Departamento de Matemática, Universidade de Aveiro Matemática Discreta 2021/22

Folha 4

- 1. Determine a soma dos n primeiros números de Fibonacci com índice par e com índice ímpar.
- 2. Indique quais são os números de Fibonacci pares.
- 3. Para subir uma certa escada, o Pedro consegue, com um único passo, avançar um, dois ou três degraus. Encontre uma equação de recorrência para a sucessão $(a_n)_{n\in\mathbb{N}}$, onde a_n é o número de maneiras possíveis em que o Pedro consegue subir n degraus. Apresente as condições iniciais.
- 4. Uma experiência é executada lançando-se um dado até que apareçam 2 números pares. Determine uma equação de recorrência para o número de experiências que terminam no n-ésimo lançamento ou antes.
- 5. Determine uma equação de recorrência para o número de sequências binárias de comprimento n com 3 zeros consecutivos. Indique as condições iniciais.
- 6. Suponha que uma equação de recorrência linear homogénea tem como raízes características 1 e 3 com multiplicidade um, e 2 com multiplicidade dois.
 - a) Explicite a equação de recorrência.
 - b) Determine a solução geral desta equação de recorrência linear homogénea.
- 7. Resolva as seguintes equações de recorrência:

a)
$$a_{n+2} = a_{n+1} + 6a_n - 6$$
, $n \ge 0$, com $a_0 = 0$ e $a_1 = 6$;

b)
$$a_n - 4a_{n-1} + 4a_{n-2} = n + 2^n$$
, $n \ge 2$, com $a_0 = 0$ e $a_1 = 1$;

- 8. Sendo $p(x) = 2x^2 + x$, determine uma fórmula fechada para o cálculo da soma $S_n = \sum_{i=0}^n p(i)$ começando por estabelecer uma equação de recorrência apropriada.
- 9. Determine a equação de recorrência linear não homogénea com solução geral $a_n = (c_1 + c_2 n)2^n + c_3 + 4n$, onde c_1, c_2 e c_3 são constantes.
- 10. Sendo p_n o número de partições de um conjunto de cardinalidade n em dois subconjuntos não vazios, deduza uma equação de recorrência para p_n e encontre a respetiva solução.
- 11. Usando transformações adequadas, resolva as seguintes equações de recorrência não lineares:
 - a) $a_n = na_{n-1} + n!$, com condição inicial $a_0 = 2$;

- b) $5na_n + 2na_{n-1} = 2a_{n-1}, n \ge 3$, com condição inicial $a_2 = -30$;
- c) $a_n^3 = a_{n-1}^2, n \ge 2, a_1 = 2$ (assume-se que $a_n \ge 0$, para todo o $n \ge 1$.
- d) $a_n = 2(a_{n-1} + 2(a_{n-2} + \dots + 2(a_1 + 2(a_0 + a_0)^2)^2 \dots)^2)^2$, com $a_0 = 2$ e $a_1 = 2(a_0 + a_0)^2$.
- 12. Seja h(k,n) o número de possibilidades de colocação de k pacientes numa sala de espera com n cadeiras em linha, de tal forma que os pacientes não se sentam em cadeiras vizinhas, deduza uma relação de recorrência para h(k,n).
- 13. Os números de Lucas são definidos por

$$L_n = L_{n-1} + L_{n-2}$$
 $(n \ge 2),$

- e $L_0 = 2$ e $L_1 = 1$. Obtenha uma fórmula fechada para L_n .
- 14. Defina a série geradora ordinária para a sucessão $(a_n)_{n\in\mathbb{N}}$, onde a_n é o número de soluções inteiras da equação $x_1+x_2+x_3+x_4=n$, nos casos em que
 - a) $0 < x_1 < 5, 0 < x_2 < 3, 2 < x_3 < 8, 0 < x_4 < 4$
 - b) $0 \le x_i \le 8$, para $i = 1, 2, 3, 4, x_1$ é par e x_2 é impar.
- 15. a) Use uma série geradora para modelar o número de diferentes resultados numa eleição (secreta) para eleger o delegado de uma turma com 27 alunos, dos quais 4 são candidatos? Qual é o coeficiente dessa função geradora que nos dá a resposta?
 - b) Suponha que cada aluno que é candidato vota em si próprio. Neste caso qual é a série geradora e o coeficiente desejado?
 - c) Suponha que nenhum candidato recebe a maioria dos votos. Repita a alínea 15a.
- 16. Calcule o número de possibilidades de troca de 50 euros em notas de 20 euros, 10 euros e 5 euros e moedas de 2 euros e 1 euro, sabendo que dispõe no máximo de cinco moedas de 1 euro, cinco moedas de 2 euros e cinco notas de 5 euros (não havendo qualquer limitação em relação às restantes notas).
- 17. Determine o número de soluções inteiras não negativas da equação

$$3a + 2b + 4c + 2d = r$$
.

- 18. Determine as séries geradoras das seguintes sucessões:
 - a) $b_n = nk^n$, para $n \in \mathbb{N}$;
 - b) $c_n = k + 2k^2 + 3k^3 + \dots + nk^n$, para $n \in \mathbb{N}$;
 - c) $a_n = C_1 a_{n-1} + C_2 a_{n-2}$, com $a_0 = -1$ e $a_1 = 2$, onde $a_1 = 2$, onde $a_2 = 2$ são constantes.
- 19. Determine as sucessões $(a_n)_{n\in\mathbb{N}}$ associadas às seguintes séries geradoras:
 - a) $(2+x)^4$;

b)
$$\frac{6x}{(1+2x)^2} + 2 - x^2$$

- 20. Resolva as equações seguintes utilizando o método da série geradora:
 - a) $a_n = na_{n-1}, n \ge 2, \text{ com } a_1 = 1;$
 - b) $a_n = a_{n-1} + n, n \ge 1, \text{ com } a_0 = 1;$
 - c) $a_n = 3a_{n-1}$, para $n \ge 1$, com $a_0 = 2$;
 - d) $u_n = u_{n-1} + n^2$, para $n \ge 1$, com $u_0 = 2$;
 - e) $u_{n+1} = 3u_n 1$, para $n \ge 0$, com $u_0 = 1$;
 - f) $u_{n+2} 5u_{n+1} + 6u_n = 0$, $n \ge 0$, com $u_0 = 0$ e $u_1 = 1$.
- 21. Considere a relação de recorrência $u_n 2u_{n-1} = 4^n, n \ge 1, u_0 = 1.$
 - a) Mostre que a série geradora da sucessão (u_n) é $\frac{1}{(1-2x)(1-4x)}$.
 - b) Determine uma fórmula não recursiva para $u_n, n \ge 0$.
- 22. a) Escreva a série/função geradora ordinária $a_0 + a_1x + a_2x^2 + \cdots$ (com $a_n = n$) como um quociente de polinómios (uma função racional).
 - b) Mostre que $\frac{x(x+1)}{(1-x)^3}$ é a série geradora da sucessão definida por $a_n=n^2$.
 - c) Seja $(a_n)_{n\in\mathbb{N}}$ definida por $a_0=0, a_1=\alpha$ e

$$a_n = a_{n-2} - n^2, \ n \ge 2.$$

Obtenha a função geradora ordinária desta sucessão como soma de funções racionais. Use as respostas das questões anteriores.

- d) Obtenha uma fórmula fechada para a sucessão dada na alínea anterior.
- 23. Mostre que, para todos os $x, y \in \mathbb{R}$ e $n \in \mathbb{N}$,

$$(x+y)_n = \sum_{k=0}^n \binom{n}{k} (x)_k (y)_{n-k}.$$

Aqui: $(z)_n = z(z-1) \cdot \cdots \cdot (z-n+1)$, em particular $(z)_0 = 1$.

- 24. Determine os números binomiais generalizados $\begin{pmatrix} \frac{1}{2} \\ 3 \end{pmatrix}$ e $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$.
- 25. Determine todos os números reais x para os quais o número binomial generalizado $\begin{pmatrix} x \\ 2 \end{pmatrix}$ é 28.
- 26. a) Mostre que, para todos os $n, r \in \mathbb{N}$,

$$\binom{-n}{r} = (-1)^r \binom{n+r-1}{r}$$

b) Mostre que
$$(1+x)^{-n} = \sum_{k=0}^{\infty} {n \choose k} x^k$$

Sugestão. Recorra ao desenvolvimento em série de $(1+x)^{\alpha}$.

27. Partindo da série geradora dos números de Fibonacci, mostre que os números de Fibonacci F_n com $n \ge 1$ são determinados pela expressão

$$F_n = \sum_{j=0}^{n-1} \binom{n-1-j}{j}.$$

28. Resolva o sistema de equações de recorrência

$$\begin{cases} a_n = 3a_{n-1} + 2b_{n-1} \\ b_n = a_{n-1} + b_{n-1} \end{cases}$$

com condições iniciais $a_0 = b_0 = 1$.

Algumas soluções

- **1** F_{2n-1} e $F_{2n} 1$.
- **2** F_{3n-1} , $n \ge 1$.
- 3 Tenha em conta que podemos partir o número de maneiras de subir n degraus em três conjuntos disjuntos. O conjunto X_1 de todas as subidas possíveis em que no primeiro passo se avança apenas um degrau (cuja cardinalidade é a_{n-1}), o conjunto X_2 de todas as subidas possíveis em que no primeiro passo se avançam dois degraus (cuja cardinalidade é a_{n-2}) e o conjunto X_3 de todas as subidas possíveis em que no primeiro passo se avançam três degraus (cuja cardinalidade é a_{n-3}).
- **4** $a_0 = 0, a_1 = 0$ e $a_n = a_{n-1} + (n-1) \times 3 \times 3^{n-2} \times 3$, para $n \ge 2$.
- 5 Note que o número de sequências que terminam em 1 é a_{n-1} , o número de sequências que terminam em 10 é a_{n-2} , o número de sequências que terminam em 100 é a_{n-3} e o número de sequências que terminam em 000 é 2^{n-3} .
- **6** 1. $a_n 8a_{n-1} + 23a_{n-2} 28a_{n-3} + 12a_{n-4} = 0$.
 - 2. $a_n = A + B3^n + C2^n + Dn2^n$, para todo $n \ge 0$, com A, B, C e D constantes.
- **7** 1. $a_n = \frac{3^{n+1}}{5} + \frac{(-2)^{n+3}}{5} + 1$, para $n \ge 0$.
 - 2. $a_n = (-4 + \frac{3}{2}n)2^n + n^22^{n-1} + 4 + n$, para $n \ge 0$.
- **8** $S_1 = 3 \text{ e } S_n = S_{n-1} + 2n^2 + n, n \ge 2.$

$$S_n = 2\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} = \frac{n(n+1)(4n+5)}{6}, n \ge 1.$$

- 9 $a_n 5a_{n-1} + 8a_{n-2} 4a_{n-3} = 4$.
- **10** Se $\{A \cup \{n\}, B\}$ é uma partição de $\{1, \ldots, n\}$, então ou $\{A, B\}$ é partição de $\{1, \ldots, n-1\}$ ou $A = \emptyset$ e $B = \{1, \ldots, n-1\}$. Note-se que $\{A, B\} = \{B, A\}$, $a_1 = 0$ (e $a_2 = 1$). Logo, $a_n = 2a_{n-1} + 1$, $n \ge 2$ (ou $a_{n+1} = 2a_n + 1$, $n \ge 1$). Esta equação de recorrência tem como solução $a_n = 2^{n-1} 1$, $n \ge 1$.
- 11 1. Substituição: $a_n = b_n \times n!$. Fórmula fechada: $a_n = (n+2) \cdot n!$, para todo $n \ge 0$.
 - 2. Substituição: $a_n=b_n/n$. Fórmula fechada: $a_n=\frac{-3\times(-2)^n}{n5^{n-3}}$, para todo $n\geq 2$. 5Fórmula fechada:
 - 3. Substituição: $b_n = \log_2 a_n$. Fórmula fechada: $a_n = 2^{\left(\frac{2}{3}\right)^{n-1}}$, para todo $n \ge 1$.
 - 4. Substituição: $b_n = \log_2 a_n$. Fórmula fechada: $a_n = 2^{2^{n+2}-3}$ para $n \ge 0$.
- **12** h(k,n) = h(k,n-1) + kh(k-1,n-2), para $k \ge 1$ e $n \ge 1$.
- **13** $L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$
- **14** 1. $(1+x+\cdots+x^5)(1+x+x^2+x^3)(x^2+x^3+\cdots+x^8)(1+x+\cdots+x^4)$
 - 2. $(1+x^2+x^4+x^6+x^8)(x+x^3+x^5+x^7)(1+x+x^2+x^3+\cdots+x^8)^2$.
- 15 1. $(1+x+x^2+\cdots+x^{27}+\ldots)^4$, coeficiente de x^{27} .
 - 2. $(x + x^2 + \cdots + x^{24} + \cdots)^4$, coeficiente de x^{27} .
 - 3. $(1 + x + x^2 + \dots + x^{13})^4$, coeficiente de x^{27} .
- **16** Coeficiente c_{50} do polinómio gerador

$$\sum_{n=0}^{130} c_n x^n = (1 + x + \dots + x^5)(1 + x^2 + \dots + x^{10})(1 + x^5 + \dots + x^{25})(1 + x^{10} + \dots + x^{50})(1 + x^{20} + x^{40}).$$

- 17 Coeficiente de x^r na série formal $(1+x^3+x^6+x^9+\cdots)(1+x^2+x^4+x^6+\cdots)^2(1+x^4+x^8+x^{12}+\cdots) = \frac{1}{(1-x^3)(1-x^2)^2(1-x^4)}$.
- **18** 1. $\frac{kx}{(1-kx)^2}$.
 - 2. $\frac{kx}{(1-x)(1-kx)^2}$.
 - $3. \ \frac{-1 + (2 + C_1)x}{1 C_1x C_2x^2}.$
- **19** 1. $a_0 = 16$, $a_1 = 32$, $a_2 = 24$, $a_3 = 8$, $a_4 = 1$, $a_n = 0$, para todo $n \ge 5$.
 - 2. $a_0 = 2$, $a_1 = 6$, $a_2 = -25$, $a_n = -3(-2)^n n$, para $n \ge 3$.
- **20** 1. $a_n = n!$, para todo $n \ge 1$.
 - 2. $a_n = 1 + \binom{n+1}{2}$, para todo $n \ge 0$.
 - 3. $a_n = 2(3)^n$, para todo $n \ge 0$.

- 4. $u_n=\frac{n(n+1)(2n+1)}{6}+2,$ para todo $n\geq 0.$
- 5. $u_n = \frac{1+3^n}{2}$, para todo $n \ge 0$.
- 6. $u_n = -2^n + 3^n$, para todo $n \ge 0$.
- **21** (b) $u_n = 2^{2n+1} 2^n$, para todo $n \ge 0$.
- **22** (a) $\frac{x}{(1-x)^2}$.
 - (c) $(\alpha + 1) \frac{x}{1-x^2} \frac{x}{(1-x)^4}$.
 - (d) $a_n = \frac{\alpha+1}{2} \frac{\alpha+1}{2}(-1)^n \frac{(n+2)(n+1)n}{6}$, para todo $n \ge 0$.
- **24** $\binom{\frac{1}{2}}{3} = \frac{1}{16} e \binom{-2}{3} = -4.$
- **25** {-7, 8}
- **28** $a_n = \frac{1+\sqrt{3}}{2}(2+\sqrt{3})^n + \frac{1-\sqrt{3}}{2}(2-\sqrt{3})^n$ e $b_n = \frac{1}{2}\left((2+\sqrt{3})^n + (2-\sqrt{3})^n\right)$, para todo $n \ge 0$.