Package 'CADF'

October 31, 2024

Encoding UTF-8

Version 0.1

Title Customer Analytics Data Formatting

Description Converts customer transaction data (ID, purchase date) into a R6 class called customer. The class stores various customer analytics calculations at the customer level. The package also contains functionality to convert data in the R6 class to data.frames that can serve as inputs for various customer analytics models.
License GPL-3
LazyData true
LazyDataCompression xz
RoxygenNote 7.3.1
Imports R6
Suggests knitr, rmarkdown, lubridate, markovchain, utils, survival
VignetteBuilder knitr
Maintainer Ludwig Steven <steven.ludwig@u.northwestern.edu></steven.ludwig@u.northwestern.edu>
NeedsCompilation no
Author Ludwig Steven [aut, cre]
Depends R ($>= 3.5.0$)
Repository CRAN
Date/Publication 2024-10-31 14:10:02 UTC
Contents
annualhalfingmodel
annualhalfing_LL
bass.answeringmachines
bigT_expand_via_apply
billionaire
cadf
cadf.data.sample
1

2 Contents

CADF_to_annualhalfing_data			 5
CADF_to_btyd_pareto_nbd			6
CADF_to_logistic_regression			 6
CADF_to_migration_model			 7
CADF_to_nth_purchase			7
CADF_to_nth_purchase_allrows			 8
ca_SRM			 8
ca_SRM_time_varying			9
ca_to_ps_matrix			10
create.purchase.string			10
create.recency.string			 11
Customer			12
discretechoice			14
exceldata			14
fp			15
frequency_from_ps			15
frequency_from_rle			15
f_CustomerModelingMatrix			16
			16
f_intMonths			17
 gammagamma			17
generate_date_template			17
id_to_CADF			18
ld sample customer matrix			18
ltv.transactions			 19
modeling.annualhalfing.likelihood			19
modeling.LL.gamma_spend			19
pdf_gamma			20
pdf_gamma2			
print.glossary			21
psmatrix_to_psstring			21
psmatrix_to_recency_attimeof_matrix			21
ps_to_T_custom			22
ps_to_T_strict_quitter			 22
ps_to_T_strict_stayer			23
qc_transactional_data			 23
segltv			24
simple_migration			24
split.transaction.file_to_CADF			 25
srm_data			25
srm_summaries			25
stocks			26
transactions			 26
transactions.merged			26
transitions			 27

28

Index

annualhalfingmodel 3

annualhalfingmodel

Annual Halfing Model

Description

A recency-frequency model used in non-contractual situations. Model assumptions: 1.) Increasing recency leads to higher probability of quitting. 2.) Frequency is related to exponential learning curves Reference: Segmentation and Lifetime Value Modeling in SAS (Edward Malthouse)

Usage

```
annualhalfingmodel(cadf.data, starting.values)
```

Arguments

```
cadf.data cadf-formatted dataset starting.values parameter starting values for model
```

Value

Returns model parameters

Examples

```
dta <- lapply(CADF::cadf.data.sample, function(x) tail(x$data, 1))
dta <- do.call(rbind, dta)
starting.values <- c(.5,.9,.2,-.9)
annualhalfingmodel(cadf.data.sample, starting.values)</pre>
```

annualhalfing_LL

Likelihood maximization for annual halfing customer retention model

Description

Likelihood maximization for annual halfing customer retention model

Usage

```
annualhalfing_LL(grid, dta)
```

Arguments

grid model parameters

dta dataset

4 billionaire

Value

Annual halfing Likelihood in optimization routine

bass.answeringmachines

Answering machine data

Description

Answering machine data

Format

A data frame with 9 rows and two columns

```
bigT_expand\_via\_apply bigT_expand\_via\_apply
```

Description

```
bigT_expand_via_apply
```

Usage

```
bigT_expand_via_apply(x)
```

Arguments

Х

vector containing bigT, cancel and count

Examples

```
x <- c(3, 1, 5)
bigT_expand_via_apply(x)</pre>
```

billionaire

Billionaires

Description

Billionaires

Format

data frame

cadf 5

cadf $\it cadf.$

Description

cadf.

cadf.data.sample

CADF-formatted sample data

Description

CADF-formatted sample data

Format

List with 2,185 customers, in CADF format

 ${\tt CADF_to_annualhalfing_data}$

Convert CADF dataset into annualhalfing model dataset

Description

Converts CADF output to dataset for annual halfing model

Usage

CADF_to_annualhalfing_data(cadf.data)

Arguments

cadf.data CADF dataset

CADF_to_btyd_pareto_nbd

CADF to btyd pareto nbd model

Description

Converts a CADF dataset to a dataset for btyd pareto nbd modeling

Usage

```
CADF_to_btyd_pareto_nbd(cadf.data)
```

Arguments

cadf.data

CADF-formatted dataset

CADF_to_logistic_regression

CADF to logistic regression

Description

Convert a CADF dataset to a dataset for logistic regression

Usage

```
CADF_to_logistic_regression(CADF)
```

Arguments

CADF

CADF-formatted dataset

```
CADF_to_migration_model
```

CADF_to_migration_model converts CADF data to migration model data

Description

Builds transition matrix for a migration model. T is the maximum time cutoff which defaults to 5. The output will be a transition matrix.

Usage

```
CADF_to_migration_model(cadf.data, maxT = 5)
```

Arguments

cadf.data Data in R list format processed by CADF functions

maxT If time is greater than maxT it will be converted into a + category

Examples

```
tmatrix <- CADF_to_migration_model(cadf.data.sample)</pre>
```

```
{\tt CADF\_to\_nth\_purchase} \quad \textit{CADF\_to\_nth\_purchase}
```

Description

```
CADF_to_nth_purchase
```

Usage

```
CADF_to_nth_purchase(cadf.data, n)
```

Arguments

cadf.data Data in R list format processed by CADF functions

n the nth purchase you want to analyze

8 ca_SRM

```
CADF_to_nth_purchase_allrows
```

CADF_to_nth_purchase_allrows inputs CADF data and the desired purchase number that you want to count the nth result of.

Description

CADF_to_nth_purchase_allrows inputs CADF data and the desired purchase number that you want to count the nth result of.

Usage

```
CADF_to_nth_purchase_allrows(cadf.data, n)
```

Arguments

cadf.data	Data in R list format processed by CADF functions
n	the nth purchase

ca_SRM

ca_SRM

Description

ca_SRM

Usage

```
ca_SRM(df_logistic)
```

Arguments

df_logistic data frame containing the data for logistic regression

```
customertype1 <- c(3, 1, 5)
customertype2 <- c(12, 0, 3)
cust1 <- bigT_expand_via_apply(customertype1)
cust2 <- bigT_expand_via_apply(customertype2)
df_logistic <- rbind(cust1, cust2)
model <- ca_SRM(df_logistic)</pre>
```

ca_SRM_time_varying

ca_SRM_time_varying

Time varying Simple retention model Estimates retention rate using logistic regression and the simple regression model Mostly used for contractual models where there are clear opportunities for cancellation. Could be used in non-contractional situations although the cancellation opportunities should be defined. Not recommended for use with services that consumers use rotating-door style. Use the migration model there.

Description

Time varying Simple retention model Estimates retention rate using logistic regression and the simple regression model Mostly used for contractual models where there are clear opportunities for cancellation. Could be used in non-contractional situations although the cancellation opportunities should be defined. Not recommended for use with services that consumers use rotating-door style. Use the migration model there.

Usage

```
ca_SRM_time_varying(df_logistic, reference_level = 12, maxT = 12)
```

Arguments

df_logistic A data frame, formatted for logistic regression. 1 row for each customer id/timeperiod. 1/0 for purchase.

reference_level

All coefficients will be judged relevant to the reference level. It defaults to time period 12. (Note interpretation will change based on how T is formulated.)

maxT The number of timeperiods to build.

Value

Returns logistic model results (the glm model)

```
library(stats)
x <- c(3, 1, 5)
df_logistic <- bigT_expand_via_apply(x)
model <- ca_SRM_time_varying(df_logistic, reference_level = 3)</pre>
```

10 create.purchase.string

ca_to_ps_matrix	CADF to purchase string Extracts purchase strings from the CADF
	and formats as a R matrix.

Description

CADF to purchase string Extracts purchase strings from the CADF and formats as a R matrix.

Usage

```
ca_to_ps_matrix(ca.data, maxT)
```

Arguments

ca.data Data in the CADF format generated by the CADF _to_CADF functions and

Customer class.

maxT Number of columns in the matrix

Details

Output is a matrix. Rows are number of customers; columns = maxT

Value

Matrix with dimensions C x maxT (number of customers by maxT) library(CADF) data("transactions") customer <- subset(transactions, transactions\$ID == 40) today.study.cutoff <- max(customer\$PURCHASE_DATE) customer.40.CADF <- list(Customer\$new(customer, today.study.cutoff)) psmatrix <- customer.40.CADF\$purchase_string_aspsmatrix2 <- ca_to_ps_matrix(customer.40.CADF, 15)

```
create.purchase.string
```

Function called during Customer\$new() (the Customer R6 class) to create purchase string for the customer.

Description

Function called during Customer\$new() (the Customer R6 class) to create purchase string for the customer.

Usage

```
create.purchase.string(x, id.column, date.column, return.mode = "")
```

create.recency.string 11

Arguments

x Transactional data associated with customer id.

id.column Description goes here.date.column Description goes here.

return.mode Set to matrix if you want result returned as a matrix

Value

purchase string in 0/1 format. Returned as string.

Examples

```
data("transactions")
customer <- subset(transactions, transactions$ID == 5)
create.purchase.string(customer, "ID", "PURCHASE_DATE")</pre>
```

create.recency.string create_recency_string

Description

Tracks cumulative recency

Usage

```
create.recency.string(x)
```

Arguments

x vector of zeros and ones

```
head(cadf.data.sample)
```

12 Customer

Customer

R6 Class representing a customer. Otherwise known as the CADF.

Description

A short description...

Details

Call Customer\$new() to convert transactional data to CADF format

Public fields

output Stores all information in R format at the customer level.

payload Stores all computed customer information in JSON format for integration into other systems. This is not quite an API but designed so that customer information can be imported to other formats and systems.

data a data frame that stores purchase information for a single customer. Input data for various calculations in initialize (df_customer)

id The customer id. This will be the same ID as provided in the input transaction file.

study_name A name to associate with the cohort study. #The name can be whatever is easiest to associate with the set of customer id and dates included in the analysis.

study_begin_date Begin date of the customer study. In theory this should be min(TRANSACTION_DATE) for each customer in the dataset.

timing Monthly timing computes T as months. Most commonly utilized and is the default.

transaction_dates All transaction dates for the customer

transaction_months All YYYY MM transaction dates for the customer

first_purchase_date First purchase date for the customer.

last_purchase_date Last purchase date for the customer. #' @field repeat_customer repeat_customer if the following conditions are true. The customer has more than one transaction. The second transaction date is greater than the first transaction date.

repeat_customer_by_day description

today #' @field T a measure of time between first date of activity and purchase.

T_ss T_ss

transaction_range_complete shows a consecutive sequence usually beginning at 1

purchase_count purchase count

purchase_string description

purchase_string_as_matrix purchase string as matrix

recency_string_as_matrix recency string as matrix

Freq frequency count

Customer 13

logistic_modeling_matrix Stores customer's logistic modeling matrix. (One row for each time period (T), 1 = purchase; 0 = no purchase)

logistic_modeling_matrix_ss logistic_modeling_matrix_ss

logistic_modeling_matrix_custom logistic_modeling_matrix_custom

survival_modeling_matrix Stores customer's modeling matrix for survival analysis. For survival analysis '1' means that the customer has stopped being a customer. '0' means that the customer is continuing to be a customer.

survival_modeling_matrix_ss survival_modeling_matrix_ss
survival_modeling_matrix_custom survival_modeling_matrix_custom

- repeat_customer This can be used to filter out repeat customers from analysis. Repeat customer based on YYYY_MM. (Customer with only two purchases in January would not be a repeat customer) however it's by day instead of YYYY_MM. PURCHASE STRINGS purchase_string Utilizes the 'create.purchase.string' function to create a purchase string. "1" if purchase was made during the purchase period; "0" otherwise. No special rules are applied and the purchase string reflects true purchase history. df_customer: data frame for single customer, id column, purchase date column
- T T is a cancellation time. CADF offers different ways to estimate the cancellation time strict_quitter:

 Customer leaves after first period of inactivity. Example purchase string 11001. T=3 strict_stayer:

 T is the last period of transaction in the purchase string. 11001. T=5 As T becomes longer strict_quitter will have a tendancy to underestimate retention. Strict_stayer will have a tendancey to overestimate If you know your customers come and go at free will you can utilize a Migration model or choose T between strict quitter and strict stayer

 T ss T ss
- T_custom T_custom logistic_modeling_matrix Stores rows for the customer that contribute to a logistic modeling matrix. Assumes strict/perm cancellations. Customer relationship starts at time 1 and ends at time N (with perm cancellation and no pauses in between) This is usually known as a contractual relationship logistic_modeling_matrix_sc Assumes strict stayer assumption \$field logistic_modeling_matrix_custom survival_modeling_matrix Stores rows for the customer that contribute to a survival modeling matrix. \$field logistic_modeling_matrix_custom cleanup and data storage empty working df_customer data frame and place the result in the class, name it 'data'

Methods

Public methods:

- Customer\$new()
- Customer\$clone()

Method new(): Creates a CADF profile for a given customer based on the input transactional data usually an R list

```
Usage:
Customer$new(df_customer = NA, today = NA)
Arguments:
df_customer description
today
```

14 exceldata

Returns: A new 'Customer' object. Converted transactional data to CADF format. To access cadf[[1]], etc... Represents customer data (for a particular id) in the "CADF" format df_customer\$Tdays df_customer data frame column: to compute "days from first purchase" df_customer\$month_yr date converted to YYYY_MM format df_customer\$Tmonths Number of months between purchase date and first purchase date. Rounded up to nearest month id the customerid which identifies the customer in the CADF class. transaction_dates All unique transaction dates for customer All unique YYYY_MM combinations for customer transactions. This is used for building purchase strings.

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
Customer$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

Examples

```
library(CADF)
data("transactions")
customer <- subset(transactions, transactions$ID == 40)
today.study.cutoff <- max(customer$PURCHASE_DATE)
customer.40.CADF <- Customer$new(customer, today.study.cutoff)</pre>
```

discretechoice

Discrete choice

Description

Discrete choice

Format

##'discretechoice'

exceldata

Excel data

Description

Excel data

Format

Data frame with 50 rows and 9 columns

fp 15

fp

Health Data

Description

Health Data

Format

data frame with 5,432 rows and 36 columns

frequency_from_ps

Purchase string to frequency count

Description

Purchase string to frequency count

Usage

```
frequency_from_ps(x)
```

Arguments

Χ

rle object

frequency_from_rle

RLE object to frequency count

Description

RLE object to frequency count

Usage

```
frequency_from_rle(x)
```

Arguments

Х

rle object

```
# example code
x <- c(1,1,0,1,0,0,1,0,0,0)
x.rle <- rle(x)
frequency_from_rle(x.rle)</pre>
```

f_CustomerModelingMatrix

For each customer, return a modeling matrix that is utilized for logistic regression

Description

'f_CustomerModelingMatrix' inputs are cancellation_time.

Usage

f_CustomerModelingMatrix(cancellation_time)

Arguments

```
cancellation_time
```

= cancellation time

Details

Description here

Examples

f_CustomerModelingMatrix(10)

 $f_CustomerSurvivalModelingMatrix$

For each customer, return a survival modeling matrix that is utilized for survival analysis

Description

'f_CustomerSurvivalModelingMatrix' inputs are T.

Usage

f_CustomerSurvivalModelingMatrix(cancellation_time)

Arguments

```
cancellation_time
```

cancellation time

Details

Description here

f_intMonths 17

Examples

f_CustomerSurvivalModelingMatrix(10)

f_intMonths

Compute the months between two purchase dates

Description

Compute the months between two purchase dates

Usage

```
f_intMonths(a, b)
```

Arguments

a starting date
b ending date
Description here

gammagamma

Gamma gamma spend model data

Description

Gamma gamma spend model data

Format

data frame with 2,357 rows and 6 columns

Description

```
generate_date_template
```

Usage

```
generate_date_template()
```

```
dates <- generate_date_template()</pre>
```

id_to_CADF

Convert to CADF for a single customer id

Description

'id_to_CADF' inputs is coming from a lapply operation on a split customer dataset. If variable a is the split customer dataset then a\$'1' is customer with ID 1

Usage

```
id_to_CADF(data, today.study.cutoff)
```

Arguments

data Transactional Data for one customerid today.study.cutoff
Separate data an holdout

Details

Description here

```
ld_sample_customer_matrix
```

LD functions are utilized for learning and diagnostic use.

Description

LD functions are utilized for learning and diagnostic use.

Usage

```
ld_sample_customer_matrix(numCustomers, maxT, purchaseAtT0 = TRUE)
```

Arguments

numCustomers number of customers to simulate

maxT number of timeperiods

purchaseAtT0 by default sets first column of matrix to 1

Itv.transactions 19

ltv.transactions

LTV transactions data

Description

LTV transactions data

Format

data frame with 53,998 rows and 4 columns

modeling.annualhalfing.likelihood

Likelihood function for annual halfing model

Description

Likelihood function for annual halfing model

Usage

```
modeling.annualhalfing.likelihood(grid2, rec, freq, targetBuy)
```

Arguments

grid2 Modeling parameters

rec recency freq frequency

targetBuy indicator if purchase was made in holdout period

modeling.LL.gamma_spend

LL function for the gamma gamma spend model

Description

LL function for the gamma gamma spend model

Usage

```
modeling.LL.gamma_spend(p, q, gamma, y = data)
```

20 pdf_gamma2

Arguments

pqqgammaydata

pdf_gamma

PDF probability function for gamma distribution

Description

PDF probability function for gamma distribution

Usage

```
pdf_gamma(x, r, a)
```

Arguments

x between 0 and 1 for pdf

r shape parameter a scale parameter

pdf_gamma2

Probability density function for gamma distribution

Description

Probability density function for gamma distribution

Usage

```
pdf_gamma2(x, shape, scale)
```

Arguments

X X

shape shape parameter scale scale parameter

print.glossary 21

print.glossary

The glossary for the CADF data format

Description

The glossary for the CADF data format

Usage

```
## S3 method for class 'glossary'
print()
```

Description

```
psmatrix_to_psstring
```

Usage

```
psmatrix_to_psstring(psmatrix)
```

Arguments

psmatrix

purchase string of 1's and 0's in matrix format

Examples

```
cadf.data.sample[[4]]$purchase_string_as_matrix
```

```
{\tt psmatrix\_to\_recency\_attimeof\_matrix}
```

accepts a psmatrix converts 1/0 purchase strings to recency at timeof

Description

accepts a psmatrix converts 1/0 purchase strings to recency at timeof

Usage

```
psmatrix_to_recency_attimeof_matrix(psmatrix)
```

Arguments

```
psmatrix a psmatrix
```

22 ps_to_T_strict_quitter

ps_to_T_custom

Calculates T from a purchase string. Custom.

Description

Calculates T from a purchase string. Custom.

Usage

```
ps_to_T_custom(ps, skips = 2)
```

Arguments

ps Purchase string.

skips Number of non purchase periods that the customer is still considered a customer

for.

Value

The sum of x and y.

```
ps_to_T_strict_quitter
```

Calculates T from a purchase string

Description

Calculates T from a purchase string

Usage

```
ps_to_T_strict_quitter(ps)
```

Arguments

ps

Purchase string.

Value

The sum of x and y.

23 ps_to_T_strict_stayer

ps_to_T_strict_stayer Calculates T from a purchase string under the "strict stayer" assumption.

Description

Calculates T from a purchase string under the "strict stayer" assumption.

Usage

```
ps_to_T_strict_stayer(ps)
```

Arguments

ps

Purchase string.

Value

The numeric value for T, which is the position of the last 1 in the purchase string

input data. Transactional data must: 1.) be a data frame with two columns 2.) Column one is the customer id 3.) Column 2 is the transaction date. Column 2 must be formatted as a date object in R.

Description

The customer analytics data format (CADF) relays heavily on correct input data. Transactional data must: 1.) be a data frame with two columns 2.) Column one is the customer id 3.) Column 2 is the transaction date. Column 2 must be formatted as a date object in R.

Usage

```
qc_transactional_data(x)
```

Arguments

Χ

R dataframe representing ..

Value

A number representing whether it passes or not.

24 simple_migration

segltv

Segmentation and LTV data

Description

Segmentation and LTV data

Format

A data frame with 53998 rows and 4 columns

simple_migration

Simple Migration

Description

Function used for simulation and scenario planning

Usage

```
simple_migration(num.customers, pct.buy.buy, pct.nobuy.buy, n.periods)
```

Arguments

num.customers Number of customers for the simulation.

pct.buy.buy percentage of customers that buy in the nxt period pct.nobuy.buy percentage of non buyers that convert over to buyers

n.periods number of periods

```
simple_migration(200, .80, .20, 12)
```

```
{\it Split.transaction.file\_to\_CADF} \\ {\it Create~a~CADF~dataset~from~a~dataframe}
```

Description

Create a CADF dataset from a dataframe

Usage

```
## S3 method for class 'transaction.file_to_CADF'
split(data, today.study.cutoff)
```

Arguments

```
data data frame for a single customer id today.study.cutoff separate analysis and holdout data
```

srm_data

#' Simple retention model data

Description

#' Simple retention model data

Format

A data frame with 5828 rows and two columns

bigT Time period

cancel Whether or not there was a cancellation in the time period ...

srm_summaries

SRM model data

Description

SRM model data

Format

Data frame with 22 rows and 3 columns

26 transactions.merged

stocks

Stockmarket put/call data

Description

Stockmarket put/call data

Format

A data frame with 770 rows and 20 columns

transactions

Transactions data

Description

Transactions data

Format

data frame with 69659 rows and 4 columns

transactions.merged

#' Transaction data

Description

#' Transaction data

Format

A data frame with 67,944 rows and 4 columns

ID Customer ID

PURCHASE_DATE Purchase date

NUM_ITEMS Number of items purchased

TOTAL Total transaction amount ...

transitions 27

en anoteteno	transitions	Calculate transition periods between two timeperiods	
--------------	-------------	--	--

Description

Calculate transition periods between two timeperiods

Usage

```
transitions(timeperiod0, timeperiod1, buyvar = "Y", nobuyvar = "N")
```

Arguments

timeperiod0 Column representing the 'from' side of the transition probability timeperiod1 Column representing the 'to' side of the transition probability buyvar field value that represents a buy, defaults to Y

nobuyvar field value that represents not buy, defaults to N

Value

2 x 2 transaction matrix

```
timeperiod0 <- c("Y", "Y", "Y", "Y", "Y", "Y")
timeperiod1 <- c("N", "Y", "N", "Y", "N")
transitions(timeperiod0, timeperiod1)</pre>
```

Index

* billionaire	f_CustomerModelingMatrix, 16
billionaire, 4	f_CustomerSurvivalModelingMatrix, 16
* excel	f_intMonths, 17
exceldata, 14	fp, 15
* fp	<pre>frequency_from_ps, 15</pre>
fp, 15	<pre>frequency_from_rle, 15</pre>
* gamma	
gammagamma, 17	gammagamma, 17
* ltv	<pre>generate_date_template, 17</pre>
segltv, 24	
* model	id_to_CADF, 18
gammagamma, 17	ld_sample_customer_matrix, 18
* spend	ltv.transactions, 19
gammagamma, 17	itv. ti alisactions, 19
	modeling.annualhalfing.likelihood, 19
annualhalfing_LL,3	modeling.LL.gamma_spend, 19
annualhalfingmodel, 3	
	pdf_gamma, 20
bass.answeringmachines,4	pdf_gamma2, 20
bigT_expand_via_apply, 4	print.glossary, 21
billionaire,4	ps_to_T_custom, 22
	ps_to_T_strict_quitter, 22
ca_SRM, 8	ps_to_T_strict_stayer, 23
ca_SRM_time_varying,9	psmatrix_to_psstring, 21
ca_to_ps_matrix, 10	psmatrix_to_recency_attimeof_matrix,
cadf, 5	21
cadf.data.sample,5	
CADF_to_annualhalfing_data,5	qc_transactional_data, 23
CADF_to_btyd_pareto_nbd, 6	
CADF_to_logistic_regression, 6	segltv, 24
CADF_to_migration_model, 7	simple_migration, 24
CADF_to_nth_purchase, 7	<pre>split.transaction.file_to_CADF, 25</pre>
CADF_to_nth_purchase_allrows, 8	srm_data,25
create.purchase.string, 10	srm_summaries, 25
create.recency.string, 11	stocks, 26
Customer, 12	
	transactions, 26
discretechoice, 14	transactions.merged, 26
	transitions, 27
exceldata. 14	