CS2040 – Data Structures and Algorithms

Lecture 17 – Four Lines Wonder Finding Shortest Paths between All Pairs of Points

axgopala@comp.nus.edu.sg

Outline

- Introducing: The <u>All-Pairs</u> Shortest Paths Problem
 - Motivating example

- Floyd-Warshall Algorithm
 - The short code © + Basic Idea

Some Floyd-Warshall's variants

Motivating Problem – Graph Diameter

- The diameter of a graph is defined as the greatest shortest path distance between any pair of vertices
- For example, the diameter of this graph is 2
 - The paths with length equal to diameter are:
 - 1-0-3 (or the reverse path)
 - 1-2-3 (or the reverse path)
 - 1-0-4 (or the reverse path)
 - 2-0-4 (or the reverse path)
 - 2-3-4 (or the reverse path)

Live Quiz

• Diameter of this graph is

- B) 10
- C) 12
- D) 14
- E) Absolutely no idea!

0	1	8
0	2	4
0	3	1
0	4	2
1	2	10
1	3	9
1	4	10
2	3	4
2	4	6
3	4	3

All-Pairs Shortest Paths (APSP)

- APSP problem definition:
- Find the shortest paths between <u>any pair</u> of vertices in the given directed weighted graph

APSP Solutions with SSSP Algorithms

From what we know earlier ©

- On unweighted graph
 - Call BFS V times, once from each vertex
 - Time complexity: $O(V * (V+E)) = O(V^3)$ if $E = O(V^2)$
- On weighted graph, for simplicity, non (-ve) weighted graph
 - Call Bellman Ford's **V** times, once from each vertex
 - Time complexity: $O(V * VE) = O(V^4)$ if $E = O(V^2)$
 - Call Original/Modified Dijkstra's V times, once from each vertex
 - Time complexity: $O(V * (V+E) * log V)/O(V * E * log V) = O(V^3 log V)$ if $E = O(V^2)$

Floyd-Warshall Algorithm – Basic Idea

- Assume that the vertices are labelled as [0 ... V 1]
- Now let sp(i, j, k) denotes the shortest path between vertex i and vertex j with the restriction that the vertices on the shortest path (excluding i and j) can only consist of vertices from [0 ... k]
 - How Robert Floyd and Stephen Warshall managed to arrive at this formulation is beyond the scope of this lecture ...
- Initially k = -1 (or to say, we only use direct edges only)
 - Then, iteratively add \mathbf{k} by one until $\mathbf{k} = V 1$

Floyd-Warshall Algorithm

- Floyd-Warshall's uses an **2D Matrix** for SP cost: D[|V|][|V|]
- At start, D[i][i] = 0, D[i][j] = the weight of **edge(i, j)** if there is an edge i->j, otherwise it is ∞
- After Floyd-Warshall's stops, it contains the weight of shortestpath(i, j)

```
for (int k = 0; k < V; k++) // remember, k first
  for (int i = 0; i < V; i++) // before i
   for (int j = 0; j < V; j++) // then j
    D[i][j] = Math.min(D[i][j], D[i][k]+D[k][j]);</pre>
```


Algorithm Analysis

```
for (int k = 0; k < V; k++) // remember, k first
for (int i = 0; i < V; i++) // before i
for (int j = 0; j < V; j++) // then j
D[i][j] = Math.min(D[i][j], D[i][k]+D[k][j]);</pre>
```

- $O(V^3)$ since we have three nested loops!
 - Does take a bit of time \odot , so can only solve APSP for small graphs if $\mathbf{E} = O(\mathbf{V}^2)$ and time is short!

Why is APSP Useful?

Preprocessing step for lots of queries!

Preprocess the data once (can be a costly operation)

- All future queries (of which there is a lot) can be (much) faster by working on the processed data
- E.g.
 - Preprocessing O (V³)
 - Answering query: What is SP cost between vertex i and j? → O(1)

Floyd-Warshall

Variants

Print the Actual SP

- Use predecessor matrix p
 - Let p be a 2D predecessor matrix, where p[i][j] is the predecessor of j on a shortest path from i to j, i.e. i -> ... -> p[i][j] -> j
 - Initially, p[i][j] = i for all pairs of i and j (regardless if edge (i,j) exists)
 - If D[i][k]+D[k][j] < D[i][j], then D[i][j] = D[i][k]+D[k][j] and p[i][j]
 = p[k][j] ← this will be the predecessor of j in the shortest path

Print the Actual SP

- Use the two matrices, **D** and **p**
 - The shortest path from 3 4 is: $3 \rightarrow 0 \rightarrow 2 \rightarrow 4$

Note:

if p[i][j] == i
need to check D[i][j] != INF

D	0	1	2	3	4
0	0	2	1	6	2
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0
		a			А

р	0	1	2	3	4
0	0	0	0	1	2
1	3	1	0	1	2
2	3	2	2	1	2
3	3	0	0	3	2
4	4	4	4	4	4

Transitive Closure – The Original Plan!

- Floyd-Warshall's algorithm was initially invented for solving the transitive closure problem
 - Given a graph, determine if vertex **i** is connected to vertex **j** either directly (via an edge) or indirectly (via a path)
- Solution: Modify the matrix D to contain only 0/1
 - Modification of Floyd-Warshall's algorithm:

```
// Initially: D[i][i] = 0
// D[i][j] = 1 if edge(i, j) exist; 0 otherwise
// the three nested loops as per normal
D[i][j] = D[i][j] | (D[i][k] & D[k][j]); // bitwise | and &
```

Transitive Closure – The Original Plan!

Matrix **D** before and after

D,init	0	1	2	3	4
0	0	1	1	0	1
1	0	0	0	1	0
2	0	1	0	0	1
3	1	0	1	0	1
4	0	0	0	0	0

D,final	0	1	2	3	4
0	1	1	1	1	1
1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4	0	0	0	0	0

Minimax/Maximin

- The minimax problem is a problem of finding the path that minimizes the maximum edge from vertex i to vertex j (maximin is the reverse)
 - For a single path from i to j, we pick the maximum edge weight along this path
 - Then, for all possible paths from **i** to **j**, we pick the maximum edge weight that is the smallest
 - D[i][j] will store this smallest max-edge-weight

Minimax/Maximin

Solution: Another variation of Floyd-Warshall's algorithm

```
// Initially: D[i][i] = 0
// D[i][j] = weight of edge(i, j) exist; INF otherwise
// the three nested loops as per normal
D[i][j] = Math.min(D[i][j], Math.max(D[i][k], D[k][j]));
```

Minimax/Maximin

- The minimax path from 1 to 4 is
 4, via edge (1, 3)
- $1 \rightarrow 3 \rightarrow 0 \rightarrow 2 \rightarrow 4$

D,init	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	∞	3	0	5
4	∞	∞	∞	∞	0

D,final	0	1	2	3	4
0	0	1	1	4	1
1	4	0	4	4	4
2	4	1	0	4	1
3	1	1	1	0	1
4	∞	∞	∞	∞	0

Determining +ve/-ve Cycle

- 1. Set the main diagonal of D to ∞
- 2. Run Floyd-Warshall's
- 3. Recheck the main diagonal
 - I. $<\infty$, but >= 0 \rightarrow positive cycle
 - II. < 0 → negative cycle

D,init	0	1	2	3	4
0	∞	2	1	∞	3
1	∞	∞	∞	4	∞
2	∞	1	∞	∞	1
3	1	∞	3	∞	5
4	∞	∞	∞	∞	∞

D,final	0	1	2	3	4
0	7	2	1	6	2
1	5	7	6	4	7
2	6	1	7	5	1
3	1	3	2	7	3
4	∞	∞	∞	∞	∞

Summary

Introduction to the APSP problem (with 1 motivating example)

- Introduction to the Floyd-Warshall's algorithm
- Introduction to 4 variants of Floyd-Warshall's

All Done Folks ©

With thanks to:

Tutorial TAs

Lab TAs

- Special Thanks to:
 - Roger Zimmerman, Sanka Rasnayaka, Enzio Kam Hai Hong

Continuous Feedback