Student Online Teaching Advice Notice

The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.

Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.

Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.

Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.

Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.

Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info_compliance/data-protection/.

© Trinity College Dublin 2020

5.2 Inverting Functions

It turns out f has to satisfy two properties for f^{-1} to exist:

 $A \xrightarrow{f} B \xrightarrow{f^{-1}} A$

Task: Figure out which properties a function has to satisfy so that its action can be undone, i.e. when we can define an inverse to the original function.

be undone, **i.e.** when we can define an inverse to the original function.
Given
$$f: A \to B$$
, want $f^{-1}: B \to A$ s.t. $f^{-1} \circ f: A \to A$ is the identity $f^{-1} \circ f(x) = f^{-1}(f(x)) = x$

- 1. Injective
- 2. Surjective

Definition: A function $f: A \to B$ is called <u>injective</u> or an injection (sometimes called one-to-one) if $f(x) = f(y) \Rightarrow x = y$

Examples:

 $\sin x : [0, \frac{\pi}{2}] \to \mathbb{R}$ is injective $\sin x : \mathbb{R} \to \mathbb{R}$ is not injective because $\sin 0 = \sin \pi = 0$

Definition: A function $f: A \to B$ is called <u>surjective</u> or a surjection (sometimes called onto) if $\forall z \in B \ \exists x \in A \ \text{s.t.}$ $\overline{f(x) = z}$.

Remark: f assigns a value to each element of A by its definition as a function, but it is not required to cover all of B. f is surjective if its range is all of B.

Examples:

 $\sin x : \mathbb{R} \to [-1,1]$ is surjective $\sin x : \mathbb{R} \to \mathbb{R}$ is not surjective since $\nexists x \in \mathbb{R}$ s.t. $\sin x = 2$. We know $|\sin x| \le 1 \ \forall x \in \mathbb{R}$

Definition: A function $f: A \to B$ is called <u>bijective</u> or a bijection if f is <u>both</u> injective and surjective.

Example: $f: \mathbb{R} \to \mathbb{R}$ f(x) = 2x + 1 is bijective.

- Check injectivity: $f(x_1) = f(x_2) \Rightarrow 2x_1 + 1 = 2x_2 + 1 \Leftrightarrow 2x_1 = 2x_2 \Leftrightarrow x_1 = x_2$ as needed.
- Check surjectivity: $\forall z \in \mathbb{R}$ f(x) = z means 2x + 1 = z. Solve for x: $2x = z - 1 \Rightarrow x = \frac{z-1}{2} \in \mathbb{R} \Rightarrow f$ is surjective.

Remark: All bijective functions have inverses because we can define the inverse of a bijection and it will be a function:

- Surjectivity ensures f^{-1} assigns an element to every element of B (its domain).
- Injectivity ensures f^{-1} assigns to each element of B one and only one element of A.

Conclusion: $f: A \to B$ bijective $\Rightarrow f^{-1}$ exists, **i.e.** f^{-1} is a function. It turns out (reverse the arguments above) that f^{-1} exists $\Rightarrow f: A \to B$ is bijective.

Altogether we get the following theorem:

Theorem: Let $f: A \to B$ be a function. f^{-1} exists $\Leftrightarrow f: A \to B$ is bijective.

Q: How do we find the inverse function f^{-1} given $f: A \to B$?

A: If f(x) = y, solve for x as a function of y since $f^{-1}(f(x)) = f^{-1}(y) = x$ as $f^{-1} \circ f$ is the identity.

Example: f(x) = 2x + 1 = y. Solve for x in terms of y. $f: \mathbb{R} \to \mathbb{R}$ 2x = y - 1 $x = \frac{y-1}{2}$

5.3 Functions Defined on Finite Sets

Task: Derive conclusions about a function given the number of elements of the domain and codomain, if finite; understand the pigeonhole principle.

Proposition: Let A, B be sets and let $f: A \to B$ be a function. Assume A is finite. Then f is injective $\Leftrightarrow f(A)$ has the same number of elements as A.

Proof:

A is finite so we can write it as $A = \{a_1, a_2, ..., a_p\}$ for some p. Then $f(A) = \{f(a_1), f(a_2), ..., f(a_p)\} \subseteq B$. A priori, some $f(a_i)$ might be the same as some $f(a_j)$. However, f injective $\Leftrightarrow f(a_i) \neq f(a_j)$ whenever $i \neq j \Leftrightarrow f(A)$ has exactly p elements just like A.

qed

Corollary 1 Let A, B be finite sets such that #(A) = #(B). Let $f: A \to B$ be a function. f is injective $\Leftrightarrow f$ is bijective.

Proof:

" \Rightarrow " Suppose $f:A\to B$ is injective. Since A is finite, by the previous proposition, f(A) has the same number of elements as A, but $f(A)\subseteq B$ and B has the same number of elements as $A\Rightarrow \#(A)=\#(f(A))=\#(B)$, which means f(A)=B, i.e. f is also surjective $\Rightarrow f$ is bijective.

" \Leftarrow " f is bijective \Rightarrow f is injective.

qed

Corollary 2 (The Pigeonhole Principle) Let A, B be finite sets, and let $f: A \to B$ be a function. If #(B) < #(A), $\exists a, a' \in A$ with $a \neq a'$ such that f(a) = f(a').

Remark: The name pigeonhole principle is due to Paul Erdös and Richard Rado. Before it was known as the principle of the drawers of Dirichlet. It has a simple statement, but it's a very powerful result in both mathematics and computer science.

Proof: Since $f(A) \subseteq B$ and #(B) < #(A), f(A) cannot have as many elements as A, so by the proposition, f cannot be injective, namely $\exists a, a' \in A$ with $a \neq a'$ (i.e. distinct elements) s.t. f(a) = f(a').

qed

- **Examples:**
- 1. You have 8 friends. At least two of them were born the same day of the week. #(days of the week) = 7 < 8.

2. A family of five gives each other presents for Christmas. There are 12 presents under the tree. We conclude at least one person got three

presents or more. 3. In a list of 30 words in English, at least two will begin with the same

letter. #(Letters in the English alphabet) = 26 < 30.