

ECE 602: LUMPED LINEAR SYSTEMS

Professor Stan Żak

Stability of Linear Systems

Stability of Linear Systems

- Objective: Introduce internal and external stability concepts of linear lumped continuous-time (CT) and discrete-time (DT) systems
- Consider a CT linear time-varying (LTV) system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}(t)\boldsymbol{x}(t)$$

which has an equilibrium state at the origin of the state space, $\mathbf{x}_{e} = \mathbf{0}$

Definition (Asymptotic Stability)

The equilibrium state $x_e = \mathbf{0}$ is asymptotically stable if any solution x(t) starting from any initial condition $x(0) \in \mathbb{R}^n$ satisfies

$$\mathbf{x}(t) \rightarrow \mathbf{0}$$
 as $t \rightarrow \infty$

Exponential stability \Longrightarrow **Asymptotic** stability

Definition (Exponential Stability)

The equilibrium state $x_e = \mathbf{0}$ is exponentially stable of the system $\dot{x} = \mathbf{A}(t)\mathbf{x}$ if any solution $\mathbf{x}(t)$ starting from any initial condition $\mathbf{x}(0) \in \mathbb{R}^n$ satisfies

$$\|\mathbf{x}(t)\| \leq Ke^{-rt}\|\mathbf{x}(0)\|$$

for some constants K > 0 and r > 0

Internal stability of CT linear time-invariant (LTI) systems

Theorem

For a CT LTI system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, $\mathbf{A} \in \mathbb{R}^{n \times n}$, the following statements are equivalent

- **1** The equilibrium state $x_e = 0$ is asymptotically stable
- 2 The equilibrium state $x_e = 0$ is exponentially stable
- **3** All eigenvalues of **A** are in the open left-half complex plane, that is, $\Re \lambda_i(\mathbf{A}) < 0$, i = 1, 2, ..., n

Internal stability of CT linear time-invariant (LTI) systems theorem restated

Theorem

For a CT LTI system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, $\mathbf{A} \in \mathbb{R}^{n \times n}$, the following statements are equivalent

- 1 The system $\dot{x} = Ax$ is asymptotically stable
- 2 The system $\dot{x} = Ax$ is exponentially stable
- **3** All eigenvalues of **A** are in the open left-half complex plane, that is, $\Re \lambda_i(\mathbf{A}) < 0$, i = 1, 2, ..., n

Instability of CT linear time-invariant (LTI) systems

- LTI CT system $\dot{x} = Ax$, $A \in \mathbb{R}^{n \times n}$, is unstable if ||x(t)|| is unbounded for some initial condition x(0)
- This is the case if either of the following conditions holds:
 - **1 A** has at least one eigenvalue in the open left-half complex plane, that is, there exists an eigenvalue such that $\Re \lambda_i(\mathbf{A}) > 0$
 - 2 There are eigenvalues of ${\bf A}$ with multiplicity greater than one on the imaginary axis, that is, ${\bf A}$ has an eigenvalue on the $j\omega$ axis whose Jordan block size >1
 - **3** A has defective eigenvalue on the $j\omega$ axis

Marginally stable systems

- LTI CT system $\dot{x} = Ax$, $A \in \mathbb{R}^{n \times n}$, is marginally stable if all solution x(t) are bounded and at least one solution x(t) does not converge to zero
- This is the case if both of the following conditions hold:
 - **1 A** has no eigenvalues in the open left-half complex plane, that is, **A** has no eigenvalue such that $\Re \lambda_i(\mathbf{A}) > 0$
 - **2 A** has simple eigenvalues on the $j\omega$ -axis, that is, any eigenvalue of **A** on the $j\omega$ -axis is non-defective
- Some texts classify marginally stable systems as unstable

Internal Stability versus Input/Output Stability

• Consider a CT LTI single-input single-output (SISO) system modeled by a proper transfer function G(s), where

$$Y(s) = G(s)U(s)$$

Definition (BIBO Stability)

The system is BIBO stable \iff for any bounded input $u(\cdot)$, the output $y(\cdot)$ is bounded

BIBO Stability Test

Theorem

A continuous MIMO LTI system with a proper rational transfer function matrix, G(s), is BIBO stable if and only if every pole of $G_{ij}(s)$ has a negative real part, where

$$oldsymbol{G}(s) = \left[egin{array}{cccc} G_{11}(s) & G_{12}(s) & \cdots & G_{1m}(s) \ dots & dots & \ddots & dots \ G_{p1}(s) & G_{p2}(s) & \cdots & G_{pm}(s) \end{array}
ight]$$

Example

• Is the following system BIBO stable?

- Ans: NO
- Indeed, let u(t) = 1(t) (bounded input), then $y(t) = t^2 1(t)$ (unbounded output)

Internal stability of DT Linear Systems

Discrete-time (DT) LTV system x[k+1] = A[k]x[k], k = 0, 1, ...

Definition (Asymptotic Stability)

LTV system is asymptotically stable at time k_0 if its solution x[k] starting from any initial condition $x[k_0] \in \mathbb{R}^n$ at time k_0 satisfies

$$x[k] \to 0$$
 as $k \to \infty$

Definition (Exponential Stability)

LTV system is exponentially stable at time k_0 if its solution x[k] starting from any initial condition $x[k_0] \in \mathbb{R}^n$ at time k_0 satisfies

$$\|x[k]\| \le Kr^{k-k_0}\|x[k_0]\|$$
 for all $k = k_0, k_0 + 1, \dots$

for some constants K > 0 and 0 < r < 1

Stability of autonomous DT linear time-invariant (LTI) systems

Theorem

For a DT LTI system $\mathbf{x}[k+1] = \mathbf{A}\mathbf{x}[k]$, $\mathbf{A} \in \mathbb{R}^{n \times n}$, the following statements are equivalent

- 1 The system is asymptotically stable
- 2 The system is exponentially stable
- **3** All eigenvalues of **A** are inside of the open unit disk in the complex plane, that is, $|\lambda_i(\mathbf{A})| < 1$, i = 1, 2, ..., n
- Note: starting time k_0 does not matter

Marginal Stability of DT LTI Systems

System x[k+1] = Ax[k], $A \in \mathbb{R}^{n \times n}$, is marginally stable if both of the following hold:

- **1** \boldsymbol{A} has no eigenvalues outside the closed unit disk, that is, there are no eigenvalues such that $|\lambda_i(\boldsymbol{A})| > 1$
- 2 A has eigenvalues on the unit circle, each being non-defective

Instability of DT LTI Systems

System x[k+1] = Ax[k], $A \in \mathbb{R}^{n \times n}$, is unstable if either of the following is true:

- **1** $m{A}$ has eigenvalues outside the closed unit disk, that is, for some eigenvalues $|\lambda_i(m{A})|>1$
- 2 A has defective eigenvalues on the unit circle