2021 캡스톤 3조 K-분리배출

허태정(20181708) 박정섭(20181616) 동설아(20171618) 허민호(20143115)

목차

- 1. 프로젝트 소개
- 2. 애플리케이션 소개
- 3. 백엔드 & loT 소개
- 4. PET 분류기 소개
- 5. Q&A
- 6. 멘토링 내용과 앞으로의 계획
- 7. 보조 자료

프로젝트 소개

플라스틱 컵 선순환 생태계 조성

- 1. 산학협력 기업 소개
- 2. 선순환 생태계 구성요소
- 3. 선순환생태계구조
- 4. 산학협력 요구사항
- 5. 산학협력까지의 과정

산학협력 기업 소개

Inobus사의 플라스틱 컵 수거함 "쓰샘"

- 쓰샘은 한 자리에서 세척과 분리배출을 동시에할 수 있는 일회용 컵 수거기이다.
- Inobus의 하드웨어 기술과 우리 팀의 소프트웨어 기술을 결합해서 플라스틱 컵 선순환 생태계 조성이 최종 목표이다.

플라스틱 컵 선순환 생태계 구성요소

플라스틱 컵 선순환 생태계 (기존)

1. '쓰샘'을 통한 일회용 컵 수거

- 2. 세척 및 대용량 적재
- 3. 공장으로 수거
- 4. 원료화
- 5. 제품화

플라스틱 컵 선순환 생태계 (개선안)

애플리케이션

쓰샘을 더 편리하게 이용할 수 있도록 도움

• 포인트 적립을 통해 쓰샘을 사용할 동기부여

PET 분류기

- 수작업으로 해야하는 작업을 자동화
- 재활용 가능하도록 PET, PP,
 PLA 재질별로 분류

산학협력 요구사항 (1)

애플리케이션 도입

애플리케이션으로 사용자 참여 유도

- 위치찾기 기능
- 포인트 적립 기능
- 랭킹 조회 기능

PET 분류기 도입

수거된 컵을 재질별로 자동으로 분류

- PET, PP, PLA 재질의 플라스틱 컵 분류
- 카메라와 라즈베리 파이를 이용한

자동분류기

산학협력 요구사항(2)

백엔드 & loT

새로운 버전의 쓰샘에 들어갈 기능

- 포인트 적립 시스템 추가
- 랭킹 현황을 보여줄 디스플레이 UI 개발

기존에 사용하던 시스템 개선

• 기기를 한 대 추가할 때마다 코드 수정이 필요함 (확장성 개선)

산학협력까지의 과정

"플라스틱 컵 선순환 생태계 조성"

- 분리배출이라는 주제를 통해
 이노버스와 협업을 하게 됨
- 아이디어 변경하여 산학협력 과제로 변경

애플리케이션 소개

- 1. 애플리케이션 기능
- 2. 프로토타입
- 3. 시연영상
- 4. 일정

애플리케이션 기능

- 쓰샘 소개 페이지
- 쓰샘 기기 위치 조회
- 기관별 포인트 랭킹 조회
- 포인트 적립용 QR 코드 생성
- 로그인, 회원가입 기능

프로토타입(1)

쓰샘 소개 페이지

기기 위치

기관별 포인트 랭킹

프로토타입(2)

QR 코드 생성 및 적립 방법

1) 기기를 이용하여 분리 배출

2) 기기의 스캐너에 QR 코드 스캔

3) 포인트 적립

시연 영상

애플리케이션 일정

이슈/날짜	2/14	3/07	3/28		4/11	5/02	5/23
디자인 결정							
움직임이 가능한 프로토타입 구현							
구글 지도를 이용한 기기 위치 표현							
기관별 순위 표시							
어플 소개 디자인 구현							
API 연결(기기 위치, 순위, QR코드)							
회원가입 구현							
테스트 및 버그 수정							

백엔드 & IoT 소개

- 1. 백엔드 & loT 기능
- 2. IoT 기기 사용 시나리오
- 3. 애플리케이션 사용 시나리오
- 4. 일정

백엔드 & IoT 기능

- 기존 서버의 확장성 문제 해결을 위한 서버 재설계 및 구현
- 포인트 시스템을 위한 백엔드 구현
- 쓰샘 기기의 바코드 리더기를 통한 포인트 적립 기능 구현
- 랭킹 현황을 보여줄 쓰샘 기기 디스플레이의 UI 소프트웨어 개발

IoT 기기 사용 시나리오

적재량 데이터 수집

컵 수거함의 물 적재량, 컵
 적재량을 10분 주기로 수집해
 관리자에게 알림 제공

IoT 기기 사용 시나리오

포인트 적립 순서

- 1. 포인트 적립을 위해 일회용 QR코드 발급
- 바코드 리더기에 스캔시
 포인트 적립
- 3. 같은 소속의 컵 수거함의 포인트 데이터 갱신

애플리케이션 사용 시나리오

API 서버 역할

백엔드 & IoT 일정 현재 일자

이슈/날짜	2/14	3/07	3/28		4/11	5/02	5/23
백엔드 기술 스택 결정							
API, DB 설계							
IoT 통신 설계							
API 구현, IoT Client 구현							
디스플레이 SW 구현							
회원가입 기능 추가							
바코드 리더기, 센서 연동							
통합 테스트 진행							

PET 분류기 소개

- 1. PET 분류모델 소개
- 2. 데이터 수집
- 3. 데이터 검수, 전처리
- 4. 실험결과
- 5. 일정

PET 분류 모델 소개

- PET vs PP, PLA 재질 분류 문제
- 들어온 컵 바닥면을 찍어 각 컨테이너에 적재

PET 분류 모델 개발 프로세스

- 1. 데이터 수집
- 2. 데이터 검수, 전처리
- 3. 학습, 결과 비교

데이터수집

- 분류기가 실행되는 환경에 맞춰 데이터 수집
- 다양한 컵들의 상태를 고려
 - 내용물의 유무
 - 구겨짐이나 젖음
 - 배경, 조명 상태
 - 각도, 회전

데이터 검수, 전처리

- 조건에 잘 맞는 데이터인지 검수
- 가운데 크롭, 이미지 리사이즈, 데이터 파이프라인 자동화 구현
- 사진 대비, 대조, 노이즈 등 Augmentation 추가 예정

첫번째 실험

실험 데이터 (이상적인 환경의 데이터)

- 바닥이 깨끗한 컵, 물기가 없는 컵 이미지
- 밝은 배경에서 글씨가 잘 보이는 이미지

제외한 이미지

- 컵이 아닌 일반쓰레기 이미지
- 구김, 찌그러짐이 있는 컵 이미지

실험 결과

실험 데이터 1

	PET	PP, PLA
Train	756	197
Test	60	40

결과

정확도: 100%

해석: Testset 사이즈 작아, 정확도 100%결과를 얻은것 같다.

실험 데이터 2

	PET	PP, PLA
Train	756	197
Test	160	80

결과

정확도: 98%

해석: 이상적인 데이터에서 실험해서 결과가 좋게 나온 것 같다.

앞으로 해야할 일: 현실에서 마주칠 다양한 데이터에서 실험, 하드웨어에서 실험.

풀어가야 할 문제

- 데이터 편향, 오버피팅, 적은 데이터 수 문제
 - 데이터 Augmentation 방법 추가
 - 머신러닝 기법 적용
- 현실에서 마주치는 다양한 상태의 컵에 대한 실험
 - 물기가 있는컵, 찌그러진 컵, 노이즈 추가
- 하드웨어에서의 성능 실험
 - real-world 에서의 성능을 평가해야 한다.

PET 분류기 일정

이슈/날짜	2/14	3/07	3/28		4/11	5/02	5/23
데이터 v1 모으기 (300장)							
딥러닝 v1 모델 실험							
데이터 파이프라인툴구현							
데이터 v2, v3 추가, 실험							
분류기 하드웨어 프로토 타입 완성							
분류기 하드웨어 데이터 모으기				Г			
데이터 Augmentation							
소프트웨어 설치, 테스트							

팀원	맡은 역할
허태정(팀장)	IoT, Backend
박정섭	IoT, Backend
동설아	Mobile Application
허민호	PET 분류기

Q & A

감사합니다.

멘토링 내용과 앞으로의 계획

- 프로젝트 목표, 일정, 성공 척도 (최정서)
- 2. 데이터 전처리, 딥러닝 개발 프로세스 (임중곤)
- 3. 앞으로의 계획

성공적인 프로젝트 - 최정서

프로젝트 일정산출, 성공 척도

- 성공적인 프로젝트를 진행하기위해 필요한 것들에 대한 조언
 - 성공의 척도를 미리 정해둬야 한다.
 - 기업과 팀원들간의 협의가 중요하다.
 - 기업, 팀원들 모두 같은 목표를 잡고 나아가는 것이 중요하다.
 - Client의 요구사항이 바뀌었을 때 어떤 태도를 취할지 미리 정해둬야 한다.
- 해결하고자 하는 문제를 명확히 해야한다고 조언
 - 사람들이 어떤 문제를 겪고 있는가?
 - 그 문제를 해결하기 위한 가설은 무엇인가?
 - 그 가설을 증명하기 위한 해결책은 어떨 때 성공하는가? (성공의 척도)
- 일정관리에 대한 조언
 - 앞으로 해야하는 일들을 작은 단위로 자른다.
 - 필요한 일들을 쭉 적어두고 순서를 정하여 해결한다.

데이터 전처리, 딥러닝 개발 - 임중곤

- 하드웨어 스펙 결정 도움
 - 비용 문제
 - 최소 허용 성능
- 학습 데이터 요건이 있는지 조언을 구함
 - 실제 환경과 유사한 환경에서 데이터 수집하면 좋음
 - 하지만 완전히 일치할 필요는 없음
- 딥러닝 vs 머신러닝 어떤게 좋을지
 - 딥러닝 고집할 필요 없음.
 - 각 모델의 성능 비교하여 선택
- 데이터 확장 및 전처리과정 도움
 - 포토샵 수정 보다는 사진 대비, 대조, 노이즈 등 Augmentation
 - o Train 데이터와 Test 데이터의 비율이 1:1일 필요는 없음

앞으로의 멘토링 계획

- 애플리케이션 파트의 디자인, 유저 경험 도움을 받을 예정
- PET 분류기 개발된 하드웨어 리뷰, 개선점 요청
- 서버 파트 경험이 많으신 분에게 아키텍쳐 관련 리뷰를 받을 예정
- 산학과제이기에 보안 관련 도움을 받을 예정

보조자료

산학협력 이전 아이디어

사용 기술

데이터셋 파이프라인 구현

필요성

- 자주 바뀌는 데이터셋을 쉽게 정의해야 한다.
- 학습할때 ready-to-use로 불러올수 있어야 한다.

데이터 셋 파이프라인

- Train/Test셋 코드레벨로 정의
- 라이브러리를 불러오듯 데이터셋 이용

풀어가야 할 문제

데이터 편향 문제

- 현실에서 PET 데이터가 95%, PP & PLA컵 5%
- Testset을 60 : 40 or 70 : 30 으로 맞춰줌
- PP 글씨 합성?

다양한 환경의 데이터

GIOE + Add a view		Q Search ∠ ^N ··· Ne	ew ×
Aa 그룹	≔ Tags	≡ 갯수	≣ Desc
inobus v1	PET	1164 → 103	스마트폰 카메라, 밝은 조명, 물x, 중복된 이미지 제거로 이미지 숫 자 줄임
inbous v1	Plastic	438 → 35	
inobus v1	PP	360 → 20	
inobus v1 cropped	PET	103	
inobus v1 cropped	Plastic	35	
inobus v1 cropped	PP	20	
inobus v2	PET	260	스마트폰 카메라, 밝은 조명, 물x
inobus v2	PP	20	
inobus v2 cropped	PET	260	
inobus v2 cropped	PP	20	
inobus v3	PET	50	스마트폰 카메라, 밝은 조명, 물 x
inobus v3	PP	20	
inobus v3 cropped	PET	50	
inobus v3 cropped	PP	20	
Kookmin v1	PET	71	스마트폰 카메라, 밝은 조명, 물x
Kookmin v1	PP	80	
Kookmin v1 cropped	PET	19	
Kookmin v1 cropped	PP	7	
Kookmin v2	PET		

실험결과

Train: 756장 / 197장 Test: 60장 / 40장

정확도

정확도: 100%

해석: Testset 사이즈가 너무 적다.

Imagenet에서 미리 학습한 모델

실험 결과

Train: 756장 / 197장 Test: 160장 / 80장

위 Trainingset 동일 테스트셋 사이즈를 늘림 정확도: 98%

해석: 이상적인 데이터.

현실에서의 데이터 실험, 하드웨어에서 실험해봐야 한다.

