Aula 02- Funções

Definição de função, representação de funções, função crescente e decrescente, função linear, polinomial, racionais e algébricas

Definição de Funções

Dados $A \in B$ dois conjuntos de \mathbb{R} :

uma função $f: A \rightarrow B$ é uma *relação ou* correspondência que a cada elemento de A associa um único elemento de B.

As funções *servem para descrever* o mundo real em termos matemáticos.

Domínio e Imagem

Seja f uma função.

O conjunto de todos os $x \in \mathbb{R}$ que satisfazem a definição da f é chamado **domínio** da f e denotado por D(f).

O conjunto de todos os $y \in \mathbb{R}$ tais que y = f(x), onde $x \in D(f)$, é chamado **imagem** da f e denotado por $\mathrm{Im}(f)$.

$$f$$
entrada
(Domínio)

 $f(x)$
saída
(Imagem)

Idéia de função

1

2

3

 χ

Idéia de função

1

2

 $\frac{3}{1}$

()

Exemplos

1)
$$f(x) = 2x \implies D(f) = \operatorname{Im}(f) = \mathbb{R}$$

2)
$$f(x) = x^2 \Rightarrow D(f) = \mathbb{R}$$
 e $Im(f) = [0, +\infty)$

3)
$$f(x) = \frac{1}{x} \Rightarrow D(f) = \operatorname{Im}(f) = \mathbb{R}^*$$

4)
$$f(x) = \sqrt{4-x} \implies D(f) = \{x \in \mathbb{R}; x \le 4\}$$

e
$$Im(f) = [0, +\infty)$$

5)
$$f(x) = \frac{1}{x^2 - 1} \Rightarrow D(f) = \mathbb{R} - \{1, -1\}, \text{Im}(f) = \mathbb{R}^*$$

Plano Cartesiano

O plano cartesiano é o conjunto de todos os pares ordenados (x, y) de números reais tal que: $\mathbb{R} \times \mathbb{R} = \{(x, y)/x, y \in \mathbb{R}\}$

O plano cartesiano é representado por duas retas numéricas reais que se interceptam a um ângulo de 90°.

Plano Cartesiano

Plano Cartesiano

A forma geral de um par ordenado é: (abscissa, ordenada)

•

$$C(-3, -2)$$

$$F(0, -1)$$

Gráfico de uma função

O **gráfico** de uma função y = f(x) é o seguinte subconjunto do plano $x \partial y$

$$G(f) = \left\{ \begin{pmatrix} x, f(x) \end{pmatrix}; x \in D(f) \right\}$$
 variável independente dependente

Gráficos de funções

χ	f(x)
0	0
1	2

Os exemplos

X	f(x)
-1	1
0	0
1	1
2	4

Função do 1° grau ou Afim

Esta função é definida por:

$$f(x) = a \cdot x + b$$

onde $a,b\in\mathbb{R}$. Notemos que:

- 1) $D(f) = \operatorname{Im}(f) = \mathbb{R}$
- 2) a é chamado coeficiente angular
- 3) b é o coeficiente linear

Gráfico da função afim

4) Uma função afim f(x) = a.x + b pode ser determinada se dois de seus valores são conhecidos.

Exemplo: Dados f(1) = 12 e f(2) = 14 temos

$$\begin{cases} a+b = f(1) = 12 \\ 2.a+b = f(2) = 14 \end{cases} \Rightarrow a = 2 \text{ e } b = 10$$

Logo f(x) = 2.x + 10.

Gráfico de uma função afim

5) O gráfico é uma reta que passa pelos

$$P = (0,b) e Q = \left(-\frac{b}{a},0\right)$$

pontos $\mathbf{P}=(\mathbf{0},b) \ \ \mathbf{e} \ \ \mathbf{Q}=\left(-\frac{b}{a},\mathbf{0}\right)$ ou seja, $f(0)=b,f(\frac{-b}{a})=0$. Logo, por exemplo, se a>0 e b>0 temos

Função do 1° grau ou Afim

6) Além disso como f(1) = a.1 + b = a + b vale

$$\frac{f(1) - f(0)}{1 - 0} = a + b - b = a$$

De um modo geral para $x_1, x_2 \in \mathbb{R}$ com $x_1 \neq x_2$

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{a \cdot x_1 + b - (a \cdot x_2 + b)}{x_1 - x_2} = \frac{a \cdot (x_1 - x_2)}{x_1 - x_2} = a$$

taxa de variação

Casos especiais

Seja
$$f(x) = a.x + b$$

- 1. Se a = 0 então f(x) = b (constante)
- 2. Se $a \neq 0$ e b = 0 então f(x) = a.x (linear) Para a = 1 temos a função identidade.

Gráficos dos casos especiais

1. Função afim Constante: y = f(x) = b

Gráficos dos casos especiais

2. Função linear: y = f(x) = a.x

Gráficos dos casos especiais

Função Identidade: y = f(x) = x

Função Quadrática

Sejam $a,b,c\in\mathbb{R}$, com $a\neq 0$. A função $f:\mathbb{R}\to\mathbb{R}$ tal que $f(x)=ax^2+bx+c$, para todo $x\in\mathbb{R}$, é chamada função quadrática ou função polinomial do segundo grau.

Atividade 1

Em cada uma das funções quadráticas definidas abaixo, determine seus coeficientes.

a)
$$f(x) = 2x^2 - 4x + \sqrt{5}$$

b)
$$f(x) = -2x^2 - 5x + 4$$

c)
$$f(x) = \pi - 4x + 3x^2$$

d)
$$f(x) = -4x + 2x^2$$

e)
$$f(x) = -2x^2 - 5$$

$$f) f(x) = \frac{3}{4}x^2$$

Sendo $f: \mathbb{R} \to \mathbb{R}$ uma função quadrática

definida por $f(x) = x^2$, esboce o seu gráfico.

Para resolver este problema, vamos, inicialmente, construir uma tabela, escolhendo alguns valores para x e encontrando os correspondentes para y. Desta forma, determinaremos pares ordenados (x, y).

\mathcal{X}	$y = x^2$	(x,y)		<i>,</i>
-4	16	(-4,16)		/
-3	9	(-3,9)		
-2	4	$\left(-2,4\right)$	-	/
-1	1	(-1,1)		
0	0	(0,0)	-	- /
1	1	(1,1)		
2	4	(2,4)	_	-
3	9	(3,9)	_	
4	16	(4,16)		

Sendo $f: \mathbb{R} \to \mathbb{R}$ uma função quadrática

definida por $f(x) = x^2 + 1$, esboce o seu

gráfico.

X	$y = x^2 + 1$	(x, y)	
– 4	17	(-4,17)	
-3	10	(-3,10)	†
-2	5	(-2,5)	
-1	2	$\left(-1,2\right)$	
0	1	(0,1)	
1	2	(1,2)	
2	5	(2,5)	† <i>/</i>
3	10	(3,10)	
4	17	(4,17)	

Sendo $f: \mathbb{R} \to \mathbb{R}$ uma função quadrática

definida por $f(x) = x^2 - 1$, esboce o seu

gráfico.

χ	$y = x^2 - 1$	(x, y)		/
-4	15	(-4,15)		
-3	8	(-3,8)	-	/
-2	3	$\left(-2,3\right)$		
-1	0	$\left(-1,0\right)$	_	,
0	-1	(0,-1)		
1	0	(1,0)		
2	3	(2,3)		
3	8	(3,8)		
4	15	(4,15)		

Sendo $f: \mathbb{R} \to \mathbb{R}$ uma função quadrática

definida por $f(x) = -x^2$, esboce o seu gráfico.

X	$y = -x^2$	(x, y)		
-4	-16	(-4, -16)		
-3	- 9	(-3, -9)		
-2	-4	(-2, -4)		\
-1	-1	(-1,-1)		
0	0	(0,0)	-	\
1	-1	(1,-1)		
2	-4			
3	- 9	(2,-4) $(3,-9)$	/	\
4	-16	(4,-16)	•	

Ponto Importante do Gráfico

• O vértice $V = (x_v, y_v)$

$$x_{v} = \frac{-b}{2a}$$
 $y_{v} = \frac{-\Delta}{4a}$

Funções Crescentes e Decrescentes

Uma função $f: \mathbb{R} \to \mathbb{R}$ é dita crescente, se

$$x_1 > x_2 \Longrightarrow f(x_1) > f(x_2)$$

Uma função $f: \mathbb{R} \to \mathbb{R}$ é dita decrescente, se

$$x_1 > x_2 \Longrightarrow f(x_1) < f(x_2)$$

Exemplo

Função afim: f(x) = ax + b

Função Sobrejetora

f é sobrejetora $\Leftrightarrow \forall y \in B, \exists x \in A \text{ tal que } f(x) = y$

Exemplo

1)
$$f: \mathbb{R} \to \mathbb{R}$$
; $f(x) = 3x - 1$

Note que o gráfico nos fornece

$$\operatorname{Im}(f) = \mathbb{R} \ \operatorname{e} \ \operatorname{CD}(f) = \mathbb{R}$$

Logo, Im(f) = CD(f)

∴ f é sobrejetora

$$2) f: \mathbb{R} \to \mathbb{R}; f(x) = x^2$$

Note que o gráfico nos fornece

$$\operatorname{Im}(f) = \mathbb{R}_+ \operatorname{e} \operatorname{CD}(f) = \mathbb{R}$$

Logo, $Im(f) \neq CD(f)$

∴ f não é sobrejetora

$$3) f: \mathbb{R} \to \mathbb{R}_+; f(x) = x^2$$

Note que o gráfico nos fornece

$$\operatorname{Im}(f) = \mathbb{R}_{+} \operatorname{e} \operatorname{CD}(f) = \mathbb{R}_{+}$$

Logo, Im(f) = CD(f)

∴ f é sobrejetora

Função Injetora

 $f:A\to B$

f é injetora $\Leftrightarrow \forall x_1, x_2 \in A$, se $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ Ou equivalentemente, se $f(x_1) \neq (x_2) \Rightarrow x_1 = x_2$. Esta definição é mais prática para os cálculos.

1)
$$f : \mathbb{R} \to \mathbb{R}$$
; $f(x) = x^3$
Sendo $x_1 = -2$ e $x_2 = 3$, temos
 $f(x_1) = f(-2) = (-2)^3 = -8$ e
 $f(x_2) = f(3) = 3^3 = 27$
Logo

$$-2 = x_1 \neq x_2 = 3 \Longrightarrow -8 = f(x_1) \neq f(x_2) = 27$$
Use a decree of a finite \tilde{x} at the second \tilde{x}

Usando a segunda definição temos: se

$$f(x_2) = f(x_1) \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1^3 - x_2^3 = 0$$

$$(x_1 - x_2)(x_1^2 + x_1 x_2 + x_2^2) = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

∴ f não é injetora

$$2) f: \mathbb{R} \to \mathbb{R}; f(x) = x^2$$

3)
$$f: \mathbb{R}_+ \to \mathbb{R}_+$$
; $f(x) = x^2$

Sendo
$$2 = x_1 \neq x_2 = 3$$
, temos
$$4 = 2^2 = f(x_1) \neq f(x_2) = 3^2 = 9$$

Assim $\forall x_1 \in \mathbb{R} \text{ e } \forall x_2 \in \mathbb{R} \text{ temos}$

$$x_1 \neq x_2 \Rightarrow x_1^2 = f(x_1) \neq f(x_2) = x_2^2$$

∴ f é injetora

Função Bijetora

 $f: A \rightarrow B$ é bijetora $\Leftrightarrow f$ é sobrejetora e injetora

Ou ainda:

f é bijetora:

$$\operatorname{Im} f(x) = \operatorname{contradomínio} B$$

$$\forall x_1, x_2 \in A, \text{ se } x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$$

2)
$$f: \mathbb{R}_{+} \to \mathbb{R}_{+}$$
; $f(x) = x^{2}$

Sabemos que f é injetora

Pois $\forall x_{1}, x_{2} \in \mathbb{R}$ temos

 $x_{1} \neq x_{2} \Rightarrow x_{1}^{2} = f(x_{1}) \neq f(x_{2}) = x_{2}^{2}$

E como $Im(f) = CD(f) = \mathbb{R}_{+}$ temos que

 f é sobrejetora

Como f é sobrejetora e injetora

∴ f é Bijetora

Função Par

$$f: A \to B$$
 talque $f(x) = f(-x) \ \forall x \in A$

Exemplos

1)
$$f : \mathbb{R} \to \mathbb{R}$$
; $f(x) = |x|$ é par pois

$$f(-x) = |-x| = |x| = f(x) \ \forall x \in \mathbb{R}$$

Obs.: O gráfico de f é simétrico em relação ao eixo y.

2) $f : \mathbb{R} \to \mathbb{R}$; $f(x) = x^2 - 1$ é par pois,

$$f(-x) = (-x)^2 - 1 = x^2 - 1 = f(x) \forall x \in \mathbb{R}$$

Obs.: O gráfico de f é simétrico em relação ao eixo y.

Função Ímpar

$$f: A \to B$$
 talque $f(-x) = -f(x) \forall x \in A$

Exemplos

1) $f : \mathbb{R} \to \mathbb{R}$; $f(x) = x^3$ é impar pois,

$$f(-x) = (-x)^3 = -x^3 = -f(x) \,\forall x \in \mathbb{R}$$

Obs.: O gráfico de f é simétrico em relação à origem.

2) $f : \mathbb{R} \to \mathbb{R}$; f(x) = x é impar pois,

$$f(-x) = -x$$
$$-f(x) = -x$$

Logo,

$$f(-x) = -f(x) \ \forall x \in \mathbb{R}$$

Obs.: O gráfico de f é simétrico em relação à origem.

Função que não é nem par e nem Ímpar

$$f: \mathbb{R} \to \mathbb{R}; f(x) = x^2 + x$$

$$f(-x) = (-x)^2 + (-x) = x^2 - x \ \forall x \in \mathbb{R}$$

$$-f(x) = -(x^2 + x) = -x^2 - x \ \forall x \in \mathbb{R}$$

$$\therefore f(x) \neq f(-x) \text{ e}$$

$$f(-x) \neq -f(x) \ \forall x \in \mathbb{R}$$

Obs.: O gráfico de f não é simétrico nem em relação à origem, nem em relação ao eixo y.

Obrigado!

Esta aula está disponível em

www.mat.ufam.edu.br