```
In [ ]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [259]: a=pd.read_csv(r"C:\Users\user\Downloads\17_student_marks.csv")
a

Out[259]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Те
0	22000	78	87	91	91	88	98	94	100	100	100	100	
1	22001	79	71	81	72	73	68	59	69	59	60	61	
2	22002	66	65	70	74	78	86	87	96	88	82	90	
3	22003	60	58	54	61	54	57	64	62	72	63	72	
4	22004	99	95	96	93	97	89	92	98	91	98	95	
5	22005	41	36	35	28	35	36	27	26	19	22	27	
6	22006	47	50	47	57	62	64	71	75	85	87	85	
7	22007	84	74	70	68	58	59	56	56	64	70	67	
8	22008	74	64	58	57	53	51	47	45	42	43	34	
9	22009	87	81	73	74	71	63	53	45	39	43	46	
10	22010	40	34	37	33	31	35	39	38	40	48	44	
11	22011	91	84	78	74	76	80	80	73	75	71	79	
12	22012	81	83	93	88	89	90	99	99	95	85	75	
13	22013	52	50	42	38	33	30	28	22	12	20	19	
14	22014	63	67	65	74	80	86	95	96	92	83	75	
15	22015	76	82	88	94	85	76	70	60	50	58	49	
16	22016	83	78	71	71	77	72	66	75	66	61	61	
17	22017	55	45	43	38	43	35	44	37	45	37	45	
18	22018	71	67	76	74	64	61	57	64	61	51	51	
19	22019	62	61	53	49	54	59	68	74	65	55	60	
20	22020	44	38	36	34	26	34	39	44	36	45	35	
21	22021	50	56	53	46	41	38	47	39	44	36	43	
22	22022	57	48	40	45	43	36	26	19	9	12	22	
23	22023	59	56	52	44	50	40	45	46	54	57	52	
24	22024	84	92	89	80	90	80	84	74	68	73	81	
25	22025	74	80	86	87	90	100	95	87	85	79	85	
26	22026	92	84	74	83	93	83	75	82	81	73	70	
27	22027	63	70	74	65	64	55	61	58	48	46	46	
28	22028	78	77	69	76	78	74	67	69	78	68	65	
29	22029	55	58	59	67	71	62	53	61	67	76	75	
30	22030	54	54	48	38	35	45	46	47	41	37	30	
31	22031	84	93	97	89	86	95	100	100	100	99	100	
32	22032	95	100	94	100	98	99	100	90	80	84	75	
33	22033	64	61	63	73	63	68	64	58	50	51	56	
34	22034	76	79	73	77	83	86	95	89	90	95	100	
35	22035	78	71	61	55	54	48	41	32	41	40	48	
36	22036	95	89	91	84	89	94	85	91	100	100	100	
37	22037	99	89	79	87	87	81	82	74	64	54	51	

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Te
38	22038	82	83	85	86	89	80	88	95	87	93	90	
39	22039	65	56	64	62	58	51	61	68	70	70	63	
40	22040	100	93	92	86	84	76	82	74	79	72	79	
41	22041	78	72	73	79	81	73	71	77	83	92	97	
42	22042	98	100	100	93	94	92	100	100	98	94	97	
43	22043	58	62	67	77	71	63	64	73	83	76	86	
44	22044	96	92	94	100	99	95	98	92	84	84	84	
45	22045	86	87	85	84	85	91	86	82	85	87	84	
46	22046	48	55	46	40	34	29	37	34	39	41	31	
47	22047	56	52	54	47	40	35	43	44	40	39	47	
48	22048	42	44	46	53	62	59	57	53	43	35	37	
49	22049	64	54	49	59	54	55	57	59	63	73	78	
50	22050	50	44	37	29	37	46	53	57	55	61	64	
51	22051	70	60	70	62	67	67	68	67	72	69	64	
52	22052	63	73	70	63	60	67	61	59	52	58	56	
53	22053	92	100	100	100	100	100	92	87	94	100	94	
54	22054	64	55	54	61	63	57	47	37	44	48	54	
55	22055	60	66	68	58	49	47	39	29	39	44	39	

In [260]: a=a.head(10) a

Out[260]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Test_11	Tes
0	22000	78	87	91	91	88	98	94	100	100	100	100	
1	22001	79	71	81	72	73	68	59	69	59	60	61	
2	22002	66	65	70	74	78	86	87	96	88	82	90	
3	22003	60	58	54	61	54	57	64	62	72	63	72	
4	22004	99	95	96	93	97	89	92	98	91	98	95	
5	22005	41	36	35	28	35	36	27	26	19	22	27	
6	22006	47	50	47	57	62	64	71	75	85	87	85	
7	22007	84	74	70	68	58	59	56	56	64	70	67	
8	22008	74	64	58	57	53	51	47	45	42	43	34	
9	22009	87	81	73	74	71	63	53	45	39	43	46	

```
In [261]: a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 13 columns):
# Column Non-Null Count Dtype
--- -----
```

0	Student_ID	10	non-null	int64
1	Test_1	10	non-null	int64
2	Test_2	10	non-null	int64
3	Test_3	10	non-null	int64
4	Test_4	10	non-null	int64
5	Test_5	10	non-null	int64
6	Test_6	10	non-null	int64
7	Test_7	10	non-null	int64
8	Test_8	10	non-null	int64
9	Test_9	10	non-null	int64
10	Test_10	10	non-null	int64
11	Test_11	10	non-null	int64
12	Test_12	10	non-null	int64

dtypes: int64(13)
memory usage: 1.1 KB

```
In [262]: a.columns
```

In [263]: a.describe()

Out[263]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	
count	10.00000	10.000000	10.000000	10.000000	10.00000	10.00000	10.00000	10.000000	10.000000	
mean	22004.50000	71.500000	68.100000	67.500000	67.50000	66.90000	67.10000	65.000000	67.200000	
std	3.02765	18.106168	17.565433	19.259918	18.65029	18.28448	18.89415	21.395742	25.284163	
min	22000.00000	41.000000	36.000000	35.000000	28.00000	35.00000	36.00000	27.000000	26.000000	
25%	22002.25000	61.500000	59.500000	55.000000	58.00000	55.00000	57.50000	53.750000	47.750000	
50%	22004.50000	76.000000	68.000000	70.000000	70.00000	66.50000	63.50000	61.500000	65.500000	
75%	22006.75000	82.750000	79.250000	79.000000	74.00000	76.75000	81.50000	83.000000	90.750000	
max	22009.00000	99.000000	95.000000	96.000000	93.00000	97.00000	98.00000	94.000000	100.000000	•

In [265]: sns.distplot(a['Test_12'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[265]: <AxesSubplot:xlabel='Test_12', ylabel='Density'>


```
In [267]: sns.heatmap(x1.corr())
```

Out[267]: <AxesSubplot:>


```
In [270]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[270]: LinearRegression()

```
In [271]: print(lr.intercept_)
```

-128.97340169606866

```
In [272]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[272]:

	Co-efficient
Student_ID	0.006149
Test_1	-0.397792
Test_2	-0.411940
Test_3	0.704603
Test_4	-0.266943
Test_5	0.586020
Test_6	-0.004630
Test_7	-0.407937
Test_8	0.364168
Test_9	-0.328499
Test_10	0.048373
Test_11	0.925538

```
In [273]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[273]: <matplotlib.collections.PathCollection at 0x190c074d6a0>


```
In [274]: print(lr.score(x_test,y_test))
```

-0.7346884805808265

```
In [275]: from sklearn.linear_model import Ridge,Lasso
```

```
In [276]: rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[276]: Ridge(alpha=10)

```
In [277]: | rr.score(x_test,y_test)
Out[277]: -0.7030586448990506
In [278]: |la=Lasso(alpha=10)
          la.fit(x train,y train)
Out[278]: Lasso(alpha=10)
In [279]: la.score(x_test,y_test)
Out[279]: 0.8300852464918711
In [280]: from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
          C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_descent.p
          y:530: ConvergenceWarning: Objective did not converge. You might want to increase the
          number of iterations. Duality gap: 4.131453895013616, tolerance: 0.5212
            model = cd fast.enet coordinate descent(
Out[280]: ElasticNet()
In [281]: print(en.coef_)
          [-0.19832916 -0.18857647 -0.55311966 0.60860812 -0.19363412 0.50310313
                       -0.37174837 0.10349187 -0.10848162 -0.
                                                                         1.01878423]
In [282]: print(en.intercept_)
          4370.891695416516
In [283]: | print(en.predict(x test))
          [60.04666388 54.39926854 77.44432201]
In [284]: |en.score(x_test,y_test)
Out[284]: 0.09600289284035923
In [285]: from sklearn import metrics
In [286]: print("Mean Absolute Error", metrics.mean absolute error(y test, prediction))
          Mean Absolute Error 15.405259227285455
In [287]: | print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
          Mean Squared Error 261.7452174031958
In [288]:
          print(" Root Mean Squared Error", np.sqrt(metrics.mean squared error(y test, prediction))
           Root Mean Squared Error 16.178541881244918
```