Задания к лабораторным работам по блоку "Алгоритмы обработки данных на JavaScript"

Содержание

1	Общие указания 1.1 alert	
2	Лабораторная работа №1	3
3	Лабораторная работа №2	4
4	Лабораторная работа №3	6
5	Лабораторная работа №4 5.1 Обычный вариант	8 8
6	Лабораторная работа №5	10
7	Лабораторная работа №6	11
8	Лабораторная работа №7	12

1 Общие указания

Для выполнения лабораторной работы необходимо написать исходный код требуемой программы.

Ввод параметров в программу осуществляется при помощи функции prompt, если не указано иное.

Результат работы программы должен выводиться при помощи функции alert, либо console.log.

Описание этих функций представлено ниже.

1.1 alert

Функция alert(message) показывает пользователю переданное сообщение message.

1.2 prompt

Функция prompt(message) показывает сообщение message и запрашивает ввод текста у пользователя. Возвращает напечатанный текст или null, если пользователь закрыл окно.

```
const name = prompt('Введите своё имя');
alert(name); // Распечатает введённый текст
```

1.3 console.log

Функция console.log(message) выводит переданное ей сообщение message в консоль разработчика.

Лабораторная работа №1 $\mathbf{2}$

В процессе написания лабораторной работы ознакомиться с основами языка JavaScript.

Варианты:

1. Программа должна вычислять площадь треугольника по трём сторо-

Входные данные: длины сторон a, b, c.

Выходные данные: площадь треугольника S.

Формула для расчёта: $S = \sqrt{p(p-a)(p-b)(p-c)}$, где $p = \frac{a+b+c}{2}$.

2. Программа должна вычислять сумму заданного количества начальных элементов геометрической прогрессии.

Входные данные: первый элемент геометрической прогрессии b_1 , знаменатель прогрессии q, количество элементов прогрессии n.

Выходные данные: сумма заданного количества элементов заданной геометрической прогрессии S.

Формула для расчёта: $S = \frac{b_1(q^n-1)}{a-1}$.

3. Программа должна вычислять сумму заданного количества начальных элементов арифметической прогрессии.

Входные данные: первый элемент арифметической прогрессии a_1 , шаг прогрессии d, количество элементов прогрессии n.

Выходные данные: сумма заданного количества элементов задан-

ной арифметической прогрессии S. Формула для расчёта: $S = \frac{2a_1 + d(n-1)}{2} \cdot n.$

4. Программа должна вычислять радиус окружности, описанной около треугольника, заданного длинами сторон.

Входные данные: длины сторон a, b, c.

Выходные данные: радиус описанной окружности R. Формула для расчёта: $R=\frac{abc}{4\sqrt{p(p-a)(p-b)(p-c)}},$ где $p=\frac{a+b+c}{2}.$

5. Программа должна вычислять радиус окружности, вписанной в треугольник, заданного длинами сторон.

Входные данные: длины сторон a, b, c.

Выходные данные: радиус вписанной окружности r.

Формула для расчёта: $r = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}},$ где $p = \frac{a+b+c}{2}.$

3

В процессе написания лабораторной работы ознакомиться с управляющими операторами и циклами в языке JavaScript.

Варианты:

1. Напишите исходный код программы, которая считывает единственное целое число n и выводит результат проверки этого числа на простоту. Например, числа 1,2,3,5,7,11,13... являются простыми, так как делятся только сами на себя и на единицу.

Входные данные: число n.

Выходные данные: Сообщение о том, является ли число простым.

2. Напишите исходный код программы, которая считывает единственное целое число n и проверяет, является ли это число автоморфным.

Натуральное число называется автоморфным, если десятичная запись его квадрата оканчивается на десятичную запись этого числа.

Например, число 5 является автоморфным так как $5^2=2\mathbf{5}$. Число 25 является автоморфным так как $25^2=6\mathbf{25}$.

Входные данные: число n.

Выходные данные: Сообщение о том, является ли число автоморфным.

3. Напишите исходный код программы, которая считывает единственное целое число n и проверяет, является ли оно совершенным.

Совершенным называется число, равное сумме всех своих собственных делителей (отличных от n).

Например, 6 = 1 + 2 + 3; 28 = 1 + 2 + 4 + 7 + 14.

Входные данные: число n.

Выходные данные: Сообщение о том, является ли число совершенным

4. Напишите исходный код программы, которая считывает единственное целое число n и проверяет, является ли оно избыточным.

Избыточным называется положительное целое число, сумма положительных собственных делителей (отличных от n) которого превышает n.

Например, число 12 является избыточным, т.к. 1+2+3+4+6=16. 16>12.

Входные данные: число n.

Выходные данные: Сообщение о том, является ли число избыточным.

5. Напишите исходный код программы, которая считывает единственное целое число c и проверяет, является ли оно негипотенузным.

Негипотенузное число - натуральное число, квадрат которого не может быть записан как сумма двух ненулевых квадратов чисел.

Примеры негипотенузных чисел: 1, 2, 3, 4, 6, 7,

Входные данные: число c.

Выходные данные: Сообщение о том, является ли число негипотенузным.

6. Напишите исходный код программы, которая находит все числа Армстронга на заданном пользователем отрезке [a, b].

Числа Армстронга – это натуральные числа, равные сумме своих цифр, возведённых в степень количества цифр в их записи.

Пример: $153 = 1^3 + 5^3 + 3^3$.

Найденные числа должны быть выведены в консоль.

Входные данные: левая граница отрезка a и правая граница отрезка b.

Выходные данные: Сообщения с найденными числами Армстронга. Числа должны быть выведены в консоль.

7. Напишите исходный код программы, которая находит первые n Пифагоровых троек. Число n вводится пользователем.

Числа a,b,c составляют Пифагорову тройку, если $a^2+b^2=c^2$.

Входные данные: Требуемое количество пифагоровых троек n.

Выходные данные: Сообщения с найденными Пифагоровыми тройками. Пифагоровы тройки должны быть выведены в консоль в формате (a,b,c).

В процессе написания лабораторной работы ознакомиться с механизмом рекурсии в языке JavaScript.

Варианты:

1. Быстрое возведение числа b в степень n определяется следующими правилами:

$$\begin{cases} b^{0} = 1 \\ b^{1} = b \\ b^{n} = (b^{n/2})^{2} & -\text{ если n четно} \\ b^{n} = b \times b^{n-1} & -\text{ если n нечетно} \end{cases}$$
 (1)

Реализуйте рекурсивную функцию, находящую b^n .

Входные данные: основание b и степень n.

Выходные данные: Число b, возведённое в степень *n*.

2. Функция Аккермана определяется следующим образом:

$$A(m,n) = \begin{cases} n+1, & \text{m=0;} \\ A(m-1,1), & \text{m > 0 n = 0;} \\ A(m-1,A(m,n-1)), & \text{m > 0, n > 0.} \end{cases}$$
 (2)

Напишите функцию, которая вычисляет значение функции Аккермана по заданным n и m.

3. Реализуйте рекурсивный алгоритм вычисления суммы n первых членов ряда:

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{n-1}}{(n-1)!}.$$
 (3)

Входные данные: значение x и количество членов ряда n.

Выходные данные: значение суммы n первых членов ряда в заданной точке x.

4. Реализуйте алгоритм вычисления последовательности n вложенных корней:

$$\sqrt{m + \sqrt{m + \dots + \sqrt{m}}}. (4)$$

Например, для n=3 в точке m=4: $\sqrt{4+\sqrt{4+\sqrt{4}}}$.

Входные данные: значение m и количество вложенных корней n.

Выходные данные: значение последовательности n вложенных корней в точке m.

5. Реализуйте алгоритм вычисления n вложенных синусов с использованием рекурсии:

$$\sin \sin \dots \sin x. \tag{5}$$

Например, для n=3 и x=0: $\sin\sin 0$.

Входные данные: значение x и количество вложенных синусов n.

Выходные данные: значение n вложенных синусов в точке x.

6. Синус угла (заданного в радианах) можно вычислить приближением $\sin x \approx x$ при малых значениях x и употребить тригонометрическое равенство

$$\sin x = 3\sin\frac{x}{3} - 4\sin^3\frac{x}{3} \tag{6}$$

для уменьшения значения аргумента sin. Будем считать угол достаточно малым, если он не больше 0.1 радиана.

Реализуйте рекурсивную функцию, находящую значение синуса в заданной точке x.

Входные данные: точка x.

 $\mathbf{\mathcal{L}}_{\mathbf{\mathcal{L}}}$

Выходные данные: значение синуса в точке x.

В процессе написания лабораторной работы ознакомиться с алгоритмами обработки массивов в JavaScript.

Задание со звёдочкой опционально.

5.1 Обычный вариант

Задание 1

Создайте массив вещественных чисел как минимум из 5 элементов.

Задание 2

Добавьте в конец массива число 10.

Вставьте вторым элементом в массив число 3.

Вставьте в начало массива число 5.

Задание 3

Удалите из массива 2 элемента со второго по порядку элемента.

Задание 4

При помощи цикла выведите в консоль значения всех элементов массива.

Задание 5

При помощи цикла найдите сумму всех элементов массива.

Задание 6

Поделите сумму элементов из прошлого задания на количество элементов массива. Так вы сможете найти среднее арифметическое.

5.2 Усложнённые задания

Варианты:

- 1. Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую сумму элементов массива, расположенных до минимального элемента.
- 2. Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую сумму модулей элементов массива, расположенных после первого элемента равного нулю.

- 3. Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую сумму элементов, расположенных после последнего элемента равного нулю.
- 4. Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую произведение элементов, расположенных между максимальным и минимальным элементами.
- 5. Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую количество элементов, равных предыдущему элементу.
- 6. Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую среднее арифметическое нечётных элементов.
- Напишите функцию, принимающую на вход массив вещественных чисел и возвращающую количество элементов, неравных своему предыдущему.

В процессе написания лабораторной работы ознакомиться с объектами в языке JS.

Задание со звёдочкой опционально.

Задание 1

Создать JS объект, содержащий поля с именем, возрастом и полом. Объект должен содержать информацию об Иванове Иване Ивановиче 30 лет.

Задание 2

Создать массив из 5 элементов, заполнить их объектами структуры, аналогичной заданию 1. Найти в массиве индекс объекта, содержащего информацию об Иванове И.И.

Задание 3

Поменяйте объекту с индексом 3 возраст, увеличив его на единицу. Добавьте этому объекту информацию о его профессии.

Задание 4

Добавьте объекту из задания 1 свойство hello, содержащее функцию, которая выводит следующее сообщение в консоль: "Привет, я здесь должно быть имя пользователя". Доступ к имени пользователя получить при помощи ключевого слова this.

Вызовите этот метод

Задание 5*

Сериализуйте массив из задания 2 в JSON строку при помощи метода JSON.stringify

В процессе написания лабораторной работы ознакомиться с алгоритмами обработки строковых данных в JavaScript.

Варианты:

- 1. Необходимо реализовать функцию, которая находит первую строку текста, содержащую заданную подстроку. Считается, что строки текста оканчиваются переводами строки.

 Функция должна возвращать саму строку и её номер. При поиске регистр символов должен игнорироваться.
- 2. Необходимо реализовать функцию, которая находит самое популярное слово в тексте. Слова состоят из идущих подряд символов русского алфавита в произвольном регистре и разделяются другими символами. При подсчёте регистр символов должен игнорироваться.
- 3. Необходимо реализовать функцию, которая подсчитывает количество гласных и согласных букв в тексте. Текст состоит из символов русского алфавита. При подсчёте регистр символов должен игнорироваться.
- 4. Необходимо реализовать функцию, которая заменяет первую букву в каждом слове текста на соответствующую заглавную букву. Слова состоят из идущих подряд символов русского алфавита в произвольном регистре и разделяются другими символами.
- Напишите функцию, которая заменяет заданную подстроку в заданном тексте на другую заданную подстроку.
- 6. Напишите функцию, которая для каждого символа, встречающегося в переданном тексте, возвращает частоту, с которой этот символ встречается. При подсчёте регистр символов должен игнорироваться.
- 7. Напишите функцию, которая вычисляет количество предложений в переданном тексте. Предложением считается непустая последовательность печатных символов, оканчивающаяся точкой, вопросительным знаком или восклицательным знаком.
- 8. Напишите функцию, которая должна находить все числа, встречающиеся в переданном тексте. Числами можно считать последовательности из подряд идущих арабских цифр, отделённых друг от друга любыми другими символами.
- 9. Напишите функцию, которая должна находить в переданном тексте уникальные слова. Под уникальными словами понимаются слова, встречающиеся только один раз. Слова состоят из идущих подряд символов русского алфавита в произвольном регистре и разделяются другими символами. При подсчёте регистр символов должен игнорироваться.

В процессе написания лабораторной работы ознакомиться с алгоритмами сортировки и поиска в JavaScript.

Задание 1

Создайте массив объектов аналогичный тому, что вы создавали в Л.Р. №5.

Задание 2

Отсортируйте массив из Задания 1 по убыванию возраста.

Задание 3

Найдите в массиве из Задания 1 всех людей женского пола старше 30 лет.

Задание 4

Проверить, являются ли все пользователи в массиве из Задания 1 совершеннолетними.