COMP6940: BIG DATA AND DATA VISUALISATION

LECTURE #4: DATA ANALYSIS AND TASKS

AGENDA

- 1. Types/Definitions of data analysis
- 2. Machine Learning and Types of Machine Learning
- 3. Descriptive and Inferential Analysis
 - 1. Hypothesis Testing
 - 2. Clustering
- 4. Predictive Analytics Methods
 - 1. Classification
 - 2. Regression

DEFINITIONS OF DATA ANALYSIS

- After data has been collected, clean, and integrated, data must then be analysed to extract value and to inform decisions
- Depending on the data available and the problem context, there are different types of data analysis tasks that would need to be performed
- Taxonomising the problem is important to help decide what methods and approaches can be used
- In this lecture, we will be concerned primarily with diagnosing the problem at hand
 - Techniques will be covered in detail in future lectures or other classes
- Variable types:
 - Covariates: remember these are the columns in your data
 - Dependent variable: a variable that you are trying to model in terms of other variables; also called target
 - Independent variable: one of several variables that are used to model another variable
 - Identifying your variables is important first step

DEFINITIONS OF DATA ANALYSIS

- Descriptive Analysis: concerned with determining high-level trends and patterns within the data. Runs the gamut from measures of central tendency to more sophisticated approaches like clustering and market-basket analysis.
 Some descriptive analysis done with EDA
- Inferential Analysis: concerned with drawing and testing overarching conclusions about a population using a random sample from that population. Confirmatory Data Analysis/Hypothesis testing falls under this category. Bayesian Inference also fits here (covered in Computational Statistics)
- Predictive Analysis: concerned with using historical data to try and predict future state. Often makes use of machine learning and data mining techniques. Output from descriptive and inferential analysis helps.
- Prescriptive Analysis: concerned with prescribing actions. Uses results of descriptive, inferential, and predictive analysis. Involves techniques from operations research (optimisation, computer simulation, mathematical modelling)
- Causal Analysis/Inference: concerned with determining causal effects in observation or quasi-experimental settings

MLSLIDES

DESCRIPTIVE ANALYSIS

- Reporting of high-level statistics is important in descriptive analysis
- Measures of central tendency: mean, mode, median
 - Should also check percentiles (25th and 75th)
- Measures of spread: IQR, std. dev, variance
- Distribution properties: skewness and kurtosis
- Histograms and outlier analysis are important
 - Median and IQR more informative than mean and std. dev when data has significant and impactful outliers
- Also more sophisticated techniques involved

DESCRIPTIVE ANALYSIS CLUSTERING

- Concerned with finding grouping in the data with similar covariate profiles
- Useful for finding sub-groups in your data for problems like customer profiling and segmentation
- Used in bioinformatics to find different groupings in data
- Different clustering methods that use different notions of similarity to segment space into clusters

DESCRIPTIVE ANALYSIS

MARKET-BASKET ANALYSIS

- Used to find items that are associated with one another
- Quintessential case is grocery cart:
 - Find products that are commonly bought together
- Can be used to create data-driven association rules
 - E.g. strawberries **AND** blueberries => almond milk
- Can be used for many other contexts
- Can be used to build rule-driven recommendation systems

- Concerned with drawing general conclusions about populations from random samples
 - Usually want to test some hypothesis
- Important concepts:
 - $lacktriangleq H_{a}$: alternative hypothesis what we set out to adduce evidence for
 - H_0 : null hypothesis "no effect" hypothesis
 - lacktriangleq P-value: probability of seeing a result as extreme as observed under H_0
 - lacktriangle Significance level: a p-value under which we accept our H_a . If p-value is below significance level, result is statistically significant
 - Type I error: incorrectly rejecting H_0
 - Type II error: incorrectly rejecting H_a
- In Python, statsmodel package is useful

TWO-SAMPLE TESTS

MORE THAN TWO SAMPLES

- When you have more than two samples three or more with associated factor "levels"
 - E.g. imagine want compare yield obtained from three different fertilisers used in an experiment
- Methods: one-way ANOVA, two-way ANOVA, MANOVA
- After determining if differences are statistically significant, need to run a post-test such as a Tukey's test to determine which differences are significant

MORE THAN TWO SAMPLES

- When you have more than two samples three or more with associated factor "levels"
 - E.g. imagine want compare yield obtained from three different fertilisers used in an experiment
- Methods: one-way ANOVA, two-way ANOVA, MANOVA
- After determining if differences are statistically significant, need to run a post-test such as a Tukey's test to determine which differences are significant

REGRESSION ANALYSIS

- Setting: independent variables against dependent variable
- Fit best-fit line of independents against dependent
 - y = mx + c
- Check coefficients to see effects of independents on dependents
 - \blacksquare H_0 : no effect
 - H_a : effect

REGRESSION ANALYSIS

		OLS Reg	ression F	Results			
========	========	=======	======			=======	
Dep. Variable:		GRADE		R-squared:		0.416	
Model:		OLS		Adj. R-squared:		0.353	
Method:		Least Squares		F-statistic:		6.646	
Date:		Wed, 02 Nov 2022		Prob (F-statistic):		0.00157	
Time:		17:12:47		Log-Likelihood:		-12.978	
No. Observations:		32		AIC:		33.96	
Df Residuals:			28 BIC	•		39.82	
Df Model:			3				
Covariance	Type:	nonrobu	st				
========	========	=======	======			=======	
	coef	std err	t	P> t	[0.025	0.975]	
GPA	0.4639	0.162	2.864	0.008	0.132	0.796	
TUCE	0.0105	0.019	0.539	0.594	-0.029	0.050	
PSI	0.3786	0.139	2.720	0.011	0.093	0.664	
const	-1.4980	0.524	-2.859	0.008	-2.571	-0.425	
Omnibus: 0.176		======= 76 Durl	-====== oin-Watson:	2.346			
Prob(Omnibus):		0.9	16 Jaro	Jarque-Bera (JB):		0.167	
Skew:		0.1	41 Prol	Prob(JB):		0.920	
Kurtosis: 2.			Cond. No.				

INFERENTIAL ANALYSIS SURVIVAL ANALYSIS

- Used to estimate the survival function
- Time to event
- Can be used to determine hazard ratios that estimate relative odds of suffering from event

INFERENTIAL ANALYSIS CHI-SQUARED TEST

- Chi-squared test is used to compare counts between two samples
- Used for goodness-of-fit evaluations
- Can be used for non-count samples in some cases
- Can also be used to test for independence of variables

INFERENTIAL ANALYSIS CHI-SQUARED TEST

- Chi-squared test is used to compare counts between two samples
- Used for goodness-of-fit evaluations
- Can be used for non-count samples in some cases
- Can also be used to test for independence of variables

PREDICTIVE ANALYSIS SETTING

- Consider that we have pairs of independent variables-dependent variables
- Want to use independent variables to predict dependent variables for future cases
 - i.e. want to predict the future by modelling past relationships
- Two main types of predictive analysis problems
 - Regression: continuous and/or infinite target (e.g. predict house selling price using square feet, location, num bedrooms, num bathrooms, etc...)
 - Classification: discrete finite target (e.g. use blood work results [ESR, WBC, CBC, CRP] to determine if a patient has sepsis or not)

PREDICTIVE ANALYSIS SETTING

- Consider that we have pairs of independent variables-dependent variables
- Want to use independent variables to predict dependent variables for future cases
 - i.e. want to predict the future by modelling past relationships
- Two main types of predictive analysis problems
 - Regression: continuous and/or infinite target (e.g. predict house selling price using square feet, location, num bedrooms, num bathrooms, etc...)
 - Classification: discrete finite target (e.g. use blood work results [ESR, WBC, CBC, CRP] to determine if a patient has sepsis or not)

Multi-class vs. Binary classification

Multi-class:

- classes mutually exclusive:
 - instance is either a or b or c
 - even if it's an outlier
- NB, kNN, DT, logistic

Binary:

- one-vs-rest:
 - {a} vs {not a}, {b} vs {not b}
- classes may overlap
 - instance can be both a and b
 - · can be in none of the classes
- SVM, logistic, perceptron

PREDICTIVE ANALYSIS

MODEL DRIFT

- Predictive analytics implicitly models P(Y|X)
- However, the world around a model can change, leading to changes in the distributions implicitly used and learnt by the machine learning model - this causes model drift
- Types of model drift
 - $\blacksquare P(Y|X)$ concept drift
 - P(X) covariate drift
 - \blacksquare P(Y) target drift
- Different models are more robust to different types of drift
- Concept drift usually only handled by re-training the model :(

PREDICTIVE ANALYSIS

MEASURING PERFORMANCE

- We typically use model metrics with nice mathematical properties
 - MSE, LogLoss, F1, AUC, MAPE, etc...
- However, these don't necessarily translate to impact!
- When developing model, simulate impact of model on something people actually care about
 - Usually money earned or money saved

PRESCRIPTIVE ANALYSIS

- Will cover these techniques in OR course
- Concerned with informing decisions directly
- Can involve non-trivial computer simulations to assess outcomes and values of different actions
 - Be careful with computer simulations, they can be "doomed to succeed"

CAUSAL ANALYSIS

- Most of the above techniques use associations
- Associations are necessary but NOT SUFFICIENT for determining causation
- Different techniques are sometimes needed to determine causal relationships
- Casual relations are useful for designing interventions to achieve certain outcomes
- Important in medicine in particular
- No formal course and out of scope for this course :(

QUESTIONS?