

Presentation Overview

Target/Prediction

Life Insurance Assessment
Underwriting
Response

Visuals

Explanatory Exploratory

Summary

Key Points

Takeaways

Recommendations

Target

- Response
- Major Considerations
 - ♦ Health
 - ♦ Insurance Policy
 - ♦ Risks
 - ♦ Moral vs Morale

Exploratory: Age Distribution

- ☐ Health & Age Effect Policy Premium
- ☐ Explanation: Numerical Values are normalized
- □ Kaggle Competition

Exploratory: Underwriting Responses

- Large distribution of Responses
- Some Responses had fewer counts

Explanatory

- Relationships between BMI and Age
- Underwriting responses depend both on BMI and Age

The Numbers

- Random Forest Models:
- Untuned, No Feature Engineering
 - Test Accuracy Score: 0.46084072294049955
 - Time to evaluate: 14.4 sec
- Untuned, with Feature Engineering
 - Test Accuracy Score: 0.46084072294049955
 - Time to evaluate: 15.5 sec
- Tuned, No Feature Engineering
 - Test Accuracy Score: 0.39010356731875717
 - Time to evaluate: 1 min 31.1 sec
- Tuned, with Feature Engineering
 - Test Accuracy Score: 0.39010356731875717
 - Time to evaluate: 1 min 31.3 sec

- Decision Tree Models:
- Untuned, No Feature Engineering
 - Test Accuracy Score: 0.3389291274622622
 - Time to evaluate: 2.5 sec
- Untuned, with Feature Engineering
 - Test Accuracy Score: 0.3389291274622622
 - Time to evaluate: 2.5 sec
- Tuned, No Feature Engineering
 - Test Accuracy Score: 0.4546131456034658
 - Time to evaluate: 1 min 42.7 secs
- Tuned, with Feature Engineering
 - Test Accuracy Score : 0.4546131456034658
 - Time to evaluate: 1 min 39.2 seconds

Better Model?

No!

Summary

- **⋄** Key Insights
 - ♦ Age vs. BMI
- **♦ Final Recommendation**
 - **⋄** Should we use these models?
- **⋄** Reflection
 - **⋄** What are we going to do next?