SS 22	AUD2	

1.					_	
(L) 9	j	TT(j)	XTG)	≥ xizi 10	$\sum_{i=1}^{3} x_{i} P_{i}$	王 - [] 21年
	1	3	1	10	\(\sum_{i=1}^{\infty} \times_{i=1}^{\infty} \times_{i}^{\infty} \\ 12	10
	2	5	1	20	23	0
	3	4	0	20	23	0
	4	1	0	20	23	0
	5	2	0	20	23	0

Sortiere absteigend Mach Grewinn.

5) Für dien Aufgabe gibt es noch eine Möglichkeit mit Fractional Knapsach.

$$\frac{Z_{i}}{P_{i}} \stackrel{?}{=} \frac{2}{3} \quad 3 \stackrel{5}{=} \stackrel{1}{=} \frac{10}{11}$$

$$RF \quad 1 \quad 5 \quad 2 \quad 4 \quad 3$$

$$\vec{i} \quad \vec{\pi}(j) \quad x_{\vec{\tau}(j)} \quad \sum_{\substack{i=1 \ i=1 \$$

Ex Fractional Knapsach hat Gewinn $P_{FG} = 25,4 > P_{GC}$, also ist die Lösung von a) nicht extimal.

d) Bei Maximum Knapsack wird eine Instanz von Objekten ganz du 1 eder gar nicht also O gewählt.

D.h. mit diesem Algorithmus ein Teil von der Instanz zu wählen ist nicht miglich.