DAYANANDA SAGAR COLLEGE OF ENGINEERING

Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru-560078

Department of Mathematics

Question Bank for IT(EC, TC, EE, ML, EI, IS)

Unit 2: Complex Variable

Q.No	Question
1.	a) Find the modulus and amplitude of $\frac{(1+i)^2}{(3+i)}$.
	b) Prove that $cosx = \frac{e^{ix} + e^{-ix}}{2}$, $sinx = \frac{e^{ix} - e^{-ix}}{2i}$
2.	a) Determine the region in the z-plane represented by i) $1 < z + 2i \le 3$ ii) $R(z) > 3$
	$iii) \frac{n}{6} \le amp(z) \le \frac{n}{3}$
	b) Define the following:i) Limit of a complex function ii) Continuity of a complex function iii) Differentiability of a
	complex function
3.	a) If $f(z) = u + iv$ is analytic, then prove that Cauchy-Riemann equations $u_x = v_y$, $v_x = -u_y$ are true.
	b) If $f(z) = u(r, \theta) + i v(r, \theta)$ is analytic, then prove that Cauchy- Riemann equations in polar form $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$ are true. a) If $u = x^2 - y^2$, $v = x^3 - 3xy^2$ Show that u and v are harmonic functions but $f(z) = u + v$
4.	a) If $u = x^2 - y^2$, $v = x^3 - 3xy^2$ Show that u and v are harmonic functions but $f(z) = u + iv$ is not analytic.
	b) If $u = \frac{x^2}{y}$, $y \neq 0$ and $v = x^2 + 2y^2$, then show that the curve $u = constant$ and $v = constant$
	constant are orthogonal but $f(z) = u + iv$ is not an analytic function.
5.	 a) Show that f(z) = zⁿ is analytic. Hence find its derivative. b) Show that the function f(z) = logz is analytic and hence find its derivative.
6.	a) Show that the function $f(z) = \cosh z$ is analytic and hence find its derivative.
	b) Show that $w = z + e^z$ is analytic and hence find $\frac{dw}{dz}$.
7.	a) Show that the function $f(z) = \sin 2z$ is analytic and hence find its derivative.
	b) Find the analytic function $f(z) = u + iv$, where $u = x^2 - y^2 + \frac{x}{x^2 + y^2}$
8.	a) Find the analytic function whose real part is $\log \sqrt{x^2 + y^2}$.
	b) Find the analytic function $f(z) = u + iv$, where $v = \frac{y}{x^2 + y^2}$.
9.	a) Find the analytic function $f(z) = u + iv$, where $v = e^x(xsiny + ycosy)$ using Milne
	Thompson method. b) Find the analytic function $f(z) = u + iv$, where $u = e^{-x}\{(x^2 - y^2)\cos y + e^{-x}\}$
	$2xysiny$ } using Milne Thompson method.
10.	a) Find the analytic function $f(z) = u(r,\theta) + iv(r,\theta)$, where $v(r,\theta) = r^2 cos 2\theta - r cos \theta + 2\theta +$
	2 using Milne Thompson method. b) Find the analytic function $f(z) = u(r, \theta) + iv(r, \theta)$, where $u(r, \theta) =$
	$\frac{\cos 2\theta}{r^2} \text{ using Milne Thompson method.}$
11.	a) Find the analytic function $f(z) = u + iv$, where $v = -\frac{\sin\theta}{r}$ using Milne Thompson method.
	b) Find the analytic function $f(z) = u + iv$, where $u = r^2 cos2\theta$

12.	a) Show that $u = e^{2x}(x\cos 2y - y\sin 2y)$ is harmonic and find its harmonic conjugate.
	b) Show that $u = e^x cosy + xy$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
13.	a) Show that $v = cosx sinhy$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
	b) Show that $v = x^3 - 3xy^2 - 3x^2 + 3y^2 + 1$ is harmonic and find its harmonic conjugate.
14.	a) Show that $u = \left(r + \frac{1}{r}\right) \cos\theta$ is harmonic and find its harmonic conjugate.
	b) Show that $v = \left(r - \frac{1}{r}\right) \sin\theta$ is harmonic and find its harmonic conjugate.
15.	a) Show that $v = rsin\theta + \frac{cos\theta}{r}$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
	b) Show that $u = \frac{\cos \theta}{r}$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
16.	a) Show that $u = x^2 + 4x - y^2 + 2y$ is harmonic and find its harmonic conjugate and also find
10.	the corresponding analytic function.
	b) Show that $v = 2xy - 2x + 4y$ is harmonic and find its harmonic conjugate and also find the
	corresponding analytic function.
17.	a) Find the analytic function $f(z) = u + iv$ if $u + v = \frac{1}{r^2}(\cos 2\theta - \sin 2\theta)$ $(r \neq 0)$.
	b) Find the analytic function $f(z) = u + iv$ if $u + v = r(\cos\theta + \sin\theta) + \frac{1}{r}(\cos\theta - \sin\theta)$
18.	a) Find the analytic function $f(z) = u + iv$ if $u + v = (x + y) + e^x(cosy + siny)$.
	b) Find the analytic function $f(z)$ as a function of z gives the sum of its real and imaginary part
	is $x^3 - y^3 + 3xy(x - y)$.
19.	a) Find the analytic function $f(z) = u + iv$ if $u - v = (x - y)(x^2 + 4xy + y^2)$
	b) Find the analytic function $f(z) = u + iv$ if $u - v = e^x(cosy - siny)$ a) An electrostatic field in the xy-plane is given by the potential function $\emptyset = 3x^2y - y^3$, find the
20.	
	stream function.
	b) Two concentric circular cylinders of radii r_1 , r_2 ($r_1 < r_2$) are kept at potentials \emptyset_1 and \emptyset_2
	respectively. Using complex function $\omega = alogz + c$, prove that the capacitance per unit length of
	the capacitor formed by them is $\frac{2\pi \times}{\log(r_2 r_1)}$ where \times is the dielectric constant of the medium.