York University

Department of Electrical Engineering and Computer Science

EECS 4214

Lab #5 Likelihood Functions and Baseband Detection

Optimal Design, Simulation, and Analysis

Amir M. Sodagar

1. Purpose

In this lab, you will be introduced to the concept of likelihood functions, modeling and simulation of data detection in a receiver, and the concept and origin of bit-error rate. Using a computer, you will learn how to analyze the operation and performance of such blocks according to the results achieved during the operation of a digital communication system.

2. Objectives

By the end of this project, you will be able to: 1) Explain and find the likelihood functions for the binary symbols receiving through a noisy channel, 2) Statistically analyze the operation of the decision-making block when the input is influenced by noise, and 3) Characterize the performance of the detector in terms of bit-error rate as a function of the input signal-to-noise ratio.

3. References

- 1) Handouts available on the course homepage on Lassonde.
- 2) Bernard Sklar text: Chapter 3.

Problem 1 Likelihood Functions and Baseband Detection

In MATLAB®,

- 1.1 **Test Vector--** Generate and plot an NRZ-L baseband signal, s(t), for the 8-bit binary sequence of 10110001 with
 - 1's represented by $s_I(t) = A = +5V$,
 - 0's represented by $s_2(t) = -A = -5V$,
 - Bit time: $T_B=1\mu s$, and
 - Time step: $T_S=10$ ns
 - Transition time for both $0 \rightarrow 1$ and $1 \rightarrow 0$: $T_T=10$ ns.

Now, repeat the above 8-bit binary sequence 100 times to make an 800-bit binary test vector.

- 1.2 Additive Noise— Add additive white Gaussian noise (AWGN), n(t), to the baseband signal in part 1.1 in order to make a noisy signal z(t)=s(t)+n(t) as the input to a receiver. Set the signal-to-noise ratio (SNR) of your noisy signal (z(t)) to 10dB.
- 1.3 *Sampling*-- Sample the noisy signal z(t) in the middle of each bit time: $z_S(k)=z((2k-1)T_B/2)$ for k=1, 2, 3, ..., 800.
- 1.4 **Detection--** For the detection of the received bits, try different threshold levels (γ_0) around 0V to achieve the best possible *bit-error rate* (*BER*). Report the BER and the associated threshold level.
- 1.5 Repeat parts 1.2-1.4 for SNR=8dB, 6dB, 4dB, and 2dB. Plot the achieved BER values vs. SNR.
- 1.6 *Likelihood Functions* With a statistical approach and using the amplitude of the samples in your noisy signal, plot the *probability density function (PDF)* of all the five noisy signals (SNR_{dB}=10, 8, 6, 4, 2) separately. Try to relate the BER in each SNR scenario with the associated PDF plot and threshold level.