MATH 361 - Week 1 Notes

Jasraj Sandhu January 2024

Review

Definition (Vector Space)

A vector space V is a set, together with two operations (addition and scalar multiplication) satisfying for all vectors $u, v, w \in V$ and scalars α, β ,

$$(1) v+w=w+v$$

(2)
$$v + (u + w) = (v + u) + w$$

(3)
$$\exists 0 \in V \text{ such that } v + 0 = v \text{ for all } v$$

(4) For all
$$v$$
, there exists $-v$ such that $v + (-v) = 0$

$$(5) \ 1 \cdot v = v$$

(6)
$$(\alpha\beta) \cdot v = \alpha \cdot (\beta \cdot v)$$

(7)
$$\alpha \cdot (v + w) = \alpha \cdot v + \alpha \cdot w$$

(8)
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$$

- Properties (1) (4) suggest that V is an abelian group under +. (An abelian group is a group in which the law of composition is commutative).
- Note: We will usually write αv instead of $\alpha \cdot v$.
- Here, the scalars belong to a field \mathbb{F} (almost always \mathbb{C} , sometimes \mathbb{R} , also $\mathbb{Z} \pmod{p}$ where p is a prime, \mathbb{Q} , p-adics).
- We prefer \mathbb{C} because of the fundamental theorem of algebra:
 - Every complex polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ of degree n has n roots in \mathbb{C} . \mathbb{R} is not algebraically complete since e.g. $x^2 + 1$ has no real roots.
- One important way this comes up is **eigenvalues**. The real matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ has characteristic polynomial $z^2 + 1$, which has no real roots. Recall that the characteristic polynomial of an $n \times n$ matrix A is defined as $C_A(\lambda) = \det(\lambda I_n A)$.
- Over \mathbb{C} , any $n \times n$ matrix has n complex eigenvalues (possibly repeated).

- If V and W are both vector spaces, a map $T:V\to W$ is said to be linear if
 - (i) $T(v_1 + v_2) = Tv_1 + Tv_2$
 - (ii) $T(\alpha v) = \alpha T v$

We typically write Tv instead of T(v).

- Aside: Vector spaces form a **category** and the linear maps are the **morphisms** in the category.
- ullet We associate two important spaces to each T:
 - (1) nullspace/kernel

null
$$T=\ker T=\{v\in V: Tv=0\}$$
 ,

which is a subspace of V (the domain).

(2) image/range

$$\operatorname{Im} T = \operatorname{ran} T = \{ Tv : v \in V \}$$

which is a subspace of W (the codomain).

• We use **linear map**, **linear transformation**, and **operator** interchangeably.

1. Let $V=\{f:[0,1]\to\mathbb{C}:f \text{ is differentiable and }f' \text{ is continuous on }[0,1]\}$ and $W=\{g:[0,1]\to\mathbb{C}:g \text{ is continuous}\}.$ Define $T:V\to W$ by $Tf:=f'\in W$ (here f is in V). Then

$$\begin{split} \ker T &= \{v \in V : Tv = 0\} \\ &= \{f : f' \equiv 0\} \\ &= \{f : f(x) = c \text{ for all } x, \text{ where } c \text{ is some constant}\} \end{split}$$

and

$$\begin{aligned} \operatorname{ran} \, T &= \{ Tv : v \in V \} \\ &= W \ . \end{aligned}$$

- \bullet All notions from MATH 311 concerning $\mathbb R\text{-vector}$ spaces transfer to $\mathbb C\text{-vector}$ spaces:
 - independence/span
 - subspaces and the subspace test
 - basis and dimension
 - rank (= dimension of range/image): Note that the image space of a matrix is the same as the column space of a matrix. Furthermore, for any matrix A, rank(A) = dim(Col(A)) = dim(Row(A)).
 - nullity (= dimension of kernel/nullspace)
 - rank-nullity

Rank-Nullity Theorem

Suppose V and W are \mathbb{C} -vector spaces with $\dim V = n, \dim W = m,$ and a linear map $T: V \to W$. Then

$$n = \operatorname{rank} T + \operatorname{nullity} T$$
.

• Note: Not all our vector spaces are finite dimensional. For example, continuous functions on [0,1] are infinite dimensional. That is, there is no finite list $\{f_1,\ldots,f_n\}$ of continuous functions so that any continuous function f can be expressed as a linear combination of the f_i .

- If V and W are both finite dimensional, then any linear map $T:V\to W$ can be expressed with a matrix with respect to bases selected for V and W.
 - Let $\{b_1, \ldots, b_n\}$ be a basis for V and $\{c_1, \ldots, c_m\}$ be a basis for W. Note that dim V = n and dim W = m.
 - Find scalars $a_{11}, a_{21}, \ldots, a_{m1}$ so that

$$Tb_1 = a_{11}c_1 + a_{21}c_2 + \ldots + a_{m1}c_m$$
,

where $Tb_1 \in W$. Continue for b_2, \ldots, b_n by finding a_{ij} so that

$$Tb_j = a_{1j}c_1 + a_{2j}c_2 + \ldots + a_{mj}c_m$$

for $j=2,\ldots,n$.

- Then $[T] = [a_{ij}]_{\substack{i=1,\dots,m\\j=1,\dots,n}}$ is the $m\times n$ matrix representation of T with respect to these bases.
- For us, we "confuse" the notions of a linear map and any of its matrix representations by assuming that a linear map between finite dimensional spaces is a matrix acting on \mathbb{C} where $n = \dim V$.

- Fact: If dim V=n, then V is isomorphic (as a \mathbb{C} -vector space) to \mathbb{C}^n .

 That is, there is an injective (ker $T=\{\vec{0}_V\}$) and surjective (ran $T=\mathbb{C}^n$) linear map $T:V\to\mathbb{C}^n$.
- To find T, let $\{b_1, \ldots, b_n\}$ be a basis for V and define

$$T(c_1b_1 + \ldots + c_nb_n) = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$
.

 \bullet We can show that T is an isomorphism.

Proof. First, we show that T is injective; that is, $\ker T = \{\vec{0}_V\}$. Suppose $\vec{x} \in \ker T$. We know that

$$\ker T = \{ \vec{v} \in V \mid T\vec{v} = \vec{0}_{\mathbb{C}^n} \} .$$

Since $\vec{x} \in \ker T$, this means that $T\vec{x} = \vec{0}_{\mathbb{C}^n}$.

Spectral Theory

- Suppose dim V = n and $T: V \to V$ is linear (i.e. T is represented as an $n \times n$ matrix). $\lambda \in \mathbb{C}$ is an **eigenvalue** for T if there is a non-zero $\vec{x} \in V$ such that $T\vec{x} = \lambda \vec{x}$. Here, \vec{x} is an **eigenvector** associated to λ .
- We call $\ker(T \lambda I)$ the **eigenspace** for an eigenvalue λ . Every non-zero vector $\vec{x} \in \ker(T \lambda I)$ is an eigenvector since $(T \lambda I)\vec{x} = 0$ iff $T\vec{x} = \lambda I\vec{x} = \lambda \vec{x}$.
- Eigenvectors span the invariant lines (through the origin) for T.

• We find eigenvalues by computing the roots λ of the **characteristic** equation $C_A(z) = \det(A - Iz)$ (or $\det(Iz - A)$) and then compute the eigenspace by solving the system

$$(A - \lambda I)\vec{x} = \vec{0} .$$

Note here that A is any matrix representation for T.

• We saw last time that the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ has no **real** eigenvalues, but it does have **complex** eigenvalues $\lambda = \pm i$.

• Since $C_A(z)$ is a degree n polynomial, the fundamental theorem of algebra guarantees that it has n roots in \mathbb{C} . Therefore, we have the following theorem.

Theorem

Each linear map $T:V\to V$ has exactly dim V complex eigenvalues (including repetition).

Definition

A linear map $T:V\to V$ with $\dim V=n$ is called **diagonal** if there is a basis $\{\vec{b}_1,\ldots,\vec{b}_n\}$ for V and $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ with

$$T\vec{b}_i = \lambda_i \vec{b}_i$$

for all j = 1, ..., n. That is, if we take the matrix representation for A with respect to the basis $\{\vec{b}_1, ..., \vec{b}_n\}$, we have

$$\operatorname{diag}(\lambda_1, \dots, \lambda_n) := \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} = A.$$

Note that necessarily $\{\vec{b}_1, \ldots, \vec{b}_n\}$ is a basis of **eigenvectors** for V.

- For an actual $n \times n$ complex matrix, we reserve the use of the word "diagonal" if the matrix is already expressed as a diagonal $A = \text{diag}\{\lambda_1, \ldots, \lambda_n\}$.
- We say that an $n \times n$ matrix A is **diagonalizable** if there is a basis of \mathbb{C}^n consisting of eigenvalues for A.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if there is an invertible S with

$$S^{-1}AS = D$$

is a diagonal matrix

Proof. First suppose $\exists S$ so that $S^{-1}AS = D$ is diagonal. Write

$$D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$

and

$$S = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \dots & \vec{b}_n \end{bmatrix}$$
.

Since S is invertible, $\{\vec{b}_1,\ldots,\vec{b}_n\}$ is a basis for \mathbb{C}^n . Since $S^{-1}AS=D$, we have that AS=SD. That is,

$$AS = SD$$

$$A \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_n \end{bmatrix} = \begin{bmatrix} \vec{b}_1 & \dots & \vec{b}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$

$$\begin{bmatrix} A\vec{b}_1 & \dots & A\vec{b}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \vec{b}_1 & \dots & \lambda_n \vec{b}_n \end{bmatrix}$$
(*)

Comparing columns gives $A\vec{b}_j = \lambda_j \vec{b}_j$ for all $j = 1, \ldots, n$. So, A is diagonal with respect to this basis $\{\vec{b}_1, \ldots, \vec{b}_n\}$.

Conversely, suppose there exists a basis of eigenvectors $\{\vec{b}_1,\ldots,\vec{b}_n\}$ corresponding to eigenvalues $\{\lambda_1,\ldots,\lambda_n\}$...

1. Let $N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (this is an example of a **nilpotent** matrix). N is not diagonalizable! N is upper triangular, and so its diagonals entries $\{0,0\}$ must be it's eigenvalues. If N were diagonalizable, then there would exist an invertible matrix S so that

$$S^{-1}NS = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ,$$

which implies that

$$N = S \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} S^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} .$$

This is a contradiction since

$$N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} .$$

A similar calculation shows that any matrix of the form

$$\begin{bmatrix} \lambda_1 & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_3 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & 0 & \lambda_{n-1} & 1 \\ 0 & 0 & 0 & 0 & 0 & \lambda_n \end{bmatrix}$$

is never diagonalizable.

2. (Exponential of a Matrix) Recall the function $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$. This converges absolutely for all $z \in \mathbb{C}$. For an $n \times n$ matrix A, define

$$e^A := \sum_{n=0}^{\infty} \frac{A^n}{n!} .$$

(To define this, each partial sum $I + A + \frac{A^2}{2!} + \ldots + \frac{A^n}{n!}$ is well-defined. We can appeal to a future fact about norms to deduce convergence.) Now, suppose A is diagonalizable and write

$$S^{-1}AS = D = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix} .$$

Then

$$(S^{-1}AS)^m = S^{-1}A^mS$$

$$= D^m$$

$$= \begin{bmatrix} \lambda_1^m & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n^m \end{bmatrix},$$

which implies that

$$\frac{A^m}{m!} = \frac{SD^m S^{-1}}{m!}$$

$$= S\frac{D^m}{m!}S^{-1}$$

$$= S\begin{bmatrix} \lambda_1^m/m! & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \lambda_n^m/m! \end{bmatrix}S^{-1}.$$

Finally,

$$e^{A} = \sum_{m=0}^{\infty} \frac{A^{m}}{m!}$$

$$= \sum_{m=0}^{\infty} S \begin{bmatrix} \lambda_{1}^{m}/m! & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{n}^{m}/m! \end{bmatrix} S^{-1}$$

$$= S \left(\sum_{m=0}^{\infty} \begin{bmatrix} \lambda_{1}^{m}/m! & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{n}^{m}/m! \end{bmatrix} \right) S^{-1}$$

$$= S \begin{bmatrix} e^{\lambda_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n} \end{bmatrix} S^{-1} .$$

Theorem

Suppose A is an $n \times n$ consisting of n distinct eigenvalues. Then A is diagonalizable.

Remark: The converse is false. For example, consider the 2×2 matrix $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. Here, the eigenvalues are $\lambda_1 = \lambda_2 = 2$, which are not distinct.

Proof. Let the eigenvalues of an $n \times n$ matrix A be denoted $\lambda_1, \ldots, \lambda_n$ and $\{\vec{b}_1, \ldots, \vec{b}_n\}$ be the associated eigenvectors. We must show that $\{\vec{b}_1, \ldots, \vec{b}_n\}$ is a basis. It is enough to show linear independence. We can prove by contradiction. Suppose to the contrary that the set $\{\vec{b}_1, \ldots, \vec{b}_n\}$ is linearly dependent. There is a minimal set for $j \in \{2, \ldots, n\}$ so that $\{\vec{b}_1, \ldots, \vec{b}_{j-1}\}$ is linearly independent, but $\{\vec{b}_1, \ldots, \vec{b}_j\}$ is linearly dependent. That is, the j^{th} vector \vec{b}_j is the vector that causes linear dependence. We can find $\alpha_1, \ldots, \alpha_j$ with $\alpha_j \neq 0$ and

$$\alpha_1 \vec{b}_1 + \ldots + \alpha_j \vec{b}_j = \vec{0} \ . \tag{*}$$

Multiplying (*) by A gives

$$A(\alpha_1 \vec{b}_1 + \ldots + \alpha_j \vec{b}_j) = A\vec{0}$$

$$\begin{bmatrix} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_n \end{bmatrix} (\alpha_1 \vec{b}_1 + \ldots + \alpha_j \vec{b}_j) = \vec{0}$$

$$\alpha_1 \lambda_1 \vec{b}_1 + \ldots + \alpha_j \lambda_j \vec{b}_j = \vec{0} . \tag{1}$$

Also, multiplying (*) by λ_i gives

$$\alpha_1 \lambda_j \vec{b}_1 + \ldots + \alpha_j \lambda_j \vec{b}_j = 0 .$$
(2)

Then subtracting (2) from (1) gives

$$\alpha_1(\lambda_1 - \lambda_j)\vec{b}_1 + \ldots + \alpha_{j-1}(\lambda_{j-1} - \lambda_j)\vec{b}_{j-1} = \vec{0} ,$$

which implies that $\alpha_i(\lambda_i - \lambda_j) = 0$ for i = 1, ..., j - 1, since we assumed the set $\{\vec{b}_1, ..., \vec{b}_{j-1}\}$ is linearly independent. Since the λ_i are all distinct, this implies that $\alpha_1 = \alpha_2 = ... = \alpha_{j-1} = 0$. Then (*) becomes $\alpha_j \vec{b}_j = \vec{0}$. This is a contradiction, since we assumed that α_j and \vec{b}_j were both non-zero.