Confidence Intervals: For proportions:)

n = sample size

Y = num of samples in favors of an

a = Level of significance

1-0 = level of confidence

P = required proporction of the population

a) Find 70/2: > P (- ZX/2 & Z & ZX/2) = 1-X

 $2\varphi\left(\frac{Z\alpha}{\rho}\right)-1=.1-\alpha$

Confidence Interval: =>

 $\frac{Y}{m} - \frac{Z\alpha/2}{m} \sqrt{\frac{Y(1-\frac{Y}{m})}{m}} \leq P \leq \frac{\frac{Y}{m} + \frac{Z\alpha/2}{n}}{|V|}$

Problem (4)

In a fonest, there are 200 birds under gevere thouble of habitats, 75% of the birds are nescued from the fonest. If 80% of the nescued birds sunvived after the attempt, find 0.1. Of proportion with an 85% confidence level.

301n:

$$n = 75\%$$
 of $200 = 150$

Proby of success in the samples,

$$\frac{Y}{n} = 0.8$$

confidence level =
$$1 - \alpha = 0.85$$

significance level = 0.15 $\left(1-0.85\right)$

$$\varphi\left(\overline{Z}\alpha/2\right) = \frac{2-\alpha}{2}$$

$$-\frac{2-0.15}{2}$$

$$\frac{Y}{m} - \frac{7\alpha/2}{\sqrt{\frac{n}{n}(1-\frac{y}{n})}} \stackrel{\angle P}{=} \frac{\frac{Y}{m} + \frac{7\alpha/2}{\sqrt{n}}}{\sqrt{\frac{n}{n}(1-\frac{y}{n})}}$$

$$= 70.8 - 1.44 \sqrt{\frac{0.8(1-0.8)}{150}} \leq P \leq 0.8 + \frac{0.8(1-0.8)}{150}$$

$$\Rightarrow$$
 0.8 - 0.047 $\leq P \leq 0.8 + 0.047$
 $\therefore \begin{bmatrix} 0.753 \\ = P \leq 0.847 \end{bmatrix}$
 $\begin{bmatrix} Ans. \end{bmatrix}$

INTERVAL ESTIMATION

2. Let X equal to the amount of juice in milliliter per day consumed by a student. Suppose the variance of X is 36. To estimate the mean μ of X, a survey team took a random sample of 50 students and found they consumed on average 0.5 litter juice per day. Find an approximate 90% confidence interval for μ .

Solution:

Here, Sample size
$$n=50$$

Mean consumption $\bar{x}=0.5$ litter or $\bar{x}=500$ milliliter
Standard deviation $\sigma=6$
Confidence $1-\alpha=0.90$
Significance $\alpha=0.10$

Estimate the
$$z\alpha_{/2}$$
 as
$$\varphi\left(z\alpha_{/2}\right) = \frac{2-\alpha}{2}$$
 or,
$$\varphi\left(z\alpha_{/2}\right) = \frac{2-0.10}{2}$$
 or,
$$\varphi\left(z\alpha_{/2}\right) = 0.95$$
 or,
$$z\alpha_{/2} = 1.645$$

Now, the required confidence interval is

$$\bar{x} - z\alpha_{/2} \sigma / \sqrt{n} \le \mu \le \bar{x} + z\alpha_{/2} \sigma / \sqrt{n}$$
or,
$$500 - 1.645 * \frac{6}{\sqrt{50}} \le \mu \le 500 + 1.645 * \frac{6}{\sqrt{50}}$$
or,
$$500 - 1.396 \le \mu \le 500 + 1.396$$
or,
$$498.604 \le \mu \le 501.396$$