Zpracování měřených hodnot

I_{in} [A]	U_{in} [V]	P_{in} [W]	θ [°C]	I_{out} [mA]	U_{out} [V]	$P_{out} [mW]$	η [%]
9,10	8,10	73,71	250,00	0,50	0,50	0,25	$3,40 \cdot 10^{-4}$
10,10	8,90	89,89	265,00	0,75	0,70	0,53	$5,80 \cdot 10^{-4}$
11,00	9,70	106,70	299,00	0,80	0,75	0,60	$5,60 \cdot 10^{-4}$
12,00	10,50	126,00	320,00	0,65	0,69	0,45	$3,60 \cdot 10^{-4}$
13,00	11,30	146,90	332,00	0,80	0,80	0,64	$4,40 \cdot 10^{-4}$
14,00	12,10	169,40	350,00	0,85	0,85	0,72	$4,30 \cdot 10^{-4}$

Tabulka 1: Tabulka naměřených a vypočtených hodnot.

$$P = U \cdot I$$
$$\eta = P_{out}/P_{in}$$

Graf 1: Závislost teploty výměníku tepla a účinnosti motoru na příkonu ohřívače.

Čas	Měření 1	Měření 2	Měření 3
t [s]	θ_1 [°C]	θ_2 [°C]	θ_3 [°C]
0	300	300	300
340			100
440		80	80
503	80		
918			40
1043		40	
1120	40		

Tabulka 2: Tabulka naměřených časů pro různé teploty chladnutí.

Graf 2: Časová závislost ochlazování výměníku pro různé módy tepelného čerpadla.

Závěr

Podle struktury motoru jsme vyhodnotili, že se jedná nejspíše o modifikaci γ .

Nejprve jsme zkoumali motor v režimu generátoru - po dodání tepla se stirlingův motor začne otáčet a vytváří tak mechanickou práci, která je následně předána DC elektromotorku sloužícímu jako generátor. Protože se jedná o poměrně malý a nedokonalý model motoru, zaznamenali jsme vysoké výkyvy ve výkonu motoru, v některých momentech se dokonce zastavil. Snažili jsme se zaznamenat přibližnou průměrnou hodnotu, ale jak je vidět v Grafu 1, rozptyl měřených hodnot je dost vysoký. Z proložené přímky to vypadá, že účinost s rostoucím příkonem klesá, zřejmě kvůli větším tepelným ztrátám do okolí ohřívače.

Dále jsme stirlingův motor zapojili jako tepelné čerpadlo - tedy jsme elektromotor připojili ke zdroji napětí, dodával tedy do soustavy potřebnou mechanickou práci a stirlingův motor pohybem pístů přenášel teplo mezi ohřívačem a chladičem.

Nejprve jsme měřili čas zchladnutí ohřívače bez pomoci čerpadla, následně se zapnutým čerpadlem. Z výchozí teploty 300 °C na teplotu 80 °C se při zapnutém čerpadle ohřívač ochladil o minutu rychleji. Z této teploty na výslednou teplotu 40 °C pak bylo zapojení s čerpadlem o 17 s rychlejší. Tepelné čerpadlo tedy urychlilo přenos tepla z ohřívače do chladiče.

Při posledním měření se ohřívač nejprve chladil bez použití čerpadla do teploty 100 °C, pak jsme zapli čerpadlo s opačnou polaritou elektromotorku (mělo by tedy chlazení zpomalit), na teplotu 80 °C jsme se ale dostali stejně rychle jako v předchozím (urychleném) scénáři. Na finální teplotu jsme se dostali o celé dvě minuty dříve než v předchozím měření.

Měření je tedy buď to krajně nespolehlivé a nebo byl špatný některý z našich předpokladů o fungování tepelného čerpadla.