UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA

PROGRAMAS DE ESTUDIO SEMESTRE SÉPTIMO, OCTAVO O NOVENO

Asignatura	Ciclo	Campo de Estudio	Departamento FISICOQUÍMICA
INTRODUCCIÓN A LA	TERMINAL Y DE	FISICOQUÍMICA	
TERMODINÁMICA ESTADÍSTICA	ESPECIALIZACIÓN		

HORAS/SEMANA/SEMESTRE

OPTATIVA	Clave 0084	TEORÍA 3 h/48h	PRÁCTICA O h	CRÉDITOS 6
OIIAIIVA	Clave 000+	I BOKIA 3 II/ 48II	TRACTICA OII	CREDITOS

Tipo de asignatura:	TEÓRICA
Modalidad de la asignatura:	CURSO

ASIGNATURA PRECEDENTE: Seriación indicativa con Termodinámica y Química Cuántica I.
ASIGNATURA SUBSECUENTE: Seriación indicativa con Introducción a la Simulación
Molecular.

OBJETIVO(S):

Introducir a los estudiantes a los conceptos básicos de la Termodinámica Estadística. Conocer sus métodos y sus alcances, así como los sistemas a los que puede aplicarse. Conocer los fundamentos microscópicos de la termodinámica, y la relación que existe entre las propiedades moleculares y las propiedades macroscópicas de diversos sistemas como fluidos, sólidos, magnetos, etcétera. Conocer las bases para su aplicación en métodos modernos de simulación molecular, desarrollo de ecuaciones de estado, modelado de propiedades macroscópicas de la materia.

UNIDADES TEMÁTICAS

NÚMERO DE HORAS POR UNIDAD	UNIDAD
8T	1. INTRODUCCIÓN Y REVISIÓN DE CONCEPTOS
8H	1.1. Mecánica clásica
	1.2. Mecánica cuántica
	1.3. Termodinámica
	1.4. Matemáticas
20T	2. COLECTIVOS ESTADISTICOS
20H	2.1. Colectivo canónico
	2.2. Otros colectivos y fluctuaciones
	2.3. Estadísticas de Boltzmann, Fermi-Dirac y Bose-Einstein
	2.4. Mecánica estadística clásica.
	2.5. Estadísticas cuánticas
	2.6. Teoría de perturbaciones
	2.7. Teoría cinética de los gases y colisiones moleculares
20Т	3. SISTEMAS EN ESTUDIO
20H	3.1. Sistemas no interactuantes (ideales)
	3.2. Transiciones de fases
	3.3. Equilibrio químico
	3.4. Gases imperfectos
	3.5. Fases condensadas

28T=28H

BIBLIOGRAFÍA BÁSICA

- 1. Sandler, S.I. An Introduction to Applied Statistical Thermodynamics, John Wiley & Sons, 2010.
- 2. Engel, T.; Reid, P., Physical Chemistry, Third edition, Pearson Education, 2014.
- 3. McQuarrie, D. Statistical Mechanics, University Science Books, 2000.
- 4. Chandler, D. Introduction to Modern Statistical Mechanics, Oxford University Press, 1987.

BIBLIOGRAFÍA COMPLEMENTARIA

- 1. Plischke, M.; Bergersen, B. Equilibrium Statistical Physics, World Scientific, 2006.
- 2. Schwabl, F., Statistical Mechanics, Springer Verlag, 2002.
- 3. Attard, P., Non equilibrium Thermodynamics and Statistical Mechanics, Oxford University Press, 2006.

SUGERENCIAS DIDÁCTICAS

Se realizarán ejercicios para que el estudiante aplique los métodos estudiados en clase.

FORMA DE EVALUAR

3 exámenes parciales, ejercicios en clase y tareas.

PERFIL PROFESIOGRÁFICO DE QUIENES IMPARTEN LA ASIGNATURA

Posgrado en Fisicoquímica.