EXPERIMENT 5: STRUCTURE COMPARISON

Dr. Zhiyi Wei SUSTC

Structural superposition/alignment

RMSD (Root-Mean-Square Deviation)

 The way to evaluate the structural similarity by measuring the average distance between the atoms of superimposed proteins

$$\text{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \delta_i^2}$$

where δ is the distance between N pairs of equivalent atoms (usually the backbone atoms)

- Indication of RMSD
 - <1Å, near identical</p>
 - 1-2Å, highly similar
 - 2-4Å, similar
 - >4Å, usually no similarity

Methods

- Least-square fitting (LSQ)
- DALI
 - Distance alignment matrix
 - Break the input structures into hexa-peptide fragments
 - Calculate a distance matrix by evaluating the contact patterns between successive fragments
- Combinatorial extension (CE)
 - Similar to DALI
- Sequential Structure Alignment Program (SSAP)
 - Double dynamic programming
 - Produce a structural alignment based on atom-to-atom vectors in structure space

Simple alignment in PyMOL

Cealign plugin in PyMOL

- Used for accurate structural alignment
- Better results for structures with low sequence similarity

Structure-based sequence alignment

Much more accurate!

		- Ne	β1	α1	
SfLptE	20	-GWHLR	RDTTQVPSTMKVMILDS	SGDPNGPLSRAVRNO	LR-LNGVELLDKETTRKD
NeLptE	1	MGFKLR	RGQVSELP FERVY I TAF	PAGLTIGSDLERV	I STHTRAKVVNKAEKSI
NmLptE	30		LT YRSWHIE	GGQALQFPLET A	LY-QASGRVDDAAGA
SoLptE	36	YKEL TRLVRERLR-LNNVK I VDANDV			
		β2	β3	β4	β5
SfLptE	73	PSLRLGK	KVS I AKDTASVFRNGQT	TAEYQM I MTVNATVL I - PO	GRD I Y - PI - SAKVFRSFFI
SfLptE NeLptE	73 52				GRD I Y - PI - SAKVFRSFFI NAE LA -S L QEIRLTRILPI
		AIIQIVH	HAIREKRILSLSESGRV	REFE L VYRVAARLLDAHI	
NeLptE	52	AIIQIVH MTLRIDS	HAIREKRILSLSESGRV SVSQNKETYT××VTAVI	/REFE L VYRVAARLLDAHI I NEYLL I LTVEAQVLK-R	NAELA -SLQEIRLTRILPI
NeLptE NmLptE	52 66	AIIQIVH MTLRIDS	HAIREKRILSLSESGRV SVSQNKETYT××VTAVI	/REFE L VYRVAARLLDAHI I NEYLL I LTVEAQVLK-R	NAELA-SLQEIRLTRILPI GEPVGKPM-TVSVRRVLA
NeLptE NmLptE	52 66	AIIQIVH MTLRIDS PVLRLIT	HAIREKRILSLSESGRV SVSQNKETYTX XVTAVI FDSLERSTLSLYPTGNV	/REFE L VYRVAARLLDAHI I NEYLL I LTVEAQVLK-R	VAELA –SLQEIRLTRILPI GEPVGKPM–TVSVRRVLA GKE AQ–PF–KIE IRRDYLI
NeLptE NmLptE SoLptE	52 66 72	AIIQIVH MTLRIDS PVLRLIT	HAI REKR I LSLSESGRV SVSQNKETYT× VTAV I TOSLERS TLSLYPTGNV a2 AKDNEQDMI VKEMYDR	/REFE L VYRVAARLLDAHI NEYLL I LTVEAQVLK-RI VAEYE L I Y FVEFAVAL-PI	NAELA -SLQEIRLTRILPI GEPVGKPM-TVSVRRVLA GKE AQ-PF-KIE IRRDYLI
NeLptE NmLptE SoLptE	52 66 72	ATIQIVH MTLRIDS PVLRLIT NPQMALA LDAQELA	HAIREKRILSLSESGRV SVSQNKETYT×VTAVI FOSLERSTLSLYPTGNV G2 AKDNEQDMIVKEMYDR KKAAEEEMLYKDMQKD	VREFE L VYRVAARLLDAHI I NEYLL I LTVEAQVLK-RI VAEYE L I Y FVEFAVAL-PI AAEQLI RKLPS I RAA	NAELA -SLQEIRLTRILPI GEPVGKPM-TVSVRRVLA GKE AQ-PF-KIE IRRDYLI - -

Tasks

- 1. Open human hemoglobin structure (PDB id: 4HHB) in PyMOL
 - PDB Loader in Plugins
- 2. Create new objects containing either alpha-subunit or beta-subunit
 - You can use different sequence mode to make selection
- 3. Align beta-subunit to alpha-subunit
 - RMSD value and indication?

structure

- 4. Analyze the pairwise sequence alignment
 - Which region cannot be aligned? Your explaination?
- 5. Load human neuroglobin (PDB id: 4MPM) and a globin-like protein (PDB id: 4BJA), and align them to alpha-globin, respectively
 - Evaluate your results
- 6. Use Cealign to realign the globin-like protein to alpha-globin
 - Compared with the simple align, which one give a better alignment?
- Compare the structure-based alignment and simple sequence alignment of the three globins (this part you can finish at home)
 - Which one give you a better alignment? Why?

Lab report format

- Title
- Your name and student No.
- Introduction
- Methods
- Results
- Conclusions