Réseaux de neurones pour la modélisation du transport turbulent dans les plasmas de fusion.

Juan Redondo Hernan.

Superviseurs: Jonathan Citrin et Frédéric Imbeaux

Réproduire l'énergie des étoiles.

Energie de liason par nucleon;

$$B_f = [Zm_p + (A - Z)m_n - m_A]c^2$$

Critère de Lawson.

Condition simple pour ignition:

$$D_1^2 + T_1^3 o He_2^4 + n_0^1 \qquad \quad Q_f = 17,6 \; {\sf Mev}$$

Confinement du plasma par des champs magnetiques.

Concept le plus avancé: tokamak.

Tokamak ITER en construction.

Demonstration des principes: conçu pour une puissance de fusion de 500MW en décharges de 5 minutes.

Motivation

Transport de particules et d'énergie.

Transport de particules:

$$\frac{\partial n}{\partial t} + div \cdot \Gamma = Sources - Puits$$

$$\Gamma = -D\nabla n + n(V_c + V_t)$$

Transport d'énergie:

$$\frac{\partial(\frac{3}{2}nkT)}{\partial t} + div \cdot q = Sources - Puits$$

$$q = -n\chi\nabla T + \Gamma\frac{5}{2}kT$$

Motivation

Transport des particules et d'énergie.

Transport de particules:

$$\frac{\partial n}{\partial t} + div \cdot \Gamma = Sources - Puits$$

$$\Gamma = -\mathbf{D}\nabla n + n(\mathbf{V_c} + \mathbf{V_t})$$

Transport d'énergie:

$$\frac{\partial(\frac{3}{2}nkT)}{\partial t} + div \cdot q = Sources - Puits$$

$$q = -n\chi \nabla T + \Gamma \frac{5}{2}kT$$

Motivation

Calcul des flux à une distance radiale.

- Gyrokinetic 5D
 - Non linéaire, électromagnetique.
 - $ho \approx 10^4 10^5$ CPUh.
- Quasilinéaire 4D (e.g. QuaLiKiz ¹)
 - Linéarisé, électrostatique.
 - ho pprox 10 CPUs.
- Neural network regression of database of QuaLiKiz results
 - ▶ Some CPU μ s.
 - Possibilité de calcul en temps réel basé en premiers principes!

¹Bourdelle C. et al 2007 Phys. Plasmas 14 112501 🗆 🗸 🔗 ト 😩 ト 😩 ト

Transport turbulent

Approche quasi-linéaire et électrostatique

Equation de Vlasov (limite électrostatique):

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \frac{\partial f_s}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m_s} \frac{\partial f_s}{\partial \mathbf{v}} = 0 \tag{1}$$

Quasi-neutralité:

$$\sum_{s} q_s n_s = 0 \tag{2}$$

- ▶ Différents phénomènes physiques produisent des fluctuations de différente fréquence à l'origine du transport turbulent:
 - ▶ ITG: Ion temperature gradient.
 - ETG: Electron temperature gradient.
 - ► TEM: Trapped electron mode.

Réseaux de neurones

Perceptron

Technique de regression venant de l'intelligence artificielle.

Réseaux de neurones

Multilayer perceptron

Approximateur universel!

Les poids ω déterminent la fonction de sortie:

$$y = \sum_{i}^{N} \omega_{i}^{2} g(b_{i}^{2} + \sum_{j}^{M} \omega_{ij}^{1} g(b_{j}^{1} + \sum_{k}^{I} \omega_{jk}^{in} x_{k}))$$

Characteristiques du réseau

- ► Parametres variables:
 - ► Facteur de sécurité q, tournure des lignes de B.
 - ▶ Magnetic shear, $s = r \frac{q'}{q}$.
 - ▶ Rapport des temperatures ionique et électronique, $\frac{T_i}{T_e}$.
 - Gradient de température: conducteur principal d'instabilités.
- Architecture du réseau:
 - Nombre de couches et des noeuds.
 - Fonction d'activation.
 - Algorithme d'apprentissage.
 - ▶ Parametre de regularisation λ . Les algorithmes d'apprentissage utilisent comme critère:

$$error = \lambda \frac{1}{N} \sum_{i=1}^{N} (\mathsf{NN} \ \mathsf{output} \ - \ \mathsf{QuaLiKiz} \ \mathsf{result})^2 + (1-\lambda) \frac{1}{n} \sum_{j=1}^{n} \omega_j^2$$

Résultats

Flux d'énergie ionique. $q_i = -n_i \chi_i \nabla T_i + \Gamma_i \frac{5}{2} k T_i$

Regression seulement de la partie positive! \rightarrow Seuil d'instabilité

Résultats

Flux d'énergie ionique. $q_i = -n_i \chi_i \nabla T_i + \Gamma_i \frac{5}{2} k T_i$

Output du réseau $< 0 \rightarrow Output=0$

Résultats

Flux d'énergie électronique. $q_e = -n_e \chi_e \nabla T_e + \Gamma_e \frac{5}{2} k T_e$

Résultats

Flux diffusif d'électrons. $\Gamma_e = -\mathbf{D_e} \nabla n_e + n_e (V_c + V_t)$

Transport de particules et chaleur en temps réel!

Résultats

Flux d'électrons dû au pinch thermique.

$$\Gamma_e = -\mathbf{D_e} \nabla \mathbf{n_e} + n_e (V_c + \mathbf{V_t})$$

Flux de chaleur ionique $= 0 \rightarrow$ Pinch thermique = 0Transport de particules et chaleur en temps réel!

Résultats

Flux d'électrons dû au pinch de compression.

$$\Gamma_e = -\mathbf{D_e} \nabla \mathbf{n_e} + n_e (\mathbf{V_c} + V_t)$$

Transport de particules et chaleur en temps réel!

Mésurer la performance

R = pente des points output - target.

Normalised Minimum Square Error =
$$\frac{1}{N} \frac{\sum (y_i - target_i)^2}{\sum y_i \sum \frac{target}{N}}$$

Un output

Single output NN	R	NMSE
a) Ion heat flux	0.9939	0.0072
b) Electron heat flux	0.9894	0.0155
c) Electron diffusivity	0.9908	0.0142
d) Electron thermal pinch	0.9527	0.0512
e) Electron compression pinch	0.9697	0.0734

Trois outputs

Three output NN	R	NMSE
f) Ion heat flux	0.9910	1.2696
g) Electron heat flux	0.9809	1.7102
h) Electron diffusivity	0.9911	1.8268

Five outputs

Five output NN	R	NMSE
i) Ion heat flux	0.9910	1.1438
j) Electron heat flux	0.9704	1.7102
k) Electron diffusivity	0.9845	1.6575
I) Electron compression pinch	0.9754	3.1090
m) Electron thermal pinch	0.58077	1.1027

Thermal pinch in five dimensions NN

Extrapolation à 10 dimensions

Questions à résoudre.

Le nombre de points total est exponentiel avec la dimension $\approx N^d$. Avec cette méthodologie nous pouvons aller jusqu'à 10 dimensions.

- Contraintes techniques.
 - ▶ Heures de calcul haut performance disponibles sur HELIOS $\approx 10^5 10^6 \, \text{CPUh} \rightarrow \approx 2 \cdot 10^8$ points dans l'espace des parametres.
 - Optimisation de l'organisation des simulations (contrainte de mémoire).
 - Debug de la version du code QuaLiKiz sur HELIOS.
- Complexité du problème physique
 - Manque de connaissance des seuils d'instabilité (réduire le nombre de points calculés).
 - Non linéarités du problème (construction postérieure du réseau).

Conclusions

- Transport des particules et de chaleur en temps réel pour la première fois. Future implementation avec le code RAPTOR 2.
- Bons résultats à basse dimension pour des problèmes généraux de transport.
- Début du travail en 10 dimensions.
- Besoin de techniques de réduction de dimensionalité pour de dimensions plus grandes.

²F. Felici and O. Sauter 2012 Plasma Phys. Control. Fusion 54 025002.

10 parametres

Base de données

Début d'une base de données avec les paramètres suivants (adimensionnels):

Paramètre	# points	Interval
Gradient de température ionique	8	[2, 10]
Gradient de température électronique	8	[2, 10]
Gradient de densité électronique	9	[-5, 7]
Rapport Ti/Te	7	[0.5, 2]
Densité électronique	4	[0.5, 20]
Facteur de sécurité q	8	[1, 6]
Magnetic shear	9	[-1, 4]
Alpha	6	[0, 0.6]
% Berylium	4	[0, 0,75]
Distance au centre du plasma	6	[0.15, 0.9]