Семинар 13

Динамическое программирование

1. Задача о взвешенном независимом множестве

- G=(V, E). Независимое множество графа G это подмножество взаимнонесмежных вершин.
- Пример: Сколько различных независимых множеств имеет полный граф с пятью вершинами?

Как насчет цикла с пятью вершинами?

- а) 1 и 2 (соответственно)
- б) 5 и 10
- в) 6 и 11
- г) 6 и 16

MWIS на путевом графе

Пример.
$$v_1$$
 v_2 v_3 v_4 v_4 v_5 v_4 v_4 v_4 v_5 v_4 v_4 v_4 v_5 v_6 v_8 v_8 v_8 v_8 v_9 v

$$n = |V| = 4, \qquad m = |E| = 3$$

8 независимых множеств: \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1,3\}$, $\{2,4\}$, $\{1,4\}$

Количество подмножеств растет экспоненциально!!!

- Жадная стратегия выбрать самую тяжелую вершину. Тогда $W_{max}=5+1=6$. Не оптимально! Эта жадная стратегия не подходит.
- Рекурсивно делить пополам и потом соединять («Разделяй и властвуй») тоже не подойдет.

Пусть уже найдено S — MWIS и W= W_4 — его вес. Тогда

Случай 1: $v_4 \notin S \Rightarrow S$ для G совпадает с S для G_3 и W_4 = W_3 ;

Случай 2: $v_4 \in S \Rightarrow v_3 \notin S$, S для G совпадает с S для $(G_2 \cup v_4)$ и W_4 = $W_2 + w_4$

Брать ли
$$v_4$$
 в S ? $W_4 = \max\{W_3, W_2 + w_4\}$ Не брать брать

Подходы к решению

Такие же рассуждения для W_3 , W_2 . Считаем $W_0=0, W_1=w_1$ В общем случае W_i =max{ $W_{i-1}, W_{i-2}+w_i$ }, $i=2,3,\ldots,n$

Рекурсивный алгоритм для нахождения MWIS

Вход: путевой граф G с множеством вершин $[v_1, v_2, ..., v_n]$ и неотрицательным весом w_i для каждой вершины v_i .

Выход: независимое множество с максимальным весом графа G.

```
1 if n=0 then // базовый случай #1
2 геturn пустое множество
3 if n=1 then // базовый случай #2
4 геturn \{v_1\}
// рекурсия при n\ge 2
5 S_1:= рекурсивно вычислить MWIS графа G_{n-1}
6 S_2:= рекурсивно вычислить MWIS графа G_{n-2}
7 геturn S_1 или S_2 U \{v_n\}, в зависимости от того, что имеет больший вес
```

Верно, но нерационально!

Сколько различных входных графов рассматривалось в пределах всех рекурсивных вызовов?

- a) Θ(1) ¹
- Θ(n)
- Β) Θ (n²)
- Γ) 2^{Θ(n)}

Будем запоминать результаты задачи, которую решаем впервые, в кэше. Массив A[0...n]. Имеем n+1 подзадачу, соответствующую всем префиксам входного графа.

Взвешенное независимое множество (WIS)(восходящая реализация)

Вход: путевой граф G с множеством вершин $\{v_1, v_2, ..., v_n\}$ и неотрицательным весом для каждой вершины v_i .

Выход: суммарный вес независимого множества с максимальным весом графа *G*.

```
A := массив длиной (n+1) // решения подзадач A[0] := 0 // базовый случай #1 A[1] := w_1 // базовый случай #2 for i = 2 to n do // использовать рекуррентное соотношение // из следствия 16.2 A[i] := \max\{\underbrace{A[i-1]}_{\text{Случай } 1}, \underbrace{A[i-2] + w_i}_{\text{Случай } 2}\} return A[n] // решение наибольшей подзадачи
```

Пример:

Включить и Исключить и Включить и

Исключить v

Реконструкция

WIS_RECONSTRUCTION

Вход: массив A, вычисленный алгоритмом WIS для путевого графа G с множеством вершин $\{v_1, v_2, ..., v_n\}$, и неотрицательный вес w_i для каждой вершины v_i .

Выход: независимое множество с максимальным весом графа G.

```
S := \emptyset
                                  // вершины в множестве MWIS
i := n
while i \ge 2 do
  if A[i-1] \ge A[i-2] + w_i then // Случай 1 побеждает
     i := i - 1
                                  // исключить V_i
  else
                                  // Случай 2 побеждает
     S := S \cup \{v_i\}
                                  // включить V_i
     i := i - 2
                                  // исключить V_{i-1}
if i = 1 then
                                  // базовый случай #2
    S := S \cup \{v_1\}
return S
```

Самостоятельно найти MWIS

0	1	2	3	4	5	6
0						

Задача о рюкзаке

Имеется n предметов.

$$0 \le v_1, v_2, \dots, v_n$$
 - стоимости

$$0 \le s_1, s_2, \dots, s_n$$
 - размеры

С – емкость рюкзака

Найти
$$S\subseteq\{1,2,\ldots,n\}$$
: $\sum_{i\in S}v_i o max$ при $\sum_{i\in S}s_i\leq C$

Пример (почти как в семинаре 11), C = 6 кг

магнитофон	ноутбук	гитара
$v_1 = 30000$ p	$v_2 = 20000$ p	$v_3 = 15000 \mathrm{p}$
$w_1 = 5 \ кг$	$w_2 = 3 \ кг$	w₃ =2 кг

Жадная стратегия дает результат неверный (магнитофон)

Верный результат – ноутбук + гитара

Решение с помощью динамического программирования

магнитофон	ноутбук	гитара
$v_1 = 30000$ р $w_1 = 5$ кг	$v_2 = 20000$ р $w_2 = 3$ кг	$v_3 = 15000$ р $w_3 = 2$ кг

- Пусть задача решена и найден набор предметов, имеющих в сумме максимальную стоимость $V_{3,6}$
- Если гитара не попала в этот набор, то для магнитофона и ноутбука остаточный вес c=C=6 кг и $V_{3,6}$ = $V_{2,6}$.
- Если гитара попала в набор, то для магнитофона и ноутбука остаточный вес равен c=6-2=4 кг $(V_{3,6}$ = $V_{2,4}+v_3)$
- Для $V_{2,6}$ и $V_{2,4}$ рассуждаем аналогично (попал или не попал ноутбук в набор предметов)

 $V_{i,c}$ - максимальная суммарная стоимость первых i предметов с размером (весом) рюкзака не больше c.

При
$$i=0$$
 $V_{i,c}=0$, $\forall i=1,2,\ldots,n$ и $c=0,1,\ldots,C$
$$V_{i,c}=\begin{cases} \underbrace{V_{i-1,\,c}}_{\text{Случай 1}}, \underbrace{V_{i-1,\,c-s_i}+v_i}_{\text{Случай 2}} & \text{если } s_i>c \end{cases}$$

магнитофон	ноутбук	гитара
$v_1 = 30000 \mathrm{p}$	$v_2 = 20000 p$	$v_3 = 15000 \mathrm{p}$
$w_1 = 5$ кг	$w_2 = 3 \ кг$	w₃ =2 кг

	6	0	30	30	35
	5	0	30	30	35
р С	4	0	0	20	20
Остаточная емкость с	3	0	0	, [′] 20	20
ая ем	2	0,	0,	0	15
точн	1	Ó	0	0	0
Оста	0	0	0	0	0
·		0	1	2	3

префиксная длина і

Вопросы к задаче о рюкзаке

1) Если переставить столбцы местами, изменится ли результат?

	6	0	15	30	35
	5	0	15	15	35
P C	4	0	15	15	20
1KOCT	3	0	15	15	20
Остаточная емкость с	2	0	15	15	15
TOHH	1	0	0	0	0
Оста	0	0	0	0	0
		0	1	2	3

префиксная длина і

гитара	магнитофон	ноутбук
$v_3 = 15000$ р $w_3 = 2$ кг	$v_1 = 30000$ р $w_1 = 5 \ кг$	$v_2 = 20000$ р $w_2 = 3$ кг

2) Что будет, если добавить ожерелье весом 0,5 и стоимостью 1000р?

•	6	0				
	•••	•••				
р С	•••	•••				
1КОСТ	1,5	0				
ая ем	1	0				
Остаточная емкость с	0,5	0	0	0	0	
Оста	0	0	0	0	0	0
·		0	1	2	3	4

префиксная длина і

магнитофон	ноутбук	гитара	ожерелье
$v_1 = 30000 \mathrm{p}$ $w_1 = 5 \ \mathrm{kr}$	$v_2 = 20000$ р $w_2 = 3$ кг	$v_3 = 15000$ р $w_3 = 2$ кг	$v_4 = 1000$ р $w_4 = 0.5$ кг

3) Допустим, что рюкзак наполняется в продуктовом магазине.

рис	гречка	пшено
100р/кг	150р/кг	120р/кг

Как решать?