DESIGN PROCESS (ENGINEERING)

Creativity

Design

Problem solving

ERG Design

CCEATIVITY

CREATIVITY

Creativity is looking at the same thing as everyone else and thinking something different (A. Szent-Gyorgyi)

CREATIVITY

Select a figure that is different from all the others. Explain the reason for your choice.

Adapted from: Creative problem solving and Engineering Design, Lumsdaine et al 1999

CREATIVITY

Amabile HBR 1998

CREATIVE THINKING

Becoming more creative

- Removing habit barriers
 - There is only one right answer
 - Looking at a problem in isolation
 - Following the rules
- Remove attitude barriers
 - Discomfort with ambiguity
 - Negative pessimistic thinking
 - Risk-avoidance or fear of failure

Adapted from: Creative problem solving and Engineering Design, Lumsdaine et al 1999

DESIGN

WHAT IS DESIGN?

"1) to create, fashion, execute, or construct according to plan; 2) to conceive and plan out in the mind" – Webster's

"Good design keeps the user happy, the manufacturer in the black and the aesthete un-offended" Raymond Loewy

"When you're a carpenter making a beautiful chest of drawers, you're not going to use a piece of plywood on the back, even though it faces the wall and nobody will ever see it. You'll know it's there, so you're going to use a beautiful piece of wood on the back." --???

WHO DESIGNS?

Answer the following: how many job/domain titles can you think of that end in "design"?

- Examples: Interior design, Game design

DESIGN FAILURES

De la Concorde overpass Canada

BER airport Berlin

Experience Music Project Seattle

Dubai Aquarium

DESIGN EXERCISE

List one item from your everyday life that you consider to be a good design, and one that is bad. Briefly describe the qualities of the design.

GOOD: BAD:

FOLLOW-UP

• When describing how the things you listed demonstrate good design, did you consider Loewy's attributes? Does it...

- keep the user happy? (functional)
- keep the manufacturer in the black (feasible)
- keep the aesthete un-offended (elegance)
- Were there other things that influenced your opinion on what makes good design?

PROBLEM SOLVING

WHAT IS NEEDED?

- Creativity and Intelligence
 - Creative thinking
 - Abstract thinking
 - Logical thinking
 - Analyzing
- Decision making
 - See dependencies
 - Realize what is important and what is not
 - Flexibility
 - Handling of failure

BASIC APPROACH

- Define goal:
 - Overall goal
 - Part goals
 - → Motivation to find goal: knowing when goal is reached
- Set up boundaries and pre conditions
- Get rid of prejudice
 - Think outside the box
 - Do not think of everything already known and done
 - → Allows for broad search of solutions, new solutions
- Evaluate
 - Does it meet the goal
- Decide
 - Is the goal met, is another iteration needed?

ECC DESIGN

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Define the problem: "It is important that the problem being addressed is actually the problem that is important to customers"

Techniques:

- Gather info from customers and stakeholders (elicitation)
 - Expert information
 - Root cause analysis

A huge problem in SE

You will spend a lot of time here in SER415

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Criteria & Constraints: Establish up-front decision-making conditions to be used in later stages

Criterion: "A standard or attribute of a design that can be measured"

Constraint: "A limitation or condition that must be satisfied by a design"

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Generate Ideas: This is the 'black magic art' of the process!

Techniques: (just a sample)

- Decompose problems
- Metaphors and Analogies
- External inspiration
- Brainstorming
- Work in Parallel vs. GroupThink
- Idea Reduction
 - Your goal is to generate a lot of ideas
 - Can you quickly prune the space?

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Explore Possibilities: reading says do this with a structured process

Idea Reduction Techniques:

- Combine ideas
- Voting methods
- Map idea to root cause analysis
- Explore others' approaches
- Prototype (rapid and light)
- A difficult problem how much time you devote to exploring solutions has a big impact on your project outcome!
 - Too much: "analysis paralysis" 🗸
 - Too little: "married to an idea"

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Select a Design: How do you pick?

Techniques:

- Voting
- Concept combination tables (score)
- Senior engineers decide
- Team lead /architect decides
- External business stakeholder decides

Risks

- This can get emotional and personal!
- It is nice to say "use a structured process" but not always easy

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Develop a Detailed Design: Detailed designs usually get into some language, template, or model for specification

Techniques (some examples from SE):

- Interaction design model
- UML component & class diagrams
- Detailed design (or BUFD) is both in and out of vogue in SE
 - UX development does a lot of BUFD
 - Agile shops do hardly any

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Prototype, Test, Refine:

"...provide additional understanding of the design and its performance."

Prototyping exists for UX and system design in SE:

- On UX side, rapid development and simulation tools enable users to "see" the app before it is developed
- On the system side, prototyping is an incredibly valuable tool for seeing if system constraints can be met
- The extent to which you test and refine depends on the continuing possibility of adopting the design

Define the Problem

Identify Criteria and Constraints

Generate Ideas

Explore Possibilities

Select a Design

Develop a Detailed Design

Create Models and Prototypes

Test and Evaluate

Refine the Design

Implementation

Communicate Process and Results

Implement and Communicate:

"If the design is a product that is manufactured, then a manufacturing system must be developed."

Well, we know that is not software!

- Design and implementation blend
- Many shops avoid design altogether
- Better shops have the ability to understand when implementation deviates from the desired design.
 - We will talk architecture soon enough!
- Some shops require full traceability from requirements to design to implementation however!

SUMMARY: THE EGR DESIGN PROCESS

- Key Points:
 - Idea generation
 - Selection and iteration among alternatives
 - Prototyping as a means of gaining information
- Key differences to SE
 - BUFD is not in style for much of SE nowadays
 - SE processes tend to be much more concurrent
 - And the lines blur!
- To Remember (Loewey):
 - It needs to have function, feasibility, and elegance