Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français
Semestre	Printemps
Mode d'évaluation	Examen oral
Session	Juillet
Format de l'enseignment	Cours, exercices

Cursus	Туре	ECTS
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Maîtrise universitaire en mathématiques	N/A	6.0
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0

Algèbres de Hopf

14M169 | Rinat Mavlyavievich Kashaev

Objectifs

ILobjectif de ce cours est de développer les notions de base de la théorie dalgèbres de Hopf. Etant un complément à la théorie des groupes, le cours sera particulièrement utile en topologie quantique, physique mathématique, physique théorique.

Description

Groupes et algèbres de Hopf; Algèbres, cogèbres, bigèbres; Lalgèbre de convolution; Le dual restreint dune algèbre; Le double quantique; Equation de Yang - Baxter.