Taller Relaciones. Clases de relaciones composición, dominio, rango de una relación.

1. Dados los conjuntos:

A=
$$\{1, 2, 3, 4, 5...25\}$$
, E= $\{x \mid x \text{ es primo menor que } 1000\}$, B= $\{3, 6, 9, 12, 15, 18...\}$, H= $\{x \mid x \text{ mod } 5 = 2\}$ C= $\{2, 4, 6, 8, 10, 12, 14, 16, 18, ... 100\}$, G= $\{x \mid x \text{ mod } 3 = 1\}$

Teniendo en cuenta los conjuntos anteriores definimos las siguientes relaciones:

- R de A en B, con aRb≡ a es múltiplo de b.
- S de B en C, con aSb=b es divisor de a.
- T de D en A, con aTb \equiv a mod b =2.
- R_1 de H en A, con $aR_1b \equiv b \mod a = 2$.
- R_2 de G en H, con $aR_2b \equiv b$ div a=3.
- R_3 de B en G, con $aR_3b \equiv a \bmod 10 = b$.

Calcular:

f. $\#(Dom(R_{5)})$

a. Beag(R).

g. $Rang(R_1 n R_3)$ h. 2 RoS 8c. $Rang(R_2 o R_1)$ i. $Rang(R_2 o R_1)$ j. $5RoSx \equiv true$. Calcular el valor de x.

e. $3Ro R_3 6$

2. Si definimos las siguientes clases de relaciones sobre un conjunto A. De un ejemplo de cada una, y determine si las relaciones extraña, casual y rara son reflexivas, simétricas, antisimétricas o de orden.

a. R es una relación causal si: (∀x, y | xRy → xRx ∨ yRy)
b. R es una relación rara si: (∀x, y | xRy → xRx ∧ ¬ (yRy))
c. R es una relación extraña si: (∀x, y | xRy ∧ yRy → xRx)
d. R es una relación curiosa si: (∀x, y | xRy ∧ yRx → ¬ (yRy))

3. Dadas las siguientes relaciones. Establecer: dominio, rango, clase de relación (simétrica, reflexiva anti-reflexiva, anti-simétrica, transitiva, asimétrica, de equivalencia, de orden parcial, de orden total).

Siendo A= $\{i \mid -100 < i < 100: i\}$ y N= $\{0,1,2,3,4,5,6,7,8,...\}$, números naturales.

- a. R sobre N, definida por $aRb \equiv a y b$ tienen los mismos factores primos.
- b. S sobre A, definida por $aSb \equiv 3$ es divisor de (a-b).
- c. T sobre N, definida por $aTb \equiv a+b$ es número par.

- d. Q sobre A, definida por aQb \equiv a es múltiple de b
- e. P sobre A x A, definida por (a,b)P(c,d) = a+b=c+d
- e M sobre N x N, definida por $(a,b)M(c,d) \equiv ad < bc$

Llenar la tabla de acuerdo con la información anterior. (Marcar con una X si se cumple la propiedad, si no se cumple dejar en blanco)

Relación	reflexiva	simétrica	transitiva	asimétrica	antisimétrica	Orden parcial	Equivalencia	Orden total	
R						_			
S									
T									
Q									
P									
M									

4.	Del punto anterior determinar el valor de x que haga verdadera la expresión o si no ex	kplicar
	por que x no existe:	

- $\mathbf{a.} \quad 3R^3x$
- **b.** xSoS0
- **c.** $\times P^2(5,7)$
- **d.** (4, 5) M x

- $\mathbf{x} =$
- x=
- x= (___, ___)
- x=(___,___)