1

Análise de Circuitos Lineares

Teresa Mendes de Almeida

TeresaMAlmeida@ist.utl.pt

DEEC Área Científica de Electrónica

Março de 2008

Matéria

- Simplificação de circuitos
 - Resistências em série e em paralelo
 - Fontes de tensão em série
 - Fontes de corrente em paralelo
 - Simplificação de circuitos
- Circuito Linear
 - Linearidade
 - Homogeneidade
 - Aditividade
 - Aplicação na simplificação de circuitos
- Teorema da Sobreposição
 - Aplicação na análise e simplificação de circuitos

- Circuitos equivalentes
 - Thévenin
 - Norton
- Teoremas de Thévenin e de Norton
- Equivalentes de circuitos
 - sem geradores
 - com geradores independentes
 - com geradores dependentes e independentes
 - só com geradores dependentes
- Conversão de geradores
 - Aplicação na análise e simplificação de circuitos
- Exemplos de aplicação

Simplificação de circuitos

3

- Resulta de aplicar
 - Lei Ohm, KCL, KVL
- Resistências em série

$$R_{\rm S} = R_{\rm 1} + R_{\rm 2}$$

• Resistências em paralelo

$$R_P = \frac{R_1 R_2}{R_1 + R_2}$$

- Geradores de Tensão em série
 - é preciso ter em conta polaridade das tensões $V = V_1 - V_2$

- Fontes de Corrente em paralelo
 - é preciso ter em conta sentido das correntes $I = I_1 - I_2$

 R_2

 $R_1 + R_2$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 200

Exemplo de simplificação de circuitos

- Calcular *i(t)* simplificando o circuito
 - 1 malha
 - todos componentes em série
 - mesma corrente em todos componentes
 - simplificar geradores de tensão

$$\begin{cases} v(t) = v_1(t) - v_2(t) + v_3(t) - v_4(t) - v_5(t) \end{cases}$$

• simplificar resistências $R_S = R_1 + R_2$

$$i(t) = \frac{v(t)}{R_{s}} = \frac{v_{1}(t) - v_{2}(t) + v_{3}(t) - v_{4}(t) - v_{5}(t)}{R_{1} + R_{2}}$$

• resulta um circuito mais simples para o cálculo da grandeza eléctrica pretendida, neste caso, a corrente *i(t)*

circuitos equivalentes para o

cálculo de i(t)

Exemplo de simplificação de circuitos

5

• Calcular $i_5(t)=i_{R2}(t)$ simplificando o circuito

- 2 nós todos componentes em paralelo
- simplificar fontes de corrente
- usar equação do divisor de corrente

$$i_o(t) = i_1(t) - i_3(t) + i_4(t) - i_6(t)$$

$$i_5(t) = \frac{R_1}{R_1 + R_2} i_o(t)$$

• Calcular $V_{bc} = V_b - V_c = V_{20k\Omega}$ simplificando o circuito

- simplificar geradores de tensão, simplificar resistências
- usar equação do divisor de tensão

$$V_{bc}$$
 V_{bc} $V_{bc} = \frac{20}{20 + 40} (-6) = -2V$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Marco de 2008

Circuito Linear

6

- Descrito por equações algébricas lineares
- Componentes do circuito
 - têm características lineares
 - têm características não lineares mas
 - podem ser localmente aproximadas por características lineares
 - modelos lineares por troços

linear não linear

• Linearidade

- linearidade implica homogeneidade e aditividade
- homogeneidade $f(\alpha x) = \alpha f(x)$
- aditividade f(x+y) = f(x) + f(y)
- circuito linear
 - x, $y \rightarrow \text{tensão ou corrente}$
 - f(x), $f(y) \rightarrow \text{tensão ou corrente}$

Homogeneidade (escalamento) $f(\alpha x) = \alpha f(x)$

• Quanto vale I se V=24V? E se V=1,2V?

- não é preciso voltar a analisar o circuito para obter o novo resultado
- como é um circuito linear pode fazer-se escalamento do resultado

• Quanto vale V_{out} ?

- pela estrutura do circuito (circuito em escada), para fazer a sua análise
 - é preciso propagar o efeito de V_{IN} =12V desde a entrada até à saída V_{out}
 - é preciso escolher uma forma de análise do circuito
 - é preciso analisar o circuito da esquerda para a direita
- usando homogeneidade
 - arbitra-se um valor numérico para V_{out}
 - analisa-se da direita para a esquerda
 - determina-se V_{IN} correspondente
 - faz-se escalamento (regra de três simples)

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

Homogeneidade (escalamento) $f(\alpha x) = \alpha f(x)$

• Quanto vale V_{out} ?

- usando homogeneidade
- arbitra-se um valor numérico para V_{out}
- analisa-se da direita para a esquerda
- determina-se V_{IN} correspondente
- faz-se escalamento (regra de três simples)
- ullet calcula-se V_{out} real

• Quanto vale I_0 se I = 6mA?

- arbitrar valor numérico para I_0 (p. ex. 2mA)
- calcular *I* e escalar o valor obtido

$$V'_{out} = 4V$$

$$I'_2 = \frac{V'_{out}}{2k} = 2mA$$

$$V'_1 = (4k + 2k)I'_2 = 12V$$

$$I'_{1} = \frac{V'_{1}}{3k} = 4mA$$

$$I'_0 = I'_1 + I'_2 = 6mA$$

$$V'_0 = 2kI'_0 + V'_1 = 24V$$

$$V_{out} = \frac{V'_{out}}{V'_{0}} V_{0} = 2V$$

Aditividade f(x+y)=f(x)+f(y)

Circuito linear

- a corrente I resulta da presença das duas fontes de tensão V_1 e V_2
- a corrente I é a soma de duas parcelas
 - uma resulta da presença de V_I : $V_I \rightarrow I_I$
 - a outra resulta da presença de V_2 : $V_2 \rightarrow I_2$
- calcular I_i :

$$V_1 = 6V \quad V_2 = 0V$$

•
$$V_1 = 6V$$
 $V_2 = 0V$ $I_1 = \frac{6}{80k + 40k} = 50\mu A$

• calcular I_2 :

•
$$V_1 = 0V$$
 $V_2 = 12V$

•
$$V_1 = 0V$$
 $V_2 = 12V$ $I_2 = \frac{-12}{80k + 40k} = -0.1mA = -100\mu A$

• calcular *I*:

$$I = I_1 + I_2 = -50\mu A$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

10

Exemplos de aplicação

• Calcular I_O usando linearidade (homogeneidade)

Calcular V_O usando linearidade (homogeneidade)

 $f(\alpha x) = \alpha f(x)$

Teorema da Sobreposição

- Num circuito linear, contendo vários geradores independentes, a corrente ou a tensão num ponto pode ser calculada como a soma algébrica das contribuições individuais de cada um dos geradores independentes agindo isoladamente
 - considera-se um gerador independente de cada vez
 - eliminam-se os restantes geradores independentes
 - eliminar gerador(fonte) de tensão = substituir-se por curto-circuito
 - eliminar gerador de corrente = substituir-se por circuito aberto
 - num circuito com N geradores independentes
 - faz-se a análise de N sub-circuitos mais simples

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Marco de 2008

Exemplo de aplicação

12

 V_o

• Calcular $V_0 = V_{R6}$ f(x+y) = f(x) + f(y)

$$= f(x) + f(y) \qquad V_o = V'_o + V''_o$$

Sub-circuito 1

1 kΩ

1)2 mA

≥ 6 kΩ

Sub-circuito 2

$$V''_o$$
 $V''_o = \frac{6k}{1k + 2k + 6k} 3 = 2V$ divisor de tensão

- Soma algébrica das 2 contribuições $V_o = V'_o + V''_o = 6V$

 - analisaram-se 2 circuitos mais simples
 - para cada um escolheu-se um determinado método de análise que se considere mais adequado (simples e rápido)

Calcular $\mathbf{V}_{\mathbf{O}}$ usando o Teorema da Sobreposição

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

14

Exemplos de aplicação

Circuitos equivalentes de Thévenin e Norton

15

- Dado um circuito para análise
 - linear ou não linear
- Pode ser dividido em 2 circuitos
 - A circuito linear
 - B circuito linear ou não linear

• O circuito linear A pode ser substituído por um circuito equivalente mais simples

- Circuito equivalente de Thévenin
 - fonte de tensão em série com resistência
 - V_{OC} = tensão em circuito aberto (open circuit)

- fonte de corrente em paralelo com resistência
- I_{SC} = corrente de curto-circuito (short-circuit)

 R_{Th} A

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Marco de 2008

Teorema de Thévenin

- 16
- Um circuito linear, quando visto de um par de terminais, é equivalente a um circuito constituído por uma fonte de tensão em série com uma resistência
 - $V_{\rm TH} = V_{\rm OC}$
 - tensão equivalente de Thévenin
 - tensão em circuito aberto
 - R_{TH}
 - resistência equivalente de Thévenin
 - resistência vista dos dois terminais
- Como determinar circuito equivalente de Thévenin?
 - analisar circuito linear
 - calcular V_{OC} e R_{TH}

Teorema de Norton

- Um circuito linear, quando visto de um par de terminais, é equivalente a um circuito constituído por uma fonte de corrente em paralelo com uma resistência
 - $I_{N} = I_{SC}$
 - corrente equivalente de Norton
 - corrente medida em curto-circuito
 - R_{TH}
 - resistência equivalente de Thévenin (Norton)
 - resistência vista dos dois terminais
- Como determinar circuito equivalente de Norton?
 - analisar circuito linear
 - calcular I_{SC} R_{TH}

 $R_{\mathrm{Th}} \gtrless$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

Equivalência entre circuitos Thévenin - Norton

- Circuitos de Thévenin e Norton
 - são equivalentes ao circuito linear
 - logo são equivalentes entre si

$$R_{TH} = \frac{V_{OC}}{I_{SC}}$$

- Uma vez conhecida esta relação, basta calcular duas das grandezas e pode obter-se a terceira
 - escolher o cálculo das duas grandezas que são mais fáceis de calcular
 - independentemente do tipo de circuito equivalente (Thévenin ou Norton) que se pretende determinar
- Método de cálculo de V_{OC}, I_{SC} e R_{TH}?
 - depende da estrutura do circuito linear que se tem de analisar e do qual se pretende calcular o circuito equivalente (Thévenin ou Norton)
 - Tem geradores?... São independentes?... Tem geradores dependentes?...

- \bullet $V_{OC} = 0$
- $\bullet \quad I_{SC} = 0$
 - se não existe nenhuma fonte de energia no circuito, não há corrente eléctrica!
- R_{TH} = simplificação das resistências do circuito
- Circuitos equivalentes de Thévenin e de Norton
 - ullet são apenas uma resistência de valor R_{TH}

19

• Qual o circuito equivalente de Thévenin/Norton?

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

Circuito só com geradores independentes

20

- ullet Podem calcular-se as 3 grandezas: V_{OC} , I_{SC} ou R_{TH}
 - V_{OC} calculada com o circuito em aberto
 - ullet I_{SC} calculada fazendo um curto-circuito aos terminais
 - R_{TH} eliminam-se geradores independentes e simplificam-se resistências
 - calcular apenas 2 grandezas escolher mais fáceis

• Calcular equivalente de Thévenin visto para a esquerda dos nós 1 e 2

• R_{TH} – elimina-se fonte independente $R_{TH} = 20k // 40k = \frac{40k}{3} = 13,3k\Omega$

- I_{SC} curto-circuito entre 1 e 2
 - não passa corrente na $R_{20k\Omega}$ $I_{SC} = \frac{-6}{40k} = -0.15mA$

- Calcular V_{OC} e I_{SC}
 - V_{OC} calculada com o circuito em aberto
 - I_{SC} calculada fazendo um curto-circuito aos terminais
- Obter $R_{TH} = V_{OC}/I_{SC}$
- Calcular equivalente de Norton visto para a esquerda de a-b
- $\mathbf{V_{OC}}$ $V_{oc} = V_{ab} = V_{o}$ $V_{oc} = 1k \times I$ $I = \frac{12 2VO}{3k + 1k} \iff I = 2mA$ $V_{oc} = 2V$

- I_{SC} $V_O = 0V \Rightarrow (2V_O) = 0, I_{R=1k\Omega} = 0 \Rightarrow I_{SC} = \frac{12}{3k} = 4mA$
- \mathbf{R}_{TH} $R_{TH} = \frac{V_{OC}}{I_{SC}} = 500\Omega$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

Circuito só com geradores dependentes

- $\mathbf{V}_{\mathbf{OC}} = \mathbf{0}$
- $\bullet \quad \mathbf{I}_{\mathrm{SC}} = \mathbf{0}$
 - se não existe nenhuma fonte de energia independente no circuito, não há corrente eléctrica!
- Não se pode calcular $R_{TH} = V_{OC}/I_{SC}$
 - obtém-se uma indeterminação matemática
- É preciso usar uma fonte de teste
 - dependendo do circuito aplica-se fonte de tensão (V_T) ou de corrente (I_T) aos terminais do circuito
 - a razão entre V_T e I_T é a resistência equivalente de Thévenin $R_{TH} = \frac{V_T}{I_T}$

Determinar o equivalente de Thévenin aos terminais AB

- $V_{OC} = 0 I_{SC} = 0$
- aplicar fonte de teste de tensão $V_T=1V$
- calcular a corrente $I_T = I_0$
- calcular $R_{TH} = V_T / I_T = 1 / I_T$
- cálculo de I_T
 - KVL malha exterior, KCL nó V₁
 - calcular V_x , I_1 , I_2 e I_3 , $I_0=I_T$

$$1 = V_{AB} = V_{x} + V_{1}$$

$$\frac{V_{1}}{1k} + \frac{V_{1} - 2V_{x}}{2k} + \frac{V_{1} - 1}{1k} = 0$$

$$I_{2} = \frac{1 - 2V_{x}}{1k} = \frac{1}{7} mA$$

$$I_{3} = \frac{1}{2k} = \frac{1}{2} mA$$

$$V_{x} = \frac{3}{7} V$$

$$I_{1} = \frac{V_{x}}{1k} = \frac{3}{7} mA$$

$$I_{2} = \frac{1 - 2V_{x}}{1k} = \frac{1}{7} mA$$

$$I_{3} = \frac{1}{2k} = \frac{1}{2} mA$$

$$I_{1} = I_{1} + I_{2} + I_{3} = \frac{1}{2} mA$$

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Marco de 2008

24

 R_{Th} A

 $R_{\mathrm{Th}} \ge$

Conversão de Geradores

- **Geradores reais**
 - gerador de tensão real tem resistência interna em série
 - gerador de corrente real tem resistência interna em paralelo
- Um gerador de tensão real é equivalente a um gerador de corrente real
 - esta equivalência pode usar-se para simplificar circuitos
- Calcular Vo

 $R_{TH} = \frac{V_{OC}}{I_{SC}}$

$$I_{O} = \frac{4k}{4k + (4k + 4k)} 4mA$$

$$I_O = 1mA$$

$$V_o = 8V$$

Como determinar circuito equivalente?

• Pode determinar-se circuito equivalente

- calculando o equivalente de todo o circuito linear
- calculando parcialmente um circuito equivalente
 - nunca se podem separar as variáveis de controlo dos geradores dependentes, da parte do circuito onde estes estão inseridos!

• Calcular V_O

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

26

Exemplos de aplicação

• Calcular V_O e I_O usando Teoremas de Thévenin ou Norton

• Calcular V_O e I_O usando Teoremas de Thévenin ou Norton

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

Exemplos de aplicação

1 k Ω

• Calcular circuitos equivalentes de Thévenin e Norton vistos dos terminais A-B

1000 I_{χ}

Exemplos de aplicação

• Calcular V_O e I_O usando Teoremas de Thévenin ou Norton

© T.M.Almeida IST-DEEC-ACElectrónica

TCFE Análise de Circuitos Lineares

Março de 2008

Ferramentas de análise de circuitos lineares

- Lei de Ohm e Leis de Kirchhoff (KCL e KVL)
- Componentes em série e paralelo
 - Resistências, geradores(fontes) de tensão e de corrente
- Propriedades de circuito linear
 - Homogeneidade (escalamento), Aditividade
- Teorema da Sobreposição
- Teoremas de Thévenin e Norton
- Circuitos equivalentes de Thévenin e Norton
- Conversão de geradores