

DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustc.edu.cn

The Principle of Mathematical Induction

- **Principle.** (the Weak Principle of Mathematical Induction)
 - (a) If the statement P(b) is true
 - (b) the statement $P(n-1) \rightarrow P(n)$ is true for all n > b, then P(n) is true for all integers $n \geq b$
 - (a) Basic Step Inductive Hypothesis
 - (b) Inductive Step Inductive Conclusion

We may have another form of direct proof as follows.

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)
 - \diamond Next suppose that we have a proof that, $\forall k > 0$,

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k-1) \rightarrow P(k)$$

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)
 - \diamond Next suppose that we have a proof that, $\forall k > 0$,

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k-1) \rightarrow P(k)$$

 \diamond Then, P(0) implies P(1)

$$P(0) \wedge P(1)$$
 implies $P(2)$

$$P(0) \wedge P(1) \wedge P(2)$$
 implies $P(3) \dots$

- We may have another form of direct proof as follows.
 - \diamond First suppose that we have proof of P(0)
 - \diamond Next suppose that we have a proof that, $\forall k > 0$,

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k-1) \rightarrow P(k)$$

 \diamond Then, P(0) implies P(1)

$$P(0) \wedge P(1)$$
 implies $P(2)$

$$P(0) \wedge P(1) \wedge P(2)$$
 implies $P(3) \dots$

 \diamond Iterating gives us a proof of P(n) for all n

Strong Induction

- Principle (The Strong Principle of Mathematical Induction)
 - (a) If the statement P(b) is true
 - (b) for all n > b, the statement

$$P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$$
 is true.

then P(n) is true for all integers $n \geq b$.

Prove that every positive integer is a power of a prime or the product of powers of primes.

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - \diamond Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - \diamond Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.
 - ⋄ Then, if n is not a prime power, it is a product of two smaller numbers, each of which is, by the inductive hypothesis, a power a prime power or a product of powers of primes.

- Prove that every positive integer is a power of a prime or the product of powers of primes.
 - \diamond Base Step: 1 is a power of a prime number, $1=2^0$
 - \diamond Inductive Hypothesis: Suppose that every number less than n is a power of a prime or a product of powers of primes.
 - ⋄ Then, if n is not a prime power, it is a product of two smaller numbers, each of which is, by the inductive hypothesis, a power a prime power or a product of powers of primes.
 - ♦ Thus, by the strong principle of mathematical induction, every positive integer is a power of a prime or a product of powers of primes.

Mathematical Induction

In practice, we do not usually explicitly distinguish between the weak and strong forms.

Mathematical Induction

In practice, we do not usually explicitly distinguish between the weak and strong forms.

In reality, they are equivalent to each other in that the weak form is a special case of the strong form, and the strong form can be derived from the weak form.

■ A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*) \qquad P(n-1) \to P(n)$$

or

$$(**) \qquad P(b) \land P(b+1) \land \cdots \land P(n-1) \rightarrow P(n)$$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

3. We conclude on the basis of the principle of mathematical induction that P(n) is true for all $n \ge b$.

Recursion

Recursive computer programs or algorithms often lead to inductive analysis.

Recursion

Recursive computer programs or algorithms often lead to inductive analysis.

A classical example of recursion is the Towers of Hanoi Problem.

- 3 pegs; n disks of different sizes
- A legal move takes a disk from one peg and moves it onto another peg so that it is not on top of a smaller disk
- Problem: Find a (efficient) way to move all of the disks from one peg to another

Problem: Start with *n* disks on leftmost peg

■ **Problem:** Start with *n* disks on leftmost peg using only legal moves

Problem: Start with n disks on leftmost peg using only legal moves move all disks to rightmost peg.

Problem: Start with *n* disks on leftmost peg

using only legal moves

move all disks to rightmost peg.

Given
$$i, j \in \{1, 2, 3\}$$
, let $\overline{\{i, j\}} = \{1, 2, 3\} - \{i\} - \{j\}$, i.e., $\overline{\{1, 2\}} = \{3\}$, $\overline{\{1, 3\}} = \{2\}$, $\overline{\{2, 3\}} = \{1\}$.

General solution

General solution

Recursion Base:

If n = 1, moving one disk from i to j is easy. Just move it.

General solution

Recursion Base:

If n = 1, moving one disk from i to j is easy. Just move it.

To move n > 1 disks from i to j


```
To move n > 1 disks from i to j
```

```
move top n-1 disks from i to \overline{\{i,j\}}
```



```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


To prove Correctness of solution, we are implicitly using induction

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


- To prove Correctness of solution, we are implicitly using induction
- p(n) is statement that algorithm is correct for n

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


- To prove Correctness of solution, we are implicitly using induction
- p(n) is statement that algorithm is correct for n

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```

• p(1) is statement that algorithm works for n=1 disks, which is obviously true

- To prove Correctness of solution, we are implicitly using induction
- p(n) is statement that algorithm is correct for n
- To move n disks from i to ji) move top n-1 disks from i to $\overline{\{i,j\}}$ ii) move largest disk from i to jiii) move top n-1 disks from $\overline{\{i,j\}}$ to j
- p(1) is statement that algorithm works for n=1 disks, which is obviously true
- $p(n-1) \rightarrow p(n)$ is *recursion* statement that if our algorithm works for n-1 disks, then we can build a correct solution for n disks

Running time

M(n) is number of disk moves needed for n disks

```
To move n disks from i to j
i) move top n-1 disks from i to \overline{\{i,j\}}
ii) move largest disk from i to j
iii) move top n-1 disks from \overline{\{i,j\}} to j
```


Running time

M(n) is number of disk moves needed for n disks

To move n disks from i to ji) move top n-1 disks from i to $\overline{\{i,j\}}$ ii) move largest disk from i to jiii) move top n-1 disks from $\overline{\{i,j\}}$ to j

$$M(1) = 1$$

if
$$n > 1$$
, then $M(n) = 2M(n-1) + 1$

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We guess that $M(n) = 2^n - 1$

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We *guess* that $M(n) = 2^n - 1$ We'll prove this by induction

- We saw that M(1) = 1 and that
- M(n) = 2M(n-1) + 1 for n > 1

Iterating the recurrence gives

$$M(1) = 1$$
, $M(2) = 3$, $M(3) = 7$, $M(4) = 15$, $M(5) = 31$, ...

• We guess that $M(n) = 2^n - 1$

We'll prove this by induction

Later, we'll also see how to solve without guessing

Formally, given

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

We show that $M(n) = 2^n - 1$.

Formally, given

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

We show that $M(n) = 2^n - 1$.

Proof. (by induction)

The base case n=1 is true, since $2^1-1=1$.

For the inductive step, assume that $M(n-1) = 2^{n-1} - 1$ for n > 1.

Formally, given

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

We show that $M(n) = 2^n - 1$.

Proof. (by induction)

The base case n=1 is true, since $2^1-1=1$.

For the inductive step, assume that $M(n-1) = 2^{n-1} - 1$ for n > 1.

Then
$$M(n) = 2M(n-1) + 1 = 2(2^{n-1}-1) + 1 = 2^n - 1$$

Note that we used induction twice.

- Note that we used induction twice.
- The first time was to derive correctness of algorithm and the recurrence

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

- Note that we used induction twice.
- The first time was to derive correctness of algorithm and the recurrence

$$M(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2M(n-1) + 1 & \text{otherwise} \end{cases}$$

The second time was to derive the closed form solution $M(n) = 2^n - 1$ of the recurrence.

A recurrence equation or recurrence for a function defined on the set of integers $\geq b$ is one that tells us how to compute the *n*th value from some or all the first n-1 values.

A recurrence equation or recurrence for a function defined on the set of integers $\geq b$ is one that tells us how to compute the *n*th value from some or all the first n-1 values.

To completely specify a function on the basis of a recurrence, we have to give the *initial condition(s)* (a.k.a. the *base case(s)*) for the recurrence.

A recurrence equation or recurrence for a function defined on the set of integers $\geq b$ is one that tells us how to compute the *n*th value from some or all the first n-1values.

To completely specify a function on the basis of a recurrence, we have to give the initial condition(s) (a.k.a. the base case(s)) for the recurrence.

$$M(n) = \left\{ egin{array}{ll} 1 & \mbox{if } n=1 \ 2M(n-1)+1 & \mbox{otherwise} \end{array}
ight.$$
 Towers of Hanoi

Fibonacci Sequence

$$F(n) = \begin{cases} 1 & \text{if } n = 0, 1 \\ F(n-1) + F(n-2) & \text{otherwise} \end{cases}$$

Example 2: Let S(n) be the number of subsets of a set of size n. What is the formula for S(n)?

The empty set, of size n = 0 has only one subset (itself), so S(0) = 1.

It is not difficult to see that

$$S(1) = 2$$
, $S(2) = 4$, $S(3) = 8$

Example 2: Let S(n) be the number of subsets of a set of size n. What is the formula for S(n)?

The empty set, of size n = 0 has only one subset (itself), so S(0) = 1.

It is not difficult to see that

$$S(1) = 2$$
, $S(2) = 4$, $S(3) = 8$

We "guess" that $S(n) = 2^n$. But, in order to prove formula, we'll need to think recursively.

• Consider the eight subsets of $\{1, 2, 3\}$:

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{1,2\}$, $\{3\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$

• Consider the eight subsets of $\{1, 2, 3\}$:

• Consider the eight subsets of $\{1, 2, 3\}$:

First four subsets are exactly the subsets of $\{1,2\}$, while second four are the subsets of $\{1,2\}$ with 3 added into each.

• Consider the eight subsets of $\{1, 2, 3\}$:

First four subsets are exactly the subsets of $\{1,2\}$, while second four are the subsets of $\{1,2\}$ with 3 added into each.

So, we get a subset of $\{1, 2, 3\}$ either by taking a subset of $\{1, 2\}$ or by adjoining 3 to a subset of $\{1, 2\}$.

• Consider the eight subsets of $\{1, 2, 3\}$:

First four subsets are exactly the subsets of $\{1,2\}$, while second four are the subsets of $\{1,2\}$ with 3 added into each.

So, we get a subset of $\{1, 2, 3\}$ either by taking a subset of $\{1, 2\}$ or by adjoining 3 to a subset of $\{1, 2\}$.

This suggests that the recurrence for the number of subsets of an n-element set $\{1, 2, ..., n\}$ is

$$S(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2S(n-1) & \text{if } n \ge 1 \end{cases}$$

Proof. of correctness of this recurrence

Proof. of correctness of this recurrence

The subsets of $\{1, 2, ..., n\}$ can be partitioned according to whether or not they contain element n.

Proof. of correctness of this recurrence

The subsets of $\{1, 2, ..., n\}$ can be partitioned according to whether or not they contain element n.

Each subset S containing n can be constructed in a unique fashion by adding n to the subset $S - \{n\}$ not containing n.

Each subset S not containing n can be constructed by removing n from the unique set $S \cup \{n\}$ containing n.

Recurrences

Proof. of correctness of this recurrence

The subsets of $\{1, 2, ..., n\}$ can be partitioned according to whether or not they contain element n.

Each subset S containing n can be constructed in a unique fashion by adding n to the subset $S - \{n\}$ not containing n.

Each subset S not containing n can be constructed by removing n from the unique set $S \cup \{n\}$ containing n.

So, the number of subsets containing n is exactly the same as the number of subsets not containing n.

Recurrences

Proof. of correctness of this recurrence

The subsets of $\{1, 2, ..., n\}$ can be partitioned according to whether or not they contain element n.

Each subset S containing n can be constructed in a unique fashion by adding n to the subset $S - \{n\}$ not containing n.

Each subset S not containing n can be constructed by removing n from the unique set $S \cup \{n\}$ containing n.

So, the number of subsets containing n is exactly the same as the number of subsets not containing n.

Thus, if n > 1, then S(n) = 2S(n-1).

Recurrences

Proof. of correctness of this recurrence

The subsets of $\{1, 2, ..., n\}$ can be partitioned according to whether or not they contain element n.

Each subset S containing n can be constructed in a unique fashion by adding n to the subset $S - \{n\}$ not containing n.

Each subset S not containing n can be constructed by removing n from the unique set $S \cup \{n\}$ containing n.

So, the number of subsets containing n is exactly the same as the number of subsets not containing n.

Thus, if n > 1, then S(n) = 2S(n-1).

Proof by induction is easy.

Let T(n) = rT(n-1) + a, where r and a are constants.

Let T(n) = rT(n-1) + a, where r and a are constants.

Find a recurrence that expresses

```
T(n) in terms of T(n-2)

T(n) in terms of T(n-3)

T(n) in terms of T(n-4)
```


Let T(n) = rT(n-1) + a, where r and a are constants.

Find a recurrence that expresses

```
T(n) in terms of T(n-2)

T(n) in terms of T(n-3)

T(n) in terms of T(n-4)
```

Can we generalize this to find a closed form solution?

Note that T(n) = rT(n-1) + a implies that $\forall i < n, \ T(n-i) = rT((n-i) - 1)) + a$

Note that T(n) = rT(n-1) + a implies that $\forall i < n, \ T(n-i) = rT((n-i) - 1)) + a$ Then, we have

$$T(n) = rT(n-1) + a$$

$$= r(rT(n-2) + a) + a$$

$$= r^2T(n-2) + ra + a$$

$$= r^2(rT(n-3) + a) + ra + a$$

$$= r^3T(n-3) + r^2a + ra + a$$

$$= r^3(rT(n-4) + a) + r^2a + ra + a$$

$$= r^4T(n-4) + r^3a + r^2a + ra + a.$$

Note that T(n) = rT(n-1) + a implies that $\forall i < n, \ T(n-i) = rT((n-i)-1)) + a$ Then, we have

$$T(n) = rT(n-1) + a$$

$$= r(rT(n-2) + a) + a$$

$$= r^2T(n-2) + ra + a$$

$$= r^2(rT(n-3) + a) + ra + a$$

$$= r^3T(n-3) + r^2a + ra + a$$

$$= r^3(rT(n-4) + a) + r^2a + ra + a$$

$$= r^4T(n-4) + r^3a + r^2a + ra + a.$$

Guess
$$T(n) = r^n T(0) + a \sum_{i=0}^{n-1} r^i$$

The method we used to guess the solution is called *iterating* the recurrence, because we repeatedly (iteratively) use the recurrence.

The method we used to guess the solution is called *iterating* the recurrence, because we repeatedly (iteratively) use the recurrence.

Another approach is to iterate from the "bottom-up" instead of "top-down".

The method we used to guess the solution is called iterating the recurrence, because we repeatedly (iteratively) use the recurrence.

Another approach is to iterate from the "bottom-up" instead of "top-down".

$$T(0) = b$$

 $T(1) = rT(0) + a = rb + a$
 $T(2) = rT(1) + a = r(rb + a) + a = r^{2}b + ra + a$
 $T(3) = rT(2) + a = r^{3}b + r^{2}a + ra + a$

The method we used to guess the solution is called iterating the recurrence, because we repeatedly (iteratively) use the recurrence.

Another approach is to iterate from the "bottom-up" instead of "top-down".

$$T(0) = b$$

 $T(1) = rT(0) + a = rb + a$
 $T(2) = rT(1) + a = r(rb + a) + a = r^2b + ra + a$
 $T(3) = rT(2) + a = r^3b + r^2a + ra + a$

This would lead to the same guess

$$T(n) = r^n b + a \sum_{i=0}^{n-1} r^i$$
.

Theorem If T(n) = rT(n-1) + a, T(0) = b, and $r \neq 1$, then

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

for all nonnegative integers *n*.

Theorem If T(n) = rT(n-1) + a, T(0) = b, and $r \neq 1$, then

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

for all nonnegative integers n.

Proof by induction

The base case:

$$T(0) = r^0b + a\frac{1-r^0}{1-r} = b.$$

So the formula is true when n=0.

Now assume that n > 0 and

$$T(n-1) = r^{n-1}b + a\frac{1-r^{n-1}}{1-r}.$$

Proof by induction

$$T(n) = rT(n-1) + a$$

$$= r \left(r^{n-1}b + a\frac{1-r^{n-1}}{1-r}\right) + a$$

$$= r^nb + \frac{ar - ar^n}{1-r} + a$$

$$= r^nb + \frac{ar - ar^n + a - ar}{1-r}$$

$$= r^nb + a\frac{1-r^n}{1-r}.$$

■ Theorem If T(n) = rT(n-1) + a, T(0) = b, and $r \neq 1$, then

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

for all nonnegative integers n.

■ **Theorem** If T(n) = rT(n-1) + a, T(0) = b, and $r \neq 1$, then

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

for all nonnegative integers n.

Example:

$$T(n) = 3T(n-1) + 2$$
 with $T(0) = 5$

■ **Theorem** If T(n) = rT(n-1) + a, T(0) = b, and $r \neq 1$, then

$$T(n) = r^n b + a \frac{1 - r^n}{1 - r}$$

for all nonnegative integers *n*.

Example:

$$T(n) = 3T(n-1) + 2$$
 with $T(0) = 5$

Plugging r = 3, a = 2, b = 5 in the formula, gives

$$T(n) = 3^n \cdot 5 + 2\frac{1-3^n}{1-3} = 3^n \cdot 6 - 1$$

A recurrence of the form T(n) = f(n)T(n-1) + g(n) is called a *first-order linear recurrence*.

- A recurrence of the form T(n) = f(n)T(n-1) + g(n) is called a *first-order linear recurrence*.
 - \diamond First Order because it only depends upon going back one step, i.e., T(n-1)

- A recurrence of the form T(n) = f(n)T(n-1) + g(n) is called a *first-order linear recurrence*.
 - \diamond First Order because it only depends upon going back one step, i.e., T(n-1)

```
If it depends upon T(n-2), it would be a second-order recurrence, e.g., T(n) = T(n-1) + 2T(n-2).
```


- A recurrence of the form T(n) = f(n)T(n-1) + g(n) is called a *first-order linear recurrence*.
 - \diamond First Order because it only depends upon going back one step, i.e., T(n-1)

```
If it depends upon T(n-2), it would be a second-order recurrence, e.g., T(n) = T(n-1) + 2T(n-2).
```

 \diamond Linear because T(n-1) only appears to the first power.

- A recurrence of the form T(n) = f(n)T(n-1) + g(n) is called a *first-order linear recurrence*.
 - \diamond First Order because it only depends upon going back one step, i.e., T(n-1)

If it depends upon T(n-2), it would be a second-order recurrence, e.g., T(n) = T(n-1) + 2T(n-2).

 \diamond Linear because T(n-1) only appears to the first power.

Something like $T(n) = (T(n-1))^2 + 3$ would be a non-linear first-order recurrence relation.

$$T(n) = f(n)T(n-1) + g(n)$$

T(n) = f(n)T(n-1) + g(n)

When f(n) is a constant, say r, the general solution is almost as easy as we derived before. Iterating the recurrence gives

$$T(n) = rT(n-1) + g(n)$$

$$= r(rT(n-2) + g(n-1)) + g(n)$$

$$= r^2T(n-2) + rg(n-1) + g(n)$$

$$= r^3T(n-3) + r^2g(n-2) + rg(n-1) + g(n)$$

$$\vdots$$

 $= r^n T(0) + \sum r^i g(n-i)$

■ **Theorem** For any positive constants *a* and *r*, and any function *g* defined on nonnegative integers, the solution to the first-order linear recurrence

$$T(n) = \begin{cases} rT(n-1) + g(n) & \text{if } n > 0 \\ a & \text{if } n = 0 \end{cases}$$

is

$$T(n) = r^n a + \sum_{i=1}^n r^{n-i} g(i).$$

■ **Theorem** For any positive constants *a* and *r*, and any function *g* defined on nonnegative integers, the solution to the first-order linear recurrence

$$T(n) = \begin{cases} rT(n-1) + g(n) & \text{if } n > 0 \\ a & \text{if } n = 0 \end{cases}$$

is

$$T(n) = r^n a + \sum_{i=1}^n r^{n-i} g(i).$$

Proof by induction

■ Solve $T(n) = 4T(n-1) + 2^n$ with T(0) = 6

• Solve $T(n) = 4T(n-1) + 2^n$ with T(0) = 6

$$T(n) = 6 \cdot 4^{n} + \sum_{i=1}^{n} 4^{n-i} \cdot 2^{i}$$

$$= 6 \cdot 4^{n} + 4^{n} \sum_{i=1}^{n} 4^{-i} \cdot 2^{i}$$

$$= 6 \cdot 4^{n} + 4^{n} \sum_{i=1}^{n} (\frac{1}{2})^{i}$$

$$= 6 \cdot 4^{n} + (1 - \frac{1}{2^{n}}) \cdot 4^{n}$$

$$= 7 \cdot 4^{n} - 2^{n}.$$

■ Solve T(n) = 3T(n-1) + n with T(0) = 10

• Solve T(n) = 3T(n-1) + n with T(0) = 10

$$T(n) = 10 \cdot 3^{n} + \sum_{i=1}^{n} 3^{n-i} \cdot i$$
$$= 10 \cdot 3^{n} + 3^{n} \sum_{i=1}^{n} i \cdot 3^{-i}$$

• Solve T(n) = 3T(n-1) + n with T(0) = 10

$$T(n) = 10 \cdot 3^{n} + \sum_{i=1}^{n} 3^{n-i} \cdot i$$
$$= 10 \cdot 3^{n} + 3^{n} \sum_{i=1}^{n} i \cdot 3^{-i}$$

Theorem. For any real number $x \neq 1$,

$$\sum_{i=1}^{n} ix^{i} = \frac{nx^{n+2} - (n+1)x^{n+1} + x}{(1-x)^{2}}.$$

• Solve T(n) = 3T(n-1) + n with T(0) = 10

$$T(n) = 10 \cdot 3^{n} + \sum_{i=1}^{n} 3^{n-i} \cdot i$$

$$= 10 \cdot 3^{n} + 3^{n} \sum_{i=1}^{n} i \cdot 3^{-i}$$

$$= 10 \cdot 3^{n} + 3^{n} \left(-\frac{3}{2}(n+1)3^{-(n+1)} - \frac{3}{4}3^{-(n+1)} + \frac{3}{4} \right)$$

$$= \frac{43}{4}3^{n} - \frac{n+1}{2} - \frac{1}{4}.$$

Next Lecture

recurrence, more counting ...

