

Session 2.5

Module 2

Mouli Sankaran

SOP and POS forms of Boolean Expressions

Session 2.5: Focus

- Simplification Techniques
- Simplification using Boolean Algebra
 - Quiz 1 to 3
- Two forms of Boolean Expressions
 - Sum-of-Products (minterms)
 - Products-of-Sums (maxterms)
 - Canonical notation
 - Example
- Home Work

Introduction to Boolean Algebra

Recap: Variables, Literals and Terms

- Variables are different symbols in a Boolean expression
- They may take on the values '0' or '1'
- Complement of a variable is not considered as a separate variable
- Each occurrence of a variable or its complement is called a literal
- A term is the expression formed by literals and operations at one level.
- Each term requires a gate and each variable within the term designates an input to the gate

 $\overline{A} + A.B$

Variables: 2

Literals : 3

Terms : 2

Simplification Techniques

Need for Simplification

- Simplification means simplifying or more precisely minimizing a given complex Boolean expression
- The **primary objective** of all simplification procedures is **to obtain** an expression that has the **minimum number of terms**
 - A simplified Boolean expression uses the fewest gates possible to implement a given expression
 - If gates are reduced, the complexity of the implementation as well as power consumption are also reduced
- Obtaining an expression with the **minimum** number of **literals** or **symbols** is usually the **secondary objective**

Simplification Techniques

- Simplification using Boolean algebra
- Other two popular methods are:
 - The Quine–McCluskey tabular method;
 - The Karnaugh map method

Simplification Using Boolean Algebra

Simplification Using Boolean Algebra

- The approach taken in this section is to
 - Use the basic laws, rules and theorems of Boolean Algebra
 - To manipulate and simplify an Expression
 - Which will result in less number of gates/literals without changing the function of the original Boolean Expression
- A simplified Boolean Expression uses the fewest gates possible to implement a given expression

Quiz 1: Simplify the Boolean Expression

- Simplify the expression: AB + A(B+C) + B(B+C)
- **Step 1**: Apply Distributive law to 2nd and 3rd items
 - AB + AB + AC + BB + BC
- **Step 2**: Apply **rule 7** (BB = B)
 - AB + AB + AC + B + BC
- Step 3: Apply rule 5 (AB + AB = AB)
 - AB + AC + B + BC
- **Step 4**: Apply **rule 10** (B + BC = B)
 - AB + AC + B
- **Step 5**: Apply **rule 10** (AB + B = B)
 - AC + B

Note: The terms in Bold are the ones affected by the rules in each step.

Quiz 2: Simplify the Boolean Expression

- Simplify the expression: [AB(C + BD) + AB]C
- Step 1: Apply Distributive law to the terms within brackets
 - (ABC + ABBD + AB)C
- Step 2: Apply rule 8 ($\mathbf{B} \overline{\mathbf{B}} = \mathbf{0}$)
 - $(A\overline{B}C + A \cdot 0 \cdot D + \overline{A}\overline{B})C$
- **Step 3**: Apply **rule 3** (A . 0 . D = 0)
 - $(ABC + 0 + \overline{AB})C$
- **Step 4**: Apply **rule 1** (drop the 0)
 - $(A\overline{B}C + \overline{A}\overline{B})C$
- Step 5: Apply Distributive law
 - $A\overline{B}CC + \overline{A}\overline{B}C$

Quiz 2 ... contd

- Simplify the expression: [AB(C + BD) + AB]C
- From Step 5: ABCC + ABC
- **Step 6**: Apply **rule 7** (CC = C) to the first term
 - $ABC + \overline{ABC}$
- Step 7: Factor out B C
 - BC(A+A)
- Step 8: Apply rule 6 $(A + \overline{A} = 1)$
 - $\overline{B}C \cdot 1$
- Step 9: Apply rule 4 (drop the 1)
 - $\overline{B}C$

Quiz 3: Simplify the Boolean Expression

- Simplify the expression: $\overline{AB + AC} + \overline{ABC}$
- Step 1: Apply DeMorgon's theorem to the first term
 - $(\overline{AB})(\overline{AC}) + \overline{A}\overline{B}C$
- Step 2: Apply DeMorgon's theorem to each term in parenthesis
 - (A + B)(A + C) + ABC
- Step 3: Apply Distributive law to the terms within parenthesis
 - AA + AC + AB + BC + ABC
- Step 4: Apply rule 7(AA = A) to the first term
 - $A + \overline{AC} + \overline{AB} + \overline{BC} + \overline{ABC}$
- Step 5: Apply rule 10 (A + AB = A) to the 3rd and last terms
 - $\overline{A} + \overline{A}\overline{C} + \overline{A}\overline{B} + \overline{B}\overline{C}$

Quiz 3 ... contd.

- From Step 5: $\overline{A} + \overline{A}\overline{C} + \overline{A}\overline{B} + \overline{B}\overline{C}$
- Step 6: Apply rule 10 (A + AB = A) to the 1st and 2nd terms
 - $\overline{A} + \overline{A}\overline{B} + \overline{B}\overline{C}$
- Step 7: Apply rule 10 (A + AB = A) to the 1st and 2nd terms
 - $\overline{A} + \overline{B}\overline{C}$

Two Forms of Boolean Expressions

Two Forms of Boolean Expressions

- Boolean Expressions are normally expressed in one of these forms for Simplification
 - Sum-of-Products (SOP)
 - Product-of-Sums (POS)
- Let us see them before studying other Simplification techniques

Sum-of-Products

- Sum-of-products expression contains the sum of different terms, with each term being either a single literal or a product of more than one literal
- It can be obtained from the **truth table** directly by considering those **input combinations** that produce a **logic '1'** at the **output**.
- Each such input combination produces a term, which are called minterms
- A minterm is a combination of variables that produces a 1 in the function and then taking the **OR** of all those terms

Example: Sum-of-Products

- For Example **Truth table** below can be expressed as:
 - Only those terms which produce an **output** of **1**

A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$Y = \overline{A} \overline{.B.C} + \overline{A.B.C} + A.B.\overline{C} + A.\overline{B.C}$$

Implementation of Sum-of-Products

• Example: AB + BCD + AC can be implemented as shown below:

Quiz 4: Is this in SOP or POS form?

• $\overline{ABC} + A\overline{BC}$: Neither in SOP nor POS form!!

For an expression to properly follow the **SOP** or **POS** canonical form, **no complementation bar** should **cover more than one variable**!

Minterms of Three Binary Variables

• All the combinations of Sum-of-Products of three variables and their nomenclature are given below

			Minterms		
X	y	Z	Term	Designation	
0	0	0	x'y'z'	m_0	
0	0	1	x'y'z	m_1	
0	1	0	x'yz'	m_2	
0	1	1	x'yz	m_3	
1	0	0	xy'z'	m_4	
1	0	1	xy'z	m_5	
1	1	0	xyz'	m_6	
1	1	1	xyz	m_7	

Product-of-Sums

- **Product-of-Sum**s expression contains the **product** of different **terms**, with each term being either a **single literal** or a **sum of more than one literal**
- It can be obtained from the **truth table** directly by considering those **input combinations** that produce a **logic '0'** at the **output**.
- Each such input combination produces a term, which are called maxterms
- A maxterm is a combination of variables that produces a 0 in the function and then taking the AND of all those terms
- Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form

Example: Product-of-Sums

• For Example **Truth table** below can be expressed as:

A	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$Y = (A + B + \overline{C}).(A + \overline{B} + C).(\overline{A} + B + C).(\overline{A} + \overline{B} + \overline{C})$$

Implementation of Product-of-Sums

• Example: $(A+B) \cdot (B+C+D) \cdot (A+C)$

OR-AND

Maxterms of Three Binary Variables

• All the combinations of Product-of-Sums of three variables and their nomenclature are given below

Minterms					Maxterms	
Term	Designation	X	y	Z	Term	Designation
x'y'z'	m_0	0	0	0	x + y + z	M_0
x'y'z	m_1	0	0	1	x + y + z'	M_1
x'yz'	m_2	0	1	0	x + y' + z	M_2
x'yz	m_3	0	1	1	x + y' + z'	M_3
xy'z'	m_4	1	0	0	x' + y + z	M_4
xy'z	m_5	1	0	1	x' + y + z'	M_5
xyz'	m_6	1	1	0	x' + y' + z	M_6
xyz	m_7	1	1	1	x' + y' + z'	M_7

Examples

Another Example

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

X	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_1 = (x + y + z)(x + y' + z)(x' + y + z')(x' + y' + z)$$

$$= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$$

$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$

$$= M_0 M_1 M_2 M_4$$

Home Work

Home Work

- **Simplify** the following Boolean Expressions, using Boolean Algebra:
- 1. $\overline{ABC} + A\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}C + ABC$
 - Solution: AC + BC + BC or $BC + A\overline{B} + \overline{B}\overline{C}$
- 2. xy + x'z + yz
 - Solution: xy + x'z.
- 3. (x + y)(x + y')
 - Solution: x

Note: For the problem 1, both the above solutions are correct.

You can verify this by constructing a truth table.

The reason for getting different simplified equations is the order we apply the rules and the terms that we take up first.

Session 2.5: Summary

- Simplification Techniques
- Simplification using Boolean Algebra
 - Quiz 1 to 3
- Two forms of Boolean Expressions
 - Sum-of-Products (minterms)
 - Products-of-Sums (maxterms)
 - Canonical notation
 - Example
- Home Work