CSC 225 Practice Midterm Exam 1B

Name:	(please print clearly!)
UVic ID number:	
Signature:	
Exam duration: 50 minutes	
Instructor: Anthony Estey	

Students must check the number of pages in this examination paper before beginning to write, and report any discrepancy immediately.

- We will not answer questions during the exam. If you feel there is an error or ambiguity, write your assumption and answer the question based on that assumption.
- Answer all questions on this exam paper.
- The exam is closed book. No books or notes are permitted.

No electronic devices of any type are permitted.

- The marks assigned to each question and to each part of a question are printed within brackets. Partial marks are available.
- There are eight (8) pages in this document, including this cover page.
- Page 8 is left blank for scratch work. If you write an answer on that page, clearly indicate this for the grader under the corresponding question.
- Clearly indicate only one answer to be graded. Questions with more than one answer will be given a **zero grade**.
- It is strongly recommended that you read the entire exam through from beginning to end before beginning to answer the questions.
- Please have your ID card available on the desk.

Part 1: Discrete Math (10 marks)

1)	Ali rolls a set of six-sided dice that are indistinguishable from one another.				
	Ali rolls 5 twos, 6 threes, and 7 sixes. Answer the following questions about the ways can arrange the dice in a line on a table. Assume the dice are never re-rolled.				
	You do not need to show work, but incorrect answers may receive part marks. You also do not need to calculate answers, and can leave them in factorial and/or 'n choose r' form. For example: $2! * C(3,2)$				
	a) How many arrangements of the dice are there?				
	b) How many arrangements are there with all of the threes together?				
	c) How many arrangements can Ali arrange the dice in ascending order (from lowest to highest number rolled)?				
	d) How many ways could Ali arrange the dice in ascending order if Ali could differentiate between the dice that rolled the same number?				

2) Determine the number of times the Print("first") and Print("second") statements execute relative to input size n.

```
Algorithm RuntimeAnalysis(n)
for i \leftarrow 1 to n do
for j \leftarrow 1 to 3i do
Print("first")
end
for j \leftarrow 1 to n do
Print("second")
end
end
```

3) For this question we will only count **assignment statements**. Count a **return** statement as **one** assignment statement.

Write the recurrence equation for the following algorithm:

```
Algorithm recursiveFn(n):

if n \le 1 then

base \leftarrow 3

return base

else

result1 \leftarrow recursiveFn(n-1)

result2 \leftarrow recursiveFn(n-1)

return result1 + result2

end
```

4) Given the following recurrence equation:

$$T(n) = \begin{cases} 8, & n = 1 \\ T(n-1) + 4, & n \ge 2 \end{cases}$$

a) What is T(4)?

b) Solve the recurrence equation by repeated substitution using a top-down approach. Show all work.

5) Provide constants c and n_0 to show that $5n^3 - 17n^2 + 4n - 8$ is Big-Oh(n^3). Show all work.

6) Provide constants c and n0 to show that $(13n^3 - 4)/3n$ is Big-Omega (n^2) . Show all work.

7)	Assume v	vou had	to prove	the	following	by	induction:

For all
$$n \ge 1$$
, $1(1!) + 2(2!) + ... + n(n!) = (n+1)! - 1$.

Write the Base Case and Inductive Hypothesis below to begin the proof by induction.

Base Case (when n = 1):

Inductive Hypothesis:

8) This term we have explored a number of problems where we had to determine the number of integer solutions for a sum of terms expression. For example:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 18$$
, where $x_i \ge 0$, for $1 \le i \le 5$.

For this question, you will need to need to finish writing a sum of terms expression based on the following criteria:

Ali wants to give 9 candies to 4 friends: Sam, Lee, Juan, and Tia. Ali promised Sam and Lee 2 candies each. Juan has 3 candies of his own that he said Ali could distribute in addition to the original 9.

There are multiple valid ways we could write this as a sum of integers expression to satisfy the conditions stated above (about how Ali will distribute the candies). Fill in the blanks to finish the sum of terms expression.

$$x_1 + x_2 + x_3 + x_4 =$$

where $x_i \ge 0$, for $1 \le i \le 4$.

Alternatively, this could be written as:

$$x_1 + x_2 + x_3 + x_4 = 9$$

where $x_1 \ge \underline{\hspace{1cm}} x_2 \ge \underline{\hspace{1cm}} x_3 \ge \underline{\hspace{1cm}} x_4 \ge \underline{\hspace{1cm}}$

... Left blank for scratch work...

END OF EXAM

Question	Value	Mark
Question 1	8	
Question 2	6	
Question 3	4	
Question 4	8	
Question 5	3	
Question 6	3	
Question 7	2	
Question 8	6	
Total	40	