Scilab Textbook Companion for Fundamentals of Fluid Mechanics by B. R. Munson, D. F. Young And T. H. Okiishi¹

Created by
Meghana Sundaresan
B.Tech (pursuing)
Chemical Engineering
Visvesvaraya National Institue of Technology
College Teacher
NA
Cross-Checked by
Santosh Kumar, IITB

May 17, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals of Fluid Mechanics

Author: B. R. Munson, D. F. Young And T. H. Okiishi

Publisher: Wiley India, New Delhi

Edition: 5

Year: 2007

ISBN: 98-1253-221-8

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	list of Scilab Codes	
1	basic properties of fluids	6
2	Fluids at rest pressure and its effects	15
3	Fluids in motion Bernoulli equation	24
4	Kinematics of fluid motion	32
5	Flow analysis using control volumes	33
6	Flow Analysis of Using Differential Methods	50
7	Dimensional Analysis Modelling and Similitude	55
8	Pipe flow	60
9	External Flow Past Bodies	80
10	Flow in Open Channels	88
11	Analysis of Compressible Flow	96
12	Pumps and Turbines	110

List of Scilab Codes

Exa 2	force by tank
Exa 3	density and weight of air
Exa 4	reynolds number calculation
Exa 5	shearing stress calculation
Exa 6	final pressure calculation
Exa 7	ratio of speeds
Exa 8	diameter of tube
Exa 1.2	force by tank
Exa 1.3	density and weight of air
Exa 1.4	reynolds number calculation
Exa 1.5	shearing stress calculation
Exa 1.6	final pressure calculation
Exa 1.7	ratio of speeds
Exa 1.8	diameter of tube
Exa 2.1	pressure at interface
Exa 2.2	pressure depth variation
Exa 2.3	pressure at bottom
Exa 2.4	reading of gage
Exa 2.5	pressure drop calculation
Exa 2.6	force on plane
Exa 2.7	hydrostatic pressure force
Exa 2.8	pressure prism concept
Exa 2.9	force on curve
Exa 2.10	tension in cable
Exa 2.11	maximum acceleration calculation
Exa 3.6	pitot static tube
Exa 3.7	determination of flowrate
Eva 3.8	flowrate and pressure

Exa 3.10	maximum height determination	27
Exa 3.11	pressure difference range	28
Exa 3.12	flow through channel	28
Exa 3.13	increased flowrate determination	29
Exa 3.15	stagnation pressure calculation	30
Exa 3.17	stagnation pressure determination	31
Exa 4.6	delivery speed calculation	32
Exa 5.1	Minimum Pumping capacity	33
Exa 5.2	average velocity calculation	33
Exa 5.3	Mass Flowrate determination	34
Exa 5.5	change in depth	34
Exa 5.6	mass flowrate estimation	35
Exa 5.7	Speed of water	36
Exa 5.8	Speed of plunger	37
Exa 5.9	change in depth	37
Exa 5.11	Anchoring force determination	37
Exa 5.12	Anchoring force calculation	38
Exa 5.13	Frictional force determination	39
Exa 5.15	nominal thrust calculation	39
Exa 5.17	force determination	40
Exa 5.18	resisting torque calculation	41
Exa 5.19	estimation of power	42
Exa 5.20	Determination of power	43
Exa 5.21	work output calculation	44
Exa 5.22	temperature change determination	44
Exa 5.23	volume flowrates comparison	45
Exa 5.24	useful work determination	46
Exa 5.25	flowrate and powerloss	47
Exa 5.26	nonuniform velocity profile	47
Exa 5.29	expanded air velocity	48
Exa 6.4	inviscid flow pressure	50
Exa 6.5	Volume rate calculation	50
Exa 6.7	pressure at elevation	51
Exa 6.10	flow in annulus	52
Exa 7.5	prototype performance prediction	55
Exa 7.6	reynolds number similarity	56
Exa 7.7	predicting prototype performance	57
Exa 7.8	froude number similarity	58

Exa 8.1	calculating time required	60
Exa 8.2	laminar pipe flow	61
Exa 8.3	net force calculation	62
Exa 8.4	turbulent pipe flow	63
Exa 8.5	pressure drop calculation	65
Exa 8.6	minor losses calculation	65
Exa 8.7	duct size determination	66
Exa 8.8	determining pressure drop	68
Exa 8.9	determining head loss	71
Exa 8.10	air flowrate determination	73
Exa 8.11	flowrate through turbine	74
Exa 8.12	minimum pipe diameter	74
Exa 8.13	pipe diameter calculation	75
Exa 8.14	flowrate in reservoir	77
Exa 8.15	diameter of nozzle	78
Exa 9.1	lift and drag	80
Exa 9.5	boundary layer transition	80
Exa 9.7	drag estimation	81
Exa 9.10	speed of grain	82
Exa 9.11	velocity of updraft	84
Exa 9.12	drag and deceleration	84
Exa 9.13	torque estimation	85
Exa 9.15	lift and power	86
Exa 9.16	angular velocity determination	86
Exa 10.2	elevation of surface	88
Exa 10.3	froude number determination	89
Exa 10.4	determining flow depth	90
Exa 10.7	flowrate estimation	91
Exa 10.8	aspect ratio determination	91
Exa 10.9	hydraulic jump	92
Exa 11.1	Internal Energy enthalphy	96
Exa 11.2	change in entropy	97
Exa 11.3	speed of sound	97
Exa 11.4	Mach cone	97
Exa 11.5	mass flowrate determination	98
Exa 11.6		100
Exa 11.7		100
Exa 11.1	v	100 101

Exa 11.12	choked fanno flow	102
Exa 11.13	effect of duct length on choked fanno flow	104
Exa 11.14	unchoked fanno flow	105
Exa 11.15	rayleigh flow	106
Exa 11.18	supersonic flow	107
Exa 11.19	converging diverging duct	108
Exa 12.2	shaft power calculation	110
Exa 12.3	NPSH calculation	110
Exa 12.5	pump scaling laws	111
Exa 12.6	pelton wheel turbine	111
Exa 12.8	dental drill characteristics	111

List of Figures

1.1 1.2 1.3	1	9 12 14
2.1 2.2		17 20
3.1 3.2 3.3	determination of flowrate	25 27 30
5.1 5.2 5.3 5.4	resisting torque calculation	35 42 46 48
6.1 6.2	1	52 54
7.1 7.2		57 59
8.1 8.2 8.3 8.4	minor losses calculation	63 67 71 72
8.5 8.6 8.7	determining head loss	73 76 77

9.1	drag estimation	82
	speed of grain	
10.1	elevation of surface	89
10.2	aspect ratio determination	92
10.3	hydraulic jump	94
10.4	hydraulic jump	95
11.1	Mach cone	99
11.2	fanno flow	103
11 3	rayleigh flow	107

Chapter 1

basic properties of fluids

Scilab code Exa 2 force by tank

```
1 m=36; //kg
2 acc=7; //ft/sq sec
```

Scilab code Exa 3 density and weight of air

```
1  V=0.84; //ft^3
2  p=50; //psi
3  T=70; //degree farenheit
4  atmp=14.7; //psi
```

Scilab code Exa 4 reynolds number calculation

```
1 vis=0.38; //Ns/m^2
2 sg=0.91; //specific gravity of Newtonian fluid
3 dia=25; //mm
4 vel=2.6; //m/s
```

Scilab code Exa 5 shearing stress calculation

```
1 vis=0.04; //lb*sec/ft^2
2 vel=2; //ft/sec
3 h=0.2; //inches
```

Scilab code Exa 6 final pressure calculation

```
1 p1=14.7; //psi(abs)
2 V1=1; //ft^3
3 V2=0.5; //ft^3
```

Scilab code Exa 7 ratio of speeds

```
1  s=550; // (mph)
2  h=35000; // ft
3  T=-66; // degrees farenheit
4  k=1.40;
```

Scilab code Exa 8 diameter of tube

```
1 T=20; //degree celcius
2 h=1; //mm
```

Scilab code Exa 1.2 force by tank

```
1 clc;
2 clear;
3 m=36; //kg
4 acc=7; //ft/sq sec
5 W=m*9.81;
6 disp("W=")
7 disp(W)
8 //F=W+m*acc
9 //1 ft= 0.3048 m
10 F=W+(m*acc*0.3048);
11 disp("N",F,"F=")
```

Scilab code Exa 1.3 density and weight of air

```
1 clc;
2 clear;
3 V=0.84; //ft^3
4 p=50; // psi
5 T=70; // degree farenheit
6 atmp=14.7; // psi
```


Figure 1.1: density and weight of air

```
7 // the air density d=P/(RT)
8 //1 \, \text{ft}^2 = 144 \, \text{inches}^2
9 d=((p+atmp)*144)/((1716)*(T+460));
10 disp(d)
11 / slugs/ft^3
12 //weight of air
13 W=d*32.2*V;
14 //1lb=1 slug.ft/sq sec
15 disp("lb",W,"W=")
16 //taking various values of p a graph is plotted
      between W and p
17 x = -20:60;
18 \text{ for } p = -20: 60
19
        i = p + 21;
20
       y(1,i)=((p+atmp)*144/((1716)*(T+460)))*32.2*V;
21
22 \quad end
23 plot(x,y)
24 xtitle('W vs p', 'p.psi', 'W, lb')
```

Scilab code Exa 1.4 reynolds number calculation

```
1 clc;
2 clear;
3 \text{ vis=0.38;} // \text{Ns/m}^2
4 sg=0.91; // specific gravity of Newtonian fluid
5 \text{ dia=25;}/\text{mm}
6 vel=2.6; //m/s
8 //calculating in SI units
9 //fluid density d=sg*(density of water @ 277K)
10 d=sg*1000; //kg/m^3
11 //Reynolds number Re=d*vel*dia/vis
12 Re=(d*vel*dia)/(vis*1000); //(kgm/sec^2)/N
13 disp(156, "Re in SI units=")
14 //calculating in BG units
15 d1=d*1.94/1000//slugs/ft^3
16 vel1=vel*3.281//ft/s
17 dia1 = (dia/1000) *3.281 // ft
18 vis1=vis*(2.089/100)//lb*s/ft^2
19 Re1=(d1*vel1*dia1)/vis1;//(slugs.ft/sec^2)/lb
20 disp(Re1, "Re in Bg units=")
```

Scilab code Exa 1.5 shearing stress calculation

```
1 clc;
2 clear;
3 vis=0.04;//lb*sec/ft^2
4 vel=2;//ft/sec
5 h=0.2;//inches
6
7 //given u=(3*vel/2)(1-(y/h)^2)
8 //shearing stress t=vis*(du/dy)
9 //(du/dy)=-(3*vel*y/h)
10 //along the bottom of the wall y=-h
```

Scilab code Exa 1.6 final pressure calculation

```
1 clc;
2 clear;
3 p1=14.7; //psi(abs)
4 V1=1; //ft^3
5 V2=0.5; //ft^3
6 //for isentropic compression, (p1(d1^k))=(p2/(d2^k))
7 //volume*density=constant(mass)
8 ratd=V1/V2;
9 p2=((ratd)^1.66)*p1;//psi(abs)
10 \operatorname{disp}("\operatorname{psi}(\operatorname{abs})",\operatorname{p2},"\operatorname{final}\operatorname{pressure}\operatorname{p2}=")
11
12 i = 1;
13 ratV=0.01:0.01:1.0;
14
15 for j=0.01:0.01:1.0
         pres(i)=p1/((j)^1.66);
16
17
        i=i+1;
18
19 end
20
21 plot2d(ratV, pres, rect = [0,0,1,1000])
22 xtitle('p2 vs V2/V1', 'V2/V1', 'p2 psi')
```


Figure 1.2: final pressure calculation

Scilab code Exa 1.7 ratio of speeds

```
1 clc;
2 clear;
3 s=550;//(mph)
4 h=35000;//ft
5 T=-66;//degrees farenheit
6 k=1.40;
7 //speed of sound c=(kRT)^0.5
8 c=((k*1716*(T+460)))^0.5;//ft/s
9 disp("ft/s",c,"speed of sound c=")
10 //speed of sound V=(s m/hour)*(5280 ft/m)/(3600 s/hour)
11 V=s*5280/3600;//ft/s
12 disp("ft/s",V,"air speed =")
13 ratio=V/c;//Mach number
14 disp(ratio,"ratio of V/c = Mach Number=")
```

Scilab code Exa 1.8 diameter of tube

```
1 clc;
2 clear;
3 T=20; // degree celcius
4 h=1; / mm
5 //h = (2*st*cos(x)/(sw*R))
6 //where st= nsurface tension, x= angle of contact,
      sw= specific weight of liquid, R= tube radius
7 st= 0.0728; //N/m
8 \text{ sw} = 9.789; //kN/m^3
9 x = 0;
10 R = (2*st*cos(x))/(sw*1000*h/1000);/m
11 D=2*R*1000; //mm
12 disp("mm",D," minimum required tube diameter= ")
13 h=0.1:0.1:2;
14 for i=0.1:0.1:2
15
       R = (2*st*cos(x))/(sw*1000*i/1000);
16
       dia(i*10) = 2*R*1000;
17 end
18
19 plot2d(h,dia,rect=[0,0,2,100])
20 xtitle("D vs h", "h, mm", "D, mm")
```


Figure 1.3: diameter of tube

Chapter 2

Fluids at rest pressure and its effects

Scilab code Exa 2.1 pressure at interface

```
1 clc;
2 clear;
3 sg=0.68; //specific gravity of gasoline
4 htg=17; //ft (height of gasoline)
5 htw=3; //ft (height of water)
6 //pressure p= (gamma*h)+atmp;
7 //pressure at water- gasoline interface p1 = sg*g*htg
      +atmp
8 p1=sg*62.4*htg; //atmp=0, p1 is in lb/ft^2
9 pr1=p1/144; //lb/in^2
10 //pressure head as feet of water H
11 H= p1/62.4; //ft
12 //similarly pressure p2 at tank bottom
13 p2=62.4*htw+p1; //lb/ft^2
14 pr2 = p2/144; //lb/in^2
15 //pressure head as ft of water H1
16 H1=p2/62.4; //ft
17 \operatorname{disp}("lb/in^2", pr1,"lb/ft^2 = ", p1,"pressure at
      interface=")
```

Scilab code Exa 2.2 pressure depth variation

```
1 clc;
2 clear;
3 h=1250; //ft
4 T=59; // degree fareheit
5 p=14.7; //psi (abs)
6 sw=0.0765; //lb/ft^3, (specific weight of air at p)
8 //considering air to be compressible
9 / p1/p2 = \exp(-(g*(z1-z2))/(R*T))
10 ratp=\exp(-(32.2*h)/(1716*(59+460)));
11 disp(ratp,"ratio of pressure at the top to that at
      the base considering air to be compressible=")
12
13 //considering air to be incompressible
14 / p2 = p1 - (sw * (z2 - z1));
15 ratp1=1-((sw*h)/(p*144));
16 disp(ratp1, "ratio of pressure at the top to that at
      the base considering air to be incompressible=")
17 count = 1;
18 zdiff=0:5000;
19
20 \text{ for } i = 0:5000
21
       j(count)=1-((sw*i)/(p*144));
22
       count = count +1;
23 end
24 \quad num = 1;
```


Figure 2.1: pressure depth variation

Scilab code Exa 2.3 pressure at bottom

```
7 //pbar/(gamma Hg)=598 mm= .598 m; (gamma Hg) = 133
kN/m^3
8 pbar=0.598*133; //kN/m^2
9 //(gamma water)=9.804 kN/m^3 at 10 dergree C
10 p=(9.804*40)+pbar; //kN/m^2
11 disp("kPa",pbar,"The local barometric pressure=")
12 disp("kPa",p,"The absolute pressure at a depth of 40
m in the lake=")
```

Scilab code Exa 2.4 reading of gage

Scilab code Exa 2.5 pressure drop calculation

```
1 clc;
2 clear;
3 gamma1=9.8; //kN/m<sup>3</sup>
4 gamma2=15.6; //kN/m<sup>3</sup>
5 h1=1; //m
```

```
6 h2=0.5; //m
7 //pA-(gamma1)*h1-h2*(gamma2)+(gamma1)*(h1+h2)=pB
8 //pA-pB=diffp
9 diffp=((gamma1)*h1+h2*(gamma2)-(gamma1)*(h1+h2));
10 disp("kPa",diffp,"The difference in pressures at A and B =")
```

Scilab code Exa 2.6 force on plane

```
1 clc;
2 clear;
3 \text{ dia=4;} //\text{m}
4 sw=9.8; //kN/m<sup>3</sup>; specific weight of water
5 hc=10; //m
6 ang=60; //degrees
7 A = \%pi*(dia^2)/4;
8 fres=sw*hc*A:
9 //for the coordinate system shown xc=xres=0
10 Ixc = \%pi * ((dia/2)^4)/4;
11 yc=hc/(sin (ang*%pi/180));
12 yres = (Ixc/(yc*A))+yc;
13 ydist=yres-yc;
14 disp("kN", fres, "The resultant force acting on the
      gate of the reservoir =");
15 disp("m below the shaft and is perpendicular to the
      gate surface.", ydist, "The resultant force acts
      through a point along the diameter of the gate at
       a distance of ")
16 M=fres*(ydist)*1000;
17 disp("N*m", M, "Moment required to open the gate=")
18 hc=1:30;
19 for i=1:30
       ydist(i)=((Ixc/(i/(sin (ang*%pi/180))*A)));
20
21
  end
22
```


Figure 2.2: force on plane

```
23 plot2d(hc,ydist)
24 xtitle("yres-yc m vs hc m","hc m","yres-yc m")
```

Scilab code Exa 2.7 hydrostatic pressure force

```
1 clc;
2 clear;
3 sw=64; //lb/ft^3; specific weight of water
4 h=10; //ft
5 a=3; //ft
6 b=3; //ft
7
8 //shape is triangular, hence hc=h-(a/3)
9 hc=h-(a/3);
10 A=(0.5*a*b); //ft^3; area of the right angled triangle
11 fres=sw*hc*A; //lb
12 Ixc=b*(a^3)/36;
13 Ixyc=b*(a^2)*(b)/72;
```

Scilab code Exa 2.8 pressure prism concept

```
1 clc;
2 clear;
3 sg=0.9; // specific gravity of oil
4 a=0.6; //m
5 pgage=50; //kPa
6 h1=2; //m
7 h2=2.6; //m
9 //the force on the trapezoid is the sum of the force
      on the rectangle f1 and force on triangle f2
10 f1=((pgage*1000)+(sg*1000*9.81*h1))*(a^2); //N
11 f2=sg*1000*9.81*(h2-h1)*(a^2)/2;/N
12 fres=f1+f2; //N
13 //to find vertical location of fres; fres*yres=(f1*(
     a/2) + (f2 * (h1-h2))
14 yres=((f1*(a/2))+(f2*(a/3)))/fres;/m
15 disp("kN",(fres/1000),"The resultant force on the
     plate is=")
16 disp ("m above the bottom plate alond the vertical
     line of symmetry.", yres, "The force acts at a
```

Scilab code Exa 2.9 force on curve

```
1 clc;
2 clear;
3 \text{ dia=6}; //ft
4 1=1; //ft
6 //horizontal force f1=sw*hc*A
7 hc=dia/4; //ft
8 \text{ sw} = 62.4; //lb/ft^3
9 A=dia/2*1; //ft^2
10 f1=sw*hc*A;//lb
11 //this force f1 acts at a height of radius/3 ft
      above the bottom
12 ht=(dia/2)/3; //ft
13 / \text{weight w} = \text{sw*volume}
14 w=sw*((dia/2)^2)*\%pi/4*1;//lb
15 //this force acts through centre of gravity which is
       4*radius/(3*%pi) right of the centre of conduit
16 dist=(4*dia/2)/(3*\%pi);//ft
17 //horizontal force that tank exerts on fluid = f1
18 //vertical force that tank exerts on fluid = w
19 //resultant force fres = ((f1)^2+(w)^2)^0.5
20 fres = ((f1)^2+(w)^2)^0.5; //lb
21 disp("lb", fres, "The resultant force exerted by the
      tank on the fluid=");
22 disp("ft", dist, "above the bottom of the conduit and
      to the right of the axis of the conduit at a
      distance of", "ft", ht, "The force acts at a
      distance of")
```

Scilab code Exa 2.10 tension in cable

```
1 clc;
2 clear;
3 dia=1.5; //m
4 wt=8.5; //kN
5 //tension in cable T=bouyant force(Fb)-wt
6 //fluid is water
7 sw=10.1; //kN/m^3
8 vol=%pi*dia^3/6; //m^3
9 Fb=sw*vol; //kN
10 T=Fb-wt; //kN
11 disp("kN",T," The tension in the cable =")
```

Scilab code Exa 2.11 maximum acceleration calculation

```
1 clc;
2 clear;
3 sg=0.65;
4 11=0.75; // ft
5 12=0.5; // ft
6 // 0.5 ft =z1(max)
7 // 0.5=0.75*(ay(max)/g)
8 aymax=(0.5*32.2)/0.75; // ft/s^2
9 disp("ft/s^2",aymax,"The max acceleration that can occur before the fuel level drops below the transducer=")
```

Chapter 3

Fluids in motion Bernoulli equation

Scilab code Exa 3.6 pitot static tube

```
1 clc;
2 clear;
3 \text{ v1=100; } //\text{mi/hr}
4 ht = 10000; // ft
5 //from standard table for static pressure at an
      altitude
6 p1=1456//lb/ft^2(abs)
7 P1=1456*0.006947; // psi
8 d=0.001756; //slugs/ft^3
9 //1 \text{ mi/hr} = 1.467 \text{ ft/s}
10 p2=p1+(d*(v1*1.467)^2/2);//lb/ft^3
11 //in terms of gage pressure p2g
12 p2g=p2-p1; //lb/ft^2
13 //11b/ft^2 = 0.006947 psi
14 P2=p2*0.006947; // psi
15 P2g=p2g*0.006947; // psi
16 //pressure difference indicated by the pitot tube =
      pdiff
17 pdiff=P2-P1; //psi
```


Figure 3.1: pitot static tube

Scilab code Exa 3.7 determination of flowrate

```
1 clc;
2 clear;
3 dia=0.1;//m
4 dia1=1.0;//m
5 h=2.0;//m
```

```
6 //bernoulli 's equation: p1+(0.5*d*V1^2)+(sw*z1)=p2
      +(0.5*d*V2^2)+(sw*z2)
7 //assuming p1=p2=0, and z1=h and z2=0
8 / (0.5*d*V1^2) + (g*h) = (0.5*d*V2^2)
9 //assuming steady flow Q1=Q2, Q=A*V. hence, A1*V1=A2
      *V2
10 /V1 = ((dia/dia1)^2)*V2
11 //hence V2=((2*g*h)/(1-(dia/dia1)^4))^0.5
12 V2=((2*9.81*h)/(1-(dia/dia1)^4))^0.5;
13 Q=(\%pi/4*(dia)^2)*V2;
14 disp("m^3/sec", Q, "The flow rate needed is=")
15 // let Q0 be the flow rate when v1=0, i.e. dia>>dia
16 / Q0 = (2*g*h)^0 0.5 \text{ and } Qrat = Q/Q0
17 count = 1;
18 i = 0:0.05:0.8;
19
20 for k=0.00:0.05:0.80
21
       Qrat(count)=1/((1-(k^4))^0.5);
22
       count = count +1;
23 end
24
25 plot2d(i,Qrat,rect=[0,1,0.8,1.1])
26 xtitle ("d/D vs Q/Q0", "d/D", "Q/Q0")
```

Scilab code Exa 3.8 flowrate and pressure

```
1 clc;
2 clear;
3 dia=0.03;//m
4 dia1=0.01;//m
5 p=3;//kPa(gage)
6 //density of air d is found using standard temp and pressure conditions
```


Figure 3.2: determination of flowrate

```
7 d=(p+101)*1000/((286.9)*(15+273));
8 //applying Bernoulli's equation at points 1,2 and 3;
p=p1
9 v3=((2*p*1000)/d)^0.5;
10 Q=%pi/4*(dia1^2)*v3;
11 //by continuity equation, A2*v2=A3*v3
12 v2=((dia1/dia)^2)*v3;
13 p2=(p*1000)-(0.5*d*(v2^2));
14 disp("m^3/s",Q,"Flowrate =")
15 disp("N/m^2",p2,"Pressure in the hose=")
```

Scilab code Exa 3.10 maximum height determination

```
1 clc;
2 clear;
2 tlear;
3 T=60; // degree farenheit
4 z1=5; // ft
5 atmp=14.7; // psia
6 // applying bernoulli equation at points 1,2 and 3
7 z3=-5; // ft
8 v1=0; // large tank
```

Scilab code Exa 3.11 pressure difference range

```
1 clc;
2 clear;
3 sg=0.85;
4 Q1=0.005; //m^3/s
5 Q2=0.05; //m^3/s
6 dia1=0.1; //m
7 dia2=0.06; //m
8
9 //A2/A1=dia2/dia1
10 d=sg*1000;
11 Arat=(dia2/dia1)^2;
12 A2=%pi/4*(dia2^2);
13 pdiffs=(Q1^2)*d*(1-(Arat^2))/(2*1000*(A2^2));
14 pdiff1=(Q2^2)*d*(1-(Arat^2))/(2*1000*(A2^2));
15 disp("kPa",pdiff1,"to","kPa",pdiffs,"kPa","The pressure difference ranges from =")
```

Scilab code Exa 3.12 flow through channel

```
1 clc;
2 clear;
3 z1=5; //m
4 a=0.8; //m
5 b=6; //m
6 Cc=0.61; //since a/z1=ratio=0.16<0.2; Cc=
      contracction coefficient
7 z2=Cc*a;
8 //Q/b = flowrate
9 flowrate=z2*((2*9.81*(z1-z2))/(1-((z2/z1)^2)))^0.5;
10 //considering z1>>z2 and neglecting kinetic energy
      of the upstream fluid
11 flowrate1=z2*(2*9.81*z1)^0.5;
12 disp("m^2/s",flowrate,"The flowrate per unit width="
13 disp("m^2/s",flowrate1,"The flowrate per unit width
      when we consider z1>>z2=")
14 count=1;
15 j=5:15;
16 \text{ for } i=5:15
17
       fr(count)=z2*((2*9.81*(i-z2))/(1-((z2/i)^2)))
          ^0.5;
18
       count = count +1;
19 end
20 plot2d(j,fr,rect=[0,0,15,9])
21 xtitle("Q/b vs z1","z1,m","Q/b, m^2/s")
```

Scilab code Exa 3.13 increased flowrate determination

```
1 clc;  
2 clear;  
3 //Q=A*V=(H^2)*tan(theta/2)*(C2*(2*g*H)^0.5)  
4 //Q3H0/QH0=(3H0)^2.5/(H0)^2.5=3^2.5
```


Figure 3.3: flow through channel

Scilab code Exa 3.15 stagnation pressure calculation

```
1 clc;
2 clear;
3 h=10; //Km
4 //air is in a standard atmosphere
5 p1=26.5; //kPa
6 T1=-49.9; // degree celcius
7 d=0.414; //Kg/m^3
8 k=1.4;
9 Ma1=0.82; //Mach
10 //for incompressible flow,
11 pdiff=(k*Ma1^2)/2*p1;
12 // for compressible isentropic flow,
13 pdiff1=((1+((k-1)/2)*(Ma1^2))^(k/(k-1))-1)*p1;
14 disp("Stagnation pressure on leading edge on the
```

```
wing of the Boeing:")
15 disp("kPa",pdiff,"flow is imcompressible =")
16 disp("kPa",pdiff1,"flow is compressible and
    isentropic =")
```

Scilab code Exa 3.17 stagnation pressure determination

Chapter 4

Kinematics of fluid motion

Scilab code Exa 4.6 delivery speed calculation

Chapter 5

Flow analysis using control volumes

Scilab code Exa 5.1 Minimum Pumping capacity

```
1 clc;
2 clear;
3 v2=20; //m/s
4 dia2= 40; //mm
5
6 //m1=m2
7 //d1*Q1=D2*Q2; where d1=d2 is density of seawater
8 //hence Q1=Q2
9 Q=v2*(%pi*((dia2/1000)^2)/4); //m^3/sec
10 disp("m^3/sec",Q,"Flowrate=")
```

Scilab code Exa 5.2 average velocity calculation

```
1 clc;
2 clear;
3 v2=1000; // ft / sec
```

```
4 p1=100; // psia
5 p2=18.4; // psia
6 T1=540; // degree R
7 T2=453; // degree R
8 dia=4; // inches
9 //m1=m2
10 //d1*A1*v1=d2*A2*v2
11 //A1=A2 and d=p/(R*T); since air at pressures and temperatures involved behaves as an ideal gas
12 v1=p2*T1*v2/(p1*T2);
13 disp("ft/sec",v1," Velocity at section 1 =")
```

Scilab code Exa 5.3 Mass Flowrate determination

```
1 clc;
2 clear;
3 m1=22; //slugs/hr
4 m3=0.5; //slugs/hr
5 //-m1+m2+m3=0
6 m2=m1-m3;
7 disp("slugs/hr",m2,"Mass flowrate of the dry air and water vapour leaving the dehumidifier=")
```

Scilab code Exa 5.5 change in depth

```
1 clc;
2 clear;
3 Q=9;//gal/min
4 l=5;//ft
5 b=2;//ft
6 H=1.5;//ft
```


Figure 5.1: change in depth

```
7 //continuity equation to water: integral of m = d*((h))
     *b*l)+(H-h)*A); where A is cross-sectional area
     of faucet
8 //m=d*(b*l-A)*dh/dt, where dh/dt=hrate
9 / m = d * Q
10 // since A << l*b, it can be neglected
11 fn=poly([0 (1.94*1*b)],"h","c");
12 x=derivat(fn); //x=m/(dh/dt)
13 hrate=Q*12*1.94/(x*7.48);
14 disp("in./min", hrate, "Time rate of change of depth
     of water in tub =")
15 d=0:30;
16 for i=0:30
      17
         ^2)/4))*7.48);
18 end
19 plot2d(d,hrate1,rect=[0,0,30,3])
20 xtitle("graph", "D, in.", "dh/dt, in./min")
```

Scilab code Exa 5.6 mass flowrate estimation

```
1 clc;
2 clear;
3 \text{ v} = 971; //\text{km/hr}
4 v2=1050; //km/hr
5 A1=0.80; //\text{m}^2
6 d1=0.736; //\text{Kg/m}^3
7 A2=0.558; //\text{m}^2
8 d2=0.515; //\text{Kg/m}^3
9
10 //w1 = v = intake velocity
11 //mass flow rate of fuel intake = d2*A2*w2 - d1*A1*
       w1
12 \text{ w} 2 = \text{v} 2 + \text{v};
13 m = (d2*A2*w2 - d1*A1*v)*1000;
14 disp("kg/hr",m,"The mass flow rate of fuel intake =
       ")
```

Scilab code Exa 5.7 Speed of water

```
1 clc;
2 clear;
3 Q=1000;//ml/s
4 A2=30;//mm^2
5 rotv=600;//rpm
6
7 //mass in = mass out
8 w2=(Q*0.001*1000000)/(2*A2*1000);
9 disp("m/s",w2," Average speed of water leaving each nozzle when sprinkle head is stationary and when it rotates with a constant speed of 600rpm =")
```

Scilab code Exa 5.8 Speed of plunger

```
1 clc;
2 clear;
3 Ap=500; //mm^2
4 Q2=300; //cm^3/min
5 Qleak=0.1*Q2; //cm^3/min
6 //A1=Ap
7 //mass conservation in control volume
8 //-d*A1*V + m2 + d*Qleak =0; m2=d*Q2
9 //V=(Q2+Qleak)/Ap
10 V=(Q2+Qleak)*1000/Ap;
11 disp("mm/min", V, "The speed at which the plunger should be advanced=")
```

Scilab code Exa 5.9 change in depth

```
1 clc;
2 clear;
3 Q=9;//gal/min
4 l=5;//ft
5 b=2;//ft
6 H=1.5;//ft
7 //deforming control volume
8 //hrate=Q/(l*b-A)
9 //A<<l*b
10 hrate=Q*12/(l*b*7.48);
11 disp("in./min",hrate,"Time rate of change of depth of water in tub =")</pre>
```

Scilab code Exa 5.11 Anchoring force determination

```
1 clc;
```

```
2 clear;
3 \text{ dia1=16; } / \text{mm}
4 h=30; //mm
5 \text{ dia2=5;}/\text{mm}
6 Q=0.6; // litre/sec
7 mass=0.1; //kg
8 p1 = 464; //kPa
9 d=999; // kg/m^3
10 m=d*Q/1000; //kg/s
11 A1=\%pi*((dia1/1000)^2)/4;//m^2
12 w1=Q/(A1*1000); //m/s
13 A2=\%pi*((dia2/1000)^2)/4;//m^2
14 w2=Q/(A2*1000); //m/s
15 Wnozzle=mass*9.81; //N
16 volwater=((1/12)*(\%pi)*(h)*((dia1^2)+(dia2^2)+(dia1*)
      dia2)))/(1000^3);//m^3
17 Wwater=d*volwater*9.81; //N
18 F=m*(w1-w2)+Wnozzle+(p1*1000*A1)+Wwater;//N
19 disp("N",F,"The anchoring force=")
```

Scilab code Exa 5.12 Anchoring force calculation

```
1 clc;
2 clear;
3 A=0.1; //ft^2
4 v=50; //ft/s
5 p1=30; //psia
6 p2=24; //psia
7
8 d=1.94; //slugs/ft^3
9 //v1=v2=v and A1=A2=A
10 m=d*v*A;
11 Fay=-m*(v+v)-((p1-14.7)*A*144)-((p2-14.7)*A*144);
12 disp("lb",0," and the x component of anchoring force is", "lb", Fay, "The y component of anchoring force
```

Scilab code Exa 5.13 Frictional force determination

```
1 clc;
2 clear;
3 p1=100; //psia
4 p2=18.4; // psia
5 \text{ T1=540; } // \text{degree R}
6 \text{ T2=453; } // \text{degree R}
7 V2 = 1000; //ft/s
8 V1 = 219; //ft/s
9 dia=4;//in
10
11 / m = m1 = m2
12 A2 = \%pi * ((4/12)^2)/4; //ft^2
13 //equation of state d*R*T=p
14 d2=p2*144/(1716*T2);
15 m = A2*d2*V2; //slugs/s
16 Rx = A2 * 144 * (p1 - p2) - (m * (V2 - V1)); // lb
17 disp("lb", Rx, "Frictional force exerted by pipe wall
      on air flow=")
```

Scilab code Exa 5.15 nominal thrust calculation

```
1 clc;
2 clear;
3 v1=200; //m/s
4 v2=500; //m/s
5 A1=1; //m^2
6 p1=78.5; //kPa(abs)
7 T1=268; //K
8 p2=101; //kPa(abs)
```

```
9
10 //F=-p1*A1 + p2*A2 + m*(v2-v1)
11 //m=d1*A1*v1
12 //d1=(p1)/(R*T1)
13 d1=(p1*1000)/(286.9*T1);
14 m=d1*v1*A1;
15 F=-((p1-p2)*A1*1000) + m*(v2-v1);
16 disp("N",F,"The thrust for which the stand is to be designed=")
```

Scilab code Exa 5.17 force determination

```
1 clc;
2 clear;
3 v1 = 100; //ft/sec
4 v0 = 20; //ft/sec
5 ang=45; //degrees
6 A1=0.006; // ft^2
7 1=1; //ft
8 //m1=m2=m; continuity equation
9 //d=density of water= constant
10 //w=speed of water relative to the moving control
      volume=constant=w1=w2
11 / w1 = v1 - v0
12 w = v1 - v0;
13 d=1.94; //slugs/ft^3
14 //-Rx = (w1)(-m1) + (w2cos(ang))(m2)
15 Rx=d*(w^2)*A1*(1-cos(ang*%pi/180));
16 //wwater=(specific wt of water)*A1*1
17 wwater=62.4*A1*1;
18 Rz=(d*(w^2)*(sin(ang*%pi/180))*A1)+wwater;
19 R = ((Rx^2) + (Rz^2))^0.5;
20 angle=(atan(Rz/Rx))*180/(%pi);
21 disp("lb", R, "The force exerted by stream of water on
       vane surface=")
```

22 disp("degrees", angle, "The force points right and down from the x direction at an angle of=")

Scilab code Exa 5.18 resisting torque calculation

```
1 clc;
2 clear;
3 Q=1000; //ml/sec
4 A=30; / \text{mm}^2
5 r = 200; /mm
6 \text{ n=500;} //\text{rev/min}
7 //v2 is tangential; v2=vang2
8 m = (Q/1000000) *999; //kg/sec
9 / m = 2*d*(A)*v2 = d*Q
10 v2=(Q)/(2*A); //m/sec
11 //Torque reuired to hold sprinkler stationary
12 Tshaft=(-(r/1000)*(v2)*m);/Nm
13 //u2=speed of nozzle=r*omega
14 / v21 = v2 - u2
15 omega=n*(2*\%pi)/60; //rad/sec
16 \text{ v21=v2-(r*omega/1000)};
17 //resisting torque when sprinker is rotating at a
      constant speed of n rev/min
18 Tshaft1=(-(r/1000)*(v21)*m);/Nm
19 //when no resistint gtorque is applied
20 / T shaft = 0
21 omega1=v2/(r/1000);
22 n1 = (omega1) * 60/(2 * \%pi); //rpm
23 disp("Nm", Tshaft, "Resisting torque required to hold
      the sprinker stationary=")
24 disp("Nm", Tshaft1, "Resisting torque when sprinker is
       rotating at a constant speed of 500 rev/min=")
25 disp("rpm", n1, "Speed of sprikler when no resisting
      torque is applied=")
26 \quad x = 0:800;
```


Figure 5.2: resisting torque calculation

```
27
28  for i=0:800
29     y(i+1)=(-(r/1000)*(v2-((r/1000)*i*(2*%pi)/60))*m
         );
30  end
31  plot2d(x,y,rect=[0,-4,800,0])
32  xtitle("Tshaft vs omega","omega,rpm","Tshaft, Nm")
```

Scilab code Exa 5.19 estimation of power

```
1 clc;
2 clear;
3 h=1;//in
4 Q=230;//ft^3/min
5 ang=30;//degrees
6 dia1=10;//in
7 dia2=12;//in
8 n=1725;//rpm
9 //m=d*Q
```

Scilab code Exa 5.20 Determination of power

```
1 clc;
2 clear;
3 Q = 300; //gal/min
4 d1=3.5; //in.
5 p1=18; //psi
6 d2=1; //in.
7 p2=60; //psi
8 diffu=3000; // ft * lb / slug
10 //energy equation
11 //m(u^2-u^1+(p^1/d)-(p^2/d)+((v^2^2)-(v^1^2))/2 + g*(z^2-z^1)
      ) = q - W \operatorname{shaft}
12 m=Q*1.94/(7.48*60); //slugs/sec
13 v1=Q*12*12/(%pi*(d1^2)*60*7.48/4);
14 v2=Q*12*12/(\%pi*(d2^2)*7.48*60/4);
15 Wshaft=m*(diffu + (p2*144/1.94) - (p1*144/1.94) +
      (((v2^2)-(v1^2))/2))/550;//hp
16 disp("hp", Wshaft, "The power required by the pump=")
17 disp("hp",m*(diffu/550),"The internal energy change
      accounts for =")
```

Scilab code Exa 5.21 work output calculation

```
1 clc;
2 clear;
3 v1=30; //m/s
4 h1=3348; //kJ/kg
5 v2=60; //m/s
6 h2=2550; //kJ/kg
7
8 //energy equation
9 //wshaftin=Wshaftin/m= (h2-h1 + ((v2^2)-(v1^2))/2)
10 //wshaftout=-wshaftin
11 wshaftout=h1-h2 + (((v1^2)-(v2^2))/2000);
12 disp("KJ/kg", wshaftout, "The work output involved per unit mass of steam through-flow=")
```

Scilab code Exa 5.22 temperature change determination

```
1 clc;
2 clear;
3 z=500; //ft
4 //energy equation
5 //T2-T1 = (u2 - u1)/c = g*(z2 - z1)/c; c=specific heat of water = 1 Btu/(lbm* degree R)
6 diffT = 32.2*z/(778*32.2); // degree R
7 disp("degree R", diffT, "The temperature change associated with this flow=")
```

Scilab code Exa 5.23 volume flowrates comparison

```
1 clc;
2 clear;
3 \text{ dia} = 120; //mm
4 p=1.0; //kPa
6 //using energy equation
7 //Q=A2*v2=A2*((p1-p2)/(d*(1+K1)/2)); d = density, Kl=
       loss coefficient
8 \text{ Kl1=0.05};
9 \text{ K12=0.5};
10 //for rounded entrance cyliindrical vent
11 Q1=(\%pi*((dia/1000)^2)/4)*(p*1000*2/(1.23*(1+Kl1)))
      ^0.5;
12 //for cylindrical vent
13 Q2=(\%pi*((dia/1000)^2)/4)*(p*1000*2/(1.23*(1+K12)))
      ^0.5;
14
15 disp("m<sup>3</sup>/sec",Q1,"The volume fowrate associated
      with the rounded entrance cylindrical vent
      configuration =")
16 disp("m<sup>3</sup>/sec",Q2,"The volume fowrate associated
      with the cylindrical vent configuration =")
17 KLoss=0:0.01:0.5;
18 count=1;
19 for i=0:0.01:0.5
       flow(count) = (\%pi*((dia/1000)^2)/4)*(p)
20
           *1000*2/(1.23*(1+i)))^0.5;
21
        count = count +1;
22 \text{ end}
23 plot2d(KLoss,flow,rect=[0,0,0.5,0.5])
24 xtitle("Q vs KL", "KL", "Q, (m<sup>3</sup>)/sec")
```


Figure 5.3: volume flowrates comparison

Scilab code Exa 5.24 useful work determination

```
1 clc;
2 clear;
3 p=0.4; //kW
4 dia=0.6; //m
5 v2=12; //m/s
6 v1=0; //m/s
7 //energy equation
8 Wuseful=(v2^2)/2;
9 //wshaftin= Wshaftin/m
10 wshaftin=(p*1000)/(1.23*%pi*(0.6^2)*12/4);
11 eff=Wuseful/wshaftin;
12 disp("N.m/kg", Wuseful, "The work to air which provides useful effect—=")
13 disp(eff, "Fluid mechanical efficiency of this fan=")
```

Scilab code Exa 5.25 flowrate and powerloss

```
1 clc;
2 clear;
3 p=10; //hp
4 z=30; //ft
5 \text{ hl} = 15; //ft
6 //energy equation
7 //hs=Wshaftin/(sw*Q) = hl+z
8 Q=(p*550)/((h1+z)*62.4);
9 wloss=62.4*Q*h1/550;
10 disp("ft^3/s",Q,"Flowrate =")
11 disp("hp", wloss, "Power loss=")
12 loss=0:25;
13 \text{ for } i=0:25
       q(i+1)=(p*550)/((i+z)*62.4);
14
15 end
16 plot2d(loss,q,rect=[0,0,25,3.5])
17 xtitle ("Flowrate vs headloss", "hs, ft", "Q, ft^3/sec")
```

Scilab code Exa 5.26 nonuniform velocity profile

```
1 clc;
2 clear;
3 m=0.1; //kg/min
4 dia1=60; //mm
5 alpha1=2.0;
6 dia2=30; //mm
7 alpha2=1.08;
8 p=0.1; //kPa
```


Figure 5.4: flowrate and powerloss

```
9 power=0.14; //W
10
11 wshaftin=power*60/m; //Nm/kg
12 vavg1=m*1000*1000/(60*1.23*%pi*dia1*dia1/4);
13 vavg2=m*1000*1000/(60*1.23*%pi*dia2*dia2/4);
14 loss1=wshaftin-(p*1000/1.23)+((vavg1^2)/2)-((vavg2^2)/2); //Nm/kg
15 loss2=wshaftin-(p*1000/1.23)+(alpha1*(vavg1^2)/2)-(alpha2*(vavg2^2)/2); //Nm/kg
16 disp("Nm/kg",loss1,"Loss for uniform velocity profile=")
17 disp("Nm/kg",loss2,"Loss for actual velocity profile=")
```

Scilab code Exa 5.29 expanded air velocity

```
1 clc;
2 clear;
3 p1=100; // psia
4 T1=520; // degree R
5 p2=14.7; // psia
```

```
7 //for incompressible flow
9 d=p1*144/(1716*T1); // where d=density, calculated by
      assuming air to behave like an ideal gas
10 // Bernoulli equation
11 v2=(2*(p1-p2)*144/d)^0.5; //ft/sec
12 disp("ft/sec", v2, "The velocity of expanded air
      considering incompressible flow =")
13
14 //for compressible flow
16 k=1.4; // for air
17 d1=d;
d2=d1*((p2/p1)^(1/k));//where d2=density of expanded
19 //bernoulli equation
20 V2=((2*k/(k-1))*((p1*144/d1)-(p2*144/d2)))^0.5;//ft/
21 disp("ft/s", V2, "The velocity of expanded air
      considering compressible flow =")
```

Chapter 6

Flow Analysis of Using Differential Methods

Scilab code Exa 6.4 inviscid flow pressure

Scilab code Exa 6.5 Volume rate calculation

```
1 clc;
```

```
2 clear; ang1=0; //radians
3 ang2=%pi/6; //radians
4 vp='-2*log(r)';
5 //vr=d(vp)/d'r
6 //vr=(-2)/r;
7 //vang=(1/r)*(d(vp)/d(ang))
8 vang=0;
9 q=(integrate('-2', 'ang', ang1, ang2));
10 disp("ft^2/sec",q,"Volume rate of flow (per unit length) into the opening = ")
```

Scilab code Exa 6.7 pressure at elevation

```
1 clc;
2 clear;
3 h=200; //ft
4 U=40; //mi/hr
5 d=0.00238; //slugs/ft^3
6 //V^2 = (U^2) * (1 + (2*b*cos(ang)/r) + ((b^2)/(r^2))
7 //at point 2, ang=\%pi/2
8 // \text{r=b*}(\%\text{pi-ang})/\sin(\text{ang}) = (\%\text{pi*b/2})
9 V=U*(1+(4/(\%pi^2)))^0.5;//mi/hr
10 y2=h/2; //ft
11 // bernoulli equation
12 / p1-p2 = d*((V2^2)-(V1^2)) + (sw*(y2-y1))
13 V1=U*(5280/3600);
14 \quad V2 = V * (5280/3600);
15 pdiff = ((d*((V2^2) - (V1^2))/2) + (d*32.2*(y2)))/144; //
      psi
16 disp("mi/hr", V, "The magnitude of velocity at (2) for
       a 40 mi/hr approaching wind =")
17 disp("psi",pdiff,"The pressure difference between
      points (1) and (2)=")
18 u=0:100;
19
```


Figure 6.1: pressure at elevation

```
20  for i=0:100
21     pd(i+1) = ((d*(((i*(1+(4/(%pi^2)))^0.5)
         *(5280/3600))^2) - ((i*(5280/3600))^2))/2) + (d
        *32.2*(y2)))/144;
22  end
23  plot2d(u,pd,rect=[0,0,100,0.14])
24  xtitle("(p1-p2) vs U","U,mph","p1-p2 ,psi")
```

Scilab code Exa 6.10 flow in annulus

```
1 clc;
2 clear;
3 d=1.18*1000; //kg/m^3
4 vis=0.0045; //Ns/m^2, viscosity
5 Q=12; //ml/sec
6 dia1=4; //mm
7 l=1; //m
8 dia2=2; //mm
9 V=Q/(1000000*%pi*((dia1/1000)^2)/4); //mean velocity,
```

```
m/sec
10 Re=(d*V*dia1/1000)/vis;
11 disp(" is well below critical value of 2100 so flow
      is laminar.", Re, "a) The Reynolds number ")
12 pdiff = (8*vis*(1)*(12/1000000)/(%pi*(dia1/2000)^4))
      /1000; //kPa
13 disp("kPa",pdiff,"The pressure drop along a 1 m
      length of the tube which is far from the tube
      entrance so that the only component of velocity
      is parallel to the tube axis=")
14 //for flow in the annulus
15 V1=Q/(1000000*%pi*(((dia1/1000)^2)-((dia2/1000)^2))
     /4);//mean velocity, m/sec
16 Re1=d*((dia1-dia2)/1000)*V1/vis;
17 disp(" is well below critical value of 2100 so flow
      is laminar.", Re1, "b) The Reynolds number ")
18 r1=dia1/2000;
19 r2=dia2/2000;
20 pdiff1 = ((8*vis*(1)*(12/1000000)/(%pi))*((r1^4)-(r2))
      ^4) -((((r1^2)-(r2^2))^2)/(log(r1/r2))))^(-1))
     /1000; //kPa
21 disp("kPa",pdiff1,"The pressure drop along a 1 m
      length of the symmetric annulus =")
22
23 rratio=0.001:0.001:0.5;
24 count=1;
25 for i=0.001:0.001:0.5
26
       pratio(count)=1/((i^4)*((1/(i^4))-1-((((1/(i^2)))
          -1)^2/\log(1/i));
27
       count = count +1;
28 end
29 plot2d(rratio, pratio, rect = [0,0,0.5,8])
30 xtitle("ri/ro vs pdiff(annulus)/pdiff(tube)", "ri/ro"
      "," pdiff (annulus)/pdiff (tube),
```


Figure 6.2: flow in annulus

Chapter 7

Dimensional Analysis Modelling and Similitude

Scilab code Exa 7.5 prototype performance prediction

```
1 clc;
2 clear;
3 D=0.1; //m
4 H=0.3; //m
5 v = 50; //km/hr
6 Dm = 20; / mm
7 T=20; //degree C
8 fm=49.9;//Hz; frequency for the model
9 // f = func(D, H, V, d, vis)
10 \ // \ f = T^{(-1)}; \ D = l; \ H = L; \ V = L * (T^{(-1)}); \ d = M * (L^{(-3)});
       vis = M*(L^{(-1)})*(T^{(-1)})
11 //by applying pi theorem,
12 //(f*D/V) = funct((D/H), (d*V*D/vis))
13 / \text{hence}; Dm/Hm = D/H, dm*Vm*Dm/vism = d*V*D/vis, and
        (f*D/V) = (fm*Dm/Vm)
14 Hm = (Dm * H * 1000 / (D * 1000)); //mm
15 V = v * 1000/3600; //m/s
16 vism=1/1000; // \text{kg}/(\text{m}*\text{s})
17 vis=1.79/100000; // \text{kg}/(\text{m} \cdot \text{s})
```

```
18 d=1.23; //kg/(m^3)
19 dm=998; //kg/(m^3)
20 Vm=(vism*d*D*V*1000)/(vis*dm*Dm); //m/s
21 f=(V/Vm)*(Dm/(D*1000))*fm; //Hz
22 disp("mm", Hm, "The model dimension =")
23 disp("m/s", Vm, "The velocity at which the test should be performed=")
24 disp("Hz",f,"The predicted prototype vortex shredding frequency =")
```

Scilab code Exa 7.6 reynolds number similarity

```
1 clc;
2 clear;
3 D=2; //ft
4 Q=30; // cfs
5 Dm = 3; //in
6 //Rem=Re; hence (Vm*Dm/kvism)=(V*D/kvis); where kvis
       is kinematic viscosity
7 //kvis=kvism; same fluid is used for model and
      prototype
8 / (Vm/V) = (D/Dm)
9 //Q=VA; hence Qm/Q = (Vm*Am)/(V*A)=(Dm/D)
10 Qm = (Dm/12) * Q/D; // cfs
11 disp("cfs", Qm, "The required flowrate in the model=")
12 Drat=0.04:0.01:1;
13 count = 1;
14 for i=0.04:0.01:1
       Vrat(count)=1/i;
15
16
       count = count +1;
17 end
18 plot2d(Drat, Vrat, rect = [0,0,1,25])
19 xtitle("Vm/V vs Dm/D","Dm/D","Vm/V")
```


Figure 7.1: reynolds number similarity

Scilab code Exa 7.7 predicting prototype performance

```
1 clc;
2 clear;
3 V = 240; //mph
4 ratio=1/10;
5 Vair=240; //mph
6 Fm=1;//lb; Fm =drag force on model
7 p=14.7; //psia; standard atmospheric pressure
8 / \text{Re} = \text{Rem}
9 //(d*V*1/vis) = (dm*Vm*lm/vism)
10 / here Vm=V and lm/l=ratio
11 //assumption made is that an increase in pressure
      does not significantly change viscosity
12 drat=V/(ratio*Vair);//where drat=dm/d
13 // for an ideal gas p=d*R*T
14 / T = Tm
15 //hence, pm/p=dm/d; pm/p=prat
```

```
16 pm=p*drat;
17 //F/(0.5*d*(V^2)*(l^2))=Fm/(0.5*dm*(Vm^2)*(lm^2))
18 F=(1/drat)*((V/Vair)^2)*((1/ratio)^2)*Fm;
19 disp("psia",pm,"The required air pressure in the tunnel=")
20 disp("lb",F,"The corrosponding drag on the prtotype for a 1 lb drag on the model=")
```

Scilab code Exa 7.8 froude number similarity

```
1 clc;
2 clear;
3 \text{ w=20; } / \text{m}
4 Q=125; //(m^3)/s
5 ratio=1/15;
6 t=24; //hours
7 wm=ratio*w; //m
8 /Vm/(gm*lm)^0.5 = V/(g*l)^0.5
9 //gm=g
10 //Q=VA and lm/l=1/15
11 //hence Qm/Q = ((lm/l)^0.5)*((lm/l)^2) = ratio^2.5
12 Qm = (ratio^2.5) *Q;
13 / V = 1 / t
14 / tm/t = (V/Vm) * (lm/l) = ratio 0.5
15 tm=(ratio^0.5)*t;//hours
16 disp("m", wm, "The required model width=")
17 \texttt{disp}("(m^3)/s", \texttt{Qm}, "The required model flowrate=")
18 disp("hrs",tm, "The operating time for the model=")
19 lrat = 0.01:0.01:0.5;
20 count = 1;
21 for i=0.01:0.01:0.5
22
       tmodel(count)=(i^0.5)*t;
23
       count = count +1;
25 plot2d(lrat,tmodel,rect=[0,0,0.5,20])
```


Figure 7.2: froude number similarity \mathbf{r}

26 xtitle("tm vs lm/l","lm/l","tm, hr")

Chapter 8

Pipe flow

Scilab code Exa 8.1 calculating time required

```
1 clc;
2 clear;
3 T1=50; // degree farenheit
4 D=0.73; //in
5 vol=0.0125; // \text{ft}^3
6 T2=140; //degree farenheit
8 vis1=2.73/100000; //lb*s/ft^2 at 50 degree farenheit
  vis2=0.974/100000; //lb*s/ft^2 at 140 degree
      farenheit
10
11 //for 50 degree farenheit
12 //if flow is laminar, maximum Re=2100; Re=d*V*D/vis
13 V1=2100*vis1/(1.94*D/12);
14 t1=vol/(%pi*((D/12)^2)/4*V1);
15 //if flow is turbulent, minimum Re=4000
16 V2=4000*vis1/(1.94*D/12);
17 t2=vol/(%pi*((D/12)^2)/4*V2);
18
19 //for 140 degree farenheit
20 //if flow is laminar, maximum Re=2100; Re=d*V*D/vis
```

```
21 V3 = 2100 * vis2/(1.94 * D/12);
22 t3=vol/(%pi*((D/12)^2)/4*V3);
23 //if flow is turbulent, minimum Re=4000
24 V4 = 4000 * vis2/(1.94 * D/12);
25 t4=vol/(%pi*((D/12)^2)/4*V4);
26
27 disp("For laminar flow")
28 disp("seconds",t1,"The time taken to fill the glass
      at 50 degree F=")
  disp("seconds",t3,"The time taken to fill the glass
29
      100 degree F=")
30 disp("For turbulent flow:")
31 disp("seconds",t2,"The time taken to fill the glass
      at 50 degree F=")
32 disp("seconds",t4,"The time taken to fill the glass
      at 140 degree F=")
```

Scilab code Exa 8.2 laminar pipe flow

```
1 clc;
2 clear;
3 vis=0.4; //Ns/(m^2)
4 d=900; // kg/(m^3)
5 D=0.02; //m
6 Q=2.0*(10^-5); //(m^3)/s
7 x1=0;
8 \text{ x} 2 = 10; //\text{m}
9 p1=200; //kPa
10 x3=5; //m
11 V=Q/(\%pi*(D^2)/4);//m/s
12 Re=d*V*D/vis;
13 disp ("Hence the flow is laminar.", Re, "a) Reynolds
      number =")
14 pdiff = 128 * vis * (x2-x1) * Q/(%pi*(D^4)*1000);
15 // for part b0 p1=p2; Q=\%pi*(pdiff-(sw*l*sin(ang)))*(
```

```
D^4)/(128*vis*l)
16 ang=(asin(-128*vis*Q/(%pi*d*9.81*(D^4))))*180/%pi;
17 //since sin(ang) doesn= not depend on pdiff, the the pressure is constant all along the pipe
18 //hence for c)
19 p3=p1;//kPa
20 disp("kPa.",pdiff,"The pressure drop required if the pipe is horizontal=")
21 disp("degrees.",ang,"b) The angle of the hill the pipe must be on if the oil is to flow at the same rate as a) but with (p1=p2) =")
22 disp("kPa",p3,"c) For conditions of part b), the pressure at x3=5 m = ")
```

Scilab code Exa 8.3 net force calculation

```
1 clc;
2 clear;
3 T=[60\ 80\ 100\ 120\ 140\ 160];//degree F
4 d=[2.07 \ 2.06 \ 2.05 \ 2.04 \ 2.03 \ 2.02]; //(slugs/(ft^3))
5 \text{ vis} = [0.04 \ 0.019 \ 0.0038 \ 0.00044 \ 0.000092 \ 0.000023]; //
      lb*sec/(ft^2)
6 Q=0.5; //(ft^3)/sec
7 T1=100; // \text{degree } F
8 1=6; //ft
9 D=3; //in
10 / Q = K * p diff; where p diff = p1-p2
11 //\text{hence K}=\%\text{pi}*(D^4)/(128*\text{vis}*l)
12 count = 1;
13 for i=1:6
14
        K(i) = (\%pi*((D/12)^4))/(128*vis(i)*1);
15 end
16 plot2d(T,K,logflag='nl')
17 xtitle("K vs T", "T, degree F", "K, (ft ^5)/(lb.sec)")
18 pdiff = (128 * Q * vis(3) * 1) / (%pi * ((D/12)^4)); //when
```


Figure 8.1: net force calculation

```
temperature is 100 degree F

19 disp("lb/(ft^2)",pdiff,"The pressure drop for the given Q and T =")

20 V=Q/(%pi*((D/12)^2)/4);//ft/sec

21 Re=d(3)*V*(D/12)/vis(3);

22 disp("hence the flow is laminar",Re,"The reynolds number=")

23 stress=pdiff*(D/12)/(4*1);//lb/(ft^2)

24 disp("lb/(ft^2)",stress,"The wall stress for the given Q and T =")

25 Fp=(%pi/4)*((D/12)^2)*pdiff;//lb

26 Fv=(2*%pi)*((D/12)/2)*l*stress;//lb

27 disp("lb",Fp,"The net pressure force =")

28 disp("lb",Fv,"The net viscous/shear force =")
```

Scilab code Exa 8.4 turbulent pipe flow

```
1 clc;
2 clear;
```

```
3 T=20; // degree C
4 d=998; // kg/(m^3)
5 kvis=1.004*(10^-6); //(m^2)/s; where kvis=kinematic
      viscosity
6 D=0.1; //m
7 Q=0.04; //(m^3)/sec
8 pgrad=2.59; //kPa/m; where pgrad is pressure gradient
9 r = 0.025; /m
10 stress=D*(pgrad*1000)/(4*1); //N/(m^2)
11 uf=(stress/d)^0.5; //m/sec; where uf is frictional
      velocity
12 ts=5*kvis*1000/(uf);//mm; where ts is the thickness
      of the viscous sublayer
13 disp("mm", ts, "The thickness of the viscous sublayer=
14 V=Q/(\%pi*(D^2)/4);//m/s
15 Re=V*D/kvis;
16 disp("hence the flow is turbulent.", Re, "The reynolds
       number=")
17 n=8.4; // from turbulent flow velocity profile diagram
18
19 //Q = (\%pi) * (R^2) *V
20 R=1; //assumption
21 / let Q/Vc=x
22 x=integrate('((1-(r/R))^(1/n))*(2*\%pi*r)', 'r',0,R);
23 q = \%pi * (R^2) * V;
24 Vc=q/x; //m/s
25 disp("m/s", Vc, "The approximate centerline velocity="
26 stress1=(2*stress*r)/D; //N/(m^2)
27 //d(uavg)/dr = urate = -(Vc/(n*R))*((1-(r/R))^{(1-n)/n})
      ; where uavg=average velocity
28 urate=-(Vc/(n*(D/2)))*((1-(r/(D/2)))^((1-n)/n));//s
      ^{(-1)}
29 stresslam=-(kvis*d*urate); //N/(m^2)
30 stressratio=(stress1-stresslam)/stresslam;
31 disp(stressratio,"The ratio of teh turbulent to
      laminar stress at a point midway between the
```

Scilab code Exa 8.5 pressure drop calculation

```
1 clc;
2 clear;
3 D=4; /mm
4 V = 50; //m/sec
5 1 = 0.1; //m
6 d=1.23; // kg/(m^3)
7 vis=1.79/100000; //N*sec/(m^2)
8 Re=d*V*(D/1000)/vis;
9 //if flow is laminar
10 f = 64/Re;
11 pdiff=f*l*0.5*d*(V^2)/((D/1000)*1000); //kPa
12 disp("kPa",pdiff,"The pressure drop if the flow is
      laminar=")
13 //if flow is turbulent
14 / \text{roughness} = 0.0015; hence f = 0.028
15 f1=0.028;
16 pdiff1=f1*1*0.5*d*(V^2)/((D/1000)*1000);/kPa
17 disp("kPa",pdiff1,"The pressure drop if flow is
      turbulent=")
```

Scilab code Exa 8.6 minor losses calculation

```
1 clc;
2 clear;
3 A=[22 28 35 35 4 4 10 18 22];
4 V=[36.4 28.6 22.9 22.9 200 200 80 44.4 36.4];
5 //minimum area is at location 5, hence max velocity
    is at 5
6 c5=(1.4**1716*(460+59))^0.5;//ft/sec
```

```
7 Ma5=V(5)/c5;
  8 //applying energy equation between locations 1 and
  9 / hL = hp = (p1-p9) / sw = p diff / sw
10 / Pa=sw*Q*hp=sw*A(5)*V(5)*hL
11 KLcorner=0.2;
12 KLdif=0.6;
13 KLscr=4;
14 hL = ((KLcorner*((V(7))^2) + ((V(8))^2) + ((V(2))^2) + ((V(2))^2)
                   (3))^2))) + (KLdif*(((V(6))^2))) + (KLcorner*((V
                    (5)^2) + (KLscr*((V(4))^2)))/(2*32.2);//ft
15 Pa=0.0765*A(5)*V(5)*hL/550; //hp
16 pdiff=0.0765*hL/144;//psi
17 disp("psi",pdiff, "The value of (p1-p9)=")
18 disp("hp", Pa, "The horsepower supplied to the fluid
                  by the fan=")
19 v = 50:300;
20 count = 1;
21 \quad for \quad i=50:300
                    power(count) = 0.0765*(((KLcorner*((A(5)*i/A(7))))
22
                              ^2) + ((A(5)*i/(A(8)))^2) + ((A(5)*i/A(2))^2) + ((A
                              (5)*i/A(3))^2))) + (KLdif*(((A(5)*i/A(6))^2)))
                                + (KLcorner*((i)^2)) + (KLscr*((A(5)*i/A(4))
                             ^2)))/(2*32.2))*(A(5))*i/550;
23
                    count = count +1:
24 end
25 plot2d(v,power,rect=[0,0,300,250])
26 xtitle("Pa vs V5", "V5, ft/sec", "Pa, hp")
```

Scilab code Exa 8.7 duct size determination

```
1 clc;
2 clear;
```


Figure 8.2: minor losses calculation

```
3 T=120; // degree F
4 D=8; //in
5 \text{ vavg=10}; // \text{ft/s}
6 roughness=0;
7 kvis=1.89/10000; //(ft^2)/s
8 Re=vavg*(D/12)/kvis;
  //from this value of Re and roughness/D=0, and using
       Moody's chart
10 f=0.022;
11 hLperl = f*(vavg^2)/(D*2*32.2/12);
12 / Dh = 4*A/P = 4*(a^2)/(4*a) = a
13
14 //\text{Vs} = (\%\text{pi} * ((D/12)^2) * \text{vavg}) / (4 * a^2)
  //a=f*((\%pi*((D/12)^2)*vavg)/(4*a^2))/(2*32.2) and
      Reh = ((\%pi*((D/12)^2)*vavg)/(4*a^2))*a/kvis
16 //by trial and error
17 f = 0.023;
18 x=(\%pi*((D/12)^2)*vavg/4)^2;
19 y=x*f/(2*32.2);
20 a=((y/0.0512)^(1/5))*12;//in
21 disp("inches", a, "The duct size(a) for the square
      duct if the head loss per foot remains the same
      for the pipe and the duct=")
```

Scilab code Exa 8.8 determining pressure drop

```
1 clc;
2 clear;
3 T=60; // degree F
4 D=0.0625; // ft
5 Q=0.0267; //(ft^3)/sec
6 Df = 0.5; //in
7 11=15; //ft
8 12=10; //ft
9 13=5; //ft
10 14=10; //ft
11 15=10; // ft
12 16=10; //ft
13 V1=Q/(\%pi*(D^2)/4);//ft/sec
14 V2=Q/(\%pi*((Df/12)^2)/4);//ft/sec
15 d=1.94; //slugs/ft
16 vis=2.34/100000; //lb*sec/(ft^2)
17 Re=d*V1*D/vis;
18 disp ("hence the flow is turbulent", Re, "The reynolds
      number =")
19 //applying energy equation between points 1 and 2
20 //when all head losses are excluded
21 p1=(d*32.2*(12+14))+(0.5*d*((V2^2)-(V1^2))); //lb/(ft)
      ^2)
22 disp("psi",p1/144,"a)The pressure at point 1 when
      all head losses are neglected=")
23 //if major losses are included
24 f=0.0215;
25 \text{ hLmajor} = f*(11+12+13+14+15+16)*(V1^2)/(D*2*32.2);
26 p11=p1+(d*32.2*hLmajor); //lb/(ft^2)
27 disp("psi",p11/144,"b) The pressure at point 1 when
      only major head losses are included=")
28 //if major and minor losses are included
```

```
29 KLelbow=1.5;
30 \text{ KLvalve=10};
31 KLfaucet=2:
32 hLminor=(KLvalve+(4*KLelbow)+KLfaucet)*(V1^2)
      /(2*32.2);
33 p12=p11+(d*32.2*hLminor); //lb/(ft^2)
34 disp("psi",p12/144,"c) The pressure at point 1 when
      both major and minor head losses are included=")
35 H=(p1/(32.2*1.94))+(V1*V1/(2*32.2));//ft
36 dist=0:60;
37 \text{ for } i=0:15
       press(i+1) = p1/144;
38
39
       press1(i+1) = ((d*32.2*(12+14))+(0.5*d*((V2^2)-(V1)))
          ^2)))+(d*32.2*(f*(l1+l2+l3+l4+l5+l6-i)*(V1^2)
          /(D*2*32.2)))+(d*32.2*(KLvalve+(4*KLelbow)+
          KLfaucet)*(V1^2)/(2*32.2)))/144;
       head(i+1)=H:
40
       head1(i+1)=((press1(i+1))*144/(32.2*1.94))+((V1
41
          ^2)/(2*32.2));
42 end
43 for i=16:25
       press(i+1) = ((d*32.2*((12+14)-(i-15)))+(0.5*d*((
44
          V2^2 - (V1^2)))/144;
       press1(i+1) = ((d*32.2*((12+14)-(i-15)))+(0.5*d*((
45
          V2^2 - (V1^2) + (d*32.2*f*(11+12+13+14+15+16-i)
          )*(V1^2)/(D*2*32.2))+(d*32.2*(KLvalve+(3*
          KLelbow)+KLfaucet)*(V1^2)/(2*32.2)))/144;
       head(i+1)=H;
46
       head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)
47
          /(2*32.2))+(i-11);
48 end
49 \quad for \quad i = 26:30
       press(i+1) = ((d*32.2*((12+14)-(25-15)))+(0.5*d*((12+14)-(25-15)))
50
          V2^2)-(V1^2))))/144;
        press1(i+1) = ((d*32.2*((12+14)-(25-15)))+(0.5*d)
51
           *((V2^2)-(V1^2)))+(d*32.2*(f*(11+12+13+14+15)
           +16-i)*(V1^2)/(D*2*32.2)))+(d*32.2*(KLvalve)
           +(2*KLelbow)+KLfaucet)*(V1^2)/(2*32.2))
```

```
/144;
52
        head(i+1)=H;
53
       head1(i+1) = (press1(i+1)*144/(32.2*1.94)) + ((V1^2)
          /(2*32.2))+12;
54 end
55 for i=31:40
       press(i+1) = ((d*32.2*((12+14)-(i-11-13)))+(0.5*d
56
          *((V2^2)-(V1^2))))/144;
       press1(i+1) = ((d*32.2*((12+14)-(i-11-13)))+(0.5*d)
57
          *((V2^2)-(V1^2)))+(d*32.2*(f*(11+12+13+14+15+
          16-i)*(V1^2)/(D*2*32.2)))+(32.2*d*(KLvalve+(
          KLelbow) + KLfaucet) * (V1^2) / (2*32.2))) / 144;
58
       head(i+1)=H;
       head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)
59
          /(2*32.2))+(i-(11+13));
60 end
61 \text{ for } i=41:50
       press(i+1)=((d*32.2*((12+14)-(40-11-13)))+(0.5*d
62
          *((V2^2)-(V1^2))))/144;
       press1(i+1) = ((d*32.2*((12+14)-(40-11-13)))+(0.5*)
63
          d*((V2^2)-(V1^2)))+(d*32.2*(f*(11+12+13+14+15)
          +16-i)*(V1^2)/(D*2*32.2)))+(d*32.2*(KLvalve+
          KLfaucet)*(V1^2)/(2*32.2)))/144;
64
        head(i+1)=H;
       head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)
65
          /(2*32.2))+(12+14);
66 end
67 \text{ for } i=51:60
       press(i+1) = ((d*32.2*((12+14)-(40-11-13)))+(0.5*d
68
          *((V2^2)-(V1^2))))/144;
        press1(i+1) = ((d*32.2*((12+14)-(40-11-13)))
69
           +(0.5*d*((V2^2)-(V1^2)))+(d*32.2*(f*(11+12+
           13+14+15+16-i)*(V1^2)/(D*2*32.2)))+d*32.2*((
           KLfaucet)*(V1^2)/(2*32.2)))/144;
        head(i+1)=H;
70
       head1(i+1)=(press1(i+1)*144/(32.2*1.94))+((V1^2)
71
          /(2*32.2))+(12+14);
72 end
```


Figure 8.3: determining pressure drop

```
73 plot(dist, press, "o-")
74 plot(dist,press1,"x-")
75 h1=legend(['without losses'; 'with losses'])
76 xtitle("p vs distance long pipe from (1)", "distance
      along pipe from (1), ft", "p, psi")
77 xclick(1);
78 clf();
79 plot(dist, head, "o-")
80 plot(dist, head1, "x-")
81 h2=legend(['energy line with no losses'; 'energy line
       including losses'])
82 xtitle ("H vs distance long pipe from (1)", "distance
      along pipe from (1), ft", "H, elevation to energy
      line, ft")
83
84 end
```


Figure 8.4: determining pressure drop

Scilab code Exa 8.9 determining head loss

```
1 clc;
2 clear;
3 T=140; // degree F
4 sw=53.7; // lb / (ft^3)
5 vis=8/100000; //lb*sec/(ft^2)
6 1=799; // miles
7 D=4; //ft
8 Q=117; //(ft^3)/sec
9 V = 9.31; //ft/sec
10 //energy equation=> hp=hL=f*(1/D)*((V^2)/(2*g))
11 f=0.0125;
12 hp=f*(1*5280/D)*((V^2)/(2*32.2));//ft
13 Pa=sw*Q*hp/550; //hp
14 disp("hp", Pa, "The horsepower required to drive the
      system=")
15 dia=2:0.01:6;
16 count = 1;
17 for i=2:0.01:6
       power(count) = sw * Q * (f * (1 * 5280/i) * (((Q/(%pi * (i^2)))))
18
           /4))^2)/(2*32.2)))/550;
19
       count = count +1;
20 \text{ end}
```


Figure 8.5: determining head loss

```
21 plot2d(dia,power,rect=[0,0,6,4000000])
22 xtitle("Pa vs D","D, ft","Pa, hp")
```

Scilab code Exa 8.10 air flowrate determination

```
1 clc;
2 clear;
3 D=4;//in
4 l=20;//ft
5 n=4;//number of 90 degree elbows
6 h=0.2;//in
7 T=100;//degree F
8 //energy equation between the inside of the dryer and the exit of the vent pipe
9 p1=(h/12)*62.4;//lb/(ft^2)
10 KLentrance=0.5;
11 KLelbow=1.5;
12 sw=0.0709;//lb/(ft^3)
13 f=0.022;//assumption
```

Scilab code Exa 8.11 flowrate through turbine

```
1 clc;
2 clear;
3 Pa=50; //hp
4 D=1; //ft
5 1 = 300; //ft
6 	 f = 0.02;
7 z1=90; //ft
8 //energy equation between the surface of the lake
       and the outlet of the pipe
9 / p1=V1=p2=z2=0; V2=V
10 //hL=f*l*(V^2)/(D*2*g)
11 /hT = Pa/(sw * \%pi * (D^2) * V/4)
12 c1=(Pa*550)/(62.4*%pi*(D^2)/4)/\frac{561}{}
13 c2=f*1/(D*2*32.2)//0.0932
14 fn = poly([c1 (-z1) 0 ((1/(2*32.2))+(c2))], "V", "c");
15 r=roots(fn);
16 V1=r(1); // ft / sec
17 V2=r(2); //ft/sec
18 Q1=(%pi*(D^2)/4)*V1;//(ft^3)/sec
19 Q2=(\%pi*(D^2)/4)*V2;//(ft^3)/sec
20 \operatorname{disp}("(\operatorname{ft}^3)/\operatorname{sec}", \operatorname{Q2}, "\operatorname{and}", "(\operatorname{ft}^3)/\operatorname{sec}", \operatorname{Q1}, "\operatorname{The}")
       possible flowrates are=")
```

Scilab code Exa 8.12 minimum pipe diameter

```
1 clc;
2 clear;
3 \text{ roughness=0.0005; //ft}
4 Q=2; //(ft^3)/sec
5 pd=0.5; //psi; where pd=pressure drop
6 1 = 100; //ft
7 d=0.00238; //slugs/(ft^3)
8 vis=3.74*(10^(-7)); //lb*sec/(ft^2)
9 x=Q/(\%pi/4); //where x =V*(D^2)
10 //energy equation with z1=z2 and V1=V2
11 y=1*d*(x^2)*0.5/(pd*144); //where <math>y=(D^5)/f
12 f=0.027; //using reynolds number, roughness and moody
     's chart
13 D=(y*f)^(1/5);//ft
14 disp("ft",D,"The diameter of the pipe should be =")
15 q=0.01:0.01:3;
16 count=1;
17 for i=0.01:0.01:3
       dia(count) = ((1*d*((i/(%pi/4))^2)*0.5/(pd*144))*f
18
          )^{(1/5)};
19
       count = count +1;
20 end
21 plot2d(q,dia,rect=[0,0,3,0.25])
22 xtitle("D vs Q","Q, (ft^3)/sec","D, ft")
```

Scilab code Exa 8.13 pipe diameter calculation

```
1 clc;
2 clear;
3 T=60; // degree F
4 kvis=1.28*(10^(-5)); // (ft^2)/sec
5 l=1700; // ft
6 roughness=0.0005; // ft
```


Figure 8.6: minimum pipe diameter

```
7 Q=26; //(ft^3)/sec
8 n=4;//number of flanged 45 degree elbows
9 z1=44; //ft
10 x=Q/(\%pi/4); //where x=V*(D^2)
11 KLentrance=0.5;
12 KLelbow=0.2;
13 KLexit=1;
14 // Finding f from Re, roughness and moody's chart
15 f=0.01528;
16 sumKL=(n*KLelbow)+KLentrance+KLexit;
17 y=f*1;
18 / V^2 = (x^2) / (D^4)
19 //energy equation with p1=p2pV1=V2=z2=0
20 z=(2*32.2*z1)/((x^2)*1);
21 k = sumKL/1;
22 fn=poly([(-f) (-k) 0 0 0 z], 'D', 'c');
23 r=roots(fn);
24 disp("ft",r(1),"The diameter=")
25 \text{ count} = 1;
26 len=400:2000;
27 for i=400:2000
       root=roots(poly([(-f) (-(sumKL/i)) 0 0 0
28
          ((2*32.2*z1)/((x^2)*i))], 'a', 'c'));
29
       dia(count)=root(1);
```


Figure 8.7: pipe diameter calculation

Scilab code Exa 8.14 flowrate in reservoir

```
1 clc;
2 clear;
3 D=1;//ft
4 f=0.02;
5 z1=100;//ft
6 z2=20;//ft
7 z3=0;//ft
8 11=1000;//ft
9 12=500;//ft
10 13=400;//ft
11 //assuming fluid flows into B
12 //applying energy equation bwtween (1 and 3) and (1
```

```
and 2) and using the relation V1=V2+V3
13 c1=z1*32.2*2/(f*11);
14 c2=(z1-z2)*32.2*2/(f*11);
15 x=(c1-c2)/(13/11);//160
16 y=(12/11)/(13/11); //1.25
17 a=c2-x; //98
18 b=(a*2*(y+(12/11))); //539
19 c=4*x+b; //1179
20 d=-((y+(12/11))^2)+(4*y);//-2.5625
21 e=-(a^2); //-9604
22 fn=poly([e 0 c 0 d], 'V2', 'c');
23 \text{ r=roots(fn)};
24 \text{ V2=r(1)};
V1 = (c2 - (12/11) * V2)^0.5;
26 A = (\%pi/4*(D^2));
27 \quad Q1 = V1 * A;
28 Q2=V2*A;
29 \quad Q3 = Q1 - Q2;
30 disp("(ft^3)/sec",Q1,"Q1 (out of A)=")
31 disp("(ft^3)/sec", Q2, "Q2 (into B)=")
32 disp("(ft^3)/sec",Q3,"Q3 (into C)=")
```

Scilab code Exa 8.15 diameter of nozzle

```
1 clc;
2 clear;
3 D=60; //mm
4 pdiff=4; //kPa
5 Q=0.003; // (m^3)/sec
6 d=789; //kg/(m^3)
7 vis=1.19*(10^(-3)); //N*sec/(m^2)
8 Re=d*4*Q/(%pi*D*vis);
9 //assuming B=dia/D=0.577, where dia=diameter of nozzle, and obtaining Cn from Re as 0.972
10 Cn=0.972;
```

Chapter 9

External Flow Past Bodies

Scilab code Exa 9.1 lift and drag

```
1 clc;
2 clear;
3 U=25; //ft/sec
4 p=0; //gage
5 b=10; //ft
6 t=1.24*(10^-3); //where t=stress*(x^0.5)
7 a=0.744; //where a=p/(1-((y^2)/4))
8 p1=-0.893; //lb/(ft^2)
9 drag1=2*integrate('t*b/(x^0.5)', 'x',0,4);
10 drag2=integrate('(((a*(1-((y^2)/4))))-p1)*b', 'y', -2,2);
11 disp("lb",drag1,"The drag when plate is parallel to the upstream flow=")
12 disp("lb",drag2,"The drag when plate is perpendicular to the upstream flow=")
```

Scilab code Exa 9.5 boundary layer transition

```
1 clc;
2 clear;
3 U=10; //ft/sec
4 Twater=60; //degree F
5 Tglycerin=68; //degree F
6 kviswater=1.21*(10^-5); //(ft^2)/sec
7 kvisair=1.57*(10^-4); //(ft^2)/sec
8 kvisglycerin=1.28*(10^-2); //(ft^2)/sec
9 Re=5*(10^5); //assumption
10 xcrwater=kviswater*Re/U;//ft
11 xcrair=kvisair*Re/U;//ft
12 xcrglycerin=kvisglycerin*Re/U;//ft
13 btwater=5*(kviswater*xcrwater/U)^0.5; // ft; where bt=
      thickness of boundary layer
14 btair=5*(kvisair*xcrair/U)^0.5;//ft
15 btglycerin=5*(kvisglycerin*xcrglycerin/U)^0.5;//ft
16 disp("a)WATER")
17 disp(,"ft", xcrwater, "location at which boundary
     layer becomes turbulent=")
18 disp("ft", btwater, "Thickness of the boundary layer="
     )
19 disp("b)AIR")
20 disp(,"ft", xcrair, "location at which boundary layer
     becomes turbulent=")
21 disp("ft",btair, "Thickness of the boundary layer=")
22 disp("c)GLYCERIN")
23 disp(,"ft",xcrglycerin,"location at which boundary
     layer becomes turbulent=")
24 disp("ft", btglycerin, "Thickness of the boundary
     laver=")
```

Scilab code Exa 9.7 drag estimation

```
1 clc;
2 clear;
```


Figure 9.1: drag estimation

```
3 \text{ T=70; } // \text{degree F}
4 U1=0; // ft / sec
5 \text{ U2=30;} // \text{ft/sec}
6 1=4; //ft
7 b=0.5; //ft
8 d=1.94;
9 vis=2.04*(10^{(-5)});
10 x=d*1/vis;
11 U=1:U2;
12 for i=1:U2
13
        Re(i)=x*i;
14
        CDf(i) = 0.455/((log10(Re(i)))^2.58);
        Df(i)=0.5*d*i*i*l*b*CDf(i);
15
        xcr(i)=vis*(5*(10^5))/(d*i);
16
17 end
18 plot(U,Df,"x-")
19 plot(U,xcr,"o-")
20 h1=legend(['Df'; 'xcr'])
```


Figure 9.2: speed of grain

Scilab code Exa 9.10 speed of grain

```
1 clc;
2 clear;
3 D=0.1; //mm
4 \text{ sg=} 2.3;
5 vis=1.12*(10^(-3)); //N*s/(m^2)
6 //by free body diagram and assuming CD=24/Re
7 U=(sg-1)*999*9.81*((D/1000)^2)/(18*vis);
8 disp("m/sec",U,"The velocity of the particle through
       still water =")
9 dia=0:0.001:0.1;
10 count = 1;
11 for i=0:0.001:0.1
12
       u(count) = (sg-1)*999*9.81*((i/1000)^2)/(18*vis);
13
       count = count +1;
14 end
15 plot2d(dia,u,rect=[0,0,0.1,0.007])
16 xtitle("U vs D", "D, mm", "U, m/s")
```

Scilab code Exa 9.11 velocity of updraft

```
1 clc;
2 clear;
3 D=1.5; //in
4 //assuming CD=0.5 and verifying this value using value of Re
5 CD=0.5;
6 dice=1.84; //slugs/(ft^3); density of ice
7 dair=2.38*(10^(-3)); //slugs/(ft^3)
8 U=(4*dice*32.2*(D/12)/(3*dair*CD))^0.5; //ft/sec
9 disp("mph", U*3600/5275, "The velocity of the updraft needed=")
```

Scilab code Exa 9.12 drag and deceleration

```
1 clc;
2 clear;
3 Dg=1.69; //in.
4 Wg = 0.0992; //lb
5 Ug = 200; //ft/sec
6 Dt=1.5; //in.
7 Wt = 0.00551; //lb
8 Ut=60; // ft / sec
9 kvis=(1.57*(10^{(-4)})); //(ft^2)/sec
10 Reg=Ug*Dg/kvis;
11 Ret=Ut*Dt/kvis;
12 //the corresponding drag coefficients are calculated
13 CDgs=0.25; //standard golf ball
14 CDgsm=0.51; //smooth golf ball
15 CDt=0.5; //table tennis ball
16 Dgs=0.5*0.00238*(Ug^2)*\%pi*((Dg/12)^2)*CDgs/4;//lb
17 Dgsm=0.5*0.00238*(Ug^2)*%pi*((Dg/12)^2)*CDgsm/4;//lb
18 Dt=0.5*0.00238*(Ut^2)*%pi*((Dt/12)^2)*CDt/4; //lb
```

```
//the corresponding decelerations are a=D/s=g*D/W
//deceleration relative to g=D/W
decgs=Dgs/Wg;
decgsm=Dgsm/Wg;
dect=Dt/Wt;
disp("STANDARD GOLF BALL:")
disp("lb",Dgs,"The drag coefficient=")
disp(decgs,"The deceleration relative to g=")
disp("SMOOTH GOLF BALL:")
disp("lb",Dgsm,"The drag coefficient=")
disp(decgsm,"The deceleration relative to g=")
disp(decgsm,"The deceleration relative to g=")
disp("TABLE TENNIS BALL:")
disp("lb",Dt,"The drag coefficient=")
disp(dect,"The deceleration relative to g=")
```

Scilab code Exa 9.13 torque estimation

```
1 clc;
2 clear;
3 \text{ U=88; } // \text{fps}
4 Ds=40; //ft
5 Dc=15; //ft
6 b=50; //ft
7 Res=U*Ds/(1.57*(10^{(-4)}));
8 Rec=U*Dc/(1.57*(10^{-4}));
9 //from these values of Re drag coefficients are
      found as
10 CDs = 0.3:
11 CDc = 0.7;
12 //by summing moments about the base of the tower
13 Drs=0.5*0.00238*(U^2)*%pi*(Ds^2)*CDs/4;//lb
14 Drc=0.5*0.00238*(U^2)*b*Dc*CDc;//lb
15 M = (Drs*(b+(Ds/2))) + (Drc*(b/2)); //ft*lb
16 disp("ft*lb",M,"The moment needed to prevent the
      tower from tripping=")
```

Scilab code Exa 9.15 lift and power

```
1 clc;
2 clear;
3 U=15; //ft/sec
4 b=96; //ft
5 c=7.5; //ft
6 W=210; //lb
7 CD=0.046;
8 eff=0.8; //power train efficiency
9 d=2.38*(10^(-3)); //slugs/(ft^3)
10 //W=L
11 CL=2*W/(d*(U^2)*b*c);
12 D=0.5*d*(U^2)*b*c*CD;
13 P=D*U/(eff*550); //hp
14 disp(CL,"The lift coefficient=")
15 disp("hp",P,"The power required by the pilot=")
```

Scilab code Exa 9.16 angular velocity determination

```
1 clc;
2 clear;
3 W=2.45*(10^(-2)); //N
4 D=3.8*(10^(-2)); //m
5 U=12; //m/s
6
7 //W=L
8 d=1.23; //kg/(m^3)
9 W=0.5*d*(U^2)*(D^2)*%pi*CL/4;
10 CL=2*W/(d*(U^2)*%pi*(D^2)/4);
11 //using this value of CL, omega*D/(2*U)=x is found as
```

```
12 x=0.9;
13 omega=2*U*x/D;//rad/sec
14 angvel=omega*60/(2*%pi);//rpm; where angvel is
          angular velocity
15 disp("rpm", angvel, "The angular velocity=")
```

Chapter 10

Flow in Open Channels

Scilab code Exa 10.2 elevation of surface

```
1 clc;
2 clear;
3 z2=0.5; //ft
4 q=5.75; //(ft^2)/sec
5 y1=2.3; //ft
6 z1=0; //ft
7 V1 = 2.5; //ft/sec
8 //bernoulli equation
9 a=y1+((V1^2)/(2*32.2))+z1-z2;//ft; where a=y2+((V^2))
      /(2*g))
10 //countinuity equation
11 b=(y1*V1); //(ft^2/sec); where <math>b=(y2*V2)
12 c1 = 2 * 32.2;
13 c2=(-c1)*a;
14 c3=b<sup>2</sup>;
15 fn=poly([c3 0 c2 c1],"y2","c");
16 y2=roots(fn);
17 sum1 = y2(3) + z2; //ft
18 sum2=y2(1)+z2;//ft
19 E1=y1+(c3/(y1^2)); //ft
20 Emin=3*((q^2)/(32.2^(1/3)))/2;//ft
```


Figure 10.1: elevation of surface

Scilab code Exa 10.3 froude number determination

```
1 clc;
2 clear;
3 y=5;//ft
```

```
4 angle=40; //degree
5 l=12; //ft
6 rate=1.4; //ft per 1000 ft of length
7 K=1.49;
8 A=(l*y)+(y*y/tan(angle*%pi/180)); //ft
9 P=(l+(2*y/sin(angle*%pi/180))); //ft
10 Rh=A/P;
11 S0=rate/1000;
12 x=K*(A)*(Rh^(2/3))*(S0^0.5); //where Rh=Q*n
13 n=0.012;
14 Q=x/n; //cfs
15 disp("cfs",Q,"The flowrate=")
16 V=Q/A; //ft/sec
17 Fr=V/(32.2*y)^0.5;
18 disp(Fr,"Froude number=")
```

Scilab code Exa 10.4 determining flow depth

```
1 clc;
2 clear;
3 y=5; //ft
4 angle=40; //degree
5 1=12; //ft
6 rate=1.4; // ft per 1000 ft of length
7 Q=10; //m^3/sec
8 //A = (1*y) + (y*y/tan(angle*\%pi/180)) ft<sup>2</sup>
9 bw=1*1/3.281; //m; where bw=bottom width 3.66
10 / P = bw(2*y/sin(angle*\%pi/180)) m
11 / Rh = A/P
12 n = 0.03;
13 c1=1/tan(angle*\%pi/180); //1.19
14 c2=(Q*n/((rate/1000)^0.5))^3;//515
15 c3=2/\sin(angle*\%pi/180);//3.11
16 \text{ fn=poly}([(-c2*bw*bw) (-c2*2*c3*bw) (-c2*c3*c3) 0 0 (
      bw^5) (5*c1*bw^4) (10*(c1^2)*(bw^3)) (10*(c1^3)*(
```

```
bw^2)) (5*(c1^4)*(bw)) (c1^5)],"y","c");
17 r=roots(fn);
18 disp("m",r(1),"The depth of the flow=")
```

Scilab code Exa 10.7 flowrate estimation

```
1 clc;
2 clear;
3 S0=1/500;
4 n1=0.02;
5 z1=0.6; //ft
6 n2=0.015;
7 n3=0.03;
8 z2=0.8; //ft
9 11=3; //ft
10 12=2; // ft
11 13=3; // ft
12 y=z1+z2; //ft
13 K=1.49;
14 A1=11*(z1); // ft<sup>2</sup>
15 A2=12*(y); // ft^2
16 A3=13*(z1); // ft^2
17 P1=11+z1; // ft
18 P2=12+(2*z2); //ft
19 P3=13+z1; //ft
20 Rh1=A1/P1; // ft
21 Rh2=A2/P2; // ft
22 Rh3=A3/P3; // ft
23 Q=K*(S0^0.5)*((A1*(Rh1^(2/3))/n1)+(A3*(Rh3^(2/3))/n3)
       )+(A2*(Rh2^(2/3))/n2));//(ft^3)/sec
24 \operatorname{disp}("(\operatorname{ft}^3)/\operatorname{sec}", \mathbb{Q}, "\operatorname{The flowrate}=")
```

Scilab code Exa 10.8 aspect ratio determination

Figure 10.2: aspect ratio determination

```
1 clc;
2 clear;
3 / A = b * y
4 / p = b + 2 * y
5 //Q = K*A*(Rh^(2/3))*(S0^0.5)/n
6 //dA/dy = 0
7 //from the above, we get
8 aspratio=2;//asp ratio=aspect ratio=b/y
9 disp(aspratio, "The aspect ratio=")
10 asprat = 0.5:0.01:5;
11 count=1;
12 for
        i=0.5:0.01:5
       Qrat(count) = (((2*sqrt(1/2))+(sqrt(2)))/((2*sqrt(2)))
13
          (1/i))+(sqrt(i)))^{(2/3)};
14
       count = count + 1;
15 end
16 plot2d(asprat,Qrat,rect=[0,0.8,5,1.05])
17 xtitle ("Q/Qmax vs b/y", "b/y", "Q/Qmax")
```

Scilab code Exa 10.9 hydraulic jump

```
1 clc;
2 clear;
3 \text{ w=100;} // \text{ft}
4 y1=0.6; //ft
5 V1 = 18; //ft/sec
6 Fr1=V1/(32.2*y1)^0.5;
7 disp(Fr1, "The Froude number before the jump=")
8 yratio=0.5*(-1+(1+(8*(Fr1^2)))^0.5); //where yratio=
      y2/y1
9 y2=y1*yratio; //ft
10 disp("ft", y2, "The depth after the jump=")
11 / Q1=Q2, hence
12 V2 = (y1 * V1) / y2; // ft / sec
13 Fr2=V2/(32.2*y2)^0.5;
14 disp(Fr2, "The froude number after the jump=")
15 Q=w*y1*V1; //(ft^3)/sec
16 hL=(y1+(V1*V1/(32.2*2)))-(y2+(V2*V2/(2*32.2))); // ft
17 Pd=62.4*hL*Q/550;//hp
18 disp("hp", Pd, "Power dissipated within the jump=")
19 depth1=0.4:0.01:1.53;
20 count = 1;
21 for i=0.4:0.01:1.53
22
       power(count)=62.4*(((i+((Q/(i*w))^2)/(32.2*2)))
          -((i*(0.5*(-1+(1+(8*(((Q/(i*w)))/(32.2*i)^0.5)
          ^2)))^0.5)))+((((i*(Q/(i*w)))/(i
          *(0.5*(-1+(1+(8*(((Q/(i*w)))/(32.2*i)^0.5)^2))
          )^0.5))))^2)/(2*32.2))))*Q/550;
23
       count = count +1;
24 end
25 plot2d(depth1, power, rect = [0,0,1.6,1000])
26 xtitle("Pa vs y1", "y1, ft", "Pa, hp")
27 xclick(1);
28 clf();
29 y = 0.5 : 0.01 : 4;
30 n = 1;
31 for i=0.5:0.01:4
```


Figure 10.3: hydraulic jump

```
32         E(n)=(i+(((Q/w)^2)/(2*32.2*i*i)));

33         n=n+1;

34         end

35         plot2d(E,y,rect=[0,0,6,4])

36         xtitle("y vs E","E,ft","y,ft")
```


Figure 10.4: hydraulic jump

Chapter 11

Analysis of Compressible Flow

Scilab code Exa 11.1 Internal Energy enthalphy

```
1 clc;
2 clear;
3 D=4; //in
4 T1=540; // degree R
5 p1 = 100; //psia
6 T2=453; //degree R
7 p2=18.4; //psia
8 k=1.4;
9 R=1716/32.174; // \text{ft} * \text{lb} / (\text{lbm} * (\text{degree R}))
10 cv=R/(k-1); //ft*lb/(lbm*(degree R))
11 udiff=cv*(T2-T1); // ft*lb/lbm; change in internal
      energy
12 disp("ft*lb/lbm",udiff,"a)The change in internal
      energy between (1) and (2)=")
13 cp=k*cv; // ft*lb/(lbm*(degree R))
14 hdiff=cp*(T2-T1); //ft*lb/lbm; change in enthalpy
15 disp("ft*lb/lbm",hdiff,"b)The change in enthalpl
      energy between (1) and (2)=")
16 ddiff = (1/R) * ((p2*144/T2) - (p1*144/T1)); //lbm / (ft^3);
      change in density
17 \operatorname{disp}("lbm/(ft^3)", \operatorname{ddiff}, "The change in density]
```

```
betwenn (1) and (2)=")
```

Scilab code Exa 11.2 change in entropy

```
1 clc;
2 clear;
3 D=4;//in
4 T1=540;//degree R
5 p1=100;//psia
6 T2=453;//degree R
7 p2=18.4;//psia
8
9 dratio=(p1/T1)*(T2/p2);
10 sdif=(cv*(log(T2/T1)))+(R*(log(dratio)));//ft*lb/lbm
    *(degree R); change in entropy
11 disp("ft*lb/lbm*(degree R)",sdif,"The change in entropy between (1) and (2)=")
```

Scilab code Exa 11.3 speed of sound

```
1 clc;
2 clear;
3 T=0;//degree C
4 R=286.9;//J/(kg*K)
5 k=1.401;
6 c=(R*(T+273.15)*k)^0.5;//m/s
7 disp("m/sec",c," The speed of sound for air at 0 degree C =")
```

Scilab code Exa 11.4 Mach cone

```
1 clc;
2 clear;
3 z=1000; //m
4 \text{ Ma} = 1.5;
5 T=20; // degree C
6 // alpha=atan(z/x), x=V*t, and Ma=(1/sin(alpha));
      where alpha is the angle of the Mach cone
7 /V = Ma * c
8 c=343.3; //m/s found from the value of temperature
9 V=Ma*c; //m/sec
10 t=z/(Ma*c*tan(asin(1/Ma)));//sec
11 disp("sec",t,"The number of seconds to wait after
      the plane passes over-head before it is heard=")
12 Mach=0.01:0.01:4;
13 count=1;
14 for i=0.01:0.01:4
       time(count)=z/(i*c*tan(asin(1/i)));
15
16
       count = count +1;
17 end
18 plot2d (Mach, time, rect=[0,0,4,3])
19 xtitle("t vs Ma", "Ma", "t, sec")
```

Scilab code Exa 11.5 mass flowrate determination

```
1 clc;
2 clear;
2 dear;
3 A=1*(10^(-4));//m^2
4 p1=80;//kPa(abs)
5 p2=40;//kPa(abs)
6 p0=101;//kPa(abs)
7 pcritical=0.528*p0;//kPa(abs)
8 k=1.4;
9 //for (a) pth=p1>pcritical
```


Figure 11.1: Mach cone

```
10 Math1 = (((p0/p1)^((k-1)/k)) - 1)/((k-1)/2))^0.5; //Math
     =Mach number at throat
11 / dth/d0=p1/p0; dth=density at throat
12 dth1 = (1.23)*(1/(1+(((k-1)/2)*(Math1^2))))^(1/(k-1));
     //kg/(m^3); density at throat
13 Tth1=(288)*(1/(1+(((k-1)/2)*(Math1^2))));//K;
     temperature at throat
14 Vth1=Math1*(286.9*Tth1*k)^0.5; //m/sec
15 m1=dth1*A*Vth1; //kg/sec
16 disp("kg/sec",m1,"a) The mass flowrate through the
     duct=")
17 //for (b) pth=p2<pcritical, hence
18 Math2=1;
19 dth2=1.23*(1/(1+(((k-1)/2)*(Math2^2))))^(1/(k-1)); //
     kg/(m^3); density at throat
20 Tth2=(288)*(1/(1+(((k-1)/2)*(Math2^2))));//K;
     temperature at throat
21 Vth2=Math2*(286.9*Tth2*k)^0.5; //m/sec
22 m2=dth2*A*Vth2; //kg/sec
23 disp("kg/sec",m2,"b) The mass flowrate through the
     duct=")
```

Scilab code Exa 11.6 mass flowrate calculation

```
1 clc;
2 clear;
3 A=1*(10^{(-4)}); //m^2
4 p1=80; //kPa(abs)
5 p2=40; //kPa(abs)
6
7 p0=101; //kPa(abs)
8 k=1.4;
9 // for (a)
10 pratio1=p1/p0;
11 //for this value of p1/p0,
12 Math1=0.59;
13 Tratio1=0.94; //=Tth/T0
14 dratio1=0.85; //=dth/d0
15 Tth1=Tratio1*(288); //K
16 dth1=dratio1*(1.23); // kg/(m^3)
17 Vth1=Math1*(286.9*Tth1*k)^{0.5}; /m/sec
18 m1 = (dth1 * A * Vth1); //kg/sec
19 disp("kg/sec",m1,"a)The mass flowrate=")
20 // for (b)
21 Math2=1;
22 Tratio2=0.83; //=Tth/T0
23 dratio2=0.64; //=dth/d0
24 Tth2=Tratio2*(288); //K
25 dth2=dratio2*(1.23); // kg/(m^3)
26 Vth2=Math2*(286.9*Tth2*k)^0.5; //m/sec
27 m2=(dth2*A*Vth2); // kg/ sec
28 disp("kg/sec",m2,"b)The mass flowrate=")
```

Scilab code Exa 11.7 flow velocity determination

```
1 clc;
2 clear;
3 pratio=0.82; //ratio of static to stagnation pressure
4 T=68; //degree F
5 // for (a)
6 //for the value of pratio given Ma is calculated as
7 \text{ Ma1} = 0.54;
8 \text{ k1} = 1.4;
9 Tratio1=0.94; //T/T0
10 T1=Tratio1*(T+460); // degree R
11 V1=(Ma1*(53.3*T1*k1)^0.5)*(32.2^0.5); // \text{ft/sec}
12 // for (b)
13 \text{ k2=1.66};
14 Ma2 = ((((1/pratio)^((k2-1)/k2))-1)/((k2-1)/2))^0.5;
15 Tratio2=1/(1+(((k2-1)/2)*(Ma2^2)));//T/T0
16 T2=Tratio2*(T+460); // degree R
17 V2 = (Ma2*(386*T2*k2)^0.5)*(32.2^0.5); //ft/sec
18 disp("ft/sec", V1, "The flow velocity if fluid is air=
19 disp("ft/sec", V2, "The flow velocity if fluid is
      helium=")
```

Scilab code Exa 11.11 fanno flow

```
1 clc;
2 clear;
3 k=1.4;
4 T0=518.67; // degree R
5 T1=514.55; // degree R
6 p1=14.3; // psia
7 R=53.3; // (ft*lb)/(lbm* degree R)
8 cp=R*k/(k-1); // (ft*lb/(lbm* degree R))
9 Tratio=T1/T0;
10 Ma=(((1/Tratio)-1)/((k-1)/2))^0.5;
11 x=(R*T1*k*32.2)^0.5; // ft/sec; where x=(R*T1*k)^0.5
```

```
12 y=p1*144/(R*T1)*(Ma*x); //lbm/((ft^2)*sec); where y=d
13 // for p=7 psia
14 p=7; // psia
15 fn=poly([(-T0) 1 ((y*y/(2*cp*p*p*144*144/(R^2))))
     /32.2)],"T","c");
16 r=roots(fn);
17 T=r(1); //K
18 sdif = (cp*log(T/T1)) - (R*log(p/p1)); //(ft*lb)/(lbm*
      degree R)
19 disp("K",T,"The corrosponding value of temperature
      for Fanno for downstream pressure of 7psia=")
  disp("(ft*lb)/(lbm* degree R)",sdif,"The
     corrosponding value of entropy change for Fanno
      for downstream pressure of 7psia=")
21 count = 1;
22 for i=1.4:0.1:7
23
       root=roots(poly([(-T0) 1 ((y*y/(2*cp*i*i
          *144*144/(R^2)))/32.2)],"T","c"));
       temp(count)=root(1);
24
25
       s(count) = (cp*log(temp(count)/T1)) - (R*log(i/p1));
26
       count = count +1;
27 end
28 plot2d(s,temp)
29 xtitle("T vs s-s1", "s-s1, ((ft*lb)/(lbm* degree R))"
      "T, Degree R")
```

Scilab code Exa 11.12 choked fanno flow

```
1 clc;
2 clear;
3 T0=288; //K
4 p0=101; //kPa(abs)
```


Figure 11.2: fanno flow

```
5 1=2; //m
6 D=0.1; //m
7 f = 0.02;
8 k=1.4;
9 x=f*1/D;
10 Tratio=2/(k+1);//where Tratio is Tcritical/T0
11 Tcritical=Tratio*T0; //K = T2
12 Vcritical=(286.9*Tcritical*k)^0.5; //m/sec = V2
13 //from value of x, the following are found
14 \text{ Ma=0.63};
15 Trat=1.1; //where Trat=T1/Tcritical
16 Vrat=0.66; //where Vrat=V1/Vcritical
17 prat=1.7; //where prat=p1/pcritical
18 pratio=1.16; // where pratio=p0, 1/p0 critical
19 //from value of Ma, the following are found
20 Tfraction=0.93; // where Tfraction=T1/T0
21 pfraction=0.76; // where pfraction=p1/p0,1
22 dfraction=0.83; // where dfraction=d1/d0, 1
23 //hence,
24 V1=Vrat*Vcritical; //m/sec
25 d1=dfraction*(1.23); // kg/(m^3)
26 m=d1*\%pi*(D^2)*V1/4; //kg/sec
27 T1=Tfraction*T0; //K
28 p1=pfraction*p0; //kPa(abs)
```

```
29 T01=T0; //K and T01=T02
30 p01=p0; //kPa(abs)
31 p2=(1/prat)*(pfraction)*p01; //kpa(abs)
32 p02=(1/pratio)*p01; //kPa(abs)
33 disp("K", Tcritical, "Critical temperature=")
34 disp("m/sec", Vcritical, "Critical velocity=")
35 disp("m/sec", V1, "Velocity at inlet=")
36 disp("kg/sec",m,"Maximum mass flowrate=")
37 disp("K",T1," Temperature at inlet=")
38 disp("kPa(abs)",p1,"Pressure at inlet=")
39 disp("K", T01, "stagnation temperature at inlet and
      exit=")
40 disp("kPa(abs)",p01,"The stagnation pressure at
      inlet=")
41 disp("kPa(abs)",p2,"Pressure at exit=")
42 disp("kPa(abs)",p02,"The stagnation pressure at exit
     =")
```

Scilab code Exa 11.13 effect of duct length on choked fanno flow

```
1 clc;
2 clear;
3 T0=288; //K
4 p0=101; //kPa(abs)
5 l=2; //m
6 D=0.1; //m
7 f=0.02;
8 pd=45; //kPa(abs)
9 f=0.02;
10 k=1.4;
11 lnew=(50/100)*l;
12 x=lnew*f/D;
13 //from this value of x, following are found
14 Ma=0.7;
15 prat=1.5; //where prat=p1/pcritical
```

```
//from this value of Ma, following are found
pratio=0.72;//where pratio=p1/p0
dratio=0.79;//where dratio=d1/d0,1

Vratio=0.73;//where Vratio=V1/Vcritical
//hence,
p2=(1/prat)*pratio*p0;//kPa(abs)
pcritical=p2;
//we find that pd<pcritical
d1=dratio*(1.23);//kg/(m^3)
Vcritical=(286.9*Tcritical*k)^0.5;//m/sec = V2
V1=Vratio*Vcritical;//m/sec
m=d1*%pi*(D^2)*V1/4;//kg/sec
disp("kg/sec",1.65,"is less than the flowrate for the longer tube =","kg/sec,",m,"The flowrate for the smaller tube=")</pre>
```

Scilab code Exa 11.14 unchoked fanno flow

```
1 clc;
2 clear;
3 \text{ T0=288; } / \text{K}
4 p0=101; //kPa(abs)
5 1=2; /m
6 D=0.1; //m
7 f = 0.02;
8 pd=45; //kPa(abs)
9 f = 0.02;
10 m=1.65; // kg / sec
11 lnew=1/2; //m
12
13 x=f*1/D;
14 //from this value of x, Ma at exit is found as
15 Ma = 0.7;
16 //and p2/pcritical is found as
17 pratio=1.5;
```

```
//and, from example 11.12,
prat=1.7;//where prat=p1/pcritical
pfraction=0.76;//where pfraction=p1/p0,1
//Hence,
p2=pratio*(1/prat)*pfraction*p0;//kPa(abs)
disp(Ma, "The Mach number at the exit=")
disp("kPa(abs)",p2, "The back pressure required=")
```

Scilab code Exa 11.15 rayleigh flow

```
1 clc;
2 clear;
3 k=1.4;
4 T0=518.67; // degree R
5 T1=514.55; //degree R
6 p1=14.3; //psia
8 R=53.3; //(ft*lb)/(lbm*degree R)
9 cp=R*k/(k-1); // (ft*lb/(lbm* degree R))
10 Tratio=T1/T0;
11 Ma = (((1/Tratio)-1)/((k-1)/2))^0.5;
12 x = (R*T1*k*32.2) \, 0.5; //ft/sec; where <math>x = (R*T1*k) \, 0.5
13 y=p1*144/(R*T1)*(Ma*x); //lbm/((ft^2)*sec); where y=d
      *V
14 z=R*T1/(p1*144); //(ft^3)/lbm
15 c=(p1)+(y*y*z/(32.2*144));//psia; =constant
16 //when downstream pressure p=13.5 psia
17 p=13.5; // psia
18 a=(y^2)*R/(p*144*32.2*144); //(lb/(in^2))/degree R
19 fn=poly([(p-c) a],"T","c");
20 T=roots(fn);//degree R
21 sdif = (cp*log(T/T1)) - (R*log(p/p1)); //ft*lb/(lbm*
      degree R)
22 disp("degree R",T,"The corrosponding value of
      temperature for the downstream pressure of 13.5
```


Figure 11.3: rayleigh flow

```
psia=")
23 disp("ft*lb/(lbm*degree R)", sdif, "The corrosponding
      value of change in entropy for the downstream
      pressure of 13.5 psia=")
24 count = 1;
25 for i=1:0.1:13.5
26
       temp(count) = roots(poly([(i-c) ((y^2)*R/(i-c))])
          *144*32.2*144))], "T", "c"));
       s(count) = (cp*log(temp(count)/T1)) - (R*log(i/p1));
27
28
       count = count + 1;
29 end
30 plot2d(s,temp,rect=[100,500,400,3000])
31 xtitle("T vs s-s1", "s-s1, ((ft*lb)/(lbm* degree R))"
      ,"T, Degree R")
```

Scilab code Exa 11.18 supersonic flow

```
1 clc;
2 clear;
```

```
3 p=60; //psia
4 T=1000; // degree R
5 \text{ px=12;} // \text{psia}
6 \text{ k=1.4};
7 R=53.3; // ft *lb / (lbm *degree R)
8 pratio=p/px;
9 //for this value of pratio, Max is calculated as
10 Max = 1.9;
11 //using this value of Max, Tx/T0, x is found as
12 Tratio = 0.59;
13 / T = T0, x = T0, y
14 Tx=Tratio*T;//degree R
15 cx = (R*Tx*k)^0.5; //ft/sec
16 Vx=1.87*cx*(32.2^0.5); //ft/sec
17 disp(Max, "The Mach number for the flow=")
18 disp("ft/sec", Vx, "The velocity of the flow=")
```

Scilab code Exa 11.19 converging diverging duct

```
1 clc;
2 clear;
3 \times 1 = 0.5; //m
4 \times 2 = 0.3; //m
5 Acritical=0.1; //\text{m}^2
6 //at x1, Max1 is found as
7 \text{ Max1=2.8};
8 //and px/p0, x is found as
9 pratio1=0.04;
10 //For this value of Max, py/px is found as
11 prat1=9;
12 pfraction1=prat1*pratio1; // where pfraction=py/p0, x =
       pIII/p0, x
13 //at x2, Max2 is found as
14 \text{ Max} 2 = 2.14;
15 //for this value of Max2, the following are found
```

```
16 prat2=5.2;
17 prat22=0.66; // where prat22=p0, y/p0, x
18 May = 0.56;
19 //for this valur of May, Ay/Acritical is found as
20 Aratio=1.24;
21 Arat = (Acritical + (x1^2))/(Acritical + (x2^2)); //where
      Aratio=A2/Ay
22 Afraction=Aratio*Arat;//where Afraction=A2/Acritical
23 A2=Acritical+(x1^2); //m^2
24 Acritical1=A2/Afraction;//where Acritical1 critical
      area for the isentropic flow downstream of the
25 //with the value of Afraction, the following are
      found
26 \text{ Ma} 2 = 0.26;
27 pfraction=0.95; // where pfraction=p2/p0, y
28 //hence,
29 pfrac=pfraction*prat22; // where pfrac=p2/p0, x
30 disp(pfraction1,"The ratio of back pressure to inlet
       stagnation pressure that will result in a normal
       shock at the exit of the duct=")
31 disp(pfrac,"The value of back pressure to inlet
      stagnation pressure required to position the
      shock at (x=0.3 \text{ m})=\text{"})
```

Chapter 12

Pumps and Turbines

Scilab code Exa 12.2 shaft power calculation

```
1  Q=1400; //gpm
2  N=1750; //rpm
3  b=2; //in
4  r1=1.9; //in
5  r2=7.0; //in
6  beta2=23; // degrees
7  alpha1=90; // degrees
```

Scilab code Exa 12.3 NPSH calculation

```
1  Q=0.5; //(ft^3)/sec
2  NPSHr=15; //ft
3  T=80; //degree F
4  patm=14.7; // psi
5  KL=20;
```

```
6 D=4; //in
```

Scilab code Exa 12.5 pump scaling laws

```
1 D1=8; //in

2 N1=1200; //rpm

3 D2=12; //in

4 N2=1000; //rpm

5 T=60; //degree F
```

Scilab code Exa 12.6 pelton wheel turbine

```
1 z0=200; // ft
2 l=1000; // ft
3 f=0.02;
4 D=8; // in.
5 B=150; // degree
6 R=1.5; // ft
7 z1=0; // ft
```

Scilab code Exa 12.8 dental drill characteristics

```
1 ri=0.133; //in.
2 ro=0.168; //in.
3 N=300000; //rpm
```