Principal components

Given a set of data in IR (Eucliden space of d-dimension),
PCA provides sequence of best linear approximations of rank 95d

let 11,12/--/2n be our observational data x dxn

Assuming a linear model $f(\lambda) = \mu + Vq\lambda$ $\mu - mean vector q size <math>d \times 1$ $Vq - rank q matrix q size <math>d \times q$ $\lambda - vector q size <math>q \times 1$

The vector λ is the parametric representation of the linear model f (a hyperplane)

define $\tilde{X} = X - \mu$ i.e. each observation (row) after mean subtraction

one approach to solve for Vq is orthogonalizing the coveriance

Note that given two sets with zero mean

$$A = \{a_1, a_2, \dots, a_n\} \quad B = \{b_1, b_2, \dots, b_n\}$$

$$\overline{b}$$

The variance between A/B is $\sigma_{AB}^2 = \frac{1}{n} \sum a_i b_i$

$$= \frac{1}{n} \overline{ab}^T$$

Now for the matrix \tilde{X} (note that it has mean zero) we can define the covariance as $C_X = \frac{1}{n} \tilde{X} \tilde{X}^T$ (size $n \times n$)

where the diagonal terms are variance, off diagonal terms are covariance

- large diagonal terms corresponds to interesting structure

- large off diagonal ferms -> redundancy

From the above, the solution to obtain a variance maximizing hyperplane is to diagonalize the variance after projection

define $\tilde{X} = VqY$ ($dxn = (dxq) \times (qxn)$) where Y is a matrix of parametric representation in the linear model above (i.e. each row is a λ corresponding to $a \in \mathbb{R}^d$)

covariance of
$$Y$$
: $C_Y = \frac{1}{n} Y Y^T$

$$= \frac{1}{n} (v_q^T X) (v_q^T X)^T$$

$$= \frac{1}{n} (v_q^T X) (v_q^T X)^T$$

$$= v_q^T (x V_q^T X)$$

Note that Cx is a symmetric matrix thus decomposes as $C_X = E^TDE \quad \text{where} \quad E \text{ is a eigen vector matrix}$ D is eigen value matrix

$$C_y = V_q^{-1} E^T D F V_q^{-T}$$

To make Cy diagonal (i.e. no covariance in Y), we can select $Vq = E^T$

$$\Rightarrow$$
 $C_{x} = (\vec{E}^{T}\vec{E}^{T}) D (\vec{E}\vec{E}^{I}) = D$

Now, we have the full model: $\mu = \frac{1}{n_{n=1}} \pi_i$, $V_q = E^T$

Motes:

1. you can reconstruct any given sample 21 using the linear model F(2)

by setting λ appropriately in $f(\lambda)$

- 2. Each column in vq is called a principal component and it is q the Same Size as the original data point
- 3. if we arbitrarily set the λ to be unit vectors along a principal component, we can observe the changes to sample when traveled along that principal component.
- 4. The diagonal Eigen value matrix D also sorts principal components based on importance. Entries of D are referred to as explained variance since they come from the covariance matrix C_X