

## Линейное программирование

**МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ** 

НЕДЕЛЯ 6

Даня Меркулов Пётр Остроухов





## Примеры задач линейного программирования

#### Что такое линейное программирование?





В общем случае все задачи с линейной целевой функцией и линейными функциональными ограничениями можно считать задачами линейного программирования. Однако существует несколько стандартных формулировок.

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Basic) s.t.  $Ax < b$ 

для некоторых векторов  $c\in\mathbb{R}^n$ ,  $b\in\mathbb{R}^m$  и матрицы  $A\in\mathbb{R}^{m\times n}$ , где неравенства — покомпонентные. Мы будем часто использовать эту формулировку для построения интуиции.

#### Что такое линейное программирование?





В общем случае все задачи с линейной целевой функцией и линейными функциональными ограничениями можно считать задачами линейного программирования. Однако существует несколько стандартных формулировок.

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Basic) s.t.  $Ax < b$ 

для некоторых векторов  $c\in\mathbb{R}^n$ ,  $b\in\mathbb{R}^m$  и матрицы  $A\in\mathbb{R}^{m\times n}$ , где неравенства — покомпонентные. Мы будем часто использовать эту формулировку для построения интуиции.

Широко используется **стандартная форма** записи задачи линейного программирования. Пусть заданы векторы  $c\in\mathbb{R}^n$ ,  $b\in\mathbb{R}^m$  и матрица  $A\in\mathbb{R}^{m\times n}$ .

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} c^\top x \\ \text{s.t. } & Ax = b \\ & x_i \geq 0, \ i = 1, \dots, n \end{aligned} \tag{LP.Standard}$$





$$\min_{c \,\in\, \mathbb{R}^p,\; ext{цена за 100r}} c^T x \ x_{\in \mathbb{R}^p,\; ext{ограничения}} \ x_{\in \mathbb{R}^p} \ x \succeq r \ x_{\in \mathbb{R}^p,\; ext{количество продуктов}}$$





 $\min_{c \, \in \, \mathbb{R}^p, \; ext{цена за 100r}} c^T x \ x \in \mathbb{R}^p, \; ext{ограничения} \ x \in \mathbb{R}^p, \; ext{количество продуктов} \ x \succeq 0$ 

Представьте, что вам нужно составить план диеты из некоторых продуктов: бананы, пироги, курица, яйца, рыба. Каждый из продуктов имеет свой вектор питательных веществ. Таким образом, все питательные вещества можно представить в виде матрицы W.





 $\min_{c \, \in \, \mathbb{R}^p, \; ext{цена за 100r}} c^T x \ x \in \mathbb{R}^p, \; ext{ограничения} \ x 
otin T$ 

Представьте, что вам нужно составить план диеты из некоторых продуктов: бананы, пироги, курица, яйца, рыба. Каждый из продуктов имеет свой вектор питательных веществ. Таким образом, все питательные вещества можно представить в виде матрицы W.

Предположим, что у нас есть вектор требований для каждого питательного вещества  $r \in \mathbb{R}^n$ . Нам нужно найти самую дешёвую диету, которая удовлетворяет всем требованиям:





$$\min_{c \, \in \, \mathbb{R}^p, \; ext{цена за 100r}} c^T x \ x \in \mathbb{R}^p, \; ext{ограничения} \ x \in \mathbb{R}^p, \; ext{количество продуктов} \ x \succeq 0$$

Представьте, что вам нужно составить план диеты из некоторых продуктов: бананы, пироги, курица, яйца, рыба. Каждый из продуктов имеет свой вектор питательных веществ. Таким образом, все питательные вещества можно представить в виде матрицы W.

Предположим, что у нас есть вектор требований для каждого питательного вещества  $r \in \mathbb{R}^n$ . Нам нужно найти самую дешёвую диету, которая удовлетворяет всем требованиям:

$$\begin{aligned} & \min_{x \in \mathbb{R}^p} c^\top x \\ \text{s.t.} & Wx \succeq r \\ & x_i \geq 0, \ i = 1, \dots, p \end{aligned}$$

**P**Open In Colab

## Минимизация выпуклой функции как задача линейного программирования





Рисунок 1. Как задача линейного программирования может помочь с общей задачей выпуклой оптимизации

<sup>•</sup> Функция выпукла, если она может быть представлена как поточечный максимум линейных функций.







Рисунок 1. Как задача линейного программирования может помочь с общей задачей выпуклой оптимизации

- Функция выпукла, если она может быть представлена как поточечный максимум линейных функций.
- В пространствах большой размерности аппроксимация может потребовать огромного количества функций.



## Минимизация выпуклой функции как задача линейного программирования



Рисунок 1. Как задача линейного программирования может помочь с общей задачей выпуклой оптимизации

- Функция выпукла, если она может быть представлена как поточечный максимум линейных функций.
- В пространствах большой размерности аппроксимация может потребовать огромного количества функций.
- . Существуют болоо эффективные сопреды пла выпуклей оптимизации (не сроляции се в



Типичная транспортная задача заключается в распределении товара от производителей к потребителям. Цель состоит в минимизации общих затрат на транспортировку при соблюдении ограничений на количество товара на каждом источнике и удовлетворении требований к спросу на каждом пункте назначения.



Рисунок 2. Карта Западной Европы. �Open In Colab



| Арнем [€/тонна] | Гауда [€/тонна]                        | Спрос [тонн]                                                   |
|-----------------|----------------------------------------|----------------------------------------------------------------|
| n/a             | 2.5                                    | 125                                                            |
| 2.5             | n/a                                    | 175                                                            |
| 1.6             | 2.0                                    | 225                                                            |
| 1.4             | 1.0                                    | 250                                                            |
| 0.8             | 1.0                                    | 225                                                            |
| 1.4             | 0.8                                    | 200                                                            |
| 550             | 700                                    |                                                                |
|                 | n/a<br>2.5<br>1.6<br>1.4<br>0.8<br>1.4 | n/a 2.5<br>2.5 n/a<br>1.6 2.0<br>1.4 1.0<br>0.8 1.0<br>1.4 0.8 |

Минимизировать: Стоимость = 
$$\sum_{c \in \Pi \text{ункты назначения}} \sum_{s \in \text{Источники}} T[c,s] x[c,s]$$



| Пункт назначения / Источник | Арнем [€/тонна] | Гауда [€/тонна] | Спрос [тонн] |
|-----------------------------|-----------------|-----------------|--------------|
| Лондон                      | n/a             | 2.5             | 125          |
| Берлин                      | 2.5             | n/a             | 175          |
| Маастрихт                   | 1.6             | 2.0             | 225          |
| Амстердам                   | 1.4             | 1.0             | 250          |
| Утрехт                      | 0.8             | 1.0             | 225          |
| Гаага                       | 1.4             | 0.8             | 200          |
| Макс. производство [тонн]   | 550             | 700             |              |
|                             |                 |                 |              |

Минимизировать: Стоимость = 
$$\sum_{c \in \Pi$$
ункты назначения  $s \in \mathbb{N}$ сточники  $T[c,s]x[c,s]$ 

$$\sum_{c \in \mathsf{\Pi}\mathsf{У}\mathsf{HKTbI}} x[c,s] \leq \mathsf{\Pi}\mathsf{octabka}[s] \qquad \forall s \in \mathsf{Источ}\mathsf{HKKI}$$



| Пункт назначения / Источник | Арнем [€/тонна] | Гауда [€/тонна] | Спрос [тонн] |
|-----------------------------|-----------------|-----------------|--------------|
| Лондон                      | n/a             | 2.5             | 125          |
| Берлин                      | 2.5             | n/a             | 175          |
| Маастрихт                   | 1.6             | 2.0             | 225          |
| Амстердам                   | 1.4             | 1.0             | 250          |
| Утрехт                      | 0.8             | 1.0             | 225          |
| Гаага                       | 1.4             | 0.8             | 200          |
| Макс. производство [тонн]   | 550             | 700             |              |
|                             |                 |                 |              |

Минимизировать: Стоимость = 
$$\sum_{c \in \Pi$$
ункты назначения  $s \in \mathbb{N}$ сточники  $T[c,s]x[c,s]$ 

$$\sum_{c \in \Pi \text{Ункты назначения}} x[c,s] \leq \text{Поставка}[s] \qquad \forall s \in \text{Источники}$$

$$\displaystyle \sum_{s \in \mathsf{Источники}} x[c,s] = \mathsf{Спрос}[c] \qquad orall c \in \mathsf{Пункты}$$
 назначения

#### Задачу можно представить в виде следующего графа:



Рисунок З. Граф, связанный с задачей



# Как получить задачу линейного программирования?



• Максимум-минимум

$$\begin{array}{ccc} \min_{x \in \mathbb{R}^n} c^\top x & \max_{x \in \mathbb{R}^n} -c^\top x \\ \text{s.t. } Ax \leq b & \text{s.t. } Ax \leq b \end{array}$$



• Максимум-минимум

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} c^\top x & \max_{x \in \mathbb{R}^n} -c^\top x \\ & \text{s.t.} \ Ax \leq b & \text{s.t.} \ Ax \leq b \end{aligned}$$

• Равенство к неравенству

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$



• Максимум-минимум

$$\begin{array}{ccc} \min_{x \in \mathbb{R}^n} c^\top x & \max_{x \in \mathbb{R}^n} -c^\top x \\ \text{s.t. } Ax \leq b & \text{s.t. } Ax \leq b \end{array}$$

• Равенство к неравенству

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

• Неравенство к равенству, увеличивая размерность задачи на m.

$$Ax \le b \leftrightarrow \begin{cases} Ax + z = b \\ z \ge 0 \end{cases}$$



• Максимум-минимум

$$\begin{array}{ccc} \min_{x \in \mathbb{R}^n} c^\top x & \max_{x \in \mathbb{R}^n} -c^\top x \\ \text{s.t. } Ax \leq b & \text{s.t. } Ax \leq b \end{array}$$

• Равенство к неравенству

$$Ax = b \leftrightarrow \begin{cases} Ax \le b \\ Ax \ge b \end{cases}$$

• Неравенство к равенству, увеличивая размерность задачи на m.

$$Ax \le b \leftrightarrow \begin{cases} Ax + z = b \\ z \ge 0 \end{cases}$$

• Неотрицательные переменные

$$x \leftrightarrow \begin{cases} x = x_+ - x_- \\ x_+ \ge 0 \\ x_- \ge 0 \end{cases}$$

#### Пример: задача аппроксимации Чебышева



$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_{\infty} \leftrightarrow \min_{x \in \mathbb{R}^n} \max_i |a_i^Tx - b_i|$$

Можно записать эквивалентную задачу линейного программирования с заменой максимальной координаты вектора:

#### Пример: задача аппроксимации Чебышева



$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_{\infty} \leftrightarrow \min_{x \in \mathbb{R}^n} \max_i |a_i^Tx - b_i|$$

Можно записать эквивалентную задачу линейного программирования с заменой максимальной координаты вектора:

$$\begin{aligned} & \min_{t \in \mathbb{R}, x \in \mathbb{R}^n} t \\ \text{s.t.} & a_i^T x - b_i \leq t, \ i = 1, \dots, m \\ & - a_i^T x + b_i \leq t, \ i = 1, \dots, m \end{aligned}$$

## Пример: задача $\ell_1$ аппроксимации



$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_1 \leftrightarrow \min_{x \in \mathbb{R}^n} \sum_{i=1}^m |a_i^Tx - b_i|$$

Можно записать эквивалентную задачу линейного программирования с заменой суммы координат вектора:

## Пример: задача $\ell_1$ аппроксимации



$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_1 \leftrightarrow \min_{x \in \mathbb{R}^n} \sum_{i=1}^m |a_i^Tx - b_i|$$

Можно записать эквивалентную задачу линейного программирования с заменой суммы координат вектора:

$$\begin{aligned} & \min_{t \in \mathbb{R}^m, x \in \mathbb{R}^n} \mathbf{1}^T t \\ \text{s.t. } & a_i^T x - b_i \leq t_i, \ i = 1, \dots, m \\ & - a_i^T x + b_i \leq t_i, \ i = 1, \dots, m \end{aligned}$$



Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

| Компонент                  | Caxap (%) | Стоимость (\$/л) |
|----------------------------|-----------|------------------|
| Концентрат А (Добрый кола) | 10.6      | 1.25             |
| Концентрат В (Север кола)  | 4.5       | 1.02             |
| Вода (Псыж)                | 0.0       | 0.62             |
|                            |           |                  |

Цель: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

Целевая функция

12



Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

| Компонент                 | Caxap (%) | Стоимость (\$/л) |
|---------------------------|-----------|------------------|
|                           | 10.6      | 1.25             |
| Концентрат В (Север кола) | 4.5       | 1.02             |
| Вода (Псыж)               | 0.0       | 0.62             |

Цель: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

#### Целевая функция

Минимизировать стоимость:

$$\mathrm{Cost} = \sum_{c \in C} x_c P_c$$

где  $x_c$  — объём используемого компонента c, и  $P_c$  — его цена.



Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

Ограничение на объём

| Компонент                  | Caxap (%) | Стоимость (\$/л) |
|----------------------------|-----------|------------------|
| Концентрат А (Добрый кола) | 10.6      | 1.25             |
| Концентрат В (Север кола)  | 4.5       | 1.02             |
| Вода (Псыж)                | 0.0       | 0.62             |

Цель: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

#### Целевая функция

Минимизировать стоимость:

$$\mathrm{Cost} = \sum_{c \in C} x_c P_c$$

где  $x_c$  — объём используемого компонента c, и  $P_c$  — его цена.



-

Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

| Компонент                  | Caxap (%) | Стоимость (\$/л) |
|----------------------------|-----------|------------------|
| Концентрат А (Добрый кола) | 10.6      | 1.25             |
| Концентрат В (Север кола)  | 4.5       | 1.02             |
| Вода (Псыж)                | 0.0       | 0.62             |

**Цель**: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

#### Целевая функция

Минимизировать стоимость:

$$\mathrm{Cost} = \sum_{c \in C} x_c P_c$$

где  $x_c$  — объём используемого компонента c, и  $P_c$  — его цена.

#### Ограничение на объём

Убедитесь, что общий объём V:

$$V = \sum_{c \in C} x_c$$

Ограничение на состав



-

Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

| Компонент                 | Caxap (%) | Стоимость (\$/л) |
|---------------------------|-----------|------------------|
|                           | 10.6      | 1.25             |
| Концентрат В (Север кола) | 4.5       | 1.02             |
| Вода (Псыж)               | 0.0       | 0.62             |

**Цель**: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

#### Целевая функция

Минимизировать стоимость:

$$\mathrm{Cost} = \sum_{c \in C} x_c P_c$$

где  $x_c$  — объём используемого компонента c, и  $P_c$  — его цена.

#### Ограничение на объём

Убедитесь, что общий объём V:

$$V = \sum_{c \in C} x_c$$

#### Ограничение на состав

Убедитесь, что содержание сахара — 4%:

$$\bar{A} = \frac{\sum_{c \in C} x_c A_c}{\sum_{c \in C} x_c}$$



-

Производственное предприятие получает заказ на 100 литров раствора с определённой концентрацией (например, 4% сахарного раствора). На складе есть:

| Компонент                 | Caxap (%) | Стоимость (\$/л) |
|---------------------------|-----------|------------------|
|                           | 10.6      | 1.25             |
| Концентрат В (Север кола) | 4.5       | 1.02             |
| Вода (Псыж)               | 0.0       | 0.62             |

**Цель**: Найти смесь с минимальной стоимостью, которая удовлетворит заказ.

#### Целевая функция

Минимизировать стоимость:

$$\mathrm{Cost} = \sum_{c \in C} x_c P_c$$

где  $x_c$  — объём используемого компонента c, и  $P_c$  — его цена.

#### Ограничение на объём

Убедитесь, что общий объём V:

$$V = \sum_{c \in C} x_c$$

#### Ограничение на состав

Убедитесь, что содержание сахара — 4%:

$$\bar{A} = \frac{\sum_{c \in C} x_c A_c}{\sum_{c \in C} x_c}$$

Линеаризованная версия:

$$0 = \sum_{c \in C} x_c (A_c - \bar{A})$$

Это можно решить с помощью линейного программирования.

**%**Код



## Симплекс-метод





Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t.  $Ax \leq b$ 

• Определение: **базис**  $\mathcal{B}$  — это подмножество n (целых) чисел между 1 и m, такое что rank  $A_{\mathcal{B}}=n$ .





Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t.  $Ax \leq b$ 

- Определение: **базис**  $\mathcal{B}$  это подмножество n (целых) чисел между 1 и m, такое что  $\operatorname{rank} A_{\mathcal{B}} = n$ .
- Обратите внимание, что мы можем связать подматрицу  $A_{\mathcal{B}}$  и соответствующую правую часть  $b_{\mathcal{B}}$  с базисом  $\mathcal{B}.$





Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t.  $Ax \leq b$ 

- Определение: **базис**  $\mathcal{B}$  это подмножество n (целых) чисел между 1 и m, такое что  $\operatorname{rank} A_{\mathcal{B}} = n$ .
- Обратите внимание, что мы можем связать подматрицу  $A_{\mathcal{B}}$  и соответствующую правую часть  $b_{\mathcal{B}}$  с базисом  $\mathcal{B}.$
- Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса:  $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b_{\mathcal{B}}.$





Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t.  $Ax \leq b$ 

- Определение: **базис**  $\mathcal{B}$  это подмножество n (целых) чисел между 1 и m, такое что  $\operatorname{rank} A_{\mathcal{B}} = n$ .
- Обратите внимание, что мы можем связать подматрицу  $A_{\mathcal{B}}$  и соответствующую правую часть  $b_{\mathcal{B}}$  с базисом  $\mathcal{B}.$
- Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса:  $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b_{\mathcal{B}}$ .
- Если  $Ax_{\mathcal{B}} \leq b$ , то базис  $\mathcal{B}$  является **допустимым**.

## Геометрия симплекс-метода





Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t.  $Ax \leq b$ 

- Определение: **базис**  $\mathcal{B}$  это подмножество n (целых) чисел между 1 и m, такое что  $\operatorname{rank} A_{\mathcal{B}} = n$ .
- Обратите внимание, что мы можем связать подматрицу  $A_{\mathcal{B}}$  и соответствующую правую часть  $b_{\mathcal{B}}$  с базисом  $\mathcal{B}.$
- Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса:  $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b_{\mathcal{B}}$ .
- Если  $Ax_{\mathcal{B}} \leq b$ , то базис  $\mathcal{B}$  является **допустимым**.
- Базис  $\mathcal B$  оптимален, если  $x_{\mathcal B}$  является решением задачи LP.Inequality.

### Геометрия симплекс-метода





Рассмотрим следующую простую формулировку задачи линейного программирования:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 (LP.Inequality) s.t.  $Ax \leq b$ 

- Определение: **базис**  $\mathcal{B}$  это подмножество n (целых) чисел между 1 и m, такое что  $\operatorname{rank} A_{\mathcal{B}} = n$ .
- Обратите внимание, что мы можем связать подматрицу  $A_{\mathcal{B}}$  и соответствующую правую часть  $b_{\mathcal{B}}$  с базисом  $\mathcal{B}.$
- Также мы можем получить точку пересечения всех этих гиперплоскостей из базиса:  $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b_{\mathcal{B}}$ .
- Если  $Ax_{\mathcal{B}} \leq b$ , то базис  $\mathcal{B}$  является **допустимым**.
- Базис  $\mathcal B$  оптимален, если  $x_{\mathcal B}$  является решением задачи LP.Inequality.
- $x_{\mathcal{B}}$  называют **базисной точкой** или базисным решением (иногда её тоже называют **базисом**).

# Дцу

# **Если решение задачи линейного программирования существует, то оно лежит в вершине**









i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.





#### i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- 3. Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.





#### i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- 3. Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.







#### i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- 3. Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.

Для доказательства см. теорему 13.2 в Numerical Optimization by Jorge Nocedal and Stephen J. Wright

Верхнеуровневая идея симплекс-метода:

• Убедитесь, что вы находитесь в вершине.







#### i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.

Для доказательства см. теорему 13.2 в Numerical Optimization by Jorge Nocedal and Stephen J. Wright

- Убедитесь, что вы находитесь в вершине.
- Проверьте оптимальность.





#### i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- 3. Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.

Для доказательства см. теорему 13.2 в Numerical Optimization by Jorge Nocedal and Stephen J. Wright

Верхнеуровневая идея симплекс-метода:

- Убедитесь, что вы находитесь в вершине.
- Проверьте оптимальность.

 Если необходимо, перейдите к другой вершине (измените базис).





#### i Theorem

- Если задача линейного программирования в стандартной форме имеет непустое бюджетное множество, то существует по крайней мере одна допустимая базисная точка.
- Если задача линейного программирования в стандартной форме имеет решения, то по крайней мере одно из таких решений является оптимальной базисной точкой.
- Если задача линейного программирования в стандартной форме допустима и ограничена, то она имеет оптимальное решение.

Для доказательства см. теорему 13.2 в Numerical Optimization by Jorge Nocedal and Stephen J. Wright

- Убедитесь, что вы находитесь в вершине.
- Проверьте оптимальность.

- Если необходимо, перейдите к другой вершине (измените базис).
- Повторяйте, пока не сойдётесь.









Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

**1** Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.

$$\exists x^* : Ax^* \le b, c^T x^* < c^T x_{\mathcal{B}}$$





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.

$$\exists x^* : Ax^* \le b, c^T x^* < c^T x_{\mathcal{B}}$$
$$A_{\mathcal{B}} x^* \le b_{\mathcal{B}}$$





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.

$$\exists x^* : Ax^* \le b, c^T x^* < c^T x_{\mathcal{B}}$$
$$A_{\mathcal{B}} x^* \le b_{\mathcal{B}} \mid \lambda_{\mathcal{B}}^T \le 0$$





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.

$$\begin{split} \exists x^* : Ax^* \leq b, c^Tx^* < c^Tx_{\mathcal{B}} \\ A_{\mathcal{B}}x^* \leq b_{\mathcal{B}} \mid \lambda_{\mathcal{B}}^T \cdot \leq 0 \\ \lambda_{\mathcal{B}}^TA_{\mathcal{B}}x^* \geq \lambda_{\mathcal{B}}^Tb_{\mathcal{B}} \end{split}$$





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.

$$\exists x^* : Ax^* \leq b, c^T x^* < c^T x_{\mathcal{B}}$$

$$A_{\mathcal{B}} x^* \leq b_{\mathcal{B}} \mid \lambda_{\mathcal{B}}^T \cdot \leq 0$$

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} x^* \geq \lambda_{\mathcal{B}}^T b_{\mathcal{B}}$$

$$c^T x^* \geq \lambda_{\mathcal{B}}^T A_{\mathcal{B}} x_{\mathcal{B}}$$





Поскольку у нас есть базис, мы можем разложить наш целевой вектор c в этом базисе и найти скалярные коэффициенты  $\lambda_{\mathcal{B}}$ :

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} = c^T \leftrightarrow \lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$$

i Theorem

Если все компоненты  $\lambda_{\mathcal{B}}$  неположительны и  $\mathcal{B}$  допустим, то  $\mathcal{B}$  оптимален.

$$\exists x^* : Ax^* \leq b, c^T x^* < c^T x_{\mathcal{B}}$$

$$A_{\mathcal{B}} x^* \leq b_{\mathcal{B}} \mid \lambda_{\mathcal{B}}^T \cdot \leq 0$$

$$\lambda_{\mathcal{B}}^T A_{\mathcal{B}} x^* \geq \lambda_{\mathcal{B}}^T b_{\mathcal{B}}$$

$$c^T x^* \geq \lambda_{\mathcal{B}}^T A_{\mathcal{B}} x_{\mathcal{B}}$$

$$c^T x^* \geq c^T x_{\mathcal{B}}$$







• Предположим, что у нас есть базис  $\mathcal{B}\!\!:\!\lambda^T_{\mathcal{B}}=c^TA^{-1}_{\mathcal{B}}$ 







- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda^T_{\mathcal{B}} = c^T A^{-1}_{\mathcal{B}}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:





- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^T d = -1 \end{cases}$$





- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda^T_{\mathcal{B}} = c^T A_{\mathcal{B}}^{-1}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^T d = -1 \end{cases} c^T d$$





- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda^T_{\mathcal{B}} = c^T A^{-1}_{\mathcal{B}}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^T d = -1 \end{cases} \qquad c^T d = \lambda_{\mathcal{B}}^T A_{\mathcal{B}} d$$





- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda^T_{\mathcal{B}} = c^T A^{-1}_{\mathcal{B}}$
- Предположим, что  $\lambda_{\mathcal{B}}^k>0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^Td = -1 \end{cases} \qquad c^Td = \lambda_{\mathcal{B}}^TA_{\mathcal{B}}d = \sum_{i=1}^n \lambda_{\mathcal{B}}^i(A_{\mathcal{B}}d)^i$$





- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda^T_{\mathcal{B}} = c^T A^{-1}_{\mathcal{B}}$
- Предположим, что  $\lambda_{\mathcal{B}}^k>0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash \{k\}}d = 0 \\ a_k^Td = -1 \end{cases} \qquad c^Td = \lambda_{\mathcal{B}}^TA_{\mathcal{B}}d = \sum_{i=1}^n \lambda_{\mathcal{B}}^i (A_{\mathcal{B}}d)^i = -\lambda_{\mathcal{B}}^k < 0$$





Предположим, что некоторые из коэффициентов  $\lambda_{\mathcal{B}}$  положительны. В этом случае необходимо осуществить переход по ребру многогранника к новой вершине, то есть произвести замену базиса.

- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda^T_{\mathcal{B}} = c^T A^{-1}_{\mathcal{B}}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d=0\\ a_k^Td=-1 \end{cases} \qquad c^Td=\lambda_{\mathcal{B}}^TA_{\mathcal{B}}d=\sum_{i=1}^n\lambda_{\mathcal{B}}^i(A_{\mathcal{B}}d)^i=-\lambda_{\mathcal{B}}^k<0$$

• Для всех  $j \notin \mathcal{B}$  рассчитаем размер шага проекции:

$$\mu_j = \frac{b_j - a_j^T x_{\mathcal{B}}}{a_j^T d}$$





Предположим, что некоторые из коэффициентов  $\lambda_{\mathcal{B}}$  положительны. В этом случае необходимо осуществить переход по ребру многогранника к новой вершине, то есть произвести замену базиса.

- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^Td = -1 \end{cases} \qquad c^Td = \lambda_{\mathcal{B}}^TA_{\mathcal{B}}d = \sum_{i=1}^n \lambda_{\mathcal{B}}^i(A_{\mathcal{B}}d)^i = -\lambda_{\mathcal{B}}^k < 0$$

• Для всех  $j \notin \mathcal{B}$  рассчитаем размер шага проекции:

$$\mu_j = \frac{b_j - a_j^T x_{\mathcal{B}}}{a_j^T d}$$

• Определим новую вершину, которую мы добавим в новый базис:

$$\begin{split} t &= \arg \min_j \{ \mu_j \mid \mu_j > 0 \} \\ \mathcal{B}' &= \mathcal{B} \backslash \{ k \} \cup \{ t \} \\ x_{\mathcal{B}'} &= x_{\mathcal{B}} + \mu_t d = A_{\mathcal{B}'}^{-1} b_{\mathcal{B}'} \end{split}$$





Предположим, что некоторые из коэффициентов  $\lambda_{\mathcal{B}}$  положительны. В этом случае необходимо осуществить переход по ребру многогранника к новой вершине, то есть произвести замену базиса.

- Предположим, что у нас есть базис  $\mathcal{B}$ :  $\lambda_{\mathcal{B}}^T = c^T A_{\mathcal{B}}^{-1}$
- Предположим, что  $\lambda_{\mathcal{B}}^k > 0$ . Мы хотим удалить k из базиса и сформировать новый:

$$\begin{cases} A_{\mathcal{B}\backslash\{k\}}d = 0 \\ a_k^Td = -1 \end{cases} \qquad c^Td = \lambda_{\mathcal{B}}^TA_{\mathcal{B}}d = \sum_{i=1}^n \lambda_{\mathcal{B}}^i(A_{\mathcal{B}}d)^i = -\lambda_{\mathcal{B}}^k < 0$$

• Для всех  $j \notin \mathcal{B}$  рассчитаем размер шага проекции:

$$\mu_j = \frac{b_j - a_j^T x_{\mathcal{B}}}{a_j^T d}$$

• Определим новую вершину, которую мы добавим в новый базис:

$$\begin{split} t &= \arg\min_{j} \{\mu_{j} \mid \mu_{j} > 0\} \\ \mathcal{B}' &= \mathcal{B} \backslash \{k\} \cup \{t\} \\ x_{\mathcal{B}'} &= x_{\mathcal{B}} + \mu_{t} d = A_{\mathcal{B}'}^{-1} b_{\mathcal{B}'} \end{split}$$

• Обратите внимание, что изменение базиса приводит к уменьшению целевой функции:  $c^Tx_{\mathcal{B}'}=c^T(x_{\mathcal{B}}+\mu_td)=c^Tx_{\mathcal{B}}+\mu_tc^Td$ 



Нам нужно решить следующую задачу:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 s.t.  $Ax < b$ 

Предложенный алгоритм требует начального допустимого базиса.



Нам нужно решить следующую задачу:

Начнём с переформулировки задачи:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 
$$\min_{y \in \mathbb{R}^n, z \in \mathbb{R}^n} c^\top (y-z)$$
 s.t.  $Ax \leq b$  s.t.  $Ay - Az \leq b$  
$$y \geq 0, z \geq 0$$

Предложенный алгоритм требует начального допустимого базиса.



Нам нужно решить следующую задачу:

Начнём с переформулировки задачи:

$$\min_{x \in \mathbb{R}^n} c^\top x$$
 
$$\min_{y \in \mathbb{R}^n, z \in \mathbb{R}^n} c^\top (y - z)$$
 s.t.  $Ax \le b$  s.t.  $Ay - Az \le b$  
$$y \ge 0, z \ge 0$$

Предложенный алгоритм требует начального допустимого базиса.

Зная решение задачи (2), можно восстановить решение задачи (1), и наоборот.

$$x=y-z \qquad \Leftrightarrow \qquad y_i=\max(x_i,0), \quad z_i=\max(-x_i,0)$$

Теперь мы попытаемся сформулировать новую задачу линейного программирования, решение которой будет допустимой базисной точкой для Задачи 2. Это означает, что мы сначала запускаем симплекс-метод для задачи Phase-1, а затем запускаем задачу Phase-2 с известным начальным решением. Обратите внимание, что допустимое базисное решение для Phase-1 должно быть легко вычислимо.



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y>0,z>0$$



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y\geq 0,z\geq 0$$
 
$$\sup_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y>0,z>0,\xi>0$$



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y>0,z>0$$

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

• Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).

Доказательство: тривиальная проверка.



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП))  $y\geq 0,z\geq 0$ 

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

• Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).

Доказательство: тривиальная проверка.

• Если оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю), то мы получаем допустимый базис для Фаза-2. **Доказательство:** тривиальная проверка.



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП))  $y\geq 0,z\geq 0$ 

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

• Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).

Доказательство: тривиальная проверка.

• Если оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю), то мы получаем допустимый базис для Фаза-2. **Доказательство:** тривиальная проверка.



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y\geq 0, z\geq 0$$

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

• Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).

Доказательство: тривиальная проверка.

• Если оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю), то мы получаем допустимый базис для Фаза-2. **Доказательство:** тривиальная проверка.

• Теперь мы знаем, что если мы можем решить задачу Фаза-1, то мы либо найдём начальную точку для симплекс-метода в исходном методе (если переменные  $\xi_i$  равны нулю), либо проверим, что исходная задача не имеет допустимого решения (если переменные  $\xi_i$  не равны нулю).



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y\geq 0, z\geq 0$$

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

- Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).
  - Доказательство: тривиальная проверка.
- Если оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю), то мы получаем допустимый базис для Фаза-2. **Доказательство:** тривиальная проверка.

- Теперь мы знаем, что если мы можем решить задачу Фаза-1, то мы либо найдём начальную точку для симплекс-метода в исходном методе (если переменные  $\xi_i$  равны нулю), либо проверим, что исходная задача не имеет допустимого решения (если переменные  $\xi_i$  не равны нулю).
- Но как решить задачу Фаза-1? Она имеет допустимое базисное решение (задача имеет 2n+m переменных, и точка ниже гарантирует, что 2n+m неравенств удовлетворяются как равенства (активны).)



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y\geq 0, z\geq 0$$

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

- Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).
  - Доказательство: тривиальная проверка.
- Если оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю), то мы получаем допустимый базис для Фаза-2. **Доказательство:** тривиальная проверка.

- Теперь мы знаем, что если мы можем решить задачу Фаза-1, то мы либо найдём начальную точку для симплекс-метода в исходном методе (если переменные  $\xi_i$  равны нулю), либо проверим, что исходная задача не имеет допустимого решения (если переменные  $\xi_i$  не равны нулю).
- Но как решить задачу Фаза-1? Она имеет допустимое базисное решение (задача имеет 2n+m переменных, и точка ниже гарантирует, что 2n+m неравенств удовлетворяются как равенства (активны).)



$$\min_{y\in\mathbb{R}^n,z\in\mathbb{R}^n}c^\top(y-z)$$
 s.t.  $Ay-Az\leq b$  (Фаза-2 (главная задача ЛП)) 
$$y>0,z>0$$

$$\min_{\xi\in\mathbb{R}^m,y\in\mathbb{R}^n,z\in\mathbb{R}^n}\sum_{i=1}^m\xi_i$$
 s.t.  $Ay-Az\leq b+\xi$  
$$y\geq 0,z\geq 0,\xi\geq 0$$

- Если Фаза-2 (главная задача ЛП) имеет допустимое решение, то оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю).
  - Доказательство: тривиальная проверка.
- Если оптимум Фаза-1 равен нулю (т.е. все переменные  $\xi_i$  равны нулю), то мы получаем допустимый базис для Фаза-2. **Доказательство:** тривиальная проверка.

- Теперь мы знаем, что если мы можем решить задачу Фаза-1, то мы либо найдём начальную точку для симплекс-метода в исходном методе (если переменные  $\xi_i$  равны нулю), либо проверим, что исходная задача не имеет допустимого решения (если переменные  $\xi_i$  не равны нулю).
- Но как решить задачу Фаза-1? Она имеет допустимое базисное решение (задача имеет 2n+m переменных, и точка ниже гарантирует, что 2n+m неравенств удовлетворяются как равенства (активны).)

```
\ z = 0 \quad y = 0 \quad \xi_i = \max(0, -b_i) \$$
```



## Сходимость симплекс-метода

## Неограниченное бюджетное множество



В этом случае не найдётся ни одного положительного  $\mu_i$ .



## Вырожденность вершин





Случаи вырожденности требуют особого рассмотрения. В отсутствие вырожденности на каждой итерации гарантируется монотонное убывание значения целевой функции.





 Много прикладных задач может быть сформулировано в виде задач линейного программирования.





- Много прикладных задач может быть сформулировано в виде задач линейного программирования.
- Симплекс-метод прост в своей основе, но в худшем случае может работать экспоненциально долго.





- Много прикладных задач может быть сформулировано в виде задач линейного программирования.
- Симплекс-метод прост в своей основе, но в худшем случае может работать экспоненциально долго.
- Метод эллипсоидов Хачияна (1979) стал первым алгоритмом с доказанной полиномиальной сложностью для задач ЛП.
   Однако он обычно работает медленнее, чем симплекс-метод в реальных небольших задачах.





- Много прикладных задач может быть сформулировано в виде задач линейного программирования.
- Симплекс-метод прост в своей основе, но в худшем случае может работать экспоненциально долго.
- Метод эллипсоидов Хачияна (1979) стал первым алгоритмом с доказанной полиномиальной сложностью для задач ЛП.
   Однако он обычно работает медленнее, чем симплекс-метод в реальных небольших задачах.
- Основной прорыв метод Кармаркара (1984) для решения задач ЛП с использованием метода внутренней точки.





- Много прикладных задач может быть сформулировано в виде задач линейного программирования.
- Симплекс-метод прост в своей основе, но в худшем случае может работать экспоненциально долго.
- Метод эллипсоидов Хачияна (1979) стал первым алгоритмом с доказанной полиномиальной сложностью для задач ЛП.
   Однако он обычно работает медленнее, чем симплекс-метод в реальных небольших задачах.
- Основной прорыв метод Кармаркара (1984) для решения задач ЛП с использованием метода внутренней точки.
- Методы внутренней точки являются последним словом в этой области. Тем не менее, для типовых задач ЛП качественные реализации симплекс-метода и методов внутренней точки показывают схожую производительность.

## Пример Klee Minty



Так как число вершин конечно, сходимость алгоритма гарантирована (за исключением вырожденных случаев, которые здесь не рассматриваются). Тем не менее, сходимость может быть экспоненциально медленной из-за потенциально большого числа вершин. Существует пример, в котором симплекс-метод вынужден пройти через все вершины многогранника.

В следующей задаче симплекс-метод должен проверить  $2^n-1$  вершин с  $x_0=0.$ 

$$\begin{aligned} \max_{x \in \mathbb{R}^n} 2^{n-1}x_1 + 2^{n-2}x_2 + \dots + 2x_{n-1} + x_n \\ \text{s.t. } x_1 &\leq 5 \\ 4x_1 + x_2 &\leq 25 \\ 8x_1 + 4x_2 + x_3 &\leq 125 \\ \dots \\ 2^nx_1 + 2^{n-1}x_2 + 2^{n-2}x_3 + \dots + x_n &\leq 5^n \\ x &> 0 \end{aligned}$$





# Смешанное целочисленное программирование (МІР)



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \, 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in \{0, 1\} \quad \forall i \end{split} \tag{3}$$



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \, 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in \{0, 1\} \quad \forall i \end{split} \tag{3}$$

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \, 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in \{0, 1\} \quad \forall i \end{split} \tag{3}$$

Оптимальное решение

$$x_1=0, x_2=x_3=x_4=1, \text{ if } z=21.$$

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t. } 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \, 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \end{split} \tag{3}$$

Оптимальное решение

$$x_1=0, x_2=x_3=x_4=1,$$
 и  $z=21.$ 

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

$$x_1=x_2=1, x_3=0.5, x_4=0, \ {\rm id}\ z=22.$$



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \end{split} \tag{3}$$

Оптимальное решение

$$x_1=0, x_2=x_3=x_4=1,$$
 и  $z=21.$ 

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

Оптимальное решение

$$x_1=x_2=1, x_3=0.5, x_4=0, \text{ if } z=22.$$

• Округление  $x_3=0$ : даёт z=19.



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in \{0, 1\} \quad \forall i \end{split} \tag{3}$$

Оптимальное решение

$$x_1=0, x_2=x_3=x_4=1, \text{ if } z=21.$$

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

$$x_1=x_2=1, x_3=0.5, x_4=0, \ {\rm id}\ z=22.$$

- Округление  $x_3=0$ : даёт z=19.
- Округление  $x_3 = 1$ : недопустимо.



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in \{0, 1\} \quad \forall i \end{split} \tag{3}$$

Оптимальное решение

$$x_1=0, x_2=x_3=x_4=1, \text{ if } z=21.$$

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

$$x_1=x_2=1, x_3=0.5, x_4=0, \text{ if } z=22.$$

- Округление  $x_3=0$ : даёт z=19.
- Округление  $x_3 = 1$ : недопустимо.



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \end{split} \tag{3}$$

Оптимальное решение

$$x_1 = 0, x_2 = x_3 = x_4 = 1, \text{ if } z = 21.$$

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

$$x_1=x_2=1, x_3=0.5, x_4=0, \$$
и  $z=22.$ 

- Округление  $x_3 = 0$ : даёт z = 19.
- Округление  $x_3 = 1$ : недопустимо.

- МІР намного сложнее, чем ЛП
- Наивное округление решения, полученного для ЛП-релаксации исходной задачи МІР, может привести к недопустимому или неоптимальному решению.



Рассмотрим следующую задачу смешанного целочисленного программирования (MIP):

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \end{split} \tag{3}$$

Оптимальное решение

$$x_1 = 0, x_2 = x_3 = x_4 = 1,$$
 и  $z = 21.$ 

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t. } 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

$$x_1=x_2=1, x_3=0.5, x_4=0, \ {\rm id}\ z=22.$$

- Округление  $x_3 = 0$ : даёт z = 19.
- Округление  $x_3 = 1$ : недопустимо.

- МІР намного сложнее, чем ЛП
- Наивное округление решения, полученного для ЛП-релаксации исходной задачи МІР, может привести к недопустимому или неоптимальному решению.
- Общая задача МІР является NP-трудной задачей.



Рассмотрим следующую задачу смешанного целочисленного программирования (МІР):

$$z=8x_1+11x_2+6x_3+4x_4\to \max_{x_1,x_2,x_3,x_4}$$
 s.t.  $5x_1+7x_2+4x_3+3x_4\leq 14$  (3) Оптимальное решение 
$$x_i\in\{0,1\}\quad\forall i$$

$$x_1 = 0, x_2 = x_3 = x_4 = 1,$$
 и  $z = 21.$ 

Упростим её до:

$$\begin{split} z &= 8x_1 + 11x_2 + 6x_3 + 4x_4 \to \max_{x_1, x_2, x_3, x_4} \\ \text{s.t.} \ 5x_1 + 7x_2 + 4x_3 + 3x_4 &\leq 14 \\ x_i &\in [0, 1] \quad \forall i \end{split} \tag{4}$$

Оптимальное решение

$$x_1=x_2=1, x_3=0.5, x_4=0, \ {\rm id}\ z=22.$$

- Округление  $x_3 = 0$ : даёт z = 19.
- Округление  $x_2 = 1$ : недопустимо.

#### МІР намного сложнее, чем ЛП

- Наивное округление решения, полученного для ЛП-релаксации исходной задачи МІР, может привести к недопустимому или неоптимальному решению.
- Общая задача MIP является NP-трудной задачей.
- Однако, если матрица коэффициентов МІР является полностью унимодулярной матрицей, то она может быть решена за полиномиальное время.

## Непредсказуемая сложность МІР



• Трудно предсказать, что будет решено быстро, а что потребует много времени





## Непредсказуемая сложность МІР



- Трудно предсказать, что будет решено быстро, а что потребует много времени
- **Ø**Датасет



## Непредсказуемая сложность МІР



- Трудно предсказать, что будет решено быстро, а что потребует много времени
- • Датасет
- 🕏 Код



## Прогресс аппаратного vs программного обеспечения



Что бы вы выбрали, если предположить, что вопрос поставлен корректно (вы можете скомпилировать ПО для любого оборудования, и задача в обоих случаях одна и та же)? Мы рассмотрим период с 1992 по 2023 год.





## Прогресс аппаратного vs программного обеспечения



Что бы вы выбрали, если предположить, что вопрос поставлен корректно (вы можете скомпилировать ПО для любого оборудования, и задача в обоих случаях одна и та же)? Мы рассмотрим период с 1992 по 2023 год.



 $\approx 1.664.510$  х ускорение

Закон Мура утверждает, что вычислительная мощность удваивается каждые 18 месяцев.



 $\approx 2.349.000$  х ускорение

Р. Бикси провёл масштабный эксперимент по сравнению производительности всех версий CPLEX с 1992 по 2007 год и измерил общий прогресс ПО (29000 раз), позже (в 2009 году) он стал одним из основателей Gurobi Optimization, которое дало дополнительное  $\approx 81$  ускорение на MIP.

## Прогресс аппаратного vs программного обеспечения



Что бы вы выбрали, если предположить, что вопрос поставлен корректно (вы можете скомпилировать ПО для любого оборудования, и задача в обоих случаях одна и та же)? Мы рассмотрим период с 1992 по 2023 год.



pprox 1.664.510 х ускорение

Закон Мура утверждает, что вычислительная мощность удваивается каждые 18 месяцев.



 $\approx 2.349.000$  х ускорение

Р. Бикси провёл масштабный эксперимент по сравнению производительности всех версий CPLEX с 1992 по 2007 год и измерил общий прогресс ПО (29000 раз), позже (в 2009 году) он стал одним из основателей Gurobi Optimization, которое дало дополнительное  $\approx 81$  ускорение на MIP.

Оказывается, что если вам нужно решить MIP, лучше использовать старый компьютер и современные методы, чем наоборот, самый новый компьютер и методы начала 1990-х годов!<sup>2</sup>

#### Источники



• Теория оптимизации (МАТН4230) курс @ СИНК, профессор Тейюн Цень