Formulario fisica

Alessandro Zappatore

14 novembre 2024

Geometria 1

$$b = a \cdot \tan(\beta) = c \cdot \sin(\beta)$$

$$b = a \cdot \tan(\beta) = c \cdot \sin(\beta)$$
 $a = c \cdot \sin(\alpha) = b \cdot \tan(\alpha)$

$$b = c \cdot \cos(\alpha) = a \cdot \cot(\alpha)$$

$$b = c \cdot \cos(\alpha) = a \cdot \cot(\alpha)$$
 $a = c \cdot \cos(\beta) = b \cdot \cot(\beta)$

•
$$1rad = 57^{\circ}$$

2 Cinematica

Moto rettilineo uniforme

$$x = x_0 + v_o t$$

Moto rettilineo uniformemente accelerato 2.2

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 $v = at$ $v^2 = v_0^2 + 2ax$ $t = \sqrt{\frac{2x}{a}}$

2.2.1 Moto di un grave verso l'alto

$$v = v_0 - gt$$
 $y = v_0 t - \frac{1}{2}gt^2$ $h_{max} = \frac{1}{2}\frac{v_0^2}{g}$

2.2.2Moto parabolico

$$\begin{cases} x = x_0 + v_{0x}t \\ y = y_0 + v_{0y}t - \frac{1}{2}gt^2 \end{cases}$$

$$v_y = v_{0y} - gt \qquad v_x = v\cos(\Theta) \quad v_y = v\sin(\Theta) \quad G = 2\frac{v_{0x}v_{0y}}{g} \qquad h_{max} = \frac{1}{2}\frac{(V_0\sin(\Theta))^2}{g}$$

Moto circolare uniforme

$$\Theta(t) = \Theta_0 + vt + \frac{1}{2}\alpha t^2 \qquad v = \frac{2\pi r}{T} = \omega r \qquad \omega = \frac{\Theta}{t} = \frac{2\pi}{T} \qquad \alpha = \frac{\omega}{t} \qquad a_c = \omega^2 r \qquad a_t = \frac{v}{t}$$

2.4 Moto armonico

Il moto armonico è il moto della proiezione del moto circolare uniforme su un diametro del cerchio.

$$x = A\cos(\omega t)$$
 $v = -\omega A\sin(\omega t)$ $a = -\omega^2 A\cos(\omega t)$ $A = \frac{a_{max}}{\omega^2}$

3 Dinamica

3.1 I principi della dinamica

1º **principio** Esistono sistemi di riferimento, detti inerziali, dove corpi non soggetti a forze si muovono di moto rettilineo uniforme.

 2° principio La forza applicata ad un corpo è proporzionale all'accelerazione del corpo. F=ma

 3° principio Dati due corpi A e B se A esercita una forza su B, allora B esercita una forza della stessa intensità, stessa direzione ma verso opposto su A. $F_{12} = -F_{21}$

3.2 Forze conservative

Una forza è conservativa se il lavoro da essa compiuto non dipende dalla traiettoria percorsa ma solo dal punto iniziale e quello finale.

Gradiente Il gradiente è la pendenza della retta tangente che ha massima pendenza.

3.3 Forza elastica

$$F = -kx$$
 $a = -\omega^2 r$ $\omega = \sqrt{\frac{k}{m}}$ $T = \frac{2\pi}{\omega}$ $L = \frac{1}{2}kx^2$

3.4 Forze di attrito

$$F_A = \mu F_{\perp}$$
 $\mu_s = \tan(\Theta_{critico})$

Forza di attrito statica è una forza di reazione vincolare che viene a meno se si applica una forza superiore ad una certa soglia.

Forza di attrito dinamica la forza di attrito tale per cui il corpo si muove di moto rettilineo uniforme.

3.4.1 Piano inclinato

$$F_{p_{//}}=mg\sin(\Theta)$$
 $F_{p_{\perp}}=mg\cos(\Theta)$ $F_{p}=mg$ $L_{p}=mgh$ $a=g\sin(\Theta)-\mu g\cos(\Theta)$
$$d=\frac{v^{2}}{2\mu g}$$
 $v^{2}=v_{0}^{2}+2ad$

4 Energia

4.1 Lavoro

- $F \perp S$: L = 0
- F//S: $L = F \cdot S$
- F obliquo S: $L = F_{//} \cdot S = FS \cos(\Theta)$

4.2 Energia cinetica

$$K=\frac{1}{2}mv^2 \qquad L=\Delta K=\frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2$$

4.3 Potenza

$$P = \frac{L}{\Delta t} = F \cdot v$$

4.4 Energia potenziale

$$L = -\Delta U$$
 $U_{gravitazionale} = mgh$ $U_{elastica} = \frac{1}{2}Kx^2$

4.5 Energia meccanica

$$E_{meccanica} = K + \sum U$$

5 Gravitazione

5.1 Leggi di Keplero

1^a legge Ogni pianeta segue un'orbita ellittica intorno al sole.

 2^a legge Il raggio vettore S-P spazza aree uguali in tempi uguali.

 3^a legge Per ogni pianeta, il quadrato dei periodi di rivoluzione è proporzionale al cubo del semiasse maggiore delle loro orbite.

$$\frac{T^2}{a^3} = const$$

5.2 Forza gravitazionale

$$F_G = G \frac{m_1 m_2}{d^2}$$
 $G = 6,67 \cdot 10^{-11} \frac{Nm^2}{kg^2}$

5.3 Campo gravitazionale

$$g = G\frac{m}{r^2} \qquad T = \frac{2\pi}{\sqrt{Gm}} \cdot r^{\frac{3}{2}}$$

5.4 Lavoro

$$L = Gm_1m_2(\frac{1}{d_f} - \frac{1}{d_i})$$
 $U = -G\frac{m_1m_2}{d}$

5.5 Velocità di fuga

$$v_f = \sqrt{\frac{2m}{r}}$$

6 Sistemi a più corpi

6.1 Quantità di moto

$$p = m \cdot v$$
 $\sum F = \frac{\Delta p}{\Delta t}$

6.2 Impulso

$$I = F \cdot \Delta t = \Delta p$$

6.3 Urti elastici

Un urto è elastico se quantità di moto e K sono conservate.

$$p_{tot_i} = p_{tot_f} K_{tot_i} = K_{tot_f}$$

6.4 Urti anelastici

Un urto è anelastico se la quantità di moto è conservata ma K non è conservata.

$$p_{tot_i} = p_{tot_f}$$

6.5 Urto totalmente anelastico

Un urto è completamente anelastico se la quantità di moto è conservata e:

- le velocità finali sono le stesse;
- i corpi restano attaccati.

7 Dinamica rotazionale

7.1 Momento della forza

$$M = Fr\sin(\Theta)$$
 $M = m\alpha = I\alpha$

7.2 Momento d'inerzia

$$I = mr^2$$

- Cilindro: $I = \frac{1}{2}mr^2$
- Asta: $I = \frac{1}{12}mr^2$

7.3 Momento angolare

$$L = I\omega \quad \Delta L = 0$$

7.4 Energia cinetica

$$K = \frac{1}{2}I\omega^2$$

7.5 Rotolamento

$$\omega = \frac{v}{r}$$

8 Termodinamica

$$1 \, cal = 4184 \, J$$

8.1 Principi della termodinamica

Principio 0 Se un corpo A è in equilibrio termico con un corpo B e, a sua volta, il corpo B è in equilibrio termico con un corpo C, allora anche A e C sono in equilibrio termico tra loro.

Principio 1 L'energia può essere convertita da una forma in un'altra ma non può essere né creata né distrutta.

$$\Delta U = Q - L$$

Principio 2

- Kelvin-Planck: É impossibile realizzare una trasformazione termodinamica che abbia come unico risultato la completa trasformazione in lavoro del calore assorbito da una sorgente a temperatura costante.
- Clausius: É impossibile realizzare un processo termodinamico che abbia come unico risultato il passaggio di calore da un corpo a temperatura minore a uno a temperatura maggiore.

8.2 Capacità termica

$$Q = mc\Delta T$$
 $Q = Lm$

8.3 Gas perfetti

$$pV = nRT$$
 $n = \frac{N}{N_A}$ $m = \rho V$ $R = 8,31 \frac{J}{mol K}$ $N_A = 6,022 \cdot 10^{23}$

8.4 Energia interna media

$$K = \frac{3}{2}K_BT$$
 $K_B = 1,38 \cdot 10^{-23} \frac{J}{K}$

8.5 Energia totale

• Monoatomici: $U = \frac{3}{2}nRT$

• Biatomici: $U = \frac{5}{2}nRT$

8.6 Trasformazioni

8.7 Isoterma

Temperatura costante

$$\Delta U = 0$$
 $L = nRT \ln(\frac{V_f}{V_i}) = nRT \ln(\frac{p_i}{p_f})$

8.8 Isocora

Volume costante

$$L = 0$$
 $Q_v = mC_v(T - T_0)$ $\Delta U = Q_p$

8.9 Isobara

Pressione costante

$$L=p\Delta V$$

• Monoatomici: $Q = \frac{5}{2}nR\Delta T$

• Biatomici: $Q = \frac{7}{2}nR\Delta T$

$$Q_p = mC_p(T - T_0) \qquad \Delta U = Q_p - L$$

8.10 Adiabatica

$$Q = 0$$

$$p_i V_i^{\gamma} = p_f V_f^{\gamma} \qquad \gamma = \frac{C_p}{C_v}$$

8.11 Ciclica

$$\Delta U = 0$$

8.12 Macchine termiche

$$L = Q_{ASS} + Q_{CED}$$

8.13 Rendimento

$$\eta = \frac{L}{Q_{ASS}} = 1 - \frac{Q_{CED}}{Q_{ASS}}$$

8.14 Ciclo di Carnot

2 isoterme + 2 adiabatiche

$$\eta = 1 - \frac{T_{FREDDA}}{T_{CALDA}}$$

9 Elettrostatica

	Carica	Massa
Elettrone	/	
Protone	$+1,602 \cdot 10^{-19}C$	$1,67 \cdot 10^{-27} kg$
Neutrone	0	$1,67 \cdot 10^{-27} kg$

9.1 Legge di Coulomb

$$F = K_e \frac{|q_1 q_2|}{r^2} \qquad K_e = 8,988 \cdot 10^9 Nm^2 C^{-2}$$

9.2 Campo elettrico

$$E = K_e \frac{q}{r^2}$$
 $F_E = q \cdot E$ $q = \frac{4}{3}\pi r^3 \rho$

9.3 Lastra carica

$$E = \frac{\sigma}{2\epsilon_0} \qquad V = E \cdot d$$

9.4 Potenziale elettrico

$$V = K_e \frac{q}{r}$$

9.5 Energia potenziale

$$U = K_e \frac{q_1 q_2}{r}$$

9.6 Legge di Gauss

$$\Phi = \frac{Q}{\epsilon_0} \qquad \epsilon_0 = 8,85 \cdot 10^{-12} \frac{C^2}{Nm^2}$$

9.7 Condensatori

$$C = \frac{Q}{\Delta V}$$
 $C = \epsilon_0 \epsilon_r \frac{A}{d}$ $U = \frac{1}{2}CV^2$ $Q = \sigma A$ $E = \frac{\Delta V}{d}$

- Serie: $Q=Q_1=Q_2$ $\frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}$ $\Delta V=\Delta V_1=\Delta V_2$
- Parallelo: $Q = C_1 \Delta V_1 + C_2 \Delta V_2$ $C = C_1 + C_2$ $\Delta V = \Delta V_1 + \Delta V_2$

9.8 Corrente

$$i = \frac{Q}{\Delta t}$$

9.9 Resistori

1^a legge di Ohm $i = \frac{\Delta V}{R}$

${f 2}^a$ legge di Ohm $R= ho {L\over A}$ $A=\pi R^2$

- Serie: $R = R_1 + R_2$ $\Delta V = \Delta V_1 + \Delta V_2$ $i = i_1 = i_2$
- Parallelo: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $\Delta V = \Delta V_1 = \Delta V_2$ $i = \frac{\Delta V}{R}$

9.10 Legge di Joule

$$Q = Ri^2 \Delta t \qquad P = Ri^2$$

9.11 Circuiti RC

$$Q(t) = C\Delta V (1 - e^{-\frac{t}{RC}})$$

- Carica: $i(t) = \frac{\Delta V}{R} e^{-\frac{t}{RC}}$ $Q(t) = Q_0 e^{-\frac{t}{RC}}$
- Scarica: $i(t) = \frac{\Delta V_0}{R} e^{-\frac{t}{RC}}$

10 Magnetismo

10.1 Forza di Lorentz

$$F = qvB\sin(\alpha)$$
 $R = \frac{mv}{qB}\sin(\alpha)$ $T = \frac{2\pi m}{qB}$ $\gamma = \frac{qB}{mv}$

10.2 Filo percorso da corrente

$$F = ilB\sin(\alpha)$$

10.3 Legge di Biot-Savart

$$B = \frac{\mu_0 i}{2\pi R} \qquad \mu_0 = 4\pi \cdot 10^{-7} \frac{Tm}{A}$$

10.4 Solenoide

$$B = \mu_0 \frac{N}{L} i$$

10.5 Spira

$$B = \frac{\mu_0 i}{2\pi R}$$

10.6 Legge di Ampère

$$C_B = \mu_0 i_{tot}$$

10.7 Induzione elettromagnetica

$$\Phi = BS\cos(\alpha) \qquad v_{max} = NBS\omega$$

11 Equazioni di Maxwell

Legge di Gauss per il campo elettrico:

 $\int_{S} \vec{E} \, dS = \frac{Q}{\epsilon_0} \tag{1}$

Legge di Faraday:

 $\oint_{\gamma} \vec{E} \, dl = -\frac{d}{dt} \int_{S} \vec{B} \, dS \tag{2}$

Legge di Gauss per il campo magnetico:

 $\int_{S} \vec{B} \, dS = 0 \tag{3}$

Legge di Ampère (con corrente di spostamento):

 $\oint_{\gamma} \vec{B} \, dl = \mu_0 \left(I + \epsilon_0 \frac{d}{dt} \int_{S} \vec{E} \, dS \right) \tag{4}$

12 Onde

 $\lambda =$ lunghezza d'onda

A = ampiezza

T = periodo (tempo tra trascorso tra due creste)

12.1 Velocità

$$v = \frac{\lambda}{T}$$

12.2 Energia

Le onde trasportano energia senza spostamento di materia.

$$E = \frac{1}{2}\mu\lambda A^2\omega^2 \qquad \omega = \frac{2\pi}{T}$$

Corda tesa $v = \sqrt{\frac{T}{\mu}}$ T=tensione $\mu = \frac{m}{L}$

Gas $v = \sqrt{\frac{B}{\rho}}$ B = compressibilità, ρ = densità del gas

12.3 Da sapere

 $1m^3 = 1000kg$ Acqua $\sigma = 5,67 \cdot 10^{-8}$

- $\bullet \ \mu = 10^{-6}$
- $n = 10^{-9}$
- $P = 10^{-12}$