

## planetmath.org

Math for the people, by the people.

## determining integer contraharmonic means

 ${\bf Canonical\ name} \quad {\bf Determining Integer Contraharmonic Means}$ 

Date of creation 2013-11-19 18:13:25 Last modified on 2013-11-19 18:13:25

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 15

Author pahio (2872)
Entry type Algorithm
Classification msc 11Z05
Classification msc 11A05
Classification msc 11D09
Classification msc 11D45

 $Related\ topic \qquad Linear Formulas For Pythagorean Triples$ 

For determining effectively values c of integer contraharmonic means of two positive integers u and v (1 < u < v), it's convenient to start from the (7) in the http://planetmath.org/IntegerContraharmonicMeansparent entry:

$$v = \frac{2u^2}{w} - u \tag{1}$$

where w is any positive factor of  $2u^2$  less than u. Substituting the above expression of v to the defining expression

$$c = \frac{u^2 + v^2}{u + v}$$

of c, this gets the form

$$c = \frac{2u^2}{w} - 2u + w. \tag{2}$$

Hence one can use the formulae (1) and (2), giving in them for each desired u the values w of the positive factors of  $2u^2$ , beginning from w := 1 and stopping before w = u.

The for the integer harmonic mean, corresponding (2), is simply

$$h = 2u - w. (3)$$

**Example.** In the following table one sees for u = 36 all possible values of the parametre w and the corresponding values of c and h; the pertinent values of v are given, too.

| w | 1    | 2    | 3   | 4   | 6   | 8   | 9   | 12  | 16  | 18  | 24 | 27 | 32 |
|---|------|------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|
| v | 2556 | 1260 | 828 | 612 | 396 | 288 | 252 | 180 | 126 | 108 | 72 | 60 | 45 |
| c | 2521 | 1226 | 795 | 580 | 366 | 260 | 225 | 156 | 106 | 90  | 60 | 51 | 41 |
| h | 71   | 70   | 69  | 68  | 66  | 64  | 63  | 60  | 56  | 54  | 48 | 45 | 40 |

As one sees, the contraharmonic and the harmonic mean may differ considerably, but also the difference 1 is possible.

## References

[1] J. Pahikkala: "On contraharmonic mean and Pythagorean triples". – Elemente der Mathematik **65**:2 (2010).