

WHAT IS CLAIMED IS:

- 1 1. A fiber amplifier system comprising:
 - 2 a pulsed laser configured to generate light pulses characterized by a pulse length T_{pulse} and a repetition rate;
 - 4 a fiber amplifier optically coupled to the pulsed laser; and
 - 5 a nonlinear frequency converting element optically coupled to the fiber amplifier, wherein the pulse length T_{pulse} is less than about 1.7 nsec and sufficiently large that a frequency bandwidth of the pulses after they emerge from the fiber amplifier is less than an acceptance bandwidth of the nonlinear frequency converting element;
 - 7 wherein the repetition rate is sufficiently large that amplified spontaneous emission in the fiber amplifier between pulses does not extract more than 50% of the total power from the fiber amplifier.
- 1
- 1 2. The fiber amplifier system of claim 1 wherein the repetition rate is greater than about 100 kHz.
- 1 3. The fiber amplifier system of claim 2 wherein the pulse length T_{pulse} is greater than about 100 psec.
- 1 4. The fiber amplifier system of claim 2 wherein the pulsed laser is a passively Q-switched laser (PQSL).
- 1 5. The fiber amplifier system of claim 4, further comprising a PQSL pump source optically coupled to the PQSL.
- 1 6. The fiber amplifier system of claim 1, further comprising a fiber pump source optically coupled to the fiber amplifier.
- 1 7. The fiber amplifier system of claim 1, wherein the fiber amplifier is characterized by a figure of merit z that is greater than about 0.1, wherein z is given by $z = (0.037) \beta (dB/m) A_{mode} (\mu m^2)$, where $\beta (dB/m)$ is the absorption of the fiber amplifier in dB/meter and A_{mode} is the mode area of light to be amplified by the fiber amplifier.

7 and
8 a scanner optically coupled to the image generator,
9 wherein the pulse length T_{pulse} is less than about 1.7 nsec and sufficiently large that a
10 frequency bandwidth of the pulses after they emerge from the fiber amplifier is less
11 than an acceptance bandwidth of the nonlinear frequency converting element;
12 wherein the repetition rate is sufficiently large that amplified spontaneous emission in
13 the fiber amplifier between pulses does not extract more than 50% of the total power
14 from the fiber amplifier.

15

- 1 16. The image projection system of claim 15 wherein the pulsed laser is configured to
2 generate light pulses at a repetition rate of greater than about 100 kHz.
- 1 17. The image projection system of claim 16 wherein the pulse length T_{pulse} is greater than
2 about 100 psec.
- 1 18. The image projection system of claim 16 wherein the pulsed laser is a passively Q-
2 switched laser (PQSL).
- 1 19. The image projection system of claim 18 further comprising a PQSL pump source
2 optically coupled to the PQSL.
- 1 20. The image projection system of claim 15 further comprising a fiber pump source
2 optically coupled to the fiber amplifier.
- 3 21. The image projection system of claim 15 wherein the fiber amplifier is characterized
4 by a figure of merit z that is greater than about 0.1, wherein z is given by $z = (0.037)$
5 β (dB/m) A_{mode} (μm^2), where β (dB/m) is the absorption of the fiber amplifier in
6 dB/meter and A_{mode} is the mode area of light to be amplified by the fiber amplifier.
- 1 22. The image projection system of claim 21 wherein the figure of merit z is greater than
2 about 0.5.
- 1 23. The image projection system of claim 21 wherein the fiber amplifier uses a cladding-
2 pumped fiber with an air cladding.

- 1 24. The image projection system of claim 21 wherein the fiber amplifier includes a core
2 of refractive index n_c , a depressed cladding of refractive index n' and an outer
3 cladding of refractive index n_{oc} , wherein $n' < n_{oc} < n_c$.
- 1 25. The image projection system of claim 21 wherein the fiber amplifier has a core with
2 an elliptical cross-section.
- 1 26. The image projection system of claim 15 wherein the fiber amplifier amplifies a
2 primary signal having a wavelength ranging from about 860 nm to about 1100 nm.
- 1 27. The image projection system of claim 26 wherein the nonlinear element converts the
2 primary signal to an output signal having a wavelength ranging from about 430 nm to
3 about 550 nm.
- 1 28. A light source comprising:
2 means for generating light pulses characterized by a pulse length T_{pulse} and a
3 repetition rate;
4 means for amplifying the light pulses; and
5 nonlinear means for frequency converting light pulses that have been amplified by the
6 amplifying means,
7 wherein the pulse length T_{pulse} is less than about 1.7 nsec and sufficiently large that a
8 frequency bandwidth of the pulses after they emerge from the fiber amplifier is less
9 than an acceptance bandwidth of the nonlinear frequency converting element;
10 wherein the repetition rate is sufficiently large that amplified spontaneous emission in
11 the fiber amplifier between pulses does not extract more than 50% of the total power
12 from the fiber amplifier.
- 1 29. For an apparatus having a fiber amplifier optically coupled to the pulsed laser; and a
2 nonlinear frequency converting element optically coupled to the fiber amplifier, a
3 method for optimizing the fiber amplifier, the method comprising:
4 determining a conversion efficiency $\delta(p)$ of the nonlinear frequency converting
5 element as a function of a peak power of an input signal coupled into the fiber
6 amplifier;
7 calculating an average power of output radiation $B(z, p)$ from the nonlinear frequency
8 converting element as a function of the peak power p and a figure of merit z , where

9 $z = (0.037)\beta A_{\text{mode}}$, where β is a rate of absorption of pump radiation by the fiber
10 amplifier in dB/m, and A_{mode} is a mode area of radiation to be amplified by the fiber
11 amplifier in μm^2 , and where

12 $B(z, p) = \delta(p)\varepsilon P \left(1 - e^{-\frac{z}{p}} \right)$, where ε is a conversion efficiency of the fiber amplifier, P

13 is an average power of a pump radiation coupled into the fiber amplifier;

14 determining one or more best values p_0 of the peak power p for one or more

15 corresponding values of z by solving $\frac{\partial B(z, p)}{\partial p} \Big|_{p_0} = 0$;

16 substituting the best values p_0 into $B(z, p)$ to determine one or more best values

17 $B_{\text{best}}(z)$ of the average power of the output radiation from the nonlinear frequency

18 converting element as a function of the figure of merit z

19 determining a desired value B_d of the average power of output radiation from the

20 nonlinear frequency converting element from requirements of an application for

21 which the apparatus is to be used;

22 from B_d and the one or more values of $B_{\text{best}}(z)$ determining a minimum value z_{\min} of

23 the figure of merit for the fiber; and

24 from z_{\min} selecting a fiber amplifier characterized by values of β and A_{mode} such that
25 for the fiber amplifier z is greater than or equal to z_{\min} .