NUMERICAL ANALYSIS OF 1D CONDUCTION STEADY STATE HEAT TRANSFER

STATEMENT:

Determine the steady state temperature distribution within an Aluminium fin using the finite difference method. Assume the base temperature of the fin at 100°C and the tip of the fin is insulted. Initially fin is at temperature of 30°C.

STEP-1: Formulation of governing differential equation

Energy equation (Law of conservation of energy)

Here,

T_b= Base temperature

dm= mass of each element

ρ= density

A_c= Area of cross-section

From Taylor Series Expansion,

$$f(x+dx) = f(x) + f'(x)dx/1! + f''(x)(dx)^2/2! + f'''(x)(dx)^3/3! +$$

$$f(x) = \dot{Q}_x$$
 and $f(x+dx) = \dot{Q}_{x+dx}$

So,
$$\dot{Q}_{x+dx} = \dot{Q}_x + \dot{Q}'_x dx/1!$$
 _____(2)

$$\dot{Q}x - (\dot{Q}_x + \dot{Q}'_x dx/1!) = \rho AcdxCp(dT/dt)$$

or,
$$-\dot{Q}'x dx/1! = \rho AcdxCp(dT/dt)$$

For steady state, dT/dt = 0

So,
$$\dot{Q}_x = 0$$
 _____(3)

From fourier's law of heat conduction,

$$\dot{Q}_x = KA_c(dT/dx)$$
 _____(4)

or, $d\dot{Q}_x/dx=0$

or, $d(-KA_cdT/dx) = 0$

or, $d^2T/dx^2 = 0$ _____Governing equⁿ for 1D steady state heat conduction

Boundary Conditions:

At x=0, $T = T_b$

At x=L, $\dot{Q}_L = 0 => -KA_c(dT/dx) = 0 => dT/dx = 0$

STEP-2: Discretization of the domain

dx = L/(N-1)

STEP-3: Converting differential equⁿ to algebraic equⁿ

$$D^2T/dx^2 = 0$$
 _____(5)

Taylor's expansion,

$$T(x+dx) = T(x) + T'(x)dx/1! + T''(x)(dx)^2/2! + T'''(x)(dx)^3/3! +$$

$$T(x-dx) = T(x) - T'(x)dx/1! + T''(x)(dx)^2/2! - T'''(x)(dx)^3/3! + \dots$$

(+)

$$T(x+dx) + T(x-dx) = 2T(x) + (d^2T/dx^2)(dx)^2$$

or,
$$d^2T/dx^2 = ((T(x+dx) + T(x-dx) - 2T(x))/(dx)^2$$
 _____(6)

So,
$$T(x+dx) + T(x-dx) - 2T(x) = 0$$

or,
$$T(x) = (T(x+dx) + T(x-dx))/2$$

or
$$T(i) = (T(i+1) + T(i-1))/2$$
 (2<= i<=N-1)

Now,

For,
$$i=N$$
, $dT/dx = 0$

$$T(x-dx) = T(x) - (dT/dx)/(dx/1!) + (d^2T/dx^2)/(dx)^2/2! + \dots$$

or,
$$dT/dx = (T(x-dx) - T(x))/dx$$

or,
$$T(x-dx) - T(x) = 0$$

or,
$$T(x-dx) = T(x)$$

or,
$$T(N-1) = T(N)$$

Therefore,

For i=1,
$$T = T_b$$

For
$$2 \le i \le (N-1)$$
, $T(i) = (T(i+1) + T(i-1))/2$

For
$$i = N, T(N) = T(N-1)$$