HZ. LP 锟 罐 湖 麗 ILF 鰛 LP 鼦 L.P 謂 麗 記

QCA sekvenčna ALE

Miha Zidar, Anže Pečar, Matic Potočnik, Željko Plesac, Jan Varljen

Skupina 2 in 4

Povzetek. V seminarski nalogi bomo opisali zasnovo sekvenčne ALE s kvantnimi celičnimi avtomati, z uporabo programa QCAdesigner.

 $Ključne \ besede. \ \ kvantni celični avtomati, aritmetično-logična enota, modeliranje in simulacija$

1	Uvo	od			
_		Ideja			
		Motivacija			
2	Metode				
	2.1	Opis naloge			
	2.2	Ideje za realizacijo			
3	Rezultati				
	3.1	Izbira operacije			
	3.2	Negacija			
	3.3	Konjunkcija			
	3.4	Seštevalnik/odštevalnik			
4	Zak	Zaključek			
	Lite	eratura			

1. Uvod

1.1. Ideja

V tej seminarski nalogi bomo opisali zasnovo sekvenčne ALE s kvantnimi celičnimi avtomati (angl. quantum cellular automata – QCA). Modelirali jo bomo z uporabo odprtokodnega programa QCADesigner[1], za skice logičnih vezij, pa bomo uporabili TinyCAD.

Sekvenčnost enote tu pomeni, da enota ne izvaja operacij nad vsebino končno dolgih registrov, ampak sprejema tok bitov, nad posameznimi biti izvaja operacije in tudi svoj izhod podaja kot tok bitov. Za določene operacije tak pristop ni praktičen, ali pa je celo nemogoč, je pa mogoče na tak način implementirati poln funkcijski sistem, kar smo v nalogi tudi storili.

1.2. Motivacija

Predvideva se, da bo že čez nekaj desetletij minituarizacija in zmogljivost čipov, grajenih na siliciju, dosegla končno stopnjo in bo potrebno za večjo procesno moč preiti na drug osnovni material in najverjetneje tudi spremeniti pristop k modeliranju vezij. Ena izmed obetajočih alternativ so kvantni celični avtomati, ki obljubljajo mnoge prednosti pred klasičinimi vezji:

- Možnost večnivojskih vezij
- Možnost križanja vodil
- Enostavna realizacija nekaterih časovnih vezij
- Potencialno nižja poraba in višji takt delovanja
- **...**

2. Metode

V tem odseku bomo predstavili nekatere osnovne ideje in odločitve, ki smo jih nato uporabili pri realizaciji naše ALE.

2.1. Opis naloge

Realizirali bomo sekvenčno ALE, s funkcijsko polnim sistemom operacij. Za izbiro operacije bomo uporabili dva bita, enota pa bo podpirala naslednje operacije:

Operacija	Oznaka	Op. koda
NOT	7	0.0
AND	^	01
ADD	\oplus	10
SUB	\ominus	11

Tabela 1. Seznam operacij

2.2. Ideje za realizacijo

Operaciji NOT in AND sta že v osnovi bitni operaciji in je tako sekvenčna realizacija popolnoma naravna. Pri ADD s stališča sekvenčnosti delovanja tudi ni posebnih zapletov, pri SUB pa smo poskušali operirati, kot bi imeli števili zapisani v predstavitvi z dvojnim komplementom.

3. Rezultati

V tem delu seminarske naloge bomo predstavili realizacijo posameznih delov ALE. Pri realizaciji smo si pomagali s knjigo[2].

3.1. Izbira operacije

Izbira operacije je realizirana z dvo-bitnim demultiplekserjem, ki izbira med operacijami NOT, AND, ADD in SUB, kot smo to zapisali v Table 1.

3.2. Negacija

Negacijo (operacijo NOT) smo realizirali s polovičnim zamikom celice.

3.3. Konjunkcija

Konjunkcijo (operacijo AND) smo realizirali z majoritetnimi vrati, ki imajo enega izmed vhodov nastavljenega na polarizacijo -1.

3.4. Seštevalnik/odštevalnik

Seštevalnik in odštevalnik (operaciji ADD in SUB), smo želeli realizirali skupaj – pri odštevanju bi drugo število negirali in mu pri prvem bitu prišteli 1, kot da bi bilo zapisano v predstavitvi z dvojnim komplementom.

Na žalost nam je uspelo realizirati le seštevalnik.

4. Zaključek

Zaključki z nekaj izhodišči za nadaljnje delo.

Literatura

- [1] K. Walus, T. Dysart, G. Jullien, A. Budiman, Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata, IEEE Transactions on Nanotechnology 3 (1) (2004) 26–31.
- [2] J. Virant, Načrtovanje nanoračunalniških struktur : uvod v nanoračunalniško logiko, Didakta, Radovljica, Slovenia, 2007.

Slika 1. Demultiplekser

Slika 2. NOT vrata

Slika 3. AND vrata

Slika 4. Seštevalnik

Slika 5. Seštevalnik