

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Title	THEORY C	THEORY OF COMPUTATION					
Course Code	AITB03						
Program	B.Tech	B.Tech					
Semester	FOUR	FOUR					
Course Type	Core	Core					
Regulation	IARE - R18						
		Theory		Practical			
	Lectures	Tutorials	Credits	Laboratory	Credits		
Course Structure	3	1	4	-	-		
Chief Coordinator	Ms. V.Div	yavani, Assista	nt professor				

COURSEOBJECTIVES:

Students will try to learn:					
I	The fundamental knowledge of automata theory which is used to solve computational				
	problems.				
II	The reorganization of context free language for processing infinite information using push				
	down automata.				
III	To simulate computer based algorithms with the help of mathematical model of an abstract				
	machines.				

COURSE OUTCOMES:

After successful completion of this course, students will be able to:					
СО	Course Outcomes	Knowledge Level (Bloom's Taxonomy)			
CO 1	Understand the fundamental concepts of alphabet, strings and languages to represent properties of grammars and automata.	Remember			
CO 2	Remember deterministic finite automata and non deterministic finite automata for modeling lexical analysis and text editors.	Apply			

CO 3	Describe regular sets and regular expressions are used to match character	Understand
	combinations in strings.	
CO 4	Apply the pumping lemma on regular and context free languages to	Apply
	perform negative test.	
CO 5	Describe right linear and left linear grammars used for parsing and	understand
	designing programming languages.	
CO 6	Identify the recursive rules of context free grammars to generate patterns	Remember
	of strings.	
CO 7	Apply normalization techniques (Chomsky normal form, Greibach	Apply
	normal form) on context free grammars to minimize the ambiguity in	
	parsing the given strings.	
CO 8	Construct push down automata for context free languages to develop	Apply
	parsing phase of a compiler.	
CO 9	Recall and relate the deterministic context free languages and pushdown	Remember
	automata for accepting the regular languages.	
CO 10	Apply the concept of Turing machines for solving real time computations	Remember
	and complex functions like recursively enumerable problem.	
CO 11	Make use of linear bounded automata for recognizing context sensitive	Apply
	languages and implementation of genetic programming.	

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes	Program Outcomes								Program Specific Outcomes						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1		-	-	-	-	-	-	-	-	-	-	-	√	-	-
CO 2		-	•	•	-	-	-	-	-	-	-	-	-	-	√
CO 3		-	-	\checkmark	-	-	-	-	-	-	-	-	-	-	-
CO 4	$\sqrt{}$	-			-	-	-	-	-	V	-	-	√	-	-
CO 5	$\sqrt{}$	V	\checkmark	-	-	-	-	-	-	-	-	-	-	-	-
CO 6		V	-	-	-	-	-	-	-	-	-	-	-	V	-
CO 7		V	-		-	-	-	-	-	√	-	-	√	-	-
CO 8		V	-	-	-	-	-	-	-	-	-	-	-	-	V
CO 9		V	-	-	-	-	-	-	-	-	-	-	-	√	-
CO 10		V	$\sqrt{}$	√	-	-	-	-	-	-	-	-	V	-	-
CO 11	\checkmark	V	\checkmark	-	-	-	-	-	-	-	-	-	√	-	-

TUTORIAL QUESTION BANK

MODULE-1 FINITE AUTOMATA PART – A (Short Answer Questions) Blooms Course S. No **Taxonomy Questions Outcomes** Level 1 **Define** Automata. Remember CO₁ 2 **Compare** DFA and NFA. Understand This would require the learner to CO₂ recall the finite automata and **explain** the differences between NFA and DFA. 3 **Define** the String. Remember CO₁ 4 **Define** transition function of DFA. Remember CO₂ 5 CO₂ **Define** ε -transitions. Remember **Define** power of an alphabet (\sum^*) . 6 Remember CO₁ 7 **List** the applications of finite automata. Remember CO₁ 8 **Define** Null string. Remember CO₁ 9 **Define** Kleene Star? Remember CO₁ ---10 Define NFA with example. Remember CO₂ **Describe** transition diagram for DFA accepting Remember CO2 11 string ending with 00 **Describe** DFA for a string accepting odd 12 Remember CO₂ number of 0's. Describe transition diagram for DFA to accept 13 Remember CO₂ exactly one 'a' defined. over an alphabet Σ = $\{a,b\}.$ **Demonstrate** DFA for odd number of 1's. 14 Understand This would require the learner to CO2 recall the Deterministic finite automata and discuss the steps for the construction of DFA.

Remember

Remember

Remember

CO2

CO1

CO₁

Define ε - closure.

Automata.

Describe FSM and its structure with an

State the Mathematical definition of Finite

15

16

17

18	Demonstrate DFA for even number of 1's.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
19	Define DFA mathematically.	Remember		CO2
20	Demonstrate DFA for the language accepting strings which contains 001 as substring.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
	PART - B (LONG A	ANSWER QUI	ESTIONS)	
1	Demonstrate DFA to accept set of all strings ending with 0101.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
2	Describe the DFA with the set of strings having "aaa" as a substring over an alphabet $\sum = \{a,b\}$.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
3	List out the various differences between DFA and NFA	Remember		CO2
4	Describe NFA with ε to NFA conversion with an example.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA with ε to NFA.	CO2
5	Describe a DFA to accept the string a"s and b"s ending with abb over an alphabet $\sum = \{a,b\}$	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
6	List the properties and operations of strings and languages.	Remember		CO1
7	Demonstrate a DFA that any given decimal number is divisible by 3.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
8	Describe DFA for the following languages shown below Σ = { a,b} a) L={w/w is any string that doesn't contain exactly two a"s} b) L={w/w is any string that contain atmost3a"s}	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
9	Convert the following NFA with ε to NFA. ε ε ε ε ε	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA with ϵ to NFA.	CO2
10	 Describe Finite Automata and draw FA for the strings over an alphabet Σ = { 0,1} a. The string with even no of 0"s and odd no of1"s b. 	Understand	This would require the learner to recall the finite automata and discuss the steps for the construction of FA.	CO2

	b. The string with odd no of 0"s and odd no of 1"s			
11	Describe a DFA, the language recognized by the Automaton being L={w/w contains neither the substring ab nor ba}. Draw the transition table.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
12	Convert the following NFA into DFA.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO2
13	Describe a DFA for the following language L={w/ w mod3=0,w belongs to (a,b)*} L={w/ w mod3=1,w belongs to (a,b)*}	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
14	Describe a DFA for the following language over an alphabet $\Sigma = \{0,1\}$ a)The string with even no of 0"s and even no of1"s b)The string with odd no of 0"s and even no of1"s	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
15	Convert the following NFA into equivalent DFA.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO2
16	Convert the following NFA- ϵ to NFA.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA-ε to NFA.	CO2
17	Describe a DFA for the following language i)L= $\{w/n_a w mod3=0,w \text{ belongs to(a,b)}^*\}$ ii)L= $\{w/n_a w mod3=1,w \text{ belongs to(a,b)}^*\}$	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
18	Convert the following NFA with ε to NFA. $ \begin{array}{c} $	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA-ε to NFA.	CO2

19	Describe a DFA that accepts set of strings starts with 01 and ends with 01 over alphabet $\Sigma = \{0, 1\}$	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
20	Illustrate the model and behavior of finite automata with neat block diagram.	Understand	This would require the learner to recall the finite automata and discuss the steps for the construction of DFA.	CO1
	Part – C (Problem Solving	and Critical Th	inking Questions)	
1	Describe NFA for accepting any binary string that contains 11 as a substring and Convert to DFA.	Understand	This would require the learner to recall the Non Deterministic finite automata and discuss the steps for the construction of NFA and the conversion of NFA to DFA.	CO2
2	Convert NFA with ε to equivalent DFA	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA with ϵ to DFA.	CO2
3	Describe a DFA that any given decimal number is divisible by 5.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
4	Describe a DFA for the followinglanguage L={w/ w mod5=0,w belongs to(a,b)*} L={w/ w mod5=1,w belongs to(a,b)*}	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
5	Convert NFA with ε to equivalent NFA M=({q ₀ ,q ₁ ,q ₂ },{0,1,2}, δ , q ₀ , {q ₂ }) where δ is given by [δ (q ₀ ,0)={q ₀ }, δ (q ₀ ,1)= ϕ , δ (q ₀ ,2)= ϕ , δ (q ₀ , ε)={q ₁ }] [δ (q ₁ ,0)= ϕ , δ (q ₁ ,1)={q ₁ }, δ (q ₁ ,2)= ϕ , δ (q ₁ , ε)={q ₂ }] [δ (q ₂ ,0)= ϕ , δ (q ₂ ,1)= ϕ , δ (q ₂ ,2)= {q ₂ }, δ (q ₂ , ε)= ϕ]	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA with ε to NFA.	CO2
6	Demonstrate NFA that strings such that the third symbol from the right end is a 0 over an alphabet $\Sigma = \{0,1\}$. And Convert it into equivalent DFA.	Understand	This would require the learner to recall the Non Deterministic finite automata and discuss the steps for the construction of NFA and the conversion of NFA to DFA.	CO2
7	Convert NFA to equivalent DFA as shown in fig. below	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO2

8	Describe the transition Table for the below NFA and then convert its equivalent transition diagram for DFA.	Understand	This would require the learner to recall the finite automata and show the steps for the conversion of NFA to DFA.	CO2
9	Describe a DFA that will accept those words from ∑= {a, b} where the number of a's is divisible by two and the number of b's is divisible by three. Sketch the transition table of the finite automata.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
10	Describe a DFA that will accept those words from alphabets $\Sigma = \{a, b\}$ where the number of b"s is divisible by three. Sketch the transition table and diagram of the finite Automata.	Understand	This would require the learner to recall the Deterministic finite automata and discuss the steps for the construction of DFA.	CO2
	MC	DULE-II		
	REGULAI	R LANGUAG	ES	
	PART – A (Sho	rt Answer Qu	estions)	
1	Define Regular Languages.	Remember		CO3
2	List out any two applications of regular expression.	Remember		CO3
3	Define Pumping Lemma for Regular Languages.	Remember		CO4
4	Show an example for a regular set?	Remember		CO3
5	Define the Regular Expression for the empty	Remember Remember		
				CO3
5	Define the Regular Expression for the empty string. Describe regular expression for denoting	Remember	This would require the learner to recall regular languages and explain the regular expressions for	CO3
5	Define the Regular Expression for the empty string. Describe regular expression for denoting language containing empty.	Remember Understand	This would require the learner to recall regular languages and explain the regular expressions for given laguage.	CO3 CO3
5 6 7	Define the Regular Expression for the empty string. Describe regular expression for denoting language containing empty. Define right linear grammars. Show the Regular Expression for the set of	Remember Understand Remember	This would require the learner to recall regular languages and explain the regular expressions for given laguage.	CO3 CO3 CO3
5 6 7 8	Define the Regular Expression for the empty string. Describe regular expression for denoting language containing empty. Define right linear grammars. Show the Regular Expression for the set of binary strings.	Remember Understand Remember Remember	This would require the learner to recall regular languages and explain the regular expressions for given laguage.	CO3 CO3 CO5 CO5

12	Describe regular expressions for the Set of strings over {0, 1} whose last two symbols are the same.	Understand	This would require the learner to recall strings, regular expressions and explain the regular expressions for given set of strings.	CO3
13	Describe the regular language generated by regular expression (0+1)*001(0+1)*.	Understand	This would require the learner to recall regular expressions and explain the languages for given expression.	CO3
14	List the difference between left linear and right linear grammars.	Remember		CO5
15	Describe the Regular Expression to generate at least one b over $\Sigma = \{a,b\}$	Understand	This would require the learner to recall regular sets and explain the regular expression for given regular set.	CO3
16	Describe that following languages are not regular $L=\{a^nb^m \mid n, m \text{ and } n < m \}$	Remember		CO4
17	Describe that following languages are not regular $L=\{a^n \mid n \text{ is a perfect square } \}$	Remember		CO4
18	Define Regular Expression for even number of 0's.	Remember		CO3
19	Define Regular Expression for odd number of 0's.	Remember		CO3
20	Define Regular Expression for the regular sets consists strings having two consecutive a's.	Remember		CO3
	Part - B (Long	Answer Quest	tions)	
1	Convert Regular Expression 01* + 1 to Finite Automata.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO3
2	Convert Regular Expression 01* + 1 Right linear, Left linear Regular Grammars.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Regular Grammars.	CO5
3	Describe Regular expression? Simplify the following Regular Expression i) $\epsilon + 1*(011)*(1*(011)*)*=(1+011)*$ ii) $(0+11*0)+(0+11*0)(10+10*1)*(10+10*1)*$ =1*0(10+10*1) *	Remember		CO3
4	Convert the given Finite Automata (a+b)*ab* to Regular grammar.	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Grammar.	CO5
5	Convert the given Finite Automata 0*11(0+1)*to Regular grammar.	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Grammar.	CO5

6	Describe Regular expression, Regular set and Finite Automata. Distinguish those with example representations.	Remember		CO3
7	Convert Regular Expression $(0+1)*00(0+1)*$ to the Finite Automata(NFA- ϵ).	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata	CO3
8	Convert Regular Expression (b+aa)*a* to Finite Automata(NFA-ε).	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata	CO3
9	State Pumping Lemma for Regular Languages with a suitable example.	Remember		CO4
10	Convert given Regular expression (a*b*) * to FA(NFA-ε).	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO3
11	Convert the following automata into Regular expression $M=(\{q_1,q_2,q_3\},\{0,1\},\delta,q_1,\{q_1\})$ where δ is given by $[\delta\ (q_1,0)=\{q_1\},\ \delta\ (q_1,1)=\{q_2\}]$ $[\delta\ (q_2,0)=\{q_3\},\ \delta(q_2,1)=\{q_2\}]$ $[\delta\ (q_3,0)=\{q_1\},\delta\ (q_3,1)=\{q_2\}]$	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular expression.	CO3
12	Describe Pumping lemma. Prove that the language L={yy/y belongs {0,1}*} is not regular.	Remember		CO4
13	Describe Regular grammar? Explain the types of regular grammar with examples.	Remember		CO5
14	Hustrate the steps for conversion of regular grammar to finite automata? Construct the FA for the following grammar S→aS/bA/b A→aA/bS/a	Understand	This would require the learner to recall the Regular Grammar and show the steps for the conversion of Regular Grammar to Finite Automata.	CO5
15	Convert the given Regular Expression 1(11) * to FA and convert it into NFA.	Remember		CO3
16	Show that the following languages is not regular $L = \{a^nb^n/n >= 1\}$ $L = \{a^p/p \text{ isprime}\}$	Remember		CO4
17	Convert the following regular expression to Regular grammar (0+1)*00(0+1)*	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Regular Grammar.	CO3
18	Describe the Left Linear Grammar for the strings start with 'a' over an alphabet $\sum = \{a,b\}$.	Remember		CO5
19	Illustrate the steps for conversion from Finite Automata to Regular Expression with example?	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion	CO3

			of Finite Automata to Regular Expression.	
20	Describe Pumping lemma. Prove that the language L={yy/y belongs {0,1}*} is not regular.	Remember		CO4
	Part – C (Problem Solving	and Critical Th	ninking Questions)	
1	Convert Regular Expression (11+0)*(00+1)* to Finite Automata.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Finite Automata.	CO3
2	Convert Regular Expression to Regular Grammar for the following Expressions i.a(a +b)* ii.(aa +bb)	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Regular Grammar.	CO5
3	Describe Pumping Lemma for Regular Languages. Prove that the language $L = \{a^n / n \text{ is a } n^5\}$ is not regular	Understand	This would require the learner to recall the Regular Languages and show the steps for the checking the language is not regular.	CO4
4	Describe the DFA Transition diagram for equivalent Regular expression (ab+a) *(aa+b)	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Deterministic Finite Automata.	CO3
5	Convert the following Regular Expression $(0 + 1)*(00 + 11)(0 + 1)*$ to DFA.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Deterministic Finite Automata.	CO3
6	Convert the following Regular expression (0+1)*(01+110) to NFA.	Understand	This would require the learner to recall the Regular Expression and show the steps for the conversion of Regular Expression to Non Deterministic Finite Automata.	CO3
7	Convert the following automata into Regular expression $M=(\{q_1,q_2,q_3\},\{0,1\},\delta,q_1,\{q_2,q_3\})$ where δ is given by $[\delta\ (q_1,0)=\{q_2\},\ \delta\ (q_1,1)=\{q_3\}]$ $[\delta\ (q_2,0)=\{q_1\},\ \delta\ (q_2,1)=\{q_3\}]$ $[\delta\ (q_3,0)=\{q_2\},\ \delta\ (q_3,1)=\{q_2\}]$	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Expression.	CO3
8	Describe the following language is not regular i)L= $\{a^n ba^n / n=0,1,2\}$ ii) L= $\{a^n b^{2n} / n \ge 0\}$	Understand	This would require the learner to recall the Regular Languages and show the steps for the checking the language is not regular.	CO4
9	Convert the automata in which strings end with 101 over an alphabet $\Sigma = \{0,1\}$ to the Left Linear Grammar and Right Linear grammar.	Understand	This would require the learner to recall the Finite Automata and show the steps for the conversion of Finite Automata to Regular Grammars.	CO5

10	Convert the following Finite Automata to regular expression .	This would require the learner to recall the Finite Automata and	
	a 0,1 b 0,1 0,1	show the steps for the conversion of Finite Automata to Regular Expression.	CO3

MODULE -III

CONTEXT FREE GRAMMARS

Part - A (Short Answer Questions)

1	Define a context free grammar(CFG).	Remember		CO6
2	Define the parse tree with example.	Remember		CO6
3	Differentiate the Rightmost derivation with Left most derivation with example.	Understand	This would require the learner to recall the context free grammars and Explain the differences between right most derivation and left most derivation.	CO6
4	Describe a short notes about leftmost derivation with example.	Remember		CO6
5	List any two applications of Context Free Grammar.	Remember		CO6
6	Define the left sentential form?	Remember		CO6
7	Describe the different ways to derive a string from a CFG.	Remember		CO6
8	Describe the language generated by CFG or G?	Remember		CO6
9	Describe the concept of parse tree?	Remember		CO6
10	Describe the concept of subtree.	Remember		CO6
11	Describe the CFL for S->aSb aAb , A->bAa , A->ba.	Remember		CO6
12	Describe the usage of normalization?	Remember		CO3
13	Define the ambiguous grammar with example?	Remember		CO3
14	Describe the language generated by the following grammar S-> AB A->aAa bAb a b B->Ab Bb ε	Remember		CO3
15	List the steps for the CFG to reduce UNIT production.	Remember		CO3
16	Describe the elimination of useless symbols in productions.	Remember		CO3

17	List the steps for the given grammar to get the minimized CFG − S □ a S/A, A->a / B	Remember		CO3
18	Describe the ambiguity concept in CFG with an example	Remember		CO3
19	Differentiate the CNF and GNF.	Understand	This would require the learner to recall the normalization of context free grammars and Explain the differences between CNF and GNF.	CO3
20	List the steps for the given grammar to get the minimized CFG - S \square aS1b S1 \square aS1b/ ε .	Remember		CO3
	Part – B (Long	Answer Ques	tions)	
1	Describe Leftmost Derivation., Rightmost Derivation, Derivation Tree for the following grammar with respect to the string aaabbabba. S□ aB bAA□ aS bAA a B□ bS aBB b	Remember		CO6
2	Describe a CFG for the languages $L=\{a^ib^j \mid i <=2i\}$	Remember		CO6
3	Describe leftmost and rightmost derivations for the strings, if the language is given as S □ AS εA □ aa ab ba bb Strings: aabbba baabab aaabbb	Remember		CO6
4	Describe the minimization of CFG - $S \square AbAA \square Aa/ \varepsilon$.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG.	CO6
5	Describe the minimization of CFG - $S \square$ aSa $S \square$ bSbS \square a/b/ ε .	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO6
6	Describe the minimization of CFG - S□ A0/B A□ 0/12/B	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO6
7	Convert the grammar to CNF - S□ aSa/aaS□ bSb/bb S □ a/b.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO6
8	Describe Chomsky Normal Form and Greibach Normal Form.	Remember		CO7
9	Define Normalization of CFG? What is the use of Normalization? Explain different types of normal forms.	Remember		CO7

8	Illustrate the construction of Greibach normal form with an example.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG into GNF	CO7
9	Show that the following CFG ambiguous. $S \Box iCtS \mid iCtSeS \mid a, C \Box b.$	Remember		CO7
10	Describe the Pumping lemma for Context Free Languages concept with example {a ⁿ b ⁿ c ⁿ where n>=0}.	Remember		CO4
11	Describe the minimized CFG productions in S \Box a S1b S1 \Box a S1b/ \in	Remember	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO7
12	Convert the following CFG into GNF. S□ AA/a,A□ SS/b	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO7
13	Describe unit production? Explain the procedure to eliminate unit production.	Remember		CO7
14	Describe the procedure to eliminate ϵ -productions in grammar.	Remember		CO7
15	Convert the following grammar into GNF $G=(\{A1,A2,A3\},\{a,b\},P,A)$ $A1 \square A2A3$ $A2 \square A3A1/b$ $A3 \square A1A2/a$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO7
16	Describe the minimized CFG productions from the following grammar $A \square aBb/bBaB \square aB/bB/\epsilon$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO7
17.	Describe CFG and Explain a CFG for the following language $L = \{ 0^i 1^j 0^k j > i + k \}$ and write the minimization steps.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO7
18	Describe the minimized CFG for the following grammar $S \square ABCa \mid bD A \square BC \mid b B \square b \mid \epsilon$ $C \square B \mid \epsilon, D \square d$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO7
19	Covert the CFG to Greiback Normal form by taking an example	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO7
20	Convert the grammar G given by S->aAa A->Sb bcc DaA C->abb DD E-> ac D->aDa into an equivalent grammar by removing useless symbols and useless productions from it.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO7
	Part – C (Problem Solving	and Critical Th	ninking Questions)	
1	Describe a grammar for valid expressions over operator - and /. The arguments of expressions are valid identifiers over symbols a,b, 0 and	Understand	This would require the learner to recall the context free grammars and Explain the left most	CO6

	Derive Left Most Derivation and Right Most Derivation for string		derivation and Right most derivation	
	W= (a11-b0) / (b00-a01). Draw parse tree for Left Most Derivation.		derivation	
2	Describe Leftmost Derivation. , Rightmost Derivation, Derivation Tree for the following grammar with respect to the string aaabbabbba. $S □ aB \mid bA \mid A □ aS \mid bA \mid aB □ bS \mid aAB \mid b$	Understand	This would require the learner to recall the context free grammars and Explain the left most derivation and Right most derivation	CO6
3	Convert the following grammar into GNF S□ ABA/AB/BA/AA/B A□ aA/a, B□ bB/b	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO6
4	Describe the context free grammars in the four tuple form.(V,T,P,S) for the given languages on Σ={a,b} i. All strings having at least two a"s ii. All possible strings not containing triple b"s	Understand	This would require the learner to recall the context free grammars and Explain the CFG for the given set of strings.	CO6
5	Describe the string "aabbabba" for leftmost derivation and rightmost derivation using a CFG given by S->Ab Ba A->a aS Baa B->b bS aBB	Understand	This would require the learner to recall the context free grammars and Explain the left most derivation and Right most derivation	CO6
6	Describe the minimized CFG productions for CFG S->Ab Bb A->a aS Baa B->b bS aBB	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO3
7	Convert the following grammar into GNF A1 □ A2 A3A2 □ A3 A1 /b A3 □ A1 A2/a	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to GNF.	CO7
8	Convert the following grammar into Chomsky Normal form $L(G) - \{ \Lambda \}$ $S \square AaA \mid CA \mid BaBA \square aaBa \mid CDA \mid aa \mid DC B$ $\square bB \mid bAB \mid bb \mid aS$ $C \square Ca \mid bC \mid D$ $D \square bD \mid A$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the conversion of the CFG to CNF.	CO7
9	Describe the steps to show the following is not CFG. $\{a^mb^nc^p m< n \text{ or } n< p\}$	Understand	This would require the learner to recall the context free grammars and Explain the steps for the checking of the given grammar is CFG or not.	CO4
10	Describe the CFG for the language L={a ⁿ b ²ⁿ where n>=1} and Explain the steps for the minimization of the CFG.	Understand	This would require the learner to recall the context free grammars and Explain the steps for the minimization of the CFG	CO7

MODULE-IV PUSH DOWNAUTMATA Part - A (Short Answer Questions) Differentiate between deterministic and This would require the learner to 1. Understand CO8 nondeterministic PDA. recall the context free grammars & PDA and **Explain** the difference between DPDA - NPDA 2. **Define** the concept of PDA. Remember CO8 3. **Describe** the concept of NPDA. Remember CO8 4. **Define** the language of DPDA. Remember CO9 5. **Convert** the following PDA to CFG Understand CO8 This would require the learner to $\delta(q0,0,z0) = \{q0,xz0\}$ recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG This would require the learner to Convert the following PDA to CFG Understand CO8 6. recall the Push Down Automata $\delta(q0,0,x)=(q0,xx)$ and **Explain** the steps for the conversion of PDA to CFG 7. Convert the following PDA to CFG Understand This would require the learner to CO8 recall the Push Down Automata $\delta(q0,1,x)=(q1,\epsilon)$ and Explain the steps for the conversion of PDA to CFG This would require the learner to 8. **Convert** the following PDA to CFG $\delta(q_{1,1,x})$ Understand CO8 recall the Push Down Automata $= (q1, \epsilon)$ and **Explain** the steps for the conversion of PDA to CFG 9. **List** out the steps to convert CFG to PDA. Remember CO8 **Describe** the acceptance of PDF by final state. 10 Remember CO8 **Describe** the acceptance of PDF by empty 11 Remember CO8 12 Convert the following PDA to CFG Understand This would require the learner to CO8 $\delta(q0,b,z0) = \{q0,zz0\}$ recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG 13. Convert the following PDA to CFG Understand This would require the learner to CO8 $\delta(q0,b,z) = (q0,zz)$ recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG This would require the learner to 14. Convert the following PDA to CFG Understand CO8 recall the Push Down Automata $\delta(q0, \epsilon, z0) = (q0, \epsilon)$ and Explain the steps for the conversion of PDA to CFG 15 **Define** the PDA and design PDA for $L = \{ x \in A \}$ Remember CO8 $\{a, b\} * | na(x) > nb(x) \}$

	Part – B (Long	Answer Ques	tions)	
1.	Define the NPDA(Nondeterministic PDA) and DPDA(deterministic PDA) equivalent? Illustrate with an example.	Remember		CO8
2.	Describe the grammar for the following PDA. $M=(\{q0, q1\}, \{0,1\}, \{X,z0\}, \delta, q0, Z0, \Phi)$ and where δ is given by $\delta(q0,0,z0)=\{(q0,XZ0)\}, \delta(q0,0,X)=\{(q0,XX)\}, \delta(q0,1,X)=\{(q1, \epsilon)\}, \delta(q1,1,X)=\{(q1, \epsilon)\}, \delta(q1, \epsilon,X)=\{(q1, \epsilon)\}, \delta(q1, \epsilon,Z0)=\{(q1, \epsilon)\}.$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the CFG from PDA	CO8
3.	Describe PDA for string of form a^nb^{2n}	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
4.	Define PDA mathematically. With a neat diagram explain the working of a Turing Machine			CO8
5.	Describe the PDA that accepts the language {a^mb^n/n>m}	Understand	This would require the learner to recall the Push Down Automata and Explain the CFG accepts the given language.	CO8
6.	Describe a PDA for the following grammar $S \square 0A$, $A \square 0AB/1$, $B \square 1$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
7.	Convert the following PDA to CFG M=($\{q0,q1\},\{a,b\},\{z0,za\},\delta,q0,z0,\Phi$) δ is given by, $\delta(q0,a,z0)$ =($q0,zz$) $\delta(q0,a,z)$ =($q0,zz$) $\delta(q0,b,z)$ =($q1,\epsilon$) $\delta(q1,b,z)$ =($q1,\epsilon$) $\delta(q1,\epsilon,z0)$ =($q1,\epsilon$)	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA to CFG	CO8
8.	Describe the PDA mathematically. Describe the PDA for the following language. L= $\{w / w \text{ of form } a^n b^n\}$.	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
9	Describe PDA For the language $L = \{ xcxr / x \in \{a,b\}^* \}$ and trace it for string "bacab"	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
10	Describe the Pushdown automaton A is specified by $A = (\{q0, q1\}, \{a, b\}, \{Z, X\}, \delta, qin, Z, \emptyset),$ where δ contains the following transitions: $(q0, a, Z) \rightarrow (q0, \lambda), (q0, a, Z) \rightarrow (q0, XZin),$ $(q0, a, X) \rightarrow (q0, XX), (q0, b, X) \rightarrow (q1, \lambda),$ $(q1, b, X) \rightarrow (q1, \lambda), (q1, a, Z) \rightarrow (q0, Z).$ Infer a (reduced) context-free grammar G for the empty stack language of A, i.e., $L(G) = Le(A)$.	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8

11	Describe PDA for the below grammar as shown below S->aABB aAA A->aBB a B->bBB A	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
	that accepts the language generated by given grammar			
12	Describe a PDA for the below CFG which generates the palindrome accepted by L(G) S->aSa bSb a b	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
13	Define a PDA and describe a context free grammar for the language $L=\{a^ib^jc^k; i < j \text{ or } j < k\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
14	Covert the following context free grammar to push down automata S->aA bB A->aB a B->b Verify the string aab accepted by equivalent PDA	Understand	This would require the learner to recall the Context Free Grammars and Explain the steps for the conversion of CFG to PDA	CO8
15	Describe DPDA for $L=a^nb^n$ where $n>=1$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the DPDA	CO9
16	Describe PDA accepts PDA M for the language L={ WWR W ϵ {a,b}* } such that L=L(M)	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
17	Illustrate PDA M for the language L= $\{x \in \{a,b\}^* \mid n_a(x)>n_b(x)\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
18	Show that the below languages are deterministic context free languages? $L1=\{0^n1^m n=m \text{ and } n>=1\}$ $L2=\{0^n1^m n=2m \text{ and} n>=1\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the checking DCFL or not	CO9
19	Describe deterministic context free languages and deterministic push down automata	Remember		CO8
20	Describe PDA that recognizes the language $L=\{x=x^R: x \in \{a,b\}^+\}$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the construct of the PDA	CO8
	Part – C (Problem Solving	and Critical Th	ninking Questions)	
1	Construct PDA for equal number of x's and y's. eg: xyyxxy	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO8

2		Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the NPDA	CO8
3	Convert the following PDA to CFG $\delta(q0,0,z0) = \{q0,xz0\} \ \delta(q0,0,x) = (q0,xx)$ $\delta(q0,1,x) = (q1,\epsilon)$ $\delta(q1,1,x) = (q1,\epsilon)$ $\delta(q1,\epsilon,x) = (q1,\epsilon)$ $\delta(q1,\epsilon,z0) = (q1,\epsilon)$	Understand	This would require the learner to recall the Push Down Automata and Explain the steps for the conversion of PDA CFG	CO8
4	Construct DPDA for L = { W#W R /W ϵ (X + Y)*}	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the DPDA	CO8
5	Construct pushdown automata for the following languages. Acceptance either by empty stack or by finalstate. $\{a^nb^ma^n m,n\in\mathbb{N}\}$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO8
	aibjck i, j, k \in N, i > j } $ \{ a^i b^j c^k i, j, k \in \mathbb{N}, i+j=k \} $ $ \{ a^i b^j c^k i, j, k \in \mathbb{N}, i+k=j \} $ $ \{ a^n b^m n \le m \le 2n \} $			
	(g)PAL={ $w \in \{a,b\}^* mir(w) = w\}$ } (h) { $w_1cw_2c - cw_kcx x, w_1,, w_k \in \{a,b\}^*, k \in \mathbb{N}, x = mir(w_j) \text{ for some } j$ } (i) { $w \in \{a,b\}^* \#_a(w) = \#_b(w)$ }, $\#_a(w) \text{ represents the number of } a \text{ 'sin } w$ (j) { $w \in \{a,b\}^* \#_a(w) = 2 \cdot \#_b(w)$ }			
6	Construct a PDA with final state acceptance for the language $B = \{bin(i)\}mir(bin(i+1)) i \ge 0\} \subseteq \{0,1,\$\}^*$ Here is $bin(i) \in \{0, 1\}^*$ the binary representation (without leading zero"s) of the number i. Eg. $bin(11) = 1011$ and $mir(bin(12)) = 0011$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO8
7	Construct CFG corresponding to PDA whose transition mapping is as follows. $\delta(S,a,X) = (s, A,X)$ $\delta(S,b,A) = (s, AA)$ $\delta(S,a,A) = (s, AA)$	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the conversion of the PDA to CFG.	CO8
8	Show that given CFG with following productions S->aBc A->abcB->aAbC->AB C->c constructs a PDA M such that the language generated by M and G are equivalent.	Apply	This would require the learner to recall the Context Free Grammars and Understand the concept of the PDA and Apply the concepts for the construct of the PDA	CO8

9	Construct a PDA for the following grammar. S->0A A->0AB B->1	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO8
10	Construct PDA for the following grammar S->AA a A->SA b	Apply	This would require the learner to recall the Context Free Grammars and Explain the concept of the PDA and Apply the concepts for the construct of the PDA	CO8
	MO	ODULE-V		
	TURIN	IG MACHINE		
	Part - A (Sho	rt Answer Quest	tions)	
1	Describe the Chomsky hierarchy of languages.	Remember		CO10
2	Define Context sensitive language.	Remember		CO11
3	Describe the Turing Machine	Remember		CO10
4	Describe the Type 0 grammars .	Remember		CO10
5	Describe the Type 1 grammars .	Remember		CO10
6	Describe the Type 2 grammars .	Remember		CO10
7	Describe the Type 3 grammars .	Remember		CO10
8	List out the types of grammars.	Remember		CO10
9	Describe the moves in Turing Machine.	Remember		CO10
10	Define an Instantaneous Description of a Turing Machine.	Remember		CO10
11	Describe the Language of Turing Machine.	Remember		CO10
12	List out types of TMs.	Remember		CO10
13	Differentiate the PDA and TM	Remember		CO10
14	Describe the multi head Turing Machine.	Remember		CO10
15	Describe the multi dimensional Turing Machine.	Remember		CO10
16	Describe the multiple tapes Turing Machine.	Remember		CO10
17	Describe the recursive languages.	Remember		CO10
18	Describe the recursively enumerable languages.	Remember		CO10
19	Describe the two way infinite Turing Machine.	Remember		CO10

20	Describe the the non deterministic Turing Machine.	Remember		CO10
21	Describe the Turing Machine for 1's complement for binary numbers.	Understand		CO10
22	Describe the Recursive languages and Recursively enumerable languages.	Remember	This would require the learner to recall the concept of the TM and explain the construction of the TM.	CO10
23	Define Church's Hypothesis.	Remember		CO10
	Part - B (Lon	g Answer Quest	tions)	
1	Describe short notes on Context sensitive language and linear bounded automata.	Remember		CO11
2	Classify briefly about Chomsky hierarchy of languages	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the all types of languages.	CO10
3	Describe a Turing Machine. With a neat diagram explain the working of a Turing Machine.	Remember		CO10
4	Compare Turing Machine with other automata.	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the differences between TM and other automata.	CO10
5	Construct a Transition diagram for Turing Machine to accept the language $L=\{ w\#w^R \mid w \in (a+b) * \}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
6	Express short notes on Recursive and Recursively Enumerable languages.	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the Recursive and Recursively enumerable languages.	CO10
7	Describe the properties of recursive and recursively enumerable languages.	Remember		CO10
8	Develop a Turing Machine to accept strings formed with 0 and 1 and having substring 000.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
9	Construct a Transition diagram for Turing Machine to accept the language $L=\{\ ww^R\mid w\ \epsilon(\ a+b\)\ *\}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10

10	Design a Transition table for TM	Apply	This would require the learner to	CO10
	$L=\{a^nb^nc^n/n>=1\}$	7777	recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	
11	Construct a Transition table for Turing Machine to accept the	Remember		CO10
12	following language. $L = \{0^n1^n0^n \mid n \ge 1\}$ Construct a Turing Machine that accepts the language $L = \{1^n2^n3^n \mid n \ge 1\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 111222333.	Apply	This would require the learner to Recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
13	Enumerate Linear bounded automata and explain its model?	Remember		CO11
14	Demonstrate the power and limitations of Turing machine.	Remember		CO10
15	Construct Transition diagram for Turing Machine - L={a ⁿ b ⁿ c ⁿ /n>=1}	Remember		CO10
16	Construct a Transition diagram for Turing Machine to implement addition of two unary numbers(X+Y).	Understand	This would require the learner to recall the concept of the TM and explain the construction of the transition diagram for the TM.	CO10
17	Construct a Linear Bounded automata for a language where $L{=}\{a^nb^n/n{>}{=}1\}$	Understand	This would require the learner to recall the concept of the LBA and explain the construction of the Linear Bounded automata for the given language.	CO11
18	Classify the types of Turing machines.	Understand	This would require the learner to recall the Turing machines and Explain the all types of Turing machines.	CO10
19.	Describe briefly about the following a)Church's Hypothesis b)Counter machine	Remember		CO10
20	Construct Transition diagram for Turing Machine that accepts the language $L = \{0^n1^n \mid n \ge 1\}$. Give the transition diagram for the Turing Machine obtained and also show the moves made by the Turing machine for the string 000111.	Understand	This would require the learner to recall the Chomsky hierarchy of languages and Explain the differences between FSM,PDA,TM.	CO10
	Part – C (Problem Solving	and Critical Th	ninking Questions)	
1	Construct a Turing Machine that accepts the language $L = \{a^{2n}b^n \ n \ge 0\}. \text{Give the transition diagram}$ for the Turing Machine obtained.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10

2	Construct a Turing Machine that gives two's compliment for the given binary representation.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
3	Examine Type 3 and Type 2 grammars with example.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
4	Extend the Type 1 and Type 0 grammars with example.	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
5	Design a Turing Machine that accepts the set of all even palindromes over {0,1}	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
6	Design Turing Machine for $L=\{a^nb^nc^n n \ge 1\}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
7	Construct Turing Machine to calculate GCD of two given numbers	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
8	Compare and contrast the Finite state machine, PDA and Turing Machine	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10
9	Construct a Turing Machine to accept the following languages $L = \{ w^n x^n y^n z^n \mid n \ge 1 \}$	Apply	This would require the learner to recall the Chomsky hierarchy of languages and Explain the concept of the TM and Apply the concepts for the construct of the TM	CO10

Ī	10	Design a Turing Machine that accepts the	Apply	This would require the learner to	CO10
		language denoted by regular expression (000)*		recallthe Chomsky hierarchy of	
				languages and Explain the	
				concept of the TM and Apply the	
				concepts for the construct of the	
				TM	

Prepared by: Ms. V Divyavani, Assistant Professor

HOD, CSE