Осенний коллоквиум курса «Теория вероятностей»

ФКН НИУ ВШЭ, 2-й курс ОП ПМИ, 2-й модуль, 2016 учебный год

Билет 9

Вероятностное пространство: сигма алгебра событий и вероятностная мера. Борелевская сигма алгебра. Мера Лебега.

Вероятностное пространство: сигма алгебра событий и вероятностная мера

Определение 1. Пусть Ω — некоторое множество точек w. Система $\mathfrak A$ подмножеств Ω называется *алгеброй событий*, если

- $\Omega \in \mathfrak{A}$,
- $A, B \in \mathfrak{A} \Rightarrow A \cup B \in \mathfrak{A}, A \cap B \in \mathfrak{A}$,
- $A \in \mathfrak{A} \Rightarrow \overline{A} \in \mathfrak{A}$.

Определение 2. Если дополнительно верно, что

$${A_n}_{n=1}^{\infty} \in \mathfrak{A} \Rightarrow \bigcup_n A_n, \bigcap_n A_n \in \mathfrak{A},$$

то $\mathfrak A$ называется σ -алгеброй событий ("сигма алгеброй событий").

Определение 3. Вероятностная мера P на σ -алгебре $\mathfrak A$ подмножества Ω — это такая функция $P \colon \mathfrak A \to [0,1]$, удовлетворяющая следующим свойствам:

- (1) $P(\Omega) = 1$
- (2) $P\left(\bigcup_n A_n\right) = \sum_n P(A_n)$ при условии, что $\forall i,j \ A_i \cap A_j = \varnothing$.

Определение 4. Тройка $(\Omega, \mathfrak{A}, P)$ называется вероятностным пространством.

Борелевская сигма алгебра

Определение 5. Пусть S — набор подмножеств Ω . $\sigma(S)$ — сигма алгебра, порожденная S, то есть $\sigma(S)$ — наименьшая по вложению σ -алгебра, содержащая S.

Определение 6. Борелевская σ -алгебра $\mathfrak{B}(\mathbb{R}) - \sigma$ -алгебра, порожденная всеми возможными полуинтервалами $\{(a,b||a\in\mathbb{R},b\in\mathbb{R},a< b\}.$

Мера Лебега

Определение 7. Мерой Лебега называется обычная длина, то есть такая $\lambda:\mathfrak{B}(\mathbb{R})\to\mathbb{R}$, что

$$\lambda([a,b]) = b - a.$$

Как вычислить вероятность попадания случайной точки в некоторый подотрезок отрезка [0,1] на прямой? Мы не можем приписать положительную вероятность каждому такому подотрезку, так как если мы каждой точке (подотрезку $[x_0,x_0]$) присвоим положительную вероятность, то, так как отрезок [0,1] содержит бесконечное число различных точек, какую бы маленькую вероятность мы ни присвоили каждой точке, первое свойство вероятностной меры $(P(\Omega)=1)$ выполняться не будет.

Для таких событий (попадание точки x_0 , случайно выбранной из отрезка [0,1], в некоторый подотрезок [a,b] отрезка [0,1]) определить вероятностную меру можно при помощи меры Лебега — каждому событию вида $\{x_0 \in [a,b], a \leq b\}$ сопоставляется вероятность $\lambda([a,b])$.

Зададим вероятностную меру для каждого события из $\mathfrak{B}([0,1])$ (можно обобщить на $\mathfrak{B}([a,b])$, где a < b) и проверим выполнимость свойств заданной нами вероятностной меры. Длина отрезка [0,1] равна единице, поэтому первое свойство вероятностной меры выполнено. Вероятности для каждого подотрезка определены корректно (то есть не больше единицы и не меньше нуля). В случае объединения конечного числа непересекающихся подотрезков определим вероятностную меру как сумму вероятностей для каждого из подотрезков, входящих в сумму (нетрудно убедиться, что свойства по-прежнему будут выполняться). Аналогично определим вероятностную меру для объединения счетного числа непересекающихся отрезков. Утверждение, что при таком определении вероятностной меры свойства по-прежнему будут выполняться, оставим без доказательства.