

### Universidad Nacional de Rosario

# FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

# Entrega 4

Modelado y Simulación de Sistemas Dinámicos

Arroyo Joaquín Bolzan Francisco

## Contents

| 1 | Modelo 1: Sistema Biela-Manivela         | 2        |
|---|------------------------------------------|----------|
| 2 | Modelo 2: Válvula de un Vía              | 3        |
| 3 | Modelo 3: Bomba Hidráulica               | 4        |
|   | Modelo 4: Modelo Completo 4.1 Conclusión | <b>5</b> |

### 1 Modelo 1: Sistema Biela-Manivela



Figure 1: Modelo Biela-Manivela con parámetros longitud de biela L=0.1m y radio de manivela r=0.01m.



Figure 2: Velocidad de la inercia (rojo) y posición de la masa (azul).

### 2 Modelo 2: Válvula de un Vía



Figure 3: Modelo Válvula de una vía con parámetros  $R_{on}=10^{-6}~\mathrm{y}~R_{off}=10^{12}$ 



Figure 4: Presión del tanque.

### 3 Modelo 3: Bomba Hidráulica



Figure 5: Modelo Bomba Aspirante-Impelente con parámetro área del pistón cilindro  $A=0.001m^2$ 



Figure 6: Flujo de entrada (azul) y salida (rojo) de la bomba.

### 4 Modelo 4: Modelo Completo



Figure 7: Modelo completo con parámetros del motor J=1  $Kg/m^2$ ,  $L_a=10^{-3}$  Hy,  $R_a=0.1$   $\Omega$ , K=1 V s/rad,  $U_a=12$  V, resistencia de apertura de la válvula  $R_H=10^7$  Pa  $s/m^3$  y área de tanque 1  $m^2$ .



Figure 8: Presión del tanque con  $U_a = 6V$ .



Figure 9: Presión del tanque con  $U_a=20V.$ 



Figure 10: Presión del tanque con  $U_a=12V.$ 



Figure 11: Presión del tanque (rojo) y presión de la válvula de salida de la bomba hacia el tanque (azul) con  $U_a=12V$ .



Figure 12: Flujo de agua al tanque (rojo) y flujo de agua en la salida de la bomba (azul) con  $U_a=12V.$ 

#### 4.1 Conclusión

- Aumentar o disminuir el voltaje del motor de la bomba determina la presión a la que esta puede operar. Si el voltaje es muy bajo, la presión que ejerce el agua en el tanque será demasiada para la bomba, causando que esta no empiece a operar hasta que el tanque se vacíe a una presión manejable. Por otro lado, si el voltaje es mayor, la bomba puede llenar más el tanque antes de que la presión del mismo la detenga.
- Al mismo tiempo, observamos que la presión en la válvula de salida crece con los bombeos de agua de la bomba y decrece cuando el tanque se vacía gradualmente por presión atmosférica.