CS 401 - Computer algorithms, Fall 2020, CS, UIC

Programming assignment 1 Instructor: Anastasios Sidiropoulos Due date: September 15, 2020

Problem 1: A day at the beach. In this problem we will implement the greedy algorithm that we designed for the homework assignment.

A group of n people are lying on the beach. The beach is represented by the real line \mathbb{R} and the location of the i-th person is some integer $x_i \in \mathbb{Z}$. Your task is to prevent people from getting sunburned by covering them with umbrellas. Each umbrella corresponds to a closed interval I = [a, a + L] of length $L \in \mathbb{N}$, and the i-th person is covered by that umbrella if $x_i \in I$. Design a greedy algorithm for covering all people with the minimum number of umbrellas.

For example, if the input is $x_1 = 1$, $x_2 = 3$, $x_3 = 5$, and L = 2, then an optimum solution is the set of two umbrellas placed at positions 2 and 5, covering intervals [1, 3] and [4, 6].

The input consists of a sequence of positive integers. The first number is L, followed by n, followed by n numbers x_1, \ldots, x_n . The output of your algorithm should be the leftmost endpoints of the umbrellas, sorted in increasing order.

Submission Details Submit to Gradescope. Your file should be called beach.py. Input/Output is through console (e.g. simply using input and print functions). Print each sorted endpoint on a separate line. Please carefully follow these instructions because submissions will be automatically graded. All test cases will be valid. You don't need to implement checks for invalid inputs.

Example 1:	Example 2:
Input: 2 3 1 5 3	Input: 4 4 1 5 6 10
Output: 1 5	Output: 1 6