MATH3354 - ASSIGNMENT 6

1

Theorem 1. $\mathbb{P}^1 \times \mathbb{A}^1$ is neither affine nor projective. The ring of regular functions is k[t].

Proof. Let $\mathbb{P}^1 \times \mathbb{A}^1 = \{([X:Y],t)\}$. First, we will show that the ring of regular functions is k[t], and we will use this information to infer that $\mathbb{P}^1 \times \mathbb{A}^1$ is neither affine nor projective. Let R be the ring of regular functions; we will show $R \subset k[t]$. $\mathbb{P}^1 \times \mathbb{A}^1$ has two charts; $U_0 = \{([X:Y],t) \mid X \neq 0\} \cong \mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2$ and $\{([X:Y],t) \mid Y \neq 0\} \cong \mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2$. Consider any $f \in R$. By definition, $f: \mathbb{P}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$ is regular if $f|_{U_0}: \mathbb{A}^2 \to \mathbb{A}^1$ and $f|_{U_1}: \mathbb{A}^2 \to \mathbb{A}^1$ are regular, that is $f|_{U_0}$ and $f|_{U_1}$ are globally polynomials. Let $f|_{U_0}([X:Y],t) = g(\frac{Y}{X},t)$ and $f|_{U_1}([X:Y],t) = h(\frac{X}{Y},t)$. Moreover, let's write $g(\frac{Y}{X},t)$ as $\sum_{i=0}^m g_i(t)(\frac{Y}{X})^i$ and $h(\frac{X}{Y},t)$ as $\sum_{i=0}^l h_i(t)(\frac{X}{Y})^i$. Since g and h must agree on $U_0 \cap U_1$,

$$\sum_{i=0}^{l} h_i(t) (\frac{X}{Y})^i = \sum_{i=0}^{m} g_i(t) (\frac{Y}{X})^i$$

for all $t \in k$, $X \neq 0$, $Y \neq 0$. Therefore,

$$g_0(t) - h_0(t) = \sum_{i=1}^{l} h_i(t) (\frac{X}{Y})^i - \sum_{i=1}^{m} g_i(t) (\frac{Y}{X})^i$$

for all $t \in k$, $X \neq 0$, $Y \neq 0$. So, setting Y = 1,

$$g_0(t) - h_0(t) = \sum_{i=1}^{l} h_i(t)X^i - \sum_{i=1}^{m} g_i(t)(\frac{1}{X})^i$$

for all $t, X \in k, X \neq 0$.

But this implies that $h_i = g_i = 0$ for all i > 0. This tells us two things. First, that $f|_{U_0}([X:Y],t) = g(\frac{Y}{X},t) = g_0(t)$ and that $f|_{U_1}([X:Y],t) = h(\frac{X}{Y},t) = h_0(t)$. Second, that $g_0(t) - h_0(t) = 0$ and therefore $g_0(t) = h_0(t)$. Thus we know that, in fact $f([X:Y],t) = g_0(t) = h_0(t)$ and therefore, $f \in k[t]$.

Showing that $k[t] \subset R$ is straightforward. Consider any polynomial $f(t) \in k[t]$. Then f(t) is globally a polynomial when restricted to the charts U_0, U_1 , so f(t) is regular. Thus, $R \subset k[t]$, and $k[t] \subset R$, so the ring of regular functions is k[t].

We can infer immediately that $\mathbb{P}^1 \times \mathbb{A}^1$ is not projective, since every projective variety has k as its ring of regular functions, as shown in class. We can also infer immediately that if $\mathbb{P}^1 \times \mathbb{A}^1$ is affine, then $\mathbb{P}^1 \times \mathbb{A}^1$ is isomorphic to A^1 , by the fact that A^1 also has ring of regular functions k[t], and two affine varieties have isomorphic rings of regular functions iff they are isomorphic. We will show $\mathbb{P}^1 \times \mathbb{A}^1$ is not isomorphic to A^1 , by contradiction. Suppose, to generate a contradiction,

that there exists an isomorphism $\phi: \mathbb{P}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$. Then, in particular, ϕ is an injective regular map $\mathbb{P}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$. But since the range of ϕ is \mathbb{A}^1 , ϕ is a regular function, so, as shown above $\phi \in k[t]$, so $\phi([X:Y],t) = f(t)$ for some $f(t) \in k[t]$. But then $\phi([0:1],1) = f(1) = \phi([1:0],1)$ and so ϕ is not injective, giving our desired contradiction. Thus $\mathbb{P}^1 \times \mathbb{A}^1$ is not isomorphic to any affine variety, and not isomorphic to any projective variety either.

2

Theorem 2. Let $Z \subset \mathbb{P}^n$ be a projective variety, and $X \subset \mathbb{P}^n \times \mathbb{A}^m$ a closed set. For $t \in \mathbb{A}^m$, let $X_t \subset \mathbb{P}^n$ denote the fibre of X over t under the second projection $X \to \mathbb{A}^m$. The set of $t \in \mathbb{A}^m$ such that $Z \subset X_t$ is Zariski closed.

Proof. We note that the set of $t \in \mathbb{A}^m$ such that $Z \subset X_t$ can be written $\{t \in \mathbb{A}^m \mid Z \subset X_t\}$. Consider any $z \in Z \subset P^n$. The set $\{z\} \times \mathbb{A}^m \cap X$ is Zariski closed, since X is given to be Zariski closed, and $\{z\} \times \mathbb{A}^m$ is Zariski closed. To see that $\{z\} \times \mathbb{A}^m$ is Zariski closed, consider any chart $U_i = \{([X_0 : \ldots : X_n], (t_1, \ldots, t_m)) \mid X_1 \neq 0\}$. Let $z = [Z_0 : \ldots : Z_n]$. If $Z_i = 0$, then $U_i \cap \{z\} \times \mathbb{A}^m = \emptyset$, which is trivially closed. If $Z_i \neq 0$, then $U_i \cap \{z\} \times \mathbb{A}^m = \{(\frac{Z_0}{Z_i}, \ldots, \frac{Z_n}{Z_i}, t_1, \ldots, t_n)\} \subset \mathbb{A}^{m+n}$, which is closed, since it is the vanishing set $V(x_1 - \frac{Z_0}{Z_i}, \ldots, x_n - \frac{Z_n}{Z_i})$. So, as we claimed, $\{z\} \times \mathbb{A}^m \cap X$ is Zariski closed. Therefore, for any $z \in Z$, $\pi(\{z\} \times \mathbb{A}^m \cap X) \subset \mathbb{A}^m$ is closed, because \mathbb{P}^n is universally closed. But we note that $\pi(\{z\} \times \mathbb{A}^m \cap X) = \{t \in \mathbb{A}^m \mid (z,t) \in X\}$. To see this, suppose $t \in \{t \in \mathbb{A}^m \mid (z,t) \in X\}$, then $(z,t) \in X$, so $(z,t) \in \{z\} \times \mathbb{A}^m \cap X$ and therefore, $t \in \pi(\{z\} \times \mathbb{A}^m \cap X)$. Conversely, suppose $t \in \pi(\{z\} \times \mathbb{A}^m \cap X)$, then by the definition of the projection map $(z',t) \in \{z\} \times \mathbb{A}^m \cap X$ for some $z' \in \mathbb{P}^n$. Since $(z',t) \in \{z\} \times \mathbb{A}^m \cap X$, z' = z, and so $(z,t) \in \{z\} \times \mathbb{A}^m \cap X$, implying $t \in \{t \in \mathbb{A}^m \mid (z,t) \in X\}$. Thus, for all $z \in Z$, $\{t \in \mathbb{A}^m \mid (z,t) \in X\}$ is Zariski closed. So, since arbitrary intersections of closed sets are closed, $\cap_{z \in Z} \{t \in \mathbb{A}^m \mid (z,t) \in X\}$ is Zariski closed. But we note that

$$\begin{split} \cap_{z \in Z} \{t \in \mathbb{A}^m \mid (z,t) \in X\} &= \{t \in \mathbb{A}^m \mid \text{ for all } z \in Z, (z,t) \in X\} \\ &= \{t \in \mathbb{A}^m \mid \text{ for all } z \in Z, z \in \{w \in \mathbb{P}^n \mid (w,t) \in X\}\} \\ &= \{t \in \mathbb{A}^m \mid Z \subset \{w \in \mathbb{P}^n \mid (w,t) \in X\}\} \\ &= \{t \in \mathbb{A}^m \mid Z \subset X_t\} \end{split}$$

Therefore $\{t \in \mathbb{A}^m \mid Z \subset X_t\}$ is Zariski closed, completing our proof.

3

Theorem 3. As usual, let us identify the set of $n \times n$ matrices with \mathbb{A}^{n^2} . Let $S \subset \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$ be the set of pairs of matrices (A, B) such that A and B have a common eigenvector. Prove that S is a Zariski closed subset of $\mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$.

Proof. First we will show that the set

 $E = \{(v, A, B) \mid v \text{ is an eigenvector of } A \text{ and an eigenvector of } B\} \subset \mathbb{P}^{n-1} \times \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$

is Zariski closed. We note that E is well-defined; for a vector $v \in \mathbb{A}^n$, v is an eigenvector of A, B iff λv is an eigenvector of A, B for all $\lambda \in k$, $\lambda \neq 0$ (this is true by the definition of an eigenvector), so we can treat v as a vector in \mathbb{P}^{n-1} . To show that

E is closed, we must show that for all charts $U_i = \{([X_0 : ... : X_{n-1}], A, B) \mid X_i \neq 0\}$ of $\mathbb{P}^{n-1} \times \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$, $E \cap U_i \subset \mathbb{A}^{2n^2+n-1}$ is closed. Consider any chart U_i ,

$$E \cap U_i$$

= $\{([X_0: ...: X_{n-1}], A, B) \mid [X_0: ...: X_{n-1}] \text{ is an eigenvector of } A$ and an eigenvector of B and $X_i \neq 0\}$

$$\cong \{(\frac{X_0}{X_i},...,\hat{X}_i...,\frac{X_{n-1}}{X_i},A,B) \mid (\frac{X_0}{X_i},...,1,...,\frac{X_{n-1}}{X_i}) \text{ is an eigenvector of } A \in \{(\frac{X_0}{X_i},...,\hat{X}_i...,\hat{X$$

and an eigenvector of B $\subset \mathbb{A}^{2n^2+n-1}$

We will view $E \cap U_i$ as the final set given above, in \mathbb{A}^{2n^2+n-1} , and will show that it is a closed subset of \mathbb{A}^{2n^2+n-1} . First, we note that $w=(w_1,...,w_n)=(\frac{X_0}{X_i},...,1,...,\frac{X_{n-1}}{X_i})$ is an eigenvector of A iff $Aw=(w_1',...,w_n')$ is a scalar multiple of w, and likewise w is an eigenvector of B iff $Bw=(w_1'',...,w_n'')$ is a scalar multiple of w (noting that since w has a non-zero ith entry, w is not the zero vector, so we don't have to worry about excluding this possibility). These two conditions are satisfied iff for all $j,k\in\{1,...,n\},\ w_jw_k'-w_kw_j'=0,\ w_jw_k''-w_kw_j''=0$. Let a_{jk} be the entries in w, and w, and

$$w_j f_k(w_1, ..., w_n, a_{11}, ..., a_{nn}) - w_k f_j(w_1, ..., w_n, a_{11}, ..., a_{nn}) = 0$$

and likewise w is an eigenvector of B iff for all $i, j \in \{1, ..., n\}$,

$$w_i g_k(w_1, ..., w_n, b_{11}, ..., b_{nn}) - w_i g_k(w_1, ..., w_n, b_{11}, ..., b_{nn}) = 0$$

So,

$$E \cap U_i = V(w_j f_k(w_1, ..., w_n, a_{11}, ..., a_{nn}) - w_k f_j(w_1, ..., w_n, a_{11}, ..., a_{nn}),$$

$$w_j g_k(w_1, ..., w_n, b_{11}, ..., b_{nn}) - w_k g_j(w_1, ..., w_n, b_{11}, ..., b_{nn}))$$

Thus, $E \cap U_i$ is Zariski closed for all $i \in \{0, ..., n-1\}$, and so $E \subset \mathbb{P}^{n-1} \times \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$ is a Zariski closed set.

Furthermore, $\pi(E)$ is closed, where π is the natural projection $\mathbb{P}^{n-1} \times \mathbb{A}^{n^2} \times \mathbb{A}^{n^2} \to \mathbb{A}^{n^2} \times \mathbb{A}^{n^2}$ since \mathbb{P}^{n-1} is universally closed. But

$$\pi(E) = \{(A,B) \in \mathbb{A}^{n^2} \times \mathbb{A}^{n^2} \mid \text{there exists some } v \in P^{n-1}$$

such that
$$(v, A, B) \in E$$

=
$$\{(A, B) \in \mathbb{A}^{n^2} \times \mathbb{A}^{n^2} \mid \text{there exists some } v \in P^{n-1}$$

such that v is an eigenvector of A and an eigenvector of B}

$$=\{(A,B)\in\mathbb{A}^{n^2}\times\mathbb{A}^{n^2}\mid A \text{ and } B \text{ share an eigenvector}\}$$

So, we have shown that the set S of pairs of matrices (A, B) such that A and B have a common eigenvector is Zariski closed.