Problem Set 5

Due: In class on Wednesday, March 17. Starred problems are optional.

Problem 5-1. For a circuit G = (V, E, d, w), define the **size** of G as

$$|G| = \sum_{e \in E} w(e) .$$

Show that the problem of determining a retiming $r:V\to \mathbb{Z}$ such that $|G_r|$ is minimized can be reduced to a linear-programming problem. What about minimizing $|G_r|$ such that $\Phi(G_r)\le c$ for a given c>0?

Problem 5-2. Recall that a *c-slow* circuit has c equivalence classes of computation that do not interact. For example, systolic conversion typically produces 2-slow systolic circuits. Describe an efficient algorithm that, given a circuit G = (V, E, w), determines whether G is a c-slow version of some other circuit G' = (V, E, w') for some c > 1, that is, that there exists a retiming $r: V \to \mathbb{Z}$ such that $G_r = cG'$. Give an efficient algorithm to produce a G' with maximum c. Analyze your algorithms.