Total No. of Questions—8]

Total No. of Printed Pages—4+1

Seat	
No.	

[5667]-1005

F.E. (First Semester) EXAMINATION, 2019

ENGINEERING PHYSICS

(Phase II)

(2019 **PATTERN**)

Time: 2½ Hours

Maximum Marks: 70

- N.B. :— (i) Solve any one question out of Q. No. 1 or Q. No. 2,
 Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7
 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Use of electronic calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Derive Schrodinger's time independent wave equation. [6]
 - (b) State the de Broglie hypothesis and explain any *three* properties of matter waves. [4]
 - (c) Explain tunneling effect. Explain in brief how this is used in scanning tunneling microscope. [4]
 - (d) Lowest energy of an electron trapped in potential well is 38 eV. Calculate the width of well in A.V. [Given : Mass of electron 9.1×10^{-31} kg, plank constant 6.63×10^{-34} J-s, charge on $e^ 1.6 \times 10^{-19}$ C].

P.T.O.

		Or
2.	(<i>a</i>)	What is Schrodinger's equation ? Derive Schrodinger's time
		dependent equation. [6]
	(<i>b</i>)	State and explain Heisenberg's uncertainty principle. [4]
	(c)	What is wave function ψ ? Explain physical significance of
		$ X ^2 \tag{4}$
	(d)	If uncertainty in position of a particle is equal to its de Broglie
		wavelength, show that uncertainty in velocity is equal to the
		velocity of the particle. Consider the product of uncertainties
		as h . [4]
	0.	
3.	(a)	Using Fermi Dirac probability distribution function, derive an
		expression for the position of Fermi energy level in the intrinsic
		semiconductor. [6]
	(<i>b</i>)	Derive the ideal diode equation for a P-N junction. [4]
	(c)	Calculate the mobility of charge carriers in doped silicon
		whose conductivity is 100 per Ω .m and the Hall coefficient
		is $3.6 \times 10^{-4} \text{ m}^3/\text{c}$. [4]
	(<i>d</i>)	What is photovoltaic effect? Draw I V characteristics of solar
		cell and define fill factor. [3]
		what is photovoltaic effect? Draw I V characteristics of solar cell and define fill factor. [3]
4.	(<i>a</i>)	Explain Hall effect with figure. Derive the equation of Hall
		voltage and Hall coefficient. [6]
	(<i>b</i>)	State any four measures to improve efficiency of solar

cell.

[4]

((c)	Calculate the conductivity of pure silicon at room temperatur	e
		when concentration of carriers is 1.6×10^{10} per CC. [Given	n
		$\mu_e = 1500 \text{ cm}^2\text{V-sec}, \mu_h = 500 \text{ cm}^2\text{/V.sec}, \text{charge on electron}$	n
		$1.6 \times 10^{-19} \text{ C}$]. [4	.]
((d)	Explain in brief concept of effective mass of electron. [3	;]
5. ((a)	Define superconductivity with resistance Vs temperature graph	
		and example. Explain zero electrical resistance in supe	r
		conductivity. [6	;]
((b)	Explain DC and AC Josephson effect with diagram. [4	.]
((c)	Distinguish between diamagnetism, paramagnetism and	d
		ferromagnetism (two points each). [4	.]
((d)	Define with unit: [4	.]
		(i) Magnetic field strength (H)	
		(ii) Magnetization (M).	
		6.V	-
		Or State	
6. ((a)	Explain how information is recorded and retrieved in magneto)—
		optical recording devices.	;]
((b)	Explain in brief:	.]
		Explain how information is recorded and retrieved in magneto optical recording devices. [6] Explain in brief: [6] (i) Absolute permeability [6] (ii) Relative permeability.	
		(ii) Relative permeability.	
((c)	What are SQUID ? Explain any two applications of	f
		SQUID.	.]
[5667]-	1005	3 P.T.C).

6.

(<i>d</i>)	The transition temperature of lead is 7.2 K. However, at
	5 K it loses the superconducting property if subjected to magnetic
	field of 3.3×10^4 A/m. Find the maximum value of H
	which will allow the metal to retain its super conductivity
	at 0 K [4]

- 7. (a) What is non-destructive testing? State types of non-destructive techniques? Explain ultrasonic testing technique for flaw detection. [6]
 - (b) An ultrasonic pulse is sent through a block of copper. The echo pulse is received after 4 μs. If velocity of ultrasonic in copper is 5000 m/s, calculate the thickness of copper block. If the reflection of pulse is recorded after 1.253 μs from the top, what is the location of flow?
 - (c) What is nanotechnology Explain applications of nanotechnology in electronic field, [4]
 - (d) What is quantum confinement? How does it affect the properties of nano particles? [3]

Or

- 8. (a) Explain electrical and mechanical properties of nanoparticles. [6]
 - (b) Explain how nanotechnology is employed in targeted drug delivery. [4]

[5667]-1005

- (*c*) An ultrasonic pulse of frequency 130 kHz is sent through a block of steel. The echo pulse is received after 1.695 µs. If velocity of ultrasonic in steel is 5900 m/s, calculate the thickness
 - of the steel block and wavelength of the pulse. [4]
- atrasonic
 steel block a
 explain in brief how
 non-destructive testing. Explain in brief how acoustic emission technique is used in [3]

5 ABARANASARITAN

[5667]-1005