Le transfert spontané d'électrons.

1. Réaction d'oxydo-réduction.

Une transformation spontanée modélisée par une réaction d'oxydo-réduction s'accompagne d'un transfert d'électrons :

D Transfert spontané d'électrons

- **Direct**, si l'oxydant et le réducteur sont en contact
- **Indirect**, par un circuit extérieur si les réactifs ne sont pas en contact. Le système se comporte alors comme un générateur.

Transfert direct a. Transfert par un circuit extérieur b.

2. Constitution d'une pile.

- Une **pile** est constituée de **deux compartiments** distincts, appelés **demi-piles**, contenant chacun un couple oxydant-réducteur, généralement du type $M^{n+}(aq) / M(s)$. Les deux compartiments sont reliés par un **pont salin**. La plaque métallique M(s) est appelée **électrode** (INFO).
- Une pile convertit l'énergie chimique en énergie électrique.

INFO

Si dans un couple, le réducteur n'est pas métallique, pour assurer la conduction électrique et former une demi-pile, une électrode inerte (en platine ou en carbone), doit être ajoutée.

3. Fonctionnement d'une pile.(voir TP)

La mesure de la tension au borne d'une pile permet d'en déterminer la polarité Cette tension est appelée <u>tension à vide.</u>

A la borne négative, des électrons sont cédés par le réducteur métallique : la réaction électrochimique est une **oxydation.**

A la borne positive, des électrons sont captés par l'oxydant : la réaction électrochimique est une réduction.

4. Rôle du pont salin.

Le pont salin contient généralement une solution aqueuse ionique gélifiée (ou en papier imbibé). Il relie les deux demi-piles et a pour fonction de fermer le circuit pour assurer la circulation du courant.

5. Caractéristiques d'une pile.

La capacité électrique d'une pile est la charge électrique maximale que la pile peut débiter durant sa durée de vie :

• La quantité maximale n(e⁻)_{max} d'électrons échangés se détermine à partir de la quantité du réactif limitant.

<u>6.</u> Les oxydants et les réducteurs usuels.

- Pour optimiser les piles, il convient de choisir comme électrode des métaux très réducteurs cédant facilement des électrons.
- Les métaux dont les éléments appartiennent aux colonnes 1 et 2 (bloc s) du tableau périodique sont très réducteurs car ils perdent très facilement 1 ou 2 électrons pour atteindre la configuration électronique de valence d'un gaz noble.

Exemple : les piles du lithium $Li_{(s)}$ ont des propriétés remarquables.

- Le dihydrogène H_{2(g)} ou les autres métaux (zinc, etc...) sont aussi **de bons réducteurs (colonne 1)**
- Un bon oxydant est une espèce chimique capable de capter facilement des électrons.

Quelques oxydants à connaître :		
Espèce oxydante	Nom de l'espèce	Milieu
O ₂ (g)	Dioxygène	Air
$C\ell O^-(aq)$	Ion hypochlorite	Eau de Javel
$C\ell_2(g)$	Dichlore	
Acide ascorbique	Vitamine C	Agrumes

Ex 25, 26, 30, 31, 35, 46 p147