Supervise Learning

آموختن توانایی تصمیم گیری به کامپیوتر ها با استفاده از دیتاها

- Supervised learning
- Unsipervised learning
- Reinforcement learning

Supervised learning

- Classification
- Regression

Iris Dataset

image from http://sebastianraschka.com)

```
Sepal length 5
Sepal width 3.4
Petal length 1.5
Petal width 0.2
```

```
In [5]: from sklearn import datasets
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt

In [6]: iris = datasets.load_iris()

In [7]: iris.data.shape
Out[7]: (150, 4)
```

In [10]: iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
5	5.4	3.9	1.7	0.4
6	4.6	3.4	1.4	0.3
7	5.0	3.4	1.5	0.2
8	4.4	2.9	1.4	0.2
9	4.9	3.1	1.5	0.1
10	5.4	3.7	1.5	0.2
11	4.8	3.4	1.6	0.2
12	4.8	3.0	1.4	0.1
13	4.3	3.0	1.1	0.1
14	5.8	4.0	1.2	0.2
15	5.7	4.4	1.5	0.4
16	5.4	3.9	1.3	0.4
17	5.1	3.5	1.4	0.3
18	5.7	3.8	1.7	0.3
19	5.1	3.8	1.5	0.3
20	5.4	3.4	1.7	0.2
21	5.1	3.7	1.5	0.4
22	4.6	3.6	1.0	0.2
23	5.1	3.3	1.7	0.5
24	4.8	3.4	1.9	0.2
25	5.0	3.0	1.6	0.2
26	5.0	3.4	1.6	0.4
27	5.2	3.5	1.5	0.2
28	5.2	3.4	1.4	0.2
29	4.7	3.2	1.6	0.2
•••				
120	6.9	3.2	5.7	2.3
121	5.6	2.8	4.9	2.0
122	7.7	2.8	6.7	2.0
123	6.3	2.7	4.9	1.8
124	6.7	3.3	5.7	2.1
125	7.2	3.2	6.0	1.8
126	6.2	2.8	4.8	1.8
127	6.1	3.0	4.9	1.8
128	6.4	2.8	5.6	2.1
129	7.2	3.0	5.8	1.6
130	7.4	2.8	6.1	1.9

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
131	7.9	3.8	6.4	2.0
132	6.4	2.8	5.6	2.2
133	6.3	2.8	5.1	1.5
134	6.1	2.6	5.6	1.4
135	7.7	3.0	6.1	2.3
136	6.3	3.4	5.6	2.4
137	6.4	3.1	5.5	1.8
138	6.0	3.0	4.8	1.8
139	6.9	3.1	5.4	2.1
140	6.7	3.1	5.6	2.4
141	6.9	3.1	5.1	2.3
142	5.8	2.7	5.1	1.9
143	6.8	3.2	5.9	2.3
144	6.7	3.3	5.7	2.5
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [11]: iris_df['target'] = iris.target
 iris_df

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
5	5.4	3.9	1.7	0.4	0
6	4.6	3.4	1.4	0.3	0
7	5.0	3.4	1.5	0.2	0
8	4.4	2.9	1.4	0.2	0
9	4.9	3.1	1.5	0.1	0
10	5.4	3.7	1.5	0.2	0
11	4.8	3.4	1.6	0.2	0
12	4.8	3.0	1.4	0.1	0
13	4.3	3.0	1.1	0.1	0
14	5.8	4.0	1.2	0.2	0
15	5.7	4.4	1.5	0.4	0
16	5.4	3.9	1.3	0.4	0
17	5.1	3.5	1.4	0.3	0
18	5.7	3.8	1.7	0.3	0
19	5.1	3.8	1.5	0.3	0
20	5.4	3.4	1.7	0.2	0
21	5.1	3.7	1.5	0.4	0
22	4.6	3.6	1.0	0.2	0
23	5.1	3.3	1.7	0.5	0
24	4.8	3.4	1.9	0.2	0
25	5.0	3.0	1.6	0.2	0
26	5.0	3.4	1.6	0.4	0
27	5.2	3.5	1.5	0.2	0
28	5.2	3.4	1.4	0.2	0
29	4.7	3.2	1.6	0.2	0
					•••
120	6.9	3.2	5.7	2.3	2
121	5.6	2.8	4.9	2.0	2
122	7.7	2.8	6.7	2.0	2
123	6.3	2.7	4.9	1.8	2
124	6.7	3.3	5.7	2.1	2
125	7.2	3.2	6.0	1.8	2
126	6.2	2.8	4.8	1.8	2
127	6.1	3.0	4.9	1.8	2
128	6.4	2.8	5.6	2.1	2
129	7.2	3.0	5.8	1.6	2
130	7.4	2.8	6.1	1.9	2

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
131	7.9	3.8	6.4	2.0	2
132	6.4	2.8	5.6	2.2	2
133	6.3	2.8	5.1	1.5	2
134	6.1	2.6	5.6	1.4	2
135	7.7	3.0	6.1	2.3	2
136	6.3	3.4	5.6	2.4	2
137	6.4	3.1	5.5	1.8	2
138	6.0	3.0	4.8	1.8	2
139	6.9	3.1	5.4	2.1	2
140	6.7	3.1	5.6	2.4	2
141	6.9	3.1	5.1	2.3	2
142	5.8	2.7	5.1	1.9	2
143	6.8	3.2	5.9	2.3	2
144	6.7	3.3	5.7	2.5	2
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

150 rows × 5 columns

In [12]: # Visual EDA
 pd.plotting.scatter_matrix(iris_df, c=iris.target, figsize=[11, 11], s=150)
 plt.show()

KNN: K-Nearest Neighbors

```
In [13]: from sklearn import datasets
    iris = datasets.load_iris()
    x = iris.data[:, [2, 3]] #only use petal length and width
    y = iris.target

plt.scatter(x[:,0],x[:,1], c=y)
    plt.show()
```



```
In [14]: from sklearn.neighbors import KNeighborsClassifier
    knn = KNeighborsClassifier(n_neighbors=6, metric='minkowski',p=2)
    x = iris.data
    y = iris.target
    knn.fit(x, y)
```

Distance

ManhattanDistance.png

image from https://www.janko.at (https://www.janko.at)

Manhattan Distance

$$|x_1 - x_2| + |y_1 - y_2|$$

Chebyshev Distance

$$\max(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|)$$

image from : https://lyfat.wordpress.com (https://lyfat.wordpress.com)

Predict

In [15]: iris.data

```
Out[15]: array([[ 5.1, 3.5, 1.4,
                                  0.2],
                [ 4.9, 3. ,
                             1.4,
                                   0.2],
                [ 4.7, 3.2,
                             1.3,
                                   0.2],
                [ 4.6, 3.1, 1.5,
                                  0.2],
                [ 5. ,
                       3.6,
                             1.4,
                                  0.2],
                [ 5.4,
                       3.9,
                             1.7,
                                  0.4],
                [ 4.6,
                      3.4,
                             1.4,
                                  0.3],
                [ 5. ,
                       3.4,
                                  0.2],
                             1.5,
                             1.4,
                                  0.2],
                [ 4.4,
                       2.9,
                [ 4.9,
                       3.1,
                             1.5,
                                   0.1],
                [ 5.4,
                       3.7,
                             1.5,
                                   0.2],
                [ 4.8,
                       3.4,
                             1.6,
                                   0.2],
                [ 4.8,
                       3. ,
                             1.4,
                                  0.1],
                       3. ,
                [ 4.3,
                             1.1,
                                  0.1],
                [ 5.8,
                       4. ,
                             1.2,
                                  0.2],
                [ 5.7,
                       4.4,
                            1.5, 0.4],
                [ 5.4,
                       3.9,
                            1.3, 0.4],
                [ 5.1,
                       3.5,
                             1.4, 0.3],
                                  0.3],
                [ 5.7,
                       3.8,
                             1.7,
                [ 5.1,
                                   0.3],
                       3.8,
                             1.5,
                [ 5.4,
                       3.4,
                             1.7,
                                   0.2],
                [ 5.1,
                       3.7,
                             1.5, 0.4],
                [ 4.6, 3.6, 1. ,
                                   0.2],
                [ 5.1, 3.3, 1.7, 0.5],
                [ 4.8,
                       3.4,
                            1.9, 0.2],
                [5.,
                       3.,
                             1.6, 0.2],
                [5.,
                       3.4,
                             1.6, 0.4],
                [ 5.2,
                                  0.2],
                       3.5,
                             1.5,
                [ 5.2,
                                  0.2],
                       3.4,
                             1.4,
                [ 4.7,
                       3.2,
                             1.6,
                                  0.2],
                [ 4.8,
                       3.1,
                             1.6,
                                  0.2],
                [ 5.4,
                       3.4,
                            1.5,
                                  0.4],
                       4.1,
                [ 5.2,
                            1.5, 0.1],
                [ 5.5,
                       4.2, 1.4, 0.2],
                [ 4.9,
                       3.1, 1.5, 0.1],
                [5.,
                       3.2, 1.2, 0.2],
                [ 5.5,
                       3.5, 1.3, 0.2],
                                  0.1],
                [ 4.9,
                       3.1,
                            1.5,
                       3. ,
                [ 4.4,
                                  0.2],
                             1.3,
                [ 5.1,
                       3.4,
                             1.5,
                                   0.2],
                [5.,
                       3.5,
                             1.3,
                                  0.3],
                [ 4.5,
                       2.3, 1.3, 0.3],
                [ 4.4, 3.2, 1.3, 0.2],
                [5.,
                       3.5,
                            1.6, 0.6],
                [ 5.1,
                       3.8,
                            1.9, 0.4],
                [ 4.8, 3. ,
                             1.4, 0.3],
                [ 5.1, 3.8,
                             1.6, 0.2],
                [ 4.6,
                                  0.2],
                       3.2,
                             1.4,
                       3.7,
                             1.5,
                                  0.2],
                [ 5.3,
                [ 5. ,
                       3.3,
                             1.4,
                                  0.2],
                [ 7. ,
                             4.7, 1.4],
                       3.2,
                             4.5, 1.5],
                [ 6.4,
                       3.2,
                       3.1,
                             4.9, 1.5],
                [ 6.9,
                [ 5.5,
                       2.3,
                            4. , 1.3],
                [ 6.5,
                       2.8, 4.6, 1.5],
                [ 5.7,
                       2.8,
                            4.5, 1.3],
                            4.7, 1.6],
                [ 6.3,
                       3.3,
                [ 4.9,
                       2.4,
                             3.3, 1.],
                [ 6.6,
                       2.9,
                             4.6,
                                   1.3],
                [ 5.2,
                       2.7,
                             3.9,
                                   1.4],
                                  1. ],
                [5.,
                       2. ,
                             3.5,
                [ 5.9, 3.,
                             4.2, 1.5],
                [ 6. ,
                            4. ,
                       2.2,
                                  1. ],
                [ 6.1,
                       2.9,
                            4.7,
                                  1.4],
                [ 5.6, 2.9,
                            3.6, 1.3],
                       3.1,
                [ 6.7,
                            4.4, 1.4],
                [ 5.6,
                       3.,
                             4.5,
                                  1.5],
                       2.7,
                [ 5.8,
                             4.1, 1. ],
                [ 6.2,
                       2.2,
                             4.5,
                                  1.5],
                                  1.1],
                [ 5.6,
                       2.5,
                             3.9,
                            4.8, 1.8],
                [ 5.9,
                       3.2,
                [ 6.1,
                       2.8, 4., 1.3],
                [ 6.3, 2.5, 4.9, 1.5],
                [ 6.1, 2.8, 4.7, 1.2],
```

```
[ 6.4, 2.9, 4.3, 1.3],
[ 6.6, 3. , 4.4,
                  1.4],
[ 6.8,
       2.8,
             4.8,
                   1.4],
             5. ,
       3.,
[ 6.7,
                   1.7],
[ 6. ,
       2.9,
             4.5,
                  1.5],
[ 5.7,
                  1. ],
       2.6,
             3.5,
                  1.1],
[ 5.5,
       2.4,
             3.8,
[ 5.5,
       2.4,
             3.7, 1.],
[ 5.8,
       2.7,
             3.9, 1.2],
[ 6. ,
       2.7,
            5.1, 1.6],
[ 5.4,
       3.,
             4.5, 1.5],
[ 6. ,
             4.5,
       3.4,
                  1.6],
[ 6.7,
       3.1,
             4.7,
                   1.5],
Γ
 6.3,
       2.3,
             4.4,
                   1.3],
[ 5.6,
       3. ,
                  1.3],
             4.1,
             4. ,
                  1.3],
[ 5.5, 2.5,
[ 5.5, 2.6, 4.4, 1.2],
       3.,
[ 6.1,
             4.6, 1.4],
[ 5.8,
       2.6,
             4. , 1.2],
[ 5. ,
       2.3,
             3.3, 1. ],
[ 5.6,
       2.7,
            4.2, 1.3],
       3. ,
[ 5.7,
             4.2, 1.2],
                  1.3],
[ 5.7,
       2.9,
             4.2,
6.2,
       2.9,
             4.3,
                  1.3],
[ 5.1,
       2.5,
            3. , 1.1],
4.1, 1.3],
[ 5.7,
       2.8,
[ 6.3,
       3.3,
             6., 2.5],
[ 5.8,
       2.7, 5.1, 1.9],
       3.,
[ 7.1,
            5.9, 2.1],
[ 6.3,
       2.9, 5.6, 1.8],
[ 6.5,
       3. ,
            5.8, 2.2],
       3. ,
[ 7.6,
             6.6, 2.1],
[ 4.9,
       2.5,
             4.5,
                   1.7],
7.3,
       2.9,
            6.3,
                   1.8],
            5.8, 1.8],
[ 6.7,
       2.5,
[ 7.2,
       3.6, 6.1, 2.5],
[ 6.5,
       3.2,
            5.1, 2.],
[ 6.4,
       2.7,
            5.3, 1.9],
       3.,
             5.5, 2.1],
[ 6.8,
[ 5.7,
       2.5,
             5., 2.],
            5.1,
[ 5.8,
       2.8,
                  2.4],
[ 6.4,
       3.2,
             5.3,
                  2.3],
[ 6.5,
       3. ,
             5.5,
                   1.8],
                  2.2],
Γ
 7.7,
       3.8,
             6.7,
             6.9, 2.3],
[ 7.7,
       2.6,
                  1.5],
[ 6. ,
             5. ,
       2.2,
[ 6.9,
            5.7, 2.3],
       3.2,
[ 5.6,
       2.8,
            4.9, 2.],
[ 7.7,
       2.8, 6.7, 2. ],
[ 6.3,
       2.7,
            4.9, 1.8],
[ 6.7,
             5.7, 2.1],
       3.3,
             6.,
[ 7.2,
       3.2,
                   1.8],
6.2,
       2.8,
             4.8,
                   1.8],
                  1.8],
[ 6.1,
       3.,
             4.9,
             5.6, 2.1],
[ 6.4,
       2.8,
[ 7.2,
       3.,
             5.8, 1.6],
[ 7.4,
             6.1, 1.9],
       2.8,
[ 7.9,
       3.8,
            6.4, 2.],
       2.8,
            5.6, 2.2],
[ 6.4,
[ 6.3,
       2.8,
            5.1, 1.5],
[ 6.1,
             5.6,
       2.6,
                  1.4],
       3. ,
[ 7.7,
             6.1,
                   2.3],
6.3,
       3.4,
             5.6,
                   2.4],
[ 6.4,
                  1.8],
       3.1,
             5.5,
                  1.8],
[ 6. ,
       3.,
             4.8,
[ 6.9,
       3.1,
             5.4, 2.1],
[ 6.7,
            5.6, 2.4],
       3.1,
[ 6.9,
       3.1, 5.1, 2.3],
[ 5.8,
       2.7,
            5.1, 1.9],
[ 6.8,
            5.9, 2.3],
       3.2,
[ 6.7,
       3.3,
            5.7, 2.5],
[ 6.7,
       3.,
             5.2, 2.3],
       2.5, 5.,
                   1.9],
6.3,
[ 6.5, 3., 5.2, 2.],
```

```
[ 6.2, 3.4, 5.4, 2.3],
[ 5.9, 3. , 5.1, 1.8]])
```

Train and test

Over Fitting and Under Fitting

```
In [20]: neighbors = np.arange(1, 30)
    train_accuracy = np.empty(len(neighbors))

for i,k in enumerate(neighbors):
    knn_model = KNeighborsClassifier(n_neighbors=k)
    knn_model.fit(x_train, y_train)
    train_accuracy[i] = knn_model.score(x_train, y_train)
    test_accuracy[i] = knn_model.score(x_test, y_test)

plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy')
    plt.plot(neighbors, train_accuracy, label = 'Training Accuracy')
    plt.legend()
    plt.xlabel('number of Neighbors')
    plt.ylabel('Accuracy')
    plt.show()
```


Over Fitting

Under fitting

Decision Tree

iris dataset

```
In [21]: from sklearn.tree import DecisionTreeClassifier

    dtc = DecisionTreeClassifier()
    dtc = dtc.fit(x_train, y_train)

In [22]: predict_dtc = dtc.predict(x_train[:, :])

In [23]: from sklearn import metrics
    metrics.accuracy_score(y_train, predict_dtc )

Out[23]: 1.0
```

Regression

- Linear Regression
- · Logistic Regresion

Linear Regression

Residual

Ordinary least squares (OLS): Minimize sum of square of residuals to building the model

Linear regression in higher dimensions

$$y=a_1x_1+a_2x_2+b$$

 $y = a_1 x_1 + a_2 x_2 + \ldots + a_n x_n + b$

Regression example


```
In [27]: x = x.reshape(-1,1)
         y = y.reshape(-1,1)
         reg = LinearRegression()
         reg.fit(x,y)
Out[27]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [28]: yhat = reg.predict(x)
In [29]:
         plt.scatter(x,y)
         plt.plot(x,yhat)
         plt.show()
           36
           34
           32
           30
           28
           26
```

8

In [31]: boston = load_boston()
boston_df = pd.DataFrame(boston.data, columns=boston.feature_names)
boston_df['Price'] = boston.target
boston_df

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	39!
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386
10	0.22489	12.5	7.87	0.0	0.524	6.377	94.3	6.3467	5.0	311.0	15.2	392
11	0.11747	12.5	7.87	0.0	0.524	6.009	82.9	6.2267	5.0	311.0	15.2	396
12	0.09378	12.5	7.87	0.0	0.524	5.889	39.0	5.4509	5.0	311.0	15.2	390
13	0.62976	0.0	8.14	0.0	0.538	5.949	61.8	4.7075	4.0	307.0	21.0	396
14	0.63796	0.0	8.14	0.0	0.538	6.096	84.5	4.4619	4.0	307.0	21.0	380
15	0.62739	0.0	8.14	0.0	0.538	5.834	56.5	4.4986	4.0	307.0	21.0	39
16	1.05393	0.0	8.14	0.0	0.538	5.935	29.3	4.4986	4.0	307.0	21.0	386
17	0.78420	0.0	8.14	0.0	0.538	5.990	81.7	4.2579	4.0	307.0	21.0	386
18	0.80271	0.0	8.14	0.0	0.538	5.456	36.6	3.7965	4.0	307.0	21.0	288
19	0.72580	0.0	8.14	0.0	0.538	5.727	69.5	3.7965	4.0	307.0	21.0	390
20	1.25179	0.0	8.14	0.0	0.538	5.570	98.1	3.7979	4.0	307.0	21.0	376
21	0.85204	0.0	8.14	0.0	0.538	5.965	89.2	4.0123	4.0	307.0	21.0	392
22	1.23247	0.0	8.14	0.0	0.538	6.142	91.7	3.9769	4.0	307.0	21.0	396
23	0.98843	0.0	8.14	0.0	0.538	5.813	100.0	4.0952	4.0	307.0	21.0	394
24	0.75026	0.0	8.14	0.0	0.538	5.924	94.1	4.3996	4.0	307.0	21.0	394
25	0.84054	0.0	8.14	0.0	0.538	5.599	85.7	4.4546	4.0	307.0	21.0	300
26	0.67191	0.0	8.14	0.0	0.538	5.813	90.3	4.6820	4.0	307.0	21.0	376
27	0.95577	0.0	8.14	0.0	0.538	6.047	88.8	4.4534	4.0	307.0	21.0	306
28	0.77299	0.0	8.14	0.0	0.538	6.495	94.4	4.4547	4.0	307.0	21.0	387
29	1.00245	0.0	8.14	0.0	0.538	6.674	87.3	4.2390	4.0	307.0	21.0	380
476	4.87141	0.0	18.10	0.0	0.614	6.484	93.6	2.3053	24.0	666.0	20.2	396
477	15.02340	0.0	18.10	0.0	0.614	5.304	97.3	2.1007	24.0	666.0	20.2	349
478	10.23300	0.0	18.10	0.0	0.614	6.185	96.7	2.1705	24.0	666.0	20.2	379
479	14.33370	0.0	18.10	0.0	0.614	6.229	88.0	1.9512	24.0	666.0	20.2	380
480	5.82401	0.0	18.10	0.0	0.532	6.242	64.7	3.4242	24.0	666.0	20.2	396
481	5.70818	0.0	18.10	0.0	0.532	6.750	74.9	3.3317	24.0	666.0	20.2	390
482	5.73116	0.0	18.10	0.0	0.532	7.061	77.0	3.4106	24.0	666.0	20.2	39
483	2.81838	0.0	18.10	0.0	0.532	5.762	40.3	4.0983	24.0	666.0	20.2	392
484	2.37857	0.0	18.10	0.0	0.583	5.871	41.9	3.7240	24.0	666.0	20.2	37(
485	3.67367	0.0	18.10	0.0	0.583	6.312	51.9	3.9917		666.0	20.2	388
486	5.69175	0.0	18.10	0.0	0.583	6.114	79.8	3.5459	24.0	666.0	20.2	392

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	
487	4.83567	0.0	18.10	0.0	0.583	5.905	53.2	3.1523	24.0	666.0	20.2	388
488	0.15086	0.0	27.74	0.0	0.609	5.454	92.7	1.8209	4.0	711.0	20.1	39!
489	0.18337	0.0	27.74	0.0	0.609	5.414	98.3	1.7554	4.0	711.0	20.1	344
490	0.20746	0.0	27.74	0.0	0.609	5.093	98.0	1.8226	4.0	711.0	20.1	318
491	0.10574	0.0	27.74	0.0	0.609	5.983	98.8	1.8681	4.0	711.0	20.1	39(
492	0.11132	0.0	27.74	0.0	0.609	5.983	83.5	2.1099	4.0	711.0	20.1	396
493	0.17331	0.0	9.69	0.0	0.585	5.707	54.0	2.3817	6.0	391.0	19.2	396
494	0.27957	0.0	9.69	0.0	0.585	5.926	42.6	2.3817	6.0	391.0	19.2	396
495	0.17899	0.0	9.69	0.0	0.585	5.670	28.8	2.7986	6.0	391.0	19.2	39:
496	0.28960	0.0	9.69	0.0	0.585	5.390	72.9	2.7986	6.0	391.0	19.2	396
497	0.26838	0.0	9.69	0.0	0.585	5.794	70.6	2.8927	6.0	391.0	19.2	396
498	0.23912	0.0	9.69	0.0	0.585	6.019	65.3	2.4091	6.0	391.0	19.2	396
499	0.17783	0.0	9.69	0.0	0.585	5.569	73.5	2.3999	6.0	391.0	19.2	39!
500	0.22438	0.0	9.69	0.0	0.585	6.027	79.7	2.4982	6.0	391.0	19.2	396
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	39 ⁻
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	390
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396

506 rows × 14 columns

```
In [32]: x = boston.data
y = boston.target
```

```
In [34]: reg = LinearRegression()
    reg.fit(x_train, y_train)
    y_pred = reg.predict(x_test)
```

```
In [35]: plt.scatter(y_test, y_pred)
  plt.plot()
  plt.xlabel('prices')
  plt.ylabel('predicted prices')
  plt.show()
```


Mean square error (MSE): to evaluating the model

```
In [36]:
         import sklearn.metrics
         mse = metrics.mean_squared_error(y_test, y_pred)
         mse
Out[36]: 21.540218943931421
In [37]: new_x = boston.data[:,[1,2]]
         new_y = boston.target
         new_x_train, new_x_test ,new_y_train, new_y_test = train_test_split(new_x, new_y, test
         _size = 0.3, random_state=42)
         new_reg = LinearRegression()
         new_reg.fit(new_x_train, new_y_train)
         new_y_predict = new_reg.predict(new_x_test)
         new_mse = metrics.mean_squared_error(new_y_test, new_y_predict)
         new_mse
```

Out[37]: 52.49477133220752

CrossValidation (K-Fold Cross Validation)

To optimize the results, we can use Cross Validation technique.


```
In [38]: from sklearn.model_selection import cross_val_score
    reg = LinearRegression()
    first_cv_scores = cross_val_score(reg, x, y, cv=5)
    second_cv_scores = cross_val_score(reg, x, y, cv=10)

print('mean in first_cv_scores is {0:.2f} and in second_cv_scores is {1:.2f}'.format(np.mean(first_cv_scores), np.mean(second_cv_scores)) )
```

mean in first_cv_scores is 0.35 and in second_cv_scores is 0.20

$Regularization \ Regression:$

```
CostFunction = OLS + regularization term(Penalty)
```

 $Penalizing\ large\ coefficients\ =\ Penalizing\ Overfitting$

 $Lasso\ regression\ lost\ function = OLS_{(ordinary\ Least\ of\ square} lpha * \sum_{i=1}^{n} |a_i|$

lpha: is a constant we predict and is similar to picking k in KNN. if alpha equal to zero we get back OLS and very high alpha can lead to under fitting

a: coefficents

```
In [39]: from sklearn.linear_model import Lasso
          lasso = Lasso(alpha=0.1, normalize=True)
         lasso.fit(x, y)
         lasso_coef = lasso.coef_
         print(lasso_coef)
         plt.plot(range(13), lasso_coef)
         plt.xticks(range(13), boston.feature_names)
         plt.ylabel('Coefficents')
         plt.show()
         [-0.
                        0.
                                   -0.
                                                0.
                                                           -0.
                                                                         2.95469429
                                                           -0.24795828 0.
          -0.
                        0.
                                   -0.
                                               -0.
          -0.42817442]
```



```
In [40]: from sklearn.linear_model import Ridge

x = boston.data
y = boston.target

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=4
2)

ridge = Ridge(alpha=0.1, normalize=True)
ridge.fit(x_train, y_train)
ridge_pred = ridge.predict(x_test)
```

Classification metrics

Confusion Matrix:

Confusion Matrix

	Predicted Spam emails	Predicted Real emails
Actual	True	False
Spam emails	Positive	Negative
Actual	False	True
Real emails	Positive	Negative

 ${\sf Accuracy}: \frac{tp+tn}{tp+tn+fp+fn}$

 ${\sf Precision}: \frac{tp}{tp+fp}$

high precision is meaning not many REAL emails predicted as spam

 $\mathsf{recall}(\mathsf{sensitivity}) : \frac{tp}{tp + fn}$

High recall means predicted most spam emails correctly

 $\textit{F1 Score}: 2. \frac{precision.recall}{precision + recall}$

In [50]: **from sklearn import** datasets

bcd = datasets.load_breast_cancer()

x = bcd.data
y = bcd.target

In [51]: from sklearn.metrics import classification_report
 from sklearn.metrics import confusion_matrix

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4

knn = KNeighborsClassifier(n_neighbors=8)

knn.fit(x_train, y_train)

y_prediction = knn.predict(x_test)

```
In [43]: | print(confusion_matrix(y_test, y_prediction, [0, 1]))
          print(classification_report(y_test, y_prediction))
          [[39 4]
           [ 1 70]]
                        precision
                                       recall f1-score
                                                            support
                              0.97
                                         0.91
                                                    0.94
                                                                 43
                              0.95
                     1
                                         0.99
                                                    0.97
                                                                 71
          \mathsf{avg} \ / \ \mathsf{total}
                              0.96
                                         0.96
                                                    0.96
                                                                114
```

Logistic regression and ROC curve

malignant benign malignant 0.906977 0.093023 benign 0.014085 0.985915

ROC Curve

Receiver operating characteristic

$$\mathsf{TPR} = \frac{\mathit{TruePositives}}{\mathit{TruePositives} + \mathit{FalseNegatives}} = \mathsf{recall}(\mathsf{sensitivity})$$

$$\mathsf{FPR} = \frac{FalsePositives}{FalsePositives + TrueNegatives}$$

ROC.png

images form: http://blog.yhat.com/ (http://blog.yhat.com/)

```
In [46]: from sklearn.metrics import roc_curve

y_pred_prob = log.predict_proba(x_test)[:,1]
fpr, tpr, threshold = roc_curve(y_test, y_pred_prob)

plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr,tpr)
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.show()
```


AUC area under the roc curve

In [48]: **from sklearn.metrics import** roc_auc_score

roc_auc_score(y_test, y_pred_prob)

Out[48]: 0.99770717327219138

Hyperparameter Tuning

Grid Search Cross-Validation

Grid search cross-validation

C = 0.4
C=0.3
C = 0.2
C = 0.1

0.791	0.811	0.802	0.798
0.777	0.781	0.815	0.799
0.811	0.821	0.792	0.777
0.801	0.810	0.805	0.818

K = 3	K = 4	K = 5	K = 6
-------	-------	-------	-------

```
In [96]: | from sklearn.model_selection import GridSearchCV
         هايپرپارامتر ها را داخل ديكشنری قرار ميدهيم # {'n_neighbors':np.arange(1,50)} هايپرپارامتر ها را داخل
         knn = KNeighborsClassifier()
         knn_cv = GridSearchCV(knn, param_grid, cv = 5)
         knn_cv.fit(x,y)
         print(knn_cv.best_params_)
         print(knn_cv.best_score_) # Returns the mean accuracy on the given test data and label
         {'n_neighbors': 12}
         0.933216168717
In [93]: | from scipy.stats import randint # randint(1, 9).rvs(2)
          #from sklearn.tree import DecisionTreeClassifier
          from sklearn.model_selection import RandomizedSearchCV
          #GridSearchCV can be computationally expensive, especially if you are searching over a
           large hyperparameter space and dealing with multiple hyperparameters
         param = {"max_depth": [3, None],
                        "max_features": randint(1, 9),
                                                          # [2, 4, 6, 7]
                        "min_samples_leaf": randint(1, 9)}
          #Dictionary with parameters names (string) as keys and distributions or lists of parame
          ters to trv.
          #Distributions must provide a rvs method for sampling
          tree = DecisionTreeClassifier()
          tree_cv = RandomizedSearchCV(tree, param, cv=5) #CV=None, to use the default 3-fold cro
          ss validation,
         tree_cv.fit(x_train, y_train)
         print(tree_cv.best_params_)
         print(tree_cv.best_score_)
         y_pred = tree_cv.predict(x_test)
         score = tree_cv.score(x_test, y_test)
         print(score)
         {'max_depth': 3, 'max_features': 8, 'min_samples_leaf': 2}
         0.938461538462
```

Naive Baysian

0.947368421053

Naive Bayes is a machine learning method you can use to predict the likelihood that an event will occur given evidence that's present in data .

Bayes' theorem is based on **conditional probability**. The conditional probability helps us calculating the probability that something will happen, given that something else has already happened. Not getting let's understand with few examples.

The naive Bayes classifier assumes all the features are independent to each other and dont have any correlation .

Example 1

Bayes_41-850x310.png

$$P(Yes \mid Sunny) = rac{P(Sunny \mid Yes) * P(Yes)}{P(Sunny)}$$

$$P(Sunny \mid Yes) = 3/9 = 0.33$$

 $P(Sunny) = 5/14 = 0.36$
 $P(Yes) = 9/14 = 0.64$

Now

$$P(Yes \mid Sunny) = rac{0.33*0.64}{0.36} = 0.60$$

which has higher probability.

Naive Bayes uses a similar method to predict the probability of different class based on various attributes

Example 2

https://www.countbayesie.com/blog/2015/2/18/bayes-theorem-with-lego (https://www.countbayesie.com/blog/2015/2/18/bayes-theorem-with-lego)

image from : https://www.countbayesie.com/ (https://www.countbayesie.com/)

$$P(\text{blue}) = 40/60 = 2/3$$

$$P(\text{red}) = 20/60 = 1/3$$

$$P(blue) + P(red) = 1$$

$$P(yellow) = 6/60 = 1/10$$

 $P(yellow \mid blue)$

image from : https://www.countbayesie.com/ (https://www.countbayesie.com/)

- 1- Split the red section off from the blue
- 2- Get the area of the remaining red space (2 x 10)
- 3- Get the area of the yellow block on the red space (4)
- 4- Divide the area of the yellow block by the area of the red block
- 5- P(yellow|red) = 4/20 = 1/5

P(red|yellow) ?

Math approach

 $number Of Yellow Pegs = P(yellow) \cdot total Pegs = 1/10 \cdot 60 = 6$

 $numberOfRedPegs = P(red) \cdot totalPegs = 1/3 \cdot 60 = 20$

 $numberOfRedUnderYellow = P(yellow \mid red) \cdot numberOfRedPegs = 1/5 \cdot 20 = 4$

$$P({
m red}\mid {
m yellow})=rac{{
m numberOfRedUnderYellow}}{{
m numberOfYellowPegs}}=4/6=2/3$$

$$P(\mathrm{red}\mid \mathrm{yellow}) = rac{P(\mathrm{yellow}\mid \mathrm{red})\cdot \mathrm{numberOfRedPegs}}{P(\mathrm{yellow})\cdot \mathrm{totalPegs}}$$

$$P(ext{red}| ext{yellow}) = rac{P(ext{yellow}| ext{red})P(ext{red})\cdot ext{totalPegs}}{P(ext{yellow})\cdot ext{totalPegs}}$$

$$(\mathrm{red}|\mathrm{yellow}) = \frac{P(\mathrm{yellow}|\mathrm{red})P(\mathrm{red})}{P(\mathrm{yellow})}$$

In [36]: from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)