Numerical Optimization Graduate Course

Unconstrained Smooth Optimization

Part I: Basic theories and differentials

Wen Huang

School of Mathematical Sciences Xiamen University

Compiled on February 14, 2022

Preliminaries and Basic Theories

!

Line Search Methods

A representative line search method

```
A descent method Input: Initial iterate x_0; Initial descent direction p_0 and set k \leftarrow 0; while not accurate enough do

Set x_{k+1} \leftarrow x_k + \alpha_k p_k with an appropriate step size \alpha_k; Find a descent direction p_{k+1}; k \leftarrow k+1; end while
```

What is the definition of a descent direction?

Line Search Methods

Descent directions

Definition 1

Let $f \in C^1$ and $p \in \mathbb{R}^n$. p is a descent direction of f at x if for all sufficiently small $\alpha > 0$

$$f(x + \alpha p) < f(x)$$

Line Search Methods

Descent directions

Theorem 2

Let $f \in C^1$ and $p \in \mathbb{R}^n$. If

$$-p^{T}\nabla f(x_{k}) = ||p||_{2}||\nabla f(x_{k})||_{2}\cos\theta_{k} > 0$$

then p is a descent direction at x.

Note that a direction p is descent for $f \in C^1$ if the angle between p and $-\nabla f(x_k)$ is acute.

To prove this theorem, we need the Taylor's theorem of multiple variables.

Taylor's Theorem

Theorem 3 (Taylor's Theorem)

Let f be a real-value function $f: \mathbb{R}^n \to \mathbb{R}$.

• If $f \in C^1$ and $p \in \mathbb{R}^n$ then for some $0 < \tau < 1$

$$f(x+p) = f(x) + \nabla f(x+\tau p)^T p$$

• If $f \in C^2$ and $p \in \mathbb{R}^n$ then for some $0 < \tau < 1$

$$f(x+p) = f(x) + \nabla f(x)^T p + 0.5p^T \nabla^2 f(x+\tau p) p$$

and

$$\nabla f(x+p) = \nabla f(x) + \int_0^1 \nabla^2 f(x+\tau p) p \ d\tau$$

The proofs are omitted here.

Minimizers

Definition 4

The point $x^* \in \mathbb{R}^n$ is a global minimizer if $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$.

Definition 5

The point $x^* \in \mathbb{R}^n$ is a local minimizer if $f(x^*) \leq f(x)$ for all $x \in \mathcal{N}_{x^*}$ where \mathcal{N}_{x^*} is a neighborhood of x^* . Further, x^* is

- a strict local minimizer if $f(x^*) < f(x)$ for all $x \in \mathcal{N}_{x^*}$; and
- ullet an isolated local minimizer if x^* is the only local minimizer in \mathcal{N}_{x^*} .

Definition 6

The point $x^* \in \mathbb{R}^n$ is a stationary point if $\nabla f(x^*) = 0$.

First order necessary condition

Theorem 7 (First order necessary condition)

Suppose $f \in C^1$ in a neighborhood of x^* . If x^* is a local minimizer then $\nabla f(x^*) = 0$, i.e., x^* is a stationary point.

Second order necessary condition

Theorem 8 (Second order necessary condition)

Suppose $f \in C^2$ in a neighborhood of x^* . If x^* is a local minimizer then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive semidefinite.

Second order sufficient condition

Theorem 9 (Second order sufficient condition)

Suppose $f \in C^2$ in a neighborhood of x^* . If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is positive definite then x^* is a strict local minimizer.

Sufficient condition of global minimizer

Definition 10

A function $f(x): \mathbb{R}^n \to \mathbb{R}$ is convex if for any two points, x and y, in the domain we have for any $0 \le \alpha \le 1$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Also, f(x) is concave if -f(x) is convex.

Theorem 11 (Sufficient condition of global minimizer)

If f is convex then any local minimizer is a global minimizer. If, in addition, $f \in C^1$ then any stationary point is a global minimizer.

Rates of Convergence

Desire convergence properties

- Global convergence (to a stationary point from any initial point)
- Fast convergence speed
 - $x_k \to x_*$, let $e_k = ||x_k x_*||$;
 - $f_k \to f_*$, let $e_k = |f_k f_*|$;

- ullet Q-sublinear $rac{e_{k+1}}{e_k}
 ightarrow 1$
- Q-linear $\limsup rac{e_{k+1}}{e_k} < \delta < 1$
- Q-superlinear $\frac{e_{k+1}}{e_k} \to 0$
- Q-quadratic $\limsup \frac{e_{k+1}}{e_k^2} < C$

Rates of Convergence

Desire convergence properties

- Global convergence (to a stationary point from any initial point)
- Fast convergence speed
 - $x_k \to x_*$, let $e_k = ||x_k x_*||$;
 - $f_k \to f_*$, let $e_k = |f_k f_*|$;

- ullet Q-sublinear $rac{e_{k+1}}{e_k}
 ightarrow 1$
- Q-linear $\limsup rac{e_{k+1}}{e_k} < \delta < 1$
- Q-superlinear $\frac{e_{k+1}}{e_k} \to 0$
- Q-quadratic $\limsup \frac{e_{k+1}}{e_k^2} < C$

Suppose $e_k \leq \epsilon_k$

- ϵ_k Q-sublinear \Rightarrow R-sublinear
- ϵ_k Q-linear \Rightarrow R-linear
- ϵ_k Q-superlinear \Rightarrow R-superlinear
- ϵ_k Q-quadratic \Rightarrow R-Quadratic

Definition 12

If $f: \mathbb{R}^n \to \mathbb{R}: x \mapsto f(x)$ then

• the gradient of $f \in C^1$, denoted, $\nabla f(x) \in \mathbb{R}^n$, is the vector with *i*-th element,

$$\frac{\partial f}{\partial x_i}(x)$$

• the Hessian of $f \in C^2$ denoted, $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$, is the symmetric matrix with i, j-element,

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$$

Examples

• Example:
$$f(x) = \frac{1}{2}x^T A x$$
, where $A = A^T$

Examples

- Example: $f(x) = \frac{1}{2}x^T A x$, where $A = A^T$
 - By definition

Examples

- Example: $f(x) = \frac{1}{2}x^T A x$, where $A = A^T$
 - By definition
 - By directional derivative
 - $\mathrm{D}f(x)[d] = \nabla f(x)^T d, \forall d \in \mathbb{R}^n$;
 - $D(\nabla f(x))[d] = \nabla^2 f(x)d, \forall d \in \mathbb{R}^n$;

Derivation formulas

If F is linear, then

$$DF(x)[z] = F(z).$$

Chain rule: If $range(F) \subseteq dom(G)$, then

$$\mathrm{D}(G\circ F)(x)[z]=\mathrm{D}G(F(x))[\mathrm{D}F(x)[z]].$$

Product rule: Let \bullet denote a bilinear operator on the ranges of F and G, then

$$D(F \bullet G)(x)[z] = (DF(x)[z]) \bullet G(x) + F(x) \bullet (DG(x)[z]).$$

Example 13

Compute the gradient and the action of Hessian of the function $f(x) = \frac{1}{2} ||(xx^T - I_n)A||_F^2$.

Matrix function

$$\min_{x \in \mathcal{E}} f(x)$$

- In previous examples, $\mathcal{E} = \mathbb{R}^n$;
- What if \mathcal{E} is the set of real matrices $\mathbb{R}^{m \times n}$, the set of complex matrices $\mathbb{C}^{m \times n}$, or even real/complex tensors;

Function on matrices: $f: \mathbb{R}^{m \times n} \to \mathbb{R}$

• Gradient:

$$\nabla f(X) = \begin{bmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} & \cdots & \frac{\partial f}{\partial x_{1n}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} & \cdots & \frac{\partial f}{\partial x_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f}{\partial x_{m1}} & \frac{\partial f}{\partial x_{m2}} & \cdots & \frac{\partial f}{\partial x_{m1}} \end{bmatrix}$$

• $\mathrm{D}f(X)[V] = \mathrm{trace}(\nabla f(X)^T V), \ \forall V \in \mathbb{R}^{m \times n};$

Matrix function

Example 14

Compute the gradient of

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}: X \mapsto \log \det(I_m + XX^T).$$

(Hint: $D(\log \det(Y))[V] = \operatorname{trace}(Y^{-1}V)$ for a symmetric positive definite matrix Y and symmetric matrix V.)

Matrix function

Action of the Hessian

$$\nabla^2 f(X)[V] = \mathrm{D}(\nabla f(X))[V];$$

Example 15

Compute the action of the Hessian of

$$f: \mathbb{R}^{m \times n} \to \mathbb{R}: X \mapsto \log \det(I_m + XX^T).$$

Matrix function

 No matter whether the function is a vector function or a real matrix function, we have

$$Df(x)[v] = \sum_{i_1, i_2, \dots, l_s} (\nabla f(x))_{i_1, i_2, \dots, l_s} v_{i_1, i_2, \dots, l_s},$$

where s = 1 for a vector and s = 2 for a matrix;

 Such idea can be extent to tensor or complex numbers or product of multiple spaces;

Product

Example 16

Compute the gradient of

$$f: \mathbb{R}^{m \times k} \times \mathbb{R}^{n \times k} \to \mathbb{R}: (X, Y) \mapsto \operatorname{trace}(X^T A Y),$$

where $A \in \mathbb{R}^{m \times n}$;

References I