Image Processing - Assignment 2

 $\begin{array}{c} \text{Group 3} \\ \text{Martin Eek Gerhardsen} \end{array}$

October 25

Department of Engineering Cybernetics

Contents

1	Convolutional Neural Networks	1
	1.1 Task 1: Theory	1
	1.2 Task 2: Programming	2
2	Filtering in the Frequency Domain	3
	2.1 Task 3: Theory	3
	2.2 Task 4: Programming	4

1 Convolutional Neural Networks

1.1 Task 1: Theory

a)

Listing the equations for calculating the resulting height and width:

$$W_{i+1} = (W_i - F_W + 2P_W)/S_W + 1 \tag{1}$$

$$H_{i+1} = (H_i - F_H + 2P_H)/S_H + 1 \tag{2}$$

Now defining:

$$S_W = S_H = 1$$

$$F_W = F_H = 5$$

$$H_2 = H_1 = H$$

$$W_2 = W_1 = W$$

Then we get for the width:

$$W_2 = (W_1 - F_W + 2P_W)/S_W + 1$$

 $W - 1 = W - 5 + 2P_W$
 $2P_W = 4$
 $P_W = 2$

And for height:

$$H_2 = (H_1 - F_H + 2P_H)/S_H + 1$$

 $H - 1 = H - 5 + 2P_H$
 $2P_H = 4$
 $P_H = 2$

c)

1.2 Task 2: Programming

2 Filtering in the Frequency Domain

2.1 Task 3: Theory

a)

From the convolution theorem, we can see that the Fourier transform of a convolution of two signals is multiplication of the Fourier transforms of those individual signals. So a stepwise description would be:

- Find the Fourier transform of the individual signals (i.e. using FFT)
- Pointwise multiply the transformed signals
- Use inverse Fourier transform to find the convolution of the original signals

b)

2.2 Task 4: Programming