Monte Carlo tuning with Neural Networks

S. Alioli, S. Carrazza

December 6, 2016

1 Idea

Determine the best set of input parameters, \vec{p}_{in} , and its uncertainties for Monte Carlo tunes through artificial neural networks.

2 Methodology

Here we discuss two methods which should be interesting to study.

2.1 Strategies

2.1.1 χ^2 model

- Take the input MC histograms $H_{\text{MC}}(\vec{p}_{\text{in}})$ and build MC bootstrap replicas based on the MC statistical uncertainties per bin, $H_{\text{MC}}^{k}(\vec{p}_{\text{in}})$ with $k = [1, N_{\text{rep}}]$.
- For each MC replica we compute

$$\chi_k^2(\vec{p}_{\rm in}) = \left[\sum_{ij} (d_i - H_{\rm MC}^k(\vec{p}_{\rm in})_i)(\cos^{-1})_{ij} (d_j - H_{\rm MC}^k(\vec{p}_{\rm in})_j) \right]^{\frac{1}{2}}, \quad (1)$$

where d_i is the experimental data and cov its covariance matrix.

• At this stage we have N_{rep} replicas for the $\chi_k^2(\vec{p}_{\text{in}})$ function so we apply a gradient or genetic algorithm minimization to get the best \vec{p}_{in}^k for each replica which satisfies the condition:

$$\chi^2(\vec{p}_{\rm in}) \to 0$$
 (2)

2.1.2 Monte Carlo model

In this method we take the input MC histograms $H^i_{MC}(\vec{p}_{in})$ and build a model which maps the input variables \vec{p}_{in} :

- for each MC histogram we build a neural network model $NN(\vec{p}_{\rm in},i) \rightarrow H^i_{\rm MC}(\vec{p}_{\rm in})$ by generating bootstrap MC replicas first and then fitting the neural network to the target MC histogram including its uncertainties in the loss function.
- \bullet build a χ^2 function which measures the distance between the target data and the MC NN model.

2.2 Validation

Perform a closure test in order to check the quality and efficiency of the procedure