

Explaining and Predicting Price-Spikes in Real-Time Electricity Markets

Christian Brown (csbrown@stanford.edu)¹, Gregory Von Wald (gvonwald@stanford.edu) ¹

¹Department of Energy Resources Engineering, Stanford University

PREDICTING

MOTIVATION AND OBJECTIVE

- The electricity market is designed to ensure optimal generation and delivery of power. When the grid is under stress, price spikes may occur, yielding up to a 100-fold increase in the electricity price.
- This study utilizes a suite of supervised classification algorithms to predict the likelihood of a real-time price spike occurrence based on the weather, day-ahead market information, and temporal characteristics.

MODELS & FEATURES

3 BINARY CLASSIFICATION MODELS

I. Logistic regression

$$\max \sum_{i=1}^{m} \hat{y}^{i} \log y^{i} + (1 - y^{i}) \log(1 - \hat{y}^{i}) - \lambda \|\theta\|_{2}^{2}$$

II. Random forest classifier

$$min \sum_{i=1}^{m} l(y^{i}, \hat{y}^{i}) + \sum_{k=1}^{K} \Omega(f_{k})$$

$$with \ \hat{y}^{i} = \frac{1}{K} \sum_{k=1}^{K} f_{k}(x^{i})$$

and $\Omega(f_k)$ is complexity of tree k

III. Gradient boosting classifier

$$\sum_{i=1}^{m} \left[g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t)$$
with $g_i = \partial_{\hat{y}^{t+1}} l(y_i, \hat{y}_i^{t-1}), h_i = \partial_{\hat{y}^{t+1}}^2 l(y_i, \hat{y}_i^{t-1})$

Optimized hyperparameters for each model to maximize overall accuracy, positive recall, and precision.

FEATURES AND TARGET

- I. Weather
- i. Temperature, wind speed, relative humidity, dewpoint
- II. Day Ahead Market
 - ii. Load forecast and electricity price
- III. Time (cyclic and binary values)
- iii. Hour of day, day of week, peak/off-peak, weekend/weekday, holiday
- IV. Target Price Spikes
 - III. Defined arbitrary threshold and assigned binary tag to each sample

DATA

- 10 years of zonal hourly prices for ISO-NE
- NOAA weather data mapped to each ISO-NE zone
- Balanced dataset for training models
- Imbalanced datasets for predictions and scoring

Figure 1. Distribution of hourly electricity prices from ISO-NE service territory.

RESULTS

Model	Training (m=26,640)	Test (m=30,000)
	Accuracy	Accuracy (recall/score)
Logistic Regression	88.90%	93.2% (88.2%/.711)
Random Forest Classifier	99.99%	94.46% <i>(97.0%/.764)</i>
Gradient Boosted Classifier	100%	95.1% <i>(97.2%/.777)</i>

MODEL PERFORMANCE:

Gradient Boosted
 Classifier performed
 the best overall

Table 1. Performance of all three models as measured by accuracy, positive recall, and a composite score (arithmetic mean of the previous metrics and precision)

DISCUSSION

OBSERVATIONS

- I. Logistic Regression performs more poorly than decision tree based methods
- II. Gradient boosted classifier slightly outperforms random forest classifier
- III.Decision tree models displayed best performance with high variance hyperparameters
- IV. Averaging model outputs does not improve accuracy

SAMPLE MODEL OUTPUT:

Figure 3. Timeseries of hourly electricity prices, price-spike threshold, and corresponding model predictions for dates of 7/27/2011 to 8/9/2011.

- High positive recall rate indicates that the model can be used as a tool for hedging in the power markets
- Type II errors are the primary source of inaccuracy

FUTURE

- Limit feature set to data that is available 24 hours in advance (i.e. use weather forecasts)
- Future works include feature selection and model reduction, implementation of a deep learning model
- Incorporate a more flexible definition of spike (i.e. a large price increase relative to the previous hour)