NAIL062 V&P Logika: 7. cvičení

Témata: Rezoluce ve výrokové logice. Aplikace věty o kompaktnosti. Hilbertův kalkulus.

Příklad 1. Označme jako φ výrok $\neg(p \lor q) \to (\neg p \land \neg q)$. Ukažte, že φ je tautologie:

- (a) Převeďte $\neg \varphi$ do CNF a zapište výsledný výrok jako formuli S v množinové reprezentaci.
- (b) Najděte rezoluční zamítnutí S.

Příklad 2. Najděte rezoluční zamítnutí následujících výroků:

(a)
$$\neg(((p \to q) \to \neg q) \to \neg q)$$

(b)
$$(p \leftrightarrow (q \rightarrow r)) \land ((p \leftrightarrow q) \land (p \leftrightarrow \neg r))$$

Příklad 3. Dokažte rezolucí, že v teorii $T=\{\neg p\to \neg q, \neg q\to \neg r, (r\to p)\to s\}$ platí výrok s.

Příklad 4. Nechť prvovýroky r, s, t reprezentují (po řadě), že " $Radka / Sára / Tom je ve škole" a označme <math>\mathbb{P} = \{r, s, t\}$. Víme, že

- Není-li Tom ve škole, není tam ani Sára.
- Radka bez Sáry do školy nechodí.
- Není-li Radka ve škole, je tam Tom.
- (a) Formalizujte naše znalosti jako teorii T v jazvce \mathbb{P} .
- (b) Rezoluční metodou dokažte, že z T vyplývá, že Tom je ve škole: Napište formuli S v množinové reprezentaci, která je nesplnitelná, právě když to platí, a najděte rezoluční zamítnutí S. Nakreslete rezoluční strom.
- (c) Určete množinu modelů teorie T.

Příklad 5. Máme k dispozici MgO, H₂, O₂, a C, a můžeme provádět následující reakce:

- $MgO + H_2 \rightarrow Mg + H_2O$
- $C + O_2 \rightarrow CO_2$
- $CO_2 + H_2O \rightarrow H_2CO_3$
- (a) Reprezentujte naše možnosti výrokem a převeďte ho do množinové reprezentace.

(b) Pomocí rezoluce dokažte, že můžeme získat H₂CO₃. Lze najít LI-důkaz téhož?

Příklad 6. Najděte rezoluční uzávěry $\mathcal{R}(S)$ pro následující výroky S:

- (a) $\{\{p,q\},\{p,\neg q\},\{\neg p,\neg q\}\}$
- (b) $\{\{p, \neg q, r\}, \{q, r\}, \{\neg p, r\}, \{q, \neg r\}, \{\neg q\}\}\$ (uzávěr je poměrně velký, vymyslete systematický postup a vygenerujte jen část)

Příklad 7. Zkonstruujte *strom dosazení* pro následující formuli. Na základě tohoto stromu sestrojte rezoluční zamítnutí, dle postupu z důkazu Věty o úplnosti rezoluce.

$$S = \{ \{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\} \}$$

Příklad 8. Dokažte podrobně, že je-li $S = \{C_1, C_2\}$ splnitelná a C je rezolventa C_1 a C_2 , potom je i C splnitelná.

Příklad 9. Dokažte pomocí věty o kompaktnosti a variant tvrzení pro konečné objekty:

- (a) Každý spočetný rovinný graf je obarvitelný čtyřmi barvami.
- (b) Každé spočetné částečné uspořádání lze rozšířit na úplné (lineární) uspořádání.

Příklad 10. V Hilbertově kalkulu dokažte pro libovolné formule následující vztahy:

- (a) $\{\neg p\} \vdash_H p \to q$
- (b) $\{\neg(\neg p)\} \vdash_H p$
- (c) $\{p \to q, q \to r\} \vdash_H p \to r$

Příklad 11. Dokažte korektnost Hilbertova kalkulu:

- Dokažte, že logické axiomy jsou tautologie.
- Dokažte, že modus ponens je korektní, tj. když $T \models \varphi$ a $T \models \varphi \rightarrow \psi$, tak $T \models \psi$.
- Ukažte, že $T \models_H \varphi$ implikuje $T \models \varphi$.

Příklad 12. Vyslovte a dokažte větu o dedukci pro Hilbertův kalkul.