24) Survival Function and Hazard Rates

Vitor Kamada

November 2018

Reference

Tables, Graphics, and Figures from

https://lifelines.readthedocs.io/

Introduction to Survival Analysis

Simulated Data

Generated Data

```
from lifelines.plotting import plot_lifetimes
from numpy.random import uniform, exponential
import numpy as np
import matplotlib.pyplot as plt
```

Observed Lifetimes at Time 10

```
plt.xlim(0, 25)
plt.vlines(10, 0, 30, lw=2, linestyles='--')
plt.xlabel("time")
plt.title("Births and deaths of our population, at $t=10$")
plot_lifetimes(observed_lifetimes, event_observed=observed)
```


Vitor Kamada ECO 7110 Econometrics II November 2018

Survival Function of Political Regimes

Survival Function

Prob. of surviving past time t

Prob. death event has not occured yet at time t

$$S(t) = Pr(T > t)$$

$$0 \leq S(t) \leq 1$$

$$F(t) = 1 - S(t)$$
, where $F(t)$ is the CDF of T

S(t) is non-increasing function of t

Kaplan-Meier Estimate of Survival Function

$$\hat{S}(t) = \prod_{t_i < t} \frac{n_i - d_i}{n_i}$$

 d_i : # of death events at time t

 n_i : # of subjects at risk of death just prior to time t

Import Data

```
import pandas as pd
from lifelines.datasets import load_dd
data = load_dd()
data.sample(6)
```

	leaderspellreg	democracy			
369	Nikica Valentic.Croatia.1993.1994.Mixed Dem	Democracy			
1645	Suleyman Demirel.Turkey.1975.1977.Parliamentar De				
827	Silvio Berlusconi.Italy.2008.2008.Parliamentar Democracy				
1349	Armindo Vaz d'Almeida.Sao Tome and Principe.19				
1154	Ali Saibou.Niger.1987.1992.Military Dict	Non-democracy			
	regime start_year duration observed				
200	M: 1 D 1002 2 1				

	regime	start_year	auration	observea
369	Mixed Dem	1993	2	1
1645	Parliamentary Dem	1975	3	1
827	Parliamentary Dem	2008	1	0
1349	Mixed Dem	1995	1	1
1154	Military Dict	1987	6	1

Kaplan Meier Fitter

```
from lifelines import KaplanMeierFitter
kmf = KaplanMeierFitter()
T = data["duration"]
E = data["observed"]
kmf.fit(T, event observed=E)
kmf.median
```

kmf.plot()

Democratic vs Non-Democratic Regimes

```
ax = plt.subplot(111)
dem = (data["democracy"] == "Democracy")
t = np.linspace(0, 50, 51)
kmf.fit(T[dem], event observed=E[dem], timeline=t,
        label="Democratic Regimes")
ax = kmf.plot(ax=ax)
print("Median survival time of democratic:", kmf.median )
kmf.fit(T[~dem], event observed=E[~dem], timeline=t,
        label="Non-democratic Regimes")
ax = kmf.plot(ax=ax)
print("Median survival time of non-democratic:", kmf.median )
plt.ylim(0,1)
plt.title("Lifespans of different global regimes");
```

Lifespans of Different Global Regimes

Median of democratic: 3.0

Median non-democratic: 6.0

Logrank Test (Mantel-Cox Test)

```
from lifelines.statistics import logrank test
results = logrank test(T[dem], T[~dem],
                  E[dem], E[\sim dem], alpha=.99)
results.print summary()
t 0=-1, alpha=0.99, null distribution=chi squared, df=1
test statistic
     260,4695 0,0000
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```

Lifespans of Regime Types

Vitor Kamada ECO 7110 Econometrics II

November 2018

Hazard Curve

Prob. of death event occurring at time t, given that the death event has not occurred until time t

$$\lambda(t) = \lim_{\Delta t \to 0} \frac{Pr(t \leq T < t + \Delta t | T \geq t)}{\Delta t}$$

$$\lambda(t) = \frac{f(t)}{S(t)} = \frac{-S'(t)}{S(t)} = \frac{-dln(S(t))}{dt}$$

$$S(t) = exp(-\int_0^t \lambda(z)dz)$$

Vitor Kamada ECO 7110 Econometrics II November 2018 16 / 20

Estimating Hazard Rates by Nelson-Aalen Estimator

$$egin{aligned} arLambda(t) &= \int_0^t \lambda(z) dz = - ln S(t) \ & \hat{arLambda}(t) = \sum_{t_i \leq t} rac{d_i}{n_i} \end{aligned}$$

 d_i : # of deaths at time t_i

 n_i : # of susceptible individuals

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

from lifelines import NelsonAalenFitter

```
naf = NelsonAalenFitter()
naf.fit(T,event\_observed=E)
print(naf.cumulative_hazard_.head())
```

	NA_estimate
timeline	
0.0	0.000000
1.0	0.325912
2.0	0.507356
3.0	0.671251
4.0	0.869867

naf.plot()

Cumulative Hazard Function

```
naf.fit(T[dem], event_observed=E[dem], label="Democratic Regimes")
ax = naf.plot(loc=slice(0, 20))
naf.fit(T[~dem], event_observed=E[~dem], label="Non-democratic Regimes")
naf.plot(ax=ax, loc=slice(0, 20))
```

