電子電路實驗 5: Multi-Pole Feedback Network OP-Amp Circuit

實驗預報

B02901178 江誠敏

October 11, 2015

1 Objectives

- 1. To analyze the theory of feedback network in the multi-pole OP-Amp circuit.
- 2. To discuss the issue of stability for the feedback amplifier.
- 3. To understand the physical meaning of sinusoidal vibration.

2 Procedures

2.1 DC Functional Confirmation of A_1

- 1. Reference pin voltage for $A_1,$ check $V_{pin7}, V_{pin4}, V_{pin2}, V_{pin3}, V_{pin6}.$
- 2. Record these values.

2.2 DC Functional Confirmation A_2

- 1. Use $R=10\,\mathrm{k}\Omega, r=100\,\Omega, C_1=0.1\,\mathrm{\mu F}$ for $A_2.$
- 2. Supply voltage source $V_{CC}=+15\,\mathrm{V},$ and $-V_{CC}=-15\,\mathrm{V}$ to the circuit.
- 3. Reference pin voltage for A_2 , check $V_{pin7}, V_{pin4}, V_{pin2}, V_{pin3}, V_{pin6}$.
- 4. Record these values.

2.3 Small Signal Analysis

- 1. Use $R=10\,\mathrm{k}\Omega, r=100\,\Omega, C_1=0.1\,\mathrm{\mu F}$ for $A_2.$
- 2. Supply voltage source $V_{CC}=+15\,\mathrm{V},$ and $-V_{CC}=-15\,\mathrm{V}$ to the circuit.
- 3. Apply the input small signal V_i to the breadboard by using function generator to generate $v_i=v_{ac}\sin(2\pi ft), 2v_{ac}=100\,\mathrm{mV}_{(p-p)}, f=100\,\mathrm{Hz}.$

- 4. Make sure that the v_i is measured from the breadboard by using the probe from CH1 in oscilloscope.
- 5. oscilloscope ⊳Press the CH1 and CH2 MENU ⊳Coupling ⊳AC.
- 6. Observe $V_{i(p-p)}$ and $V_{o(p-p)}$ in CH1 and CH2, respectively.
- 7. Keep the previous adjustment of V_i constantly.
- 8. Record the voltage gain A_M in the oscilloscope.
- 9. Function generator \triangleright Adjust Frequency and observe the voltage gain A_V in oscilloscope until $A_v=0.707A_M$.
- 10. Record the frequency f_{3dB}

2.4 DC Functional Confirmation of A_3

- 1. Short terminal D to the ground.
- 2. Reference pin voltage for A_3 , check $V_{pin7}, V_{pin4}, V_{pin2}, V_{pin3}, V_{pin6}$.
- 3. Record these values.

2.5 DC Functional Confirmation of A_4

- 1. Short terminal E to the ground.
- 2. Reference pin voltage for A_4 , check $V_{pin7}, V_{pin4}, V_{pin2}, V_{pin3}, V_{pin6}$.
- 3. Record these values.

2.6 Initial state of the feedback network circuit

- 1. Use $R = 10 \,\mathrm{k}\Omega, r = 100 \,\Omega, C_1 = C_2 = C_3 0.1 \,\mathrm{\mu F}, VR = 10 \,\mathrm{k}\Omega.$
- 2. adjust VR to have $R_{p1}=0\,\Omega, R_{p2}=10\,\mathrm{k}\Omega.$
- 3. Apply the input signal v_i to the breadboard by using function generator to generate $v_i = v_{ac} \, \text{square}(2\pi f t), 2v_{ac} = 5 \, \text{V}_{(p-p)}, f = 0 \sim 10 \text{Hz}.$ circuit.
- 4. Make sure that the v_i is **measured from the breadboard** by using the probe from CH1 in oscilloscope.
- 5. Oscilloscope ⊳Press the CH1 and CH2 MENU ⊳Coupling ⊳DC.
- 6. Observe whether the waveform shown in CH1 and CH2 distort.

2.7 Vibration observation of the circuit

- 1. Keep the previous adjustment in step 7 constantly.
- 2. Observe the waveform of $V_{o(p-p)}$ in CH2 when slowly increasing the value of R_{p1} until the sinusoidal vibration occur.
- 3. As the sinusoidal vibration occur, record $V_{S(p-p)}, V_{J(p-p)}, V_{o(p-p)}, f_o, R_{p1}, R_{p2}$.

ır damping ph			

4. During the adjustment of appearing sin-vibration, observe whether the waveform of