Maths Lab - Practical Examination - 2024 (Science)

Q4BLab 4 - Trigonometric Functions

First Year

1. Follow the directions given below and construct a GeoGebra applet.

(2)

(1)

- Plot the point O = (0,0)
- Draw the unit circle centred at the origin O
- Plot the point A = (1,0)
- Create a number slider **a** with Min=0, Max= 2π and increment 0.1
- Using the input command P=Rotate(A,a,0) plot the point P on the circle.
- Join O and P using line segment.
- Create an input box for the slider a
- 2. Write the method of finding the value of sin(4.5), using this applet. Also find its value. (2)
- 3. Find the value of $\sin(-1.4)$ (Minimum value of the slider **a** is 0. Answer the question without editing the slider) Write the method of finding the value. (2)
- 4. Write the method of finding the value of tan(4.6). Also find the value. (2)

Hint: You can use a suitable input from the following.

- (a) $\frac{1}{u(P)}$
- (b) $\frac{1}{x(P)}$

[x(P)] gives the x coordinate and y(P) gives the \hat{y} coordinate of the point P

- 5. (a) Which of the following is a point on the graph of $\cos x$?
 - iv) (y(P), a)

- i) (a, x(P))
- ii) (a, y(P))
- iii) (x(P), a)
- (b) Plot the above point, trace it and draw the graph of $\cos x$ by animating the slider. (1)

-1

1) Construct the applet

(a, x(P))(2 Score

2) The y coordinate of P gives the sine value.-

$$\sin(4.5) = -0.98$$

3) Use the result $\sin(-x) = -\sin x$ (2 Score)

$$\sin(-1.4) = -0.99$$

- $\tan x = \frac{\sin x}{\cos x}$ 4)
- (2 Score)

 $\cos x = x(P)$ and $\sin(x) = y(P)$

as input command and adjust

the value of the slider to 4.6

$$\tan(4.6) = 8.86$$

Maths Lab - Practical Examination - 2024 (Science)

Q2A Lab 2 - Shifting of Graphs

First Year

1. Follow the directions given below and construct a GeoGebra applet.

(2)

(2 Score)

- Draw the graph of the function f(x) = |x|
- Create two sliders **a** and **b** with Min = -5, Max = 5 and increment 0.01
- Draw the graph of the function g(x) using the input command g(x)=f(x+a)+b
- \bullet Create an input box for the function f
- 2. Answer the following questions

(a) Fix the values of
$$\mathbf{a}$$
 at 0 and \mathbf{b} at 4

- i. Compare the graph of g(x) with the graph of f(x)
- ii. What is the domain and range of g(x)?
- (b) Find approximate values of **a** and **b** so that the graph of g(x) coincides with the graph of |x-3|
- 3. Using input box change the definition of the function f(x) to \sqrt{x} . Find and write the values of **a** and **b** so that the domain and range of g(x) are $[1,\infty)$ and $[2,\infty)$ respectively (2)
- 4. Let $f(x) = x^2 + 2$. If g(x) is the reflection of f(x) about x axis, then
 a) which among the fllowing is g(x)?
 - i) $-x^2 + 2$ ii) $x^2 2$ iii) $-x^2$
- b) Write the range of g(x)

Answer Key

1) Construct the applet

(2 Score)

opiet (2 Sco

a = -1, b = 2

- 2) a) i) The graph of g(x) is obtained by shifting the graph of f(x) by 4 units upwards (2 Score)
- 4) a) $-x^2-2$

ii) Domain =R , Range $=[4,\infty)$

verify by inputting)

Maths Lab - Practical Examination - 2024 (Science)

Q3D

Lab 3-Domain and Range

First Year

(2)

1. Draw the graph of the given functions and find their domain and range.

(a)
$$x^2 - 6x + 7$$

$$(b) x - [x]$$

(c)
$$\sqrt{4-x^2}$$

(d)
$$\frac{1}{x^3 - 7x - 6}$$

2. Identify the function from its graph given below and draw the graph of the function.

Input command hint(This is only an example)

To get the graph of the function $f(x) = \begin{cases} x^2 \\ 2x + 1 \end{cases}$

give the input command: $if(x<=2,x^2,2x+1)$

Answer Key

c)

Domain = [-2, 2]

Range = [0, 2]

d)

$$f(x) = \begin{cases} x^2 - 1, & \text{if } x \le 1 \\ x + 1, & \text{if } x > 1 \end{cases}$$
 (2 Score)

Q-22 C

LAB-42 LINEAR PROGRAMMING PROBLEM Second year

Answer key

1. Maximise and Minimise Z=5x+2y Subject to the constraints:

$$3x + 2y \ge 12$$

$$3x + y \leq 9$$

$$x, y \ge 0$$

feasible region - 2 scores

____ 1 Scove

Point	Z=5x+24
A(2,3)	16
B (0,6)	12
D(0,9)	18

Maximum = 18-1 scove

Minimum = 12 - 1 scove

Objective function: z = 2x + 5ySubject to the constraints:

$$x \geq 2$$

$$2x + 3y \ge 12$$

$$2x + y \ge 8$$

$$y \ge 0$$

(2 Scoves)

No maximum

Minimum value of Z = 12 at (6,0)

Maths Lab - Practical Examination Model - 2025 (Science)

Q15B

Lab 30 - Maxima and Minima

Second Year

ANSWER KEY

- 1. Draw the graph of the function $f(x) = f(x) = 2x^3 6x^2 + 4$. Observe the graph and find (2)points of local maxima and minima. Also find local maximum and local minimum values.
- 2. Change the distance on x axis in terms of $\frac{\pi}{4}$. Draw the graph of the function $f(x) = |\cos(2x)|$. (2)Find the points of local maxima and local minima in $(0, \pi)$
- 3. Draw the graph of the function $f(x) = 2x^3 + 3x^2 36x + 10$. Draw the graph of and f'(x)plot its points of intersection with the x axis.
 - (a) Find the points of local maxima and minima of the function f(x)(2)
 - (b) Find local maximum and local minimum values (1)
- 4. Draw the graph of the function $f(x) = x^3 3x^2 9x + 11$ and find its absolute (3)maximum and absolute minimum values in the interval [-2, 4].

x = 0 point of local max f(0) = 4 local man value

x=2 point of local min

f(2)= -4 Local min value

A (-1,0) B(3,0)(1)

$$f(-1) = 16$$

$$f(3) = -16$$

$$f(-2) = 9$$

are points of local minima

(1)

Absolute max value is

(1)

X= T/2 Point

of local maximum

AC-3,0) B(2,0)

 $\chi = -3$ is a point of

x = 2 is a point of local minimum

(1)

f(-3) = 91 is local max value f(2) = -34 is local min value

Maths Lab - Practical Examination Model - 2025 (Science)

Q14D Lab 27 - Increasing and Decreasing Functions Second Year ANSWER KEY

- 1. Draw the graph of the function $f(x) = 3 x^3 + 3x$, observe the graph and find the intervals in which the function is increasing or decreasing. (2)
- 2. Make the distance on x axis in terms of $\frac{\pi}{4}$. Draw the graph of $f(x) = |\sin(2x)|$. Observe the graph and find the intervals in which the function is increasing or decreasing in $[0, \pi]$.
- 3. Do the following instructions and create an applet.
 - Draw the graph of the function $f(x) = 4x x^2$
 - Plot a point A on the graph
 - Draw the tangent to the curve at A and find its slope
 - (a) Find the intervals in which the slope of the tangent is positive or negative (2)
 - (b) Edit the function f(x) to $2x + x^3$ (Double click on the graph and edit). What is the peculiarity of the slope of the tangent? What does it infer?
- 4. Draw the graph of the function $f(x) = 5x^3 9x^2 12x$ (2) Draw the graph of f'(x) and hence find the intervals in which f(x) is increasing or decreasing.

f is increasing in IR

Student can identify the nature of the function either by observing the graph of f(x) or by observing whether the graph of f(x) is above/below the x axis.