



11 Publication number:

0 474 991 B1

| 2 EUROPEAN | <b>PATENT</b> | <b>SPECIFICATION</b> |
|------------|---------------|----------------------|
|------------|---------------|----------------------|

- (4) Date of publication of patent specification: 18.10.95 (5) Int. Cl.<sup>6</sup>: **C07D** 487/14, C07D 487/04, C07D 403/04, A01N 43/50
- 21) Application number: 91110406.5
- 2 Date of filing: 24.06.91

- (A) Herbicidal 2-(2-imidazolin -2-yl)-benzazoles.
- Priority: 31.08.90 US 576621
- Date of publication of application: 18.03.92 Bulletin 92/12
- Publication of the grant of the patent: 18.10.95 Bulletin 95/42
- Designated Contracting States:
   AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- (58) References cited: GB-A- 1 566 523 GB-A- 2 172 886 US-A- 4 188 487 US-A- 4 554 013 US-A- 4 895 588

- 73 Proprietor: AMERICAN CYANAMID COMPANY One Cyanamid Plaza Wayne, NJ 07470-8426 (US)
- Inventor: Doehner, Robert Francis, Jr. 733 Windsor-Perrineville Road East Windsor, New Jersey 08520 (US)
- Representative: Wächtershäuser, Günter, Prof. Dr. Patentanwalt, Tal 29 D-80331 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

# Description

20

25

30

35

40

45

55

Certain imidazolinyl benzoic and naphthoic acids, esters and salts and their use as herbicidal agents are described in U.S. patents 4,188,487; 4,297,128 and 4,554,013 and in patent applications GB 2 172 886 A and EP 86200304.3. However, the imidazolinyl benzazoles of the present invention are not described nor suggested in said patents and patent applications. Fused heteropyridine compounds and their herbicidal use are described in U.S. patents 4,650,514 and 4,752,323. Although a variety of herbicidally active imidazolinyl compounds are known, still more effective imidazolinyl compounds would be useful to farmers, agriculturalists, industrialists and the like for the control of undesirable plant species.

It is an object of the present invention to provide effective herbicidal imidazolinyl, o-carboxy-2-benzoheterocyclic compounds and indoloheterocyclic diones for controlling a variety of monocotyledenous and dicotyledenous plant species such as those species which are generally difficult to control in agronomic practice.

# 5 SUMMARY OF THE INVENTION

The present invention relates to 2-(2-imidazolin-2-yl)benzoheterocyclic compounds having the structure

wherein

 $R_1$ 

is hydrogen, di(C<sub>1</sub>-C<sub>4</sub>)alkylimino,

50

 $C_1\text{-}C_{12}$  alkyl optionally substituted with one to three of the following:  $C_1\text{-}C_4$  alkoxy,  $C_1\text{-}C_4$  alkylthio, halogen, hydroxy,  $C_3\text{-}C_6$  cycloalkyl, benzyloxy, furyl, phenyl optionally substituted with one nitro, one to three halogens,  $C_1\text{-}C_4$  alkyl groups or  $C_1\text{-}C_4$  alkoxy groups, carboxy,  $C_1\text{-}C_4$  alkoxycarbonyl, cyano or tri( $C_1\text{-}C_4$ )alkylammonium halide,

 $C_3\text{-}C_{12}$  alkenyl optionally substituted with one to three of the following:  $C_1\text{-}C_4$  alkoxy, phenyl, halogen or  $C_1\text{-}C_4$  alkoxycarbonyl,

 $C_3\text{-}C_6$  cycloalkyl optionally substituted with one to three  $C_1\text{-}C_4$  alkyl groups,

 $\mbox{C}_{3}\mbox{-}\mbox{C}_{16}$  alkynyl optionally substituted with one to three halogens or a cation;

|    | $R_2$                   | is C <sub>1</sub> -C <sub>4</sub> alkyl;                                                                                                                                                                                                                                                           |
|----|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | R <sub>3</sub>          | is $C_1$ - $C_4$ alkyl or $C_3$ - $C_6$ cycloalkyl, and when $R_2$ and $R_3$ are taken together with the carbon to which they are attached they may represent $C_3$ - $C_6$ cycloalkyl optionally                                                                                                  |
|    |                         | substituted with methyl;                                                                                                                                                                                                                                                                           |
| 5  | В                       | is hydrogen, $COR_4$ or $SO_2R_5$ with the proviso that when B is $COR_4$ or $SO_2R_5$ , $R_1$ is other than hydrogen or a cation and $R_3$ is other than hydrogen;                                                                                                                                |
|    | R <sub>4</sub>          | is C <sub>1</sub> -C <sub>11</sub> alkyl, chloromethyl or phenyl optionally substituted with halogen, nitro or C <sub>1</sub> -C <sub>4</sub> alkyl;                                                                                                                                               |
|    | R <sub>5</sub>          | is C <sub>1</sub> -C <sub>4</sub> alkyl or phenyl optionally substituted with C <sub>1</sub> -C <sub>4</sub> alkyl;                                                                                                                                                                                |
| 10 | X, Y and Z              | are each independently $CR_6$ , $CR_7R_8$ , N or $NR_9$ , with the proviso that at least one of X,                                                                                                                                                                                                 |
|    |                         | Y and Z must be N or NR₂;                                                                                                                                                                                                                                                                          |
|    | the                     | configuration represents either a single bond or a double bond with the proviso that                                                                                                                                                                                                               |
|    |                         | when any of X, Y or Z is CR <sub>7</sub> R <sub>8</sub> or NR <sub>9</sub> , then the configuration attached thereto is                                                                                                                                                                            |
|    |                         | a single bond and with the further proviso that at least one of the configurations                                                                                                                                                                                                                 |
| 15 |                         | represents a single bond;                                                                                                                                                                                                                                                                          |
|    | $R_6$ , $R_7$ and $R_8$ | are independently hydrogen, halogen, C <sub>1</sub> -C <sub>4</sub> alkoxy or C <sub>1</sub> -C <sub>4</sub> alkyl optionally substi-                                                                                                                                                              |
|    |                         | tuted with one hydroxy or one to three halogens, C <sub>1</sub> -C <sub>4</sub> alkoxy groups or C <sub>1</sub> -C <sub>4</sub>                                                                                                                                                                    |
|    |                         | alkylthio groups;                                                                                                                                                                                                                                                                                  |
|    | R <sub>9</sub>          | is hydrogen or C <sub>1</sub> -C <sub>4</sub> alkyl optionally substituted with one hydroxy or one to three                                                                                                                                                                                        |
| 20 |                         | halogens, C <sub>1</sub> -C <sub>4</sub> alkoxy groups or C <sub>1</sub> -C <sub>4</sub> alkylthio groups;                                                                                                                                                                                         |
|    | Q                       | is hydrogen, halogen, C <sub>1</sub> -C <sub>4</sub> alkoxy or C <sub>1</sub> -C <sub>4</sub> alkyl optionally substituted with one to three of the following: halogen, C <sub>1</sub> -C <sub>4</sub> alkoxy, C <sub>1</sub> -C <sub>4</sub> alkylthio or C <sub>2</sub> -C <sub>4</sub> alkenyl; |

the optical isomers thereof when  $R_2$  and  $R_3$  are not the same or when  $R_7$  and  $R_8$  are not the same; the tautomers and geometric isomers thereof and the acid addition salts thereof except when  $R_1$  is a salt-forming cation.

The present invention further provides processes for the preparation of the above-said compounds and methods for controlling undesirable monocotyledenous and dicotyledenous plant species therewith.

# **DESCRIPTION OF THE INVENTION**

25

30

This invention relates to 2-(2-imidazolin-2-yl)benzoheterocyclic compounds having the structure

wherein

R<sub>1</sub> is hydrogen, di(C<sub>1</sub>-C<sub>4</sub>)alkylimino,

C<sub>1</sub>-C<sub>12</sub> alkyl optionally substituted with one to three of the following: C<sub>1</sub>-C<sub>4</sub> alkoxy, C1-C4 alkylthio, halogen, hydroxy, C3-C6 cycloalkyl, benzyloxy, furyl, phenyl, optionally substituted with one nitro, one to three halogens, C1-C4 alkyl groups or C1-C4 alkoxy groups, carboxy, C1-C4 alkoxycarbonyl, cyano or tri(C1-C4)alkylammonium halide.

C<sub>3</sub>-C<sub>12</sub> alkenyl optionally substituted with one to three of the following: C<sub>1</sub>-C<sub>4</sub> alkoxy, phenyl, halogen or C1-C4 alkoxycarbonyl,

C<sub>3</sub>-C<sub>5</sub> cycloalkyl optionally substituted with one to three C<sub>1</sub>-C<sub>4</sub> alkyl groups,

C<sub>3</sub>-C<sub>16</sub> alkynyl optionally substituted with one to three halogens or

a cation;

is C<sub>1</sub>-C<sub>4</sub> alkyl;  $R_2$ 

5

10

15

20

25

30

is C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>3</sub>-C<sub>6</sub> cycloalkyl, and when R<sub>2</sub> and R<sub>3</sub> are taken together with the R<sub>3</sub> carbon to which they are attached they may represent C3-C6 cycloalkyl optionally

substituted with methyl;

is hydrogen, COR₄ or SO₂R₅ with the proviso that when B is COR₄ or SO₂R₅, R₁ is В

other than hydrogen or a cation and R<sub>9</sub> is other than hydrogen;

is C<sub>1</sub>-C<sub>11</sub> alkyl, chloromethyl or phenyl optionally substituted with halogen, nitro or C<sub>1</sub>-R<sub>4</sub> C4 alkyl;

is C<sub>1</sub>-C<sub>4</sub> alkyl or phenyl optionally substituted with C<sub>1</sub>-C<sub>4</sub> alkyl;

are each independently CR<sub>6</sub>, CR<sub>7</sub>R<sub>8</sub>, NR<sub>9</sub> or N with the proviso that at least one of X, X, Y and Z

Y or Z is N or NR<sub>9</sub>;

configuration represents either a single bond or a double bond with the proviso that the when any of X, Y or Z is CR7R8 or NR9 then the ---- configuration attached thereto represents a single bond and with the further proviso that at least one of the ----

configurations represents a single bond;

are independently hydrogen, halogen, C1-C4 alkoxy or C1-C4 alkyl optionally substi- $R_6$ ,  $R_7$  and  $R_8$ tuted with one hydroxy or one to three halogens, C1-C4 alkoxy groups or C1-C4

alkylthio groups;

is hydrogen or C1-C4 alkyl optionally substituted with one hydroxy or one to three R<sub>9</sub>

halogens, C<sub>1</sub>-C<sub>4</sub> alkoxy groups or C<sub>1</sub>-C<sub>4</sub> alkylthio groups;

Q is hydrogen, halogen, C1-C4 alkoxy or C1-C4 alkyl optionally substituted with one to three of the following: halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> alkylthio or C<sub>2</sub>-C<sub>4</sub> alkenyl;

the optical isomers thereof when R2 and R3 are not the same or when R7 and R8 are not the same; the tautomers and geometric isomers thereof and the acid addition salts thereof except when R<sub>1</sub> is a saltforming cation.

The term halogen designates F, Cl, Br or I. The term cation, as used in the present specification and claims, designates alkali metals, alkaline earth metals, manganese, copper, iron, zinc, cobalt, lead, silver, nickel, ammonium or organic ammonium. The alkali metals include sodium, potassium and lithium. Among the organic ammonium cations suitable for use in the present invention are monoalkylammonium, dialkyl ammonium, trialkylammonium, tetraalkylammonium, monoalkenylammonium, dialkenylammonium, trialkenylammonium, monoalkynylammonium, dialkynylammonium, monoalkanolammonium, dialkanolammonium, C<sub>5</sub>-C<sub>6</sub> cycloalkylammonium, piperidinium, morpholinium, pyrrolidinium, benzylammonium and the like.

Among the o-carboxy-(5-oxo-2-imidazolin-2-yl)benzoheterocycles described in the present invention are o-(2-imidazolin-2-yl)indolecarboxylates, o-(2-imidazolin-2-yl)indazolecarboxylates, o-(2-imidazolin-2-yl)benzimidazolecarboxylates, o-(2-imidazolin-2-yl)benzotriazole carboxylates, and the like.

There is a recognized need in agronomic practice for still more effective herbicidal agents and, especially, effective herbicidal agents which can be used in the presence of important agricultural crops without causing undue injury to said crops. Without adequate control, undesirable plant species can eliminate or reduce the yield of crops, reduce the quality and value of crops and reduce the efficient production and harvest of crops. The herbicidal imidazolinyl benzoheterocycles of the present invention exhibit effective control of a wide variety of undesirable monotyledenous and dicotyledenous plant species and, moreover, demonstrate good selectivity towards important broadleaf crops such as soybeans and sugarbeets.

Herbicidally active imidazolinyl benzoheterocyclic compounds having the structure

a. 
$$\sum_{k=2}^{COOR_1} R_3$$
 b. 
$$COOR_1$$

5

10

15

20

25

35

55

wherein B is hydrogen and R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, X, Y, Z and Q are as described hereinabove can be prepared from their imide nitrile precursors having the structure of formula I.

The nitrile groups on the formula I compounds can be hydrolyzed in the presence of sulfuric acid to give the corresponding amides and the resultant imide amides ring opened in the presence of an appropriate nucleophile such as an alkali metal alkoxide to give the ester diamide intermediates of formula II and their regioisomers. The formula II ester diamides can be converted to the desired compounds having structure a or b by reaction with phosphorous pentachloride in the presence of a solvent. In the case wherein  $R_6$ ,  $R_7$ ,  $R_8$  or  $R_9$  contain one or more hydroxy groups, these hydroxy groups are converted to chloro groups by this reaction. The reaction sequence is illustrated in flow diagram I.

#### FLOW DIRGRAM I

40

1. 
$$H_2SO_4$$

2.  $OR_1$ 

CONH

CONH

CONH

CONH

CONH

R

CONH

CONH

R

CONH

CONH

R

CONH

CONH

R

CONH

R

CONH

CONH

R

CONH

CONH

R

CONH

CONH

R

CONH

CON

The regioisomers can be separated by standard chromatographic techniques such as reverse phase liquid chromatography.

Alternatively, compounds having structure a or b as described hereinabove and wherein R<sub>1</sub> is hydrogen can be prepared in 2 steps by reacting the appropriate phthalic anhydride with an amino amide of formula III in the presence of a base such as triethylamine, and optionally in the presence of a solvent, to obtain the corresponding acid diamide intermediates and their regioisomers and ring closing said intermediates in an aqueous alkali metal base followed by acidification to give the desired o-2(imidazolin-2-yI)benzoheterocyclic carboxylic acids having structure a or b and their regioisomers as shown in flow diagram II.

#### FLOW DIAGRAM [I

+ isomers

35

The regioisomers can be separated using standard chromatographic techniques such as reverse phase liquid chromatography.

Another method of preparing compounds of structure a or b as described hereinabove wherein  $R_1$  and B are hydrogen is similar to that described in U.S. Patent 4,758,667 wherein a diester of formula IV is treated with an alkali metal alkoxide such as potassium t-butoxide and an aminoamide of formula III in the presence of an inert solvent such as xylene and sequentially treated with an aqueous acid to give the desired imidazolinyl benzoheterocycles as shown in flow diagram III wherein  $R_{10}$  is  $C_1$ - $C_8$  alkyl.

45

50

# FLOW DIAGRAM III

5

$$COOR_{10}$$
 $R_{2}$ 
 $COOR_{10}$ 
 $R_{3}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{5}$ 

Compounds having structure c and d can be prepared from the appropriate imide nitriles of formula I by the acid hydrolysis of the nitrile groups to give the corresponding imide amides and the cyclization thereof in the presence of an alkali metal hydride such as sodium hydride to give the desired indoloheterocyclic diones as shown in flow diagram IV.

# FLOW DIAGRAM IV

Compounds having structure a or b wherein  $R_1$  is other than hydrogen and B is hydrogen may be prepared from compounds having structure c or d by reacting said compounds with an appropriate nucleophile such as an alkali metal alkoxide as shown in flow diagram V.

55

#### FLOW DIAGRAM V

5

C.

$$R_2$$
 $R_3$ 

or

 $R_2$ 
 $R_3$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 

Compounds having structure e or f can be prepared by reacting the o-(2-imidazolin-2-yl)-benzoheterocyclic carboxylic acids having structure a or b wherein B is hydrogen with dicyclohexylcar-bodiimide (DCC) in the presence of a non-protic solvent as shown in flow diagram VI.

# FLOW DIAGRAM VI

Compounds of structure c and d wherein Z is NR<sub>9</sub> or N, X and Y are CH and Q is hydrogen can be prepared from the appropriate 3-vinylpyrrole by the formation of the corresponding imide nitrile intermediate of formula I via a Diels-Alder reaction with a suitably substituted maleimide nitrile of formula V, followed by oxidation using an oxidizing reagent conventional in the art such as manganese dioxide to achieve the desired oxidation state. Formation of the 3-vinylpyrrole starting material is accomplished via a Wittig reaction. The thus-formed imide nitrile intermediate of formula I can be converted to the desired indoloheterocyclic diones of formula VI by the reaction sequence described hereinabove and illustrated in flow diagram IV. The reaction scheme is shown below in flow diagram VII.

55

45

20

#### FLOW DIAGRAM VII

5 
$$CHO$$
 $CHO$ 
 $CHO$ 

And as described hereinabove, the formula VI diones may be converted to the corresponding imidazolinyl benzoheterocycles of structures a and b as shown in flow diagram V wherein Z is NR<sub>9</sub> or N, X and Y are CH<sub>2</sub> and B and Q are hydrogen.

Similarly, compounds having structures a, b, c and d wherein X is NR<sub>9</sub> or N, Y and Z are CH<sub>2</sub> and B and Q are hydrogen can be prepared from 2-pyrrolecarboxaldehyde by repeating the reaction sequence shown in flow diagrams VII and V, respectively as shown below.

35

Compounds having structure a wherein X and Y are N or NR<sub>3</sub>, Z is CR<sub>6</sub> and B and Q are hydrogen are prepared from 2-keto-1,3-cyclohexanedione in the following manner: condensation of said dione with the appropriately substituted hydrazine affords the 1,3-disubstituted-dihydroindazolone of formula VII; treatment of the formula VII intermediate with sodium hydride and ethyl carbonate gives the tetrahydroindazole-5-carboxylate of formula VIII; treatment of the formula VIII ketone with trimethylsilyl cyanide and zinc iodide

followed by deprotection/dehydration gives the dihydro-4-cyanoindazole-5-carboxylate of formula IX; dehydrogenation of the formula IX compound and subsequent treatment of the reaction product with hydrogen bromide and acetic acid yields 1,3-dimethyl-1H-indazole-4,5-dicarboxylic acid; acetic anhydride treatment affords the corresponding anhydride which can be regiospecifically ring opened with the appropriate formula III aminoamide and converted to the desired imidazolinyl benzoheterocycle having structure a as demonstrated in flow diagram II. The reaction sequence is illustrated in flow diagram VIII.

#### FLOW DIAGRAM VIII

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$\begin{array}{c}
R_2 \\
R_3 \\
\hline
1111
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_3
\end{array}$$

Imidazolinyl indazoles having structure b wherein X is  $CR_6$  and Y and Z are N or  $NR_9$  can be prepared from the diketal of the appropriately substituted ketoacetaldehyde as shown in flow diagram IX.

# FLOW DIAGRAM IX

5

$$R_6 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$$
 $R_6 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_6 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_6 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_6 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_6 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - C(OCH_3)_2 + R_9NHNH_2 \xrightarrow{HC1}$ 
 $R_9 - C - CH_2 - CH_3 - CH$ 

III

Condensation of the dimethyl acetal of an appropriately substituted ketoacetaldehyde with a suitable hydrazine followed by acid treatment gives the 1,5-disubstituted pyrazole as shown. Treatment of said pyrazole with phosphorus oxychloride and dimethyl formamide (DMF) followed by a Wittig reaction affords the formula X vinylpyrazole. Diels-Alder reaction of the formula X pyrazole with dimethyl acetylenedicarboxylate gives the desired formula XI diester which can then be coverted to the imidazolinyl indazole product using the procedure illustrated in flow diagram III.

o-Imidazolinyl benzimidazolecarboxylates having structure a and b can be prepared from their common precursor, a 4-carboxamidophthalate, which is derived from the acylation of 4-aminophthalate. Using the nitration procedure described by R. L. Williams and S. W. Shalaby in the Journal of Heterocyclic Chemistry, 1973, (10), 891 affords the intermediates of formula XII and XIII. Separation of compounds XII and XIII is accomplished via fractional recrystallization. Hydrogenation of compound XIII followed by cyclization of the resultant amidoaniline gives the benzimidazole dicarboxylate of formula XIV. The formula XIV diester can be converted directly to the imidazolinyl benzimidazoles of structures a and b using the methods as described hereinabove and illustrated in flow diagrams II and III. Alternatively, the formula XIV diester can be alkylated with a suitable alkylhalide to give the benzimidazoledicarboxylate of formula XV which is converted to the desired imidazolinyl benzimidazole having structure a and b in the manner shown in flow diagrams II and III. The reaction sequence starting with the appropriate 4-carboxamidophthalate is shown in flow diagram X.

55

30

# FLOW DIAGRAM X

Similarly, the intermediate of formula XII can be converted to the o-imidazolinylbenzimidazole carbox-ylates of formulas XVI and XVII as shown in flow diagram XI.

# FLOW DIAGRAM XI

5

$$CO_2CH_3$$
 $R_6$ 
 $R_7$ 
 $R_8$ 
 $R_8$ 

Imidazolinyl benzimidazole compounds wherein R<sub>5</sub> is hydrogen can be prepared from compounds of formula XIII by the sequential acid hydrolysis of the amide group and the reduction of the nitro group via catalytic hydrogenation to give the diamine of formula XVIII. Treatment of the diamine with formic acid and azeotropic removal of water affords the benzimidazole dicarboxylate of formula XIX which is then directly converted to the desired compounds having structure a or b wherein X and Z are N and Y is CH or the formula XVIII diester is alkylated as shown above and the substituted benzimidazole dicarboxylate is converted to the desired compounds having structure a or b wherein X and Z are N or NR<sub>9</sub> and Y is CH. The conversions of the dicarboxylates to the final imidazolinyl benzimidazole compounds is shown in flow diagrams II and III, and the reaction sequence starting with compounds of formula XIII is shown below in flow diagram XII.

45

50

55

# FLOW DIAGRAM XII

Compounds of the invention having structures a and b wherein X, Y and Z are independently N or NR<sub>9</sub> are prepared using the diamine of formula XVIII. Reaction of said diamine with isoamyl nitrite in the presence of acetic acid affords the benzotriazole diester of formula XX which is then converted to the desired compounds having structure a and b wherein X, Y and Z are N or NR<sub>9</sub> in the manner described hereinabove for the benzimidazole diesters of formula XIV and XIX. The reaction scheme is illustrated in flow diagram XIII.

50

# FLOW DIAGRAM XIII

5

$$CO_2CH_3$$
 $CO_2CH_3$ 
 $CO_2CH_3$ 
 $CO_2CH_3$ 
 $CO_2CH_3$ 
 $R_9$ -Halogen

 $R_9$ -Halogen

Of course, all of the compounds hereinabove described having structure a or b wherein R<sub>1</sub> and B are hydrogen can be converted to the corresponding imidazolinyl indoloheterocyclic diones having structure e and f by repeating the procedure illustrated in flow diagram VI. The corresponding imidazolinyl indoloheterocyclic diones having structure c and d can be prepared by reacting said imidazolinyl benzoheterocycles with an acid anhydride, optionally in the presence of a solvent, as shown in flow diagram XIV.

# FLOW DIAGRAM XIV

5

a. 
$$COOH$$
 $R_2$ 
 $COOH$ 
 $R_3$ 
 $COOH$ 
 $R_4$ 
 $R_5$ 
 $COOH$ 
 $COOH$ 

Compounds having structure a or b wheren  $R_1$  is other than hydrogen or a cation,  $R_9$  is other than hydrogen and B is  $COR_4$  or  $SO_2R_5$  may be prepared by reacting compounds having structure a or b wherein  $R_1$  is other than hydrogen or a cation,  $R_9$  is other than hydrogen and B is hydrogen with an acyl halide such as an acyl chloride or a sulfonyl halide such as a sulfonyl chloride to obtain the desired products wherein B is  $COR_4$  or  $SO_2R_5$ . The reaction is shown in flow diagram XV.

Alternatively, compounds having structure a or b wherein  $R_1$  is other than hydrogen or a cation,  $R_9$  is other than hydrogen and B is  $COR_4$  may be prepared by reacting compounds having structure a or b wherein  $R_1$  is other than hydrogen or a cation,  $R_9$  is other than hydrogen and B is hydrogen with an acid anhydride of formula  $(R_4 CO)_2 O$ .

The imidazolinyl benzoheterocyclic compounds of the present invention are highly effective for controlling a variety of undesirable monocotyledenous plant species such as barnyardgrass, foxtail, purple, nutsedge, wild oats, quackgrass and the like and dicotyledenous plant species such as field bindweed, matricaria, morningglory, wild mustard, ragweed, velvetleaf and the like. Control of the above-said plant species can be achieved by applying the compounds of the invention to the foliage of said plants or to soil or water containing seeds or other propagating organs thereof at rates of about 0.016 to 4.0 kg/ha.

Surprisingly, it has been found that certain compounds of the invention are well tolerated by broadleaf crops such as soybeans and sugarbeets when said compounds are applied to the foliage of said crops or to soil containing the seeds or propagating organs thereof at rates of about 0.016 to 1.000 kg/ha.

Soybeans are an increasingly important worldwide source of high quality protein and are the most important edible legume produced today. Sugarbeets are a major source of sugar in North America, approximately one-third of the sugar consumed comes from sugarbeets. In Europe, sugarbeets are the primary source of refined sugar. By combining weed control with crop tolerance, the application of the compounds of the invention promotes improvement in field management, time of harvest and quantity and quality of harvest.

The imidazolinyl benzoheterocyclic compounds may be applied in the form of liquid sprays such as aqueous concentrates, emulsifiable concentrates and the like or as solid formulations such as wettable powders, dispersable granulars, granular formulations and the like.

When the herbicidally active compounds are water soluble, the may simply be dissolved in water and applied as an aqueous spray. Said compounds may also be formulated as emulsifiable concentrates and diluted with water just prior to spray application. A typical emulsifiable concentrate composition can be prepared by dissolving about 5% to 25% by weight of the active compound in about 65% to 90% by weight

of N-methylpyrrolidone, isophorone, butyl cellosolve, methyl acetate or the like and dispersing therein about 5% to 10% by weight of a nonoione surfactant such as an alkylphenoxy polyethoxy alcohol.

Wettable powder compositions can be prepared by grinding together about 20% to 45% by weight of a finely divided carrier such as kaolin, bentonite, diatomaceous earth, attapulgite or the like with about 40% to 80% by weight of the herbicidally active compound and about 2% to 5% by weight of a nonionic surfactant such as an alkyl phenoxy polyethoxy alcohol.

Typical granular products can be prepared by dissolving the active compound in a solvent such as methylene chloride, N-methylpyrrolidone or the like and spraying the resultant solution on a clay carrier such as attapulgite, or kaolin or the like in such a manner so as to produce about 3% to 20% by weight of the active compound and about 80% to 97% by weight of the carrier.

In order to facilitate a further understanding of the invention, the following examples are presented primarily for the purpose of illustrating certain more specific details thereof. The invention is not to be deemed limited thereby except as defined in the claims.

The term kg/ha designates kilograms per hectare. The terms NOE, ¹HNMR and IR designate nuclear Overhauser effect, proton nuclear magnetic resonance and infrared, respectively. The term HPLC designates high pressure liquid chromatography. All parts are parts by weight, unless otherwise noted.

#### **EXAMPLE 1**

# Preparation of Dimethyl 4-acetamido-5-nitrophthalate (I), and dimethyl 4-acetamido-3-nitrophthalate (II)

45

Dimethyl 4-acetamidophthalate (100.4 g, 0.400 mol) is added to fuming nitric acid (90%, 600 mL) at 0°C to 5°C. When the addition is completed (0.5 hour), the mixture is stirred 2.5 hours at 0°C to 10°C, combined with cold methylene chloride and shaken with crushed ice. The aqueous layer is separated and extracted further with methylene chloride. The combined organic layers are washed with ice water, sodium bicarbonate solution and cold water, dried (MgSO<sub>4</sub>) and concentrated in vacuo to give a solid residue. The residue is recrystallized twice from methanol to afford the title product I as orange-brown needles, mp 119-120°C. The original mother liquor is concentrated in vacuo, and the residue is recrystallized several times from carbon tetrachloride to afford the title compound II as light yellow needles, mp 124-125°C. The yield of compound I is 38.9 g (32.9%), and the yield of compound II is 33.1 g (28.1%).

5

10

15

25

45

50

55

# Preparation of Dimethyl 2-methyl-4,5-benzimidazoledicarboxylate

A mixture of dimethyl 4-acetamido-3-nitrophthalate (142.1 g, 0.480 mol) in methanol with 5% platinum on carbon catalyst is hydrogenated on a Parr hydrogenator at room temperature. The reaction mixtures is filtered through diatomaceous earth and concentrated in vacuo to afford a solid residue. This solid is dispersed in glacial acetic acid and toluene, and heated with stirring at reflux temperatures for 4 hours with azeotropic removal of water. The resultant hot reaction mixture is slowly added to a saturated sodium bicarbonate solution with vigorous stirring, filtered and the filter cake dried to give the title product as a white solid (71.6 g, 60.1%), mp 97-103°C.

#### **EXAMPLE 3**

# Preparation of 2-Methyl-4,5-benzimidazoledicarboxylic acid

A mixture of dimethyl 2-methyl-4,5-benzimidazoledicarboxylate and 8 equivalents of 10N sodium hydroxide is stirred 4 hours at 70°C, cooled and acidified with hydrochloric acid to afford the title product as cream-colored crystals, mp 270°C (dec).

Preparation of 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-4-benzimidazole carboxylic acid (I) and 5-(4-isopronyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-4-benzimidazolecarboxylic acid (II) 4:1 mixture

A mixture of 2-methyl-4,5-benzimidazoledicarboxylate (5.00 g, 22.7 mmol) and acetic anhydride is stirred for 6 hours at reflux temperature, cooled and concentrated in vacuo to give a residue. The residue is taken up in acetonitrile and treated with a-methylvaliramide (5.90 g, 45.3 mmol). The resultant mixture is stirred for 15 hours at reflux temperature, cooled and allowed to stand overnight. The solidified reaction mixture is taken up in 5N sodium hydroxide, heated at reflux temperatures for 10 hours with stirring, and filtered hot. The filtrate is acidified to pH 4 with concentrated HCl to afford a brown solid precipitate which is removed by filtration. The brown solid is heated in methanol, filtered hot, and the filtrate is concentrated in vacuo to afford the title product as a 4:1 ratio of I: II, respectively, as a yellow powder (0.93 g, 13.0%), mp  $256 \cdot C$  (dec).

50

# Preparation of Dimethyl 1,2-dimethyl-4,5-benzimidazoledicarboxylate

Sodium methoxide (1.98 g, 36.6 mmol) is added to a solution of dimethyl 2-methyl-4,5-ben-zimidazoledicarboxylate (7.44 g, 33.3 mmol) in methanol and tetrahydrofuran. After 5 minutes, iodomethane (2.18 mL, 35.0 mmol) is added and the mixture is stirred for 24 hours at room temperature. Additional sodium methoxide (1.80 g, 33.3 mmol) and iodomethane (2.07 mL, 33.3 mmol) are added and stirring is continued for another 15 hours. The reaction mixture is concentrated in vacuo to give a residue which is dispersed in dilute hydrochloric acid, and treated with sodium bicarbonate to pH 8 and extracted with chloroform. The combined organic extracts are dried (MgSO<sub>4</sub>) and concentrated in vacuo to give a residue which is recrystallized from ethyl acetate to afford the title product as, an orange solid, mp 205-208 °C.

# **EXAMPLE 6**

25

45

50

55

# Preparation of 1,2-Dimethyl-4,5-benzimidazoledicarboxylic acid

A mixture of dimethyl 1,2-dimethyl-4,5-benzimidazolidicarboxylate (1.70 g, 6.49 mmol) and 2N sodium hydroxide (25 mL, 12.5 mmol) is stirred for 5 hours at 100 °C. The mixture is cooled, acidified to pH 4 with hydrochloric acid and filtered to afford the title product as a white powder (1.32 g, 86.8%), mp 305-308 °C (dec).

# Preparation of 1,2-Dimethyl-4,5-benzimidazoledicarboxylic anhydride

5

10

15

1,2-dimethyl-4,5-benzimidazoledicarboxylic acid (1.00 g, 4.27 mmol) and acetic anhydride (10 mL) is stirred 4 hours at reflux temperature, allowed to stand overnight at room temperature and filtered to afford the title product as yellow crystals (0.830 g, 89.8%), mp 295 °C (dec).

# **EXAMPLE 8**

A mixture of

Preparation of 4-[(1-Carbamoyl-1,2-dimethylpropyl)carbamoyl]-1,2-dimethyl-6-benzimidazolecarboxylic acid (I) 5-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]-1,2-dimethyl-4-benzimidazolecarboxylic acid (II), 4:1 mixture

I

45

A mixture of 1,2-dimethyl-4,5-benzimidazoledicarboxylic anhydride (0.830 g, 3.85 mmol), a-methyl-valiramide (0.550 g, 4.22 mmol) and acetonitrile is stirred for 4 hours at reflux temperature, cooled overnight and filtered to afford the title product as a white solid (1.24 g, 93.2%), mp 246-248 °C, identified by ¹HNMR as a 4:1 mixture of compound I and compound II, respectively.

11

Preparation of 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,2-dimethyl-5-benzimidazolecarbox-yllc acid

A solution of 4-[(1-carbamoyl-1,2-dimethylpropyl)-carbamoyl]-1,2-dimethyl-6-benzimidazolecarboxylic acid (5.70 g, 16.5 mmol) and 10N sodium hydroxide (9.88 mL, 98.8 mmol) is stirred for 3 hours at reflux temperatures, cooled to 0 °C and acidified to pH 4 with hydrochloric acid and filtered. The filter cake is dried to give the title product as a white solid (4.11 g, 75.8%), mp 280-285 °C (dec).

# **EXAMPLE 10**

15

30

35

# Preparation of 9-Isopropyl-2,3,9-trimethylimidazo [1',2':1,2]pyrrolo[3,4-e]benzimidazole-6,8(3H,9H)-dione

A mixture of 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,2-dimethyl-5-benzimidazolecarboxylic acid (0.942 g; 2.87 mmol), dicyclohexylcarbodiimide (0.590 g, 2.87 mmol) and tetrahydrofuran is stirred for 3 hours at reflux temperature, cooled and concentrated in vacuo. The residue is chromatographed (silica gel, ethyl acetate eluent) to afford the title product as a white powder (0.210 g, 23.6%), mp 258-263 °C.

Preparation of Methyl 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,2-dimethyl-5-ben-zlmldazolecarboxyiate

5

10

15

A solution of diazomethane in ether is added dropwise to a solution of the 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,2-dimethyl-5-benzimidazolecarboxylic acid (2.50 g, 7.61 mmol) in methanol until the yellow color persists. The reaction mixture is neutralized with acetic acid and concentrated in vacuo. Preparative HPLC (silica gel, ethyl acetate eluent) affords the title product as off-white crystals (0.750 g, 28.9%), mp 240-242 °C.

#### **EXAMPLE 12**

Preparation of Dimethyl 1-benzyl-2-methyl-4,5-benzimidazoledicarboxylate

25

35

Sodium hydride (0.750 g, 80% oil dispersion, 25.0 mmol) is added, in portions, to a solution of dimethyl 2-methyl-4,5-benzimidazoledicarboxylate (6.07 g, 24.6 mmol) in dry dimethylformamide at 0 °C with stirring. After evolution of hydrogen ceases, benzyl bromide (2.93 mL, 24.6 mmol) is added to the reaction mixture and stirring is continued for 16 hours. The reaction mixture is concentrated in vacuo and the resultant residue is dispersed in methylene chloride and water. The phases are separated and the aqueous phase is extracted with methylene chloride. The organic phases are combined, dried and concentrated in vacuo to afford a solid residue. Recrystallization of the solid from ethyl acetate affords the title product as an off-white powder (3.81 g, 45.0%), mp 192-195 °C.

50

# Preparation of 1-Benzyl-2-methyl-4,5-benzimidazoledicarboxylic acid

15

A mixture of dimethyl 1-benzyl-2-methyl-4,5-benzimidazoledicarboxylate (5.50 g, 16.2 mmol), methanol, 10N sodium hydroxide (13 mL, 130 mmol) and water is stirred for 4 hours at 70 °C, cooled, acidified to pH 4 with hydrochloric acid and filtered to afford the title product as an off-white solid (4.94 g, 98.4%), mp 224-226 °C.

# **EXAMPLE 14**

# Preparation of 1-Benzyl-2-methyl-4,5-benzimidazoledicarboxylic anhydride

25

30

20

35

A mixture of the 1-benzyl-2-methyl-4,5-benzimidazoledicarboxylic acid (4.40 g, 14.2 mmol) and acetic anhydride is stirred for 5 hours at reflux temperature, cooled to 0 °C and filtered to give the title product as a pale yellow solid (3.78 g, 91.1%), identified by ¹HNMR spectrography.

45

50

35

40

45

50

55

Preparation of 1-Benzyl-4-[(1-carbamoyl-1,2-dimethylpronyl)carbamoyl]-2-methyl-5-benzimidazolecarboxylic acid (I) and 1-benzyl-5-[(1-carbamoyl-1,2-dimethylpropyl)-carbamoyl]-2-methyl-4-benzimidazolecarboxylic acid (II),4:1 mixture

A mixture of 1-benzyl-2-methyl-4,5-benzimidazoledicarboxylic anhydride (3.70 g, 12.7 mmol), a-methyl-valiramide (1.70 g, 13.0 mmol) and acetonitrile is stirred for 6 hours at reflux temperature, cooled to 0 °C and filtered to afford the title product, a 4:1 mixture of compound I and compound II, respectively, as an off-white powder (4.08 g, 76.1%), mp 194-196 °C. Product ratio is determined by ¹HNMR spectral analysis.

Preparation of 1-Benzyl-4-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-5-ben-

zimldazolecarboxylic acid

A mixture of 1-benzyl-4-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]-2-methyl-5-benzimidazolecarbox-ylic acid (3.58 g, 8.47 mmol), 10N sodium hydroxide (5.08 mL, 50.8 mmol) and water is stirred for 4 hours at reflux temperature, cooled, acidified to pH 4 with hydroxhloric acid and filtered. The filter cake is recrystallized from acetonitrile to give the title product as an off-white powder (1.06 g, 31.0%), mp 198-208 °C (dec).

# **EXAMPLE 17**

15

25

Preparation of Methyl 1-benzyl-4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-5-ben-zimidazolecarboxylate

A solution of diazomethane in ether is added to a suspension of 1-benzyl-4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-5-benzimidazolecarboxylic acid (1.15 g, 2.84 mmol) in methanol until the yellow color persists. The reaction is stirred for 5 minutes, quenched with 2 drops of acetic acid and concentrated in vacuo. The resultant residue is purified by HPLC (silica gel, ethyl acetate eluent) to give the title product as a white powder (0.480 g, 40.3%), mp 194-196 °C.

# Preparation of Dimethyl 1-ethyl-2-methyl-4,5-benzimidazoledicarboxylate

15

5

10

Sodium hydride (1.38 g, 46.0 mmol, 80% oil dispersion) is added in portions to a solution of dimethyl 1benzyl-2-methyl-4,5-benzimidazoledicarboxylate (10.9 g, 43.8 mmol) in dry dimethylformamide at 0°C. After evolution of hydrogen ceases, ethyl iodide (3.68 mL, 46.1 mmol) is added. The reaction mixture is stirred at room temperature overnight, treated with ethyl acetate, and filtered. The filtrate is concentrated in vacuo; the resultant residue is recrystallized from 50% ethyl acetate:hexanes to yield the title product as a light yellow powder (3.84 g, 31.7%), mp 126.5-128 °C.

# **EXAMPLE 19**

# 25

# Preparation of 1-Ethyl-2-methyl-4,5-benzimidazoledicarboxylic acid

35

A mixture of dimethyl 1-ethyl-2-methyl-4,5-benzimidazoledicarboxylate(5.30 g, 19.2 mmol), methanol and 5N sodium hydroxide (30 mL, 150 mmol) is stirred for 4 hours at 100 °C, cooled, acidified with hydrochloric acid and filtered to give the title product as a lemon yellow powder (4.07 g, 85.5%), identified by ¹HNMR spectral analysis.

45

50

# Preparation of 1-Ethyl-2-methyl-4,5-benzimidazoledicarboxylic anhydride

A mixture of 1-ethyl-2-methyl-4,5-benzimidazoledicarboxylic acid (4.00 g, 16.1 mmol) and acetic anhydride (50 mL) is stirred for 5 hours at reflux temperature, cooled and filtered. The filter cake is washed with ether and dried to give the title product as gold platelets (3.37 g, 90.8%), identified by <sup>1</sup>HNMR spectral analysis.

# **EXAMPLE 21**

15

20

25

Preparation of 4-[(1-Carbamoyl-1,2-dimethylpropyl)-carbamoyl]-1-ethyl-2-methyl-5-benzimidazolecarboxylic acid (i) and 5-[(1-carbamoyl-1,2-dimethylpropyl)-carbamoyl]-1-ethyl-2-methyl-4-benzimidazocarboxylic acid (ii), 4:1 mixture

A mixture of 1-ethyl-2-methyl-4,5-benzimidazoledicarboxylic anhydride (3.30 g, 14.3 mmol), <sub>e</sub>-methyl-valiramide (1.90 g, 14.5 mmol) and acetonitrile is stirred for 2 hours at reflux temperature, overnight at room temperature and 6 hours at reflux temperature. The mixture is cooled, concentrated in vacuo to 50% of its initial volume and filtered to give the title product as a 4:1 mixture of compound I and compound II, as a light yellow powder (4.59 g, 88.8%), mp 240-243 °C.

55

5

10

15

20

35

40

45

Preparation of 1-Ethyl-4-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-5-benzimidazolecar-boxylic acid

CH3CH2-N CONH-C-CONH2

CH3CH2-N CH(CH3)2

CH3CH2-N CH(CH3)2

A mixture of 4-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]-1-ethyl-2-methyl-5-benzimidazolecarboxylic acid (4.09 g, 11.4 mmol), 10N sodium hydroxide (6.8 mL, 68.0 mmol) and water is stirred for 2 hours at reflux temperature, cooled, acidified to pH 4 with hydrochloric acid and filtered. The filter cake is recrystallized from acetonitrile to yield the title product as a white powder (1.10 g, 28.2%), mp 250-256 °C (dec).

# **EXAMPLE 23**

Preparation of Methyl 1-ethyl-4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-2-methyl-5-ben-zlmidazolecarboxylate

A solution of diazomethane in ether is added dropwise to a mixture of the starting carboxylic acid (2.10 g, 6.13 mmol) in methanol until the yellow color persists. After 5 minutes, the reaction mixture is quenched with acetic acid and concentrated in vacuo. The resultant residue is chromatographed (silica gel, HPLC, ethyl acetate eluent) to afford the title product as an off-white powder (1.03 g, 47.2%), mp 189-191 °C.

# Preparation of Dimethyl 2-methyl-5,6-benzimidazoledicarboxylate

A mixture of dimethyl 4-acetamido-5-nitrophthalate, methanol and 5% platinum on carbon is hydrogenated in a Parr hydrogenator. The reaction mixture is filtered through diatomaceous earth and the filtrate is concentrated in vacuo. The thus-obtained crude diamine intermediate (48.09, 0.180 mol) is mixed with p-toluenesulfonic acid (51.4 g, 0.270 mol) and toluene (400 mL), and stirred for 2 hours at reflux temperatures with azeotropic removal of water, cooled and concentrated in vacuo. The resultant residue is recrystallized from methanol to afford the p-toluene sulfonate salt of the title product. The salt is dissolved in hot water, made basic with sodium bicarbonate and extracted with methylene chloride. The combined extracts are washed with brine, dried (MgSO<sub>4</sub>) and concentrated in vacuo to give a red solid. Recrystallization of a portion of the red solid affords the title product as white crystals, mp 151-152 \*C.

#### **EXAMPLE 25**

25

35

45

50

55

# Preparation of Dimethyl 1,2-dimethyl-5,6-benzimidazoledicarboxylate

Sodium methoxide (1.96 g, 36.3 mmol) is added to a solution of dimethyl 2-methyl-5,6-ben-zimidazoledicarboxylate (8.50 g, 34.2 mmol) in methanol. The reaction mixture is stirred 0.5 hour at room temperature, treated with iodomethane (2.15 mL, 34.5 mmol) stirred overnight, acidified to pH 6 with acetic acid, treated with sodium bicarbonate to pH 8 and extracted with chloroform. The extracts are combined, dried (MgSO<sub>4</sub>) and concentrated in vacuo to yield the title product as a pink solid (6.25 g, 69.7%). A small portion is recrystallized from ethyl acetate to afford the title product as pink crystals, mp 147-148 °C.

#### **EXAMPLE 26**

5

20

25

30

35

40

45

50

55

# Preparation of 1,2-Dimethyl-5,6-benzimidazoledicarboxylic acid

A mixture of dimethyl 1,2-dimethyl-5,6-benzimidazoledicarboxylate (2.80 g, 10.7 mmol), potassium 15 hydroxide (1.49 g, 26.7 mmol), water and methanol is stirred at room temperature for 16 hours and then concentrated in vacuo. The resultant residue is taken up in a minimal amount of water, cooled, acidified to pH 3 with hydrochloric acid and filtered to give the title product as pink crystals (2.28 g, 91.2%), mp 308-312 °C.

#### **EXAMPLE 27**

# Preparation of 1,2-Dimethyl-5,6-benzimidazoledicarboxylic anhydride

COOH COOH

A mixture of the 1,2-dimethyl-5,6-benzimidazoledicarboxylic acid (1.25 g, 5.34 mmol) and acetic anhydride is stirred for 2 hours at reflux temperature, cooled to 5° and filtered. The filter cake is dried to give the title product as brown needles (1.04 g, 90.1%), mp 310-315 °C.

# **EXAMPLE 28**

Preparation of 6-[(1-Carbamoyl-1,2-dimethyl-propyl)carbamoyl]-1,2-dimethyl-5-benzimidazolecarboxylic acid (I), and 5-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]-1,2-dimethyl-6-benzimidazole carboxyllc acid (II)

<sup>26</sup> I I I I

A mixture of 1,2-dimethyl-5,6-benzimidazoledicarboxylic anhydride (0.500 g, 2.31 mmol), a-methyl-valiramide (0.300 g, 2.31 mmol) and acetonitrile is stirred for 3 hours at reflux temperature, cooled and filtered. Recrystallization of the filter cake from methanol affords the compound I as a white powder (0.230 g, 28.8%), mp 169-171 °C. The mother liquor is concentrated in vacuo to a yellow solid, which is recrystallized from methanol to afford title compound II as a white foam (0.240 g, 30.0%), mp 145-150 °C.

35

40

45

50

10

25

30-

35

Preparation of 6-(4-isopropyi-4-methyi-5-oxo-2-imidazolin-2-yi)-1,2-dimethyi-5-benzimidazolecarbox-yiic acid dihydrochloride

A mixture of 6-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]-1,2-dimethyl-5-benzimidazolecarboxylic acid (0.330 g, 0.910 mmol) and 2M sodium hydroxide (3.0 mL, 6.0 mmol) is stirred for 2.5 hours at reflux temperature, cooled, acidified to pH 3 with hydrochloric acid and filtered. The filter cake is recrystallized from ethanol to afford the title product as a white solid (0.120 g, 31.5%), mp 256-258 °C.

# **EXAMPLE 30**

Preparation of Methyl 5-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,2-dimethyl-ben-zimidazolecarboxylate

CH<sub>3</sub>

CO<sub>2</sub>H

CH<sub>3</sub>

CO<sub>2</sub>H

CH<sub>3</sub>

CH<sub>2</sub>N<sub>2</sub>

CH(CH<sub>3</sub>)<sub>2</sub>

CH<sub>3</sub>

CH<sub></sub>

55

A mixture of the starting diamide (0.510 g, 1.47 mmol) and 2M sodium hydroxide (5.0 mL, 10.0 mmol) is stirred for 2.5 hours at reflux temperature, cooled, acidified to pH 3 with hydroxhloric acid and filtered. The filtrate is concentrated in vacuo to give a white solid which is dissolved in methanol and treated with a solution of diazomethane in ether until the yellow color persists. The reaction mixture is quenched with acetic acid and concentrated in vacuo. The resultant residue is chromatographed (silica gel, 10% methanol:ethyl acetate eluent) to afford the title product as a white powder (0.140 g, 27.8%), mp 138-140 °C.

#### **EXAMPLE 31**

10

15 .

25

40

45

# Preparation of Ethyl 4.5.6.7-tetrahydro-1.3-dimethyl-4-oxo-1H-indazole-5-carboxylate

$$CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3$$

A suspension of sodium hydride (14.6 g, 0.365 mol, 60% oil dispersion) in dry benzene at 5 ° to 10 ° C is treated with 1,5,6,7-tetrahydro-1,3-dimethyl-4H-indazole-4-one (30.0 g, 0.183 mol). The reaction mixture is treated dropwise with ethyl carbonate (45.0 mL, 0.365 mol) and ethanol (1.0 mL) with cooling, stirred for 11 hours at reflux temperature, cooled to room temperature and treated with acetic acid (24.1 g, 0.400 mol) and water. The phases are separated, the organic phase is set aside and the aqueous phase is extracted with ether. The organic phases are combined, washed with water, dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo. The resultant residue is chased twice with toluene, recrystallized from (2:1) methylene chloride:heptane and a second time from 50% tetrahydrofuran:heptane to afford the title product (27.6 g, 63.9%), mp 76.5-79 ° C.

# **EXAMPLE 32**

# Preparation of Ethyl 4-cyano-4.5.6.7-tetrahydro-1.3-dimethyl-4-(trimethylsilyloxy)-1H-indazole-5-carbo-xylate

A solution of ethyl 4,5,6,7-tetrahydro-1,3-dimethyl-4-oxo-1H-indazole-5-carboxylate (41.0 g, 0.174 mol) in benzene is stirred at reflux temperatures with azeotropic removal of water for several hours, cooled to 65 °C, treated with trimethylsilyl cyanide (58.0 mL, 0.440 mol) stirred for 15 minutes at 65 °C, treated with zinc iodide (2.00 g, 0.00888 mol), stirred for 6 hours at 65 °C, allowed to stand overnight at room temperature and concentrated in vacuo to afford the title product as an oil, identified by IR and mass spectroscopy.

# **EXAMPLE 33**

10

# <u>Preparation of Ethyl 4-cyano-6.7-dihydro-1.3-dimethyl-</u> 1H-indazole-5-carboxylate

15

25

20

A solution of ethyl 4-cyano-4,5,6,7-tetrahydro-1,3-dimethyl-4-(trimethylsilyloxy)-1H-indazole-5-carbox-ylate (28.1 g, 0.119 mol) in pyridine is mixed with phosphorus oxychloride (43.0 mL, 0.461 mol), stirred for 5 hours at reflux temperature and concentrated in vacuo. The resultant black residue is diluted with ethyl acetate and water and treated with sodium bicarbonate to pH 6. The phases are separated, the organic phase is set aside, and the aqueous phase is extracted with ethyl acetate. The organic phases are combined, washed with aqueous sodium bicarbonate and water, dried (MgSO<sub>4</sub>) and concentrated in vacuo to give a black residue. The residue is triturated under ethyl acetate to give the title product as a tan solid (15.5 g, 52.9%), identified by ¹HNMR and IR spectroscopy.

#### **EXAMPLE 34**

# <u>Preparation of Ethyl 4-cyano-1,3-dimethyl-1H-indazole-</u> 5-carboxylate

45

50

40

$$CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3$$

55

A mixture of ethyl 4-cyano-6,7-dihydro-1,3-dimethyl-1<u>H</u>-indazole-5-carboxylate (13.5 g, 55.0 mmol), o-chloranil (16.3 g, 66.0 mmol) and dry benzene is stirred for 1.5 hours at reflux temperature, cooled and filtered. The filtrate is concentrated in vacuo, filtered through two pads of neutral alumina and evaporated to

dryness to afford a yellow solid. Recrystallization from ethyl acetate affords the title product (6.33 g, 47.2%), mp 170-175.5 °C.

### **EXAMPLE 35**

5

10

20

45

50

55

# Preparation of 1,3-Dimethyl-1H-indazole-4,5-dicarbo-xylic acid

COOC 2 H5 CH3 N COOH

A mixture of ethyl 4-cyano-1,3-dimethyl-1H-indazole-5-carboxylate (7.03 g, 28.7 mmol), concentrated hydrobromic acid (35 mL) and acetic acid (35 mL) is stirred for 2 hours at reflux temperature, cooled, diluted with water (200 mL) and stirred for 2 hours. Filtration of the reaction mixture affords the title product as a pale blue solid (6.57 g, 97.8%), mp 228.5-232.5 °C.

### **EXAMPLE 36**

# <u>Preparation of 1,3-Dimethyl-1H-indazole-4,5-dicarbo-</u> xylic anhydride

25 CH<sub>3</sub> COOH CH<sub>3</sub> CH<sub>3</sub>

A mixture of 1,3-dimethyl-1H-indazole-4,5-dicarboxylic acid (6.30 g, 26.9 mmol) and acetic anhydride is stirred at reflux temperature for 3 hours, cooled to 5 °C and filtered. The filter cake is air-dried to give the title product as chartreuse needles (4.80 g, 82.5%), mp 214-215.5 °C.

5

20

25

30

# <u>Preparation of 4-[(1-Carbamoyl-1.2-dimethylpropyl)carbamoyl]1,3-dimethyl-1H-indazole-5-carboxylic acid</u>

A mixture of 1,3-dimethyl-1<u>H</u>-indazole-4,5-dicarboxylic anhydride (1.60 g, 7.40 mmol), triethylamine (1.12 mL, 8.10 mmol), <sub>a</sub>-methylvarinamide (1.06 g, 8.14 mmol), dimethoxyethane and dimethylformamide is stirred for 16 hours at room temperature and concentrated in vacuo. The resultant residue is diluted with water and filtered to give the title product as a white solid. Acidification of the filtrate to pH 3 affords additional product, identified by ¹HNMR, IR and mass spectra. The total yield is 2.00 g (78.1%).

### **EXAMPLE 38**

# Preparation of Methyl 4-[(1-carbamoyl-1,2-dimethyl-propyl)carbamoyl]-1,3-dimethyl-1H-indazole-5-carboxylate

A solution of 4-[(1-Carbamoyl-1,2-dimethylpropyl)carbamoyl]1,3-dimethyl-1H-indazole-5-carboxylic acid (0.720 g, 2.07 mmol) in dry dimethylformamide is treated with sufficient ethereal diazomethane to give a permanent yellow color. The excess diazomethane is quenched with acetic acid, and the reaction mixture is concentrated in vacuo. The resultant residue is chased 2 times with xylene recrystallized from 50%

aqueous methanol to give the title product as a white solid, mp 221-222 °C.

### **EXAMPLE 39**

# <u>Preparation of Methyl 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,3-dimethyl-1H-indazole-5-carbo-xylate</u>

10

15

5

20

----30-

25

A mixture of methyl 4-[(1-carbamoyl-1,2-dimethylpropyl)carbamoyl]-1,3-dimethyl-1H-indazole-5-carboxylate (0.600 g, 1.67 mmol), phosphorus pentachloride (1.04 g, 5.00 mmol) and dry toluene (7.0 mL) is stirred for 3.5 hours at 90 °C cooled and filtered. The filter cake is washed with toluene, slurried in water, treated with sodium bicarbonate (0.370 g, 4.40 mmol) to pH 8.5 and filtered to afford the title product as a white solid (0.490 g, 85.7%), mp 130-150 °C.

### **EXAMPLE 40**

# <u>Preparation of 4-(4-Isopropyl-4-methyl-5-oxo-2-imida-</u> zolin-2-yl)-1,3-dimethyl-1<u>H</u>-indazole-5-carboxylic acid

45

50

40

55

A mixture of methyl 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1,3-dimethyl-1H-indazole-5-carbox-ylate (0.310 g, 0.905 mmol), 2N sodium hydroxide (0.91 mL, 1.82 mmol) and tetrahydrofuran (11 mL) is stirred for 1.5 hours at 42-52 °C, cooled in an ice bath, acidified to pH 3-3.5 with 5N sulfuric acid and

extracted with chloroform. The organic extract is dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in vacuo to give a residue which is recrystallized from acetonitrile to afford the title product as a white solid (0.160 g, 53.2%), mp 156.5-166 °C.

### 5 EXAMPLE 41

### Preparation of 1-Methylpyrrole-3-carboxaldehyde

Monomethylamine (20 g, 0.64 mol) is added, via a dry ice condenser, to a stirred solution of 2,5-dimethoxy-3-tetrahydrofurancarboxaldehyde (48.1 g, 0.300 mol) in glacial acetic acid (500 mL) at 10 °C. The dry ice condenser is replaced with a water condenser and the reaction mixture is stirred for 2 hours at 110 °C, cooled to room temperature and distilled at 25 ° to 30 °C/4.0 torr to remove the acetic acid. The pot residue is diluted with ice water, washed with ether, cooled, treated with sodium hydroxide to pH 7, and extracted with methylene chloride. The organic extracts are combined, dried (MgSO<sub>4</sub>) and concentrated in vacuo to afford the title product as a red liquid (11.0 g, 33.6%), identified by ¹HNMR spectroscopy.

### **EXAMPLE 42**

20

### Preparation of 1-Methyl-3-vinylpyrrole

25 CHO

$$CH_{2} = CH_{2}$$

$$+ CH_{3}P(Ph)_{3}Br \xrightarrow{THF}_{NaH}$$

$$CH_{3}$$

$$CH_{2} = CH_{2}$$

$$CH_{3}$$

To a stirred slurry of sodium hydride (7.00 g, 0.174 mol, 60% oil dispersion) in dry tetrahydrofuran, under a nitrogen atmosphere, is added methyltriphenylphosphonium bromide (51.8 g, 0.145 mol). The mixture is stirred for 1 hour at reflux temperature, cooled to 45 °C, and treated dropwise with a solution of 1-methylpyrrole-3-carboxaldehyde (15.8 g, 0.145 mol) in tetrahydrofuran. The resultant mixture is stirred for 6 days at room temperature and filtered through neutral alumina with petroleum ether as additional eluant. The filtrate is concentrated in vacuo to a yellow-white semi-solid residue which is diluted with petroleum ether and refiltered through neutral alumina. The colorless filtrate is concentrated in vacuo to afford the title product as a pale yellow oil (10.1 g, 65.2%), identified by ¹HNMR spectroscopy.

55

5

# <u>Preparation of Hexahydro---isopropyl---,1-dimethyl-6,8-</u>dioxobenzo[2,1-b:3,4-c']dipyrrole-7(1H)-acetonitrile

A mixture of 1-methyl-3-vinylpyrrole (9.50 g, 0.089 mol), a-isopropyl-a-methyl-2,5-dioxo-3-pyrroline-1-acetonitrile (17.0 g, 0.089 mol) and chloroform is stirred overnight at room temperature and concentrated in vacuo to an amber oil residue. The residue is flash chromatographed (silica gel, gradient elution: 50% hexanes: methylene chloride to ether) to afford the title product as an orange glass (13.0 g, 48.8%), identified by <sup>1</sup>HNMR spectroscopy.

### **EXAMPLE 44**

35

40

# Preparation of 6.8-Dihydro-a-isopropyl-a,1-dimethyl-6,8-dioxobenzo[2,1-b:3,4-c']dipyrrole-7(1H)-aceto-nitrile

A mixture of hexahydro-2-isopropyl-<sub>a</sub>,1-dimethyl-6,8-dioxobenzo[2,1-b:3,4-c]dipyrrole-7(1<u>H</u>)-actonitrile) (9.30 g, 30.0 mmol), manganese dioxide (7.00 g, 80.5 mmol) and chlorobenzene is stirred at reflux temperatures overnight, treated with additional manganese dioxide (3.50 g, 40.2 mmol) and heated for a further 16 hours at reflux temperature. A third portion of manganese dioxide (3.50 g, 40.2 mmol) is added and the reaction mixture is stirred for 3 days at reflux temperature, cooled to 25 °C, and concentrated in vacuo to give a black residue. The residue is flash chromatographed (silica gel, 50% ether:hexane) to afford the title product as a yellow solid (4.30 g, 48.5%), mp 134-138 °C.

### **EXAMPLE 45**

10

15

20

25

45

50

55

# Preparation of 6.8-Dihydro-a-isopropyl-a.1-dimethyl-6,8-dioxobenzo[2,1-b:3,4-c']dipyrrole-7(1H)-acetamide

CH3

CH(CH3)2

CH3

CH2C12

CH3

CH3

CH3

CH3

A solution of 6,8-dihydro-a-isopropyl-a,1-dimethyl-6,8-dioxobenzo[2,1-b:3,4-c']dipyrrole-7(1<u>H</u>)-acetonitrile (5.30 g, 18.0 mmol) in methylene chloride is added dropwise to concentrated sulfuric acid at 5-10 °C with 30 rapid-stirring. The-ice bath-is-removed-and-the-reaction-mixture-is-stirred-overnight-at-ambient temperatures, poured over crushed ice, diluted with methylene chloride, treated with 50% sodium hydroxide solution with ice bath cooling to pH 3-4 and separated. The aqueous layer is extracted with methylene chloride. The combined organic layers are dried (MgSO<sub>4</sub>) and concentrated in vacuo to give an orange foam residue, which is recrystallized from methylene chloride to afford the title product as yellow crystals (1.30 g, 23.2%), mp 184-189 °C.

### **EXAMPLE 46**

Preparation of 8-Isopropyl-1,8-dimethyl-1H-imidazo[1',2':1,2]pyrrolo[3,4-g]indole-6,9-dione. and 8isopropyl-1,8-dimethyl-1H-imidazo[2',1':5,1]pyrrolo[3,4-g]-indole-7,10-dione (1:1 mixture)

Sodium hydride (0.240 g, 6.00 mmol, 60% oil dispersion) is added portionwise to a mixture of 6,8-dihydro-a-isopropyl-a-1-dimethyl-6,8-dioxobenzo[2,1-b:3,4-c']dipyrrole-7(1H)-acetamide (0.900 g, 2.87 mmol) and dry toluene at reflux temperature. After 1 hour at reflux temperature, the mixture is cooled to room temperature and filtered through diatomaceous earth. The filtrate is concentrated in vacuo to afford the title product as an orange solid (0.900 g, 100%), identified by ¹HNMR spectral analysis.

### **EXAMPLE 47**

Preparation of Methyl [7-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]indole-6-carbox-ylate and methyl [6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]indole-7-carboxylate (1:1 mixture)

A catalytic amount of sodium hydride (60% oil dispersion) is added to a solution of a 1:1 mixture of 8-isopropyl-1,8-dimethyl-1H-imidazo[1'.2':1,2]pyrrolo[3,4-g]indole-6,9-dione and 8-isopropyl-1,8-dimethyl-1H-imidazo[2',1':5,1]pyrrolo[3,4-g]-indole-7,10-dione (0.900 g, 3.00 mmol) in methanol at room temperature to pH 10. After 5 days, more sodium hydride is added to pH 10-11 and the reaction mixture is heated on a steam bath for 1 hour. After cooling to room temperature, acetic acid is added to pH 6 and the mixture is concentrated in vacuo. The residue is diluted with methylene chloride and water; the organic layer is dried (MgSO<sub>4</sub>) and concentrated in vacuo to afford the title product as a yellow foam (0.350 g, 35.7%). Identification is determined by HNMR spectral analysis.

50

45

5

30

40

45

50

Preparation of 7-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methylindole-6-carboxylic acid and 6-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methylindole-7-carboxylic acid (1:1 mixture)

A 1:1 mixture of methyl [7-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]indole-6-carboxylate and methyl [6-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]indole-7-carboxylate (0.350 g, 1.07 mmol), in methanol and 1.93N sodium hydroxide (0.60<sub>|</sub> mL, 1.16 mmol) is stirred overnight at room temperature. The reaction mixture is concentrated in vacuo and the residue is diluted with water, treated with concentrated hydrochloric acid to pH 3 and filtered to give the title product as a light yellow solid (0.140 g), mp 122-140 ° C.

### **EXAMPLE 49**

### Preparation of 1-Methyl-2-vinylpyrrole

Methyltriphenylphosphonium bromide (35.7 g, 0.100 mol) is added to a slurry of sodium hydride (4.80 g, 0.120 mol, 60% oil dispersion) in dry tetrahydrofuran at 10 °C under a nitrogen atmosphere. The mixture is stirred at reflux temperature for 1 hour, cooled to 35 °C, treated dropwise with a solution of 1-methylpyrrole-2-carboxaldehyde (10.9 g, 0.100 mol) in tetrahydrofuran, stirred for 3 days at ambient temperature, 2 hours at reflux and 16 hours at room temperature. The reaction mixture is filtered through neutral alumina with petroluem ether. The clear yellow filtrate is concentrated in vacuo to give a light yellow semi-solid residue which is taken up in petroleum ether and filtered through a cake of diatomaceous earth on neutral alumina. The resultant colorless filtrate is concentrated in vacuo to afford the title product as a clear, colorless oil (7.80 g, 72.5%), identified by ¹HNMR spectroscopy.

# Preparation of 3.3a.4.5.6.8b-Hexahydro---isopropyla, 6-dimethyl-1,3-dioxobenzo[1,2-b:3,4-c']dipyrrole-2(1H)-acetonitrile

10

15

20

5

25

35

A mixture of 1-methyl-2-vinylpyrrole (3.90 g, 36.0 mmol), a-isopropyl-a-methyl-2,5-dioxo-3-pyrroline-1acetonitrile (7.00 g, 36.0 mmol) and chloroform is stirred overnight at room temperature and concentrated in vacuo. The resultant residue is flash chromatographed (silica gel, 50% ether:hexanes eluent) to afford the title product as a clear yellow glass (63.5 g, 58.8%).

### **EXAMPLE 51**

# Preparation of 3.6-Dihydro-a-isopropyl-a.6-dimethyl-1,3-dioxobenzo[1,2-b:3,4-c']dipyrrole-2(1H)acetonitrile

Activated manganese dioxide (27.0 g, 0.310 mol) is added to a solution of 3,3a,4,5,6,8b-hexahydro-a-50 isopropyl-a,6-dimethyl-1,3-dioxobenzo[1,2-b:3,4-c']dipyrrole-2(1H)-acetonitrile (51.3 g, 0.167 mol) in chlorobenzene. The reaction mixture is stirred overnight at reflux temperature, cooled and filtered twice through diatomaceous earth with methylene chloride. The filtrate is concentrated in vacuo to a black oil which is flash chromatographed twice with methylene chloride then hexanes:methylene chloride to afford a yellow solid (5.50 g, 11.6%). Recrystallization from hexanes:methylene chloride afforded the title product, 55 mp 123-128 °C.

5

Preparation of 3.6-Dihydro-a-isopropyl-a.6-dimethyl-1.3-dioxobenzo[1,2-b:3,4-c']dipyrrole-2(1H)acetamide

Concentrated sulfuric acid (5.50 mL) is added slowly to a solution of 3,6-dihydro-a-isopropyl-a,6-dimethyl-1,3-dioxobenzo[1,2-b:3,4-c']dipyrrole-2(1H)-acetonitrile (5.50 g, 19.0 mmol) in methylene chloride at 10 °C. Crushed ice is added. The mixture is stirred for 24 hours at ambient temperature and poured onto crushed ice, treated with 6N sodium hydroxide to pH 2, and extracted with methylene chloride. The organic layer is separated, dried (MgSO<sub>4</sub>) and concentrated in vacuo to give an orange foamy residue. Flash chromatography (silica gel, ether then ethyl acetate eluents) affords the title product as a yellow foam (1.53 g, 25.7%), mp 159-168 °C.

### **EXAMPLE 53**

-30

35

45

55

Preparation of 8-Isopropyl-3,8-dimethyl-1H-imidazo[1',2':1,2]pyrrolo[3,4-e]indole-6,9-dione and 8isopropyl-3,8-dimethyl-1H-imidazo[2'1':5,1]pyrrolo[3,4-e]indole-7,10-dione (1:1 mixture)

The 3,6-dihydro-a-isopropyl-a,6-dimethyl-1,3-dioxobenzo[1,2-b:3,4-c']dipyrrole-2(1H)acetamide (2.60 g, 8.30 mol) is added portionwise to a suspension of sodium hydride (0.800 g, 16.6 mol, 50% oil dispersion) in

toluene at reflux temperature under a nitrogen atmosphere. After stirring for 20 hours at reflux temperature, the mixture is filtered hot through diatomaceous earth. The yellow filtrate is concentrated in vacuo to a dark yellow oil residue, which is triturated under ether to afford the title product mixture as a yellow solid ( 1.60 g, 65%), identified by <sup>1</sup>HNMR spectroscopy.

### **EXAMPLE 54**

10

30

45

50

55

Preparation of Methyl [5-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]Indole-4-carboxylate (I) and methyl [4-(4-isopropyl-4-methyl-5-oxo-2-imldazolin-2-yl)-1-methyl]Indole-5-carboxylate (11)

A catalytic amount of sodium hydride (60% oil dispersion) is added to a solution of a 1:1 mixture of 8isopropyl-3,8-dimethyl-1H-imidazo[1',2':1,2]pyrrolo[3,4-e]indole-6,9-dione and 8-isopropyl-3,8-dimethyl-1Himidazo[2'1':5,1]pyrrolo[3,4-e]indole-7,10-dione (1.00 g, 3.39 mmol) in methanol to pH 10. The reaction mixture is stirred for 1 hour at room temperature, treated with glacial acetic acid (2 drops) and concentrated in vacuo. The resultant residue is diluted with methylene chloride and water. The phases are separated and . the organic phase is dried (MgSO4) and concentrated in vacuo to give an orange foam, which is flash chromatographed (silical gel) to afford 3 fractions, which are in order of decreasing R<sub>f</sub>:

1. title compound I, a pale-yellow solid (0.100 g);

(1)

- 2. a mixture of title compounds I and II (0.60 g);
- 3. title compound II, a pale-yellow solid (0.080 g).

The fractions are identified by <sup>1</sup>HNMR spectroscopy.

### **EXAMPLE 55**

Preparation of 5-(4-Isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methylindole-4-carboxylic acid and 4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl-indole-5-carboxylic acid ((1:1 mixture)

A mixture of 1.93N sodium hydroxide (0.70 mL, 1.34 mmol), a 1:1 mixture of methyl [5-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]indole-4-carboxylate and methyl [4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-1-methyl]indole-5-carboxylate (0.400 g, 1.22 mmol) and methanol is stirred for 4 days at room temperature, and concentrated in vacuo. The resultant residue is diluted with water, cooled, acidified to pH 3 with concentrated hydrochloric acid, and extracted with ethyl acetate. The organic extracts are dried (MgSO<sub>4</sub>) and concentrated.in vacuo to afford the title product mixture as a solid (0.160 g, 41.9%), mp 266-280 °C, identified by ¹HNMR analysis.

5

# Preparation of Dimethyl 1H-benzotriazole-4,5-dicarbo-xylate

A stirred solution of methyl 3,4-diaminophthalate (2.24 g, 10 mmol) in acetic acid and methylene chloride is treated in a single portion with an ice cold solution of isoamylnitrile (1.6 mL) in 1 mL of methylene chloride at 5 °C. The cooling bath is removed and the reaction mixture is allowed to exotherm to 40 °C, subsequently heated at 80 °C for 30 minutes, cooled and concentrated in vacuo to give a brown oil residue. The residue is chromatographed using alumina E and 2-5% methanol in chloroform as eluent to yield the title product as a buff-colored solid, wt 0.73 g (31% yield), mp 147-150 °C.

### **EXAMPLE 57**

25

## Preparation of Dimethyl 1-methyl-1H-benzotriazole-

### 4.5-dicarboxylate

A stirred solution of dimethyl 1H-benzotriazole-4,5-dicarboxylate (10.1 g, 43 mmol) in dimethylformamide is treated portion-wise, with cooling, with sodium hydride. When gas evolution has ceased, the reaction mixture is treated dropwise with iodomethane (6.7 g, 46 mmol) stirred at room temperature for 2 hours, concentrated in vacuo and diluted with a mixture of chloroform and water. The layers are separated; the organic layer is washed with brine, dried over MgSO<sub>4</sub> and concentrated in vacuo to give a residue. The residue is chromatographed using silica gel and 35% ethyl acetate in hexanes to give the title product as a white solid, 3.15 g, mp 146-147 °C. The structure is determined by NMR NOE experiments.

55

5

20

30

35

# <u>Preparation of 4-(4-Isopropyl-4-methyl-5-oxo-2-imidazo-1in-2-yl)-1-methyl-1H-benzotriazole-5-carboxylic acid</u>

A mixture of dimethyl 1-methyl-1H-benzotriazole-4,5-dicarboxylate (0.73 g, 2.9 mmol) and a-methyl-valiramide (0.40 g, 3.1 mmol) in toluene is treated portionwise with potassium tert-butoxide (0.68 g, 6.1 mmol) over a 30 minute period, heated at reflux temperature for 5 hours, allowed to cool to room temperature over a 16 hour period, treated with 5 mL of 2N sodium hydroxide and stirred for 1 hour. The phases are separated and the organic phase is extracted with water. The aqueous phases are combined,

phases are separated and the organic phase is extracted with water. The aqueous phases are combined, acidified to pH 3 with concentrated HCl, concentrated in vacuo to 1/2 the original volume, cooled to 5-10 °C and filtered to give a 3:2 mixture of the title product and its regioisomer as a white solid, mp 140-194 °C.

The title product is isolated by flash chromatography to give a white solid, mp 250-254 °C. Structural

analyses of the product 3:2 mixture and the isolated title product are determined using 1H and 13CNMR

## **EXAMPLE 59**

spectral analysis.

### **Preemergence Herbicidal Evaluation of Test Compounds**

The preemergence herbicidal activity of the imidazolinyl benzoheterocyclic compounds of the present invention is demonstrated by the following tests in which the seeds of a variety of monocotyledenous and dicotyledenous plant species are individually mixed with potting soil and planted on top of approximately one inch of soil in one pint cups. After planting, the cups are sprayed with an aqueous acetone solution containing the test compound. Said test solution consists of a 50/50 acetone/water mixture and a test compound in sufficient quantity to provide the equivalent of about 0.016 kg/ha to 4.0 kg/ha of active compound when applied to the soil through a spray nozzle operating at 40 psi for a predetermined time. The treated cups are then placed on greenhouse benches and cared for in accordance with conventional greenhouse procedures.

From 4 to 5 weeks after treatment, the test cups are evaluated and rated according to the rating system set forth below. The results of herbicide evaluations are expressed on a rating scale of 0-9. The scale is based upon a visual observation of plant stand, vigor, malformation, size, chlorosis and overall plant appearance as compared with a control.

The data obtained are recorded in Table I. Where more than one test is performed for a given compound, the average rating is shown.

55

| HERBICIDE RATING SCALE |                           |                              |  |  |  |  |  |  |  |
|------------------------|---------------------------|------------------------------|--|--|--|--|--|--|--|
| Rating                 | Meaning                   | % Control (Compared To Check |  |  |  |  |  |  |  |
| 9                      | Complete kill             | 100                          |  |  |  |  |  |  |  |
| 8                      | Approaching Complete Kill | 91 - 99                      |  |  |  |  |  |  |  |
| 7                      | Good Herbicidal Effect    | 80 - 90                      |  |  |  |  |  |  |  |
| 6                      | Herbicidal Effect         | 65 - 79                      |  |  |  |  |  |  |  |
| 5                      | Definite Injury           | 45 - 64                      |  |  |  |  |  |  |  |
| 4                      | Injury                    | 30 - 44                      |  |  |  |  |  |  |  |
| 3                      | Moderate Effect           | 16 - 29                      |  |  |  |  |  |  |  |
| 2                      | Slight Effect             | 6 - 15                       |  |  |  |  |  |  |  |
| 1                      | Trace Effect              | 1 - 5                        |  |  |  |  |  |  |  |
| 0                      | No Effect                 | 0                            |  |  |  |  |  |  |  |

|         | PLANT SPECIES USED |                           |                                  |  |  |  |  |  |  |  |
|---------|--------------------|---------------------------|----------------------------------|--|--|--|--|--|--|--|
| •       | Header Abb         | Common Name               | Scientific Name                  |  |  |  |  |  |  |  |
| 20      | Barnyardgr         | Barnyardgrass             | Echinochloa crus-galli, (L) Beau |  |  |  |  |  |  |  |
|         | Foxtail Sp         | Foxtail Spp.              | Setaria Spp.                     |  |  |  |  |  |  |  |
|         | P Nutsedge         | Nutsedge, Purple          | Cyperus rotundus, L.             |  |  |  |  |  |  |  |
|         | Wild Oats          | Oat, Wild                 | Avena fatua, L.                  |  |  |  |  |  |  |  |
| <u></u> | Quackgrass         | Quackgrass                | Agropyron repens, (L) Beauv.     |  |  |  |  |  |  |  |
| 25      | Fld Bindwd         | Bindweed, Field (Rhizome) | Convolvulus arvensis, L.         |  |  |  |  |  |  |  |
|         | Mrnglry Sp         | Morningglory Spp.         | Ipomoea Spp.                     |  |  |  |  |  |  |  |
|         | Wild Mustd         | Mustard, Wild             | Brassica kaber, (DC) L.C.Wheelr  |  |  |  |  |  |  |  |
|         | Velvetleaf         | Velvetleaf                | Abutilon theophrasti, Medic.     |  |  |  |  |  |  |  |
|         | Sugarbeets         | Sugarbeets                | Beta vulgaris, L.                |  |  |  |  |  |  |  |
| 30      | Soybean Br         | Soybean, Bragg            | Glycine, max (L) Men. CV Bragg   |  |  |  |  |  |  |  |

0

|             |         |                                                    | Soybe<br>an Br                                         | 7                     | 4                                                     | 0                     | 9                            | n                                                            | 7                        | 0    | 4                         | н                                                        | <b>o</b> .          | 0    |
|-------------|---------|----------------------------------------------------|--------------------------------------------------------|-----------------------|-------------------------------------------------------|-----------------------|------------------------------|--------------------------------------------------------------|--------------------------|------|---------------------------|----------------------------------------------------------|---------------------|------|
| 5           |         |                                                    | Sugar                                                  | 6                     | 7                                                     | 6                     | O)                           | Ø                                                            | σ                        | œ    | σ                         | 4                                                        | 7                   | 7    |
|             |         |                                                    | Velve<br>tlæf                                          | 7                     | φ                                                     | 7                     | ω                            | 7                                                            | 9                        | 9    | 7                         | ហ                                                        | 4                   | 9    |
| 10          |         | *                                                  | Wild<br>Meste                                          | 0                     | œ                                                     | 9                     | 6                            | Φ                                                            | æ                        | v    | Ø                         | 0                                                        | 6                   | 6    |
| 15          |         | moduo                                              | Memgal<br>EV. So                                       | æ                     | 7                                                     | 0                     | σ                            | œ                                                            | 7                        | 4    | ∞                         | æ                                                        | 9                   | φ    |
| 13          |         | Test 0                                             | Quack Fild Bil Mingl Wild<br>grass nickel, ry Sp Muste | 0                     | σ                                                     | 74                    | σ                            | O                                                            | O                        | 7    | 0                         | 6                                                        | 4                   | 4    |
| 20          |         | on of                                              | Quack                                                  | Ø                     | O                                                     | e                     | 0                            | Q                                                            | O                        | 8    | Q                         | σ                                                        | 7                   | 7    |
|             | TARKE I | aluati                                             | Wild                                                   | ₩                     | ო                                                     | 0                     | φ.                           | 0                                                            | 0                        | 0    | Q                         | 8                                                        | н                   | 0    |
| 25          | TAN TAN | dal Ev                                             | Foota P Nut Wild<br>il Sp seedop Cats                  | 8                     | 4                                                     | 0                     | σ                            | 0                                                            | 4                        | 8    | 60                        | 7                                                        | 7                   | 8    |
|             |         | -thick                                             |                                                        | σ                     | Ø                                                     | 4                     | 6                            | N                                                            | 73                       | 8    | 0                         | 0                                                        | 0                   | 0    |
| 30          |         | noe R                                              |                                                        | 4                     | 7                                                     | 0                     | ო                            | 0                                                            | 0                        | 0    | n                         | 0                                                        | 0                   | 0    |
| 35          |         | Presentage Herbicidal Evaluation of Test Compounds | Rate<br>Kg/ha                                          | .500                  | .125                                                  | .032                  | .250                         | .063                                                         | .032                     | .016 | .500                      | .250                                                     | .125                | .063 |
| <b>40</b> . |         | e4                                                 | all like                                               | ropy1-4-              | nzimida-                                              | acid                  | -(4-isopro-                  | otriazole-5-                                                 | c acid, 3:2              |      | propy1-4-                 | idazolin-ʻ<br>omethyl)-                                  | arboxylic           |      |
| <b>4</b> 5  |         |                                                    | Compound Name                                          | 1-Ethyl-4-(4-1sopropy | metny1-5-oxo-<-lmuazo111<br>2-y1)-2-methyl-benzimida- | zole-5-carboxylic aci | 1-Wethyl-4 (and 5)-(4-isopro | pyl-4-methyl-5-oxo-2-imidazo<br>lin-2-yl)-iH-benzotriazole-5 | (ard 4)-carboxylic acid, |      | 1-Wethyl-4-(4-isopropyl-4 | methyl-5-oxo-2-imidazolin-<br>2-yl)-2-(trifluoromethyl)- | zimidazole–5~c<br>i |      |
| 50          |         |                                                    | 1                                                      | 다-1                   | met<br>2-y]                                           | 2016                  | 7                            | Į,<br>į                                                      | (ਬੁਖ                     |      | 14                        | 2-y                                                      | benz                |      |

|                 |                    | Soybe           | 8                       | 8                                                         | 7               | m    | ı                           | t                                                   | t               | 1    | 0                   | o <sup>.</sup>                                            | 0                  |
|-----------------|--------------------|-----------------|-------------------------|-----------------------------------------------------------|-----------------|------|-----------------------------|-----------------------------------------------------|-----------------|------|---------------------|-----------------------------------------------------------|--------------------|
| 5               |                    | Sugar           | σ                       | 6                                                         | 6               | 6    | 6                           | 80                                                  | 7               | 7    | 4                   | 4                                                         | 9                  |
|                 |                    | Velve<br>tleaf  | 7                       | 7                                                         | 7               | φ    | œ                           | φ                                                   | ø               | 0    | 7                   | 7                                                         | 0                  |
| 10              |                    | Wild            | 6                       | σ                                                         | σ               | Ø    | Ø                           | 0                                                   | Ø               | 7    | m                   | <b>ન</b>                                                  | 0                  |
|                 |                    | Mengl<br>ry Sp  | æ                       | ω                                                         | Φ.              | 7    | σ                           | ω                                                   | н               | 0    | 7                   | 7                                                         | 4                  |
| 15              |                    | grack Fld Bl    | σ                       | 0                                                         | Ø               | 7    | თ                           | 6                                                   | σ               | 7    | 8                   | 7                                                         | 7                  |
| 20              | ( <b>pan</b>       | Quack<br>grass  | σ                       | σ                                                         | σ               | 6    | 0                           | 6                                                   | o               | 8    | 8                   | 0                                                         | 0                  |
|                 | (Continued)        | Wild<br>Oats    | ω                       | ω                                                         | σ               | 4    | σ                           | က                                                   | 0               | 0    | 4                   | 7                                                         | 0                  |
| 25              | <u> 1388. 1</u> (( | P Nut           | 6                       | 6                                                         | σ               | 80   | 0                           | σ                                                   | 4               | 0    | ~                   | 0                                                         | 0                  |
|                 | E                  | Tacta<br>11. Sp | σ                       | σ                                                         | 6               | n    | 6                           | <b>©</b>                                            | 8               | C    | φ                   | 4                                                         | 7                  |
| <sup>-</sup> 30 |                    | Barray          | 7                       | ю                                                         | н               | 0    | σ                           | <b>©</b>                                            |                 | ហ    | v                   | 4                                                         | ~                  |
| 35              |                    | Rate<br>Kg/ha   | .500                    | .250                                                      | .125            | .032 | .500                        | .125                                                | .063            | .032 | .500                | .250                                                      | .125               |
| 40              |                    | Kame            | opropy1-4-              | midazolın-<br>iazole-5-                                   |                 |      | 4-isopropy1-                | -imidazolin-<br>ole-5-                              |                 |      | hy1-4-(4-           | yl-5-axo-2-<br>-benzimida-                                | te<br>Te           |
| 45              |                    | Compound Name   | 1-Wethyl-4-(4-isopropy) | methyl-5-oxo-2-imidazo<br>2-yl)-i <u>H</u> -benzotriazole | carboxylic acid |      | 1,2-Dimethyl-4-(4-isopropy) | 4-methyl-5-oxo-2-imidazol<br>2-yl)-benzimidazole-5- | carboxylic acid |      | Wethyl 1,2-dimethyl | isopropyl—4-methyl—5-oxo—2:<br>imidazolin—2-yl)—benzimida | zole-5-carboxylate |
| 50              |                    | - 1             | ÷                       | ¥                                                         | ช               |      | 'n.                         | 4 %                                                 | ŭ               |      | ž                   | .a .a                                                     | ผั                 |

EP 0 474 991 B1

|             |                        | Soybe<br>an Br   | 0                              | 0                                                             | 0             | n                          | 7                                                        | •                      | t                 | t                                                                                            |
|-------------|------------------------|------------------|--------------------------------|---------------------------------------------------------------|---------------|----------------------------|----------------------------------------------------------|------------------------|-------------------|----------------------------------------------------------------------------------------------|
|             |                        |                  |                                |                                                               |               |                            |                                                          |                        |                   | _                                                                                            |
| 5           |                        | Sugar<br>Deets   | ω                              | 4                                                             | 7             | 80                         | 9                                                        | 4                      | ٥                 | 0                                                                                            |
|             |                        | Velve<br>tlæf    | 8                              | н                                                             | 0             | n                          | H                                                        | 0                      | 7                 | ហ                                                                                            |
| 10          |                        | Wild .<br>Musted | 73                             | 7                                                             | 73            | σ                          | 7                                                        | 7                      | ı                 | ŧ                                                                                            |
|             |                        | Mengl<br>ry Sp   | 7                              | 7                                                             | 8             | 7                          | 9                                                        | 4                      | М                 | ı                                                                                            |
| 15          |                        | Fid Bi           | σ                              | 4                                                             | 4             | Ø                          | 7                                                        | 0                      | ო                 | 4                                                                                            |
| 20          | (pag                   | Quack            | ø                              | 7                                                             | ~             | Ø                          | Ø                                                        | 7                      | က                 | N                                                                                            |
|             | Afti                   | Wild             | 7                              | Ħ                                                             | 0             | 7                          | 7                                                        | <b>ન</b>               | ਜ                 | . 1                                                                                          |
| 25          | <u>war i</u> (Omtined) | P Nut            | 7                              | 1                                                             | 0             | 7                          | 7                                                        | 0                      | 8                 | 0                                                                                            |
|             | TABL                   | Foota<br>11 Sp   | 0                              | 0                                                             | 0             | •                          | 0                                                        | 0                      | -                 | <b>~</b>                                                                                     |
| - <b>30</b> |                        | Barry            | 0                              | 0                                                             | 0             | 0                          | 0                                                        | 0                      | н                 | 4                                                                                            |
| 35          |                        | Rate<br>Kg/ba    | .500                           | .250                                                          | .125          | .500                       | .250                                                     | .125                   | .500              | .250                                                                                         |
| 40<br>45    |                        | Compound Name    | Methyl 1-ethyl-4-(4-isopropyl- | 4-methy1-5-oxo-2-imidazolin-<br>2-yl)-2-methy1-benzimidazole- | 5-carboxy1ate | 1-Benzyl-4-(4-isopropyl-4- | metnyl-5-oxo-2-imioazolin-<br>2-yl)-2-methyl-benzolmida- | zole-5-carboxylic acid | 1y1-7 (and 6)-(4- | <pre>isopropyl-4-methyl-5-oxo- 2-imidazolin-2-yl)-indole- 6(and 7)carboxylic acid, 1:1</pre> |
| 50          |                        |                  | Methy                          | 2-y1)-                                                        | 180-C         | 1-Ben                      | metny.<br>2-y1).                                         | zole-                  | 1-Wet             | isopr<br>2-imi<br>6(and                                                                      |

0

0

œ

0

9

0

0

0

0

 $\boldsymbol{\omega}$ 

0

0

0

Barry Poxta P Nut Wild Quack Fld Bl Mrngl Wild Velve Sugar Soybe archy il Sp seche Oats grass nobd ny Sp Musted tleaf beets an Br ı 9 0 0 σ g σ 5 œ Ø 8 10 σ σ σ σ 9 σ ω ~ 0 ø 15 9 σ σ **O** σ σ TARE I (Continued) N 20 9 Φ a 0 ~ ~ 25 0 0 Φ Q σ σ σ g σ 30 Q σ σ 9 O Rate Ka/ha .500 .125 .032 .500 .063 35 1-Wethyl-4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-40 2-y1)-benzimidazole-5-Compound Name carboxylic acid 45

0 0 ŧ ~ ~ 0 .250 .500 9-Isopropyl-2,3,9-tri-methyl-imidazo[1',2':1,2]-pyrrolo[3,4-g]benzimida-zole-6,8(3H,9H)dione propyl-4-methyl-5-oxo-2-imidazolin-2-yl)-5(and 4)-benzimidazolecarboxylic 1-Benzyl-4(and 5)-(4-isoacid

55

### **EXAMPLE 61**

5

20

25

30

35

40

45

50

55

### Postemergence Herbicidal Evaluation of Test Compounds

The postemergence herbicidal activity of the imidazolinyl benzoheterocyclic compounds of the present invention is demonstrated by the following tests wherein a variety of monocotyledenous and dicotyledenous plants are treated with solutions of the test compound in aqueous acetone. Said test solutions consist of a 50/50 acetone/water mixture containing 0.5% TWEEN® 20, a polyoxyethylene sorbitan monolaurate surfactant manufactured by Atlas Chemical Industries and a test compound in sufficient quantity to provide the equivalent of about 0.016 kg/ha to 1.00 kg/ha of active compound when applied to the plants through a spray nozzle operating at 40 psi for a predetermined time. In the tests, seedling plants are grown in jiffy flats for about 2 weeks. The plants are sprayed with the test solution, placed on greenhouse benches and cared for in the usual manner commensurate with conventional greenhouse practice.

From 4 to 5 weeks after treatment, the plants are examined and rated according to the rating system described hereinabove. The herbicidal effectiveness of the compounds of the present invention is evident from the data recorded in Table II below.

When more than one test is performed for a given compound, the data are averaged.

|            | PLANT SPECIES             | SUSED                            |
|------------|---------------------------|----------------------------------|
| Header Abb | Common Name               | Scientific Name                  |
| Barnyardgr | Barnyardgrass             | Echinochloa crus-galli, (L) Beau |
| Foxtail Sp | Foxtail Spp.              | Setaria Spp.                     |
| P Nutsedge | Nutsedge, Purple          | Cyperus rotundus, L.             |
| Wild Oats  | Oat, Wild                 | Avena fatua, L.                  |
| Quackgrass | Quackgrass                | Agropyron repens, (L) Beauv.     |
| Fld Bindwd | Bindweed, Field (Rhizome) | Convolvulus arvensis, L.         |
| Mrnglry Sp | Morningglory Spp.         | Ipomoea Spp.                     |
| Wild Mustd | Mustard, Wild             | Brassica kaber, (DC) L. C. Wheel |
| Velvetleaf | Velvetleaf                | Abutilon theophrasti, Medic.     |
| Sugarbeets | Sugarbeets                | Beta vulgaris, L.                |
| Soybean Br | Soybean, Bragg            | Glycine, max (L) Men. CV Bragg   |

| <b>40</b><br><b>45</b> |          |                                                       | Compound Name                                                                       | 1-Ethyl-4-(4-isopropyl-4- | metny1-5-oxo-z-imtoazot.ir<br>2-y1)-2-methy1-benzimida- | zole-5-carboxylic acid |              | 1-Methyl-4 (and 5)-(4-isc | pyr-4-memyr-5-0x0-z-mu<br>lin-2-yl)-1 <u>H</u> -benzotriazo | (and 4)-carboxylic acid | 1-Wethyl-4-(4-isopropyl-4- | methyl-5-oxo-2-imidazoiin-<br>2-yl)-2-(trifluoramethyl)- | benzimidazole-5-carboxylic<br>acid |      |
|------------------------|----------|-------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------|------------------------|--------------|---------------------------|-------------------------------------------------------------|-------------------------|----------------------------|----------------------------------------------------------|------------------------------------|------|
| 33                     |          | <b>8</b>                                              |                                                                                     | 1                         | Ŀ,                                                      | -                      | ·            | -isopro-                  | le-5-                                                       | 7                       |                            |                                                          |                                    |      |
| 35                     |          | temeto                                                | Rate 1                                                                              | .500                      | .250                                                    | .125                   | .063         | .250                      | .063                                                        | .016                    | 1.000                      | .500                                                     | .250                               | .125 |
| 30                     |          | TOO I                                                 | Berry 1                                                                             | 0                         | <b>6</b> 0                                              | 7                      | 7            | 80                        | 7                                                           | 4                       | 80                         | 7                                                        | 8                                  | 8    |
|                        |          | rbicic                                                | Posta P Nut<br>11.30 sectoe                                                         | 6                         | <b>c</b>                                                | œ                      | <b>&amp;</b> | σ                         | <b>c</b>                                                    | 9                       | 7                          | , 9                                                      | 4                                  | 7    |
| 25                     | TABLE II | al Bra                                                | Nut W                                                                               | 7                         | 4                                                       | <b>&amp;</b>           | 8            | 6                         | 7                                                           | 4                       | φ                          | 9                                                        | 8                                  | 7    |
| 20                     | Ħ        | luation                                               | Wild Quack<br>Ogts grass                                                            | 6                         | 6                                                       | <b>о</b>               | 7            | 6                         | 8                                                           | 2 7                     | 6                          | <u>ω</u>                                                 | 8                                  | ω    |
|                        |          | Postemergence Herbicidal Evaluation of Test Compounds | Poota P Nut Wild Quack Fid Bl. Morryl Wild<br>il Sp sechre Oats grassnchdiy_Sp Must | 0                         | o                                                       | 0                      | 6            | 6                         | <b>o</b>                                                    | 6                       | 6                          | 6                                                        | αο                                 | 60   |
| 15                     |          | Compon                                                | 1 Mengl                                                                             | 0                         | თ                                                       | ø                      | 4            | ω                         | თ                                                           | 7                       | 6                          | თ                                                        | σ                                  | ω    |
| 10                     |          | 퓔                                                     | Mengl Wild<br>IX Sp Mested                                                          | σ                         | თ                                                       | 6                      | თ            | Ø                         | σ                                                           | œ                       | თ                          | 7                                                        | σ                                  | Ø    |
|                        |          |                                                       | Velve<br>tleaf                                                                      | 7                         | 9                                                       | Ŋ                      | 8            | σ                         | 7                                                           | 8                       | σ                          | 7                                                        | 9                                  | 8    |
| 5                      |          |                                                       | Suyar                                                                               | σ                         | თ                                                       | Q                      | Ø            | 6                         | O                                                           | 9                       | σ                          | 6                                                        | ഗ                                  | 7    |
|                        |          |                                                       | Soybe<br>an Br                                                                      | 7                         | n                                                       | 7                      | 74           | ∞                         | 9                                                           | 8                       | 7                          | 4                                                        | 4.                                 | 7    |

THE II (Continued)

| Compound Name                                                 | Rate<br>Ka/ha | Barry |          | P Nut | Wild | Quack | Powta P Nut Wild Quack Fld Bl Mrmyl Wild | Memgl<br>12, Sp | Wild | Velve<br>tleaf | Sugar | Soybe |
|---------------------------------------------------------------|---------------|-------|----------|-------|------|-------|------------------------------------------|-----------------|------|----------------|-------|-------|
| Methyl 1-ethyl-4-(4-isopropyl-                                | 1.000         | 73    | 7        | 0     | 0    | 4     | σ                                        | 7               | 8    | 0              | 4     | е     |
| 4-methyl-5-oxo-2-imidazolin-<br>2-yl)-2-methyl-benzimidazole- | .500          | 0     | φ        | 0     | 0    | 7     | Φ                                        | 7               | æ    | 0              | 74    | -     |
| 5-carboxy1ate                                                 | .125          | 0     | 7        | 0     | 0    | 0     | 9                                        | 4               | 8    | 0              | н     | 0     |
| 1-Benzyl-4-(4-isopropyl-4-                                    | 1.000         | 8     | 7        | 8     | 0    | σ     | Q                                        | 7               | 6    | 7              | σ     | m     |
| methyl-5-oxo-2-imidazolin-<br>2-yl)-2-methyl-benzolmida-      | .500          | 0     | 8        | 0     | 0    | 7     | 6                                        | 7               | 0    | 0              | σ     | 7     |
| zole–5-carboxylic acid                                        | .250          | 0     | <b>ન</b> | 0     | 0    | ~     | σ                                        | 8               | ω    | 0              | 0     | 7     |
|                                                               | .063          | 0     | 0        | 0     | 0    | 0     | 8                                        | 7               | 4    | 0              | Ø     | 0     |

Velve Sugar Soybe an Br 0 6 N beets 5 N 9 σ σ O σ 2 σ Astd tleaf 0 0 0 σ g **O** ø Barry Foxta P Nat Wild Quack Fld Bl Mrngi Wild arrige il Sp seedge Qates grass naked ny Sp Mastel 10 ı ø ı ı ı 4 0 σ 9 0 ð 9  $\infty$ 9 g ð 15 0 0 g 9 σ σ O σ 9 Φ TABLE II (Continued) 20 ~ σ σ σ σ a œ σ œ ø 25 6 σ σ œ 0 0 0 σ σ 0 6 σ 9 9 9 σ 30 0 σ σ σ σ σ σ 0 Kq/ha Rate .063 .58 .125 .58 .250 .125 .032 .063 .032 .063 35 9-Isopropyl-2,3,9-tri-methyl-imidazo[1',2':1,2]-pyrrolo[3,4-e]benzimida-zole-6,8(3H,9H)dione imidazolin-2-yl) benzimida-1-Methyl-4-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-1-Benzyl-4 (and 5)-(4-iso-propyl-4-methyl-5-oxo-2zole-5(and 4)-carboxylic 40 2-y1) -benzimidazole-5-Compound Name carboxylic acid 45 acid, 1:1

50

#### Claims

Claims for the following Contracting States: AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

### A compound having the structure

wherein

50

55

is hydrogen, di(C<sub>1</sub>-C<sub>4</sub>)alkylimino; 35 Rı

> C1-C12 alkyl optionally substituted with one or more of the following: C1-C4 alkoxy, C1-C4 alkylthio, halogen, hydroxy, C3-C6 cycloalkyl, benzyloxy, furyl, phenyl, halophenyl, C1-C4 alkylphenyl, C1-C4 alkoxyphenyl, nitrophenyl, carboxy, C<sub>1</sub>-C<sub>4</sub> alkoxycarbonyl, cyano or tri(C<sub>1</sub>-C<sub>4</sub>)alkylammonium halide;

> C<sub>3</sub>-C<sub>12</sub> alkenyl optionally substituted with one or more of the following groups: C1-C4 alkoxy, phenyl, halogen or C1-C4 alkoxycarbonyl,

C<sub>3</sub>-C<sub>6</sub> cycloalkyl optionally substituted with one or more C<sub>1</sub>-C<sub>4</sub> alkyl groups,

C<sub>3</sub>-C<sub>16</sub> alkynyl optionally substituted with one or more C<sub>1</sub>-C<sub>4</sub> alkyl groups; or a cation;

is C1-C4 alkyl;  $R_2$ 45

> Rз is C1-C4 alkyl or C3-C6 cycloalkyl; and when R2 and R3 are taken together with the carbon to which they are attached they may represent C3-C6 cycloalkyl

> > is hydrogen, COR4 or SO<sub>2</sub>R<sub>5</sub> with the proviso that when B is COR4 or SO<sub>2</sub>R<sub>5</sub>, R<sub>1</sub>

В

is other than hydrogen or a cation and R9 is other than hydrogen;

is C<sub>1</sub>-C<sub>11</sub> alkyl, chloromethyl or phenyl optionally substituted with halogen, nitro R<sub>4</sub>

or C<sub>1</sub>-C<sub>4</sub> alkyl;

 $R_5$ is C1-C4 alkyl or phenyl optionally substituted with C1-C4 alkyl;

X, Y and Z are each independently CR<sub>6</sub>, CR<sub>7</sub>R<sub>8</sub>, N, or NR<sub>9</sub> with the proviso that at least one

of X, Y and Z must be N or NR9;

optionally substituted with methyl;

configuration represents either a single bond or a double bond with the proviso the ---that when any of X, Y or Z is  $CR_7R_8$  or  $NR_9$ , then the \_\_\_\_ configuration represents a single bond and with the further proviso that at least one of the ----

configurations represents a single bond;

R<sub>6</sub>, R<sub>7</sub> and R<sub>8</sub> are independently hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy or C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with one hydroxy or one to three halogens, C<sub>1</sub>-C<sub>4</sub> alkoxy groups or C<sub>1</sub>-C<sub>4</sub> alkylthio groups;

R<sub>9</sub> is hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with one hydroxy or one to three halogens, C<sub>1</sub>-C<sub>4</sub> alkoxy groups or C<sub>1</sub>-C<sub>4</sub> alkylthio groups;

Q is hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy or C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with one to three of the following: halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> alkylthio, or C<sub>2</sub>-C<sub>4</sub> alkenyl; the optical isomers thereof when R<sub>2</sub> and R<sub>3</sub> are not the same or when R<sub>6</sub> and R<sub>7</sub> are not the same;

the optical isomers thereof when  $R_2$  and  $R_3$  are not the same or when  $R_6$  and  $R_7$  are not the same; the tautomers and geometric isomers thereof and the acid addition salts thereof except when  $R_1$  is a salt-forming cation.

- The compound according to claim 1 wherein R₁ is hydrogen or a cation; R₂ is methyl; R₃ is isopropyl and B and Q are hydrogen.
- 3. The compound according to claim 1 wherein X and Z are independently N or NR<sub>9</sub> and Y is CR<sub>6</sub>.
- 4. The compound according to claim 3 wherein the compound has the structure a, c or e.
- 5. The compound according to claim 4 wherein R₁ is hydrogen, C₁-C₄ alkyl optionally substituted with halogen, C₁-C₃ alkoxy, hydroxy, furyl, phenyl or halophenyl, C₃-C₆ alkenyl, C₃-C₆ alkenyl, C₃-C₆ cycloalkyl, C₃-C₆ alkynyl or a cation; R₂ is methyl; R₃ is isopropyl and B and Q are hydrogen.
  - 6. The compound according to claim 1 wherein X, Y and Z are independently N or NR<sub>9</sub>.
- A herbicidal composition which comprises an inert solid or liquid diluent and a herbicidally effective amount of a compound having the structure as described in claim 1.
- 8. The herbicidal composition according to claim 7 wherein the compound has the structure a, c or e and X and Z are independently N or NR<sub>9</sub> and Y is CR<sub>5</sub>.
  - 9. A process for the preparation of a compound having the structure

10

15

45

50

wherein  $R_1$  is hydrogen or a cation of alkali metal or alkaline earth metal, B is hydrogen and  $R_2$ ,  $R_3$ , X, Y, Z and Q are as described in claim 1 which comprises reacting a compound having the structure

$$\begin{array}{c} COOR_1 \\ CONH \\ \hline \\ CONH \\ \hline \\ R_3 \end{array}$$

- wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, X, Y, Z and Q are as described above with aqueous base and optionally followed by the addition of a mineral acid.
  - 10. A process for the preparation of a compound having the structure

10

15

5

wherein R2 R3, X, Y Z and Q are as described in claim 1 which comprises reacting a compound having the structure

20

25

30

35

40

45

50

55

wherein R2, R3, X, Y, Z and Q are as described above with an acid anhydride optionally in the presence of a solvent.

### Claims for the following Contracting State: ES

1. A process for the preparation of a compound having the structure

wherein

is hydrogen, di(C1-C4)alkylimino;  $R_1$ 

> C1-C12 alkyl optionally substituted with one or more of the following: C1-C4 alkoxy,  $C_1$ - $C_4$  alkylthio, halogen, hydroxy,  $C_3$ - $C_6$  cycloalkyl, benzyloxy, furyl, phenyl, halophenyl, C<sub>1</sub>-C<sub>4</sub> alkylphenyl, C<sub>1</sub>-C<sub>4</sub> alkoxyphenyl, nitrophenyl, carboxy,

C<sub>1</sub>-C<sub>4</sub> alkoxycarbonyl, cyano or tri(C<sub>1</sub>-C<sub>4</sub>)alkylammonium halide;

C<sub>3</sub>-C<sub>12</sub> alkenyl optionally substituted with one or more of the following groups: C1-C4 alkoxy, phenyl, halogen or C1-C4 alkoxycarbonyl,

C<sub>3</sub>-C<sub>6</sub> cycloalkyl optionally substituted with one or more C<sub>1</sub>-C<sub>4</sub> alkyl groups,

C<sub>3</sub>-C<sub>15</sub> alkynyl optionally substituted with one or more C<sub>1</sub>-C<sub>4</sub> alkyl groups; or a cation;

 $R_2$ is C1-C4 alkyl;

is C1-C4 alkyl or C3-C6 cycloalkyl; and when R2 and R3 are taken together with R<sub>3</sub> the carbon to which they are attached they may represent C<sub>3</sub>-C<sub>6</sub> cycloalkyl optionally substituted with methyl;

is hydrogen, COR4 or SO<sub>2</sub>R<sub>5</sub> with the proviso that when B is COR4 or SO<sub>2</sub>R<sub>5</sub>, R<sub>1</sub> В

is other than hydrogen or a cation and R<sub>9</sub> is other than hydrogen;

is C1-C11 alkyl, chloromethyl or phenyl optionally substituted with halogen, nitro R<sub>4</sub>

or C1-C4 alkyl;

5

10

15

20

25

30

50

55

R<sub>5</sub> is C<sub>1</sub>-C<sub>4</sub> alkyl or phenyl optionally substituted with C<sub>1</sub>-C<sub>4</sub> alkyl;

X, Y and Z are each independently CR<sub>6</sub>, CR<sub>7</sub>R<sub>8</sub>, N, or NR<sub>9</sub> with the proviso that at least one

of X, Y and Z must be N or NR<sub>3</sub>;

the ---- configuration represents either a single bond or a double bond with the proviso that when any of X, Y or Z is CR<sub>7</sub>R<sub>8</sub> or NR<sub>9</sub>, then the ----configuration represents

that when any of X, Y or Z is CR<sub>7</sub>R<sub>8</sub> or NR<sub>9</sub>, then the \_\_\_\_configuration represents a single bond and with the further proviso that at least one of the ----configura-

tions represents a single bond;

 $R_{5}$ ,  $R_{7}$  and  $R_{8}$  are independently hydrogen, halogen,  $C_{1}$ - $C_{4}$  alkoxy or  $C_{1}$ - $C_{4}$  alkyl optionally

substituted with one hydroxy or one to three halogens, C1-C4 alkoxy groups or

C<sub>1</sub>-C<sub>4</sub> alkylthio groups;

R<sub>9</sub> is hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with one hydroxy or one to three

halogens, C<sub>1</sub>-C<sub>4</sub> alkoxy groups or C<sub>1</sub>-C<sub>4</sub> alkylthio groups;

Q is hydrogen, halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy or C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with one to three of the following: halogen, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>1</sub>-C<sub>4</sub> alkylthio, or C<sub>2</sub>-C<sub>4</sub> alkenyl;

the optical isomers thereof when  $R_2$  and  $R_3$  are not the same or when  $R_6$  and  $R_7$  are not the same; the tautomers and geometric isomers thereof and the acid addition salts thereof except when  $R_1$  is a

the tautomers and geometric isomers thereof and the acid addition salts thereof except when R<sub>1</sub> is a salt-forming cation which process comprises reacting a compound having the structure

$$\begin{array}{c} COOR_1 \\ CONH \\ \hline \\ CONH \\ \hline \\ R_3 \end{array}$$

wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, X, Y, Z and Q are as described above with aqueous base and optionally followed by the addition of a mineral-acid.

- 2. The process according to claim 1 wherein R<sub>1</sub> is hydrogen or a cation; R<sub>2</sub> is methyl; R<sub>3</sub> is isopropyl and B and Q are hydrogen.
- 35. The process according to claim 1 wherein X and Z are independently N or NR<sub>9</sub> and Y is CR<sub>5</sub>.
  - 4. The process according to claim 3 wherein the compound has the structure a, c or e.
- 5. The process according to claim 4 wherein R<sub>1</sub> is hydrogen, C<sub>1</sub>-C<sub>4</sub> alkyl optionally substituted with halogen, C<sub>1</sub>-C<sub>3</sub> alkoxy, hydroxy, furyl, phenyl or halophenyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> alkenyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>6</sub> alkynyl or a cation; R<sub>2</sub> is methyl; R<sub>3</sub> is isopropyl and B and Q are hydrogen.
  - 6. The process according to claim 1 wherein X, Y and Z are independently N or NR<sub>3</sub>.
- A process for the preparation of a compound having the structure

wherein  $R_2$   $R_3$ , X, Y Z and Q are as described in claim 1 which comprises reacting a compound having the structure

wherein R2, R3, X, Y, Z and Q are as described above with an acid anhydride optionally in the presence of a solvent.

- A herbicidal composition which comprises an inert solid or liquid diluent and a herbicidally effective amount of a compound having the structure as described in claim 1. 15
  - 9. The herbicidal composition according to claim 8 wherein the compound has the structure a, c or e and X and Z are independently N or NR9 and Y is CR6.

### Patentansprüche Patentansprüche für folgende Vertragsstaaten: AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

### Verbindung mit der Struktur

5

10

25

30

35

40

45

50

55

$$e \cdot \bigvee_{i=-2}^{2^{f}} \bigcap_{N \in \mathbb{R}_{3}}^{R_{2}} f \cdot \bigcap_{N \in \mathbb{R}_{3}}^{2^{f}} \bigcap_{N \in \mathbb{R}_{3}}^{R_{3}} \bigcap_{N \in \mathbb{R}_{3}}^{R$$

worin Rı

Wasserstoff, Di-(C1-C4)-alkylimino;

(C1-C12)-Alkyl, gegebenenfalls substituiert mit einem oder mehreren der folgenden: (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Alkylthio, Halogen, Hydroxy, (C<sub>3</sub>-C<sub>6</sub>)-Cycloalkyl, Benzyloxy, Furyl, Phenyl, Halogenphenyl, (C1-C4)-Alkylphenyl, (C1-C4)-Alkoxyphenyl, Nitrophenyl, Carboxy, (C1-C4)-Alkoxycarbonyl, Cyano oder Tri-(C1-C4)-

|    |    |                         | alkylammoniumhalogenid;                                                                                                               |
|----|----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|    |    |                         | (C <sub>3</sub> -C <sub>12</sub> )-Alkenyl, gegebenenfalls substituiert mit einer oder mehreren der                                   |
|    |    |                         | folgenden Gruppen: $(C_1-C_4)$ -Alkoxy, Phenyl, Halogen oder $(C_1-C_4)$ -Alkoxycarbo-                                                |
|    |    |                         | nyl,                                                                                                                                  |
| 5  |    |                         | (C <sub>3</sub> -C <sub>6</sub> )-Cycloalkyl, gegebenenfalls substituiert mit einer oder mehreren (C <sub>1</sub> -                   |
|    |    |                         | C <sub>4</sub> )-Alkylgruppen,                                                                                                        |
|    |    |                         | (C <sub>3</sub> -C <sub>16</sub> )-Alkinyl, gegebenenfalls substituiert mit einer oder mehreren (C <sub>1</sub> -C <sub>4</sub> )-    |
|    |    |                         | Alkylgruppen; oder                                                                                                                    |
|    |    | _                       | ein Kation ist;                                                                                                                       |
| 10 |    | $R_2$                   | (C <sub>1</sub> -C <sub>4</sub> )-Alkyl ist;                                                                                          |
|    | -  | R₃                      | $(C_1-C_4)$ -Alkyl oder $(C_3-C_6)$ -Cycloalkyl ist; und $R_2$ und $R_3$ , wenn sie mit dem                                           |
|    |    |                         | Kohlenstoff zusammengenommen werden, mit dem sie verknüpft sind, (C <sub>3</sub> -C <sub>6</sub> )-                                   |
|    |    |                         | Cycloalkyl, gegebenenfalls mit Methyl substituiert, darstellen können;                                                                |
|    |    | В                       | Wasserstoff, COR4 oder SO <sub>2</sub> R <sub>5</sub> ist, mit der Maßgabe, daß, wenn B COR4 oder                                     |
| 15 |    |                         | SO <sub>2</sub> R <sub>5</sub> ist, R <sub>1</sub> kein Wasserstoff oder Kation ist und R <sub>9</sub> kein Wasserstoff ist;          |
|    |    | R <sub>4</sub>          | (C1-C11)-Alkyl, Chlormethyl oder Phenyl, gegebenenfalls mit Halogen, Nitro oder                                                       |
|    |    |                         | (C <sub>1</sub> -C <sub>4</sub> )-Alkyl substituiert, ist;                                                                            |
|    |    | R₅                      | (C <sub>1</sub> -C <sub>4</sub> )-Alkyl oder Phenyl, gegebenenfalls mit (C <sub>1</sub> -C <sub>4</sub> )-Alkyl substituiert, ist;    |
|    |    | X, Y und Z              | jeweils unabhängig CR <sub>6</sub> , CR <sub>7</sub> R <sub>8</sub> , N oder NR <sub>9</sub> sind, mit der Maßgabe, daß               |
| 20 |    |                         | mindestens eines von X, Y und Z N oder NR <sub>3</sub> sein muß;                                                                      |
|    |    |                         | die Konfiguration entweder eine Einfachbindung oder eine Doppelbindung                                                                |
|    |    |                         | darstellt, mit der Maßgabe, daß, wenn irgendeines von X, Y oder Z CR7R8 oder                                                          |
|    |    |                         | NR <sub>9</sub> ist, dann die Konfiguration — eine Einfachbindung darstellt, und mit der                                              |
|    |    |                         | weiteren Maßgabe, daß mindestens eine der Konfigurationen eine Einfachbin-                                                            |
| 25 |    |                         | dung darstellt;                                                                                                                       |
|    |    | $R_6$ , $R_7$ und $R_8$ | unabhängig Wasserstoff, Halogen, (C <sub>1</sub> -C <sub>4</sub> )-Alkoxy oder (C <sub>1</sub> -C <sub>4</sub> )-Alkyl, gegebenen-    |
|    |    |                         | falls substituiert mit einem Hydroxy oder einem bis drei Halogenen, einer bis drei                                                    |
|    |    |                         | (C <sub>1</sub> -C <sub>4</sub> )-Alkoxygruppen oder (C <sub>1</sub> -C <sub>4</sub> )-Alkylthiogruppen, sind;                        |
|    |    | R <sub>9</sub>          | Wasserstoff oder (C1-C4)-Alkyl, gegebenenfalls substituiert mit einem Hydroxy                                                         |
| 30 |    |                         | oder einem bis drei Halogenen, einer bis drei (C1-C4)-Alkoxygruppen oder (C1-                                                         |
|    |    |                         | C <sub>4</sub> )-Alkylthiogruppen, ist;                                                                                               |
|    |    | Q                       | Wasserstoff, Halogen, (C <sub>1</sub> -C <sub>4</sub> )-Alkoxy oder (C <sub>1</sub> -C <sub>4</sub> )-Alkyl, gegebenenfalls substitu- |
|    |    |                         | iert mit einem bis drei der folgenden: Halogen, (C1-C4)-Alkoxy, (C1-C4)-Alkylthio                                                     |
|    |    |                         | oder (C <sub>2</sub> -C <sub>4</sub> )-Alkenyl, ist;                                                                                  |
| 35 |    | ihre optischen I        | somere, wenn R2 und R3 nicht gleich sind oder wenn R5 und R7 nicht gleich sind;                                                       |
|    |    | ihre Tautomere          | und geometrischen Isomere und ihre Säureadditionssalze, außer wenn $R_1$ ein                                                          |
|    |    | salzbildendes Kation    | n ist.                                                                                                                                |
|    | 2. | Verbindung nach A       | nspruch 1, in der R <sub>1</sub> Wasserstoff oder ein Kation ist; R <sub>2</sub> Methyl ist; R <sub>3</sub> Isopropyl ist             |
| 40 | ۷. | und B und Q Wasse       |                                                                                                                                       |
| 40 |    | UNU D UNU Q Wasse       | oration and.                                                                                                                          |
|    | 3. | Verbindung nach Ar      | nspruch 1, in der X und Z unabhängig N oder NR₃ sind und Y CR₅ ist.                                                                   |
|    | -  |                         |                                                                                                                                       |
|    | 4. | Verbindung nach Ar      | nspruch 3, in der die Verbindung die Struktur a, c oder e aufweist.                                                                   |

- 4. Verbindung nach Anspruch 3, in der die Verbindung die Struktur a, c oder e autweist.
- 5. Verbindung nach Anspruch 4, in der R<sub>1</sub> Wasserstoff, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, gegebenenfalls mit Halogen, (C<sub>1</sub>-C<sub>3</sub>)-Alkoxy, Hydroxy, Furyl, Phenyl oder Halogenphenyl substituiert, (C<sub>3</sub>-C<sub>6</sub>)-Alkenyl, (C<sub>3</sub>-C<sub>6</sub>)-Cycloalkyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkinyl oder ein Kation ist; R<sub>2</sub> Methyl ist; R<sub>3</sub> Isopropyl ist und B und Q Wasserstoff sind.
- 50 6. Verbindung nach Anspruch 1, in der X, Y und Z unabhängig N oder NR<sub>9</sub> sind.
  - 7. Herbizid-Zusammensetzung, die ein inertes festes oder flüssiges Verdünnungsmittel und eine herbizid wirksame Menge einer Verbindung mit der in Anspruch 1 beschriebenen Struktur umfaßt.
- 8. Herbizid-Zusammensetzung nach Anspruch 7, in der die Verbindung die Struktur a, c oder e aufweist und X und Z unabhängig N oder NR₃ sind und Y CR₅ ist.
  - 9. Verfahren zur Herstellung einer Verbindung mit der Struktur

in der  $R_1$  Wasserstoff oder ein Kation eines Alkalimetalls oder Erdalkalimetalls ist, B Wasserstoff ist und  $R_2$ ,  $R_3$ , X, Y, Z und Q wie in Anspruch 1 beschrieben sind, umfassend das Umsetzen einer Verbindung mit der Struktur

$$\begin{array}{c} COOR_1 \\ \hline \\ CONH \\ \hline \\ R_3 \end{array}$$



in der  $R_1$ ,  $R_2$ ,  $R_3$ , X, Y, Z und Q wie oben beschrieben sind, mit wäßriger Base und gegebenenfalls gefolgt von der Zugabe einer Mineralsäure.

10. Verfahren zur Herstellung einer Verbindung mit der Struktur



in der  $R_2$ ,  $R_3$ , X, Y, Z und Q wie in Anspruch 1 beschrieben sind, umfassend das Umsetzen einer Verbindung mit der Struktur



in der  $R_2$ ,  $R_3$ , X, Y, Z und Q wie oben beschrieben sind, mit einem Säureanhydrid, gegebenenfalls in Anwesenheit eines Lösungsmittels.

### Patentansprüche für folgenden Vertragsstaat : ES

### Verfahren zur Herstellung einer Verbindung mit der Struktur

worin

В

R<sub>9</sub>

Q

X, Y und Z

20

25

30

35

40

45

50

55

Wasserstoff, Di-(C1-C4)-alkylimino; Rı

> (C1-C12)-Alkyl, gegebenenfalls substituiert mit einem oder mehreren der folgenden: (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, (C<sub>1</sub>-C<sub>4</sub>)-Alkylthio, Halogen, Hydroxy, (C<sub>3</sub>-C<sub>6</sub>)-Cycloalkyl, Benzyloxy, Furyl, Phenyl, Halogenphenyl, (C1-C4)-Alkylphenyl, (C1-C4)-Alkoxyphenyl, Nitrophenyl, Carboxy, (C1-C4)-Alkoxycarbonyl, Cyano oder Tri-(C1-C4)alkylammoniumhalogenid:

> (C<sub>3</sub>-C<sub>12</sub>)-Alkenyl, gegebenenfalls substituiert mit einer oder mehreren der folgenden Gruppen: (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy, Phenyl, Halogen oder (C<sub>1</sub>-C<sub>4</sub>)-Alkoxycarbonyl,

(C3-C6)-Cycloalkyl, gegebenenfalls substituiert mit einer oder mehreren (C1-C<sub>4</sub>)-Alkylgruppen,

(C3-C15)-Alkinyl, gegebenenfalls substituiert mit einer oder mehreren (C1-C4)-Alkylgruppen; oder

ein Kation ist:

(C1-C4)-Alkyl ist;  $R_2$ 

(C1-C4)-Alkyl oder (C3-C6)-Cycloalkyl ist; und R2 und R3, wenn sie mit dem R<sub>3</sub> Kohlenstoff zusammengenommen werden, mit dem sie verknüpft sind, (C3-C6)-Cycloalkyl, gegebenenfalls mit Methyl substituiert, darstellen können;

> Wasserstoff, COR4 oder SO<sub>2</sub>R<sub>5</sub> ist, mit der Maßgabe, daß, wenn B COR4 oder SO<sub>2</sub> R<sub>5</sub> ist, R<sub>1</sub> kein Wasserstoff oder Kation ist und R<sub>9</sub> kein Wasserstoff ist;

R4 (C1-C11)-Alkyl, Chlormethyl oder Phenyl, gegebenenfalls mit Halogen, Nitro oder

(C1-C4)-Alkyl substituiert, ist;

(C1-C4)-Alkyl oder Phenyl, gegebenenfalls mit (C1-C4)-Alkyl substituiert, ist; R<sub>5</sub>

jeweils unabhängig CR<sub>6</sub>, CR<sub>7</sub>R<sub>8</sub>, N oder NR<sub>9</sub> sind, mit der Maßgabe, daß

mindestens eines von X, Y und Z N oder NR9 sein muß;

die Konfiguration ---- entweder eine Einfachbindung oder eine Doppelbindung darstellt, mit der Maßgabe, daß, wenn irgendeines von X, Y oder Z CR₂R₃ oder NR<sub>3</sub> ist, dann die Konfiguration ---- eine Einfachbindung darstellt, und mit der weiteren Maßgabe, daß mindestens eine der Konfigurationen ---- eine Einfachbin-

dung darstellt;

unabhängig Wasserstoff, Halogen, (C1-C4)-Alkoxy oder (C1-C4)-Alkyl, gegebenen-R<sub>6</sub>, R<sub>7</sub> und R<sub>8</sub> falls substituiert mit einem Hydroxy oder einem bis drei Halogenen, einer bis drei

(C<sub>1</sub>-C<sub>4</sub>)-Alkoxygruppen oder (C<sub>1</sub>-C<sub>4</sub>)-Alkylthiogruppen, sind;

Wasserstoff oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, gegebenenfalls substituiert mit einem Hydroxy oder einem bis drei Halogenen, einer bis drei (C1-C4)-Alkoxygruppen oder (C1-C<sub>4</sub>)-Alkylthiogruppen, ist;

Wasserstoff, Halogen, (C<sub>1</sub>-C<sub>4</sub>)-Alkoxy oder (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, gegebenenfalls substituiert mit einem bis drei der folgenden: Halogen, (C1-C4)-Alkoxy, (C1-C4)-Alkylthio oder (C2-C4)-Alkenyl, ist;

ihrer optischen Isomeren, wenn R₂ und R₃ nicht gleich sind oder wenn R₅ und R₁ nicht gleich sind; ihrer Tautomeren und geometrischen Isomeren und ihrer Säureadditionssalze, außer wenn R1 ein salzbildendes Kation ist,

oder

wobei das Verfahren das Umsetzen einer Verbindung mit der Struktur

COOR,

10

in der R1, R2, R3, X, Y, Z und Q wie oben beschrieben sind, mit wäßriger Base und gegebenenfalls gefolgt von der Zugabe einer Mineralsäure umfaßt.

- Verfahren nach Anspruch 1, in dem R<sub>1</sub> Wasserstoff oder ein Kation ist; R<sub>2</sub> Methyl ist; R<sub>3</sub> Isopropyl ist und B und Q Wasserstoff sind.
  - Verfahren nach Anspruch 1, in dem X und Z unabhängig N oder NR₃ sind und Y CR₅ ist.
- Verfahren nach Anspruch 3, in dem die Verbindung die Struktur a, c oder e aufweist.
  - 5. Verfahren nach Anspruch 4, in dem R<sub>1</sub> Wasserstoff, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, gegebenenfalls mit Halogen, (C<sub>1</sub>-C<sub>3</sub>)-Alkoxy, Hydroxy, Furyl, Phenyl oder Halogenphenyl substituiert, (C<sub>3</sub>-C<sub>6</sub>)-Alkenyl, (C<sub>3</sub>-C<sub>6</sub>)-Cycloalkyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkinyl oder ein Kation ist; R<sub>2</sub> Methyl ist; R<sub>3</sub> Isopropyl ist und B und Q Wasserstoff sind.
  - - Verfahren nach Anspruch 1, in dem X, Y und Z unabhängig N oder NR₃ sind.
- 30

25



7. Verfahren zur Herstellung einer Verbindung mit der Struktur

35

in der R2, R3, X, Y, Z und Q wie in Anspruch 1 beschrieben sind, umfassend das Umsetzen einer Verbindung mit der Struktur



50

55

45

in der R2, R3, X, Y, Z und Q wie oben beschrieben sind, mit einem Säureanhydrid, gegebenenfalls in Anwesenheit eines Lösungsmittels.

- Herbizid-Zusammensetzung, die ein inertes festes oder flüssiges Verdünnungsmittel und eine herbizid wirksame Menge einer Verbindung mit der in Anspruch 1 beschriebenen Struktur umfaßt.
- 9. Herbizid-Zusammensetzung nach Anspruch 8, in der die Verbindung die Struktur a, c oder e aufweist und X und Z unabhängig N oder NR₂ sind und Y CR₅ ist.

### Revendications

10

25

30

35

40

Revendications pour les Etats contractions suivants : AT, BE, CH, DE, DK, FR, GB, GR, IT, LI, LU, NL, SE

### 5 1. Composé de structure :

### dans lesquels:

Rı

représente un atome d'hydrogène, un groupe di(alkyl en C<sub>1</sub>-C<sub>4</sub>)imino ;

un groupe alkyle en  $C_1$ - $C_{12}$  éventuellement substitué avec de un à plusieurs des groupes suivants : un groupe alkoxy en  $C_1$ - $C_4$ , un groupe alkylthio en  $C_1$ - $C_4$ , un atome d'halogène, un groupe hydroxy, un groupe cycloalkyle en  $C_3$ - $C_6$ , un groupe benzyloxy, un groupe furyle, un groupe phényle, un groupe halogénophényle, un groupe (alkyl en  $C_1$ - $C_4$ )phényle, un groupe (alkoxy en  $C_1$ - $C_4$ )phényle, un groupe nitrophényle, un groupe carboxy, un groupe (alkoxy en  $C_1$ - $C_4$ )carbonyle, un groupe cyano ou un groupe halogénure de tri(alkyl en  $C_1$ - $C_4$ )ammonium ;

un groupe alcényle en  $C_3$ - $C_{12}$  éventuellement substitué avec un ou plusieurs des groupes suivants : un groupe alkoxy en  $C_1$ - $C_4$ , un groupe phényle, un atome d'halogène ou un groupe (alkoxy en  $C_1$ - $C_4$ )carbonyle,

un groupe cycloalkyle en  $C_3\text{-}C_6$  éventuellement substitué avec un ou plusieurs groupes alkyle en  $C_1\text{-}C_4$ ,

un groupe alcynyle en  $C_3\text{-}C_{16}$  éventuellement substitué avec un ou plusieurs groupes alkyle en  $C_1\text{-}C_4$ , ou un cation ;

représente un groupe alkyle en C<sub>1</sub>-C<sub>4</sub>;

représente un groupe alkyle en  $C_1$ - $C_4$  ou un groupe cycloalkyle en  $C_3$ - $C_6$ , et lorsque  $R_2$  et  $R_3$  sont considérés ensemble avec l'atome de carbone auquel ils sont liés, ils peuvent représenter un groupe cycloalkyle en  $C_3$ - $C_6$  éventuellement substitué avec un groupe méthyle :

représente un atome d'hydrogène, un groupe COR4 ou SO2R5, à condition

45

50

55

В

 $R_2$ 

R<sub>3</sub>

|    |                        | que lorsque B représente COR₄ ou SO₂R₅, R₁ est autre qu'un atome                                                                                 |
|----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                        | d'hydrogène ou un cation, et R₃ est autre qu'un atome d'hydrogène ;                                                                              |
|    | R <sub>4</sub>         | représente un groupe alkyle en C1-C11, un groupe chlorométhyle, ou un                                                                            |
|    |                        | groupe phényle éventuellement substitué avec un atome d'halogène, un                                                                             |
| 5  |                        | groupe nitro ou un groupe alkyle en C <sub>1</sub> -C <sub>4</sub> ;                                                                             |
|    | R <sub>5</sub>         | représente un groupe aikyle en C <sub>1</sub> -C <sub>4</sub> ou un groupe phényle éventuellement                                                |
|    | -                      | substitué avec un groupe alkyle en C <sub>1</sub> -C <sub>4</sub> ;                                                                              |
|    | X, Y et Z              | représentent indépendamment chacun un groupe CR <sub>6</sub> , CR <sub>7</sub> R <sub>8</sub> , N ou NR <sub>9</sub> , à                         |
|    | ·                      | condition qu'au moins l'un des groupes X, Y et Z puisse représenter N ou                                                                         |
| 10 |                        | NR <sub>9</sub> ;                                                                                                                                |
|    | la configuration       | représente une simple liaison ou une double liaison, à condition que lorsque                                                                     |
|    |                        | l'un quelconque des groupes X, Y et Z représente CR7R8 ou NR9, la                                                                                |
|    |                        | configuration représente alors une simple liaison, et en outre à condition                                                                       |
|    |                        | qu'au moins l'une des configurations représente une simple liaison ;                                                                             |
| 15 | $R_6$ , $R_7$ et $R_8$ | représentent indépendamment un atome d'hydrogène, un atome d'halogène,                                                                           |
| 15 |                        | un groupe alkoxy en C1-C4 ou un groupe alkyle en C1-C4 éventuellement                                                                            |
|    |                        | substitué avec un groupe hydroxy ou avec de un à trois atomes d'halogène,                                                                        |
|    |                        | groupes alkoxy en C1-C4 ou groupes alkylthio en C1-C4;                                                                                           |
|    | R₃                     | représente un atome d'hydrogène ou un groupe alkyle en C1-C4 éventuelle-                                                                         |
| 20 |                        | ment substitué avec un groupe hydroxy ou de un à trois atomes d'halogène,                                                                        |
|    |                        | groupes alkoxy en C <sub>1</sub> -C <sub>4</sub> ou groupes alkylthio en C <sub>1</sub> -C <sub>4</sub> ;                                        |
|    | Q                      | représente un atome d'hydrogène, un atome d'halogène, un groupe alkoxy                                                                           |
|    |                        | en C <sub>1</sub> -C <sub>4</sub> ou un groupe alkyle en C <sub>1</sub> -C <sub>4</sub> éventuellement substitué avec de                         |
|    |                        | un à trois des groupes suivants : un atome d'halogène, un groupe alkoxy en                                                                       |
| 25 |                        | C <sub>1</sub> -C <sub>4</sub> , un groupe alkylthio en C <sub>1</sub> -C <sub>4</sub> ou un groupe alcényle en C <sub>2</sub> -C <sub>4</sub> ; |
|    | leurs isomères optiq   | ues lorsque R2 et R3 ne sont pas identiques ou lorsque R7 et R8 ne sont pas                                                                      |
|    | identiques;            |                                                                                                                                                  |
|    | · ·                    |                                                                                                                                                  |

identiques;
ses tautomères et ses isomères géométriques, et ses sels d'addition avec un acide, sauf lorsque R<sub>1</sub>

représente un cation salifiant

- Composé selon la revendication 1, dans lequel R<sub>1</sub> représente un atome d'hydrogène ou un cation ; R<sub>2</sub> représente un groupe méthyle ; R<sub>3</sub> représente un groupe isopropyle, et B ainsi que Q représentent des atomes d'hydrogène.
- 35 3. Composé selon la revendication 1, dans lequel X et Z représentent indépendamment N ou NR<sub>9</sub>, et Y représente CR<sub>6</sub>.
  - 4. Composé selon la revendication 3, dans lequel le composé a la structure a, c ou e.
- 5. Composé selon la revendication 4, dans lequel R<sub>1</sub> représente un atome d'hydrogène, un groupe alkyle en C<sub>1</sub>-C<sub>4</sub> éventuellement substitué avec un atome d'halogène, un groupe alkoxy en C<sub>1</sub>-C<sub>3</sub>, un groupe hydroxy, un groupe furyle, un groupe phényle ou un groupe halogénophényle, un groupe alcényle en C<sub>3</sub>-C<sub>6</sub>, un groupe cycloalkyle en C<sub>3</sub>-C<sub>6</sub>, un groupe alcynyle en C<sub>3</sub>-C<sub>6</sub> ou un cation; R<sub>2</sub> représente un groupe méthyle; R<sub>3</sub> représente un groupe isopropyle, et B ainsi que Q représentent des atomes d'hydrogène.
  - 6. Composé selon la revendication 1, dans lequel X, Y et Z représentent indépendamment N ou NR<sub>3</sub>.
- 7. Composition herbicide, comprenant un diluant solide ou liquide inerte et une quantité herbicide efficace d'un composé de structure telle que décrite dans la revendication 1.
  - 8. Composition herbicide selon la revendication 7, dans laquelle le composé correspond à la structure a, c ou e, et X ainsi que Z représentent indépendamment N ou NR<sub>9</sub>, et Y représente CR<sub>6</sub>.
- 5 9. Procédé de préparation d'un composé de structure :

dans lequel  $R_1$  représente un atome d'hydrogène ou un cation de métal alcalin ou de métal alcalinoterreux, B représente un atome d'hydrogène, et  $R_2$ ,  $R_3$ , X, Y, Z et Q sont tels que décrits dans la revendication 1, selon lequel on fait réagir un composé de structure :

dans lequel  $R_1$ ,  $R_2$ ,  $R_3$ , X, Y, Z et Q sont tels que décrits ci-dessus, avec une base aqueuse, et on effectue éventuellement ensuite l'addition d'un acide minéral.

10. Procédé de préparation d'un composé de structure :

dans lequel  $R_2$ ,  $R_3$ , X, Y, Z et Q sont tels que décrits dans la revendication 1, selon lequel on fait réagir un composé de structure :

dans lequel  $R_2$ ,  $R_3$ , X, Y, Z et Q sont tels que décrits ci-dessus, avec un anhydride d'acide, éventuellement en présence d'un solvant.

#### Revendications pour l'Etat contractant suivant : ES

### Procédé pour la préparation d'un composé de formule

ou 15

30 représente un atome d'hydrogène, un groupe di(alkyl en C1-C4)imino ;  $R_1$ 

> un groupe alkyle en C1-C12 éventuellement substitué avec de un à plusieurs des groupes suivants : un groupe alkoxy en C1-C4, un groupe alkylthio en C1-C4, un atome d'halogène, un groupe hydroxy, un groupe cycloalkyle en C3-C6, un groupe benzyloxy, un groupe furyle, un groupe phényle, un groupe halogénophényle, un groupe (alkyl en C1-C4)phényle, un groupe (alkoxy en C1-C4)phényle, un groupe nitrophényle, un groupe carboxy, un groupe (alkoxy en C1-C4)carbonyle, un groupe cyano ou un groupe halogénure de tri(alkyl en C1-C4)ammonium;

> un groupe alcényle en C3-C12 éventuellement substitué avec un ou plusieurs des groupes suivants : un groupe alkoxy en C1-C4, un groupe phényle, un atome d'halogène ou un groupe (alkoxy en C1-C4)carbonyle,

> un groupe cycloalkyle en C3-C6 éventuellement substitué avec un ou plusieurs groupes alkyle en C1-C4,

> un groupe alcynyle en C3-C16 éventuellement substitué avec un ou plusieurs groupes alkyle en C1-C4, ou

représente un groupe alkyle en C1-C4;

représente un groupe alkyle en C1-C4 ou un groupe cycloalkyle en C3-C6, et lorsque R2 et R3 sont considérés ensemble avec l'atome de carbone auquel ils sont liés, ils peuvent représenter un groupe cycloalkyle en C<sub>3</sub>-C<sub>6</sub> éventuellement substitué avec un groupe méthyle ;

représente un atome d'hydrogène, un groupe COR₄ ou SO₂R₅, à condition que lorsque B représente COR4 ou SO2R5, R1 est autre qu'un atome d'hydrogène ou un cation, et R<sub>9</sub> est autre qu'un atome d'hydrogène ;

représente un groupe alkyle en C1-C11, un groupe chlorométhyle, ou un groupe phényle éventuellement substitué avec un atome d'halogène, un groupe nitro ou un groupe alkyle en C1-C4;

dans le quel :

35

5

40

45

 $R_2$ 

Rз

В

R<sub>4</sub>

50

 $R_5$ représente un groupe alkyle en C1-C4 ou un groupe phényle éventuellement substitué avec un groupe alkyle en C1-C4; X, Y et Z représentent indépendamment chacun un groupe CR<sub>6</sub>, CR<sub>7</sub>R<sub>8</sub>, N ou NR<sub>9</sub>, à condition qu'au moins l'un des groupes X, Y et Z puisse représenter N ou NR<sub>9</sub>: 5 la configuration --représente une simple liaison ou une double liaison, à condition que lorsque l'un quelconque des groupes X, Y et Z représente CR7R8 ou NR9, la configuration ---- représente alors une simple liaison, et en outre à condition qu'au moins l'une des configurations --- représente une simple liaison : R<sub>6</sub>, R<sub>7</sub> et R<sub>8</sub> représentent indépendamment un atome d'hydrogène, un atome d'halogène, 10 un groupe alkoxy en C1-C4 ou un groupe alkyle en C1-C4 éventuellement substitué avec un groupe hydroxy ou avec de un à trois atomes d'halogène, groupes alkoxy en C1-C4 ou groupes alkylthio en C1-C4; représente un atome d'hydrogène ou un groupe alkyle en C1-C4 éventuelle-R<sub>9</sub> ment substitué avec un groupe hydroxy ou de un à trois atomes d'halogène, 15 groupes alkoxy en C1-C4 ou groupes alkylthio en C1-C4; Q représente un atome d'hydrogène, un atome d'halogène, un groupe alkoxy en C1-C4 ou un groupe alkyle en C1-C4 éventuellement substitué avec de un à trois des groupes suivants : un atome d'halogène, un groupe alkoxy en C<sub>1</sub>-C<sub>4</sub>, un groupe alkylthio en C<sub>1</sub>-C<sub>4</sub> ou un groupe alcényle en C<sub>2</sub>-C<sub>4</sub>; 20

leurs isomères optiques lorsque  $R_2$  et  $R_3$  ne sont pas identiques ou lorsque  $R_7$  et  $R_8$  ne sont pas identiques ;

ses tautomères et ses isomères géométriques, et ses sels d'addition avec un acide, sauf lorsque R<sub>1</sub> représente un cation salifiant lequel procédé comprend la réaction d'un composé de formule

- dans lequel R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, X, Y, Z et Q sont tels que décrits ci-dessus, avec une base aqueuse, et on effectue éventuellement ensuite l'addition d'un acide minéral.
  - Procédé selon la revendication 1 dans lequel R<sub>1</sub> représente un atome d'hydrogène ou un cation, R<sub>2</sub> représente un groupe méthyle; R<sub>3</sub> représente un groupe isopropyle, et B ainsi que Q représentent des atomes d'hydrogène.
  - Procédé selon la revendication 1 dans lequel X et Z représentent indépendamment N ou NR<sub>3</sub>, et Y représente CR<sub>6</sub>.
- 45 4. Procédé selon la revendication 3 dans lequel le composé a la structure a, c ou e.
  - 5. Procédé selon la revendication 4 dans lequel R<sub>1</sub> représente un atome d'hydrogène, un groupe alkyle en C<sub>1</sub>-C<sub>4</sub> éventuellement substitué avec un atome d'halogène, un groupe alkoxy en C<sub>1</sub>-C<sub>3</sub>, un groupe hydroxy, un groupe furyle, un groupe phényle ou un groupe halogénophényle, un groupe alcényle en C<sub>3</sub>-C<sub>6</sub>, un groupe cycloalkyle en C<sub>3</sub>-C<sub>6</sub>, un groupe alcynyle en C<sub>3</sub>-C<sub>6</sub> ou un cation; R<sub>2</sub> représente un groupe méthyle; R<sub>3</sub> représente un groupe isopropyle, et B ainsi que Q représentent des atomes d'hydrogène.
  - 6. Procédé selon la revendication 1 dans lequel X, Y et Z représentent indépendamment N ou NRs.
  - 7. Procédé de préparation d'un compose de structure :

55

50

25

30

dans lequel R<sub>2</sub>, R<sub>3</sub>, X, Y, Z et Q sont tels que décrits dans la revendication 1, selon lequel on fait réagir un composé de structure :

dans lequel  $R_2$ ,  $R_3$ , X, Y, Z et Q sont tels que décrits ci-dessus, avec un anhydride d'acide, éventuellement en présence d'un solvant.

- 8. Composition herbicide, comprenant un diluant solide ou liquide inerte et une quantité herbicide efficace d'un composé de structure telle que décrite dans la revendication 1.