

TS2431

PROGRAMMABLE SHUNT VOLTAGE REFERENCE

- ADJUSTABLE OUTPUT VOLTAGE 2.5 to 24V
- SEVERAL PRECISION @ 25°C ±2%, ±1% and ±0.5%
- SINK CURRENT CAPABILITY 1 to 100mA
- INDUSTRIAL TEMPERATURE RANGE: -40 to +105°C
- PERFORMANCES COMPATIBLE WITH INDUSTRY STANDARD TL431

DESCRIPTION

The TS2431 is a programmable shunt voltage reference with guaranteed temperature stability over the entire temperature range of operation (-40 to +105°C). The output voltage may be set to any value between 2.5V and 24V with an external resistor bridge.

Available in SOT23-3 surface mount package, it can be designed in applications where space saving is a critical issue.

APPLICATION

- Computers
- Instrumentation
- Battery chargers
- Switch Mode Power Supply
- Battery operated equipments

ORDER CODE

Precision	Part Number in SOT23-3	SOT23 Marking			
2%	TS2431ILT	L285			
1%	TS2431AILT	L286			
0.5%	TS2431BILT	L287			
Single temperature range: -40 to +105°C					

LT = Tiny Package (SOT23-3) - only available in Tape & Reel (LT)

PIN CONNECTIONS (top view)

February 2002 1/6

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vka	Cathode to Anode voltage	25	V
I _K	Reverse Breakdown Current	-100 to +150	mA
I _{REF}	Reference input current range	-0.05 to +10	mA
P _d	Power Dissipation 1) SOT23-3	360	mW
T _{std}	Storage Temperature	-65 to +150	°C
ESD	Human Body Model (HBM)	2	kV
E3D	Machine Model (MM)	200	V
T _{LEAD}	Lead Temperatue (soldering, 10 seconds)	260	°C

^{1.} Pd has been calculated with Tamb = 25°C, Tjunction =150°C and Rthja = 340°C/W for the SOT23-3 package

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{KA}	Cathode to Anode voltage	V _{REF} to 24	V
I _K	Cathode operating current ¹⁾	1 to 100	mA
T _{oper}	Operating Free Air Temperature Range	-40 to +105	°C

^{1.} Maximum power dissipation must be strictly observed to avoid the component destruction.

ELECTRICAL CHARACTERISTICS

T_{AMBIENT} = 25°C (unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
V _{REF}	Reference input Voltage	$V_K = V_{REF}$, $I_K = 10$ mA		2.5		V	
		TS2431 (2%)	2.45		2.55		
		TS2431A (1%)	2.475		2.525		
		TS2431B (0.5%)	2.488		2.512		
	Reference input Voltage deviation over	0°C < T < +70°C		10	20		
$ \Delta V_{REF} $	temperature, $V_K = V_{REF}$, $I_K = 10 \text{mA}$	-40°C < T < +85°C		17	30	mV	
	(note 1,2)	-40°C < T < +105°C		20	35		
T _C	Temperature coefficient (note 2)	-40°C < T < +105°C		50	100	ppm/°C	
1	Minimum Operating Current	T = 25°C		0.3	0.8	A	
I _{KMIN}		-40°C < T < +105°C			1	mA	
$\left \frac{\Delta V ref}{\Delta V k} \right $	Ratio of change in reference input voltage to change in cathode to anode voltage	I _K =10mA Vka= 24 to 2.5V		0.3	2	mV/V	
	Reference input current	T=25°C		0.5	2.5		
I _{REF}	I_{K} =10mA, R1=10K Ω , R2=+ ∞ (note 3)	-40°C < T < +105°C			3	μA	
Δl _{REF}	Reference input current deviation $I_K=10\text{mA}$, R1=10K Ω , R2=+ ∞ (note 3)	-40°C < T < +105°C		0.4	1.2	μΑ	
I _{OFF}	Off-state cathode current	V _K =24V, V _{REF} =GND		10	500	nA	
Z _{KA}	Reverse dynamic impedance	$V_K = V_{REF}$ $\Delta I_K = 1$ to 50mA, f<10kHz		0.5	0.75	Ω	
E _N	Wide Band Noise	Ik = 10mA 10Hz < f < 10kHz		300		nV/√Hz	

Note 1: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation and by design.

A7/

Note 2: $|\Delta V_{REF}|$ is defined as the difference between the maximum and minimum values of V_{REF} obtained over the full temperature range

Note 3: Refer to figure "Test circuit for Vka>Vref" page 4

Reference voltage vs temperature

Test circuit for Vka = Vref

Cathode voltage vs cathode current

Cathode voltage vs cathode current

Reference input current vs temperature

Dynamic impedance vs frequency

Off-State current vs temperature

Ratio of change in reference input voltage to change in Vka voltage vs temperature

Phase and Gain vs frequency

Test circuit for Off-State current measurement

Test circuit for Vka > Vref

Test circuit for phase and gain measurement

4/6

Pulse response at Ik=1mA

Test circuit for pulse response at Ik = 1mA

Pulse response at Ik = 1mA

Equivalent input noise vs frequency

Stability boundary conditions

Block Diagram

PACKAGE MECHANICAL DATA

3 PINS - TINY PACKAGE (SOT-23)

Dimensions	Millimeters		Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	0.890		1.120	0.035		0.044
A1	0.010		0.100	0.0004		0.004
A2	0.880	0.950	1.020		0.037	0.040
b	0.300		0.500	0.012		0.020
С	0.080		0.200	0.003		0.008
D	2.800	2.900	3.040	0.110	0.114	0.120
E	2.100		2.640	0.083		0.104
E1	1.200	1.300	1.400	0.047	0.051	0.055
е		0.950			0.037	
e1		1.900			0.075	
L	0.400	0.500	0.600	0.016	0.020	0.024
L1		0.540			0.021	
k	0°		8°			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States © http://www.st.com

