(12) UK Patent Application (19) GB (11) 2 120 666 A

- (21) Application No 8312493
- (22) Date of filing 6 May 1983
- (30) Priority data
- (31) 8215532
- (32) 27 May 1982
- (33) United Kingdom (GB)
- (43) Application published 7 Dec 1983
- (51) INT CL³ CO7C 85/12 87/28
- (52) Domestic classification C2C 220 227 22Y 29X 29Y 311 31Y 321 326 32Y 360 361 36Y 43X 451 45Y 509 620 623 62Y 630 650 652 666 697 778 AA LJ NB NN U1S 1308 1347 C2C
- (56) Documents cited None
- (58) Field of search C2C
- (71) Applicant
 Imperial Chemical
 Industries PLC
 (United Kingdom),
 Imperial Chemical House,
 Millbank, London
 SW1P 3JF
- (72) Inventor Peter John Richardson
- (74) Agent and/or Address for Service
 Malcolm John Houghton, Imperial Chemical Industries PLC, Legal Department: Patents, Thames House North, Millbank, London SW1P 4QG

(54) Hydrogenation process

(57) Hydrogenation of perhalogenated terephthalonitriles to their corresponding amines under acid conditions is suitably conducted under a pressure of 1 to 100 atmospheres and at a temperature of from 0 to 200°C in the presence of (i) a hydrogenation catalyst containing 0.1 to 70% by weight of a metal in Group 8 of the Periodic Table, (ii) an inorganic acid in an amount at least

chemically equivalent to the amine formed and (iii) a solvent which is inert to the reaction ingredients and which does not poison the catalyst; the concentration of nitrile in the total reaction mixture being from 3 to 25% by weight. Preferably water is present in the proportion of water to solvent from 1:50 to 1:1 parts by weight. The diamines obtained by this process are useful intermediates in the preparation of pesticidal compounds. 2,3,5,6-Tetrafluoroxylylene diamine and its salts are novel compounds.

10

30

SPECIFICATION Hydrogenation process

This invention relates to a process for hydrogenating perhalogenated terephthalonitriles and to novel compounds which can be obtained therefrom.

Processes for the hydrogenation of terephthalonitrile have been numerously described and as seen from, for example, UK Patent Specifications Nos. 810530, 852972 and 1149251, the hydrogenation is normally carried out under ammoniacal conditions.

Such conditions are not altogether suitable, however, for the hydrogenation of certain halosubstituted terephthalonitriles. For instance, in the case of tetrafluoroterephthalonitrile a high molecular weight material is produced thought to be the result of nucleophilic substitution of ring fluorine atoms by an amine group of the bifunctional hydrogenation product.

According to the present invention there is provided a process for hydrogenating a perhalogenated terephthalonitrile of the formula (i):

15 in which each X is independently fluoro or chloro, to its corresponding amine of formula (II):

$$\begin{array}{c|c}
CH_2NH_2 \\
\hline
CH_2NH_2
\end{array}$$
(II)

which comprises reacting the terephthalonitrile with hydrogen in the presence of a hydrogenation catalyst under acid conditions.

The diamines obtained by this process are useful intermediates in the preparation of pesticidal compounds. 2,3,5,6-Tetrafluoroxylylene diamine and salts thereof are novel compounds and form another aspect of the present invention.

Any sultable hydrogenation catalyst may be used. Generally, it will be a metal, particularly a metal in Group 8 of the Periodic Table, and will normally include rhodium, palladium, ruthenium, nickel, cobalt, platinum or copper as a component. The metal will usually be present upon a support such as carbon, alumina, alumina-silica, silica, kieselguhr, calcium carbonate, barium sulfate or bentonite. The active metal will usually be present in a proportion of from about 0.1 to 70% by weight, and, in the case of noble metals, generally 1 to 20%. A preferred catalyst is paliadium preferably supported on charcoal and especially 5% palladium on charcoal. Nickel and cobalt catalysts, which tend to dissolve in acid conditions, may be less suitable.

The proportions of catalyst to nitrile may be wide-ranging. However, an amount of 0.5 to 5% by weight on nitrile has been found adequate for a catalyst containing a Group 8 noble metal.

The acid used to create the acid conditions is suitable an inorganic acid, particularly an oxyacid and ideally sulphuric acid, although other strong acids, such as hydrochloric acid, may also be suitable. At least an amount of acid chemically equivalent to the amine formed, should be used and preferably an excess up to, for instance, five times the chemically equivalent amount.

It may be prudent to add the acid continuously or intermittently during the process in case too high an acid concentration at the start of reaction, particularly when working at high nitrile concentrations, should have a deleterious effect on product yield.

15

20

	Let a well-made alway the basely soluble pitrile together with all or part of the acid in a solvent.	
5	It is expedient to slurry the barely soluble nitrile, together with all or part of the acid, in a solvent, preferably with water added. The solvent should be one that is inert to the reaction ingredients and does not polson the catalyst. Its choice will be influenced by operational consideration, the solubility in it of the reactant and intermediate and final products and obviously its effect on yield. Particularly suitable solvents are alcohols, especially aliphatic monohydric alcohols of the formula ROH, in which R is C ₁₋₅ alkyl, and more especially methanol and ethanol. The presence of water gives processing advantages with respect to yield and an ability to operate at lower temperatures and pressures. For ease of operation, it is desirable to have sufficient solvent and/or water present to provide a	5
• •	stirrable nitrile slurry. Suitably, the concentration of nitrile in the total reaction mixture will be from 3 to 15% by weight and even up to 25% by weight, particularly if the acid is added continuously or intermittently during the process. The proportion of water to solvent is usefully in the range of from 1:50	10
15	The pressure and temperature of hydrogenation may vary within wide limits and will be chosen to suit the hydrogenation equipment available and to avoid too slow a reaction. Suitable pressures of from 1 to 100 or more atmospheres, conveniently from 1 to 30 atmospheres may be used at temperatures ranging from, for example, 0°C to 200°C and typically from 10°C to 120°C. Care must be exercised in the standard of the product. For instance, prolonged	15
20	processing at 150°C can lead to defluorination of tetrandoroxylyterie diatrime. In carrying out the process of the invention, the nitrile starting material is conveniently charged to a glass lined or stainless steel rotary or stirred autoclave and slurried with all or part of the acid in the solvent and water. The autoclave is pressurised to the desired extent with hydrogen and rotated or solvent and water. The autoclave is pressurised to the desired extent with hydrogen and rotated or	20
25	The amine hydrogenation product is obtained as a sait which, if the said phenomenal product is obtained as a sait which, if the said phenomenal	25
30	which can then be dehydrated with, for example, phosphorus oxychinds. be obtained by replacement with fluoro of one or more of the chloro substituents of the tetrachloroterephthalonitrile. Thus, tetrafluoroterephthalonitrile may be obtained by fluorinating the tetrachloroterephthalonitrile according tetrachlorinated compound with potassium fluoride in a polar aprotic solvent.	30
35	Percentage yields of diamine are molar; yields of opproducts are computed when the same molar response factors as for the diamine. In all Examples, save Example 7 (q.v.), conversion of the same molar response factors as for the diamine.	35
40	EXAMPLE 1 Tetrafluoroterephthalonitrile (5.0 g), methanol (70 ml), water (2 ml), 98% sulphuric acid (3 g) and 5% palladium on carbon catalyst (0.25 g) were loaded into the glass liner of a rotating autoclave, purged with nitrogen, and then pressurised with hydrogen to 15 atmospheres. The autoclave was rotated for 6 hours at 75°C. The resulting slurry was filtered and the residue slurrled with water. The aqueous solution was filtered to remove catalyst, then the water removed by heat until a crust formed on the liquid surface. 74 OP Ethanol was added to give 5.06 g of a white solid precipitate. This was dissolved in 5N sodium hydroxide and extracted repeatedly with ether. The residue after evaporation of the ether was recrystallised from toluene to give pure 2,3,5,8-tetrafluoroxylylene diamine (m.pt. 89°C)	40
48	I.R. (KBr) 3385, 3275, 2955, 1600, 1480, 1348, 1268, 1165, 987, 928, 878, 828, 700 cm ⁻¹ .	45
	Proton nmr 2.09 δ and 3.78 δ , consistent with (2p, s, —NH ₂) and (2p, s, Ar—CH ₂ —N) respectively.	
50	UV (0.5NHCl in 50/50 methanol/water) $\lambda \max = 273 \text{ nm}$ $\epsilon = 1.93 \times 10^{3}$ $\lambda \min = 234 \text{ nm}$	50
•	Elemental Analysis C H N F	
55	Found (%) 46.5 4.0 13.6 37.1	55
J	Calculated (%) 46.1 3.9 13.5 36.5 (as C _B H _B F ₄)	

EXAMPLE 2

Tetrafluoroterephthalonitrile (5 g), methanol (70 ml), water (10 ml), 98% sulphuric acid (3.5 g) and 5% palladium on carbon catalyst (0.25 g) were loaded into the glass liner of a rotating autoclave, purged with nitrogen, then pressurised with hydrogen to 30 atmospheres. The autoclave was rotated for 5 5 hours, during which time the temperature rose from 15°C to 18°C, and the pressure declined to 28 5 atmospheres. A slurry of catalyst and solid 2,3,5,6-tetrafluoroxylylene diamine sulphate was filtered. The methanol was removed from the filtrate by reduced pressure distillation, and the aqueous residue, together with additional water, used to completely dissolve the separated solid sulphate product. 5 ml of this aqueous solution was added to 25 ml 10N sodium hydroxide solution, and extracted with four 10 10 ml aliquots of diethyl ether. GLC analysis of the combined aliquots showed the yield of 2,3,5,6-10 tetrafluoroxylylene diamine to be 94.0% with 0.3% 4-cyano-2,3,5-tetrafluorobenzylamine, and no 4aminomethyl-2,3,5-tetrafluoro-benzylalcohol or 2,3,5,6-tetrafluorobenzylamine.

EXAMPLES 3 TO 6

Further tetrafluoroterephthalonitrile reductions were carried out according to Example 2, but with 15 the autoclave charges and reaction conditions summarised in Table I. It is to be noted that the higher pressure used favoured higher diamine yields.

Hydrogenation of tetrafluoroterephthalonitrile in rotating autoclave

	Т					
	BA	0.9	1.8	3.8	2.6	0
DS	AA	2.0		4.5	12.6	0
YIELDS	Ą	0	0.8	:	0.3	0
	ρφ	87.4	86.3	81.5	75.2	96.0*
	Time hrs.	9	9	9	7	9
CONDITIONS	Press. at.	12—15 30—20	30—25	7—5	7_4	3020
O	Temp.	12—15	12	4	12—19	10
	Cat. g.	0.2	0.125	0.125	0.25	0.125
RGE	H ₂ SO₄ 9.	9.0	6.0	3.5	3.5	9
ACTOR CHARGE	Water ml.	20	10	01	10	9
REAC	Nitrile Methanol g. ml.	70	70	70	70	40
	Nitrile g.	15	10	S.	យ	10
	Example No.	8	4	വ	ဖ	^

DA = 2,3,5,6-tetrafluoroxylylene diamine CA = 4-cyano-2,3,5,6-tetrafluorobenzylamine AA = 4-aminomethyl-2,3,5,6-tetrafluorobenzyl alcohol BA = 2,3,5,6-tetrafluorobenzylamine

* conversion 61%

EXAMPLE 8

Tetrafluoroterephthalonitrile (30 g), methanol (420 ml), water (90 ml), 98% sulphuric acid (21 g) and 5% palladium on carbon catalyst (1.5 g) were loaded to a 1 litre 316 stainless steel autoclave, fitted with a glandless agitator and gas recirculation facility. The autoclave was purged with nitrogen and the contents maintained under 30 atmospheres of hydrogen pressure while agitation was continued for 6 hours. During this time the temperature rose from 20°C to 28°C. The product slurry was treated and analysed as in Example 2. The yield of 2,3,5,6-tetrafluoroxylylene diamine was 91%, with 0.3% of 2,3,5,6-tetrafluorobenzylamine.

5

EXAMPLES 9 TO 13

Further tetrafluoroterephthalonitrile reductions were carried out according to Example 8, but with the autoclave charges and reaction conditions summarised in Table IIK. Again, the higher pressures gave superior diamine yields.

TABLE II Hydrogenation of tetrafluoroterephthalonitrile in stirred autoclave

T					····	··
	BA	0.04	4	0.4	0.8	8.4
DS	Ą	0	1,0	1.9	1.6	3.0
YIELDS	CA	0	0	0.1	0.3	3.8
	DA	88	98	83.3	75	65
(0)	Time hrs.	9	9	9	9	9
SNOILIGNOS	Press. at.	32	7	30	3.5	28
Ö-	Temp.	515	17—15	20—18	15—18	20—15
	Cat. 9.	1.5	0.25	1.0	0.25	0.5
RGE	H ₂ SO ₄	21	7	4	7	11
REACTOR CHARGE	Water ml.	90	20	9	20	20
REAC	Methanol ml.	420	280	420	280	280
	Nitrile 9.	30	10	20	10	50
	Example No.	6	10	11	12	13

5

10

EXAMPLE 14

Tetrafluoroterephthalonitrile (5 g), methanol (70 ml), 98% sulphuric acid (3.5 g) and 5% palladium on carbon catalyst (0.125 g) were vigorously agitated under hydrogen at atmospheric pressure for 4.25 hours at 20°C. The resulting slurry was filtered, water added to the filtrate and the methanol removed by reduced pressure distillation. The sulphates in the residue from the hydrogenation were dissolved in the resulting aqueous solution. The products of the hydrogenation were assessed by the procedure described in Example 2. Yields were 27.4% 2,3,5,6-tetrafluoroxylylenediamine, 7.6% 4-cyano-2,3,5,6-tetrafluorobenzylamine and 9.2% 2,3,5,6-tetrafluorobenzylamine.

EXAMPLES 15 TO 25

Further tetrafluoroterephthalonitrile hydrogenations were carried out according to Example 14, but with varying catalyst and acid additions, and in some Examples, water addition. Results are described in Table III. Water is seen to enhance markedly the diamine yield.

9/29/06, EAST Version: 2.0.3.0

TABLE III lydrogenation of tetrafluoroterephthalonitrile at atmospheric pressure

	ВА	11.9	2.0		13.7	17.0	14.1	3.6	14.4	19.6	14.4	25.2
SO	АА	0	2.6	0	::	9.0	0.7	11.7	0	4.0	10.0	6.7
YIELDS	CA	14.5	0	2.4	4.8	က	6.5	1.0	10.5	1.4	0.4	0
	DA	19.8	18	15.5	65	53	49	09	49	20	20	38.3
SNOL	Time hrs.	7.0	16.5	9	က		4.5	2.25	4	4	4	4
CONDITIONS	Temp. °C.	20	20	55	20	17	20	20	19	20	20	20
	Cat.	0.06	0.5	90.0	0.25	0.125	0.25	0.25	0.125	0.125	0.125	0.125
EACTOR CHARGE CONDITIONS	H ₂ SO ₄	3.5	3.5	3.5	3.0	3.5	2.75	3.0	3.0	3.5	4.0	5.0
REACTOR CHARGE	Water ml.	0	0	0	Ŋ	23	10	10	10	10	5	10
REAC	Methanol mf.	7.0	70	70	70	70	70	70	70	70	70	70
	Nitrile a.	ည	rc	ഹ	rv	ເກ	ហ	ro	ល	ເວ	5	D.
	Example	15	16	17	18	19	20	21	22	23	24	25

5

10

15

30

EXAMPLES 26, 27 and 28

Tetrafluoroterephthalonitrile (2.5 g), methanol (70 ml) and 5% palladium on carbon catalyst (0.125 g) were loaded to the glass liner of a rotating autoclave, together with 98% sulphuric acid and water in the amounts indicated in Table IV. After purging with nitrogen, the autoclave was pressurised 5 to 10 atmospheres with hydrogen, rotated and heated for the time shown in Table IV. The product suspension was filtered, and the residue and filtrate quantitatively analysed for 2,3,5,6tetrafluoroxylylene diamine by high pressure liquid chromatography.

If Examples 26 and 27 were carried out at 75°C, it could be expected that the UV spectrum of the solution phase would indicate the presence of 4-cyano-2,3,5,6-tetrafluorobenzylamine (λ max = 234 10 'nm in 0.5 N HCl).

Examples 26 to 28 illustrate the beneficial effect of water and the better yield obtained when using a higher acid: nitrile molar ratio.

TABLE IV

Example	H ₂ SO ₄ :nitrile (molar ratio)	Water ml.	Temp.	Time	% Yield diamine			
No.			°C.	hrs.	Solution	Solid	Total	
26	1.6:1	0	90	3	48	35.3	83.3	
27	1.2:1	0	92	6	10	46	56	
28	1.2:1	2	75	6	8	64.1	72.1	

Tetrafluoroterephthalonitrile (10 g), 74 OP ethanol (70 ml), water (5 ml), 98% sulphuric acid (5.4 g) and 5% palladium on charcoal catalyst (0.5 g) were charged to the glass liner of a rotating autoclave and pressurised to 15 atmospheres with hydrogen. The autoclave was rotated at 60°C for 6 hours. The resulting slurry was filtered; high pressure liquid chromatography showed the 2,3,5,6tetrafluoroxylylene diamine yield to be 72.2% and all in the solid residue.

20 EXAMPLE 30

20 Tetrafluoroterephthalonitrile (2.5 g) 5% palladium on charcoal catalyst (0.125 g), sulphuric acid (6.4 g) and methanol (70 ml) were charged to a glass lined rotary autoclave. The autoclave was pressurised to 50 atmospheres with hydrogen, and rotated for 4 hours at 110°C. The resulting slurry was cooled, filtered and the solid phase recrystallised from a mixture of water and methanol. Elemental 25 analysis, fluorine nmr, proton nmr, infra red and mass spectra (the latter after the sample was heated 25 with sodium blcarbonate), were consistent with the recrystallised material being tetrafluoroxylylene diamine sulphate.

The material gave a single peak on a high pressure liquid chromatogram, when using a mixed ion pair/electrolyte elution system.

30 EXAMPLE 31

This example is included for comparative purposes only.

Tetrafluoroterephthalonitrile (2.5 g), nickel catalyst (Harshaw 5132P) (0.8 g), methanol (70 ml) and ammonia (12 g) were charged to a glass lined rotating autoclave. After pressurising to 30 atmospheres with hydrogen, the autoclave was rotated at 110°C for 3 hours. After cooling, filtering off the catalyst, and removing residual ammonia and methanol by distillation, a brown solid remained. Infra 35 red spectroscopy indicated this to be a high molecular weight material, with some loss of ring fluorine, and the presence of an amine hydrohalide.

CLAIMS

1. A process for hydrogenating a perhalogenated terephthalonitrile of the formula (I):

in which each X is independently fluoro or chloro, to its corresponding amine of formula (II):

$$\begin{array}{c}
CH_2NH_2 \\
\hline
CH_2NH_2
\end{array}$$
(II)

which comprises reacting the terephthalonitrile with hydrogen in the presence of a hydrogenation catalyst under acid conditions.

 2. A process according to claim 1 for hydrogenating tetrafluoroterephthalonitrile to form 2,3,5,6tetrafluoroxylylene diamine.

3. A process for hydrogenating a perhalogenated terephthalonitrile of the formula (I):

In which each X is independently fluoro or chloro, to its corresponding amine of formula (II):

15

20

25

10

which comprises reacting the terephthalonitrile with hydrogen under a pressure of 1 to 100 atmospheres and at a temperature of from 0 to 200°C in the presence of (i) a hydrogenation catalyst containing 0.1 to 70% by weight of a metal in Group 8 of the Periodic Table, (ii) an inorganic acid in an amount at least chemically equivalent to the amine formed and (iii) a solvent which is inert to the reaction ingredients and which does not poison the catalyst; the concentration of nitrile in the total reaction mixture being from 3 to 25% by weight.

4. A process according to claim 3 in which water is present in such amount that the proportion of water to solvent is from 1:50 to 1:1 parts by weight.

5. A process according to claim 3 or 4 in which the catalyst contains from 1 to 20% by weight of a metal selected from rhodium, palladium, ruthenium and platinum.

6. A process according to any one of claims 3 to 5 in which the solvent is an alcohol.

7. A process according to any one of claim 3 to 6 in which the pressure is from 1 to 30 atmospheres.

8. A process according to any one of claims 3 to 7 In which the temperature is from 10 to 120°C.

9. A process for hydrogenating tetrafluoroterephthalonitrile to form 2,3,5,6-tetrafluoroxylene diamine substantially as described with reference to any one of Examples 1 to 29.

10. 2,3,5,6-Tetrafluoroxylylene diamine and salts thereof.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1983. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

DERWENT-ACC-NO:

1993-259435

DERWENT-WEEK:

199333

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE:

Olefin prodn. used for mfr. of polymers and

surfactants

- comprises selective catalytic hydrogenation

of cyclic,

acrylic linear or branched diene(s) over

activated

palladium salt catalyst system in simple

process at low

temp. and pressure

INVENTOR: BEHR, A; SCHMIDKE, H

PATENT-ASSIGNEE: HENKEL KGAA[HENK]

PRIORITY-DATA: 1992DE-4203351 (February 6, 1992)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES

MAIN-IPC

DE 4203351 A1

August 12, 1993

N/A

006

C07C 005/05

APPLICATION-DATA:

PUB-NO

APPL-DESCRIPTOR

APPL-NO

APPL-DATE

DE 4203351A1

N/A

1992DE-4203351

February 6, 1992

INT-CL (IPC): B01J023/44, C07C005/05, C07C011/02, C07C011/107,

C07C013/36

ABSTRACTED-PUB-NO: DE 4203351A

BASIC-ABSTRACT:

Prodn. comprises hydrogenating linear or branched, cyclic or openchain dienes

(II) with $\underline{\text{H2}}$ at 0-150 deg.C and 800-1500 hPa in the presence of a catalyst

system (III) contg. a Pd salt (IV), an activator (V), opt. a base (VI) to

neutralise the acid formed on redn. of (IV) and/or water and/or an

EV832837211

9/28/06, EAST Version: 2.0.3.0

inert,
water-immiscible solvent (VII).

Pref. (II) are 4-20C dienes. (IV) is pref. a Pd(II) (pseudo)halide, acetate

and/or acetylacetonate. (V) is pref. DMF, DMA, NMP, acetonitrile and/or

tetramethylurea; or a mono- or di-(1-4C) alkyl carbonate of the formula

R1-O-CO-O-R2 (VA) and/or a cyclic carbonate of formula (VB) where R1 and R2 are

H or 1-4C alkyl. The pref. molar ratios are (IV): (II) is 1:(5-20000) and

(IV):(V) is at least 1:10. The pref. reaction temp. is 10-60 deg.C.

USE/ADVANTAGE - (I) are widely used in the chemical industry, e.g. for

producing polymers and surfactants. Hydrogenation of (II) to (I) is selective

and avoids formation of completely satd. prods.. The process is simple and

operates at relatively low temps. and pressures. (III) is resistant to many

catalyst poisons, allowing (II) of variable quality to be hydrogenated.

In an example, a soln. of 5g (0.061 mole) cis-1,4-hexadiene in 5g DMA was

treated with a colloidal Pd catalyst, prepd. by in-situ redn. of 4.17mg PdCl2

with H2 in the presence of 2.8mg NaCl and 13.5mg hydrated Na2CO3 crystals.

Hydrogenation was carried out at 25 deg.C, with intensive stirring, using the

calculated amt. of H2, which was taken up completely in 90 mins.. The prod.

contained 86.1 (wt.)% hexene isomers, 1.1% hexane and 12.8% hexadiene isomers.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: OLEFIN PRODUCE MANUFACTURE POLYMER SURFACTANT COMPRISE SELECT

CATALYST HYDROGENATION CYCLIC ACRYLIC LINEAR BRANCH DIENE

ACTIVATE

PALLADIUM SALT CATALYST SYSTEM SIMPLE PROCESS LOW

TEMPERATURE

PRESSURE

DERWENT-CLASS: A41 E17

CPI-CODES: A01-D13; E10-J02C3; N02-F; CHEMICAL-CODES: Chemical Indexing M3 *01* Fragmentation Code H721 M210 M214 M215 M216 M220 M221 M222 M223 M224 M225 M226 M231 M232 M233 M320 M416 M610 M720 M903 M904 N213 N309 N321 N412 N441 N442 N511 N512 N513 N522 Q110 Specfic Compounds 02043P 03187P 22179P Markush Compounds 199333-A2701-P Chemical Indexing M3 *02* Fragmentation Code G000 G050 G552 G582 M280 M320 M415 M510 M520 M530 M541 M610 M720 M903 M904 N213 N309 N321 N412 N441 N442 N511 N512 N513 N522 Q110 Specfic Compounds 01140P 01469P Markush Compounds 199333-A2702-P Chemical Indexing M3 *03* Fragmentation Code A546 A940 A960 C000 C017 C100 C710 C730 M411 M730 M903 Q421 Chemical Indexing M3 *04* Fragmentation Code M413 M416 M730 M903 Q422 UNLINKED-DERWENT-REGISTRY-NUMBERS: 0247S; 0278S; 0342S; 1047S; 1140P ; 1402S ; 1469P ; 1532S ; 1705S ; 2043P ENHANCED-POLYMER-INDEXING: Polymer Index [1.1] 017 ; G0033*R G0022 D01 D02 D51 D53 D84 D85 D86 D87 D88 D89 D90 D91 D92 D93 D94 ; R02043 G0044 G0033 G0022 D01 D02 D12 D10 D51 D53 D58 D86 ; H0271 ; L9999 L2471 ; L9999 L2722 L2711 Polymer Index [1.2] 017 ; ND02 ; ND03 ; K9654 ; K9665 Polymer Index [1.3] 017 ; D00 D01 D11 D10 D50 D61*R D70 F23 7A*R Pd 8B Tr ; R05294 D01 D11 D10 D50 D61 D84 F36 F35 Pd 8B Tr ; C999 C102 C000 ; C999 C259 Polymer Index [1.4]

017 ; D01 D11 D10 D50 D84 F78 D63 D82 D83 D85 D86 D87 D88 F44 D89 D90 ; R00278 D01 D11 D10 D50 D83 F70 ; R00342 D01 D11 D10 D50 D82

F12 ; R01084 D01 D11 D10 D50 D84 F70 ; R05268 D01 D11 D10 D23 D22

D31 D41 D50 D85 F71 ; C999 C124 C113

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:

Key Serials: 0034 0036 0037 0106 0109 0112 0115 0118 0121 0124 0127 0130 0214

0227 0229 0237 0295 2038 2043 2044 2051 2065 2189 2204

Multipunch Codes: 017 02- 03- 041 046 054 07- 075 09& 09- 10& 10- 15& 17& 17-

18& 18- 19& 248 263 273 278 293 343 351 360 681 689 693 726

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1993-115228

9/28/06, EAST Version: 2.0.3.0