课程基本信息								
课例编号	018	学科	物理	年级	高二	学期	上学期	
课题	导体的电阻							
教科书	书名: 物理必修第三册							
4X作门	出版社:人民教育出版社				出版日期: 年 月			
教学人员								
	姓名	单位						
授课教师	许耀平 北京师范大学第二附属中学							
指导教师	黎红	西城区教研中心						
教学目标								

教学目标: 1、电阻的定义

- 2、实验探究导体电阻与哪些因素有关
- 3、金属电阻率与温度的关系,超导简介
- 4、伏安特性曲线介绍

教学重点: 1、电阻的定义

- 2、实验探究导体电阻与哪些因素有
- 3、金属电阻率与温度的关系

教学难点: 1、超导简介

2、伏安特性曲线

教学过程				
时间	教学环节	主要师生活动		
	课堂引入	提出问题:两座城市之间的距离比较远,为了减小输电线上电能		
		的损失,人们尽量把输电线做得粗一些,这是为什么呢?		
		先研究导体的电阻与通过导体的电流和导体两端的电压之间的		
	关系			
	电阻的定义	我们选取一个导体,把它接入电路中,用一个电流表与导体串联,		
		在导体两端并联一个电压表,改变电路中的电流,研究导体两端电压		
		随电流变化的情况。		
		教师:实验操作		
		我们记录下导体通过不同电流时, 其两端的电压的数据。做出两		

		个导体的 U-I 图像。导体的 U-I 图像是一条过原点的直线。同一个导			
		体,不管电流、电压怎样变化,电压跟电流之比都是一个常量,这个			
		结论可以写成 $R = \frac{U}{I}$ 。 R 是一个只跟导体本身性质有关而与通过的			
		电流无关的物理量。			
		图中不同导体 U - I 图像的倾斜程度不同,表明不同导体的 R 值			
		不同。在相同的电压下, R 值越大的导体, 其通过的电流越小, R 的			
		值反映了导体对电流的阻碍作用,物理学中把它叫做导体的电阻。			
		教师: 提出问题: 导体的电阻与加在其两端的电压及通过			
		导体的电流无关,只与导体本身的性质有关,那导体的电阻			
		与自身的哪些因素有关呢?			
		同学猜测:与导体的长度,导体的横截面积,导体的材料			
		有关。			
		通过实验,探究影响导体电阻的因素。			
	探究导体电	教师: 演示实验			
	阻与哪些因 素有关	通过实验可以得到:			
		导体的电阻与导体的长度成正比;			
		导体的电阻与导体的横截面积成反比;			
		导体的电阻与材料有关。			
		教师: 回答课前提出的问题			
		$R = \rho \frac{l}{S}$			
		S			
		进一步通过大量的实验可以发现,同种材料的导体,式			
		中的 ρ 是不变的,不同种材料的导体 ρ 一般不同。这说明 ρ			
		表征了导体材料的某种特性。 ρ 叫作这种材料的电阻率。			
		展示几种不同材料在 20°C时的电阻率。			
度的关系		教师提出问题:表格在列出几种材料的电阻率时,标注			
		了温度是 20°C, 这可能说明了什么?			
		学生回答:有同学说,金属的电阻率可能与温度有关。			
		A C A SA A C A C A A C A C A C A C A C A			

演示实验: 金属的电阻率往往随温度的变化而变化

		金属的电阻率随温度的升高而增大。当温度降低时,导体的电阻			
		率将会减小。1911年,科学家们发现一些金属在温度特别低时电阻			
		可以降到 0,这种现象叫作超导现象。介绍超导现象的研究成果			
	伏安特性曲线	在实际应用中,常用横坐标表示电压 U,纵坐标表示电流 I,这			
		样画出的 I-U 图像叫作导体的伏安特性曲线。			
		介绍线性元件和非线性元件,并展示二者的伏安特性曲线。			