

RadSens-1v6

Модульный дозиметр-радиометр на счетчике Гейгера СБМ20-1

Техническая информация

1 Основные особенности

- Функциональные:
 - Универсальное подключение по I2C
 - Поддержка двух алгоритмов расчета интенсивности излучения
 - Динамическая регулировка периода времени счета
 - Измерение общего количества импульсов
 - Программное изменение I2C адреса
 - Автономное использование в качестве индикатора излучения
- Электрические:
 - Низкое напряжение питания 3,0...3,5 В
 - Максимальный ток потребления при высоком излучении не более 50 мА
- Технические:
 - Компактные размеры модуля 89мм x 21мм x 13,5мм
 - Фиксированное (устойчивое к вибрациям) расположение счетчика
 - Вес модуля не более 12 г
 - Диапазон рабочих температур от -20°C до +60°C

2 Описание

RadSens — универсальный дозиметррадиометр модульного форм-фактора. В качестве чувствительного элемента в модуле используется газоразрядный счетчик Гейгера-Мюллера СБМ20-1, применяемый в большинстве бытовых и профессиональных дозиметров.

Устройство поддерживает измерение и расчет интенсивности излучения с использованием двух алгоритмов: с динамическим диапазоном времени счета для обнаружения локальных источников загрязнения, и с широким статическим временным диапазоном ДЛЯ ТОЧНОГО измерения значения текущего радиационного фона. Также имеется возможность использовать модуль без дополнительных устройств в качестве «индикатора» излучения, на частоту ориентируясь мигания установленного на плате светодиода.

Регистрация импульсов, алгоритмы расчета и передача данных по I2C с частотой работы шины до 400кГц реализованы на установленном на микроконтроллере плате STM32. Модуль поддерживает программную смену адреса И включение отключение работы высоковольтного преобразователя для повышения энергоэффективности. Также имеется возможность по I2С корректировать чувствительность счетчика ионизирующему излучению, что позволяет использовать на данном модуле другие счетчики с аналогичным анодным напряжением питания.

Оглавление

1 Основные особенности	1
2 Описание	1
3 Характеристики устройства	3
3.1 Технические	3
3.2 Метрологические	3
4 Информационное взаимодействие	4
4.1 Карта регистров	4
4.2 Описание регистров	4
4.2.1 ID устройства	4
4.2.2 Версия прошивки	4
4.2.3 Интенсивность излучения (динамический период счета)	4
4.2.4 Интенсивность излучения (статический период счета)	5
4.2.5 Счетчик импульсов	5
4.2.6 Адрес устройства	5
4.2.7 Генератор HV	5
4.2.8 Чувствительность счетчика	5
4.3 Импульсный выход	5
4.3.1 Описание	5
4.3.2 Порядок работы	6
5 Разъем подключения	6
6 Чертеж модуля	7
7 Дополнительные ресурсы	7

3 Характеристики устройства

3.1 Технические

Общие габариты устройства с установленным счетчиком: 89мм x 21мм x 13,5мм. Вес модуля: 12 грамм.

Попомотп		Размер-			
Параметр	не менее	рабочее	не более	ность	
Напряжение питания	3,0	3,3	3,5	В	
Максимальный ток потребления	-	20	50	мА	
Анодное напряжение на газоразрядном счетчике	380	400	440	В	
Рабочий температурный диапазон	-40	+20	+70	°C	
Рабочий диапазон влажности	0	60	98	%	

Таблица 1 (технические характеристики)

3.2 Метрологические

В качестве основного элемента используется счетчик Гейгера СБМ20-1 производства СФ АО «НИИТФА» децимальный номер ТДМК.433217.008, соответствующего техническим условиям ОД0.339.544ТУ. Расчет интенсивности излучения выполняется по формуле: $RAD = N \times \frac{60_{\text{мин}} \times 60_{\text{сек}}}{P_{\text{ср}} \times dT}$, где

Рср – средняя чувствительность счетчика СБМ20-1 к гаммаизлучению от источника Ra²²⁶,

dT – временной интервал регистрации количества импульсов,

N – количество импульсов, зарегистрированных за время dT,

RAD – значение радиационной активности в мкР/ч.

Парамотр	Значение			Размер-	
Параметр	не менее	рабочее	не более	ность	
Диапазон измеряемого излучения	14,4	-	144 000,0	мкР/ч	
Количество импульсов между считываниями данных	0	-	65 535	имп	
Чувствительность к гамма- излучению Ra ²²⁶	100	105	110	имп/мкР	
Разброс относительной чувствительности	-	-	±15	%	

Таблица 2 (метрологические характеристики)

Август 2022 CG002 3/7

4 Информационное взаимодействие

4.1 Карта регистров

Обмен данными (настройка и передача измеренных значений) осуществляется по интерфейсу I2C на скорости до 400 кГц. При этом датчик работает в режиме Slave с адресом по умолчанию 0x66 (настраивается программно).

Адрес	Наименование	R/W	Диапазон	Размер- ность
0x00	ID устройства	R	0x7D	ı
0x01	Версия прошивки	R	0-255	-
0x02	<зарезервировано>	-	-	-
0x03-0x05	Интенсивность излучения (период измерения T < 123 сек.)	R	0 1 440 000	0,1*мкР/ч
0x06-0x08	Интенсивность излучения (период измерения T = 500 сек.)	R	0 1 440 000	0,1*мкР/ч
0x09-0x0A	Счетчик импульсов (сбрасывается при считывании)	R	0 65535	ИМП
0x0B-0x0F	<зарезервировано>	-	-	-
0x10	Адрес устройства	W	0x03-0x77	-
0x11	Генератор HV	R/W	0/1	-
0x12-0x13	Чувствительность счетчика	R/W	0-510	имп/мкР

Таблица 3 (карта регистров информационного взаимодействия)

4.2 Описание регистров

4.2.1 ID устройства

[адрес: 0х00, размер: 8 бит, доступ: R]

Контрольный регистр, содержащий идентификатор изделия. По умолчанию имеет значение 0x7D. Используется для контроля подключения устройства.

4.2.2 Версия прошивки

[адрес: 0х01, размер: 8 бит, доступ: R]

Регистр хранения текущей версии прошивки. Используется для контроля и своевременного обновления ПО.

4.2.3 Интенсивность излучения (динамический период счета)

[адрес: 0х03, размер: 24 бит, доступ: R]

Содержит динамическое значение интенсивности ионизирующего гаммаизлучения. При детектировании резкого изменения интенсивности излучения (как в большую, так и в меньшую сторону) динамически регулирует период счета скользящего окна, чтобы диапазон охватывал временной промежуток, содержащий только актуальные данные. Позволяет использовать устройство в режиме поиска локальных загрязнений. Частота обновления — 1 сек.

4.2.4 Интенсивность излучения (статический период счета)

[адрес: 0х06, размер: 24 бит, доступ: R]

Содержит статистическое значение интенсивности ионизирующего гаммаизлучения. Период счета скользящего окна составляет 500 сек. Позволяет производить точные измерения постоянного радиационного фона. Частота обновления – 1 сек.

4.2.5 Счетчик импульсов

[адрес: 0х09, размер: 16 бит, доступ: R]

Содержит накопленное количество зарегистрированных модулем импульсов с момента последнего считывания данных по I2C. Значение сбрасывается каждый раз при считывании. Позволяет обрабатывать непосредственно сами импульсы со счетчика Гейгера и реализовывать прочие алгоритмы. Значение обновляется в момент регистрации каждого импульса.

4.2.6 Адрес устройства

[адрес: 0x10, размер: 8 бит, доступ: W]

Данный регистр используется для изменения адреса устройства при необходимости подключения на одну линию одновременно нескольких устройств. По умолчанию содержит значение 0x66. По окончании записи новое значение сохраняется в энергонезависимую память микроконтроллера.

4.2.7 Генератор HV

[адрес: 0x11, размер: 8 бит, доступ: R/W]

Регистр управления высоковольтным преобразователем напряжения. По умолчанию находится во включенном состоянии. Для включения HV генератора в регистр необходимо записать 1, для отключения 0. При попытке записи других значений команда игнорируется.

4.2.8 Чувствительность счетчика

[адрес: 0x12, размер: 16 бит, доступ: R/W]

Содержит значение коэффициента Рср (п 3.2), используемое при расчете интенсивности излучения. При необходимости (например, при установке другого типа счетчика) в регистр вносится необходимое значение чувствительности в имп/мкР. По умолчанию установлено значение 105 имп/мкР. По окончании записи новое значение сохраняется в энергонезависимую память микроконтроллера.

4.3 Импульсный выход

4.3.1 Описание

Импульсный выход предназначен для регистрации импульсов внешним устройством (контроллером) в режиме реального времени.

4.3.2 Порядок работы

Рабочий уровень линии — 3.3 В. При регистрации импульса модуль опускает линию в 0 на 150 микросекунд, затем восстанавливает высокий рабочий уровень линии.

Схема 1 (работа импульсного выхода)

5 Разъем подключения

На плате установлен разъём ХН-2.54 4Р. Цоколевка разъема указана в приведенной ниже таблице.

Контакт	Название	Назначение
1	VCC	Цепь питания датчика
2	GND	Земля
3	I2C-SCL	Линия тактирования интерфейса I2C
4	I2C-SDA	Линия данных интерфейса I2С
5	INT	Импульсный выход

Таблица 4 (цоколевка разъема подключения)

Август 2022 CG002 6/7

6 Чертеж модуля

7 Дополнительные ресурсы

Контактная информация и сведения по работе с модулем представлены в приведенной ниже таблице.

Описание	Ссылка
Сайт производителя	http://climateguard.ru/
Библиотека для работы с модулем	https://github.com/climateguard/RadSens
Сообщество в Telegram	https://t.me/climateguard_community

Таблица 5 (полезные ресурсы)