Pontificia Universidad Católica de Chile

Facultad de Matemáticas

 \odot

 \odot

Profesor: Ricardo Menares

Curso: Teoría de Números

Fecha: 8 de septiembre de 2025

Ayudante: José Cuevas Barrientos

Sigla: MAT2814

Asintótica de funciones aritméticas

1. Ejercicios

- 1. Sea \mathbb{F}_q un cuerpo con $q < \infty$ elementos.
 - a) Sea $f(x) \in \mathbb{F}_q[x]$ es irreducible. Pruebe que $f(x) \mid x^{q^n} x$ syss deg $f \mid n$.
 - b) Sea M(n) la cantidad de polinomios irreducibles de grado n en $\mathbb{F}_q[x]$ y sea E(n) la cantidad de elementos de \mathbb{F}_{q^n} de grado exactamente n (i.e., cuyo polinomio minimal tiene grado n y, por tanto, que generan la extensión \mathbb{F}_{q^n}). ¿Qué relación hay entre M(n) y E(n)?
 - c) Pruebe que

$$n\psi(n) = \sum_{d|n} \mu(d)q^{n/d}.$$

2. Primer teorema de Mertens: Demuestre que

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1),$$

(donde el subíndice p siempre recorre los números primos.)

Para facilitar el ejercicio realice los siguientes pasos:

(I) Demuestre que cuando n es entero

$$T(n) = \log(n!) = \sum_{p \le n} \left(\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \cdots \right) \log p.$$

(II) Demuestre que

$$\left\lfloor \frac{n}{p} - 1 < \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \dots < \frac{n}{p} + \frac{n}{p(p-1)}.$$

- (III) Demuestre que $\sum_{p \le x} \log p \le c_2 x$.
- (IV) Concluya el enunciado.
- 3. **Segundo teorema de Mertens:** Demuestre que

$$\sum_{p \le x} \frac{1}{p} = \log \log x + M + O\left(\frac{1}{\log x}\right),$$

donde M es una constante llamada la constante de Mertens.

PISTA: Emplee fórmula de suma por partes de Abel.

4. Postulado de Bertrand (demostración de Erdős): El objetivo de este ejercicio es probar que para todo $n \ge 2$ existe un primo p con $n \le p < 2n$.

- (I) Pruebe que $\prod_{p \le x} p \le 4^x$ para todo $x \ge 2$.
- (II) Pruebe que para todo entero $n \ge 1$ se cumple que

$$\binom{2n}{n} \ge \frac{4^n}{2n}.$$

(III) Dé cotas para la valuación de un primo $p \mid \binom{2n}{n}$ en los intervalos:

$$\left(\sqrt{2n}, \frac{2}{3}n\right], \qquad \left(\frac{2}{3}n, n\right], \qquad (n, 2n].$$

(IV) Confronte cotas y pruebe que el postulado de Bertrand es cierto para n suficientemente grande.

Referencias y lecturas adicionales

- 1. Granville, A. Number Theory Revealed. A Masterclass (American Mathematical Society, 2020).
- 2. TENENBAUM, G. Introduction à la théorie analytique et probabiliste des nombres 4.ª ed. (Berlin, 2015). Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-2-num/