Сьогодні 24.04.2024

Υροκ №45

Взаємодія води з оксидами. Поняття про основи, кислоти, індикатори

Повідомлення мети уроку

Ви зможете:

- наводити приклади формул кислот і основ;

- складати рівняння реакцій води з деякими оксидами;

- розпізнавати дослідним шляхом кислоти й луги.

Актуалізація опорних знань

Оксиди сховалися між іншими речовинами. Допоможи їх знайти і назвати. З'ясуй, чого більше: оксидів металічних чи неметалічних елементів:

HCl, KOH, CaO, SO₂, Na₂O, HClO₄, H₂S, O₂, Ca(OH)₂, MgO, P_2O_5 , CO₂, HNO3, Li₂O, N_2O_5 .

Оксиди неметалічних елементів:

SO₂, P₂O₅, N₂O₅, CO₂.

Оксиди металічних елементів: CaO, Na₂O, MgO, Li₂O.

Мотивація навчальної діяльності

Ми з вами знаємо, що вода є універсальним розчинником. І в залежності від того, з якою речовиною вона вступає в реакцію, утворюються різні за властивостями сполуки.

А які ж сполуки утворяться при взаємодії води з цими двома оксидами? Яким чином ми можемо їх розпізнати?

Індикатори – це речовини, що змінюють своє забарвлення в присутності кислоти чи лугу.

Поняття про індикатори

Найважливіші індикаториуніверсальний, лакмус, фенолфталеїн, метилоранж. Індикатор у розчині кислоти набуває іншого забарвлення, ніж у розчині лугу.

Дія кислот на індикатори Колір індикатора в середовищі Індикатори нейтральному лужному кислому ЛАКМУС Фіолетовий Червоний Синій ФЕНОЛ-Безбарвний Безбарвний Малиновий ФТАЛЕЇН **МЕТИЛОВИЙ** Оранжевий Рожевий Жовтий **ОРАНЖЕВИЙ**

Колір індикаторів в присутності кислоти

Лакмус

Метилоранж

Фенолфталеїн

Універсальний папір

Виявлення лугів у розчинах

Розчинні у воді основи (луги) серед інших прозорих розчинів можна виявити за допомогою речовин, які при дії на них лугів змінюють свій колір.

фенолфталеїн

малиновий

метилоранж

жовтий

лакмус

синій

Індикатори в рослинах

Індикатор лакмус відомий давно. Його виготовляли із деяких видів лишайнику. Багато речовин, які змінюють забарвлення за дії лугів і кислот, міститься в ягодах, овочах, квітах. Ці речовини можна виявити, провівши прості експерименти. Висушіть по кілька ягід чорниці, ожини, чорної смородини, бузини, чорноплідної горобини. Потім приготуйте із них відвари, прокип'ятивши у скляній чи емальованій посудині ягоди кожного виду зі 100—150 мл води протягом кількох хвилин. Отримані рідини після охолодження профільтруйте.

Індикатори в рослинах

Налийте по 20—30 мл кожної рідини у дві склянки. До однієї порції рідини додайте невеликий об'єм розчину кальцинованої соди (ця сполука частково взаємодіє з водою з утворенням лугу), а до іншої — 10 крапель лимонного соку або трохи оцту. Які виготовлені вами рідини змінюють забарвлення за дії розчину, що містить луг, і розчину кислоти, а які — лише в одному випадку (якому)?

Аналогічні експерименти можна провести із соками столового буряку, червонокачанної капусти, відварами висушених забарвлених квітів, а також рідинами, отриманими після заварювання зеленого і чорного чаю, каркаде (суданської троянди).

Оксиди поділяються на:

- основні (оксиди металічних елементів), метали I і II групи головної підгрупи.
 - кислотні (оксиди неметалічних елементів), неметали IV VII групи головної підгрупи.
 - амфотерні (ZnO, BeO,SnO,PbO, Al_2O_3 , Fe_2O_3 , Cr_2O_3 .

Взаємодія оксидів

Гідрогену

залишок

<u>Кислоти</u> – це складні сполуки, що складаються з одного чи кількох атомів Гідрогену, зв'язаних з кислотним залишком. Hn K3

Сьогодні

Розв'язування вправ

 SiO_2 — H_2SiO_3 - силікатна кислота

P₂O₅ — H₃PO₄ - ортофосфатна кислота

 N_2O_3 — HNO₂ - нітритна кислота

Перегляд відео

Джерело: youtu.be/SReeiN0wuDs

Сьогодні

Взаємодія оксидів

Основний оксид+Н2О =Основа

Основи складаються з металів і гідроксогруп (OH)-І валентна.

метал

гідроксогрупа

 $Na_2O + H_2O = 2 NaOH$

BCIM

Робота з термінами

Основи(гідроксиди) — це складні сполуки, утворені атомами металічних елементів та гідроксильною групою — ОН (валентність I).

Me(OH)n загальна формула основ.

Перегляд відео

Джерело: youtu.be/kjtGcveOosY

Техніка безпеки при роботі з кислотами та лугами

При попаданні на шкіру або в очі кислот і лугів змити їх струменем води протягом 10 хвилин, а потім нейтралізувати відповідними розчинами: при попаданні кислоти на тіло — 5% розчином питної соди. При попаданні кислоти в очі — 3% розчином питної соди, при попаданні лугу в очі 2-3% розчином борної кислоти. При проливанні кислоти або лугу на стіл або підлогу, слід засипати піском, а потім нейтралізувати.

ЗАБОРОНЯЄТЬСЯ виливати відпрацьовані кислоти і луги в каналізацію!

Техніка безпеки на уроках хімії

Сьогодні

Лабораторний дослід №10

Фенолфталеїн

Метилоранж

Лакмус

Індикаторний папір

Вода

Етанова кислота

Натрій гідроксид

Робота в зошиті

Складіть рівняння реакцій за схемами.

 $Ba \rightarrow BaO \rightarrow Ba(OH)_2$

 $2Ba+O_2 \rightarrow 2BaO$

 $BaO+H_2O\rightarrow Ba(OH)_2$

Складіть рівняння реакцій за схемами.

 $S \rightarrow SO_2 \rightarrow H_2SO_3$

 $S+O_2 \rightarrow SO_2$

 $SO_2+H_2O\rightarrow H_2SO_3$

Знайди пару

Oκcudu: N₂O₅, SO₂, CuO, MgO, CO₂, P₂O₅, K₂O, FeO, SiO₂, Na₂O.

 Γ i∂pamu: H_2CO_3 , H_2SO_3 , $Cu(OH)_2$, KOH, HNO_3 , NaOH, $Mg(OH)_2$, H_3PO_4 , $Fe(OH)_2$, H_2SiO_3 .

Сьогодні

Формулюємо висновки

Вода вступає в реакції сполучення з деякими оксидами металічних елементів і майже всіма оксидами неметалічних елементів.

Сполуки металічних елементів із загальною формулою M(OH)n називають <u>гідроксидами.</u> Більшість цих сполук належить до основ.

Розчинні і малорозчинні у воді основи називають лугами.

Під час реакцій води з оксидами неметалічних елементів утворюються <u>кислоти.</u>

Речовини, які змінюють забарвлення в розчинах лугів і кислот, називають <u>індикаторами</u>.

<u>Найважливіші індикатори</u> — універсальний, лакмус, фенолфталеїн, метилоранж.

Домашнє завдання

1. Опрацювати параграф №36;