Fizika 2i, tavaszi félév, 3. gyakorlat

Szükséges előismeretek: kapacitás, kondenzátorok kapcsolása és energiája, dielektrikumok, relatív permittivitás, átütési szilárdság, Ohm-törvény, ellenállások kapcsolása, telep belső ellenállása, Joule-hő, Kirchhoff-törvények;

Órai munkára javasolt feladatok

- **F1.** Ismeretlen kapacitású kondenzátort 150 V feszültségre töltünk fel, majd töltetlen, 20 μ F-os kondenzátorral párhuzamosan kapcsoljuk. A kondenzátorok lemezein mérhető feszültség ekkor 50 V-ra csökken. Mekkora az ismeretlen kapacitás?
- ${\bf F2}^*$. Egy síkkondenzátor lemezeinek távolsága 2,0 mm, a lemezek területe 0,30 m². A kondenzátor belsejét $\varepsilon_{\rm r}=3,0$ relatív permittivitású (dielektromos állandójú) szigetelő réteg tölti ki. A kondenzátort egy telep segítségével 12 V-ra töltöttük fel, majd leválasztottuk a feszültségforrásról.
 - a) Mekkora a kondenzátorlemezek töltése?
- b) Határozzuk meg a szigetelő réteg felületén kialakuló polarizált töltéssűrűséget!
- c) Mekkora lesz a kondenzátor feszültsége, ha a szigetelő réteget kihúzzuk a lemezek közül?
- d) Mekkora munkát végeztünk a szigetelő réteg kihúzása során?
- **F3.** Az *ábra* szerinti kapcsolásban a kapcsoló nyitott állásánál 400 mA, zárt kapcsolóállás esetén pedig 500 mA erősségű áram folyik a telepet tartalmazó ágban. Mekkora a telep belső ellenállása?

 $\mathbf{F4^*}$. Négy ellenállásból és egy 36 V-os ideális telepből az *ábrán* látható kapcsolást állítottuk össze.

- a) Mekkora az A és B pontok között mérhető feszültség nagysága?
- b) Hány ohmos fogyasztóra kellene cserélnünk a 30 Ω -os ellenállást, hogy az a) kérdésben ne legyen feszültség a két pont között (Wheatstone-híd)?

 $\mathbf{F5}^*$. Két ideális telepből és három ellenállásból az *ábrán* látható kapcsolást állítottuk össze.

- a) Adjuk meg a 200 $\Omega\text{-}os$ ellenálláson átfolyó áram erősségét!
- b) Mekkora az A és B pontokat összekötő vezetékben folyó áram erőssége?
- c) Mekkora az áramkörben fejlődő Joule-hő teljesítménye?
- **F6*.** Határozzuk meg az *ábrán* látható áramkörben a fogyasztókon átfolyó áram erősségét a) a Kirchhoff-törvényekkel, b) a szuperpozíció elvének felhasználásával!

- $\mathbf{F7}^*$. Egyforma hosszúságú, 1 k Ω -os ellenálláshuzalokból a) szabályos tetraédert, b)** szabályos kockát forrasztunk össze. Határozzuk meg:
- a) a tetraéder két szomszédos csúcsa közötti eredő ellenállást!
- $b)^{**}$ a kocka testátlójának két végpontja közötti eredő ellenállást!
- ${f F8}^{**}$. Csupa egyforma R ellenállásokból az ábrán látható, nagyon hosszú (végtelennek tekinthető) láncot forrasztottuk össze. Mekkora a lánc eredő ellenállása az A és B végpontok között?

Otthoni gyakorlásra szánt feladatok

- H1*. Egy síkkondenzátor lemezeinek távolsága 2,0 mm. Legfeljebb mekkora feszültséget kapcsolhatunk a kondenzátorra, hogy a lemezek között ne üssön át a szikra, ha a lemezek közötti teret
- a)száraz levegő tölti ki, melynek átütési szilárdsága $E_{\rm max}=20~{\rm kV/cm};$
- b) polietilén tölti ki, melynek átütési szilárdsága $E_{\rm max}=200$ kV/cm, relatív dielektromos állandója (permittivitása) pedig $\varepsilon_{\rm r}=2,25$?
- ${\bf H2^*.}$ A 4 $\mu{\rm F}$ és 6 $\mu{\rm F}$ kapacitású kondenzátorokra egyenként legfeljebb 200 V feszültség kapcsolható. Mekkora feszültséget kapcsolhatunk a rendszerre, ha a két kondenzátort sorbakötjük?
- ${
 m H3^*.}$ Egy $C_1=50$ nF és $C_2=30$ nF kapacitású kondenzátort párhuzamos kapcsolásban $U_0=20$ V feszültségű telepre kapcsolunk. A feltöltődés után a kondenzátorokat eltávolítjuk a telepről, és lemezeiket ellentétes polaritással egy-egy vezetékkel összekapcsoljuk.
- a) Határozzuk meg a kondenzátorok feszültségét a végállapotban!
- b) Mennyivel változott meg a folyamat során a kondenzátorok összes energiája?
- **H4***. Magyarázzuk meg az *ábrán* látható két madár különböző viselkedését!

- $\mathbf{H5^*}$. Egy 12 V-os autóakkumulátor belső ellenállása 0,05 Ω . Mekkora az akkumulátor kapocsfeszültsége az indítómotor használata közben, ha a motor 80 A áramerősséget vesz fel?
- $\mathbf{H6^*}$. Egy 9 V-os telep belső ellenállása 10 Ω . Mekkora ellenállású fogyasztót kapcsoljunk a telepre, hogy a fogyasztó teljesítménye a lehető legnagyobb legyen? Mekkora ez a maximális teljesítmény?
- **H7*.** Egy üvegcsőben higanyszál van. Ha a higanyszál végei közé 1,5 V feszültséget kapcsolunk, 3 A erősségű áram folyik át rajta. Ezután a higanyt maradéktalanul áttöltjük egy fele akkora belső átmérőjű üvegcsőbe. Mekkora feszültséget kell a higanyszál két végére kapcsolnunk, hogy most is 3 A erősségű áram folyjék át rajta?
- $\mathbf{H8^*}$. Egy 40 Ω ellenállású vezetőhuzalból zárt karikat forrasztottunk. Mekkora a karika két negyedelőpontja közötti eredő ellenállás?

 $\mathbf{H9}^*$. Az két alábbi kapcsolásban minden fogyasztó R ellenállású. Mekkora az eredő ellenállás az A és B kivezetések között az a), illetve b) esetben?

H10*. Két ideális telepből és három ellenállásból az *ábrán* látható kapcsolást állítottuk össze.

- a) Adjuk meg a 100 $\Omega\text{-}os$ ellenálláson átfolyó áram erősségét!
- b) Mekkora az A és B pontokat összekötő vezetékben folyó áram erőssége?
- c) Mekkora az áramkörben fejlődő Joule-hő teljesítménye?
- $\mathbf{H11^{**}}$. Egy síkkondenzátor lemezeinek területe A, a lemezek távolsága d. A kondenzátor belső térfogatának x-ed részét ε_1 , a maradék részt pedig ε_2 permittivitású anyaggal töltjük ki egyszer az a), máskor pedig a b) ábrán látható módon. Mennyi a kondenzátor kapacitása a két esetben?

Jelmagyarázat: nincs csillag = csak normál gyakorlatokra, * = normál és iMSc gyakorlatokra, ** = csak iMSc gyakorlatokra; a kékkel kiemelt feladatok a kisZH-ra készüléshez ajánlottak;