

1	이동수요맞춤형 고출력 전기구동장치를 위한 다중화 드라이브 기술개발					
▋ 연구개발 목표	평가항	목별	목:	E		
» 정성적 평가 항목						
시	혐조건	가중치	연차	연차별 목표 (조건/환경)		
・고출력 다상 전동기 구동용 ESC 개발		40%	1차년도 (2023)	• 3.5kW ESC 신뢰성 평가 - 진동 : MIL-STD-810G 514.6 - 충격 : MIL-STD-810G 516.6 - 방수방진 : IEC60529, IP33 - 고온 저장/운전 : MIL-STD-810G 501.5 - 저온 저장/운전 : MIL-STD-810G 502.5 - 다중화 드라이브 플랫폼 구현 및 평가 • 12kW급 ESC 시험평가 • 다중화 드라이브 플랫폼 통신 인터페이스 개발 및 시험		
			2차년도 (2024)	· 12kW급 ESC 신뢰성 시험평가 - 진동 : MIL-STD-8105 514.6 - 충격 : MIL-STD-8105 516.6 - 방수방진 - IECG0529, IP33 - 고온 저장/운전 : MIL-STD-8106 501.5 - 저온 저장/운전 : MIL-STD-81106 502.5 - 다중화 드라이브 플랫폼 구현 및 평가		
			3차년도 (2025)	· 다중화 드라이브 시스템의 통합 성능 평가		
			4차년도 (2026)	· 완성시제의 통합 성능 실증 평가		
			5차년도 (2027)	ㆍ체계시험 실증 평가 지원 및 보고서 작성		
	미브의 플랫폼의 통신	20%	1차년도 (2023)	· 마스터 제어기(FC)와 다중화 드라이브 1대의 통신 체계 구현		
· 다중화 드라이 체계 구현			2차년도 (2024)	· 마스터 제어기(FC)와 다중화 드라이브 7대의 통신 체계 구현 및 고장 허용 제어 구현		
			3차년도 (2025)	・마스터 제어기(FC)와 다중화 드라이브 7대 그리고 PMU(Power Management Unit)과 통신 체계 구현		

이동수요맞춤형 고출력 전기구동장치를 위한 다중화 드라이브 기술개발

연구개발 진행사항

- 3.5kW ESC 개선 필요성
 - ▮ 추력/제어 마진 확보를 위해 3.5kW ESC 개선 필요
 - ESC 입력기준 연속운전: 3.5kW \rightarrow 4kW, 최대: 5kW \rightarrow 7kW (최소 2분 이상 운용)
 - ▮ 운용 영역에서 안정성 확인
 - 비행제어 시 요구되는 모터 시정수: 약 0.23초 → 최대 스로틀 (3,500rpm) 명령 인가 시 약 **10,145rpm/sec**의 가속도 필요
- ≫ 3.5kW ESC 방열 구조 개선
 - **■** MOSFET 냉각을 위한 heatsink 구조 개선
 - 방열판 공기 흐름 방향을 고려하여 핀 형상 변경
 - MOSFET 소자의 상부 body쪽도 냉각하기 위해 **방열판 추가**, 양면 쿨링 형태
 - 3.5kW ESC 1대 기준 무게 변화: 기존 561g \rightarrow 600g, **약 40g 증가.**

[기존 3.5kW ESC 형상]

[신규 3.5kW ESC 형상]

8,

이동수요맞춤형 고출력 전기구동장치를 위한 다중화 드라이브 기술개발

연구개발 진행사항

>> 3.5kW ESC - 최대 출력 시험 (2024. 8. 7)

▮ 시험 조건

- 4엽 프로펠러 부하
- ESC 입력 기준 4kW, 5kW, 6kW, 7kW 프롭부하시험 진행
- 포화온도 또는 한계온도까지 시험을 진행하여 ESC의 운용 가능한 시간과 최대 출력 확인.

ESC 입력 전력 [kW]	ESC 입력 전압 [V]	모터 제어 속도 [RPM]
4	95	3,080
5	100	3,300
6	105	3,500
7	120	3,660

[시험 운전 조건]

- 전력분석기: 인버터의 전기적 입력, 출력 계측
- ESC 내부 센서: ESC 온도, 모터 온도 계측
- RC-Benchmark: 모터 속도 및 추력 계측

9/

9

