计算题

- 1. 已知A 为三阶实对称矩阵,秩r(A) = 2, $\alpha_1 = (0,1,0)^T$, $\alpha_2 = (-1,0,1)^T$,是A 对应特征值 $\lambda_1 = \lambda_2 = 3$ 的特征向量,试求:
 - (1) A 的另一个特征值 λ , 及其特征向量 α_3 ; (2) 矩阵 A, 矩阵 A^n 。
- 2. 已知 3 阶方阵 A 的特征值 1, 2, 3 对应的特征向量分别为 α_1 , α_2 , α_3 。
 - (1) 将向量 β 用 α_1 , α_2 , α_3 线性表示; (2)求 $A^n\beta$, n为自然数。

其中: $\alpha_1 = (1.1.1)^T$, $\alpha_2 = (1.2.4)^T$, $\alpha_3 = (1.3.9)^T$, $\beta = (1.1.3)^T$ 。

3. 设列向量
$$\alpha = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的对应特征值 λ 的一个特征向量. (1)

求常数 λ, a, b ; (2) 试问: 矩阵 A 能否相似于对角矩阵? 为什么?

- 4. 设n 维行向量 $\alpha = (1,1,\dots,1), n$ 阶矩阵 $A = E \alpha^T \alpha$ 。
 - (1) 求矩阵 A 的特征值和特征向量;
 - (2) 问矩阵A是否可相似于对角阵?若能,求出可逆阵P和对角阵 Λ ,使 $P^{-1}AP=\Lambda$ 。若不能,请说明理由。
- 5. 设实向量 $\alpha=\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}^T$,其中 $a_1\neq 0$, $\alpha^T\alpha=3$,矩阵 $A=E-\alpha\alpha^T$
 - (1) 试说明矩阵 A 能相似于对角阵; (2) 求可逆矩阵 P, 使 $P^{-1}AP$ 为对角阵,

并写出此对角阵; (3) 求行列式|A+E|。

6. 设矩阵
$$A = \frac{1}{3} \begin{pmatrix} 5 & -4 \\ 2 & -1 \end{pmatrix}$$
, (1) 求可逆阵 P , 使 $P^{-1}AP$ 为对角阵;

(2) 求矩阵 $B = 27A^3 + 3A - E$; (3) 求 $\lim_{n \to +\infty} A^n$.

7. 设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$
, 求: (1) 可逆阵 P ,使 $P^{-1}AP$ 为对角阵; (2) A^{100} 。

- 9. 设列向量 $\alpha=\begin{pmatrix}1\\1\\-1\end{pmatrix}$ 是矩阵 $A=\begin{pmatrix}2&-1&2\\5&a&3\\-1&b&-2\end{pmatrix}$ 的对应特征值 λ 的一个特征向量。
 - (1) 求常数 λ , a, b; (2) 试问: 矩阵 A 能否相似于对角矩阵, 为什么?
- 10. 设常数 $k \neq 0$,向量 $\alpha = (a_1, a_2, \dots, a_n) \neq 0$, $\beta = (1, 1, \dots, 1)$,矩阵 $A = kE + \beta^T \alpha$ 。 试求: (1) 行列式 |A| ; (2) 矩阵 A 的特征值。
- 11. 设A 为n 阶方阵,满足 $A^2+A-6E=0$ 。证明
 - (1) r(A+3E)+r(A-2E)=n; (2) A能相似于对角阵,并求行列式 $|A^2-3E|$ 。
- 12. 已知矩阵 $A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & y & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$ 有 1 个特征值为 3。(1) 试求: 常数 y ,以及矩阵 (A^TA)

的特征值;

- (2) 试求:可逆矩阵P,使得矩阵 $(AP)^T(AP)$ 为对角阵,并求出此对角阵。
- 13. 设 A 为 3 阶实对称矩阵,行列式 |A|=0,且 $A\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \\ 0 & -1 \end{pmatrix}$ 。又设 B 为对角阵,

P 为可逆阵、 $P^{-1}AP = B$ 。试求: (1) 矩阵 $B \cap P$; (2) 矩阵A。

- 14. 已知实二次型 $f(x_1,x_2,x_3)=2x_1x_2-2x_2x_3+2x_3x_1$, 求正交变换 x=Qy ,化 $f(x_1,x_2,x_3)$ 为标准形,并写出正交变换 x=Qy
- 15. 已知 $A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, 方程组<math>Ax = \beta$ 有无穷多解, 试求:
 - (1) 常数a的值; (2) 正交矩阵Q,使 Q^TAQ 为对角阵。

- 16. 求正交变换x=Qy,将实二次型 $f(x_1,x_2,x_3)=3x_1^2+3x_2^2-4x_1x_2+x_3^2$ 化为标准 形,并写出正交变换 x=Qy。
- 17. 设实二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 4x_1x_2 + 5x_3^2 4x_1x_3 8x_2x_3$,求: 正交变换x = Qy,将 f 化为标准型。
- 18. 设实二次型 $f(x_1, x_2, x_3) = (1-\lambda)x_1^2 + (1-\lambda)x_2^2 + 2(1+\lambda)x_1x_2 + 2x_3^2$, 已知秩r(f) = 2,求: (1) 常数 λ ; (2) 正交变换x = Qy,将f化为标准型。
- 19. 设 $A = \begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$, 已知线性方程组 $Ax = \beta$ 有解但不唯一。试求:
 - (1) a 的值; (2) 正交矩阵Q,使得 Q^TAQ 为对角矩阵。
- 20. 设二次型 $f = x_1^2 + ax_2^2 + x_3^2 + 2x_1x_2 + 2ax_1x_3 + 2x_2x_3$, 已知秩 r(f) = 2。 试求:
 - (1) a 的值; (2) 正交变换 x = Qy 化二次型 f 为标准型。
- 21. 设矩阵 $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ 。求正交矩阵 Q,使得 $Q^T A Q$ 为对角阵。
- 22. 设二次型 $f(x_1,x_2,x_3) = x_1^2 + ax_2^2 + x_3^2 + 2bx_1x_2 + 2x_1x_3 + 2x_2x_3$ 通过正交变换 x = Qy 化为标准形 $f = y_2^2 + 4y_3^2$ 。试求: (1) 常数a,b 的值; (2) 正交矩阵Q。
- 10. 设欧氏空间 R^4 中向量 $\beta = (1,1,1,1)^T$,又设V是 R^4 中与 β 正交的向量的集合。
 - (1) 证明 $V \in \mathbb{R}^4$ 的子空间; (2) 试求V的一个标准正交基。
- 23. 已知二次型 $f(x_1,x_2,x_3) = (1-a)x_1^2 + (1-a)x_2^2 + 2x_3^2 + 2(1+a)x_1x_2$ 的秩为 2。试求:
 - (1) 常数a的值; (2) 正交变换x = Qy, 把 $f(x_1, x_2, x_3)$ 化成标准形。
- 24. 已知二次型 $f(x_1, x_2, x_3) = x^T A x$ 经正交变换 x = Q y 化为标准型 $y_1^2 + y_2^2 2 y_3^2$,
- 且正交矩阵Q 的第三列为 $(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})^T$ 。
 - (1) 试求:正交矩阵Q 和实对称矩阵A; (2) 证明:矩阵B = A + 3E 为正定矩阵。

- 25. 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + 4x_2^2 + x_3^2 4x_1x_2 8x_1x_3 4x_2x_3$ 。
 - (1) 试求: 正交变换x = Qy化此二次型为标准型;
 - (2) 试问: 此二次型是否正定? 为什么?
- 26. 设A为 3 阶方阵,A中每行元素之和为 3,且满足 AB=O,其中 $B=\begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 0 \end{pmatrix}$.

试求矩阵A.

- 27. 设三元实二次型 $f(x) = x^T A x = a x_1^2 + 2 x_2^2 2 x_3^2 + 2 b x_1 x_3$ (b > 0).
- 28.已知二次型矩阵A特征值之和为 1, 特征值之积为-12.
- (1) 求a和b的值.
- (2) 求正交替换x = Py将上述二次型化为标准形, 并写出标准形.
- 29. 设A为 n 阶实方阵, r(A) = r.
- (1) 试证: 存在秩为r的 $n \times r$ 阵H和秩为r的 $r \times n$ 阵L, 使得A = HL.
- (2) 试证: 存在秩为r的 n 阶幂等矩阵B和可逆矩阵C, 使得A = BC.
- (3) 若A可逆,则存在正交矩阵Q,和上三角矩阵R,使得A=QR.

$$30.$$
设 R^3 的两个基 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}; \quad \beta_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

- (1) 求由基 $\alpha_1, \alpha_2, \alpha_3$ 到 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵 P;
- (2) 已知向量 $\alpha = \alpha_1 + \alpha_2 + \alpha_3$, 求向量 α 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标;
- (3) 求在基 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 下有相同坐标的所有向量。
- 31. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是 3 维线性空间V 的一个基,且

$$\beta_1 = \alpha_1$$
, $\beta_2 = -2\alpha_2 + \alpha_3$, $\beta_3 = \alpha_1 + \alpha_2 - \alpha_3$.

- (1) 求由基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵 P;
- (2) 设向量 $\alpha=2\alpha_1+\alpha_2-\alpha_3$, 求 α 在基 β_1 , β_2 , β_3 下的坐标
- 32. 设 α_1 , α_2 , \dots , α_n 是实数域上的线性空间V 的一个基,向量组

$$\beta_1 = \alpha_1$$
, $\beta_2 = \alpha_1 + \alpha_2$, ..., $\beta_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$.

- (1) 证明 β_1 , β_2 , \cdots , β_n 也是V 的一个基,并求出由 α_1 , α_2 , \cdots , α_n 到 β_1 , β_2 , \cdots , β_n 的过渡矩阵 C ;
- (2) 设向量 $\alpha = n\alpha_1 + (n-1)\alpha_2 + \dots + 2\alpha_{n-1} + \alpha_1$, 求 α 在基 β_1 , β_2 , \dots , β_n 下的坐标;
- (3) 设V上的线性变换 A: $A(\alpha_i) = \beta_i$ $i = 1, 2, \dots, n$, 求 A 在基 β_1 , β_2 , \dots , β_n 下的矩A 以及 $A(\alpha)$ 在 β_1 , β_2 , \dots , β_n 下的坐标 y。

33. 设
$$R^3$$
的基为 $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\beta_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\beta_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ 。

- (1) 试由 β_1 , β_2 , β_3 构造 R^3 的一个标准正交基 α_1 , α_2 , α_3 ;
- (2) 求由基 α_1 , α_2 , α_3 到 β_1 , β_2 , β_3 的过渡矩阵 P;
- (3) 已知向量 $\alpha = \beta_1 + \beta_2 + \beta_3$, 求向量 α 在基 α_1 , α_2 , α_3 下的坐标。

34. 设
$$A = \begin{pmatrix} 1 & 3 & 2 \\ 3 & a & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
,已知存在 3×2 实矩阵 $B \neq 0$,使 $AB = 0$ 。(1) 求常数 a ;(2) 问

满足AB=0的所有实矩阵是否构成 $R^{3\times2}$ 的子空间?若是,写出它的一个基。若不是,请说明理由。

35. 已知线性空间 R^3 的基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵为P,且

$$\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}; \quad P = \begin{pmatrix} 2 & 2 & 1 \\ 3 & 2 & -2 \\ 4 & 3 & 0 \end{pmatrix}$$

试求: (1) 基 β_1 , β_2 , β_3 ; (2) 在基 α_1 , α_2 , α_3 与 β_1 , β_2 , β_3 下有相同坐标的全体向量。

36. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是线性空间V的一个基,且

$$\beta_1 = \alpha_1$$
, $\beta_2 = -2\alpha_2 + \alpha_3$, $\beta_3 = \alpha_1 + \lambda \alpha_2 - \alpha_3$; $\alpha = 2\alpha_1 + \alpha_2 - \alpha_3$.

- (1) 问 λ 取何值时, β_1,β_2,β_3 也是V的基? (2) 求 α 在基 β_1,β_2,β_3 下的坐标。
- 37. 已知向量空间 R^3 的两个基为

$$(a) \quad \alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{B} \quad (b) \quad \beta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \beta_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \beta_3 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix},$$

(1)求由基(a)到基(b)的过渡矩阵A;(2)求在基(a)和基(b)下有相同坐标的全体向量。

38. 已知向量空间 R^3 的两个基为

$$(a) \quad \alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \mathcal{R} \quad (b) \quad \beta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ \beta_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \ \beta_3 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}.$$

向量 $\alpha=\alpha_1+2\alpha_2+3\alpha_3$ 。试求: (1) 基(a) 到基(b) 的过渡矩阵A; (2) α 在基(b) 下的坐标y。

证明题

- 1. 设A,B是n 阶实矩阵,A 的特征值互异。证明:矩阵AB = BA 的充分必要条件为A 的特征向量都是B 的特征向量。
- 2. 设A,B是n阶矩阵, $f(\lambda) = |\lambda E B|$ 是B的特征多项式。证明:矩阵f(A)可逆的充分必要条件为B的特征值都不是A的特征值
- 3. 设A为n阶矩阵,且 $A^2 8A + 15E = 0$ 。(1) 证明秩r(A 3E) + r(A 5E) = n;
 - (2) 证明 A 可相似于对角阵; (3) 求行列式 |A+4E|。
- 4. 设 $A=(a_{ij})_{n\times n}$ 为实矩阵, A^T 为A的转置矩阵,A的迹为 $tr(A)=\sum_{i=1}^n a_{ii}$ 。证明:
- (1) 若 AA^T 的迹 $tr(AA^T) = 0$, 则A = 0; (2) 若 $A^2 = AA^T$, 则A为实对称阵。
- 5. 已知矩阵 A, B 为 n 阶正定矩阵,证明:
 - (1) 矩阵 AB 的特征值都大于零; (2) 若 AB = BA,则 AB 为正定矩阵。
- 6. 设n 阶方阵 $A = E \alpha \alpha^T$,其中 $\alpha \neq 0$ 是n 维列向量,证明:
 - (1) $A^2 = A$ 的充要条件为 $\alpha^T \alpha = 1$; (2) 当 $\alpha^T \alpha = 1$ 时,矩阵A 不可逆。
- 7. 设A, B 是n 阶正定矩阵,AB 是实对称矩阵。证明: 矩阵 AB 是正定矩阵。
- 8. 设 α_1 , α_2 , α_3 是n维非零实向量, $\beta=k_1\alpha_1+k_2\alpha_2$, k_1 , k_2 为使得 $\beta\neq 0$ 的任意常数。以下结论若正确,请证明;若不正确,请举出反例。
- 9. 设A,B为n阶实对称矩阵, α 为任-n维实列向量。试证:
 - (1) 若 $\alpha^T A \alpha = 0$,则A = 0;(2) 若 $\alpha^T A \alpha = \alpha^T B \alpha$,则A = B。
- 10. 设A实非零反对称矩阵,证明: (1) A^2 是半负定矩阵; (2) 行列式 $|E-A^2|>1$ 。
- 11. (1) 试叙述实矩阵 A 为正交矩阵的定义; (2) 证明: n 阶实矩阵 A 是正交矩阵的充分必要条件为,在欧氏空间中对任意n 维列向量 α ,内积 $(A\alpha,A\alpha)=(\alpha,\alpha)$ 。