# Data Exploration and Visualization



## Agenda

- High Level Process
- Graphing in R: Core and Lattice
- Extended Titanic Exploration
- ggplot2 introduction
- Visualization in Azure



## Agenda

- High Level Process
- Graphing in R: Core and Lattice
- Extended Titanic Exploration
- ggplot2 introduction
- Visualization in Azure



## Learning Guidance

- Don't get bogged down in details of the syntax
- I will share output samples on the slides often
- Sample code + slides: Data Exploration and Visualization folder



## Data > Algorithm

- More data == better performance
  - Even with a simple algorithm
- But there are caveats
  - Diminishing returns
  - High quality and high variety needed
  - Algorithm must be appropriate
  - Feature selection/engineering



#### **Understand Your Data!**

- Not spending time on data is a common source of all sorts of problems!
- Are any features correlated with each other?
- What is the scale of your numeric features?
- Are there clear groups of data objects?
- Do you have missing values and where?

And More!



## Agenda

- High Level Process
- Graphing in R: Core and Lattice
- Extended Titanic Exploration
- ggplot2 introduction
- Visualization in Azure



## **Core Graphics: Box**

- Distribution of single feature
- Can partition by target class

```
data(iris) # reference iris data in R
head(iris) # peak at first 6 rows

boxplot(Sepal.Length~Species,
data=iris,
main="Sepal Length for Various
Species",
xlab="Species",
ylab="Sepal Length"
)
```

#### Sepal Length for Various Species





## **Core Graphics: Box with Notches**

- Estimate of confidence interval of the median
- Notch overlap indicates confidence that median is different

```
boxplot(Sepal.Length~Species,
data=iris,
main="Sepal Length for Various
Species",
xlab="Species",
ylab="Sepal Length",
notch=TRUE
)
```

## Sepal Length for Various Species





# Sidebar: Coloring Core Plots

```
boxplot(Sepal.Length~Species,
data=iris,
main="Sepal Length for Various
Species",
xlab="Species",
ylab="Sepal Length",
notch=TRUE,
col=c("blue", "green", "red")
)
```





# **Sidebar: Saving Plots**

| Function                    | Output to           |
|-----------------------------|---------------------|
| pdf("mygraph.pdf")          | pdf file            |
| win.metafile("mygraph.wmf") | windows<br>metafile |
| png("mygraph.png")          | png file            |
| jpeg("mygraph.jpg")         | jpeg file           |
| bmp("mygraph.bmp")          | bmp file            |
| postscript("mygraph.ps")    | postscript file     |

Windows Saves to default: Libraries\Documents

```
pdf("myplot.pdf")

boxplot(Sepal.Length~Species,
  data=iris,
  main="Sepal Length for Various Species",
  xlab= "Species",
  ylab="Sepal Length",
  notch=TRUE
)

dev.off() # Returns plot to the IDE
```



# Core Graphics: Histogram

- Spread of single feature
- Places values in "bins"
- Bin size parameter

```
h<-hist(
Iris$Petal.Length,
breaks=10,
col="red",
xlab="Petal Length",
main="Histogram"
)</pre>
```



unleash the data scientist in you

# **Core Graphics: Density plots**

- Variant of Histogram
- Scaled for easy comparisons

```
p.w <- iris$Petal.Width
p.w.density <- density(p.w)

plot(p.w.density, main =
"Kernal Density of Sepal
Width")

polygon(p.w.density,
col="red", border="blue")</pre>
```

# Kernal Density of Sepal Width 0.5 Density 0.7 N = 150 Bandwidth = 0.2518



## Lattice: Multiple Density Plots

- Grouping simple
- Styling is not

```
library(lattice)
densityplot (~ Petal.Width,
data=iris, groups=Species,
plot.points=F,
xlab=list(label="Kernal Density of
Petal Width", fontsize=20),
vlab="", main=list(label="Density
of Petal Width by Species",
fontsize=24),
auto.key=list(corner=c(0,0),
x=0.4, y=0.8, cex=2),
scales=list(cex=1.5))
```

#### **Density of Petal Width by Species**





# Styling is a pain!

- ggplot2 syntax easier to read/write
  - Less intuitive; harder to get started with
  - More power than often needed
- Learn core/lattice first, then ggplot



#### Exercise 1

- 2-D Scatter plots plot() and xyplot()
  - Sepal Length vs Sepal Width
  - Petal Length vs Petal Width
  - Color based on Species (lattice)



# Sample Solution

```
# Core Graphics
plot(iris$Sepal.Length,
iris$Sepal.Width, xlab="Sepal
Length", ylab="Sepal Width")
```

```
# Lattice Graphics
xyplot(Sepal.Length ~
Sepal.Width, data=iris,
groups=Species,
auto.key=list(corner=c(0,0),
x=0, y=0.85, cex=1.5), cex=1.5,
scales=list(cex=1.5))
```





## **Core: Extended Scatter Plots**

Add a regression line

```
plot(Petal.Length ~
Petal.Width, data=iris,
main="Petal Width vs
Length")

abline(lm(Petal.Length ~
Petal.Width, data=iris),
col="red", lwd=2)
```





#### **Core: Scatter Plot Matrix**

- Multiple relationships on one graph
- Good for initial explorations

```
pairs(~ Sepal.Length +
Sepal.Width + Petal.Length +
Petal.Width, data=iris,
main="Simple Scatter Matrix")
```

#### **Simple Scatter Matrix**





## **Lattice: Scatter Plot Matrix**

#### Simple Grouping

```
# Getting settings for legend
super.sym <-
trellis.par.get("superpose.symbol")

splom(iris[1:4],
groups=iris$Species,
panel=panel.superpose,
key=list(title="Three Flower Types",
columns=3,
points=list(pch=super.sym$pch[1:3],
col=super.sym$col[1:3]),
text=list(c("Setosa","Versicolor","Verginic
a"))))</pre>
```

# Three Flower Types Scatter Plot Matrix



### **Enhanced Scatter Plot Matrices**

- install.packages("car")
- library(car)
- scatterplotMatrix(~mpg+ disp+drat+wt|cyl, data=mtcars,main="Three Cylinder Options")





#### Exercise 2

- Load "mtcars" dataset: data(mtcars)
  - ?mtcars for details
- Goal: Predict MPG based on other columns
- Create at least 2 different plots illustrating relationships in the data



## Sample Solution 2

```
densityplot( ~ mpg, data=mtcars,
groups=cyl, plot.points=F,
auto.key=list(columns=3, title="Cylinders")
```

```
0.26 - 0.20 - 0.16 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.
```

Cylinders

```
plot(mpg ~ disp, data=mtcars)
abline(lm(mpg ~ disp, data=mtcars),
col="red")
```





## Agenda

- High Level Process
- Graphing in R: Core and Lattice
- Extended Titanic Exploration
- ggplot2 introduction
- Visualization in Azure



## Finding the Code

- Set your working directory to the bootcamp root
- Open code file in "Data\_Exploration\_and\_Visualization/code/ titanic\_example.R"
- Follow along line by line



## Looking at the first few rows

```
titanic <- read.csv("Datasets/titanic.csv")
head(titanic)</pre>
```

```
    head(titanic)

    PassengerId Survived Pclass
    Name
    Sex Age
    SibSp
    Parch
    Ticket
    Fare
    Cabin
    Embarked

    1
    1
    0
    3
    Braund, Mr. Owen Harris
    male
    22
    1
    0
    A/5 21171
    7.2500
    S

    2
    2
    1
    1
    Cumings, Mrs. John Bradley (Florence Briggs Thayer) female
    38
    1
    0
    PC 17599
    71.2833
    C85
    C

    3
    3
    1
    3
    Heikkinen, Miss. Laina female
    26
    0
    0
    STON/O2. 3101282
    7.9250
    S

    4
    4
    1
    1
    Futrelle, Mrs. Jacques Heath (Lily May Peel) female
    35
    1
    0
    113803
    53.1000
    C123
    S

    5
    5
    0
    3
    Allen, Mr. William Henry
    male
    35
    0
    0
    373450
    8.0500
    S

    6
    6
    0
    3
    Moran, Mr. James
    male
    NA
    0
    0
    330877
    8.4583
    Q
```

What would be some good features to consider here?



# What is the data type of each column?

str(titanic)

```
'data.frame':
              891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0111000011...
$ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
$ Name : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 629 417 581 ...
$ Sex
         : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
$ Age
          : num 22 38 26 35 35 NA 54 2 27 14 ...
$ SibSp
          : int 1101000301...
$ Parch
          : int 000000120...
$ Ticket
          : Factor w/ 681 levels "110152", "110413", ...: 524 597 670 50 473 276 86 396 345 133 ...
$ Fare
          : num 7.25 71.28 7.92 53.1 8.05 ...
          : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 1 1 131 1 1 1 ...
$ Cabin
$ Embarked : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ...
```

## Convert target feature to Factor

```
titanic$Survived <- as.factor(titanic$Survived)
levels(titanic$Survived) <- c("Dead", "Survived")
str(titanic$Survived)</pre>
```

Factor w/ 2 levels "Dead", "Survived": 1 2 2 2 1 1 1 1 2 2 ...



## Class distribution: Pie Chart

```
survivedTable <-
table(titanic$Survived)
pie(survivedTable,
labels=c("Died", "Survived")</pre>
```





#### **Pie Chart: Color and Annotate**

#### Proportion of Dead and Surviving Passengers





# Is Gender a Good predictor?

```
male = titanic[titanic$Sex=="male",]
female = titanic[titanic$Sex=="female",]
par(mfrow=c(1,2))
pie(table(male$Survived),labels=c("Dead","Survived"))
pie(table(female$Survived),labels=c("Dead","Survived"))
```



#### **Survival Proportion Among Men**

#### **Survival Proportion Among Women**







## Is Age a Good Predictor?

#### summary(titanic\$Age)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 0.42 20.12 28.00 29.70 38.00 80.00 177
```

#### How about by survival?

```
summary(titanic[titanic$Survived=="Dead",]$Age)
summary(titanic[titanic$Survived=="Survived",]$Age)
```

| Min. | 1st Qu. | Median | Mean  | 3rd Qu. | Max.  | NA's |
|------|---------|--------|-------|---------|-------|------|
| 1.00 | 21.00   | 28.00  | 30.63 | 39.00   | 74.00 | 125  |
| Min. | 1st Qu. | Median | Mean  | 3rd Qu. | Max.  | NA's |
| 0.42 | 19.00   | 28.00  | 28.34 | 36.00   | 80.00 | 52   |



#### Exercise 3

- Create 2 notched box plots of Age
  - Segmented by Gender
  - Segmented by Survived
- Create a histogram of Age
- Create a density plot of Age
  - na.omit() may be useful



## Sample Solution 3

boxplot(Age ~ Sex, data=titanic,
main="Age Distribution By Gender",
col=c("red","green"), notch=T)

boxplot(Age ~ Survived, data=titanic,
main="Age Distribution By Survival",
col=c("red","green"), notch=T, ylab="Age")







## Sample Solution 3

hist(titanic\$Age, col="blue", breaks=12, xlab="Distribution of Age", ylab="Frequency of Bucket", main="Distribution of Passenger Ages on Titanic")

density(titanic\$Age) #NAs prevent this
d <- density(na.omit(titanic\$Age))
plot(d, main="Kernel Density of Age")
polygon(d, col="red", border="blue")</pre>







# Is Age a Good Predictor?

densityplot(~ Age, data=titanic, groups=Gender, plot.points=F, lwd=3, auto.key=list(corner=c(0,0), x=0.7, y=0.8))



densityplot(~ Age, data=titanic, groups=Survived, plot.points=F, lwd=3, auto.key=list(corner=c(0,0), x=0.7, y=0.8))





# Agenda

- High Level Process
- Graphing in R: Core and Lattice
- Extended Titanic Exploration
- ggplot2 introduction
- Visualization in Azure



# ggplot Basics

- ggplot() is the basic function
- geom\_\*() creates a graph layer
- aes() defines an "aesthetic" either globally or by layer



# Loading

library(ggplot2) data(diamonds) head(diamonds)

#### > head(diamonds)

|   | carat | cut       | color | clarity | depth | table | price | x    | У    | z    |
|---|-------|-----------|-------|---------|-------|-------|-------|------|------|------|
| 1 | 0.23  | Ideal     | E     | SI2     | 61.5  | 55    | 326   | 3.95 | 3.98 | 2.43 |
| 2 | 0.21  | Premium   | E     | SI1     | 59.8  | 61    | 326   | 3.89 | 3.84 | 2.31 |
| 3 | 0.23  | Good      | E     | VS1     | 56.9  | 65    | 327   | 4.05 | 4.07 | 2.31 |
| 4 | 0.29  | Premium   | I     | VS2     | 62.4  | 58    | 334   | 4.20 | 4.23 | 2.63 |
| 5 | 0.31  | Good      | J     | SI2     | 63.3  | 58    | 335   | 4.34 | 4.35 | 2.75 |
| 6 | 0.24  | Very Good | J     | VVS2    | 62.8  | 57    | 336   | 3.94 | 3.96 | 2.48 |

# Histogram

ggplot(diamonds, aes(x=carat)) +
geom\_histogram()





# **Density plot**

ggplot(diamonds) +
geom\_density(aes(x=carat),
fill="gray50")





# Scatter plots

ggplot(diamonds, aes(x=carat, y=price))
+ geom\_point()





# ggplot Object

# Store the plot for future modification g <- ggplot(diamonds, aes(x=carat, y=price))

#Add a second aesthetic on top of base
g + geom\_point(aes(color=color))





# Segment by factor attribute

g + geom\_point(aes(color=color)) +
facet\_wrap(~ color)





# More Segments!

g + geom\_point(aes(color=color)) +
facet\_wrap(cut ~ clarity)





#### Exercise 4

- In Titanic data, create new column "Child"
  - Assign objects value "Adult" or "Child" based on a consistent metric
- Use ggplot to create a series of box plots relating Fare, Child, Sex, and Survived



## Sample Solution 4

- # Multi dimensional comparison
- > Child <- titanic\$Age # Isolating age.
- # Now we need to create categories: NA = Unknown, 1 = Child, 2 = Adult
- # Every age below 13 (exclusive) is classified into age group 1
- > Child[Child<13] <- 1
- # Every child 13 or above is classified into age group 2
- > Child[Child>=13] <- 2



## Sample Solution 4

```
# Use labels instead of 0's and 1's
Child[Child==1] <- "Child"
Child[Child==2] <- "Adult"
# Appends the new column to the titanic dataset
titanic with child column <- cbind(titanic, Child)
# Removes rows where age is NA
titanic with child column <-
titanic with child column[!is.na(titanic with child column$Child),]
# Converts $Survived column into a factor
titanic with child column$Survived <- as.factor(titanic with child column$Survived)
```



Sample Solution 1

ggplot(titanic\_with\_child\_c
olumn, aes(y=Fare,
x=Survived)) +
geom\_boxplot() +
facet\_grid(Sex~Child)

 # Plot may differ depending # on your definition of a child





#### **Some Variations**

- ggplot(titanic\_with\_child\_column, aes(y=Age, x=Survived)) + geom\_boxplot() + facet\_grid(Sex~SibSp)
- ggplot(titanic\_with\_child\_column, aes(y=Fare, x=Survived)) + geom\_boxplot() + facet\_grid(Sex~Embarked)



# Agenda

- High Level Process
- Graphing in R: Core and Lattice
- Extended Titanic Exploration
- ggplot2 introduction
- Visualization in Azure

