DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120

DP - LONGEST COMMON SUBSEQUENCE

AGENDA

- Longest common subsequence
 - Problem definition
 - Building a model using abstraction
 - Solve the problem using DP

ELEMENTS OF DP BRIEF REVIEW

- The four elements of dynamic programming
 - Two key ingredients
 - Optimal substructure
 - Overlapping subproblems
 - Reconstructing a solution
 - Memoization

SIMILARITY OF DNA STRANDS

- A strand of DNA consists of a string of molecules called bases.
 - Adenine, Guanine, Cytosine, and Thymine.
- Representing each of these bases by its initial letter, we can express a strand of DNA as a string over the finite set $\{A, C, G, T\}$.

- For example, below are two DNA strands of two organism.
 - $S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$
 - $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$

SIMILARITY OF DNA STRANDS APPLICATION

- In medical/biological studies, people often need to compare two DNA strands to determine how "similar" they are.
- We might say two DNA strands are similar if
 - one is the substring of the other, or
 - the number of changes needed to turn one into the other is small, or
 - there exist a third strand S_3 in which the bases in S_3 appear in each of S_1 and S_2 .
 - The bases must appear in the same order, but not necessarily consecutively.

We formalize this notation of similarity as the longest-common-subsequence (LCS) problem.

SIMILARITY OF DNA STRANDS APPLICATION (CONT'D)

- Consider the LCS previously defined.
 - There exist a third strand S_3 in which the bases in S_3 appear in each of S_1 and S_2 .
 - The bases must appear in the same order, but not necessarily consecutively.
- Identify the S_3 of the two DNA strands (below).
 - $-S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$
 - $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$

LCS PROBLEM DEFINITION THE SUBSEQUENCE

- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a **subsequence** of X if there exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $x_{i_j} = z_j$ (the subscript of x_{i_j} is i_j).
- Example
 - Consider two sequences $Z = \langle B, C, D, B \rangle$ and $X = \langle A, B, C, B, D, A, B \rangle$.
 - Z is a subsequence of X as there exists a strictly increasing sequence of indices of X < 2, 3, 5, 7 > 1 that for all j = 1, 2, ..., k we have $x_{i_j} = z_j$.
 - In this example, k = 4, $i_1 = 2$, $i_2 = 3$, $i_3 = 5$, $i_4 = 7$
 - $x_{i_1} = x_{\underline{2}} = \underline{B}$, $x_{i_2} = x_{\underline{3}} = \underline{C}$, $x_{i_3} = x_{\underline{5}} = \underline{D}$, $x_{i_4} = x_{\underline{7}} = \underline{B}$.

LCS PROBLEM DEFINITION THE SUBSEQUENCE PRACTICE

- Given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a **subsequence** of X if there exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $x_{ij} = z_j$ (the subscript of x_{ij} is i_j).
- Consider a sequence $X = \{A, B, D, D, D, C, D, E, F, D, C, C, B\}$. Suppose Z is a subsequence of X with corresponding index sequence < 1, 4, 6, 8, 12 >.
 - -k = 5 $-\langle i_1, i_2, ..., i_k \rangle = \langle 1, 4, 6, 8, 12 \rangle$. $-Z = \langle A, D, C, E, C \rangle$.

LCS PROBLEM DEFINITION THE COMMON SUBSEQUENCE

- Given two sequences X and Y, we say that a sequence Z is a **common subsequence** of X and Y if Z is a subsequence of both X and Y.
- Example
 - Consider two sequences: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
 - Sequence < B, C, A > is **a common subsequence** of X and Y.

THE PROBLEM DEFINITION OF THE LONGEST COMMON SUBSEQUENCE

• In the longest-common-subsequence (LCS) problem, we are given two sequences

$$X = \langle x_1, x_2, ..., x_m \rangle$$
 and $Y = \langle y_1, y_2, ..., y_n \rangle$ and

wish to find a **maximum** length **common subsequence** of X and Y.

• In the problem definition,

- X.length =_____, and the elements of sequence X are denoted by **lowercase** x.
- Y.length =_____, and the elements of sequence Y are denoted by **lowercase** y.
- The lengths of X and Y are not necessarily the same.

THE LONGEST-COMMON-SUBSEQUENCE PROBLEM

- Example
 - Consider two sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
 - List the common subsequences of X and Y.

```
< A, B >, < A, B, A > (2)

< B, C >, < B, C, B >, < B, C, B, A >, < B, C, A >, < B, C, A, B >, < B, C, B > (5)

< C, B >, < C, B, A >, < C, A >, < C, A, B > (4)

< B, D >, < B, D, A >, < B, D, A, B >, < B, A >, < B, A, B >, < B, B > (6)

< A, B > (1)
```

- The **longest common subsequence** of X and Y is $Z = \langle B, C, B, A \rangle$, or $Z = \langle B, D, A, B \rangle$.

SOLVING THE LCS PROBLEM

- The problem description has the phrase **maximum length**, which indicates this is an **optimization problem**.
 - We shall now begin the steps of developing a DP.
 - We will find the two key ingredients of DP along the way.

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - ☐ Two key ingredients
 - ☐ Optimal substructure
 - ☐ Overlapping subproblems

OPTIMAL SUBSTRUCTURE NOTATIONS

- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequence.
- Let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
- Given a sequence $X=< x_1, x_2, ..., x_m>$, we define the ith prefix of X, for $i=\mathbf{0},1,...,m$, as $X_i=< x_1, x_2, ..., x_i>$
 - $-X_0$ is the empty sequence.

OPTIMAL SUBSTRUCTURE NOTATIONS PRACTICE

- Consider the two sequences $P = \langle A, B, C, B, D, A, B \rangle$ and $Q = \langle B, D, C, A, B \rangle$.
- Sequence $Z = \langle B, D, A, B \rangle$ is an LCS of P and Q.
- Fill out the following blanks.
 - The sequence of indexes of P corresponding to Z is < 2, 5, 6, 7 > or < 4, 5, 6, 7 >
 - The sequence of indexes of Q corresponding to Z is <1,2,4,5>

$$-p_{3} = C$$
, $p_{6} = A$,

$$- P_3 = \underline{\langle A, B, C \rangle}, P_6 = \underline{\langle A, B, C, B, D, A \rangle},$$

$$- q_4 = A$$
, $Q_4 = < B, D, C, A >$, $Q_0 = \emptyset$

DISCOVERING THE OPTIMAL SUBSTRUCTURE

General steps

- Step I:A solution to the problem consists of making a choice.
- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- **Step 4**: Show the solutions to the subproblems used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 1

- **Step I**:A solution to the problem consists of making a choice.
- Consider the two pairs of sequences shown below.
 - Pair #1: $P = \langle A, B, C, B, D, A, B \rangle$ and $Q = \langle B, D, C, A, B \rangle$.
 - Pair #2: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
- Observations
 - Pair #I: Both sequences end in the same letter B.
 - Pair #2:The two sequences, X and Y, end in different letters.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 1 (CONT'D)

- **Step I**:A solution to the problem consists of making a choice.
- Consider the two pairs of sequences shown below.
 - Pair #I: $P = \langle A, B, C, B, D, A, B \rangle$ and $Q = \langle B, D, C, A, B \rangle$. \Longrightarrow A possible LCS is $\langle \cdots, \dots, \cdots, B \rangle$
 - Pair #2: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$.
- Making a choice
 - Pair #1: Obviously, the ending letter B is included in an LCS of P and Q.
 - Pair #2: Use Z to denote an LCS of X and Y. Either Z and X do not end in the same letter, or Z and Y do not end in the same letter.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 2

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
- Unlike the rod-cutting problem or the matrix-chain multiplication problem, there is not a one-size-fits-all characterization the problem.
- We need to characterize the problem case-by-case.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 2 (CONT'D)

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
- Case I: $P = \langle A, B, C, B, D, A, B \rangle$ and $Q = \langle B, D, C, A, B \rangle$, $p_7 = q_5 = B$.
 - Suppose that we are given the choice that including $p_7 = q_5 = B$ in an LCS of P and Q.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 2 (CONT'D)

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
- Case 2: $X = \langle A, B, C, B, D, A, X \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, where $x_7 \neq y_6$.
 - Use $Z = \langle z_1, z_2, ..., z_k \rangle$ to denote an LCS of X and Y, where
 - Suppose that we are given the choice that x_7 is not included in the LCS Z.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 2 (CONT'D)

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
- Case 3: $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, where $x_7 \neq y_6$.
 - Use $Z = \langle z_1, z_2, ..., z_k \rangle$ to denote an LCS of X and Y, where
 - Suppose that we are given the choice that y_6 is not included in the LCS Z.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 3

• **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.

• Case I:
$$P = \langle A, B, C, B, D, A, B \rangle$$
 and $Q = \langle B, D, C, A, B \rangle$, $p_7 = q_5 = B$.

- Suppose that we are given the choice that including $p_7 = q_5 = B$ in an LCS of P and Q.
- The subproblem can be formulated as finding an LCS of

•
$$\langle A, B, C, B, D, A, R \rangle$$
 or $P_{7-1} = P_6$ and

•
$$< B, D, C, A, R > \text{or } Q_{5-1} = Q_4$$

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 3 (CONT'D)

• **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.

- Case 2: $X = \langle A, B, C, B, D, A, X \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, where $x_7 \neq y_6$.
 - Use $Z = \langle z_1, z_2, ..., z_k \rangle$ to denote an LCS of X and Y, where
 - Suppose that we are given the choice that x_7 is not included in the LCS Z.
 - The subproblem can be formulated as finding an LCS of
 - $\langle A, B, C, B, D, A, X \rangle$ or $X_{7-1} = X_6$ and
 - $\langle B, D, C, A, B, A \rangle$ or Y

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 3 (CONT'D)

• **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.

• Case 3:
$$X = \langle A, B, C, B, D, A, B \rangle$$
 and $Y = \langle B, D, C, A, B, A \rangle$, where $x_7 \neq y_6$.

- Use $Z = \langle z_1, z_2, ..., z_k \rangle$ to denote an LCS of X and Y, where
- Suppose that we are given the choice that y_6 is not included in the LCS Z.
- The subproblem can be formulated as finding an LCS of
 - $\langle A, B, C, B, D, A, B \rangle$ and
 - $\langle B, D, C, A, B, X \rangle$ or $Y_{6-1} = Y_5$

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 3 (CONT'D)

• **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.

Characterization

- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case I: If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - Case 2: If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
 - Case 3: If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4

- **Step 4**: Show the solutions to the subproblem used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
 - Prove the correctness of the characterizations of the three cases.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4 CASE 1

- **Step 4**: The proof of the optimality of the solution to the subproblem.
- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case I: If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - The optimality of the characterization is two-fold
 - $z_k = x_m = y_n$
 - Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4 CASE 1 - 1

- Step 4: The proof of the optimality of the solution to the subproblem.
- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case I: If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - Proof of $z_k = x_m = y_n$, i.e., the ending letter of the LCS Z is also the ending letter of X and Y.
 - Assume that _____. Assuming the opposite of the goal
 - ii. We can *append* ______ to ____ to create a new LCS Z', and Z'. length = _____.
 - iii. Obviously, Z'. $length ____ k = Z$. length, contradicting the supposition that $___$ is an LCS of X and Y.
 - iv. Therefore, ______.

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4 CASE 1 - 2

- Step 4: The proof of the optimality of the solution to the subproblem.
- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case I: If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .

Assuming the opposite of the goa

- i. Assume that ______
- ii. There exist an LCS of X_{m-1} and Y_{n-1} , denoted by $W, W. length > _____.$
- iii. We can construct a new LCS Z' by appending _____ to ___, Z'. length = _____ +1.
- iv. Obviously, Z'. $length ___ k = Z$. length, contradicting the supposition that ____ is an LCS of X and Y.
- v. Therefore, _____

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4 CASE 2

- Step 4: The proof of the optimality of the solution to the subproblem.
- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case 2: If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.

Assuming the opposite of the goal

- i. Assume that _____
- ii. There exist an LCS of X_{m-1} and Y, denoted by W.
- iii. Then W itself is also a **common sequence** of _____ and ____.
- iv. Obviously, $W.length > ___$, contradicting the supposition that $____$ is an LCS of X and Y.
- v. Therefore, _____

DISCOVERING THE OPTIMAL SUBSTRUCTURE STEP 4 CASE 3

- Step 4: The proof of the optimality of the solution to the subproblem.
- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case 3: If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Assuming the opposite of the goal

- i. Assume that _______.
- ii. There exist an LCS of _____ and ____, denoted by W.
- iii. Then W itself is also a **common sequence** of _____ and ____.
- iv. Obviously, $W.length > ___$, contradicting the supposition that $____$ is an LCS of X and Y.
- v. Therefore,

DISCOVERING THE OPTIMAL SUBSTRUCTURE, DONE

- Theorem I5.I (Optimal substructure of an LCS)
 - Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case I: If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - Case 2: If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
 - Case 3: If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

The longest Z of all three cases is an LCS of X and Y.

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - ☐ Two key ingredients
 - Optimal substructure
 - ☐ Overlapping subproblems

DISCOVER OVERLAPPING SUBPROBLEMS

• Draw the subproblem graph for input instance:

$$-X = \langle C, B, D, A, B \rangle$$
 and $Y = \langle B, C, D, A \rangle$

- Each vertex X, Y represents the (sub)problem of finding an LCS of X and Y
 - Each vertex has a degree ≤ 3 .
 - Case I: Left child represents the subproblem for X_{m-1} and Y_{n-1} .
 - Case 2: Middle child represents the subproblem for X_{m-1} and Y.
 - Case 3: Right child represents the subproblem for X and Y_{n-1} .

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - Two key ingredients
 - Optimal substructure
 - **☑** Overlapping subproblems

APPLYING DP STEP 1

- Step I: Characterize the structure of an optimal solution
 - Discover the **optimal substructure** of the problem.
- Theorem I5.I (Optimal substructure of an LCS)
 - Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
 - Case I: If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
 - Case 2: If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
 - Case 3: If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

APPLYING DP STEP 2

- Step 2: Recursively define the *value* of an optimization.
 - Take advantage of the optimal substructure to recursively compute the optimal value.
 - The **value** of an optimization in the LCS problem means the length of an LCS of the two inputs.
- Define c[i, j] to be the length of an LCS of the sequences X_i and Y_j .
 - Theorem 15.1 (Optimal substructure of an LCS) mapped onto input X_i and Y_j .
 - Case I: If $x_i = y_j$, then $z_k = x_i = y_j$ and Z_{k-1} is an LCS of X_{i-1} and $Y_{j-1} \implies c[i,j] = c[i-1,j-1] + 1$
 - Case 2: If $x_i \neq y_j$, then $z_k \neq x_i$ implies that Z is an LCS of X_{i-1} and Y. $\implies c[i,j] = c[i-1,j]$ if $x_i \neq y_j$
 - Case 3: If $x_i \neq y_j$, then $z_k \neq y_j$ implies that Z is an LCS of X and Y_{j-1} . $\Longrightarrow c[i,j] = c[i,j-1]$ if $x_i \neq y_j$

APPLYING DP STEP 2 (CONT'D)

- Step 2: Recursively define the *value* of an optimization.
 - Take advantage of the optimal substructure to recursively compute the optimal value.
 - The value of an optimization in the LCS problem means the length of an LCS of the two inputs.
- Define c[i, j] to be the length of an LCS of the sequences X_i and Y_j .

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

APPLYING DP STEP 3

- **Step 3**: Compute the **value** of an optimal solution.
- The LCS-LENGTH algorithm
 - Input

•
$$X = < x_1, x_2, ... x_{m} >$$
 and

•
$$Y = \langle y_1, y_2, ..., y_n \rangle$$

- Bottom-up strategy
- Memoziation
- Problem solved by line 8 ~ 17

```
LCS-LENGTH (X, Y)
 ||m| = X. length
 2 n = Y. length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
       c[i,0]=0
 6 for j = 0 to n
       c[0,j]=0
 8 for i=1 to m
        for j = 1 to n
             if x_i == y_i
                                                // case I
                  c[i,j] = c[i-1,j-1] + 1
                 b[i,j] = "
abla"
             elseif c[i - 1, j] \ge c[i, j - 1]
                                               // case 2
                  c[i,j] = c[i-1,j]
14
                  b[i,j] = "\uparrow"
             else c[i, j] = c[i, j - 1]
16
                                               // case 3
                  b[i,j] = "\leftarrow"
18 return c and b
```

APPLYING DP STEP 3 (CONT'D)

- **Step 3**: Compute the **value** of an optimal solution.
- The table c[0..m,0..n]
 - m+1 rows and n+1 columns
 - An entry c[i, j] stores the length of an LCS of sequences X_i and Y_i .

```
LCS-LENGTH (X, Y)
 ||m| = X. length
 2 n = Y. length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
       c[i,0]=0
 6 for j = 0 to n
       c[0,j]=0
 8 for i = 1 to m
       for j = 1 to n
            if x_i == y_i
                 c[i, j] = c[i-1, j-1] + 1
                 b[i,j] = "
abla"
            elseif c[i - 1, j] \ge c[i, j - 1]
                 c[i,j] = c[i-1,j]
            else c[i, j] = c[i, j - 1]
18 return c and b
```

APPLYING DP STEP 3 (CONT'D)

- **Step 3**: Compute the **value** of an optimal solution.
- The table b[1..m, 1..n]
 - m rows and n columns
 - The table stores the choices made when computing the length of an LCS.
 - An entry b[i, j] stores the choice that lead to the values in entry c[i, j].

```
LCS-LENGTH (X, Y)
 ||m| = X. length
 2 n = Y. length
 3 let \boldsymbol{b}[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
        c[i,0]=0
 6 for j = 0 to n
        c[0,j]=0
 8 for i = 1 to m
        for j = 1 to n
             if x_i == y_i
                  c[i, j] = c[i - 1, j - 1] + 1
             elseif c[i - 1, j] \ge c[i, j - 1]
14
                  c[i,j] = c[i-1,j]
15
             else c[i, j] = c[i, j - 1]
18 return c and b
```

MAINTAINING THE TWO TABLES b[1..m, 1..n] AND c[0..m, 0..n]

- The two tables are maintained in one place.
- Input

$$- X = < A, B, C, D, A >$$

• Stored in rows

$$- Y = \langle A, B, D, C, A \rangle$$

- Stored in columns
- The following slides show the execution of LCS-LENGTH on *X* and *Y*.

Each "big" cell with thick border corresponds to one entry of the c table and the b table.

Each "big" cell further splits into four small cells.

LCS-LENGTH INITIALIZATION

• Initialization

LC	S-LENGTH (X,Y)
I	m = X. length
2	n = Y.length
3	let $\boldsymbol{b}[\boldsymbol{1}\boldsymbol{m},\boldsymbol{1}\boldsymbol{n}]$ and $\boldsymbol{c}[\boldsymbol{0}\boldsymbol{m},\boldsymbol{0}\boldsymbol{n}]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j = 1$ to n
10	if $x_i == y_j$
П	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \geq c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = $ " \leftarrow "
18	return c and b

• Compute the *i* optimal

value

$$-i = 1$$

$$- j = 1$$

LC	S-LENGTH (X,Y)
I	m = X. length
2	n = Y.length
3	let $\boldsymbol{b}[\boldsymbol{1}\boldsymbol{m},\boldsymbol{1}\boldsymbol{n}]$ and $\boldsymbol{c}[\boldsymbol{0}\boldsymbol{m},\boldsymbol{0}\boldsymbol{n}]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j=1$ to n
10	if $x_i == y_j$
П	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i - 1, j] \ge c[i, j - 1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = "\leftarrow"$
18	return c and b

- Compute the *i*
 - optimal

value

$$-i = 1$$

$$- j = 2$$

LCS	S-LENGTH (X,Y)
	m = X. length
2	n = Y.length
3	let $\boldsymbol{b}[\boldsymbol{1}\boldsymbol{m},\boldsymbol{1}\boldsymbol{n}]$ and $\boldsymbol{c}[\boldsymbol{0}\boldsymbol{m},\boldsymbol{0}\boldsymbol{n}]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j = 1$ to n
10	if $x_i == y_j$
	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \ge c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = "\leftarrow"$
18	return c and b

- Compute the *i* optimal
 - value

$$-i = 1$$

$$- j = 3$$

3

LCS	S-LENGTH (X,Y)
	m = X. length
2	n = Y.length
3	let $\boldsymbol{b}[\boldsymbol{1}\boldsymbol{m},\boldsymbol{1}\boldsymbol{n}]$ and $\boldsymbol{c}[\boldsymbol{0}\boldsymbol{m},\boldsymbol{0}\boldsymbol{n}]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j = 1$ to n
10	if $x_i == y_j$
11	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \ge c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = "\leftarrow"$
18	return c and b

• Compute the *i*

optimal

value

$$-i = 1$$

$$- j = 4$$

3

LCS	S-LENGTH (X,Y)
I	m = X. length
2	n = Y.length
3	let $b[1m,1n]$ and $c[0m,0n]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j = 1$ to n
10	if $x_i == y_i$
11	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \ge c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = $ " \leftarrow "
18	return c and b

- Compute the *i*
 - optimal

value

$$-i = 1$$

$$- j = 5$$

3

LCS	S-LENGTH (X,Y)
	m = X. length
2	n = Y.length
3	let $\boldsymbol{b}[\boldsymbol{1}\boldsymbol{m},\boldsymbol{1}\boldsymbol{n}]$ and $\boldsymbol{c}[\boldsymbol{0}\boldsymbol{m},\boldsymbol{0}\boldsymbol{n}]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j = 1$ to n
10	if $x_i == y_j$
11	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \ge c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = "\leftarrow"$
18	return c and b

• Compute the *i* optimal value

$$-i = 2$$

2 **B**

$$- j = 1$$

	j	0	1	2	3	4	5
i		y_j	A	В	D	С	Α
0	x_i	0	0	0	0	0	0
1	A	0	<u>\ \ 1</u>	← 1	← 1	← 1	← 1
2	B	0	1				
3	С	0					
4	D	0					
5	A	0					

$m = X.length$ $2n = Y.length$ $3 \mid \text{let } b[1m, 1n] \text{ and } c[0m, 0n] \text{ be new tables}$ $4 \mid \text{for } i = 1 \mid \text{to } m$ $5 \mid c[i, 0] = 0$ $6 \mid \text{for } j = 0 \mid \text{to } n$ $7 \mid c[0,j] = 0$ $8 \mid \text{for } i = 1 \mid \text{to } m$ $9 \mid \text{for } j = 1 \mid \text{to } n$ $10 \mid \text{if } x_i == y_j$ $11 \mid c[i,j] = c[i-1,j-1] + 1$ $12 \mid b[i,j] = \text{```}$ $13 \mid \text{elseif } c[i-1,j] \ge c[i,j-1]$ $14 \mid c[i,j] = c[i-1,j]$ $15 \mid b[i,j] = \text{```}$ $16 \mid \text{else } c[i,j] = c[i,j-1]$ $17 \mid b[i,j] = \text{``} \leftarrow \text{``}$	LC	S-LENGTH (X,Y)
3 let $b[1m, 1n]$ and $c[0m, 0n]$ be new tables 4 for $i = 1$ to m 5 $c[i, 0] = 0$ 6 for $j = 0$ to n 7 $c[0,j] = 0$ 8 for $i = 1$ to m 9 for $j = 1$ to n 10 if $x_i == y_j$ 11 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = \text{``}$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{``}$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``}$	I	m = X. length
4 for $i = 1$ to m 5 $c[i, 0] = 0$ 6 for $j = 0$ to n 7 $c[0,j] = 0$ 8 for $i = 1$ to m 9 for $j = 1$ to n 10 $if x_i == y_j$ 11 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = \text{``C}$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{``C}$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``C}$	2	n = Y. length
5 $c[i,0] = 0$ 6 for $j = 0$ to n 7 $c[0,j] = 0$ 8 for $i = 1$ to m 9 for $j = 1$ to n 10 if $x_i == y_j$ 11 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = \$ "\" 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \$ "\" 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \$ "\=""	3	let $b[1m,1n]$ and $c[0m,0n]$ be new tables
6 for $j = 0$ to n 7 $c[0,j] = 0$ 8 for $i = 1$ to m 9 for $j = 1$ to n 10 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = \text{```}$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{```}$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``}$	4	for $i = 1$ to m
7 $c[0,j] = 0$ 8 for $i = 1$ to m 9 for $j = 1$ to n 10 if $x_i == y_j$ 11 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = x$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = x$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = x$	5	c[i,0]=0
8 for $i = 1$ to m 9 for $j = 1$ to n 10 $if x_i == y_j$ 11 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = \text{```}$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{```}$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``}$	6	for $j = 0$ to n
9 for $j = 1$ to n 10 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = c[i-1,j] + 1$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = c[i-1,j]$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = c[i,j-1]$	7	c[0,j] = 0
10 if $x_i == y_j$ 11 $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = $ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = $ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = $	8	for $i = 1$ to m
II $c[i,j] = c[i-1,j-1] + 1$ 12 $b[i,j] = {}^{\circ} {}^{\circ} {}^{\circ}$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = {}^{\circ} {}^{\circ} {}^{\circ}$ else $c[i,j] = c[i,j-1]$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = {}^{\circ} {}^{\circ} {}^{\circ}$	9	for $j = 1$ to n
12 $b[i,j] = \text{``\circ}$ 13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{``\circ}$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``\circ}$	10	if $x_i == y_j$
13 elseif $c[i-1,j] \ge c[i,j-1]$ 14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{``}$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``}$	П	c[i,j] = c[i-1,j-1] + 1
14 $c[i,j] = c[i-1,j]$ 15 $b[i,j] = \text{``\tau'}$ 16 $else\ c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``\leftarrow''}$	12	b[i,j] = " abla"
15 $b[i,j] = "\uparrow"$ 16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = "\leftarrow"$	13	elseif $c[i-1,j] \geq c[i,j-1]$
16 else $c[i,j] = c[i,j-1]$ 17 $b[i,j] = \text{``}\leftarrow\text{''}$	14	c[i,j] = c[i-1,j]
$b[i,j] = "\leftarrow"$	15	$b[i,j] = "\uparrow"$
	16	
	17	$b[i,j] = $ " \leftarrow "
18 return c and b	18	return c and b

• Compute the *i* optimal value

$$-i = 2$$

$$- j = 2$$

3

LC	S-LENGTH (X,Y)
Ī	m = X. length
2	n = Y.length
3	let $b[1m,1n]$ and $c[0m,0n]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j=1$ to n
10	if $x_i == y_j$
11	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \ge c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = "\leftarrow"$
18	return c and b

LCS-LENGTH IN ACTION ITERATIONS TO GO

- Compute the *i*
 - optimal

value

$$-i = 2$$
 1 A

- -j = 3, 4, 5 2 **B**
- -i = 5
- j = 1,5
 - 5 *A*

		J	Ü	1	2	3	4	5
	i		y_j	A	В	D	С	Α
	0	x_i	0	0	0	0	0	0
	1	A	0	5 1	← 1	← 1	← 1	← 1
)	2	B	0	1	2			
	3	С	0					
	4	D	0					
	5	A	0					

LC	S-LENGTH (X, Y)
I	m = X. length
2	n = Y.length
3	let $\boldsymbol{b}[\boldsymbol{1}\boldsymbol{m},\boldsymbol{1}\boldsymbol{n}]$ and $\boldsymbol{c}[\boldsymbol{0}\boldsymbol{m},\boldsymbol{0}\boldsymbol{n}]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j=1$ to n
10	if $x_i == y_j$
11	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i - 1, j] \ge c[i, j - 1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = "\leftarrow"$
18	return c and b

BACK TO APPLYING DP STEP 3 (CONT'D)

- **Step 3**: Compute the **value** of an optimal solution.
- Running time of LCS-LENGTH $T(n) = \Theta(\underline{\hspace{1cm}})$

LC	S-LENGTH (X,Y)
I	m = X. length
2	n = Y. length
3	let $b[1m,1n]$ and $c[0m,0n]$ be new tables
4	for $i = 1$ to m
5	c[i,0]=0
6	for $j = 0$ to n
7	c[0,j] = 0
8	for $i = 1$ to m
9	for $j=1$ to n
10	if $x_i == y_i$
П	c[i,j] = c[i-1,j-1] + 1
12	b[i,j] = " abla"
13	elseif $c[i-1,j] \ge c[i,j-1]$
14	c[i,j] = c[i-1,j]
15	$b[i,j] = "\uparrow"$
16	else $c[i,j] = c[i,j-1]$
17	$b[i,j] = \text{``}\leftarrow\text{''}$
18	return c and b

LCS-LENGTH (X, Y) PRACTICE #1

- Which of the following c, b tables can the resulting table of running the LCS-LENGTH algorithm? Choose all that fit.
 - For chosen table(s), given an example of the input instance?

LCS-LENGTH (X,Y)
m = X. length
2 n = Y.length
3 let $b[1m,1n]$ and $c[0m,0n]$ be new tables
4 for $i = 1$ to m
c[i,0] = 0
6 for $j=0$ to n
7 c[0,j] = 0
8 for $i=1$ to m
9 for $j=1$ to n
$\mathbf{if} \ x_i == y_j$
c[i,j] = c[i-1,j-1] + 1
b[i,j] = ""
elseif $c[i-1,j] \ge c[i,j-1]$
c[i,j] = c[i-1,j]
$b[i,j] = "\uparrow"$
else $c[i, j] = c[i, j - 1]$
$b[i,j] = "\leftarrow"$
18 return c and b

LCS-LENGTH (X, Y) PRACTICE #2

- Which of the following c, b tables can the resulting table of running the LCS-LENGTH algorithm? Choose all that fit.
 - For chosen table(s), given an example of the input instance?

LCS-LENGTH (X, Y)
m = X. length
2 n = Y.length
3 let $b[1m,1n]$ and $c[0m,0n]$ be new tables
4 for $i = 1$ to m
c[i,0]=0
6 for $j = 0$ to n
c[0,j] = 0
8 for $i=1$ to m
for $j = 1$ to n
$\mathbf{if} \ x_i == y_j$
c[i,j] = c[i-1,j-1] + 1
b[i,j] = "
elseif $c[i-1,j] \ge c[i,j-1]$
c[i,j] = c[i-1,j]
b[i,j] = ``f''
else $c[i, j] = c[i, j - 1]$
$b[i,j] = "\leftarrow"$
18 return c and b

APPLYING DP STEP 4

- **Step 4**: Construct the optimal solution from the computed information.
- PRINT-LCS algorithm
 - Print the LCS found by LCS-LENGTH algorithm.
 - The initial call is PRINT-LCS (b, X, m, n)
 - m = X.length
 - n = Y.length

```
PRINT-LCS (b, X, i, j)

I if i == 0 or j == 0

2 return

3 if b[i, j] == \text{``\cdot'}

4 PRINT-LCS (b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] == \text{``\cdot'}

7 PRINT-LCS (b, X, i - 1, j)

8 else PRINT-LCS (b, X, i, j - 1)
```

- **Step 4**: Construct the optimal solution from the computed information.
- The c, b table displayed on the lower-right corner is the resulting table of running LCS-LENGTH (X, Y)
 - X = < A, B, C, B, D, A, B >
 - $Y = \langle B, D, C, A, B, A \rangle$
- To construct the LCS found by LCS-LENGTH (X, Y), we need to call PRINT-LCS $(b, X, ___, ___)$

PRINT-LCS (b, X, i, j)		
	if $i == 0$ or $j == 0$	
2	return	
3	if $b[i,j] == "\"$ "	
4	PRINT-LCS $(b, X, i-1, j-1)$	
5	print x_i	
6	elseif $b[i,j] == "\uparrow"$	
7	PRINT-LCS $(b, X, i - 1, j)$	
8	else PRINT-LCS $(b, X, i, j - 1)$	

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

Push		
<u> </u>		
PL(b, X, 2, 2)		
PL(b, X, 3,3)		
PL(b, X, 3, 4)		
PL(b, X, 4,5)		
PL(<i>b</i> , <i>X</i> , 5,5)		
PL(b, X, 6, 6)		
PL(b, X, 7, 6)		
Stack		

PRINT-LCS (b, X, i, j)		
if i	== 0 or j == 0	
2	return	
3 if <i>b</i>	p[i,j] == " abla"	
4	PRINT-LCS $(b, X, i-1, j-1)$	
5	print x_i	
6 elseif $b[i,j] == "\uparrow"$		
7	PRINT-LCS $(b, X, i - 1, j)$	
8 els	e PRINT-LCS $(b, X, i, j - 1)$	

- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

Push		
↓		
PL(b, X, 2, 1)		
PL(b, X, 2, 2)		
PL(b, X, 3,3)		
PL(b, X, 3, 4)		
PL(b, X, 4,5)		
PL(b, X, 5,5)		
PL(b, X, 6, 6)		
PL(b, X, 7, 6)		
Stack		

- The CPU will start at computing PRINT-LCS (b, X, 7, 6) Push
- Output


```
PRINT-LCS (b, X, i, j)

| if i == 0 or j == 0

| return |
| 3 if b[i,j] == \text{``\cdot'}

| PRINT-LCS (b, X, i - 1, j - 1)
| print x_i
| 6 elseif b[i,j] == \text{``\cdot'}

| PRINT-LCS (b, X, i - 1, j)
| 8 else PRINT-LCS (b, X, i, j - 1)
```


- The CPU will start at computing PRINT-LCS (b, X, 7, 6)
- Output

A letter in the found LCS is printed before the stack pops out a PRINT-LCS (b, X, i, j) where b[i, j] holds a "√"

PRINT-LCS (b, X, i, j)I if i == 0 or j == 02 return

3 if $b[i, j] == \text{``\cdot'}$ 4 PRINT-LCS (b, X, i - 1, j - 1)5 print x_i 6 elseif $b[i, j] == \text{``\cdot'}$ 7 PRINT-LCS (b, X, i - 1, j)8 else PRINT-LCS (b, X, i, j - 1)

APPLYING DP STEP 4 THE RUNNING TIME

- **Step 4**: Construct the optimal solution from the computed information.
- Consider instance $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$
 - m =_____, and n =_____
 - The algorithm starts at the lower-right entry and ends at the top-left entry.
 - It visits _____ rows and _____ columns.

APPLYING DP STEP 4 THE RUNNING TIME

- **Step 4**: Construct the optimal solution from the computed information.
- Consider $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$
- The running time of the PRINT-LCS algorithm is T(n) = (_____).

PROJECT 01

- Quicksort on IDENTICAL, SORTED, REVERSE-SORTED datasets
 - Stack size limit or recursion limit problem with **python** and **Java** implementations
- Report the issue in your project report
 - Do some research on the cause of problem
 - Reference the sites, textbook pages your analysis is based off.
 - Show the limit of your program, i.e., maximum data sizes that can be quick-sorted.
- No homework due tonight.

NEXT UP GREEDY STRATEGY

REFERENCE

• Screenshots are taken from the textbook.