

AZ75232

General Description

The AZ75232 combines three drivers and five receivers, which conform to the EIA/TIA-232-F and ITU v.28 standards. Each receiver converts EIA/TIA-232-F inputs to 5-V TTL/CMOS levels and each driver converts TTL/CMOS input levels into EIA/TIA-232-F levels.

The flow-through pinout facilitates simple non-crossover board layout. The AZ75232 provides a one-chip solution for the common 9-pin serial RS-232 interface between data terminal and data communications equipment.

The AZ75232 is available in SOIC-20, SSOP-20 and TSSOP-20 packages.

Features

- Single Chip with Easy Interface between UART and Serial-Port Connector
- Meet the Requirement of EIA/TIA-232-F and ITU v.28 Standards
- Designed to Support Data Rates up to 120kbit/s
- 3 Drivers and 5 Receivers
- Flow-Through Pinout

Applications

- Mother Board
- Peripheral Equipment

Figure 1. Package Types of AZ75232

AZ75232

Pin Configuration

M/GS/G Package (SOIC-20/SSOP-20/TSSOP-20)

Figure 2. Pin Configuration of AZ75232 (Top View)

Pin Description

Pin Number	Pin Name	Function	Pin Number	Pin Name	Function
1	V_{DD}	Positive Supply Voltage for Driver	11	GND	Ground
2	RA1	Receiver Input	12	RY5	Receiver Output
3	RA2	Receiver Input	13	DA3	Driver Input
4	RA3	Receiver Input	14	RY4	Receiver Output
5	DY1	Driver Output	15	DA2	Driver Input
6	DY2	Driver Output	16	DA1	Driver Input
7	RA4	Receiver Input	17	RY3	Receiver Output
8	DY3	Driver Output	18	RY2	Receiver Output
9	RA5	Receiver Input	19 RY1 Receiver Output		Receiver Output
10	V_{SS}	Negative Supply Voltage for Driver	20	V_{CC}	Supply Voltage for Receiver

AZ75232

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ75232

Ordering Information

Package	Temperature	Par	t Number	Mark	Packing Type		
rackage	Range	Tin Lead	Lead Free	Tin Lead	Lead Free	1 acking Type	
SOIC-20	-40 to 85°C	AZ75232M	AZ75232M-E1	AZ75232M	AZ75232M-E1	Tube	
	-40 to 85 °C	AZ75232MTR	AZ75232MTR-E1	AZ75232M	AZ75232M-E1	Tape & Reel	
SSOP-20	-40 to 85°C		AZ75232GS-E1		AZ75232GS-E1	Tube	
			AZ75232GSTR-E1		AZ75232GS-E1	Tape & Reel	
TSSOP-20	-40 to 85°C		AZ75232G-E1		232GE	Tube	
			AZ75232GTR-E1		232GE	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

AZ75232

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
	V_{DD}	15		
Supply Voltage	V _{SS}	-15		V
	V _{CC}	7		
Input Voltage Range	$V_{\rm I}$	Driver	-15 to 7	V
input voltage Kange	ν _I	Receiver	-30 to 30]
		SOIC-20	1340	
Power Dissipation (TA=25°C)	P_{D}	SSOP-20	1210	mW
		TSSOP-20	1100	
Driver Output Voltage Range	V _O	-15 t	-15 to 15	
Receiver Low-Level Output Current	I_{OL}	20		mA
Operating Junction Temperature	T_{J}	150		°C
Storage Temperature Range	T _{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10sec)	T _{LEAD}	260		°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter		Symbol	Min	Max	Unit
	V_{DD}	7.5	15		
Supply Voltage		V _{SS}	-15	-7.5	V
		V _{CC}	4.5	5.5	-
High-Level Input Voltage (Driver Only)	V _{IH}	1.9		V	
Low-Level Input Voltage (Driver Only)	$V_{\rm IL}$		0.8	V	
High-Level Output Current	Driver	I _{OH}		-6	mA
Tright-Level Output Current	Receiver	TOH		-0.5	IIIA
Low-Level Output Current	Driver	I _{OL}		6	mA
Low-Level Output Current	Receiver	-OL		16	1117.1
Operating Temperature Range		T_{A}	-40	85	°C

AZ75232

Electrical Characteristics

(T_A=25°C, unless otherwise specified.)

Parameter	Symbol	Co	onditions	Min	Тур	Max	Unit
VOLTAGE SUPPLY SECTION	ON (V _{CC} =	5V, V _{DD} =9V, V _{SS} =-	-9V, unless otherwise spe	cified)	I.	Į.	
	I _{DD}		V _{DD} =9V, V _{SS} =-9V			15	mA
		All inputs at 1.9V, no load	V _{DD} =12V, V _{SS} =-12V			19	
Supply Current from V		1.9 V, 110 10au	V _{DD} =15V, V _{SS} =-15V			25	
Supply Current from V _{DD}		All inputs at 0.8V, no load	V _{DD} =9V, V _{SS} =-9V			4.5	
			V _{DD} =12V, V _{SS} =-12V			5.5	
			V _{DD} =15V, V _{SS} =-15V			9	
			V _{DD} =9V, V _{SS} =-9V			-15	
		All inputs at 1.9V, no load	V _{DD} =12V, V _{SS} =-12V			-19	
Supply Current from V _{SS}	I_{SS}	1,5 ,, 1,5 1,5 1,5	V _{DD} =15V, V _{SS} =-15V			-25	
Supply Current from VSS	1SS		V _{DD} =9V, V _{SS} =-9V			-3.2	mA
		All inputs at 0.8V, no load	V _{DD} =12V, V _{SS} =-12V			-3.2	1
		0.8 4, 110 1020	V _{DD} =15V, V _{SS} =-15V			-3.2	
Supply Current from V _{CC}	I_{CC}	All inputs at 5V, n	o load, V _{CC} =5V			30	mA
DRIVER SECTION (V _{CC} =5	V, V _{DD} =9V	$V_{\rm SS}$ =-9V, unless $v_{\rm SS}$	otherwise specified)		•	•	
High-Level Output Voltage	V_{OH}	V_{IL} =0.8V, R_L =3k Ω		6	7.5		V
Low-Level Output Voltage	V_{OL}	V_{IH} =1.9V, R_L =3k Ω			-7.5	-6	V
High-Level Input Current	I_{IH}	V _I =5V				10	μΑ
Low-Level Input Current	I_{IL}	V _I =0V				-1.6	mA
High-Level Short-Circuit Output Current	I _{OS(H)}	$V_{\rm IL}$ =0.8V, $V_{\rm O}$ =0V		-4.5	-12	-19.5	mA
Low-Level Short-Circuit Output Current	I _{OS(L)}	V_{IH} =2V, V_O =0V		4.5	12	19.5	mA
Output Resistance	r _O	$V_{CC}=V_{DD}=V_{SS}=0, V_{O}=-2V \text{to } 2V$		300			Ω
DRIVER SECTION (V _{CC} =5)	V, V _{DD} =12	V, V _{SS} =-12V, unles	s otherwise specified)			I	
Propagation Delay Time Low to High Level Output				315	500	ns	
Propagation Delay Time High to Low Level Output	t _{PHL}	R_L =3k Ω to 7k Ω , C_L =15pF			75	175	ns
Transition Time Low to High Level Output	t _{TLH}	D 01.6 51.5	$C_L=15pF$		60	100	ns
		$R_L=3k\Omega$ to $7k\Omega$	C _L =2500pF (Note 2)		1.7	2.5	μs
Transition Time	t _{THL}	D 016	C _L =15pF		40	75	ns
High to Low Level Output		$R_L=3k\Omega$ to $7k\Omega$	$C_{\rm I} = 2500 \rm pF (Note 2)$		1.5	2.5	μs

AZ75232

Electrical Characteristics (Continued)

 $(T_A=25^{o}C, unless otherwise specified.)$

Parameter Sym		Conditions		Min	Тур	Max	Unit
RECEIVER SECTION (VCC	=5V, V _{DD} =	9V, V _{SS} =-9V, unlo	ess otherwise specifi	ed)	I.	ı	l .
Positive-Going Input Thresh-				1.75	1.9	2.3	V
old Voltage	V_{IT+}	$T_A = -40 \text{ to } 85 ^{\circ}\text{C}$		1.55		2.3	V
Negative-Going Input Threshold Voltage	V _{IT-}	IT-		0.75	0.97	1.25	V
Input Hysteresis Voltage	V _{HYS}			0.5			V
High-Level Output Voltage	V _{OH}	I _{OH} =-0.5mA	V _{IH} =0.75V	2.6	4	5	V
High-Level Output voltage	ТОН	IOH O.S.III.	Input Open	2.6			
Low-Level Output Voltage	V _{OL}	$I_{OL}=10$ mA, $V_{I}=3$	V		0.2	0.45	V
High-Level Input Current	I _{IH}	V _I =25V		3.6		8.3	- mA
High-Level Input Current		V _I =3V		0.43			
Low Lovel Innut Cument	I _{IL}	V _I =-25V		-3.6		-8.3	A
Low-Level Input Current		V _I =-3V		-0.43			mA
Short-Circuit Output Current	I _{OS}	V _I =0.8V			-3.4	-12	mA
RECEIVER SECTION (VCC	=5V, V _{DD} =	12V, V _{SS} =-12V, u	nless otherwise spec	cified)	I		I
Propagation Delay Time	t _{PLH}	$R_L=5k\Omega$, $C_L=50pF$			105	250	ns
Low to High Level Output		R_L =1.5kΩ, C_L =15pF			100	160	
Propagation Delay Time	t _{PHL}	$R_L=5k\Omega$, $C_L=50pF$			60	150	
High to Low Level Output		R_L =1.5k Ω , C_L =15pF			42	100	ns
Transition Time	t _{TLH}	R_L =5kΩ, C_L =50pF			170	350	
Low to High Level Output		R_L =1.5k Ω , C_L =15pF			90	175	ns
Transition Time	t _{THL}	R_L =5kΩ, C_L =50pF			16	60	
High to Low Level Output		R_L =1.5kΩ, C_L =15pF 15		15	50	ns	

Note 2: Measured between -3V and 3V points of the output waveform (EIA/TIA-232-F conditions); all unused inputs are tied either high or low.

AZ75232

Typical Performance Characteristics

Driver Section

Figure 4. Voltage Transfer Characteristics

Figure 5. Output Current vs. Output Voltage

Figure 6. Short-Circuit Output Current vs. Temperature

Figure 7. Slew Rate vs. Load Capacitance

AZ75232

Typical Performance Characteristics (Continued)

Receiver Section

Figure 8. Input Threshold Voltage vs. Temperature

Figure 9. Input Threshold Voltage vs. Supply Voltage

Figure 10. Noise Rejection

AZ75232

Typical Application

Figure 11. Typical Application of AZ75232

AZ75232

Mechanical Dimensions

SOIC-20 Unit: mm(inch)

AZ75232

Mechanical Dimensions (Continued)

SSOP-20 Unit: mm(inch)

AZ75232

Mechanical Dimensions

TSSOP-20 Unit: mm(inch)

Aug. 2006 Rev. 1. 4

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited
- Wafer Fab
Shanghai SIM-BCD Semiconductor Manufacturing Limited

Shanghai SIM-BCD Semiconductor Manufacturing Limited 800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office 27B, Tower C, 2070, Middle Shen Nan Road, Shenzhen 518031, China Tel: +86-755-8368 3987, Fax: +86-755-8368 3166 BCD Semiconductor Manufacturing Limited

- IC Design Group Advanced Analog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan

Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corporation 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386