CREDIT CARD DEFAULT prediction: A Data-Driven Approach

what is the Credit Card Default System?

Methodology and Visualisation

Conclusions

Objectives of the Analysis

Key Insights on Biases

Recommendations

The goal of this analysis is to predict the likelihood of credit card default by clients on their demographic and financial features. Additionally, we assess model fairness and interpretability to ensure transparency and ethical outcomes

Metholodology

Data Preprocessing:

- Handled missing values.
- Scaled features (eg: credit utilization)

Feature Engineering: Added derived features like CREDIT_UTILIZATION, PAYMENT_TO_BILL_RATIO

Balancing Dataset:Oversampled minority class to handle imbalance.

Model Training: Logistic Regression, Random Forest, XGBoost, Neural Networks

Why these Models?

Logistic Regression: Simple,
 interpretable baseline
Random Forest: Handles complex patterns,
 reduces overfitting.

XGBoost: High performance with large
 datasets
Neural Networks: Superior accuracy for

non - linear relationships

models

RANDOM FOREST

• ACCURACY: 81%

• PRECISION: 72%

• RECALL: 67%

• F1- SCORE: 80%

HODELP

XGBOOST

• ACCURACY: 77%

• PRECISION: 78%

• RECALL: 77%

• F1- SCORE: 77%

model 4

LOGISTIC REGRESSION

• ACCURACY: 70%

• PRECISION: 76%

• RECALL: 70%

• F1- SCORE: 72%

MODEL 3

NEURAL NETWORK

• ACCURACY: 77%

Bias ANALYSIS

Demographic Factors: Disparities in predictions based on gender, education and age

Models may inherit societal biases from historical data

Example: Women predicted more likely to default due to systemic biases in credit systems

Distribution of CREDIT UTILIZATION

Distribution of sex

Distribution of max REPRY DELRY

LIME EXPLANATION FOR SAMPLE INSTANCE

-1.00 < PAY_3 <= 0.00

Fairness Metrics:

Demographic Parity Difference: 0.03 Equalized Odds Difference: 0.02

SHAP Summary Plot:

SNAP SUMMARY PLOT

CONCLUSIONS AND RECOMMENDATIONS