Bài tập chương 3

- 1. Tính các tích phân đường sau:
 - a) $\int_L xy ds,\, L$ là biên của hình chữ nhật $ABCD,\, A(0,0), B(4,0), C(4,2), D(0,2).$
 - b) $\int_{\widehat{AB}}(xy-1)dx+x^2ydy, A(1,0), B(0,2)$ theo đường $4x+y^2=4$.
 - c) $\int_{AB}(x-y)ds,\,AB$ là đoạn thẳng nối hai điểm A(0,0),B(4,3).
 - d) $\int_L (x^2 + y^2) ds$, L là biên của tam giác OAB với O(0,0), A(1,1), B(-1,1).
 - e) $\int_L |y| ds$, L là đường cacđiôit: $r = a(1 + \cos \phi)(a > 0)$.
 - f) $\int_L z ds$, L là đường $x^2 + y^2 = z^2$, $y^2 = ax$ từ điểm (0,0,0) đến điểm $(a,a,a\sqrt{2})(a>0)$.
- 2. Tính khối lượng của:
 - a) Đường $y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right), 0 \le x \le a$, biết khối lượng riêng $p(x,y) = \frac{1}{y}$.
 - b) Đường $x = a\cos t, y = a\sin t, 0 \le x \le \pi$ biết khối lượng riêng p(x,y) = |x|.
 - c) Đường đinh ốc $x=\cos t, y=\sin t, z=t, 0\leq t\leq 2\pi$ biết khối lượng riêng $p(x,y,z)=\sqrt{x^2+y^2+z^2}$.
- 3. Tích phân đường $\int (1 \frac{y^2}{x^2} \cos \frac{y}{x}) dx + (\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}) dy$ có phụ thuộc vào đường lấy tích phân không? Tính tích phân đó từ $A(1,\pi)$ đến $B(2,\pi)$ theo một cung không cắt Oy.
- 4. Tính:
 - a) $\oint_L \frac{xdx+ydy}{(x^2+y^2+1)^2}, \; L$ là đường elip $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1.$
 - b) $\int_L y dx (y+x^2) dy$, L là cung parabon $y=2x-x^2$ nằm ở trên trục Ox theo chiều kim đồng hồ.
 - c) $\int_{\hat{AB}} \sqrt{x} dy \sqrt{x} ln(x+1) dx$, \hat{AB} là cung đường y = (x-1) ln(x+1) giữa hai điểm có hoành đô 0 và 1.
- 5. Tính các tích phân mặt:
 - a) $\iint\limits_S xyzdxdy, S$ là mặt ngoài của phần hình cầu xác định bởi $x^2+y^2+z^2=1, x\geq 0, y\geq 0.$
 - b) $\iint\limits_S x dy dz + dx dz + z x^2 dx dy, S là mặt ngoài của phần hình cầu xác định bời <math display="inline">x^2 + y^2 + z^2 = 1, x \geq 0, y \geq 0, z \geq 0.$
 - c) $\iint\limits_S x^2 dy dz + y^2 dx dz + z^2 dx dy, S$ là mặt ngoài của phần hình cầu xác định bởi $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2, R \geq 0.$
- 6. Tính $\oint_L (y^2+z^2) dx + (x^2+z^2) dy + (y^2+x^2) dz$ với L là giao tuyến của các mặt

 $x^2+y^2+z^2=2ay, x^2+y^2=2by, z>0, a>b>0 \mbox{ hướng đi trên L là ngược chiều kim đồng hồ nếu nhìn từ phía $z>0$.}$

- 7. Tích các tích phân mặt:
 - a) $\iint_S xzdydz + yxdzdx + zydxdy, S là phía ngoài của biên của hình chóp <math>x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1.$
 - b) $\iint\limits_S x^3 dy dz + y^3 dz dx + z^3 dx dy, S là phía ngoài của mặt cầu <math>x^2 + y^2 + z^2 = R^2.$
- 8. Tính trực tiếp các tích phân đường sau rồi kiểm tra lại bằng công thức Green
 - a) $\int_L (2xy-x^2)dx + (x+y^2)dy$, L là đường kín gồm hai cung parabon $y=x^2$ và $x=y^2$ theo chiều dương.
 - b) $\int_L (2x^3 y^3) dx$, L là đường tròn $x^2 + y^2 = 1$ theo chiều dương.
- 9. Chứng minh rằng các biểu thức Pdx+Qdy sau đây là vi phân toàn phần của một hàm số u(x,y) nào đó. Tìm u: a) $(x^2-2xy^2+3)dx+(y^2-2x^2y+3)dy$. HD: $u=\frac{x^3+y^3}{3}+3(x+y)-x^2y^2+C.$
 - b) $(2x 3xy^2 + 2y)dx + (2x 3x^2y + 2y)dy$. HD: $u = x^2 + 2xy \frac{3}{2}x^2y^2 + y^2 + C$.
 - c) $[e^{x+y} + \cos(x-y)]dx + [e^{x+y} \cos(x-y) + 2]dy$. HD: $u = e^{x+y} + \sin(x-y) + 2y + C$.
 - d) $\frac{xdx}{x^2+y^2} + \frac{1-x^2-y^2}{x^2+y^2}ydy$. HD: $u = \frac{1}{2}ln(x^2+y^2) \frac{y^2}{2} + C$.
- 10. Chứng minh các công thức
 - a) $div(g\vec{F}) = \vec{grad}(g) \cdot \vec{F} + g \cdot div \vec{F}$,
 - b) $div(\vec{G} \wedge \vec{F}) = \vec{F}.\vec{rot}\vec{G} \vec{G}.\vec{rot}\vec{F}$,
 - c) $\vec{rot}(g\vec{F}) = \vec{gradg} \wedge \vec{F} + \vec{grot}\vec{F}$.
- 11. Tính thông lượng của các trường vector sau: $\vec{F} = xy\vec{i} + yz\vec{j} + zx\vec{k}$ qua phía ngoài của phần mặt cầu $x^2 + y^2 + z^2 = R^2, x \ge 0, y \ge 0, z \ge 0.$
- 12. Tính $\int_L 2xy^2zdx + 2x^2yzdy + (x^2y^2 2z)dz$, L là đường $x = \cos t$, $y = \frac{\sqrt{3}}{2}\sin t$, $z = \frac{1}{2}\sin t$ hướng theo chiều tăng của t.
- 13. Tính các tích phân mặt
 - a) $\iint_S (x+y+z) dS$, S là biên của hình lập phương $\{(x,y,z): 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$.
 - b) $\iint_S (z+2x+\frac{4y}{3})dS$, S là phần của mặt phẳng $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$ nằm trong góc phần tám thứ nhất.
 - c) $\iint_S (yz+zx+xy)dS$, S là phần của mặt nón $z=\sqrt{x^2+y^2}$ nằm trong mặt trụ $x^2+y^2-2ax=0 (a>0)$.

- 14. Tìm khối lượng riêng của mặt S xác định bởi $z=\frac{1}{2}(x^2+y^2), 0\leq z\leq 1$, nếu khối lượng riêng p(x,y,z)=z.
- 15. Dùng công thức Ostrogradsky, tính các tích phân mặt sau:
 - a) $\iint\limits_S xzdydz+yxdzdx+zydxdy, S$ là phía ngoài biên của hình chóp $x\geq 0, y\geq 0, z\geq 0, z+y+z\leq 1.$
 - b) $\iint\limits_{S} x^3 dy dz + y^3 dz dx + z^3 dx dy, S là phía ngoài của mặt cầu <math>x^2 + y^2 + z^2 = R^2.$
- 16. Tính các tích phân mặt
 - a) $\iint\limits_S xyzdxdy,\,S$ là mặt ngoài của phần hình cầu xác định bởi $x^2+y^2+z^2=1,x\geq 0,y\geq 0.$
 - b) $\iint\limits_S x dy dz + dx dz + xz^2 dx dy, \ S \ là mặt ngoài của phần hình cầu xác định bởi <math>(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2, (R>0).$
 - c) $\iint\limits_{S} \frac{dydx}{x} + \frac{dzdx}{y} + \frac{dxdy}{z}, S \text{ là mặt ngoài của eplipxoit } \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

Đáp số bài tập chương 3

- 1. Tính các tích phân đường sau:
 - a) 0.
 - b) $-\frac{1}{5}$.
 - c) $\frac{5}{2}$.
 - d) $\frac{4}{3}(\sqrt{2}+2)$.

e)? f)
$$\frac{a^2}{256\sqrt{2}}(100\sqrt{38} - 72 - 17ln\frac{25 + 4\sqrt{38}}{17})$$
.

- 2. Tính khối lượng của:
 - a) 1.
 - b) $2a^2$.

c)
$$\frac{\sqrt{2}}{2} \left[2\pi\sqrt{1+4\pi^2} + \ln(2\pi + \sqrt{1+4\pi^2}) \right].$$

- 3. Tích phân đường $\int (1 \frac{y^2}{x^2} \cos \frac{y}{x}) dx + (\sin \frac{y}{x} + \frac{y}{x} \cos \frac{y}{x}) dy$ có phụ thuộc vào đường lấy tích phân không? Tính tích phân đó từ $A(1,\pi)$ đến $B(2,\pi)$ theo một cung không cắt Oy. HD: Không phụ thuộc vào đường lấy tích phân.
- 4. Tính:
 - a) 0.
 - b) 4.
 - c) $\pi \frac{10}{3}$.

- 5. Tính các tích phân mặt:
 - a) $\frac{2}{15}$.
 - b) $\frac{5\pi}{12} + \frac{2}{15}$.
 - c) $\frac{4}{3}(a+b+c)\pi^2R^3$.
- 6. $-2\pi ab^2$.
- 7. Tích các tích phân mặt:
 - a) $\frac{1}{8}$.
 - b) $\frac{12}{5}\pi R^5$.
- 8. Tính trực tiếp các tích phân đường sau rồi kiểm tra lại bằng công thức Green
 - a) $\frac{1}{30}$.
 - b) $\frac{3\pi}{4}$ Green $\frac{3\pi}{2}$.
- 9. Chứng minh rằng các biểu thức Pdx+Qdy sau đây là vi phân toàn phần của một hàm số u(x,y) nào đó. Tìm u
 - a) HD: $u = \frac{x^3 + y^3}{3} + 3(x + y) x^2y^2 + C$.
 - b) HD: $u = x^2 + 2xy \frac{3}{2}x^2y^2 + y^2 + C$.
 - c) HD: $u = e^{x+y} + \sin(x-y) + 2y + C$.
 - d) HD: $u = \frac{1}{2}ln(x^2 + y^2) \frac{y^2}{2} + C$.
- 10. Chứng minh các công thức
 - a) $div(g\vec{F}) = gdiv(\vec{F}) + g\vec{radg}\vec{F}$.
 - b)
 - c)
- 11. $\frac{3\pi R^4}{16}$.
- 12. 0.
- 13. Tính các tích phân mặt
 - a) 9.
 - b) $4\sqrt{61}$. c) $\frac{64a^4\sqrt{2}}{15}$.
- 14. $\frac{2\pi(6\sqrt{3}+1)}{15}$.
- 15. Dùng công thức Ostrogradsky, tính các tích phân mặt
 - a) $\frac{1}{8}$.
 - b) $\frac{12}{5}\pi R^5$.

- 16. Tính các tích phân mặt
 - a) $\frac{2}{15}$.
 - b) $\frac{5\pi}{12} + \frac{2}{15}$.
 - c) $4\pi(\frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c})$.