CZ2007 Introduction to Database Systems (Week 2)

Topic 2: Functional Dependencies (1)

Dr. Ng Wee Keong Associate Professor

This presentation is copyright property of NTU. It is intended for students of CZ2007 only.

This Lecture

- Data anomalies
- Functional dependencies
- Armstrong's axioms

Database Design

- Applications → ER diagrams → tables
- It works in general, but sometimes things may go wrong
 - The ER diagrams may not be well designed
 - The conversion from ER diagrams to tables may not be properly done
- As a consequence, the resulting tables may have various problems

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- There are several anomalies in the table
- First, redundancy:
 - Alice's address is duplicated

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- Second, update anomalies:
 - We may accidentally update one of Alice's addresses, leaving the other unchanged

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- Third, deletion anomalies:
 - Bob no longer uses a phone
 - Can we remove Bob's phone number?
 - No. (Note: Primary key attributes cannot be NULL)

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Primary key of the table: (NRIC, PhoneNumber)
- Fourth, insertion anomalies:
 - Name = Cathy, NRIC = 9394, HomeAddress = YiShun
 - Can we insert this information into the table?
 - No. (Note: Primary key attributes cannot be NULL)

Normalization

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- How do we get rid of those anomalies?
- Normalize the table (i.e., decompose it)

Name	<u>NRIC</u>	HomeAddress
Alice	1234	Jurong East
Bob	5678	Pasir Ris

NRIC	<u>PhoneNumber</u>
1234	67899876
1234	83848384
5678	98765432

Effects of Normalization

Name	<u>NRIC</u>	HomeAddress
Alice	1234	Jurong East
Bob	5678	Pasir Ris

NRIC	<u>PhoneNumber</u>
1234	67899876
1234	83848384
5678	98765432

- Duplication?
 - No. (Alice's address is no longer duplicated.)
- Update anomalies?
 - No. (There is only one place where we can update the address of Alice)
- Deletion anomalies?
 - No. (We can freely delete Bob's phone number)
- Insertion anomalies?
 - No. (We can insert an individual without a phone)

This Lecture

- Data anomalies
- Functional dependencies
- Armstrong's axioms

Road Map

- We will discuss
 - How to determine whether a table is good
 - If a table is not good, how to normalize it
- The plan
 - First, basic concepts (e.g., functional dependencies)
 - Second, reasoning with basic concepts
 - Finally, the real meat (e.g., normalization)

Functional Dependencies: Intuition

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- Why was this table bad?
- It has a lot of anomalies
- Why does it have those anomalies?
- Intuitive answer: It contains a bad combination of attributes

Functional Dependencies: Intuition

Name	<u>NRIC</u>	<u>PhoneNumber</u>	HomeAddress
Alice	1234	67899876	Jurong East
Alice	1234	83848384	Jurong East
Bob	5678	98765432	Pasir Ris

- In general, how do we know whether a combination of attributes is bad?
- We need to check the correlations among those attributes
- What kind of correlations?
- Functional dependencies (FD)

Functional Dependencies (FD)

- Consider two attributes in practice: NRIC, Name
- Given an NRIC, can we always tell the name of the person?
- Theoretically yes -- We just need help from ICA
- Given a Name, can we always uniquely identify the NRIC of the person
- In general no -- Different people may have the same name
- Therefore
 - NRIC determines Name, but not vice versa
 - □ Functional dependencies:
 NRIC → Name, but not Name → NRIC

Functional Dependencies (FD)

- Consider four attributes in practice:
 - StudentID, Name, Address, PostalCode
- Functional Dependencies:
 - StudentID → Name, Address, PostalCode
 - Address → PostalCode

Formal Definition of FD

- Attributes A₁, A₂, ..., A_m, B₁, B₂, ..., B_n
- Meaning: There do not exist two records that
 - Have the same values on A_1 , A_2 , ..., A_m
 - \square but different values on B_1 , B_2 , ..., B_n
- Previous example: NRIC → Name
- Meaning: There do not exist two persons that
 - have the same values on NRIC
 - but different values on Name

Name	Category	Color	Department	Price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office Supplies	59

- Find the functional dependencies are definitely not true on the above table
 - □ Category → Department ✓
 - □ Category, Color → Price ✓
 - □ Price → Color ✓
 - Name → Color ✓
 - Department, Category → Name X
 - □ Color, Department → Name, Price, Category ✓

- From common sense
- From the application's requirements
- Example
 - Purchase(CustomerID, ProductID, ShopID, Price, Date)
 - Requirement: Each shop can sell at most one product

- Example
 - Purchase(CustomerID, ProductID, ShopID, Price, Date)
 - Requirement: Each shop can sell at most one product
 - FD implied: ShopID → ProductID

- Example
 - Purchase(CustomerID, ProductID, ShopID, Price, Date)
 - Requirement: No two customers buy the same product

- Example
 - Purchase(CustomerID, ProductID, ShopID, Price, Date)
 - Requirement: No two customers buy the same product
 - □ FD implied: ProductID → CustomerID

Custome	D	PoductID
C1		P1
C2		P1

CustomerID	ProductID
C1	P1
C1	P2

- Example
 - Purchase(CustomerID, ProductID, ShopID, Price, Date)
 - Requirement: No shop will sell the same product to the same customer on the same date at two different prices

	CustomerID	Product	hopID	Date	Price
	C1	P1	S 1	D1	99
E	C1	P1	S1	D1	33

Purchase(CustomerID, ProductID, ShopID, Price,

CustomerID	ProductID	ShopID	Date	Price	
C1	P1	S1	D1	99	luct
C2	P1	S1	D1	33	10

different prices

FD implied:

CustomerID, ProductID, ShopID, Date → Price

Summary

- To decide whether or not a table is good, we need to examine the correlations of the attributes, i.e., the FDs
- Now we know what FDs, and where they are from
- How do we use FDs to check whether a table is good?
- We need to learn how to reason with FDs

This Lecture

- Data anomalies
- Functional dependencies
- Armstrong's axioms

- How to reason with FDs
- Example:
 - □ Given:
 NRIC → Address, Address → PostalCode
 - We have: NRIC → PostalCode
- In general
 - □ Given $A \rightarrow B$, $B \rightarrow C$
 - We always have A→C
- We will discuss how we can do this kind of inference.

- Why do we need to do inference?
- Answer: it is needed in deciding whether a table is "bad" or not
- Intuitive explanation:
 - Suppose that A > C is an FD that makes a table "bad"
 - But we are only given A→B and B→C
 - If we do not know that A→C is implied by A→B and B→C, then we may misjudge the table to be a "good" one

- Armstrong's Axioms
 - Three axioms for FD reasoning
 - Easy to understand, but not easy to apply

Armstrong's Axioms

- Axiom of Reflexivity
 - □ A set of attributes → A subset of the attributes
- Example
 - NRIC, Name → NRIC
 - StudentID, Name, Age → Name, Age
 - \square ABCD \rightarrow ABC
 - \square ABCD \rightarrow BCD
 - \square ABCD \rightarrow AD

Armstrong's Axioms

- Axiom of Augmentation
 - \Box Given A \rightarrow B
 - \square We always have AC \rightarrow BC, for any C
- Example
 - □ If NRIC → Name
 - Then NRIC, Age → Name, Age
 - □ and NRIC, Salary, Weight → Name, Salary, Weight
 - and NRIC, Addr, Postal → Name, Addr, Postal

Armstrong's Axioms

- Axiom of Transitivity
 - \bigcirc Given A \rightarrow B and B \rightarrow C
 - \square We always have $A \rightarrow C$
- Example
 - □ If NRIC → Addr, and Addr → Postal
 - □ Then NRIC → Postal

- Given A \rightarrow B, BC \rightarrow D
- Can you infer that AC → D?
- Inference:
 - \square Given A \rightarrow B, we have AC \rightarrow BC (Augmentation)
 - □ Given AC→BC and BC → D, we have AC → D (Transitivity)

- Given A \rightarrow B, D \rightarrow C
- \blacksquare Can you infer that AD \rightarrow BC?
- Inference:
 - □ Given $A \rightarrow B$, we have $AD \rightarrow BD$ (Augmentation)
 - Using BD → B (Reflexivity) and AD → BD, we have AD
 → B (Transitivity)
 - □ Given D \rightarrow C, we have AD \rightarrow AC (Augmentation)
 - Using AC → C (Reflexivity) and AD → AC, we have AD
 → C (Transitivity)
 - AD determines B and C, i.e., AD → BC

- Given A \rightarrow C, AC \rightarrow D, AD \rightarrow B
- \blacksquare Can you infer that A \rightarrow B?
- Inference:
 - \square Given A \rightarrow C, we have A \rightarrow AC (Augmentation)
 - □ Given A → AC and AC → D, we have A → D (Transitivity)
 - \square Given A \rightarrow D, we have A \rightarrow AD (Augmentation)
 - □ Given A → AD and AD → B, we have A → B (Transitivity)

- Four attributes: A, B, C, D
- Given: $B \rightarrow D$, $DB \rightarrow A$, $AD \rightarrow C$
- Can you infer $B \rightarrow C$?
- Doable with Armstrong's axioms, but troublesome
- We will discuss a more intuitive approach

An Intuitive Solution

- Four attributes: A, B, C, D
- Given: $B \rightarrow D$, $DB \rightarrow A$, $AD \rightarrow C$
- Can you prove $B \rightarrow C$?

Steps of the Intuitive Solution

- Four attributes: A, B, C, D
- Given: $B \rightarrow D$, $DB \rightarrow A$, $AD \rightarrow C$
- Can you prove $B \rightarrow C$?

- First, we reached B
 - Reachable set = { B }
- Second, reach whatever B can reach
 - □ Reachable set = $\{B, D\}$, since $B \rightarrow D$
- Third, use all reachable elements to reach more
 - Reachable set = { B, D, A }, since $DB \rightarrow A$
- Repeat the third step, until no more reaching is possible
 - □ Reachable set = { B, D, A, C }, since $AD \rightarrow C$; done

Exercise

- Given: A \rightarrow C, C \rightarrow B, B \rightarrow D, D \rightarrow E, E \rightarrow A
- Can you prove $C \rightarrow ABE$?
- We start with {C}
- Since $C \rightarrow B$, we have $\{C, B\}$
- Since $B \rightarrow D$, we have $\{C, B, D\}$
- Since $D \rightarrow E$, we have $\{C, B, D, E\}$
- Since $E \rightarrow A$, we have $\{C, B, D, E, A\}$
- \blacksquare A, B, E are all in the set, so C \rightarrow ABE holds

Exercise

- Given: $C \rightarrow D$, $AD \rightarrow E$, $BC \rightarrow E$, $E \rightarrow A$, $D \rightarrow B$
- Can you prove $C \rightarrow A$?
- We start with {C}
- Since $C \rightarrow D$, we have $\{C, D\}$
- Since $D \rightarrow B$, we have $\{C, D, B\}$
- Since BC \rightarrow E, we have {C, D, B, E}
- Since $E \rightarrow A$, we have $\{C, D, B, E, A\}$
- \blacksquare A is in the set, so C \rightarrow A holds

Exercise

- Given: $C \rightarrow D$, $AD \rightarrow E$, $BC \rightarrow E$, $E \rightarrow A$, $D \rightarrow B$, $B \rightarrow F$
- Can you prove $D \rightarrow C$?
- We start with {D}
- Since $D \rightarrow B$, we have $\{D, B\}$
- Since $B \rightarrow F$, we have $\{D, B, F\}$
- What else?
- No more.
- {D, B, F} is all what can be decided by D
- We refer to {D, B, F} as the closure of D

To continue in

Topic 2: Functional Dependencies (2)

