FINAL PRESENTATION

Daniel Chen, Daniel Savidge, Isaac Bannerman, Jesse Huang

Introduction

- Gradient Descent: The Ultimate Optimizer
 - o Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, Erik Meijer
- NeurlPS 2022
- https://arxiv.org/pdf/1909.13371.pdf

The Problem

- Hyperparameter search for optimizers for machine learning
 - Important for stability and convergence of neural networks
- Until recently, no automatic way of finding optimal hyperparameters
- This process is expensive
- Manually differentiating update rules is tedious and slow
- Only tunes one hyperparameter at a time
- Introduces a new hyperparameter, hyper-step-size

- Automatic Differentiation
 - Automatically computes correct derivatives
 - Naturally generalizes to other hyperparameters
 - Applies to hyperparameters recursively (hyper-hyperparameters, hyper-hyper-hyperparameters, etc.)

- Hyperparameter search through reverse mode automatic differentiation (AD)
- For example, with the learning rate hyperparameter alpha

$$egin{aligned} lpha_{i+1} &= lpha_i - k rac{\partial f(w_i)}{\partial lpha_i} \ w_{i+1} &= w_i - lpha_{i+1} rac{\partial f(w_i)}{\partial w_i} \end{aligned}$$

k term can be learned in similar manner, can chain indefinitely

$$egin{aligned} k_{i+1} &= k_i - k^{'} rac{\partial f(w_i)}{\partial k_i} \ lpha_{i+1} &= lpha_i - k_{i+1} rac{\partial f(w_i)}{\partial lpha_i} \end{aligned}$$

- Automatic differentiation implementation overview with PyTorch
- top: without automatic differentiation, bottom: with automatic differentiation
- Invocation of detach detachment of variable from computational graph

```
def SGD.__init__(self, alpha):
    self.alpha = alpha

def SGD.step(w):
    d_w = w.grad.detach()
    w = w.detach() - self.alpha.detach() * d_w
```

```
def HyperSGD.step(w):
    # update alpha using equation (1)
    d_alpha = self.alpha.grad.detach()
    self.alpha = self.alpha.detach() - kappa.detach() * d_alpha

# update w using equation (2)
    d_w = w.grad.detach()
    w = w.detach() - self.alpha.detach() * d_w
```

- Can chain optimizers into stacks
- Left-most: primary optimizer, subsequent: secondary optimizer(s)
- Examples:
 - Adam / SGD
 - RMSProp / SGD
 - o SGD / SGD
 - AdaGrad / SGD
 - o SGD / SGD / SGD
 - 0 ..

Outline of implementation of SGD / SGD

```
def HyperSGD.__init__(self, alpha, opt):
    self.alpha = alpha
    self.optimizer = opt

def HyperSGD.step(w):
    self.optimizer.step(self.alpha)
    d_w = w.grad.detach()
    w = w.detach() - self.alpha * d_w

opt = HyperSGD(0.01, opt=SGD(kappa))
```

Results from paper's solution on MNIST

- Test error of neural network with various optimizer stacks compared to baseline
- Baseline: only single primary optimizer in stack, no optimization of hyperparameters
- Experimental design:
 - Fully-connected neural network with a 128-neuron hidden layer with various optimizer stacks
 - Batch size of 256
 - Automatic differentiation method
 - 5 epochs for Adam or RMSProp as primary optimizer, 30 epochs for SGD or AdaGrad as primary optimizer

Results from paper's solution on MNIST

- Improvement over baseline
- Robust to hyperparameter values to a certain extent

Optimizer	Test error
SGD	8.99±0.05%
SGD / SGD	4.81±0.10%
SGD(0.0769)	$5.44\pm0.10\%$
SGD / Adam(0.1)	4.86±0.06%
SGD(0.4538)	2.80±0.09%
SGD / AdaGrad	4.85±0.21%
SGD(0.0836)	5.17±0.03%
SGD / RMSprop(0.1)	4.52±0.02%
SGD(0.5920)	2.52±0.07%

(a	Ex	periments	with	SGD	(Section	3.1)
----	----	-----------	------	-----	----------	-----	---

Optimizer	Test error
AdaGrad	7.40±0.08%
AdaGrad / SGD	6.90±0.16%
AdaGrad(0.0080)	7.75±0.02%
AdaGrad / AdaGrad	5.03±0.23%
AdaGrad(0.0151)	6.67±0.08%

⁽c) Experiments with AdaGrad (Section 3.2)

Optimizer	Test error
Adam	4.67±0.06%
Adam / SGD(10 ⁻⁵)	3.03±0.02%
Adam(0.0040, 0.899, 0.999)	3.11±0.06%
Adam $^{\alpha}$ / SGD(10^{-5})	3.12±0.04%
Adam $^{\alpha}$ (0.0021)	3.47±0.02%
Adam / Adam	3.05±0.09%
Adam(0.0038, 0.870, 0.999)	3.24±0.13%
Adam $^{\alpha}$ / Adam	3.04±0.08%
Adam $^{\alpha}$ (0.0036)	3.08±0.12%

(b) Experiments with Adam (Section 3.2)

Optimizer	Test error
RMSProp	4.19±0.47%
RMSProp $^{\alpha}$ / SGD(10 ⁻⁴)	3.55±0.23%
RMSProp(0.0030)	3.93±0.70%
RMSprop $^{\alpha,\gamma}$ / SGD(10 ⁻⁴)	3.33±0.07%
RMSProp(0.0032, 0.9899)	3.25±0.09%
RMSProp $^{\alpha}$ / RMSProp (10^{-4})	3.42±0.45%
RMSProp (0.0021)	3.60±0.04%
RMSProp $^{\alpha,\gamma}$ / RMSProp (10^{-4})	2.96±0.11%
RMSProp $(0.0020, 0.9962)$	3.65±0.36%

(d) Experiments with RMSProp (Section 3.2)

Cost of paper's solution

- O(1): approximately 1-2% in additional execution time per additional optimizer
- Prior works suggested the differentiation by hand, not automatic

Caveats of paper's solution

- Rightmost optimizer of stack requires hyperparameter selection
- Large initial hyperparameter, such as large learning rate, can be selected for rightmost optimizer, which can destabilize the stack
 - Can result in large gradients
- Computational graph management

Proposed solution to a caveat

- Gradient clipping: to solve destabilizing effect of large initial learning rate for various optimizer stacks
- Used norm-based gradient clipping as outlined in On the Difficulty of Training Recurrent Neural Networks (Pascanu et al. 2013) paper

Proposed solution to a caveat

For the t-th step across a minibatch:

$$egin{aligned} t = 1: \; heta_t \leftarrow ||\mathbf{g}_t||_2 \ t > 1: \; heta_t \leftarrow rac{(heta_{t-1}*(t-1)) + ||\mathbf{g}_t||_2}{t} \end{aligned}$$

For any t:

$$\mathbf{g}_t' \leftarrow \mathbf{g}_t * \min\left(1, \frac{\theta_t}{||\mathbf{g}_t||_2}\right)$$
 $\mathbf{g}_t \leftarrow \mathbf{g}_t'$

$$heta_t' \leftarrow rac{(heta_{t-1}*(t-1)) + ||\mathbf{g}_t'||_2}{t}$$

	$SGD / SGD(\alpha)$		
α	average test error, no gradient clipping	average test error, gradient clipping	
0.01	4.90%	5.06%	
0.05	6.18%	6.04%	
0.1	6.97%	6.68%	
0.5	7.01%	7.27%	
1	6.78%	6.91%	
5	5.31%	5.97%	
10	4.72%	5.20%	
50	7.81%	3.91%	
75	38.05%	$\boldsymbol{15.92\%}$	
100	25.26%	13.01%	
250	22.75%	40.09%	
500	70.28%	72.26%	
1000	80.43%	58.04%	

Table 1: Effect of gradient clipping with the SGD / SGD(α) stack on average test error for the MNIST task. Baseline with SGD alone resulted in 8.96% average test error. The bolded rows are where gradient clipping reduced average test error by at least 1%.

Adam / $SGD(\alpha)$		
α	average test error, no gradient clipping	average test error, gradient clipping
10^{-5}	3.14%	3.23%
$5*10^{-5}$	3.09%	3.21%
10^{-4}	3.05%	3.06%
$5*10^{-4}$	3.59%	3.20%
10^{-3}	4.71%	3.35%
$5*10^{-3}$	35.89%	16.6%
10^{-2}	79.57%	23.2 %
$5*10^{-2}$	86.8%	84.27%
10^{-1}	76.17%	86.44%
$5*10^{-1}$	83.16%	82.36%

Table 2: Effect of gradient clipping with the Adam / $SGD(\alpha)$ stack on average test error for the MNIST task. Baseline with Adam alone resulted in 4.63% average test error. The bolded rows are where gradient clipping reduced average test error by at least 1%.

	Ada $\operatorname{Grad}/\operatorname{SGD}(\alpha)$		
α	average test error, no gradient clipping	average test error, gradient clipping	
0.01	6.92%	6.71%	
0.05	7.02%	7.16%	
0.1	6.75%	7.04%	
0.5	5.70%	5.99%	
1	7.86%	5.19 %	
2.5	7.34%	4.11%	
5	57.91%	3.49 %	
7.5	36.62%	30.33 %	
10	27.08%	49.9%	
50	64.51 %	$\boldsymbol{20.79\%}$	
100	90.19 %	49.04 %	

Table 3: Effect of gradient clipping with the AdaGrad / $SGD(\alpha)$ stack on average test error for the MNIST task. Baseline with AdaGrad alone resulted in 7.38% average test error. The bolded rows are where gradient clipping reduced average test error by at least 1%.

RMSProp / SGD(α)			
α	average test error, no gradient clipping	average test error, gradient clipping	
10^{-5}	4.43%	4.26%	
$5*10^{-5}$	3.47%	3.84%	
10^{-4}	3.36%	3.55%	
$5*10^{-4}$	4.26%	3.75%	
10^{-3}	5.16%	4.86%	
$5*10^{-3}$	6.16%	6.12%	
10^{-2}	6.36%	6.52%	
$2.5*10^{-2}$	88.80%	6.14%	
$5*10^{-2}$	90.66%	9.72%	
$7.5 * 10^{-2}$	90.03%	90.03%	
10^{-1}	89.17%	64.56%	
$5*10^{-1}$	90.2%	90.02%	

Table 4: Effect of gradient clipping with the RMSProp / $SGD(\alpha)$ stack on average test error for the MNIST task. Baseline with RMSProp alone resulted in 3.91% average test error. The bolded rows are where gradient clipping reduced average test error by at least 1%.

- SGD / SGD(alpha):
 - o alpha <= ~10, gradient clipping had negligible impact
 - ~10 < alpha <= ~100, gradient clipping reduced test error
- Adam / SGD(alpha):
 - o alpha <= "5 * 10^-4, gradient clipping had negligible impact
 - °5 * 10°-4 < alpha <= °5 * 10°-2, gradient clipping reduced test error</p>
- AdaGrad / SGD(alpha):
 - alpha <= ~0.5, gradient clipping had negligible impact
 - $^{\circ}$ $^{\circ}$ 0.5 < alpha <= $^{\circ}$ 7.5, gradient clipping reduced test error
- RMSProp / SGD(alpha):
 - o alpha <= ~10^-2, gradient clipping had negligible impact
 - $^{\sim}$ 10^-2 < alpha <= $^{\sim}$ 5 * 10^-2, gradient clipping reduced test error

Results of our proposed solution (CIFAR-10)

 Same experimental design as with MNIST dataset except neural network is a CNN: two 3 by 3 kernel 16 filter convolutional layers followed by same fully-connected layers as with MNIST

Adam / $SGD(\alpha)$			
α	average test error, no gradient clipping	average test error, gradient clipping	
10^{-9}	39.26%	39.87%	
10^{-8}	38.76%	39.12%	
10^{-7}	40.02%	39.26%	
10^{-6}	42.17%	40.01%	
10^{-5}	45.95%	43.52 %	
10^{-4}	46.96%	43.99 %	
$2.5*10^{-3}$	89.82%	90.49%	
$5*10^{-3}$	90.00%	90.00%	
10^{-3}	90.00%	73.88%	
10^{-2}	90.00%	90.00%	

Table 5: Effect of gradient clipping with the Adam / $SGD(\alpha)$ stack on average test error for the CIFAR-10 task. Baseline with Adam alone resulted in 39.65% average test error. The bolded rows are where gradient clipping reduced average test error by at least 1%.

Results of our proposed solution (CIFAR-10)

- Adam / SGD(alpha):
 - alpha <= ~10^-7, gradient clipping had negligible impact
 - $^{\sim}$ 10^-7 < alpha <= $^{\sim}$ 10^-4, gradient clipping reduced test error

Cost of our proposed solution

- Gradient clipping calculated in O(1)
- Algorithm still runs in O(1)
- Overall runtime slightly faster due to increased convergence rate and stability

Performance guarantee of our proposed solution

- Hyperparameter size
 - Negligible performance on smaller hyperparameters
 - Mitigated model deterioration on larger hyperparameters
- Equal or better model performance
- No execution time increase

Limitations

- MNIST:
 - Algorithm did not consistently reduce instability for the various two optimizer stacks
- CIFAR-10:
 - Algorithm did not consistently reduce instability in Adam/SGD
 - o Inconclusive as to whether gradient clipping with other optimizer stack can reduce test error
- More experiments needed to validate method

Conclusion

- Large hyperparameters caused gradient explosions
 - Solution: Gradient Norm Clipping
- MNIST
 - \circ SGD/SGD(α): 10 < α <= 100
 - Adam/SGD(α): $10^{-4} < \alpha \le 5*10^{-2}$
 - \circ AdaGrad/SGD(α): .5 < α <= 7.5
 - \circ RMSProp/SGD(α): $10^{-2} < \alpha <= 5*10^{-2}$
- CIFAR-10
 - \circ Adam/SGD(α): $10^{-7} < \alpha <= 10^{-4}$
- Small learning rates, gradient clipping had negligible impact
- Large learning rates to an extent, gradient clipping reduced test error