Online Contests Solutions

Saman Saadi

Contents

_	HackerRank				
	1.1	New Year Chaos	1		
	1.2	Minimum Swaps 2	2		

iv CONTENTS

Chapter 1

HackerRank

1.1 New Year Chaos

You can find the question in this link.

We define $index_i$ as the current index for person i. For example if we have 1,2,3,4 and 4 bribes 3, the queue looks like 1,2,4,3. So $index_4=3$. Since no body can bribe more than 2 times, $index_i \geq i-2$ for $1 \leq i \leq n$. Consider person n. No body can bribe that person. So $n-2 \leq index_n \leq n$. After we retruned that person to his actual place we can consider n-1. So we have $n-3 \leq index_{n-1} \leq n-1$ (note that at this moment $index_n=n$).

}

1.2 Minimum Swaps 2

See the problem statement in this link.

We define $index_i$ as the current index of number i. Suppose we have n numbers, so $1 \le index_i \le n$. The goal is to have $index_i = i$. Without losing generality suppose $i < j \land index_i = j$. There are two cases to consider:

- 1. If $index_j = i$, then by swapping arr_i and arr_j , we put both i and j in their corresponding positions.
- 2. If $index_j = k \land k \neq i \land k \neq j$. Also suppose $arr_i = x$. In this case by swapping arr_i and arr_j we only put i in its corresponding position. So we need at most two other extra swaps to put x and j to their corresponding positions. It can be only one extra swap if x = k.

We can start from i = 1 to i = n and make sure i is in correct position; otherwise we perform a swap. In each iteration we fix the position of one or two numbers. A good example is $\{4, 3, 2, 1\}$.

```
int minimumSwaps(vector<int> arr) {
  const auto& n = arr.size();
  vector<int> index(n + 1);

  for (int i = 0; i < n; ++i)
      index[arr[i]] = i;
  int cnt = 0;
  for (int num = 1; num <= n; ++num)
  {
      if (index[num] != num - 1)
      {
            ++cnt;
            index[arr[num - 1]] = index[num];
            swap(arr[index[num]], arr[num - 1]);
            index[num] = num - 1;
      }
  }
  return cnt;
}</pre>
```