ECE 4750 PSET 2

Tim Yao (ty252)

Oct 10, 2015

1 PARCv1 Instruction Cache

1.a Categorizing Cache Misses

Addr	Instruction	Iteration 1	Iteration 2
	loop:		
0x108	addiu r1, r1, -1	compulsory	
0x10c	addiu r2, r2, -1		
0x110	j foo	compulsory	conflict
	foo:		
0x218	addiu r6, r6, 1	compulsory	conflict
0x21c	bne r1, r0, loop		

Figure 1: Cache Miss Type

1.b Average Memory Access Latency

Looking at iteration 2, we can see that there are 2 misses out of the 5 instructions. Therefore the miss rate for 64 iterations of the loop is 0.4.

The average memory access latency is:

 $AMAL = (Hit Time) + (Miss Rate \times Miss Penalty)$

 $AMAL = 1 + (0.4 \times 5)$

AMAL = 3 cycles

The AMAL is dominated by conflict misses, as shown by the miss chart above. Compulsory misses only occur on the first iteration of the loop.

1.c Set-Associativity

The cache performance will increase significantly, because there will no longer be conflict misses during the loop. With this new cache microarchitecture, only compulsory misses will be left.

2 Page-Based Memory Translation

2.a Two-Level Page Tables

The 16-bit virtual address is used as the following:

Bits 14-15	Bits 12-13	Bits 0-11		
XX XX		XXXXXXXXXXX		
Virtual Pa	ge Number	Page Offset		
L1 Index	L2 Index	Page Offset		

Figure 2: Virtual Address Usage

Page Tables:

-	Page-Table Entr			
Paddr of PTE	Valid	Paddr		
0xffffc	1	0xfffe0		
0xffff8				
0xffff4				
0xffff0	1	0xfffb0		
0xfffec	1	0x05000		
0xfffe8	1	0x07000		
0xfffe4				
0xfffe0				
0xfffdc				
0xfffd8				
0xfffd4				
0xfffd0				
0xfffcc				
0xfffc8				
0xfffc4				
0xfffc0				
0xfffbc	1	0x01000		
0xfffb8	1	0x04000		
0xfffb4	1	0x00000		
0xfffb0				

Figure 3: Contents of Physical Memory with Page Tables

2.b Translation-Lookaside Buffer

				Total				
Transaction		Page		Num Mem	TLB	Way 0	TLB V	Vay 1
${f Address}$	VPN	Offset	\mathbf{m}/\mathbf{h}	Accesses	VPN	PPN	VPN	PPN
0xeff4	0xe	0xff4	m	3	-	-	-	-
0x2ff0	0x2	0xff0	m	3	0xe	0x07		
0xeff8	0xe	0xff8	h	1			0x2	0x04
0x2ff4	0x2	0xff4	h	1				
0xeffc	0xe	0xffc	h	1				
0x2ff8	0x2	0xff8	h	1				
0xf000	0xf	0x000	m	3				
0x2ffc	0x2	0xffc	h	1	0xf	0x05		
0xf004	0xf	0x004	h	1				
0x3000	0x3	0x000	m	3				
0xf008	0xf	0x008	h	1			0x3	0x01
0x3004	0x3	0x004	h	1			0x2	0x04
0xf00c	0xf	0x00c	h	1				
0x3008	0x3	0x008	h	1				

Figure 4: TLB Contents Over Time

3 Impact of Cache Access Time and Replacement Policy

3.a Miss Rate Analysis

Transaction											
${f Address}$	$_{ m tag}$	idx	\mathbf{m}/\mathbf{h}	L0	L1	$\mathbf{L2}$	L3	${\bf L4}$	L5	L6	L7
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}			0x0					
0x07c	0x0	0x7	\mathbf{m}				0x0				
0x070	0x0	0x7	h								0x0
0x100	0x2	0x0	\mathbf{m}								
0x110	0x2	0x1	\mathbf{m}	0x2							
0x204	0x4	0x0	\mathbf{m}		0x2						
0x214	0x4	0x1	\mathbf{m}	0x4							
0x308	0x6	0x0	\mathbf{m}		0x4						
0x110	0x2	0x1	\mathbf{m}	0x6							
0x114	0x2	0x1	h		0x2						
0x118	0x2	0x1	h								
0x11c	0x2	0x1	h								
0x410	0x8	0x1	\mathbf{m}								
0x110	0x2	0x1	\mathbf{m}		0x8						
0x510	0xa	0x1	\mathbf{m}		0x2						
0x110	0x2	0x1	\mathbf{m}		0xa						
0x610	0xc	0x1	\mathbf{m}		0x2						
0x110	0x2	0x1	\mathbf{m}		0xc						
0x710	0xe	0x1	\mathbf{m}		0x2						
Number of	Misses	= 16									
Miss Rate =	= 0.8										

Figure 5: Direct-Mapped Cache Contents Over Time

 $\overline{\text{Miss Rate} = 0.7}$

Transaction				Set	t 0	Se	t 1	Set	t 2	Set	3
Address	\mathbf{tag}	idx	m/h	Way 0	Way 1						
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}					0x0			
0x07c	0x1	0x3	\mathbf{m}							0x0	
0x070	0x1	0x3	h								0x1
0x100	0x4	0x0	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}	0x4							
0x204	0x8	0x0	\mathbf{m}			0x4					
0x214	0x8	0x1	\mathbf{m}		0x8						
0x308	0xc	0x0	\mathbf{m}				0x8				
0x110	0x4	0x1	h	0xc							
0x114	0x4	0x1	h								
0x118	0x4	0x1	h								
0x11c	0x4	0x1	h								
0x410	0x10	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x10				
0x510	0x14	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x14				
0x610	0x18	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x18				
0x710	0x1c	0x1	\mathbf{m}								
Number of 1	Misse	$\mathbf{s} = 1$	12								
Miss Rate =	= 0.6										

Figure 6: Two-Way Set-Associative Cache Contents Over Time with LRU Replacement

Transaction				Set	t 0	Set	t 1	Se	t 2	Set	3
${f Address}$	\mathbf{tag}	idx	\mathbf{m}/\mathbf{h}	Way 0	Way 1	Way 0	Way 1	Way 0	Way 1	Way 0	Way 1
0x024	0x0	0x2	m	-	-	-	-	-	-	-	-
0x030	0x0	0x3	\mathbf{m}					0x0			
$0 \times 07 c$	0x1	0x3	\mathbf{m}							0x0	
0x070	0x1	0x3	h								0x1
0x100	0x4	0x0	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}	0x4							
0x204	0x8	0x0	\mathbf{m}			0x4					
0x214	0x8	0x1	\mathbf{m}		0x8						
0x308	0xc	0x0	\mathbf{m}				0x8				
0x110	0x4	0x1	h	0xc							
0x114	0x4	0x1	h								
0x118	0x4	0x1	h								
0x11c	0x4	0x1	h								
0x410	0x10	0x1	\mathbf{m}								
0x110	0x4	0x1	h				0x10				
0x510	0x14		\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}			0x14					
0x610	0x18	0x1	\mathbf{m}								
0x110	0x4	0x1	\mathbf{m}				0x18				
0x710	0x1c		m								
Number of 1	$\overline{ ext{Misse}}$	s = 1	14								

Figure 7: Two-Way Set-Associative Cache Contents Over Time with FIFO Replacement

3.b Sequential Tag Check then Memory Access

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
addr_reg_M0	1	1
$tag_decoder$	$3+2\times 2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3 + 2[\log 2(26)]$	13
tag_and	2 - 1	1
$data_decoder$	$3+2\times3$	9
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
$rdata_reg_M1$	1	1
Total		73
addr_reg_M0	1	1
$tag_decoder$	$3+2\times 2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3 + 2[\log 2(26)]$	13
tag_and	2 - 1	1
$data_decoder$	$3+2\times3$	9
$data_mem$	10 + [(8+128)/16]	19
Total		62

Figure 8: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Serialized Tag Check before Data Access

The reason that the 2-way set-associative microarchitecture is slower than the direct-mapped microarchitecture is the need for the tag check result to go through the data_decoder. It happens that the data_decoder?s delay is relatively significant (9τ) . This connection is needed so that the data can be outputted from the correct way.

3.c Parallel Read Hit Path

Component	Delay Equation	$\mathrm{Delay}(au)$
$addr_reg_M0$	1	1
$\operatorname{addr}\operatorname{\underline{-}mux}$	$3[\log 2(2)] + [5/8]$	4
$data_decoder$	$3+2{ imes}3$	9
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
$rdata_reg_M1$	1	1
Total		44

Figure 9: Critical Path and Cycle Time for Direct Mapped Cache with Parallel Read Hit

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
addr_reg_M0	1	1
$\operatorname{addr}_{\operatorname{mux}}$	$3[\log 2(2)] + [5/8]$	4
$data_decoder$	$3+2{ imes}2$	7
$data_mem$	10 + [(8+128)/16]	19
$rdata_mux$	$3[\log 2(4)] + [32/8]$	10
way_mux	$3[\log 2(2)] + [32/8]$	7
$rdata_reg_M1$	1	1
Total		49

Figure 10: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Parallel Read Hit

The reason that the 2-way set-associative microarchitecture is slower than the direct-mapped microarchitecture is the way_mux, which is needed to output the data from the correct way. This mux has a delay of 7τ , which is relatively significant.

3.d Pipelined Write Hit Path

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$\overline{\mathrm{addr_reg_M0}}$	1	1
$tag_decoder$	$3+2{ imes}3$	9
tag_mem	$10 + [(8{+}26)/16]$	13
tag_cmp	$3 + 2[\log 2(25)]$	13
tag_and	2 - 1	1
wen_and	2 - 1	1
wen_reg_M1	1	1
Total		39

Figure 11: Critical Path and Cycle Time for Direct Mapped Cache with Pipelined Write Hit

Component	Delay Equation	$\overline{\mathrm{Delay}(au)}$
$\overline{\mathrm{addr_reg_M0}}$	1	1
$tag_decoder$	$3+2{ imes}2$	7
tag_mem	10 + [(4+27)/16]	12
tag_cmp	$3+2[\log 2(25)]$	13
tag_and	2 - 1	1
wen_and	2 - 1	1
wen_reg_M1	1	1
Total		36

Figure 12: Critical Path and Cycle Time for 2-Way Set-Associative Cache with Pipelined Write Hit

3.e Average Memory Access Latency

			Hit	Miss	Miss	
		Replacement	\mathbf{Time}	Rate	Penalty	\mathbf{AMAL}
Associativity	$\mu {f arch}$	Policy	(au)	(ratio)	(au)	(au)
Direct Mapped	Seq	n/a	68	0.8	300	308
2-way Set Assoc	Seq	LRU	73	0.6	300	253
2-way Set Assoc	Seq	FIFO	73	0.7	300	283
Direct Mapped	PP	n/a	44	0.8	300	284
2-way Set Assoc	PP	LRU	49	0.6	300	229
2-way Set Assoc	PP	FIFO	49	0.7	300	259

Figure 13: Average Memory Access Latency for Six Cache Configurations

4 Array vs. List Cache Behavior

					CPI Breakdown										
	Number of		Execution	Useful	Raw	Control	Memory								
Part	Instructions	\mathbf{CPI}	${\bf Time} \; ({\bf cyc})$	\mathbf{Work}	\mathbf{Stalls}	Squashes	\mathbf{Stalls}								
Part 4.A	512	1.5	768	1	0.25	0	0.25								
Part 4.B															

Figure 14: Execution Time for Reverse Operation on Array and Linked List Data Structures

For the cycle type: u = cycle of useful work r = cycle lost due to RAW stal m = cycle lost due to memory stall c = cycle lost due to control squashes

4.a Analyzing Performance of an Array Data Structure

Table on next page.

The loop runs 64 times. Therefore, the total number of instructions executed is $64 \times 8 = 512$ instructions. The first iteration (between the first two bold lines) shows the pipeline flow when the cache misses both loads. Because the cachline is 16 bytes, these misses will occur every 4 loops. The number of cycles in this cache-miss loop is 18. For when both load words find a hit in the cache (between the latter two bold lines), the cycle count for the loop is 10. This occurs 3 times out of every 4 loops. Therefore, the total cycles for 4 loops is $18 + 3 \times 10 = 48$. This is then looped 16 times for a total of 64 loops. Therefore, the total number of cycles for the program (ignoring the first 4 instructions for setup) is $16 \times 48 = 768$. The CPI for the entire program is therefore 768/512 = 1.5. Here is a breakdown of the CPI for each cycle type:

```
First Iteration Cycle Type Breakdown:
u = 8 cycles
m = 8 cycles
r = 0 cycle
 = 2 cycles
Second Iteration Cycle Type Breakdown:
u = 8 cycles
m = 0 cycles
r = 0 cycle
c = 2 cycles
Overall CPI Breakdown:
  = 16*8 + 48*8 = 512 cycles, 512/512 = 1.00 CPI
  = 16*8 + 48*0 = 128 cycles, 128/512 = 0.25 CPI
  = 16 * 0 + 48 * 0 =
                     0 cycles,
                                   0/512 = 0.00 \text{ CPI}
 = 16*2 + 48*2 = 128 \text{ cycles}, 128/512 = 0.25 \text{ CPI}
                                          = 1.50 CPI
total
```

Cycle type:						1	m	1	u			m		u	u	u	u	u	u	u	c	c	u	u	u	u	u	u	u	u	c	c	
Instruction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
lw r12, 0(r4)	F	D	X	М	Μ	M	М	М	W																								
lw r13, 0(r5)		F	D	X	Χ			X	М	Μ	Μ	Μ	Μ	W																			
sw r12, 0(r5)			F	D	D	D		D	X	X	X	X	X	Μ	W																		
sw r13, 0(r4)				F	F	F	F	F	D	D	D	D	D	X	Μ	W																	
addiu r14, r5, 0									F	F	F	F	F	D	X	Μ	W																
addiu r4, r4, 4														F	D	Χ	М	W															
addiu r5, r5, -4															F	D	X	М	W														
bne r4, r14, loop																F	D	X	Μ	W													ĺ
opA																	F	D	-	-	-												ĺ
opB																		F	-	-	-	-											ĺ
lw r12, 0(r4)																			F	D	Χ	Μ	W										ĺ
lw r13, 0(r5)																				F	D	Χ	Μ	W									
sw r12, 0(r5)																					F	D	X	М	W								
sw r13, 0(r4)																						F	D	X	Μ	W							
addiu r14, r5, 0																							F	D	X	Μ	W						
addiu r4, r4, 4																								F	D	X	Μ	W					
addiu r5, r5, -4																									F	D	X	Μ	W				
bne r4, r14, loop																										F	D	Χ	Μ	W			
opA																											F	D	-	-	-		
opB																												F	-	-	-	-	
lw r12, 0(r4)																													F	D	X	Μ	W

Figure 15: Array Data Structure Pipeline Diagram