Homework 1

Due: Monday, October 12, 2020

Question 1. Describe the probability space for the following experiments: a) a biased coin is tossed three times; b) two balls are drawn without replacement from an urn which originally contained two blue and two red balls.

```
a) \Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}

\mathcal{F} = \text{the power set of } \Omega

Let the probability of a head be p and tail be (1-p), let \omega_1 = HHH, \omega_2 = HHT, \cdots

P(\omega_1) = p^3, P(\omega_2) = P(\omega_3) = P(\omega_5) = p^2(1-p), P(\omega_4) = P(\omega_6) = P(\omega_7) = p(1-p)^2,

P(\omega_8) = (1-p)^3, P(A) = \sum_{\omega \in A} P(\omega)

b) \Omega = \{RR, RB, BR, BB\}

\mathcal{F} = \text{the power set of } \Omega

Let \omega_1 = RR, \omega_2 = RB, \cdots

P(\omega_1) = P(\omega_4) = \frac{1}{6}, P(\omega_2) = P(\omega_3) = \frac{1}{3}, P(A) = \sum_{\omega \in A} P(\omega)
```

Question 2. (No translation-invariant random integer). Show that there is no probability measure P on the integers \mathbb{Z} with the discrete σ -algebra $2^{\mathbb{Z}}$ with the translation-invariance property P(E+n)=P(E) for every event $E\in 2^{\mathbb{Z}}$ and every integer n. E+n is obtained by adding n to every element of E.

Suppose P exists. Consider picking the number 0 from \mathbb{Z} . The property P(E+n)=P(E) implies that $P(0)=P(1)=\cdots=P(Z)$, for all $Z\in\mathbb{Z}$. Since the sequence $-Z,\cdots,-1,0,1,\cdots,Z$ (let us call this sequence Z_i) is countable with every set disjoint, we have $P(\Omega)=P(\cup_i Z_i)=\sum_i P(Z_i)$ with $P(Z_i)\geq 0$. If $P(Z_i)>0$, the sum will go to infinity, thus $P(Z_i)=0$. However, this implies the sum is 0, contradicting the fact that $P(\Omega)=1$. Hence no such P exists.

Question 3. (No translation-invariant random real). Show that there is no probability measure P on the reals \mathbb{R} with the Borel σ -algebra $\mathcal{B}(\mathbb{R})$ with the translation-invariance property P(E+x)=P(E) for every event $E\in\mathcal{B}(\mathbb{R})$ and every real x. Borel σ -algebra $\mathcal{B}(\mathbb{R})$ is the σ -algebra generated by intervals $(a,b]\subset\mathbb{R}$.

Suppose P exists. Consider picking an interval E = (0, x] from \mathbb{R} . The property P(E + x) = P(E) implies that $P((0, x]) = P((x, 2x]) = \cdots = P((nx, (n+1)x])$, for $n \in \mathbb{Z}$. Let us call these intervals E_i and we notice that the sequence of E_i are countable with every set disjoint, we have $P(\Omega) = P(\cup_i E_i) = \sum_i P(E_i)$ with $P(E_i) \geq 0$. If $P(E_i) > 0$, the sum will go to infinity, thus $P(E_i) = 0$. However, this implies the sum is 0, contradicting the fact that $P(\Omega) = 1$. Hence no such P exists.

Question 4. Let $\Omega = \mathbb{R}$, $\mathcal{F} =$ all subsets of \mathbb{R} so that A or A^c is countable. P(A) = 0 in the first case and P(A) = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.

We need to show that a) \mathcal{F} is a σ -algebra and b) P is a probability measure.

a) i) \mathcal{F} is closed under complements

Let $A \in \mathcal{F}$. If A is countable, then $(A^c)^c$ is also countable, thus $A^c \in \mathcal{F}$. If A^c is countable, then $A^c \in \mathcal{F}$. This shows A and A^c are both in \mathcal{F} .

ii) \mathcal{F} is closed under countable unions

Let A_i be a countable sequence of sets in \mathcal{F} and $A = \bigcup_i A_i$. If every A_i is countable, then $\bigcup_i A_i$ is also countable and $A \in \mathcal{F}$. If there is some A_{i_0} which is uncountable, then $A_{i_0}^c$ is countable. $A^c = (\bigcup_i A_i)^c = \bigcap_i A_i^c \subset A_{i_0}^c$. Thus A^c is countable and $A \in \mathcal{F}$. This shows \mathcal{F} is a σ -algebra.

b) i) $P(\emptyset) = 0$ and $P(\Omega) = 1$

Since \emptyset is countable, $P(\emptyset) = 0$ and $P(\Omega) = P(\emptyset^c) = 1$.

ii) $P(\bigcup_i A_i) = \sum_i P(A_i)$

Let A_i be a countable sequence of disjoint sets in \mathcal{F} and $A = \bigcup_i A_i$. If every A_i is countable, so is A and $P(A) = \sum_n P(A_i) = 0$. If there is some A_{i_0} which is uncountable, then $A_{i_0}^c$ is countable and $P(A_{i_0}) = 1$. Similarly to a), A^c is countable so P(A) = 1. Since A_i is disjoint, every $A_{i \neq i_0}$ is countable, so $P(A_{i \neq i_0}) = 0$. Thus $P(A) = \sum_n P(A_i) = P(A_{i_0}) + \sum_{i \neq i_0} P(A_i) = 1$. Therefore (Ω, \mathcal{F}, P) is a probability space.