Functional Dependencies

1. Introduction:

- In a relational database, functional dependencies (FDs) are crucial for understanding the relationships between attributes within a table.
- A functional dependency between two attribute sets, X and Y, denoted as X → Y, indicates that the values of X uniquely determine the values of Y.

2. Armstrong's Axioms:

- Armstrong's axioms are fundamental rules used for reasoning about functional dependencies.
- These axioms guide us in deriving and understanding the relationships between attributes.

a. **Reflexivity** Axiom:

- If Y is a subset of X, then $X \to Y$.
- This axiom reflects the idea that any subset of attributes is functionally dependent on the whole set of attributes.

Example:

Consider a relation R with attributes A, B, and C. If $A \rightarrow B$ holds, then it's also true that $AC \rightarrow B$.

b. Augmentation Axiom:

- If $X \to Y$, then $XZ \to YZ$ for any attribute set Z.
- This axiom shows that adding attributes to both sides of a functional dependency maintains its validity.

Example:

If Name \rightarrow Age, then Name Address \rightarrow Age Address holds true.

c. **Transitivity** Axiom:

- If $X \to Y$ and $Y \to Z$, then $X \to Z$.
- This axiom implies that if a functional dependency can be derived indirectly, it can be inferred directly.

Example:

If Course → Department and Department → Faculty, then Course → Faculty can be inferred.

3. Example Scenarios:

a. Student Table:

| Roll No | Name | Age | Course |

| 101 | Alice | 20 | CS |

| 102 | Bob | 22 | ECE |

| 103 | Carol | 21 | CS |

...

- In the above table, Roll No → Name because each Roll No corresponds to a unique student's name.
- Roll No → Age because each student's Roll No uniquely determines their age.
- Course → Roll No because each course maps to multiple Roll Nos.
- b. Course Enrollment Table:

...

 In this table, Roll No → Course because each Roll No maps to a specific course.

4. Inference Rules:

a. Union Rule:

- If $X \to Y$ and $X \to Z$, then $X \to YZ$.

Example:

If Roll No \rightarrow Name and Roll No \rightarrow Age, then Roll No \rightarrow Name Age.

b. **Decomposition** Rule:

- If
$$X \to YZ$$
, then $X \to Y$ and $X \to Z$.

Example:

If Roll No \rightarrow Name Age, then Roll No \rightarrow Name and Roll No \rightarrow Age.

c. Pseudo-Transitivity Rule:

- If
$$X \to Y$$
 and $WY \to Z$, then $WX \to Z$.

Example:

If Course \rightarrow Department and CourseFaculty \rightarrow Office, then CourseFaculty \rightarrow Office can be inferred as Course \rightarrow DepartmentOffice.

5. Conclusion:

- Functional dependencies play a pivotal role in maintaining the accuracy and integrity of relational databases.
- Armstrong's axioms provide a systematic approach to understanding and deriving functional dependencies.
- These concepts are essential for database normalization and the efficient design of relational databases.