Herbst 11 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $p: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion mit

$$\gamma = \sup_{t>0} \int_0^t p(s) \, \mathrm{d}s \in \mathbb{R}.$$

- a) Berechnen Sie für $x_0 \in \mathbb{R}$ die Lösungen x(t) des Anfangswertproblems $x'(t) = p(t)e^{x(t)}$ für t > 0 mit $x(0) = x_0$.
- b) Beweisen Sie: Ist $1 > \gamma e^{x_0}$, so existiert die Lösung in (a) für alle Zeiten t > 0.

Lösungsvorschlag:

a) Die Gleichung ist trennbar; für alle t im maximalen Lösungsintervall gilt

$$e^{-x_0} - e^{-x(t)} = \int_{x_0}^{x(t)} e^{-s} ds = \int_0^t p(s) ds.$$

Umstellen liefert $x(t) = -\ln(e^{-x_0} - \int_0^t p(s) \, ds).$

b) Die Lösung ist für alle $t \in \mathbb{R}$ definiert, für die das Argument des natürlichen Logarithmus positiv ist. Es gilt $e^{-x_0} - \int_0^t p(s) \, \mathrm{d}s > 0 \iff e^{-x_0} > \int_0^t p(s) \, \mathrm{d}s$. Falls $\gamma e^{x_0} < 1 \iff \gamma < e^{-x_0}$ gilt, ist $\int_0^t p(s) \, \mathrm{d}s \le \gamma < e^{-x_0}$ erfüllt und das Argument des ln positiv. Daher existiert dann die Lösung zumindest auf $(-\varepsilon, \infty)$ für ein $\varepsilon > 0$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$