ECE 5362 Homework 7 Due 10:20am Nov 22 (Carmen PDF Submission)

1. (36 points, 12 points each) Below are three test files that are similar to those used for the machine problems. Determine the contents (in hexadecimal) of AC, X, SP, and CVZN (3 pts each) after manually executing each of those test files based on the OSIAC description. Those can be used as test cases for your machine problems.

0008 AC A004 AC 0001 AC 0007 X EEED X 0007 X 8000 SP 0007 SP 0003 SP 0000 PC 0001 PC 0004 PC 0000 CVZN 1101 CVZN 3207 0200 1001 3004 4012 5204 3034 5008 0642 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC 0004 00EE B0C0	(a)	(b)	(c)
8000 SP 0007 SP 0003 SP 0000 PC 0001 PC 0004 PC 0000 CVZN 0000 CVZN 1101 CVZN 3207 0200 1001 3004 4012 5204 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	0008 AC	A004 AC	0001 AC
0000 PC 0001 PC 0004 PC 0000 CVZN 1101 CVZN 3207 0200 1001 3004 4012 5204 3034 5008 0642 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	0007 X	EEED X	0007 X
0000 CVZN 0000 CVZN 1101 CVZN 3207 0200 1001 3004 4012 5204 3034 5008 0642 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	8000 SP	0007 SP	0003 SP
3207 0200 1001 3004 4012 5204 3034 5008 0642 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	0000 PC	0001 PC	0004 PC
3004 4012 5204 3034 5008 0642 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	0000 CVZN	0000 CVZN	1101 CVZN
3034 5008 0642 3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	3207	0200	1001
3028 5500 0003 3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	3004	4012	5204
3401 0007 0650 FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	3034	5008	0642
FFFF 6004 0000 0000 0000 0641 0002 DCBA FFFC	3028	5500	0003
0000 0000 0641 0002 DCBA FFFC	3401	0007	0650
DCBA FFFC	FFFF	6004	0000
	0000	0000	0641
0004 00EE B0C0	0002	DCBA	FFFC
	0004	00EE	B0C0

- 2. (20 pts, 10 pts each) As discussed in class, the two outputs of a full adder, s_i and c_{i+1} can be simplified to $s_i = x_i \oplus y_i \oplus c_i$ and $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$. Starting from the true table given in class, show how they are simplified algebraically, step by step. Be sure to show any intermediate steps (you do not have to give the names or numbers of the theorems). Note that you CANNOT use truth table to show the equivalence or Karnaugh map to do simplification.
- 3. (44 pts) For the carry-lookahead adder discussed in class, answer the following questions. Note that you may need to read Section 9.2.1 for this problem.
 - (a) Use four of the 16-bit carry-lookahead adders (as shown in Figure 9.5 of the textbook) along with additional logic circuits to design a 64-bit adder. You do not need to plot a diagram, but just to derive the logic expressions of c_{16} , c_{32} , c_{48} , and c_{64} as functions of c_0 and the G_t^{II} and P_t^{II} variables. Hint: Section 9.2.1 of the textbook has explained how to derive c_{16} in a 16-bit carry-lookahead adder and you can do this problem similarly. (16 pts, 4 pts each)
 - (b) What are the gate delays to produce s_{63} and c_{64} in this 64-bit adder? Explain clearly how you get those delays. (12 pts, 6 each)
 - (c) What are the gate delays to produce s_{31} and c_{32} in this 64-bit adder? What are the gate delays for the same variables in a 32-bit adder built from a direct cascade (instead of having a higher-level lookahead logic) of two 16-bit lookahead adders? Explain clearly, step by step, how you get those delays. (16 pts, 4 each)