

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

COMPILADORES

AFD e AFND

Docentes: Ruben Moisés Manhiça

Cristiliano Maculuve

Maputo, 3/22/2023

Conteúdo da Aula

- 1. AF Determinístico
- 2. AF Não Determinístico
- 3. Equivalência entre AFD e AFND

1. Introdução

- Um Autômato Finito é um sistema de estados finitos, o qual constitui um modelo computacional sequencial
 - Modelo matemático de um sistema, com entradas e saídas discretas

Travessia do rio

- Um grupo formado por um homem, um lobo, uma cabra e um repolho, posicionados do lado esquerdo da margem de um rio. O problema consiste em transportá-los para a margem direita.
 - existe um barco com capacidade para transportar somente o homem e um dos outros três elementos do grupo
 - o lobo e a cabra não podem ficar sozinhos no mesmo lado
 - a cabra e o repolho também não podem ficar sozinhos

Autômato Finito Determinístico

Definição

- O autômato finito determinístico é aquele que se encontra em um único estado depois de ler uma sequência qualquer de entradas
- O termo "determinístico" se refere ao fato de que, para cada entrada, existe um e somente um estado ao qual o autômato pode transitar a partir de seu estado atual

Autômato Finito Determinístico

Definição

- Um autômato finito determinístico consiste em:
 - Um conjunto finito de estados: Q
 - Um conjunto finito de símbolos de entrada: Σ
 - Uma função de transição que toma como argumentos um estado e um símbolo de entrada, e retorna um estado: δ
 - Um estado inicial (que está em Q)
 - Um conjunto de estados finais F (F é um subconjunto de Q)

Autômato Finito Determinístico

Notação:

$$A = (Q, \Sigma, \delta, q_0, F)$$

L = { w | w é uma seqüência de 0's e 1's, com número par de 0's e de 1's }

Como seria o AFD que aceita essa linguagem?

L = { w | w é uma seqüência de 0's e 1's, com número par de 0's e de 1's }

L = { w | w é um número binário múltiplo de 3 }

Como seria o AFD que aceita essa linguagem?

L = { w | w é um número binário múltiplo de 3 }

Esse AFD aceita cadeia vazia - ε

L = { w | w é um número binário múltiplo de 3 }

Esse AFD não aceita cadeia vazia - ε

Linguagem de um AFD

A linguagem de um AFD A = (Q, Σ , δ , q0, F) é denotada por L(A) e definida por:

Λ

 $L(A) = \{ w \mid \delta(q_0, w) \text{ está em } F \}$

Autômato Finito Não-determinístico

Definição

- O autômato finito não-determinístico pode estar em vários estados ao mesmo tempo
 - Capacidade de "adivinhar" algo sobre sua entrada
- O AFN aceita as mesmas linguagens aceitas por um AFD
 - São mais sucintos e mais fáceis de projetar

Autômato Finito Não-determinístico

Definição

- Um autômato finito não-determinístico consiste em:
 - Um conjunto finito de estados: Q
 - Um conjunto finito de símbolos de entrada: Σ
 - Uma função de transição que toma como argumentos um estado e um símbolo de entrada, e retorna um subconjunto de Q: δ
 - Um estado inicial (que está em Q)
 - Um conjunto de estados finais F (F é um subconjunto de Q)

Autômato Finito Não-determinístico

Notação:

$$A = (Q, \Sigma, \delta, q_0, F)$$

L = { w | w aceita todas as strings que terminam em 01 }

Como seria o AFN que aceita essa linguagem?

L = { w | w aceita todas as strings que terminam em 01 }

O fato de outras escolhas usando os símbolos de entrada de w levarem a um estado de não-aceitação ou não levarem a nenhum estado em absoluto (a seqüência de estados "morre"), não impede w de ser aceito pelo AFN como um todo,

L = { w | w aceita todas as strings que terminam em 01 }

q₂ é um estado de aceitação, então 00101 é aceito!

Linguagem de um AFN

A linguagem de um AFN A = (Q, Σ , δ , q0, F) é denotada por L(A) e definida por:

Λ

$$L(A) = \{ w \mid \delta(q_0, w) \cap F \neq \emptyset \}$$

Equivalência entre AFD e AFN

Introdução

- Toda linguagem que pode ser descrita por um AFN também pode ser descrita por um AFD
- Na prática, um AFD tem quase tantos estados quanto os que o AFN tem, embora com freqüência tenha mais transições
- No pior caso, o menor AFD pode ter 2ⁿ estados, enquanto o menor AFN para a mesma linguagem tem apenas n estados

L = { w | w aceita todas as strings que terminam em 01 }

	0	1
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_{0}\}$
$\{q_1\}$	_	{q ₂ }
* {d ⁵ }	_	_

L = { w | w aceita todas as strings que terminam em 01 }

Como o conjunto de estados é $\{q_0, q_1, q_2\}$, a construção de subconjuntos produz um AFD com $2^3 = 8$ estados

O oitavo estado, que não aparece na lista, seria o estado Ø

 q_2

De todos os estados listados, só podemos aceder os estados $\{q_0\}$, $\{q_0q_1\}$ e $\{q_0q_2\}$. Os estados inacessíveis não precisam constar. Portanto...

Ache o AFD Correspondente

FIM!!!

Duvidas e Questões?

