

Cortana Analytics Workshop

Sept 10 - 11, 2015 • MSCC

Predictive Maintenance in the IoT Era

Danielle Dean, PhD Senior Data Scientist Lead Twitter @danielleodean aniedea@Microsoft.com

Cortana Analytics Suite Transform data into intelligent action

Today's Talk

Outline

- Predictive Maintenance Use Cases
- Building E2E solution with Cortana Analytics Suite
- Data
- Modeling, Evaluation

Predictive Maintenance Concepts

Important task in Internet of Things applications
Goal: improve production/maintenance efficiency

	Predictive Maintenance in IoT	Traditional Predicative Maintenance			
Goal	Improve production and/or maintenance efficiency	Ensure the reliability of machine operation			
Data	Data stream (time varying features), Multiple data sources	Very limited time varying features			
Scope	Component level, System level	Parts level			
Approach	Data driven	Model driven			
Tasks	Failure prediction, fault/failure detection & diagnosis, maintenance actions recommendation, etc. Essentially any task that improves production/maintenance efficiency	Failure prediction (prognosis), fault/failure detection & diagnosis (diagnosis)			

Predictive Maintenance Use Cases

failing?

Aircraft Engine Demo

Scenario

This is Kyle.

Kyle manages a team that maintains aircrafts.

His job is to make sure that his 100 aircrafts are running properly & especially that the aircraft engines don't need service.

Kyle wants to prevent delays due to mechanical issues so his customers will be happy.

Scenario

Sadly, engines occasionally show signs of problems & must be taken out of service for maintenance or replacement.

Questions & Solutions

Cortana Analytics to the Rescue!

1. How long did engines run in the past?

2. Which are showing signs of failure?

3. Which engines are likely to fail in the future?

Components

Training Data:

Aircraft engine run to failure data from NASA Ames Prognostics Data Repository

Sample training data ~20k rows, 100 unique engine id

Sample testing data ~13k rows, 100 unique engine id

id	cycle	setting1	setting2	setting3	s1	52	53	 s19	s20	s21
1	1	-0.0007	-0.0004	100	518.67	641.82	1589.7	100	39.06	23.419
1	2	0.0019	-0.0003	100	518.67	642.15	1591.82	100	39	23.4236
1	3	-0.0043	0.0003	100	518.67	642.35	1587.99	100	38.95	23.3442
1	191	0	-0.0004	100	518.67	643.34	1602.36	100	38.45	23.1295
1	192	0.0009	0	100	518.67	643.54	1601.41	100	38.48	22.9649
2	1	-0.0018	0.0006	100	518.67	641.89	1583.84	100	38.94	23.4585
2	2	0.0043	-0.0003	100	518.67	641.82	1587.05	100	39.06	23.4085
2	3	0.0018	0.0003	100	518.67	641.55	1588.32	100	39.11	23.425
2	286	-0.001	-0.0003	100	518.67	643.44	1603.63	100	38.33	23.0169
2	287	-0.0005	0.0006	100	518.67	643.85	1608.5	100	38.43	23.0848

id	cycle	setting1	setting2	setting3	s1	s2	s3	 s19	s20	s21
1	1	0.0023	0.0003	100	518.67	643.02	1585.29	100	38.86	23.3735
1	2	-0.0027	-0.0003	100	518.67	641.71	1588.45	100	39.02	23.3916
1	3	0.0003	0.0001	100	518.67	642.46	1586.94	100	39.08	23.4166
1	30	-0.0025	0.0004	100	518.67	642.79	1585.72	100	39.09	23.4069
1	31	-0.0006	0.0004	100	518.67	642.58	1581.22	100	38.81	23.3552
2	1	-0.0009	0.0004	100	518.67	642.66	1589.3	100	39	23.3923
2	2	-0.0011	0.0002	100	518.67	642.51	1588.43	100	38.84	23.2902
2	3	0.0002	0.0003	100	518.67	642.58	1595.6	100	39.02	23.4064
2	48	0.0011	-0.0001	100	518.67	642.64	1587.71	100	38.99	23.2918
2	49	0.0018	-0.0001	100	518.67	642.55	1586.59	100	38.81	23.2618
3	1	-0.0001	0.0001	100	518.67	642.03	1589.92	100	38.99	23.296
3	2	0.0039	-0.0003	100	518.67	642.23	1597.31	100	38.84	23.3191
3	3	0.0006	0.0003	100	518.67	642.98	1586.77	100	38.69	23.3774
3	125	0.0014	0.0002	100	518.67	643.24	1588.64	100	38.56	23.227
3	126	-0.0016	0.0004	100	518.67	642.88	1589.75	100	38.93	23.274

Sample ground truth data 100 rows

RUL	
	112
	98
	69
	82
	91

Please refer to following link of doc for <u>Data</u> <u>description</u> section

Conclusion

With the visualization prowess of Power BI, business owners can easily examine the performance of their entire company.

The Internet of Things and Stream Analytics connect data directly from the source to a dashboard to constantly track anomalies and asset performance in real-time.

Azure Machine Learning catches the problem before it becomes a problem. It streamlines operations without wasting resources.

Is the customer ready for ML?

The better the raw materials, the better the product.

Question is sharp.

Data measures what they care about.

Data is accurate.

Data is connected.

A lot of data.

E.g. Predict whether component X will fail in the next Y days

E.g. Identifiers at the level they are predicting E.g. Failures are really failures, human labels on root causes

E.g. Machine information linkable to usage information

E.g. Will be difficult to predict failure accurately with few examples

Qualification Criteria

For ML-based solution:

- 1. Problem is predictive in nature
- 2. Clear path of action if potential failures detected
- 3. Data with sufficient quality
 - For predicting time left to failure, do you have failures or some proxy recorded?
 - Do you have enough failures to be able to model?
 - Is the "non-loT" data in usable format?
 - Can the domain knowledge, such as timing of maintenance recordings, be translated into usable data for modeling?

Data Sources

FAILURE HISTORY

The failure history of a machine or component within the machine.

REPAIR HISTORY

The repair history of a machine, e.g. previous maintenance records, components replaced, maintenance activities performed. Maintenance types.

MACHINE CONDITIONS

The operation conditions of a machine, e.g. data collected from sensors.

MACHINE FEATURES

The features of machine or components, e.g. production date, technical specifications.

OPERATING CONDITIONS

Environmental features that may influence a machine's performance, e.g. location, temperature, other interactions.

OPERATOR ATTRIBUTES

The attributes of the operator who uses the machine, e.g. driver.

Feature Engineering

The process of creating features that provide better or additional predictive power to the learning algorithm.

60+ engineered features

Other potential features: change from initial value, velocity of change, frequency count over a predefined threshold

Example Feature Engineering Methods

1- Rolling aggregates:

For each labelled record of an asset, pick a rolling window of size w, compute rolling aggregate features for the periods before the labelling date and time of that record.

2- Lag features for short term:

For each labelled record of an asset, pick a window of size w and use tumbling windows to create aggregate features for the periods before the labelling date and time.

Create features that capture degradation over time.

3- Lag features for long term:

For each labelled record, find aggregated features for a larger window than w reflecting the long term effects.

Modelling Techniques

BINARY CLASSIFICATION

MULTICLASS CLASSIFICATION

REGRESSION

Predict remaining useful life, the amount of time before the next failure

ANOMALY DETECTION

Identify change in normal trends to find

Data Labeling

Regression

Binary classification

Multi-class classification

ML Process

^{*}Depending largely on size/complexity, may want to do pre-processing and/or feature/target construction before ingesting into AML Studio / AML API.

"Most IoT data are not used currently...

the data that are used today are mostly for anomaly detection and control, not **optimization and prediction**, which provide the greatest value."¹

Go Dos

 Learn from Azure Machine Learning Gallery http://gallery.azureml.net (search "predictive maintenance")

Acknowledgements

We utilized the following publically available data to help us generate realistic data for this pre-configured solution. We received assistance in creating this solution as a result of this repository and the donators of the data.

"A. Saxena and K. Goebel (2008). "PHM08 Challenge Data Set", NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA."

Quote on Slide 23: McKinskey Global Institute, The Internet of Things: Mapping the Value beyond the hype

