

The Enlighten your Research (EYRA) Benchmark Platform

netherlands Science center SURF

Teams

Register

Download **Training Datasets**

Download **Test Datasets**

Ranking algorithms and show online

3 4 5	Team name CU_DL CU_DL2	Submission name 3D Deep Learning: younet13	Date	Sam Scores	Sequences used	Speed
3 4 5		3D Deep Learning voyant?				
4 5	CU_DL2		16-06-16	39	T1; T1_IR; FLAIR	~2 min
4 5		3D Deep Learning: vocnet2	28-06-16	39	T1: T1_IR: FLAIR	~2 mir
5	HDGRU	Hults-Dimensional Gated Recurrent Units ³	27-07-16		T1: T1_IR: FLAIR	~2 mir
	PyraHiD-LSTH2	NOCC with rounds ³	23-05-16		T1; T1-IR; FLAIR	~2 mir
6	PBI/LHB freiburg	U-Net (3D)	01-05-16		T1-1mm;Y1-1R;F	~2 mir
	IDSTA	PyraNiD-LSTM	05-06-15		T1: T1_IR: FLAIR	~2 mir
	STH	Hybrid ANN-based Auto-context method ²	03-06-16		T1: T1-IR: FLAIR	~ 5 mi
8	151-Neonatology	Hulti-stage voxel classification	31-05-14	87		~1.5 hox
9	UNC-IDEA	LINKS:Learning-based multi-source integration			T1: T1_IR; FLAIR	+3 mir
10	MNA82	Random Forests	21-02-14	109	T1: T1_IR: FLAIR	~25 mi
11	KSON GHHF	ASeTs: HAP-Based with Hanifold learning	13-05-14	112	T1: T1_IR: FLAIR	~23 mi
	vicorob UdG T1+F	MSSEG using T1 + FLAIR (T1-IR skull)	14-01-16		T1: IR: FLASR	~2 mir
	B1GR2	Hulti-Feature SVH Classification	26-09-13		T1: T1_IR; FLAIR	~35 m
	V8H12	VBH12_r738 with WMHC=2	07-10-15	129	T1	~6 mir
	Uoft . Biotmaging	HAP-Based Framework	26-09-13		71	~6 sec
	vicoreb UdG T1	MSSEG using only T1 (T1-IR skull)	21-01-16		T1: IR	~2 mir
	CHIA	Hodel-guided Level Sets and Skeletons	26-09-13	161	T1: FLAIR	~3 mir
	UB VPHI, Med	Holti-Atlas with Holtiway Cut	26-09-13		T1: T1_IR: FLAIR	~30 mi
19	Herpi	Segmentation using Ensemble Trees	26-09-13	173	T1: FLAIR	< 2 mi
20	SZ_QMZ	Atlan-based segmentation and AdaBoost	28-07-14	180	T1: T1-IR: FLAIR	~45 m
21	higr neuro	Automatically Trained kNN Classifier	26-09-13	181	T1: FLAIR	r+2 hour

Compared to **Ground Truth**

Submit Results

Train Algorithm and Segment Test Data

Leaderboard MRBrainS

Results

When teams **submit** their segmentation results, the evaluation results will be sent to the team contact person by e-mail and will be listed below.

Rank	Team name	Submission name	Date	Sum Scores	Sequences used	Speed	Doc
1	XMU_SmartDSP2	3D Spatial Weighted U-Net for Multi-modality Brain MRI Segmentation	29-08-18	32	T1; T1_IR; FLAIR	~10 min	FOT
2	TailHot	Multi-modality aggregation network ³	13-04-18	57	T1; T1_IR; FLAIR	~13 sec	FOF
3	WTA2	3D Cascade convolutional architecture - Method 2 ²	23-05-18	68	T1; T1_IR; FLAIR	~2 min	FOF
4	XMU SmartDSP	3D CNN with a Cross-modality Channel Attention Scheme ³	17-08-18	76	T1; T1_IR; FLAIR	~10 min	POF
5	XLab	3D Fully CNN with Multi-Modality Feature Fusion ³	10-08-18	85	T1; T1_IR; FLAIR	~2 min	FOF
6	LIVIA_ETS	HyperDenseNet ²	06-02-18	91	T1; T1_IR; FLAIR	~4 min	FOT
7	CU_DL2	3D Deep Learning; voxnet2	28-06-16	102	T1; T1_IR; FLAIR	~2 min	FOF
8	CU_DL	3D Deep Learning; voxnet1 ³	16-06-16	109	T1; T1_IR; FLAIR	~2 min	FOF
9	LRDE	Fully Convolutional Network	20-12-16	116	T1	~2 sec	FOF
10	MSL-SKKU	Deep Convolutional Neural Network	19-06-17	121	T1; T1-IR; FLAIR	~1.5 min	FOF
11	MDGRU	Multi-Dimensional Gated Recurrent Units ³	27-07-16	146	T1; T1_IR; FLAIR	~2 min	Ø

Currently 60 Algorithms

- NeoBrainS Challenge on Brain Tissue Segmentation in MR
 Scans of Neonates: http://neobrains12.isi.uu.nl
- MRBrainS Challenge on Brain Tissue Segmentation in MR Scans of Adults: http://mrbrains13.isi.uu.nl

Organizers: Adriënne M. Mendrik, Ivana Išgum, Max. A. Viergever

Advisory board and panel discussion: Christian Barillot, Guido Gerig, Ali Gholipour, Koen van Leemput, Wiro Niessen, Sebastien Ourselin, Daniel Rueckert, Julia Schnabel, Martin Styner, and Simon Warfield

Leaderboard MRBrainS 2015 (NEATBrainS workshop)

Results

When teams **submit** their segmentation results, the evaluation results will be sent to the team contact person by e-mail and will be listed below.

<u>Rank</u>	Team name	Submission name	Date	Sum Scores	Sequences used	Speed	Do
1	UNC-IDEA	LINKS:Learning-based multi-source integration	9/2/2015	26	T1; T1_IR; FLAIR	~3 min	
2	ISI-Neonatology	Multi-stage voxel classification	31-05-14	29	T1	~8 hours	7
3	MNAB2	Random Forests	21-02-14	38	T1; T1_IR; FLAIR	~25 min	À
4	KSOM GHMF	ASeTs: MAP-Based with Manifold learning	13-05-14	44	T1; T1_IR; FLAIR	~23 min	, A
5	BIGR2	Multi-Feature SVM Classification	26-09-13	57	T1; T1_IR; FLAIR	~35 min	À
6	UofL BioImaging	MAP-Based Framework	26-09-13	63	T1	~6 sec	2
7	CMIV	Model-guided Level Sets and Skeletons	26-09-13	76	T1; FLAIR	~3 min	2
8	UB VPML Med	Multi-Atlas with Multiway Cut	26-09-13	83	T1; T1_IR; FLAIR	~30 min	2
9	S2_QM2	Atlas-based segmentation and AdaBoost	28-07-14	87	T1; T1-IR; FLAIR	~45 min	2
10	Narsil	Segmentation using Ensemble Trees	26-09-13	88	T1; FLAIR	< 2 min	2
11	bigr_neuro	Automatically Trained kNN Classifier	26-09-13	89	T1; FLAIR	~2 hours	2
12	Robarts	Multi-Atlas with Hierarchical Max-Flow	26-09-13	92	T1-1mm; T1-IR	~16 min	2
13	MNAB	Random Decision Forests	26-09-13	106	T1; T1-IR; FLAIR	~15 min	2
14	Jedi Mind Meld	Automated Walks using Machine Learning	26-09-13	127	T1; T1-IR; FLAIR	~27 sec	1000 A
15	LUH-TNT	Level-sets with dictionary learning	27-10-14	129	T1	< 1 min	2
16	S2_QM	Bayesian-based Adaptive Mean-Shift	26-09-13	138	T1; T1-IR; FLAIR	~1.5 hours	7
17	mlmi2014ss	AdaBoostM2	28-07-14	138	T1; T1-IR; FLAIR	~5 min	2
18	TSTR UniRe	Decision Forests with snatial regularization	4/6/2014	149	T1. T1 IR. FLAIR	~3 min	1000

Wouldn't it be great if we would have a platform that would present an overview of:

- the performance of algorithms on various challenges
- re-use data and ground truth from previous challenges in new challenges to answer new research questions

Challenges@Kitware

The best software in the world is useless without the right data. Kitware's Data and Analytics team unites data and software from world-class researchers and developers through data-driven challenges.

Stephen Aylward Senior Director of Strategic Initiatives

Enlighten Your Research (EYRA) Benchmark Platform

Benchmarks

Domain Researchers

- Research Question
- Data
- Ground Truth
- Evaluation metrics

Overview
Algorithm Performance

Performance Across Benchmarks

Benchmark Platform

Algorithms

Algorithm Developers

netherlands

Science center

Challenges@Kitware

The best software in the world is useless without the right data. Kitware's Data and Analytics team unites data and software from world-class researchers and developers through data-driven challenges.

Grand Challenges in Biomedical Image Analysis

Sign in to create a new challenge

In 2012 a team with members from five groups in medical image analysis decided to build a platform to easily set up websites for challenges in biomedical images analysis. We named our group the Consortium for Open Medical Image Computing and COMIC is the name for our platform. COMIC is developed in python and django, is open source, and hosted on github where you can download it and start your own COMIC server.

Sicas Medical Image Repository (

EYRA benchmark platform

- Easy to set up a research benchmark
- Cross-fertilization between scientific disciplines
- Overview of benchmarks per scientific discipline
- SURF infrastructure
- Insight into algorithm performance for a research problem, beyond the leaderboard.

Investigating collaboration with...

- Comic (grand-challenge.org)
 - Prof. dr. Bram van Ginneken (Radboud UMC, Nijmegen)
 - James Meakin (Lead Research Software Engineering team)
- OpenML
 - dr. Joaquin Vanschoren (TU Eindhoven)

Humanities & Social Sciences

Environment & Sustainability

Life Science & eHealth

Use Case Social Sciences & Humanities

- Maria Eskevich (Central Office Coordinator CLARIN ERIC), digital collections of parliament data (open), speech recognition
- Melvin Wevers (Digital Humanities Lab, KNAW Humanities Cluster), in touch with KB (National Library) investigating several options for benchmarks using KB data

Humanities & Social Sciences

Environment & Sustainability

Life Science & eHealth

Use Case Environment & Sustainability

- Dr. Mike Lees (UvA), dr. Monika Kuffer (University of Twente)
- Slum Detection on Satellite Images

Humanities & Social Sciences

Environment & Sustainability

Life Science & eHealth

Use Case Life Sciences & eHealth

- dr. Marius Staring (LUMC), dr. Stefan Klein (Erasmus MC), Kasper Marstal (Erasmus MC)
- Medical Image Continuous Registration Challenge: https://continuousregistration.grand-challenge.org/

Humanities & Social Sciences

Environment & Sustainability

Life Science & eHealth

Use Case Physics & Beyond

- dr. Joeri v. Leeuwen (ASTRON), dr. Liam Connor (UvA), dr. Alessio Sclocco (eScience center)
- Fast Radio Burst detection
- Several software packages, but never compared on the same data. Simulated data will be used.

Fast Radio Bursts are brief but powerful and as-yet-unexplained bursts of radio energy originating from deep space. Image via Jingchuan Yu/Beijing Planetarium, NRAO.

Algorithm Development

SURF ResearchCloud

Mentimeter questions for discussion

- Have you ever used a benchmarking platform? And if so, which one?
- What features would you be interested in having in a benchmarking platform?
- Do you think other scientific disciplines could benefit from benchmarks in your field? And if so, how?
- To give an overview of benchmarks per scientific discipline, EYRA would like to provide a community space. Which features should this space have?
- Would you be interested in a collaborative environment for developing algorithms, like SURF ResearchCloud?
- What are must-have features for a collaborative environment like SURF ResearchCloud?

