

Learning Outcomes

The **CRISP-DM** process.

- ▶ Define and give examples of the different types of data;
- ▶ Define descriptive statistics;
- ▶ Determine which descriptive statistics are appropriate for each type of data;
- Explain why knowing the data type and using the right descriptive statistic is not enough.

Data Types: the 'Levels of Measurement'

Data Types: the categorical 'Levels of Measurement'

► Nominal:

- ▶ Qualitative classification of different objects by names measures membership;
- ▶ No quantitative value or order information;
- Examples: Gender, nationality, zip code, eye color, error code;

Ordinal;

- Categories with a natural ordering, but no well-defined scale measures rank;
- ► No quantitative value;
- Examples: Party membership, polling agreement (Likert) scales, ed level, class;

Data Types: the numerical 'Levels of Measurement'

▶ Discrete:

- ▶ Difference btwn units on scale is constant but can only take certain values;
- ► Can be counted:
- Examples: Age in years, Turn 1, Turn 2, etc.

► Interval;

- ▶ Difference btwn units on scale is constant, but no zero point measures exact difference;
- Examples: Time of day, date, temperature (F or C), test scores, IQ;

► Ratio;

- ▶ Difference btwn units on scale is constant/has a zero point measures exact difference +;
- Examples: Height and weight, earnings, spending, tax rate, temperature (K).

What are descriptive statistics?!

- ▶ In general, two kinds of statistics:
 - ▶ **Descriptive Statistics** what we'll talk about today;
 - ▶ Inferential Statistics what we'll spend much of the rest of the semester on;

▶ Typically, descriptive statistics are always reported even if main focus is on something more sophisticated.

What are descriptive statistics: key terms

- **Population**: a 'complete' group of N objects, items, entities, or events of interest e.g. all adults living in the US;
- ▶ **Sample**: a selected subset of n individuals from a population e.g. 5,000 US adults appearing in a poll;
- ▶ **Summary Statistic**: a summary of the information in a set of observations e.g. mean, median, mode, etc.;
- ▶ **Parametric**: derived from a probability distribution e.g. a z-score is related to a normal distribution;
- ▶ Nonparametric: NOT derived from a probability distribution e.g. descriptive statistics, histograms, etc.;
- ▶ Univariate: dealing with a single variable;
- Multivariate: dealing with relationships between several variables;

What job do they do?

- ► The main job of descriptive statistics is to **summarize** the information in a **sample**;
 - ...describe the data in the sample;
 - ...assess data quality (e.g. variation, correlation btwn variables, etc.);
 - ...support later inferential analysis;

► The main job of inferential statistics is to **learn** about the **population** that the sample comes from.

Descriptive statistics

▶ Mode – the sample mode is written as \overline{x}_{mode} and is the element that occurs most often in the sample. In our example $\overline{x}_{mode} = 7$.

▶ Median – the sample median is written as \overline{x}_{med} :

$$\overline{x}_{med} = \begin{cases} x_{(n+1)/2} & \text{if } n \text{ is odd} \\ x_{(n/2)} + x_{(n/2)+1} & \text{if } n \text{ is even} \end{cases} \Longrightarrow \overline{x}_{med} = x_{(11+1)/2} = x_6 = 5.$$

▶ Arithmetic mean – the sample mean is written as \overline{x} :

$$\overline{x} = \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \Longrightarrow \frac{0+1+4+4+5+5+7+7+7+9+9}{11} \approx 5.273.$$

▶ Midrange – the sample midrange is written as \overline{x}_{mid} :

$$\overline{x}_{mid} = \frac{\max\{x\} + \min\{x\}}{2} \Longrightarrow \overline{x}_{mid} = \frac{9+0}{2} = 4.5.$$

Measures of Variability (for dataset x: 0, 1, 4, 4, 5, 5, 7, 7, 7, 9, 9)

▶ Range – written as σ_{max} , the distance between the min and max:

$$\sigma_{max} = \max\{x\} - \min\{x\} \Longrightarrow 9 - 0 = 9.$$

Measures of Variability (for dataset x: 0, 1, 4, 4, 5, 5, 7, 7, 7, 9, 9)

▶ Variation ratio – written as σ_{vr} , the proportion of cases NOT in the modal category:

$$\sigma_{vr} = 1 - \frac{f_m}{n} \Longrightarrow 1 - \frac{3}{11} \approx 0.727$$
, where $f_m = \#$ of cases IN the modal category.

Measures of Variability (for dataset x: 0, 1, 4, 4, 5, 5, 7, 7, 7, 9, 9)

Standard deviation/Variance – written as σ , the sum of squared distance from mean:

Histogram of x

Density of x

Density of x

Data Types: the categorical 'Levels of Measurement'

► Nominal:

- ▶ Qualitative classification of different objects by names measures membership;
- ▶ No quantitative value or order information;
- Examples: Gender, nationality, zip code, eye color, error code;
- ► Appropriate: equality, mode, Variation ratio;

Ordinal;

- ► Categories with a natural ordering, but no well-defined scale measures rank;
- ► No quantitative value;
- Examples: Party membership, polling agreement (Likert) scales, ed level, class;
- ▶ Appropriate: above plus > and <, median, range;

Data Types: the **numerical** 'Levels of Measurement'

▶ Discrete:

- ▶ Difference btwn units on scale is constant but can only take certain values;
- ► Can be counted:
- Examples: Age in years, Turn 1, Turn 2, etc.
- \triangleright Appropriate: above plus + and -;

► Interval:

- ▶ Difference btwn units on scale is constant, but no zero point measures exact difference;
- Examples: Time of day, date, temperature (F or C), test scores, IQ;
- \triangleright Appropriate: above plus + and -, mean, standard deviation;

► Ratio;

- ▶ Difference btwn units on scale is constant/has a zero point measures exact difference +:
- Examples: Height and weight, earnings, spending, tax rate, temperature (K).
- ► Appropriate: above plus * and /.

Descriptive stats are not enough: Anscombe's Quartet

	I		II		III		IV	
	\mathbf{x}	\mathbf{y}	x	\mathbf{y}	x	\mathbf{y}	x	\mathbf{y}
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.31	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Var.	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Corr.	0.816		0.816		0.816		0.816	

Descriptive stats are not enough: Anscombe's Quartet

Descriptive stats are not enough: Gender Wage Gap

► Lots of progress – ever more women in labor market w/ higher education;

- ► Refers to the earnings difference between women and men:
 - Women consistently earn less than men in US;
 - ► How to measure how much less?
 - ...and what drives the gap???
- ► Simple descriptive statistics:
 - Compute median annual earnings for full time women and men;
 - ► Take the ratio.

Descriptive stats are not enough: Gender Wage Gap

► Lots of progress – ever more women in labor market w/ higher education;

- ► Refers to the earnings difference between women and men:
 - Women consistently earn less than men in US;
 - ► How to measure how much less?
 - ...and what drives the gap???
- ► Simple descriptive statistics:
 - Compute median annual earnings for full time women and men;
 - ► Take the ratio.
 - ▶ Is this enough?

Descriptive stats are not enough: Gender Wage Gap

► Lots of progress – ever more women in labor market w/ higher education;

- Refers to the earnings difference between women and men:
 - Women consistently earn less than men in US;
 - ► How to measure how much less?
 - ► ...and what drives the gap???
- ► Simple descriptive statistics:
 - Compute median annual earnings for full time women and men;
 - ► Take the ratio.
 - ▶ Is this enough? NO!!!

