

Deep learning

Unpacking Transformers, LLMs and image generation

Session 2

Syllabus

Session	Lecture	TP
1	Intro to DL Gradient descent and backprop	Intro to micrograd
2	DL fundamentals I	Bigram model and MLP for next-character prediction
3	DL fundamentals II	Backprop ninja MLP in pytorch (*) add batchnorm to TP2 (*) MLP for MNIST (Fleuret 3)
4	Attention and Transformers	GPT from scratch (*) Fleuret practical 5 and 6
5	DL for computer vision: convnets, unets	Convnets for Fashion MNIST (*) Fleuret practical 4
6	VAE & Diffusion models	1D diffusion model 2D diffusion model (*) train on GPU Quiz

Important notes

Notebooks are scored from 0 to 4.

Always submit a notebook after class. Max score = 1/4 otherwise.

Exercises marked as (*) are required to get to 4. Max score = 2 otherwise.

No class on Feb 21st.

No class on March 27th -> last class on April 3rd. Be there!

Training: Finding the global optimum of an arbitrary non-convex function is NP-hard (Murty & Kabadi, 1987).

Generalization: deep networks generate way more regions than training samples.

Let's venture into the variations of a deep networks

Network architecture and inductive bias

Loss function

Activation function

Regularization

Initialization

Residual networks

Batch norm, layer norm

Inductive bias

Set of assumptions made by the model about the relationship between input data and output data.

Examples:

- Minimum features
- Maximum margin (SVM)
- Minimum cross-validation error
- Neural net architecture (convnet, transformer)

Empirical evidence: shallow networks don't work as well as deeper ones.

Intuition:

- Deep networks can represent more complex functions with the parameter count
- 2. Deep networks are easier to train
- 3. Deep network impose better inductive bias

The challenges of depth

- Vanishing/exploding gradients
- Shattered gradients

In short, depth is required but comes with challenges that need to be addressed.

Let's venture into the variations of a deep networks

Network architecture and inductive bias

Loss function

Activation function

Regularization

Initialization

Residual networks

Batch norm, layer norm

$$\ell = (y - \hat{y})^2$$
ground-truth

$$f_{\omega}(x_i) = \theta_i$$

Parameters of a distribution

$$f_{\omega}(x_i) = \theta_i$$

The distribution is chosen based on the domain.

The model computes the optimal θ_i given the data.

Example: univariate regression

$$\Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Predict the corresponding distribution parameter

Predict the corresponding distribution parameters

$$f_{\omega}(x_i) = \theta_i$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | x_i) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | \theta_i) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | f_{\omega}(x_i)) \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | x_i) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | \theta_i) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | f_{\omega}(x_i)) \right]$$

 $Pr(y_1, y_2, ..., y_N | x_1, x_2, ..., x_N)$

Data is assumed i.i.d

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | x_i) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | \theta_i) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr(y_i | f_{\omega}(x_i)) \right]$$

$$= \underset{\omega}{\operatorname{argmax}} \left[\sum_{i=1}^{N} \log[\Pr(y_i | f_{\omega}(x_i))] \right]$$

$$= \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log[\Pr(y_i|f_{\omega}(x_i))] \right]$$
 Negative log likelihood (NLL)

- Given new input data

$$\hat{y} = \underset{\omega}{\operatorname{argmax}} [\Pr(y|f_{\omega}(x))]$$

Optimal choice: maximum of the distribution

Or sample from the distribution!

In the case of the univariate regression, the NLL is equivalent to least squares.

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log[\Pr(y_i|f_{\omega}(x_i))] \right]$$
 Negative log likelihood (NLL)

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} \right] \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - f_{\omega}(x_i))^2}{2\sigma^2}} \right] \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (y_i - f_{\omega}(x_i))^2 \right]$$
 least squares

Example: binary classification

$$\Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0 \\ \lambda & y = 1 \end{cases}$$

Example: binary classification

$$\Pr(y|\lambda) = \begin{cases} 1 - \lambda & y = 0 \\ \lambda & y = 1 \end{cases}$$

NLL
$$\ell = \sum_{i=1}^{N} -(1 - y_i) \log[1 - \sigma(f_{\omega}(x_i))] - y_i \log[\sigma(f_{\omega}(x_i))]$$

 σ : sigmoid function

Example: multiclass classification

$$\Pr(y = k) = \lambda_k$$
 $\sum \lambda_k = 1$ $0 < \lambda_k < 1$

$$\Pr((y = k | x)) = softmax_k[f_{\omega}(x)] \qquad softmax(\mathbf{z}) = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$

Example: multiclass classification

$$\Pr(y=k)=\lambda_k \qquad \sum \lambda_k=1$$

NLL
$$\ell = -\sum_{i=1}^{N} \log \left[softmax_{y_i} [f_{\omega}(x_i)] \right]$$

Example: multiclass classification

$$\Pr(y=k)=\lambda_k \qquad \sum \lambda_k=1$$

 $\ell = -\sum_{i=1}^{N} \log \left[softmax_{y_i} [f_{\omega}(x_i)] \right]$

Wait, can I differentiate softmax?

Yes, and you will do it by hand in TP3!

NLL

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log[\Pr(y_i|f_{\omega}(x_i))] \right]$$
 Negative log likelihood (NLL)

is equivalent to the cross-entropy loss

Given two distributions q(z) and p(z), the distance between the two distributions can be computed with:

$$D_{KL}(q|p) = \int_{-\infty}^{\infty} q(z) \log(q(z)) dz - \int_{-\infty}^{\infty} q(z) \log(p(z)) dz$$

Given an empirical distribution q(y) and a model distribution $Pr(y|\omega)$, we want to minimize the KL divergence:

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log(q(y)) dy - \iint_{-\infty}^{\infty} q(y) \log[\Pr(y|\omega)] dy \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[- \iint_{-\infty}^{\infty} q(y) \log[\Pr(y|\omega)] dy \right]$$

Given two distributions q(z) and p(z), the distance between the two distributions can be computed with:

$$D_{KL}(q|p) = \int_{-\infty}^{\infty} q(z) \log(q(z)) dz - \int_{-\infty}^{\infty} q(z) \log(p(z)) dz$$

Given an empirical distribution q(y) and a model distribution $Pr(y|\omega)$, we want to minimize the KL divergence:

entropy of
$$q$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[\int_{-\infty}^{\infty} q(y) \log(q(y)) \, dy - \int_{-\infty}^{\infty} q(y) \log[\Pr(y|\omega)] \, dy \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[- \int_{-\infty}^{\infty} q(y) \log[\Pr(y|\omega)] \, dy \right]$$

$$q(y) = \frac{1}{N} \sum_{i=1}^{N} \delta[y - y_i]$$

 δ : dirac

Given an empirical distribution q(y) and a model distribution $Pr(y|\omega)$, we want to minimize the KL divergence:

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[- \iint_{-\infty}^{\infty} q(y) \log[\Pr(y|\omega)] dy \right] \qquad \text{cross-entry loss}$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[- \iint_{-\infty}^{\infty} \left(\frac{1}{N} \sum_{i=1}^{N} \delta[y - y_i] \right) \log[\Pr(y|\omega)] dy \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[- \frac{1}{N} \sum_{i=1}^{N} \log[\Pr(y_i|\omega)] \right]$$

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[- \sum_{i=1}^{N} \log[\Pr(y_i|\omega)] \right]$$

$$NLL$$

Figure 5.12 Cross-entropy method. a) Empirical distribution of training samples (arrows denote Dirac delta functions). b) Model distribution (a normal distribution with parameters $\theta = \mu, \sigma^2$). In the cross-entropy approach, we minimize the distance (KL divergence) between these two distributions as a function of the model parameters θ .

Source: <u>Understanding Deep Learning</u>, S. Prince, 2023

Definition of cross-entropy loss of distribution p relative to distribution q over the set \mathcal{X} :

$$H(p,q) = -E_p[\log q]$$

where $E_p[\cdot]$ is the expected value operator with respect to distribution p.

In the continuous case:

$$H(p,q) = -\int_{\mathcal{X}} P(x) \log Q(x) dx$$

In the discrete case:

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x)$$

TP2: makemore

Goal: Given a bunch of names, generate more "name-like" words.

- 1. Build a simple bigram model for next-character prediction
- 2. Build the same bigram model using the NLL loss
- 3. Implement a better model: [Bengio et al., 2003]

The dot character (.) marks the beginning and end of a word.

When sampling, you need to stop when you hit that special character.

How to initialize a torch matrix of size 27x27 containing floats?

$$x_i = [0,0,0,1,0,...0]$$

One-hot encoding of letter 'd'

 ω is a matrix $W_{27\times27}$ such that $\theta_i = softmax(x\cdot W)$ is a $N\times27$ vector representing the distribution of the next character for each sample

Step 2: bigram as a learnable matrix

One-hot encoding of letter 'd'

Step 2: bigram as a learnable matrix

W

One-hot encoding of letter 'd'

 $\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log[Pr(y_i|\omega)] \right]$ NLL

We want to minimize the KL divergence or NLL

$$\widehat{\omega} = \underset{\omega}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log Pr(y_i|\omega) \right] \quad NLL$$

Step 2: bigram as a learnable matrix


```
#forward pass
xenc = ??? # encode xs with F.one_hot
logits = ??? # multiply by W
counts = ??? # softmax
probs = ??? #
loss = ??? # sum of logs of probs
```

A few tips...

```
import torch.nn.functional as F x \cdot W is written as x \in W One-hot encoding: F.one_hot(x, num_classes=...).float()

For inference z.multinomial()

Normalizing a matrix W_{27 \times 27} by row requires the keepdim parameter somewhere...
```

A few tips...

```
>>> a = torch.randn((7,7))
>>> a
tensor([[ 1.2555, 0.6821, 0.9131, -0.7238, 0.5636, -2.8689, -0.4744],
        [2.1393, -0.8737, 2.4039, 0.0056, 0.6169, -0.2245, -0.2242],
        [0.1821, -0.4250, -0.1115, -0.3568, -2.2182, 0.9574, 1.9415],
        [-0.2646, 1.7013, -2.7297, 0.3786, -1.7883, 0.8484, -0.1894],
        [-0.5430, -0.2352, 0.4820, -0.0737, 0.8632, 0.1648, 1.1864],
        [1.3596, -0.6411, 2.9097, 0.9422, -0.0167, -0.1453, -0.6059],
        [-0.4946, 0.2705, 0.5348, -1.8176, -1.3861, -1.0276, -1.0050]])
>>> a.sum(axis=1)
tensor([-0.6527, 3.8434, -0.0306, -2.0437, 1.8446, 3.8025, -4.9256])
>>> a.sum(axis=1. keepdim=True)
tensor([[-0.6527],
       [ 3.8434],
        [-0.0306].
       [-2.0437],
       [ 1.8446],
        [ 3.8025],
        [-4.9256]]
```

Step 3: A Neural Probabilistic Language Model

Figure 1: Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

Step 3: A Neural Probabilistic Language Model

Figure 1: Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.