Пусть $x(n) = n^{(-1)^n}$ Доказать, что последовательность $\{x(n)\}$: неограниченная

Да, последовательность $\{x(n)\}$ неограниченная в области целых чисел n. Для доказательства этого, можно рассмотреть альтернативное поведение x(n) для четных и нечетных значениях n.

Для четных n, выражение $(-1)^n$ всегда равно 1, поэтому $x(n)=n^(1)=n$. Таким образом, последовательность будет возрастать, и неограниченная сверху.

Для нечетных n, выражение $(-1)^n$ всегда равно -1, поэтому $x(n)=n^{-1}=1/n$. Таким образом, последовательность будет убывать, но тоже неограниченная снизу.

Таким образом, $\{x(n)\}$ является неограниченной в области целых чисел n.

Пусть x_n) = $n^{(-1)^n}$ Доказать, что последовательность $\{x_n\}$: не является бесконечно большой.

Для доказательства того, что последовательность $\{xn\}$ не является бесконечно большой, нам нужно найти такое положительное число A, для которого нельзя найти номер N, чтобы выполнялось неравенство |xn| > A для всех последующих номеров n > N.

Для всех n>=1 выполняется следующее:

- Если n нечетное число, то (-1^n) =-1, и xn=n^ (-1) становится равным 1/n, у которого предел при n стремящемся к бесконечности это ноль.
- Если n четное число, то (-1^n) =1, и xn=n^1 становится равным n, у которого предел при n стремящемся к бесконечности это бесконечность.

Таким образом, последовательность {xn} ограничена сверху значением n (это будет самый большой четный номер), и последовательность {xn} ограничена снизу нулем. Следовательно, последовательность {xn} - ограниченная.

Таким образом, последовательность {xn} не является бесконечно большой (нет элементов, которые стремятся к бесконечности).

Доказать, что последовательность {sin n} расходится.

Для доказательства, что последовательность {sin n} расходится, мы можем использовать метод диагонального противоречия.

Предположим, что последовательность $\{\sin n\}$ сходится к какому-то числу L. Тогда, для всех $\epsilon > 0$ существует номер N такой, что для всех n > N, $|\sin n - L| < \epsilon$.

Рассмотрим два числа $\epsilon=1/2$ и $\epsilon=1/4$. Тогда, согласно нашему предположению, существуют номера N1 и N2 такие, что $|\sin n - L| < 1/2$ для всех n > N1 и $|\sin n - L| < 1/4$ для всех n > N2.

Рассмотрим последовательность индексов n1, n2, n3, ..., которая строится следующим образом:

- n1 > N1
- n2 > max(n1, N2)
- n3 > max(n2, N2)
- ...

Таким образом, мы строим последовательность номеров, которая не убывает и убывает не медленнее, чем гармонический ряд.

Рассмотрим значения $\sin n1$, $\sin n2$, $\sin n3$, ..., которые соответствуют этим номерам. Так как $\sin n - \sin m = 2\cos((n+m)/2)\sin((n-m)/2)$, то мы можем записать:

$$|\sin n1 - \sin n2| = 2|\cos((n1+n2)/2)\sin((n1-n2)/2)| \ge 2\sin((n1-n2)/2)$$

Заметим, что (n1-n2)/2 > N2, так как $n2 > \max(n1, N2)$ и $n3 > \max(n2, N2)$ и т.д. Тогда, согласно нашему предположению, $|\sin((n1-n2)/2)| > 1/4$.

Таким образом, мы получаем:

$$|\sin n1 - \sin n2| \ge 2\sin((n1-n2)/2) > 1/2$$

Но это противоречит нашему предположению о том, что для всех $\epsilon > 0$ существует номер N такой, что для всех n > N, $|\sin n - L| < \epsilon$.

Поэтому, последовательность {sin n} расходится.