Diferenciálny počet - derivácia funkcie (2. časť)

Zuzana Minarechová

Katedra matematiky a deskriptívnej geometrie Slovenská technická univerzita, Stavebná fakulta

6 Október 2022

Obsah prednášky

- Derivácie
 - Derivácia implicitnej funkcie
 - Derivácia funkcie určenej parametrickými rovnicami
 - Derivácie vyšších rádov
- Diferenciálny počet aplikácie
 - Dotyčnica a normála ku grafu funkcie

Obsah prednášky

- Derivácie
 - Derivácia implicitnej funkcie
 - Derivácia funkcie určenej parametrickými rovnicami
 - Derivácie vyšších rádov
- Diferenciálny počet aplikácie
 - Dotyčnica a normála ku grafu funkcie

Derivácia implicitnej funkcie

- Rovnica F(x,y)=0 určuje funkčný vzťah medzi veličinami x a y.
- Takúto funkciu voláme funkcia určená implicitne rovnicou F(x,y)=0.
- Ak funkcia určená implicitne má deriváciu v niektorej množine, tak túto môžeme vypočítať aj bez explicitného vyjadrenia funkcie f.
- ullet Postupujeme pri tom tak, že derivujeme obidve strany rovnice, pričom ľavú stranu **derivujeme ako zloženú funkciu** F(x,y(x)).
- Tento postup je veľmi užitočný najmä v situáciách, keď veličinu y nie sme schopní z rovnice vyjadriť.

Derivácia implicitnej funkcie - Riešené príklady

Príklad

Vypočítajte deriváciu funkcie $x^2 + y^2 = 1$.

Riešenie: Rovnica $x^2+y^2=1$ určuje dve funkcie $f_1:y=\sqrt{1-x^2}$ a $f_2:y=-\sqrt{1-x^2}.$ Vypočítame ich derivácie bez pomoci tohoto explicitného vyjadrenia:

$$2x + 2y.\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

a po vyjadrení hľadanej derivácie

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{y}$$

Derivácia implicitnej funkcie - Príklady

Príklad

Nájdite deriváciu implicitnej funkcie:

1)
$$x^2 + xy + y^2 - 3 = 0$$

$$2) x^2 - 3xy + 4y^2 - 2x + 3y = 0$$

3)
$$x^2y^3 - \sin(xy) = 0$$

Derivácia implicitnej funkcie - Príklady

Príklad

Nájdite deriváciu implicitnej funkcie:

1)
$$x^2 + xy + y^2 - 3 = 0$$

 $\frac{dy}{dx} = -\frac{y+2x}{x+2y}$

2)
$$x^2 - 3xy + 4y^2 - 2x + 3y = 0$$

 $\frac{dy}{dx} = \frac{2+3y-2x}{2}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2+3y-2x}{-3x+8y+3}$$

3)
$$x^2y^3 - \sin(xy) = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2xy^3 + \cos(xy)y}{3x^2y^2 - \cos(xy)x}$$

Obsah prednášky

- Derivácie
 - Derivácia implicitnej funkcie
 - Derivácia funkcie určenej parametrickými rovnicami
 - Derivácie vyšších rádov
- Diferenciálny počet aplikácie
 - Dotyčnica a normála ku grafu funkcie

Derivácia funkcie určenej parametrickými rovnicami

Rovinná krivka býva často určená parametrickými rovnicami

$$x = f(t),$$
 $y = g(t),$ $t \in (a, b).$

V prípade, keď $f'(t) \neq 0$ pre všetky $t \in (a,b)$, je krivka grafom funkcie určenej parametrickými rovnicami, ktorej deriváciu môžeme počítať aj bez jej explicitného vyjadrenia pomocou vzťahu:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{g'(t)}{f'(t)}.$$

Derivácia funkcie určenej par. rovnicami - Riešené príklady

Príklad

Vypočítajte deriváciu funkcie určenej parametrickými rovnicami

$$x = \cos t,$$
 $y = \sin t,$ $t \in \langle \pi, 2\pi \rangle.$

Riešenie:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos t}{-\sin t} = -\cot t.$$

Derivácia funkcie určenej par. rovnicami - Príklady

Príklad

Nájdite deriváciu funkcie danej parametrickými rovnicami:

$$x = te^{t},$$

 $y = t^{3} + 6t, t \in (0, \infty).$

Príklad

Nájdite deriváciu funkcie danej parametrickými rovnicami:

$$x = \sqrt{t^3}$$

$$y=t^2,\,t\in(0,\infty).$$

Derivácia funkcie určenej par. rovnicami - Príklady

Príklad

Nájdite deriváciu funkcie danej parametrickými rovnicami:

$$x = te^t,$$

$$y = t^3 + 6t, t \in (0, \infty).$$

$$\frac{dy}{dx} = \frac{3(t^2 + 2)}{e^t(1+t)}$$

Príklad

Nájdite deriváciu funkcie danej parametrickými rovnicami:

$$x = \sqrt{t^3},$$

$$y = t^2, t \in (0, \infty).$$

$$\frac{dy}{dx} = \frac{4\sqrt{t}}{3}$$

Obsah prednášky

- Derivácie
 - Derivácia implicitnej funkcie
 - Derivácia funkcie určenej parametrickými rovnicami
 - Derivácie vyšších rádov
- Diferenciálny počet aplikácie
 - Dotyčnica a normála ku grafu funkcie

Derivácie vyšších rádov

- Keďže derivácia elementárnej funkcie je funkciou, má zmysel hovoriť o derivácii derivácie atď.
- Druhou deriváciou funkcie f je derivácia funkcie f' (ak existuje).
- Pomocou indukcie môžeme takto definovať derivácie ľubovoľného rádu. Deriváciou n-tého rádu alebo n-tou deriváciou funkcie f je derivácia (n-1)-ej derivácie funkcie f (ak existuje).
- Derivácie vyšších rádov označujeme takto

$$f'', f''', f^4, f^5, \dots, f^{(n)}$$

$$y'', y''', y^4, y^5, \dots, y^{(n)}$$

$$\frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \frac{d^4y}{dx^4}, \frac{d^5y}{dx^5}, \dots, \frac{d^ny}{dx^n}$$

Derivácie vyšších rádov - Riešené príklady

Príklad

Vypočítajte deriváciu funkcie $(\log_2 3x)^{'''}$ a

Riešenie:

$$(\log_2 3x)' = \frac{1}{3x \ln 2} \cdot 3 = \frac{1}{x \ln 2}$$

$$(\log_2 3x)'' = \left(\frac{1}{x \ln 2}\right)' = \frac{1}{\ln 2} \cdot \left(\frac{-1}{x^2}\right)$$

$$(\log_2 3x)''' = \left(\frac{1}{\ln 2} \cdot \left(\frac{-1}{x^2}\right)\right)' = \frac{1}{\ln 2} \cdot \frac{2}{x^3}.$$

Derivácie vyšších rádov - Príklady

Príklad

Nájdite deriváciu:

1)
$$f^4(x)$$
 ak $f(x) = x^6 + 5x^4 + 2x^3 - x^2$ $f^4(x) = 360x^2 + 120$

2)
$$f^4(x)$$
 ak $f(x) = \frac{2}{x}$ $f^4(x) = \frac{48}{x^5}$

3)
$$f''(x)$$
 ak $f(x) = \tan x$ $f''(x) = 2 \frac{\sin x}{\cos^3 x}$

4)
$$f'''(x)$$
 ak $f(x) = \arctan x$ $f'''(x) = \frac{6x^2 - 2}{(1+x^2)^3}$

5)
$$f^5(x)$$
 ak $f(x) = x^4 \ln x$ $f^5(x) = \frac{24}{x}$

Obsah prednášky

- Derivácie
 - Derivácia implicitnej funkcie
 - Derivácia funkcie určenej parametrickými rovnicami
 - Derivácie vyšších rádov
- Diferenciálny počet aplikácie
 - Dotyčnica a normála ku grafu funkcie

Dotyčnica a normála ku grafu funkcie

• Nech t a n sú priamky, ktorých smernice sú k_t a k_n . Potom priamky t a n sú na seba kolmé práve vtedy, keď $k_t \cdot k_n = -1$.

Obr.: Dotyčnica a normála ku grafu funkcie y=f(x) v bode T

Dotyčnica a normála ku grafu funkcie

• Ak existuje derivácia funkcie f v bode x_0 , tak **číslo** $f'(x_0)$ **je smernicou dotyčnice** ku grafu funkcie y = f(x) v bode $[x_0, y_0]$ a číslo $-\frac{1}{f'(x_0)}$ je smernicou normály ku grafu funkcie y = f(x) v bode $[x_0, y_0]$. Preto

$$y - y_0 = f'(x_0)(x - x_0)$$

je rovnica dotyčnice ku grafu funkcie f v bode $\left[x_0,f(x_0)
ight]$ a

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

je rovnica normály ku grafu funkcie f v bode $[x_0, y_0]$.

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2$, ak dotykový bod T má x-ovú súradnicu $x_0 = 2$.

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2$, ak dotykový bod T má x-ovú súradnicu $x_0 = 2$.

Riešenie: Najprv vypočítame y-ovú súradnicu bodu T:

$$y_0 = f(2) = 4.$$

Dotykový bod má súradnice T = (2,4).

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2$, ak dotykový bod T má x-ovú súradnicu $x_0 = 2$.

Riešenie: Najprv vypočítame y-ovú súradnicu bodu T:

$$y_0 = f(2) = 4.$$

Dotykový bod má súradnice T = (2, 4).

Vypočítame smernicu dotyčnice k_t :

$$k_t = f'(2) = \lim_{x \to 2} \frac{x^2 - 2^2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = 4.$$

Dotyčnica t má rovnicu t: y - 4 = 4(x - 2).

Príklad

Nájdite rovnicu dotyčnice k funkcii f(x) = |x|, ak dotykový bod má súradnice T = (0,0).

Príklad

Nájdite rovnicu dotyčnice k funkcii f(x) = |x|, ak dotykový bod má súradnice T = (0,0).

Riešenie: Potrebujeme vypočítať deriáciu funkcie f pre $x_0=0$, teda limitu. Zvlášť vypočítame limitu sprava a limitu zľava.

$$\lim_{x \to 0^{+}} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^{+}} \frac{x}{x} = 1,$$

$$\lim_{x \to 0^{-}} \frac{|x| - 0}{x - 0} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1.$$

To znamená, že |x| nemá pre x=0 deriváciu, teda neexistuje ani dotyčnica v bode T.

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2 - 2x$, ktorá je rovnobežná s priamkou p: y = x.

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2 - 2x$, ktorá je rovnobežná s priamkou p: y = x.

Riešenie: Smernica priamky p je $k_p = 1$.

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2 - 2x$, ktorá je rovnobežná s priamkou p: y = x.

Riešenie: Smernica priamky p je $k_p=1$. Rovnobežné priamky majú rovnaké smernice, preto pre smernicu dotyčnice k_t platí

$$k_t = k_p = 1.$$

Príklad

Nájdite rovnicu dotyčnice k funkcii $f(x) = x^2 - 2x$, ktorá je rovnobežná s priamkou p: y = x.

Riešenie: Smernica priamky p je $k_p=1$. Rovnobežné priamky majú rovnaké smernice, preto pre smernicu dotyčnice k_t platí

$$k_t = k_p = 1.$$

Poznáme smernicu dotyčnice, ale nepoznáme dotykový bod T. Označme súradnice dotykového bodu $T=(x_0,y_0)$. To znamená, že hľadáme x_0 , v ktorom $f'(x_0)=1$.

$$f'(x_0) = (x_0^2 - 2x_0)' = 2x_0 - 2$$

Dostali sme rovnicu $2x_0 - 2 = 1$ a z toho $x_0 = \frac{3}{2}$.

Dostali sme rovnicu $2x_0 - 2 = 1$ a z toho $x_0 = \frac{3}{2}$. Dosadíme x_0 do funkcie f a dostaneme y_0 :

$$y_0 = f\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)^2 - 2\frac{3}{2} = -\frac{3}{4}.$$

Dotykový bod má súradnice $T = (\frac{3}{2}, -\frac{3}{4})$.

Rovnica dotyčnice je $t: y + \frac{3}{4} = x - \frac{3}{2}$.

Príklad

Nájdite rovnicu dotyčnice t a normály n ku grafu funkcie $f(x) = \tan x$ v bode $T = \left(\frac{\pi}{4},?\right)$.

$$t: y - 1 = 2\left(x - \frac{\pi}{4}\right)$$

$$n: y - 1 = -\frac{1}{2}\left(x - \frac{\pi}{4}\right)$$

Príklad

Nájdite rovnicu dotyčnice t a normály n ku grafu funkcie $f(x) = x^2 - 3x + 5$ tak, aby t bola rovnobežná s priamkou p: x - y + 1 = 0. t: y - 3 = 1(x - 2)

$$n: y - 3 = -1(x - 2)$$

Príklad

Nájdite rovnicu dotyčnice t a normály n ku grafu funkcie

$$f(x) = \ln(x-2)$$
 tak, aby t bola kolmá na priamku $p: x+y=0$.

$$t: y - 0 = 1(x - 3)$$

$$n: y - 0 = -1(x - 3)$$

Príklad

Nájdite rovnicu dotyčnice a normály ku grafu funkcie $f(x) = \arctan x$ tak, aby dotyčnica zvierala s osou x uhol $\alpha = 45 \deg$.

$$t: y - 0 = 1(x - 0)$$

$$n: y - 0 = -1(x - 0)$$

Ďakujem za pozornosť.