Trường họp 1: r = 0 (subtask 2)

- Trường hợp 1.1: n < p. Vì p là số nguyên tố lớn hơn n nên n! không chia hết cho p. Suy ra giả giai thừa của n cũng không chia hết cho p. Vậy (k, v) = (-1, -1).
- Trường hợp 1.2: $n \ge p$. Suy ra n! chia hết cho p. Do đó ta chỉ cần thay thừa số $k \ge 2$ nhỏ nhất mà k không chia hết cho p.

Nếu
$$n = 2$$
: $\Rightarrow p = 2 \Rightarrow (k, v) = (-1, -1)$.
Nếu $n > 2$: $p = 2 \Rightarrow (k, v) = (3, 1)$.
 $p \neq 2 \Rightarrow (k, v) = (2, 1)$.

Trường họp 2: r > 0 (subtask 1, 3)

- Trường hợp 2.1: $n \ge 2p$. Suy ra n! luôn chứa ít nhất 2 thừa số chia hết cho $p \Rightarrow$ Giả giai thừa của n luôn chia hết cho $p \Rightarrow (k, v) = (-1, -1)$.
- Trường hợp 2.2: p ≤ n < 2p. Suy ra n! chứa đúng 1 thừa số chia hết cho p ⇒ n! chia hết cho p
 ⇒ cần thay thừa số k = p.

Ta có $\frac{n!}{p}$ và p nguyên tố cùng nhau nên tồn tại số nghịch đảo của $\frac{n!}{p}$ theo modun p, vì vậy:

$$\frac{n!}{p} \cdot v \equiv r \pmod{p} \Leftrightarrow \left(\frac{n!}{p}\right)^{-1} \cdot \frac{n!}{p} \cdot v \equiv \left(\frac{n!}{p}\right)^{-1} \cdot r \pmod{p} \Leftrightarrow v \equiv \left(\frac{n!}{p}\right)^{-1} \cdot r \pmod{p}$$

Vậy ta lấy
$$v = \left(\left(\frac{n!}{p} \right)^{-1} . r \right) \% p$$
, khi đó $v .$

Chú ý rằng do p nguyên tố, $\frac{n!}{p}$ không chia hết cho p nên ta tính $\left(\frac{n!}{p}\right)^{-1}$ theo định lí Fermat

nhỏ:
$$\left(\frac{n!}{p}\right)^{-1} \equiv \left(\frac{n!}{p}\right)^{p-2} \pmod{p}$$
.

• Trường hợp 2.3: $n). Ta cần thử từng giá trị của <math>k \le k \le n$). Với mỗi giá trị của k, ta cần tìm k sao cho:

$$\frac{n!}{k} \cdot v \equiv r \pmod{p} \Leftrightarrow v \equiv r \cdot k \cdot (n!)^{-1} \pmod{p}$$

(Do n! va p nguyên tố cùng nhau). Vậy ta lấy $v = (r.k.(n!)^{-1})\% p$. Giá trị v này chỉ chấp nhận nếu v < k. Trong trường hợp không có giá trị k nào thỏa mãn thì đưa ra câu trả lời (k, v) = (-1, -1).

Độ phức tạp thời gian của thuật toán là O(p).