STOCHASTIC PROCESSES

LECTURE 19: PERFORMANCE MEASURES, LITTLE'S LAW

Hailun Zhang@SDS of CUHK-Shenzhen

April 7, 2021

Time-Average Performance Measures

f(i) = ``cost'' or "reward" for being in state i

What's the long-run average cost/reward?

THEOREM (STRONG LAW OF LARGE NUMBERS)

If the CTMC $\{X(t), t \geq 0\}$ with state space S is irreducible and positive recurrent, then for any $f: S \rightarrow [0, \infty)$,

$$\mathbb{P}\left\{\lim_{T\to\infty}\frac{1}{T}\int_0^T f(X(t))\ dt = \sum_{i\in S}\pi_i f(i)\right\} = 1,$$

where π denotes the stationary distribution of the CTMC.

Example: M/M/1 Queue

Some Performance Measures:

- $f(i)=i \stackrel{\mathrm{SLLN}}{\Longrightarrow}$ with probability 1, $\operatorname{long-run} \ average \ number \ of \ customers \ in \ sys. = \sum_{i=0}^{\infty} i \pi_i = \frac{\lambda}{\mu-\lambda}$
- $f(i) = \mathbf{1}\{i > 0\} \stackrel{\mathbf{SLLN}}{\Longrightarrow}$ with probability 1, $\operatorname{long-run} fraction \ of \ time \ the \ server \ is \ busy = \sum_{i=1}^{\infty} \pi_i = \frac{\lambda}{\mu} \triangleq \rho$
- $f(i) = \mathbf{1}\{i = j\} \stackrel{\mathbf{SLLN}}{\Longrightarrow}$ with probability 1, long-run fraction of time there're j customers in the system $= \pi_j$

Headcount average performance measures

- S_i be the time in system (waiting + service) of the *i*th customer.
- average time in system

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} S_i.$$

• SLLN for the arrival process: for a Poisson arrival process with rate $\lambda > 0$,

$$\mathbb{P}\Big\{\lim_{t\to\infty}\frac{N(t)}{t}=\lambda\Big\}=1. \tag{1}$$

• SLLN for $X = \{X(t), t \ge 0\}$

$$\mathbb{P}\Big\{\lim_{t\to\infty}\frac{1}{t}\int_0^t X(s)ds = \frac{\rho}{1-\rho}\Big\} = 1. \tag{2}$$

• We claim with probability 1,

$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} S_i = \frac{1}{\lambda} \frac{\rho}{1-\rho}.$$
 why?

Little's Law

 $L = \text{long-run } average \ number \ of \ customers \ in \ the \ queue/system$

 $\lambda = \text{long-run } average \ arrival \ rate \ (\text{or throughput of the system})$

 $W = {
m long}{-}{
m run} \ {\it average \ amount \ of \ time \ a \ customer \ waits}$ in the queue/system

THEOREM (LITTLE'S LAW)

If two quantities exist (well defined), the third quantity also exists. Furthermore, they satisfy

 $L = \lambda W$.

An illustration

- t = 10, N(t) = 3, $\lambda = N(t)/t = 3/10$.
- L

$$L = \frac{1}{10} \int_0^{10} X(s) ds = \frac{1}{10} \Big[1(8) + (4) + (2) \Big] = \frac{14}{10}.$$

• W

$$W_1 = (6-1) = 5$$
, $W_2 = 7 - 3 = 4$, $W_3 = 9 - 4 = 5$, $W = \frac{14}{3}$.

Average time-in-system and waiting time in M/M/1 system

• Average number in system is

$$\frac{\rho}{1-\rho}$$
.

• Average time-in-system

$$\frac{1}{\lambda} \frac{\rho}{1 - \rho}.$$

Three lines, two homogeneous agents

Consider a call center with two homogeneous agents and 3 phone lines. Arrival process is Poisson with rate $\lambda=2$ calls per minute. Processing times are iid exponentially distributed with mean 4 minutes.

- What is the long-run fraction of time that there are no customers in the system?
- What is the long-run fraction of time that both agents are busy?
- What is the long-run fraction of time that all three lines are used?

Solution

- X(t) is the number of calls in the system at time t. $S = \{0, 1, 2, 3\}$.
- flow in = flow out in each state.

$$2\pi_0 = \frac{1}{4}\pi_1$$
, $2\pi_1 = \frac{1}{2}\pi_2$, $2\pi_2 = \frac{1}{2}\pi_3$, $\pi_0 + \pi_1 + \pi_2 + \pi_3 = 1$

• Solving this by setting $\pi_0 = 1$ and normalizing the result, we obtain

$$\pi = (1, 8, 32, 128) \quad \Rightarrow \quad \pi = \left(\frac{1}{169}, \frac{8}{169}, \frac{32}{169}, \frac{128}{169}\right).$$

- What is the long-run fraction of time that there are no customers in the system? $\pi_0 = 1/169$
- What is the long-run fraction of time that both agents are busy? $\pi_2 + \pi_3 = 160/169$
- What is the long-run fraction of time that all three lines are used? $\pi_3 = 128/169$

Other performance measures

- The number of calls lost per minute is $\lambda \pi_3 = 2(128/169)$ which seems to be quite high.
- The throughput of the system is $\lambda(1-\pi_3)$.
- The long-run fraction of calls that are lost is π_3 ?
- PASTA property

PASTA

THEOREM (POISSON ARRIVALS SEE TIME AVERAGES)

Suppose customers arrive at a queueing system according to a Poisson process. Then for any $n \in \{0, 1, ...\}$, the

long-run fraction of arrivals that see n customers in the system

 $equals\ the$

long-run fraction of time that there are n customers in the system.

Three lines, two non-homogeneous agents

- 3 phone lines, 2 agents (Alice & Bob)
- Incoming calls are routed to Alice if possible.

- Calls *arrive* according to a Poisson process with rate λ .
- Alice's processing times are iid exponential with rate μ_A .
- Bob's processing times are iid exponential with rate μ_B .

• Times that callers are willing to hold (i.e., their *patience times*) are iid exponential with rate θ .

The Corresponding CTMC

 $State\ Space = \{0, 1A, 1B, 2, 3\}$

- \bullet 0 = no calls in the system
- 1A (resp. 1B) = 1 call in the system, with Alice (resp. Bob)
- 2 (resp. 3) = 2 (resp. 3) calls in the system

Generator Matrix (rows correspond to states in the order listed above)

$$G = \begin{bmatrix} -\lambda & \lambda & 0 & 0 & 0 \\ \mu_A & -(\lambda + \mu_A) & 0 & \lambda & 0 \\ \mu_B & 0 & -(\lambda + \mu_B) & \lambda & 0 \\ 0 & \mu_B & \mu_A & -(\lambda + \mu_A + \mu_B) & \lambda \\ 0 & 0 & 0 & \mu_A + \mu_B + \theta & -(\mu_A + \mu_B + \theta) \end{bmatrix}$$

Stationary Distribution

The stationary distribution $\pi = [\pi_0, \pi_{1A}, \pi_{1B}, \pi_2, \pi_3]$ satisfies

$$\pi G = 0$$
 and $\pi_0 + \pi_{1A} + \pi_{1B} + \pi_2 + \pi_3 = 1$.

Use this to solve for π .

• e.g., write all the π_i 's in terms of π_{1B} , and use the fact that they should sum to 1.

Some Performance Measures

What is the

• long-run fraction of time that both Alice and Bob are free?

1

• long-run fraction of time that Bob is free?

•

• long-run fraction of *arrivals* that get a busy signal?

'?