ELETROMAGNETISMO

MEFT

7ªSérie de problemas

(Magnetização, Campo H, entreferro e Indução Eletromagnética)

1) Magnetização

Num dado material ferromagnético os átomos possuem momentos magnéticos permanentes com magnitudes da ordem de $|\vec{m}|=10^{-23}~\text{A.m}^2$.

- a) Determine a magnitude da magnetização $|\vec{M}|$ máxima se o material tiver 10^{29} átomos/m³.
- b) Determine a intensidade máxima do campo magnético \vec{B} e compare com o valor do campo magnético médio da Terra ($\sim 0.5 \ gauss = 0.5 \ x 10^{-4} \ T$).

2) Magnetização [Exerc.8.1 JL]

Um condutor cilíndrico de raio R é percorrido por uma corrente elétrica uniforme I paralela ao eixo do cilindro. Supondo o condutor homogéneo com permeabilidade magnética relativa μ_r ($\equiv \mu/\mu_0$), calcule

- a) as densidades de corrente de magnetização em volume e em superfície;
- b) a corrente total de magnetização que atravessa a secção (transversal) do condutor.

3) Magnetização e campo **H** [Probl. 6.12 DG]

Um cilindro infinito de raio R tem uma magnetização permanente paralela ao eixo, $\vec{M} = kr \ \vec{e}_z$, sendo k uma constante e r a distância ao eixo do cilindro. Não há corrente de condução em lado nenhum. Calcule o campo magnético em todo o espaço,

- a) a partir das correntes de magnetização;
- b) calculando primeiro o campo \vec{H} .

4) Campo H, Circuito magnético, Entreferro e Energia Magnética [Variante Exerc.8.2 JL]

Considere o circuito magnético da figura constituído por um material ferromagnético de permeabilidade magnética μ =8000 μ 0, e com as seguintes propriedades: N₁=100, N₂=300, i₁=2 A, i₂=1 A, h=2 cm, δ (entreferro)=1 mm, d₁=10 cm, d₂=5 cm, l₁=60 cm, l₂=80 cm.

- a) Diga quantos valores diferentes de **B**, **H** e **M** existem ao longo da linha de campo média (que passe pelo centro da secção);
- b) Calcule as intensidades de **B**, **H** e **M** ao longo da linha de campo média;
- c) Determine o coeficiente de indução mútua M entre os dois enrolamentos.
- d) Estime a energia magnética armazenada no sistema.

5) *Lei de Indução de Faraday*

Uma espira quadrada de lado l =0,1m e resistência R=5 Ω , está colocada numa região do espaço onde existe um campo magnético uniforme (no espaço), perpendicular ao plano da espira, mas variável no tempo de acordo com a expressão $\mathbf{B}(t) = \mathbf{e}_{\mathrm{B}} (1+6t)[\mathrm{T}]$. Determine o valor da intensidade e o sentido da corrente induzida na espira.

6) Lei de Indução de Faraday

Um fio condutor muito comprido conduz uma corrente constante I=5 A. Colocamos uma espira plana quadrada com 5 cm de lado, no plano do fio, estando o lado mais próximo a 5 cm do fio e paralelo ao fio.

Começamos a afastar o fio da espira, a uma velocidade constante de 1 cm/s. Se a espira tiver uma resistência de 2Ω , qual a corrente induzida na espira (em função da distância ao fio)? Como é possível manter a velocidade constante?

7) Lei de Indução de Faraday

Considere um circuito aberto em forma de U, em cima do qual se move uma barra de 1m de comprimento, condutora e de resistência $R=10~\Omega$, e massa 1 Kg com velocidade constante v=0,02m/s, fechando o circuito

(figura). Considere ainda um campo magnético B=0,5T, constante e homogéneo em todo o papel, perpendicular ao plano do circuito, no sentido de cá para lá do papel.

- a) Qual a variação no tempo do fluxo magnético que atravessa a área englobada pelo circuito fechado com a barra?
- b) Oual a corrente induzida no circuito?
- c) Há alguma força a atuar a barra? Qual o trabalho realizado por essa força ao fim de 1s?
- d) Qual a potência dissipada no circuito?

8) Lei de Indução de Faraday

A figura mostra uma espira quadrada de lado l=20cm, que roda em torno de um dos seus eixos, com uma velocidade angular $\mathbf{w}=100\pi$ rad/s, na presença de um campo magnético \mathbf{B} uniforme, de intensidade 0.5T e perpendicular à posição da espira quanto t=0.

- a) Determine, em função do tempo, o fluxo do campo magnético através da espira.
- b) Determine o valor e o sentido da corrente elétrica induzida na espira, sabendo que esta tem uma resistência de 2Ω .
- c) Determine a energia dissipada na espira ao fim de 2 minutos.

9) Lei de Indução de Faraday

Um cubo ôco com 1 m de lado e 1Kg de massa, em que as arestas são fios elétricos com resistência $R = 4 \Omega$, cai na vertical e, quando atinge a velocidade v = 4 m/s, começa a entrar numa região com campo magnético **B** paralelo à base, e também a 2 das faces, como se mostra na figura, estabilizando então rapidamente a velocidade de queda nos 4 m/s.

- a) Calcule a corrente que circula nas espiras do cubo em função do campo magnético B, e indique o seu sentido.
- b) Calcule a força magnética que atua sobre o cubo, em função do campo B.
- c) Calcule o módulo do campo de magnético B, existente nesse meio (sug: note que v=Cte).
- d) Calcule a energia dissipada no cubo desde que entrou na região com campo magnético, até estar totalmente imerso (assumindo a velocidade constante desde o início).
- e) Caracterize, justificando, o movimento do cubo depois de estar totalmente imerso (se tem ou não aceleração e qual o valor se diferente de zero).
- f) Suponha que a região de campo magnético tem apenas 4 m de altura. Caracterize o movimento do cubo quando a face inferior começa a sair da zona do campo, até sair totalmente, e o movimento depois de sair totalmente.

