Procedūrinio programavimo pagrindai

Algoritmai

lekt. Irmantas Radavičius

irmantas.radavicius@mif.vu.lt

Informatikos institutas, MIF, VU

Turinys

Algoritmai

Algoritmų įvertinimas

Paieška

Rikiavimas

Algoritmai

```
Algoritmas – tinkamai apibrėžta žingsnių seka, 
iš tam tikrų duomenų (įvestis)
leidžianti gauti tam tikrą rezultatą (išvestį)
```

Programavimo etapai

- kūrimas (projektavimas)
- kodo rašymas
- testavimas
- palaikymas

Algoritmo pseudokodas – būdas neprisirišti prie konkrečios kalbos

Projektavimas

Projektavimas

- problemos suvokimas (ką turime)
- problemos sprendimas (ko reikia)
- algoritmo kūrimas/parinkimas (kaip tai gauti)
- algoritmo korektiškumo tikrinimas (ar tai veikia)

Dvi projektavimo strategijos

- iš viršaus žemyn
- iš apačios aukštyn

Struktūrinio programavimo teorema

Pavyzdys: DBD algoritmas

```
Algorithm 1 Euclids algorithm

    procedure Euclid(a, b)

                                                        ➤ The g.c.d. of a and b
        r \leftarrow a \bmod b
       while r \neq 0 do
                                                 We have the answer if r is 0
 3:
           a \leftarrow b
 4:
           b \leftarrow r
 5:
           r \leftarrow a \bmod b
 6:
        end while
        return b
                                                                  The gcd is b
 9: end procedure
```

Ar galime apibendrinti?

Pavyzdys: MBK algoritmas

Algoritmo kūrimas

Algoritmo testavimas

Įvairūs pastebėjimai (ar reikia naujo algoritmo?)

$$lcm(n,m) = \frac{m \cdot n}{\gcd(m,n)}$$

Ar galime apibendrinti?

Algoritmų sudėtingumas

Asimptotinis algoritmų sudėtingumo įvertinimas skirtas suvokti kaip **algoritmo darbo laikas** priklauso nuo **duomenų kiekio** kai duomenų kiekis labai labai labai didelis.

Algoritmų vertinimas

Algoritmo sudėtingumo priklausomybė nuo duomenų:

- sudėtingumas geriausiu atveju (angl. best case)
- sudėtingumas blogiausiu atveju (angl. worst case)
- sudėtingumas vidutiniu atveju (angl. average case)

Kokie tai duomenys?

Rėžiai sudėtingumui vertinti:

- Rėžis iš apačios (angl. lower bound)
- Rėžis iš viršaus (angl. upper bound)

O-didžiojo notacija

Rašoma f(n) = O(g(n)) jeigu galima teigti jog:

(neformaliai)

 $|f(n)| \leq k \cdot |g(n)|$ for some positive k

(formaliai)

$$\exists k > 0 \ \exists n_0 \ \forall n > n_0 \ |f(n)| \leq k \cdot |g(n)|$$

Expression	Dominant term(s)	O()
$5 + 0.001n^3 + 0.025n$	$0.001n^3$	$O(n^3)$
$500n + 100n^{1.5} + 50n \log_{10} n$	$100n^{1.5}$	$O(n^{1.5})$
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$	$2.5n^{1.75}$	$O(n^{1.75})$
$n^2 \log_2 n + n(\log_2 n)^2$	$n^2 \log_2 n$	$O(n^2 \log n)$
$n \log_3 n + n \log_2 n$	$n \log_3 n$, $n \log_2 n$	$O(n \log n)$
$3\log_8 n + \log_2 \log_2 \log_2 n$	$3 \log_8 n$	$O(\log n)$
$100n + 0.01n^2$	$0.01n^2$	$O(n^2)$ $O(n^2)$ $O(n^{1.25})$
$0.01n + 100n^2$	$100n^{2}$	
$2n + n^{0.5} + 0.5n^{1.25}$	$0.5n^{1.25}$	
$0.01n\log_2 n + n(\log_2 n)^2$	$n(\log_2 n)^2$	$O(n(\log n)^2)$
$100n \log_3 n + n^3 + 100n$	n^3	$O(n^3)$
$0.003\log_4 n + \log_2 \log_2 n$	$0.003 \log_4 n$	$O(\log n)$

Tipiškai žymimas tikslus viršutinis rėžis (!) blogiausiam atvejui (!)

Algoritmų optimizavimas

Geras algoritmas yra geriau už gerą kompiuterį

n	log ₂ n	n log ₂ n	n ²	n ³	2n
2	1	2	4	8	4
4	2	8	16	64	16
8	3	24	64	512	256
16	4	64	256	4096	65536
32	5	160	1024	32768	4294967296
128	7	896	16384	2097152	3.4 x 1038
1024	10	10240	1048576	1073741824	1.8 x 10 ³⁰⁸
65536	16	1048576	4294967296	2.8 x 1014	Forget it!

Iteraciniai algoritmai

Blokas kartojamas, kol (ne)teisinga sąlyga.

```
#include<stdio.h>
int main()
    int n, fact=1;
    printf("enter the number\n");
    scanf ("%d", &n);
    while (n)
        fact=fact*n;
    printf("Factorial:%d", fact);
```

Rekursiniai algoritmai

Funkcijos viduje kreipiamasi į ją pačią.

```
int find_Factorial(int num) //define the function according to declaration
{
    if(num<1)
        return 1;
    else
        return num*find_Factorial(num-1);//find_Factorial function calls itself
}</pre>
```


Iteraciniai vs rekursiniai algoritmai

Baigtinumo problema: amžinas ciklas vs amžina rekursija

Rekursija

- gali supaprastinti realizaciją (skaldyk ir valdyk)
- reikalauja daugiau atminties (ar reikia įsiminti praeitį?)
- tipiškai lėtesnė (funkcijų kreipiniai)

Iteracijos

- efektyvios (nereikia papildomos atminties ar f-jų kreipinių)
- gali būti sudėtingesnės (skaitomumas ir įgyvendinimas)

Nuosekli (tiesinė) paieška

Nuosekliai ieškomas elementas duomenų rinkinyje

Nuosekli (tiesinė) paieška

Viena iš galimų algoritmo realizacijų. Sudėtingumas?

```
int linearsearch (int a [], int first, int last, int key)
        for (int i = first; i \le last; i ++)
                if (\text{key} = = \text{a [i]})
                return i; // successfully found the
                       // key and return location
                               // failed to find key element
        return - 1;
```

Nuosekli (tiesinė) paieška

Kitokia realizacija (rekursija)? Privalumai, trūkumai. Sudėtingumas?

ALGORITHM 5 A Recursive Linear Search Algorithm.

```
procedure search(i, j, x: i, j, x \text{ integers, } 1 \le i \le j \le n)

if a_i = x then

return i

else if i = j then

return 0

else

return search(i + 1, j, x)

{output is the location of x in a_1, a_2, \ldots, a_n if it appears; otherwise it is 0}
```

Dvejetainė paieška

Žaidimas "atspėk skaičių"...

leškoma surikiuotame masyve – tai papildoma informacija, leidžianti pagreitinti paiešką.

Dvejetainė paieška

Iteracijomis paremta algoritmo versija. Sudėtingumas?

Pseudocode (using iteration)

```
BinarySearch(list[], min, max, key)
while min ≤ max do
  mid = (max + min) / 2
  if list[mid] >key then
    max = mid-1
  else if list[mid] < key then
    min = mid + 1
  else
    return mid
  end if
end while
return false
```

Dvejetainė paieška

Rekursija paremta algoritmo versija. Sudėtingumas?

Pseudocode (using recursion)

```
BinarySearch(list[], min, max, key)
if max <min then
  return false
else
  mid = (max + min) / 2
  if list[mid] >key then
    return BinarySearch(list[], min, mid-1, key)
  else if list[mid] <key then
    return BinarySearch(list[], mid+1, max, key)
  else
    return mid
  end if
end if
```

Burbuliuko rikiavimo metodas

Algoritmo idėja

Viena iš galimų realizacijų. Sudėtingumas? Optimizavimo galimybės?

```
for i ← 1 to length[A]

do for j ← length[A] downto i + 1

do if A[j] < A[j -1]

then exchange A[j] \leftrightarrow A[j-1]
```

Greitojo rikiavimo metodas

Algoritmo idėja

Greitojo rikiavimo metodas

Algoritmo realizacija, paremta rekursija. Sudėtingumas?

Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q-1, r)
```

Initial call: QUICKSORT(A, 1, n)

O(b·y·e)