# Топология Зачет А.Ю. Пирковский март 2020

22 марта 2020 г.

# Содержание

| 1  | 3  |
|----|----|
| 2  | 5  |
| 3  | 7  |
| 4  | 8  |
| 5  | 9  |
| 6  | 10 |
| 7  | 11 |
| 8  | 12 |
| 9  | 13 |
| 10 | 15 |
| 11 | 17 |
| 12 | 19 |
| 13 | 20 |
| 14 | 21 |
| 15 | 23 |
| 16 | 24 |
| 17 | 25 |
| 18 | 26 |
| 19 | 27 |
| 20 | 28 |
| 21 | 29 |
| 22 | 30 |
| 23 | 31 |

Гомотопия отображений. Согласованность гомотопии с композициями. Гомотопия относительно подмножества. Пример: линейная гомотопия отображений со значениями в выпуклом подмножестве  $\mathbb{R}^n$ 



**Обозначение**: I = [0, 1]

**Определение**: X,Y — топологические пространства,  $f,g:\ X\to Y$  — непрерывны. Гомотопия между f и g —

непрерывное  $F: X \times I \to Y$ , такое что  $F(x,0) = f(x), \ F(x,1) = g(x) \forall x \in X$  Замечание: F порождает семейство  $\{F_t: X \to Y\}t \in U, \ F_t(x) = F(x,t)$ 

 $F_0 = f, \ F_1 = g$ 

Обозначение:  $F: f \simeq g$ 

**Определение**: f и g гомотопны  $\Leftrightarrow$  существует гомотопия F:  $f \simeq g$ 

**Предложение**:  $\simeq$  – отношение эквивалентности на C(X,Y)

Лемма(о склейке):

X,Y – топологические пространства,  $f:~X\leftarrow Y,~X=\underset{i\in I}{\cup}X_i,f|_{X_i}$  непрерывно  $\forall i$ 

Предположим, что выполнено одно из следующих условий:

- 1. все  $X_i$  открыты
- 2. все  $X_i$  замкнуты и I конечно

Тогда f непрерывно

#### Доказательство:

- 1. очевидно
- 2. для любого замкнутого  $B \subset Yf^{-1}(B) = \bigcup_{i \in I} (f^{-1}(B) \cap X_i) = \bigcup_{i \in I} f_i^{-1}(B)$ , где $f_i = f|_{X_i}$   $f^{-1}(B)$  замкнуто в  $X_i$ , то есть  $f_i$  непрерывно  $\Rightarrow f_i^{-1}(B)$  замкнуто в  $X \Rightarrow f^{-1}(B)$  замкнуто и f непрерывно

### Доказательство предложения:

- 1.  $f \simeq f$ : положим  $F(x,t) = f(x) \forall x, \forall t$
- 2. Пусть  $F:f\simeq g,G:g\simeq h$ . Положим,  $G(x,t)=F(x,1-t)\forall x,\forall t\Rightarrow G:g\simeq f$
- 3. Пусть  $F:f\simeq g,G:g\simeq h$ . Положим  $H(x,t)=\begin{cases} F(x,2t)\ if\ 0\leq t\leq \frac{1}{2}\\ G(x,2t-1)\ if\ \frac{1}{2}\leq t\leq 1 \end{cases}$   $\Rightarrow H:f\simeq g$ . Непрерывность H из леммы о склейке

Предложение:  $f_0,f_1:~X o Y,~~g_0,g_1:~Y o Z,~f_0\simeq f_1,~g_0\simeq g_1~\Rightarrow~g_0\circ f_0\simeq g_1\circ f_1$ 

Доказательство: пусть  $F: f_0 \simeq f_1, \quad G: g_0 \simeq g_1$ 

Рассмотрим  $H: X \times I \to Z, H_t/G_t \circ F_t \forall t \in I,$  то есть  $H(x,t) = G(F(x,t),t) \ (x \in X, t \in I)$ 

H – непрерывно,  $H:g_0\circ f_0\simeq g_1\circ f_1$  что и требовалось доказать

Определение: X,Y — топологические пространства,  $A\subset X,f,g:X\to Y$  непрерывно,  $f|_A=g|_A$  Гомотопия  $F:f\simeq g$  называется гомотопией относительно A(A-гомотопией)  $\Leftrightarrow F_t|_A=f|_A \forall t\in I$  Обозн:  $F:f\simeq g$ 

**Определение**: f и gA – гомотопии  $(f\underset{A}{\simeq}g)\Leftrightarrow \exists F:f\simeq g$ 



**Предложение**: (1)  $\forall \phi \in C(A,Y)$  отношение  $\cong A$  является отношением эквивалентности на  $\{f \in C(X,Y): A \in A \}$ 

 $\{f|_A = \phi\}$   $\{(2)f_0, f_1: X \to Y, g_0 \circ g_1: Y \to Z \text{ непрерывно, } f_0 \underset{A}{\simeq} f_1, g_0 \underset{B}{\simeq} g_1(f_0(A) \subset B) \Rightarrow g_0 \circ f_0 \underset{A}{\simeq} g_1 \circ f_1 \}$  Доказательство: аналогично случаю  $A = B = \varnothing$  (см. выше)

Примечание: X — топологические пространство, Y — нормированное пространство,  $z \subset Y$  выпуклое

Покажем:  $\forall A\subset X$  любые непрерывные  $f,g:X\to Z$ , такие, что  $f|_A=g|_A,f$  и gA-гомотопии В частности: любые два непрерывных  $X\to Z$  гомотопии

Рассмотрим  $F: X \times I \to Z, F(x,t) = tg(x) + (1-t)f(x)$  (линейная гомотопия)



Гомотопия путей. Пример: замена параметра. Прозведение путей и их гомотопический классов. Свойства операции умножения гомотопических классов путей. Фундаментальная группа.

X – топологические пространство,  $x_0, x_1 \in X$ 

**Определение**: Путь в X из  $x_0$  в  $x_1$  – непрерывен и  $I \to X$ ,  $u(0) = x_0$ ,  $u(1) = x_1$ 

Петля в  $x_0$  – путь из  $x_0$  в  $x_0$ 

 $P(x_0, x_1) = \{$ пути в X из  $x_0$  в  $x_1\}$ 

**Определение**:  $u,v\in P(x_0,x_1)$  гомотопны, как пути  $\Leftrightarrow u\simeq v\Leftrightarrow \exists$  гомотопия  $F:\ u\simeq v,$  такие что

 $\forall t \in I, \ F_t \in P(x_0, x_1), \text{ то есть } F(0, t) = x_0, \ F(1, t) = x_1, \ \forall t$ 

Обозначение:  $u \simeq v$ 

**Обозначение**:  $\Pi(x_0,x_1)=P(x_0,x_1)/\simeq -$  множество гомотопических классов путей из  $x_0$  в  $x_1, \forall u\in P(x_0,x_1)$ 

Обознаяение [u] – его гомотопический класс в  $\Pi(x_0, x_1)$ 

**Обозначение**:  $\pi_1(X, x_0) = \Pi(x_0, x_1)$  – множество гомотопических классов петель в  $x_0$ 

**Определение**: пусть  $u \in P(x_0, x_1), \ v \in P(x_1, x_2)$ 

Произведение u,v – путь  $uv \in P(x_0,x_2), (uv)(S) = \begin{cases} u(2S) \ if \ S \leq \frac{1}{2} \\ v(2S-1) \ if \ S \geq \frac{1}{2} \end{cases}$  Замечание: то, что выше обозначается uv, иногда обозначается vu Предложение:  $u_0,u_1 \in P(x_0,x_0)$  ,  $u_2 \in P(x_0,x_0)$ 

Предложение:  $u_0, u_1 \in P(x_0, x_1), \ v_0, v_1 \in P(x_1, x_2) u_0 \underset{p}{\sim} \ u_1, v_0 \underset{p}{\sim} v_1 \Rightarrow u_0 v_0 \underset{p}{\sim} u_1 v_1$ 

Доказательство: пусть  $F:u_0 \underset{p}{\simeq} u_1, \ G:v_0 \underset{p}{\simeq} v_1$ 

Рассмотрим  $H: I \times I \to X, H_t = F_t \cdot G_t, \ \forall t \in I, \text{ то есть } H(S,t) = \begin{cases} F(2S,t) \ if \ S \leq \frac{1}{2} \\ G(2S-1,t) \ if \ S \geq \frac{1}{2} \end{cases}$ 

H непрерывно (по лемме о склейке),  $H:u_ov_o \simeq u_1v_1$  Следствие: определено отображение:

 $\Pi(x_0, x_1) \times \Pi(x_1, x_2) \to \Pi(x_0, x_2)$ 

 $([u], [v]) \to [u][v] = [uv] \text{ (опр)}$ 

Обозн: (1)  $\forall x_0 \in X, e_{x_0} : I \to X, e_{x_0}(S) = x_0, \forall S \in I$ 

 $(2) \forall u \in P(x_0, x_1) u^{-1} \in P(x_1, x_0), u^{-1}(S) = u(1 - S) \ \forall S \in I \$ Лемма(о замене параметра)

Пусть  $\phi: I \to I$  непрерывно,  $\phi(0) = 0, \phi(1) = 1 \Rightarrow \forall u \in P(x_o, x_1)$ 

Доказательство: I выпукло  $\Rightarrow \phi \cong_{\{0,1\}} \mathrm{id}_I \Rightarrow u \cdot \phi \cong_{\{0,1\}} u$ 



# Теорема:

- 1.  $[e_{x_e}][u] = [u] = [u][e_{x_1}] \ \forall u \in P(x_0, x_1)$
- 2.  $[u][u^{-1}] = [e_{x_0}], [u^{-1}][u] = [e_{x_1}] \ \forall u \in P(x_0, x_1)$
- 3.  $([u][v])[w] = [u]([v][w]) \ u \in P(x_0, x_1), \ v \in P(x_1, x_2), \ w \in P(x_2, x_3)$

1.

#### Доказательство:



Рассмотрим  $\phi: I \to I$  (см.рис)

 $u \cdot \phi = e_{x_0} u \Rightarrow u \underset{p}{\simeq} e_{x_0} u$ 

Аналогично  $u \simeq u \cdot e_{x_1}$ 



Рассмотрим  $F: I \times I \Rightarrow X$ 

$$F(S,t) = \begin{cases} u(2S) \ if \ S \le \frac{t}{2} \\ u(t) \ if \ \frac{t}{2} \le S \le 1 - \frac{t}{2} \\ v(2S-1) \ if \ 1 - \frac{t}{2} \le s \le 1 \end{cases}$$

 $F:e_{x_0}\simeq uu^{-1},$  непрерывность F - из леммы о склейке меняем ролями  $u,u^{-1}\Rightarrow$  получаем  $e_{x_1}\simeq u^{-1}u$ 

2.



Рассмотрим 
$$\phi: I \Rightarrow I$$
 (см.рис)  $(u\cdot (v\cdot w))\cdot \phi = (u\cdot v)\cdot w \Rightarrow u\cdot (v\cdot w) \overset{\sim}{\underset{p}{\sim}} (u\cdot v)\cdot w$  что и требовалось доказать

**Следствие**: операция произведения гомотопных кассов петель превращает  $\pi_1(X,x_0)$  в группу. Её нейтральный элемент  $[e_{x_0}], [u]^{-1} = [u^{-1}] \ \forall u \in \pi_1(X, x_0)$ Определение:  $\pi_1(X, x_0)$  — фундаменталная группа X в  $x_0$ 

**Пример**: Если Z выпуклое подмножество нормированного пространства X, то  $\forall x_0 \in Z$   $\pi_1(Z,x_0)$  – тривиальна

Поднятия отображений  $Y o S^1$  до отображений  $Y o \mathbb{R}$ : единственность (для произвольного связного пространства Y) и существование (для компактного звездного помножества  $Y\subset\mathbb{R}^n$ )

Определение: Y — топологические пространство,  $f:Y\to S^1$  непрерывно. Непрерывное оторбражение  $q:Y\to\mathbb{R}$  называется поднятием  $f\Leftrightarrow poq=f$ 

$$Y \xrightarrow{f} S^1$$

Предложение (о единственности поднятия): Y — связное топологическое пространство,  $f:Y\to S^1$  непрерывно,  $g_1,g_2:Y \to \mathbb{R}$  — поднятия f

Предположим:  $\exists y_0 \in Y, g_1(y_0) = g_2(y_0) \Rightarrow g_1 = g_2$ 

**Доказательство**: рассмотрим  $g:Y \to \mathbb{R}, g=g_1-g_2, g$  непрерывно

ро $g_1 = pog_2 \Rightarrow \forall y \in Yp(g(y)) = \frac{p(g_1(y))}{p(g_2(y))} = 1 \Rightarrow g(Y) \subset \mathbb{Z}, g(Y)$  связно  $0 = g(y_0) \in g(Y) \Rightarrow g(Y) = \{0\} \Rightarrow g_1 = g_2$  что и требовалось доказать

**Определение**: X векторное пространство над  $\mathbb{R}, Y \subset X, y_0 \in Y$ 

Y – звездное относительно  $y_0 \Rightarrow \forall y \in Y$  отрезок  $[y_0, y] \subset Y$ 

Предложение (о существовании поднятия): Пусть X – нормированное пространство над  $\mathbb{R},Y\subset X$  – компактное множество, звездное относительно  $y_o \in Y$ 

Тогда для любого непрерывного  $f: Y \to S^1, \forall t_0 \in \mathbb{R}$ , такое что  $p(t_0) = f(y_0)$ , существует непрерывное  $g:Y\to\mathbb{R}$ , поднимающее f и такое что  $g(y_0)=t_0$ 

**Доказательство**: Можем считать, что  $y_0 = 0$ 

Из равномерной непрерывности  $f: \exists \delta > 0$ , такое что  $\forall y, y' \in Y$ , удовлетворяющие  $||y - y'|| < \delta$ , выполнено |f(y)-f(y')|<2 (то есть  $f(y)\neq -f(y')$ ) Обозначим  $C=\sup\{||y||:y\in Y\}, C<\infty$ , так как Y — ограничено Зафиксируем  $n\in\mathbb{N}$ , такое что  $\frac{C}{n}<\delta$ 



 $\forall k=0,\dots,n-1 \quad \forall y \in Y \quad ||\frac{(k+1)y}{n} - \frac{ky}{n}|| = \frac{||y||}{n} < \delta \Rightarrow f(\frac{(k+1)y}{n})/f(\frac{ky}{n}) \neq -1$  Обозначим  $f_k: Y \to S^1/\{-1\}, \quad f_k(y) = f(\frac{(k+1)y}{n})/f(\frac{ky}{n}), \quad f_k$  – непрерывно Заметим:  $f(y) = f(0)f_0(y)f_1(y)\dots f_{n-1}(y) \quad \forall y \in Y$ 

Рассмотрим  $g: Y \to \mathbb{R}, g(y) = t_0 + S(f_0(y)) + S(f_{n-1}(y)), g$  непрерывно,  $p \circ g = f, g(0) = t_0$  что и требовалось доказать

Степень ( = вращение) петли  $[0,1] \to (S^1,1)$ . Свойства степени. Фундаментальная группа окруж-

Фундаментальная группа окружности.

Обозначение:  $S^1=\{z\in\mathbb{C}:|z|=1\}$   $p:\mathbb{R}\to S^1, p(t)=e^{2\pi i t}$ 

**Предложение**:  $p|_{(-\frac{1}{2},\frac{1}{2})}$  – гомеоморфно  $(-\frac{1}{2},\frac{1}{2})$  на  $S^1/\{1\}$ 

**Наблюдение**: обозначим  $I = (-\frac{1}{2}, \frac{1}{2}), U = S^1/\{1\}$ 

 $p|_{I}$  -биекция I на U

Обозначение:  $U \to I, s = (p|_I)^{-1}$ , докажем, что S – непрерывно  $\forall n \in \mathbb{N} (n \geq 3)$ : обозначим  $I_n = (-\frac{1}{2} + \frac{1}{n}, \frac{1}{2} + \frac{1}{n}), U_n = p(I_n) \subset S$  – открытая дуга на  $S^1$   $p|_{\overline{I}}: \overline{I_n} \to \overline{U_n}$  – гомеоморфизм (т.к.  $\overline{I_n}$  – компакт)  $\Rightarrow U_n$  открытое,  $\bigcup_{n \geq 3} U_n = U \Rightarrow S$  – непрерывно что и требовалось доказать

**Обозначение**: Пусть  $u:I\to S^1$  – Петля в 1

Из предложений о единственности и существования поднятий следует, что существует единственный путь  $\overset{\sim}{u}:\;I o\mathbb{R}$ , поднимающий u, такой что  $\overset{\sim}{u}(0)=0$ 

 $p(\widetilde{u}(1)) = u(1) = 1 \Rightarrow \widetilde{u}(1) \in \mathbb{Z}$ 

**Определение**: deg(u) = u(1) – степень u (синонимы: индекс u (ind(u)), число оборотов u (wn(u)))

Пример:  $\forall n \in \mathbb{Z}$  рассмотрим  $\omega_n(t) = e^{2\pi i t}, \omega_n$  – петля в 1

 $\omega_n:\ I o\mathbb{R}, \omega_n(t)=nt$  – поднятие  $\omega_n,\overset{\sim}{\omega}(0)=0\Rightarrow \deg(\omega_n)=\overset{\sim}{\omega}(1)=n$  Предложение:  $u,v:I o S^1$  – петли в  $1,u\overset{\sim}{\simeq}v\Rightarrow \deg(u)=\deg(v)$ 

Доказательство: пусть  $F: u \overset{\sim}{\underset{p}{\sim}} v, F: I \times I \overset{r}{\rightarrow} S^1$ 

По предложению о сущ. поднятия  $\Rightarrow$  сущ. поднятие  $\overset{\sim}{F}:I\times I\to\mathbb{R}$  отображения F такое, что F(0,0)=0

 $\forall t \in I$  отображение  $F_t: I \to S^1, F_t(s) = F(s,t)$  – петля в 1, то есть  $F(0,t) = F(1,t) = 1 \forall t \in I \to F(0,t) \in I$  $\mathbb{Z} \forall t, \overset{\sim}{F}(1,t) \in \mathbb{Z} \forall t$ 

 $\stackrel{\sim}{F_0}$  – поднятие  $F_0=u\Rightarrow \deg(u)=\stackrel{\sim}{F_0}(1)=\stackrel{\sim}{F}(1,0)=d$   $\stackrel{\sim}{F_1}$  – поднятие  $F_1=v\Rightarrow \deg(v)=\stackrel{\sim}{F_1}(1)=\stackrel{\sim}{F}(1,1)=d$ 

 $(\text{TK } F_0(0) = F_1(0) = 0)$ 

 $\Rightarrow \deg(u) = \deg(v)$  что и требовалось доказать

**Следствие:** корректно определено отображение  $\phi: \pi_1(S^1, 1) \to \mathbb{Z}, \phi([u]) = \deg(u)$ 

**Теорема**:  $\phi: \pi_1(S^1, 1) \to \mathbb{Z}, \phi([u]) = \deg(u)$  – изоморфизм групп

Циклической образующей в  $\pi_1(S^1,1)$  является элемент  $[\omega]$ , где  $\omega(t)=e^{2\pi it}$  (то есть  $\omega=p|_I$ )

Доказательство: сюръективность  $\phi: \forall n \in \mathbb{Z}$  расссмотрим  $\omega_n: I \to S^1, \omega_n(t) = e^{\frac{1}{2\pi}it}, \omega_n$  — петля в

 $1,\deg(\omega_n)=n,$  тк поднятие  $\omega_n$  – путь  $\overset{\sim}{\omega_n}=nt$  и  $\overset{\sim}{\omega_n}(1)=n$  Пусть  $u,v:I\to s^1$  – петли в  $1,\deg(u)=\deg(v)$ 

Пусть  $\overset{\sim}{u},\overset{\sim}{v}:I\to\mathbb{R}$  – их поднятия,  $\overset{\sim}{u}(0)=0,\overset{\sim}{v}(0)=0\Rightarrow\overset{\sim}{u}(1)=\deg(u)=\deg(v)=\overset{\sim}{v}(1)\Rightarrow\overset{\sim}{u},\overset{\sim}{v}\in P(0,d),$  где  $d=\deg(u)\in\mathbb{Z},\mathbb{R}$  — односвязно  $\Rightarrow \overset{\sim}{u} \overset{\sim}{\underset{p}{\simeq}} \overset{\sim}{v} \Rightarrow po\overset{\sim}{u} \overset{\sim}{\underset{p}{\simeq}} po\overset{\sim}{v}$ , то есть  $u\overset{\sim}{\underset{p}{\simeq}} v \Rightarrow \phi$  — инъекция

Рассмотрим  $\phi: \mathbb{Z} \to \pi_1(S^1,1), \psi(n) = [\omega]^n, \psi$  – гомоморфизм групп  $\Rightarrow \phi$  – тоже Заметим:  $\omega^n = \omega_n \Rightarrow \phi \cdot \psi = \mathrm{id}_\mathbb{Z} \Rightarrow \psi = \phi^{-1}$  – гомоморфизм групп  $\Rightarrow \phi$  – тоже

1 — циклическая образующая  $\mathbb{Z}, \psi(1) = [\omega] \Rightarrow [\omega]$  — циклическая образующая  $\pi_1(S^1, 1)$  что и требовалось доказать

Пространства с отмеченной точкой и их отображения. Гомоморфизм фундаментальных групп, индуцированный отображением пространств с отмеченной точкой. Свойства индуцированных гомоморфизмов. Ретракции. Примеры. Несуществование ретракции замкнутого круга на его границу. Теорема Брауэра о неподвижной точке (двумерный случай)

**Определение**: Пространство с отмеченной точкой (пунктированное пространство) — пара  $(X, x_0)$ , где X — топологическое пространство,  $x_0 \in X$ 

**Определение**:  $(X, x_0), (Y, y_0)$  — пунктированные пространства

Отображение пространств с отмеченными точками  $f:(X,x_0)\to (Y,y_0)$  – непрерывное  $f:X\to Y$ , такое что  $f(x_0)=y_0$ 

**Предложение**: Пусть  $f:(X,x_0)\to (Y,y_0)$  – отображение пунктированных пространств  $\Rightarrow$  существует гомоморфизм групп  $f_*:\pi_1(X,x_0)\to\pi_1(Y,y_0)$ , определенный равенством  $f_*([u])=[f\circ u]$ 

**Доказательство**: Если  $u,v:I\to X$  – петли в  $x_0,u\overset{\sim}{=}v\Rightarrow fu\overset{\sim}{=}f\circ v \Rightarrow$  отображение  $f_*$  корректно определено

 $f_*([u][v]) = f_*([uv]) = [f \circ (uv)] = [(f \circ u)(f \circ v)] = f_*([u])f_*([v])$ 

Терминология:  $f_*$  индуцирован f

**Определение**: X — топологическоепространство,  $A \subset X, \ i_A: \ A \to X$  — отображение включения

Непрерывное  $r:X \to A$  – ретракция X на  $A \Leftrightarrow r \circ i_A = \mathrm{id}_A$ 

Если такое r существует, то A называют ретрактом X

Примеры:

1.  $I \times 0$  – ретракт  $I \times I$  r(x,y) = (x,0) – ретракция

2.  $S^n - \text{ретракт } \mathbb{R}^{n+1}/\{0\}$  $r: \mathbb{R}^{n+1}/\{0\} \to S^n$ 

Обозн:  $D = \{(x, ) \in \mathbb{R}^2, x^2 + y^2 \ge 1\}$  диск (круг)

Предл: S' не является ретрактом D

Доказательство: Пусть  $r:D\to S'$  – ретракция. Зафиксируем  $x_0\in S'; \mathbb{Z}\simeq \{\pi_1(S',x_0)\overset{i_*}{\Leftrightarrow}\pi_1(D,x_0)\}=\{e\}$ 

 $r \circ i = \mathrm{id} \ \Rightarrow \ r_* \circ i_* = \mathrm{id} \ \Rightarrow \ i_*$  – мономорфизм  $\Rightarrow \ \mathbb{Z} \simeq \mathrm{подгруппe}$  в тривиальной группе  $\Rightarrow$  противоречие, что и требовалось доказать

Предложение (двумерная теорема Брауэра): Каждое непрерывное  $f: D \to D$  имеет неподвижную точку Доказательство: пусть f не имеет неподвижных точек, тогда определим  $r: D \to S^1$  так (см. рисунок)



r непрерывно и r является ретракцией D на  $S^1 \Rightarrow$  противоречие предыдущему предложению, что и требовалось доказать

Изоморфизм фундаментальной группы пространства и линейно связной компоненты отмеченной точки. Зависимость фундаментальной группы от отмеченной точки. Односвязные пространства, их эквивалентные определения (через петли и через пути). Односвязность выпуклых подмножеств  $\mathbb{R}^n$ 

**Предложение**:  $x_0, x_1 \in X, p \in P(x_0, x_1)$ 

Рассмотрим  $\phi_p : \pi_1(x, x_1) \to \pi_1(x, x_0)$ 

 $\phi_p([u]) = [p][u][p^{-1}]$ 

Тогда  $\phi_p$  – изоморфизм групп

Заметим:  $\phi_{p^{-1}}\phi_p=\mathrm{id}_{\pi_1(X,x_1)}, \phi_p\phi_{p^{-1}}=\mathrm{id}_{\pi_1(X,x_0)}\Rightarrow \phi_{p^{-1}}b\phi_p$  - изоморфизмы, что и требовалось доказать Нестрогое **Обозначение**: X – линейное связное топологическое пространство

Фундаментальная группа X – группа  $\pi_1(X) = \pi_1(X, x_0)$ , где  $x_0 \in X$  – любая точка

Она определена однозначно с точностью до изоморфизма (см. предложение), но не единственного

**Определение**: X односвязно  $\Leftrightarrow X$  линейно связно и  $\pi_1(X)$  тривиальна

Примечание: Выпуклое подномжество в нормированном пространстве односвязно

**Предложение**: линейно связное топологическоепространство X односвязно  $\Leftrightarrow \forall x_0, x_1 \in X, \forall u, v \in P(x_0, x_1)u \simeq$ 

#### Доказательство:

- $(\Rightarrow) \ [u][v^{-1}] = [e_{x_0}] \Leftrightarrow [u] = [v]$
- $(\Leftarrow)$  Взять  $x_1=x_0v=e_{x_0}$  что и требовалось доказать

#### Лемма о лебеговом числе. Односвязность n-мерной сферы при $n \geq 2$

```
Теорема: \forall n \geq 2S^n односвязна (то есть ее фундаментальная группа тривиальна)
Лемма 1 (о лебеговом числе): X – компактное метрическое пространство, U – открытое покрытие
X \Rightarrow \exists \delta > 0, такое что каждое S \subset X < \delta, содержится в некотором элементе U.
Определение: такое \delta называется лебеговым числом U
Доказательство: \forall x \in X
\exists r(x) > 0, такое что B_{2r(x)} \subset V_x, где V_x \in U
Из компактности X\Rightarrow\exists x_1,\ldots,x_n\in X, такое что X=\overset{n}{cup}B_{r(x_i)}(x_i)
Обозначим: \delta = in\{r(x) : 1 \le i \le n\}
Пусть \varnothing \neq S \subset X, diamS < \delta
Зафиксируем: \forall y \in S \exists i, такое что \phi(y, x_i) \leq r(x_i)
\forall x \in S \rho(z,x_i) = \rho(z,y) + \rho(y,x_i) < \delta + r(x_i) \Rightarrow S \subset B_{2r(x_i)}(x_i) \subset V_{x_i} что и требовалось доказать
Лемма 2: n \le 2, a, b, v \in S^n, c \notin \{a, b\}
\forall u \in P(a,b) \exists v \in P(a,b), такой что v \simeq u, v(I) : c \notin v(I)
Доказательство: S^n = U \cup V, где U – окрестность c, гомеоморфная открытому шару в \mathbb{R}^n
V = S^n / \{c\}
Пусть \varepsilon – лебеговое число \{U,V\}
\exists \delta > 0, Такое что \forall t, t \in I, удовлетворяющее |t - t'| < \delta, выполняется ||u(t) - u(t')|| < \varepsilon
Зафиксируем разбиение: 0 = t_0 < t_1 < \ldots < t_m = 1, такое что t_i - t_{i-1} < \delta \forall i
Обозначим: x_i = u(t_i) \in S^n
u \underset{p}{\simeq} u_1, \ldots, u_m, где u_i \in P(x_{i-1}, x_i), причем либо u_i(I) \subset U, либо u_i(I) \subset V
\forall i, такой что u_i(I) \subset U найдем V_i(I) \subset U / \{c\} (так как U / \{c\} линейно связно)
u_i \overset{\sim}{\underset{p}{\sim}} v_i, так как U односвязно
\Rightarrow u \simeq v, где v = v_1 \cdot \ldots \cdot v_m, где остальные v_i = u_i (по построению c \notin V(I)) что и требовалось доказать
Доказательство теоремы: Пусть a, b \in S^n, u, v \in P(a, b)
Зафиксируем: \forall c \notin \{a, b\}
Из Леммы 2 следует, что \exists u', v' \in P(a,b), такое что u \simeq u', v \simeq v', c \notin u'(I), c \notin v'(I) S^n / \{c\} — гомеоморфно \mathbb{R}^n, \mathbb{R}^n односвзяно \Rightarrow u' \simeq v_i \Rightarrow u \simeq v_i что и требовалось доказать
```

Фундаментальная группа произведения. Примеры: фундаментальная группа тора и фундаментальная группа  $\mathbb{R}^n / \{0\}$ 

 $\phi: \pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$  $\phi(h) = (p_1, *(h); p_2, *(h))$ 

**Предложение**:  $\phi$  – изоморфизм групп

Доказательство: рассмотрим  $\psi$ :  $\pi_1(X,x_0) \times \pi_1(Y,y_0) \rightarrow \pi_1(X \times Y,(x_0,y_0)), \psi([u],[v]) = [(u,v,)],$  где Доказательство. Рассмотрим  $\psi$  .  $\pi_1(x, u_0) \wedge \pi_1(x, y_0)$  .  $\pi_1(x, y_0) \wedge \pi_1(x, y_0) \wedge \pi_1(x,$ 

Следствие:  $\pi_1(T^n, x_0) \cong \mathbb{Z}^n$ 

Следствие:  $\pi_1(T^2, x_0) = \Xi$   $\pi_1(T^2, x_0) = \pi_1(S^1) \times \pi_1(S^1)$ Следствие:  $\pi_1(\mathbb{R}^n/\{0\}, x_0) \cong \begin{cases} 0 \text{ если } n = 1 \text{ или } n \geq 3 \\ \mathbb{Z} \text{ если } n = 2 \end{cases}$ Промежутка односвязны)  $\Rightarrow \pi_1(\mathbb{R}^n/\{0\}) = 0$ Пусть  $n \geq 2$ . рассмоторим  $f: \mathbb{R}^n/\{0\} \to S^{n-1} \times (0, +\infty), f(x) = (\frac{x}{||x||}, ||x||)$ 

f – гомеоморфизм,  $f^{-1}(y,t) = y \cdot t \Rightarrow \pi_1(\mathbb{R}^n \diagup \{0\}, x_0) \cong \pi_1(S^{n-1}) \times \pi_1(0,+\infty) \cong \pi_1(S^{n-1}) \cong \begin{cases} 0 \text{ если } n = 1 \text{ или } n \geq 3 \\ \mathbb{Z} \text{ если } n = 2 \end{cases}$ 

Гомотопическая эквивалентность и ее категорная интерпретация. Деформационные ретракции и строгие деформационные ретракции. Сфера  $S^n$  как строгий деформационный ретракт  $\mathbb{R}^n / \{0\}$ . Биекция  $\pi_0(X) \cong [pt, X]$ . Следствие: гомотопическая инвариантность свойства линейной связности. Стягиваемые пространства, их эквивалентные определения, примеры.

**Определение**: X,Y – топологические пространства. Непрерывное  $f:X \to Y$  -гомотопическая эквивалентность  $\Leftrightarrow$  существует непрерывное  $g:Y\to X$ , такое что  $f\circ g\simeq \mathrm{id}_Y, g\circ f\simeq if_X.g$  называется гомотопически

X и Y гомотопически эквивалентны ( $X\simeq Y$ )  $\Leftrightarrow$  существует гомотопическая эквивалентность X o Y

Наблюдение: гомеоморфизм является гомотопической эквивалентностью

Обозначим гомотопической категорией  $Hmt: \mathrm{Ob}(Hmt)$  – топологические пространства

Морфизмы – гомотопические классы непрерывных отображений  $\operatorname{Hom}_H mt(X,Y) = [X,Y] = C(X,Y)/_{\sim}, [g]o[f] =$  $[g \circ f]$ 

**Наблюдение**:  $f: X \to Y$  — гомотопическая эквивалентность  $\Leftrightarrow$  его гомотопический класс — изоморфизм в Hmt

Следствие:

- 1.  $f: X \to Y, \ g: Y \to Z$  гомотопические эквивалентности  $\Rightarrow g \circ f$  гомотопическая эквивалентность
- 2. Если  $f: X \to Y$  гомотопическая эквивалентность,  $g: Y \to -$  его гомотопически обратный

Непрерывный  $g_1:Y\to X$  гомотопические обратно к  $f\Rightarrow g_1\simeq g$ 

Определение: X – топологическоепространство,  $A \subset X$ . Ретракция rX на A (то есть непрерывное  $r: X \to X$ ) A, такое что  $r \circ i_A = \mathrm{id}_A$ ) называется:

1. Деформационной ретракцией  $\Leftrightarrow i_A \circ r \simeq \mathrm{id}_X$ 

$$X \xrightarrow{r} A \xrightarrow{iA} X$$

$$A \xrightarrow{iA} X \xrightarrow{r} A$$

2. строгой деформационной ретракцией  $\Leftrightarrow i_a \circ r \underset{A}{\sim} if_X$ 

A называется деформационным ретрактом( соответственно строгим деформационным ретрактом)  $X \Leftrightarrow$ существует деформационная ретракция (соответственно строгая днформационная ретракция) X на A

Строгая деформационная ретракция ⇒ деформационная ретракция ⇒ ретракция

Наблюдение: деформационная ретракция является гомотопической эквивалентностью

**Предложение**:  $S^n$  – строгий деформационный ретракт  $\mathbb{R}/\{0\}$ 

Доказательство: рассмотрим ретракцию  $r: \mathbb{R}^{n+1}/\{0\} \to S^n$ 

$$r(x) = \frac{x}{||x||}$$

Рассмотрим  $F: \mathbb{R}^{n+1} / \{0\} \times I \to \mathbb{R}^{n+1} / \{0\}$ 

$$F(x,t) = t \frac{x}{||x||} + (1-t)x$$

 $F_0=\mathrm{id}, F_1\stackrel{\text{\tiny II-II}}{=} i_{S^n}\circ r\Rightarrow r$  – строгая деформационная ретракция что и требовалось доказать

Терминология: гомотопические свойства топологические пространства – свойства, которые сохраняются при гомотопических эквивалентностях

**Обозначение**:  $pt = \{p_0\}$  – топологические пространство, состоящее из одной точки  $p_0$ 

**Обозначение**: X – топологические пространство,  $\pi_0(X)$  – множество его линейно связных компонент

**Предложение**: для любого топологические пространства X существует биекция  $[pt,X] \to \pi_0(X), [f] \to$  $PC(f(p_0))$  – линейно связная компонента  $f(p_0)(*)$ 

**Доказательство**: Заметим: отображение  $C(pt, X) \to X$ 

$$f \to f(p_0)$$
 – биекция

Пусть  $f,g:pt \to x, F:f \simeq g$ 

F порождает путь  $u \in P(f(p_0), g(p_0)), u(t) = F(p_0, t)$ 

Наоборот: кадлый путь  $u \in P(f(p_0), g(p_0))$  порождает  $F: f \simeq g$ 

Поэтому:  $f \simeq g \Leftrightarrow f(p_0)g(p_0)$  лежат в одной линейно связной компоненте  $\Rightarrow$  отображение (\*) корректно определенно и является биекцией что и требовалось доказать

Следствие:  $X \simeq Y, Y$  — линейно связно  $\Rightarrow Y$  линейно связно

Доказательство:  $X \cong YHmt$ 

[pt,-] — ковариантный функтор  $Hmt \to Sets$  (частный случай Hom — функтора)  $\Rightarrow [pt,X] (=\pi_0(X)) \cong [pt,Y] (=\pi_0(Y)) Sets \Rightarrow \pi_0(Y)$  одноэлементно, то есть Y -линейно связно что и требовалось доказать

# Стягиваемые пространства, их эквивалентные определения, примеры.

**Определение**: топологическоепространство X стягиваемо  $\Leftrightarrow X \simeq pt$ 

Наблюдение: Стягиваемость – гомотопическое свойство, стягиваемость ⇒ линейная связность

**Теорема**: следующие свойства топологические пространства  $X \neq \emptyset$  эквивалентны:

- 1. X стягиваемо
- 2. (2) для любого Y топологические пространства любые два непрерывных  $f,g:Y\to X$  гомотопны
- 3.  $\exists x_0 \in X$ , такое что  $\mathrm{id}_X \simeq C_{x_0}$  (где  $C_{x_0}: X \to X, C_{x_0}(x) = x_0 \forall x \in X$ ) '  $\exists x_0 \in X$ , такое что  $\{x_0\}$  деформационный ретракт X
- 4.  $\forall x_0 \in Xif_X \simeq C_{x_0}$  '  $\forall x_0 \in X\{x_0\}$  деформационный ретракт X

## Доказательство:

 $(3) \Leftrightarrow (3')$  и  $(4) \Leftrightarrow (4')$  из определения деформационного ретракта.

Действительно: ретракция X на  $\{x_0\}$  -отображение  $r_{x_0}: X \to \{x_0\}r_{x_0}(x) = x_0 \forall x$ 

Она дефракционный ретракт  $\Leftrightarrow i_{\{x_0\}} \circ r_{x_0} (= C_{x_0}) \simeq if_X$ 

 $(1)\Rightarrow(2)$ :  $[Y,-]:Hmt\to Sets$  – функтор (частный случай Hom – функтора)

 $X\cong ptHmt\Rightarrow [Y,X]$  и [Y,pt] равномощны, но [Y,pt] состояит из одной точки  $\Rightarrow [Y,X]$  – тоже

$$(2) \Rightarrow (4) \Rightarrow (3)$$
 – очев

$$(3)\Rightarrow (1)\ X\stackrel{f}{\rightarrow} pt\stackrel{g}{\rightarrow} x, pt=\{p_0\}$$

$$f(x) = p_0 \forall x \in Y, g(p_0) = x_0$$

$$g \circ f = C_{x_0} \simeq i f_X$$

$$f \circ g = \mathrm{id}_{pt}$$

 $\Rightarrow f$  – гомотопическая эквивалентность что и требовалось доказать

**Наблюдение**: для любого топологические пространства  $X \forall x_0 \in X\{x_0\}$  – ретракт X

С другой стороны  $\{x_0\}$  – деформационный ретракт  $\Leftrightarrow X$  – стягиваемое

Поэтому ретракт не всегда является деформационным ретрактом

Пример: X — нормальное пространство,  $Y\subset X$  — звездное относительно  $x_0\in Y$ . Тогда Y — стягиваемое

Действительно:  $F(x,t)=tx_0+(1-t)x$  – гомотопия между  $\mathrm{id}_Y$  и  $C_{x_0}$ 

Стабилизатор точки при действии группы. Сопряженность стабилизаторов точек из одной орбиты. Морфизмы G-множеств. Изоморфизм между орбитой и множеством смежных классов по стабилизатору. Гомоморфизм фундаментальных групп, индуцированный накрывающим отображением: его мономорфность и описание его образа как стабилизатора точки слоя. Следствие: изоморфизм между слоем накрытия и множеством смежных классов фундаментальной группы базы накрытия.

G – группа, X – правое G -множество

**Определение**: Стабилизатор точки  $x \in X$  – это  $\mathrm{Stab}(x) = \{g \in G | x \cdot g = x\} \subset G$ 

Синонимы: стационарная подгруппа, подгрупппа изотропии

**Наблюдение**: Stab(x) < G

**Определение**: Правое действие G на G сопряжениями задается формулой:  $x*g=g^{-1}xg(x,g\in G)$ . Аналогично определяются действия сопряжениями на множестве подгрупп в  $G: H*g=g^{-1}Hg=\{g^{-1}hg|h\in H\}$  X – правое G-множество

Предложение: стабилизаторы точек из одной орбиты сопряжены друг другу.

Более точно:  $\operatorname{Stab}(x \cdot g) = g^{-1} \operatorname{Stab}(x) \cdot g$ 

Доказательство  $h \in \operatorname{Stab}(x \cdot g) \Leftrightarrow x \cdot g \cdot h = h \cdot g \Leftrightarrow x \cdot g \cdot h \cdot g^{-1} = x \Leftrightarrow g \cdot h \cdot g^{-1} \in \operatorname{Stab}(x) \Leftrightarrow h \in g^{-1}\operatorname{Stab}(x)g$  Определение: X, Y – правые G-множества

Отображение  $\phi: X \to Y$  — морфизм G-множеств (G-эквивалентное отображение)  $\Leftrightarrow \phi(x \cdot g) = \phi(x) \cdot g(x \in X, g \in G)$ 

Правые G-множества и их морфизм образуют категорию. Обозначают ее G-Sets

**Предложение**: X – правое G-множество,  $x \in X, x \in X$ . Существует изоморфизм правых G-множеств  $\phi: G/_{\operatorname{Stab}(X)} \overset{\sim}{\to} x \cdot G, \phi(\operatorname{Stab}(x) \cdot g) = x \cdot g(g \in G)$ .

В частности, если X транзитивно, то  $\phi$ -изоморфизм  $G/_{\mathrm{Stab}(X)}$  на X.

Доказательство: пусть  $g, h \in G$ 

 $\operatorname{Stab}(x) \cdot g = \operatorname{Stab}(x) \cdot h \Leftrightarrow g \cdot h^{-1} \in \operatorname{Stab}(x) \Leftrightarrow x \cdot g \cdot x^{-1} = x \Leftrightarrow x \cdot g = x \cdot h$ 

Поэтому  $\phi$  — корректно определенно и инъективно. Очевидно,  $\phi$  — сюръективно и является морфизмом G-множеств что и требовалось доказать

Гомоморфизм фундаментальных групп, индуцированный накрывающих отображением.

$$p: E \to X - -, x_0 \in X, a \in p^{-1}(x_0)$$

$$p_x: \pi_1(E, a) \to \pi_1(X, x_0)$$

Напоминания: Пусть  $x_1 \in X, u \in P(x_0, x_1), \overset{\sim}{u_a}$  – поднятие u, такое что  $\overset{\sim}{u_a}(0) = a$  (оно существует и единственное)

Если  $v,u \in P(x_0,x_1)$ , то  $u \overset{\sim}{=} v \Leftrightarrow \overset{\sim}{u_a} \overset{\sim}{=} \overset{\sim}{v_a} \Rightarrow \overset{\sim}{u_a}(1) = \overset{\sim}{v_a}(1)$ 



Действие монодромии:  $p^{-1}(x_0) \times \pi_1(X, x_0) \to p^{-1}(x_0), (a, [u]) \to a[u] = \overset{\sim}{u_a}(1)$  **Теорема**:  $p: E \to X$  – накрытие,  $x_0 \in X, a \in p^{-1}(x_0)$ 

1. 
$$p_*: \pi_1(E,a) \to \pi_1(X,x_0)$$
 – мономорфизм

2. 
$$Imp_* = \{[u]: \widetilde{u_a} - \text{петля}\}$$

3.  $Imp_* = \operatorname{Stab}(a)$  при действии монодромии



### Доказательство:

- 1. Пусть  $[v]\in Kerp_*$ . Обозначим  $u=p\cdot v$   $u\overset{\sim}{=} e_{x_0}\Rightarrow \overset{\sim}{u_a}\overset{\sim}{=} (\overset{\sim}{e_{x_0}})_a (=e_a), [v]=[e_a]\in pi_1(E,a)$
- 2.  $[u] \in Imp_* \Leftrightarrow u \overset{\sim}{\underset{p}{\sim}} p \circ v$  для некоторой петли v в  $a \Leftrightarrow \overset{\sim}{u_a} \overset{\sim}{\underset{p}{\sim}} v$  для некоторой петли v в  $a \Leftrightarrow \overset{\sim}{u_a}$  петля
- 3.  $\stackrel{\sim}{u_a}-\Leftrightarrow\stackrel{\sim}{u_a}(1)=a\Leftrightarrow a=a\cdot[u]\Leftrightarrow[u]\in St(a)$  что и требовалось доказать

**Следствие**:  $p:E \to X$  — накрытие

Е — линейно связно,  $x_0 \in X$ ,  $a \in p^{-1}(x_0)$ . Существует изоморфизм правых  $\pi_1(X,x_0)$  — множеств  $\pi_1(X,x_0)\diagup_{Imp_*}\stackrel{\sim}{\to} p^{-1}(x_0), (Imp_*)\cdot [u] \to a\cdot [u]=\stackrel{\sim}{u_a}(1)$  Доказательство: из п.(3) теоремы и транзитивности монодромии что и требовалось доказать

Накрытия. Примеры накрытий. Число листов накрытия, его независимость от выбора точки базы (если последняя связна). Теорема о единственности поднятия.

Х – топологическоепространство

**Определение**: Накрытие X – пара (E,p), где E – топологические пространство,  $p:E\to X$  непрерывно, такое что:  $\forall x\in X$  существует окрестность  $U\ni U$ , такая что  $p^{-1}(U)=\bigsqcup_{i\in I}U$  (достаточно потребовать дизъ-

юнктное отбъединение множеств),  $(I \neq \varnothing)$ , где  $U_i$  открыто  $\forall i,$  и  $p|_{U_i)}$  – гомеоморфизм  $U_i$  на U.

X называется базой накрытия, E — накрывающее пространство, p — накрывающее отображение. Часто само p называют накрытие.

 $\forall x \in X$  множество  $p^{-1}(X)$  называется слоем над X.

**Наблюдение**: (E,p) накрытие  $\Rightarrow p$  – сюръекция E на X

Пример 1: любой гомеоморфизм является накрытием

**Пример 2**: X – топологическоепространство, D – дискретное пространство.  $p: X \times D, p(x,) = x$  – накрытие Действительно:  $\forall U \subset Xp^{-1}(U) = U \times D = \bigsqcup_{d \in D} (U \times \{d\})$  (открыто в  $X \times D$ , так как D – дискретно)

**Пример 3**:  $p: \mathbb{R} \to S^1, p(t) = e^{2\pi i t}$  – накрытие

Действительно: для любого отрезка  $I\subset\mathbb{R}$  длины меньше 1

 $p|_I:\ I \to p(I)$  – гомеоморфизм

(т.к. I – компактно, p|I – инъективно)  $\Rightarrow$  для любого интревала  $J \subset \mathbb{R}$  длины меньше 1 множество U = p(J) открыто в  $S^1, p^{-1}(U) = \bigsqcup_{n \in \mathbb{Z}} J_n$ , где  $J_n = J_n, J_n$  – интервал,  $p|_{J_n} \to U$  – гомеоморфизм

Вся  $S^1$  покрывается двумя такими  $U \Rightarrow p$  – накрытие

**Предложение**:  $p:E \to X, q:F \to Y$ - накрытия  $\Rightarrow p \times q: \ E \times F \to X \times Y$  – накрытие

Доказательство: очев

**Пример 4**:  $p: \mathbb{R}^n \to T^n p(t_1, \dots, t_n) = (e^{2\pi i t_1}, \dots, e^{2\pi i t_n})$  – накрытие

Пример 5:  $\mathbb{RP}^n = S^n /_{\sim}, x \sim y \Leftrightarrow x = \pm y$ 

Отображение факторизации  $q:S^n \to \mathbb{RP}^n$  – накрытие

Действительно: для любого открытого  $U\subset S^n$ , такое что  $\overline{U}$  не содержит диаметрально противоположных точек,  $q|_{\overline{U}}:\overline{U}\to q(\overline{U})$  – гомеоморфизм (так как  $q|_{\overline{U}}$  – инъекция,  $\overline{U}$  компакт)  $\Rightarrow q(U)$  открыто в  $\mathbb{RP}^n, q^{-1}(U)=U\sqcup (-U)$  (U и -U открыты) (если  $U\cap (-U)=\varnothing$ )

 $q|_{\pm U}:\pm U o q(U)$  – гомеоморфизм

**Определение**: непрерывное  $f: X \to Y$  локальный гомеоморфизм  $\Leftrightarrow \forall x \in X$  существует окрестность  $U \ni x$ , такая что f(U) открыто в Y и  $f|_U: U \to f(U)$  – гомеоморфизм

Наблюдение: накрытие является локальным гомеоморфизмом

Предл:  $p:E \to X$  — накрытие, X — связно  $\Rightarrow \forall x,y \in Xp^{-1}(x)$  и  $p^{-1}(y)$  равномощны

**Доказательство**: введем на X отношение эквивалентности:  $x \sim y \Leftrightarrow p^{-1}(x)p^{-1}(y)$  равномощны

Достаточно докащать:  $\forall x \in X \text{ ee } [x]$  открыт в X

Выберем окрестность  $U\ni x$ , такая что  $p^{-1}(U)=\underset{i\in I}\sqcup U_i$ , гомеоморфизм  $p|_{U_i}:U_i\to U$ 

Заметим:  $\forall y \in Up^{-1}(y) \cap U_i$  состят ровно из одной точки  $(\forall i \in I) \Rightarrow p^{-1}(y)$  и I равномощны  $\Rightarrow U \subset [x] \Rightarrow [x]$  – открыт что и требовалось доказать

**Определение**: Пусть  $p: E \to X, X$  – связно. Числом листов этого накрытия называют мощность  $p^{-1}(x) (\forall x \in X)$ 

Пример: накрытие из примера 5 двулистно, из примеров 3, 4 – счетно листно

**Определение**: E, X, Y — топологические пространства,  $p: E \to X, f: Y \to X$  — непрерывные. Непрерывное  $g: Y \to E$  — поднятие(относительно  $p) \Leftrightarrow pog = f$ 



**Теорема**:  $p: E \to X$  — накрытие,  $f: Y \to X, Y$  — связно,  $g_1, g_2: Y \to E$  — поднятие f. Пусть  $\exists y_0 \in Y$ , такой что  $g_1(y_0) = g_2(y_0) \Rightarrow g_1 = g_2$  (единственность поднятия)

**Лемма**:  $p: E \to X$  – накрытие,  $D = \{(x, x) | x \in E\} \subset E \times E$ 

 $Z = \{(x, y) \in E \times E | p(x) = p(y) \}$ 

Тогда D открыто и замкнуто в Z

**Замечание**: E хаусдорфово  $\Leftrightarrow D$  замкнуто в  $E \times E \Rightarrow$  в Z тоже

**Доказательство леммы**: Пусть  $(x,x) \in D$ , существует окрестность  $U \ni x$ , такая что  $p|_U : U \to p(U)$  – гомеоморфизм  $\Rightarrow (U \times U) \cap Z$  – окрестность (x,x)Z

```
(U \times U) \cap Z \subset D \Rightarrow D — открыт в Z Если (y_1,y_2) \in (U \times U) \cap Z, то y_1,y_2 \in Up(y_1) = p(y_2) \Rightarrow y_1 = y_2, то есть (y_1,y_2) \in D Пусть (x,y) \in Z / D, выберем окрестность V \subset X точки p(x) = p(y), такая что p^{-1}(V) = \bigsqcup_{i \in I} V_i, V_i — открыто p|_{V_i} : V_i \to V — гомеоморфизм \exists i,j \in I, такие что x \in V_i, y \in V_j, причем i \neq j (так как x \neq y) W = (V_i \times V_j) \cap Z — окрестность (x,y)Z W \cap D = \varnothing (так как V_i \cap V_j = \varnothing) \Rightarrow Z / D открыто в Z, то есть D замкнуто в Z что и требовалось доказати
```

 $W \cap D = \varnothing$  (так как  $V_i \cap V_j = \varnothing$ )  $\Rightarrow Z/D$  открыто в Z, то есть D замкнуто в Z что и требовалось доказать Доказательство теоремы: Рассмотрим  $g: Y \to Z, g(y) = (g_1(y), g_2(y)), g$  непрерывно  $\Rightarrow g^{-1}(D)$  открыто и замкнуто в  $Y, g^{-1}(D) = Y$ , то есть  $g_1 = g_2$  что и требовалось доказать

Теорема о накрывающей гомотопии. Следствие: теорема о поднятии путей. Теорема о поднятии гомотопий путей.

**Теорема о накрывающей гомотопии**:  $p:E \to X$  — накрытие, Y — топологические пространство, F: $Y \times I \to X$  – непрерывно,  $f: Y \to E$  – поднятие  $F_0$  (где  $F_0Y \to XF_0(y) = F(y,0)$ )

Тогда существует единственное непрерывное  $F: Y \times I \to E$ , поднимающее F и такое, что  $F_0 = f$ 

Если, кроме того, F - -A-гомотопия для некоторого  $A \subset Y$ , то и F - -A-гомотопия

Обозначения: пусть  $F: Y \times \to X \forall t \in IF_t: Y \to X, F_t(y) = F(y,t)$ 

 $\forall y \in YF^y: I \to X, F^y(t) = F(y,t)$ 

#### Лемма (о локальном поднятии):

Пусть выполняются условия теоремы, и пусть все пространство X ровно накрыто (то есть  $p^{-1}(x) = \bigsqcup_{i \in I} U_i, U_i$ открыто в E, такое что  $p|_{U_i}:U_i\to X$  – гомеоморфизм). Тогда  $\forall y\in Y$  существует окрестность  $Z\ni y$  и

поднятие  $\overset{\sim}{F}:Z\times I\to E$  отображения  $F|_{Z\times I}$ , такое что  $\overset{\sim}{F_0}=f|_Z$  Доказательство:  $\forall y\in Y$  существует окрестность  $U\subset E$ , такая что  $p|_U:U\to X$  – гомеоморфизм и  $f(y)\in U$ . Положим  $Z=f^{-1}(U)$ 

Обозначим  $S=(p|_U)^{-1}:X\to U,$  рассмотрим  $\overset{\sim}{F}:Z\times I\to E, \overset{\sim}{F}=S\circ F|_{Z\times I}$ 

 $pS = \mathrm{id}_x \Rightarrow \overset{\sim}{F} - \mathrm{поднятие} \ F|_{Z \times I}$ 

 $\forall z \in Zf(z) \in U\widetilde{F_0}(z) \in U, p(f(z)) = F_0(z) = p(\widetilde{F_0}(z)) \Rightarrow f(z) = \widetilde{F_0}(z),$  то есть  $\widetilde{F_0} = f|_Z$  что и требовалось

Следствие из теоремы (о поднятии путей):  $p: E \to X$  — накрытие,  $x_0 \in X, y \in P^{-1}(x_0)$ . Тогда для любого пути  $u:I\to X$ , такого что  $u(0)=x_0$ , существует единственный путь  $u:I\to E$ , поднимающий u, такой что  $\widetilde{u}(0) = y$ 

**Доказательство теоремы**: применить теорему для Y = pt что и требовалось доказать

Теорема (о поднятии гомотопий путей):  $p: E \to X$  – накрытие,  $x_0, x_1 \in X, y \in p^{-1}(x_0), u, v \in P(x_0, x_1)$  $\widetilde{u},\widetilde{v}:I\to E$  – поднятия u,v, такие что  $\widetilde{u}(0)=\widetilde{u}(0)=y$  (они существуют и единственны по утверждению о поднятии путей). Тогда:

- 1. каждая гомотопия F:upv единственным образом поднимается до  $\overset{\sim}{F}:\overset{\sim}{u}p\overset{\sim}{v}$
- $2. \ u \underset{\sim}{pv} \Rightarrow \overset{\sim}{u} \underset{\simeq}{p} \overset{\sim}{v}$
- 3. Если  $u \overset{\sim}{\underset{n}{\sim}} v, \widetilde{u}(1) = \widetilde{v}(1)$

#### Доказательство:

(1) по теореме о накрывающей гомотопии, существует единственное непрерывное  $F:I\times I\to E$ , поднимающее F и  $F_0 = \widetilde{u_0}$ 

Кроме того, F (как и F) –  $\{0,1\}$ -гомотопия (то есть гомотопия путей)

$$\overset{\sim}{F_1}$$
 – поднятие  $F_1=v,\overset{\sim}{F_1}(0)=\overset{\sim}{F_0}(0)=\overset{\sim}{u}(0)=y$  (все пути начинаются и заканчиваются в одной точке)

Из единственности следует, что  $\overset{\sim}{F_1}=\overset{\sim}{v},$  то есть  $\overset{\sim}{F}:\overset{\sim}{u}\simeq\overset{\sim}{v}$ 

$$(\Leftarrow)$$
 Пусть  $G: \overset{\sim}{u} \overset{\sim}{\underset{p}{\simeq}} \overset{\sim}{v} \Rightarrow poG: u \overset{\sim}{\underset{p}{\simeq}} v$ 

(3) Из (2) что и требовалось доказать

Отображение фундаментальной группы базы накрытия в слой над отмеченной точкой; условия его сюръективности и биективности. Фундаментальная группа вещественного проективного пространства.

Обозначим:  $z=y\cdot [u]=\widetilde{u_y}(1)\Rightarrow (y[u])\cdot [v]=z\cdot [v]=\widetilde{v_z}(1)$   $\widetilde{u_y}\cdot \widetilde{v_z}$  — поднятие  $u\cdot v$   $(\widetilde{u_y}\cdot \widetilde{v_z})(0)=\widetilde{u_y}(0)=y\Rightarrow \widetilde{u_y}\cdot \widetilde{v_y}=(\widetilde{uv})_y$ 

 $y\cdot ([u][v])=y[u\cdot v]=\overset{\sim}{(uv)_y}(1)=\overset{\sim}{(u_y\cdot v_z)}(1)=\overset{\sim}{v_z}(1)\Rightarrow (y\cdot [u])[v]=y([u][v])\Rightarrow (*)$  определяет действие Пусть E линейно связно,  $y,z\in p^{-1}(x_0)$ 

Выберем  $v \in P(y,z)$ , обозначим  $u = p \cdot v \Rightarrow u$  – петля в  $x_0, v = \overset{\sim}{u_y} \Rightarrow y \cdot [u] = v(1) = z \Rightarrow$  действие транзитивно Пусть E односвязно,  $y \in p^{-1}(x_0), [u] \in \pi_1(X,x_0), y[u] = y$ , то есть  $y = \overset{\sim}{u_y}(1) \Rightarrow \overset{\sim}{u_y}$  – петля в  $y \Rightarrow \overset{\sim}{u_y} \simeq e_y \Rightarrow u \simeq e_{x_0}$ , то есть  $[u] = [e_{x_0}] \Rightarrow$  действие свободно что и требовалось доказать

Следствие:  $p: E \to X$  — накрытие, E — односвязно  $\Rightarrow \forall x_0 \in X, \forall y \in p^{-1}(x_0)$ , отображение  $\pi_1(x,x_0) \to p^{-1}(x_0), [u] \to y[u]$  — биекция

Пример: Пусть  $p: \mathbb{R} \to S^1, p(t) = e^{2\pi i t}, x_0 = 1 \in S^1, y = 0 \in p^{-1}(1) = \mathbb{Z}$ 

Отображение  $\pi_1(S^1,1) \to \mathbb{Z}$  из предыдущего следствия действие по формуле  $[u] \to \deg(u)$ 

Следствие:  $\pi_1(\mathbb{RP}^n, x_0) \simeq \mathbb{Z}/_{2\mathbb{Z}} \forall n \geq 2 \forall x_0 \in \mathbb{RP}^n$ 

**Доказательство**: знаем отображение факторизации  $q: S^n \to \mathbb{RP}^n$  – двулистное накрытие,  $S^n$  – односвязно  $\Rightarrow$  (по предыдущему следствию) существует биекция  $\pi_1(\mathbb{RP}^n, x_0) \cong q^{-1}(x_0)$ 

 $q^{-1}(x_0)$  – из 2 элементов  $\Rightarrow \pi_1(\mathbb{RP}^n, x_0) \simeq \mathbb{Z}/_{2\mathbb{Z}}$  что и требовалось доказать

Гомоморфизм фундаментальных групп, индуцированный накрывающим отображением: его мономорфность и описание его образа. Критерий существования поднятия отображения, действующего в базу накрытия, до отображения в накрывающее пространство. Следствие: существование и единственность поднятия отображения из односвязного пространства.

Общая теорема о поднятии



Видоизменим задачу

 $y_0 \in Y, x_0 = f(y_0), a_0 \in p^{-1}(x_0)$ . Когда существует поднятие g, такое что  $g(y_0 = a_0)$ ?



Применим функтор:



 $p_* \circ g_* = f_* \Rightarrow Im f_* \subset Im p_*$ 

**Наблюдение**: Если существует поднятие  $g:Y\to E$  отображения  $f:Y\to X$ , такое что  $g(y_0)=a_0\Rightarrow Imf_*\subset$ 

**Определение**: топологическоепространство Y локально линейно связно  $\Leftrightarrow \forall y \in Y$  для любой окрестности  $U \ni y$  существует линейно свячзная окрестность  $V \ni yV \subset U$ 

Напоминание: открытое подмножество любого нормированного пространства локально линейно связно

**Напоминание**: Y связно, U локально линейно связно  $\Rightarrow Y$  линейно связно

**Теорема**:  $p: E \to X$  – накрытие,  $z_0 \in X, a_0 \in p^{-1}(x_0)$ 

 $f: Y \to X, f(y_0) = x_0$ 

**Предположим**: Y связно и локально линейно связно  $\Rightarrow$  следующие утверждения эквивалентны:

- 1. существует поднятие  $g:Y\to E$  отображения f, такое что  $g(y_0)=a_0$
- 2.  $Im(f_*: \pi_1(Y, y_0) \to \pi_1(X, x_0)) \subset Im(p_*: \pi_1(E, a_0) \to \pi_1(X, x_0))$

Доказательство:  $(1) \Rightarrow (2)$  см.выше

 $(2) \Rightarrow (1) Y$  линейно связно.  $\forall y \in Yu \in P(y_0, y)$ 

Положим  $g(y) = (fou)_{a_0}^{\sim}(1)$ 

Достаточно доказать, что q корректно определено и непрерывно.

Действительно: пусть это так

$$p(g(y)) = (fou)(1) = f(y) \Rightarrow g - -y$$

$$p(g(y))=(fou)(1)=f(y)\Rightarrow g--f$$
  $g(y_0)=(foe_{y_0})_{a_0}^\sim(1)=e_{x_0}^\sim(1)=e_{x_0}(1)=a_0\Rightarrow g$  – искомое **Наблюдение**: пусть  $x_0,x_1,x_2\in X,a_0\in p^{-1}(x_0)$ 

$$a_1 = u_{a_0}^{\sim}, u \in P(x_0, x_1), v \in P(x_0, x_2)$$

 $(uv)_{a_0}^\sim = u_{a_0}^\sim \cdot v_{a_1}^\sim$  (из единственности поднятия пути)





### 1. Покажем: д корректно определено

Из условия (2): существует петля  $w: I \to E$  в  $a_0$ , такая что  $f \circ uv^{-1} = p \circ w$   $(f \circ u)(f \circ v^{-1}) = (f \circ u)(f \circ v)^{-1} \Rightarrow (f \circ u) \underset{p}{\simeq} (p \circ w)(f \circ v) \Rightarrow (f \circ u)_{a_0}^{\sim} \underset{p}{\simeq} w \circ (f \circ v)_{a_0}^{\sim} \Rightarrow (f \circ u)_{a_0}^{\sim} (1) = (f \circ v)_{a_0}^{\sim} (1) \Rightarrow g$  корректно определенно

#### 2. Непрерывность g

Зафиксируем  $\forall y \in Y$ . Достаточно доказать: g непрерывно в некоторой окрестности у Обозначим: x = f(y)

Пусть  $U \ni x$  — ровно накрытая окрестность. Существует линейно связная окрестность V точки y, такая что  $f(V) \subset U$ 

Существует открытое  $W\subset E, p|_{w}: W\Rightarrow U$  – гомеоморфизм, и такой что  $g(y)\in W$ 

Обозначим  $s = (p|_w)^{-1}: U \to W$ 

Достаточно доказать:  $g|_v = so(f|_v)(*)$ 

Пусть  $z \in V, V$  – линейно связно  $\Rightarrow$  выберем  $v \in P(y,z), v(I) \subset V$ 

ПУсть  $u \in P(y_0, y) \Rightarrow g(z) = (fouv)_{a_0}^{\sim} (1)$ 

Заметим:  $(fov)_a^{\sim} = sofov$ 

Обозначим a=g(y) (так как они оба поднимают fov и начинаются в a)

 $(fouv)_{a_0}^\sim = (fou)_{a_0}^\sim \cdot (fov)_{a_0}^\sim = (fou)_{a_0}^\sim \cdot (sofov) \Rightarrow g(z) = (sofov)(1) = (sof)(z) = s(f(z)) \Rightarrow (*)$  – доказано  $\Rightarrow g$  непрерывно что и требовалось доказать

**Следствие**:  $p: E \Rightarrow X$  – накрытие,  $x_0 \in X a_0 \in p^{-1}(x_0), Y$  – односвязно и локально линейно связно Тогда для любого непрерывного  $f: Y \Rightarrow X$ , такого что  $f(y_0) = x_0$  существует единственное поднятие  $g: Y \to E$  отображения f, такое что  $g(y_0) = a_0$ 

Пунктированные накрытия и их морфизмы. Теорема о классификации морфизмов связных пунктированных накрытий и критерий их изоморфизма в терминах подгрупп фундаментальной группы базы

**Теорема об эквивалентности категории накрытия**: Функтор  $\mathcal{F}: \mathrm{Cov}(X) \to G - Sets$  – эквивалентность категорий

Фнуктор  $\mathscr{G}: G-Sets \to \operatorname{Cov}(X)$  – его квазиобр.

**Следствие 1**: Функтор  $\mathcal{F}: \mathrm{Cov}_0(X) \to TrG - Sets$  – эквивалентность категорий

Доказательство: с учетом основной теоремы достаточно доказать:

 $\mathscr{G}(TrG - Sets) \subset Cov_0(X)$ 

Пусть S – транзитивно, G-множество,  $S \cong \mathcal{F}(\mathscr{G}(S)) = p_s^{-1}(x_0)$ 

Действие монодромии на  $p_s^{-1}(x_0)$  транзитивно  $\mathscr{G}$  – связно(было)

# Следствие 2( теорема о классификации связных накрытий)

Функтор  $\mathcal{F}$  порождает биекцию между множеством классов изоморфизма связных накрытий X и множеством подгрупп в G по правилу:

 $(E,p) \to \operatorname{Stabs}(\mathcal{F}(E,p)) =$  класс сопряженности подгруппы  $Imp_{x,a} \subset G$ , где a – любая точка из слоя  $p_s^{-1}(x_0)$  Обозначение: Функтор  $\mathcal{F}^* : \operatorname{Cov}_0^*(X,x_0) \to Sub(G)$ 

 $\mathcal{F}^*((E,p),a) = Imp_{*,a} \subset G$ 

Знаем:  $\mathscr{G}$  – строгий и полный

для любой подгруппы  $H \subset G\mathscr{G}^*(H) = (\mathscr{G}(G/H), a_H)$ , где  $a_H = [(H, e)] \in (G/H) \times X$ 

Заметим:  $p_s(a_H) = x_0$ 

Пусть  $H\subset K\subset G$  — подгруппа,  $i_{H;K}:H\subset K$  — отображение включения

 $q_{H;K}:G/H o G/K, Hg o Kg$  – морфизм G-множеств

 $\mathscr{G}^*(i_{H;K})=\mathscr{G}(q_{H;K}):\ \mathscr{G}(G/H) o\mathscr{G}(G/K);$  заметим:  $\mathscr{G}^*(a_H)=a_k$ 

Получим функтор  $\mathscr{G}^*: Sub(G) \to \mathrm{Cov}_0^*(X,x_0)$ 

**Следствие 3**:  $\mathcal{F}^*: \mathrm{Cov}_0^*(X, x_0) \to Sub(G)$  – эквивалентность категорий

 $\mathscr{G}^*: Sub(G) \to Cov_0^*(X, x_0)$  – его квазиобр.

Более того:  $\mathcal{F}^*\mathscr{G}^* = \mathrm{id}_{Sub(G)}$ 

**Доказательство**: с учетом Леммы 2(билет 25) достаточно доказать:  $\mathcal{F}^*\mathscr{G}^* = \mathrm{id}_{Sub(G)}$ 

Пусть  $H \subset G$  — подгруппа

 $\mathscr{G}(G/H) \underset{p_{G/H}}{\longrightarrow} X$ 

Обозначим:  $p=p_{G\diagup H}$ 

**Хотим доказать**:  $H = Im(p_*, a)$ , где  $a = a_H$ 

Пусть v — петля в  $x_0$ 

 $[v] \in Im(p_*,a) \Leftrightarrow \overset{\sim}{v_a}$  – петля, то есть  $\overset{\sim}{v_a}(1) = a$ 

Из Леммы 1:  $\widetilde{v_a}(1) = [(H, [v])] = [(H[v], e)]$ 

Поэтому:  $\overset{\sim}{v_a}(1)\Leftrightarrow [(H[v],e)]=[H,e]\Leftrightarrow (\text{так как }S\underset{G}{\times}G\cong S,[(s,e)]\to s)H[v]=H\Leftrightarrow [v]\in H\Rightarrow Im(p_*,a)=H$ 

что и требовалось доказать

Следствие 4 (теорема о классификации связных накрытий с отмеченными точками): Функтор  $\mathcal{F}^*$  порождает биекцию между множеством классов изоморфизма связных пунктиных накрытий X и множеством подгрупп в G по правилу  $((E,p),a) \to Im(p_*,a)$ 

 $\square_{x}$ ,  $\square_{G}$  - строгие, но не полные, поэтому не эквивалентны

## Действие монодромии. Условие его транзитивности. Описание стабилизатора точки слоя при действии монодромии

**Теорема**:  $p: E \to X$  – накрытие  $x_0 \in X$ . Тогда существует правое действие  $\pi_1(X, x_0)$  на  $p^{-1}(x_0)$ , заданное формулой  $y \cdot [u] = \widetilde{u_y}(1) (y \in p^{-1}(x_0), [u] \in \pi_1(X, x_0))(*)$ , где  $\widetilde{u_y}$  – поднятие u, такое что  $\widetilde{u_y}(0) = y$ Если E – линейно связно, то это действие транзитивно

Если E односвязно, то это действие свободно

Определение: действие (\*) называется действием монодромии

Доказательство:  $P(u_y(1)) = u(1) = x_0$  (для любой петли в  $x_0) \Rightarrow u_y(1) \in p^{-1}(x_0)$  Из теоремы выше: формула (\*) корректно определяет отображение  $p^{-1}(x_0) \times \pi_1(X, x_0) \to p^{-1}(x_0), (y, [u]) =$  $y \times [u] = \widetilde{u_y}(1)$ 

Покажем: это действие

 $\forall y\in p^{-1}(x_0):y\cdot [e]=\widetilde{e_y}(1)=y$ , так как  $\widetilde{e_y}$  – постоянная петля в y  $\forall y\in p^{-1}(x_0), \forall [u], [v]\in \pi_1(X,x_0)$ 

Обозначим:  $z=y\cdot [u]=\widetilde{v_y}(1)\Rightarrow (y[u])\cdot [v]=z\cdot [v]=\widetilde{v_z}(1)$ 

 $\overset{\sim}{u_y} \cdot \overset{\sim}{v_z}$  — поднятие  $u \cdot v$ 

 $(\widetilde{u_y}\cdot\widetilde{v_z})(0)=\widetilde{u_y}(0)=y\Rightarrow\widetilde{u_y}\cdot\widetilde{v_y}=\overset{\sim}{(uv)_y}$ 

 $y\cdot ([u][v])=y[u\cdot v]=\overset{\sim}{(uv)_y}(1)=\overset{\sim}{(uv)_y}(1)=\overset{\sim}{(v_z)}(1)=\overset{\sim}{v_z}(1)\Rightarrow (y\cdot [u])[v]=y([u][v])\Rightarrow (*)$  определяет действие Пусть E линейно связно,  $y,z\in p^{-1}(x_0)$ 

Выберем  $v \in P(y,z)$ , обозначим  $u=p \cdot v \Rightarrow u$  – петля в  $x_0, v=\overset{\sim}{u_y} \Rightarrow y \cdot [u]=v(1)=z \Rightarrow$  действие транзитивно Пусть E односвязно,  $y \in p^{-1}(x_0), [u] \in \pi_1(X, x_0), y[u] = y$ , то есть  $y = \overset{\sim}{u_y}(1) \Rightarrow \overset{\sim}{u_y}$  – петля в  $y \Rightarrow \overset{\sim}{u_y} \simeq e_y \Rightarrow u \simeq e_{x_0}$ , то есть  $[u] = [e_{x_0}] \Rightarrow$  действие свободно что и требовалось доказать

Следствие:  $p:E \to X$  — накрытие, E — односвязно  $\Rightarrow \forall x_0 \in X, \forall y \in p^{-1}(x_0),$  отображение  $\pi_1(x,x_0) \to X$  $p^{-1}(x_0), [u] \to y[u]$  – биекция

Морфизмы G-множеств. Изоморфизм между орбитой и множеством смежных классов по стабилизатору. Следствие: изоморфизм между слоем накрытия и множеством смежных классов фундаментальной группы базы накрытия по образу фундаментальной группы накрывающего пространства.

**Определение**: X, Y — правые G-множества

Отображение  $\phi: X \to Y$  — морфизм G-множеств (G-эквивалентное отображение)  $\Leftrightarrow \phi(x \cdot g) = \phi(x) \cdot g(x \in X, g \in G)$ 

Правые G-множества и их морфизм образуют категорию. Обозначают ее G-Sets

**Предложение**: X – правое G-множество,  $x \in X, x \in X$ . Существует изоморфизм правых G-множеств  $\phi: G/_{\operatorname{Stab}(X)} \stackrel{\sim}{\to} x \cdot G, \phi(\operatorname{Stab}(x) \cdot g) = x \cdot g(g \in G)$ .

В частности, если X транзитивно, то  $\phi$ -изоморфизм  $G/_{\mathrm{Stab}(X)}$  на X.

Доказательство: пусть  $g, h \in G$ 

 $\operatorname{Stab}(x) \cdot g = \operatorname{Stab}(x) \cdot h \Leftrightarrow g \cdot h^{-1} \in \operatorname{Stab}(x) \Leftrightarrow x \cdot g \cdot x^{-1} = x \Leftrightarrow x \cdot g = x \cdot h$ 

Поэтому  $\phi$  — корректно определенно и инъективно. Очевидно,  $\phi$  — сюръективно и является морфизмом G-множеств что и требовалось доказать

Гомоморфизм фундаментальных групп, индуцированный накрывающих отображением.

 $p: E \to X - -, x_0 \in X, a \in p^{-1}(x_0)$ 

 $p_x: \pi_1(E,a) \to \pi_1(X,x_0)$ 

Напоминания: Пусть  $x_1 \in X, u \in P(x_0, x_1), \widetilde{u_a}$  – поднятие u, такое что  $\widetilde{u_a}(0) = a$  (оно существует и единственное)

Если  $v,u\in P(x_0,x_1)$ , то  $u\overset{\sim}{=}v\Leftrightarrow \overset{\sim}{u_a}\overset{\sim}{=}\overset{\sim}{v_a}\Rightarrow \overset{\sim}{u_a}(1)=\overset{\sim}{v_a}(1)$ 



Действие монодромии:  $p^{-1}(x_0) \times \pi_1(X, x_0) \to p^{-1}(x_0), (a, [u]) \to a[u] = \widetilde{u_a}(1)$  **Теорема**:  $p: E \to X$  – накрытие,  $x_0 \in X, a \in p^{-1}(x_0)$ 

- 1.  $p_*: \pi_1(E,a) \to \pi_1(X,x_0)$  мономорфизм
- 2.  $Imp_* = \{[u] : \widetilde{u_a} \text{петля}\}$
- 3.  $Imp_* = \operatorname{Stab}(a)$  при действии монодромии



#### Доказательство:

- 1. Пусть  $[v]\in Kerp_*$ . Обозначим  $u=p\cdot v$   $u\overset{\sim}{\underset{p}{\sim}}e_{x_0}\Rightarrow \overset{\sim}{u_a}\overset{\sim}{\underset{p}{\sim}}(e_{x_0}^\sim)_a(=e_a), [v]=[e_a]\in pi_1(E,a)$
- 2.  $[u] \in Imp_* \Leftrightarrow u \overset{\sim}{\underset{p}{\simeq}} p \circ v$  для некоторой петли v в  $a \Leftrightarrow \overset{\sim}{u_a} \overset{\sim}{\underset{p}{\simeq}} v$  для некоторой петли v в  $a \Leftrightarrow \overset{\sim}{u_a}$  петля
- 3.  $\overset{\sim}{u_a}-\Leftrightarrow \overset{\sim}{u_a}(1)=a\Leftrightarrow a=a\cdot [u]\Leftrightarrow [u]\in St(a)$  что и требовалось доказать

**Следствие**:  $p: E \to X$  – накрытие

E – линейно связно,  $x_0 \in X, a \in p^{-1}(x_0)$ . Существует изоморфизм правых  $\pi_1(X,x_0)$  – множеств  $\pi_1(X,x_0)\diagup_{Imp_*}\stackrel{\sim}{\to} p^{-1}(x_0), (Imp_*)\cdot [u] \to a\cdot [u]=\stackrel{\sim}{u_a}(1)$ 

Доказательство: из п.(3) теоремы и транзитивности монодромии что и требовалось доказать

Морфизмы накрытий. Ограничение морфизма накрытий на слой является морфизмом  $\pi_1(X,x_0)$ - множеств. Морфизмы транзитивных G-множеств с отмеченной точкой: единственность и критерий существования. Теорема о классификации морфизмов связных накрытий (биективность соответствия между морфизмами накрытий и морфизмами соответствующих  $\pi_1(X,x_0)$  – множеств).

```
Предл: G – группа, X,Y – прав. G мн-ва; x \in X, y \in Y
```

Как следствие  $\mathcal{F}: \mathrm{Cov}(X) \to Tr\pi_1(X,x_0)$  строгий и полный

- 1.  $\forall$  морфизм  $\varphi: X \to Y$  $\operatorname{Stab}(x) \subset \operatorname{Stab}(\varphi(x))$
- 2. X транзитивно  $\Rightarrow \exists$  не более одного морфизма  $\varphi: X \to Y$ , т.ч  $\varphi(x) = y$
- 3. Если X транзитивно, то такой  $\varphi$  существует  $\Leftrightarrow$   $\operatorname{Stab}(x) \subset \operatorname{Stab}(y)$

```
Доказательство:
 (1) \forall g \in \operatorname{Stab}(x)
 \varphi(x)g = \varphi(xg) = \varphi(x) \Rightarrow g \in \operatorname{Stab}(\varphi(x))
  (2) Если \varphi(x) = q, то \varphi(xq) = yq, \forall q \in G
  (3) (\Rightarrow): из (1)
  (\Leftarrow): Определим \varphi: X \to Y так \varphi(xg) = yg, \forall g \in G
Пусть xg_1=xg_2\Rightarrow xg_1g_2^{-1}=x\Rightarrow g_1g_2^{-1}\in \operatorname{Stab}(x)\subset\operatorname{Stab}(y)\Rightarrow yg_1=yg_2\Rightarrow \varphi корректно определено
 Очев, \varphi – морфизм G-множеств, \varphi(x) = y, что и требовалось доказать
 Обозн: X – транзитивное G-мн-во,
\operatorname{Stabs}(X) = \operatorname{Stab}(x) | x \in X
Наблюдение: для \forall x, \forall g \in G
\operatorname{Stab}(xg) = g^{-1}\operatorname{Stab}(x)g
X – транз, \Rightarrow Stab(X) = \{g^{-1}\operatorname{Stab}(x)g|g \in G\}(*) – множество всех подгрупп, сопряженных Stab(x)
Предл. следующие утверждения эквивалентны:
            1. X \simeq Y
            2. Stabs(X) = Stabs(Y)
 Доказательство: (1) \Rightarrow (2)
\operatorname{Stab}(x) = \operatorname{Stab}\varphi(x) \Rightarrow \operatorname{\pio}(*)\operatorname{Stabs}(X) = \operatorname{Stabs}(Y)
 (2) \Rightarrow (1)
Зафиксируем \forall x \in X, \exists y \in Y, \text{ т.ч } \mathrm{Stab}(x) = \mathrm{Stab}(y)
 \exists морфизм \varphi: X \to Y и \phi: Y \to X, такие что \varphi(x) = y и \phi(y) = x \Rightarrow (\phi \varphi)(x) = x \Rightarrow \phi \varphi = \mathrm{id}_x \Rightarrow \varphi = \mathrm{id}
изоморфизм, что и требовалось доказать
Th: Функтор \mathcal{F}: \operatorname{Cov}(X) \to \pi_1(X, x_0) строгий и полный
 Доказательство: (строгость)
Пусть f,g:(E,p) \to (F,q) – морфизм в \mathrm{Cov}(X), \ f|_{p^{-1}(x_0)} = g|_{p^{-1}(x_0)}
 \{E_i|i\in I\} – связные компоненты E,p_i=p|_{E_i}:E_i\to X
 \forall i \in I: \ f|_{p^{-1}(x_0)} = g|_{p^{-1}(x_0)}
 f,g|_{E_i}:(E_i,p_i)	o (F,q),\,E_i— связно \Rightarrow \ f|_{E_i}=g|_{E_i}\ orall i\ \Rightarrow\ f=g\ \Rightarrow\ \mathcal{F} строгий
 (полнота) Пусть G = \pi_1(X, x_0); пусть \varphi : p^{-1}(x_0) \to q^{-1}(x_0)
 Обозначим \varphi_i : \varphi|p_i^{-1}(x_0) : p_i^{-1}(x_0) \to q^{-1}(x_0)
Зафиксируем \forall a \in p_i^{-1}(x_0), \ b = \varphi_i(a); \ \mathrm{Stab}(a) \subset \mathrm{Stab}(b) \ \Rightarrow \ \exists ! морфизм накрытий f_i : (E_i, p_i) \to (F, q), т.ч
 f_i(a) = b
 \varphi_i: p^{-1}(x_0) \to q^{-1}(x_0) переводит a в b \Rightarrow f_i | p_i^{-1}(x_0) = \varphi_i
 Определим f: E \to F так f|_{E_i} = f_i
 Очевидно f – морфизм накрытий и f|p^{-1}(x_0)=arphi \Rightarrow \mathcal F полный
```

Действие группы сопряжениями (на себе и на множестве подгрупп). Сопряженность стабилизаторов точек из одной орбиты. Критерий изоморфизма транзитивных G-множеств. Критерий изоморфизма накрытий в терминах подгрупп фундаментальной группы базы

Изоморфизмы транзитивных G-множеств и классы сопряженных подгрупп. Функтор  $\mathcal F$  из категории накрытия Cov(X) в категорию  $\pi_1(X,x_0)$ -множеств. Его строгость и полнота. Следствие: критерий изоморфизма связных накрытий в Cov(X)

Предл: G – группа, X,Y – прав. G мн-ва;  $x \in X, y \in Y$ 

```
1. \forall морфизм \varphi: X \to Y
     \operatorname{Stab}(x) \subset \operatorname{Stab}(\varphi(x))
```

- 2. X транзитивно  $\Rightarrow \exists$  не более одного морфизма  $\varphi: X \to Y$ , т.ч  $\varphi(x) = y$
- 3. Если X транзитивно, то такой  $\varphi$  существует  $\Leftrightarrow$   $\operatorname{Stab}(x) \subset \operatorname{Stab}(y)$

```
Доказательство:
(1) \ \forall g \in \operatorname{Stab}(x)
\varphi(x)q = \varphi(xq) = \varphi(x) \Rightarrow q \in \operatorname{Stab}(\varphi(x))
(2) Если \varphi(x) = g, то \varphi(xg) = yg, \forall g \in G
(3) (\Rightarrow): из (1)
(\Leftarrow): Определим \varphi: X \to Y так \varphi(xg) = yg, \forall g \in G
Пусть xg_1=xg_2\Rightarrow xg_1g_2^{-1}=x\Rightarrow g_1g_2^{-1}\in\operatorname{Stab}(x)\subset\operatorname{Stab}(y)\Rightarrow yg_1=yg_2\Rightarrow \varphi корректно определено
Очев, \varphi – морфизм G-множеств, \varphi(x) = y, что и требовалось доказать
Обозн: X — транзитивное G-мн-во,
\operatorname{Stabs}(X) = \operatorname{Stab}(x) | x \in X
Наблюдение: для \forall x, \forall g \in G
\operatorname{Stab}(xg) = g^{-1}\operatorname{Stab}(x)g
X – транз, \Rightarrow Stab(X) = \{g^{-1}\operatorname{Stab}(x)g|g \in G\}(*) – множество всех подгрупп, сопряженных Stab(x)
Предл. следующие утверждения эквивалентны:
    1. X \simeq Y
    2. Stabs(X) = Stabs(Y)
Доказательство: (1) \Rightarrow (2)
\operatorname{Stab}(x) = \operatorname{Stab}\varphi(x) \Rightarrow \operatorname{\pio}(*)\operatorname{Stabs}(X) = \operatorname{Stabs}(Y)
(2) \Rightarrow (1)
Зафиксируем \forall x \in X, \exists y \in Y, \text{ т.ч } Stab(x) = Stab(y)
\exists морфизм \varphi: X \to Y и \phi: Y \to X, такие что \varphi(x) = y и \phi(y) = x \Rightarrow (\phi\varphi)(x) = x \Rightarrow \phi\varphi = \mathrm{id}_x \Rightarrow \varphi
изоморфизм, что и требовалось доказать
Th: Функтор \mathcal{F}: \operatorname{Cov}(X) \to \pi_1(X, x_0) строгий и полный
Доказательство: (строгость)
Пусть f,g:(E,p) \to (F,q) – морфизм в \mathrm{Cov}(X), \ f|_{p^{-1}(x_0)} = g|_{p^{-1}(x_0)}
\{E_i|i\in I\} – связные компоненты E,p_i=p|_{E_i}:E_i	o X
\forall i \in I: \ f|_{p^{-1}(x_0)} = g|_{p^{-1}(x_0)}
f,g|_{E_i}:(E_i,p_i)	o (F,q),\,E_i— связно \Rightarrow \ f|_{E_i}=g|_{E_i}\ orall i\ \Rightarrow\ f=g\ \Rightarrow\ \mathcal{F} строгий
(полнота) Пусть G = \pi_1(X, x_0); пусть \varphi : p^{-1}(x_0) \to q^{-1}(x_0)
Обозначим \varphi_i: \varphi|p_i^{-1}(x_0): p_i^{-1}(x_0) \to q^{-1}(x_0) Зафиксируем \forall a \in p_i^{-1}(x_0), \ b = \varphi_i(a); \ \mathrm{Stab}(a) \subset \mathrm{Stab}(b) \ \Rightarrow \ \exists ! \ \mathrm{морфизм} \ \mathrm{накрытий} \ f_i: (E_i, p_i) \to (F, q), \ \mathrm{т.ч}
f_i(a) = b
arphi_i:p^{-1}(x_0)	o q^{-1}(x_0) переводит a в b\ \Rightarrow\ f_i|p_i^{-1}(x_0)=arphi_i
Определим f: E \to F так f|_{E_i} = f_i
Очевидно f – морфизм накрытий и f|p^{-1}(x_0)=\varphi \Rightarrow \mathcal{F} полный
Как следствие \mathcal{F}: \mathrm{Cov}(X) \to Tr\pi_1(X,x_0) строгий и полный
Критерий изоморфизма накрытий в Cov(X):
(E,p) \sim (F,q) – накрытия X; E,F – связны, x_0 \in X, a \in p^{-1}(x_0), b \in q^{-1}(x_0)
```

**Доказательство**: из того, что  $\mathcal{F}^*$  и  $\mathcal{F}$  строгие и полные и из леммы, что и требовалось доказать

 $((E,p),a_0)\simeq ((F,q),b_0)$  в  $\mathrm{Cov}_0^*(X,x_0) \Leftrightarrow Imp_{*,a}$  и  $Imq_{*,b}$  сопряжены в  $\pi_1(X,x_0)$ 

Нормализатор подгруппы в группе. Описание группы автоморфизмов транзитивного Gмножества в терминах группы G. Описание группы автоморфизмов связного накрытия в терминах фундаментальной группы базы. Следствие: группа автоморфизмов односвязного накрытия.

Универсальное накрытие и его универсальное свойство. Относительно односвязные подмножества и полулокально односвязные пространства. Примеры и контрпримеры. Необходимое условие существования универсального накрытия.

**Определение**: Накрытие:  $p:\overset{\sim}{X}\to X$  называется универсальным  $\Leftrightarrow\overset{\sim}{X}$  односвязно.

Предл: Пусть  $p:\overset{\sim}{X}\to X$  — универсальное накрытие,  $x_0\in X, a\in p^{-1}(x_0)$ . Тогда  $((\overset{\sim}{X},a),p)$  — инициальный объект в  $\mathrm{Cov}_0^*(X,x_0)$ 

Пусть  $q: F \to X$  – накрытие, A – связно,  $b \in q^{-1}(x_0) \subset F$ 

Знаем: В не более одного морфизма.

 $(\overset{\sim}{X},p) \to (F,p)$  в  $\mathrm{Cov}_0^*(X,x_0)$  и он  $\exists \Leftrightarrow Imp_{*,a} \subset Imq_{*,a}$  Последнее услвоие выполнено, т.к.  $\overset{\sim}{X}$  односвязно и  $Imp_{*,a}=e$ 

**Предл**: След свойства подмножества  $U \subset X$  эквивалентны

- 1.  $\forall x \in U$  гомоморфизм  $i_*: (U,x) \to \pi_1(X,x)$  индуциров. включением  $i: U \to X$  тривиален. (то есть  $Imi_x = e$ )
- 2. ∀ петля в U гомотопна в X постоянной петле
- 3.  $\forall x_0, x \in U$  Любые пути  $u, v : I \to U$  из  $x_0$  в x, гомотопны в X

#### Доказательство:

- $(1)\Leftrightarrow (2)$  из определения  $i_*$
- $(2) \Leftrightarrow (3)$  Как для U = X (см ранее)

**Определение**: Мн-во  $U \subset X$ , удовл. условиям (выше) называется относительно односвязным. Набл 1:  $U \subset X$ , отн. односвязно  $\Rightarrow$  каждый  $v \subset U$  относ. односвязно в X.

Определение: Х наз

- 1. Локально односвязным  $\Leftrightarrow \forall x \in X \forall U \ni x \exists$  односвязная окрестность  $V \ni x$ , т.ч.  $V \subset U$
- 2. Полулокально односвязным  $\Leftrightarrow \forall x \in X \exists$  относительно односвяз. окрестность  $U \ni x$

#### Набл 2:

- (1) лок. односвязное ⇒ полулок. односвяз. и лок линейно связно.
- (2) X полулок односвяз.  $\Leftrightarrow \forall x \in X \ \forall U \ni x \ \exists$  относ. односвяз. окрестность  $V \ni x, V \subset U$

Если вдобавок X лок лин связно, то ∃ линейно связное V с этими свойствами (следует из набл 1)

Предл: Пусть  $\exists$  унив. накрытие  $p: X \to X \Rightarrow X$  -полулок односвязно.

Пусть  $x \in X, U \ni x$  ровно накр. окр-ть  $\forall$  петля  $\Gamma$  в U поднимается до  $\widetilde{u}$  в  $\widetilde{X}$ ,  $\widetilde{X}$  односвязно  $\Rightarrow$   $\widetilde{u}$  гомотопно в  $\widetilde{X}$  пост. петле  $\Rightarrow$   $\Gamma$  гомотопно в X пост. петле  $\Rightarrow$  U относ. односвязно

#### Теорема о существовании универсального накрытия. Примеры универсальных накрытий.

 ${
m X}$  — связное, локально линейно связное, полулокально односвязное топологическоепространство. Тогда  $\exists$  универсальное накрытие р:  $\stackrel{\sim}{X} \to {
m X}$ .

Набл. (где искать  $\tilde{X}$ ?)

Предположим универсальное накрытие р<br/>: $\overset{\sim}{X} \to {\bf X}$  существует

 $\forall x_0, x_1 \in X(x_0, x_1) = P(x_0, x_1) /_{\frac{\sim}{2}}$ 

Зафиксируем  $x_0 \in X$ ; пусть  $a \in p^{-1}(x_0)$ ; u,v  $\in P(x_0, x), x \in P(x_0, x)$ 

Знаем:  $u\simeq v\Leftrightarrow \widetilde{u_a}\simeq \widetilde{v_a}\Leftrightarrow \widetilde{u_a}(1)=\widetilde{v_a}(1)$  (влево из односвязноти  $\widetilde{X}$ , вправо верно всегда)

Поэтому отобр

 $\phi: \bigsqcup_{x \in X}$ 



 $p^{-1}([u]) = u(1)$ , диаграмма комутативна

I ([м]) I (м(г)) жиль разываться I (м) I (жиль разываться) I (векция I)) I (векция I (векция I) I (век

- 1.  $\phi_i(U_i \cap U_i)$  открыто в  $X_i$
- 2. "Отображение склейки" $\phi_i \cdot \phi_i^{-1} : \phi_i(U_i \cap U_j) \to \phi_i(U_i \cap U_j)$  непрерывно.

Тогда на X $\exists$ ! топология, в которой все  $U_i$  открыт., и в т.ч. все  $\phi_i$  – гомеоморфизмы

**Терминология**:  $(U_I, \phi_i)$  – карта,  $\{(U_i, \phi_i) | i \in I\}$  – атлас.

Идея доказательсва: Иском топ на X – финальная топ порожденная  $\{\phi_i^{-1}|i\in I\}$  т.е.  $u\subset X$  открыто  $\Leftrightarrow \phi_i(u\cap U_i)$  открыто в  $X_i \forall i/$ 

**Доказательство**: Зафиксируем  $x_0 \in X$  Обозначим  $\overset{\sim}{X} = \bigsqcup_{i=1}^{n} (x_0, x)$ 

 $p:\stackrel{\sim}{X} o X,\stackrel{\sim}{p}([u])=u(1)$  Обозначим  $\forall U\subset X\ \forall x,y\in U_U(x,y)(=\{[u]/u\in P(x,y),u(I)\in U\}\subset (x,y))$ 

 $V = \{U \subset X \mid U \text{ Открыто, лин. связно, относ односвяз} \} ext{ V покрыв X}.$ 

Заметим  $\forall U \in V \ \forall x, y \in U_U(x,y)$  состоит из одного элмента  $W_x y$ 

 $\forall U \in V \ \forall x \in U$  рассмотрим отображения  $p^{-1}(U) \overset{\gamma_{u,x}}{\underset{\phi_{u,x}}{\leftrightarrow}}$  (тут должны быть стелки тудым сюдым сверху фи,

снизу вилы дьявола)  $(x_0,x) \times U$ 

 $\gamma_{u,x}(v,y) = vw_{xy} \in p^{-1}(y) \in p^{-1}(U)$ 

 $\phi_{u,x}(u) = (uw_{yx}, y)$ , где y = u(1). Заметим:

 $w_{xy} \cdot w_{yz} = w_{xz}$ 

 $w_{xy}^{-1}=w_{yx}^{-1}$  Получили что  $\phi\gamma$  биекции обратные друг другу.

 $(v,y) \rightarrow v \cdot w_{xy} \rightarrow (v \cdot w_{xy} \cdot w_{yx}, y) = (v,y)$ 

 $u \to (u \cdot w_{xy}, y) \to u \cdot w_{xy} \cdot w_{yx} = u$ 

Снабдим  $(x_0, x)$  дискретной топологией,  $(x_0, x) \times U$  – топологией произведения. Покажем: сем-во  $\{\phi_{u,x} : U \in V, x \in U\}$  удовлет. усл. леммы

Пусть  $U, W \in V, x \in U, y \in W$ 

 $\phi_{u,x}(p^{-1}(U)\cap p^{-1}(W)) = \phi_{u,x}(p^{-1}(U\cap W)) = (x_0,x)\times (U\cap W)$  – открыто в  $(x_0,x)\times U\Rightarrow \text{усл}(1)$  из леммы выполнено. Проверим (2)

Нужно, чтобы  $\phi_{v,y}\cdot\gamma_{u,x}:(x_0,x)\times(U\cap W)\to(x_0,y)\times(U\cap W)$  было непрерывным. Зафикс  $\forall z\in U\cap W$ 

Пусть Q — линейно связн окр-сть z,  $Q\subset U\cap W, w_{xt}\in {}_W(z,t)$  — единств. элемен.  $\forall t\in Q\ \forall v\in (x_0,x)$ 

 $(\phi_{v,y}\cdot \gamma_{u.x})(v,t)=\phi_{v,y}(v\cdot w_{xt})=(v\cdot w_{xt}w_{ty};t)=(v\cdot w_{xz}w_{zt}w_{tz}w_{zy},t)=(vw_{xz}w_{zy},t)$  – непр. отображение.

 $\Rightarrow$  выполнены условия Леммы  $\Rightarrow$  на  $\overset{\sim}{X}$   $\exists$ ! топ, в которой все  $p^{-1}(U)$  открыты и все  $\phi_{u,x}(U \in V, x \in X)$  – гомеоморфизмы. ИМеем диаграмму.

 $\Rightarrow$  U ровно накрыта р  $\Rightarrow$   $p:\overset{\sim}{X} \to X$  — накрытие.



Факторизация накрывающего пространства по действию группы. Построение накрытия по подгруппе фундаментальной группы. Теорема о классификации накрытий (с отмеченной точкой и без).