

Grundbegriffe der Informatik Tutorium 36 | 23.11.2017

Maximilian Staab, uxhdf@student.kit.edu

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahlei

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

Kodierung von

Zahle

Repräsentation von

Zahle

Zweierkomplement-

Darstellun

Übersetzunger

Homomorphismen

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

Was können wir daraus machen?

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahler

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahler

Zweierkomplement-Darstellung

Übersetzunger

Homomorphisme

Huffman Codierung

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.

Herführung zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphisme

Huffman Codierung

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 1111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

 Num_k

Einer Zeichenkette Z_k aus Ziffern

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

$$Num_k(\varepsilon) = 0$$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

$$Num_k(\varepsilon) = 0$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

 $\overline{num_k}$

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

• Wichtig: $Num_k(w) \neq num_k(w)!$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

 $\overline{num_k}$

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: num₁₀(3)

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

$\overline{num_k}$

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7)$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $\mathit{Num}_k(\mathit{wx}) = k \cdot \mathit{Num}_k(\mathit{w}) + \mathit{num}_k(\mathit{x}) \; \mathsf{mit} \; \mathit{w} \in \mathit{Z}_k^* \; \mathsf{und} \; \mathit{x} \in \mathit{Z}_k.$

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon) = 0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.

Definition von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

 $Num_k(\varepsilon)=0$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

- Wichtig: $Num_k(w) \neq num_k(w)$!
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) =$ nicht definiert.
- Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon) = 0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(v) = 0.$$
 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismen

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen ■ *Num*₁₀(123)

Repräsentation von

Zweierkomplement-

Übersetzunger

Homomorphismen

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3)$

Repräsentation von

Zweierkomplement-

Übersetzunger

Homomorphismen

Beispiel zu Zahlendarstellungen

Maximilian Staah uxhdf@student.kit.edu $Num_k(\varepsilon) = 0.$

Übersetzung und Kodierung

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Kodierung von Zahlen

Was ist $Num_{10}(123)$?

Repräsentation von

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3)$

Zweierkomplement-

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3)$

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon)=0.$

 $\mathit{Num}_k(\mathit{wx}) = k \cdot \mathit{Num}_k(\mathit{w}) + \mathit{num}_k(\mathit{x}) \; \mathsf{mit} \; \mathit{w} \in \mathit{Z}_k^* \; \mathsf{und} \; \mathit{x} \in \mathit{Z}_k.$

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Repräsentation vo

 $10 \cdot (\textit{num}_{10}(1) + 10 \cdot \textit{num}_{10}(2)) + \textit{num}_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3$

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen ■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (Num_{10}(123) + num_{10}(123) = 10 \cdot (Num_{10}(123) + num_{10}($

Repräsentation vo

 $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übersetzung und Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen ■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Repräsentation von Zahlen

 $10 \cdot (num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Zweierkomplement-Darstellung Yay?

Übersetzunger

Homomorphismer

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu $Num_k(\varepsilon)=0.$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Übersetzung Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (Num_{10}(123) + num_{10}(123) = 10 \cdot (Num_{10}(123) + num_{10}($

Repräsentation von

 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Zweierkomplement-Darstellung Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010?

Übersetzungei

Homomorphismer

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$

Übersetzung u Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen ■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Repräsentation von Zahlen

 $10 \cdot (num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Zweierkomplement-

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

Übersetzunge

Homomorphismer

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Ubersetzung Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen ■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Repräsentation von Zahlen

Yay?

Zweierkomplement-

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Darstellung

■ *Num*₂(1010)

Übersetzunger

Homomorphisme

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Ubersetzung Kodierung

Kodierung von

Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

Was ist $Num_{10}(123)$?

■
$$Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$$

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

 $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0)$

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

ersetzun

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Kodierung von

Kodieruna

Was ist $Num_{10}(123)$?

Zahlen

■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$

Repräsentation von Zahlen

$$10 \cdot (num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$$

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis

Zweierkomplement-

Yay?

k=2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) = 2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0)$

Übersetzungen

Homomorphismen

Homomorphismen

Huffman Codierung

Beispiel zu Zahlendarstellungen

Maximilian Staah uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Kodieruna

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Repräsentation von

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Zweierkomplement-

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) =$

$$2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$$

$$2\cdot (2\cdot (2\cdot \textit{Num}_2(1) + \textit{num}_2(0)) + \textit{num}_2(1)) + \textit{num}_2(0)$$

Beispiel zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x) \text{ mit } w \in Z_k^* \text{ und } x \in Z_k.$$

Ubersetzung u Kodierung

Was ist $Num_{10}(123)$?

Kodierung von Zahlen ■ $Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) = 10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) = 10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Repräsentation von Zahlen

Yay?

Zweierkomplement-

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k = 2.

... Übersetzunge $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$

Homomorphismer

$$2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$$

i iomomorphismen

$$2\cdot (2\cdot (2\cdot \textit{Num}_2(1) + \textit{num}_2(0)) + \textit{num}_2(1)) + \textit{num}_2(0) =$$

$$2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0)$$

Beispiel zu Zahlendarstellungen

Maximilian Staah uxhdf@student.kit.edu

$$Num_k(\varepsilon)=0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Kodieruna

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Repräsentation von

Yay?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

 $Num_2(1010) = 2 \cdot Num_2(101) + num_2(0) =$

Zweierkomplement-

$$2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$$

$$2\cdot (2\cdot (2\cdot \textit{Num}_2(1) + \textit{num}_2(0)) + \textit{num}_2(1)) + \textit{num}_2(0) =$$

$$2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$$

$$2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$$

Beispiel zu Zahlendarstellungen

Maximilian Staah uxhdf@student.kit.edu

$$Num_k(\varepsilon) = 0.$$

 $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Kodieruna

Was ist $Num_{10}(123)$?

Kodierung von Zahlen

Num₁₀(123) = $10 \cdot Num_{10}(12) + num_{10}(3) =$ $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$ $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Repräsentation von

Yay?

Zweierkomplement-

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) =$

$$2 \cdot (2 \cdot \textit{Num}_2(10) + \textit{num}_2(1) + \textit{num}_2(0) =$$

$$2\cdot (2\cdot (2\cdot \textit{Num}_2(1) + \textit{num}_2(0)) + \textit{num}_2(1)) + \textit{num}_2(0) =$$

$$2\cdot (2\cdot (2\cdot \textit{num}_2(1) + \textit{num}_2(0)) + \textit{num}_2(1)) + \textit{num}_2(0) =$$

$$2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$$

Yay!

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphisme

Huffman Codierung

 $Num_k(\varepsilon) = 0.$ $Num_k(wx) = k \cdot Num_k(w) + num_k(x)$ mit $w \in Z_k^*$ und $x \in Z_k$.

Übungen zu Zahlendarstellungen

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

- *Num*₈(345).
- *Num*₂(11001).
- Num₂(1000).
- *Num*₄(123).
- Num₁₆(4DF). (Zusatz)

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Lösungen:

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Lösungen:

■ *Num*₈(345)

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Lösungen:

• $Num_8(345) = 229$.

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- *Num*₂(11001)

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25.$

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25.$
- *Num*₂(1000)

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25.$
- $Num_2(1000) = 8$.
- *Num*₄(123)

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27.$
- Num₁₆(4DF)

Aufgaben zu Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

- $Num_8(345) = 229$.
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27$.
- $Num_{16}(4DF) = 1247$.

Einfachere Umrechnung von Zahlendarstellungen

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0$

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und

Kodierung Es gilt:

Kodierung von

Zahlen

Repräsentation von

Zahle

Zweierkomplement-

Darstellun

Übersetzungen

Homomorphismen

Huffman Codierung

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staah uxhdf@student.kit.edu

Übersetzung und Kodierung

Es gilt:

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Homomorphismen

Huffman Codierung

 $2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^5\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Kodierung von Zahlen

Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

Es gilt:

$$2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^5\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$$

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab uxhdf@student.kit.edu

Kodierung

Es gilt:

Kodierung von

Zahlen

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^5\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$$

Zweierkomplement-

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismen

Huffman Codierung

Es gilt:

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^5\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

■ *Num*₂(10101)

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismen

Huffman Codierung

Es gilt:

$$2(2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^5\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$$

Daher, einfachere Rechenweise:

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

• $Num_2(10101) = 21.$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab uxhdf@student.kit.edu

Kodieruna

Kodierung von

Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^5\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$$

Daher, einfachere Rechenweise:

Num:
$$(w) = k^0 \cdot w(0) + k^1 \cdot w(0)$$

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

- $Num_2(10101) = 21.$
- Num₂(11101)

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation vor Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

Es gilt:

$$2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^5\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab uxhdf@student.kit.edu

Kodieruna

Kodierung von

Zahlen

Zweierkomplement-

Es gilt:

$$2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^5\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$$

Daher, einfachere Rechenweise:

Num:
$$(w) = k^0 \cdot w(0) + k^1 \cdot w(1)$$

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) + \dots$$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- Num₂(1111111111)

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Es gilt:

$$2(2(2(2(2\cdot1+0)+1)+0)+1)+0=2^5\cdot1+2^4\cdot0+2^3\cdot1+2^2\cdot0+2^1\cdot1+2^0\cdot0.$$

Alore (...) 10 ...(0) 11 ...(1

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(11111111111) = 1023.$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

■ *Num*₁₆(*A*1)

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

• $Num_{16}(A1) = 161$.

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunge

Homomorphismer

Huffman Codierung

- $Num_{16}(A1) = 161.$
- Num₁₆(BC)

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

- $Num_{16}(A1) = 161$.
- $Num_{16}(BC) = 188.$
- *Num*₁₆(14)

Einfachere Umrechnung von Zahlendarstellungen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- $Num_{16}(14) = 20.$

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig.

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzunge

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div 8

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzunge

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

■ 22 div 8 = 2

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

22 div
$$8 = 2 \left(\frac{22}{8} = 2,75 \right)$$
.

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphisme

Huffman Codierun

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismer

Huffman Codierun

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

- **22** div $8 = 2 \left(\frac{22}{8} = 2,75 \right)$.
- 22 mod 8 = 6.

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div
$$8 = 2 \left(\frac{22}{8} = 2,75 \right)$$
.

Fülle die Tabelle aus:

Х	0	1	2	3	4	5	6	7	8	9	10	11	12

x div 4

Rechnen mit div und mod

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

22 div
$$8 = 2 \left(\frac{22}{8} = 2,75 \right)$$
.

	~~~												
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0												

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

X			-	3	4	5	6	7	8	9	10	11	12
x div 4	0	0											

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

X			-	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0										

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule it		c at	١٥.										
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0									

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1								

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

X			-	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1							

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

- **22** div  $8 = 2 (\frac{22}{8} = 2,75)$ .
- 22 mod 8 = 6.

i and ald it													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1						

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1					

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2				

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2			

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ı Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une die 18													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2		

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellarig

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

■ 22 mod 8 = 6.

i une ule it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4														

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Ühersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

X				3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0												

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

■ 22 mod 8 = 6.

i dile die it													
X	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1											

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismer

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

■ 22 mod 8 = 6.

i une ule it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2											

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3										

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i ulle ule ia														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0									

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zamen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i ulle ule ia													
X	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1							

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ı Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule it														
X	0	1	2	3	4	5	6	7	8	9	10	11	12	
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3	
x mod 4	0	1	2	3	0	1	2							

# Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

■ 22 mod 8 = 6.

i and ald it													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3					

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0				

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1			

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

■ 22 mod 8 = 6.

i une ule it													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2		

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ( Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

22 mod 8 = 6.

i une ule re													
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	

## Rechnen mit div und mod



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

### div Funktion

Die Funktion div dividiert ganzzahlig. (Schneidet also den Rest ab).

#### mod Funktion

Die Modulo Funktion *mod* gibt den Rest einer ganzzahligen Division zurück.

**22** div 
$$8 = 2 \left( \frac{22}{8} = 2,75 \right)$$
.

22 mod 8 = 6.

i une ule it	aDC11	c au	<b>J</b> 3.										
Х	0	1	2	3	4	5	6	7	8	9	10	11	12
x div 4	0	0	0	0	1	1	1	1	2	2	2	2	3
x mod 4	0	1	2	3	0	1	2	3	0	1	2	3	0

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

11101₂ ist also 29₁₀.

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

I äva Davatalluna

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

k-äre Darstellung

Die Repräsentation einer Zahl n

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

k äre Daretellung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

#### k-äre Darstellung

Die Repräsentation einer Zahl *n* zur Basis *k* 

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

### Von Zeichen zu Zahlen zurück zu Zahlen

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

In The Development

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

#### k-äre Darstellung

Die Repräsentation einer Zahl *n* zur Basis *k* lässt sich wie folgt ermitteln:

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

#### k-äre Darstellung

Die Repräsentation einer Zahl *n* zur Basis *k* lässt sich wie folgt ermitteln:

$$\operatorname{\mathbf{Repr}}_k(n) = egin{cases} \operatorname{\mathbf{repr}}_k(n) & \operatorname{falls} \ n < k \\ \operatorname{\mathbf{Repr}}_k(n \operatorname{div} k) \cdot \operatorname{\mathbf{repr}}_k(n \operatorname{\mathsf{mod}} k) & \operatorname{\mathsf{falls}} \ n \ge k \end{cases}$$

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphisme

Huffman Codierung

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

#### k-äre Darstellung

Die Repräsentation einer Zahl *n* zur Basis *k* lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Achtung!

### Von Zeichen zu Zahlen zurück zu Zahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung u Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

11101₂ ist also 29₁₀. Was ist 29₁₀ in binär?

#### k-äre Darstellung

Die Repräsentation einer Zahl *n* zur Basis *k* lässt sich wie folgt ermitteln:

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Achtung! Das · Symbol steht für Konkatenation, nicht für Multiplikation!

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$ 

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $\operatorname{\mathbf{Repr}}_k(n) = egin{cases} \operatorname{\mathbf{repr}}_k(n) & \operatorname{falls} \ n < k \\ \operatorname{\mathbf{Repr}}_k(n \operatorname{div} k) \cdot \operatorname{\mathbf{repr}}_k(n \operatorname{\mathsf{mod}} k) & \operatorname{\mathsf{falls}} \ n \ge k \end{cases}$ 

Zum Beispiel:

 $\operatorname{Repr}_2(29) = \operatorname{Repr}_2(29 \text{ div } 2) \cdot \operatorname{repr}_2(29 \text{ mod } 2)$ 

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

$$\begin{aligned} \operatorname{Repr}_2(29) &= \operatorname{Repr}_2(29 \text{ div } 2) \cdot \operatorname{repr}_2(29 \text{ mod } 2) \\ &= \operatorname{Repr}_2(14) \cdot \operatorname{repr}_2(1) \end{aligned}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$ 

$$\begin{split} \operatorname{Repr}_2(29) &= \operatorname{Repr}_2(29 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(29 \ \operatorname{mod} \ 2) \\ &= \operatorname{Repr}_2(14) \cdot \operatorname{repr}_2(1) \\ &= \operatorname{Repr}_2(14 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(14 \ \operatorname{mod} \ 2) \cdot 1 \end{split}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

$$\begin{split} \mathbf{Repr}_2(29) &= \mathbf{Repr}_2(29 \ \mathbf{div} \ 2) \cdot \mathbf{repr}_2(29 \ \mathbf{mod} \ 2) \\ &= \mathbf{Repr}_2(14) \cdot \mathbf{repr}_2(1) \\ &= \mathbf{Repr}_2(14 \ \mathbf{div} \ 2) \cdot \mathbf{repr}_2(14 \ \mathbf{mod} \ 2) \cdot 1 \\ &= \mathbf{Repr}_2(7) \cdot \mathbf{repr}_2(0) \cdot 1 \end{split}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

# $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

$$\begin{split} \operatorname{Repr}_2(29) &= \operatorname{Repr}_2(29 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(29 \ \operatorname{mod} \ 2) \\ &= \operatorname{Repr}_2(14) \cdot \operatorname{repr}_2(1) \\ &= \operatorname{Repr}_2(14 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(14 \ \operatorname{mod} \ 2) \cdot 1 \\ &= \operatorname{Repr}_2(7) \cdot \operatorname{repr}_2(0) \cdot 1 \\ &= \operatorname{Repr}_2(7 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(7 \ \operatorname{mod} \ 2) \cdot 01 \end{split}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

# $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

$$\begin{split} \operatorname{Repr}_2(29) &= \operatorname{Repr}_2(29 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(29 \ \operatorname{mod} \ 2) \\ &= \operatorname{Repr}_2(14) \cdot \operatorname{repr}_2(1) \\ &= \operatorname{Repr}_2(14 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(14 \ \operatorname{mod} \ 2) \cdot 1 \\ &= \operatorname{Repr}_2(7) \cdot \operatorname{repr}_2(0) \cdot 1 \\ &= \operatorname{Repr}_2(7 \ \operatorname{div} \ 2) \cdot \operatorname{repr}_2(7 \ \operatorname{mod} \ 2) \cdot 01 \\ &= \operatorname{Repr}_2(3) \cdot \operatorname{repr}(1) \cdot 01 \end{split}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

# $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

$$\begin{aligned} \text{Repr}_2(29) &= \text{Repr}_2(29 \text{ div } 2) \cdot \text{repr}_2(29 \text{ mod } 2) \\ &= \text{Repr}_2(14) \cdot \text{repr}_2(1) \\ &= \text{Repr}_2(14 \text{ div } 2) \cdot \text{repr}_2(14 \text{ mod } 2) \cdot 1 \\ &= \text{Repr}_2(7) \cdot \text{repr}_2(0) \cdot 1 \\ &= \text{Repr}_2(7 \text{ div } 2) \cdot \text{repr}_2(7 \text{ mod } 2) \cdot 01 \\ &= \text{Repr}_2(3) \cdot \text{repr}(1) \cdot 01 \\ &= \text{Repr}_2(3 \text{ div } 2) \cdot \text{repr}(3 \text{ mod } 2) \cdot 101 \end{aligned}$$

### Beispiel zu Reprk

Zum Beispiel:



Maximilian Staab uxhdf@student.kit.edu

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) \end{cases}$ falls n < kfalls  $n \ge k$ 

Übersetzung und Kodieruna

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-

 $Repr_2(29) = Repr_2(29 \text{ div } 2) \cdot repr_2(29 \text{ mod } 2)$ 

 $= \operatorname{Repr}_{2}(14) \cdot \operatorname{repr}_{2}(1)$ 

 $= \operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$ 

 $= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$ 

 $= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$ 

 $= \mathbf{Repr}_2(3) \cdot \mathbf{repr}(1) \cdot 01$ 

=  $\operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$ 

 $= \operatorname{Repr}_{2}(1) \cdot \operatorname{repr}(1) \cdot 101$ 

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

Zum Beispiel:

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

 $Repr_2(29) = Repr_2(29 \text{ div } 2) \cdot repr_2(29 \text{ mod } 2)$  $= \operatorname{Repr}_{2}(14) \cdot \operatorname{repr}_{2}(1)$  $= \operatorname{Repr}_{2}(14 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(14 \operatorname{mod} 2) \cdot 1$  $= \operatorname{Repr}_{2}(7) \cdot \operatorname{repr}_{2}(0) \cdot 1$  $= \operatorname{Repr}_{2}(7 \operatorname{div} 2) \cdot \operatorname{repr}_{2}(7 \operatorname{mod} 2) \cdot 01$  $= \mathbf{Repr}_2(3) \cdot \mathbf{repr}(1) \cdot 01$ =  $\operatorname{Repr}_{2}(3 \operatorname{div} 2) \cdot \operatorname{repr}(3 \operatorname{mod} 2) \cdot 101$  $= \mathbf{Repr}_{2}(1) \cdot \mathbf{repr}(1) \cdot 101$ = 11101

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zamen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$ 

$$\operatorname{Repr}_{16}(29) = \operatorname{Repr}_{16}(29 \text{ div } 16) \cdot \operatorname{repr}_{16}(29 \text{ mod } 16)$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zanlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$ 

$$\begin{aligned} \text{Repr}_{16}(29) &= \text{Repr}_{16}(29 \text{ div } 16) \cdot \text{repr}_{16}(29 \text{ mod } 16) \\ &= \text{Repr}_{16}(1) \cdot \text{repr}_{16}(13) \end{aligned}$$

### Beispiel zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \geq k \end{cases}$ 

$$\begin{aligned} \text{Repr}_{16}(29) &= \text{Repr}_{16}(29 \text{ div } 16) \cdot \text{repr}_{16}(29 \text{ mod } 16) \\ &= \text{Repr}_{16}(1) \cdot \text{repr}_{16}(13) \\ &= 1 \cdot D = 1D \end{aligned}$$

### Übung zu Reprk



Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphisme

Huffman Codierung

# $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$

#### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

### Übung zu Reprk



$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

### Übung zu Reprk



$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- **Repr**₁₆(268).

#### Lösungen:

Repr₂(13)

### Übung zu Reprk



$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \text{ div } k) \cdot \mathbf{repr}_k(n \text{ mod } k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

#### Lösungen:

•  $Repr_2(13) = 1101$ .

### Übung zu Reprk



$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

- $Repr_2(13) = 1101$ .
- Repr₄(15)

### Übung zu Reprk



$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

- $Repr_2(13) = 1101$ .
- **Repr**₄(15) = 33.

### Übung zu Reprk



Maximilian Staab, uxhdf@student.kit.edu

 $\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$ 

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

- $Repr_2(13) = 1101$ .
- $Repr_4(15) = 33.$
- Repr₁₆(268)

### Übung zu Reprk



$$\mathbf{Repr}_k(n) = \begin{cases} \mathbf{repr}_k(n) & \text{falls } n < k \\ \mathbf{Repr}_k(n \operatorname{div} k) \cdot \mathbf{repr}_k(n \operatorname{mod} k) & \text{falls } n \ge k \end{cases}$$

Übersetzung und Kodierung

## Kodierung von Zahlen Übur

#### Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

#### Übung zu Reprk

Berechne die Repräsentationen folgender Zahlen in gegebenen Zahlensystemen:

- **Repr**₂(13).
- **Repr**₄(15).
- Repr₁₆(268).

- $Repr_2(13) = 1101$ .
- Repr₄(15) = 33.
- **Repr**₁₆(268) = 10C.

### Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

 $bin_{\ell}$ 

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$ 

### Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### binℓ

Die Funktion  $\textbf{bin}_\ell\colon \mathbb{Z}_{2^\ell}\to \{0,1\}^\ell$  bringt eine gegebene Binärzahl auf eine feste Länge

### Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphisme

Huffman Codierung

#### binℓ

Die Funktion  $\mathbf{bin}_\ell \colon \mathbb{Z}_{2^\ell} \to \{0,1\}^\ell$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird.

## Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungei

Homomorphisme

Huffman Codierund

#### binℓ

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphisme

Huffman Codierund

#### $bin_{\ell}$

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathbf{bin}_{\ell}(\mathit{n}) = \mathbf{0}^{\ell - |\mathbf{Repr}_{2}(\mathit{n})|} \mathbf{Repr}_{2}(\mathit{n})$$

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunge

Homomorphismer

Huffman Codierung

#### binℓ

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

#### $bin_{\ell}$

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

Beispiel:

**■ bin**₈(3)

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

#### binℓ

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

$$lacktriangle$$
 bin₈(3) =  $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3)$ 

## Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

#### $bin_{\ell}$

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

$$ullet$$
 bin₈(3) =  $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11$ 

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

#### $bin_{\ell}$

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_\ell(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

$$ullet$$
 bin₈(3) =  $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11$ 

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

#### $bin_{\ell}$

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_{\ell}(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

#### Beispiel:

**bin**₈(3) =  $0^{8-|\mathbf{Repr}_2(3)|}\mathbf{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$ .

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### $bin_{\ell}$

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_{\ell}(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

- **bin**₈(3) =  $0^{8-|\text{Repr}_2(3)|}\text{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$ .
  - **bin**₁₆(3)

# Feste Länge von Binärzahlen



Maximilian Staab, uxhdf@student.kit.edu

#### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

#### Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

#### binℓ

Die Funktion  $\mathbf{bin}_{\ell} \colon \mathbb{Z}_{2^{\ell}} \to \{0,1\}^{\ell}$  bringt eine gegebene Binärzahl auf eine feste Länge, indem sie mit Nullen vorne aufgefüllt wird. Formell wird sie definiert als:

$$\mathsf{bin}_{\ell}(n) = 0^{\ell - |\mathsf{Repr}_2(n)|} \mathsf{Repr}_2(n)$$

- **bin**₈(3) =  $0^{8-|\text{Repr}_2(3)|}\text{Repr}_2(3) = 0^{8-|11|} \cdot 11 = 0^{8-2} \cdot 11 = 0^6 \cdot 11 = 00000011$ .
- **bin**₁₆(3) = 000000000000011.

# Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Was ist mit negative Zahlen?

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Was ist mit negative Zahlen?

Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel:

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel: 5 = 0101_{zkpl}

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Was ist mit negative Zahlen?

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel:  $5 = 0101_{zkpl}$ ,  $-5 = 1011_{zkpl}$ .

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierun

Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel:  $5 = 0101_{zkpl}$ ,  $-5 = 1011_{zkpl}$ .

#### Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x

# Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierun

Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel:  $5 = 0101_{zkpl}$ ,  $-5 = 1011_{zkpl}$ .

#### Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge  $\ell$  ist wie folgt definiert:

## Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Was ist mit negative Zahlen?

- Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.
- Beispiel:  $5 = 0101_{zkpl}$ ,  $-5 = 1011_{zkpl}$ .

#### Zweierkomplement Darstellung

Die Zweierkomplementdarstellung einer Zahl x mit der Länge  $\ell$  ist wie folgt definiert:

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

# Zweierkomplement



Maximilian Staab, uxhdf@student.kit.edu

Was ist mit negative Zahlen?

Übersetzung und Kodierung Idee: Verwende das erste Bit, um zu speichern, ob die Zahl positiv oder negativ ist.

Kodierung von

■ Beispiel:  $5 = 0101_{zkpl}$ ,  $-5 = 1011_{zkpl}$ .

Repräsentation vor Zahlen

### Zweierkomplement Darstellung

Zweierkomplement-Darstellung Die Zweierkomplementdarstellung einer Zahl x mit der Länge  $\ell$  ist wie folgt definiert:

Ubersetzungei

 $\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$ 

Homomorphisme

Wieso ℓ − 1?

Huffman Codierung

# Aufgaben zu **Zweierkomplement-Darstellung**



Maximilian Staah uxhdf@student.kit.edu

Kodieruna

Kodierung von

Zweierkomplement-Darstellung

Homomorphismen

 $\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$ 

- **Zkpl**₄(3) = 0011.
- $\blacksquare$  **Zkpl**₄(7)
- $\blacksquare$  **Zkpl**₄(-5)
- $\blacksquare$  Zkpl₈(13)
- **Zkpl**₈(-34)
- $\blacksquare$  Zkpl₈(-9)

# Aufgaben zu Zweierkomplement-Darstellung



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahle

Repräsentation vor

Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

 $\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \geq 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$ 

- Zkpl₄(3)
- **Zkpl**₄(7) = 0111.
- **Zkpl**₄(-5)
- Zkpl₈(13)
- **Zkpl**₈(−34)
- Zkpl₈(-9)

# Aufgaben zu **Zweierkomplement-Darstellung**

 $\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$ 

Was sind folgende Zahlen in Zweierkomplement-Darstellung?



Maximilian Staah uxhdf@student.kit.edu

Kodieruna

Kodierung von

Darstellung

Homomorphismen

 $\blacksquare$  Zkpl₄(7) Zweierkomplement-

**Zkpl**₄(-5) = 1011.

 $\blacksquare$  Zkpl₈(13)

 $\blacksquare$  Zkpl₄(3)

**Zkpl**₈(-34)

 $\blacksquare$  Zkpl₈(-9)

# Aufgaben zu Zweierkomplement-Darstellung



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zanie

Repräsentation vor

Zahler

Zweierkomplement-Darstellung

Übersetzunger

Huffman Codierung

Homomorphismen

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

- Zkpl₄(3)
- **Zkpl**₄(7)
- **ZKDI**₄(7)
- Zkpl₄(-5)
- **Zkpl**₈(13) = 00001101.
- **Zkpl**₈(−34)
- Zkpl₈(-9)

# Aufgaben zu **Zweierkomplement-Darstellung**



Maximilian Staab uxhdf@student.kit.edu

Kodieruna

Kodierung von

Zweierkomplement-Darstellung

Homomorphismen

 $\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$ 

- $\blacksquare$  Zkpl₄(3)
- $\blacksquare$  Zkpl₄(7)
- $\blacksquare$  **Zkpl**₄(-5)
- $\blacksquare$  Zkpl₈(13)
- **Zkpl**₈(-34) = 110111110.
- $\blacksquare$  Zkpl₈(-9)

# Aufgaben zu Zweierkomplement-Darstellung



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahle

$$\mathbf{Zkpl}_{\ell}(x) = \begin{cases} 0\mathbf{bin}_{\ell-1}(x) & \text{falls } x \ge 0 \\ 1\mathbf{bin}_{\ell-1}(2^{\ell-1} + x) & \text{falls } x < 0 \end{cases}$$

Repräsentation voi

Zahlen

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- Zkpl₄(3)
- **Zkpl**₄(7)
- **ZKPI**₄(7)
- Zkpl₄(-5)
- Zkpl₈(13)
- $\qquad \mathbf{Zkpl}_{8}(-34) \\$
- **Zkpl**₈(-9) = 11110111.

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Definition der Semantikabbildung

Sei Sem die Menge der Bedeutungen.

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

#### Definition der Semantikabbildung

Sei Sem die Menge der Bedeutungen. Ferner seien A und B Alphabete

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subseteq A^*$  und  $L_B \subseteq B^*$ .

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien A und B Alphabete und  $L_A \subseteq A^*$  und  $L_B \subseteq B^*$ .

Weiter sei  $sem_A : L_A \rightarrow Sem$ 

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphisme

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subseteq A^*$  und  $L_B \subseteq B^*$ .

Weiter sei  $sem_A : L_A \rightarrow Sem$  und  $sem_B : L_B \rightarrow Sem$ 

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismer

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subset A^*$  und  $L_B \subset B^*$ .

Weiter sei  $sem_A : L_A \rightarrow Sem$  und  $sem_B : L_B \rightarrow Sem$ 

Dann heißt  $f: L_A \rightarrow L_B$  Übersetzung

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismer

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subseteq A^*$  und  $L_B \subseteq B^*$ .

Weiter sei  $sem_A: L_A \rightarrow \underbrace{Sem}$  und  $sem_B: L_B \rightarrow Sem$ 

Dann heißt  $f: L_A \to L_B$  Übersetzung , wenn gilt: für jedes  $w \in L_A$  gilt  $com_*(w) = com_*(f(w))$ 

 $sem_A(w) = sem_B(f(w)).$ 

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphisme

Huffman Codierun

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subseteq A^*$  und  $L_B \subseteq B^*$ .

Weiter sei  $sem_A : L_A \to Sem$  und  $sem_B : L_B \to Sem$ Dann heißt  $f : L_A \to L_B$  Übersetzung , wenn gilt: für jedes  $w \in L_A$  gilt  $sem_A(w) = sem_B(f(w))$ .

Bedeutungserhaltende Abbildungen von Wörtern auf Wörter

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismer

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subseteq A^*$  und  $L_B \subseteq B^*$ .

Weiter sei  $sem_A : L_A \to Sem$  und  $sem_B : L_B \to Sem$ Dann heißt  $f : L_A \to L_B$  Übersetzung , wenn gilt: für jedes  $w \in L_A$  gilt  $sem_A(w) = sem_B(f(w))$ .

Bedeutungserhaltende Abbildungen von Wörtern auf Wörter

#### **Beispiel**

Betrachte  $\mathit{Trans}_{2,16}: \mathbb{Z}^*_{16} \to \mathbb{Z}^*_2$  mit  $\mathit{Trans}_{2,16}(w) = \mathit{Repr}_2(\mathit{Num}_{16}(w))$ 

# Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismer

Huffman Codierung

#### Definition der Semantikabbildung

Sei *Sem* die Menge der Bedeutungen. Ferner seien *A* und *B* Alphabete und  $L_A \subset A^*$  und  $L_B \subset B^*$ .

Weiter sei  $sem_A : L_A \to Sem$  und  $sem_B : L_B \to Sem$ Dann heißt  $f : L_A \to L_B$  Übersetzung , wenn gilt: für jedes  $w \in L_A$  gilt  $sem_A(w) = sem_B(f(w))$ .

Bedeutungserhaltende Abbildungen von Wörtern auf Wörter

#### **Beispiel**

Betrachte  $\mathit{Trans}_{2,16}: \mathbb{Z}^*_{16} \to \mathbb{Z}^*_2$  mit  $\mathit{Trans}_{2,16}(w) = \mathit{Repr}_2(\mathit{Num}_{16}(w))$ 

•  $Trans_{2,16}(A3) = Repr_2(Num_{16}(A3)) = Repr_2(163) = 10100011$ 

# Wozu Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

### Übersetzungen

Homomorphismen

Huffman Codierung

# Wozu Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Lesbarkeit (vergleiche DF₁₆ mit 11011111₂)

# Wozu Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

- Lesbarkeit (vergleiche DF₁₆ mit 11011111₂)
- Verschlüsselung

# Wozu Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Zahle

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

- Lesbarkeit (vergleiche *DF*₁₆ mit 11011111₂)
- Verschlüsselung
- Kompression (Informationen platzsparend aufschreiben)

# Wozu Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

# Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismer

Huffman Codierund

- Lesbarkeit (vergleiche *DF*₁₆ mit 11011111₂)
- Verschlüsselung
- Kompression (Informationen platzsparend aufschreiben)
- lacktriangle Kontextabhängige Semantiken (Deutsch ightarrow Englisch)

# Wozu Übersetzungen



Maximilian Staab, uxhdf@student.kit.edu

# Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismer

Huffman Codierung

- Lesbarkeit (vergleiche *DF*₁₆ mit 11011111₂)
- Verschlüsselung
- Kompression (Informationen platzsparend aufschreiben)
- $\blacksquare \ \, \text{Kontextabhängige Semantiken (Deutsch} \to \text{Englisch)}$
- Fehlererkennung

# Codierungen



Maximilian Staab. uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

## Übersetzungen

Homomorphismen

Huffman Codierung

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

## Übersetzungen

Homomorphismen

Huffman Codierung

## Definitionen

■ Codewort *f*(*w*)

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierung

## Definitionen

■ Codewort f(w) einer Codierung  $f: L_A \to L_B$ 

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierung

- Codewort f(w) einer Codierung  $f: L_A \to L_B$
- $\bullet \mathsf{Code} : \{ f(w) | w \in L_A \} = f(L_A)$

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierung

- Codewort f(w) einer Codierung  $f: L_A \to L_B$
- Code:  $\{f(w)|w\in L_A\}=f(L_A)$
- Codierung: Injektive Übersetzung

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

## Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismer

Huffman Codierung

- Codewort f(w) einer Codierung  $f: L_A \rightarrow L_B$
- Code:  $\{f(w)|w\in L_A\}=f(L_A)$
- Codierung: Injektive Übersetzung
  - Ich komme immer eindeutig von einem Codewort f(w) zu w zurück

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismer

Huffman Codierung

### Definitionen

- Codewort f(w) einer Codierung  $f: L_A \rightarrow L_B$
- Code:  $\{f(w)|w\in L_A\}=f(L_A)$
- Codierung: Injektive Übersetzung
  - Ich komme immer eindeutig von einem Codewort f(w) zu w zurück

## Bemerkung

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismer

Huffman Codierung

#### Definitionen

- Codewort f(w) einer Codierung  $f: L_A \rightarrow L_B$
- Code:  $\{f(w)|w\in L_A\}=f(L_A)$
- Codierung: Injektive Übersetzung
  - Ich komme immer eindeutig von einem Codewort f(w) zu w zurück

## Bemerkung

• Was ist, wenn  $L_A$  unendlich ist (man kann nicht alle Möglichkeiten aufzählen)

# Codierungen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphisme

Huffman Codierung

### Definitionen

- Codewort f(w) einer Codierung  $f: L_A \rightarrow L_B$
- Code:  $\{f(w)|w\in L_A\}=f(L_A)$
- Codierung: Injektive Übersetzung
  - Ich komme immer eindeutig von einem Codewort f(w) zu w zurück

## Bemerkung

- Was ist, wenn  $L_A$  unendlich ist (man kann nicht alle Möglichkeiten aufzählen)
- Auswege: Homomorphismen, Block-Codierungen

# Homomorphismen



Maximilian Staab. uxhdf@student.kit.edu

Übersetzung und

Kodierung von

Kodierung

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Definition von Homomorphismen

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

# Definition von Homomorphismen

Seien A, B Alphabete.

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

# Definition von Homomorphismen

Seien A, B Alphabete. Dann ist  $h: A^* \rightarrow B^*$ 

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

## Definition von Homomorphismen

Seien A, B Alphabete. Dann ist  $h: A^* \to B^*$  ein Homomorphismus

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismen

Huffman Codierung

## Definition von Homomorphismen

Seien A, B Alphabete. Dann ist  $h: A^* \to B^*$  ein Homomorphismus, falls für alle  $w_1, w_2 \in A^*$  gilt:

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzungei

Homomorphismen

Huffman Codierung

## Definition von Homomorphismen

Seien A, B Alphabete. Dann ist  $h: A^* \to B^*$  ein Homomorphismus, falls für alle  $w_1, w_2 \in A^*$  gilt:

$$h(w_1w_2)=h(w_1)h(w_2)$$

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

## Definition von Homomorphismen

Seien A,B Alphabete. Dann ist  $h:A^*\to B^*$  ein Homomorphismus, falls für alle  $w_1,w_2\in A^*$  gilt:

$$h(w_1w_2)=h(w_1)h(w_2)$$

Ein Homomorphismus ist Abbildung, die mit Konkatenation verträglich ist

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierun

## Definition von Homomorphismen

Seien A, B Alphabete. Dann ist  $h: A^* \to B^*$  ein Homomorphismus, falls für alle  $w_1, w_2 \in A^*$  gilt:

$$h(w_1 w_2) = h(w_1) h(w_2)$$

- Ein Homomorphismus ist Abbildung, die mit Konkatenation verträglich ist
- Homomorphismus ist  $\varepsilon$ -frei, wenn für jedes  $x \in A$  :  $h(x) \neq \varepsilon$

# Homomorphismen



Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierung

## Definition von Homomorphismen

Seien A, B Alphabete. Dann ist  $h: A^* \to B^*$  ein Homomorphismus, falls für alle  $w_1, w_2 \in A^*$  gilt:

$$h(w_1w_2) = h(w_1)h(w_2)$$

- Ein Homomorphismus ist Abbildung, die mit Konkatenation verträglich ist
- Homomorphismus ist  $\varepsilon$ -frei, wenn für jedes  $x \in A$  :  $h(x) \neq \varepsilon$
- Homomorphismen lassen das leere Wort unverändert, also  $h(\varepsilon) = \varepsilon$

Sei h ein Homomorphismus.

Maximilian Staab, uxhdf@student.kit.edu Übung zu Homomorphismen

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

..

Übersetzungen

Homomorphismen

Huffman Codierung

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Sei h ein Homomorphismus.

## Übung zu Homomorphismen

1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a)=01, h(b)=11 und  $h(c)=\varepsilon$ . Nun sei h(w)=011101. Was war w?

Maximilian Staab, uxhdf@student.kit.edu

# Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzunge

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a) = 01, h(b) = 11 und  $h(c) = \varepsilon$ . Nun sei h(w) = 011101. Was war w?
- $\rightarrow$  aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a) = 01, h(b) = 11 und  $h(c) = \varepsilon$ . Nun sei h(w) = 011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!

Maximilian Staab, uxhdf@student.kit.edu

# Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a)=01, h(b)=11 und  $h(c)=\varepsilon$ . Nun sei h(w)=011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!
- 3. Kann h aus 2 eine Codierung sein?

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungei

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a) = 01, h(b) = 11 und  $h(c) = \varepsilon$ . Nun sei h(w) = 011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!
- 3. Kann h aus 2 eine Codierung sein?
- → Nein, da nicht injektiv!

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a)=01, h(b)=11 und  $h(c)=\varepsilon$ . Nun sei h(w)=011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!
- 3. Kann h aus 2 eine Codierung sein?
- → Nein, da nicht injektiv!
- 4. Warum will man  $\varepsilon$ -freie Homomorphismen?

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a) = 01, h(b) = 11 und  $h(c) = \varepsilon$ . Nun sei h(w) = 011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!
- 3. Kann h aus 2 eine Codierung sein?
- → Nein, da nicht injektiv!
- 4. Warum will man  $\varepsilon$ -freie Homomorphismen?
- → Information geht sonst verloren!

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a) = 01, h(b) = 11 und  $h(c) = \varepsilon$ . Nun sei h(w) = 011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!
- 3. Kann h aus 2 eine Codierung sein?
- → Nein, da nicht injektiv!
- 4. Warum will man  $\varepsilon$ -freie Homomorphismen?
- → Information geht sonst verloren!
- 5. Was heißt hier "Information geht verloren"?

Maximilian Staab, uxhdf@student.kit.edu

#### Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

#### Übersetzungen

Homomorphismen

Huffman Codierung

Sei *h* ein Homomorphismus.

- 1. h(a) = 001 und h(b) = 1101. Was ist dann h(bba)?
- $\rightarrow h(bba) = h(b)h(b)h(a) = 1101 \cdot 1101 \cdot 001 = 11011101001$
- 2. Sei h(a) = 01, h(b) = 11 und  $h(c) = \varepsilon$ . Nun sei h(w) = 011101. Was war w?
- → aba oder cabccac, ... Allgemein:  $w \in \{c\}^* \cdot \{a\} \cdot \{c\}^* \cdot \{b\} \cdot \{c\}^* \cdot \{a\} \cdot \{c\}^*$   $\varepsilon$ -Freiheit hat also die Eindeutigkeit zerstört!
- 3. Kann h aus 2 eine Codierung sein?
- → Nein, da nicht injektiv!
- 4. Warum will man  $\varepsilon$ -freie Homomorphismen?
- → Information geht sonst verloren!
- 5. Was heißt hier "Information geht verloren"?
- $\rightarrow$  Es gibt  $w_1 \neq w_2$  mit  $h(w_1) = h(w_2)$

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlen

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahle

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Information kann auch anders "verloren" gehen

Maximilian Staab, uxhdf@student.kit.edu Information kann auch anders "verloren" gehen

 $\rightarrow$  z.B. h(a) = 0, h(b) = 1, h(c) = 10

Übersetzung und Kodierung

Kodierung von

Zahle

Repräsentation von

Zahle

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Maximilian Staab, uxhdf@student.kit.edu Information kann auch anders "verloren" gehen

 $\rightarrow$  z.B. h(a) = 0, h(b) = 1, h(c) = 10 – Wie das?

Übersetzung und Kodierung

Kodierung von

Zahle

Repräsentation von

Zahle

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Maximilian Staah uxhdf@student.kit.edu Information kann auch anders "verloren" gehen

→ z.B. h(a) = 0, h(b) = 1, h(c) = 10 – Wie das?

## Übersetzung und

Kodierung von

Kodierung

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

## Präfixfreiheit

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

Information kann auch anders "verloren" gehen

→ z.B. 
$$h(a) = 0, h(b) = 1, h(c) = 10$$
 – Wie das?

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- Information kann auch anders "verloren" gehen
- → z.B. h(a) = 0, h(b) = 1, h(c) = 10 Wie das?

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ . Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- Information kann auch anders "verloren" gehen
- → z.B. h(a) = 0, h(b) = 1, h(c) = 10 Wie das?

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt, dass  $h(x_1)$  Präfix von  $h(x_2)$  ist

Maximilian Staab, uxhdf@student.kit.edu

# Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- Information kann auch anders "verloren" gehen
- → z.B. h(a) = 0, h(b) = 1, h(c) = 10 Wie das?

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt, dass  $h(x_1)$  Präfix von  $h(x_2)$  ist, dann ist h präfixfrei.

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

Information kann auch anders "verloren" gehen

→ z.B. h(a) = 0, h(b) = 1, h(c) = 10 – Wie das?

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt, dass  $h(x_1)$  Präfix von  $h(x_2)$  ist, dann ist h präfixfrei.

#### Satz

Präfixfreie Codes sind injektiv.

# Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt, dass  $h(x_1)$  Präfix von  $h(x_2)$  ist, dann ist h präfixfrei.

#### Satz

Präfixfreie Codes sind injektiv.

### **Beispiele**

Maximilian Staab, uxhdf@student.kit.edu Information kann auch anders "verloren" gehen

→ z.B. h(a) = 0, h(b) = 1, h(c) = 10 – Wie das?

# Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-

Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt, dass  $h(x_1)$  Präfix von  $h(x_2)$  ist, dann ist h präfixfrei.

#### Satz

Präfixfreie Codes sind injektiv.

### **Beispiele**

• h(a) = 01 und h(b) = 1101 ist präfixfrei

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-

Übersetzunger

Homomorphismen

Huffman Codierung

Information kann auch anders "verloren" gehen

→ z.B. h(a) = 0, h(b) = 1, h(c) = 10 – Wie das?

### Präfixfreiheit

Gegeben ist ein Homomorphismus  $h: A^* \to B^*$ .

Wenn für keine zwei verschiedenen  $x_1, x_2 \in A$  gilt, dass  $h(x_1)$  Präfix von  $h(x_2)$  ist, dann ist h präfixfrei.

#### Satz

Präfixfreie Codes sind injektiv.

### Beispiele

- h(a) = 01 und h(b) = 1101 ist präfixfrei
- g(a) = 01 und g(b) = 011 ist nicht präfixfrei

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahle

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Komprimiert eine Zeichenkette

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahle

Zweierkomplement-

Darstellun

Übersetzungen

Homomorphismen

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

- Komprimiert eine Zeichenkette
- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

- Komprimiert eine Zeichenkette
- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

- Komprimiert eine Zeichenkette
- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

- Komprimiert eine Zeichenkette
- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

- Komprimiert eine Zeichenkette
- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - 2. Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander
  - 3. Wiederhole, bis der Baum fertig ist:

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphisme

Huffman Codierung

Komprimiert eine Zeichenkette

- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - 2. Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander
  - 3. Wiederhole, bis der Baum fertig ist:
    - Verbinde die zwei Zeichen mit niedrigsten Häufigkeiten zu neuem Knoten über diesen

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

- Komprimiert eine Zeichenkette
- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - 2. Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander
  - 3. Wiederhole, bis der Baum fertig ist:
    - Verbinde die zwei Zeichen mit niedrigsten Häufigkeiten zu neuem Knoten über diesen
    - Dieser hat als Zahl die aufsummierte Häufigkeiten

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Komprimiert eine Zeichenkette

- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - 2. Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander
  - 3. Wiederhole, bis der Baum fertig ist:
    - Verbinde die zwei Zeichen mit niedrigsten Häufigkeiten zu neuem Knoten über diesen
    - Dieser hat als Zahl die aufsummierte Häufigkeiten
  - Danach: Alle linken Kanten werden mit 0 kodiert, alle rechten Kanten mit 1

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

Komprimiert eine Zeichenkette

- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - 2. Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander
  - 3. Wiederhole, bis der Baum fertig ist:
    - Verbinde die zwei Zeichen mit niedrigsten Häufigkeiten zu neuem Knoten über diesen
    - Dieser hat als Zahl die aufsummierte Häufigkeiten
  - Danach: Alle linken Kanten werden mit 0 kodiert, alle rechten Kanten mit 1

Das Ergebnis ist eine Zeichenkette aus {0, 1}

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

Komprimiert eine Zeichenkette

- Kodiert häufiger vorkommende Zeichen zu kürzeren Codewörter als Zeichen die seltener vorkommen.
- Vorgehensweise:
  - 1. Zähle Häufigkeiten aller Zeichen der Zeichenkette
  - 2. Schreibe alle vorkommenden Zeichen und ihre Häufigkeiten nebeneinander
  - 3. Wiederhole, bis der Baum fertig ist:
    - Verbinde die zwei Zeichen mit niedrigsten Häufigkeiten zu neuem Knoten über diesen
    - Dieser hat als Zahl die aufsummierte Häufigkeiten
  - Danach: Alle linken Kanten werden mit 0 kodiert, alle rechten Kanten mit 1

Das Ergebnis ist eine Zeichenkette aus {0, 1}, die kürzer ist als die ursprüngliche Zeichenkette in binär.

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

## Gegeben

 $\mathbf{w} \in A^*$ 

 $\mathbf{W}$  = afebfecaffdeddccefbeff

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Gegeben

- $\mathbf{w} \in A^* \mathbf{w} = \text{afebfecaffdeddccefbeff}$
- Anzahl der Vorkommen aller Zeichen in w  $(N_x(w))$

#### Häufigkeiten:

Х	~	-	•	d	•	•
$N_{x}(w)$	2	2	3	3	5	7

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

### Gegeben

- $\mathbf{w} \in A^* \mathbf{w} = \text{afebfecaffdeddccefbeff}$
- Anzahl der Vorkommen aller Zeichen in w  $(N_x(w))$

Zwei Phasen zur Bestimmung eines Huffman-Codes

- 1. Konstruieren eines "Baumes"
  - Blätter entsprechen den Zeichen
  - Kanten mit 0 und 1 beschriften



### Häufigkeiten:

Х	а	b	С	d	е	f
$N_{x}(w)$	2	2	3	3	5	7

## **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

#### Gegeben

- $\mathbf{w} \in A^* \mathbf{w} = \text{afebfecaffdeddccefbeff}$
- Anzahl der Vorkommen aller Zeichen in w  $(N_x(w))$

Zwei Phasen zur Bestimmung eines Huffman-Codes

- 1. Konstruieren eines "Baumes"
  - Blätter entsprechen den Zeichen
  - Kanten mit 0 und 1 beschriften
- 2. Ablesen der Codes aus dem Baum (Pfadbeschriftungen)



#### Häufigkeiten:

X	а	b	С	d	е	f
$N_{x}(w)$	2	2	3	3	5	7

#### Codewörter:

Х	а	b	С	d	е	f
h(x)	000	001	100	101	01	11

## Übung zu Huffman Codierung



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### Übung

Sei  $A = \{a, b, c, d, e, f, g, h\}$ 

Codiere das Wort badcfehg mit Hilfe der Huffman-Codierung

## Übung zu Huffman Codierung



Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

### Übunc

Sei  $A = \{a, b, c, d, e, f, g, h\}$ 

- Codiere das Wort badcfehg mit Hilfe der Huffman-Codierung
- → Mögliche Lösung: 001 100 010 011 101 000 111 110

## Übung zu Huffman Codierung



Maximilian Staab, uxhdf@student.kit.edu

# Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation vor Zahlen

Zweierkomplement-Darstellung

### Übersetzunger

Homomorphismer

Huffman Codierung

### Übunc

Sei  $A = \{a, b, c, d, e, f, g, h\}$ 

- Codiere das Wort badcfehg mit Hilfe der Huffman-Codierung
- → Mögliche Lösung: 001 100 010 011 101 000 111 110
  - Wie lauten die Codewörter, wenn für das Wort w gilt:  $N_a(w) = 1$ ,  $N_b(w) = 2$ ,  $N_c(w) = 2$ ,  $N_d(w) = 8$ ,  $N_e(w) = 16$ ,  $N_f(w) = 16$

$$32, N_g(w) = 64, N_h(w) = 128$$

## Übung zu Huffman Codierung



Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung un Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

### Übersetzungen

Homomorphismen

Huffman Codierung

### Übunc

Sei  $A = \{a, b, c, d, e, f, g, h\}$ 

- Codiere das Wort badcfehg mit Hilfe der Huffman-Codierung
- → Mögliche Lösung: 001 100 010 011 101 000 111 110
- Wie lauten die Codewörter, wenn für das Wort w gilt:  $N_a(w) = 1$ ,  $N_b(w) = 2$ ,  $N_c(w) = 2$ ,  $N_d(w) = 8$ ,  $N_e(w) = 16$ ,  $N_f(w) = 32$ ,  $N_g(w) = 64$ ,  $N_h(w) = 128$

#### Mögliche Lösung:

Х	а	b	С	d	е	f	g	h
h(x)	0000000	0000001	000001	00001	0001	001	01	1

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Wie lang w\u00e4re das zweite Wort (abbcccc d⁸...g⁶⁴h¹²⁸) mit dem ersten Code codiert?

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-

Übersetzunger

Homomorphismen

- Wie lang w\u00e4re das zweite Wort (abbcccc d⁸...g⁶⁴h¹²⁸) mit dem ersten Code codiert?
- ightarrow 741 Symbole. Also dreimal so lang wie das Original.

Maximilian Staab, uxhdf@student.kit.edu

### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

- Wie lang w\u00e4re das zweite Wort (abbcccc d⁸...g⁶⁴h¹²⁸) mit dem ersten Code codiert?
- ightarrow 741 Symbole. Also dreimal so lang wie das Original.
  - Wie lang wäre das zweite Wort mit dem zweiten Code codiert?

Maximilian Staab, uxhdf@student.kit.edu

#### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

- Wie lang w\u00e4re das zweite Wort (abbcccc d⁸...g⁶⁴h¹²⁸) mit dem ersten Code codiert?
- ightarrow 741 Symbole. Also dreimal so lang wie das Original.
  - Wie lang wäre das zweite Wort mit dem zweiten Code codiert?
- ightarrow 501 Symbole. Also nur zweimal so lang wie das Original.

Maximilian Staab, uxhdf@student.kit.edu

#### Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

- Wie lang w\u00e4re das zweite Wort (abbcccc d⁸...g⁶⁴h¹²⁸) mit dem ersten Code codiert?
- ightarrow 741 Symbole. Also dreimal so lang wie das Original.
  - Wie lang wäre das zweite Wort mit dem zweiten Code codiert?
- ightarrow 501 Symbole. Also nur zweimal so lang wie das Original.
  - Was fällt euch auf?

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zahle

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Sei  $h:A^* \to \mathbb{Z}_2$  eine Huffman-Codierung

• h ist ein  $\varepsilon$ -freier Homomorphismus

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zahlei

Zweierkomplement-

Übersetzungen

Homomorphismen

Huffman Codierung

Sei  $h:A^* \to \mathbb{Z}_2$  eine Huffman-Codierung

• h ist ein ε-freier Homomorphismus **Wahr!** 

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismen

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren

#### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von

Zweierkomplement-

Übersetzungei

Homomorphismen

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!
- Die Kompression ist am stärksten, wenn die Häufigkeiten aller Zeichen ungefähr gleich sind.

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphisme

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!
- Die Kompression ist am stärksten, wenn die Häufigkeiten aller Zeichen ungefähr gleich sind. Falsch!

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!
- Die Kompression ist am stärksten, wenn die Häufigkeiten aller Zeichen ungefähr gleich sind. Falsch!
- h ist präfixfrei

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ui Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungei

Homomorphismer

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!
- Die Kompression ist am stärksten, wenn die Häufigkeiten aller Zeichen ungefähr gleich sind. Falsch!
- h ist präfixfrei Wahr!

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!
- Die Kompression ist am stärksten, wenn die Häufigkeiten aller Zeichen ungefähr gleich sind. Falsch!
- h ist präfixfrei Wahr!
- Es kann noch k\u00fcrzere Codierungen geben

### Wahr oder falsch?



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung ur Kodierung

Kodierung von Zahlen

Repräsentation vor

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

- h ist ein  $\varepsilon$ -freier Homomorphismus **Wahr!**
- Häufigere Symbole werden mit langen Worten codiert, seltene mit kürzeren Falsch!
- Die Kompression ist am stärksten, wenn die Häufigkeiten aller Zeichen ungefähr gleich sind. Falsch!
- h ist präfixfrei Wahr!
- Es kann noch kürzere Codierungen geben Falsch!

### **Huffman-Codierung**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von Zahlen

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

### Eigenschaften

Sei A ein Alphabet und  $w \in A$ . Dann gilt für die Huffman-Codierung h:

- $h: A^* \to \mathbb{Z}_2$
- h ist  $\varepsilon$ -freier Homomorphismus
- h ist präfixfreier Homomorphismus
- Häufigere Symbole werden mit kurzen Worten codiert, seltene mit längeren
- Produziert kürzestmögliche Codierungen

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zahler

Zweierkomplement-

Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

lacktriangle Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b>1

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzunger

Homomorphismer

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-

Übersetzungei

Homomorphismer

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

■ Blätter des Huffman-Baums sind jetzt Wörter der Länge b

Beispiel an der Tafel: Codierung von aab · deg · deg · aab · ole · aab · deg · aab.

• Alphabet  $A = \{a, b, c, d\}$ 

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismer

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

- Alphabet  $A = \{a, b, c, d\}$
- Text über A, der nur aus Teilwörtern der Länge 10 zusammengesetzt ist, in denen jeweils immer nur ein Symbol vorkommt

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

- Alphabet  $A = \{a, b, c, d\}$
- Text über *A*, der nur aus Teilwörtern der Länge 10 zusammengesetzt ist, in denen jeweils immer nur ein Symbol vorkommt
- Angenommen a¹⁰, ..., d¹⁰ kommen alle gleich häufig vor. Wie lang ist dann die Huffman-Codierung?

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

• Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b > 1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

- Alphabet  $A = \{a, b, c, d\}$
- Text über *A*, der nur aus Teilwörtern der Länge 10 zusammengesetzt ist, in denen jeweils immer nur ein Symbol vorkommt
- Angenommen a¹⁰, ..., d¹⁰ kommen alle gleich häufig vor. Wie lang ist dann die Huffman-Codierung?

### **Block-Codierung mit Huffman**



Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

lacktriangle Wir betrachten nicht mehr einzelne Symbole, sondern Blöcke von fester Länge b>1

Blätter des Huffman-Baums sind jetzt Wörter der Länge b

- Alphabet  $A = \{a, b, c, d\}$
- Text über A, der nur aus Teilwörtern der Länge 10 zusammengesetzt ist, in denen jeweils immer nur ein Symbol vorkommt
- Angenommen a¹⁰, ..., d¹⁰ kommen alle gleich häufig vor. Wie lang ist dann die Huffman-Codierung?
- ightarrow Ein Fünftel, weil jeder Zehnerblock durch zwei Bits codiert wird

Maximilian Staab, uxhdf@student.kit.edu

Übersetzung und Kodierung

Kodierung von

Repräsentation von Zahlen

Zweierkomplement-Darstellung

Übersetzungen

Homomorphismen

Huffman Codierung

