Machine Learning

10장 Regression Analysis

고려대학교 통계학과 박유성

Contents

- () 1 선형회귀 모형
- 02 로버스트 회귀
- 03 SVM 회귀와 커널 SVM회귀
- ()4 규제화된 선형회귀모형 & 기타 회귀모형
- 05 실습

01 선형회귀 모형

- 분류와 더불어 지도학습의 중요부분.
- 클래스(이산형) y를 예측 → 분류
- 연속형 y를 예측 → 회귀
- 해석이 용이하고 모수 추정이 쉬워 가장 널리 사용됨.

■ 고전적 선형 회귀 모형.

$$y_i = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_d x_{d,i} + \varepsilon_i \tag{10.1}$$

이때
$$i=1,2,\cdots,n$$
 : 관측치의 개수 x_1,\cdots,x_d : d개의 특성변수. $\varepsilon_i\sim iid\ (0,\sigma^2)$

01 선형회귀 모형-선형성의 특징

- y와 x와의 관계가 선형 또는 비선형 상관없음.
- Y와 ^β와의 관계가 선형일때 → 선형모형.
- 예 x₁ x₂ 두 개의 특성변수가 있을 때

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{1,i}^2 + \beta_3 x_{1,i} x_{2,i} + \beta_4 e^{x_{2,i}} + \varepsilon_i$$
 (10.2)

이때,
$$x_{1,i}^2 = x_{2,i}^*$$
, $x_{1,i}x_{2,i} = x_{3,i}^*$, $e^{x_{2,i}} = x_{4,i}^*$ 로 놓으면 선형모형으로 변환가능.

- 특성변수가 제곱의 형태 또는 지수의 형태 등 관계없음.
- Y와 특성 변수 각각에 대한 Scatter plot을 그린 후 특성변수의 변환.

01 선형회귀 모형-모형의 추정

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_d x_{d,i} + \varepsilon_i , i = 1, 2, \dots, n$$

$$= \boldsymbol{\beta}^T \boldsymbol{x}_i + \varepsilon_i$$
(10.3)

이때,
$$\boldsymbol{x}_i = (1, x_{1,i}, \cdots, x_{d,i})^T$$
이고 $\boldsymbol{\beta} = (\beta_0, \beta_1, \cdots, \beta_d)^T$

■ 오차항의 y_i에 대한 영향력을 최소화

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \boldsymbol{\beta}^T \boldsymbol{x}_i)^2$$
 (10.4)

- 식(10.4)를 최소화 하는 β를 최소제곱추정치 또는 OLS라고 함.
- 머신러닝에서는 $oldsymbol{eta}$ 의 추정치를 기울기 하강법($\mathsf{Ch.2.3}$)을 이용하여 추정.
- 직접 β 를 추정하면,

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- <mark>특성 변수들이 선형적으로 독립이어야함.</mark> 즉 특성변수간 상관관계=0
- 특성 변수들 간의 상관 관계를 사전에 점검 하여야 함.

01 선형회귀 모형-모형의 진단

- 모형의 진단은 잔차 plot를 그려 보는 것으로 부터 출발.
- Y의 예측치: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + \dots + \hat{\beta}_d x_{d,i}$ 이고, 잔차: $r_i = y_i \hat{y}_i$ 일때,
- $X \to \hat{y}_i$, y축 $\to r_i$ 인 plot

- r_i 는 식(10.1)의 ε_i 의 추정치 이므로, 모형이 잘 추정됨 $\rightarrow r_i \sim iid (0, \sigma^2)$ 만족.
- r_i 가 추세 또는 특수한 형태를 가지면 모형을 재추정 해야함.

02 로버스트회귀(Robust regression model)

■ 선형회귀모형은 이상치의 영향을 크게 받음. (∵오차항의 제곱합 최소화)

- 큰 오차를 갖는 이상치에 영향을 많이 받음.
- 따라서, 로버스트 회귀 방법을 사용해야함.
- 통계학 에서의 로버스트 회귀: M-estimator, LTS, DPM 등.
- 머신러닝 에서의 로버스트 회귀 : RANSAC(random sample concensus)

02 로버스트회귀-RANSAC

- 매우 직관적이지만 이상치에 매우 로버스트함.
- RANSAC의 절차.
 - 1. 학습데이터에서 작은 크기의 임의 표본을 뽑음.(특성변수 총수 + 20~30개의 표본)
 - 2. 표본에 OLS추정치를 구함. 이후
 - 3. 추정된 모형에 전체 학습데이터를 적용하여 잔차를 구함.
 - 4. 잔차의 중위수(median)을 구한 후 각 잔차의 MAD (|r; median(r;)|)를 구함.
 - 5. MAD가 d (보통 4~5)보다 작은 관측치만 모음. → 콘센서스셋(concensus set)
 - 6. 콘센서스셋에 OLS를 재적합.
 - 7. stepl~step6를 M번 반복한다.
- 가장 큰 그기의 콘센서스셋으로 계산된 OLS 추정치→ RANSAC
- MAD대신 절대값 등으로 대체 가능.
- 초모수: 반복수 M, 임의의 표본수, 임계값 d (일종의 SVM으로 볼수 있음.)

■ SVM회귀의 목표 : 자료 (y_i,x_i) , $i=1,2,\cdots,n$ 가 $|y_i-eta_0-eta_1x_i|\leq arepsilon_i$ 인 eta_0 와 eta_1 찾기.

- 이때 두 직선 사이 거리 : $y_+ y_- + \beta^T (x_- x_+) = 2\varepsilon$
- 양변을 $|\beta| = \sqrt{\sum_{i=0}^{d} \beta_i^2}$ 으로 나누면(β^T 의 유일해)

$$\frac{(y_{+}-y_{-})+\boldsymbol{\beta}^{T}(\boldsymbol{x}_{-}-\boldsymbol{x}_{+})}{\|\boldsymbol{\beta}\|} = \frac{2\varepsilon}{\|\boldsymbol{\beta}\|}$$
(10.5)

Ч(10.5)의 표준화 거리를 최대화→ (y+, x+)와 (y-,x-)사이의 거리를 최대화하는 선형평면.→ 즉 . (y+,x+)와 (y-,x-)가 서포트 벡터가 됨.

- 표준화 거리의 최대화=
 □ 5
 □ 의 최소화=
 □ 5
 □ 2
 □ 3
 □ 4
 □ 5
 □ 2
 □ 3
 □ 4
 □ 5
 □ 2
 □ 3
 □ 4
 □ 5
 □ 2
 □ 3
 □ 4
 □ 5
 □ 2
 □ 3
 □ 4
 □ 5
 □ 6
 □ 6
 □ 7
 □ 6
 □ 7
 □ 8
 □ 8
 □ 9
 □ 1
 □ 1
 □ 2
 □ 3
 □ 4
 □ 4
 □ 5
 □ 6
 □ 7
 □ 8
 □ 8
 □ 9
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 2
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
 □ 1
- 즉, $i=1,2,\cdots,n$ 에 대해 $|y_i-x_i^T\beta|\leq \varepsilon$ 을 만족하는 $|\beta||^2$ 을 최소화 문제.
- SVM 분류와 개념적으로 동일.

- 그러나, 실제 문제에서 ₽이 매우 크지 않는 한 |y_i * ₹ β ≤ ε 만족 어려움.
- SVM에서와 같이 완화변수 (slack variable: ç와 ç)도입 필요.

완화 변수(slack variable)

SVM 회귀의 최적화

$$\min \min_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|^{2} + C \sum_{i=1}^{n} (\zeta_{i} + \zeta_{i}^{*})$$

$$y_{i} - \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} \leq \varepsilon + \zeta_{i} \quad \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i} \leq \varepsilon + \zeta_{i}$$
(10.6)

즉, ε-insensitive 손실함수

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} L_{\varepsilon}(y_{i} - \boldsymbol{x}_{i}^{T}\boldsymbol{\beta}) + \lambda \| \boldsymbol{\beta} \|^{2}$$
 과동일. Where $L_{\varepsilon}(r) = \begin{cases} 0 \text{ if } |r| < \varepsilon \\ |r| - \varepsilon & 0/w \end{cases}$ $\lambda = \frac{1}{C}$

즉, 튜브안(|y_i - x_i p | < ε) 이면 0을 부여, 튜브 밖의 관측치에만 손실을 부여.

■ 라그랑지 승수 α_i α_i^* , η_i 와 η_i^* 를 이용하여 손실함수 정의.

$$L_{p} = \frac{1}{2} \| \boldsymbol{\beta} \|^{2} + C \sum_{i=1}^{n} (\zeta_{i}^{*} + \zeta_{i}) + \sum_{i=1}^{n} \alpha_{i} (y_{i} - \boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - \varepsilon - \zeta_{i}) + \sum_{i=1}^{n} \alpha_{i}^{*} (\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} - y_{i} - \varepsilon - \zeta_{i}^{*}) - \sum_{i=1}^{n} (\eta_{i} \zeta_{i} + \eta_{i}^{*} \zeta_{i}^{*})$$
(10.7)

ullet L_p 를 최소화 하는 \underline{eta} , ζ_i 와 ζ_i^* 대해 미분.

$$\sum_{i=1}^{n} (\alpha_i - \alpha_i^*) \boldsymbol{x}_i = \boldsymbol{\beta}, \quad \alpha_i = C - \eta_i, \quad \alpha_i^* = C - \eta_i^*$$

■ 이를 식(10.7)에 대입.

$$L_p = \varepsilon \sum_{i=1}^{n} (\alpha_i + \alpha_i^*) - \sum_{i=1}^{n} y_i (\alpha_i - \alpha_i^*) + \frac{1}{2} \sum_{i,j=1}^{n} (\alpha_i^* - \alpha_i) (\alpha_j^* - \alpha_j) \boldsymbol{x}_i^T \boldsymbol{x}_j$$
 (10.8)

 $lackbreak L_p$ 최소화하는 $lpha_i$ 와 $lpha_i^*$ 는 아래와 같은 조건에서 구함.

$$\alpha_i(y_i - \boldsymbol{x}_i^T \boldsymbol{\beta} - \varepsilon - \zeta_i) = 0, \quad \alpha_i^*(\boldsymbol{x}_i^T \boldsymbol{\beta} - y_i - \varepsilon - \zeta_i^*) = 0, \quad (C - \alpha_i)\zeta_i = 0, \quad (C - \alpha_i^*)\zeta_i^* = 0$$

■ 이에 대한 해는 convex quadratic 프로그램 문제.

[계속]

- ϵ -튜브안의 모든 관측치는 $\zeta_i = \zeta_i^* = 0$ 이고 $|y_i x_i^T \beta| < \epsilon$ 임.
- 따라서 조건 $\alpha_i(y_i \boldsymbol{x}_i^T\boldsymbol{\beta} \varepsilon \zeta_i) = 0$ 와 $\alpha_i^*(\boldsymbol{x}_i^T\boldsymbol{\beta} y_i \varepsilon \zeta_i^*) = 0$ 에 의해 ε 튜브안의 모든 관측치에 대한 $\alpha_i = \alpha_i^* = 0$ 됨.
- 이는 $\beta = \sum_{i=1}^{n} (\alpha_i \alpha_i^*) x_i$ 이므로, \mathcal{E} -튜브안의 관측치는 β 에 기여하지 못함.
- 즉 \mathcal{E} -튜브 경계선 및 밖의 관측치만 β 를 구하는데 기여함.(즉, 써포트 벡터)
- 새로운 특성변수 \mathbf{x} 에 대한 \mathbf{y} 예측치 Where : $y_i = \mathbf{x}_i^T \boldsymbol{\beta}$ 이고 $\hat{\boldsymbol{\beta}} = \sum_{i=1}^n (\hat{\alpha_i} \hat{\alpha_i}^*) \mathbf{x}_i^T$ (10.9)
- 비선형 커널 SVM회귀 : $\boldsymbol{x}_i^T \boldsymbol{x}_i$ 대신에 적절한 kernel 함수 $K(\boldsymbol{x}_i, \boldsymbol{x}_j)$ 를 대입.
- α_i 와 α_i^* 를 구한 후 비선형 커널 SVM회귀의 예측치는.

$$\hat{y}_i = \sum_{i=1}^n (\hat{\alpha_i} - \hat{\alpha_i}^*) K(\boldsymbol{x}_i, \boldsymbol{x})$$

10장 Regression Analysis

- 과적합(over fitting)의 문제 고려 하여야함.
- 리지(Ridge) 회귀.
- L_2 규제화를 살펴보면

$$\sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{d} \beta_i^2$$
 (10.10)

• 이때 L_2 규제화 에서의 β 임. 식(10.10)을 행렬식으로 표현하면,

$$L(\beta) = (\mathbf{y} - X\mathbf{\beta})^T (\mathbf{y} - X\mathbf{\beta}) + \lambda \mathbf{\beta}^T \mathbf{\beta}$$
 을 미분하면,

$$\frac{\partial L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2X^T \boldsymbol{y} + 2X^T X \boldsymbol{\beta} + 2\lambda \boldsymbol{\beta} = 0$$
을 풀면, $\hat{\boldsymbol{\beta}}_{Ridge} = (X^T X + \lambda I)^{-1} X^T \boldsymbol{y}$

- 통계학 : X^TX 의 역행렬이 존재하지 않을 때 적용.
- 해석의 문제가 발생하여 거의 쓰지 않는 방법
- L_2 규제화로 해석이 가능해짐. \rightarrow 회귀모형의 과대적합 해결방안으로 유용.

- LASSO(Least absolute shrinkage and selection operator)
- lacksquare L_1 규제화를 살펴보면,

$$\sum_{i=1}^{n}(y_i-\boldsymbol{x}_i^T\boldsymbol{\beta})^2+\lambda\sum_{j=1}^{d}|eta_j|$$
를 최소화 하는 $\boldsymbol{\beta}$ 를 구함.

- 이때, $\frac{\lambda}{\lambda}$ 가 클수록 설명력이 작은 순서대로 $\beta_j \rightarrow 0$ 수렴.
- 즉 , 특성변수를 선택하는 모형임.

• Elastic Net : L_1 규제화와 L_2 규제화를 결합한 선형회귀모형.

$$\sum_{i=1}^{n} (y_i - x_i^T \beta)^2 + \lambda_1 \sum_{j=1}^{d} |\beta_j| + \lambda_2 \sum_{j=1}^{d} \beta_j^2$$
 를 최소화 하는 β 를 구함.

■ 기타 회귀모형: KNN, 의사결정나무(회귀나무), Boosting을 이용한 회귀.

Scikit learn을 이용한 Ridge, LASSO, Elastic Net.

1.리지(Ridge)회귀.

from sklearn,linear_model import Ridge rd=Ridge(alpha=1.0)

alpha는 L_2 규제의 λ

2.LASSO

from sklearn.linear_model import Lasso lss=Lasso(alpha=1.0)

3. Elastic Net.

from sklearn.linear_model import ElasticNet elt=ElasticNet(alpha=1.0 //1 ratio=0.5)

alpha는 L_1 과 L_2 규제하의 $\lambda_1 + \lambda_2$

 l_1 _ratio는 alpha $imes l_1$ _ratio로 L_1 규제하의 h_1

- = 1 LASSO
- &

 $l1_ratio = 0 \rightarrow Ridge$

- LASSO(Least absolute shrinkage and selection operator)
- lacksquare L_1 규제화를 살펴보면,

$$\sum_{i=1}^{n}(y_i-\boldsymbol{x}_i^T\boldsymbol{\beta})^2+\lambda\sum_{j=1}^{d}|eta_j|$$
를 최소화 하는 $\boldsymbol{\beta}$ 를 구함.

- 이때, λ 가 클수록 설명력이 작은 순서대로 $\beta_i \rightarrow 0$ 수렴.
- 즉 ,특성변수를 선택하는 모형임.

■ Elastic Net : L_1 규제화와 L_2 규제화를 결합한 선형회귀모형.

$$\sum_{i=1}^n (y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})^2 + \lambda_1 \sum_{j=1}^d |\beta_j| + \lambda_2 \sum_{j=1}^d \beta_j^2$$
를 최소화 하는 $\boldsymbol{\beta}$ 를 구함.

■ 기타 회귀모형: KNN, 의사결정나무(회귀나무), Boosting을 이용한 회귀.

Q & A