1. For each of the following statements, produce a counterexample to show that the statement is **false** in general.

(a) If A and B are square matrices, AB = BA.

(b) If $AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A and B are 2×2 matrices.

(c) If AB = I, then BA = I.

(d) If $A^2 = 0$, then A = 0.

2. Let $R = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$.

(a) Find all solutions to the matrix equation $R\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$.

(b) Prove that the set $X = \{\vec{x} \in \mathbb{R}^3 : R\vec{x} = \vec{0}\}$ is a subspace.

(c) Prove that the set $Y = \{\vec{y} \in \mathbb{R}^3 : \vec{y} = R\vec{x} \text{ for some } \vec{x} \in \mathbb{R}^3\}$ is a subspace.

3. This problem explores two interpretations of matrix multiplication: linear combinations of columns and dot products with rows. If you need ideas, please review these two interpretations.

Suppose E is a 4×3 matrix with columns $\vec{c}_1, \vec{c}_2, \vec{c}_3$ and rows $\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4$. Let $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$.

(a) Express $E\vec{v}$ as a linear combination of $\vec{c}_1, \vec{c}_2, \vec{c}_3$.

(b) Supposing $\vec{r}_1 \cdot \vec{v} = 1$, $\vec{r}_2 \cdot \vec{v} = 6$, $(\vec{r}_3 + \vec{r}_4) \cdot \vec{v} = 2$, and $(\vec{r}_3 - \vec{r}_4) \cdot \vec{v} = -2$, compute $E\vec{v}$.

4. Suppose that \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^2 that are related by the following diagram of a parallelogram.

Let $A = [\vec{u}|\vec{v}|\vec{w}]$ be the matrix with columns \vec{u} , \vec{v} , and \vec{w} .

(a) What is the rank of A?

(b) Find all solutions to the equation $A\vec{x} = \vec{0}$.

(c) Find a basis for the subspace $V = {\vec{x} \in \mathbb{R}^3 : A\vec{x} = \vec{0}}.$

5. (a) For each of the following linear transformations, find a matrix corresponding to the transformation.

i. \mathcal{A} : Rotate 90° counterclockwise around the origin (in \mathbb{R}^2).

ii. \mathcal{B} : Send every vector in \mathbb{R}^2 to the zero vector.

iii. C: Project (in \mathbb{R}^3) onto the yz-plane.

iv. \mathcal{D} : Project (in \mathbb{R}^3) onto the x-axis.

- v. \mathcal{E} : Reflect (in \mathbb{R}^3) across the xy-plane.
- vi. \mathcal{F} : Stretch by a factor of 2 in the y-direction (in \mathbb{R}^2).
- vii. \mathcal{G} : Stretch by a factor of 2 in the y-direction (in \mathbb{R}^3).
- viii. \mathcal{H} : Rotate 90° counterclockwise (as viewed looking "down" from the positive y-axis towards the origin) around the y-axis (in \mathbb{R}^3).
- (b) For each transformation in part (a), explain geometrically whether or not the transformation is invertible. (Recall, a function f is invertible if there exists another function g so that $f \circ g$ and $g \circ f$ are both the identity function.)
- (c) Let

$$X = \begin{bmatrix} 0 & -1 \\ 2 & 0 \end{bmatrix} \qquad Y = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$Z = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{bmatrix} \qquad W = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

For each matrix $M \in \{X, Y, Z, W\}$, define a transformation T_M where $T_M(\vec{v}) = M\vec{v}$. For each M, explain how to obtain T_M as a combination of linear transformations from part (a). (Hint: you may need to combine two, three, or more transformations from part (a).)

- 6. Let $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} \subset \mathbb{R}^3$ be a linearly independent set. Suppose a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ satisfies $T(\vec{v}_i) = \vec{v}_i$ for $i \in \{1, 2, 3\}$. Prove that T is the identity transformation.
- 7. LINEAR TRANSFORMATIONS WERE HERE THE WHOLE TIME! For each transformation, determine whether or not it is a linear transformation. If it is a linear transformation, give its null space, i.e., all solutions to $\mathcal{F}\vec{x} = \vec{0}$.
 - (a) Let $V = \text{span}\{1, x, x^2\}$ where $1, x, x^2$ are (as usual) polynomials. Let $D: V \to V$ be differentiation. (Use the limit definition of the derivative. However, you can do limits like you did in Calc I; you don't have to do $\varepsilon \delta$ proofs).
 - (b) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be left-translation by s. That is, $D^s f(t) = f(t+s)$.
 - (c) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be vertical-translation by s. That is, $D^s f(t) = f(t) + s$.
 - (d) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be horizontal-stretching by s. That is, $D^s f(t) = f(t/s)$.
 - (e) Let $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$ and let $D^s : \mathcal{F} \to \mathcal{F}$ be vertical-stretching by s. That is, $D^s f(t) = s f(t)$.
 - (f) Let $\mathcal{I} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is increasing}\}$ and let $D : \mathcal{I} \to \mathcal{I}$ be so that $D(f) = f^{-1}$ takes a function to its inverse.
 - (g) Let $\mathcal{L} = \{f : \mathbb{R} \to \mathbb{R} \mid f(x) = mx + b \text{ for some } m, b \in \mathbb{R} \}$ be the set of all functions whose graphs are non-vertical lines and let $D : \mathcal{L} \to \mathbb{R}$ be evaluation at the point x = 1. That is, D(f) = f(1).