Aggregating opinions (not worrying about truthful revelation)
Can we create social preference orders from individual preferences?

Anrow's social welfare function setup

Finite set of alternatives, $A = \{a_1, a_2, ..., a_m\}$

Finite set of players, $N = \{1, ..., n\}$

Each player i has a pruference order R_i over A [a binary relation over A]. $a R_i b \Rightarrow a$ is at least as good as b.

Properties of Ri:

- (1) Completenes: for every pair of alternatives $a,b \in A$, either $a R_i b$ or $b R_i a$ or $b \sigma h$
- 2) Reflexivity: \a EA, a Ria
- 3 Transitivity: if a Rib and b RiC, Then a RiC, & a, b, c EA and i EN.
 Set of all preference ordering is R

An ordering is linear if for every $a,b \in A$ 1.t. aR_ib and bR_i a, it holds that a=b. [indifferences are not allowed]

Set of all linear orderings is P

Hence any arbitrary ordering R_i can be decomposed into @ asymmetric part P_i , and G symmetric part I_i

E.g.,
$$R_i = \begin{bmatrix} a \\ b,c \\ d \end{bmatrix} = \{(a,b),(a,c),(b,c),(c,b),(b,d),(c,d)\}$$

$$\Rightarrow P_{i} = \begin{bmatrix} a & a \\ b & c \\ d & d \end{bmatrix} = \{(a,b),(a,c),(b,d),(c,d)\}, \quad I_{i} = \{(b,c),(c,b)\}$$

Anrovian Social Welfare Function (ASWF) $F: \mathbb{R}^n \to \mathbb{R}$, domain and range both are trankings motivation: The collective ordering of the society - if the most preferred is not jeasible, The society can move to the next and so on. $F(R) = F(R_1, R_2, \dots, R_n)$ is an ordering $\hat{F}(R)$ is the asymmetric part of F(R)F(R) is the symmetric part of F(R)Defn: Weak Pareto An ASWF F satisfies weak Pareto if \tanbel{A} $[aP_ib, \forall i \in N] \Rightarrow [aF(R)b]$ This notation is need as "whenever (the condition inside) holds, The implication follows" $\forall R \in \mathbb{R}^n$, if $a P_i b$, $\forall i \in \mathbb{N}$, then a F(R) bThere could be R's Where The if condition doesn't hold, There The implication is vacuously time. Defn. Strong Pareto An ASWF F satisfies strong Pareto if \ta, b \in A [aRib, ti∈N, and aPjb, fj] ⇒ [a f(R) b] Q: Which property implies The other?

We say $R_i, R_i' \in \mathbb{R}$ agree on $\{a,b\}$ if for agent i a P_i b \Leftrightarrow a P_i' b , b P_i a \Leftrightarrow b P_i' a , a I_i b \Leftrightarrow a I_i' b We use $|I_i|$ shorthand $|R_i|_{a,b} = |R_i'|_{a,b}$ to denote this If this holds for every agent, $|R_i|_{a,b} = |R_i'|_{a,b}$.

$$\underline{\text{Defn}}. \text{ An ASWF F satisfies IIA if } \forall a,b \in A, \\
[R|_{a,b} = R'|_{a,b}] \Rightarrow [F(R)|_{a,b} = F(R')|_{a,b}]$$

If the relative positions of two alternatives are same in two different preference profiles, Then the aggregate must also netain the same relative positions.

Example:		R				R'			
	<u>ـ</u>	a	C	d	_	d	C	ط	b
		C					a		
	_	6				Ь	Ь	a	d
		d				С	d	d	C

Consider scoring nules (A_1,A_2,\ldots,A_m) , $A_i\geqslant A_{i+1}$, $i=1,\ldots,m-1$ one special nule: plurality $A_1=1$, $A_2=\cdots=A_m=0$.

Does phirality satisfy 11A?

check a FP(R)b, but b FP(R')a, R|a,b = R'|a,b

Does dictatorship satisfy 11A?

Theorem (Arrow 1951)

Assume |A|>3, if an ASWF F satisfies WP and IIA, then it must be dictatorial.