

Differential Cryptanalysis

Maria Eichlseder

Applied Cryptography 2 – ST 2020

Cryptanalysis

...or how to scale your cipher 🧸 🔍 🦠

The best available cryptanalysis (+security margin) indicates the necessary key size, number of rounds, etc. to achieve a certain security level:

- Asymmetric crypto: Best algorithm to solve hard problem
- Symmetric crypto: Generic and dedicated attack techniques

= Outline

- Security Analysis of Symmetric Primitives
- Oifferential Cryptanalysis
- Exploiting Differentials
- Caveats and Assumptions

Security Analysis of Symmetric Primitives

Reminder: Symmetric Primitives

Quantifying Security: The security of a cipher is bounded by...

Generic Attacks: work for any cipher with same interface

Example: Block cipher with *k*-bit key and *n*-bit block:

- Key guessing: Costs about $\approx 2^k$ trial encryptions
- Full codebook: After observing ciphertexts for all 2^n different known plaintexts, attacker knows E_K
- Birthday: After observing ciphertexts for $\approx 2^{n/2}$ different plaintexts, attacker can distinguish from random function (no collisions)

Dedicated Attacks: exploit specific internal details of the cipher

For a good symmetric primitive, we usually want that no dedicated attack is more efficient than the best generic attack (= it is as good as can be expected, given the interface)

Generic Security Levels

The Key-Alternating Construction

2 fundamental ideas:

- Repeat simple circuit ("round")
 r times
- 2. Make the round circuit public but mix input with round key

Important Symmetric Cryptanalysis Techniques

Statistical Analysis

- Differential Cryptanalysis (DC):
 - Predict output difference from input difference
 - Many variants (truncated, impossible, ...)
- Linear Cryptanalysis (LC):
 - Approximate output as a linear function of input
 - Many links to DC

Other Techniques

- Algebraic Cryptanalysis (many different variants):
 - Describe cipher in equations and solve
 - Derive deterministic properties about output
- ...

Differential Cryptanalysis

Idea: Tracking Differences

Differential Cryptanalysis - Overview

- Proposed by Biham and Shamir [BS90] for DES
- DES designers (IBM, NSA) apparently knew about a similar attack before
- Chosen-plaintext attack
- One of the two major statistical attack techniques and design criteria
- Main idea:
 - 1. Predict effect of plaintext difference $\Delta M = \square M \oplus \square M^*$ on ciphertext difference $\Delta C = \square C \oplus \square C^*$ without knowing $\triangleleft K$
 - 2. Use prediction as distinguisher to recover the key

Differential Cryptanalysis – Idea

Example: A Toy Block Cipher

$$\Delta in = 8 \rightarrow \Delta out = ?$$

X																
S(x)	2	0	4	3	9	5	6	7	1	d	е	f	a	8	С	b

$$\Delta in = 8 \rightarrow \Delta out = ?$$

$$\Delta in = 8 \rightarrow \Delta out = ?$$

$$\Delta in = 8 \rightarrow \Delta out = ?$$

$$\Delta in = 8 \quad \rightarrow \quad \Delta out \in \{3,a,c,d\}$$

X																
S(x)	2	0	4	3	9	5	6	7	1	d	е	f	a	8	С	b

- Knowing the value tells us the difference
- Knowing the difference tells us (something about) the value:

$$solutions(\Delta in, \Delta out) := \{x : S(x \oplus \Delta in) \oplus S(x) = \Delta out\}$$

Differential Properties of S-boxes – More Formally

We consider pairs of two variables $x, x^* \in \mathbb{F}_2^n$ and evaluate their difference Δx :

$$\Delta x = x^* \oplus x$$
.

If x and x^* are inputs to two instances of a cryptographic (vectorial Boolean) function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$, we are interested in the resulting difference Δy of the two outputs y, y^* :

$$\Delta y = y^* \oplus y = f(x \oplus \Delta x) \oplus f(x).$$

For a fixed input difference $\alpha = \Delta x \in \mathbb{F}_2^n$, the output difference Δy depends on the value x. This induces another function on \mathbb{F}_2^n , the forward directional derivative by α :

$$\Delta_{\alpha}f(x):=f(x\oplus\alpha)\oplus f(x).$$

This derivation operator shares many properties with the derivations of differential calculus, such as the "sum rule" and "product rule" (Leibniz' rule).

These derivatives $\Delta_{\alpha} f$ may be more amenable to analysis than the initial function f.

Differential Distribution Table (DDT)

Δ in \ Δ out	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	4	4	-	-	-	-	4	-	-	-	-	4	-	-	-
2	-	-	4	4	-	-	4	-	-	-	-	-	-	-	-	4
3	-	4	-	4	4	-	-	-	-	-	-	-	-	-	4	-
4	-	-	4	-	4	4	-	-	-	-	-	4	-	-	-	-
5	-	-	-	4	-	4	-	4	-	4	-	-	-	-	-	-
6	-	-	-	-	4	-	4	4	-	-	-	-	-	4	-	-
7	-	4	-	-	-	4	4	-	-	-	4	-	-	-	-	-
8	-	-	-	4	-	-	-	-	-	-	4	-	4	4	-	-
9	-	4	-	-	-	-	-	-	-	-	-	4	-	4	-	4
a	-	-	-	-	-	4	-	-	-	-	-	-	4	-	4	4
b	-	-	4	-	-	-	-	-	-	4	-	-	-	4	4	-
С	-	-	-	-	-	-	-	-	16	-	-	-	-	-	-	-
d	-	-	-	-	4	-	-	-	-	4	4	-	-	-	-	4
е	-	-	-	-	-	-	-	4	-	-	4	4	-	-	4	-
f	-	-	-	-	-	-	4	-	-	4	-	4	4	-	-	-

Differential Distribution Table (DDT) – More Formally

We refer to a pair of input difference $\alpha = \Delta x \in \mathbb{F}_2^n$ and output difference $\beta = \Delta y \in \mathbb{F}_2^n$ as a differential $\delta = (\alpha \mapsto \beta)$. The solution set $S(\alpha, \beta)$ of the differential is then

$$S(\alpha,\beta) := \{x \in \mathbb{F}_2^n : \Delta_{\alpha} f(x) = f(x \oplus \alpha) \oplus f(x) = \beta\}.$$

We call the differential impossible if $|S(\alpha,\beta)|=0$, and possible otherwise. For example, for $\alpha=0$, only the trivial differential $(0\mapsto 0)$ is possible. Pairs $(x,x\oplus\alpha)$ with $x\in S(\alpha,\beta)$ are called valid.

The differential distribution table (DDT) lists the number of solutions $|S(\alpha, \beta)|$ for all α, β . The multiset of values in this table is referred to as the differential spectrum of f, and its maximum as the differential uniformity du_f of f:

$$\mathrm{du}_f := \max_{\alpha \neq 0, \beta} |\mathsf{S}(\alpha, \beta)|.$$

The probability that f maps $\Delta x = \alpha$ to $\Delta y = \beta$ for uniformly random x is then

$$dp(\alpha,\beta) = \mathbb{P}_x[\alpha \stackrel{f}{\mapsto} \beta] := \mathbb{P}_x[f(x \oplus \alpha) \oplus f(x) = \beta] = \frac{|S(\alpha,\beta)|}{2^n} \leq \frac{du_f}{2^n}.$$

Differential Properties of Mixing Layers (Diffusion)

If f is an \mathbb{F}_2 -affine function $f(x) = \ell(x) \oplus c$ with linear part $\ell(x)$ and the input difference is $\alpha = \Delta x$, then the only one value β with non-zero probability is

$$\beta = \Delta_{\alpha} f(x) = \ell(\alpha).$$

When is a linear layer "good"?

- Branch number B [Dae95]:
 Min number of active S-boxes in 2 consecutive rounds
- In our toy cipher: $\mathcal{B} = 2$. Can we do better?
- Best case: $\mathcal{B} = 1 + \text{number of S-boxes per round}$
- Requires actual "mixing" (xor), not just bit permutations

Design of AES – Round Function (10 or 12 or 14 Rounds)

Design of AES – Properties of the Round Function

Let's flip a bit:

- Max differential probability (MDP) of the 8 \times 8 S-box: 2^{-6}
- Mixing layer (based on Maximum Distance Separable code, MDS) with $\mathcal{B}=5$ (in 2 rounds $\rightarrow \geq 5$ active S-boxes)
- Actually, in 4 rounds \rightarrow 25 active S-boxes \rightarrow $p \le 2^{-6 \times 25} = 2^{-150}$ (\rightarrow later lecture)

AES – Example for Optimal Pattern with 25 active S-boxes

Automated tools for cryptanalysis

Motivation:

- Finding the best (or very good) characteristics can be very hard
- Necessary to evaluate new primitives

Solvers:

- 🔰 By hand
- General-purpose solvers:
 - SAT/SMT (Boolean SATisfiability/Sat. Modulo Theories)
 - MILP (Mixed Integer Linear Programming)
 - CP (Constraint Programming)
- Dedicated solvers

Exploiting Differentials

An (Iterative) r-Round Differential Characteristic

An *r*-Round Differential

For Forgeries

Example: Forgery with success probability p for CBC-MAC

This is useful if $p>2^{-{\sf block\,size}}$ (= $2^{-{\sf tag\,size}}$).

For Key Recovery

- Assume $\Delta M \xrightarrow{r-1 \text{ rounds}} \Delta Y$ has probability $p \gg 2^{-\text{block size}}$
- Query about 1/p chosen-plaintext pairs $(M, M^*) \rightarrow (C, C^*)$
- Decrypt each pair 1 round with each possible last-round key K_r
- If we get ΔY , upvote candidate $K_r =$

K _r	Upvote counter					
0000	1.6					
0001	16 16					
0002	14 14 14 14					
0003	16 16					

Key Recovery Example: 8-Round Toy Cipher

We can filter out incompatible (C, C^*) Then guess only 4 key bits and check for difference a at S-box input \rightarrow we learn 4 key bits, brute-force the rest but how many (P, P^*) exactly are enough?

Key Recovery - Details I

Signal-to-Noise Ratio SNR =
$$\frac{N \cdot p_{\text{right}}}{N \cdot p_{\text{wrong}}} = \frac{p}{A \cdot B \cdot 2^{-k}}$$
.

- p: Expected differential probability for R-1 rounds
- N: Number of queried pairs
- A: Upvoted candidates per pair
- B: Fraction of pairs after filtering ciphertexts
- k: Number of guessed key bits

Need roughly $N \approx 3 \cdot 1/p$ pairs if SNR $\gg 2$, or $N \approx 30 \cdot 1/p$ if $1 < \text{SNR} \le 2$. [BS90]

27/36

Key Recovery Example: 8-Round Toy Cipher (cont'd)

- p: Expected diff. prob. for R-1 rounds
- N: Number of queried pairs
- A: Upvoted candidates per pair
- B: Fraction of pairs after filtering (C, C^*)
- k: Number of guessed key bits

$\mathtt{DDT}(\mathcal{S})$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
a	-	-	-	-	-	4	-	-	-	-	-	-	4	-	4	4

SNR =
$$\frac{p}{A \cdot B \cdot 2^{-k}} = \frac{2^{-14}}{4 \cdot (2^{-12} \cdot 2^{-2}) \cdot 2^{-4}} = 4$$

About $N \approx 3 \cdot 1/p = 3 \cdot 2^{14}$ pairs (P, P^*) should be ok – but that's \approx the whole codebook! What if we use a bit less?

Key Recovery – Details II

More precisely, using ranking statistics, to recover the *k* bits we need about [SB02]:

$$\textit{N} = \frac{\left(\sqrt{\mathsf{SNR} + 1} \cdot \Phi^{-1}(\mathbb{P}_{\mathsf{s}}) + \Phi^{-1}(1 - 2^{-k})\right)^2}{\mathsf{SNR}} \cdot p^{-1}.$$

- p: Expected differential probability for R-1 rounds
- N: Number of queried pairs
- k: Number of guessed key bits
- \mathbb{P}_s : Target success probability of the attack (= prob. that correct key is ranked first among all guessed keys)
- Φ^{-1} : Quantile function (inverse Cumulative Distribution Function) of the standard normal distribution $\mathcal{N}(0,1)$

More Tricks

- Clusters: Find multiple characteristics that match the same differential for higher p
 - This is easier if they follow the same pattern of active S-boxes
- Initial Structures: Also append 1 round before the characteristic
 - Learn more key material
 - Allow more input differences to generate pairs more efficiently
- For Tweakable Block Ciphers: Put differences in the tweak ("related-tweak" model)
- For unkeyed Permutations, Compression Functions: Use "message modification" to control correct solutions for differences in some steps

"Cheating" with Differences: Changing the Intermediates, not the Input

differential cryptanalysis

differential fault analysis

statistical fault analysis

Caveats and Assumptions

Some Grains of Salt

Some Grains of Salt I

"Markov assumption"

"Expected differential probability (EDP)"

"Hypothesis of stochastic equivalence"

"Wrong key randomization hypothesis"

"Dominant trail assumption"

Some Grains of Salt II

- This "probability" is the average over (all inputs and) all round keys
 - "Expected Differential Probability" (EDP)
 - Ignoring the key schedule's properties
 - Ignoring possible dependencies between rounds: "Markov cipher assumption"
 - Assuming the attacker doesn't know/control intermediate values (hash!)
- lacksquare The "generic probability" of 2 $^{-b}$ is also an average over all $f:\mathbb{F}_2^b o\mathbb{F}_2^b$
 - For any fixed key, any differential has p = 0 or $p \ge 2^{-b+1}$ (DDT!)
 - For a random function and any differential, this *p* is binomially distributed

Nevertheless, we assume a fixed key behaves pprox like the EDP: this is the

"Hypothesis of stochastic equivalence"

Conclusion

- Differential cryptanalysis is one of the two major statistical attack techniques
 - Attacker tries to find high-probability characteristics
 - Designer tries to show that none exist (but there is no general proof of security)
- It is very versatile
 - many different variants (truncated, impossible, higher-order, ...)
 - many different goals (key, forgery, collision, ...)
- The analysis relies on a number of assumptions & approximations. They are usually "reasonably close" to reality, but need to check!

Questions

Questions you should be able to answer

- 1. Describe the basic idea of differential cryptanalysis. What is the differential distribution table (DDT)?
- 2. Explain the role of "branch number" and "differential uniformity" in cipher design.
- 3. Explain an approach to find (optimal) differential characteristics.
- 4. How is the secret key recovered in differential cryptanalysis?
- What is a differential characteristic and a differential? How is the probability of a differential computed or approximated? Explain the problems associated with this approximation.
- 6. Assume you have a new block cipher with 128-bit block size and key size, and you know that the optimal differential characteristic for r-1 (out of r) rounds has a differential probability of $p<2^{-128}$. Does this guarantee that the cipher is secure against differential cryptanalysis? Discuss why / why not.

Bibliography I

- [BS90] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. Advances in Cryptology CRYPTO 1990. Vol. 537. LNCS. Springer, 1990, pp. 2–21. DOI: 10.1007/3-540-38424-3_1.
- [Dae95] Joan Daemen. Cipher and Hash Function Design. Strategies based on linear and differential cryptanalysis. PhD thesis. Katholieke Universiteit Leuven, 1995. URL: https://www.esat.kuleuven.be/cosic/publications/thesis-6.pdf.
- [LM01] Helger Lipmaa and Shiho Moriai. Efficient Algorithms for Computing Differential Properties of Addition. Fast Software Encryption FSE 2001. Vol. 2355. LNCS. Springer, 2001, pp. 336–350. doi: 10.1007/3-540-45473-X_28.
- [SB02] Ali Aydın Selçuk and Ali Biçak. On Probability of Success in Linear and Differential Cryptanalysis. Security in Communication Networks SCN 2002. Vol. 2576. LNCS. Springer, 2002, pp. 174–185. DOI: 10.1007/3-540-36413-7_13.