

Indian Association for the Cultivation of Science (Deemed to be University under the *de novo* category) BS-MS Program

End-Semester Examination-2024 (Autumn Semester-I)

Subject: Mathematics I Subject Code(s): MAT 1101
Full marks: 50 Time allotted: 3 hrs

Answer question number 10 and any 6 of the remaining questions.

A. Show that every sequence of real numbers has a monotone subsequence. [7]

2. Let $\{x_n\}$ be a bounded sequence. Suppose $s = \sup\{x_n, n \in \mathbb{N}\}$. Show that if $s \notin \{x_n, n \in \mathbb{N}\}$, there is a subsequence of $\{x_n\}$ that converges to s. [7]

S. Let $\{x_n\}$ be a Cauchy sequence. Show that $\{x_n\}$ is bounded. [7]

4. Show that the alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

is convergent. Is it absolutely convergent? Justify your answer. [7]

5. Show that the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is convergent. [7].

6. Let I be an interval in \mathbb{R} , $f:I\to\mathbb{R}$ and let $c\in I$. Suppose there exist constants K and l such that $|f(x)-l|\leq K|x-c|$ for $x\in I$. Show that $\lim_{x\to c}f(x)=l$. [7]

7. Let $f: \mathbb{R} \to \mathbb{R}$, and f(x+y) = f(x) + f(y) for every $x, y \in \mathbb{R}$. Let $\lim_{x\to 0} f(x) = l$. Show that l = 0. Also prove that $\lim_{x\to c} f(x)$ exists for every $c \in \mathbb{R}$. [7]

8. Prove that if f and g are continuous, then so are $\max(f,g)$ and $\min(f,g)$.

•A. Let $[a\ b]$ be a closed and bounded interval in \mathbb{R} . Let $f:[a\ b]\to\mathbb{R}$ be a continuous function. Show that f is bounded.

• 16. Let $f:[a\ b]\to [a\ b]$ be a continuous function. Show that there exists an $x\in [a\ b]$ such that f(x)=x.