IESTI01 - TinyML

Embedded Machine Learning

- 3. TinyML Challenges:
 - Embedded Systems

Prof. Marcelo Rovai
UNIFEI

What are the Challenges for TinyML?

TinyML

Computer System

Hardware

Applications

Libraries

Operating System

Hardware

Building Blocks of Computing Hardware

Hardware

Software

Compute

Memory

Storage

Microprocessor *v.*Microcontroller

Microprocessor: only one part of the puzzle

Microcontroller

CPU	Read-Only Memory (ROM)	Read-Write Memory	
Timer	I/O Port	Serial Interface	

Microcontroller: a complete package

Microprocessor (CPU)

- Heart of a computer system
- Just the processor, memory and storage are external
- Mainly used in general purpose systems like laptops, desktops and servers
- Offers flexibility in design
- System size is big

Microcontroller

- Heart of an embedded system
- Memory and storage are all internal to the system
- Mainly used in specialized,
 fixed function systems like
 phones, MP3 players, etc.
- Limited flexibility in design
- System size is tiny

Orders of Magnitude Difference

Platform

Compute

Memory

Storage

Power

Microprocessor	>	> Microcontroller	
			Nano
1GHz-4GHz	~10X	1MHz-400MHz	64MHz
512MB-64GB	~10000X	2KB-512KB	256KB
64GB-4TB	~100000X	32KB-2MB	1MB
30W-100W	~1000X	150µW-23.5mW	

Implications

- How complicated is the running task?
- How much memory does it need to have?
- How long does the job have to perform?

Microcontroller

1MHz-400MHz

2KB - 512KB

32KB - 2MB

150µW-23.5mW

Hardware

Power

EdgeML

TinyML

Video Classification 2 MB+

Jetson Nano RaspberryPi **SmartPhone** (Cortex-A + GPU) (Cortex-A)

KeyWord Spotting Audio Classification 50 KB

Image

250 KB+

Arduino Pro (Cortex-M7)

Anomaly Detection Sensor Classification 20 KB

(Cortex-M0+)

Source: Edge Impulse

Computing Hardware

	Raspberry Pico	Arduino Nano Sense	ESP 32	Seeed Wio Terminal	Arduino Portenta
32Bits CPU	Dual-core Arm Cortex-M0+	Arm Cortex-M4F	Xtensa LX6 Dual Core	Arm Cortex-M4F	Dual Core Arm Cortex M7/M4
CLOCK	133MHz	64MHz	240MHz	120MHz	480/240MHz
RAM	264KB	256KB	520KB	192KB	1MB
ROM	2MB	1MB	2MB	4MB	2MB
Radio		BLE	BLE/WiFi	BLE/WiFi	BLE/WiFi
Sensors	No	Yes	No	Yes	No

ARM Cortex Processor Profiles

Pipeline Complexity

ARM Cortex Profiles

Pipeline Complexity

ARM Cortex Profiles

General data processing

I/O control tasks

Applications

Libraries

Operating System

Hardware

Hardware

Software

Applications

Libraries

Operating System

Hardware

Widely Used Operating Systems

Applications

Libraries

Operating System

Hardware

Applications

Libraries

Operating System

Hardware

import numpy as np

for x in range(10):
 np.SaveTheWorld()

Applications

Libraries

Operating System

Hardware

Portability Opportunity

Able to execute the same code on different microprocessor hardware and architectures.

Portability Trade-offs

Portability Trade-offs

Portability Trade-offs

Sacrifice portability across systems for efficiency in system performance and power efficiency

Summary

 Embedded hardware is extremely limited in performance, power consumption and storage Embedded software is not as portable and flexible as mainstream computing

Reading Material

Main references

- Harvard School of Engineering and Applied Sciences CS249r: Tiny Machine Learning
- Professional Certificate in Tiny Machine Learning (TinyML) edX/Harvard
- Introduction to Embedded Machine Learning Coursera/Edge Impulse
- Computer Vision with Embedded Machine Learning Coursera/Edge Impulse
- Fundamentals textbook: "Deep Learning with Python" by François Chollet
- Applications & Deploy textbook: <u>"TinyML" by Pete Warden, Daniel Situnayake</u>
- Deploy textbook <u>"TinyML Cookbook" by Gian Marco Iodice</u>

I want to thank Shawn Hymel and Edge Impulse, Pete Warden and Laurence Moroney from Google, Professor Vijay Janapa Reddi and Brian Plancher from Harvard, and the rest of the TinyMLedu team for preparing the excellent material on TinyML that is the basis of this course at UNIFEI.

The IESTI01 course is part of the <u>TinyML4D</u>, an initiative to make TinyML education available to everyone globally.

Thanks

