Uncertainty quantification in an oil plume model.

Shitao Wang

Rosenstiel School of Marine and Atmospheric Science Meteorology and Physical Oceanography

Introduction

Goal

Assess how input uncertainties of an oil plume model impact its outputs.

Figure: Modified from Li Zheng et al. 2003

Introduction

Goal

Assess how input uncertainties of an oil plume model impact its outputs.

Important outputs from oil plume model

Trap height:

Plume dynamic regime \Rightarrow Advection and dispersion regime.

Gas mass fluxes

Control the buoyancy force.

Figure: Modified from Li Zheng et al. 2003

Introduction

Goal

Assess how input uncertainties of an oil plume model impact its outputs.

Important outputs from oil plume model

Trap height:

Plume dynamic regime \Rightarrow Advection and dispersion regime.

Gas mass fluxes:

Control the buoyancy force.

Possible uncertainties of model inputs

Entrainment coefficient: 0.06-0.116. (Bhaumik 2005) Gas to oil ratio (GOR): 1600ft³/barrel, 2470ft³/barrel, 3000ft³/barrel. (Valentine et al. 2010; Reddy et al. 2012)

Other parameters: Oil droplet/gas bubble initial distribution, etc.

Figure: Modified from Li Zheng et al. 2003

Integral plume model (Socolofsky et al. 2008)

Model descriptions

- Stratification dominated (DWH, Camilli et al. 2010, Socolofsky et al. 2011)
- Double-plume approach

Integral plume model (Socolofsky et al. 2008)

Model descriptions

- Stratification dominated (DWH, Camilli et al. 2010, Socolofsky et al. 2011)
- Double-plume approach

Self similarity assumption

$$Q(z) = 2\pi \int_0^\infty u(r,z) r dr = \pi b^2(z) u(z)$$

$$M(z) = 2\pi \int_0^\infty u^2(r,z) r dr = \pi b^2 u^2$$

Variables have similar lateral profiles at different plume heights.

Integral plume model (Socolofsky et al. 2008)

Model descriptions

- Stratification dominated (DWH, Camilli et al. 2010, Socolofsky et al. 2011)
- Double-plume approach

Self similarity assumption

$$Q(z) = 2\pi \int_0^\infty u(r,z) r dr = \pi b^2(z) u(z)$$

$$M(z) = 2\pi \int_0^\infty u^2(r,z) r dr = \pi b^2 u^2$$

Variables have similar lateral profiles at different plume heights.

Entrainment hypothesis

$$u_e = \alpha u_c$$

The entrainment velocity u_e is proportional to the central velocity u_c .

Main approach:

Construct the probability density function of the model output instead of focusing on single model run.

Main approach:

Construct the probability density function of the model output instead of focusing on single model run.

0 (0.00, 0.110)	S1 0 (-, -)
U(0.4, 0.6)	$\xi_2 \sim U(-1,1)$
U(1400, 3000)	$\xi_3 \sim U(-1,1)$
U(1, 10)	$\xi_4 \sim U(-1,1)$
U(1.5, 4)	$\xi_5 \sim U(-1,1)$
	U(1400, 3000) U(1, 10)

Main approach:

Construct the probability density function of the model output instead of focusing on single model run.

Uncertainty inputs

Parameter	Distribution	Random variable
Entrainment coefficient	U(0.06, 0.116)	$\xi_1 \sim U(-1,1)$
Entrainment ratio	U(0.4, 0.6)	$\xi_2 \sim U(-1,1)$
Gas-to-oil ratio (bbl/ft^3)	U(1400, 3000)	$\xi_3 \sim U(-1,1)$
95th percentile of the droplet size (D_{95}) (mm)	U(1, 10)	$\xi_4 \sim U(-1,1)$
Droplet distribution spreading ratio	U(1.5, 4)	$\xi_5 \sim U(-1,1)$

Model outputs

Trap height, peel height and mass flux of different gas bubble sizes.

Main approach:

Construct the probability density function of the model output instead of focusing on single model run.

Uncertainty inputs

Parameter	Distribution	Random variable
Entrainment coefficient	U(0.06, 0.116)	$\xi_1 \sim U(-1,1)$
Entrainment ratio	U(0.4, 0.6)	$\xi_2 \sim U(-1,1)$
Gas-to-oil ratio (bbl/ft^3)	U(1400, 3000)	$\xi_3 \sim U(-1,1)$
95th percentile of the droplet size (D_{95}) (mm)	U(1, 10)	$\xi_4 \sim U(-1,1)$
Droplet distribution spreading ratio	U(1.5, 4)	$\xi_5 \sim U(-1,1)$

Model outputs

Trap height, peel height and mass flux of different gas bubble sizes.

Uncertainty propagation issue

Direct sampling of a 5-dimensional uncertainty space requires a large number of simulations and hinders operational decision making. Can we do better?

Emulator-type methods

Main idea

Indirect sample: Use a small ensemble to build a faithful proxy/surrogate/emulator for the model and use it to estimate the model statistics.

Emulator-type methods

Main idea

Indirect sample: Use a small ensemble to build a faithful proxy/surrogate/emulator for the model and use it to estimate the model statistics.

Emulator methods

Polynomial Chaos Expansion: Series expansion in uncertain inputs.

Various approaches to determine coefficients: Projection, Regression, Compressive Sensing.

• Gaussian Process Regression (non-polynomial approach).

Both techniques are ensemble based and we can build a faithful surrogate with as little as 50 realizations. Most importantly we can TEST the approximation properties.

Response surface in 1D: emulator-type methods v.s. model simulation

Figure: 1D comparision of emulator-type methods and model simulation (200 samples in each dimension). Red star is **direct sampling** from the model orthers are **indirect sampling** from emulator-type methods (PC in black curve and GP in blue dash).

PDF comparison

Numerical experiments:

- 50,000 Latin Hypercube Sampling to build reference statistics.
- Ensemble of 391 to build Polynomial Chaos series with regression.
- Faithful ensemble can be built using as little as 50 samples using compressed sensing or Gaussian Process techniques.

Trap height PDF

Figure: Trap height PDF produced by PC emulator with 100,000 samples, Fluorescence measurement, a proxy for oil concentration. Real computational cost: **50** instead of 100,000 model simulations.

Gas mass flux PDF

Figure: Mass flux PDF at the trap height for different gas bubble sizes. Input for Lagrangian model - prediction with uncertainty.

Sensitivity index

Global sensitivity analysis aims to quantify the contribution of different random input variables to the model variability.

Sensitivity index =
$$\frac{Variance \text{ of } \xi_i}{Total Variance}$$

Parameter	Distribution	SI trap	SI peel
Entrainment coefficient	U(0.06, 0.116)	0.1981	0.2926
Entrainment ratio	U(0.4, 0.6)	0.1985	0.1466
Gas-to-oil ratio	U(1400, 3000)	0.0424	0.0706
95th percentile of the droplet size (D_{95})	U(1, 10)	0.5334	0.4917
Droplet distribution spreading ratio	U(1.5, 4)	0.0389	0.0384

Table: Total sensitivity indices associated with different random variables

Summary & future work

Summary

- Propagating uncertainties through the plume model provides statistical characteristics of quantities of interest.
- The emulator-type methods agree well with the direct sampling method in the plume model.
- Sensitivity analysis points out the key parameter in the model

Summary & future work

Summary

- Propagating uncertainties through the plume model provides statistical characteristics of quantities of interest.
- The emulator-type methods agree well with the direct sampling method in the plume model.
- Sensitivity analysis points out the key parameter in the model

Future work

- Propagating the output pdf from the plume model into a Lagrangian particle tracking model.
- Identify observational data to perform an inverse uncertainty propagation and to correct input uncertainties

Thank you! Questions?

