New analysis-based annotation and analysis-based filtering scripts

May 18th, 2016 Elizabeth K. Ruzzo, Laura Perez Cano, and Lee-Kai Wang

Analysis-based annotation

Transmission Summary output

flat.db

agg.db

Add new columns with annotations for each row:

Genotypes (0/0,0/1,1/1, ./.)

INPUT: VCF

Control Allele Frequency (AF)

INPUT: AF output files for 25% missing max, VQSR PASS, no multi allelic for **PSP**, and **UK10K**. We may also want **genotype frequency (and account for sex)**.

Max control AF

Calculate the max control AF given above (PSP/UK10K) & existing annotations from EXAC, 1000g, ESP, and cg46

Gene-based annotations (e.g., RVIS)

INPUT: Run annotate any gene script and add columns for any variant within a given gene

SNP vs. Indel

INPUT: VCF or Flat file. Allow for SNP-only, Indel-only or merged analysis.

INPUT: VCF

iHART healthy non-phaseable (HNP) AF

INPUT: AF output files for 25% missing max, VQSR PASS, no multi allelic for HNPs

%PSP_samples_missing

INPUT: get_allele_frequency.py output

%HNP_samples_missing

INPUT: get_allele_frequency.py output

Rare *de novo* variant status (Shared *de novo*, somatic, rare *de novo*)

INPUT: RDNV flat file processed with MZ twin information. We will eventually incorporate the **results of the machine learning classifier** to this file

Genome in a bottle problematic variants

INPUT: Problematic variant locations from GIAB

Flat file or aggregate file annotated with variant and gene properties of interest for analyses

Analysis-based VARIANT filtering

Annotated Transmission Summary annotated_flat.db annotated_agg.db

User specified parameters

Basically, we can filter on anything in annotated input files. Anything not listed will not be filtered on. For each numerical parameter, the script documentation will clearly state if a user entry means == vs. > vs. >= etc.

Variant filtered annotated Flat file or aggregate file

OPTIONAL: Selected subset of samples or families and/or obtain cohort wide counts

reformat as needed...

ANALYSIS:

TADA, SKAT-O, FET, etc.

Analysis-based SAMPLE filtering (Optional)

Annotated Transmission Summary

1 annotated_flat.db

2 annotated_agg.db

User specified parameters

[--samples][--giveCohortFlatStats] [--Output]

[--families][--giveCohortAggStats]
[--Output]

- 1) Cohort stats will be calculated after filleting for specified samples.
- 2) Cohort stats will be calculated after filleting for specified families.
- * The output format will be the same for both and will be similar to the agg file output (see next slide)

Sample filtered annotated Flat file or aggregate file

reformat as needed...

ANALYSIS:

TADA, SKAT-O, FET, etc.

Filter flat file

- Input ped, filter on IID
- Adjust for missingness?
- Output will be one line per variant
- All sample annotations will be collapsed (distinct)

VCF

Chr	Pos- ition	Ref	Alt	(Parsed INFO)	inheritance- types	n_aff	n_unaff	n_carrier_ aff	n_carrier_u naff	n_carrier_male _aff	n_carrier_male _unaff	n_carrier_fem ale_aff	n_carrier_fem ale_unaff
1	1232324	А	С		from_mother,from_f ather	422	173						
						422	173						
						422	173						
						422	173						
						422	173						

Cohort Variant Stats Output

- One line per variant (resulting from —giveCohortFlatStats or —giveCohortAggStats)
- Gives counts and fraction of affected and unaffected for each variant allowing adjustment for missingness or uncertainty
- Sample row shown below

VCF

Chr	Pos- ition	Ref	Alt	(Parsed INFO)	inheritance- type	families	fam_n	fam_n_aff	fam_n_unaff	n_missing_aff	n_missing_ unaff	n_uncertain_a ff	n_uncertain_un aff	
1	1232324	А	С		from_mother, from_father	AU0965, AU0988	2	2	2	0	1	0	0	
								n_aff_carriers	n_unaff_ carriers	frac_of_aff	frac_of_unaff	frac_of_aff_ missing_adjusted	frac_of_unaff_ missing_adjusted	4
								2	1	1	0.5	1	1	
								frac_of_aff_unce rtain_adjusted	frac_of_unaff_un certain_ adjusted	frac_of_aff_ missing_uncertain _adjusted	frac_of_unaff_ missing_uncertain _adjusted			_
								1	0.5	1	1			

Comments

- We will want a log file for filtering which saves the command that was run
- It would be nice if the filtering script would automatically add the date to the output file (and maybe a few key filters like the max control allele frequency specified)
- We are still discussing certain feature ideas such as --unique which would output non-sample non-family specific columns and remove duplicate variant rows
- We are also still discussing the best way to deal with Cohort wide variables such as n_families_w_variant. One idea would be to add this as an annotation and then we can filter on them.
- Lee-Kai has already been working on a large matrix with all the gene-based annotations so this can be easily implemented for the annotation step. I am also considering adding gene-set lists like FMRP gene (0 or 1).