Algebra Notes

D. Zack Garza

January 6, 2020

Contents

1	Gro	up Theory 1
	1.1	Finitely Generated Abelian Groups
	1.2	The Symmetric Group
	1.3	Counting Theorems
		1.3.1 Examples of Orbit-Stabilizer
		1.3.2 Sylow Theorems
		1.3.3 Sylow 1 (Cauchy for Prime Powers)
		1.3.4 Sylow 2 (Sylows are Conjugate)
		1.3.5 Sylow 3 (Numerical Constraints)
	1.4	Products
	1.5	Isomorphism Theorems
	1.6	Special Classes of Groups
	1.7	Series of Groups
2	Ring	gs 10
	2.1	Definitions and Basics
	2.2	Maximal and Prime Ideals
	2.3	Nilradical and Jacobson Radical
	2.4	Zorn's Lemma
	2.5	Unsorted

1 Group Theory

Definition (Centralizer):

$$C_G(H) = \left\{ g \in G \mid ghg^{-1} = h \ \forall h \in H \right\}$$

Definition (Normalizer):

$$N_G(H) = \left\{ g \in G \mid gHg^{-1} = H \right\}$$

Lemma: $C_G(H) \leq N_G(H)$

Lemma: The size of the conjugacy class of H is the index of the centralizer, i.e.

$$\left|\left\{gHg^{-1} \mid g \in G\right\}\right| = [G: C_G(H)].$$

Lemma ("The Fundamental Theorem of Cosets"):

$$aH = bH \iff a^{-1}b \in H \text{ or } aH \cap bH = \emptyset$$

Definition: $[x,y] = x^{-1}y^{-1}xy$ is the **commutator**, and $[G,G] := \{[x,y] \mid x,y \in G\}$ is the **commutator** subgroup.

Lemma:

$$[G,G] \leq H$$
 and $H \leq G \implies G/H$ is abelian.

1.1 Finitely Generated Abelian Groups

Invariant factor decomposition:

$$G \cong \mathbb{Z}^r \times \prod_{j=1}^m \mathbb{Z}/(n_j)$$
 where $n_1 \mid \cdots \mid n_m$.

Going from invariant divisors to elementary divisors:

- Take prime factorization of each factor
- Split into coprime pieces

Example:

$$\mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(2^3 \cdot 5^2 \cdot 7)$$

$$\cong \mathbb{Z}/(2) \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(2^3) \oplus \mathbb{Z}/(5^2) \oplus \mathbb{Z}/(7)$$

Going from elementary divisors to invariant factors:

- Bin up by primes occurring (keeping exponents)
- Take highest power from each prime as *last* invariant factor
- Take highest power from all remaining primes as next, etc

Example: Given the invariant factor decomposition

$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{25},.$$

$$\implies n_m = 5^2 \cdot 3 \cdot 2$$

$$\frac{p=2 \quad p=3 \quad p=5}{2,2 \quad 3 \quad \emptyset}$$

$$\implies n_{m-1} = 3 \cdot 2$$

$$\begin{array}{c|cccc}
p = 2 & p = 3 & p = 5 \\
\hline
2 & \emptyset & \emptyset
\end{array}$$

$$\implies n_{m-2} = 2$$

and thus

$$G \cong \mathbb{Z}/(2) \oplus \mathbb{Z}/(3 \cdot 2) \oplus \mathbb{Z}/(5^2 \cdot 3 \cdot 2).$$

1.2 The Symmetric Group

Definitions:

- A cycle is **even** \iff product of an *even* number of transpositions.
 - A cycle of even *length* is **odd**
 - A cycle of odd *length* is **even**

Definition The **alternating group** is the subgroup of **even** permutations, i.e. $A_n := \{ \sigma \in S_n \mid \text{sign}(\sigma) = 1 \}$ where $\text{sign}(\sigma) = (-1)^m$ where m is the number of cycles of even length.

Corollary: Every $\sigma \in A_n$ has an even number of odd cycles (i.e. an even number of even-length cycles).

Example:

$$A_4 = \{ id, \\ (1,3)(2,4), (1,2)(3,4), (1,4)(2,3), \\ (1,2,3), (1,3,2), \\ (1,2,4), (1,4,2), \\ (1,3,4), (1,4,3), \\ (2,3,4), (2,4,3) \}.$$

Lemmas:

- The transitive subgroups of S_3 are S_3, A_3
- The transitive subgroups of S_4 are $S_4, A_4, D_4, \mathbb{Z}_2^2, \mathbb{Z}_4$.
- For n = 4, S_n has two normal subgroups: A_4, \mathbb{Z}_2^2 .
- For $n \geq 5$, S_n one normal subgroup: A_n .
- $Z(S_n) = 1$ for $n \ge 3$

- $Z(A_n) = 1$ for $n \ge 4$
- $[S_n, S_n] = A_n$ $[A_4, A_4] \cong \mathbb{Z}_2^2$
- $[A_n, A_n] = A_n$ for $n \ge 5$
- A_n is simple for $n \geq 5$.

1.3 Counting Theorems

Lagrange's Theorem:

$$H \le G \implies |H| \mid |G|.$$

Corollary: The order of every element divides the size of G, i.e.

$$g \in G \implies o(g) \mid o(G) \implies g^{|G|} = e.$$

Warning: Rhere does **not** necessarily exist $H \leq G$ with |H| = n for every $n \mid |G|$. Counterexample: $|A_4| = 12$ but has no subgroup of order 6.

Cauchy's Theorem:

For every prime p dividing |G|, there is an element (and thus a subgroup) of order p.

This is a partial converse to Lagrange's theorem.

Notation: For a group G acting on a set X,

- $G \cdot x = \{g \curvearrowright x \mid g \in G\} \subseteq X$ is the orbit
- $G_x = \{g \in G \mid g \curvearrowright x = x\} \subseteq G$ is the stabilizer
- $X/G \subset \mathcal{P}(X)$ is the set of orbits
- $X^g = \{x \in X \mid g \curvearrowright x = x\} \subseteq X$ are the fixed points

Orbit-Stabilizer:

$$|G \cdot x| = [G : G_x] = |G|/|G_x|$$
 if G is finite

4

Mnemonic: $G/G_x \cong G \cdot x$.

1.3.1 Examples of Orbit-Stabilizer

- 1. Let G act on itself by conjugation.
- $G \cdot x$ is the **conjugacy class** of x
- $G_x = Z(x) := C_G(x) = \{g \mid [g, x] = e\}, \text{ the centralizer of } x.$

• G^g (the fixed points) is the **center** Z(G).

Corollary: The size of a conjugacy class is the index of the centralizer.

Corollary: the Class Equation:

$$|G| = |Z(G)| + \sum_{\substack{\text{One } x_i \text{ from} \\ \text{each conjugacy} \\ \text{class}}} [G:Z(x_i)]$$

1. Let G act on S, its set of *subgroups*, by conjugation.

- $G \cdot H = \left\{ gHg^{-1} \right\}$ is the **set of conjugate subgroups** of H
- $G_H = N_G(H)$ is the **normalizer** of in G of H
- S^G is the set of **normal subgroups** of G
- 3. For a fixed proper subgroup H < G, let G act on its cosets $G/H = \{gH \mid g \in G\}$ by left-multiplication.
- $G \cdot gH = G/H$, i.e. this is a transitive action.
- $G_{qH} = gHg^{-1}$ is a conjugate subgroup of H
- $(G/H)^G = \emptyset$

Application: If G is simple, H < G proper, and [G : H] = n, then there exists an injective map $\phi : G \hookrightarrow S_n$.

Proof: This action induces ϕ ; it is nontrivial since gH = H for all g implies H = G; $\ker \phi \subseteq G$ and G simple implies $\ker \phi = 1$.

Burnside's Formula:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

1.3.2 Sylow Theorems

Notation: For any p, let $Syl_p(G)$ be the set of Sylow-p subgroups of G.

Write

- $|G| = p^n m$ where (m, p) = 1,
- S_p a Sylow-p subgroup, and
- n_p the number of Sylow-p subgroups.

Definition: A p-group is a group G such that every element is order p^k for some k. If G is a finite p-group, then $|G| = p^j$ for some j.

Lemma: *p*-groups have nontrivial centers.

Some useful facts:

- Coprime order subgroups are disjoint, or more generally \mathbb{Z}_p , $\mathbb{Z}_q \subset G \implies \mathbb{Z}_p \cap \mathbb{Z}_q = \mathbb{Z}_{(p,q)}$.
- The Chinese Remainder theorem: $(p,q) = 1 \implies \mathbb{Z}_p \times \mathbb{Z}_q \cong \mathbb{Z}_{pq}$

1.3.3 Sylow 1 (Cauchy for Prime Powers)

 $\forall p^n \text{ dividing } |G| \text{ there exists a subgroup of size } p^n.$

If $|G| = \prod p_i^{\alpha_i}$, then there exist subgroups of order $p_i^{\beta_i}$ for every i and every $0 \le \beta_i \le \alpha_i$. In particular, Sylow p-subgroups always exist.

1.3.4 Sylow 2 (Sylows are Conjugate)

All sylow-p subgroups S_p are conjugate, i.e.

$$S_p^1, S_p^2 \in \mathrm{Syl}_p(G) \implies \exists g \text{ such that } gS_p^1g^{-1} = S_p^2.$$

Corollary: $n_p = 1 \iff S_p \leq G$

1.3.5 Sylow 3 (Numerical Constraints)

- 1. $n_p \mid m$ (in particular, $n_p \leq m$),
- 2. $n_p \equiv 1 \mod p$,
- 3. $n_p = [G: N_G(S_p)]$ where N_G is the normalizer.

Corollary: p does not divide n_p .

Lemma: Every p-subgroup of G is contained in a Sylow p-subgroup.

Proof: Let $H \leq G$ be a *p*-subgroup. If H is not *properly* contained in any other *p*-subgroup, it is a Sylow *p*-subgroup by definition.

Otherwise, it is contained in some p-subgroup H^1 . Inductively this yields a chain $H \subsetneq H^1 \subsetneq \cdots$, and by Zorn's lemma $H := \bigcup H^i$ is maximal and thus a Sylow p-subgroup.

Fratini's Argument: If $H \subseteq G$ and $P \in \operatorname{Syl}_p(G)$, then $HN_G(P) = G$ and [G : H] divides $|N_G(P)|$.

1.4 Products

Characterizing direct products: $G \cong H \times K$ when

- $G = HK = \{hk \mid h \in H, k \in K\}$
- $H \bigcap K = \{e\} \subset G$
- $H, K \leq G$

Can relax to only $H \leq G$ to get a semidirect product instead

Characterizing semidirect products: $G = N \rtimes_{\psi} H$ when

• G = NH

Figure 1: Image

- $N \leq G$
- $H \curvearrowright N$ by conjugation via a map

$$\psi: H \to \operatorname{Aut}(N)$$

 $h \mapsto h(\cdot)h^{-1}$.

Lemma: If $\sigma \in Aut(H)$, then $N \rtimes_{\psi} H \cong N \rtimes_{\psi \circ \sigma} H$.

Useful Facts

- Aut $(\prod_{k=1}^n \mathbb{Z}/(p)) = \operatorname{GL}(n, \mathbb{Z}/(p))$ If this occurs in a semidirect product, it suffices to consider similarity classes of matrices (i.e. just use canonical forms)
- Aut $(\mathbb{Z}_n) \cong (\mathbb{Z}^n)^{\times} \cong \mathbb{Z}^{\varphi(n)}$ where φ is the totient function.

1.5 Isomorphism Theorems

Lemma: If $H, K \leq G$ and $H \leq N_G(K)$ (or $K \leq G$) then $HK \leq G$ is a subgroup.

Diamond Theorem / 2nd Isomorphism Theorem:

If $S \leq G$ and $N \leq G$, then

$$\frac{SN}{N}\cong \frac{S}{S\cap N}$$

Note: for this to make sense, we also have

- $SN \leq G$, $S \bigcap N \leq S$,

Cancellation / 3rd Isomorphism Theorem

If $H, K \subseteq G$ with $H \subseteq K$, then

$$\frac{G/H}{G/K}\cong \frac{G}{K}$$

Note: for this to make sense, we also have $G/K \leq G/H$.

The Correspondence Theorem / 4th Isomorphism Theorem: Suppose $N \subseteq G$, then there exists a correspondence:

$$\left\{ H < G \mid N \subseteq H \right\} \iff \left\{ H \mid H < \frac{G}{N} \right\}$$

$$\left\{ \right\} \iff \left\{ \right\}.$$

In words, subgroups of G containing N correspond to subgroups of the quotient group G/N. This is given by the map $H \mapsto H/N$.

Note: $N \subseteq G$ and $N \subseteq H < G \implies N \subseteq H$.

1.6 Special Classes of Groups

Definition: The "2 out of 3 property" is satisfied by a class of groups C iff whenever $G \in C$, then $N, G/N \in C$ for any $N \leq G$.

Definition: If $|G| = p^k$, then G is a **p-group.**

Lemmas:

- p-groups have nontrivial centers
- Every normal subgroup is contained in the center
- Normalizers grow
- Every maximal is normal
- Every maximal has index p
- p-groups are nilpotent
- p-groups are solvable

Definition: A group G is **simple** iff $H \subseteq G \implies H = \{e\}, G$, i.e. it has no non-trivial proper subgroups.

Lemma: If G is not simple, then for any $N \subseteq G$, it is the case that $G \cong E$ for an extension of the form $N \to E \to G/N$. >

Definition: A group G is **solvable** iff G has a terminating normal series with abelian factors, i.e.

$$G \to G^1 \to \cdots \to \{e\}$$
 with G^i/G^{i+1} abelian for all i .

Lemmas:

 \bullet G is solvable iff G has a terminating derived series.

- Solvable groups satisfy the 2 out of 3 property
- \bullet Abelian \Longrightarrow solvable
- Every group of order less than 60 is solvable.

Definition: A group G is **nilpotent** iff G has a terminating central series, upper central series, or lower central series.

Moral: the adjoint map is nilpotent.

Lemma: For G a finite group, TFAE:

- \bullet G is nilpotent
- Normalizers grow (i.e. $H < N_G(H)$ whenever H is proper)
- Every Sylow-p subgroup is normal
- ullet G is the direct product of its Sylow p-subgroups
- Every maximal subgroup is normal
- \bullet G has a terminating Lower Central Series
- \bullet G has a terminating Upper Central Series

Lemmas:

- G nilpotent $\implies G$ solvable
- Nilpotent groups satisfy the 2 out of 3 property.
- G has normal subgroups of order d for every d dividing |G|
- G nilpotent $\implies Z(G) \neq 0$
- Abelian \Longrightarrow nilpotent
- \bullet p-groups \Longrightarrow nilpotent

1.7 Series of Groups

Definition: A normal series of a group G is a sequence $G \to G^1 \to G^2 \to \cdots$ such that $G^{i+1} \preceq G_i$ for every i.

Definition A composition series of a group G is a finite normal series such that G^{i+1} is a maximal proper normal subgroup of G^i .

Theorem (Jordan-Holder): Any two composition series of a group have the same length and isomorphic factors (up to permutation).1

Definition A derived series of a group G is a normal series $G \to G^1 \to G^2 \to \cdots$ where $G^{i+1} = [G^i, G^i]$ is the commutator subgroup.

The derived series terminates iff G is solvable.

Definition: A **central series** for a group G is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that each quotient is **central**, i.e. $[G, G^i] \leq G^{i-1}$ for all i.

Definition: A lower central series is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that $G^{i+1} = [G^i, G]$

Moral: Iterate the adjoint map $[\cdot, G]$.

G is nilpotent \iff the LCS terminates.

Definition: An upper central series is a terminating normal series $G \to G^1 \to \cdots \to \{e\}$ such that $G^1 = Z(G)$ and G^{i+1} is defined such that $G^{i+1}/G^i = Z(G^i)$.

Moral: Iterate taking "higher centers".

2 Rings

2.1 Definitions and Basics

Definition: \mathfrak{p} is a **prime** ideal $\iff ab \in \mathfrak{p} \implies a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.

Definition: Spec(R) = $\{ \mathfrak{p} \leq R \mid \mathfrak{p} \text{ is prime} \}$ is the **spectrum** of R.

Definition: \mathfrak{m} is maximal $\iff I \triangleleft R \implies I \subseteq \mathfrak{m}$.

Definition: Spec_{max} $(R) = \{ \mathfrak{m} \leq R \mid \mathfrak{m} \text{ is maximal} \}$ is the **max-spectrum** of R.

Note: nonstandard notation / definition.

Lemma: Field \implies Euclidean Domain \implies PID \implies UFD \implies Integral Domain.

2.2 Maximal and Prime Ideals

Lemma: Maximal \implies prime, but generally not the converse.

Counterexample: $(0) \in \mathbb{Z}$ is prime since \mathbb{Z} is a domain, but not maximal since it is properly contained in any other ideal.

Proof: Suppose \mathfrak{m} is maximal, $ab \in \mathfrak{m}$, and $b \notin \mathfrak{m}$. Then there is a containment of ideals $\mathfrak{m} \subsetneq \mathfrak{m} + (b) \Longrightarrow \mathfrak{m} + (b) = R$.

$$1 = m + rb \implies a = am + r(ab),$$

but $am \in \mathfrak{m}$ and $ab \in \mathfrak{m} \implies a \in \mathfrak{m}$.

Lemma: If x is not a unit, then x is contained in some maximal ideal \mathfrak{m} .

Proof: Zorn's lemma.

Lemma: R/\mathfrak{m} is a field $\iff \mathfrak{m}$ is maximal.

Lemma: R/\mathfrak{p} is an integral domain $\iff \mathfrak{p}$ is prime.

2.3 Nilradical and Jacobson Radical

Definition: $\mathfrak{N} := \{ x \in R \mid x^n = 0 \text{ for some } n \}$ is the **nilradical** of R.

Lemma: The nilradical is the intersection of all **prime** ideals, i.e.

$$\mathfrak{N}(R) = \bigcap_{\mathfrak{p} \in \mathrm{Spec}(R)} \mathfrak{p}$$

Proof:
$$\mathfrak{N} \subseteq \bigcap \mathfrak{p} \colon x \in \mathfrak{N} \implies x^n = 0 \in \mathfrak{p} \implies x \in \mathfrak{p} \text{ or } x^{n-1} \in \mathfrak{p}.$$

$$\mathfrak{N}^c \subseteq \bigcup \mathfrak{p}^c \colon \text{ Define } S = \Big\{ I \trianglelefteq R \ \Big| \ a^n \not\in I \text{ for any } n \Big\}. \text{ Then apply Zorn's lemma to get a maximal ideal } \mathfrak{m}, \text{ and maximal } \implies \text{ prime}.$$

Lemma: $R/\mathfrak{N}(R)$ has no nonzero nilpotent elements.

Proof:

$$a + \mathfrak{N}(R) \text{ nilpotent} \implies (a + \mathfrak{N}(R))^n := a^n + \mathfrak{N}(R) = \mathfrak{N}(R)$$

$$\implies a^n \in \mathfrak{N}(R)$$

$$\implies \exists \ell \text{ such that } (a^n)^\ell = 0$$

$$\implies a \in \mathfrak{N}(R).$$

Definition: The **Jacobson radical** is the intersection of all **maximal** ideals, i.e.

$$J(R) = \bigcap_{\mathfrak{m} \in \operatorname{Spec}_{\max}} \mathfrak{m}$$

Lemma: $\mathfrak{N}(R) \subseteq J(R)$.

Proof: Maximal \implies prime, and so if x is in every prime ideal, it is necessarily in every maximal ideal as well.

2.4 Zorn's Lemma

Lemma: A field has no nontrivial proper ideals.

Lemma: If $I \subseteq R$ is a proper ideal $\iff I$ contains no units.

Proof:
$$r \in R^{\times} \bigcap I \implies r^{-1}r \in I \implies 1 \in I \implies x \cdot 1 \in I \quad \forall x \in R.$$

Lemma: If $I_1 \subseteq I_2 \subseteq \cdots$ are ideals then $\bigcup_i I_j$ is an ideal.

Example Application of Zorn's Lemma: Every proper ideal is contained in a maximal ideal.

Proof: Let 0 < I < R be a proper ideal, and consider the set

$$S = \left\{ J \mid I \subseteq J < R \right\}.$$

Note $I \in S$, so S is nonempty. The claim is that S contains a maximal element M.

S is a poset, ordered by set inclusion, so if we can show that every chain has an upper bound, we can apply Zorn's lemma to produce M.

Let
$$C \subseteq S$$
 be a chain in S , so $C = \{C_1 \subseteq C_2 \subseteq \cdots\}$ and define $\hat{C} = \bigcup_i C_i$.

 \hat{C} is an upper bound for C:

This follows because every $C_i \subseteq \hat{C}$.

 \hat{C} is in S:

Use the fact that $I \subseteq C_i < R$ for every C_i and since no C_i contains a unit, \hat{C} doesn't contain a unit, and is thus proper.

11

2.5 Unsorted

Lemma: Every $a \in R$ for a finite ring is either a unit or a zero divisor.

Proof: Let $a \in R$ and define $\phi(x) = ax$. If ϕ is injective, then it is surjective, so 1 = ax for some $x \implies x^{-1} = a$. Otherwise, $ax_1 = ax_2$ with $x_1 \neq x_2 \implies a(x_1 - x_2) = 0$ and $x_1 - x_2 \neq 0$, so a is a zero divisor.