

MOSFET

OptiMOS™3 Power-MOSFET, 60 V

Features

- Optimized technology for DC/DC converters Excellent gate charge x $R_{\rm DS(on)}$ product (FOM) Superior thermal resistance
- Dual sided cooling
- low parasitic inductance
- Low profile (<0.7mm)
- N-channel, normal level
- 100% avalanche tested
- Pb-free plating; RoHS compliant

Product validation

Fully qualified according to JEDEC for Industrial Applications

Table 1 Key performance parameters

. abto = no, position parameters								
Parameter	Value	Unit						
$V_{ m DS}$	60	V						
R _{DS(on),max}	2.8	mΩ						
I _D	90	А						

Type / Ordering code	Package	Marking	Related links
BSB028N06NN3 G	MG-WDSON-5	0106	-

Public

OptiMOS™3 Power-MOSFET, 60 V BSB028N06NN3 G

Table of contents

Description	1
Maximum ratings	3
Thermal characteristics	4
Electrical characteristics	5
Electrical characteristics diagrams	7
Package outlines	11
Revision history	14
Trademarks	14
Disclaimer	14

1 Maximum ratings

at T_i =25 °C, unless otherwise specified

Table 2 Maximum ratings

Parameter	Symbol	Values			Linit	Note / Test condition	
raiailletei	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition	
Continuous drain current	I _D	-	-	90 85 22	А	$V_{\rm GS}$ =10 V, $T_{\rm C}$ =25 °C $V_{\rm GS}$ =10 V, $T_{\rm C}$ =100 °C $V_{\rm GS}$ =10 V, $T_{\rm A}$ =25 °C, $R_{\rm thJA}$ =58 K/W ¹⁾	
Pulsed drain current ²⁾	I _{D,pulse}	-	-	360	А	<i>T</i> _C =25 °C	
Avalanche energy, single pulse	E _{AS}	-	-	590	mJ	$I_{\rm D}$ =30 A, $R_{\rm GS}$ =25 Ω	
Gate source voltage	V_{GS}	-20	-	20	V	-	
Power dissipation	$P_{\rm tot}$	-	-	78 2.2	W -	$T_{\rm C}$ =25 °C $T_{\rm A}$ =25 °C, $R_{\rm thJA}$ =58 K/W ¹⁾	
Operating and storage temperature	$T_{\rm j}$, $T_{\rm stg}$	-40	-	150	°C	IEC climatic category; DIN IEC 68-1: 55/150/56	

Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

²⁾ See figure 3 for more detailed information

2 Thermal characteristics

Table 3 Thermal characteristics

Parameter	Symbol	Values			Unit	Note / Test condition
raiametei	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition
Thermal resistance, junction - case, bottom	R_{thJC}	-	1.0	-	K/W	
Thermal resistance, junction - case, top	R_{thJC}	-	-	1.6	K/W	-
Device on PCB, 6 cm ² cooling area ³⁾	R_{thJA}	-	-	58	K/W	

Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical in still air.

3 Electrical characteristics

at $T_{\rm j}$ =25 °C, unless otherwise specified

Table 4 Static characteristics

Daramatar	Symbol	Values			11	Note / Test candition	
Parameter	Symbol	Min.	Тур.	Max.	Onic	Note / Test condition	
Drain-source breakdown voltage	$V_{(BR)DSS}$	60	-	-	٧	V _{GS} =0 V, I _D =1 mA	
Gate threshold voltage	$V_{\rm GS(th)}$	2	3	4	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 102 \mu{\rm A}$	
Zero gate voltage drain current	I _{DSS}	-	0.1 10	10 100	μΑ	$V_{\rm DS}$ =60 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =25 °C $V_{\rm DS}$ =60 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =125 °C	
Gate-source leakage current	I _{GSS}	-	10	100	nA	V _{GS} =20 V, V _{DS} =0 V	
Drain-source on-state resistance	R _{DS(on)}	-	2.2	2.8	m	V _{GS} =10 V, I _D =30 A	
Gate resistance	R_{G}	-	0.5	-	Ω	-	
Transconductance	g_{fs}	42	83	-	S	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max}, I_{\rm D} = 30 \text{ A}$	

Table 5 Dynamic characteristics

Parameter	Symbol	Values			Linit	Note / Test condition	
- Tarameter	Syllibot	Min.	Тур.	Max.	Oilit	Note / Test condition	
Input capacitance 4)	C _{iss}	-	8800	12000	рF		
Output capacitance ⁴⁾	Coss	-	2100	2800	pF	$V_{\rm GS}$ =0 V, $V_{\rm DS}$ =30 V, f =1 MHz	
Reverse transfer capacitance ⁴⁾	C _{rss}	-	64	-	pF		
Turn-on delay time	$t_{d(on)}$	-	21	-	ns		
Rise time	t _r	-	9	-	ns	V_{DD} =30 V, V_{GS} =10 V, I_{D} =30 A,	
Turn-off delay time	$t_{ m d(off)}$	-	38	-	ns	$R_{\rm G,ext}$ =1.6 Ω	
Fall time	t_{f}	-	6	-	ns		

 $^{^{4)}}$ See figure 13 for more detailed information

Table 6 Gate charge characteristics 5)

Parameter	Symbol	Values			Linit	Note / Test condition
	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition
Gate to source charge	$Q_{ m gs}$	-	41	-	nC	
Gate to drain charge	Q_{gd}	-	8	-	nC	$V_{\rm DD}$ =30 V, $I_{\rm D}$ =30 A, $V_{\rm GS}$ =0 to 10 V
Switching charge	Q_{sw}	-	23	-	nC	
Gate charge total	$Q_{ m g}$	-	108	143	nC	
Gate plateau voltage	$V_{ m plateau}$	-	4.6	-	V	
Output charge	$Q_{ m oss}$	-	87	116	-	V _{DD} =30 V, V _{GS} =0 V

⁵⁾ See "Gate charge waveforms" for parameter definition

Table 7 Reverse diode

Parameter	Symbol	Values			Linit	Note / Test sondition	
Parameter	Symbol	Min.	Тур.	Max.	Oilit	Note / Test condition	
Diode continuous forward current	Is	-	-	30	А	T -25 °C	
Diode pulse current	I _{S,pulse}	-	-	120	Α	<i>T</i> _C =25 °C	
Diode forward voltage	$V_{\rm SD}$	-	0.8	1.2	V	$V_{\rm GS}$ =0 V, $I_{\rm F}$ =30 A, $T_{\rm j}$ =25 °C	
Reverse recovery time	t _{rr}	-	60	-	ns	V-20 V I-I di/d+100 Mus	
Reverse recovery charge	$Q_{\rm rr}$	-	87	_	nC	$V_{\rm R}$ =30 V, $I_{\rm F}$ = $I_{\rm S}$, d $I_{\rm F}$ /d t =100 A/ μ s	

4 Electrical characteristics diagrams

5 Package outlines

Figure 1 Outline MG-WDSON-5, dimensions in mm

Figure 2 Footprint drawing MG-WDSON-5, dimensions in mm

All dimensions are in units mm The drawing is in compliance with ISO 128-30, Projection Method 1 [\bigcirc \bigcirc]

Figure 3 Packaging variant MG-WDSON-5, dimensions in mm

Revision history

BSB028N06NN3 G

Revision 2024-11-09, Rev. 1.0

Previous revisions

Revision	evision Date Subjects (major changes since last revision)				
1.0	2024-11-09	New (Rev. 1.0) number is assigned due to datasheet tool change / improvement			
		Updated POD from "MG-WDSON-2" to "MG-WDSON-5" page 11			

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2024 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.