CSF372: Operating System

Assignment 2

Group 30

1. P1 - Reading Matrices

The objective of P1 is to read lines from the input file using multithreading and analyze whether there is any correlation between the number of threads used and execution time.

The program is supposed to read two input files, each representing a matrix. Due to the nature of matrix multiplication, it is easier to transpose the second file, as both files were pre-processed to store the offset (in bytes) of the start of each line in memory (so that any line can be directly accessed by any thread using the fseek() function). If we don't transpose the second file, the offset of each element will have to be stored (as a row will be multiplied by the corresponding columns of the second matrix). This will increase memory usage as compared to storing offsets of only the first line element. Also, row-by-row multiplication of elements (dot product) has much lesser chance of logical errors as compared to row-by-column multiplication and makes for more convenient debugging.

After pre-processing, we spawn a batch of threads, each reading a separate portion of the file. This kind of design avoids race conditions as no thread is accessing any common memory segments. The number of lines is divided by the number of threads, and each thread reads that particular portion of the file.

The rows are each read into a shared memory segment from which P2 can also read and do the actual computation, however synchronization is ensured through the usage of flags (described in the P2 section).

Analysis: On varying the number of threads, we found that intially, as the number of threads increased, the execution time decreased. However, after reaching a particular no.of threads that ensure minimum execution time, increasing the number of threads further did not decrease the execution time, but increased it instead. We concluded that this is because after reaching an optimal point, the overhead of creating new threads and context switches outweighs the speedup caused by them, thus steadily increasing the time.

```
def plot_threading(pro_number, file_name):
    data = pd.read_csv(file_name)
    data = data.to_numpy()

X = data[:, 0]
Y = data[:, 1]

plt.figure(figsize=(9, 6))
plt.plot(X, Y)
plt.xlabel("No. of threads")
plt.ylabel("Time (in nanoseconds)")
plt.title(f"An analysis of no.of threads vs execution time for
P{pro_number}")
plt.show()
```

plot_threading(1, 'P1_data_20.csv')

plot_threading(1, 'P1_data_50.csv')

plot_threading(1, 'P1_data_100.csv')

plot_threading(1, 'P1_data_500.csv')

plot_threading(1, 'P1_data_1000.csv')

2. P2 - Multiplying Matrices

For P2, the objective is to receive the data read by P1 through IPC and compute the final product using multithreading. We are to analyze whether there is any correlation between the number of threads used and execution time.

For thread allocation, we use a similar algorithm as P1: the total number of cells is divided by the number of threads, and each thread is allotted a specific sequence of contiguous cells to compute the product. Again, this ensures there are no race conditions between any two threads, as they all work with different memory segments. There is a matrix to check whether each cell has been written to by P1; if this flag is marked true, then P2's thread will read from it and compute the product; otherwise, it will keep attempting to read until the cell has been finally written to. This ensures that P2 doesn't attempt to read from any cell that hasn't been written to by P1 and uses garbage values from computation (essentially to ensure shared memory synchronization).

Once all the threads exit and join, the output matrix is written to a text file. As file IO operations are computationally expensive, doing it once at the end is better than writing repeatedly.

Analysis: For smaller cases, the effect of system processors and context switches is amplified due to very small execution time, whereas for larger cases the same observations were reported as P1; that is, parallelization decreases execution time till a certain minimum, following which it again starts to increase. This is because of a limited number of CPU cores, which limits the parallelism that can be achieved.

plot_threading(2, 'P2_data_20.csv')

plot_threading(2, 'P2_data_100.csv')

plot_threading(2, 'P2_data_500.csv')

plot_threading(2, 'P2_data_1000.csv')

3. P3 - Scheduler

P3 forks and execs the child processes P1 and P2, but just before calling the exec, the processes are paused using a kill signal (SIGSTP), and a resume signal (SIGCONT) is sent to the processes when the scheduler schedules them. We are using signals to simulate the Round Robin Algorithm for a given Quanta.

As there are only two processes to schedule, a variable is used to denote the current active process. The value of that variable is flipped in each iteration between 0 and 1. If the current process is already done but the other is not, it flips again. The current process is then continued using kill command with appropriate flags (SIGCONT) and the scheduler sleeps for time specified by quantum and then suspends the current process. This routine is repeated until both processes are done. The time delay between the scheduler suspending the current process, resuming the process that needs to be scheduled and the latency of processes receiving signals from the scheduler results in the context switch overhead.

For our analysis we have plotted the turnaround time, waiting time for both P1 and P2 against logarithm of workload for the given quantas of 1ms and 2ms. (where our workload is defined as $N \times M \times K$ where $N \times M$ is the size of matrix 1 and $M \times K$ is the size of matrix 2).

We have benchmarked on similar workloads multiple times to study the variance on execution time due to system processes.

```
def plot scheduler(pro number, file name, quanta, wait turnaround time):
    data = pd.read_csv(file_name)
    data.sort_values(by=['Workload size'])
    data = data.to_numpy()
   from math import log10
   X = list()
    for i in data[:, 0]:
       X.append(log10(i))
   X = np.array(X)
   Y = data[:, pro number]
    plt.figure(figsize=(10, 6))
   plt.scatter(X, Y)
    plt.xlabel("$log {10}(Workload size)$")
    plt.ylabel(wait turnaround time)
    plt.title(f"{wait turnaround time} vs $log {{10}}(Workload size)$ for
P{pro number} for Quanta {quanta} ms")
    plt.show()
```


plot_scheduler(2, 'turnaround_1.csv', 1, 'Turnaround time (in nanoseconds)')

plot_scheduler(2, 'turnaround_2.csv', 2, 'Turnaround time (in nanoseconds)')

plot_scheduler(2, 'wait_1.csv', 1, 'Waiting time (in nanoseconds)')

plot_scheduler(2, 'wait_2.csv', 2, 'Waiting time (in nanoseconds)')

Quanta 1: Tabulated Summary

quanta_1_data = pd.read_csv("quanta_1.csv")
quanta_1_data

	Workload size	Turnaround time P1	Turnaround time P2	Waiting time P1	Waiting time P2	Context switch time
0	1000	5744135	6719187	2744135	2719187	12765033
1	2000	5880594	6885965	2880594	2885965	2484335
2	5000	7793208	5515437	3793208	2515437	1281950
3	10000	5639351	6565894	2639351	2565894	182760
4	25000	5715736	6630138	2715736	2630138	2799483
338	50000000	60001456	80413045	33001456	34413045	103593880
339	100000000	62548470	104937027	34548470	44937027	110341786
340	250000000	76462397	182074315	42462397	71074315	127717476
341	50000000	49332335	221213367	27332335	65213367	260624400
342	1000000000	88254883	501732468	49254883	99732468	199991659

[343 rows x 6 columns]

Quanta 2: Tabulated Summary

quanta_2_data = pd.read_csv("quanta_2.csv")
quanta_2_data

	Workload size	Turnaround time P1	Turnaround time P2	Waiting time P1	Waiting time P2	Context switch time
0	1000	10746578	6338186	4746578	2338186	338205
1	2000	6250769	6235229	2250769	2235229	185544
2	5000	6454072	6416910	2454072	2416910	171348
3	10000	10724101	6482478	4724101	2482478	4707191
4	25000	10683351	6369741	4683351	2369741	4947313
338	5000000	52781939	79846438	26781939	27846438	128770162
339	10000000	49221071	92987487	25221071	34987487	85974247
340	250000000	53529097	151879088	27529097	39879088	122395858
341	50000000	57298219	262424703	29298219	52424703	131732587
342	1000000000	57639822	450792452	29639822	58792452	152000468

[343 rows x 6 columns]

Analysis of Round Robin with different Quantas

We observe that time wasted due to context switches (latency due to signals) reduces considerably when the quanta is longer, that is context switch with quanta as 2ms is lower than the one with 1ms. The total waiting time and the turnaround time increases with increasing quanta (for higher load, the results might be skewed to due to system processes and limitations of our CPU).