

Vacuum Fluorescent Display Module [GU-7000 series module] Application Note

APF200 R2.01 Tentative

Fluorescent Display (VFD). VFD is the display device of lighting blue-green, easy to read and self-luminous. It features high visibility, a wide operating temperature range, etc, compared with other display devices such as liquid crystal (LCD) and LED. GU-7000 series is a VFD module which can enable a character display using the graphic type VFD 'dot matrix'. Moreover, they are designed to be used as a functional enhancement version of CU-U series by being similar to the general character type LCD modules. This document is prepared for technical support data when using a GU-7000 series display module.

September 3rd, 2012 Copyrights reserved.

Table of contents

Va	cuu	m Flu	orescent Display Module1 -	
[G	U-7	000 se	eries module]1 -	
1		Scope	e 5 -	
	1.1	Cha	aracter size	5
	1.2	GU	7-7000B series	5
2		VFD 1	module lineup6 -	
	2.1		m number	
	2.2	Dis	tribution diagram for standard series	7
3		Appli	cable item numbers: GU-7000 series as of June. 2012 8 -	
4		Hard	ware9-	
	4.1		ck diagram	9
	4.	1.1	Block diagram (GU-7000)	9
	4.	1.2	Block diagram (GU-7901)	9
	4.	1.3	Block diagram (GU7032)	10
	4.	1.4	Block diagram (GU-7003)	10
	4.	1.5	Block diagram (GU-7900)	11
	4.	1.6	Block diagram (GU-7903)	
	4.	1.7	Block diagram (GU-7040)	12
	4.2	Cor	nnecter	12
	4.	2.1	GU-7xx0	12
	4.	2.2	GU-7901	12
	4.	2.3	GU-7xx3	12
	4.3	Hos	st interface	13
	4.4	I/O	part equivalent circuit	14
	4.	4.1	RS-232C level input equivalent circuit	14
	4.	4.2	RS-232C level output equivalent circuit	14
	4.	4.3	C-MOS level input equivalent circuit	14
	4.	4.4	C-MOS level output equivalent circuit	14
	4.	4.5	Parallel interface input equivalent circuit example (GU140X16G-7000)	15
	4.5	Exa	amples of host interface connection	16
	4.	5.1	Example of RS-232C serial connection to PC	16
	4.	5.2	Example 1 of embedded CPU connection by RS-232C	16
	4.	5.3	Example 2 of embedded CPU connection by RS-232C	
	4.	5.4	Example 1 of Parallel input connection	
	4.	5.5	Example 2 of Parallel for output BUSY signal connection	18
	4.	5.6	Example 3 of Parallel using RESET signal	

Noritake itron

	4.5.7	Example of embedded CPU connection by Asynchronous C-MOS serial	19 -
	4.5.8	Example of embedded CPU connection by Synchronous C-MOS	19 -
	4.5.9	Output of BUSY signal and additional input of hardware reset	19 -
	4.5.10	Example of connection to PC by Asynchronous C-MOS serial	20 -
5	Softw	rare 21 -	
	5.1 Def	ault setting and input Protocol	21 -
	5.2 Dis	play memory (RAM)	21 -
		portional font	
	5.4 Em	bedded font tables (7xxxB are the same as 7xxx)	22 -
	5.5 For	nt table	
	5.5.1	5x7dot ANK (1byte character)	- 23 -
	5.5.2	International font set	24 -
	5.5.3	16x16dot JIS, Simplified Traditional Chinese, Korean (GU-79xx only)	25 -
	5.6 Con	nmand tables	
	5.6.1	Common command table 1 for GU-7xxx series	27 -
	5.6.2	Common command table 2 Expand command sequences for GU-7xxxx	27 -
	5.6.3	Command table 3 Expand command sequence to control FROM for GU-79xxx	30 -
	5.6.4	Command table 4 Expand command sequence of 2 bytes character for GU-79xx.	30 -
	5.6.5	Command table 5 Additional command sequences for GU-7xxxB Display by dot.	30 -
	5.7 Mo	ving cursor and display mode	32 -
	5.8 Pro	gram examples of Microsoft Visual Studio 2010 on Windows PC	33 -
	5.8.1	Connect to serial port by Visual C# 2010	33 -
	5.9 Pro	gram examples	35 -
	5.9.1	Clear display	35 -
	5.9.2	Moving Cursor	35 -
	5.9.3	Magnified font	36 -
	5.9.4	Proportional ASCII	36 -
	5.9.5	Set display 2-byte font (for 7900 only)	37 -
	5.9.6	Using Shift-JIS code character display	37 -
	5.9.7	Graphic display	38 -
	5.9.8	Graphic display example	39 -
	5.9.9	Graphic scroll	40 -
	5.9.10	Graphic scroll example	40 -
	5.9.11	Display hidden area	40 -
	5.9.12	Character scroll	41 -
	5.9.13	Character scroll example	42 -
	5.9.14	Subdivision of a screen in the user window.	42 -
	5.9.15	User window example	43 -
	5.10 Par	allel interface program examples	44 -

Noritake itron

6	Troul	oleshooting Tips 44 -	
	6.1 BU	SY signal	44 -
	6.2 Res	set	44 -
	6.3		44 -
	6.4 Wh	y is not it displayed at all? Self test mode	45 -
	How to se	et test mode	46 -
	6.4.1	GU112X16G-7000, -7003, -7900, -7000B, -7003B, -7900B	46 -
	6.4.2	GU128X32D-7000, -7003, -7900, -7000B, -7003B, -7900B	
	6.4.3	GU128X32D-7050, -7950	
	6.4.4	GU128X32D-7901	
	6.4.5	GU128X64D-7000, -7003, -7900	47 -
	6.4.6	GU128X64F-7000, -7003, -7900, -7900BX	47 -
	6.4.7	GU128X128D-7203	
	6.4.8	GU140X16G-7040A	47 -
	6.4.9	GU140X16G-7000, -7003, -7900, -7903, -7042, 7000B, -7003B, -7900B	47 -
	6.4.10	GU140X16J-7000, -7003, -7000B, -7003B, -7900B	48 -
	6.4.11	GU140X32F-7000, -7003, -7900, -7903, -7032, -7000B, -7003B, -7900B	
	6.4.12	GU140X32F-7050, -7053, -7950	48 -
	6.4.13	GU144X16D-7053B	48 -
	6.4.14	GU160X32D-7050, -7950	
	6.4.15	GU160X80E-7900B	
	6.4.16	GU256X64C-7000, -7003, -7900	
	6.4.17	GU256X64D-7000, -7900	
	6.4.18	GU280X16G-7000, -7003	- 50 -
7	Supp	ort TOOL 51 -	
	7.1 GU	JD10K [Tutorial]	51 -
		ibrary 7000sample_v10.zip	
	7.3 Su	b routine list	51 -
	7.4 Vis	ual Basic 2008 sample code	51 -
8	Envi	ronment 52 -	
	8.1 Ro	HS Compliance	52 -
9	Safet	y standard 52 -	
10	Discl	aimers and limitations 52 -	
11	Cont	act us 52 -	

1 Scope

GU-7000 series VFD module is a series of subsystem of display which consists of vacuum fluorescent display with high readability and reliability, a set of power converter, a controller and flash memory. The display module can be controlled by a host machine sending commands. CJK font models are also available.

Several items have PWB size compatibility with a character LCD and CU-U series modules. Please refer to Photo.1 as an example.

PHOTO.1 GU140X16G-7000

GU-7000 series has character display function with embedded firmware, so it can be used as a character module.

1.1 Character size

VFD is a light emitting display which uses phosphor, it has higher readability than LCD which must use reflections and penetrates light. With VFDs, users are able to read characters from longer distances when using the same character size display. Some VFDs have even smaller font size while utilizing the same reading distance of an LCD. Please see our demonstrations and samples.

1.2 GU-7000B series

GU-7000B series is a models to replace GU-7000. GU-7000B series has some additional command with later version of built in controller. Command set is up word compatible. However, please test before starting to use GU-7000B, because there are some difference of response timing.

	GU-7000/7003/7900	GU-7000B/7003B/7900B
Serial input buffer size	12 bytes	60 bytes
Seriai input buller size	12 bytes	00 bytes
Display address set by dot	Nothing	Available
		Reference: [5.6.5 Command table5]
		Additional command sequence for
		GU-7xxxB Display by dot

2 VFD module lineup

2.1 Item number

Outline of specification by item number

Example: GU128X32D-7003

Indicate interface and embedded font.

7x3x=3.3V power requirement

70xx=8 bit (1 byte) character only

72xx=8 bit character code with more function

79xx=8 Bit & 16 Bit character code available

(Japanese, Chinese, Korean font)

7xx0=RS232C & parallel interface

7xx1= USB interface

7xx2=C-MOS serial& parallel interface

7xx3=C-MOS serial interface

77xx= Custom item

Example: GU128X32D-7003B

B at the end indicates means upper version.

Same series items use the same commands and major features. This table shows general information. Please refer to each specification for details.

2.2 Distribution diagram for standard series

For displays other than GU-7000, please refer to applicable application notes and specifications.

Noritake Itron VFD module

- Custom module
- Standard module
- Standard GU series
 - Graphic display series
 - GU-300 series, GU9300 series
 - GU-800 series
 - ► GU-800, GU-800B
 - Graphic mode only
 - └ GU-820A, GU-820B

Embedded Japanese font

- GU-7000 series Outline compatibility with LCD
 - **-** GU-7000
 - Small size graphic and character display module
 - **-** GU-7032
 - 3.3V input voltage version
 - **⊢** GU-7900
 - GU-70000 with embedded Japanese, Chinese and Korean font
 - **⊢** GU-7000B
 - Replacement for 7000
 - GU-7900B
 - Replacement for 7900
 - └ GU-7900BX
 - High brightness version of 7900B
- GU-3000 series
 - **⊢** GU-3100
 - Graphic and character display module
 - Embedded 16x16 & 32x32 dot Japanese font
 - Stand-alone control by macro function and embedded FROM
 - GU-3900
 - Graphic and character display module
 - Embedded Japanese, simplified Chinese, traditional Chinese, Korean

 - Stand-alone control by macro function and embedded FROM
 - GU-3900B

Graphic and character display module

Upper compatible of GU-3100 and GU-3900

Applicable item numbers: GU-7000 series as of June. 2012

This application note is applicable for the following item numbers.

Other standard items which are not listed on this list are the same or have similar basic functions.

GU112X16G-7000,	GU112X16G-7000B,	GU112X16G-7003,	GU112X16G-7003B
GU112X16G-7900	GU112X16G-7900B		
GU128X32D-7000,	GU128X32D-7000B,	GU128X32D-7003,	GU128X32D-7003B
GU128X32D-7900,	GU128X32D-7900B,	GU128X32D-7050,	GU128X32D-7950
GU128X32D-7901			
GU128X64D-7000,	GU128X64D-7003,	GU128X64D-7900	
GU128X64F-7000,	GU128X64F-7003,	GU128X64F-7900	
GU128X64F-7900BX			
GU128X128D-7203			
GU140X16G-7000,	GU140X16G-7000B,	GU140X16G-7003,	GU140X16G-7003B
GU140X16G-7040A,	GU140X16G-7900,	GU140X16G-7900B,	GU140X16G-7903
GU140X16J-7000,	GU140X16J-7000B,	GU140X16J-7003,	GU140X16J-7003B
GU140X16J-7900B			
GU140X32F-7000,	GU140X32F-7000B,	GU140X32F-7003,	GU140X32F-7003B
GU140X32F-7032			
GU140X32F-7900,	GU140X32F-7900B,	GU140X32F-7903	
GU140X32F-7050,	GU140X32F-7053,	GU140X32F-7950	
GU144X16D-7053B			
GU256X64C-7000,	GU256X64C-7003,	GU256X64C-7900	
GU256X64D-7000,	GU256X64D-7900		
GU280X16G-7000,	GU280X16G-7003		
—			

Please check our site for the latest product list or contact our sales office.

http://www.noritake-itron.jp/eng/ (English)

http://www.noritake-itron.jp/ (Japanese)

4 Hardware

4.1 Block diagram

This module consists of input-output circuit, CPU (control circuit), power supply circuit, and a vacuum fluorescent display tube.

4.1.1 Block diagram (GU-7000)

4.1.3 Block diagram (GU7032)

4.1.4 Block diagram (GU-7003)

4.1.5 Block diagram (GU-7900)

4.1.6 Block diagram (GU-7903)

4.1.7 Block diagram (GU-7040)

4.2 Connecter

4.2.1 GU-7xx0

GU-7000 series do not mounted interface connecters on PWB

Please solder a connecter before using.

Please note that GU-7xxx series in not suitable for re-flow soldering.

4.2.2 GU-7901

GU128X32D-7901 includes a USB Mini-B connector and can be connected to a PC directly with the commercial USB cable.

4.2.3 GU-7xx3

GU-7xx3 series do not mounted interface connecters on PWB

Please solder a connecter before using.

Please note that GU-7xxx series in not suitable for re-flow soldering.

4.3 Host interface

The last digit of the part number indicates the interface specification.

- 0: RS-232C level asynchronous serial input & 8 bit parallel
- 1: USB
- 2: C-MOS level synchronous or asynchronous serial input & 8bit parallel
- 3: C-MOS level synchronous or asynchronous serial input

"0" or "3" of last number are standard.

Please select based on a type of host interface.

Regarding USB type:

Applicable item: GU-7xx1

GU128X32D-7901 is a USB interface type. "COMEMO" employs GU128X32D-7901 with a small enclosure. (Currently available in Japan only)

4.4.2 RS-232C level output equivalent circuit

4.4.3 C-MOS level input equivalent circuit

4.4.4 C-MOS level output equivalent circuit

Noritake itron

4.4.5 Parallel interface input equivalent circuit example (GU140X16G-7000)

Handling of unused terminals:

Since reset signal is internally pulled up as shown in the equivalent circuit, you may keep input open. However, since it may malfunction in the noise induced to wiring, please avoid running unconnected wiring.

4.5 Examples of host interface connection

In order to use scrolling, waiting and other commands effectively, please use hardware handshake with a BUSY signal. (As noted in the specification)

Note: Interface examples are references only. Please validate the circuit design to meet the host circuit's specification.

4.5.1 Example of RS-232C serial connection to PC

Applicable model: GU-7xx0

4.5.2 Example 1 of embedded CPU connection by RS-232C

Applicable model: GU-7xx0

CPU/UART

Please use a regular input port, when hardware handshake port is not available. And program to check /CTS signal before sending data.

4.5.3 Example 2 of embedded CPU connection by RS-232C

Applicable with GU-7xx0

4.5.4 Example 1 of Parallel input connection

Applicable with GU-7xx0

Notes: About R1, in cases of over or under shooting on the /WR signal, adding R1 (50 to 200 ohms) might reduce the risk of malfunctioning.

4.5.5 Example 2 of Parallel for output BUSY signal connection

Notes: About R1, in cases of over or under shooting on the /WR signal, adding R1 (50 to 200 ohms) might reduce the risk of malfunctioning.

Program code example is available at "5.10".

4.5.6 Example 3 of Parallel using RESET signal

Notes: About R1. in cases of over or under shooting on the /WR signal, adding R1 (50 to 200 ohms) might be reduce the risk of malfunctioning.

4.5.7 Example of embedded CPU connection by Asynchronous C-MOS serial

Applicable with GU-7xx3

4.5.8 Example of embedded CPU connection by Synchronous C-MOS

Applicable with GU-7xx3

4.5.9 Output of BUSY signal and additional input of hardware reset

Applicable with GU-7xxx

Connecting the JBR jumper set the parallel connector No.3 pin as "BUSY OUT" or "/RESET IN".

4.5.10 Example of connection to PC by Asynchronous C-MOS serial $\label{eq:connection} Applicable \ with \ GU-7xx3$

5 Software

5.1 Default setting and input Protocol

A communication protocol is non-procedural with hardware handshake. The display module can use a basic function with default settings by the internal power on reset without any special initialize command.

A few seconds after turning the module on, try to send a character code to the display. The display accepts popular ASCII codes. Commands for using various functions use the extended sequence which starts in ESC code. Please perform the write control by hardware handshake at write timing.

In order to understand commands and functions of the GU-7000 series, please try "GUD-10K" as the development support tool. Since GUD-10K has a tutorial navigator, user can experiment major functions. GUD-10K software is available at our home page in Japan, or contact local sales office.

5.2 Display memory (RAM)

Written data and commands are translated into graphic images, and stored in the graphic RAM. Since the size of graphic RAM is larger than the size of display area, then a part of the RAM data appear on screen. In other words, graphic RAM is divided into the display area and hidden area.

The hidden area can be used as working area to prepare images, and help display functions such as picture scrolling.

5.3 Proportional font

The proportional font command is a function to narrow a character pitch. You can increase the average number of characters that can be displayed within the same area.

Fixed character width 1

Proportional character width 1

xed character width 2

oportional character width 2

5.4 Embedded font tables (7xxxB are the same as 7xxx)

Item number	Embedded font
GU112X16G-7000	5x7dot ANK & International
GU112X16G-7003	5x7dot ANK & International
GU112X16G-7900	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU128X32D-7000	5x7dot ANK & International
GU128X32D-7003	5x7dot ANK & International
GU128X32D-7900	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU128X32D-7901	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU128X32D-7050	5x7dot ANK & International
GU128X32D-7950	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU128X64D-7000	5x7dot ANK & International
GU128X64D-7003	5x7dot ANK & International
GU128X64D-7900	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU128X64F-7000	5x7dot ANK & International
GU128X64F-7003	5x7dot ANK & International
GU128X64F-7900	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU128X128D-7203	6x8, 8x16, 12x24, 16x32dot ANK & International
GU140X16G-7040A	5x7dot ANK & International
GU140X16G-7000	5x7dot ANK & International
GU140X16G-7003	5x7dot ANK & International
GU140X16G-7900	$5\mathrm{x}7\mathrm{dot}$ ANK & International, $16\mathrm{x}16\mathrm{dot}$ Japanese, Simplified/Traditional Chinese, Korean
GU140X16G-7903	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU140X16J-7000	5x7dot ANK & International
GU140X16J-7003	5x7dot ANK & International
GU140X16J-7900B	$5\mathrm{x}7\mathrm{dot}$ ANK & International, $16\mathrm{x}16\mathrm{dot}$ Japanese, Simplified/Traditional Chinese, Korean
GU140X32F-7000	5x7dot ANK & International
GU140X32F-7003	5x7dot ANK & International
GU140X32F-7900	$5\mathrm{x}7\mathrm{dot}$ ANK & International, $16\mathrm{x}16\mathrm{dot}$ Japanese, Simplified/Traditional Chinese, Korean
GU140X32F-7903	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU140X32F-7032	5x7dot ANK & International
GU140X32F-7050	5x7dot ANK & International
GU140X32F-7053	5x7dot ANK & International
GU140X32F-7950	5x7dot ANK & International, 16x16dot Japanese, Simplified/Traditional Chinese, Korean
GU256X64C-7000	5x7dot ANK & International
GU256X64C-7003	5x7dot ANK & International
GU256X64C-7900	$5\mathrm{x}7\mathrm{dot}$ ANK & International, $16\mathrm{x}16\mathrm{dot}$ Japanese, Simplified/Traditional Chinese, Korean
GU256X64D-7000	5x7dot ANK & International
GU256X64D-7900	$5\mathrm{x}7\mathrm{dot}$ ANK & International, $16\mathrm{x}16\mathrm{dot}$ Japanese, Simplified/Traditional Chinese, Korean
GU280X16G-7000	5x7dot ANK & International
GU280X16G-7003	5x7dot ANK & International

5.5 Font table

A concept is shown here. Please refer to the specifications for entire font data.

5.5.1 5x7dot ANK (1byte character)

	H_0	1_H	2_H	3_H	4_H	5_H	H ⁻ 9	7_H	H_8	H_6	A_H	B_H	C_H	H_O	E_H	F_H
_0H																
_1H																
_2H																
_3H																
_4H																
_5H			ا ر	nmm	on I	- - -	are	22		┏,	+	۲ E	+			
_6H		nd	"	,,,,,,			aic	a		_>	ten	d Fo	ont a	area	l	
_7H		na			AS	CII			Select by ESC t n							
_8H		Command														
_9H	i	ပ္														
_AH																
_BH																
_CH																
_DH																
_EH																
_FH																

Single-byte characters are divided into three groups.

00Hex~1FHex: Functions have been assigned. For example, when 0DHex (CR) is written in, the cursor position will move to the left end of a screen.

20Hex~7FHex: Alphanumeric character font area of ASCII conformity.

80Hex~FFHex: Extended font area, one font table out of 10 can be chosen by writing a "ESC t n" command. "ESC t n" command does not affect to characters which written before the command.

n	Character set
0	PC437(USA: Standard Europe)
1	Katakana
2	PC850(Multilingual)
3	PC860(Portuguese)
4	PC863(Canadian-French)
5	PC865(Nordic)
16	WPC1252
17	PC866(Cyrillic #2)
18	PC852(Latin 2)
19	PC858

5.5.2 International font set

International font set command replace some fonts with ethnic fonts in basic font area (20Hex~7FHex). For example, a command, "ESC R n 08h (Japan)" replace "\ " with " \S ".

Command code is "ESC R n"

<u>n</u>	Language	/n	0 0 H	0 1 H	0 2 H	0 3 H	0 4 H	0 5 H	0 6 H	0 7 H	0 8 H	0 9 H	0 A H	0 B H	0 C H	0 D H
0	USA France	23H	#	#	#	£	#	#	#	Pi.	#	#	#	#	#	#
2	Germany	24H	***	#	#	#	#	<u>;::</u> ;	#	#	\$);;	#	#	#	#
3	England	40 H	1773	ij.		(1)	0	Ė	9		9					
4	Denmark 1	5BH	1	÷	×		Æ	×		8.2	Ľ	71	A.		1	
5	Sweden	5 CH		-	Ö		gji	ö	32. 20.		#	(II)	ø			
6	Italy	5DH				1										
7	Spain1	5.05 AV885-09			IJ.	-		171				1"1	171	<u>.</u>	£.,	
8	<mark>Japan</mark>	5EH		8		244	240		3				U		ě	
9	Norway	60H			163		3.5		Ü		9.5	110	110	200	ü	30
10(0AH)	Denmark2	7BH	*.		ä	-("	32	::		930	4	*	34		7	4
11(0BH)	Spain2	7CH		ů		1	gii		à	ä		μi	(II)	×	in.	
12(0CH)	Latin America	C				100					100	.::				
13(0DH)	Korea	7DH			I,J	:	:::	:::			1	:: !		\odot	\odot	:
	× 1	7EH		0.000 0.000	13			Ü				Ü	Ü	ú	ú	

Characters written before this command are not affected.

5.5.3 16x16dot JIS, Simplified Traditional Chinese, Korean (GU-79xx only)

(2byte character)

Gu-79xx model has 16x16 dot bitmap font.

These characters have 2 byte code, please send character codes after the following command. Because displayed characters are not changed by this command, you can display several languages at same time.

Example display 2byte characters

Example of Japanese

1FH, 28H, 67H, 01H, 02H

1FH, 28H, 67H, 02H, 01H

1FH, 28H, 67H, 0FH, 00H

88H, A2H

- ' 8x16 dot font size select
- ' set 2byte character mode
- ' Japanese
- ' Displaying "阿"

Example of Korean

1FH, 28H, 67H, 01H, 02H

1FH, 28H, 67H, 02H, 01H

1FH, 28H, 67H, 0FH, <mark>01H</mark>

B0H, A1H

- '8x16 dot font size select
- ' set 2byte character mode
- ' Korean
- ' Displaying "가"

Example of Simplified Chinese

1FH, 28H, 67H, 01H, 02H

1FH, 28H, 67H, 02H, 01H

1FH, 28H, 67H, 0FH, <mark>02H</mark>

B0h, A1H

- ' 8x16 dot font size select set 2byte character mode
- 'Simplified Chinese
- ' Displaying "阿"

Example of Traditional Chinese

1FH, 28H, 67H, 01H, 02H

1FH, 28H, 67H, 02H, 01H

1FH, 28H, 67H, 0FH, 03H

A4h, 41H

- ' 8x16 dot font size select
- set 2byte character mode
- ' Traditional Chinese
- ' Displaying "乙"

The code ranges of each language are as follows;

Font Standard 2byte code area

Japanese JIS Kanji JISX208 (Shift-JIS) 8140H~9FF0H, E040~EFFCH

Korean hangil KSX5601-87 A1A1H~FEFEH
Simplified Chinese GB2312-80 A1A1H~FEFEH
Traditional Chinese Big-5 A140H~FEFEH

Example of JIS font

Example of Korean font

825×	1	2	3	4	5	6	7	8	9							
826×	Α	В	С	D	Ε	F	G	Н	Ι	J	K	L	М	N	0	Р
827×	Q	R	S	T	U	٧	W	Χ	Υ	Z						
828×		a	b	С	d	е	f	g	h	i	j	k	l	m	n	0
829×	р	σ	r	s	t	u	٧	W	×	У	z	3	0 0		i i	あ
82A×	あ	IJ	(,)	う	う	ż	え	お	お	か	が	き	ð.	<	<	け
82B×	げ	ρj	Z"	ਠ	ਰੱ	U	じ	ਰ	₫	せ	Ħ,	そ	ぞ	た	゙゙゙゙゙゙゙゙゙゙゙゙	ち
82C×	ぢ	2	つ	ブ	7	で	ح	٣	な	(2	Ø	ね	0	は	ば	ぱ
88A×	唖	娃	阿	哀	愛	挨	姶	逢	葵	茜	穐	悪	握	渥	旭	葦
88B×	芦	鯵	梓	圧	斡	扱	宛	姐	虻	飴	絢	綾	鮎	或	粟	袷
88Cx	安	庵	按	暗	案	譻	鞍	杏	以	伊	位	依	偉	囲	夷	委
88D×	威	尉	惟	意	慰	易	椅	為	畏	異	移	維	緯	胃	萎	衣
88E×	謂	違	遣	医	井	亥	域	育	郁	磯	=	壱	溢	逸	稲	茨
88F×	芋	鰯	允	印	咽	員	因	姻	31	飲	淫	胤	蔭	***		

B0A×		가	각	간	갇	갈	갉	갊	감	갑	값	갓	갔	강	갖	갗
В0В×	같	갚	갛	개	객	갠	갤	갬	갭	갯	갰	갱	갸	갹	갼	걀
B0C×	걋	걍	걔	걘	걜	거	걱	건	걷	걸	걺	검	겁	것	겄	검
B0D×	겆	겉	겊	겋	게	겐	겔	겜	겝	켓	겠	겡	겨	격	겪	견
B0E×	겯	결	꼄	겹	겻	겼	경	곁	계	곈	콀	곕	곗	딤	<mark></mark>	곤
B0F×	곧	골	괾	곬	곯	곰	곱	곳	70	곶	市	곽	관	괄	괆	20. 27
B1A×		괌	괍	괏	광	괘	괜	괠	괩	괬	괭	괴	괵	괸	괼	굄
B1B×	굅	굇	굉	교	굔	굘	굡	굣	구	국	냰	굳	굴	굵	굶	굻
B1C×	굼	굽	굿	궁	궂	궈	궉	권	궐	귔	궤	궤	궷	귀	귁	귄
B1D×	귈	귐	귑	귓	규	균	귤	コ	극	근	근	글	긁	급	급	긋
B1E×	긍	긔	기	긱	긴	긷	길	긺	김	깁	깃	김	깆	깊	7가	깍
B1F×	깎	깐	깔	깖	깜	깝	깟	깠	깡	깥	개	깩	깬	깰	깸	8—9 2—9

Example of Simplified Chinese font

Example of Traditional Chinese font

B0 A×		ORT	冏	埃	挨	哎	唉	克	皑	癌	蔼	矮	#	碍	爱	隘
B0B×	鞍	氨	安	俺	按	暗	岸	胺		航	昂	盎	屲	敖	熬	翱
BOCX	衽	傲	奥	懊	澳	世	捌	扒	叭	吧	色	八	疤	一	拔	跋
BODx	靶	把把	耙	坂	霸	罢	爸	白	柏	占	摆	宿	吸	拜	稗	斑
B0Ex	班	搬	扳	般	颁	板	版	扮		伴	辦	半	办	绊	邦	帮
B0Fx	梆	榜	膀	绑	棒	磅	蚌	镑	傍	谤	苞	胞	包	褒	剥	02.01
B1A×	20 3	薄	雹	保	堡	饱	-	抱	报	暴	豹	鲍	爆	杯	碑	悲
B1B×	卑	北	辈	背	21.52	钡	倍	狈	备	惫	焙	被	奔	苯	本	笨
B1Cx	崩	绷	甭	泵	蹦	迸	逼	鼻	比	鄙	笔	彼	碧	蓖	蔽	毕
B1D×	毙	毖	币	庇	痹	闭	敝	弊	必	辟	壁	臂	避	陛	鞭	边
B1E×	编	贬	扁	便	变	卞	辨	辩	辫	遍	标	彪	膘	表	鳖	憋
B1F×	别	瘪	彬	斌	濒	滨	宾	摈	兵	冰	柄	丙	秉	饼	炳	*
5001002		200	5.1				1.17			1.15	100	1.15		3.3	111	7

	o.		1.4	0.	DOTE:	, v	.00	E.F		0.00		D ₀	-00	v		NE.
A74×	作	你	伯	低	伶	余	佝	佈	佚	兌	克	免	兵	冶	冷	别
A75×	判	利	刪	刨	劫	助	努	劬	匣	即	阋	吝	吭	吞	吾	否
A76×	呎	吧	呆	呃	吳	呈	呂	君	吩	告	吹	吻	吸	吮	吵	吶
A77×	吠	吼	呀	吱	含	吟	听	囪	困	电	囫	坊	坑	址	坍	333
A7A×		均	坎	圾	坐	坏	圻	壯	夾	妝	妒	妨	妞	妣	妙	妖
A7B×	妍	妤	妓	妊	妥	孝	孜	孚	孛	完	宋	宏	尬	局	屁	尿
A7C×	尾	岐	岑	岔	岌	巫	希	序	庇	床	廷	弄	弟	彤	形	彷
A7D×	役	忘	忌	志	忍	忱	快	忸	忪	戒	我	抄	抗	抖	技	扶
A7E×	抉	扭	把	扼	找	批	扳	抒	扯	折	扮	投	抓	抑	抆	改
A7F×	攻	攸	早	更	束	李	杏	材	村	杜	杖	杞	杉	杆	杠	
A84×	杓	杗	步	每	求	汞	沙	沁	沈	沉	沅	沛	汪	決	沫	汰
A85×	沌	汨	沖	沒	汽	沃	汲	汾	汴	沆	汶	沍	沔	沘	沂	灶
				-					_			200	-			-

Please refer to the specifications for the complete font tables.

5.6 Command tables

5.6.1 Common command table1 for GU-7xxx series

Name	Code	Function
BS	08h	Cursor moves to the left by one character.
HT	09h	Cursor moves to the right by one character.
LF	0Ah	Cursor moves to next lower line.
HOM	0Bh	Cursor moves to home position (top left).
CR	0Dh	Cursor moves to left end of current line.
CLR	0Ch	Display screen is cleared and cursor moves to home position.
ESC	1Bh,,	Start extended command sequence.
US	1Fh	Start extended command sequence.

5.6.2 Common command table2 Expand command sequences for GU-7xxxx

Name	Code	Function
Initialize	1Bh 40h	Settings return to default values.
		Jumper settings are not re-loaded.
Cursor set	1Fh 24h xL xH	Cursor moves to the specified (X, Y) position on
	yL yH	Display Memory.
Cursor display	1Fh 43h n	Cursor display setting.
		n = 00h: Cursor display OFF (Default)
		n = 01h: Cursor display ON
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Font Width	1Fh 28h 67h	Set font width for 1byte characters.
	03h w	w = 00h: 1 dot space on right side
		w = 01h: 1 dot space on right side and left side
		w = 02h: 1 dot space on right side
		w = 03h: 1 dot space on right side and left side
Font Magnification	1Fh 28h 67h	Set character magnification 'x' times to the right
	40h x y	and 'y' times downward.

Download character	1Bh 26h a C1 C2	A maximum of 16 download characters can be
definition	[data]	defined. To display downloaded characters,
		Download character ON command is required. If
		a currently-displayed download character is
		re-defined, there is no effect on the
		currently-displayed character. It is effective only
		for newly entered characters.
Download character delete	1Bh 3Fh a c	Delete defined download character.
Download character	1Bh 25h n	Enable or disable display of download
ON/OFF		characters. Changing this setting only affects
		subsequent data. Contents already displayed
		are not affected.
		n = 01h: Enable (ON)
		n = 00h: Disable (OFF)
International font set	1B 52h n	Character code of parts of 20h~7Fh is replaced
	10 0211 11	for each country. Characters already displayed
		are not affected.
Chanastan tahla tuma	1Bh 74h n	
Character table type	1Dn 74n n	Character code of 80h~FFh is replaced for each
		font tables. Characters already displayed are
		not affected.
Over-write mode	1Fh 01h	Display mode set to Over-write mode.
Vertical scroll mode	1Fh 02h	Display mode set to Vertical scroll mode.
Horizontal scroll mode	1Fh 03h	Display mode set to Horizontal scroll mode.
Horizontal scroll speed	1Fh 73h n	Set speed for Horizontal scroll mode.
		It takes (T * (n-1)) msec to move one dot.
		n=0: Fastest, n=1: T/2 msec. T is approximately
		10~20 msec and changes with item numbers.
Reverse display	1Fh 72h n	Reverse display ON/OFF for character and
		image display. Changing this setting only affects
		subsequent data. Content already displayed is
		not affected.
Write mixture display	1Fh 77h n	Newly-written characters and images are
mode		combined with current display contents in
		Display Memory.
		n = 00h: Over write (Default)
		n = 01h: OR display write
		n = 02h: AND display write
		n = 03h: EX-OR display write

Brightness level setting	1Fh 58h n	Set display brightness level.
		Brightness: n/8, n=1~8, n=8: 100%
Wait	1Fh 28h 61h	Waits for the specified time.
	01h t	(Command and data processing is stopped)
		Wait time = $t \times approximately 0.5s, n=0\sim255$
Scroll display action	1Fh 28h 61h	Shift the display screen.
	10h wL wH cL	It becomes a scroll action by setting up two or
	cH s n	more shifts.
Blink	1Fh 28h 61h 11h	Blink display action. Blink pattern specified by
	p t1 t2 c	'p'.
Screen saver	1Fh 28h 61h	Control Power ON or OFF, and Start Screen
	40h p	saver mode. This Screen saver mode setting is
		cancelled when next data is written.
		p = 00h: Display power OFF (Power save mode)
		p = 01h: Display power ON
		p = 02h: All dot OFF
		p = 03h: All dot ON
		p = 04h: Repeat blink display with normal and
		Reverse display
User Window define /	1Fh 28h 77h n a	Define or cancel User-Window. Display contents
cancel	b [Window	are not changed by this command.
	address]	
Window select	1Fh 28h 77h	A current window is chosen from one of the user
	01h a	windows and base window.
		a=0 : Base window(all area)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	a=1 to 4: User window 1 to 4
Window select shortcut	10h or 11h	Contracted form of current window select, using
	or 12h or 13h	just 1byte.
	or 14h	
Write screen mode select	1Fh 28h 77h n a	Set base window area mode.
		a=0 : Set display area as base window.
		a=1 : Set all RAM area as base window.
		A cursor moves in the range of a base window.
Real-time bit image	1Fh 28h 66h 11h	Display the bit image data at the cursor position
display	xL xH yL yH g	in real-time.
	d1dk	

5.6.3 Command table3 Expand command sequence to control FROM for GU-79xxx

Caution1: Please minimize the use of this command, due to the write/erase life time of FROM. Caution2: Never turn OFF the power supply in rewrite mode, because data and firmware stored in F-ROM could be damaged.

Caution3: Do not use FROM rewrite command [R k n d(1) ... d(32768)] and FROM erase command [C k n], these are for factory use only.

Name	Code	Function		
Memory re-write mode	1Ch 7Ch 4Dh	Shift to "Memory re-write mode" from "Normal		
	D0h d1d6	mode".		
FROM bit image	42h k n	Define user bit image to the FROM. This		
definition	d1d32768	command is only valid in Memory re-write		
		mode.		
FROM SUM compare	53h k d1d4	Compare SUM of FROM re-write data (FROM		
	dm	bit image definition data) with d1 – d4. If SUM		
		is not equal to d1 - d4, an error message		
		appears on the display screen, and BUSY signal		
		at writing data is kept BUSY for 2 sec.		
Memory re-write mode	45h k	End Memory re-write mode and return to		
END		normal mode with Initialize Display command.		

5.6.4 Command table4 Expand command sequence of 2 bytes character for GU-79xx

Name	Code			Function	
Font size select	1Fh	28h	67h	Sets the font size for 1-byte characters.	
	01h m			m = 1h : 5x7dot	
			*	2h:8x16dot	
2-byte character	1Fh	28h	67h	Sets 2-byte character ON/OFF.	
	02h m			m = 0h : OFF	
				1h:ON	
2-byte character type	1Fh	28h	67h	Sets 2-byte character type.	
	0Fh m			m = 0h : Japanese	
Y				1h : Korean	
, v				2h : Simplified Chinese	
				3h : Traditional Chinese	
Downloaded bit image	1Fh	28h	66h	Display the defined FROM bit image at cursor	
display	10h m aL aH aE			position.	
	ySL ySH xL xH				
	yL yF			various for CII 7000 Diamber by dat	

5.6.5 Command table5 Additional command sequences for GU-7xxxB Display by dot (Additional commands for GU-7000B, 7900B series, not for GU-7000, 7900)

The GU-7000B series can specify address by dot (pixel) although the GU-7000 series specifies the vertical address by 8 dot unit.

Name	Code	Function	
Dot unit downloaded bit	1Fh 28h 64h	GU-7000B: Display the bit image defined in	
image display	20h xPL xPH	Display Memory at the specified (x,y) position.	
	yPL yPH m aL	Display position, display size, and image data	
	aH aE ySL ySH	offset are specified in unit of 1 dot.	
	xOL xOH yOL	GU-7900B: Display the bit image defined in	
	yOH xL xH	FROM or Display memory at the specified (x,y)	
		position. Display position, display size, and	
		image data offset are specified in unit of 1 dot.	
Dot unit real-time bit	1Fh 28h 64h	Display the bit image data at the specified (x,y)	
image display	21h xPL xPH	position in real-time manner.	
	yPL yPH xL xH	Display position and display size are specified in	
	yL yH g	units of 1 dot.	
	d(1)d(k)		
Dot unit character display	1Fh 28h 64h	Display the specified text characters at the	
	30h xPL xPH	specified (x,y) position.	
	yPL yPH m	Display position is specified in units of 1 dot.	
	bLen	For display position xP=FFFFh, write position	
	d(1)'d(bLen)	continues from previous writes done using this	
		command.	
	\ <i>Y</i>	Character magnification and bold settings are	
		not used.	

5.7 Moving cursor and display mode

This section describes the display mode of extended sequence commands.

Display mode specifies how to move a cursor at end of the line..

Over-write mode	1Fh 01h	Over-writes, or replaces, existing data.		
Vertical scroll mode	1Fh 02h	Scrolls cursor up 1 line		
Horizontal scroll mode	1Fh 03h	Scrolls cursor horizontally 1 space		

When a character is written, the character is displayed at the cursor position, and the cursor moves forward one character. For example, a motion of a cursor when written as "ABC" is as follows;

Before written in	After written in
Display mode command affects next write-in operation.	
Operation in each mode when written as "DEFGH" is as follows:	ws;
Overwrite mode: Return to the upper left and "FGH" is over-written on "123".	
Vertical scroll mode: Scroll up entire	
screen to make lowest line empty,	
then "FGH" is written to the bottom	
line.	
Horizontal scroll mode: Scroll the line to the left.	
Scrolling speed can be specified in another	
command. Scrolling will occur on any line.	

5.8 Program examples of Microsoft Visual Studio 2010 on Windows PC

5.8.1 Connect to serial port by Visual C# 2010

This is a sample program to display characters on GU-7000 series modules.

This sample can be run in C#2010 Express Edition.

First, install the C # 2010 from the site, Microsoft Corp.

"New project" > double click on "Windows form application" to make a new application.

Double-click "Serial Port" in the tool box.

Double-click "Button" in the tool box.

There is a button in the upper left corner of the window of "Form1.cs". Move its button in the center.

The right hand figure is a screen image.

When you double-click Form1 dialog beside button1, it comes to be able to enter the definition of "Form1_Load". Then add serial port settings as follows.

Change COM3 to a suitable serial port number according to the system you want to use. Visual studio generates gray colored lines already.


```
---- Start of list -----
```

```
this. serialPort1. PortName = "COM3";
this. serialPort1. BaudRate = 38400;
this. serialPort1. DataBits = 8;
this. serialPort1. StopBits = System. IO. Ports. StopBits. One;
this. serialPort1. Parity = System. IO. Ports. Parity. None;
this. serialPort1. DiscardNull = false;
this. serialPort1. Handshake = System. IO. Ports. Handshake. RequestToSend;
if (this. serialPort1. IsOpen) { this. serialPort1. Close(); }
```

---- End of list -----

Click the [design] tab of "Form1.cs" so that it returns to the design screen.

When Button1 is double-clicked, the processing input of button1_click will be added. After that, type the program code in as follows;

```
Start of list -----
       private void button1_Click(object sender, EventArgs e)
           this. serialPort1. Open();
           if (this. serialPort1. IsOpen)
               this.serialPort1.Write("Hello World");
               this. serialPort1. Close();
---- End of list ----
The whole program becomes like as follows;
      Start of list -----
LIST C# sample program
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System.Windows.Forms;
namespace WindowsFormsApplication1
    public partial class Form1: Form
        public Form1()
                                                                        Check Reference *
            InitializeComponent();
        private void Form1_Load(object sender, EventArgs e)
            this.serialPort1.PortName = "COM3"; //Change port name according to the system
            this.serialPort1.BaudRate = 38400;
            this.serialPort1.DataBits = 8;
            this.serialPort1.StopBits = System.IO.Ports.StopBits.One;
            this.serialPort1.Parity = System.IO.Ports.Parity.None;
            this.serialPort1.DiscardNull = false;
            this.serialPort1.Handshake = System.IO.Ports.Handshake.RequestToSend;
            if (this.serialPort1.IsOpen) { this.serialPort1.Close(); }
        private void button1_Click(object sender, EventArgs e)
            this.serialPort1.Open();
```


*: Please change COM3 to the port name of use.

```
this.serialPort1.PortName = "COM3";
```

Press the F5 key when an input finishes. After a while, compiling will finish. Form1 window should be opened, then click "Button1". "Hello World" should be displayed on the VFD module."

5.9 Program examples

The previous example explained how to display "Hello World" using C #. This next example will show the various functions written in C #.

```
private void moveCursor(int X, int Y)
{

   byte[] bb = new byte[6];

   bb[0] = (byte) 0x1f;
   bb[1] = (byte) 0x24;
   bb[2] = (byte) (X % 0x100);
   bb[3] = (byte) (X / 0x100);
   bb[4] = (byte) (Y % 0x100);
   bb[5] = (byte) (Y / 0x100);

   this. serialPort1. Open();
```



```
if (this.serialPort1.IsOpen)
{
    this.serialPort1.Write(bb, 0, 6);
    this.serialPort1.Close();
}
```

5.9.3 Magnified font

Magnified font is a function to enlarge a character to vertical and horizontal directions.

```
/* @Font Magnified */
private void fontMagnified(int X, int Y)
{
    byte[] bb = new byte[6];

    bb[0] = (byte)0x1f;
    bb[1] = (byte)0x28;
    bb[2] = (byte)0x67;
    bb[3] = (byte)0x40;
    bb[4] = (byte)X;
    bb[5] = (byte)Y;

    this. serialPort1. Open();
    if (this. serialPort1. Write(bb, 0, 6);
        this. serialPort1. Close();
    }
}
```

5.9.4 Proportional ASCII

Change the character spacing. Using with a proportional font, the number of average characters which can be displayed will increase.

```
/* Set Font Size **
    **
    ** w=0: Fixed Font Size with 1 dot space
    ** w=1: Fixed Font Size with 2 dot space
    ** w=2: Proportional Font Size with 1 dot space
    ** w=3: Proportional Font Size with 2 dot space
    */
private void FontWidth(int w)
{
        byte[] bb = new byte[5];

        bb[0] = (byte) 0x1f;
        bb[1] = (byte) 0x28;
        bb[2] = (byte) 0x67;
        bb[3] = (byte) 0x03;
        bb[4] = (byte) (w % 0x100);

        this. serialPort1. Open();
        if (this. serialPort1. IsOpen)
```



```
this. serialPort1. Write (bb. 0. 5);
         this. serialPort1. Close();
}
```

5.9.5 Set display 2-byte font (for 7900 only)

Set up CJK (Chinese-Japanese-Korean) font.

```
Setup Kanji (2 byte font in Japanese)
        Set up Kanji Display mode.
 **
 **
        cjk=0: Japanese,
            1:Korean.
            2: Simplified Chinese
            3:Traditional Chinese
private void CJK_setup( int cjk)
    byte[] bb = new byte[15];
    bb[0] = (byte)0x1f;
    bb[1] = (byte)0x28;
    bb[2] = (byte)0x67;
    bb[3] = (byte)0x01;
    bb[4] = (byte)0x02;
    bb[5] = (byte)0x1f;
    bb[6] = (byte)0x28;
    bb[7] = (byte) 0x67;
    bb[8] = (byte)0x02;
    bb[9] = (byte)0x01;
    bb[10] = (byte) 0x1f;
    bb[11] = (byte) 0x28;
    bb[12] = (byte) 0x67;
    bb[13] = (byte) 0x0f;
    bb[14] = (byte)cjk;
    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
        this.serialPort1.Write(bb, 0, 15);
        this. serialPort1. Close();
```

5.9.6 Using Shift-JIS code character display

}

Write character code for display module is Shift-JIS in Japanese. Since the internal code in C# is Unicode, it is necessary to write by encoded characters to Shift-JIS. The example to display at the click of "button2" by Japanese in C# is as follows;

```
private void button2_Glick(object sender, EventArgs e)
{
    const int JIS = 0;
        GJK_setup(JIS); /*Setup JIS Kanji*/

    string str = "日本語表示します";
    Encoding sjisEnc = Encoding. GetEncoding("Shift_JIS");
    int NumberOfBytes = sjisEnc. GetByteCount(str);
    byte[] bytes = sjisEnc. GetBytes(str);

    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
    {
        this. serialPort1. Write(bytes, 0, NumberOfBytes);
        this. serialPort1. Close();
    }
}
```

5.9.7 Graphic display

The bitmapped image converted into byte strings is written in VFD module. The image is displayed immediately at the display area. When you write an image to a hidden area, the image appears on the screen by the scroll display command.

```
/* Realtime Bitimage Display
    image: bitmap image
         : Horizontal size in Bit
         : Vertial size in Byte (8Bit)
private void DrawBitmap(byte[] image, int X, int Y )
    byte[] bb = new byte[9];
    bb[0] = (byte)0x1f;
    bb[1] = (byte) 0x28;
    bb[2] = (byte)0x66;
    bb[3] = (byte)0x11;
    bb[4] = (byte)(X \% 256);
    bb[5] = (byte)(X / 256);
    bb[6] = (byte)(Y \% 256);
    bb[7] = (byte)(Y / 256);
    bb[8] = (byte)0x01;
    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
        this. serialPort1. Write (bb, 0, 9);
        this, serialPort1, Close();
    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
        this. serialPort1. Write (image, 0, X * Y);
        this. serialPort1. Close();
}
```

5.9.8 Graphic display example

}

The following is a sample program that opens the graphic file and calls "DrawBitmap()". This program is added "Button5" and run as a click event. Please note that you cannot display which is larger than display are size. Moreover, when the vertical resolution of the bitmap image is not a multiple of 8, its remainder part is not displayed.

```
private void button5_Click(object sender, EventArgs e)
   int i, j;
   byte b2;
    OpenFileDialog openDia = new OpenFileDialog();
   if (openDia. ShowDialog() == System. Windows. Forms. DialogResult. OK)
        Bitmap bmp = new Bitmap (openDia. FileName);
       // @Show Bitmap on window
        pictureBox1. Image = bmp;
       // Transform Bitmap file into byte array
        Byte [] bb = new Byte [bmp. Width * (bmp. Height/8)];
        for (i = 0; i < bmp. Width; i++)
            for (j = 0; j < (bmp. Height / 8); j++)
                 b2 = 0;
                 if (bmp. GetPixel(i, j * 8). G < 128) { b2 = 1; } b2 += b2;
                 if (bmp. GetPixel(i, j * 8 + 1). G < 128) \{ b2++; \} b2 += b2;
                 if (bmp. GetPixel(i, j * 8 + 2). G < 128) \{ b2++; \} b2 += b2;
                 if (bmp.GetPixel(i, j * 8 + 3).G < 128) { b2++; } b2 += b2;
                 if (bmp. GetPixel(i, j * 8 + 4). G < 128) \{ b2++; \} b2 += b2;
                if (bmp. GetPixel(i, j * 8 + 5). G < 128) \{ b2++; \} b2 += b2;
                 if (bmp. GetPixel(i, j * 8 + 6). G < 128) \{ b2++; \} b2 += b2;
                 if (bmp.GetPixel(i, j * 8 + 7).G < 128) { b2++; }</pre>
                 bb[i * (bmp. Height / 8) + j] = b2;
        }
       // Move Cursor to Home
       moveCursor(0, 0);
       // Call Realtime bitmap display
        DrawBitmap(bb, bmp.Width, bmp.Height / 8);
    openDia. Dispose();
```


5.9.9 Graphic scroll

The display module performs the scroll of the screen by moving data in Display RAM.

```
Graphics Hrizontal scroll
*/
   private void GraphicsHrizontalScroll(int skip, int number, int speed)
       byte[] bb = new byte[9];
       bb[0] = (byte)0x1f;
       bb[1] = (byte)0x28;
       bb[2] = (byte)0x61;
       bb[3] = (byte)0x10;
       bb[4] = (byte)(skip \% 256);
       bb[5] = (byte)(skip / 256);
       bb[6] = (byte) (number \% 256);
       bb[7] = (byte) (number / 256);
       bb[8] = (byte)speed;
       this. serialPort1. Open();
       if (this. serialPort1. IsOpen)
           this. serialPort1. Write (bb, 0,
           this. serialPort1. Close();
   }
```

5.9.10 Graphic scroll example

The following is a sample program that is added and run as a click event of "button6". Please rewrite the X and Y size to accommodate your display module.

```
private void button6_Click(object sender, EventArgs e)
{
   const int Xsize = 256; /* Horizontal screen size of display*/
   const int Ysize = 64; /* Vertical screen size of display*/
   const int speed = 1;

   /*
     * Scroll entire display
     */
   GraphicsHrizontalScroll(Ysize / 8, Xsize, speed);
}
```

5.9.11 Display hidden area

The hidden area of RAM appears on the display area using with the scroll command "5.9.9."

The following example is of a calling program implemented as a click event for "Button7". Rewrite the X and Y size to accommodate your display module.

```
private void button7_Click(object sender, EventArgs e)
{
    const int Xsize = 256; /* Horizontal screen size of display*/
    const int Ysize = 64; /* Vertical screen size of display*/
    const int speed = 1;

    /*
        * Show hidden area
        */
        GraphicsHrizontalScroll(Ysize/8 * Xsize, 1, speed);
}
```

5.9.12 Character scroll

Character scrolling is performed when the character is written.

The horizontal scrolling is performed under the following conditions:

Condition 1: After setting the horizontal scroll mode,

Condition 2: when the cursor reaches the right side of the screen,

Condition 3: This display will initiate a scroll action by one character at next character writing.

The scroll speed also needs to be set.

```
* Horizontal Scroll Mode
private void HorizontalScrolIMD3()
    byte[] bb = new byte[2];
    bb[0] = (byte)0x1f;
    bb[1] = (byte) 0x03;
    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
    {
        this. serialPort1. Write (bb, 0, 2);
        this. serialPort1. Close();
 * Horizontal Scroll Speed
private void HorizontalScrollSpeed(int speed)
    byte[i] bb = new byte[3];
    bb[0] = (byte)0x1f;
    bb[1] = (byte)0x73;
    bb[2] = (byte) (speed % 32);
    this. serialPort1. Open();
    if (this, serialPort1, IsOpen)
```



```
this.serialPort1.Write(bb, 0, 3);
this.serialPort1.Close();
}
```

5.9.13 Character scroll example

Example illustrates a use of this command. It is a function as a click event of "button8".

```
private void button8_Click(object sender, EventArgs e)
{
  const int speed = 2;

   HorizontalScrolIMD3();
   HorizontalScrolISpeed(speed);

   this.serialPort1.Open();
   if (this.serialPort1.IsOpen)
   {
     this.serialPort1.Write("Horizontal Scroll Mode Test......")
     this.serialPort1.Close();
   }
}
```

5.9.14 Subdivision of a screen in the user window.

A user window can be separated into four sections and commands are performed within the user window. You use User window setting, delete, and select command.

```
User window define
```

```
private void DefineUserWindow(int a, int X, int Y, int W, int H)
    byte[] bb = new byte[14];
    bb[0] = (byte)0x1f;
    bb[1] = (byte) 0x28;
    bb[2] = (byte)0x77;
    bb[3] = (byte)0x02;
    bb[4] = (byte)a;
    bb[5] = (byte)1;
    bb[6] = (byte)(X \% 256);
    bb[7] = (byte)(X / 256);
    bb[8] = (byte)(Y \% 256);
    bb[9] = (byte)(Y / 256);
    bb[10] = (byte) (W \% 256);
    bb[11] = (byte)(W / 256);
    bb[12] = (byte) (H \% 256);
    bb[13] = (byte)(H / 256);
    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
        this. serialPort1. Write (bb, 0, 14);
        this. serialPort1. Close();
```

User Window delete

```
private void CancelUserWindow(int a)
            byte[] bb = new byte[6];
            bb[0] = (byte)0x1f;
            bb[1] = (byte)0x28;
            bb[2] = (byte)0x77;
            bb[3] = (byte)0x02;
            bb[4] = (byte)a;
            bb[5] = (byte)0;
            this. serialPort1. Open();
            if (this. serialPort1. IsOpen)
                this.serialPort1.Write(bb, 0, 6);
                this. serialPort1. Close();
User window select
        private void SelectCurrentUserWindow(int a)
            byte[] bb = new byte[5];
            bb[0] = (byte)0x1f;
            bb[1] = (byte)0x28;
            bb[2] = (byte)0x77;
            bb[3] = (byte)0x01;
            bb[4] = (byte)a;
            this. serialPort1. Open();
            if (this. serialPort1. IsOpen)
                this. serialPort1. Write (bb, 0, 5);
                this. serialPort1. Close();
```

5.9.15 User window example

The following is a sample program that assign to a click event of "Button9".

A 50x16 pixels user window is set to the upper left corner of the screen, and it is displayed there as "Window". When character scrolling and a graphic display are performed without a break, its data is written in this user window.

```
private void button9_Click(object sender, EventArgs e)
{
    const int UserWindow1 = 1;

    DefineUserWindow(UserWindow1, 0, 0, 50, 2);
    SelectCurrentUserWindow(UserWindow1);

    this. serialPort1. Open();
    if (this. serialPort1. IsOpen)
    {
        this. serialPort1. Write("Window");
        this. serialPort1. Close();
    }
}
```


Use the "SelectCurrentUserWindow(0); function" when you stop using the User window.

5.10 Parallel interface program examples

The following is a sample program that write 1 byte for use with 8Bit parallel interface of embedded MPU. Add a wait time if necessary.

This circuit assumes the case of <u>"4.5.5 Example 2 of Parallel for output BUSY signal</u> connection".

```
----- Program example of Data input -----
Void GU7000_out(char data)
                                                                   Please take a
                                                                  wait time when a
        do {} while (BUSY == 1); /* Wait for ready */
                                                                  host is too high
        /* wait 1.5uSec, if necessary */
                                                                       speed.
        DataLines = data;
                                 /* Output data */
                                                                Please take a
        WR = 0; /* set WR Low */
                                                              wait time when a
        /* wait 100nS, if necessary*/
                                                               host is too high
        WR = 1; /* set WR High */
                                                                    speed
```

6 Troubleshooting Tips

6.1 BUSY signal

BUSY for parallel interface is different than SBUSY for serial interface.

Use short between C and B pin of JRB jumper when you use a BUSY signal for parallel. Default setting is no connection made at factory.

6.2 Reset

The display controller cannot accept data or commands during the internal power up initialization. During this initialization, BUSY output is set to "BUSY", then do not write data or commands during this period.

6.3

6.4 Why is not it displayed at all? Self test mode

GU-7000 series does not require initialization to start to show some characters. If the display does not turn on at all, isolate the cause of failure such as wrong circuit drive or a display module failure. As a solution, GU-7000 series has a self-diagnostic function to displays a test pattern automatically at turning on.

Please refer to "6.4 How to set test mode" for each item numbers.

How to set test mode

Starting the self test mode varies for each item. Set the test mode by connecting the center pin of the 3-pin connector to GND. Set other models without a 3pin connecter by using the short of Jumper J-T or DIP-SW.

Items are not to scale

6.4.1 GU112X16G-7000, -7003, -7900, -7000B, -7003B, -7900B

6.4.2 GU128X32D-7000, -7003, -7900, -7000B, -7003B, -7900B

Short JT

6.4.3 GU128X32D-7050, -7950

Short 2-3 pin

6.4.4 GU128X32D-7901

DIP-SW1-4 ON

6.4.5 GU128X64D-7000, -7003, -7900

Short 2-3 pin

6.4.6 GU128X64F-7000, -7003, -7900, -7900BX

6.4.7 GU128X128D-7203

Short 2-3 pin

6.4.8 GU140X16G-7040A

6.4.9 GU140X16G-7000, -7003, -7900, -7903, -7042, 7000B, -7003B, -7900B

Short 2-3 pin

6.4.10 GU140X16J-7000, -7003, -7000B, -7003B, -7900B

6.4.11 GU140X32F-7000, -7003, -7900, -7903, -7032, -7000B, -7003B, -7900B

Short 2-3 pin

6.4.12 GU140X32F-7050, -7053, -7950

Short 2-3 pin

6.4.13 GU144X16D-7053B

Connect Pad T to
GND

6.4.14 GU160X32D-7050, -7950

The test mode will start with one or the other.

Short JT

6.4.15 GU160X80E-7900B

Short 2-3 pin

The test mode will start with one or the other.

Connect JT to GND

6.4.16 GU256X64C-7000, -7003, -7900

Short 2-3 pin

6.4.17 GU256X64D-7000, -7900

Short 2-3 pin

6.4.18 GU280X16G-7000, -7003

7 Support TOOL

We can offer support tool for you, please contact from our website.

Homepage (Japanese):

http://www.noritake-itron.jp/

(English):

http://www.noritake-itron.jp/eng/

(Chinese):

http://www.noritake-itron.jp/chinese/

7.1 GUD10K [Tutorial]

Platform: Windows PC

- GUD10K is tutorial Software that offers guidance in creating, programming, sequencing and displaying messages with the Noritake GU-7000 Series.
- This tool offers a list of command sequences to perform complex operations with the display screen.

7.2 C library 7000sample_v10.zip

Platform: H8/325, Renesas Technology Corporation

Command library of subroutines to use GU-7000 series smoothly.

7.3 Sub routine list

Platform: C language

Ann example of the function definitions which use the 7000 series functions.

This is easy to use if you understand command names and routine names.

7.4 Visual Basic 2008 sample code

A Form application of Visual Basic. Also can be used as a form for software development.

8 Environment

We are committed to the understanding of environmentally hazardous substances established by the Green Procurement Guideline.

We have also certification of ISO14000 and are keeping striving for the correspondence to an environmental issue.

8.1 RoHS Compliance

All standard module products including GU-7000 series are compatible with the **RoHS Directive**.

GU-7000 series is exempt from lead-containing component RoHS as follows:

- · Lead oxide in glass used in Vacuum Fluorescent display.
- · Lead oxide contained in the ceramic and glass in electronic components.
- Lead in high melting point solder components used to connect the internal semiconductor products.

9 Safety standard

Printed circuit board materials are certified UL:94-V0 flame retardant grade.

The UL certification number is indicated on the printed circuit board.

10 Disclaimers and limitations

The contents provided in this document are carefully created and managed by our Company, but we cannot guarantee to use these contents on all platforms. If you have any problems or questions, please consult us.

Noritake sample codes are only for the use of Noritake products. Please carry out operating verification for final products such as application software on your responsibility. Support tools provided in a form of the installer may contain programs that are used under license. These must not be reproduced, modified, or integrated, etc. as reverse engineered, reverse compiled, or reverse assembled.

11 Contact us

If you have any questions or requests, please consult our sales office or customer support desk (cs@noritake-itron.jp)

End of document