Algèbre Linéaire

Tissot

Semestre de printemps 2019

Corrigé 5

Chgt de Bases : exercice 1

Les vecteurs $\vec{v}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ et $\vec{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ ne sont pas colinéaires, donc ils

forment une base.

On utilise la matrice de passage P. On obtient les anciennes composantes en fonction des nouvelles, d'où le diagramme :

La nouvelle base est \mathcal{B}_v .

On faut déterminer les composantes des vecteurs \vec{v}_1 et \vec{v}_2 par rapport à la base $\mathcal{B}_e = (\vec{e_1}; \vec{e_2})$.

$$\vec{v}_1 = 3\vec{e}_1 + 1\vec{e}_2 = \begin{pmatrix} 3\\1 \end{pmatrix}_u$$
 et $\vec{v}_2 = 2\vec{e}_1 + 1\vec{e}_2 = \begin{pmatrix} 2\\1 \end{pmatrix}_u$

La matrice de passage P de \mathcal{B}_e à \mathcal{B}_v est donc : $P = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$, $\det P \neq 0$

On pose:
$$X = \begin{pmatrix} 2 \\ 2 \end{pmatrix}_u$$
, $X' = \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans la base $\mathcal{B}_e \implies$

$$X = PX' \quad \Leftrightarrow \quad \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = \left(\begin{array}{c} 3 & 2 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} x' \\ y' \end{array}\right) \quad \Leftrightarrow \quad \left\{\begin{array}{ccc} 2 & = & 3x' + 2y' \\ 2 & = & x' + y' \end{array}\right. \quad \Rightarrow \quad \left\{\begin{array}{ccc} x' & = & -2 \\ y' & = & 4 \end{array}\right.$$

$$X' = \begin{pmatrix} -2\\4 \end{pmatrix} = (-2)\vec{v}_1 + 4\vec{v}_2$$

Chgt de Bases : exercice 3

(a) L'idée est d'exprimer les vecteurs de la "nouvelle" base \mathcal{B}_u en fonction de ceux de "l'ancienne" base \mathcal{B}_v pour obtenir la matrice de passage.

On commence par faire le diagramme de changement de bases.

La nouvelle base étant \mathcal{B}_v , il faut donc déterminer les composantes des vecteurs \vec{v} et \vec{w} par rapport à la base $\mathcal{B}_u(\vec{u}, \vec{v})$.

$$\vec{v} = 0\vec{u} + 1\vec{v} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}_u$$
 et $\vec{w} = 3\vec{u} - 4\vec{v} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}_u$

La matrice de passage P de \mathcal{B}_u à \mathcal{B}_v est donc : $P = \begin{pmatrix} 0 & 3 \\ 1 & -4 \end{pmatrix}$

(b) On va utiliser une base "judicieuse" pour déterminer les matrices des applications. Puis de faire un changement de bases.

Une base est "judicieuse" lorsque la matrice de l'application linéaire est diagonale.

• On détermine la matrice de f dans la base $\mathcal{B}_u(\vec{u}, \vec{v})$.

L'axe est
$$(O, \vec{u})$$
 donc $f(\vec{u}) = \vec{u} = 1\vec{u} + 0\vec{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_u$

La direction est \vec{v} et la rapport 3 donc $f(\vec{v}) = 3\vec{v} = 0\vec{u} + 3\vec{v} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}_u$

La matrice de f relativement à la base \mathcal{B}_u est : $M_f = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$

• On détermine la matrice de g dans la base $\mathcal{B}_v(\vec{v}, \vec{w})$.

L'axe est
$$(O, \vec{v})$$
 donc $g(\vec{v}) = \vec{v} = 1\vec{v} + 0\vec{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_v$

La direction est
$$\vec{w}$$
 et la rapport -2 donc $g(\vec{w}) = -2\vec{w} = 0\vec{v} - 2\vec{w} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}_v$

La matrice de
$$g$$
 relativement à la base \mathcal{B}_v est : $M'_g = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$

Pour calculer la matrice de h dans la base \mathcal{B}_u , il est nécessaire que les matrices de f et g soient exprimées dans cette base.

- La matrice de f est déjà dans la base \mathcal{B}_u .
- Sous a) on a calculé la matrice de passage P de l'ancienne base \mathcal{B}_u à la nouvelle base \mathcal{B}_v .

On connaît la matrice M'_g dans \mathcal{B}_v et on veut déterminer M_g dans la base \mathcal{B}_u .

On considère le changement de base dont le diagramme est le suivant :

On a la relation : $M'_g = P^{-1} M_g P \iff M_g = P M_g P^{-1}$

D'où:
$$M_g = \frac{1}{3} \begin{pmatrix} 0 & 3 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 4 & 1 \end{pmatrix}$$

• On peut maintenant calculer la matrice de $h = g \circ f$ dans la base \mathcal{B}_u .

$$M_h = M_g M_f = \begin{pmatrix} -2 & 0 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 4 & 3 \end{pmatrix}$$

Chgt de Bases : exercice 5

(a) • La nouvelle base de \mathbb{R}^3 est \mathcal{B}_f . Dans la donnée, les vecteurs $\vec{f_1}$, $\vec{f_2}$ et $\vec{f_3}$ sont déjà connus en fonction de l'ancienne base \mathcal{B}_e :

$$\begin{cases} \vec{f_1} = \vec{e_1} + \vec{e_2} \\ \vec{f_2} = \vec{e_1} - \vec{e_2} \end{cases} \qquad \vec{f_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}_e, \quad \vec{f_2} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}_e \text{ et } \vec{f_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}_e$$

La matrice de passage
$$P$$
 de \mathcal{B}_e à \mathcal{B}_f est donc immédiate : $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

• La nouvelle base de \mathbb{R}^2 est \mathcal{B}_w . Dans la donnée, les vecteurs $\vec{w_1}$ et $\vec{w_2}$ sont déjà connus en fonction de l'ancienne base \mathcal{B}_v :

$$\begin{cases} \vec{w_1} = \vec{v_1} - \vec{v_2} \\ \vec{w_2} = 2\vec{v_1} + \vec{v_2} \end{cases} \qquad \vec{w_1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_v \quad \text{et} \quad \vec{w_2} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}_v$$

La matrice de passage Q de \mathcal{B}_v à \mathcal{B}_w est donc immédiate : $Q = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$.

(b) Les deux matrices inverses seront utiles, les voici :

$$P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad \text{et} \quad Q^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix}.$$

La matrice A de l'application f de la base \mathcal{B}_e à la base \mathcal{B}_v est donnée; voici le diagramme avec les différentes bases proposées :

i) On a la relation (le diagramme s'avère très utile) :

$$A'_{ew} = Q^{-1}AP = Q^{-1}AI_3 = Q^{-1}A$$

Ainsi:
$$A'_{ew} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -7 & 0 & -1 \\ 5 & 3 & 5 \end{pmatrix}$$

ii) On a la relation (le diagramme s'avère très utile) :

$$A'_{fv} = Q^{-1}AP = I_2AP = AP$$

Ainsi:

$$A'_{fv} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & 3 \\ 5 & 3 & 2 \end{pmatrix}$$

iii) On a la relation (le diagramme s'avère très utile):

$$A_{fw}^{'} = Q^{-1}AP$$

Ainsi:

$$A'_{fw} = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -7 & -7 & -1 \\ 8 & 2 & 5 \end{pmatrix}$$

(c) Voici à nouveau le diagramme :

Soit P(1; -1; 2) exprimé dans la base \mathcal{B}_e et on veut son image exprimée dans la base \mathcal{B}_w .

On propose plusieurs manières de résoudre le problème.

• On calcule f(P) dans la base \mathcal{B}_v puis on fait le changement de la base \mathcal{B}_v à la base \mathcal{B}_w :

$$f(P) = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 - 2 + 6 \\ 4 - 1 + 4 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \end{pmatrix} = 5\vec{v}_1 + 7\vec{v}_2 = Y_v$$

$$Y_v = Q \cdot Y_w' \quad \Leftrightarrow \quad Y_w' = Q^{-1} \cdot Y_v = \frac{1}{3} \begin{pmatrix} 1 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 7 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix} = -3\vec{w}_1 + 4\vec{w}_2$$

ce sont donc les coordonnées de f(P) dans la base \mathcal{B}_w .

• Comme la matrice A'_{ew} a été calculée, on peut l'utiliser directement pour avoir f(P) dans la base \mathcal{B}_w (c'est la méthode la plus rapide et directe).

$$f(P) = \frac{1}{3} \begin{pmatrix} -7 & 0 & -1 \\ 5 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$

• On peut également transformer les coordonnées de P par un changement de la base \mathcal{B}_e à la base \mathcal{B}_f puis on utilise la matrice A'_{fw} :

$$X = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
, alors: $X = PX' \Leftrightarrow X' = P^{-1}X$

$$X' = \frac{1}{2} \begin{pmatrix} -1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
 d'où :

$$f(X') = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}.$$

Chgt de Bases : exercice 6

(a) • La nouvelle base est \mathcal{B}_v . Pour obtenir Q, il faut la composante de \vec{v} dans la base canonique de \mathbb{R} . La dimension de \mathbb{R} est 1, donc $Q \in \mathbb{M}(1 \times 1; \mathbb{R})$.

$$\vec{v} = 3/2\vec{e} = (3/2)_e$$

D'où la matrice de passage de \mathcal{B}_e à \mathcal{B}_v : Q = (3/2)

• On a le diagramme de changement de bases suivant :

La nouvelle base est \mathcal{B}_w . Pour obtenir P, il faut les composantes des polynômes de \mathcal{B}_w dans la base canonique. La dimension de $P_3[\mathbb{R}]$ est 4, donc $P \in \mathbb{M}(4 \times 4; \mathbb{R})$.

$$2 = 2 \cdot 1 + 0x + 0x^{2} + 0x^{3} = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}_{u}; \qquad x+1 = 1 \cdot 1 + 1x + 0x^{2} + 0x^{3} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}_{u}$$

$$x^{2} - x = 0 \cdot 1 - 1x + 1x^{2} + 0x^{3} = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}_{u} ; \qquad x^{3} = 0 \cdot 1 + 0x + 0x^{2} + 1x^{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

D'où la matrice de passage de
$$\mathcal{B}_u$$
 à \mathcal{B}_w : $P = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(b) • Les bases \mathcal{B}_u et \mathcal{B}_e sont les bases canoniques. Pour déterminer la matrice de f, on cherche les composantes, dans \mathcal{B}_e , des images des vecteurs de la base de $P_3[x]$.

On note A_{ue} cette matrice. Donc $A_{ue} \in M(4; \mathbb{R})$.

$$f(1) = 1 = 1\vec{e} = (1)_e$$
, $f(x) = 0 = 0\vec{e} = (0)_e$,
 $f(x^2) = 0 = 0\vec{e} = (0)_e$, $f(x^3) = 0 = 0\vec{e} = (0)_e$

D'où la matrice de f relativement aux bases \mathcal{B}_u et \mathcal{B}_e : $A_{ue} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

• Le diagramme de changement de bases est le suivant :

$$(P_{3}[x], \mathcal{B}_{u}) \xrightarrow{A_{ue}} (\mathbb{R}, \mathcal{B}_{e})$$

$$X_{u} \qquad Y_{e} = A_{ue}X_{u}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

On a la relation : $A_{wv} = Q^{-1}A_{ue}P$

Ainsi
$$A_{wv} = \begin{pmatrix} \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{4}{3} & \frac{2}{3} & 0 & 0 \end{pmatrix}$$

(c) • Composantes de r(x) dans la base canonique \mathcal{B}_u de $P_3[x]$:

$$R_u = \begin{pmatrix} 5 \\ 2 \\ 0 \\ -1 \end{pmatrix}$$

• On détermine les composantes de r(x) dans la base \mathcal{B}_w , en utilisant la matrice de passage P.

$$R_{u} = PR'_{w} \Leftrightarrow R'_{w} = P^{-1}R_{u}$$

$$R'_{w} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5\\ 2\\ 0\\ -1 \end{pmatrix} = \begin{pmatrix} \frac{3}{2}\\ 2\\ 0\\ -1 \end{pmatrix}_{w} \Leftrightarrow$$

$$\Leftrightarrow r(x) = \frac{3}{2} \cdot 2 + 2 \cdot (x+1) - x^{2}$$

On utilise le diagramme de changement de bases pour définir plusieurs "chemins" permettant d'obtenir f(r(x)) dans la base \mathcal{B}_v , ceci en utilisant les matrices de f obtenues sous b).

• On veut les composantes de f(r(x)) dans la base \mathcal{B}_v .

Comme on a calculé les composantes de r(x) dans \mathcal{B}_w , la manière la plus directe de déterminer la composante de f(r(x)) dans la base \mathcal{B}_v est d'utiliser la matrice A_{wv} .

$$f(r(x)) = y \quad \Leftrightarrow \quad A_{wv}R'_w = Y'_v \quad \Leftrightarrow \quad \left(\frac{4}{3} \ \frac{2}{3} \ 0 \ 0\right) \begin{pmatrix} \frac{3}{2} \\ 2 \\ 0 \\ -1 \end{pmatrix}_w = (10/3)_v$$

$$\Leftrightarrow f(r(x)) = \frac{10}{3} \vec{v}$$

• On calcule la composante de l'image de r(x) dans la base \mathcal{B}_e en utilisant la matrice A_{ue} . Puis on détermine la composante relativement à la base \mathcal{B}_v en

utilisant la matrice de passage Q.

On commence donc par calculer la composante de l'image de r(x) dans la base \mathcal{B}_e en utilisant la matrice A_{ue} .

$$f(r(x)) = y \Leftrightarrow A_{ue}R_u = Y_e$$

$$\Leftrightarrow (1\ 0\ 0\ 0) \begin{pmatrix} 5\\2\\0\\-1 \end{pmatrix}_u = (5)_e$$

$$\Leftrightarrow f(r(x)) = 5\vec{e}$$

On détermine la composante relativement à la base \mathcal{B}_v en utilisant la matrice de passage Q.

$$Y_e = QY'_v \Leftrightarrow Y'_v = Q^{-1}Y_e$$

$$\Leftrightarrow (2/3)(5)_e = (10/3)_v$$

$$\Leftrightarrow f(r(x)) = \frac{10}{3}\vec{v}$$

• On peut aussi déterminer la matrice A_{uv} relativement aux bases \mathcal{B}_u et \mathcal{B}_v . Elle permet de calculer directement l'image de r(x) dans la base demandée.

$$A_{uv} = Q^{-1}A_{ue} = (2/3) (1 \ 0 \ 0 \ 0) = (\frac{2}{3} \ 0 \ 0 \ 0)$$

$$f(r(x)) = y \Leftrightarrow A_{uv}R_u = Y_v'$$

$$\Leftrightarrow \left(\frac{2}{3} \ 0 \ 0 \ 0\right) \left(\begin{array}{c} 5\\2\\0\\-1 \end{array}\right)_{v} = (10/3)_{v}$$

$$\Leftrightarrow f(r(x)) = \frac{10}{3}\vec{v}$$

Chgt de Bases : exercice 7

(a) \bullet Pour calculer la matrice de g, on peut par exemple chercher l'image d'une matrice X quelconque.

On peut aussi calculer l'image des vecteurs de la base canonique $\mathcal{B}_e(E_1, E_3, E_4)$,

$$E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

On pose
$$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} = xE_1 + yE_2 + zE_3 + tE_4 = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$
: composantes

de X relativement à \mathcal{B}_e .

La matrice M_e de g appartient à $\mathbb{M}(4 \times 4; \mathbb{R})$. Pour la déterminer, on calcule g(X).

$$g(X) = A(X + X^{t}) = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 2x & y + z \\ y + z & 2t \end{pmatrix} =$$

$$= \begin{pmatrix} 2x + 2y + 2z & y + z + 4t \\ 6x + 6y + 6z & 3y + 3z + 12t \end{pmatrix} =$$

$$= \begin{pmatrix} 2 & 2 & 2 & 0 \\ 0 & 1 & 1 & 4 \\ 6 & 6 & 6 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = M_{e}X_{e}$$

• Pour déterminer la matrice de passage P, il faut exprimer les vecteurs de la "nouvelle" base \mathcal{B}_v en fonction de ceux de "l'ancienne" base \mathcal{B}_e .

$$E_1' = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = 1E_1 + 0E_2 + 0E_3 + 0E_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}_e$$

$$E_2' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0E_1 + 1E_2 + 0E_3 + 0E_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$E_3' = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} = 1E_1 + 0E_2 + 2E_3 + 0E_4 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}$$

$$E_4' = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix} = 0E_1 + 1E_2 + 0E_3 + 2E_4 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 2 \end{pmatrix}_{e}$$

La matrice P appartient à $\mathbb{M}(4 \times 4; \mathbb{R})$.

$$P = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right)$$

• Le diagramme de changement de bases est le suivant :

$$(\mathbb{M}(2;\mathbb{R}),\mathcal{B}_{e}) \xrightarrow{M_{e}} (\mathbb{M}(2;\mathbb{R}),\mathcal{B}_{e})$$

$$X_{e} \qquad Y_{e} = M_{e}X_{e}$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad$$

On a la relation : $M_v = P^{-1}M_eP$

Il faut donc calculer la matrice P^{-1} !

$$M_{v} = \begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 & 0 \\ 0 & 1 & 1 & 4 \\ 6 & 6 & 6 & 0 \\ 0 & 3 & 3 & 12 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -3 & -1 \\ 0 & -\frac{1}{2} & -1 & -\frac{9}{2} \\ 3 & 3 & 9 & 3 \\ 0 & \frac{3}{2} & 3 & \frac{27}{2} \end{pmatrix}$$

(b) • On remarque que $E_1' = E_1$ et $E_3' = E_1 + 2E_3$. On peut donc déterminer facilement C dans \mathcal{B}_e :

$$C = 2E_1' - 3E_3' = 2E_1 - 3(E_1 + 2E_3) = -E_1 - 6E_3 = \begin{pmatrix} -1 & 0 \\ -6 & 0 \end{pmatrix}$$

Ainsi:
$$C = \begin{pmatrix} -1 & 0 \\ -6 & 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -6 \\ 0 \end{pmatrix}_{e}$$
: composantes de C dans \mathcal{B}_{e}

Remarque:

On peut aussi utiliser la matrice de passage P car $C_e = PC_v$.

Les composantes de C dans \mathcal{B}_v sont immédiates. On obtient alors directement les composantes dans \mathcal{B}_e .

$$C_e = PC_v = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -3 \\ 0 \end{pmatrix}_v = \begin{pmatrix} -1 \\ 0 \\ -6 \\ 0 \end{pmatrix}_e$$

• Pour déterminer les composantes de f(C) dans la base \mathcal{B}_v , on utilise la matrice M_v car on a déjà les composantes de C dans cette base.

$$f(C) = M_v C_v = \begin{pmatrix} -1 & -1 & -3 & -1 \\ 0 & -\frac{1}{2} & -1 & -\frac{9}{2} \\ 3 & 3 & 9 & 3 \\ 0 & \frac{3}{2} & 3 & \frac{27}{2} \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ -3 \\ 0 \end{pmatrix}_v = \begin{pmatrix} 7 \\ 3 \\ -21 \\ -9 \end{pmatrix}_v$$