Contents

wore Counting	1
Permutations	1
Combinations	2
Power Sets	3
Basket Data	3
Prediction	4
Regression	4
Classification	5

More Counting

We'll need to count the following again and again, let's do it once:

- Counting the number of ways to generate an ordered subset of size k from a set of n distinguishable objects (Permutation)
- Counting the number of ways to generate an unordered subset of size k from a set of n distinguishable objects (Combination)

We'll see that counting permutations is based on the product rule of counting and counting combinations is based on permutations

Permutations

Permutation: An ordered arrangement

Example: How many ways can we arrange the letters in the word "abc"

- Recall n! = n(n-1)(n-2)...(n-n)
- $3! = 3 \times 2 \times 1 = 6$
- In general, the number of permutations of n objects in n! by direct application of product rule

Example: How many ways can we arrange the letters in the word "moo"?

- If we treat the two o's as the same we get three distinct arrangements
- If we permute the o's we still get moo. There are 2! = 2 ways to permute the two o's, so we need to divide 3! by 2! which gives us 6/2 = 3 permutations

With **permutations of repeated distinct objects** in general we have the following. Permuting n objects with k groups (first group has n_1 objects, second n_2 objects, etc.)

- Consider all of the n objects to be distinct at first and compute n!
- For the first distinct group with n_1 objects, divide n! by the permutations of this group $n_1!$
- Repeat for the second group with n_2 objects, and so on
- Number of permutations is $\frac{n!}{n_1!n_2!...n_k!}$
- In the special case when k = n, $n_1 = 1 = n_2 = \cdots = n_n$ then we get back to n!/1! = n!

Combinations

Interested in counting the number of different groups of k objects that can be formed form a total of n objects. Now order does not matter.

Example: How many groups of 3 letters could be selected from the set of 5 letters $\{A, B, C, D, E\}$?

- There are 5 ways to select the first letter, 4 ways to select the second letter, 3 ways to select the third letter. So $5 \times 4 \times 3 = 60$ ways of selecting a group when the order matters.
- What about when the order doesn't matter?
- Each group containing letters A, B, C is counted in the 60. There are 6 such groups: ABC, ACB, BAC, BCA, CAB, CBA
- Lumping these together we need to divide 60 by 6 to get number of groups we don't care about letter order
- Frame it as a repeated permutation problem...for each group of 3 letters there are $3!=3\times2\times1=6$ permutations, so number of unordered groups is $\frac{5\times4\times3}{3\times2\times1}$

In general, there are n(n-1)(n-2)...(n-k-1) ways that a group of k items can be selected from n items, when order matters. Each group of k items will be counted k! times in this count, so we need to divide by this to get the number

of unordered groups. That is, number of different groups of k objects that can be formed from a total of n objects is $\frac{n(n-1)(n-2)...(n-k-1)}{k!} = \frac{n!}{(n-k)!k!}$

Notation: for $0 \le k \le n$ define $\binom{n}{k}$ by $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

We say that $\binom{n}{k}$ is number of possible combinations of n objects taken k at a time. Say "n choose k".

• Note that $0 \neq 1$ by convention. So $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$

Example:

- How many ways can 3 bit errors occur in a string of 8 bits? $\binom{8}{3} = 53$
- How many ways can I allocate 50 servers from a pool of 100 servers? $\binom{100}{50} = 10^{29}$
- Number of distinct pizzas we can create by selecting 4 toppings from 6 available? $\binom{6}{4} = 15$
 - If Epoisses de Bourgogne and Gorgonzola cannot be picked together?
 - All combinations: $\binom{6}{4}$
 - Gorgonzola+Epoisses+2 other toppings: $\binom{4}{2}$
 - Remainder: $\binom{6}{4} \binom{4}{2} = 9$
- How many distinct lottery numbers when choose 6 in range 1-47? $\binom{47}{6}$ 10, 737, 573

Power Sets

- Power set of S: The set of all subsets of S, including the empty set and S itself. Sometimes written 2^{S}
- Example: $S = \{A, B, C\}, 2^S = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}$
- Note that in a set the elements are unordered, i.e. set $\{A, B\}$ is the same as set $\{B, A\}$
- $\mid 2^{S} \mid = \binom{0}{3} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} = 1 + 3 + 3 + 1 = 8$ Let $\mid S \mid = n$. In general, $\mid 2^{S} \mid = \sum_{k=1}^{n} \binom{n}{k}$ Binomial Theorem: $(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$

Basket Data

- Basket data is also called transaction data
- Example:

ID	apples	beer	cheese	eggs	ice cream
1	1	1			1
2			1	1	
3		1	1		
4		1			1
5				1	
6	1	1	1		
7		1			1
8				1	

Discovering "rules"

- A rule is something like this: If a basket contains beer then it also contains ice cream
- Accuracy: When the if part is true, how often is the then part true
- \bullet Coverage: how much of the database contains the if part
- 5 out of 8 entries contain beer (coverage is $\frac{5}{8} = 0.625$). Of these, 3 also contain ice cream (accuracy is $\frac{3}{5} = 0.6$)
- Is this rule interesting/surprising, i.e. do beer and ice cream appear in same basket more than we would expect by chance?
- $\frac{5}{8}$ of backets contain beer, $\frac{3}{8}$ contain ice cream. So if these are *independent* and we pickk a basket *unfiromly at random* we expect $0.625 \times 0.375 = 0.23$ of backets to contain both
- Is observed faction 0.6 with beer and cie cream interestingly larger than 0.23
- Depends on the *amount of data* (only 8 baskets, but what if had 1M baskets?) Depends on our *assumptions*, e.g. independence
- For large data sets, can't enumerate all possible "rules". Smart algorithms for enumerating rules with specifial minimum coverage, like Apriori algorithm.

Prediction

Regression

We have some data, e.g. scores in ST3009 tutorials and in final exam:

• 3 7 2 9 1 75

- 5829285
- 4111325
- 6821455

We get some new data:

• 36181?

Can we accurately predict the final exam score with high probability?

- E.g. picking a number between 0 and 100 uniformly at random is certainly a prediction, but hopefully a poor one.
- \bullet Expect that quality of prediction depends on the $amount\ of\ data$ and on our assumptions

Classification

We have some data which is labelled A or B, e.g. has passed ST3009 exam:

- 37291A
- 58292A
- 41113B
- 68214A

We get some new data:

• 36181?

Can we accurately predict the label A or B with high probability?