Contrôle de mathématiques

Jeudi 18 octobre 2012

Exercice 1

ROC 3 points

1) **Prérequis**: Une suite (u_n) diverge vers $+\infty$ si et seulement si tout intervalle $]A, +\infty[$ contient tous les termes de la suite à partir d'un certain rang.

Démontrer que toute suite croissante non majorée diverge vers +∞

- 2) **Application :** Soit la suite (u_n) définie sur \mathbb{N} par : $u_0 = 0$ et $u_{n+1} = u_n + 2(n+1)$
 - a) Etudier la monotonie de la suite u_n)
 - b) Montrer par récurrence que pour tout $n: u_n \ge n^2$
 - c) Que peut-on dire de la convergence de la suite (u_n)

Exercice 2

Récurrence 2 points

On donne la suite (t_n) définie pour tout entier naturel n, par :

$$t_0 = 0$$
 et pour tout naturel n $t_{n+1} = t_n + \frac{1}{(n+1)(n+2)}$

Démontrer par rérurrence que, pour tout naturel n, on a : $t_n = \frac{n}{n+1}$

Exercice 3

Limites de suites 3 points

Déterminer la limites des suites (u_n) suivantes :

1)
$$\forall n \in \mathbb{N}^*$$
 $u_n = 2n^2 - 2n + \frac{1}{\sqrt{n}}$ 3) $\forall n \in \mathbb{N}^*$ $u_n = 4 + \frac{\sin n}{n^2}$

3)
$$\forall n \in \mathbb{N}^*$$
 $u_n = 4 + \frac{\sin n}{n^2}$

$$2) \ \forall n \in \mathbb{N} \quad u_n = \frac{\sqrt{n}}{n+2}$$

Exercice 4

Vrai-Faux 4 points

Soit une suite (u_n) dont aucun terme est nul.

Soit la suite (v_n) définie sur \mathbb{N} par $v_n = -\frac{2}{n}$

Pour chacune des affirmations suivantes, répondre par Vrai ou Faux et justifier votre réponse:

- 1) Si (u_n) est convergente alors (v_n) est convergente.
- 2) Si (u_n) est minorée par 2 alors (v_n) est minorée par -1

1 PAUL MILAN TERMINALE S

- 3) Si (u_n) est décroissante alors (v_n) est croissante.
- 4) Si (u_n) est divergente alors (v_n) converge vers 0.

Exercice 5

D'après Pondichéry avril 2008

4 points

On cherche à modéliser l'évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat, en fonction de l'année.

Soit u_n le nombre, exprimé en millions, de foyers possédant un téléviseur à écran plat l'année n.

On pose n = 0 en 2005, $u_0 = 1$ et, pour tout $n \ge 0$: $u_{n+1} = \frac{1}{10}u_n(20 - u_n)$

- 1) Soit f la fonction définie sur [0;20] par : $f(x) = \frac{1}{10}x(20-x)$ Étudier les variations de f sur [0;20].
- 2) Montrer par récurrence que : pour tout $n \in \mathbb{N}$, $0 \le u_n \le u_{n+1} \le 10$.
- 3) Montrer que la suite (u_n) est convergente vers ℓ .
- 4) On admet que ℓ vérifie $f(\ell) = \ell$. Déterminer la limite ℓ de la suite (u_n) . En 2015, quel nombre de foyers français possèdant un téléviseur à écran plat peut-on envisager?

Exercice 6

Algorithme 4 points

 (u_n) est la suite définie pour tout nombre entier $n \ge 1$ par :

$$u_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$

Paul affirme « sachant que $\lim_{n\to+\infty} \frac{1}{\sqrt{n}} = 0$, je pense que la limite de la suite (u_n) , si elle existe, ne peut être infinie, ni même dépasser 10 ».

- 1) Quel est la rôle de l'algorithme cicontre?
- 2) Coder cet algoritme sur votre calculette, puis exécuter successivement cet algorithme pour A = 10, A = 50, A = 100.
 (♠ il faut être patient pour les deux derniers)
- 3) Les résultats affichés en sortie permettent-ils de confirmer ou d'infirmer les affirmations de Paul ? Justifier la réponse.

Entrée

Saisir la valeur de A

Initialisations

u prend la valeur 1

k prend la valeur 1

Traitement

Tant que $\overline{u} \le A$

k prend la valeur k + 1

u prend la valeur $u + \frac{1}{\sqrt{1}}$

FinTantque

Sortie

Afficher k

- 4) En remarquant que pour $1 \le k \le n$, on a $\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{n}}$, montrer que $u_n \ge \sqrt{n}$.
- 5) Déterminer la limite de la suite (u_n)