

Catana Dominic Costin
1231EB

Content

1. Problem	. 2
2. DC Circuit	. 3
3. LTSpice simulation	. 4
4. Finding the best Vg	. 6

1. Problem

A two-stage Operational Transconductance Amplifer (OTA) with a differential input and a single-ended output, implemented using bipolar transistors, is shown below.

- 1. Calculate the theoretical expressions of the DC collector currents of bipolar transistors Q1 Q8, considering $V_{BE} \sim = 0.6 V$. Calculate the theoretical expression of the small-signal voltage gain $A_V = V_O/V_g$.
- 2. Implement the schematic in a circuit simulation software (LTSpice). Design the circuit (i.e. select transistor types for Q1 Q8, choose a value for R_2 and C_{inf} in order to have a (theoretical) gain value $A_V = 1250$.
- 3. Simulate the circuit (transient, AC sweep), choosing an appropriate amplitude for $V_{\rm g}$ in order to minimize output signal distortion.
- 4. Compare the theoretical AV_v value from point b) with the value obtained from the simulation. Name a possible cause for differences between the two values.
- 5. Specify a method for decreasing the voltage gain (without changing R_1 , R_2 , V_{CC} or V_{CM}). Implement the change and re-simulate the circuit in order to demonstrate the effect.

2. DC Circuit

We have the represented scheme in the problem with the intensities I_1 and I_2 taking in consideration that I_2 passes through R_2 and I_1 through Q_1 . Q_6 , Q_7 and Q_8 being current mirrors with Q_3 and Q_4 , the current is passing and is exiting with the same intensity (I_2) .

 Q_6 – input terminal for the transistors on the buttom. (Q6, Q7 and Q8)

This means that the currents I_1 and I_2 are equal with the same values with the intensities that correspond with the transistors:

$$I_1 = I_{C1} + I_{C2} + I_{C3} + I_{C4}$$

$$I_2 = I_{C5} + I_{C6} + I_{C7} + I_{C8}$$

$$V_{BE} = V_{CE} = 0.6V$$

Writing for the branch from V_{CC} from Q_6 we have then:

$$V_{CC} = R_2 I_2 + V_{CE} => I_2 = (V_{CC} - V_{CE})/R_2$$

Writing for the branch from V_{CC} from Q_7 we have then:

$$I_1 = (V_{CC} - V_{CE})/2*R_2$$

3. LTSpice simulation

We used at the implementation of the circuit:

NPN transistors: BC847B at Q_1 , Q_2 , Q_6 , Q_7 , Q_8

PNP transistors: BC857B at Q_3 , Q_4 , Q_5

 $C_{inf} = 1F \\$

 $V_{CM} = 1.5 V \,$

 $V_{\rm CC}=10V\,$

 $R_1=313k$

 $R_2 = 10k$

The scheme of the circuit in LTSpice:

Intensities at Q_1 :

At Q_1 and Q_6 :

At R₁:

At R₂:

At Q₇:

4. Finding the best Vg

On transient simulation:

