Lab3

1 Introduction

1.1 Aims

- Implement half adder, full adder circuit.
- Practice with different adder circuits.

1.2 Requirements

- Understand how to implement an adder circuit.
- Have ability to combine the small cicuits to implement the bigger ones.

1.3 Procedure

- Verify the gates.
- Make the connections as per the circuit diagram.
- Switch on V_{cc} and apply various combinations of input according to the truth table.
- Note down the output readings for half/full adder and half/full subtractor sum/difference and the carry/borrow bit for different combinations of inputs.

1.4 Report Requirements

Your report of each exercise should include:

- Answer and explain all questions (If required).
- The circuit and truth table of each exercise.
- Two or Three photos of the circuit **on KIT**.

2 Contents

2.1 Half/Full Adder

2.1.1 Using X-OR and Basic Gates

Half Adder

Figure 1: Half Adder circuit with X-OR and Basic Gates.

Full Adder

Figure 2: Full Adder circuit with X-OR and Basic Gates.

2.1.2 Using only NAND gates

Half Adder

Figure 3: Half Adder circuit with only NAND gates.

Full Adder

Figure 4: Full Adder circuit with only NAND gates.

2.2 Half/Full Subtractor

2.2.1 Using X-OR and Basic Gates

Half Subtractor

Figure 5: Half Subtractor circuit with X-OR and Basic Gates.

Full Subtractor

Figure 6: Full Subtractor circuit with X-OR and Basic Gates.

2.2.2 Using only NAND gates

Half Subtractor

Figure 7: Half Subtractor circuit with only NAND gates.

Full Subtractor

Figure 8: Full Subtractor circuit with only NAND gates.

Fill in these tables:

	Half Adder						
Α	В	s	C	S(V)	C(V)		
	0	0	0				
0	1	1	0				
1	0	1	0				
1	1	0	1				

	Half Subtractor						
A	В	D	В	D(V)	B(V)		
0	0	0	0				
0	1	1	1				
1	0	1	0				
1	1	0	0				

Full Adder								
Α	В	Cn-1	S	C	S(V)	C(V)		
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				

	Full Subtractor					
A	В	Cn-1	D	В	D(v)	B(v)
0	0	0	0	0		
0	0	1	1	1		
0	1	0	1	1		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	0		
1	1	0	0	0	·	
1	1	1	1	1		

3 Exercices

Exercice 1: Implement a half subtractor circuit use **only** NAND gate. Show results on LED diode.

Exercice 2: Implement full adder circuit from the half adder

The full adder circuit must have 3 inputs: bit A, bit B and carry bit. Show results on LED diode.

Exercice 3: Implement an adder that can be work out the sum of two 2-bits numbers by using full adder circuit. Show results on both LED diot and 7-seg LED.