

Progetto del controllore

Un'altra rete di compensazione

Quando può essere utile

Se le specifiche di precisione impongono una catena aperta di tipo 1, allora il controllore deve contenere un polo nell'origine (un integratore); se in tali casi è necessario anche un buon anticipo di fase allora può essere conveniente "aggiungere" anche uno zero reale

Naturalmente il secondo blocco non è fisicamente realizzabile (fdt non propria)

Funzione di trasferimento

La fdt complessiva è invece propria

$$C_{PI}(s) = \frac{1+\tau s}{s} \quad con \quad \tau > 0$$

 Il nome P.I. deriva dal fatto che questa rete di compensazione realizza la somma di un'azione Proporzionale e di un'azione Integrale dal segnale di ingresso e; per l'uscita u si può infatti scrivere

$$u(s) = \tau e(s) + \frac{1}{s}e(s)$$

$$P \qquad I$$

Il progetto

- Dal punto di vista del progetto è più comodo, una volta fissato il valore del guadagno stazionario dell'integratore, determinare il valore più opportuno dello zero, ovvero del parametro τ
- Il parametro τ si determina in genere a partire dall'entità dell'anticipo di fase che si vuole ottenere dal fattore $(1 + \tau s)$ in corrispondenza della pulsazione $\omega_{c,des}$
- Sono utili, quindi, i DdB di tale fattore
- Attenzione: tenere conto anche del contributo in modulo!

Diagrammi di Bode del fattore $(1+\tau s)$

Diagrammi di Bode

I DdB della figura precedente sono stati tracciati con l'ausilio del comando Matlab

```
>> s=tf('s'),bode(1+s)
```

Esercizio proposto

È dato un sistema rappresentato dalla seguente fdt

$$F(s) = \frac{0.1}{(1+s)(1+0.1s)(1+0.01s)}$$

- Progettare C(s) affinché il sistema in catena chiusa soddisfi le seguenti specifiche
 - errore stazionario di inseguimento alla rampa unitaria, $|e_r| \le 0.04$
 - tempo di salita, $t_s \cong 0.5$
 - sovraelongazione della risposta al gradino, $\hat{s} \leq 30\%$