CS1138

Machine Learning

Lecture : Linear Regression

(Slide Credits: Andrew Ng)

Arpan Gupta

Supervised Learning

Given the "right answer" for each example in the data.

- Regression
 - Predict real-valued output
- Classification
 - Discrete valued output

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
(Portland, OR)	1416	232
(1534	315
	852	178

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

Training set of housing prices (Portland, OR)

Size in feet² (x) 1534 852

Notation:

- > m = Number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable

$$(x^{(1)}) = 2104$$

 $(x^{(2)}) = 1416$
 $(y^{(1)}) = 460$

How do we represent h?

$$h_{\mathbf{g}}(x) = \Theta_0 + \Theta_1 x$$

Shorthard: $h(x)$

Linear regression with one variable. (*)
Univariate linear regression.

Linear Regression with one variable

Tra	in	in	g	S	et
			0	_	

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	47 samples
852	178	Samples

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 $\theta_{i's}$: Parameters

How to choose θ_i 's ?

How will the models look like?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\rightarrow \theta_1 = 0$$

$$\theta_1 = 0.5$$

minimize
$$\frac{1}{2m} \frac{1}{2m} \left(h_{\bullet}(x^{(i)}) - y^{(i)} \right)^2$$

$$h_{\bullet}(x^{(i)}) = 0_{\bullet} + \theta_{i}x^{(i)}$$

Idea: Choose
$$\underline{\theta_0},\underline{\theta_1}$$
 so that $\underline{h_{\theta}(x)}$ is close to \underline{y} for our training examples (x,y)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1} x}_{\theta_{1}}$$

$$\theta_{1}$$

$$J(\theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}$$

$$\min_{\theta_{1}} \text{minimize } J(\theta_{1})$$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter (θ_1)

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1)$$

(function of the parameter θ_1)

$$Q' = Q_3$$

$h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal:

$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

 $h_{ heta}(x)$ (for fixed $heta_0, heta_1$, this is a function of x)

End of Lecture