Ensemble Methods

Kaggle

90	OSIC Pulmonary Fibrosis Progression Predict lung function decline	\$55,000
Ma. 40%	Featured • 18 days to go • Code Competition • 1776 Teams	
	RSNA-STR Pulmonary Embolism Detection	
RSNA	Classify Pulmonary Embolism cases in chest CT scans	\$30,000
d and source	Featured • a month to go • Code Competition • 118 Teams	181.1 (1881 20
	Lyft Motion Prediction for Autonomous Vehicles	
	Build motion prediction models for self-driving vehicles	\$30,000
	Featured • 2 months to go • Code Competition • 405 Teams	18.1 1883
	Mechanisms of Action (MoA) Prediction	
	Can you improve the algorithm that classifies drugs based on their biological activity?	\$30,000
	Research • 2 months to go • Code Competition • 1325 Teams	
1.4	Google Landmark Recognition 2020	
9.0	Label famous (and not-so-famous) landmarks in images	\$25,000
Hete	Research • 11 days to go • Code Competition • 667 Teams	
	OpenVaccine: COVID-19 mRNA Vaccine Degradation Prediction	
:(#):	Urgent need to bring the COVID-19 vaccine to mass production	\$25,000
OpenVoccine	Research • 17 days to go • 831 Teams	g
		127

"This is how you win ML competitions: you take other peoples' work and ensemble them together." <u>Vitaly Kuznetsov</u> NIPS2014

Competition Solutions, interviews and articles 2019 Data Science Bowl Uncover the factors to help measure how young children learn Solutions, interviews and articles Forum • 1st place (zr & oyx) • 2nd place (Fuson) WordZVec features, • 3rd place (Limerobot) transformer • 4th place (Crystal cave miners) tfildf, mn

5. Model

- Data augmentation: The model is trained on the full data (full train history and test previous, improve + 0.002).
- 2. Loss: We use rmse loss for training, and weighted rmse loss for validate.
- 3. Threshold: Then use Opitmizer Rounder to optimize thresholds for weighted qwk.
- 4. Ensemble: We just try a simple blending method (0.8 * lightgbm + 0.2 * catboost, the private score is 0.570. Since the cv score is not improved, we do not select it for our final results.

Competition Solutions, interviews and articles 2019 Data Science Bowl Uncover the factors to help measure how young children learn Solutions, interviews and articles Forum 1st place (zr & oyx) 2nd place (Fuson) WordZVec features, 3rd place (Limerobot) transformer 4th place (Crystal cave miners) tfidf, mn

Modeling

- . For the validation set, we resampled to ensure one sample per one user.
- StratifiedGroupKFold, 5-fold.
- . RSA (5 random seed) of LGB, CB, and NN.

Post Processing

- Ensemble = 0.5 * LGB + 0.2 * CB + 0.3 * NN.
- . Set the threshold to optimize cv gwk.

Tree based models

Lightgbm, Xgb, Catboost. (will be soon)

Stack

0 level) NN folds in folds model (5 outer folds, 5 inner folds), Igbm, catboost. 1st level) MLP, Lightgbm.

2nd level) Ridge.

https://www.kaggle.com/c/data-science-bowl-2019/discussion/127312

	long-best-threshold-f1	short-best-threshold-fl
Bert-base	0.618	0.457
Bert-large	0.679	0.541
Albert-xxI	0.700	0.555
ensemble	0.731	0.582

Models

We trained CatBoost, LightGBM, and MLP models on different subsets of the data:

- · 1 model per meter
- . 1 model per site id
- · 1 model per (building id, meter)

- Create a Baseline model.
- Works well for tabular data (pretty much any)
- Can Ensemble any model

Ensemble Methods?

"Essentially, all models are wrong, but some are useful."

--- Box, George E. P.; Norman R. Draper (1987). Empirical Model-Building and Response Surfaces, p. 424, Wiley. ISBN 0471810339.

Ensemble Methods?

Why Ensemble Works? (2)

Ensemble gives the global picture!

The blind men and the elephant.

"Essentially, all models are wrong, but some are useful." and their

combination might be better

Ensemble thought process

 Combine the predictions of many base estimators that is combine many machine learning model prediction to improve the generalization and robustness of the model.

Approaches:

- 1. Different training sets.
- 2. Different feature sampling.
- 3. Different algorithms.
- 4. Different hyperparameters.

CLEVER AGGREGATION

Ensemble thought process

 Combine the predictions of many base estimators that is combine many machine learning model prediction to improve the generalization and robustness of the model.

Types:

- 1. Averaging
- 2. Boosting
- 3. Voting
- 4. Stacking

CLEVER AGGREGATION

Ensemble thought process

 Combine the predictions of many base estimators that is combine many machine learning model prediction to improve the generalization and robustness of the model.

1. Averaging:

Build different models **independently** and **average** their prediction to **reduce variance**.

Random Forest

Random Forest:

- Ensemble of Decision trees :
 - a. Create different overfitted decision tree classifiers using bootstrap aggregation.
 - b. While constructing each decision tree; randomly choose k features among d.

Boosting

Build different models sequentially and by combining them try to reduce the bias.

- Weighted Boosting
- Gradient based Boosting.

Boosting

Gradient Based Boosting (Gradient Boosting / Xgboost)

Every model should be better than random guess

First model (Better than random)- M0

Loss (L)

-ve Gradients of Loss with respect to Model (M0)

First model (Better than random)- M0

First model (Better than random)- M0

Voting

 Use different classifiers; and use the majority vote or soft vote to combine.

To ensemble equally well performing model to balance out their individual weakness.

Voting

Voting

Hard Voting: The majority (mode) of the class label is predicted.

Soft Voting: The argmax() of the sum of predicted probabilities is predicted.

Soft Voting and Hard Voting

Classifier 1 predicts class A

Classifier 2 predicts class B

Classifier 3 predicts class B

Final Prediction is B

Classifier 1 predicts class A with probability 99%

Classifier 2 predicts class A with probability 49%

Classifier 3 predicts class A with probability 49%

$$(99 + 49 + 49) / 3 = 65.67\%$$

$$(1 + 51 + 51) / 3 = 34\%$$

Final Prediction is A

Stacking

- To use the outputs of different algorithm as the input feature for the meta-classifier (Final Classifier)

Stacking

Advantages of Ensemble

- 1. Robustness
- 2. Good Generalization performance.
- 3. Parallelization

Disadvantages of Ensemble

- 1. Human readability / explainability is not good.
- 2. Takes a lot of time to train.
- 3. Time effort off trade off to make accuracy may not make sense.

Resources:

- Kaggle Discussion forum
- Coursera (How to Win kaggle Competitions)
- Book (Ensemble methods, Foundations and Algorithms)
- Practice