Probabilistic tools for improving deep learning models

Dmitry P. Vetrov
Research professor at HSE, Lab lead in SAIC-Moscow
Head of BayesGroup

http://bayesgroup.ru

Outline

- Introductory remarks
- Implicit Jeffreys Auto-encoder
- Implicit Metropolis-Hastings algorithm
- Ensembles for uncertainty estimation

Modeling of probabilistic distributions

- In many ML applications we need to model or samplers for complicated distributions
- **Density-based setting.** The distribution is given in explicit form with unknown normalization constant

$$p(x) = \frac{1}{Z}\hat{p}(x)$$

• Example: Bayesian DNN

$$p(w|X,T) = \frac{p(T|X,w)p(w)}{\int p(T|X,w)p(w)dw}$$

• The dimension of w is huge and p(w|X,T) has exponentially many modes

Modeling of probabilistic distributions

- In many ML applications we need to models or samplers for complicated distributions
- Samlple-based setting. The distribution is given in implicit form as set of samples generated from it

$$(x_1,\ldots,x_n)\sim p(x),\quad x\in\mathcal{X}$$

- Example: Generative adversarial network, variational auto-encoder
- The space \mathcal{X} usually is very complex, e.g. pictures, music, molecules, etc.

KL-divergence

• A good mismatch measure between two distributions over **the same** domain

$$KL(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx = \mathbb{E}_q \log \frac{q(x)}{p(x)} \ge 0$$

• Information-theoretic interpretation

$$\mathtt{KL} = \mathtt{CrossEntropy} - \mathtt{Entropy}$$

• If we minimize KL(q||p) w.r.t. q(.) the approximation should be good where q(x) has large values

KL-divergence

• A good mismatch measure between two distributions over **the same** domain

$$KL(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx = \mathbb{E}_q \log \frac{q(x)}{p(x)} \ge 0$$

• Information-theoretic interpretation

$$\mathtt{KL} = \mathtt{CrossEntropy} - \mathtt{Entropy}$$

• If we minimize KL(q||p) w.r.t. q(.) the approximation should be good where q(x) has large values

KL-divergence

• A good mismatch measure between two distributions over **the same domain**

$$KL(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx = \mathbb{E}_q \log \frac{q(x)}{p(x)} \ge 0$$

• Information-theoretic interpretation

$$KL = CrossEntropy - Entropy$$

• If we minimize KL(p||q) w.r.t. q(.) the approximation should be good where p(x) has large values

GAN

- We are given set of objects x_i from p(x)
- We have generator $G_{\theta}(\xi)$, $\xi \sim \mathcal{N}(0, I)$, that induces distribution q(x)
- We train discriminator to distinguish between real and synthetic objects

$$D_{\eta}(x): \mathbb{E}_{p(x)} \log D_{\eta}(x) + \mathbb{E}_{\xi} \log(1 - D_{\eta}(G_{\theta}(\xi))) \to \max_{\eta}$$

• Optimal discriminator

$$D_*(x) = \frac{p(x)}{q(x)}$$

• Generator is trained to cheat discriminator

$$G_{\theta}(\xi) : \mathbb{E}_{\xi} \log(1 - D_{\eta}(G_{\theta}(\xi))) \to \min_{\theta}$$

GAN

- We are given set of objects x_i from p(x)
- We have generator $G_{\theta}(\xi)$, $\xi \sim \mathcal{N}(0, I)$, that induces distribution q(x)
- We train discriminator to distinguish between real and synthetic objects

$$D_{\eta}(x): \mathbb{E}_{p(x)} \log D_{\eta}(x) + \mathbb{E}_{\xi} \log(1 - D_{\eta}(G_{\theta}(\xi))) \to \max_{\eta}$$

• Optimal discriminator

$$D_*(x) = \frac{p(x)}{q(x)}$$

• Better gradients (heuristic!)

$$G_{\theta}(\xi) : -\mathbb{E}_{\xi} \log(D_{\eta}(G_{\theta}(\xi))) \to \min_{\theta}$$

GAN

- We are given set of objects x_i from p(x)
- We have generator $G_{\theta}(\xi)$, $\xi \sim \mathcal{N}(0, I)$, that induces distribution q(x)
- We train discriminator to distinguish between real and synthetic objects

$$D_{\eta}(x): \mathbb{E}_{p(x)} \log D_{\eta}(x) + \mathbb{E}_{\xi} \log(1 - D_{\eta}(G_{\theta}(\xi))) \to \max_{\eta}$$

• Optimal discriminator

$$D_*(x) = \frac{p(x)}{q(x)}$$

• If we sum the two

$$G_{\theta}(\xi) : \mathbb{E}_{\xi} \log(1 - D_{\eta}(G_{\theta}(\xi))) - \mathbb{E}_{\xi} \log(D_{\eta}(G_{\theta}(\xi))) \to \min_{\theta}$$

• Then assuming the optimal $D_*(x)$ we may show that

$$\theta = \arg\min KL(q(x)||p(x))$$

VAE

- Variational auto-encoder maximizes so-called Evidence Lower BOund (ELBO)
- This is lower bound on

$$\mathbb{E}_{p(x)}\log q_{\theta}(x),$$

where $q_{\theta}(x)$ is a distribution induced by VAE

• We may easily show

$$\arg \max_{\theta} \mathbb{E}_{p(x)} \log q_{\theta}(x) = \arg \max_{\theta} \mathbb{E}_{p(x)} \left[\log q_{\theta}(x) - \log p(x) \right] =$$

$$\arg \min_{\theta} \mathbb{E}_{p(x)} \log \frac{p(x)}{q_{\theta}(x)} = \arg \min_{\theta} KL(p(x)||q_{\theta}(x))$$

• VAE always covers the whole dataset

Pros and cons

VAE

- Reconstruction term
- Learned latent representations
- Unrealistic explicit likelihood of decoder

GAN

- More realistic implicit likelihood
- No covering of training data

Taking the best of the two worlds

- Implicit encoder $z = E_{\phi}(x, \xi) \sim q_{\phi}(z|x)$, where $\xi \sim \mathcal{N}(0, I)$
- Implicit generator (decoder) $\hat{x} = G_{\theta}(z)$
- Objective for generator

$$(1 - \lambda)\mathbb{E}_{p(z)}\log\frac{D_{\tau}(G_{\theta}(z))}{1 - D_{\tau}(G_{\theta}(z))} + \lambda\mathbb{E}_{p(x)}\mathbb{E}_{q(z|x)}\frac{1 - D_{\psi}(x, z, G_{\theta}(z))}{D_{\psi}(x, z, G_{\theta}(z))}$$

Taking the best of the two worlds

- Implicit encoder $z = E_{\phi}(x, \xi) \sim q_{\phi}(z|x)$, where $\xi \sim \mathcal{N}(0, I)$
- Implicit generator (decoder) $\hat{x} = G_{\theta}(z)$
- Objective for generator

$$(1 - \lambda) \mathbb{E}_{p(z)} \log \frac{D_{\tau}(G_{\theta}(z))}{1 - D_{\tau}(G_{\theta}(z))} + \lambda \mathbb{E}_{p(x)} \mathbb{E}_{q(z|x)} \frac{1 - D_{\psi}(x, z, G_{\theta}(z))}{D_{\psi}(x, z, G_{\theta}(z))}$$

GAN objective – ensures realistic quality of generated samples

Implicit reconstruction term – ensures coverage of the whole dataset

Results

Method	Generation Quality IS↑	Reconstruction Quality LPIPS ↓		
CIFAR 10				
WAE (Tolstikhin et al., 2017)	4.18 ± 0.04			
ALI (Dumoulin et al., 2017))	5.34 ± 0.04			
ALICE (Li et al., 2017)	6.02 ± 0.03			
AS-VAE (Pu et al., 2017b)	6.3			
VAE (resnet)	3.45 ± 0.02	0.09 ± 0.03		
2Stage-VAE (Dai & Wipf, 2019)	3.85 ± 0.03	0.06 ± 0.03		
α -GAN (Rosca et al., 2017)	5.20 ± 0.08	0.04 ± 0.02		
AGE (Ulyanov et al., 2018)	5.90 ± 0.04	0.06 ± 0.02		
SVAE (Chen et al., 2018)	6.56 ± 0.07	0.19 ± 0.08		
λ -IJAE $(\lambda = 0.3)$	6.98 ± 0.1	0.07 ± 0.03		
TinyImagenet				
AGE (Ulyanov et al., 2018)	6.75 ± 0.09	0.27 ± 0.09		
SVAE (Chen et al., 2018)	5.09 ± 0.05	0.28 ± 0.08		
2Stage-VAE (Dai & Wipf, 2019)	4.22 ± 0.05	0.09 ± 0.05		
λ -IJAE ($\lambda = 0.3$)	6.87 ± 0.09	0.09 ± 0.03		

Main approximate inference tools

Variational inference

- Approximates intractable true posterior with a tractable variational distribution
- Typically KL-divergence is minimized
- Can be scaled up by stochastic optimization

Markov Chain Monte Carlo

- Generates samples from the true posterior
- No bias even if the true distribution is intractable
- Quite slow in practice
- Problematic scaling to large data

Metropolis-Hastings algorithm

- Suppose we want to sample from (un-normalized) distribution $\hat{p}(x)$
- Establish so-called **proposal distribution** q(y) that is easy to sample from
- Generate sequence of points y_1, \ldots, y_n, \ldots from q(y) and form a chain x_1, \ldots, x_n, \ldots as follows

$$x_n = \begin{cases} y_n, & \text{with probability } A = \min\left(1, \frac{\hat{p}(y_n)q(x_{n-1})}{q(y_n)\hat{p}(x_{n-1})}\right) \\ x_{n-1}, & \text{otherwise} \end{cases}$$

• Extendable for the case when proposal distribution depends on the current point $q(y|x_{n-1})$

Metropolis-Hastings algorithm

• Generate sequence of points y_1, \ldots, y_n, \ldots from q(y) and form a chain x_1, \ldots, x_n, \ldots as follows

$$x_n = \begin{cases} y_n, & \text{with probability } A = \min\left(1, \frac{\hat{p}(y_n)q(x_{n-1})}{q(y_n)\hat{p}(x_{n-1})}\right) \\ x_{n-1}, & \text{otherwise} \end{cases}$$

- The scheme is efficient when the number of rejections of y_n is small
- Let us try to maximize **acceptance rate** in MH algorithm w.r.t. the parameters θ of proposal distribution $q_{\theta}(y)$

Metropolis-Hastings algorithm

• Generate sequence of points y_1, \ldots, y_n, \ldots from q(y) and form a chain x_1, \ldots, x_n, \ldots as follows

$$x_n = \begin{cases} y_n, & \text{with probability } A = \min\left(1, \frac{\hat{p}(y_n)q(x_{n-1})}{q(y_n)\hat{p}(x_{n-1})}\right) \\ x_{n-1}, & \text{otherwise} \end{cases}$$

- The scheme is efficient when the number of rejections of y_n is small
- Let us try to maximize **acceptance rate** in MH algorithm w.r.t. the parameters θ of proposal distribution $q_{\theta}(y)$

$$AR = \int p(x)q_{\theta}(y) \min\left(1, \frac{\hat{p}(y)q_{\theta}(x)}{q_{\theta}(y)\hat{p}(x)}\right) dydx$$

$$AR = \int p(x)q_{\theta}(y) \min\left(1, \frac{q_{\theta}(y)\hat{p}(x)}{\hat{p}(y)q_{\theta}(x)}\right) dydx$$

$$AR = \int p(x)q_{\theta}(y) \min\left(1, \frac{q_{\theta}(y)\hat{p}(x)}{\hat{p}(y)q_{\theta}(x)}\right) dydx =$$

$$= 1 - \text{TV}(p(x)q_{\theta}(y)||q_{\theta}(x)p(y))$$

$$AR = \int p(x)q_{\theta}(y) \min\left(1, \frac{q_{\theta}(y)\hat{p}(x)}{\hat{p}(y)q_{\theta}(x)}\right) dydx =$$

$$= 1 - \text{TV}(p(x)q_{\theta}(y)||q_{\theta}(x)p(y)) \ge 1 - \sqrt{\frac{1}{2}KL(p(x)q_{\theta}(y)||q_{\theta}(x)p(y))}$$

$$AR = \int p(x)q_{\theta}(y) \min\left(1, \frac{q_{\theta}(y)\hat{p}(x)}{\hat{p}(y)q_{\theta}(x)}\right) dydx =$$

$$= 1 - \text{TV}(p(x)q_{\theta}(y)||q_{\theta}(y)p(x)) \ge 1 - \sqrt{\frac{1}{2}KL(p(x)q_{\theta}(y)||q_{\theta}(y)p(x))} \ge$$

$$\ge 1 - \sqrt{\frac{1}{2}\left(KL(p(x)||q_{\theta}(x)) + KL(q_{\theta}(y)||p(y))\right)}$$

Let us try to maximize **acceptance rate** in MH algorithm w.r.t. the parameters θ of proposal distribution $q_{\theta}(y)$

$$AR = \int p(x)q_{\theta}(y) \min\left(1, \frac{q_{\theta}(y)\hat{p}(x)}{\hat{p}(y)q_{\theta}(x)}\right) dy dx =$$

$$= 1 - \text{TV}(p(x)q_{\theta}(y)||q_{\theta}(x)p(y)) \ge 1 - \sqrt{\frac{1}{2}KL(p(x)q_{\theta}(y)||q_{\theta}(x)p(y))} \ge$$

$$\ge 1 - \sqrt{\frac{1}{2}(KL(p(x)||q_{\theta}(x)) + KL(q_{\theta}(y)||p(y)))}$$

Maximization of acceptance rate in MH algorithm is equivalent to minimization of Jeffreys divergence!

$$KL(p||q_{\theta}) + KL(q_{\theta}||p) \to \min_{\theta}$$

Results on toy problem

Implicit setting

- Now consider the case when we're given only a set of samples (x_1, \ldots, x_n) from the distribution p(x)
- Let us try to use **implicit proposal** q(y), where $y = G_{\theta}(\xi)$, and $\xi \sim \mathcal{N}(0, I)$
- In MH algorithm the probability of acceptance $A = \min \left(1, \frac{q(y_n)\hat{p}(x_{n-1})}{\hat{p}(y_n)q(x_{n-1})}\right)$ is given by **density ratios**

Implicit setting

- Now consider the case when we're given only a set of samples (x_1, \ldots, x_n) from the distribution p(x)
- Let us try to use **implicit proposal** q(y), where $y = G_{\theta}(\xi)$, and $\xi \sim \mathcal{N}(0, I)$
- In MH algorithm the probability of acceptance $A = \min \left(1, \frac{q(y_n)\hat{p}(x_{n-1})}{\hat{p}(y_n)q(x_{n-1})}\right)$ is given by **density ratios**
- ullet To get density ratios we may train discriminator to distinguish between x and y
- The optimal discriminator yields

$$D_*(x) = \frac{p(x)}{p(x) + q(x)}$$
, i.e. $\frac{p(x)}{q(x)} = \frac{D_*(x)}{1 - D_*(x)}$

- In MH algorithm the probability of acceptance $A = \min \left(1, \frac{q(y_n)p(x_{n-1})}{p(y_n)q(x_{n-1})}\right)$ is given by **density ratios**
- The optimal discriminator yields

$$D_*(x) = \frac{p(x)}{p(x) + q(x)}$$
, i.e. $\frac{p(x)}{q(x)} = \frac{D_*(x)}{1 - D_*(x)}$

- In MH algorithm the probability of acceptance $A = \min\left(1, \frac{q(y_n)p(x_{n-1})}{p(y_n)q(x_{n-1})}\right)$ is given by **density ratios**
- The optimal discriminator yields

$$D_*(x) = \frac{p(x)}{p(x) + q(x)}$$
, i.e. $\frac{p(x)}{q(x)} = \frac{D_*(x)}{1 - D_*(x)}$

• Remember acceptance rate is lower bounded by

$$-KL(p(x)q(y)||p(y)q(x)) = -\int p(x)q(y)\log\left[\left(\frac{p(x)}{q(x)}\right)\left(\frac{q(y)}{p(y)}\right)\right]dydx$$

- In MH algorithm the probability of acceptance $A = \min\left(1, \frac{q(y_n)p(x_{n-1})}{p(y_n)q(x_{n-1})}\right)$ is given by **density ratios**
- The optimal discriminator yields

$$D_*(x) = \frac{p(x)}{p(x) + q(x)}$$
, i.e. $\frac{p(x)}{q(x)} = \frac{D_*(x)}{1 - D_*(x)}$

• Remember acceptance rate is lower bounded by

$$-KL(p(x)q(y)||p(y)q(x)) = -\int p(x)q(y)\log\left[\left(\frac{p(x)}{q(x)}\right)\left(\frac{q(y)}{p(y)}\right)\right]dydx$$

• Using the fact that $y = G_{\theta}(\xi)$, $\xi \sim r(\xi)$ we may rewrite the lower bound

$$-\int p(x)r(\xi)\log\left[\left(\frac{D_*(x)}{1-D_*(x)}\right)\left(\frac{D_*(G_\theta(\xi))}{1-D_*(G_\theta(\xi))}\right)\right]d\xi dx \to \min_{\theta}$$

• Using the fact that $y = G_{\theta}(\xi)$, $\xi \sim r(\xi)$ we may rewrite the lower bound

$$-\int p(x)r(\xi)\log\left[\left(\frac{D_*(x)}{1-D_*(x)}\right)\left(\frac{D_*(G_\theta(\xi))}{1-D_*(G_\theta(\xi))}\right)\right]d\xi dx \to \min_{\theta}$$

• Using the fact that $y = G_{\theta}(\xi)$, $\xi \sim r(\xi)$ we may rewrite the lower bound

$$-\int p(x)r(\xi)\log\left[\left(\frac{D_*(x)}{1-D_*(x)}\right)\left(\frac{D_*(G_\theta(\xi))}{1-D_*(G_\theta(\xi))}\right)\right]d\xi dx \to \min_{\theta}$$

• Now remove everything that does not depend on θ

$$\mathbb{E}_{\xi} \left[\log D_*(G_{\theta}(\xi)) - \log(1 - D_*(G_{\theta}(\xi))) \right] \to \max_{\theta}$$

• The same objective as in GAN!

MH GAN

Metropolis-Hastings GAN

• Train discriminator and generator

$$\tau = \arg\max\left[\sum_{i=1}^{n} \log D_{\tau}(x_i) + n\mathbb{E}_{\xi} \log(1 - D_{\tau}(G_{\theta}(\xi)))\right]$$

$$\theta = \arg \max \mathbb{E}_{\xi} \left[\log D_{\tau}(G_{\theta}(\xi)) - \log(1 - D_{\tau}(G_{\theta}(\xi))) \right]$$

• Generate new samples (z_1, \ldots, z_m) via filtering procedure

MH GAN

Metropolis-Hastings GAN

• Train discriminator and generator

$$\tau = \arg \max \left[\sum_{i=1}^{n} \log D_{\tau}(x_i) + n \mathbb{E}_{\xi} \log(1 - D_{\tau}(G_{\theta}(\xi))) \right]$$

$$\theta = \arg \max \mathbb{E}_{\xi} \left[\log D_{\tau}(G_{\theta}(\xi)) - \log(1 - D_{\tau}(G_{\theta}(\xi))) \right]$$

- Generate new samples (z_1, \ldots, z_m) via filtering procedure
- First generate (y_1, \ldots, y_m) from $G(\xi)$, then set

$$z_k = \begin{cases} y_k, & \text{with probability} \quad A = \min\left(1, \frac{D_{\tau}(y_k)(1 - D_{\tau}(z_{k-1}))}{D_{\tau}(z_{k-1})(1 - D_{\tau}(y_k))}\right) \\ z_{k-1}, & \text{otherwise} \end{cases}$$

MH GAN

Table 3: Comparison of sampling using the MH algorithm and using the generator for different models. Low FID and high IS are better. For a single evaluation of metrics on CIFAR-10 and CelebA datasets, we use 10k samples, and on ImageNet, we use 50k samples. Then we average all the values across 5 independent runs. See the description of models in the text.

		DCGAN		WPGAN		ARLB		BigGAN-100k	BigGAN-138k
		CIFAR-10	CelebA	CIFAR-10	CelebA	CIFAR-10	CelebA	ImageNet	ImageNet
FID	Generator	49.06 ± 0.34	14.91 ± 0.16	47.38 ± 0.21	39.09 ± 0.33	46.55 ± 0.21	17.25 ± 0.07	11.74 ± 0.06	9.92 ± 0.06
	MH(ours)	46.12 ± 0.29	12.70 ± 0.13	36.65 ± 0.28	25.41 ± 0.28	45.71 ± 0.46	16.57 ± 0.16	10.80 ± 0.04	9.52 ± 0.04
IS	Generator	3.64 ± 0.02	2.51 ± 0.01	3.52 ± 0.02	2.05 ± 0.01	3.59 ± 0.01	2.38 ± 0.02	74.03 ± 0.74	97.73 ± 0.55
	MH(ours)	3.86 ± 0.06	2.73 ± 0.01	4.02 ± 0.03	2.54 ± 0.01	3.72 ± 0.04	2.47 ± 0.01	82.10 ± 0.56	105.62 ± 0.74

Acceptance rate is about 10%

Only unique objects were used for evaluating the metrics

Uncertainty estimation

- Modern deep neural networks are highly over-confident even when they are wrong
- The obvious way to improve their uncertainty estimation is to use ensembles

$$p(t_*|x_*) = \mathbb{E}_w p(t_*|x_*, w) = \int p(t_*|x_*, w) q(w) dw,$$

but how to get the distribution q(w)?

• Two main strategies: Non-Bayesian and Bayesian

Non-Bayesian way: deep ensembles

• In Non-Bayesian setting we simply K independently trained DNNs

$$q(w) = \frac{1}{K} \sum_{k=1}^{K} \delta(w - w^k)$$

- Requires K times more computational time
- Requires K times more memory

Bayesian way: inferring posterior

• In Bayesian setting we simply apply Bayes theorem

$$q(w) = \frac{p(T_{train}|X_{train}, w)p(w)}{\int p(T_{train}|X_{train}, w)p(w)dw}$$

- Posterior is extremely complicated
- Exact inference is far from being tractable
- We can come up with approximations using computationally efficient stochastic variational inference tools

Exponential number of symmetries

- There is exponential number of equivalent solutions due to huge overparameterization
- Maybe they are just reflections of single mode?..

Estimation metrics

- Validation log-likelihood
- Brier score
- Misclassification detection
- Threshold-based rejection
- Calibration metrics

Estimation metrics

- Validation log-likelihood requires temperature scaling
- Brier score correlated with previous metric
- Misclassification detection cannot compare different tools for UE
- Threshold-based rejection cannot compare different tools for UE
- Calibration metrics gives different answers depending on the choice of hyperparameters

Temperature scaling

- After training is finished we need to recalibrate the output probabilities $\hat{p}(t|x) = \operatorname{softmax}(logit_1(x), \dots, logit_L(x))$
- We set temperature τ and recompute probabilities as follows

$$p(t|x) = \operatorname{softmax}\left(\frac{1}{\tau}logit_1(x), \dots, \frac{1}{\tau}logit_L(x)\right)$$

• Temperature is adjusted to maximize likelihood on validation set

$$\tau = \arg\max p(T_{val}|X_{val})$$

- We use 2-fold cross-validation to remove bias
- Even if all networks are calibrated we need to perform additional calibration after ensembling

Experiment design

We focus on in-domain uncertainty and explore most successful techniques for building ensembles

- Deep ensembles
- Snapshot ensembles (SSE)
- Cyclic SGLD (CSGLD)
- Fast geometric ensembling (FGE)
- SWA-gaussian (SWAG)
- VI with gaussian (FFG VI)
- Dropout
- Test time data augmentation

Covers multiple modes

Covers single mode

Deep ensemble equivalent

- We measure the quality of UE using calibrated log-likelihood (CLL) on validation set
- To compare different ensembling techniques we establish **deep ensemble** equivalent

$$\mathrm{DEE}_m(k) = \min \left\{ l \in \mathbb{R}, l \ge 1 \,\middle|\, \mathrm{CLL}_{DE}^{\mathrm{mean}}(l) \ge \mathrm{CLL}_{m}^{\mathrm{mean}}(k) \right\}$$

ullet That is how many samples from deep ensemble provide us the same UE as k samples from ensemble m

Deep ensemble equivalent

- We measure the quality of UE using calibrated log-likelihood (CLL) on validation set
- To compare different ensembling techniques we establish **deep ensemble equivalent**

$$\mathrm{DEE}_m(k) = \min \left\{ l \in \mathbb{R}, l \ge 1 \,\middle|\, \mathrm{CLL}_{DE}^{\mathrm{mean}}(l) \ge \mathrm{CLL}_{m}^{\mathrm{mean}}(k) \right\}$$

- ullet That is how many samples from deep ensemble provide us the same UE as k samples from ensemble m
- \bullet Empirical study of VGG16, PreResNet110/164, WideResNet28x10 on CIFAR10/100 dataset
- Empirical study of ResNet50 on ImageNet
- Several thousands of different DNNs trained!

Test time data augmentation

Model	cSGLD	Deep ensemble	FGE	K-FAC-L
ResNet110	0.115 vs 0.1111	0.106 vs 0.105↓	0.121 vs 0.121≈	0.147 vs 0.130↓
ResNet164	0.110 vs 0.1081	0.100 vs 0.100≈	0.115 vs 0.115≈	0.142 vs 0.1271
VGG16	0.147 vs 0.1461	0.138 vs 0.139	0.150 vs 0.150≈	0.200 vs 0.1641
WideResNet	0.099 vs 0.100	0.090 vs 0.094	0.102 vs 0.102≈	0.120 vs 0.1111

Single model	SSE	SWAG	FFG VI	Dropout
0.150 vs 0.1291	0.106 vs 0.106≈	0.126 vs 0.126↓	0.142 vs 0.130↓	
0.144 vs 0.1241	0.104 vs 0.104≈	0.116 vs 0.116≈	0.141 vs 0.1281	
0.229 vs 0.1701	0.137 vs 0.138 [†]	0.152 vs 0.152≈	0.184 vs 0.1601	0.226 vs 0.1711
0.124 vs 0.1131		0.101 vs 0.101≈	0.117 vs 0.117≈	0.118 vs 0.1111

Table 1: Negative calibrated log-likelihood for CIFAR10, w/o vs with test-time data augmentation.

Data augmentation surprisingly helps to almost all ensembling tools

Results

Results

- Deep ensembles are far beyond all analogues given time budget
- Global methods are better than local
- Cannot do good ensembling without memory costs
- Similar conclusions for out-domain UE independently reported by Google