|a|
$$y = \mathcal{H}(w, x_1 + w_2 x_2 + \theta)$$
| Let $\theta \neq 0$, $\theta \neq$

Let W, W, ≥ D. Let G = - \(\) X, and \(\fi \) \(\) y = M(w, + w(0) - = 1 y = H(w, 10) + W2 - =) = 1 $y = \mathcal{H}(\omega_{1}(0) + \omega_{2}(0) - \frac{1}{2}) = 0$ $y = \mathcal{H}(\omega_{1} + \omega_{2} - \frac{1}{2}) = 1$ Similarly if w, , wz 70 and 6 = I , x, and x & EO, 28 y=H(1-W,6)-We x2)=1 y=H(1-W,x,-W6))=1 y=H(1-w,x,-w,x)=0 y = H (1 - W, W) - We (0)) = 1 Therefore it is not possible with any combinations or values of w., wz, and O.

1c)
$$y_1 = f(w_1, x_1 + w_2, x_2 + \theta_1)$$

 $y_2 = f(w_2, x_1 + w_2, x_2 + \theta_2)$
 $z = f(J_1y_1 + J_2y_2 + \eta)$
 $w_1 = w_2 = w_{21} = w_{22} = J_1 = J_2 = 1, z = 0.05, r = 0.5$
 $J_k = J_1 = J_2 = J_2 = J_1 = J_2 = J_$

$$J_{1} \leftarrow J_{1} - (\frac{1}{2}) \frac{\partial E}{\partial J_{1}} :$$

$$\frac{\partial E}{\partial J_{1}} : (z - 0.05)^{2} = 2(z - 0.05) \frac{\partial z}{J_{1}}$$

$$\frac{\partial z}{\partial J_{1}} = J_{1} \cdot \int_{1}^{\infty} (J_{1}) (J_{1} - \sigma(J_{1}))$$
Plug $J_{1} = 1$:
$$\frac{\partial z}{\partial J_{1}} \approx 0.196 \qquad \frac{\partial E}{\partial J_{1}} = 0.22$$

$$J_{1} \leftarrow J_{1} - \frac{1}{2} \left(\frac{\partial E}{\partial J_{1}}\right) \approx 0.919$$
Similarly for the case of J_{2}

$$J_{2} \leftarrow J_{2} - (\frac{1}{2}) \left(\frac{\partial E}{\partial J_{2}}\right) \approx 0.919$$

So our output after the weight applate: $y_1 = f(\omega_1 x_1 + \omega_2 x_2 - 1) \approx 0.721$ $y_2 = f(\omega_2 x_1 + \omega_2 x_2 - 1) \approx 0.721$ $z = f(J_1 y_1 + J_2 y_2 - 1) \approx 0.580$ $E = (z - 0.05)^2 \approx 0.281$

Yes, the error is reduced after the first step.

Yes, we can speed up the learning process

by increasing r. Mowever we do not want

to increase r too much b/c we will over shoot

and instead increase the error.