

Machine Learning for Predicting Numeric Values

Nysret Musliu

Database and Artificial Intelligence Group (DBAI)

Predicting CPU perfomance

	Cycle time (ns)		nemory (b)	Cache (Kb)	Cha	nnels	Performance
	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

Predicting house prices in Vienna

Nr.Rooms	Size (m²)	Age of house	 Price (K)
1	35	1	110
4	120	20	250
3	85	10	235
3	78	2	210
2	54	5	170

Example 3

Predicting the running time of an algorithm (e.g. for solving of a SAT problem ... See SATzilla)

NrClauses	NrVariables	Ratio (C/V)	 Time (sec)
100	80	1	10
4000	400	2	450
30000	8500	1	2350
300	78	2	25
2000	540	1	170

Many other examples (see UCI repository, Kaggle...)

Prices vs. Square meter

......

Model: Linear regression

.....

Model: Other functions

••••

Model: Linear regression

x (m²)

 W_0 , W_1 -> parameters

Problem: Find best values for w₀, w₁

Minimize some cost metric (sum of squared errors of prediction, ...)

FACULTY OF INFORMATICS

Residual sum of squares (RSS)

RSS(w₀, w₁) =
$$\sum_{i=1}^{N} (y_i - (w_0 + w_1 * x_i))^2$$

Finding best parameters

Minimize cost over all possible w_0 , w_1

min RSS(
$$w_0, w_1$$
) = $\sum_{i=1}^{N} (y_i - (w_0 + w_1 x_i))^2$

Gradient descent algorithm

- Initial values for w₀, w₁
- Iterative change of these values
- Until convergence

Gradient descent

Repeat until convergence

$$\mathbf{w}_0 = \mathbf{w}_0 - \alpha \, \frac{\partial}{\partial w_0} RSS(w_0, w_1)$$

$$\mathbf{w}_1 = \mathbf{w}_1 - \alpha \, \frac{\partial}{\partial w_1} RSS(w_0, w_1)$$

Update w₁ and w₀ simultaneously

α -> learning rate

Linear regression with multiple variables

Gradient descent

Repeat until convergence

$$\mathbf{w}_{i} = \mathbf{w}_{i} - \alpha \frac{\partial}{\partial w_{i}} RSS(w_{0}, w_{1}, ..., w_{n})$$

Update $w_0, w_1, ..., w_n$ simultaneously

•••••

Analytical solution for linear regression

	Nr.P.ooms	Size (m²)	Age		Price (K)
	1	35	1		110
	4	120	20		250
	3	85	10		235
	3	78	2		210
	2	54	5		170
			X		V y

$$w = (X^T X)^{-1} X^T y$$

Gradient descent versus analytical solution

- Gradient Descent
 - Needs many iteration
 - Learning rate should be determined
 - Useful when the number of features is large
- Normal equation
 - No iterations
 - No need to choose learning rate
 - Works slow if the number of features is too large

Polynomial regression

Polynomial regression

Polynomial regression

- High-order polynomials
 - Flexible
 - Problem of overfitting
 - Usually coefficients get very large

- Try to avoid overfitting caused by high-order polynomials
- Objective:
 - Balance between
 - How well function fits the data
 - Magnitude of coefficients

Total cost=measure of fit + λ * measure of magnitude of coefficients

- Large λ
 - High bias, low variance
- Small λ
 - Low bias, high variance
- λ controls the model complexity

Feature selection task

.....

- Feature selection task
 - Feature selection: select features that minimize redundancy and maximize the relevance to the target
- Advantages of feature selection
 - Improved learning performance
 - Lower computational complexity
 - Decreased storage

Feature Selection: all subsets

- Enumerate all possible subsets
 - Subsets for 8 features

Too many possibilities:

Number of features

• • •

1 1 1 1 1 1 1 1

- The size of search space for m features is $O(2^m)$
- NP-hard problem
- Wrapper Model: Search strategies
 - Best-first search
 - Hill Climbing
 - Genetic Algorithms
 - Branch and Bound
 - Tabu Search

Greedy strategies

- Efficient and robust against overfitting
- Forward selection
 - Empty set of features
 - Features are added in the subset iteratively
- Backward elimination
 - Full set of features
 - Iterative elimination of less promising features

Greedy strategies

- Forward Search
 - F={ }
 - While the desired number of features arrived
 - For each feature f not in F
 - Estimate by cross-validation the error of model on F U f
 - Add f with lowest error to F
- Backward elimination
 - F={All features}
 - While not reduced to desired number of features
 - For each feature f in F:
 - Estimate by cross-validation the error of model on F/f
 - Remove from F the feature f with the highest error

Other techniques

- Metahuristic based techniques
- Wrapper models give better results than filter models
- Computationally expensive
- Better performance for the predefined classifier

Regularization for feature selection

- Use regularization to eliminate some features
- Some coefficients should get exactly 0
- Some features are not used
- Features are selected if the coefficients are nonzero

Using regularization for feature selection

Ridge Regression (L₂ regularized regression)

Total cost=measure of fit + λ * measure of magnitude of coefficients

Total cost=RSS(
$$w_0, ..., w_n$$
) + $\lambda * ||w||^2$

$$||\mathbf{w}||^2 = \mathbf{w}_0^2 + \dots + \mathbf{w}_n^2$$

Encourages small weights but not exactly 0

Ridge Regression (L_2 regularized regression)

Total cost=measure of fit + λ * measure of magnitude of coefficients

Total cost=RSS(
$$w_0, ..., w_n$$
) + $\lambda * ||w||_2^2$
 $||w||_2^2 = w_0^2 + ... + w_n^2$

Encourages small weights but not exactly 0 Set small ridge coefficients to 0

Lasso Regression (L₁ regularized regression)

Total cost=measure of fit + λ * measure of magnitude of coefficients

Total cost=RSS(
$$w_0, ..., w_n$$
) + $\lambda * ||w||_1$
||w||₁ = | w_0 | +...+ | w_n |

k-NN Regression

- Data set of pairs (x₁, y₁), (x₂, y₂), ..., (x_n, y_n)
- y₁, y₂, ..., y_n -> numeric values
- Prediction for the new instance x_m with k-NN:
 - Similar to k-NN for classification
 - Find k closest x_i in the data set: x_{n1}, x_{n2}, ..., x_{ni}
 - Predict

$$y_m = 1/k(y_{n1}, y_{n2}, ..., y_{ni})$$

Evaluating numeric prediction

- Same strategies: independent test set, crossvalidation, significance tests, etc.
- Difference: error measures
- Actual target values: a₁ a₂ ...a_n
- Predicted target values: $p_1 p_2 \dots p_n$
- Most popular measure: mean-squared error

$$\frac{(p_1-a_1)^2 + \cdots + (p_n-a_n)^2}{n}$$

Easy to manipulate mathematically

Slides 32-49 are taken from this book: Data Mining Practical Machine Learning Tools and Techniques by I. H. Witten, E. Frank, M. A. Hall and C. J. Pal

•••••

Other measures

• The root mean-squared error:

$$\sqrt{\frac{(p_1-a_1)^2+\cdots+(p_n-a_n)^2}{n}}$$

 The mean absolute error is less sensitive to outliers than the mean-squared error:

$$\frac{|p_1-a_1|+\cdots+|p_n-a_n|}{n}$$

 Sometimes relative error values are more appropriate (e.g. 10% for an error of 50 when predicting 500)

Improvement on the mean

- How much does the scheme improve on simply predicting the average?
- The relative squared error is:

$$\frac{(p_1-a_1)^2+\cdots+(p_n-a_n)^2}{(a_1-\bar{a})^2+\cdots+(a_n-\bar{a})^2}$$

(in this formula and the following two, \bar{a} is the mean value over the training data)

• The root relative squared error and the relative absolute error are:

$$\sqrt{\frac{(p_1-a_1)^2+\cdots+(p_n-a_n)^2}{(a_1-\bar{a})^2+\cdots+(a_n-\bar{a})^2}} \qquad \frac{|p_1-a_1|+\cdots+|p_n-a_n|}{|a_1-\bar{a}|+\cdots+|a_n-\bar{a}|}$$

Correlation coefficient

Measures the statistical correlation between the predicted values and the actual values

$$\frac{S_{PA}}{\sqrt{S_P S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \bar{p})(a_i - \bar{a})}{n-1}, S_P = \frac{\sum_i (p_i - \bar{p})^2}{n-1},$$

$$S_A = \frac{\sum_i (a_i - \bar{a})^2}{n-1} \text{ (here, } \bar{a} \text{ is the mean value over the test data)}$$

- Scale independent, between -1 and +1
- Good performance leads to large values!

- Best to look at all of them
- Often it doesn't matter
- Example:

Root mean-squared error
Mean absolute error
Root rel squared error
Relative absolute error
Correlation coefficient

A	В	С	D
67.8	91.7	63.3	57.4
41.3	38.5	33.4	29.2
42.2%	57.2%	39.4%	35.8%
43.1%	40.1%	34.8%	30.4%
0.88	0.88	0.89	0.91

- D best, C second-best
- A, B arguable

- Like decision trees, but:
 - Splitting criterion: minimize intra-subset variation
 - Termination criterion: std. dev. becomes small
 - Pruning criterion: based on numeric error measure
 - Prediction: Leaf predicts average class value of instances
- Yields piecewise constant functions
- Easy to interpret
- More sophisticated version: *model trees*

|**TU**| Example Predicting CPU performance

Example: 209 different computer configurations

	Cycle time (ns)	Main memory (Kb)		Cache (Kb)	Channels		Performance
	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
• • •							
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

Linear regression function

PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX

Regression tree for the CPU data

Model tree for the CPU data

- Build a regression tree
- Each leaf ⇒ linear regression function
- Smoothing: factor in ancestor's predictions
 - Smoothing formula: $p' = \frac{np + kq}{n+k}$
 - Same effect can be achieved by incorporating ancestor models into the leaves
- p' -> the prediction passed up to the next higher node
- p -> prediction passed to this node from below
- q -> the value predicted by the model at this node
- n -> number of training instances that reach the node below
- k -> smoothing constant

- Build a regression tree
- Each leaf ⇒ linear regression function
- Smoothing: factor in ancestor's predictions
 - Smoothing formula: $p' = \frac{np + kq}{n+k}$
 - Same effect can be achieved by incorporating ancestor models into the leaves
- Need linear regression function at each node
- At each node, use only a subset of attributes to build linear regression model
 - Those occurring in subtree
 - (+maybe those occurring in path to the root)
- Fast: tree usually uses only a small subset of the attributes

Building the tree

Splitting: standard deviation reduction

$$SDR = sd(T) - \sum_{i} \left| \frac{T_i}{T} \right| \times sd(T_i)$$

- Termination of splitting process:
 - Standard deviation < 5% of its value on full training set
 - Too few instances remain (e.g., < 4)

Pruning:

Heuristic estimate of absolute error of linear regression models:

$$\frac{n+v}{n-v}$$
 × average_absolute_error

- Greedily remove terms from LR models to minimize estimated error
- Proceed bottom up: compare error of LR model at internal node to error of subtree (this happens before smoothing is applied)
- Heavy pruning: single model may replace whole subtree

- Convert nominal attributes to binary ones
 - Sort attribute values by their average class values
 - If attribute has k values,
 generate k 1 binary attributes
 - i th attribute is 0 if original nominal value is part of the first i nominal values in the sorted list, and 1 otherwise
- Treat binary attributes as numeric in linear regression models and when selecting splits
- Can prove: best SDR split on one of the new binary attributes is the best (binary) SDR split on original nominal attribute
- In practice this process is not applied at every node of the tree but globally at the root node of the tree
 - Splits are no longer optimal but runtime and potential for overfitting are reduced this way.

- Let us consider the pseudo code for the model tree inducer M5'
- Four methods:
 - Main method: MakeModelTree
 - Method for splitting: split
 - Method for pruning: prune
 - Method that computes error: subtreeError
- We will briefly look at each method in turn
- We will assume that the linear regression method performs attribute subset selection based on error (discussed previously)
- Nominal attributes are replaced globally at the root node

```
MakeModelTree (instances)
  SD = sd(instances)
  for each k-valued nominal attribute
    convert into k-1 synthetic binary attributes
  root = newNode
  root.instances = instances
  split(root)
  prune(root)
  printTree(root)
```

split(node) { if sizeof(node.instances) < 4 or</pre> sd(node.instances) < 0.05*SD</pre> node.type = LEAF else node.type = INTERIOR for each attribute for all possible split positions of attribute calculate the attribute's SDR node.attribute = attribute with maximum SDR split(node.left) split(node.right)

```
prune(node)
{
  if node = INTERIOR then
    prune(node.leftChild)
    prune(node.rightChild)
    node.model = linearRegression(node)
    if subtreeError(node) > error(node) then
        node.type = LEAF
}
```

EACHITY OF INCOMATICS

```
subtreeError(node)
  l = node.left; r = node.right
  if node = INTERIOR then
    return (sizeof(l.instances)*subtreeError(l)
            + sizeof(r.instances)*subtreeError(r))
             /sizeof(node.instances)
  else return error(node)
```