Parcial 1: Señales y Sistemas 2024-I

Profesor: Andrés Marino Álvarez Meza, Ph.D.

Departamento de Ingeniería Eléctrica, Electrónica, y Computación
Universidad Nacional de Colombia - sede Manizales

1. Instrucciones

- Para recibir crédito total por sus respuestas, estas deben estar claramente justificadas e ilustrar sus procedimientos y razonamientos (paso a paso) de forma concreta, clara y completa.
- El parcial debe ser enviado al correo electrónico amalvarezme@unal.edu.co antes de las 23:59 del 21 de marzo de 2024, vía link de GitHub, con componentes teóricas de solución a mano en formato pdf y componentes de simulación en un cuaderno de Python .ipynb.
- Los códigos deben estar debidamente comentados en las celdas de código, y discutidos/explicados en celdas de texto (markdown). Códigos no comentados ni discutidos, no serán contabilizados en la nota final.

2. Preguntas

a). La distancia media entre dos señales periódicas $x_1(t) \in \mathbb{R}, \mathbb{C}$ y $x_2(t) \in \mathbb{R}, \mathbb{C}$; se puede expresar a partir de la potencia media de la diferencia entre ellas:

$$d^{2}(x_{1}, x_{2}) = \bar{P}_{x_{1} - x_{2}} = \lim_{T \to \infty} \frac{1}{T} \int_{T} |x_{1}(t) - x_{2}(t)|^{2} dt.$$

Sea $x_1(t)$ y $x_2(t)$ dos señales como se muestra a continuación:

$$x_1(t) = Ae^{jw_0t}$$

$$x_2(t) = Be^{j5w_0t}$$

con $w_0 = \frac{2\pi}{T}$; $T, A, B \in \mathbb{R}^+$. Determine la distancia entre las dos señales.

b). Cuál es la señal obtenida en tiempo discreto al utilizar un conversor análogo digital con frecuencia de muestreo de 5kHz, aplicado a la señal continua $x(t)=3\cos(1000\pi t)+5\sin(2000\pi t)+10\cos(11000\pi t)$?. Realizar la simulación del proceso de discretización. En caso de que la discretización no sea apropiada, diseñe e implemente un conversor adecuado para la señal estudiada.

c). Implemente una simulación para encontrar la salida del sistema lineal e invariante al tiempo $\mathcal{H}\{\cdot\}$, con respuesta al escalón $h_{\epsilon}[n]=\{2,4,1,5,0,10\}, n\in\mathbb{Z}$, ante la entrada análoga en corriente $x(t)=20(\cos(t/3)+\cos(t/4))$ [A]. A: Amperios. Incluya los acondicionamientos necesarios de discretización y cuantización, asumiendo un microprocesador de 4 bits con entrada análoga de 4mA a 20mA.