files-structures.md 2025-05-10

خطة تنفيذ المشروع لكورس مقدمة في الجينوميات الحاسوبية

بناءً على الملفات المرفقة، سأقدم خطة شاملة مقسمة إلى مراحل واضحة مع خطوات تنفيذ Challenge_2025.pdf لتنفيذ المشروع المطلوب في ملف كل مرحلة. كما سأشرح وظيفة كل ملف وما يحتويه وكيفية استخدامه، وأحدد المخرجات المطلوب تسليمها بدقة. الهدف هو تحقيق متطلبات المشروع . باستخدام البرمجة وعلم الأحياء مع الاستفادة من جميع الملفات المقدمة

وظيفة كل ملف ومحتواه وكيفية استخدامه

1. extract_sequences.py

- Vextract_flanked_region الوظيفة: يحتوي على دالة وextract_flanked_region الوظيفة: يحتوي على دالة odownstream كروموسومي بناءً على مواقع البداية والنهاية مع إضافة مناطق مجاورة (strand).
- مناءً على بيانات الطفرات في ملفات genes.csv كيفية الاستخدام: سأستخدم هذه الدالة لاستخراج التسلسلات الجينية من ملف 100 د test_muts_data.csv بناءً على بيانات الطفرات (مثل 10 قواعد) لتحليل الطفرات ،

2. test_feats.csv

- لعينات الاختبار، وهي عدد الطفرات لكل جين لكل عينة (features) الوظيفة: يحتوى على بيانات ميزات ٥
-وأعمدة لـ 100 جين مع قيم عددية تمثل عدد الطفرات (مثل 0، 1، 2 case_id يحتوي على أعمدة CSV المحتوى: جدول ٥
- . train feats.csv باستخدام نموذج تعلم آلى مدرب على (labels) كيفية الاستخدام: سأستخدمه كمدخل للتنبؤ بالتسميات

3. Challenge_2025.pdf

- الوظيفة: يحتوى على وصف المشروع والمتطلبات الأساسية ٥
- النص بالعبرية والعربية مختلط وغير مفهوم)، لكن يمكن استنتاج أن) OCR المحتوى: تعليمات غير واضحة تمامًا بسبب مشاكل اله و Error = sum(df_known_test['Label'] != df_known_test['predict_label']) / len(df_known_test).
- . كيفية الاستخدام: سأعتمد على هذا الملف لفهم الهدف العام (تصنيف العينات بناءً على الطفرات) وأستخدم المعادلة لتقبيم النموذج ٥

4. train feats.csv

- .(labels) الوظيفة: بيانات تدريب تحتوي على ميزات العينات مع تسمياتها ٥
- . قيم مثل 1.0 أو 2.0)، وأعمدة لـ 100 جين مع عدد الطفرات) case_id، Label يحتوي على CSV المحتوى: جدول ٥
- كيفية الاستخدام: سأستخدمه لتدريب نموذج تعلم آلي للتنبؤ بالتسميات بناءً على عدد الطفرات ٥

5. 100_genes.csv

- . (الوظيفة: يحتوي على معلومات الجينات المرجعية (تسلسلات ومواقع ٥
- التسلسل النووي)،) Sequence ،(- الاتجاه + أو) strand ،(اسم الجين) gene يحتوي على أعمدة CSV المحتوى: جدول ٥ التسلسل النووي)،) Sequence ،(معلومات موقع الجين على الكروموسوم) وInfo.
- لتحليل التأثير الجيني extract sequences.py كيفية الاستخدام: سأستخدم التسلسلات لاستخراج مناطق الطفرات باستخدام ٥

6. test_muts_data.csv

الوظيفة: يحتوي على بيانات الطفرات التفصيلية لعينات الاختبار ٥

files-structures.md 2025-05-10

o المحتوى: جدول CSV بحتوي على CSV بحتوي على CSV المحتوى: جدول Missense Mutation، سنل ومعلومات (Missense_Mutation) مثل الأليلات

100 كيفية الاستخدام: سأستخدمه لتحليل الطفرات واستخراج التسلسلات لمقارنتها مع 100 test feats.csv.

7. train_muts_data.csv

- الوظيفة: يحتوى على بيانات الطفرات التفصيلية لعينات التدريب مع التسميات ٥
- . Label مع إضافة عمود Label مشابه لـ CSV المحتوى: جدول ه
- ه من التستخدام: سأستخدام: سأستخدمه لتحليل الطفرات وتدريب النموذج وربط التسميات مع دوريب النموذج وربط التسميات مع

الخطة المقترحة لتنفيذ المشروع

المرحلة 1: تحليل البيانات وفهمها

- المدة الزمنية: 2-3 أيام •
- :الخطوات
 - 1. Python مكتبة) pandas عراءة الملقات: استيراد جميع الملقات باستخدام .1
 - غحص البيانات .2
 - .test_muts_data.csv وtest_feats.csv التحقق من توافق عدد الطفرات في ■
 - التحقق من توافق train_muts_data.csv وtrain_feats.csv.
 - مع الجينات في ملفات الطفرات genes.csv_فحص أسماء الجينات في 100 .
 - :معالجة البيانات الأولية . 3
 - . (تنظيف البيانات (إزالة القيم المفقودة إن وجدت
 - .(إلى قيم عددية (مثل 1 و train feats.csv 2 تحويل التسميات في
 - . وعدد الطفرات الكلى في ملفات الميزات (Missense فهم العلاقات: تحليل العلاقة بين الطفرات التفصيلية (مثل . 4

المرحلة 2: استخراج التسلسلات الجينية

- المدة الزمنية: 3-4 أيام •
- :الخطوات
 - :إعداد البيانات 1.
 - استخراج مواقع الطفرات (Start_Position, End_Position, Mut_Strand) من (test_muts_data.csv) استخراج مواقع الطفرات
 - باستخدام أسماء الجينات qenes.csv ربطها مع التسلسلات في 100 ■
 - :تعديل الدالة 2
 - مع إضافة معلمة لتحديد حجم المناطق extract_flanked_region من extract_sequences.py استخدام upstream=10، downstream=10).
 - :استخراج التسلسلات
 - الكل طفرة، استخراج التسلسل المرجعي مع المناطق المجاورة
 - . كما في الدالة (reverse complement) إذا كان الاتجاه "-"، حساب التكامل العكسي
 - 4. نحتوي على (train_sequences.csv و train_sequences.csv تخزين النتائج: إنشاء ملفات جديدة (مثل على التسلسلات المستخرجة مع تفاصيل الطفرات

المرحلة 3: بناء وتدريب نموذج التعلم الآلي

files-structures.md 2025-05-10

- المدة الزمنية: 4-5 أيام
- :الخطوات
 - تحضير البيانات 1.
 - كمدخل (الميزات: عدد الطفرات لكل جين، الهدف train_feats.csv استخدام: Label).
 - . scikit-learn من train_test_split تقسيم البيانات إلى تدريب (80%) واختبار داخلي (20%) باستخدام ■
 - :اختيار النموذج .2
 - . لأنها مناسبة لتصنيف متعدد الفئات Logistic Regression أو Random Forest تجربة نماذج بسيطة مثل
 - تدريب النموذج 3.
 - scikit-learn. تدريب النموذج على بيانات التدريب باستخدام مكتبة
 - GridSearchCV. باستخدام (GridSearchCV ضبط المعلمات (مثل عدد الأشجار في
 - :تقييم النموذج .4
 - استخدام معادلة الخطأ من Challenge_2025.pdf:
 Error = sum(predictions != true_labels) / len(true_labels)
 الاختبار الداخلية
 - F1-score. و Accuracy حساب مقاییس أخرى مثل ■
 - 5. التحسين: إذا كان الأداء ضعيفًا، تجربة ميزات إضافية (مثل نوع الطفرة من الأداء ضعيفًا، تجربة ميزات إضافية (مثل نوع الطفرة من

المرحلة 4: التنبؤ وتحليل النتائج

- المدة الزمنية: 2-3 أيام
- :الخطوات
 - التنبؤ على بيانات الاختبار .1
 - استخدام النموذج المدرب للتنبؤ بتسميات test_feats.csv.
 - :مقارنة التسلسلات .2
 - مع التسلسلات المرجعية لتحديد تأثير الطفرات (مثل تغيير test_muts_data.csv مع التسلسلات المستخرجة من (الأحماض الأمينية).
 - إنشاء ملف النتائج . 3
 - . test_feats.csv لكل عينة في predict_labelو case_id يحتوي على CSV ملف ■

المرحلة 5: كتابة التقرير وإعداد التسليم

- المدة الزمنية: 2-3 أيام •
- الخطوات
 - : كتابة التقرير 1
 - مقدمة عن المشروع وأهدافه
 - .(وصف المنهجية (استخراج التسلسلات، بناء النموذج، التنبؤ
 - . (النتائج (دقة النموذج، أمثلة لتسلسلات الطفرات
 - . Challenge_2025.pdf) في OCR الاستنتاجات والتحديات (مثل مشاكل ■
 - إعداد الملفات .2
 - (predictions.csv).
 - ملفات التسلسلات المستخرجة
 - المستخدم مع تعليقات Python كود .

3.