K-NN SAMPLING FOR VISUALIZATION OF DYNAMIC DATA USING LION-TSNE - ANALYSIS

Gędłek Paweł

Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza Kraków gedlek@student.agh.edu.pl

Wójtowicz Patryk

Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza Kraków wojtowicz@student.agh.edu.pl

ABSTRAKT

TODO

1 Struktura raportu

Contents

1	Struktura raportu	1
2	Metoda tSNE	1
	2.1 Czym właściwie jest tSNE?	1
	2.2 Algorytm tSNE - podstawy matematyczne	2
3	Metoda LION tSNE	2
1	kNN sampling	2
5	Wnioski	2
2	Metoda tSNE	

2.1 Czym właściwie jest tSNE?

Algorytm tSNE(t-Distributed Stochastic Neighbor Embedding) którego autorami sa Laurens van der Maaten oraz Geoffrey Hinton bazuje na metodzie SNE, której głównym załozeniem jest reprezentacja wielowymiarowych danych w mozliwy do zobrazowania dla człowieka dwulub trzy-wymiarowej przestrzeni. Osiaga sie to poprzez modelowanie wysoko wymiarowych obiektów poprzez dwu- lub trzy-wymiarowe punkty w taki sposób, ze zblizone obiekty modelowane sa poprzez bliskie sobie punkty, a oddalone obiekty modelowane są poprzez oddalone od siebie punkty z duzym prawdopodobienstwem.

2.2 Algorytm tSNE - podstawy matematyczne

- Algorytm tSNE konwertuje odległosci miedzy parami punktów w funkcje rozkładu prawdopodobienstwa okreslajaca podobienstwo pomiedzy parami punktów.
- Rozbieznosc miedzy podobienstwem wysoko wymiarowych danych z nisko-wymiarowymi danymi jest mierzona poprzez dywergencje Kullbacka-Leiblera i minimalizowana metoda gradientowa poszukiwania minimum lokalnego

Mamy dany zbiór wejsciowy X=x1,x2...xn gdzie dla kazdego $x_i \in R^D$ jest D-wymiarowym wektorem. Zbiór ten zostanie przekształcony do postaci Y=y1,y2...yn gdzie kazde $y_i \in R^d$ jest d-wymiarowym wektorem oraz d << D (zazwyczaj d = 2 lub 3). Podobienstwo pomiedzy para punktów wejsciowych xi oraz xj oznaczamy poprzez pj/i , które jest prawdopodobienstwem wybrania x_j jako sasiada x_i według funkcji gestosci prawdopodobienstwa na rozkładzie normalnym gdzie x_i stanowi centrum. $p_{j/i}$ definiujemy jako:

•••

3 Metoda LION tSNE

4 kNN sampling

5 Wnioski

TODO

Źródła

[1] Bheekya Dharamsotu ; K. Swarupa Rani ; Salman Abdul Moiz ; C. Raghavendra Rao Paper: k-NN Sampling for Visualization of Dynamic Data Using LION-tSNE. https://ieeexplore.ieee.org/abstract/document/8990391