NOIP 模拟赛

$\operatorname{GGN\&HJQ}$

2020年8月9日

题目名称	crazy typer	treat guest	qwq similarity
源文件名	typer.cpp	guest.cpp	qwq.cpp
输入文件名	typer.in guest.in		qwq.in
输出文件名	typer.out guest.out		qwq.out
题目类型	传统	传统	传统
时间限制	1s	1s	2s
空间限制	512MB	512MB	512MB
测试点数目	10	10	10
每个测试点分值	10	10	10
编译选项	-lm	-lm	-lm

注意事项

1. 评测方式: 全文比较, 忽略行末空格和文末回车

2. 请不要直接从题面中复制样例

1 crazy typer

1.1 题目背景

GGN 是一个不喜欢出题的女孩子。为什么 GGN 不喜欢出题呢?是因为她不喜欢打字。为什么 GGN 不喜欢打字呢?是因为她打字太慢。直到有一天,F 老师让 GGN 出一套难度适中的模拟赛,要求题面总字数尽可能多,机智的 GGN 决心通过"复制-粘贴"这一传统的方法凑够题面字数。

1.2 题目描述

起初,GGN 的文件中只有一个字符,剪贴板中没有字符。每个时刻,GGN 只能进行如下两种操作:

- 1. "全选-复制", 即将文件中的内容全部拷贝进入剪贴板。
- 2. "粘贴", 即在文件尾部追加剪贴板中的内容, 但并不改变剪贴板中的内容。

形式化的表述如下: 假设 GGN 某次操作之前,文件中字符总数为 X,剪贴板中字符总数为 Y。执行这次操作后,文件中字符总数记为 X',剪贴板中字符总数记为 Y'。

若这次操作为"操作 1",则有 X' = X, Y' = Y。若这次操作为"操作 2",则有 X' = X + Y, Y' = Y。

由于时间有限,所以她只能做 N 次操作。已知 GGN 的总操作次数为 N,起初文章中有一个字符,剪贴板中没有字符。她希望你能帮她求出,进行 N 次操作后,文件中字符总数可能达到的最大值 T。由于答案可能很大,而 GGN 又不喜欢写高精度,所以你只需要求出 T 除以 998244353 的余数。

1.3 输入格式

共一行, 含一个整数 N, 表示 GGN 操作的总次数。

1 CRAZY TYPER 3

1.4 输出格式

共一行, 含一个整数, 即 T 除以 998244353 的余数。

1.5 输入输出样例

typer.in	typer.out
7	12

1.6 样例解释

在此给出一种可能的操作方式,操作序列以及每次操作后文件和缓冲 区的字符数如下:

操作	文件	缓冲区
操作 1	1	1
操作 2	2	1
操作 2	3	1
操作 2	4	1
操作 1	4	4
操作 2	4	8
操作 2	4	12

1.7 数据范围

对于 30% 的数据, 保证 $N \le 25$ 。

对于 50% 的数据,保证 $N \leq 500$ 。

对于 80% 的数据, 保证 $N \leq 10^5$ 。

对于 100% 的数据,保证 $N \leq 10^{12}$ 。

2 treat guest

2.1 题目背景

"在那座阴雨的小城里我从未忘记你。" ——《成都》

GGN 是一个热情好客的女孩子,她经常请她的男神 YZB 到家里玩耍。GGN 家所在城市潮湿多雨,所以道路上经常会有积水。由于 YZB 非常的英勇,所以他是不怕路面积水的。但是 GGN 非常胆小,所以她不能通过有积水的路面。因此,当 YZB 要通过一条有积水的马路时,GGN 就会对他说:"送君千里,终有一别。"然后转身离去,消失在暮色中,此后 YZB 就迎来了独自一人的旅程。由于 GGN 是个很贴心的女孩子,所以她希望 YZB 独自走过的路程尽可能短。此题由此展开。

2.2 题目描述

GGN 和 YZB 家所在的城市可以用一张无向图表示,图中有 N 个点和 M 条边。其中,1 号结点表示 GGN 的家,N 号结点表示 YZB 的家。每条 边表示一条可供行走的路,每条边都有两个属性 hight 和 len,分别表示这 条路的海拔和长度(这两条属性不随时间推移而改变)。一条路径的总路程 即这条路径上所有边的 len 属性值之和。每天,GGN 和 YZB 都会从 GGN 的家(1 号结点)出发,在不经过有积水的边的条件下到达某个结点,此后 YZB 会从这个结点独自走到自己的家(N 号结点),YZB 独自行走时可以 通过任何一条边。每天,给出城市中整体的水位 S。如果一条边的 height 属性值大于等于 S,那么在这一天中,这条边是没有积水的;如果一条边的 height 属性小于 S,那么在这一天中,这条边是有积水的,GGN 不能通过 这条边。给出图的所有信息、总天数、以及每天的积水深度,计算每天 YZB 独自走过总路程的最小值。特殊地,如果存在一条从 1 号结点到 N 号结点的路径,满足这条路径上的所有的边都没有积水,那么 YZB 独自走过总路程的最小值为 0。

5

2.3 输入格式

第一行,包含两个整数N,M,表示图中结点数量以及边的数量。

接下来的 M 行,每行四个整数 $from_i, to_i, height_i, len_i$,分别表示这条无向 边所连接的两个点以及这条边的海拔和长度。

接下来 1 行,包含一个正整数 D,表示总天数。

接下来 1 行,D 个整数,其中第 i 个数表示第 i 天的积水深度 S_i 。

2.4 输出格式

共一行,包含 D 个整数,其中第 i 个整数表示第 i 天 YZB 独自走过的总路程的最小值。

2.5 输入输出样例

guest.in	guest.out
5 6	0 6 10 12
1 2 3 1	
2 3 3 2	
3 4 2 4	
4 5 1 6	
1 3 3 3	
4 2 2 5	
4	
1 2 3 4	

2.6 样例解释

第一天, 所有的边都没有积水, YZB 独自走过的最短路程长度是 0。

第二天, GGN 先陪 YZB 走 $1 \rightarrow 3 \rightarrow 4$, 然后 YZB 独自走 $4 \rightarrow 5$, 独自走过的总路程为 6 (方案不唯一)。

2 TREAT GUEST

6

第三天, GGN 先陪 YZB 走 1 \rightarrow 3, 然后 YZB 独自走 3 \rightarrow 4 \rightarrow 5, 独自走过的总路程为 10。

第四天,所有的道路都有积水,YZB 独自走 $1 \rightarrow 3 \rightarrow 4 \rightarrow 5$,独自走 过的总路程为 12。

2.7 数据范围

注: "无"表示无除 100% 数据范围约束外的其他约束。

测试点编号	n	m	$height_i$	S_i
1	≤ 500	≤ 1000	≤ 100	无
2	≤ 500	≤ 1000	≤ 200	无
3	≤ 500	≤ 1000	≤ 300	无
4	≤ 500	≤ 1000	≤ 400	无
5	≤ 500	≤ 1000	≤ 500	无
6	= 6250	= 9793	无	无
7	无	无	1	无
8	无	无	≤ 10000	≤ 10000
9,10	无	无	无	无

对于 100% 的数据, $2 \le N \le 10^5, 1 \le M \le 4 \times 10^5, 1 \le D \le 10^5, 0 < height_i < 2^{31} - 1, 0 < len_i < 10^7$ 。

3 qwq similarity

3.1 题目背景

HJQwQ 不喜欢出题,不热情好客,也不是女孩子,但他喜欢打 MC。一天,F老师让他出一套难度适中的模拟赛。但 HJQwQ 并不想出题,于是就随便抄了几道原题,然后就去打 MC 了。F老师知道之后非常不爽,于是她想出了题目查重的办法:将每道题目看成一个序列。她认为一个题目(一个短序列)和题库(一个长序列)的最长公共**子序列**越长,这道题目的抄袭程度就越高。她想知道对于每道题,HJQwQ 到底抄袭了多少?

3.2 题目描述

我们将问题简化为:给你一个长为 N 的序列 S,有 M 次询问,第 i 次询问会给出一个序列 T_i ,你需要回答 S 与 T_i 的最长公共**子序列(注意不是子串)**的长度。

3.3 输入格式

第 1 行 2 个用空格分隔的正整数 N, M

第 2 行 N 个用空格分隔的正整数 S_i

第 $3 \sim (M+2)$ 行,每行第 1 个正整数表示 T_i 的长度 L_i ,其后有 L_i 个用 空格分隔的正整数 T_{ij}

3.4 输出格式

共 M 行, 第 i 行输出一个非负整数 ans_i 表示 S 与 T_i 的最长公共**子 序列**的长度, 若没有公共子序列则输出 0

8

3.5 输入输出样例

3.5.1 样例 1

qwq.in	qwq.out
10 5	1
5 1 4 3 2 6 5 5 1 7	0
1 5	4
1 10	3
4 5 1 4 7	5
5 4 1 2 3 5	
5 2 6 5 1 7	

见下发文件的 qwq1.in 和 qwq1.out

3.5.2 样例解释

第一次询问的答案为 1, 一种方案为 [5]

第二次询问的数 10 未在 S 中出现过, 故答案为 0

第三次询问的答案为 4, 一种方案为 [5,1,4,7]

第四次询问的答案为 3, 一种方案为 [4,2,5]

第五次询问的答案为 5, 一种方案为 [2,6,5,1,7]

3.5.3 样例 2

见下发文件的 qwq2.in 和 qwq2.out, 此样例数据范围与测试点 1 相同

3.5.4 样例 3

见下发文件的 qwq3.in 和 qwq3.out,此样例数据范围与测试点 3 相同

3.5.5 样例 4

见下发文件的 qwq4.in 和 qwq4.out, 此样例数据范围与测试点 9 相同

3.6 数据范围

测试点编号	N	M	L_i	S_i, T_{ij}
1,2	≤ 10	≤ 100	≤ 5	$\leq 10^{6}$
3,4,5	≤ 1000	≤ 1000	≤ 20	$\leq 10^{6}$
6	$\leq 10^{6}$	≤ 10000	= 1	$\leq 10^{6}$
7	$\leq 10^{6}$	≤ 10000	≤ 5	$\leq 10^6$
8	$\leq 10^{6}$	≤ 10000	≤ 20	≤ 2
9,10	$\leq 10^{6}$	≤ 10000	≤ 20	$\leq 10^{6}$

对于 100% 的数据,有 $1 \le N, S_i, T_{ij} \le 10^6, 1 \le M \le 10000, 1 \le L_i \le 5$