

InSAR Timeseries Analysis: theory and overview

Ann Chen The University of Texas at Austin

* With contributions from many colleagues: Heresh Fattahi, Zhang Yunjun, Scott Staniewicz, Sara Mirzaee, Virginia Brancato, Yujie Zheng, Piyush Agram, Falk Amelung

Interferometric Synthetic Aperture Radar (InSAR)

• We can measure any small ground deformation Δd along LOS direction occurring between t_1 and t_2 using the InSAR phase difference $\Delta \phi$:

$$\Delta \phi = \frac{4\pi}{\lambda} \Delta d$$

Temporal and Spatial Baselines

InSAR time series analysis

LOS InSAR phase history of a pixel in the interferogram:

Define v_k as the average velocity between t_k and t_{k+1} , we have:

$$(t_3 - t_2)v_2 + (t_4 - t_3)v_3 + \Delta\phi_{noise} = \Delta\phi$$

InSAR time series analysis

LOS InSAR phase history of a pixel in the interferogram:

Define v_k as the average velocity between t_k and t_{k+1} , we have:

$$(t_3 - t_2)v_2 + (t_4 - t_3)v_3 + \Delta\phi_{noise} = \Delta\phi$$

We use 7 SAR data to form M small baseline interferograms. The matrix form of the SBAS system is:

$$B_{M\times 6}v_{6\times 1}=\Delta\Phi_{M\times 1}$$

The impact of noise terms

- The accuracy of the SBAS time series results depends on the quality of the input data!
- InSAR measurement noise:

$$\Delta \phi = rac{4\pi}{\lambda} \Delta d_{LOS} + \Delta \phi_{orb} + \Delta \phi_{decor} + \Delta \phi_{unwrap} + \Delta \phi_{dem} + \Delta \phi_{iono} + \Delta \phi_{tropo} + \Delta \phi_{n}$$

 InSAR time series analysis can reduce the impact of noise that are random in time (e.g. tropospheric turbulence noise) through the use of temporal filtering and deformation models.

The impact of noise terms

- The accuracy of the SBAS time series results depends on the quality of the input data!
- InSAR measurement noise:

$$\Delta \phi = \frac{4\pi}{\lambda} \Delta d_{LOS} + \Delta \phi_{orb} + \Delta \phi_{decor} + \Delta \phi_{unwrap} + \Delta \phi_{dem} + \Delta \phi_{iono} + \Delta \phi_{tropo} + \Delta \phi_{n}$$

 In many cases, the dominant errors are tropospheric noise and decorrelation noise and the associated unwrapping errors.

Decorrelation noise

Sentinel-1 Interferogram over the Greater Houston area (Jan. 03, 2018 – Nov. 06, 2019)

Decorrelation Noise Characteristics

- A major issue over densely vegetated terrain
- Radar sensors with shorter wavelengths are more prone to decorrelation noise.

Mitigation Strategies

Spatial Filtering or Multi-looking

Mitigation Strategies

- Using a subset of interferograms with small baselines
 - Works well if your study site suffers from minimal or moderate decorrelation
 - In vegetated regions, the SBAS solutions may be unreliable (e.g., different temporal thresholds lead to very different solutions).
- Persistent Scatterers

