Terceira Avaliação de Circuitos Elétricos II $-2^{0/2017}$

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:	Turma:
-------	--------

Matrícula: ____/___

Data: ____/___/

Questão 1 – Calcule a série exponencial de Fourier para a forma de onda mostrada a seguir: A=10V; T=4s.

Questão 2 – Determine analiticamente a forma de onda temporal $v_o(t)$ na saída do circuito.

Questão 3 – Um circuito ativo com base no amplificador operacional (AO) é mostrado logo abaixo à esquerda. À direita é ilustrado o modelo de ativo para o AO. Determine os parâmetros da matriz admitância de curto-circuito representativa do quadripolo: $R = 2\Omega$, C = 1F, $R_i = 3\Omega$, $R_o = 1\Omega$, A = 2.

Questão 4 – Determine os parâmetros da matriz híbrida - h de representativa do quadripolo.

Terceira Avaliação de Circuitos Elétricos II $-2^{0}/2017$ – Folha de respostas

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:	Turma:
Matrícula:/	
Data:/	
Questão 1	$c_{S}(t) = \sum_{n=-\infty}^{\infty} C_{n} e^{jn\omega_{0}t}$
Para n par: n = 2k; k=0,1,2,	$n=-\infty$
$C_{2k} =$	
Para n ímpar: n = 2k+1; k=0,1,2,	
$C_{2k+1} =$	
Questão 2	
$v_0(t) =$	
Questão 3]
$\underline{\underline{Y}} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	
Questão 4	
$\underline{H} = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	