Homework #8

Eric Tao Math 235: Homework #8

November 10, 2022

2.1

Problem 4.6.21. Assume that $E \subseteq \mathbb{R}^d$ is measurable. Let $f: E \to \overline{F}$ be a measurable function. Define the distribution function of f as follows:

$$\omega(t) = |\{|f| > t\}|, t \ge 0$$

By definition, ω is a non-negative, extended real-valued function. Prove the following:

- (a) ω is monotone decreasing on $[0, \infty)$.
- (b) ω is right-continuous, that is, $\lim_{s\to t^+} \omega(s) = \omega(t)$ for every $t \geq 0$.
- (c) If f is integrable, then $\lim_{s\to t^-} \omega(s) = |\{|f| \ge t\}|$.
- (d) $\int_0^\infty \omega(t) dt = \int_E |f(x)| dx$
- (e) f is integrable $\iff \omega$ is integrable.
- (f) If f is integrable, then $\lim_{n\to\infty} n\omega(n) = 0 = \lim_{n\to\infty} \frac{1}{n}\omega(\frac{1}{n})$.

Solution. (a)

We notice that for any $t' \ge t$, that by definition, $\{|f| > t'\} \subseteq \{|f| > t\}$. Then, by the monotonicity of the Lebesgue measure, we have that $|\{|f| > t'\}| \le |\{|f| > t\}| \implies f(t') \le f(t)$. Since this is true for all $t' \ge t$, we have that ω is monotone decreasing.

(b)

Let $\{a_n\}_{n\in\mathbb{N}}$ be any sequence of positive numbers where $a_n\to 0$. Take a monotone subsequence $\{a_{n_k}\}$ such that $a_{n_{k+1}}< a_{n_k}$ for all k.

Problem 4.6.27. Let $f \in L^1(\mathbb{R}), g \in L^{\infty}(\mathbb{R})$. Prove the following:

- (a) The integral that defines (f * g)(x) exists for every $x \in \mathbb{R}$.
- (b) f * g is continuous on \mathbb{R} .
- (c) f * g is bounded on \mathbb{R} , and $||f * g||_{\infty} \leq ||f||_1 ||g||_{\infty}$.

Solution. \Box

Problem 4.6.28. (a) Show that if $f, g \in C_c(\mathbb{R})$, then $f * g \in C_c(\mathbb{R})$ and

$$\operatorname{supp}(f * g) \subseteq \operatorname{supp}(f) + \operatorname{supp}(g) = \{f + g : x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)\}\$$

Conclude that $C_c(\mathbb{R})$ is closed under convolution.

(b) Is $C_c^1(\mathbb{R})$ closed under convolution?

Solution. \Box

Problem 4.6.29. Let $E \subseteq \mathbb{R}$ be a measurable subset with $0 < |E| < \infty$.

- (a) Prove that the convolution $\chi_E * \chi_{-E}$ is continuous.
- (b) Prove the Steinhaus Theorem: The set $E-E=\{x-y:x,y\in E\}$ contains an open interval centered at the origin.
 - (c) Show that $\lim_{t\to 0} |E\cap (E+t)| = |E|, \lim_{t\to \pm\infty} |E\cap (E+t)| = 0.$

Solution. \Box

2.2

Problem 5.1.5. Prove that the Cantor-Lebesgue function is Hölder continuous for $0 < \alpha \le \log_3 2$. In particular, notice that it is not Lipschitz.

Solution. \Box

Problem 5.1.7. Let C be the Cantor set, let ϕ be the Cantor-Lebesgue function, and define $g(x) = \phi(x) + x$ for $x \in [0, 1]$.

- (a) Prove that $g:[0,1]\to [0,2]$ is continous, strictly increasing, and a bijection. Further, its inverse $h=g^{-1}:[0,2]\to [0,1]$ is also a continuous, strictly increasing, bijection.
 - (b) Show that g(C) is a closed subset of [0,2] and that |g(C)|=1.
- (c) Since g(C) has positive measure, it follows that there exists $N \subseteq g(C)$ such that N is not Lebesgue measurable. Show that A = h(N) is a Lebesgue measurable subset of [0, 1].
 - (d) Set $f = \chi_A$. Prove that $f \circ h$ is not a Lebesgue measurable function.

Solution. \Box