## ELECTROCHEMISTRYS

## Electrode potential, Ecell, Nernt equation and ECS

- 26. For a spontaneous reaction the  $\Delta G$ , equilibrium constant (K) and  $E_{Cell}^o$  will be respectively
  - (a) -ve, > 1, +ve
  - (b) + ve, > 1, -ve
  - (c) -ve, < 1, -ve
  - (d) -ve, > 1, -ve
- 27. The reference electrode is made from which of the following
  - (a)  $ZnCl_2$
- (b)  $CuSO_4$
- (c)  $Hg_2Cl_2$
- (d)  $HgCl_2$
- 28. The charge over anode in a galvanic cell is
  - (a) Negative
  - (b) Positive
  - (c) No charge
  - (d) Sometimes negative and sometimes positive
- 29. The standard electrode potential for the two electrode  $A^+/A$  and  $B^+/B$  are respectively 0.5 V and 0.75 V. The emf of the given cell  $A|A^+(a)|$ 
  - 1) $||B^+(a=1)||B|$  will be
  - (a) 1.25 V
- (b) -1.25 V

ESTD: 20

- (c) -0.25 V
- (d) 0.25 V
- 30. The standard reduction potential for  $Li^+/Li$ ;  $Zn^{2+}/Zn$ ;  $H^+/H_2$  and  $Ag^+/Ag$

- is -3.05, -0.762, 0.00 and +0.80V. Which of the following has highest reducing capacity
- (a) *Ag*
- (b)  $H_2$
- (c) Zn
- (d) *Li*
- 31. If an iron rod is dipped in  $CuSO_4$  solution
  - (a) Blue colour of the solution turns green
  - (b) Brown layer is deposited on iron rod
  - (c) No change occurs in the colour of the solution
  - (d) Blue colour of the solution vanishes
  - (e) None of the above
- 32.  $E^o$  values of  $Mg^{2+}/Mg$  is -2.37V, of  $Zn^{2+}/Zn$  is -0.76V and  $Fe^{2+}/Fe$  is -0.44V . Which of the following statements is correct
  - (a) Zn will reduce  $Fe^{2+}$
  - (b) Zn will reduce  $Mg^{2+}$
  - (c) Mg oxidises Fe
  - (d) Zn oxidises Fe
- 33. The standard reduction potential for  $Fe^{2+}/Fe$  and  $Sn^{2+}/Sn$  electrodes are -0.44 and -0.14 volt respectively. For the given cell reaction  $Fe^{2+} + Sn \rightarrow Fe + Sn^{2+}$ , the standard EMF is
  - (a) + 0.30 V
- (b) -0.58 V





(c) + 
$$0.58 V$$

$$(d) - 0.30 V$$

- 34. Electrode potential of  $Zn^{2+}/Zn$  is -0.76V and that of  $Cu^{2+}/Cu$  is +0.34V . The *EMF* of the cell constructed between these two electrodes is
  - (a) 1.10 V
- (b) 0.42 V
- (c) 1.1 V
- (d) 0.42 V
- 35. *EMF* of a cell whose half cells are given below is

$$Mg^{2+} + 2e^{-} \rightarrow Mg(s); E = -2.37V$$

$$Cu^{2+} + 2e^{-} \rightarrow Cu(s); E = +0.33V$$

- (a) -2.03 V
- (b) 1.36 V
- (c) 2.7 V
- (d) 2.03 V
- 36. A cell constructed by coupling a standard copper electrode and a standard magnesium electrode has emf of 2.7 volts. If the standard reduction potential of copper electrode is + 0.34 volt that of magnesium electrode is
  - (a) + 3.04 volts
- (b)  $3.04 \ volts$
- (c) + 2.36 volts
- (d) 2.36 volts
- 37. When  $E_{Ag^+/Ag}^o=0.8$  volt and  $E_{Zn^{2+}/Zn}^o=-0.76$  volt, which of the following is correct
  - (a)  $Ag^+$  can be reduced by  $H_2$
  - (b) Ag can oxidise  $H_2$  into  $H^+$
  - (c)  $Zn^{2+}$  can be reduced by  $H_2$
  - (d) Ag can reduce  $Zn^{2+}$  ion

- 38. Adding powdered lead and iron to a solution that is 1.0 M in both  $Pb^{2+}$  and  $Fe^{2+}$  ions, would result a reaction, in which
  - (a) More iron and  $Pb^{2+}$ ions are formed
  - (b) More lead and  $Fe^{2+}$  ions are formed
  - (c) Concentration of both  $Pb^{2+}$  and  $Fe^{2+}$ ions increases
  - (d) There is no net change
- 39. Given standard electrode potentials

$$Fe^{++} + 2e^{-} \rightarrow Fe; E^{o} = -0.440V$$

$$Fe^{+++} + 3e^{-} \rightarrow Fe; E^{o} = -0.036V$$

The standard electrode potential  $(E^o)$  for

$$Fe^{+++} + e^{-} \rightarrow Fe^{++}$$
 is

- (a) -0.476 V
- (b) -0.404 V
- (c) + 0.404 V
- (d) + 0.771 V
- 40. Reduction potential of four elements P, Q, R, S is -2.90, +0.34, +1.20 and -0.76. Reactivity decreases in the order
  - (a) P > Q > R > S
  - (b) Q > P > R > S
  - (c) R > Q > S > P
  - (d) P > S > Q > R
- 41. Which of the following metal can deposit copper from copper sulphate solution
  - (a) Mercury
- (b) Iron



## **IIT-JEE CHEMISTRY**



- (c) Gold
- (d) Platinum
- 42. Standard electrode potential of  $Ag^+/Ag$  and  $Cu^+/Cu$  is +0.80V and +0.34V respectively, these electrodes are joint together by salt bridge if
  - (a) Copper electrode is work like cathode, then  $E_{cell}^{o}$  is +0.45V
  - (b) Silver electrode is work like anode then  $E_{cell}^o$  is -0.34V
  - (c) Copper electrode is work like anode then  $E_{cell}^o$  is +0.46V
  - (d) Silver electrode is work like cathode then  $E_{cell}^o$  is -0.34V
  - (e) Silver electrode is work like anode then  $E_{cell}^o$  will be +1.14V
- 43. The reaction is spontaneous if the cell potential is
  - (a) Positive
- (b) Negative
- (c) Zero
- (d) Infinite
- 44. Which substance eliminates bromine from KBr solution
  - (a)  $I_2$

- (b)  $Cl_2$
- (c) HI
- (d)  $SO_2$
- 45. A standard hydrogen electrode has zero electrode potential because
  - (a) Hydrogen is easiest to oxidise
  - (b) The electrode potential is assumed to be zero

- (c) Hydrogen atom has only one electron
- (d) Hydrogen is the lightest element
- 46. In the electrochemical cell  $H_2(g)1atm|H^+(1M)||\mathcal{C}u^{2^+}(1M)|\mathcal{C}u(s)$  Which one of the following statements is true
  - (a)  $H_2$  is cathode; Cu is anode
  - (b) Oxidation occurs at Cu electrode
  - (c) Reduction occurs at  $H_2$  electrode
  - (d)  $H_2$  is anode; Cu is cathode
- 47. Expression representing the cell potential (*Ecell*)
  - (a) Ecathode + Eanode
  - (b) Eanode Ecathode
  - (c) Ecathode Eanode
  - (d)  $E_{\text{left}} E_{\text{right}}$
- 48. Iron displaces copper from its salt solution, because
  - (a) Atomic number of iron is less than that of copper
  - (b) The standard reduction potential of iron is less than that of copper
  - (c) The standard reduction potential of iron is more than that of copper
  - (d) The iron salt is more soluble in water than the copper salt



ELECTROCHEMISATRY

- 49. (i) Copper metal dissolves in 1*M* silver nitrate solution and crystals of silver metal get deposited.
  - (ii) Silver metal does not react with 1 *M* zinc nitrate solution
  - (iii) Zinc metal dissolves in 1*M* copper sulphate solution and copper metal gets deposited

Hence the order of decreasing strength of the three metals as reducing agents will be

- (a) Cu > Ag > Zn
- (b) Ag > Cu > Zn
- (c) Zn > Cu > Ag
- (d) Cu > Zn > Ag
- Standard electrode potentials of Zn and Fe are known to be (i) -0.76V and (ii) -0.44V respectively. How does it explain that galvanization prevents rusting of iron while zinc slowly dissolves away
  - (a) Since (i) is less than (ii), zinc becomes the cathode and iron the anode
  - (b) Since (i) is less than (ii), zinc becomes the anode and iron the cathode
  - (c) Since (i) is more than (ii), zinc becomes the anode and iron the cathode

(d) Since (i) is more than (ii), zinc becomes the cathode and iron the anode

