9장 정준상관분석

덕성여자대학교 정보통계학과 김 재희

Copyright (c) 2008-2011 덕성여대 김재희 All rights reserved.

9.1 서론

정준상관분석 (canonical correlation analysis):

- 두 개의 변수 집단 간의 선형성 상관 관계를 파악하고 양으로 표현하고자 할 때
- Hotelling(1935)에 의해 제안된 방법. (수학계산속도와 계산능력), (독해속도와 독해능력) 두 개 변수집단간의 상관관계 계산
- ▶ 단순상관계수 : (한 개 변수, 한 개 변수)에 대한 상관성
- ▶ 다중상관계수 : (한 개 변수, 여러 개 변수)에 대한 상관성
- ▶ 정준상관계수 : (여러 개 변수, 여러 개 변수) 에 대한 상관성

다차원에 놓인 두 변수 집단간의 관계를 저차원의 정준변수 쌍으로 전환하여 관계를 설명할 수 있으며 정준상관계수가 정준변수간의 상관성을 나타낸다.

- ▶ 정준변수와 정준상관계수를 구하는 단계
- (1) 가장 큰 상관계수를 갖는 한 쌍의 선형결합식을 결정한다.
- (2) 첫 번째로 선택된 한 쌍의 선형결합식과는 독립이면서 그 다음으로 큰 상관계수를 갖는 선형결합식을 찾는다.
- (3) 이와 같은 방법으로 먼저 찾은 선형결합식들과는 독립이면서 그 다음으로 큰 상관계수를 갖는 선형결합식을 찾는다.
- ▶ 이렇게 찾은 변수들의 선형결합식: 정준변수(canonical variables)
- ▶ 정준변수들의 상관계수를 <mark>정준상관계수(canonical correlation).</mark> 정준상관계수는 두 변수 집단 간의 연관성 정도를 나타낸다.

9.2. 정준변수와 정준상관

9.2.1 정준변수와 정준상관계수의 정의 및 개념

▶ 다중상관계수를 구하는 방법.

(한 개 변수, 여러 개 변수)에 대해 두 변수 집단간의 최대 상관성 X_1, \dots, X_p 와 Y_1 의 분산-공분산행렬, 상관행렬로 나타내면 ($Y_1 = Y$ 로 놓자.)

$$S = egin{pmatrix} S_{XX}s_{XY} \ s_{YX}s_{YY} \end{pmatrix} \qquad \qquad R = egin{pmatrix} R_{XX}r_{XY} \ r_{YX} & 1 \end{pmatrix}$$

여기서 $S_{XY}{}'=(s_{1Y},s_{2Y},...,s_{pY})$ 는 X_i 와 Y_1 의 공분산벡터 $i=1,\ldots,p$ $r_{XY}{}'=(r_{1Y},r_{2Y},...,r_{pY})$ 는 X_i 와 Y_1 의 상관계수벡터.

다중상관계수제곱:

$$R^{2} = \frac{s_{XY}' S_{XX}^{-1} s_{XY}}{s_{Y}^{2}} = r_{XY}' R_{XX}^{-1} r_{XY}$$

▶ (여러 개 변수, 여러 개 변수)에 대해 두 변수 집단간의 상관성을 나타내는 방법 각 개체에 대해 두 개의 변수 집단

$${m X}\!\!=\!(X_{\!1},...,\!X_{\!p})'$$
와 ${m Y}\!\!=\!(Y_{\!1},...,Y_{\!q})'$, $(p\leq q)$

이 관측되었다고 하자.

두 변수 집단으로 구성된 (p+q) imes 1 확률벡터 W 는

$$extbf{ extit{W}} = egin{pmatrix} X_1 \ dots \ X_p \ - \overline{} \ Y_1 \ dots \ Y_q \end{pmatrix}$$

로 표현되며

W는 다음의 모평균벡터와 모공분산행렬

$$\begin{split} E(\textit{\textbf{W}}) &= \mu_{(p+q)\times 1} = \begin{pmatrix} E(\textit{\textbf{X}}) \\ --- \\ E(\textit{\textbf{Y}}) \end{pmatrix} = \begin{pmatrix} \mu_{\textit{\textbf{X}}} \\ -\mu_{\textit{\textbf{Y}}} \end{pmatrix} \,, \\ \Sigma_{(p+q)\times (p+q)} &= E(\textit{\textbf{W}} - \mu)(\textit{\textbf{W}} - \mu)' \\ &= \begin{pmatrix} E(\textit{\textbf{X}} - \mu_{\textit{\textbf{X}}})(\textit{\textbf{X}} - \mu_{\textit{\textbf{X}}})' \mid E(\textit{\textbf{X}} - \mu_{\textit{\textbf{X}}})(\textit{\textbf{Y}} - \mu_{\textit{\textbf{Y}}})' \\ ----- \\ E(\textit{\textbf{Y}} - \mu_{\textit{\textbf{Y}}})(\textit{\textbf{X}} - \mu_{\textit{\textbf{X}}})' \mid E(\textit{\textbf{Y}} - \mu_{\textit{\textbf{Y}}})(\textit{\textbf{Y}} - \mu_{\textit{\textbf{Y}}})' \\ \end{pmatrix} \\ &= \begin{pmatrix} \Sigma_{\textit{\textbf{XX}}} \Sigma_{\textit{\textbf{XY}}} \\ \Sigma_{\textit{\textbf{YX}}} \Sigma_{\textit{\textbf{YY}}} \end{pmatrix} \end{split}$$

을 가진 모집단으로부터의 확률벡터로 생각할 수 있다.

* 상수계수벡터로서 p imes 1 벡터 a와 q imes 1 벡터 b에 대해 변수들의 선형결합식

$$U = a' X$$
 $V = b' Y$

는 일변량 확률변수가 된다.

* *U*와 *V*의 분산:

$$Var(U) = a' Cov(\mathbf{X})a = a' \Sigma_{\mathbf{X}\mathbf{X}}a$$
$$Var(V) = b' Cov(\mathbf{Y})b = b' \Sigma_{\mathbf{Y}\mathbf{Y}}b$$

* *U*와 *V*의 상관계수:

$$Corr(U, V) = \frac{a' \Sigma_{XY} b}{\sqrt{a' \Sigma_{XX} a} \sqrt{b' \Sigma_{YY} b}}$$
(9.10)

* 4(9.10)의 상관계수를 최대로 하는 상수 벡터 a, b를 찾고자 한다.

- ▶ 정준변수를 구하는 과정
- 1. 첫 번째 정준변수 쌍(first canonical variate pair) (U_1,V_1) 은 Corr(U,V)를 최대로 하며 $Var(U_1)=Var(V_1)=1$ 인 변수들의 선형결합식이다.
- 2. 두 번째 정준변수 쌍(second canonical variate pair) (U_2,V_2) 는 (U_1,V_1) 과 서로 독립이면서 Corr(U,V)를 최대로 하며 $Var(U_2)=Var(V_2)=1$ 인 변수들의 선형결합식이다. k번 째 정 준 변 수 쌍 (U_k,V_k) 는 (U_i,V_i) , i=1,...,k-1과 서 로 독립이면서 Corr(U,V)를 최대로 하며 $Var(U_k)=Var(V_k)=1$ 인 변수들의 선형결합식이다.

정리 9.1 $p\leq q$ 라고 할 때 p imes 1 확률벡터 X와 q imes 1 확률벡터 Y가 공분산행렬 $Cov(X)=m{\Sigma}_{XX}$, $Cov(Y)=m{\Sigma}_{YY}$, $Cov(X,Y)=m{\Sigma}_{XY}$ 가질 때, 상수계수벡터로서 p imes 1 벡터 a와 q imes 1 벡터 b와의 선형결합식

$$U = a' X$$
 $V = b' Y$

에 대해 최대 상관계수

$$\max{_{a,b}}Corr(U,V) = \rho_1^*$$

를 갖는 첫 번째 정준변수는

$$U_1 = e_1{}'\Sigma_{XX}^{-1/2} X$$
와 $V_1 = f_1{}'\Sigma_{YY}^{-1/2} Y$

로 주어진다. 또한 k번째 정준변수는 k=2,3,...,p일 때

$$U_{\!k} = \! e_{\,k}{}^{'} \! \varSigma_{X\!X}^{-1/2} \! X$$
와 $V_{\!k} = \! f_{\,k}{}^{'} \! \varSigma_{\,Y\!Y}^{-1/2} \! Y$

로 주어지며 i=1,2,...,k-1번째 정준변수와 서로 독립이면서

$$Corr(U_k, V_k) = \rho_k^*$$

를 최대로 한다.

여기서 $\rho_1^{*2} \ge \rho_2^2 \ge \cdots \ge \rho_p^*$ 는 $\Sigma_{XX}^{-1/2} \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{XX} \Sigma_{XX}^{-1/2}$ 의 고유값이며 해당되는 고유벡터는 $e_1,e_2,...,e_p$ 이다.

 $\Sigma_{YY}^{-1/2} \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1/2}$ 의 고유값을 크기 순으로 늘어놓을 때, 고유벡터는 $f_1, f_2, ..., f_q$ 이다. f_i 는 $\Sigma_{YY}^{-1/2} \Sigma_{YX} \Sigma_{XX}^{-1/2} e_i$ 에 비례한다.

이와 같이 생성된 정준변수에 대해 (k,l=1,2,...,p)

$$Var(U_k) = Var(V_k) = 1$$
,

$$Cov(U_k, U_l) = Corr(U_k, U_l) = 0,$$
 $k \neq l$

$$Cov(V_k, V_l) = Corr(V_k, V_l) = 0,$$
 $k \neq l$

$$Cov(U_k, V_l) = Corr(U_k, V_l) = 0,$$
 $k \neq l$

이 성립한다.

9.2.2 표준화 변수에 대한 정준변수와 정준상관계수

정준계수벡터 a_k 에 대해, $Var(X_i) = \sigma_{ii}, i = 1, 2, ..., p$

$$\begin{split} a_{\,k}{'}(\textbf{\textit{X}}\!\!-\!\boldsymbol{\mu}) &= a_{k1}(X_{\!1}\!-\!\mu_{1}) + a_{k2}(X_{\!2}\!-\!\mu_{2}) + \!\cdots \! + a_{kp}(X_{\!p}\!-\!\mu_{p}) \\ &= a_{k1}\sqrt{\sigma_{11}} \frac{(X_{\!1}\!-\!\mu_{1})}{\sqrt{\sigma_{11}}} + \!\cdots \! + a_{kp}\sqrt{\sigma_{pp}} \frac{(X_{\!p}\!-\!\mu_{p})}{\sqrt{\sigma_{pp}}} \\ &= c_{k1}Z_{\!1} + c_{k2}Z_{\!2} + \!\cdots \! + c_{kp}Z_{\!p} \end{split}$$

즉, 표준화 변수의 정준상관변수 계수는 원래 변수 X_i 로부터 구한 것에 $\sqrt{\sigma_{ii}}$ 를 곱한 형태. a_k '가 k번째 정준변수 U_k 의 계수벡터이면

표준화변수 Z의 계수벡터는 $a_k{'}D_{XX}^{1/2}$ 여기서 $D_{XX}=diag\{\sigma_{11},\sigma_{22},...,\sigma_{pp}\}$

마찬가지로, $b_k' D_{YY}^{-1/2}$ 는 두 번째 변수 집단 Y의 표준화 변수에 대한 정준계수벡터 (D_{YY} 는 변수들의 분산으로 구성된 대각행렬)

표준화 변수들에 대한 정준상관계수는 변하지 않는다.

≪예제 9.1≫ (표준화 변수들의 정준변수와 정준상관계수의 계산)

표준화 변수들로 구성된 두 개의 변수 집단 $\mathbf{Z}^{(1)} = [Z_1^{(1)}, Z_2^{(1)}]'$, $\mathbf{Z}^{(2)} = [Z_1^{(2)}, Z_2^{(2)}]'$ 에 대한 정준상관계수를 구하고자 한다.

 $Z = [Z^{(1)}, Z^{(2)}]'$ 가 공분산행렬

$$Cov(\mathbf{Z}) = \begin{pmatrix} \rho_{11} & | & \rho_{12} \\ -- & -- & -- \\ \rho_{21} & | & \rho_{22} \end{pmatrix} = \begin{pmatrix} 1.0 & 0.4 & | 0.5 & 0.6 \\ 0.4 & 1.0 & | 0.3 & 0.4 \\ -- & -- & -- \\ 0.5 & 0.3 & | 1.0 & 0.2 \\ 0.6 & 0.4 & | 0.2 & 1.0 \end{pmatrix}$$

을 갖는다고 하자.

$$\rho_{11}^{-1/2} = \begin{pmatrix} 1.0681 - 0.2229 \\ -0.2229 & 1.0681 \end{pmatrix}$$

$$\rho_{22}^{-1} = \begin{pmatrix} 1.0417 - 0.2083 \\ -0.2083 & 1.0417 \end{pmatrix}$$

이므로

$$oldsymbol{
ho}_{11}^{-1/2}oldsymbol{
ho}_{12}oldsymbol{
ho}_{22}^{-1}oldsymbol{
ho}_{21}oldsymbol{
ho}_{11}^{-1/2} = egin{pmatrix} 0.4371\ 0.2178 \ 0.2178\ 0.1096 \end{pmatrix}$$

 $ho_{11}^{-1/2}
ho_{12}
ho_{22}^{-1}
ho_{21}
ho_{11}^{-1/2}$ 의 고유값 $ho_1^{*2},
ho_2^{*2}$ 는 다음의 특성방정식

$$0 = \begin{vmatrix} 0.4371 - \lambda & 0.2178 \\ 0.2178 & 0.1096 - \lambda \end{vmatrix}$$

= $(0.4371 - \lambda)(0.1096 - \lambda) - (2.178)^2 = \lambda^2 - 0.5467\lambda + 0.0005$

으로부터 $\rho_1^{*2} = 0.5458$ 와 $\rho_2^{*2} = 0.0009$ 로 구해진다.

고유값 $\rho_1^{*2}=0.5458$ 에 해당하는 고유벡터 $e_1{'}=[0.8947,0.4466]$ 로부터

$$a_1 = \rho_{11}^{-1/2} e_1 = \begin{pmatrix} 0.8561 \\ 0.2776 \end{pmatrix}$$

을 얻는다.

정리 9.1로부터 $m{f}_i$ \propto $m{
ho}_{22}^{-1/2}m{
ho}_{21}m{
ho}_{11}^{-1/2}m{e}_i$ 이고

$$m{b}_1 = m{
ho}_{22}^{-1/2} m{f}_1$$

이므로

$$b_1 \propto \rho_{22}^{-1} \rho_{21} a_1 = \begin{pmatrix} 0.3959 \ 0.2292 \\ 0.5209 \ 0.3542 \end{pmatrix} \begin{pmatrix} 0.8561 \\ 0.2776 \end{pmatrix} = \begin{pmatrix} 0.4206 \\ 0.5443 \end{pmatrix}$$

이 된다.

$$Var(V_1) = Var(b_1' \mathbf{Z}^{(2)}) = b_1' \rho_{22} b_1 = 1$$

이 되도록 b_1 을 구한다.

벡터 (0.4026, 0.5443)'에 대해

$$b_1' \rho_{22} b_1 = (0.4206, 0.5443) \begin{pmatrix} 1.0 & 02 \\ 02 & 1.0 \end{pmatrix} \begin{pmatrix} 0.4026 \\ 0.5443 \end{pmatrix} = 0.5460$$

이므로 $\sqrt{0.5460} = 0.7389$ 로 나누어주면

$$\boldsymbol{b}_1 = \frac{1}{0.7389} \begin{pmatrix} 0.4026 \\ 0.5443 \end{pmatrix} = \begin{pmatrix} 0.5448 \\ 0.7366 \end{pmatrix}$$

으로 얻어진다.

그러므로 첫 번째 정준변수 쌍은

$$U_1 = a_1' Z^{(1)} = 0.86 Z_1^{(1)} + 0.28 Z_2^{(1)}$$

$$V_1 = b_1' Z^{(2)} = 0.54 Z_1^{(2)} + 0.73 Z_2^{(2)}$$

로 구해지며 이렇게 구한 정준변수의 상관계수인 정준상관계수는

$$\rho_1^* = \sqrt{\rho_1^{*2}} = \sqrt{0.5458} = 0.74$$

가 되며 $oldsymbol{Z}^{(1)}$ 과 $oldsymbol{Z}^{(2)}$ 의 선형결합식 중 최대 상관계수가 된다.

두 번째 정준상관계수는 $\rho_2^* = \sqrt{0.0009} = 0.03$ 로 매우 작은 값이며 두 변수 집단간의 연관성에 관해 거의 정보를 갖지 않음을 알 수 있다.

 $\Sigma_{XX}^{-1/2}\Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX}\Sigma_{XX}^{-1/2}$ 의 고유벡터를 이용하여 정준계수벡터 $a_k=\Sigma_{XX}^{-1/2}e_k$ 와 $b_k=\Sigma_{YY}^{-1/2}f_k$ 를 구할 때

계산의 편리상 $|\Sigma_{XX}^{-1}\Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX} - \rho^{*2}I| = 0$ 으부터 계산할 수도 있다.

▶ 행렬의 곱에 대한 고유값의 성질을 이용하여 보자.

$$A = \Sigma_{YY}^{-1} \Sigma_{YX}$$
, $B = \Sigma_{XX}^{-1} \Sigma_{XY}$ 라 놓으면 $BA = \Sigma_{XX}^{-1} \Sigma_{XY} \Sigma_{YY}^{-1} \Sigma_{YX}$ 와

 $AB = \Sigma_{YY}^{-1} \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$ 으로부터 고유값을 구하면 고유벡터는 다르지만 같은 고유값 $ho_1^2,
ho_2^2, \dots,
ho_s^2$ 을 얻게 될 것이며 여기서 $s = \min(p,q)$ 이다.

다음의 특성방정식(characteristic equation)

$$\begin{aligned} |\boldsymbol{\Sigma}_{\boldsymbol{X}\!\boldsymbol{X}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{X}\!\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\!\boldsymbol{Y}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{Y}\!\boldsymbol{X}} - \boldsymbol{\rho}^{*2} \boldsymbol{I}| &= 0, \\ |\boldsymbol{\Sigma}_{\boldsymbol{Y}\!\boldsymbol{Y}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{Y}\!\boldsymbol{X}} \boldsymbol{\Sigma}_{\boldsymbol{X}\!\boldsymbol{X}}^{-1} \boldsymbol{\Sigma}_{\boldsymbol{X}\!\boldsymbol{Y}} - \boldsymbol{\rho}^{*2} \boldsymbol{I}| &= 0, \end{aligned}$$

의 해로 고유값을 구하고 다음의 고유벡터방정식

$$egin{aligned} oldsymbol{\Sigma}_{ extbf{XX}}^{-1} oldsymbol{\Sigma}_{ extbf{XY}} oldsymbol{\Sigma}_{ extbf{YY}}^{-1} oldsymbol{\Sigma}_{ extbf{YX}} oldsymbol{a} = eta^{*2} a, \ oldsymbol{\Sigma}_{ extbf{YY}}^{-1} oldsymbol{\Sigma}_{ extbf{YX}} oldsymbol{\Sigma}_{ extbf{XX}}^{-1} oldsymbol{\Sigma}_{ extbf{XY}} oldsymbol{b} = eta^{*2} b, \end{aligned}$$

으로부터 고유벡터를 구한 후 정준계수벡터는 a, b를 계산하면 된다. 일반적으로 행렬 $\Sigma_{XX}^{-1}\Sigma_{XY}\Sigma_{YY}^{-1}\Sigma_{YX}$ 과 $\Sigma_{YX}^{-1}\Sigma_{YX}\Sigma_{XX}^{-1}$ 는 대칭이 아니다.

9.3 표본정준변수와 표본정준상관계수

n 개의 확률표본으로부터 관측된 (p+q) imes 1 확률벡터 W는

$$X = (X_1, ..., X_p)$$
'와 $Y = (Y_1, ..., Y_q)$ ', $(p \le q)$

로 구성되어 관측되었다고 하자.

두 변수 집단으로 구성된 $(p+q) \times 1$ 확률벡터 W는

$$extbf{ extit{W}} = egin{pmatrix} X_1 \ dots \ X_p \ - \overline{} \ Y_1 \ dots \ Y_q \end{pmatrix}$$

일 때 W의 표본평균벡터는

$$\overline{W} = \begin{pmatrix} \overline{X} \\ -\overline{Y} \end{pmatrix}$$

여기서
$$\overline{X} = \frac{1}{n} \sum_{j=1}^{n} X_j$$
, $\overline{Y} = \frac{1}{n} \sum_{j=1}^{n} Y_j$ 이다.

표본공분산행렬

$$oldsymbol{S}_{(p+q) imes(p+q)} = egin{pmatrix} oldsymbol{S}_{X\!X} oldsymbol{S}_{X\!Y} \ oldsymbol{S}_{Y\!X} oldsymbol{S}_{Y\!Y} \end{pmatrix}$$

여기서
$$S_{XX} = \frac{1}{n-1} \sum_{j=1}^{n} (\boldsymbol{X}_{j} - \overline{\boldsymbol{X}}) (\boldsymbol{X}_{j} - \overline{\boldsymbol{X}})'$$

$$S_{YY} = \frac{1}{n-1} \sum_{j=1}^{n} (\boldsymbol{Y}_{j} - \overline{\boldsymbol{Y}}) (\boldsymbol{Y}_{j} - \overline{\boldsymbol{Y}})'$$

$$S_{XY} = \frac{1}{n-1} \sum_{j=1}^{n} (\boldsymbol{X}_{j} - \overline{\boldsymbol{X}}) (\boldsymbol{Y}_{j} - \overline{\boldsymbol{Y}})'$$

상수계수벡터 $p \times 1$ 벡터 a와 $q \times 1$ 벡터 b에 대해 변수들의 선형결합식(일변량 확률변수)

$$\hat{U} = a' X$$
 $\hat{V} = b' Y$

 $\hat{\it U}$ 와 $\hat{\it V}$ 의 분산 추정량 :

$$\begin{split} \widehat{Var}(\,\widehat{U}) &= a'\,\widehat{Cov}(\textbf{\textit{X}})a = a'\textbf{\textit{S}}_{\textbf{\textit{XX}}}a \\ \widehat{Var}(\,\widehat{V}) &= b'\,\widehat{Cov}(\,\textbf{\textit{Y}})b = b'\textbf{\textit{S}}_{\textbf{\textit{YY}}}b \end{split}$$

 $\hat{\it U}$ 와 $\hat{\it V}$ 의 상관계수 :

$$r = Corr(\widehat{U}, \widehat{V}) = \frac{a'S_{XY}b}{\sqrt{a'S_{XX}a}\sqrt{b'S_{YY}b}}$$

모공분산행렬 대신 추정량인 표본공분산행렬을 이용해 표본정준변수와 표본정준상관계수를 구하게 되며 이는 아래의 정리 9.2에서 설명된다.

정리 9.2 $p \leq q$ 이며, $p \times 1$ 확률벡터 X와 $q \times 1$ 확률벡터 Y가 표본공분산행렬 $S_{XX}, S_{YY}, S_{XY}, S_{YX}$ 를 가질 때 첫 번째 표본정준상관변수는

$$\widehat{U}_{\!1} \! = \! e_{1}{}' S_{XX}^{-1/2} X$$
 아 $\widehat{V}_{\!1} \! = \! f_{1}{}' S_{YY}^{-1/2} Y$

로 주어진다. 또한 k번째 표본정준상관변수는 k=2,3,...,p일 때

$$\widehat{U}_{\!k}\!\!=\!oldsymbol{e}_{k}{}^{'}oldsymbol{S}_{oldsymbol{X}oldsymbol{X}}^{-1/2}oldsymbol{X}$$
와 $\widehat{V}_{k}\!\!=\!oldsymbol{f}_{k}{}^{'}oldsymbol{S}_{oldsymbol{Y}oldsymbol{Y}}^{-1/2}oldsymbol{Y}$

로 주어지며 i=1,2,...,k-1번째 정준상관변수와 서로 독립이면서

$$Corr(\widehat{U}_k, \widehat{V}_k) = \widehat{\rho_k^*}$$

여기서 $ho_1^{\widehat{st}_2}$ \geq $ho_2^{\widehat{2}}$ \geq \cdots \geq $ho_p^{\widehat{st}}$ 는 $m{S}_{m{X}m{X}}^{-1/2}m{S}_{m{X}m{Y}}m{S}_{m{Y}m{Y}}^{-1}m{S}_{m{Y}m{X}}m{S}_{m{X}m{X}}^{-1/2}$ 의 고유값이며

해당 고유벡터는 $\hat{e_1},\hat{e_2},...,\hat{e_p}$ 이다. $S_{YY}^{-1/2}\,S_{YX}^{-1}S_{XY}^{-1}S_{YY}^{-1/2}$ 의 고유벡터 $\hat{f_k}$ 는

$$\hat{f_k} = (1/\hat{
ho_k^*}) S_{YY}^{-1/2} S_{YX} S_{XX}^{-1/2} \hat{e_k}$$

▶ 표본공분산행렬에 정준상관분석을 적용하여 보자.

 $A=S_{YY}^{-1}S_{YX}$, $B=S_{XX}^{-1}S_{XY}$ 라 놓고 $BA=S_{XX}^{-1}S_{XY}S_{YY}^{-1}S_{YX}$ 와 $AB=S_{YY}^{-1}S_{YX}S_{XX}^{-1}S_{XY}$ 으로부터 고유값을 구하면 고유벡터는 다르지만 같은 고유값 $r_1^2, r_2^2, \dots, r_s^2$ 을 얻게 된다. 여기서 $s=\min(p,q)$ 이다.

다음의 특성방정식(characteristic equation)

$$|S_{XX}^{-1}S_{XY}S_{YY}^{-1}S_{YX}-r^2I|=0,$$

 $|S_{YY}^{-1}S_{YX}S_{XX}^{-1}S_{XY}-r^2I|=0$

의 해(solution)로 고유값을 구하고 다음의 고유벡터방정식

$$S_{XX}^{-1}S_{XY}S_{YY}^{-1}S_{YX}a = r^2a,$$
 (9.33)
 $S_{YY}^{-1}S_{YX}S_{XX}^{-1}S_{XY}b = r^2b$

으로부터 고유벡터를 구한 후 정준계수벡터 a와 b를 계산하면 된다.

$$lacktriangleright$$
 표본상관행렬 $m{R}_{(p+q) imes(p+q)} = egin{pmatrix} m{R}_{XX}m{R}_{XY} \ m{R}_{YX}m{R}_{YY} \end{pmatrix}$

을 이용할 경우에도 마찬가지 방법으로 정준변수와 정준계수를 구할 수 있다.

일변량 Y에 대해 $R^2 = r_{XY}{}'R_{XX}^{-1}r_{XY}$ 는 다변량 $_Y$ 에 대해 $R_{YY}^{-1}R_{YX}R_{XX}^{-1}R_{XY}$ 로 확장된다.

$$|R_{XX}^{-1}R_{XY}R_{YY}^{-1}R_{YX} - r^2I| = 0,$$

 $|R_{YY}^{-1}R_{YX}R_{YX}^{-1}R_{XY} - r^2I| = 0$

의 해로 고유값을 구하고 다음의 고유벡터방정식

$$R_{XX}^{-1}R_{XY}R_{YY}^{-1}R_{YX}c = r^2c,$$

 $R_{YY}^{-1}R_{YX}R_{XX}^{-1}R_{XY}d = r^2d$

으로부터 고유벡터를 구한 후 정준계수벡터는 a와 b를 계산하면 된다. 4(9.33)의 a,b와는

$$c = D_X a$$
 그리고 $d = D_Y b$

성립한다. 여기서 $m{D}_{m{X}} = diag(s_{X_1}, s_{X_2}, ..., s_{X_p})$, $m{D}_{m{Y}} = diag(s_{Y_1}, s_{Y_2}, ..., s_{Y_q})$ 이다.

9.4 정준변수에 대한 해석 및 특성

- ▶ 정준변수는 인공적으로 만들어 낸 변수이므로 인자나 주성분과 같은 절대적 의미를 부여하기 는 힘들며 관심있는 변수 집단에 대해 연관성을 알고자 할 때 주로 이용할 수 있다.
- ▶ 변수를 표준화 하더라도 정준상관계수는 변하지 않으므로 단위의 표준화와 해석을 위해서는 표준화 변수들에 대한 정준상관분석을 권장한다.

▶ 정준변수 특성

- (1) 정준상관계수는 변수들의 척도변환에 불변이다(scale invariant).
- (2) 첫 번째 정준상관계수 ρ_1^* 는 두 변수 집단간의 최대 상관계수이며 두 변수 집단에서 단순상관계수 또는 다중상관계수를 구할 때 ρ_1^* 를 넘지 않는다.

- ▶ 정준변수에 대한 해석을 할 때는 다음과 같은 측면을 이용하여 설명할 수 있도록 한다.
- (1) 표준화된 계수: 정준계수는 정준상관계수에 각 변수가 기여하는 정도를 나타낸다.
- (2) 정준변수 $V_j = b_j' Y$ 와 q개 변수 $Y_1, ..., Y_q$ 의 (표본)상관관계는 $R_{YY}d_j$ 로 나타난다. 여기서 R_{YY} 는 Y의 상관행렬이고 d_j 는 식(9.36)에서 정의된 바와 같으며 $d_j' R_{YY}d_j = 1$ 을 만족한다.

정리 9.3 변수 Y_j 와 정준변수 $V_1,...,V_s$ 와의 상관계수의 가중합은 $R^2_{Y_j|X}$ 즉 Y_j 와 X의 다중상관계수의 제곱으로 나타난다. 즉

$$\sum_{i=1}^{s} r_{Y_j,\,U_i}^2 r_i^2 = R_{Y_j\,|_{m{X}}}^2$$

여기서 r_j 는 j 번째 정준상관계수이다. 변수 X_j 와 정준변수 $U_1,...,U_s$ 에 대해서도 마찬가지로 성립한다.

$$\sum_{i=1}^{s} r_{X_{j}, V_{i}}^{2} r_{i}^{2} = R_{X_{j} \mid Y}^{2}$$

(3) 각 변수와 정준변수와의 상관성:

정리 9.3에서와 같이 변수 Y_j 와 정준변수 $U_1,...,U_s$ 와의 상관계수의 가중합은 $R_{Y_j|X}^2$ 즉 Y_j 와 X의 다중상관계수의 제곱으로 나타난다. 즉 변수 Y_j 와 정준변수 $U_1,...,U_s$ 의 상관계수는 종속변수 Y_j 를 설명변수벡터 X의 회귀식으로 구했을 때의 다중상관계수형태로 나타난다. 그러나 Y_j 가 X로 구성된 정준변수 $U_1,...,U_s$ 에 어떻게 기여하는지는 나타내지 못한다.

9.5 상관성에 대한 검정

정준상관분석은 두 변수 집단 간의 연관성에 대해 설명하고자 하는 것이므로 두 변수 집단 간에 상관성이 존재할 때만 의미있는 분석이 된다.

$$H_0: \Sigma_{XY} = 0$$
 에 대해 $H_1: \Sigma_{XY} \neq 0$

즉 H_0 가 사실이면 X와 Y간에 연관성이 없으며 구해지는 정준상관계수 $r_1, r_2, ..., r_s$ 는 통계적인 의미가 없다. 다음의 검정통계량

$$A_1 = \frac{|\mathbf{S}|}{|\mathbf{S}_{YY}||\mathbf{S}_{XX}|} = \frac{|\mathbf{R}|}{|\mathbf{R}_{YY}||\mathbf{R}_{XX}|} = \prod_{i=1}^s (1 - r_i^2)$$

은 H_0 하에서 $\Lambda_{p,q,n-1-q}$ 분포를 따르므로 $\Lambda_1 \leq \Lambda_{p,q,n-1-q}(\alpha)$ 이면 H_0 를 기각한다.

근사적으로
$$\chi^2 = -\left[n - \frac{1}{2}(p+q+3)\right] \ln \varLambda_1$$

는 자유도가 pq인 카이제곱분포를 따르므로 $\chi^2 \ge \chi^2_{pq}(\alpha)$ 이면 H_0 를 기각한다.

《예제 9.2》 《예제 9.1》의 데이터가 n=30에 대해 얻은 결과라 하자. R을 이용하여 두 변수 집단 간에 상관성 존재 여부에 대한 검정을 하고자 한다.

 $H_0: \Sigma_{XY} = 0$ 에 대해 $H_1: \Sigma_{XY} \neq 0$, 검정통계량은

$$A_1 = \frac{|\mathbf{R}|}{|\mathbf{R}_{\mathbf{YY}}||\mathbf{R}_{\mathbf{XX}}|} = \prod_{i=1}^{s} (1 - r_i^2) = (1 - 0.0009)(1 - 0.5458) = 0.4538$$

이고
$$\Lambda_1=0.4538 \leq \Lambda_{2,2,27}(0.05)=0.699$$
이므로 H_0 를 기각한다.

9.6 R을 이용한 정준상관분석

 \ll 예 9.2 \gg [표 9.1]이용하여 (Y_1,Y_2) 와 (X_1,X_2,X_3) 의 정준상관계수와 정준변수를 구하자.

설명변수: $X_1 =$ 온도, $X_2 =$ 농도, $X_3 =$ 시간

반응변수: $Y_1 =$ 변화하지 않고 남은 양, $Y_2 =$ 반응 후 생성된 양.

▶표 9.1 화학반응실험 결과 화학공정 자료

번.	<u>ই Y_1</u>	Y_2	X_1	X_2	X_3	
1	41.5	45.9	162	23.0	3.0	
2	33.8	53.3	162	23.0	8.0	
3	27.7	57.5	162	30.0	5.0	
4	21.7	58.8	162	30.0	8.0	
5	19.9	60.6	172	25.0	5.0	
6	15.0	58.0	172	25.0	8.0	
7	12.2	58.6	172	30.0	5.0	
8	4.3	52.4	172	30.0	8.0	
9	19.3	56.9	167	27.5	6.5	
10	6.4	55.4	177	27.5	6.5	
11	37.6	46.9	157	27.5	6.5	
12	18.0	57.3	167	32.5	6.5	

- R에서 정준상관분석: cancor() 함수 이용.
- * CCA 패키지를 사용할 경우: cc() 함수 이용.
- * yacca 패키지를 사용하는 경우 : cca() 함수.

[결과 9.1](2)에서는 첫 번째 정준상관계수는 0.990이고 두 번째 정준상관계수는 0.0929로 첫 번째 정준상관계수값이 아주 높은 편임을 알 수 있다.

첫 번째 정준변수 쌍:

$$\begin{aligned} u_1 = &-0.1356X_1 - 0.1212X_2 - 0.1585X_3 \\ v_1 = &0.0832\,Y_1 - 0.0076\,Y_2 \end{aligned}$$

두 번째 정준변수 쌍:

$$\begin{aligned} u_2 &= 0.0682 X_1 - 0.3102 X_2 + 0.1735 X_3 \\ v_2 &= -0.0633 \, Y_1 - 0.2627 \, Y_2 \end{aligned}$$

[프로그램 9.1] 화학공정 자료에 대한 정준상관분석

```
chem=read.csv("C:/data/chem.csv", header=T)
chem ; attach(chem)
n=dim(chem)[[1]]; n
y=chem[,2:3]
x=chem[,4:6]
library(CCA)
matcor(x,y) # correlation matrix
cc1 \leftarrow cc(x,y)
cc1
cc2<-comput(x,y cc1)
cc2[3:6] # display canonical loadings
sd<-sd(x)
s1<-diag(sd) # diagonal matrix of x sd's
s1 %*% cc1$xcoef # standardized x canonical coefficients
```

```
sd < -sd(y)
s2<-diag(sd) # diagonal matrix of y sd's</pre>
s2 %*% cc1$ycoef # standardized y canonical coefficients
u1=cc1$scores$xscores[.1]
v1=cc1$scores$yscores[,1]
 plot(u1, v1, pch=18, main="first canonical plot") # 그림 9.1
u2=cc1$scores$xscores[.2]
v2=cc1$scores$yscores[,2]
 plot(u2, v2, pch=15, main="second canonical plot") # 그림 9.2
plt.cc(cc1, type="v",var.label=TRUE) # for variales 그림 9.3
plt.cc(cc1, type="i", var.label=TRUE) # for individuals 그림 9.4
mtc=matcor(x,y)
img.matcor(mtc,type=1) # images of the correlation matrices
img.matcor(mtc,type=2) # 그림 9.5
```

[결과 9.1] 정준상관분석 결과 (1)

```
> matcor(x,y) # correlation matrix
> n=dim(chem)[[1]]
                        $Xcor
                                  x1
                                             x2
> n
                                                        x3
[1] 12
                       x1 1.00000000 0.09857281 0.09505864
                       x2 0.09857281 1.00000000 0.17178695
> y=chem[.2:3]
> x=chem[,4:6]
                       x3 0.09505864 0.17178695 1.00000000
                        $Ycor
 library(CCA)
                                  y1
                                             y2
                       y1 1.0000000 -0.5822212
                       y2 -0.5822212 1.0000000
                        $XYcor
                                   \mathbf{x}1
                                               x2
                                                           x3
                                                                      y1
                                                                                 y2
                       x1 1.00000000 0.09857281
                                                   0.09505864 -0.8698175 0.5009080
                       x2 0.09857281 1.00000000
                                                   0.17178695 -0.4872731 0.3601848
                       x3 0.09505864 0.17178695 1.00000000 -0.3892286 0.2243497
                       y1 -0.86981747 -0.48727311 -0.38922862 1.0000000 -0.5822212
                       y2 0.50090799 0.36018482 0.22434975 -0.5822212 1.0000000
```

[결과 9.1] 정준상관분석 결과 (2)

[결과 9.1] 정준상관분석 결과 (3)

- > cc2=comput(x,y, cc1) # compute canonical loadings
- > cc2[3:6] # correlations between variables and canonical variates.

\$corr.X.xscores [,1] [,2] x1 -0.8779565 0.3440815 x2 -0.4946925 -0.8609206 x3 -0.3928780 0.1512975 \$corr.Y.xscores [,1] [,2] y1 0.9896768 -0.002686152 y2 -0.5994987 -0.073894562

```
$corr.X.yscores
[,1] [,2]
x1 -0.8692570 0.03194806
x2 -0.4897907 -0.07993671
x3 -0.3889850 0.01404801
$corr.Y.yscores
[,1] [,2]
y1 0.9995814 -0.02892994
y2 -0.6054984 -0.79584653
```

[결과 9.1](4)에서는 표준화 정준 변수를 보여준다.

첫 번째 표준화 정준변수 쌍:

$$\begin{aligned} u_{1s} = & -0.8175 X_1 - 0.3709 X_2 - 0.2515 X_3 \\ v_{1s} = & 0.9789 \, Y_1 - 0.0356 \, Y_2 \end{aligned}$$

두 번째 표준화 정준변수 쌍:

$$\begin{split} u_{2s} &= 0.4114 X_1 - 0.9487 X_2 + 0.2752 X_3 \\ v_{2s} &= -0.7448 \, Y_1 - 1.2295 \, Y_2 \end{split}$$

[결과 9.1] 정준상관분석 결과 (4): 표준화 정준 변수

```
> # standardized x canonical coefficients
> sd=sd(x)
> s1=diag(sd) # diagonal matrix of x sd's
> s1 %*% cc1$xcoef
          [,1] \qquad [,2]
[1,] -0.8174920 0.4114452
[2,] -0.3709141 -0.9487483
[3,] -0.2514501 0.2751686
> # standardized y canonical coefficients
> sd=sd(y)
> s2=diag(sd) # diagonal matrix of y sd's
> s2 %*% cc1$ycoef
           [,1]
                      [.2]
[1,] 0.97886436 -0.7447426
[2,] -0.03558284 -1.2294514
```


[그림 9.1] 첫 번째 정준 변수 그래프 [그림 9.2] 두 번째 정준 변수 그래프

[그림 9.3] 첫 번째 정준 변수 그래프 [그림 9.4] 두 번째 정준 변수 그래프

[그림 9.3]은 2차원 정준변수 차원에서 각 변수의 위치를 나타내며 [그림 9.4]는 2차원 정준변수 차원에서 각 개체의 위치를 보여준다.

[그림 9.5] 두 행렬내 행렬간 상관성 이미지 그림