CHAPTER TWO

The Solution of Nonlinear Equations f(x) = o

Objectives

- Secant Method
- Comparison of Speed of Convergence

Secant Method

- Here, there is no need to evaluate f'(x)
- Converges almost as fast as Newton's method $\rightarrow R = 1.618$
 - Newton's $\rightarrow R = 2$

• Needs two initial points $(p_0, f(p_0))$ and $(p_1, f(p_1))$ near the point (p, 0), where p is the root of the function.

Secant Method

•
$$m = \frac{f(p_1) - f(p_0)}{p_1 - p_0}$$

• Also,
$$m = \frac{0 - f(p_1)}{p_2 - p_1}$$

- Then,
- $p_2 = g(p_1, p_0)$

$$= p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

Figure 2.16 The geometric construction of p_2 for the secant method.

Secant Method

• On general,

$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{f(p_k)(p_k - p_{k-1})}{f(p_k) - f(p_{k-1})}$$

• Convergence rate for simple root:

$$|e_{k+1}| \approx |e_k|^{1.618} \left| \frac{f''(p)}{2f'(p)} \right|^{0.618}$$

→ This relation only for simple root

Example – Simple Root

• Let
$$f(x) = x^3 - 3x + 2 = (x+2)(x-1)^2$$
.

• Start with $p_0=-2.6$, $p_1=-2.4$ to find the root p=-2 (Simple Root)

•
$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{(p_k^3 - 3p_k + 2)(p_k - p_{k-1})}{p_k^3 - p_{k-1}^3 - 3p_k + 3p_{k-1}}$$

•
$$p_2 = g(p_1, p_0) = -2.106598985$$

•
$$p_3 = g(p_2, p_1) = -2.022641412$$

. . . .

•
$$p_7 = g(p_6, p_5) = -2.000$$

Newton's → 4 iterations

Example – Simple Root (cont'd)

Table 2.7 Convergence of the Secant Method at a Simple Root

k	p_k	$p_{k+1}-p_k$	$E_k = p - p_k$	$\frac{ E_{k+1} }{ E_k ^{1.618}}$
0	-2.600000000	0.200000000	0.600000000	0.914152831
1	-2.400000000	0.293401015	0.400000000	0.469497765
2	-2,106598985	0.083957573	0.106598985	0.847290012
3	-2.022641412	0.021130314	0.022641412	0.693608922
4	-2.001511098	0.001488561	0.001511098	0.825841116
5	2.000022537	0.000022515	0.000022537	0.727100987
6	-2.000000022	0.000000022	0.000000022	
7	-2.009000000	0.000000000	0.000000000	

[1]

Example – Simple Root (cont'd)

• Now let us check the relation $|e_{k+1}| \approx |e_k|^{1.618} \left| \frac{f''(p)}{2f'(p)} \right|^{0.618}$

•
$$e_{k+1} = e_5 = |p - p_5| = 0.000022537$$

•
$$e_k = e_4 = |p - p_4|^{1.618} = 0.001511098^{1.618} = 0.000027296$$

•
$$A = \left| \frac{f''(-2)}{f'(-2)} \right|^{0.618} = (2/3)^{0.618} = 0.778351205$$

•
$$|p - p_5| = A|p - p_4|^{1.618} = 0.000021246 \approx |p - p_5|$$

Comparison of Speed of Convergence

Method	Special Consideration	Relation between successive error terms
Bisection		$ e_{k+1} \cong \frac{1}{2} e_k $
Secant	Multiple Root	$ e_{k+1} \cong A e_k $
Newton's	Multiple Root	$ e_{k+1} \cong A e_k $
Secant	Simple Root	$ e_{k+1} \cong A e_k ^{1.618}$
Newton's	Simple Root	$ e_{k+1} \cong A e_k ^2$

- Note that the value of A is different for each method

References

• [1] Mathews J. H. and Fink K. D. (1999). Numerical Methods using MATLAB, NJ: Prentice Hall

Center for E-Learning and Open Educational Resource

مركب التعلم الإلكتروني ومصادر التعليم المفتوحة