#### W4995 Applied Machine Learning

### Working with Imbalanced Data

03/20/17

Andreas Müller

Recap on imbalanced data

#### Two sources of imbalance

- Asymmetric cost
- Asymmetric data

#### Why do we care?

- Why should cost be symmetric?
- Detect rare events

### Changing Thresholds

```
# logistic regresson on breast cancer, but change threshold:
data = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(
    data.data, data.target, stratify=data.target, random_state=0)

lr = LogisticRegression().fit(X_train, y_train)
y_pred = lr.predict(X_test)

print(classification_report(y_test, y_pred))
```

|             | precision    | recall       | f1-score     | support  |
|-------------|--------------|--------------|--------------|----------|
| 0<br>1      | 0.91<br>0.96 | 0.92<br>0.94 | 0.92<br>0.95 | 53<br>90 |
| avg / total | 0.94         | 0.94         | 0.94         | 143      |

```
y_pred = lr.predict_proba(X_test)[:, 1] > .85
print(classification_report(y_test, y_pred))
```

| support  | f1-score     | recall       | precision    |             |
|----------|--------------|--------------|--------------|-------------|
| 53<br>90 | 0.91<br>0.94 | 1.00<br>0.89 | 0.84<br>1.00 | 0<br>1      |
| 143      | 0.93         | 0.93         | 0.94         | avg / total |

#### Roc Curve



Remedies for the model

## Mammography data

```
import openml
# mammography dataset https://www.openml.org/d/310
data = openml.datasets.get_dataset(310)
X, y = data.get_data(target=data.default_target_attribute)

X.shape
(11183, 6)

np.bincount(y)
array([10923, 260])
```



#### 0.919622716696

# Mammography data



#### Basic Approaches

Add samples

Remove Samples

Both

Change the training procedure

### Scikit-learn vs resampling

- The transform method only transforms X
- Pipelines work by chaining transforms
- To resample the data, we need to also change y
- Imbalance-learn extends scikit-learn interface with a "sample" method.
- Imbalance-learn has a custom pipeline that allows resampling.
- Imbalance-learn: resampling is only performed during fitting
- Warning: not everything in imbalance-learn is multiclass!

## Random Undersampling

- Drop data from the majority class randomly
- Often until balanced
- Very fast training (data shrinks to 2x minority)
- Loses data!

```
from imblearn.under_sampling import RandomUnderSampler

rus = RandomUnderSampler(replacement=False)
X_train_subsample, y_train_subsample = rus.fit_sample(X_train, y_train)
print(X_train.shape)
print(X_train_subsample.shape)
print(np.bincount(y_train_subsample))
```

```
(8387, 6)
(390, 6)
[195 195]
```

#### Random Undersampling

```
from imblearn.pipeline import make_pipeline as make_imb_pipeline
undersample_pipe = make_imb_pipeline(RandomUnderSampler(), LogisticRegressionCV())
scores = cross_val_score(undersample_pipe, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

0.916512922589

```
undersample_pipe = make_imb_pipeline(RandomUnderSampler(), RandomForestClassifier())
scores = cross_val_score(undersample_pipe, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

0.944496565836

As accurate with fraction of samples! Really good for large datasets!

#### Random Oversampling

- Repeat samples from the minority class randomly.
- Often until balanced.

(16384, 6)

[8192 8192]

Much slower (dataset grows to 2x majority)

```
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler()
X_train_oversample, y_train_oversample = ros.fit_sample(X_train, y_train)
print(X_train.shape)
print(X_train_oversample.shape)
print(np.bincount(y_train_oversample))
(8387, 6)
```

### Random Oversampling

```
oversample_pipe = make_imb_pipeline(RandomOverSampler(), LogisticRegression())
scores = cross_val_score(oversample_pipe, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

0.917755942193

```
oversample_pipe_rf = make_imb_pipeline(RandomOverSampler(), RandomForestClassifier())
scores = cross_val_score(oversample_pipe_rf, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

0.916313332777

Logreg the same, Random Forest much worse than before

### ROC Curves for LogReg



#### ROC Curves for Random Forest



### Class-weights

- Instead of repeating samples, re-weight the loss function.
- Works for most models!
- Same effect as over-sampling (though not random), but not as expensive (dataset size the same).

## Class-weights in linear models

$$\min_{w \in \mathbb{R}^p} -C \sum_{i=1}^n \log(\exp(-y_i w^T \mathbf{x}_i) + 1) + ||w||_2^2$$

$$\min_{w \in \mathbb{R}^p} - \sum_{i=1}^n C_{y_i} \log(\exp(-y_i w^T \mathbf{x}_i) + 1) + ||w||_2^2$$

Similar for linear and non-linear SVM

# Class weights in trees

## Using Class-Weights

0.917567920152

0.91679851501

#### Ensemble Resampling

- Random resampling separate for each instance in an ensemble!
- Paper: "Exploratory Undersampling for Class-Imbalance Learning"
- Not in sklearn (yet), not totally easy with imbalance-learn (but soon).

## Quick & Dirty Easy Ensemble

```
resampled_tree_test = make_resampled_ensemble(DecisionTreeClassifier(max_features='auto'))
scores = cross_val_score(resampled_tree_test, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

#### 0.960342658946

As cheap as undersampling, but much better results than anything else! Didn't do anything for Logistic Regression.

# Smart resampling (based on nearest neighbor heuristics from the 70's

### Edited Nearest Neighbors

- Originally as heuristic for reducing dataset for KNN
- Remove all samples that are misclassified by KNN from training data (mode) or that have any point from other class as neighbor (all).
- "Cleans up" outliers and boundaries.

#### **Edited Nearest Neighbor**



#### Edited Nearest Neighbors

```
from imblearn.under_sampling import EditedNearestNeighbours
enn = EditedNearestNeighbours(n_neighbors=5)
X_train_enn, y_train_enn = enn.fit_sample(X_train, y_train)
enn_mode = EditedNearestNeighbours(kind_sel="mode", n_neighbors=5)
X_train_enn_mode, y_train_enn_mode = enn_mode.fit_sample(X_train, y_train)
```



#### 0.920155354576

0.944075344514

#### Condensed Nearest Neighbors

- Iteratively adds points to the data that are misclassified by KNN
- Focuses on the boundaries
- Usually removes many

```
cnn = CondensedNearestNeighbour()
X_train_cnn, y_train_cnn = cnn.fit_sample(X_train, y_train)
print(X_train_cnn.shape)
print(np.bincount(y_train_cnn))

(556, 6)
[361 195]
```



```
cnn_pipe = make_imb_pipeline(CondensedNearestNeighbour(), LogisticRegression())
scores = cross_val_score(cnn_pipe, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

#### 0.919227113476

#### 0.948040750132

Synthetic Sample Generation

# Synthetic Minority Oversampling Technique (SMOTE)

- Adds synthetic interpolated data to smaller class
- For each sample in minority class:
  - Pick random neighbor from k neighbors.
  - Pick point on line connecting the two uniformly
  - Repeat.
- Leads to very large datasets (oversampling)
- Can be combined with undersampling strategies





```
smote_pipe = make_imb_pipeline(SMOTE(), LogisticRegression())
scores = cross_val_score(smote_pipe, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

#### 0.918776908461

```
smote_pipe_rf = make_imb_pipeline(SMOTE(), RandomForestClassifier(n_estimators=100))
scores = cross_val_score(smote_pipe_rf, X_train, y_train, cv=10, scoring='roc_auc')
print(np.mean(scores))
```

#### 0.94679634593

```
param_grid = {'smote__k_neighbors': [3, 5, 7, 9, 11, 15, 31]}
search = GridSearchCV(smote_pipe_rf, param_grid, cv=10, scoring="roc_auc")
search.fit(X_train, y_train)
```





#### Summary

- Always check roc\_auc, look at curve
- Undersampling is very fast and can help!
- Undersampling + Ensembles is very powerful!
- Many smart sampling strategies, mixed outcomes
- SMOTE allows adding new interpolated samples, works well in practice
- More advanced variants of SMOTE available