

Mechatronics

Week 3 Day 1

Components of a Mechatronics System

The figure is taken from (Isermann, 2008).

Previous lecture

- You were introduced to A, T, D-type elements and A,T-variables
- You learned that A-type and T-type variables are suitable state variables
- You learned to describe
 - Energy-storing elements in terms of A-type and Ttype elements by differential equations
 - Dissipative elements in terms of static relationship between A-type and T-type variables

Today's lecture:

Modeling of interconnected multidomain systems

Learning objectives

After today's lecture, you will be able to

 Formulate the state-space representation of multidomain systems

Let's learn the steps to follow using an example...

An electric fan is an interconnected multidomain system comprising of an electrical and a mechanical domain connected via magnetic coupling

Electrical system: RL circuit that controls motor

v(t): input voltage

R: resistance

L: inductance

 v_a : voltage across motor terminals

 i_m : current through the circuit

Magnetic coupling: converts electrical energy to mechanical energy

Coupling equations (given in exam)

$$v_a = k_a \omega_m$$
$$T_m = k_f i_m$$

with k_a and k_f coupling constants

Mechanical system: motor+propeller

Motor shaft

 θ_m : angular position

 ω_m : angular velocity

 T_m : torque

Propeller

J: moment of inertia

 θ : angular position

 ω : angular velocity

Rotational spring (motor-propeller connection)

 k_T : constant of the rotational spring

 B_{θ} : damping coefficient due to air

Step 1. Identify energy storing elements, dissipative elements and inputs

Step 1. Identify energy storing elements, dissipative elements and inputs

Energy storing elements (A and T-type)

Element	Variable	Туре
Inductor L	Current $i_L = i_m$	T-type
Rotational spring k_T	Torque of the spring T_{k_T}	T-type
Moment of inertia of propeller J	Angular velocity of propeller ω	A-type

Dissipative elements (D-type)

Element	Туре
Resistor R	D-type
Rotational damper $B_{ heta}$	D-type

Step 2. i) Elemental equations for A,T,D-type elements

Element	Equation	Туре
Inductor L	$V_L = L \frac{di_L}{dt}$	T-type
Rotational spring k_T	$\frac{1}{k_T}\frac{dT_k}{dt} = \omega_m - \omega$	T-type
Moment of inertia J of propeller	$T_J = J \frac{d\omega}{dt}$	A-type
Resistor R	$v_R = Ri_R$	D-type
Rotational damper $B_{ heta}$	$T_{B_{\Theta}} = B_{\Theta} \omega$	D-type

Step 2. ii) Describe interaction between elements in each domain

Electrical domain

$$i_R = i_L = i_m$$
$$v(t) = v_R + v_L + v_a$$

Mechanical domain

$$T_m = T_{k_T}$$
$$T_{k_T} = T_J + T_{B_{\Theta}}$$

Step 2. iii) Coupling Equations

Coupling equations (given in exam)

$$v_a = k_a \omega_m$$
$$T_m = k_f i_m$$

with k_a and k_f coupling constants

Step 3. Propose A-type and T-type variables as state variables

Variable	Туре
Current $i_L = i_m$	T-type
Torque of the spring T_{k_T}	T-type
Angular velocity $\boldsymbol{\omega}$ of propeller	A-type

Propose Independent energy storing elements as state variables

$$x_1 = i_L$$

$$x_2 = \omega$$

$$\frac{1}{k_T} \frac{dT_k}{dt} = \omega_m - \omega, \text{ so it is not independent!!}$$

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs

Mechanical subsystem

i) Elemental ii) Interconnection

$$T_{J}=Jrac{d\omega}{dt}$$
 $T_{m}=T_{k_{T}}$ $T_{k_{T}}=T_{J}+T_{B_{\Theta}}$ $T_{m}=k_{f}i_{m}$

All state variables!!

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs

Electrical subsystem

i) Elemental ii) Physics

$$v_R = Ri_L$$
 $v(t) = v_R + v_L + v_a$ $v_L = L\frac{d_{iL}}{dt}$ $i_R = i_L = i_m$ iii)Coupling

 $v_a = k_a \omega_m$

Issue

$$\frac{d_{iL}}{dt} = \frac{1}{L}v(t) - \frac{R}{L}i_L - \frac{k_a}{L}\omega_m$$

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs

Electrical subsystem

i) Elemental ii) Physics

$$v_R = Ri_L$$
 $v(t) = v_R + v_L + v_a$

$$v_L = L \frac{d_{iL}}{dt} \qquad i_R = i_L = i_m$$

$$dt$$
 iii)Coupling

$$\begin{split} \frac{d_{iL}}{dt} &= \frac{1}{L} v(t) - \frac{R}{L} i_L - \frac{k_a}{L} \omega_m \\ \text{Using i)} \ \ \frac{_1}{k_T} \frac{_{dT_k}}{_{dt}} &= \omega_m - \omega \end{split}$$

iii)Coupling
$$v_a = k_a \omega_m$$

$$\frac{d_{iL}}{dt} = \frac{K_T}{LK_T + k_a k_f} v(t) - \frac{K_T R}{LK_T + k_a k_f} i_L - \frac{K_T k_a}{LK_T + k_a k_f} \omega$$

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs

Electrical subsystem

i) Elemental ii) Physics

 $v_a = k_a \omega_m$

$$v_R = Ri_L$$
 $v(t) = v_R + v_L + v_a$

 $v_L = L \frac{d_{iL}}{dt}$ $i_R = i_L = i_m$ $\dot{x_1}$ $i_R = i_L = i_m$ $\dot{x_1}$ $i_R = i_L = i_m$ $i_R = i_L = i_R$ $i_R = i_L$ $i_R = i_R$ $i_R = i_L$ $i_R = i_R$ $i_R = i_R$

$$\frac{d_{iL}}{dt} = \frac{1}{L}v(t) - \frac{R}{L}i_L - \frac{k_a}{L}\omega_m$$

All state variables and input!!

$$\frac{d_{iL}}{dt} = \frac{K_T}{LK_T + k_a k_f} v(t) - \frac{K_T R}{LK_T + k_a k_f} i_L - \frac{K_T k_a}{LK_T + k_a k_f} \omega$$

Step 5. Express system as $\dot{x} = Ax + B$ if its linear or $\dot{x} = f(x) + g(x)u$ if not

Step 5. Express system as $\dot{x} = Ax + B$ if its linear or $\dot{x} = f(x) + g(x)u$ if not

$$\frac{d\omega}{dt} = \frac{k_f}{J} i_L - \frac{B_{\theta}}{J} \omega$$

$$\frac{d_{iL}}{dt} = \frac{K_T}{LK_T + k_a k_f} v(t) - \frac{K_T R}{LK_T + k_a k_f} i_L - \frac{K_T k_a}{LK_T + k_a k_f} \omega$$

$$\begin{bmatrix} \frac{d\omega}{dt} \\ \frac{d_{iL}}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{B_{\theta}}{J} & \frac{k_f}{J} \\ -\frac{K_T k_a}{L K_T + k_a k_f} & -\frac{K_T R}{L K_T + k_a k_f} \end{bmatrix} \begin{bmatrix} \omega \\ i_L \end{bmatrix} + \begin{bmatrix} 0 \\ K_T \\ L K_T + k_a k_f \end{bmatrix} v(t)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \omega \\ i_L \end{bmatrix}$$

Step 5. Express system as $\dot{x} = Ax + B$ if its linear or $\dot{x} = f(x) + g(x)u$ if not

$$\begin{bmatrix} \frac{d\omega}{dt} \\ \frac{d}{dt} \\ \frac{d}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{B_{\theta}}{J} & \frac{k_f}{J} \\ \frac{K_T k_a}{L K_T + k_a k_f} & -\frac{K_T R}{L K_T + k_a k_f} \end{bmatrix} \begin{bmatrix} \omega \\ i_L \end{bmatrix} + \begin{bmatrix} 0 \\ K_T \\ L K_T + k_a k_f \end{bmatrix} v(t)$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \omega \\ i_L \end{bmatrix}$$

1. Identify energy storing elements, dissipative elements and inputs

- 1. Identify energy storing elements, dissipative elements and inputs
- 2. Find the following sets of equations:
 - Elemental equations
 - i. Equations describing interaction among elements in each domain
 - ii. Coupling equations

- 1. Identify energy storing elements, dissipative elements and inputs
- 2. Find the following sets of equations:
 - i. Elemental equations
 - i. Equations describing interaction among elements in each domain
 - ii. Coupling equations
- 3. Propose (independent) A and T-type variables as state variables

- 1. Identify energy storing elements, dissipative elements and inputs
- 2. Find the following sets of equations:
 - i. Elemental equations
 - i. Equations describing interaction among elements in each domain
 - ii. Coupling equations
- 3. Propose (independent) A and T-type variables as state variables
- 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs

- 1. Identify energy storing elements, dissipative elements and inputs
- 2. Find the following sets of equations:
 - i. Elemental equations
 - i. Equations describing interaction among elements in each domain
 - ii. Coupling equations
- 3. Propose (independent) A and T-type variables as state variables
- 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs
- 5. Express system as $\dot{x} = Ax + Bu$ (linear) or $\dot{x} = f(x) + g(x)u$ (nonlinear)

- 1. Identify energy storing elements, dissipative elements and inputs
- 2. Find the following sets of equations:
 - i. Elemental equations
 - i. Equations describing interaction among elements in each domain
 - ii. Coupling equations
- 3. Propose (independent) A and T-type variables as state variables
- 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs
- 5. Express system as $\dot{x} = Ax + Bu$ (linear) or $\dot{x} = f(x) + g(x)u$ (nonlinear)
- 6. State-space to Transfer Fn: $G(s) = \frac{\widehat{Y}(s)}{\widehat{U}(s)} = C(sI A)^{-1}B + D$

Example 2: Hydraulic assisted steering wheel mechanism in a car

Example 2: Hydraulic assisted steering wheel mechanism in a car

Steering wheel as interconnected multidomain system

Let's understand it!

Mechanical-rotational subsystem

- Torque applied by driver: T_1 with inertia $J_{steering}$
- Connected to spring with constant k and torque T_k

Linear-to-rotational coupling device

Coupling equations (given)

- Transform torque to linear force: $T_k = \alpha F_1$
- Transform angular velocity to linear velocity: $\alpha \omega_2 = v$

Fluid subsystem

- Pressure P_s is regulated by valve NLR to provide 'hydraulic assisted forces'
- Pressure P₁₂ across inertor with inertance I
- Flow Q_c through fuid capacitor with capacitance C_f

Fluid subsystem

Pressure P_{23} across valve NLR and fluid flow Q_m through valve NLR related by $\frac{1}{cA^2}Q_m^2 = P_{23}$ with c being the valve constant

A is regulated based on amount of spring torsion in steering wheel bar T_2 as $A = f(T_2)$

Fluid-to-linear coupling

Coupling equations (given)

- Pressure accros coupling device P_{3r} converted to linear force $DP_{3r} = F_2$
- Fluid Flow through coupling device Q_m converted to linear velocity $Dv=Q_m$

Linear-mechanical system (wheels)

- Linear force due to driver F_1 and due to hydraulic pressure F_2 drive the wheel mass
- Wheel mass interacts with road friction, modelled as damper with damping coefficient B₁

Step 1. Identify energy storing elements, dissipative elements and inputs

Element	Туре
Inertia $J_{steering}$	A-type
Spring compliance k	T-type
Fluid capacitor \mathcal{C}_f	A-type
Fluid inertor I	T-type
Wheel mass m_{wheel}	A-type
Linear damper B_1	D-type

Inputs:

Torque applied by driver: T_1

Pressure source: P_s

Step 2. i) Elemental equations for A,T,D-type elements

Element	Equation	Type
Inertia $J_{steering}$	$T_{steering} = J_{steering} \frac{d\omega_1}{dt}$	A-type
Spring compliance k	$\frac{1}{k}\frac{dT_k}{dt} = \omega_1 - \omega_2$	T-type
Fluid capacitor C_f	$Q_c = C_f \frac{dP_{2r}}{dt}$	A-type
Fluid inertor I	$I\frac{dQ_1}{dt} = P_{21}$	T-type
Wheel mass m_{wheel}	$F_{wheel} = m_{wheel} \frac{dv}{dt}$	A-type
Linear damper B_1	$F_{B1} = B_1 v$	D-type

Step 2. ii) Describe interaction between elements in each domain

Mechanical rotational system

$$T_1 = T_{steering} + T_k$$

Fluid system

$$P_{21} = P_s - P_{2r}$$

$$Q_c = Q_1 - Q_m$$

$$P_{3r} = P_{2r} - P_{23}$$

Mechanical linear system

$$F_{wheel} = F_1 + F_2 - F_{B1}$$

Step 2. iii) Coupling equations (given)

Step 3. Propose A-type and T-type variables as state variables

A,T-type elements	Variables
Inertia $J_{steering}$	ω_1
Spring compliance k	T_{k}
Fluid capacitor \mathcal{C}_f	P_{2r}
Fluid inertor I	Q_1
Wheel mass m_1	υ

Inputs $[T_1 P_s]^T$ States $[Q_1 P_{2r} T_k \omega_1 v]^T$

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of

state variables and inputs

Mechanical rotational system

ii)Interconect

$$T_{steering} = J_{steering} \frac{d\omega_1}{dt} \ T_1 = T_{steering} + T_K$$

$$1 \ dT_{tr}$$

$$\frac{d^{2}k}{dt} = \omega_{1} - \omega_{2}$$

iii)Coupling
$$\alpha\omega_2 = v$$

$$\frac{d\omega_1}{dt} = \frac{T_1}{J_{steering}} - \frac{T_K}{J_{steering}}$$

$$\frac{dT_k}{dt} = k\omega_1 - \frac{kv}{\alpha}$$

All state variables and inputs!!

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of

state variables and inputs

Fluid system

i) Elemental ii) Intercon.
$$Q_c = C_f \frac{dP_{2r}}{dt} \qquad P_{21} = P_s - P_{2r}$$

$$I \frac{dQ_1}{dt} = P_{21} \qquad Q_c = Q_1 - Q_m$$

iii)Coupling: $Dv = Q_m$

$$\frac{dP_{2r}}{dt} = \frac{Q_1}{C_f} - \frac{Dv}{C_f}$$
$$\frac{dQ_1}{dt} = \frac{P_s}{I} - \frac{P_{2r}}{I}$$

All state variables and inputs!!

Step 4. Divide into subsystems and use equations i), ii) and iii) to express the dynamics only in terms of state variables and inputs

Machanical linear system

Mechanical linear system

i) Elemental ii) Intercon. $F_{wheel} = m_{wheel} \frac{dv}{dt}$ $F_{B1} = B_1 v \qquad F_{wheel} = F_1 + F_2 - F_{B1}$ iii) Coupling: $T_k = \alpha F_1$ $DP_{3r} = F_2$ where $P_{3r} = P_{2r} - P_{23}$ and $P_{23} = \frac{1}{cA^2} Q_m^2$

$$\frac{dv}{dt} = \frac{\frac{T_k}{\alpha} + D(P_{2r} - \frac{1}{cA^2}D^2v^2) - B_1v}{m_{wheel}}$$

All state variables and inputs!!

Step 5. Express system as $\dot{x} = Ax + Bu$ if linear or $\dot{x} = f(x) + g(x)u$ if not

$$\begin{bmatrix} \frac{dQ_1}{dt} \\ \frac{dP_{2r}}{dt} \\ \frac{dT_k}{dt} \\ \frac{d\omega_1}{dt} \\ \frac{dv}{dt} \end{bmatrix} = \begin{bmatrix} \frac{P_S}{I} - \frac{P_{2r}}{I} \\ \frac{Q_1}{C_f} - \frac{Dv}{C_f} \\ k\omega_1 - \frac{kv}{\alpha} \\ \frac{T_1}{J_{steering}} - \frac{T_K}{J_{steering}} \\ \frac{T_k}{\alpha} + D(P_{2r} - \frac{1}{cA^2}D^2v^2) - B_1v \\ \frac{m_{wheel}}{J_{steel}} \end{bmatrix}$$

Next lecture:

Guest lecture: Modelling via Euler Lagrange

In this multidomain system pressure $P_{2r} = P_2 - P_r$ generates torque T_M coupled through rotational spring to a generator to produce a voltage that modifies dynamics of RLC circuit.

• Fluid system: fluid inertor with inertance I, fluid capacitor with capacitance \mathcal{C}_f

- capacitance C_f
- Rotational mechanical system 1 (Hydraulic motor): J_M moment of intertia, ω_1 angular velocity, θ_1 angular position, T_M torque

- capacitance C_f
- Rotational mechanical system 1 (hydraulic motor): I_M moment of intertia, ω_1 angular velocity, θ_1 angular position, T_M torque
- Rotational mechanical system 2 (Spring): Torque T_k with spring constant k

- capacitance C_f
- Rotational mechanical system 1 (hydraulic motor): I_M moment of intertia, ω_1 angular velocity, θ_1 angular position, T_M torque
- Rotational mechanical system 2 (Spring): Torque T_k with spring constant k
- Rotational mechanical system 3 (generator): J_G moment of intertia, ω_2 angular velocity, θ_2 angular position, T_G torque

- capacitance C_f
- Rotational mechanical system 1 (hydraulic motor): I_M moment of intertia, ω_1 angular velocity, θ_1 angular position, T_M torque
- Rotational mechanical system 2 (Spring): Torque T_k with spring constant k
- Rotational mechanical system 3 (generator): J_G moment of intertia, ω_2 angular velocity, θ_2 angular position, T_C torque
- Electrical system: R, L and C are resistance, inductance and capacitance respectively

Coupling with coupling constants D_r and α_G

Fluid to mechanical

Mechanical to electrical

$$T_M = D_r P_{2r}$$

$$T_G = \frac{1}{\alpha_G} i_I$$

$$\omega_1 = \frac{1}{D_r} Q_m$$

$$\omega_2 = \alpha_G V_{12}$$

Step 1. Identify A-type and T-type elements and variables

A-type

- Fluid capacitor: P_{2r}
- Mass moment of inertia 1: ω_1 Spring (compliance): T_k
- Mass moment of inertia 2: ω_2 Inductor: i_L
- Capacitor: V_C

T-type

- Inertor: Q_V

Step 2. i) Elemental equations (A-type, T-type, D-type)

$$Q_{c} = C_{f}\dot{P}_{2r}, \qquad P_{12} = I\dot{Q}_{v},$$
 $T_{m_{1}} = J_{M}\dot{\omega}_{1}, \qquad T_{m_{2}} = J_{G}\dot{\omega}_{2},$
 $T_{k} = k(\theta_{1} - \theta_{2}), \qquad V_{R} = Ri_{R},$
 $V_{L} = Li'_{L}, \qquad i_{C} = C\dot{V}_{c}.$

Step 2. ii)Interaction equations (Kirchoff's law, Newton's law...)

$$P_s = P_{12} + P_{2r}, \qquad Q_v = Q_c + Q_m,$$
 $T_G = T_{m_2} - T_k, \qquad T_M = T_{m_1} + T_k,$
 $i_L = i_C = i_R, \qquad V_{12} = V_c + V_R + V_L.$

Step 3. Propose state variables

A-type and T-type

 P_{2r}

 W_1

 W_2 $T_k = k(\theta_1 - \theta_2)$ not independent, so not necessarily a state

We can take θ_1 and θ_2 as states, defining

$$\dot{\theta}_1 = \omega_1$$
 and $\dot{\theta}_2 = \omega_2$

Step 4. Combine equations for each domain and coupling equations to represent system with state variables, input P_s , and output V_c

$$\dot{Q}_{v} = -\frac{1}{I}P_{2r} + \frac{1}{I}P_{s}, \qquad \dot{\theta}_{2} = \omega_{2},
\dot{P}_{2r} = \frac{1}{C_{f}}Q_{v} - \frac{D_{r}}{C_{f}}\omega_{1}, \qquad \dot{\omega}_{2} = \frac{1}{J_{G}\alpha_{G}}i_{L} + \frac{k}{J_{G}}(\theta_{1} - \theta_{2})
\dot{\theta}_{1} = \omega_{1}, \qquad \dot{V}_{c} = \frac{1}{C}i_{L}
\dot{\omega}_{1} = \frac{D_{r}}{J_{M}}P_{2r} - \frac{k}{J_{M}}(\theta_{1} - \theta_{2}) \qquad \dot{i}_{L}' = \frac{1}{L\alpha_{G}}\omega_{2} - \frac{R}{L}i_{L} - \frac{1}{L}V_{c}$$