Bachelor in Mobile and Space Communications Engineering

Bachelor in Telematics Engineering

Bachelor in Sound and Image Engineering

Bachelor in Telecommunication Technologies Engineering

Notation:

• $\widehat{S}_{\mathrm{MMSE}}$: Minimum Mean Square Error estimator.

 ${\color{blue} \bullet}$ $\widehat{S}_{\text{MAD}}.$ Mininimum Mean Absolute Deviation Error estimator.

• \widehat{S}_{MAP} : Maximum a posteriori estimator.

• $\widehat{S}_{\mathrm{ML}}$: Maximum likelihood estimator.

• $\widehat{S}_{\text{LMSE}}$: Linear Minimum Mean Square Error estimator.

1. The random variables S and X are jointly distributed according to:

$$p_{S,X}(s,x) = G\left(\begin{bmatrix} s \\ x \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right)$$

with $|\rho| < 1$.

(a) Determine the maximum a posteriori estimator of S given $X, \widehat{S}_{\text{MAP}}$.

(b) Is \widehat{S}_{MAP} an unbiased estimator? Justify your answer.

(c) Calculate the mean square error of the estimator \hat{S}_{MAP} .

Solution:

(a)
$$\widehat{S}_{MAP} = \rho X$$

(b) The estimator is unbiased

(c)
$$E\left\{ \left(S - \hat{S}_{MAP}(X) \right)^2 \right\} = 1 - \rho^2$$

2. Consider a random variable X with p.d.f.:

$$p_{X|M,C}(x|m,c) = \frac{1}{m} \exp\left[-\frac{1}{m}(x-c)\right]$$
 $x \ge c$

where $m \geq 0$ and c are two parameters.

- (a) Find the maximum likelihood estimator of the m parameter, $\widehat{M}_{\mathrm{ML}}$, as a function of K samples of X independently drawn, $\left\{X^{(k)}\right\}_{k=1}^{K}$.
- (b) Compute the bias and the variance of the $\widehat{M}_{\mathrm{ML}}$ estimator.

Solution:

(a)
$$\widehat{M}_{ML} = \frac{1}{K} \sum_{k=1}^{K} (x^{(k)} - c)$$

(b) The estimator is unbiased.

$$\operatorname{Var}\!\left\{\widehat{M}_{\mathrm{ML}}\right\} = \frac{m^2}{K}$$