Higher Category Theory

Assignment 11

Exercise 1

Proof. We start by drawing the commutative cube in question.

Since monomorphisms are saturated, we know that all of the horizontal maps are mono-

morphisms. Next we apply the functor Fun(-, W), where W is a Kan complex.

We know that a morphism is a weak homotopy equivalence if and only if its image under $\operatorname{Fun}(-,W)$ is a homotopy equivalence for any Kan complex W. Also, monomorphisms are mapped to Kan fibrations and, for any simplicial set X, the simplicial set $\operatorname{Fun}(X,W)$ is itself a Kan complex. Finally, $\operatorname{Fun}(-,W)$ preserves colimits by sending them to limits

$$\begin{aligned} \mathbf{sSet}(X, \operatorname{Fun}(\operatorname{colim}_{\mathfrak{I}}D_{i}, W)) &\cong \mathbf{sSet}(X \times \operatorname{colim}_{\mathfrak{I}}D_{i}, W) \\ &\cong \mathbf{sSet}(\operatorname{colim}_{\mathfrak{I}}X \times D_{i}, W) \\ &\cong \lim_{\mathfrak{I}^{\operatorname{op}}} \mathbf{sSet}(X \times D_{i}, W) \\ &\cong \lim_{\mathfrak{I}^{\operatorname{op}}} \mathbf{sSet}(X, \operatorname{Fun}(D_{i}, W)) \\ &\cong \mathbf{sSet}(X, \lim_{\mathfrak{I}^{\operatorname{op}}} \operatorname{Fun}(D_{i}, W)) \end{aligned}$$

naturally in X, thus the top and bottom squares are pullbacks.

Let's summarize what we have so far with respect to our latest diagram: the top and bottom squares are pullbacks, the vertical morphisms (except for possibly the left one) are homotopy equivalences, the horizontal maps are Kan fibrations and every object is a Kan complex.

We can now apply a proposition from lecture 20 and conclude that Fun(k, W) is itself a homotopy equivalence for any W, hence k is a weak homotopy equivalence.

Exercise 4

Proof. Consider a filtered diagram $D: \mathcal{I} \to \mathbf{sSet}$. Since Λ_k^n is a finite simplicial set, the functor $\mathbf{sSet}(\Lambda_k^n, -)$ preserves filtered colimits. It follows that, fixed a morphism $\alpha: \Lambda_k^n \to \operatorname{colim}_{\mathcal{I}} D_i$, we have an element $[\alpha_i] \in \operatorname{colim}_{\mathcal{I}} \mathbf{sSet}(\Lambda_k^n, D_i) \cong \mathbf{sSet}(\Lambda_k^n, \operatorname{colim}_{\mathcal{I}} D_i)$

corresponding to it. This means that there is a $i \in \mathcal{I}$ with a morphism $\alpha_i \colon \Lambda_k^n \to D_i$ such that

commutes, where λ_i is a leg of the cocone.

Now, if the simplicial set D_i is a Kan complex (or a ∞ -category), the horn admits a filling $t \colon \Delta^n \to D_i$ for $0 \le k \le n$ (respectively 0 < k < n), which gives us the commutative diagram

$$\Lambda_k^n \xrightarrow{\alpha_i} D_i$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \lambda_i$$

$$\Delta^n \xrightarrow{t_i} \operatorname{colim}_{\mathbb{J}} D_i$$

and in particular the *n*-simplex $t = \lambda_i \cdot t_i$ of $\operatorname{colim}_{\mathfrak{I}} D_i$ such that $t|_{\Lambda_k^n} = \lambda_i \cdot t_i|_{\Lambda_k^n} = \lambda_i \cdot \alpha_i = \alpha$.

Now, if for every $i \in \mathcal{I}$ the simplicial set D_i is a Kan complex, this filling is always possible and therefore the colimit is itself a Kan complex. Similarly, if the simplicial sets in the diagram are ∞ -categories the same goes for $\operatorname{colim}_{\mathcal{I}} D_i$.