Casestudy Reiseversicherung

Johannes Zacherl

Explorative Datenanalyse

- Null-Values in der Geschlecht-Spalte
 → Spalte vom Datensatz entfernen
- Outlier-peak in der Altersverteilung bei über 100 Jahren
 → Zeilen mit Alter über 100 entfernen
- 3. Leistungseintritt nur in ~1,47% der Fälle
 - → Imbalanced Dataset

Preprocessing

- 1. Zielvariable von 'Yes' und 'No' auf binäre 1 und 0 konvertieren
- 2. Die übrigen binär kategorischen Variablen auf 1 und 0 konvertieren
- 3. Die kategorischen Variablen mit mehr als 2 Klassen via One hot encoding konvertieren
- 4. Die numerischen Variablen auf das Intervall [0,1] reskalieren.
- 5. Oversampling der unterrepräsentierten Klasse für die Trainingsdaten

Model

Einfaches DNN mit einem hidden Dense Layer und einem Dropout Layer zur Regularization um overfitting entgegen zu wirken.

Loss-Funktion: Binary Crossentropy

Zum Einsatz in einer Webapplikation nutzen der TensorFlow Funktionalität: saved_model und serving

Evaluation

Accuracy: 0.78

Classification Report

Leistungs eintritt	Precision	Recall	f1-score	Support
No	0.99	0.78	0.87	12286
Yes	0.05	0.72	0.09	183

Confusion Matrix

Weiterführende Schritte

- 1. Preprocessing ins Modell inkludieren (z.B. TesnorFlow preprocessing layer)
- 2. Verbesserte Strategie um mit dem imbalanced Dataset umzugehen z.B. Synthetic Minority Oversampling Technique und/oder Focal Loss
- 3. Analyse welche Input Features den Größten Einfluss auf die Vorhersage haben z.B. via Analyse der Ableitungen