Counting structures on the $n \times k$ grid graph

Peter Kagey

University of Southern California

Graduate Student Combinatorics Conference
April 2019

Commodore 64 (1/3)

Commodore 64 (2/3)

Commodore 64 (3/3)

Javascript

Javascript

Counting grids

Figure 1: An illustration of the bijection between tiles with diagonal markings and tiles with quarter circles in opposite corners.

A295229: Number of tilings of the $n \times n$ grid, using diagonal lines to connect the grid points.

Figure 2: An example of the a(2)=6 different ways to fill the 2×2 grid with diagonal tiles up to dihedral action of the square.

$$a(n) = \begin{cases} \frac{1}{8}(2^{n^2} + 2 \cdot 2^{n(n+1)/2} + 3 \cdot 2^{n^2/2} + 2 \cdot 2^{n^2/4}) & n \text{ even} \\ \frac{1}{8}(2^{n^2} + 2 \cdot 2^{n(n+1)/2} + 2^{(n^2+1)/2}) & n \text{ odd} \end{cases}$$

Other tiles

Figure 3: Eleven box-drawing characters placed on an 15×8 grid

Baby's first corollary

Corollary (of Burnside's Lemma)

Let

- ▶ t be the number of tiles.
- ightharpoonup q be the number of tiles symmetric under a 90° rotation,
- ▶ h be the number of tiles symmetric under a 180° rotation,
- d be the number of tiles symmetric under a diagonal reflection, and
- ▶ v be the number of tiles symmetric under a vertical reflection.

Then the number of tilings up to symmetries of the square is

$$a(n) = \begin{cases} \frac{1}{8} \left(t^{n^2} + 2qt^{\frac{n^2-1}{4}} + ht^{\frac{n^2-1}{2}} + (v^n + d^n)t^{\frac{n^2-n}{2}} \right) & n \text{ odd} \\ \\ \frac{1}{8} \left(t^{n^2} + 3t^{\frac{n^2}{2}} + 2t^{\frac{n^2}{4}} + 2d^nt^{\frac{n^2-n}{2}} \right) & n \text{ even} \end{cases}$$

Pipe Mania

Leaf-free subgraphs of the grid graph

Figure 4: One of the $a_4(12) = 42650154782713601$ (42 quadrillion) subgraphs on the 12×4 grid graph $G_{12,4} = P_{12} \square P_4$.

The number of leaf-free subgraphs of $G_{n,2}$ grid, obeys the recurrence

$$a_2(1) = 1, \ a_2(2) = 2$$

 $a_2(n) = 5a(n-1) - 5a(n-2).$

Leaf-free subgraphs: intermediate states

Figure 5: An example of a leaf-free subgraph with its states labeled

Figure 6: Two examples of transitions from states to their children

Example: A System of Recurrences

The 1×2 grid has initial conditions

$$a_{00}(1) = a_{11}(1) = 1$$

 $a_{10}(1) = a_{01}(1) = a_{12}(1) = a_{21}(1) = a_{22}(1) = 0,$

and satisfies the system of first order homogeneous difference relations

$$\begin{split} a_{00}(n+1) &= a_{00}(n) + a_{22}(n) \\ a_{01}(n+1) &= a_{01}(n) + a_{21}(n) + a_{22}(n) \\ a_{10}(n+1) &= a_{10}(n) + a_{12}(n) + a_{22}(n) \\ a_{11}(n+1) &= a_{00}(n) + a_{11}(n) + a_{12}(n) + a_{21}(n) + 2a_{22}(n) \\ a_{12}(n+1) &= a_{01}(n) + a_{21}(n) + a_{22}(n) \\ a_{21}(n+1) &= a_{10}(n) + a_{12}(n) + a_{22}(n) \\ a_{22}(n+1) &= a_{11}(n) + a_{12}(n) + a_{21}(n) + a_{22}(n). \end{split}$$

A single recurrence from a system of recurrences

Theorem (Corollary of Cayley-Hamilton theorem)

In a system of first order homogeneous linear difference equations,

$$a^{(1)}(n+1) = \alpha_{11}a^{(1)}(n) + \dots + \alpha_{1k}a^{(k)}(n)$$

$$\vdots = \vdots$$

$$a^{(k)}(n+1) = \alpha_{k1}a^{(1)}(n) + \dots + \alpha_{kk}a^{(k)}(n)$$

each equation satisfies the recurrence

$$a^{(i)}(n) = -\beta_{k-1}a^{(i)}(n-1) - \dots - \beta_1a^{(i)}(n-k-1) - \beta_0a^{(i)}(n-k)$$

for n > k where $A = \{\alpha_{ij}\}_{i,j=1}^k$ is the coefficient matrix and

$$m_A(x) = x^k + \beta_{k-1}x^{k-1} + \dots + \beta_1x + \beta_0$$

is the minimal polynomial of A.

A single recurrence from a system of recurrences

$$\underbrace{\begin{bmatrix} a_{00}(n) \\ a_{01}(n) \\ a_{10}(n) \\ a_{11}(n) \\ a_{21}(n) \\ a_{22}(n) \end{bmatrix}}_{\vec{a}(n)} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}^{n-1}}_{\vec{a}(1)}$$

Let $x^k + \beta_{k-1}x^{k-1} + \ldots + \beta_1x + \beta_0$ be the minimal polynomial of A. Then

$$A^{k} = -\beta_{k-1}A^{k-1} - \dots - \beta_{1}A - \beta_{0}$$

$$A^{n-1}\vec{a}(1) = -\beta_{k-1}A^{n-2}\vec{a}(1) - \dots - \beta_{1}A^{n-k}\vec{a}(1) - \beta_{0}A^{n-k-1}\vec{a}(1)$$

$$\vec{a}(n) = -\beta_{k-1}\vec{a}(n-1) - \dots - \beta_{1}\vec{a}(n-k+1) - \beta_{0}\vec{a}(n-k)$$

Some conjectural recurrences

For k=3,4,5, $a_k(n)$ the number of leaf-free subgraphs of the $n\times k$ grid graph is conjectured to satisfy

$$a_3(n) = 12a_3(n-1) - 6a_3(n-2) - 20a_3(n-3) - 5a_3(n-4)$$

$$a_4(n) = 36a_4(n-1)$$
 $-7a_4(n-2)$ $-201a_4(n-3)$
 $+49a_4(n-4)$ $+20a_4(n-5)$ $-5a_4(n-6)$

$$a_5(n) = 103a_5(n-1) + 1063a_5(n-2) - 1873a_5(n-3)$$
$$-20274a_5(n-4) + 44071a_5(n-5) - 10365a_5(n-6)$$
$$-20208a_5(n-7) + 5959a_5(n-8) + 2300a_5(n-9)$$
$$-500a_5(n-10)$$

For k=6, this is the conjectured to be an 18-order recurrence.

Subgraphs which satisfy linear recurrences

Theorem (Faase, 1994)

Let G be an arbitrary finite graph and let H_n denote either the path graph P_n or the cycle graph C_n on n vertices, and let s(n) count the number of subgraphs S of the Cartesian product $G \square H_n$ subject to any combination of the following properties:

- 1. Restrictions on degree
- 2. Connectivity
- 3. Acyclicity

Then s(n) satisfies a linear recurrence.

Examples: subgraphs which satisfy linear recurrences

Let $G_{n,k}$ be a grid graph, then the following classes of subgraphs satisfy linear recurrences:

- ► Leaf-free subgraphs
 - Degree set $D = \{0, 2, 3, 4\}$
- Spanning tree (mazes)
 - Degree set $D = \{1, 2, 3, 4\}$
 - Connected
 - Acyclic

- ► Hamiltonian paths
 - ▶ Degree set $D = \{1, 2\}$
 - Connected
 - Acyclic
- Perfect matchings (domino tilings)
 - $\blacktriangleright \ \, \mathsf{Degree} \,\, \mathsf{set} \,\, D = \{1\}$

Figure 7: A correspondence between mazes and spanning trees

Generalizing domino tilings

More subgraphs which satisfy linear recurrences

Theorem

Let H be a group and X be an arbitrary finite graph upon which H acts. Then let s(n) count the number of subsets of $X \square P_n$ subject to any combination of the following properties:

- 1. Exactly/fewer than/more than m vertices of degree d
- 2. Exactly/fewer than/more than c connected components on exactly/fewer than/more than d vertex.
- 3. An odd/even number of vertices of degree d
- 4. Exactly ℓ connected components
- 5. Fixed by the induced action of $h \in H$

Then s(n) satisfies a linear recurrence.

Corollary

The number of subgraphs of $X \square P_n$ (with appropriate vertex degree, connectivity, or acyclicity restrictions) counted up to the group action of H satisfies a linear recurrence.

Up to horizontal/vertical reflection

The number of no-leaf subgraphs of the $2 \times n$ grid satisfies the two term recurrence

$$a_2(n) = 5a_2(n-1) - 5a_2(n-2).$$

The number of no-leaf subgraphs of the $2\times n$ grid up to horizontal/vertical reflection is conjectured to satisfy the eight term recurrence

$$s(n) = 8s(n-1) - 16s(n-2) - 20s(n-3) + 95s(n-4)$$
$$-60s(n-5) - 80s(n-6) + 100s(n-7) - 25s(n-8)$$

Example: Möbius ladder (Guy, 1967)

Figure 8: The Möbius ladder M_{16} on 16 vertices.

Fact

The number of leaf-free subgraphs on the Möbius ladder on 2n vertices is equal to the number of leaf-free subgraphs on the $(n+2)\times 2$ grid graph.

Cycling around (a generalization of the Möbius ladder)

Theorem

Let G be an arbitrary finite graph with vertex set $V = \{v_1, v_2, \ldots, v_m\}$, and let $E \subseteq V \times V$. Then let H_n be the graph Cartesian product $G \square P_n$ together with the edges $\{((1, v_i), (n, v_j)) : (v_i, v_j) \in E\})$ Next let s(n) count the number of subgraphs of H_n subject to any

Next let s(n) count the number of subgraphs of H_n subject to any combination of the following properties:

- 1. Restrictions on degree
- 2. Connectivity
- 3. Acyclicity

Then s(n) satisfies a linear recurrence.

Note that $E = \{(v_1, v_1), (v_2, v_2), \dots, (v_m, v_m)\}$ recovers $G \square C_n$ and $E = \emptyset$ recovers $G \square P_n$.

More exotic connections

Theorem

Let G be an arbitrary finite graph with vertex set $V = \{v_1, v_2, \dots, v_m\}$, and let $E \subseteq V \times V$. Then let H_n be the disjoint union product $\underbrace{G \sqcup G \sqcup \dots \sqcup G}_{n \text{ times}}$ together with the edges

$$\{((k, v_i), (k+1, v_j)) : (v_i, v_j) \in E, k \in [n-1]\}$$
.

Next let s(n) count the number of subgraphs of H_n subject to any combination of the properties mentioned in the previous theorems. Then s(n) satisfies a linear recurrence.

Note that $E = \{(v_1, v_1), (v_2, v_2), \dots, (v_m, v_m)\}$ recovers $G \square P_n$.

Example: king graph

Let P_5 be the path labeled v_1, v_2, \ldots, v_5 in the obvious way, and let $E = \{(v_i, v_{i+i}) : i < 5\} \cup \{(v_i, v_i) : i \in [5]\} \cup \{(v_i, v_{i-i}) : i > 1\}.$

Figure 9: The number of ways a king can tour every square of the 5×15 chessboard is given by the number of Hamiltonian subgraphs in the 5×15 king graph

The number of kings tours on a $k \times n$ chessboard is a linear recurrence in n.

Generalizations

- Is there always a nice algorithm for counting subgraphs of the $n \times n$ grid graph satisfying particular properties?
 - ► There are nice ways of counting domino tilings and spanning trees.
- Given some graph and some properties, what is the order of recurrence that counts the number of subgraphs satisfying those properties?