FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint, jól követhetően kell javítani és értékelni. A javítást piros tollal, a megszokott jelöléseket alkalmazva kell végezni.

ELSŐ RÉSZ

A feleletválasztós kérdésekben csak az útmutatóban közölt helyes válaszra lehet megadni a 2 pontot. A pontszámot (0 vagy 2) a feladat mellett található szürke téglalapba, illetve a feladatlap végén található összesítő táblázatba is be kell írni.

MÁSODIK RÉSZ

Az útmutató által meghatározott részpontszámok nem bonthatók, hacsak ez nincs külön jelezve.

Az útmutató dőlt betűs sorai a megoldáshoz szükséges tevékenységeket határozzák meg. Az itt közölt pontszámot akkor lehet megadni, ha a dőlt betűs sorban leírt tevékenység, művelet lényegét tekintve helyesen és a vizsgázó által leírtak alapján egyértelműen megtörtént. Ha a leírt tevékenység több lépésre bontható, akkor a várható megoldás egyes sorai mellett szerepelnek az egyes részpontszámok. A "várható megoldás" leírása nem feltétlenül teljes, célja annak megadása, hogy a vizsgázótól milyen mélységű, terjedelmű, részletezettségű, jellegű stb. megoldást várunk. Az ez után következő, zárójelben szereplő megjegyzések adnak további eligazítást az esetleges hibák, hiányok, eltérések figyelembevételéhez.

A megadott gondolatmenet(ek)től eltérő helyes megoldásokat is értékelni kell. Az ehhez szükséges arányok megállapításához a dőlt betűs sorok adnak eligazítást, pl. a teljes pontszám hányad része adható értelmezésre, összefüggések felírására, számításra stb.

Ha a vizsgázó összevon lépéseket, paraméteresen számol, és ezért "kihagyja" az útmutató által közölt, de a feladatban nem kérdezett részeredményeket, az ezekért járó pontszámot – ha egyébként a gondolatmenet helyes – meg kell adni. A részeredményekre adható pontszámok közlése azt a célt szolgálja, hogy a nem teljes megoldásokat könnyebben lehessen értékelni.

A gondolatmenet helyességét nem érintő hibákért (pl. számolási hiba, elírás, átváltási hiba) csak egyszer kell pontot levonni.

Ha a vizsgázó több megoldással vagy többször próbálkozik, és nem teszi egyértelművé, hogy melyiket tekinti véglegesnek, akkor az utolsót (más jelzés hiányában a lap alján lévőt) kell értékelni. Ha a megoldásban két különböző gondolatmenet elemei keverednek, akkor csak az egyikhez tartozó elemeket lehet figyelembe venni: azt, amelyik a vizsgázó számára előnyösebb.

A számítások közben a mértékegységek hiányát – ha egyébként nem okoz hibát – nem kell hibának tekinteni, de a kérdezett eredmények **csak** mértékegységgel együtt fogadhatók el.

A grafikonok, ábrák, jelölések akkor tekinthetők helyesnek, ha egyértelműek (tehát egyértelmű, hogy mit ábrázol, szerepelnek a szükséges jelölések, a nem megszokott jelölések magyarázata stb.). Grafikonok esetében azonban a mértékegységek hiányát a tengelyeken nem kell hibának venni, ha egyértelmű (pl. táblázatban megadott, azonos mértékegységű mennyiségeket kell ábrázolni).

Ha a 3. feladat esetében a vizsgázó nem jelöli választását, akkor a vizsgaleírásnak megfelelően kell eljárni.

Értékelés után a lapok alján található összesítő táblázatokba a megfelelő pontszámokat be kell írni.

írásbeli vizsga 1413 2 / 8 2014. május 19.

ELSŐ RÉSZ

- 1. B
- 2. A
- **3.** C
- **4.** C
- **5.** C
- **6.** C
- 7. C
- 8. B
- 9. C
- 10. A
- 11. B
- 12. A
- 13. A
- 14. C
- 15. B
- 16. A
- 17. B
- 18. B
- 19. A
- 20. B

Helyes válaszonként 2 pont.

Összesen 40 pont.

MÁSODIK RÉSZ

1. feladat

Adatok: $m_1 = 200 \text{ g}$, $m_2 = 80 \text{ kg}$, $m_{k\ddot{0}} = 5 \text{ kg}$, $T_{viz} = 40 \text{ °C}$, $T_{k\ddot{0}} = 500 \text{ °C}$, $c_{test} = 3000 \frac{J}{\text{kg} \cdot \text{K}}$, $c_{k\ddot{0}} = 870 \frac{J}{\text{kg} \cdot \text{K}}$, $c_{viz} = 4180 \frac{J}{\text{kg} \cdot \text{K}}$, $L_f = 2260 \text{ kJ/kg}$, $L_p = 2420 \text{ kJ/kg}$, $\rho_{viz} = 1 \text{ kg/liter}$, V = 0.25 l.

a) Az izzadság elpárologtatáshoz szükséges hőmennyiség felírása és kiszámítása:

$$2 + 1 pont$$

$$Q_1 = m_1 \cdot L_p = 484 \,\mathrm{kJ} \;.$$

Annak megadása, hogy ennyi hő mennyivel emelné az emberi test hőmérsékletét:

4 pont (bontható)

$$\Delta T = \frac{Q_1}{m_2 \cdot c_{test}} \approx 2 \,^{\circ}\text{C} \text{ (képlet + számítás, 2 + 2 pont).}$$

b) A víz felmelegítéséhez és elforralásához szükséges hőmennyiség megadása:

6 pont (bontható)

$$Q_2 = \rho_{viz} \cdot V \cdot c_{viz} \cdot (100 \,^{\circ}\text{C} - 40 \,^{\circ}\text{C}) + \rho_{viz} \cdot V \cdot L_f = 62,7 \,\text{kJ} + 565 \,\text{kJ} = 627,7 \,\text{kJ}$$

(képlet + számítás, 4 + 2 pont. Amennyiben a vizsgázó a víz száz fokra melegítéséhez szükséges energiával nem számol, két pontot kell levonni.)

A lávakő átlagos hőmérséklet-csökkenésének felírása és kiszámítása:

1 + 1 pont

$$\Delta T' = \frac{Q_2}{m_{k\ddot{o}} \cdot c_{k\ddot{o}}} = 144 \,^{\circ}\text{C}.$$

Összesen 15 pont

2. feladat

Adatok:
$$R = 9000 \text{ km}$$
, $r_1 = 50000 \text{ km}$, $v_1 = 4800 \text{ m/s}$, $r_2 = 30000 \text{ km}$, $\gamma = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$

a) Annak felismerése, hogy a körpályán keringő űrszonda centripetális gyorsulása éppen a gravitációs gyorsulással egyenlő:

2 pont

Amennyiben a vizsgázó ezt expliciten nem írja le, de egyértelműen ennek megfelelően számol, a két pont jár.

A bolygó tömegének megadása:

5 pont (bontható)

Az első űrszonda mozgására $\frac{v_1^2}{r_1} = \gamma \frac{M}{r_1^2}$ (2 pont),

amiből
$$M = \frac{v_1^2 \cdot r_1}{\gamma} = 1,73 \cdot 10^{25} \text{ kg (rendezés + számítás, 2 + 1 pont)}$$

A bolygó átlagsűrűségének meghatározása:

2 pont (bontható)

Mivel
$$V = \frac{4}{3}R^3 \cdot \pi = 3,05 \cdot 10^{21} \text{ m}^3$$
 (1 pont), a sűrűségre $\rho = \frac{M}{V} = 5660 \frac{\text{kg}}{\text{m}^3}$ adódik (1 pont).

b) A második űrszonda sebességének meghatározása:

6 pont (bontható)

A második űrszonda mozgására $\frac{v_2^2}{r_2} = \gamma \frac{M}{r_2^2}$ (2 pont),

amiből
$$v_2 = \sqrt{\frac{\gamma \cdot M}{r_2}} = 6200 \frac{\text{m}}{\text{s}}$$
 (rendezés + számítás, 2 + 2 pont).

Összesen 15 pont

3/A feladat

A külön-külön leejtett labdák visszapattanásának elemzése:

3 pont (bontható)

Ha a labdákat *h* magasságból ejtjük le, sebességük nagysága talajt éréskor <u>egyaránt v lesz</u>. Ütközés után <u>v nagyságú sebességgel pattannak vissza</u> (2 pont). Így <u>ugyanolyan magasságig emelkednek</u> (1 pont).

Az együtt leejtett labdák visszapattanásának közelítő elemzése:

17 pont (bontható)

A második esetben az együtt leejtett labdák ütközését <u>szétválaszthatjuk két külön ütközésre</u> (2 pont). Először a <u>nagyobb labda pattan vissza a talajról</u> (2 pont), <u>sebessége ezen ütközés után v nagyságú lesz</u> (2 pont). Ezután a <u>kisebb, v nagyságú sebességgel mozgó labda ütközik</u> a vele <u>szemben haladó nagyobbal</u> (2 + 2 pont).

Mivel a kis labda az ütközés előtt <u>a nagyhoz képest 2v nagyságú sebességgel haladt</u> (2 pont), ütközés után <u>a kis labda sebessége 2v nagyságú lesz a nagyhoz képest</u> (2 pont). A <u>talajhoz viszonyított sebességének nagysága tehát 3v lesz</u> (2 pont). Ez sokkal <u>nagyobb, mint a v sebesség, amivel h magasságig emelkedne</u> (1 pont), így a visszapattanás után h-nál lényegesen magasabbra emelkedik.

(A teljes pontszám akkor is megadandó, ha a vizsgázó nem adta meg számszerűen a sebességarányokat, hanem a jelenség tárgyalásánál csak az irányokra és a kisebb-nagyobb relációkra szorítkozott.)

Összesen 20 pont

3/B feladat

a) Az izzó ellenállásértékeinek kiszámítása és a táblázat megfelelő oszlopának kitöltése: **5 pont**

(bontható)

2-3 helyes megoldás: 1 pont, 4-5 helyes megoldás: 2 pont, 6-7 helyes megoldás: 3 pont, 8-9 helyes megoldás: 4 pont, 10-11 helyes megoldás: 5 pont.

b) Az izzó teljesítményértékeinek kiszámítása és a táblázat megfelelő oszlopának kitöltése:
5 pont
(bontható)

2-3 helyes megoldás: 1 pont, 4-5 helyes megoldás: 2 pont, 6-7 helyes megoldás: 3 pont, 8-9 helyes megoldás: 4 pont, 10-11 helyes megoldás: 5 pont.

U(V)	I (A)	$R\left(\Omega\right)$	P(W)
0,200	0,066	3,03	0,013
0,491	0,080	6,14	0,039
0,755	0,094	8,03	0,071
1,015	0,107	9,49	0,109
1,530	0,131	11,68	0,200
2,093	0,153	13,68	0,320
3,018	0,183	16,49	0,552
3,506	0,200	17,53	0,701
4,090	0,216	18,94	0,883
4,610	0,230	20,04	1,06
5,630	0,255	22,08	1,44

c) A teljesítmény–ellenállás grafikon elkészítése:

6 pont (bontható)

A megfelelően skálázott és megjelölt tengelyek 1-1 pontot érnek, 9-11 adatpont helyes ábrázolása 4 pont, 7-8 adatpont helyes ábrázolása 3 pont, 5-6 adatpont helyes ábrázolása 2 pont, 3-4 adatpont helyes ábrázolása 1 pont.

d) Az 1,2 W teljesítményhez tartozó ellenállás meghatározása:

4 pont (bontható)

A két utolsó adatpont között lineáris interpolációt alkalmazva (2 pont) $R \approx 20.7 \,\Omega$ adódik (2 pont).

A megoldásból valamilyen módon ki kell, hogy derüljön, hogy a vizsgázó hogyan kapta meg a helyes végeredményt.

Ez megjelenhet a grafikonon is (pl., mint fent), vagy szövegben is. Ennek hiányában legfeljebb 2 pont adható.

Összesen 20 pont