Results

March 26, 2019

Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

Ranking	6.538461538461538	4.3076923076923075	6.153846153846154	4.038461538461538	2.5	1.346153846153846	3.115384615384615
Algorithm	Ele07	Bur08	Pil10	Dem12	Lei14	Lei18	FastTA100

Friedman statistic considering reduction performance (distributed according to chi-square with 6 degrees of freedom: 59.2087912087912. P-value computed by Friedman Test: 9.803702294419736E-11.

Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 6 and 72 degrees of freedom: 37.810526315789446.

P-value computed by Iman and Daveport Test: 2.30118256477668E-20.

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

Holm/Hochberg/Hommel	0.008333333333333333	0.01	0.0125	0.01666666666666666	0.025	0.05
d	8.903042532614947E-10	1.394945163556328E-8	4.7372617062243556E-4	0.0014857910042988679	0.036794678710544544	0.17327302381922632
$z = (R_0 - R_i)/SE$	6.127928768271625	5.674008118770024	3.495189001162334	3.177444546511213	2.088034987707368	1.3617619485048056
algorithm	Ele07	Pil10	Bur08	Dem12	FastTA 100	Lei14
.2	9	Ю	4	က	7	1

Holm's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

	Holm/Hochberg/Hommel	0.0166666666666666	0.02	0.025	0.033333333333333	0.05	0.1
0	d	8.903042532614947E-10	1.394945163556328E-8	4.7372617062243556E-4	0.0014857910042988679	0.036794678710544544	0.17327302381922632
_	$z = (R_0 - R_i)/SE$	6.127928768271625	5.674008118770024	3.495189001162334	3.177444546511213	2.088034987707368	1.3617619485048056
	algorithm	Ele07	Pil10	Bur08	Dem12	FastTA 100	Lei14
	i	9	Ŋ	4	က	2	-

Holm's procedure rejects those hypotheses that have a p-value ≤ 0.1 .

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hommel's procedure rejects those hypotheses that have a p-value ≤ 0.05 .

Nemenyi's procedure rejects those hypotheses that have a p-value $\leq 0.002380952380952381$.

Holm's procedure rejects those hypotheses that have a p-value ≤ 0.0041666666666667 .

Table 4: Adjusted p-values

2 Pil10 1.394945163556328E-8 8.369670981337968E-8 6.97472581778164E-8 6.97472581778164E-		i algorithm	unadjusted p	p_{Bonf}	p_{Holm}	p_{Hoch}	p_{Homm}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		l Ele07	8.903042532614947E-10	5.341825519568968E-9	5.341825519568968E-9	5.341825519568968E-9	5.341825519568968E-9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 Pil10	1.394945163556328E-8	8.369670981337968E-8	6.97472581778164E-8	6.97472581778164E-8	6.97472581778164E-8
$5 \text{FastTA} \\ 100 0.036794678710544544 \qquad 0.22076807226326728 \qquad 0.07358935742108909 \qquad 0.0735893742108909 \qquad 0.073589374000000000000000000000000000000000000$:	Bur08	4.7372617062243556E-4	0.0028423570237346134	0.0018949046824897422	0.0018949046824897422	0.001894904682489742
	4	4 Dem12	0.0014857910042988679	0.008914746025793207	0.004457373012896604	0.004457373012896604	0.004457373012896604
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5 FastTA100	0.036794678710544544	0.22076807226326728	0.07358935742108909	0.07358935742108909	0.07358935742108909
		5 Lei14	0.17327302381922632	1.0396381429153578	0.17327302381922632	0.17327302381922632	0.17327302381922632

Table 5: Holm / Shaffer Table for $\alpha = 0.05$

			/ .0		
i	algorithms	$z = (R_0 - R_i)/SE$	p	Holm	Shaffer
21	Ele07 vs. Lei18	6.127928768271625	8.903042532614947E-10	0.002380952380952381	0.002380952380952381
20	Pil10 vs. Lei18	5.674008118770024	1.394945163556328E-8	0.0025	0.0033333333333333335
19	Ele07 vs. Lei14	4.766166819766819	1.8776381638138645E-6	0.002631578947368421	0.003333333333333333
18	Pil10 vs. Lei14	4.312246170265218	1.616043596571718E-5	0.00277777777777778	0.003333333333333333
17	Ele07 vs. FastTA100	4.039893780564257	5.3475414340174596E-5	0.0029411764705882353	0.003333333333333333
16	Pil10 vs. FastTA100	3.5859731310626555	3.35823537288673E-4	0.003125	0.003333333333333333
15	Bur08 vs. Lei18	3.495189001162334	4.7372617062243556E-4	0.003333333333333333	0.003333333333333333
14	Dem12 vs. Lei18	3.177444546511213	0.0014857910042988679	0.0035714285714285718	0.004545454545454546
13	Ele07 vs. Dem12	2.9504842217604117	0.003172762493055345	0.0038461538461538464	0.004545454545454546
12	Ele07 vs. Bur08	2.6327397671092907	0.008469921628468118	0.004166666666666667	0.004545454545454546
11	Pil10 vs. Dem12	2.4965635722588106	0.012540318854963949	0.004545454545454546	0.004545454545454546
10	Bur08 vs. Pil10	2.178819117607689	0.029345108174841875	0.005	0.005
9	Bur08 vs. Lei14	2.1334270526575283	0.032889709817584635	0.0055555555555556	0.00555555555555556
8	Lei18 vs. FastTA100	2.088034987707368	0.036794678710544544	0.00625	0.00625
7	Dem12 vs. Lei14	1.815682598006407	0.06941907499936394	0.0071428571428571435	0.0071428571428571435
6	Bur08 vs. FastTA100	1.4071540134549658	0.1593817245230317	0.008333333333333333	0.008333333333333333
5	Lei14 vs. Lei18	1.3617619485048056	0.17327302381922632	0.01	0.01
4	Dem12 vs. FastTA100	1.0894095588038446	0.275973318013738	0.0125	0.0125
3	Lei14 vs. FastTA100	0.7262730392025625	0.46767140390417417	0.01666666666666666	0.01666666666666666
2	Ele07 vs. Pil10	0.45392064950160127	0.6498859404583132	0.025	0.025
1	Bur08 vs Dem12	0.3177444546511212	0.7506787873918128	0.05	0.05

Shaffer's procedure rejects those hypotheses that have a p-value $\leq 0.002380952380952381$. Bergmann's procedure rejects these hypotheses:

- Ele07 vs. Dem12
- Ele07 vs. Lei14
- \bullet Ele07 vs. Lei18
- \bullet Ele
07 vs. Fast TA100
- \bullet Bur08 vs. Lei18
- Pil10 vs. Lei14
- Pil10 vs. Lei18
- Pill0 vs. FastTA100
- Dem12 vs. Lei18

- \bullet Ele07 vs. Bur08
- Ele07 vs. Dem12
- Ele07 vs. Lei14
- Ele07 vs. Lei18

Table 6: Holm / Shaffer Table for $\alpha=0.10$

.2	algorithms	$z = (R_0 - R_i)/SE$	d	Holm	Shaffer
21	Ele07 vs. Lei18	6.127928768271625	8.903042532614947E-10	0.004761904761904762	0.004761904761904762
20	Pil10 vs. Lei18	5.674008118770024	1.394945163556328E-8	0.005	0.006666666666666667
19	Ele07 vs. Lei14	4.766166819766819	1.8776381638138645E-6	0.005263157894736842	0.006666666666666667
18	Pill0 vs. Lei14	4.312246170265218	1.616043596571718E-5	0.0055555555555555556	0.006666666666666667
17	Ele07 vs. FastTA100	4.039893780564257	5.3475414340174596E-5	0.0058823529411764705	0.006666666666666667
16	Pill0 vs. FastTA100	3.5859731310626555	3.35823537288673E-4	0.00625	0.006666666666666667
15	Bur08 vs. Lei18	3.495189001162334	4.7372617062243556E-4	0.006666666666666667	0.006666666666666667
14	Dem12 vs. Lei18	3.177444546511213	0.0014857910042988679	0.0071428571428571435	0.009090909090909090
13	Ele07 vs. Dem12	2.9504842217604117	0.003172762493055345	0.007692307692307693	0.009090909090909092
12	Ele07 vs. Bur08	2.6327397671092907	0.008469921628468118	0.00833333333333333	0.009090909090909092
11	Pill0 vs. Dem12	2.4965635722588106	0.012540318854963949	0.009090909090909092	0.009090909090909092
10	Bur08 vs. Pill0	2.178819117607689	0.029345108174841875	0.01	0.01
6	Bur08 vs. Lei14	2.1334270526575283	0.032889709817584635	0.01111111111111111	0.0111111111111111
œ	Lei18 vs. FastTA100	2.088034987707368	0.036794678710544544	0.0125	0.0125
-1	Dem12 vs. Lei14	1.815682598006407	0.06941907499936394	0.014285714285714287	0.014285714285714287
9	Bur08 vs. FastTA100	1.4071540134549658	0.1593817245230317	0.01666666666666666	0.01666666666666666
Ю	Lei14 vs. Lei18	1.3617619485048056	0.17327302381922632	0.02	0.02
4	Dem12 vs. FastTA100	1.0894095588038446	0.275973318013738	0.025	0.025
က	Lei14 vs. FastTA100	0.7262730392025625	0.46767140390417417	0.03333333333333333	0.033333333333333
7	Ele07 vs. Pill0	0.45392064950160127	0.6498859404583132	0.05	0.05
П	Bur08 vs. Dem12	0.3177444546511212	0.7506787873918128	0.1	0.1

 \bullet Ele07 vs. FastTA100

• Bur 08 vs. Lei 18

Pil10 vs. Dem12Pil10 vs. Lei14

Pil10 vs. Lei18Pil10 vs. FastTA100

• Dem12 vs. Lei18

hypothesis	unadjusted p	pNeme	p_{Holm}	pShaf	pBera
Ele07 vs .Lei18	8.903042532614947E-10	1.869638931849139E-8	1.869638931849139E-8	1.869638931849139E-8	1.869638931849139E-8
Pill0 vs .Lei18	1.394945163556328E-8	2.929384843468289E-7	2.789890327112656E-7	2.092417745334492E-7	2.092417745334492E-7
Ele07 vs .Lei14	1.8776381638138645E-6	3.943040144009116E-5	3.5675125112463426E-5	2.8164572457207966E-5	2.8164572457207966E-5
Pill0 vs .Lei14	1.616043596571718E-5	3.3936915528006074E-4	2.908878473829092E-4	2.4240653948575769E-4	1.6160435965717178E-4
Ele07 vs .FastTA100	5.3475414340174596E-5	0.0011229837011436665	9.090820437829681E-4	8.02131215102619E-4	5.882295577419206E-4
Pill0 vs .FastTA100	3.35823537288673E-4	0.0070522942830621325	0.005373176596618768	0.005037353059330095	0.002350764761020711
Bur08 vs .Lei18	4.7372617062243556E-4	0.009948249583071146	0.007105892559336534	0.007105892559336534	0.005210987876846791
Dem12 vs .Lei18	0.0014857910042988679	0.031201611090276225	0.020801074060184152	0.016343701047287548	0.01337211903868981
Ele07 vs .Dem12	0.003172762493055345	0.06662801235416224	0.04124591240971948	0.03490038742360879	0.028554862437498104
Ele07 vs .Bur08	0.008469921628468118	0.17786835419783048	0.10163905954161742	0.09316913791314929	0.05081952977080871
Pill0 vs .Dem12	0.012540318854963949	0.2633466959542429	0.13794350740460343	0.13794350740460343	0.07524191312978369
Bur08 vs .Pil10	0.029345108174841875	0.6162472716716794	0.2934510817484188	0.2934510817484188	0.1173804326993675
Bur08 vs .Lei14	0.032889709817584635	0.6906839061692773	0.29600738835826174	0.29600738835826174	0.23022796872309245
Lei18 vs .FastTA100	0.036794678710544544	0.7726882529214354	0.29600738835826174	0.29600738835826174	0.23022796872309245
Dem12 vs .Lei14	0.06941907499936394	1.4578005749866427	0.48593352499554754	0.48593352499554754	0.27767629999745574
Bur08 vs .FastTA100	0.1593817245230317	3.347016214983666	0.9562903471381903	0.9562903471381903	0.7969086226151585
Lei14 vs .Lei18	0.17327302381922632	3.638733500203753	0.9562903471381903	0.9562903471381903	0.7969086226151585
Dem12 vs .FastTA100	0.275973318013738	5.795439678288497	1.103893272054952	1.103893272054952	0.7969086226151585
Lei14 vs .FastTA100	0.46767140390417417	9.821099481987657	1.4030142117125224	1.4030142117125224	1.4030142117125224
Ele07 vs .Pill0	0.6498859404583132	13.647604749624577	1.4030142117125224	1.4030142117125224	1.4030142117125224
Bur08 vs .Dem12	0.7506787873918128	15.76425453522807	1.4030142117125224	1.4030142117125224	1.4030142117125224

Table 7: Adjusted p-values