kernel e imagen

Juan Esteban Carranza - jcarranza

April 2023

Un homomorfismo es $f:G\to H$ tal que:

$$f(g_1)f(g_2) = f(g_1g_2)$$

propiedades de los homomorfismos: se preserva el neutro:

$$f(1_G) = 1_H$$

se preserva la inversa:

$$f(g^{-1}) = f(g)^{-1}$$

1 Imagen

Sea $f:G\to H$ un homomorfismo de grupos, demostrar que imagen(f) es subgrupo de H:

El elemento 1_H pertenece a imagen(f) porque:

$$f(1_G) = 1_H$$

 $f(g_1g_2)$ pertenece al grupo sí $f(g_1), f(g_2) \in imagen(f)$ por:

$$f(g_1)f(g_2) = f(g_1g_2)$$

El inverso pertenece al grupo porque sí $f(g) \in imagen(f)$:

$$f(g^{-1}) = f(g)^{-1}$$

2 Kernel

Sea $f: G \to H$ un homomorfismo de grupos, demostrar que kernel(f) es subgrupo de G: El neutro pertenece al kernel(f) por:

$$f(1_G) = 1_H \to f(1_g) \in G$$

Por $f(g_1)f(g_2) = f(g_1g_2)$ podemos afirmar que:

$$g_1, g_2 \in kernel(f) \rightarrow g_1g_2 \in kernel(f)$$

Se puede decir que $g^{-1} \in kernel(f)$ porque:

$$f(g^{-1}) = f(g)^{-1} = (1_H)^{-1} = 1_H$$

3 Sea $X \subset G$, existe S tales que $X \subseteq S$

Siempre va a poder existir un conjunto S=G donde $X\subseteq S$ por lo cual se va atener que $X\subset G$