

第2章 数字图像处理基础

田智强 西安交通大学软件学院

2 数字图像处理基础

- 2.1 人的视觉系统
- 2.2 图像感知和获取
- 2.3 图像取样和量化
- 2.4 像素间的基本关系
- 2.5 数学工具

2 数字图像处理基础

2.1 人的视觉系统

- 2.2 图像感知和获取
- 2.3 图像取样和量化
- 2.4 像素间的基本关系
- 2.5 数学工具

Visual system

School of Software Engineering

FIGURE 2.2 Distribution of rods and cones in the retina.

中央凹: 1.5mm

CCD:5mm*5mm

- 闭上左眼,右眼聚焦到圆点
- 前后移动图像到眼睛的距离
- 圆点 (或者十字) 在某段距离会消失

眼睛中图像的形成

- 通过睫状体中的纤维改变晶状体的形状, 改变焦距, 聚焦成像
- 图像聚焦到视网膜,光感受器(锥体细胞和杆体细胞)的相对刺激作用产生感知,把辐射能转变成电脉冲,最后由大脑解码

亮度的适应和辨别

- 人的视觉系统能够适应1010 个量级
- 但是, 在任一时刻, 我们只能区别很小的亮度改变
- 同样的, 在一个区域里能够感知的亮度与区域周边的亮度

有关

- 亮度适应现象
- 亮度适应级别

FIGURE 2.4

Range of subjective brightness sensations showing a particular adaptation level.

- 感知亮度不是简单的强度的函数
- 1、马赫带: Ernst Mach于1865年首次描述这一现象

- 上冲和下冲 出现在不同 强度的边界处
- 条带强度恒定,但在靠近边界处我们实际上感知到了有毛边的亮度模式

2、同时对比: 感知到的亮度并不完全取决于它的实际亮度

计算机视觉中的全局和局部特征

■ **Reality and Illusion /** Measurement vs. Perception

© Efros

计算机视觉中的全局和局部特征

■ **Reality and Illusion /** Measurement vs. Perception

Brightness

Proof!

- 一个人类感知现象-错觉
- 错觉这一特性尚未被人类完全了解

What do you see here? A vase or two men looking at each other? See if you can find them both.

Visual illusions

AB=CD

静态图

研表究明,汉字的序顺并不定一会影阅响读。 比如当看你完这句话后,才发这现里的字全 是都乱的。

2 数字图像处理基础

- 2.1 人的视觉系统
- 2.2 图像感知和获取
- 2.3 图像取样和量化
- 2.4 像素间的基本关系
- 2.5 数学工具

图像感知

- 输入能量"打到"传感器材料(检测能源敏感),传感器把输入能源转变为电压(传感器的响应)。再把传感器响应数字化。
- 众多传感器阵列排布获取图像

Line of Image Sensors

Array of Image Sensors

数字图像获取示例

相机原理

果冻效应

Visual system

2 数字图像处理基础

- 2.1 人的视觉系统
- 2.2 图像感知和获取
- 2.3 图像取样和量化
- 2.4 像素间的基本关系
- 2.5 数学工具

2.3 图像取样和量化

- 2.3.1 取样和量化的基本概念
- 2.3.2数字图像表示
- 2.3.3 空间和灰度分辨率
- 2.3.4 图像内插

2.3 图像取样和量化

2.3.1 取样和量化的基本概念

2.3.2数字图像表示

2.3.3 空间和灰度分辨率

2.3.4 图像内插

- 大多数传感器的输出是**连续电压波形**;
- 为了产生一幅数字图像,需要把**连续的感知数据**转化为**数**字形式
- 这包括两种处理: 取样和量化
 - 取样: 图像空间坐标的数字化
 - 量化: 图像函数值 (灰度值、幅值) 的数字化

- (a) 连续图像 f
- (b) 连续图像中,线段AB的幅度值(灰度级)曲线
- (c) 沿AB等间隔对该函数取样。这样的一组离散位置形成了取样函数。

(d) 对每一个样本赋予8个离散灰度级中的一个量**化连续灰度值**。

从图像的**顶部逐行**执行这一过程, 会产生一幅二维图像,除了所用的离散级数外,量化精度依赖于**取样信号的噪声**。

- 数字图像只是真实场景的近似;
- 数字图像的质量在很大程度上取决于采样和量化中所用的 样本数和灰度级。

(a) 连续图像投影到传感器上 (b) 采样和量化后的数字化图像

2.3 图像取样和量化

2.3.1 取样和量化的基本概念

2.3.2数字图像表示

2.3.3 空间和灰度分辨率

2.3.4 图像内插

2.3.2 数字图像表示

- a. x, y 轴决定像素的**空间**位置, f(x,y)是该像素点的**灰度值**;
- b. 数字图像在监视器或照片上的表现;
- c. 将数字图像以矩阵形式表现。

其中,图b、图c在图像表达中最直观、有效

2.3.2数字图像表示

令 f(s,t) 表示一幅具有2个连续变量s,t 的连续图像函数,通过采样和量化,f(s,t) 转换为数字图像,取样为二维阵列 f(x,y):

图像在原点的值 第一行第二个**样本** $f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & ... & f(0,N-1) \\ f(1,0) & f(1,1) & ... & f(1,N-1) \\ ... & ... & ... & ... \\ f(M-1,0) & f(M-1,1) & ... & f(M-1,N-1) \end{bmatrix}$ 灰度值

- M行N列
- (x, y)是离散坐标
- 每个元素称为像素

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,N-1} \\ \dots & \dots & \dots & \dots \\ a_{M-1,0} & a_{M-1,1} & \dots & a_{M-1,N-1} \end{bmatrix}$$

• 矩阵表示 $a_{i,j} = f(x = i, y = j) = f(i,j)$

2.3.2 数字图像表示

- ➤ 数字化过程要求针对M、N值和离散灰度级数L做出判定:
 - ◆M、N为正整数
 - ◆ 灰度级数 $L=2^k$,等间隔,且为[0,L-1]内整数
- 灰度跨越的值域称为动态范围: 图像系统中最大可度量灰度与最小可检测灰度之比
- ▶ 可度量灰度上限取决于饱和度,下限取决于噪声
- ➢ 对比度: 图像中最高和最低灰度级间的灰度差

2.3.2数字图像表示

饱和度: 超过这个值的灰度级将被剪切

掉的最高值,即图像上限

噪声: 掩盖了可检测的最低真实灰度级

2.3.2数字图像表示

- 出于存储和量化硬件的考虑: L=2k
- 存储数字图像所需的比特数b=M×N×k
- M=N时, b=N×N×k, 不同N和k时, 存储图像的比特数如下表

TABLE 2.1 Number of storage bits for various values of N and k.

N/k	1(L=2)	2(L=4)	3(L = 8)	4(L=16)	5(L = 32)	6 (L = 64)	7(L = 128)	8(L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

2.3 图像取样和量化

2.3.1 取样和量化的基本概念

2.3.2数字图像表示

2.3.3 空间和灰度分辨率

School of Software Engineering

空间分辨率

- 图像的空间分辨率由采样方式确定
- 空间分辨率: 图像中可辨别的最小细节的度量
 - 视觉任务:像素尺寸 (单位距离线对数)
 - 平面设计: dots per

inch (DPI)

3692*2812 300dpi 1250dpi 213*162 150dpi 72dpi

School of Software Engineering

灰度分辨率

- 灰度分辨率: 在灰度级中可分辨的最小变化。
 - 图像灰度分辨率越大,图像的细节区分度越好
 - 图像的灰度分辨率一般用bit数表示

位数	可表示的灰度级	举例
1	2	0, 1
2	4	00, 01, 10, 11
4	16	0000, 0101, 1111
8	256	01010101,10101010
16	65536	10101010101010

School of Software Engineering

改变数字图像中灰度级数的典型效果:

保持样本数恒定,将灰度级数以2的整数次幂从256减少到2

我们需要多大的分辨率?

主观需求、客观需求

- 视觉感官是否满意?
- 能否看到所需内容?
- 能否完成任务要求?

2.3 图像取样和量化

- 2.3.1 取样和量化的基本概念
- 2.3.2数字图像表示
- 2.3.3 空间和灰度分辨率

- 用于图像的放大、缩小、旋转、几何校正等任务,基本的 图像重取样方法;
- 插值:用已知数据来估计未知位置的数值的处理;
- 插值(重采样)用于图像的放大和缩小:可以生成大于 (或小于)传感器分辨率的图像;
- 最近邻插值、双线性插值和双三次插值。

最近邻插值:将原图像中最近邻的灰度赋给了每个新位置,但 某些直边缘可能严重失真。

步骤:

- 1. 将500*500放大到750*750;
- 2. 创建750*750的网格,与原图像相同间隔;
- 3. 然后收缩与原图匹配;
- 4. 收缩后的750*750网格的像素间隔小于原图;
- 5. 对覆盖的每一个点赋灰度值;
- 6. 原图中寻找最接近的像素,将该像素的灰度赋给750*750网格中的新像素;
- 7. 完成赋值后,扩展到原来规定的大小,得到放大后图像。

设i + u, j + v 为待求像素坐标,则待求像素灰度的值 f(i + u, j + v)

- (i + u, j + v)落在A区,即u < 0.5, v < 0.5,将左上角像素的灰度值赋给待求像素
- (i + u, j + v)落在B区赋予右上角的像素灰度值
- (i + u, j + v)落在C区赋予左下角像素
 的灰度值
- (i + u, j + v)落在D区赋予右下角像素的灰度值

线性插值

已知数据 (x_0, y_0) 与 (x_1, y_1) ,要计算 $[x_0, x_1]$ 区间内某一位置

x 在直线上的y值

$$\frac{y - y_0}{x - x_0} = \frac{y_1 - y_0}{x_1 - x_0}$$

$$y = \frac{x_1 - x}{x_1 - x_0} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

双线性插值

用4个最近邻**估计**给定位置的灰度,令(x,y)为我们想要赋以灰度值的位置的坐标,并令v(x,y)表示灰度值,赋值计算公式为:

$$v(x,y) = ax + by + cxy + d$$

4个系数可由4个用(x,y)点最近邻点写出的未知方程确定。

双线性插值

有**两个变量**的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

• 求未知函数 f 在 P = (x, y) 的值, 已知函数 f 在

$$Q_{11} = (x_1, y_1), Q_{12} = (x_1, y_2)$$

 $Q_{21} = (x_2, y_1), Q_{22} = (x_2, y_2).$

双线性插值

• 首先在 x 方向进行线性插值,得到

$$f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21})$$
 Where $R_1 = (x, y_1)$

$$f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22})$$
 Where $R_2 = (x, y_2)$

· 然后在 y 方向进行线性插值, 得到

$$f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2)$$

双线性插值例子

通过在第20行和第21行的第14列和第 15列的值之间进行线性内插,来计算在 第20.2行第14.5列处的像素强度值

$$f(R_1) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{11}) + \frac{x - x_1}{x_2 - x_1} f(Q_{21}) \quad \text{Where } R_1 = (x, y_1)$$

$$f(R_2) \approx \frac{x_2 - x}{x_2 - x_1} f(Q_{12}) + \frac{x - x_1}{x_2 - x_1} f(Q_{22}) \quad \text{Where } R_2 = (x, y_2)$$

$$f(P) \approx \frac{y_2 - y}{y_2 - y_1} f(R_1) + \frac{y - y_1}{y_2 - y_1} f(R_2)$$

图片来源:

https://blog.csdn.net/eurus_/article/details/102755898

双线性插值

• 综合起来就是双线性插值最后的结果:

$$f(x, y) \approx \frac{f(Q_{11})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y_2 - y)$$

$$+ \frac{f(Q_{21})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y_2 - y)$$

$$+ \frac{f(Q_{12})}{(x_2 - x_1)(y_2 - y_1)} (x_2 - x)(y - y_1)$$

$$+ \frac{f(Q_{22})}{(x_2 - x_1)(y_2 - y_1)} (x - x_1)(y - y_1)$$

双线性插值在三维空间的延伸是三线性插值。

双三次插值

• 包括16个最近邻点,赋予点(x,y)的灰度值使用如下公式:

$$f_3(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^i y^j$$

16个系数由16个用(x,y)点最近邻点写出的未知方程确定。

• 如果求和的上下限分别为0,1,简化为

$$v(x,y) = ax + by + cxy + d$$

保持细节方面比双线性插值更好,商业图像编辑程序的标准内插方法。

72dpi

1250dpi降到72dpi:

- a. 最近邻插值放大至原大小
- b. 过程同a, 双线性插值
- c. 过程同a,双三次插值

1250dpi降到150dpi:

- d. 最近邻插值
- e. 双线性插值
- f. 双三次插值

图像超分辨率Image super-resolution

2 数字图像处理基础

- 2.1 人的视觉系统
- 2.2 图像感知和获取
- 2.3 图像取样和量化
- 2.4 像素间的基本关系
- 2.5 数学工具

相邻像素

- 相邻像素: 位于坐标(x,y)处的像素p有4个水平和垂直的相邻像素: (x+1,y), (x-1,y), (x,y+1), (x,y-1), 称为p的4邻域,标记为N₄(p),每个像素距p一个单位距离
- P的4个对角相邻像素的坐标: (x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1), (x-1,y-1),
- 4个对角点和4个邻点一起称为p的8邻域,用N₈(p)表示。

- 在一般图像中,可定义一个值域V,令V是用于定义邻接性的灰度值集合,V是0到255中的任一个子集。一般我们考虑三种邻接性
 - ◆ 4邻接:如果像素q在集合 $N_4(p)$ 中,则具有V中数值的两个像素p和q是4邻接。
 - ◆8邻接:如果像素q在集合N₈(p)中,则具有V中数值的两个像素p和q是8邻接。

- 在一般图像中,可定义一个值域V,令V是用于定义邻接性的灰度值集合,V是0到255中的任一个子集。一般我们考虑三种邻接性
 - ◆ m邻接(混合邻接),如果(满足条件之一即可):
 - ightrightarrow q在 $N_4(p)$ 中
 - ightharpoonup q在 $N_{\rm D}(p)$ 中且集合 $N_4(p)$ \cap $N_4(q)$ 中没有来自V中数值的像素

则具有V中数值的两个像素p和q是m邻接的。

School of Software Engineering

- ▶ q在N₄(p)中
- ightarrow q在 $N_D(p)$ 中且集合 $N_4(p)$ ∩ $N_4(q)$ 中没有来自V中数值的像素

消除二义性

设V= {1,2}

8-adjacent

8邻接: 从A到B有2条路径

- (i) (1,3), (1,2), (2,2), (3,3)
- (ii) (1,3), (2,2), (3,3)

这就是**二义性**。在边缘检测中通常不希望出现这样的情况,所以采用m邻接来改进8邻接。

M邻接: 从**A**到**B**: (1,3), (1,2), (2,2), (3,3)

- ① A不在C的4邻域中;
- ② A在C的对角邻域中,但是A的4 邻域和C的4邻域有交点D且该点 的值在V中;

综上,2个条件均不满足,A和C不是m邻接

通路

● 从像素p(x,y)到像素q(s,t)的通路(或曲线)是特定的像素序列:

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n),$$

其中 $(x_0, y_0) = (x, y), (x_n, y_n) = (s, t),$ 且对于 $1 \le i \le n$ 的像素 (x_i, y_i) 和 (x_{i-1}, y_{i-1}) 是邻接的。

- 这种情况下, n是通路的长度;
- 如果 $(x_0, y_0) = (x_n, y_n)$,则通路是闭合通路;
- 邻接类型定义通路类型,像素之间是4邻接,此通路为4通路。

- 红线穿过的像素构成的路线叫做通路。
- 通路是闭合的,因此叫做<mark>闭合通路</mark>。
- 根据邻接类型定义通路类型,可以这个叫做 4通路或8通路。

- 令红线穿过的像素集合为S ,那么S中包含的任意两个像素 p和q在S中是**连通**的。
- 对于任意一个属于集合S的像素q,集合S中连通到像素q的像素集称为S的**连通分量**。
- 如果S仅有一个连通分量,则集合S称为<mark>连通集</mark>。

邻接区域

- 令R是图像中的一个像素子集,而且刚好构成连通集,则称R 为一个区域。
- 两个区域R_i和R_j联合形成一个连通集,则区域R_i和R_j称为<mark>邻接区域</mark>。
- 此定义必须指定邻接类型。

连通集8邻接

前景和背景

一幅图像包含K个不连接的区域, $R_k, k = 1, 2, ..., K$,且他们都**不接触**图像的边界。

令 R_u 代表所有K个区域的并集,令 $(R_u)^c$ 代表其补集

- $\Re(R_u)^c$ 中的所有点为图像的背景。

0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	0
		1			0	1	0
0	1	(1)	1	0	0	1	0
0	1	1	1	0	0	1	0
0	0	0	0	0	0	0	0

边界

区域*R*的边界(边缘或轮廓)是这样的点的集合:这些点与 *R*的补集中的点邻接。或者说区域的边界是该区域中至少有一个背景邻点的像素集合。

必须指定连通性,被圈出来的点如果在区域及背景使用4连通,就不是1值区域边界的成员

0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	0
		1			0	1	0
0	1	(1)	1	0	0	1	0
0	1	1	1	0	0	1	0
0	0	0	0	0	0	0	0

距离度量

对于像素p(x,y)、q(s,t)和 z(v,w), 如果

a)
$$D(p,q) \ge 0$$
 $[D(p,q) = 0$, 当且仅当 $p = q$]

- b) D(p,q) = D(q,p)
- c) $D(p,z) \le D(p,q) + D(q,z)$

则称D是**距离函数或度量**。

距离度量

欧式距离定义

● 像素p(x,y) 和q(s,t) 间的欧几里得(欧式)

距离定义如下:

$$D_e(p,q) = [(x-s)^2 + (y-t)^2]^{\frac{1}{2}}$$

● 对于距离度量, 距点(x,y)的距离小于或等于某个值r的像

素是:中心在以(x,y)为圆心,以r为半径的<mark>圆平面。</mark>

D_4 距离(城市街区距离)

◆ 像素p(x,y) 和q(s,t)之间的D₄距离定义为:

$$D_4(p,q) = |x - s| + |y - t|$$

		2		
	2	1	2	
2	1	0	1	2
	2	1	2	
		2		

- ◆ 距(x,y)的距离 D_4 小于或等于某个值r的像素形成一个中心在 (x,y)的菱形
- ◆ 例如,距中心点(x,y) 的距离 D_4 小于或等于2的像素,形成固定距离的轮廓如图所示
- ◆ $D_4 = 1$ 的像素是(x, y)的4邻域

D₈距离 (棋盘距离)

■ 像素p(x,y) 和q(s,t)之间的D₈距离定义为:

$$D_8(p,q) = max(|x-s|,|y-t|)$$

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

- $\mathbb{E}(x,y)$ 的 D_8 距离**小于或等于**某个值r的像素形成中心在 (x,y)的**正方形**
- 例如,距中心点(x,y) 的 D_8 距离小于或等于2的像素形成如图所示轮廓
- D₈=1的像素是(x, y)的8邻域

School of Software Engineering

$$D_4(p,q) = |x - s| + |y - t|$$

城市街区距离是多少?

$$D_4(p,q) = |2-4| + |4-2|$$

0 0 1 1 0

0 1 1 0 0

0 1 0 0 0

0 0 0 0

0 0 0 0

School of Software Engineering

 $D_8(p,q) = max(|x-s|,|y-t|)$

棋盘距离是多少?

$$D_8(p,q) = max(|2-4|,|4-2|)$$

0 0 0 0

0 0 1 1 0

0 1 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

Dm距离

D₄和D₈ 距离与通路无关,因为根据其定义,这些距离仅与点的坐标有关。

然而,考虑m邻接时,则两点间的D_m距离用两点间的最短通路定义。

考虑如下排列的像素, V={1}, 则圆圈位置最短m通路?

 $V = \{1\}$

最短m通路的距离?

B和C不再是

m邻接

School of Software Engineering

最短m通路的长度?

 $V = \{1\}$

最短m通路的长度?

 $V = \{1\}$

2 数字图像处理基础

- 2.1 人的视觉系统
- 2.2 图像感知和获取
- 2.3 图像取样和量化
- 2.4 像素间的基本关系
- 2.5 数学工具

・阵列 (array) 与矩阵 (matrix) 操作

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$A.*B = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{12} \\ a_{21}b_{21} & a_{22}b_{22} \end{bmatrix}$$
 阵列相乘

$$A * B = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

图像操作默认都是阵列操作,除非特殊说明

矩阵相乘

输入图像

输出图像

算子

$$H[f(x,y)] = g(x,y)$$

如果
$$H[a_i f_i(x, y) + a_j f_j(x, y)]$$

 $= H[a_i f_i(x, y)] + H[a_j f_j(x, y)]$
 $= a_i H[f_i(x, y)] + a_j H[f_j(x, y)]$
 $= a_i g_i(x, y) + a_j g_j(x, y)$

加性

同质性

则称H是一个线性算子

・算术操作

$$s(x, y) = f(x, y) + g(x, y)$$

$$d(x, y) = f(x, y) - g(x, y)$$

$$p(x, y) = f(x, y) \times g(x, y)$$

$$v(x, y) = f(x, y) \div g(x, y)$$

两幅图像对应像素之间执行操作

带噪图像相加去噪

- 无噪图像: f(x,y)

- 加性噪声: n(x,y), 噪声不相关且均值为0

- 带噪图像: g(x,y)=f(x,y)+n(x,y)

- 将K幅不同的噪声图像进行平均:

$$\overline{g}(x,y) = \frac{1}{K} \sum_{i=1}^{K} g_i(x,y)$$

天文学中, 低照度成像环境, 会导致传感器噪声过大, 单幅 图像一般无法分析

School of Software Engineering

b~f 分别对5, 10, 20, 50, 100幅噪声图像平均的结果

a b c d e f

图像相加: $g(x,y) = \alpha^* f(x,y) + \beta^* h(x,y)$, 其中 $\alpha + \beta = 1$

阴影矫正

• 使用图像相乘和相除来校正阴影

$$f(x,y) = g(x,y)/h(x,y)$$

・ 亮度范围

确定图像算术操作的结果仍然在定义的亮度范围内

8比特显示的图像, 亮度范围是0-255;

求和结果范围是0-510; 求差结果范围是-255-255

$$f_m = f - \min f$$

$$f_s = K[\frac{f_m}{\max f_m}]$$

$$0 \le f_s \le K$$

8比特图像: K=255

・集合操作

School of Software Engineering

・逻辑操作

将二值图像分为像素集合的前景(1值)和背景(0值),将区域定义为由前景像素组成。

・空间操作

单像素操作: 以灰度为基础改变单个像素的值

$$s = T(z)$$

z: 原图像中像素的灰度

s: 处理后的图像中相应

像素的灰度

T: 变换函数

· 邻域操作: 以任意像素的邻域像素为基础进行操作

图像b(Image g)产生的过程:改变坐标(x,y),以便邻域的中心在图像f中从一个像素到另一个像素移动,并在每一个新位置重复邻域操作。

a b c d

· 邻域操作: 以任意像素的邻域像素为基础进行操作

图像b(Image g)产生的过程:改变坐标(x,y),以便邻域的中心在图像f中从一个像素到另一个像素移动,并在每一个新位置重复邻域操作。

a b c d

顶级期刊

 IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).

International Journal of Computer Vision (IJCV)

顶级期刊

 Computer Vision and Image Understanding (CVIU)

 IEEE Transactions on I mage Processing (TIP)

顶级会议

- International Conference on Computer Vision (ICCV)
- IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
- European Conference on Computer Vision (ECCV)
- International Conference on Pattern Recognition (ICPR)
- Asian Conference on Computer Vision (ACCV)

本章结束

