$\sigma(y_i, t+s)$ as functions of s. These solve $\partial_s \sigma(y_i, t+s) = F(\sigma(y_i, t+s), t+s)$ and $\sigma(y_1, t+0) = \sigma(y_2, t+0)$. Again by uniqueness, $\sigma(y_1, t+s) = \sigma(y_2, t+s)$ for all $|s| < \delta$, for some $\delta > 0$, that is, $(t - \delta, t + \delta) \subset I$ and so I is open.

2.3. **Minimization flows and OT.** Here we use the approach from [AHT03]. Let $T: (\Omega_0, \rho_0) \to (\Omega_1, \rho_1)$ be a measure preserving map, i.e.,

$$\int_{T^{-1}(E)} \rho_0(x) dx = \int_E \rho_1(x) dx$$

for each Borel set $E \subset \Omega_1$. Set $\sigma_t(\cdot) = \sigma(\cdot, t)$ where σ is as before, the flow corresponding to a vector field F satisfying (2.2). The family of maps $T \circ (\sigma_t)^{-1}$: $(\Omega_0, \rho_0) \to (\Omega_1, \rho_1)$ are measure preserving since

$$(T \circ (\sigma_t)^{-1})^{-1}(E) = \sigma_t \circ T^{-1}(E), \quad E \subset \Omega_1$$

and

$$\int_{\left(T \circ (\sigma_t)^{-1}\right)^{-1}(E)} \rho_0(x) \, dx = \int_{\sigma_t \circ T^{-1}(E)} \rho_0(x) \, dx$$

$$= \int_{T^{-1}(E)} \rho_0(x) \, dx \quad \text{since } \sigma_t \text{ preserves the measure}$$

$$= \int_{E} \rho_1(x) \, dx.$$

Consider the function of *t*

$$G(t) = \int_{\Omega_0} c\left(x, T \circ (\sigma_t)^{-1}(x)\right) \rho_0(x) dx;$$

here c(x, y) is a general cost. Making the change of variables $x = \sigma(z, t)$ yields

$$G(t) = \int_{\Omega_0} c(\sigma(z, t), T(z)) \rho_0(\sigma(z, t)) J_{\sigma}(z) dz$$
$$= \int_{\Omega_0} c(\sigma(z, t), T(z)) \rho_0(z) dz$$

since $\rho_0(\sigma(z,t)) J_{\sigma}(z) = \rho_0(z)$ because $\int_{\sigma(E,t)} \rho_0(x) dx = \int_E \rho_0(x) dx$ for all t and all $E \subset \Omega_0$. If T is an optimal map with respect to the cost c, then G'(t) = 0 when