ELEC 7500 Project 2

Matthew Boler

July 26, 2019

- 1 Linear System Stability
- 2 Stable and Unstable Subspaces
- 3 Analysis of Nonlinear System Stability
- 4 Controllable and Stabilizable Properties

Consider the model $\dot{x} = \mathbf{A}x + \mathbf{B}u$, where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 - 4 \end{bmatrix}$$

5 State Feedback

Consider the model from the previous section. Design a state feedback controller $u = -\mathbf{K}x$ so the closed loop system is asymptotically stable. Can the closed loop eigenvalues be freely selected? Describe the constraints on the choice of eigenvalues and the impact on the gain matrix \mathbf{K} .

6 Controllability, revisited

Consider the model $\dot{x} = \mathbf{A}x + \mathbf{B}u$, where

$$\mathbf{A} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Find an input function u(t) that drives the state from x(0) to the origin at t=1. Verify the solution either analytically or by simulation.