SECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 18.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : BIO F341

Course Title : Developmental Biology

Instructor-in-Charge : Meghana Tare

Instructor(s) : NA

Tutorial/Practical Instructors: Meghana Tare

1. Course Description:

Developmental Biology deals with the principles, processes and research involved in how a single-celled zygote is transformed into an entire multi-cellular organism. Salient features in the development stages of model organisms (eg. frog, chick, fruit fly, worm and mouse) would be taken up, to exemplify the general principles of development. The course would provide to students a strong exposure to research advances and the interplay of various other areas like molecular biology and genetics in developmental biology, via study of research/review articles from journals.

2. Scope and Objective of the Course:

Familiarize students with events occurring in the transformation of single cell into a multicellular three dimensional organism.

3. Text Books:

Wolpert, Lewis et. al. Principles of Development (4th edition). New Delhi: Oxford University Press, 2011.

4. Reference Books:

RB1: Gilbert, Scott F. Developmental Biology (9th edition). Sunderland, MA (USA): Sinauer Associates, 2010.

RB2: Slack, J.M.W. <u>Essential Developmental Biology</u> (2nd edition). Malden, MA (USA): Blackwell Publishing, 2006.

Materials (video/media links) will be made available as and when required

5. Course Plan:

Module	Lecture Session	Reference	Learning outcomes	
No.				
1.	L1-3 Origin, history and scope of	Ch. 1 (TB),	Orientation to the course.	
	developmental biology; overview of	Ch. 2 (RB2)	Introduction to developmental biology	
	general principles governing			
	development			
2.	L4-8 Life cycles of selected model	Ch. 3 (TB),	Understanding Model Organisms Overview of the vertebrate development	
	organisms - frog, chick, zebrafish	Ch. 7 and 8		
	and mouse	(RB1)		
3.	L9-16 Development of <i>Drosophila</i>	Ch. 2 (TB),	Molecular Control of Developmental	
	melanogaster and C. elegans,	Ch. 3 (RB1)	processes of the invertebrate model organisms	
	including cell signaling pathways		Illustrative examples of invertebrate	
			development	

4.	L17-19 Eukaryotic gene regulation concepts useful to understand developmental processes Techniques of molecular biology,	Material will be made	Genetic Control of Development and Techniques involved to understand the processes	
	genetics, genomics and embryo manipulation	available	Techniques used in developmental biology	
5a	L20-23 Setting up the body axes; origin and specification of germ layers in <i>Xenopus</i> , chick, mouse and <i>Drosophila</i>	Ch 4 (TB)	Understanding Patterning and Body Plan. Patterning the vertebrate body plan I: axes and germ layers	
5b.	L24-26 Somite formation and antero-posterior patterning; role of organizer and neural induction	Ch 4 (TB)	Understanding Patterning and Body: Plan. Patterning the vertebrate body plan II: somites and nervous system	
	L27-30 Cell adhesion; formation of blastula; gastrulation movements; neural tube formation.	Ch 8 (TB)	Fertilization and Embryogenesis. Morphogenesis: changes in early embryo	
6.	L31-32 Germ cells development; events at fertilization; determination of sexual phenotype	Ch 9 (TB)	Germ cells, Fertilization and Sex	
	L33-35 Models of differentiation; plasticity of gene expression; stem cells – types and uses	Ch 10 (TB)	Cell Differentiation and Stem Cells	
-	L36-39 Development of vertebrate limb	Ch 11 (TB)	Development of Organs and Organ Systems Organogenesis: development of organs	
7.	L39-41 Specification of cell identity in nervous system; neuronal migration;	Ch 12 (TB)	Development of Organs and Organ Systems: Development of the nervous system	

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	90 Min.	30	<test_1></test_1>	TBA
Comprehensive Examination	3 h	35	May 8 th , 2021	TBA
Quizzes	30 Min.	25	Course Quizzes, Tutorial Quizzes (some of them can be surprise	Closed Book, some of them can be surprise
Assignments	TBA	10	•	Take Home/In Class

7. Chamber Consultation Hour:

NA online mode. By appointment over email, a Google Meet will be set up.

8. Notices:

On Google Classroom/ Nalanda and Emails.

9. Make-up Policy:

No make-up will be granted for surprise quizzes and assignments.

10. Note (if any):

NA

Instructor-in-charge: Meghana Tare Course No. BIOF341