Math 175 - Week 2, Discussion 1

1. What's wrong with this proof?

Claim. n(n+1) is an odd number for every natural n.

Proof. Suppose this is true for n; we prove it for n+1. Some quick algebra shows that

$$(n+1)(n+2) = n(n+1) + 2(n+1).$$

By the induction hypothesis, n(n+1) is odd. Since 2(n+1) is clearly even, we must have that (n+1)(n+2) is odd.

2. What's wrong with this proof?

Claim. If we have n lines in the plane, no two of which are parallel, then they all go through one point.

Proof. This is clearly true for one or two lines by definition. Suppose that it is true for any set of n lines and let $S = \{\ell_1, \ell_2, \ell_3, \ell_4, \dots, \ell_{n+1}\}$ be a set of n+1 lines in the plane, no two of which are parallel. Delete the line ℓ_3 to obtain a set S' of n lines, no two of which are parallel. By the induction hypothesis, the lines in S' must all pass through some point P. In particular, ℓ_1 and ℓ_2 pass through P.

Now put ℓ_3 back and delete ℓ_4 instead to get another set S'' of n lines, no two of which are parallel. Again by the induction hypothesis, they must all pass through some point Q. In particular, ℓ_1 and ℓ_2 pass through Q. But ℓ_1 and ℓ_2 pass through P. Since two lines can pass through at most one point, we must have P = Q. But then ℓ_3 goes through P, so all the lines in S go through P.

3. What is the following sum? Prove your guess by induction.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{(n-1)n}$$
.

4. What is the following sum? Give an inductive proof and a combinatorial proof.

$$0 \cdot \binom{n}{0} + 1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + \dots + (n-1) \cdot \binom{n}{n-1} + n \cdot \binom{n}{n}$$

1

5. Prove the following identity. Try to give a combinatorial proof.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.$$

6. Prove the following identity.

$$\binom{2}{2} + \binom{3}{2} + \dots + \binom{n}{2} = \binom{n+1}{3}.$$

- 7. We select 38 even positive integers, all less than 1000. Prove that there will be two of them whose difference is at most 26.
- 8. Prove that in a group of n people, at least two will have the same number of friends in that group.
- 9. Let S be a finite set. Prove that $f: S \to S$ is injective (one-to-one) if and only if it is surjective (onto).

- 10. (If you've seen 120B) Prove that any finite integral domain is a field.
- 11. (Hard) Every element of the infinite grid $\mathbb{Z} \times \mathbb{Z}$ is colored red, green, or blue. Prove that there is a rectangle whose corners are all the same color.