

Edition 1.0 2008-11

INTERNATIONAL STANDARD

Information technology – UPnP Device Architecture –
Part 6-12: Heating, Ventilation and Air Conditioning Device Control Protocol –
Fan Speed Service

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2008 ISO/IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about ISO/IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

- Catalogue of IEC publications: www.iec.ch/searchpub
- The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.
- IEC Just Published: <u>www.iec.ch/online_news/justpub</u>

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

■ Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

■ Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: <u>csc@iec.ch</u> Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

ISO/IEC 29341-6-12

Edition 1.0 2008-11

INTERNATIONAL STANDARD

Information technology – UPnP Device Architecture –
Part 6-12: Heating, Ventilation and Air Conditioning Device Control Protocol –
Fan Speed Service

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE

F

CONTENTS

FC	REW	ORD	3
Ol	RIGIN	AL UPNP DOCUMENTS (informative)	5
1.	Ove	rview and Scope	7
2.	Ser	rice Modeling Definitions	8
	2.1.	Service Type	8
	2.2.	State Variables	8
	2.2.	· · · · · · · · · · · · · · · · · · ·	
	2.2. 2.2.	•	
	2.2.	4. DirectionStatus	9
	2.2. 2.3.	5. Relationships Between State Variables Eventing and Moderation	
	2.3.	Actions	
	2.4. 2.4.		
	2.4.	2. GetFanSpeed	11
	2.4. 2.4.		
	2.4.		
	2.4.		
	2.4. 2.4.	'	14
	2.4.		
	2.5.	Theory of Operation	14
3.	XMI	Service Description	15
4.	Tes	t	17
		LIST OF TABLES	
		LIGIT OF TABLES	
		State Variables	
		Modulating Fan Example	
Ta	ble 3:	Three-Speed Fan Example	9
Ta	ble 4:	Event Moderation	10
Ta	ble 5:	Actions	10
Ta	ble 6:	Arguments for SetFanSpeed	10
Та	ble 7:	Arguments for GetFanSpeed	11
Ta	ble 8:	Arguments for GetFanSpeedTarget	12
Ta	ble 9:	Arguments for SetDirection	12
Ta	ble 10	: Arguments for GetDirection	13
Та	ble 11	: Arguments for GetDirectionTarget	13

INFORMATION TECHNOLOGY – UPNP DEVICE ARCHITECTURE –

Part 6-12: Heating, Ventilation and Air Conditioning Device Control Protocol – Fan Speed Service

FOREWORD

- 1) ISO (International Organization for Standardization) and IEC (International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards. Their preparation is entrusted to technical committees; any ISO and IEC member body interested in the subject dealt with may participate in this preparatory work. International governmental and non-governmental organizations liaising with ISO and IEC also participate in this preparation.
- 2) In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
- 3) The formal decisions or agreements of IEC and ISO on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC and ISO member bodies.
- 4) IEC, ISO and ISO/IEC publications have the form of recommendations for international use and are accepted by IEC and ISO member bodies in that sense. While all reasonable efforts are made to ensure that the technical content of IEC, ISO and ISO/IEC publications is accurate, IEC or ISO cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 5) In order to promote international uniformity, IEC and ISO member bodies undertake to apply IEC, ISO and ISO/IEC publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any ISO/IEC publication and the corresponding national or regional publication should be clearly indicated in the latter.
- 6) ISO and IEC provide no marking procedure to indicate their approval and cannot be rendered responsible for any equipment declared to be in conformity with an ISO/IEC publication.
- 7) All users should ensure that they have the latest edition of this publication.
- 8) No liability shall attach to IEC or ISO or its directors, employees, servants or agents including individual experts and members of their technical committees and IEC or ISO member bodies for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication of, use of, or reliance upon, this ISO/IEC publication or any other IEC, ISO or ISO/IEC publications.
- 9) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

IEC and ISO draw attention to the fact that it is claimed that compliance with this document may involve the use of patents as indicated below.

ISO and IEC take no position concerning the evidence, validity and scope of the putative patent rights. The holders of the putative patent rights have assured IEC and ISO that they are willing to negotiate free licences or licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statements of the holders of the putative patent rights are registered with IEC and ISO.

Intel Corporation has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Intel Corporation Standards Licensing Department 5200 NE Elam Young Parkway MS: JFS-98 USA – Hillsboro, Oregon 97124

Microsoft Corporation has informed IEC and ISO that it has patent applications or granted patents as listed below:

6101499 / US; 6687755 / US; 6910068 / US; 7130895 / US; 6725281 / US; 7089307 / US; 7069312 / US; 10/783 524 /US

Information may be obtained from:

Microsoft Corporation One Microsoft Way USA – Redmond WA 98052

Philips International B.V. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Philips International B.V. – IP&S High Tech campus, building 44 3A21 NL – 5656 Eindhoven

NXP B.V. (NL) has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

NXP B.V. (NL) High Tech campus 60 NL – 5656 AG Eindhoven

Matsushita Electric Industrial Co. Ltd. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Matsushita Electric Industrial Co. Ltd. 1-3-7 Shiromi, Chuoh-ku JP – Osaka 540-6139

Hewlett Packard Company has informed IEC and ISO that it has patent applications or granted patents as listed below:

5 956 487 / US; 6 170 007 / US; 6 139 177 / US; 6 529 936 / US; 6 470 339 / US; 6 571 388 / US; 6 205

Information may be obtained from:

Hewlett Packard Company 1501 Page Mill Road USA – Palo Alto, CA 94304

Samsung Electronics Co. Ltd. has informed IEC and ISO that it has patent applications or granted patents.

Information may be obtained from:

Digital Media Business, Samsung Electronics Co. Ltd. 416 Maetan-3 Dong, Yeongtang-Gu, KR – Suwon City 443-742

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified above. IEC and ISO shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 29341-6-12 was prepared by UPnP Implementers Corporation and adopted, under the PAS procedure, by joint technical committee ISO/IEC JTC 1, *Information technology*, in parallel with its approval by national bodies of ISO and IEC.

The list of all currently available parts of the ISO/IEC 29341 series, under the general title *Universal plug and play (UPnP) architecture*, can be found on the IEC web site.

This International Standard has been approved by vote of the member bodies, and the voting results may be obtained from the address given on the second title page.

ORIGINAL UPNP DOCUMENTS (informative)

Reference may be made in this document to original UPnP documents. These references are retained in order to maintain consistency between the specifications as published by ISO/IEC and by UPnP Implementers Corporation. The following table indicates the original UPnP document titles and the corresponding part of ISO/IEC 29341:

UPnP Document Title	ISO/IEC 29341 Part
UPnP Device Architecture 1.0	ISO/IEC 29341-1
UPnP Basic:1 Device	ISO/IEC 29341-2
UPnP AV Architecture:1	ISO/IEC 29341-3-1
UPnP MediaRenderer:1 Device	ISO/IEC 29341-3-2
UPnP MediaServer:1 Device	ISO/IEC 29341-3-3
UPnP AVTransport:1 Service	ISO/IEC 29341-3-10
UPnP ConnectionManager:1 Service	ISO/IEC 29341-3-11
UPnP ContentDirectory:1 Service	ISO/IEC 29341-3-12
UPnP RenderingControl:1 Service	ISO/IEC 29341-3-13
UPnP MediaRenderer:2 Device	ISO/IEC 29341-4-2
UPnP MediaServer:2 Device	ISO/IEC 29341-4-3
UPnP AV Datastructure Template:1	ISO/IEC 29341-4-4
UPnP AVTransport:2 Service	ISO/IEC 29341-4-10
UPnP ConnectionManager:2 Service	ISO/IEC 29341-4-11
UPnP ContentDirectory:2 Service	ISO/IEC 29341-4-12
UPnP RenderingControl:2 Service	ISO/IEC 29341-4-13
UPnP ScheduledRecording:1	ISO/IEC 29341-4-14
UPnP DigitalSecurityCamera:1 Device	ISO/IEC 29341-5-1
UPnP DigitalSecurityCameraMotionImage:1 Service UPnP DigitalSecurityCameraSettings:1 Service	ISO/IEC 29341-5-10 ISO/IEC 29341-5-11
UPnP DigitalSecurityCameraStillImage:1 Service	ISO/IEC 29341-5-11
UPnP HVAC_System:1 Device	ISO/IEC 29341-5-12
UPnP HVAC_ZoneThermostat:1 Device	ISO/IEC 29341-6-2
UPnP ControlValve:1 Service	ISO/IEC 29341-6-10
UPnP HVAC_FanOperatingMode:1 Service	ISO/IEC 29341-6-11
UPnP FanSpeed:1 Service	ISO/IEC 29341-6-12
UPnP HouseStatus:1 Service	ISO/IEC 29341-6-13
UPnP HVAC_SetpointSchedule:1 Service	ISO/IEC 29341-6-14
UPnP TemperatureSensor:1 Service	ISO/IEC 29341-6-15
UPnP TemperatureSetpoint:1 Service	ISO/IEC 29341-6-16
UPnP HVAC_UserOperatingMode:1 Service	ISO/IEC 29341-6-17
UPnP BinaryLight:1 Device	ISO/IEC 29341-7-1
UPnP DimmableLight:1 Device	ISO/IEC 29341-7-2
UPnP Dimming:1 Service	ISO/IEC 29341-7-10
UPnP SwitchPower:1 Service	ISO/IEC 29341-7-11
UPnP InternetGatewayDevice:1 Device	ISO/IEC 29341-8-1
UPnP LANDevice:1 Device UPnP WANDevice:1 Device	ISO/IEC 29341-8-2 ISO/IEC 29341-8-3
UPnP WANConnectionDevice:1 Device	ISO/IEC 29341-8-3
UPnP WLANAccessPointDevice:1 Device	ISO/IEC 29341-8-5
UPnP LANHostConfigManagement:1 Service	ISO/IEC 29341-8-10
UPnP Layer3Forwarding:1 Service	ISO/IEC 29341-8-11
UPnP LinkAuthentication:1 Service	ISO/IEC 29341-8-12
UPnP RadiusClient:1 Service	ISO/IEC 29341-8-13
UPnP WANCableLinkConfig:1 Service	ISO/IEC 29341-8-14
UPnP WANCommonInterfaceConfig:1 Service	ISO/IEC 29341-8-15
UPnP WANDSLLinkConfig:1 Service	ISO/IEC 29341-8-16
UPnP WANEthernetLinkConfig:1 Service	ISO/IEC 29341-8-17
UPnP WANIPConnection:1 Service	ISO/IEC 29341-8-18
UPnP WANPOTSLinkConfig:1 Service	ISO/IEC 29341-8-19
UPnP WANPPPConnection:1 Service	ISO/IEC 29341-8-20
UPnP WLANConfiguration:1 Service	ISO/IEC 29341-8-21
UPnP Printer:1 Device	ISO/IEC 29341-9-1
UPnP Scanner:1.0 Device	ISO/IEC 29341-9-2
UPnP ExternalActivity:1 Service	ISO/IEC 29341-9-10
UPnP Feeder: 1.0 Service	ISO/IEC 29341-9-11 ISO/IEC 29341-9-12
UPnP PrintBasic:1 Service	ISO/IEC 29341-9-12 ISO/IEC 29341-9-13
UPnP Scan:1 Service UPnP QoS Architecture:1.0	ISO/IEC 29341-9-13 ISO/IEC 29341-10-1
UPnP QosDevice:1 Service	ISO/IEC 29341-10-10
UPnP QosManager:1 Service	ISO/IEC 29341-10-10
UPnP QosPolicyHolder:1 Service	ISO/IEC 29341-10-11
UPnP QoS Architecture:2	ISO/IEC 29341-11-1
UPnP QOS v2 Schema Files	ISO/IEC 29341-11-2

UPnP Document Title ISO/IEC 29341 Part

UPnP QosDevice:2 Service	ISO/IEC 29341-11-10
UPnP QosManager:2 Service	ISO/IEC 29341-11-11
UPnP QosPolicyHolder:2 Service	ISO/IEC 29341-11-12
UPnP RemoteUIClientDevice:1 Device	ISO/IEC 29341-12-1
UPnP RemoteUIServerDevice:1 Device	ISO/IEC 29341-12-2
UPnP RemoteUIClient:1 Service	ISO/IEC 29341-12-10
UPnP RemoteUIServer:1 Service	ISO/IEC 29341-12-11
UPnP DeviceSecurity:1 Service	ISO/IEC 29341-13-10
UPnP SecurityConsole:1 Service	ISO/IEC 29341-13-11

1. Overview and Scope

This service definition is compliant with the UPnP Device Architecture version 1.0. It defines a service type referred to herein as FanSpeed:1.

FanSpeed:1 provides programmatic control and status information for air fans used in Heating, Ventilation and Air-Conditioning (HVAC) applications. It allows a control point to command the speed of the fan by means of a continuous 0% to 100% control variable. Fans which are On/Off or three speed (Off/ Low/ Medium/ High) respond by mapping the continuous control variable to specific vendor-dependent switching points. It provides optional functionality for dual direction reversible fans.

FanSpeed:1 enables the following functions:

- Control of the speed of an air-conditioning or ventilation fan.
- Reversible fans.

2. Service Modeling Definitions

2.1. Service Type

The following service type identifies a service that is compliant with this template:

urn:schemas-upnp-org:service:FanSpeed:1

The shorthand FanSpeed:1 is used herein to refer to this service type.

2.2. State Variables

Defines the state variables for the target running speed of the fan and its actual speed. Additionally defines optional state variables for "forward" and "reverse" operation.

NOTE: (Explanation of the meaning of speed): Table 1 below describes Allowed Value ranges of 0 to 100 which signify a fan speed in the range of 0% to 100%. In all such cases, a value of 0% corresponds to a FULLY STOPPED physical condition, and a value of 100% corresponds to the FULL SPEED physical condition. For values between 0% and 100% the physical condition of the fan is mapped as closely as possible to the 0% to 100% control variable. In particular for fans with discrete speeds (e.g. Off/ Low/ Medium/ High) the mapping takes the form of a "staircase". The exact mapping is left to the vendor's discretion.

Table 1: State Variables

Variable Name	Req. or Opt.1	Data Type	Allowed Value ²	Default Value ²	Eng. Units
FanSpeedTarget	R	ui 1	>= 0, <= 100, += 1	0	Percent
FanSpeedStatus	R	ui1	>= 0, <= 100, += 1	0	Percent
DirectionTarget	О	boolean	0 = "Forward", 1 = "Reverse"	0	n/a
DirectionStatus	О	boolean	0 = "Forward", 1 = "Reverse"	0	n/a
Non-standard state variables implemented by an UPnP vendor go here.	X	TBD	TBD	TBD	TBD

¹ R = Required, O = Optional, X = Non-standard.

2.2.1. FanSpeedTarget

Determines the target speed for the fan. (See the above note "Explanation of the meaning of speed").

2.2.2. FanSpeedStatus

Represents the actual speed for the fan. (See the above note "Explanation of the meaning of speed").

2.2.3. DirectionTarget

Determines the target running direction for the fan. This is an optional state variable; in the case of fans that do not implement this state variable, they must behave as if DirectionTarget were equal to 0 i.e. "Forward".

² Values listed in this column are (all) required.

2.2.4. DirectionStatus

Represents the actual running direction for the fan. This is an optional state variable; in the case of fans that do not implement this state variable, a control point must behave as if DirectionStatus were equal to 0 i.e. "Forward".

2.2.5. Relationships Between State Variables

Whenever the value of FanSpeedTarget changes, the actual physical fan speed should start to change toward the value of FanSpeedTarget according to the mapping illustrated in the examples below. Due to the physical inertia of the fan, this process will take a certain period of time that depends on the vendor's implementation. The value of the FanSpeedStatus state variable should correspond to the actual physical fan speed according to the mapping illustrated in the examples below.

FanSpeedTarget and FanSpeedStatus are integers with the range 0% to 100%. Depending on the actual type of fan employed (e.g. three speed fan, modulating fan etc.), the 0...100% range should map to the actual physical fan speed according to the following principles.

Two common examples are given below for guidance, but actual implementation is at the discretion of the vendor:

Table 2: Modulating Fan Example

Input of Setting of FanSpeedTarget	Resulting Actual Physical Speed	Resulting value of FanSpeedStatus
0%	Off ("hard" off)	0%
1Minimum Speed (i.e. Stalling Speed)%	Off ("soft" off)	1%
Min. Stall Speed100%	Linear mapping according to the value of FanSpeedTarget	Actual speed: (Min. Stall Speed 100%)

Table 3: Three-Speed Fan Example

Input of Setting of FanSpeedTarget	Resulting Actual Physical Speed	Resulting value of FanSpeedStatus
0%	Off ("hard" off)	0%
125%	Off ("soft" off)	Same mapping as FanSpeedTarget
2650%	Low	ditto
5175%	Medium	ditto
76100%	High	ditto

NOTE: To facilitate certification, UPnP vendors should include their own version of the mapping table illustrated above.

Whenever the value of DirectionTarget changes, the actual physical fan direction should start to change toward the value of DirectionTarget. Due to the physical inertia of the fan, this process will take a period of time that depends on the vendor's implementation. The corresponding value of the DirectionStatus state variable should in turn reflect the actual physical fan direction.

NOTES:

i) If the actual physical fan speed or direction deviates from what is expected in FanSpeedTarget or DirectionTarget, then the corresponding xxxStatus state variable should reflect the real physical fan status and NOT the xxxTarget values.

ii) Vendors that implement control point strategies should bear in mind that due to friction, inertia, hysteresis and numerical rounding it is quite possible that the xxxStatus variables will take an indeterminate time to reach the value of the corresponding xxxTarget variables. Indeed (especially in the case of the fan speed), it is quite likely that the xxxStatus variable might *never* achieve exactly the same value as the xxxTarget variable.

Relationships between standard state variable(s) defined herein and any non-standard state variable(s) is TBD.

2.3. Eventing and Moderation

Table 4: Event Moderation

Variable Name	Evented	Moderated Event	Max Event Rate ¹	Logical Combination	Min Delta per Event ²
FanSpeedTarget	no				
FanSpeedStatus	yes	yes	30	OR	10 * (Step)
DirectionTarget	no				
DirectionStatus	yes	no			
Non-standard state variables implemented by an UPnP vendor go here.	TBD	TBD	TBD	TBD	TBD

¹ Determined by N, where Rate = (Event)/(N secs).

2.4. Actions

Table 5: Actions

Name	Req. or Opt. ¹
SetFanSpeed	R
GetFanSpeed	R
GetFanSpeedTarget	R
SetFanDirection	0
GetFanDirection	0
GetFanDirectionTarget	0
Non-standard actions implemented by an UPnP vendor go here.	X
	•

 $^{^{1}}$ R = Required, O = Optional, X = Non-standard.

2.4.1. SetFanSpeed

Sets the new value of FanSpeedTarget.

2.4.1.1. Arguments

Table 6: Arguments for SetFanSpeed

Argument	Direction	relatedStateVariable
NewFanSpeedTarget	IN	FanSpeedTarget

² (N) * (allowedValueRange Step).

2.4.1.2. Dependency on State

None.

2.4.1.3. Effect on State

Sets the new value of FanSpeedTarget. The actual physical fan speed, (and thus the value of FanSpeedStatus), should map to FanSpeedTarget according to section 2.2.

2.4.1.4. Errors

ErrorCode	errorDescription	Description
402	Invalid Args	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
800-899	TBD	(Specified by UPnP vendor.)

2.4.2. GetFanSpeed

Returns the current value of FanSpeedStatus.

2.4.2.1. Arguments

Table 7: Arguments for GetFanSpeed

Argument	Direction	relatedStateVariable
CurrentFanSpeedStatus	OUT R	FanSpeedStatus

R = Return Value (RETVAL)

2.4.2.2. Dependency on State

Returns the current value of FanSpeedStatus.

2.4.2.3. Effect on State

None.

2.4.2.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
800-899	TBD	(Specified by UPnP vendor.)

2.4.3. GetFanSpeedTarget

Returns the current value of FanSpeedTarget.

2.4.3.1. Arguments

Table 8: Arguments for GetFanSpeedTarget

Argument	Direction	relatedStateVariable
CurrentFanSpeedTarget	OUT R	FanSpeedTarget

R = Return Value (RETVAL)

2.4.3.2. Dependency on State

Returns the current value of FanSpeedTarget.

2.4.3.3. Effect on State

None.

2.4.3.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
800-899	TBD	(Specified by UPnP vendor.)

2.4.4. SetFanDirection

Sets the new value of DirectionTarget.

2.4.4.1. Arguments

Table 9: Arguments for SetDirection

Argument	Direction	RelatedStateVariable
NewDirectionTarget	IN	DirectionTarget

2.4.4.2. Dependency on State

None.

2.4.4.3. Effect on State

 $Sets \ the \ new \ value \ of \ Direction Target. \ The \ actual \ physical \ fan \ direction, (and \ thus \ the \ value \ of \ Direction Status), should \ follow \ Direction Target.$

2.4.4.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
800-899	TBD	(Specified by UPnP vendor.)

2.4.5. GetFanDirection

Returns the current value of DirectionStatus.

2.4.5.1. *Arguments*

Table 10: Arguments for GetDirection

Argument	Direction	RelatedStateVariable
CurrentDirectionStatus	OUT R	DirectionStatus

R = Return Value (RETVAL)

2.4.5.2. Dependency on State

Returns the current value of DirectionStatus.

2.4.5.3. Effect on State

None.

2.4.5.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
800-899	TBD	(Specified by UPnP vendor.)

2.4.6. GetFanDirectionTarget

Returns the current value of DirectionTarget.

2.4.6.1. *Arguments*

Table 11: Arguments for GetDirectionTarget

Argument	Direction	RelatedStateVariable
CurrentDirectionTarget	OUT R	DirectionTarget

R = Return Value (RETVAL)

2.4.6.2. Dependency on State

Returns the current value of DirectionTarget.

2.4.6.3. Effect on State

None.

2.4.6.4. Errors

errorCode	errorDescription	Description
402	Invalid Args	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
800-899	TBD	(Specified by UPnP vendor.)

2.4.7. Non-Standard Actions Implemented by an UPnP Vendor

To facilitate certification, non-standard actions implemented by an UPnP vendor should be included in this service template. The UPnP Device Architecture lists naming requirements for non-standard actions (cf. section on Description).

2.4.8. Relationships Between Actions

The actions defined herein may be called in any order.

Relationships between standard action(s) defined herein and any non-standard action(s) is TBD.

2.4.9. Common Action Error Codes

The following table lists error codes common to actions for this service type. If an action results in multiple errors, the most-specific error should be returned.

errorCode	errorDescription	Description
401	Invalid Action	See UPnP Device Architecture section on Control.
402	Invalid Args	See UPnP Device Architecture section on Control.
404	Invalid Var	See UPnP Device Architecture section on Control.
501	Action Failed	See UPnP Device Architecture section on Control.
600-699	TBD	Common action errors. Defined by UPnP Forum Technical Committee.
800-899	TBD	(Specified by UPnP vendor.)

2.5. Theory of Operation

Control Points will use SetFanSpeed to set the value of FanSpeedTarget; this in turn determines the running speed of the fan. Depending on the type of fan, it must adjust its actual physical speed to a value matching as closely as possible to the FanSpeedTarget – some examples of possible mappings are given in section 2.2. Due to the physical inertia of the fan, the physical fan speed and hence the value of FanSpeedStatus will take a period of time to "catch up" with FanSpeedTarget.

Control Points may interrogate the actual fan speed by calling GetFanSpeed. This function reads the value of FanSpeedStatus. In normal operation conditions, in the steady state, FanSpeedStatus will return +/- the same value as FanSpeedTarget. However, in the case of faults, or external overrides, the actual fan speed may differ from that requested by FanSpeedTarget. In such cases, FanSpeedStatus must return the actual physical speed in accordance with the mapping examples in section 2.2.

Similarly, Control Points will use SetFanDirection to set the value of DirectionTarget; this in turn determines the running direction of the fan. Depending on the type of fan, it must adjust its actual physical direction to the DirectionTarget. Due to the physical inertia of the fan, the physical fan speed and hence the value of DirectionStatus will take a period of time to "catch up" with DirectionTarget.

Control Points may interrogate the actual fan direction by calling GetFanDirection. This function reads the value of DirectionStatus. In normal operation conditions, in the steady state, DirectionStatus will return the same value as DirectionTarget. However, in the case of faults, or external overrides, the actual fan direction may differ from that requested by DirectionTarget. In such cases, DirectionStatus must return the actual physical fan direction.

NOTE: It is possible that a Control Point could issue a series of SetFanSpeed or SetFanDirection commands in rapid succession. The vendor is responsible for ensuring that in all cases, the fan responds safely, smoothly and without damage to itself. E.g. if a fan is running at (say) 100% speed "forward", and a control point switches the value of DirectionTarget to 1 "reverse", then it is the responsibility of the vendor to ensure that the fan transitions gradually from 100% "forward" to 0% "stopped" to 100% "reverse".

3. XML Service Description

```
<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
  <specVersion>
    <major>1</major>
    <minor>0</minor>
  </specVersion>
  <actionList>
    <action>
    <name>SetFanSpeed</name>
      <argumentList>
        <argument>
           <name>NewFanSpeedTarget</name>
           <direction>in</direction>
           <relatedStateVariable>FanSpeedTarget</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>GetFanSpeed</name>
      <argumentList>
        <argument>
          <name>CurrentFanSpeedStatus</name>
           < direction > out < / direction >
           <retval />
           <relatedStateVariable>FanSpeedStatus</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <<u>name</u>>GetFanSpeedTarget</<u>name</u>>
      <argumentList>
        <argument>
           <name>CurrentFanSpeedTarget</name>
           <direction > out < / direction >
           <retval />
           <relatedStateVariable>FanSpeedTarget</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>SetFanDirection</name>
      <argumentList>
        <argument>
           <name>NewDirectionTarget</name>
           <direction>in</direction>
           <relatedStateVariable>DirectionTarget</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    <action>
    <name>GetFanDirection</name>
      <argumentList>
        <argument>
           <name>CurrentDirectionStatus</name>
           <direction>out</direction>
           < retval />
           <relatedStateVariable>DirectionStatus</relatedStateVariable>
        </argument>
      </argumentList>
```

```
</action>
    <action>
    <name>GetFanDirectionTarget</name>
      <argumentList>
        < argument >
          <name>CurrentDirectionTarget</name>
          <direction>out</direction>
          <retval />
          <relatedStateVariable>DirectionTarget</relatedStateVariable>
        </argument>
      </argumentList>
    </action>
    Declarations for other actions added by UPnP vendor (if any) go here
  </actionList>
  <serviceStateTable>
    <stateVariable sendEvents="no">
      <name>FanSpeedTarget</name>
      <dataType>uil</dataType>
      < \overline{\text{defaultValue}} > \overline{0 < /\text{defaultValue}} >
      <allowedValueRange>
        <minimum>0</minimum>
        <maximum>100</maximum>
        <step>1</step>
      </allowedValueRange>
    </stateVariable>
    <stateVariable sendEvents="yes">
      <name>FanSpeedStatus</name>
      <dataType>uil</dataType>
      <defaultValue>0</defaultValue>
      <allowedValueRange>
        <minimum>0</minimum>
        <maximum>100</maximum>
        <step>1</step>
      </allowedValueRange>
    </stateVariable>
    <stateVariable sendEvents="no">
      <name>DirectionTarget</name>
      <dataType>boolean</dataType>
      <defaultValue>0</defaultValue>
    </stateVariable>
    < stateVariable sendEvents = "yes">
      <name>DirectionStatus</name>
      <dataType>boolean</dataType>
      <defaultValue>0</defaultValue>
    </stateVariable>
    Declarations for other state variables added by UPnP vendor (if any)
    go here
  </serviceStateTable>
</scpd>
```

4. Test

Testing of the UPnP functions Addressing, Discovery, Description, Control (Syntax) and Eventing are performed by the UPnP Test Tool v1.1 based on the following documents:

- UPnP Device Architecture v1.0
- The Service Definitions in chapter 2 of this document
- The XML Service Description in chapter 3 of this document
- The UPnP Test Tool service template test file: *FanSpeed1.xml*
- The UPnP Test Tool service template test file: FanSpeed1.SyntaxTests.xml

The test suite does not include tests for Control Semantics, since it is felt that such tests would not provide a higher level of interoperability.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

3, rue de Varembé PO Box 131 CH-1211 Geneva 20 Switzerland

Tel: + 41 22 919 02 11 Fax: + 41 22 919 03 00 info@iec.ch www.iec.ch