Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling

Ivan Marisca¹

Cesare Alippi^{1,2}

Filippo Maria Bianchi^{3,4}

¹IDSIA USI-SUPSI, Università della Svizzera italiana [1] ²Politecnico di Milano [1] ³UiT the Arctic University of Norway [18] ⁴NORCE, Norwegian Research Centre AS [18]

made with Torch Spatiotemporal

MOTIVATION

- Craph Deep Learning excels in modeling spatial dependencies in time series forecasting.
- Missing data affect most real-world applications. (e.g., sensors)
- Craph-based predictors deal with complete sequences and need imputation as pre-processing.

CHALLENGES

- Observability. Missing data corrupt input dynamics.
- Adaptability. To recover corrupted dynamics, we need different processing for fine- and coarse-grained scales.
- Scalability. Accounting for long-range dependencies in both time and space might cause efficiency issues.

GET RID OF IMPUTATIONS, FORECAST DIRECTLY FROM INCOMPLETE TIME SERIES

CONTRIBUTION

Obtain a hierarchy of multi-scale representations, each accounting for a specific space-time resolution.

Scalability given by factorized time-then-space processing and precomputed downsampling operators.

Adaptively weigh the representations according to the missing data pattern in the input.

Q Gain **insights** on the scales through the **scores**!

Temporal Hierarchy Spatial Hierarchy Predictions Incomplete past observations **Attention reweight**

HD-TTS: Hierarchical Downsampling Time-Then-Space

Temporal operators

Spatial operators

TMP: Temporal Message Passing

RNN, 1D convolution, Transformer

Temporal Downsampling

Dilation or strided operations.

SMP: Spatial Message Passing

Your friendly neighborhood GNN

Spatial Down-/& Up-/sampling

Use pooling matrices $S_k = 1$

to downsample/upsample over space!

Interpretability of Decoder Weights

Some Empirical Results

MAE on real-world datasets with different missing data distributions.

	AQI		EngRAD NEW DATASETS			PV-US		
Model	Original	+ Point	Block-T	Block-ST	Block-T	Block-ST	Batch/s	GPU RAM
GRU	18.17±0.03	19.19±0.06	5.30±0.03	5.42±0.02	3.98±0.02	4.14±0.02	11.59±0.04	12.01 GB
DCRNN	16.99 ± 0.09	$\textbf{17.51} \scriptstyle{\pm 0.08}$	5.14±0.06	$\textbf{5.33} \scriptstyle{\pm 0.05}$	3.54±0.01	$3.76 \scriptstyle{\pm 0.00}$	1.36±0.01	19.72 GB
AGCRN	$17.19 \scriptstyle{\pm 0.06}$	$\textbf{17.92} \scriptstyle{\pm 0.05}$	4.84 _{±0.01}	$\textbf{5.10} \scriptstyle{\pm 0.06}$	4.06±0.01	4.20 ± 0.04	1.15±0.01	23.40 GB
GRIN-P	$16.85 \scriptstyle{\pm 0.05}$	$\textbf{17.59} \scriptstyle{\pm 0.06}$	4.91±0.04	$\textbf{5.05} \scriptstyle{\pm 0.00}$	3.62±0.02	$3.85 \scriptstyle{\pm 0.07}$	1.52±0.00	17.28 GB
GWNet	$15.89 \scriptstyle{\pm 0.04}$	$\textbf{16.39} \scriptstyle{\pm 0.14}$	4.59±0.04	4.76±0.03	3.48 _{±0.05}	$\textbf{3.71} \scriptstyle{\pm 0.03}$	2.12±0.00	16.02 GB
T&S-IMP	16.54±0.03	17.13±0.05	4.98±0.01	5.15±0.03	3.60±0.02	3.82±0.03	2.68±0.00	7.03 GB
T&S-AMP	$16.15 \scriptstyle{\pm 0.02}$	$\textbf{16.58} \scriptstyle{\pm 0.10}$	4.93±0.02	$\textbf{5.11} \scriptstyle{\pm 0.05}$	N/A	N/A	N/A	N/A
TTS-IMP	16.25 ± 0.01	$\textbf{16.90} \scriptstyle{\pm 0.26}$	4.81±0.07	$5.08 \scriptstyle{\pm 0.04}$	3.50±0.01	$\textbf{3.66} \scriptstyle{\pm 0.02}$	18.84±0.14	12.81 GB
TTS-AMP	$\textbf{15.63} \scriptstyle{\pm 0.06}$	$\textbf{16.15} \scriptstyle{\pm 0.05}$	4.70±0.00	4.81 ± 0.06	3.46 _{±0.03}	$3.65 \scriptstyle{\pm 0.05}$	14.26±0.08	12.81 GB
HD-TTS-IMP	15.50±0.07	15.94±0.10	4.48 _{±0.01}	4.64 _{±0.03}	3.47 _{±0.01}	3.62 _{±0.02}	7.11 ±0.03	10.86 GB
HD-TTS-AMP	15.35 _{±0.01}	15.76 _{±0.07}	4.53±0.03	4.65 _{±0.04}	3.47 _{±0.02}	$3.61_{\pm 0.02}$	6.21±0.02	10.86 GB

Improvements in forecasting accuracy and computational efficiency.

Especially in challenging settings with blocks of missing values in space and time.