In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PM1
0	2005-11-01 01:00:00	NaN	0.77	NaN	NaN	NaN	57.130001	128.699997	NaN	14.720000	14.9
1	2005-11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.9
2	2005-11-01 01:00:00	NaN	0.40	NaN	NaN	NaN	46.119999	53.000000	NaN	30.469999	14.6
3	2005-11-01 01:00:00	NaN	0.42	NaN	NaN	NaN	37.220001	52.009998	NaN	21.379999	15.1
4	2005-11-01 01:00:00	NaN	0.57	NaN	NaN	NaN	32.160000	36.680000	NaN	33.410000	5.0
236995	2006-01-01 00:00:00	1.08	0.36	1.01	NaN	0.11	21.990000	23.610001	NaN	43.349998	5.0
236996	2006-01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.9
236997	2006-01-01 00:00:00	0.19	NaN	0.26	NaN	0.08	26.730000	30.809999	NaN	43.840000	4.3
236998	2006-01-01 00:00:00	0.14	NaN	1.00	NaN	0.06	13.770000	17.770000	NaN	NaN	5.0
236999	2006-01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.6

237000 rows × 17 columns

In [3]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 237000 entries, 0 to 236999
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	date	237000 non-null	object
1	BEN	70370 non-null	float64
2	CO	217656 non-null	float64
3	EBE	68955 non-null	float64
4	MXY	32549 non-null	float64
5	NMHC	92854 non-null	float64
6	NO_2	235022 non-null	float64
7	NOx	235049 non-null	float64
8	OXY	32555 non-null	float64
9	0_3	223162 non-null	float64
10	PM10	232142 non-null	float64
11	PM25	69407 non-null	float64
12	PXY	32549 non-null	float64
13	S0_2	235277 non-null	float64
14	TCH	93076 non-null	float64
15	TOL	70255 non-null	float64
16	station	237000 non-null	int64
dtyp	es: float	64(15), int64(1),	object(1)
		20 7. MD	

memory usage: 30.7+ MB

In [4]: b=a.fillna(value=96)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	2005-11-01 01:00:00	96.00	0.77	96.00	96.00	96.00	57.130001	128.699997	96.00	14.720000
1	2005-11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000
2	2005-11-01 01:00:00	96.00	0.40	96.00	96.00	96.00	46.119999	53.000000	96.00	30.469999
3	2005-11-01 01:00:00	96.00	0.42	96.00	96.00	96.00	37.220001	52.009998	96.00	21.379999
4	2005-11-01 01:00:00	96.00	0.57	96.00	96.00	96.00	32.160000	36.680000	96.00	33.410000
236995	2006-01-01 00:00:00	1.08	0.36	1.01	96.00	0.11	21.990000	23.610001	96.00	43.349998
236996	2006-01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999
236997	2006-01-01 00:00:00	0.19	96.00	0.26	96.00	0.08	26.730000	30.809999	96.00	43.840000
236998	2006-01-01 00:00:00	0.14	96.00	1.00	96.00	0.06	13.770000	17.770000	96.00	96.000000
236999	2006-01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998

237000 rows × 17 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NO_2 NOx		O_3	Р
0	2005-11-01 01:00:00	96.00	0.77	96.00	96.00	96.00	57.130001	128.699997	96.00	14.720000	14.91(
1	2005-11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.930
2	2005-11-01 01:00:00	96.00	0.40	96.00	96.00	96.00	46.119999	53.000000	96.00	30.469999	14.600
3	2005-11-01 01:00:00	96.00	0.42	96.00	96.00	96.00	37.220001	52.009998	96.00	21.379999	15.160
4	2005-11-01 01:00:00	96.00	0.57	96.00	96.00	96.00	32.160000	36.680000	96.00	33.410000	5.000
5	2005-11-01 01:00:00	1.92	0.88	2.44	5.14	0.22	90.309998	207.699997	2.78	13.760000	18.070
6	2005-11-01 01:00:00	96.00	0.55	96.00	96.00	0.27	50.279999	77.209999	96.00	19.120001	18.209
7	2005-11-01 01:00:00	0.20	0.38	1.00	96.00	0.27	51.759998	72.989998	96.00	14.810000	16.430
8	2005-11-01 01:00:00	96.00	0.70	96.00	96.00	96.00	39.040001	43.860001	96.00	25.379999	16.139
9	2005-11-01 01:00:00	96.00	0.56	96.00	96.00	96.00	41.820000	51.869999	96.00	24.290001	7.13(
10	2005-11-01 01:00:00	96.00	0.65	96.00	96.00	0.18	46.040001	76.610001	96.00	34.750000	10.530

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	96.00	0.77	96.00	96.00	96.00	57.130001	128.699997	96.00	14.720000
1	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000
2	96.00	0.40	96.00	96.00	96.00	46.119999	53.000000	96.00	30.469999
3	96.00	0.42	96.00	96.00	96.00	37.220001	52.009998	96.00	21.379999
4	96.00	0.57	96.00	96.00	96.00	32.160000	36.680000	96.00	33.410000
5	1.92	0.88	2.44	5.14	0.22	90.309998	207.699997	2.78	13.760000
6	96.00	0.55	96.00	96.00	0.27	50.279999	77.209999	96.00	19.120001
7	0.20	0.38	1.00	96.00	0.27	51.759998	72.989998	96.00	14.810000
8	96.00	0.70	96.00	96.00	96.00	39.040001	43.860001	96.00	25.379999
9	96.00	0.56	96.00	96.00	96.00	41.820000	51.869999	96.00	24.290001
10	96.00	0.65	96.00	96.00	0.18	46.040001	76.610001	96.00	34.750000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
 Out[9]: <seaborn.axisgrid.PairGrid at 0x20b88d16f40>
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         2.8421709430404007e-13
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
            BEN -4.788418e-15
             CO -1.443288e-13
             EBE 4.406660e-15
            MXY -2.452388e-15
           NMHC -1.417675e-14
           NO_2 -1.494051e-15
            NOx 1.000000e+00
            OXY 1.516668e-14
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x20b911b5250>
           130
           120
           110
           100
            90
            80
                      80
                              90
                                     100
                                             110
                                                     120
                                                             130
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9888688906654722
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9999950571988433
In [22]:
           a1=b.head(6000)
Out[22]:
                                     CO
                                                                                     OXY
                       date
                             BEN
                                           EBE
                                                 MXY
                                                       NMHC
                                                                  NO_2
                                                                               NOx
                                                                                                O_3
                                                                                                     РΝ
                  2005-11-01
                             96.00
                                    0.77
                                          96.00
                                                96.00
                                                        96.00 57.130001 128.699997
                                                                                    96.00
                                                                                          14.720000
                    01:00:00
                  2005-11-01
                              1.52
                                    0.65
                                           1.49
                                                 4.57
                                                         0.25 86.559998 181.699997
                                                                                     1.27
                                                                                           11.680000
                                                                                                     30
                    01:00:00
                  2005-11-01
                             96.00
                                                                          53.000000 96.00
                                    0.40 96.00
                                                96.00
                                                        96.00 46.119999
                                                                                           30.469999
                                                                                                     14
                    01:00:00
                  2005-11-01
                             96.00
                                    0.42
                                          96.00
                                                96.00
                                                        96.00 37.220001
                                                                          52.009998
                                                                                    96.00
                                                                                           21.379999
                    01:00:00
                  2005-11-01
                             96.00
                                    0.57
                                          96.00
                                               96.00
                                                        96.00 32.160000
                                                                          36.680000 96.00
                                                                                           33.410000
                                                                                                      5
                    01:00:00
                  2005-11-10
            5995
                              0.55
                                    0.50
                                           0.63
                                                96.00
                                                         0.09 79.129997
                                                                         153.500000 96.00
                                                                                           19.500000
                                                                                                     10
                    08:00:00
                  2005-11-10
            5996
                                    0.40
                              0.32
                                           1.00
                                                 1.00
                                                         0.13 23.120001
                                                                          23.660000
                                                                                     1.00
                                                                                           53.139999
                                                                                                       2
                    08:00:00
                  2005-11-10
            5997
                              0.15 96.00
                                           0.18
                                                96.00
                                                         0.10 84.070000 132.600006 96.00
                    08:00:00
                  2005-11-10
            5998
                                                                         103.400002 96.00
                                                                                                      7
                              0.21
                                   96.00
                                           1.00
                                                96.00
                                                         0.08 72.959999
                                                                                           96.000000
                    08:00:00
                  2005-11-10
            5999
                              0.45
                                    0.62
                                           0.81
                                                 1.07
                                                         0.19 66.699997 107.800003 0.94 26.920000
                                                                                                     10
                    08:00:00
           6000 rows × 17 columns
           e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
           f=e.iloc[:,0:14]
In [24]:
In [25]:
          logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
           from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
         [28079039]
In [30]: ___
Out[30]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
               28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
               28079017, 28079018, 28079019, 28079021, 28079022, 28079023,
               28079024, 28079026, 28079027, 28079035, 28079036, 28079038,
               28079039, 28079040, 28079099], dtype=int64)
In [31]:
Out[31]: 7.7059476284601e-241
In [32]: ___
Out[32]: 7.683663948336802e-174
In [33]:
Out[33]: 0.517222222222222
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
        C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_d
        escent.py:530: ConvergenceWarning: Objective did not converge. You might want
        to increase the number of iterations. Duality gap: 15.006007753807612, tolera
        nce: 3.149879320626048
          model = cd fast.enet coordinate descent(
Out[34]: ElasticNet()
In [35]:
        [-0.49777582 -0. -0.21385573 -0.04162864 -0.05172053 0.0099412
          0.97544523 0.7726987 ]
In [36]:
        3.8611902301954046
In [37]: prediction=en.predict(x_test)
         -1.4885415291779673
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
Out[38]: RandomForestClassifier()
```

```
In [39]: parameters={'max_depth':[1,2,3,4,5],
          'min_samples_leaf':[5,10,15,20,25],
          'n_estimators':[10,20,30,40,50]
In [40]: | from sklearn.model selection import GridSearchCV
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                     param_grid={'max_depth': [1, 2, 3, 4, 5],
                                 'min_samples_leaf': [5, 10, 15, 20, 25],
                                 'n_estimators': [10, 20, 30, 40, 50]},
                     scoring='accuracy')
In [41]:
Out[41]: 0.5452380952380953
In [42]:
In [43]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,50))
Out[43]: [Text(2334.3, 2491.5, 'X[4] <= -0.188\ngini = 0.963\nsamples = 2650\nvalue =
         [185, 136, 144, 154, 158, 150, 143, 155, 162, 169\n162, 174, 157, 159, 177, 1
         75, 143, 164, 154, 179\n133, 147, 105, 157, 146, 153, 159]'),
         Text(1190.4, 2038.5, 'X[2] <= -0.098\ngini = 0.908\nsamples = 1062\nvalue =
         [0, 0, 0, 154, 158, 150, 0, 141, 0, 0, 133, 0 \ 0, 0, 0, 0, 0, 163, 154, 179,
         132, 147, 0, 0\n0, 0, 159]'),
         Text(595.2, 1585.5, 'X[10] <= -0.619\ngini = 0.888\nsamples = 852\nvalue =
         [0, 0, 0, 154, 0, 150, 0, 0, 0, 0, 133, 0, 0\n0, 0, 0, 0, 163, 143, 179, 132,
         147, 0, 0, 0\n0, 159]'),
          Text(297.6, 1132.5, X[7] <= -2.52 = 0.747 = 359 = 359 = [0,
         0, 0, 154, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 116, 0, 0, 147, 0, 0, 0,
         0, 159]'),
          Text(148.8, 679.5, X[4] <= -1.228 \cdot ngini = 0.688 \cdot nsamples = 184 \cdot nvalue = [0, 1.5]
         0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 101, 0, 0, 98, 0, 0, 0,
         0, 76]'),
          Text(74.4, 226.5, 'gini = 0.587\nsamples = 60\nvalue = [0, 0, 0, 12, 0, 0, 12]
         Text(223.200000000000, 226.5, 'gini = 0.622\nsamples = 124\nvalue = [0, 0,
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 52, 0, 0, 98, 0, 0, 0, 4
```

From this observation I had observe that the LASSO is a highest accuracy of 0.9999950571988433

```
In [ ]:
```