778. Swim in Rising Water

Hard	Tonics	Companies	○ Llint
Hard	Topics	Companies	Hint

You are given an n x n integer matrix grid where each value grid[i][j] represents the elevation at that point (i, j).

The rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent sq

88

56

Return the least time until you can reach the bottom right square (n - 1, n - 1) if you start at the top left square (0, 0).

Example 1:

0	2
1	3

Input: grid = [[0,2],[1,3]]

Output: 3
Explanation:

At time 0, you are in grid location (0, 0).

You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than

You cannot reach point (1, 1) until time 3.

When the depth of water is 3, we can swim anywhere inside the grid.

Example 2:

0	1	2	3	4
24	23	22	21	5
12	13	14	15	16
11	17	18	19	20
10	9	8	7	6

Input: grid = [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]

Output: 16

Explanation: The final route is shown.

We need to wait until time 16 so that (0, 0) and (4, 4) are connected.

Constraints:

- n == grid.length
- n == grid[i].length
- 1 <= n <= 50
- $0 \leftarrow grid[i][j] < n^2$