Windows Azure platform What is in it for you?

Dominick Baier (dbaier@develop.com)
Christian Weyer (cweyer@develop.com

Objectives

- Motivation
- Status quo
- Cloud Computing
- Windows Azure platform
 - Windows Azure
 - SQL Azure
 - AppFabric
- Moving your application to the cloud

Application architecture today

- No application is an island
- Reality is that a lot of applications get distributed and grow complex over time
- Services-based architecture as a target
 - model the problem domain and draw explicit boundaries
 - service-orientation is a non-technical thing
- Layering
 - building interfaces into dedicated application artefacts
- Separation of concerns
 - cut application-level 'ilities' from core code
- Identity management grows rapidly in importance
- Green field scenarios more rare than brown field
 - totally different approaches to judge on and implement requirements

Application deployment & maintenance today

- Several hosting environments needed for testing, staging, production
- Hard to calculate costs for each project/product
- Virtualization can ease headaches
 - consolidation of costs
 - virtual machines not always adequately equipped
- Tracing and logging are indispensable instruments
- Monitoring infrastructure is expensive in operation
 - not everyone can afford it
- Patching
 - bringing out new builds is tedious but critical
- Availability
 - ensure to keep application available
 - satisfy ongoing requests

Application scaling today

- Actually, application 'ilities' today
- Tough task to predict need for scalability, availability et. al.
 - always wanting the maximum of each in unrealistic
- Many 'ilities' are not an all or nothing
 - needs are rather on a spectrum
 - being able to scale well for certain amount of time, then scale back
- Scaling up vs. scaling out
- Need for dynamic scaling
 - elasticity in acquiring and releasing resources

Need for dynamic scale-out

Cloud computing

Umbrella term and concept unifying different ideas

"Dynamic IT", "On-Demand", "Utility Computing", "Software-as-a-Service", "Software + Services", "Cloud Services",
 "Virtualization"

Promised advantages

- reduce capital & operations costs
- lower capital lockup and usage-bound billing
- cost effective handling of peeks
- simplify application deployment & management
- always on
- simplify scaling to possible Internet scale
- focus on new features & functionality, not infrastructure
- Vision: "IT like power from the socket"

Fulfilling the Cloud's promises

What we need

- cloud operating system
- infrastructure and platforms as a service
- utility computing
- tooling

Cloud OS has similar facilities as a desktop OS, but on a set of connected servers

- abstract execution environment
- shared file system
- resource allocation
- programming environments

Utility computing

- 24/7 operation
- pay for what you use
- simpler, transparent administration

Cloud stack

Azure Platform overview

Windows Azure technical view

Windows Azure compute

- App-centric development and execution model
- Applications can be
 - fault-tolerant
 - highly available
 - highly scalable
- Application (aka service) requirements modelled through DSL
 - roles
 - instances
 - interfaces
- Provides elasticity in compute
- Monitoring and management built-in
- Different VM sizes available

Web role

- Implement web applications and web services with web role
 - based on .NET 3.5 SP1
 - can run managed full trust and native code
- Web farm that handles HTTP/S requests from the Internet
- **IIS7** hosted web core
 - hosts ASP.NET
 - integrated managed pipeline
 - supports SSL

Storage Services

Worker roles

- Worker role provides means to run code beyond a perrequest base
 - always-running code
 - background processing
- **Executes .NET 3.5 SP1 full** trust and native code
 - can spawn processes
- Can accept network connections from Internet
 - HTTP/HTTPS
 - TCP

Windows Azure storage

- Table, blob and queue storage capabilities
- Data can be
 - fault-tolerant
 - highly available
 - highly scalable
- Goal is having data close to applications
- Independently accessible
 - can be used from any platform, on-premise or cloud-based
- Independently scalable
 - does not depend on Windows Azure compute
- Partitions are key concept for scalability

SQL Azure

- Database as a service
- Relational database management system in the Cloud
- Compatible with known SQL Server tooling
- Not a full-blown SQL Server instance
 - only the core database engine
- No full support for all database features and T-SQL

Windows Azure platform AppFabric

Access Control

- service for issuing access tokens based on authorization rules
- resource STS in the cloud
- can be federated with different identity providers, e.g. Active
 Directory, Windows Live
- REST-based programming interface
- intensively used by the Service Bus

Service Bus

- application messaging bus infrastructure
- enables application integration beyond physical boundaries
- implements open format and protocols
- supports REST and WS-*
- uses Access Control to allow sending messages to and listening on endpoints

Moving your applications into the Cloud

- Ubiquitous connectivity
 - Windows Azure platform Service Bus
- Endless compute power
 - Windows Azure Compute
- Asynchronous data and command dispatching
 - Windows Azure Queue Storage
- Relational data storage
 - SQL Azure
- Large scale data partitioning and storage
 - Windows Azure Blob & Table Storage
- Federated authentication and authorization
 - Windows Azure platform Access Control

A realistic sample application

- A service-oriented sample application architecture
 - realistic but not real
 - exposing typical structured data
 - dealing with large data
- Handling broad range of client/consumer applications
 - ASP.NET, WCF
 - Silverlight
 - Windows Forms, WPF
 - Windows Mobile, iPhone
 - Java
- Dealing with a number of non-functional requirements
 - scalability
 - reliability
 - extensibility
 - securability

Sample architecture: Media – bird's view

Sample architecture: Upload – bird's view

Benefits from the Cloud for the application sample

Extend reach of WCF Media services

- expose necessary endpoints via the Service Bus
- enable powerful communication patterns
- services still hosted on-premise

Scale on-demand

- Media WCF services in Azure Compute worker role
- ASP.NET Media portal in Azure Compute web role

Easily accessible relational data

migrate local SQL Server databases to SQL Azure

Scaling out data

partition media and upload data and move it into Azure Table storage

Massive data store

store videos, thumbnails in Azure Blob Storage

Federating access to public endpoints

using Access Control with STS to control access to SB services

Sample architecture: Cloud Media – example

Summary

- The "Cloud" allows for interesting scenarios
 - scaling, management, security
 - know your costs
- Windows Azure Platform is Microsoft's cloud offering
 - platform as a service
 - compute, storage, RDBMS, authorization, communication
 - local simulation environment for most cases
- Applications need to be designed for the cloud
 - no simple "repackage & deploy"
 - load balanced by design
 - patterns for cloud applications