# COMP90054 Workshop 1

# Icebreaker Activity

## High Level Picture

#### Different Al Research directions

- Only focus on AI especially AI planning -> acting rationally
- ML/NLP/CV -> acting like humans

#### 3 approaches:

- Programming-based
- learning-based: RL/TD (2nd half of this semester)
- models-based: Al planning

#### What is Al planning?

## Classical Planning Problem

Not every problem belongs to classical planning problem

**Deterministic action**: S – a -> S'

- Every action only has a certain outcome, and you know what that outcome will be
- Counterexample: coin toss -> probabilistic actions
- Single-agent
- Static environment
- . . . . .

### How can we solve a Classical Planning Problem

- The idea of general AI to solve the problem: Problem -> solver -> solution
- Comes to Al planning: Problem (Model) -> Planner -> Plan

#### Model

- State-space model: any Classical Planning Problem can be represented by a statespace model
- STRIPS: PDDL

#### Planner: powered by the search algorithms

- Blind search: BFS, DFS, ID, Uniform-Cost, IW....
- Heuristic Search (Informed search)

#### Plan

- A sequence of actions: a1-> a2 ->....
- Not a set of actions

## Problem 1: State-transition graph



- State space S = { ? }
- Initial State
- Goal State
- Action
- Transition Function
- Cost Function

## Problem 1: State-transition graph



- State space S = {s1, s2, s3, s4}
- Initial State
- Goal State
- Action
- Transition Function
- Cost Function

$$S_{0} = S_{1}$$

$$S_{0} = \{S_{4}\}$$

$$A = \{S_{1} = \{(S_{1}, S_{2}), (S_{1}, S_{3})\}$$

$$A = \{(S_{1}, S_{2}) = \{(S_{1}, S_{2}), (S_{1}, S_{3})\}$$

$$A = \{(S_{1}, (S_{1}, S_{2})) = S_{2} = T(S_{1}, (S$$

# Search Node vs State

- Differences between nodes and states
- Node: (state, accumulated cost, parent information)
- Why node?



# Problem 2



#### Task 1

Discuss with others, and finish the node expansion order for each algorithm

## BFS Expansion



|        | Iteration 0                    | Iteration 1                                                                                  | Iteration 2                              | Iteration 3                          | Iteration 4                              | Iteration 5                              | Iteration 6                      |
|--------|--------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|----------------------------------|
| Open   | n0 = <s1, 0,="" null=""></s1,> | n1 = <s2, 2,="" n0=""><br/>n2 =<s3, 2,="" n0=""><br/>n3 =<s4, 1,="" n0=""></s4,></s3,></s2,> | n2<br>n3<br>n4 = <s5, ?,="" n1=""></s5,> | n3<br>n4<br>n5 =< <b>s7,</b> 12, n2> | n4<br>n5<br>n6 = <s6, 2,="" n3=""></s6,> | n5<br>n6<br>n7 = <s7, 7,="" n4=""></s7,> | n6<br>n7                         |
| Closed |                                | n0                                                                                           | n0, n1                                   | n0, n1, n2                           | n0, n1, n2, n3                           | n0, n1, n2, n3,<br>n4                    | n0, n1, n2, n3,<br>n4, <b>n5</b> |

Queue: n0, n1, n2, n3, n4, **n5**, n6, n7

When pop up a node from the queue:

- 1. Check if current node n contains the goal state
- 2. Generate children nodes, and put into data structure

#### Problem 2 Task 1



Depth-First Search

```
Nodes = [
('s1', 0, None),
('s2', 2, 0),
('s5', 4, 1),
('s7', 7, 2)]
```

# (state, accumulated cost, id of parent node)

#### Problem 2 Task 1



• ID (iterative deepening)

```
Nodes = [
('s1', 0, None), #depth limit = 1
('s2',2,1),
('s3',2,1),
('s4',1,1),
('s1', 0, None), #depth limit = 2
('s2',2,5),
('s5',4,6),
('s3',2,5),
('s7',12,8)]
```

# s1 s6 10

# Problem 2

#### Task 2

Q1: What is the solution found by each algorithm?

Q2: What is the actual optimal solution?

Q3: Explain under which conditions the algorithms guarantee optimality.

Q4: Can any of the previous algorithms be adapted to account for g(n) in order to make it optimal?

|     | Complete | Optimal    | Time<br>Complexity | Space<br>Complexity |
|-----|----------|------------|--------------------|---------------------|
| BFS | <b>T</b> | <b>T</b> * | O(b^d)             | O(b^d)              |
| DFS |          | F          | infinity           | O(b*d)              |
| ID  | <b>T</b> | <b>T</b> * | O(b^d)             | O(b*d)              |

b = branching factor d = depth of the optimal path

## Problem 3

Describe a simple example of Travelling Salesman Problem along with its corresponding State Space Model.

Definition should be brief, clear, and compact (compact means using mathematical notation to define sets, i.e.  $S = \{x | x \in V\}$  to define that there are as many states as elements in the set V, and pseudo-code, i.e. to define the transition function.)

- 1. State space S
- 2. Initial state  $s_0 \in S$
- 3. Set of goal states  $S_G \subseteq S$
- 4. Applicable actions function A(s) for each state  $s \in S$
- 5. Transition function f(s, a) for  $s \in S$  and  $a \in A(s)$
- 6. Cost of each action c(a) for  $a \in A(s)$

**Hint**: Consider a set of cities V to visit in any order, a starting city location  $v_{start}$ , and a set of edges E specifying if there's an edge from two cities  $\langle v_1, v_2 \rangle$ . Let V' be the set of cities has been visited.

# Problem 3

Let V' be the set contain visited cities:

• 
$$S = \{\langle v_{current}, V' \rangle | v_{current} \in V \land V' \subseteq V \}$$

$$ullet s_0 = \langle v_{start}, \{v_{start}\} 
angle$$

• 
$$S_G = \{\langle v_{current}, V \rangle | v_{current} \in V \}$$

• 
$$A(\langle v_{current}, V' \rangle) = \{\langle v_{current}, v_{next} \rangle | \langle v_{current}, v_{next} \rangle \in E\}$$

• 
$$f(\langle v_{current}, V' \rangle, \langle v_{current}, v_{next} \rangle) = \langle v_{next}, V' \cup \{v_{next}\} \rangle$$

• 
$$c(\langle v_{current}, v_{next} \rangle) = cost(\langle v_{current}, v_{next} \rangle)$$