Our first result yields an estimate for the dimension of the eigenspaces pertaining to eigenvalues of a pseudo-resolvent.

<u>Proposition</u> 2.1. Let R be an identity preserving pseudo-resolvent of Schwarz type on D = $\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ with values in the predual of a W*-algebra M . If $\operatorname{Fix}(\lambda \operatorname{R}(\lambda))$ is finite dimensional for some $\lambda \in D$, then

dim Fix(
$$(\gamma - i\alpha)R(\gamma)$$
) \leq dim Fix($\lambda R(\lambda)$)

for all $\gamma \in D$ and $\alpha \in \mathbb{R}$.

<u>Proof.</u> By D-IV, Remark 3.2.c we may assume without loss of generality that there exists a faithful family of R-invariant normal states on M . In particular the fixed space N of the adjoint pseudoresolvent R' is a W*-subalgebra of M with 16N (by Lemma 1.1.b). Since N is finite dimensional there exist a natural number n and a set P:= $\{p_1, \ldots, p_n\}$ of minimal, mutually orthogonal projections in N such that $\sum_{k=1}^{n} p_k = 1$. These projections are also mutually orthogonal in M with sum 1.

Let R_j be the $\sigma(M,M_{\star})$ -closed right ideal p_jM and L_j the closed left invariant subspace $M_{\star}p_{j}$ (1 \leq j \leq n). The map μ R(μ)', μ \in R₊ is an identity preserving Schwarz map . From Lemma 1.1.b we therefore obtain that for all x \in N and y \in M,

$$\mu R(\mu)'(xy) = x(\mu R'(\mu)y) .$$

In particular, R_j , resp., L_j are invariant under R', respectively, R. Furthermore, if $\psi\in L_j$ with polar decomposition $\psi=u|\psi|$, then $u^*u=s(|\psi|)\leq p_j$. Consequently, $|\psi|\in L_j$. Let now $\alpha\in \mathbb{R}$ and suppose that there exists $\psi_\alpha\in L_j$ of norm 1, $\psi_\alpha=u_\alpha|\psi_\alpha|$, such that

$$\psi_{\alpha} \in Fix((\lambda - i\alpha)R(\lambda))$$
 , $\lambda \in D$.

Since $\lambda R(\lambda) |\psi_{\alpha}| = |\psi_{\alpha}|$ (Proposition 1.4), we obtain

$$\mu R(\mu) ' (1-s(|\psi_{\alpha}|)) \leq (1-s(|\psi_{\alpha}|), \mu \in \mathbb{R}_{+}.$$

From the existence of a faithful family of R-invariant normal states and since R' is identity preserving it follows that

$$\mu R(\mu)$$
's($|\psi_{\alpha}|$) = s($|\psi_{\alpha}|$).