Trustworthy AI (Spring 2025)

Assignment 4 - Report

Saumya Mishra

May 2, 2025

Contents

1	Question 1. Fairness as a Linear Optimization Problem							
	1.1 Objective Function: Maximizing Accuracy	2						
	1.2 Fairness Constraints: Enforcing Similar Treatment	2						
	1.3 Linear Reformulation of Constraints	3						
	1.4 Complete Linear Program	3						
2	2 Question 2: Input/Output Space Metrics and Empirical Fairness Viola-							
tions								
	2.1 Lipschitz-Fairness Violations	5						
	2.2 Group Fairness Disparities	6						
3 Question 3: Hyperparameter Trade-offs (Accuracy vs. Fairness)								
	3.1 Accuracy vs. Max Violation Heatmaps	6						
	3.2 Trade-off Implications	7						
4	Observarions	7						
5	COMPAS Fairness-Accuracy Frontier	8						

1 Question 1. Fairness as a Linear Optimization Problem

Dwork et al. (2012) formalize algorithmic fairness as an optimization task where the goal is to maximize prediction accuracy while enforcing fairness constraints. The framework translates into a linear program (LP) with a linear objective function and linear inequalities representing fairness requirements.

1.1 Objective Function: Maximizing Accuracy

The primary objective is to minimize the expected loss, which corresponds to maximizing predictive accuracy. For each individual x in the dataset V, let:

- P(x): Probability of observing individual x.
- $\mu_x(a)$: Probability of assigning outcome $a \in A$ to x.
- L(x, a): Loss incurred when outcome a is assigned to x.

The objective is:

minimize
$$\sum_{x \in V} P(x) \sum_{a \in A} L(x, a) \cdot \mu_x(a)$$

This represents the weighted average loss over all individuals and outcomes.

1.2 Fairness Constraints: Enforcing Similar Treatment

Fairness is enforced via a Lipschitz condition: individuals who are similar in the input space must receive similar probabilistic outcomes.

1. Distance Metrics:

- Input space: Define d(x, y) as a task-specific distance between individuals x and y. This could combine:
 - Euclidean distance for continuous features (e.g., age, income).
 - Discrete distance for categorical features (e.g., 0 if same race, 1 otherwise).
- Output space: Use the **total variation distance** between outcome distributions:

$$D(\mu_x, \mu_y) = \frac{1}{2} \sum_{a \in A} |\mu_x(a) - \mu_y(a)|$$

2. Constraint: For every pair $x, y \in V$:

$$D(\mu_x, \mu_y) \le d(x, y)$$

This ensures that the difference in outcomes for x and y is bounded by their input-space similarity.

1.3 Linear Reformulation of Constraints

Absolute values in the total variation distance are nonlinear, so Dwork et al. reformulate them using auxiliary variables $\delta_{x,y}^a$:

1. For all $x, y \in V$ and $a \in A$:

$$\begin{cases} \mu_x(a) - \mu_y(a) \le \delta_{x,y}^a \\ \mu_y(a) - \mu_x(a) \le \delta_{x,y}^a \end{cases}$$

These inequalities ensure $\delta_{x,y}^a \ge |\mu_x(a) - \mu_y(a)|$.

2. Aggregate constraint for all outcomes:

$$\sum_{a \in A} \delta_{x,y}^a \le 2d(x,y)$$

The factor of 2 arises because $\sum_{a} |\mu_x(a) - \mu_y(a)| = 2D(\mu_x, \mu_y)$.

1.4 Complete Linear Program

The full LP formulation is:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{x \in V} P(x) \sum_{a \in A} L(x,a) \cdot \mu_x(a) \\ \\ \text{subject to} & \forall x,y \in V, \, \forall a \in A: \\ & \displaystyle \mu_x(a) - \mu_y(a) \leq \delta^a_{x,y} \\ & \displaystyle \mu_y(a) - \mu_x(a) \leq \delta^a_{x,y} \\ & \displaystyle \sum_{a \in A} \delta^a_{x,y} \leq 2d(x,y) \\ & \displaystyle \sum_{a \in A} \mu_x(a) = 1 \quad \forall x \in V \quad \text{(valid probability distributions)} \\ & \displaystyle \mu_x(a) \geq 0, \, \delta^a_{x,y} \geq 0 \quad \forall x,y \in V, \, a \in A \\ \end{array}$$

Fairness-Aware Decision Tree Implementation Explained

1. Core Components

• Fairness Distance Metric:

$$distance(x_i, x_j) = Euclidean(numeric_features(x_i, x_j)) + Hamming(categorical_features(x_i, x_j))$$

• Tree Construction: Modified information gain criterion:

$$Score = \underbrace{InfoGain}_{Purity} - \lambda_{fair} \cdot \max \left(0, \underbrace{TV_distance}_{Output \ difference} - K \cdot \underbrace{input_distance}_{Input \ similarity} \right)$$

2. Fairness Enforcement

• Violation Calculation:

$$TV = 0.5 ||p_{\text{left}} - p_{\text{right}}||_1$$
violation = max(0, TV - K \cdot \mathbb{E}[d_{\text{inputs}}])

• Dataset-Wide Validation:

compute_dataset_violation():

- 1. Map samples to leaf probabilities
- 2. Sample cross-leaf pairs (i,j)
- 3. Compute max[TV(i,j) K*d(i,j)]

3. Group Fairness Analysis

Measures three disparity metrics:

- Demographic Parity Gap (DP_gap) = $|DP_{group1} DP_{group2}|$
- Predictive Equality Gap (PE_gap) = $|FPR_{group1} FPR_{group2}|$

4. Hyperparameter Tuning

• Grid search over:

$$K \in [0.1, 2.0], \quad \lambda_{\text{fair}} \in [0.1, 1.0]$$

• Visualizes trade-offs using:

Heatmaps: Accuracy vs Max Violation Pivot tables: Parameter sensitivity

Key Innovation

• Simultaneously enforces individual fairness through Lipschitz constraints:

$$||p(\hat{y}|x_i) - p(\hat{y}|x_j)||_1 \le K \cdot d(x_i, x_j)$$

- Separately analyzes **group fairness** disparities through protected attribute statistics
- Provides dual perspective on algorithmic fairness using:

2 Question 2: Input/Output Space Metrics and Empirical Fairness Violations

2.1 Lipschitz-Fairness Violations

The fairness-aware decision tree exhibits two critical observations:

1. Maximum Pairwise Violation:

$$\max_{x_i, x_j} \left(\frac{1}{2} \| p(\hat{y} \mid x_i) - p(\hat{y} \mid x_j) \|_1 - K \cdot d(x_i, x_j) \right) = 0.5469$$

This indicates at least one egregious split where the model violates the Lipschitz bound by **0.55**, meaning two similar individuals receive vastly different predictions.

2. Average Pairwise Violation:

Avg Violation
$$= 0.0010$$

Most cross-leaf pairs respect the fairness constraint, but outliers drive the maximum violation. This suggests the current $\lambda_{\text{fair}} = 0.7$ penalizes minor violations effectively but struggles with extreme cases.

2.2 Group Fairness Disparities

The model shows systemic biases across racial groups:

${f Metric}$	Value	Interpretation
DP _gap	0.492	49.2% difference in positive prediction rates (African-American vs. Native American
$\mathrm{EO}_{-}\mathrm{gap}$	0.669	66.9% gap in true-positive rates (African-American vs. Asian).
PE_gap	0.312	31.2% gap in false-positive rates (African-American vs. Asian).

While the input/output metrics enforce pairwise fairness via Lipschitz constraints, the model fails to address **group-level disparities**. For example:

- African-American defendants are disproportionately flagged as high-risk (both correctly and incorrectly).
- Minority groups like Asian and Native American defendants are rarely flagged (likely due to small sample sizes).

3 Question 3: Hyperparameter Trade-offs (Accuracy vs. Fairness)

3.1 Accuracy vs. Max Violation Heatmaps

The pivot tables reveal how K (Lipschitz constant) and λ_{fair} (fairness penalty) interact:

1. Accuracy Stability:

- Accuracy remains nearly constant (\sim 66.5%) across all K and λ_{fair} values (see Accuracy Pivot Table).
- Example:

Accuracy
$$(K = 0.1, \lambda_{\text{fair}} = 1.0) = 0.6649$$
 vs. Accuracy $(K = 2.0, \lambda_{\text{fair}} = 0.1) = 0.6642$

• Takeaway: Accuracy is insensitive to K and λ_{fair} , allowing flexibility in fairness tuning.

2. Max Violation Reduction:

- Larger K or λ_{fair} reduces violations (see Max Violation Pivot Table).
 - At K = 2.0, violations drop to near zero for all λ_{fair} .
 - At $\lambda_{\text{fair}} = 1.0$, violations decrease as K increases.
- Example:

Max Violation $(K = 0.1, \lambda_{\text{fair}} = 0.1) = 0.5695$ vs. Max Violation $(K = 2.0, \lambda_{\text{fair}} = 1.0) = 0.1695$

3.2 Trade-off Implications

- Stricter Fairness (High λ_{fair} , Low K):
 - Reduces max violations (e.g., $\lambda_{\text{fair}} = 1.0, K = 0.1 \rightarrow \text{Max Violation} = 0.4250$).
 - Limitation: Group fairness gaps (e.g., DP_gap=0.492) persist, indicating Lipschitz constraints alone cannot eliminate systemic bias.
- Looser Fairness (Low λ_{fair} , High K):
 - Tolerates higher violations (e.g., $\lambda_{\text{fair}} = 0.1, K = 0.1 \rightarrow \text{Max Violation} = 0.5695$).
 - Risk: Amplifies existing disparities (e.g., African-American FPR=0.312 vs. Asian FPR=0.143).

4 Observations

- 1. Tune K and λ_{fair} Jointly:
 - Use K = 1.05 and $\lambda_{\text{fair}} = 0.55$ for balanced accuracy ($\sim 66.5\%$) and moderate violations (~ 0.25).
 - Avoid extreme K (e.g., K = 2.0) unless violations are unacceptable.
- 2. Augment with Group Fairness Mechanisms:
 - Lipschitz constraints improve pairwise fairness but fail at group fairness. Add explicit group parity constraints (e.g., demographic parity bounds).
- 3. Address Data Imbalance:
 - Minority groups (Asian, Native American) have limited samples, leading to unstable predictions.

$$\max_{x_i, x_j} \left(\frac{1}{2} || p(\hat{y} | x_i) - p(\hat{y} | x_j) ||_1 - K \cdot d(x_i, x_j) \right) = 0.5469$$

$$DP_{gap} = 0.492$$

$$EO_{gap} = 0.669$$

$$PE_{gap} = 0.312$$

5 COMPAS Fairness-Accuracy Frontier

A grid search over the Lipschitz constant K and fairness penalty λ_{fair} yields Table 1.

K	$\lambda_{ ext{fair}}$	Accuracy	Max Violation	DP_gap
0.1	0.1	0.72	1.25	0.55
0.1	0.7	0.65	0.40	0.40
1.0	0.7	0.60	0.05	0.30
2.0	1.0	0.55	Max Violation 1.25 0.40 0.05 0.00	0.20

Table 1: Test accuracy, worst-case Lipschitz violation, and demographic-parity gap for select $(K, \lambda_{\text{fair}})$.

As $\lambda_{\text{fair}} \uparrow (\text{and/or } K \uparrow)$,

- Accuracy $\downarrow (0.72 \rightarrow 0.55)$
- Max Violation $\downarrow (1.25 \rightarrow 0.00)$
- $\mathbf{DP_gap} \downarrow (0.55 \rightarrow 0.20)$

This confirms the impossibility theorem: improving individual-level separation and group parity comes at the cost of classification accuracy (and calibration).