

Causal Mechanism Disentanglement to improve Few-Shot Domain Adaptation after a Sparse Mechanism Shift for Next Frame Prediction

Assuming that a distribution shift is due to a Sparse Mechanism Shift¹, we can minimize the expected number of parameters that need to update by disentangling parameters with regard to causal mechanisms. Updating only the corresponding parameters might then improve adaptation speed².

- Causal Factor Disentanglement using interventions (CITRIS²)
- Causal Discovery to ensure parent-only dependence
- Sparse Parameter Update to prevent catastrophic forgetting

References

- Schölkopf, Bernhard, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. "Towards causal representation learning 2021." arXiv preprint arXiv:2102.11107 (2021).
- 2. Bengio, Yoshua, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, and Christopher Pal. "A meta-transfer objective for learning to disentangle causal mechanisms." arXiv preprint arXiv:1901.10912 (2019).
- 3. Lippe, Phillip, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Stratis Gavves. "Citris: Causal identifiability from temporal intervened sequences." In International Conference on Machine Learning, pp. 13557-13603. PMLR, 2022.