

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Overblik

Vi skal have "'udfyldt"' følgende skema over modeller (rækker) og statistiske begreber (søjler):

	Intro	Model	$Est. {+} SE$	KI	Test	Kontrol	Præd.
En stikprøve	✓	✓	✓	✓		✓	
Ensidet ANOVA	✓	nu	nu	nu			
Lineær regr.	✓	nu	nu	nu			
To stikprøver							
Multipel regr.							
Tosidet ANOVA							

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 3/27

DET NATURVIDENSKABELIGE FAKULTET

Opsummering og dagens program

Kursusuge 1 + 2:

- Datatyper og deskriptiv statistik
- Normalfordelingen
- Lineær regression og ensidet ANOVA: Figurer og estimater men ikke mere
- Én stikprøve: Statistisk model, estimation og standard errors, konfidensintervaller

I dag:

Statistisk model, estimation og SE, konfidensintervaller for

- Ensidet ANOVA, dvs. flere stikprøver
- Lineær regression
- Repeter selv: en enkelt stikprøve (fra 13/9-2023)

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Statistiske begreber

Statistiske grundbegreber indtil videre:

- Population og stikprøve
- Gennemsnit, stikprøvespredning, median, kvartiler
- Statistisk model og parametre
- \bullet Estimater og standard error (SE) for estimater
- Konfidensinterval

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

antibio-datasættet

```
library(isdals)
data(antibio)
head(antibio, n = 7)

## type org
## 1 Ivermect 3.03
## 2 Ivermect 2.81
## 3 Ivermect 3.06
## 4 Ivermect 3.11
## 5 Ivermect 2.94
## 6 Ivermect 3.06
## 7 Alfacyp 3.00
```


- Respons: Mængden af organisk materiale efter otte uger
- Modelskema: Kont. respons, én kategor. forklarende var.
- Ensidet ANOVA, flere stikprøver

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Problemformulering og gruppegennemsnit

Kan vi generalisere ud fra data og sige, at det forventede indhold af organisk stof afhænger af den anvendte type antibiotika?

```
library(tidyverse)
summarize(group_by(antibio, type), n = n()
          , mean_org = mean(org), sd_org = sd(org))
## # A tibble: 6 x 4
    type
                 n mean_org sd_org
    <fct>
             <int>
                       <dbl> <dbl>
## 1 Alfacyp
                       2.90 0.117
## 2 Control
                       2.60 0.119
## 3 Enroflox
                        2.71 0.162
## 4 Fenbenda
                       2.83 0.124
## 5 Ivermect
                       3.00 0.109
## 6 Spiramyc
                        2.86 0.0545
```

Vi har brug for at kende usikkerheden på gruppegennemsnit!

Statistisk model

Data:

- y_1, \ldots, y_n kvantitative, kontinuerte obs. fra k grupper
- g(i) er gruppen hørende til måling i

Statistisk model:

- y_1, \ldots, y_n er uafhængige
- y_i er normalfordelt $\sim N(\mu_i, \sigma^2)$
- middelværdien $\mu_i = \alpha_{g(i)}$ afhænger af gruppen g(i)

(Ukendte) populationsparametre:

- Hver gruppe antages at have sin egen middelværdi (forventede værdi): $\alpha_1, \ldots, \alpha_k$
- ullet Spredning σ ens for alle grupper

Middelværdierne $\alpha_1, \ldots, \alpha_k$ og spredningen σ er **parametre** i modellen, som vi vil udtale os om udfra de givne data.

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 9/27

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Estimation

Estimater:

- For middelværdier: $\hat{\alpha}_j = \bar{y}_j$ gruppegennemsnit
- Den fælles spredning: $\hat{\sigma} = s$ sammenvejet spredning. Hvordan beregnes denne fælles spredning?

Interesseparameter er ofte **forskelle mellem grupperne**, fx $\alpha_2 - \alpha_1$. Estimeres med $\hat{\alpha}_2 - \hat{\alpha}_2 = \bar{y}_2 - \bar{y}_1$.

Men hvor meget kan vi stole på estimaterne?

- Standard error for $\hat{\alpha}_i$? For $\hat{\alpha}_2 \hat{\alpha}_1$?
- Konfidensinterval for α_i ? For $\alpha_2 \alpha_1$?

Repetition (fra onsdag i kursusuge 2):

- Hvad mener vi med standard error for estimat?
- Hvordan fandt vi standard error for estimatet for middelværdien i situationen med en enkelt stikprøve?

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 11/27

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R-output fra ensidet ANOVA

Lad os se på summary() fra en ensidet variansanalysemodel:

```
model1 <- lm(org ~ type - 1, data = antibio)
summary(model1)
## Call:
## lm(formula = org ~ type - 1, data = antibio)
## Residuals:
              10 Median 30 May
## Min
## -0.29000 -0.06000 0.01833 0.07250 0.18667
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## typeAlfacyp 2.89500 0.04970 58.25 <2e-16 ***
## typeControl 2.60333 0.04970 52.38 <2e-16 ***
## typeEnroflox 2.71000 0.04970 54.53 <2e-16 ***
## typeFenbenda 2.83333 0.04970 57.01 <2e-16 ***
## typeIvermect 3.00167 0.04970 60.39 <2e-16 ***
## typeSpiramyc 2.85500 0.06087 46.90 <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1217 on 28 degrees of freedom
## Multiple R-squared: 0.9985, Adjusted R-squared: 0.9981
## F-statistic: 3034 on 6 and 28 DF, p-value: < 2.2e-16
```

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 10/27

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Standard errors for estimater

Standard error for estimat = (estimeret) spredning for estimatet

Husk at $\hat{\alpha}_j = \bar{y}_j$ er gennemsnit af n_j observationer. Derfor:

$$\operatorname{SE}(\hat{lpha}_j) = rac{s}{\sqrt{n_j}}$$

Desuden: $SE(\hat{\alpha}_2 - \hat{\alpha}_1)^2 = SE(\hat{\alpha}_2)^2 + SE(\hat{\alpha}_1)^2$, så

$$\operatorname{SE}(\hat{lpha}_2 - \hat{lpha}_1) = s \sqrt{rac{1}{n_1} + rac{1}{n_2}}$$

Igen vigtigt at skelne mellem s og $SE(\hat{\alpha}_i)$:

- s: spredning på **enkeltobs.** Residual standard error.
- $SE(\hat{\alpha}_j)$ og $SE(\hat{\alpha}_2 \hat{\alpha}_1)$: spredning på **estimater**

Konfidensintervaller

Vil gerne have **konfidensintervaller** for middelværdier og deres forskelle. Har ingredienserne!

95% KI: estimat
$$\pm t_{0.975} \, df \cdot SE(estimat)$$

Hvor mange frihedsgrader?

• df = n - k = antal obs. minus antal middelværdiparametre

I R-programmet bør du have fokus på:

- Hvordan benyttes qt()-funktionen til beregning af $t_{0.975}$ df?
- Hvor (og hvornår) kan man aflæse SE(estimat) direkte i R-output?
- Hvordan (og hvornår) kan man bruge confint()-funktionen til beregning af konfidensintervaller?

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 13/27

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Samme model kan fittes på flere måder i R Med gruppemiddelvaerdierne som parametre:

```
model1 <- lm(org ~ type - 1, data=antibio)
```

Med en referencegruppe valgt af R:

```
model2 <- lm(org ~ type, data=antibio)</pre>
```

Med en selvvalgt referencegruppe:

```
antibio$myType <- relevel(antibio$type, ref="Control")
model3 <- lm(org ~ myType, data=antibio)</pre>
```

Selvvalgt ref-gruppe, hvis data er indlaest med read_excel:

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Quiz: R-output fra ensidet ANOVA Lad os se lidt mere på output fra model1:

```
## Estimate Std. Error t value Pr(>|t|)
## typeAlfacyp 2.895000 0.04970149 58.24775 9.090203e-31
## typeControl 2.603333 0.04970149 52.37938 1.731916e-29
## typeEnroflox 2.710000 0.04970149 54.52553 5.685971e-30
## typeFenbenda 2.833333 0.04970149 57.00701 1.653035e-30
## typeIvermect 3.001667 0.04970149 60.39390 3.326166e-31
## typeSpiramyc 2.855000 0.06087164 46.90197 3.689834e-28
```

- Hvordan er tallene 2.895 og 2.710 i søjlen Estimate udregnet fra datasættet?
- Hvad er fortolkningen af tallet 0.0497 i søjlen Std.Error?
- Hvorfor er Std.Error for Spiramyc større end for andre grupper?
- Find et 95 % konfidensinterval for det forventede indhold af organisk stof i en prøve hørende til type = Alfacyp.

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Version med referencegruppe

Hvilke forskelle ses i forhold til summary (model1)?

```
model2 <- lm(org ~ type, data = antibio)
summary(model2)
## Call:
## lm(formula = org ~ type, data = antibio)
## Residuals:
              10 Median
                               30 May
## Min
## -0.29000 -0.06000 0.01833 0.07250 0.18667
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.89500 0.04970 58.248 < 2e-16 ***
## typeControl -0.29167 0.07029 -4.150 0.000281 ***
## typeEnroflox -0.18500 0.07029 -2.632 0.013653 *
## typeFenbenda -0.06167 0.07029 -0.877 0.387770
## typeIvermect 0.10667 0.07029 1.518 0.140338
## typeSpiramyc -0.04000 0.07858 -0.509 0.614738
## Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1217 on 28 degrees of freedom
## Multiple R-squared: 0.5874, Adjusted R-squared: 0.5137
## F-statistic: 7.973 on 5 and 28 DF, p-value: 8.953e-05
```

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 16/27

Version med referencegruppe Hvordan skal vi fortolke konfidensintervallerne her? confint (model2) ## 2.5 % 97.5 % ## (Intercept) 2.79319111 2.99680889 ## typeControl -0.43564618 -0.14768716 ## typeEnroflox -0.32897951 -0.04102049 ## typeFenbenda -0.20564618 0.08231284 ## typeIvermect -0.03731284 0.25064618 ## typeSpiramyc -0.20097398 Manuel beregning af konfidensintervaller (eksempler): # (Intercept) / Alfacyp

```
# (Intercept) / Alfacyp
2.895 + c(-1, 1) * qt(0.975, df = 28) * 0.04970
## [1] 2.793194 2.996806
# typeControl / forskel: Control - Alfacyp
-0.29167 + c(-1, 1) * qt(0.975, 28) * 0.07029
## [1] -0.4356525 -0.1476875
```

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 17/27

Data: Kattes hjerte- og kropsvægt Cats data (b) Holling og kropsvægt Cats data (c) A Composition og kropsvægt Cats data (d) A Composition og kropsvægt Cats data (e) A Composition og kropsvægt Data: Kattes hjerte- og kropsvægt Cats data (e) A Composition og kropsvægt Cats data (f) A Composition og kropsvægt Cats data (g) A Composition og kropsvægt Og A Composition og kropsvægt Og A Composition og A Composition

Statistisk model

Data: Par $(x_1, y_1), \ldots, (x_n, y_n)$, kvantitativ, kontinuert

Statistisk model: Uafhængighed + alle obs. normalfordelt med middelværdi givet ved ret linie og samme spredning omkring linie

Formelt:

- Tænker på x_i'erne som givne
- y_1, \ldots, y_n uafhængige
- y_i normalfordelt med middelværdi $\mu_i = \alpha + \beta x_i$ og spredning

(Ukendte) **populationsparametre**:

- Skæring/intercept α , hældning β
- Spredningen σ

Parametrene i modellen er α, β og spredningen σ , som vi vil udtale os udfra de givne data.

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvordan udregnes estimater?

Estimater for α og β via mindste kvadraters metode: $\hat{\alpha}$, $\hat{\beta}$.

Estimeret regressionslinie:

$$\hat{\mathbf{y}} = \hat{\alpha} + \hat{\beta}\mathbf{x}$$

Estimat for σ :

$$\hat{\sigma} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2}$$

Men hvor meget kan vi stole på estimaterne?

• Standard error for $\hat{\alpha}$, $\hat{\beta}$, \hat{y}

Statistisk Dataanalyse 1, Kursusuge 3, mandag

Dias 23/27

• Konfidensinterval for α , β , $\alpha + \beta x$

Quiz: R-output fra lineær regression

Lad os se på summary() fra en lineær regressionsmodel:

```
linreg <- lm(Hwt ~ Bwt, data = cats)
summary(linreg)
## Call.
## lm(formula = Hwt ~ Bwt, data = cats)
## Residuals:
## Min 1Q Median 3Q Max
## -3.5694 -0.9634 -0.0921 1.0426 5.1238
## Coefficients:
         Estimate Std. Error t value Pr(>|t|)
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.452 on 142 degrees of freedom
## Multiple R-squared: 0.6466, Adjusted R-squared: 0.6441
## F-statistic: 259.8 on 1 and 142 DF, p-value: < 2.2e-16
```

- Angiv estimater for regressionslinjens hældning og skæring?
- Hvad er fortolkningen af Residual standard error
- Angiv et 95 % konfidensinterval for parameteren β ?

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

DET NATURVIDENSKABELIGE FAKULTET

Standard errors for estimator

Formler:

$$SE(\hat{\beta}) = \frac{s}{\sqrt{SS_x}}, \quad SE(\hat{\alpha}) = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{SS_x}},$$
$$SE(\hat{y}) = s\sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{SS_x}}$$

hvor
$$SS_x = \sum (x_i - \bar{x})^2$$
.

Formlerne er stort set uinteressante, men:

- Husk at SE er udtryk for præcisionen af estimaterne
- Er det bedst at samle x'erne eller at sprede dem?
- For hvilken værdi er \hat{y} mest præcist estimeret (mindst SE)?

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konfidensintervaller

Vil gerne have **konfidensintervaller** for parametre og estimeret regressionslinie:

95% KI: estimat
$$\pm t_{0.975, df} \cdot SE(estimat)$$

Hvor mange frihedsgrader?

• df = n - 2 = antal obs. minus antal middelværdiparametre

Eksempler på beregning af konfidensintervaller findes i dagens R-program.

I R-programmet bør du have fokus på:

- Hvordan man finder konfidensintervaller for α og β ved brug af confint().
- Hvordan man finder konfidensintervallet for et punkt $\hat{y}\hat{\alpha} + \hat{\beta}x$ på linjen.

Statistisk Dataanalyse 1, Kursusuge 3, mandag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Opsummering — til eget brug

- Hvad er fortolkningen af standard error (SE)?
- Hvilke 'ingredienser' skal bruges for at lavet et konfidensinterval?
- Hvordan skal værdierne i et konfidensinterval fortolkes?
- Hvad mener vi med at R bruger en referencegruppe i ensidet ANOVA?

Statistisk Dataanalyse 1, Kursusuge 3, mandag Dias 27/27

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Estimeret linje med 95 % - konfidensinterval

Cats data

R-kode til at lave figuren kan ses i dagens R-program.

Statistisk Dataanalyse 1, Kursusuge 3, mandag

