

台灣・台北 10月4日

CFD simulation for Reflow Soldering Process and Clean room Environment

HEXAGON MSC Software

Software Cradle Co., Ltd.
Group Leader Engineering Service Gr.4

Jun Eto

Software Portfolio of MSC Software

MBS: Adams

Simufact Forming

scSTREAM

✓ Robust solver and simplification of geometry enable steady and hispeed computation

Application Fields

- Construction and civil engineering
- City environment
- Chemical Reaction
- Heat radiation / Solar radiation
- Fan model / Air-Conditioning model
- Multi-fluid flow / Free surface flow
- Humidity / Condensation, Solidification / Melting
- Diffusion / Chemical reaction / Combustion
- Non-Newtonian fluid (shear heating considered)
- Porous media, Heat conduction panel

scFLOW

Unstructured mesh SCFLOW

Click on figure

- ✓ Robust auto-mesh generator enables capturing complex geometry
- ✓ Best-in-class computation speed, complex modeling and high-quality meshing

Application Fields

- Automotive
- Mechanical and Heavy Manufacturing
- Electrical and Electronics
- Chemical Reaction
- Polyhedral mesher
- Moving elements (discontinuous mesh)
- Oversetmesh
- Free surface
- Phase change

Use cases for semiconductor manufacturing and mounting process

Single wafer cleaning

Thermal design

Soldering process

Process of connecting components terminal and PCB wiring with solder

Flow(Wave) soldering

- Dipping PCB in the bath of solder
- Used for THD(Through hole device)
 - Ex. DIP,SIP packages

Reflow soldering

- PCB is heated in a reflow oven.
- Used for SMD(Surface mounted device)
 - Ex. BGA packages
- Dominant technology because suitable for automation

Reflow soldering

Reflow process

- Pre-heating
 - PCB temperature is raised
- Soak
 - Temperature below melting point
- Reflow
 - Solder paste melts
- Cooling
 - Solder solidifies

Design requirement and challenge of reflow profile

• Requirement

- Keep temperature rising speed in pre-heat
- Give all components the required temperature in soak
- Rise to a temperature above the melting point

Challenge

- Temperature is varied depends on PCB
- Temperature doesn't become uniform in PCB
- As a result, contact failure occurs

- Simplified reflow model
 - Methods
 - PCB movement can not be considered
 - Change only temperature and flow rate of heating air flow

- Strong points
 - Calculation time is short
- Weak points
 - Accuracy of wind distribution on PCB

- Detailed reflow model
 - Methods
 - PCB movement can be considered

- Strong points
 - Accuracy of wind distribution on PCB
- Weak points
 - Calculation time is long

Simplified PCB model

- Wiring pattern modeling
 - Equivalent thermal conductivity

Detailed PCB model

- Wiring pattern modeling
 - Creation wiring pattern shape using Gerber data

Wiring pattern(Gerber data)

Uniform equivalent thermal conductivity

Distribution of thermal conductivity generated from Gerber data

Condition

- Oven conveyor speed
 - 5 mm/s
- Heating time
 - 600 sec
- Heater temperature profile

Condition

Modeling

Detailed reflow and PCB model

Analysis type

- Turbulence flow, thermal, radiation, Moving object
- Standard k-ε model for turbulence model

Meshing

- 5 million elements
 - Wiring pattern resolutions is 0.2mm

Airflow in oven

• Airflow in oven

• Airflow in oven

• Time series of solder temperature

• Temperature distribution of PCB

Time : 0.000000

Case study

Changing wiring pattern layout

Original

Modified wiring pattern

• Temperature distribution of PCB

• Temperature difference between leads

FET

Resistor

Clean room

A room for the manufacture that is maintained at high level cleanliness

Principle for cleanliness

- Do not bring in
- Do not generate
- Avoid sedimentation
- Clear the air

Turbulence flow system

Design requirement and challenge of clean room

• Requirement

- Ventilation frequency for demand cleanliness class
- Uniform flow pattern

Challenge

- Non-uniform flow occurs due to shape and heat of machinery
- An area with poor ventilation performance occurs

- Size
 - 18m x 15m x 4m
- Ventilation frequency

Condition

Grating

Opening ratio 60%

Analysis type

- Turbulence flow, thermal, Ventilation efficiency
- Standard k-ε model for turbulence model
- Steady state

Meshing

2 million elements

Velocity distribution

Ventilation efficiency

• Age of air, Life expectancy of air, Life time of air

Age of air

: Time to reach from supply air

Life expectancy of air

: Time to reach return air from observation point

Life time of air

: Time from air supply to return air

Ventilation efficiency

life-of-airv_EvaluatedArea

Life time of air

Case study

Changing grating pattern

Original Changing grating pattern

Velocity distribution

Original

Changing grating pattern

Ventilation efficiency

• Life time of air

Summary

- Reflow process can be simulated by scSTREAM.
- Highly accurate simulation is possible with considering detailed wiring and oven model.
- Therefore it can find out changes in solder temperature due to changes in wiring pattern.
- Clean room can be simulated by scSTREAM.
- As a result, it is possible to find non-uniform flow are, also it can be improved by design change.
- Visualize ventilation efficiency to identify area with high risk contamination.

