$[3] \langle \rangle 1 \, | \, 2 \, | \, 3$

Tomás Pérez

Notes on Complex Differential Geometry and Algebraic Topology - Lecture Notes March $5,\,2023$

Theory & Notes

CONTENTS

1. Fibre Bundles	2
1.1. Tangent bundles	2
1.1.1. Fibre Bundles	4
Definitions and Immediate Results	4
Example	6
Reconstruction of fibre bundles	6
Bundle Maps	8
	8

1. FIBRE BUNDLES

Bundles.texBundles.tex

A manifold is a topological space which is locally isomorphic to \mathbb{R}^n , but not necessarily so globally. By introducing a coordinate chart, a local Euclidean structure is endowed on the manifold. A fibre bundle is a topological space which is locally isomorphic to a direct product of two topological spaces.

1.1. Tangent bundlef. A tangent bundle TM over an m-dimensional manifold M is a collection of all the tangent spaces of M, namely

$$TM := \bigcup_{p \in M} T_p M$$

The M-manifold over which TM is defined is the base space. Let $\{U_i\}^i$ be an open covering of M.

If
$$x^{\mu} = \phi_i(p)$$
 is the coordinate on U_i , an element of $TU_i := \bigcup_{p \in U_i} T_p M$ is specified by a point $p \in M$ and a vector $\mathbf{V} = V^{\mu}(p) \partial_{\mu}|_{p} \in T_p M$.

Given that the open covering U_i are homeomorphic to an open subset $\phi(U_i) \subset \mathbb{R}^m$ and each $T_pM \approx_h \mathbb{R}^m$, it follows that TU_i is identified with a direct product $\mathbb{R}^m \times \mathbb{R}^m$. Explicitly, the mapping reads

$$(1.1.0.1) (p, \mathbf{V}) \in TU_i: (p, \mathbf{V}) \mapsto (x^{\mu}(p), V^{\mu}(p)).$$

This implies that TU_i is a 2m-differentiable manifold. Moreover, TU_i can be decomsoped as a direct product $U_i \times \mathbb{R}^i$, i.e. the information contained in the point $u \in TU_i$ can be systematically mapped into a point $p \in M$ and a vector $\mathbf{V} \in T_pM$.

FIGURE 1. Diagram showing a local piece of $TU_i \simeq \mathbb{R}^m \times \mathbb{R}^m$ of the tangent bundle TM. The projection π projects a vector $\mathbf{V} \in T_pM$ to a point $p \in U_i \subset M$.

Thus, the idea of a bundle projection, not to be confused with the natural projection, arises.

Definition 1. Given a manifold M with tangent bundle TM, the bundle projection π at the point $u \in T_pM$ is defined as a map

$$\pi: TU_i \to U_i$$

s.t. for any point $u \in TU_i$, $\pi(u)$ is a point $p \in U_i$ at which the vector is defined.

This definition must be contrasted with the notion of natural projection,

Definition 2. Let X and Y be two topological spaces. Then, the natural projection mapping $\operatorname{proj}_1: X \times Y \to X$ is defined s.t. $\operatorname{proj}_1((x,y)) = x \in X$.

Remark. Since both of these mappings are projections, information is lost. In particular in the case of the bundle projection, information about the vector itself is lost. Furthermore, note that $\pi^{-1}(p) = T_p M$. Moreover, the projection π can be globally defined on M, since the definition $\pi(u) = p$ does not depend on a special coordinate chosen, allowing for $\pi: TM \to M$ to be defined globally with no reference to local charts.

Hence, T_pM is called the fibre of M at the point p.

It is obvious that if $M=\mathbb{R}^m$, the tangent bundle itself is expressed as $\mathbb{R}^m\times\mathbb{R}^m$. Naturally, this will not be always the case for more complex structures, since the tangent bundle measures the topological non-triviality of the manifold M. In effect, consider a topology $\tau=\{U_i\}^i$ of charts on M, s.t. $U_i\cap U_j\neq\emptyset$. In particular, consider two charts U_i,U_j and let $y^\mu=\psi(p)$ be the coordinates on U_j . Consider a vector $\mathbf{V}\in T_pM$ s.t. $p\in U_i\cap U_j$. Then, \mathbf{V} has two coordinate presentations,

$$\mathbf{V} = V^{\mu} \frac{\partial}{\partial x^{\mu}} \Big|_{p} = \tilde{V}^{\mu} \frac{\partial}{\partial y^{\mu}} \Big|_{p}, \text{ related as } \tilde{V}^{\mu} = \frac{\partial y^{\mu}}{\partial x^{\nu}}(p) V^{\nu}, \text{ with } \frac{\partial y^{\mu}}{\partial x^{\nu}}(p) \in \mathrm{GL}(m,\mathbb{R})$$

For $\{x^{\mu}\}$ and $\{y^{\mu}\}$ to be good coordinate systems, the matrix $G^{\mu}_{\ \nu} \equiv \partial y^{\mu}/\partial x^{\nu}(p)$ must be non-singular. Hence, the fibre coordinates are simply related via a linear transformation, an element of the general linear group. The group $\mathrm{GL}(m,\mathbb{R})$ is called the ftructure group of TM. This group then describes precisely how fibres of a tangent bundle are interwoven together to form a tangent bundle, which consequently may have a topologically complicated structure.

Furthermore, let $X \in \chi(M)$ be a vector field on M, which assigns a vector $\mathbf{X}|_p \in T_pM$ at each point $p \in M$. In other words, X is a smooth map $X : M \to TM$. This map is well defined since a point p must be mapped to a point $p \in TM$ s.t. $\pi(u) = p$. Hence, one naturally arrives to the following definition

Definition 3. Let M be a manifold with fibre bundle TM, a fection or croff fection of TM is a smooth map $s: M \to TM$ s.t. $\pi \circ s = \mathfrak{id}_M$.

If a section $s_i: U_i \to TU_i$ is only defined on a chart U_i , it is called a local fection.

1.1.1. Fibre Bundlel.

Definitions and Immediate Results. The tangent bundle of the previous section is an example of a more general framework, a fibre bundle, which is given in terms of several objects

Definition 4. A differentiable fibre bundle (E, π, M, F, g) consists of the following elements

Definition 5. A differentiable manifold E called the total space.

Definition 6. A differentiable manifold M called the base space.

Definition 7. A differentiable manifold F called the fibre, or typical fibre.

Definition 8. A surjection $\pi: E \to M$ called the projection. Its inverse image $\pi^{-1}(p) = F_p \simeq F$ is called the fibre at p.

Definition 9. A Lie group G called the ftructure group, which acts on F on the left.

Definition 10. A set of open coverings $\{U_i\}^i$ on M with a diffeomorphism $\phi_i: U_i \times F \to \pi^{-1}(U_i)$ s.t.

$$\pi \circ \phi_i(p, f) = p.$$

The map ϕ is called the local trivialization, since ϕ_i^{-1} maps $\pi^{-1}(U_i)$ onto the direct product $U_i \times F$.

Definition 11. If the map $\phi_i(p, f)$ is relabelled as $\phi_{i,p}(f)$, then the map $\phi_{i,p} : F \to F_p$ is a diffeomorphism. On $U_i \cap U_j \neq \emptyset$, an additional requirement is made, namely that

$$t_{ij}(p) \equiv \phi_{i,p}^{-1} \circ \phi_{j,p} : F \to F$$

is an element of G. Then, the maps ϕ_i, ϕ_j are related by a smooth map $t_{ij}: U_i \cap U_j \to G$ as

$$\phi_j(p, f) = \phi_i(p, t_{ij}(p)f).$$

These maps t_{ij} are called the transition functions.

Several remarks must be made about the preceding definitions.

Remark.

• Let U_i be a chart on the base space M, i.e. an open covering. Remember from definition 7 and definition 8, that this means that

$$\forall p \in M$$
, and hence $\forall p \in U_i, \ \exists \pi : E \to M \text{ s.t. } \pi^{-1}(p) = F_p \simeq F.$

More explicitly, for all points p in this open covering, there is a globally-defined projection π , which maps (subsets U_i of) the total space E to the base space M s.t. its preimage $\pi^{-1}(U_i)$ yields a fibre F_p at point p, which is diffeomorphic to the fibre space F. In particular, these charts -according to definition 10-naturally come equipped with a diffeomorphism ϕ , defined as follows

$$\phi_i: U_i \times F \to \pi^{-1}(U_i), \\ \phi_i^{-1}: \pi^{-1}(U_i) \to U_i \times F \quad \text{Then, } \forall p \in U_i \subset M, \exists \phi_i: \pi^{-1}(U_i) \to U_i \times F,$$

In other words, $\forall p \in U_i, \ \pi^{-1}(p) = F_p \simeq F \to \phi_i : F \to U_i \times F$.

More explicitly, since the projection is map from the fibre space $F_p \simeq F$ to the base space M yielding the point p, its preimage is a mapping from the base space to the fibre at the point p. Then, the diffeomorphism $\phi_i: U_i \times F \to \pi^{-1}(U_i)$ can be thought of as a mapping from the direct product of the fibre space with the open set, $U_i \times F$, to the fibre itself. In tecnical terms, $\pi^{-1}(U_i)$ is a direct-product diffeomorphism to $U_i \times F$ via ϕ , i.e.

$$\pi^{-1}(U_i) \stackrel{\phi_i}{\simeq}_d U_i \times F$$
, s.t. $\phi_i^{-1} : \pi^{-1}(U_i) \to U_i \times F$.

Then the following diagram commutes

$$\pi^{-1}(U_i) \xrightarrow{\phi_i^{-1}} U_i \times F$$

$$\downarrow \qquad \qquad proj_1$$

$$U_i$$

If $U_i \cap U_j \neq \emptyset$, there are two maps ϕ_i and ϕ_j on $U_i \cap U_j$, and consider a point u s.t. $\pi(u) = p \in U_i \cap U_j$. Then, there are two possible elements in F to which u can be assigned, one via the mapping ϕ_i^{-1} and the other one via the mapping ϕ_i^{-1} , as follows

(1.1.1.1)
$$\phi_i^{-1}(u) = (p, f_i), \quad \phi_j^{-1}(u) = (p, f_j)$$

$$\Longrightarrow \exists t_{ij} : U_i \cap U_j \to G, \text{ which relates } f_i \text{ and } f_j \text{ as}$$

$$\phi_j(p, f) = \phi_i \Big(p, t_{ij}(p) f \Big)$$

Some requirements are imposed on these transition functions, namely

(1.1.1.2)
$$t_{ii}(p) = \mathfrak{id}_{M}, \quad p \in U_{i}$$
$$t_{ij}(p) = t_{ji}(p)^{-1}, \quad p \in U_{i} \cap U_{j}$$
$$t_{ij}(p) \cdot t_{jk}(p) = t_{ik}(p), \quad p \in U_{i} \cap U_{j} \cap U_{k}.$$

Unless these conditions are met, local pieces of a fibre bundle cannot be glued together consistently. If all transition functions are identity maps \mathfrak{id}_M , the fibre bundle is the trivial fibre bundle, which is simply a direct product $M \times F$.

Remark.

• Given a fibre bundle $E \stackrel{\pi}{\to} M$, the possible set of transition functions is not unique. In effect, consider a covering $\{U_i\}^i$ of M with $\{\phi\}^i$ and $\{\tilde{\phi}_i\}^i$ be two sets of local trivializations giving rise to the same fibre bundle, with transition functions

$$(1.1.1.3) t_{ij}(p) = \phi_{i,p}^{-1} \circ \phi_{j,p}, \quad \tilde{t}_{ij}(p) = \tilde{\phi}_{i,p}^{-1} \circ \tilde{\phi}_{j,p}.$$

Let $g_i(p): F \to F$ at each point $p \in M$ defined by $g_i(p) = \phi_{i,p}^{-1} \circ \tilde{\phi}_{i,p}$, which must be a homeomorphism belonging to G. This requirement must be fulfilled if $\{\phi\}^i$ and $\{\tilde{\phi}_i\}^i$ describe the same fibre bundle.

(1.1.1.4)
$$\tilde{t}_{ij}(p) = \tilde{\phi}_{i,p}^{-1} \circ \tilde{\phi}_{j,p}$$

$$= \tilde{\phi}_{i,p}^{-1} \circ \phi_{i,p} \circ \phi_{i,p}^{-1} \circ \phi_{i,p} \circ \phi_{i,p}^{-1} \circ \tilde{\phi}_{j,p}$$

$$= g_i(p)^{-1} \circ t_{ij}(p) \circ g_j(p).$$

In physics, the t_{ij} transformations are the gauge transformations required to paste local charts together, while the g_i correspond to the gauge degrees of freedom within a chart U_i . The most general form of the transition functions is

$$(1.1.1.5) t_{ij}(p) = g_i(p)^{-1} \circ g_j(p).$$

Remark.

• Let $E \stackrel{\pi}{\to} M$ be a fibre bundle. A fection o a croff fection $s: M \to E$ is a smooth map which satisfies $\pi \circ s = \mathfrak{id}_M$. It follows that $s(p) = s|_p$ is an element of the fibre at $p, F_p = \pi^{-1}(p)$. The set of sections on M is denoted by $\Gamma(M, F)$. If $U \subset M$, the local fection is only defined on U. For example, $\Gamma(M, TM)$ is identified with the set of vector fields $\chi(M)$. Note, however, that not all fibre bundles admit global sections.

Example. Consider the following example of a fibre bundle:

Let $E \stackrel{\pi}{\to} S^1$ be a fibre bundle with a typical fibre $F = \mathbb{R}_{[-1,1]}$. Moreover, let $U_1 = \mathbb{R}_{(0,2\pi)}$ and $U_2 = \mathbb{R}_{(-\pi,\pi)}$ be two open coverings of S^1 . Let $A = \mathbb{R}_{(0,\pi)}$ and let $B = \mathbb{R}_{(\pi,2\pi)}$ be the intersection $U - 1 \cap U_2$. The local trivializations (ϕ_1, ϕ_2) are given by

$$\phi_1^{-1}(u) = (\theta, t), \quad \phi_2^{-1}(u) = (\theta, t),$$

for $\theta \in A$, $t \in F$. The transition function $t_{12}(\theta)$, $\theta \in A$, is the identity map $t_{12}(\theta) : t \mapsto t$. On B, however, there are two choices

• for instance,

$$\phi_1^{-1}(u) = (\theta, t), \quad \phi_2^{-1}(u) = (\theta, t),$$

or

$$\phi_1^{-1}(u) = (\theta, t), \quad \phi_2^{-1}(u) = (\theta, -t),$$

The first case has a trivial transition map, i.e. it is the identity map. Hence, the two pieces of the local bundles are glued together to form a cylinder. In the second case, the transition map is $t_{12}(\theta): t \mapsto -t, \theta \in B$, giving rise to the Möbius strip.

The cylinder has a trivial structure group $G = \{e\}$, where e is the identity map on F, while the Möbius strip has $G = \{e, g\} \simeq \mathbb{Z}_2$, where $g: t \mapsto -t$. Technically, however, G is not a Lie group. Then, the cylinder corresponds to the trivial bundle $S^1 \times F$, while the Möbius strip is not.

Reconstruction of fibre bundles. A question naturally arises: what is the minimal information required to construct a fibre bundle?

Theorem 1. Consider a fibre bundle in which the following elements are known:

- a base space M,
- a topology $\{U_i\}$ of open coverings on M,
- the transition functions $t_{ij}(p)$,
- the typical fibre F,
- the structure group G.

Then, a fibre bundle (E, π, M, F, G) can be reconstructed.

Proof. In other words, one needs only to define a projection π , a total space E and the local trivializations $\{\phi_i\}^i$, for the fibre bundle to be uniquely characterized. In effect, consider

$$X \equiv \bigcup_i U_i \times F$$
.

Furthermore, let \sim be a globally-defined equivalence relation defined on $\{U_i \times F\}^i$, defined as follows

$$(p,f) \in U_i \times F,$$
 $(p,f) \sim (q,f')$ and $p = q \wedge f' = t_{ij}(p)f.$

Sets of equivalence classes can then be defined,

Let $p \in M$ be a point, Let $f \in F$ be an element $[(p,f)] = \{(q,f') \in U_i \times F \text{ s.t. } (p,f) \sim (q,f')\} = \left\{(q,f') \in U_i \times F \text{ s.t. } p = q \text{ of the fibre space } f' = t_{ij}(p)f \right\}$

$$\Rightarrow \frac{X}{S} = \{[(p, f)] \text{ s.t. } (p, f) \in U_i \times F\}$$

i.e. the set of equivalence classes on $U_i \times F$. A fibre bundle E is then defined as the quotient space

$$E=\frac{X}{2}$$
.

Two mappings of vital importance then readily arise,

A projection and the local trivializations

$$\pi: U_i \times F \to U_i \qquad \phi_i: U_i \times F \to \pi^{-1}(U_i)$$
$$[(p, f)] \mapsto p, \qquad (p, f) \mapsto [(p, f)],$$

with their inverse maps

$$\pi^{-1}: U_i \to U_i \times F$$

$$p \mapsto [(p, f)],$$

$$\phi_i^{-1}: \pi^{-1}(U_i) \to U_i \times F$$

$$[(p, f)] \mapsto (p, f),$$

with $(p, f) \in U_i \times F$, and $[(p, f)] \in E$. One notes that $U_i \times F = \pi^{-1}(U_i)$.

Moreover, note that $\begin{array}{l} \pi \circ \phi_i : U_i \times F \to U_i \\ (p,f) \mapsto \lceil (p,f) \rceil \mapsto p \end{array}$ is the $proj_1 : U_i \times F \to U_i$ map, see definition 10.

Expanding briefly on the last remark, remember that the inverse map ϕ_i^{-1} maps $\pi^{-1}(U_i)$ to the direct product $U_i \times F$. Hence, the following diagram commutes,

$$\pi^{-1}(U_i) \xrightarrow{\phi_i^{-1}} U_i \times F \qquad \pi^{-1}(U_i) \xleftarrow{\phi} U_i \times F$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

making $\pi \circ \phi$ the cartesian projection mapping.

Moreover, one can define a global mapping, similar in nature to the local trivializations ϕ_i but instead defined on the entirety of X and not only on $U_i \times F$,

$$\mathfrak{q}:X\to E\simeq \frac{X}{\sim},\quad \text{the canonical map},$$

$$\mathfrak{q}^{-1}:E\simeq \frac{X}{\sim}\to X$$

s.t. it sends points to their equivalence classes. It is a surjective map, i.e.

$$(p,f),(q,f')\in X,\quad \mathfrak{q}(p,f)\sim \mathfrak{q}(q,f) \text{ if and only if } \mathfrak{q}(p,f)=\mathfrak{q}(q,f'),$$
 and consequently $q((p,f))=\mathfrak{q}^{-1}(\mathfrak{q}(p,f))$ for all $(p,f)\in U_i\times F$.

In particular, this shows that the set of equivalence classes $\frac{X}{\sim}$ is exactly the st of fibers of the local trivialization maps ϕ_i , or its globally defined counterpart: the canonical map. Moreover, if X is a topological space, then $\frac{X}{\sim}$ is imbued with the quotient topology induced by q, hence making $\mathfrak{q}:X\to\frac{X}{\sim}$ a quotient map. Upto a homeomorphism, this construction is representative of all quotient spaces.

This proves that the given data reconstructs a fibre bundle $E \stackrel{\pi}{\to} M$.

 $\begin{array}{c} quod\\ erat\\ dem \blacksquare \end{array}$

This procedure can be employed to construct new fibre bundles from and old one. In effect, (E, π, M, F, G) be a fibre bundle, s.t. associated to it there is a new bundle with the same base space M, transition functions $t_{ij}(p)$, structure group G but different typical fibre F' on which G acts.

Bundle Maps. Let $E \stackrel{\pi}{\to} M, E' \stackrel{\pi'}{\to} M'$ be two fibre bundles. A smooth map $\bar{f}: E' \to E$ is called a bundle map if it maps each fibre F_p of E' onto exactly the same fibre F_q of E. If this holds, then \bar{f} naturally induces a smooth map $f: M' \to M$ s.t. f(p) = q. Hence, the following diagrams commute

$$E' \xrightarrow{\bar{f}} E \qquad u \xrightarrow{\bar{f}} \bar{f}(u)$$

$$\downarrow^{\pi} \iff_{\pi'} \downarrow \qquad \downarrow^{\pi}$$

$$M' \xrightarrow{f} M \qquad p \xrightarrow{f} q$$

Remark.

Note, however, that not all smooth maps $\bar{f}: E' \to E$ are bundle maps, since the definition of bundle maps requires it to be **fibre-preferving**. More explicitly, let $\bar{f}: E' \to E$ be a mapping from E' to E, s.t. it induces a map $f: M' \to M$ from M' to M, then \bar{f} is a bundle map if and only if $\pi \circ \bar{f} = \pi' \circ f$. In other words, a general smooth map \bar{f} could map $u, v \in F'_p$ of E' to different fibres $\bar{f}(u), \bar{f}(v)$ of E so that their projections differ $\pi(\bar{f}(u)) \neq \pi(\bar{f}(v))$.

.