武汉大学计算机学院20xx-20xx学年第一学期 20xx级 《离散数学》 (A)考试标准答案

一、试求下述命题公式
$$G$$
的主析取和主合取范式:
$$(P \leftrightarrow Q) \rightarrow R \tag{10分}$$

主析取范式:

$$(P \land Q \land R) \lor (\neg P \land Q \land R) \lor (P \land \neg Q \land R) \lor \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q \land \neg R)$$

主合取范式: $(\neg P \lor \neg Q \lor R) \land (P \lor Q \lor R)$.

二、写出下列结论的证明序列:

(16分, 8+8)

- (1) 前提: $\neg(P \to Q) \to \neg(R \lor S)$, $(Q \to P) \lor \neg R$, R. 结论: $P \leftrightarrow Q$; 证明:
- (2) 前提: $\forall x(P(x) \rightarrow \neg Q(x))$, $\forall x(Q(x) \lor R(x))$, $\exists x \neg R(x)$. 结论: $\exists x \neg P(x)$. 证明:
 - ① $\exists x \neg R(x)$ 引入前提 ⑤ $\forall x (P(x) \rightarrow \neg Q(x))$ 引入前提 ② $\neg R(a)$ ① +ES ③ $\forall x (Q(x) \lor R(x))$ 引入前提 ④ $Q(a) \lor R(a)$ ③ +US ⑤ Q(a) ② + ④ + 析取三段论 ② $\exists x \neg P(x)$ ③ +EG
- 三、偏序集 $\langle \{2,4,6,9,12,18,27,36,48,72\}, | \rangle$, $m \mid n$ 当且仅当m整除n. 完成下列各题 (15分,5+5+5)
 - (1) 求极大元素和极小元素; 解: 极小元素: 2,9; 极大元素: 27,48,72.
 - (2) 求子集{48,72}的所有下界和最大下界; 解:下界:2,4,6,12,最大下界12.

- (3) 证明: 偏序集 $\langle P, \leqslant \rangle$, 若a是P的最大元素,则P仅有一个极大元素。证明: 反证法,: a是最大元素,: a是极大元素,设 $b \in P$,b是极大元素,且 $b \neq a$. 因为a是最大元素,所以 $b \leqslant a$,而b是极大元素,则所有的元素与b要么不可比较,要么小于等于b,而a和b是可比较的,则 $a \leqslant b$. 由偏序关系的反对称性有a = b. 矛盾
- 四、设A为非空集合, $A^A=\{f\,|\,f:A\to A\}$,关系 $\mathcal{R}\subseteq A^A\times A^A,\ \forall f,g\in A^A,\ f\mathcal{R}g\Leftrightarrow f(A)=g(A),$ 完成下列各题: (15分,9+3+3)
 - (1) 证明**R**是**A**^A上的等价关系; 证明:
 - ① 自反性: $\forall f \in A^A$, f(A) = f(A), 即 $f \mathcal{R} f$;
 - ② 对称性: 设 $f \mathcal{R} g$, 则f(A) = g(A), 即g(A) = f(A), $\therefore g \mathcal{R} f$;
 - ③ 传递性: 设 $f \mathcal{R} g \wedge g \mathcal{R} h$, 则f(A) = g(A), g(A) = h(A), 这样f(A) = h(A), ∴ $f \mathcal{R} g$;

故况是等价关系.

- (2) 若|A| = n, 求 $|\mathbb{1}_A|_{\mathcal{R}}|$, 其中 $\mathbb{1}_A$ 是集合A上的恒等变换;解: 设f \mathcal{R} $\mathbb{1}_A$, 则 $f(A) = \mathbb{1}_A(A) = A$, 即f 是满射,而A是有限集合,则A上的满射也是单射,故f \mathcal{R} $\mathbb{1}_A$ 当且仅当f 是双射,这样 $[\mathbb{1}_A]_{\mathcal{R}} = \{f \mid f \in A^A \land f$ 是双射 $\}$, 故 $|\mathbb{1}_A|_{\mathcal{R}}| = n!$.
- (3) 证明: 集合 A^A/\mathcal{R} 和集合 $2^A-\{\emptyset\}$ 存在双射. 证明: 定义函数 $h:A^A\to 2^A, f\mapsto f(A)$. 则 $\forall B\subseteq A\wedge B\neq\emptyset$, 设 $b\in B$, 定义函数 $g_B:A\to A$,

$$g_B(x) = \left\{ \begin{array}{ll} x & if \ x \in B \\ b & if \ x \notin B \end{array} \right..$$

则 $g_B(A) = B$,这样 $h(A^A) = 2^A - \{\emptyset\}$. 设 $=_h$ 是h所诱导的等价关系,则 $f =_h g$ iff h(f) = h(f),即f(A) = g(A),或 $f \mathcal{R} g$, $\therefore =_h = \mathcal{R}$. 由函数标准分解定理,存在双射 $\overline{h}: A^A/=_h \to h(A^A)$,即 A^A/\mathcal{R} 和 $2^A - \{\emptyset\}$ 间存在双射.

- 五、设 $\langle S_n, \circ \rangle$ 是n次对称群,其中 S_n 是集合 $\{1, 2, ..., n\}$ 上所有置换的集合, \circ 是函数的合成运算. 设 $H \subseteq S_n, H = \{\pi \mid \pi \in S_n, \exists \pi \in S$
 - (1) 证明*H*是*S_n*的子群; 证明:
 - ① $1 \in H$: 设1是集合 $\{1,2,\ldots,n\}$ 上的恒等变换,则1是 S_n 的幺,而1(1) = 1, $\therefore 1 \in H$.
 - ② 运算封闭性: 设 $f,g \in H$, 则 $g \circ f(1) = g(1) = 1$, $\therefore g \circ f \in H$.
 - ③ 取逆运算封闭性: 设 $f \in H$, 则 $f^{-1} \in S_n$, $f^{-1} \circ f = 1$, 这样 $f^{-1}(1) = f^{-1}(f(1)) = (f^{-1} \circ f)(1) = 1$. $\therefore f^{-1} \in H$.

综上所述, $H \leq S_n$.

- (2) 设P为H在 S_n 中的所有左陪集组成的集合,用性质法描述集合P, 并求|P|. 解: $P = \{\{f \mid f \in S_n \land f(1) = i\} \mid i = 1, 2, ..., n\}$. 设 R_l 是H所诱导的左同余关系,则 $P = S_n/R_l$,而|H| = (n-1)!, $\therefore |P| = n$.
- 六、循环群 $\langle N_m, +_m \rangle$,其中 $N_m = \{0, 1, \dots m-1\} (n \in \mathbb{N}, m > 0), a +_m b = (a+b) \mod m$,完成下列各题: (16分,6+2+6+2)
 - (1) 求 $\langle N_6, +_6 \rangle$ 的所有子群; 解: $\{0\}, \{0,3\}, \{0,2,4\}, \{0,1,2,3,4,5,6\}.$
 - (2) 求 $\langle N_6, +_6 \rangle$ 到 $\langle N_5, +_5 \rangle$ 的所有同态; 解: 只有唯一的一个平凡同态 $h: N_6 \to N_5, i \mapsto 0.$
 - (3) 设h是 $\langle N_m, +_m \rangle$ 到 $\langle N_k, +_k \rangle$ 上的同态,证明 $h(N_m)$ 是 N_k 的循环子群;证明:由于h是 同态,则 $h(N_m) \leqslant N_k$;定义函数 $f: \mathbb{Z} \to N_m, i \mapsto i \mod m$,则f是 $\langle \mathbb{Z}, + \rangle$ 到 N_m 上的满同态. 这样 $h(N_m) = h(f(\mathbb{Z})) = \{h(f(i)) \mid i \in \mathbb{N}\}$. 即 $h(N_m)$ 是循环群.
 - (4) 证明 $N_m \simeq N_k(m \geqslant k)$,当且仅当 $k \mid m$. 证明: 必要性:设h是 N_m 到 N_k 上的满同态,则 $N_m/\ker(h) \cong N_k$,∴ $|N_m|/|\ker(h)| = |N_k|$. 即 $m = k|\ker(h)|$. 故 $k \mid m$. 充分性:设m = pk,定义函数 $h:N_m \to N_m$, $i \mapsto pi$,则h是 N_m 上的自同态,且 $h(N_m) = \langle p \rangle$. 而 $|\langle p \rangle| = m/p = k$,这样 $\langle p \rangle$ 是一个阶数为k的循环群,而阶数为p的循环群彼此同构,因此存在 $\langle p \rangle$ 到 N_k 上的同构f,这样 $f \circ h$ 是 N_m 到 N_k 上的满同态,故 $N_k \simeq N_k$.
- 七、简单无向图G(n,m), 其中顶点数n为奇数. 证明: 图G中奇数度数顶点的个数与图 \overline{G} 中奇数度数的顶点个数相等. (8分)证明: 设v是图G的一个顶点,记 $\deg_G(v)$ 为v在图G中的度数, $\deg_{\overline{G}}(v)$ 为v在图G中的度数,则 $\deg_G(v)$ + $\deg_{\overline{G}}(v)$ = n-1 (偶数). 这样如果 $\deg_G(v)$ 为奇数,则 $\deg_G(v)$ 也是奇数;反之也然. 故图G中奇数度数顶点的个数与图 \overline{G} 中奇数度数的顶点个数相等.
- 八、设 $G = \langle V, E \rangle$ 是无向连通图. 边 $e \in E$ 称为桥边,当且仅当G删除边e后不再连通. 证明:e是桥边,当且仅当e属于图G的每颗生成树. (8分)证明:必要性(反证法):设T是G的生成树,且边e不在T上,这样T是G的一个删除边e后还保持连通的子图,矛盾. 充分性(反证法):设e不是桥边,则图G删除e后还是连通图(记为G'),则对G'也存在生成树T,T也是G的生成树且e不在T中,这与条件矛盾.