Relations and Their Properties

Shirley Chu

De La Salle University

February 19, 2020

Introduction

Defintion

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

a R b denotes that $(a, b) \in R$

Relations on a Set

Definition

A relation on the set A is a relation from A to A.

Let $A = \{1, 2, 3, 4\}$

Example 1: $R = \{(a, b)|a \text{ divides } b\}$. What are the elements of R? a divides b means b is divisible by a.

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

Example 2: $S = \{(a, b) | a + b \le 3\}$

$$S = \{(1,1), (1,2), (2,1)\}$$

Relations on a Set

How many relations are there on a set with n elements?

- A relation on set *A* is formed by $A \times A$. $|A \times A| = n^2$
- A relation on set A is a subset of $A \times A$. $|P(A \times A)| = 2^{n^2}$

Thus, there are 2^{n^2} relations on a set with n elements.

Reflexive

Definition

A relation R on a set A is *reflexive*, if $(a, a) \in R$ for every element $a \in A$.

$$\forall a \ ((a,a) \in R)$$

Let $A = \{a, b, c\}$, and R are relations on set A.

Example 1:
$$R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (c, c)\}$$

reflexive

Example 2:
$$R = \{(a, a), (a, c), (b, b), (c, a)\}$$

not reflexive, since $(c, c) \notin R$

Symmetric

Definition

A relation R on a set A is *symmetric*, if $(b, a) \in R$ whenever $(a, b) \in R$.

$$\forall a \forall b ((b, a) \in R \rightarrow (a, b) \in R)$$

Let $A = \{a, b, c\}$, and R are relations on set A.

Example 1:
$$R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (c, c)\}$$

not symmetric, since
$$(a, c) \in R$$
, but $(c, a) \notin R$

Example 2:
$$R = \{(a, a), (a, c), (b, b), (c, a)\}$$

symmetric

Antisymmetric

Definition

A relation R on a set A is *antisymmetric*, when for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$ then a = b.

$$\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$$

Let $A = \{a, b, c\}$, and R are relations on set A.

Example 1:
$$R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (c, c)\}$$

not antisymmetric, since $(a, b) \in R$ and $(b, a) \in R$, but $a \neq b$.

Example 2:
$$R = \{(a, a), (a, c), (b, b), (b, c)\}$$

antisymmetric

Transitive

Definition

A relation R on a set A is *transitive*, if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$, for every element $a, b, c \in A$.

$$\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$$

Let $A = \{a, b, c\}$, and R are relations on set A.

Example 1:
$$R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, c)\}$$

transitive

Example 2:
$$R = \{(a, a), (a, c), (b, b), (b, c)\}$$

transitive

Properties of a Relation

Let R be a relation on set A, and $a, b, c \in A$

Reflexive
$$\forall a((a, a) \in R)$$

Check if all elements of the set A has a reflexive pair (a, a) in the relation.

Symmetric $\forall a \forall b ((b, a) \in R \rightarrow (a, b) \in R)$

Check the elements of R. For all pairs (a, b) in R, you must find (b, a) also in R.

Antisymmetric $\forall a \forall b (((a,b) \in R \land (b,a) \in R) \rightarrow (a=b))$

Check the elements of R. You must not find both (a, b)

and (b, a) pairs in R where $(a \neq b)$.

Transitive $\forall a \forall b \forall c (((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R)$ Check the elements of R. For every (a,b) and (b,c) pair you find in R, you must also find (a,c) in R.

Exercise 1 Let $A = \{1, 2, 3, 4\}$

Given the following relations on set A, which are reflexive, symmetric, antisymmetric and transitive?

- $R_1 = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
- $R_2 = \{(1,1),(1,2),(2,1)\}$
- $R_3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
- $R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
- $R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
- $R_6 = \{(3,4)\}$
- $R_7 = \{(1,1),(2,2),(3,3),(4,4)\}$
- $R_8 = \{(2,2),(4,4)\}$

Exercise 2

Determine whether the relations on the set of integers below are reflexive, symmetric, antisymmetric and/or transitive. For each property not satisfied, give a counter example.

1
$$R = \{(a, b) | a = b \lor a = -b\}$$

2
$$R = \{(a, b) | a < b\}$$

$$R = \{(a, b)|a \text{ divides } b\}$$

References

Rosen, 2007 Kenneth Rosen.

Discrete Mathematics and Its Applications 7th edition, 2007