Research Methods for Political Science

Bivariate statistics: cross tables and chi-square

Dr. Thomas Chadefaux

Assistant Professor in Political Science
Thomas.chadefaux@tcd.ie

Bivariate statistics

Bivariate: relationship between two variables

- Today: relationship between two nominal or ordinal variables
 - Cross tables
 - Chi-square

Cross table

Table: Turnout and home ownership

	Owner without a mortgage or loan	Owner with a mortgage or loan	Local authority tenant	Private tenant Other	
I voted in the election	91.1%	89.5%	80.0%	69.2%	81.2%
I did not vote in election	6.1%	7.3%	10.0%	22.0%	17.2%
I thought about voting but didn't	0.0%	1.0%	4.3%	3.3%	1.6%
I usually vote but didn't	2.9%	2.2%	5.7%	5.5%	0.0%

Rules for a crosstable

- Keep ordering for ordinal variables
- Independent variables in the columns
- Dependent variables in the rows
- Calculate column percentages
- Compare percentages across the rows

Table: Turnout and home ownership

	Owner without a mortgage or loan		Owner with a mortgage or loan	Local authority tenant	Private tenant	: Other
I voted in the election	91.1%	,	89.5%	80.0%	69.2%	81.2%
I did not vote in election	6.1%		7.3%	10.0%	22.0%	17.2%
I thought about voting but didn't	0.0%	%	1.0%	4.3%	3.3%	1.6%
I usually vote but didn't	2.9%		2.2%	5.7%	5.5%	0.0%

Measures of association

Generally these measure the strength of the relationship between two variables

- Which one to use depends on the measurement level
 - Categorical or ordinal -> chi-square based
 - Continuous (interval-ratio) -> correlation

Home ownership and voting

			Total		
			Owner	iotai	
	Diducto	Count	938	119	1057
Vote in 2007	Did vote	%	90.5%	73.9%	88.2%
election	Did not	Count	99	42	141
	vote	%	9.5%	26.1%	11.8%
Total		Count	1037	161	1198
Total		%	100.0%	100.0%	100.0%

Chi squared

Difference in the sample, can we generalize this to the population?

Chi squared

• Observed frequencies (f_o)

• **Expected** frequencies (f_e) , if variables would not be related

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

			Owner o	Total		
			Owner Tenant		iotai	
Vote in 2007	Did vote	Count	938	119	1057	
election	Did not vote	Count	99	42	141	
Total		Count	1037	161	1198	
Total (%)			0.87%	0.13%	100%	

How likely is it that we obtained these numbers by chance?

That is: if there was no relationship between ownership and voting in the population, how likely is it we would get numbers which are so far away from what we would expect (or more extreme)?

			Owner o	or tenant	Total	Total (%)
			Owner Tenant		Total	Total (%)
Vote in 2007	Did vote	Count	Α	С	1057	88%
election	Did not vote	Count	В	D	141	12%
Total		Count	1037	161	1198	100%
Total (%)			0.87%	0.13%	100%	

• If ownership and vote were not related, how many respondents should we expect in cell A?

			Total	Total (%)		
			Owner	Owner Tenant		10tai (%)
Vote in 2007	Did vote	Count	A = 88%*0.87%	C = 88%*0.13%	1057	88%
election	Did not vote	Count	B = 12%*0.87%	D = 12%*0.13%	141	12%
Total		Count	1037	161	1198	100%
Total (%)			0.87%	0.13%	100%	

- If ownership and vote were not related, how many respondents should we expect in cell A?
 - If among all voters, 88% did vote, we would expect that among owners, also 88% would vote.
 - If among all owners, 87% did vote, we would expect that among voters, also 87% would vote.

			Owner o	or tenant	Total	Total (%)
			Owner Tenant		Total	Total (%)
Vote in 2007	Did vote	Count	Α	С	1057	88%
election	Did not vote	Count	В	D	141	12%
Total		Count	1037	161	1198	100%
Total (%)			0.87%	0.13%	100%	

- If ownership and vote were not related, how many respondents should we expect in cell A?
- Expected frequency (f_e) = row margin* $\frac{\text{column margin}}{\text{total}}$
- $f_e = 1037 * \frac{1057}{1198}$
- $f_e = 1037 * 0.88 = 914.9$

			Owner o	Total	
			Owner	Total	
Vote in 2007 election	Did vote	Count	Α	С	1057
	Did not vote	Count	В	D	141
Total		Count	1037	161	1198

Expected frequency
$$(f_e) = \frac{\text{row margin} * \text{colum margin}}{\text{total}}$$

			Owner o	Total	
			Owner	Total	
Vote in 2007 election	Did vote	Count	Α	С	1057
	Did not vote	Count	В	D	141
Total		Count	1037	161	1198

• B:
$$f_e$$
 = 1037 * 141 / 1198 = 122.1

• C:
$$f_e = 1057*161/1198 = 142.1$$

• D:
$$f_e$$
 = 141 * 161 / 1198 = 18.9

			Owner o	Total	
			Owner	iotai	
Vote in 2007	Did vote	Count	914.9	142.1	1057
election	Did not vote	Count	122.1	18.9	141
Total		Count	1037	161	1198

			Owner o	Total		
			Owner			
Vote in 2007 election	Did vote	Count	938	119	1057	
	Did not vote	Count	99	42	141	
Total		Count	1037	161	1198	

			Owner o	Total			
			Owner	Tenant	iOtai		
Vote in 2007	Did vote	Count	914.9	142.1	1057		
election	Did not vote	Count	122.1	18.9	141		
Total		Count	1037	161	1198		

			Owner or tenant		Total
			Owner Tenant		iotai
Vote in 2007	Did vote	Count	938	119	1057
election	Did not vote	Count	99	42	141
Total	Vote	Count	1037	161	1198

			Owner or tenant		Total
			Owner Tenant		iotai
Vote in 2007	Did vote	Count	914.9	142.1	1057
election		Count	122.1	18.9	141
Total		Count	1037	161	1198

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

Cell A:
$$\frac{(f_o - f_e)^2}{f_e} = \frac{(938 - 914.9)^2}{914.9} = \frac{533.61}{914.9} = 0.58$$

			Owner or tenant		Total
			Owner Tenant		iotai
Vote in 2007 election	Did vote	Count	938	119	1057
	Did not vote	Count	99	42	141
Total	7010	Count	1037	161	1198

			Owner or tenant		Total
			Owner Tenant		iotai
Vote in 2007	Did vote	Count	914.9	142.1	1057
election	Did not vote	Count	122.1	18.9	141
Total		Count	1037	161	1198

Cell B:
$$\frac{(f_o - f_e)^2}{f_e} = \frac{(99 - 122.1)^2}{122.1} = \frac{533.61}{122.1} = 4.37$$

Cell C: $\frac{(f_o - f_e)^2}{f_e} = \frac{(119 - 142.1)^2}{142.1} = \frac{533.61}{142.1} = 3.76$

Cell D: $\frac{(f_o - f_e)^2}{f_o} = \frac{(42 - 18.9)^2}{18.9} = \frac{533.61}{18.9} = 28.23$

Chi squared

$$\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$$

$$\chi^2 = .58 + 4.37 + 3.76 + 28.23 = 36.94$$

Great... but what does that mean?

Chi squared

 We need to compare the chi squared we obtained with the critical value for chi squared.

• If $\chi^2_{\text{obtained}} > \chi^2_{\text{critical}}$ we can conclude that it is unlikely that the relationship we found is just due to sampling error.

The critical value

- First, we need to set a confidence level, normally 95%
- This corresponds to a *p* value of 0.05 (1 95/100).
- Second, we need to know the degrees of freedom: df = (c-1)(r-1)

The critical value

In our example:

- The degrees of freedom:
 - 2 rows
 - 2 columns
 - -df = (2-1) * (2-1) = 1 * 1 = 1
- The critical value corresponding to df = 1 and p = 0.05 is found in Field, appendix A.4:

DISCOVERING 308 A.4. Critical values of the chi-square distribution 0.05 df 0.01 0.05 37.65 25 6.63 3.84 38.89 26 2 5.99 9.21 40.11 27 7.81 11.34 41.34 28 9.49 13.28 42.56 29 5 11.07 15.09 43.77 30 6 12.59 16.81 35 49.80 14.07 18.48

Chi square distribution

Comparing obtained and critical value

- $\chi^2_{\text{obtained}} = 36.94$
- $\chi^2_{critical} = 3.84$

• As $\chi^2_{\text{obtained}} > \chi^2_{\text{critical}}$ we conclude that there is a statistically significant relationship.

In SPSS

Analyze ... Descriptive Statistics ... Crosstabs

Case Processing Summary

			Cas	ses		
	Va	lid	Missing		Total	
	Ν	Percent	Ζ	Percent	N	Percent
Vote in 2007 election * Owner or tenant	1198	11.5%	9225	88.5%	10423	100.0%

Vote in 2007 election * Owner or tenant Crosstabulation

% within Owner or tenant

		Owner o		
		Owner	Tenant	Total
Vote in 2007 election	Did vote	90.5%	73.9%	88.2%
	Did not vote	9.5%	26.1%	11.8%
Total		100.0%	100.0%	100.0%

Chi-Square Tests

-					
1		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)
I	Pearson Chi-Square	36.715 ^a	1	.000	
1	Continuity Correction ^b	35.140	1	.000	-
	Likelihood Ratio	29.949	1	.000	
	Fisher's Exact Test				.000
	Linear-by-Linear Association	36.685	1	.000	
	N of Valid Cases	1198			

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 1
- b. Computed only for a 2x2 table

Chi squared

- If our N increases, our Chi-squared obtained will be larger. Thus: large N, more likely to find a statistically significant relationship
- If the number of categories increases, our degrees of freedom will increase, increasing Chi-squared critical. Thus: more categories, less likely to find a statistically significant relationship.

Assumptions of Chi squared

- Independent observations: each person, country, or other observation should only contribute to one cell in the cross table
- Expected frequencies should be greater than 5 in each cell. (Otherwise the sampling distribution of the Chi squared statistic does not follow a Chi squared distribution)

Strength of association

- Chi squared does not tell you how strong a relationship is, only whether it is statistically significant.
- If N is large, you are likely to find a significant relationship (but it might be a weak one).

 Solution: look at a measure of association, such as Cramers' V.

Cramer's V

 When your table is larger than 2x2, we should use Cramer's V (because Phi would never reach 0 in these cases):

•
$$V = \sqrt{\frac{\chi^2}{N*(\text{Minimum of } r - 1, c - 1)}}$$

• The minimum of r-1, c-1, in our case is: the minimum of 2-1 and 2-1, which is 1.

Cramers' V

If we find a Chi square of 80 for a 3 x 5 table,
 with N = 900.

•
$$V = \sqrt{\frac{\chi^2}{N*(\text{Minimum of } r - 1, c - 1)}}$$

•
$$V = \sqrt{\frac{80}{900*(\text{Minimum of } 3-1,5-1)}} = \sqrt{\frac{80}{900*2}}$$

•
$$V = 0.21$$

In SPSS

 Select Phi/Cramer's V in the 'Statistics' dialog when making a crosstable (Analyze ...
 Descriptive Statistics ... Crosstable).

	Symmetric Measures				
		Value	Approx. Sig.		
-	Nominal by Nominal	Phi	.175	.000	
		Cramer's V	.175	.000	
	N of Valid Cases		1198		