Topic: Parabolas

Question: Find the vertex, focus, and directrix of the parabola.

$$2y^2 - 5x + 3y - 7 = 0$$

Answer choices:

$$A \qquad V\left(-\frac{13}{8}, -\frac{3}{4}\right)$$

$$F\left(-1,-\frac{3}{4}\right)$$

Directrix at
$$x = -\frac{9}{4}$$

$$\mathsf{B} \qquad V\left(\frac{13}{8}, \frac{3}{4}\right)$$

$$F\left(-1,-\frac{3}{4}\right)$$

Directrix at
$$x = \frac{9}{4}$$

$$C \qquad V\left(-\frac{13}{8}, -\frac{3}{4}\right)$$

$$F\left(-\frac{9}{4}, -\frac{3}{4}\right)$$

Directrix at
$$x = -\frac{9}{4}$$

$$D = V\left(-\frac{3}{4}, -\frac{13}{8}\right)$$

$$F\left(-1,-\frac{3}{4}\right)$$

Directrix at
$$x = \frac{9}{4}$$

Solution: A

First, reduce the equation of the parabola into standard form.

$$2y^2 - 5x + 3y - 7 = 0$$

$$2y^2 + 3y = 5x + 7$$

$$y^2 + \frac{3}{2}y = \frac{5}{2}x + \frac{7}{2}$$

$$y^{2} + \frac{3}{2}y + \frac{9}{16} = \frac{5}{2}x + \frac{7}{2} + \frac{9}{16}$$

$$\left(y + \frac{3}{4}\right)^2 = \frac{5}{2}x + \frac{65}{16}$$

$$\left(y + \frac{3}{4}\right)^2 = \frac{5}{2}\left(x + \frac{13}{8}\right)$$

$$\left(y + \frac{3}{4}\right)^2 = 4\frac{5}{8}\left(x + \frac{13}{8}\right)$$

The parabola has a horizontal axis at y = -3/4 and opens to the right. Its vertex is at (-13/8, -3/4). Since a = 5/8, its focus is at

$$\left(-\frac{13}{8} + \frac{5}{8}, -\frac{3}{4}\right)$$

$$\left(-1,-\frac{3}{4}\right)$$

The equation of the directrix is

$$x = -\frac{13}{8} - \frac{5}{8}$$

$$x = -\frac{9}{4}$$

Topic: Parabolas

Question: Which pair of equations represents a parabola with a directrix at x = -5?

Answer choices:

A
$$x = t^2 + 1$$
 and $y = 5t - 9$

B
$$x = t^2 - 1$$
 and $y = 2t - 3$

C
$$x = 4t^2 - 1$$
 and $y = 4t - 1$

D
$$x = t^2 - 1$$
 and $y = 4t - 1$

Solution: D

Choosing $x = t^2 - 1$ and y = 4t - 1 yields the following equations:

$$y + 1 = 4t$$

$$(y+1)^2 = (4t)^2$$

$$(y+1)^2 = 16t^2$$

Solve $x = t^2 - 1$ for t^2 .

$$x + 1 = t^2$$

Replace $x + 1 = t^2$ in $(y + 1)^2 = 16t^2$.

$$(y+1)^2 = 16(x+1)$$

Therefore, the equation of the directrix is

$$x = -1 - 4$$

$$x = -5$$

Topic: Parabolas

Question: Which pair of parametric equations have their vertices at the same point?

Answer choices:

A
$$x = t + 1, y = 2t^2 - 2$$

and
$$x = t^2 - 4$$
, $y = 2t + 1$

B
$$x = t^2 - 4$$
, $y = 2t + 1$

and
$$x = t^2 + 4$$
, $y = t + 1$

C
$$x = t^2 + 4, y = t + 1$$

and
$$x = t^2 + 4$$
, $y = 2t + 1$

D
$$x = t + 1, y = 2t^2 + 2$$

$$x = t^2 - 4$$
, $y = 2t + 1$

Solution: C

From the parametric equations $x = t^2 + 4$ and y = t + 1, we have:

$$y - 1 = t$$

$$(y-1)^2 = t^2$$

and

$$x = t^2 + 4$$

$$x - 4 = t^2$$

Replace $x - 4 = t^2$ in $(y - 1)^2 = t^2$.

$$(y-1)^2 = x-4$$

Thus, the vertex of this parabola is at (4,1).

For parametric equations $x = t^2 + 4$ and y = 2t + 1, we have:

$$y - 1 = 2t$$

$$(y-1)^2 = 4t^2$$

and

$$x = t^2 + 4$$

$$x - 4 = t^2$$

Replace $x - 4 = t^2$ in $(y - 1)^2 = 4t^2$.

$$(y-1)^2 = 4(x-4)$$

Th	us,	tha	۷ ۱	ort:	AY (Դf +	hic	na	ıra ^l	ho	اءا	ic =	a† (´ <u>/</u> 1)							
111	us,	C1 10	v ک			Jit	1113	Po	ıı a		ıa	13 C	<i>,</i> (, +, 1	<i>J</i> •							

