n est 2, 3 ou 4 s'il s'agit d'un groupe linéaire ou par exemple un groupe —CH(CH₃)-CH₂-CH₂- ou —C(CH₃)₂-CH₂- s'il s'agit d'un groupe ramifié. Dans le cas d'un groupe alkylène interrompu par un atome d'oxygène, on entend par exemple les groupes —CH₂-CH₂-O-CH₂-, -CH₂-O-CH₂-CH₂- ou encore -CH₂-CH₂-O-CH₂-CH₂-. Par groupe alkylène en C₂-C₄ insaturé, il faut comprendre un groupe comprenant 2 à 4 atomes de carbone dont 2 consécutifs sont liés par une liaison éthylénique, par exemple un groupe —CH₂-CH=CH-CH₂-, -CH=CH-CH₂-, -CH=C(CH₃)-CH₂-, CH₂-CH=CH- ou —CH=CH-CH(CH₃)-.

Par sels d'addition, on entend les sels d'addition obtenus par réaction d'un composé de formule I contenant au moins une fonction basique sous sa forme non salifiée, avec un acide minéral ou organique. De préférence, il s'agira de sels d'addition pharmaceutiquement acceptables.

Parmi les acides minéraux convenant pour salifier un composé basique de formule I, on préfère les acides chlorhydrique, bromhydrique, phosphorique et sulfurique. Parmi les acides organiques convenant pour salifier un composé basique de formule I, on préfère les acides méthanesulfonique, benzènesulfonique, toluènesulfonique, maléïque, fumarique, oxalique, citrique, tartrique, lactique et trifluoroacétique.

Selon un aspect préféré, l'invention a pour objet les composés de formule :

dans laquelle

5

15

20

25

R₁, R₂, R₅, R₆ et Y sont tels que définis pour les composés de formule I,

R₃ représente un atome d'hydrogène, un groupe hydroxy, ou forme avec R₄ un groupe alkylène en C₂-C₄ linéaire ou ramifié,

R₄ représent un atome d'hydrogène ou forme avec R₃ un groupe alkylène en C₂-C₄ linéaire ou ramifié.

Parmi les composés de formule I ou Ia, on préfère ceux dans lesquels R_1 représente un noyau phényle substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi un atome d'halogène, de préférence le chlore et les groupes alkyle en C_1 - C_3 et alcoxy en C_1 - C_3 .

On préfère également :

- ceux dans lesquels R2 représente un groupe alkyle en C1-C4;
- ceux dans lesquels R_3 et R_4 forment ensemble un groupe alkylène en C_2 - C_3 ;
- ceux dans lesquels R5 et R6 représentent chacun un atome d'hydrogène ; et
- ceux dans lesquels Y représente une chaine alkylène en C₂-C₄ saturée, éventuellement interrompue par un atome d'oxygène, notamment un groupe —(CH₂)₄- ou —(CH₂)₂- O-CH₂-.

Selon l'invention, on préconise un procédé général de préparation des composés de l'invention et de leurs sels d'addition, comprenant les étapes consistant à :

1) faire réagir un acide de formule :

$$R_1$$
 N COOH R_2 II

dans laquelle

R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C₁-C₃, alcoxy en C₁-C₃, nitro, cyano, trifluorométhyl ou trifluorométhoxy,

R₂ représente un atome d'hydrogène, un groupe alkyle en C₁-C₄ éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor,

et Y représente un groupe alkylène en C₂-C₄, saturé ou insaturé, linéaire ou ramifié, éventuellement interrompu entre deux atomes de carbone par un atome d'oxygène, avec une amine de formule :

10 dans laquelle

5

20

25

R₃ représente un atome d'hydrogène ou forme avec R₄ un groupe alkylène en C₂-C₄ linéaire ou ramifié, R₄ représente un atome d'hydrogène ou forme avec R₃ un groupe alkylène en C₂-C₄ linéaire ou ramifié, R'₅ représente un groupe alkyle en C₁-C₃, un atome d'hydrogène ou un groupe aminoprotecteur, par exemple le groupe Boc (1,1- diméthyl-éthoxycarbonyle),

R₆ représente un atome d'hydrogène ou un halogène,

la réaction étant conduite dans un solvant comme par exemple le dichlorométhane, en présence d'au moins un agent activateur tel que notamment le 1-(3-diméthylaminopropyl)-3-éthylcarbodiimide (EDCI) et le 1-hydroxy-7-azabenzotriazole (HOAT), à une température généralement comprise entre la température ambiante (soit environ 15°C) et 60°C et de préférence pendant environ 2 à 15 heures pour obtenir l'amide de formule

dans laquelle R₁, R₂, R₃, R₄, R'₅, R₆ et Y conservent la même signification que dans les produits de départ,

2) si nécessaire, lorsque le substituant R'5 est un groupe amino-protecteur, faire réagir le composé de formule IV de façon à éliminer le groupe amino protecteur et le remplacer par un atome d'hydrogène, par exemple si R'5 représente le groupe Boc, par action de l'acide trifluoroacétique en présence d'anisole, et ainsi obtenir le composé de formule I dans lequel R5 représente un atome d'hydrogène,

3) si nécessaire, faire réagir le composé de formule IV ou I obtenu ci-dessus, avec un acide minéral ou organique, pour obtenir le sel d'addition du composé de formule IV

ou I.

5

20

25

Selon un autre procédé d'obtention, les composés de formule I selon l'invention dans lesquels R₃, R₄ et R₅ représentent un atome d'hydrogène, peuvent être obtenus en effectuant les étapes consistant à :

1) faire réagir un acide de formule :

dans laquelle

10 R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C₁-C₃, alcoxy en C₁-C₃, trifluorométhyl ou trifluorométhoxy,

П

R₂ représente un atome d'hydrogène, un groupe alkyle en C₁-C₄ éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor,

et Y représente un groupe alkylène en C₂-C₄, saturé ou insaturé, linéaire ou ramifié, éventuellement interrompu entre deux atomes de carbone par un atome d'oxygène, avec une amine de formule :

la réaction étant conduite dans des conditions analogues à celles décrites précédemment (étape 1 du procédé général), pour obtenir le composé de formule :

dans laquelle R1, R2, et Y conservent la même signification que dans l'acide de départ,

2) faire réagir le composé de formule VI ci-dessus avec l'hydroxylamine, dans un solvant comme par exemple le diméthylsulfoxide (DMSO) et en présence de triéthylamine, à une température généralement proche de la température ambiante, pendant environ 2 à 15 heures, pour obtenir le composé de formule :

5

10

15

20

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

dans laquelle R₁, R₂ et Y restent inchangés,

3) faire réagir le composé de formule VII avec l'anhydride acétique, dans un solvant tel que par exemple le dichlorométhane, à une température généralement proche de la température ambiante et pendant environ 2 à 15 heures, pour obtenir le composé de formule :

4) effectuer une réduction par hydrogénation catalytique du composé de formule VIII, par exemple en présence de charbon palladié, dans un solvant tel que par exemple le méthanol, à une température proche de la température ambiante, pour obtenir le composé de formule :

dans laquelle R₁, R₂ et Y restent inchangés,

5) si nécessaire, obtenir le sel du composé de formule IX par addition de l'acide approprié.

Les composés de formule I dans lesquels R₃ et R₄ forment ensemble un groupe -CH=N-peuvent être obtenus au départ du composé de formule VI, en faisant réagir successivement :

- 1) le sulfure d'hydrogène, en utilisant par exemple la pyridine comme solvant et en travaillant à température ambiante, de façon à obtenir un groupe thioamide (aminothioxométhyle) en lieu et place du groupe cyano initial,
- 2) l'iodure de méthyle, dans un solvant tel que l'acétone, afin d'obtenir un groupe iminométhylthiométhyl en lieu et place du groupe thioamide,
- 3) la formylhydrazine, dans un solvant tel que l'éthanol, pour obtenir le cycle triazole en lieu et place du groupe iminométhylthiométhyl précédent.

Selon un autre mode de préparation, les composés de formule I selon l'invention peuvent être obtenus en effectuant les étapes consistant à :

1) faire réagir une amine de formule :

5 dans laquelle

10

15

20

25

R₂ représente un atome d'hydrogène, un groupe alkyle en C₁-C₄ éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor,

X

R₃ représente un atome d'hydrogène ou forme avec R₄ un groupe alkylene en C₂-C₄ linéaire ou ramifié,

R₄ représente un atome d'hydrogène ou forme avec R₃ un groupe alkylène en C₂-C₄ linéaire ou ramifié,

R"5 représente un groupe amino protecteur, notamment le groupe Boc

R₆ représente un atome d'hydrogène ou un halogène,

Y représente un groupe alkylène en C₂-C₄, linéaire ou ramifié, éventuellement interrompu par un atome d'oxygène,

avec un chlorure d'arylsulfonyle de formule :

dans laquelle R_1 représente R_1 un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C_1 - C_3 , alcoxy en C_1 - C_3 , nitro, cyano, trifluorométhyl ou trifluorométhoxy,

la réaction étant conduite dans un solvant tel que par exemple le dichlorométhane, en présence d'une base aprotique telle que la triéthylamine, à température ambiante et pendant environ 1 à 12 heures, pour obtenir le composé de formule :

IV

dans laquelle R₁, R₂, R₃, R₄, R"₅, R₆ et Y restent inchangés.

2) faire réagir le composé de formule IV ci-dessus de façon à éliminer le groupe amino protecteur R"5 et le remplacer par un atome d'hydrogène, par exemple, si R"5 représente le groupe Boc, par action de l'acide trifluoroacétique en présence d'anisole, et ainsi obtenir le composé de formule I dans lequel R5 représente un atome d'hydrogène.

П

Les composés de formule II:

$$R_1 - SO_2 - N - Y - COOH$$
 R_2

peuvent être obtenus notamment par action d'un chlorure d'arylsulfonyle

$$R_1 - SO_2Cl$$
 XI

10 avec une amine

5

$$R_2 - NH_2$$
 XII,

puis réaction de l'amide obtenue successivement avec l'hydrure de sodium et un acide halogéné de formule

dans laquelle X représente un halogène, préférentiellement le brome, et Y représente un groupe alkylène en C₂ - C₄, pour obtenir l'acide de formule II.

Les composés de formule III:

Ш

- 20 peuvent être obtenus selon un procédé consistant à :
 - 1) faire réagir une amine de formule

$$H - N - CH_{2} - CN$$

$$R_{2}$$

VIX

avec le chloroformiate de benzyle, dans un solvant tel que par exemple le dichlorométhane et en présence d'une base aprotique pour obtenir le composé de formule :

IVX

5

10

15

2) faire réagir le composé de formule XV ci-dessus avec l'éthylènediamine, de façon à obtenir le composé de formule :

3) faire réagir le composé de formule XVI avec le dicarbonate de di-tert-butyle, dans un solvant et en présence d'une base aprotique, de façon à obtenir le produit de formule :

$$CH_2$$
 CH_2
 CH_2

4) effectuer une déprotection partielle du composé de formule XVII, par hydrogénation catalytique par exemple en présence de charbon palladié, de façon à obtenir l'amine attendue de formule III dans laquelle R"₅ est le groupe protecteur Boc

L'invention sera mieux comprise à la lecture des exemples de préparation ainsi que des résultats d'essais pharmacologiques réalisés avec des composés selon l'invention. Ces exemples non limitatifs n'ont pour but que l'illustration de l'invention et ne sauraient en limiter la portée.

PCT/FR03/01763

Parmi les abréviations utilisées dans les descriptions suivantes, M signifie mole, mM signifie millimole (10⁻³ mole). DCM signifie dichlorométhane, DMSO signifie diméthylsulfoxyde.

PREPARATION I

Acide [(4-cyanophényl)méthyl]méthylcarbamique, phénylméthyl ester

On prépare un mélange de 7 g (47,9 mM) de [(4-cyanophényl)méthyl]méthanamine dans 60 ml de DCM et on ajoute 5,8 g (57,5 mM) de triéthylamine. Le mélange est refroidi à 0 °C et on ajoute goutte à goutte une solution de 9,8 g (57,5 mM) de chloroformiate de benzyle dans 20 ml de DCM. Le mélange est ensuite agité pendant 20 heures à température ambiante puis lavé par une solution d'acide chlorhydrique 0,1 N, puis par de l'eau, séché sur sulfate de sodium et concentré sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange toluène/acétate d'éthyle (95/5; v/v). On obtient ainsi 11,4 g du produit attendu sous forme d'une huile (rendement = 87 %).

 $n_D^{22} = 1,564$

5

10

15

20

25

30

PREPARATION II

Acide [[4-(4,5-dihydro-1H-imidazol-2-yl]] phényl] méthyl] méthylcarbamique, phénylméthyl ester

On prépare un mélange de 11,3 g (40 mM) du composé obtenu selon la préparation I dans 40 ml d'éthylènediamine et on ajoute 0,64 g (20 mM) de fleur de soufre. Le mélange réactionnel est agité pendant 2 heures à 100 °C puis refroidi. On ajoute de l'eau et on extrait par l'acétate d'éthyle. La phase organique est lavée à l'eau, séchée sur sulfate de sodium et concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (95/5/0,05; v/v/v). On obtient ainsi 11 g de produit attendu sous forme d'un solide blanc (rendement = 85 %).

PREPARATION III

 $F = 84 \, ^{\circ}C$

Acide 4,5-dihydro-2-[4-[[méthyl](phénylméthoxy)carbonyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

On prépare une solution de 3,22 g (10 mM) du composé obtenu selon la préparation II dans 45 ml de DCM, et on ajoute 1,34 g (11 mM) de N,N-diméthylaminopyridine, puis, goutte à goutte, une solution de 2,4 g (11 mM) de di-tert-butyl dicarbonate dans 45 ml de DCM. Le mélange réactionnel est agité pendant 2 heures à température ambiante puis lavé à l'aide d'une solution d'acide chlorhydrique 0,5 N, puis avec de l'eau. La phase organique est séchée sur sulfate de sodium puis concentrée sous pression réduite. Le résidu est cristallisé dans l'éther isopropylique puis filtré et séché. On obtient ainsi 4 g du produit attendu sous forme de fins cristaux blancs (rendement = 94 %).

F = 124 °C

PREPARATION IV

Acide 4,5-dihydro-2- $[4-[(m\acute{e}thylamino)m\acute{e}thyl]$ phényl]-1H-imidazole-1-carboxylique, 1,1-diméthyl $\acute{e}thyl$ ester

On prépare un mélange de 4,23 g (10 mM) du composé obtenu selon la préparation III dans 80 ml de méthanol et on ajoute 0,4 g de charbon palladié (à 10 % Pd). Le mélange est agité sous atmosphère d'hydrogène à température ambiante et pression atmosphérique pendant 2 heures. Le catalyseur est éliminé par filtration puis le filtrat est concentré sous pression réduite. Le résidu et purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol/ammoniaque (90/10/0,1; v/v/v). On obtient ainsi 2,5 g du produit attendu sous forme d'un solide blanc cassé (rendement = 90 %).

 $F = 65 \, ^{\circ}C$

5

10

15

20

25

30

PREPARATION V

N-méthyl-2,4-dichloro-3-méthylbenzènesulfonamide

On prépare une suspension de 2,55 g (37,8 mM) de chlorhydrate de méthanamine dans 120 ml de dichlorométhane (DCM) et on ajoute 7,5 g de chlorure de 2,4-dichloro-3-méthylbenzènesulfonyle en solution dans 30 ml de DCM et 10,5 ml de triéthylamine ; le mélange réactionnel est maintenu sous agitation pendant 15 heures à température ambiante puis lavé avec une solution d'acide chlorhydrique 1N, avec une solution de bicarbonate de sodium, puis à l'eau. La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le résidu solide obtenu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange cyclohexane/acétate d'éthyle (8/2, v/v). On obtient ainsi 6,2 g du composé attendu sous forme d'un solide blanc (rendement = 85%).

F = 118°C

PREPARATION VI

Acide 5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]pentanoïque, éthyl ester

On prépare une solution de 1g (3,9 mM) du composé obtenu selon la préparation V dans 30 ml de diméthylformamide puis on ajoute 1,63 g (11,8 mM) de carbonate de potassium puis 987 mg (4,7 mM) de 5-bromopentanoate d'éthyle. Le mélange réactionnel est agité à température ambiante pendant 15 heures, puis additionné d'eau et extrait par l'acétate d'éthyle. La phase organique est lavée à l'eau plusieurs fois puis séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 1,5 g du produit attendu sous forme d'une huile incolore (rendement quantitatif).

RMN ¹H (300 MHz, DMSO) δ : 7,83 (d, 1H); 7,65 (d, 1H); 4,04 (q, 2H); 3,19 (t, 2H); 2,80 (s, 3H); 2,49 (s, 3H); 2,28 (t, 2H); 1,49 (m, 4H); 1,17 (t, 3H).

5

10

15

20

Acide 5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]pentanoïque.

On prépare une solution de 1,45 g (3,79 mM) de l'ester obtenu selon la préparation VI dans 15 ml de tétrahydrofurane (THF) et on ajoute 320 mg (7,56 mM) de lithine et 30 ml d'eau. Le mélange réactionnel est agité pendant 15 heures à température ambiante. Le THF est chassé sous pression réduite et la phase aqueuse résiduelle est additionnée de 50 ml d'eau, acidifiée à l'aide d'une solution d'acide chlorhydrique N, puis extraite à l'aide d'acétate d'éthyle. La phase organique obtenue est lavée à l'eau, séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 1,3 g de l'acide attendu sous forme d'une huile incolore (rendement = 97%).

RMN 1 H (300 MHz, DMSO) δ : 12,0 (s large, 1H); 7,83 (d, 1H); 7,64 (d, 1H); 3,20 (t, 2H); 2,80 (s, 3H); 2,57 (s, 3H); 2,20 (t, 2H); 1,49 (m, 4H).

PREPARATION VIII

Acide 2-[4-[[5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-1-oxopentyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester.

On prépare une solution de 200 mg (0,565 mM) de l'acide obtenu selon la préparation VII, dans 15 ml de dichlorométhane, puis on ajoute 120 mg de EDCI et 90 mg de HOAT. Le mélange est agité à température ambiante pendant 20 min puis on ajoute 163 mg (0,565 mM) de l'amine obtenue selon la préparation IV, en solution dans 3 ml de dichlorométhane. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 15 heures, puis dilué par 40 ml de dichlorométhane. Cette phase organique est lavée à l'eau puis séchée et concentrée sous pression réduite. Le produit huileux obtenu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/2, v/v).

On obtient ainsi 260 mg du composé attendu sous forme d'une huile incolore (rendement = 73%)

RMN ¹H (300 MHz, DMSO) δ : 7,80 (t, 1H); 7,60 (m, 1H); 7,40 (m, 2H); 7,20 (m, 2H); 4,52 (d, 2H); 3,84 (m, 4H); 3,20 (m, 2H); 2,88 (s, 3H); 2,81 (s, 3H); 2,79 (m, 2H); 2,49 (s, 3H); 2,38 (m, 2H); 2,30 (m, 4H); 1,17 (s, 9H).

30 Exemple 1

5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

On prépare un mélange de 240 mg du composé obtenu selon la préparation VIII, 5 ml d'acide trifluoroacétique, 5 ml de dichlorométhane et 41 mg d'anisole et on maintient ce

mélange sous agitation pendant 15 heures à température ambiante. Les solvants sont chassés sous pression réduite une première fois, puis une seconde fois en présence de toluène. L'huile résiduelle est agitée avec de l'éther isopropylique que l'on élimine ensuite. Le résidu huileux est repris par de l'eau pure. La solution est filtrée et le filtrat est lyophilisé. On obtient ainsi 240 mg du produit attendu sous forme d'un solide cotonneux blanc (rendement = 97 %).

 $F \approx 83$ °C

5

15

En opérant de façon analogue à la préparation VI, on obtient les composés suivants :

PREPARATION IX

Acide 4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]butanoïque,

10 éthyl ester (non isolé)

PREPARATION X

 $N-[(2,4-dichloro-3-méthylphényl)sulfonyl]-N-méthyl-<math>\beta$ -alanine, éthyl ester

(huile incolore, rendement = 43%)

RMN 1 H (300 MHz, DMSO) δ : 7,83 (d, 1H); 7,66 (d, 1H); 4,04 (q, 2H); 3,46 (t, 2H); 2,85 (s, 3H); 2,59 (t, 2H); 2,5 (s, 3H); 1,17 (t, 3H).

PREPARATION XI

Acide 4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-(2E)-2-butènoïque, éthyl ester

(solide blanc, rendement = 53%)

20 $F = 90^{\circ}C$

En opérant de façon analogue à la préparation VII, on obtient les composés suivants :

PREPARATION XII

Acide 4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]butanoïque (solide blanc, rendement quantitatif)

25 $F = 104^{\circ}C$

PREPARATION XIII

 $N\hbox{-}[(2,4\hbox{-}dichloro\hbox{-}3\hbox{-}m\'ethylph\'enyl) sulfonyl]\hbox{-}N\hbox{-}m\'ethyl-\beta\hbox{-}alanine$

(solide blanc, rendement = 98%).

F = 119 °C

30 PREPARATION XIV

Acide 4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-(2E)-2-butènoïque (solide blanc, rendement = 47%).

F = 160°C

En opérant de façon analogue à la préparation VIII, on obtient les composés suivants :

Acide 2-[4-[[4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-1-oxobutyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (huile, rendement = 34%)

RMN 1 H (300 MHz, DMSO) δ : 7,95 (m, 1H); 7,82 (m, 1H); 7,41 (m, 2H); 7,21 (m, 2H); 4,52 (d, 2H); 3,84 (m, 4H); 3,22 (m, 2H); 2,85 (m, 6H); 2,49 (s, 3H); 2,24 (m, 2H); 1,79 (m, 2H); 1,17 (s, 9H).

PREPARATION XVI

Acide 2-[4-[[[3-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-1-oxopropyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(mousse écrue, rendement = 55%)

 $F = 50^{\circ}C$

15 PREPARATION XVII

Acide 2-[4-[[(2E)-4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester.

(solide blanc, rendement = 74%)

 $F = 65^{\circ}C$

En opérant de façon analogue à l'exemple 1, on obtient les 3 composés suivants :

Exemple 2

 $4-[[(2,4-{\rm dichloro}-3-{\rm m\'ethylph\'enyl}) sulfonyl] m\'ethylamino]-N-[[4-(4,5-{\rm dihydro}-1$H-{\rm imidazol-2-yl}) ph\'enyl] m\'ethyl]-N-m\'ethyl-butanamide, trifluoroac\'etate$

25 (solide blanc, rendement = 92%)

 $F = 90^{\circ}C$

Exemple 3

3-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\$H\$-imidazol-2-yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

30 (solide blanc, rendement = 87%)

 $F = 65^{\circ}C$

Exemple 4

4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-(2 E)-2-butènamide, trifluoroacétate

PREPARATION XXV

Acide 4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]butanoïque, éthyl ester

(huile jaune, rendement = 69%)

RMN 1 H (250 MHz, DMSO) δ : 7,93 (m, 2H); 7,57 (t, 1H); 4,03 (q, 2H); 3,24 (t, 2H); 2,84

5 (s, 3H); 2,29 (t, 2H); 1,75 (m, 2H); 1,17 (t, 3H).

PREPARATION XXVI

Acide 5-[[(2,3-dichlorophényl)sulfonyl]méthylamino]pentanoïque, éthyl ester (non isolé)

PREPARATION XXVII

10 Acide 4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-(2E)-2-butènoïque, éthyl ester

(solide blanc, rendement = 72%)

 $F = 98^{\circ}C$

PREPARATION XXVIII

Acide 5-[[(2,6-dichlorophényl)sulfonyl]méthylamino]pentanoïque, éthyl ester

15 (non isolé)

PREPARATION XXIX

Acide 4-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-(2E)-2-butènoïque, éthyl ester

(solide blanc, rendement = 81%)

F = 84°C

20 PREPARATION XXX

Acide 5-[méthyl(1-naphtalénylsulfonyl)amino]pentanoïque, éthyl ester

(huile incolore, rendement = 93%)

RMN ¹H (250 MHz, DMSO) δ : 8,58 (d, 1H); 8,27 (d, 1H); 8,08 (m, 2H); 7,69 (m, 3H); 4,04 (q, 2H); 3,16 (t, 2H); 2,77 (s, 3H); 2,25 (t, 2H); 1,45 (m, 4H); 1,16 (t, 3H).

25 PREPARATION XXXI

Acide 4-[méthyl(1-naphtalénylsulfonyl)amino]-(2E)-2-butènoïque, éthyl ester

(solide blanc, rendement = 54%)

F = 75°C

En opérant de façon analogue à la préparation VII, on obtient les composés suivants :

30 PREPARATION XXXII

Acide 5-[[(2-chlorophényl)sulfonyl]méthylamino]pentanoïque

(solide blanc, rendement = 75%)

F = 120°C

PREPARATION XXXIII

(solide blanc, rendement = 100%)

 $F = 55^{\circ}C$

En opérant de façon analogue à la préparation V, on obtient les composés suivants :

PREPARATION XVIII

2-chloro-N-méthyl-benzènesulfonamide

(huile jaune, rendement = 94%)

RMN 1 H (300 MHz, DMSO) δ : 7,95 (d, 1H); 7,65 (m, 3H); 7,54 (t, 1H); 2,47 (s, 3H).

PREPARATION XIX

2,3-dichloro-N-méthylbenzènesulfonamide

10 (solide écru, rendement = 76%)

F = 126°C

PREPARATION XX

2,6-dichloro-N-méthylbenzènesulfonamide

(solide blanc, rendement = 99%)

15 $F = 110^{\circ}C$

PREPARATION XXI

N-méthyl-1-naphtalènesulfonamide

(solide beige, rendement = 94%)

RMN 1 H (250 MHz, DMSO) δ : 8,63 (m, 1H); 8,23 (d, 1H); 8,10 (m, 2H); 7,72 (q, 1H); 7,66

20 (m, 3H); 2,42 (d, 3H).

En opérant de façon analogue à la préparation VI, on obtient les composés suivants :

PREPARATION XXII

Acide 5-[[(2-chlorophényl)sulfonyl]méthylamino]-pentanoïque, éthyl ester (non isolé)

25 PREPARATION XXIII

Acide 4-[[(2-chlorophényl)sulfonyl]méthylamino]-(2E)-2-butènoïque, éthyl ester

(huile incolore, rendement = 78%)

RMN ¹H (250 MHz, DMSO) δ: 8,02 (d, 1H); 7,71 (m, 2H); 7,60 (m, 1H); 6,79 (m, 1H); 6,04 (d, 1H); 4,08 (d, 2H); 3,67 (s, 3H); 2,80 (s, 3H).

30 PREPARATION XXIV

N-[(2,3-dichlorophényl)sulfonyl]-N-méthyl-β-alanine, éthyl ester

(huile, rendement = 74%)

RMN 1 H (250 MHz, DMSO) δ : 7,94 (m, 2H) , 7,57 (m, 1H) ; 4,02 (q, 2H) ; 3,48 (t, 2H) ; 2,88 (s, 3H) ; 2,59 (t, 2H) ; 1,17 (t, 3H).

Acide 4-[[(2-chlorophényl)sulfonyl]méthylamino]-(2E)-2-butènoïque

(solide blanc, rendement = 50%)

F = 136°C

PREPARATION XXXIV

5 N-[(2,3-dichlorophényl)sulfonyl]-N-méthyl-β-alanine

(solide blanc, rendement = 74%)

F = 141°C

PREPARATION XXXV

Acide 4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]butanoïque

10 (solide blanc, rendement = 78%)

F = 114°C

PREPARATION XXXVI

Acide 5-[[(2,3-dichlorophényl)sulfonyl]méthylamino]pentanoïque

(huile incolore, rendement = 63%)

15 RMN ¹H (250 MHz, DMSO) δ : 12,0 (s large, 1H); 7,94 (d, 2H); 7,56 (t, 1H); 3,25 (t, 2H); 2,73 (s, 3H); 2,24 (t, 2H); 1,50 (m, 4H).

PREPARATION XXXVII

Acide 4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-(2E)-2-butènoïque

(huile incolore, rendement = 60%)

20 RMN ¹H (250 MHz, DMSO) δ : 7,96 (m, 2H); 7,58 (t, 1H); 6,58 (m, 1H); 5,90 (d, 1H); 4,04 (d, 2H); 2,81 (s, 3H).

PREPARATION XXXVIII

Acide 5-[[(2,6-dichlorophényl)sulfonyl]méthylamino]pentanoïque

(solide blanc écru, rendement = 59%)

25 $F = 105^{\circ}C$

PREPARATION XXXIX

Acide 4-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-(2E)-2-butènoïque

(solide blanc, rendement = 48%)

F = 158°C

30 PREPARATION XL

Acide 5-[méthyl(1-naphtalénylsulfonyl)amino]pentanoïque

(huile incolore, rendement = 74%)

RMN ¹H (300 MHz, DMSO) δ : 12,0 (s large, 1H); 8,62 (d, 1H); 8,58 (d, 1H); 8,25 (m, 2H); 8,08 (m, 3H); 3,16 (t, 2H); 2,77 (s, 3H); 2,20 (t, 2H); 1,48 (m, 4H).

PREPARATION XLI

Acide 4-[méthyl(1-naphtalénylsulfonyl)amino]-(2E)-2-butènoïque

(solide blanc, rendement = 38%)

RMN ¹H (250 MHz, DMSO) δ : 12,5 (s large, 1H); 8,60 (d, 1H); 8,29 (d, 1H); 8,13 (m, 2H); 7,75 (m, 3H); 6,64 (m, 1H); 5,90 (d, 1H); 4,03 (d, 2H); 2,78 (s, 3H).

En opérant de façon analogue à la préparation VIII, on obtient les composés suivants :

PREPARATION XLII

Acide 2-[4-[[[5-[[(2-chlorophényl)sulfonyl]méthylamino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-

10 diméthyléthyl ester

5

(huile, rendement = 65%)

RMN ¹H (300 MHz, DMSO) δ : 7,97 (t, 1H); 7,66 (m, 2H); 7,54 (m, 1H); 7,44 (m, 2H); 7,20 (m, 2H); 4,55 (d, 2H); 3,84 (m, 4H); 3,20 (m, 2H); 2,85 (m, 6H); 2,36 (m, 2H); 1,50 (m, 4H); 1,17 (d, 9H).

15 PREPARATION XLIII

Acide 2-[4-[[(2E)-4-[[(2-chlorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester.

(pâte incolore, rendement = 82%)

20 RMN ¹H (300 MHz, DMSO) δ: 8,03 (t, 1H); 7,67 (m, 2H); 7,51 (m, 1H); 7,42 (m, 2H); 7,20 (m, 2H); 6,60 (m, 2H); 4,60 (d, 2H); 4,05 (m, 2H); 3,84 (m, 4H); 2,88 (m, 6H); 1,18 (s, 9H). **PREPARATION XLIV**

Acide 2-[4-[[[3-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-1-oxopropyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-

25 diméthyléthyl ester

(solide blanc, rendement = 42%)

F = 65°C

PREPARATION XLV

Acide 2-[4-[[[4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-1-oxobutyl]

méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 68%)

 $F = 50^{\circ}C$

Acide 2-[4-[[[5-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (solide blanc, rendement = 47%)

F = 50°C

PREPARATION XLVII

Acide 2-[4-[[(2E)-4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-1-oxo-2-butényl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-

10 diméthyléthyl ester

(pâte blanche, rendement = 69%)

RMN ¹H (250 MHz, DMSO) δ : 8,02 (m, 2H); 7,59 (m, 1H); 7,43 (m, 2H); 7,21 (m, 2H); 6,60 (m, 2H); 4,70 (d, 2H); 4,00 (m, 2H); 3,82 (m, 4H); 2,86 (m, 6H); 1,18 (s, 9H).

PREPARATION XLVIII

Acide 2-[4-[[[5-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-1-oxopentyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1diméthyléthyl ester

(huile, rendement = 51%)

RMN ¹H (250 MHz, DMSO) δ : 7,67 (m, 2H); 7,64 (m, 1H); 7,42 (m, 2H); 7,20 (m, 2H); 4,55 (d, 2H); 3,84 (m, 4H); 3,23 (m, 2H); 2,83 (m, 6H); 2,39 (m, 2H); 1,55 (m, 4H); 1,17 (s, 9H).

PREPARATION IL

Acide 2-[4-[[[(2E)-4-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-

25 diméthyléthyl ester

(solide blanc, rendement = 70%)

F = 70°C

30

PREPARATION L

Acide 2-[4-[[[5-[méthyl](1-naphtalényl)sulfonyl]amino]-1-oxopentyl] méthylamino] méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (solide blanc, rendement = 70%)

RMN 1 H (300 MHz, DMSO) δ : 8,60 (m, 1H); 8,25 (d, 1H); 8,07 (m, 2H); 7,65 (m, 3H); 7,43 (m, 2H); 7,24 (m, 2H); 4,53 (d, 2H); 3,84 (m, 4H); 3,17 (m, 2H); 2,80 (m, 6H); 2,35 (m, 2H); 1,48 (m, 4H); 1,17 (s, 9H).

PREPARATION LI

Acide 2-[4-[[[(2E)-4-[méthyl[(1-naphtalényl)sulfonyl]amino]-1-oxo-2-butènyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (pâte incolore, rendement = 79%)

RMN ¹H (300 MHz, DMSO) δ : 8,60 (t, 1H); 8,26 (d, 1H); 8,13 (m, 2H); 7,70 (m, 3H); 7,42 (d, 2H); 7,16 (m, 2H); 6,55 (m, 2H); 4,54 (s, 2H); 4,00 (m, 2H); 3,84 (m, 4H); 2,70 (m, 6H); 1,16 (d, 9H).

En opérant de façon analogue à l'exemple 1, on obtient les composés suivants :

10 Exemple 5

5-[[(2-chlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl) phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide blanc, rendement = 98%)

 $F \approx 60^{\circ}C$

15 Exemple 6

 $(2E)-4-[[(2-chlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate$

(solide blanc, rendement = 90%)

F = 72°C

20 Exemple 7

3-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1<math>H-imidazol-2-yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

(solide blanc, rendement = 84%)

 $F = 60^{\circ}C$

25 Exemple 8

4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-butanamide, trifluoroacétate

(solide blanc, rendement = 91%)

F = 62°C

30 Exemple 9

5-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1<math>H-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

(solide blanc, rendement = 80%)

F = 64°C

Exemple 10

(2E)-4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate (solide blanc, rendement = 94%)

 $5 ext{ } F = 66^{\circ}\text{C}$

Exemple 11

5-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide écru, rendement = 65%)

10 F = 50°C

Exemple 12

(2E)-4-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate (solide beige, rendement = 98%)

15 $F = 83^{\circ}C$

Exemple 13

5-[méthyl[(1-naphtalényl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide blanc, rendement = 97%)

20 RMN 1 H (250 MHz, DMSO) δ : 10,5 (d, 2H); 8,60 (t, 1H); 8,26 (d, 1H); 8,09 (m, 2H); 7,90 (m, 2H); 7,70 (m, 3H); 7,45 (d, 2H); 4,60 (d, 2H); 4,01 (s, 4H); 3,20 (m, 2H); 2,85 (m, 6H); 2,40 (m, 2H); 1,52 (m, 4H).

Exemple 14

(2E)-4-[méthyl[(1-naphtalényl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1H-imidazol-2-

25 yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(solide beige, rendement = 99%)

F = 77°C

En opérant de façon analogue à la préparation V, on obtient les composés suivants :

PREPARATION LII

30 2-chloro-N-cyclopropyl-benzènesulfonamide

(solide blanc, rendement = 82%)

 $F = 117^{\circ}C$

PREPARATION LIII

N-cyclopropyl-2,3-dichloro-benzènesulfonamide

(solide écru, rendement = 50%)

 $F = 140^{\circ}C$

PREPARATION LIV

N-cyclopropyl-2,6-dichloro-benzènesulfonamide

5 (solide blanc, rendement = 99%)

F = 76°C

PREPARATION LV

2,3-dichloro-N-(1-méthyléthyl)-benzènesulfonamide

(solide blanc, rendement = 93%)

 $10 F = 131^{\circ}C$

PREPARATION LVI

2,6-dichloro-N-(1-méthyléthyl)-benzènesulfonamide

(solide blanc, rendement = 99%)

F = 105°C

15 PREPARATION LVII

N-(2-amino-2-oxoéthyl)-2,4-dichloro-3-méthylbenzènesulfonamide

(huile, rendement = 95%)

RMN ¹H (300 MHz, DMSO) δ : 8,04 (s, 1H); 7,82 (d, 1H); 7,62 (d, 1H); 7,12 (s, 1H); 7,03 (s, 1H); 3,50 (s, 2H); 2,48 (s, 3H).

20 PREPARATION LVIII

N-(3-amino-3-oxopropyl)-2,4-dichloro-3-méthylbenzènesulfonamide

(solide blanc, rendement = 81%)

F = 163°C

PREPARATION LIX

25 2,3-dichloro-N-(2,2,2-trifluoroéthyl)-benzènesulfonamide

(solide écru, rendement = 76%)

F = 107°C

PREPARATION LX

2,6-dichloro-N-(2,2,2-trifluoroéthyl)-benzènesulfonamide

30 (solide blanc, rendement = 99%)

F = 106°C

PREPARATION LXI

2,4-dichloro-3-méthyl-N-(2-phényléthyl)-benzènesulfonamide

(solide blanc, rendement = 81%)

PCT/FR03/01763

 $F = 75^{\circ}C$

En opérant de façon analogue à la préparation VI, on obtient les composés suivants :

PREPARATION LXII

Acide 5-[[(2-chlorophényl)sulfonyl]cyclopropylamino]pentanoïque, éthyl ester

(solide blanc, rendement = 82%) 5

 $F = 117^{\circ}C$

PREPARATION LXIII

Acide 5-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]pentanoïque, éthyl ester (huile jaune, rendement = 98%)

RMN 1 H (250 MHz, DMSO₃) δ : 8,00 (m, 2H); 7,58 (t, 1H); 4,05 (q, 2H); 3,42 (t, 2H); 2,50 10 (m, 1H); 2,33 (t, 2H); 1,59 (m, 4H); 1,18 (t, 3H); 0,60 (m, 2H); 0,40 (m, 2H).

PREPARATION LXIV

Acide 5-[cyclopropyl[(2,6-dichlorophényl)sulfonyl]amino]pentanoïque, éthyl ester (non isolé)

PREPARATION LXV 15

Acide 5-[[(2,6-dichlorophényl)sulfonyl](1-méthyléthyl)amino]pentanoïque, éthyl ester (non isolé)

PREPARATION LXVI

Acide

5-[(2-amino-2-oxoéthyl)](2,4-dichloro-3-méthylphényl)sulfonyl]

20 amino]pentanoïque, éthyl ester

(huile jaune, rendement = 95%)

RMN 1 H (300 MHz, DMSO) δ : 7,91 (d, 1H); 7,64 (d, 1H); 7,15 (s, 1H); 7,01 (s, 1H); 4,04 (m, 2H); 3,95 (s, 2H); 3,27 (t, 2H); 2,49 (s, 3H); 2,15 (t, 2H); 1,62 (m, 1H); 1,20 (m, 3H); 1,17 (t, 3H).

PREPARATION LXVII 25

Acide 5-[(3-amino-3-oxopropyl)[(2,4-dichlorophényl)sulfonyl]amino]pentanoïque, éthyl ester

(huile incolore, rendement = 99%)

RMN 1 H (300 MHz, DMSO) δ : 7,84 (d, 1H); 7,65 (d, 1H); 7,34 (s, 1H); 6,84 (s, 1H); 4,04 (m, 2H); 3,51 (m, 2H); 3,25 (m, 2H); 2,50 (s, 3H); 2,30 (m, 2H); 2,22 (t, 2H); 1,44 (m, 4H); 30 1,17 (t, 3H).

En opérant de facon analogue à la préparation VI mais en remplaçant l'ester éthylique bromé par un ester t-butylique iodé, on obtient les composés suivants :

PREPARATION LXVIII

Acide [2-[[(2-chlorophényl)sulfonyl]cyclopropylamino]éthoxy]acétique, 1,1-diméthyléthyl ester

(huile jaune, rendement = 52%)

RMN ¹H (250 MHz, DMSO) δ : 8,00 (d, 1H); 7,68 (d, 2H); 7,57 (m, 1H); 3,98 (s, 2H); 3,69 (t, 2H); 3,52 (t, 2H); 2,50 (m, 1H); 1,43 (s, 9H); 0,56 (m, 2H); 0,45 (m, 2H).

PREPARATION LXIX

Acide [2-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]éthoxy]acétique, 1,1-diméthyléthyl ester

10 (huile incolore, rendement = 78%)

RMN 1 H (250 MHz, DMSO) δ : 8,00 (m, 2H); 7,60 (t, 1H); 4,08 (s, 2H); 3,69 (t, 2H); 3,56 (t, 2H); 2,56 (m, 1H); 1,42 (s, 9H); 0,60 (m, 2H); 0,50 (m, 2H).

PREPARATION LXX

Acide [2-[cyclopropyl[(2,6-dichlorophényl)sulfonyl]amino]éthoxy]acétique, 1,1-

15 diméthyléthyl ester

(solide écru, rendement = 40%)

F = 76°C

PREPARATION LXXI

Acide [2-[[(2,4-dichloro-3-méthylphényl)sulfonyl](2-phényléthyl)amino]éthoxy]acétique,

20 1.1-diméthyléthyl ester

(huile incolore, rendement = 77%)

RMN ¹H (250 MHz, DMSO) δ : 7,86 (m, 1H); 7,60 (m, 1H); 7,17 (m, 6H); 3,94 (s, 2H); 3,56 (m, 6H); 2,80 (m, 2H); 2,44 (d, 3H); 1,42 (s, 9H).

En opérant de façon analogue à la préparation VIII, on obtient les composés suivants :

25 PREPARATION LXXII

Acide 5-[[(2-chlorophényl)sulfonyl]cyclopropylamino]pentanoïque

(solide blanc, rendement = 86%)

F = 104°C

PREPARATION LXXIII

30 Acide 5-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]pentanoïque

(solide écru, rendement = 79%)

F = 115°C

PREPARATION LXXIV

Acide 5-[cyclopropyl[(2,6-dichlorophényl)sulfonyl]amino]pentanoïque

(solide jaune, rendement = 53%)

F = 146°C

PREPARATION LXXV

Acide 5-[[(2,6-dichlorophényl)sulfonyl](1-méthyléthyl)amino]pentanoïque

(huile, rendement = 36%)

RMIN ¹H (300 MHz, DMSO) δ : 12,0 (s large, 1H); 7,67 (d, 2H); 7,56 (t, 1H); 3,98 (m, 1H); 3.97 (t, 2H); 2,17 (t, 2H); 1,48 (m, 4H); 1,06 (d, 6H).

PREPARATION LXXVI

Acide 5-[(2-amino-2-oxoéthyl)[(2,4-dichloro-3-méthylphényl) sulfonyl]amino]pentanoïque

(solide blanc, rendement = 63%)

F = 160°C

10

20

25

PREPARATION LXXVII

Acide 5-[(3-amino-3-oxopropyl)[(2,4-dichlorophényl)sulfonyl]amino]pentanoïque (solide blanc, rendement = 93%)

15 $F = 161^{\circ}C$

PREPARATION LXXVIII

Acide [2-[[(2-chlorophényl)sulfonyl]cyclopropylamino]éthoxy]acétique

On prépare une solution de 210 mg (0,5 mM) de l'ester obtenu selon la préparation LXVIII dans 10 ml de dichlorométhane, on ajoute 3 ml d'acide trifluoroacétique et on maintient ce mélange réactionnel sous agitation pendant 16 heures, à température ambiante. Le milieu réactionnel est ensuite concentré sous pression réduite, repris par 30 ml de toluène et à nouveau concentré sous pression réduite. Le résidu cristallise pendant le séchage. On obtient ainsi le produit attendu sous forme d'un solide blanc (rendement = 99%).

F = 115°C

En opérant de façon analogue à la préparation LXXVIII, on obtient les composés suivants :

PREPARATION LXXIX

Acide [2-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]éthoxy]acétique

(solide jaune, rendement = 99%)

 $F = 96^{\circ}C$

PREPARATION LXXX .

Acide [2-[cyclopropyl[(2,6-dichlorophényl)sulfonyl]amino]éthoxy]acétique

(solide blanc, rendement = 88%)

 $F = 98^{\circ}C$

5

10

15

20

PREPARATION LXXXI

Acide [2-[[(2,4-dichloro-3-méthylphényl)sulfonyl](2-phényléthyl)amino] éthoxy]acétique (huile jaune, rendement = 77%)

RMN ¹H (300 MHz, DMSO) δ : 12,0 (s large, 1H)⁻; 7,87 (d, 1H); 7,60 (d, 1H); 7,15 (m, 5H); 3,91 (s, 2H); 3,56 (m, 6H); 2,81 (t, 2H); 2,43 (s, 3H).

PREPARATION LXXXII

N-[(2,6-dichlorophényl)sulfonyl]-N-méthyl-β-alanine

On prépare une solution de 480 mg (2 mM) du composé obtenu selon la préparation XX dans 7 ml de diméthylformamide et on ajoute 120 mg (4 mM) d'hydrure de sodium à 80% dans l'huile. Le mélange est agité 2 min à température ambiante puis on ajoute 306 mg (2 mM) d'acide 3-bromopropanoïque. Le milieu réactionnel est maintenu sous agitation pendant 1 heure à température ambiante, puis 20 heures à 70°C. Après refroidissement, le mélange est hydrolysé sur 50 ml d'eau glacée. Cette phase aqueuse est extraite à l'acétate d'éthyle, puis acidifiée jusqu'à pH 2 à l'aide d'acide chlorhydrique N et extraite à l'acétate d'éthyle. Cette dernière phase organique est lavée à l'eau puis séchée sur sulfate de sodium, puis concentrée sous pression réduite. On obtient ainsi l'acide attendu sous forme d'un solide blanc amorphe (rendement = 70%).

F = 115°C

En opérant de façon analogue à la préparation LXXXII, on obtient les composés suivants:

PREPARATION LXXXIII

N-[(2,3-dichlorophényl)sulfonyl]-N-méthyl-β-alanine

(solide blanc, rendement = 70%)

F = 115°C

25 PREPARATION LXXXIV

 $N\text{-}cyclopropyl-N\text{-}[(2,6\text{-}dichloroph\acute{e}nyl)]\text{-}\beta\text{-}alanine}$

(solide écru, rendement = 55%)

F = 190°C

PREPARATION LXXXV

30 N-[(2,3-dichlorophényl)sulfonyl]-N-(1-méthyléthyl)-β-alanine

(solide écru, rendement = 47%)

F = 115°C

PREPARATION LXXXVI

N-[(2,6-dichlorophényl)sulfonyl]-N-(1-méthyléthyl)-β-alanine

(solide blanc, rendement = 53%)

F = 138°C

PREPARATION LXXXVII

N-[(2,3-dichlorophényl)sulfonyl]-N-(2,2,2-trifluoroéthyl)-β-alanine

5 (solide écru, rendement = 92%)

F = 125°C

PREPARATION LXXXVIII

N-[(2,6-dichlorophényl)sulfonyl]-N-(2,2,2-trifluoroéthyl)-β-alanine

(solide blanc, rendement = 77%)

10 $F = 100^{\circ}C$

En opérant de façon analogue à la préparation V, on obtient le composé suivant :

PREPARATION LXXXIX

N-méthyl-2-(trifluorométhyl)benzènesulfonamide

(solide blanc, rendement = 99%)

15 $F = 107^{\circ}C$

20

25

PREPARATION XC

2,4-dichloro-3-méthylbenzènesulfonamide

On prépare une solution de 5g (16,8 mM) de 2,4-dichloro-N-(1,1-diméthyléthyl)-3-méthylbenzènesulfonamide dans 100 ml de dichlorométhane et on ajoute 50 ml d'acide trifluoroacétique. Le mélange réactionnel est agité à température ambiante pendant 20 heures. On ajoute ensuite 20 ml d'acide chlorhydrique 10 N et on maintient sous agitation pendant 4 heures à température ambiante. Le mélange est ensuite concentré sous pression réduite. Le résidu solide est purifié par chromatographie sur gel de silice en éluant au moyen d'un mélange toluène-acétate d'éthyle (9/1; v/v). On obtient ainsi 3,74 g du produit attendu (rendement = 92%).

 $F \approx 210^{\circ}C$

En opérant de façon analogue à la préparation VI, on obtient les composés suivants :

PREPARATION XCI

Acide (2E)-4-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]-2-butènoïque, 1,1-

. 30 diméthyléthyl ester

(huile jaune, rendement = 44%)

RMN ¹H (250 MHz, DMSO) δ : 8,04 (m, 2H); 7,90 (m, 2H); 6,66 (dt, 1H); 5,88 (dt, 1H); 4,07 (dd, 2H); 2,84 (s, 3H); 1,44 (s, 9H).

PREPARATION XCII

Acide (2E)-4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]amino]-2-butènoïque, 1,1-diméthyléthyl ester

(huile jaune, rendement = 20%)

RMN ¹H (300 MHz, DMSO) δ: 8,33 (s, 1H); 7,81 (d, 1H); 7,63 (d, 1H); 6,49 (dt, 1H); 5,69 (dt, 1H); 3,70 (dd, 2H); 2,48 (s, 3H); 1,38 (s, 9H).

En opérant de façon analogue à la préparation LXXVIII, on obtient les composés suivants:

PREPARATION XCIII

Acide (2E)-4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]amino]-2-butènoïque (solide blanc, rendement = 99%)

F = 154°C

PREPARATION XCIV

Acide 4-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]-2-butènoïque

15 (solide blanc, rendement = 99%)

F = 184°C

En opérant de façon analogue à la préparation VIII, on obtient les composés suivants :

PREPARATION XCV

Acide 2-[4-[[[5-[[(2-chlorophényl)sulfonyl]cyclopropylamino]-1-oxopentyl]

méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide amorphe, rendement = 84%)

 $F = 50^{\circ}C$

20

PREPARATION XCVI

2-[4-[[5-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]-1-oxopentyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique,
1,1diméthyléthyl ester

(huile incolore, rendement = 65%)

RMN ¹H (300 MHz, DMSO) δ : 7,97 (m, 2H); 7,40 (m, 1H); 7,25 (m, 2H); 7,18 (m, 2H); 3,55 (d, 2H); 3,84 (m, 4H); 3,40 (m, 2H); 2,85 (d, 3H); 2,46 (m, 3H); 1,60 (m, 4H); 1,17 (s, 9H); 0,59 (m, 2H); 0,42 (m, 2H).

Acide 2-[4-[[[5-[cyclopropyl[(2,6-dichlorophényl)sulfonyl]amino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (solide amorphe, rendement = 59%)

F = 50°C

PREPARATION XCVIII

Acide 2-[4-[[[5-[[(2,6-dichlorophényl)sulfonyl](1-méthyléthyl)amino]-1-oxopentyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique,

1,1-

10 diméthyléthyl ester

(solide blanc, rendement = 69%)

F = 50°C

15

PREPARATION IC

Acide 2-[4-[[5-[(2-amino-2-oxoéthyl)](2,4-dichloro-3-méthylphényl)sulfonyl]amino]-1-oxopentyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 69%)

F = 70°C

PREPARATION C

20 Acide 2-[4-[[[5-[(3-amino-3-oxopropyl)](2,4-dichloro-3-méthylphényl)sulfonyl]amino]-1-oxopentyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 76%)

 $F = 80^{\circ}C$

25 PREPARATION CI

Acide 2-[4-[[[3-[[(2,3-dichlorophényl)sulfonyl](1-méthyléthyl)amino]-1-oxopropyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 55%)

 $F = 60^{\circ}C$

PREPARATION CII

Acide 2-[4-[[[3-[[(2,6-dichlorophényl)sulfonyl](1-méthyléthyl)amino]-1-oxopropyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 54%)

 $F = 55^{\circ}C$

PREPARATION CIII

Acide 2-[4-[[[2-[[(2-chlorophényl)sulfonyl]cyclopropylamino]éthoxy]acétyl]

5 méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide amorphe, rendement = 96%)

 $F = 50^{\circ}C$

PREPARATION CIV

Acide 2-[4-[[[2-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]éthoxy]acétyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1diméthyléthyl ester

(solide blanc, rendement = 56%)

F = 62°C

15 PREPARATION CV

Acide 2-[4-[[[2-[cyclopropyl[(2,6-dichlorophényl)sulfonyl]amino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide amorphe, rendement = 64%)

20 $F = 55^{\circ}C$

PREPARATION CVI

Acide 2-[4-[[[2-[[(2,4-dichloro-3-méthylphényl)sulfonyl](2-phényléthyl)amino] éthoxy]acétyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

25 (huile incolore, rendement = 63%)

RMN ¹H (250 MHz, DMSO) δ : 7,87 (m, 1H); 7,60 (m, 1H); 7,30 (m, 3H); 7,20 (m, 6H); 4,52 (s, 2H); 4,19 (d, 2H); 3,84 (m, 4H); 3,60 (m, 6H); 2,83 (s, 3H); 2,77 (t, 2H); 2,48 (d, 3H); 1,17 (s, 9H).

PREPARATION CVII

Acide 2-[4-[[[3-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-1-oxopropyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1diméthyléthyl ester

(solide blanc, rendement = 60%)

 $F \approx 55^{\circ}C$

PREPARATION CVIII

Acide 2-[4-[[[3-[cyclopropyl](2,3-dichlorophényl)sulfonyl]amino]-1-oxopropyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-

5 diméthyléthyl ester

(solide blanc, rendement = 64%)

 $F = 60^{\circ}C$

PREPARATION CIX

Acide 2-[4-[[[3-[cyclopropyl](2,6-dichlorophényl)sulfonyl]amino]-1-oxopropyl]

méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 63%)

 $F \approx 64$ °C

PREPARATION CX

Acide 2-[4-[[[3-[[(2,3-dichlorophényl)sulfonyl](2,2,2-trifluoroéthyl)amino]-1-oxopropyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 33%)

F = 55°C

20 PREPARATION CXI

Acide 2-[4-[[[3-[[(2,6-dichlorophényl)sulfonyl](2,2,2-trifluoroéthyl)amino]-1-oxopropyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 36%)

25 $F = 50^{\circ}C$

PREPARATION CXII

Acide 4,5-dihydro-2-[4-[[méthyl](2E)-4-[méthyl][2-(trifluorométhyl)phényl] sulfonyl]amino]-1-oxo-2-butènyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

30 (huile incolore, rendement = 62%)

RMN ¹H (250 MHz, DMSO) δ : 8,04 (m, 2H); 7,88 (m, 2H); 7,43 (m, 2H); 7,17 (m, 2H); 6,60 (m, 2H); 4,62 (d, 2H); 4,05 (dd, 2H); 3,83 (m, 4H); 2,86 (m, 6H); 1,17 (m, 9H).

PREPARATION CXIII

Acide 2-[4-[[(2E)-4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]amino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (huile incolore, rendement = 50%)

RMN 1 H (300 MHz, DMSO) δ : 8,31 (s, 1H); 7,82 (t, 1H); 7,62 (dd, 1H); 7,44 (dd, 2H); 7,22 (dd, 2H); 6,50 (m, 2H); 4,55 (d, 2H); 3,84 (m, 4H); 3,70 (m, 2H); 2,82 (d, 3H); 2,47 (m, 3H); 1,18 (s, 9H).

En opérant de façon analogue à l'exemple 1, on obtient les composés suivants :

10 Exemple 15

5-[[(2-chlorophényl)sulfonyl]cyclopropylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate
(solide blanc, rendement = 84%)

F = 55°C

15 **Exemple 16**

5-[cyclopropyl[(2,3-dichlorophényl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide écru, rendement = 99%) $F = 70^{\circ}C$

20 <u>Exemple 17</u>

 $\label{lem:condition} 5-[cyclopropyl](2,6-dichlorophényl) sulfonyl] amino]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]-N-méthyl-pentanamide, trifluoroacétate$

(solide blanc, rendement = 86%)

F = 60°C

25 Exemple 18

5-[[(2,6-dichlorophényl)sulfonyl](1-méthyléthyl)amino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide blanc, rendement = 98%)

 $F = 60^{\circ}C$

30 **Exemple 19**

5-[(2-amino-2-oxoéthyl)[(2,4-dichloro-3-méthylphényl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide blanc, rendement = 99%)

 $F = 90^{\circ}C$

Exemple 20

5-[(3-amino-3-oxopropyl)[(2,4-dichloro-3-méthylphényl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

5 (solide blanc, rendement = 95%)

 $F = 85^{\circ}C$

Exemple 21

3-[[(2,3-dichlorophényl)sulfonyl](1-méthyléthyl)amino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

10 (solide blanc, rendement = 73%)

 $F = 92^{\circ}C$

Exemple 22

 $3-[[(2,6-dichlorophényl)sulfonyl](1-méthyléthyl)amino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-1]](1-méthyléthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)](1-méthyl)amino]-N-[4-(4,5-dihydro-1)$

2-yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

15 (solide blanc, rendement = 73%)

F = 75°C

Exemple 23

 $2-[2-[[(2-chlorophényl)sulfonyl]cyclopropylamino] {\it \'ethoxy}]-N-[[4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate$

20 (solide blanc, rendement = 71%)

F = 52°C

Exemple 24

 $2-[2-[cyclopropyl](2,3-dichlorophényl) sulfonyl] amino] \'ethoxy]-N-[[4-(4,5-dihydro-1 \emph{H-imidazol-2-yl}) phényl]-N-méthyl-neéthyl-acétamide, trifluoroacétate$

25 (solide blanc, rendement = 97%)

F = 65°C

Exemple 25

 $2-[2-[cyclopropyl](2,6-dichlorophényl) sulfonyl] amino] {\it ethoxy}-N-[[4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]-N-méthyl-acétamide, trifluoroacétate \\$

30 (solide blanc, rendement = 99%)

F = 60°C

Exemple 26

2-[2-[[(2,4-dichloro-3-méthylphényl)sulfonyl](2-phényléthyl)amino]éthoxy]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

(solide blanc, rendement = 81%)

F = 85°C

Exemple 27

3-[[(2,6-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-

5 yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

(solide blanc, rendement = 73%)

F = 75°C

Exemple 28

3-[cyclopropyl](2,3-dichlorophényl) sulfonyl] amino]-N-[[4-(4,5-dihydro-1 H-imidazol-2-dichlorophényl)] sulfonyl] sulfonyl]

10 yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

(solide blanc, rendement = 86%)

 $F = 80^{\circ}C$

Exemple 29

 $3-[cyclopropyl](2,6-dichlorophényl) sulfonyl] amino]-N-[[4-(4,5-dihydro-1 \emph{H}-imidazol-2-mida$

yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

(solide blanc, rendement = 84%)

 $F = 65^{\circ}C$

15

Exemple 30

3-[(2,2,2-trifluoro'ethyl)[(2,3-dichloroph'enyl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1H-(4

20 imidazol-2-yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

(solide blanc, rendement = 90%)

 $F \approx 88^{\circ}C$

Exemple 31

3-[(2,2,2-trifluoro'ethyl)[(2,6-dichloroph'enyl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1H-1)]--[(4,5-dihydro-1H-1)]--

25 imidazol-2-yl)phényl]méthyl]-N-méthyl-propanamide, trifluoroacétate

(solide blanc, rendement = 80%)

F = 80°C

Exemple 32

N-[[4-(4,5-dihydro-1*H*-imidazol-2yl)phényl]méthyl]-N-méthyl-4-[méthyl[[2-

30 (trifluorométhyl)phényl]sulfonyl]amino]-(2E)-2-butènamide, trifluoroacétate

(solide blanc, rendement = 99%)

 $F = 50^{\circ}C$

Exemple 33

4-[[(2,4-dichloro-3-méthylphényl)sulfonyl]amino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-(2E)-2-butènamide, trifluoroacétate (solide blanc, rendement = 62%)

 $F = 99^{\circ}C$

10

15

20

25

30

PREPARATION CXIV

Acide [(4-cyanophényl)méthyl]méthylcarbamique, 1,1-diméthyléthyl ester

On prépare une solution de 1,94 g (13 mM) de [(4-cyanophényl)méthyl]-méthanamine dans 100 ml de dichlorométhane et on ajoute 1,78 g (14,6 mM) de 4-diméthylaminopyridine, puis 3,19 g (14,6 mM) de dicarbonate de di-t-butyle. Le mélange réactionnel est agité à température ambiante pendant 2 heures. La phase organique est lavée à l'eau puis avec une solution d'acide citrique, puis à l'eau, puis séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant avec un mélange toluène/isopropanol (9/1, v/v). On obtient ainsi 2,91 g du produit attendu sous forme d'une huile incolore (rendement = 82%).

RMN 1 H (250 MHz, DMSO) δ : 7,82 (d, 2H); 7,39 (d, 2H); 4,45 (s, 2H); 2,79 (s, 3H); 1,38 (s, 9H).

PREPARATION CXV

Acide [[4-(4,5-dihydro-5,5-diméthyl-1H-imidazol-2-yl)phényl]méthyl] méthylcarbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation CXIV et de 1,2-diamino-2-méthylpropane, on obtient le produit attendu sous forme d'huile incolore avec un rendement de 82%.

RMN ¹H (300 MHz, DMSO) δ : 7,78 (d, 2H); 7,25 (d, 2H); 4,39 (s, 2H); 3,36 (s, 2H); 2,76 (s, 3H); 1,39 (s, 9H); 1,23 (s, 6H).

PREPARATION CXVI

 $\hbox{$4$-(4,5$-dihydro-5,5$-dimethyl-1$$H$-imidazol-2-yl)-N-methyl-benz\`enem\'ethanamine, dichlorhydrate }$

On prépare une solution de 1,585 g (5 mM) du composé obtenu selon la préparation CXV dans 80 ml d'acétate d'éthyle et on ajoute lentement 24 ml d'une solution de chlorure d'hydrogène dans l'acétate d'éthyle. Le mélange est agité à température ambiante pendant 20 heures. Le précipité est séparé par filtration puis lavé avec de l'acétate d'éthyle puis de l'éther éthylique, puis séché en milieu anhydre. On obtient ainsi 1,33 g du produit attendu (rendement = 92%).

(s, 3H); 1,22 (s, 6H).

En opérant de façon analogue à la préparation VIII, au départ du composé obtenu selon la préparation CXVI, on obtient le composé suivant:

5 Exemple 34

5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-N-[[4-(5,5-diméthyl-4,5-dihydro-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide

(solide blanc, rendement = 38%)

F = 104°C

10 Exemple 35

15

20

5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-N-[[4-(5,5-diméthyl-4,5-dihydro-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, chlorhydrate

On prépare une solution de 62,6 mg (0,113 mM) du composé obtenu selon l'exemple 34 dans 10 ml de méthanol et on ajoute 225 µl d'une solution d'acide chlorhydrique N. On mélange sous agitation pendant 5 min puis on concentre sous pression réduite. Le résidu est repris dans 5 ml d'eau pure et lyophilisé. On obtient ainsi 48 mg du composé attendu sous forme d'un solide blanc.

(rendement = 72%)

F = 104°C

En opérant de façon analogue à la préparation V, on obtient les composés suivants :

PREPARATION CXVII

2,4-dichloro-3,N-diméthyl-N-(2-hydroxyéthyl)benzènesulfonamide

(non isolé)

PREPARATION CXVIII

25 2,3-dichloro-N-(2-hydroxy-1-méthyléthyl)-N-méthylbenzènesulfonamide

(huile incolore, rendement = 71%)

RMN 1 H (300 MHz, DMSO) δ : 8,05 (d, 1H); 8,01 (d, 1H); 7,55 (t, 1H); 4,76 (t, 1H); 3,79 (m, 1H); 3,40 (m, 2H); 2,81 (s, 3H); 1,04 (d, 3H).

PREPARATION CXIX

30 2,3-dichloro-N-(2-hydroxyéthyl)-N-méthylbenzènesulfonamide

(huile incolore, rendement = 99%)

RMN 1 H (300 MHz, DMSO) δ : 7,93 (m, 2H); 7,55 (t, 1H); 3,49 (m, 2H); 3,27 (t, 2H); 2,90 (s, 3H).

5

10

15

20

25

PREPARATION CXX

2,6-dichloro-N-(2-hydroxyéthyl)-N-méthylbenzènesulfonamide

(huile jaune, rendement = 99%)

RMIN ¹H (300 MHz, DMSO) δ : 7,67 (d, 2H); 7,57 (m, 1H); 4,79 (t, 1H); 3,54 (q, 2H); 3,29 (t, 2H); 2,92 (s, 3H).

PREPARATION CXXI

2-chloro-N-(2-hydroxyéthyl)-N-méthylbenzènesulfonamide

(huile, rendement = 99%)

RMN ¹H (300 MHz, DMSO) δ : 7,95 (d, 1H); 7,66 (m, 2H); 7,60 (m, 1H); 4,79 (t, 1H); 3,53 (q, 2H); 3,25 (t, 2H); 2,88 (s, 3H).

PREPARATION CXXII

Acide [2-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester

On prépare une solution de 100 mg (0,335 mM) de composé obtenu selon la préparation CXVII dans 4 ml de toluène et on ajoute 30 mg (0,111 mM) de chlorure de tétrabutylammonium, puis 4 ml d'une solution de soude à 35%. Le milieu réactionnel est refroidi à 10°C puis on ajoute 98 mg (0,5 mM) de bromoacétate de t-butyle. Le mélange est agité à température ambiante pendant 30 min, puis hydrolysé sur de l'eau glacée. Le mélange obtenu est extrait au toluène et la phase organique obtenue est séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi le produit attendu sous forme d'une huile incolore (rendement = 87%).

RMN ¹H (300 MHz, DMSO) δ : 7,84 (d, 1H); 7,63 (d, 1H); 3,93 (s, 2H); 3,59 (t, 2H); 3,39 (t, 2H); 2,91 (s, 3H); 2,49 (s, 3H); 1,41 (s, 9H).

En opérant de façon analogue à la préparation CXXII, on obtient les composés suivants:

PREPARATION CXXIII

Acide [2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]propoxy]acétique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 88%)

30 RMN ¹H (250 MHz, DMSO) δ : 8,05 (d, 1H); 8,02 (d, 1H); 7,92 (t, 1H); 4,01 (m, 1H); 3,82 (s, 2H); 3,47 (m, 2H); 2,85 (s, 3H); 1,42 (s, 9H); 1,03 (d, 3H).

PREPARATION CXXIV

Acide [2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 96%)

RMN ¹H (300 MHz, DMSO) δ : 7,94 (m, 2H); 7,56 (t, 1H); 3,93 (s, 2H); 3,60 (t, 2H); 3,40 (t, 2H); 2,94 (s, 3H); 1,42 (s, 9H).

PREPARATION CXXV

5 Acide [2-[[(2,6-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester

(huile jaune, rendement = 99%).

RMN ¹H (250 MHz, DMSO) δ : 7,67 (d, 2H); 7,55 (m, 1H); 3,93 (s, 2H); 3,62 (t, 2H); 3,43 (d, 2H); 2,94 (s, 3H); 1,41 (s, 9H).

10 PREPARATION CXXVI

Acide [2-[[(2-chlorophényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester (huile, rendement = 99%).

RMN ¹H (300 MHz, DMSO) δ : 7,98 (d, 1H); 7,67 (m, 2H); 7,54 (m, 1H); 3,94 (s, 2H); 3,60 (t, 2H); 3,39 (t, 2H); 2,85 (s, 3H); 1,42 (s, 9H).

En opérant de façon analogue à la préparation VII, on obtient les composés suivants :

PREPARATION CXXVII

15

20

25

Acide [2-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]acétique

(huile incolore, rendement = 100%)

RMN 1 H (300 MHz, DMSO) δ : 12,5 (s large, 1H); 7,86 (d, 1H); 7,64 (d, 1H); 4,02 (s, 2H); 3,61 (t, 2H); 3,40 (t, 2H); 2,91 (s, 3H); 2,51 (s, 3H).

PREPARATION CXXVIII

Acide [2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]propoxy]acétique

(huile incolore, rendement = 81%).

RMN ¹H (300 MHz, DMSO) δ : 12,6 (s large, 1H); 8,06 (d, 1H); 7,92 (d, 1H); 7,53 (t, 1H); 3,98 (m, 1H); 3,82 (s, 2H); 3,50 (m, 2H); 2,85 (s, 3H); 1,05 (d, 3H).

En opérant de façon analogue à la préparation LXXVIII, on obtient les composés suivants :

PREPARATION CXXIX

Acide [2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétique

30 (solide blanc écru, rendement = 100%).

 $F = 80^{\circ}C$

PREPARATION CXXX

Acide [2-[[(2,6-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétique (huile jaune, rendement = 100%).

RMN 1 H (250 MHz, DMSO) δ : 12,6 (s large, 1H); 7,67 (d, 2H); 7,55 (m, 1H); 3,97 (s, 2H); 3,63 (t, 2H); 3,44 (t, 2H); 2,94 (s, 3H).

PREPARATION CXXXI

Acide [2-[[(2-chlorophényl)sulfonyl]méthylamino]éthoxy]acétique

(huile incolore, rendement = 99%). 5

> RMN ¹H (300 MHz, DMSO) δ : 12,5 (s large, 1H); 7,95 (d, 1H); 7,66 (m, 2H); 7,55 (m, 1H) ; 3,97 (s, 2H); 3,61 (t, 2H); 3,39 (t, 2H); 2,90 (s, 3H).

PREPARATION CXXXII

10

20

25

Acide méthyl[[4-(1,4,5,6-tétrahydro-2-pyrimidinyl)phényl]méthyl]carbamique, 1,1diméthyléthyl ester

En opérant de façon analogue à la préparation CXV, au départ de 1,3-propanediamine, on obtient le produit attendu sous forme d'une huile incolore avec un rendement de 30%.

RMN 1 H (250 MHz, DMSO) δ : 7,75 (d, 2H); 7,37 (d, 2H); 4,44 (s, 2H); 3,47 (t, 4H); 2,79 (s, 3H); 1,90 (m, 2H); 1,40 (s, 9H).

PREPARATION CXXXIII 15

N-méthyl-4-(1,4,5,6-tétrahydro-2-pyrimidinyl)-benzèneméthanamine, dichlorhydrate

En opérant de façon analogue à la préparation CXVI, on obtient le produit attendu sous forme d'une huile jaune (rendement = 100%).

RMN 1 H (250 MHz, DMSO) δ : 10,23 (s, 2H); 9,73 (s large, 2H); 7,83 (m, 4H); 4,20 (t, 2H); 3,50 (s, 4H); 2,51 (m, 3H); 1,95 (m, 2H).

PREPARATION CXXXIV

Acide [[4-(4,5-dihydro-1-méthyl-1H-imidazol-2-yl)phényl]méthyl] méthylcarbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation CXV, au départ de 1,2-propanediamine, on obtient le produit attendu sous forme d'une huile jaune (rendement = 74%).

RMN ¹H (250 MHz, DMSO) δ : 7,49 (d, 2H); 7,26 (d, 2H); 4,4 (s, 2H); 3,68 (t, 2H); 3,34 (t, 2H); 2,78 (s, 3H); 2,70 (s, 3H); 1,40 (s, 9H).

PREPARATION CXXXV

N-méthyl-4-(4,5-dihydro-1-méthyl-1H-imidazol-2-yl)benzèneméthanamine,

dichlorhydrate 30

En opérant de façon analogue à la préparation CXVI, on obtient le produit attendu sous forme d'une huile beige (rendement = 100%).

RMN 1 H (250 MHz, DMSO) δ : 10,44 (s, 1H); 9,13 (s, 2H); 7,74 (m, 4H); 4,26 (s, 2H); 4,08 (m, 2H); 3,92 (m, 2H); 3,05 (s, 3H); 2,61 (s, 3H).

5

10

15

20

PREPARATION CXXXVI

4-cyano-2-fluoro-N-méthylbenzèneméthanamine

On refroidit 1 ml d'une solution de méthanamine à 16,5% dans l'éthanol par un bain de glace et on ajoute goutte à goutte une solution de 120 mg (0,56 mM) de 4-(bromométhyl)-3-fluoro-benzonitrile dans 1 ml de dichlorométhane. Le milieu réactionnel est ensuite agité pendant 4 heures à température ambiante puis est concentré sous pression réduite. Le résidu est repris avec de l'acétate d'éthyle et lavé avec une solution de bicarbonate de sodium. La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (98/0,05; v/v). On obtient ainsi l'amine attendue sous forme d'une huile incolore (rendement = 49%).

RMIN ¹H (300 MHz, DMSO) δ : 7,78 (d, 1H); 7,64 (m, 2H); 3,73 (s, 2H); 2,33 (s, 1H); 2,26 (s, 3H).

En opérant de façon analogue aux préparations I à IV, on obtient successivement les composés suivants :

PREPARATION CXXXVII

Acide [(2-fluoro-4-cyanophényl)méthyl]méthylcarbamique, phénylméthyl ester (huile jaune, rendement = 99%).

RMN ¹H (300 MHz, DMSO) δ : 7,84 (d, 1H); 7,67 (m, 1H); 7,36 (m, 8H); 5,16 (d, 2H); 4,57 (s, 2H); 2,91 (s, 3H).

PREPARATION CXXXVIII

Acide [[2-fluoro-4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl méthylcarbamique, phénylméthyl ester

(solide blanc, rendement = 70%).

25 $F = 90^{\circ}C$

PREPARATION CXXXIX

Acide 2-[3-fluoro-4-[[méthyl](phénylméthoxy)carbonyl]amino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (solide blanc, rendement = 99%).

30 $F = 131^{\circ}C$

PREPARATION CXL

Acide 2-[3-fluoro-4-[(méthylamino)méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (huile jaune, rendement = 81%).

5

10

25

RMN 1 H (300 MHz, DMSO) δ : 7,44 (t, 1H); 7,23 (m, 3H); 3,84 (m, 4H); 3,69 (s, 2H); 2,25 (s, 3H); 1,21 (s, 9H).

En opérant de façon analogue à la préparation VIII, on obtient les composés suivants :

PREPARATION CXLI

Acide 2-[4-[[[2-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy] acétyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 81%).

RMN 1 H (250 MHz, DMSO) δ : 7,87 (t, 1H); 7,62 (m, 1H); 7,44 (m, 2H); 7,24 (d, 2H); 4,51 (s, 2H); 4,19 (d, 2H); 3,83 (m, 4H); 3,62 (m, 2H); 3,43 (m, 2H); 2,85 (m, 6H); 1,18 (s, 9H).

PREPARATION CXLII

Acide 2-[4-[[[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]propoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

15 (huile incolore, rendement = 52%).

RMN ¹H (250 MHz, DMSO) δ: 8,08 (m, 1H); 7,89 (m, 1H); 7,50 (m, 3H); 7,30 (m, 2H); 4,49 (d, 2H); 4,05 (d, 2H); 3,98 (m, 1H); 3,84 (m, 4H); 3,49 (m, 2H); 2,83 (m, 6H); 1,18 (s, 1H); 1,04 (t, 3H).

PREPARATION CXLIII

Acide 2-[4-[[[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 73%).

RMN ¹H (300 MHz, DMSO) δ : 7,95 (m, 2H); 7,50 (m, 3H); 7,24 (d, 2H); 4,52 (s, 2H); 4,18 (d, 2H); 3,83 (m, 4H); 3,64 (m, 2H); 3,46 (m, 2H); 2,91 (m, 6H); 1,18 (s, 9H).

PREPARATION CXLIV

Acide 2-[4-[[[2-[[(2,6-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétyl]méthyl amino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (huile incolore, rendement = 58%).

30 RMN ¹H (300 MHz, DMSO) δ: 7,67 (m, 2H); 7,55 (m, 1H); 7,45 (m, 2H); 7,25 (d, 2H); 4,51 (s, 2H); 4,18 (d, 2H); 3,83 (m, 4H); 3,66 (m, 2H); 3,45 (m, 2H); 2,84 (m, 6H); 1,18 (s, 9H).

Exemple 36

2-[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-N-[[4-(1,4,5,6-tétrahydro -2-pyrimidinyl)phényl]méthyl]acétamide

(huile incolore, rendement = 25%).

RMN 1H (300 MHz, DMSO) $\,\delta$: 7,95 (m, 2H) ; 7,50 (m, 3H) ; 7,24 (d, 2H) ; 4,52 (s, 2H) ; 4,18

(d, 2H); 3,83 (m, 4H); 3,64 (m, 2H); 3,46 (m, 2H); 2,91 (m, 6H); 1,18 (s, 9H).

Exemple 37

5

20

25

2-[2-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino] ethoxy]-N-[[4-(4,5-dihydro-1-méthyl-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide

(huile jaune, rendement = 25%).

RMN ¹H (300 MHz, DMSO) δ: 7,84 (t, 1H); 7,63 (m, 1H); 7,49 (m, 2H); 7,28 (m, 2H); 4,53 (s, 2H); 4,20 (d, 2H); 3,65 (m, 4H); 3,42 (m, 4H); 2,78 (m, 9H); 2,51 (s, 3H).

Exemple 38

2-[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1-méthyl-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide

(huile, rendement = 20%).

RMN ¹H (250 MHz, DMSO) δ : 7,98 (m, 2H); 7,55 (m, 3H); 7,34 (m, 2H); 4,54 (s, 2H); 4,20 (d, 2H); 3,60 (m, 8H); 2,80 (m, 9H).

PREPARATION CXLV

Acide

2-[4-[[[[2-[[(2-chlorophényl)sulfonyl]méthylamino]éthoxy]acétyl]

méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 46%).

RMN 1 H (300 MHz, DMSO) δ : 7,97 (t, 1H); 7,65 (m, 2H); 7,56 (m, 1H); 7,47 (m, 2H); 7,24 (d, 2H); 4,52 (s, 2H); 4,20 (d, 2H); 3,83 (m, 4H); 3,63 (m, 2H); 3,40 (m, 2H); 2,84 (m, 6H); 1,18 (s, 9H).

PREPARATION CXLVI

Acide 2-[4-[[[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]-3-fluorophényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 46%).

RMN 1 H (250 MHz, DMSO) δ : 7,94 (m, 2H); 7,55 (dd, 1H); 7,26 (m, 3H); 4,56 (s, 2H); 4,20 (d, 2H); 3,85 (m, 4H); 3,61 (m, 2H); 3,45 (m, 2H); 2,85 (m, 6H); 1,20 (s, 9H).

En opérant de façon analogue à l'exemple 1, on obtient les composés suivants :

Exemple 39

F = 75°C

5 Exemple 40

2-[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 96%).

F = 60°C

10 **Exemple 41**

2-[2-[[(2,6-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 96%).

F = 60°C

15 **Exemple 42**

2-[2-[[(2-chlorophényl)sulfonyl]méthylamino] éthoxy]-N-[[4-(4,5-dihydro-1\$H\$-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

(solide blanc, rendement = 99%).

F = 60°C

20 **Exemple 43**

2-[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-[[2-fluoro-4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

(solide blanc, rendement = 87%).

F = 80°C

25

En opérant de façon analogue à la préparation CXVI au départ du composé obtenu selon la Préparation CXLII, on obtient le composé suivant :

Exemple 44

 $2-[2-[[(2,3-{\rm dichlorophényl}) sulfonyl] méthylamino] propoxy]-N-[[4-(4,5-{\rm dihydro-}1H-{\rm imidazol-}2-yl) phényl] méthyl]-N-méthyl-acétamide, chlorhydrate$

30 (solide blanc, rendement = 85%).

F = 104°C

Exemple 45

2-[2-[[(2,3-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-N-[[4-(1,4,5,6-tétrahydro-2-pyrimidinyl)phényl]méthyl]acétamide, trifluoroacétate

On prépare une solution de 40 mg (0,075 mM) du composé obtenu selon l'exemple 36 dans 10 ml de méthanol et on ajoute 5,9 µl d'acide trifluoroacétique. Le mélange est agité 15 min à température ambiante puis concentré sous pression réduite. Le résidu est repris dans 3 ml d'eau pure et la solution obtenue est filtrée. Le filtrat est lyophilisé. On obtient ainsi 35 mg du composé attendu sous forme d'une poudre blanche (rendement = 73%).

RMN 1 H (250 MHz, DMSO) δ : 10,05 (s large, 2H); 7,98 (m, 2H); 7,73 (m, 2H); 7,56 (m, 4H); 4,59 (s, 2H); 4,20 (d, 2H); 3,65 (m, 2H); 3,46 (m, 6H); 2,87 (m, 6H); 1,98 (m, 2H).

Exemple 46

5

10

15

20

25

30

2-[2-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1-méthyl-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, chlorhydrate

On dissout 90 mg (0,166 mM) du composé obtenu selon l'exemple 37 dans 3 ml de méthanol et on ajoute 1 ml d'une solution saturée de chlorure d'hydrogène dans l'éther éthylique. Le mélange est maintenu sous agitation à température ambiante pendant 1 heure; on ajoute 10 ml d'éther éthylique puis on concentre sous pression réduite. Le résidu est repris dans 6 ml d'eau pure, la solution obtenue est filtrée puis lyophilisée. On obtient ainsi 95 mg du produit attendu sous forme d'un solide blanc cristallisé (rendement = 98%).

 $F = 60^{\circ}C$

Exemple 47

 $\hbox{$2-[2-[[(2,3-dichlorophényl)sulfonyl]$m\'ethylamino]\'ethoxy]-N-[[4-(4,5-dihydro-1-m\'ethyl-newed]]$} and the property of the$

1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, chlorhydrate

En opérant de façon analogue à l'exemple 46, au départ du composé obtenu selon l'exemple 38, on obtient le composé attendu sous forme d'une huile incolore (rendement = 53%).

RMN ¹H (250 MHz, DMSO) δ : 10,20 (s, 1H); 7,98 (m, 2H); 7,65 (m, 2H); 7,53 (m, 3H); 4,60 (s, 2H); 4,20 (d, 2H); 3,95 (m, 4H); 3,70 (m, 4H); 3,06 (s, 3H); 2,90 (m, 6H).

PREPARATION CXLVII

Acide (2-hydroxyéthyl)méthylcarbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation CXIV, au départ de 2-(méthylamino)éthanol, on obtient le composé attendu sous forme d'une huile incolore (rendement = 87%).

RMN ¹H (300 MHz, DMSO) δ : 4,65 (t, 1H); 3,45 (q, 2H); 3,19 (t, 2H); 2,81 (s, 3H); 1,38 (s, 9H).

PREPARATION CXLVIII

Acide [2-[[(1,1-diméthyléthoxy)carbonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation CXXII, au départ du composé obtenu selon la préparation CXLVII, on obtient le produit attendu sous forme d'une huile jaune (rendement = 99%).

RMN ¹H (250 MHz, DMSO) δ : 3,96 (s, 2H); 3,52 (t, 2H); 3,31 (t, 2H); 2,81 (s, 3H); 1,42 (s, 9H); 1,38 (s, 9H).

PREPARATION CIL

5

10

20

25

30

Acide [2-(méthylamino)éthoxy]acétique, trifluoroacétate

En opérant de façon analogue à la préparation LXXVIII, au départ du composé obtenu selon la préparation CXLVIII, on obtient le produit attendu sous forme d'une huile jaune (rendement = 99%).

RMN ¹H (250 MHz, DMSO) δ : 8,50 (s large, 1H); 4,09 (s, 2H); 3,70 (m, 2H); 3,11 (m, 2H); 2,60 (m, 3H).

15 PREPARATION CL

Acide [2-[méthyl[(phénylméthoxy)carbonyl]amino]éthoxy]acétique

On prépare une solution de 25 g (0,101 mM) du composé obtenu selon la préparation CIL, dans 400 ml de dichlorométhane et on ajoute à 0°C 35,2 ml (0,25 mM) de triéthylamine puis, goutte à goutte, 15,5 ml de chloroformiate de benzyle. Le mélange réactionnel est agité pendant 5 heures à température ambiante. Le mélange réactionnel est hydrolysé sur 200 ml d'eau glacée et 50 ml d'acide chlorhydrique N. La phase organique séparée est lavée à l'eau puis séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut huileux est purifié par chromatographie sur gel de silice en éluant avec un mélange toluène/isopropanol/ammoniaque (9/1/0,1; v/v/v). on obtient ainsi 13,7 g du produit attendu sous forme d'une huile incolore (rendement = 51%).

RMN 1 H (250 MHz, DMSO) δ : 7,33 (m, 5H); 5,06 (s, 2H); 4,10 (s, 2H); 3,58 (t, 2H); 3,49 (m, 2H); 2,90 (d, 3H).

PREPARATION CLI

Acide 2-[4-(2,8-diméthyl-3,9-dioxo-11-phényl-5,10-dioxa-2,8-diazaundec-1-yl)

phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation CL, on obtient le produit attendu sous forme d'une huile jaune (rendement = 62%). RMN 1 H (250 MHz, DMSO) δ : 7,42-7,22 (m, 9H); 5,05 (s, 2H); 4,51 (s, 2H); 4,21 (s, 2H); 3,84 (m, 4H); 3,58 (m, 2H); 3,45 (m, 2H); 2,88 (m, 6H); 1,17 (s, 9H).

5

15

30

PREPARATION CLII

Acide 4,5-dihydro-2-[4-[[méthyl[[2-(méthylamino)éthoxy]acétyl] amino] méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation IV, au départ du composé obtenu selon la préparation CLI, on obtient le produit attendu sous forme d'une huile jaune (rendement = 91%). RMN 1 H (250 MHz, DMSO) δ : 7,41 (d, 2H); 7,26 (d, 2H); 4,53 (d, 2H); 4,20 (d, 2H); 3,84 (m, 4H); 3,50 (m, 2H); 2,86 (s, 3H); 2,63 (m, 2H); 2,26 (d, 3H); 1,18 (s, 9H).

En opérant de façon analogue à la préparation V, au départ du composé obtenu selon la préparation CLII, on obtient les composés suivants :

10 PREPARATION CLIII

Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl] amino]éthoxy]acétyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

RMN ¹H (300 MHz, DMSO) δ : 8,02 (m, 2H); 7,87 (m, 2H); 7,44 (m,2H); 7,23 (d, 2H); 4,53 (s, 2H); 4,23 (d, 2H); 3,83 (m, 4H); 3,65 (m, 2H); 3,48 (m, 2H); 2,88 (m, 6H); 1,17 (s, 9H).

PREPARATION CLIV

Acide 4,5-dihydro-2-[4-[[[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthyl amino]éthoxy]acétyl]méthylamino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

20 (huile incolore, rendement = 74%).

RMN ¹H (300 MHz, DMSO) δ : 7,42 (m, 2H); 7,22 (d, 2H); 6,80 (d, 2H); 4,50 (s, 2H); 4,15 (d, 2H); 3,84 (m, 4H); 3,79 (s, 3H); 3,57 (m, 2H); 3,22 (m, 2H); 2,76 (m, 6H); 2,53 (s, 6H); 1,17 (s, 9H).

PREPARATION CLV

2-[[[2-[[(2,4-dichlorophényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 70%).

RMIN ¹H (250 MHz, DMSO) δ : 7,89 (m, 2H); 7,60 (m, 1H); 7,43 (m, 2H); 7,23 (d, 2H); 4,51 (s, 2H); 4,20 (d, 2H); 3,84 (m, 4H); 3,60 (m, 2H); 3,42 (m, 2H); 2,83 (m, 6H); 1,18 (s, 9H).

PREPARATION CLVI

Acide 2-[4-[[[2-[[(2,4-dichloro-5-méthylphényl)sulfonyl]méthylamino]éthoxy] acétyl]méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 43%).

5 RMN ¹H (300 MHz, DMSO) δ : 7,94 (m, 1H); 7,82 (m, 1H); 7,42 (m, 2H); 7,23 (d, 2H); 4,52 (s, 2H); 4,20 (d, 2H); 3,83 (m, 4H); 3,60 (m, 2H); 3,42 (m, 2H); 2,85 (m, 6H); 2,38 (s, 3H); 1,18 (s, 9H).

PREPARATION CLVII

Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl[(2-nitrophényl)sulfonyl]

amino]éthoxy]acétyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(mousse blanche, rendement = 50%).

 $F = 60^{\circ}C$

PREPARATION CLVIII

Acide 2-[4-[[[2-[[[2,6-dichloro-4-(trifluorométhyl)phényl]sulfonyl] méthylamino]
éthoxy]acétyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique,
1,1-diméthyléthyl ester

(huile incolore, rendement = 55%).

RMN ¹H (300 MHz, DMSO) δ: 8,08 (d, 2H); 7,42 (m, 2H); 7,22 (d, 2H); 4,50 (s,2H); 4,18 (d, 2H); 3,83 (m, 4H); 3,64 (m, 2H); 3,50 (m, 2H); 2,80 (m, 6H); 1,18 (s, 9H).

PREPARATION CLIX

Acide 2-[4-[[[2-[[(2-chloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

25 (solide blanc, rendement = 63%).

F = 50°C

20

30

PREPARATION CLX

Acide 2-[4-[[[2-[[(2-cyanophényl)sulfonyl]méthylamino]éthoxy]acétyl]méthyl amino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (solide blanc, rendement = 56%).

F = 60°C

PREPARATION CLXI

Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl[(2,3,4-(trichlorophényl)sulfonyl] amino]éthoxy]acétyl]amino]méthyl]phényl]-1H-imidazole-1-carboxylique, 1,1diméthyléthyl ester

(solide blanc, rendement = 59%).

 $F = 60^{\circ}C$ 5

PREPARATION CLXII

Acide 2-[4-[[[[2-[[(3-chloro-2-méthylphényl)sulfonyl]méthylamino]éthoxy]acétyl] ${\bf m\acute{e}thylamino]} {\bf m\acute{e}thyl] p\acute{h}\acute{e}nyl] - 4,5 - {\bf dihydro-1} \\ H-{\bf imidazole-1-carboxylique,} \ 1,1 - {\bf imidazole-1-carboxylique,} \$ diméthyléthyl ester

(huile incolore, rendement = 57%). 10

RMN ^{1}H (250 MHz, DMSO) δ : 7,78 (m, 2H) ; 7,41 (m, 3H) ; 7,23 (d, 2H) ; 4,52 (s, 2H) ; 4,20 (d, 2H); 3,82 (m, 4H); 3,59 (m, 2H); 3,39 (m, 2H); 2,83 (m, 6H); 2,59 (d, 3H); 1,18 (s, 9H).

PREPARATION CLXIII

Acide 2-[4-[[[[2-[[(2-chloro-4-cyanophényl)sulfonyl]méthylamino]éthoxy]acétyl] ${\bf m\acute{e}thylamino]} {\bf m\acute{e}thyl] ph\acute{e}nyl] {\bf -4,5-dihydro-1} {\it H-imidazole-1-carboxylique, 1,1-dihydro-1} {\it H-imidazole-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1-d$ diméthyléthyl ester

(solide blanc, rendement = 51%).

F = 60°C

15

25

PREPARATION CLXIV

20 Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl[[2-nitro-4-(trifluorométhyl)phényl] $sulfonyl] a {\bf mino}] {\bf \acute{e}thoxy}] {\bf ac\acute{e}tyl}] {\bf amino}] {\bf m\acute{e}thyl}] {\bf p\acute{e}nyl}] {\bf -1} {\it H$-imidazole-1-carboxylique}, {\bf 1,1-carboxylique}, {\bf 1,1-carboxy$ diméthyléthyl ester

(huile incolore, rendement = 47%)

RMN 1 H (300 MHz, DMSO) δ : 8,59 (s, 1H); 8,27 (m, 2H); 7,42 (m, 2H); 7,23 (d, 2H); 4,51

(s, 2H); 4,20 (d, 2H); 3,83 (m, 4H); 3,64 (m, 2H); 3,47 (m, 2H); 2,90 (m, 6H); 1,18 (s, 9H).

PREPARATION CLXV

Acide 2-[4-[[[[2-[[(2,6-difluorophényl)sulfonyl]méthylamino]éthoxy]acétyl] ${\bf m\acute{e}thylamino]} {\bf m\acute{e}thyl] ph\acute{e}nyl] {\bf -4,5-dihydro-1} {\it H-imidazole-1-carboxylique, 1,1-dihydro-1} {\it H-imidazole-1-carboxylique, 1,1-dihydro-1-carboxylique, 1,1-dihydro-1$ diméthyléthyl ester

(huile incolore, rendement = 49%). 30

RMN ^{1}H (250 MHz, DMSO) δ : 7,74 (m, 1H) ; 7,43 (m, 2H) ; 7,27 (m, 4H) ; 4,51 (s, 2H) ; 4,16 (d, 2H); 3,82 (m, 4H); 3,60 (m, 2H); 3,56 (m, 2H); 2,82 (m, 6H); 1,18 (s, 9H).

PREPARATION CLXVI

Acide 4,5-dihydro-2-[4-[[méthyl][2-[méthyl][4-(trifluorométhoxy)phényl]sulfonyl] amino]éthoxy]acétyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 63%).

RMN ¹H (250 MHz, DMSO) δ: 7,93 (m, 2H); 7,60 (d, 2H); 7,42 (m, 2H); 7,23 (d, 2H); 4,51 (s, 2H); 4,19 (d, 2H); 3,84 (m, 4H); 3,59 (m, 2H); 3,22 (m, 2H); 2,78 (m, 6H); 1,18 (s, 9H).

PREPARATION CLXVII

Acide 2-[4-[[[2-[[(2,5-dichlorothien-3-yl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1-

10 diméthyléthyl ester

(huile incolore, rendement = 30%).

RMN 1 H (250 MHz, DMSO) δ : 7,41 (m, 3H) ; 7,23 (d, 2H) ; 4,52 (s, 2H) ; 4,21 (d, 2H) ; 3,84 (m, 4H) ; 3,62 (m, 2H) ; 3,37 (m, 2H) ; 2,84 (m, 6H) ; 1,18 (s, 9H).

PREPARATION CLXVIII

Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl[(3-méthylphényl)sulfonyl] amino]éthoxy]acétyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 33%).

RMN ¹H (300 MHz, DMSO) δ : 7,60 (m, 2H); 7,56 (m, 2H); 7,50 (m, 2H); 7,22 (d, 2H); 4,52 (s, 2H); 4,20 (d, 2H); 3,84 (m, 4H); 3,57 (m, 2H); 3,17 (m, 2H); 2,76 (m, 6H); 2,40 (s, 3H); 1,18 (s, 9H).

PREPARATION CLXIX

Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl(1-naphtalénylsulfonyl)amino] éthoxy]acétyl]amino]méthyl]phényl]-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl

25 ester

(huile incolore, rendement = 33%).

RMN 1 H (300 MHz, DMSO) δ : 8,60 (m, 1H); 8,20 (m, 1H); 8,08 (m, 2H); 7,68 (m, 3H); 7,46 (m, 2H); 7,23 (d, 2H); 4,50 (d, 2H); 4,13 (d, 2H); 3,84 (m, 4H); 3,59 (m, 2H); 3,41 (m, 2H); 2,86 (m, 6H); 1,17 (s, 9H).

30 PREPARATION CLXX

Acide 4,5-dihydro-2-[4-[[méthyl[[2-[méthyl[[3-(trifluorométhyl)phényl]sulfonyl] amino]éthoxy]acétyl]amino]méthyl]phényl]-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 66%).

RMN ¹H (300 MHz, DMSO) δ : 8,12 (m, 3H); 7,85 (m, 1H); 7,44 (m, 2H); 7,23 (d, 2H); 4,50 (s, 2H); 4,15 (d, 2H); 3,82 (m, 4H); 3,60 (m, 2H); 3,26 (m, 2H); 2,81 (m, 6H); 1,18 (s, 9H).

PREPARATION CLXXI

Acide 2-[4-[[[2-[[(4-chloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(solide blanc, rendement = 59%).

 $F = 60^{\circ}C$

10 PREPARATION CLXXII

Acide 2-[4-[[[2-[[(2,4-difluorophényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile incolore, rendement = 64%).

15 RMN 1 H (250 MHz, DMSO) δ : 7,87 (m, 1H); 7,43 (m, 3H); 7,20 (m, 3H); 4,51 (s, 2H); 4,17 (d, 2H); 3,84 (m, 4H); 3,61 (m, 2H); 3,34 (m, 2H); 2,84 (m, 6H); 1,18 (s, 9H).

PREPARATION CLXXIII

Acide 2-[4-[[[2-[[(3-chlorophényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-

20 diméthyléthyl ester

(huile incolore, rendement = 51%).

RMN 1 H (300 MHz, DMSO) δ : 7,78 (m, 3H); 7,66 (m, 1H); 7,45 (m, 2H); 7,23 (d, 2H); 4,51 (s, 2H); 4,19 (d, 2H); 3,82 (m, 4H); 3,52 (m, 2H); 3,37 (m, 2H); 2,78 (m, 6H); 1,18(s, 9H).

En opérant de façon analogue à l'exemple 1, on obtient les composés suivants :

Exemple 48

N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide, trifluoroacétate (solide fin blanc, rendement = 96%).

 $F = 60^{\circ}C$

25

Exemple 49

N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide, trifluoroacétate (solide pâteux, rendement = 99%).

RMN ¹H (250 MHz, DMSO) δ : 10,48 (s large, 2H); 7,89 (d, 2H); 7,48 (d, 2H); 6,79 (s, 2H); 4,59 (s, 2H); 4,15 (d, 2H); 4,01 (s, 4H); 3,79 (s, 3H); 3,59 (m, 2H); 3,24 (m, 2H); 2,71 (m, 6H); 2,53 (s, 6H).

Exemple 50

5 2-[2-[[(2,4-dichlorophényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 99%).

 $F = 60^{\circ}C$

Exemple 51

 $\begin{array}{ll} 2-[2-[[(2,4-dichloro-5-méthylphényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1\emph{H-imidazol-2-yl})phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate \\ & (solide pâteux, rendement = 99\%). \\ & RMN \ ^1H (250 \ MHz, DMSO) \ \delta: 10,5 \ (d, 2H) \ ; 7,87 \ (m, 4H) \ ; 7,50 \ (d, 2H) \ ; 4,60 \ (s, 2H) \ ; 4,10 \\ & (d, 2H) \ ; 4,01 \ (s, 4H) \ ; 3,62 \ (m, 2H) \ ; 3,45 \ (m, 2H) \ ; 2,85 \ (m, 6H) \ ; 2,38 \ (s, 3H). \\ \end{array}$

Exemple 52

15

20

N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[(2-nitrophényl)sulfonyl]amino]éthoxy]acétamide, trifluoroacétate (pâte jaune, rendement = 99%).

RMN 1 H (300 MHz, DMSO) δ : 10,49 (s, 2H); 7,89 (m, 6H); 7,49 (d, 2H); 4,61 (s, 2H); 4,22 (d, 2H); 4,01 (s, 4H); 3,66 (m, 2H); 3,41 (m, 2H); 2,90 (m, 6H).

Exemple 53

2-[2-[[[2,6-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino] éthoxy]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 99%).

25 $F = 60^{\circ}C$

Exemple 54

2-[2-[[(2-chloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 67%).

 $F = 63^{\circ}C$

Exemple 55

2-[2-[[(2-cyanophényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 94%).

F = 60°C

Exemple 56

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](2,3,4-trichlorophényl)sulfonyl]amino]éthoxy]acétamide, trifluoroacétate$

5 (solide blanc, rendement = 99%).

F = 70°C

Exemple 57

2-[2-[[(3-chloro-2-méthylphényl)sulfonyl]méthylamino] éthoxy]-N-[[4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

10 (solide fin blanc, rendement = 74%).

 $F = 60^{\circ}C$

Exemple 58

 $2-[2-[[(2-chloro-4-cyanophényl)sulfonyl]méthylamino] {\it ethoxy}]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate$

15 (solide blanc, rendement = 97%).

F = 64°C

Exemple 59

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl][2-nitro-4-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide, trifluoroacétate$

20 (solide blanc, rendement = 85%).

RMN 1 H (250 MHz, DMSO) δ : 10,47 (s, 2H) ; 8,59 (s, 1H) ; 8,23 (m, 2H) ; 7,92 (m, 2H) ; 7,48 (d, 2H) ; 4,60 (s, 2H) ; 4,20 (d, 2H) ; 4,01 (s, 4H) ; 3,65 (m, 2H) ; 3,47 (m, 2H) ; 2,85 (m, 6H).

Exemple 60

 $2-[2-[[(2,6-\mathrm{difluorophényl})\mathrm{sulfonyl}]\mathrm{m\acute{e}thylamino}]\acute{e}thoxy]-N-[[4-(4,5-\mathrm{dihydro-}1$H-\mathrm{imidazol-}2-yl)\mathrm{ph\acute{e}nyl}]\mathrm{m\acute{e}thyl}]-N-\mathrm{m\acute{e}thyl-ac\acute{e}tamide}, trifluoroac\acute{e}tate$

(mousse, rendement = 99%).

RMN 1 H (250 MHz, DMSO) δ : 10,47 (s, 2H); 7,92 (m, 2H); 7,76 (m, 1H); 7,47 (d, 2H); 7,27 (t, 2H); 4,60 (s, 2H); 4,20 (d, 2H); 4,01 (s, 4H); 3,65 (m, 2H); 3,37 (m, 2H); 2,89 (m, 6H).

30 <u>Exemple 61</u>

25

N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[[4-(trifluorométhoxy)phényl]sulfonyl]amino]éthoxy]acétamide, trifluoroacétate (huile incolore, rendement = 67%).

RMN 1 H (250 MHz, DMSO) δ : 10,51 (s, 2H); 7,91 (t, 4H); 7,59 (d, 2H); 7,48 (d, 2H); 4,60 (s, 2H); 4,20 (d, 2H); 4,01 (s, 4H); 3,61 (m, 2H); 3,21 (m, 2H); 2,75 (m, 6H).

Exemple 62

 $2-[2-[[(2,5-\mathrm{dichlorothi\acute{e}n}-3-\mathrm{yl})\mathrm{sulfonyl}]\mathrm{m\acute{e}thylamino}]\acute{e}thoxy]-\mathrm{N-}[[4-(4,5-\mathrm{dihydro-}1H-(4,5-\mathrm{dihydro-}$

5 imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

(solide blanc, rendement = 99%).

 $F = 60^{\circ}C$

Exemple 63

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl]-N-méthyl-2-[2-[méthyl](3-methyl)phényl-2-[2-[méthy$

10 méthylphényl)sulfonyl]amino]éthoxy]acétamide, trifluoroacétate

(huile incolore, rendement = 68%).

RMN 1 H (250 MHz, DMSO) δ : 10,48 (s, 2H); 7,88 (m, 2H); 7,61 (m, 2H); 7,51 (m, 4H); 4,63 (s, 2H); 4,20 (d, 2H); 4,01 (s, 4H); 3,62 (m, 2H); 3,09 (m, 2H); 2,76 (m, 6H); 2,40 (s, 3H).

15 Exemple 64

N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl(1-naphtalénylsulfonyl)amino]éthoxy]acétamide, trifluoroacétate (solide blanc, rendement = 99%).

 $F = 66^{\circ}C$

20 <u>Exemple 65</u>

N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[[3-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide, trifluoroacétate (solide blanc, rendement = 99%).

 $F = 60^{\circ}C$

25 <u>Exemple 66</u>

2-[2-[[(4-chloro-3-méthylphényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (solide blanc, rendement = 59%).

 $F = 60^{\circ}C$

30 <u>Exemple 67</u>

2-[2-[[(2,4-difluorophényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate (huile incolore, rendement = 99%).

Exemple 68

 $2-[2-[[(3-chlorophényl)sulfonyl]méthylamino] {\it ethoxy}]-N-[[4-(4,5-dihydro-1 {\it H-imidazol-2-yl})phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate$

(solide blanc, rendement = 99%).

 $F = 60^{\circ}C$

5

10

15

20

25

30

PREPARATION CLXXIV

5-bromo-N-[(4-cyanophényl)méthyl]-N-méthylpentanamide

On prépare une solution de 30,14 g (0,206 M) de 4-[(méthylamino)méthyl]-benzonitrile dans 500 ml de dichlorométhane et on ajoute 22,9 g (0,227 M) de triéthylamine. Le mélange est refroidi à l'aide d'un bain de glace et on ajoute goutte à goutte une solution de 41,1 g (0,206 M) de chlorure de 5-bromopentanoyle dans 200 ml de dichlorométhane. Le mélange réactionnel est maintenu sous agitation à température ambiante pendant 5 heures puis hydrolysé sur 300 ml d'acide chlorhydrique 1N froid. La phase organique est séparée, lavée à l'eau, puis avec une solution de bicarbonate de sodium, puis à l'eau et séchée sur sulfate de magnésium. Après concentration sous pression réduite, on obtient le produit attendu sous forme d'une huile jaune (rendement = 97%).

RMN 1 H (300 MHz, DMSO) δ : 7,80 (d, 2H); 7,39 (d, 2H); 4,62 (d, 2H); 3,50 (m, 2H); 2,81 et 2,50 (s, 3H); 2,41 (m, 2H); 1,80 (m, 2H); 1,64 (m, 2H).

PREPARATION CLXXV

N-[(4-cyanophényl)methyl]-N-méthyl-5-[méthyl(phénylméthyl)amino]-pentanamide

On prépare une solution de 62,2 g (0,201 M) du composé obtenu selon la préparation CLXXIV dans 500 ml d'acétonitrile et on ajoute à température ambiante 24,4 g (0,201 M) de N-méthyl-benzèneméthanamine, puis 27,8 g (0,201 M) de carbonate de potassium. Le mélange réactionnel est agité à 50°C pendant 8 heures, puis pendant une nuit à température ambiante. Le solvant est ensuite éliminé sous pression réduite et le résidu d'évaporation est repris par 300 ml de dichlorométhane. Cette phase organique est lavée 2 fois à l'eau, puis séchée sur sulfate de magnésium et concentrée sous pression réduite. Le produit brut est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange dichlorométhane/méthanol (95/5; v/v). On obtient ainsi 51,7 g du composé attendu sous forme d'une huile jaune (rendement = 74%). RMN ¹H (250 MHz, DMSO) δ: 7,78 (m, 2H); 7,35 (m, 2H); 7,26 (m, 5H); 4,60 (d, 2H); 3,40 (d, 2H); 2,75 (d, 3H); 2,32 (m, 4H); 2,05 (d, 3H); 1,50 (m, 4H).

5

10

15

20

25

30

PREPARATION CLXXVI

Acide [5-[[(4-cyanophényl)méthyl]méthylamino]-5-oxopentyl]méthylcarbamique, phénylméthyl ester

On dissout 51,67g (0,148 M) du composé obtenu selon la préparation CLXXV dans 400 ml de dichlorométhane et on ajoute progressivement une solution de 42 ml (0,296 M) de chloroformiate de benzyle dans 200 ml de dichlorométhane. Le mélange réactionnel est maintenu sous agitation pendant 16 heures à température ambiante, puis hydrolysé sur 300 ml d'acide chlorhydrique 0,5 N froid. La phase organique est séparée puis lavée à l'eau jusqu'à neutralité, séchée sur sulfate de magnésium et concentrée sous pression réduite. Ce produit brut est purifié par chromatographie sur gel de silice en éluant avec un mélange toluène/isopropanol (95/5; v/v). On obtient ainsi 51,6 g du produit attendu sous forme d'une huile jaune (rendement = 89%).

RMN 1 H (250 MHz, DMSO) δ : 7,79 (m, 2H); 7,36 (m, 7H); 5,04 (d, 2H); 4,60 (d, 2H); 3,22 (m, 2H); 2,84 (m, 6H); 2,35 (m, 2H); 1,47 (m, 4H).

En opérant de façon analogue aux préparations II à IV, au départ du composé obtenu selon la préparation CLXXVI, on obtient les composés suivants :

PREPARATION CLXXVII

Acide [5-[[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]méthylamino]-5-oxopentyl]méthylcarbamique, 1,1-diméthyléthyl ester

(huile jaune, rendement = 94%).

RMN ¹H (250 MHz, DMSO) δ : 7,78 (m, 2H); 7,30 (m, 5H); 7,22 (d, 2H); 6,83 (s large, 1H); 5,04 (d, 2H); 4,50 (d, 2H); 3,64 (m, 4H); 3,26 (m, 2H); 2,82 (m, 6H); 2,38 (m, 2H); 1,48 (m, 4H).

PREPARATION CLXXVIII

Acide 4,5-dihydro-2-[4-[[méthyl[5-[méthyl[(phénylméthoxy)carbonyl]amino]-1-oxopentyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (huile incolore, rendement = 95%).

PREPARATION CLXXIX

Acide 4,5-dihydro-2-[4-[[méthyl[5-(méthylamino)-1-oxopentyl]amino] méthyl]

phényl]-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(huile jaune, rendement = 90%).

RMN 1 H (250 MHz, DMSO) δ : 7,43 (m, 2H); 7,20 (m, 2H); 4,56 (d, 2H); 3,84 (m, 4H); 2,87 (d, 3H); 2,42 (m, 4H); 2,29 (d, 3H); 1,49 (m, 4H); 1,18 (s, 9H).

En opérant de façon analogue à la préparation V, on obtient les composés suivants :

PREPARATION CLXXX

Acide 4,5-dihydro-2-[4-[[méthyl[5-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]-1-oxopentyl]amino]méthyl]phényl]-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (huile incolore, rendement = 41%).

5 RMN ¹H (250 MHz, DMSO) δ: 7,91 (m, 4H); 7,43 (dd, 2H); 7,21 (dd, 2H); 4,56 (d, 2H); 3,85 (m, 4H); 3,21 (m, 2H); 2,84 (m, 6H); 2,36 (m, 2H); 1,55 (m, 4H); 1,14 (s, 9H).

PREPARATION CLXXXI

Acide 2-[4-[[[5-[[(2,4-dichloro-5-méthylphényl)sulfonyl]méthylamino]-1-oxopentyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique,

1,1-

10 diméthyléthyl ester.

(mousse blanche, rendement = 53%).

RMN 1 H (250 MHz, DMSO) δ : 7,92 (d, 1H); 7,83 (d, 1H); 7,43 (dd, 2H); 7,20 (dd, 2H); 4,54 (d, 2H); 3,85 (m, 4H); 3,17 (m, 2H); 2,85 (m, 6H); 2,39 (s, 3H); 2,35 (m, 2H); 1,52 (m, 4H); 1,17 (s, 9H).

15 PREPARATION CLXXXII

Acide 4,5-dihydro-2-[4-[[méthyl[5-[méthyl[(3-méthylphényl)sulfonyl]amino]-1-oxopentyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (huile incolore, rendement = 51%).

RMN ¹H (250 MHz, DMSO) δ : 7,52 (m, 3H); 7,42 (dd, 2H); 7,21 dd, 2H); 4,56 (d, 2H); 3,85 (m, 4H); 2,90 (m, 2H); 2,83 (d, 3H); 2,62 (d, 3H); 2,40 (s, 3H); 2,35 (m, 2H); 1,52 (m, 4H); 1,18 (s, 9H).

PREPARATION CLXXXIII

Acide 4,5-dihydro-2-[4-[[[5-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]-1-oxopentyl]méthylamino]méthyl]phényl]-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl

25 ester

20

(huile incolore, rendement = 20%).

RMN 1 H (250 MHz, DMSO) δ : 7,42 (m, 2H); 7,19 (m, 2H); 6,80 (m, 2H); 4,53 (d, 2H); 3,85 (m, 4H); 3,78 (s, 3H); 3,02 (m, 2H); 2,82 (d, 3H); 2,58 (m, 6H); 2,26 (m, 2H); 1,49 (m, 4H); 1,17 (s, 9H).

30 PREPARATION CLXXXIV

Acide 4,5-dihydro-2-[4-[[méthyl[5-[méthyl[(2,3,4-trichlorophényl)sulfonyl]amino]-1-oxopentyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (solide blanc, rendement = 62%)

F = 60°C

PREPARATION CLXXXV

Acide 4,5-dihydro-2-[4-[[méthyl[5-[méthyl[(2-nitrophényl)sulfonyl]amino]-1-oxopentyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (solide blanc, rendement = 39%).

 $F = 60^{\circ}C$

PREPARATION CLXXXVI

Acide 2-[4-[[[5-[[(2,4-dichlorophényl)sulfonyl]méthylamino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester.

10 (huile incolore, rendement = 46%).

RMN 1 H (250 MHz, DMSO) δ : 7,94 (m, 2H); 7,63 (m, 1H); 7,43 (dd, 2H); 7,20 (dd, 2H); 4,55 (d, 2H); 3,84 (m, 4H); 3,17 (m, 2H); 2,83 (m, 6H); 2,37 (m, 2H); 1,49 (m, 4H); 1,17 (s, 9H).

PREPARATION CLXXXVII

Acide 2-[4-[[[5-[[(2-chloro-3-méthylphényl)sulfonyl]méthylamino]-1-oxopentyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester.

(huile incolore, rendement = 65%).

RMN ¹H (250 MHz, DMSO) δ : 7,82 (m, 1H); 7,64 (m, 1H); 7,43 (m, 3H); 7,20 (dd, 2H); 4,54 (d, 2H); 3,86 (m, 4H); 3,18 (m, 2H); 2,84 (m, 6H); 2,48 (s, 3H); 2,35 (m, 2H); 1,51 (m, 4H); 1,18 (s, 9H).

En opérant de façon analogue à l'exemple 1, on obtient les composés suivants :

Exemple 69

20

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-5-[méthyl[[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[méthyl][[2-methyl]méthyl]-methyl-5-[methyl][[2-methyl]méthyl]-methyl-5-[methyl][[2-methyl]methyl-5-[methyl]me$

25 (trifluorométhyl)phényl]sulfonyl]amino]pentanamide, trifluoroacétate

(solide amorphe, rendement = 99%).

RMN 1 H (300 MHz, DMSO) δ : 10,50 (d, 2H); 8,02 (m, 1H); 7,92 (m, 5H); 7,46 (d, 2H); 4,66 (d, 2H); 4,01 (s, 4H); 3,22 (, 2H); 2,90 (m, 6H); 2,40 (m, 2H); 1,55 (m, 4H).

Exemple 70

5-[[(2,4-dichloro-5-méthylphényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate (solide blanc, rendement = 99%).

F = 50°C

Exemple 71

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl-N-méthyl-5-[méthyl](3-méthylphényl)sulfonyl]amino]pentanamide, trifluoroacétate$

5 (solide blanc, rendement = 99%).

RMN 1 H (300 MHz, DMSO) δ : 10,48 (d, 2H) ; 7,90 (dd, 2H) ; 7,52 (m, 6H) ; 4,66 (d, 2H) ; 4,01 (s, 4H) ; 2,93 (m, 5H) ; 2,62 (d, 3H) ; 2,41 (m, 5H) ; 1,53 (m, 4H).

Exemple 72

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-methydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthydro-1\emph{H}-imidazol-2-yl)phényl]méthyl$

diméthylphényl)sulfonyl]méthylamino]-N-méthyl-pentanamide, trifluoroacétate (solide blanc, rendement = 66%).

F = 60°C

Exemple 73

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl-N-méthyl-5-[méthyl[(2,3,4-methyl-1)phényl]méthyl-N-méthyl-5-[méthyl]méthyl-1-methyl-5-[méthyl]méthyl-1-methyl-5-[méthyl]méthyl-1-methyl-1$

15 trichlorophényl)sulfonyl]amino]pentanamide, trifluoroacétate

(solide blanc, rendement = 84%).

F = 70°C

Exemple 74

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl-N-méthyl-5-[méthyl](2-methyl-5-methyl-5-methyl-5-methyl)]$

20 nitrophényl)sulfonyl]amino]pentanamide, trifluoroacétate

(solide blanc, rendement = 79%).

 $F = 60^{\circ}C$

Exemple 75

 $5-[[(2,4-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-1]]-[(4,4-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1)]-[(4,4-dichlorophényl)sulfonyl]-[$

yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

(solide blanc, rendement = 99%).

F = 60°C

. 25

30

Exemple 76

5-[[(2-chloro-3-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylph'enyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-imidazol-2-m'ethylphinyl]m'ethylamino]-N-[4-

yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

(solide blanc, rendement = 93%).

F = 72°C

5

15

20

25

30

PREPARATION CLXXXVIII

N-[(4-cyanophényl)méthyl]-5-[[(2,4-dichloro-3-méthylphényl)sulfonyl]méthylamino]-N-méthyl-pentanamide

En opérant de façon analogue à la preparation VIII, au départ de 4-[(méthylamino)méthyl]benzonitrile, on obtient le composé attendu sous forme d'une huile incolore (rendement = 84%).

RMN 1 H (250 MHz, DMSO) δ : 7,83 (m, 3H) ; 7,65 (m, 1H) ; 7,39 (d, 2H) ; 4,60 (d, 2H) ; 3,22 (m, 2H) ; 2,85 (m, 6H) ; 2,50 (s, 3H) ; 2,38 (m, 2H) ; 1,53 (m, 4H).

10 <u>Exemple 77</u>

N-[[4-[amino(hydroxyimino)méthyl]phényl]méthyl]-5-[[(2,4-dichloro-3-méthyl)phényl]sulfonyl]méthylamino]-N-méthyl-pentanamide

On prépare une solution de 2,51 g (5,2 mM) du composé obtenu selon la préparation CLXXXVIII dans 56 ml de diméthylsulfoxyde et on ajoute progressivement, à température ambiante, 1,90 g (27 mM) de chlorhydrate d'hydroxylamine et 7,5 ml (54 mM) de triéthylamine. Le mélange est maintenu sous agitation à température ambiante pendant 30 heures puis versé sur 250 ml d'eau glacée. Le mélange est extrait par l'acétate d'éthyle (2 fois) et les phases organiques rassemblées sont lavées à l'eau puis séchées sur sulfate de magnésium et concentrées sous pression réduite. On obtient ainsi 2,47 g de produit attendu sous forme de cristaux blancs (rendement = 92%).

F = 74°C

PREPARATION CLXXXIX

 $N-[[4-[[(ac\acute{e}tyloxy)imino]aminom\'{e}thyl]ph\acute{e}nyl]m\'{e}thyl]-5-[[(2,4-dichloro-3-m\'{e}thylph\acute{e}nyl)sulfonyl]m\'{e}thylamino]-N-m\'{e}thyl-pentanamide$

On prépare une solution de 1 g (1,95 mM) du composé obtenu selon l'exemple 77 dans 50 ml de dichlorométhane et on ajoute 0,59 g (5,82 mM) d'anhydride acétique. Le mélange réactionnel est agité à température ambiante pendant 20 heures puis concentré sous pression réduite. Le résidu est repris dans 100 ml d'acétate d'éthyle et la solution obtenue est agitée pendant 15 min avec une solution aqueuse à 5% de carbonate de sodium. La phase aqueuse est éliminée et la phase organique est lavée à l'eau, puis séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 1 g du produit attendu sous forme d'une huile incolore (rendement = 92%).

RMN ¹H (250 MHz, DMSO) δ : 7,82 (t, 1H); 7,65 (m, 3H); 7,26 (d, 2H); 6,76 (s large, 2H); 4,56 (d, 2H); 3,20 (m, 2H); 2,80 (m, 6H); 2,50 (s, 3H); 2,36 (m, 2H); 2,12 (s, 3H); 1,52 (m, 4H).

Exemple 78

5

10

15

25

30

N-[[4-(aminoiminométhyl)phényl]méthyl]-5-[[(2,4-dichloro-3-méthylphényl) sulfonyl]méthylamino]-N-méthyl-pentanamide, trifluoroacétate

On dissout 1g (1,79 mM) du composé obtenu selon la préparation CLXXXIX dans 50 ml de méthanol et on ajoute 200 mg de charbon palladié à 5%. Le mélange est agité sous atmosphère d'hydrogène, à pression atmosphérique et à température ambiante pendant 6 heures. Le mélange est ensuite filtré et le filtrat est concentré sous pression réduite. Le produit brut est repris à chaud avec 10 ml de dioxanne. Le produit cristallisé par refroidissement de la solution est séparé par filtration et séché sous vide. Le composé obtenu est ensuite purifié par chromatographie sur gel de silice RP 18 en utilisant comme phase mobile un mélange acétonitrile/eau/acide trifluoroacétique (50/49/1; v/v/v). Les fractions pures sont concentrées sous pression réduite, reprises avec de l'éthanol, à nouveau concentrées sous pression réduite puis reprises en solution dans l'eau et lyophilisées. On obtient ainsi le produit attendu avec un rendement de 20%.

RMN 1 H (300 MHz, DMSO) δ : 9,28 (m, 2H); 9,10 (m, 2H); 7,79 (m, 3H); 7,64 (m, 1H); 7,42 (d, 2H); 4,63 (d, 2H); 3,20 (m, 2H); 2,85 (m, 6H); 2,30 (m, 2H); 1,51 (m, 4H).

20 **Exemple 79**

$N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide, fumarate$

On prépare une solution de 1 g du composé obtenu selon l'exemple 49 dans 20 ml de méthanol et on ajoute 2 g de résine IRA 400 basique. Le mélange est agité pendant 10 min puis la résine est séparée par filtration et le filtrat est concentré sous pression réduite. On obtient ainsi 0,68 g d'huile que l'on reprend dans 2 ml de méthanol. On ajoute ensuite 157 mg d'acide fumarique et on agite le mélange jusqu'à dissolution. On ajoute ensuite 20 ml d'éther éthylique. Il se forme une huile que l'on sépare. Cette huile est reprise dans 10 ml d'eau, la solution obtenue est filtrée puis lyophilisée. On obtient ainsi 0,78 g du composé attendu sous forme d'un solide fin blanc (rendement = 76%).

 $F = 88^{\circ}C$

Exemple 80

N-[[4-(4,5-dihydro-1-méthyl-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-4-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]-(2E)-2-butènamide

En opérant de façon analogue à la preparation VIII, au départ de l'acide obtenu selon la préparation XCIV et de l'amine obtenue selon la préparation CXVI, on obtient le produit attendu sous forme d'une huile incolore (rendement = 48 %).

RMN 1 H (300 MHz, DMSO) δ : 8,04 (m, 2H) ; 7,90 (m, 2H) ; 7,52 (t, 2H) ; 7,23 (m, 2H) ; 6,60 (m, 2H) ; 4,66 et 4,59 (2s, 2H) ; 4,09 (d, 1H) ; 4,02 (m, 1H) ; 3,70 (t, 2H) ; 3,36 (t, 2H) ; 3,06 et 3,03 (2s, 3H) ; 2,99 et 2,72 (2s, 3H) ; 2,68 (s, 3H).

Exemple 81

5

10

15

25

 $N-[[4-(4,5-dihydro-1-méthyl-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-4-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]-(2E)-2-butènamide, fumarate$

En opérant de façon analogue à l'exemple 79, au départ du composé obtenu selon l'exemple 80, on obtient le produit attendu sous forme d'un solide blanc (rendement = 89 %). F = $76-78 \, ^{\circ}$ C

PREPARATION XCC

Acide 2-[4-[[(2E)-4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-1-oxo-2-butényl]méthylamino]méthyl]-3-fluorophényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation XXXVII et de l'amine obtenue selon la préparation CXL, on obtient le produit attendu sous forme d'une huile jaune (rendement = 47 %).

20 RMN ¹H (300 MHz, DMSO) δ : 7,99 (m, 2H); 7,58 (m, 1H); 7,26 (m, 3H); 6,59 (m, 2H); 4,65 (d, 2H); 4,03 (m, 2H); 3,85 (m, 4H); 3,17 et 2,86 (2s, 3H); 3,00 (s, 3H); 1,20 (s, 9H). Exemple 82

 $4-[[(2,3-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1 \emph{H}-imidazol-2-yl)-2-fluorophényl]méthyl]-N-méthyl-(2E)-2-butènamide, trifluoroacétate$

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XCC, on obtient le produit attendu sous forme d'un solide blanc écru (rendement = 79 %).

F = 80 ° C

PREPARATION XCCI

Acide 2-[4-[[(2E)-4-[[(2-chlorophényl)sulfonyl]méthylamino]-1-oxo-2-butényl]méthylamino]méthyl]-3-fluorophényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1.1-diméthyléthyl ester

En opérant de façon analogue à la préparation XCC, au départ de l'acide obtenu selon la préparation XXXIII, on obtient le produit attendu sous forme d'une huile incolore (rendement = 69 %).

RMN 1 H (250 MHz, DMSO) δ : 8,00 (m, 1H); 7,66 (m, 2H); 7,56 (m, 1H); 7,26 (m, 3H); 6,59 (m, 2H); 4,65 (d, 2H); 4,05 (d, 1H); 3,98 (d, 1H); 3,86 (m, 4H); 3,00 et 2,72 (2s, 3H); 2,83 (d, 3H); 1,20 (s, 9H).

Exemple 83

5

10

15

25

30

4-[[(2-chlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1 H-imidazol-2-yl)-2-fluorophényl]méthyl]-N-méthyl-(2E)-2-butènamide, trifluoroacétate

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XCCI, on obtient le produit attendu sous forme d'un solide blanc écru (rendement = 62 %).

F = 75 ° C

PREPARATION XCCII

4-méthoxy-N,2,6-triméthylbenzènesulfonamide

En opérant de façon analogue à la préparation V, au départ de chlorure de 4-méthoxy-2,6-diméthylbenzènesulfonyle, on obtient le composé attendu sous forme d'un solide blanc (rendement = 96 %).

 $F = 131^{\circ} C$

20 PREPARATION XCCIII

Acide 3-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]propanoïque, éthyl ester

En opérant de façon analogue à la préparation VI, au départ du composé obtenu selon la préparation XCCII et de 3-bromopropanoate d'éthyle, on obtient le produit attendu sous forme d'une huile jaune (rendement = 97 %).

RMN ¹H (250 MHz, CDCl₃) δ : 6,63 (s, 2H) ; 4,09 (q, 2H) ; 3,81 (s, 3H) ; 3,45 (t, 2H) ; 2,74 (s, 3H) ; 2,62 (m, 2H) ; 2,60 (s, 6H) ; 1,23 (t, 3H).

PREPARATION XCCIV

Acide 3-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]propanoïque

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation XCCIII, on obtient l'acide attendu sous forme d'un solide blanc (rendement = 97 %).

F = 103 °C

PREPARATION XCCV

Acide 4,5-dihydro-2-[4-[[[3-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]-1-oxopropyl]méthylamino]méthyl]phényl]-1*H*-imidazole-1-carboxylique 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation XCCIV et de l'amine obtenue selon la préparation IV, on obtient le produit attendu sous forme d'une huile incolore (rendement = 61 %).

RMN 1 H (250 MHz, CDCl₃) δ : 7,52 (m, 2H) ; 7,27 (m, 2H) ; 6,66 (d, 2H) ; 4,57 (d, 2H) ; 4,00 (m, 4H) ; 3,85 (d, 3H) ; 3,60 (m, 2H) ; 2,90 (d, 3H) ; 2,78 (d, 3H) ; 2,77 (m, 2H) ; 2,62 (d, 6H) ; 1,28 (d, 9H).

Exemple 84

5

10

15

 $N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-3-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]-N-méthyl-propanamide, trifluoroacétate$

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation XCCV, on obtient le produit attendu sous forme d'un solide blanc (rendement = 99 %).

F = 59 °C

En opérant de façon analogue aux préparations CXXXVI, I, II, III et IV, au départ du 4-(bromométhyl)-3-chlorobenzonitrile, on obtient respectivement les 5 composés suivants :

20 PREPARATION XCCVI

4-cyano-2-chloro-N-méthylbenzèneméthanamine

(Huile incolore, rendement = 89 %).

RMN 1 H (300 MHz, DMSO) δ : 7,99 (d, 1H); 7,83 (dd, 1H); 7,71 (d, 1H); 3,76 (s, 2H); 2,29 (s, 3H).

25 PREPARATION XCCVII

Acide [(2-chloro-4-cyanophényl)méthyl]méthylcarbamique, phénylméthyl ester

(Huile incolore, rendement = 99%).

RMN 1 H (250 MHz, DMSO) δ : 8,00 (s, 1H) ; 7,80 (m, 1H) ; 7,25 (m, 6H) ; 5,10 (d, 2H) ; 4,59 (s, 2H) ; 2,94 (s, 3H).

30 PREPARATION XCCVIII

Acide [[2-chloro-4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]méthylcarbamique, phénylméthyl ester

(Huile incolore, rendement = 99%).

PREPARATION ICC

Acide 2-[3-chloro-4-[[méthyl](phénylméthoxy)carbonyl]amino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile jaune, rendement = 94%).

5 RMN ¹H (250 MHz, DMSO) δ: 7,51 (d, 1H); 7,41 (m, 7H); 5,10 (d, 2H); 4,57 (s, 2H); 3,85 (m, 4H); 2,89 (s, 3H); 1,14 (s, 9H).

PREPARATION CC

Acide 2-[3-chloro-4-[(méthylamino)méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

10 (Huile incolore, rendement = 11%).

RMN 1 H (250 MHz, DMSO) δ : 7,51 (d, 1H) ; 7,43 (d, 1H) ; 7,40 (dd, 1H) ; 3,85 (m, 4H) ; 3,74 (s, 2H) ; 2,31 (s, 3H) ; 1,19 (s, 9H).

En opérant de façon analogue aux préparations VI et VII, au départ de la sulfonamide obtenue selon la préparation XCCII et de 5-bromopentanoate d'éthyle, on obtient les composés suivants :

PREPARATION CCI

15

20

30

Acide 5-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]pentanoïque, éthyl ester (Huile incolore, rendement = 58 %).

RMN 1 H (300 MHz, CDCl₃) δ : 6,63 (s, 2H); 4,11 (q, 2H); 3,81 (s, 3H); 3,10 (t, 2H); 2,70 (s, 3H); 2,61 (s, 6H); 2,24 (t, 2H); 1,55 (m, 4H); 1,25 (t, 3H).

PREPARATION CCII

Acide 5-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]pentanoïque (Solide pâteux blanc, rendement = 99 %).

 $F = 80-84 \, ^{\circ}C$

25 PREPARATION CCIII

Acide 2-[3-chloro-4-[[5-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]-1-oxopentyl]méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation CCII et de l'amine obtenue selon la préparation CC, on obtient le produit attendu sous forme d'une huile que l'on traite sans purification complémentaire.

Exemple 85

 $N-[[2-chloro-4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl] méthyl]-5-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl] méthylamino]-N-méthyl-pentanamide$

On ajoute 234 mg (3,7 mM) du composé obtenu selon la préparation CCIII à un mélange de 1,5 ml d'acide trifluoroacétique dans 2,5 ml de DCM, on agite ce milieu réactionnel pendant une heure à température ambiante puis on concentre ce mélange sous pression réduite. Le résidu est ensuite purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange DC/méthanol/ammoniaque (120/10/0,02). On obtient ainsi 186 mg de produit attendu sous forme d'une huile incolore (rendement : 94 %).

RMN 1 H (300 MHz, DMSO) δ : 7,90 (d, 1H) ; 7,75 (dd, 1H) ; 7,18 (s large, 1H) ; 7,15 (t, 1H) ; 6,79 (d, 2H) ; 4,60 (d, 2H) ; 3,79 (s, 3H) ; 3,61 (s, 4H) ; 3,01 (t, 2H) ; 2,94 et 2,82 (2s, 3H) ; 2,63 et 2,59 (2s, 3H) ; 2,51 (s, 6H) ; 2,37 et 2,17 (2t, 2H) ; 1,48 (m, 4H).

10 Exemple 86

5

 $N-[[2-chloro-4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-5-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]-N-méthyl-pentanamide, fumarate$

En opérant de façon analogue à l'exemple 79, au depart du compose obtenu selon l'exemple 85, on obtient le sel attendu sous forme d'un solide blanc (rendement = 98 %).

15 $F = 60 \, ^{\circ}C$

20

25

30

PREPARATION CCIV

Acide 2-[2-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VI, au départ du composé obtenu selon la préparation LXXXIX et de (2-iodoéthoxy)acétate de t-butyle, on obtient le produit attendu sous forme d'une huile incolore (rendement = 72 %).

RMN 1 H (250 MHz, DMSO) δ : 8,02 (m, 2H) ; 7,88 (m, 2H) ; 3,97 (s, 2H) ; 3,63 (t, 2H) ; 3,45 (t, 2H) ; 2,95 (s, 3H) ; 1,40 (s, 9H).

PREPARATION CCV

Acide 2-[2-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétique

En opérant de façon analogue à la préparation VII, au départ du composé obtenu selon la préparation CCIV, on obtient le produit attendu sous forme d'une huile incolore (rendement = 94 %).

RMN ¹H (250 MHz, DMSO) δ : 8,03 (m, 2H); 7,86 (m, 2H); 4,01 (s, 2H); 3,65 (t, 2H); 3,45 (t, 2H); 2,95 (s, 3H).

Exemple 87

N-[[4-(4,5-dihydro-1-méthyl-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl][2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide

En opérant de façon analogue à la préparation VIII, au depart de l'acide obtenu selon la préparation CCV et de l'amine obtenue selon la préparation CXVI, on obtient le produit attendu sous forme d'une huile jaune (rendement = 62 %).

RMN 1 H (300 MHz, DMSO) δ : 8,04 (m, 2H) ; 7,87 (m, 2H) ; 7,50 (m, 2H) ; 7,23 (d, 2H) ; 4,54 (s, 2H) ; 4,25 (d, 2H) ; 3,67 (m, 4H) ; 3,40 (m, 4H) ; 2,95 (d, 3H) ; 2,93 (d, 3H) ; 2,80 (s, 3H).

Exemple 88

5

10

15

20

25

30

 $\label{eq:n-initial} N-[[4-(4,5-dihydro-1-méthyl-1$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide, fumarate$

En opérant de façon analogue à l'exemple 79, au départ du composé obtenu selon l'exemple 87, on obtient le produit attendu sous forme d'un solide blanc (rendement = 100 %). $F = 62 \, ^{\circ}$ C

PREPARATION CCVI

Acide

2-[3-chloro-4-[[[[2-[[(2-

chlorophényl)sulfonyl]méthylamino]éthoxy]acétyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation CXXXI et de l'amine obtenue selon la préparation CC, on obtient le produit attendu sous forme d'une huile incolore (rendement = 41 %).

RMN ¹H (250 MHz, DMSO) δ : 7,99 (m, 1H); 7,62 (m, 2H); 7,52 (m, 3H); 7,23 (m, 1H); 4,58 (s, 2H); 4,28 et 4,12 (2s, 2H); 3,85 (s, 4H); 3,58 (m, 2H); 3,42 (m, 2H); 2,91 et 2,86 (2s, 3H); 2,90 et 2,83 (2s, 3H); 1,20 (s, 9H).

Exemple 89

N-[[2-chloro-4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]méthyl]-2-[2-[[(2-chloro-4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]méthyl]-2-[2-[(2-chloro-4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]méthyl]

chlorophényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide, trifluoroacétate

En opérant de façon analogue à l'exemple 1, au départ du produit obtenu selon la préparation CCVI, on obtient le produit attendu sous forme d'un solide rose (rendement = 99 %).

RMN 1 H (250 MHz, DMSO) δ : 8,08 (m, 1H) ; 7,99 (m, 2H) ; 7,68 (m, 2H) ; 7,57 (m, 1H) ; 7,53 (d, 1H) ; 4,67 (d, 2H) ; 4,32 et 4,12 (2s, 2H) ; 4,02 (s, 4H) ; 3,67 et 3,54 (2t, 2H) ; 3,46 et 3,26 (2t, 2H) ; 2,98 (s, 3H) ; 2,90 (s, 3H).

PREPARATION CCVII

4-méthoxy-2,6,N-triméthyl-N-(2-hydroxyéthyl)benzènesulfonamide

5

10

15

20

30

En opérant de façon analogue à la préparation V, au départ du chlorure de 2,6-diméthyl-4-méthoxybenzènesulfonyle et de 2-(N-méthylamino)éthanol, on obtient la sulfonamide attendue sous forme d'une huile incolore (rendement = 95 %).

RMN ¹H (300 MHz, DMSO) δ : 6,80 (s, 2H); 4,70 (t, 1H); 3,80 (s, 3H); 3,47 (t, 2H); 3,09 (t, 2H); 2,69 (s, 3H); 2,53 (s, 6H).

En opérant de façon analogue aux préparations CXXII et LXXVIII, au départ du composé obtenu selon la préparation CCVII, on obtient les 2 composés suivants :

PREPARATION CCVIII

Acide [2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester

(Huile incolore; rendement = 94 %)

RMN ¹H (250 MHz, DMSO) δ : 6,80 (s, 2H) ; 3,89 (s, 2H) ; 3,79 (s, 3H) ; 3,55 (t, 2H) ; 3,21 (t, 2H) ; 2,70 (s, 3H) ; 2,50 (s, 6H) ; 1,41 (s, 9H).

PREPARATION CCIX

Acide [2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]acétique (Solide blanc; rendement = 68 %)

F = 85 °C

PREPARATION CCX

Acide 2-[3-chloro-4-[[[[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy] acétyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ des composés obtenus selon les préparations CCIX et CC, on obtient le produit attendu sous forme d'une huile incolore (rendement = 57 %).

25 RMN ¹H (300 MHz, DMSO) δ: 7,55 (d, 1H); 7,41 (dd, 1H); 7,21 (m, 1H); 6,80 (d, 2H); 4,57 (s, 2H); 4,22 et 4,08 (2s, 2H); 3,85 (m, 4H); 3,80 (d, 3H); 3,59 et 3,52 (2t, 2H); 3,27 et 3,16 (2t, 2H); 2,88 et 2,79 (2s, 3H); 2,71 et 2,66 (2s, 3H); 2,53 (s, 6H); 1,20 (s, 9H).

Exemple 90

 $N-[[2-chloro-4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino] {\it thoxy}-N-méthyl-acétamide, trifluoroacétate}$

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation CCX, on obtient le produit attendu sous forme d'un solide rose (rendement = 94 %).

F = 65 °C

5

10

15

25

30

PREPARATION CCXI

Acide [(4-cyanophényl)méthyl][méthyl]carbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation III, au départ de [(4-cyanophényl)méthyl] méthanamine, on obtient le produit attendu sous forme d'une huile jaune (rendement = 92 %).

RMN ¹H (300 MHz, DMSO) δ : 7,83 (d, 2H); 7,40 (d, 2H); 4,46 (s, 2H); 2,79 (s, 3H); 1,38 (m, 9H).

PREPARATION CCXII

Acide [[4-[4,5-dihydro-1-(1-méthyléthyl)-1H-imidazol-2-yl]phényl]méthyl méthylcarbamique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation CCXI et de N-(1-méthyléthyl)-éthylènediamine, on obtient le produit attendu sous forme d'une huile épaisse jaune (rendement = 99 %).

RMN 1 H (300 MHz, DMSO) δ : 7,47 (d, 2H) ; 7,30 (d, 2H) ; 4,41 (s, 2H) ; 3,75 (m, 3H) ; 3,48 (t, 2H) ; 2,79 (s, 3H) ; 1,38 (s, 9H) ; 1,03 (d, 6H).

PREPARATION CCXIII

$1-(1-m\acute{e}thyl\acute{e}thyl)-2-[4-(m\acute{e}thylaminom\acute{e}thyl)ph\acute{e}nyl]-4,5-dihydro-1 \emph{H-imidazole}$

En opérant de façon analogue à l'exemple 1, au départ du composé obtenu selon la préparation CCXII, on obtient le produit attendu sous forme d'une pâte jaune (rendement = 99 %).

20 RMN 1 H (250 MHz, DMSO) δ : 10,5 (s, 1H) ; 9,15 (s large, 2H) ; 7,70 (s, 4H) ; 4,27 (t, 2H) ; 4,01 (m, 4H) ; 3,85 (m, 1H) ; 2,61 (t, 3H) ; 1,25 (d, 6H).

Exemple 91

N-[[4-(4,5-dihydro-1-(1-méthyléthyl)-1\$H-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation CCIX et de l'amine obtenue selon la préparation CCXIII, on obtient le produit attendu sous forme d'une huile incolore (rendement = 36 %).

RMN 1 H (250 MHz, DMSO) δ : 7,40 (m, 2H) ; 7,24 (m, 2H) ; 6,80 (s, 2H) ; 4,51 (s, 2H) ; 4,18 et 4,12 (2s, 2H) ; 3,80 (s, 3H) ; 3,66 (m, 5H) ; 3,30 (m, 4H) ; 2,80 et 2,77 (2s, 3H) ; 2,70 et 2,66 (2s, 3H) ; 2,53 (s, 6H) ; 0,96 (d, 6H).

Exemple 92

N-[[4-(4,5-dihydro-1-(1-méthyléthyl)-1\$H-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide, fumarate

En opérant de façon analogue à l'exemple 79, au départ du composé obtenu selon l'exemple 91, on obtient le produit attendu sous forme d'un solide crème (rendement = 99 %). F = 106 °C

En opérant de façon analogue aux préparations CCXI à CCXIII, on obtient les 3 composés suivants :

PREPARATION CCXIV

Acide [(2-chloro-4-cyanophényl)méthyl]méthylcarbamique, 1,1-diméthyléthyl ester (Solide blanc; rendement = 72 %).

F = 86-87 °C

5

15

25

10 PREPARATION CCXV

(Huile jaune; rendement = 66 %).

RMN 1 H (300 MHz, DMSO) δ : 7,56 (s, 1H) ; 7,51 (d, 1H) ; 7,22 (d, 1H) ; 4,49 (s, 2H) ; 3,73 (t, 2H) ; 3,38 (t, 2H) ; 2,84 (s, 3H) ; 2,71 (s, 3H) ; 1,40 (d, 9H).

PREPARATION CCXVI

1-méthyl-2-[3-chloro-4-(méthylaminométhyl)phényl]-4,5-dihydro-1*H*-imidazole (Solide beige; rendement = 92 %)

F = 94-98 °C

20 **Exemple 93**

N-[[2-chloro-4-(4,5-dihydro-1-méthyl-1\$H-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide

En opérant de façon analogue à la préparation VIII, au départ des composés obtenus selon les préparations CCIX et CCXVI, on obtient le produit attendu sous forme d'une pâte blanche (rendement = 53 %).

RMN 1 H (300 MHz, DMSO) δ : 7,60 (s, 1H) ; 7,50 (m, 1H) ; 7,25 (d, 1H) ; 6,80 (d, 2H) ; 4,57 (s, 2H) ; 4,27 et 4,08 (2s, 2H) ; 3,78 (s, 3H) ; 3,70 (t, 2H) ; 3,60 (t, 2H) ; 3,40 (t, 2H) ; 3,25 (t, 2H) ; 2,92 et 2,81 (2s, 3H) ; 2,74 (s, 3H) ; 2,71 et 2,64 (2s, 3H) ; 2,51 (d, 6H).

Exemple 94

N-[[2-chloro-4-(4,5-dihydro-1-méthyl-1*H*-imidazol-2-yl)phényl]méthyl]-2-[2-[[(4-méthoxy-2,6-diméthylphényl)sulfonyl]méthylamino]éthoxy]-N-méthyl-acétamide, fumarate

En opérant de façon analogue à l'exemple 79, au départ du composé obtenu selon l'exemple 93, on obtient le produit attendu sous forme d'un solide blanc (rendement = 99%).

 $F = 65-68 \, ^{\circ}C$

Exemple 95

5

10

15

N-[[2-chloro-4-(4,5-dihydro-1-méthyl-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide

En opérant de façon analogue à la préparation VIII, au départ des composés obtenus selon les préparations CCV et CCXVI, on obtient le produit attendu sous forme d'une huile blanche (rendement = 41 %).

RMN 1 H (300 MHz, DMSO) δ : 8,01 (m, 2H) ; 7,86 (m, 2H) ; 7,64 (s, 1H) ; 7,49 (m, 1H) ; 7,30 (m, 1H) ; 4,60 (s, 2H) ; 4,33 et 4,16 (2s, 2H) ; 3,70 (m, 4H) ; 3,49 (m, 4H) ; 2,97 et 2,89 (2s, 3H) ; 2,96 et 2,84 (2s, 3H) ; 2,79 et 2,76 (2s, 3H).

Exemple 96

N-[[2-chloro-4-(4,5-dihydro-1-méthyl-1\$H-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl][[2-(trifluorométhyl)phényl]sulfonyl]amino]éthoxy]acétamide, fumarate

En opérant de façon analogue à l'exemple 79, au départ du composé obtenu selon l'exemple 95, on obtient le produit attendu sous forme d'un solide blanc (rendement = 99 %). F = 55 °C.

En opérant de façon analogue aux préparations CCVII à CCIX, on obtient les 3 composés suivants :

PREPARATION CCXVII

20 **2-cyano-N-méthyl-N-(2-hydroxyéthyl)**benzènesulfonamide

(Huile blanche, rendement = 90 %).

RMN 1 H (300 MHz, DMSO) δ : 7,93 (d, 1H); 7,88 (d, 1H); 7,85 (m, 2H); 4,80 (s, 1H); 3,50 (q, 2H); 3,24 (t, 2H); 2,87 (s, 3H).

PREPARATION CCXVIII

Acide [2-[[(2-cyanophényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-diméthyléthyl ester (Huile jaune; rendement = 87 %)

RMN 1 H (300 MHz, DMSO) δ : 8,13 (d, 1H) ; 8,02 (d, 1H) ; 7,90 (m, 2H) ; 3,90 (s, 2H) ; 3,59 (t, 2H) ; 3,37 (t, 2H) ; 2,90 (s, 3H) ; 1,41 (s, 9H).

PREPARATION CCXIX

30 Acide [2-[[(2-cyanophényl)sulfonyl]méthylamino]éthoxy]acétique

(Solide blanc; rendement = 99 %)

RMN 1 H (300 MHz, DMSO) δ : 8,13 (d, 1H) ; 8,02 (d, 1H) ; 7,80 (m, 2H) ; 3,93 (s, 2H) ; 3,60 (t, 2H) ; 3,77 (t, 2H) ; 2,90 (s, 3H).

Exemple 97

2-[2-[[(2-cyanophényl)sulfonyl]méthylamino] éthoxy]-N-[[4-(4,5-dihydro-1-méthyl-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide

En opérant de façon analogue à la préparation VIII, au départ des composés obtenus selon les préparations CXVI et CCXIX, on obtient le produit attendu sous forme d'une huile jaune (rendement = 57%).

RMN 1 H (300 MHz, DMSO) δ : 8,11 (m, 2H) ; 7,88 (m, 2H) ; 7,50 (m, 2H) ; 7,28 (m, 2H) ; 4,51 (s, 2H) ; 4,20 et 4,13 (2s, 2H) ; 3,60 (m, 4H) ; 3,40 (m, 4H) ; 2,90 et 2,87 (2s, 3H) ; 2,85 et 2,78 (2s, 3H) ; 2,70 (s, 3H).

10 <u>Exemple 98</u>

5

2-[2-[[(2-cyanophényl)sulfonyl]méthylamino] éthoxy]-N-[[4-(4,5-dihydro-1-méthyl-1 H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, fumarate

En opérant de façon analogue à l'exemple 79, au départ du composé obtenu selon l'exemple 97, on obtient le produit attendu sous forme d'un solide blanc (rendement = 90 %).

15 $F = 59 \, ^{\circ}C$

25

En opérant de façon analogue aux préparations CCVII à CCIX, on obtient les 3 composés suivants :

PREPARATION CCXX

2-chloro-4-méthoxy-N-méthyl-N-(2-hydroxyéthyl)benzènesulfonamide

20 (Huile incolore, rendement = 99 %)

RMN 1 H (250 MHz, DMSO) δ : 7,90 (d, 1H); 7,24 (d, 1H); 7,06 (dd, 1H); 4,76 (t, 1H); 3,86 (s, 3H); 3,52 (q, 2H); 3,19 (t, 2H); 2,84 (s, 3H).

PREPARATION CCXXI

Acide [2-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]éthoxy]acétique, 1,1-

diméthyléthyl ester (Huile incolore; rendement = 96 %)

RMN 1 H (300 MHz, DMSO) δ : 7,90 (d, 1H) ; 7,24 (d, 1H) ; 7,06 (dd, 1H) ; 4,03 (s, 2H) ; 3,86 (s, 3H) ; 3,58 (t, 2H) ; 3,34 (t, 2H) ; 2,85 (s, 3H) ; 1,42 (s, 9H).

PREPARATION CCXXII

30 Acide [2-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]éthoxy]acétique

(Huile incolore; rendement = 99 %)

RMN 1 H (300 MHz, DMSO) δ : 7,91 (d, 1H); 7,24 (d, 1H); 7,07 (dd, 1H); 3,99 (s, 2H); 3,86 (s, 3H); 3,60 (t, 2H); 3,34 (t, 2H); 2,84 (s, 3H).

En opérant de façon analogue aux exemples 97 et 98, au départ de d'acide obtenu selon la préparation CCXXII, on obtient les 2 composés suivants :

Exemple 99

2-[2-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]éthoxy]-N-[[4-(4,5-dihydro-1-

5 méthyl-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide

(Huile incolore; rendement = 27 %)

RMN ¹H (300 MHz, DMSO) δ : 7,91 (d, 1H) ; 7,48 (m, 2H) ; 7,24 (m, 3H) ; 7,10 (dd, 1H) ; 4,52 (s, 2H) ; 4,23 et 4,18 (2s, 2H) ; 3,85 (s, 3H) ; 3,68 (m, 4H) ; 3,39 (m, 4H) ; 2,87 et 2,81 (2s, 3H) ; 2,84 et 2,80 (2s, 3H) ; 2,69 (s, 3H).

10 <u>Exemple 100</u>

2-[2-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino] éthoxy]-N-[[4-(4,5-dihydro-1-méthyl-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, fumarate

(Solide blanc; rendement = 87 %)

 $F = 50 \, ^{\circ}C$

25

30

15 PREPARATION CCXXIII

N-(2-cyanoéthyl)-N-méthyl-2-(trifluorométhyl)benzènesulfonamide

En opérant de façon analogue à la préparation V, au départ du chlorure de 2-(trifluorométhyl)benzènesulfonyle et de 3-(méthylamino)propionitrile, on obtient le produit attendu sous forme d'une huile jaune (rendement = 98 %).

20 RMN ¹H (250 MHz, DMSO) δ : 8,02 (m, 2H); 7,90 (m, 2H); 3,55 (t, 2H); 2,29 (s, 3H); 2,86 (t, 2H).

PREPARATION CCXXIV

Acide 3-[méthyl[[(2-(trifluorométhyl)phényl]sulfonyl]amino]propanoïque

On mélange 140 mg (0,48 mM) du composé obtenu selon la préparation CCXIII avec 3 ml d'acide chlorhydrique 10N et on agite ce mélange à doux reflux pendant 3 heures. Le mélange réactionnel est ensuite refroidi, dilué avec de l'eau, partiellement neutralisé jusqu'à pH 2 avec de la soude puis extrait par 25 ml d'acétate d'éthyle. La phase organique est séchée sur sulfate de magnésium puis concentrée sous pression réduite. On obtient ainsi l'acide attendu sous forme d'une huile incolore (rendement = 64 %).

RMN ¹H (250 MHz, DMSO) δ : 8,01 (m, 2H) ; 7,91 (m, 2H) ; 3,46 (t, 2H) ; 2,89 (s, 3H) ; 2,50 (t, 2H),

En opérant de façon analogue à la préparation VIII et à l'exemple 1, au départ de l'acide obtenu selon la préparation CCXXIV, on obtient les 2 composés suivants :

PREPARATION CCXXV

Acide 4,5-dihydro-2-[4-[[méthyl[3-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]-1-oxopropyl]amino]méthyl]phényl]-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester (Solide blanc; rendement = 74 %).

 $5 ext{ } F = 50 ext{ }^{\circ}\text{C}$

Exemple 101

N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl-N-méthyl-3-[méthyl[[2-(trifluorométhyl)phényl]sulfonyl]amino]propanamide, trifluoroacétate (Solide blanc, rendement = <math>81%).

 $10 F = 56 \, ^{\circ}C$

15

25

30

PREPARATION CCXXVI

 $N-[(4-cyanophényl)méthyl]-N-méthyl-2-[2-[méthyl][2-(trifluorométhyl)phényl]\\ sulfonyl]amino]éthoxy] acétamide$

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation CCV et de 4-(méthylaminométhyl)benzonitrile, on obtient le produit attendu sous forme d'une huile jaune (rendement = 62 %).

RMN 1 H (250 MHz, DMSO) δ : 8,04 (m, 2H); 7,87 (m, 4H); 7,43 (d, 2H); 4,59 (s, 2H); 4,28 et 4,17 (2s, 2H); 3,67 (m, 2H); 3,46 et 3,40 (2t, 2H); 2,95 et 2,90 (2s, 3H); 2,89 et 2,78 (2s, 3H).

20 Exemple 102

 $N-[[4-(1-\acute{e}thyl-4,5-dihydro-1\emph{H}-imidazol-2-yl)ph\acute{e}nyl]m\acute{e}thyl]-N-m\acute{e}thyl-2-[2-[m\acute{e}thyl][2-(trifluorom\acute{e}thyl)ph\acute{e}nyl]sulfonyl]amino]\acute{e}thoxy]ac\acute{e}tamide$

En opérant de façon analogue à la préparation II, au départ du composé obtenu selon la préparation CCXXVI et de N-éthyléthylènediamine, on obtient le produit attendu sous forme d'une huile incolore (rendement = 19 %).

RMN 1 H (250 MHz, DMSO) δ : 8,01 (m, 2H) ; 7,87 (m, 2H) ; 7,45 (m, 2H) ; 7,28 (d, 2H) ; 4,53 (s, 2H) ; 4,27 et 4,20 (2s, 2H) ; 3,70 (m, 4H) ; 3,40 (m, 4H) ; 3,01 (q, 2H) ; 2,98 et 2,95 (2s, 3H) ; 2,93 et 2,79 (2s, 3H) ; 0,99 (t, 3H).

Exemple 103

 $N-[[4-[1-(1-m\acute{e}thyl\acute{e}thyl)-4,5-dihydro-1H-imidazol-2-yl]ph\acute{e}nyl]m\acute{e}thyl]-N-m\acute{e}thyl-2-[2-m\acute{e}thyl][2-(trifluorom\acute{e}thyl)ph\acute{e}nyl]sulfonyl]amino]\acute{e}thoxy]ac\acute{e}tamide$

En opérant de façon analogue à l'exemple 102, au départ de N-(1-méthyléthyl)éthylènediamine, on obtient le produit attendu sous forme d'une huile (rendement = 54 %).

10

15

20

25

30

35

RMN 1 H (250 MHz, DMSO) δ : 8,04 (m, 2H) ; 7,89 (m, 2H) ; 7,45 (m, 2H) ; 7,28 (d, 2H) ; 4,53 (s, 2H) ; 4,27 et 4,20 (2s, 2H) ; 3,67 (m, 5H) ; 3,48 (m, 2H) ; 3,30 (m, 2H) ; 2,95 et 2,93 (2s, 3H) ; 2,88 et 2,80 (2s, 3H) ; 0,99 (d, 6H).

PREPARATION CCXXVII

N-[(4-cyanophényl)méthyl]-N-méthyl-2-[2-[méthyl](4-méthoxy-2,6-diméthylphényl)sulfonyl]amino]éthoxy]acétamide

En opérant de façon analogue à la préparation CCXXVI, au départ de l'acide obtenu selon la préparation CCIX, on obtient le produit attendu sous forme d'une huile incolore (rendement = 95 %).

RMN ¹H (250 MHz, DMSO) δ : 7,81 (d, 2H); 7,37 (d, 2H); 6,80 (d, 2H); 4,57 (s, 2H); 4,20 et 4,10 (2s, 2H); 3,79 (s, 3H); 3,45 (m, 2H); 3,24 et 3,15 (2t, 2H); 2,85 et 2,76 (2s, 3H); 2,71 et 2,65 (2s, 3H); 2,53 (s, 6H).

PREPARATION CCXXVIII

N-[[4-(aminothioxométhyl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[(4-méthoxy-2,6-diméthylphényl)sulfonyl]amino]éthoxy]acétamide

On prépare une solution de 1,655 g (5mM) du composé obtenu selon la préparation CCXXVII dans 50 ml de pyridine et on ajoute 2,09 ml (25 mM) de triéthylamine. On introduit ensuite dans cette solution du sulfure d'hydrogène gazeux que l'on fait barboter pendant 10 minutes. La solution jaune au départ prend une couleur verte. Le mélange réactionel est ensuite agité pendant 6 heures à température ambiante puis dilué avec 200 ml d'acétate d'éthyle. La solution obtenue est concentrée sous pression réduite. Le résidu est repris dans 200 ml de toluène et la solution est séchée sur sulfate de magnésium et concentrée sous pression réduite. On obtient ainsi 1,5 g du produit attendu sous forme d'une pâte jaune (rendement = 84 %).

RMN 1 H (300 MHz, DMSO) δ : 9,82 (m large, 1H) ; 9,45 (m large, 1H) ; 7,87 (m, 2H) ; 7,20 (m, 2H) ; 6,79 (d, 2H) ; 4,51 (s, 2H) ; 4,18 et 4,12 (2s, 2H) ; 3,78 (s, 3H) ; 3,56 (m, 2H) ; 3,24 (m, 2H) ; 2,82 et 2,76 (2s, 3H) ; 2,71 et 2,68 (s, 3H) ; 2,53 (s, 6H).

PREPARATION CCXXIX

N-[[4-[imino(méthylthio)méthyl]phényl]méthyl]-N-méthyl-2-[2-[méthyl[(4-méthoxy-2,6-diméthylphényl)sulfonyl]amino]éthoxy]acétamide

On dissout 1,5 g (3,04 mM) du composé obtenu selon la préparation CCXXVIII dans 5 ml d'acétone et on ajoute 3 ml d'iodure de méthyle. Le mélange est chauffé à reflux pendant 1 heure puis concentré sous pression réduite. Le résidu est repris dans 50 ml de DCM et la solution est lavée par une solution de bicarbonate de sodium. La phase organique est séchée puis concentrée sous pression réduite. On obtient ainsi le produit attendu, utilisé sans autre purification (rendement = 98 %).

RMN 1 H (300 MHz, DMSO) δ : 10,25 (m, 1H); 7,78 (m, 2H); 7,27 (m, 2H); 6,79 (d, 2H); 4,53 (s, 2H); 4,18 et 4,12 (2s, 2H); 3,79 (s, 3H); 3,54 (m, 2H); 3,24 et 3,18 (2t, 2H); 2,85 et 2,77 (2s, 3H); 2,71 et 2,67 (2s, 3H); 2,58 (s, 6H); 2,40 (s, 3H).

Exemple 104

5

10

15

20

25

30

N-[[4-(1*H*-1,2,4-triazol-5-yl)phényl]méthyl]-N-méthyl-2-[2-[méthyl[(4-méthoxy-2,6-diméthylphényl)sulfonyl]amino]éthoxy]acétamide

On prépare une solution de 1,5 g (2,96 mM) du composé obtenu selon la préparation CCXXIX dans 16,5 ml d'éthanol, puis on ajoute 324 mg (5,4 mM) de formylhydrazine, 279 mg (2,63 mM) de triéthylamine et 35 µl d'acide sulfurique. Le mélange réactionnel est chauffé à reflux pendant 2 heures puis concentré sous pression réduite. Le résidu est repris en solution dans le DCM, lavé deux fois à l'eau, séché sur sulfate de magnésium et concentré sous pression réduite. Le résidu est purifié une première fois sur colonne de silice en éluant à l'aide d'un mélange toluène/isopropanol (9/1;v/v), puis une seconde fois par chromatographie en phase inverse sur silice greffée RP18, en éluant avec un mélange acétonitrile/eau (4/6; v/v). Le produit pur est obtenu par lyophilisation des fractions pures. On obtient ainsi 340 mg du produit attendu sous forme d'un solide floconneux vert (rendement = 23 %).

 $F = 60 \, ^{\circ}C$

PREPARATION CCXXX

N-méthyl-2,4-dinitrobenzènesulfonamide

En opérant de façon analogue à la préparation V, au départ de chlorure de 2,4-dinitrobenzènesulfonyle, on obtient le produit attendu sous forme d'un solide jaune (rendement = 76 %).

F = 155 °C

PREPARATION CCXXXI

Acide 4-[[(2,4-dinitrophényl)sulfonyl]méthylamino]-2-butènoïque, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VI, au départ du composé obtenu selon la préparation CCXXX et de l'ester *t*-butylique de l'acide 4-bromo-2-butènoïque, on obtient le produit attendu sous forme d'un solide jaune (rendement = 82 %).

RMN 1 H (300 MHz, CDCl₃) δ : 8,50 (dd, 1H); 8,48 (m, 1H); 8,25 (d, 1H); 6,69 (dt, 1H); 5,92 (dt, 1H); 4,04 (dd, 2H); 2,93 (s, 3H); 1,48 (s, 9H),

PREPARATION CCXXXII

Acide 4-[[(2,4-dinitrophényl)sulfonyl]méthylamino]-2-butènoïque

En opérant de façon analogue à la préparation LXXVIII, au départ de l'ester obtenu selon la préparation CCXXXI, on obtient le produit attendu sous forme d'un solide jaune pâle (rendement = 99 %).

F = 174 °C

5 PREPARATION CCXXXIII

Acide 2-[4-[[(2E)-4-[[(2,4-dinitrophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

En opérant de façon analogue à la préparation VIII, au départ de l'acide obtenu selon la préparation CCXXXII et de l'amine obtenue selon la préparation IV, on obtient le produit attendu sous forme d'un solide jaune (rendement = 88 %).

F = 78°C

10

15

20

25

PREPARATION CCXXXIV

Acide

4,5-dihydro-2-[4-[[méthyl[(2E)-4-(méthylamino)-1-oxo-2-

$but \`enyl] amino] m\'ethyl] ph\'enyl] - 1 \emph{H-} imidazole-1-carboxylique}, 1, 1-dim\'ethyl\'ethyl ester$

On dissout 1 g (1,62 mM) du composé obtenu selon la préparation CCXXXIII dans 18 ml de DCM et on ajoute 672 mg (4,9 mM) de carbonate de potassium et 167 µl (1,62 mM) de thiophénol. Le mélange est agité pendant 1,5 heure à température ambiante, dilué avec 25 ml de DCM. Cette phase organique est lavée à l'eau 3 fois, séchée sur sulfate de magnésium et concentrée sous pression réduite. Le résidu est purifié par chromatographie sur gel de silice en éluant à l'aide d'un mélange DCM/méthanol (9/1; v/v). On obtient ainsi 560 mg du produit attendu sous forme d'une huile jaune (rendement = 89 %).

RMN 1 H (250 MHz, CDCl₃) δ : 7,49 (dd, 2H) ; 7,22 (dd, 2H) ; 6,96 (m, 1H) ; 6,47 (dd, 1H) ; 4,65 (d, 2H) ; 3,97 (m, 4H) ; 3,40 (m, 2H) ; 2,98 et 2,96 (2s, 3H) ; 2,49 et 2,42 (2s, 3H) ; 1,29 et 1,25 (2s, 9H).

En opérant de façon analogue à la préparation V, au départ de l'amine obtenue selon la préparation CCXXXIV et de différents chlorures de benzènesulfonyle, on obtient les composés suivants :

PREPARATION CCXXXV

Acide 2-[4-[[(2E)-4-[[(2-chloro-4-fluorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile incolore, rendement = 59 %)

RMN 1 H (250 MHz, CDCl₃) δ : 8,13 (m, 1H) ; 7,50 (m, 2H) ; 7,25 (m, 4H) ; 6,79 (m, 1H) ; 6,51 (dd, 1H) ; 4,66 et 4,59 (2s, 2H) ; 4,10 et 4,01 (2d, 2H) ; 4,00 (m, 4H) ; 2,99 et 2,95 (2s, 3H) ; 2,86 et 2,75 (2s, 3H) ; 1,30 (d, 9H).

PREPARATION CCXXXVI

Acide 2-[4-[[[(2E)-4-[[[2,6-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile incolore; rendement = 73 %).

RMN ¹H (250 MHz, CDCl₃) δ : 7,70 (d, 2H); 7,50 (m, 2H); 7,24 (m, 2H); 6,84 (m, 1H); 6,55 (dd, 1H); 4,66 et 4,59 (2s, 2H); 4,18 et 4,07 (2d, 2H); 4,00 (m, 4H); 3,00 et 2,96 (2s, 3H); 2,97 et 2,84 (2s, 3H); 1,27 (d, 9H).

PREPARATION CCXXXVII

Acide 2-[4-[[(2E)-4-[[(2,6-difluorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile incolore; rendement = 61 %).

RMN 1 H (250 MHz, CDCl₃) δ : 7,52 (m, 3H); 7,27 (m, 2H); 7,02 (m, 2H); 6,85 (m, 1H); 6,53 (dd, 1H); 4,66 et 4,59 (2s, 2H); 4,09 et 4,01 (2d, 2H); 3,98 (m, 4H); 2,99 et 2,94 (2s, 3H); 2,95 et 2,82 (2s, 3H); 1,27 (d, 9H).

20 PREPARATION CCXXXVIII

15

Acide 2-[4-[[(2E)-4-[[(2-nitrophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

PREPARATION CCXXXIX

Acide 2-[4-[[(2E)-4-[[(2,4,6-triméthylphényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Pâte blanche; rendement = 69 %).

RMN ¹H (300 MHz, CDCl₃) δ: 7,49 (dd, 2H); 7,25 (dd, 2H); 6,93 (d,2H); 6,77 (m, 1H); 6,53 (dd, 1H); 4,65 et 4,57 (2s, 2H); 4,06 et 3,85 (2d, 2H); 3,94 (m, 4H); 2,98 et 2,94 (2s, 3H); 2,71 et 2,57 (2s, 3H); 2,61 (s, 6H); 2,29 et 2,28 (2s, 3H); 1,25 (d, 9H).

PREPARATION CCXL

Acide 2-[4-[[(2E)-4-[[(2,5-dichlorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (Huile incolore; rendement = 63 %).

RMN 1 H (300 MHz, CDCl₃) δ : 8,05 (m, 1H); 7,46 (m, 4H); 7,27 (d, 1H); 7,17 (d, 1H); 6,81 (m, 1H); 6,50 (dd, 1H); 4,66 et 4,59 (2s, 2H); 4,12 et 4,04 (2d, 2H); 4,01 (m, 4H); 2,99 et 2,95 (2s, 3H); 2,89 et 2,78 (2s, 3H); 1,27 (d, 9H).

PREPARATION CCXLI

Acide 2-[4-[[(2E)-4-[[(2,4-dichlorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile incolore; rendement = 48 %).

RMN 1 H (250 MHz, CDCl₃) δ : 8,05 (t, 1H); 7,54 (m, 3H); 7,37 (m, 1H); 7,27 (d, 1H); 7,20 (d, 1H); 6,83 (m, 1H); 6,50 (dd, 1H); 4,66 et 4,56 (2s, 2H); 4,10 et 3,99 (2d, 2H); 3,96 (m, 4H); 2,99 et 2,95 (2s, 3H); 2,86 et 2,75 (2s, 3H); 1,27 (d, 9H).

PREPARATION CCXLII

Acide 2-[4-[[(2E)-4-[(3-chloro-2-méthylphényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile incolore; rendement = 69 %).

RMN 1 H (250 MHz, CDCl₃) δ : 7,84 (t, 1H) ; 7,50 (m, 3H) ; 7,26 (m, 3H) ; 6,82 (m, 1H) ; 6,54 (dd, 1H) ; 4,66 et 4,58 (2s, 2H) ; 3,97 (m, 6H) ; 3,01 et 2,94 (2s, 3H) ; 2,82 et 2,70 (2s, 3H) ; 2,67 et 2,63 (2s, 3H) ; 1,27 (d, 9H).

25 PREPARATION CCXLIII

Acide 2-[4-[[(2E)-4-[[(2-cyanophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Solide jaune; rendement = 67 %).

 $F = 64 \, ^{\circ}\text{C}$

15

20

PREPARATION CCXLIV

Acide 2-[4-[[(2E)-4-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Solide jaune; rendement = 78 %).

F = 58 °C

PREPARATION CCXLV

Acide 2-[4-[[[(2E)-4-[[(2,4-dichloro-5-méthylphényl)sulfonyl]méthylamino]-1-oxo-2-

butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Solide blanc écru; rendement = 75 %).

 $F = 70 \, ^{\circ}C$

PREPARATION CCXLVI

Acide 2-[4-[[(2E)-4-[[(2,3,4-trichlorophényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Solide blanc écru; rendement = 78 %).

 $F = 66 \, ^{\circ}C$

15 PREPARATION CCXLVII

Acide 2-[4-[[(2E)-4-[(2-chloro-4-(trifluorométhoxy)phényl]sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

Aga diministry about

(Solide blanc; rendement = 81 %).

 $F = 50 \, ^{\circ}C$

PREPARATION CCXLVIII

Acide 2-[4-[[(2E)-4-[[[4-méthoxy-2-(trifluorométhyl)phényl]sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1<math>H-imidazole-1-carboxylique,

1,1-diméthyléthyl ester

25 (Solide blanc; rendement = 62 %).

 $F = 50 \, ^{\circ}C$

PREPARATION CCIL

Acide 2-[4-[[(2E)-4-[[(2,6-diméthyl-4-méthoxyphényl)sulfonyl]méthylamino]-1-oxo-2-butènyl]méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

30 diméthyléthyl ester(Solide blanc ; rendement = 75 %).

 $F = 50 \, ^{\circ}C$

En opérant de façon analogue à l'exemple 1, au départ des composés obtenus selon les préparations CCXXXV à CCIL, on obtient les produits suivants :

Exemple 105

(2E)-4-[[(2-chloro-4-fluorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1 H-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Pâte rose; rendement = 99%)

5 RMN ¹H (250 MHz, DMSO) δ: 10,48 (s, 2H); 8,09 (m, 1H); 7,91 (m, 2H); 7,78 (m, 1H); 7,49 (m, 3H); 6,61 (m, 2H); 4,76 et 4,66 (2s, 2H); 4,05 (m, 2H); 4,01 (s, 4H); 3,09 et 3,03 (2s, 3H); 2,96 et 2,90 (2s, 3H).

Exemple 106

(2E)-4-[[[2,6-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dichloro-4-(trifluorométhyl)phényl]sulfo

dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate (solide blanc; rendement = 99%)

F = 62°C

10

15

25

Exemple 107

 $(2E)-4-[[(2,6-difluor ophényl) sulfonyl] méthylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-14-(4,5-dihydro-1-4-(4,5-di$

yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Pâte rose; rendement = 99%)

RMN 1 H (250 MHz, DMSO) δ : 10,49 (s, 2H) ; 7,90 (m, 2H) ; 7,80 (m, 1H) ; 7,47 (d, 2H) ; 7,32 (m, 2H) ; 6,60 (m, 2H) ; 4,76 et 4,66 (2s, 2H) ; 4,04 et 3,94 (2d, 2H) ; 4,01 (s, 4H) ; 3,03 et 2,90 (2s, 3H) ; 2,86 et 2,71 (2s, 3H).

20 <u>Exemple 108</u>

 $(2E)-4-[[(2-nitrophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate$

(Pâte rose; rendement = 94%)

RMN ¹H (250 MHz, DMSO) δ : 10,54 (s, 2H) ; 7,94 (m, 6H) ; 7,48 (m, 2H) ; 6,60 (m, 2H) ; 4,74 et 4,65 (2s, 2H) ; 4,08 et 3,99 (2d, 2H) ; 4,01 (s, 4H) ; 3,01 et 2,89 (2s, 3H) ; 2,87 et 2,72 (2s, 3H).

Exemple 109

(2E)-4-[[(2,4,6-triméthylphényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\$H-imidazol-2-yl)phényl]-N-méthyl-2-butènamide, trifluoroacétate

30 (Solide blanc; rendement = 78%)

F = 64 °C

Exemple 110

 $(2E)-4-[[(2,5-dichlorophényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)phényl]-N-méthyl-2-butènamide, trifluoroacétate$

(Solide blanc; rendement = 99%)

 $F = 65 \, ^{\circ}C$

Exemple 111

 $(2E)-4-[[(2,4-dichlorophényl)sulfonyl]m\'{e}thylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-mathematical estimation of the property of the pro$

5 yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 99%)

F = 65 °C

Exemple 112

(2E)-4-[[(3-chloro-2-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]m'ethylamino]-N-[4-(4,5-dihydro-1H-methylphenyl)sulfonyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenyl]-N-[4-(4,5-dihydro-1H-methylphenylph

10 imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 99%)

F = 64 °C

Exemple 113

 $(2E)-4-[[(2-cyanophényl) sulfonyl] méthylamino]-N-[[4-(4,5-dihydro-1 \emph{H}-imidazol-2-dihydro-1 \emph{H}-imidazol-2-dihydro-1$

yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 99%)

F = 60 °C

15

Exemple 114

(2E)-4-[[(2-chloro-4-m'ethoxyph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-1)]-N-[

20 imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 90%)

 $F = 68 \, ^{\circ}C$

Exemple 115

(2E)-4-[[(2,4-dichloro-5-m'ethylph'enyl)sulfonyl]m'ethylamino]-N-[[4-(4,5-dihydro-1H-1)]-N-[(4,5-dihydro-1H-1)]-

25 imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 99 %)

F = 79 °C

Exemple 116

 $(2E)-4-[[(2,3,4-trichlorophényl) sulfonyl] méthylamino]-N-[[4-(4,5-dihydro-1 \emph{H}-imidazol-2-1]]-[(2,3,4-trichlorophényl) sulfonyl] méthylamino]-N-[[4-(4,5-dihydro-1 \emph{H}-imidazol-2-1]]-[(4,5-dihydro-1 \emph{H}-i$

30 yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 90 %)

F = 87 °C

Exemple 117

(2E)-4-[[[2-chloro-4-(trifluorométhoxy)phényl]sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1H-imidazol-2-yl)phényl]méthyl]-N-méthyl-2-butènamide, trifluoroacétate

(Solide blanc; rendement = 99 %)

 $F = 68 \, ^{\circ}C$

5 Exemple 118

 $(2E)-4-[[[4-m\acute{e}thoxy-2-(trifluorom\acute{e}thyl)ph\acute{e}nyl]sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1$H-imidazol-2-yl)ph\acute{e}nyl]-N-m\acute{e}thyl-2-but\grave{e}namide, trifluoroac\acute{e}tate$

(Solide blanc; rendement = 99 %)

 $F = 50 \, ^{\circ}C$

10 <u>Exemple 119</u>

 $(2E)-4-[[(4-m\acute{e}thoxy-2,6-dim\acute{e}thylph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1\emph{H-imidazol-2-yl})ph\acute{e}nyl]m\acute{e}thyl]-N-m\acute{e}thyl-2-but\grave{e}namide, trifluoroac\acute{e}tate$

(Solide blanc; rendement = 99 %)

 $F = 50 \, ^{\circ}C$

15

20

En opérant de façon analogue à la préparation V, au départ de l'amine obtenue selon la préparation CLXXIX et de différents chlorures de benzènesulfonyle, on obtient les composés suivants :

PREPARATION CCL

Acide 2-[4-[[[5-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Solide blanc; rendement = 32 %)

 $F = 60 \, ^{\circ}C$

PREPARATION CCLI

25 Acide 2-[4-[[[5-[[(4-méthoxy-2-méthylphényl)sulfonyl]méthylamino]-1-oxopentyl]
méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1diméthyléthyl ester

(Huile incolore; rendement = 24 %)

RMN ¹H (250 MHz, DMSO) δ: 7,73 (t, 1H); 7,42 (m, 2H); 7,20 (m, 2H); 6,93 (m, 2H); 4,56 (d, 2H); 3,86 (s, 4H); 3,81 (s, 3H); 3,04 (m, 2H); 2,88 et 2,80 (2s, 3H); 2,68 et 2,65 (2s, 3H); 2,48 (m, 2H); 1,50 (m, 4H); 1,17 (s, 9H).

Acide 2-[4-[[[5-[[[2-méthyl-4-(trifluorométhoxy)phényl]sulfonyl]méthylamino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

5 (Huile incolore; rendement = 30 %)

RMN ¹H (300 MHz, DMSO) δ : 7,88 (t, 1H); 7,44 (m, 4H); 7,20 (m, 2H); 4,59 et 4,52 (2s, 2H); 3,83 (m, 4H); 3,14 (m, 2H); 2,89 et 2,81 (2s, 3H); 2,76 et 2,74 (2s, 3H); 2,55 et 2,51 (2s, 3H); 2,50 (m, 2H); 1,52 (m, 4H); 1,17 (s, 9H).

PREPARATION CCLIII

Acide 2-[4-[[[5-[[[4-méthoxy-2-(trifluorométhyl)phényl]sulfonyl]méthylamino]-1-oxopentyl] méthylamino]méthyl]phényl]-4,5-dihydro-1*H*-imidazole-1-carboxylique, 1,1-diméthyléthyl ester

(Huile incolore; rendement = 35 %)

RMN ¹H (300 MHz, DMSO) δ : 7,95 (t, 1H) ; 7,41 (m, 4H) ; 7,22 (m, 2H) ; 4,59 et 4,52 (2s, 2H) ; 3,91 (s, 3H) ; 3,83 (m, 4H) ; 3,16 (m, 2H) ; 2,89 et 2,81 (2s, 3H) ; 2,78 et 2,76 (2s, 3H) ; 2,36 (m, 2H) ; 1,48 (m, 4H) ; 1,17 (s, 9H).

En opérant de façon analogue à l'exemple 1, au départ des composés obtenus selon les préparations CCL à CCLIII, on obtient les produits suivants :

Exemple 120

15

25

5-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]-N-[[4-(4,5-dihydro-1*H*-imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

(Huile jaune; rendement = 97 %)

RMN 1 H (300 MHz, DMSO) δ : 10,50 (d, 2H) ; 7,90 (m, 3H) ; 7,45 (d, 2H) ; 7,26 (s, 1H) ; 7,11 (m, 1H) ; 4,69 et 4,60 (2s, 2H) ; 4,00 (s, 4H) ; 3,86 (s, 3H) ; 3,14 (m, 2H) ; 2,95 et 2,82 (2s, 3H) ; 2,75 et 2,72 (2s, 3H) ; 2,49 et 2,30 (2m, 2H) ; 1,52 (m, 4H).

Exemple 121

 $5-[[(4-m\acute{e}thoxy-2-m\acute{e}thylph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1\emph{H}-imidazol-2-yl)ph\acute{e}nyl]m\acute{e}thyl]-N-m\acute{e}thyl-pentanamide, trifluoroac\acute{e}tate$

(Huile incolore; rendement = 94 %)

RMN ¹H (300 MHz, DMSO) δ : 10,52 (d, 2H) ; 7,90 (m, 2H) ; 7,70 (m, 1H) ; 7,47 (m, 2H) ; 6,90 (m, 2H) ; 4,68 et 4,60 (2s, 2H) ; 4,01 (s, 4H) ; 3,81 (s, 3H) ; 3,07 (m, 2H) ; 2,94 et 2,82 (2s, 3H) ; 2,68 et 2,64 (2s, 3H) ; 2,50 (s, 3H) ; 2,49 et 2,39 (2t, 2H) ; 1,52 (m, 4H).

Exemple 122

 $5-[[[2-m\acute{e}thyl-4-(trifluorom\acute{e}thoxy)ph\acute{e}nyl]sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylamino]-N-[4-(4,5-dihydro-1H-1)]m\acute{e}thylami$ imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

(Pâte rouge; rendement = 99 %)

RMN 1 H (250 MHz, DMSO) δ : 10,49 (d, 2H) ; 7,89 (m, 3H) ; 7,44 (m, 4H) ; 4,69 et 4,60 (2s, 2H); 4,00 (s, 4H); 3,14 (m, 2H); 2,95 et 2,82 (2s, 3H); 2,76 et 2,73 (2s, 3H); 2,57 et 2,55 (2s, 3H); 2,44 et 2,38 (2m, 2H); 1,50 (m, 4H).

Exemple 123

5

10

15

20

25

 $5-[[[4-m\acute{e}thoxy-2-(trifluorom\acute{e}thyl)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl]sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl]sulfonyl]m\acute{e}thylamino]-N-[[4-(4,5-dihydro-1H-1)ph\acute{e}nyl]sulfony$

imidazol-2-yl)phényl]méthyl]-N-méthyl-pentanamide, trifluoroacétate

(Pâte rose; rendement = 99 %)

RMN 1 H (250 MHz, DMSO) δ : 10,50 (d, 2H) ; 7,90 (m, 3H) ; 7,40 (m, 4H) ; 4,69 et 4,60 (2s, 2H); 4,00 (s, 4H); 3,92 (s, 3H); 3,19 (m, 2H); 2,96 et 2,83 (2s, 3H); 2,78 et 2,75 (2s, 3H); 2,49 et 2,45 (2m, 2H); 1,53 (m, 4H).

En opérant de façon analogue à la préparation V, au départ de l'amine obtenue selon la préparation CLII et de différents chlorures de benzènesulfonyle, on obtient les composés suivants:

PREPARATION CCLIV

Acide 2-[4-[[[2-[[(2-chloro-4-méthoxyphényl)sulfonyl]méthylamino]éthoxy]

 $ac\acute{e}tyl] \emph{m\'ethylamino}] \emph{m\'ethyl}] \emph{ph\'enyl}] \emph{-4,5-dihydro-1} \emph{H-imidazole-1-carboxylique, 1,1-dihydro-1} \emph{H-imidazole-1-carboxylique, 1,1-dihydro-1-dihyd$ diméthyléthyl ester

(Huile incolore; rendement = 64 %)

RMN 1H (300 MHz, DMSO) δ : 7,89 (m, 1H) ; 7,42 (m, 2H) ; 7,22 (m, 3H) ; 7,05 (dd, 1H) ; 4,52 (s, 2H); 4,22 et 4,18 (2s, 2H); 3,82 (m, 4H); 3,79 (s, 3H); 3,60 (m, 2H); 3,39 (m, 2H); 2,85 et 2,76 (2s, 3H); 2,84 et 2,82 (2s, 3H); 1,18 (s, 9H).

PREPARATION CCLV

Acide 2-[4-[[[2-[[(4-méthoxy-2-méthylphényl)sulfonyl]méthylamino]éthoxy]acétyl] méthylamino]méthyl]phényl]-4,5-dihydro-1H-imidazole-1-carboxylique, 1,1diméthyléthyl ester

(Huile incolore; rendement = 53 %) 30

RMN ^{1}H (300 MHz, DMSO) δ : 7,74 (m, 1H) ; 7,44 (m, 2H) ; 7,23 (d, 2H) ; 6,92 (m, 2H) ; 4,51 (s, 2H); 4,20 et 4,17 (2s, 2H); 3,84 (m, 4H); 3,81 (s, 3H); 3,59 (m, 2H); 3,26 (m, 2H); 2,83 et 2,77 (2s, 3H); 2,78 et 2,75 (2s, 3H); 2,50 (s, 3H); 1,17 (s, 9H).

En opérant de façon analogue à l'exemple 1, au départ des composés précédents, on obtient les composés suivants :

Exemple 124

2-[2-[[(2-chloro-4-m'ethoxyph'enyl)sulfonyl]m'eth'ylamino]'ethoxy]-N-[[4-(4,5-dihydro-1H-methoxyph'enyl)sulfonyl]m'eth'ylamino]imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

(Solide blanc, rendement = 96 %).

 $F = 60^{\circ}C$

5

10

Exemple 125

 $2-[2-[[(4-m\acute{e}thoxy-2-m\acute{e}thylph\acute{e}nyl)sulfonyl]m\acute{e}thylamino]\acute{e}thoxy]-N-[[4-(4,5-dihydro-1H-1)]m\acute{e}thylph\acute{e}nyl]m\acute{e}thylamino]$ imidazol-2-yl)phényl]méthyl]-N-méthyl-acétamide, trifluoroacétate

(Pâte blanche; rendement = 94 %).

RMN 1H (300 MHz, DMSO) δ : 10,50 (d, 2H) ; 7,90 (m, 2H) ; 7,73 (m, 1H) ; 7,49 (d, 2H) ; 6,97 (m, 1H); 6,90 (m, 1H); 4,60 (s, 2H); 4,25 et 4,16 (2s, 2H); 4,00 (s, 4H); 3,81 (s, 3H); 3,56 (m, 2H); 3,30 et 3,20 (2t, 2H); 2,89 et 2,72 (2s, 3H); 2,78 (s, 3H); 2,50 (s, 3H).

20

15

Ex.*	R ₁	R ₂	Y	R ₃	R ₄	R ₅	R ₆
1	CI CI	СН3	-(CH ₂) ₄ -	-(CI	H ₂) ₂ -	Н	н
2	CI CI	СН₃	-(CH ₂) ₃ -	-(C	H ₂) ₂ -	н	н
3	CI CI	СН3	-(CH ₂) ₂ -	-(C	TH ₂) ₂ -	н	н
4	CI CI	CH₃	-CH ₂ -CH=CH-	-(0	CH ₂) ₂ -	н	Н
. 5	CI	CH₃	-(CH ₂) ₄ -	-(0	CH ₂) ₂ -	Н	Н
6	CI	CH₃	-CH ₂ -CH=CH-	-(0	CH ₂) ₂ -	Н	Н
7	CI	CH ₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -	Н	Н

•	

					1	
8	CI	СН3	-(CH ₂) ₃ -	-(CH ₂) ₂ -	н	н
9	CI	СН₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	н
10	CI	СН3	-CH₂-CH=CH-	-(CH ₂) ₂ -	н	н
11	CI	СН₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	н
12	CI	СН₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	н
13		CH₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	н
14		CH ₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	н
15	CI	cPr	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	н
16	CI	сРт	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	H

17	CI	сPr	-(CH ₂) ₄ -	-(CH ₂) ₂ -	Н	н
18	CI	CH(CH₃)₂	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	Н
19	CI CH ₃ CI	CH₂CONH₂	-(CH ₂) ₄ -	-(CH ₂) ₂ -	Н	Н
20	CI CI	(CH ₂) ₂ CONH ₂	-(CH₂)4-	-(CH ₂) ₂ -	н	н
21	CI	CH(CH ₃) ₂	-(CH ₂) ₂ -	-(CH ₂) ₂ -	н	н
22	CI	CH(CH ₃) ₂	-(CH ₂) ₂ -	-(CH ₂) ₂ -	н	H
23	CI	сРт	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
24	CI	cPr	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	Н
25	CI	cPr	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	Н

4	

				 T		
26	CI CI	(CH ₂) ₂ -Ph	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
27	CI	СН₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -	Н	Н
28	CI	сРт	-(CH ₂) ₂ -	-(CH ₂) ₂ -	Н	н
29	CI	сPr	-(CH ₂) ₂ -	-(CH ₂) ₂ -	Н	н
30	CI	CH₂-CF₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -	н	н
31	CI	CH ₂ -CF ₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -	н	н
32	CF ₃	CH ₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	Н
33	CI CI	Н	-CH₂-CH=CH-	-(CH ₂) ₂ -	Н	н
34 bas		СН₃	-(CH ₂) ₄ -	-CH ₂ - C(CH ₃) ₂ -	H	н

35	CI CI	СН₃	-(CH ₂) ₄ -	-CH ₂ - C(CH ₃) ₂ -	Н	н
36 bas	CI	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₃ -	н	н
37 bas	CI CH ₃ CI	CH₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	СН3	Н
38 bas	CC	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	СН3	н
39	CI CI	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
40	CI	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
41	CI	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
42	CI	CH ₃	-(CH ₂) ₂ -O-CH ₂	-(CH ₂) ₂ -	н	н
43	CI	CH₃	-(CH ₂) ₂ -O-CH ₂	- (CH ₂) ₂ -	Н	2-F

44 chl	CI	СН₃	CH-CH ₂ CH ₃ O—CH ₂	-(CH ₂) ₂ -	Н	Н
45	CI	CH₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₃ -	н	Н
46 chl	CI CI	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	СН₃	н
47 chl	CI	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	СН₃	н
48	CF ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
49	CH ₃ O CH ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
50	CI	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	Н
51	CI CI CI	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
52	NO ₂	CH₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н

	0: 1		<u> </u>			$\overline{}$
53	CF ₃ CI	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH₂)₂-	н	н
54	CH ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
55	CN	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	Н
56	CICI	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
57	CI CH₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
58	NC CI	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	Н
59	CF ₃ NO ₂	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	Н
60	F	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH₂)₂-	Н	Н
61	CF ₃ O	CH₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
62	CI	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	·н

_	

63	CH ₃	CH₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
64		СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
65	CF ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	Н
66	CH ₃	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н
67	F	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
68	CI	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH₂)₂-	н	н
69	CF ₃	CH₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	H
70	CI CI	СН₃	-(CH ₂) ₄ -	-(CH₂)₂-	н	Н
71	CH ₃	СН₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	Н	н

_	

72	CH ₃ O CH ₃	СН3	-(CH ₂) ₄ -	-(CH	2)2-	н	н
73	CI	СН₃	-(CH ₂) ₄ -	-(CH	2)2-	н	н
74	NO ₂	СН₃	-(CH ₂) ₄ -	-(CH	[2)2-	н	н
75	CICI	СН₃	-(CH ₂) ₄ -	-(CH	l ₂) ₂ -	Н	н
76	CH ₃	СН3	-(CH ₂) ₄ -	-(CF	I ₂) ₂ -	н	H
77	CI CI	СН3	-(CH ₂) ₄ -	ОН	н	н	Н
78	CI CI	СН₃	-(CH ₂) ₄ -	Н	Н	н	н
79 fum	CH ₃ O CH ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(C)	H ₂) ₂ -	Н	н
80 base	CF ₃	CH₃	-CH ₂ -CH=CH-	-(C	H ₂) ₂ -	CH ₃	Н

	4
97	

81 fum	CF ₃	СН₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	СН3	Н
82	CI	СН₃	-CH₂-CH=CH-	-(CH ₂) ₂ -	н	2-F
83	CI	СН₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	Н	2-F
84	MeO CH ₃	СН₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -	н	н
85 base	MeO CH ₃	СН₃	-(CH₂)₄-	-(CH₂)₂-	Н	2-Cl
86 fum	MeO CH ₃	СН₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	2-Cl
87 base	CF ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH₃	Н
88 fum	CF ₃	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH ₃	Н
89	CI	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	2-Cl
90	MeO CH ₃	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	2-Cl

4	

91 base	MeO CH ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	iPr	Н
92 fum	MeO CH ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	iPr	Н
93 base	MeO CH ₃	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	СН₃	2-Cl
94 fum	MeO CH ₃	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH ₃	2-Cl
95 base	CF ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	СН3	2-Cl
96 fum	CF ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH₃	2-C1
97 base	CN	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH ₃	н
98 fum	CN	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH ₃	н
99 base	MeO	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH ₃	Н
100 fum	MeO	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	CH ₃	Н

i	
	,
	<i>"</i>

						
101	CF ₃	CH₃	-(CH ₂) ₂ -	-(CH ₂) ₂ -	Н	Н
102 base	CF ₃	CH₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Et	н
103 base	CF ₃	CH ₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	iPr	Н
104 base	MeO CH ₃	СН3	-(CH ₂) ₂ -O-CH ₂ -	-N=CH-	Н	н
105	F	CH ₃	-CH₂-CH=CH-	-(CH ₂) ₂ -	Н	Н
106	F ₃ C CI	СН₃	-CH₂-CH=CH-	-(CH₂)₂-	Н	Н
107	F	CH₃	-СН2-СН=СН-	-(CH ₂) ₂ -	Н	н
108	NO ₂	CH₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	Н
109	H ₃ C CH ₃	СН₃	-CH ₂ -CH=CH-	-(CH₂)₂-	н	Н
110	CI	CH ₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	H

			4
1	100	•	

111	CI	СН3	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	Н
112	CI CH ₃	СН₃	-CH₂-CH=CH-	-(CH ₂) ₂ -	н	н
113	CN	СН₃	-СН₂-СН=СН-	-(CH ₂) ₂ -	Н	н
114	MeO	СН3	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	н
115	CI CI CI	СН3	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	Н
116	CI	СН3	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	н	н
117	F ₃ CO CI	СН₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	Н	н
118	MeO CF ₃	СН₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	Н	н
119	MeO CH ₃	СН₃	-CH ₂ -CH=CH-	-(CH ₂) ₂ -	Н	н
120	MeO	CH₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	н
121	MeO CH ₃	CH ₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	н	Н

	,					
122	F ₃ CO CH ₃	СН₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	Н	н
123	MeO CF ₃	СН₃	-(CH ₂) ₄ -	-(CH ₂) ₂ -	Н	Н
124	MeO	СН3	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	Н	н
125	MeO CH ₃	СН₃	-(CH ₂) ₂ -O-CH ₂ -	-(CH ₂) ₂ -	н	н

Et signifie Ethyl

cPr signifie Cyclopropyl

iPr signifie isopropyl (1-méthyléthyl)

Ph signifie Phényl

*Tous les composés décrits dans le tableau sont sous forme de sel avec l'acide trifluoroacétique, à l'exception des composés marqués :

(chl) sel avec l'acide chlorhydrique

(bas) non salifiés

15

20

(fum) sel avec l'acide fumarique 10

Activité biologique

Les composés de la présente invention ont été évalués pour leur propriété analgésique dans le test de douleur induite par le formaldéhyde chez la souris (Shibata, M., Ohkubo, T., Takahashi, H. & R. Inoki. Modified formalin test: characteristic biphasic pain response. Pain, 38, 347-352). En résumé, une administration de formaldéhyde (0,92 % dans le sérum physiologique) est effectuée dans la patte arrière et la durée de léchage, qui reflète l'intensité de la douleur, est enregistrée de 0 à 5 min (1ère phase) et de 15 à 30 min (2nde phase) après l'injection. Le pourcentage d'inhibition de la seconde phase de léchage induite par le formaldéhyde est donné, pour quelques composés selon l'invention, dans le tableau suivant :

Exemple	Dose (mg/kg)	Voie d'administration	% d'inhibition de la 2 ^{nde} phase de léchage
16	100	p.o.	80
9	100	p.o.	60

WO 03/106428		102	PCT/FR03/01763
19	10	i.p.	42
49	1	i.v.	40

p.o.: voie orale

i.p.: voie intrapéritonéale

i.v. : voie intraveineuse

5

10

15

20

25

30

Ces résultats témoignent d'une baisse très sensible de la douleur après administration des composés.

Suite aux résultats de l'essai précédent, les composés selon l'invention ont été soumis à un test visant à démontrer leur mode d'action et mettant en jeu le récepteur B₁ de la bradykinine.

Ce test utilise la veine ombilicale humaine et est réalisé selon le protocole suivant : Des cordons ombilicaux humains de 15-25 cm de long sont récupérés juste après la délivrance et placés immédiatement dans un flacon contenant une solution de Krebs de composition (en mM) : NaCl 119, KCl 4,7, KH₂PO₄ 1,18, MgSO₄ 1,17, NaHCO₃ 25, CaCl₂ 2,5, Glucose 5,5, EDTA 0,026 puis stockés à 4°C.

Le cordon est disséqué sous solution de Krebs afin de dégager la veine ombilicale. La veine est nettoyée de tout tissu adhérent et coupée en petits anneaux de 3-4 mm de large. L'endothélium est enlevé précautionneusement par introduction dans la lumière du vaisseau d'un fin cathéter n°1, rendu légèrement abrasif.

Afin d'induire l'expression du récepteur B₁ de la bradykinine, les segments de veine sont mis à incuber à 37°C dans une cuve de 25 ml pendant 16 heures dans un milieu de culture EMEM oxygéné par un mélange 95% O₂ + 5% CO₂ auquel on ajoute des antibiotiques : pénicilline 10 000 UI/ml et streptomycine 10 000 UI/ml. Le lendemain, les anneaux de veine sont montés sur un support en acier inoxydable, relié à un capteur isométrique et placés dans une cuve à organes isolés de 8 ml thermostatée à 37°C, contenant de la solution de Krebs oxygénée par un mélange 95% O₂ + 5% CO₂.

Après une période de repos d'une heure pendant laquelle les anneaux sont rincés 5 à 6 fois avec la solution de Krebs (maintenue à 37°C pendant toute la manipulation et oxygénée par le mélange 95% O_2 + 5% CO_2), la veine est soumise progressivement à une tension de 1 g. Lorsque la tension est stable, après 45 minutes environ, la solution de Krebs est remplacée par une solution hyperpotassique (KPSS: à température de 37°C) de même composition, mais contenant du KCl 125 mM et pas de NaCl.

5

10

15

20

25

30

Après une série de rinçages, repos et réajustement de la tension, la contraction maximale de chaque segment est déterminée par une nouvelle dépolarisation avec la solution de KPSS.

Après une nouvelle période de repos pendant laquelle la tension à 1 g est réajustée constamment, les composés suivants sont ajoutés dans le bain d'organe isolé: Mépyramine (1μM), Atropine (1μM), Indométacine (3μM), LNA (30μM), Captopril (10μM), DL-Thiorphan (1μM) et Nifédipine (0,1μM).

20 minutes après, la molécule à tester ou le solvant de la molécule est ajouté dans le bain d'organe isolé. Les molécules sont étudiées à 10 µM; si une molécule présente un degré d'activité suffisant, elle est étudiée à des concentrations plus faibles (ex : $1 - 0,1-0,01 \mu M$).

Après 15 minutes d'incubation, les segments de veine sont contractés par l'ajout de concentrations croissantes de des-Arg¹⁰-Kallidin (0,1 nM à 30 000 nM) dans la cuve.

Les EC₅₀ (concentrations effectives d'agonistes requises pour produire 50% de la réponse maximale obtenue avec le KPSS) sont calculées par la méthode des moindres carrés.

Le $pK_B = [-logK_B]$ est obtenue à partir de l'équation :

 $K_B = [A] / (concentration ratio-1)$

où [A] est la concentration d'antagoniste et la (concentration ratio) représente le rapport entre l'EC₅₀ en présence d'antagoniste, et l' EC₅₀ en l'absence d'antagoniste.

Selon ce test, les composés selon l'invention cités dans la description présentent un pKB compris entre 7 et 10, ce qui tend à démontrer que le mode d'action de ces composés fait intervenir un antagonisme au récepteur B1 de la bradykinine.

Les composés de la présente invention, sont utiles pour le traitement de diverses formes de douleur telles que l'hyperalgésie inflammatoire, l'allodynie, la douleur neuropathique associées, par exemple, au diabète, à des neuropathies (constriction du nerf sciatique, lombalgies), à toute forme de traumatisme, à une intervention chirurgicale (extraction dentaire, ablation des amygdales), à une cystite interstitielle, à une maladie inflammatoire du colon, à un cancer.

Les composés de la présente invention peuvent aussi être utiles pour traiter toute pathologie associée à un recrutement de neutrophiles comme par exemple, le syndrome de détresse respiratoire aiguë, le psoriasis, les obstructions pulmonaires chroniques, les maladies inflammatoires du colon, la polyarthrite rhumatoïde.

L'activité des composés selon l'invention, mise en évidence au cours des tests biologiques, est significative de propriétés antalgiques et permet d'envisager leur utilisation en thérapeutique.

5

10

15

20

25

30

Selon l'invention, on préconise l'utilisation des composés définis par la formule I, ainsi que de leurs sels avec des acides non toxiques, de préférence leurs sels pharmaceutiquement acceptables, en tant que principes actifs de médicaments destinés à un traitement chez les mammifères, notamment chez l'homme, vis à vis de la douleur ou de certaines maladies généralement caractérisées par une migration massive de neutrophiles.

Parmi les maladies qui peuvent être traitées au moyen d'une administration d'une quantité thérapeutiquement efficace d'au moins l'un des composés de formule I, on peut citer les hyperalgésies inflammatoires, les douleurs neuropathiques, les douleurs associées à un traumatisme ou à un cancer, les maladies inflammatoires du côlon, la polyarthrite rhumatoïde, le psoriasis, les obstructions pulmonaires chroniques ou le syndrome de détresse respiratoire aiguë.

Les composés de la présente invention, en raison de leur mode d'action, trouvent aussi leur utilité pour traiter ou prévenir tout état pathologique dans lequel les récepteurs B1 de la bradykinine sont impliqués et notamment surexprimés. En plus des diverses formes de douleur et des maladies inflammatoires déjà citées, les composés de l'invention peuvent être utiles pour traiter :

- certains problèmes respiratoires tels que l'asthme, la bronchite, la pleurésie ou les rhinites d'origine allergique ou virale,
 - certaines formes de diabète,
 - certaines maladies de la peau telles que les dermatites, l'eczéma, le psoriasis,
 - les maladies des yeux tels que le glaucome, la rétinite,
 - la maladie d'Alzheimer,
 - le choc septique,
 - les chocs traumatiques, notamment au niveau du crâne,
- certains cancers notamment en ralentissant ou en inhibant la prolifération des cellules cancereuses et plus particulièrement le cancer de la prostate.

L'invention concerne également une méthode de traitement de la douleur ou des maladies sus-mentionnées qui consiste à administrer, à un sujet en ayant besoin, une quantité thérapeutiquement efficace de composé de formule I.

La dose de principe actif dépend du mode d'administration et du type de pathologie; elle est généralement comprise entre 0,05 et 10 mg/kg du sujet à traiter. En fonction du traitement envisagé, les composés de formule I ou leurs sels pourront être associés à d'autres principes actifs, et seront formulés avec des excipients couramment utilisés.

Dans le but d'obtenir une action rapide, notamment lorsqu'il s'agit de traiter une douleur aiguë, le mode d'administration du médicament se fera de préférence par injection, par exemple par voie intramusculaire ou sous-cutanée. Dans le cas de douleurs chroniques, l'administration du médicament peut être faite par le moyen de formulations galéniques communes, par exemple par voie orale sous forme de gélules ou de comprimés dans lesquels un composé selon l'invention est associé à des excipients connus de l'homme du métier, ou sous forme d'un patch adhésif dans lequel un composé selon l'invention est formulé avec des excipients connus de l'homme du métier pour favoriser le passage transdermique du principe actif.

5

I

REVENDICATIONS

- 1. Composé dérivé d'arylsulfonamide, caractérisé en ce qu'il est choisi parmi l'ensemble constitué par :
 - a) les produits de formule:

dans laquelle

5

R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C₁-C₃, alcoxy en C₁-C₃, nitro, cyano, trifluorométhyl ou trifluorométhoxy,

R₂ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄ éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor,

R₃ représente un atome d'hydrogène, un groupe hydroxy, ou forme avec R₄ un groupe

15 -CH=N- ou un groupe alkylène en C2-C4 linéaire ou ramifié,

R₄ représente un atome d'hydrogène ou forme avec R₃ un groupe --CH=N- ou un groupe alkylène en C₂-C₄ linéaire ou ramifié,

R₅ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃,

R₆ représente un atome d'hydrogène ou un halogène,

- 20 Y représente un groupe alkylène en C₂-C₄, saturé ou insaturé, linéaire ou ramifié, éventuellement interrompu entre deux atomes de carbone par un atome d'oxygène,
 - b) les sels d'addition des composés de formule I ci-dessus avec un acide.
- Composé selon la revendication 1, caractérisé en ce que R₁ représente un groupe phényle
 substitué par un ou plusieurs atomes ou groupes d'atomes choisis parmi un atome d'halogène,
 de préférence l'atome de chlore, et les groupes alkyle en C₁-C₃ et alcoxy en C₁-C₃.
 - 3. Composé selon la revendication 1 ou 2, caractérisé en ce que R_2 représente un groupe alkyle en C_1 - C_4 .

- PCT/FR03/01763
- 4. Composé selon l'une des revendications 1 à 3, caractérisé en ce que R₃ et R₄ forment ensemble un groupe alkylène en C₂-C₃.
- 5. Composé selon l'une des revendications 1 à 4, caractérisé en ce que R₅ et R₆ représentent
 chacun un atome d'hydrogène.
 - 6. Composé selon l'une des revendications 1 à 5, caractérisé en ce que Y représente une chaîne alkylène en C₂-C₄ saturée éventuellement interrompue par un atome d'oxygène.
- 7. Composé selon la revendication 6, caractérisé en ce que Y représente un groupe -(CH₂)₄-.
 - 8. Composé selon la revendication 6, caractérisé en ce que Y représente un groupe –(CH₂)₂-O-CH₂-.
- 9. Procédé de préparation d'un composé de formule I tel que défini à la revendication 1, et de ses sels d'addition, comprenant les étapes consistant à :
 - a) faire réagir un acide de formule :

II

dans laquelle

20 R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C₁-C₃, alcoxy en C₁-C₃, nitro, cyano, trifluorométhyl ou trifluorométhoxy,

 R_2 représente un atome d'hydrogène, un groupe alkyle en C_1 - C_4 éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor,

et Y représente un groupe alkylène en C₂-C₄, saturé ou insaturé, linéaire ou ramifié, éventuellement interrompu entre deux atomes de carbone par un atome d'oxygène, avec une amine de formule :

$$\begin{array}{c|c} H-N-CH_2 & R_6 & N-R_3 \\ CH_3 & N \\ R_1 & S \end{array}$$

Ш

R₄ représente un atome d'hydrogène ou forme avec R₃ un groupe alkylène en C₂-C₄ linéaire ou ramifié,

5 R'₅ représente un groupe alkyle en C₁-C₃, un atome d'hydrogène ou un groupe aminoprotecteur,

R₆ représente un atome d'hydrogène ou un halogène,

la réaction étant conduite dans un solvant en présence d'au moins un agent activateur à une température généralement comprise entre la température ambiante et 60°C et de préférence pendant environ 2 à 15 heures pour obtenir l'amide de formule

ΙV

dans laquelle R₁, R₂, R₃, R₄, R'₅, R₆ et Y conservent la même signification que dans les produits de départ,

- b) si nécessaire, lorsque le substituant R'5 est un groupe amino-protecteur, faire réagir le composé de formule IV de façon à éliminer le groupe amino-protecteur et le remplacer par un atome d'hydrogène, et ainsi obtenir le composé de formule I dans lequel R5 représente un atome d'hydrogène,
 - c) si nécessaire, faire réagir le composé de formule IV ou I obtenu ci-dessus, avec un acide minéral ou organique, pour obtenir le sel d'addition du composé de formule IV ou I.
 - 10. Composition thérapeutique, caractérisée en ce qu'elle renferme, en association avec au moins un excipient physiologiquement acceptable, au moins un composé de formule I selon l'une des revendications 1 à 8, ou l'un de ses sels d'addition pharmaceutiquement acceptables avec un acide.
 - 11. Utilisation d'un composé de formule I selon l'une des revendications 1 à 8 ou de l'un de ses sels d'addition pharmaceutiquement acceptables avec un acide, pour la préparation d'un médicament destiné au traitement de la douleur.

25

20

10

12. Utilisation d'un composé de formule I selon l'une des revendications 1 à 8 ou de l'un de ses sels d'addition pharmaceutiquement acceptables avec un acide, pour la préparation d'un médicament destiné au traitement de maladies inflammatoires.

Internal Application No
PCT/FR 03/01763

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 C07D233/54 A61K Ã61K31/4164 A61K31/18 A61P25/04 CO7D239/06 C07D409/12 C07C311/16 C07D249/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1,10,11 WO 00 75107 A (NOVARTIS AG) 14 December 2000 (2000-12-14) claims 1,10,11 WO 98 03503 A (FOURNIER INDUSTRIE ET A SANTÉ) 29 January 1998 (1998-01-29) cited in the application claims 1,10,11 WO 02 076964 A (SANOFI-SYNTHELABO) P,X 3 October 2002 (2002-10-03) Patent family members are fisted in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance Invention "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filling date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25/11/2003 14 November 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Van Bijlen, H

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0075107	A	14-12-2000	AU	765628 B2	25-09-2003
	• • • • • • • • • • • • • • • • • • • •		AU	5528200 A	28-12-2000
			BR	0011329 A	05-03-2002
			ÇA	2372575 A1	14-12-2000
			CN	1353690 T	12-06-2002
			CZ	20014302 A3	13-03-2002
			WO	0075107 A2	14-12-2000
			ËP	1183233 A2	06-03-2002
			HU	0201524 A2	28-08-2002
			JP	2003501413 T	14-01-2003
			NO	20015779 A	27-11-2001
			SK	17492001 A3	04-04-2002
			TR	200103108 T2	22-04-2002
			ZA	200109891 A	01-10-2002
WO 9803503	Α	29-01-1998	FR	2751650 A1	30-01-1998
5000000			AT	206419 T	15-10-2001
			AU	3853697 A	10-02-1998
			CA	2261743 A1	29-01-1998
			DE	69707141 D1	08-11-2001
			DE	69707141 T2	27-06-2002
			DK	925295 T3	28-01-2002
			EP	0925295 A1	30-06-1999
			ES	2167768 T3	16-05-2002
			WO	9803503 A1	29-01-1998
			JP	2000514818 T	07-11-2000
			PL	331347 A1	05-07-1999
			PT	925295 T	28-03-2002
			TR	9900096 T2	22-03-1999
•			US	6071917 A	06-06-2000
WO 02076964	Α	03-10-2002	FR	2822827 A1	04-10-2002
			CA	2436225 A1	03-10-2002
			WO	02076964 A1	03-10-2002

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 CO7D233/54 A61K31/4164 A61P25/04 C07D239/06 A61K31/18 C07D409/12 C07C311/16 C07D249/08 Selon la classification internationale des brevets (CiB) ou à la fois selon la classification nationale et la CiB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) CO7D A61K A61P CO7C CIB 7 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquets a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) CHEM ABS Data C. DOCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents no, des revendications visées Catégorie ° 1,10,11 WO 00 75107 A (NOVARTIS AG) Α 14 décembre 2000 (2000-12-14) revendications 1,10,11 WO 98 03503 A (FOURNIER INDUSTRIE ET SANTÉ) 29 janvier 1998 (1998-01-29) cité dans la demande revendications 1,10,11 WO 02 076964 A (SANOFI-SYNTHELABO) P,X 3 octobre 2002 (2002-10-03) revendications Les documents de familles de brevets sont indiqués en annexe Voir la suite du cadre C pour la fin de la liste des documents X · Catégories spéciales de documents cités: *T° document uttérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international "X" document particulièrement pertinent; l'inven tion revendiquée ne peut ou après cette date être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "Y" document particulièrement pertinent; l'inven tion revendic ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens pour une personne du métiei document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée 25/11/2003 14 novembre 2003 Nom et adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorisé Office Européen des Brevets, P.B. 5616 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.

Van Bijlen, H

Fax: (+31-70) 340-3016

Document brevet cité u rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
WO 0075107	A	14-12-2000	AU	765628 B2	25-09-2003
			AU	5528200 A	28-12-2000
			BR	0011329 A	05-03-2002
			CA	2372575 A1	14-12-2000
			CN	1353690 T	12-06-2002
			CZ	20014302 A3	13-03-2002
			WO	0075107 A2	14-12-2000
			EP	1183233 A2	06-03-2002
			HU	0201524 A2	28-08-2002
			JP	2003501413 T	14-01-2003
			NO	20015779 A	27-11-2001
			SK	17492001 A3	04-04-2002
			TR	200103108 T2	22-04-2002
			ZA	200109891 A	01-10-2002
WO 9803503	A	29-01-1998	FR	2751650 A1	30-01-1998
			AT	206419 T	15-10-2001
			AU	3853697 A	10-02-1998
			CA	2261743 A1	29-01-1998
			DE	69707141 D1	08-11-2001
			DE	69707141 T2	27-06-2002
		•	DK	925295 T3	28-01-2002
			EP	0925295 A1	30-06-1999
			ES	2167768 T3	16-05-2002
			WO	9803503 A1	29-01-1998
			JP	2000514818 T	07-11-2000
			PL	331347 A1	05-07-1999
			PT	925295 T	28-03-2002
			TR	9900096 T2	22-03-1999
			US	6071917 A	06-06-2000
WO 02076964	Α	03-10-2002	FR	2822827 A1	04-10-2002
			CA	2436225 A1	03-10-2002
			WO	02076964 A1	03-10-2002

(12) DEMANDE ERNATIONALE PUBLIÉE EN VERTU DU TRE DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

VERSION RÉVISÉE

10/517909

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

I TELT KOTOK N OLOH KAN BEN ELDE KOTO NO 14 KE KOT LUM BEN EN NEKEROLUM OLOH KOTOK DE

(43) Date de la publication internationale 24 décembre 2003 (24.12.2003)

PCT

(10) Numéro de publication internationale WO 2003/106428 A1

- (51) Classification internationale des brevets⁷:
 C07D 233/54, A61K 31/4164, 31/18, A61P 25/04,
 C07D 239/06, 409/12, C07C 311/16, C07D 249/08
- (21) Numéro de la demande internationale:

PCT/FR2003/001763

- (22) Date de dépôt international: 12 juin 2003 (12.06.2003)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 02/07387 14 juin 2002 (14.06.2002) FR
- (71) Déposant (pour tous les États désignés sauf US): LAB-ORATOIRES FOURNIER SA [FR/FR]; 42, rue de Longvic, F-21300 Chenove (FR).

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): BARTH, Martine [FR/FR]; 20, rue Claude Deschault, F-21380 Asnières les Dijon (FR). BONDOUX, Michel [FR/FR]; 7, allée des Montereys, F-21121 Fontaine les Dijon (FR). DODEY, Pierre [FR/FR]; 10, rue des Champs d'Aloux, F-21121 Fontaine les Dijon (FR). MASSARDIER, Christine [FR/FR]; 5, rue Nicolas Frochot, F-21000 Dijon (FR). LUCCARINI, Jean-Michel [FR/FR]; 9, rue de Cronstadt, F-21000 Dijon (FR).
- (74) Mandataires: NEVANT, Marc etc.; Cabinet Beau de Loménie, 158, rue de l'Université, F-75340 Paris Cedex 07 (FR).
- (81) États désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

[Suite sur la page suivante]

(54) Title: ARYLSULPHONAMIDE DERIVATIVES AND USE THEREOF AS B1 BRADYKININ RECEPTOR ANTAGONISTS

(54) Titre: DERIVES D'ARYLSULFONAMIDES ET LEUR UTILISATION EN TANT QUE ANTAGONISTES AU RECEPTEUR B₁ DE LA BRADYKININE

(57) Abstract: The invention relates to a) arylsulphonamide compounds as given by formula (I), where R1 = an aromatic nucleus, non-substituted or substituted by one or several atoms selected from the halogens, C_1 C_3 alkyl, C_1 C_3 alkoxy, nitro, cyano, trifluoromethyl, or trifluoromethoxy, R2 = H, C_1 C_4 alkyl, optionally substituted

with a phenyl or CONH₂ group, or with several atoms of fluorine, R3 = H, OH or forms with R4 a CH=N- group, or a branched or straight-chain C2 C4 alkylene, R4 = H, or forms with R3 a CH=N- group, or a branched or straight-chain C2 C4 alkylene, R5 = H, or C1 C3 alkyl, R6 = H, or halogen, Y = C2 C4 alkylene, saturated or unsaturated, straight-chain or branched, optionally interrupted with an oxygen atom between two carbon atoms and b) the addition salts of compounds of formula (I) as above with an acid. Said compounds are useful in therapy, in particular of pain.

(57) Abrégé: La présente invention concerne des composés arylsulfonamide, définis par la formule; a) les produits de formule: dans laquelle R₁ représente un noyau aromatique non substitué ou substitué par un ou plusieurs des atomes ou groupes d'atomes choisi(s) parmi les halogènes, les groupes alkyle en C₁-C₃, alcoxy en C₁-C₃, nitro, cyano, trifluorométhyl ou trifluorométhoxy, R₂ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₄ éventuellement substitué par un groupe phényle, par un groupe CONH₂ ou par un ou plusieurs atomes de fluor, R₃ représente un atome d'hydrogène, un groupe hydroxy, ou forme avec R₄ un groupe -CH=N- ou un groupe alkylène en C₂-C₄ linéaire ou ramifié, R₄ représente un atome d'hydrogène ou un groupe alkylène en C₁-C₃, R₆ représente un atome d'hydrogène ou un groupe alkyle en C₁-C₃, R₆ représente un atome d'hydrogène ou un halogène, Y représente un groupe alkylène en C₂-C₄, saturé ou insaturé, linéaire ou ramifié, éventuellement interrompu entre deux atomes de carbone par un atome-d'oxygène, b) les sels d'addition des composés de formule I ci-dessus avec un acide. Ces composés sont utiles en thérapeutique, particulièrement pour le traitement de la douleur.

WO 2003/106428 A1

- SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

- (88) Date de publication du rapport de recherche internationale révisé: 6 mai 2004
- (15) Renseignements relatifs à la correction: voir la Gazette du PCT n° 19/2004 du 6 mai 2004, Section II

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

INTERNATIONAL SEARCH REPORT

PCT 03/01763

A. CLASSIFICATION OF SUBJECT MATTE IPC 7 CO7D233/54 A61 A61K31/4164 A61K31/18 A61P25/04 CO7D239/06 C07C311/16 C07D249/08 C07D409/12 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D A61K A61P CO7C IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with Indication, where appropriate, of the relevant passages Category ° 1,10,11 WO 00 75107 A (NOVARTIS AG) Α 14 December 2000 (2000-12-14) claims 1,10,11 WO 98 03503 A (FOURNIER INDUSTRIE ET A SANTÉ) 29 January 1998 (1998-01-29) cited in the application claims 1,10,11 WO 02 076964 A (SANOFI-SYNTHELABO) P,X 3 October 2002 (2002-10-03) claims Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to earlier document but published on or after the international filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or document published prior to the international filling date but later than the priority date claimed *& document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 25/11/2003 14 November 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Van Bijlen, H Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT 03/01763

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0075107	Α	14-12-2000	AU	765628 B2	25-09-2003
			ΑU	5528200 A	28-12-2000
			BR	0011329 A	05-03-2002
•			CA	2372575 A1	14-12-2000
			CN	1353690 T	12-06-2002
			CZ	20014302 A3	13-03-2002
			WO	0075107 A2	14-12-2000
			EP	1183233 A2	06-03-2002
			HU	0201524 A2	28-08-2002
			JP	2003501413 T	14-01-2003
			NO	20015779 A	27-11-2001
			SK	17492001 A3	04-04-2002
			TR	200103108 T2	22-04-2002
			ZA	200109891 A	01-10-2002
WO 9803503	<u>-</u> -	29-01-1998	FR	2751650 A1	30-01-1998
,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• •		AT	206419 T	15-10-2001
			ΑU	3853697 A	10-02-1998
			CA	2261743 A1	29-01-1998
			DE	69707141 D1	08-11-2001
			DE	69707141 T2	27-06-2002
			DK	925295 T3	28-01-2002
			EΡ	0925295 A1	30-06-1999
			ES	2167768 T3	16-05-2002
			WO	9803503 A1	29-01-1998
			JP	2000514818 T	07-11-2000
			PL	331347 A1	05-07-1999
			PT	925295 T	28-03-2002
			TR	9900096 T2	
			US	6071917 A	06-06-2000
WO 02076964	A	03-10-2002	FR	2822827 A1	04-10-2002
	••		CA	2436225 A1	03-10-2002
			WO	02076964 A1	03-10-2002

RAPPORT DE RECHERCHE INTERNATIONALE

nationale No Demande p3/01763 **PCT**

A. CLASSEMENT DE L'OBJET DE LA DEM/ CIB 7 CO7D233/54 A61 C07D409/12

A61K31/4164 A61K31/18 C07D249/08 C07C311/16

A61P25/04

C07D239/06

Seion la classification internationale des brevets (CIB) ou à la fois seion la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 CO7D A61K A61P CO7C

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

CHEM ABS Data

Catégorie °	ldentification des documents cités, avec, le cas échéant, l'indication des passages pertinents WO 00 75107 A (NOVARTIS AG)	no. des revendications visées
Α .		1.10.11
1	14 décembre 2000 (2000-12-14) revendications	
Α	WO 98 03503 A (FOURNIER INDUSTRIE ET SANTÉ) 29 janvier 1998 (1998-01-29) cité dans la demande revendications	1,10,11
P,X	WO 02 076964 A (SANOFI-SYNTHELABO) 3 octobre 2002 (2002-10-03) revendications	1,10,11

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
Catégories spéciales de documents cités: A' document définissant l'état général de la technique, non considéré comme particulièrement pertinent E' document antérieur, mais publié à la date de dépôt international ou après cette date L' document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens P' document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'apparlenenant pas à l'état de la technique perlinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &* document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
14 novembre 2003	25/11/2003
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Van Bijlen, H

RAPPORT DE RECEPRCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Dema	nde	nationale No	
	FR	03/01763	

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
	A	14-12-2000	AU BR CA CN CZ WO EP HU JP NO SK TR ZA	765628 B2 5528200 A 0011329 A 2372575 A1 1353690 T 20014302 A3 0075107 A2 1183233 A2 0201524 A2 2003501413 T 20015779 A 17492001 A3 200103108 T2 200109891 A	25-09-2003 28-12-2000 05-03-2002 14-12-2000 12-06-2002 13-03-2002 14-12-2000 06-03-2002 28-08-2002 14-01-2003 27-11-2001 04-04-2002 22-04-2002 01-10-2002
WO 9803503	A	29-01-1998	FR AT AU CA DE DK EP ES UP PT TR US	2751650 A1 206419 T 3853697 A 2261743 A1 69707141 D1 69707141 T2 925295 T3 0925295 A1 2167768 T3 9803503 A1 2000514818 T 331347 A1 925295 T 9900096 T2 6071917 A	30-01-1998 15-10-2001 10-02-1998 29-01-1998 08-11-2001 27-06-2002 28-01-2002 30-06-1999 16-05-2002 29-01-1998 07-11-2000 05-07-1999 28-03-2002 22-03-1999 06-06-2000
WO 02076964	Α	03-10-2002	FR CA WO	2822827 A1 2436225 A1 02076964 A1	04-10-2002 03-10-2002 03-10-2002