Complexitatea algoritmilor

Facultatea de Matematică și Informatică

Complexitatea algoritmilor

- Dorim să comparăm algoritmii: care este mai "bun", verificând algoritmul pentru aceleași date de intrare.
- Cum evaluăm un algoritm (criterii de comparație):
 - → Timp de execuție
 - => Complexitatea în timp
 - → Memoria ocupată
 - => Complexitate spaţiu

De multe ori este nevoie de un compromis între complexitatea timp/spațiu

Complexitatea timp

- → Timpul de execuție dat în secunde? Depinde de mașina pe care rulăm.
- → Tipul de date influențează (int, long long, long double, etc...)?

 Da, dar nu semnificativ (exemplu)
- => Avem nevoie de ceva independent de maşină și totodată semnificativ: numărul de operații (exemplu)
- nu va fi necesar numărul exact de operații, ci "ordinul" numărului de operații executate de algoritm pentru un set de date cu dimensiune fixată (termenul dominant).

Dimensiunea datelor de intrare

# of records	10	20	50	100	1000	5000
algorithm 1	0.00s	0.01s	0.05s	0.47s	23.92s	47min
algorithm 2	0.05s	0.05s	0.06s	0.11s	0.78s	14.228

- Valoarea M pentru care trebuie formulat răspunsul
- Număr de elemente: vector cu N elemente
- Set de variabile $N_1, N_2, ..., N_k$
- Determinăm complexitatea timp ca funcție de aceste variabile

$$f(N_1, N_2, \ldots, N_k)$$

 O unitate de timp (constantă) pentru operațiile matematice / logice sau atribuire.

Definiţii formale

- Big-O
 - Spunem că f(N) este O(g(N)) dacă există c şi N_0 astfel încât: pentru orice $N > N_0$ avem f(N) < c*g(N)
- Big-Ω
 - Spunem că f(N) este $\Omega(g(N))$ dacă g(N) este O(f(N))
- Big-Θ
 - Spunem că f (N) este Θ(g(N)) dacă f (N) este O(g(N)) şi g(N) este O(f(N))

Spunem că un algoritm (sau un program) are complexitatea O(g(N)) dacă funcția sa de complexitate f(N) este O(g(N)).

Exemple

→ Pentru două seturi de instrucțiuni succesive, cu numărul de operații N, respectiv M: numărul de operații va fi N+M:

→ Pentru două bucle imbricate (cu numărul de iterații N, respectiv M): numărul de operații va fi N*M:

→ Dacă algoritmul nu conține bucle (for, while, repeat, do etc.) sau recursii => număr de operații constant (în majoritatea cazurilor)

Numărarea pas-cu-pas

C

PASCAL

```
int result=0,N,M;
for (int i=0; i<N; i++)
for (int j=i; j<N; j++)

{
    for (int k=0; k<M; k++)
    {
       int x=0;
      while (x<N)
      {
          result++;
          x+=3;
       }
    }
    for (int k=0; k<2*M; k++)
      if (k%7 == 4) result++;
}</pre>
```

```
var result,i,j,k,x,N,M:integer;
result:=0;
for i := 0 to n-1 do
 for j := i to n-1 do
  begin
    for k := 0 to M-1 do
     begin
      x := 0;
      while x<N do
       begin
       inc(result);
        x := x+3;
       end;
     end;
    for k := 0 to 2*M-1 do
     if k mod 7 = 4 then inc(result);
  end;
```

Calculați funcția de complexitate *f(N,M)* a programului de mai sus.

Complexitatea timp

- cazul cel mai defavorabil;
- cazul cel mai favorabil;
- timpul mediu de execuţie:
 - se determină valoarea medie a timpului de execuție după distribuția de probabilitate a datelor de intrare: avem valorile posibile și fiecare set de valori are o probabilitate de apariție și un timp de execuție => o medie ponderată.

Funcții uzuale de complexitate

- f (N) este O(log N): complexitate logaritmică (nu contează baza!)
- f (N) este O(N): complexitate liniară
- f (N) este **O(N²)**: complexitate pătratică
- f (N) este O(N³): complexitate cubică
- f (N) este O(N^k), k oarecare: complexitate polinomială
- f (N) este O(2^N): complexitate exponenţială (nu contează baza!)

• f (N) este O(1): complexitate constantă

Complexitate timp

- Timp fixat de rezolvare a unei probleme
- Se aproximează care este dimensiunea maximă a problemei ce se poate rezolva în durata de timp impusă:

complexity	maximum N		
$\Theta(N)$	100 000 000		
$\Theta(N \log N)$	40 000 000		
$\Theta(N^2)$	10 000		
$\Theta(N_3)$	500		
$\Theta(N^4)$	90		
⊝ (2 ^N)	20		
$\Theta(N!)$	11		

Table 3. Approximate maximum problem size solvable in 8 seconds.

Natura datelor de intrare

 Complexitatea spațiu și complexitatea timp depind de natura datelor de intrare. :

Exemplu:

T turiști vizitează orașe, iar o vizită este dată prin tripletul (id_calator, coord1_oras, coord2_oras), unde id_calator $\in \{1, ..., T\}$, $1 \le \text{coord1_oras}$, coord2_oras $\le N$. Se citesc **V** vizite (triplete). Determinați orașul cel mai vizitat.

Cazuri:

- 1) $1 \le N \le 100, 1 \le T \le 10^{10}, 1 \le V \le 10^{11}$
- 2) $1 \le N \le 10^{19}$, $1 \le T \le 10^4$, $1 \le V \le 10^4$

Soluții posibile? Complexitatea?

Alt exemplu

C

PASCAL

```
int j=0,N,D;
for (int i=0; i<N; i++)</li>
j:=0;
for i := 0 to N-1 do
while((j<N-1)&&(A[i]-A[j]>D))
j++;
if (A[i]-A[j] == D)
return 1;
int j=0,N,D:integer;
j:=0;
begin
while (j<N-1)&&(A[i]-A[j]>D) do
inc(result);
if (A[i]-A[j] == D) then exit;
end;
```

Calculați funcția de complexitate *f(N)* a programului de mai sus.