CS294: Solving system problems with RL

Joey Gonzalez and Ion Stoica April 1, 2019

Reinforcement Learning

^{*}https://sergioskar.github.io/Reinforcement_learning/

Many systems problems fit this pattern

	ТСР	Video bitrate adaptation	Job scheduling
Objective (reward)	Max throughput	Quality of Experience (QoE)	Max throughput / Min response time
Control	Window size	Bitrate	Next job to schedule
Environment	Losses, etc	throughput, buf size, file size	System utilization, job characteristics, etc

Classic control systems

Optimal control vs Deep RL

	Optimal Control*	RL	
Objective	Cost function	Reward	
Control	Set of differential eqs.	Neural Network	
Environment	Known model (often expressed as constraints)	Possible unknown model	

RL is a form of stochastic optimal controls

*Largely founded by <u>Lev Pontryagin</u> and <u>Richard Bellman</u>

