Barzilai-Borwein Method

Ruishan Lin

STAT 742 Course Project

10/21/2022

1/18

Overview

- Background
 - Optimization Context
 - Gradient Descent
 - Newton's Method
- BB Method
- 3 Examples
 - Two-component Gaussian Mixture
 - Logistic Regression

Optimization Context

Problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

where $f(\cdot)$ is at least twice continuously differentiable and convex.

• 2nd Order Convexity Condition

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \mathbb{R}^n$$

Solution

$$x^* \in \underset{x}{\operatorname{argmin}} f(x)$$

 In other words, we only consider a smooth, convex, unconstrained optimization problem.

Gradient Descent

Procedure:

- **1** Initialize k = 0 and set $x^{(k)} \leftarrow x_0$ for an initial solution x_0
- ② Set $x^{(k+1)} \leftarrow x^{(k)} \alpha^{(k)} \nabla f(x^{(k)})$. $\alpha^{(k)}$ is the step size.
- 3 Iterate 2. until a stopping criterion is satisfied.

4 / 18

Newton's Method

Procedure:

- **1** Initialize k = 0 and set $x^{(k)} \leftarrow x_0$ for an initial solution x_0
- ② Set $x^{(k+1)} \leftarrow x^{(k)} [\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$
- 3 Iterate 2. until a stopping criterion is satisfied.

Barzilai-Borwein Method

- Idea: Find $\alpha^{(k)}$ such that $\alpha^{(k)} \nabla f(x^{(k)})$ approximates $[\nabla^2 f(x^{(k)})]^{-1} \nabla f(x^{(k)})$
- Deriving $\alpha^{(k)}$: Let

$$A = \nabla^2 f(x^{(k)})$$

$$s^{(k-1)} = x^{(k)} - x^{(k-1)}$$

$$y^{(k-1)} = \nabla f(x^{(k)}) - \nabla f(x^{(k-1)})$$

Then we have

$$A s^{(k-1)} = y^{(k-1)}$$
 or $s^{(k-1)} = A^{-1}y^{(k-1)}$

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 釣۹で

BB Method Cont.

$$[\alpha^{(k)}]^{-1} s^{(k-1)} \approx y^{(k-1)}$$
 or $s^{(k-1)} \approx \alpha^{(k)} y^{(k-1)}$

Apply Least Squares Minimization:

$$[\alpha^{(k)}]^{-1} = \mathop{\rm argmin}_{\beta} \, ||\beta s^{(k-1)} - y^{(k-1)}||^2$$

or

$$\alpha^{(k)} = \underset{\beta}{\operatorname{argmin}} ||s^{(k-1)} - \beta y^{(k-1)}||^{2}$$

$$\implies \bar{\beta}^{*} = \frac{\langle s^{(k-1)}, y^{(k-1)} \rangle}{||s^{(k-1)}||^{2}} \quad \tilde{\beta}^{*} = \frac{\langle s^{(k-1)}, y^{(k-1)} \rangle}{||y^{(k-1)}||^{2}}$$

7/18

BB Method Cont.

Procedure:

- **1** Initialize k = 0 and set $x^{(k)} \leftarrow x_0$ for an initial solution x_0 .
- ② Set $x^{(k+1)} \leftarrow x^{(k)} \alpha^{(k)} \nabla f(x^{(k)})$ where $\alpha^{(k)}$ is either $1/\bar{\beta}^*$ or $\tilde{\beta}^*$.
- 3 Iterate 2. until a stopping criterion is satisfied.

8 / 18

Two-Component Gaussian Mixture

With negative Log-likelihood given by

$$f(\mu_1, \mu_2) = -\frac{1}{n} \sum_{i=1}^{n} log(0.5\phi(X_i - \mu_1) + 0.5\phi(X_i - \mu_2))$$

given data $\{X_i\}_{i=1}^n$ and $\mu_1, \mu_2 \in \mathbb{R}$. n = 50

• Contour plots of the $f(\cdot)$ and the $||\nabla f(\cdot)||$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□>
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□
4□

Gradient

$$\nabla_{\mu_1} f(\mu_1, \mu_2) = \frac{1}{n} \sum_{i=1}^n \frac{\phi(X_i - \mu_1)(X_i - \mu_1)}{\phi(X_i - \mu_1) + \phi(X_i - \mu_2)}$$

$$\nabla_{\mu_2} f(\mu_1, \mu_2) = \frac{1}{n} \sum_{i=1}^n \frac{\phi(X_i - \mu_2)(X_i - \mu_2)}{\phi(X_i - \mu_1) + \phi(X_i - \mu_2)}$$

10 / 18

Hessian

$$\nabla_{\mu_{1}^{2}}^{2} = -\frac{1}{n} \sum_{i=1}^{n} \frac{\phi(X_{i} - \mu_{1})(X_{i} - \mu_{1}) - \phi(X_{i} - \mu_{1})\phi(X_{i} - \mu_{1})}{[\phi(X_{i} - \mu_{1}) + \phi(X_{i} - \mu_{2})]^{2}}$$

$$\nabla_{\mu_{2}^{2}}^{2} = -\frac{1}{n} \sum_{i=1}^{n} \frac{\phi(X_{i} - \mu_{2})(X_{i} - \mu_{2}) - \phi(X_{i} - \mu_{2})\phi(X_{i} - \mu_{2})}{[\phi(X_{i} - \mu_{1}) + \phi(X_{i} - \mu_{2})]^{2}}$$

$$\nabla_{\mu_{1},\mu_{2}}^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{\phi(X_{i} - \mu_{1})(X_{i} - \mu_{1})\phi(X_{i} - \mu_{2})(X_{i} - \mu_{2})}{[\phi(X_{i} - \mu_{1}) + \phi(X_{i} - \mu_{2})]^{2}} = \nabla_{\mu_{2},\mu_{1}}^{2}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

11 / 18

Starting value (1, -1)

Figure: Plot of objective function against iteration.

Figure: Contour Plot

12 / 18

Other starting values

Figure: (-1, -1)

Figure: (0,0)

Second Example: Logistic Regression

$$\min_{\beta \in \mathbb{R}, \beta_0 \in \mathbb{R}} f(\beta_0, \beta) = \sum_{i=1}^n \log(1 + \exp(-y_i(x_i^T \beta + \beta_0)))$$

given data $\{x_i, y_i\}_{i=1}^n$

Gradient and Hessian

$$\nabla_{\beta_0} f(\beta_0, \beta) = -\sum_{i=1}^n \frac{y_i}{1 + \exp(y_i(x_i^T \beta + \beta_0))}$$

$$\nabla_{\beta} f(\beta_0, \beta) = -\sum_{i=1}^n \frac{y_i x_i}{1 + \exp(y_i(x_i^T \beta + \beta_0))}$$

$$\nabla^2 f(\beta_0, \beta) = \sum_{i=1}^n \begin{bmatrix} X \\ 1 \end{bmatrix} \frac{\exp(-y_i(x_i^T \beta + \beta_0))}{[1 + \exp(-y_i(x_i^T \beta + \beta_0))]^2} \begin{bmatrix} X \\ 1 \end{bmatrix}^T$$

4□ > 4₫ > 4½ > ½ > ½
 9

15/18

Case when d = 20, n = 50

	CPU run time	iterations	gradient norm
Gradient Descent	0	200	0.7986
Accelerated GD	0	200	0.0233
Newton's Method	0.0156	22	6.7168e-09
BB Method	0.0313	200	1.1487e-08

Table: CPU run time, iterations, and optimality

Case when d = 500, n = 10

	CPU run time	iterations	gradient norm
Gradient Descent	0.0156	200	0.2487
Accelerated GD	0	200	0.0050
Newton's Method	0.6875	22	5.8615e-09
BB Method	0	32	7.6061e-09

References

- Slawski, M. (2022, October) Gradient Descent, Extensions to Gradient Descent [Slides] Department of Statistics, George Mason University.
- Yin W. (2015) Optimization Barzilai Borwein Method [Slides] Department of Mathematics, UCLA.

18 / 18