EE324 Problem Sheet 4

Abhilaksh Kumar, 18D070035

February 8, 2021

THE CODE WAS WRITTEN IN CONTINUATION IN A SINGLE FILE. HENCE IN THE CODE SECTION YOU MAY FIND THAT VARIABLES AREN'T DEFINED AGAIN AND AGAIN.

$\mathbf{Q}\mathbf{1}$

PART a

Simplifying the 3 cascaded systems into 1, it becomes a simple feedback system which can be written as:- For the feedback system

$$H4(s) = H1(s) * H2(s) * H3(s)$$
$$\frac{C(s)}{R(s)} = \frac{H4(s)}{1 + H4(s)}$$

The code for this part is

```
1 s = poly(0,'s');
2 t = 0:.001:10;
3
4 // PART A
5 h1 = 1/s^2;
6 h2 = 50*s/(s^2+s+100);
7 h3 = s-2;
8 h4 = h1*h2*h3;
9
10 Heq = syslin('c', h4/(1+h4));
```

Part b

First we solve innormost part (2 cascade + series) and then handle the upper feedback loop, after which the system looks quite similar to first part (except there is a transfer function in the bottom loop too). The code for this part is

Part c

Just applying block reduction techniques sequentially. The code for this part is

```
h1 = s;

h2 = 2*s;

h3 = 1/(s+1);

h4 = 4;

6 G1 = h1+h2;

7 G2 = h1/(1+h1);

8 G3 = h1/(G1); // 1/s+2

9 G4 = G1*G2+ h2;

10 G5 = 4*G3/(1+4*G3);

11 G6 = G4*G5;

12

13 Heq = syslin('c', G6/(1+G6));
```

$\mathbf{Q2}$

Part a

For any value of K the transfer function is $\frac{10k}{s^3+6s^2+8s+10k}$ For any specific value say K = 4, it is $\frac{40}{s^3+6s^2+8s+40}$ The code for this part is

Part b

The plot is as follows:-

Figure 1: Loci of closed loop poles

The code for this part is

```
1 k_range = .1:.1:100.1;
                                                      // excluding k =0 case,
      as H = 0 in that case
_{2} // for each k we get 3 poles since denominator of H is cubic
poles = zeros(3,length(k_range));
 for i = 1:length(k_range)
      k = k_range(i);
      H = syslin('c',k*G/(1+k*G));
      [_,p,_] = tf2zp(H)
      poles(:,i) = p;
9
10 end
plot2d(real(poles'), imag(poles'), [-2,-3,-4]);
a = gca()
14 a.data_bounds = [-12,-9;4,9];
title('Loci of closed loop poles as K varies')
16 xlabel('Real (poles)');
ylabel('Imaginary (poles)');
```

Part c

The critical value of $K_{critical} = 4.8$ The code for this part is

```
1 k1 = k_range(find(real(poles(2,:))>= 0))(1);
2 k2 = k_range(find(real(poles(3,:))>= 0))(1);
3 k3 = k_range(find(real(poles(1,:))>= 0))(1);
4 k_critical = min(k1,k2,k3);
```

Part d

The RH table for polynomial in denominator i.e. $s^3 + 6s^2 + 8s + 10k$ (for K \downarrow 0) is (as calculated manually)

1	8
6	10k
$\frac{48-10k}{6}$	0
10k	0

We know that in order to have a stable system all roots should be in OLHP which implies

$$48 - 10k > 0$$
$$k < 4.8$$

Hence, we see that the system is brought to the verge of instability if the first column of of s 1 becomes 0 because after this, increasing the value of K makes it negative increasing the number of ORHP poles. Also at k = 4.8, the poles lie on the imaginary axis, thus bringing the system on the verge of instability. Afterwards however, it always has poles in ORHP. So, the critical value of K has to be 4.8.

$\mathbf{Q3}$

The Routh tables obtained are as follows The code for this part is

```
1 s = poly(0,'s');
2
3 // PART a
4 G1 = s^5+3*s^4+5*s^3+4*s^2+s+3;
5 [routh_table_1 ,B] = routh_t(G1);
6
7 // PART b
8 G2 = s^5+6*s^3+5*s^2+8*s+20;
9 [routh_table_2 ,B] = routh_t(G2);
10
11 // PART c
12 G3 = s^5-2*s^4+3*s^3-6*s^2+2*s-4;
```

Var - routh_table_1 🔣				
	1	2	3	
1	1	5	1	
2	3	4	3	
3	3.6667	0	0	
4	4	3	0	
5	-2.75	0	0	
6	3	0	0	

> routh_table_2 routh_table_2 =		
1	6	8
-	-	-
1	1	1
eps	5	20
	-	
1	1	1
-5 +6eps	-20 +8eps	0
		-
eps	eps	1
05 .50		
-25 +50eps -8eps ^e	20	0
	1	1
-5 +6eps	1	1
-2.274D-13 -160eps -64eps	0	0
	_	_
-25 +50eps -8eps=	1	1
20 /000pc 00pc	-	-
20	0	0
	_	_
1	1	1
> routh table 1		

Var - routh_table_3				
	1	2	3	
1	1	3	2	
2	-2	-6	-4	
3	-8	-12	-0	
4	-3	-4	0	
5	-1.3333	0	0	
6	-4	0	0	

> routh_table_4 routh_table_4 =			
_		-	
1	-6	1	-6
-		-	
1	1	1	1
1	0	1	0
-	-	-	-
1	1	1	1
-6	0	-6	0
	-		-
1	1	1	1
-24	0	0	0
	-	-	-
1	1	1	1
eps	-6	0	0
		-	-
1	1	1	1
-144	0	0	0
	-	-	-
eps	1	1	1
864	0	0	0
	-	-	-
-144	1	1	1

```
13 [routh_table_3 ,B] = routh_t(G3);
14
15 // PART d
16 G4 = s^6+s^5-6*s^4+s^2+s-6;
17 [routh_table_4 ,B] = routh_t(G4);
```

$\mathbf{Q4}$

Part a

We want even polynomial of degree 4 and multiply with a quadratic polynomial which is not even and make it degree 6 to get the resultant answer.

$$G1 = (s^2 + 5 * s + 3) * (s^4 + s^2 + 1)$$

= 3 + 5s + 4s² + 5s³ + 4s⁴ + 5s⁵ + s⁶

The routh table can be verified using scilab to match the question description

Var - routh_table_1 🔀					
	1	2	3		
1	1	4	4	3	
2	5	5	5	0	
3	3	3	3	0	
4	12	6	0	0	
5	1.5	3	0	0	
6	-18	0	0	0	
7	3	0	0	0	
0					

Figure 4: RH table for (a) part Q4

Part b

We want even polynomial of degree 4 and multiply with a quadratic polynomial which is not even and make it degree 6 to get the resultant answer.

$$G2 = (s^4 + 2 * s^3 + s^2 + 6 * s + 3) * (s^4 + s^2 + 1)$$

= 3 + 6s + 4s² + 8s³ + 5s⁴ + 8s⁵ + 2s⁶ + 2s⁷ + s⁸

The routh table can be verified using scilab to match the question description

Figure 5: Entire code snippet

Part c

A trivial example that worked was

$$G3 = (s^4 + s^6)$$

The routh table can be verified using scilab to match the question description

Var - routh_table_1 🔣				
	1	2	3	
1	1	4	4	3
2	5	5	5	0
3	3	3	3	0
4	12	6	0	0
5	1.5	3	0	0
6	-18	0	0	0
7	3	0	0	0
0				

Figure 6: RH table for (c) part Q4

The code for the entire 4th questions is given below:-

```
s = poly(0,'s');
```

```
3 // PART a
4 G1 = (s^2+5*s+3)*(s^4+s^2+1);
5 [routh_table_1 ,B] = routh_t(G1);
6 disp(routh_table_1)
7
8 // PART b
9 G2 = (s^4+2*s^3+s^2+6*s+3)*(s^4+s^2+1);
10 [routh_table_2 ,B] = routh_t(G2);
11 disp(routh_table_2)
12
13 // PART c
14 G3 = (s^4+s^6);
15 [routh_table_3 ,B] = routh_t(G3);
16 disp(routh_table_3)
```