2CS503 - Design and Analysis of Algorithms

References

- 1. Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein Introduction to Algorithms, PHI
- 2. Ellis Horowitz, SartajSahni, Sanguthevar Rajasekharan, Fundamentals of Computer Algorithms, Galgotia.
- 3. Jean-Paul Tremblay and Paul G. Sorenson, An Introduction to Data Structures with Applications, Tata McGraw Hill
- 4. Karumanchi, Narasimha, Data Structures and Algorithms Made Easy, CareerMonk Publications.

Syllabus

Syllabus:	Teaching Hours
Unit I	2
Elementary Algorithmic: Efficiency of Algorithms, Average & worst-case analysis, Elementary Operation	
Unit II	4
Analysis Techniques: Empirical, mathematical, Asymptotic analysis and related unconditional and conditional notations	-
Analysis of Algorithms: Analysing control structures: sequencing, "For" loops, Recursive calls, "While" and "repeat" loops, Amortized analysis	
Unit III	4
Solving Recurrences: Intelligent guesswork, Homogeneous recurrences, Inhomogeneous Recurrences, Change of variable, Range transformations, Master Theorem, Recurrence Tree.	
Unit IV	7
Data Structures: Heaps, Binomial heaps, Disjoint set structures.	
Greedy Algorithms: Graphs: Minimum spanning trees-Kruskal's algorithm, Prim's algorithm, Graphs: Shortest path algorithms.	
Unit V	8
Divide-and-Conquer: Multiplying large integers, Binary search, sorting: sorting by merging, quick sort, finding the median, Matrix multiplication, Exponentiation, approaches using recursion, Memory functions.	
Dynamic Programming: Principles of optimality, Various applications using dynamic programming.	
Unit VI	5
Branch and Bound, Backtracking: Design of some classical problems using branch and bound and Backtracking approaches.	
Randomized and Approximation Algorithms: Design of some classical problems using Randomized and Approximation Algorithms.	

Resources

All resources will be available on Moodle.

Teaching & Evaluation Scheme

Teaching Scheme:

Theory	Tutorial	Practical	Credits
2	1	2	4

	LPW	SEE	CE
Exam Duration	Continuous Evaluation + 2 Hrs. End Semester Exam	3.0 Hrs.	Continuous Evaluation
Component Weightage	0.2 (0.75+0.25)	0.4	0.4 (0.35+0.35+0.3)

Assignments in CE:

MOOC

> What is an algorithm?

> An algorithm is any well-defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output. An algorithm is thus a sequence of computational steps that transform the input into the output.

> What is an algorithm?

We can also view an algorithm as a tool for solving a well-specified computational problem. The statement of the problem specifies in general terms the desired input/output relationship. The algorithm describes a specific computational procedure for achieving that input/output relationship.

> What is an algorithm?

- We can also view an algorithm as a tool for solving a well-specified computational problem. The statement of the problem specifies in general terms the desired input/output relationship. The algorithm describes a specific computational procedure for achieving that input/output relationship.
- > An algorithmic problem is specified by describing the complete set of instances it must work on and what desired properties the output must have.

> What is an algorithm?

- > We can also view an algorithm as a tool for solving a well-specified computational problem. The statement of the problem specifies in general terms the desired input/output relationship. The algorithm describes a specific computational procedure for achieving that input/output relationship.
- > An algorithmic problem is specified by describing the complete set of instances it must work on and what desired properties the output must have.
- > For example, we might need to sort a sequence of numbers into nondecreasing order.

- > What is an algorithm?
 - > Here is how we formally define the sorting problem:

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) .

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

> What is an algorithm?

> Here is how we formally define the sorting problem:

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) .

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

> Instance of a Problem

For example, given the input sequence (31, 41, 59, 26, 41, 58), a sorting algorithm returns as output the sequence (26, 31, 41, 58, 59). Such an input sequence is called an instance of the sorting problem.

> What is an algorithm?

> Here is how we formally define the sorting problem:

Input: A sequence of *n* numbers (a_1, a_2, \ldots, a_n) .

Output: A permutation (reordering) $\langle a'_1, a'_2, \dots, a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

> Instance of a Problem

- For example, given the input sequence (31, 41, 59, 26, 41, 58), a sorting algorithm returns as output the sequence (26, 31, 41, 58, 59). Such an input sequence is called an instance of the sorting problem.
- > In general, an instance of a problem consists of the input (satisfying whatever constraints are imposed in the problem statement) needed to compute a solution to the problem.

> When can we say that the algorithm is correct?

- > When can we say that the algorithm is correct?
 - > An algorithm is said to be correct if, for every input instance, it halts with the correct output.

- > When can we say that the algorithm is correct?
 - > An algorithm is said to be correct if, for every input instance, it halts with the correct output.
 - > We say that a correct algorithm solves the given computational problem.

- > When can we say that the algorithm is correct?
 - > An algorithm is said to be correct if, for every input instance, it halts with the correct output.
 - > We say that a correct algorithm solves the given computational problem.
 - > An incorrect algorithm might not halt at all on some input instances, or it might halt with an incorrect answer.

- > When can we say that the algorithm is correct?
 - > An algorithm is said to be correct if, for every input instance, it halts with the correct output.
 - > We say that a correct algorithm solves the given computational problem.
 - > An incorrect algorithm might not halt at all on some input instances, or it might halt with an incorrect answer.
 - > Contrary to what you might expect, incorrect algorithms can sometimes be useful, if we can control their error rate.

- > When can we say that the algorithm is correct?
 - > An algorithm is said to be correct if, for every input instance, it halts with the correct output.
 - > We say that a correct algorithm solves the given computational problem.
 - > An incorrect algorithm might not halt at all on some input instances, or it might halt with an incorrect answer.
 - > Contrary to what you might expect, incorrect algorithms can sometimes be useful, if we can control their error rate.
 - > Ordinarily, however, we shall be concerned only with correct algorithms.

19

- > How can algorithm be specified?
 - > An algorithm can be specified in English, as a computer program, or even as a hardware design.

- > How can algorithm be specified?
 - > An algorithm can be specified in English, as a computer program, or even as a hardware design.
 - > The only requirement is that the specification must provide a precise description of the computational procedure to be followed.

- >Types of problem which can be solved by algorithms
 - o Managing, manipulating & retrieving the voluminous data

- >Types of problem which can be solved by algorithms
 - Managing, manipulating & retrieving the voluminous data
 - Shortest Route finding

- >Types of problem which can be solved by algorithms
 - Managing, manipulating & retrieving the voluminous data
 - Shortest Route finding
 - Public-key cryptography and digital signatures

- >Types of problem which can be solved by algorithms
 - o Managing, manipulating & retrieving the voluminous data
 - Shortest Route finding
 - Public-key cryptography and digital signatures
 - Resource scheduling, etc.
 - O A political candidate may want to determine where to spend money buying campaign advertising in order to maximize the chances of winning an election.

- >Types of problem which can be solved by algorithms
 - o Managing, manipulating & retrieving the voluminous data
 - Shortest Route finding
 - Public-key cryptography and digital signatures
 - Resource scheduling, etc.
 - O A political candidate may want to determine where to spend money buying campaign advertising in order to maximize the chances of winning an election.
 - An airline may wish to assign crews to flights in the least expensive way possible, making sure that each flight is covered and that government regulations regarding crew scheduling are met.

- >Types of problem which can be solved by algorithms
 - o Managing, manipulating & retrieving the voluminous data
 - Shortest Route finding
 - Public-key cryptography and digital signatures
 - Resource scheduling, etc.
 - o A political candidate may want to determine where to spend money buying campaign advertising in order to maximize the chances of winning an election.
 - An airline may wish to assign crews to flights in the least expensive way possible, making sure that each flight is covered and that government regulations regarding crew scheduling are met.
 - An Internet service provider may wish to determine where to place additional resources in order to serve its customers more effectively.

- >Types of problem which can be solved by algorithms
 - o Managing, manipulating & retrieving the voluminous data
 - Shortest Route finding
 - Public-key cryptography and digital signatures
 - Resource scheduling, etc.
 - o A political candidate may want to determine where to spend money buying campaign advertising in order to maximize the chances of winning an election.
 - An airline may wish to assign crews to flights in the least expensive way possible, making sure that each flight is covered and that government regulations regarding crew scheduling are met.
 - An Internet service provider may wish to determine where to place additional resources in order to serve its customers more effectively.
 - \circ All of these are examples of problems that can be solved using linear programming

> Different algorithms devised to solve the same problem often differ dramatically in their efficiency.

- > Different algorithms devised to solve the same problem often differ dramatically in their efficiency.
- > These differences can be much more significant than differences due to hardware and software.

- > Different algorithms devised to solve the same problem often differ dramatically in their efficiency.
- > These differences can be much more significant than differences due to hardware and software.
- > As an example, we will see two algorithms for sorting.

- > Different algorithms devised to solve the same problem often differ dramatically in their efficiency.
- > These differences can be much more significant than differences due to hardware and software.
- > As an example, we will see two algorithms for sorting.
- \gt The first, known as insertion sort, takes time roughly equal to $c_1 n^2$ to sort n items, where c_1 is a constant that does not depend on n. That is, it takes time roughly proportional to n^2 .

- > Different algorithms devised to solve the same problem often differ dramatically in their efficiency.
- > These differences can be much more significant than differences due to hardware and software.
- > As an example, we will see two algorithms for sorting.
- \gt The first, known as insertion sort, takes time roughly equal to $c_1 n^2$ to sort n items, where c_1 is a constant that does not depend on n. That is, it takes time roughly proportional to n^2 .
- \triangleright The second, merge sort, takes time roughly equal to c_2 n lg n, where lg n stands for \log_2 n and c_2 is another constant that also does not depend on n.

> Insertion sort typically has a smaller constant factor than merge sort, so that c1 < c2.

- > Insertion sort typically has a smaller constant factor than merge sort, so that c1 < c2.
- >We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n.

- > Insertion sort typically has a smaller constant factor than merge sort, so that c1 < c2.
- >We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n.
- \triangleright Let's write insertion sort's running time as c_1 n n and merge sort's running time as c_2 n lg n.

- \triangleright Insertion sort typically has a smaller constant factor than merge sort, so that c1 < c2.
- >We shall see that the constant factors can have far less of an impact on the running time than the dependence on the input size n.
- \triangleright Let's write insertion sort's running time as c_1 n n and merge sort's running time as c_2 n lg n.
- Then we see that where insertion sort has a factor of n in its running time, merge sort has a factor of $\lg n$, which is much smaller. (For example, when n = 1000, $\lg n$ is approximately 10, and when n equals one million, $\lg n$ is approximately only 20.)

> Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of lg n vs. n will more than compensate for the difference in constant factors.

- ➤ Although insertion sort usually runs faster than merge sort for small input sizes, once the input size n becomes large enough, merge sort's advantage of lg n vs. n will more than compensate for the difference in constant factors.
- \triangleright No matter how much smaller c_1 is than c_2 , there will always be a crossover point beyond which merge sort is faster.

- > Different algorithms, constants & hardware proficiency
 - o Problem: Sort 10 million numbers
 - \circ Computer A: insertion sort, 10bi/s, $c_1=2$
 - \circ Computer B: merge sort, 10mi/s, $c_2=50$
 - Ocomputer A: $\frac{2 \cdot (10^7)^2 \text{ instructions}}{10^{10} \text{ instructions/second}} = 20,000 \text{ seconds (more than 5.5 hours)}$

○ Computer B: $\frac{50 \cdot 10^7 \, \text{lg } 10^7 \, \text{instructions}}{10^7 \, \text{instructions/second}} \approx 1163 \, \text{seconds (less than 20 minutes)}$

> What is to be analyzed?

- > What is to be analyzed?
 - memory, communication bandwidth, hardware, computational time

- > What is to be analyzed?
 - memory, communication bandwidth, hardware, computational time
- > One processor Random Access Machine (RAM) model
 - Implementation Technology

- > What is to be analyzed?
 - memory, communication bandwidth, hardware, computational time
- > One processor Random Access Machine (RAM) model
 - Implementation Technology
 - o Instructions are executed one after another, with no concurrent operations

- > What is to be analyzed?
 - memory, communication bandwidth, hardware, computational time
- > One processor Random Access Machine (RAM) model
 - Implementation Technology
 - Instructions are executed one after another, with no concurrent operations
 - Instructions of RAM model
 - Arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling)
 - Data movement (load, store, copy) and control (conditional and unconditional branch, subroutine call and return)

- > What is to be analyzed?
 - memory, communication bandwidth, hardware, computational time
- > One processor Random Access Machine (RAM) model
 - Implementation Technology
 - Instructions are executed one after another, with no concurrent operations
 - Instructions of RAM model
 - Arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling)
 - Data movement (load, store, copy) and control (conditional and unconditional branch, subroutine call and return)
 - Each such instruction takes constant amount of time - Primitive / Elementary Operations

> Input Size

> The best notion for input size depends on the problem being studied.

- > The best notion for input size depends on the problem being studied.
- For many problems, such as **sorting** or computing discrete Fourier transforms, the most natural measure is the number of items in the input—for example, the array size n for sorting.

- > The best notion for input size depends on the problem being studied.
- For many problems, such as **sorting** or computing discrete Fourier transforms, the most natural measure is the number of items in the input—for example, the array size n for sorting.
- For many other problems, such as multiplying two integers, the best measure of input size is the total number of bits needed to represent the input in ordinary binary notation.

- > The best notion for input size depends on the problem being studied.
- For many problems, such as **sorting** or computing discrete Fourier transforms, the most natural measure is the number of items in the input—for example, the array size n for sorting.
- For many other problems, such as multiplying two integers, the best measure of input size is the total number of bits needed to represent the input in ordinary binary notation.
- Sometimes, it is more appropriate to describe the size of the input with two numbers rather than one. For instance, if the input to an algorithm is a **graph**, the input size can be described by the numbers of vertices and edges in the graph.

- > The best notion for input size depends on the problem being studied.
- For many problems, such as **sorting** or computing discrete Fourier transforms, the most natural measure is the number of items in the input—for example, the array size n for sorting.
- For many other problems, such as multiplying two integers, the best measure of input size is the total number of bits needed to represent the input in ordinary binary notation.
- > Sometimes, it is more appropriate to describe the size of the input with two numbers rather than one. For instance, if the input to an algorithm is a graph, the input size can be described by the numbers of vertices and edges in the graph.
- > We shall indicate which input size measure is being used with each problem we study.

- > Running Time
 - > The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.

- > The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.
- > It is convenient to define the notion of step so that it is as machine-independent as possible.

- > The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.
- > It is convenient to define the notion of step so that it is as machine-independent as possible.
- > For the moment, let us adopt the following view.

- > The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.
- > It is convenient to define the notion of step so that it is as machine-independent as possible.
- > For the moment, let us adopt the following view.
- > A constant amount of time is required to execute each line of our pseudocode.

- > The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.
- > It is convenient to define the notion of step so that it is as machine-independent as possible.
- > For the moment, let us adopt the following view.
- > A constant amount of time is required to execute each line of our pseudocode.
- \triangleright One line may take a different amount of time than another line, but we shall assume that each execution of the ith line takes time c_i , where c_i is a constant.

- > The running time of an algorithm on a particular input is the number of primitive operations or "steps" executed.
- > It is convenient to define the notion of step so that it is as machine-independent as possible.
- > For the moment, let us adopt the following view.
- > A constant amount of time is required to execute each line of our pseudocode.
- \triangleright One line may take a different amount of time than another line, but we shall assume that each execution of the ith line takes time c_i , where c_i is a constant.
- > This viewpoint is in keeping with the RAM model, and it also reflects how the pseudocode would be implemented on most actual computers.

> Comparison of Running Time

	lg n	n	n lg n	n²	n ³	2 ⁿ
1	0.0	1.0	0.0	1.0	1.0	2.0
2	1.0	2.0	2.0	4.0	8.0	4.0
5	2.3	5.0	11.6	25.0	125.0	32.0
10	3.3	10.0	33.2	100.0	1000.0	1024.0
15	3.9	15.0	58.6	225.0	3375.0	32768.0
20	4.3	20.0	86.4	400.0	8000.0	1048576.0
30	4.9	30.0	147.2	900.0	27000.0	1073741824.0
40	5.3	40.0	212.9	1600.0	64000.0	1099511627776.0
50	5.6	50.0	282.2	2500.0	125000.0	1125899906842620.0
60	5.9	60.0	354.4	3600.0	216000.0	1152921504606850000.0
70	6.1	70.0	429.0	4900.0	343000.0	1180591620717410000000.0
80	6.3	80.0	505.8	6400.0	512000.0	12089258196146300000000000.0
90	6.5	90.0	584.3	8100.0	729000.0	12379400392853800000000000000000000000000000000000
100	6.6	100.0	664.4	10000.0	1000000.0	1267650600228230000000000000000000000000000000

- > Space Complexity
 - > Space Complexity of an algorithm is total space taken by the algorithm with respect to the input size.

Analyzing Algorithms - Which one is better?

```
largest = a
if b > largest then
   largest = b
end if
if c > largest then
   largest = c
end if
if d > largest then
   largest = d
end if
return largest
```

```
if a > b then
   if a > c then
      if a > d then
         return a
      else.
         return d
      end if
   else
      if c > d then
         return c
      else.
         return d
      end if
   end if
else
   if b > c then
      if b > d then
         return b
      else
         return d
      end if
   alg
      if c > d then
         return c
      else.
         return d
      end if
   end if
end if
```


INSERTION-SORT (A)

```
for j = 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1...j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```

INSERTION-SORT (A)

1 for
$$j = 2$$
 to A. length

$$2 key = A[j]$$

3 // Insert
$$A[j]$$
 into the sorted sequence $A[1...j-1]$.

$$4 i = j - 1$$

5 **while**
$$i > 0$$
 and $A[i] > key$

$$6 A[i+1] = A[i]$$

$$7 i = i - 1$$

$$8 A[i+1] = key$$

$$c_1$$
 n

$$c_2 \qquad n-1$$

$$0 n-1$$

$$c_4 \qquad n-1$$

$$c_5 \qquad \sum_{j=2}^n t_j$$

$$c_6 \qquad \sum_{j=2}^{n} (t_j - 1)$$

$$c_7 \qquad \sum_{j=2}^{n} (t_j - 1)$$

$$c_8 \qquad n-1$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

Best Case Running Time (i.e. Array is already Sorted):

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

Worst Case Running Time (i.e. Array is Sorted in Reverse Order)

$$\sum_{j=2}^{n} j = \frac{n(n+1)}{2} - 1 \quad T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n+1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$
and
$$\sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2} = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8).$$

Average Case Running Time

On average, half the elements in A[1 ... j-1] are less than A[j], and half the elements are greater. On average, therefore, we check half of the subarray A[1 ... j-1], and so t_j is about j/2. The resulting average-case running time turns out to be a quadratic function of the input size, just like the worst-case running time.

- > Order of Growth
 - We used some simplifying abstractions to ease our analysis of the INSERTION-SORT procedure.

- > Order of Growth
 - We used some simplifying abstractions to ease our analysis of the INSERTION-SORT procedure.
 - \circ First, we ignored the actual cost of each statement, using the constants c_i to represent these costs.

- > Order of Growth
 - We used some simplifying abstractions to ease our analysis of the INSERTION-SORT procedure.
 - \circ First, we ignored the actual cost of each statement, using the constants c_i to represent these costs.
 - \circ Then, we observed that even these constants give us more detail than we really need: we expressed the worst-case running time as an² + bn + c for some constants a, b, and c that depend on the statement costs c_i .

- > Order of Growth
 - We used some simplifying abstractions to ease our analysis of the INSERTION-SORT procedure.
 - \circ First, we ignored the actual cost of each statement, using the constants c_i to represent these costs.
 - \circ Then, we observed that even these constants give us more detail than we really need: we expressed the worst-case running time as an² + bn + c for some constants a, b, and c that depend on the statement costs c_i .
 - \circ We thus ignored not only the actual statement costs, but also the abstract costs c_i .

- > Order of Growth
 - We shall now make one more simplifying abstraction: it is the rate of growth, or order of growth, of the running time that really interests us.

> Order of Growth

- We shall now make one more simplifying abstraction: it is the rate of growth, or order of growth, of the running time that really interests us.
- We therefore consider only the leading term of a formula (e.g., an²), since the lower-order terms are relatively insignificant for large values of n.

> Order of Growth

- We shall now make one more simplifying abstraction: it is the rate of growth, or order of growth, of the running time that really interests us.
- We therefore consider only the leading term of a formula (e.g., an²), since the lower-order terms are relatively insignificant for large values of n.
- We also ignore the leading term's constant coefficient, since constant factors are less significant than the rate of growth in determining computational efficiency for large inputs.

- > Order of Growth
 - We shall now make one more simplifying abstraction: it is the rate of growth, or order of growth, of the running time that really interests us.
 - We therefore consider only the leading term of a formula (e.g., an²), since the lower-order terms are relatively insignificant for large values of n.
 - We also ignore the leading term's constant coefficient, since constant factors are less significant than the rate of growth in determining computational efficiency for large inputs.
 - o For insertion sort, when we ignore the lower-order terms and the leading term's constant coefficient, we are left with the factor of n² from the leading term.

- > Order of Growth
 - \circ We write that insertion sort has a worst-case running time of $\theta(n^2)$ (pronounced "theta of n-squared").
 - We usually consider one algorithm to be more efficient than another if its worst-case running time has a lower order of growth.
 - Due to constant factors and lower order terms, an algorithm whose running time has a higher order of growth might take less time for small inputs than an algorithm whose running time has a lower order of growth.
 - \circ But for large enough inputs, θ (n^2) algorithm, for example, will run more quickly in the worst case than a , θ (n^3) algorithm.

Disclaimer

> The presentation is not original and its is prepared from various sources for teaching purpose only.