正数 x を与えて ,

$$2a_1 = x$$
, $2a_2 = a_1^2 + 1$, \cdots , $2a_{n+1} = a_n^2 + 1$, \cdots

- のように数列 $\{a_n\}$ を定める時,
- (1) $x \neq 2$ ならば, $a_1 < a_2 < \cdots < a_n < \cdots$ となることを証明せよ.
- (2) x<2 ならば, $a_n<1$ となることを証明せよ.このとき,正数 ϵ を 1-x/2 より小となるようにとって, a_1 , a_2 , \cdots , a_n までが $1-\epsilon$ 以下となったとすれば,個数 n について次の不等式が成り立つことを証明せよ.

$$2 - x > n\epsilon^2$$

[解]

(1) 与えられた漸化式より,

$$a_n < a_{n+1}$$

 $\iff 2a_n < a_n^2 + 1$
 $\iff (a_n - 1)^2 > 0$
 $\iff a_n \neq 1$ ①

である. $x \neq 2$ ならば, $a_1 \neq 1$ だから,漸化式より帰納的に $a_n \neq 1$ である.これと①より題意は示された. \square

(2) 漸化式および x>0 から, $a_n>0$ であることに注意すると, a_{n+1} は a_n の単調増加関数である.x<2 ならば $a_1<1$ である.そこで以下 $k\in\mathbb{N}$ に対して $a_k<1$ が成立すると仮定すると

$$a_{k+1} = \frac{a_k^2 + 1}{2} < \frac{1+1}{2} = 1$$

故に帰納法により $\forall n, a_n < 1$ となる . \Box 次に , 後半部分を考える . 題意より

$$\begin{cases} 1 - \frac{x}{2} > \epsilon \\ a_k < 1 - \epsilon \quad k = 1, 2, \dots, n \\ \dots & \dots & \dots & \dots \end{cases}$$

である.第一式から, $a_1 < 1 - \epsilon$ が保証される.

ここで,漸化式より, $k \le n$ のとき,

$$2(a_{k+1} - a_k) = (a_k - 1)^2 > \epsilon^2 \quad (\because 2)$$

となる.kについて和をとって,

$$2(a_{n+1} - a_1) = \sum_{k=1}^{n} (a_k - 1)^2 > n\epsilon^2$$
$$a_{n+1} - \frac{x}{2} > \frac{n\epsilon^2}{2}$$

前半部分から $a_{n+1} < 1$ だから ,

$$1 - \frac{x}{2} > \frac{n\epsilon^2}{2}$$
$$2 - x > n\epsilon^2$$

となって,題意の不等式を得る.□