

Fig. 1

TGGTTGTCCTGGAACTCACTCTGTAGACCAGGCTGGCCATGAACTCACAGA GATCTACCTCCTGAGTGCTGGGATTAAAGGTTTGTGCCACCACCTCCCAAC TCTAAGGTGTTTCTTTAAGTTAGGGGCATAGTAAACATTGTTGAGATACTA GAGGAACACTGAATGAAAATTTGGACATCTCTGCTTTAGGTTTGTGCTGAG CAGTTTGCCTCTTATCTTCACCTATGCTGAAAAGTTTGAGTTCATAATTTTG **ATGAACTTACCTTTAAAATGTCAGTAACAACTCTGCATGGTTTTCTTCTTAC** CTCCATAGGTATGGTCTGAATATGCGTTGTTTGGCAGCTCGGGTCAACTAT **AAGACTTTGATTATCATCTGTGCGCTATTCACTTTTGGTCACAGTACTTTTGT GGAATAAGTGTTCCAGCGACAAAGCAATCCAGTTTCCTCGGCACTTGAGTA GTGGATTCAGAGTGGATGGATTAGAAAAAAGATCAGCAGCATCTGAAAGTA ACCACTATGCCAACCACATAGCCAAACAGCAGTCAGAAGAGGCATTTCCTC** AGGAACAACAGAAGGCACCCCCTGTTGTTGGGGGCTTCAATAGCAACGGG **GGAAGCAAGGTGTTAGGGCTCAAATATGAAGAGATTGACTGTCTCATAAAC** TTCACTTGGGTAGAGAAATACTTTG<u>ATGTTTATGGAAAAGTGGTCCGAGTA</u> TGACGCTATGATCGATTTGAATTC::TCTCATAGCTATTCCAAAGTCTATGCA CAGAGAGCCCCTTATCACCCTGATGGTGTTTTATGTCCTTTGAAGGCTACAATG TGGAAGTCCGAGACAGAGTCAAGTGCATAAGTGGGGTTGAAGGTGTACCTTTAT CTACACAGTGGGGACCTCAAGGCTATTTCTACCCAATCCAGATTGCACAGTATG GGTTAAGTCACTACAGCAAGAATCTAACTGAAAAACCCCCTCATATAGAGGTAT ATGAAACAGCAGAAGACAGGGACAAAAACAGCAAGCCCAATGACTGGACTGTG CCCAAGGGCTGCTTTATGGCTAGTGTGGCTGATAAGTCAAGATTCACCAATGTT AAACAGTTCATTGCTCCAGAAACCAGTGAAGGTGTATCCTTGCAACTGGGGAAC **ACAAAAGATTTTATTTCATTTGACCTCAAGTTCTTAACAAATGGAAGCGTGT** <u>CTGTGGTTCTGGAGACGACAGAAAAGAATCAGCTCTTCACTGTACATTATGTCT</u> CAAATACCCAGCTAATTGCTTTTAAAGAAAGAGACATATACTATGGCATCGGGC CCAGAACATCATGGAGCACAGTTACCCGGGACCTGGTCACTGACCTCAGGAAA GGAGTGGGTCTTTCCAACACAAAAGCTGTCAAGCCAACAAGAATAATGCCCAA

TRATE TRADEN

> FIGURE 1 CONTINUED

1 M	1 MSKYLSSQRDALSAPAL-PVSRENREPPKFQGVKQREPIVFFINRINIKAVILIVIC-ALFTILVTVI-L 1 MVIVSIKPFNIFSIKDMKCIRWESNR	81 33 SDKALOFPRHLSSGF-R-VDGLEKRSAASESNHYANHLAKQOSEBAFPQEQOKAPPVVGGFNSNGGS 1	25 SDKAIQFFRRSSSGF-R-VDGFEKRAAASESNNYAAHVAKQQSEEAFPQEQGRAPPVVGGFNSNVGS 71AFSFSPDFVRPLDRSASSGGE 43	163 KYEEIDCLINDE-HTIKGEREGNEVELPFIWVEKYEDVYGKVVQYDCYDREEFSHSYSKVYAGRSP- 1
SCORE mouse liver bovine lung	human EST ho Drosophila C. elegans h Methanococcu	SCORE mouse liver	human EST ho Drosophila C. elegans h Methanococcu	SCORE mouse liver bovine lung human EST ho Drosophila C. elegans h Methanococcu

241 January Marie of the Control of	171 DGVENSFEGYNVEVRURVKCISGVEGVPILSTQNGRQGYFYPIQIAQYGISHYSKNLIEKPPHIEVY	17 DGVENSFEGINVEVRURVKCISGVEGVPISTOWEPQCYFYPIQIAQYGISHYSKNIJEKPPHIEVY	163 DGVENSFEGYNVEVRURVRCISGAEGVPILSTQNGRQGYFYPIQIAQYGISHYSKNLIEKPPHIEVY	168 rgvimtennnvevrorykcisaaegvevstgaekrcyeyptolagealshysknliepapryri	143 IGPEGHESTYSVETRURVRCVSAKUDVRASTQADPIPYYYPIQISQYGLQHYSRAKUDSISAKSEASPRODVI	75PINVEEARKCFYKYFKIKYFKIK	321 state and a second of the	242 RORNIRBNEWT-VPKGCFNASVADKSRSINVROFIAPETSEGV-SIQICNIROF-IISED	88 RDKNSKRNUWT-VPKCCFPASVADKSRFINNKQFIAPETSEGV-SLQICNIKOF-IISFD	234 RDKN-KRNDWT-VPKGCEMANNADKSRETANKQFTARETSEGV-SIQICATKOE-IISED	236 COCNOM-EWS-TEXTISNMIRIWHERINISWOFETRAPSYECVISIALNOTIDI-11.5ND	219NSKEWKGAAGMET-TERLFENDEQMEKVVNISAGAALANAGAYVXIDKSEPDIHVISED	93 -DKNPKEAERYIKRGIFIJEYIISQADKETAETA	401 E.S	304 NCSVSVVIETIENXQIFTVHIVSNIQIIAFFORDIYYGIGPRISHSIVI			297 NSSSIMITVQNROIRENYSILEYIPADILILSVQDINIYYG1GSSALNRARHIT	282 ANSSPTVIAKAKODDIIVIINVYYSEGNAKOMOEEERISDOYIVOKAKOOOVSYSYSYIGNSPIGEWSTVT	123 -VNERNITFIWR
SCORE	mouse liver	bovine lung	human EST ho	Drosophila	C. elegans h	Methanococcu	SCORE	mouse liver	bovine lung	human EST ho	Drosophila	C. elegans h	Methanococcu	SCORE	mouse liver	bovine lung	human EST ho	Drosophila	C. elegans h	Methanococcu
															-					

mouse liver	328	358 DIRKGVGISNTKAVKPTKIMPKKVVRLIAKGKGFIDNITISTTAHMAAFFAASDWIVRNQDEK-G	
bovine lung	204	204 DIRKGVGLSNIKAVKPTRIMPKKVVRLIAKGKGFLDNITISTTAHMAAFFAASDWLVRNQDEK-G	
human EST ho	349	349 DIRKGVELSNIKAVKPIKIMPKKVVRLIAKGKGFLDNITISTIAHMAAFFAASDWLVRNQDEK-G	
Drosophila	354	DLOKGI-MSDKRSPIKIRRSDLEVISIGFLGLGFFDNITLSTSDHLAHFYDAAEMEVHNODPKTG	
C. elegans h	360	DVARALSSCHNRKKDDNVVLHACDLRLVSLGFRCELTVKOKTTORREOHSHAFYAAADMLVRNONDR-G	
Methanococcu	144	NLSKG	
SCORE	561	the self-by self-a L Leide L b. b. be	
mouse liver	425	IMVIRKLGEGFKSLEPGAVSAMAQGQALSTIJVRAYLLITKDYVFLSSALRATAPYKFPSEQHGYKAV	
bovine lung	271	IMVIRKLÆGEKSLEPGAVSAMAQGQALSTLVRAYLLIKDHIFINSALRATAPYKFLSEQHGVKAV	
human EST ho	416	IMVIRKICEGGFKSLEPGAYSAMAQGQAISTLVRAYLLTKDHIFINSALRATAPYKFISEQHGVKAV	
Drosophila	423	VRRSIN-GFAEIRPGAISAMSQGHAISVIARAYWHSGGDERYIRAAAAGIQPYRVYSRDGGVIAQ	
C. elegans h	433	VERSIAERKUVI.PPGAHSAMAQGHGISVI.IRAFKHENDEKYI.KSAAKALKI.FKINSSDGGVRGE	
Methanococcu	149		
SCORE	641		
mouse liver	495	495 HDWYEEYPTIPSSFVINGFMYSLIGLYDLKETAGETIGKEARSLYERGMESLKAMLPLYDTGSGT	
bovine lung	341		
human EST ho	486	HDWYEEYPTTPSSFVINGFWYSLIGLYDLKETPACEKLCKEARSLYERCAESLKAMLPLYDTGSCT	
Drosophila	491	FYWYEEYPTIPPSYVINGFIYSILGLYDINSTAPGKIAREAGKIFAQGMHSIKKMILLFDTGSGT	
C. elegans h	501	I-WYEEYPTTPGSFVINGFLYSLIGLYDLSQLEIMIDENDETMRAKT-QEAQELYSAGVRSLKQLLPLYDTGSGT	
Methanococcu	205	YYWFPEYASENPPYVINGFIY	
SCORE	721		
mouse liver	565	565 HEMIGIAPNIARWDYHTTHINQLQIISTIDESPIFKEFVKRWKSYLKGSRAKHN	
bovine lung	411	HFMLGIAPNLARWDYHTTHINQIQILSTIDESPIFKEFVKRWKSYLKGSRAKHN	
human EST ho	556	HEMLGIAPNLARWDYHTTHINQIQILSTIDESPIEKEFVRRWKSYLKGSRAKHN	
Drosophila	561	HLSLGVAPNLARWDYHATHVNQILILATIDSDPLLAQTAERWKGYMFGRRAKHN	
C. elegans h	579	HVALGTAFNLARWDYHAVHVYILKWIAGIEKDEVISKTADRWIGYAYGKRAKHN	
Methanococcu	225		

sig seq-TM conserved peptide seq hotspot

hydrophobic and conserved peptide seq. hotspots

Hypothetical orientation, if inserted into golgi

----->cytosol---->lumen cytosol->lumen----

Key:

signal sequence, highly hydrophobic transmembrane (TM) or buried sequence sequence

Hydrophobic transmembrane (TM) most conserved peptide sequence (>50% similarity to C elegans 71.9 KD hypothetical protein; 38% similarity to Methanococcus hypothetical protein). Note: peptide identity between mouse, bovine and human > 95%!

Fig. 9