Séptima ayudantía Lenguajes regulares

Teresa Becerril Torres terebece1508@ciencias.unam.mx

23 de febrero de 2023

Lenguajes Regulares

Un lenguaje regular L es la denotación de una expresión regular R. Esto es L=[[R]]. Cuando conocemos la expresión regular lo denotamos como L(R).

- i. $[[\emptyset]]$ es un lenguaje regular.
- ii. $[[\varepsilon]]$ es un lenguaje regular.
- iii. [[a]] es un lenguaje regular, $\forall a \in \Sigma$.
- iv. Sean R_1 y R_2 regex de los lenguajes L_1 y L_2 respectivamente, entonces:
 - a) $L_1 \cup L_2 = [[R_1]] \cup [[R_2]] = [[R_1 + R_2]]$ es un lenguaje regular.
 - b) $L_1 \cdot L_2 = [[R_1]] \cdot [[R_2]] = [[R_1 \cdot R_2]]$ es un lenguaje regular.
 - c) $L_1^* = [[R_1^*]] = [[R_1]]^*$ es un lenguaje regular.

GramáticasRegulares

Una gramática $G=(\Sigma,\,\Delta,\,S,\,R)$ es **regular** si cada regla de producción es de la forma $X\to aY$ ó $X\to \varepsilon$, donde $X,Y\in \Delta$ y $a\in \Sigma.$

- Σ es un alfabeto de símbolos terminales.
- Δ es un alfabeto de símbolos no terminales.
- S es el símbolo inicial, $S \in \Delta$.
- R son las reglas de producción.

Ejercicio 5

Demostrar que los lenguajes regulares son cerrados bajo la unión. Esto es $L_1 \cup L_2 \cup ... \cup L_n$ es regular.

Base:

 $\exists r_1, r_2 \text{ regex tal que:}$

$$L_1 \cup L_2 = [[r_1]] \cup [[r_2]] = [[r_1 + r_2]]$$

Por definición tenemos que r_1+r_2 es una regex y $[[r_1+r_2]]$ es un lenguje regular, por lo tanto $L_1 \cup L_2$ es regular.

Hipótesis de Inducción:

Supongamos que $L_1 \cup L_2 \cup ... \cup L_n$ es regular y $\exists r$ regex tal que $L_1 \cup L_2 \cup ... \cup L_n = [[r]].$

Ejercicio 5

Paso inductivo:

Por demostrar que $L_1 \cup L_2 \cup ... \cup L_n \cup L_{n+1}$ es regular.

 $\exists r' \text{ regex tal que } L_{n+1} = [[r']] \text{ entonces:}$

$$L_1 \cup L_2 \cup ... \cup L_n \cup L_{n+1} = (L_1 \cup L_2 \cup ... \cup L_n) \cup L_{n+1}$$

= $[[r]] \cup [[r']]$ (Hip. Int.)
= $[[r + r']]$

Por definición tenemos que r+r' es una regex y [[r+r']] es un lenguje regular, por lo tanto $L_1 \cup L_2 \cup ... \cup L_n \cup L_{n+1}$ es regular.

Por lo tanto los lenguajes regulares son cerrados bajo la unión.

