CIS 263 Introduction to Data Structures and Algorithms

Backtracking

Minimum Spanning Tree

- We have to find spanning Trees with the minimum cost
 - Search all combinations
 - Approximation Algorithms
 - Greedy Algorithms
 - Prim's Algorithm
 - Kruskal's Algorithm

- Uses heuristics
- Solution may not be optimal

Optimization Problems

Greedy Algorithms

- Mainly Heuristics based

Bruteforce

- Constraints based

Optimization Problems

Greedy Algorithms

- Mainly Heuristics based

Bruteforce

- Constraints based
- Backtracking

- You have to fill the boxes
- No condition
- 3! solutions

- You have to fill the boxes
- No condition
- 3! solutions

- You have to fill the boxes
- Conditions
 - Green cannot be in the middle
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking

- You have to fill the boxes
- Conditions
 - Green cannot be in the middle
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking (Preorder Traversal)

- You have to fill the boxes
- Conditions
 - o Green cannot be in the middle
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking (Preorder Traversal)

- You have to fill the boxes
- Conditions
 - o Green cannot be in the middle
 - R2 cannot be in the first box
- Exclude some of the 3! Solutions
- Bruteforce search
 - Apply condition as a bounding function
 - Apply Backtracking (Preorder Traversal)

- Condition: Two adjacent nodes cannot have the same color
- Can we do it with 2 colors say {Red, Green}?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - o Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - o Graph Coloring Problem

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - Graph Coloring Problem
- Answer: 3 days
- Can we do it in less than 3 days?
 - Answer: No

- You are asked to make a NHL schedule, and here are the conditions:
 - o You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - Graph Coloring Problem
- Answer: 3 days
- Can we do it in less than 3 days?
 - Answer: No
- What are your scheduling options; or How many combinations of days/dates you may have?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require?
- Lets first try for 3 teams: {A, B, C}
- An equivalent question is: What's the minimum number of colors you will require so no two adjacent colors are the same?
 - Graph Coloring Problem
- Answer: 3 days
- Can we do it in less than 3 days?
 - Answer: No
- What are your scheduling options; or How many combinations of days/dates you
 may have?
 - \circ Answer: We have to generate a SBT for all possibilities just like we did it in our toy example

Let's go back to our original question!

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require? 4 or 3 or some other number of days?

Graph Coloring Problem

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require? or 3 or some other number of days?
- Answer: 2 days (2 colors), for the setup on the right.

Is this the only solutions?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require? or 3 or some other number of days?
- Answer: 2 days (2 colors), for the setup on the right.
- What are your scheduling options; or How many combinations of days/dates you may have?

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require? 4 or 3 days?
- Answer: 2 days (2 colors), for the setup on the right.
- What are your scheduling options; or How many combinations of days/dates you may have?
 - Backtracking solution

ΑB

ВС

CA

DA

Full solution

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require? 4 or 3 days?
- Answer: 2 days (2 colors), for the setup on the right.
- What are your scheduling options; or How many combinations of days/dates you may have?
 - Backtracking solution

- You are asked to make a NHL schedule, and here are the conditions:
 - You have 4 teams: {A, B, C, D}
 - A team can play only one game a day
 - Teams play following a certain format
- Q: What's the minimum number days your schedule will require? 4 or 3 days?
- Answer: 2 days (2 colors), for the setup on the right.
- What are your scheduling options; or How many combinations of days/dates you may have?
 - Backtracking solution

We have a partial solution

Possibilities:

(AD) **V**

(AC)

(BD)

Conflict Table

- Parallel representation
- Conflict Table
 - A team cannot participate in two games the same day
 - Will see some other examples

	AB	BC	\mathbf{CD}	DA	\mathbf{AC}	BD
AB	~_	x		x	x	x
BC	x		x		x	x
\mathbf{CD}		х		x	x	x
DA	x		х		x	x
\mathbf{AC}	x	x	x	x	 -	
BD	x	х	х	x		

Conflict Table

- Parallel representation
- Conflict Table
 - A team cannot participate in two games the same day
 - Will see some other examples

	AB	BC	CD	DA	AC	BD
AB	1	x		x	x	x
BC	x		x		x	x
\mathbf{CD}		х		x	x	x
DA	x		х		x	x
\mathbf{AC}	x	x	x	x	\	
BD	x	х	х	x		

Matrix symmetry

Conflict Table to Solution Graph

- Parallel representation
- Conflict Table
 - A team cannot participate in two games the same day
 - Will see some other examples

1	\mathbf{AB}	BC	CD	DA	AC	BD
AB	1	x		x	x	x
\mathbf{BC}	x		x		x	x
\mathbf{CD}		х		x	x	х
DA	x		х		x	х
\mathbf{AC}	x	x	x	x	\- \	
BD	x	x	x	x		

Matrix symmetry

Greedy Algorithm

- Ordered list of colors
- Starting node: color with the initial index

A S	BC	\mathbf{CD}	DA	AC	BD
-----	----	---------------	----	----	----

1	2	3	4	5

Greedy Algorithm

- Ordered list of colors
- Starting node: color with the initial index

EX3 EX 3	CD	DA	AC	BD
-----------------	----	----	----	----

1	2	3	4	5

Greedy Algorithm

- Ordered list of colors
- Starting node: color with the initial index

1	2	3	4	5

Greedy Algorithm

- Ordered list of colors
- Starting node: color with the initial index

1	2	3	4	5

Greedy Algorithm

- Ordered list of colors
- Starting node: color with the initial index

1	2	3	4	5

Greedy Algorithm

- Ordered list of colors
- Starting node: color with the initial index

1	2	3	4	5

Complete solution

- 3 days (colors) as the final solution!
- Backtracking for all possible solutions
 - Bounding functions:
 - Consecutive nodes with the same color
 - A valid path should have at least 3 unique colors

	AB	BC	CD	DA	AC	BD
AB	1	x		x	x	x
BC	x		x		x	x
\mathbf{CD}		х		x	x	x
DA	x		х		x	x
\mathbf{AC}	x	x	x	x	7-	
BD	x	x	х	x		

Matrix symmetry

For all scheduling solutions, you have to

- Extend State Space Trees of slides 25-26 from 4 to 6 levels covering all combinations {AB, BC, CD, AD, BD, AC}
- All valid paths to the leaf nodes and also with at least 3 colors will be your solutions!

Similar scheduling problems you can solve!

Similar problems

- Exam date/courses scheduling
- Courses with at least one student common

	CIS-263	CIS-163	CIS-100	MATH-201	STAT-300
CIS-263	-	x		x	x
CIS-163	x	-	x	x	
CIS-100		x	-	x	x
MATH-201	x	x	x	-	x
STAT-300	x		x	x	-

Summary of last few weeks

Graphs:

- BFS, DFS
- Minimum Spanning Trees:
 - o Prim's Algorithm,
 - Kruskal's Algorithm,
- Backtracking
- Graph Coloring
- Solving Scheduling problems

Priority Queue, Hashing

Heap, Heap Sort

Disjoint Set Class