Linear Elastic Finite Element Coding And Analysis

ME 434/613 : FINITE ELEMENT AND BOUNDARY ELEMENT METHODS by

Group 1

140100097	P. V. Sai Sushant	\mathbf{Credit}
140100099	T. Sai Goutam	${\bf Credit}$
140100101	P. Vachan Deep	${\bf Credit}$
14D170011	Palash Gajjar	${\bf Credit}$
14D170017	Amey Mankar	Credit

under the guidance of

Prof. Parag Tandaiya

Department of Mechanical Engineering Indian Institute of Technology, Bombay Mumbai 400 076

Contents

1	Res	sults	1
	1.1	Uni–axial patch test (plane stress)	1
	1.2	Shear patch test (plane stress)	2
	1.3	Uni–axial patch test (axi–symmetric)	3
	1.4	Shear patch test (Plane strain)	3
	1.5	Thick cylinder subjected to internal pressure	5
		1.5.1 Treatment as plane strain case	5
		1.5.2 Treatment as axi-symmetric case	6
	1.6	Plate with hole	7
2	Cod	de and Input file listings	14

Part 1

Results

1.1 Uni-axial patch test (plane stress)

Schematic of the test case is shown in Figure 1.1. A uniform stress $\sigma = 1$ is applied on the edge 1–2–3. E = 100 and $\nu = 0.3$.

The theoretical values of stresses are $\sigma_y = 1$, $\sigma_x = 0$ and $\tau_{xy} = 0$. The theoretical strains are $\epsilon_y = \sigma_y/E$, $\epsilon_x = -\nu \epsilon_y$ and $\gamma_{xy} = \tau_{xy}/G^1$. As is clear from Table 1.1, the values for stress and strain obtained by simulation indeed match well with theoretical values.

The theoretical displacement field for this problem is $u = x\epsilon_x = -(\nu/E)x$ and $v = y\epsilon_y = y/E$. The nodal displacements obtained from the simulation are shown in Table 1.2.

Figure 1.1: Mesh for problem (a)

 $^{{}^1}G = \frac{E}{2(1+\nu)}$

Element #	σ_x	σ_y	ϵ_x	ϵ_y
1	-0.7866E-16	0.1000E+01	-0.3000E -02	0.1000 E-01
2	-0.1880E-15	0.1000E+01	-0.3000E -02	0.1000 E-01
3	0.5370E-15	0.1000E+01	-0.3000E -02	0.1000 E-01
4	0.2511E-15	0.1000E+01	-0.3000E-02	0.1000 E-01

Table 1.1: Stresses and strains at output gauss points of the elements for problem (a). Theoretical values are $\sigma_y = 1$, $\sigma_x = 0$, $\epsilon_y = 0.01$ and $\epsilon_x = -0.003$.

Node #	u	v
1	0.0000E+00	0.2000 E-01
2	-0.3000E-02	0.2000 E-01
3	-0.6000E-02	0.2000 E-01
4	0.0000E+00	0.1000 E-01
5	-0.3600E-02	0.1300 E-01
6	-0.6000E-02	0.1000 E-01
7	0.0000E+00	0.0000E+00
8	-0.3000E-02	0.0000E+00
9	-0.6000E-02	0.0000E+00

Table 1.2: Nodal displacements for problem (a). Theoretical displacement field is u = -0.003x and v = 0.01y.

1.2 Shear patch test (plane stress)

Schematic of the test case is shown in Figure 1.2. A constant shear stress of $\tau_{xy} = 1.0$ is applied on the edge 1–2–3. $E = 100^7$ and $\nu = 0.3$.

The theoretical values of stresses are $\sigma_y = 0$, $\sigma_x = 0$ and $\tau_{xy} = 1.0$. The theoretical strains are $\epsilon_y = 0$, $\epsilon_x = 0$ and $\gamma_{xy} = \tau_{xy}/G = 0.26E - 06$. As is clear from Table 1.3, the values for stress and strain obtained by simulation indeed match well with theoretical values.

The nodal displacements obtained from the simulation are shown in Table 1.4.

Element #	σ_x	σ_y	$ au_{xy}$	ϵ_x	ϵ_y	γ_{xy}
1	-0.16E-15	0.26E-17	0.10E + 01	-0.16E-22	0.50E-23	0.26E-06
2	-0.27E-15	-0.42E-15	0.10E + 01	-0.14E-22	-0.34E-22	0.26E-06
3	-0.19E-15	-0.96E-16	0.10E + 01	-0.17E-22	-0.38E-23	0.26E-06
4	-0.41E-15	0.12E-15	0.10E + 01	-0.45E-22	0.24E-22	0.26E-06

Table 1.3: Stresses and strains at output gauss points of the elements for problem (b). The theoretical values of stresses are $\sigma_y = 0$, $\sigma_x = 0$ and $\tau_{xy} = 1.0$. The theoretical strains are $\epsilon_y = 0$, $\epsilon_x = 0$ and $\gamma_{xy} = \tau_{xy}/G = 0.26E - 06$.

Figure 1.2: Mesh for problem (b)

Node #	u	v
1	0.5200E-06	0.0000E+00
2	0.5200E-06	0.0000E+00
3	0.5200E-06	0.0000E+00
4	0.2600E-06	0.0000E+00
5	0.3380E-06	0.0000E+00
6	0.2600E-06	0.0000E+00
7	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00

Table 1.4: Nodal displacements for problem (b).

1.3 Uni-axial patch test (axi-symmetric)

The schematic for this test is as shown in Figure 1.1. Again, a uniform stress $\sigma = 1$ is applied on the edge 1–2–3. E = 100 and $\nu = 0.3$.

The theoretical values of stresses are $\sigma_r = 0$, $\sigma_z = 1$, $\sigma_\theta = 0$, $\tau_{rz} = 0$. The corresponding values of strains are $\epsilon_z = \sigma_z/E$, $\epsilon_r = \epsilon_\theta = -\nu \epsilon_z$ and $\gamma_{rz} = \tau_{rz}/G$. Stresses and strains obtained from simulation are shown in Tables 1.5 and 1.6 respectively. Clearly, there is good agreement between numerical and analytical values.

The theoretical displacement field for this problem is $u = r\epsilon_{\theta} = -(\nu/E)r$ and $v = z\epsilon_z = z/E$. The nodal displacements obtained from simulation are shown in Table 1.7.

1.4 Shear patch test (Plane strain)

Schematic of the test case is shown in Figure 1.7. A constant shear stress of $\tau_{xy} = 1$ is applied on the edge 1–2–3. $E = 100^7$ and $\nu = 0.3$.

Element #	σ_r	σ_z	$\sigma_{ heta}$	$ au_{rz}$
1	-0.1004E-07	0.1000E+01	-0.8011E-08	0.1094 E-07
2	0.1886E-08	0.1000E+01	0.1326E-08	-0.2563E -08
3	-0.1871E-08	0.1000E+01	0.1056 E-08	0.2888E- 08
4	-0.1004E-08	0.1000E+01	0.4487 E-09	0.7219 E-10

Table 1.5: Stress at output gauss points for problem (c). Theoretical values are $\sigma_r = \sigma_\theta = \tau_{rz} = 0$ and $\sigma_z = 1$.

Element #	ϵ_r	ϵ_z	$\epsilon_{ heta}$	γ_{rz}
1	-0.3000E-02	0.1000E-01	-0.3000E-02	0.2844E-09
2	-0.3000E-02	0.1000 E-01	-0.3000E-02	-0.6663E-10
3	-0.3000E-02	0.1000 E-01	-0.3000E-02	0.7509 E-10
4	-0.3000E-02	0.1000E- 01	-0.3000E-02	0.1877E-11

Table 1.6: Strain at output gauss points for problem (c). Theoretical values are $\epsilon_r = \epsilon_\theta = -0.003$, $\epsilon_z = 0.01$ and $\gamma_{rz} = 0$.

The theoretical values of stresses are $\sigma_y = 0$, $\sigma_x = 0$ and $\tau_{xy} = 1.0$. The theoretical strains are $\epsilon_y = 0$, $\epsilon_x = 0$ and $\gamma_{xy} = \tau_{xy}/G = 0.26E - 06$. As is clear from Table 1.8, the values for stress and strain obtained by simulation indeed match well with theoretical values.

The nodal displacements obtained from the simulation are shown in Table 1.9.

Figure 1.3: Mesh for problem (d)

Node #	u	v
1	0.0000E+00	0.2000E-01
2	-0.3000E-02	0.2000 E-01
3	-0.6000E-02	0.2000 E-01
4	0.0000E+00	0.1000 E-01
5	-0.3600E-02	0.1300 E-01
6	-0.6000E-02	0.1000 E-01
7	0.0000E+00	0.0000E+00
8	-0.3000E-02	0.0000E+00
9	-0.6000E-02	0.0000E+00

Table 1.7: Nodal displacements for problem (c). Note that these are identical to those given in Table 1.2. Theoretical displacement field is u = -0.003r and v = 0.01z.

Element #	σ_x	σ_y	$ au_{xy}$	ϵ_x	ϵ_y	γ_{xy}
1	-0.76E-15	-0.31E-15	0.10E + 01	-0.58E-22	0.20E-23	0.26E-06
2	0.60E-15	0.42E-15	0.10E + 01	0.38E-22	0.15E-22	0.26E-06
3	-0.18E-16	-0.24E-16	0.10E + 01	-0.67E-24	-0.15E-23	0.26E-06
4	-0.50E-15	-0.33E-15	0.10E + 01	-0.32E-22	-0.10E-22	0.26E-06

Table 1.8: Stresses and strains at output gauss points of the elements for problem (d). The theoretical values of stresses are $\sigma_y = 0$, $\sigma_x = 0$ and $\tau_{xy} = 1.0$. The theoretical strains are $\epsilon_y = 0$, $\epsilon_x = 0$ and $\gamma_{xy} = \tau_{xy}/G = 0.26E - 06$.

1.5 Thick cylinder subjected to internal pressure

Analytical solution for this problem is given by

$$\sigma_r = \frac{a^2 p}{b^2 - a^2} \left(1 - \frac{b^2}{r^2} \right)$$
$$\sigma_\theta = \frac{a^2 p}{b^2 - a^2} \left(1 + \frac{b^2}{r^2} \right),$$

Where, a is the inner radius, b is the outer radius of the hollow cylinder and p is the internal pressure. For this case, with a = 1, b = 2 and p = 1, we get

$$\sigma_r = \frac{1}{3} \left(1 - \frac{4}{r^2} \right)$$

$$\sigma_\theta = \frac{1}{3} \left(1 + \frac{4}{r^2} \right).$$

1.5.1 Treatment as plane strain case

The schematic of this case is given in Figure 1.4. Table 1.10 compares numerical and analytical values of σ_r and σ_θ for all the elements. It can be seen that the numerical values don't match very well with analytical ones but, at the same time they are not drastically off. This discrepancy can be explained by the fact that since 4 noded rectangles are being considered, the curves in the elements as depicted

Node #	u	v
1	0.5200E-06	0.0000E+00
2	0.5200E-06	0.0000E+00
3	0.5200E-06	0.0000E+00
4	0.2600E-06	0.0000E+00
5	0.3380E-06	0.0000E+00
6	0.2600E-06	0.0000E+00
7	0.0000E+00	0.0000E+00
8	0.0000E+00	0.0000E+00
9	0.0000E+00	0.0000E+00

Table 1.9: Nodal displacements for problem (d).

in Figure 1.4 are not captured correctly. Consequently, the domain itself is not modelled correctly with the inner and outer arcs being treated as 3 piece—wise linear segments. Hence, the non–agreement between numerical and analytical values is not entirely unexpected. Analytical vs Numerical stresses

Element $\#$	σ_r numerical	σ_{θ} numerical	σ_r analytical	σ_{θ} analytical
1	-7.257646E-01	1.430465E+00	-7.950518E-01	1.461718E+00
2	-3.703436E-01	1.069144E+00	-4.224014E-01	1.089068E+00
3	-1.662729E-01	8.627029E- 01	-2.079381E-01	8.746048E- 01
4	-3.838692E-02	7.337069E- 01	-7.332268E-02	7.399893E- 01
5	-7.257000E-01	1.430300E+00	-7.957709E-01	1.462438E+00
6	-3.703000E-01	1.069100E+00	-4.226027E- 01	$1.089269\mathrm{E}{+00}$
7	-1.663000E-01	8.627000E-01	-2.077483E-01	8.744150E- 01
8	-3.840000E-02	7.338000E- 01	-7.293267E -02	7.395993E- 01
9	-7.257646E-01	1.430465E+00	-7.950518E -01	1.461718E+00
10	-3.703436E-01	1.069144E+00	-4.224014E-01	1.089068E+00
11	-1.662729E-01	8.627029E- 01	-2.079381E-01	8.746048E- 01
12	-3.838692E-02	7.337069E-01	-7.332268E-02	7.399893E-01

Table 1.10: Comparison of stress values for problem (e) with geometry treated as plane strain case.

is plotted in Fig 1.5.

1.5.2 Treatment as axi-symmetric case

The schematic of this case is given in Figure 1.6. Table 1.10 compares numerical and analytical values of σ_r and σ_θ for all the elements. As opposed to previous case, in this case, the agreement between numerical and analytical values is much better. However, since the analytical stresses vary as $1/r^2$, just 4 elements cannot possibly capture the variation very well. Analytical vs Numerical stresses is plotted in Fig 1.7.

Figure 1.4: Mesh and element numbering for problem (e) with geometry treated as plane strain case.

Element #	σ_r numerical	σ_{θ} numerical	σ_r analytical	σ_{θ} analytical
1	-7.175000E-01	1.390000E+00	-7.073171E-01	1.373984E+00
2	-3.700000E-01	1.037000E+00	-3.661202E-01	1.032787E + 00
3	-1.705000E-01	8.354000E- 01	-1.686275E-01	8.352941E-01
4	-4.546000E-02	7.094000E-01	-4.424779E-02	7.109145E-01

Table 1.11: Comparision of stress values for problem (e) with geometry treated as axi-symmetric case.

1.6 Plate with hole

In this problem, a rectangular plate with a hole is subjected to tension as shown in figure 1.8. Two meshes have been generated for the analysis of this problem as shown in the figures 1.9 and 1.10. Theoretical solution for this case is given by,

$$\sigma_{\theta} = \frac{\sigma_o}{2} \left[1 + \frac{a^2}{r^2} - \left(1 + \frac{3a^4}{r^4} \right) \cos 2\theta \right]$$

where a is the radius of the hole. To obtain σ_{xx} along the y-axis, we substitute $\theta = \frac{\pi}{2}$, and for σ_{yy} along the x-axis, we substitute $\theta = 0$. Stress concentration factor K is given by,

$$K = \frac{\sigma_{max}}{\sigma_{avg}}$$

Here $\sigma_{avg} = \sigma_o * 5/(5-1) = 1.25$.

Stress concentration factor for the coarse mesh is 1.82 and for the fine mesh is 1.64. Comparison of numerical and analytical results are shown in figures 1.11 through 1.14.

It is observed that the results of the coarse mesh are very different from the theoretical results, this can be attributed to the inability of the coarse mesh to model the hole region adequately. Results of the fine mesh sit well with the theoretical values. The fine mesh only fails to capture the rise and dip of the σyy values as shown in 1.14.

Figure 1.5: Analytical vs Numerical stresses for problem (e) treated as plane strain case

Figure 1.6: Mesh and element numbering for problem (e) with geometry treated as axi–symmetric case.

Figure 1.7: Analytical vs Numerical stresses for problem (e) treated as axisymmetric case

Figure 1.8: Schematic for problem (f)

Figure 1.9: Coarse grid with numbered nodes for problem (f)

Figure 1.10: Fine grid with numbered nodes for problem (f)

Figure 1.11: σ_{xx} - Coarse

Figure 1.12: σ_{xx} - Fine

Figure 1.13: σ_{yy} - Coarse

Figure 1.14: σ_{yy} - Fine

Part 2

Code and Input file listings

Listing 2.1: Code for Linear Elastic Element Routine ELMT01 "mock.for"

```
С
             APPENDIX 1: GENERAL STRUCTURE OF ELEMENT SUBROUTINE IN FEAP
C
С
     SUBROUTINE ELMTO1(D,UL,XL,STRL,EPSL,QL,IX,TL,S,P,VEL,ACCEL,
     1 NDF, NDM, NST, NS, NQ, ISW)
C--- MOCK ELEMENT ROUTINE
      IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
      CHARACTER*8 HEAD
      CHARACTER*1 0
      COMMON /CHEAD/ O, HEAD(20)
      COMMON /CDATA/ NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
      COMMON /ELDATA/ DM, NELMT, MA, MCT, IEL, NEL
      DIMENSION D(*),UL(NDF,*),XL(NDM,*),IX(*),TL(*),S(NST,*),P(*)
     DIMENSION STRL(NS,*), EPSL(NS,*), QL(NQ,*), VEL(NDF,*), ACCEL(NDF,*)
c--- Variables required for ISW 1
      integer lineNo, maxLines, MODE
      character curLine*100, curStr*100
c--- Variables required for ISW 3
      integer k,row,col,L
      INTEGER NQP, NDM, NQUAD
      DIMENSION SG(16), TG(16), WG(16)
      DIMENSION B(4,NST),SHP(3,NEL),DMAT(4,4)
      DIMENSION PROD(NST,NST),TEMP(4,NST)
c---- Variables for ISW 4
      REAL XGAUS, YGAUS
      integer curNode
      ... VARIABLES FOR ISW 6 (ADDITIONAL VARIABLES)...
      DIMENSION BTRANS(NST, 4), BTRSTR(NST)
      INTEGER I, J, CURR_NST
      ... VARIABLES FOR ISW 9 (ADDITIONAL VARIABLES)...
      integer NSDM, T
      DIMENSION BUL(4), DMEP(4), ULARRAY(8)
      NSDM = 4
```

```
NQUAD = 5
C
       write(*,*)"In main program"
       write(6,'("nquad = ",I5)')NQUAD
С
C---- DESCRIPTION OF THE PARAMETER LIST AND SOME OF COMMON BLOCK VARIABLES
C
C---- D(*)
                            = MATERIAL PROPERTY ARRAY
C---- UL(NDF,NEL) = NODAL DISPLACEMENTS
C---- VEL(NDF,NEL) = NODAL VELOCITIES
C---- ACCEL(NDF, NEL) = NODAL ACCELERATIONS
C---- XL(NDM, NEL) = NODAL COORDINATES
C--- TL(NEL) = NODAL TEMPERATURES
- CONNECTIVITY APPAY
C---- IX(NEL)
                            = CONNECTIVITY ARRAY
C---- IX(NEL) = CONNECTIVITY ARRAY

C---- STRL(NS,NQUAD) = ELEMENT STRESSES AT INTEGRATION AND OUTPUT POINTS

C---- QL(NQ,NQUAD) = INTERNAL VARIABLES AT INTEGRATION AND OUTPUT POINTS

C---- S(NST,NST) = TANGENT STIFFNESS MATRIX (ISW = 3) OR

CONSISTENT MASS MATRIX (ISW = 5)
C----
                            CONSISTENT MASS MATRIX (ISW = 5)
C---- P(NST)
                            = ELEMENT FORCE ARRAY (ISW = 6) OR
                             LUMPED MASS MATRIX (ISW = 5)
C--- HEAD(20)
                        = HEADER FOR PRINTOUTS
C--- THE FOLL VARIABLES HAVE BEEN DEFINED ELSEWHERE IN THE PROGRAM
                           = NUMBER OF DEGREES OF FREEDOM PER NODE
C---- NDF
C---- NDM
                            = NUMBER OF SPATIAL DIMENSIONS
C---- NST
                            = DIMENSION OF STIFFNESS ARRAY (NDF*NEN)
C---- NS
                            = DIMENSION OF STRESS OR STRAIN ARRAY (NSDM)
C---- NQ
                            = DIMENSION OF INTERNAL VARIABLE ARRAY (NQDM)
                       = DIMENSION OF INTERNAL VARIABLE ARRAY (NQDM)
= NUMBER OF INTEGRATION AND OUTPUT QUADRATURE POINTS
= ELEMENT NUMBER CORRESPONDING TO PRESENT ELEMENT
= NUMBER OF NODES IN THE PRESENT ELEMENT
= MAXIMUM NUMBER OF NODES PER ELEMENT IN THE MESH
= MATERIAL SET NUMBER TO WHICH THE PRESENT
C--- NQUAD
C---- NELMT
C---- NEL
C--- NEN
C---- MA
                           = MATERIAL SET NUMBER TO WHICH THE PRESENT
C----
                              ELEMENT BELONGS
C---- ISW
                            = SWITCH WHICH IS SET BY THE CALLING MACRO AND
                               WHICH CONTROLS TO WHICH MODULE OF THE ELEMENT ROUTINE
C
                               THE EXECUTION IS TO BE TRANSFERRED:
С
С
                               ISW = 1 -> READ IN MATERIAL PROPERTIES
С
                               ISW = 2 -> UNUSED ISW
C
                               ISW = 3 -> COMPUTE ELEMENT STIFFNESS MATRIX
C
                               ISW = 4 -> PRINTOUT ELEMENT VARIABLES (E.G. STRESSES)
C
                               ISW = 5 -> COMPUTE MASS MATRIX
С
                               ISW = 6 -> COMPUTE ELEMENT FORCE ARRAY
С
                               ISW = 7 -> UNUSED ISW
                               ISW = 8 -> UNUSED ISW
C
C
                               ISW = 9 -> UPDATE ELEMENT VARIABLES
С
C--- OUTLINE OF THE SUBROUTINE
С
C---- GO TO CORRECT ARRAY PROCESSOR
       GO TO (1,2,3,4,5,6,7,8,9), ISW
C
1
       CONTINUE
C--- INPUT MATERIAL PROPERTIES
C---- THIS MODULE IS ACCESSED WHEN MACRO 'MATE' IS EXECUTED
C--- TASKS TO BE PERFORMED IN THIS MODULE:
C---- 1) READ INTO ARRAY 'D' MATERIAL PROPERTIES FOR THE ELEMENT
C---- 2) PRINT OUT AN ECHO OF THE INPUT MATERIAL DATA
C
       maxLines = 100
       write(6,'("Entering ISW 1")')
```

```
open(UNIT=5,FILE="fpin.dat")
        read(5,'(A100)')curLine
        write(*,*)curLine
          curStr = curLine(1:10)
          x body force
С
          read(curStr,*)D(1)
С
          y body force
          curStr = curLine(11:20)
          read(curStr,*)D(2)
С
          curStr = curLine(21:30)
          read(curStr,*)D(3)
          Mass density
С
          curStr = curLine(31:40)
          read(curStr,*)D(4)
          Youngs modulus
С
          curStr = curLine(41:50)
          read(curStr,*)D(5)
          Poissons ratio
С
          curStr = curLine(51:60)
          read(curStr,*)D(6)
      MODE = D(3)
      write(6,*)"Element Data read from file:"
      write(6,'("Element type",I4," | 1 ==> Plain strain | 2 ==>",
     +" Axi-symmetric | 3 ==> Plain stress")')MODE
      write(6,'("Mass density",F10.3)')D(4)
      write(6,'("Youngs modulus",F10.3)')D(5)
      write(6,'("Poissons ratio",F10.3)')D(6)
      write(6,*)"Leaving ISW 1"
      RETURN
C
2
      CONTINUE
C--- UNUSED ISW
      RETURN
C
3
      CONTINUE
C
C--- COMPUTE ELEMENT STIFFNESS MATRIX
C--- THIS MODULE IS ACCESSED WHEN MACROS 'TANG' AND 'UTAN' ARE EXECUTED
C--- TASKS TO BE PERFORMED IN THIS MODULE:
C---- 1) COMPUTE THE ELEMENT STIFFNESS MATRIX
C---- 2) RETURN IT IN ARRAY 'S(NST, NST)'
      write(6,'("Entering ISW 3")')
      MODE = D(3)
      write(6,'("nquad = ",I5)')NQUAD
С
      if(NQUAD .eq. 5) then
       NQP = 2
      elseif(NQUAD .eq. 1) then
       NQP = 1
      endif
      CALL PGAUS2(NQP,LINT,SG,TG,WG)
С
      write(6,'("Lint = ",I5)')LINT
      do row = 1,NST
          do col = 1,NST
            S(row,col) = 0.0
          enddo
      enddo
      do L=1,LINT
С
        write(6,'("\tEntering ISW 3 loop")')
        CALL SHAP2D(SG(L),TG(L),XL,SHP,XSJ,NDM,NEL,IX,.TRUE.)
```

```
C
        write(6,'("XSJ just after shap2d = ",E20.2)')XSJ
        do row=1,3
C
          write(6,'("SHP(",I1,",1:4) just after shap2d",4E16.4)')row,
          SHP(row,1),SHP(row,2),SHP(row,3),SHP(row,4)
        CALL BMAT(B,SHP,XL,XJC,NEL,NDM,NST,MODE)
        CALL ELAS(D, DMAT, MODE)
C
        write(6,'("SG,TG,detJ,XJC,weight at current GP:",5E12.2)')
     + SG(L),TG(L),XSJ,XJC,WG(L)
        do row=1,4
          write(6,'("B(",I1,",1:8) in ISW3 = ",8E12.4)')row,B(row,1),
C
          B(row,2),B(row,3),B(row,4),B(row,5),B(row,6),B(row,7),B(row,8)
        enddo
        do row=1,4
          write(6,'("DMAT(",I1,",:) in ISW3 = ",4F12.1)')row,
C
          DMAT(row,1),DMAT(row,2),DMAT(row,3),DMAT(row,4)
        compute D*B and save it as TEMP
        do row = 1,4
          do col = 1,NST
            sum = 0.0
            do k = 1,4
              sum = sum + DMAT(row,k)*B(k,col)
            TEMP(row,col) = sum
          enddo
        enddo
        do row=1,4
          write(6,'("TEMP(",I1,",1:8) in ISW3 = ",8E20.4)')row,
          TEMP(row,1),TEMP(row,2),TEMP(row,3),TEMP(row,4),TEMP(row,5),
C
С
          TEMP(row,6),TEMP(row,7),TEMP(row,8)
        enddo
  ---- compute BTRANS*TEMP and save it as PROD
c-
        do row = 1,NST
          do col = 1,NST
          sum = 0
            do k = 1,4
              sum = sum + B(k,row)*TEMP(k,col)
            enddo
            PROD(row,col) = sum
          enddo
        enddo
        do row=1,8
          write(6,'("PROD(",I1,",1:8) in ISW3 = ",8E20.4)')row,
          PROD(row, 1), PROD(row, 2), PROD(row, 3), PROD(row, 4), PROD(row, 5),
C
С
          PROD(row,6),PROD(row,7),PROD(row,8)
c---- add contribution of current gauss point to S
        do row = 1,NST
          do col = 1,NST
            S(row,col) = S(row,col) + XSJ*XJC*WG(L)*PROD(row,col)
          enddo
        enddo
      enddo
      do row=1,NST
С
        write(6,'("S(",I1,",1:8) = ",8E20.6)')row,S(row,1),S(row,2),
     + S(row,3),S(row,4),S(row,5),S(row,6),S(row,7),S(row,8)
      write(6,*)"Leaving ISW 3"
      RETURN
4
      CONTINUE
C
C---- OUTPUT ELEMENT VARIABLES SUCH AS STRESSES AND STRAINS
C---- THIS MODULE IS ACCESSED WHEN MACRO 'STRE' IS EXECUTED
```

```
C--- TASKS TO BE CARRIED OUT IN THIS MODULE:
C
C--- 1) PRINTOURT ELEMENT VARIABLES SUCH AS STRESSES, STRAINS AND
         INTERNAL VARIABLES AT OUTPUT QUADRATURE POINTS
С
C
      write(6,'("Entering ISW 4")')
      CALL SHAP2D(0.0,0.0,XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)
      XGAUS = 0.0
      YGAUS = 0.0
      do curNode = 1,NEL
        XGAUS = XGAUS + SHP(3,curNode)*XL(1,curNode)
        YGAUS = YGAUS + SHP(3,curNode)*XL(2,curNode)
      enddo
c---- Writing data to file: el#, x, y, 4 stress components, 4 strain components
    write(6,'(I4,",",E12.2,",",E12.2)')NELMT,XGAUS,YGAUS
    write(6,'(E12.2,",",E12.2,",",E12.2,",",E12.2)')STRL(1,NQUAD),
     +STRL(2,NQUAD),STRL(3,NQUAD),STRL(4,NQUAD)
      write(6,'(E12.2,",",E12.2,",",E12.2,",",E12.2)')EPSL(1,NQUAD),
     +EPSL(2,NQUAD),EPSL(3,NQUAD),EPSL(4,NQUAD)
      write(6,*)"Leaving ISW 4"
      RETURN
C
5
      CONTINUE
C
C---- COMPUTE THE CONSISTENT AND LUMPED MASS MATRICES
C--- THIS MODULE IS ACCESSESD WHEN MACROS 'LMAS' AND 'CMAS' ARE EXECUTED
C---- TASKS TO BE CARRIED OUT IN THIS MODULE:
C
C---- 1) COMPUTE CONSISTENT AND LUMPED ELEMENT MASS MATRICES
C--- 2) RETURN THEM IN ARRAYS 'S(NST,NST)' AND 'P(NST)', RESPECTIVELY
C
      RETURN
C
6
      CONTINUE
      write(6,'("Entering ISW 6")')
      MODE = D(3)
C
      ... CHECKING THE QUADRATURE POINTS...
      IF(NQUAD .EQ. 5) THEN
        NQP = 2
      ELSEIF(NQUAD .EQ. 1) THEN
        NQP = 1
      ENDIF
C
       ...GET QUADRATURE POINTS AND THEIR WEIGHTS...
      CALL PGAUS2(NQP,LINT,SG,TG,WG)
C
      ...LOOP OVER INTEGRATION POINTS FROM 1 TO LINT...
      DO L=1, LINT
      ...SHAPE FUNCTIONS AND THEIR X & Y DERIVATIVES AT CURRENT GAUSS POINT...
C
        CALL SHAP2D(SG(L),TG(L),XL,SHP,XSJ,NDM,NEL,IX,.TRUE.)
      ...B MATRIX FORMATION...
        CALL BMAT(B,SHP,XL,XJC,NEL,NDM,NST,MODE)
C
      ...ELEMENT FORCE ARRAY CONTRIBUTION DUE TO BODY FORCES CORRESPONDING TO GAUSS POINT L
        CURR_NST = 1
        DO I=1, NEL
                 DO J=1, 2
                          P(CURR_NST) = P(CURR_NST) + XSJ*XJC*WG(L)*SHP(3, I)*D(J)
                          CURR_NST = CURR_NST + 1
                 ENDDO
        ENDDO
      ... COMPUTING BTRANS FROM B...
C
```

```
DO I=1, 4
                DO J=1, NST
                BTRANS(J, I) = B(I, J)
       ENDDO
      ...SUBTRACTING INTERNAL FORCES DUE TO ELEMENT STRESSES AT GAUSS POINT L...
C
      ...COMPUTING BTRANS*STRL(*,L)...
       DO J=1, NST
            SUM1 = 0
                DO I=1, 4
                        SUM1 = SUM1 + BTRANS(J, I)*STRL(I, L)
                ENDDO
                BTRSTR(J) = SUM1
       ENDDO
       DO J=1, NST
                P(J) = P(J) - XSJ*XJC*WG(L)*BTRSTR(J)
       ENDDO
     ENDDO
     do I=1,NST
       write(6,'("P(",I2,") = ",F12.2)')I,P(I)
      write(6,*)"Leaving ISW 6"
     RETURN
С
C--- COMPUTE ELEMENT FORCE ARRAY
C---- THIS MODULE IS ACCESSED WHEN MACRO 'FORM' IS EXECUTED
C--- TASKS TO BE PERFORMED IN THIS MODULE:
C---- 1) COMPUTE NODAL FORCES ARISING FROM EXTERNALLY APPLIED DISTRIBUTED
C--- LOADS (GRAVITY LOADS, HYDROSTATIC PRESSURES, THERMAL LOADS, ETC.)
C---- 2) COMPUTE INTERNAL FORCES ARISING FROM (INITIAL) ELEMENT STRESS FIELD
C--- 3) SUBTRACT THE LATTER FROM THE FORMER. THIS IS THE ELEMENT FORCE
C--- VECTOR. IN NON-LINEAR PROBLEMS, THIS IS CALLED AS OUT-OF-BALANCE
       FORCES.
C---- 4) RETURN THE ELEMENT FORCES IN ARRAY 'P(NST)'
С
C---- REMARKS:
C
C---- 1) THE INTERNAL FORCES DUE TO ELEMENT STRESSES IS GIVEN BY
         INTEGRAL OF 'BTRANS*STRL' OVER THE VOLUME OF THE ELEMENT.
C----
        HERE 'BTRANS' DENOTES TRANSPOSE OF STRAIN-DISPLACEMENT
С
        MATRIX 'B' AND 'STRL' DENOTES ELEMENT STRESS ARRAY.
С
С
     RETURN
С
7
     CONTINUE
C---- UNUSED ISW
     RETURN
С
8
     CONTINUE
C---- UNUSED ISW
     RETURN
C
     CONTINUE
9
     write(6,'("Entering ISW 9")')
     MODE = D(3)
     LL = 0
     DO KKK = 1,2
       IF(KKK.EQ.1) THEN
                CALL PGAUS2(2,LINT,SG,TG,WG)
       ELSEIF(KKK.EQ.2) THEN
                CALL PGAUS2(1,LINT,SG,TG,WG)
       ENDIF
```

```
DO COL=1, NEL
            ULARRAY(2*COL-1)=UL(1,COL)
            ULARRAY(2*COL)=UL(2,COL)
            write(6,'("ULARRAY() = ",2F12.2)')UL(1,COL),UL(2,COL)
        ENDDO
        DO L=1,LINT
                LL = LL + 1
            write(6,'("LL = ",I1)')LL
                CALL SHAP2D(SG(L),TG(L),XL,SHP,XSJ,NDM,NEL,IX,.TRUE.)
                CALL BMAT(B,SHP,XL,XJC,NEL,NDM,NST,MODE)
                CALL ELAS(D, DMAT, MODE)
      ...COMPUTING THE PRODUCT B*UL AND STORING IN BUL...
C
                           DO I=1, NSDM
                             BUL(I)=0
                                 DO J=1,2*NEL
                                   BUL(I)=BUL(I)+B(I,J)*ULARRAY(J)
                                 ENDDO
                           ENDDO
         write(6, '("BUL(:) = ",4F20.6)')BUL(1),BUL(2),BUL(3),BUL(4)
      ... UPDATING EPSL(*, LL) VALUES...
С
                           DO I=1, NSDM
                                    EPSL(I, LL) = EPSL(I, LL) + BUL(I)
                           ENDDO
C
          ...COMPUTING DMAT*EPSL(*, LL) AND STORING IN DMEP...
                           DO I=1, NSDM
                    DMEP(I) = 0
                                    DO J=1, NSDM
                                             DMEP(I) = DMEP(I) + DMAT(I, J)*EPSL(J, LL)
                                    ENDDO
                           ENDDO
      ...COMPUTING STRESSES AND STORING IN STRL...
C
          DO I=1, NSDM
            STRL(I, LL) = STRL(I, LL) + DMEP(I)
          ENDDO
        ENDDO
      ENDDO
      write(6,*)"Leaving ISW 9"
      RETURN
C---- UPDATE ELEMENT VARIABLES AT INTEGRATION AND OUTPUT POINTS.
C---- THIS MODULE IS ACCESSED WHEN MACRO 'CEQS' IS EXECUTED.
C
C--- TASKS TO BE PERFORMED IN THIS MODULE:
C--- 1) UPDATE ELEMENT STRESSES, STRAINS AND INTERNAL VARIABLES
C--- 2) RETURN UPDATED QUANTITIES IN 'STRL', 'EPSL' AND 'QL', RESPECTIVELY.
     RETURN
C
C---- FORMAT STATEMENTS:
C---- extra return statement added as per sir's mail
      RETURN
      END
      SUBROUTINE BMAT(B,SHP,XL,XJC,NEL,NDM,NST,MODE)
      IMPLICIT DOUBLE PRECISION (A-H,O-Z)
      dimension B(4,NST), XL(NDM, NEL), SHP(3,NEL)
      integer row,col,curNode,NEL,NDM,NST
c---- Initialise B, XJC
c--- note: NST=NDM*NEN. if NEN>NEL, then coloumns with col>NDM*NEL in B remain 0
      do row = 1,4
        do col = 1,NST
```

```
B(row,col) = 0.0
        enddo
      enddo
      XJC = 0.0
      if(MODE .eq. 1 .or. MODE .eq. 3) then
c---- 1: Plane strain, 3: Plane stress
        XJC = 1.0
        write(6,'("XJC = ",F4.2)')XJC
        do curNode = 1,NEL
          B(1,2*curNode-1) = 0.0
          B(1,2*curNode) = 0.0
          B(2,2*curNode-1) = SHP(1,curNode)
          B(2,2*curNode) = 0.0
          B(3,2*curNode-1) = 0.0
          B(3,2*curNode) = SHP(2,curNode)
          B(4,2*curNode-1) = SHP(2,curNode)
          B(4,2*curNode) = SHP(1,curNode)
        enddo
      elseif(MODE .eq. 2) then
c---- Axi-symmetric
        r = 0.0
        do curNode = 1,NEL
         r = r+SHP(3,curNode)*XL(1,curNode)
        XJC = 2*3.141592654*r
        do curNode = 1,NEL
         B(1,2*curNode-1) = SHP(1,curNode)
          B(1,2*curNode) = 0.0
          B(2,2*curNode-1) = 0.0
          B(2,2*curNode) = SHP(2,curNode)
         B(3,2*curNode-1) = SHP(3,curNode)/r
          B(3,2*curNode) = 0.0
          B(4,2*curNode-1) = SHP(2,curNode)
          B(4,2*curNode) = SHP(1,curNode)
        enddo
      endif
      do row=1,4
        write(6,'("B(",I1,",1:8) = ",8E12.4)')row,B(row,1),B(row,2),
     + B(row,3),B(row,4),B(row,5),B(row,6),B(row,7),B(row,8)
      enddo
      END
      SUBROUTINE ELAS(D, DMAT, MODE)
      IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
      dimension D(*), DMAT(4,4)
      real E, nu
      integer row, col, MODE
C---- Fill the upper triangle and then use symmetry
      E = D(5)
      nu = D(6)
      write(6,'("E = ",F12.2)')D(5)
      if(MODE .eq. 1) then
C---- Plane strain
        DMAT(1,1) = 0.0
        DMAT(1,2) = 0.0
        DMAT(1,3) = 0.0
        DMAT(1,4) = 0.0
        DMAT(2,2) = E*(1-nu)/((1+nu)*(1-2*nu))
        DMAT(2,3) = E*nu/((1+nu)*(1-2*nu))
        DMAT(2,4) = 0.0
        DMAT(3,3) = E*(1-nu)/((1+nu)*(1-2*nu))
        DMAT(3,4) = 0.0
        DMAT(4,4) = E/(2*(1+nu))
        do row=2,4
```

```
do col=1,row-1
            DMAT(row,col) = DMAT(col,row)
        enddo
      elseif(MODE .eq. 2) then
C----- Axi-symmetric
        DMAT(1,1) = E*(1-nu)/((1+nu)*(1-2*nu))
        DMAT(1,2) = E*nu/((1+nu)*(1-2*nu))
        DMAT(1,3) = DMAT(1,2)
        DMAT(1,4) = 0.0
        DMAT(2,2) = DMAT(1,1)
        DMAT(2,3) = DMAT(1,2)
        DMAT(2,4) = 0.0
        DMAT(3,3) = DMAT(1,1)
        DMAT(3,4) = 0.0
        DMAT(4,4) = E/(2*(1+nu))
        do row=2,4
         do col=1,row-1
            DMAT(row,col) = DMAT(col,row)
          enddo
        enddo
     elseif(MODE .eq. 3) then
C---- Plane stress
       DMAT(1,1) = 0.0
        DMAT(1,2) = 0.0
        DMAT(1,3) = 0.0
        DMAT(1,4) = 0.0
        DMAT(2,2) = E/(1-nu*nu)
        DMAT(2,3) = E*nu/(1-nu*nu)
        DMAT(2,4) = 0.0
        DMAT(3,3) = E/(1-nu*nu)
        DMAT(3,4) = 0.0
        DMAT(4,4) = E/(2*(1+nu))
        do row=2,4
          do col=1,row-1
            DMAT(row,col) = DMAT(col,row)
          enddo
        enddo
     else
C---- Invalid mode
        do row=1,4
         do col=1,4
            write(6,*)"Invalid mode"
            DMAT(row, col) = 0.0
          enddo
        enddo
      endif
      do row=1,4
        write(6,'("D(",I1,",:) = ",4F12.1)')row,DMAT(row,1),DMAT(row,2),
     + DMAT(row,3),DMAT(row,4)
      {\tt enddo}
      END
```

Listing 2.2: Input file for problem (a)

FEAP	*****	PA	TCH T	EST (F				input i				
9	4	1	2	2	4	4	1	5	0	0	0	
COOR												
1	0		0000		000							
2	0	1.	0000	2.0	000							
3	0		0000		000							
4	0		0000		000							
5	0		2000	1.3	000							
6	0		0000		000							
7	0		0000		000							
8	0	1.	0000		0000							
9	0	2.	0000	0.0	000							
ELEM												
1	1	1	4	5	2	0						
2	1	2	5	6	3	0						
3	1	4	7	8	5	Ö						
4	1	5	8	9	6	0						
-	_		-	-	-							
MATE												
1	1											
	0.0		0.0		3.0		0.0	100.0	000	0.3	000	
DOTTN												
BOUN	^	^	0									
1 2	0 0	0	0									
3	0	0	0									
7	0	1	1									
' ₈	Ö	0	1									
8 9	Ö	0	1									
FORC												
1		1	1									
	0000		0.5									
2		1	1									
	0000		1.0									
	0	1	1									
0.	0000		0.5									
END												
MACR												
PRIN												
TANG												
FORM												
SOLV												
CEQS												
DISP												
STRE												
END												
STOP												

Listing 2.3: Input file for problem (b)

FEAP	*** F(OUR. F.	LEMENT	PATO					1110 101			
9	4	1	2	2	4	4	1	5	0	0	0	
COOR 1	1		0.0		2.0							
3	0		2.0		2.0							
4 5	0		0.0 1.2		1.0 1.3							
6	0		2.0		1.0							
7 9	1 0		0.0		0.0							
ELEM 1	1	1	4	5	2	1						
3	1	4	7	8	5	1						
BOUN												
1 2	0 0	0	-1 -1									
3 7	0	0 -1	-1 -1									
8 9	0	-1	-1									
9	0	-1	-1									
FORC												
1	0 0.5	1	1									
2	0	1	1									
3	1.0	1	0.0									
	0.5		0.0									
4	0.0		1 -1.0									
6		1	1 1.0									
	0.0		1.0									
MATE												
1	1		0.0		3.0		0.0	10000	2000	0.30	200	
	0.0		0.0		0.0		0.0	1000	3000	0.00	300	
END												
MACR PRIN												
TANG												
FORM SOLV												
CEQS												
DISP STRE												
END STOP												
STUP												

Listing 2.4: Input file for problem (c)

FEAP	****	**]	PATC	н те	EST (Axi s			прист				· /
9	4		111 O.	2	2	4	4	1	5	0	0	0	
COOR													
1	0	(0.00	00	2.0	0000							
2	0		1.00		2.0	0000							
3	0	2	2.00	00	2.0	0000							
4	0	(0.00	00	1.0	0000							
5	0	1	1.20	00	1.3	3000							
6	0		2.00		1.0	0000							
7	0	(0.00	00	0.0	0000							
8 9	0	1	1.00	00	0.0	0000							
9	0	2	2.00	00	0.0	0000							
ELEM													
1	1	1	l	4	5	2	0						
2		5	2	5	5 6	3	0						
3	1	_	1	7	8	5	0						
4	1	Ę	5	7 8	8 9	5 6	0						
MATTE													
MATE													
1			^	^		0 0		0 0	100.0	.000	0.30	200	
	0.0		U	.0		2.0		0.0	100.0	000	0.30	300	
BOUN													
1	0	()	0									
2	0	()	0									
3	0	(0									
7	0	1	L	0 1									
8	0	()	1									
9	0	()	1									
FORC													
1	0	1	L	1									
	.0000												
2			L	1									
	.0000												
3		1		1									
	.0000			77									
END													
MACR													
PRIN													
TANG													
FORM													
SOLV													
CEQS													
DISP													
STRE													
END													
STOP													

Listing 2.5: Input file for problem (d)

EEAD	alcaled: TV	יי חוור	T DMDM	י די אידי		0			me for			
FEAP 9		JUR E 1	LEMENT 2	PAT(2	CH *** 4	4	1	5	0	0	0	
9	4	1	2	2	4	4	1	5	U	U	U	
COOR												
1	1		0.0		2.0							
3	0		2.0		2.0							
4	0		0.0		1.0							
5	0		1.2		1.3							
6 7	0 1		2.0		1.0							
9	0		2.0		0.0							
	ŭ		2.0		0.0							
ELEM												
1	1	1	4	5 8	2 5	1 1						
3	1	4	7	8	5	1						
BOUN												
1	0	0	-1									
2	0	0	-1									
3	0	0	-1									
7	0	-1 -1	-1 -1									
8	0 0	-1 -1	-1 -1									
	O		1									
FORC												
1		1	1									
_	0.5	_	0.0									
2	0 1.0	1	1									
3		1	1									
	0.5	_	0.0									
4	0	1	1									
	0.0		-1.0									
6		1	1									
	0.0		1.0									
MATE												
1	1											
	0.0		0.0		1.0		0.0	10000	0000	0.30	000	
TIME												
END MACR												
PRIN												
TANG												
FORM												
SOLV												
CEQS												
DISP												
STRE												
END STOP												
STUP												

Listing 2.6: Input file for problem (e) with geometry treated as plane strain case

FEAP 20												E STRAIN		
COOR 1 5 6 10 11 15 16 20	1 0 1 0 1 0 1	0. 1.	1.0 2.0 866 732 0.5 1.0 0.0	0 1	0.0 0.0 0.5 1.0 .866 .732 1.0 2.0									
ELEM 1 5 9	1	1 6 11	2 7 12	7 12 17	6 11 16	1 1 1								
BOUN 1 5 16 20		0 0 -1 1	-1 1 0 0											
6 0.453 11 0.261	17994 0 34498 (0 17994 (1).2617 1).4534	7994 1 1498 1											
MATE 1	1		0.0		1.0		0.0	100.0	0000	0.3	8000			
END MACR PRIN TANG FORM SOLV CEQS DISP STRE END STOP														

Listing 2.7: Input file for problem (e) with geometry treated as axi–symmetric case

FEAP	*** TH	HICK	CYLIN	DER A	S AXI-	-SYMM	ETRIC	***						
10	4	1	2	2	4	4	1	5	0	0	0			
COOR	4		1 0		0 0									
1 5	1 0		1.0		0.0									
6	1		1.0		0.25									
10	0		2.0		0.25									
ELEM				_										
1	1	1	2	7	6	1								
BOUN														
1	1	0	-1											
10	1	0	1											
FODG														
FORC 1	0	1	1											
	53982		0.0											
6		1	1											
	53982		0.0											
MATE	4													
1	1 0.0		0.0		2.0		0.0	100.	0000	0.3	000			
	0.0		0.0		2.0		0.0	100.	0000	0.3	000			
END														
MACR														
PRIN														
TANG														
FORM SOLV														
CEQS														
DISP														
STRE														
END														
STOP														

Listing 2.8: Input file for problem (f) - Coarse

FEAP	*** D	late with					, pro		(-)	- Coarse
65	49	1 2	2	4 3	1	5	0	0	0	
00	43	1 2	2	T 3	1	0	U	O	O	
COOR										
1	0	0.500000	0.0000	00						
2	0	1.000000	0.0000							
3	0	1.500000	0.0000							
4	0	2.000000	0.0000							
5	0	2.500000	0.0000							
6	0	3.000000	0.0000	00						
7	0	3.500000	0.0000	00						
8	0	4.000000	0.0000	00						
9	0	4.500000	0.0000	00						
10	0	5.000000	0.0000	00						
11	0	0.000000	0.5000							
12	0	0.353553	0.3535							
13	0	0.969517	0.4279							
14	0	1.475639	0.4921							
15	0	1.982678	0.4999							
16	0	2.483895	0.5045							
17	0	2.986052	0.5028							
18	0	3.493025	0.5014							
19	0	3.996513	0.5007							
20	0	4.498257	0.5003							
21	0	5.000000	0.5000							
22	0	0.000000	1.0000							
23	0	0.425126 0.933994	0.9731							
24	0	1.461539	0.9436							
25 26	0	1.401339	0.9815							
27	0	2.477838	1.0017							
28	0	2.988937	1.0017							
29	0	3.495421	1.0013							
30	0	3.997824	1.0004							
31	0	4.499130	1.0001							
32	Ö	5.000000	1.0000							
33	0	0.000000	1.5000							
34	0	0.486309	1.4879							
35	0	0.972938	1.4774							
36	0	1.470738	1.4862							
37	0	1.979030	1.5000							
38	0	2.486340	1.4994	03						
39	0	2.993376	1.4986	03						
40	0	3.499842	1.5000							
41	0	3.999729	1.5000							
42	0	4.499567	1.5000							
43	0	5.000000	1.5000							
44	0	0.000000	2.0000							
45	0	0.497257	1.9943							
46	0	0.993585	1.9928							
47	0	1.493525	1.9955							
48	0	1.992216	1.9972							
49	0	2.494690	1.9987							
50	0	2.999981	1.99999							
51	0	3.499947	2.0000							
52	0	3.999892	2.0000							
53	0	4.499785	2.0000							
54	0	5.000000	2.0000							
55 56	0	0.000000	2.5000							
57	0	1.000000	2.5000							
58	0	1.500000	2.5000							
59	0	2.000000	2.5000							
	U	2.00000	2.0000							

```
60 0 2.500000 2.500000
    0 3.000000 2.500000
0 3.500000 2.500000
0 4.000000 2.500000
0 4.500000 2.500000
  61
  62
  63
  64
     0 5.000000 2.500000
  65
ELEM
     1 1 2
  1
                 13
                    12
                         1
  10
                  23 22
     1 11 12
                         1
                  34 33
 20
     1 22 23
                         1
     1 33 34 45 44
1 44 45 56 55
  30
                         1
  40
                         1
MATE
     1
 1
     0.0 0.0 3.0 0.0 10000000 0.3000
BOUN
  1
             -1
  10
     0
          0 1
     0
  11
             0
          1
     0
             0
  22
          1
     0
             0
  33
          1
             0
  44
      0
          1
     0
  55
          1
FORC
     0
          1 1
  10
    0.25
             0.0
  21
     0 1 1
     0.5
             0.0
  32 0 1 1
          0.0
     0.5
         1 1
  43
     1
          0.0
     0.5
  54
     0
          0.0
     0.5
     1
          1 1
  55
     0.5 0.0
  65 0 1 1
          0.0
    0.25
END
MACR
PRIN
TANG
FORM
SOLV
CEQS
DISP
STRE
END
STOP
```

Listing 2.9: Input file for problem (f) - Fine

TEAP *** Plate with hole - Fine*** 89	EAP :	*** D	late with	hole -	Fine	***					. ,			
1 0 0 0.500000 0.000000 1 0 0 1.500000 0.0000000 3 0 1.000000 0.0000000 4 0 1.250000 0.0000000 5 0 1.500000 0.0000000 6 0 2.000000 0.0000000 7 0 2.500000 0.0000000 8 0 3.000000 0.0000000 9 0 3.500000 0.0000000 10 0 4.000000 0.0000000 11 0 4.500000 0.0000000 12 0 5.00000 0.0000000 13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.999575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353555 28 0 0.704391 0.430204 29 0 0.988610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353555 28 0 0.704391 0.430204 29 0.986810 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.7500000 26 0 0.191342 0.461940 27 0 0.353553 0.699968 35 0 0.704391 0.430204 29 0.986810 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.7500000 36 0.00000 0.7500000 37 0 0.363553 0.699968 36 0 0.704391 0.430204 39 0 0.986610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.7500000 31 0.000000 0.7500000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.688058 0.699968 35 0 0.977971 0.726355 36 0 0.979791 0.726355 37 0 0.000000 0.7500000 38 0 0.2296613 0.999381 39 0 0.467237 0.965217 40 0 0.716462 0.980904 41 0 0.979949 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.010766 45 0 2.513875 1.005809 46 0 3.004863 1.0022266 47 0 3.495213 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000951							1	5	0	0	0			
1 0 0.500000 0.0000000 2 0 0.750000 0.0000000 3 0 1.000000 0.0000000 5 0 1.500000 0.0000000 6 0 2.000000 0.0000000 8 0 3.500000 0.0000000 9 0 3.500000 0.0000000 10 0 4.000000 0.0000000 11 0 4.500000 0.0000000 12 0 5.00000 0.0000000 13 0 0.461940 0.191342 14 0 0.72026 0.223746 15 0 0.989575 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003340 0.499840 21 0 3.996513 0.500724 22 0 3.996513 0.500724 23 0 4.498227 0.500360 24 0 5.00000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.96610 0.7500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.966610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.7500000 26 0 0.191342 0.461940 27 0 0.363553 0.6809986 35 0 0.774391 0.750518 36 0 1.306249 0.699762 37 0 0.000000 1.000000 38 0 0.228613 0.509724 40 0.716462 0.9809904 41 0 0.978944 0.986566 42 0 1.97777 0.7765355 36 0 1.306249 0.989762 37 0 0.000000 1.000000 38 0 0.228613 0.989656 49 0 1.978771 0.726355 39 0 0.467237 0.985217 40 0 0.716462 0.980904 41 0 0.978949 0.986566 42 0 1.97777 0.9777748 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.000000 51 0 0.000000 1.250000	00	, 0		_	•	Ü	-	Ü	Ü	·	Ů			
1 0 0.500000 0.0000000 2 0 0.750000 0.0000000 3 0 1.000000 0.0000000 5 0 1.500000 0.0000000 6 0 2.000000 0.0000000 8 0 3.500000 0.0000000 9 0 3.500000 0.0000000 10 0 4.000000 0.0000000 11 0 4.500000 0.0000000 12 0 5.00000 0.0000000 13 0 0.461940 0.191342 14 0 0.72026 0.223746 15 0 0.989575 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003340 0.499840 21 0 3.996513 0.500724 22 0 3.996513 0.500724 23 0 4.498227 0.500360 24 0 5.00000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.96610 0.7500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.966610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.7500000 26 0 0.191342 0.461940 27 0 0.363553 0.6809986 35 0 0.774391 0.750518 36 0 1.306249 0.699762 37 0 0.000000 1.000000 38 0 0.228613 0.509724 40 0.716462 0.9809904 41 0 0.978944 0.986566 42 0 1.97777 0.7765355 36 0 1.306249 0.989762 37 0 0.000000 1.000000 38 0 0.228613 0.989656 49 0 1.978771 0.726355 39 0 0.467237 0.985217 40 0 0.716462 0.980904 41 0 0.978949 0.986566 42 0 1.97777 0.9777748 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.000000 51 0 0.000000 1.250000	OOR													
2 0 0.750000 0.000000 3 0 1.000000 0.000000 4 0 1.250000 0.0000000 5 0 1.500000 0.0000000 6 0 2.000000 0.0000000 7 0 2.500000 0.0000000 8 0 3.000000 0.0000000 9 0 3.500000 0.0000000 11 0 4.500000 0.0000000 11 0 4.500000 0.0000000 12 0 5.00000 0.0000000 13 0 .461940 0.191342 14 0 0.722026 0.233746 15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.513851 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499940 21 0 3.500000 0.500000 22 0 3.003334 0.499940 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.500000 25 0 0.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.7500000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.688058 0.690986 35 0 0.977971 0.726335 36 0 1.306249 0.90986 37 0 0.000000 1.500000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.688058 0.690986 35 0 0.977971 0.726335 36 0 1.306249 0.909381 39 0 0.467237 0.965217 40 0 0.716462 0.980904 41 0 0.979494 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.049631 1.000226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.2500000 51 0 0.000000 1.2500000 51 0 0.000000 1.2500000		0	0.500000	0.0000	000									
3 0 1.000000 0.000000 5 0 1.500000 0.000000 6 0 2.000000 0.0000000 7 0 2.500000 0.0000000 8 0 3.000000 0.0000000 9 0 3.500000 0.0000000 10 0 4.000000 0.0000000 11 0 4.500000 0.0000000 12 0 5.00000 0.0000000 13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279869 0.992371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.492527 0.500360 24 0 5.00000 0.500000 25 0 0.00000 0.500000 26 0 0.191342 0.461940 27 0 0.355553 0.353553 28 0 0.704391 0.430204 29 0 0.96610 0.479798 30 0 1.186898 0.476471 31 0 0.00000 0.750000 32 0 0.20612 0.721693 33 0 0.423019 0.705018 34 0 0.688058 0.890986 35 0 0.977971 0.726355 36 0 1.306249 0.69762 37 0 0.00000 1.750000 38 0 0.229863 0.990381 39 0 0.467237 0.995217 40 0 0.716462 0.980904 41 0 0.979494 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.000766 45 0 3.099631 1.002226 47 0 3.495421 1.000929 48 0 0.97991 0.797748 49 0 0.986812 1.000929 44 0 2.053472 1.010766 45 0 3.999381 50 0 4.499130 1.000299 46 0 3.09863 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.2500000 51 0 0.289588 1.283227														
4 0 1.250000 0.000000 5 0 1.500000 0.000000 6 0 2.000000 0.000000 7 0 2.500000 0.000000 8 0 3.000000 0.000000 9 0 3.500000 0.000000 11 0 4.500000 0.000000 11 0 4.500000 0.000000 12 0 5.000000 0.000000 13 0 .461940 0.191342 14 0 0.72206 0.231746 15 0 0.988575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003349 0.49940 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.476471 31 0 0.000000 0.500000 36 0 0.220612 0.721693 37 0 0.000000 0.7500000 38 0 0.220612 0.721693 39 0 0.467237 0.965517 40 0 0.716462 0.980904 41 0 0.979494 0.986566 41 0.197777 0.777748 43 0 1.667821 1.000929 44 0 2.053472 1.005809 46 0 3.094963 1.002226 47 0 3.495421 1.000951 48 0 0.298581 1.002226 49 0 .979771 0.777748 40 0 .716462 0.980904 41 0 0.979494 0.986566 41 0 0.979494 0.986566 42 0 1.297777 0.9777748 43 0 1.667821 1.000909 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.004963 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.000000 51 0 0.000000 1.000000 51 0 0.000000 1.000000		0												
5 0 1.500000 0.000000 6 0 2.000000 0.000000 7 0 2.500000 0.000000 8 0 3.000000 0.000000 10 0 4.000000 0.000000 11 0 4.500000 0.000000 12 0 5.000000 0.000000 13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279669 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.4998609 20 0 3.00334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.98257 0.500360 24 0 5.00000 </td <td>4</td> <td>0</td> <td>1.250000</td> <td>0.0000</td> <td>000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4	0	1.250000	0.0000	000									
7 0 2.500000 0.0000000 8 0 3.000000 0.0000000 10 0 4.000000 0.0000000 11 0 4.500000 0.0000000 12 0 5.000000 0.0000000 13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.5000000 25 0 0.000000 0.5000000 25 0 0.004391 0.430204 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.750000 32 0 0.220612 0.721693 33 0 0.423019 0.705618 34 0 0.688058 0.690986 35 0 0.9797971 0.726355 36 0 1.306249 0.699762 37 0 0.000000 1.000000 38 0 0.229863 0.990381 39 0 0.467237 0.965217 40 0 0.716462 0.980904 41 0 0.979494 0.986566 45 0 2.513875 1.005809 46 0 3.004963 1.000226 47 0 3.495821 1.0000929 44 0 2.053472 1.010766 45 0 2.513875 1.005809 46 0 3.004963 1.000226 47 0 3.495821 1.000951 48 0 3.997824 1.0000455 49 0 4.499130 1.0000181 50 0 0.208000 1.000000 51 0 0.000000 1.250000		0	1.500000	0.0000	000									
8 0 3.000000 0.0000000 10 0 3.500000 0.0000000 11 0 4.500000 0.0000000 12 0 5.000000 0.0000000 13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.05377 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.500000 25 0 0.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.750000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.688058 0.690986 35 0 0.977971 0.726355 36 0 1.306249 0.699762 37 0 0.000000 0.000000 38 0 0.220612 0.721693 39 0 0.467237 0.965217 40 0 0.716462 0.980904 41 0 0.9799494 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.049963 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.250000 51 0 0.088000 1.250000	6	0	2.000000	0.0000	000									
9 0 3.500000 0.000000 10 0 4.000000 0.000000 11 0 4.500000 0.000000 12 0 5.000000 0.000000 13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.00000 0.500000 25 0 0.000000 0.500000 25 0 0.00000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479788 30 0 1.186898 0.476471 31 0 0.00000 0.750000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.683058 0.690986 35 0 0.977971 0.726355 36 0 1.306249 0.699762 37 0 0.0716462 0.980904 41 0 0.7716462 0.980904 41 0 0.7716462 1.000000 38 0 0.229863 0.990381 39 0 0.467373 0.965217 40 0 0.776462 1.000000 40 0 0.7716462 0.980904 41 0 0.979494 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000099 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.094963 1.000226 47 0 3.495421 1.0000951 48 0 3.997824 1.000455 49 0 4.499130 1.000005 51 0 0.000000 1.250000 51 0 0.000000 1.250000 51 0 0.000000 1.250000 51 0 0.000000 1.000000	7	0	2.500000	0.0000	000									
10	8	0	3.000000	0.0000	000									
11	9	0	3.500000	0.0000	000									
12	10	0	4.000000	0.0000	000									
13 0 0.461940 0.191342 14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.50000 25 0 0.000000 0.50000 26 0 0.963610 0.479798 30 0 1.186898 0.476471 31 0 0.00000 0.75000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.68058<	11	0												
14 0 0.722026 0.223746 15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.00000 0.50000 25 0 0.00000 0.50000 26 0 0.191342 0.461940 27 0 0.35353 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.688058 0.699086 35 0<		0												
15 0 0.989575 0.231515 16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.498609 20 0 3.0500200 0.5500121 21 0 3.500200 0.5500121 22 0 3.996513 0.500000 24 0 5.000000 0.500000 25 0 0.000000 0.500000 26 0 0.191342 0.461940 27 0 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.98610 0.479798 30 0 1.186898 0.476471 31 10 0.068005 0.690986 35 0 0.977971 0.726355 36 0 1		0												
16 0 1.279869 0.292371 17 0 1.635694 0.497291 18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.003334 0.499840 21 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.498257 0.500360 24 0 5.000000 0.500000 25 0 0.00000 0.500000 26 0 0.191342 0.461940 27 0.353553 0.353553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.00000 0.75000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0														
17														
18 0 2.059770 0.492550 19 0 2.513851 0.498609 20 0 3.500200 0.500121 22 0 3.996513 0.500724 23 0 4.98257 0.500360 24 0 5.000000 0.500000 25 0 0.000000 0.500000 26 0 0.191342 0.461940 27 0 3.53553 0.353553 28 0 0.704391 0.430204 29 0 0.968610 0.479798 30 0 1.186898 0.476471 31 0 0.000000 0.750000 32 0 0.220612 0.721693 33 0 0.433019 0.705018 34 0 0.688058 0.690966 35 0 9.77971 0.726355 36 0 1.306249 0.699762 37 0 0.00000 1.00000 38 0 0.229863 0.990381														
19														
20														
21														
22														
23														
24														
25														
26														
27														
28														
29 0 0.968610 0.476471 30 0 1.186898 0.476471 31 0 0.000000 0.750000 32 0 0.220612 0.721693 33 0 0.423019 0.705018 34 0 0.688058 0.690986 35 0 0.977971 0.726355 36 0 1.306249 0.699762 37 0 0.000000 1.000000 38 0 0.229863 0.990381 39 0 0.467237 0.965217 40 0 0.716462 0.980904 41 0 0.979494 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.04963 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 <														
30														
31														
32														
33														
34														
35														
36														
37														
38														
39														
40 0 0.716462 0.980904 41 0 0.979494 0.986566 42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.004963 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.250000 51 0 0.000000 1.250000 52 0 0.289588 1.283227														
41														
42 0 1.297777 0.977748 43 0 1.667821 1.000929 44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.004963 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.000000 51 0 0.000000 1.250000 52 0 0.289588 1.283227														
43														
44 0 2.053472 1.010766 45 0 2.519875 1.005809 46 0 3.004963 1.002226 47 0 3.495421 1.000951 48 0 3.997824 1.000455 49 0 4.499130 1.000181 50 0 5.000000 1.000000 51 0 0.000000 1.250000 52 0 0.289588 1.283227														
45														
46														
47														
48														
49														
50														
51														
52 0 0.289588 1.283227														
54 0 0.684752 1.298923														
55 0 0.948894 1.302008														
56 0 1.218297 1.231655														
57 0 0.000000 1.500000														
58 0 0.491749 1.643283														
59 0 0.992143 1.678981		0												

```
60 0 1.470738 1.486220
   61
         0 2.008185 1.512968
                     1.505642
         0 2.506467
   62
   63
            3.002497
                      1.502289
   64
         0
           3.499842
                      1.500033
   65
         0
           3.999729
                      1.500059
           4.499567
                     1.500091
   66
         0
   67
          5.000000
                     1.500000
         0
         0.000000
                     2.000000
   68
   69
         0 0.486328
                     2.057780
   70
         0 1.004874 2.060845
         0 1.509369 2.017573
   71
   72
         0 1.996852 1.999986
   73
         0 2.501210 2.003678
   74
         0 2.999981
                     1.999997
   75
           3.499947
                      2.000012
   76
         0 3.999892
                      2.000024
         0 4.499785
   77
                      2.000046
   78
        0 5.000000 2.000000
   79
         0 0.000000 2.500000
   80
         0 0.500000 2.500000
   81
         0 1.000000 2.500000
   82
         0 1.500000 2.500000
   83
         0 2.000000 2.500000
        0 2.500000 2.500000
   84
   85
         0 3.000000
                     2.500000
   86
         0 3.500000
                      2.500000
   87
           4.000000
                      2.500000
   88
         0 4.500000
                      2.500000
         0 5.000000
   89
                      2.500000
ELEM
         1
              1
                   2
                       14
                            13
                                  1
   1
   12
             13
                       28
                            27
         1
                  14
                                  1
   15
         1
             16
                  17
                       36
                            30
                                  0
   16
         1
             25
                  26
                       32
                            31
                                  1
   21
             31
                  32
                       38
                            37
         1
                                  1
   26
         1
             36
                  17
                       43
                            42
                                  0
   27
             17
                       44
                            43
         1
                  18
                                  1
   34
         1
             37
                  38
                       52
                            51
                                  1
   39
         1
             42
                  43
                       60
                            56
                                  0
   40
             43
         1
                  44
                       61
                            60
                                  1
   47
         1
             51
                  52
                       58
                            57
                                  0
   48
         1
             52
                  53
                       54
                            58
                                  0
   49
        1
             54
                  55
                       59
                            58
                                  1
   51
        1
             57
                  58
                       69
                            68
                                  1
   61
             68
                  69
                       80
                            79
MATE
        1
  1
                                0.0 10000000
       0.0
                 0.0
                           3.0
                                                    0.3000
BOUN
   1
              0
                  -1
   12
         0
              0
                   1
   25
         0
                   0
              1
   31
         0
                   0
              1
   37
              1
                   0
   51
         0
                   0
                   0
   57
         0
              1
   68
         0
                   0
              1
   79
         0
              1
                   0
FORC
```

```
12 0 1 1
  0.25
            0.0
  24
     0
          1
             1
            0.0
     0.5
         1
  50
     0
            1
            0.0
     0.5
  67
     0
         1 1
     0.5
            0.0
  78
     0
          1 1
  0.5 0.0
89 0 1 1
  0.25
            0.0
END
MACR
PRIN
TANG
FORM
SOLV
CEQS
DISP
STRE
END
STOP
```