

MURATA LAB

Mid-term Presentation

Motif-aware method for graph analysis

Hoang Nguyen (M2), Supervisor: Assoc. Prof. Tsuyoshi Murata

2017/02/03

Roadmap Result of motif methods | Proposal of future models

Definition and applications Complex networks and significant subgraphs

Scales of network analysis:

- Macroscopic (global view)
- Microscopic (interactions)
- Mesoscopic (sub-structures)

Network motifs are ¹

patterns of statistically significant interconnections occurring in complex networks.

Applications

- Social networks ²
- Biological systems 1,3,4

⁴(Franceschet, 2012) ³(Honey, 2007) ²(Holland, 1970) ¹(Milo, 2002)

Motif conductance Network motifs in network analysis

Motif conductance (Benson, 2016)

- Generalization of graph conductance.
- Motif-cooccurrence matrix.
- Good results for graph partitioning.

$$\phi_m(S) = \frac{\operatorname{cut}_M(S, \bar{S})}{\min[\operatorname{vol}_M(S), \operatorname{vol}_M(\bar{S})]}$$

ExperimentsGraph embedding for classifying network node

Datasets:

- Blogcatalog3
- Cora, Citeseer, Pubmed
- Facebook (EgoNet)
- Transcription networks

Deciding motif:

- Motif frequency
- Z-score
- Motif conductance

Networks	#nodes	#edge
Blogcatalog3	10312	333983
Cora*	2708	5429
Citeseer*	3327	4732

^{*} Each node has a feature vector (tf-idf)

$$z_m = \frac{N_m(emp) - N_m(rnd)}{\sigma_m}$$

ExperimentsMotif analysis - Results

Significant graph - Directed size 3 motifs

ExperimentsApproach #1: motifwalk

Using motif as a guiding pattern

- DeepWalk := Skip-gram+RW
- LINE := DeepWalk+bi-fan
- node2vec := Skip-gram +bias-ed walk
- motifwalk := Skip-gram+motif walk

Generated context: • • •

Node multi-label classification

- Blogcatalog3 f1 score
- 39 classes (imbalanced), nodes can have multiple labels

- Bottleneck at context generation.
- The optimization process is inefficient.

ExperimentsApproach #2: m-gcn

Motif laplacian for graph convolutional networks

Node label classification

- Citation networks: Cora, citeseer, pubmed. f1 and acc.
- 3 to 6 classes, each node has exactly one label.

Methods	Cora		Citeseer		Pubmed	
	accuracy	macro	accuracy	macro	accuracy	macro
Spectral Clus.	59.5	-	42.7	_	65.3	-
DeepWalk	67.2	-	43.2	_	65.3	-
GCN	81.5	_	70.3	_	79.0	-
m-gcn (ours)	83.3	-	71.4	-	80.4	-

- Explaining why does it work.
- Minor contribution.

My interests:

- Network sampling (diversity oriented).
- Turn m-gcn into a generative model.

Agenda:

- Investigate graph spectral theory.
- Determinantal processes on graphs.
- Graph motif sampling model definition.
- (opt.) Generative Adversarial Networks and Auto-Encoders.

ReferencesNetwork Science | Machine Learning

(Diestel, 2000) Graph Theory.

(Mikolov, 2013) Distributed Representations of Words and Phrases and their Compositionality.

(Bengio, 2013) Deep Learning of Representations: Looking Forward.

(Ng, 2001) On Spectral Clustering: Analysis and an algorithm.

(Perozzi, 2014) DeepWalk: Online Learning of Social Representations.

(Tang, 2015) LINE: Large-scale Information Network Embedding.

(Cao, 2015) GraRep: Learning Graph Representations with Global Structural Information.

(Grover, 2016) node2vec: Scalable Feature Learning for Networks

(Yang, 2016) Semi-Supervised Classification with Graph Convolutional Networks

(Alon, 2007) Network motifs: theory and experimental approaches.

(Benson, 2016) Higher-order organization of complex networks.

AP. A MOTIF

Motif generalizes link Motif conductance | Motif spectral analysis

Motif here!

Skip-gram modelApplying NLP techniques to network science

```
Algorithm 1: Motif context sampling P_m(\omega).
 Data: Undirected Graph G = (V, E);
 Input: start vertex, walk length, motif M = (V', E'),
        bias \beta;
 Result: Vertices in the local motif structure;
 vertexList ← [start vertex]
                                                      NPL Skipgram
 current \leftarrow start vertex
 initialize dequeue buffer Q of size |V'|
 while vertexList.length < walk length do
     candidate \leftarrow random(neighboor(current))
     Q.append(candidate)
     if Isomorphic(Q, M) then
        if random < \beta then
            vertexList.append(candidate)
        else
            continue
     else
        if random > \beta then
            vertexList.append(candidate)
        else
            continue
 return vertexList
```

Graph convolutional networks Spectral methods meets neural networks

Laplacian, normalized, convolution operations