

AZ-305

Designing Microsoft Azure Infrastructure Architect

AZ-305 Agenda

- Module 01 Design a governance solution
- Module 02 Design a compute solution
- Module 03 Design a non-relational data storage solution ←—
- Module 04 Design a data storage solution for relational data
- Module 05 Design a data integration solution
- Module 06 Design an application architecture solution
- Module 07 Design Authentication and Authorization Solutions
- Module 08 Design a solution to log and monitor Azure resources
- Module 09 Design a network infrastructure solution
- Module 10 Design a business continuity solution
- Module 11 Design a migration solution

Design a non-relational data storage solution

Learning Objectives

- Design for data storage
- Design for Azure storage accounts
- Design for data redundancy
- Design for Azure blob storage
- Design for Azure files
- Design an Azure disk solutions
- Design for storage security
- Case study
- Learning recap

AZ-305: Design Data Storage Solutions (20-25%)

Design data storage solutions for semistructured and unstructured data

- Recommend a solution for storing semi-structured data
- Recommend a solution for storing unstructured data
- Recommend a data storage solution to balance features, performance, and costs
- Recommend a data solution for protection and durability

Design for data storage

Classify your data storage

To design Azure storage, you first must determine what type of data you have.

- Structured data includes relational data and has a shared schema
- **Semi-structured** is less organized than structured data and isn't stored in a relational format
- Unstructured data is the least organized type of data

Design for Azure storage accounts

Determine the best storage account type

Select an account type based on supported services, usage cases, and SLA.

\	Account Type	Supported services	Usage
	Standard general- purpose v2 (default)	Blobs / Data Lake, Queues, Tables, Azure Files	Recommended for most scenarios
(Premium block blobs	Blob storage, Data Lake	High transactions rates, single digit storage latency, or large numbers of small transactions
	Premium file shares	Azure Files	Enterprise or high-performance scale applications - supports both SMB and NFS file shares
	Premium page blobs	Page blobs only	High performance and low latency storage scenarios

[©] Copyright Microsoft Corporation. All rights reserved.

Considerations for storage accounts

It is important to plan your storage accounts.

Location

For performance reasons locate the data close to users. One storage account for each location.

Replication

Data storage could have different replication strategies.

Compliance

Regulatory guidelines for keeping data in a specific location / Internal requirements for auditing or storing data.

Administrative overhead

Each storage account requires some time and attention from an administrator to create and maintain.

Cost

The settings for the account do influence the cost of services in the account.

Security - Data sensitivity

Data plane security and data storage security.

LRS
ZRS
GRS --West
GZRS
GZRS

Design for data redundancy

GZRS-RA

Select a storage replication strategy

What level of redundancy do you need?

Primary Region

Locally redundant storage

Zone redundant storage

Secondary Region

Geo- redundant storage

Geo-zone redundant storage

Read and write access to the secondary region are available if the primary region becomes unavailable

- A node within a data center becomes unavailable
- An entire data center (zonal or non-zonal) becomes unavailable
- A region-wide outage occurs in the primary region

Design for Azure blob storage

Determine the storage tier

Blob storage is an object store used for storing vast amounts of unstructured data.

Tier	Storage Duration	Usage cases
Premium	N/A	 High throughout and large numbers of I/O operations per second
Standard Hot	N/A	Active and frequent useData staged for processing
Standard Cool	> 30 days	Short-term backup
Standard Cold	> 90 days	Older media infrequently viewedLarge data sets
Standard Archive	> 180 days	 Long-term backup Original (raw) data Compliance or archival data

Use lifecycle rules to manage the storage tiers

[©] Copyright Microsoft Corporation. All rights reserved.

Consider immutable storage policies

Determine regulatory compliance, secure document retention, and legal hold policies.

- Apply immutable storage policies at the container level
- Use time-based retention policies for business-critical data
- Use legal-hold policies for sensitive information to ensure a tamper proof state
- Policies apply only to new content
- Audit logs are available

Design for Azure files

Compare Azure files to Azure blobs

The technology you choose depends on the use case, protocol, and performance.

Category	Azure Files	Azure Blob Storage	
Use cases	 Replace or supplement traditional on-premises file servers or NAS devices Access files shares from anywhere Lift and shift content to the cloud Replicate and cache with Azure File Sync Share stored application settings 	 Large scale analytical data Throughput sensitive high-performance computing Backup and archive Autonomous driving, media rendering, or genomic sequencing data 	
Available protocols	 SMB REST NFS 4.1 	 NFS 3.0 REST Data Lake Storage Gen2 	
Performance (Per volume)	Better IOPS	Better throughput Table	

[©] Copyright Microsoft Corporation. All rights reserved.

Select a file storage tier (activity)

Tailor your file tiers to the performance and price you need

File storage tiers

Premium

Transaction optimized

Hot

Cool

You have highly I/O-intensive workloads, with high throughput and low latency

You need storage optimized for general purpose file sharing scenarios such as team shares and Azure File Sync

You need cost-efficient storage optimized for online archive storage scenarios

You have transaction heavy workloads and applications that require file storage and backend storage

Design for NetApp files

The Azure NetApp Files service is enterprise-class, high-performance, metered file storage.

- Ease of migration
- Workload scale
- Flexibility
- Storage technology

Migration (Windows Apps & SQL Server | Linux OSS Apps & Databases | SAP on Azure)

Specialized workloads (HPC | VDI | AVS)

Azure Platform Services (AKS, Azure Batch, ...)

Azure NetApp Files (Enterprise NAS)

Design an Azure disk solution

Select an Azure disk solution

Azure disks are block-level storage volumes used with Azure virtual machines.

- Consider disk type, scenario, throughput, and IOPS
- Always use managed disks
- Optimize read and write access with disk caching
- Use Azure Disk Encryption
- Enhance performance with multiple disks
- Use the network acceleration feature
- Share disks across multiple VMs

Disk type	Usage cases
Ultra-disk SSD	IO-intensive workloads such as SAP HANA, top tier databases (SQL, Oracle), and other transaction-heavy workloads
Premium SSD v2	Production and performance-sensitive workloads that consistently require low latency and high IOPS and throughput
Premium SSD	Production and performance sensitive workloads
Standard SSD	Web servers, lightly used enterprise applications and dev/test
Standard HDD	Backup, non-critical, infrequent access

Design for storage security

Considerations for storage security

Use a layered security model to secure and control access.

- Grant limited access to Azure Storage resources
- Enable firewall rules to limit access to access IP addresses or subnets
- Use private endpoints and private links for clients
- Use virtual network service endpoints to provide direct connection
- Use customer managed encryption keys

[©] Copyright Microsoft Corporation. All rights reserved.

Case study and review

Case study – Non-relational data

Media files	Marketing literature	Corporate documents
 Product photos and feature videos JPEG and MP4 are most common formats 	 Customer stories, sales flyers, sizing charts, and eco-friendly manufacturing information PDF format is the most common 	 Internal documents – some sensitive Mostly Office formats like Word and Excel

Case study discussion

- Design a storage solution for Tailwind Traders.
 - What type of data is represented?
 - What factors will you consider in your design?
 - What type of storage accounts are needed?
 - Will you use blob access tiers?
 - Will you use immutable storage?
 - How will the content be securely accessed?
- Your solution should consider the media, marketing literature, and corporate documents.

Instructor Solution Diagram - Completed

Learning recap – non-relational data solutions

Check your knowledge questions and review

- Choose the right disk storage for your virtual machine workload
- Configure blob storage
- Optimize performance and costs by using Azure Disk Storage
- Caching and performance in Azure storage disks
- Introduction to securing data at rest on Azure

Optional hands-on exercises:

Create a storage account using the Azure portal

Instructor resources (hidden)

End of presentation

