

Threat Intelligence & IOC

THREAT INTELLIGENCE

Si basa sulla raccolta, analisi e utilizzo di informazioni relative alle minacce informatiche. L'obiettivo principale è fornire una conoscenza approfondita e contestualizzata delle minacce, permettendo alle organizzazioni di prendere decisioni informate per proteggere i propri asset.

Ed è proprio applicando i metodi e le procedure della Threat Intelligence, che si andrà a svolgere l' esercizio proposto.

SVOLGIMENTO ESERCIZIO

L' immagine seguente rappresenta una cattura di rete effettuata tramite Wireshark. L' esercizio richiede di:

- Identificare ed analizzare eventuali IOC, ovvero evidenze di attacchi in corso
- In base agli IOC trovati, fare delle ipotesi sui potenziali vettori di attacco utilizzati
- Consigliare un'azione per ridurre gli impatti dell'attacco attuale ed eventualmente un simile attacco futuro

No	▼ Time	Sauras	Destination	Drotocol Lo	
No.				Protocol Le	286 Host Announcement METASPLOITABLE, Workstation, Server, Print Queue Server, Xenix Server, NT Workstation, NT Server, Potential
				TCP	74 53060 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810522427 TSecr=0 WS=128
				TCP	74 33876 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSVal=810522427 TSecr=0 WS=128
				TCP	74 80 → 53060 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSVal=4294951165 TSecr=810522427 WS=64
				TCP	60 443 → 33876 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
				TCP	66 53060 → 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522428 TSecr=4294951165
		192.168.200.100		TCP	66 53060 → 80 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810522428 TSecr=4294951165
_		PCSSystemtec_fd:87:			60 Who has 192.168.200.100? Tell 192.168.200.150
		PCSSystemtec_39:7d:			42 192.168.200.100 is at 08:00:27:39:7d:fe
		PCSSystemtec_39:7d:			42 Who has 192.168.200.150? Tell 192.168.200.100
		PCSSystemtec_fd:87:			60 192.168.200.150 is at 08:00:27:fd:87:1e
	12 36.774143445			TCP	74 41304 → 23 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128
	13 36.774218116			TCP	74 56120 → 111 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSVal=810535437 TSecr=0 WS=128
	14 36.774257841			TCP	74 33878 \(\to 443 \) [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535437 TSecr=0 WS=128
	15 36.774366305			TCP	74 58636 → 554 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	16 36.774405627			TCP	74 52358 → 135 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	17 36.774535534			TCP	74 46138 → 993 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	18 36.774614776			TCP	74 41182 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	19 36.774685505			TCP	74 23 → 41304 [SYN, ACK] Seg=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535437 WS=64
	20 36.774685652	192.168.200.150	192.168.200.100	TCP	74 111 → 56120 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535437 WS=64
	21 36.774685696		192.168.200.100	TCP	60 443 → 33878 [RST, ACK] Seg=1 Ack=1 Win=0 Len=0
	22 36.774685737	192.168.200.150	192.168.200.100	TCP	60 554 → 58636 [RST, ACK] Seg=1 Ack=1 Win=0 Len=0
	23 36.774685776	192.168.200.150	192.168.200.100	TCP	60 135 → 52358 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	24 36.774700464	192.168.200.100	192.168.200.150	TCP	66 41304 → 23 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=4294952466
	25 36.774711072	192.168.200.100	192.168.200.150	TCP	66 56120 → 111 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=4294952466
	26 36.775141104			TCP	60 993 → 46138 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	27 36.775141273	192.168.200.150	192.168.200.100	TCP	74 21 → 41182 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 SACK_PERM TSval=4294952466 TSecr=810535438 WS=64
	28 36.775174048	192.168.200.100		TCP	66 41182 → 21 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=810535438 TSecr=4294952466
	29 36.775337800			TCP	74 59174 → 113 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535438 TSecr=0 WS=128
	30 36.775386694			TCP	74 55656 → 22 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535439 TSecr=0 WS=128
	31 36.775524204			TCP	74 53062 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535439 TSecr=0 WS=128
	32 36.775589806	192.168.200.150	192.168.200.100	TCP	60 113 → 59174 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

S IOC - INDICATORI DI COMPROMISSIONE

Sono evidenze o tracce che indicano la possibile compromissione di un sistema informatico o di una rete. Rappresentano segnali tangibili che possono essere utilizzati per rilevare attività malevole, indagare incidenti di sicurezza e prevenire ulteriori attacchi.

Nel caso specifico del traffico monitorato tramite Wireshark, un IOC da prendere in considerazione, sono i pacchetti SYN.

Come si può notare nell' immagine, questi pacchetti sono invitati di continuo dall' indirizzo ip mittente 192.168.200.100, senza mai chiudere il three-way handshake con la ricezione e l' invio di nuovo degli altri pacchetti SYN/ACK e ACK.

Di conseguenza, un altro parametro che può essere preso come IOC, è il tempo stimato in secondi. Tutto ciò avviene in pochissimi istanti.

Queste evidenze possono destare dei sospetti, perchè può essere considerato come un comportamento anomalo.

12 36.774143445	192.168.200.100	41304 → 23 [SYN]
13 36.774218116	192.168.200.100	56120 → 111 [SYN]
14 36.774257841	192.168.200.100	33878 → 443 [SYN]
15 36.774366305	192.168.200.100	58636 → 554 [SYN]
16 36.774405627	192.168.200.100	52358 → 135 [SYN]
17 36.774535534	192.168.200.100	46138 → 993 [SYN]
18 36.774614776	192.168.200.100	41182 → 21 [SYN]

VETTORI DI ATTACCO

La presenza di molti tentativi su porte diverse in un breve lasso di tempo potrebbe indicare un'attività di scansione delle porte (port scan), spesso effettuata per individuare servizi attivi o vulnerabilità.

Si può avanzare l' ipotesi che questa scansione sia stata effettuata tramite Nmap. Inoltre, l' indirizzo da cui parte la scansione, è interno. Questo sta a significare che l' attaccante è dentro la rete aziendale.

MITIGAZIONE

Come prima azione da intraprende, si deve limitare l' operatività di quell' indirizzo ip tramite la configurazione di regole sul firewall. Cioè proibire la possibilità di effettuare quel tipo di scansione o l' invio di quel tipo di pacchetti.

Successivamente, capire se è un' azione volontaria o involontaria. Questo perchè è un indirizzo ip interno. Non si può impedire ad un dipendente di continuare la propria attività, andando a bloccare l'indirizzo ip e tagliarlo fuori dalla rete aziendale. Perciò ci si deve assicurare se sia un vero e proprio attacco o una richiesta accidentale.

Infine, una volta verificata la casistica di appartenenza, si procederà con l'applicazione di una misura definitiva per ripristinare la situazione di normalità