

Chap4 Classification - Xjdjdjdjd

khai thác dữ liệu và ứng dụng (Trường Đại học Công nghiệp Thành phố Hồ Chí Minh)

Scan to open on Studocu

Khai thác dữ liệu và ứng dụng

Phân loại

Đề cương

- Giới thiệu về phân loại Các
- khái niệm cơ bản
- Kỹ thuật phân loại
 - Cây quyết định Cảm ứng
 - Phương pháp phân loại Bayes
 - Phân loại dựa trên quy tắc Các
 - kỹ thuật khác
- -Đánh giá và lựa chọn mô hình

Bắt tội trốn thuế

Mã T Đền bù		nghệ thuật Trạng thái	Tờ thuế Thu nhập	Gian lận
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	D đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	D đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Số liệu kê khai thuế năm 2011

Tờ khai thuế mới cho năm 2012 Đây có phải là tờ khai thuế gian lận?

Đền bù	hôn nhân Trạng thái	Chịu thuế Thu nhập	Gian lận
KHÔNG	Đã cưới	80K	?

Một ví dụ về vấn đề phân loại: tìm hiểu phương pháp phân biệt giữa các bản ghi của các loại khác nhaucác lớp học(kẻ lừa đảovskhông gian lận)

phân loại là gì?

-Phân loạilà nhiệm vụ củahọc hỏimục tiêuchức năngftập thuộc tính bản đồ đóxđến một trong các nhãn lớp được xác định trướcy.Chức năng mục tiêufđược biết đến như một mô hình phân loại

categorical continuous

Tid	Đền bù	hôn nhân Chịu thuế Trạng thái Thu nhập		Gian lận
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Một trong những thuộc tính làthuộc tính lớp

Trong trường hợp này: Lừa đảo

Hainhãn lớp(hoặccác lớp học):Có (1), Không (0)

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Ví dụ về nhiệm vụ phân loại

- -Dự đoánkhối utế bào nhưnhehoặcác tính
- Phân loại thẻ tín dụnggiao dịch BằN Ghợp pháphoặc lừa đảo
- Phân loạinhững câu chuyện mớiBằNGtài chính,thời tiết,sự giải trí,các môn thể thao, vân vân
- Nhận dạngthư ráce-mail, web ráctrang, người lớn nội dung
- -Hiểu nếu một trang webtruy vấncómục đích thương mạihay không

Phân loại—Quy trình hai bước

- Xây dựng mô hình: mô tả một tập hợp các lớp được xác định trước
 - Mỗi bộ/mẫu được coi là thuộc về một lớp được xác định trước, được xác định bởi thuộc tính nhãn lớp
 - Tập các bộ dữ liệu được sử dụng để xây dựng mô hình: tập huấn luyện
 - Mô hình được biểu diễn dưới dạng quy tắc phân loại, cây quyết định hoặc công thức toán học
- Cách sử dụng mô hình: để phân loại các đối tượng trong tương lai hoặc chưa biết
 - Ước tính đô chính xáccủa mô hình
 - -Nhãn đã biết của mẫu thử được so sánh với kết quả đã phân loại từ mô hình
 - -Sự chính xáctỷ lệ là tỷ lệ phần trăm của các mẫu thử nghiệm được phân loại chính xác theo mô hình
 - -Tập kiểm trađộc lập với tập huấn luyện, nếu không sẽ xảy ra hiện tượng khớp quá mức. Nếu
 - độ chính xác chấp nhận được, hãy sử dụng mô hình đểphân loại dữ liệu mới
- -Lưu ý: Nếubộ thử nghiệmđược sử dụng để chọn mô hình, nó được gọi làbộ xác nhận (kiểm tra)

Minh họa nhiệm vụ phân loại

Training Set

_Tid _	Attrib1	Attrib2	Attrib3	Lớp học
11	KHÔNG	Bé nhỏ	55K	?
12	Đúng	Trung bình	80K	?
13	Đúng	Lớn	110K	?
14	KHÔNG	Bé nhỏ	95K	?
15	KHÔNG	Lớn	67K	?

Test Set

Đánh giá các mô hình phân loại

- Số lượnghồ sơ kiểm trađược dự đoán đúng (hoặc không chính xác) bởi
 mô hình phân loại
- Ma trận hỗn loạn

	LO	p dự doan	
c tế		Lớp = 1	Lớp = 0
thự	Lớp = 1	f ₁₁	f 10
Lớp	Lớp = 0	f ₀₁	foo

Sự chính xác-
$$\frac{\text{#dự đoán đúng}}{\text{tổng số dự đoán}} - \frac{f_{1\overline{1}} f_{00}}{f_{11}\text{-}f_{10}\text{-}f_{01}\text{-}f_{00}}$$
Tỷ lệ lỗi -
$$\frac{\text{#dự đoán sai}}{\text{tổng số dự đoán}} - \frac{f_{1\overline{0}} f_{01}}{f_{11}\text{-}f_{10}\text{-}f_{01}\text{-}f_{00}}$$

Quy trình phân loại (1): Xây dựng mô hình

CP(2): Sử dụng mô hình trong dự đoán

Các vấn đề liên quan đến phân loại và dự đoán

Vấn đề (1): Chuẩn bị dữ liệu

- -Làm sạch dữ liệu
 - -Tiền xử lý dữ liệu để giảm nhiễu và xử lý các giá trị bị thiếu
- -Phân tích mức độ liên quan (lựa chọn tính năng)
 - -Loại bỏ các thuộc tính không liên quan hoặc dư thừa
- -Chuyển đối dữ liệu
 - -Tổng quát hóa và/hoặc chuẩn hóa dữ liệu

Các vấn đề liên quan đến phân loại và dự đoán (tiếp)

Vấn đề (2): Đánh giá phương pháp phân loại

- Độ chính xác dự đoán
 - Tốc độ và khả năng mở rộng
 - Thời gian xây dựng mô hình Thời
 - gian sử dụng mô hình
- · Độ bền
 - -xử lý tiếng ồn và các giá trị bị
- thiếu
 - -hiệu quả trong cơ sở dữ liệu lưu trữ trên đĩa
- Khả năng giải thích:
 - -sự hiểu biết và hiểu biết sâu sắc được cung cấp bởi mô hình Sự tốt
- đẹp của các quy tắc
 - kích thước cây quyết định
 - sự cô đọng của các quy tắc phân loại

Kỹ thuật phân loại

-Phương pháp dựa trên cây quyết định

- Phương pháp phân loại Bayes Phương
- pháp dựa trên quy tắc
- k-hàng xóm gần nhất (kNN) Máy
- vectơ hỗ trợ (SVM) Phân loại
- theo lan truyền ngược Máy
- vectơ hỗ trợ (SVM) Thuật toán di
- truyền
- Cách tiếp cận tập thô
- Các phương pháp tiếp cận tập mờ

_

Kỹ thuật phân loại

-Phương pháp dựa trên cây quyết định

- Phương pháp phân loại Bayes Phương
- pháp dựa trên quy tắc
- k-hàng xóm gần nhất (kNN) Máy
- vectơ hỗ trợ (SVM) Phân loại
- theo lan truyền ngược Máy
- vectơ hỗ trợ (SVM) Thuật toán di
- truyền
- Cách tiếp cận tập thô
- Các phương pháp tiếp cận tập mờ

-

Phân loại theo quy nạp cây quyết định

- Cây quyết định
 - Cấu trúc cây giống như biểu đồ luồng Nút bên
 - trong biểu thị kiểm tra trên một thuộc tính Nhánh
 - đại diện cho kết quả của kiểm tra
 - Các nút lá đại diện cho nhãn lớp hoặc phân bổ lớp
- -Việc tạo cây quyết định bao gồm hai giai đoạn
 - Xây dựng cây
 - -Lúc đầu, tất cả các ví dụ huấn luyện đều ở gốc
 - -Ví dụ về phân vùng đệ quy dựa trên các thuộc tính đã
 - chọn
 - -Xác định và loại bỏ các nhánh phản ánh tiếng ồn hoặc các ngoại lệ
- -Sử dụng cây quyết định: Phân loại một mẫu chưa biết
 - -Kiểm tra các giá trị thuộc tính của mẫu dựa trên cây quyết định

Ví dụ về cây quyết định

categorical categorical

CONTINUOUS Class

Tid	Đền bù	hôn nhân Trạng thái	Chịu thuế Thu nhập	Gian lận
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Dữ liệu đào tạo

Một ví dụ khác về cây quyết định

Nhiệm vụ phân loại cây quyết định

Training Set

Tid	Attrib1	Attrib2	Attrib3	Lớp học
11	КНÔNG	Bé nhỏ	55K	?
12	Đúng	Trung bình	80K	?
13	Đúng	Lớn	110K	?
14	кнông	Bé nhỏ	95K	?
15	KHÔNG	Lớn	67K	?

Test Set

Dữ liệu thử nghiệm

Hoàn tiền hộn nhân Trạng thái		Chịu thuế Thu nhập	Gian lận
KHÔNG	Đã cưới	80K	?

Nhiệm vụ phân loại cây quyết định

Test Set

Thuật toán tạo cây quyết định

- -Thuật toán cơ bản (thuật toán tham lam)
 - -Cây được xây dựng theo kiểuCách phân chia và chinh phục đệ quy từ trên xuống
 - -Lúc đầu, tất cả các ví dụ huấn luyện đều ở gốc
 - -Các thuộc tính có tính phân loại (nếu có giá trị liên tục, chúng sẽ được rời rạc hóa trước)
 - -Các ví dụ được phân vùng đệ quy dựa trên các thuộc tính đã chọn
 - -Các thuộc tính kiểm tra được chọn trên cơ sở thước đo heuristic hoặc thống kê (ví dụ:thu được thông tin)

Cảm ứng cây quyết định

- Vấn đề
 - Làm cách nào để Phân loại một nút lá
 - -Chỉ địnhlớp đa số
 - -Nếu lá trống, hãy gán<mark>lớp mặc định</mark>– lớp có mức độ phổ biến cao nhất.
 - Xác định cách phân chia các bản ghi
 - -Làm cách nào để chỉ định điều kiện kiểm tra thuộc tính?
 - -Thuộc tính nào sẽ được sử dụng trong phân chia nút chia
 - -Làm thế nào để xác định sự phân chia tốt nhất?
 - -Chúng ta nên sử dụng chia 2 chiều hay chia nhiều chiều?
 - Xác định thời điểm dừng chia tách

Thuật toán tạo cây quyết định

- -Điều kiện dừng phân vùng
 - -Tất cả các mẫu cho một nút nhất định đều thuộc cùng một lớp
 - -Không còn thuộc tính nào để phân vùng thêm nữa biểu quyết đa số được sử dụng để phân loại lá
 - -Không còn mẫu nào

Biện pháp lựa chọn thuộc tính

- Thu được thông tin(ID3/C4.5)
 - Tất cả các thuộc tính được coi là phân loại Có thể được
 - sửa đổi cho các thuộc tính có giá trị liên tục

-chỉ số Gini(GIỞ HÀNG, SLIQ, SPRINT.))

- Tất cả các thuộc tính được giả định có giá trị liên tục
- Giả sử tồn tại một số giá trị phân chia có thể có cho mỗi thuộc tính Có thể cần các công cụ
- khác, chẳng hạn như phân cụm, để có được các giá trị phân chia có thể có Có thể được sửa
- đổi cho các thuộc tính phân loại

Biện pháp lựa chọn thuộc tính: Tăng thông tin (ID3/C4.5)

- Chọn thuộc tính có mức tăng thông tin cao nhất
- Cho phépPτôilà xác suất để một bộ tùy ý trong D thuộc lớp Cτôi, ước tính bởi |Cτôi,D|/|D|
- Thông tin dự kiến(entropy) cần thiết để phân loại một bộ dữ liệu trong D:

Thông tin (D) - -
$$\overline{-}$$
P $_{Tôi}$ nhật ký $_2$ (P $_{Tôi}$)

Tôi -1

Thông tincần thiết (sau khi dùng A để chia D thành v phân vùng) để phân loại D:

$$\begin{array}{c|c} & V & D_j \\ \hline \text{Thông \sharpin (D) --} & \hline & D_j \\ \hline & D_j \\ \hline & D_j \\ \hline \end{array} \text{-Thông $tin(P_j)$}$$

- Thông tin thu đượcbằng cách phân nhánh trên thuộc tính A

Đạt được (A) - Thông tin (D) - Thông tin MộT(D)

Tập dữ liệu đào tạo

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Lựa chọn thuộc tính bằng tính toán tăng thông tin

- -Lớp P: buys_computer = "có"
- -Lóp N: buy_computer = "không"
- $-|D| = 14, |C_{P,D}| = 9, |C_{N,D}| = 5$

$$Info(D) = I(9,5) = -\frac{9}{14} \log_2 \frac{9}{14} - \frac{5}{14} \log_2 \frac{5}{14} = 0.940$$

$$\frac{5}{14} \text{ TÔI (2,3) nghĩa là "tuổi <= 30" có 5 out}$$
gồm 14 mẫu, trong đó có 2 mẫu có và 3

-Tính toán tôităng thông tinvìtuổi:

tuổi	Ртô	Nτά	i Tôi (ρτôi, Ντôi)
<=30	2	3	0,971
3040	4	0	0
> 40	3	2	0,971

Thông tin tuổi
$$(b) - \frac{5}{14}$$
 TÔI $(2 , 3) - \frac{4}{14}$ TÔI $(4 , 0)$
$$- \frac{5}{14}$$
 TÔI $(3 , 2) - 0 . 694$
$$\frac{5}{14}$$
 TÔI $(2,3)$ nghĩa là "tuổi $<=30$ " có 5 out gồm 14 mẫu, trong đó có 2 mẫu có và 3 mẫu không.

Kể từ đây

Tăng(tuổi) - Thông tin(D) - Thông tintuổi(D) -0,246

$$I(2,3) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.971$$

$$I(4,0) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$

$$I(3,2) = -\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5} = 0.971$$

Lựa chọn thuộc tính bằng tính toán tăng thông tin

- -Lớp P: buys_computer = "có"
- -Lóp N: buy_computer = "không"
- $-T\hat{o}i(p,n) = I(9, 5) = 0.940$
- -Tính cái tôităng thông tinvì:
 - Tuổi = 0,25
 - Thu nhập =?
 - Sinh viên =?
 - tín dụng_xếp hạng = ?

Tính toán thu được thông tin cho các thuộc tính có giá trị liên tục

- Đặt thuộc tính A là thuộc tính có giá trị liên tục
- Phải xác địnhđiểm chia tốt nhấtcho một
 - Sắp xếp giá trị A theo thứ tự tăng dần
 - Thông thường, điểm giữa giữa mỗi cặp giá trị liền kề được coi là có thể điểm chia đôi
 - -(Mộtrôi+atôi+1)/2 là trung điểm giữa các giá trị của atôivà mộttôi+1
 - Điểm vớiyêu cầu thông tin dự kiến tối thiểuvới A được chọn làm điểm phân chia cho A
- Tách ra:
 - D1 là tập hợp các bộ dữ liệu trong D thỏa mãn A > điểm phân tách và D2 là tập hợp các bộ dữ liệu trong D
 thỏa mãn A > điểm phân tách

Tỷ lệ tăng cho lựa chọn thuộc tính (C4.5)

- Thước đo độ lợi thông tin thiên về các thuộc tính có số lượng giá trị
 lớn
- -C4.5 (phiên bản kế thừa của ID3) sử dụng tỷ lệ khuếch đại để khắc phục vấn đề (chuẩn hóa thành tăng thông tin)

$$v \mid D \mid$$
Thông tin phân chia μộτ(D) - - $\frac{v \mid D \mid}{j-1}$ -nhật ký ($\frac{\mid D_j \mid}{\mid D \mid}$

-GainRatio(A) = Gain(A)/SplitInfo(A)

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_2\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_2\left(\frac{4}{14}\right) = 1.557.$$

- -Tỷ lệ lãi(thu nhập) = 0,029/1,557 = 0,019
- Thuộc tính có tỷ lệ khuếch đại tối đa được chọn làm thuộc tính tách

Chỉ số Gini (GIỞI, IBM IntelligenceMiner)

- Nếu một tập dữ liệuDchứa các ví dụ từNlớp học, chỉ số gini,gini(D)được định N nghĩa là rượu gini (D) -1 - -P2 j i -1

Ở đâuPilà tần số tương đối của lớpjTRONGD

Nếu một tập dữ liệuDđược chia trên A thành hai tập conD₁VàD₂, cácrượu ginimục lục

gini(D)được định nghĩa là

gin
$$(D_1)$$
 gini (D_2) gini (D_2) $|D_2|$ gini (D_2)

- Giảm tạp chất:

 Thuộc tính cung cấp giá trị nhỏ nhấtrượu ginitách ra(D) (hoặc mức giảm tạp chất lớn nhất) được chọn để phân chia nút (cần liệt kê tất cả các điểm phân chia có thể có cho từng thuộc tính)

Tính toán chỉ số Gini

- Bán tại. D có 9 bộ trong buys_computer = "có" và 5 trong "không"

- Giả sử thuộc tính thu nhập D chia thành 10 trong D1: {thấp, trung bình} và 4 ở D2

rượu ginithu nhập-{thấp,trung bình}
$$\frac{-10}{(D)}$$
 - - - Gini(D)1) - $\frac{-4}{-}$ Gini(D) 1 - $\frac{10}{-14}$ - $\frac{10}{14}$ (1 - $\left(\frac{7}{10}\right)^2$ - $\left(\frac{3}{10}\right)^2$) + $\frac{4}{14}$ (1 - $\left(\frac{2}{4}\right)^2$ - $\left(\frac{2}{4}\right)^2$) = 0.443 = $Gini_{income} \in \{high\}(D)$.

Gini_{Cao thấp}là 0,458; Gini_{Trung bình khá}là 0,450. Vì vậy, phân chia trên {low,medium} (và {high}) vì nó có chỉ số Gini thấp nhất

- -Tất cả các thuộc tính được giả định có giá trị liên tục
- -Có thể cần các công cụ khác, ví dụ: phân cụm, để có được các giá trị phân chia có thể
- -Có thể được sửa đổi cho các thuộc tính phân loại

So sánh lựa chọn thuộc tính n Biện pháp

- Ba biện pháp nói chung đều cho kết quả tốt nhưng
 - Đạt được thông tin:
 - -thiên về các thuộc tính đa giá trị Tỷ lệ
 - đạt được:
 - -có xu hướng thích sự phân chia không cân bằng trong đó một phân vùng nhỏ hơn nhiều so với các phân vùng khác
 - Chỉ số Gini:
 - -thiên về các thuộc tính đa giá trị
 - -gặp khó khăn khi số lớp đông
 - -có xu hướng ưu tiên các thử nghiệm dẫn đến các phân vùng có kích thước bằng nhau và độ tinh khiết trong

 cả hai phân vùng

Trang bị quá mức và cắt tỉa cây

- -Trang bị quá mức: Cây cảm ứng có thể phù hợp quá mức với dữ liệu huấn luyện
 - Quá nhiều nhánh, một số nhánh có thể phản ánh sự bất thường do nhiễu hoặc ngoại lệ Độ chính xác kém
 - đối với các mẫu không nhìn thấy được
- Hai cách tiếp cận để tránh trang bị quá mức
 - Cắt tỉa trước :Dừng việc xây dựng cây sớmkhông phân chia một nút nếu điều này sẽ dẫn đến việc đo mức độ tốt giảm xuống dưới ngưỡng
 - -Khó chọn ngưỡng thích hợp
 - <u>cắt tỉa sau</u> :Xóa cànhtừ một cây "đã trưởng thành"—lấy một chuỗi các cây được cắt tỉa dần dần
 - -Sử dụng một tập dữ liệu khác với dữ liệu huấn luyện để quyết định "cây được cắt tỉa tốt nhất"

Những cải tiến đối với việc tạo ra cây quyết định cơ bản

- -Cho phépthuộc tính có giá trị liên tục
 - Tự động xác định các thuộc tính có giá trị rời rạc mới phân chia giá trị thuộc tính liên tục thành một tập hợp các khoảng rời rạc
- -Xử lýgiá trị thuộc tính bị thiếu
 - Gán giá trị chung nhất của thuộc tính Gán
 - xác suất cho từng giá trị có thể
- Xây dựng thuộc tính
 - Tạo các thuộc tính mới dựa trên các thuộc tính hiện có được biểu diễn thưa
 - thớt. Điều này làm giảm sự phân mảnh, lặp lại và sao chép

Trình phân loại dựa trên quy tắc

- -Phân loại bản ghi bằng cách sử dụng tập hợp các quy tắc "nếu...thì..."
- -Luật lệ: (Điều kiện) y
 - Ở đâu
 - Tình trạnglà sự kết hợp của các bài kiểm tra về thuộc
 - tính ylà nhãn lớp
 - Ví dụ về quy tắc phân loại:
 - IF (tuổi = tuổi trẻ) VÀ (sinh viên = có) THEN (mua_máy tính = có)
 - IF (Nhóm máu=Ấm) (Để trứng=Có) Chim
 - (Thu nhập chịu thuế < 50K) (Hoàn tiền=Có) Trốn tránh=Không

Trình phân loại dựa trên quy tắc (Ví dụ)

Tên	Nhóm máu	Sinh con	Có thể bay	Sông trong môi trương nước	Lớp học
nhân loại	ấm	Đúng	KHÔNG	KHÔNG	động vật có vú
py thon	lạnh lẽo	KHÔNG	KHÔNG	KHÔNG	đại diện gạch s
sa lm on	lạnh lẽo	KHÔNG	KHÔNG	Đúng	này anh ấy
cá voi	ấm	Đúng	KHÔNG	Đúng	động vật có vú
con ếch	lạnh lẽo	KHÔNG	KHÔNG	Thỉnh thoảng	động vật lưỡng cư
kom odo	lạnh lẽo	KHÔNG	KHÔNG	KHÔNG	đại diện gạch s
con dơi	ấm	Đúng	Đúng	KHÔNG	động vật có vú
p igeon	ấm	KHÔNG	Đúng	KHÔNG	b ird s
con mèo	ấm	Đúng	KHÔNG	KHÔNG	động vật có vú
leopa rd sha rk	lạnh lẽo	Đúng	KHÔNG	Đúng	này anh ấy
con rùa	lạnh lẽo	KHÔNG	KHÔNG	Thỉnh thoảng	đại diện gạch s
chim cánh cụt	ấm	KHÔNG	KHÔNG	Thỉnh thoảng	b ird s
bạn có biết không	ấm	Đúng	KHÔNG	KHÔNG	động vật có vú
ôi tôi	lạnh lẽo	KHÔNG	KHÔNG	Đúng	này anh ấy
kỳ nhông	lạnh lẽo	KHÔNG	KHÔNG	Thỉnh thoảng	động vật lưỡng cư
g ila m on s te	lạnh lẽo	KHÔNG	KHÔNG	KHÔNG	đại diện gạch s
rp la typu s	ấm	KHÔNG	KHÔNG	KHÔNG	động vật có vú
con cú	ấm	KHÔNG	Đúng	KHÔNG	b ird s
làm lph trong	ấm	Đúng	KHÔNG	Đúng	động vật có vú
chim ưng	ấm	KHÔNG	Đúng	KHÔNG	b ird s

R1: (Sinh con = không) - (Có thể bay = có) - Chim R2: (Sinh con = không) - (Sống dưới nước = có) - Cá R3: (Sinh con = có) - (Nhóm máu = ấm) - Động vật có vú R4: (Để con = không) -

(Có thể bay = không) - Bò sát

R5: (Sống dưới nước = đôi khi) - Động vật lưỡng cư

Ứng dụng phân loại dựa trên quy tắc

-Một quy tắcrbao gồmmột ví dụxnếu các thuộc tính của thể hiện thỏa mãn điều kiện của quy tắc

R1: (Sinh con = không) - (Có thể bay = có) - Chim R2: (Sinh con = không) - (Sống dưới nước = có) - Cá R3: (Sinh con = có) - (Nhóm máu = ấm) - Động vật có vú R4: (Đẻ con = không) - (Có thể bay = không) - Bò sát

R5: (Sống dưới nước = đôi khi) - Động vật lưỡng cư

Tên	Nhóm máu	sinh nhật	Có thể bay	Sông trong môi trương nư	yc Lớp học
chim ưng	ấm	KHÔNG	Đúng	KHÔNG	?
con gấu	ấm	Đúng	KHÔNG	KHÔNG	?

Quy tắc R1 bao trùm chim ưng => Chim

Quy tắc R3 áp dụng cho gấu xám => Động vật có vú

Phạm vi quy tắc và độ chính xác

Đánh giá một quy tắc:phủ sóng Vàsự chính xác

- Phạm vi của một quy tắc:
 - Phân số các bản ghi thỏa mãn tiền đề của một quy tắc
 - Nbao gồm= # bộ dữ liệu được bao phủ bởi R
 - Nchính xác= Số bộ dữ liệu được phân loại chính xác bởi R

phạm vi bảo hiểm (R) = $n_{bao gom}/|D|/*D$: tập dữ liệu huấn luyện */

- -Độ chính xác của quy tắc:
 - Phân số các bản ghi thỏa mãn tiền đề cũng thỏa mãn hệ quả của một quy tắc

 $d\hat{o}$ chính $x\acute{a}c(R) = nChính xác/ Nbao gồm$

Tid	Đền bù	hôn nhân Trạng thái	Chịu thuế Thu nhập	Lớp học
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

(Trạng thái=Đơn)-KHÔNG

Độ che phủ = 40%, Độ chính xác = 50%

R1: (Sinh con = không) - (Có thể bay = có) - Chim R2: (Sinh con = không) - (Sống dưới nước = có) - Cá R3: (Sinh con = có) - (Nhóm máu = ấm) - Động vật có vú R4: (Đẻ con = không) - (Có thể bay = không) - Bò sát R5: (Sống dưới nước = đôi khi) - Động vật lưỡng cư

Tên	Nhóm máu	sinh nhật	Có thể bay	Sông trong môi trương nu	_{roc} Lớp học
vong linh	ấm	Đúng	KHÔNG	KHÔNG	?
con rùa	lạnh lẽo	KHÔNG	KHÔNG	Thỉnh thoảng	?
cá mập chó	lạnh lẽo	Đúng	KHÔNG	Đúng	?

Vượn cáo kích hoạt quy tắc R3 nên được xếp vào loại động vật có vú. Rùa kích hoạt cả R4 và R5 Một con cá mập dogfish không gây ra quy tắc nào

- Quy tắc loại trừ lẫn nhau
 - Trình phân loại chứa các quy tắc loại trừ lẫn nhau nếu các quy tắc đó độc lập với nhau
 - Mỗi bản ghi được bao phủ bởi nhiều nhất một quy tắc
- Quy tắc đầy đủ
 - Trình phân loại có phạm vi bao phủ toàn diện nếu nó tính đến mọi kết hợp có thể có của các giá trị thuộc tính
 - Mỗi bản ghi được bao phủ bởi ít nhất một quy tắc

- -Nếu có nhiều hơn một quy tắc được kích hoạt, cầngiải quyết xung đột
 - -Thứ tự kích thước: gán mức ưu tiên cao nhất cho các quy tắc kích hoạt có yêu cầu "khó khăn nhất" (nghĩa là vớihầu hết các bài kiểm tra thuộc tính)
 - -Sắp xếp theo lớp: thứ tự giảm dần củachi phí phổ biến hoặc phân loại sai cho mỗi lớp
 - -Thứ tự dựa trên quy tắc (danh sách quyết định):các quy tắc được sắp xếp thành một danh sách ưu tiên dài, theo một số thước đo về chất lượng quy tắc hoặc bởi các chuyên gia
- -Bản ghi có thể không kích hoạt bất kỳ quy tắc nào
 - -Sử dụng một lớp mặc định

R1: (Sinh con = không) - (Có thể bay = có) - Chim R2: (Sinh con = không) - (Sống dưới nước = có) - Cá R3: (Sinh con = có) - (Nhóm máu = ấm) - Động vật có vú R4: (Đẻ con = không) - (Có thể bay = không) - Bò sát R5: (Sống dưới nước = đôi khi) - Động vật lưỡng cư

Tên	I AN I Nhóm máu		Sinh nhật Có thể bay		c Lớp học
con rùa	lạnh lẽo	KHÔNG	KHÔNG	Thỉnh thoảng	?

Quy tắc phân loại tòa nhà

-Phương pháp trực tiếp:

- Trích xuất quy tắc trực tiếp từ dữ liệu Ví dụ:
- ILA, RIPPER, CN2, Holte's 1R

-Phương pháp gián tiếp:

- Trích xuất các quy tắc từ các mô hình phân loại khác (ví dụ: cây quyết định, mạng lưới thần kinh, v.v.).
- Ví dụ: Quy tắc C4.5

Trích xuất quy tắc phân loại từ cây quyết định

tuổi?

31..40

Đúng

Đúng

Đúng

hoc sinh?

> 40

xuất sắc

no

xếp hạng tín dụng?

- -Biểu diễn tri thức dưới dạngNẾU-THÌquy tắc
- -Một quy tắc được tạo cho mỗi đường dẫn từ gốc đến lá
- Mỗi cặp thuộc tính-giá trị dọc theo một đường dẫn tạo thành một liên kết
- Nút lá chứa dự đoán lớp Các quy tắc
- dễ hiểu hơn đối với con người
- Ví dụ: Trích xuất quy tắc từmua_máy tínhcây quyết định

NÉU NHƯ tuổi = "<=30" VÀsinh viên = "không" SAU ĐÓbuy_computer = "không" NÉU NHƯ tuổi = "<=30" VÀsinh viên = "có" SAU ĐÓbuy_computer = "có" NÉU NHƯ tuổi = "31...40" SAU ĐÓbuy_computer = "có"

NẾU NHƯ tuổi = ">40" VÀcredit_rated = "xuất sắc"SAU ĐÓmua_máy tính = "Đúng"

NẾU NHƯ tuổi = ">40" VÀcredit_rated = "công bằng"SAU ĐÓbuy_computer = "không"

Bài tập

Quang cảnh	Nhiệt độ	Độ âm	Sức gió	Choi tennis
Nång	Nóng	Cao	Yêu	Không
Nång	Nóng	Cao	Mạnh	Không
Mây	Nóng	Cao	Yều	Có
Mura	TB	Cao	Yêu	Có
Mura	Lạnh	BT	Yêu	Có C
Mura	Lạnh	BT	Mạnh	Không
Mây	Lạnh	BT	Mạnh	Có
Nång	TB	Cao	Yêu	Không
Nång	Lạnh	BT	Yều	Có
Mura	TB	BT	Yêu	Có
Nång	TB	BT	Mạnh	Có .
Mây	TB	Cao	Mạnh	Có [
Mây	Nóng	BT	Yều	Có
Mura	TB	Cao	Mạnh	Không

Bài tập

- -Xây dựng cây quyết định với thước đo Information Gain
- -Trích xuất các luật từ cây quyết định
- -Xác định nhãn lớp cho mẫu mới sau:

Quang cảnh	Nhiệt độ	Độ ẩm	Sức gió	Chơi quần vợt
mưa rào	bệnh lao	BT	Mạnh	?
Nắng	bệnh lao	Cao	Mạnh	?

Trích xuất ule từ dữ liệu đào tạo

- Thuật toán bao phủ tuần tự: Trích xuất các quy tắc trực tiếp từ dữ liệu huấn luyện
- Các thuật toán bao phủ tuần tự điển hình: FOIL, ILA, AQ, CN2, RIPPER
- Các quy tắc được họctuần tự,mỗi cái cho một lớp C nhất địnhτôisẽ bao gồm nhiều bộ dữ liệu của Cτôinhưng không có (hoặc một vài) bộ dữ liệu của các lớp khác
- Các bước:
 - Các quy tắc được học lần lượt
 - Mỗi lần học một quy tắc, các bộ chứa quy tắc đó sẽ bị xóa
 - Quá trình lặp lại trên các bộ còn lại trừ khiđiều kiện chấm dứt,ví dụ: khi không có thêm ví dụ đào tạo nào hoặc khi chất lượng của quy tắc được trả về dưới ngưỡng do người dùng chỉ định
- Comp. w. quy nạp cây quyết định: học một bộ quy tắcđồng thời

Phương pháp trực tiếp: Che phủ tuần tự

- 1.Bắt đầu từ một quy tắc trống
- 2.Phát triển quy tắc bằng cách sử dụng chức năng Tìm hiểu một quy tắc
- 3.Xóa hồ sơ đào tạo nằm trong phạm vi quy định
- 4.Lặp lại Bước (2) và (3) cho đến khi đáp ứng tiêu chí dừng

Thuật toán che phủ tuần tự

trong khi (còn đủ bộ mục tiêu)

tạo ra một quy tắc

loại bỏ các bộ mục tiêu tích cực thỏa mãn quy tắc này

Tạo quy tắc

Để tạo ra một quy tắc trong

khi(ĐÚNG VẬY)

tìm vị ngữ tốt nhấtP

nếu nhưtăng lá(p) >ngưỡngsau đóthêm vàoPtheo quy định hiện tại

khácphá vỡ

Ưu điểm của bộ phân loại dựa trên quy tắc

- -Có đặc điểm khá giống với cây quyết định
 - Có tính biểu cảm cao như cây quyết định Dễ diễn
 - giải (nếu quy tắc được sắp xếp theo lớp) Hiệu suất
 - tương đương với cây quyết định
 - Có thể xử lý các thuộc tính dư thừa và không liên quan. Tương tác
 - giữa các biến có thể gây ra sự cố (ví dụ: sự cố X-OR)
- Phù hợp hơn để xử lý các lớp mất cân bằng
- -Khó xử lý các giá trị bị thiếu trong tập kiểm tra hơn

Thuật toán học quy nạp- ILA

- -M.Tolun, 1998, ILA thuật toán học quy nạp được sử dụng để tạo ra một bộ quy tắc phân loại
- Quy tắc dạng "IF-THEN"
- chia bảng 'T' chứa m ví dụ thành n bảng con.

_

Thuật toán ILA

- Bước 1: Chia bảng "T" chứa m ví dụ thành n bảng con (t1, t2,.....tn). Một bảng cho mỗi giá trị có thể có của thuộc tính lớp. (lặp lại các bước 2-8 cho mỗi bảng phụ)
- Bước 2: Khởi tạo tổ hợp thuộc tính count 'j' = 1
- Bước 3: Đối với bảng con đang thực hiện công việc, chia danh sách thuộc tính thành các tổ hợp riêng biệt, mỗi tổ hợp có thuộc tính riêng biệt 'j'
- Đối với mỗi tổ hợp thuộc tính, đếm số lần xuất hiện của các giá trị thuộc tính xuất hiện dưới cùng tổ hợp thuộc tính trong các hàng không được đánh dấu của bảng con đang xem xét, đồng thời không xuất hiện dưới cùng tổ hợp thuộc tính của bảng con khác. -những cái bàn. Gọi kết hợp đầu tiên có số lần xuất hiện tối đa là kết hợp tối đa ' MAX'.

Thuật toán ILA

- Bước 5: Nếu 'MAX' == null, tăng 'j' lên 1 và chuyển sang Bước 3.
- Bước 6: Đánh dấu tất cả các hàng của bảng con nơi làm việc, trong đó xuất hiện giá trị 'MAX' là đã phân loại
- Thêm một quy tắc (thuộc tính IF = "XYZ" -> THEN quyết định là CÓ/ KHÔNG) cho R có phía bên trái sẽ có tên thuộc tính 'MAX' với các giá trị của chúng được phân tách bằng AND và phía bên phải của nó chứa giá trị thuộc tính quyết định được liên kết với bảng con
- Bước 8: Nếu tất cả các hàng được đánh dấu là đã phân loại thì chuyển sang xử lý bảng con khác và chuyển sang Bước 2. Ngược lại, chuyển sang Bước 4. Nếu không có bảng phụ nào, hãy thoát ra với bộ quy tắc thu được cho đến lúc đó

Ví dụ

No	Size	Color	Shape	Decision
1	Vừa	Xanh dương	Hộp	Yes
2	Nhỏ	đỏ	Nón	No
3	Nhỏ	đỏ	Cầu	Yes
4	Lớn	đỏ	Nón	No
5	Lớn	Xanh lá cây	Trụ	Yes
6	Lớn	đỏ	Trụ	No
7	Lớn	Xanh lá cây	Cầu	Yes

KHÔNG	Kích cỡ	Màu sắc	Hình dạng	Phán quyết
1	Medium	Xanh lá cây	Cầu	?
2	Nhỏ	Màu đỏ	nón	?

Bài tập 1

Cho một dữ liệu huấn luyện về người mua máy tính, áp dụng thuật toán ID3 và ILA để xây dựng mô hình phân loại

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Xác định nhãn lớp cho các mẫu:

- 1. Xnew = (tuổi <=30, thu nhập = cao, sinh viên = có, xếp hạng tín chỉ = khá)
- 2. Xnew = (tuổi >40, thu nhập = cao, sinh viên = không, xếp hạng tín chỉ = khá)

Bài tập 2

Cho một dữ liệu huấn luyện về chơi tennis hay không, áp dụng thuật toán ID3 và ILA để xây dựng mô hình phân loại:

Day	Outlook	Temperature	Humidity	Windy	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
		_			

Xác định nhãn lớp chô các mẫu:

- Xnew = <Triển vọng=nắng, Nhiệt độ = mát mẻ, Độ ẩm = cao, Gió = mạnh>
- Xnew = <Triển vọng = u ám, Nhiệt độ = mát mẻ, Độ ẩm = cao, Gió = mạnh>

Phân loại Bayes

- Bộ phân loại thống kê: thực hiệndự đoán xác suất, tức làdự đoán xác suất thành viên của lớp
- Sự thành lập: Dựa trên Định lý Bayes.
- <u>Hiệu suất:</u> Một bộ phân loại Bayesian đơn giản,bộ phân loại Bayes ngây thơ,có hiệu suất tương đương với cây quyết định và các bộ phân loại mạng thần kinh được chọn
- <u>Học xác suất</u>: Tính toán xác suất rõ ràng cho giả thuyết, một trong những cách tiếp cận thực tế nhất đối với một số loại vấn đề học tập nhất định
- <u>Tăng dần</u> : Mỗi ví dụ huấn luyện có thể tăng/giảm dần xác suất một giả thuyết là đúng. Kiến thức trước đây có thể được kết hợp với dữ liệu quan sát được.
- <u>Dự đoán xác suất</u>: Dự đoán nhiều giả thuyết, có trọng số bằng xác suất của chúng
- <u>Tiêu chuẩn</u> : Ngay cả khi các phương pháp Bayes khó tính toán, chúng vẫn có thể cung cấp tiêu chuẩn cho việc ra quyết định tối ưu mà các phương pháp khác có thể đo lường được

Định lý Bayes: Cơ bản

- Cho phépXlà một mẫu dữ liệu ("chứng cớ"):nhãn lớp chưa xác
- định Giả sử H là agiả thuyếtX thuộc lớp C
- Phân loại nhằm xác định P(H|X), (xác suất hậu nghiệm),xác suất mà giả thuyết giữ được với mẫu dữ liệu được quan sátX
- P(H) (Xác suất trước), xác suất ban đầu
 - -Ví dụ,Xsẽ mua máy tính, không phân biệt tuổi tác, thu
- nhập,... P(X):xác suất dữ liệu mẫu được quan sát
- P(X|H) (khả năng), xác suất quan sát được mẫuX,cho rằng giả thuyết giữ
 - Ví dụ: Cho rằngXsẽ mua máy tính, vấn đề là vậy. X là 31..40, thu nhập trung
 bình

Định lý Bayes

-Cho dữ liệu huấn luyệnX,xác suất hậu nghiệm của một giả thuyếtH, P(H|X), tuân theo định lý Bayes

- Một cách không chính thức, điều này có thể được viết là
 - hậu nghiệm = khả năng x trước/bằng chứng
- Dự đoánXthuộc về C₂nếu xác suất P(Cτôi | X)là cao nhất trong số tất cả P(Ck
 |X) cho tất cảkcác lớp học
- Khó khăn thực tế: đòi hỏi kiến thức ban đầu về nhiều xác suất,
 chi phí tính toán đáng kể

Hướng tới bộ phân loại Naïve Bayes

- Cho D là tập huấn luyện gồm các bộ dữ liệu và các nhãn lớp liên quan của chúng và mỗi
 bộ dữ liệu được biểu thị bằng một vectơ thuộc tính nDX = (x1, x2, ..., xN)
- Giả sử cótôilớp C₁, C₂, ..., C_{tôi}.
- Việc phân loại nhằm rút ra giá trị hậu nghiệm tối đa, tức là P(C) tối đaτôi|X) Điều
- này có thể được suy ra từ định lý Bayes

$$P(C + X) - \frac{P(X | C)P(C)}{P(X)}$$

-Vì P(X) là hằng số cho tất cả các lớp nên chỉP (C \ X) -P (X \ C) P (C) Tôi Tôi Tôi

Nguồn gốc của bộ phân loại Naïve Bayes

-Một giả định đơn giản hóa: các thuộc tính độc lập có điều kiện (nghĩa là không có mối quan hệ phụ thuộc giữa các thuộc tính):

$$P(X | Ci)$$
- $P(x | Ci)$ - $P(x$

- -Điều này làm giảm đáng kể chi phí tính toán: Chỉ tính phân phối lớp
- -Nếu mộtklà phân loại, P(xk | Cτôi) là số bộ trong Cτôicó giá trị xkcho mộtkchia cho | Cnhận dạng | (số bộ của Cτôiở D)
- -Nếu mộtkcó giá trị liên tục, P(xk|Cτôi) thường được tính toán dựa trên phân bố Gaussian với giá trị trung bình μ và độ lệch chuẩn σ

$$g(x,-,-)-\frac{1}{\sqrt{2--}}e^{-\frac{(x--)^2}{2-2}}$$
và P(xk | CTôi) làP(X | Ci)-g(xk,-c,-)

Tôi CTôi

Bộ phân loại Bayes

-Coi mỗi thuộc tính và nhãn lớp là các biến ngẫu nhiên

T nhận dại	-R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Trốn tránh C

Không gian sự kiện: {Có,

KhôngP(C) = (0,3,0,7)

Hoàn tiền A₁

Không gian sự kiện: {Có,

Không $P(A_1) = (0,3,0,7)$

Trạng Thái Võ A2

Không gian sự kiện: {Độc thân, Đã kết hôn, Đã ly

hon $P(A_2) = (0,4,0,4,0,2)$

Thu nhập chịu thuế A3

Không gian sự kiện: R

 $P(A_3) \sim Binh thường(-,-)$

Bộ phân loại Bayes

-Cách phân loại bản ghi mới = ('Có', 'Đơn', 80K)

		•	•	
T nhận dạ	₋ R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Tìm lớp có xác suất cao nhất cho các giá trị vectơ.

Xác suất hậu thế tối đaước lượng:

Tìm giá trịccho lớp họcCtối đa hóa
 P(C=c | X)

Làm thế nào để chúng tôi ước tínhP(C|X)cho các giá trị khác nhau của C?

- Chúng tôi muốn ước tínhP(C=Có | X)
- VàP(C=Không | X)

Bộ phân loại Bayes

- Để xác định rõ xác suất:
 - Hãy xem xét từng thuộc tính và nhãn lớp như<mark>biến ngẫu nhiên Xác suất được xác định từ dữ liệu</mark>

T nhận dạn	R quỹ	nghệ thuật	Chịu thuế	
		Trạng thái	Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	D đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	D đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Trốn tránh C

Không gian sự kiện: {Có, KhôngP(C) = (0,3,0,7)

Hoàn tiền A₁

Không gian sự kiện: {Có, Không} $P(A_1) = (0,3,0,7)$

Trạng Thái Võ A2

Không gian sự kiện: {Độc thân, Đã kết hôn, Đã ly

hôn $\}$ P(A₂) = (0,4,0,4,0,2)

Thu nhập chịu thuế A3

Không gian sự kiện: R

 $P(A_3) \sim Binh thường(-,-2)$

 μ = 104: trung bình mẫu, -2=1874: mẫu var

Ví dụ

-Ghi

```
X = (Hoàn tiền = Có, Trạng thái = Độc thân, Thu nhập = 80K)
```

-Đối với lớp họcC = 'Né tránh',chúng tôi muốn tính toán:

$$P(C = Co|X)VaP(C = Khong|X)$$

- Chúng tôi tính toán:
 - $P(C = C\acute{o}|X) = P(C = C\acute{o})*P(Ho\grave{a}n ti\grave{e}n = C\acute{o}|C = C\acute{o})$
 - * P(Tình trạng = Độc thân | C = Có)
 - * P(Thu nhập =80K|C= Có)
 - P(C = Không | X) = P(C = Không)*P(Hoàn tiền = Có | C = Không)
 - * P(Tình trạng = Độc thân | C = Không)
 - * P(Thu nhập =80K | C= Không)

	Y	Y	C.	•
nhận dạr	Rquỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
	Đúng	Đơn	125K	KHÔNG
<u>)</u>	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
ļ	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
5	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
)	KHÔNG	Đã cưới	75K	KHÔNG
0	KHÔNG	Đơn	90K	Đúng
	ő 8	không không H Dúng không không Không Không Không Không Không Không	Trạng thái Đúng Đơn Đã cưới Hồng Đỡn Đốn Đốn Đốn Đốn Đốn Đốn Đố cưới KHÔNG Đã ly hôn Đố kHÔNG Đố ly hôn Đố bố kHÔNG Đố ly hôn Đố bố ly hôn Đố ly hôn	Trạng thái Thu nhập Đúng Đơn 125K 100K 100K 100K 100K 100K 100K 100K 10

-Xác suất ưu tiên của lớp:

$$P(C=c) = \frac{N}{N}$$
 ví dụ, P(C = Không) = 7/10,
$$P(C=C\acute{o}) = 3/10$$

-Đối với thuộc tính rời rạc:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

ở đâu $N_{a,c}$ là số trường hợp có thuộc tính $A_i = a$ Vàthuộc về lớp -Ví dụ:

P(Tình trạng=Đã kết hôn|Không) = 4/7 P(Hoàn tiền=Có|Có)=0

- Vìtiếp diễnthuộc tính:
 - rời rạc hóaphạm vi vào thùng
 - một thuộc tính thứ tự trên mỗi thùng vi
 - phạm giả định về tính độc lập
 - Chia hai chiều:(A < v) hoặc (A > v)
 - -chỉ chọn một trong hai phần tách làm thuộc tính
 - mới Ước tính mật độ xác suất:
 - -Giả sử thuộc tính theo sau mộtphân phối bình thường
 - -Sử dụng dữ liệu để ước tính các tham số phân phối (nghĩa lànghĩa là -Vàđộ lệch chuẩn -)
 - -Khi đã biết phân bố xác suất, chúng ta có thể sử dụng nó để ước tính xác suất có điều kiệnP(ATôi | c)

T nhận dạr	R quỹ	hôn nhân	Chịu thuế	trốn tránh
		_Trạng thái	_Thu nhập	u on u um
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Thuộc tính rời rạc:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: số trường hợp có thuộc tính $A_i = a$ Vàthuộc về lớp

C

 N_c : số phiên bản của lớp c

Phán loại phán loại tiếp diện

T nhận dạn	R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Thuộc tính rời rạc:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: số trường hợp có thuộc tính $A_i = a$ Vàthuộc về lớp c N_c : số phiên bản của lớp c

phán log phán log tiếp diện

T nhận dạr	R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Thuộc tính rời rạc:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: số trường hợp có thuộc tính $A_i = a$ Vàthuộc về lớp c N_c : số phiên bản của lớp c

phán loại phán loại tiếp diện lợp học

T nhận dạn	R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Thuộc tính rời rạc:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: số trường hợp có thuộc tính $A_i = a$ Vàthuộc về lớp c N_c : số phiên bản của lớp c

P(Trạng thái=Độc thân | KHÔNG) = 2/7

phán loại phán loại tiếp diễn lợp học

T nhận dạn	R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

Thuộc tính rời rạc:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: số trường hợp có thuộc tính $A_i = a$ Vàthuộc về lớp c N_c : số phiên bản của lớp c

P(Trạng thái=Độc thân | Đúng) = 2/3

T nhận dạ	R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

- Phân phối bình thường:

P (
$$A_{\hat{10i}}$$
 một | c_{i}) - $\frac{1}{\sqrt{2--2}} e^{-\frac{(M_{\hat{0}\hat{1}}-1-i_{\hat{1}\hat{1}})}{2-2}}$

-Một cho mỗi (a, ci) đôi

- VìLớp=Không
 - ý nghĩa mẫu μ = 110
 - phương sai mẫuσ₂= 2975
- VìThu nhập = 80

P (Thu nhập -80 | KHÔNG) -
$$\frac{1}{\sqrt{2 - (54.54)}} e^{-\frac{(80 - 110)_2}{2(2975)}} -0,0062$$

T nhận dạ	R quỹ	hôn nhân Trạng thái	Chịu thuế Thu nhập	trốn tránh
1	Đúng	Đơn	125K	KHÔNG
2	KHÔNG	Đã cưới	100K	KHÔNG
3	KHÔNG	Đơn	70K	KHÔNG
4	Đúng	Đã cưới	120K	KHÔNG
5	KHÔNG	Đã ly hôn	95K	Đúng
6	KHÔNG	Đã cưới	60K	KHÔNG
7	Đúng	Đã ly hôn	220K	KHÔNG
số 8	KHÔNG	Đơn	85K	Đúng
9	KHÔNG	Đã cưới	75K	KHÔNG
10	KHÔNG	Đơn	90K	Đúng

- Phân phối bình thường:

-Một cho mỗi (a, ci) đôi

- VìLớp=Có
 - ý nghĩa mẫuµ = 90
 - phương sai mẫu<mark>σ</mark>2= <mark>25</mark>
- VìThu nhập = 80

P (Thu nhập -80 | Đúng) -
$$\frac{1}{\sqrt{2-(5)}}$$
 e $e^{-\frac{(80-90)^2}{2(25)}}$ -0,01

Ví dụ

-Ghi

```
X = (Hoàn tiền = Có, Trạng thái = Độc thân, Thu nhập = 80K)
```

Chúng tôi tính toán:

-Tạo Trình phân loại Naïve Bayes, về cơ bản có nghĩa là tính toánđếm:

Tổng số hồ sơ:N = 10

Lớp số:

Số lượng hồ sơ: 7

Hoàn trả thuộc tính:

Có: 3

Số 4

Thuộc tính Tình trạng hôn nhân:

Đơn: 2

Đã ly hôn: 1

Đã kết hôn: 4

Thu nhập thuộc tính:

có nghĩa là: 110

phương sai: 2975

Lớp Có:

Số lượng hồ sơ: 3

Hoàn trả thuộc tính:

Có: 0

Số 3

Thuộc tính Tình trạng hôn nhân:

Đơn: 2

Đã ly hôn: 1

Đã kết hôn: 0

Thu nhập thuộc tính:

có nghĩa là: 90

phương sai: 25

Đưa ra một bản ghi thử nghiệm:X = (Hoàn tiền = Có, Trạng thái = Độc thân, Thu nhập = 80K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Divorced|Yes) = 0

For taxable income:
```

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
-P(X|Lớp=Không) = P(Hoàn tiền=Có|Lớp=Không)
-P(Đã kết hôn| Lớp=Không)
-P(Thu nhập=120K| Lớp=Không) = 3/7 * 2/7 * 0,0062 = 0,00075
```

```
-P(X|Lớp=Có) = P(Hoàn tiền=Không| Hạng=Có)

-P(Đã kết hôn| Lớp=Có)

-P(Thu nhập=120K| Hạng=Có)

= 0 * 2/3 * 0,01 = 0
```

```
    P(Không) = 0,3,P(Có) = 0,7 Vì P(X|
    Không)P(Không) > P(X|Có)P(Có) Do đó
    P(Không|X) > P(Có|X)
    =>Lớp = Không
```

Đưa ra một bản ghi thử nghiệm:X - (Hoàn tiền- Không, Đã kết hôn, Thu nhập-120K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes | Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single | No) = 2/7
P(Marital Status=Divorced | No)=1/7
P(Marital Status=Married | No) = 4/7
P(Marital Status=Single | Yes) = 2/7
P(Marital Status=Divorced Yes)=1/7
P(Marital Status=Married | Yes) = 0
For taxable income:
              sample mean=110
If class=No:
              sample variance=2975
If class=Yes:
              sample mean=90
              sample variance=25
```

```
-P(X|Lớp=Không) = P(Hoàn tiền=Không|Lớp=Không)
                 -P(Đã kết hôn | Lớp=Không)
                 -P(Thu nhập=120K| Lớp=Không) =
                4/7 - 4/7 - 0.0072 = 0.0024
-P(X|Lớp=Có) = P(Hoàn tiền=Không| Hạng=Có)
                   -P(Đã kết hôn | Lớp=Có)
                   -P(Thu nhập=120K)
  Lớp=Có)
                 = 1 - 0 - 1.2 - 10-9=0
P(Không) = 0.3, P(Co) = 0.7
Vì P(X|Không)P(Không) > P(X|Có)P(Có)
Do đó P(Không|X) > P(Có|X)
      =>Lớp = Không
```

Tránh vấn đề không có xác suất

- Dự đoán Naïve Bayesian yêu cầu từng thăm dò có điều kiện. làkhác không.Nếu không thì, vấn đề được dự đoán sẽ bằng không

- Bán tại. Giả sử một tập dữ liệu có 1000 bộ dữ liệu, thu nhập=thấp (0), thu nhập= trung bình (990) và thu nhập = cao (10)
- Sử dụngHiệu chỉnh Laplacian (hoặc công cụ ước tính Laplacian)
 - Thêm 1 vào mỗi trường hợp Prob(thu nhập

11/1003

- Vấn đề "đã sửa". ước tính gần với các đối tác "không được điều chỉnh" của chúng

Đưa ra một bản ghi thử nghiệm:X = (Hoàn tiền = Có, Trạng thái = Độc thân, Thu nhập = 80K)

Với chức năng làm mịn Laplace

naive Bayes Classifier:

```
P(Refund=Yes|No) = 4/9
P(Refund=No|No) = 5/9
P(Refund=Yes|Yes) = 1/5
P(Refund=No|Yes) = 4/5
```

P(Marital Status=Single|No) = 3/10 P(Marital Status=Divorced|No)=2/10 P(Marital Status=Married|No) = 5/10 P(Marital Status=Single|Yes) = 3/6 P(Marital Status=Divorced|Yes)=2/6 P(Marital Status=Married|Yes) = 1/6

For taxable income:

If class=No: sample mean=110

sample variance=2975

If class=Yes: sample mean=90

sample variance=25

```
-P(X|Lớp=Không) = P(Hoàn tiền=Không|Lớp=Không)
                    -P(Đã kết hôn | Lớp=Không)
                    -P(Thu nhâp=120K| Lớp=Không)
                  = 4/9 - 3/10 - 0,0062 = 0,00082
-P(X|Lớp=Có) = P(Hoàn tiền=Không | Hạng=Có)
                     -P(Đã kết hôn | Lớp=Có)
                     -P(Thu nhâp=120K|
   Lớp=Có)
                   = 1/5 - 3/6 - 0.01 = 0.001
   P(Không) = 0.7, P(Co) = 0.3
  P(X|Không)P(Không) = 0,0005
  P(X | C\acute{o})P(C\acute{o}) = 0,0003
    =>Lớp = Không
```

Trình phân loại Naïve Bayes: Tập dữ liệu đào tạo

Lớp học:

C1:buys_computer = 'có'

C2:buys_computer = 'không'

Dữ liệu cần phân loại:

X = (tuổi <=30,

Thu nhập = trung bình,

Sinh viên = có

Tín dụng_xếp hạng = Khá)

tuổi	thu nhập	tuden t	redit_ratin (<mark>, com </mark> P
<=30	cao	KHÔNG	hội chợ	KHÔNG
<=30	cao	KHÔNG	xuất sắc	KHÔNG
3140	cao	KHÔNG	hội chợ	Đúng
> 40	trung bình	KHÔNG	hội chợ	Đúng
> 40	thấp	Đúng	hội chợ	Đúng
> 40	thấp	Đúng	xuất sắc	KHÔNG
3140	thấp	Đúng	xuất sắc	Đúng
<=30	trung bình	KHÔNG	hội chợ	KHÔNG
<=30	thấp	Đúng	hội chợ	Đúng
> 40	trung bình	Đúng	hội chợ	Đúng
<=30	trung bình	Đúng	xuất sắc	Đúng
3140	trung bình	KHÔNG	xuất sắc	Đúng
3140	cao	Đúng	hội chợ	Đúng
> 40	trung bình	KHÔNG	xuất sắc	KHÔNG

Trình phân loại Naïve Bayesian: Nhận xét

- Thuận lợi
 - Dễ để thực hiện
 - Kết quả tốt đạt được trong hầu hết các trường hợp
- Nhược điểm
 - Giả định: lớp độc lập có điều kiện, do đó mất độ chính xác Trên
 - thực tế, tồn tại sự phụ thuộc giữa các biến
 - -Ví dụ: bệnh viện: bệnh nhân: Hồ sơ: tuổi, tiền sử gia đình, v.v. Triệu chứng: sốt, ho, v.v., Bệnh tật: ung thư phổi, tiểu đường, v.v.
 - -Sự phụ thuộc giữa những điều này không thể được mô hình hóa bởi Trình phân loại Naïve Bayesian
- -Làm thế nào để giải quyết những sự phụ thuộc này?
 - -Mạng lưới niềm tin Bayes

Bài tập 1

Cho một dữ liệu huấn luyện về người mua máy tính, áp dụng thuật toán ID3 và ILA để xây dựng mô hình phân loại

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Xác định nhãn lớp cho các mẫu:

- 1. Xnew = (tuổi <=30, thu nhập = cao, sinh viên = có, xếp hạng tín chỉ = khá)
- 2. Xnew = (tuổi >40, thu nhập = cao, sinh viên = không, xếp hạng tín chỉ = khá)

Bài tập 2

Cho một dữ liệu huấn luyện về chơi tennis hay không, áp dụng thuật toán ID3 và ILA để xây dựng mô hình phân loại:

Day	Outlook	Temperature	Humidity	Windy	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
		_			

Xác định nhãn lớp chô các mẫu:

- Xnew = <Triển vọng=nắng, Nhiệt độ = mát mẻ, Độ ẩm = cao, Gió = mạnh>
- Xnew = <Triển vọng = u ám, Nhiệt độ = mát mẻ, Độ ẩm = cao, Gió = mạnh>

Đánh giá và lựa chọn mô hình

- Số liệu đánh giá: Làm thế nào chúng ta có thể đo lường độ chính xác? Các số liệu khác cần xem xét?
- Sử dụngbộ kiểm tra xác nhậncủa các bộ dữ liệu được gắn nhãn lớp thay vì tập huấn luyện khi đánh giá độ
 chính xác
- Các phương pháp ước tính độ chính xác của bộ phân loại:
 - Phương pháp giữ lại, lấy mẫu con ngẫu nhiên
 - Xác thực chéo
 - Khởi động
- So sánh các phân loại:
 - Khoảng tin cậy
 - Phân tích chi phí-lợi ích và đường cong ROC

Số liệu đánh giá phân loại: Ma trận hỗn loạn

Ma trận hỗn loạn:

Lớp thực tế\Lớp dự đoán	C 1	§ C ₁	
C 1	Tích cực thực sự (TP)	Âm tính giả (FN)	
§ C1	Dương tính giả (FP)	Âm tính thực sự (TN)	

Ví dụ về Ma trận nhầm lẫn:

Lớp thực tế\Dự đoán	mua_máy tính	mua_máy tính	Tổng cộng
lớp học	= vâng	= không	
mua_máy tính = có	6954	46	7000
mua_máy tính = không	412	2588	3000
Tổng cộng	7366	2634	10000

- Được chotôilớp học, một mục nhập,CMtôi, jtrong mộtma trận hỗn loạn cho biết số bộ dữ liệu trong lớpTôiđược bộ phân loại dán nhãn là lớpj
- Có thể có thêm hàng/cột để cung cấp tổng số

Số liệu đánh giá phân loại: Độ chính xác, tỷ lệ lỗi, độ nhạy và độ đặc hiệu

A\P	С	♦ C	
С	TP	FN	Р
♦ C	FP	TN	N
	P'	N'	Tất cả

- Độ chính xác của phân loại,hoặc tỷ lệ nhận dạng: tỷ lệ phần trăm của các bộ dữ liệu trong tập kiểm tra được
 phân loại chính xác
 Độ chính xác = (TP + TN)/Tất cả
- tỷ lệ lỗi:1 độ chính xác,hoặc
 Tỷ lệ lỗi = (FP + FN)/Tất cả

-Vấn đề mất cân bằng lớp:

- Một lớp có thể hiếm, ví dụ như gian lận hoặc dương tính với HIV
- Có ý nghĩađa số lớp tiêu cựcvà thiểu số của tầng lớp tích cực
- Nhạy cảm:Tỷ lệ nhận dạng tích cực thực sự
 Độ nhạy = TP/P
- Tính đặc hiệu:Tỷ lệ nhận dạng âm tính thực sự
 Độ đặc hiệu = TN/N

Các số liệu đánh giá của bộ phân loại: Độ chính xác và khả năng thu hồi cũng như các thước đo F

- Độ chính xác:độ chính xác bao nhiêu % bộ dữ liệu được bộ phân loại gắn nhãn là dương thực sự là dương $\frac{TP}{TP+FP}$
- -Nhớ lại:tính đầy đủ bao nhiêu % bộ dữ liệu dương được bộ phân loại gắn nhãn là dương? TP
- Điểm tuyệt đối là 1,0
- Mối quan hệ nghịch đảo giữa độ chính xác và thu hồi
- -Fđo lường (F1hoặcF-điểm):ý nghĩa hài hòa của độ chính xác và thu hồi,
- Fß:thước đo trọng số của độ chính xác và thu hồi
 - -gán trọng lượng gấp ß lần để thu hồi cũng như độ chính xác

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Số liệu đánh giá phân loại: Ví dụ

Lớp thực tế\Lớp dự đoán	ung thư = có	ung thư = không	Tổng cộng	Sự công nhận(%)
ung thư = có	90	210	300	30:00 (nhạy cảm
ung thư = không	140	9560	9700	98,56 (tính đặc hiệu)
Tổng cộng	230	9770	10000	96,40 (sự chính xác)

Đánh giá độ chính xác của trình phân loại: Phương pháp xác thực chéo và xác thực chéo

- Phương pháp giữ lại
 - Dữ liệu đã cho được phân chia ngẫu nhiên thành hai bộ độc lập
 - -Tập huấn luyện (ví dụ: 2/3) để xây dựng mô hình
 - -Bộ kiểm tra (ví dụ: 1/3) để ước tính độ chính xác Lấy
 - mẫu ngẫu nhiên : một biến thể của việc nắm giữ
 - -Lặp lại lần giữ k lần, độ chính xác = trung bình. về độ chính xác thu được
- -Xác thực chéo (k-gấp, trong đó k = 10 là phổ biến nhất)
 - Phân chia ngẫu nhiên dữ liệu thànhk loại trừ lẫn nhautập hợp con, mỗi tập hợp có kích thước xấp xỉ bằng nhau
 - TạiTôi-lần lặp thứ, sử dụng Dτôilàm tập kiểm tra và các tập khác làm tập huấn luyện <u>Bỏ đi</u>
 - một lần :knếp gấp ở đâuk = #bộ dữ liệu, cho dữ liệu có kích thước nhỏ
 - * CR phân tầng ồss-xác thực*: nếp gấp được phân tầng sao cho lớp dist. trong mỗi lần là khoảng. giống như trong dữ liệu ban đầu