Model Question Paper-1 with effect from 2019-20 (CBCS Scheme)

USN										
-----	--	--	--	--	--	--	--	--	--	--

Third Semester B.E.Degree Examination Transform Calculus, Fourier Series and Numerical Techniques

(Common to all Programmes)

Time: 3 Hrs Max.Marks: 100

Note: Answer any FIVE full questions, choosing at least ONE question from each module.

Module-1

1. (a) Find the Laplace transform of (i) $\sqrt{e^{4(t+3)}} + e^{-2t} \sin 3t$ (ii) $te^{-3t} \sin 4t$ (iii) $(1 - \cos t)/t$ (10 Marks)

(b) The square wave function f(t) with period "a" is defined by $f(t) = \begin{cases} E, & 0 \le t < a/2 \\ -E, & a/2 \le t < a. \end{cases}$

Show that $L\{f(t)\} = (E/s)\tanh(as/4)$.

(05 Marks)

(c) Employ Laplace transform to solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} - 4y = 2e^{-x}$, y(0) = 1 = y'(0).

(05 Marks)

(05 Marks)

OR

2. (a) Find (i) $L^{-1}\left\{\frac{3s+2}{s^2-s-2}\right\}$ (ii) $L^{-1}\left\{(s+5)/(s^2-6s+13)\right\}$ (iii) $L^{-1}\left[\cot^{-1}\left\{s/a\right\}\right]$ (10 Marks)

(b) Express $f(t) = \begin{cases} 1, & 0 \le t \le 1 \\ t, & t > 1 \end{cases}$ in terms Heaviside's unit step function and hence find its

t, t > 1 Laplace transform.

(c) Find the inverse Laplace transform of $\frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$, using convolution theorem. (05 Marks)

Module-2

3. (a) Find the Fourier series expansion of $f(x) = \frac{\pi^2}{12} - \frac{x^2}{4}$ in $-\pi \le x \le \pi$. Hence deduce that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}.$$
 (07 Marks)

(b) Find the half-range cosine series of $f(x) = (x+1)^2$ the interval $0 \le x \le 1$.

(06 Marks)

(c) Obtain the Fourier series of $f(x) = \begin{cases} l - x, & \text{for } 0 \le x \le l \\ 0, & \text{for } l \le x \le 2l \end{cases}$ Hence deduce that

$$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

Page 1 of 3

(07 Marks)

OR

4. (a) The displacement y (in cms) of a machine part occurs due to the rotation of x radians is given below:

Rotation <i>x</i> (in radians)	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
Displacement y (in cms)	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Expand y in terms of Fourier series up to second harmonics.

(07 Marks)

(b) Find the half-range sine series of e^x the interval $0 \le x \le 1$.

(06 Marks)

(c) Find the Fourier series expansion of f(x) = |x| in $-\pi \le x \le \pi$. Hence deduce that

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}.$$

(07 Marks)

Module-3

5. (a) If $f(x) = \begin{cases} 1 - x^2, & \text{for } |x| \le 1 \\ 0, & \text{for } |x| > 1 \end{cases}$, find the infinite Fourier transform of f(x) and hence evaluate

$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \frac{x}{2} dx$$

(07 Marks)

(b) Find the Fourier cosine transform of $f(x) = e^{-2x} + 4e^{-3x}$

(06 Marks)

(c) Solve: $u_{n+2} - 3u_{n+1} + 2u_n = 2^n$, given $u_0 = 0$, $u_1 = 1$ by using z-transforms.

(07 Marks)

OR

6. (a) Find the Fourier sine transform of $e^{-|x|}$. Hence show that $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}, m. > 0.$

(07 Marks)

(b) Find the z-transform of $\cos[n\pi/2 + \pi/4]$

(06 Marks)

(c) Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$

(07 Marks)

Module-4

7. (a) Solve $\frac{dy}{dx} = e^x - y$, y(0) = 1 using Taylor's series method considering up to fourth degree terms and, find the value of y(0.1).

(07 Marks)

(b) Use Runge - Kutta method of fourth order to solve $(x + y)\frac{dy}{dx} = 1$, y(0.4) = 1, to find y(0.5). (Take h = 0.1).

(06 Marks)

Page 2 of 3

(c) Given that
$$\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$$
 and $y(1) = 1$, $y(1.1) = 0.9960$, $y(1.2) = 0.9860$, & $y(1.3) = 0.9720$ find $y(1.4)$, using Adam-Bashforth predictor-corrector method. (07 Marks)

8. (a) Solve the differential equation $\frac{dy}{dx} = x\sqrt{y}$ under the initial condition y(1) = 1, by using modified Euler's method at the point x = 1.4. Perform three iterations at each step, taking h = 0.2.

(07 Marks)

(b) Use fourth order Runge - Kutta method, to find y(0.1) with h = 0.1, given

$$\frac{dy}{dx} + y + xy^2 = 0, y(0) = 1,$$
 (06 Marks)

(c) Apply Milne's predictor-corrector formulae to compute y(0.3) given, $\frac{dy}{dx} = x + y^2$ with **(07 Marks)**

х	0.0	0.1	0.2	0.3
у	1.0000	1.1000	1.2310	1.4020

9. (a) Solve $\frac{d^2y}{dx^2} - x^2 \frac{dy}{dx} - 2xy = 1$, for x = 0.1, correct to four decimal places, using initial conditions y(0) = 1, y'(0) = 0, using Runge - Kutta method,

(07 Marks)

(b) Find the extremal of the functional $\int_{0}^{1} (y'^2 - y^2 - y) e^{2x} dx$, that passes through the points

(0,0) and (1,1/e). **(06 Marks)**

(c) A heavy cable hangs freely under gravity at two fixed points. Show that the shape of the cable is catenary.

(07 Marks)

OR

10. (a) Apply Milne's predictor-corrector method to compute y(0.4) given the differential equation $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$ and the following table of initial values:

(07 Marks)

х	0	0.1	0.2	0.3
у	1	1.1103	1.2427	1.3990
y'	1	1.2103	1.4427	1.6990

(b) Derive Euler's equation in the standard form viz., $\frac{\partial f}{\partial y} - \frac{d}{dx} \left[\frac{\partial f}{\partial y'} \right] = 0$ **(06 Marks)**

(c) Find the extremal for the functional $\int_{0}^{\pi/2} (y^2 - y'^2 - 2y \sin x) dx$; y(0) = 0, $y(\pi/2) = 1$. (07 Marks)