0.0.1 Phương pháp đơn hình

Định nghĩa 1 (Cơ sở). Cơ sở là cột có số hạng đầy đủ. Tương ứng với tập con của ràng buộc b độc lập tuyến tính.

Ta xét bài toán chính tắc:

(P) Min
$$f(x) = c^T x$$

$$\begin{cases}
Ax = b, \\
x_j \ge 0.
\end{cases}$$
(1)

có thể được viết lại dưới dạng:

$$\begin{pmatrix} 1 & 0 & c \\ 0 & I & A \end{pmatrix} \begin{pmatrix} -z \\ x_B \\ x_N \end{pmatrix} = \begin{pmatrix} -z_0 \\ b \end{pmatrix}. \tag{2}$$

trong đó x_B ký hiệu là biến cơ sở,

$$x_B = (x_1, x_2, \dots, x_m)^T \tag{3}$$

biến x_N ký hiệu là biến phi cơ sở,

$$x_N = (x_{m+1}, x_{m+2}, \dots, x_n)^T$$
 (4)

và phương án

$$z = z_0, \quad x_B = b, \quad x_N = 0 \quad (x_B \ge 0).$$
 (5)

Thuật toán 1 (Đơn hình). *Ta có dạng chính tắc của bài toán được thiết lập lại dưới dạng*

$$\begin{cases} (-z) + 0x_B + c^T x_N = -z_0 \\ Ix_B + Ax_N = b. \end{cases}$$
 (6)

với $x_B \ge 0$, $x_N = 0$, $z = z_0$. Thuật toán đơn hình tuân theo các bước sau:

Bước 1. Thiết lập. Xác định biến c_j nhỏ nhất, ký hiệu

$$c_s = \min_j c_j \tag{7}$$

sau đó chuyển sang bước 2.

Bước 2. Kiểm tra sự tối ưu. Nếu $\forall c_s \geq 0$, bài toán được giải và thuật toán dừng lại. Nếu $\exists c_s \leq 0$, ta chuyển sang bước 3.

Bước 3. Chọn biến vào. Nếu $\exists c_s < 0$, đánh dấu c_s là biến vào và chuyển sang bước 4.

Bước 4. Kiểm tra giới hạn. Nếu $A_s \leq 0$, ta thực hiện loạt biến đổi sau:

$$z = z_0 + c_s x_s, \ x_B = b - A_s x_s, \ x_j = 0 \quad (j \neq s)$$
 (8)

trong đó x_j là biến phi cơ sở. Nếu $z \to -\infty$ tương ứng $x_s \to \infty$, bài toán được giải và thuật toán kết thúc, nếu không chuyển sang bước 5.

Bước 5. Chọn biến ra. Ta đánh dấu biến x_j đã thực hiện trước đó thành biến ra x_s với điều kiện:

$$x_s = \frac{b_r}{a_{rs}} = \min_{a_{is} > 0} \quad \frac{b_i}{a_{is}} \ge 0, \quad (a_{rs} > 0).$$
 (9)

Sau đó chuyển sang bước 6.

Bước 6. Xoay trục. Chọn a_{rs} làm phần tử trụ, xác định a_{ij} mới ký hiệu a'_{ij} bằng cách thực hiện thao tác:

$$a'_{ij} = a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}} \tag{10}$$

sau đó quay trở lại bước 1.

Ví du minh hoa

Ta xét bài toán:

(P)
$$z = 2x_1 + 2x_2 + 2x_3 + x_4 + 4x_5 \longrightarrow Min$$

$$\begin{cases}
4x_1 + 2x_2 + 13x_3 + 3x_4 + x_5 = 17 \\
x_1 + x_2 + 5x_3 + x_4 + x_5 = 7 \\
x_i \ge 0 \quad (i = 1, 2, ..., 5)
\end{cases}$$

Bài toán được viết lại dưới dạng:

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + x_4 + 4x_5 &= z \\ 4x_1 + 2x_2 + 13x_3 + 3x_4 + x_5 &= 17 \\ x_1 + x_2 + 5x_3 + x_4 + x_5 &= 7 \end{cases}$$

$$\begin{cases} (-z) + 2x_1 & -5x_3 + x_5 &= -11 \\ 2x_1 + 3x_3 + x_4 - x_5 &= 3 \\ -x_1 + x_2 + 2x_3 + 2x_5 &= 4 \end{cases}$$

$$z = 11, \quad x_B = (x_5, x_2) = (3, 4), \quad x_N = (x_1, x_2, x_3) = (0, 0, 0).$$

$$z = 6, x_3 = 1, x_2 = 2, x_1 = x_4 = x_5 = 0$$

$$\begin{cases} (-z) + \frac{16}{3}x_1 + x_3 + \frac{1}{3}x_4 - \frac{2}{3}x_5 &= -6 \\ \frac{2}{3}x_1 + x_2 - \frac{2}{3}x_4 + \frac{8}{3}x_5 &= 2 \end{cases}$$

$$z = 6, x_B = (x_3, x_2) = (1, 2), x_N = (x_1, x_4, x_5) = (0, 0, 0).$$

$$\begin{cases} (-z) + \frac{19}{4}x_1 + \frac{1}{4}x_2 + \frac{3}{2}x_4 &= -\frac{11}{2} \\ \frac{3}{8}x_1 + \frac{1}{8}x_2 + x_3 + \frac{1}{4}x_4 &= \frac{5}{4} \\ -\frac{7}{8}x_1 + \frac{3}{8}x_2 - \frac{1}{4}x_4 + x_5 &= \frac{3}{4} \end{cases}$$

Nghiệm tối ưu của bài toán là

$$z = \frac{11}{2}, x_3 = \frac{5}{4}, x_5 = \frac{3}{4}, x_1 = x_2 = x_4 = 0.$$