

Volume 00, Pages 000–000 (Xxxx XX, XXXX) S xxxx-yyyy(XX)0000-0

OpenFOAM® JOURNAL PUBLICATION

AUTHOR1 AND AUTHOR2

Address1

 $Email\ address$: Emailaddress1

Address2

Email address: Emailaddress2

DOI: 00.1000/xxx

Version: OpenFOAM® v19xx Repo: https://github.com/xxx

ABSTRACT. This is the place for an abstract.

1. Introduction

This is the place for introduction.

1.1. **Subsection.** Example text:

We shall consider the specific transport property ϕ and note that its spatial and temporal variation is governed by a second-order partical differential equation (PDE), viz.

$$\frac{\partial}{\partial t}(\rho\phi) + \nabla \cdot (\rho\phi \mathbf{U}) - \Gamma_{\phi}\nabla^{2}\phi - S_{\phi}(\phi) = 0. \tag{1.1}$$

Herein, $\phi = \phi(\mathbf{x}, t)$ is an arbitrary general intensive physical quantitity, e.g., a fluid property (scalar or tensor of any rank). Thus, (1.1) is often referred to as generic transport equation.

OpenFOAM[®] (Open Field Operation And Manipulation) is a flexible and mature C++ Class Library for Computational Continuum Mechanics (CCM) and Multiphysics. Its Object-Oriented-Programming (OOP) paradigm enables to mimic data types and basic operations of CCM using top-level syntax as close as possible to the conventional mathematical notation for tensors and partial differential equations:

```
1 solve
2  (
3   fvm::ddt(rho,Phi)
4   + fvm::div(phi, Phi)
5   - fvm::laplacian(Gamma, Phi)
6   ==
7   Sphi
8  );
```

Received by the editors xx.xx.202x.

Table 1. Finite Volume Notation

implicit differential operators	
rate of change	$\left[\!\!\left[rac{\partial [ho\phi]}{\partial t} ight]\!\!\right]$
convection term	$\left\ \nabla \cdot \left(F[\phi]_{f(F,S,\gamma)} \right) \right\ $
diffusion term	$\llbracket \nabla \cdot (\dot{\Gamma} \nabla [\phi]) \rrbracket$
linear part of source term	$\llbracket S_p \left[\phi \right] rbracket$
explicit differential operators	
temporal term	$\frac{\partial \rho \phi}{\partial t}$
divergence term	$\nabla \bullet (ho \mathbf{U} \phi_{f(ho \mathbf{U}, S, \gamma)})$
laplacian term	$\nabla \cdot (\Gamma \nabla \phi)$
constant part of source	S_u
term	

FIGURE 1. Examplary figure

Beside providing OpenFOAM code itself, spatial and temporal discretisation of Eq. 1.1 can be also described in a precise and concise manner using the finite-volume notation [1] - see Tab. 1.

2. Theoretical backgroud

Text in this section. Here is an examplary figure 1.

3. Conclusion

This is a conclusion.

References

[1] H. Rusche. Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. PhD thesis, Imperial College of Science, Technology & Medicine London, 2002.