DRAFT

Machine Learning Consumer Loan Processing

Ram Rao

July 1, 2022

DSA 5900 Practicum

Project Definition

- Identify Credit-Worthiness of Loan Applicants at Financial Institutions
 - Apply Machine Learning Models to Evaluate whether
 Applicants will default on a Loan
- Identify a Process for Remote Machine Learning
- Stakeholders:
 - Agencies that Process Consumer Loans
- Dr. Radhakrishnan and Dr. Trafalis are my advisors

EMPLOYMENT/INCOME

- Pay stubs for the most recent 30 days available
- W-2's for the previous two years
- ☐ Federal tax returns for the previous two years. All pages and schedules must be included
- ☐ If self-employed, provide all pages and schedules of last two years' business tax returns and corporate K-1's
- ☐ Proof of additional income, such as Social Security benefits, child support, or alimony (if applicable)

ASSETS

- Provide ALL pages of most recent 2 months' statements for all accounts; including all checking, savings, stocks, IRA, 401k, etc. The statements must show your name, account number and the name of the banking institution. Any non-payroll deposits will have to be explained and documented.
- ☐ If funds to close will come from a gift, complete the gift letter (will be provided to you) and the following:
 - From the donor bank statements showing the funds in the donor's account and a copy of the check from the donor's
 - account
 - ☐ From you a copy of the deposit slip showing the gift check deposited into your account
- ☐ If funds to close are from sale of home
 - Estimated closing statement showing anticipated proceeds
 - Copy of final closing statement and deposit slip showing proceeds deposited into bank account

CREDIT / IDENTIFICATION/ ELIGIBILITY

- Copy of driver's license or other photo I.D.
- Copy of divorce decree
- Copy of bankruptcy papers, including all schedules and discharge, and credit explanation letter for reason for bankruptcy Letter of explanation on any late payments, collections, charge off's or derogatory credit
- Letter of explanation for all recent credit inquiries
- If VA, DD214 if not active duty or Statement of service if active duty

ROPERTY

- ☐ Select your insurance agent and provide agent's name, address, and phone number
- ☐ If refinance, or if you will be retaining your current home or own other property
 - □ Current mortgage statement
 - Copy of insurance declaration page
- If you're currently renting, provide your Landlord's name, phone number and address. 12 months canceled rent checks will be necessary for private landlords.
- If you live with a family member, letter stating you live rent-free

Data Ingestion

Data Source:

https://www.bondora.com/en/public-reports

Tableau, Python, Sckit Learn, Tensorflow/Keras,

PyTorch and PySft

Overall Class Counts

Defaulted: 1 Not Defaulted: 0

Target Class	Count of Target Class	% of Total Count of Target Class)		
0	156,588	66.0%		
1	80,635	34.0%		
Grand Total	237,223	100.0%		

Count of Target Class and % of Total Count of Target Class) broken down by Target Class.

No of Features

111 Predictor Variables

1 Target Variable

Defaulted: 1

Non Defaulted : 0

Tableau : Data Viz

Python: Data Processing

Sckit Learn: ML Models

Tensorflow/Keras: Neural Net

PyTorch, PySft: Remote ML

Data Exploration and Preparation - 1

Exploratory Analysis:

- ☐ Lower Default
 - Higher Income
 - Lower Interest Servicing
 - Better Credit Rating
 - ➤ Higher Previous Credit
 - Higher Education
 - More Prompt Payment
- No SignificantMulticollinearity
- ☐ Correlation Not High Between Predictor and Target

Variable_Name	Defaulted
EmploymentDurationCurrentEmployer_U	
pTo3Years	0.091
NewCreditCustomer_True	0.102
EmploymentDurationCurrentEmployer_U	
pTo2Years	0.108
PrincipalBalance	0.111
RefinanceLiabilities	0.119
Rating_E	0.120
IncomeFromPrincipalEmployer	0.144
MonthlyPayment	0.160
PlannedInterestTillDate	0.187
OccupationArea	0.237
DebtToIncome	0.245
Rating_HR	0.249
UseOfLoan	0.254
Rating_F	0.256
ExpectedReturn	0.273
ActiveScheduleFirstPaymentReached_Tru	
e	0.277
MaritalStatus	0.282
EmploymentStatus	0.286
Country_ES	0.298
Interest	0.354
ExpectedLoss	0.409
ProbabilityOfDefault	0.432
PrincipalOverdueBySchedule	0.487
Status_Late	0.758
Defaulted	1.000

Data Exploration and Preparation - 2

Exploratory Analysis:

- ☐ Higher Spread and Max for Target Class 1
 - Probability of Default
 - Debt Types
 - Interest Servicing
- No Significant Differences
 Between Classes
 - Applied Amount
 - Income Types
- Missing Values EliminatedPreliminarily

PCA Assessment

PCA Analysis:

- ✓ 5,000 Dataset Points Analyzed
- ✓ No of Continuous Variables Scaled and Transformed: 28
- Limited Variance Explained by 5 Components
- ✓ No Significant Separation
 Between Classes Observed from PCA 1, 2, and 3
- ✓ Bi Plot shows Explanation of Few Features from PCA 1 and 2

Modeling Preprocessing And Overview

- ☐ Preprocessing with Sckit-Learn
- Scaled Continuous
 Variables
- ✓ One hot encoded Categorical Variables
- ☐ Modeling,

 Training/Testing
- ✓ Sckit Learn
- ✓ Tensorflow Keras
 - Default
 - GridSearch CVOptimization
- ✓ Remote Machine Learning – PyTorch and PySft
- ✓ Sckit-Learn Metrics for Evaluation

Model Results - Logistic Regression and Naïve Bayes

Logistic Regression:

- Grid Search 5-Fold CV
- 200 Iterations
- Hyperparameters
 - ✓ Penalty: L1 and L2
 - ✓ C:1,5,10
 - ✓ Solver, lbfgs, liblinear and saga

Naïve Bayes:

- Grid Search 5-Fold CV
- Hyperparameters
 - ✓ Alpha: 1E-4, 1E-2, 1E-1, and 1

Logistic Regression

Naïve Bayes

Model Results - Decision Trees and Ensemble Forests

Decision Trees:

- Grid Search 5-Fold CV
- Hyperparameters
 - ✓ Criterion : gini, entropy
 - ✓ Max_depth : 5,10,20

Ensemble Forests:

- Grid Search 5-Fold CV
- Hyperparameters
 - ✓ N_estimators:5,10,20, 50, 100
 - Learning_Rate:0.1, 0.5, 1. 0, 2.0,5.0

	R	leceiver Oper	rating Characteristic (ROC) Curve
1.0 -	_		
و.8 - ع			and the second second
و 0.6 -			
True Positive Rate - 9:0		مر	
0.2 -		And a second	AUG. 0.070
0.0 -		,	AUC = 0.970 ROC
	0.0	0.2	0.4 0.6 0.8 1.0 False Positive Rate

Decision Trees	Class 0 Predicted	Class 1 Predicted
Class 0 Actual	26,663	554
Class 1 Actual	591	14,024
Ensemble Forests	Class 0 Predicted	Class 1 Predicted
Class 0 Actual	26,238	949
Class 1 Actual	1,276	13,339

Model Results Random Forests

Random Forests:

- Grid Search 5-Fold CV
- Hyperparameters
 - ✓ N_estimators: 50, 100,200
 - ✓ Criterion: gini, entropy
 - ✓ Max_features: sqrt, log2, auto

Random Forests	Class 0 Predicted	Class 1 Predicted
Class 0 Actual	26,854	333
Class 1 Actual	826	13,789

Random Forests w/Tuning

Random Forests w/o Tuning

Model Results - Neural Nets, Keras/Tensorflow

Neural Net:

- ✓ 3 Hidden Layers: 100, 50, and25 Neurons, Relu Activation
- ✓ 1 Output Layer, 1 Neuron, Sigmoid Activation
- ✓ Grid Search CV = 3
- Hyperparameters
- Optimizer: rmsprop, adam
- inits: glorot_uniform, normal, uniform
- Epochs: 50,100
- Batches: 5,20

Neural Net	Class 0 Predicted	Class 1 Predicted
Class 0 Actual	630	308
Class 1 Actual	44	3,018

Remote Machine Learning - Overview

Why Useful?

- ✓ Keeps Data Private
- Data Owner has Control Over Data
- ✓ Machine LearnerBenefits from Access toDistributed Data

Process?

- ✓ PySft Wrapper to ML Package
- ✓ Encryption and Privacy Maintained
- ✓ Machine Learner Can Access Multiple Data Sources Simultaneously
- ✓ Models TrainedRemotely and can beAggregated for Use

Remote Machine Learning -PyTorch/PySft Results PyTorch

Remote Learning Process:

- Data Owner/Data Scientist interact via PySyft and PyGrid/AWS
- **Data Owner sends data to Data Scientist**
- Data Scientist makes requests via Pysft to Data Owner
- **Data Scientist creates model**
- **Data Scientist sends model to Owner**
- ✓ Training on Remote Server
- **Model Sent to Data Scientist Once Trained**
- Data Scientist Tests Model Sckit Learn **Packages**

PyTorch and PySft:

- ✓ 2 Hidden Layers: 100 and 100 Neurons, Relu **Activation**
- √ 1 Output Layer, 2 Neurons, **Log_soft_max Activation**
- ✓ 300 Epochs
- **Optimizer: Adam**
- ✓ learning_rate = .01
- ✓ nn.functional.nll_loss

PyTorch/ PySft	Class 0 Predicted	Class 1 Predicted		
Class 0 Actual	1,262	99		
Class 1 Actual	95	634		

Model Evaluation – Performance Metrics

	Hyperparameters	RMSE	Accuracy	Precision	Recall	F_1Score	AUC
Logistic Regression	L1 Penalty, liblinear Solver, C =5	0.209	0.956	0.938	0.936	0.937	0.951
Naïve Bayes	Alpha = 1.0	0.399	0.841	0.789	0.743	0.765	0.818
Decision Tree	Criterion – entropy, Max_depth = 20	0.166	0.973	0.962	0.960	0.961	0.970
Ensemble Forest	N_estimators= 100 I_rate = 1.0	0.231	0.947	0.934	0.913	0.923	0.939
Random Forest	N_estimators = 200, Criterion – entropy, Max_ features = auto	0.166	0.972	0.976	0.943	0.960	0.966
Neural Net – Keras/Tensorflow	Batch_size = 5, epochs=150, init- glorot_uniform, optimizer= adam	0.249	0.912	0.907	0.986	0.945	0.980
Neural Net - PyTorch	To be Developed		0.907	0.865	0.869	0.867	0.966

CONCLUSIONS - FORTHCOMING

Next Steps, To be Developed

- What is the significance of your project?
- How are the stakeholders affected by the outcome of your project?
- What are your recommendations for improvements for researchers who may continue your work?
- How will you build on this project in your work or academic career (optional)?

Questions

