Package 'meaca'

January 3, 2017

Title What the Package Does (one line, title case)

Version 0.0.1.0

Index

Description What the package does (one paragraph).
Depends R (>= $3.2.1$)
License What license is it under?
LazyData true
RoxygenNote 5.0.1
R topics documented:
http://gana.com
btw_gene_corr
Camera_multiple
Camera_multiple1
compare_test
data_simu
data_simu_meaca
estimate_sigma
GSEA
GSEA.Gct2Frame2
GSEA.ReadClsFile
GSEA1
meaca_multiple
meaca_multiple1
meaca_single
MRGSE multiple

MRGSE_multiple110prepare_go_term10prepare_simulation11read_gene_set11sig_path12simulate_expression_data12standardize_expression_data13

14

2 Camera_multiple

Description

Average correlations for genes

Usage

```
btw_gene_corr(expression_data, trt, geneset, standardize = T,
    minSetSize = 5)
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels

geneset an object from read_gene_set()
standardize whether the data should be standaridzed

minSetSize the minimum number of genes contained for a gene set to be considered.

Value

a list

set_name The name of the gene set

testSetCor Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

Camera_multiple Camera multiple

Description

multiple gene set enrichemnt analysis

Usage

```
Camera_multiple(expression_data, trt, geneset, use.rank = F)
```

Arguments

expression_data

the expression data matrix

trt the treatment lables for each column of expression_data

geneset a list containing all the gene sets to be tested for enrichment status use.rank If TRUE then it corresponds to "Camara-Rank", otherwise "Camara"

Camera_multiple1 3

Value

a list that has exactly the same elements as that in camara of "limma" package (see user manual for more details)

Camera_multiple1

CAMERA multiple

Description

multiple gene set enrichemnt analysis (specific for testing GSE64810)

Usage

```
Camera_multiple1(expression, trt, geneset, use.rank = F)
```

compare_test

Compare meaca to existing methods

Description

Compare meaca to other existing methods.

Usage

```
compare_test(dat)
```

Arguments

dat

the simulated data consisting of three lists: \itemdatathe expression matrix \itemtrtwhat treatment each column of data belongs to \itemgo_termwhether each row of data belongs to this go term

Value

a matrix of p values

4 data_simu_meaca

data	cimu

Compare meaca to existing methods

Description

Produce p value matrix for simulation discussed in the paper.

Usage

```
data_simu(case, prop = c(0.1, 0.1), de = c(2, 1), nsim = 1000, size = 50, rho = c(0.1, 0.05, -0.05), dest = "/home/stats/zhuob/data/computing/", num_gene = c(500, 100), post_txt = "PCT.txt")
```

Arguments

prop	A vector of two, specifying the proportion of DE genes for the test set and the background set
de	A vector of two, specifying the (normally distributed) DE effect size and its std
nsim	number of simulations to run
size	number of samples to be simulated
rho	A vector of three, for correlation coefficients corresponding to rho1, rho2, rho3 in the paper
dest	where to store the results
num_gene	A vector of two, specifying the number of genes to be simulated in total and in the test set
post_txt	formated name of output files

Value

a text file containing the p value matrix

data_simu_meaca	Power for meaca
ua ta_SIIIu_IIIEaca	Tower joi meaca

Description

Produce p value matrix for simulation discussed in the paper (Figure 2).

Usage

```
data_simu_meaca(case, prop = c(0.1, 0.1), de = c(2, 1), nsim = 1000, size = 50, rho = c(0.1, 0.05, -0.05), dest = "/home/stats/zhuob/data/computing/", num_gene = c(500, 100))
```

estimate_sigma 5

Arguments

prop	A vector of two, specifying the proportion of DE genes for the test set and the background set
de	A vector of two, specifying the (normally distributed) DE effect size and its std
nsim	number of simulations to run
size	number of samples to be simulated
rho	A vector of three, for correlation coefficients corresponding to rho1, rho2, rho3 in the paper
dest	where to store the results
num_gene	A vector of two, specifying the number of genes to be simulated in total and in the test set
post_txt	formated name of output files

Value

a text file containing the p value matrix

Estimate sample covariance.

Description

Estimate sample covariance and calculate the gene-level statistics

Usage

```
estimate_sigma(expression_data, trt)
```

Arguments

 ${\tt expression_data}$

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a list

sigma a covariance matrix

t_val a vector of gene level test statistics

6 GSEA.Gct2Frame2

GSEA

GSEA.

Description

GSEA for testing multiple gene sets.

Usage

```
GSEA(input.ds, input.cls, gene.ann = "", gs.db, gs.ann = "", output.directory = "", doc.string = "GSEA.analysis", non.interactive.run = F, reshuffling.type = "sample.labels", nperm = 1000, weighted.score.type = 1, nom.p.val.threshold = -1, fwer.p.val.threshold = -1, fdr.q.val.threshold = 0.25, topgs = 10, adjust.FDR.q.val = F, gs.size.threshold.min = 25, gs.size.threshold.max = 500, reverse.sign = F, preproc.type = 0, random.seed = 123456, perm.type = 0, fraction = 1, replace = F, save.intermediate.results = F, OLD.GSEA = F, use.fast.enrichment.routine = T)
```

GSEA.Gct2Frame2

readling sample lables.

Description

```
readling sample labels (from GSEA.1.0.R) read the expression data of Gct format.
```

Usage

```
GSEA.Gct2Frame2(filename = "NULL")
GSEA.Gct2Frame2(filename = "NULL")
```

Arguments

file

the expression data files.

GSEA.ReadClsFile 7

GSEA.ReadClsFile

readling Cls files.

Description

```
readling Cls file (from GSEA.1.0.R) read the gene sets of the MsigDB format.
```

Usage

```
GSEA.ReadClsFile(file = "NULL")
GSEA.ReadClsFile(file = "NULL")
```

Arguments

msigdb

gene set ensemble downloaded from broad institute.

Value

a list

total

number of gene sets contained.

size

a numerical vector containing the size of each gene set.

gene_set

a list. The first element is the set name. From the third element each containing members of the gene set.

GSEA1

GSEA multiple

Description

multiple gene set enrichemnt analysis (specific for testing GSE64810)

Usage

```
GSEA1(input.ds, input.cls, gene.ann = "", gs.db, gs.ann = "", output.directory = "", doc.string = "GSEA.analysis", non.interactive.run = F, reshuffling.type = "sample.labels", nperm = 1000, weighted.score.type = 1, nom.p.val.threshold = -1, fwer.p.val.threshold = -1, fdr.q.val.threshold = 0.25, topgs = 10, adjust.FDR.q.val = F, gs.size.threshold.min = 25, gs.size.threshold.max = 500, reverse.sign = F, preproc.type = 0, random.seed = 123456, perm.type = 0, fraction = 1, replace = F, save.intermediate.results = F, OLD.GSEA = F, use.fast.enrichment.routine = T)
```

8 meaca_multiple1

meaca_multiple	meaca-multiple.
illeaca_illuftipie	теаса-типр

Description

meaca for testing multiple gene sets.

Usage

```
meaca_multiple(expression_data, trt, geneset, standardize = T,
    minSetSize = 5, fdr_method = "BH")
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels.

geneset gene sets to be tested, an object from read_gene_set.

standardize whether the data should be standaridzed.

minSetSize the minimum number of genes contained for a gene set to be considered.

fdr_method which method is ued to adjust the p values. see arguments in function p. adjust.

Value

a data frame

|--|--|--|

Description

multiple gene set enrichemnt analysis (specific for testing GSE64810)

Usage

```
meaca_multiple1(expression_data1, trt, geneset, standardize = T,
    minSetSize = 5, fdr_method = "BH")
```

meaca_single 9

meaca_single meaca-single.

Description

meaca for single gene set test.

Usage

```
meaca_single(expression_data, trt, go_term, standardize = F)
```

Arguments

expression_data

the expressoin matrix.

trt treatment labels.

go_term an indicator vector. 1 for genes in the test, 0 otherwise.

standardize whether the data should be standaridzed.

Value

a list

set_name The name of the gene set

testSetCor Average correlation for genes in the test set

interCor Average correlation between genes in the test set and those not in the test set

backSetCor Average correlations for genes not in the test set.

MRGSE_multiple MRGSE multiple

Description

multiple gene set enrichemnt analysis

Usage

```
MRGSE_multiple(expression, trt, geneset, use.rank = TRUE)
```

Arguments

expression the expression data matrix

trt the treatment lables for each column of expression_data

geneset a list containing all the gene sets to be tested for enrichment status use.rank If TRUE then it corresponds to "MRGSE", otherwise "Camara"

Value

a matrix

10 prepare_go_term

MRGSE_multiple1 MRGSE multiple

Description

multiple gene set enrichemnt analysis (specific for testing GSE64810)

Usage

```
MRGSE_multiple1(expression, trt, geneset, use.rank = T)
```

prepare_go_term Simulate gene labels.

Description

Simulate test set gene labels

Usage

```
prepare_go_term(num_gene, prop, delta)
```

Arguments

num_gene a vector of length 2, total number of genes to be simulated and number of genes

in the test set.

prop a vector of length 2, proportion of DE genes within go term and outside go_term,

corresponding to \$p_t\$ and \$p_b\$.

delta a vector of length num_gene, representing DE effect for each gene

Value

a list

go_term DE indicator for each simulated gene. 1 is for genes in the test set, and 0 othw-

erwise.

delta DE effect for each simulated gene.

n_gene number of genes to be simulated.

prepare_simulation 11

Description

Prepare simulation parameters.

Usage

```
prepare_simulation(num_gene, prop, delta, case, rho)
```

Arguments

num_gene	number of genes to be simulated.
prop	a vector of length 2, corresponding to \$p_t\$ and \$p_b\$.
delta	a vector of length num_gene, representing DE effect for each gene
case	which correlation structure to simulate data from (see simulation setup in the paper)
rho	a vector of length 3. Corresponds ρ_1 , ρ_2 and ρ_3 .

Value

a list			

 go_term DE indicator for each simulated gene. 1 is for genes in the test set, and 0 othw-

erwise

delta DE effect for each simulated gene

 $sigma \hspace{1.5cm} the \ true \ correlation, \ used \ to \ simulate \ the \ expression \ data$

read_gene_set	Convert gene sets to lists

Description

read the gene sets of the MsigDB format.

Usage

```
read_gene_set(msigdb)
```

Arguments

msigdb gene set ensemble downloaded from broad institute.

Value

a list

total number of gene sets contained.

size a numerical vector containing the size of each gene set.

gene_set a list. The first element is the set name. From the third element each containing

members of the gene set.

sig_path

Sigpathway

Description

implement the Sigpathay.

Usage

```
sig_path(index, statistics, nsim = 9999)
```

Arguments

num_gene

number of genes to be simulated.

Value

p the p-values.

simulate_expression_data

Simulate expression data.

Description

simulate normally distributed expression data with desired DE probabilities for genes in the test set and for those not in the test set..

Usage

```
simulate_expression_data(size, obj)
```

Arguments

size number of samples to be simulated

obj object returned by prepare_simulation.

Value

a list

data a expression matrix of $m \times n$ where m is the number of genes and n is the

number of samples.

trt sample labels of length n, 1 for treatment and 0 for control.
go_term gene labels of length m, 1 for go_term genes and 0 otherwise.

sigma true covariance matrix upon which data is simulated.

standardize_expression_data

standardize expression data, with method described in the paper.

Description

Standardize the expression data.

Usage

```
standardize_expression_data(expression_data, trt)
```

Arguments

expression_data

the expression matrix.

trt sample labels. 0 for control and 1 for treatment

Value

a matrix of the same dimension as input data.

Index

```
btw_gene_corr, 2
Camera_multiple, 2
Camera_multiple1, 3
compare_test, 3
data_simu, 4
data\_simu\_meaca, 4
estimate_sigma, 5
GSEA, 6
GSEA.Gct2Frame2,6
GSEA.ReadClsFile, 7
GSEA1, 7
meaca_multiple, 8
meaca_multiple1, 8
meaca\_single, 9
{\tt MRGSE\_multiple, 9}
MRGSE_multiple1, 10
\verb|prepare_go_term|, 10
prepare_simulation, 11
read_gene_set, 11
sig_path, 12
simulate_expression_data, 12
standardize_expression_data, 13
```