1

Assignment No.1

Surabhi Seetha

Download all assembly codes from

https://github.com/SurabhiSeetha/Fwciith2022/tree/main/Assignment%201/codes/asm

Download all python codes from

https://github.com/SurabhiSeetha/Fwciith2022/tree/main/Assignment%201/codes/src

and latex-tikz codes from

https://github.com/SurabhiSeetha/Fwciith2022/blob/main/Assignment%201/(Latex).tex

1 Question-2015 Section C Q6(d)

Reduce the following Boolean Expression to its simplest form using k-map $F = (X, Y, Z, W) = \sum (0, 1, 6, 8, 9, 10, 11, 12, 15)$

2 Contents

Components	3
Hardware	4
Solution	5

Abstract- This manual shows how to use 7447 BCD-seven segment display encoder to display Boolean Logic

3 Components

Component	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Seven Segment Display		1
Decoder	7447	1
Jumper Wires	M-M	20
Breadboard		1

Table 3.0

4 HARDWARE

Make connections between seven segment display and the 7447 ic as per the given table

7447	a'	b'	c'	ď'	e'	f'	g'
Display	a	b	С	d	e	f	g

Table 4.0

Figure 1

Figure 2

7447	D	С	В	A	
Arduino	5	4	3	2	
Table 4.1					

	X	Y	Z	W
Input	0	1	1	0
Arduino	6	7	8	9

Table 4.2

In the above example we are taking number 6 as input to the arduino and displaying 1 on the seven segment display.

5 Solution

Truth Table

X	Y	Z	W	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Table 5.0

$\setminus Z$	W			
XY	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1	1	1	1

Table 5.1

The expression in the above k-map results in XY'

$\setminus ZW$					
XY	00	01	11	10	
00	1	1	0	0	
01	0	0	0	1	
11	1	0	1	0	
10	1	1 ble 5	1	1	
1able 3.2					

The expression in the above map k-map results in XZ'W'

$\setminus Z$	W			
XY	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1 Ta	1 ble 5	1	1

The expression in the above map k-map results in XZW

$\setminus Z$	W			
XY	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1	1	1	1

 $\label{eq:table 5.4} Table \ 5.4$ The expression in the above k-map results in Y'Z'

$\setminus Z$		Λ1	1.1	10
$XY \setminus$	00	01	11	10
00	1	1	0	0
01	0	0	0	1
11	1	0	1	0
10	1	1	1	1

Table 5.5

The expression in the above k-map results in X'YZW'

By solving the above Karnaugh Map, we get the simplified boolean expression given below

$$F = XY' + XZ'W' + XZW + Y'Z' + X'YZW'$$