	20 January
Interpretation as an	
Integration As an autilieriveti	
Techniques.	
Idea of Integration	\
Ariea of inscribed	n-polygon.
4-90n	~ Anea is 2.
20 gon	~ 3.09.
100-gon	~ 3.14
Look up digits of Pi	
Some notation Z - sigma	
n object to be s	umned
end Ez a bjedtobe si index i=1	tan.
Staat	
of index	1 /4 1
Summation n	3 /
= 1+2++n	
N 2	- ?
E 12 = 02+12+	+ 105
15	
Z 3 = 5 t	+5, , ,
1= 0	

16 times.

2 y = y + y + - + + y = 18 y. x=0 18 times

Examples: « [22 = 2 = 2 = 1]

= 2 (13) (16) [By 4]

 $\frac{200}{5} \frac{200}{3 \cos(2\pi k)} = \frac{200}{3 \sum_{k=1}^{200} \cos(2\pi k)} = \frac{3}{3} \sum_{k=1}^{200} \frac{1}{1}$

Reverse: 1-13+5+7+9-+11- 2 (2k+1) = 3.200=600.

Going from sums to, summation notation.

6 H 3+ 5+7+9+ 11"

Notice they are a sequence of odd numbers, that is of the type 2K+1. Starts at K=0 and ends at K= == 5 1+3+5+ - +11= 2 \(\frac{5}{2}(\) \(\) \

0 2+4+6+8+ -- +20

= 2(1+2+3+--10)

= 2 (\(\tilde{\Sigma} \)

0 18 + \$ 9 + 9 + 16 + 25 + -. + 100

Notice they are a sequence of Equales of numbers, that is, of type - k2

Starts at k=1 and ends at k=10.

17 7 494164 -- 400 = E K2.

want to find area under the Curve x= a tox=6 a=xom Divide into n strips. of

```
width Ax= 6-a given by
          [x,0x] . -- - [xx,1x].
           where xo=a
                       x1=atbx
                      xi = a+KAx
                          xy=b=athAx.
    This is called the regular partition of Ea,6]
Now approximate area by 3,+. - - Sn= \(\frac{\times}{\times}\) Significant about this person
by. the Riemann sum
            t (x1x1) Vx + t(x5x) Vx + - - + t(xn-1) VX
                             = \nabla \times \sum_{N} + (x^{K}_{N}).
Left Riemann Sum \chi_{\chi}^{\mu} = \chi_{\chi \to b}

f(\chi_0) \Delta_{\chi} + f(\chi_1) \Delta_{\chi} + - - + f(\chi_{\eta \to}) \Delta_{\chi}
           = \Delta_{x} \sum_{k=1}^{n} f(x_{k-1}) = \Delta_{x} \sum_{k=1}^{n} f(\alpha + (k-1)\Delta_{x})
Right Riemann Sum Xx. = xx
              f(x4) Dx + f(x5) Dx + - - + f(x") Dx
```

 $= \nabla^{\times} \sum_{k} f(x^{k}) = \nabla^{\times} \sum_{k} f(\alpha + k \nabla^{\times})$

Midpoint Riemann Sum
$$\frac{1}{2} \frac{1}{2} \frac{1}{2$$

Find the left Riemann Sum of Inx on [1,20] using n=50.

Solution:
$$f(x) = ln(x)$$

$$0 = 1$$

$$b = 20$$

$$1 = \frac{19}{50}$$

Left Riemann Sum is.

$$\Delta_{x} \stackrel{n}{\sum} f(a+(k-1)\Delta_{x})$$

$$= \frac{19}{50} \sum_{k=1}^{50} l_{1} \left(1 + \frac{19}{50} (k-1) \right)$$

· Find the middle Riemann Sum for. fla)=1+x2 on [1,4]. using A=4, N=3 f(x)= 1+x3 a=1 b=4. $\Delta_{x} = \frac{b-a}{x} = \frac{4-1}{3} = 1$ $X_{k} = a + k \Delta_{x} = 1 + k$. k = 0, 1, 2, 3. Middle Riemann Sum is. -1 $\frac{3}{5}$ $f(1+\frac{3k-1}{2})$ - 1 \(\frac{2\k+1}{2}\) $= \left(1+\left(\frac{2}{2}\right)^{3}\right)+\left(1+\left(\frac{2}{2}\right)^{3}\right)+\left(1+\left(\frac{2}{2}\right)^{3}\right)$ Reverse: (50)

Reverse: (50)

K=1 MS(+(k)) is the Riemann Sum of Compare with $(\Delta_x) \stackrel{?}{\underset{k=1}{\sum}} f(x_k^*)$ $O + ind n and <math>\Delta_x = n = 50$ $\int \frac{1}{2} \int \frac{1}{2} f(x_k^*) dx$

Thus it is the right Riemann Sum for

flx)= 1 with mean n=50 as the

on the interval [6,1].

But how do we find the area.

Ax \(\frac{\times}{k=1}\) f(xxx) approximates the agea.

How do we find the alea?

Take the limit, as n -> 00

Auti derivative

Left Riemann Sum = lim Dx E f(xx-1) Right Riemann Sum = lim Dx \(\frac{\times}{\times}\) f(xx). So If(x) dx represents area under the function from What if fis negative? - I find dr. Strictly represents signed alea A2 < 0 A3 \$>0. S f(a) dx = A, -Az+Az I fixildx = 1, +12 +13 represents