

Bioenergetics ⇒: conversion of energy from food into body mass

Individual growth ⇒: change in body mass

Modeling Bioenergetics

- Thermodynamics: energy transformations and exchanges
- Overall energy budget
 Dynamic Energy Budget (DEB): allocation to structure, reserves, and reproductive capacity
- Often a balance of respiration with energy intake
- How living cells produce and store energy (ATP)
- Ultimately models of growth

Modeling Growth

- Changes in individual weight
- Population biomass and structure
- Vulnerability to harvest
- Energy requirements
- Trophic changes
- Habitat changes

Parameter Types

POPULATION

Describes the entire population
 Average height of everyone in this room
 Variance – how much values vary around the mean on average

SYSTEM

Instantaneous rates of change

Mortality rate

Population growth (r,K)

Individual growth (k,L_{∞})

Estimation

DESIGN-BASED

- Follows a statistical sampling design
- No assumptions made about the population
- Variance reflects the design

MODEL-BASED

- Assumptions are made regarding how the system works
- Variance reflects the structure of the chosen model(s)

B

Parametric vs. Nonparametric

Mechanistic vs. Empirical

Mathematical models

von Bertalanffy growth equation (VBGE) = parametric and mechanistic

Ludwig von Bertalanffy (1901–1972)

"Why does an organism grow at all, and why, after a certain time, does its growth come to a stop?"

Where does the VBGE come from?

- Anabolism ⇒: the synthesis of molecules
- Catabolism ⇒: the breakdown of molecules
- Net synthesis: Anabolism Catabolism

$$\frac{dw}{dt} = As - Kw$$

- Growth is enormously complex, but follows the law of allometry i.e. physiological rates are a power function of body mass: $\xi(w) = aw^b$
- s = surface area = $w^{2/3}$
- w = weight
- A and S = coefficients
- Anabolism ~ metabolic rate ~ respiration ~ surface area
- Catabolism ~ total mass ~ weight

Weight-Length Relationship

$$w = qL^3$$

WE OFTEN MEASURE LENGTH RATHER THAN WEIGHT

$$\frac{dw}{dt} = As - Kw$$

$$\frac{dw}{dt} = Aw^{2/3} - Kw$$

$$\frac{dw}{dt} = qAL^2 - qKL^3$$

Several steps to solve

$$w = qL^3$$

$$\frac{dw}{dL} = 3qL^2$$

$$1 = \frac{dL}{dw} 3qL^2$$

$$\frac{dw}{dt}\frac{dL}{dw}3qL^2 = qAL^2 - qKL^3$$

$$\frac{dw}{dt}\frac{dL}{dw}3qL^2 = qAL^2 - qKL^3$$

$$\frac{dL}{dt} = E - KL$$

$$L_t = L_{\infty} \left(1 - e^{-K(t - t_0)} \right)$$

Gompertz Equation

• Rate of absolute mortality/decay falls exponentially with increasing size

$$\frac{dL}{dt} = rL \ln \left(\frac{k}{L}\right)$$

$$L_t = L_{\infty} e^{-e^{-k(t-t_i)}}$$

Name	Form	Model dM/dt
Linear		r
Exponential		rM
Power law		rM^{eta}
Monomolecular		r(K-M)
Three-parameter logistic		$rM\bigg(1-rac{M}{K}\bigg)$
Four-parameter logistic* Gompertz		$r(M-L)\left(\frac{K-M}{K-L}\right)$ $rM\left(\ln\frac{K}{M}\right)$

Table 1 from Paine et al 2012

Model Assumptions

- Homogeneous error variance
- Constant relationship of length in time Slow-fast dynamics
- How adequate is our model?
 Is it representative of our system?
 Are the parameters estimable from our data?

A Brief Primer on Probability

dS≥0

P(X): how likely is it that X will happen?

- P(X) = 0 i.e. it will "almost surely" not happen
- P(X) = 1 i.e. it will "almost surely" happen

Bayes' Law

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

$$P(\theta|X) \sim P(X|\theta)P(\theta)$$

Likelihood: $P(X|\theta)$

Prior: $P(\theta)$