

#### **Unit Learning Objectives**

- Understanding fundamental concepts about critical thinking
  - Claims, Issues
  - Premises, Credibility
  - Vagueness, Ambiguity, Generality, Fallacy
- Mastering important thinking technologies and design principles
  - Arguments, Truth Tables
  - Steps in Algorithm Development
  - Modular Design, Cohesion, Coupling
  - Flow Charts, Assertions
- Practicing and exploring critical thinking in real-world scenarios
  - Climate change misinformation
  - Social media, online shopping, video games

### **Topics We Covered**

#### UNIT WEEKLY ACTIVITIES

| Week | Commencing | Topic                                                        |
|------|------------|--------------------------------------------------------------|
| 1    | 06 March   | - Introduction<br>- Problem Solving Techniques               |
| 2    | 13 March   | - Claims and Issues                                          |
| 3    | 20 March   | - Premises and Credibility                                   |
| 4    | 27 March   | - Vagueness, Ambiguity, Generality and Fallacy               |
| 5    | 03 April   | - Identifying and Analysing Arguments<br>- Truth-Tables      |
| 6^   | 17 April   | - Steps in Algorithm Development<br>- Building Algorithms    |
| 7*   | 24 April   | - Building and Checking Algorithms<br>- Selection Statements |
| 8    | 01 May     | - Repetition Statements<br>- Modularisation                  |
| 9    | 08 May     | - Module Cohesion<br>- Module Coupling                       |
| 10   | 15 May     | - Flow Charts<br>- Assertions                                |
| 11   | 22 May     | - Review - Critical Thinking<br>- Review - Problem Solving   |



# What do I need for unit review and exam preparation

- Lecture Slides and demo vidoes
  - Use the examples in the slides to help you understand and practice
  - You can read the extra reading materials included in the slides if you have time
  - All lecture slides will be made available (PLEASE DO NOT Share with other students or upload to the Internet as they are copyright protected by Deakin University)
- Cranky Uncle App and the associated slides and videos provided by John Cook
- Textbook (optional and not necessary)



#### Exam

 Section A – Multiple Choice Questions (only one choice is correct or best)

Section B – True/False Questions

• Section C – Short Answer Questions



- A) Pre-condition
- B) Post-condition
- C) Pre-adaption
- D) Post-cohesion

• Which of the following could be considered to be an issue of the claim 'Texas Instrument created the world's most delicate sensors'?

- A) How does Texas Instrument program the circuits of the sensors?
- B) Is Texas Instrument in responsible for creating the world's delicate sensors?
- C) What happens when one of Texas Instrument sensors don't function well?
- D) Texas Instrument was leading the market of sensors.

is a Boolean expression at a specific point in a program which will be true unless there is a bug in the program?

- A) Operator
- B) Adaption
- C) Assertion
- D) Formula

What is the value of X after evaluating the following pseudocode?

- A) 185
- B) 250
- C) 205
- D) 155
- E) 145

$$X = 201$$

$$Y = 200$$

IF 
$$X = Y + 1$$
 THEN

$$X = Y - 50$$

ELSE

$$X = Y$$

**ENDIF** 

$$Y = X + 15$$

$$X = Y - 10$$

## True/False

- A claim only has two possible values as its value range.
  - A) True
  - B) False





#### **Short Answer Question**

For the following algorithm, copy that algorithm but also include 3 assertions throughout.

$$X = 30$$

$$Y = 50$$

IF (X > 20 AND X < 50) OR X > 0 THEN

$$X = 0$$

**ELSE** 

$$X = 50$$

**ENDIF** 



#### **Short Answer Question**

$$X = 30$$

$$Y = 50$$

Assert(
$$X > 0$$
 and  $X \le 30$ )

IF (X > 20 AND X < 50) OR X > 0 THEN

$$X = 0$$

Assert( $X \ge 0$  and X < 300)

**ELSE** 

$$X = 50$$

**ENDIF** 



# Question Time Good Luck!

