Lecture 4: Understanding the small world phenomena

Matthew J. Salganik

Social Networks (Soc 204) Princeton University

Wednesday, September 15, 2021

empirical vs modeling approaches

- empirical vs modeling approaches
- empirical approach runs into difficulties

Review:

- empirical vs modeling approaches
- empirical approach runs into difficulties
- models are different

Review:

- empirical vs modeling approaches
- empirical approach runs into difficulties
- models are different
- ► Erdos-Renyi model is a simple model of networks

Review:

- empirical vs modeling approaches
- empirical approach runs into difficulties
- models are different
- ► Erdos-Renyi model is a simple model of networks

Today we will see two different small world models and then an empirical assessment

> small overlapping groups that are linked by people who belong to multiple groups

Duncan says that they wanted to capture four main ideas:

Duncan says that they wanted to capture four main ideas:

> small overlapping groups that are linked by people who belong to multiple groups

social network evolve

Duncan says that they wanted to capture four main ideas:

- ▶ small overlapping groups that are linked by people who belong to multiple groups
- ▶ social network evolve
- Social fletwork evolve

not all relationships are equally likely

Duncan says that they wanted to capture four main ideas:

- > small overlapping groups that are linked by people who belong to multiple groups
 - ▶ social network evolve
 - not all relationships are equally likely
- occasionally we do things that are not determined by existing network structure

Number of mutual friends shared by A and B

Person 4

Χ

that

Number of mutual friends shared by A and B

3.2

As technology changes do you think we are moving more toward:

- 1. caveman world ($\alpha = 0$)
- 2. solaria world ($\alpha \to \infty$)

3.2

As technology changes do you think we are moving more toward:

- 1. caveman world ($\alpha = 0$)
- 2. solaria world $(\alpha \to \infty)$

$$R_{i,j} = \begin{cases} \left[\frac{m_{i,j}}{k}\right]^{\alpha} (1-p) + p & k > m_{i,j} > 0, \\ p & m_{i,j} = 0 \end{cases}$$
 (5)

Note on this process of modeling: the graph came before the equation.

First metric:

Characteristics path length L: number of edges in shortest path, averaged over all paths

L is defined as the number of edges in the shortest path between two vertices

shortest path is 1 edge

shortest path is 3 edges

Second metric:

Clustering coefficient C: probability that a two friends of a randomly chosen person are friends

f we simulate lots of ρε	eople following these	rules, what kind	s of networks get created?	,

Paper and book look different because paper does not include the disconnected region

http://vireomd.net/blog/dhc/einstein-kiss.html

http://vireomd.net/blog/dhc/einstein-kiss.html

Are real networks small world networks?

- $ightharpoonup L_{actual} pprox L_{random}$
- $ightharpoonup C_{actual} >> C_{random}$

 L_{actual}	L_{random}	C_{actual}	C_{random}

- $ightharpoonup L_{actual} pprox L_{random}$
- $ightharpoonup C_{actual} >> C_{random}$

	L_{actual}	L_{random}	C_{actual}	C_{random}
Movie actors				

$$ightharpoonup L_{actual} pprox L_{random}$$

$$ightharpoonup C_{actual} >> C_{random}$$

	L_{actual}	L_{random}	C_{actual}	C_{random}
Movie actors	3.65	2.99	0.79	0.00027

- $ightharpoonup L_{actual} pprox L_{random}$
- $ightharpoonup C_{actual} >> C_{random}$

	L_{actual}	L_{random}	C_{actual}	C_{random}
Movie actors Power Grid	3.65	2.99	0.79	0.00027

$$ightharpoonup L_{actual} pprox L_{random}$$

$$ightharpoonup C_{actual} >> C_{random}$$

	L_{actual}	L_{random}	C_{actual}	C_{random}
Movie actors		2.99	0.79	0.00027
Power Grid		12.4	0.080	0.005

$$ightharpoonup L_{actual} pprox L_{random}$$

$$ightharpoonup C_{actual} >> C_{random}$$

	L_{actual}	L_{random}	C_{actual}	C_{random}
Movie actors	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.080	0.005
C. Elegans				

- $ightharpoonup L_{actual} pprox L_{random}$
- $ightharpoonup C_{actual} >> C_{random}$

	L_{actual}	L_{random}	C_{actual}	C_{random}
Movie actors	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.080	0.005
C. Elegans	2.65	2.25	0.28	0.05

The more shortcuts the less infectious (r) a disease needs to be to spread

The more shortcuts the faster a disease spreads

- ▶ abstract modeling leads to deep and non-obvious insights
 ▶ shortcuts are less the small world property (characteristic path length changes)
- shortcuts are key the small world property (characteristic path length changes fast, clustering changes slow)

- ▶ abstract modeling leads to deep and non-obvious insights
- ▶ shortcuts are key the small world property (characteristic path length changes fast, clustering changes slow)
- ► small local changes can have global impacts

- ▶ abstract modeling leads to deep and non-obvious insights
- ▶ shortcuts are key the small world property (characteristic path length changes fast, clustering changes slow)
- small local changes can have global impacts
- similarity across networks of different types

- ▶ abstract modeling leads to deep and non-obvious insights
- ▶ shortcuts are key the small world property (characteristic path length changes fast, clustering changes slow)
- small local changes can have global impacts
 - similarity across networks of different types
- network structure impacts dynamics

Feedback: http://bit.ly/soc204-2021
Next class. Power law networks

- ► Watts, Chapter 4, 101-114.
- ▶ Barabasi, A.L. and Bonabeau, E. (2003) Scale-free networks. *Scientific American*, 50-59.
- ▶ Barabasi, A.L. and Albert, R. (1999) The emergence of scaling in random networks. *Science*, 286:509-512.
- ► Liljeros, F. et al. (2001). The web of human sexual contacts. *Nature*, 411:907-908 with comment and rejoinder.