Assignment-fractal-3- Machine Learning

Rakesh Reddy Kadafale - U22A I 608

1 Perception O following Training saufles ale given X, X2 class 0.9 0.5 +1 Table + Sample data A proming weights of vector of infiel decision boundary WTN = 0 as w=[1,1] solve following <1> In How many stells Desception algorithm will coverage! (1) what is The final decision boundary & show stef-wise stef update of weight vector using compotation as well as Hand-down-plat The weight vector of Intial decision Boundary Win=0 as you = winitb = com+ ware+6 Agreeue bealing lake as 1.

y= S 1 is yin > 0

y= S 1 is yin > 0

o if yin = 0

-1 if yin < 0

Au, = x+ m2

2-0-1.5-1-0-0 5- 0.5 ... 5 2.0 x

7	N,	2	c'lasset)	yin	y	Dw.	DW2	Δb	w,	wz	6
	,	1	+1	2	+1	0	b	D	1	1	0
		-1	-1	-2	-1	0	0	0	(1	0
	-1	0.5	-1	0.5	+1	0	-0.5	-1	(0.5	-1
	0.1	0.5	- (-0.65	-1	0	U	D	-	0.5	-1
			+(-0.7	-1	02	0.2		1-2	0.7	0
	0.2		41		1.1		0	D	1.2	0.7	0
	0.9	0.5	•	1.43	3						
T	×,	Xe	t yn	y A	(w)	Dwe	DP) ص	رد م	5	
		1	+1 1.9	41	0	0	Ø	1.2	6.	7 6	
	-1	-1	-1 -1-9	-1	0	0	0	1-8	0	·7 0	
				+1	0	-0.5	-1	1.2	τ	12 -	1
	D	0.2		8 -1	0	ь	8	1.2	D	.2 -	1
	0.1	0.2		72 -1	0.2	0.2	1	1.4			
	0.2	0.2	3 1	46 +1		10	0	114			
4447	0.9	0.5	+1 (.	46						0.4	
						Λ				6	
511	- X		t yin		Aw,				We		
1 1 1 18 11 0 0											
	-	1 -1	-1 -1.3		0			1 14			
		0.1		L +1	0		0	. 1.	-0^	-1	
		.1 0.		1- 18	012			1,6		0	
).2 0		49 +1		0)	0 1.6	0 1	0	
The Alexander	(0.9,0	.5 +1 (49							
										1	
1	×	1 ×2	t y	t ni	Du	or De	sa A			_	,
			41	1-7 +1			0	0 (.(
			1 -1 -	(.)			0.5	0 11			0
	0	,		0.05 4	+1			1,			-1
			2.5 -1	-1.04	-1		0		8	0.9	-0
			2 +1	-0.76	-1	02	0.2	1	1.8 -	0.2	0
				1.52	+1	0	Ó		1.0		
3123		0.9	0.5 +1								

C	1_										
	n,	Ne	+	Jin	y	DWI	DW2	10	w ₍	W2	6
	1	,	+1	4-6	+1	6	0	ь	1.8	-6.2	0
				-1.6			6	0	1.8	-0.2	0
	D	0.5	+ (-0.1	-1	0	0	ь	2.8	-0.2	6
	0.1	0.5	-1	0.08	+1	-0.1	-0.5	-1	1.7	-0.7	-(
	0.2	0.2	+1	-0.8	-1	0.5	0.2	1	1.9	-0.5	0
	0.9	0.5	+1	1.46	+1	D	0	0		-6.5	0

The perception leading algorithm Converged in 6 steps.

The final weight vector of decision bounder is w= (1.9,-0.5)

1.9mit (-0.5mg) =0 => 1.9mi -0.8mz=0

plotting final decixion Boundary
we can see that 1.9m, -0.5m2 coline sepulates 2 classes callectly

