Computer Vision and Machine Learning

(Visual system and Camera)

Bhabatosh Chanda chanda@isical.ac.in

3/6/2023

Computer Vision -- Intro

Image formation

- Basic components
 - Light (Wave length, intensity)
 - Camera (intrinsic and extrinsic parameters)
 - Scene (reflectance, orientation, curvature)

3/6/2023 Computer Vision -- Intro

Shape from X

- Reconstructing 3D object from 2D images
 - -Stereo
 - Motion
 - Shading
 - Texture
 - Contour

3/6/2023

Computer Vision -- Intro

Geometry: 3D reconstruction (cond.) The state of the sta

Human Visual system and Camera

3/6/2023

Human vision

- Most important and powerful sensor in human body.
- The image formation process is well understood.
- The image understanding is the one that remains mysterious.

Light sensors in the eye

- Image formed on the retina is sensed by special type of cells called *photoreceptors*.
- Photoreceptors convert physical light signal into biological signal that passes through optical nerves.
- There are two types of photoreceptors:
 - Cones
 - Rods

3/6/2023

Computer Vision -- Intro

13

Rod and cone cells in eye Cones: Color-vision with higher intensity light. Rods: Low-intensity light vision, e.g. night vision. Cones are larger in size and are more densely packed in fovea region. Rods are smaller in size, much higher number in periphery.

Colour sensitivity

- Wavelength of visible spectrum ranges from 0.38 μm to 0.76 μm (approx.)
- Response characteristics $h_B(v)$ for blue attains maximum at about 6.8×10^4 Hz or $0.44 \mu m$
- Response characteristics $h_G(v)$ for green attains maximum at about 5.8 x 10⁴ Hz or 0.52 μ m
- Response characteristics $h_R(v)$ for red attains maximum at about 4.3 x 10⁴ Hz or 0.70 μ m

3/6/2023

Bayer filter Bayer filter is a color filter array used with sensor of digital camera. Arranged in square grid with 50% G, 25% R and 25% B. Each pixel gets one particular color that the filter allows to reach the sensor. Other color components are interpolated (averaged) from the neighborhood. Bayer filter Bayer filter 3/6/2023 Computer Vision – Intro

Human eye: Summary

Frontal part

- Cornea
- · Pupil and Iris
- Lens

Retina:

- Rods (low-intensity light, night vision)
- Cones (color-vision)
- Synapses and ganglions
- Optic nerve fibers

Does sensing and low-level processing.

3/6/2023

21

Human vision vs. Computer Vision

The camera replaces the eye:

- Eye lens → Camera Optics
- Cones and Rods → CCD array
- Ganglion cells → Filter banks

The computer replaces the brain:

• But how?

3/6/2023 22

• Want to make a computer understand images • We know it is possible – we do it effortlessly! Real world scene Sensing device Interpreting device Interpretation A person/ A person with turban/ Manmohan Singh

How does a camera see the world?

How a camera works:

- Put a piece of film in front of an object
- Light radiates from object in all possible directions.
- Do we get a reasonable image?

Slide inspired by by Steve Seitz

6/2023

25

Pinhole camera object barrier film Add a barrier with a small hole to block off most of the rays - This reduces blurring - The opening known as the aperture Slide inspired by by Steve Seltz

Pinhole camera model image plane Pinhole model: - Captures pencil of rays - all rays through a single point - The point is called Center of Projection - The image is formed on the Image Plane

Projection properties

- Many-to-one: any point along same *visual* ray map to same point in image
- Point → point
- Line → line (collinearity is preserved)
 - But line through focal point (visual ray) projects to a point
- Plane → plane (or half-planes)
 - But plane through focal point projects to line

3/6/2023

Camera Obscura

 Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)

3/6/2023

30

Camera Obscura

Illustration of the camera obscura principle from <u>James Ayscough</u>'s "A short account of the eye and nature of vision" (1755 fourth edition)

3/6/2023

21

Modeling the projection

The coordinate system

- Optical center or center of projection *O* is at the origin
- Optical axis is in w direction
- The image plane (*xy*-plane) is parallel to *uv*-plane (perpendicular to *w* axis)

3/6/2023

Source: J. Ponce, S. Seit

Modeling projection

Projection equations

- Ray from P(u,v,w) through O intersects image plane at P'
- Derived using similar triangles

$$(u, v, w) \rightarrow (-f\frac{u}{w}, -f\frac{v}{w}) = (-x, -y)$$
 (Perspective projection)

3/6/2023

Source: J. Ponce, S. Seitz

Negative to positive

3/6/2023 34

Image and scene coordinate

 $(u, v, w) \rightarrow (f \frac{u}{w}, f \frac{v}{w}) = (x, y)$ (Perspective projection)

3/6/2023

Properties of Perspective projection

- 1. A straight line in 3D maps to a straight line in 2D.
- 2. Distant objects appear smaller.
- 3. A set of parallel lines in 3D (not perpendicular to optical axis) maps to a set of concurrent lines in 2D.
 - The common point in 2D is called *vanishing point*.

3/6/2023

Vanishing points

- Each direction in 3D has its own vanishing point.
 - All lines going in that direction converge at that point
 - Exception: directions parallel to the image plane

• All directions in the same plane have vanishing points on the same line.

3/6/2023

37

Perspective distortion

• Problem for architectural photography: converging verticals

3/6/2023

38 Source: F Durand

Perspective projection for artist

• Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

(https://blogs.scientificamerican.com/roots-of-unity/the-slowest-way-to-draw-a-lute/)

Photoreceptor density

- We measure x and y (image coordinates) in terms of number of pixels, so should be for depth (w) also.
- With same image size, depth *value* varies with photoreceptor density.

3/6/2023

41

Photoreceptor density

- Hence, photoreceptor density should be combined with focal length.
- x unit of length $\equiv x\varphi_x$ number of pixels
- y unit of length $\equiv y\varphi_v$ number of pixels

3/6/2023

42

Shift of origin

Image size in mm or inch: $(x, y) = \left(f \frac{u}{w}, f \frac{v}{w}\right)$

With shift of origin: $(x, y) = \left(f \frac{u}{w} + S_x, f \frac{v}{w} + S_y\right)$

where $d_x = \varphi_x S_x$, $d_y = \varphi_y S_y$

3/6/2023

Photoreceptor density and shift

$$(u, v, w) \rightarrow (f\frac{u}{w}, f\frac{v}{w}) = (x, y)$$

turns to
$$(u, v, w) \rightarrow (f \frac{\varphi_x u}{w}, f \frac{\varphi_y v}{w}) = (x, y)$$

Instead of origin (0,0) at the centre of image it usually at top-left corner, i.e., principal point is at (d_x, d_y) . Thus

$$\mathbf{x} = f \frac{\varphi_{x} u}{w} + d_{x}$$

$$y = f \frac{\varphi_y^w}{w} + d_y$$

 $(f, \varphi_x, \varphi_y, d_x, d_y)$ are *intrinsic parameters* of the camera.

3/6/2023

Perspective Projection Matrix

$$(u, v, w) \to (f \frac{u}{w}, f \frac{v}{w})$$

Is this a linear transformation?

• no—division by w is non-linear

3/6/2023

3/6/2023

Slide by Steve Seitz

Homogeneous coordinates

Cartesian coordinate Homogeneous coordinate

$$(x,y) \to (\kappa x, \kappa y, \kappa)$$
$$(x/w, y/w) \leftarrow (x, y, w)$$
$$(x, y, z) \to (\kappa x, \kappa y, \kappa z, \kappa)$$

$$(x/w, y/w, z/w) \leftarrow (x, y, z, w)$$

Special case: $(x, y, z) \rightarrow (x, y, z, 1)$

3/6/2023

Geometrical interpretation of homogeneous coordinate system

Perspective Projection Matrix

- $(u, v, w) \rightarrow (f \frac{u}{w}, f \frac{v}{w})$ is a non-linear transformation.
- To convert it to a linear transformation we adopt homogeneous coordinate system.
- Perspective projection is a matrix multiplication using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w/f \end{bmatrix}$$

$$\Rightarrow (f \frac{u}{w}, f \frac{v}{w}) \quad \text{(Divide by 3rd coordinate)}$$

3/6/2023

mputer Vision -- Intro

Projection matrix for camera

Projection is a matrix multiplication using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w/f \end{bmatrix} \quad \Rightarrow (f \frac{u}{w}, f \frac{v}{w})$$

Considering photoreceptor density and shift:

$$\begin{bmatrix} \varphi_x & 0 & d_x \\ 0 & \varphi_y & d_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix} = \begin{bmatrix} u\varphi_x + wd_x/f \\ v\varphi_y + wd_y/f \\ w/f \end{bmatrix}$$

$$\Rightarrow \left(f \frac{\varphi_x u}{w} + d_x, f \frac{\varphi_y v}{w} + d_y \right)$$

Depth from disparity

- Camera-2 is shifted from camera-1 only along horizontal direction and no rotation.
- Camera-1:
 - Optical centre O_1 : (0,0,0)
 - World point P: (u, v, w)
 - Image coordinate: $x = f \frac{u}{w} \implies \frac{x}{f} = \frac{u}{w}$ (1)
- Camera-2:
 - Optical centre O_1 : (B, 0, 0)
 - World point P: (u B, v, w)
 - Image coordinate: $x' = f \frac{u-B}{w} \implies \frac{x'}{f} = \frac{u-B}{w}$ (2)

3/6/2023

nputer Vision -- Intro

Depth from disparity (contd.)

• Subtracting equation (2) from equation (1):

$$\frac{x-x'}{f} = \frac{B}{w}$$

• This implies

$$w = \frac{B \cdot f}{x - x'}$$

• Once we know *w*, *u* can be easily determined as

$$u = w \frac{x}{f}$$

Similarly *y*.

3/6/2023

Computer Vision -- Intro

Position and orientation of camera

- Camera may be placed anywhere in a scene.
- Same object may appear differently while captured by same camera at different position and orientation.
- It would be easier to handle if the relation between their geometry is known.

3/6/2023

55

Coordinate transformation

- World coordinate system
 - World (object) centric scene coordinates
- Camera coordinate system
 - Camera centric scene coordinates
- Transforming world (scene) coordinate to camera coordinate
 - Rotation, translation and (optional) scaling
 - Linear transformation is advantageous.

3/6/2023

2D transforms

Rotation: $\begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \equiv p' = Rp$

(Coordinate axis is rotated anti-clockwise by an angle θ .)

Scaling:
$$\begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} S_u & 0 \\ 0 & S_v \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \equiv p' = Sp$$

(Coordinate axis is squeezed / expanded $1/S_u$ and $1/S_v$.)

Translation:
$$\begin{bmatrix} u' \\ v' \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix} + \begin{bmatrix} t_u \\ t_v \end{bmatrix}$$
 $p' = p + t$

(Coordinate axis is translated by $-t_u$ and $-t_v$.)

3/6/2023

5.0

3D transforms

Rotation:
$$R_u = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{v} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta \end{bmatrix} \qquad R_{w} = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R = R_u R_v R_w \equiv p' = Rp$$
, where $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$

3/6/2023

3D transforms

Scaling:
$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} s_u & 0 & 0 \\ 0 & s_v & 0 \\ 0 & 0 & s_w \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} \equiv \mathbf{p}' = \mathbf{S}\mathbf{p}$$

Translation:
$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} + \begin{bmatrix} t_u \\ t_v \\ t_w \end{bmatrix} \equiv p' = p + t$$

3D translation

Translation:

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} u + t_u \\ v + t_v \\ w + t_w \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} + \begin{bmatrix} t_u \\ t_v \\ t_w \end{bmatrix} \quad \equiv \quad \mathbf{p}' = \mathbf{p} + \mathbf{t}$$

In homogeneous coordinate system

$$\begin{bmatrix} u' \\ v' \\ w' \\ 1 \end{bmatrix} = \begin{bmatrix} u + t_u \\ v + t_v \\ w + t_w \\ 1 + 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_u \\ 0 & 1 & 0 & t_v \\ 0 & 0 & 1 & t_w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix} \equiv p'_h = \mathbf{T} \mathbf{p}_h$$

3/6/2023

51

Projection matrix for camera

• World to camera co-ordinate system using homogeneous coordinates:

$$\begin{bmatrix} u^c \\ v^c \\ w^c \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_u \\ r_{32} & r_{22} & r_{23} & t_v \\ r_{31} & r_{32} & r_{33} & t_w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix}$$
$$\boldsymbol{p}^c = T\boldsymbol{p} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^T & 1 \end{bmatrix} \boldsymbol{p}$$

• The elements of the matrix T, i.e., $r_{i,j}$ and t_k are **extrinsic parameters**.

3/6/2023

62

Projection matrix for image formation

In practice: lots of coordinate transformations...

$$\begin{bmatrix} u^{c}\varphi_{\chi} + w^{c}d_{\chi}/f \\ w^{c}/f \end{bmatrix} = \begin{bmatrix} C_{\text{amera to pixel coord.}} \\ c_{\text{pixel coord.}} \\ c_{\text{trans. matrix}} \\ (3x4) \end{bmatrix} \begin{bmatrix} P_{\text{erspective projection matrix}} \\ P_{\text{erspective projection matrix}} \\ (3x4) \end{bmatrix} \begin{bmatrix} W_{\text{ord to camera coord.}} \\ c_{\text{amera coord.}} \\ c_{\text{trans. matrix}} \\ (4x4) \end{bmatrix} \begin{bmatrix} 3D_{\text{point}} \\ (4x1) \end{bmatrix} \\ \begin{bmatrix} u^{c}\varphi_{\chi} + w^{c}d_{\chi}/f \\ w^{c}/f \end{bmatrix} = \begin{bmatrix} \varphi_{\chi} & 0 & d_{\chi} \\ 0 & \varphi_{y} & d_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{u} \\ r_{32} & r_{22} & r_{23} & t_{v} \\ r_{31} & r_{32} & r_{33} & t_{w} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix} \\ \begin{bmatrix} u^{c}\varphi_{\chi} + w^{c}d_{\chi}/f \\ w^{c}/f \end{bmatrix} = \begin{bmatrix} \varphi_{\chi} & 0 & d_{\chi}/f & 0 \\ 0 & \varphi_{y} & d_{y}/f & 0 \\ 0 & 0 & 1/f & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{u} \\ r_{32} & r_{22} & r_{23} & t_{v} \\ r_{31} & r_{32} & r_{33} & t_{w} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ 1 \end{bmatrix}$$

3/6/2023

Thank you!

Any question?

3/6/2023