Principles of Cryptography: Part 1

Gaurav S. Kasbekar

Dept. of Electrical Engineering

IIT Bombay

NPTEL

References

- J. Kurose, K. Ross, "Computer Networking: A Top Down Approach", Sixth Edition, Pearson Education, 2013
- C. Kaufman, R. Perlman, M. Speciner, "Network Security:
 Private Communication in a Public World", Pearson Education,
 2nd edition, 2002

NPTEL

Cryptography

- Cryptography allows a sender to replace the original text (called plaintext) with its disguised (encrypted) version (called ciphertext)
- Intruder who intercepts message (e.g., using a sniffer) gains no information from it
- Has been used since ancient times by spies, military personnel, diplomats, etc.
- For now, we focus on use of cryptography for achieving confidentiality
 - □ later we will see that it is also useful for achieving other functions (e.g., authentication, message integrity)

Example: Caeser Cipher

- Was used by Julius Caeser to encrypt his messages
- Each letter in plaintext replaced with the letter that is k letters later in the alphabet (with wraparound)
- E.g., if k = 3, then we replace:
 - $\Box a$ with d, b with e, ..., z with c
- E.g.: suppose k = 23 (equivalent to left shift of 3)
 - □ Plaintext: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
 - ☐Ciphertext: QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD
- Suppose interceptor knew that Caeser cipher used, but value of k unknown. Then to break the cipher:
 - ☐ needs to only try out all 25 possible values
- Caeser cipher highly insecure

Encryption and Decryption Algorithms, Keys

- Algorithm used to transform:
 - ☐ plaintext into ciphertext called encryption algorithm
 - ☐ ciphertext into plaintext called *decryption algorithm*
- In many cryptographic systems, including those used in Internet, encryption and decryption algorithms are standardized and published
 - ☐ available to everyone including potential intruders
- Clearly there must be some secret information that prevents intruder from decrypting message
 - ☐ "key" (a string of letters or numbers or bits)
 - \square *e.g.*, key in Caeser cipher:
 - o shift value k

Notation

- Suppose Alice sends an encrypted message to Bob
- Let K_A and K_B denote keys of Alice and Bob, resp.
- If *m* is plaintext message, then let:
 - $\square K_A(m)$: ciphertext obtained by encrypting m with K_A
- $K_B(.)$ similarly defined; $K_B(K_A(m)) = m$

Types of Cryptography

- Symmetric Key Cryptography
 - \square Keys of sender and receiver are same, i.e., $K_A = K_B$
 - ☐ Key known to only sender and receiver
 - ☐ *E.g.*: Caeser cipher
- Public Key Cryptography
 - \square Keys of sender and receiver are different, i.e., $K_A \neq K_B$
 - ☐ Sender's key (called *public key*) is available to everyone, *e.g.*, may be included in a database similar to telephone directory
 - ☐ Receiver's key (called *private key*) known to only receiver

Monoalphabetic Cipher

- Recall: Caeser cipher, which is symmetric key based, easy to break
- Monoalphabetic Cipher: generalization of Caeser cipher
 - ☐ replaces each letter in plaintext with another letter (e.g. in figure below)
 - \Box the substitute for a given letter is fixed throughout the message, e.g., each time a occurs in message, it is replaced with m
- E.g.:
 - ☐ Plaintext: attack at noon
 - ☐ Ciphertext: muumbf mu jkkj
- Key in monoalphabetic cipher:
 - ☐ The string of ciphertext letters for the 26 alphabets
- No. of possible keys:
 - $\square 26! \approx 4 \times 10^{26}$
- Brute force approach for breaking cipher:
 - ☐ try out all possible keys
 - ☐ time consuming
- However, possible to break cipher efficiently by frequency analysis

Plaintext Letter																										
Ciphertext Letter	m	n	b	٧	С	Х	z	а	s	d	f	g	h	j	k	1	р	0	i	u	у	t	r	е	W	q

Frequency Analysis

- Table shows frequencies of different letters in typical English text
- So if message is sufficiently long, can measure the frequencies of different letters in ciphertext
- Used to form guesses
 - □ e.g., if P is most frequent letter in ciphertext, then it is probably the substitute for e, t or a
- Also, several two or three letter sequences of letters (e.g., "in", "it", "the", "ion", "ing") appear frequently; this fact used
- After some replacements of ciphertext letters with plaintext guesses made, more guesses can often be made
 - □ e.g., suppose after substitutions for "e" and "t", the pattern "tKe" appears frequently; then "K" is probably the substitute for "h"
- Above process repeated
- See following website for an example:
 - http://crypto.interactive-maths.com/frequency-analysis-breaking-the-code.html

Letter	Frequency
e t	12.7
	9.1
a 0	8.2
	7.5
i	7.0
n	6.7 6.3
s h	
h	6.1 6.0
r d	
d	4.3
	4.0 2.8
c u m w	
u	2.8
m	2.4
W	2.4
	2.2
g V p b	2.0
У	2.0
р	1.9
b	1.5
V	1.0
k	0.8
j	0.15
y q z	0.15
q	0.10
Z	0.07

Polyalphabetic Cipher

- Multiple monoalphabetic ciphers used
- Each letter in plaintext replaced with corresponding letter from one of these ciphers
 - ☐ which cipher used depends on position of letter
- <u>E.g.</u>:
 - Two monoalphabetic ciphers used: a Caeser cipher with k=5 and one with k=19 (see fig.)
 - ☐ These two ciphers used in the repeating pattern:

$$\circ C_1, C_2, C_2, C_1, C_2$$

- ☐ Plaintext: attack at noon
- ☐ Ciphertext: fmmfvp tm shtg
- Polyalphabetic cipher cannot be broken using frequency analysis; however, several polyalphabetic ciphers (e.g., Vigenère Cipher) have been broken using other techniques

Plaintext Letter	а	b	С	d	е	f	g	h	İ	j	k	I	m	n	0	р	q	r	s	t	u	٧	W	х	у	Z
C ₁ (k=5)	f	g	h	i	j	k	1	m	n	0	р	q	r	S	t	u	٧	W	х	у	z	а	b	С	d	е
C ₂ (k=19)	t	u	٧	W	Х	у	z	а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	s