Задача 10-3 Насос

Часть 1. Накачивание воздуха.

1.1 В начальном состоянии положении (точка 1) поршень находится в крайнем правом положении, объем газа - v_0 , давление P_0 .

Поршень начинает двигаться влево, сжимая газ в камере. Пока давление газа в камере насоса не достигнет давления газа в сосуде, оба клапана будут закрыты, поэтому процесс сжатия будет описываться уравнением

$$P_0 v_0 = P v \quad \Rightarrow \quad P = \frac{P_0 v_0}{v} \,. \tag{1}$$

Давление газа в камере достигнет значения давления в сосуде $P_{\scriptscriptstyle k}$, года объем уменьшится до значения v' (точка 2), которое определяется выражением

$$P_k = \frac{P_0 v_0}{v'} \quad \Rightarrow \quad v' = \frac{P_0 v_0}{P_k} \,. \tag{2}$$

После этого откроется клапан 1 и газ начнет поступать в сосуд.

На этом участке происходит сжатие газа в объеме сосуда и камеры насоса, поэтому описывается уравнением

$$P_{k}(V+v') = P(V+v) \implies P = P_{k} \frac{V+v'}{V+v}. \tag{3}$$

Такое сжатие будет продолжаться до тех пор, пока поршень не достигнет крайнего левого положения (точка 3), в котором объем газа в камере насоса равен v_1 , давление достигнет значения

$$P_{k+1} = P_k \frac{V + v'}{V + v_1} = P_k \frac{V}{V + v_1} + \frac{P_k v'}{V + v_1} = P_k \frac{V}{V + v_1} + P_0 \frac{v_0}{V + v_1}. \tag{4}$$

Это же давление будет и в сосуде, на остальных участках цикла оно изменяться не будет.

На следующем этапе поршень начинает обратное движение (вправо), при этом оба клапана опять оказываются закрытыми, пока давление в камере насоса не опустится до атмосферного давления. На этом участке уравнение процесса имеет вид

$$P_{k+1}v_1 = Pv \quad \Rightarrow \quad P = \frac{P_{k+1}v_1}{v} \tag{5}$$

Давление в камере насоса станет равным атмосферному, когда объем газа увеличится до значения v'', которое определяется формулой

$$P_0 = \frac{P_{k+1}v_1}{v''} \implies v'' = \frac{P_{k+1}v_1}{P_0}. \tag{6}$$

При дальнейшем смещении поршня откроется клапан 2 и атмосферный воздух будет поступать в камеру насоса, при этом давление воздуха в камере насоса будет оставаться равным атмосферному $P=P_0$.

Для наглядности все характеристики цикла сведены в таблицу и показаны на графике.

Цикл накачки.

Процесс	Начальное		Уравнение	Конечное состояние	
	состояние		процесса		
	Объем	Давление		Объем	Давление
1-2	v_0	P_0	$P = \frac{P_0 v_0}{}$	$v' = \frac{P_0 v_0}{r_0}$	P_k
			v	P_k	
2-3	v'	P_k	$P = P_k \frac{V + v'}{V + v}$	v_1	$P_{k+1} = P_k \frac{V}{V + v_1} + \frac{P_0 v_0}{V + v_1}$
3-4	v_1	P_{k+1}	$P = \frac{P_{k+1}v_1}{v}$	$v'' = \frac{P_{k+1}v_1}{P_0}$	P_0
4-1	v"	P_0	$P = P_0$	v_0	P_0

Диаграмма цикла накачки.

1.2 – 1.3 Расчеты параметров требуемых циклов, проведенные по формулам таблицы 1 приведены в соответствующих таблицах и на графиках.

Циклы 1, 2 Таблица состояний.

Точка	Объем	Давление	
	v (л)	<i>P</i> (атм.)	
Цикл 1			
1	1,00	1,00	
2	1,00	1,00	
3	0,20	1,04	
4	0,21	1,00	
Цикл 2			
1	1,00	1,00	
2	0,96	1,04	
3	0,20	1,08	
4	0,22	1,00	

Цикл (k+1) Таблица состояний.

Точка	Объем	Давление	
	v (л)	<i>P</i> (атм.)	
1	1,00	1,00	
2	0,50	2,00	
3	0,20	2,03	
4	0,41	1,00	

1.4 Фактически требуемая формула получена в пункте 1.1 – формула (4):

$$P_{k+1} = P_k \frac{V}{V + \nu_1} + P_0 \frac{\nu_0}{V + \nu_1}. \tag{4'}$$

Из сравнения с формулой, приведенной в условии ($P_k = \gamma P_{k-1} + a$), следует, что ее параметры задаются формулами

$$\gamma = \frac{V}{V + \nu_1} \tag{7}$$

$$a = P_0 \frac{v_0}{V + v_1} \tag{8}$$

1.5 Предельное давление может быть найдено как путем чисто физических рассуждений, так и формально математически.

<u>Физические рассуждения</u>. Максимально возможное сжатие воздуха в камере насоса достигается, когда поршень приходит в крайнее левое положение, а при этом клапан сосуда еще не открывается

В этом случае из выражения (1) следует формула для максимального давления

$$\overline{P} = P_0 \frac{v_0}{v_1} \,. \tag{9}$$

<u>Формально математически</u> этот же результат можно получить из рекуррентной формулы, полагая в ней, что давление перестало изменяться, т.е. $P_{k+1} = P_k = \overline{P}$. В этом случае получаем

$$\overline{P} = \gamma \overline{P} + a \implies \overline{P} = \frac{a}{1 - \gamma} = P_0 \frac{v_0}{v_1}.$$
 (9')

1.6 Из обозначения $\delta_k = \overline{P} - P_k$ выразим значение давления $P_k = \overline{P} - \delta_k$ и подставим в рекуррентную формулу

$$\overline{P} - \delta_k = \gamma (\overline{P} - \delta_{k-1}) + a. \tag{10}$$

С учетом выражения (9'), получаем, что

$$\delta_k = \gamma \delta_{k-1} \tag{11}$$

 $1.7\,\Phi$ ормула (11), указывает, что величины δ_k образуют геометрическую прогрессию, поэтому

$$\delta_k = \delta_0 \gamma^k \tag{12}$$

С помощью обратной подстановки $P_{\scriptscriptstyle k} = \overline{P} - \mathcal{S}_{\scriptscriptstyle k}$ получим

$$P_{k} = \overline{P} - \delta_{0} \gamma^{k} = P_{0} \frac{v_{0}}{v_{1}} - \left(P_{0} \frac{v_{0}}{v_{1}} - P_{0} \right) \left(\frac{V}{V + v_{1}} \right)^{k}.$$
 (13)

График этой зависимости имеет вид кривой, монотонно стремящейся к предельному значению.

1.8 для расчета числа циклов удобно воспользоваться формулой (12). Проведем численный расчет ее параметров:

- знаменатель прогрессии $\gamma = \frac{V}{V + v_1} = \frac{20,00}{20,20} = 0,990;$
- максимальное давление $\overline{P} = P_0 \frac{v_0}{v_1} = 5{,}00P_0$;
- начальное отклонение $\delta_0 = \overline{P} P_0 = 4{,}00P_0$;

- конечное отклонение $\delta_k = \overline{P} - 0.95\overline{P} = 0.25P_0$.

Теперь из формулы (12) найдем

$$\delta_k = \delta_0 \gamma^k \quad \Rightarrow \quad k = \frac{\ln \frac{\delta_k}{\delta_0}}{\ln \gamma} = 276 \approx 280. \tag{14}$$

Часть 2. Откачка.

2.1 Решение этой части полностью аналогично решению первой части задачи, поэтому приведем его кратко.

Цикл откачки также состоит из четырех этапов. В соответствии с условием начнем с состояния, когда поршень находится в крайнем левом положении (давление в этом состоянии равно атмосферному) и начинает двигаться вправо. При этом оба клапана закрыты: газ в камере насоса расширяется, давление падает. Когда давление в камере становится равным давлению в сосуде, открывается клапан 1 и газ частично Поршень начинает выходить ИЗ сосуда. смещается в крайнее правое положение и начинает возвращаться обратно, при этом клапан 1 закрывается. Давление в камере растет и когда достигает атмосферного открывается клапан 2 и газ частично выбрасывается в атмосферу.

Эти стадии показаны на рисунке, начальные, конечные значения параметров газа в камере насоса и уравнения процессов приведены в Таблице 2. Схематическая диаграмма цикла показана на рисунке.

Таблица 2. Цикл откачки.

Процесс	Начальное состояние		Уравнение процесса	Конечное состояние	
	Объем	Давление		Объем	Давление
1-2	v_1	P_0	$P = \frac{P_0 v_1}{v}$	$v' = \frac{P_0 v_1}{P_k}$	P_k
2-3	v'	P_k	$P = P_k \frac{V + v'}{V + v}$	v_0	$P_{k+1} = P_k \frac{V + v'}{V + v_0}$
3-4	v_0	P_{k+1}	$P = \frac{P_{k+1}v_0}{v}$	$v'' = \frac{P_{k+1}v_0}{P_0}$	P_0
4-1	v"	$\overline{P_0}$	$P = P_0$	v_1	P_0

Диаграмма цикла откачки.

2.2 Уменьшение давления в сосуде происходит на 3 этапе цикла откачки, уравнение процесса на этом этапе позволяет получить рекуррентное соотношение, связывающее давления до и после очередного цикла

$$P_{k+1} = P_k \frac{V + v'}{V + v_0} \,. \tag{15}$$

Подставляя значения для объема v' (при котором начинается выход газа из сосуда), получим

$$P_{k+1} = P_k \frac{V + v'}{V + v_0} = P_k \frac{V + \frac{P_0 v_1}{P_k}}{V + v_0} = P_k \frac{V}{V + v_0} + P_0 \frac{v_1}{V + v_0}.$$
 (16)

Это соотношение полностью аналогично соотношению (4'), проанализированному в первой части задачи. Поэтому можно переписать полученные ранее решения, только при этом надо поменять местами значения объемов v_0 и v_1 . Тогда зависимость давления в камере от числа проведенных циклов опишется формулой, аналогичной формуле (13):

$$P_{k} = P_{0} \frac{v_{1}}{v_{0}} - P_{0} \left(\frac{v_{1}}{v_{0}} - 1\right) \left(\frac{V}{V + v_{0}}\right)^{k}$$
(17)

2.3 Подстановка численных значений параметров в эту формулу и последующий расчет дает значение давления в камере после 50 циклов откачки:

$$P_{50} = P_0 \left(\frac{v_1}{v_0} - \left(\frac{v_1}{v_0} - 1 \right) \left(\frac{V}{V + v_0} \right)^k \right) = P_0 \left(0.20 + 0.80 \cdot \left(\frac{20}{21} \right)^{50} \right) = 0.27 \text{ amm}.$$
 (18)

2.4 Предельное минимальное значение давления воздуха в сосуде равно.

$$P_k = P_0 \frac{v_1}{v_0} = 0,20 amm. (19)$$