複素解析学Iレポート

司馬博文 J4-190549

2020年9月27日

[R1]

(a)

$$z \in \mathbb{C}$$
 とする. $\operatorname{Im} z = \frac{z - \overline{z}}{2i} \Leftrightarrow (\overline{z} - z)i = 2\operatorname{Im} z$ より,
$$|\psi(z)|^2 = \psi(z)\overline{\psi(z)}$$

$$|\psi(z)| = \psi(z)\psi(z)$$

$$= \frac{z - i}{z + i} \frac{\overline{z - i}}{z + i}$$

$$= \frac{z - i}{z + i} \frac{\overline{z} + i}{\overline{z} - i}$$

$$= \frac{|z|^2 + (-\overline{z} + z)i + 1}{|z|^2 + (\overline{z} - z)i + 1}$$

$$= \frac{|z|^2 - 2\operatorname{Im} z + 1}{|z|^2 + 2\operatorname{Im} z + 1} \qquad \dots (*)$$

であるが, $z \in \mathbb{R}$ だから $\operatorname{Im} z = 0$ より,

$$|\psi(z)|^2 = \frac{z^2 + 1}{z^2 + 1} = 1$$

(b)

(*) より,
$$\operatorname{Im} z > 0$$
 の時, $\frac{|z|^2 - 2\operatorname{Im} z + 1}{|z|^2 + 2\operatorname{Im} z + 1} < 1$ より, $|\psi(z)| < 1$. 従って, $(0 <)|\psi(z)| < 1$.

[R2]

(a)⇒(b)

(a) より,次が成り立つ.

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ |a - z| < \delta \Rightarrow |f(a) - f(z)| < \varepsilon. \tag{1}$$

a に収束する数列 $\{z_n\}$ を任意に取ると、次が成り立つ.

$$\forall \delta > 0, \ \exists N > 0, \ n > N \Rightarrow |a - z_n| < \delta. \tag{2}$$

任意の $\varepsilon>0$ を取ると、1 より、 $|a-z|<\delta\Rightarrow|f(a)-f(z)|<\varepsilon$ を満たす $\delta>0$ が存在し、この δ に対して 2 より、 $n>N\Rightarrow|a-z_n|<\delta$ を満たす N>0 が存在する。以上より、次の論理式、即ち $\lim_{n\to\infty}f(z_n)=f(a)$ が示せた。

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \exists N > 0, \ n > N \Rightarrow |a - z_n| < \delta \Rightarrow |f(a) - f(z_n)| < \varepsilon.$$

数列 $\{z_n\}$ は任意にとったから,(b) が示せた.

(b)⇒(a)

Gauss 平面上の点 $w \in \mathbb{C}$ に対して, $z_n^w = a + \frac{w-a}{n}$ $(n=1,2,3,\cdots)$ と定めることにより,点 w を通り a に収束する($|z_n-a|$ の値が単調減少するという意味で)単調な数列 $\{z_n^w\}_{n=1,2,\cdots}$ が取れる.(こうして,数列の族 $(\{z_n^w\}_{n=1,2,\cdots})_{w\in\mathbb{C}}$ を定めた).任意に $\varepsilon>0$ を取る.これに対して,各 $w\in\mathbb{C}$ に対して $\{z_n^w\}$ は a に収束するから,(b) から非負整数 $N^w\geq 0$ が存在し, $n>N^w\Rightarrow |f(z_n^w)-f(a)|<\varepsilon$ を満たす(こうして,族 $\{N^w\}_{w\in\mathbb{C}}$ が定まる).このとき, $\delta=\min_{w\in\mathbb{C}}|z_{N+1}^w-a|$ とすれば, $|z-a|<\delta\Rightarrow|f(z)-f(a)|<\varepsilon$ が成り立つことを示せば良い.

 $|w-a|<\delta$ を満たす $w\in\mathbb{C}$ を任意に取る.これを通る数列 $\{z_n^w\}$ について, $n>N\Rightarrow |f(z_n^w)-f(a)|<\varepsilon$ が成り立つ.いま, $\{z_n^w\}$ は単調だったから, δ は $\delta=\min_{w\in\mathbb{C}}|z_{N+1}^w-a|$ と定めたことから, $|w-a|<\delta$ を満たす w に対して, $w=z_m^w$ を満たす整数 m>N が存在する.従って, $|f(z_m^w)-f(a)|=|f(w)-f(a)|<\varepsilon$ が導かれる.

以上より,次の主張,即ち(a)が示せた.

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ |z - a| < \delta \Rightarrow |f(z) - f(a)| < \varepsilon$$

(b)⇒(a) (より簡潔な回答)

対偶を示す. (a) が成り立たないとすると、 $\exists \varepsilon > 0$ 、 $\forall \delta > 0$, $|z-a| < \delta \land |f(z)-f(a)| \ge \varepsilon$. この時の ε を一つ取り、 ε_0 とする.ここで、勝手に a に収束する数列 $\{z_n\}$ を取る.すると $\forall \varepsilon > 0$ 、 $\exists N > 0$, $n > N \Rightarrow |z_n - a| < \varepsilon$. 従って、 ε_0 に対して、 $\forall \delta > 0$ 、 $\exists N > 0$, $n > N \Rightarrow |f(z_n) - f(a)| \ge \varepsilon_0$ が成り立つから、 $\lim_{n \to \infty} f(z_n) \neq f(a)$.よって (b) の否定が導けた.