Example 1.18: Truss supporting a rigid plate (p. 80)

A plane truss is designed to support a rigid triangular plate as shown in Figure. All members have the same cross-sectional area $A = 1 \text{ in}^2$ and are of the same material, E = 29, 000 ksi. The load P = 20 kip. The dimensions in ft are shown in the figure. Note there is no connection between the diagonal members where they cross each other.

The model consists of 5 nodes and thus the global system of equations before boundary conditions will be 10×10 . The equations for the six truss elements are written as in the previous examples and assembled in the usual manner to give the following system of equations.

36.8215 46.0268 -36.8215

36.8215 -29.4572 -36.8215 29.4572

-46.0268

The essential boundary conditions at nodes 1 ($u_1 = v_1 = 0$) are incorporated by removing the corresponding rows and columns in the usual way. Node 3 also has zero vertical displacement. However since this node is connected to the rigid plate as well, the boundary condition $v_3 = 0$, will be imposed later as part of the multi-point constraints. Removing the first two rows and columns, the global system of equations is as follows.

$$K d = R \Longrightarrow$$

The rigid plate is connected between nodes 3, 5 and 4. Treating u_3 , v_3 , and u_5 as independent degrees of freedom, the multi-point constraints are as follows.

$$\begin{pmatrix} v_5 \\ u_4 \\ v_4 \end{pmatrix} = \begin{pmatrix} \frac{x_3 - x_5}{y_3 - y_5} & 1 & \frac{x_5 - x_3}{y_3 - y_5} \\ \frac{y_4 - y_5}{y_3 - y_5} & 0 & \frac{y_3 - y_4}{y_3 - y_5} \\ \frac{x_3 - x_4}{y_3 - y_5} & 1 & \frac{x_4 - x_3}{y_3 - y_5} \end{pmatrix} \begin{pmatrix} u_3 \\ v_3 \\ u_5 \end{pmatrix} = \begin{pmatrix} \frac{5}{4} & 1 & -\frac{5}{4} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} u_3 \\ v_3 \\ u_5 \end{pmatrix}$$

Expanding and re-arranging we have

$$-\frac{5u_3}{4} + \frac{5u_5}{4} - v_3 + v_5 = 0$$

$$u_4 - u_5 = 0$$

$$v_4 - v_3 = 0$$

To this list we must also add the roller support constraint that $v_3 = 0$. Thus the complete set of constraint equations, expanded to include all degrees of freedom present in the global equations, we have

$$C d = q \Longrightarrow \begin{pmatrix} 0 & 0 & -\frac{5}{4} & -1 & 0 & 0 & \frac{5}{4} & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \\ u_5 \\ v_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

For using the penalty function approach we choose the penalty parameter μ equal to 10^5 times the largest number in the global K matrix.

$$\mu = 150.29 \times 10^5 = 1.5029 \times 10^7$$

Incorporating the constraints into the global equations with this value of μ , the final system of equations is as follows.

$$(\mathbf{K} + \mu \mathbf{C}^T \mathbf{C}) \mathbf{d} = \mathbf{R} + \mu \mathbf{C}^T \mathbf{q} \Longrightarrow$$

1	0.00142693	-0.000368215	-0.000460268	0.000368215	-0.000966667	0.	0
10 ⁵	-0.000368215	0.0015029	0.000368215	-0.000294572	0.	0.	0
	-0.000460268	0.000368215	-234.827	-187.863	0.	0.	234.829
	0.000368215	-0.000294572	-187.863	-450.87	0.	150.289	187.863
	-0.000966667	0.	0.	0.	-150.289	0.000368215	150.29
	0.	0.	0.	150.289	0.000368215	-150.289	0
	0	0	234.829	187.863	150.29	0	-385.119
l	0	0	187.863	150.29	0	0	-187.863

Solving this system of linear equations we get

{
$$u_2 = 0.172845$$
, $v_2 = 0.076446$, $u_3 = -0.139174$, $v_3 = 3.99227 \times 10^{-6}$, $u_4 = 0.292292$, $v_4 = 6.03917 \times 10^{-6}$, $u_5 = 0.29229$, $v_5 = -0.539324$ }

Substituting these values into the constraint equations we can see that the constraints are reasonably satisfied.

$$C d = \begin{pmatrix} 1.33076 \times 10^{-6} \\ 1.66345 \times 10^{-6} \\ 2.0469 \times 10^{-6} \\ 3.99227 \times 10^{-6} \end{pmatrix} \approx \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Knowing the nodal values, the element solutions can be computed in the usual manner.

	Strain	Stress	Axial force
1	0.000318525	9.23722	9.23722
2	-0.000463913	-13.4535	-13.4535
3	0.000594098	17.2289	17.2289
4	0.000398156	11.5465	11.5465
5	-0.000509888	-14.7868	-14.7868
6	8.52877×10^{-9}	0.000247334	0.000247334

Using the Lagrange multipliers method, the solution is obtained as follows.

Augmented system of equations

Solution

$$\begin{aligned} \{d_1 = 0.172849,\, d_2 = 0.0764461,\, d_3 = -0.139174,\, d_4 = -4.68418 \times 10^{-18},\, d_5 = 0.292296,\\ d_6 = -1.62088 \times 10^{-17},\, d_7 = 0.292296,\, d_8 = -0.539337,\, \lambda_1 = -20.,\, \lambda_2 = -25.,\, \lambda_3 = -30.7628,\, \lambda_4 = -60. \} \end{aligned}$$