

Optimal Importance Sampling in Quantum Monte Carlo for Lattice Models

Blaž Stojanovič

Supervisor: Prof. A. Lamacraft

Department of Physics University of Cambridge

This dissertation is submitted for the degree of *Master of Philosophy in Scientific Computing*

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 15,000 words including appendices, figure legends, and tables.

Blaž Stojanovič March 2021

Acknowledgements

And I would like to acknowledge ...

Abstract

This is where you write your abstract ...

Table of contents

Li	st of 1	ligures	XIII
Li	st of 1	tables	XV
No	omen	clature	xvii
1	Intr	oduction	1
	1.1	Quantum Monte Carlo	1
	1.2	Why do we Quantum Monte Carlo	1
	1.3	Where does Machine Learning come in?	1
2	Var	iational Autoencoders	3
	2.1	Short title	3
3	My	third chapter	5
	3.1	Convolutions	5
Re	eferer	aces	7
Aı	pend	lix A Jax ecosystem	9
Αı	nend	lix B Additional results	11

List of figures

List of tables

Nomenclature

Acronyms / Abbreviations

CNN Convolutional Neural Network

DL Deep Learning

DMC Diffusion Quantum Monte Carlo

GAN General Adversarial Network

ML Machine Learning

NN Neural Network

QMC Quantum Monte Carlo

VAE Variational Autoencoder

VMC Variational Quantum Monte Carlo

Chapter 1

Introduction

1.1 Quantum Monte Carlo

hello? [1]

- 1.2 Why do we Quantum Monte Carlo
- 1.3 Where does Machine Learning come in?

Chapter 2

Variational Autoencoders

2.1 Reasonably long section title

Chapter 3

My third chapter

3.1 Convolutions

References

[1] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*.

Appendix A

Jax ecosystem

Appendix B Additional results