Unit 3 Model-Order Selection

Prof. Phil Schniter

ECE 4300: Introduction to Machine Learning, Sp20

Learning objectives

- Understand the problem of model-order selection
- Visually identify underfitting and overfitting in a scatterplot
- Understand the need to partition data into training and testing subsets
- Understand the K-fold cross-validation process
 - Use it to assess the test error for a given model
 - Use it to select the model order
- Understand the concepts of bias, variance, and irreducible error
 - Know how to compute each from synthetically generated data
 - Understand the bias-variance tradeoff

2 / 26

Outline

- Motivating Example: Polynomial Degree Selection
- Cross-validation
- The Bias-Variance Tradeoff
- From Model-Order Selection to Feature Selection

Polynomial regression

- Recall polynomial regression from last lecture
- Given data $\{(x_i, y_i)\}_{i=1}^n$, model target y as

$$y \approx \beta_0 + \beta_1 x + \cdots + \beta_d x^d$$

- \blacksquare model parameters $\boldsymbol{\beta} = [\beta_0, \beta_1, \dots, \beta_d]^\mathsf{T}$
- \blacksquare d is the degree of the polynomial
- given d, can fit β using least-squares (multiple linear regression with $x_i \triangleq x^j$)
- Question: Can we select d from the data?
 - An instance of "model-order selection"

Example with synthetic data

- We consider synthetic data generated using a noisy polynomial model
- $\{x_i\}$: 40 samples uniformly distributed in interval [-1,1]
- $\{y_i\}$: generated as $y_i = f(x_i) + \epsilon_i$
 - $f(x) = \beta_0 + \beta_1 x + \cdots + \beta_d x^d$ with d = 3 for some "true" coefficients $\{\beta_j\}_{j=0}^3$
 - noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ & independent over i
- Synthetic data is useful for analysis and experimentation
 - We know the "ground truth"
 - Thus we can assess the performance of various estimators

```
# Import useful polynomial library
import numpy.polynomial.polynomial as poly
# True model parameters
beta = np.array([1,0.5,0,2])
                                # coefficients
wstd = 0.2
                                # noise
dtrue = len(beta)-1
                                # true poly degree
# Independent data
nsamp = 40
xdat = np.random.uniform(-1.1.nsamp)
# Polynomial
v0 = poly.polyval(xdat,beta)
vdat = v0 + np.random.normal(0,wstd,nsamp)
          True (dtrue=3)
```


Fitting with the true model order

- Could implement multiple linear regression with $x_j \triangleq x^j$
- Shortcut: numpy.polynomial package

- First, let's assume the true polynomial order, d=3, is known
 - Get a very good fit!

```
d = 3
beta hat = poly.polyfit(xdat,ydat,d)
# Plot true and estimated function
xp = np.linspace(-1,1,100)
vp = poly.polyval(xp,beta)
yp hat = poly.polyval(xp,beta hat)
plt.xlim(-1,1)
plt.ylim(-1,3)
plt.plot(xp,vp,'r-',linewidth=2)
plt.plot(xp,yp hat,'g-',linewidth=2)
# PLot data
plt.scatter(xdat,vdat)
plt.legend(['True (dtrue=3)', 'Est (d=3)', 'Data'], loc='upper left']
plt.grid()
plt.xlabel('x')
plt.vlabel('v')
```


6 / 26

Fitting with the wrong model order

Is there a way to estimate the true d from the data $\{(x_i, y_i)\}_{i=1}^n$?

Select model-order that minimizes RSS?

Simple idea:

- lacktriangle For each hypothesized model order d...
 - Compute LS coefficients $\boldsymbol{\beta}_{ls} \in \mathbb{R}^{d+1}$
 - lacksquare Predict the targets: $\widehat{y}_i = oldsymbol{eta}_{\mathsf{ls}}^{\mathsf{T}} oldsymbol{x}_i$
 - Compute $RSS(d) = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ Finally, pick the d that minimizes RSS(d)
- This doesn't work!
 - \blacksquare RSS(d) monotonically decreases with d
 - Suggests to choose d as large as possible
 - Leads to overfitting
- What is the problem?

Overfitting

Here is why we can't use training RSS to select model order:

■ In effect, we are choosing from a nested set of models

$$\begin{split} \boldsymbol{\beta} &= [\beta_0, \beta_1, 0, 0, 0, \dots]^\mathsf{T} & \text{when } d = 1 \\ \boldsymbol{\beta} &= [\beta_0, \beta_1, \beta_2, 0, 0, \dots]^\mathsf{T} & \text{when } d = 2 \\ \boldsymbol{\beta} &= [\beta_0, \beta_1, \beta_2, \beta_3, 0, \dots]^\mathsf{T} & \text{when } d = 3 \\ \vdots & \vdots & \vdots \end{split}$$

and thus each model is a special case of the next model.

The training RSS can get no worse as the model becomes more general, and so we will always choose the most general/complex model

- When d is large, \widehat{y}_i models the training noise ϵ_i
 - This is the main characteristic of overfitting!
- When d > n-1, the training RSS(d) is zero:

$$\|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\beta}_{\mathsf{ls}}\|^2 = 0$$

https://en.wikipedia.org/wiki/Overfitting

Outline

- Motivating Example: Polynomial Degree Selection
- Cross-validation
- The Bias-Variance Tradeoff
- From Model-Order Selection to Feature Selection

Cross-validation

Main idea:

Evaluate performance on "test data" that is independent of the training data

- Simplest version: Partition total dataset into two subsets:
 - $m{n}_{\mathsf{train}}$ training samples: $\{(m{x}_{\mathsf{train},i},y_{\mathsf{train},i})\}_{i=1}^{n_{\mathsf{train}}}$
 - $\qquad \quad \textbf{$n_{\mathsf{test}} = n n_{\mathsf{train}}$ test samples: } \{(\boldsymbol{x}_{\mathsf{test},i}, y_{\mathsf{test},i})\}_{i=1}^{n_{\mathsf{test}}}$
- lacktriangle Then, for each hypothesized model-order d...
 - lacksquare Compute LS coefficients $eta_{
 m ls}$ from training data
 - Predict the test targets: $\widehat{y}_{\mathsf{test},i} = \boldsymbol{\beta}_{\mathsf{ls}}^{\mathsf{T}} \boldsymbol{x}_{\mathsf{test},i}$
 - Compute $RSS_{\mathsf{test}}(d) = \sum_{i=1}^{n_{\mathsf{test}}} (y_{\mathsf{test},i} \widehat{y}_{\mathsf{test},i})^2$

Finally, choose the d that minimizes $\mathrm{RSS}_{\mathsf{test}}(d)$

Finds true \uparrow model-order d=3!

K-fold cross-validation

More robust versions:

- K-fold cross validation
 - Split data into K folds
 - Use K-1 for training & 1 for test
 - lacksquare Repeat for each of K possible test sets
 - Typically use K = 5 or 10
 - Expensive: requires K parameter fits
 - Good approx of true performance!
- Leave-one-out cross validation (LOOCV)
 - Extreme case where K = n (i.e., test set contains 1 sample!)
 - Most accurate, but most expensive
 - \blacksquare Advantageous when n is small

https://medium.com/@sebastiannorena

K-fold cross-validation with sklearn

- CV approach:
 - Outer loop: over K folds
 - Inner loop: over *D* model-orders
 - Compute test $RSS_{d,k}$ for each order d & fold k
 - Average test errors across K folds to get $\overline{RSS}_d \triangleq \frac{1}{K} \sum_{k=1}^K RSS_{d,k}$
 - Choose d giving smallest $\overline{\mathrm{RSS}}_d$
- Use sklearn's KFold method to generate index sets for the folds!

```
# Create a k-fold object
kfo = sklearn.model selection.KFold(n splits=k,shuffle=True)
# Model orders to be tested
dtest = np.arange(0.10)
nd = len(dtest)
RSSts = np.zeros((nd,k))
# Loop over the folds
for isplit, Ind in enumerate(kfo.split(xdat)): # enumerate r
    # Get the training data in the split
    Itr, Its = Ind
    #kfo.split( ) produced Ind, which contains a pair of ind
    xtr = xdat[Itr]
    vtr = vdat[Itr]
    xts = xdat[Its]
    yts = ydat[Its]
    # Loop over the model order
    for it, d in enumerate(dtest):
        # Fit data on training data
        beta hat = poly.polyfit(xtr,ytr,d)
        # Measure RSS on test data
        vhat = polv.polvval(xts.beta hat)
        RSSts[it,isplit] = np.mean((yhat-yts)**2)
```

Accuracy of K-fold cross-validation

- Problem: $\overline{\mathrm{RSS}}_d = \frac{1}{K} \sum_{k=1}^K \mathrm{RSS}_{d,k}$ may inaccurately estimate RSS_d when K is small
- Can measure the estimation accuracy of \overline{RSS}_d using the standard error (SE):

$$\mathrm{SE}_d riangleq rac{\mathsf{std}(\mathrm{RSS}_d)}{\sqrt{K}}, ext{ where}$$
 $\mathsf{std}(\mathrm{RSS}_d) = \sqrt{rac{1}{K-1}\sum_{k=1}^K (\mathrm{RSS}_{d,k} - \overline{\mathrm{RSS}}_d)^2}$

Above, $\frac{1}{K-1}$ gives an "unbiased" variance estimate


```
RSS_mean = np.mean(RSSts,axis=1) #note mean is taken over the
RSS_se = np.std(RSSts,axis=1)/np.sqrt(k-1)
plt.errorbar(dtest, RSS_mean, yerr=RSS_se, fmt='-')
plt.ylim(0,1.5)
plt.xlabel('Model order')
plt.ylabel('mean Test RSS')
plt.grid()
```

The one-standard-error rule

- lacktriangle Previously, said to choose d minimizing $\overline{\mathrm{RSS}}_d$
 - But this sometimes overfits true model-order!
- Better approach: one-standard-error (OSE) rule
 - Use simplest model giving $\overline{\mathrm{RSS}}_d$ within one SE of minimum
- Detailed procedure:
 - Set $d_{\min} = \arg\min_d \overline{RSS}_d$
 - lacksquare Set $\overline{\mathrm{RSS}}_{\mathsf{tgt}} = \overline{\mathrm{RSS}}_{d_{\min}} + \mathrm{SE}_{d_{\min}}$
 - lacksquare Find smallest d such that $\overline{\mathrm{RSS}}_d \leq \overline{\mathrm{RSS}}_{\mathsf{tgt}}$
- In example on right: $d_{\min} = 5$, and OSE selects d = 3, which is the true model-order

Outline

- Motivating Example: Polynomial Degree Selection
- Cross-validation
- The Bias-Variance Tradeoff
- From Model-Order Selection to Feature Selection

Statistical learning theory

- With degree-d polynomial regression, we saw that
 - choosing d too small causes underfitting
 - $lue{}$ choosing d too large causes overfitting
 - lacktriangledown d can be optimized by minimizing $\mathrm{RSS}_{\mathsf{test}}$ through cross-validation
- This is special case of a more general concept:
 - a model that is too simple leads to underfitting
 - a model that is too complex leads to overfitting
 - lacktriangle model complexity can be optimized by minimizing mean-squared error, $\mathrm{MSE}_{\widehat{y}}$
- From a theoretical perspective,
 - lacktriangle analyzing $MSE_{\widehat{y}}$ leads to the bias-variance equation
 - lacktriangle minimizing $\mathrm{MSE}_{\widehat{y}}$ involves a tradeoff between bias and variance

Statistical model

Setup for theoretical analysis...

- \blacksquare True model: $\boxed{y=f(\pmb{x})+\epsilon}$ for $\epsilon\sim\mathcal{N}(0,\sigma_\epsilon^2)$
 - ullet ϵ is a Gaussian random variable with mean zero and variance σ_{ϵ}^2
 - lacksquare test ϵ assumed to be independent of trained $oldsymbol{eta}$
- lacksquare Prediction: $\widehat{y}=\widehat{f}(oldsymbol{x};oldsymbol{eta})$ for some $\underline{\mathrm{random}}\ oldsymbol{eta}$
 - lacksquare eta was designed from some training data
 - m m eta is random because the training data is random (i.e., random $\{m x_i\}$ and $\{\epsilon_i\}$)
 - lacktriangle The test feature-vector x is deterministic, and may be outside training set
- Mean-squared error on \widehat{y} for given x: $\left| \text{MSE}_{\widehat{y}}(x) \triangleq \mathbb{E}\left\{ (y \widehat{y})^2 \right\} \right|$
 - $\blacksquare \mathbb{E}\{\cdot\}$ denotes statistical expectation: "the average value"
 - Here, the expectation is taken over test ϵ and trained β

Expectation

- Intuitively, expectation $\mathbb{E}\{\cdot\}$ means "the average value"
- Formally, for any function $f(\cdot)$ and random variable $a \in \mathbb{R}$,

$$\mathbb{E}\{f(a)\} = \int_{-\infty}^{\infty} f(a) \, p(a) \, \mathrm{d}a \quad \text{for probability density function (pdf) } p(a)$$

Vector-valued random variables (e.g., $oldsymbol{a} \in \mathbb{R}^M$) can be handled similarly

- lacktriangle We will avoid formalities for now and focus on two key properties. For any functions $f(\cdot)$ & $g(\cdot)$, and random variables a & b:
 - $\mathbb{E}\{c+d\,f(a)\}=c+d\,\mathbb{E}\{f(a)\}$ for deterministic c,d (linearity)
 - $\mathbb{E}\{f(a)g(b)\} = \mathbb{E}\{f(a)\}\mathbb{E}\{g(b)\}$ when a and b are independent: p(a,b) = p(a)p(b)

Bias-variance formula

We now derive the bias-variance formula:

$$\begin{split} &\operatorname{MSE}_{\widehat{y}}(\boldsymbol{x}) \triangleq \mathbb{E}\left\{(y-\widehat{y})^2\right\} = \mathbb{E}\left\{\left(\epsilon + f(\boldsymbol{x}) - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right)^2\right\} \\ &= \mathbb{E}\left\{\epsilon^2 + 2\epsilon \left(f(\boldsymbol{x}) - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right) + \left(f(\boldsymbol{x}) - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right)^2\right\} \\ &= \mathbb{E}\{\epsilon^2\} + 2\mathbb{E}\{\epsilon\}\mathbb{E}\left\{\left(f(\boldsymbol{x}) - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right) + \mathbb{E}\left\{\left(f(\boldsymbol{x}) - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right)^2\right\} \right. & \text{via linearity and independence of } \epsilon \& \boldsymbol{\beta} \\ &= \sigma_{\epsilon}^2 + \mathbb{E}\left\{\left(f(\boldsymbol{x}) - \mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})] + \mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})] - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right)^2\right\} \\ &= \sigma_{\epsilon}^2 + \mathbb{E}\left\{\left(f(\boldsymbol{x}) - \mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})]\right)^2\right\} + \mathbb{E}\left\{\left(\mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})] - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right)^2\right\} \\ &+ 2\left(f(\boldsymbol{x}) - \mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})]\right)\mathbb{E}\left\{\mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})] - \widehat{f}(\boldsymbol{x};\boldsymbol{\beta})\right\} \\ &= \underbrace{\sigma_{\epsilon}^2 + \left(\underbrace{f(\boldsymbol{x}) - \mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})]}_{\text{bias}\widehat{\boldsymbol{y}}}(\boldsymbol{x})\right)^2 + \mathbb{E}\left\{\left(\widehat{f}(\boldsymbol{x};\boldsymbol{\beta}) - \mathbb{E}[\widehat{f}(\boldsymbol{x};\boldsymbol{\beta})]\right)^2\right\}}_{\text{Var}_{\widehat{\boldsymbol{y}}}(\boldsymbol{x})} \end{split}$$

Could furthermore average over the test features $oldsymbol{x}$ to get

$$\mathrm{MSE}_{\widehat{y}} \triangleq \mathbb{E} \left\{ \mathrm{MSE}_{\widehat{y}}(\boldsymbol{x}) \right\} = \sigma_{\epsilon}^2 + \mathbb{E} \{ \mathrm{bias}_{\widehat{y}}(\boldsymbol{x})^2 \} + \mathbb{E} \{ \mathrm{var}_{\widehat{y}}(\boldsymbol{x}) \}$$

A bias-variance experiment for polynomial models

- Polynomial demo
- Red curve: f(x)
- Solid green curve: mean of $\widehat{y} = \widehat{f}(x; \boldsymbol{\beta})$ over 100 trials
 - bias = gap between red & green curves
- Green error-bars: ± 1 std of $\widehat{y} = \widehat{f}(x; \beta)$ over 100 trials
 - variance = std²

The bias-variance formula for linear models

- Consider noisy linear training data $\{(x_i, y_i)\}_{i=1}^n$:
 - $y_i = f(x_i) + \epsilon_i$ with $f(x_i) = \beta_0 + \sum_{j=1}^{d_{\text{true}}} \beta_j x_{ij}$ and $\epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$ and the d-term linear regression model:
 - $\blacksquare \ \widehat{y} = \widehat{f}(\boldsymbol{x}; \boldsymbol{\beta}_{\mathsf{ls}}) = \beta_{\mathsf{ls},0} + \sum_{j=1}^d \beta_{\mathsf{ls},j} x_j$
- **Result** 1: If n < d+1, then β_{ls} is not unique, so linear regression undefined
- Result 2: If $n \ge d+1$ and $d < d_{\text{true}}$, then \widehat{y} is biased due to underfitting
- Result 3: If $n \ge d+1$ and $d \ge d_{\text{true}}$, then \widehat{y} is unbiased, i.e.,

$$\mathbb{E}\{\widehat{y}\} = y_{\text{noiseless}} \ \ \text{or} \ \ \mathbb{E}\{\widehat{f}(\boldsymbol{x};\boldsymbol{\beta}_{\text{ls}})\} = f(\boldsymbol{x})$$

Result 4: If $n \gg d$ and $d \geq d_{\mathsf{true}}$ and x has same distribution as $\{x_i\}$,

$$\boxed{\mathbb{E}\{\mathrm{var}_{\widehat{y}}(\boldsymbol{x})\} = \frac{d+1}{n}\sigma_{\epsilon}^2} \quad \text{so} \quad \begin{cases} \text{variance increases linearly with \# parameters} \\ \text{variance decreases inversely with \# data samples} \end{cases}$$

Details in book: Hastie, Tibshirani, Friedman, The Elements of Statistical Learning

The bias-variance tradeoff for general models

- Saw two examples of how $MSE_{\widehat{y}}$ changes with model complexity:
 - \blacksquare polynomials: polynomial degree = d
 - linear regression: # features
- Similar trends hold for general models!
 - There exists a tradeoff between bias and variance
- The optimal model complexity depends on
 - the true model complexity (which affects bias)
 - the number of training samples (which affects variance)

 $MSE_{\widehat{y}} = \sigma_{\epsilon}^2 + \mathbb{E}\{bias_{\widehat{y}}(\boldsymbol{x})^2\} + \mathbb{E}\{var_{\widehat{y}}(\boldsymbol{x})\}$

http://scott.fortmann-roe.com/docs/BiasVariance.html

Outline

- Motivating Example: Polynomial Degree Selection
- Cross-validation
- The Bias-Variance Tradeoff
- From Model-Order Selection to Feature Selection

Feature selection: A generalization of model-order selection

- lacksquare So far, we discussed model-*order* selection (e.g., polynomial degree d)
 - Select between several models, each with a different complexity
 - For example, $y \approx \beta_0 + \beta_1 x_1$ $y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2$ $y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$
- More generally, given d total features $\{x_j\}_{j=1}^d$, we might wonder which subset of features works best for predicting y
 - Called "feature selection"
 - Given d features (plus intercept), there are $2^{d}-1$ possible non-trivial subsets
- How do we choose the best subset?
 - Can use cross-validation to choose between models
 - but need to manage computational complexity...
- Discussed further in the next unit . . .

Learning objectives

- Understand the problem of model-order selection
- Visually identify underfitting and overfitting in a scatterplot
- Understand the need to partition data into training and testing subsets
- Understand the K-fold cross-validation process
 - Use it to assess the test error for a given model
 - Use it to select model order
- Understand the concepts of bias, variance, and irreducible error
 - Know how to compute each from synthetically generated data
 - Understand the bias-variance tradeoff