Capítulo 1

El oscilador armónico

Para el oscilador armónico 1D el hamiltoniano y energía eran

$$H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2} \qquad E = \hbar\omega \left(n + \frac{1}{2}\right)$$

pero este problema puede resolverse usando un nuevo operador \hat{a}

$$\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right) \qquad \text{con} \quad \hat{a}^\dagger = \sqrt{\frac{m\omega}{2\hbar}} \left(x - i \frac{p}{m\omega} \right)$$

que es suma de \hat{x},\hat{p} pero que no es hermítico. Cumple que

$$[a,a^{\dagger}]=1 \qquad aa^{\dagger}=\frac{H}{\hbar\omega}-1 \qquad H=\hbar\omega\left(aa^{\dagger}+\frac{1}{2}\right),$$

donde se define el operador número $\hat{N}\equiv a^{\dagger}a$ que al verificar $[\hat{N},\hat{H}]=0$ tienen base de autoestados en común $\{|n\rangle\}$. En efecto

$$\hat{N}\left|n\right\rangle = n\left|n\right\rangle \qquad \hat{H}\left|n\right\rangle = \hbar\omega\left(n + \frac{1}{2}\right)\left|n\right\rangle$$

siendo n el número de cuantos de energía. Se cumplen además

$$[N,a] = [a^{\dagger}a,a] = -[a,a^{\dagger}a] = -\left(a^{\dagger}[a,a] + [a,a^{\dagger}]a\right) = -a$$

$$[N,a^{\dagger}] = [a^{\dagger}a,a^{\dagger}] = -[a^{\dagger},a^{\dagger}a] = -\left(a^{\dagger}[a^{\dagger},a] + [a^{\dagger},a]a^{\dagger}\right) = a^{\dagger}$$

Queremos ver que le hace a^{\dagger} a un autoestado $|n\rangle$ y luego a sobre el mismo.

$$Na^{\dagger}\left|n\right\rangle = \left(\left[N,a^{\dagger}\right] + a^{\dagger}N\right)\left|n\right\rangle = a^{\dagger}\left|n\right\rangle + a^{\dagger}n\left|n\right\rangle$$

$$\hat{N}(a^{\dagger} | n \rangle) = (n+1)(a^{\dagger} | n \rangle)$$

Entonces, como no hay degeneración y tenemos $N\left|n'\right>=n'\left|n'\right>$ entonces

$$a^{\dagger} |n\rangle = c_1 |n+1\rangle$$
,

y procediendo de modo idem para $a | n \rangle$ será

$$a|n\rangle = c_2|n-1\rangle$$

Luego,

$$\begin{split} a^{\dagger} \left| n \right\rangle &= c_1 \left| n + 1 \right\rangle \stackrel{DC}{\widehat{\longrightarrow}} \left\langle n + 1 \right| c_1^* = \left\langle n \right| a \\ a \left| n \right\rangle &= c_2 \left| n - 1 \right\rangle \stackrel{DC}{\widehat{\longrightarrow}} \left\langle n - 1 \right| c_2^* = \left\langle n \right| a^{\dagger} \end{split}$$

y entonces

$$\begin{split} &\langle n \,|\, N \,|\, n \rangle = n \,\langle n \,|\, n \rangle = n = \langle n \,|\, a^\dagger a \,|\, n \rangle = \langle n-1 \,|\, c_2^* c_2 \,|\, n-1 \rangle = |c_2|^2 \,\langle n-1 \,|\, n-1 \rangle \\ &n = \langle n \,|\, a a^\dagger - 1 \,|\, n \rangle = -1 + \langle n \,|\, a a^\dagger \,|\, n \rangle = -1 + \langle n+1 \,|\, c_1^* c_1 \,|\, n+1 \rangle = -1 + |c_1|^2 \,\langle n+1 \,|\, n+1 \rangle \\ &\text{siendo} \end{split}$$

$$\begin{split} |c_2| &= \sqrt{n} \qquad |c_1| = \sqrt{n+1} \\ \hat{a}^\dagger \left. |n\rangle &= \sqrt{n+1} \left. |n+1\rangle \right. \qquad \hat{a} \left. |n\rangle \right. &= \sqrt{n} \left. |n-1\rangle \right. \end{split}$$

y entonces de esta forma \hat{a}^{\dagger} es el operador de creación de cuantos y \hat{a} el de aniquilación.

1.0.1 El estado fundamental $\langle 0 \rangle$

$$a \mid n \rangle \xrightarrow{DC} \langle n \mid a^{\dagger}$$

y desde el postulado para productos internos,

$$(\langle n | a^{\dagger})(a | n \rangle) \ge 0 \quad n \langle n | n \rangle \ge 0 \Rightarrow n \ge 0$$

entonces n cabalga por los naturales. Si hacemos

$$a |n\rangle = \sqrt{n} |n-1\rangle$$
, $a^2 |n\rangle = \sqrt{n} \sqrt{n-1} |n-2\rangle$...

en algún momento se llega a $|n=0\rangle$, entonces $E_0=\hbar\omega/2$ y

$$|0\rangle \equiv \text{El fundamental}$$

y no se puede bajar más,

$$\hat{a} |0\rangle = 0.$$

Por otra parte, con el \hat{a}^{\dagger} se puede llegar a cualquier estado

$$a^{\dagger} |0\rangle = \sqrt{1} |1\rangle$$
, $a^{\dagger 2} |0\rangle = \sqrt{1}\sqrt{2} |2\rangle = \sqrt{1}\sqrt{2}\sqrt{3} |3\rangle$
$$\frac{(a^{\dagger})^n}{\sqrt{n}!} |0\rangle = |n\rangle$$

Las matrices de $\hat{a},\hat{a}^{\dagger}$ sólo tienen una diagonal corrida de elementoss

$$\langle n' \mid a \mid n \rangle = \sqrt{n} \, \langle n' \mid n-1 \rangle = \sqrt{n} \delta_{n', n-1}$$

$$\langle n' \mid a^{\dagger} \mid n \rangle = \sqrt{n-1} \, \langle n' \mid n+1 \rangle = \sqrt{n-1} \delta_{n', n+1}$$

También puede verse que

$$\langle n | x | n \rangle = 0$$
 $\langle n | p | n \rangle = 0$

y por ello

$$\left\langle (\Delta x)^2 \right\rangle_{|0\rangle} \left\langle (\Delta p)^2 \right\rangle_{|0\rangle} = \frac{\hbar^2}{4}$$

el estado fundamental es el de incerteza mínima.

1.0.2 Función de onda

Siendo $\Psi_n(x') = \langle x' \, \big| \, n \rangle$ quiero evaluar $\Psi_0(x') = \langle x' \, \big| \, 0 \rangle$ y ver que como

$$\langle x' | a | 0 \rangle = 0$$

tengo

$$0 = \sqrt{\frac{m\omega}{2\hbar}} \left\langle x' \left| x + \frac{ip}{m\omega} \right| 0 \right\rangle = \sqrt{\frac{m\omega}{2\hbar}} \left[x' \left\langle x' \right| 0 \right\rangle + \frac{i}{m\omega} \left\langle x' \left| p \right| 0 \right\rangle \right]$$
$$x' \left\langle x' \left| 0 \right\rangle + \frac{i}{m\omega} (-i\hbar) \frac{\partial}{\partial x} \left\langle x' \left| 0 \right\rangle = 0$$

entonces

$$x' \langle x' | 0 \rangle = -\frac{\hbar}{m\omega} \frac{\partial}{\partial x'} \langle x' | 0 \rangle$$
$$-\int \frac{m\omega}{\hbar} x' dx' = \int \frac{d \langle x' | 0 \rangle}{\langle x' | 0 \rangle} \Rightarrow \langle x' | 0 \rangle = \kappa e^{-m\omega x'^{2}/(2\hbar)}$$

y entonces

$$1 = \int_{-\infty}^{\infty} \langle 0 | x' \rangle \langle x' | 0 \rangle dx' = \int_{-\infty}^{\infty} |\kappa|^2 e^{-m\omega x'^2/\hbar} dx' = |\kappa|^2 \sqrt{\frac{\pi \hbar}{m\omega}}$$
$$|\kappa| = \left(\frac{m\omega}{\pi \hbar}\right)^{1/2} = \frac{1}{(\pi x_0^2)^{1/4}}$$

donde usamos el conocido resultado $\int_{-\infty}^{\infty} \exp(-ax^2) dx = \sqrt{\pi/a}$, llegamos al llamado pack gaussiano.

$$\langle x' | 0 \rangle = \frac{1}{(\pi x_0^2)^{1/4}} e^{-\frac{1}{2}(x'/x_0)^2}$$

El estado fundamental tiene incerteza mínima y debe corresponder a un paquete gaussiano.

Notemos que \hat{a}^{\dagger} crea sobre ket y aniquila sobre bra, mientras que \hat{a} aniquila sobre ket y crea sobre bra,

$$a^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle \Rightarrow \langle n| \, a = \langle n+1| \sqrt{n+1}$$

$$a |n\rangle = \sqrt{n} |n-1\rangle \Rightarrow \langle n| \, a^{\dagger} = \langle n-1| \sqrt{n}$$

1.0.3 Interferencia en experimento de Young

Consideremos la situación depicted en la figura bajo estas líneas

Figura 0.1

Uso \hat{H} de partículas libres.

$$\frac{1}{2}\left|\alpha\right\rangle = \left|\alpha_1\right\rangle = \left|\alpha_2\right\rangle$$

para t > 0 se tiene

$$\begin{split} |\tilde{\alpha_1}\rangle = \, \mathrm{e}^{-iHt/\hbar} \, |\alpha_1\rangle = \, \mathrm{e}^{-iE_\alpha t/\hbar} \, |\alpha_1\rangle \\ |\tilde{\alpha_2}\rangle = \, \mathrm{e}^{-iE_\alpha t/\hbar} \, |\alpha_2\rangle \end{split}$$

En la pantalla debe verse la interferencia de los dos estados solapados.

$$\begin{split} |\tilde{\alpha}\rangle &= |\tilde{\alpha_1}\rangle + |\tilde{\alpha_2}\rangle = \,\mathrm{e}^{-iE_\alpha\frac{d_1}{v}/\hbar}\,|\alpha_1\rangle + \,\mathrm{e}^{-iE_\alpha\frac{d_2}{v}/\hbar}\,|\alpha_2\rangle \\ |\tilde{\alpha}\rangle &= \frac{1}{2}\,\mathrm{e}^{-iE_\alpha\frac{d_1}{v}/\hbar}|1 + \,\mathrm{e}^{-iE_\alpha\frac{d_2-d_1}{v}/\hbar}|\,|\alpha_1\rangle \end{split}$$

y si definimos

$$\beta = E_{\alpha} \frac{d_2 - d_1}{v} / \hbar,$$

resulta entonces

$$\langle \tilde{\alpha} \, | \, \tilde{\alpha} \rangle = \frac{1}{4} |1 + e^{-iE_{\alpha} \frac{d_2 - d_1}{v} / \hbar}|^2 = \frac{1}{4} ((1 + \cos \beta)^2 + \sin^2 \beta) = \frac{1}{2} + \frac{1}{2} \cos (\beta) \,.$$

Al partir el estado $|\alpha_1\rangle$ y volver a unirlo en $|\alpha_1\rangle+|\alpha_2\rangle$ vemos una intensidad que dependa de la diferencia de camino.

1.0.4 Cambio de cero del potencial

En mecánica clásica la física de un problema no se ve afectada por un cambio de gauge. Si movemos el cero de potencial, la situación física es la misma. Veamos qué sucede en mecánica cuántica.

$$\begin{split} |\alpha,t,t_0\rangle &= \,\mathrm{e}^{-i(p^2/2m+V(x))(t-t_0)/\hbar}\,|\alpha,t_0\rangle \\ |\tilde{\alpha},t,t_0\rangle &= \,\mathrm{e}^{-i(p^2/2m+V(x)+V_0)(t-t_0)/\hbar}\,|\alpha,t_0\rangle \\ |\tilde{\alpha},t,t_0\rangle &= \,\mathrm{e}^{-iV_0(t-t_0)/2}\,|\alpha,t,t_0\rangle \end{split}$$

y entonces vemos que $|\tilde{\alpha}, t\rangle$ y $|\alpha, t\rangle$ difieren en una fase, de manera que los valores de expectación no cambian (con V_0 constante).

Este es un experimento ideal (pensado). Dentro de los cilindros hay campo nulo. Se varia el V abriendo y cerrando la llave a la entrada y a la salida. Se cambia la fase de las partículas inferiores respecto de las superiores, entonces habrá interferencia en O.

Clásicamente no hay variación,

$$\Delta {\rm fase} = -\frac{i}{\hbar} \ {\rm e} \int_{t_1}^{t_2} V_1(t) - V_2(t) dt = -\frac{i}{\hbar} \ {\rm e} \Delta V$$

Figura 0.2

Lo que realmente cuenta es la diferencia de potencial ΔV , la cual sí tiene sentido físico porque es independiente de la medida y porque pueden escribirse los campos en función de aquella.

$$\begin{split} E &= - \mathbf{\nabla} \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \\ H &= \frac{1}{2m} \left(\mathbf{p} - \frac{\mathbf{e} \mathbf{A}}{c} \right)^2 + \mathbf{e} \phi \\ \frac{dH}{dt} &= \frac{1}{i\hbar} [x_i, H] = \frac{p_i \, \mathbf{e} A_i}{m} \end{split}$$

1.1 El propagador

Físicamente representa la proababilidad de transición entre autoestados por el paso del tiempo, $|x'\rangle_{t_0} \longrightarrow |x''\rangle_t$

$$\begin{split} \left\langle x'' \mid \mathrm{e}^{-iH(t-t_0)/\hbar} \mid x' \right\rangle &\equiv K(x',t;x,t_0) \\ \left\langle x'' \mid \alpha,t_0,t \right\rangle &= \left\langle x'' \mid \mathrm{e}^{-iH(t-t_0)/\hbar} \mid \alpha,t_0 \right\rangle \\ \left\langle x'' \mid \alpha,t_0,t \right\rangle &= \int dx' \left\langle x'' \mid \mathrm{e}^{-iH(t-t_0)/\hbar} \mid x' \right\rangle \left\langle x' \mid \alpha,t_0 \right\rangle \\ &\Psi_{\alpha}(x'',t) &= \int dx' K(x'',t;x',t) \Psi_{\alpha}(x',t) \end{split}$$

Podemos pensar que el propagador lleva la función de onda desde t_0 a t. Se puede escribir:

$$K(x',t;x,t_0) = \sum_{a'} \left\langle x'' \mid a' \right\rangle \left\langle a' \mid x' \right\rangle \, \mathrm{e}^{-iE_a(t-t_0)/\hbar}$$

y metemos un observable \hat{A} donde [A, H] = 0 y $A |a'\rangle = a |a'\rangle$.

El propagador depende del potencial, pero no de la función de onda inicial. Se debe cumplir que:

$$\begin{split} \lim_{t \to t_0} K(x',t;x,t_0) &= \delta^3(x''-x') \\ K(x'',t;x,t_0) &= \left\langle x'' \mid \mathrm{e}^{-iH(t-t_0)/\hbar} \mid a' \right\rangle \left\langle a' \mid x' \right\rangle = \sum_{a'} \Psi_{\mid a' \rangle}(x'',t) \left\langle a' \mid x' \right\rangle \\ K(x'',t;x,t_0) &= \sum_{a'} c_{a'}(x') \Psi_{\mid a' \rangle}(x'',t) \end{split}$$

y entonces el propagador es una función de Green que satisface

$$\left(-\frac{\hbar^2}{2m}\nabla^2+V(x'')-i\hbar\frac{\partial}{\partial t}\right)K(x',t;x,t_0)=-i\hbar\delta^3(x''-x')\delta(t-t_0)$$

con $K(x'', t; x', t_0) = 0$ si t < 0 que es la condición de contorno.

1.1.1 El propagador de la partícula libre

$$\begin{split} K(x'',t;x,t_0) &= \int dp' \left\langle x'' \left| \right. \mathrm{e}^{-ip^2(t-t_0)/2m\hbar} \left| p' \right\rangle \left\langle p' \left| x' \right\rangle \right. \\ &= \int dp' \mathrm{e}^{-ip'^2(t-t_0)/2m\hbar} \left\langle x'' \left| p' \right\rangle \left\langle p' \left| x' \right\rangle \right. \\ &= \frac{1}{2\pi\hbar} \int dp' \mathrm{e}^{-ip'^2(t-t_0)/2m\hbar} \mathrm{e}^{-ip'(x'-x'')/\hbar} \end{split}$$

y entonces el propagador de una partícula libre es

$$K(x'',t;x,t_0) = \sqrt{\frac{m}{2\pi\hbar(t-t_0)}}\,\mathrm{e}^{i\frac{m(x''-x')^2}{2\hbar(t-t_0)}}$$

También se puede escribir el propagador en la representación de Heisenberg,

$$\begin{split} \left\langle x'' \mid \mathrm{e}^{-iH(t-t_0)/\hbar} \left| \, x' \right\rangle &= \left\langle x'' \right| \, \mathrm{e}^{-iHt/\hbar} \, \mathrm{e}^{iHt_0/\hbar} \left| x' \right\rangle = \left\langle x'', t \, \middle| \, x', t_0 \right\rangle \\ &K(x'', t; x', t_0) = \left\langle x'', t \, \middle| \, x', t_0 \right\rangle. \end{split}$$

El propagador cumple con la propiedad de composición (como el $U(t,t_0)$), es decir:

$$K(x'', t; x, t_0) = K(x'', t; x, t_1)K(x'', t_1; x, t_0)$$
 $t > t_1 > t_0$

1.2 Integrales de camino de Feynmann

Consideramos una partícula yendo de (\boldsymbol{x}_1,t_1) a $(\boldsymbol{x}_N,t_N).$ Dividimos el tiempo

$$\delta t = \frac{t_N - t_1}{(N - 1)}$$

y queremos ver la amplitud de transición desde el estado 1 al N.

Figura 2.3

$$\langle x_N,t_N|x_1,t_1\rangle = \int dx_{N-1} \int dx_{N-2} \ldots \int dx_2 \, \langle x_N,t_N \, | \, x_{N-1},t_{N-1}\rangle \ldots \langle x_2,t_2 \, | \, x_1,t_1\rangle$$

Se puede pensar como que estamos sumando sobre todos los posibles caminos entre (x_1,t_1) y (x_N,t_N) fijos. En mecánica clásica teníamos un solo camino, el que minimizaba la acción S

$$\delta \int_{t_1}^{t_2} \mathcal{L}dt = \delta S = 0$$

pero en cambio en mecánica cuántica todos los caminos aportan. En un libro de Dirac, Feymann lee

$$\langle x_2, t_2 \, | \, x_1, t_1 \rangle \,$$
 corresponde a $\, {\rm e}^{i \int_{t_1}^{t_2} \mathcal{L}/\hbar dt}$

Definiremos

$$S_{(n,n-1)} \equiv \int_{t_{n-1}}^{t_n} \mathcal{L}(x,\dot{x}) dt$$

Luego para considerar la suma sobre todos los segmentillos a lo largo de un camino tendremos

$$\prod_{n=2}^N \, \mathrm{e}^{i/\hbar S(n\,,n-1)} = \, \mathrm{e}^{i/\hbar \prod_{n=2}^N S(n\,,n-1)} = \, \mathrm{e}^{iS(N,1)/\hbar}$$

y hay que considerar TODOS los posibles caminos

$$\propto \sum_{caminos} \mathrm{e}^{i/\hbar S(N,1)}$$

cuando $\hbar \to 0$ las trayectorias contribuyen con una cantidad que oscila loca y violentamente. Tienden a la cancelación para caminos aledaños. Por el $\hbar \sim 0$ la fase es grande y entonces se cancelan. Esto no ocurre cerca del camino (real) que cumple

$$\delta S(N,1) = 0$$

Para trayectorias cercanas la $\Delta fase$ no es grande y hay interferencia constructiva. Para un δt infinitesimal es

$$\langle x_n, t_n \, | \, x_{n-1}, t_{n-1} \rangle = N \, \mathrm{e}^{i \, S(n \, , \, n-1)/\hbar}$$

$$S(n,n-1) = \int_{t_{n-1}}^{t_n} \left(\frac{m}{2} \dot{x}^2 - V(x) \right) dt \approx \int_{t_{n-1}}^{t_n} \left(\frac{m}{2} \frac{(x_n - x_{n-1})^2}{\delta t^2} - V\left(\frac{x_n + x_{n-1}}{2} \right) \right) dt$$

donde la última expresión es a orden 1 (pues $\delta t \sim 0$).

Figura 2.4

Consideremos, por ejemplo, una partícula libre, entonces ${\cal V}=0$ de modo que resolviendo

$$\langle x_n, t_n \, | \, x_{n-1}, t_{n-1} \rangle = N \, \mathrm{e}^{i \, m (x_n - x_{n-1})/2 \hbar \delta t}$$

Esto no es otra cosa que el propagador de una partícula libre. Para un Δt finito será

$$\begin{split} \langle x_n,t_n\,|\,x_1,t_1\rangle &= \lim_{N\to\infty} \left(\frac{m}{i2\pi\hbar\delta t}\right)^{(N-1)/2} \int dx_{n-1} \int dx_{n-2} \ldots \int dx_2 \prod_{n=2}^N \mathrm{e}^{iS(n,n-1)/\hbar} \\ \langle x_n,t_n\,|\,x_1,t_1\rangle &= \int_{x_1}^{x_n} D[x(t)] \,\mathrm{e}^{i\int_{t_1}^{t_n}\mathcal{L}(x,\dot{x})/\hbar} dt \end{split}$$

siendo esta última la integral de camino de Feynmann.

En base a éstas Feynamn desarrolla una formulación equivalente de la mecánica cuántica que utiliza los conceptos de:

- 1. Superposición
- 2. Composición de la transición
- 3. Límite clásico con $\hbar \to 0$

Estas integrales contienen toda la información del sistema cuántico, aunque no sea sencillo extraerla.

Consideremos un propagador de $(x',0) \rightarrow (x',t)$

$$\begin{split} G(t) &= \int dx' K(x',t;x',0) = \int dx' \left\langle x' \mid \mathrm{e}^{-iHt/\hbar} \mid x' \right\rangle \\ G(t) &= \sum_{a'} \int dx' \left\langle x' \mid \mathrm{e}^{-iHt/\hbar} \mid a' \right\rangle \left\langle a' \mid x' \right\rangle = \sum_{a'} \mathrm{e}^{-iE_{a'}t/\hbar} \int dx' \left\langle x' \mid a' \right\rangle \left\langle a' \mid x' \right\rangle \\ G(t) &= \sum_{a'} \mathrm{e}^{-iE_{a'}t/\hbar} \int dx' |\left\langle x' \mid a' \right\rangle|^2 = \sum_{a'} \mathrm{e}^{-iE_{a'}t/\hbar} \end{split}$$

que es reminiscencia de la función de partición de mecánica estadística. Tomando Laplace-Fourier

$$\tilde{G}(E) = -i \int dE \frac{G(t)}{\hbar} e^{iEt/\hbar} = \sum_{a'} \frac{1}{E - E_{a'}}$$

y el espectro de autoenergías son los polos de $\tilde{G}(E)$.

La expresión

$$\langle x, t | x_1, t_1 \rangle \equiv$$
 Integral de camino de Feynmann

satisface la ecuación de Schrödinger y es una alternativa a la formulación de la cuántica usual.