<mark>אינדיקטורים:</mark>

$$Var(X_i) = P(X_i = 1) \cdot P(X_i = 0)$$
 or $Var(X_i) = E(X_i^2) - E(X_i^2)$ שונות: $E(X_i) = P(X_i = 1)$

$$Cov(X_i, X_i) = P(X_i = 1, X_i = 1) - P(X_i = 1) \cdot P(X_i = 0)$$
 :COV

<u>מ"מ פיצול לאינדיקטורים:</u>

 $= \Sigma Var(X_i) + 2 \cdot \Sigma_{i < j} Cov(X_i, X_j)$ יש תלות: $Var(X) = \Sigma Var(X_i)$ ים אינן תלות בין אינדיקטורים. $E(X) = E(\Sigma X_i) = \Sigma E(X_i)$ יש תוחלת: $E(X) = E(\Sigma X_i) = \Sigma E(X_i)$ יש תוחלת:

אי שוויוניים<mark>:</mark>

 $P(X \geq t) \leq rac{E(X)}{t}$ אז אז $X \geq t$ או משתנה מקרי אי שלילי, t>0 אז X אז X הוא משתנה משתנה מקרי אי שלילי, צריך שיהיה גדול כדי שיהיה לנו חסם. t בישרה בי שיהיה לנו חסם. t בישר מ"מ עם שונות סופיתו t>0 אז, t>0 בישר t>0 מ"מ עם שונות סופיתו t>0 אז, t>0

<u>הערה:</u> כאשר שמים את הערך מוחלט אנחנו מגדילים את ההסתברות לכן אם רוצים ללא ערך מוחלט זה עדיין עובד רק שזה יותר קטן מהערך

 $X=\Sigma X_i$ אז: אם $X=\Sigma X_i$ ואם ב"ת המחזירים ערכים בטווח $X_1,X_2...X_n$ אז: איז: איז מ"מ ב"ת המחזירים ערכים אז:

מתקיים: לכל t>0 לכל בישַב: לכל מה המרחק מה המרחק מחדים: 1

או לחלופין
$$P(X \le E(X) - t) \le e^{\frac{-zt^2}{n}}$$
 או $P(X \ge E(X) + t) \le e^{\frac{-zt^2}{n}}$

. $P(|X - E(X)| \geq t) \leq 2e^{rac{-2t^2}{n}}$ ככל של גדול אנחנו יורדים אספונציאלית בניגוד לצ'בישב ולכן חזק יותר.

$$P(X \le (1 - \epsilon)E(X)) \le e^{-\frac{\epsilon^2 E(X)}{2}}$$
 מתקיים: $\epsilon > 0$ ולכן.

החוק החלש של המספרים הגדולים: $\varepsilon>0$ מתקיים: לכל אחד. אזי לכל $\varepsilon>0$ מתקיים: $\{X_n\}$ ב"ת אחד בשני על אותו מרחב עם תוחלת μ (תוחלת שווה) לכל אחד. אזי לכל

$$\lim_{n\to\infty} P\left(\left|\frac{X_1+\cdots X_n}{n}-\mu\right|\geq \varepsilon\right)=0$$

אינטואיציה: ממוצע התוצאה של הטלת קובייה הוא $3.5\,$ ככל שנטיל יותר קוביות (יותר מ"מ, בנוסחה כל X_i הוא תוצאת הטלת הקובייה וחת אפילו במקצת שואפת החלוקה במספר הקוביות) יתקרב ל-3.5 יותר ויותר עד שההסתברות לחרוג מהממוצע אפילו במקצת שואפת (iה

<u>החוק החזק של המספרים הגדולים:</u> (אומר אותו דבר אבל מחמיר יותר)

נתונה לנו סדרה מ"מ $\{X_n\}$ ב"ת אחד בשני על אותו מרחב עם תוחלת μ לכל אחד ושונות סופית. אזי מתקיים:

$$P\left(\lim_{n\to\infty}\frac{X_1+\dots+X_n}{n}=\mu\right)=1$$

בהוכחה הגבלנו לשונות סופית כדי להשתמש בצ'בישב.

מושגים מכלילים את החוקים לעיל:

 X_n מתכנסות בהסתברות: סדרת משתנים מקריים מקריים מתכנסת בהסתברות למ"מ X_n ווווח סדרת משתנים סדרת משתנים פורמלית: $Y_n(\omega \in \Omega: |X_n(\omega) - X(\omega)| \geq \varepsilon)$ מתקיים: $X_n \to^p X$ אם לכל $X_n \to^p X$ אם לכל סדר מתקיים: $X_n \to^p X$

החוק החלש זה מקרי פרטי של זה.

.X מתכנסת כמעט בוודאות למ"מ א התכנסות כמעט בוודאות למ"מ סדרת משתנים מקריים מקריים $\{X_n\}_{n=1}^\infty$ סדרת משתנים סדרת מקריים בוודאות למ"מ א $P(\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\})=1$.

:
$$X_n{\sim}igg\{ egin{align*} n,1/n^2 \\ 0,1-1/n^2 \end{array} : X_n$$
לכל לכל $\{X\}_n^{\infty}$ והסדרה לכל אונה מונה לכל והסדרה לכל אונה אונה לכל והסדרה לכל אונה אונה לכל והסדרה לכל אונה אונה לכל והסדרה לכל אונה לכל והסדרה לכל

- $\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon) = \lim_{n\to\infty} P(X_n=1) = \lim_{n\to\infty} 1/n^2 = 0 : X_n \to^p X$ רק כאשר $X_n=1$ נחשב אם קיים אינדקס כלשהו $X_n=1$ שמהאינדקס הזה כל איברי הסדרה שווים ל $X_n=1$ שמהאינדקס הזה כל איברי הסדרה שווים ל $X_n=1$ ברדוק האם קיים אינדקס כלשהו $X_n=1$ שמהאינדקס הזה כל איברי הסדרה שווים ל $X_n=1$ בחשב את $X_n=1$ ברח $X_$

מוותרים על הכלה והדחה ולכן לא מוותרים על החיתוכים ולכן $\Sigma_{i=1}^n P(A_i) = (union bound)$ מוותרים על החיתוכים ולכן מוותרים על החיתוכים ולכן מוותרים על החיתוכים ולכן זה הסכום גדול יותר מהאיחוד.

השיטה ההסתברותית:

<u>מומנט ראשון</u> (חסם חלש וליניארי – מרקוב) – לראות שאין משהו.

 $P(X>0)=P(X\geq 1)$ נדבר בדרך כלל על משתנים מקריים עם מספרים שלמים ולכן:

$$P(X > 0) = P(X \ge 1) \le \frac{E(X)}{1} = E(X)$$
ואז לפי מרקוב.

. ולכן או חיובי או E(X) האם לדעת האם ולכן ובאמצעותה לחשב חיובי או לא

בנוסף: נשתמש בשיטה זו כדי לחשוב גבולות. אם ככל ש α גדל התוחלת שואפת ל0 זה אומר ש:

. כי הקיום תלוי בתחולת ואם התוחלת שואפת ל0 אז הקיום שואף ל0 ולכן ערכו של X יהיה 0 בהסתברות השואפת ל0. $\lim_{X\to\infty}P(X=0)=1$

מומנט שני (חסם חזק וריבועי – צ'בישב) – להראות שיש משהו.

כאשר התוחלת שואפת ל1 ומעלה ואז לא נותנת לנו שום חסם.

$$P(X = 0) = P(X - E(X)) = -E(X)) \le P(|X - E(X)| = E(X)) \le P(|X - E(X)| \ge E(X)) \le \frac{Var(X)}{E(X)^2}$$

. P(X=0) o 0 ולכן ולכן $P(X=0) \leq \cdots \to 0$ כאן המטרה הסופית היא להראות ש

. (מקל בחישובים) $Var(X) = E(X_i^2) - E(X_i)^2 \leq E(X_i^2)$ מקל בחישובים) טריק לVar

<mark>גרפים אקראיים :</mark> מודל בשיטה ההסתברותית (הוכחות שמשהו קיים או לא קיים דרך הסתברות) כדי להוכיח תוכנות של גרפים.

מודלים של גרפים אקראיים:

מרחב הסתברות של כל הגרפים עם n קוד' וm צלעות.

לכל ההסתברות היא על "איפה להניח את הצלעות".

n מה ההסתברות לכל גרף ספציפי? בחר m מקומות מתוך ה $\binom{n}{2}$ הפוטנציאליים לצלע. לכן זה 1 חלקי כמות הגרפים השונים שיש עם מ קודקודים וm צלעות $\binom{\binom{n}{2}}{m}$

כלומר: $P\left(G \in G(n,m)\right) = \frac{1}{\binom{n}{2}}$ זו התפלגות אחידה.

מרחב הסתברות של כל הגרפים על n קוד' כאשר כל צלע אפשרית בגרף היא נמצאת בהסתברות p. כאן זו לא התפלגות $P(G \in G(n,p)) = p^{|E|} (1-p)^{\binom{n}{2}-|E|}$ אחידה כי

תוכנות של גרפים: תכונה Q של גרפים יכולה לתאר לדוגמה: גרף קשיר, יש קודקוד בודד בגרף וכ'ו.. כאשר גרף G מקיים את התכונה נסמן $G \in Q$, כלומר, תכונה היא קבוצת כל הגרפים שמקיימים אותה.

(G(n,p) תכונה מונוטונית: (שייך ל

- עולה: תכונה מונוטונית עולה אם הוספה של צלעות יכולה לקיים אותה או לשמר את הקיום אך לא לגרום לתכונה לא להתקיים. (ככל שמוסיפים צלעות יותר טוב לתכונה). פורמאלית: $P_1 \leq p_2$ כאשר $P(G(n,p_1) \in Q) \leq P(G(n,p_2) \in Q)$ או $P(G(n,m) \in Q) \leq P(G(n,m+1) \in Q)$
 - יורדת: באותו אופן, ככל שמוסיפים צלעות, יורד הסיכוי לקיים את התכונה.

. p(n): nפ**ף תכונה ספציפית 0**: פונקציה של הסתברויות, לכל גרף עם n קוד' יש הסתברות לצלע התלויה ב

ק אז התכונה כן p(n) אז התכונה כן אז החסתברות לצלע קטנה בסדר גודל מp(n) התכונה לא תתקיים ואם ההסתברות לצלע גדולה בסדר גודל מp(n) אז התכונה כן תתקיים.במילים אחרות, מהו הגבול בו עוברים מלא לקיים את התכונה לכן לקיים את התכונה.?

פורמאלית: פונקציה p(n) היא סף אם:

- .0ט. אם טיפה ירדנו מהגבול ההסתברות שואפת ל- $P(G(n,p)\in Q) o 1$ אז $p=\omegaig(p(n)ig)$
- . 1) אם טיפה עברנו את הגבול ההסתברות שואפת $P(G(n,p) \in Q) o 0$ אז p = o(p(n))

. הערה: נשים לב ש0 o (1) o 0 ואז שמבקשים את הסף בודקים מתי זה קורה.

: יקרא סף חד של תכונה Q מונוטונית עולה אם p_0 יקרא סף חד

- $P(G(n,p) \in Q) \to 1$ אז $p \ge (1+\epsilon)p_0$
- $P(G(n,p) \in Q) \rightarrow 0$ אז $p = (1+\epsilon)p_0$ •

הערה: בעוד שלכל תכונה מונוטונית עולה יש סף לא בהכרח שיש לה סף חד.

 $x = e^{\ln x}, (1 - x)^n \le e^{-xn}$ טענות עזר:

$$(1-x) \le e^{-x} \ or \ (1-x) \ge e^{-(x+x^2)}$$
 טענות עזר 2:

אלגוריתמים אקראיים:

- לאס וגאס אלגו' שתמיד צודק בתשובה אבל זמן הריצה שלו תלוי במשתנה מקרי.
 - 2. **מונטה קרלו –** אלגו' שטועה בהסתברות (בדרך כלל נמוכה)
- אז האלגוריתם יכול להחזיר false אז האלגוריתם תמיד צודק. אם צריך להחזיר לריתם אם צריך להחזיר לריתם יכול להחזיר true בהסתברות נמוכה. true

טעות דו צדדית: בכל מקרה יש טעות בהסתברות (בדרך כלל נמוכה).

<u>הערה:</u> בדרך כלל הם יהיו אלגו' פשוטים, הניתוח ההסתברותי יהיה בדרך כלל יותר מסובך. כמעט תמיד נשתמש באינדיקטורים.

<u>שיטות:</u>

- בדרך כלל מדובר בבחירה אקראית מתוך קבוצה של איברים.
- חזרה על התהליך מספר פעמים מקטינה את ההסתברות לטעות.

מרחב הסתברות רציף<mark>:</mark>

 $P:P(\Omega) \to [0,1]$ במחרב ההסתברות כזה:

- $P(\omega)=0$.1 P(A)=0 .2 P(A)=0 .2 P(A)=0 .3 P(A)=0 .3 P(A)=0 .4

לא חייבים לדבר על כל תתי הקבוצות, לעיתים ניתן לדבר על חלק מהם. במקרה כזה תת הקבוצה: $F\subseteq P(\Omega)$ תקרא סיגמא אלגברה: הקבוצה שיש בה את הקבוצה הריקה, את הכל והיא סגורה לפעולות על קבוצות כאשר מספר הפעולות הוא בן מניה.

 $.P(X\in A)=\int_A\,f_x(x)dx$ כך ש: $f_x\colon\mathbb{R} o\mathbb{R}$ כר שם פונקציה: $f_x\colon\mathbb{R} o R$ משתנה $f_x\colon\mathbb{R} o R$ כר שי . לפונקציה צפיפות קוראים פונקציית צפיפות לפונקציה $f_{\scriptscriptstyle X}$

תכונות:

- $P(X = a) = \int_{a}^{a} f_{X}(x) dx = 0 \quad .1$ $P(X \in \mathbb{R}) = P(\mathbb{R}) = \int_{-\infty}^{\infty} f_{X}(x) dx = 1 \quad .2$ $P(a \le X \le b) = P(a < X < b) = \int_{b}^{a} f_{X}(x) dx \quad .3$

 $\int_{-\infty}^{\infty} f_X(x) dx$ מסקנה – כדי להוכיח שמדובר במרחב הסתברותי צריך להוכיח שהאינטגרל על הכל שווה לו

$$F_X(a) = P(X \le a) = \int_{-\infty}^a f_X(x) dx$$
 פונקציית צפיפות מצטברת:

עד א ומורידים את השטח ממינוס אינסוף עד b ומורידים את השטח בין a לא אז לוקחים את כל השטח ממינוס אינסוף עד $\int_a^b f_X(x) dx = F_X(b) - F_X(a)$

תוחלת של משתנה מקרי רציף:

 $E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$ עבור משתנה רציף נקבל ש:

תכונות של תוחלת:

- E(aX + b) = aE(X) + b ליניאריות התוחלת נשמרת:
 - $.E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$

שונות:

$$Var(X) = E(X^2) - E(X)^2$$

תכונות:

$$Var(aX + b) = a^2 Var(X)$$
 .1

(כמו מה שהיה במרחב בדיד.)

<mark>התפלגויות מיוחדות:</mark>

$$f_X(x) = \frac{1}{b-a}$$
 $f_X(x) = \frac{1}{b-a}$ $f_X(x) = \frac{x-a}{b-a}$ $f_X(x) = \frac$

$$\frac{\lambda}{f_X(x)} = \frac{\lambda \cdot e^{-\lambda x}}{\int_X (x) = \lambda \cdot e^{-\lambda x}} \frac{1}{if} \frac{1}{x} \le 0,0 \text{ if } x < 0$$
פונקציית הצפיפות היא:

$$F_X(x)=P(X\leq x)=1-e^{-\lambda x}\ if\ x\geq 0\ ,0\ if\ x<0\ ;$$
 פונ' הצפיפות המצטברת: 0 , $x<0$ $F_X(x)=P(X\leq x)egin{cases} 1-e^{-\lambda x}\ 1-e^{-\lambda x},\ x\geq 0 \end{cases}$ בצורה אחרת: $F_X(x)=P(X\leq x)$

$$E(X) = \frac{1}{\lambda}$$
:תוחלת:
 $Var(X) = \frac{1}{\lambda^2}$

תכונה שהתפלגות זו מקיימת: חוסר זיכרוו. P(X>s+t|x>t)=P(X>s).P(X>s+t)=P(X>s).P(X>s+t)

משפט: משתנה רציף אי-שלילי יהיה חסר זיכרון אם ורק אם הוא מתפלג מעריכית.

.3 ה<u>תפלגות נורמלית: פרמטרים – ממוצע μ ושונות $\sigma>0$ כאשר $\sigma>0$ היא סטיית תקן.</u> פונקציית הצפיפות היא: $f_X(x)=rac{1}{\sqrt{2\pi\sigma}}\cdot e^{-rac{(x-\mu)^2}{2\sigma^2}}$ פונקציית הצפיפות המצטברת: לא קיימת פונקציה סגורה נורמאלית. משתמשים בדרך כלל בהזזה להתפלגות נורמאלית סטנדרטית.

התפלגות נורמאלית סטנדרטית: $\sigma=1$ ו $\mu=0$. התפלגות נורמאלית כך שי $\sigma=1$ ו $\mu=0$. בדרך כלל טבלת הערכים היא על ההתפלגות הסטנדרטית.

 $P(X \leq x) pprox \Phi(x) = rac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-rac{t^2}{2}} dt$ פונ' הצפיפות המצטברת של ההתפלגות הסטנדרטית: $P(X \leq x) pprox \Phi(x) = rac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-rac{t^2}{2}} dt$ הסימון הוא עבור התפלגות נורמאלית הסטנדרטית. לפונקציה הזו יש טבלת ערכים. $P(a \leq X \leq b) pprox \Phi(b) - \Phi(a) = rac{1}{\sqrt{2\pi}\sigma} \int_a^b e^{-rac{t^2}{2}} dt$ בטווח ידוע נקבל ש: $P(a \leq X \leq b) pprox \Phi(b) - \Phi(a) = rac{1}{\sqrt{2\pi}\sigma} \int_a^b e^{-rac{t^2}{2}} dt$

$$P(a \leq X \leq b) pprox \Phi(b) - \Phi(a) = rac{1}{\sqrt{2\pi a}} \int_a^b e^{-rac{t^2}{2}} dt$$
 בטווח ידוע נקבל ש

.0= תוחלת: בסטנדרטית $E(X)=\mu$.1= שונות: $Var(X) = \sigma^2$. בסטנדרטית

(כשמקבלים תרגיל בהתפלגות נורמלית נהפוך לנורמלי סטנדרטי ע"י הורדת E וחילוק בVAR ואז נעשה את כל החישוב על הנורמלי סטנדרטית שיהיה יותר קל ולבסוף למה שקבלנו בנורמלי סטנדרטי נהפוך חזרה לנורמלי בעזרת

$$E(aX + b) = aE(X) + b Var(aX + b) = a^{2}Var(X):$$

X = aX + b וגם σ^2 וגם σ^2 וואם ממוצע μ ושונות אם מתפלג נורמאלית עם ממוצע אם אם אם אם X

 $a^2\sigma^2$:ושונות $a\mu+b$ אז א מתפלג נורמאלית עם ממוצע

לכן כדי להמיר משתנה שמתפלג נורמאלית למשתנה מתפלג נורמאלית סטנדרטית:

$$Z = \frac{X - \mu}{\sigma}$$

$$\Phi(-x) = 1 - \Phi(x)$$
 במילים אחרות: $\Phi(x) + \Phi(-x) = 1 \cdot x \in R$.

.
$$E(X \cdot g(X)) = \int f_X(x) \cdot g(x)$$
: כי יש לפתוח כך $E(X \cdot g(X)) = E(g'(X))$

<u>משפט הגבול המרכזי:</u>

אם (X_i יים: סדרה של אינסוף משתנים מקריים:

- ב"ת אחד בשני
- . $\sigma>0$ כאשר (גם כן זהות) התפלגות מוחלת μ ושונות התפלגות בעלי התפלגות ההה עם תוחלת

: אם נסמן לכל אז: $Y_n=rac{X_1+\cdots X_n-n\mu}{\sigma\sqrt{n}}$: $n\in\mathbb{N}$ לכל אם נסמן לכל אם ניסמן לכל אז: אז: אם ניסמן לכל אזיים איז איז אזיים איז איז אזיים איז איז אזיים איז איזיים איזייים איזייים איזייים איזייים איזיים איזיים איזיים איזייים איזייים איזייים איזיייים איזייים איזייים איזייים איזייים איזייים איזייים איזייים איזייים איזייים א

$$\lim_{n\to\infty} F_n(x) \approx \Phi(x)$$

. המשפט הופך כל סדרת משנים (עם התנאים לעיל) למשתנה נורמאלי סטנדרטי

המשפט עוזר כאשר לא ידוע ההתפלגות אלא רק הממוצע וסטיית הקן או שידוע ההתפלגות אך היא קשה לחישוב ואנו רוצים חסמים על הסתברות

אם אין אינסוף משתנים אז המשפט נותן הערכה ולא משהו מדויק אבל צריך לפחות כמות גדולה של משתנים וניתן יהיה להתשמש ב Y_n עבור n ספציפי יחסית גדול.

משפט: (Berry – Esseen)

אם מקריים: סדרה של אינסוף משתנים מקריים: $\{X_i\}_{i=1}^\infty$

- . $\sigma>0$ כאשר (גם כן זהות) אונות σ^2 ושונות מחלת זהה עם תוחלת מעלי התפלגות התפלגות הה .2
 - $E(|X_i|^3) = \rho$:בנוסף

אם נסמן לכל $N_n=rac{X_1+\cdots X_n-n\mu}{\sigma\sqrt{n}}$ בר שי $N_n=rac{X_1+\cdots X_n-n\mu}{\sigma\sqrt{n}}$ בי נסמן לכל אם נסמן לכל אונקעיית איז פונקציית איז איז אונ

$$|F_n(x) - \Phi(x)| \le \frac{\rho}{\sigma^3 \sqrt{n}}$$

המשפט מבטיח בהיתן התנאים הנוספים את הקצב שבו מתקרבים להתפלגות נורמאלית.

ТІКПЯ	שונות Var	תוחלת E	התפלגות P	תומך	שם
$\begin{aligned} \text{RIGIA 'N'GIA' PINGA } \\ \mathbb{E}(D^2) &= \sum_{j} y^2 \cdot \text{PCC'}(y) = \sum_{j} y^2 \cdot \frac{1}{2} - \sum_{j} y^2 \cdot \frac{1}{2} $	$Var(X) = \frac{(b-a+1)^2-1}{12} \\ \frac{aknab}{akna} \\ V=X-a (pve) (n-1) \\ V=X-a (pve) (n-1) \\ V=X-a (pve) (pve) (pve) \\ V=X-a (pve) (pve) (pve) \\ V=X-a (pve) (pve) (pve) (pve) \\ V=X-a (pve) ($	$\mathbb{E}(X) = \frac{a+b}{2}$ הוכחה: נוסחא \rightarrow התפלגות הונחה: ומחא \rightarrow הורה אחידה \rightarrow ולהשתמש בנוסחא $\sum_{k=a}^b k = \frac{(b+a)\cdot(b-a+1)}{2}$	$\mathbb{P}(X=k) = \frac{1}{ b-a+1 }$	$\{a, a+1, \dots b\}$	$\mathbb{U}(a,b)$ אחידה
X = 1 סופר הצלחה 1 בסיכוי q או כישלון 0 בסיכוי $q = 1$	$Var(X) = p(1-p)$ $\mathbb{E}(X^2) = \sum_{x \in S} x^2 \mathbb{P}(X=x) = p \text{ anoma}$	$\mathbb{E}(X) = p + (1-p) \cdot 0 = p$	$\mathbb{P}(X=1) = p$ $\mathbb{P}(X=0) = 1 - p$	{0,1}	$Ber(p)$ ברנולי $\sim Bin(1,p)$
n אור מיי מיי מיי מיי מיי מיי מיי מיי מיי מי	$Var(X) = np(1-p)$ הופלגיות $X = \sum_{i=1}^{n} X_i$ התפלגיות ברמה: יהי $X = \sum_{i=1}^{n} X_i$ ברמה: בליתי תליות ות'י $\sum_{i=1}^{n} Var(X_i) = Var(X_i)$ $Var(X) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = nVar(X_i)$	$\mathbb{E}(X) = np$ אם הוכרה: יורי $X = \sum_{i=1}^n X_i$ אשר כל $X = \sum_{i=1}^n X_i$ אהתפלגיות ברוולי בלתי תלויות ולכן X_i $\mathbb{E}(X) = \mathbb{E}\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n \mathbb{E}(X_i) = np$	$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$	$[0,n]$ שענה: יריו X_1,\dots,X_n בשתרים בלתי $i\in[1,n]$ איז $i\in[1,n]$ יהיה $i\in[1,n]$ איז יהים כר $i\in[1,n]$ אוי $S_n\sim Bin(n,p)$ אוי $S_n:=\sum_{i=1}^n X_i$	$Bin(n,p)$ טענה: $\mathbb{P}(X \leq k)$ $= \sum_{i=0}^{k-1} \binom{n}{i} p^i (1 - p)^{n-i}$
א מפור ניטיים עד וכולד הגלחה ראשונה (תמאי α עציה) בסדרה לא מוגבלת של ניטיים α או עציה α דוגמא. עד העם הראשונה שיצא ען אז $Geom(\mathbb{F}(\{0.01\}, 0.01\}))$	$Var(X) = \frac{(1-p)}{p^2}$ $E(X^2) = \sum_{k=1}^{\infty} k^2 \cdot P(X=k) =$ $= \sum_{k=1}^{\infty} (k^2 - 2k + 1)(1-p)^{k-1}p + \cdots$	$\mathbb{E}(X) = \frac{1}{p}$ הוכחה: מוסחא \rightarrow להחליף λ ל λ (λ	$P(X = k) = p \cdot (1 - p)^{k - 1}$	[1, ∞)	$Geom(p)$ גאומטרית $\sim NB(1,p)$
D הכדורים האדומים מכד עם N מדורים כאשר M הכדורים האדומים מכד עם M במחלב במחלב במחלב במחלב במחלב M במחלב	$Var(X) = (N - n)$ $D \cdot n \cdot (N - D) \cdot \frac{(N - n)}{N^2 \cdot (N - 1)}$ $Var(X) = E(X^2) - E(X)^2 = E(X^2 - X) + E(Y) - E(X)^2$	$\mathbb{E}(X) = n \cdot \frac{D}{N}$ בוכחה: בעזרת הוכחה: $\binom{p}{N} = \frac{D}{N} \binom{D-1}{N-1}$ ולהוציא מהסיגמא $\frac{nD}{N}$	$\mathbb{P}(X=k) = \frac{\binom{D}{k} \cdot \binom{N-D}{n-k}}{\binom{N}{n}}$	$\{max(0, n+D-N), min(D, n)\}$	היפרגאומטרית $Hyp(D,N,n)$
לתמורה יש בדיוק λ קלן שבת עבור המספרים -1 תמורה יש בדיוק λ קלן שבת עבור המספרים משפט הגבול הפואסופים היו -1 (-1 -1 -1 -1 -1 -1 -1 -1	$Var(X) = \lambda$ הוכחה: בעזרת אותו 0 ריק	$\mathbb{E}(X) = \lambda$:מכחה: λ :	$\mathbb{P}(X=k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$	$[0,\infty)$ את X את את ברילים באופן אחיות R את ומסמנים ב- R את מס' גק' השבת של R או R אוי R איי R בי R אוי R בי R אוי R בי R אוי R בי R בי R בי R אוי R בי R ב	$Poi(\lambda)$ פואסון
$\frac{\sum_{n \in N} (F' \cap N)}{\sum_{n \in N} (F' \cap N)} = \frac{1}{N} \prod_{n \in N} \frac{1}{N} \prod_{n \in N} \frac{1}{N} \prod_{n \in N} \prod_{n \in N} \frac{1}{N} \prod_{n \in N} \prod_{n \in N$	$Var(X) = \frac{Var(X)}{p}$ אותו $Urig$ (מתחיל בדוגמא) $p)^{n-r}$ $= \frac{r(r+1)}{p^2} \cdot \sum_{m=r+2}^{\infty} {m-1 \choose (r+2)-1} \cdot p$	הוכחה: בעזרת: $= \sum_{n=0}^{\mathbb{E}(X)} n \cdot \mathbb{P}(X = n)$	$ \cdot n^r(1-n)^{n-r} $	$\begin{aligned} & [P,\infty) \\ & (\mathbb{N}^{2}) \times \mathbb{N}^{2} = \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} = \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} = \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} = \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} \times \mathbb{N}^{2} = \mathbb{N}^{2} \times \mathbb{N}$	בינומית שלילית $NB(r,p)$ אם המשתנים אם המשתנים המקרים $X_1, \dots X_r \sim Geon(p)$ בלתי תלוים $X = rt$ ובלתי תלוים $X = rt$ בריי $X = rt$

<u>סד"פים:</u>

<u>כאשר יש שאלה הוכיחו שקיים:</u>

קודם כל נעשה את נתוני השאלה בצורה רנדומלית (נגיד צביעה נצבע רנדומלית), ואז נעשה אינדיקטור שבודק לי מה ההסתברות שמקרה פרטי לא עובד, ואז נבדוק מה ההסתברות שבכללי לא עובד וננסה להגיע לזה שזה קטן מ1.

<u>אי שוויונות:</u>

- אם יש < ורוצים ≤ צריך לדעת שזה מגדיל את ההסתברות.
 - פתיחת ערך מוחלט:
 - $P(|X| < a) \rightarrow P(-a < X < a)$
 - $P(|X| > a) \rightarrow P(X < -a \text{ or } X > a)$
- ביותר התחתון ביותר אדיך להחסיר את בטווח [a,b] במקרה שלנו ביותר משתנה X_i משתנה להזיז משתנה בטווח $Y_i = rac{(X_i - a)}{b - a}$ ואז את כל התוצאה לחלק בערך העליון ביותר. כלומר
- . חשוב שכל המ"מ יהיו בין {0,1} אחרת צריך לנרמל ולאחר הנרמול נראה איזה ערכים יכולים להיות לנו.
- כאשר רוצים להגיע לצורה של צ'רנוף **חשוב** לזכור מה התוחלת שלנו ולנסות למצוא אותו באי שיוויון. (אם לא להוסיף בכוח +-) 0
 - משפט הגבול המרכזי:
 - לזכור שעושים שימוש בתוחלת והשונות של המשתנה הבודד ולא של הסכום.

כתיבת אלגוריתם:

- בדרך כלל האלגוריתם פשוט "בחר כמות משתנים.. תחזיר את ה(--) שלהם"
- אינטואיציה: לחשוב מה היה הפתרון ללא מגבלת הזמן ריצה ואז נבחר איזה משתנה שיגביל ללא תלות (אם צריך).
 - לזכור שצריך להדגיש שזה עם חזרות וללא תלות.
 - nלהראות שהזמן ריצה קבוע ולא תלוי
- **טיפ:** אנחנו יכולים לחשב הסתברות לפי הנחה שהקלט תקין ו\או שהקלט לא תקין (בדרך כלל אם הפלט זה "כן"∖ "לא").
 - תמיד משתנים מקריים! (מחליף את הבחירה האקראית במשנה מקרי) 0
 - מיד לאחר הגדרת משתנים לחשב תוחלת. 0
 - (בדרך למצוא את החסם) כדי למצוא את החסם) לאחר כל זה נציב בהסתברות (בדרך כלל מסומן ב
 - לשים לב: חסמים נותנים לי לכל היותר לכן אם יש $\delta-1$ כנראה שצריך להפוך את ההסתברות. ז"א להחליף את האי שוויון.
- טריק: כדאי לקחת את ההסתברות מהשאלה לכתוב אותה ואז לראות איך ניתן להמיר את נתוני השאלה למ"מ שלנו ולתוחלת שלו. 0 0
 - לאחר סידור ההסתברות מוצאים את האי שוויון הרלוונטי ומציבים.
 - (קטן מ δ לדוגמה) נציב את התוצאה באי שיוון השני שאמור להתקיים מהאלגוריתם (קטן מ

<u>השיטה הסתברותית:</u>

- שאלות של "הוכיחו כי קיים...." ותנאי מסוים.
- בשיטה הסתברותית: בוחרים דברים באופן אקראי ומוכיחים:
 - קיים ההסתברות של מה שאנחנו רוצים גדול מ0

- לא קיים ההסתברות של מה שאנחנו רוצים שווה ל0.
- **.00 טיפ:** אחרי המילה "קיים" זה האלמנט ההסתברותי תעשה את התנאי וההסתברות שזה "עומד בתנאי" זה גדול מ
 - טיפ 2: יותר קל להוכיח מתי זה לא מתקיים.
 - חלוקה למ"מ: התנאי של כל אחד בדרך כלל יהיה על הקבוצות.
 - בשלב האחרון (לפעמים לאחר חסם איחוד) יהיה צורך לבחון במה ההסתברות שלנו חסומה, האם זה שואף ל0 או לאינסוף.
- טיפ 3: ניקח את התנאי ונניח כי יש קבוצות שונות שמנסות לקיים אותו, לכל קבוצה נגדיר אינדיקטור "האם הקבוצה עומדת∖לא עומדת בתנאי" – <mark>מה עדיף??</mark> כדאי לבדוק מתי "מספיק 1" כדי שיתקיים∖לא יתקיים, כדי שנסכום אותם נעשה שימוש באיחוד ואז חסם איחוד.

 $S = \Sigma_{i=1}^{\left(rac{n}{100}
ight)} X_S$. $G\left(n,rac{1}{2}
ight)$ ב להיות אינדיקטור האם A_i היא קבוצה שלטת ב

$$\text{:pt.} E(X_s) = P(X_s = 1) = 1 - P(X_s = 0) = 1 - \frac{n - 100}{2^{100}} \\ P(exists\ DomSet) = P(\cup\ X_S = 1) \leq \Sigma_{l=1}^{\binom{n}{100}} 1 - \frac{n - 100}{2^{100}} \leq \binom{n}{100} \left(1 - \frac{n - 100}{2^{100}}\right) \leq n^{100} \cdot e^{-\frac{(n - 100)}{2^{100}}} \rightarrow 0$$

- טיפ 4: אם גודל הקבוצות יכול להשתנות אז צריך לבחור לפי כל גודל את הקבוצות בגודל הזה והאם מישהו מקיים. יש קבוצה שניתן של הקבוצות שניתן x) $P(Good) = \Sigma^t P(\cup^x X_i = 1) . Q$ שמקיימת תכונה $t \leq t \leq n$ יש קבוצה בגודל
 - $\binom{n}{k} \leq \left(\frac{en}{k}\right)^k$: איש חסמים שונים ל-choose לא הדוק א הדוק סיפ 5: יש חסמים שונים ל
 - : nטיפ t: פיצול סיגמות אם יש סיגמא עם חזקות ושברים שתלויים ב
 - ננסה להציב בחזקה את הערך הכי קטן ובשבר נציב לפי הרצון להגדיל אותו.
 - :כך (\sqrt{n} כבו (כמו n) אם זה לא עבד ננסה את הפיצול עד לנק' קטנה שגם תלויה ב
 - . הסיגמא הראשון מ1 עד הנק' פיצול שלנו שיהיה וארציה שונה וקטנה יותר מהn הכי גדול שניתן
 - . הסיכמה שנייה מהוראציה הקטנה עד לn המקסימלי שניתן להגיע אליו

משתנה מקרי רציף ופונקציות צפיפות:

- זה בעצם להפוך את ההסתברות ($X \leq a$) לאינטגרל $P(X \leq a)$ היא פונקציה שיגדירו. דה בעצם להפוך את ההסתברות ($\int_{-\infty}^{\infty} ae^{-|x|} = \int_{-\infty}^{0} ae^{x} + \int_{0}^{\infty} ae^{-x} = \lim_{b \to -\infty} ae^{0} ae^{b} + \lim_{b \to \infty} -ae^{-b} + ae^{0}$
 - $\ddot{\ddot{a}}, b$ שאלות "מצאו את
 - אם יש למ.. עד.. לפי ערכי הפונקציה. אם יש למ.. עד.. לפי ערכי הפונקציה מפוצלת אז צריך לעשות אינטגרל של מ.. עד.. לפי ערכי הפונקציה חשוב לזכור: צריך 2 משוואות לכן נעשה שימוש גם בפונקציית הצפיפות וגם בתוחלת. $\sum_{n=0}^{\infty}$
 - - לזכור: $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ לזכור:
 - "שאלות של "הסתברות שיש a פתרונות למשוואה שאלות של
 - $1 P(X \le a)$ צריך לעשות: P(X > a) טיפ: שיש לנו . נבדוק מתי חיובי, $b^2-4ac>0$ נבדוק מתי חיובי, מה שיש בנוסחת השורשים מתחת לשורש: אם הפרבולה בוכה או מחייכת ולפי זה נחליט מה התווך של המשתנה הרציף.
 - דוגמה→ הוכח שפונקציה היא פונקציית צפיפות:
 - צריך להראות שהאינטגרל שלה בין הערכים שווה בסוף ל1 (לפי תכונה 2).
 - הצגת פונקציית צפיפות מצטברת של מ"מ:
 - . מערכים לכל טווח הערכים את פונ' הצפיפות לכל טווח הערכים מים להראות לפי מרכים אריך את פונ' בריך להראות לפי
 - 0
 - !a כי הטווח העליון תמיד יהיה $\int_{-\infty}^a f_x(a) : a <$ צריך לבחון: (הערך הכי קטן שמוגדרת פונ' הצפיפות) צריך לבחון:

וגם (הערך הכי גדול שבו מוגדרת פונ' הצפיפות) $\int_{-\infty}^a f_x(a):a>($ תמיד = 1 לפי הגדרה!). מבר הכי גדול שבו מוגדרת פונ', אבל להתחיל תמיד מ ∞ עד α

אם פונ' הצפיפות מוגדרת בטווח כלשהו שהוא מתחת לגודל a (כמו בדוגמה למטה) צריך לעשות אינטגרל:

- $\it .a$ של שהוא אבטווח של הראשון: מהערך הכי נמוך שמוגדרת הפונק' עד הערך הכי גדול שהוא אבטווח של
 - a עד a עד מהטווח הכי נמוך של

$$\begin{split} F_X(a) &= \int_{-\infty}^a f(x) dx = \int_0^{1/2} 4x dx + \int_{1/2}^a (4 - 4x) dx = 2x^2 \big|_0^{1/2} + (4x - 2x^2) \big|_{1/2}^a \\ &= (1/2 - 0) + [(4a - 2a^2) - (2 - 1/2)] = 4a - 2a^2 - 1, \end{split}$$
 $F_X(a) = \begin{cases}
0 & \text{if } a < 0 \\
2a^2 & \text{if } 0 \le a \le 1/2 \\
4a - 2a^2 - 1, & \text{if } 1/2 < a \le 1
\end{cases}$

 $F_X(a) = \int_{-\infty}^a f(x) dx = \int_{-\infty}^\infty f(x) dx = 1$ never a>1. Assume next that $0 \le a \le 1/2$. Then $F_X(a) = \int_{-\infty}^a f(x) dx = \int_0^a 4x dx = 2x^2 \big|_0^a = 2a^2.$

 $F_X(a) = \mathbb{P}(X \le a) = \int_{-\infty}^a f(x) dx = \int_{-\infty}^a 0 dx = 0$ $f(x) = \begin{cases} 4x & 0 \le x < 1/2 \\ 4 - 4x & 1/2 \le x \le 1 \end{cases}$ and

מתכנס בוודאות \ בהסתברות:

:
$$X_n \! \sim \! \begin{cases} n, & 1/n^2 \\ 0, & 1-1/n^2 \end{cases} \! : \! X_n \! \rightarrow \! \{X\}_n^\infty$$
 והסדרה $X \equiv 0$

- $\lim_{n \to \infty} P(|X_n X| \ge \varepsilon) = \lim_{n \to \infty} P(X_n = 1) = \lim_{n \to \infty} 1/n^2 = 0 : X_n \to X$

<u>נקודות לזכור:</u>

i את הדרגה של X_i ספירה של צלעות בגוף: $\binom{n}{2}$ ספירה של כמות מתוך סה"כ כל האופציות של צלעות: $\binom{n}{2}$ נסמן משתנה מקרי X_i את הדרגה של מכאן : $E(X_i) = \left(\frac{1}{2}\right) \cdot (n-1) < \frac{n}{2}$ מכאן מכאל הקודקודים שאני יכול להתחבר אליהם ב $E(X_i) = \left(\frac{1}{2}\right) \cdot (n-1) < \frac{n}{2}$ מכאן מכאן בוד: $G(n,p) - \binom{n-x}{1}(p)^{\chi}$ ([x אחד החזקה לאף אחד ההסתברות שיש קודקוד בודד: שיש קודקוד בודד: $G(n,p) - \binom{n-x}{1}(p)^{\chi}$ $P(u, v \text{ without commin neighbor}) \le 2 \cdot :$ ההסתברות שיש שני קודקודים ללא שכן משותף $||P(isolated \ vetex)| \le 2n \cdot \left(\frac{1}{2}\right)^n = n \cdot 2^{1-n} \to 0$ $B\left(n,n,\frac{1}{2}\right) \simeq {n \choose 2} \cdot \left(1-\left(\frac{1}{2}\right)^2\right)^n \to 0$