Análisis Tiempo-Frecuencia y Descomposición de Señales Clase 5

Dr. Marcelo Alejandro Colominas macolominas@conicet.gov.ar

Lab. Señales y Dinámicas no Lineales Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB) Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Argentina

2019

Contenidos

- Motivación
- Reassignment y Synchrosqueezing
- 3 Ejemplos
- Implementación

Contenidos

- Motivación

Motivación

• Tanto la STFT como la CWT sufren de una «incertidumbre» en su representación.

- Tanto la STFT como la CWT sufren de una «incertidumbre» en su representación.
- Sin embargo, gozan de cierta redundancia que puede aprovecharse.

- Tanto la STFT como la CWT sufren de una «incertidumbre» en su representación.
- Sin embargo, gozan de cierta redundancia que puede aprovecharse.
- Por otro lado, la información referente a la fase de estas representaciones suele menospreciarse.

Eiemplos

- Tanto la STFT como la CWT sufren de una «incertidumbre» en su representación.
- Sin embargo, gozan de cierta redundancia que puede aprovecharse.
- Por otro lado, la información referente a la fase de estas representaciones suele menospreciarse.
- Existen estrategias que usan esta información, y mejoran la «resolución» de las representaciones.

Motivación

 Tanto la STET como la CWT sufren de una «incertidumbre» en su representación.

Eiemplos

- Sin embargo, gozan de cierta redundancia que puede aprovecharse.
- Por otro lado, la información referente a la fase de estas representaciones suele menospreciarse.
- Existen estrategias que usan esta información, y mejoran la «resolución» de las representaciones.
- Ellas son la técnica de Reassignment, y un caso especial: Synchosqueezing.

Contenidos

- Reassignment y Synchrosqueezing

Reassignment

Kodera 1976, Auger & Flandrin 1995, Auger 2013

Idea

La idea consiste en «reasignar» los coeficientes de la representación desde (t, f) a (\tilde{t}, \tilde{f}) . Originalmente propuesta para el espectrograma (Kodera et al. 1976), luego fue extendida a todas las representaciones bilineales (Auger & Flandrin, 1995).

Kodera 1976, Auger & Flandrin 1995, Auger 2013

Idea

La idea consiste en «reasignar» los coeficientes de la representación desde (t,f) a (\tilde{t},\tilde{f}) . Originalmente propuesta para el espectrograma (Kodera *et al.* 1976), luego fue extendida a todas las representaciones bilineales (Auger & Flandrin, 1995).

$$RS_x^g(t,f) = \iint S_x^g(u,v)\delta(t-\tilde{t}_x(u,v))\delta(f-\tilde{f}_x(u,v))dudv.$$

No permite la reconstrucción.

Daubechies 1996, Daubechies 2011, Auger 2013

Idea

Con el fin de lograr una representación invertible, Daubechies sugiere reasignar los coeficientes solo «verticalmente» y trabajar con representaciones lineales (la CWT en su propuesta de 1996). En el caso de la STFT:

Idea

Con el fin de lograr una representación invertible, Daubechies sugiere reasignar los coeficientes solo «verticalmente» y trabajar con representaciones lineales (la CWT en su propuesta de 1996). En el caso de la STFT:

$$SF_x^g(t,f) = \int F_x^g(t,v)\delta(f - \tilde{f}_x(t,v))dv$$

Synchrosqueezing

Daubechies 1996, Daubechies 2011, Auger 2013

Idea

Con el fin de lograr una representación invertible, Daubechies sugiere reasignar los coeficientes solo «verticalmente» y trabajar con representaciones lineales (la CWT en su propuesta de 1996). En el caso de la STET:

$$SF_x^g(t,f) = \int F_x^g(t,v)\delta(f - \tilde{f}_x(t,v))dv$$

$$x(t) = \frac{1}{g(0)} \int SF_x^g(t,v)dv$$

Synchrosqueezing

Daubechies 1996, Daubechies 2011, Auger 2013

Daubechies 1996, Daubechies 2011, Auger 2013

Motivación

Implementación

Permite la reconstrucción.

Daubechies 1996, Daubechies 2011, Auger 2013

Para la CWT

También puede plantearse para la transformada ondita continua:

Daubechies 1996, Daubechies 2011, Auger 2013

Para la CWT

También puede plantearse para la transformada ondita continua:

$$SW_x^{\psi}(t,s) = \int W_x^{\psi}(t,v)\delta(s-\tilde{s}_x(t,v))\frac{dv}{v}$$

Synchrosqueezing

Daubechies 1996, Daubechies 2011, Auger 2013

Ejemplos

Para la CWT

También puede plantearse para la transformada ondita continua:

$$SW_x^{\psi}(t,s) = \int W_x^{\psi}(t,v)\delta(s-\tilde{s}_x(t,v))\frac{dv}{v}$$
$$x(t) = \frac{1}{\tilde{C}_{\psi}} \int SW_x^{\psi}(t,v)dv$$

Operadores

Operador frecuencial para la STFT

Tenemos
$$F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$$
.

Operadores

Operador frecuencial para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=e^{i2\pi f_0t}$ entonces $F_x^g(t,f)=e^{i2\pi f_0t}\hat{g}(f-f_0).$

Operadores

Operador frecuencial para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=e^{i2\pi f_0t}$ entonces $F_x^g(t,f)=e^{i2\pi f_0t}\hat{g}(f-f_0).$

Queremos recuperar la frecuencia f_0 del tono puro:

Operadores

Operador frecuencial para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=e^{i2\pi f_0t}$ entonces $F_x^g(t,f)=e^{i2\pi f_0t}\hat{g}(f-f_0).$

Queremos recuperar la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t F_x^g(t,f)}{i2\pi F_x^g(t,f)}.$$

Operadores

Operador frecuencial para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=e^{i2\pi f_0t}$ entonces $F_x^g(t,f)=e^{i2\pi f_0t}\hat{g}(f-f_0).$

Queremos recuperar la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t F_x^g(t,f)}{i2\pi F_x^g(t,f)}.$$

•
$$f_0 = f - \frac{1}{i2\pi} \frac{F_x^{g'}(t,f)}{F_x^g(t,f)}$$
.

Operador frecuencial para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=e^{i2\pi f_0t}$ entonces $F_x^g(t,f)=e^{i2\pi f_0t}\hat{g}(f-f_0).$

Queremos recuperar la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t F_x^g(t,f)}{i2\pi F_x^g(t,f)}.$$

ullet $f_0=f-rac{1}{i2\pi}rac{F_g^{g'}(t,f)}{F_g^g(t,f)}.$ En la práctica, debemos tomar la parte real del segundo término del miembro derecho, con lo que queda: $f_0 = f - \frac{1}{2\pi} Im \left(\frac{F_x^{g'}(t,f)}{F_x^g(t,f)} \right)$.

Operadores

Operador frecuencial para la STFT

Tenemos $F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$.

Si $x(t) = e^{i2\pi f_0 t}$ entonces $F_x^g(t, f) = e^{i2\pi f_0 t} \hat{q}(f - f_0)$.

Queremos recuperar la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t F_x^g(t,f)}{i2\pi F_x^g(t,f)}.$$

ullet $f_0=f-rac{1}{i2\pi}rac{F_g^{g'}(t,f)}{F_g^g(t,f)}.$ En la práctica, debemos tomar la parte real del segundo término del miembro derecho, con lo que queda: $f_0 = f - \frac{1}{2\pi} Im \left(\frac{F_x^{g'}(t,f)}{F_x^g(t,f)} \right)$.

•
$$f_0 = \frac{1}{2\pi} \partial_t \mathrm{Arg} F_x^g(t,f)$$
.

Operadores

Operador temporal para la STFT

Tenemos
$$F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$$
.

Operadores

Operador temporal para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=\delta(t-t_0)$ entonces $F_x^g(t,f)=g(t-t_0)e^{i2\pi f(t-t_0)}.$

Operadores

Operador temporal para la STFT

Tenemos $F_x^g(t,f)=\int x(u)g(u-t)e^{-i2\pi f(u-t)}du.$ Si $x(t)=\delta(t-t_0)$ entonces $F_x^g(t,f)=g(t-t_0)e^{i2\pi f(t-t_0)}.$

Operadores

Operador temporal para la STFT

Tenemos $F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$.

Si $x(t) = \delta(t - t_0)$ entonces $F_x^g(t, f) = g(t - t_0)e^{i2\pi f(t - t_0)}$.

$$\bullet t - t_0 = \frac{\partial_f F_x^g(t, f)}{i2\pi F_x^g(t, f)}.$$

Operadores

Operador temporal para la STFT

Tenemos $F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$.

Si $x(t) = \delta(t - t_0)$ entonces $F_x^g(t, f) = q(t - t_0)e^{i2\pi f(t - t_0)}$.

$$\bullet \ t - t_0 = \frac{\partial_f F_x^g(t,f)}{i2\pi F_x^g(t,f)}.$$

•
$$t - t_0 = -\frac{F_x^{tg}(t,f)}{F_x^g(t,f)}$$
.

Eiemplos

Operadores

Operador temporal para la STFT

Tenemos $F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$.

Si
$$x(t) = \delta(t - t_0)$$
 entonces $F_x^g(t, f) = g(t - t_0)e^{i2\pi f(t - t_0)}$.

- $\bullet t t_0 = \frac{\partial_f F_x^g(t, f)}{i2\pi F_x^g(t, f)}.$
- $t-t_0=-rac{F_x^{tg}(t,f)}{F_x^g(t,f)}$. En la práctica, debemos tomar la parte real del miembro derecho, con lo que queda:

$$t_0 = t + Re\left(\frac{F_x^{tg}(t,f)}{F_x^g(t,f)}\right).$$

Operadores

Operador temporal para la STFT

Tenemos $F_x^g(t,f) = \int x(u)g(u-t)e^{-i2\pi f(u-t)}du$.

Si
$$x(t) = \delta(t - t_0)$$
 entonces $F_x^g(t, f) = g(t - t_0)e^{i2\pi f(t - t_0)}$.

Queremos recuperar el instante t_0 de la delta:

- $\bullet t t_0 = \frac{\partial_f F_x^g(t,f)}{i2\pi F_x^g(t,f)}.$
- $\bullet \ t-t_0=-\frac{F_x^{tg}(t,f)}{F_x^g(t,f)}.$ En la práctica, debemos tomar la parte real del miembro derecho, con lo que queda:

$$t_0 = t + Re\left(\frac{F_x^{tg}(t,f)}{F_x^g(t,f)}\right).$$

• $t - t_0 = \frac{1}{2\pi} \partial_f \mathsf{Arg} F_x^g(t, f)$.

Operadores

Operador frecuencial para la CWT

Tenemos
$$W_x^\psi(t,f) = \int x(u) \frac{1}{s} \psi^* \left(\frac{u-t}{s}\right) du.$$

Operadores

Operador frecuencial para la CWT

Tenemos
$$W_x^{\psi}(t,f)=\int x(u)\frac{1}{s}\psi^*\left(\frac{u-t}{s}\right)du$$
. Si $x(t)=e^{i2\pi f_0t}$ entonces $W_x^{\psi}(t,f)=\hat{\psi}^*(sf_0)e^{i2\pi f_0t}$.

Operadores

Operador frecuencial para la CWT

Tenemos $W_x^{\psi}(t,f) = \int x(u) \frac{1}{s} \psi^* \left(\frac{u-t}{s}\right) du$.

Si $x(t)=e^{i2\pi f_0t}$ entonces $W_x^{\psi}(t,f)=\hat{\psi}^*(sf_0)e^{i2\pi f_0t}$.

Queremos la frecuencia f_0 del tono puro:

Operadores

Operador frecuencial para la CWT

Tenemos $W_x^{\psi}(t,f) = \int x(u) \frac{1}{s} \psi^* \left(\frac{u-t}{s}\right) du$.

Si $x(t) = e^{i2\pi f_0 t}$ entonces $W_x^{\psi}(t, f) = \hat{\psi}^*(s f_0) e^{i2\pi f_0 t}$.

Queremos la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t W_x^{\psi}(t,s)}{i2\pi W_x^{\psi}(t,s)}.$$

Operadores

Operador frecuencial para la CWT

Tenemos $W_x^{\psi}(t,f) = \int x(u) \frac{1}{s} \psi^* \left(\frac{u-t}{s}\right) du$.

Si $x(t) = e^{i2\pi f_0 t}$ entonces $W_x^{\psi}(t, f) = \hat{\psi}^*(s f_0) e^{i2\pi f_0 t}$.

Queremos la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t W_x^{\psi}(t,s)}{i2\pi W_x^{\psi}(t,s)}.$$

•
$$f_0 = -\frac{W_x^{\psi'}(t,s)}{i2\pi s W_x^{\psi}(t,s)}$$
.

Operadores

Operador frecuencial para la CWT

Tenemos $W_x^{\psi}(t,f) = \int x(u) \frac{1}{s} \psi^* \left(\frac{u-t}{s}\right) du$.

Si $x(t) = e^{i2\pi f_0 t}$ entonces $W_x^{\psi}(t, f) = \hat{\psi}^*(sf_0)e^{i2\pi f_0 t}$.

Queremos la frecuencia f_0 del tono puro:

$$\bullet \ f_0 = \frac{\partial_t W_x^{\psi}(t,s)}{i2\pi W_x^{\psi}(t,s)}.$$

• $f_0 = -\frac{W_x^{\psi'}(t,s)}{i2\pi s W_x^{\psi}(t,s)}$. En la práctica, debemos tomar la parte real del segundo término del miembro derecho, con lo que queda: $f_0 = -Im\left(\frac{W_x^{\psi'}(t,s)}{2\pi s W_x^{\psi}(t,s)}\right)$.

Operadores

Operador frecuencial para la CWT

Tenemos $W_x^{\psi}(t,f) = \int x(u) \frac{1}{s} \psi^* \left(\frac{u-t}{s}\right) du$.

Si $x(t)=e^{i2\pi f_0t}$ entonces $W_x^{\psi}(t,f)=\hat{\psi}^*(sf_0)e^{i2\pi f_0t}$

Queremos la frecuencia f_0 del tono puro:

$$\bullet f_0 = \frac{\partial_t W_x^{\psi}(t,s)}{i2\pi W_x^{\psi}(t,s)}.$$

• $f_0 = -\frac{W_x^{\psi'}(t,s)}{i2\pi s W_x^{\psi}(t,s)}$. En la práctica, debemos tomar la parte real del segundo término del miembro derecho, con lo que queda: $f_0 = -Im\left(\frac{W_x^{\psi'}(t,s)}{2\pi s W_x^{\psi}(t,s)}\right)$.

•
$$f_0 = \frac{1}{2\pi} \partial_t \mathrm{Arg} W_x^{\psi}(t,s)$$
.

• El reassignment logra una ubicación perfecta para chirps lineales, pero no es invertible.

- El *reassignment* logra una ubicación perfecta para chirps lineales, pero no es invertible.
- Si $x(t) = e^{i2\pi(at+bt^2)}$ entonces $\phi'(\tilde{t}) = \tilde{f}$.

- El reassignment logra una ubicación perfecta para chirps lineales, pero no es invertible.
- Si $x(t) = e^{i2\pi(at+bt^2)}$ entonces $\phi'(\tilde{t}) = \tilde{f}$.
- Synchrosqueezing logra una ubicación perfecta sólo para tonos puros, pero es invertible.

- El *reassignment* logra una ubicación perfecta para chirps lineales, pero no es invertible.
- Si $x(t) = e^{i2\pi(at+bt^2)}$ entonces $\phi'(\tilde{t}) = \tilde{f}$.
- Synchrosqueezing logra una ubicación perfecta sólo para tonos puros, pero es invertible.
- Existe el synchrosqueezing de segundo orden que logra una ubicación perfecta para chirps lineales, y se mantiene invertible.

- El *reassignment* logra una ubicación perfecta para chirps lineales, pero no es invertible.
- Si $x(t) = e^{i2\pi(at+bt^2)}$ entonces $\phi'(\tilde{t}) = \tilde{f}$.
- Synchrosqueezing logra una ubicación perfecta sólo para tonos puros, pero es invertible.
- Existe el synchrosqueezing de segundo orden que logra una ubicación perfecta para chirps lineales, y se mantiene invertible.
- También existen versiones de synchrosqueezing de orden mayor.

Contenidos

- 3 Ejemplos

tiempo

Ejemplos

Ejemplos

Ejemplos

- 2 Reassignment y Synchrosqueezing
- 3 Ejemplos
- 4 Implementación

Motivación

Consideremos $h_{\alpha}(t) = \frac{1}{\alpha} h\left(\frac{t}{\alpha}\right)$, con $\int h(t)dt = 1$, y tal que $\lim_{\alpha \to 0} h_{\alpha}(t) = \delta(t).$

Aproximación

Consideremos $h_{\alpha}(t) = \frac{1}{\alpha} h\left(\frac{t}{\alpha}\right)$, con $\int h(t)dt = 1$, y tal que $\lim_{\alpha \to 0} h_{\alpha}(t) = \delta(t).$

Entonces,
$$\widetilde{SF}_x^{g,h_\alpha}(t,f)=\int F_x^g(t,v)\frac{1}{\alpha}h\left(\frac{f-\widetilde{f}(t,v)}{\alpha}\right)dv$$
, y $\widetilde{SW}_x^{\psi,h_\alpha}(t,f)=\int W_x^\psi(t,v)\frac{1}{\alpha}h\left(\frac{s-\widetilde{s}(t,v)}{\alpha}\right)\frac{dv}{v}$, constituyen aproximaciones a $SF_x^g(t,f)$ y $SW_x^\psi(t,s)$ respectivamente.

Eiemplos

Motivación

Consideremos $h_{\alpha}(t) = \frac{1}{\alpha} h\left(\frac{t}{\alpha}\right)$, con $\int h(t)dt = 1$, y tal que $\lim_{\alpha \to 0} h_{\alpha}(t) = \delta(t).$

Entonces,
$$\widetilde{SF}_x^{g,h_\alpha}(t,f)=\int F_x^g(t,v)\frac{1}{\alpha}h\left(\frac{f-\tilde{f}(t,v)}{\alpha}\right)dv$$
, y $\widetilde{SW}_x^{\psi,h_\alpha}(t,f)=\int W_x^\psi(t,v)\frac{1}{\alpha}h\left(\frac{s-\tilde{s}(t,v)}{\alpha}\right)\frac{dv}{v}$, constituyen aproximaciones a $SF_x^g(t,f)$ y $SW_x^\psi(t,s)$ respectivamente.

Implementación para la STFT

Definimos una partición del eje de frecuencias: $\{f_l\}_{l=0}^{\infty}$, y $\mathbf{F}_{l} = [f_{l}, f_{l+1}].$

Eiemplos

Aproximación

Consideremos $h_{\alpha}(t) = \frac{1}{\alpha} h\left(\frac{t}{\alpha}\right)$, con $\int h(t)dt = 1$, y tal que $\lim_{\alpha \to 0} h_{\alpha}(t) = \delta(t).$

Entonces,
$$\widetilde{SF}_x^{g,h_\alpha}(t,f)=\int F_x^g(t,v)\frac{1}{\alpha}h\left(\frac{f-\tilde{f}(t,v)}{\alpha}\right)dv$$
, y $\widetilde{SW}_x^{\psi,h_\alpha}(t,f)=\int W_x^\psi(t,v)\frac{1}{\alpha}h\left(\frac{s-\tilde{s}(t,v)}{\alpha}\right)\frac{dv}{v}$, constituyen aproximaciones a $SF_x^g(t,f)$ y $SW_x^\psi(t,s)$ respectivamente.

Implementación para la STFT

Definimos una partición del eje de frecuencias: $\{f_l\}_{l=0}^{\infty}$, y $\mathbf{F}_{l} = [f_{l}, f_{l+1}].$

Estimamos el operador f(n,k).

Eiemplos

Consideremos $h_{\alpha}(t) = \frac{1}{\alpha} h\left(\frac{t}{\alpha}\right)$, con $\int h(t)dt = 1$, y tal que $\lim_{\alpha \to 0} h_{\alpha}(t) = \delta(t).$

Entonces,
$$\widetilde{SF}_x^{g,h_\alpha}(t,f)=\int F_x^g(t,v)\frac{1}{\alpha}h\left(\frac{f-\tilde{f}(t,v)}{\alpha}\right)dv$$
, y $\widetilde{SW}_x^{\psi,h_\alpha}(t,f)=\int W_x^\psi(t,v)\frac{1}{\alpha}h\left(\frac{s-\tilde{s}(t,v)}{\alpha}\right)\frac{dv}{v}$, constituyen aproximaciones a $SF_x^g(t,f)$ y $SW_x^\psi(t,s)$ respectivamente.

Implementación para la STFT

Definimos una partición del eje de frecuencias: $\{f_l\}_{l=0}^{\infty}$, y $\mathbf{F}_{l} = [f_{l}, f_{l+1}].$

Estimamos el operador f(n,k).

Aproximamos la versión synchrosqueezing de la STFT en tiempo discreto mediante: $TF_x^g[n, f_l] = \sum_{k: \tilde{f}(n,k) \in \mathbf{F}_l} F_x^g[n,k].$

Implementación para la CWT

Definimos una partición del eje de escalas: $\{s_l\}_{l=0}^{\infty}$, y $\mathbf{S}_{l} = [f_{l}, f_{l+1}].$

Implementación para la CWT

Definimos una partición del eje de escalas: $\{s_l\}_{l=0}^{\infty}$, y

$$\mathbf{S}_l = [f_l, f_{l+1}].$$

Estimamos el operador $\tilde{s}(n, s(k))$.

Implementación para la CWT

Definimos una partición del eje de escalas: $\{s_l\}_{l=0}^{\infty}$, y

 $\mathbf{S}_{l} = [f_{l}, f_{l+1}].$

Estimamos el operador $\tilde{s}(n, s(k))$.

Aproximamos la versión synchrosqueezing de la CWT en tiempo discreto mediante:

Implementación para la CWT

Definimos una partición del eje de escalas: $\{s_l\}_{l=0}^{\infty}$, y

$$\mathbf{S}_l = [f_l, f_{l+1}].$$

Estimamos el operador $\tilde{s}(n, s(k))$.

Aproximamos la versión synchrosqueezing de la CWT en tiempo discreto mediante: $TW_x^{\psi}[n, s_l] = \sum_{k:\tilde{s}(n, s(k))} W_x^{\psi}[n, s(k)] \frac{\Delta s(k)}{s(k)}$.