# Statistical programming languages - House Prices: Advanced Regression Techniques

Christian Koopmann Felix Skarke Enno Tammena

Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universitaet zu Berlin http://lvb.wiwi.hu-berlin.de



### Motivation

- □ demonstrate some of Rs machine learning capabilities
- develop and test different models to predict the price of houses in Ames, lowa
- dataset: Ames Housing data published in a kaggle competition with 79 explanatory variables

## **Outline**

# Data Structure / Quality

- 2919 Observations separated into 1460 labelled training observations and 1459 unlabelled test observations to predict.
- □ Target Variable: Final Sale Price in USD
- 79 Explanatory Variables of which 36 are numeric (e.g. floor area) and 43 categoric (e.g. heating type).
- NA usually means a variable is not applicable (Pool Quality if house has no pool) instead of missing data

## Sale Price Distribution



- Original price distribution heavily skewed
- Log transformed House Prices seem to be normally distributed



# Quantlet: Exploratory Data Analysis: Dependence

- im of this quantlet: show relations between variables, especially the target variable SalePrice
- producing different graphical representations
  - correlation matrix
  - barplot
  - boxplots

# Correlation Matrix of all numeric variables: Code

```
corr.func = function(data, cut.value, corr.mat = FALSE, corr.test =
     FALSE, significance = 0.05) {
 corr.numeric =cor(na.omit(numeric.data))
3 find.rows = apply(corr.numeric, 1, function(x) sum(abs(x)> abs(cut.
     value))>1)
   corr.numeric.adjusted = corr.numeric[find.rows.find.rows]
  low.corr = colnames(corr.numeric) %in% colnames(corr.numeric.adjusted)
7
       pdf("Corrplot.pdf")
       if (corr.test == FALSE) {
8
           corrplot (corr.numeric.adjusted, method = "square")
       } else {
10
11
           corrplot (corr.numeric.adjusted,
12
           p.mat = correlation.test(corr.numeric.adjusted),
13
           sig.level = ignificance, method = "square")
14
       dev. off()
15
16
       if (corr.mat == TRUE)
17
           return (corr. numeric. adjusted)
18
19
```

# Correlation Matrix of all numeric variables: Code ctd.

```
correlation.test = function(corr.data) {
21
22
       corr.data
                             = as.matrix(corr.data)
23
                             = ncol(corr.data)
24
       p. value . matrix
                            = matrix(NA, n, n)
25
       diag(p.value.matrix) = 0
26
27
       for (i in 1:(n-1)) {
        for (i in (i + 1):n) {
28
         tmp = cor.test(corr.data[, i], corr.data[, j])
29
         p.value.matrix[i, j] = p.value.matrix[j, i] = tmp$p.value
30
31
         colnames(p.value.matrix) = rownames(p.value.matrix) =
32
                         colnames (corr.numeric.adjusted))
33
   return (p. value . matrix)
34
35
```

# Plot of Correlations (Corrplot)



- A cut-off value of 0.3 was used: Variables with no correlation over 0.3 do not show up in the plot
- A significance level of 0.5 was used to test the correlations (crosses indicate no significance)



## Barplot: Code

```
corr.barplot = function(numb.corr = 36) {
36
37
           correlation . vars
                                = names(numeric.data) %in% c("SalePrice")
38
           correlation data
                                = numeric.data[!correlation.vars]
                                = vector(length = length(names(correlation
39
           correlations
              .data)))
           names(correlations) = names(correlation.data)
40
           for (i in names(correlation.data)) {
41
               correlations[i] = cor(numeric.data$SalePrice. correlation.
42
                  data[i], use = "pairwise.complete.obs")}
43
           y.plotting = correlations[order(abs(correlations),
44
              decreasing = TRUE) [[1: numb. corr]
45
           x.plotting = names(v.plotting)
46
           names(y.plotting) = NULL
47
           df = data.frame(x.plotting, y.plotting)
48
49
           df$x.plotting = factor(df$x.plotting, levels =
              df[order(df$v.plotting, decreasing = TRUE), "x.plotting"])
50
51
52
           ggplot(data = df, aes(x.plotting, y.plotting), fill = as.factor
              (x.plotting)) + geom bar(stat = "identity") +
               theme(axis, title.x = element blank(), axis, text.x = element
53
                  text(angle = 90, viust = 0.5, size = 10)) +
54
               vlab ("Correlation") + ggtitle (paste ("Barplot of the", numb.
                  corr. "highest bivariate correlations with SalePrice".
55
```

# Ordered barplot for the correlations with SalePrice

- The plot shows the 20 highest correlated numeric variables
- The few negative correlations are not plotted, since they are very low

# Boxplot: Code

```
boxplot.target = function(categoric) {
58
           categoric.x = data[, categoric]
59
            plot.data = as.data.frame(cbind(data$SalePrice, categoric.x))
60
61
            plot.data[[2]] = as.factor(plot.data[[2]])
            levels(plot.data[[2]]) = levels(categoric.x)
62
63
            ggplot(plot.data, aes(x = categoric.x, y = V1)) + geom boxplot
64
              () +
              labs(title = paste("Boxplots of SalePrice",
65
                "\n", "depending on", categoric, sep = " "),
66
                 x = categoric \cdot v = "SalePrice")
67
68
```

# **Boxplots of SalePrice**



- Example of boxplots for SalePrice based on the levels of categorical variables
- Differences in median and spread across levels indicate a possibly good predictor variable



# Quantlet: Data Preprocessing

- in aim of this quantlet: ensure, that the data quality is sufficent for all types of models that will be used
- handling of missing data, including imputation
- reduction of dimensionality
  - merging of factor levels
  - principal component analysis
- detetection and handling of outliers

# **Missing Data**



- based on data description, most NA's have a meaning (None/Other)
- imputation of remaining NA's
  - numeric variables: median
  - factor variables: mode



# Missing Data: Code

```
Mode = function(x) {
    ux = unique(x)
    ux[which.max(tabulate(match(x, ux)))]

impute.mode = function(x){
    nas = is.na(x)
    x[nas] = Mode(x[!nas])
    as.factor(x)

categoric.imputed = as.data.frame(sapply(categoric.data, impute.mode))
```

## **Outlier Handling: Code**

```
outlier.count = function(x){
       low =as.numeric(quantile(x)[2] - IQR(x)*3)
2
       high=as.numeric(IQR(x)*3 + quantile(x)[4])
       sum(x >= high | x <= low)
  outlier.truncate = function(x){
        low =as.numeric(quantile(x)[2] - IQR(x)*3)
7
        high=as.numeric(IQR(x)*3 + quantile(x)[4])
        x[x < low] = low
        x[x > high] = high
10
        return(x)
11
12
  df_outlier_trunc = as.data.frame(sapply(df.temp.
    numeric, outlier.truncate))
```

### Outlier: Before and after truncation



## **Dimensionality Reduction: Code**

```
single.factors = function(data) {
      for(var in names(data)) {
2
          if(is.factor(data[[var]])){
              tbl = table(data[[var]])
              ren = names(tbl)[tbl <= 20]
              levels(data[[var]])[levels(data[[var]])
                %in% ren] = "Other"
              tbl = table(data[[var]])
              tbl sum = sum(tbl < 20)
              if(nlevels(data[[var]]) < 3 & tbl_sum >=
                 1 ) data[[var]] = NA
10
11
      return (data)
12
13
```

# **Preprocessing: Summary**





# **Quantlet: Regression Models**

- □ aim of this quantlet: select appropriate variables
- four selection procedures
  - Backwards Selection based on significance
  - Forward Selection based on AIC
  - LASSO
  - Ridge

# Significance Selection: Code

```
sign.select = function(dframe, y) {
|z| pvals = 1, z = 1, i = 1
3 vars = names(dframe)
4 vars = vars[!vars %in% y]
  while (z>0) {
      df.lm = cbind(dframe[vars], dframe[v])
      lm1 = lm(formula(paste(y,"~ . ")) ,data=df.lm)
      pvals = summary(lm1)$coefficients[,4]
      pvals = pvals[!names(pvals) %in% "(Intercept)"]
      vars = names(pvals[pvals<0.05])</pre>
10
      #z = sum(pvals > 0.05), 	 i = i+1
11
      if(i==300){
12
          warning("... No signif. Vars in Data Set?")
13
          break
14
15
16 }
1Hotist Prices Advanced Regression Techniques —
18
```

### LASSO: Code

```
lm.penal = function(type, x, y) {
     } else if ( type == "ridge") {alpha = 0
     } else stop("type must be ridge or lasso")
     cvfit = cv.glmnet(x, y, alpha = alpha,
      nfolds = 10)
     fit = predict(cvfit,newx=x,s="lambda.1se")
     rsq = 1 - sum(y^2)/sum((fit - y)^2)
     c = coef(cvfit, s = "lambda.1se")
     inds = which(c != 0)
     var = row.names(c)[inds]
10
     vars.sele = var[!variables %in% "(Intercept)"]
11
     coeftable = data.frame(var = var, coeff = c[inds
12
       ], stringsAsFactors = F)
     output = list(vars.sele, coeftable, c, cvfit,
13
        fit, rsq)
      rices: Advanced Regression Techniques -
```

### **LASSO** Results



House Prices: Advanced Regression Techniques



# Regression Models Results (Excerpt)

| .variable           | .stat       | Sign. Selec. | AIC Selec. | Lasso  | Ridge  |
|---------------------|-------------|--------------|------------|--------|--------|
| (Intercept)         | Estimate    | -0.849***    | -0.914***  | -0.116 | -0.229 |
| LotArea             | Estimate    | 0.112***     | 0.062***   |        | -0.019 |
| OverallQual         | Estimate    | 0.245***     | 0.201***   | 0.076  | 0.057  |
| OverallCond         | Estimate    | 0.089***     | 0.104***   | 0.293  | 0.118  |
| YearRemodAdd        | Estimate    | 0.049***     | 0.044***   | 0.074  | 0.047  |
| BsmtUnfSF           | Estimate    | -0.066***    | -0.165***  | 0.045  | 0.052  |
| X2ndFlrSF           | Estimate    | 0.208***     | 0.215***   | 0.06   | 0.054  |
| LotShapeOther       | Estimate    | -0.415***    | -0.345***  |        | 0.034  |
| LotConfigCulDSac    | Estimate    | 0.141***     | 0.136***   | 0.048  | 0.043  |
| LandSlopeMod        | Estimate    | 0.119**      | 0.137***   | 0.009  | 0.029  |
| NeighborhoodClearCr | Estimate    | 0.184**      | 0.225***   |        | 0.026  |
| NeighborhoodCrawfor | Estimate    | 0.323***     | 0.291***   |        | 0.003  |
| NeighborhoodEdwards | Estimate    | -0.153***    | -0.199***  |        | -0.004 |
| NeighborhoodIDOTRR  | Estimate    | -0.209***    | -0.199***  |        | 0.033  |
| ElectricalOther     | Estimate    |              |            |        | 0.051  |
| ElectricalSBrkr     | Estimate    |              |            |        | 0.035  |
|                     | N           | 1168         | 1168       | 1168   | 1168   |
|                     | R2          | 0.895        | 0.914      | 0.88   | 0.89   |
|                     | Number Vars | 33           | 77         | 36     | 177    |

### Random Forest

- Applied Random Forest Regression Model to the data
- Collection of Regression Trees, where the predicted value is the average value in the leaf node.
- □ Results are averaged across all Regression Trees in the Forest
- Tuning Parameter: mtry Number of randomly selected variables per decision tree
- Model is tuned using the caret package and 5 Fold Cross Validation in a parallelized fashion using doParallel

### Random Forest: Code

# Random Forest Tuning Results - RMSE





# Random Forest Tuning Results - RMSE





# Random Forest Tuning Results - R Squared





## Quantlet: Model Comparison

- □ aim of this quantlet: after building and training all the models on the training data the goal is to measure how they perform on new data (=test data)
- omputing different measures and show results graphically
  - Mean Squared Error
  - Bias
  - real Vs. estimated plots

# Performance measure example: MSE Code

```
model.mse = function(model, test.data = test) {
      if (class(model)[1] %in% c("train", "lm")) {
2
          pred = predict(model, newdata = test.data)
          mse = (1/ncol(test.data)) * sum((pred -
            test.data$logSalePrice)^2)
      } else {
          pred = predict(model, newx = as.matrix(test.
            data[!names(test.data) %in% "logSalePrice"
            ]), s = "lambda.1se")
          mse = (1/ncol(test.data)) * sum((pred -
            test.data$logSalePrice)^2)
      return (mse)
10
```

# Result comparing all models

|          | lm   | fwd  | lasso | ridge | gbm  | rf   |
|----------|------|------|-------|-------|------|------|
| MSE      | 0.14 | 0.12 | 0.19  | 0.19  | 0.14 | 0.16 |
| MSEtrain | 0.70 | 0.57 | 0.94  | 0.88  | 0.48 | 0.14 |
| MAE      | 0.35 | 0.33 | 0.40  | 0.40  | 0.37 | 0.36 |
| BIAS     | 0.02 | 0.03 | 0.03  | 0.03  | 0.04 | 0.03 |
| RSQ      | 0.91 | 0.92 | 0.88  | 0.88  | 0.91 | 0.90 |

- In comparison the self built linear model and the forward algorithm habe the best results amongst all implemented models
- The random forest and the gradient boosting method show a far better Mean Sqared Error on the training data. This might indicate, that these models are overfitted to the data.

# Performance measure example: MSE Code

```
predictions.lm = predict(lm.fit, newdata = test)
71
   df Im fit
                  = data.frame(cbind(test$logSalePrice.predictions.lm ))
72
   lm.plot = ggplot(df.lm.fit, aes(test$logSalePrice, predictions.lm)) +
73
     geom point() + geom segment(x = -4, y = -4, xend = 4, yend = 4.
     color = "red", size = 1.3) +
74
       stat smooth(method = "Im", se = FALSE) +
       labs(title = "Plot of real logSalePrice against predicted values".
75
76
       x = "logSalePrice", y = "lm.fit predictions") + theme(axis.title = 
         element text(size = 16), plot title = element text(size = 16,
       face = "bold")) +
77
       annotate ("text", label = paste ("MSE:", comparison.result ["MSE", "Im
78
         "], sep = " "), x = -3, y = 3) +
       annotate ("text", label = paste ("MAE:", comparison result ["MAE", "Im
79
         "1. sep = " " ). x = -3. y = 2.5)
```

### Real Vs. Estimated Plots



- If the house prices would be predicted perfectly, all points would lie on the red line
- The blue line comes from an OLS regression: The better the predictions the more blue and red line should be the same

