One Hot Encoding

Sequential Design So Far

- * Designing circuits from state diagrams has been achieved with binary encoding so far
- ° Each state is given a binary number
- ° Use state table and k-maps to get simplified logic circuits for next states and outputs
- * Limited by the number of total states and inputs
- ° K-map becomes too large to handle by hand

One Hot Encoding

- * Instead of assigning each state a binary number, each state is represented as a single binary value.
- * Number of bits in the value is the number of states
- ° Only one bit can be 1 for each value
- ° 1 flip flop for each state
- One hot encoding uses more flip flops than binary encoding
- No state table necessary
- * For 3 states, the encoding is State 0 ->001, State 1 -> 010, State 2 ->100

Example

Given the state diagram, encode the states with one hot encoding

Encoding

- *Need 4 bits in encoding because 4 states exist
- * Each encoded number can only contain a single 1
- ° 1 represents output of flip flop. (Will not be using

- * Do not need state table
- * For a given state, look at the transition arrows into it, each arrow is an input on an OR gate
- ° Connected to the OR gate input is the state coming from AND the input

What is the next state logic for SO?

Output Logic

- * Look at only the states where the output is 1
- ° OR all these states together

Mealy One Hot

* Next transition logic is the same approach regardless of if state machine is Moore or Mealy

$$S0=S1x$$

$$S1=S0\overline{x}+S2x$$

$$S2=S2\overline{x}+S0x+S1\overline{x}$$

Mealy Output

- * Find where output is 1 on transition arrow
- Output = (state A leaving AND input) + (state B leaving AND input)....

Mealy Output

$$G = S 0 x + S 2 x + S 2 \overline{x}$$

Output One Hot

* Output logic may be unsimplified. Use Boolean algebra to reduce

Why is F not just connected to S2?

