Pneumonia Classifier

Mod 4 Project Alex Macy Mission:
Identify instances
of Pneumonia from
X-Ray images

Our Data

Three datasets:

- 1. Train, Validation, Test
 - a. Normal
 - b. Pneumonia

- 1. Train: 5216 images belonging to two classes.
- 2. Validation: 16 images belonging to two classes.
- 3. Test: 624 images belonging to two classes.

Baseline Modeling

Layer (type)	Output	Shape	Param #
flatten_10 (Flatten)	(None,	442368)	0
dense_21 (Dense)	(None,	300)	132710700
dense_22 (Dense)	(None,	100)	30100
dense 23 (Dense)	(None,	1)	101

Total params: 132,740,901 Trainable params: 132,740,901

Non-trainable params: 0

Create a base
Sequential Neural
Network to guage
data

Baseline Test Accuracy: 80% Result unreliable – Accuracy and Loss metrics too tacky

Next Steps: A more complex model

Layering

Our baseline, naive model consisted of two Dense layers. Perhaps a more complex model will perform better.

Updated Test Accuracy: 70% Result unreliable – Accuracy and Loss metrics too tacky

But improvement...

What now?

Enhancing the scope of our Neural Network only provides so much improvement. Manipulating the data may generate better results.

Data Augmentation

Using ImageDataGenerator, we can create new feature mappings that will improve our neural network's performance

Enhanced Modeling

With more layers, image augmentation, and batch normalizing, our network should perform best

Model: "sequential 15"

Layer (type)	Output				Param #
batch_normalization_18 (Batc					12
conv2d_38 (Conv2D)	(None,	384,	384,	32)	896
batch_normalization_19 (Batc	(None,	384,	384,	32)	128
activation_55 (Activation)	(None,	384,	384,	32)	0
batch_normalization_20 (Batc	(None,	384,	384,	32)	128
conv2d_39 (Conv2D)	(None,	382,	382,	32)	9248
batch_normalization_21 (Batc	(None,	382,	382,	32)	128
activation_56 (Activation)	(None,	382,	382,	32)	Θ
batch_normalization_22 (Batc	(None,	382,	382,	32)	128
max_pooling2d_19 (MaxPooling	(None,	191,	191,	32)	0
batch_normalization_23 (Batc	(None,	191,	191,	32)	128
dropout_28 (Dropout)	(None,	191,	191,	32)	0
batch_normalization_24 (Batc	(None,	191,	191,	32)	128
conv2d_40 (Conv2D)	(None,	191,	191,	64)	18496
batch_normalization_25 (Batc	(None,	191,	191,	64)	256
activation_57 (Activation)	(None,	191,	191,	64)	0
batch normalization 26 (Batc	(None,	191,	191,	64)	256

Updated Test Accuracy: 72% Much more reliable! But still problems...

Validation set has been a reoccuring problem.

Class Imbalance

Since there are so few examples for our validation set, our NN is predisposed to incorrectly identify pneumonia. Class balancing will help reconcile this...

Balanced Test Accuracy: 77% Validation data no longer overfitting!

Balanced Test Accuracy: 77% Validation data no longer overfitting!

Further Augmentation

Conclusion:

Cost-Benefit Analysis is not yet reliable, but consequences clear. Further modeling is needed, aided by better data. Data Augmentation can help make better data if it is not readily available

