## Global analysis of CNV

## Ricardo H. Ramirez-Gonzalez

We want to explore how the details of the called CNVs

There are 290,248 CNV events in the datasatet. This analysis contains 15 lines

First we want to get an idea of the distribution of the deletion sizes.

## kable(head(cnvs))

| seqnames                   | start   | end     | width | strand | ${\rm norm\_cov}$ | $cnv\_level$ | line       | $max\_gap$ |
|----------------------------|---------|---------|-------|--------|-------------------|--------------|------------|------------|
| chr1A_part1                | 1610157 | 1610356 | 200   | *      | 0.0000000         | 0            | B1190023.1 | 10         |
| $chr1A\_part1$             | 2393686 | 2394485 | 800   | *      | 0.0000000         | 0            | B1190023.1 | 10         |
| $chr1A\_part1$             | 2436043 | 2437842 | 1800  | *      | 0.0266237         | 0            | B1190023.1 | 10         |
| $chr1A\_part1$             | 2472568 | 2475367 | 2800  | *      | 0.0170682         | 0            | B1190023.1 | 10         |
| $chr1A\_part1$             | 2520813 | 2521012 | 200   | *      | 0.0000000         | 0            | B1190023.1 | 10         |
| ${\rm chr}1{\rm A\_part}1$ | 2557847 | 2558046 | 200   | *      | 0.0000000         | 0            | B1190023.1 | 10         |

plotHistogram(cnvs\_df, column="width", binwidth=200)

## Warning: Use of `quantiles\$value` is discouraged. Use `value` instead.



Most of them are under 1,500, however there are 52,481 larger than 1,500 (18.08%).

The minimum size that we have in this dataset is 200bp, so if we filter "unique" events out. This filter leaves 136,194 (46.92 %) events The distribution is the following distribution:

```
plotHistogram(non_singletons_cnvs, column="width", binwidth=200)
```

## Warning: Use of `quantiles\$value` is discouraged. Use `value` instead.



width

We want to look how one of the lines look randomly

plotCnvsInLine(non\_singletons\_cnvs\_gr)

```
## Scale for 'x' is already present. Adding another scale for 'x', which will ## replace the existing scale.
```

<sup>##</sup> Scale for 'x' is already present. Adding another scale for 'x', which will ## replace the existing scale.



## plotCnvsInLine(non\_singletons\_cnvs\_gr, cnv\_level=2)

```
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
## Scale for 'x' is already present. Adding another scale for 'x', which will
## replace the existing scale.
```

