Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Withdrawn) A method of enhancing the growth of plants comprising the step of applying to said plants, seeds of said plants, or the earth adjacent said plants a growth-enhancing amount of a composition comprising a substantially water-soluble polymer in intimate mixture with a fertilizer, said polymer comprising recurring subunits polymeric subunits each made up of at least two different moieties individually and respectively taken from the group consisting of B, and C moieties, or recurring C moieties, where moiety B is of the general formula

and moiety C is of the general formula

wherein each R₇ is individually and respectively selected from the group consisting of H, OH, C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl groups, C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl based ester groups, R'CO₂ groups, OR' groups and COOX groups, wherein R' is selected from the group consisting of C₁-C₃₀ straight, branched chain and cyclic alkyl or aryl groups and X is selected from the group consisting of H, the alkali metals, NH₄ and the C₁-C₄ alkyl ammonium groups, R_3 and R_4 are individually and respectively selected from the group consisting of H, C₁-C₃₀ straight, branched chain and cyclic alkyl or aryl groups, R₅, R₆, R₁₀ and R₁₁ are individually and respectively selected from the group consisting of H, the alkali metals, NH₄ and the C₁-C₄ alkyl ammonium groups, Y is selected from the group consisting of Fe, Mn, Mg, Zn, Cu, Ni, Co, Mo, V and Ca, and R₈ and R₉ are individually and respectively selected from the group consisting of nothing (i.e., the groups are non-existent), CH₂, C₂H₄, and C₃H₆, each of said moieties having or being modified to have a total of two COO groups therein, and said polymer in its polymerized form being at least partially ethylenically saturated.

- 2. (Withdrawn) The method of claim 1, said polymer being applied at a level of from about 0.001 lbs. to about 100 lbs. polymer per acre of said growing plants.
 - 3. (Withdrawn) The method of claim 1, said polymer being in liquid dispersion.
 - 4. (Withdrawn) The method of claim 1, said polymer being in granular form.
- 5. (Withdrawn) The method of claim 1, said fertilizer being selected from the group consisting of phosphate-based fertilizers, organic wastes, waste waters, fertilizers containing nitrogen, phosphorous, potassium calcium, magnesium, sulfur, boron, or molybdenum materials, fertilizers containing micronutrients, and oxides, sulfates, chlorides, and chelates of such micronutrients.
- 6. (Withdrawn) The method of claim 1, said polymer and fertilizer being coground together.
- 7. (Withdrawn) The method of claim 1, said polymer being applied to the surface of said fertilizer.
- 8. (Withdrawn) The method of claim 1, said fertilizer being in the form of particles having an average diameter of from about powder size to about 10 cm.

- 9. (Withdrawn) The method of claim 1, said polymer being present with said fertilizer product at a level of from about 0.001 g to about 20 g polymer per 100 g fertilizer.
- 10. (Withdrawn) The method of claim 1, said polymer being complexed with an ion.
- 11. (Withdrawn) The method of claim 10, said ion being selected from the group consisting of Fe, Mn, Mg, Zn, Cu, Ni, Co, Mo, V and Ca.
- 12. (Withdrawn) The method of claim 1, said polymer being applied at a rate of at least 5 ppm.
- 13. (Withdrawn) The method of claim 1, said composition substantially coating the surface of said seeds.
- 14. (Withdrawn) A method of decreasing fertilizer dust comprising the step of coating fertilizer with a composition comprising a fertilizer product and a substantially water-soluble dicarboxylic acid polymer having recurring polymeric subunits each made up of at least two different moieties individually and respectively taken from the group consisting of B and C moieties, or recurring C moieties, wherein moiety B is of the general formula

and moiety C is of the general formula

wherein each R₇ is individually and respectively selected from the group consisting of H, OH, C₁-C₃₀ straight, branched chain and cyclic alkyl or aryl groups, C₁-C₃₀ straight, branched chain and cyclic alkyl or aryl based ester groups, R'CO₂ groups, OR' groups and COOX groups, wherein R' is selected from the group consisting of C₁-C₃₀ straight, branched chain and cyclic alkyl or aryl groups and X is selected from the group consisting of H, the alkali metals, NH₄ and the C₁-C₄ alkyl ammonium groups, R₃ and R₄ are individually and respectively selected from the group consisting of H, C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl groups, R_5 , R_6 , R_{10} and R_{11} are individually and respectively selected from the group consisting of H, the alkali metals, NH₄ and the C₁-C₄ alkyl ammonium groups, Y is selected from the group consisting of Fe, Mn, Mg, Zn, Cu, Ni, Co, Mo, V and Ca, and R₈ and R₉ are individually and respectively selected from the group consisting of nothing (i.e., the groups are non-existent), CH_2 , C_2H_4 , and C_3H_6 , each of said moieties having or being modified to have a total of two COO groups therein, and said polymer in its polymerized form being at least partially ethylenically saturated.

product and a substantially water-soluble dicarboxylic acid polymer having recurring polymeric subunits each made up of at least two different moieties individually and respectively taken from the group consisting of B and C moieties, or recurring C moieties, wherein moiety B is of the general formula

and moiety C is of the general formula

wherein each R_7 is individually and respectively selected from the group consisting of H, OH, C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl groups, C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl based ester groups, $R'CO_2$ groups, OR' groups and COOX groups, wherein R' is selected from the group consisting of C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl groups and X is selected from the group consisting of H, the alkali metals, NH_4 and the C_1 - C_4 alkyl ammonium groups, R_3 and R_4 are individually and respectively selected from the group consisting of H, C_1 - C_{30} straight, branched chain and cyclic alkyl or aryl groups, R_5 , R_6 , R_{10} and R_{11} are individually and respectively selected from the group consisting of H, the alkali

metals, NH_4 and the C_1 - C_4 alkyl ammonium groups, Y is selected from the group consisting of Fe, Mn, Mg, Zn, Cu, Ni, Co, Mo, V and Ca, and R_8 and R_9 are individually and respectively selected from the group consisting of nothing (i.e., the groups are non-existent), CH_2 , C_2H_4 , and C_3H_6 , each of said moieties having or being modified to have a total of two COO groups therein, and said polymer in its polymerized form being at least partially ethylenically saturated.

- 16. (Original) The composition of claim 15, wherein R_3 - R_4 are respectively and individually selected from the group consisting of H, OH and C_1 - C_4 straight and branched chain alkyl groups, R_5 , R_6 and X are individually and respectively selected from the group consisting of the alkali metals.
- 17. (Original) The composition of claim 15, said polymer being complexed with an ion.
- 18. (Original) The composition of claim 17, said ion being selected from the group consisting of Fe, Mn, Mg, Zn, Cu, Ni, Co, Mo, V and Ca.
- 19. (Original) The composition of claim 15, said polymer being in a form selected from the group consisting of a liquid dispersion or a granular form.

- 20. (Original) The composition of claim 15, said fertilizer being selected from the group consisting of phosphate-based fertilizers, organic wastes, waste waters, fertilizers containing nitrogen, phosphorous, potassium calcium, magnesium, sulfur, boron, or molybdenum materials, fertilizers containing micronutrients, and oxides, sulfates, chlorides, and chelates of such micronutrients.
- 21. (Original) The composition of claim 15, said polymer and fertilizer being coground together.
- 22. (Original) The composition of claim 15, said polymer being applied to the surface of said fertilizer.
- 23. (Original) The composition of claim 15, said fertilizer being in the form of particles having an average diameter of from about powder size to about 10 cm.
- 24. (Original) The composition of claim 15, said polymer being present with said fertilizer product at a level of from about 0.001 g to about 20 g polymer per 100 g fertilizer.
- 25. (Original) The composition of claim 15, said polymer being applied at a rate of at least 5 ppm.