Chapter 2 Section 4

Andrew Taylor

April 16 2022

Theorem 1. An $n \times n$ matrix A is invertible if and only if

$$rref(A) = I_n$$

or, equivalently, if

$$rank(A) = n$$

Theorem 2. To find the inverse of an $n \times n$ matrix A, form the $n \times (2n)$ matrix $A \mid I_n \mid$ and compute $rref[A \mid I_n]$.

- If $rref[A \mid I_n]$ is of the form $[I_n \mid B]$ then A is invertible and $A^{-1} = B$.
- If $rref[A \mid I_n]$ is of another form (i.e., its left half fails to be I_n) then A is not invertible.

Theorem 3. For an invertible $n \times n$ matrix A,

$$A^{-1}A = I_n \quad and \quad AA^{-1} = I_n$$

Theorem 4. If A and B are invertible $n \times n$ matrices, then BA is invertible as well, and

$$(BA)^{-1} = A^{-1}B^{-1}$$

Theorem 5. Let A and B be two $n \times n$ matrices such that $BA = I_n$. Then

- A and B are both invertible
- $A^{-1} = B \text{ and } B^{-1} = A$
- $AB = I_n$

Problem 1. Is the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

invertible? If so, find the inverse of A.

Solution.

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 5 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

We see that

$$rref(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus A is invertible.

Note that rref(A) is an acronym that refers to the reduced row echelon form of matrix A. The computation rref(A) tells us whether A is invertible.

To invert the matrix, let's calculate $rref[A \mid I_n]$.

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 2 & 3 & 2 & | & 0 & 1 & 0 \\ 3 & 8 & 2 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 5 & -1 & | & -3 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 5 & -1 & | & -3 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & 7 & -5 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -7 & 5 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & | & 8 & -5 & 1 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -7 & 5 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | & 10 & -6 & 1 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -7 & 5 & -1 \end{bmatrix}$$

Thus

$$rref \begin{bmatrix} A \mid I_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & 10 & -6 & 1 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -7 & 5 & -1 \end{bmatrix}$$

and

$$A^{-1} = \begin{bmatrix} 10 & -6 & 1 \\ -2 & 1 & 0 \\ -7 & 5 & -1 \end{bmatrix}$$

Problem 2. Suppose A, B, and C are three $n \times n$ matrices such that $ABC = I_n$. Show that B is invertible, and express B^{-1} in terms of A and C.

Solution. By the associative property of matrices

$$ABC = I_n$$
$$(AB)C = I_n$$
$$A(BC) = I_n$$

Thus matrices A and C are invertible.

$$ABC = I_n$$

$$A^{-1}ABC = A^{-1}I_n$$

$$BC = A^{-1}$$

$$BCA = A^{-1}A$$

$$B(CA) = I_n$$

Thus matrix B is invertible and $B^{-1} = CA$.

Problem 3. For an arbitrary 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ compute the product $\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. When is A invertible? If so, what is A^{-1} ?

Solution.

$$\begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$= \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix}$$

When ad - bc is nonzero, we can form the product

$$\begin{split} &\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix} \\ &= \frac{1}{ad-bc}\begin{bmatrix} ad-bc & 0 \\ 0 & ad-bc \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{split}$$

Thus A is invertible when the determinant $ad - bc \neq 0$, and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Problem 4. Is the matrix $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ invertible? If so, find the inverse. Interpret det A geometrically.

Solution.

$$\det A = 1 * 1 - 2 * 3 = -5$$

Since $\det A = -5$ is nonzero, the matrix is invertible.

$$A^{-1} = \frac{1}{-5} \begin{bmatrix} 1 & -3 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{5} & \frac{3}{5} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix}$$

The quantity $|\det A|$ is the area of the shaded parallelogram constructed from the vectors $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. The determinant is negative since the angle from \vec{v} to \vec{w} is negative.

Problem 5. For which values of the constant k is the matrix $A = \begin{bmatrix} 1-k & 2 \\ 4 & 3-k \end{bmatrix}$ invertible?

Solution. The matrix A is invertible when $\det A$ is nonzero.

$$\det A = (1 - k)(3 - k) - 2 * 4$$

$$= 3 - 4k + k^{2} - 8$$

$$= k^{2} - 4k - 5$$

$$= (k - 5)(k + 1)$$

The matrix A is invertible when $k \neq 5$ and when $k \neq -1$.

In other words, A is invertible for all values of k except k = 5 and k = -1.

Problem 6. Consider a matrix A that represents the reflection about a line L in the plane. Use the determinant to verify that A is invertible. Find A^{-1} . Explain your answer conceptually, and interpret the determinant geometrically.

Solution. Since A is a reflection matrix, we know that A is of the form

$$\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

We can calculate the determinant of A.

$$\det A = -a^2 - b^2$$
$$= -(a^2 + b^2)$$

Since the determinant is only zero when a = b = 0, we can say that A is invertible for all values except a = b = 0.

$$A^{-1} = -\frac{1}{a^2 + b^2} \begin{bmatrix} -a & -b \\ -b & a \end{bmatrix}$$
$$= \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

Strictly speaking, a reflection matrix is of the form

$$\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

where $a^2 + b^2 = 1$. So we can substitute $a^2 + b^2 = 1$ into our inverse. We can also assume that the determinant is nonzero since $a^2 + b^2 = 1$. Thus every reflection matrix is invertible.

$$A^{-1} = \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$
$$= \frac{1}{1} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$
$$= \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

We find that every reflection matrix A is invertible, and that $A^{-1} = A$.

The determinant of A is actually the area of a unit square. Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} b \\ -a \end{bmatrix}$. The vectors \vec{v} and \vec{w} form a parallelogram, and this parallelogram is a unit square.

We can write the determinant as

$$\det A = \|\vec{v}\| \sin \theta \|\vec{w}\|$$

$$= \|\sqrt{a^2 + b^2}\| \sin\left(-\frac{\pi}{2}\right) \|\sqrt{b^2 + (-a)^2}\|$$

$$= -1$$

where θ is the angle between vectors \vec{v} and \vec{w} .

In summary, every reflection matrix A is invertible, since $\det A = -1$ for all reflection matrices. The inverse of a reflection matrix A is $A^{-1} = A$. The determinant of a reflection matrix is the area of a unit square formed by the two column vectors of the reflection matrix. This area is negative because the angle between the vectors $\left(-\frac{\pi}{2}\right)$ is negative.