Quiz 11.4 - Electronic Spectroscopy

Name: Key

Electronic Term Symbols

Give the term symbol for the excited state of C₂ with the following electronic configuration:

$$\sigma_g(1s)^2 \sigma_u^{\star}(1s)^2 \sigma_g(2s)^2 \sigma_u^{\star}(2s)^2 \pi_u(2p)^3 \sigma_g(2p)^1$$

List all selection rules for electronic transitions

$$\Delta \Lambda = 0, \pm 1$$
 $\Delta S = 0$
 $\Delta \Sigma = 0$ $\Delta \Omega = 0 \pm 1$

Franck Condon Factors

An electronic excitation significantly weakens and lengthens a chemical bond. Which vibrational state of the excited electronic state is likely to show the strongest transition? (Generally. I'm not looking for a particular

value of v') $excited \ Vibrational \ state \ (V'70)$

The absorption and fluorescence spectra below show a few vibronic transitions. Give each peak a label indicating the initial and final vibrational states involved in each transition. Vibrational states of the ground electronic state should be referenced by their v quantum number, and vibrational states of the excited electronic state should be referenced by their v quantum number

Next to the spectrum above, roughly sketch the potential wells and vibrational states for the electronic states involved.

Decay Pathways

Classify each decay pathway as internal conversion, fluorescence, phosphorescence, or inter-system crossing

- $\circ S_1 \to T_1$ (radiationless) $\square S_1 \subset S_1$
- $\circ S_1 \to S_0$ (radiative) fluorescence
- $\circ S_1 \to S_0$ (radiationless) \square .
- $\circ T_1 o S_0$ (radiative) phosphorescence
- $\circ T_1, v' = 6 \rightarrow T_1, v' = 0 ext{ (radiationless)} extbf{I.C.} ext{ (or Vibrational Telaxation)}$