Measure Theory - MATH0017

Contents

1	Preliminaries	1
2	σ -algebras and measures	2
3	Outer measures	3
4	From pre-measures to outer measures - Lebesgue measure in \mathbb{R}^n	5
5	Hausdorff measures	7
6	Measurable functions	8
7	Lebesgue integration	10
8	Product measures	15

1 Preliminaries

Definition 1.

- 1. $f: X \to Y$ is an injective map if and only if $f(x) = f(y) \implies x = y$.
- 2. $f: X \to Y$ is a surjective map if and only if $\{f(x) \mid x \in X\}$ is the whole of Y.
- 3. $f: X \to Y$ is a bijective map if and only if it is both injective and surjective.

Definition 2. Given two (finite or infinite) sets X and Y, if there exists an injective map $f: X \to Y$ then we say that the cardinality of X is less than or equal to the cardinality of Y (and in this case we write $\#X \leq \#Y$).

Definition 3. If $\#X \leq \#Y$ and $\#Y \leq \#X$ then we say that X and Y have the same cardinality (and in this case we write #X = #Y).

Definition 4. A set X is called countable if $\#X \leq \#\mathbb{N}$.

Definition 5. The cardinality of (0,1) is called continuum.

Definition 6. A set $D \subset \mathbb{R}$ has (Lebesgue) measure zero if for every $\epsilon > 0$ there is a countable collection of open intervals $I_j = (a_j, b_j)$ such that $D \subset \bigcup_{j=1}^{\infty} I_j$ and $\sum_{j=1}^{\infty} |I_j| < \epsilon$, where $|I_j| = b_j - a_j$ denotes the length of the interval I_j .

2 σ -algebras and measures

Definition 7. A σ -algebra on \mathcal{A} on a set X is a family of subsets of X with the following properties:

- 1. $X \in \mathcal{A}$
- 2. (closedness under complementation) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- 3. (closedness under countable unions) $\{A_j\}_{j\in\mathbb{N}}\subset A\implies \cup_{j\in\mathbb{N}}\in\mathcal{A}$

Definition 8. A (positive) measure μ on a space X is an assignment

$$\mu: A \to [0, +\infty]$$

defined on a σ -algebra \mathcal{A} , such that

- 1. $\mu(\emptyset) = 0$
- 2. (σ -additivity) $\{A_j\}_{j=1}^{\infty} \subset \mathcal{A}, A_j$ pairwise disjoint $\implies \mu(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu(A_j)$

The triple (X, \mathcal{A}, μ) is called a *measure space*. On the other hand (X, \mathcal{A}) is called a *measurable space*.

Other properties of σ -algebras and measures.

- 1. Let $A \subset X, B \subset X$. If $A, B \in \mathcal{A}$ then $B \setminus A \in \mathcal{A}$
- 2. Let $A \in \mathcal{A}$ with $\mu(A)$ finite. We then also have $\mu(X \setminus A) = \mu(X) \mu(A)$.
- 3. Let $A, B \in \mathcal{A}, A \subset B$. Then $\mu(A) \leq \mu(B)$.

Proposition 1. Whenever $\{A_j\}_{j\in J}$ is a family of σ -algebras in X, then the intersection $\cap_{j\in J}A_j$ is again a σ -algebra in X.

Definition 9. Given any family $\mathcal{G} \subset \mathcal{P}(X)$ (i.e., any family of subsets of X) there exists a 'smallest' σ -algebra containing \mathcal{G} . This is called the σ -algebra generated by \mathcal{G} and denoted by $\sigma(\mathcal{G})$.

3 Outer measures

Definition 10. An outer measure μ on a space X is an assignment (defined on all subsets of X) $\mu : \mathcal{P}(X) \to [0, +\infty]$ such that

- 1. $\mu(\emptyset) = 0$
- 2. (monotonicity) $A \subset B \implies \mu(A) \leq \mu(B)$
- 3. (σ -subadditivity) $A_j \subset X$, $\{A_j\}_{j=1}^{\infty} \implies \mu(\cup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \mu(A_j)$
- 2. and 3. can equivalently be phrased as

$$A \subset \bigcup_{j=1}^{\infty} A_j \implies \mu(A) \le \sum_{j=1}^{\infty} \mu(A_j)$$

Definition 11. Let μ be an outer measure on a space X. A set $A \subset X$ is said to be μ -measurable if for every $B \subset X$ we have

$$\mu(B) = \mu(B \cap A) + \mu(B \setminus A)$$

Theorem 3.1.1. Let μ be an outer measure on a space X. The family

$$\Sigma = \{ A \subset X \mid A \text{ is } \mu\text{-measurable} \}$$

is a σ -algebra on X.

Proposition 2. Let μ be an outer measure on X and let Σ be the σ -algebra of μ -measurable sets. Then whenever $\{A_k\}_{k=1}^{\infty} \subset \Sigma$ and A_k are pairwise disjoint we have $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$.

Proposition 3. Let μ be an outer measure on X and let $A \subset X$ be such that $\mu(A) = 0$. Then A is μ -measurable.

Definition 12. A measure space (X, \mathcal{A}, μ) is complete if, whenever $D \in \mathcal{A}$ is such that $\mu(D) = 0$, and $N \subset D$, then $N \in \mathcal{A}$ (it follows that $\mu(N) = 0$ as well).

Definition 13. We say that $S \subset \mathcal{P}(X)$ is a covering class (for X) when the following two properties hold:

- 1. $\emptyset \in \mathcal{S}$
- 2. for any $A \subset X$ there exists a countable collection of sets in \mathcal{S} that 'covers A', i.e., for any $A \subset X$, there exists $\{S_j\}_{j=1}^{\infty}$ such that $S_j \in \mathcal{S}$ for every j and $A \subset \bigcup_{j=1}^{\infty} S_j$. (Note that for a given A there might be plenty of choices of $\{S_j\}_{j=1}^{\infty}$ that cover A. Each such choice $\{S_j\}_{j=1}^{\infty}$ is a possible 'cover', or 'covering', of A.)

Theorem 3.2.1. Let $S \subset \mathcal{P}(X)$ be a covering class of X and $\lambda : S \to [0, \infty]$ be given, with $\lambda(\emptyset) = 0$. Then, the assignment $\mu : \mathcal{P}(X) \to [0, +\infty]$ defined by

$$\mu(A) := \inf \{ \sum_{j=1}^{\infty} \lambda(S_j) \mid S_j \in \mathcal{S} \text{ and } A \subset \bigcup_{j=1}^{\infty} S_j \}$$

is an outer measure on X.

4 From pre-measures to outer measures -Lebesgue measure in \mathbb{R}^n

Definition 14. A collection $S \subset \mathcal{P}(X)$ is a semi-ring (or semi-algebra) on X if it satisfies the three properties below

- 1. \mathcal{S} contains \emptyset
- 2. if $R_1, R_2 \in \mathcal{S}$, then $R_1 \cap R_2 \in \mathcal{S}$
- 3. if $R_1, R_2 \in \mathcal{S}$, then there exists finitely many disjoint $T_1, \ldots, T_S \subset \mathcal{S}$ such that $R_1 \setminus R_2 = \bigcup_{s=1}^S T_s$

We denote the set of half-open rectangles in \mathbb{R}^n by \mathcal{I}^n .

Definition 15. Let $S \subset \mathcal{P}(X)$ be a semi-ring. An assignment $\lambda : S \to [0, +\infty]$ is called a pre-measure if

- 1. $\lambda(\emptyset) = 0$
- 2. if $\{R_j\}_{j=1}^{\infty} \subset \mathcal{S}, R_j \cap R_k = \emptyset$ when $j \neq k, \cup_{j=1}^{\infty} R_j \in \mathcal{S}$ then $\lambda(\cup_{j=1}^{\infty} R_j) = \sum_{j=1}^{\infty} \lambda(R_j)$

Theorem 4.2.1. Let $S = \mathcal{I}^n$, λ be defined as

$$\lambda([a,b)) = \prod_{j=1}^{n} (b_j - a_j) \qquad (\star)$$

and let μ be the outer measure constructed from \mathcal{S} and λ in Theorem 3.2.1. Then (i) λ and μ agree on \mathcal{I}^n and moreover (ii) every $\mathcal{R} \in \mathcal{I}^n$ is μ -measurable.

Theorem 4.2.2 Let $S \subset \mathcal{P}(X)$ be a covering class and a semi-ring and let $\lambda : S \to [0, +\infty]$ be a pre-measure. Denote by μ the outer measure constructed from S and λ in Theorem 3.2.1. Then λ and μ agree on S and every $S \in S$ is μ -measurable.

Lebesgue measure: We have obtained, in Theorem 4.2.1 an outer measure μ that extends the assignment λ defined in (\star) and such that

half-open rectangles are μ -measurable. Restricting the action of μ to the σ -algebra of the μ -measurable sets gives rise to the n-dimensional Lebesgue measure on \mathbb{R}^n , that we denote by λ^n .

Proposition 4. The σ -algebra generated by \mathcal{I}^n is the same as the Borel σ -algebra $\mathcal{B}(\mathbb{R}^n)$ (i.e., the σ -algebra generated by open sets of \mathbb{R}^n). This implies in particular that $\mathcal{B}(\mathbb{R}^n) \subset \Sigma_n$, which is usually phrased by saying that every Borel set (i.e. every element of $\mathcal{B}(\mathbb{R}^n)$) is Lebesgue-measurable.

Lemma 4.3.1 Every open set in \mathbb{R}^n is the countable union of half-open rectangles.

For $y \in \mathbb{R}^n$ and $Z \subset \mathbb{R}^n$ we write $y + Z := \{x \in \mathbb{R}^n \mid x = y + z \text{ for some } z \in Z\}$ (the translation of Z by the vector y).

Proposition 5. The Lebesgue measure is translation invariant, namely, whenever $Z \in \Sigma_n$ then $y + Z \in \Sigma_n$ for every $y \in \mathbb{R}^n$ and moreover $\lambda^n(y+Z) = \lambda^n(Z)$

Theorem 4.4.1 Let S be a semi-algebra on X and λ a pre-measure defined on S. Assume that there exists a countable collection of R_j in S such that $R_j \subset R_{j+1}$ for all j and $\bigcup_{j=1}^{\infty} R_j = X$ (this is called an exhausting sequence) with $\lambda(R_j) < \infty$ for all $j \in \mathbb{N}$. Let μ be the outer measure defined through Carathéodory's Theorem and Σ the σ -algebra of the μ -measurable sets.

Given any outer measure $\tilde{\mu}: \mathcal{P}(X) \to [0, \infty]$ with the property that $\tilde{\mu} = \lambda$ on \mathcal{S} , we have necessarily that $\tilde{\mu} = \mu$ on Σ .

Definition 16. A measure space (X, \mathcal{A}, μ) is said to be σ -finite if there exists $A_j \in \mathcal{A}$ such that $A_j \subset A_{j+1}$ for all $j, \cup_{j=1}^{\infty} A_j = X$ and $\mu(A_j) < \infty$ for all $j \in \mathbb{N}$. (By abuse of language, the measure μ in this case is also called σ -finite.) If $\mu(X) < \infty$ then we say that μ is a finite measure on X and (X, \mathcal{A}, μ) is a finite measure space.

5 Hausdorff measures

Let $A \subset \mathbb{R}^n$ be arbitrary. For fixed $\alpha \geq 0$ and $\delta > 0$ we consider all possible coverings of A using a collection of balls with radii $\leq \delta$. Set

$$\mathcal{H}^{\alpha}_{\delta}(A) = \inf \left\{ \sum_{k=1}^{\infty} (r_k)^{\alpha} \mid A \subset \bigcup_{k=1}^{\infty} B_{r_k}(x_k), r_k \leq \delta \text{ for all } k \right\}$$

We set

$$\mathcal{H}^{\alpha}(A) = \lim_{\delta \to 0} \mathcal{H}^{\alpha}_{\delta}(A) = \sup_{\delta > 0} \mathcal{H}^{\alpha}_{\delta}(A)$$

Proposition 6. For any $\alpha \geq 0$, \mathcal{H}^{α} is an outer measure on \mathbb{R}^{n} .

Proposition 7. For $0 \le \beta < \alpha < \infty$ and $A \subset \mathbb{R}^n$ it holds

$$\mathcal{H}^{\beta}(A) < \infty \implies \mathcal{H}^{\alpha}(A) = 0$$

$$\mathcal{H}^{\alpha}(A) > 0 \implies \mathcal{H}^{\beta}(A) = +\infty$$

Definition 17. Given $A \subset \mathbb{R}^n$ we define

$$\dim_H(A) = \inf\{\alpha > 0 \mid \mathcal{H}^{\alpha}(A) = 0\}$$

to be the Hausdorff dimension of A. Note that $\dim_H(A) \in [0, n]$.

Proposition 8. For any $\alpha \geq 0$ Borel sets are \mathcal{H}^{α} -measurable.

Definition 18. An outer measure μ on \mathbb{R}^n is called 'metric' if whenever $A, B \subset \mathbb{R}^n$ are such that $dist(A, B) = \inf\{|x - y| \mid x \in A, y \in B\} > 0$ (i.e. A and B are a positive distance apart) then $\mu(A \cup B) = \mu(A) + \mu(B)$.

Proposition 9. For $\alpha \geq 0$, \mathcal{H}^{α} is a metric outer measure (on \mathbb{R}^{n}).

Proposition 10 (Carathéodory criterium for Borel measures). Given a metric outer measure μ , every Borel set is μ -measurable.

6 Measurable functions

Definition 19. Let (X, \mathcal{A}) be a measurable space and consider $f: X \to \mathbb{R}$, where the target space \mathbb{R} is implicitly endowed with the Borel σ -algebra. We say that f is \mathbb{A} -measurable when $f^{-1}(A) \in \mathcal{A}$ whenever A is open in \mathbb{R} .

Given an outer measure μ on X it is common to speak of μ -measurable function $f: X \to \mathbb{R}$ with the implicit meaning that X is equipped with the σ -algebra Σ of μ -measurable sets and f is Σ -measurable.

Proposition 11. The collection $\{B \subset \mathbb{R} \mid f^{-1}(B) \in \mathcal{A}\}$ is a σ -algebra.

Definition 20. Let (X, \mathcal{A}) be a measurable space and consider $f: X \to \overline{\mathbb{R}}$. We say that f is \mathcal{A} -measurable when

$$f^{-1}(\{+\infty\}) \in \mathcal{A}, f^{-1}(\{-\infty\}) \in \mathcal{A}, f^{-1}(A) \in \mathcal{A}$$
 whenever A is open in \mathbb{R} .

The condition

$$f^{-1}(A) \in \mathcal{A}$$
 whenever A is open in \mathbb{R}

in Definition 20 can be replaced by either of the following:

- 1. $f^{-1}(B) \in \mathcal{A}$ whenever $B \in \mathcal{B}(\mathbb{R})$
- 2. $f^{-1}((a, +\infty)) \in \mathcal{A}$ whenever $a \in \mathbb{R}$
- 3. $f^{-1}((-\infty, a)) \in \mathcal{A}$ whenever $a \in \mathbb{R}$.

Definition 21. A simple function $g: X \to \mathbb{R}$ on a measurable space (X, \mathcal{A}) is a function of the form

$$g(x) = \sum_{j=1}^{M} y_j \mathbb{1}_{A_j}(x), y_j \in \mathbb{R}, A_j \text{ pairwise disjoint}, A_j \in \mathcal{A} \text{ for } j \in \{1, \dots, M\}$$

Theorem 6.2.1. Any \mathcal{A} -measurable function $f: X \to \overline{\mathbb{R}}$ on (X, \mathcal{A}) is the pointwise limit of simple functions f_j . Moreover if $f \geq 0$ then we can choose $f_j \geq 0$ and $f_j \leq f_{j+1}$ for all $j \in \mathbb{N}$ (so that $f = \sup_{j \in \mathbb{N}} f_j$).

When $f_j \to f$ pointwise and $f_j \le f_{j+1}$ (increasing sequence) we write $f_j \uparrow f$

Theorem 6.2.2. Let $f, g: X \to \mathbb{R}$ be \mathcal{A} -measurable functions on (X, \mathcal{A}) . Then the functions f + g, f - g, fg and (when $g \neq 0$) f/g are \mathcal{A} -measurable. The same holds for the function |f|.

Theorem 6.2.3. Let $f_j: X \to \overline{\mathbb{R}}$ be \mathcal{A} -measurable functions on (X, \mathcal{A}) for $j \in \mathbb{N}$. Then the functions $\inf_j f_j, \sup_j f_j, \limsup_j f_j$ and $\liminf_j f_j$ are \mathcal{A} -measurable.

Corollary 6.2.1. Let $f, g : X \to \overline{\mathbb{R}}$ be A-measurable functions on (X, A). Then the functions $\min\{f, g\}$ and $\max\{f, g\}$ are A-measurable.

7 Lebesgue integration

Definition 22. Let (X, \mathcal{A}, μ) be a measure space. We say that $g: X \to \mathbb{R}$ is a simple function when g admits a representation of the following form for some $M \in \mathbb{N}, y_j \in \mathbb{R}$ and $A_j \in \mathcal{A}$ (for j = 1, 2, ..., M) pairwise disjoint:

$$g = \sum_{j=1}^{M} y_j \mathbb{1}_{A_j}$$

We write, in the case that $g \geq 0, g \in \mathcal{E}^+$.

Lemma 7.1.1. Let $g \ge 0$ admit two distinct representation as a simple function, say $g = \sum_{j=1}^{M} y_j \mathbb{1}_{A_j} = \sum_{k=1}^{N} x_k \mathbb{1}_{B_k}$. Then

$$\sum_{j=1}^{M} y_{j} \mu(A_{j}) = \sum_{k=1}^{N} x_{k} \mu(B_{k})$$

Definition 23. Given a measure space (X, \mathcal{A}, μ) and $f : X \to \mathbb{R}$ \mathcal{A} -measurable and non-negative, we define the integral of f on X with respect to μ as follows:

$$\int_X f \, d\mu = \sup\{I_\mu(g) \mid g \in \mathcal{E}^+, g \le f\} \in [0, +\infty]$$

Lemma 7.1.2. Let $g \ge 0$ be a simple function, say $g = \sum_{j=1}^{M} y_j \mathbb{1}_{A_j}$. Then

$$\int_X g \, d\mu = \sum_{j=1}^M y_j \mu(A_j)$$

Remark 7.1.1.

- 1. If $g, h \in \mathcal{E}^+$ then $g + h \in \mathcal{E}^+$ and $I_{\mu}(g + h) = I_{\mu}(g) + I_{\mu}(h)$
- 2. If $g \in \mathcal{E}^+$ and $\lambda \in [0, \infty)$ then $\lambda g \in \mathcal{E}^+$ and $I_{\mu}(\lambda g) = \lambda I_{\mu}(g)$

Proposition 12. Let $f, g: X \to \overline{\mathbb{R}}$ be A-measurable and non-negative functions on (X, A, μ) . Assume that $f \geq g$. Then $\in_X f d\mu \geq \int_X g d\mu$.

Theorem 7.2.1. (Fatou's lemma). Let (X, \mathcal{A}, μ) be a measure space and consider a sequence $\{f_k\}_{k=1}^{\infty}$ of measurable functions $f_k : X \to \overline{\mathbb{R}}$ with $f_k \geq 0$ for all k. Then

$$\int_{X} (\lim_{k \to \infty} f_k) \, d\mu \le \lim_{k \to \infty} \left(\int_{X} f_k \, d\mu \right)$$

Theorem 7.2.2. (Beppo Levi's theorem, or 'monotone convergence' theorem). Let (X, \mathcal{A}, μ) be a measure space and consider a sequence $\{f_j\}_{j=1}^{\infty}$ of measurable functions $f_j: X \to \overline{\mathbb{R}}$ with $0 \le f_1 \le f_2 \le \ldots \le f_m \le f_{m+1} \le \ldots$ Then

$$\int_X (\sup_j f_j) \, d\mu = \sup_j (\int_X f_j \, d\mu)$$

or equivalently, by Proposition 12,

$$\int_X (\lim_j f_j) \, d\mu = \lim_j (\int_X f_j \, d\mu)$$

Corollary 7.2.1. Let $f_j: X \to \overline{\mathbb{R}}$ be an increasing sequence of non-negative \mathcal{A} -measurable functions, and let $f_j \uparrow f$ pointwise. Then $\int_X f_j d\mu \to \int_X f d\mu$ $(f: X \to \overline{\mathbb{R}})$ is \mathcal{A} -measurable by Theorem 6.2.3 and clearly $f \geq 0$).

Proposition 13. Let $f, g: X \to \overline{\mathbb{R}}$ be measurable and non-negative on (X, \mathcal{A}, μ) , let $\alpha \in (0, +\infty)$. Then

1.
$$\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$$

2.
$$\int_X (\alpha f) d\mu = \alpha \int_X f d\mu$$

Corollary 7.2.2. Let $u_j \geq 0$ be measurable, $u_j : X \to \overline{\mathbb{R}}$. Then $\int_X (\sum_{j \in \mathbb{N}} u_j) d\mu = \sum_{j \in \mathbb{N}} \int_X u_j d\mu$.

Theorem 7.2.3. ('reverse Fatou's lemma' and 'dominated convergence' for non-negative functions). Let $u: X \to \overline{\mathbb{R}}$ be a non-negative \mathcal{A} -measurable function on the measure space (X, \mathcal{A}, μ) with $\int_X u \, d\mu < \infty$.

Let $f_j: X \to \mathbb{R}$ be a sequence of non-negative \mathcal{A} -measurable functions such that $f_j \leq u$ for all $j \in \mathbb{N}$. Assume that $f_j \to f$ pointwise, where $f: X \to \overline{\mathbb{R}}$ (this function is \mathcal{A} -measurable by Theorem 6.2.3.). Then

$$\int_X f \, d\mu = \lim_{j \to \infty} f_j \, d\mu$$

Definition 24. Let (X, \mathcal{A}, μ) be a measure space and $f: X \to \overline{\mathbb{R}}$ be a \mathcal{A} -measurable function. Whenever $\int_X f^+ d\mu$ and $\int_X f^{-1} d\mu$ are not both $+\infty$ we set

$$\int_{X} f \, d\mu := \int_{X} f^{+} \, d\mu - \int_{X} f^{-1} \, d\mu$$

This value is in $[-\infty, +\infty]$.

Definition 25 (summable functions). With the same notations and conditions as in Definition 24, assume in addition that $\int_X f + d\mu < \infty$ and $\int_X f^{-1} d\mu < \infty$. Then we say that f is μ -summable (note that in this case $\int_X f d\mu$ is finite).

Remark 7.3.1. Whenever $f: X \to \overline{\mathbb{R}}$ is μ -measurable, the μ -summability of f is equivalent to the finiteness of $\int_X |f| \, d\mu$ (recall from Theorem 6.2.2 that the function |f| is measurable if f is measurable). This follows upon noticing that $|f| = f^+ + f^{-1}$ and so by Proposition 13(i) we have $\int_X |f| \, d\mu = \int_X f^+ \, d\mu + \int_X f^{-1} \, d\mu$.

Theorem 7.3.1. ((Lebesgue's) dominated convergence theorem (for signed functions) - weak statement). Let $u: X \to \overline{\mathbb{R}}$ be a non-negative \mathcal{A} -measurable function on the measure space (X, \mathcal{A}, μ) with $\int_X u \, d\mu < \infty$ (i.e. u is μ -summable). Let $f_j: X \to \mathbb{R}$ be a sequence of \mathcal{A} -measurable functions usch that $|f_j| \leq u$ for all $j \in \mathbb{N}$. Assume that $f_j \to f$ pointwise (where $f: X \to \overline{\mathbb{R}}$). Then

$$\int_X f \, d\mu = \lim_{j \to \infty} \int_X f_j \, d\mu$$

Proposition 14. Let $f, g: X \to \overline{\mathbb{R}}$ be μ -summable, let $\alpha \in \mathbb{R}$. Then

- 1. If f+g is well-defined then it is μ -summable and $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$
- 2. αf is μ -summable and $\int_X (\alpha f) d\mu = \alpha \int_X f d\mu$

Proposition 15. Let $f, g: X \to \overline{\mathbb{R}}$ be μ -summable. Then

- 1. $\max\{f,g\}$ and $\min\{f,g\}$ are μ -summable
- 2. $f \leq g \implies \int_X f \, d\mu \leq \int_X g \, d\mu$
- 3. $|\int_X f \, d\mu| \le \int_X |f| \, d\mu$

Proposition 16. Let (X, \mathcal{A}, μ) be a complete measure space, and let $f, g: X \to \overline{\mathbb{R}}$ be μ -summable. Then f + g is μ -summable and we have $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$.

Theorem 7.3.2 ((Lebesgue's) dominated convergence theorem - strong statement). Let $u: X \to \overline{\mathbb{R}}$ be a non-negative \mathcal{A} -measurable function on the complete measure space (X, \mathcal{A}, μ) with $\int_X u \, d\mu < \infty$ (i.e. u is μ -summable). Let $f_j: X \to \overline{\mathbb{R}}$ be a sequence of \mathcal{A} -measurable functions such that $|f_j| \leq u$ for all $j \in \mathbb{N}$. Assume that $f_j \to f$ pointwise almost everywhere (that is, there exists $N \in \mathcal{A}$ such that $\mu(N) = 0$ and $f_j(X) \to f(x)$ for all $x \in X \setminus N$), where $f: X \to \overline{\mathbb{R}}$. Then

$$\lim_{j \to \infty} \int_X |f - f_j| \, d\mu = 0$$

Definition 26. Given a measure space (X, \mathcal{A}, μ) , let $A \in \mathcal{A}$ and let $f: X \to \mathbb{R}$ be \mathcal{A} -measurable. Assume that $\mathbb{1}_A f$ is μ -integrable (note that $f\mathbb{1}_A$ is automatically \mathcal{A} -measurable). Then the μ -integral of f on A is defined as

$$\int_A f \, d\mu = \int_X f \, \mathbb{1}_A \, d\mu$$

(if f is assumed to be μ -summable, then $\mathbb{1}_A f$ is also μ -summable, in particular it is μ -integrable.)

Proposition 17 (Markov's inequality). Let $f: X \to \overline{\mathbb{R}}$ be μ -summable on the measure space (X, \mathcal{A}, μ) . For every c > 0 and $A \in \mathcal{A}$

$$\mu(\{x \in X \mid |f(x) \ge c\} \cap A) \le \frac{1}{c} \int_A |f| \, d\mu$$

In particular choosing A = X we have

$$\mu(\{x \in X \mid |f(x)| \ge c\}) \le \frac{1}{c} \int_{Y} |f| \, d\mu$$

Proposition 18. Let I=[a,b] and let $f:I\to\mathbb{R}$ be a non-negative Riemann-integrable function with $\int_a^b f\,dx=R$. Denote with λ the Lebesgue 1-dimensionally measure on \mathbb{R} . Then f is Lebesgue integrable and the two integrals yield the same value, i.e. $\int_I f\,d\lambda=R$.

Proposition 19. Let $f: R \times [0,1] \to \mathbb{R}$ be such that

- 1. for every $x \in \mathbb{R}$ the function $y \to f(x,y)$ is summable on [0,1] (with respect to the 1-dimensional Lebesgue measure)
- 2. the partial derivative $\frac{\partial f}{\partial x}$ exists everywhere and is bounded, i.e. there is G > 0 such that $\left| \frac{\partial f}{\partial x} \right| \leq G$.

Then for every $x \in \mathbb{R}$ the function $y \to \frac{\partial f}{\partial x}(x,y)$ is summable on [0,1] and (note that in the following both sides are functions of the variable x)

$$\frac{d}{dx}\left(\int_0^1 f(x,y) \, dy\right) = \int_0^1 \frac{\partial f}{\partial x}(x,y) \, dy$$

8 Product measures

We define a measure $(\mu \times \nu)$ on $X \times Y$ by setting, for $A \in \mathcal{A}$ and $S \in \mathcal{S}$,

$$(\mu \times \nu)(A \times S) := \mu(A)\nu(S)$$

Proposition 20. Let \mathcal{A} be a σ -algebra on X and let \mathcal{S} be a σ -algebra on Y. Then the collection $\mathcal{A} \times \mathcal{S} := \{A \times S \subset X \times Y \mid A \in \mathcal{A}, S \in \mathcal{S}\}$ is a semi-ring (or semi-algebra, see Chapter 4) on $X \times Y$.

Proposition 21. The assignment $(\mu \times nu)$ is a pre-measure on the semi-ring $\mathcal{A} \times \mathcal{B}$.

Definition 27. The σ -algebra generated by the semi-ring $\mathcal{A} \times \mathcal{S}$ is denoted by $\mathcal{A} \otimes \mathcal{S}$ and it is called the product σ -algebra of \mathcal{A} and \mathcal{S} .

Definition 28. Let (X, \mathcal{A}, μ) and (Y, \mathcal{S}, ν) be σ -finite measure spaces. The unique triple $(X \times Y, \mathcal{A} \otimes \mathcal{S}, \mu \times \nu)$ constructed above is called the product measure space of (X, \mathcal{A}, μ) and (Y, \mathcal{S}, ν) .

Corollary 8.1.1. The Lebesgue measure on \mathbb{R}^n is the product measure of the Lebesgue measures on \mathbb{R}^k and \mathbb{R}^d whenever k+d=n. Moreover $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda^n)$ is the product measure space of the following two factors:

$$(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \lambda^n) = (\mathbb{R}^k \times \mathbb{R}^d, \mathcal{B}(\mathbb{R}^k) \otimes \mathcal{B}(\mathbb{R}^d), \lambda^k \times \lambda^d)$$

Lemma 8.2.1. Let $A \otimes S$ on $X \times Y$ be the product σ -algebra defined in the previous section. For $D \subset X \times Y$ we look at 'slices':

- 1. for every $y \in Y$ let D_y denote the set $\{x \in X \mid (x,y) \in D\}$
- 2. for every $x \in X$ let D_x denote the set $\{y \in Y \mid (x,y) \in D\}$

Let $D \in \mathcal{A} \otimes \mathcal{S}$; then for every $y \in Y$ the set D_y is in \mathcal{A} and for every $x \in X$ the set D_x is in \mathcal{S} .

Theorem 8.2.1 (Tonelli's theorem). let $(X \times Y, \mathcal{A} \otimes \mathcal{S}, \mu \times \nu)$ be the product measure space of (X, \mathcal{A}, μ) and (Y, \mathcal{S}, ν) , where all of these measure spaces are σ -finite. If $f: X \times Y \to \overline{\mathbb{R}}$ is $(\mathcal{A} \otimes \mathcal{S})$ -measurable and non-negative, then

- 1. for every $y \in Y$ the function from X to $\overline{\mathbb{R}}$ defined by the assignment $x \to f(x,y)$ is \mathcal{A} -measurable; for every $x \in X$ the function from Y to $\overline{\mathbb{R}}$ defined by the assignment $y \to f(x,y)$ is \mathcal{S} -measurable
- 2. the function (from X to $\overline{\mathbb{R}}$) defined by the assignment $x \to \int_Y f(x,y) d\nu(y)$ is \mathcal{A} -measurable; the function (from Y to $\overline{\mathbb{R}}$) defined by the assignment $y \to \int_X f(x,y) d\mu(x)$ is \mathcal{S} -measurable
- 3. $\int_{X\times Y} f \, d(\mu\times\nu) = \int_X \left(\int_Y f(x,y) \, d\nu(y) \right) \, d\mu(x) = \int_Y \left(\int_X f(x,y) \, d\mu(x) \right) \, d\nu(y)$ where the values are in $[0,+\infty]$

Theorem 8.2.2 (Fubini's theorem). Let $(X \times Y, \mathcal{A} \otimes \mathcal{S}, \mu \times \nu)$ be the product measure space of (X, \mathcal{A}, μ) and (Y, \mathcal{S}, ν) , where all of these measure spaces are σ -finite and let $f: X \times Y \to \overline{\mathbb{R}}$ be $(\mathcal{A} \otimes \mathcal{S})$ -measurable. Assume that at least one of the following integrals is finite:

$$\int_{X\times Y} |f| \, d(\mu\times\nu), \int_X \left(\int_Y |f|(x,y) \, d\nu(y)\right) \, d\mu(x), \int_Y \left(\int_X |f|(x,y) \, d\mu(x)\right) \, d\nu(y)$$

- , then f is $(\mu \times \nu)$ -summable on $X \times Y$ and all three above integrals are finite and coincide. Moreover:
 - 1. for ν -almost everywhere $y \in Y$ the function (from X to \mathbb{R}) defined by the assignment $x \to f(x,y)$ is \mathcal{A} -measurable and μ -summable; for μ -almost everywhere $x \in X$ the function (from Y to \mathbb{R}) defined by the assignment $y \to f(x,y)$ is \mathcal{S} -measurable and ν -summable
 - 2. the function defined by the assignment $x \to \int_Y f(x,y) d\nu(y)$ is \mathcal{A} -measurable and μ -summable; the function defined by the assignment $y \to \int_X f(x,y) d\nu(y)$ is \mathcal{S} -measurable and ν -summable
 - 3. $\int_{X\times Y} f d(\mu \times \nu) = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x) = \int_Y \left(\int_X f(x,y) d\mu(x) \right) d\nu(y),$ where the values are in $(-\infty, +\infty)$

Theorem 8.2.3 (Fubini's theorem for Lebesgue-measurable functions). Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be Lebesgue-measurable. Assume that k+d=n $(d, k \in \mathbb{N}*)$. Then f is λ^n -summable if and only if either one of the following integrals is finite:

$$\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^k} |f|(x,y) \, d\lambda^k(y) \right) \, d\lambda^d(x), \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^d} |f|(x,y) \, d\lambda^d(x) \right) \, d\lambda^k(y)$$

In that case

$$\int_{\mathbb{R}^n} f(x,y) \, d\lambda^n = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^k} |f|(x,y) \, d\lambda^k(y) \right) \, d\lambda^d(x), \\ \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^d} |f|(x,y) \, d\lambda^d(x) \right) \, d\lambda^k(y)$$

where all the inner integrals are well-defined and finite almost-everywhere.