Ausreißer

MASCHINELLES LERNEN & DATAMINING

Vorlesung im Wintersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 25. August 2017

Relationen Skalenkonversion Ausreißer

Grundbegriffe des Data Mining

Datensätze mit expliziter oder impliziter Objektcharakterisierung

Datensatz

Menge oder Folge von Objekten ("Instanzen") des Aufgabenbereichs Ω mit ihren Eigenschaften und/oder Beziehungen

Attribut

Objekteigenschaft $\hat{=}$ Element eines Wertebereichs \mathcal{X} ("Skala")

Beziehung

Relation $\mathcal{R} \subset \Omega \times \Omega$ zwischen Objekten oder ...

Abstand/Ähnlichkeit $d: \Omega \times \Omega \to \mathbb{R}$ zwischen Objekten

	01 02 03 04
01	∞
02	∞
0 ₂ 0 ₃	∞
04	∞

	01	02	03	04
01	0	3	8	15
02	3	0	5	12
03	8	5	0	7
Од	15	12	7	0

Teil II

Datenaufbereitung

Objekteigenschaften erster Ordnung

Definition

Sind $\mathcal{X}_1, \dots, \mathcal{X}_N$ die Attribute eines Objekts, so heißen die Elemente

$$\mathbf{x} = (x_1, \dots, x_N)^{\top} \in \mathcal{X}_1 \times \dots \times \mathcal{X}_N =: \mathcal{X}$$

Datenvektoren des Objekts.

Relationen

Die Menge X heißt Wertebereich des Objekts.

Eine (Multi-)Menge $\{x_1, \ldots, x_T\} \subset \mathcal{X}$ oder eine Folge $(x_1, \ldots, x_T) \in \mathcal{X}^T$ bezeichnen wir als **Datenmatrix** oder ggf. als Meßreihe.

Schreibweise

Datenvektoren Meßwerte

Reelle Datenmatrix
$$\begin{pmatrix} x_{1,1} & \dots & x_{1,N} \\ \vdots & \ddots & \vdots \\ x_{T,1} & \dots & x_{T,N} \end{pmatrix}$$

Name

Variable

Тур Wert

Datum

Attribut Objekt Eintrag

Relationen

Werteskalen

Relationen

Attribute und ihre Skalentypen

Was bedeuten die Spalteneinträge einer Datenmatrix ?

Beispiel

	vorbestraft	Partei	Abinote	Geburt	Spenden
Angela	F	CDU	gut	1954	$345 \cdot 10^3$
Guido	F	FDP	ausreichend	1961	$137 \cdot 10^3$
Roland	Т	CDU	gut	1958	$3.6 \cdot 10^{6}$
Gregor	F	PDS	sehr gut	1948	NA
Linus	F	Pirat	NA	1969	0
Bill	F	Rep	mangelhaft	1955	$-4.2 \cdot 10^{9}$
Roman	Т			1933	
:	:	:	:	:	:
		•	•	•	
:					
	$\{T,F\}$	$\{\pi_1,\ldots,\pi_9\}$	$\{\nu_1,\ldots,\nu_5\}$	$\mathbb{Z}\subset \mathrm{I\!R}$	$ m I\!R$
	, , ,	. , , ,	. , , ,		

Werteskalen Relationen Skalenkonversion Ausreißer Skalentypen Objektattribut \(\hat{\pm}\) (Wertebereich, Operatorenmenge)

SKALENTYPEN KATEGORIAL (diskret) KARDINAL (numerisch) ordinal absolut Ordnungsrelation Distanzfunktion nominal proportional relativ HO/IO mehrstufig Hierarchie Adjazenz Metrik Zählmaß zirkadian dichotom Norm

Diskrete Skala **Endlicher Wertebereich** $\mathcal{X} = \{\xi_1, \xi_2, \dots, \xi_K\}$

Numerische Skala Kontinuierlicher Wertebereich $\mathcal{X} \subseteq \mathbb{R}$

Typische Wertebereiche

Relationen

Nominalskala

Werteskalen

- Dichotomien $\{0,1\}, \{T,F\}, \{+,-\}, \{m,f\} \dots$
- Zeichensätze {*C*, *G*, *A*, *T*}
- Farben ("red", green, blue)
- Gruppen & Prädikate

Intervallskala (relativ)

- Temperaturen 20°C, 451°F
- Zeitangaben 1066, 2001/09/11, 469 v.Chr., ...

Ordinalskala

Ausreißer

- Notenskala "sehr gut", "gut", "befriedigend", ...
- Unscharfe Prädikate "kalt", "kühl", "lau", "warm", "heiß"
- Eingefrorene Quantitäten "2-türig", "4-türig", "5-türig"

Verhältnisskala (absolut/proport.)

- absol. Temperatur 273°K
- Dauer 45 min, 13.7·10⁹ Jahre
- Mengenangaben $C=2.98, 17 \text{ cm}, 8 \mu \text{g}, \dots$

Durchschnittswerte

Wie berechnet man/frau einen für $(x_1, \ldots, x_T) \in \mathcal{X}^T$ "(proto)typischen" Wert ?

Binäre Skalenoperationen

Vergleichsoperationen $\mathcal{X} \times \mathcal{X} \to \{T, F\}$ · Rechenoperationen $\mathcal{X} \times \mathcal{X} \to \mathbb{R}$

Nominalskala

= Gleichheitstest

Alle Attributwerte ξ_{ℓ} sind gleichberechtigt.

Relationen

Intervallskala

Differenzbildung

Unterschiede sind durch $x_1 - x_2$ quantifizierbar.

Ordinalskala

→ Vergleichbarkeit

Abschnittsbildung nach Totalordnung: $\{\xi \mid \xi \leq \xi_{\ell}\}\$

Verhältnisskala (absolut/proport.)

Quotientenbildung

Wohldefiniert: "Nullpunkt", "doppelt", "Drittel"

Nominalskala

Modus — der häufigste Wert: $\mu^{\mathsf{mod}} = \xi_{\ell^*} \mathsf{mit}$

$$\ell^* = \underset{\ell}{\operatorname{argmax}} N_{\ell}$$

mit den absoluten Häufigkeiten $N_\ell = \sum_{t=1}^T \delta_{\mathbf{x_t},\xi_\ell}$

Intervallskala

Arithmetisches Mittel

$$\mu^{\mathsf{mean}} = \frac{1}{T} \cdot \sum_{t=1}^{T} x_t = \frac{1}{T} \cdot \sum_{\ell=1}^{L} N_{\ell} \cdot \xi_{\ell} \qquad \mu^{\mathsf{geo}} = \sqrt[T]{\prod_{t=1}^{T} x_t} = \sqrt[T]{\prod_{\ell=1}^{L} \xi_{\ell}^{N_{\ell}}}$$

Ordinalskala

Median — der mittlere Wert: $\mu^{\mathsf{med}} = \xi_{\ell^*} \mathsf{mit}$

$$\sum_{k=1}^{\ell^*-1} N_k \leq \frac{T}{2} \leq \sum_{k=1}^{\ell^*} N_k$$

falls das Inventar \mathcal{X} geordnet ist: $\xi_1 < \xi_2 < \dots < \xi_{\ell} < \xi_{\ell+1} < \dots < \xi_L$

Verhältnisskala (absolut/proport.)

Geometrisches Mittel

$$\mu^{\text{geo}} = \sqrt[T]{\prod_{t=1}^T x_t} = \sqrt[T]{\prod_{\ell=1}^L \xi_\ell^{N_\ell}}$$

Werteskalen

Relationen

Skalenkonversion

Ausreißer

Werteskalen

Relationen

Ausreißer

Durchschnittswerte

Verallgemeinerung auf Metriken und normierte Vektorräume

Beispiel

Für die Wertemenge $\{1, 1, 1, 2, 2, 5, 9\}$ gilt: $\mu^{\text{mod}} = 1$, $\mu^{\text{med}} = 2$, $\mu^{\text{mean}} = 3$, $\mu^{\text{geo}} = 2.0998$

Definition

In einem metrischen Raum (\mathcal{X}, d) heißt der Wert

$$\mu^{\text{zen}} = \underset{z \in \mathcal{X}}{\operatorname{argmin}} \left(\sum_{t=1}^{T} d(z, x_t) \right)$$

das **Zentroid** der (Multi-)Menge $\{x_1, \ldots, x_T\}$.

Lemma

- (1) Es ist $\mu^{\text{mean}}(\cdot)$ das Zentroid zur euklidischen Metrik $d(y,z) = (y-z)^2$. (2) Es ist $\mu^{\text{med}}(\cdot)$ das Zentroid zur Betragsmetrik d(y,z) = |y-z|.
- (3) Es ist $\mu^{mod}(\cdot)$ das Zentroid zur diskreten Metrik $d(y,z) = 1 \delta_{y,z}$.

Durchschnittswerte

Verallgemeinerung von (endlichen) Wertemengen auf diskrete Verteilungen

Definition

Es sei $\mathbb X$ eine diskrete Zufallsvariable über dem Wertebereich $\mathcal X\subset {\rm I\!R}$ mit der Wahrscheinlichkeitsfunktion $P(\cdot)$. Dann heißt

$$\mu(\mathbb{X}) = \mathcal{E}[\mathbb{X}] \stackrel{\mathsf{def}}{=} \sum_{x \in \mathcal{X}} x \cdot P(\mathbb{X} = x)$$

der **Erwartungswert** von X, es heißt

$$\mu^{\mathsf{med}}(\mathbb{X}) = \xi \quad \mathsf{mit} \quad \sum_{x < \xi} \mathrm{P}(\mathbb{X} = x) \leq \frac{1}{2} \leq \sum_{x < \xi} \mathrm{P}(\mathbb{X} = x)$$

der **Median** von X, und es heißt

$$\mu^{\mathsf{mod}}(\mathbb{X}) \stackrel{\mathsf{def}}{=} \underset{x \in \mathcal{X}}{\mathsf{argmax}} \, \mathrm{P}(\mathbb{X} = x)$$

der **Modus** von X.

Verallgemeinerung von (endlichen) Wertemengen auf stetige Verteilungen

Definition

Relationen

Für eine kontinuierliche Zufallsvariable über dem Wertebereich $\mathcal{X}=\mathrm{I\!R}$ mit der Wahrscheinlichkeitsdichtefunktion $f_{\mathbb{X}}(\cdot)$ gilt entsprechend:

$$\mu(\mathbb{X}) \stackrel{\mathsf{def}}{=} \mathcal{E}[\mathbb{X}] = \int_{\mathbb{R}} x \cdot f_{\mathbb{X}}(x) \, dx$$

$$\mu^{\mathsf{med}}(\mathbb{X}) \stackrel{\mathsf{def}}{=} \xi \quad \mathsf{mit} \quad \int_{-\infty}^{\xi} f_{\mathbb{X}}(x) \, dx = \frac{1}{2}$$

$$\mu^{\mathsf{mod}}(\mathbb{X}) \stackrel{\mathsf{def}}{=} \underset{x \in \mathbb{R}}{\mathsf{argmax}} f_{\mathbb{X}}(x)$$

Bemerkung

Die Mediandefinition erfordert eine stetige und streng monotone Wahrscheinlichkeitsverteilungsfunktion.

Relationen

Relationen

Ausreißer

Ausreißer

Relationen auf diskreten Attributen

Spezialfall: Objekte besitzen genau ein Attribut \mathcal{X}

Adjazenz

Die Matrix $\mathbf{A} \in \{0,1\}^{L \times L}$ repräsentiert eine (Objekt)nachbarschaft.

- räumliche Nähe, Verwandtschaft, Interaktion ...
- "Elter-von", Einflußnahme, ...

Präferenz

Die Relation $\mathcal{R} \subset \mathcal{X} \times \mathcal{X}$ repräsentiert eine (nicht notwendig totale) Ordnung.

- Halbordnung, Verband, Boolesche Algebra
- Turnier, (echte) Intervallordnung

Bemerkung

Zyklus: $c \prec b \prec d \prec c$ \neg transitiv: $c \leq b \leq a$

Relationen und Distanzen

Relationer

Abstände und Ähnlichkeiten

Diskrete metrische Attribute

Definition

Eine Abstandsfunktion $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ heißt **Metrik** auf \mathcal{X} , wenn $d(\cdot, \cdot)$ für alle $x, y, z \in \mathcal{X}$ die drei Eigenschaften

1. $d(x, y) = 0 \iff x = y$

Definitheit

2. d(x,y) = d(y,x)

Symmetrie

 $3. d(x,z) \leq d(x,y) + d(y,z)$

Dreiecksungleichung

besitzt.

Bemerkungen

- 1. Jede Vektorraumnorm $\|\cdot\|: \mathcal{X} \to \mathbb{R}$ definiert eine Metrik $d(x,y) = \|x y\|$.
- 2. Jedes innere Produkt $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ definiert eine VR-Norm $\|x\| = \sqrt{\langle x, x \rangle}$.
- 3. Distanzen transformieren in Ähnlichkeiten $s(x, y) = \exp(-\frac{d(x, y)}{2\sigma^2})$
- 4. Ähnlichkeiten transformieren in Distanzen $d(x, y) = -2\sigma^2 \cdot \log(s(x, y))$

Relationen Relationer

Spezialfall Zeichenketten

Attribute mit einem diskreten Wertebereich $\mathcal{X} \subset \mathcal{A}^*$

Elementare Operationen auf Zeichenketten

- Ersetzung eines Zeichens durch ein anderes
- Löschung eines Zeichens
- Einfügung eines Zeichens

substitution

deletion

insertion

Definition

Ist \mathcal{A} ein endliches Alphabet und sind v, w zwei Zeichenfolgen aus \mathcal{A}^{\star} , so bezeichnet der **Levenshtein-Abstand** $d^{lev}(v, w)$ die minimale Anzahl von Elementaroperationen, mit denen v in w überführt werden kann.

Relationen Skalenkonversion Ausreißer

Skalenkonversion

Spezialfall Zeichenketten

Zeichenkettenattribute sind metrisch und erlauben die Durchschnittbildung

Lemma

Der Levenshtein-Abstand d^{lev}: $\mathcal{A}^* \times \mathcal{A}^* \to \mathbb{R}$ über dem Alphabet \mathcal{A} ist eine definite, symmetrische Distanzfunktion und erfüllt die Dreiecksungleichung — (A^*, d^{lev}) ist folglich ein **metrischer Raum**.

Definition

Sei (\mathcal{X}, d) ein metrischer Raum und $(w_1, \dots, w_T) \in \mathcal{X}^T$ eine Auswahl (Multimenge) von Elementen. Der Wert

$$\mu^{\text{mid}} = \underset{z \in \{w_1, \dots, w_T\}}{\operatorname{argmin}} \left(\sum_{t=1}^T d(z, w_t) \right)$$

heißt das **Medoid** der Menge bezüglich der Metrik $d(\cdot, \cdot)$.

Bemerkung

Das Medoid einer Wortmenge w_1, \ldots, w_T mit maximaler Wortlänge N_{max} läßt sich mit Aufwand $O(T^2N_{\text{max}}^2)$ berechnen.

Ausreißer

Konversion der Attributskalen — wozu?

Datensatz mit Attributen unterschiedlichen Skalentyps

Traditionelle Modellierungsverfahren erfordern einheitliche Skalen:

Skalenkonversion

 Numerische Skalen Multivariate Normalverteilung

Relationen

$$\mathcal{X} = \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{N-\mathsf{mal}} = \mathbb{R}^N$$

$$f(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{S}) = |2\pi \mathbf{S}|^{-1/2} \cdot \exp\left\{-\frac{1}{2} \cdot (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{S}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

 Diskrete Skalen $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \ldots \times \mathcal{X}_N$ *N*-dimensionale Wahrscheinlichkeitstabelle mit $\mathcal{X}_n = \{1, \dots, \ell_n\}$

$$P(\mathbf{x}) = p_{\mathbf{x_1},...,\mathbf{x_N}}$$
 mit dem Tensor $\mathbf{p} \in [0,1]^{\ell_1 \times \ell_2 \times ... \times \ell_N}$

Option auf robusteres Datenmodell

Sind die Attributwerte wirklich normalverteilt? Kann ich mir eine Tabelle mit $\prod_n \ell_n$ Einträgen leisten ? Skalenkonversion Skalenkonversion

Diskretisierung numerischer Attribute (unüberwacht)

(kardinal ⇒ ordinal)

Äquidistante Intervalle

Mißachtet Datenverteilung \rightsquigarrow unglm. Zellenbesetzung & Übersteuern

Äquifrequente Intervalle

Histogrammegalisierung \rightsquigarrow konstante Zellenbesetzung T/L

Nichtlinearer Skalarquantisierer

Minimiert den Störabstand (SNR): mittlerer quadratischer Quantisierungsfehler

Faustregel $L = \sqrt{T}$

Relationen

Skalenkonversion

Fall $\ell = 5$

 $\mathbb{R}_1 \mathbb{R}_2 \mathbb{R}_3 \mathbb{R}_4 \mathbb{R}_5$

0

0 0 0 0 1

Kardinalisierung nominaler Attribute

(nominal ⇒ numerisch)

Problem

Zahlreiche Methoden (k-nächste-Nachbarn, Bayesregel, Trennfunktionen) der Klassifikation und Vorhersage benötigen Objektabstände oder numerische, besser noch gaußverteilte Objektattribute.

Nominale Entflechtung

Die nominale Skala mit Wertebereich $\mathcal{X} = \{\xi_1, \dots, \xi_\ell\}$ wird auf einen Komplex **reellwertiger** Attribute $\mathcal{X}_i = \{0, 1\}, i = 1, \dots, \ell$, abgebildet:

$$\phi(\xi_j) = (\underbrace{0,\ldots,0}_{(j-1) ext{-mal}},1,\underbrace{0,\ldots,1}_{(\ell-j) ext{-mal}}) \in
m I\!R^\ell$$

Für diese Darstellung gilt die Äquidistanzeigenschaft

$$d(\phi(\xi_i),\phi(\xi_j)) = \|\phi(\xi_i) - \phi(\xi_j)\| = \begin{cases} 0 & \xi_i = \xi \\ \sqrt{2} & \xi_i \neq \xi \end{cases}$$

Nominalisierung ordinaler Attribute

(ordinal ⇒ nominal)

Problem

Die Quantisierung numerischer Skalen liefert konstruktionsbedingt Werte einer **ordinalen** Skala.

Die immanente Reihenfolgeinformation wird aber von den einschlägigen Datenmodellen (W-Tabellen, lineare Modelle, Entscheidungsbäume) nicht genutzt.

Ordinale Entflechtung

Die ordinale Skala mit (sortiertem) Wertebereich $\mathcal{X} = \{\xi_1, \dots, \xi_\ell\}$ wird auf einen Komplex **binärer** Attribute $\mathcal{X}_i = \{0, 1\}, i = 1, \dots, \ell - 1$, abgebildet:

$$\phi(\xi_j) \ = \ (\underbrace{0,\dots,0}_{(j-1)\text{-mal}},\underbrace{1,\dots,1}_{(\ell-j)\text{-mal}}) \ \in \ \{0,1\}^{\ell-1} \\ \text{Für jede \mathcal{X}-Stufe $\xi-j$ gilt also:} \\ \text{Fall $\ell=5$} \underbrace{\mathcal{X} \ \ \mathcal{X}_1\mathcal{X}_2\mathcal{X}_3\mathcal{X}_4}_{\xi_1 \ \ 1 \ 1 \ 1 \ 1} \\ \xi_2 \ \ 0 \ 1 \ 1 \ 1}_{\xi_3 \ \ 0 \ 0 \ 1 \ 1} \\ \xi_3 \ \ 0 \ 0 \ 1 \ 1}_{\xi_4 \ \ 0 \ 0 \ 0 \ 1}$$

 $\phi_i(\xi_i) = 1 \Leftrightarrow i > j$

Relationen

Fall $\ell = 3$

 $\mathcal{X}_1\mathcal{X}_2$

1 1

0 1

0 0

0 0 0 0

Kontrastmatrizen

Skalenkonversion

Auch im $\mathbb{R}^{\ell-1}$ ist genug Platz für ξ_1, \ldots, ξ_ℓ

Ursprung & Einheiten

Einer-gegen-alle: treatment

ξ1	0	0	0	0
ξ2	1	0	0	0
ξ3	0	1	0	0
ξ4	0	0	1	0
ξ5	0	0	0	1
ξ4	0	0	1	C

Distanzen 0, $\sqrt{2}$, aber auch 1

Gestaffelt

Gegen-Anfangspartie: helmert

Distanzen 0 und viele andere ...

Spaltenmittelwertfrei

Einer-gegen-alle: sum

Distanzen 0, $\sqrt{2}$, aber auch $\sqrt{\ell+2}$

Äquidistant

Orthonormalpolynome: poly

$$\begin{array}{l} \xi_1 \ p_1(r_1) \ p_1(r_2) \ p_1(r_3) \ p_1(r_4) \\ \xi_2 \ p_2(r_1) \ p_2(r_2) \ p_2(r_3) \ p_2(r_4) \\ \xi_3 \ p_3(r_1) \ p_3(r_2) \ p_3(r_3) \ p_3(r_4) \\ \xi_4 \ p_4(r_1) \ p_4(r_2) \ p_4(r_3) \ p_4(r_4) \\ \xi_5 \ p_5(r_1) \ p_5(r_2) \ p_5(r_3) \ p_5(r_4) \end{array}$$

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 - 2\langle \mathbf{u}, \mathbf{v} \rangle + \|\mathbf{v}\|^2 = 2$$

Indexcodierung

Holzhammermethode: $\phi(\xi_i) = i$

$$\phi: \{\xi_1, \dots, \xi_\ell\} \to \mathbb{R}^1$$

Dualcodierung

(Hamming)abstände "fehleranfällig"

$$\phi: \{\xi_1, \dots, \xi_\ell\} \to \mathbb{R}^{\lceil \log_2 \ell \rceil}$$

Vollständige Korrekturcodes

Erkennt und kompensiert Fehler in einer Komponente

$$\phi: \{\xi_1, \dots, \xi_\ell\} \to \mathbb{R}^L, \ L = 2^{\ell-1} - 1$$

(interessant ab $\ell = 4$)

ċ.	1111111	ξ_1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1
31		ξ_2	0 0	0	0	0	0	0	0	1	1	1	1	1	1	1
- ·	0 0 0 0 1 1 1	ξ3	0 0	0	0	1	1	1	1	0	0	0	0	1	1	1
30	0 0 1 1 0 0 1	ξ4	0 0	1	1	0	0	1	1	0	0	1	1	0	0	1
ζ4	0 1 0 1 0 1 0	ξ_{5}	0 1	0	1	0	1	0	1	0	1	0	1	0	1	0

Beinhaltet alle $\{0,1\}^{\ell}$ -Spalten außer Komplementen und den uninformativen Attributen 0, 1.

Relationen

Skalenkonversion

Ausreißer

Floyd-Warshall-Algorithmus

Schnelle Berechnung geodätischer Distanzen mittels dynamischer Programmierung

INITIALISIERUNG

Setze
$$D_{ij} = \left\{ egin{array}{ll} 0 & i = j \ 1 & \xi_i, \, \xi_j \ ext{adjazent} \ \infty & ext{sonst} \end{array}
ight.$$

REKURSION

Für alle
$$k, i, j \in \{1, ..., L\}$$
:

$$D_{ii} \leftarrow \min \{D_{ii}, D_{ik} + D_{ki}\}$$

TERMINIERUNG

Die Matrix **D** enthält alle minimalen Wegelängen zwischen Elementen ξ_i , ξ_i .

Wirkungsweise

Der FWA erzwingt in $O(L^3)$ Schritten die Gültigkeit der Dreiecksungleichung.

Bemerkung

Der Algorithmus ist auch anwendbar für gewichtete und nichtsymmetrische Adjazenzen.

Konversion von Distanzfunktionen

Skalenkonversion

Nachbarschaft — Metrik — normierter Vektorraum

Metrik symmetrische Nachbarschaft

Global operierende Schwellwertoperation (0 $< \delta_{\sf max} \in {
m I\!R}$)

$$\xi_i \propto \xi_j \quad \Leftrightarrow \quad d(\xi_i, \xi_j) \leq \delta_{\mathsf{max}}$$

Metrik nichtsymmetrische Nachbarschaft

Lokale Umgebungsdefinition (k nächste Nachbarn, $k \in \mathbb{N}$)

$$\xi_i \propto \xi_j \quad \Leftrightarrow \quad \xi_j \in \mathcal{U}_{\mathcal{X}}^{(k)}(\xi_i)$$

Adjazenz Metrik

Geodätische Abstände (minimale Pfadlängen im Adjazenzgraphen)

Nicht jede metrische Distanz $\mathbf{D} \in \mathbb{R}^{L \times L}$ ist im \mathbb{R}^{L-1} repräsentierbar.

Relationen

Skalenkonversion

Ausreißer

Kardinalisierung von Präferenzrelationen

Schwache Ordnungsrelation (\mathcal{X}, \prec) \Rightarrow ein, zwei, mehrere relative Attribute

Intervallordnung

Repräsentation durch $\mathcal{X}_1 imes \mathcal{X}_2 = {\rm I\!R}^2$ mit

$$a \prec b \Leftrightarrow a_2 < b_1$$

Inklusionsfreie Intervallordnung

Repräsentation durch $\mathcal{X}_1 = {\rm I\!R}^1$ mit $\delta \in {\rm I\!R}_+$ und

$$a \prec b \Leftrightarrow a_1 + \delta < b_1$$

Endliche Halbordnung

Repräsentation durch $\mathcal{X}_1 \times \ldots \times \mathcal{X}_L = \mathbb{R}^L$ mit

$$\mathbf{a} \prec \mathbf{b} \Leftrightarrow \forall \ell = 1, \dots, L : \mathbf{a}_{\ell} < \mathbf{b}_{\ell}$$

Standardisierung numerischer Skalen

Vereinheitlichung von Wertebereichen u/o Dynamikeigenschaften

Min-Max-Normierung

$$f: \left\{ \begin{array}{ll} \mathbb{R} & \to & [0,1] \\ x & \mapsto & \frac{x - x_{\min}}{x_{\max} - x_{\min}} \end{array} \right., \qquad f^{-1}(x) = \left(x_{\max} - x_{\min}\right) \cdot x + x_{\min}$$

Statistische Normierung

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & [\mu - C\sigma, \mu + C\sigma] \\ x & \mapsto & \frac{x - \mu}{\sigma} \end{array} \right., \qquad f^{-1}(x) = \sigma \cdot x + \mu$$

$$f^{-1}(x) = \sigma \cdot x + \mu$$

Reziproke Transformation

$$f: \left\{ \begin{array}{ccc} \mathbb{R}\setminus\{0\} & \to & \mathbb{R}\setminus\{0\} \\ x & \mapsto & 1/x \end{array} \right., \qquad f^{-1}(x) = 1/x$$

$$f^{-1}(x)=1/x$$

Relationen

Skalenkonversion

Ausreißer

Relationen

Ausreißer

Detektion von Ausreißern

Standardisierung numerischer Skalen

Vereinheitlichung von Wertebereichen u/o Dynamikeigenschaften

Wurzel-Transformation

$$f: \left\{ \begin{array}{ccc} (C,\infty) & \to & \mathbb{R}^+ \\ x & \mapsto & \sqrt[B]{x-C} \end{array} \right., \qquad f^{-1}(x) = x^B + C$$

$$f^{-1}(x) = x^B + C$$

Logarithmus-Transformation

$$f: \left\{ \begin{array}{ccc} (C,\infty) & \to & \mathbb{R} \\ x & \mapsto & \log_B(x-C) \end{array} \right., \qquad f^{-1}(x) = B^x + C$$

$$x^{-1}(x) = B^x + C$$

Fisher-Transformation

$$f: \left\{ \begin{array}{ccc} (-1,+1) & \to & \mathrm{IR} \\ x & \mapsto & \frac{1}{2} \log_e \frac{1+x}{1-x} \end{array} \right., \qquad f^{-1}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f^{-1}(x) = \frac{e^{-1} - e^{-1}}{e^{x} + e^{-x}}$$

Meßfehler & Erhebungsfehler

Die "Rohdaten" sind oft fehlerbehaftet, verrauscht, verzerrt

Zufällige Fehler

- Meßungenauigkeit
- Übertragungsstrecke
- Modell additives Rauschen: $y_n = x_n + e_n, e_n \sim \mathcal{N}(0, \sigma^2)$
- Ausreißer

Systematische Fehler

- Kalibrierung
- Skalierung
- Trend, Drift, Saisoneffekt
- Ausreißer

erteskalen Relationen Skalenkonversion **Ausreißer** Imputation **Σ** Werteskalen Relationen Skalenkonversion

Ausreißerdetektion

Was ist ein Ausreißer und wie erkenne ich ihn?

Vertikale Detektion

Ein Wert x_{tj} fällt aus dem Rahmen seines **Attributs** \mathcal{X}_j .

Kategoriale Attribute bieten keine Handhabe!

$$\mathcal{X}_j = \{m, f\}$$

Horizontale Detektion

Ein Wert x_{tj} fällt aus dem Rahmen seines **Objekts** o_t .

Werden Objekte durch Ausreißer erst interessant?

$$oldsymbol{o}_t = ($$
,, $kath.$ '',,, $verh.$ '' $)$

Teufelskreis

VVerteskalen

Relationen

Skalenkonversion

Ausreißer

Imputation

on **\(\sum_{\sum}\)**

Werteskal

Relationen

kalenkonversior

Ausreißer

Imputation

Hypothesentests für Ausreißer

... bei bekannter unimodaler Verteilungsdichtefunktion

Definition (Quantilmethode)

Ein Wert $x_q \in \mathbb{R}$ heißt q-**Quantil** der Dichtefunktion $f_{\mathbb{X}}(\cdot)$ genau dann, wenn gilt:

$$F_{\mathbb{X}}(x_q) = P(\mathbb{X} \le x_q) = q$$

Ein Wert $x \in \mathbb{R}$ heißt **Ausreißer** der Verteilung zum **Niveau** $p \in [0,1]$, wenn er außerhalb des Akzeptanzintervalls $[x_{1/2} - p/2, x_{1/2} + p/2]$ liegt.

Bemerkungen

- 1. Für symmetrische Dichtefunktionen gilt für jedes $q \in [0,1]$ die Identität $f_{\mathbb{X}}(x_q) = f_{\mathbb{X}}(x_{1-q})$. $[\mu C\sigma, \mu + C\sigma]$
- Für multimodale Dichtefunktionen ergibt das definierte Akzeptanzintervall keinen Sinn.

Hypothesentests für Ausreißer

Ausreißer $\hat{=}$ extrem unwahrscheinliche Attributwerte

Satz (Tschebyscheff)

Ist $\mathbb X$ eine kontinuierliche Zufallsvariable mit dem Erwartungswert μ und der Varianz σ^2 , so gilt für jede Konstante C>0 die Ungleichung:

$$P(|\frac{\mathbb{X}-\mu}{\sigma}| \geq C) \leq \frac{1}{C^2}$$

Beispiel

Zweiseitige Streuungswahrscheinlichkeiten m/o NV-Annahme:

	σ	2σ	3σ	4σ	5σ
Tschebyscheff	≤ 1	≤ 0.25	≤ 0.11	≤ 0.063	≤ 0.040
$\mathcal{N}(\mu,\sigma)$	= 0.323	= 0.065	= 0.003	= 0.001	≤ 0.0001

🖈 ein "zahnloser" Test ohne Kenntnis der Dichtefunktion !

Hypothesentests für Ausreißer

 \dots bei bekannter multimodaler Verteilungsdichtefunktion

Definition (Bayesträgermethode)

Die Wertemenge $\mathcal{B}_c = \{x \mid f_{\mathbb{X}}(x) \geq c\}$ heißt **Bayesträger** der Verteilung $f_{\mathbb{X}}(\cdot)$ zum **Niveau** $p \in [0,1]$, wenn gilt:

$$\int_{\mathcal{B}_{\mathbf{c}}} f_{\mathbb{X}}(\xi) \, d\xi = p$$

Jeder Wert $x \in \mathbb{R}$ mit $f_{\mathbb{X}}(x) < c$ heißt **Ausreißer** der Verteilung zum **Niveau** p.

Bemerkungen

- 1. Für **symmetrisch-unimodale** Dichtefunktionen stimmen Bayesträger und Akzeptanzintervall überein.
- 2. Nicht verwechseln mit **Bayesintervall**, dem kürzesten Intervall mit Fläche *p*.

Faustregeln zur Ausreißerdetektion

Treffer als Fehlanzeige (NA=,,not available") markieren

Unimodal

Normalverteilung

Relationen

$$|x - \mu| > C \cdot \sigma$$

Gleichverteilung

$$|x-\mu| > p$$
-Niveau

Empirischer Trimm

$$X \notin [X_{1/2} - P/2, X_{1/2} + P/2]$$

Multimodal

Tschebyscheff

$$\frac{|x-\mu|}{\sigma} > \sqrt{\frac{1}{1-p}}$$

Gauß-Mischung

$$(\forall \ell) |x - \mu_{\ell}| > C \cdot \sigma_{\ell}$$

Lonesome Cowperson

$$|x - k\text{-NN}(x)| > d_{\text{max}}$$

Relationen Skalenkonversion Ausreißer Imputation

Ausreißer

Imputation

Imputation von Fehlanzeigen

Teufelskreis Parameterschätzung

Ausreißer verändern die genutzten Verteilungsparameter

Modellrechnung für die $C\sigma$ -Regel

Relationen

Datensatz

Eine
$$\mathcal{N}(\mu,\sigma)$$
-verteilte Probe der Größe T zuzüglich M^+ Ausreißer der Gestalt $a^+=\mu+c\sigma$ zuzüglich M^- Ausreißer der Gestalt $a^-=\mu-c\sigma$ $(T'=T+M^++M^-)$

 Geschätzter Erwartungswert (Im Fall $M^+ = M^-$ gilt einfach $\hat{\mu} = \mu$.)

 Geschätzte Varianz Gilt mit $M := {M^+/_2} = {M^-/_2}$ wegen $\frac{1}{T'}\sum_{x\in\omega'} x^2 = \mu^2 + \sigma^2 + \frac{M}{T+M}(c^2 - 1)\sigma^2$ und der Abkürzung $r := \frac{M}{(T+M)}$.

Für eine nicht verschwindende Anzahl ($r \gg 0$) von markanten Ausreißern $(c \gg 1)$ dominiert c^2r den Wurzelausdruck und die $C\sigma$ -Regel ist wegen $\hat{\sigma} \propto c$ entschärft!

Fehlanzeigen (a.k.a. "not available")

Nicht zugängliche Attributwerte in der Datenmatrix

Fehlanzeige als Unfall

Relationen

Sensorkomponente hat versagt Erhebungsprotokoll unvollständig Markierte Ausreißer

Fehlanzeige als Regelfall

Verzicht aus Kostengründen Nichthomogenes Warehousing Dünnbesetzung anwendungsbedingt z.B. Bewertungssysteme für Musik, Bücher, Restaurants, Webseiten, Bordellbetriebe, ...

Fehlanzeigenbehandlung

- Objekt löschen Können wir uns das leisten?
- Eintrag markieren und auf spezielle Weise weiterverarbeiten.
- Imputieren Leerstelle mit geeignetem Wert auffüllen.

Welcherart Zusatzinformation wird zur Wertergänzung genutzt?

Kontextfrei (MCAR)

Attributstatistik (& Ausreißer)

- Ersetzen durch Datenmittel $\hat{\mu}$
- durch x_{min} bzw. x_{max}
- durch nächsten Nachbarn

$$x_n^* \stackrel{\mathsf{def}}{=} \underset{\xi \in \bar{\omega}}{\operatorname{argmin}} d(x_n, \xi)$$

Regression (MAR)

Probabilistisches Datenmodell

$$x_n^* = \mathcal{E}[\mathbb{X}_n \mid \dots, x_{n-1}, x_{n+1}, \dots]$$

"Missing (Completely) At Random"

Interpolation (MAR)

Linearer Ausgleich, z.B.

$$x_n^* \stackrel{\text{def}}{=} (x_{n-1} + x_{n+1}) / 2$$

- Polynome, Splines (nl.)
- Glättungsfilter

Matrixapproximation (MAR)

Lückenhafte (num.) Datenmatrix

$$\boldsymbol{X} \stackrel{\neg NA}{\approx} \boldsymbol{V}^{\top} \boldsymbol{D} \boldsymbol{U}$$

Relationen

Imputation

Werteskalen

Relationen

Ausreißer

Regression für nominale Datensätze

Beispielszenarium: drei Attribute $\mathcal{X}_1, \mathcal{X}_2, \mathcal{X}_3$ mit 2, 3 bzw. 4 Wertestufen

- ABSOLUTE HÄUFIGKEITEN Erstelle Tabelle $\mathbf{f} \in \mathbb{N}^{2\cdot 3\cdot 4}$ mit den 24 Auftretenszahlen f_{iik} der Ereignisse $(x_1, x_2, x_3) = (\xi_i, \eta_i, \zeta_k)$.
- EREIGNISWAHRSCHEINLICHKEITEN Erstelle Tabelle der 24 ML-Schätzwerte $\hat{p}_{ijk} = f_{ijk}/T$.
- BEDINGTE ATTRIBUTWAHRSCHEINLICHKEITEN

$$q_{i|jk}^{(1|23)} = rac{\hat{p}_{ijk}}{\sum_{\ell} p_{\ell jk}} \;, \quad q_{j|ik}^{(2|13)} = rac{\hat{p}_{ijk}}{\sum_{\ell} p_{i\ell k}} \;, \quad q_{k|ij}^{(3|12)} = rac{\hat{p}_{ijk}}{\sum_{\ell} p_{ij\ell}}$$

IMPUTATION DES BEDINGTEN MODUS

$$\mu_{jk}^{(23)} = \operatorname*{argmax}_{i} q_{i|jk}^{(1|23)}, \ \mu_{ik}^{(13)} = \operatorname*{argmax}_{i} q_{j|ik}^{(2|13)}, \ \mu_{ij}^{(12)} = \operatorname*{argmax}_{k} q_{k|ij}^{(3|12)}$$

Glättungsfilter für Meßreihenfehler

Imputation $\hat{=}$ kontextfrei Ersetzen + Filtern

Gleitender Mittelwert der Ordnung q = 2p + 1, $p \in \mathbb{N}$:

Imputation

$$\hat{x}_n = \frac{1}{q} \cdot \sum_{\ell=n-p}^{n+p} x_{\ell}$$

Exponentialfilter

mit Abklingparameter $\alpha \in [0, 1]$:

$$\hat{x}_n = \hat{x}_{n-1} + \alpha \cdot (x_n - \hat{x}_{n-1})$$

- Ausreißer,
- Phasentreue/Nivellierung

Gleitendes Medianfilter der Ordnung q = 2p + 1, $p \in \mathbb{N}$:

$$\hat{x}_n = \mu^{\mathsf{med}}(x_{n-n}, \dots, x_n, \dots, x_{n+n})$$

Zusammenfassung

Werteskalen Relationen Skalenkonversion Ausreißer Imputation

Zusammenfassung (2)

- 1. Ein **Datensatz** besteht aus **Objekten**, die explizit durch eine Reihe von **Attributwerten** oder implizit durch Beziehungen wie **Abstand**, **Adjazenz** oder **Präferenz** charakterisiert sind.
- 2. Attribute besitzen eine diskrete Skala (nominal oder ordinal) oder eine numerische Skala (relativ oder proportional).
- 3. Die Skalen unterscheiden sich hinsichtlich ihres **Wertebereichs**, ihrer **Verknüpfungsoperationen** und ihrer **Durchschnittswertbildung**.
- 4. Auf **Zeichenketten** ist mit dem Levenshteinabstand eine **Metrik** und mit dem **Medoid** ein Durchschnitt definiert.
- Skalen lassen sich nötigenfalls mittels Quantisierung (numerisch→ordinal), Entflechtung (ordinal→nominal) bzw. Kontrastmatrizen (nominal→numerisch) konvertieren.
- 6. Aus Adjazenzen leiten sich geodätische Distanzen her, aus Präferenzen ein oder zwei Ordinalskalen.
- Ausreißer werden durch einen der attributbezogenen Hypothesentests detektiert.
- 8. Als **Ersatzwerte** für Ausreißer und andere **Fehlanzeigen** dienen Mittelund Extremwerte; wenn möglich, imputieren wir durch **Interpolation** oder **Regression**.