Greedy

Greedy Algorithms

- Idea: Construct a global optimal solution by making locally greedy choices.
- Works when the problem has
 - Optimal substructures
 - Greedy choice property
- Implementation
 - Priority queues
 - Sorting

Interval Covering

- Input: A interval set $S=\{[s_1,t_1],...,[s_n,t_n]\}$
- Goal: Find the minimum subset of S which covers all points in [a,b]
- Sketch:
 - ▶ Find the interval [s*,t*] such that
 - \blacktriangleright [s*,t*] \in {[s,t]: s \leq a \leq t}
 - $t^* \ge t' \text{ if } [s',t'] ∈ \{[s,t]: s \le a \le t\}$
 - ▶ Put [s*,t*] into the optimal solution and deal with subproblem [t*,b].

Done!

1D Point Covering

- Input: A set $P=\{x_1,...,x_n\}$ of points on the real line.
- Covering set of P: $S=\{I_1,...,I_k\}$
 - ▶ I_j's are unit-length intervals
 - For every $x \in P$, there exists $I \in S$ such that $x \in S$.
- Goal: what is the minimum cardinality of a covering set of P?

Done!