Moments d'une variable aléatoire

Feuille d'exercices #13

⊗ Partie A – Espérance, variance et covariance

Exercice 1 — Étant donnés $n \in \mathbb{N}^*$ et $p \in]0,1[$, on considère une variable aléatoire X suivant une loi binomiale $\mathcal{B}(n,p)$. Calculer l'espérance de 1/(X+1).

Exercice 2 — Soient $p \in]0,1[$ et $(X_n)_{n\geqslant 1}$ une suite de de variables aléatoires indépendantes suivant toutes une loi géométrique de paramètre p. On pose, pour tout $n\geqslant 1,\ Y_n=\min\{X_1,\ldots,X_n\}$ et $Z_n=\max\{X_1,\ldots,X_n\}$.

- 1. Calculer $\mathbf{E}(Y_n)$.
- 2. Donner un équivalent de $\mathbf{E}(Z_n)$ quand $n \to +\infty$.

Exercice 3 — Soient $X_1, ..., X_n$ des variables aléatoires indépendantes, de loi uniforme sur [1, n] et Y la variable aléatoire définie par $Y = \max(X_1, ..., X_n)$.

Déterminer la loi de *Y* puis montrer que $\mathbf{E}(Y) = n - \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^n$.

Exercice 4 — Soient $p \in]0,1[$ et q=1-p. Soient X et Y des variables aléatoires à valeurs entières telles que, pour tout $(m,n) \in \mathbb{N}^2$, $\mathbf{P}(X=m,Y=n)=p^2q^{m+n}$.

- 1. Déterminer les lois marginales de X et de Y. Calculer $\mathbf{E}(X+Y)$.
- 2. Calculer $P(X \le k)$ pour $k \in \mathbb{N}$. On note $U = \max(X, Y)$ et $V = \min(X, Y)$.
- 3. Donner la loi de *U* et calculer son espérance.
- 4. Calculer $\mathbf{E}(|X Y|)$.
- 5. Déterminer la loi de V.
- 6. Déterminer la loi de (X, U) et retrouver la loi de U.
- 7. Déterminer $\mathbf{P}(X + Y = m)$ pour $m \in \mathbb{N}$.

Exercice 5 — Soient $n \in \mathbb{N}^*$, $(X_{i,j})_{1 \le i,j \le n}$ une famille de variables aléatoires réelles discrètes centrées réduites i.i.d. et M la matrice $(X_{i,j})_{1 \le i,j \le n}$. On pose $D = \det(M)$. Calculer $\mathbf{E}(D)$ et $\mathbf{V}(D)$.

Exercice 6 — Soient $(X_n)_{n \ge 1}$ une suite de variables aléatoires i.i.d, de loi donnée par $\mathbf{P}(X_n=-1)=p$ et $\mathbf{P}(X_n=1)=1-p$ avec $p \in]0,1[$.

On pose $Y_n = \prod_{k=1}^n X_k$, $a_n = \mathbf{P}(Y_n = -1)$ et $b_n = \mathbf{P}(Y_n = 1)$.

- 1. Montrer que pour $n \in \mathbb{N}^*$, $\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = \begin{bmatrix} 1-p & p \\ p & 1-p \end{bmatrix} \begin{bmatrix} a_n \\ b_n \end{bmatrix}$.
- 2. Exprimer a_n en fonction de n et p.
- 3. Calculer $\mathbf{E}(Y_n)$ et $\operatorname{cov}(Y_n,Y_{n+1})$. Déterminer $\lim_{n\to+\infty}\mathbf{E}(Y_n)$.

Exercice 7 — On considère une succession de n épreuves indépendantes, chaque épreuve conduisant à k résultats possibles noté r_1, \ldots, r_k .

Soit p_i la probabilité de réalisation du résultat r_i lors d'une épreuve donnée. On note, pour $i \in [1, k]$, X_i le nombre de réalisations du résultat r_i au cours des n épreuves.

- 1. Montrer que $V(X_1 + \cdots + X_k) = 0$.
- 2. Préciser la loi de X_i , son espérance et sa variance pour $i \in [1, k]$.
- 3. Donner de même la loi et la variance de la variable $X_i + X_j$. En déduire $cov(X_i, X_i)$ pour $i, j \in [1, k]$.
- 4. Retrouver alors le résultat de la première question.

Me Exercice 8 — Espérance conditionnelle

Soit X une variable aléatoire réelle sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$. Si A est un événement non négligeable, on définit, sous réserve d'existence :

$$\mathbf{E}(X|A) = \sum_{x \in X(\Omega)} x \mathbf{P}(X = x|A)$$

- 1. Montrer que si X admet une espérance finie, alors $\mathbf{E}(X|A)$ est bien définie. Prouver alors que $\mathbf{E}_A(X) = \frac{\mathbf{E}(\mathbb{I}_A X)}{\mathbf{P}(A)}$.
- 2. Si $X \sim \mathcal{G}(p)$ où $p \in]0,1[$, calculer $\mathbf{E}(X|X > m)$ pour $m \in \mathbb{N}$.
- 3. Montrer que si $(A_k)_{k \in \mathbb{N}}$ est un système complet d'événements et si X est d'espérance finie, alors $\mathbf{E}(X) = \sum_{k=0}^{+\infty} \mathbf{P}(A_k)\mathbf{E}(X|A_k)$.

Exercice 9 — Soit $(X_n)_{n \ge 1}$ une suite de variables aléatoires indépendantes, X_n suivant une loi de Bernoulli de paramètre 1/n.

Soit $T = \min\{n \in \mathbb{N}^*; X_n = 1, X_{n+1} = 0\}.$

- 1. Déterminer la loi de T puis calculer $\mathbf{E}(T)$ et $\mathbf{V}(T)$.
- 2. Pour $k, n \in \mathbb{N}^*$, calculer $\mathbf{P}(T = n | X_k = 1)$.

Exercice 10 — *Nombre de points fixes d'une permutation*

On munit l'ensemble \mathfrak{S}_n des permutations de [1, n] de la probabilité uniforme. Pour $\sigma \in \mathfrak{S}_n$, on note $N(\sigma)$ le nombre de points fixes de σ et pour $k \in [1, n]$, $X_k(\omega) = 1$ si k est un point fixe de ω , 0 sinon.

- 1. Donner l'espérance et la variance de X_k .
- 2. Calculer $cov(X_i, X_j)$ pour $(i, j) \in [1, n]^2$.
- 3. Exprimer N en fonction des variables X_k et calculer $\mathbf{E}(N)$ et $\mathbf{V}(N)$.

Exercice 11 — Une grenouille monte les 2n marches d'un escalier en sautant de façon équiprobable une marche ou deux. On note X_n le nombre de marches franchies après n sauts et Y_n le nombre de fois où la grenouille a sauté une marche.

- 1. Donner la loi de Y_n . En déduire la loi de X_n , son espérance et sa variance.
- 2. On note Z_n le nombre de sauts nécessaires pour atteindre ou dépasser la n-ième marche.
 - a) Exprimer la probabilité $P(Z_n = k)$ pour n > 1 et $k \ge 1$.
 - b) En déduire que $\mathbf{E}(Z_n) = \frac{1}{2} \cdot \mathbf{E}(Z_{n-1}) + \frac{1}{2} \cdot \mathbf{E}(Z_{n-2}) + 1$.
- 3. Déterminer a pour que la suite de terme général $u_n = \mathbf{E}(Z_n) na$ soit récurrente linéaire d'ordre 2.
- 4. Calculer l'espérance de Z_n puis en donner un équivalent; interpréter.

Exercice 12 — Soit $\alpha > 0$. On considère une suite $(X_n)_{n \in \mathbb{N}}$ de variables aléatoires vérifiant $X_0 = 0$ et, pour tous $n, m \in \mathbb{N}$ avec $n \le m, X_m - X_n$ suit la loi de Poisson $\mathscr{P}(\alpha(m-n))$, et est supposée de plus indépendante de X_n .

- 1. Calculer $\mathbf{E}(X_n(X_m X_n))$ et en déduire la covariance de X_n et X_m .
- 2. Donner la loi du couple (X_n, X_m) .
- 3. Déterminer la loi de X_m sachant $X_n = k$.
- 4. Donner enfin la loi de $N = \min_{k \in \mathbb{N}} \{X_k \ge 1\}$.

Exercice 13 — Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathscr{A}, \mathbf{P})$, à valeurs dans \mathbb{N} et admettant un moment d'ordre 2.

Soit
$$S_n = \sum_{k=1}^n \mathbf{P}(X < k)$$
. Montrer que $S_n \sim n$.

Exercice 14 — Soit $(X_n)_{n \ge 1}$ une suite de variables aléatoires à valeurs dans $\mathbb N$ indépendantes et identiquement distribuées.

Pour $n \in \mathbb{N}^*$, on note R_n le cardinal de $\{X_k; 1 \le k \le n\}$.

- 1. Montrer que pour tout $a \in \mathbb{N}$, $\mathbf{E}(R_n) \leq a + n\mathbf{P}(X_1 \geq a)$.
- 2. Montrer que $\mathbf{E}(R_n) = \mathbf{o}(n)$.

⊗ Partie B – Fonctions génératrices et moments d'ordre supérieur

Exercice 15 — Soit X une variable aléatoire définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$. On suppose que $X(\Omega) = \mathbb{N}$ et que :

$$\forall k \in \mathbb{N}, \quad \mathbf{P}(X = k) = ak^2 \frac{\lambda^k}{k!} \quad \text{avec} \quad (\lambda, a) \in \mathbb{R}_+^* \times \mathbb{R}$$

- 1. Sous réserve d'existence, quelle est la fonction génératrice associée à *X*?
- 2. En déduire la valeur de a puis l'espérance de X.

Exercice 16 — Soit X une v.a.d. à valeurs dans $\mathbb N$ dont la fonction génératrice est :

$$\forall s \in \left] -\sqrt{2}, \sqrt{2} \right[, \quad g_X(s) = \frac{s}{2 - s^2}$$

- 1. Déterminer la loi de X.
- 2. Reconnaître la loi de $Y = \frac{X+1}{2}$ et en déduire $\mathbf{E}(X)$ et $\mathbf{V}(X)$.

Exercice 17 — On lance indéfiniment une pièce équilibrée, et on note T la variable aléatoire égale au rang de la première apparition du motif PF.

- 1. Déterminer la loi de *T*.
- 2. Déterminer la fonction génératrice de *T*.
- 3. Calculer l'espérance et la variance de T.

Exercice 18 — Loi de Pascal

- 1. Calculer $\sum_{k=r}^{+\infty} {k \choose r} x^{k-r}$ pour tous $r \in \mathbb{N}^*$ et $x \in [-1,1]$.
- 2. On dispose d'une urne remplie de boules blanches et rouges. On procède à une infinité de tirages indépendants avec remise. On tire une boule blanche avec la probabilité p. Soient $k \in \mathbb{N}^*$ et X le temps d'apparition, fini ou infini, de la k-ième boule blanche. Donner la loi de X, sa fonction génératrice, son espérance et sa variance.

Exercice 19 — Formule de Wald

Soient N une variable aléatoire à valeurs dans \mathbb{N}^* et $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires discrètes identiquement distribuées, toutes supposées indépendantes.

On pose alors
$$S_N = \sum_{k=1}^N X_k$$
.

- 1. Montrer que S_N est une variable aléatoire discrète.
- 2. On suppose que $X_1, N \in L^1$. Prouver que $S_N \in L^1$ et:

$$\mathbf{E}(|S_N|) = \sum_{n=1}^{+\infty} \mathbf{E}(|S_N| \cdot \mathbb{1}_{[N=n]}) \quad \text{puis} \quad \mathbf{E}(S_N) = \mathbf{E}(N) \cdot \mathbf{E}(X_1)$$

3. On suppose que les variables X_n sont également à valeurs dans \mathbb{N} . Prouver que $G_{S_N} = G_N \circ G_{X_1}$ où l'on G_X la fonction génératrice d'une variable aléatoire X.

Exercice 20 — Soient $(X_n)_{n\geq 1}$ une suite de variables aléatoires suivant toutes la loi de Bernoulli de paramètre $p\in]0,1[$ et N une variable aléatoire à valeurs dans $\mathbb N$. On suppose les variables mutuellement indépendantes.

On pose
$$S = \sum_{k=1}^{N} X_k$$
 et $T = N - S$.

- 1. Exprimer, pour $(x, y) \in [-1, 1]^2$, $G(x, y) = \mathbf{E}(x^S y^T)$ à l'aide de la fonction génératrice de N.
- 2. On suppose que N suit une loi de Poisson de paramètre $\lambda > 0$. Montrer que les variables S et T sont indépendantes.
- 3. Réciproquement, prouver que si S et T sont indépendantes, alors N suit une loi de Poisson.

Exercice 21 — Urnes d'Ehrenfest

Soient deux urnes A et B comportant r boules pour la $1^{\text{ère}}$ et 2n-r pour la 2^{nde} . Un tirage consiste à choisir aléatoirement une boule et à la déplacer dans l'autre urne. On note X_k le nombre de boules contenues dans l'urne A à l'issue de k tirages.

- 1. Donner la loi de X_1 , son espérance et sa variance.
- 2. Exprimer une relation entre les lois de X_{k+1} et X_k .
- 3. On note G_k la fonction génératrice de la variable X_k . Prouver que :

$$G_{k+1}(t) = tG_k(t) + \frac{1-t^2}{2n}G'_k(t)$$

4. En déduire $\lim_{k\to+\infty} \mathbf{E}(X_k)$ et interpréter.

M Exercice 22 — Fonction caractéristique

Pour X une variable aléatoire à valeurs dans \mathbb{N} , on définit sa fonction caractéristique ϕ_X par $\phi_X(t) = \mathbb{E}\left(e^{itX}\right)$.

- 1. Montrer que la fonction ϕ_X est continue sur \mathbb{R} et 2π -périodique.
- 2. Déterminer les fonctions caractéristiques de variables aléatoires suivant une loi binomiale de paramètres (n,p), une loi géométrique de paramètre p et une loi de Poisson de paramètre $\lambda > 0$.
- 3. Soient X et Y deux variables aléatoires à valeurs dans $\mathbb N$ telles que $\phi_X = \phi_Y$. En calculant $\frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_X(t) \mathrm{e}^{-ikt} \, \mathrm{d}t$, prouver que X et Y ont même loi.
- 4. On suppose X d'espérance finie. Montrer que ϕ_X est dérivable sur $\mathbb R$ et déterminer $\phi_X'(0)$. Donner le $\mathrm{DL}_1(0)$ de $\phi_X(t)$.

Exercice 23 — Transformée de Laplace d'une variable aléatoire

Soit X une variable aléatoire discrète réelle. Sous réserve d'existence, on appelle transformée de Laplace de X l'application L_X : $t \mapsto \mathbf{E}(e^{tX})$.

- 1. On suppose dans cette question que $X \sim \mathcal{P}(\lambda)$, avec $\lambda > 0$. Calculer $L_X(t)$.
- 2. On suppose que la fonction L_X est définie sur un intervalle I =]-a, a[. Montrer qu'elle est de classe \mathscr{C}^{∞} sur I et que :

$$\forall n \in \mathbb{N}, \quad \mathbf{E}(X^n) = L_X^{(n)}(0)$$

⊗ Partie C – Inégalités probabilistes

Exercice 24 — Une pièce truquée donne *pile* avec la probabilité $p \in]0,1[$. On la lance n fois et on note F_n la fréquence d'obtention d'un *pile*.

- 1. Montrer que $V(F_n) \leq \frac{1}{4n}$.
- 2. Donner une condition suffisante sur *n* pour que $P(|F_n p| \ge 10^{-2}) \le 0.05$.

Exercice 25 — Soit *X* une variable aléatoire réelle centrée admettant un moment d'ordre 2. Montrer que $\mathbf{E}(|X|) \leq \sqrt{\mathbf{V}(X)}$.

Exercice 26 —

1. Soient X une variable aléatoire réelle et $f : \mathbb{R}_+ \to \mathbb{R}_+$ supposée strictement croissante. Montrer que pour tout a > 0,

$$\mathbf{P}(|X| \ge a) \le \frac{\mathbf{E}(f(|X|))}{f(a)}$$

2. On suppose que $X \sim \mathcal{B}(n, p)$. Montrer que pour tout $\varepsilon > 0$ et $\lambda > 0$,

$$\mathbf{P}\left(\frac{X}{n} - p > \varepsilon\right) \le \mathbf{E}\left(e^{\lambda(X - np - n\varepsilon)}\right)$$

Exercice 27 — Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires définies sur l'espace probabilisé $(\Omega, \mathscr{A}, \mathbf{P})$, indépendantes et de même loi de Bernoulli de paramètre p. On pose $Y_n = X_n X_{n+1}$ et $Z_n = Y_1 + \cdots + Y_n$ pour $n \geqslant 1$.

- 1. Déterminer la loi, l'espérance et la variance de Y_n .
- 2. Calculer la variance de Z_n .
- 3. Soit $\varepsilon > 0$. Montrer que $\mathbf{P}\left(\left|\frac{Z_n}{n} p^2\right| \ge \varepsilon\right) \xrightarrow[n \to +\infty]{} 0$.

Exercice 28 — Inégalité de Jensen

Soient $f: \mathbb{R} \to \mathbb{R}$ dérivable, de dérivée croissante et X une variable aléatoire à valeurs réelles. On suppose que X et f(X) admettent une espérance.

- 1. Montrer que pour tout réel x, $f(x) \ge f'(\mathbf{E}(X))(x \mathbf{E}(X)) + f(\mathbf{E}(X))$.
- 2. En déduire que $\mathbf{E}(f(X)) \ge f(\mathbf{E}(X))$.

Exercice 29 — *Inégalité de Chernov et marche aléatoire symétrique* Soit $(X_k)_{k \in \mathbb{N}^*}$ une famille de variables aléatoires réelles indépendantes, telles que :

$$\forall k \in \mathbb{N}^*, \quad \mathbf{P}(X_k = 1) = \mathbf{P}(X_k = -1) = \frac{1}{2}$$

Pour $n \in \mathbb{N}^*$, on pose $S_n = X_1 + \cdots + X_n$.

- 1. Soit $t \in \mathbb{R}_+$. Montrer que $\mathbf{E}(e^{tS_n}) = \mathrm{ch}^n(t)$ puis que $\mathbf{E}(e^{tS_n}) \leq \exp\left(\frac{nt^2}{2}\right)$.
- 2. Soit $\varepsilon > 0$. Montrer que pour tout $t \in \mathbb{R}_+$,

$$\mathbf{P}\left(\frac{S_n}{n} \ge \varepsilon\right) \le \exp\left(\frac{nt^2}{2} - nt\varepsilon\right) \quad \text{puis} \quad \mathbf{P}\left(\frac{S_n}{n} \ge \varepsilon\right) \le \exp\left(\frac{-\varepsilon^2 n}{2}\right)$$

3. Montrer enfin que $\mathbf{P}\left(\left|\frac{S_n}{n}\right| \ge \varepsilon\right) \le 2\exp\left(\frac{-\varepsilon^2 n}{2}\right)$.

Comparer avec l'inégalité de Bienaymé-Tchebychev.

Exercice 30 — *Loi forte des grands nombres pour des lois de Poisson* Soit $(X_n)_{n\geqslant 1}$ une suite de variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$, indépendantes et de même loi de Poisson de paramètre $\lambda > 0$.

On pose
$$S_n = \sum_{k=1}^n X_k$$
 pour $n \ge 1$.

- 1. Montrer que pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que $\mathbf{P}(S_n \ge n(\lambda + \varepsilon)) \le e^{-n\alpha}$. On appliquera l'inégalité de Markov à la variable e^{tS_n} pour $n \in \mathbb{N}^*$.
- 2. Prouver alors l'existence, pour tout $\varepsilon > 0$, de $C, \delta > 0$ tels que :

$$\mathbf{P}\left(\left|\frac{S_n}{n} - \lambda\right| \ge \varepsilon\right) \le C\mathrm{e}^{-n\delta}$$

En déduire la convergence de $\sum \mathbf{P}\left(\left|\frac{S_n}{n} - \lambda\right| \ge \varepsilon\right)$.