CMP 334 (2/25/19)

HW 6 (unsigned binary subtraction)

Signed binary arithmetic (introduction)

TOY assembly language

Other ALU ops: sub, and, nor

Combinational circuit design process

1 bit full adder circuits

Building block circuits:

Inverters

Decoders

Multiplexers

HW 6: Unsigned Binary Subtraction

For each of the <X, Y> pairs below:

- a) Convert X and Y → binary
- b) Compute Y, the 2's complement of Y
- c) Compute 8-bit diff using 2's complement addition
- d) Convert diff → hexadecimal
- e) Indicate whether 8-bit subtraction produces a carry
- f) Convert X, Y, Y, diff → decimal (check your work)

Where $\langle X, Y \rangle =$

```
1) <0x4F, 0x6D>
```

- $(0 \times C8, 0 \times 2B)$
- 3) <0xA3, 0x95>
- 4) <0xB4, 0xE1>

```
\mathbf{Y} = 0 \times 6 \mathbf{D}
         \mathbf{X} = 0 \times \mathbf{4F},
         X = 0b01001111, Y = 0b01101101
                                \overline{Y} = 10010010
                             \overline{Y}+1 = 10010011
   x - y = 01001111
                10010011
carry
               0 0 0 1 1 1 1 1
               011100010 \rightarrow 0xE2 (+ 0x0)
         X = 4 \cdot 16 + 15 = 79
         Y = 6 \cdot 16 + 13 = 109
         \ddot{Y} = 9 \cdot 16 + 3 = 147
    X - Y = 14 \cdot 16 + 2 = 226
                                 = 226 - 256
    X - Y = -30
```

```
X = 0xC8
                        \mathbf{Y} = 0 \times \mathbf{2B}
        X = 0b11001000, Y = 0b00101011
                             \overline{Y} = 11010100
                          \overline{Y}+1 = 11010101
   X - Y = 11001000
              11010101
carry.
             110011101 \rightarrow 0x9D (+ 0x100)
         X = 12 \cdot 16 + 8 = 200
         Y = 2 \cdot 16 + 11 = 43
        \ddot{Y} = 13.16 + 5 = 213
    X - Y = 9 \cdot 16 + 13 = 157
    X - Y = 157
                              = 157
```

```
X = 0xA3
                         \mathbf{Y} = 0 \times 95
        X = 0b10100011, Y = 0b10010101
                              \overline{Y} = 01101010
                           \overline{Y}+1 = 01101011
   x - y = 10100011
               01101011
carry.
              100001110 \rightarrow 0x0E (+ 0x100)
         X = 10 \cdot 16 + 3 = 163
         Y = 9 \cdot 16 + 5 = 149
         \ddot{Y} = 6 \cdot 16 + 10 = 106
    x - y = 0.16 + 14 = 14
      - \mathbf{Y} = \mathbf{14}
```

```
X = 0xB4,
                         \mathbf{Y} = 0 \times \mathbf{E1}
        X = 0b10110100, Y = 0b11100001
                              \overline{Y} = 00011110
                           \overline{Y}+1 = 00011111
   X - Y = 10110100
               00011111
carry
              011010011 \rightarrow 0xD3 (+ 0x0)
         X = 11 \cdot 16 + 4 = 180
         Y = 14 \cdot 16 + 1 = 225
         \ddot{Y} = 1 \cdot 16 + 15 = 31
    X - Y = 13 \cdot 16 + 3 = 211
                              = 211 - 256
    X - Y = -45
```

Unsigned **n**-bit Subtraction $(0 == 2^n)$

A ≥ B
A = B ≡ A - B (natural numbers)
A < B A - B undefined on natural numbers
B ≡
$$2^n - B = (2^n - 1 - B) + 1 = \overline{B} + 1$$

B = B = B + B = 0 (0 == 2^n)
(A = B) + C = (A + C) = B

$$A \stackrel{\cdots}{-} B \equiv A \stackrel{\cdots}{+} (\overline{B}+1)$$

n-bit Binary Numbers

```
Unsigned: b_{n-1}b_{n-2} \dots b_1 b_0 (b_i = 0 \text{ or } b_i = 1) value: b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0 range: [0 \dots 2^n - 1] n-bit sum: A \stackrel{?}{+} B + c \cdot 2^n = A + B n-bit diff: A \stackrel{?}{-} B \equiv A \stackrel{?}{+} (2^n - B) = A \stackrel{?}{+} \overline{B} + 1 = A - B + 2^n - c \cdot 2^n
```

Unsigned Integers

Unsigned Sum

Unsigned Sum

Unsigned Sum and Difference

Unsigned Sum and Difference

n-bit Binary Numbers

Unsigned:
$$b_{n-1}b_{n-2} \dots b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$ value: $b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$ range: $[0 \dots 2^n - 1]$ n-bit sum: $\mathbf{A} + \mathbf{B} + \mathbf{c} \cdot \mathbf{2}^n = \mathbf{A} + \mathbf{B}$ n-bit diff: $\mathbf{A} - \mathbf{B} = \mathbf{A} + (\mathbf{2}^n - \mathbf{B}) = \mathbf{A} + \mathbf{B} + \mathbf{1} = \mathbf{A} - \mathbf{B} + \mathbf{2}^n - \mathbf{c} \cdot \mathbf{2}^n$ Signed: $b_{n-1}b_{n-2} \dots b_1 b_0$

 $-b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_02^0$

 $[-2^{n-1} ... 2^{n-1}-1]$

value:

range:

n-bit Binary Numbers

Unsigned:
$$b_{n-1}b_{n-2} ... b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$ value: $b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_02^0$ range: $[0 ... 2^n - 1]$ n-bit sum: $\mathbf{A} + \mathbf{B} + \mathbf{c} \cdot \mathbf{2}^n = \mathbf{A} + \mathbf{B}$ n-bit diff: $\mathbf{A} - \mathbf{B} = \mathbf{A} + (\mathbf{2}^n - \mathbf{B}) = \mathbf{A} + \mathbf{B} + \mathbf{B} + \mathbf{C} \cdot \mathbf{2}^n$

Signed:
$$b_{n-1}b_{n-2} \dots b_1 b_0$$

value: $-b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$
range: $[-2^{n-1} \dots 2^{n-1}-1]$

n-bit sum:
$$A + B = A + B$$
 iff $v=0$

Whole Numbers (binary)

```
...001000
                    unbounded integers
...000111
              +7
                    ... -2, -1, 0, 1, 2, ...
...000110
              +6
...000101
              +5
                    Closed under addition
...000100
              +4
...000011
              +3
                    Closed under subtraction
...000010
              +2
...000001
              +1
                    "Sign"
...000000
              +0
. . . 111111
              -1
                      Negative
                                  integers => leading 1's
...111110
              -2
                      Positive
                                  integers => leading 0's
              -3
. . . 111101
...111100
              -4
                         0 is an honorary positive integer
...111011
              -5
                       0 + 0 = 0
                                   3 + -3 = 0
                                               6 + -6 = 0
...111010
              -6
                        1 + -1 = 0
                                   4 + -4 = 0 7 + -7 = 0
...111001
              -7
                       2 + -2 = 0
                                   5 + -5 = 0
                                               8 + -8 = 0
...111000
```

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
          +2
.00001
.000000
.111111
.111110
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
          +2
.000001
.000000
          +0
.111111
.111110
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

Corollary:

$$-Y = \overline{Y} + 1$$

-.0000

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
          +2
.000001
000000
.111110
.111101
.111100
          -4
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0000 = \overline{.0000} + 1$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
          +2
.000001
000000
.111110
.111101
.111100
          -4
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
          +2
.000001
000000
.111110
.111101
.111100
          -4
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$$

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
.000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = \overline{.0001} + 1$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
.000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = \overline{.0001} + 1 = .1110 + 1$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = \overline{.0001} + 1 = .1110 + 1 = .1111$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = .0001 + 1 = .1110 + 1 = .1111$$
 $-.0000 = .0000 + 1 = .1111 + 1 = .0000$
 $-.1111$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = \overline{.0001} + 1 = .1110 + 1 = .1111$$
 $-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$
 $-.1111 = \overline{.1111} + 1$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = \overline{.0001} + 1 = .1110 + 1 = .1111$$
 $-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$
 $-.1111 = \overline{.1111} + 1 = .0000 + 1$

```
.001000
.000111
.000110
          +6
.000101
          +5
.000100
          +4
.000011
          +3
.000010
000000
.111101
.111100
.111011
.111010
.111001
```

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0001 = .0001 + 1 = .1110 + 1 = .1111$$
 $-.0000 = .0000 + 1 = .1111 + 1 = .0000$
 $-.1111 = .1111 + 1 = .0000 + 1 = .0001$

.001000 .000111 .000110	+8 +7 +6
.000101	+5
.000100	+4
.000011	+3
.000010	+2
.000001	+1
.000000	+0
.111111	-1
.111110	-2
.111101	-3
.111100	-4
.111011	-5
.111010	-6
.111001	- 7
.111000	-8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.00001 = .00001 + 1 = .11110 + 1 = .11111$$

$$-.00000 = .00000 + 1 = .11111 + 1 = .00000$$

$$-.11111 = .11111 + 1 = .00000 + 1 = .00001$$

$$-.1011$$

.001000 .000111 .000110	+8 +7 +6
.000101	+5
.000100 .000011 .000010 .000001	+4 +3 +2 +1
.000000	+0
.111111	-1 -2
.111101	-3
.111100	-4
.111011	- 5
.111010 .111001 .111000	-6 -7 -8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.00001 = .00001 + 1 = .11110 + 1 = .11111$$

$$-.00000 = .00000 + 1 = .11111 + 1 = .00000$$

$$-.11111 = .11111 + 1 = .00000 + 1 = .00001$$

$$-.1011 = .10111 + 1$$

.001000 .000111 .000110	+8 +7 +6 +5
.000100	+4
.000011	+3
.000010	+2
.000001	+1
.000000	+0
.111111	-1
.111110	-2
.111101	-3
.111100	-4
.111011	-5
.111010	-6
.111001	-7
.111000	-8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.00001 = \overline{.00001} + 1 = .1110 + 1 = .1111$$
 $-.00000 = \overline{.00000} + 1 = .11111 + 1 = .00000$
 $-.11111 = \overline{.11111} + 1 = .00000 + 1 = .00001$
 $-.1011 = \overline{.1011} + 1 = .0100 + 1$

.001000 .000111 .000110	+8 +7 +6 +5
.000100	+4+3
.000010	+2
.000001	+1
.000000	+0
.111111	-1
.111110	-2
.111101	-3
.111100	-4 -5
.111010	-6
.111001	-7
.111000	-8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.00001 = \overline{.00001} + 1 = .1110 + 1 = .11111$$
 $-.00000 = \overline{.00000} + 1 = .11111 + 1 = .00000$
 $-.11111 = \overline{.11111} + 1 = .00000 + 1 = .00001$
 $-.1011 = \overline{.1011} + 1 = .01000 + 1 = .01001$

.001000 .000111 .000110	+8 +7 +6 +5
.000100	+4
.000011	+3
.000010	+2
.000001	+1
.000000	+0
.111111 .111110 .111101 .1111011	-1 -2 -3 -4 -5
.111010	-6
.111001	-7
.111000	-8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

Corollary:

$$-Y = \overline{Y} + 1$$

-.0101

$$-.0001 = \overline{.0001} + 1 = .1110 + 1 = .1111$$

$$-.0000 = \overline{.0000} + 1 = .1111 + 1 = .0000$$

$$-.1111 = \overline{.1111} + 1 = .0000 + 1 = .0001$$

$$-.1011 = \overline{.1011} + 1 = .0100 + 1 = .0101$$

.001000 .000111 .000110	+8 +7 +6 +5
.000100	+4 +3
.000010	+2 +1
.000000	+0 -1 -2
.111110	-2 -3 -4
.111011	-5
.111010 .111001 .111000	-6 -7 -8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

$$-Y = \overline{Y} + 1$$

$$-.0101 = .0101 + 1$$

$$-.0001 = .0001 + 1 = .1110 + 1 = .1111$$

$$-.0000 = .0000 + 1 = .1111 + 1 = .0000$$

$$-.1111 = .1111 + 1 = .0000 + 1 = .0001$$

$$-.1011 = .1011 + 1 = .0100 + 1 = .0101$$

Additive Inverse

.001000 .000111 .000110	+8 +7 +6 +5
.000100 .000011 .000010 .000001	+4 +3 +2 +1 +0
.111111	-1
.111110	-2
.111101	-3
.111100	-4
.111011	-5
.111010	-6
.111001	-7
.111000	-8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

Corollary:

$$-Y = \overline{Y} + 1$$

$$-.0101 = .0101 + 1 = .1010 + 1$$
 $-.00001 = .00001 + 1 = .1110 + 1 = .1111$
 $-.00000 = .00000 + 1 = .11111 + 1 = .00000$
 $-.1111 = .11111 + 1 = .00000 + 1 = .0001$
 $-.1011 = .1011 + 1 = .0100 + 1 = .0101$

Additive Inverse

.001000 .000111 .000110	+8 +7 +6 +5
.000100 .000011 .000010 .000001	+4 +3 +2 +1 +0
.111111	-1
.111110	-2
.111101	-3
.111100	-4
.111011	-5
.111010	-6
.111001	-7
.111000	-8

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

Corollary:

$$-Y = \overline{Y} + 1$$

$$-.0101 = .0101 + 1 = .1010 + 1 = .1011$$
 $-.00001 = .00001 + 1 = .1110 + 1 = .1111$
 $-.00000 = .00000 + 1 = .1111 + 1 = .00000$
 $-.1111 = .1111 + 1 = .0000 + 1 = .0001$
 $-.1011 = .1011 + 1 = .0100 + 1 = .0101$

n-bit Binary Numbers

Unsigned:
$$b_{n-1}b_{n-2} \dots b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$ value: $b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$ range: $[0 \dots 2^n - 1]$ n-bit sum: $A \stackrel{\leftarrow}{+} B + c \cdot 2^n = A + B$ n-bit diff: $A \stackrel{\leftarrow}{-} B \equiv A \stackrel{\leftarrow}{+} (2^n - B) = A \stackrel{\leftarrow}{+} \overline{B} + 1 = A - B + 2^n - c \cdot 2^n$

Signed:
$$b_{n-1}b_{n-2} \dots b_1 b_0$$

value: $-b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$
range: $[-2^{n-1} \dots 2^{n-1}-1]$

n-bit sum:
$$A + B = A + B$$
 iff $v=0$

n-bit diff:
$$\mathbf{A} - \mathbf{B} \equiv \mathbf{A} + (\mathbf{2}^n - \mathbf{B}) = \mathbf{A} + \overline{\mathbf{B}} + 1 = \mathbf{A} - \mathbf{B}$$
 iff $\mathbf{v} = \mathbf{0}$

```
...0100000000
                       = 2^N
 ...0011111111
                       = 2^{N} - 1
...0010000000
                         2<sup>N-1</sup>
. . . 0001111111
                       = 2^{N-1} - 1
...0000000101
...000000100
...000000011
                 = 3 = 2^2 - 1
                                       Signed Integers
...000000010
                   2 = 2^{1}
...000000001
                 = 1 = 2^0 = 2^1 -
                 = 0 = 2^{0}
...000000000
. . . 1111111111
   111111110
                 = -3 = -2^{1} - 1
   1111111101
   11111111100 = -4 = -2^2
                 = -5 = -2^2 - 1
   1111111011
   1110000000
                      = -2^{N-1}
                       =-2^{N-1}-1
   1101111111
   1100000000
                       = -2^{N}
   1011111111
                       = -2^{N}
```

Unsigned Integers

N–Bit Integers

(N = 8)

3-Bit Unsigned Integers (Binary)

```
8 supported values: 0 .. 7
00001110
00001101
              Not closed under addition
00001100
                 carry => incorrect result: 8 .. 14
00001011
00001010
              Not closed under subtraction
00001001
00001000
                 7 undefined (negative) differences
00000111
                 Want: A - B + C = A + C - B
00000110
00000101
              A - B \equiv A + 2^3 - B
00000100
                                    (2^3 - B = \overline{B} + 1)
00000011
                 B \equiv 2^3 - B
00000010
                 A \ge B = > A - B + 2^3 > 2^3 (carry)
0000001
00000000
                 carry => correct result: 0 .. 7
```

3-Bit Signed Binary Integers

```
00000011
00000010
00000001
00000000
```

8 supported values: -4 .. 3

Sign: high bit: 0 positive, 1 negative

Not closed under addition incorrect results: -8 .. -5, 4 .. 6

Not closed under subtraction incorrect results: -7 .. -5, 4 .. 7

```
Correct: X + Y = Z, X + Y = Z

X + Y, X + Y always correct. Why?

Incorrect: X + Y = Z, X + Y = Z

X - Y = Z, X - Y = Z
```

Unsigned Sum and Difference

Signed Integers

Signed Integer Sum or Difference

Signed Integer Sum or Difference

2·2 ^N				
1½·2 ^N				
1·2 ^N				
½·2 ^N			A+/-B	v = 1
0·2 ^N	Α	В	A+/-B	v = 0
_½·2 ^N	Α	В	A+/_B	v = 0
-1·2 ^N			A+/-B	v = 1
1½·2 ^N				
-2·2 ^N				

Unsigned Two's Complement

```
.010000
                 Additive Inverse Theroem:
.001111
                    If X and Y are whole numbers
.001110
            14
.001101
            13
                       X - Y = X + \overline{Y} + 1
.001100
            12
.001011
                           -Y \equiv \overline{Y}+1
.001010
            10
.001001
            09
                 Unsigned N-bit integers: A and B
.001000
            08
.000111
            07
                             B + \overline{B} + 1 = 2^{N} - 1 + 1 = 2^{N} = 0
.000110
            06
.000101
            05
                    A - B \equiv A + \overline{B} + 1
.000100
            04
                           = 2^{N} + A - B if 0 \le A - B < 2^{N} (A \ge B)
.000011
            03
.000010
            02
.00001
                 Carry => correct subtraction
```

.000000

Signed Two's Complement

```
.001000
.000111
.000110
           +6
.000101
          +5
.000100
           +4
.000011
           +3
.000010
           +2
.000001
           +1
.000000
           +0
.111111
           -1
.111110
.111101
.111100
           -4
           -5
.111011
.111010
           -6
.111001
```

Additive Inverse Theroem:

If X and Y are whole numbers

$$X - Y = X + \overline{Y} + 1$$

 $-Y \equiv \overline{Y} + 1$

Signed N-bit integers: C and D

$$D + \overline{D} + 1 = -1 + 1 = 0$$

 $C - D = C + \overline{D} + 1$
 $= C - D \text{ if } -2^{N-1} \le C - D < 2^{N-1}$

oVerflow => incorrect subtraction

Honesty Criteria

The n-bit result **r** of a binary operation on n-bit values **a** and **b** is **honest** (**deceptive**) if it is **the same as** (**different from**) the whole number result of the same operation on the same values.

- (n-bit) unsigned subtraction is *honest* iff (c = 1) Carry flag is set
- (n-bit) signed addition is *honest* iff (v = 0) a and b have different signs or a, b, and r have same sign
- (n-bit) signed subtraction is *honest* iff (v = 0) a and b have same sign or a and r have same sign

HW 9: Signed Binary Arithmetic

For each of the <X, Y> pairs in the table below:

- a) Convert X and Y → binary
- b) Compute X+Y (the 8-bit sum)
- c) Compute Y (the 2's complement of Y)
- d) Compute $X-Y \equiv X+Y$ (the 8-bit difference)
- e) Convert X+Y, Y, and X-Y→ hexadecimal
- f) Indicate condition flag (z, n, c, v) values for X+Y, X-Y
- g) Indicate the signs of X, Y, X+Y, Y, and X-Y
- h) Is X+Y honest? is X-Y honest?

Where $\langle X, Y \rangle =$

- 1) <0x4F, 0x6D> 2) <0xB3, 0x17>
- 3) $<0\times A3$, $0\times 95>$ 4) $<0\times 6E$, $0\times 3A>$

X Y X + Y ~Y X - Y
0x8C 0x6F

X Y X+Y ~Y X-Y

0x8C 0x6F

10001100 01101111

X	Y	X + Y	~Y	X – Y
0x8C	0x6F			
10001100	01101111	10001100		
		01101111		
		011111011		

X	Y	X + Y	~Y	X – Y
0x8C	0x6F			
10001100	01101111	10001100	$\overline{01101111}$	
		<u>01101111</u>	10010000	
		011111011	00000001	
			10010001	

X	Y	X + Y	~Y	X – Y
0x8C	0x6F			
10001100	01101111	10001100	$\overline{01101111}$	10001100
		01101111	10010000	10010001
		011111011	00000001	100011101
			10010001	

X	Y	X + Y	~Y	X – Y
0x8C	0x6F			
10001100	01101111	10001100	01101111	10001100
		01101111	10010000	10010001
		011111011	00000001	100011101
			10010001	

X	Y	X + Y	~Y	X – Y
0x8C	0x6F			
10001100	01101111	10001100	01101111	10001100
		01101111	10010000	10010001
		011111011	00000001	100011101
			10010001	
		0xFB	0×91	0x1D

X	Y	X + Y	~Y	X – Y
0x8C	0 x 6 F			
10001100	01101111	10001100 01101111 011111011	01101111 10010000 0000001 10010001	10001100 10010001 10011101
		0xFB	0x91	0x1D
		no oVerflow		oVerflow

X	Y	X + Y	~Y	X – Y
0x8C 10001100	0x6F 01101111	10001100 01101111 011111011	01101111 10010000 0000001 10010001	10001100 10010001 100011101
		0xFB	0 x 91	0x1D
		zncv		zncv

X	Y	X + Y	~Y	X – Y
0x8C	0 x6F			
10001100	01101111	10001100 01101111 011111011	01101111 10010000 0000001 10010001	10001100 10010001 10011101
		0xFB	0x91	0x1D
		zncv		zncv
		honest		deceptive

z — **Zero** condition flag

n — Negative condition flag

c — Carry condition flag

v — oVerflow condition flag

Core Combinational Circuit

HW 7: W = X + Y + Z

Assignment: Write a **TOY** assembly language program to add the values of 3 variables, **X**, **Y**, and **Z**, in memory and store the sum in a fourth, **W**.

<u>Details</u>: The variables occupy consecutive words of memory starting with **W**. The address of **W** is in register \$3. Do not change the values in registers \$0 through \$3. You can use registers \$4 through \$F as you please.

Your program should consist entirely of addition (add), load (1), and store (st) instructions.

```
add $7, $5,$6 means $7 \leftarrow [$5] + [$6]

1 $4, $C, 8 means $4 \leftarrow [MEM[[$C]+8]]

st $4, $C, 8 means [$4] \rightarrow MEM[[$C]+8]
```


add \$7, \$5, \$6

The TOY Computer (fetch

Immediate values

- 8-bit signed immediate s8

- 4-bit unsigned immediate u4

- 4-bit condition code CC

Register File 16 16-bit "registers"

15 real registers: \$1 ... \$F

1 pseudo-register: \$0 [\$0] = 0

Main Memory 65536 16-bit words

 $M[n] - n^{th}$ memory address

^M[n] - content of M[n]

Instructions[®]

add \$T ← [\$A]+[\$B]¹

and \$T ← [\$A]&[\$B]¹

PC ← [PC] + s8 bc iff CC

bcl \$L ← [PC], PC ← [\$A]¹ ## cc

\$T ← ^M[[\$A]+u4]1 1

set rsvn

lih $T_{15...8} \leftarrow 88^1$

 $T \leftarrow s8^1$ (sign extended) lis

\$T ← [\$A] [[\$B]¹ nor

 $T \leftarrow [A] << u4^1$ sl

 $T \leftarrow [A] >> u4^1$ srs

sru \$T ← [\$A] >>>u41

 $M[[$A]+u4] \leftarrow [$S]$ st

 $M[[$A]+u4] \leftarrow [$S]^4$ stc ₩ rsvn

sub $T \leftarrow [A] - [B]^{1,2}$

sys system call

Arithmetic / Logical						
1111	add \$T \$A \$B					
1110	sub	\$ T	\$A	\$B		
1101	and	\$T	\$A	\$B		
1100	nor	\$T	\$A	\$B		

Load /Store					
1011	1	\$Т	\$A	u4	
1010	lwr	\$Т	\$A	u4	
1001	st	\$S	\$A	u4	
1000	stc	\$S	\$A	u4	

Shift / Branch & Link						
0111	sru	\$Т	\$A	u4		
0110	srs	\$T	\$A	u4		
0101	bcl	CC	\$A	\$L		
0100	s1	\$Т	\$A	u4		

Immediate					
0011	lih	\$T	s 8		
0010	lis	\$T	s 8		
0001	bc	cc	s 8		
0000	sys	\$X	s 8		

Condition Codes			
1111	znv + nv	SGT	
1110	$n\overline{v} + \overline{n}v$	SLT	
1101	n	NEG	
1100	V	OVF	
1011	Z C	UGT	
1010	lo	ULT	
1001	Z	NE	
1000	0	NOP	
0111	$z + n\overline{v} + \overline{n}v$	SLE	
0110	nv + nv	SGE	
0101	n	POS	
0100	V	NVF	
0011	z + c	ULE	
0010	С	UGE	
0001	Z	EQ	
0000	1	ALL	

Notes

- ⁶ PC ← PC+1 *before* instruction execution
- 1 \$0 *not* changed ([\$0] = 0 always)
- ² Determines flags: z, n, c, v
- ⁴ Determines flag:

TOY ALU Instructions

Addition

```
add $9, $6, $5 1111 1001 0110 0101 $9 = [$6] + [$5]
```

Subtraction

```
sub $9, $6, $5

$9 = [$6] - [$5] = [$6] + [$5] + 1
```

And

```
and $9, $6, $5 1101 1001 0110 0101 $9 = [$6] & [$5]
```

Not-Or [De Morgan's law: ~(A | B) = (~A) & (~B)]

nor \$9, \$6, \$5

\$9 = [\$6] & [\$5]

(1-bit) Full Adder Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)
Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

(1-bit) Full Adder Circuit Design

Combinational circuit

Output determined by input

Design process

- Specify semantics
 Black Box: *input* and *output* (informal semantics)
 Truth Table (formal semantics)
- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

(1-bit) Full Adder Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)

Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

Full Adder Black Box

Sum 3 1-bit inputs to give a 2-bit output

(1-bit) Full Adder Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)

Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

Full Adder Truth Table

Full Adder Truth Table

#	a b c	C'	S
0	000	0	0
1	001	0	1
2	010	0	1
3	011	1	0
4	100	0	1
5	101	1	0
6	110	1	0
7	111	1	1

(1-bit) Full Adder Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)

Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

Full Adder Truth Table

#	a b c	C'	S
0	000	0	0
1	001	0	1
2	010	0	1
3	011	1	0
4	100	0	1
5	101	1	0
6	110	1	0
7	111	1	1

#	a b c	C'	C'	S	S
0	000	0		0	
1	001	0		1	abc
2	010	0		1	abc
3	011	1	abc	0	
4	100	0		1	abc
5	101	1	abc	0	
6	110	1	abc	0	
7	111	1	abc	1	abc

#	a b c	C'	C'	S	S	
0	000	0		0		$s = \overline{abc} + \overline{abc} + \overline{abc}$
1	001	0		1	abc	abc
2		0		1	abc	$c' = \overline{abc} + \overline{abc} + \overline{abc} - \overline{abc}$
3	0 1 1	1				abc
4	100	0		1	abc	
5	101	1	abc	0		
6	110	1	abc	0		
7	111	1	abc	1	abc	

(1-bit) Full Adder Circuit Design

Combinational circuit
Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)
Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

#	a b c	C'	S	$s = \overline{abc} + \overline{abc} + a\overline{bc} +$
0	000	0	0	abc
1	0 0 1	0	1	c' = abc + abc + abc +
2	010	0	1	
3	0 1 1	1	0	abc
4	100	0	1	
5	101	1	0	
6	110	1	0	
7	111	1	1	

```
s = \overline{abc} + \overline{abc} + \overline{abc} +
# a b c c' s
                        abc
   00000
   001 0 1
                   c' = \overline{abc} + \overline{abc} + \overline{abc} +
  010 0 1
                        abc
  011 1 0
  100 0 1
                      = abc + abc + abc +
   1011
                         abc + abc + abc
  110 1 0
```

#	a b c	C	6	$s = \overline{abc} + \overline{abc} + \overline{abc} +$
T	abc		3	
0	000	0	0	abc
1	001	0	1	a' - ba + aa + ab
2	010	0	1	c' = bc + ac + ab
3	011	1	0	
4	100	0	1	
5	101	1	0	
6	110	1	0	
7	111	1	1	

(1-bit) Full Adder Circuit Design

Combinational circuit

Output determined by input

Design process

1. Specify semantics

Black Box: *input* and *output* (informal semantics)
Truth Table (formal semantics)

- 2. Truth table → Boolean formula
- 3. Minimize boolean formula (optional)
 Boolean algebra
 Karnaugh maps
- 4. Boolean formula → combinational circuit

$$s = abc + \overline{abc} + \overline{abc} + a\overline{bc}$$

 $c' = ab + ac + bc$

$$s = abc + \overline{abc} + \overline{abc} + a\overline{bc}$$

 $c' = ab + ac + bc$

$$s = abc + \overline{abc} + \overline{abc} + a\overline{bc}$$

 $c' = ab + ac + bc$

$$s = abc + \overline{abc} + \overline{abc} + a\overline{bc}$$

 $c' = ab + ac + bc$

$$s = abc + \overline{abc} + \overline{abc} + a\overline{bc}$$

 $c' = ab + ac + bc$

Inverters, Decoders, Multiplexer

Inverter: select data input or its negation

- 1 data input
- 1 selector input
- 1 output

Decoder: select unique output to be 1 (true)

N selector inputs

2^N outputs

Multiplexer: select unique data input to be output

2^N data inputs

N selector inputs

1 output

Inverter Black Box

Inverter Truth Table

Inverter Formula

$$q = \overline{s}d + \overline{s}d$$

Inverter Circuit

$$q = \overline{s}d + \overline{s}d$$

Inverter Component Icon

$$q = \overline{s}d + \overline{s}d$$

Inverter Summary

Inverter: select data input or its negation

- 1 data input
- 1 selector input
- 1 output

N-Bit Decoder

Each different combination of N input bits uniquely specifies one of 2^N outputs. An output is **1** if and only if the corresponding input combination is active (true). For any input, exactly one output is **1**.

N-Bit Decoder Truth Table:

N input (selector) columns

2^N output columns

2^N rows

Exactly one 1 in each output column

Exactly one 1 in each output row

1-Bit Decoder Black Box

1-Bit Decoder Truth Table

1-Bit Decoder Formulas

$$\mathbf{w}_0 = \overline{\mathbf{s}}$$

$$\mathbf{W}_1 = \mathbf{S}$$

1-Bit Decoder Circuit

S	\mathbf{W}_{0}	W ₁
0	1	0
1	0	1

$$\mathbf{w}_0 = \mathbf{s}$$

1-Bit Decoder Component Icon

S	\mathbf{W}_{0}	\mathbf{W}_{1}
0	1	0
1	0	1

$$\mathbf{w}_0 = \mathbf{s}$$

$$\mathbf{w}_1 = \mathbf{s}$$

2-Bit Decoder

2-bit Decoder Truth Table

#	S ₁	$\mathbf{S_0}$	\mathbf{W}_{00}	\mathbf{W}_{01}	\mathbf{W}_{10}	W ₁₁
0	0	0	1	0	0	0
1	0	1	0	1	0	0
2	1	0	0	0	1	0
3	1	1	0	0	0	1

2-bit Decoder Formulas

$w_{11} = s_1 s_0$	\mathbf{W}_{11}	\mathbf{W}_{10}	\mathbf{W}_{01}	\mathbf{W}_{00}	S_0	S ₁	#
$w_{10} = s_1 s_0$	0	0	0	1	0	0	0
_	0	0	1	0	1	0	1
$\mathbf{w}_{01} = \mathbf{s}_{1}\mathbf{s}_{0}$	0	1	0	0	0	1	2
$W_{00} = S_1 S_0$	1	0	0	0	1	1	3

2-Bit Decoder Circuit

2-Bit Decoder Circuit

2-Bit Decoder Circuit

3-Bit Decoder Black Box

3-bit Decoder Truth Table

S ₂	S ₁	\mathbf{S}_0	\mathbf{W}_{000}	\mathbf{W}_{010}	\mathbf{W}_{010}	\mathbf{W}_{011}	\mathbf{W}_{100}	W ₁₁₁	W ₁₁₀	W ₁₁₁
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoder Summary

Decoder: select unique output to be 1 (true)

N selector inputs

2^N outputs

M-way Multiplexer ($M \equiv 2^N$)

```
N (lg M) selector inputs choose one of 2<sup>N</sup> (M) data inputs to output
```

2^N-way multiplexer truth table:

```
2^{N} data input columns (\mathbf{d_i} \ 0 \le \mathbf{i} < 2^{N})
N selector input columns (\mathbf{s_j} \ 0 \le \mathbf{j} < N, \ 0 \le \mathbf{s} < 2^{N})
1 output column (\mathbf{x} = \mathbf{d_s})
```


#	S	d_1 d_0		q
0	0	0	0	0
1	0	0	0 1	
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

1-Bit Decoder

Two Way Multiplexer Circuit

$$X = \overline{S}A + SB$$

4-Way Multiplexer Black Box

S ₁	S ₀	d ₁₁	d ₁₀	d ₀₁	d_{00}	q
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0	0
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	1
0	1	$\sqrt{}$	$\sqrt{}$	0	$\sqrt{}$	0
0	1	$\sqrt{}$	$\sqrt{}$	1	$\sqrt{}$	1
1	0	$\sqrt{}$	0	$\sqrt{}$	$\sqrt{}$	0
1	0	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$	1
1	1	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0
1	1	1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1

S ₁	S ₀	d ₁₁	d ₁₀	d_{01}	d_{00}	q	
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0	0	
0	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	1	$\overline{s}_{1}\overline{s}_{0}d_{00}$
0	1	$\sqrt{}$	$\sqrt{}$	0	$\sqrt{}$	0	1 0 00
0	1	$\sqrt{}$	$\sqrt{}$	1	$\sqrt{}$	1	$+ \bar{s}_{1}^{-} s_{0}^{-} d_{01}^{-}$
1	0	$\sqrt{}$	0	$\sqrt{}$	$\sqrt{}$	0	
1	0	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$	1	$+ s_1 \overline{s}_0 d_{10}$
1	1	0	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	0	
1	1	1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	1	$+ s_{1}s_{0}d_{11}$

2^N-Way Multiplexer Summary

N selector inputs specify one of 2^N data inputs to output

