import pandas as pd

data = pd.read_csv("/content/crop_yield.csv")
print(data)

•		Crop Cro		CropYear Se		ason State			Area	Production	\
	0	Arecanut		2019	Kharif		Andhra	Pradesh	1096.0	10418	
	1	Arhar/Tur		2019	Kharif		Andhra	Pradesh	237647.0	114451	
	2	Arhar/Tur		2019	Rabi		Andhra	Pradesh	5940.0	3747	
	3	Bajra		2019	Kharif		Andhra	Pradesh	20484.0	47045	
	4	Bajra		2019	Rabi		Andhra	Pradesh	4592.0	11322	
	1016	Sunflower		2019	Kharif		Wes	t Bengal	7842.0	9576	
	1017	Tobacco		2019	Whole Y	ear	Wes	t Bengal	15151.0	20457	
	1018	Urad		2019	Kharif		Wes	t Bengal	66846.0	44876	
	1019	Urad		2019	Rabi		Wes	t Bengal	5502.0	5215	
	1020	Wheat		2019	Rabi		Wes	t Bengal	188308.0	509970	
		AnnualRain	fall		tilizer	Pest:	icide	Yield			
	0		99.2		8248.96			7.253333			
	1	89	99.2	4081	8248.72	8792	29.39	0.440000			
	2	89	99.2	102	0254.40	219	97.80	0.430000			
	3	89	99.2	351	8331.84	75	79.08	2.004545			
	4	89	99.2	78	8721.92	169	99.04	2.480000			
							• • •				
	1016	173	33.4	134	6941.92	290	01.54	1.114667			
	1017	173	33.4	260	2335.76	560	05.87	1.510000			
	1018	173	33.4	1148	1468.96	247	33.02	0.640000			
	1019	173	33.4	94	5023.52	203	35.74	0.740000			
	1020	173	33.4	3234	3782.08	6967	73.96	2.647619			

[1021 rows x 10 columns]

data.head()

	Crop	CropYear	Season	State	Area	Production	AnnualRainfall	Fertilizer	Pesticide	Yield
0	Arecanut	2019	Kharif	Andhra Pradesh	1096.0	10418	899.2	188248.96	405.52	7.253333
1	Arhar/Tur	2019	Kharif	Andhra Pradesh	237647.0	114451	899.2	40818248.72	87929.39	0.440000
2	Arhar/Tur	2019	Rabi	Andhra Pradesh	5940.0	3747	899.2	1020254.40	2197.80	0.430000
3	Bajra	2019	Kharif	Andhra Pradesh	20484.0	47045	899.2	3518331.84	7579.08	2.004545
4	Bajra	2019	Rabi	Andhra Pradesh	4592.0	11322	899.2	788721.92	1699.04	2.480000

data.plot.scatter(x='Yield', y='Production');

data.shape

(1021, 10)

x=data['Production'].values.reshape(-1,1)
y=data['Yield'].values.reshape(-1,1)

```
x.shape
     (1021, 1)
SEED = 40
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 30)
print(x\_train)
print(y_train)
     ]]
              688]
             4210]
             1865]
          2701810]
            19444]
               57]
             2517]
            89432]
             1626]
            44950]
          1750601]
            21329]
              465]
             4620]
            36316]
           274809]
              460]
            22030]
         14869966]
        390028000]
             4637]
           159883]
             1039]
            94770]
            83939]
             2098]
            33683]
            51278]
             12381
             6653]
            68562]
           394898]
            13554]
            23400]
              342]
              919]
          2463000]
             6271]
             2193]
            10498]
              789]
             1000]
             3089]
               65]
            23420]
             3231]
           142367]
           378700]
            15842]
               22]
             2910]
             95761
          37980581
              704]
                0]
           887440]
from \ sklearn.linear\_model \ import \ LinearRegression
regressor = LinearRegression()
regressor.fit(x\_train, y\_train)
      ▼ LinearRegression
     LinearRegression()
y_pred = regressor.predict(x_test)
```

```
df_preds = pd.DataFrame({'Actual': y_test.squeeze(), 'Predicted': y_pred.squeeze()})
print(df_preds)
             Actual Predicted
     0
           2.808214
                     44.422271
     1
           0.384286 43.808815
     2
           0.871538 43.764482
     3
           0.737500 43.758782
           2.274483 43.854323
           1.791176
                     44.265723
     200
     201
          81.091500
                     46.257603
     202
           0.758636 43.771808
           2.268000 43.756299
     203
     204
           3.610625 53.418543
     [205 rows x 2 columns]
\hbox{import numpy as np}\\
from sklearn.metrics import mean_absolute_error, mean_squared_error
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
print(f'Mean\ absolute\ error:\ \{mae:.2f\}')
print(f'Mean squared error: {mse:.2f}')
print(\texttt{f'Root mean squared error: } \{\texttt{rmse:.2f}\}')
     Mean absolute error: 108.62
     Mean squared error: 925628.81
     Root mean squared error: 962.10
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.plot(x,y,'ro')
plt.plot(x_test,y_pred)
plt.title('Actual vs Predicted')
plt.xlabel('X')
plt.ylabel('y')
plt.show()
```

