

LANCASTER UNIVERSITY

A Monte Carlo Tree Search for the Optimisation of Flight Connections

Arnaud Da Silva

36471977

Supervisor

Ahmed Kheiri

A thesis submitted in fulfillment of the requirements for the degree of Master of Science Business Analytics

in the

Lancaster University Management School Department of Management Science

September 2024

Declaration of Authorship

I, Arnaud Da Silva, hereby declare that this thesis entitled, A Monte Carlo Tree Search for the Optimisation of Flight Connections, is all my own work, except as indicated in the text.

The report has been not accepted for any degree and it is not being submitted currently in candidature for any degree or other reward.

Signed:

Date: Thursday, the 5^{th} of September, 2024

Abstract

This dissertation addresses the challenge posed by Kiwi.com, the Traveling Salesman problem 2.0. Despite some similarities with the classic Traveling Salesman Problem (TSP), the problem is more complex. It can be characterised as an asymmetric, time-constrained and generalised TSP. Moreover, infeasibility adds further complexity as there are no flights available between specific airports at specific days. Exact methods often fail in solving these \mathcal{NP} -Hard problems. Therefore, alternative approaches, such as heuristics, are preferred to face these cases. A Monte Carlo Tree Search (MCTS) was implemented to tackle Kiwi's challenge, an algorithm traditionnaly used in board games, but here adapted to solve an air travel optimisation problem.

The focus of this paper is on the first eight instances of the problem, without taking into account the time constraints set by Kiwi.com. The MCTS has been chosen for its proven effectiveness in handling complex and high dimensionnal search spaces, therefore well suited for this modified TSP. The most notable results of the thesis include the successful implementation of Monte Carlo Tree Search (MCTS) to solve six out of eight problem instances, achieving results that match or closely approximate the best-known solutions. One new best solution have been found for instance eight. A thorough analysis of the algorithm's parameters, such as the selection, expansion, simulation and parralelisation policies have been conducted, providing insights into their influence on the algorithm's performance. It is recommended to implement MCTS using a greedy simulation policy and UCB1-Tuned selection policy for smaller instances, while employing UCB for more complex scenarios. Regarding the expansion policy, the top k function found better solutions accross all instances. Furthermore, a five cores leaf parrelisation is to consider when using stochastic simulation policies. All these parameters guide efficiently the tree search towards the best solutions.

Keywords: Optimisation, Travelling Salesman Problem, Monte Carlo Tree Search, Air Travel Optimisation.

Acknowledgements

I would like to particularly thanks Ahmed Kheiri, my tutor, who guided me throughout this work. I would also like to express my gratitude to Yaroslav Pylyavskyy for his valuable insights and feedbacks on this project. Finally, I would like to thank the Management Science Department at Lancaster University who have taught me a lot during this final year of my studies.

Declaration of Generative AI and AI-assisted technologies used in the research and writing process'

Generative AI was used in the research and writing process. For the research process, we used Chat-GPT 40 to solve quick coding problems, only to implement the log files in the MCTS' function. For the writing process, Deepl has been used to correct the grammar.

No text or python code in this document has been directly included and generated by a Generative-AI tool.

Contents

D	eclar	ation o	of Authorship	i
A	bstra	.ct		ii
\mathbf{A}	cknov	wledge	ments	iii
\mathbf{A}	cknov	wledge	ments	iii
D			of Generative AI and AI-assisted technologies used in the nd writing process'	iv
${f Li}$	st of	Figure	es v	iii
		Tables		ix
				IA
A	bbre	viation	S	X
1	Intr	oducti	on	1
	1.1	Backg	round	1
	1.2	Resear	ch objectives	2
	1.3	Acade	mic publication	2
	1.4	Disser	tation structure	2
2	Lite	rature	Review	3
	2.1	Optim	isation in Air Travel	3
		2.1.1	Fleet Assignment Problem	3
		2.1.2	Crew Scheduling Problem	3
		2.1.3	Disruption Management	4
		2.1.4	Airline adaptation to new demand	4
	2.2	Travel	ing Salesman problem and its adaptaion	6
	2.3	The M	Ionte Carlo Tree Search algorithm	9
		2.3.1	Overview	9
		2.3.2	Example	10
		2.3.3	The different parameters in the MCTS	16

Contents vi

3	3.1 3.2	Overvi	Descripti dew ces															
	ე.∠	3.2.1	Descripti															
		3.2.1	General i															
		3.2.3																
4	Met	hodolo																28
	4.1	Monte	Carlo Tre		_													
		4.1.1	General i															
			4.1.1.1	Data Pro	_													
			4.1.1.2	Node .														
	4.2	The di	ifferent po															
		4.2.1		on policie														
		4.2.2	Expansio	_														
		4.2.3	Notation															
		4.2.4	Pseudo-c	ode			 			•	 •	•	 •	•	 •	•	•	36
5			nd perfor															39
	5.1		hesis															
	5.2		s analysis															
		5.2.1	Overview															
		5.2.2	Analysis															
			5.2.2.1	I_1, I_2, I_3		_												
			5.2.2.2	I_5 and I_6	-													
			5.2.2.3	I_7 and I_8														
			5.2.2.4	I_9 to I_{14}														
		5.2.3	Parallelis	sation			 	• •		•	 ٠	•	 •	•	 •	•	•	5(
6		clusio																5 3
	6.1		ary															53
	6.2	Areas	for expans	sion			 				 •	•	 •	•	 •		•	54
\mathbf{A}		le Listi	_	·														56
		_	preprocess	_														56
			 }															
D							 •		•		 ·	•	•	•	 Ī	•	•	
		Insta																82
\mathbf{C}	Sim	ulation	ne roculte	,														23

	••
Contents	V1
Contents	VI

	C.1	Instan	ce 1	. 83
		C.1.1	Solution found	. 83
		C.1.2	Solution not found	. 96
	C.2	Instan	ce 2	. 98
		C.2.1	Solution found	. 98
		C.2.2	Solution not found	. 105
	C.3	Instan	ce 3	. 112
		C.3.1	Solution found	. 112
		C.3.2	Solution not found	. 125
	C.4	Instan	ce 4	. 126
		C.4.1	Solution found	. 126
		C.4.2	Statistical tests	. 127
D	Best	t solut	ions	130
Bi	bliog	graphy		133

List of Figures

2.1	European demand seasonality [1]	5
2.2	Time complexity of different functions	6
2.3	Assymetrical growth of MCTS - Simulation and Expansion - [2]	10
2.4	Selection - I_{t1}	10
2.5	Simulation - I_{t1}	11
2.6	Backpropagation - I_{t1}	13
2.7	Selection - I_{t2}	13
2.8	Simulation and Backpropagation - I_{t2}	14
2.9	Selection - I_{t3}	14
2.10	Selection and Expansion - I_{t3}	15
2.11	Simulation and Backpropagation - I_{t3}	15
2.12	Selection - Simulation - Backpropagation - I_{t4}	16
2.13	Example of parrelisation- I_{t4}	18
4.1	Flow MCTS	29
4.2	Explanation of the data preprocessing class	31
4.3	Explanation of the Node class	33
F 1		41
5.1	C_p vs Number of selection	41
5.2	C_p vs Total cost	42 43
5.3	Ratio expansion vs Time to find the solution	43 44
5.4 5.5	Expansion ratio vs Total cost	44 45
5.6	Simulation performance - instance 3	46
5.7	Simulation performance $C_p = 0$ - Instance 4	40
5.8	Simulation performance vs Expansion Ratio - Instance 3	47
5.9	Simulation performance vs Expansion Ratio - Instance 4	41
5.9	stance 7	49
5.10	Comparison of the distributions for the simulated outcomes without par-	
	ralelisation and with 5 cores - Instance $4 \dots \dots \dots \dots \dots$	50
5.11	Statistical tests to compare the 5 cores paralelised and not paralelised	
	distribution - Instance 4	51
5.12	Comparison of the distributions for the simulated outcomes on 5 vs 10	
	cores - Instance 4	52
5.13	Statistical tests to compare the 5 and 10 cores distribution - Instance 4	52

List of Tables

2.1	Kiwi TSP 2.0 - Chosen algorithm of the state of the art solutions	19
2.2	Kiwi TSP 2.0 - State of the art solution	20
3.1	Flight connections sample I_6	25
3.2	Time limits based on the number of areas and airports	27
3.3	Instances and their respective parameters	27
5.1	Grid search	39
5.2	Best results vs State of the art	40
5.3	Simulation table - I_7	48
5.4	Simulation table - I_8	49
6.1	Time to preprocess data for $I_7, \ldots, I_{14} \ldots \ldots$.	54
C.8	Kolmogorov-Smirnov and Mann-Whitney U Test Results for 5 cores parralelisation vs no parralelisation	128
C.9	Kolmogorov-Smirnov and Mann-Whitney U Test Results for paralelisa-	
	tion 5 vs 10 cores	129

Abbreviations

TSP Traveling Salesman Problem

MCTS Monte Carlo Tree Search

UCB - UCB1 Upper Confidence Bound

 ${f UCB1T}$ - ${f UCBT}$ Upper Confidence Bound Tuned

FAP Fleet Assignment Problem

CSP Crew Scheduling Problem

STSP Symmetric TSP

ATSP Assymmetric TSP

mTSP Multiple TSP

TWTSP Time Window TSP

PCTSP Price Collection TSP

STSP Stochastic TSP

DTSP Dynamic TSP

GTSP Generalised TSP

OTSP Open TSP

RL Reinforcement Learning

Chapter 1

Introduction

1.1 Background

The number of flight connections keep increasing every year [3], more than 38 million flights have been scheduled in 2023 - therefore, creating a challenge for traveler's to find the best and cheapest flight connections for their specific journey, especially when one has to visit a big number of cities. Consequently, travel agencies have deployed online trip planner algorithms in order to find flights connection that match the traveler's requirements. Example of these are, Google Flights, OpenFlights.org, Skyscanner, Kayak and Kiwi.com.

These agencies have launched different challenges to create and build powerful trip planner algorithms. For instance, as mentionned in [4], OpenFlights.org launched the Air Travelling Salesman project. Furthermore, Kiwi.com has launched a project in 2017, called Traveling Salesman Challenge, where the current algorithm used by Kiwi.com was developed. In 2018, Kiwi.com launched a new challenge, the Traveling Salesman Problem 2.0 which is the focus of this study.

The given problem is a variant of the Traveling Salesman Problem. It can be characteristed as a generalised, assymetric and time dependant TSP. A traveler has to visit a list of areas, one per day, given a starting airport and all the possible flight connections between these areas at different days. The goal is to determine what is the cheapest flights connection for the traveler to come back to the starting area. Regarding the number of possible journeys, solving this problem by exploring every single potential solution is

impossible. This is why a heuristic approach is often used to solve such TSP problem. In this paper, the Kiwi.com challenge is solved using a Monte Carlo Tree Search.

1.2 Research objectives

The goals of this dissertation are:

- The implementation of a Python innovative solution to solve the Kiwi.com Traveling Salesman problem 2.0 with no focus on the time limit.
- Focus on instances $(I_1, \dots I_8)$ that represent more realistic scenarios.
- Try to find better solutions than the state of the art for the considered instances.

1.3 Academic publication

 Arnaud Da Silva and Ahmed Kheiri (In preparation). A Monte Carlo Tree Search for the Optimisation of Flight Connections. The 2024 International Conference on Decision Aid Sciences and Applications.

1.4 Dissertation structure

The dissertation is structured as follow:

- Section 2 is the litterature review where the Air Travel optimisations problem are introduced, TSP and its variants are redefined and finally the Monte Carlo Tree Search and an example are presented.
- Section 3 is the problem and instances description to highlight the problem complexity in detail.
- Section 4 is the methodology of our algorithm implementation, where we explain the code's structure, explain the general flow of the algorithm.
- Section 5 is the result and performance of our implementation compared to the state of the art solution and further analysises regarding the MCTS' parameters.

Chapter 2

Literature Review

2.1 Optimisation in Air Travel

In this section, we discuss some common challenges faced by airline companies and demonstrate the importance of optimisation in decision-making for the success and competitiveness of airline companies.

2.1.1 Fleet Assignment Problem

The Fleet Assignment Problem (FAP), as discussed in [5] involves assigning different types of aircraft, to flights based on their capabilities, operational costs, and revenue potential. This decision greatly influences airline revenues and is a vital part of the overall scheduling process. The complexity of FAP is driven by the large number of flights an airline manages daily and its interdependencies with other processes like maintenance and crew scheduling.

2.1.2 Crew Scheduling Problem

The Crew Scheduling Problem (CSP), as discussed in [6], involves assigning crews to a sequence of tasks, each with defined start and end times, with the primary objective of ensuring that all tasks are covered while adhering to regulations on maximum working hours for crew members.

This problem is particularly critical for low-cost airlines, for example in the United Kingdom in 2023, low-cost flights comprise 48% of the scheduled capacity (total number of seats offered) [7], which rely heavily on optimised crew schedules to maintain competitiveness. Efficient crew scheduling is essential not only for low cost carriers and for cost minimisation but also for ensuring operational reliability and flexibility in response to unexpected disruptions. [8]

2.1.3 Disruption Management

Disruptions in airline operations, as noted in [9], can occur due to various factors, including crew unavailability, delays from air traffic control, weather conditions, or mechanical failures. Given that flight schedules are typically planned months in advance [10], effective disruption management is crucial to minimise the impact on passengers and overall airline operations.

The two mains drivers of disruption management are aircraft and crew recovery.

- Aircraft recovery: Optimisation tools help manage the complex logistics of matching available aircraft with rescheduled flights, considering factors like airport availability and maintenance requirements.
- Crew recovery: Optimisation tools are used to adjust crew schedules, taking into
 account factors such as legal working hours, crew availability, and the need to
 cover all flights efficiently. These tools help in developing feasible and compliant
 crew rosters that adapt to the new flight schedules.

These optimisation strategies, supported by advanced software, for instance [11] and [12], are crucial for reducing the impact of disruptions and boosting operational resilience in the airline industry.

2.1.4 Airline adaptation to new demand

Airline companies must continuously adapt their schedules to meet evolving market demands, particularly with the growing dominance of leisure travel over business travel, which has introduced new patterns of demand as shown on Figure 2.1 in Europe. This seasonality poses a challenge for airlines as they have to balance high demand during peak seasons with the risk of underutilisation during off-peak times.

FIGURE 2.1: European demand seasonality [1]

Since travel demand varies throughout the year, airlines use a variety of techniques to achieve operational efficiency while maximising revenue [1]. For instances, airlines sell nearly 65% more seats. To ensure their operatios remain efficient during periods of heightened demand, airline companies make the required allowance for additional aircraft and crew by optimisation models that specify priority routes and requirements for additional flights, alongside effective crew rotation management.

In contrast, winter months pose a different type of problem where demand drops, which can potentially lead to underutilisation of aircrafts. To manage this, airlines are known to turn to ACMI leasing (agreement between two airlines, where the lessor agrees to provide an aircraft, crew, maintenance and insurance [13]) during periods of low demand to temporarily reduce fleet size by outsourcing their capacity. Alongside this, they also increase maintenance activities and incentivise crews to take holidays or undergo training to maximise productivity across the operation. Equally, on a year-round basis, airlines apply dynamic pricing algorithms to vary fares in reaction to real-time demand patterns. In high-demand summer months, fares are tactically set so as to maximise revenues from travelers willing to pay more, while in winter, pricing strategies are aimed at stimulating demand with fare reductions to fill seats that otherwise would have gone empty. Such adaptive strategies are critical to the airlines for effectively beating the seasonal ebbs and flows in the travel industry.

2.2 Traveling Salesman problem and its adaptaion

The Traveling Salesman Problem is a well known problem in the Operational Research and Computer Science fields. A simple description of the TSP is to find the best roundtrip for a saleman that has to travel around a given number of cities while minimising the overall journey's distance. This problem is characterised as \mathcal{NP} -Hard [14]. This means that there is no known polynomial-time algorithm that can solve all instances of the problem efficiently . Regarding time complexity, if we were to solve it exploring all the possible solutions, the time complexity would have been $\mathcal{O}(\frac{(n-1)!}{2})$ where n represents the number of cities.

Figure 2.2: Time complexity of different functions

On Figure 2.2, different time complexities are compared and demonstrates that the factorial time complexity is the worst. Therefore, these kinds of \mathcal{NP} -Hard problem are typically not solved exploiting all the search area but using heuristics algorithms. Heuristics solutions do not guarantee to find the absolute optimal solution but can find near-optimal solutions within more reasonnable timeframes.

The TSP has been studied extensively, and, many variants can be derived from it:

• Symmetric TSP (STSP): The distance between cities are symmetric, meaning that the distance to travel from city A to city B is the same as from city B to city A.

- Assymetric TSP (ATSP): The distance between cities are assymetric, meaning that the distance to travel from city A to city B is different than the distance to travel from city B to city A.[15]
- Multiple TSP (mTSP): Instead of one salesman, multiple salesman are starting from one city, they visit all the cities such that each city is visited exactly once. [16]
- Time Window TSP (TWTSP): Each city has to be visited in a defined time slot. [17]
- Price-collection TSP (PCTSP): Not all the cities have to be visited, the goal is to minimise the overall traveler's distance while maximising the price collected earned when visiting a city. [18]
- Stochastic TSP (STSP): The distances between the cities or the cost of travels are stochastic (i.e random variables) rather than deterministic. [19]
- Dynamic TSP (DTSP): The problem can change over time, that means that new cities can be added or distances between cities can change while the salesman has already started his journey. [20]
- Generalised TSP (GTSP): The cities are grouped into clusters, the goal is to visit exactly one city from each cluster. [21]
- Open TSP (OTSP): The traveler does not have to end his journey at the starting city. [22]

Multiple algorithms have been developed to address these TSP variants, we can classify them into two categories:

- Exact algorithms: These algorithms aim to find the optimal solution to the TSP by exploring all possible routes or by using mathematical techniques to prune the search space efficiently.
 - Branch and Bound: This method systematically explores the set of all
 possible solutions, using bounds to eliminate parts of the search space that
 cannot contain the optimal solution. It is often used for smaller instances of
 TSP. [23]

- Cutting planes: This technique adds constraints (or cuts) to the TSP formulation iteratively to remove infeasible solutions and converge to the optimal solution. This approach is particularly effective for symmetric TSPs. [24]
- Dynamic Programming: Introduced by Bellman, this approach breaks down the TSP into subproblems and solves them recursively, eventhough its exponential complexity it is highly effective for TSP variants. [25]
- Heuristic Algorithms: These algorithms are designed to find near-optimal solutions within a reasonable time frame, specifically for large-scale problems where exact methods are computationally infeasible.
 - Greedy Algorithms: These algorithms make a series of locally optimal choices in the hope of finding a global optimum. An example is the Nearest Neighbor algorithm, which selects the nearest unvisited city at each step. [26]
 - Genetic Algorithms: Inspired by the process of natural selection, these
 algorithms evolve a population of solutions over time, using operations such
 as mutation and crossover to explore the solution space. [27]
 - Simulated Annealing: This probabilistic technique searches for a global optimum by allowing moves to worse solutions based on a temperature parameter that gradually decreases. It is particularly useful for escaping local optima. [28]
 - Ant Colony Optimization: This metaheuristic is inspired by the foraging behavior of ants and uses a combination of deterministic and probabilistic rules to construct solutions, which are gradually refined through updates based on pheromone trails. [29]

Some TSP problems (or its variants) have been solved using other algorithms.

2.3 The Monte Carlo Tree Search algorithm

The Monte Carlo Tree Search (MCTS) algorithm can be characterised as less traditionnal than the previously enounced methods in Section 2.2 to solve TSP problems. MCTS is typically used in games. MCTS' (and its variants) have been successfully implemented across a range of games, such as Havannah [30], Amazons [31], Lines of Actions [32], Go, Chess, and Shogi [33], establishing it as the state-of-the-art algorithm [34], [35], [36]. It is widely used in board games and is increasingly popular since Google DeepMind developed AlphaGo. AlphaGo is a software that was created to beat the best Go's player in the world.

Go is a board game from China where two players take turns placing black or white stones on a grid. The goal is to capture territory by surrounding empty spaces or the opponent's stones. Despite its simple rules, Go is a complex game, with countless possible moves and strategies. It is known for its balance between intuition and logic, hence why it has been a significant focus of artificial intelligence research [37]. In 2016, Lee Sedol [38], the best Go's player in the world was been beaten by AlphaGo 4-1 [39].

MCTS with policy and value networks are at the heart of AlphaGo decision-making process, enabling AlphaGo's to pick the optimal moves in the complex search of Go. [40]

2.3.1 Overview

The MCTS' process is conceptually straightforward. A tree is built in an incremental and assymatric manner (Figure 2.3). For every iteration, a selection policy is used to determine which node to select in the tree to perform simulations. The selection policy, typically balances the exploration (looking into parts of the tree that have not been visited yet) and the exploitation (looking into parts of the trees that appear to be promising). Once the node is selected, a simulation (a sequence of available actions, based on a simulation policy), is applied from this node until a terminal condition is reached (e.g no further actions are possible) [41].

Figure 2.3: Assymetrical growth of MCTS - Simulation and Expansion - [2]

To ensure a clearer understanding of MCTS algorithm's stages, we will start by exploring a detailed example [42]. This example will illustrate each component of the algorithm in action. Furthermore, we will generalise the principles discussed, as the methodology of this paper is built on the application of the MCTS algorithm.

2.3.2 Example

Considering a maximisation problem, when starting a game, the player can choose between two possible actions a_1 and a_2 from the node $S_0^{0,0}$ in the tree \mathcal{T} . Every node is defined like so: $S_i^{n_i,t_i}$ where n_i represents the number of times node i has been visited, t_i the total score of this node. Moreover, for every node - a selection metric can be computed, for instance the UCB value: $UCB(S_i^{n_i,t_i}) = \bar{V}_i + 2\sqrt{\frac{\ln N}{n_i}}$ where $\bar{V}_i = \frac{n_i}{t_i}$ represents the average value of the node, n_i the number of times node i has been visited, $N = n_0$ the number of times the root node has been visited (which is also equal to the number of iterations).

Before the first iteration, I_{t1} , none node have been visited - $\forall i \in \mathcal{T}, S_i^{0,0}$. At the begin-

FIGURE 2.4: Selection - I_{t1}

ning of I_{t1} , the player has to choose between these two child nodes (or choose between taking a_1 or a_2). After, the player has to calculate the UCB value for these two nodes and pick the node that maximises the UCB value (as it is a maximisation problem).

In Figure 2.4, neither of these have been visited yet so $UCB(S_1^{0,0}) = UCB(S_2^{0,0}) = \infty$. Hence, the player decides to choose randomly $S_1^{0,0}$.

 $S_1^{0,0}$ is a leaf node that has not been visited, then a simulation can be done from this node. It means selecting actions from this node based on the simulation policy to a terminal state as shown on Figure 2.5:

Figure 2.5: Simulation - I_{t1}

The terminal state has a value of 20, we can write that the rollout/simulation from node $S_1^{0,0}$ node is $\mathcal{R}(S_1^{0,0}) = 20$. The final step of I_{t1} is backpropagation. Every node that has been visited in the iteration is updated. Let $\mathcal{N}_{\mathcal{R},j}$ be the indexes of the nodes visited during the j-th iteration of the MCTS:

• Before backpropagation:

$$\forall i \in \mathcal{N}_{\mathcal{R},j}, S_{i,old}^{n_i, t_i} \tag{2.1}$$

• After backpropagation:

$$\forall i \in \mathcal{N}_{\mathcal{R},j}, S_{i,new}^{n_i+1,t_i+\mathcal{R}(S_{i,old}^{n_i,t_i})}$$
(2.2)

We can then define a backpropagation function:

$$\mathcal{B} : \mathcal{N}_{\mathcal{R},j} \to \mathcal{N}_{\mathcal{R},j}$$

$$S_i^{n_i,t_i} \mapsto S_i^{n_i+1,t_i+\mathcal{R}(S_i^{n_i,t_i})}$$

Then, back to the example on Figure 2.6, the player updates the visited nodes: $\mathcal{B}(S_1^{0,0}) = S_1^{1,20}$ and $\mathcal{B}(S_0^{0,0}) = S_0^{1,20}$.

Figure 2.6: Backpropagation - I_{t1}

The fourth phase of the algorithm has been done for I_{t1} . Therefore, the player can start the 2^{nd} iteration of the MCTS, I_{t2} . On Figure 2.7, he can either choose a_1 or a_2 . When a

FIGURE 2.7: Selection - I_{t2}

child node has not been visited yet, the player picks this node for the Selection iteration, or he can compute the UCB value, it leads to the same conclusion.

Figure 2.8: Simulation and Backpropagation - I_{t2}

A simulation is executed (Figure 2.8) from the chosen node $S_2^{0,0}$ and $\mathcal{R}(S_2^{0,0}) = 10$ and then the outcome is backpropagated to all the visited nodes: $\mathcal{B}(S_2^{0,0}) = S_2^{1,10}$ and $\mathcal{B}(S_0^{1,20}) = S_0^{2,30}$. Next, I_{t3} starts, based on the UCB score, the player chooses a_1 .

FIGURE 2.9: Selection - I_{t3}

 $S_1^{1,20}$ is a leaf node and has been visited, this node can be expanded.

FIGURE 2.10: Selection and Expansion - I_{t3}

Based on UCB score, a simulation is done from $S_3^{0,0}$ on Figure 2.11

Figure 2.11: Simulation and Backpropagation - \mathcal{I}_{t3}

This is the fourth iteration, I_{t4} represented on Figure 2.12:

Figure 2.12: Selection - Simulation - Backpropagation - I_{t4}

The MCTS algorithm can either be stopped because the player is running out of time or because the player has no more available actions in the game. For instance, if he were to stop at this stage of the algorithm, the best action to undertake is a_2 because it has the higher average value: $\bar{V}_1 = \frac{20}{2} \leq \bar{V}_2 = \frac{24}{2}$.

2.3.3 The different parameters in the MCTS

As outlined in the previous example, node's selection is crucial in the MCTS process and can significantly influence the performance of the algorithm. The selection function traditionnally used is the Upper Confidence Bound 1 (UCB). However, there are a lot of different MCTS' selection functions as mentionned in this survey [43]. Most of the selection function, are based on the upper confidence bound principle, which balances the dual aspect of exploration and exploitation in the tree search.

The UCB and is variants, the UCB1-Tuned are defined as follow:

$$UCB = \overline{X}_i + C_p \sqrt{\frac{2 \ln N}{n_i}}$$
 (2.3)

$$UCB$$
-Tuned = $\overline{X}_i + \sqrt{\frac{\ln N}{n_i} \min\left(\frac{1}{4}, \operatorname{Var}(X_i) + \sqrt{\frac{2\ln N}{n_i}}\right)}$ (2.4)

Where:

- \overline{X}_i : Average reward of node *i*.
- N: Total number of visits to the root node.
- n_i : Number of visits to node i.
- C_p : Exploration parameter
- $Var(X_i)$: Variance of the rewards at node i, representing the variability of the rewards.

The UCB balances its exploration with the coefficient C_p , empirically $C_p = \sqrt{2}$. The term $C_p \sqrt{\frac{2 \ln N}{n_i}}$ adds a confidence interval to the average reward, which encourages exploring less-visited nodes when $C_p > 0$. When $C_p = 0$, the tree search explores less but exploits more of the known part that seems promising for the problem in the tree. The UCB1-Tuned balances its exploration with min $\left(\frac{1}{4}, \operatorname{Var}(X_i) + \sqrt{\frac{2 \ln N}{n_i}}\right)$, making the UCB1-Tuned more adaptable to environments with varying reward distributions. The C_p coefficient can also be considered in the UCB1-Tuned's formula. Hence in stochastic environments the UCB1-Tuned is more likely to have a better overall performance.

Other selection policies, such as the Beta policy or Single Player MCTS [43], also play significant roles in various applications of the Monte Carlo Tree Search. However, these policies will not be the focus of this study due to their probabilistic nature, which does not align well with our specific problem context.

2.3.4 Parallelisation

In computer science, parallelisation is a technique that divides a number of tasks into sub-tasks that can be both, independently and simultaneously run on mutiple cores of a computer. Due to the nature of the MCTS and its four phases, this algorithm is a good candidate for parallelisation.

For instance, after selecting a node to explore, rather than conducting a single simulation based on the one simulation policy, you can either run simulations using multiple different simulation policies and select the best outcome, or perform multiple simulations using the same policy (if it is stochastic). Then, going back to the fourth iteration of our example in Figure 2.12, if we parallelise simulations on three cores then instead of having $\mathcal{R}(S_5^{0,0}) = 14$ you have a list of simulation results $\mathcal{R}(S_5^{0,0}) = (\mathcal{R}_1(S_5^{0,0}), \mathcal{R}_2(S_5^{0,0}), \mathcal{R}_3(S_5^{0,0})) = (13,14,25)$ and one decision policy could be to pick the maximum of this simulation, hence $\max(\mathcal{R}(S_5^{0,0})) = \mathcal{R}_3(S_5^{0,0}) = 25$.

FIGURE 2.13: Example of parrelisation- I_{t4}

Multiple parallelisation can be applied in the MCTS. For instance, the multi-tree MCTS aims to build parallelised tree from the root node or the leaf parallelisation where multiple simulations are executed at the same time to get better estimates of the node's

value (what is done on Figure 2.13). However, too many modifications of the MCTS can be unproductive and lead to worst results [43].

2.4 Litterature gaps

More than 500 teams registered for Kiwi.com TSP 2.0 challenge, and only 100 teams developed algorithms that were robust enough to go to the second phase of the challenge. The literature on the methods used by the participants is relatively sparse compared to the number of competitors. On the Kiwi.com website, the best instances are showcased. The winners explained their approach during the award ceremony [44], they implemented a Breadth-first search (BFS) algorithm in C++. Other participants employed well-known heuristics such as modified Simulated Annealing, Genetic Algorithms and Reinforcement Learning hyper-heuristics. Two papers were published on this challenge ([4] and [45]), where a Local Search and a Reinforcement Learning (RL) hyper-heuristics algorithms are implemented. The algorithms used by the known participants to solve this challenge are summarised on Table 2.1.

Table 2.1: Kiwi TSP 2.0 - Chosen algorithm of the state of the art solutions

References	Reinforcement Learning	Local search	BFS	SA
Paper 1 [4] Paper 2 [45]	x	X		
Kiwi's official winner Other participants	x	X	X X	X

Furthermore, Table 2.2 summarises the state of the art solutions.

These points motivate our selection of the Monte Carlo Tree Search as a suitable approach because it has never been implemented for this challenge.

Table 2.2: Kiwi TSP 2.0 - State of the art solution

Instance	Kiwi's	Local Search	Reinforcement learning	Best known
$ I_1 $	1396	1396	1396	1396
I_2	1498	1498	1498	1498
I_3	7672	7672	7672	7672
I_4	14024	14045	13952	13952
I_5	698	837	690	690
I_6	2159	3021	2610	2159
I_7	31681	32354	30937	30937
I_8	4052	4041	4081	4041
I_9	76372	82242	75604	75604
I_{10}	21667	87462	58304	21667
I_{11}	44153	49453	59361	44153
I_{12}	65447	70082	86074	65447
I_{13}	97859		166543	97859
I_{14}	118811	-	198787	118811

Chapter 3

Problem Description

3.1 Overview

Kiwi's traveler wants to visit N different areas in N days, let's denote A the set of areas the traveler wants to visit:

$$A = \{A_1, A_2, \dots A_N\}$$

where each A_j is a set of airports in area j:

$$A_j = \{a_{j,1}, a_{j,2}, \dots, a_{j,k_j}\}$$

where a_{j,k_j} being airports in area j and k_j is the number of airports in area j.

The traveler has to visit one area per day. He has to leave this area to visit a new area by flying from the airport he flew in. He leaves from a known starting airport and has to do his journey and come back to the starting area, not necessarly the starting airport. There are flight connections between different airports, with different prices depending on the day of the travel: we can write c_{ij}^d the cost to travel from $city_i$ to $city_j$ on day d. We do not necessarly have $c_{ij}^d = c_{ji}^d$ neither $c_{ij}^{d_1} = c_{ij}^{d_2}$ if $d_1 \neq d_2$. The problem can hence be characterised as an generalised, assymetric and time dependant TSP - as discussed in Section 2.2.

The aim of the problem is to find the cheapest route for the traveler's journey.

The problem itself had not been mathematically defined in previous research, and we found it particularly valuable in our study to rigorously formulate the problem mathematically, as it provided a clear framework to analyse and understand its complexities.

We can then formulate the problem as follow:

- $A = \{1, 2, ..., N\}$: Set of areas.
- $A_j = \{a_{j,1}, a_{j,2}, \dots, a_{j,k_j}\}$: Set of airports in area $j \in \mathcal{A}$.
- $\mathcal{D} = \{1, 2, ..., N\}$: Set of days.
- $U_d \subseteq A$: Set of areas that have not been visited by the end of day d.

Parameter

• c_{ij}^d : Cost to travel from airport i to airport j on day $d \in \mathcal{D}$.

Variables

- x_{ij}^d : Binary variable which is 1 if the traveler flies from airport i to airport j on day d, and 0 otherwise.
- v_j^d : Binary variable which is 1 if area j is visited on day d, and 0 otherwise.

Constraints

- 1. Starting and Ending Constraints:
 - The traveler starts at the known starting airport S_0 .
 - The traveler must return to an airport in the starting area on the final day N.

2. Flow Constraints:

- The traveler must leave each area and arrive at the next area on consecutive days, the next area has not been visited yet.
- Ensure that the traveler can only fly into and out of the same airport within an area.
- Ensure each area is visited exactly once.
- Update the unvisited list as areas are visited.

Objective Function

The goal is to minimise the journey's total travel cost:

$$\min \left(\sum_{d=2}^{N-1} \sum_{\substack{N-1\\i\in\bigcup\limits_{k=2}^{N-1}A_k}} \sum_{j\in\bigcup\limits_{k=3}^{N}A_k} c^d_{ij}x^d_{ij} + \sum_{j\in A_1} c^1_{S_0,j}x^1_{S_0,j} + \sum_{i\in A_N} \sum_{j\in A_1} c^N_{ij}x^N_{ij} \right)$$

Constraints

• Starting at the known starting airport S_0 and take an existing flight connection:

$$\sum_{j \in A_1} x_{S_0, j}^1 = 1$$

$$\forall d \in \mathcal{D}, c_{S_0,j}^d \in \mathbb{R}^{+*}$$

• Visit exactly one airport in each area each day:

$$\sum_{i \in A_d} \sum_{j \in A_{d+1}} x_{ij}^d = 1 \quad \forall d \in \{1, 2, \dots, N-1\}$$

• Ensure the traveler leaves from the same airport they arrived at the previous day:

$$\sum_{k \in A_d} x_{ik}^d = \sum_{k \in A_{d-1}} x_{ki}^{d-1} \quad \forall i \in \bigcup_{j=1}^N A_j, \forall d \in \{2, 3, \dots, N\}$$

• Return to an airport in the starting area on the final day with an existing flight connection:

$$\sum_{i \in A_N} \sum_{j \in A_1} x_{ij}^N = 1$$

$$\forall (i,j) \in A_N \times A_1, c_{i,j}^N \in \mathbb{R}^{+*}$$

• Ensure each area is visited exactly once:

$$\sum_{d \in \mathcal{D}} v_j^d = 1 \quad \forall j \in \mathcal{A}$$

• Update the unvisited list:

$$v_j^d = 1 \implies j \notin U_d \quad \forall j \in \mathcal{A}, \forall d \in \mathcal{D}$$

• Ensure a flight on day d between i and j exists only if the cost exists and j is in the unvisited areas on day d:

$$x_{ij}^d \le c_{ij}^d \cdot v_j^d \quad \forall i, j \in (\bigcup_{j=1}^N A_j)^2, \forall d \in \mathcal{D}$$

$$x_{ij}^d \le v_j^d \quad \forall j \in \bigcup_{j=1}^N A_j, \forall d \in \mathcal{D}$$

• Binary variable constraints:

$$x_{ij}^d \in \{0,1\} \quad \forall (i,j) \in (\bigcup_{j=1}^N A_j)^2, \forall d \in \mathcal{D}$$

$$v_j^d \in \{0, 1\} \quad \forall j \in \mathcal{A}, \forall d \in \mathcal{D}$$

3.2 Instances

3.2.1 Description

We are given a set of 14 Instances $I_n = \{I_1, I_2, ..., I_{13}, I_{14}\}$ that we have to solve. Every instances has the same overall structure.

For example, the first few lines of I_4 are:

13 **GDN**

first

WRO DL1

second

BZG KJ1

third

BXP LB1

That means that the traveller has to visit 13 different areas, starting at airport GDN, that belongs to the starting area. Then we are given the list of airports that are in every zone. For example, the second zone is named second and has two airports: WRO and DL1.

After all the information regarding the areas and the airports we have the flight connections informations. In Table 3.1, few flights are displayed from I_6 for illustrative purposes.

Departure from	Arrival	Day	Cost
KKE	BIL	1	19
UAX	NKE	73	16
UXA	BCT	0	141
UXA	DBD	0	112
UXA	DBD	0	128
UXA	DBD	0	110

Table 3.1: Flight connections sample I_6

For every instance I_i , we know what connections exist between two airports for a specific day and the associated cost. There might be in some instances flights connections at day 0, this means these connections exist for every day of the journey at the same price. Furthermore, we could have the same flight connections at a specific day but with different prices. Therefore, we consider solely the more relevant connections i.e. the flight connection with the lowest fare. For example, in Table 3.1 we only consider the flight from UXA to DDB with the associated cost of 110.

3.2.2 General formulation

An instance I_i can be mathematically defined as follows:

$$I_i = (N_i, S_{i0}, A_i, F_i)$$

where:

• Number of Areas:

$$N_i \in \mathbb{N}$$

The total number of distinct areas in instance I_i .

• Starting Airport:

$$S_{i0} \in Airports$$

The starting airport of the traveller.

• Airports in Each Area:

$$A_i = \{A_{i,1}, A_{i,2}, \dots A_{i,N_i}\}$$

where each $A_{i,j}$ is a set of airports in area j for instance i:

$$A_{i,j} = \{a_{i,j,1}, a_{i,j,2}, \dots, a_{i,j,k_j}\}$$

with a_{i,j,k_j} being airports in area j and k_j is the number of airports in area j.

• Flight Connections:

$$F_i = \{F_{i,0}, F_{i,1}, F_{i,2}, \dots, F_{i,N_i}\}$$

where each flight matrix $F_{i,k}$ represents the flight information of instance i on day k:

$$F_{i,k} = \begin{pmatrix} a_{i,k,1}^d & a_{i,k,1}^a & f_{i,k,1} \\ a_{i,k,2}^d & a_{i,k,2}^a & f_{i,k,2} \\ \vdots & \vdots & \vdots \\ a_{i,k,l_{k,i}}^d & a_{i,k,l_{k,i}}^a & f_{i,k,l_{k,i}} \end{pmatrix}$$

- Columns:

- * Departure Airport: $a_{i,k,j}^d$ (Departure airport for the j-th flight on day k)
- * Arrival Airport: $a_{i,k,j}^a$ (Arrival airport for the j-th flight on day k)
- * Cost: $f_{i,k,j}$ (Cost of the j-th flight on day k), where $j \in [1, l_{k,i}]$
- **Rows**: Each row corresponds to a specific flight on day k. The number of rows $l_{k,i}$ depends on the number of flights available on that day.

3.2.3 Kiwi's rules

When solving all the instances, Kiwi's defined time limits constraints based on the nature of the instance. We can summarise these constraints in the Table 3.2 below:

Table 3.2: Time limits based on the number of areas and airports

Instance	nb areas	Nb Airports	Time limit (s)
Small Medium Large	$ \leq 20 \\ \leq 100 \\ > 100 $	< 50 < 200	3 5 15

All the useful information about the instances such as the starting airport, the associated area, the range of airports per area, the number of airports and the time limit constraints are defined in Table 3.3.

Table 3.3: Instances and their respective parameters

Instances	Starting Area - Airport	N° areas	Min - Max airport per area	N° Airports	Time Limit (s)
$\overline{\parallel}$ I_1	Zona_0 - AB0	10	1 - 1	10	3
I_2	$Area_0 - EBJ$	10	1 - 2	15	3
I_3	ninth - GDN	13	1 - 6	38	3
I_4	Poland - GDN	40	1 - 5	99	5
I_5	zone0 - RCF	46	3 - 3	138	5
I_6	zone0 - VHK	96	2 - 2	192	5
I_7	abfuidmorz - AHG	150	1 - 6	300	15
I_8	atrdruwkbz - AEW	200	1 - 4	300	15
I_9	fejsqtmccq - GVT	250	1 - 1	250	15
I_{10}	eqlfrvhlwu - ECB	300	1 - 1	300	15
I_{11}	pbggaefrjy - LIJ	150	1 - 4	200	15
I_{12}	unnwaxhnoq - PJE	200	1 - 4	250	15
I_{13}	hpvkogdfpf - GKU	250	1 - 3	275	15
I_{14}	jjewssxvsc - IXG	300	1 - 1	300	15

Chapter 4

Methodology

4.1 Monte Carlo Tree Search implementation

4.1.1 General flow

Based on the discussion in Chapter 2, the flow of the Monte Carlo Tree Search algorithm is summarised in Figure 4.1:

FIGURE 4.1: Flow MCTS

For every iteration of this algorithm, there are four different phases:

1. **Selection:** Starting from the root node (the starting airport S_{i0} for I_i), select successive child nodes (airports that are in unvisited areas) until a leaf node (the airport in the initial area, not necessarly the starting airport) is reached. Use the chosen Selection function to evaluate which node is the most promising. In the illustrative example in Section 2.3.2, the UCB1 (also called UCB) function was

used for the selection function. Furthermore, the problem's goal was to maximise the objective function, hence the nodes with the highest UCB1 value was selected. A contrario, in Kiwi's minimisation problem, nodes are evaluated based on the lowest value of the selection function.

- 2. **Expansion:** If the selected node is not a terminal node, expand the tree by adding all possible child nodes.
- 3. **Simulation:** From the newly added node, perform a simulation (based on the simulation policy) until a feasible terminal node is reached.
- 4. **Backpropagation:** Update the values of the nodes along the path from the newly added node to the root based on the result of the simulation.

$$\mathcal{B}(S_i^{n_i, t_i}) = S_i^{n_i + 1, t_i + \mathcal{R}(S_i^{n_i, t_i})}$$
(4.1)

where $\mathcal{R}(S_i^{n_i,t_i})$ is the cost of the solution found after performing a simulation from node $S_i^{n_i,t_i}$.

4.1.1.1 Data Preprocessing

To implement our MCTS' solution, the first thing to create is a DataPreprocessing class to prepare the given instance to the problem at hand. Kiwi's challenge is solved using Python 3.10 on VS Code 1.92.2. Our Python code is structured using object-oriented programming following CamelCase's convention [46]. This DataPreprocessing class is represented on Figure 4.2. The input is an instance I_i , as defined in Chapter 3:

FIGURE 4.2: Explanation of the data preprocessing class

Different useful methods are implemented within this class to compute and manage various attributes required for the problem at hand. These methods are designed to prepare and structure the data, making it easier to use in subsequent phases of the algorithm. For example, the remove_duplicate method ensures that only the cheapest

flight connections are considered between two airports if multiple flight connections exist at different prices, on the same day. Other methods, such as flights_by_day_dict and get_airports_by_areas organise the data. The first method regroups all the flights by their respective days, creating a dictionary where each key represents a day and its corresponding value is a list of available flights. The second method regroups all the airports present in the different areas.

Finally, other methods, such as specific_flights, will be useful for developing the MCTS' algorithm. These give all the possible flight connections from a specific airport on a given day, taking into account the areas visited, so that all possible actions can be obtained from a node.

Given that Python is relatively slower than other programming languages, in terms of computation, compared to other programming languages, dictionnaries are used where possible. Dictionnaries allow for efficient data retrieval based on a key, with an average time complexity of $\mathcal{O}(1)$. This choice improves the performance of the data preprocessing step, enabling the algorithm to run more efficiently despite Python's inherent limitations.

4.1.1.2 Node

FIGURE 4.3: Explanation of the Node class

As mentionned earlier in Section 2.3.2, a Node structure is used in the algorithm, hence the implementation of a Node class. Each Node has a reference to a parent node (unless it is the root node) and may have one or more child nodes (unless it is a leaf node). These relationships form a tree structure where each node can expand into potential future states, guiding the search process. The visit_count tracks the number of times a node has been visited during the MCTS process. This is crucial for evaluating the node's importance and for calculating the score of the node with the selection function. The state is a dictionnary that contains the node's current information:

- current_airport: The airport where the traveler is at this node.
- current_day: The day of the trip at this node.
- remaining_zones: The zones that still need to be visited to complete the journey.
- visited_zones: The zones that have already been visited to ensure that all zones are visited exactly once during the trip.
- total_cost: It represents the accumulated cost of the current solution path leading to this node.

Additionally, to manage the expansion of child nodes, the add_child method is defined. This method generates new nodes based on the possible actions available from the current node. These new nodes represent the next possible states in the traveler's journey, allowing the search tree to expand and explore different travel routes. Finally, the delete_node method can be used to delete a node from the list of its parent's children.

4.2 The different policies

In the previous section, we outlined the general flow of the MCTS algorithm, focusing on two cores classes, DataPreprocessing and Node, that are central in MCTS' implementation.

In Section 2.3.3, we explored the various selection policies that guide the decision-making process within the MCTS Although there is a limited litterature review, we decided to parameterise not only the selection policy but also the simulation and expansion policies.

4.2.1 Simulation policies

When a simulation is runned from a given node in the tree, the goal is to find a feasible combinaison of airports that could be a solution to our problem. From this node chosen for the simulation, we obtain the current state (defined in section 4.1.1.2). The remaining actions must then be chosen to find a simulated solution based on the simulation policy.

Below is the definition of the three distinct simulation policies:

- Random policy: This policy selects a random action from the set of available actions, introducing variability and exploration in the simulation process.
- Greedy policy: This policy selects the action that corresponds to the cheapest available flight connection, thus prioritising cost minimisation at each step.
- Tolerance policy (with coefficient c): This policy selects an action randomly from a subset of actions that are within a certain tolerance level of the minimum cost action. The tolerance level is defined by a coefficient c. The tolerance policy is defined as follows:
 - Identify the cheapest flight connection among the available actions c_{min} .

- Filter the actions to include only those with a cost less or equal than $c_{min}(1+c)$.
- Randomly select an action from this filtered set.

This policy introduces a more balanced approach than the random and greedy policies, balancing between optimal moves and random ones.

4.2.2 Expansion policies

When expanding a node, it's theoretically possible to expand all available child nodes i.e. add to the tree all the possible flight connections from this airport (that are in the available actions based on the visited areas). However, in practice, this can be computationally expensive and time-consuming, particularly in problems with a large number of possible actions. To address this, heuristic approaches often involve compromises that enhance the efficiency of the search process by selectively expanding certain nodes rather than all possible ones.

Firstly, we defined number_of_children, a parameter of our MCTS algorithm which regulates the maximum number of children that can be expanded from any given node. This limitation controls the size of the search tree, as expanding too many children for every selected node could make the algorithm computationally exhaustive.

In our implementation we defined two expansion policies:

- Top-K policy: This policy expands the nodes corresponding to the cheapest flight connections available. Specifically, it sorts all possible actions based on their associated costs and selects the top k actions with the lowest costs, where k is regulated by number_of_children. This approach ensures that only the most promising actions, in terms of cost efficiency, are considered during expansion. This policy narrows down the search space but can increase the chance to reach a leaf node.
- Ratio policy: This policy takes a more balanced approach by combining the selection of the best actions with a degree of randomness. First, it calculates the number of top actions to select based on a predefined ratio, $c \in [0, 1]$, which reflects the proportion of Top-K Actions within the allowed number_of_children. After selecting these best actions, the policy randomly selects $(1-c)*number_of_children$ actions from the remaining pool to reach the desired number of children. This policy is

designed to explore a broader range of potential solutions while still prioritising cost-effective options.

4.2.3 Notations

After defining the different parameters of the MCTS, a MCTS function can be defined as follow:

$$\mathcal{MCTS}$$
: $S_p(C_p), E_p(c), R_p, N_c \mapsto \mathcal{MCTS}(S_p(C_p), E_p(c), R_p, N_c)$

where:

- $S_p(C_p)$: Selection policy (UCB or UCB1-T) with exploration parameter C_p (defined in Section 2.3.3).
- $E_p(c)$: Expansion policy (Top-k or Ratio (with ratio c)) (defined in Section 4.2.2).
- R_p : Rollout/simulation policy (random, tolerance, or greedy) (defined in Section 4.2.1).
- N_c : Maximum number of children added during node expansion.

4.2.4 Pseudo-code

In this section, the implementation of the algorithm in practice is explored by examining the different functions of our MCTS class. The search function of the MCTS is defined:

Algorithm 1 Search_Function

- 1: Initialise Root_Node with Initial_State
- 2: while Tree is not fully explored do
- 3: $Node \leftarrow Select(Root_Node)$
- 4: **if** *Node* is not fully expanded **then**
- 5: $Node \leftarrow \text{Expand}(Node)$
- 6: end if
- 7: $Cost \leftarrow Simulate(Node)$
- 8: Backpropagate(Node, Cost)
- 9: end while
- 10: $\mathbf{return}\ Best_Leaf_Node$

The Search function represents the general flow of the algorithm as mentionned on Figure 4.1.

The Select function (Algorithm 2), which selects the node to visit, returns two arguments: a boolean and a node. The boolean indicates to the expansion function whether expansion is necessary (True means no expansion needed, False means expansion needed).

```
Algorithm 2 Select_Function
```

```
1: Input: Node
2: Current \leftarrow Node
3: while Current.Children is not empty do
     if Current is not fully expanded then
4:
        UnvisitedChildren \leftarrow \text{Children with } VisitCount = 0
5:
        if UnvisitedChildren is not empty then
6:
          SelectedChild \leftarrow Randomly select from UnvisitedChildren
7:
          return True, SelectedChild
8:
        end if
9:
     else
10:
        Current \leftarrow BestChild(Current)
11:
     end if
12:
13: end while
14: if Current.Children is empty and Current.State["current_day"] == N_{Areas} then
     return False, Current
16: else if Current.Children is empty and Current.State["current_day"] <> N_{Areas}
   then
17:
     return False, Current
18: else if Current.State["current\_day"] == N_{Areas} + 1 then
     return True, Current
19:
20: end if
```

There are special cases to handle, when one approaches the final solution because one has to communicate the right information to the Expand Node function (not presented in this Section, can be found in Section A).

After simulating, the backpropagation function updates the node's attributes. The new node becomes the parent of this node, and so on until Node is None, i.e., all the information is backpropagated up to the root node.

Algorithm 3 Backpropagate_Function

- 1: while *Node* is not *None* do
- 2: Node.Update(Cost)
- $3: Node \leftarrow Node.Parent$
- 4: end while

The transition function modifies the states of a node by updating the current airport, the visited zones, remaining zones, etc.

Algorithm 4 Transition_Function

- 1: $New_State \leftarrow Copy of State$
- 2: $New_State.Current_Day \leftarrow State.Current_Day + 1$
- $3: New_State.Current_Airport \leftarrow Action[0]$
- $4: New_State.Total_Cost \leftarrow State.Total_Cost + Action[1]$
- 5: Update(New_State.Path, New_State.Current_Airport)
- 6: Remove_Visited($New_State.Remaining_Zones$, $New_State.Current_Airport$)
- 7: $Add_Visited(New_State.Visited_Zones, New_State.Current_Airport)$
- 8: **return** New_State

Finally, the Best Child function, defined in the Node class is based on the selection function UCB and UCB1_Tuned. They both, compute the score of the visited nodes and pick the one that minimises the selection function.

Algorithm 5 Best Child

Require: $Selection_Function$

- 1: $Visited_Children \leftarrow Children \text{ with } visitCount > 0$
- 2: $Choices_Weights \leftarrow [Selection_Function(child) \text{ for child in } Visited_Children]$
- 3: $Best_Child_Node \leftarrow Child$ with minimum $Choices_Weights$
- 4: **return** Best_Child_Node

Chapter 5

Results and performance

The results in this section were generated on an i7-10700 CPU Intel Processor with 8 cores at 3.30 GHz with 16.00 GB RAM.

5.1 Hypothesis

As mentionned in Section 1.2, the primary objective was to implement a new algorithm to find solutions without imposing time constraints.

Hence, simulations for every instances have been conducted, testing different combinations of parameters in what is called a grid search. Each combination of parameters was run 10 times to ensure the reliability and consistency of the results. One challenge, is that the computational budget is limited when using Python. Hence, the size of the grid search for the more complex studied instances is reduced as shown in Table 5.1.

Table 5.1: Grid search

	$(I_1 \dots I_6)$	(I_7,I_8)
$selection_policy$	top_k, ratio_k	top_k, ratio_k
$simulation_policy$	random, greedy, tolerance	greedy
$selection_policy$	UCB, UCB1T	UCB
$C_{ ext{-}}p$	0, 1.4, 2.8	1.4
$N_{-}c$	5, 10, 15	10
Ratio c	0, .3, .5, .8, 1	.5
$Number\ simulations$	10	10

5.2 Results analysis

5.2.1 Overview

After running the various simulations with the grid search parameters defined in Table 5.1, our results were compared with the best known solutions [4].

Gap (%) Best Best Mean Std Instance known found I_1 I_2 10.1 3.19

Table 5.2: Best results vs State of the art

A solution was found for I_1, I_2, I_3, I_4, I_7 and I_8 . The results shown in Table 5.2 are the best found costs' solution within the grid search. The results of the simulations for I_1, I_2, I_3 are displayed in Section C and the detailed path-solution for I_1, \ldots, I_8 can be found in Section D.

-0.52

5.2.2 Analysis

5.2.2.1 I_1 , I_2 , I_3 and I_4

For instances I_1 , I_2 and I_3 , solutions were found and the various simulations were carried out successfully. Therefore, the influence of the parameters on the \mathcal{MCTS} function and the final solution was investigated. However, only few parametrisation of the \mathcal{MCTS} allowed finding a solution for I_4 : the UCB1T selection policy and tolerance or random simulation policy created a tree too large to find solutions in a reasonable time (discussed in the following section).

Analysis on C_p

FIGURE 5.1: C_p vs Number of selection

In Figure 5.1, the box plots illustrate the relationship between the exploration constant C_p and the number of selection phases under the UCB and UCB1T selection policies:

• $C_p = 0$ lead to the same performance: When the $C_p = 0$, the selection policy of the UCB and the UCB1T are equal, leading to the same decision-making during the MCTS (cf equation 2.3 and 2.4).

- Higher C_p values lead to faster convergence for UCB: As C_p increases from 0.0 to 2.82, the median number of selection phases under the UCB policy decreases.
- UCB1T encourages more exploration: UCB1T consistently results in a higher number of selection phases compared to UCB, especially at higher C_p values. This is consistent with UCB1T's definition to promote broader exploration before converging.

Although a higher exploration parameter C_p may lead to faster convergence under the UCB selection policy, it often results in worse outcomes compared to the UCB1T algorithm, as shown in Figure 5.2. While UCB1T may require more time to converge, it

FIGURE 5.2: C_p vs Total cost

generally explores the search tree more effectively, leading to better overall performance. One can notice that C_p 's correlation with the UCB1T selection policy for I_3 is low.

Analysis of expansion ratio c

FIGURE 5.3: Ratio expansion vs Time to find the solution

The box plots show the relationship between ratio expansion (the proportion of expanded child nodes that has the cheapest flight connection over the chosen number of children) and the time to find a solution for the UCB and UCB1T policies:

- UCB finds solution faster than UCB1T: Across all ratio expansion values, the UCB policy consistently finds solutions more quickly than UCB1T. This suggests that UCB, being less aggressive in exploration, converges on solutions faster.
- Higher ratios lead to a faster convergence: For both policies, the time to find a solution generally decreases as the ratio expansion increases, indicating a more efficient search process when expanded nodes are less chosen randomly from the set of available actions. However, in more complex instances, it is crucial to have a ratio $r \in [0.3, 0.7]$ to escape potential leaf node.

Finally, the UCB policy is more correlated to the expansion ratio than the UCB1T as shown in Figure 5.4. UCB's overall performance is worst than UCB1T because it relies heavily on the exploitation compared to UCB1T that even if it converges slower gives better results.

FIGURE 5.4: Expansion ratio vs Total cost

Analysis of simulations performances

Figure 5.5: Simulation performance - Instance 3

Box plots for the tree simulations policies are represented on Figure 5.5. For each day, the distribution of the simulated outcome is plotted regarding the simulation policy. Colored curves represent the minimum and maximum of these distributions, while dashed lines indicate the medians.

In Figure 5.5, the greedy simulation policy is more performant because the distribution of simulations at every day has a lower min, max and median. The convergence of the Random policy is more pronounced due to the policy's inherent randomness. For instance, with the greedy and tolerance policies, at day two or three, the minimum has already almost been reached. Therefore, a well-calibrated set of parameters for the \mathcal{MCTS} (as defined in Section 4.2.3) should converge towards the minimum cost found during the simulations. If this is not the case, it indicates that the parameterisation of \mathcal{MCTS} is not optimal. In Figure 5.6, the distributions of the simulated outcomes are represented for a $\mathcal{MCTS}(S_p(C_p=0), E_p(c), R_p, N_c=10)$.

The parametrisation of this MCTS is not efficient for the considered instance, hence the search process do not converge towards the minimum found cost. These two distributions have a similar behavior, having $C_p = 0$ indicates a similar decision-making process when using the UCB and UCB1T selection policy. For I_4 , as mentioned earlier, the difficulty was to run all the simulations of the MCTS with the parameters in the grid search. This

Figure 5.6: Simulation performance $C_p = 0$ - Instance 4

is why, in section C, fewer simulations were carried out for this instance, but we found solutions with a gap of X% compared to the state-of-the-art solution.

In Figure 5.7, the median distributions for the different scenarios have been plotted. One can observe that having a value c too close to 1, does not on average converge to this minimum-cost solution. A contrario, lower c values appears to guide the tree search more effectively during the first days of simulations, which is crucial to not overexpand the size of the tree, which can lead to an inefficient and time-consuming MCTS.

These conclusions can be drawn for small instances, however for I_4 , we can clearly see in Figure 5.8 that having c = 0 for a greedy selection policy is inefficient in this tree search because it diverges from the min-simulated cost. The tree search is therefore unable to find a solution after 10 minutes. Based on the median comparison, c = 1 is a more optimal parameter for guiding the tree search (for I_3).

Figure 5.7: Simulation performance vs Expansion Ratio - Instance $3\,$

Figure 5.8: Simulation performance vs Expansion Ratio - Instance $4\,$

5.2.2.2 I_5 and I_6

The challenge faced with these two instances is that with the defined grid search, the \mathcal{MCTS} function was not able to conduct the tree search effectively.

While standard stochastic simulation policies can occasionally reach a final state (i.e. find a feasible solution), they often fail to guide the search process effectively towards these solutions. Even if the tree expands node's that reached final state, there are few chances to reach a terminal state again, leading to the pruning of the tree.

5.2.2.3 I_7 and I_8

For I_7 , we have found solutions close to the best known solution, with a gap of 3.2%. The tolerance policy was not in the parameters of the grid search but we runned 10 simulations with the parameters defined in Table 5.3.

Table 5.3: Simulation table - I_7

Selec policy	Exp policy		N° chil- drens	Ratio	Ср	$\mathop{\mathrm{Best}}_{\mathop{\mathrm{cost}}}$	Mean	Std	T(s)
UCB	top k	greedy	10	-	1.4	31924	31924	0	238.3
UCB	ratio k	greedy	10	.5	1.4	32331	32331	0	239.7
UCB	top k	tolerance	10	-	1.4	49712	52584	1938	588.4

Figure 5.9: Simulation performance comparison between Greedy and Tolerance - Instance 7

For this instance, the greedy simulation policy is clearly to be preferred to the tolerance simulation policy. The stochastic policy ends it tree search by selecting nodes that have an overall cost higher than node's found during the simulation process, as shown in Figure 5.9. Therefore the parametrisation of \mathcal{MCTS} has to be revised. The ratio_k and the top_k policy yields to overall similar performance in term of solution and performance metrics. Regarding I_8 , in Table 5.4, a new state of the art solution has been found with a with a cost less than 0.52% compared to the best known solution.

Table 5.4: Simulation table - I_8

Selec policy	Exp policy	N° chil- drens	Ratio	Ср	Best cost	Mean	Std	T(s)
!!	top k ratio k	 10 10						

5.2.2.4 I_9 to I_{14}

Although these instances are outside the scope of this thesis, we have tried to solve them using the same parameters in the grid search as for I_7 and I_8 . The complexity of the

instances makes simulations (considering the greedy policy) impossible to reach a final node, as does the problem encountered with I_5 and I_6 .

5.2.3 Parallelisation

As discussed in Section 2.3.4, parallelisation can be implemented to better estimate one selected node's value. In our implementation, for I_4 , we parallelised a $\mathcal{MCTS}(S_p(C_p = 0) = "UCB", E_p(c = 0) = "ratio_k", R_p = "random", N_c = 10)$ on five cores. The set of parameters has been chosen to represent the behavior of parallelisation in a stochastic environment. A leaf parallelisation has been implemented, simulating on five cores simultaneously. At every simulation step of the MCTS, the minimum outcome of the five simulations is chosen. 100 simulations of this parallelised MCTS have been runned.

In Figure 5.10, the five cores parallelised's distribution better performs than the non-parallelised approach. It confirms that parallelisation guides the MCTS more effectively in the first days of the tree search.

Figure 5.10: Comparison of the distributions for the simulated outcomes without parallelisation and with 5 cores - Instance 4

The Mann-Whitney and the Kolmogorov-Smirnov statistical tests have been implemented. These tests compute p-values that test the null hypothesis that the two groups have the same distribution. Hence, from Figure 5.11 there is enough statistical evidence

Figure 5.11: Statistical tests to compare the 5 cores paralelised and not paralelised distribution - Instance 4

to say that a five core parallelised MCTS with a stochastic simulation policy better performs with parallelisation at a 5% level.

A comparison between five-core and ten-core parallelisations of the considered Monte Carlo Tree Search (MCTS) is shown in Figure 5.12 and 5.13. There are no statistical improvements in increasing the number of cores. As discussed in [43], too many modifications to the MCTS can lead to undesirable behaviour.

Figure 5.12: Comparison of the distributions for the simulated outcomes on 5 vs 10 cores - Instance 4

FIGURE 5.13: Statistical tests to compare the 5 and 10 cores distribution - Instance 4

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we implemented a Monte Carlo Tree Search solution to solve the Kiwi.com Traveling Salesman Problem 2.0, focusing on the first eight instances without imposing time constraints. Although MCTS is traditionally employed in board games, we adapted it to solve this asymmetric, time-dependent, and generalised TSP variant proposed by Kiwi.com. In certain situations, the MCTS finds solutions close to the state of the art solution, or reaches the state of the art solution. For one instance, I_8 , a new best solution has been found.

Regarding the selection policy, the UCB1-Tuned outperformed the classic UCB, guiding the tree search more accurately by taking into account the variability of the simulations. However, this selection policy explores the tree search more broadly and takes way more time to converge compare to UCB. Regarding the expansion ratio, for small instances I_1, I_2, I_3 a lower ratio was preferred to find solutions faster. However, for other instances, a balanced ratio of 0.5 was effective in allowing new potential candidates within the solution space, speeding up the tree search. However, it never found comparable solution to the top-k policy. Regarding simulation policies, the greedy approach is the best function accross the different instances with a low risk of the search getting stuck in local optima thanks to the effectiveness of the selection policies. While the tolerance policy provides a more balanced approach, it can have an undesirable behaviour that diverges from the minimum costs found. The random policy worked well for solving small instances, although it has sometimes reached acceptable solutions, it has never achieved a state-of-the-art result and is generally less favorable. Finally, we

desmonstrated the contribution of parallelisation for one instance. Hence, we recommend parallelisation's implementation within the MCTS, which is particularly beneficial when employing stochastic simulations (either the random or tolerance policies), to better estimate node values and guide the tree search more effectively. Therefore, more complex instances (I_9, \ldots, I_{14}) have a chance to be solved using a MCTS.

6.2 Areas for expansion

After completing this work, here are a few suggestions for deepening our study.

• Code a solution in a faster programming language: The problem with our implementation is the time taken to first, preprocess the data and then find solutions. One enhancement can be to speed up the code. As shown in Table 6.1, our current implementation can take up to 10 minutes to preprocess the instance. An implementation in C or C++ could drastically enhance the performance of the code, allowing a wider range of simulations.

Instance	Time to preprocess (s)
$ I_7 $	120
I_8	39
I_9	44
I_{10}	85
I_{11}	184
I_{12}	629
I_{13}	548
I_{14}	985

Table 6.1: Time to preprocess data for I_7, \ldots, I_{14}

- Implement efficient paralelisation: We demonstrated that a leaf paralelisation method enhanced the guidance of the tree search, however it was not integrated across all simulations for the parameters in the grid search. One can implement these paralelisations through the simulations and/or explore other parallelisations methods such as multi-tree MCTS (as defined in Section 2.3.4).
- Redefine parameters of the MCTS: Other parameters can be considered, for example instead of having a number of children $N_c = (5, 10, 15)$ one could have used adaptive parameters, such as setting the number of children N_c based on

- a percentage of available actions (e.g., 50%). The search process could thus be better adapted to the specifics of the problem at different stages.
- Integrate reinforcement learning within simulation policies: The issue faced with instances I_5 , I_6 (and I_9, \ldots, I_{14}) is that while standard stochastic simulation policies can occasionally reach a final state (i.e. find a feasible solution), they often fail to guide the search process effectively towards these solutions. Even if the tree expands node's that reached final state, there are few chances to reach a terminal state again, leading to the pruning of the tree. To address this, we propose the development of smarter simulation policies by integrating reinforcement learning techniques. These techniques would test different simulation policies, or combined simulation policies to reach final state during simulation processes.
- Combine deep learning models with MCTS: Taking advantage of deep learning to refine decision-making in MCTS. For example, as discussed in [40], neural networks could be employed to predict optimal moves, which could be used to guide the MCTS more effectively. The training of these models would be on the data generated data from the various MCTS simulations.

Appendix A

Code Listings

A.1 Data preprocessing

```
import numpy as np
from copy import deepcopy
class data_preprocessing:
    def __init__(self, instance_path):
        self.instance_path = instance_path
        self.info, self.flights = self.read_file(f_name=self.instance_path)
        self.number_of_areas, self.starting_airport = (
            int(self.info[0][0]),
            self.info[0][1],
        )
        self.flights_by_day_dict =
self.flights_by_day(flight_list=self.flights)
        self.flights_by_day_dict = self.remove_duplicate(
            flights_by_day=self.flights_by_day_dict
        self.list_days = [k for k in range(1, self.number_of_areas)]
        self.airports_by_area = self.get_airports_by_areas()
```

```
self.area_to_explore = self.which_area_to_explore(
            airports_by_area=self.airports_by_area
        self.area_by_airport =
self.invert_dict(original_dict=self.airports_by_area)
        self.starting_area = self.associated_area_to_airport(
            airport=self.starting_airport
        self.list_airports = self.get_list_of_airports()
        self.list_areas = list(self.airports_by_area.keys())
        self.areas_connections_by_day = (
            self.possible_flights_from_zone_to_zone_specific_day()
        )
    def read_file(self, f_name):
        dist = []
        line_nu = -1
        with open(f_name) as infile:
            for line in infile:
                line_nu += 1
                if line_nu == 0:
                    index = int(line.split()[0]) * 2 + 1
                if line_nu >= index:
                    temp = line.split()
                    temp[2] = int(temp[2])
                    temp[3] = int(temp[3])
                    dist.append(temp)
                else:
                    dist.append(line.split())
            info = dist[: int(dist[0][0]) * 2 + 1]
            flights = dist[int(dist[0][0]) * 2 + 1 :]
        return info, flights
    def flights_by_day(self, flight_list):
        # Create an empty dictionary to hold flights organized by day
        flights_by_day = {}
        # Iterate over each flight in the input list
        for flight in flight_list:
            # Extract the day from the flight entry
```

```
day = flight[2]
            # Create a flight entry without the day
            flight_without_day = flight[:2] + flight[3:]
            # Add the flight to the corresponding day in the dictionary
            if day not in flights_by_day:
                flights_by_day[day] = []
            flights_by_day[day].append(flight_without_day)
        return flights_by_day
    def flights_from_airport(self, flights_by_day, from_airport,
considered_day):
        flights_from_airport = []
        for day, flights in flights_by_day.items():
            if day == considered_day:
                for flight in flights:
                    if flight[0] == from_airport:
                        flights_from_airport.append(flight)
                return flights_from_airport
            else:
                return None
    def invert_dict(self, original_dict):
        inverted_dict = {}
        for key, value_list in original_dict.items():
            for value in value_list:
                if value in inverted_dict:
                    inverted_dict[value].append(key)
                else:
                    inverted_dict[value] = key
        return inverted_dict
    def get_cost(self, day, from_airport, to_airport):
        # Retrieve flights for the specified day and day 0
        flights_day = self.flights_by_day_dict.get(day, [])
        flights_day_0 = self.flights_by_day_dict.get(0, [])
        # Find the cost for the specified day
        cost_day = next(
```

```
(
                flight[2]
                for flight in flights_day
                if flight[0] == from_airport and flight[1] == to_airport
            ),
            float("inf"),
        )
        # Find the cost for day 0
        cost_day_0 = next(
            (
                flight[2]
                for flight in flights_day_0
                if flight[0] == from_airport and flight[1] == to_airport
            ),
            float("inf"),
        )
        # Return the minimum cost if either exists, otherwise inf
        if cost_day == float("inf") and cost_day_0 == float("inf"):
            return float("inf")
        return min(cost_day, cost_day_0)
    def possible_flights_from_zone_to_zone_specific_day(self):
        areas_connections_by_day = {}
        for day, flights in self.flights_by_day_dict.items():
            areas_connections_list = []
            for flight in flights:
                connection = f"{self.area_by_airport.get(flight[0])} to
{self.area_by_airport.get(flight[1])}"
                if connection not in areas_connections_list:
                    areas_connections_list.append(connection)
            areas_connections_by_day[day] = areas_connections_list
        return areas_connections_by_day
    def get_airports_by_areas(self):
```

area_num = int(self.info[0][0])

```
return {f"{i}": self.info[2 + i * 2] for i in range(0, area_num)}
    def get_list_of_airports(self):
        unique_airports = set()
        # Iterate through each sublist and add elements to the set
        for sublist in self.airports_by_area.values():
            for airport in sublist:
                unique_airports.add(airport)
        return list(unique_airports)
    def associated_area_to_airport(self, airport):
        return next(
            (
                area
                for area, airports in self.airports_by_area.items()
                if airport in airports
            ),
            "Airport not found",
        )
    def remove_duplicate(self, flights_by_day):
        for day, flights in flights_by_day.items():
            unique_flights = {}
            for flight in flights:
                flight_key = (flight[0], flight[1])
                if flight_key not in unique_flights:
                    unique_flights[flight_key] = flight
                else:
                    if flight[2] < unique_flights[flight_key][2]:</pre>
print(flight[0],flight[1],flight[2],flight_key,unique_flights[flight_key][2])
                        unique_flights[flight_key] = flight
                flights_by_day[day] = list(unique_flights.values())
        return flights_by_day
    def possible_flights_from_an_airport_at_a_specific_day(self, day,
from_airport):
        daily_flights = self.flights_by_day_dict.get(day, [])
```

```
flights_from_airport = []
        for flight in daily_flights:
            if flight[0] == from_airport:
                flights_from_airport.append([flight[1], flight[2]])
        return flights_from_airport
    def
possible_flights_from_an_airport_at_a_specific_day_with_previous_areas(
        self, day, from_airport, visited_areas
    ):
        daily_flights = self.flights_by_day_dict.get(
            day, []
        ) + self.flights_by_day_dict.get(0, [])
        flights_from_airport = []
        for flight in daily_flights:
            # print(self.associated_area_to_airport(airport=flight[0]))
            if (flight[0] == from_airport) and (
                self.associated_area_to_airport(airport=flight[1]) not in
visited_areas
            ):
                flights_from_airport.append([flight[1], flight[2]])
        return flights_from_airport
    def which_area_to_explore(self, airports_by_area):
        return list(
            {
                key: len(value)
                for key, value in airports_by_area.items()
                if len(value) > 1
            }
        )
```

A.2 Node

```
import numpy as np
import random
class Node:
   def __init__(self, state, desired_selection_policy, cp, parent=None):
        self.cp = cp
        self.desired_selection_policy = desired_selection_policy
        self.state = state
        self.parent = parent
        self.children = []
        self.visit_count = 0
        self.total_cost = 0
        self.scores = []
    def add_child(self, child_state):
        child_node = Node(
            state=child_state,
            desired_selection_policy=self.desired_selection_policy,
            cp=self.cp,
            parent=self,
        )
        self.children.append(child_node)
        return child_node
    def is_fully_expanded(self):
        return len(self.children) > 0 and all(
            child.visit_count > 0 for child in self.children
        )
    def update(self, result):
        self.visit_count += 1
        self.total_cost += result
        self.scores.append(result)
    def UCB(self, c_param):
        epsilon = 0
```

```
visited_children = [child for child in self.children if
(child.visit_count > 0)]
        sorted_children = sorted(
            visited_children,
            key=lambda child: child.total_cost / (child.visit_count +
epsilon),
        scores = {child: rank + 1 for rank, child in
enumerate(sorted_children)}
        total_scores = sum(scores.values())
        def normalized_score(child):
            return scores[child] / total_scores
        choices_weights = [
            normalized_score(child)
            + c_param
            * (2 * np.log(self.visit_count) / (child.visit_count +
epsilon)) ** 0.5
            for child in visited_children
        ]
        best_child_node = self.children[np.argmin(choices_weights)]
        return best_child_node
    def SP(self):
        visited_children = [child for child in self.children if
child.visit_count > 0]
        D = 1
        def sp_mcts_score(child):
            mean_cost = np.mean(child.scores) if len(child.scores) > 0
else 0
            variance = np.var(child.scores) if len(child.scores) > 0 else 0
            possible_deviation = np.sqrt(variance + (D /
child.visit_count))
            return mean_cost - self.cp * possible_deviation
```

```
choices_weights = [sp_mcts_score(child) for child in
visited_children]
        best_child_node = self.children[np.argmin(choices_weights)]
        return best_child_node
    def Bayesian(self):
        visited_children = [child for child in self.children if
child.visit_count > 0]
        N = self.visit_count
        def bayesian_uct_score(child, use_variance=False):
            mean_cost = np.mean(child.scores) if len(child.scores) > 0
else 0
            exploration_term = np.sqrt(2 * np.log(N) / child.visit_count)
            if use_variance:
                variance = np.sqrt(np.var(child.scores)) if
len(child.scores) > 0 else 0
                exploration_term *= variance
            return mean_cost + exploration_term
        # Select which Bayesian UCT formula to use
        use_variance = True # Change this to 'False' to use the first
formula
        choices_weights = [
            bayesian_uct_score(child, use_variance=use_variance)
            for child in visited_children
        ]
        best_child_node = self.children[np.argmin(choices_weights)]
        return best_child_node
    def UCB1_tuned(self, c_param):
        visited_children = [child for child in self.children if
child.visit_count > 0]
        def ucb1_tuned_score(child):
            mean_cost = np.mean(child.scores) if len(self.scores) > 1 else
0
```

```
variance = np.var(self.scores) if len(self.scores) > 1 else 0
            # UCB1-Tuned formula
            exploration_term = np.sqrt(
                (np.log(self.visit_count) / child.visit_count)
                * min(
                    0.25,
                    variance
                    + np.sqrt(2 * np.log(self.visit_count) /
child.visit_count),
            )
            return mean_cost + c_param * exploration_term
        choices_weights = [ucb1_tuned_score(child) for child in
visited_children]
        best_child_node = self.children[np.argmin(choices_weights)]
        return best_child_node
    def best_child(self):
        if self.desired_selection_policy == "UCB":
            return self.UCB(c_param=self.cp)
        if self.desired_selection_policy == "UCB1T":
            return self.UCB1_tuned(c_param=self.cp)
        if self.desired_selection_policy == "SP":
            return self.epsilon_greedy(self.cp)
        if self.desired_selection_policy == "Bayesian":
            return self.Bayesian()
        else:
            raise ValueError(
                f"Unknown Selection policy:
{self.desired_selection_policy}"
            )
    def delete_node(self):
        self.parent.children = [
            child for child in self.parent.children if child != self
```

A.3 MCTS

```
import numpy as np
import random
from copy import deepcopy
import logging
import time
import os
import shutil
import glob
from Data_Preprocessing import data_preprocessing
from Node import Node
class MCTS(data_preprocessing):
   def __init__(
        self,
        instance,
        instance_number,
        number_childrens,
        desired_expansion_policy,
        ratio_expansion,
        desired_simulation_policy,
        desired_selection_policy,
        cp,
        number_simulation,
    ):
        self.instance_number = instance_number
        self.number_childrens = number_childrens
        self.desired_simulation_policy = desired_simulation_policy
        self.desired_expansion_policy = desired_expansion_policy
        self.ratio_expansion = ratio_expansion
        self.number_simulation = number_simulation
        self.desired_selection_policy = desired_selection_policy
        self.cp = cp
        self.expanded_nodes = []
        self.simulations_dict = {}
        self.start_time = time.time()
```

```
super().__init__(instance_path=instance)
            self.end_time_data_preprocessing = time.time() - self.start_time
            self.simulation()
def configure_logging(self):
            log_file =
f"{self.instance_path}_{self.number_childrens}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simulation_policy}_{self.desired_simul
            log_file = self.get_unique_log_file(log_file)
            for handler in logging.root.handlers[:]:
                         logging.root.removeHandler(handler)
            logging.basicConfig(
                         level=logging.DEBUG, # Set the log level to DEBUG to capture all
types of logs
                         format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
                        handlers=[
                                    logging.FileHandler(
                                                log_file, mode="w"
                                    ),
                        ],
            logger = logging.getLogger(__name__)
            return logger
def get_unique_log_file(self, base_log_file):
            base_name, extension = os.path.splitext(base_log_file)
            counter = 0
            while True:
                        new_log_file = f"{base_name}_{counter}{extension}"
                         if not os.path.exists(new_log_file):
                                    return new_log_file
                         counter += 1
def organise_log_files_in_folder(self, folder_path):
            os.chdir(folder_path)
            log_files = glob.glob("*.log")
```

```
processed_bases = set()
    for log_file in log_files:
        base_name = (
            log_file.rsplit("_", 1)[0]
            if "_" in log_file
            else log_file.rsplit(".", 1)[0]
        )
        if base_name not in processed_bases:
            processed_bases.add(base_name)
            pattern = f"{base_name}*.log"
            matching_files = glob.glob(pattern)
            if matching_files:
                # Create a directory for these files
                folder_name = os.path.join(folder_path, base_name)
                os.makedirs(folder_name, exist_ok=True)
                # Move each matching file into the directory
                for file in matching_files:
                    shutil.move(file, folder_name)
                # print(
                     f"Moved files with base '{base_name}' into folder:
{folder_name}"
                # )
def initialise_root_node(self):
    return {
        "current_day": 1,
        "current_airport": self.starting_airport,
        "remaining_zones": [
            x for x in self.list_areas if x != self.starting_area
        ], # Exclude the starting area
        "visited_zones": [self.starting_area], # Exclude the starting area
        "total_cost": 0,
        "path": [self.starting_airport],
```

```
}
def transition_function(self, state, action):
    new_state = deepcopy(state)
    new_state["current_day"] += 1
    new_state["current_airport"] = action[0]
    new_state["total_cost"] += action[1]
    new_state["path"].append(action[0])
    # self.logger.info(
         f"Airport {action[0]},
{self.associated_area_to_airport(airport=action[0])} to remove in
{new_state['remaining_zones']}"
    new_state["remaining_zones"].remove(
        self.associated_area_to_airport(airport=action[0])
    )
    new_state["visited_zones"].append(
        self.associated_area_to_airport(airport=action[0])
    return new_state
def random_policy(self, actions):
    if not actions:
        return None
    return random.choice(actions)
def greedy_policy(self, actions):
    # self.logger.info(f"Actions: {actions}")
    if not actions:
        return None
    best_action = min(actions, key=lambda x: x[1])
    # self.logger.info(f"Chosen action based on heuristic policy:
{best_action}")
    return best_action
def tolerance_heuristic_policy(self, actions):
    # self.logger.info(f"Actions: {actions}")
    if not actions:
```

```
return None
    min_cost = min(actions, key=lambda x: x[1])[1]
    # Filter actions within the tolerance level
    best_actions = [
        action
        for action in actions
        if action[1] <= min_cost * (1 + self.ratio_expansion)</pre>
    ]
    best_action = random.choice(best_actions)
    # self.logger.info(f"Chosen action based on tolerance policy:
{best_action}")
    return best_action
def get_unvisited_children(self, node):
    queue = [node]
    unvisited_children = []
    while queue:
        current_node = queue.pop(0)
        for child in current_node.children:
            if child.visit_count == 0:
                unvisited_children.append(child)
            else:
                queue.append(child)
    return unvisited_children
def backpropagate(self, node, cost):
    while node is not None:
        node.update(cost)
        # self.logger.info(
             f"Backpropagating Node: {node.state}, Visit Count:
{node.visit_count}, Total Cost: {node.total_cost}, Scores: {node.scores}"
        node = node.parent
```

```
def collect_all_nodes(self):
    nodes = []
    queue = [self.root]
    while queue:
        node = queue.pop(0)
        nodes.append(node)
        queue.extend(node.children)
    return nodes
def get_final_nodes(self):
    day = self.number_of_areas + 1
    nodes = [
        node
        for node in self.collect_all_nodes()
        if node.state.get("current_day") == day
    ]
    min_cost_child = None
    robust_child = None
    min_cost_robust_child = None
    secure_child = None
    min_cost = float("inf")
    max_visit_count = -float("inf")
    max_secure_value = -float("inf")
    for node in nodes:
        if node.total_cost < min_cost:</pre>
            min_cost = node.total_cost
            min_cost_child = node
        if node.visit_count > max_visit_count:
            max_visit_count = node.visit_count
            robust_child = node
        if node.total_cost == min_cost and node.visit_count >=
max_visit_count:
            min_cost_robust_child = node
        if (
```

```
node.visit_count > 0
            and node.parent is not None
            and node.parent.visit_count > 0
        ):
            secure_value = (node.total_cost / node.visit_count) - self.cp
* (
                (node.parent.visit_count / node.visit_count) ** 0.5
            )
            if secure_value > max_secure_value:
                max_secure_value = secure_value
                secure_child = node
    if min_cost_child:
        self.logger.info("\n\n")
        self.logger.info(f"Best Node: {min_cost_child.state}")
    if robust_child:
        self.logger.info(
            f"Robust Child (Day {day}): State={robust_child.state}, Visit
Count={max_visit_count}"
        )
    if min_cost_robust_child:
        self.logger.info(
            f"Min-Cost-Robust Child (Day {day}):
State={min_cost_robust_child.state}, Cost={min_cost}, Visit
Count={min_cost_robust_child.visit_count}"
    if secure_child:
        self.logger.info(
            f"Secure Child (Day {day}): State={secure_child.state}, Secure
Value={max_secure_value}"
        )
def display_all_nodes(self, nodes):
    for node in nodes:
        print(
            f"State: {node.state}, Visit Count: {node.visit_count}, Total
Cost: {node.total_cost}"
        )
        self.logger.info(
            f"State: {node.state}, Visit Count: {node.visit_count}, Total
Cost: {node.total_cost}"
```

```
)
 def print_execution_times(self):
               self.logger.info(
                              f'' \in f'' 
{self.end_time_data_preprocessing:.4f} seconds"
               )
               self.logger.info(
                              f"\n\n Time to find the solution: {self.end_search_time:.4f}
seconds"
               )
               self.logger.info(
                              f'' \in T Total time:
{self.end_time_data_preprocessing+self.end_search_time:.4f} seconds \n\n"
               )
 def get_simulation_policy(self):
               if self.desired_simulation_policy == "greedy_policy":
                              return self.greedy_policy
               elif self.desired_simulation_policy == "random_policy":
                              return self.random_policy
               elif self.desired_simulation_policy == "tolerance_policy":
                              return self.tolerance_heuristic_policy
               else:
                              raise ValueError(
                                            f"Unknown simulation policy: {self.desired_simulation_policy}"
                              )
 def get_expansion_policy(self):
               if self.desired_expansion_policy == "top_k":
                              return self.top_k_actions
               if self.desired_expansion_policy == "ratio_k":
                              return self.ratio_best_random
               else:
                              raise ValueError(
                                            f"Unknown expansion policy: {self.desired_expansion_policy}"
def top_k_actions(self, actions):
```

```
sorted_actions = sorted(actions, key=lambda x: x[1])
    return sorted_actions[: self.number_childrens]
def ratio_best_random(self, actions):
    ratio = self.ratio_expansion
    num_best = int(self.number_childrens * ratio)
    num_random = self.number_childrens - num_best
    sorted_actions = sorted(actions, key=lambda x: x[1])
    best_actions = sorted_actions[:num_best]
    remaining_actions = sorted_actions[num_best:]
    num_random = min(num_random, len(remaining_actions))
    if num_random > 0 and remaining_actions:
        random_actions = random.sample(remaining_actions, num_random)
    else:
        random_actions = []
    final_actions = best_actions + random_actions
    random.shuffle(final_actions)
    return final_actions
def delete_node(self, node):
    if node.parent:
        for _ in node.parent.children:
            pass
            # self.logger.info(
                 f"before deletion: {len(node.parent.children)},{_.state}"
        node.parent.children.remove(node)
        for _ in node.parent.children:
            pass
            # self.logger.info(
                 f"after deletion: {len(node.parent.children)},{_.state}"
            # )
def print_characteristics_simulation(self):
```

```
self.logger.info(f"\n\nSimulation dictionnary:
{self.simulations_dict}")
    self.logger.info(f"Number of childrens: {self.number_childrens}")
    self.logger.info(f"Desired expansion policy:
{self.desired_expansion_policy}")
    self.logger.info(f"Ratio expansion: {self.ratio_expansion}")
    self.logger.info(f"Desired simulation policy:
{self.desired_simulation_policy}")
    self.logger.info(f"Desired selection policy:
{self.desired_selection_policy}")
    self.logger.info(f"Cp: {self.cp}")
    self.logger.info(f"Instance: {self.instance_number}")
def simulation(self):
    for _ in range(self.number_simulation):
        self.logger = None
        self.logger = self.configure_logging()
        self.root = Node(
            self.initialise_root_node(),
            desired_selection_policy=self.desired_selection_policy,
            cp=self.cp,
        self.best_leaf = None
        self.best_leaf_cost = float("inf")
        self.search()
        self.end_search_time = time.time() - self.start_time
        self.print_execution_times()
        self.get_final_nodes()
        self.print_characteristics_simulation()
def select(self, node):
    self.logger.info("\nSELECTION\n")
    current_node = node
    self.logger.info(f"Starting selection at node: {current_node.state}")
    while current_node.children:
        self.logger.info(f"Current node: {current_node.state}")
        self.logger.info(f"Childrens: {current_node.children}")
        if not current_node.is_fully_expanded():
            unvisited_children = [
```

```
child for child in current_node.children if
child.visit_count == 0
            self.logger.info(f"Unvisited children:
{len(unvisited_children)}")
            if unvisited_children:
                selected_child = random.choice(unvisited_children)
                self.logger.info(
                     f"Randomly selected unvisited child: {selected_child}"
                return True, selected_child
        else:
            current_node = current_node.best_child()
            self.logger.info(f"Moving to best child: {current_node.state}")
    if (not current_node.children) and (
        current_node.state["current_day"] == self.number_of_areas
    ):
        self.logger.info("Final day selected")
        return False, current_node
    elif (not current_node.children) and (
        current_node.state["current_day"] != self.number_of_areas
    ):
        self.logger.info(f"The node {current_node.state} has no children")
        return False, current_node
    elif current_node.state["current_day"] == self.number_of_areas + 1:
        return True, current_node
def expand_node(self, node):
    if node not in self.expanded_nodes:
        self.expanded_nodes.append(node)
        actions =
{\tt self.possible\_flights\_from\_an\_airport\_at\_a\_specific\_day\_with\_previous\_areas} (
            node.state["current_day"],
            node.state["current_airport"],
            node.state["visited_zones"],
        )
```

```
if node.state["current_day"] == self.number_of_areas:
            node.state["visited_zones"] = node.state["visited_zones"][1:]
            node.state["remaining_zones"].append(
                self.associated_area_to_airport(self.starting_airport)
            )
            actions =
self.possible_flights_from_an_airport_at_a_specific_day_with_previous_areas(
                node.state["current_day"],
                node.state["current_airport"],
                node.state["visited_zones"],
            )
        expansion_policy = self.get_expansion_policy()
        actions = expansion_policy(actions)
        if actions:
            self.logger.info("Start expansion")
            for action in actions:
                self.logger.info(f"{action}")
                new_state = self.transition_function(node.state, action)
                node.add_child(new_state)
            self.logger.info("End expansion")
        else:
            self.logger.info(f"No actions possible")
            return None
        return node
    else:
        self.logger.info("INFINITE LOOP")
        return None
def search(self):
    while True:
        node_to_explore = self.select(self.root)
        self.logger.info(f"Node to explore: {node_to_explore[1].state}")
```

```
if node_to_explore[1].state["current_day"] == self.number_of_areas
+ 1:
            while not node_to_explore[1].parent.is_fully_expanded():
                # self.logger.info(
                     "Node to explore is last day but all siblings have
not been visited yet"
                # )
                node_to_explore = self.select(self.root)
                self.logger.info(f"Node to explore:
{node_to_explore[1].state}")
                result = node_to_explore[1].state["total_cost"]
                self.backpropagate(node_to_explore[1], result)
            node_to_explore[1].state["visited_zones"].append(
                self.associated_area_to_airport(
                    airport=node_to_explore[1].state["path"][-1]
                )
            )
            return
        if not node_to_explore[0]:
            expanded_node = self.expand_node(node=node_to_explore[1])
            if not expanded_node:
                self.logger.info("Not unexpandable so deleted")
                node_to_explore[1].delete_node()
                if len(self.collect_all_nodes()) == 1:
                    self.logger.info("Everything has been deleted to the
root node")
                    self.end_time_data_preprocessing = 0
                    self.end_search_time = 0
                    self.print_characteristics_simulation()
                    self.print_execution_times()
                    break
                continue
            else:
                self.logger.info(
                    f"{node_to_explore[1].state} has been successfully
expanded"
                continue
```

```
else:
            simulation = self.simulate(node_to_explore[1])
            if simulation[0]:
                self.logger.info(f"Result from simulation:
{simulation[0]}")
                key = str(node_to_explore[1].state["current_day"])
                value_to_add = simulation[0]
                if key in self.simulations_dict:
                    self.simulations_dict[key].append(value_to_add)
                else:
                    self.simulations_dict[key] = [value_to_add]
                self.backpropagate(node_to_explore[1], simulation[0])
            else:
                self.logger.info(
                    "Simulation failed to reach a valuable state - node
deleted"
                )
                self.delete_node(node_to_explore[1])
                if len(self.collect_all_nodes()) == 1:
                    self.logger.info("Everything has been deleted to the
root node")
                    self.end_time_data_preprocessing = 0
                    self.end_search_time = 0
                    self.print_characteristics_simulation()
                    self.print_execution_times()
                    break
def simulate(self, node):
    self.logger.info("\n\nSIMULATION")
    simulation_policy = self.get_simulation_policy()
    current_simulation_state = deepcopy(node.state)
    self.logger.info(f"Selected node for simulation
{current_simulation_state}")
    while current_simulation_state["current_day"] != self.number_of_areas:
        actions =
self.possible_flights_from_an_airport_at_a_specific_day_with_previous_areas(
```

```
day=current_simulation_state["current_day"],
            from_airport=current_simulation_state["current_airport"],
            visited_areas=current_simulation_state["visited_zones"],
        )
        action = simulation_policy(actions=actions)
        # self.logger.info(f"Action: {action}")
        if action is None:
            self.logger.info("Action is None")
            return False, False
        current_simulation_state = self.transition_function(
            current_simulation_state, action
        )
        # self.logger.info(f"Current simulation state
{current_simulation_state}")
    if current_simulation_state["current_day"] == self.number_of_areas:
        current_simulation_state["visited_zones"] =
current_simulation_state[
            "visited_zones"
        ][1:]
        current_simulation_state["remaining_zones"].append(
            self.associated_area_to_airport(self.starting_airport)
        )
        actions =
self.possible_flights_from_an_airport_at_a_specific_day_with_previous_areas(
            day=current_simulation_state["current_day"],
            from_airport=current_simulation_state["current_airport"],
            visited_areas=current_simulation_state["visited_zones"],
        )
        if not actions:
            self.logger.info("No flight available to go back to the
initial area")
            return False, False
        else:
            action = simulation_policy(actions=actions)
            current_simulation_state = self.transition_function(
```

```
current_simulation_state, action
)
self.logger.info(f"Current simulation state
{current_simulation_state}")

return current_simulation_state["total_cost"],
current_simulation_state
```

Appendix B

Test Instances

The instances can be found on the following website: https://code.kiwi.com/articles/travelling-salesman-challenge-2-0-wrap-up/

Appendix C

Simulations results

In these tables, when metrics like the std cannot be computed it is because there are not enough data or because some simulations outputs where NaN. Furthermore, when the expansion policy, Exp policy, is not ratio k, the ratio in the column Ratio is not interpretable because it is not used.

C.1 Instance 1

C.1.1 Solution found

Selec policy	Exp policy	Simu policy	N° chil- drens	Ratio	Ср	Best	Mean	Std	T(s)
UCB	ratio k	greedy	5	.3	2.8	1396	1396.00		.084
UCB	top k	greedy	5	.5	1.4	1396	1396.00		.085
UCB	top k	greedy	5	.3	1.4	1396	1396.00		.085
UCB	top k	greedy	10	.8	1.4	1396	1396.00		.096
UCB	top k	greedy	10	.3	1.4	1396	1396.00		.097
UCB	top k	greedy	5	.3	2.8	1396	1396.00		.097
UCB	top k	greedy	5	1	1.4	1396	1396.00		.097
UCB	top k	greedy	5	.8	2.8	1396	1396.00		.098
UCB	ratio k	greedy	10	1	2.8	1396	1396.00		.098
UCB	top k	greedy	5	0	2.8	1396	1396.00		.099
UCB	ratio k	greedy	5	0	2.8	1396	1396.00		.100
UCB	ratio k	greedy	5	1	1.4	1396	1396.00		.101
UCB	$\mathrm{top}\ k$	greedy	5	.5	2.8	1396	1396.00		.101

UCB	ratio k	greedy	10	.3	2.8	1396	1396.00		.102	
UCB	top k	greedy	10	0	1.4	1396	1396.00		.103	
UCB	top k	greedy	15	.3	1.4	1396	1396.00		.107	
UCB	top k	greedy	5	0	1.4	1396	1396.00		.107	
UCB	ratio k	greedy	10	.5	2.8	1396	1396.00		.112	
UCB	ratio k	greedy	15	.8	1.4	1396	1396.00		.112	
UCB	top k	greedy	15	.8	1.4	1396	1396.00		.115	
UCB	top k	greedy	15	1	1.4	1396	1396.00		.115	
UCB	ratio k	greedy	10	0	2.8	1396	1396.00		.116	
UCB	top k	greedy	10	1	1.4	1396	1396.00		.116	
UCB	ratio k	greedy	10	.3	1.4	1396	1396.00		.117	
UCB	top k	greedy	5	1	2.8	1396	1396.00		.117	
UCB	$\mathrm{top}\ k$	greedy	15	.3	2.8	1396	1396.00		.118	
UCB	top k	greedy	10	.5	1.4	1396	1396.00		.118	
UCB	top k	greedy	5	.8	1.4	1396	1396.00		.118	
UCB	ratio k	greedy	15	.3	2.8	1396	1396.00		.119	
UCB	ratio k	greedy	15	.8	2.8	1396	1396.00		.119	
UCB	top k	greedy	15	.8	2.8	1396	1396.00		.120	
UCB	ratio k	greedy	10	.5	1.4	1396	1396.00		.120	
UCB	ratio k	tolerance	10	0	2.8	1396	1396.00	0.00	.120	
UCB	ratio k	greedy	10	.8	2.8	1396	1396.00		.122	
UCB	top k	greedy	15	0	2.8	1396	1396.00		.122	
UCB	top k	tolerance	5	0	2.8	1396	1396.00	0.00	.126	
UCB	top k	greedy	15	.5	1.4	1396	1396.00		.126	
UCB	ratio k	greedy	10	0	1.4	1396	1396.00		.126	
UCB	$\mathrm{top}\ k$	greedy	10	.8	2.8	1396	1396.00		.127	
UCB	ratio k	tolerance	15	0	2.8	1396	1396.00	0.00	.128	
UCB	ratio k	greedy	15	1	2.8	1396	1396.00		.129	
UCB	top k	greedy	10	.3	2.8	1396	1396.00		.131	
UCB	ratio k	greedy	5	1	2.8	1396	1396.00		.131	
UCB	ratio k	greedy	15	0	2.8	1396	1396.00		.132	
UCB	$\mathrm{top}\ k$	greedy	10	0	2.8	1396	1396.00		.132	
UCB	ratio k	greedy	15	.3	1.4	1396	1396.00		.133	
UCB	ratio k	greedy	15	.5	1.4	1396	1396.00		.133	
UCB	top k	greedy	15	.5	2.8	1396	1396.00		.134	
UCB	ratio k	greedy	10	1	1.4	1396	1396.00		.136	
UCB	ratio k	greedy	15	1	1.4	1396	1396.00		.137	
UCB	ratio k	tolerance	5	0	1.4	1396	1518.60	99.08	.139	
UCB	top k	greedy	15	1	2.8	1396	1396.00		.142	
UCB	top k	greedy	10	1	2.8	1396	1396.00		.143	
UCB	ratio k	tolerance	15	0	1.4	1396	1396.00	0.00	.143	

UCB	top k	greedy	15	0	1.4	1396	1396.00		.143
UCB	ratio k	greedy	15	.5	2.8	1396	1396.00		.147
UCB	ratio k	greedy	15	0	1.4	1396	1396.00		.148
UCB	ratio k	tolerance	10	0	1.4	1396	1396.00	0.00	.152
UCB	top k	tolerance	15	0	1.4	1396	1396.00	0.00	.153
UCB	top k	tolerance	10	0	1.4	1396	1396.00	0.00	.155
UCB	top k	greedy	10	.5	2.8	1396	1396.00		.157
UCB	top k	tolerance	15	.3	2.8	1396	1524.20	72.14	.157
UCB	top k	tolerance	5	0	1.4	1396	1396.00	0.00	.158
UCB	top k	tolerance	15	.8	1.4	1396	1654.70	185.65	.161
UCB	top k	tolerance	10	0	2.8	1396	1396.00	0.00	.174
UCB	top k	tolerance	15	0	2.8	1396	1396.00	0.00	.177
UCB	ratio k	greedy	10	.8	1.4	1396	1396.00		.178
UCB	ratio k	tolerance	15	.5	1.4	1396	1599.20	89.85	.385
UCB	top k	tolerance	5	.5	2.8	1396	1588.50	109.62	.394
UCB	ratio k	tolerance	10	1	1.4	1396	1572.20	148.00	.488
UCB	$\mathrm{top}\ k$	tolerance	15	.8	2.8	1396	1647.80	209.03	.645
UCB	ratio k	tolerance	5	0	2.8	1396	1509.00	81.71	.659
UCB	$\mathrm{top}\ k$	tolerance	10	1	1.4	1396	1617.70	183.61	.794
UCB	$\mathrm{top}\ k$	tolerance	15	1	2.8	1396	1589.50	130.85	.809
UCB	$\mathrm{top}\ k$	tolerance	15	.5	2.8	1396	1528.40	109.46	.837
UCB	ratio k	tolerance	15	1	1.4	1396	1606.10	125.35	.864
UCB	top k	tolerance	5	.3	2.8	1396	1528.60	76.94	.961
UCB	top k	tolerance	10	.3	1.4	1396	1528.90	109.87	1.060
UCB	ratio k	tolerance	5	.8	1.4	1396	1574.70	123.89	1.208
UCB	top k	tolerance	15	1	1.4	1396	1592.50	143.08	1.613
UCB	ratio k	random	10	.8	0	1407	3549.90	1959.51	2.745
UCB	top k	tolerance	5	.3	1.4	1431	1532.50	112.31	.514
UCB	top k	tolerance	5	.8	1.4	1431	1618.70	97.18	.806
UCB	ratio k	tolerance	10	.8	1.4	1431	1583.10	123.40	.830
UCB	ratio k	tolerance	10	.5	2.8	1431	1549.10	96.27	1.021
UCB	ratio k	tolerance	15	1	2.8	1431	1615.40	179.82	1.432
UCB	ratio k	tolerance	10	.3	2.8	1457	1508.70	40.06	.138
UCB	top k	tolerance	5	1	1.4	1457	1543.60	84.48	1.857
UCB	ratio k	greedy	5	.5	2.8	1458	1458.00		.113
UCB	ratio k	greedy	5	0	1.4	1458	1458.00		.115
UCB	top k	tolerance	5	1	2.8	1458	1563.00	88.51	.126
UCB	top k	tolerance	10	.8	2.8	1458	1640.50	101.40	.348
UCB	ratio k	tolerance	15	.8	2.8	1458	1575.60	102.64	.381
UCB	top k	tolerance	10	.8	1.4	1458	1571.40	123.30	.382
UCB	ratio k	random	15	.8	2.8	1458	4879.30	2587.48	.591

	UCB	ratio k	tolerance	5	.8	2.8	1458	1586.00	106.15	.806	
	UCB	top k	tolerance	5	.5	1.4	1458	1541.30	45.20	.901	
	UCB	ratio k	tolerance	15	.3	2.8	1458	1502.60	63.95	1.081	
	UCB	ratio k	tolerance	10	.5	1.4	1458	1523.70	46.63	1.161	
	UCB	ratio k	random	10	1	1.4	1458	5975.30	4237.38	1.756	
	UCB1T	ratio k	greedy	10	.5	1.4	1472	1472.00		.893	
	UCB	top k	tolerance	10	.8	0	1472	1903.50	169.28	1.057	
İ	UCB	ratio k	tolerance	10	1	2.8	1472	1661.30	160.90	1.267	
	UCB	ratio k	greedy	5	1	0	1472	1472.00		1.801	
	UCB1T	ratio k	tolerance	15	.3	1.4	1472	1818.00	150.91	5.009	۱
	UCB	top k	tolerance	15	.5	0	1472	1808.00	146.75	5.484	
	UCB1T	top k	tolerance	5	0	2.8	1472	1803.50	208.94	6.320	۱
	UCB	ratio k	tolerance	5	1	0	1472	1799.70	161.43	6.925	
	UCB1T	ratio k	tolerance	15	1	0	1472	1870.00	220.25	19.040	۱
	UCB1T	ratio k	tolerance	5	1	2.8	1472	1895.10	211.12	28.132	
	UCB	top k	tolerance	10	.3	2.8	1479	1520.70	70.89	.160	
	UCB	ratio k	tolerance	5	.3	2.8	1479	1523.20	81.22	.216	
	UCB	ratio k	tolerance	5	.3	1.4	1479	1550.20	92.04	.440	
	UCB	top k	tolerance	5	.8	2.8	1479	1643.70	125.43	.500	۱
	UCB	ratio k	tolerance	10	.3	1.4	1479	1560.20	65.68	.870	
	UCB	top k	tolerance	15	.3	1.4	1479	1561.00	73.15	1.526	
	UCB	ratio k	greedy	5	.3	1.4	1481	1481.00		.095	
	UCB	ratio k	greedy	5	.8	2.8	1481	1481.00		.104	۱
	UCB	ratio k	greedy	5	.8	1.4	1481	1481.00		.115	
	UCB	ratio k	greedy	5	.5	1.4	1481	1481.00		.117	۱
	UCB	top k	tolerance	15	.5	1.4	1481	1566.80	83.76	.738	
	UCB	ratio k	tolerance	15	.3	1.4	1481	1607.00	95.21	1.236	
	UCB1T	ratio k	tolerance	5	.8	0	1481	1847.50	208.87	13.143	
	UCB	ratio k	tolerance	5	.5	2.8	1485	1559.70	90.12	.644	
	UCB	ratio k	tolerance	5	1	1.4	1489	1649.10	60.98	.126	
	UCB	ratio k	tolerance	5	.5	1.4	1490	1555.70	56.12	.106	۱
	UCB1T	$\mathrm{top}\ k$	tolerance	15	.8	0	1490	1865.60	158.48	5.096	
	UCB1T	$\mathrm{top}\ k$	random	5	.5	1.4	1493	2407.10	1045.81	3.136	۱
	UCB	ratio k	tolerance	15	.5	2.8	1495	1551.60	37.38	.316	
	UCB	$\mathrm{top}\ k$	tolerance	10	.5	2.8	1495	1608.60	78.12	1.129	
	UCB	ratio k	random	5	1	1.4	1506	3187.40	1785.08	.179	
	UCB	ratio k	random	5	1	2.8	1506	4330.10	2775.69	.492	
	UCB	ratio k	tolerance	15	.3	0	1506	1745.30	193.93	1.829	
	UCB1T	$\mathrm{top}\ k$	random	15	.3	0	1506	2634.80	1495.29	2.654	
	UCB	ratio k	tolerance	15	.8	1.4	1521	1664.60	140.50	.160	
	UCB	$\mathrm{top}\ k$	random	5	0	1.4	1522	3817.40	2271.90	1.650	

UCB1T top k tolerance 5 .3 1.4 1522 1803.10 133	5.11 44.419
UCB ratio k tolerance 5 1 2.8 1526 1636.10 95	.27 .322
UCB ratio k tolerance 10 .8 2.8 1526 1658.90 95	.49 .654
UCB1T ratio k greedy 5 0 1.4 1529 1529.00	.512
UCB1T ratio k random 5 .5 1.4 1529 2613.00 138	81.25 .883
UCB top k tolerance 15 .3 0 1529 1816.10 20-	4.92 1.285
UCB1T ratio k tolerance 5 0 0 1529 1889.20 193	1.58 2.025
UCB1T ratio k random 10 .3 1.4 1529 2922.40 173	54.56 2.695
UCB1T top k tolerance 15 0 0 1529 1884.20 160	6.62 2.890
UCB1T ratio k tolerance 10 1 0 1529 1827.00 215	5.19 3.312
UCB1T top k tolerance 15 .3 2.8 1529 1890.20 168	8.87 4.693
UCB1T ratio k random 15 .8 1.4 1529 3993.00 229	98.81 5.162
UCB1T top k tolerance 10 .5 0 1529 1823.10 21	1.45 6.695
UCB1T ratio k tolerance 10 .5 1.4 1529 1850.50 224	4.25 8.508
UCB1T ratio k tolerance 10 .3 1.4 1529 1796.60 16	7.63 9.516
UCB1T top k tolerance 15 1 0 1529 1831.70 133	3.56 11.001
UCB1T ratio k tolerance 5 .8 1.4 1529 1798.40 216	6.53 16.114
UCB top k tolerance 10 .5 1.4 1530 1609.90 76	.29 .924
UCB1T ratio k random 5 0 2.8 1533 3012.00 183	36.74 3.879
UCB1T top k tolerance 5 1 0 1533 1882.40 178	8.26 8.601
UCB1T ratio k tolerance 5 1 1.4 1533 1809.70 203	2.15 9.562
UCB1T ratio k tolerance 10 .8 0 1533 1838.20 14	5.60 9.573
UCB1T top k tolerance 10 1 0 1533 1834.90 173	2.42 17.707
UCB1T ratio k greedy 10 .8 0 1540 1540.00	.666
UCB1T ratio k greedy 10 1 0 1540 1540.00	.879
UCB1T top k random 15 .5 2.8 1540 3122.70 178	53.55 1.088
UCB1T top k greedy 15 .5 2.8 1540 1540.00	1.181
UCB1T ratio k tolerance 5 .3 0 1540 1864.60 178	5.12 1.319
UCB1T top k greedy 15 .8 2.8 1540 1540.00	1.664
UCB top k greedy 5 .5 0 1540 1540.00	1.694
UCB top k greedy 5 0 0 1540 1540.00	1.702
UCB1T ratio k tolerance 10 .8 1.4 1540 1845.80 16:	2.15 2.461
UCB1T top k greedy 5 .3 1.4 1540 1540.00	2.500
UCB top k tolerance 5 .5 0 1540 1800.30 150	6.39 2.706
UCB1T ratio k tolerance 10 .3 0 1540 1831.40 174	4.19 2.958
UCB1T top k tolerance 15 .3 0 1540 1896.80 214	4.92 3.424
UCB ratio k tolerance 10 0 0 1540 1850.20 18	3.61 4.229
UCB1T ratio k tolerance 5 .3 2.8 1540 1919.00 194	4.58 5.013
UCB1T top k tolerance 15 0 2.8 1540 1865.30 20:	2.86 5.138
UCB1T top k tolerance 10 .5 2.8 1540 1776.30 186	0.87 6.638
UCB ratio k tolerance 15 0 0 1540 1913.30 20'	7.39 7.511

	UCB1T	top k	tolerance	10	.5	1.4	1540	1885.00	235.90	7.624	
	UCB	top k	tolerance	15	.8	0	1540	1810.70	162.48	7.951	
	UCB	top k	tolerance	10	0	0	1540	1882.00	169.58	8.397	
	UCB1T	ratio k	tolerance	10	.3	2.8	1540	1786.20	149.51	9.080	
İ	UCB1T	ratio k	tolerance	15	.8	2.8	1540	1758.30	183.71	9.664	
	UCB1T	top k	tolerance	15	1	2.8	1540	1814.90	116.59	9.710	
	UCB1T	ratio k	tolerance	15	1	2.8	1540	1862.50	184.05	9.835	
	UCB1T	ratio k	tolerance	15	.3	0	1540	1809.80	164.19	10.175	
	UCB1T	ratio k	tolerance	10	1	2.8	1540	1897.00	281.85	10.565	
İ	UCB1T	ratio k	tolerance	15	.8	1.4	1540	1908.50	196.92	13.413	
	UCB1T	ratio k	tolerance	15	.5	1.4	1540	1868.40	160.08	15.130	
İ	UCB1T	top k	tolerance	5	.8	0	1540	1824.20	165.59	16.175	
	UCB1T	top k	tolerance	5	0	1.4	1540	1806.50	198.51	17.011	
İ	UCB1T	top k	tolerance	5	.3	0	1540	1870.70	196.15	22.181	
	UCB1T	top k	tolerance	5	0	0	1540	1732.90	156.80	35.029	ا
	UCB1T	top k	tolerance	5	.5	2.8	1540	1828.10	128.77	53.816	
	UCB	ratio k	random	15	.8	0	1544	3538.60	1864.08	1.304	
	UCB1T	top k	random	5	0	2.8	1544	2510.60	969.95	1.983	
	UCB1T	top k	tolerance	15	.3	1.4	1546	1832.00	184.84	3.920	
	UCB	top k	tolerance	10	1	2.8	1547	1639.00	101.50	.350	
	UCB	top k	random	15	.3	2.8	1548	7304.10	5361.45	1.066	ا
	UCB1T	top k	tolerance	15	.5	0	1548	1838.50	129.02	5.476	
İ	UCB1T	top k	tolerance	10	.3	0	1548	1959.70	210.51	20.794	
	UCB1T	ratio k	random	15	0	0	1551	2592.00	1259.81	2.241	ا
	UCB1T	top k	tolerance	15	.8	2.8	1551	1862.00	139.22	12.043	ا
	UCB1T	ratio k	tolerance	5	1	0	1551	1884.40	202.74	22.815	ا
	UCB	ratio k	tolerance	5	.5	0	1552	1861.00	177.52	1.938	
	UCB	ratio k	tolerance	5	.8	0	1552	1818.80	158.49	2.109	
	UCB1T	$\mathrm{top}\ k$	tolerance	10	1	2.8	1552	1826.90	170.80	7.951	
	UCB1T	ratio k	tolerance	5	.5	0	1553	1842.90	145.37	1.425	
	UCB1T	ratio k	tolerance	5	.5	2.8	1553	1820.10	155.51	3.897	
	UCB1T	$\mathrm{top}\ k$	random	10	0	2.8	1553	3300.10	1765.23	3.970	
	UCB	ratio k	tolerance	10	.8	0	1553	1865.80	179.46	5.543	
	UCB1T	ratio k	tolerance	15	0	2.8	1553	1842.80	230.98	5.783	
	UCB1T	ratio k	tolerance	10	.5	0	1553	1832.90	113.14	9.797	
	UCB1T	ratio k	tolerance	15	.5	0	1553	1853.50	165.94	12.827	
	UCB1T	$\mathrm{top}\ k$	random	5	.5	0	1555	2709.90	1386.28	.908	
	UCB1T	$\mathrm{top}\ k$	random	15	.3	1.4	1555	2758.60	1549.45	5.773	
	UCB1T	$\mathrm{top}\ k$	tolerance	10	.8	0	1561	1842.40	185.52	4.651	
	UCB1T	ratio k	tolerance	15	.5	2.8	1561	1886.10	209.51	8.565	
	UCB	ratio k	tolerance	10	1	0	1564	1792.40	163.67	.729	
										•	

UCB	top k	greedy	10	.5	0	1564	1564.00		.746	
UCB1T	ratio k	greedy	10	1	1.4	1564	1564.00		.967	I
UCB1T	ratio k	greedy	15	.3	1.4	1564	1564.00		1.123	
UCB1T	top k	tolerance	10	.3	2.8	1564	1848.00	154.42	1.583	
UCB1T	top k	tolerance	10	0	2.8	1564	1876.20	146.84	2.413	
UCB	ratio k	tolerance	10	.3	0	1564	1894.60	168.37	3.180	
UCB1T	ratio k	tolerance	15	0	1.4	1564	1926.10	169.41	3.914	
UCB1T	ratio k	tolerance	10	0	0	1564	1894.10	209.84	5.046	
UCB	top k	tolerance	5	.3	0	1564	1802.20	110.06	5.248	
UCB1T	ratio k	tolerance	10	.5	2.8	1564	1903.40	202.94	5.620	
UCB	top k	tolerance	15	0	0	1564	1996.80	188.44	7.431	
UCB1T	top k	tolerance	15	.5	1.4	1564	1801.10	181.31	8.398	
UCB	top k	tolerance	5	.8	0	1564	1821.10	171.24	8.987	
UCB1T	top k	tolerance	15	1	1.4	1564	1857.30	200.71	10.041	
UCB1T	ratio k	tolerance	15	1	1.4	1564	1931.50	183.48	12.772	
UCB1T	top k	tolerance	5	.5	1.4	1564	1891.70	149.04	31.446	
UCB	ratio k	random	10	.3	2.8	1565	5063.80	4094.92	.375	
UCB1T	top k	random	10	.3	0	1565	3329.80	2124.79	2.699	
UCB1T	top k	random	15	1	0	1565	3236.20	2047.21	5.953	
UCB1T	top k	random	10	1	2.8	1569	2779.10	1889.48	1.492	
UCB	ratio k	random	15	.3	2.8	1577	6779.70	3457.07	1.545	
UCB1T	top k	tolerance	10	0	0	1577	1873.80	178.43	2.373	
UCB1T	ratio k	random	15	1	0	1577	3337.20	1588.71	5.721	
UCB1T	ratio k	random	10	1	0	1577	2901.20	1262.22	5.992	
UCB1T	top k	tolerance	5	.3	2.8	1578	1838.70	131.18	30.039	
UCB1T	top k	tolerance	10	.8	2.8	1580	1939.40	235.60	4.992	
UCB	top k	random	15	.8	2.8	1583	3255.00	1757.31	.794	
UCB	top k	random	5	.3	0	1583	3648.60	2136.03	1.634	
UCB	top k	random	10	1	0	1583	3451.60	2094.03	3.372	
UCB	ratio k	random	5	.5	2.8	1588	5819.70	3215.99	.441	
UCB1T	ratio k	random	10	.8	1.4	1591	3953.30	2378.61	2.344	
UCB	ratio k	random	5	.8	1.4	1602	3413.60	1617.10	.687	
UCB1T	$\mathrm{top}\ k$	random	15	.8	0	1606	3215.40	1457.51	2.597	
UCB1T	ratio k	random	10	.5	0	1615	2917.70	1738.06	1.223	
UCB1T	$\mathrm{top}\ k$	random	5	0	1.4	1615	2243.60	798.90	2.994	
UCB1T	$\mathrm{top}\ k$	random	15	.8	1.4	1615	3428.80	2035.35	3.857	
UCB1T	$\mathrm{top}\ k$	random	10	0	0	1623	4175.70	2223.66	3.049	
UCB1T	ratio k	greedy	5	.3	0	1624	1624.00		.749	
UCB	$\mathrm{top}\ k$	random	5	1	1.4	1627	3999.30	2670.48	.513	
UCB	$\mathrm{top}\ k$	random	5	0	0	1629	2414.10	1280.07	.261	
UCB1T	$\mathrm{top}\ k$	random	5	1	2.8	1633	2838.30	1236.17	3.507	

UCB1T	ratio k	random	5	1	2.8	1644	3006.80	1803.40	.479
UCB	top k	random	15	1	0	1647	2351.30	1096.41	1.609
UCB	top k	random	15	.3	1.4	1651	3986.00	2543.37	1.927
UCB1T	ratio k	random	5	.8	1.4	1651	2863.80	1129.95	3.658
UCB	top k	random	10	0	0	1658	2117.20	621.46	3.543
UCB1T	ratio k	random	5	.5	0	1659	4723.70	1707.27	3.918
UCB	top k	random	10	1	2.8	1660	4102.50	2659.39	.610
UCB1T	top k	tolerance	5	.8	1.4	1660	1874.60	188.31	47.533
UCB1T	ratio k	random	10	.8	0	1661	3054.30	1542.70	1.292
UCB	top k	random	10	.8	2.8	1661	4508.90	3139.63	1.591
UCB1T	ratio k	random	5	.8	0	1662	1940.40	231.25	4.169
UCB1T	ratio k	tolerance	5	.8	2.8	1662	1837.90	117.26	6.998
UCB1T	ratio k	greedy	5	.3	1.4	1663	1663.00		.480
UCB	ratio k	tolerance	5	.3	0	1663	1865.90	178.68	1.407
UCB	ratio k	random	10	1	2.8	1663	4552.30	3487.52	1.795
UCB1T	ratio k	tolerance	5	0	2.8	1663	1927.80	140.83	3.367
UCB1T	top k	tolerance	15	.5	2.8	1663	1829.20	105.51	4.329
UCB1T	ratio k	random	10	.3	2.8	1663	3892.50	2094.32	4.499
UCB	top k	tolerance	5	0	0	1663	1838.30	154.11	9.751
UCB1T	ratio k	random	10	0	0	1666	2367.30	814.70	1.318
UCB	ratio k	random	5	.3	2.8	1666	5948.00	4768.95	1.669
UCB1T	ratio k	tolerance	5	.3	1.4	1666	1941.90	195.48	7.231
UCB1T	top k	tolerance	15	0	1.4	1666	1904.90	142.41	9.858
UCB1T	top k	random	15	.8	2.8	1668	2303.00	1087.21	4.729
UCB1T	ratio k	random	10	.3	0	1673	3451.40	2083.35	4.420
UCB	top k	tolerance	10	1	0	1674	1853.70	131.34	2.065
UCB1T	top k	tolerance	10	1	1.4	1674	1878.20	129.77	5.518
UCB	top k	random	5	1	0	1678	2416.90	959.20	1.502
UCB1T	ratio k	tolerance	10	0	1.4	1678	1914.00	147.42	3.342
UCB	top k	tolerance	5	1	0	1678	1867.30	151.01	3.844
UCB	ratio k	random	5	.5	1.4	1681	5446.30	3691.78	.327
UCB	ratio k	tolerance	10	.5	0	1689	1904.90	154.68	2.938
UCB1T	top k	random	10	.5	1.4	1689	2506.30	1778.12	4.497
UCB1T	ratio k	greedy	15	.3	0	1690	1690.00		1.255
UCB	top k	random	15	.5	2.8	1691	7503.60	5126.19	1.821
UCB	top k	random	5	.3	1.4	1695	4332.60	2620.35	.510
UCB	ratio k	tolerance	5	0	0	1695	1905.40	153.02	3.821
UCB	ratio k	tolerance	15	1	0	1695	1890.90	135.28	6.258
UCB1T	ratio k	tolerance	10	1	1.4	1695	1859.40	127.66	6.288
UCB1T	ratio k	random	5	.5	2.8	1696	2727.90	1650.15	2.736
UCB1T	ratio k	random	15	0	2.8	1698	3103.20	2377.88	1.629

UCB1T	top k	greedy	5	.8	2.8	1698	1698.00		3.695
UCB1T	top k	random	10	.8	0	1698	2707.90	1578.17	4.028
UCB1T	top k	tolerance	5	1	2.8	1698	1864.90	122.14	35.399
UCB	ratio k	random	10	.5	1.4	1703	3470.90	2151.66	.579
UCB	ratio k	random	10	.3	1.4	1704	4665.60	2019.66	.354
UCB	top k	random	10	.5	1.4	1704	5167.30	2683.04	.807
UCB	top k	random	5	.8	1.4	1706	3614.60	1951.29	.381
UCB	top k	random	5	.5	1.4	1706	4569.00	2297.57	1.213
UCB1T	top k	tolerance	10	.8	1.4	1708	1906.30	132.86	2.060
UCB	top k	random	5	.5	0	1709	2336.70	1046.92	1.765
UCB1T	top k	random	5	.3	0	1709	3106.80	1567.96	2.854
UCB1T	ratio k	tolerance	15	.8	0	1710	1881.00	143.86	15.660
UCB	top k	greedy	10	.3	0	1711	1711.00		.738
UCB	ratio k	random	5	.5	0	1715	3376.90	2127.71	1.448
UCB1T	ratio k	random	15	.5	1.4	1717	3660.50	2148.20	4.281
UCB1T	top k	random	5	1	0	1718	3008.10	1546.53	1.967
UCB1T	top k	greedy	5	.5	2.8	1720	1720.00		3.694
UCB1T	top k	tolerance	5	.5	0	1720	1858.30	108.43	5.149
UCB1T	ratio k	random	15	.8	0	1720	3732.40	1699.79	6.089
UCB1T	top k	random	10	.3	2.8	1724	2674.40	1285.84	3.201
UCB1T	top k	random	5	.8	2.8	1726	2636.60	1126.54	1.093
UCB	ratio k	random	5	0	1.4	1728	4667.50	2998.11	.755
UCB	ratio k	random	10	0	2.8	1729	5947.60	3119.40	1.541
UCB1T	top k	tolerance	5	1	1.4	1729	1885.90	169.41	34.003
UCB1T	top k	random	10	1	0	1730	3578.90	2090.43	.633
UCB	ratio k	random	15	1	0	1730	2956.50	1754.33	2.322
UCB1T	ratio k	greedy	15	1	0	1734	1734.00		1.119
UCB	top k	random	10	.3	1.4	1734	6041.60	3811.51	1.387
UCB	ratio k	tolerance	15	.8	0	1734	1937.30	160.39	2.265
UCB1T	top k	tolerance	10	.3	1.4	1740	1937.60	141.06	5.471
UCB1T	top k	greedy	10	.8	0	1741	1741.00		.881
UCB1T	ratio k	random	10	.5	2.8	1741	3925.10	2795.34	5.267
UCB	top k	tolerance	10	.5	0	1741	1849.90	89.06	6.946
UCB1T	ratio k	tolerance	15	.3	2.8	1741	1966.30	171.06	15.788
UCB	top k	random	5	.3	2.8	1742	5442.90	2963.68	.342
UCB	top k	greedy	5	.3	0	1742	1742.00		1.340
UCB1T	ratio k	random	15	0	1.4	1743	3496.30	1585.15	2.786
UCB1T	top k	random	10	.3	1.4	1744	2799.80	1512.75	3.386
UCB1T	ratio k	tolerance	10	.8	2.8	1744	1942.20	114.58	7.479
UCB	top k	tolerance	15	1	0	1745	1888.90	110.64	2.671
UCB1T	top k	random	15	.3	2.8	1746	3621.40	1663.32	.667
1									

UCB1T	top k	random	15	.5	0	1746	3835.00	1661.25	5.242
UCB1T	top k	random	5	.3	1.4	1748	2388.70	1026.37	.811
UCB	ratio k	random	5	.8	0	1752	3143.70	1727.99	.330
UCB	top k	random	10	0	1.4	1752	6513.10	2763.61	.388
UCB1T	ratio k	greedy	15	.3	2.8	1752	1752.00		.822
UCB	top k	random	15	.3	0	1752	2640.80	1776.83	.905
UCB1T	ratio k	random	5	.8	2.8	1752	2631.00	1651.86	1.930
UCB1T	top k	random	15	0	0	1754	3047.90	1422.93	4.130
UCB1T	top k	random	15	0	1.4	1755	3598.20	1915.88	.549
UCB1T	ratio k	random	10	.8	2.8	1755	3665.50	1700.67	4.641
UCB	ratio k	greedy	5	.3	0	1757	1757.00		.308
UCB1T	ratio k	random	15	.3	0	1758	3812.60	1938.27	1.372
UCB1T	top k	greedy	15	1	1.4	1759	1759.00		1.236
UCB1T	top k	random	10	.5	0	1767	3736.40	2107.52	3.212
UCB	ratio k	random	15	.5	0	1771	2491.90	1254.11	.934
UCB1T	ratio k	random	15	.5	2.8	1771	3457.70	1985.88	5.624
UCB	ratio k	greedy	15	0	0	1773	1773.00		.384
UCB1T	ratio k	random	15	.3	1.4	1773	3853.40	2207.96	.599
UCB1T	top k	greedy	15	.3	0	1773	1773.00		1.033
UCB1T	top k	greedy	15	1	2.8	1774	1774.00		.618
UCB	ratio k	greedy	15	.5	0	1778	1778.00		.669
UCB1T	ratio k	greedy	15	.8	0	1778	1778.00		.732
UCB1T	top k	greedy	10	.5	2.8	1778	1778.00		.835
UCB	ratio k	greedy	10	.8	0	1778	1778.00		.852
UCB1T	ratio k	tolerance	15	0	0	1778	1959.60	159.75	1.432
UCB1T	top k	greedy	5	0	0	1778	1778.00		2.859
UCB1T	ratio k	greedy	5	.8	1.4	1778	1778.00		3.065
UCB1T	top k	tolerance	10	0	1.4	1778	1907.20	101.60	8.331
UCB1T	ratio k	random	15	.8	2.8	1779	3335.30	2191.39	5.037
UCB1T	top k	tolerance	15	.8	1.4	1780	1896.70	105.56	6.394
UCB	top k	random	10	.8	1.4	1782	6276.60	2458.38	.204
UCB1T	ratio k	random	15	1	2.8	1782	3349.50	1615.37	.677
UCB	ratio k	random	15	.3	0	1782	3142.90	2500.95	2.405
UCB1T	top k	greedy	10	.3	2.8	1783	1783.00		1.084
UCB	ratio k	random	10	.5	2.8	1783	6292.70	2661.63	1.304
UCB	top k	random	10	1	1.4	1783	5389.80	2177.70	1.721
UCB	top k	greedy	5	.8	0	1783	1783.00		2.146
UCB1T	top k	random	5	.3	2.8	1783	3757.60	1922.41	2.584
UCB1T	top k	greedy	5	.8	1.4	1783	1783.00		2.623
UCB1T	ratio k	tolerance	10	0	2.8	1783	1951.40	99.87	5.562
UCB	top k	random	5	1	2.8	1791	4959.50	2252.57	.836

UCB1T	top k	random	5	.8	1.4	1792	3362.30	1680.69	1.490	
UCB	top k	random	15	0	2.8	1793	6246.20	3845.94	1.006	
UCB1T	top k	random	10	.5	2.8	1795	2935.90	1756.79	.671	
UCB1T	ratio k	random	10	0	1.4	1796	3402.30	1591.21	4.567	
UCB1T	ratio k	random	15	.5	0	1796	2785.10	1424.75	5.271	
UCB	ratio k	random	15	0	2.8	1797	4958.80	3035.26	.991	
UCB1T	ratio k	tolerance	5	.5	1.4	1797	1952.50	142.06	6.487	
UCB1T	top k	tolerance	5	.8	2.8	1797	1906.40	90.79	11.151	
UCB	top k	random	10	.8	0	1798	3569.70	2296.99	.390	
UCB	top k	greedy	10	.8	0	1798	1798.00		.466	
UCB1T	ratio k	greedy	10	.3	0	1798	1798.00		.909	
UCB1T	ratio k	greedy	10	.8	1.4	1798	1798.00		1.255	
UCB1T	ratio k	tolerance	5	0	1.4	1798	1927.00	109.64	2.407	
UCB1T	top k	greedy	5	1	0	1798	1798.00		2.471	
UCB1T	top k	greedy	5	0	1.4	1798	1798.00		2.742	
UCB	top k	random	15	0	0	1800	3375.00	1522.78	1.985	
UCB1T	top k	random	15	.5	1.4	1801	3564.00	2310.60	1.718	
UCB	top k	random	5	0	2.8	1802	5150.30	3980.89	.696	
UCB1T	top k	random	10	.8	2.8	1804	3337.90	1579.14	3.917	
UCB1T	ratio k	greedy	15	.5	0	1805	1805.00		1.020	
UCB1T	top k	greedy	10	1	1.4	1805	1805.00		1.252	
UCB	ratio k	random	15	1	2.8	1805	3020.50	1454.09	1.851	
UCB	top k	random	15	.5	0	1810	2685.60	1291.87	2.002	
UCB	ratio k	random	5	0	2.8	1811	5222.20	2594.44	1.431	
UCB1T	ratio k	random	5	.3	0	1811	3121.80	1195.49	2.154	
UCB1T	top k	random	15	1	1.4	1811	2746.10	1029.79	4.165	
UCB	top k	random	15	1	1.4	1812	3813.70	2108.22	1.580	
UCB	ratio k	tolerance	15	.5	0	1815	1933.60	109.14	7.289	
UCB1T	top k	random	5	.8	0	1817	2863.50	1598.52	4.821	
UCB	top k	greedy	15	.8	0	1819	1819.00		.819	
UCB	top k	random	5	.8	0	1819	2653.10	1378.29	2.417	
UCB	top k	random	15	.8	0	1821	2959.50	1379.33	.548	
UCB	top k	greedy	5	1	0	1822	1822.00		1.778	
UCB1T	top k	greedy	5	.3	0	1822	1822.00		3.199	
UCB1T	ratio k	greedy	5	.5	1.4	1833	1833.00		.770	
UCB1T	ratio k	greedy	10	.3	2.8	1833	1833.00		.850	
UCB	ratio k	greedy	10	.5	0	1833	1833.00		.896	
UCB1T	ratio k	greedy	5	.8	2.8	1833	1833.00		1.920	
UCB1T	$\mathrm{top}\ k$	greedy	5	.5	0	1833	1833.00		2.552	
UCB1T	$\mathrm{top}\ k$	greedy	5	.8	0	1833	1833.00		3.735	
UCB	top k	random	10	.3	0	1837	2984.40	1548.27	.343	

UCB1	Γ ratio k	random	5	1	0	1839	2988.30	987.59	1.384
UCB	ratio k	random	10	.3	0	1839	2936.70	1766.59	3.191
UCB	ratio k	random	10	1	0	1840	2954.60	1488.65	1.376
UCB	ratio k	random	10	0	0	1844	3452.30	1914.01	2.469
UCB17	Γ top k	random	5	.5	2.8	1845	3487.20	1871.64	1.131
UCB17	Γ top k	random	10	.8	1.4	1845	2470.80	1026.68	6.022
UCB	top k	greedy	10	0	0	1846	1846.00		.531
UCB17	Γ ratio k	greedy	5	.8	0	1846	1846.00		2.147
UCB17	Γ top k	greedy	15	.5	0	1847	1847.00		1.365
UCB1	Γ top k	greedy	5	1	2.8	1847	1847.00		2.332
UCB17	Γ top k	random	15	1	2.8	1847	3483.10	1585.60	5.841
UCB	ratio k	random	10	.8	1.4	1849	6728.60	2720.00	.551
UCB1	Γ top k	random	5	0	0	1849	2920.70	1313.92	3.279
UCB1	Γ top k	greedy	5	.3	2.8	1850	1850.00		2.709
UCB1	Γ ratio k	greedy	5	.5	0	1851	1851.00		.718
UCB1	Γ top k	random	10	0	1.4	1851	2614.40	1646.27	.728
UCB1	Γ ratio k	greedy	5	1	1.4	1851	1851.00		2.352
UCB	top k	random	5	.5	2.8	1855	5007.10	2533.14	1.484
UCB1	Γ ratio k	random	5	.3	1.4	1855	3247.80	1139.79	1.912
UCB17	Γ ratio k	random	10	1	2.8	1855	4480.10	2346.39	6.490
UCB17	Γ top k	greedy	10	.5	0	1856	1856.00		.920
UCB17	Γ top k	greedy	10	.3	1.4	1856	1856.00		1.010
UCB17	Γ top k	greedy	5	0	2.8	1856	1856.00		1.684
UCB17	Γ top k	random	10	1	1.4	1856	3578.30	2326.86	5.097
UCB	top k	greedy	15	.5	0	1861	1861.00		.648
UCB17	Γ ratio k	greedy	5	.3	2.8	1861	1861.00		.896
UCB1	Γ top k	greedy	10	.5	1.4	1861	1861.00		.970
UCB17	Γ ratio k	greedy	10	0	2.8	1861	1861.00		1.369
UCB	top k	tolerance	10	.3	0	1861	1980.50	93.92	10.326
UCB	top k	greedy	15	.3	0	1862	1862.00		.438
UCB1	Γ ratio k	random	15	.3	2.8	1863	3343.90	2736.34	2.367
UCB17	Γ ratio k	random	5	0	1.4	1864	4090.10	2412.61	1.531
UCB17	Γ top k	random	5	1	1.4	1865	2448.10	971.91	2.612
UCB	ratio k	random	15	1	1.4	1866	6731.90	3376.22	1.466
UCB	ratio k	random	5	.3	0	1871	3780.50	1986.19	.225
UCB	ratio k	random	15	0	0	1871	3548.20	2364.24	1.076
UCB	top k	random	10	.5	2.8	1871	7492.80	3399.24	1.248
UCB17	Γ ratio k	greedy	10	0	0	1880	1880.00		1.468
UCB17	Γ ratio k	random	5	.3	2.8	1881	3384.70	1996.79	3.608
UCB	top k	random	10	.5	0	1886	2432.70	1384.12	.622
UCB	ratio k	random	15	.8	1.4	1888	5276.10	3156.41	.173

UCBIT										
UCB top k random 15 .8 1.4 1894 6800.10 3085.13 1.668 UCBIT top k random 15 0 2.8 1894 3414.70 2159.40 5.490 UCB ratio k random 10 .5 0 1899 3775.90 1612.17 2.071 UCBIT ratio k random 10 1 1.4 1900 3640.40 1488.18 3.926 UCB top k random 15 .5 1.4 1902 7399.70 2650.98 8.834 UCBIT top k gradom 15 0 2.8 1905 1905.00 .984 UCB Tratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .5 0 1910 1910.00 .994 UCB ratio k greedy 5 .5 2.8 1915 5654.40 3277.84 .1	UCB1T	ratio k	random	5	0	0	1889	4056.40	1786.38	.491
UCB1T top k random 15 0 2.8 1894 3414.70 2159.40 5.490 UCB ratio k random 10 .5 0 1899 3775.90 1612.17 2.071 UCB1T ratio k random 5 .8 2.8 1901 4658.20 2594.64 .823 UCB top k random 15 .5 1.4 1902 7399.70 2650.98 .834 UCB1T ratio k random 15 1 1.4 1904 3899.60 2062.78 5.620 UCB1T top k greedy 15 0 2.8 1905 1905.00 .984 UCB ratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .8 2.8 1915 1910.00 .994 UCB ratio k greedy 5 .5 2.8 1916 1910.00	UCB1T	ratio k	random	5	1	1.4	1891	2279.90	630.36	3.158
UCB ratio k random 10 .5 0 1899 3775.90 1612.17 2.071 UCB1T ratio k random 10 1 1.4 1900 3640.40 1458.18 3.926 UCB top k random 15 .8 2.8 1901 4658.20 2594.64 .823 UCB top k random 15 .5 1.4 1902 7399.70 2650.98 .834 UCB1T top k greedy 15 0 2.8 1905 1905.00 .984 UCB ratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .8 0 1910 1910.00 .1.994 UCB ratio k greedy 5 .5 2.8 1915 5654.40 3277.84 .157 UCB1T ratio k greedy 5 .5 2.8 1916 1	UCB	top k	random	15	.8	1.4	1894	6800.10	3085.13	1.668
UCB1T ratio k random 10 1 1.4 1900 3640.40 1458.18 3.926 UCB top k random 5 .8 2.8 1901 4658.20 2594.64 .823 UCB top k random 15 .5 1.4 1902 7399.70 2650.98 .834 UCB1T ratio k greedy 15 0 2.8 1905 1905.00 .984 UCB ratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .8 0 1910 1910.00 .1.994 UCB ratio k greedy 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T tato k greedy 5 .5 2.8 1916 1916.00 .606 UCB1T ratio k greedy 15 1 0 1917 1917.00 1	UCB1T	top k	random	15	0	2.8	1894	3414.70	2159.40	5.490
UCB top k random 5 .8 2.8 1901 4658.20 2594.64 .823 UCB top k random 15 .5 1.4 1902 7399.70 2650.98 .834 UCB1T top k greedy 15 0 2.8 1905 1905.00 .984 UCB ratic k greedy 5 .5 0 1910 1910.00 .476 UCB ratic k greedy 5 .5 0 1910 1910.00 .476 UCB ratic k greedy 5 .8 0 1910 1910.00 .476 UCB ratic k greedy 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T ratic k greedy 5 .5 2.8 1915 1916.00 1.081 UCB1T ratic k greedy 15 1 1.4 1937 1937.00 818	UCB	ratio k	random	10	.5	0	1899	3775.90	1612.17	2.071
UCB top k random 15 .5 1.4 1902 7399.70 2650.98 .834 UCB1T ratic k random 15 1 1.4 1904 3899.60 2062.78 5.620 UCB1T top k greedy 15 0 2.8 1905 1905.00 .984 UCB ratic k greedy 5 .5 0 1910 1910.00 .476 UCB ratic k greedy 5 .8 0 1910 1910.00 .1994 UCB ratic k greedy 5 .8 2.8 1915 5664.40 3277.84 .157 UCB1T top k greedy 5 .5 2.8 1916 1916.00 .606 UCB1T top k greedy 5 .5 2.8 1917 1917.00 1.081 UCB top k greedy 15 1 1.4 1937 1937.00 .8 8	UCB1T	ratio k	random	10	1	1.4	1900	3640.40	1458.18	3.926
UCB1T ratio k random 15 1 1.4 1904 3899.60 2062.78 5.620 UCB1T top k greedy 15 0 2.8 1905 1905.00 .984 UCB ratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .8 0 1910 1910.00 .1.994 UCB ratio k greedy 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T top k greedy 10 1 0 1917 1917.00 .606 UCB1T top k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1941 703.00 .818	UCB	top k	random	5	.8	2.8	1901	4658.20	2594.64	.823
UCB1T top k greedy 15 0 2.8 1905 1905.00 .984 UCB ratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .8 0 1910 1910.00 1.994 UCB ratio k greedy 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T ratio k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB Tratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB ratio k greedy 5	UCB	top k	random	15	.5	1.4	1902	7399.70	2650.98	.834
UCB ratio k greedy 5 .5 0 1910 1910.00 .476 UCB ratio k greedy 5 .8 0 1910 1910.00 1.994 UCB ratio k greedy 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T ratio k greedy 5 .5 2.8 1916 1916.00 .606 UCB1T top k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 1 0 1943 1943.00 .723 UCB	UCB1T	ratio k	random	15	1	1.4	1904	3899.60	2062.78	5.620
UCB ratio k greedy 5 .8 0 1910 1910.00 1.994 UCB ratio k random 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T ratio k greedy 5 .5 2.8 1916 1916.00 .606 UCB1T top k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 1 0 1943 1943.00 .723 UCB ratio k greedy 5 1 0 1943 1943.00 .73 1.456	UCB1T	top k	greedy	15	0	2.8	1905	1905.00		.984
UCB ratio k random 5 .8 2.8 1915 5654.40 3277.84 .157 UCB1T ratio k greedy 5 .5 2.8 1916 1916.00 .606 UCB1T top k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k random 15 .5 1.4 1941 7036.40 3592.63 1.856 UCB1T ratio k greedy 5 0 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k greedy 15 1 0 1951 1951.00 .764 <t< td=""><td>UCB</td><td>ratio k</td><td>greedy</td><td>5</td><td>.5</td><td>0</td><td>1910</td><td>1910.00</td><td></td><td>.476</td></t<>	UCB	ratio k	greedy	5	.5	0	1910	1910.00		.476
UCB1T ratio k greedy 5 .5 2.8 1916 1916.00 .606 UCB1T top k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k random 15 .5 1.4 1941 7036.40 3592.63 1.856 UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 1 0 1941 1941.00 .723 UCB ratio k greedy 5 1 0 1941 1941.00 .723 UCB ratio k greedy 15 1 0 1951 1951.00 .2631 UCB1T	UCB	ratio k	greedy	5	.8	0	1910	1910.00		1.994
UCB1T top k greedy 10 1 0 1917 1917.00 1.081 UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k random 15 .5 1.4 1941 7036.40 3592.63 1.856 UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 15 1 0 1951 1951.00 .2631 UCB1T	UCB	ratio k	random	5	.8	2.8	1915	5654.40	3277.84	.157
UCB top k random 10 0 2.8 1917 4964.00 2954.44 1.358 UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k random 15 .5 1.4 1941 7036.40 3592.63 1.856 UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k random 10 0 1.4 1945 4955.90 2402.73 1.456 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 <tr< td=""><td>UCB1T</td><td>ratio k</td><td>greedy</td><td>5</td><td>.5</td><td>2.8</td><td>1916</td><td>1916.00</td><td></td><td>.606</td></tr<>	UCB1T	ratio k	greedy	5	.5	2.8	1916	1916.00		.606
UCB1T ratio k greedy 15 1 1.4 1937 1937.00 .818 UCB ratio k random 15 .5 1.4 1941 7036.40 3592.63 1.856 UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k random 10 0 1.4 1945 4955.90 2402.73 1.456 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T top k greedy 5 1 1.4 1957 3272.20 1591.64 2.647 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 <t< td=""><td>UCB1T</td><td>top k</td><td>greedy</td><td>10</td><td>1</td><td>0</td><td>1917</td><td>1917.00</td><td></td><td>1.081</td></t<>	UCB1T	top k	greedy	10	1	0	1917	1917.00		1.081
UCB ratio k random 15 .5 1.4 1941 7036.40 3592.63 1.856 UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k random 10 0 1.4 1945 4955.90 2402.73 1.456 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T top k greedy 10 3 0 1961 1960.00 1.371 UCB1T	UCB	top k	random	10	0	2.8	1917	4964.00	2954.44	1.358
UCB1T ratio k greedy 5 1 0 1941 1941.00 1.996 UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k random 10 0 1.4 1945 4955.90 2402.73 1.456 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T top k greedy 15 0 0 1959 1951.00 2.631 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T top k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k	UCB1T	ratio k	greedy	15	1	1.4	1937	1937.00		.818
UCB1T ratio k greedy 5 0 0 1943 1943.00 .723 UCB ratio k random 10 0 1.4 1945 4955.90 2402.73 1.456 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T top k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 15 1 0 1969 1969.00 .610 UCB top k <t< td=""><td>UCB</td><td>ratio k</td><td>random</td><td>15</td><td>.5</td><td>1.4</td><td>1941</td><td>7036.40</td><td>3592.63</td><td>1.856</td></t<>	UCB	ratio k	random	15	.5	1.4	1941	7036.40	3592.63	1.856
UCB ratio k random 10 0 1.4 1945 4955.90 2402.73 1.456 UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T ratio k random 10 .5 1.4 1957 3272.20 1591.64 2.647 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T top k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 15 .8 0 1962 1962.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB	UCB1T	ratio k	greedy	5	1	0	1941	1941.00		1.996
UCB ratio k greedy 15 1 0 1951 1951.00 .764 UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T ratio k random 10 .5 1.4 1957 3272.20 1591.64 2.647 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T ratio k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 15 .8 0 1961 1961.00 1.035 UCB ratio k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB top k	UCB1T	ratio k	greedy	5	0	0	1943	1943.00		.723
UCB1T top k greedy 5 1 1.4 1951 1951.00 2.631 UCB1T ratio k random 10 .5 1.4 1957 3272.20 1591.64 2.647 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T ratio k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 15 .8 0 1961 1961.00 1.035 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T ratio k	UCB	ratio k	random	10	0	1.4	1945	4955.90	2402.73	1.456
UCB1T ratio k random 10 .5 1.4 1957 3272.20 1591.64 2.647 UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T ratio k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 15 .8 0 1961 1961.00 1.035 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T ratio k greedy 15 .8 2.8 1972 1972.00 1.064 UCB1T ratio k	UCB	ratio k	greedy	15	1	0	1951	1951.00		.764
UCB1T top k greedy 15 0 0 1959 1959.00 1.223 UCB1T ratio k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 10 .3 0 1961 1961.00 1.035 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB top k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 15 .8 2.8 1972 1972.00 1.064 UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.067 UCB top k greedy	UCB1T	top k	greedy	5	1	1.4	1951	1951.00		2.631
UCB1T ratio k greedy 10 0 1.4 1960 1960.00 1.371 UCB1T top k greedy 10 .3 0 1961 1961.00 1.035 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 15 .8 2.8 1972 1972.00 1.064 UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.067 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy	UCB1T	ratio k	random	10	.5	1.4	1957	3272.20	1591.64	2.647
UCB1T top k greedy 10 .3 0 1961 1961.00 1.035 UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 10 1 2.8 1972 1972.00 .880 UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.064 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy	UCB1T	$\mathrm{top}\ k$	greedy	15	0	0	1959	1959.00		1.223
UCB1T top k greedy 15 .8 0 1962 1962.00 .757 UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 10 1 2.8 1972 1972.00 1.064 UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.067 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.301	UCB1T	ratio k	greedy	10	0	1.4	1960	1960.00		1.371
UCB ratio k greedy 10 1 0 1969 1969.00 .610 UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 10 1 2.8 1972 1972.00 .880 UCB1T ratio k greedy 15 .8 2.8 1972 1972.00 1.064 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB1T	$\mathrm{top}\ k$	greedy	10	.3	0	1961	1961.00		1.035
UCB top k greedy 15 1 0 1971 1971.00 1.004 UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 10 1 2.8 1972 1972.00 .880 UCB1T ratio k greedy 15 .8 2.8 1972 1972.00 1.064 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB1T	$\mathrm{top}\ k$	greedy	15	.8	0	1962	1962.00		.757
UCB ratio k greedy 5 0 0 1972 1972.00 .390 UCB1T top k greedy 10 1 2.8 1972 1972.00 .880 UCB1T ratio k greedy 15 .8 2.8 1972 1972.00 1.064 UCB1T ratio k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB	ratio k	greedy	10	1	0	1969	1969.00		.610
UCB1T top k greedy 10 1 2.8 1972 1972.00 .880 UCB1T ratio k greedy 15 .8 2.8 1972 1972.00 1.064 UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.067 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.301 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB	top k	greedy	15	1	0	1971	1971.00		1.004
UCB1T ratio k greedy 15 .8 2.8 1972 1972.00 1.064 UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.067 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB	ratio k	greedy	5	0	0	1972	1972.00		.390
UCB1T ratio k greedy 10 .8 2.8 1972 1972.00 1.067 UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB1T	$\mathrm{top}\ k$	greedy	10	1	2.8	1972	1972.00		.880
UCB top k greedy 10 1 0 1972 1972.00 1.072 UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB1T	ratio k	greedy	15	.8	2.8	1972	1972.00		1.064
UCB1T ratio k greedy 15 0 1.4 1972 1972.00 1.131 UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB1T	ratio k	greedy	10	.8	2.8	1972	1972.00		1.067
UCB1T ratio k greedy 15 0 0 1972 1972.00 1.301	UCB	top k	greedy	10	1	0	1972	1972.00		1.072
ı v	UCB1T	ratio k	greedy	15	0	1.4	1972	1972.00		1.131
	UCB1T	ratio k	greedy	15	0	0	1972	1972.00		1.301
UCB ratio k random 5 0 0 1972 4122.00 2790.15 2.345	UCB	ratio k	random	5	0	0	1972	4122.00	2790.15	2.345
UCB1T top k greedy 5 .5 1.4 1972 1972.00 2.618	UCB1T	$\mathrm{top}\ k$	greedy	5	.5	1.4	1972	1972.00		2.618
UCB top k greedy 15 0 0 1977 1977.00 .635	UCB	$\mathrm{top}\ k$	greedy	15	0	0	1977	1977.00		.635
	UCB1T	$\mathrm{top}\ k$	greedy	15	.8	1.4	1979	1979.00		2.432
	UCB1T	top k	greedy	15	.8	1.4	1979	1979.00		2.432

UCB1T	ratio k	greedy	15	.5	1.4	1992	1992.00		.746
UCB1T	ratio k	greedy	15	1	2.8	1992	1992.00		1.310
UCB1T	$\mathrm{top}\ k$	greedy	10	.8	1.4	1994	1994.00		1.255
UCB1T	top k	greedy	15	.3	2.8	1995	1995.00		1.126
UCB	top k	random	10	.3	2.8	1999	5307.10	1971.19	1.000
UCB	top k	random	15	1	2.8	2001	6131.90	2126.47	1.596
UCB	ratio k	random	5	1	0	2010	4339.90	1942.49	1.911
UCB	ratio k	greedy	10	0	0	2029	2029.00		.802
UCB1T	top k	greedy	15	1	0	2029	2029.00		1.061
UCB1T	ratio k	greedy	15	.5	2.8	2035	2035.00		1.150
UCB	ratio k	random	15	0	1.4	2040	5329.50	2769.75	1.122
UCB	ratio k	greedy	10	.3	0	2044	2044.00		.755
UCB1T	ratio k	greedy	5	1	2.8	2053	2053.00		2.321
UCB1T	top k	greedy	10	.8	2.8	2068	2068.00		.915
UCB1T	ratio k	greedy	10	.5	0	2074	2074.00		1.003
UCB	top k	random	15	0	1.4	2100	6246.40	3562.81	.221
UCB1T	ratio k	random	10	0	2.8	2105	3032.10	980.16	5.624
UCB1T	ratio k	greedy	15	0	2.8	2108	2108.00		1.132
UCB	ratio k	greedy	15	.3	0	2116	2116.00		.962
UCB1T	top k	greedy	10	0	0	2116	2116.00		1.385
UCB1T	ratio k	greedy	10	.5	2.8	2128	2128.00		.988
UCB1T	top k	greedy	10	0	2.8	2128	2128.00		1.014
UCB1T	top k	greedy	15	0	1.4	2165	2165.00		1.313
UCB1T	top k	greedy	10	0	1.4	2175	2175.00		1.272
UCB	ratio k	greedy	15	.8	0	2188	2188.00		.955
UCB1T	ratio k	greedy	15	.8	1.4	2188	2188.00		1.447
UCB	ratio k	random	15	.5	2.8	2189	4892.40	1736.65	1.437
UCB1T	top k	greedy	15	.5	1.4	2211	2211.00		2.119
UCB	ratio k	random	10	.8	2.8	2229	8014.20	3618.47	.742
UCB1T	ratio k	greedy	10	1	2.8	2258	2258.00		1.518
UCB1T	top k	greedy	15	.3	1.4	2261	2261.00		1.174
UCB1T	ratio k	greedy	10	.3	1.4	2273	2273.00		1.990
UCB	ratio k	random	15	.3	1.4	2437	5466.50	1930.17	1.931
UCB	ratio k	random	5	.3	1.4	2564	5817.90	3017.59	.167
UCB1T	ratio k	greedy	5	0	2.8	2945	2945.00		.469

C.1.2 Solution not found

97

Ī	Selec	Exp	Simu	N° chil-	Ratio	Ср	Best	Mean	Std	T(s)
	policy	policy	policy	drens			$\cos t$			
	-	-	-	-	-	-	-	-	-	-

C.2 Instance 2

C.2.1 Solution found

Selec policy	Exp policy	Simu policy	N° chil- drens	Ratio	Ср	Best	Mean	Std	T(s)
11									<u> </u>
UCB	ratio k	greedy	5	.8	0	1498	1498.00		.082
UCB	ratio k	greedy	5	.3	1.4	1498	1498.00		.083
UCB1T	ratio k	greedy	10	1	1.4	1498	1498.00		.084
UCB1T	ratio k	greedy	15	.5	0	1498	1498.00		.087
UCB	ratio k	greedy	5	.8	1.4	1498	1498.00		.087
UCB	ratio k	greedy	15	.3	2.8	1498	1498.00		.087
UCB	ratio k	greedy	15	0	2.8	1498	1498.00		.088
UCB1T	ratio k	greedy	15	0	1.4	1498	1498.00		.088
UCB	top k	tolerance	10	0	2.8	1498	1498.00	0.00	.089
UCB1T	ratio k	greedy	10	1	2.8	1498	1498.00		.089
UCB	ratio k	greedy	10	.5	2.8	1498	1498.00		.089
UCB	$\mathrm{top}\ k$	tolerance	15	.5	2.8	1498	1498.00	0.00	.090
UCB1T	ratio k	tolerance	15	1	1.4	1498	1498.00	0.00	.091
UCB1T	ratio k	tolerance	15	.3	1.4	1498	1498.00	0.00	.092
UCB	ratio k	greedy	10	0	2.8	1498	1498.00		.092
UCB	ratio k	greedy	5	.5	0	1498	1498.00		.092
UCB	top k	tolerance	10	0	1.4	1498	1498.00	0.00	.093
UCB	top k	greedy	15	.5	1.4	1498	1498.00		.093
UCB	top k	tolerance	10	.8	2.8	1498	1498.00	0.00	.093
UCB	ratio k	greedy	10	.3	2.8	1498	1498.00		.093
UCB	ratio k	tolerance	15	1	0	1498	1498.00	0.00	.094
UCB	top k	greedy	15	1	2.8	1498	1498.00		.094
UCB	top k	tolerance	15	.8	2.8	1498	1498.00	0.00	.095
UCB	ratio k	greedy	15	1	0	1498	1498.00		.095
UCB1T	ratio k	greedy	15	.3	0	1498	1498.00		.095
UCB	top k	greedy	15	0	0	1498	1498.00		.095
UCB1T	ratio k	greedy	10	0	1.4	1498	1498.00		.096
UCB1T	ratio k	greedy	10	.8	2.8	1498	1498.00		.096
UCB1T	ratio k	greedy	10	.8	1.4	1498	1498.00		.096
UCB	ratio k	greedy	15	0	1.4	1498	1498.00		.096
UCB1T	top k	greedy	15	1	1.4	1498	1498.00		.097
UCB	ratio k	greedy	5	.3	0	1498	1498.00		.097
UCB	top k	greedy	15	.3	1.4	1498	1498.00		.097
UCB1T	ratio k	tolerance	15	1	0	1498	1498.00	0.00	.098

UCB1T	ratio k	greedy	15	.8	2.8	1498	1498.00		.098
UCB	ratio k	tolerance	5	.5	0	1498	1498.00	0.00	.099
UCB1T	ratio k	greedy	15	.3	1.4	1498	1498.00		.099
UCB	$\mathrm{top}\ k$	greedy	10	0	2.8	1498	1498.00		.099
UCB	ratio k	greedy	15	1	2.8	1498	1498.00		.099
UCB	ratio k	greedy	10	0	1.4	1498	1498.00		.100
UCB1T	ratio k	greedy	15	.5	1.4	1498	1498.00		.100
UCB	top k	greedy	10	.5	1.4	1498	1498.00		.100
UCB1T	top k	greedy	15	0	1.4	1498	1498.00		.100
UCB1T	ratio k	greedy	10	.5	0	1498	1498.00		.100
UCB1T	top k	greedy	10	0	2.8	1498	1498.00		.100
UCB1T	ratio k	tolerance	5	.5	2.8	1498	1498.00	0.00	.101
UCB1T	ratio k	greedy	10	.8	0	1498	1498.00		.101
UCB1T	ratio k	tolerance	10	0	2.8	1498	1498.00	0.00	.101
UCB	ratio k	greedy	15	1	1.4	1498	1498.00		.101
UCB1T	ratio k	tolerance	15	.3	2.8	1498	1498.00	0.00	.101
UCB1T	ratio k	tolerance	15	.5	1.4	1498	1498.00	0.00	.102
UCB	ratio k	greedy	15	0	0	1498	1498.00		.102
UCB1T	ratio k	greedy	10	.5	1.4	1498	1498.00		.102
UCB	top k	greedy	10	.3	1.4	1498	1498.00		.103
UCB1T	top k	greedy	15	.8	2.8	1498	1498.00		.103
UCB	ratio k	tolerance	15	1	2.8	1498	1498.00	0.00	.103
UCB1T	ratio k	tolerance	15	0	0	1498	1498.00	0.00	.104
UCB	top k	greedy	15	.8	2.8	1498	1498.00		.104
UCB	ratio k	greedy	15	.8	1.4	1498	1498.00		.104
UCB	top k	greedy	10	0	1.4	1498	1498.00		.104
UCB	ratio k	greedy	10	.8	2.8	1498	1498.00		.104
UCB	ratio k	greedy	10	1	1.4	1498	1498.00		.105
UCB	ratio k	greedy	15	.8	0	1498	1498.00		.105
UCB	ratio k	greedy	10	.3	0	1498	1498.00		.105
UCB	top k	tolerance	10	1	1.4	1498	1498.00	0.00	.106
UCB	top k	greedy	10	.8	1.4	1498	1498.00		.106
UCB	ratio k	tolerance	15	.5	1.4	1498	1498.00	0.00	.106
UCB	top k	tolerance	15	.3	1.4	1498	1498.00	0.00	.106
UCB	ratio k	greedy	15	.5	2.8	1498	1498.00		.107
UCB1T	ratio k	tolerance	15	0	2.8	1498	1498.00	0.00	.107
UCB	top k	greedy	10	.8	0	1498	1498.00		.108
UCB	ratio k	greedy	5	0	0	1498	1498.00		.108
UCB	top k	greedy	15	0	1.4	1498	1498.00		.108
UCB	ratio k	greedy	15	.3	1.4	1498	1498.00		.109
UCB	top k	tolerance	15	.3	0	1498	1498.00	0.00	.109

UCB	ratio k	greedy	10	.5	1.4	1498	1498.00		.109	
UCB	ratio k	greedy	10	.3	1.4	1498	1498.00		.109	I
UCB	ratio k	greedy	10	.8	1.4	1498	1498.00		.109	
UCB	top k	tolerance	10	.8	1.4	1498	1498.00	0.00	.110	
UCB1T	ratio k	greedy	15	0	0	1498	1498.00		.110	
UCB1T	top k	tolerance	10	1	2.8	1498	1498.00	0.00	.110	
UCB1T	ratio k	greedy	10	.3	0	1498	1498.00		.110	
UCB1T	top k	greedy	10	.3	2.8	1498	1498.00		.110	
UCB	top k	tolerance	10	.5	1.4	1498	1498.00	0.00	.110	
UCB1T	top k	greedy	10	.3	0	1498	1498.00		.110	
UCB	ratio k	greedy	10	.8	0	1498	1498.00		.110	
UCB1T	ratio k	greedy	10	.3	1.4	1498	1498.00		.110	
UCB1T	top k	tolerance	10	.5	0	1498	1498.00	0.00	.110	
UCB	ratio k	tolerance	15	.5	2.8	1498	1498.00	0.00	.111	
UCB1T	top k	greedy	15	.3	0	1498	1498.00		.111	
UCB	top k	greedy	10	.8	2.8	1498	1498.00		.111	
UCB	ratio k	greedy	10	1	2.8	1498	1498.00		.111	
UCB	ratio k	tolerance	15	.3	1.4	1498	1498.00	0.00	.111	
UCB1T	top k	greedy	10	1	1.4	1498	1498.00		.111	
UCB	top k	tolerance	15	1	1.4	1498	1498.00	0.00	.112	
UCB	top k	greedy	15	.3	0	1498	1498.00		.112	
UCB1T	top k	greedy	15	.5	1.4	1498	1498.00		.112	
UCB	top k	tolerance	15	.8	1.4	1498	1498.00	0.00	.112	
UCB1T	ratio k	tolerance	5	0	2.8	1498	1498.00	0.00	.112	
UCB1T	ratio k	greedy	15	.5	2.8	1498	1498.00		.112	
UCB1T	top k	greedy	15	.8	1.4	1498	1498.00		.112	
UCB	top k	greedy	15	.8	1.4	1498	1498.00		.112	
UCB1T	top k	tolerance	15	.5	2.8	1498	1498.00	0.00	.112	
UCB1T	ratio k	greedy	5	.5	2.8	1498	1498.00		.113	
UCB	top k	tolerance	10	1	2.8	1498	1498.00	0.00	.113	
UCB	ratio k	tolerance	10	.3	1.4	1498	1498.00	0.00	.113	
UCB1T	ratio k	tolerance	10	.5	0	1498	1498.00	0.00	.113	
UCB	ratio k	tolerance	15	.8	2.8	1498	1498.00	0.00	.114	
UCB1T	ratio k	tolerance	15	.5	0	1498	1498.00	0.00	.114	
UCB1T	top k	greedy	10	.5	2.8	1498	1498.00		.114	
UCB	ratio k	greedy	15	.8	2.8	1498	1498.00		.114	
UCB	top k	greedy	15	0	2.8	1498	1498.00		.114	
UCB	top k	greedy	10	.5	2.8	1498	1498.00		.114	
UCB	top k	tolerance	15	1	2.8	1498	1498.00	0.00	.115	
UCB	top k	greedy	10	.3	0	1498	1498.00		.115	
UCB1T	ratio k	greedy	10	.3	2.8	1498	1498.00		.115	

UCB1T	top k	greedy	10	.3	1.4	1498	1498.00		.115	
UCB1T	top k	greedy	10	.8	2.8	1498	1498.00		.116	I
UCB1T	ratio k	tolerance	15	.8	0	1498	1498.00	0.00	.116	I
UCB	ratio k	greedy	15	.5	1.4	1498	1498.00		.116	
UCB1T	top k	greedy	15	.3	1.4	1498	1498.00		.116	
UCB1T	top k	greedy	15	1	0	1498	1498.00		.116	
UCB	ratio k	tolerance	5	0	0	1498	1498.00	0.00	.117	
UCB	top k	greedy	10	1	0	1498	1498.00		.117	
UCB	ratio k	tolerance	5	.8	1.4	1498	1498.00	0.00	.117	
UCB1T	top k	tolerance	10	.5	2.8	1498	1498.00	0.00	.117	
UCB1T	top k	tolerance	10	.3	1.4	1498	1498.00	0.00	.117	
UCB	top k	greedy	10	.3	2.8	1498	1498.00		.118	
UCB1T	top k	tolerance	10	0	1.4	1498	1498.00	0.00	.118	
UCB	ratio k	greedy	15	.3	0	1498	1498.00		.118	
UCB	top k	greedy	15	.5	2.8	1498	1498.00		.118	
UCB	top k	greedy	15	1	0	1498	1498.00		.118	
UCB	top k	tolerance	10	.3	2.8	1498	1498.00	0.00	.119	
UCB1T	top k	greedy	10	.5	0	1498	1498.00		.119	
UCB	ratio k	greedy	5	.5	2.8	1498	1498.00		.119	
UCB1T	top k	greedy	10	0	0	1498	1498.00		.119	
UCB1T	ratio k	tolerance	5	.3	1.4	1498	1498.00	0.00	.120	
UCB	ratio k	tolerance	10	1	0	1498	1498.00	0.00	.120	
UCB	top k	greedy	10	1	1.4	1498	1498.00		.120	
UCB1T	ratio k	greedy	15	.8	1.4	1498	1498.00		.120	
UCB1T	top k	greedy	10	1	0	1498	1498.00		.120	
UCB1T	ratio k	greedy	10	1	0	1498	1498.00		.120	
UCB	ratio k	greedy	10	0	0	1498	1498.00		.121	
UCB1T	top k	greedy	15	.5	2.8	1498	1498.00		.121	
UCB1T	top k	greedy	15	.3	2.8	1498	1498.00		.121	I
UCB	ratio k	tolerance	10	0	0	1498	1498.00	0.00	.121	
UCB	ratio k	greedy	10	.5	0	1498	1498.00		.121	
UCB	ratio k	tolerance	15	.3	2.8	1498	1498.00	0.00	.121	
UCB1T	ratio k	greedy	15	.3	2.8	1498	1498.00		.122	
UCB1T	top k	greedy	15	.5	0	1498	1498.00		.122	
UCB1T	top k	tolerance	10	.3	0	1498	1498.00	0.00	.122	
UCB1T	ratio k	tolerance	15	.3	0	1498	1498.00	0.00	.122	
UCB1T	ratio k	tolerance	15	0	1.4	1498	1498.00	0.00	.123	
UCB1T	ratio k	greedy	15	1	2.8	1498	1498.00		.123	
UCB1T	top k	tolerance	15	.8	0	1498	1498.00	0.00	.123	
UCB	ratio k	tolerance	10	0	1.4	1498	1498.00	0.00	.123	
UCB	top k	greedy	10	.5	0	1498	1498.00		.124	

	UCB1T	top k	tolerance	15	.5	1.4	1498	1498.00	0.00	.124
	UCB	top k	greedy	15	1	1.4	1498	1498.00		.124
	UCB	top k	greedy	10	1	2.8	1498	1498.00		.124
	UCB1T	ratio k	greedy	15	0	2.8	1498	1498.00		.125
	UCB1T	top k	tolerance	10	.8	0	1498	1498.00	0.00	.125
	UCB1T	top k	tolerance	15	0	1.4	1498	1498.00	0.00	.125
	UCB1T	ratio k	greedy	15	1	0	1498	1498.00		.125
ĺ	UCB1T	top k	tolerance	10	.8	2.8	1498	1498.00	0.00	.125
	UCB	ratio k	tolerance	5	.8	0	1498	1498.00	0.00	.125
	UCB	ratio k	greedy	15	.5	0	1498	1498.00		.126
	UCB1T	top k	tolerance	10	.8	1.4	1498	1498.00	0.00	.126
	UCB1T	ratio k	tolerance	5	0	0	1498	1498.00	0.00	.126
	UCB1T	$\mathrm{top}\ k$	tolerance	10	1	1.4	1498	1498.00	0.00	.126
	UCB	ratio k	greedy	10	1	0	1498	1498.00		.126
	UCB1T	top k	tolerance	10	.5	1.4	1498	1498.00	0.00	.126
	UCB1T	$\mathrm{top}\ k$	tolerance	15	.8	1.4	1498	1498.00	0.00	.126
	UCB	$\mathrm{top}\ k$	tolerance	15	1	0	1498	1498.00	0.00	.127
	UCB	$\mathrm{top}\ k$	tolerance	15	0	0	1498	1498.00	0.00	.127
	UCB	ratio k	tolerance	5	.3	1.4	1498	1498.00	0.00	.127
	UCB1T	$\mathrm{top}\ k$	tolerance	15	0	2.8	1498	1498.00	0.00	.127
	UCB1T	$\mathrm{top}\ k$	greedy	10	.8	1.4	1498	1498.00		.128
	UCB1T	ratio k	greedy	10	.5	2.8	1498	1498.00		.128
	UCB	$\mathrm{top}\ k$	tolerance	15	.5	1.4	1498	1498.00	0.00	.129
	UCB1T	$\mathrm{top}\ k$	greedy	15	.8	0	1498	1498.00		.129
	UCB1T	$\mathrm{top}\ k$	greedy	10	1	2.8	1498	1498.00		.130
	UCB1T	$\mathrm{top}\ k$	tolerance	15	.3	0	1498	1498.00	0.00	.130
	UCB1T	$\mathrm{top}\ k$	greedy	15	0	2.8	1498	1498.00		.130
	UCB	ratio k	tolerance	10	.5	1.4	1498	1498.00	0.00	.131
	UCB	ratio k	tolerance	10	.5	0	1498	1498.00	0.00	.131
	UCB1T	ratio k	tolerance	15	.8	1.4	1498	1498.00	0.00	.132
	UCB1T	ratio k	greedy	15	1	1.4	1498	1498.00		.133
	UCB1T	ratio k	tolerance	15	.5	2.8	1498	1498.00	0.00	.133
	UCB1T	top k	greedy	10	.5	1.4	1498	1498.00		.134
	UCB1T	top k	greedy	10	.8	0	1498	1498.00		.134
	UCB	top k	greedy	15	.3	2.8	1498	1498.00		.134
	UCB1T	top k	tolerance	15	1	0	1498	1498.00	0.00	.135
	UCB1T	top k	tolerance	15	0	0	1498	1498.00	0.00	.135
	UCB1T	ratio k	tolerance	5	.8	1.4	1498	1498.00	0.00	.136
	UCB	top k	tolerance	15	0	1.4	1498	1498.00	0.00	.136
	UCB1T	ratio k	tolerance	5	.5	1.4	1498	1498.00	0.00	.137
	UCB1T	ratio k	tolerance	10	0	0	1498	1498.00	0.00	.137

UCB	ratio k	tolerance	10	.8	0	1498	1498.00	0.00	.139	
UCB1T	top k	greedy	10	0	1.4	1498	1498.00		.140	
UCB1T	top k	tolerance	10	0	2.8	1498	1498.00	0.00	.140	ı
UCB	top k	tolerance	10	.5	2.8	1498	1498.00	0.00	.140	ı
UCB	ratio k	tolerance	10	0	2.8	1498	1498.00	0.00	.141	ı
UCB	ratio k	tolerance	10	.5	2.8	1498	1498.00	0.00	.141	ı
UCB1T	ratio k	tolerance	5	.5	0	1498	1498.00	0.00	.141	ı
UCB1T	ratio k	tolerance	10	0	1.4	1498	1498.00	0.00	.142	ı
UCB	ratio k	tolerance	15	.8	0	1498	1498.00	0.00	.142	
UCB	ratio k	tolerance	15	1	1.4	1498	1498.00	0.00	.142	
UCB	ratio k	tolerance	15	0	0	1498	1498.00	0.00	.142	
UCB1T	ratio k	greedy	5	.5	0	1498	1498.00		.142	ı
UCB1T	ratio k	tolerance	10	.3	2.8	1498	1498.00	0.00	.143	
UCB1T	ratio k	tolerance	10	.5	1.4	1498	1498.00	0.00	.143	ı
UCB1T	top k	greedy	15	1	2.8	1498	1498.00		.143	
UCB	top k	greedy	10	0	0	1498	1498.00		.145	ı
UCB1T	ratio k	tolerance	10	.5	2.8	1498	1498.00	0.00	.145	
UCB	ratio k	tolerance	15	.3	0	1498	1498.00	0.00	.145	ı
UCB1T	ratio k	tolerance	15	1	2.8	1498	1498.00	0.00	.146	
UCB	ratio k	tolerance	15	0	2.8	1498	1498.00	0.00	.146	
UCB	ratio k	tolerance	15	.5	0	1498	1498.00	0.00	.146	
UCB	ratio k	tolerance	5	.5	1.4	1498	1498.00	0.00	.147	
UCB1T	ratio k	tolerance	10	.3	0	1498	1498.00	0.00	.148	
UCB	$\mathrm{top}\ k$	tolerance	15	0	2.8	1498	1498.00	0.00	.148	
UCB	ratio k	tolerance	10	.3	2.8	1498	1498.00	0.00	.149	
UCB	$\mathrm{top}\ k$	tolerance	15	.5	0	1498	1498.00	0.00	.149	
UCB1T	top k	tolerance	10	.3	2.8	1498	1498.00	0.00	.149	
UCB1T	ratio k	tolerance	10	.8	2.8	1498	1498.00	0.00	.150	
UCB1T	top k	greedy	15	0	0	1498	1498.00		.151	
UCB	ratio k	tolerance	10	.3	0	1498	1498.00	0.00	.152	
UCB	ratio k	tolerance	5	.3	2.8	1498	1498.00	0.00	.152	
UCB	ratio k	tolerance	15	0	1.4	1498	1498.00	0.00	.152	
UCB1T	top k	tolerance	15	1	2.8	1498	1498.00	0.00	.152	
UCB	ratio k	tolerance	5	.5	2.8	1498	1498.00	0.00	.153	
UCB	ratio k	tolerance	10	1	1.4	1498	1498.00	0.00	.153	
UCB1T	top k	tolerance	15	.3	2.8	1498	1498.00	0.00	.153	ı
UCB1T	top k	tolerance	10	0	0	1498	1498.00	0.00	.154	
UCB1T	top k	tolerance	15	.5	0	1498	1498.00	0.00	.154	
UCB1T	ratio k	greedy	10	0	0	1498	1498.00		.155	
UCB	top k	greedy	15	.5	0	1498	1498.00		.155	
UCB	top k	tolerance	10	1	0	1498	1498.00	0.00	.156	

UCBIT top k tolerance 15 .3 1.4 1498 1498.00 0.00 .13 UCBIT ratio k tolerance 10 .8 0 1498 1498.00 0.00 .13 UCBIT ratio k greedy 10 0 2.8 1498 1498.00 0.00 .14 UCB top k tolerance 15 .8 0 1498 1498.00 0.00 .16 UCB top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB top k tolerance 10 .5 0 1498 1498.00 0.00 .16 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .16 UCB Top k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB Top k tolerance 10 1 2.8 1498 1498.00 0.00 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>										
UCBIT ratio k tolerance 10 .8 0 1498 1498.00 0.00 .13 UCBIT ratio k greedy 10 0 2.8 1498 1498.00 0.00 .13 UCB top k tolerance 15 .8 0 1498 1498.00 0.00 .16 UCB top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB top k tolerance 10 .5 0 1498 1498.00 0.00 .16 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .16 UCB Top k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB Top k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCBIT ratio k tolerance 10 1 0 1498 1498.00 0.00 .1	UCB	ratio k	tolerance	5	.3	0	1498	1498.00	0.00	.156
UCB1T ratio k greedy 10 0 2.8 1498 1498.00 .13 UCB top k tolerance 10 0 0 1498 1498.00 0.00 .16 UCB top k tolerance 15 .8 0 1498 1498.00 0.00 .16 UCB top k tolerance 10 .5 0 1498 1498.00 0.00 .16 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .16 UCB Tatio k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB Tatio k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 <td>UCB1T</td> <td>top k</td> <td>tolerance</td> <td>15</td> <td>.3</td> <td>1.4</td> <td>1498</td> <td>1498.00</td> <td>0.00</td> <td>.156</td>	UCB1T	top k	tolerance	15	.3	1.4	1498	1498.00	0.00	.156
UCB top k tolerance 10 0 0 1498 1498.00 0.00 .14 UCB top k tolerance 15 .8 0 1498 1498.00 0.00 .14 UCB1T ratio k tolerance 10 1 0 1498 1498.00 0.00 .14 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .14 UCB1T top k tolerance 15 1 1.4 1498 1498.00 0.00 .14 UCB ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .14 UCB1T ratio k tolerance 10 1 0 1498 1498.00 0.00 .14 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 <td< td=""><td>UCB1T</td><td>ratio k</td><td>tolerance</td><td>10</td><td>.8</td><td>0</td><td>1498</td><td>1498.00</td><td>0.00</td><td>.157</td></td<>	UCB1T	ratio k	tolerance	10	.8	0	1498	1498.00	0.00	.157
UCB top k tolerance 15 .8 0 1498 1498.00 0.00 .14 UCB1T ratio k tolerance 10 1 0 1498 1498.00 0.00 .14 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .14 UCB1T top k tolerance 15 1 1.4 1498 1498.00 0.00 .14 UCB1T top k tolerance 10 1 2.8 1498 1498.00 0.00 .14 UCB1T tatio k tolerance 10 1 0 1498 1498.00 0.00 .14 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .14 UCB1T ratio k tolerance 10 .8 1.4 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 <	UCB1T	ratio k	greedy	10	0	2.8	1498	1498.00		.157
UCB1T ratio k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB top k tolerance 10 .5 0 1498 1498.00 0.00 .16 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB1T top k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 15	UCB	top k	tolerance	10	0	0	1498	1498.00	0.00	.160
UCB top k tolerance 10 .5 0 1498 1498.00 0.00 .16 UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k greedy 15 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB top k tolerance 10 .8 <t< td=""><td>UCB</td><td>top k</td><td>tolerance</td><td>15</td><td>.8</td><td>0</td><td>1498</td><td>1498.00</td><td>0.00</td><td>.161</td></t<>	UCB	top k	tolerance	15	.8	0	1498	1498.00	0.00	.161
UCB top k tolerance 15 .3 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 10	UCB1T	ratio k	tolerance	10	1	0	1498	1498.00	0.00	.163
UCB1T top k tolerance 15 1 1.4 1498 1498.00 0.00 .16 UCB ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 15 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5	UCB	top k	tolerance	10	.5	0	1498	1498.00	0.00	.163
UCB ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .16 UCB1T top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k greedy 15 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 15 .8 1.4 1498 1498.00 0.00 .17 UCB top k tolerance 10 .8 0 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 <t< td=""><td>UCB</td><td>top k</td><td>tolerance</td><td>15</td><td>.3</td><td>2.8</td><td>1498</td><td>1498.00</td><td>0.00</td><td>.164</td></t<>	UCB	top k	tolerance	15	.3	2.8	1498	1498.00	0.00	.164
UCB1T top k tolerance 10 1 0 1498 1498.00 0.00 .16 UCB1T ratio k greedy 15 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB top k tolerance 10 .8 0 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 <	UCB1T	top k	tolerance	15	1	1.4	1498	1498.00	0.00	.164
UCB1T ratio k greedy 15 .8 0 1498 1498.00 .16 UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 15 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 0 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .17 UCB top k tolerance 10 .3 <t< td=""><td>UCB</td><td>ratio k</td><td>tolerance</td><td>10</td><td>1</td><td>2.8</td><td>1498</td><td>1498.00</td><td>0.00</td><td>.164</td></t<>	UCB	ratio k	tolerance	10	1	2.8	1498	1498.00	0.00	.164
UCB1T ratio k tolerance 5 .8 0 1498 1498.00 0.00 .16 UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 0 1498 1498.00 0.00 .17 UCB ratio k tolerance 10 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .17 UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .17 UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 10	UCB1T	top k	tolerance	10	1	0	1498	1498.00	0.00	.165
UCB1T ratio k tolerance 10 1 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB ratio k tolerance 15 .8 1.4 1498 1498.00 0.00 .1' UCB top k tolerance 10 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 <td>UCB1T</td> <td>ratio k</td> <td>greedy</td> <td>15</td> <td>.8</td> <td>0</td> <td>1498</td> <td>1498.00</td> <td></td> <td>.167</td>	UCB1T	ratio k	greedy	15	.8	0	1498	1498.00		.167
UCB ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB ratio k tolerance 15 .8 1.4 1498 1498.00 0.00 .1' UCB top k tolerance 10 .8 0 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB top k tolerance 10 .3 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 15 .8	UCB1T	ratio k	tolerance	5	.8	0	1498	1498.00	0.00	.168
UCB ratio k tolerance 15 .8 1.4 1498 1498.00 0.00 .1' UCB top k tolerance 10 .8 0 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 5	UCB1T	ratio k	tolerance	10	1	2.8	1498	1498.00	0.00	.171
UCB top k tolerance 10 .8 0 1498 1498.00 0.00 .1' UCB ratio k tolerance 10 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 1 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB top k greedy 15 .8 2.8 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8	UCB	ratio k	tolerance	10	.8	1.4	1498	1498.00	0.00	.174
UCB ratio k tolerance 10 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 10 1 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB top k greedy 15 .8 2.8 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 15 .8	UCB	ratio k	tolerance	15	.8	1.4	1498	1498.00	0.00	.174
UCB ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .1' UCB ratio k tolerance 5 0 1.4 1498 1498.00 0.00 .1' UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 10 1 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1	UCB	top k	tolerance	10	.8	0	1498	1498.00	0.00	.175
UCB ratio k tolerance 5 0 1.4 1498 1498.00 .1' UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .1' UCB top k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 5 .3 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T rati	UCB	ratio k	tolerance	10	.8	2.8	1498	1498.00	0.00	.175
UCB1T ratio k tolerance 10 .8 1.4 1498 1498.00 0.00 .12 UCB top k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .18 UCB top k greedy 15 .8 0 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .20 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB	ratio k	tolerance	5	.8	2.8	1498	1498.00	0.00	.176
UCB top k tolerance 10 .3 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 10 1 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .20 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB	ratio k	tolerance	5	0	1.4	1498	1498.00		.177
UCB1T ratio k tolerance 10 1 1.4 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .22	UCB1T	ratio k	tolerance	10	.8	1.4	1498	1498.00	0.00	.179
UCB1T ratio k tolerance 5 .3 0 1498 1498.00 0.00 .18 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .18 UCB top k greedy 15 .8 0 1498 1498.00 0.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB	top k	tolerance	10	.3	1.4	1498	1498.00	0.00	.183
UCB1T ratio k tolerance 15 .8 2.8 1498 1498.00 0.00 .18 UCB top k greedy 15 .8 0 1498 1498.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB1T	ratio k	tolerance	10	1	1.4	1498	1498.00	0.00	.186
UCB top k greedy 15 .8 0 1498 1498.00 .19 UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB1T	ratio k	tolerance	5	.3	0	1498	1498.00	0.00	.186
UCB1T ratio k tolerance 5 .3 2.8 1498 1498.00 0.00 .19 UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB1T	ratio k	tolerance	15	.8	2.8	1498	1498.00	0.00	.189
UCB1T top k tolerance 15 .8 2.8 1498 1498.00 0.00 .20 UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .20	UCB	top k	greedy	15	.8	0	1498	1498.00		.191
UCB1T ratio k tolerance 10 .3 1.4 1498 1498.00 0.00 .2	UCB1T	ratio k	tolerance	5	.3	2.8	1498	1498.00	0.00	.192
	UCB1T	top k	tolerance	15	.8	2.8	1498	1498.00	0.00	.200
	UCB1T	ratio k	tolerance	10	.3	1.4	1498	1498.00	0.00	.219
UCB top k tolerance 10 .3 0 1498 1498.00 0.00 .23	UCB	$\mathrm{top}\ k$	tolerance	10	.3	0	1498	1498.00	0.00	.231
UCB1T ratio k tolerance 5 .8 2.8 1498 1498.00 0.00 .24	UCB1T	ratio k	tolerance	5	.8	2.8	1498	1498.00	0.00	.241
UCB ratio k tolerance 5 0 2.8 1498 1498.00 0.00 .29	UCB	ratio k	tolerance	5	0	2.8	1498	1498.00	0.00	.258
UCB1T ratio k tolerance 5 0 1.4 1498 1498.00 .30	UCB1T	ratio k	tolerance	5	0	1.4	1498	1498.00		.362

C.2.2 Solution not found

Selec	Exp	Simu	N° chil-	Ratio	Ср	Best	Mean	Std	T(s)
policy	policy	policy	drens			cost			
UCB	ratio k	greedy	5	0	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	0	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	.3	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	.5	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	.8	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	1	0	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	1	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	greedy	5	1	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	0	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	0	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	0	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.3	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.5	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.8	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.8	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	.8	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	1	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	1	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	greedy	5	1	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	0	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	0	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	0	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.3	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.3	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.3	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.5	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.5	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.5	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.8	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.8	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	.8	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	1	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	1	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	5	1	2.8	NaN	NaN	NaN	NaN

UCB	ratio k	random	10	0	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	0	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	0	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.3	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.3	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.3	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.5	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.5	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.5	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.8	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.8	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	.8	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	1	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	1	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	10	1	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	0	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	0	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	0	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.3	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.3	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.3	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.5	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.5	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.5	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.8	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.8	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	.8	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	1	0	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	1	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	random	15	1	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	0	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	0	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	0	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.3	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.5	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.5	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.5	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.8	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	.8	1.4	NaN	NaN	NaN	NaN

UCB1T	ratio k	random	5	.8	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	1	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	1	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	5	1	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	0	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	0	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	0	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.3	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.5	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.5	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.5	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.8	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.8	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	.8	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	1	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	1	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	10	1	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	0	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	0	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	0	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.3	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.5	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.5	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.5	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.8	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.8	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	.8	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	1	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	1	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	random	15	1	2.8	NaN	NaN	NaN	NaN
UCB	ratio k	tolerance	5	1	0	NaN	NaN	NaN	NaN
UCB	ratio k	tolerance	5	1	1.4	NaN	NaN	NaN	NaN
UCB	ratio k	tolerance	5	1	2.8	NaN	NaN	NaN	NaN
UCB1T	ratio k	tolerance	5	1	0	NaN	NaN	NaN	NaN
UCB1T	ratio k	tolerance	5	1	1.4	NaN	NaN	NaN	NaN
UCB1T	ratio k	tolerance	5	1	2.8	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	0	0	NaN	NaN	NaN	NaN

UCB	top k	greedy	5	0	1.4	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	0	2.8	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	.3	0	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	.3	1.4	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	.3	2.8	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	.5	0	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	.5	1.4	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	.5	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	greedy	5	.8	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	greedy	5	.8	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	greedy	5	.8	2.8	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	1	0	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	1	1.4	NaN	NaN	NaN	NaN
UCB	top k	greedy	5	1	2.8	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	0	0	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	0	1.4	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	0	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	greedy	5	.3	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	greedy	5	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	greedy	5	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	greedy	5	.5	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	greedy	5	.5	1.4	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	.5	2.8	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	.8	0	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	.8	1.4	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	.8	2.8	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	1	0	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	1	1.4	NaN	NaN	NaN	NaN
UCB1T	top k	greedy	5	1	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	5	0	0	NaN	NaN	NaN	NaN
UCB	top k	random	5	0	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	5	0	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	5	.3	0	NaN	NaN	NaN	NaN
UCB	top k	random	5	.3	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	5	.3	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	5	.5	0	NaN	NaN	NaN	NaN
UCB	top k	random	5	.5	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	5	.5	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	5	.8	0	NaN	NaN	NaN	NaN
UCB	top k	random	5	.8	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	5	.8	2.8	NaN	NaN	NaN	NaN

UCB	top k	random	5	1	0	NaN	NaN	NaN	NaN
UCB	top k	random	5	1	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	5	1	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	10	0	0	NaN	NaN	NaN	NaN
UCB	top k	random	10	0	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	10	0	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	10	.3	0	NaN	NaN	NaN	NaN
UCB	top k	random	10	.3	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	10	.3	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	10	.5	0	NaN	NaN	NaN	NaN
UCB	top k	random	10	.5	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	10	.5	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	10	.8	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	10	.8	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	10	.8	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	10	1	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	10	1	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	10	1	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	15	0	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	15	0	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	15	0	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	15	.3	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	15	.3	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	15	.3	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	15	.5	0	NaN	NaN	NaN	NaN
UCB	top k	random	15	.5	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	15	.5	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	random	15	.8	0	NaN	NaN	NaN	NaN
UCB	top k	random	15	.8	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	15	.8	2.8	NaN	NaN	NaN	NaN
UCB	top k	random	15	1	0	NaN	NaN	NaN	NaN
UCB	top k	random	15	1	1.4	NaN	NaN	NaN	NaN
UCB	top k	random	15	1	2.8	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	0	0	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	0	1.4	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	0	2.8	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	.3	0	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	.5	0	NaN	NaN	NaN	NaN
UCB1T	top k	random	5	.5	1.4	NaN	NaN	NaN	NaN

UCB1	T top k	random	5	.5	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	5	.8	0	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	5	.8	1.4	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	5	.8	2.8	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	5	1	0	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	5	1	1.4	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	5	1	2.8	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	0	0	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	0	1.4	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	0	2.8	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	.3	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.3	1.4	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	.3	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.5	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.5	1.4	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.5	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.8	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.8	1.4	NaN	NaN	NaN	NaN	
UCB1	T top k	random	10	.8	2.8	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	1	0	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	1	1.4	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	10	1	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	0	0	NaN	NaN	NaN	NaN	ı
UCB1	T top k	random	15	0	1.4	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	0	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.3	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.3	1.4	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.3	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.5	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.5	1.4	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.5	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.8	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.8	1.4	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	.8	2.8	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	1	0	NaN	NaN	NaN	NaN	
UCB1	T top k	random	15	1	1.4	NaN	NaN	NaN	NaN	
UCB1	-	random	15	1	2.8	NaN	NaN	NaN	NaN	
UCB	top k	tolerance	5	0	0	NaN	NaN	NaN	NaN	
UCB	top k	tolerance	5	0	1.4	NaN	NaN	NaN	NaN	
UCB	-	tolerance	5	0	2.8	NaN	NaN	NaN	NaN	
UCB	top k	tolerance	5	.3	0	NaN	NaN	NaN	NaN	

UCB	$\mathrm{top}\ k$	tolerance	5	.3	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.3	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.5	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.5	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.5	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.8	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.8	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	.8	2.8	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	1	0	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	1	1.4	NaN	NaN	NaN	NaN
UCB	$\mathrm{top}\ k$	tolerance	5	1	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	0	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	0	1.4	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	0	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.3	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.3	1.4	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.3	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.5	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.5	1.4	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.5	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.8	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.8	1.4	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	.8	2.8	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	1	0	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	1	1.4	NaN	NaN	NaN	NaN
UCB1T	$\mathrm{top}\ k$	tolerance	5	1	2.8	NaN	NaN	NaN	NaN

C.3 Instance 3

C.3.1 Solution found

Selec policy	Exp policy	Simu policy	N° chil- drens	Ratio	Ср	Best	Mean	Std	T(s)
UCB	top k	greedy	5	.3	1.4	7672	7672.00		.200
UCB	top k	greedy	5	0	2.8	7672	7672.00		.207
UCB	top k	greedy	5	.8	1.4	7672	7672.00		.208
UCB	top k	greedy	5	0	1.4	7672	7672.00		.213
UCB	top k	greedy	5	1	1.4	7672	7672.00		.214
UCB	top k	greedy	5	.8	2.8	7672	7672.00		.238
UCB	top k	greedy	5	1	2.8	7672	7672.00		.240
UCB	top k	greedy	5	.3	2.8	7672	7672.00		.284
UCB	top k	tolerance	5	0	1.4	7672	7672.00	0.00	.290
UCB	top k	greedy	5	.5	2.8	7672	7672.00		.294
UCB	top k	greedy	5	.5	1.4	7672	7672.00		.312
UCB	top k	tolerance	5	0	2.8	7672	7672.00	0.00	.352
UCB	top k	greedy	10	.3	2.8	7672	7672.00		.352
UCB	top k	greedy	10	.8	1.4	7672	7672.00		.355
UCB	top k	greedy	10	1	1.4	7672	7672.00		.363
UCB	top k	greedy	10	.5	2.8	7672	7672.00		.380
UCB	top k	greedy	10	1	2.8	7672	7672.00		.391
UCB	top k	greedy	10	.8	2.8	7672	7672.00		.401
UCB	top k	tolerance	10	0	2.8	7672	7672.00	0.00	.418
UCB	top k	greedy	10	0	2.8	7672	7672.00		.426
UCB	ratio k	greedy	5	.8	1.4	7672	7672.00		.446
UCB	ratio k	greedy	5	1	1.4	7672	7672.00		.450
UCB	top k	greedy	15	.3	2.8	7672	7672.00		.467
UCB	top k	greedy	15	0	2.8	7672	7672.00		.478
UCB	ratio k	greedy	5	.8	2.8	7672	7672.00		.479
UCB	top k	greedy	10	.5	1.4	7672	7672.00		.492
UCB	top k	greedy	15	1	2.8	7672	7672.00		.496
UCB	top k	greedy	15	.8	2.8	7672	7672.00		.503
UCB	top k	greedy	15	1	1.4	7672	7672.00		.514
UCB	top k	greedy	10	0	1.4	7672	7672.00		.516
UCB	top k	greedy	15	.8	1.4	7672	7672.00		.541
UCB	top k	tolerance	10	0	1.4	7672	7672.00	0.00	.548
UCB	top k	greedy	15	.5	2.8	7672	7672.00		.557
UCB	top k	greedy	10	.3	1.4	7672	7672.00		.603

UCB	top k	greedy	15	0	1.4	7672	7672.00		.625
UCB	top k	greedy	15	.3	1.4	7672	7672.00		.633
UCB	ratio k	greedy	5	1	2.8	7672	7672.00		.652
UCB	top k	tolerance	15	0	1.4	7672	7672.00	0.00	.652
UCB	ratio k	greedy	10	.8	2.8	7672	7672.00		.679
UCB	top k	tolerance	15	0	2.8	7672	7672.00	0.00	.681
UCB	ratio k	greedy	10	.5	2.8	7672	7672.00		.689
UCB	ratio k	greedy	10	.5	1.4	7672	7672.00		.695
UCB	ratio k	greedy	10	1	1.4	7672	7672.00		.701
UCB	ratio k	greedy	10	.8	1.4	7672	7672.00		.715
UCB	ratio k	greedy	10	1	2.8	7672	7672.00		.738
UCB	ratio k	greedy	15	.8	2.8	7672	7672.00		.749
UCB	ratio k	greedy	15	1	2.8	7672	7672.00		.757
UCB	top k	greedy	15	.5	1.4	7672	7672.00		.759
UCB	ratio k	greedy	15	1	1.4	7672	7672.00		.770
UCB	ratio k	greedy	15	.8	1.4	7672	7672.00		.815
UCB	ratio k	greedy	15	0	2.8	7672	7672.00		.827
UCB	ratio k	greedy	15	.5	2.8	7672	7672.00		.831
UCB	ratio k	greedy	15	.5	1.4	7672	7672.00		.850
UCB	ratio k	greedy	15	.3	2.8	7672	7672.00		.912
UCB	ratio k	greedy	15	.3	1.4	7672	7672.00		1.005
UCB	ratio k	tolerance	15	0	2.8	7672	8573.10	559.93	6.983
UCB	ratio k	tolerance	15	0	1.4	7672	8263.90	430.30	10.542
UCB	top k	tolerance	10	.3	1.4	7698	8780.00	948.02	1.719
UCB	ratio k	tolerance	15	.3	2.8	7698	8641.60	813.79	3.949
UCB	top k	tolerance	5	.3	0	7698	8008.40	218.67	5.022
UCB1T	top k	tolerance	5	.3	1.4	7698	8107.90	305.55	9.659
UCB1T	top k	tolerance	15	0	0	7698	7882.80	164.42	182.043
UCB1T	ratio k	tolerance	15	.5	0	7721	8718.20	579.66	79.793
UCB	top k	tolerance	10	.5	0	7768	8236.70	380.98	8.330
UCB1T	$\mathrm{top}\ k$	tolerance	15	.3	1.4	7768	8325.50	292.49	56.962
UCB1T	ratio k	tolerance	15	.5	1.4	7773	8597.90	631.44	13.476
UCB	$\mathrm{top}\ k$	tolerance	10	0	0	7773	7852.30	98.81	51.039
UCB1T	$\mathrm{top}\ k$	tolerance	10	.5	1.4	7783	8461.40	397.30	63.413
UCB1T	top k	greedy	10	.5	2.8	7787	7787.00		10.736
UCB1T	$\mathrm{top}\ k$	greedy	10	.8	2.8	7787	7787.00		11.403
UCB1T	ratio k	tolerance	10	.3	2.8	7787	8348.60	501.73	37.585
UCB1T	$\mathrm{top}\ k$	tolerance	10	0	0	7787	7997.70	422.18	87.021
UCB1T	top k	tolerance	10	.3	0	7787	8123.80	235.47	98.578
UCB1T	$\mathrm{top}\ k$	tolerance	10	0	1.4	7787	7896.40	200.02	158.137
UCB1T	$\mathrm{top}\ k$	tolerance	15	0	1.4	7787	7862.90	139.25	187.179

UCB	ratio k	greedy	5	1	0	7790	7790.00	3.224
UCB1T	top k	tolerance	5	.5	2.8	7790	8377.50 392.26	3.328
UCB	top k	tolerance	5	.5	0	7790	8355.00 794.39	4.352
UCB1T	top k	tolerance	5	0	2.8	7790	7885.80 154.45	17.335
UCB1T	top k	tolerance	5	0	1.4	7790	7985.60 196.55	22.795
UCB	top k	tolerance	10	.3	0	7792	8075.70 248.59	6.283
UCB	top k	tolerance	15	.3	0	7792	7989.20 191.06	7.784
UCB	top k	greedy	15	1	0	7792	7792.00	19.714
UCB1T	top k	greedy	15	.3	2.8	7792	7792.00	34.543
UCB	top k	tolerance	15	0	0	7792	7923.10 116.70	44.285
UCB	ratio k	tolerance	5	.5	0	7795	8732.50 498.67	.680
UCB1T	ratio k	greedy	5	.5	2.8	7795	7795.00	1.596
UCB1T	ratio k	greedy	5	.5	1.4	7795	7795.00	1.963
UCB1T	ratio k	greedy	5	.8	1.4	7795	7795.00	2.338
UCB	ratio k	tolerance	10	.3	1.4	7795	8538.30 656.25	2.588
UCB	top k	tolerance	5	0	0	7795	7945.60 322.05	3.805
UCB1T	top k	tolerance	5	.3	0	7795	8095.20 299.20	3.992
UCB1T	top k	tolerance	5	0	0	7795	7946.30 221.23	9.568
UCB1T	top k	tolerance	5	.3	2.8	7795	8071.10 198.78	19.558
UCB1T	top k	tolerance	15	0	2.8	7795	7895.00 134.49	369.106
UCB1T	ratio k	tolerance	5	.5	1.4	7802	8618.30 399.09	4.321
UCB1T	ratio k	tolerance	10	.5	0	7802	8550.70 428.13	6.740
UCB1T	ratio k	tolerance	10	.3	1.4	7802	8344.10 250.39	197.703
UCB1T	top k	greedy	15	.8	0	7806	7806.00	35.496
UCB1T	top k	greedy	10	.3	0	7807	7807.00	31.799
UCB	ratio k	greedy	10	.3	1.4	7809	7809.00	.651
UCB1T	top k	greedy	5	1	0	7809	7809.00	1.781
UCB1T	ratio k	greedy	5	1	1.4	7809	7809.00	2.251
UCB	top k	random	10	.5	0	7809	10125.50 1205.49	4.779
UCB	top k	greedy	10	.3	0	7809	7809.00	6.929
UCB1T	top k	greedy	10	1	0	7809	7809.00	8.337
UCB1T	top k	tolerance	10	0	2.8	7809	7879.10 105.36	10.799
UCB	top k	greedy	15	0	0	7809	7809.00	12.782
UCB	top k	greedy	10	0	0	7809	7809.00	13.295
UCB1T	top k	greedy	15	.3	1.4	7809	7809.00	30.037
UCB1T	ratio k	tolerance	15	.3	0	7809	8415.30 423.02	369.372
UCB1T	top k	greedy	10	0	2.8	7811	7811.00	9.875
UCB1T	top k	greedy	10	.8	1.4	7811	7811.00	19.065
UCB1T	top k	greedy	15	.5	0	7811	7811.00	28.979
UCB1T	top k	tolerance	10	.3	2.8	7811	8303.50 318.45	90.492
UCB1T	top k	tolerance	15	.5	2.8	7813	8462.00 476.51	82.497
.1	1							

UCB	top k	greedy	5	.3	0	7814	7814.00		1.086	
UCB1T	top k	greedy	5	.5	0	7814	7814.00		1.234	
UCB1T	top k	greedy	5	.3	1.4	7814	7814.00		1.586	
UCB	ratio k	greedy	5	.8	0	7814	7814.00		1.910	
UCB1T	top k	greedy	5	.3	2.8	7814	7814.00		2.181	
UCB1T	top k	greedy	5	1	1.4	7814	7814.00		2.553	
UCB	top k	greedy	10	.8	0	7814	7814.00		6.149	
UCB	top k	greedy	15	.3	0	7814	7814.00		8.584	
UCB1T	top k	greedy	10	1	2.8	7814	7814.00		8.961	
UCB1T	top k	greedy	10	.3	2.8	7814	7814.00		12.062	
UCB1T	top k	greedy	10	.5	1.4	7814	7814.00		12.569	
UCB1T	top k	greedy	10	1	1.4	7814	7814.00		13.856	
UCB1T	top k	greedy	10	.3	1.4	7814	7814.00		15.910	
UCB1T	top k	greedy	15	1	0	7814	7814.00		32.989	
UCB1T	ratio k	greedy	15	1	1.4	7814	7814.00		39.298	
UCB1T	top k	greedy	15	0	0	7814	7814.00		39.814	
UCB1T	ratio k	greedy	10	1	1.4	7814	7814.00		40.871	
UCB1T	ratio k	greedy	10	1	0	7814	7814.00		51.606	
UCB1T	ratio k	tolerance	10	.5	2.8	7814	8410.30	332.19	68.062	
UCB	top k	greedy	15	.5	0	7828	7828.00		14.617	
UCB	ratio k	greedy	15	1	0	7828	7828.00		17.028	
UCB1T	top k	tolerance	10	.3	1.4	7828	8253.40	244.19	66.938	
UCB1T	ratio k	tolerance	15	.3	2.8	7828	8600.70	462.84	328.377	
UCB	top k	tolerance	5	.3	1.4	7829	8559.60	552.55	2.099	
UCB1T	ratio k	tolerance	10	.3	0	7829	8319.00	328.00	137.821	
UCB1T	top k	greedy	5	0	1.4	7833	7833.00		1.325	
UCB	top k	greedy	5	.8	0	7833	7833.00		1.378	
UCB1T	top k	greedy	5	.5	2.8	7833	7833.00		1.459	
UCB1T	top k	greedy	5	.8	0	7833	7833.00		1.529	
UCB1T	ratio k	greedy	5	1	0	7833	7833.00		1.630	
UCB1T	top k	greedy	5	.8	1.4	7833	7833.00		1.725	
UCB1T	ratio k	greedy	5	1	2.8	7833	7833.00		2.233	
UCB1T	$\mathrm{top}\ k$	greedy	5	.8	2.8	7833	7833.00		3.351	
UCB	top k	greedy	10	.5	0	7833	7833.00		5.611	
UCB1T	$\mathrm{top}\ k$	greedy	10	0	0	7833	7833.00		11.729	
UCB1T	$\mathrm{top}\ k$	random	10	.8	2.8	7833	9409.90	1209.94	15.743	
UCB	ratio k	greedy	15	.8	0	7833	7833.00		16.700	
UCB	ratio k	greedy	15	.3	0	7833	7833.00		20.392	
UCB1T	top k	greedy	15	1	1.4	7833	7833.00		27.002	
UCB1T	$\mathrm{top}\ k$	greedy	15	.8	2.8	7833	7833.00		27.553	
UCB1T	top k	greedy	15	.8	1.4	7833	7833.00		29.471	

UCB1T	ratio k	greedy	15	.5	1.4	7833	7833.00	30.957
UCB1T	top k	greedy	15	0	1.4	7833	7833.00	32.556
UCB1T	top k	greedy	15	1	2.8	7833	7833.00	38.422
UCB	ratio k	tolerance	10	.3	0	7834	8166.00 260.49	21.151
UCB	top k	tolerance	5	1	0	7840	8817.90 648.65	3.709
UCB	ratio k	greedy	5	.3	2.8	7849	7849.00	.419
UCB1T	top k	tolerance	5	.5	1.4	7851	8145.70 292.95	16.814
UCB1T	ratio k	tolerance	15	0	1.4	7878	8618.00 473.76	257.548
UCB	top k	tolerance	15	.5	0	7885	8597.80 461.89	30.058
UCB	ratio k	tolerance	5	.5	1.4	7896	9104.50 931.77	1.318
UCB1T	top k	tolerance	10	.5	0	7907	8305.80 267.70	76.671
UCB	ratio k	tolerance	10	.8	0	7911	8953.70 529.05	10.214
UCB1T	ratio k	random	10	.3	0	7919	9796.40 1214.36	26.393
UCB	ratio k	greedy	15	0	1.4	7939	7939.00	.973
UCB1T	ratio k	random	5	1	2.8	7944	10010.40 1102.87	4.052
UCB1T	top k	tolerance	15	.5	0	7946	8635.60 345.10	405.457
UCB1T	top k	tolerance	15	.3	0	7957	8358.50 304.53	368.495
UCB	ratio k	tolerance	15	.5	1.4	7961	8971.50 516.62	1.731
UCB	ratio k	tolerance	15	.3	0	7962	8320.90 318.62	47.525
UCB1T	top k	tolerance	15	.8	0	7971	8819.10 631.76	54.065
UCB	top k	random	5	0	2.8	7974	$10241.80\ 1172.42$	1.553
UCB	ratio k	tolerance	15	.5	0	7975	8621.60 440.34	87.850
UCB	top k	greedy	15	.8	0	7976	7976.00	9.543
UCB1T	ratio k	tolerance	15	.5	2.8	7980	8883.40 488.35	133.902
UCB	top k	tolerance	15	.3	2.8	7981	9028.60 1081.07	.807
UCB	ratio k	greedy	10	1	0	7981	7981.00	10.701
UCB1T	ratio k	tolerance	5	.3	2.8	7983	8657.50 353.87	8.798
UCB	ratio k	tolerance	10	.5	0	7986	8631.00 351.74	6.338
UCB1T	ratio k	tolerance	10	.8	0	7990	9101.20 521.70	11.200
UCB1T	ratio k	greedy	15	1	0	7995	7995.00	29.512
UCB1T	$\mathrm{top}\ k$	tolerance	15	.3	2.8	7996	8268.10 260.53	1260.729
UCB1T	top k	random	5	.5	0	7998	9842.80 1380.99	1.316
UCB1T	$\mathrm{top}\ k$	greedy	15	0	2.8	8000	8000.00	38.365
UCB	top k	tolerance	5	.3	2.8	8003	8665.60 439.19	1.062
UCB1T	$\mathrm{top}\ k$	tolerance	5	.5	0	8003	8305.70 186.60	2.132
UCB	$\mathrm{top}\ k$	tolerance	10	.5	1.4	8004	9464.70 949.85	2.829
UCB1T	ratio k	tolerance	15	0	0	8009	8658.70 473.49	10.147
UCB1T	ratio k	tolerance	15	0	2.8	8009	8609.70 409.15	396.987
UCB1T	$\mathrm{top}\ k$	greedy	10	.8	0	8017	8017.00	11.994
UCB	ratio k	greedy	10	.8	0	8017	8017.00	22.371
UCB1T								i i

UCB1T	top k	greedy	10	0	1.4	8022	8022.00		16.905
UCB1T	top k	greedy	15	.5	1.4	8022	8022.00		34.601
UCB1T	ratio k	greedy	15	.5	2.8	8022	8022.00		51.124
UCB1T	ratio k	tolerance	5	.5	0	8025	8650.40	496.57	9.937
UCB	top k	tolerance	10	.3	2.8	8038	8894.40	849.42	3.260
UCB	ratio k	tolerance	15	.3	1.4	8039	9082.10	901.81	6.121
UCB	top k	random	5	1	0	8043	9731.70	861.09	1.126
UCB1T	ratio k	tolerance	10	1	0	8045	9381.20	601.54	70.665
UCB	ratio k	greedy	5	.3	1.4	8048	8048.00		.524
UCB	ratio k	tolerance	15	0	0	8050	8687.90	500.88	23.757
UCB1T	ratio k	greedy	10	.3	2.8	8056	8056.00		30.338
UCB1T	top k	greedy	15	.3	0	8059	8059.00		34.218
UCB	top k	tolerance	5	.8	0	8061	8779.10	671.24	4.696
UCB1T	top k	tolerance	10	1	0	8064	9386.90	653.21	7.406
UCB	top k	greedy	5	0	0	8068	8068.00		1.281
UCB1T	top k	greedy	5	0	2.8	8068	8068.00		1.691
UCB	ratio k	tolerance	5	.8	0	8068	8858.80	679.55	2.576
UCB1T	top k	tolerance	5	.8	0	8069	8838.70	746.66	8.677
UCB1T	ratio k	greedy	15	.5	0	8069	8069.00		25.091
UCB1T	top k	greedy	10	.5	0	8069	8069.00		30.133
UCB1T	top k	tolerance	5	.8	1.4	8073	8861.00	429.72	16.872
UCB1T	ratio k	random	15	.3	0	8073	9772.90	1530.73	26.867
UCB1T	top k	tolerance	15	.8	1.4	8075	8964.00	495.24	18.058
UCB1T	ratio k	tolerance	5	1	0	8078	8915.70	498.59	2.441
UCB1T	$\mathrm{top}\ k$	greedy	5	1	2.8	8082	8082.00		1.796
UCB	top k	tolerance	10	.8	0	8083	8919.10	495.18	20.294
UCB1T	ratio k	tolerance	15	1	1.4	8083	9196.90	621.43	27.608
UCB	ratio k	greedy	5	.3	0	8084	8084.00		3.395
UCB	ratio k	tolerance	5	.5	2.8	8085	9525.60	1055.85	.200
UCB1T	$\mathrm{top}\ k$	greedy	5	.5	1.4	8087	8087.00		1.718
UCB1T	ratio k	tolerance	15	.3	1.4	8087	8345.30	237.76	58.238
UCB	ratio k	tolerance	10	0	2.8	8092	9589.90	1011.62	3.384
UCB1T	ratio k	tolerance	5	.3	1.4	8093	8867.30	505.76	4.550
UCB	ratio k	tolerance	10	.5	1.4	8100	9223.90	1261.94	.365
UCB1T	$\mathrm{top}\ k$	tolerance	5	1	1.4	8103	9074.30	648.40	8.864
UCB1T	ratio k	tolerance	15	.8	0	8103	9155.30	666.90	12.096
UCB1T	ratio k	greedy	15	1	2.8	8110	8110.00		28.532
UCB	ratio k	greedy	5	.5	0	8111	8111.00		3.036
UCB1T	$\mathrm{top}\ k$	tolerance	10	.8	2.8	8118	9219.50	459.51	24.346
UCB1T	$\mathrm{top}\ k$	random	15	0	2.8	8123	9885.10	847.05	9.942
UCB1T	$\mathrm{top}\ k$	tolerance	10	1	2.8	8123	9450.50	724.56	39.373

UCB1T	top k	random	5	0	0	8125	$10056.70\ 960.58$	1.005
UCB	ratio k	greedy	5	.5	1.4	8129	8129.00	.511
UCB	ratio k	tolerance	15	.5	2.8	8130	9410.10 1009.94	2.712
UCB1T	ratio k	tolerance	5	1	2.8	8130	8966.70 557.68	8.944
UCB1T	ratio k	random	5	.5	1.4	8136	$10097.00\ 1475.50$	5.917
UCB1T	ratio k	greedy	10	.5	2.8	8141	8141.00	15.360
UCB1T	ratio k	greedy	15	.8	2.8	8141	8141.00	31.803
UCB	top k	random	10	1	0	8157	9539.20 903.83	4.431
UCB	top k	tolerance	15	.3	1.4	8160	9360.00 883.92	2.817
UCB1T	ratio k	tolerance	10	.5	1.4	8162	8535.70 300.63	43.973
UCB1T	ratio k	greedy	10	.5	1.4	8163	8163.00	15.327
UCB	ratio k	greedy	10	.5	0	8168	8168.00	11.645
UCB1T	top k	tolerance	10	.5	2.8	8172	8521.70 246.51	46.757
UCB1T	top k	tolerance	5	.8	2.8	8178	9084.50 563.33	7.335
UCB	ratio k	random	15	.5	0	8180	9814.60 1167.34	2.408
UCB1T	ratio k	tolerance	5	.8	0	8180	8991.60 537.80	6.765
UCB1T	top k	random	10	.3	2.8	8184	9948.30 1004.16	3.127
UCB	ratio k	tolerance	5	.3	0	8185	8850.50 419.40	3.335
UCB1T	ratio k	tolerance	5	.8	1.4	8189	8916.60 393.87	5.939
UCB1T	ratio k	random	5	.8	0	8191	10115.70 1215.77	3.216
UCB1T	top k	tolerance	5	1	0	8192	9327.90 637.77	5.854
UCB	top k	greedy	10	1	0	8195	8195.00	15.594
UCB1T	ratio k	greedy	10	1	2.8	8198	8198.00	35.089
UCB1T	ratio k	greedy	15	0	2.8	8200	8200.00	37.129
UCB	top k	tolerance	15	.8	0	8203	9139.40 420.08	2.137
UCB	ratio k	random	5	.5	1.4	8210	11675.80 1713.66	.202
UCB1T	ratio k	tolerance	5	.8	2.8	8218	8970.30 555.19	5.347
UCB	ratio k	tolerance	10	.3	2.8	8221	8899.60 584.85	3.138
UCB1T	ratio k	greedy	10	.8	0	8224	8224.00	54.102
UCB1T	top k	random	5	1	2.8	8239	9560.20 754.88	9.633
UCB	ratio k	tolerance	5	.8	2.8	8242	9778.50 946.33	.764
UCB	ratio k	random	5	.5	0	8246	9715.30 1095.07	1.182
UCB1T	top k	tolerance	5	1	2.8	8246	9170.00 484.50	10.171
UCB	ratio k	random	5	.8	1.4	8247	11005.20 1213.92	.608
UCB1T	ratio k	tolerance	5	1	1.4	8252	9205.10 587.24	6.970
UCB	ratio k	greedy	10	.3	2.8	8253	8253.00	.745
UCB1T	top k	random	5	.3	2.8	8259	9659.80 789.11	6.112
UCB1T	top k	greedy	5	.3	0	8266	8266.00	3.156
UCB1T	ratio k	greedy	5	.3	1.4	8266	8266.00	3.805
UCB1T	ratio k	random	5	.5	0	8271	9804.30 1176.58	1.272
UCB	top k	random	10	.8	0	8274	9857.30 1043.54	5.183
H	•							

UCB1T	top k	random	5	0	2.8	8274	9647.80 1138.28	6.541
UCB1T	ratio k	random	5	1	1.4	8275	9774.10 1232.98	6.764
UCB1T	ratio k	random	10	.8	1.4	8275	9432.30 975.80	10.835
UCB	top k	tolerance	10	.5	2.8	8277	9295.00 816.74	.438
UCB1T	ratio k	greedy	10	.3	1.4	8280	8280.00	27.394
UCB1T	top k	greedy	15	.5	2.8	8285	8285.00	34.157
UCB	top k	tolerance	5	.5	1.4	8287	9565.40 1286.61	2.055
UCB	top k	tolerance	10	1	0	8294	$9337.10 \ 602.46$	1.299
UCB1T	top k	random	5	.8	0	8295	9729.60 1285.81	3.525
UCB	ratio k	tolerance	10	0	0	8295	9181.00 613.36	38.392
UCB1T	top k	random	10	.8	1.4	8296	9389.10 850.03	4.800
UCB1T	ratio k	random	10	.8	0	8301	9616.90 971.91	11.543
UCB	ratio k	greedy	15	.5	0	8302	8302.00	17.546
UCB1T	top k	tolerance	15	.8	2.8	8306	$9080.30 \ 457.49$	37.139
UCB1T	ratio k	greedy	15	.3	0	8307	8307.00	13.662
UCB1T	top k	random	15	.5	2.8	8311	9689.70 735.83	22.661
UCB1T	top k	random	15	0	0	8313	9675.60 1308.85	16.277
UCB1T	top k	random	5	1	0	8319	$9730.10 \ \ 685.51$	3.527
UCB1T	top k	tolerance	10	.8	1.4	8321	9174.30 432.76	33.553
UCB1T	ratio k	greedy	10	.8	2.8	8326	8326.00	13.992
UCB	ratio k	greedy	5	.5	2.8	8329	8329.00	.401
UCB	top k	random	10	.3	0	8332	9932.50 1132.52	2.071
UCB	ratio k	tolerance	5	1	2.8	8339	$10169.00\ 1052.35$	1.394
UCB1T	$\mathrm{top}\ k$	random	10	.5	0	8340	9304.40 765.56	9.770
UCB	top k	greedy	5	1	0	8343	8343.00	.809
UCB1T	$\mathrm{top}\ k$	random	5	.3	1.4	8344	9758.80 1178.58	4.042
UCB	ratio k	tolerance	10	.5	2.8	8353	9650.50 1330.35	.387
UCB	$\mathrm{top}\ k$	tolerance	5	.8	2.8	8359	$10031.10\ 1008.64$	1.082
UCB1T	ratio k	random	10	.5	0	8366	$10154.30\ 887.00$	6.281
UCB1T	ratio k	tolerance	10	.8	1.4	8367	8972.20 430.26	9.005
UCB1T	ratio k	tolerance	15	.8	1.4	8370	$9103.60 \ 452.21$	76.763
UCB1T	ratio k	tolerance	10	0	2.8	8373	9240.50 639.43	32.656
UCB1T	ratio k	tolerance	5	.3	0	8375	8712.00 266.31	8.578
UCB	$\mathrm{top}\ k$	random	10	1	1.4	8381	$11519.30\ 1876.57$	2.428
UCB	ratio k	tolerance	15	1	0	8389	9526.10 753.11	14.259
UCB	$\mathrm{top}\ k$	random	5	0	0	8391	$10252.70\ 1074.89$.871
UCB1T	top k	random	15	1	0	8392	9874.00 1034.57	14.920
UCB	ratio k	tolerance	5	1	0	8393	$9231.00 ext{ } 460.12$	1.608
UCB	$\mathrm{top}\ k$	random	15	.5	0	8396	9875.00 1034.04	6.305
UCB1T	ratio k	greedy	15	.3	1.4	8405	8405.00	20.983
UCB1T	ratio k	tolerance	5	.5	2.8	8406	8801.90 257.14	5.285
								'

UCB1T	top k	tolerance	15	.5	1.4	8408	8883.70 414.39	333.005
UCB1T	ratio k	random	10	.3	1.4	8415	9791.20 687.92	9.297
UCB1T	ratio k	greedy	10	.3	0	8415	8415.00	20.757
UCB1T	ratio k	greedy	10	.8	1.4	8422	8422.00	30.414
UCB	top k	random	15	0	0	8428	9929.90 800.26	3.837
UCB1T	ratio k	tolerance	15	.8	2.8	8428	9300.30 639.72	26.370
UCB	ratio k	random	10	.5	0	8435	9228.00 653.42	2.834
UCB	ratio k	tolerance	10	1	1.4	8441	10842.80 1399.49	1.710
UCB1T	ratio k	tolerance	15	1	0	8449	9507.40 573.94	10.174
UCB1T	top k	random	10	0	0	8450	9858.70 999.06	5.554
UCB1T	ratio k	random	15	.5	0	8453	9841.10 805.36	46.671
UCB1T	top k	random	15	0	1.4	8458	9899.60 795.31	14.235
UCB1T	ratio k	greedy	5	.5	0	8459	8459.00	1.098
UCB	top k	tolerance	10	.8	1.4	8460	$10902.00\ 1586.89$	2.978
UCB1T	ratio k	random	15	.3	2.8	8464	9790.20 1119.14	20.588
UCB1T	top k	tolerance	10	1	1.4	8467	9269.70 594.51	1.677
UCB	ratio k	greedy	10	.3	0	8474	8474.00	16.423
UCB	top k	tolerance	5	.5	2.8	8485	9515.20 784.52	2.105
UCB1T	top k	random	5	1	1.4	8485	$10118.20\ 900.48$	6.552
UCB1T	ratio k	random	15	1	2.8	8486	9634.20 858.60	2.026
UCB1T	ratio k	tolerance	10	0	1.4	8486	9185.30 503.12	104.836
UCB1T	top k	random	10	.5	1.4	8487	9884.70 1256.65	8.563
UCB1T	top k	random	10	1	2.8	8489	9568.30 977.22	4.257
UCB1T	ratio k	random	10	.3	2.8	8489	9729.10 1036.01	15.118
UCB1T	ratio k	random	5	.8	2.8	8494	$10247.80\ 852.53$	9.194
UCB1T	ratio k	greedy	15	.3	2.8	8494	8494.00	12.394
UCB1T	ratio k	greedy	15	.8	1.4	8494	8494.00	46.277
UCB	ratio k	tolerance	5	.8	1.4	8496	9784.70 1324.18	.536
UCB1T	ratio k	tolerance	10	.8	2.8	8505	9242.10 490.97	43.849
UCB	ratio k	random	10	.3	0	8506	9614.60 778.59	5.658
UCB	ratio k	random	15	.8	0	8509	$10132.20\ 1140.25$	10.332
UCB1T	$\mathrm{top}\ k$	greedy	5	0	0	8512	8512.00	3.636
UCB	$\mathrm{top}\ k$	random	5	.5	2.8	8515	$10877.50\ 1366.32$	1.499
UCB1T	$\mathrm{top}\ k$	tolerance	15	1	2.8	8525	$9035.10 \ 467.54$	46.063
UCB	ratio k	greedy	15	0	0	8527	8527.00	13.473
UCB	ratio k	greedy	10	0	0	8531	8531.00	4.461
UCB1T	$\mathrm{top}\ k$	random	15	.3	1.4	8533	9991.90 743.93	8.888
UCB	$\mathrm{top}\ k$	tolerance	15	.5	1.4	8535	9880.60 956.57	5.774
UCB1T	$\mathrm{top}\ k$	tolerance	10	.8	0	8540	$9218.80 \ 427.85$	37.228
UCB1T	ratio k	greedy	5	.8	0	8542	8542.00	7.271
UCB								1

UCB1T	ratio k	random	5	.3	1.4	8570	10137.00 1315.70	4.292
UCB1T	top k	random	10	0	1.4	8574	$10342.80\ 876.85$	5.309
UCB1T	ratio k	tolerance	10	0	0	8577	9068.40 523.64	141.461
UCB	ratio k	tolerance	5	.3	1.4	8582	9580.90 1102.93	1.623
UCB1T	top k	random	5	.8	2.8	8582	$10236.90\ 1213.91$	6.184
UCB1T	top k	random	5	.3	0	8586	9805.40 896.01	1.966
UCB1T	top k	random	15	.8	2.8	8599	$9659.30 \ 628.53$	18.657
UCB	ratio k	tolerance	15	.8	0	8602	9379.80 393.34	31.087
UCB	ratio k	random	10	.8	0	8611	$10166.20\ 933.93$	3.300
UCB1T	ratio k	random	15	1	0	8613	9825.00 880.12	3.971
UCB	top k	random	5	.8	0	8620	$10162.70\ 914.00$.254
UCB	top k	tolerance	15	.8	1.4	8630	$11125.90\ 1556.90$	5.328
UCB	top k	random	5	.3	0	8641	9874.50 750.15	1.659
UCB	top k	tolerance	5	1	2.8	8644	10458.20 1114.30	1.337
UCB1T	top k	random	15	1	2.8	8648	9836.20 1070.71	8.378
UCB1T	ratio k	random	5	1	0	8653	9447.60 553.73	1.589
UCB1T	ratio k	tolerance	10	1	2.8	8660	9439.30 459.55	5.174
UCB1T	ratio k	random	10	.8	2.8	8663	9834.10 958.80	3.752
UCB1T	ratio k	random	5	.3	0	8663	$10722.80\ 1280.44$	5.143
UCB1T	top k	random	15	.3	2.8	8671	$10282.90\ 1224.17$	12.681
UCB1T	ratio k	random	15	.3	1.4	8673	10338.40 1174.68	23.982
UCB1T	ratio k	tolerance	10	1	1.4	8678	9242.10 494.99	4.885
UCB	ratio k	random	10	1	0	8679	10233.60999.64	1.649
UCB1T	top k	tolerance	15	1	0	8690	9750.30 858.54	40.761
UCB	top k	greedy	5	.5	0	8691	8691.00	3.630
UCB1T	ratio k	random	10	1	2.8	8692	9917.30 713.33	20.178
UCB	ratio k	random	10	.8	2.8	8697	$11557.10\ 1772.50$	1.090
UCB	ratio k	tolerance	10	0	1.4	8704	9582.50 738.12	.463
UCB1T	ratio k	random	10	1	0	8706	9831.10 797.46	11.980
UCB1T	ratio k	random	10	.5	1.4	8718	10027.70975.79	18.639
UCB	top k	random	5	0	1.4	8723	$10321.40\ 972.56$.231
UCB1T	top k	random	15	1	1.4	8725	9829.50 879.58	8.498
UCB1T	top k	random	5	.5	2.8	8734	9693.20 775.35	4.174
UCB	top k	tolerance	15	.5	2.8	8735	9514.70 667.92	4.540
UCB1T	top k	random	10	1	1.4	8736	9577.20 557.79	3.537
UCB	ratio k	tolerance	10	1	2.8	8737	10733.10 1155.87	.388
UCB	ratio k	tolerance	10	.8	1.4	8737	$10035.50\ 881.08$.443
UCB1T	ratio k	random	5	.5	2.8	8743	$10570.70\ 1045.53$.884
UCB1T	ratio k	random	15	0	2.8	8750	10007.10 1013.49	4.828
UCB	ratio k	random	5	.3	0	8759	9897.40 782.31	2.518
UCB1T	ratio k	greedy	10	.5	0	8761	8761.00	4.507
								ļ

UCB1T	top k	tolerance	15	1	1.4	8764	9291.60 388.60	17.685
UCB	top k	random	5	1	1.4	8779	$10827.50\ 1321.62$.313
UCB	ratio k	tolerance	10	1	0	8789	9429.50 361.75	9.397
UCB1T	ratio k	random	15	.8	0	8819	$10242.10\ 668.10$	33.414
UCB1T	ratio k	greedy	10	0	1.4	8820	8820.00	7.187
UCB1T	top k	random	15	.5	1.4	8827	10184.60 1149.31	4.737
UCB1T	top k	random	5	.8	1.4	8837	9740.20 553.46	3.305
UCB1T	ratio k	greedy	5	.8	2.8	8837	8837.00	9.090
UCB1T	ratio k	random	15	1	1.4	8847	9989.30 801.84	20.877
UCB	top k	random	15	1	0	8849	9661.70 717.77	1.115
UCB1T	top k	random	10	.5	2.8	8854	9946.10 601.69	20.386
UCB1T	top k	random	10	1	0	8861	$10033.90\ 881.82$	11.215
UCB1T	ratio k	random	15	.5	1.4	8868	$10080.10\ 809.17$	19.241
UCB1T	ratio k	tolerance	15	1	2.8	8871	9385.30 239.18	28.951
UCB1T	ratio k	greedy	15	0	1.4	8874	8874.00	49.978
UCB	ratio k	random	5	.3	1.4	8875	11848.70 1779.17	1.631
UCB1T	ratio k	random	10	0	0	8875	10395.70 1031.48	5.976
UCB1T	top k	random	10	.3	1.4	8891	9613.40 599.65	9.789
UCB1T	top k	random	10	.8	0	8892	9949.60 694.59	20.271
UCB	top k	random	5	.5	0	8893	$10006.70\ 698.88$.859
UCB	ratio k	random	5	1	0	8905	$10072.00\ 1036.20$	1.856
UCB	ratio k	random	15	1	1.4	8917	$12051.10\ 1674.08$	3.544
UCB1T	ratio k	random	10	.5	2.8	8924	9815.00 843.98	13.140
UCB1T	top k	random	5	0	1.4	8929	$10574.50\ 838.55$	1.432
UCB	ratio k	random	10	.3	2.8	8935	$12146.70\ 1905.43$	1.520
UCB1T	ratio k	greedy	5	.3	0	8942	8942.00	2.543
UCB	top k	tolerance	5	.8	1.4	8954	9766.30 541.30	1.850
UCB1T	ratio k	greedy	5	.3	2.8	8955	8955.00	2.579
UCB	ratio k	random	10	.3	1.4	8972	$11315.20\ 1340.21$	1.652
UCB1T	ratio k	random	15	.8	1.4	8972	9920.20 717.72	13.723
UCB	top k	random	10	0	0	8973	$10319.20\ 864.44$	2.265
UCB	top k	tolerance	15	.8	2.8	8989	$10942.30\ 1326.75$	2.039
UCB	top k	random	15	.3	0	9000	$10229.20\ 902.06$	4.202
UCB	ratio k	tolerance	10	.8	2.8	9017	$10457.60\ 768.00$	3.394
UCB1T	ratio k	random	10	0	1.4	9034	$11226.80\ 1403.10$	7.757
UCB1T	top k	random	15	.5	0	9035	$10323.20\ 987.87$	11.669
UCB1T	top k	random	15	.3	0	9045	$10593.10\ 706.37$	26.571
UCB	ratio k	random	5	1	1.4	9052	11163.80 1123.42	.477
UCB1T	top k	random	5	.5	1.4	9072	9900.20 704.11	4.683
UCB1T	ratio k	random	15	0	0	9083	$10129.80\ 598.94$	6.173
UCB1T	ratio k	tolerance	5	0	2.8	9087	9946.70 646.34	17.432
11								ı

UCB	ratio k	random	5	1	2.8	9089	10182.60 921.88	.947
UCB	ratio k	random	15	.3	0	9113	$10154.50\ 890.95$	12.084
UCB	ratio k	tolerance	15	.8	2.8	9115	10800.50 1242.11	3.025
UCB	ratio k	greedy	5	0	0	9115	9115.00	3.474
UCB	ratio k	tolerance	15	.8	1.4	9119	10433.20 1442.39	3.964
UCB	top k	tolerance	5	1	1.4	9122	$10203.40\ 960.35$	1.855
UCB1T	ratio k	tolerance	5	0	0	9129	$10220.00\ 570.58$	15.087
UCB1T	top k	random	15	.8	1.4	9137	$10317.70\ 610.53$	30.007
UCB1T	ratio k	random	15	.8	2.8	9152	$10352.00\ 746.14$	14.252
UCB	ratio k	random	5	.8	2.8	9164	$10712.80\ 973.79$.934
UCB1T	ratio k	greedy	10	0	0	9189	9189.00	6.152
UCB	top k	tolerance	15	1	0	9189	9364.90 196.14	12.684
UCB1T	ratio k	greedy	15	0	0	9189	9189.00	23.281
UCB1T	ratio k	random	10	1	1.4	9191	$10322.50\ 640.37$	21.799
UCB	top k	tolerance	10	.8	2.8	9196	10544.80 1021.02	3.781
UCB	ratio k	random	10	.8	1.4	9206	11498.40 1315.81	1.877
UCB	ratio k	random	5	.8	0	9216	$10223.10\ 787.78$.700
UCB	top k	random	15	.8	0	9228	$10110.20\ 506.08$	5.200
UCB1T	top k	random	15	.8	0	9231	9765.10 598.81	5.897
UCB1T	ratio k	greedy	10	0	2.8	9232	9232.00	35.096
UCB1T	top k	random	10	0	2.8	9233	$10300.60\ 803.69$	16.070
UCB	ratio k	greedy	10	0	2.8	9236	9236.00	.659
UCB	top k	random	15	1	2.8	9239	$12212.80\ 1406.29$	3.511
UCB	ratio k	tolerance	15	1	1.4	9246	$11366.30\ 1648.52$	6.255
UCB	top k	random	5	.3	1.4	9251	$11292.70\ 1502.66$	1.159
UCB	top k	random	5	1	2.8	9257	$11222.30\ 1151.01$.989
UCB1T	ratio k	random	5	.8	1.4	9266	$10009.20\ 640.87$	3.151
UCB	ratio k	random	15	0	0	9284	$10521.00\ 783.56$	8.310
UCB	ratio k	random	15	1	0	9334	$10134.30\ 511.22$	12.707
UCB	ratio k	random	10	0	0	9338	$10853.20\ 1144.09$	2.073
UCB1T	ratio k	random	15	.5	2.8	9384	$10217.30\ 665.69$	17.305
UCB	$\mathrm{top}\ k$	tolerance	10	1	2.8	9391	$10632.40\ 808.59$.807
UCB	ratio k	tolerance	5	1	1.4	9422	$10579.60\ 1329.62$	1.284
UCB1T	ratio k	greedy	5	0	0	9430	9430.00	2.293
UCB	top k	random	5	.8	1.4	9431	$10993.20\ 1331.87$	1.051
UCB	$\mathrm{top}\ k$	tolerance	15	1	2.8	9485	$12004.20\ 1256.16$	3.696
UCB1T	$\mathrm{top}\ k$	random	10	.3	0	9511	$10481.10\ 650.31$	2.531
UCB	ratio k	greedy	10	0	1.4	9536	9536.00	.643
UCB	ratio k	tolerance	5	0	2.8	9569	$11463.30\ 1286.05$	1.440
UCB1T	ratio k	tolerance	5	0	1.4	9581	$10286.80\ 544.81$	32.538
UCB	$\mathrm{top}\ k$	random	5	.3	2.8	9613	$10768.50\ 844.53$	1.359

UCB1T	ratio k	random	15	0	1.4	9613	10153.20 449.14	11.352	
UCB	top k	random	10	1	2.8	9633	11761.40 1489.27	1.137	
UCB	ratio k	random	15	.3	1.4	9639	11901.60 1288.61	1.061	
UCB	ratio k	tolerance	5	0	0	9695	$10291.30\ 466.44$	4.190	
UCB	top k	random	10	.5	1.4	9698	12463.80 1366.28	2.842	
UCB	top k	random	15	1	1.4	9698	12630.10 1429.18	3.732	
UCB1T	ratio k	random	10	0	2.8	9703	$10693.80\ 875.76$	10.973	
UCB	ratio k	random	15	0	2.8	9718	12662.00 1535.14	2.647	
UCB	top k	random	5	.5	1.4	9731	10960.40 1244.33	.204	
UCB	ratio k	random	10	1	1.4	9804	12267.30 1761.04	1.165	
UCB	top k	random	5	.8	2.8	9827	$10856.00\ 725.07$	1.735	
UCB1T	ratio k	random	5	.3	2.8	9842	$10578.40\ 531.71$	2.281	
UCB	top k	random	10	.8	1.4	9936	12495.00 1408.75	.714	
UCB	ratio k	tolerance	15	1	2.8	9997	11191.30 1014.87	4.340	
UCB	ratio k	random	15	1	2.8	10141	12119.70 1338.30	2.413	
UCB	top k	random	15	.5	2.8	10172	11972.90 1288.14	.961	
UCB	ratio k	random	15	.5	2.8	10172	12561.20 1450.61	3.983	
UCB	top k	tolerance	10	1	1.4	10240	11519.00 1085.64	.715	
UCB	top k	random	10	.5	2.8	10240	11399.80 1240.29	.741	
UCB	top k	random	10	0	2.8	10247	$12594.30\ 1643.72$	1.830	
UCB	ratio k	random	10	1	2.8	10250	12025.30 1001.33	2.499	
UCB	ratio k	random	15	.5	1.4	10252	12541.00 1897.10	5.190	
UCB	top k	tolerance	15	1	1.4	10312	$11632.90\ 692.63$	3.092	
UCB	ratio k	random	5	.5	2.8	10322	12311.00 1633.32	.329	
UCB	ratio k	random	15	.8	1.4	10351	$12264.70\ 1379.91$.843	
UCB	top k	random	15	.8	1.4	10360	12904.00 1390.08	3.797	
UCB	top k	random	15	0	2.8	10382	$12060.70\ 1064.34$	3.429	
UCB	top k	random	15	.3	2.8	10386	12310.80 1304.34	3.967	
UCB1T	ratio k	greedy	5	0	1.4	10418	10418.00	4.672	
UCB1T	ratio k	random	5	0	2.8	10425	$12340.90\ 992.99$	5.120	
UCB	ratio k	random	5	0	0	10456	12393.40 1459.53	2.280	
UCB1T	ratio k	greedy	5	0	2.8	10617	10617.00	5.336	
UCB	top k	random	10	0	1.4	10618	$12624.50\ 1477.42$	2.489	
UCB	ratio k	random	10	0	1.4	10626	$12982.00\ 1706.24$	3.566	
UCB1T	ratio k	random	5	0	0	10700	12418.30 1540.91	2.397	
UCB	ratio k	random	10	0	2.8	10731	13376.80 1541.42	2.458	
UCB	ratio k	random	15	0	1.4	10733	12938.40 1697.15	3.340	
UCB	$\mathrm{top}\ k$	random	10	.3	2.8	10759	$11974.30\ 983.85$.408	
UCB	top k	random	15	0	1.4	10875	$13082.40\ 1137.34$	2.177	
UCB	ratio k	random	15	.3	2.8	10933	13835.70 1477.97	.987	
UCB	$\mathrm{top}\ k$	random	10	.3	1.4	11090	$12812.50\ 1534.00$	1.942	

UCB	ratio k	tolerance	5	0	1.4	11120	$12717.90\ 1112.21$.678
UCB	top k	random	15	.5	1.4	11183	$12500.60\ 1155.49$	4.472
UCB	ratio k	random	5	.3	2.8	11251	$13089.10\ 1100.05$	1.516
UCB	top k	random	15	.3	1.4	11262	$12587.30\ 1086.89$	2.102
UCB	ratio k	random	5	0	1.4	11338	$14560.90\ 1639.92$	1.635
UCB	ratio k	random	10	.5	1.4	11353	12593.80999.04	3.786
UCB	top k	random	10	.8	2.8	11443	$12957.10\ 1080.45$	3.772
UCB	ratio k	random	10	.5	2.8	11466	$12476.20\ 737.26$	1.552
UCB	ratio k	random	15	.8	2.8	11498	$12393.90\ 912.85$	4.729
UCB1T	ratio k	random	5	0	1.4	11895	$13167.60\ 872.16$	2.528
UCB	top k	random	15	.8	2.8	12157	$13707.20\ 731.47$	1.514
UCB	ratio k	greedy	5	0	2.8	12249	12249.00	.438
UCB	ratio k	random	5	0	2.8	12661	14077.90 1063.20	1.268
UCB	ratio k	greedy	5	0	1.4	13021	13021.00	.481

C.3.2 Solution not found

Selec	Exp	Simu	N° chil-	Ratio	Ср	Best	Mean	Std	T(s)
policy	policy	policy	drens			$\cos t$			
-	-	-	-	-	-	-	-	-	-

C.4 Instance 4

C.4.1 Solution found

Selec policy	Exp policy	Simu policy	N° childrens	Ratio	Ср	Best	Mean Std	T(s)
UCB	top k	greedy	5	1	0	15361	15361 0	39.697
UCB1T	ratio k	greedy	5	1	1.4	15465	15465.00	109.923
UCB	top k	greedy	5	1	1.4	15484	15484.00	3.411
UCB	top k	greedy	5	.5	1.4	15484	15484.00	3.413
UCB	top k	greedy	5	.7	1.4	15484	15484.00	3.473
UCB	ratio k	greedy	5	1	1.4	15484	15484.00	3.764
UCB	ratio k	greedy	5	.5	1.4	15665	15665.00	3.549
UCB1T	ratio k	greedy	5	.7	1.4	15714	15714.00	176.698
UCB	top k	greedy	10	.7	1.4	15727	15727.00	6.361
UCB	top k	greedy	10	.5	1.4	15727	15727.00	6.364
UCB	top k	greedy	10	1	1.4	15727	15727.00	6.426
UCB	ratio k	greedy	10	1	1.4	15727	15727.00	6.944
UCB	ratio k	greedy	10	.7	1.4	15727	15727.00	7.003
UCB	ratio k	greedy	15	.7	1.4	15727	15727.00	9.262
UCB	ratio k	greedy	15	1	1.4	15727	15727.00	9.285
UCB	top k	greedy	15	1	1.4	15727	15727.00	9.356
UCB	top k	greedy	15	.7	1.4	15727	15727.00	9.386
UCB	top k	greedy	15	.5	1.4	15727	15727.00	9.463
UCB	ratio k	greedy	15	.5	1.4	15727	15727.00	9.761
UCB1T	ratio k	greedy	5	.5	1.4	16004	16004.00	104.653
UCB	ratio k	greedy	10	.5	1.4	16048	16048.00	6.645
UCB	ratio k	greedy	5	.7	1.4	16808	16808.00	3.999
UCB	top k	random	5	1	1.4	20033	23543.50 2445.06	31.494
UCB	top k	random	5	.5	1.4	20785	24205.80 1779.69	9.623
UCB	top k	random	5	.7	1.4	21380	24827.80 1647.77	6.887
UCB	ratio k	random	5	1	1.4	21875	23859.70 1075.66	28.213
UCB	ratio k	random	5	.7	1.4	23757	29368.50 2889.41	12.654
UCB	top k	random	10	.5	1.4	24895	28526.60 1587.28	17.951
UCB	top k	random	10	.7	1.4	25058	28431.30 2428.13	53.699
UCB	top k	random	15	.7	1.4	25697	32059.60 3414.60	75.212
UCB	ratio k	random	5	.5	1.4	26324	33531.60 4416.59	31.610
UCB	ratio k	random	10	1	1.4	26388	28742.90 1816.74	29.978
UCB	top k	random	10	1	1.4	26437	29495.80 2277.44	48.911
UCB	ratio k	random	15	1	1.4	27721	30687.00 1322.77	17.684

UCB	ratio k	random	15	.7	1.4	27839	33170.20 2389.63	9.037
UCB	ratio k	random	10	.5	1.4	27869	$30922.10\ 2555.30$	17.951
UCB	ratio k	random	10	.7	1.4	28415	31432.20 1642.18	18.234
UCB	top k	random	15	1	1.4	29386	$32524.40\ 2179.90$	31.477
UCB	ratio k	random	15	.5	1.4	29482	$35282.70\ 2922.42$	53.005
UCB	top k	random	15	.5	1.4	29852	$32992.70\ 2433.29$	44.168

C.4.2 Statistical tests

Table C.8: Kolmogorov-Smirnov and Mann-Whitney U Test Results for 5 cores parralelisation vs no parralelisation

Key	KS p-value	MW p-value			
$\overline{\parallel 2}$	0.1678	0.01133			
3	0.05394	0.06774			
\parallel 4	6.09 e - 05	1.728e-05			
\parallel 5	1.28e-05	2.788e-06			
6	3.822 e-05	3.611e-05			
7	1.752 e-06	1.753e-06			
8	1.448e-08	9.996e-08			
9	1.498e-10	2.082e-08			
10	7.503e-08	9.91e-07			
11	2.147e-14	4.124e-10			
12	4.417e-15	3.446e-11			
13	1.612e-12	1.002e-08			
14	1.635e-10	4.312e-08			
15	6.337e-12	9.826e-09			
16	1.354 e-13	8.184e-09			
17	4.858e-13	9.855e-09			
18	6.246 e-11	2.576e-08			
19	2.39e-15	1.003e-10			
$\parallel 20$	2.088e-12	1.611e-09			
21	1.491e-19	2.17e-12			
22	1.829e-11	9.687e-09			
23	0.02023	0.01578			
24	3.065 e-06	9.508e-06			
25	0.1477	0.0325			
26	0.01048	0.003051			
27	0.0002042	0.003623			
28	0.02166	0.01133			
29	0.1402	0.1316			
30	0.008867	0.0009358			
31	2.717e-07	5.519e-07			
32	4.007e-05	2.086e-05			
33	0.000234	0.0001292			
34	0.007192	0.003185			
35	4.021e-05	0.0009069			
36	0.02597	0.06494			
37	0.08591	0.05994			
38	0.1099	0.1264			
39	0.9333	0.8			
40	1	1			

Table C.9: Kolmogorov-Smirnov and Mann-Whitney U Test Results for paralelisation $5~{\rm vs}~10~{\rm cores}$

Key	KS p-value	MW p-value		
$\parallel 2$	0.7869	0.9097		
3	0.4936	0.5597		
$\parallel 4$	0.559	0.9029		
\parallel 5	0.5726	0.8215		
6	0.7308	0.5249		
7	0.5362	0.2212		
8	8.03e-05	0.000113		
9	3.651e-06	1.492e-05		
10	3.182e-05	1.874e-05		
11	0.02005	0.001727		
12	4.094e-05	0.0002752		
13	0.009494	0.001714		
14	0.005447	0.007363		
15	0.4848	0.2415		
16	0.006502	0.001958		
17	5.38e-05	4.063e-06		
18	0.001678	0.002008		
19	1.131e-08	1.017e-06		
20	0.446	0.7367		
$\parallel 21$	0.6276	0.6335		
22	0.9451	0.6936		
23	0.1712	0.04649		
$\parallel 24$	0.9095	0.8391		
25	0.5248	0.3179		
26	0.111	0.6057		
27	0.6856	0.3729		
28	0.09346	0.2532		
29	0.000215	0.0001052		
30	0.007774	0.05043		
31	0.08092	0.09824		
32	0.6077	0.3848		
33	0.08476	0.04293		
34	0.003479	0.002516		
35	0.2366	0.1629		
36	0.7839	0.662		
37	0.4286	0.4127		
38	0.1	0.1		
39	1	1		
40	1	1		

Appendix D

Best solutions

Instance 1

- Starting airport:'ABO'
- Associated cost = 1396

Instance 2

- Starting airport: 'EBJ'
- Solution = ['EBJ', 'NBP', 'OMG', 'NCA', 'NUJ', 'OHT', 'GSM', 'EFZ', 'QKK', 'SSC', 'TKT']
- Associated cost = 1498

Instance 3

- Starting airport:'GDN'
- Solution = ['GDN', 'SZY', 'WMI', 'LD3', 'LB1', 'PD1', 'KRK', 'SA1', 'WRO', 'IEG', 'POZ', 'BZG', 'OSZ', 'OSP']
- Associated cost = 7672

Instance 4

- Starting airport: 'GDN'
- Solution: ['GDN', 'SXF', 'CPH', 'OSL', 'BLE', 'TLL', 'HEL', 'LED', 'RIX', 'VNO', 'BQT', 'LWO', 'IAS', 'KIV', 'VAR', 'ESB', 'AKT', 'SKG', 'SKP', 'TIA', 'TGD', 'DBV', 'SJJ', 'BEG', 'BUD', 'BRQ', 'BTS', 'VIE', 'LJU', 'VCE', 'GVA', 'LUX', 'EIN', 'BRU', 'CDG', 'MAN', 'ORK', 'OPO', 'MAD', 'MLA', 'POZ']
- Associated cost: 15361

Instance 5-6

Not found

Instance 7

- Starting airport: 'AHG'
- Solution: ['AHG', 'ALM', 'DUH', 'FIO', 'BXV', 'ETU', 'FOE', 'BNK', 'BHB', 'HFU', 'FOS', 'GWN', 'FRW', 'BZT', 'BBW', 'CWC', 'AZS', 'BAJ', 'ECE', 'HAP', 'BWF', 'ALX', 'GUT', 'BZH', 'BSP', 'FXP', 'GSL', 'FAY', 'DDV', 'EPQ', 'FWO', 'EFY', 'FRJ', 'FCD', 'DIZ', 'COH', 'CTU', 'ERX', 'EIH', 'FJO', 'BUF', 'AMR', 'GRU', 'CRI', 'DWI', 'HAF', 'BPW', 'FMZ', 'GMM', 'HCP', 'BAQ', 'DPO', 'FKV', 'DER', 'DVS', 'DHV', 'DSM', 'DIB', 'FDV', 'DNK', 'FFF', 'BRF', 'GAR', 'DAU', 'ATB', 'ARO', 'FHS', 'DKV', 'FJA', 'BKI', 'EZG', 'GWJ', 'AEN', 'BTY', 'AKZ', 'HFX', 'MAS', 'MDX', 'MON', 'KXF', 'LID', 'LJA', 'KON', 'LZD', 'NFB', 'IRE', 'IOM', 'JOO', 'MYY', 'JBB', 'HUV', 'JQD', 'HGD', 'LUI', 'KLS', 'LAA', 'JGW', 'ICN', 'MIJ', 'JUG', 'IRN', 'LPA', 'KMH', 'MLJ', 'JWN', 'IVN', 'HRV', 'ITE', 'NFL', 'IDG', 'LYI', 'LBK', 'HTJ', 'KKA', 'NCU', 'LOU', 'KXN', 'JOQ', 'KXI', 'MCH', 'IBM', 'LHG', 'KYK', 'IIH', 'MED', 'KLO', 'KXM', 'JMP', 'HMD', 'HWB', 'NIZ', 'JHC', 'HVV', 'HXU', 'MOR', 'HID', 'KPR', 'IWU', 'LAL', 'MQY', 'MAZ', 'JUZ', 'NAD', 'INT', 'HON', 'MGM', 'LIR', 'MRT', 'JLI', 'LSE', 'AHG']
- Associated cost: 31924

Instance 8

- Starting airport: 'AEW'
- Solution: ['AEW', 'AUO', 'ZMT', 'TRH', 'IDB', 'LVN', 'FCJ', 'OAE', 'FMC', 'VCO', 'AOY', 'KCY', 'RIS', 'IHK', 'OTQ', 'JBS', 'SXJ', 'ILI', 'JQL', 'MZO', 'TGY', 'PCD', 'CJM', 'DVQ', 'EBC', 'JKB', 'ULO', 'BNL', 'OOM', 'CKW', 'JLS', 'CJT', 'OBE', 'PDI', 'ZZP', 'OVD', 'HRX', 'AZF', 'OLQ', 'WCD', 'XMD', 'IHD', 'FWA', 'NPF', 'FCP', 'RLT', 'NPT', 'BPY', 'YED', 'KIL', 'RGK', 'IYZ', 'ECS', 'CHK', 'IID', 'VRF', 'EBY', 'VDQ', 'ALA', 'CZJ', 'MYR', 'FKP', 'UYS', 'RAA', 'UPZ', 'VFT', 'JEL', 'AKF', 'URK', 'WCU', 'RWZ', 'MVV', 'FGF', 'XSF', 'PRO', 'FYA', 'ZCX', 'VXE', 'KFD', 'CQP', 'JSR', 'EBK', 'RZG', 'LII', 'KIW', 'UEW', 'IXO', 'GHI', 'USB', 'JZU', 'JRX', 'LKE', 'QHR', 'RHQ', 'XSY', 'ASF', 'HPZ', 'CIL', 'EOG', 'JQI', 'QBR', 'PUW', 'PFI', 'WUL', 'PNH', 'TBS', 'LTP', 'RAR', 'DDZ', 'FIG', 'EGV', 'SRY', 'NVV', 'NZN', 'UJW', 'JCY', 'ZNG', 'RWM', 'IUN', 'OPC', 'JRT', 'MHW', 'LTF', 'DRO', 'SVZ', 'QRL', 'BJG', 'BFZ', 'EXV', 'IVF', 'LRU', 'HMM', 'DCY', 'PUG', 'CGR', 'JBJ', 'PEP', 'GSC', 'EHZ', 'CUU', 'BMD', 'PJS', 'GPI', 'BLJ', 'QMS', 'FAO', 'JIM', 'CAA', 'MYZ', 'GRH', 'KBN', 'IPE', 'MMN', 'AUJ', 'LNC', 'ROM', 'JAH', 'DSR', 'HTD', 'EQV', 'NOR', 'RUP', 'OXH', 'BYB', 'BQL', 'EOW', 'PEU', 'JFU', 'MSW', 'DNZ', 'AME', 'JHO', 'HNP', 'LTI', 'PFU', 'QZU', 'RWO', 'LRL', 'KIC', 'MFT', 'EOB', 'QXU', 'QQT', 'BKB', 'AFH', 'MRE', 'MAE', 'BCU', 'PDY', 'ZXD', 'BIN', 'DWQ', 'NRS', 'JJY', 'DSN', 'HIX', 'BAB', 'DCB', 'OVC', 'HIN', 'AEW']
- Associated cost: 4037

- [1] Jaap Nina Verstreken Bouwer Ludwig Hausmann Lind Christophe and Stavros Xanthopoulos. Air travel becoming more seasonal. is what can airlines take the new shape of desteps toadapt mand. January 8, 2024.URL https://www.mckinsey. com/industries/travel-logistics-and-infrastructure/our-insights/ how-airlines-can-handle-busier-summers-and-comparatively-quiet-winters# /.
- [2] Hendrik Baier and Peter D. Drake. The power of forgetting: Improving the last-good-reply policy in monte carlo go. *IEEE Transactions on Computational Intelligence and AI in Games*, 2:303–309, 2010. URL https://api.semanticscholar.org/CorpusID:13578069.
- [3] Statista. Number of flights performed by the global airline industry from 2004 to 2023, with a forecasts for 2024. https://www.statista.com/statistics/564769/airline-industry-number-of-flights/, 2024.
- [4] Yaroslav Pylyavskyy, Ahmed Kheiri, and Leena Ahmed. A reinforcement learning hyper-heuristic for the optimisation of flight connections. pages 1–8, 07 2020. doi: 10.1109/CEC48606.2020.9185803.
- [5] Hanif D. Sherali, Ebru K. Bish, and Xiaomei Zhu. Airline fleet assignment concepts, models, and algorithms. European Journal of Operational Research, 172(1): 1–30, 2006. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2005.01.056. URL https://www.sciencedirect.com/science/article/pii/S0377221705002109.
- [6] J.E. Beasley and B. Cao. A dynamic programming based algorithm for the crew scheduling problem. Computers and Operations Research, 25(7):567-582, 1998. ISSN 0305-0548. doi: https://doi.org/10.1016/S0305-0548(98)00019-7. URL https://www.sciencedirect.com/science/article/pii/S0305054898000197.

[7] Deirdre Fulton. Unstoppable lccs - growth indicates a new norm. https://www.oag.com/blog/unstoppable-lccs-growth-indicates-new-norm, 2023.

- [8] FranceTV Slash / Enquêtes. Ryanair: Y-a-t-il un rh dans l'avion? enquête sur les conditions de travail du géant du low-cost, 2024. URL https://www.youtube.com/watch?v=4TOsoX6aPiA. Accessed: 2024-07-05.
- [9] Jens Clausen, Allan Larsen, Jesper Larsen, and Natalia J. Rezanova. Disruption management in the airline industry—concepts, models and methods. *Computers* and *Operations Research*, 37(5):809-821, 2010. ISSN 0305-0548. doi: https://doi. org/10.1016/j.cor.2009.03.027. URL https://www.sciencedirect.com/science/ article/pii/S0305054809000914. Disruption Management.
- [10] Allison Hope. The complex process behind your flight's schedule. CNTraveler, 2017. URL https://www.cntraveler.com/story/the-complex-process-behind-your-flights-schedule#:~:text=Flight% 20schedules%20are%20mapped%20out,affect%20departure%20and%20arrival% 20times.
- [11] Not mentionned. Advanced decision support for aviation disruption management. https://www.inform-software.com/en/lp/aviation-disruption-management#:~:text=Proper%20aviation% 20disruption%20management%20means,the%20schedule%2C%20while% 20minimizing%20costs., 2024.
- [12] Not mentionned. A modern cloud platform to optimize end-to-end airline operations and crew management. iflight drives unmatched efficiencies, cost-savings, and productivity for the world's top airlines. https://www.ibsplc.com/product/airline-operations-solutions/iflight, 2024.
- [13] Not mentionned. What is acmi leasing? ACC Aviation, 2024.
- [14] Lark Editorial Team. Np hard definition of np hardness. Lark, 26 December, 2023.
- [15] Roy Jonker and Ton Volgenant. Transforming asymmetric into symmetric traveling salesman problems. *Operations Research Letters*, 2(4):161–163, 1983. ISSN 0167-6377. doi: https://doi.org/10.1016/0167-6377(83)90048-2. URL https://www.sciencedirect.com/science/article/pii/0167637783900482.
- [16] Tolga Bektas. The multiple traveling salesman problem: an overview of formulations and solution procedures. *Omega*, 34(3):209–219, 2006. ISSN 0305-0483. doi: https:

//doi.org/10.1016/j.omega.2004.10.004.~URL~https://www.sciencedirect.com/science/article/pii/S0305048304001550.

- [17] Snežana Mitrović-Minić and Ramesh Krishnamurti. The multiple tsp with time windows: vehicle bounds based on precedence graphs. Operations Research Letters, 34(1):111-120, 2006. ISSN 0167-6377. doi: https://doi.org/10.1016/j. orl.2005.01.009. URL https://www.sciencedirect.com/science/article/pii/ S0167637705000295.
- [18] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. The orienteering problem: A survey. European Journal of Operational Research, 209(1): 1–10, 2011. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2010.03.045. URL https://www.sciencedirect.com/science/article/pii/S0377221710002973.
- [19] Roberto Tadei, Guido Perboli, and Francesca Perfetti. The multi-path traveling salesman problem with stochastic travel costs. *EURO Journal on Transportation and Logistics*, 6(1):3-23, 2017. ISSN 2192-4376. doi: https://doi.org/10.1007/s13676-014-0056-2. URL https://www.sciencedirect.com/science/article/pii/S219243762030087X.
- [20] Aviv Adler. The traveling salesman problem under dynamic constraints. *Massachusetts Institute of Technology*, Feb 2023.
- [21] Petrică C. Pop, Ovidiu Cosma, Cosmin Sabo, and Corina Pop Sitar. A comprehensive survey on the generalized traveling salesman problem. *European Journal of Operational Research*, 314(3):819-835, 2024. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2023.07.022. URL https://www.sciencedirect.com/science/article/pii/S0377221723005581.
- [22] Hung Chieng and Noorhaniza Wahid. A Performance Comparison of Genetic Algorithm's Mutation Operators in n-Cities Open Loop Travelling Salesman Problem, volume 287, pages 89–97. 01 2014. ISBN 978-3-319-07691-1. doi: 10.1007/978-3-319-07692-8_9.
- [23] Malik Muneeb Abid and Muhammad Iqbal. Heuristic approaches to solve traveling salesman problem. TELKOMNIKA Indonesian Journal of Electrical Engineering, 15:390–396, 09 2015. doi: 10.11591/telkomnika.v15i2.8301.
- [24] Bernhard Fleischmann. A cutting plane procedure for the travelling salesman problem on road networks. European Journal of Operational Research, 21(3):307–317,

1985. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(85)90151-1. URL https://www.sciencedirect.com/science/article/pii/0377221785901511.

- [25] Not specified. Travelling salesman problem using dynamic programming. *Geeks-forgeeks*, 19 April, 2023.
- [26] Daniel Rosenkrantz, Richard Stearns, and Philip II. An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput., 6:563–581, 09 1977. doi: 10.1137/0206041.
- [27] Zakir Ahmed. Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. *International Journal of Biometric and Bioinfor*matics, 3, 03 2010. doi: 10.14569/IJACSA.2020.0110275.
- [28] Lei Yang, Xin Hu, Kangshun Li, Weijia Ji, Qiongdan Hu, Rui Xu, and Dongya Wang. Nested Simulated Annealing Algorithm to Solve Large-Scale TSP Problem, pages 473–487. 05 2020. ISBN 978-981-15-5576-3. doi: 10.1007/978-981-15-5577-0_37.
- [29] Yong Wang and Zunpu Han. Ant colony optimization for traveling salesman problem based on parameters optimization. *Applied Soft Computing*, 107:107439, 2021. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2021.107439. URL https://www.sciencedirect.com/science/article/pii/S1568494621003628.
- [30] Wikipedia. Havannah (board game) Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Havannah%20(board% 20game)&oldid=1240631485, 2024. [Online; accessed 18-August-2024].
- [31] Wikipedia. Game of the Amazons Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Game%20of%20the%20Amazons&oldid=1235225698, 2024. [Online; accessed 18-August-2024].
- [32] Wikipedia. Lines of Action Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Lines%20of%20Action&oldid=1198717858, 2024. [Online; accessed 18-August-2024].
- [33] Wikipedia. Shogi Wikipedia, the free encyclopedia. http://en.wikipedia. org/w/index.php?title=Shogi&oldid=1240175752, 2024. [Online; accessed 18-August-2024].

[34] Joris Duguépéroux, Ahmad Mazyad, Fabien Teytaud, and Julien Dehos. Pruning playouts in monte-carlo tree search for the game of havannah. volume 10068, pages 47–57, 06 2016. ISBN 978-3-319-50934-1. doi: 10.1007/978-3-319-50935-8_5.

- [35] Richard J. Lorentz. Amazons discover monte-carlo. In H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M. Winands, editors, Computers and Games, pages 13–24, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-87608-3.
- [36] Mark Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte carlo tree search in lines of action. IEEE Transactions on Computational Intelligence and AI in Games, 2:239 – 250, 12 2010. doi: 10.1109/TCIAIG.2010.2061050.
- [37] Wikipedia. Go (game) Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Go%20(game)&oldid=1239511822, 2024. [Online; accessed 18-July-2024].
- [38] Wikipedia. Lee Sedol Wikipedia, the free encyclopedia. http://en.wikipedia.org/w/index.php?title=Lee%20Sedol&oldid=1234296689, 2024. [Online; accessed 11-August-2024].
- [39] Google DeepMind. Alphago the movie / full award-winning documentary. Youtube, 2020.
- [40] Not mentionned. Explain the role of monte carlo tree search (mcts) in alphago and how it integrates with policy and value networks. EITCA, 2024.
- [41] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree search methods. *IEEE Transactions on Computational Intelligence and AI in Games*, 4:1:1–43, 03 2012. doi: 10.1109/TCIAIG.2012.2186810.
- [42] at the University of Strathclyde John Levine for his class CS310: Foundations of Artificial Intelligence. Monte carlo tree search, 2017. URL https://www.youtube.com/watch?v=UXW2yZnd17U&t=385s. Accessed: June, 2024.
- [43] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp Rohlfshagen, S. Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte carlo tree search methods. *IEEE Transactions*

on Computational Intelligence and AI in Games, 4(1):1-43, 2012. doi: 10.1109/TCIAIG.2012.2186810.

- [44] Kiwi.com. Travelling salesman challenge 2.0: Award ceremony. Youtube, 2019. URL https://www.youtube.com/watch?v=Fp7LaEUwCjE.
- [45] Maab Alrasheed, Wafaa Mohammed, Yaroslav Pylyavskyy, and Ahmed Kheiri. Local search heuristic for the optimisation of flight connections. pages 1–4, 09 2019. doi: 10.1109/ICCCEEE46830.2019.9071395.
- [46] Rowaina Abdelnasser. Python naming conventions: 10 essential guidelines for clean and readable code. https://medium.com/@rowainaabdelnasser/
 python-naming-conventions-10-essential-guidelines-for-clean-and-readable-code-fear-text=For%20class%20names%20in%20Python,or%20behavior%20of%20the%
 20class., June 6, 2023.