微分方程式の有限要素解法(例題1)

圖 解析領域を要素(Element)に分割

微分方程式の有限要素解法(例題1)

$$\Phi_i = \frac{x - x_i}{x_{i+1} - x_i}$$

$$U = (1 - \phi_1)U_1 + \phi_1U_2 = (1 - 4x)0 + 4xU_2 = 4xU_2$$

SETSURAN UNIVERSITY

微分方程式の有限要素解法(例題1)

図 要素内のル を近似式で表す

U= (1-93) U3+9, U4= (3-4x) U3+(4x-2) 44

微分方程式の有限要素解法(例題1)

図 要素ごとに $\Pi(u)$ を計算する

$$\Pi(u) = \frac{1}{2} \int_0^1 \left(\frac{du}{dx} \right)^2 dx$$

 $u = 4xu_2$ $\xrightarrow{du} = ?$

$$\Pi_1 = \frac{1}{2} \int_0^{1/4} \left(\frac{du}{dx}\right)^2 dx \qquad \frac{du}{dx} = 4u_2$$

微分方程式の有限要素解法(例題1)

要案内のU を近似式で表す

ETSUNAN UNIVERSITY &

微分方程式の有限要素解法(例題1)

f B 要案内のm u を近似式で喪す

U=(1-\$\phi_2)U2 + \$\phi_2U_3 = (2-4\pi)U_2 + (4\pi-1)U3

微分方程式の有限要素解法(例題1)

図 要案内の $oldsymbol{u}$ を近似式で表す

U=(1- \$4) U4+\$4. U5-(4-4x) U4+(4x-3)U5

微分方程式の有限要素解法(例題1)

f B 要案ごとに $\Pi(u)$ を計算する

 $\Pi(u) = \frac{1}{2} \int_0^1 \left(\frac{du}{dx} \right)^2 dx$

 $e=2: \bar{u}=(2+4x)u_2+(4y-1)$

 $\Pi_2 = \frac{1}{2} \int_{1/4}^{1/2} \left(\frac{du}{dx} \right)^2 dx \iff \frac{du}{dx} = ? \frac{du}{dx} = 4(u_3 - u_2)$

= = 1 /2 42 (43-42) dx

微分方程式の有限要素解法(例題1) 🙏

要素ごとに $\Pi(u)$ を計算する

$$\Pi(u) = \frac{1}{2} \int_0^1 \left(\frac{du}{dx} \right)^2 dx$$

$$\theta=3$$
: $u = (3-4x)u_3 + (4x-2)u_4$

$$\Pi_{3} = \frac{1}{2} \int_{1/2}^{3/4} \left(\frac{du}{dx} \right)^{2} dx \xrightarrow{\frac{du}{dx} = ?} \frac{du}{dx} = 4(u_{4} - u_{3})$$

$$= \frac{1}{2} \int_{0.2}^{3/4} 4^{2} (V_{4} - V_{3})^{2} dX$$

$$= \frac{16}{2} \left[(14 - 143)^{2} \chi \right]_{1/2}^{3/4} = 2 (14 - 143)^{2}$$

$$u_2$$
 u_3 u_4 u_6 = $u(1)$ =1

微分方程式の有限要素解法(例題1)

微分方程式の有限要素解法(例題1)

■ 全領域の ∏(u) が求まる

$$\Pi(u) = \Pi_1 + \Pi_2 + \Pi_3 + \Pi_4$$

$$=2u_2^2+2(u_3-u_2)^2+2(u_4-u_3)^2+2(u_5-u_4)^2$$

$$\blacksquare$$
 $\Pi(u)$ が最小となる u_2, u_3, u_4 を求める

$$\frac{\partial \Pi(u)}{\partial u_2} = \frac{\partial \Pi(u)}{\partial u_3} = \frac{\partial \Pi(u)}{\partial u_4} = 0$$

となる u_2, u_3, u_4 を求める

微分方程式の有限要素解法(例題1)

$\blacksquare\Pi(u)$ が最小となる \mathcal{U}_2 を求める

$$\frac{\partial \Pi(u)}{\partial u_2} = \frac{3}{3} \left[2u^{\frac{1}{2}} + 2(u_3 + u_2)^{\frac{1}{4}} - 1 \right]$$

$$= 4(2u_2 - u_3) = 0$$

SETSUNAN UNIVERSITY &

微分方程式の有限要素解法(例題1)

lacksquare $\Pi(u)$ が最小となる $u_{\mathfrak{Z}}$ を求める

$$\frac{\partial \Pi(u)}{\partial u_3} = \begin{bmatrix} \frac{3}{4} & \frac{3$$

SETSUNAN UNIVERSITY &

微分方程式の有限要素解法(例題1)

■ $\Pi(u)$ が最小となる \mathcal{U}_4 を求める

$$\frac{\partial \Pi(u)}{\partial u_4} = \frac{1}{3 u_4} \left[\frac{1}{100} + 2 \left(\frac{1}{100} + 2 \left(\frac{1}{100} - \frac{1}{100} \right)^{\frac{3}{2}} \right) \right]$$

$$= 4 \left(-\frac{1}{100} + \frac{1}{100} + \frac{1}{$$

SETSUNAN UNIVERSITY

微分方程式の有限要素解法(例題1)

■ 連立方程式を解く

連立方程式を解く
$$u_3 - 2u_2 = 0$$
 $u_3 - 2u_2 = 0$ $u_3 - 2u_2 = 0$ $u_4 = 0$ $u_2 = ???$

$$u_4 - 2u_3 + u_2 = 0$$
 $u_3 = ???$

$$1 - 2u_4 + u_3 = 0$$

 $u_4 = ???$

SETSUNAN UNIVERSITY &

微分方程式の有限要素解法(例題1)

