

planetmath.org

Math for the people, by the people.

germ of smooth functions

Canonical name GermOfSmoothFunctions

Date of creation 2013-03-22 13:05:08 Last modified on 2013-03-22 13:05:08

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 4

Author rspuzio (6075) Entry type Definition Classification msc 53B99 If x is a point on a smooth manifold M, then a germ of smooth functions near x is represented by a pair (U, f) where $U \subseteq M$ is an open neighbourhood of x, and f is a smooth function $U \to \mathbb{R}$. Two such pairs (U, f) and (V, g) are considered equivalent if there is a third open neighbourhood W of x, contained in both U and V, such that $f|_{W} = g|_{W}$. To be precise, a germ of smooth functions near x is an equivalence class of such pairs.

In more fancy language: the set \mathcal{O}_x of germs at x is the stalk at x of the sheaf \mathcal{O} of smooth functions on M. It is clearly an \mathbb{R} -algebra.

Germs are useful for defining the tangent space T_xM in a coordinate-free manner: it is simply the space of all \mathbb{R} -linear maps $X: \mathcal{O}_x \to \mathbb{R}$ satisfying Leibniz' rule X(fg) = X(f)g + fX(g). (Such a map is called an \mathbb{R} -linear derivation of \mathcal{O}_x with values in \mathbb{R} .)