

The ANOVA Table -> The key quantities involved in an ANOVA are usually organized into a standard table of. I sum of squares mean squares F-Stat p-value between F= MSW dfb=G-1 SSb= ZNk(Fk-Y)2 MSb = SSB Naw too hard. groups df = N-G SS = & (Yik - Yk)2 Within MS = 55m groups N-1 $SS_{+o+} = \sum_{k=1}^{6} \sum_{i=1}^{N} (Y_{ik} - \overline{Y_{i}})^{2}$ Total -D this model tells us if one or more groups are different from the others, BUT it does not tell us which one is different The null hypothesis dains that all 3 of the following are true: · MA = MP & MJ = MP ; MJ = MA of & Joyrepun performing better then the others we could run & pair wase t-tests to compare the following MA US MP MJ US MP MJ US MA But say we have 10 groups ... that i 45 t-tests! whent problem will we encounter? Each individual t-test is designed to have 5%. Type I error rate with 45 6-tests you'd expect 2-3 to return a "significant" first difference by chance alone. => usually we use adjustments to the praire i.e. a correction of multiple conjurisons

Bonferrani	Correct	jons =	P'	= m × /	o when	e m is	tests
Holm com							
(swe)	magine u	ve're d	ering the	e test	s requer	tally.	1
Grue -	then ac	liast y	Har an	raline	by eith	en :	argest
		,	y y		05 0.7		
P's	= j × P	·)	OR	ρ'_{i}	= P:+1 -	- and t	take the est.
Example		raw p	rank;	p x]	Holm p	(2), y	
U		0.001	5	0.005	0.005		
		0.005	3		0.057		
		0.022	2	6, 44		5	
a 1:	(0,103		0.103	10.103		
Assumptions	s ot a	re-weu	2 ANON	<i>!H</i>		1 4	a si gy plot
1) The po	pulation	s have	norma	al dis	Mibutions	- 100 S 100	Sharpiro-wilk test
2) the po	pulations	stand	ard dev	ration	for variar	ce) a	re test
all th	e same	(rarel	y true	- we	c should d	eck for	homogeneits)
			40 Lev	ene te	st or R	prounto	rsythe test
3) Observa	extruns c	ire ind	ependen	t (wit	hin gran	os and	between grong different mid
	1.4 Type						
ally: An	AVOUA	with o	rly 2	groups	i's iden	tical -	ts
th	e Stud	ent t-	test				