Описание имплементации трех алгоритмов свертки

1 Общие выкладки

В дискреном случае, свёртка или конволюция — операция в функциональном анализе, возвращающая функцию при применении к двум функциям f и g, сформированную по следующему правилу: свёртка соответствует сумме значений f(x) с коэффициентами, соответствующими смещённым значениям g, то есть $(f*g)(x) = f(1)g(x-1) + f(2)g(x-2) + \dots$

Существует понятие гауссовой свертки. Это свертка с гауссовым фильтром вида $\frac{1}{2\pi\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$, зависящая от параметра $\sigma>0$

2 Алгоритм дискретной свертки

2.1 Описание имплементации алгоритма

- Подготовим массив нечетной длины размера, близкого к $max(10\sigma,1)$ и заполним его числами по следующей формуле: $k_i = \frac{1}{2\pi\sigma^2}e^{-\frac{(i-(k+1))^2}{2\sigma^2}}$, где $k = \lfloor \frac{l}{2} \rfloor$, а l длина массива. Данный массив назовем ядром свертки
- Проитерируемся по последовательности x_i длины n и вычислим выходную последовательность y_i по следующей форуле:

$$y_i = \sum_{j=-k}^{k} I[1 \le i + j \le n] x_{i+j} k_j \tag{1}$$

Где $I[\dots]$ — индикатор-функция, использование которой необходимо для задания так называемого отступа, позволяющего сохранить размер последовательности при преобразовании.

2.2 Асимптотическая сложность времени вычисления результата

Сложность: O(nk)

3 Алгоритм свертки по Деришу

3.1 Описание имплементации алгоритма

- Примем на вход параметры свертки по Деришу: последовательности вещественных чисел n_i и d_i одинаковый длины d, называемой в дальнейшем глубиной свертки. Сформируем последовательность m_i по следующему правилу: $m_i = I[i < d]n_{i+1} d_in_1$.
- Сформируем последовательность y^1 по следующему правилу (итерируясь слева-направо):

$$y_i^1 = \sum_{j=1}^d I[i \ge j] n_j x_{i+1-j} - \sum_{j=1}^d I[i \ge j+1] d_j y_{i-j}^1$$
 (2)

• Сформируем последовательность y^2 по следующему правилу (итерируясь справа-налево):

$$y_i^2 = \sum_{j=1}^d I[i \le n - j] m_j x_{i+j} - \sum_{j=1}^d I[i \le n - j] d_j y_{i+j}^1$$
 (3)

• Накнец, сформируем выходную последовательность по следующему правилу:

$$y_i = c(y_i^1 + y_i^2) \tag{4}$$

3.2 Асимптотическая сложность времени вычисления результата

Сложность: O(nd)

3.3 Частный случай при d=2

Пусть
$$\alpha = \frac{5}{2\sqrt{\pi}\sigma}$$
, $k = \frac{(1-e^{-\alpha})^2}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}$

• Массив n_i задается следующим образом:

$$n_1 = k$$
$$n_2 = ke^{-\alpha}(\alpha - 1)$$

• Массив d_i задается следующим образом:

$$d_1 = -2e^{-\alpha}$$
$$d_2 = e^{-2\alpha}$$

 \bullet Константа c равна 1

3.4 Частный случай при d=4

Пусть

$$a_1 = 1.680$$

$$a_2 = -0.6803$$

$$b_1 = 3.735$$

$$b_2 = -0.2598$$

$$w_1 = 0.6318$$

$$w_2 = 1.997$$

$$c_1 = -1.783$$

$$c_2 = -1.723$$

• Массив n_i задается следующим образом:

$$n_{1} = a_{0} + c_{0}$$

$$n_{2} = e^{-\frac{b_{1}}{\sigma}} \left(c_{1} \sin \frac{w_{1}}{\sigma} - \left(c_{0} + 2a_{0} \right) \cos \frac{w_{1}}{\sigma} \right) + e^{-\frac{b_{0}}{\sigma}} \left(a_{1} \sin \frac{w_{0}}{\sigma} - \left(2c_{0} + a_{0} \right) \cos \frac{w_{0}}{\sigma} \right)$$

$$n_{3} = 2e^{-\frac{b_{0} + b_{1}}{\sigma}} \left(\left(a_{0} + c_{0} \right) \cos \frac{w_{1}}{\sigma} \cos \frac{w_{0}}{\sigma} - a_{1} \cos \frac{w_{1}}{\sigma} \sin \frac{w_{0}}{\sigma} - c_{1} \cos \frac{w_{0}}{\sigma} \sin \frac{w_{1}}{\sigma} \right) + c_{0} e^{-2\frac{b_{0}}{\sigma}} + a_{0} e^{-2\frac{b_{1}}{\sigma}}$$

$$n_{4} = e^{-\frac{b_{1} + 2b_{0}}{\sigma}} \left(c_{1} \sin \frac{w_{1}}{\sigma} - c_{0} \cos \frac{w_{1}}{\sigma} \right) + e^{-\frac{b_{0} + 2b_{1}}{\sigma}} \left(a_{1} \sin \frac{w_{0}}{\sigma} - a_{0} \cos \frac{w_{0}}{\sigma} \right)$$

• Массив d_i задается следующим образом:

$$d_1 = -2e^{-\frac{b_1}{\sigma}}\cos\frac{w_1}{\sigma} - 2e^{-\frac{b_0}{\sigma}}\cos\frac{w_0}{\sigma}$$

$$d_2 = 4\cos\frac{w_1}{\sigma}\cos\frac{w_0}{\sigma}e^{-\frac{b_1+b_0}{\sigma}} + e^{-2\frac{b_0}{\sigma}} + e^{-2\frac{b_1}{\sigma}}$$

$$d_3 = -2\cos\frac{w_0}{\sigma}e^{-\frac{b_0+2b_1}{\sigma}} - 2\cos\frac{w_1}{\sigma}e^{-\frac{2b_0+b_1}{\sigma}}$$

$$d_4 = e^{-2\frac{b_1+b_0}{\sigma}}$$

2

• Константа c равна $\frac{1}{2\frac{n_0+n_1+n_2+n_3}{1+d_1+d_2+d_3+d_4}-n_0}$