Introduction to Hamiltonian Dynamical Systems and The N-Body Problem

(by KR Meyer)

Exercise Solutions

Author: Hao-Yang Yen (顔浩洋)

Department of Physics, National Tsing-Hua University

Email: kikiyen0715@gapp.nthu.edu.tw

Last modified: October 22, 2025

Problem 1.3

Solution.

(a) Compute the total differential directly

$$\frac{\mathrm{d}(2I)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{2}\dot{\theta}^2 + (1 - \cos\theta) \right)
= \dot{\theta}\ddot{\theta} + \sin\theta\dot{\theta} = \dot{\theta}(\ddot{\theta} + \sin\theta) = 0,$$
(1)

which immediately implies that 2I is an integral.

(b) See Figure 1.

(c) Consider the substitution $y = \sin(\theta/2)$ and its derivative

$$\dot{y} = \frac{1}{2}\dot{\theta}\cos(\theta/2). \tag{2}$$

Express 2I in terms of $\dot{\theta}$ and $\sin(\theta/2)$, then we can get

$$2I = \frac{1}{2}\dot{\theta}^2 + (1 - \cos\theta) = \frac{1}{2}\dot{\theta}^2 + 2\sin^2(\theta/2),\tag{3}$$

where we want to express $\dot{\theta}/2$ in terms of y and \dot{y} . It is easy to see that

$$\frac{1}{2}\dot{\theta}^2 = 2\frac{\dot{y}^2}{1 - y^2}.\tag{4}$$

So the expression of 2I in terms of y and \dot{y} is

$$2I = 2\frac{\dot{y}^2}{1 - y^2} + 2y^2. (5)$$

So we obtain an ODE for y

$$\dot{y}^2 = (1 - y^2)(I - y^2). \tag{6}$$

Substitute $y = k \operatorname{sn}(t, k)$ into \dot{y}^2 , we can obtain

$$\dot{y}^2 = k^2 \sin^2(t, k) = I \sin^2(t, k)$$

$$= I (1 - \sin^2(t, k))(1 - k^2 \sin^2(t, k))$$

$$= (I - y^2)(1 - y^2), \tag{7}$$

which means that $k \operatorname{sn}(t, k)$ indeed solves (6).