A QCNN for Quantum State Preparation Carnegie Vacation Scholarship

David Amorim

Weeks 7-8 (12/08/2024 - 23/08/2024)

Aims for the Week

The following aims were set at the last meeting (14/08/2024):

New Phase Encoding Approach

Investigate a new approach to phase encoding using linear piecewise phase functions without explicit function evaluation.

Handover

Hand over the slides, documentation, code and the poster for the Carnegie Trust.

David Amorim QCNN State Preparation 21/08/2024 2 / 12

Table of Contents

1 Phase Encoding

2 Handover

Preliminaries

- Consider an n-qubit register with computational basis states $|j\rangle=|j_0j_1...j_{n-1}\rangle$ representing n-bit strings
- Let p of the register qubits be precision qubits so that

$$j = \sum_{k=0}^{n-1} j_k 2^{k-p} \tag{1}$$

• Consider a phase function Ψ over the domain $\Omega=\{j\}$ and construct an M-fold partition $(M=2^g,\ g\leq n\in\mathbb{N})$ into equal sub-domains Ω_m :

$$\Omega = \bigcup_{m=1}^{M} \Omega_m, \quad \Omega_m \cap \Omega_l = \emptyset, \quad |\Omega_m| = |\Omega_l|$$
 (2)

• On each sub-domain, approximate Ψ using a linear function:

$$\Psi(j) = \alpha_m j + \beta_m, \quad j \in \Omega_m \tag{3}$$

David Amorim QCNN State Preparation 21/08/2024 4 / 12

Phase Encoding within a Sub-domain

Aim 1

For $j \in \Omega_m$ construct an operator \hat{O}_m such that $|j\rangle \mapsto e^{i(\alpha_m j + \beta_m)} |j\rangle$.

Consider the single-qubit operators

$$\hat{P}^{(k)}(\varphi) = \begin{pmatrix} e^{i\varphi} & 0\\ 0 & e^{i\varphi} \end{pmatrix}, \quad \hat{R}^{(k)}(\varphi) = \begin{pmatrix} 1 & 0\\ 0 & e^{i\varphi} \end{pmatrix}$$
(4)

each acting on the kth qubit

Then

$$\hat{O}_m \equiv \bigotimes_{k=0}^{n-1} \hat{P}^{(k)}(\beta_m/n)\hat{R}^{(k)}\left(\alpha_m 2^{k-p}\right) \tag{5}$$

transforms

$$|j\rangle \mapsto \exp\left[i\left(\sum_{k=0}^{n-1}\alpha_m j_k 2^{k-p} + \beta_m\right)\right]|j\rangle = e^{i(\alpha_m j + \beta_m)}|j\rangle$$
 (6)

David Amorim QCNN State Preparation 21/08/2024 5 / 12

Selecting the Subdomain

- It is straight-forward to construct \hat{O}_m for each of the sub-domains Ω_m
- More challenging is applying the correct \hat{O}_m based on the sub-domain corresponding to each $|j\rangle$

Aim 2

Construct a system of controls such that \hat{O}_m is applied to $|j\rangle$ if and only if $j\in\Omega_m$

David Amorim QCNN State Preparation 21/08/2024 6 / 12

Sample Case: M=2

• Start with the simplest possible case, a 2-fold partition (M=2):

$$j \in \begin{cases} \Omega_1 & j_0 = 0 \\ \Omega_2 & j_0 = 1 \end{cases} \tag{7}$$

- Using an ancilla qubit, \hat{O}_1 is applied for $j\in\Omega_1$ and \hat{O}_2 for $j\in\Omega_2$
- The ancilla is required since the operation applied to $|j_0\rangle$ is conditional on $|j_0\rangle$ itself

Figure 1: Circuit diagram for ${\cal M}=2$

7 / 12

David Amorim QCNN State Preparation 21/08/2024

Generalising the Approach

- The approach shown on the previous slide requires $1 \leq \log_2 M \leq n$ ancilla qubits
- The number of controls required is $\sim \mathcal{O}(M\log M)$ as there are M operators, each controlled by all ancillas
- A 'pyramid' network of X gates is applied to the ancillas for case distinction
- For M ~ 2ⁿ the gate cost is exponential!

Figure 2: Circuit diagram for M=4. Note that $j\in\Omega_m$ if $j_0j_1=m-1$ (e.g. $j\in\Omega_3$ if $j_0j_1=10$).

8 / 12

A Recursive Approach

- Since $M=2^g$ for some $g\leq n\in\mathbb{N}$ we can view the partition of Ω as a recursive process, splitting the domain into halves g times
-

TRY TO GET RID OF ANCILLAS!! THIS IS ESSENTIALLY A CLASSICAL ALGORITHM! MUST BE POSSIBLE TO DO IT BETTER!!

David Amorim QCNN State Preparation 21/08/2024 9/12

Qiskit Implementation

David Amorim QCNN State Preparation 21/08/2024 10 / 12

Table of Contents

1 Phase Encoding

2 Handover

David Amorim QCNN State Preparation 21/08/2024 11/12

Handover

The code, documentation, slides, and poster are all available on GitHub:

https://github.com/david-f-amorim/PQC_function_evaluation

- The source code is found in the directory pqcprep
- The slides and poster are found in the directory slides
- The documentation is hosted externally here, which is linked on GitHub

David Amorim QCNN State Preparation 21/08/2024 12 / 12