Találkozók

Egy egyenes mentén N hegycsúcson él egy-egy ember. Az i. hegycsúcs H_i magasságú ($0 \le i \le N-1$).

Q találkozót kell szervezni! A j. találkozón ($0 \le j \le Q-1$) azok az emberek vesznek részt, akik hegycsúcsának sorszáma legalább L_j és legfeljebb R_j ($0 \le L_j \le R_j \le N-1$).

Minden találkozóhoz meg kell határoznod a találkozó x helyét ($L_j \le x \le R_j$). A találkozók költségét a következőképpen kell számítani:

- a találkozó költsége az egyes emberek költségei összege,
- egy y sorszámú ember költsége az x és y ($L_j \le y \le R_j$) közötti hegycsúcsok magasságának maximuma (beleértve az x és y hegycsúcsot is),
- az x. hegycsúcson lakó költsége a hegycsúcs H_x magassága.

Minden találkozóra meg kell adnod a lehetséges minimális költséget!

Megjegyzés: a találkozón résztvevők minden találkozó után visszamennek a helyükre.

Megvalósítás

A következő függvényt kell megvalósítanod.

int64[] minimum_costs(int[] H, int[] L, int[] R)

- H: N elemű vektor, a hegycsúcsok magasságai.
- L és R: Q elemű vektorok, a találkozók helyének korlátai.
- A függvényed eredménye a Q elemű C vektor, ahol C_j ($0 \le j \le Q-1$) értéke a j. találkozó minimális költsége legyen.
- ullet Az N és a Q értékét a vektorok hosszaként kérdezheted le.

Példa

Legyen N=4, H=[2,4,3,5], Q=2, L=[0,1], és R=[2,3].

Az értékelő hívása: minimum_costs([2, 4, 3, 5], [0, 1], [2, 3]).

A j=0 találkozó esetén $L_j=0$ és $R_j=2$, tehát a 0, 1, and 2 hegyeken levő emberek vesznek részt a találkozón. Ha a 0. hegyen van a találkozó, akkor a költség az alábbiak szerint számolódik:

- A 0. résztvevő költsége $\max\{H_0\}=2$.
- Az 1. résztvevő költsége $\max\{H_0, H_1\} = 4$.
- A 2. résztvevő költsége $\max\{H_0,H_1,H_2\}=4.$
- Így a találkozó költsége 0.-ban 2+4+4=10.

Máshol rendezve a költség nagyobb lenne.

Az j=1 találkozó esetén $L_j=1$ és $R_j=3$, azaz az 1., 2. és 3. vesz részt a találkozón. Ha a 2. hegyen van a találkozó, akkor a költség az alábbiak szerint számolódik:

- Az 1. résztvevő költsége $\max\{H_1, H_2\} = 4$.
- A 2. résztvevő költsége $\max\{H_2\}=3$.
- A 3. résztvevő költsége $\max\{H_2, H_3\} = 5$.
- ullet A találkozó költsége 4+3+5=12.

Máshol rendezve a költség nagyobb lenne.

A tömörített mintában a sample-01-in.txt és a sample-01-out.txt tartalmazza ezt a példát. Más példák is vannak benne.

Korlátok

- $1 \le N \le 750000$
- $1 \le Q \le 750000$
- $1 \le H_i \le 1\,000\,000\,000\,(0 \le i \le N-1)$
- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_i, R_i) \neq (L_k, R_k) \ (0 \le j < k \le Q 1)$

Részfeladatok

1. (4 pont) $N \leq 3\,000$, $Q \leq 10$

- 2. (15 pont) $N \leq 5\,000$, $Q \leq 5\,000$
- 3. (17 pont) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 2$ ($0 \leq i \leq N-1$)
- 4. (24 pont) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 20$ ($0 \leq i \leq N-1$)
- 5. (40 pont) nincs további feltétel

Minta értékelő

A bemenetet az alábbi formában olvassa:

- ullet Az 1. sor: N Q
- A 2. sor: $H_0 H_1 \cdots H_{N-1}$
- A 3+j. sor ($0 \leq j \leq Q-1$): $L_j \ R_j$

Az értékelő a minimum_costs értékét az alábbi formában írja ki:

• Az 1 + j. sor $(0 \le j \le Q - 1)$: C_j