1. Matrix $A = [a_{ij}] m \times n$ j=1,2,...,mj=1,2,...,n

aij is the (i,j)-entry of A.

Ex: $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$ $a_{1} = (a_{21}, a_{22}, a_{23}) \text{ is the Second row.}$ $a_{2} = (a_{21}, a_{22}, a_{23}) \text{ is the First column}$ $a_{3} = (a_{12}, a_{22}) \text{ is the Second column}$ $a_{3} = (a_{13}, a_{23}) \text{ is the third column}$

- a. Row-reduced echelon form (RREF)
 - 0 "leading 1": For a now that does not contain entirely zeros, the first non zero number is 1.

looks like 0 0 ... 0 1 * * *

- 5) "zero off": For a column that contains a leading one, all other entries are zero.
- Any rows that are entirely zero are placed at the bottom.

- 3. RREF and solutions of an SIE

 Let [AIB] be an augmented matrix for an SIE.
 - [AIJ RREF of A.
 - First observation in [RIA]: 000...01*

 If there exists a row 00...01*, than no solution.

 Nonzero
 - 2) If MT:
 - . count the number of leading ones in R.
- If the number t(A) of leading ones in R equals to the number n of variables, then it has unique Solution.
 - If the number of leading ones in R is less than n,
 - Conclusion: The number of parameters of solutions is n-r(A).

III Matrix operations.

addition A+B A, B: m×n subtraction A-B A,B m×n scalar multiple CA = [caij]
matrix multiplication AB A: m×n B: n×s

and AB: mxs matrix

Ex: A:
$$3 \times 2$$
 $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 3 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 4 & 0 & 1 \\ 0 & 2 & 1 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 4 & 1 \\ 2 & 4 & 1 \end{bmatrix}$

AB

$$d_1 = (1, 0)$$
 $d_2 = (3, 4)$
 $d_3 = (3, 4)$
 $d_4 = (1, 0)$
 $d_5 = (3, 4)$
 $d_6 = (1, 0)$
 $d_7 = (1$