1

NCERT-discrete: 10.5.3 - 2

EE23BTECH11025 - Anantha Krishnan

I. QUESTION

The laplace transform of $x_1(t) = e^{-t}u(t)$ is $X_1(s)$, where u(t) is the unit step function. The laplace transform of $x_2(t) = e^t u(-t)$ is $X_2(s)$. Which one of the following statements is TRUE?

- 1) The region of convergence of $X_1(s)$ is $Re(s) \ge 0$
- 2) The region of convergence of $X_2(s)$ is confined to the left half-plane of s.
- 3) The region of convergence of $X_1(s)$ is confined to the right half-plane of s.
- 4) the imaginary axis in the s-plane is included in both the region of convergence of $X_1(s)$ and the region of convergence of $X_2(s)$.

Solutions:

Symbols	Description	Values
r	Common ratio of the GP	-2
x(n)	$(n+1)^{th}$ term of the Sequence	$x(0)r^nu(n)$
<i>x</i> (0)	First term of the GP	3

TABLE I

PARAMETERS, DESCRIPTIONS, AND VALUES

Laplace transform of $x_1(t)$ is given by :

$$X_1(s) = \int_{-\infty}^{\infty} e^{-t} e^{-st} u(t) dt = \frac{1}{s-1}, s > -1$$
 (1)

Laplace transform of $x_2(t)$ is given by :

$$X_2(s) = \int_{-\infty}^{\infty} e^t e^{-st} u(-t) dt = \frac{-1}{s-1}, s < 1$$
 (2)

Based on the regions of convergence of $X_1(s)$ and $X_2(s)$, we can conclude that option 4) is correct.