5. Übungsblatt zu Software Qualität

Michel Meyer, Manuel Schwarz

22. November 2012

Aufgabe 5.1

(a)

Signatur

bResult = false if (...)

for (...)

for (...)

out_aiMatrix[i][j] = ...

bResult = true

return bResult

(b)

Kategorie	ID	Pfad		
Ohne	A0	n_s, n_1, n_2, n_5, n_f		
Schleife	В0	n_s, n_1, n_f		
Boundary	A1a	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_5, n_f$		
Test	A1b	$n_s, n_1, n_2, n_3, n_2, n_5, n_f$		
Interior	A2c	$n_s, n_1, n_2, n_3, n_2, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		
Tests	A2d	$[n_s, n_1, n_2, n_3, n_2, n_3, n_4, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f]$		
	A2e	$n_s, n_1, n_2, n_3, n_2, n_3, n_4, n_3, (n_4, n_3)^i, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		
	A3c	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		
	A3d	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_2, n_3, n_4, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		
	A3e	$n_s, n_1, n_2, n_3, n_4, n_3, n_2, n_3, n_4, n_3, (n_4, n_3)^i, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		
	A4c	$n_s, n_1, n_2, n_3, n_4, n_3, n_4, n_3, (n_4, n_3)^i, n_2, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		
	A4d	$ n_s, n_1, n_2, n_3, n_4, n_3, n_4, n_4, (n_4, n_3)^i, n_2, n_2, n_3, n_4, n_3, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f $		
	A4e	$n_s, n_1, n_2, n_3, n_4, n_3, n_4, n_3, (n_4, n_3)^i, n_2, n_3, n_4, n_3, (n_4, n_3)^j, n_2, (n_3, (n_4, n_3)^k n_2)^m, n_5, n_f$		

Erläuterungen:

ID	1. Schleifendurchlauf äußere Schleife	2. Schleifendurchlauf äußere Schleife
A2c	0x innere Schleife	0x innere Schleife
A2d	0x innere Schleife	1x innere Schleife
A2e	0x innere Schleife	mindestens 2x innere Schleife
A3c	1x innere Schleife	0x innere Schleife
A3d	1x innere Schleife	1x innere Schleife
A3e	1x innere Schleife	mindestens 2x innere Schleife
A4c	mindestens 2x innere Schleife	0x innere Schleife
A4d	mindestens 2x innere Schleife	1x innere Schleife
A4e	mindestens 2x innere Schleife	mindestens 2x innere Schleife

Hinter jeder Kombination steht der Term $(n_3, (n_4, n_3)^k n_2)^m$, damit nach den ersten beiden Schleifendurchläufen der äußeren Schleife auch noch weitere Folgen können, deren innerer Ablauf beliebig ist.