

PhoenixBot: Towards an ecological weed management robotic system

Brooke A. M. Moss, Maya W. Adelman, Mia Chevere, Dokyun Kim, Kenechukwu C. Mbanisi

Franklin W. Olin College of Engineering, Needham, MA, USA

A. Introduction

Background & Motivation:

- Global food systems must significantly increase global food production to keep pace with a growing population [1].
- Agriculture must also adapt to mitigate the harmful environmental effects caused by mainstream unsustainable farming practices [1].
- Increased yield and sustainable farming practices are often considered mutually-exclusive [3].
- Robotic agricultural systems could play a vital role in improving both yield and sustainability [3].
- Current robotic systems use either precise herbicide spraying, which uses harmful chemicals, or require heavy tillage, negatively affecting soil health [1, 5].

Objectives:

 Develop a robotic system framework to enable sustainable ecological weed management practices on small-scale farms

B. Ecological Weed Management (EWM)

EWM Basics

- Challenges the notion that all non-crop plants are harmful, emphasizing an agroecological viewpoint that some non-crop plants are beneficial [3, 6].
- With EWM, only plants causing 'significant harm' are defined as weeds and should be controlled, retaining non-harmful 'aliae plantae' [1].

EWM vs. Non-EWM Approaches

- Studies suggest that well-managed weed biodiversity (such as through EWM) can increase crop yields [2].
- Any tool for weed management can become obsolete through weed adaptation if applied broadly, but can be beneficial if used judiciously in an EWM style [1].
- Current research is much more focused on "weed control" as opposed to "weed management" [1].

C. The PhoenixBot Framework

AerialBot - Unmanned aerial vehicle (UAV)

- Captures high-resolution aerial images of farmland routinely
- Images used for plant species identification and generating weed and yield maps

GroundBot - farm-ng Amiga (autonomous micro-tractor)

- Navigates crop rows using GPS and visual navigation
- Mechanically removes weeds with minimal soil inversion using
 WeedPlucker delta configuration arm with end-effector gripper

PhoenixBot Server

- Processes aerial images to generate map of crop and non-crop
- Determines which plants to target based on historic information

E. Discussion

- We hypothesize that our proposed system, which enables ecologically-sensitive plant species-specific weed management, holds the potential to unlock the next paradigm of robotics-driven environmentally sustainable weed management practices.
- Our current work is focused on GroundBot vehicle, with AerialBot work to begin in Fall 2024.
- Our ongoing work is to continue fabrication and begin field testing to validate the potential of our proposed system.

D. Implementation and Challenges

- Composed of linkages in delta configuration that enable movement within a work envelope. Potential challenges: workspace size & speed/force capability.
- Worm gear-powered gripper that pinches weeds for removal; more iteration of gripper design necessary.

Plant Detection & Classification:

- Uses OpenCV HSV filtering and Pl@ntNet model to identify and classify plants.
- More research necessary to gather reliable crop-weed competition data for classification and targeting.

Other Potential Challenges

- ROS integration and on-site internet connectivity could present challenges for both vehicles.
- Navigation using crop-row tracking on GroundBot

References

[1] C MacLaren et al. An ecological future for weed science to sustain crop production and the environment. a review. *Agronomy for Sustainable Development*, 40(24), 2020.

[2] M Esposito et al. Neutral weed communities: The intersection between crop productivity, biodiversity, and weed ecosystem services. *Weed Science*, 71(4):301–311, 2023.

[3] M L Zingsheim et al. What weeding robots need to know about ecology. *Agriculture, Ecosystems and Environment*, 364:108861, Apr 2024.
[4] N Rai et al. Applications of deep learning in precision weed management: A review. *Computers and Electronics in Agriculture*, 206:107698, 2023.
[5] W Zhang et al. Review of current robotic approaches for precision weed management. *Current Robotics Reports*, 3(3):139–151, Jul 2022.

[6] C.N. Merfield. Could the dawn of level 4 robotic weeders facilitate a revolution in ecological weed management? *Weed Research*, 63(2):83–87, 2023.