Análise de Agrupamentos

Prof. George von Borries

Departamento de Estatística Universidade de Brasília

2023

Terminologia

Análise de Agrupamentos (Clustering)

Encontrar algoritmos ótimos para agrupar objetos que são semelhantes de acordo com algum critério. Não existem grupos pré-definidos. Não sabemos sequer o número de grupos. Técnica não supervisionada.

Análise de Discriminantes (Discrimination)

Encontrar "discriminantes" que separam ao máximo grupos pré-definidos de acordo com uma variável de supervisão. Técnica supervisionada.

• Análise de Classificações (Classification)

Encontrar regras de alocação de objetos em grupos pré-definidos de maneira a minimizar o erro de alocação.

Introdução

 Técnica de aprendizado estatístico não supervisionada. Também conhecida como aprendizado de máquinas, mineração de dados, reconhecimento de padrões.

Objetivos:

- Descobrir padrões nos dados que formam grupos de objetos similares;
- √ Exploração/mineração de dados;
- √ Suporte para técnicas visuais;
- ✓ Identificação de subgrupos em dados complexos;
- ✓ Identificação de padrões no tempo e espaço;
- ✓ Redução de dados.

- Áreas de Aplicação: biologia, zoologia, psiquiatria, patologia, sociologia, arqueologia, geografia, geologia, engenharia, medicina, economia, ciência forense....
- Outras denominações:
 - ✓ Aprendizado não supervisionado;
 - √ Reconhecimento de padrões (engenharia);
 - √ Taxonomia numérica (biologia e ecologia);
 - ✓ Partição (teoria dos grafos);
 - √ Segmentação de dados (marketing);
 - ✓ Class discovery (genética).
 - Mineração de dados (computação).

Exemplo - ExemplosNA.R: (1) XYdata

• Sejam $\mathbf{X} \sim \mathrm{N}(0, 0.09)$ e $\mathbf{Y} \sim \mathrm{N}(1, 0.09)$. Queremos agrupar pares (\mathbf{X}, \mathbf{Y}) .

Dados gerados.

Exemplo

• Sejam $\mathbf{X} \sim \mathrm{N}(0,0.09)$ e $\mathbf{Y} \sim \mathrm{N}(1,0.09).$ Queremos agrupar pares $(\mathbf{X},\mathbf{Y}).$

Dados agrupados utilizando técnica de K-Médias com g=2 e g=3

Procedimentos

Estruturação dos dados

Os dados são analisados na forma bruta, visando identificar algum padrão (característica) de agrupamento natural entre eles. As características devem ser escolhidas de modo a agregar o máximo de informação possível sobre o estudo.

Modelagem

Nesta fase, define-se o conceito de *cluster* e o critério a ser adotado na formação dos grupos.

- Medidas de Distância quantificam o quão homogêneas ou similares duas características são.
- Critério de Agrupamento está intimamente ligado à sensibilidade do pesquisador e ao seu conhecimento a respeito do conjunto de dados.

Como o pesquisador espera que os dados irão se agrupar? 1

Certa subjetividade está presente nesta fase e isto é muitas vezes criticado.

- Otimização está relacionada à escolha adequada do algoritmo computacional que conseguirá desvendar a estrutura de agrupamento dos dados.
- **Validação** tem objetivo de verificar a compatibilidade dos resultados obtidos e com as expectativas do pesquisador.
- Interpretação dos Resultados o especialista na área de aplicação deve integrar os resultados do agrupamento com outras evidências experimentais e análise, a fim de tirar as conclusões corretas.
- Tipos de dados: nominal, ordinal, intervalar e de razão.
 Muitas vezes é útil a mudança de uma escala para outra².

²Referência: Gan, Ma e Wu. (2007) Data Clustering: Theory, Algorithms and Applications, SIAM.

Técnicas Gráficas

- Primeiro e último passos na análise de agrupamentos.
- Procedimento exploratório ou confirmatório do agrupamento obtido.
 - √ Gráfico de Perfis (Profile Plot)
 - √ Gráfico de Andrews
 - √ Gráfico de Intensidades ou Calor (Heatmap)
 - √ Chernoff Faces

Referências:

- ✓ Exemplos em R em ExemplosNA.R.
- ✓ Moustafa, R.E. e Hadi, A.S. (2009) Grand tour and the Andrews plot, WIRE Computational Statistics, Vol. 1, John Wiley & Sons.
- Using R to draw a Heatmap from microarray data: https://warwick.ac.uk/fac/sci/moac/people/students/peter_ cock/r/heatmap/
- ✓ Ploner, A. (2023) Creating heatmaps using package Heatplus. Karolinska Institutet, Stockholm.

Exemplo: Iris Data ExemplosNA.R: (2) Analise Grafica

Iris é um género de plantas com flor, muito apreciado pelas suas diversas espécies, que ostentam flores de cores muito vivas. São, vulgarmente, designadas como lírios (Wikipédia).

Problema: classificar três tipos diferentes de flores Iris, chamadas setosa, versicolor e virginica. As características disponíveis são: largura e comprimento da sépala (parte da flor que dá sustentação a pétala) e pétala (p=4).

Três tipos de flores Iris: (a) setosa, (b) versicolor, (c) virginica. Fonte: Murphy, K.P. Machine Learning, 2012.

Iris Data - Gráfico de Perfis

Iris Data - Andrews Plot

 $f(t) = x_1 \times cos(t) + x_2 \times cos(2 \times t)^{0.5} + x_3 \times cos(3 \times t)^{0.5} + \dots$

Iris Data - Faces de Chernoff

Faces com pacote APLPACK. Iris data, sendo 1 e 5 setosa, 51 e 55 versicolor, 101 e 105 virginica.

Expressão Genética - Gráfico de Intensidades

Conjunto de 26 amostras de 46 genes.

Heatmap com pacote $\operatorname{HEATPLUS}$ do R.

Ploner, A. (2023) Creating heatmaps using package Heatplus.

Medidas de Proximidade

Medidas de Dissimilaridade (d):

Para dois vetores ${\bf x}$ e ${\bf y}$ no espaço p-dimensional, uma medida d é definida como função de distância se

- d(x, x) = 0;
- $d(\mathbf{x}, \mathbf{y}) \geq 0$;
- $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x});$
- Estas medidas podem ser extendidas para subgrupos de X e Y.
- Se $d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$ chamamos de métrica.
- Se $d(\mathbf{x}, \mathbf{y}) \leq max(d(\mathbf{x}, \mathbf{z}), d(\mathbf{z}, \mathbf{y}))$ chamamos de ultramétrica.
- Medidas de Similaridade (s):

Uma medida de similaridade s entre x e y é definida se

- s(x, y) > 0:
- $s(\mathbf{x}, \mathbf{y}) = s(\mathbf{y}, \mathbf{x})$:
- s(x, y) aumenta se a similaridade de x e y aumenta.
- s(x, x) = 1, 0 < s(x, y) < 1.

Medidas de Disssimilaridade

• Sejam duas observações p-dimensionais, i.e.,

$$\mathbf{X}^{\mathsf{T}} = [X_1, X_2, \dots, X_p] \ \mathbf{e} \ \mathbf{Y}^{\mathsf{T}} = [Y_1, Y_2, \dots, Y_p].$$

• Distância de Minkowinsky:

$$d(x_i, y_i) = \left(\sum_{i=1}^{p} |x_i - y_i|^r\right)^{1/r}, \quad r \ge 1$$
 (1)

- Distância Euclideana: r=2
- Distância de Manhattan: r = 1
- Distância máxima: $r \to \infty$.

Solução: padronização.

Problema: geralmente dominadas pelas variáveis de maior escala e só funcionam bem em dados compactos ou com grupos isolados.

Distância de Karl Pearson:

$$d(x_i, y_i) = \sum_{i=1}^{p} \frac{(x_i - y_i)^2}{s_i^2}$$
 onde s_i^2 é a variância (covariância) amostral de (x_i, y_i) .

Problema: Sensível a outliers.

Solução: Pesos diferentes para diferentes observações.

$$d(x_i, y_i) = \left(\sum_{i=1}^p w_i |x_i - y_i|^r\right)^{1/r} \quad w_i \ge 0$$
 (3)

Distância de Manhattan (X e Y com valores perdidos)

$$d(x,y) = \sum_{i=1}^{p} \frac{w_i |x_i - y_i|}{\sum_{i=1}^{p} w_i}$$
 (4)

sendo $w_i = 1$ se (x, y) observados e $w_i = 0$ c.c.

• Distância de Mahalanobis (generalização):

$$d(x,y) = \sqrt{(x-y)'\Sigma^{-1}(x-y)}.$$
 (5)

Vantagens: aplica um esquema de pesos aos dados e é invariante a transformações não singulares, i.e., se z=cx e r=cy, então d(x,y)=d(z,r). Provar.

Problema: Σ^{-1} deve ser estimado. Em pequenas amostras não possui inversa em muitas situações. Em dados superdimensionados o cálculo pode ser inviável. Computacionalmente intensiva.

• Podemos aplicar um esquema de pesos a esta distância.

$$d(x,y) = \sqrt{(x-y)'\Delta\Sigma^{-1}\Delta(x-y)}.$$
 (6)

onde Δ é uma matriz diagonal de pesos.

Os números d(a, b) são dispostos numa matriz quadrada $(n \times n)$ denominada matriz de dissimilaridade.

$$\mathrm{M}_{\mathrm{diss}}(\mathbf{D}) = egin{pmatrix} 0 & d_{12} & \cdots & d_{1n} \\ d_{21} & 0 & \cdots & d_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \cdots & 0 \end{pmatrix}$$

sendo $d_{ab}=d(x_a,x_b)$ com relação a alguma medida de dissimilaridade $d(\cdot,\cdot)$ e $D=\{x_1,x_2,...,x_n\}$.

Medidas de Similaridade

Produto Interno:

$$s(\mathbf{x}, \mathbf{y}) = \mathbf{x}'\mathbf{y} = \sum_{i=1}^{p} x_i y_i, \tag{7}$$

Utilizado em medidas normalizadas. x e y tem o mesmo comprimento. Assim, $-a^2 \le s(x,y) \le a^2$ e depende apenas do ângulo entre os vetores x e y.

Medida relacionada:

$$s(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}'\mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$
 (8)

onde $\|\mathbf{x}\|$ e $\|\mathbf{y}\|$ são os comprimentos de \mathbf{x} e \mathbf{y} .

Invariante a rotações, mas não é invariante a transformações lineares

Problema: uso de dados normalizados para agrupamento.

- O coeficiente de correlação de Pearson $(s_p(\mathbf{x}, \mathbf{y}))$ tem \mathbf{x} e \mathbf{y} centralizados.
- $-1 \le s_p \le 1$. Pode ser transformado em $0 \le s_p \le 1$. s_p não depende de x e y, mas dos vetores de diferenças $x_i \bar{x}$ e $y_i \bar{y}$, $i = 1, \ldots, p$.
- d(x, y) pode ser obtida de s(x, y) por transformação:

$$d(\mathbf{x}, \mathbf{y}) = \frac{1 - s(\mathbf{x}, \mathbf{y})}{2} \in [0, 1]$$
 (9)

Os números s(a,b) são dispostos numa matriz quadrada $(n \times n)$ denominada matriz de similaridade.

$$\mathrm{M_{sim}}(\mathbf{D}) = egin{pmatrix} 1 & s_{12} & \cdots & s_{1n} \\ s_{21} & 1 & \cdots & s_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n1} & s_{n2} & \cdots & 1 \end{pmatrix}$$

sendo $s_{ab}=s(x_a,x_b)$ com relação a alguma medida de similaridade $s(\cdot,\cdot)$. e $D=\{x_1,x_2,...,x_n\}$.

Medidas de Concordância (Dados Binários)

- Variáveis binárias são variáveis que podem receber exatamente dois valores: "sim/não", "0/1", "masculino/feminino".
- Seguindo a abordagem proposta por Gower, as variáveis binárias podem ser divididas em dois tipos:
 - **Simétricas:** os dois valores assumidos por cada variável são igualmente importantes. Exemplos: "casado/solteiro", "canhoto/destro".
 - Assimétricas: um dos valores carrega mais importância do que o outro. Exemplo: Para a cor de uma flor, considera-se: "é vermelha"= 1, "não é vermelha"= 0, sendo que, se $x_{if}=1$ e $x_{jf}=1$, significa dizer que as flores i e j possuem a mesma cor e são vermelhas, enquanto que, $x_{if}=0$ e $x_{jf}=0$ implica que as flores não são vermelhas (de mesma cor ou não).

• Sejam dois vetores assumindo valores 0 e 1:

	1	0	
1	а	b	a+b
0	С	d	c+d
	a+c	b+d	n

Medida	Similaridade	Intervalo
Jaccard	a/(a+b+c)	[0,1]
Sokal-Sneath	2(a+d)/(2(a+d)+b+c)	[0,1]
Rogers-Tanimoto	(a+d)/(a+2(b+c)+d)	[0,1]
Russell-Rao	a/n	[0,1]
Sokal-Michener	(a+d)/n	[0,1]
Dice	a/(2a+b+c)	[0,1/2]
Kulzinsky	a/(b+c)	$[0,\infty]$

Exemplos: ExemplosNA.R: (3) Matriz de Distancias

Formação de Grupos

Algoritmos

Fonte: Gan et al., 2007.

Algoritmos

- "Hard Clustering": partição de X em m grupos G_1, G_2, \ldots, G_m , de maneira que
 - $G_i \neq \phi, i = 1, \ldots, m$
 - $\bigcup_{i=1}^m G_i = X$
 - $G_i \cap G_j = \phi, i \neq j, i, j = 1, \ldots, m$.
- "Fuzzy Clustering": X é dividido em m grupos através de m funções u_i tais que
 - $u_i: X \to [0,1], j = 1, \ldots, m$.
 - $\sum_{j=1}^{m} u_j(x_i) = 1, i = 1, ..., N.$
 - $0 < \sum_{i=1}^{N} u_j(x_i) < N, j = 1, \ldots, m.$

Algoritmos Hierárquicos

 Aglomerativo: inicia com cada observação em um grupo. A cada passo, as observações vão sendo agrupadas ao seu par mais similar de acordo com algum critério de similaridade. Termina com todas as observações num único grupo (cluster).

AGNES: Agglomerative Nesting

Divisivo: inicia com todas as observações num único cluster. A
cada passo, as observações vão se separando de acordo com algum
critério de similaridade (ou dissimilaridade). Termina com as
observações separadas em diferentes grupos (clusters).

DIANA: Divisive Analysis

Exemplos de Dendogramas Aglomerativo e Divisivo para um mesmo conjunto de dados.

Algoritmos Hierárquicos Aglomerativos

• Ligação Simples: une os elementos mais próximos.

$$D = \begin{bmatrix} 0_{11} & & & & \\ 9_{21} & 0_{22} & & & \\ 3_{31} & 7_{32} & 0_{33} & & \\ 6_{41} & 5_{42} & 9_{43} & 0_{44} & \\ 11_{51} & 10_{52} & 2_{53} & 8_{54} & 0_{55} \end{bmatrix}$$

 $(9_{21}$ indica que a distância do elemento 2 ao elemento 1 é igual a 9)

- $min(d_{ij}) = 2 = d_{53} = d_{35}$
- A união é feita pelas distâncias mínimas (nearest neighbor)

$$\bullet \ \mathrm{d}_{(35)1} = \text{min}\{\mathrm{d}_{31},\mathrm{d}_{51}\} = \text{min}\{3,11\} = 3$$

•
$$d_{(35)2} = min\{d_{32}, d_{52}\} = min\{7, 10\} = 7$$

$$\bullet \ d_{(35)4} = min\{d_{34}, d_{54}\} = min\{9, 8\} = 8$$

$$\mathbf{D} = \left[\begin{array}{cccc} \mathbf{0}_{(35)(35)} & & & \\ \mathbf{3}_{1(35)} & \mathbf{0}_{11} & & \\ \mathbf{7}_{2(35)} & \mathbf{9}_{21} & \mathbf{0}_{22} & \\ \mathbf{8}_{4(35)} & \mathbf{6}_{41} & \mathbf{5}_{42} & \mathbf{0}_{44} \end{array} \right]$$

Ligação Simples

$$\mathbf{D} = \left[\begin{array}{ccc} \mathbf{0} & & & \\ \mathbf{3}_{1(35)} & \mathbf{0} & & \\ \mathbf{7}_{2(35)} & \mathbf{9}_{21} & \mathbf{0} & \\ \mathbf{8}_{4(35)} & \mathbf{6}_{41} & \mathbf{5}_{42} & \mathbf{0} \end{array} \right]$$

- $\min(d_{ij}) = 3 = d_{1(35)}$
 - $\bullet \ d_{(1;35)2} = \text{min}\{d_{12}, d_{(35)2}\} = \text{min}\{9,7\} = 7$
 - $d_{(1;35)4} = \min\{d_{14}, d_{(35)4}\} = \min\{6, 8\} = 6$

$$\mathbf{D} = \left[\begin{array}{ccc} \mathbf{0} & & \\ \mathbf{7}_{(1;35)2} & \mathbf{0} & \\ \mathbf{6}_{(1;35)4} & \mathbf{5}_{42} & \mathbf{0} \end{array} \right]$$

Ligação Simples

$$\mathbf{D} = \left[\begin{array}{ccc} \mathbf{0} & & \\ \mathbf{7}_{(1:35)2} & \mathbf{0} & \\ \mathbf{6}_{(1:35)4} & \mathbf{5}_{42} & \mathbf{0} \end{array} \right]$$

- $min(d_{ij}) = 5 = d_{24}$

Dendograma

Algoritmos Hierárquicos Aglomerativos

• Ligação Completa: une os elementos mais distantes.

$$D = \begin{bmatrix} 0 & & & \\ 9 & 0 & & \\ 3 & 7 & 0 & \\ 6 & 5 & 9 & 0 \\ 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

- $min(d_{ij}) = 2 = d_{53} = d_{35} \leftarrow$ seleção pelo mínimo!
 - $d_{(35)1} = \max\{d_{31}, d_{51}\} = \max\{3, 11\} = 11$
 - $d_{(35)2} = max\{d_{32}, d_{52}\} = max\{7, 10\} = 10$

$$D = \begin{bmatrix} 0 & & \\ 11 & 0 & \\ 10 & 9 & 0 \\ 9 & 6 & 5 & 0 \end{bmatrix} \quad \dots continua...$$

Algoritmos Hierárquicos Aglomerativos

• Ligação Média: une os pontos médios.

$$D = \begin{bmatrix} 0 & & & \\ 9 & 0 & & \\ 3 & 7 & 0 & \\ 6 & 5 & 9 & 0 \\ 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

- $min(d_{ij}) = 2 = d_{53} = d_{35} \leftarrow$ seleção pelo mínimo!
 - $d_{(35)1} = m\acute{e}dia\{d_{31}, d_{51}\} = m\acute{e}dia\{3, 11\} = 7$
 - $d_{(35)2} = m\acute{e}dia\{d_{32}, d_{52}\} = m\acute{e}dia\{7, 10\} = 8.5$
 - $\mathrm{d}_{(35)4}=\mathsf{m\'edia}\{\mathrm{d}_{34},\mathrm{d}_{54}\}=\mathsf{m\'edia}\{9,8\}=8.5\leftarrow\mathsf{uni\~oes}$ pelas médias!

$$D = \left[\begin{array}{cccc} 0 & & & \\ 7 & 0 & & \\ 8.5 & 9 & 0 & \\ 8.5 & 6 & 5 & 0 \end{array} \right] \quad \dots continua...$$

Ligação Simples, Completa e Média no R

```
require (graphics)
m \leftarrow c(0.9.3.6.11.9.0.7.5.10.3.7.
        0,9,2,6,5,9,0,8,11,10,2,8,0)
m \leftarrow matrix(m.5.5)
d <- as.dist(m)
hcs <- hclust(d. "single")
plot (hcs)
plot (hcs, hang = -1, cex.axis=1.2, cex.lab = 1.5,
     xlab="Single", main="Dendograma")
hcc <- hclust(d, "complete")
plot (hcc)
plot(hcc. hang = -1. cex.axis = 1.2. cex.lab = 1.5.
     xlab="Complete", main="Dendograma")
hcc <- hclust(d, "average")
plot (hcc)
plot (hcc, hang = -1, cex.axis=1.2, cex.lab = 1.5,
     xlab="Average", main="Dendograma")
```


Algoritmos Hierárquicos Aglomerativos

- Algoritmo da Média ponderada de grupos;
- Algoritmo de Ward seleciona novos grupos com base na menor soma de quadrados do erro (SSE) de todas as possíveis combinações de pares;
- **ENERGY** *ϵ*-clustering (Székly e Rizzo 2005).
 - Une objetos baseado na definição de energia;
 - Equivale a métodos tradicionais para certos paramêtros iniciais.
- AGNES (Agglomerative Nesting);
- e muitos outros...
- Referência: Kaufman, L. e Rousseeuw, P.J. (2005) Findig Groups in Data: An Introduction to Cluster Analysis. Wiley.

Algoritmos Hierárquicos Divisivos

DIANA (DIvisive ANAlysis)

• Problema com algoritmos hierárquicos:

Para classificar 1000 objetos temos

499500 possíveis fusões e $5.357.543 \times 10^{300}$ possíveis divisões.

Algoritmos Não-Hierárquicos (Partitional)

- Procuram encontrar, diretamente, uma partição de n elementos em C grupos.
- Algoritmos buscam k observações que representam a estrutura de dados em cada grupo.
- Possuem funções objetivo próprias para avaliar a qualidade das partições.
- Os grupos s\(\tilde{a}\) representados por centr\(\tilde{o}\) ides (possuem forma convexa).
- Eficientes em bancos com grande volume de informação.

Algoritmos Não-Hierárquicos

- K-means (MacQueen 1967)
 - Mais popular dos algoritmos;
 - Número partições pré-estabelecido;
 - Calcula um centro para cada partição (μ_c , c=1,...,k);
 - Minimiza a soma de quadrados de cada observação em relação a μ_c ;
 - Atualiza o grupos até não existirem objetos a designar.
- PAM Partitioning around medoids (Kaufman e Rousseeuw 1990);
 - Similar a K-means utilizando MEDOIDS em vez de médias.
 - MEDOIDS: objeto do grupo para o qual a dissimilaridade média para os demais objetos do grupo é mínima.
- CLARA Clustering large applications;
 - Reduz o número de comparações no algoritmo PAM.
- SOM Self organizing maps (Kohonen 1989)
 - Idéia de redes neurais;
 - Permite uma visualização dos agrupamentos em 2 ou 3 dimensões.

Algoritmo K-means

- ① Considere os dados e um número k de grupos (cluster).
- 2 Faça um dos seguintes passos:
 - Alocar os elementos aleatoriamente aos k grupos e calcular \bar{x}_k .
 - Especificar os centróides de cada grupo, \bar{x}_k .
- 3 Calcule a distância Euclideana de cada item ao respectivo centróide:

$$ESD = \sum_{k=1}^{k} \sum_{c(i)=k} (\mathbf{x}_i - \bar{\mathbf{x}}_k)' (\mathbf{x}_i - \bar{\mathbf{x}}_k),$$

tal que \bar{x}_k é o centróide do k-ésimo grupo e c(i) é o cluster contendo x_i .

- Realocar cada item ao grupo com centróide mais próximo de maneira a reduzir ESD. Atualizar os centróides dos grupos após cada realocação.
- 6 Repetir os passos (3) e (4) até que não exista itens para realocar.

Exemplo K-means

Exemplo SOM

Exemplo de grid SOM bidimensional produzido com o pacote R.

Algoritmos Fuzzy

Por que utilizar algoritmos Fuzzy?

FANNY: FUZZY ANALYSIS

Mistura de Distribuições

- Algoritmos Baseados em Mistura de Distribuições:
 - Algoritmos hierárquicos aglomerativos que permitem alocação probabilística (algoritmo fuzzy);
 - Muito explorados em estudos envolvendo muitas variáveis e poucas observações.
 - Modelo de Mistura Finita 3

$$f(y_i) = p(y_i) = \sum_{g=1}^{G} \pi_g f_g(y_i | \theta_g)$$
 (10)

onde, pi_g é a probabilidade de uma observação ter sido gerada pela g-ésima componente, e $f_g(y_i|\theta_g)$ é a densidade da g-ésima componente com parâmetros θ_g .

³Bouveyron et al. (2019) Model-based Clustering and Classification for Data Science (with Applications in R). Cambridge.

Modelo baseado em Misturas

Qual modelo utilizar para estes dados?

Modelos de Misturas de Distribuições (Mixture Models)

O que é um modelo baseado em misturas?

- Modelos utilizados quando uma única distribuição não é capaz de representar a densidade em estudo.
- $p_{\theta}(y) = \pi_1 f_1(y_1|\theta_1) + \pi_2 f_2(y_2|\theta_2) + ... + \pi_G f_G(y_G|\theta_G)$
- $\pi_g, g = 1, \dots, G$ é a probabilidade de um componente da desconhecido da mistura:
- $\sum_{i} \pi_{g} = 1$;
- ullet $f_g(y_i| heta_g)$ é um modelo probabilístico desconhecido e
- θ_g são parâmetros desconhecidos do g-ésimo componente da mistura.
- θ é o conjunto de $(\pi_1, \ldots, \pi_G, \theta_1, \ldots, \theta_G)$.

• Quando os dados são multivariados, f_g é geralmente normal com densidade ϕ_g parametrizado pela vetor de médias μ_g e pela matriz de variância-covariância Σ_g , i.e,

$$\phi_{g}(y_{i}|\mu_{g}, \Sigma_{g}) = |2\pi\Sigma_{g}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(y_{i} - \mu_{g})^{\mathsf{T}}\Sigma_{g}^{-1}(y_{i} - \mu_{g})\right\}.$$

 A estimação é feita pela Máxima Verossilhança, utilizando o Algoritmo EM (EXPECTATION-MAXIMIZATION).

Estimação por Máxima Verossimilhança (MLE)

• Sejam n observações multivariadas (y_i, z_i) em que y_i é observado e z_i não é observado. Se (y_i, z_i) são iid's, a verossimilhança completa dos dados é

$$\mathcal{L}_c(y,z|\theta) = \prod_{i=1}^n f(y_i,z_i|\theta),$$

em que
$$y = (y1, ..., y_n)$$
 e $z = (z_1, ..., z_n)$.

 A verossimilhança observada pode ser obtida integrando z da verossimilhança completa,

$$\mathcal{L}_o(y|\theta) = \int \mathcal{L}_c(y,z|\theta)dz.$$

 A verossimilhança observada ou verossimilhança da mistura pode ser escrita como,

$$\mathcal{L}_o(y|\theta) = \prod_{i=1}^n \sum_{j=1}^G \pi_g f_g(y_i|\theta_g) = \prod_{i=1}^n \sum_{j=1}^G \pi_g \phi_g(y_i|\mu_g, \Sigma_g).$$

O Algoritmo EM

- Alterna entre os passos EXPECTATION e MAXIMIZATION.
- EXPECTATION (E): a esperança condicional da função $\log \mathcal{L}_c = \ell_c$ dada a informação observada e as estimativas atuais dos parâmetros são calculados.
- MAXIMIZATION (M): obtemos os parâmetros que maximizam ℓ_c do passo E.
- No MLE para modelo de misturas, a parte não observada dos dados, z, envolve quantidades que são introduzidas de forma a reformular o problema para EM.
- No EM para modelos de misturas, os dados completos são considerados (y_i, z_i) em que $z_i = (z_{i,1}, \ldots, z_{i,G})$ é a porção não observada com

$$z_{i,g} = 1$$
 se $y_i \in \text{grupo } g$ e $z_{i,g} = 0$ c.c..

- Assumimos que z_i são iid, conforme uma distribuição multinomial de G categorias com probabilidades π_1, \ldots, π_G .
- Assumimos que

$$f(y_i|z_i) = \prod_{g=1}^G f_g(y_i|\theta_g)^{z_{i,g}}$$

e assim.

$$\ell_c(\theta_g, \pi_g, z_{i,g}|y) = \sum_{i=1}^n \sum_{g=1}^G z_{i,g} \log[\pi_g f_g(y_i|\theta_g)]$$

é a função de log-verossimilhança dos dados completos.

• No passo E, a interação s do algoritmo EM é dada por

$$\hat{z}_{i,g}^{(s)} = \frac{\hat{\pi}_g^{(s-1)} f_g(y_i | \hat{\theta}_g^{(s-1)})}{\sum_{h=1}^{G} \hat{\pi}_h^{(s-1)} f_h(y_i | \hat{\theta}_h^{(s-1)})}$$

- A quantidade $\hat{z}_{i,g}^{(s)} = \mathrm{E}[z_{i,g}|y_i,\theta_1,\ldots,\theta_G]$ para o modelo de mistura $p_{\theta}(y)$.
- Para mistura de normais multivariadas,
 - o passo E é dado por $\phi_{\mathbf{g}}$ no lugar de $f_{\mathbf{g}}$.
 - o passo ${\rm M}$ as estimativas dos parâmetros tem forma fechada e são

$$\hat{\pi}_g^{(s)} = \frac{\hat{n}_g^{(s-1)}}{n}; \quad \hat{\mu}_g^{(s)} = \frac{\sum_{i=1}^n \hat{z}_{i,g}^{(s-1)} y_i}{\hat{n}_g^{(s-1)}}; \quad \hat{n}_g^{(s-1)} = \sum_{i=1}^n \hat{z}_{i,g}^{(s-1)}.$$

• A estimativa $\hat{\Sigma}_g^{(s)}$ depende de sua parametrização. Vários modelos são propostos.

Identifier	Model	Distribution	Volume	Shape	Orientation
E		Univariate	Equal		
V		Univariate	Variable		
EII	λI	Spherical	Equal	Equal	NA
VII	$\lambda_g I$	Spherical	Variable	Equal	NA
EEI	λA	Diagonal	Equal	Equal	Axis-aligned
VEI	$\lambda_g A$	Diagonal	Variable	Equal	Axis-aligned
EVI	λA_g	Diagonal	Equal	Variable	Axis-aligned
VVI	$\lambda_g A_g$	Diagonal	Variable	Variable	Axis-aligned
EEE	Σ	Ellipsoidal	Equal	Equal	Equal
VEE	$\lambda_g DAD^T$	Ellipsoidal	Variable	Equal	Equal
EVE	$\lambda D A_g D^T$	Ellipsoidal	Equal	Variable	Equal
EEV	$\lambda D_q A D_q^T$	Ellipsoidal	Equal	Equal	Variable
	9 9	•	•	•	
VVE	$\lambda_q D A_q D^T$	Ellipsoidal	Variable	Variable	Equal
EVV	$\lambda D_g A_g D_g^T \\ \lambda_g D_g A D_g^T$	Ellipsoidal	Equal	Variable	Variable
VEV	$\lambda_a D_a A D_a^T$	Ellipsoidal	Variable	Equal	Variable
VVV	Σ_q	Ellipsoidal	Variable	Variable	Variable

Parametrizações de Σ_g no agrupamento por modelo baseado em misturas. A é uma matriz diagonal.

Exemplos de contornos para os diferentes modelos.

 Considere um modelo GMM (GAUSSIAN MIXTURE MODEL) com a mistura de duas normais, i.e.,

$$p_{\theta}(y) = \pi_1 N(\mu_1, \sigma_1^2) + \pi_2 N(\mu_2, \sigma_2^2)$$

- Note que $\pi_2=1-\pi_1$ e seja $heta=(\pi_1,\mu_1,\sigma_1,\mu_2,\sigma_2).$
- O Log da função de Verossimilhança é

$$\ell(\theta|y) = \sum_{i} \log \{\pi_1 \phi(y_i, \mu_1, \sigma_1^2) + 1 - \pi_1 \phi(y_i, \mu_2, \sigma_2^2)\}$$

е

$$\ell(\theta|y_i) = \log p_{z_i}(y_i|\theta_{z_i}) + \log \pi_{z_i}$$

$$= \sum_{i=1}^k \{I(z_i = j)\log p_j(y_i|\theta_j) + I(z_i = j)\log \pi_j\}$$

$$(\phi(y,\mu,\sigma^2)$$
 é a densidade da $N(\mu,\sigma^2)$)

Passo E

$$\begin{split} \hat{p}_{ij} &= E\{I(Z_i = j)|y_i, \theta^0\} = P(Z_i = j|y_i, \theta^0) \\ &= \frac{\pi_j^0 p_j(y_i|\theta_j^0)}{p_{\theta^0}(y_i)} = \frac{\pi_j^0 p_j(y_i|\theta_j^0)}{\sum_j \pi_j^0 p_j(y_i|\theta_j^0)} \\ \text{o normal será:} \end{split}$$

Que no caso normal será:

$$\hat{
ho}_{ij} = rac{\pi_j \mathrm{N}(y_i | \mu_j^0, \sigma_j^0)}{\sum_j \pi_j \mathrm{N}(y_i | \mu_j^0, \sigma_j^0)}$$

 Significado: o "peso" que a j-ésima distribuição tem em explicar a observação, corresponde ao peso desta função ao observarmos y_i considerando $\theta = \theta^0$.

• Passo M: atualização de cada θ_i é baseada na maximização (emseparado) de

$$\sum_{i} \hat{p}_{ij} \log p_{j}(y_{i}|\theta_{j})$$

е

$$\pi_j^{(1)} = \frac{\sum_i \hat{p}_{ij}}{n}$$

Que no caso normal tem forma explicita.

- *j*-ésimo parâmetro: $\theta_i = (\mu_i, \sigma_i)$.
- Verossimilhança ponderada:

$$-\frac{1}{2}\sum_{i}\hat{p}_{ij}\left\{\log\sigma_{j}^{2}+\frac{(y_{i}-\mu_{j})^{2}}{\sigma_{j}^{2}}\right\}$$

Atualizações ponderadas:

$$\mu_j^{(1)} = \frac{\sum_i \hat{p}_{ij} y_i}{\sum_i \hat{p}_{ij}} \quad \text{e} \quad \sigma_j^{2(1)} = \frac{\sum_i \hat{p}_{ij} (y_i - \mu_j^1)^2}{\sum_i \hat{p}_{ij}}$$

Programa R

```
y \leftarrow c(rnorm(300,54,5),rnorm(700,80,7.5))
n < -1000
par(mfrow=c(1, 1))
hist(y, freq=F)
p < 0.1; mu1 < 50; sig1 < 4; mu2 < 70; sig2 < 7
for (i in 1:400){
    deny \leftarrow p*dnorm(y, mu1, sig1) + (1-p)*dnorm(y, mu2, sig2)
    p1 <- p*dnorm(y,mu1,sig1)/deny
    p2 < -1 - p1
# updates:
p \ll sum(p1)/n
mu1 <- sum(p1*y)/sum(p1)
mu2 <- sum(p2*y)/sum(p2)
sig11 <- sum(p1 *(y-mu1)^2)/sum(p1); sig1 <- sqrt(sig11)
sig22 <- sum(p2 *(y-mu2)^2)/sum(p2); sig2 <- sqrt(sig22)
resp \leftarrow c(p, mu1, sig1, mu2, sig2)
resp
px < c(rnorm(p*1000, mu1, sig1), rnorm((1-p)*1000, mu2, sig2))
lines (density (px))
```


Convergência do Algoritmo EM (Visualização de 19 iterações)

Valores iniciais: p=0.1, $\mu_1=50$, $\sigma_1=4$, $\mu_2=70$, $\sigma_2=7$.

Convergência do Algoritmo EM

Valores finais: p = 0.307, $\mu_1 = 54.186$, $\sigma_1 = 4.939$, $\mu_2 = 80.347$, $\sigma_2 = 7.52$.

Dificuldades com os algoritmos tradicionais

- Precisam de especificação prévia do número de grupos;
- Sensibilidade a outliers;
- Falta de robustez:
- Apresentam resultados diferentes em transformações monótonas;
- Problemas de inversão (matriz de covariância);
- Suposições sobre distribuição dos dados em cada grupo;
- Desenvolvidos para análises com p < n.
- Tempo de processamento e alocação de memória.

Técnicas Alternativas de Agrupamento

- Gene-shaving (Hastie et al. 2001);
- Agrupamentos baseados em suavização (Jiang et al. 2003);
- CLIFF filtragem iterativa (Xing e Karp 2001);
- ...

Problemas

- Pouca flexibilidade computacional;
- Péssima documentação;
- Incompatibilidade com diferentes sistemas operacionais;
- Nem sempre funcionam como descritos...

Determinação do Número de Grupos

RMSSTD (Root Mean Squared Standard Deviation)

Grupo formado, G_q , contém variâncias $s_{q1}^2, \ldots, s_{qp}^2$ para as p variáveis (agrupando observações).

$$RMSSTD_q = \sqrt{\frac{1}{p} \sum_{j=1}^{p} s_{q_j}^2}$$

Para grupos compactos, a medida deve ser pequena.

Determinação do Número de Grupos

$$R^2 = \frac{SSB}{SSTo}$$

em que

$$SSB = \sum_{i=1}^{g} n_i (\bar{X}_{i.} - \bar{X})' (\bar{X}_{i.} - \bar{X})$$

е

$$SSTo = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \bar{X})'(X_{ij} - \bar{X})$$

O valor decresce sempre que novos grupos são incluídos. Devemos procurar um ponto de salto de ${\rm R}^2$ para saber aonde parar.

Determinação do Número de Grupos

Seudo F

$$F = \frac{\mathrm{SSB}/(g-1)}{\mathrm{SSR}/(n-g)} = \frac{(n-g)}{(g-1)} \times \frac{\mathrm{R}^2}{1-\mathrm{R}^2}$$

em que

$$SSR = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})' (X_{ij} - \bar{X}_{i.})$$

Busca-se o maior valor de Pseudo F .

Validação do Agrupamento

 Índice Ajustado de Rand: é um procedimento que permite comparar o agrupamento com algum critério externo, i.e., um agrupamento prévio ou resultado padrão.

Esta é uma medida de concordância entre dois critérios. Agrupamentos com elementos nos mesmos grupos tem valor esperado $\mathrm{ARI}\approx 1$ e agrupamentos em que todos os elementos mudam de grupos tem valor esperado $\mathrm{ARI}\approx 0.$

O procedimento está disponível no pacote MCLUST do R.

Referências:

- Hubert, L. (1985) Comparing Partitions. *Journal of Classification*, Springer-Verlag.
- Yeung, K.Y. e Ruzzo, W.L. (2001) *The Adjusted Rand Index*. Texto técnico.

Validação do Agrupamento

 Outras Medidas de validação: medidas internas, externas, de estabilidade e biológicas.

Referência:

- Brock, G.; Pihur, V.; Datta, S. e Datta, S. (2008) clValid: An R Package for Cluster Validation. *Journal of Statistical Software*, Vol. 25, Issue 4.

Pacotes e funções no R

- CCLUST, CLASS (som), CLUSTER (agnes, clara, diana, fanny, mona, pam), E1071 (bclust, cmeans), FLEXMIX, FPC, HOPACH, MCLUST, STATS (hclust, heatmap, kmeans), PROXY.
- https://cran.r-project.org/web/views/Cluster.html para visão mais completa de recursos no R.

Exemplos

- ExemplosCL.R
 - (1) XYdata: agrupamento via k-means de dados gerados de duas normais.
 - (2) Analise Grafica
 - (3) Matriz de Distancias: medidas de similaridade e concordância.
 - (4) Algoritmos: Algoritmos hierárquicos e não hierárquicos.
 - (5) k-Means: analise k-Means do arquivo geyser.rda (ver descrição dos dados no arquivo Izenman-Geyser.pdf).

Algumas medidas para determinação de grupos e validação do agrupamento (em comparação com agrupamento hierárquico) são apresentadas.

(6) MCLUST: contornos de densidade para modelo de mistura normal bidimensional para dados geyser.rda.

Exemplos

- 2 von Borries, G.; Wang, H. (2009) Partition clustering of high dimensional low sample size data based on p-values. *Computational Statistics and Data Analysis*, vol. 53.
- Lins, R. (2019) Implementação computacional de algoritmos para agrupamento de dados HDLSS e HDLLSS. Apresentação na 64a RBRAS, Cuibá-MT.

https://github.com/rafaelslins/Rclust

dos Santos, L.B. (2021) Agrupamento por misturas finitas normais com aplicação a dados de expressão gênica. Trabalho de conclusão do Bacharelado em Estatística, UnB.

