Orthogonal Complements

• The orthogonal complement of a vector space $S \subseteq \mathbb{R}^n$, denoted \mathcal{S}^{\perp} . is

$$S^{\perp} = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x}' \boldsymbol{y} = 0 \quad \forall \, \boldsymbol{y} \in S \}.$$

• Is S^{\perp} is a vector space?

2/22

 $\bullet \ \forall \ c_1, c_2 \in \mathbb{R}, x_1, x_2 \in \mathcal{S}^{\perp},$

$$(c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2)' \mathbf{y} = c_1 \mathbf{x}_1' \mathbf{y} + c_2 \mathbf{x}_2' \mathbf{y} = 0$$

whenever $y \in \mathcal{S}$.

Thus

$$x_1, x_2 \in \mathcal{S}^{\perp}, c_1, c_2 \in \mathbb{R} \Longrightarrow c_1 x_1 + c_2 x_2 \in \mathcal{S}^{\perp}.$$

• It follows that S^{\perp} is a vector space.

Suppose a vector space S is a subset of \mathbb{R}^n . Show the following:

(a)
$$S \cap S^{\perp} = \{0\}$$

(b)
$$dim(S) + dim(S^{\perp}) = n$$
.

Proof of (a)

- Suppose $x \in \mathcal{S} \cap \mathcal{S}^{\perp}$.
- Then x'x = 0, which implies that

$$\sum_{i=1}^{n} x_i^2 = 0 \Longrightarrow x_i = 0 \quad \forall i = 1, \dots, n$$
$$\Longrightarrow \mathbf{x} = \mathbf{0}.$$

_

Proof of (b)

- Let r = dim(S) and let a_1, \ldots, a_r be a basis for S.
- If we define

$$A = [a_1, \ldots, a_r],$$

then C(A) = S.

• Now note that $S^{\perp} = \mathcal{N}(A')$ as follows:

$$x \in \mathcal{S}^{\perp} \implies x'a_i = 0 \quad \forall i = 1, \dots, r$$

$$\implies x'[a_1, \dots, a_r] = \mathbf{0}'$$

$$\implies x'A = \mathbf{0}' \implies A'x = \mathbf{0}$$

$$\implies x \in \mathcal{N}(A') :: \mathcal{S}^{\perp} \subseteq \mathcal{N}(A').$$

Conversely,

$$x \in \mathcal{N}(A') \Longrightarrow A'x = \mathbf{0}$$

$$\Longrightarrow x'A = \mathbf{0}'$$

$$\Longrightarrow x'Ay = 0 \ \forall \ y \in \mathbb{R}^r$$

$$\Longrightarrow x'z = 0 \ \forall \ z \in \mathcal{C}(A) = \mathcal{S}$$

$$\Longrightarrow x \in \mathcal{S}^{\perp}.$$

$$\mathcal{N}(A') \subseteq \mathcal{S}^{\perp}$$
 and we have $\mathcal{N}(A') = \mathcal{S}^{\perp}$.

From Theorem A.1,

$$dim(\mathcal{N}(\mathbf{A}')) = n - rank(\mathbf{A}')$$

= $n - rank(\mathbf{A})$
= $n - r$.

• Therefore,

$$dim(S) + dim(S^{\perp}) = dim(C(A)) + dim(N(A'))$$

= $r + n - r$
= n .

Result A.4:

Suppose a vector space $\mathcal{S} \subseteq \mathbb{R}^n$. Then any $x \in \mathbb{R}^n$ can be written as

$$x = s + t$$

where $s \in \mathcal{S}, t \in \mathcal{S}^{\perp}$. Furthermore, the decomposition is unique.

Proof of Result A.4:

- Let a_1, \ldots, a_r be a basis for S. Let b_1, \ldots, b_k be a basis for S^{\perp} . We know that r + k = n.
- We now show that $a_1, \ldots, a_r, b_1, \ldots, b_k$ is a set of LI vectors and is thus a basis for \mathbb{R}^n by V4.
- Suppose

$$c_1 a_1 + \cdots + c_r a_r + c_{r+1} b_1 + \cdots + c_n b_k = 0.$$

Then

$$c_1\boldsymbol{a}_1 + \cdots + c_r\boldsymbol{a}_r = -(c_{r+1}\boldsymbol{b}_1 + \cdots + c_n\boldsymbol{b}_k).$$

Moreover,

$$c_1 a_1 + \cdots + c_r a_r \in \mathcal{S} \text{ and } -(c_{r+1} b_1 + \cdots + c_n b_k) \in \mathcal{S}^{\perp}.$$

- Because these two vectors are equal each other, they are in \mathcal{S} and \mathcal{S}^{\perp} and must be $\mathbf{0} : \mathcal{S} \cap \mathcal{S}^{\perp} = \{\mathbf{0}\}.$
- By LI of a_1, \ldots, a_r , we have $c_1 = \cdots = c_r = 0$.
- By LI of b_1, \ldots, b_k , we have $c_{r+1} = \cdots = c_n = 0$.
- Thus, $a_1, \ldots, a_r, b_1, \ldots, b_k$ are LI and a basis for \mathbb{R}^n .

• This implies that any $x \in \mathbb{R}^n$ may be written as

$$\mathbf{x} = d_1 \mathbf{a}_1 + \dots + d_r \mathbf{a}_r + d_{r+1} \mathbf{b}_1 + \dots + d_n \mathbf{b}_k$$

for some $d_1, \ldots, d_n \in \mathbb{R}$.

If we take

$$s = d_1 \boldsymbol{a}_1 + \cdots + d_r \boldsymbol{a}_r$$
 and $\boldsymbol{t} = d_{r+1} \boldsymbol{b}_1 + \cdots + d_n \boldsymbol{b}_k$,

we have $s \in \mathcal{S}, t \in \mathcal{S}^{\perp}$ and x = s + t.

To prove the uniqueness, suppose

$$x = s_1 + t_1 = s_2 + t_2$$

where $s_1, s_2 \in \mathcal{S}$ and $t_1, t_2 \in \mathcal{S}^{\perp}$.

• Now show that $s_1 = s_2$ and $t_1 = t_2$ to complete the proof.

- Because $\mathcal S$ and $\mathcal S^\perp$ are vectors spaces, $s_1-s_2\in\mathcal S,\quad t_2-t_1\in\mathcal S^\perp.$
- The equality of these vectors implies that

$$s_1-s_2=t_2-t_1\in\mathcal{S}\cap\mathcal{S}^\perp\Longrightarrow s_1-s_2=t_2-t_1=\mathbf{0}.$$

• Therefore, $s_1 = s_2$, $t_2 = t_1$.

$$ullet$$
 Suppose $A=egin{bmatrix}1\\0\end{bmatrix}$. Find and sketch $\mathcal{C}(A)$ and $\mathcal{N}(A')$.

• Suppose
$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Find and sketch $\mathcal{C}(A)$ and $\mathcal{N}(A')$.

If
$$\mathbf{A} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, then $\mathcal{C}(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 = 0 \}$.

$$\mathcal{N}(\mathbf{A}') = \{ \mathbf{x} \in \mathbb{R}^2 : [1, 0]\mathbf{x} = 0 \}$$

= $\{ \mathbf{x} \in \mathbb{R}^2 : x_1 = 0 \}.$

If
$$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, then $C(A) = \{x \in \mathbb{R}^2 : x_1 = x_2\}$.

$$\mathcal{N}(\mathbf{A}') = \{ \mathbf{x} \in \mathbb{R}^2 : [1, 1]\mathbf{x} = 0 \}$$

= $\{ \mathbf{x} \in \mathbb{R}^2 : x_1 + x_2 = 0 \}.$

Result A.5:

If A is an $m \times n$ matrix, then $C(A)^{\perp} = \mathcal{N}(A')$.

Proof of Result A.5:

We essentially made this argument in our proof that

$$dim(S) + dim(S^{\perp}) = n$$

if $S \in \mathbb{R}^n$ is a vector space.

Result A.6:

Suppose S_1, S_2 are vector spaces in \mathbb{R}^n such that $S_1 \subseteq S_2$. Then $S_2^{\perp} \subseteq S_1^{\perp}$.

Proof of Result A.6:

- Suppose $x \in \mathcal{S}_2^{\perp}$.
- Then

$$x'y = 0 \quad \forall y \in \mathcal{S}_2$$

 $\implies x'y = 0 \quad \forall y \in \mathcal{S}_1$
 $\implies x \in \mathcal{S}_1^{\perp}$.

• We have $\mathcal{S}_2^{\perp} \subseteq \mathcal{S}_1^{\perp}$.

Suppose $\mathcal S$ is a vector space in $\mathbb R^n$. Prove that $\mathcal S=(\mathcal S^\perp)^\perp.$

Proof

- $x \in \mathcal{S} \Longrightarrow x'y = 0 \ \forall \ y \in \mathcal{S}^{\perp} \Longrightarrow x \in (\mathcal{S}^{\perp})^{\perp}. \ \therefore \mathcal{S} \subseteq (\mathcal{S}^{\perp})^{\perp}.$
- Now suppose $x \in (S^{\perp})^{\perp}$. Then $x'y = 0 \ \forall \ y \in S^{\perp}$.
- By Result A.4, x = s + t for some $s \in S$ and some $t \in S^{\perp}$.
- By the previous two points, 0 = x't = (s+t)'t = t't. t = 0 and $x = s \in S$ so that $(S^{\perp})^{\perp} \subseteq S$.

