University of Dhaka Affiliated Engineering Colleges

Department of Computer Science and Engineering 2nd Year 1st Semester B.Sc. in CSE Final Examination, 2022

Course Code: CSE-2103	Course Name: Digital Electronics	& Pulse Technique
Total Marks: 70	,	Time: 3 Hours
Answer ar	Answer any 5 (Five) of the following Questions	

	- \	Define leakage current and Knee voltage. Implement universal gate by diode.	2+3
1.	a)		4
	b)	Show that Transistor acts as a switch.	5
	c)	Implement Exclusive NOR gate by transistor.	
2.	a)	Describe Bipolar logic family; Explain NOR gate using TTL	3+3
	b)	Define Digital IC; Describe the Implementation of NAND gate using RTL	2+3
	c)	Describe the implementation of NAND gate using DTL	3
3.	a)	What is counter modulus? Design a 4 bit synchronous counter circuit with counting sequence.	5
	b)	Differentiate between latches and flip flop. Describe Clocked SR flip-flop.	2+3
	c)	Implement Right shift register circuit with working procedure.	4
4.	a)	Prove that, Transistor works as a switch	4
٦.	b)	Draw the internal circuit diagram of 555 timer circuit and describe the functionality of	5
	c)	each pin. Mention the difference between Clipping and Clamping circuit with example.	5
5.	a)	What is PLA? Implement the circuit with PLA having the following functions:	5
		$F1(A, B, C) = \sum (3, 5, 6, 7)$	
		$F2(A, B, C) = \sum (0, 2, 4, 7)$	
	b)	Describe the pulse transformer circuit and its equivalent circuit.	5
	c)	Explain pulse transmission with input and output waveforms in different media.	4
6.	a)	Draw the block diagram of a D/A converter and explain its operation	
Ο.	b)	Describe negative clipping circuit.	4
	c)	Write down the usages of a clipping circuit	
	d)	Define LED & LCD	
7.	a)	Explain the memory Read and Write operation.	
	b)	Explain pulse generator block diagram.	:
	۵)	Implement mono-stable multivibrator circuit.	

University of Dhaka Affiliated Engineering Colleges Department of Computer Science and Engineering 2nd Year 1st Semester B.Sc.(Engg.) Final Examination-2022

EEE 2104: Electronic Devices and Circuits

Time: 3 Hours Total Marks: 70

Answer any 5 (Five) set of the following Questions

1.	a)	What is semiconductor? Why do we use semiconductors?	1+2
	b)	Differentiate between extrinsic and intrinsic semiconductor.	3
	c)	Explain the volt-ampere (V-I) characteristics of PN junction.	5
	d)	What is doping? Why it is done?	1+2
2.	a)	Explain working principle of a full wave bridge rectifier with a neat sketch.	4
	b)	What is LED? Explain the working principle of LED.	1+3
	c)	Write down advantage and disadvantage of full wave rectifier.	03
	d)	An a.c supply of 230 V is applied to a half wave rectifier circuit through a transformer of turn ratio 10: 1 Find (i) the output d.c voltage and (ii) the peak inverse voltage. Assume the diode to be ideal.	3
3.	a)	What is Zener diode? Explain how does zener diode regulate voltage?	1+4
	b)	For the Zener diode regulator, Determine: (i) V_L (ii) V_R (iii) I_Z (iv) P_Z $+ \frac{V_R}{V_R} - \frac{I_R}{V_R}$	5
		$V_{l} = 16 \text{ V} \qquad V_{z} = 101 \cdot R_{L} \qquad V_{L}$	• '
	c)	Discuss working principle of JFET with necessary diagram.	4
4.	a)	How does transistor work as a switch?	3
	b)	Why does the transistor need biasing?	3
	c)	What is stability factor? For a transistor, Prove that $\beta = \frac{\alpha}{1-\alpha}$.	1+3
	d)	What is clipper circuit? Determine the output waveform for network of the following figure [Assume the diode to be Silicon].	1+3
		R_1	

5. a) What is SCR? Explain operating principle of SCR.
b) What is TRIAC? Explain operating principle of TRIAC.
c) For the following Zener diode network, determine V_L, V_R, I_Z, and P_Z.
04

a) What is FET? Describe the operating principle of D-MOSFET.
 b) Discuss the operation of summing amplifier.
 c) Determine R_B, R_C, I_C, V_B and V_{CE} for the following fixed-bias configuration.

7. a) What is the importance of power electronics?
b) What is non-inverting amplifier? Derive the output voltage equation of non-inverting amplifier
c) What is an op-amp? What is the need of negative feedback in an op-amp?
d) Determine the output voltage for the circuit of Figure with a sinusoidal input of 2.5 mV. Where Rf = 10 KΩ and Rin= 470 Ω.

University of Dhaka

Affiliated Engineering Colleges

Department of Computer Science and Engineering 2nd Year 1st Semester B.Sc. in CSE Final Examination, 2022

MATH-2105: Linear Algebra

Total Marks: 70

Time: 3 Hours

5

Answer any 5 (Five) of the following Questions:

- 1. a) If A and B are idempotent matrices, then A + B will be idempotent if and only if AB = BA
 - b) Define rank of a matrix. Find the rank of the matrix $\begin{pmatrix} 6 & -2 & 0 & 4 \\ -2 & -1 & 3 & 4 \\ -1 & -1 & 6 & 10 \end{pmatrix}$
 - e) Prove that the following system of linear equations is inconsistent:

$$x_1 + 2x_2 - 3x_3 = -1$$

$$5x_1 + 3x_2 - 4x_3 = 2$$

$$3x_1 - x_2 + 2x_3 = 7$$

- 2. a) Define matrix polynomial. Find the Eigen values and corresponding Eigen vectors of the following matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$
 - b) If $A = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 3 & 2 \\ 2 & 4 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 1 \end{pmatrix}$, Show that $(A + B)^2 \neq A^2 + 2AB + B^2$
- 3. a) What is called basis and dimension of a vector space?
 - b). Does every matrix have an inverse matrix, Justify? If

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$$
 then find the inverse of A.

- c) If U and W be two subspaces of \mathbb{R}^4 generated by the set of vectors $\{(1,2,1,1),(1,2,-1,2)\}$ and $\{(1,2,3,0),(2,2,2,2)\}$. Then find (i)dim(U+W) and (ii)dim $(U\cap W)$
- 4. a) What is rank of the matrix? Find the rank of the matrix:

$$\begin{pmatrix}
1 & 2 & -3 & -2 & -3 \\
1 & 3 & -2 & 0 & -4 \\
3 & 8 & -7 & -2 & -11 \\
2 & 1 & -9 & 10 & -3
\end{pmatrix}$$

- b) Define minors and cofactors. Prove that, $\begin{vmatrix}
 1 & a & a^2 & 0 \\
 0 & 1 & a & a^2 \\
 a^2 & 0 & 1 & a \\
 a & a^2 & 0 & 1
 \end{vmatrix} = 1 + a^4 + a^8$
- c)
 Prove that, $A^2 5A + 7I_2 = 0$ where $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$
- 5. a) State and prove the Clayey Hamilton theorem.
 b) What is characteristic matrix? Find the characteristic roots and associated Eigen vectors of the matrix

$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$$

- If A and B are orthogonal matrices each of order n then the matrices AB and BA are also orthogonal.
- 6. a) For which value of λ will be the vector $\mathbf{v} = (1, \lambda, 5)$ in \mathbf{R}^3 is a linear combination of the vectors $\mathbf{v}_1 = (1, -3, 2)$ and $\mathbf{v}_2 = (2, -1, 1)$.
 - b) Show that the vectors (1, 1, -1), (1, 2, 3) and (4, 5, -3) in \mathbb{R}^3 are linearly independent.
 - c) Let $T:R^3 \to R^3$ be the linear operator defined by T(x, y, z) = (x + 2y, y z, x + 2z) 6 Find the rank and nullity of T.
- 7. a) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z, t) = (x y + z + t, x = 2z t, x + y + 3z 3t) Find a basis and the dimension of the (i) Range space of T (II) Null space of T.
 - b) Define diagonal matrix. Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ and find an invertible 2×2 matrix such that $P^{-1}AP$ is a diagonal matrix with the eigenvalues of A down the diagonal.

1+1