ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages (CoRR, Febuary 2016)

Matteo Riondata and Eli Upfal

1 Betweeness Centrality & Rademacher Average

2 Contribution

Experimental Result

Betweeness Centrality & Rademacher Average

2 Contribution

Experimental Result

Is that node important?

Let G = (V, E) be a graph with |V| = n nodes and |E| = m edges.

QUESTION: can we find the most important node in G?

Definition

(Centrality Measure) Function $f: V \mapsto \mathbb{R}^+$ expressing the importance of a node.

MOTIVATION: Find **relevant** web-pages on the web, **influential** participants in a social network, etc.

EXAMPLES: degree, PageRank, closeness, betweeness, etc.

Betweeness Centrality(BC)

Definition

Given a graph G = (V, E), the Betweenness Centrality (BC) of a vertex $w \in V$ is defined as

$$b(w) = \frac{1}{|V|(|V|-1)} \sum_{\substack{(u,v) \in V \times V \\ u \neq v}} \frac{\sigma_{uv}(w)}{\sigma_{uv}}$$

For any ordered pair (u, v) of different nodes $u \neq v$, let \mathcal{S}_{uv} be the set of Shortest Paths (SPs) from u to v, and let $\sigma_{uv} = |\mathcal{S}_{uv}|$. Denote $\sigma_{uv}(w)$ as the number of SPs from u to v that goes through w.

Rademacher Average

Let $\mathcal F$ be a family of functions from $\mathcal D$ to [0,1], and let $\mathcal S=\{c_1,\ldots,c_\ell\}$ be ℓ i.i.d samples from $\mathcal D$. For each $f\in\mathcal F$, the true sample and the sample average of f on a sample $\mathcal S$ are

$$m_{\mathcal{D}}(f)\frac{1}{|\mathcal{D}|}\sum_{c\in\mathcal{D}}^{\ell}f(c) \text{ and } m_{\mathcal{S}}(f)=\frac{1}{\ell}\sum_{i=1}^{\ell}f\left(c_{i}\right)$$

Theorem

(Bounding Maximum Deviation) Let $\delta \in (0,1)$ and let \mathcal{S} be a collection of ℓ i.i.d samples from \mathcal{D} . Then, with probability at least $1-\delta$,

$$\sup_{f \in \mathcal{F}} |m_{\mathcal{S}}(f) - m_{\mathcal{D}}(f)| \leq 2R(\mathcal{F}, \mathcal{S}) + 3\sqrt{\frac{\ln(2/\delta)}{2\ell}}$$

Where

$$\mathrm{R}(\mathcal{F},\mathcal{S}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{\ell} \sum_{i=1}^{\ell} \sigma_{i} f\left(c_{i}\right) \right]$$

1 Betweeness Centrality & Rademacher Average

2 Contribution

3 Experimental Result

Contribution of this paper

- ullet Progressive sampling based BC approximation within arepsilon additive factor
- First BC approximation algorithm to estimate BC without depending on any global property of the graph
 - Related work: RK algorithm [Riandato and Karnopoulis 2016] depends on Vertex diameter of the graph

Definition

Given $\varepsilon, \delta \in (0,1)$, an (ε, δ) -approximation to B is a collection $\tilde{B} = \{\tilde{b}(w), w \in V\}$ such that

$$\Pr(\forall w \in v : |\tilde{b}(w) - b(w)| \le \varepsilon) \ge 1 - \delta$$

Progressive Sampling Algorithm

```
input:
     Graph G=(V,E),
     accuracy parameter \varepsilon \in (0, 1),
     confidence parameter \delta \in (0, 1)
output:
     Set B of bc approximations for all nodes in V
S_1 \leftarrow \text{initial sample size}()
D \leftarrow \{(u, v) \in VXV, u \neq v\}
while stopping condition not satisfied:
    for l \leftarrow 1 to S_i - S_{i-1}
         (u,v)\leftarrow uniform random sample(D)
         compute_SPs(u, v)
     calculate B from sample S_i
     i \leftarrow i+1
     S_i \leftarrow \text{next sample size}()
```

Random sampling to approximate betweeness

Works	Sample Space	Sample Size for (ε, δ) -approximation *	Analysis Techniques		
[Jacob et al. 2005], [Brandes and Pich 2007] [Hayashi et al. 2015]	nodes	$O\left(\frac{1}{\varepsilon^2}\left(\ln V + \ln\frac{1}{\delta}\right)\right)$	Hoeffding's ineq., Union bound		
[Riondato and Kornaropoulos 2016] [Bergamini and Meverhenke 2016]	shortest paths	$O\left(\frac{1}{\varepsilon^2} \left(\log_2 VD(G) + \ln \frac{1}{\delta}\right)\right)^{\;\dagger}$	VC-Dimension		
This work	pairs of nodes	Variable, at most $O\left(\frac{1}{\varepsilon^2}\left(\log_2L(G) + \ln\frac{1}{\delta}\right)\right)^{\frac{1}{\delta}}$	Rademacher Avg., Pseudodimension		

^{*} See Def. 3.2 for the formal definition.

[†] $\mathsf{VD}(G)$ is the vertex diameter of the graph G.

 $^{^{\}ddagger}$ L(G) is the size of the largest weakly connected component of G. See Sect. 4.2 for tighter bounds.

1 Betweeness Centrality & Rademacher Average

2 Contribution

Separation State

Experimental Result

Experim

Experimental Evaluation

- Datasets
 - They use graphs of various nature (communication, citations, P2P, and social networks) from the SNAP repository
- The performance of the algorithm is measured using
 - runtime
 - sample size
 - accuracy
- Baselines compared
 - BA [Brandes 2001] exact algorithm computing BC
 - RK [Riondato and Kornaropoulos 2016]

Results

		Speedup w.r.t.		Runtime Breakdown (%)					Absolute Error $(\times 10^5)$			
Graph	ε	Runtime (sec.)	ВА	RK	Sampling	Stop Cond.	Other	Sample Size	Reduction w.r.t. RK	max	avg	stddev
Soc-Epinions1 Directed V = 75,879 E = 508,837	$\begin{array}{c} 0.005 \\ 0.010 \\ 0.015 \\ 0.020 \\ 0.025 \\ 0.030 \end{array}$	483.06 124.60 57.16 32.90 21.88 16.05	1.36 5.28 11.50 19.98 30.05 40.95	2.90 3.31 4.04 5.07 6.27 7.52	99.983 99.956 99.927 99.895 99.862 99.827	$\begin{array}{c} 0.014 \\ 0.035 \\ 0.054 \\ 0.074 \\ 0.092 \\ 0.111 \end{array}$	0.002 0.009 0.018 0.031 0.046 0.062	$110,705 \\ 28,601 \\ 13,114 \\ 7,614 \\ 5,034 \\ 3,668$	2.64 2.55 2.47 2.40 2.32 2.21	70.84 129.60 198.90 303.86 223.63 382.24	0.35 0.69 0.97 1.22 1.41 1.58	1.14 2.22 3.17 4.31 5.24 6.37
$\begin{aligned} & \text{P2p-Gnutella31} \\ & \text{Directed} \\ & V = 62,586 \\ & E = 147,892 \end{aligned}$	0.005 0.010 0.015 0.020 0.025 0.030	$100.06 \\ 26.05 \\ 11.91 \\ 7.11 \\ 4.84 \\ 3.41$	1.78 6.85 14.98 25.09 36.85 52.38	4.27 4.13 4.03 3.87 3.62 3.66	99.949 99.861 99.772 99.688 99.607 99.495	$\begin{array}{c} 0.041 \\ 0.103 \\ 0.154 \\ 0.191 \\ 0.220 \\ 0.262 \end{array}$	0.010 0.036 0.074 0.121 0.174 0.243	81,507 21,315 9,975 5,840 3,905 2,810	4.07 3.90 3.70 3.55 3.40 3.28	38.43 65.76 109.10 130.33 171.93 236.36	0.58 1.15 1.63 2.15 2.52 2.86	1.60 3.13 4.51 6.12 7.43 8.70
Email-Enron Undirected V = 36,682 E = 183,831	0.010 0.015 0.020 0.025 0.030	202.43 91.36 53.50 31.99 24.06	1.18 2.63 4.48 7.50 9.97	1.10 1.09 1.05 1.11 1.03	99.984 99.970 99.955 99.932 99.918	0.013 0.024 0.035 0.052 0.061	0.003 0.006 0.010 0.016 0.021	66,882 30,236 17,676 10,589 7,923	1.09 1.07 1.03 1.10 1.02	145.51 253.06 290.30 548.22 477.32	0.48 0.71 0.93 1.21 1.38	2.46 3.62 4.83 6.48 7.34
Cit-HepPh Undirected V = 34,546 E = 421,578	0.010 0.015 0.020 0.025 0.030	215.98 98.27 58.38 37.79 27.13	2.36 5.19 8.74 13.50 18.80	2.21 2.16 2.05 2.02 1.95	99.966 99.938 99.914 99.891 99.869	0.030 0.054 0.073 0.091 0.108	0.004 0.008 0.013 0.018 0.023	32,469 14,747 8,760 5,672 4,076	2.25 2.20 2.08 2.06 1.99	129.08 226.18 246.14 289.21 359.45	1.72 2.49 3.17 3.89 4.45	3.40 5.00 6.39 7.97 9.53

Figure: Runtime, speedup, breakdown of runtime, sample size, reduction, and absolute error

