SEGSI

CIBERSEGURANÇA E ADMINISTRAÇÃO DE SISTEMAS DCR

Authentication Protocols - 1st phase

When referring to this authentication, the protocol is divided in two phases.

The first phase establishes the protocol to be used, for instances:

- PEAP (Protected AP)
- TTLS (Tunneled TLS)
- **TLS** (Certificate)
- FAST -

https://www.cisco.com/en/US/docs/wireless/wlan_adapter/eap_types/fast/admin/guide/EF_ovrvw.pdf

- PWD (Password)
- **LEAP** (Lightweight Extensible Authentication Protocol)

Authentication Protocols - PEAP

- PEAP or Protected EAP is one of the most common protocols protocols to see in the wild.
- It's use creates a tunnel between the client and Access Point so it can connect "securely".
- "Security" since often there are problems with the PKI infrastructure. Either the certificate is a self-signed one and can easily be forged due to lack of validation of the client. This is rare, but often happens.
- Or the implementation is flawed that the client sends credentials even when a certificate is configured (Android 5.0)

Authentication Protocols - TLS

- This is one of the most secure phase one protocols.
- Essentially it uses certificates to provide identity of the client (supplicant) to the authenticator.
- However, since it involves certificates its adoption rate is very low.

Authentication Protocols - 2nd Phase

The second phase, also known as inner authentication, differs from the first phase.

The most known protocols are:

- **PAP** Protected AP, ClearText
- MSCHAP Microsoft Challenge Protocol
- **MSCHAPv2** (Microsoft Challenge Protocol)^2
- **CHAP** Challenge Authentication Protocol
- **MD5** Well...
- **GTC** Token

Authentication Protocols - PAP

- PAP Protected AP is an inner authentication method that passes the authentication in a cleartext form.
- Meaning that no secure tunnel is made to exchange information.
- An attacker that is able to impersonate an access point can easily capture credentials.
- Even with a sniffer it is possible to do that so.

Authentication Protocols - MSCHAP(v2)

- MSCHAP or Microsoft Challenge Handshake Authentication Protocol is a protocol that, by itself, doesn't transmit the credential.
- This is similar to other Microsoft technologies that allow replay attacks.
- They all suffer from the same flaws, either replayability (with **scyophant**) or the ability to crack them.
- Yes, it depends on the password complexity, but the hash is not that strong and with GPU acceleration nowadays this hash cipher is easily crackable (Good luck enforcing complex passwords on your whole IT park).

Authentication Protocols - MD5

- It's MD5! All over again. Your identity is provided by a MD5 Hash of your password and passed to the authenticator. If one person is able to capture this request it is able to crack it either by brute forcing or finding a collision in the MD5 itself.
- With GPUs nowadays it's considered trivial to do so and this is considered an insecure method of authentication.

Authentication Protocols - GTC

 This is an implementation of a Generic Token challenge. This can be secured, as long as the token is correctly implemented. Not as widespread as other authentication methods.

Authentication Protocols - Summary

Attribute		EAP-Methods			
		TLS	TTLS	PEAP	MD5
Supplicant	Windows	Xsupplicant	Xsupplicant	Xsupplicant	Xsupplicant
Softwares	Linux	WPA_Supplicant	WPA_Supplicant	WPA_Supplicant	WPA_Supplicant
Deployment		Hard	Moderate	Moderate	Easy
User Identity hiding		No	Yes	Yes	No
EAP Attack	ks: Session				
hijacking, Man-in the		Protected	Protected	Protected	Not Protected
middle, Dictionary		111	4301700000000	110000000000000000000000000000000000000	The Rail Color
atta	ck				
Security		Strongest	Strong	Strong	Poor
Tunnel		No	Yes	Yes	No
Server Certificate		Yes	Yes	Yes	No
Client Certificate		Yes	Optional	No	No
Legacy Protocols		-	MD5, PAP,	MD5,	-
			CHAP,	MSCHAPv2,	
			MSCHAP,	GTC	
			MSCHAPv2		
			Digital	Digital	
20			certificates or	certificates or	V. 10
			Diffie-Hellman	Diffie-Hellman	One way
Encryption		Digital	algorithm to	algorithm to	message digest
Technology		certificates	generate keying	generate keying	
			material,	material,	
			symmetric key	symmetric key	
			for data	for data	
			encryption	encryption	
Protected	Cipher		10000		
Suite Negotiation		Not Required	Yes	Yes	No
Cipher-					20000000
Negotiation		No	Yes	No	No
Fast reconnect		Yes	Yes	Yes	No

Radius

Standard protocol to interconnect clients to several domains

It can interconnect with different providers;

The standard case is the Eduroam Network where AAA requests are sent to the respective institutions;

The Supplicant requests the authenticator to connect; The authenticator forwards the request to the Radius server; Based on the **Realm** of the user.

Often a shared key is used to avoid rogue clients to connect to the server.

RADIUS Authentication Process

Radius

Radius Authentication steps:

A client requests User Access providing the necessary information

One of the following:

Accepted

Rejected

Challenge

Radius

Radius Accounting

If the Accounting is done by the

NAS Accounting is done by the
following flow.

Accounting might be done in a different place if an external provider is set up i.e.: Kerberos, LDAP..

TACACS

- Often used in Cisco Network Devices for AAA.
- Configured in the Device itself we can set the AAA server and enable what can the user do in the device
- Legacy protocol with some security concerns.

https://www.openwall.com/articles/T ACACS+-Protocol-Security

DIAMETER

- 2x the Radius=Diameter
- It brings additional solutions to AAA protocols:
 - TLS certificates;
 - End-2-End encryption;
 - Scalability;
 - Resilience;
- With more capabilities it brings additional complexity to the environment making it a not so adopted solution, apart from the 5G integration

DIAMETER

The connection is Session Oriented; Roaming is possible and intended;

