TOPOLOGY HOMEWORK 8

- 1. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by the formula $f(x) = \ln(1 + e^x)$ satisfies |f(x) f(y)| < |x y| for $x \neq y$ but it does not have a fixed point.
- 2. Let (X,d) be a complete metric space and let $f: X \to X$ be an expansive map, i.e. for some e > 1 we have $d(f(x), f(y)) \ge e \cdot d(x, y)$. Prove that if $f(X) \subseteq X$ then f has exactly one fixed point.
- 3. Show that any countable complete metric space has an isolated point.
- 4. Show that Baire category theorem holds for arbitrary compact Hausdorff space X, i.e. if X is compact Hausdorff then the countable union of closed nowhere dense subsets of X, is co-dense in X.
- 5. Show that the set of irrational numbers is not a countable union of sets that are closed in \mathbb{R} .
- 6. We say that a topological space is *completely metrizable* if there is a metric d on X which generates the topology of X and such that the metric space (X, d) is complete. Prove that:
 - (A) The space \mathbb{Q} of rational numbers with the subspace topology inherited from the real line is not completely metrizable.
 - (B) If X is completely metrizable and F is a closed subset of X, then $F \subseteq X$ endowed with the subspace topology is completely metrizable.
 - (C) Which of the following subspaces of the Euclidean plane \mathbb{R}^2 are completely metrizable?
 - (a) $X_1 = \mathbb{Q} \times \mathbb{R}$
 - (b) $X_2 = \mathbb{Q} \times (\mathbb{R} \setminus \mathbb{Q})$
 - (c) $X_3 = \bigcup_{n=1}^{\infty} (\{\frac{1}{n}\} \times [0, \frac{1}{n}])$
 - (d) $X_4 = \{(x, y) \in \mathbb{R}^2 : y \neq 0\}$
 - (e) $X_5 = \{(x, y) \in \mathbb{R}^2 : 0 < x^2 + y^2 < 1\}$
 - (f) $X_6 = \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} \in \mathbb{Q}\}$
- 7. Let $A \subseteq \mathbb{R}^n$ be a countable subset of the Euclidean space \mathbb{R}^n . Let $F_k \subseteq \mathbb{R}$ be a closed nowhere dense subset of the real line, for $k = 1, 2, \ldots$ Show that there is a point $c \in \mathbb{R}^n$ such that $d_e(c, a) \notin \bigcup_{k=1}^{\infty} F_k$, for every $a \in A$ (here d_e is a Euclidean distance in \mathbb{R}^n).
- 8. Let $F \subseteq \mathbb{R}$ be a closed nowhere dense subset of \mathbb{R} . Show that there is a point (a,b) on the unit circle $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ such that for all $q \in \mathbb{Q}$ and for all $c \in F$ we have $b \neq qa + c$.
- 9. Let A be a G_{δ} subset of a topological space X. Show if B is G_{δ} in A then B is G_{δ} in X.
- 10. Let X be a metrizable space. Prove that any closed subset of X is G_{δ} .
- 11. Show that a totally bounded metric space (X, d) is separable. In particular any compact metric space is separable.