Pág. 1

PÁGINA 31

PRACTICA

Números enteros

1 Calcula.

a)
$$5 + (-3) - (-2) + (4 - 6) - [3 - (6 - 4)]$$

b)
$$(3 + 6 - 11) \cdot (4 - 2 - 9) \cdot (-1)$$

c)
$$5 \cdot [8 - (2 + 3)] - (-4) \cdot [6 - (2 + 7)]$$

d)
$$(-7) \cdot [4 \cdot (3-8) - 5 \cdot (8-5)]$$

a)
$$5 + (-3) - (-2) + (4 - 6) - [3 - (6 - 4)] = 5 - 3 + 2 + 4 - 6 - 3 + 6 - 4 =$$

= $(5 + 2 + 4 + 6) - (3 + 6 + 3 + 4) =$
= $17 - 16 = 1$

b)
$$(3 + 6 - 11) \cdot (4 - 2 - 9) \cdot (-1) = (-2) \cdot (-7) \cdot (-1) = -14$$

c)
$$5 \cdot [8 - (2 + 3)] - (-4) \cdot [6 - (2 + 7)] = 5 \cdot (8 - 5) - (-4) \cdot (6 - 9) = 5 \cdot 3 - (-4) \cdot (-3) = 15 - 12 = 3$$

d)
$$(-7) \cdot [4 \cdot (3-8) - 5 \cdot (8-5)] = (-7) \cdot [4 \cdot (-5) - 5 \cdot 3] =$$

= $(-7) \cdot (-20-15) = (-7) \cdot (-35) = 245$

2 Calcula.

a)
$$|3 + (2 - 5)|$$

b)
$$|1 - 5 + 31|$$

c)
$$|20 - (-10 + 9)|$$

d)
$$|-3 + |2 - 8||$$

a)
$$|3 + (-3)| = |3 - 3| = |0| = 0$$

b)
$$|-4 + 31| = |27| = 27$$

c)
$$|20 - (-1)| = |20 + 1| = |21| = 21$$

d)
$$|-3 + 1 - 61| = |-3 + 6| = |3| = 3$$

3 Calcula las siguientes potencias:

$$(-2)^3$$
 -2^3 2^3 $(-2)^4$ -2^4 2^0 $(-2)^3 = -8$ $-2^3 = -8$ $2^3 = 8$ $(-2)^4 = 16$ $-2^4 = -16$ $2^0 = 1$

Pág. 2

4 Ordena de menor a mayor.

$$(-5)^2$$
 -4^3 $(-1)^{105}$ 7^2 11^0 -3^2

Calculamos cada una de las potencias dadas:

$$(-5)^2 = 25$$

$$7^2 = 49$$

$$-4^3 = -64$$

$$11^0 = 1$$

$$(-1)^{105} = -1$$

$$-3^2 = -9$$

Ordenamos los resultados obtenidos:

$$-64 < -9 < -1 < 1 < 25 < 49 \\ \rightarrow -4^3 < -3^2 < (-1)^{105} < 11^0 < (-5)^2 < 7^2$$

5 Realiza las siguientes operaciones:

a)
$$(-3 + 1)^3 + (5 - 8)^4 \cdot (-1) - 5^2 : (-1)^7$$

b)
$$4:(2-3)^7+5\cdot(-1)^2-3^2\cdot 4$$

c)
$$(2 \cdot 3)^2 : (-1 - 5) + 3 \cdot (5 - 2)^0$$

d)
$$6 \cdot (-1) + 5 \cdot (-2)^2 - 2 \cdot (-5 + 4)^6$$

a)
$$(-2)^3 + (-3)^4 \cdot (-1) - 25 : (-1) = -8 + 81 \cdot (-1) + 25 = -8 - 81 + 25 = -64$$

b)
$$4: (-1)^7 + 5 \cdot 1 - 9 \cdot 4 = 4: (-1) + 5 - 36 = -4 + 5 - 36 = -35$$

c)
$$6^2$$
: $(-6) + 3 \cdot 3^0 = 36$: $(-6) + 3 = -6 + 3 = -3$

d)
$$-6 + 5 \cdot 4 - 2 \cdot (-1)^6 = -6 + 20 - 2 \cdot 1 = 12$$

6 DE Expresa como potencia única.

a)
$$(2 \cdot 3 \cdot 5)^4$$

b)
$$(-3)^5 : (-3)^2$$

c)
$$3^4 : (-3)^2$$

d)
$$(2^2 \cdot 2)^3$$

e)
$$12^2:4^2$$

f)
$$(-1)^3 \cdot (-2)^3 \cdot 5^3$$

b)
$$(-3)^3$$

c)
$$3^4:3^2=3^2$$

d)
$$(2^3)^3 = 2^9$$

e)
$$\left(\frac{12}{4}\right)^2 = 3^2$$

f)
$$[(-1) \cdot (-2) \cdot 5]^3 = 10^3$$

7 Elimina paréntesis y simplifica.

a)
$$\frac{[(-5)^3]^2}{(-5)^6}$$

b)
$$[(-3)^5 : (-3)^3]^2$$

c)
$$\frac{9^2}{(-3)^4}$$

d)
$$[2^4 \cdot (-2)^2] : (-4)^3$$

a)
$$\frac{(-5)^6}{(-5)^6} = 1$$

b)
$$[(-3)^2]^2 = (-3)^4 = 81$$

c)
$$\frac{(3^2)^2}{(-3)^4} = \frac{3^4}{3^4} = \frac{3^4}{3^4}$$

c)
$$\frac{(3^2)^2}{(-3)^4} = \frac{3^4}{3^4} = 1$$
 d) $\frac{2^4 \cdot 2^2}{-4^3} = \frac{2^6}{-(2^2)^3} = \frac{2^6}{-2^6} = -1$

Pág. 3

8 Un ascensor se encuentra en el sótano 4. ¿En qué piso se encontrará después de realizar los siguientes movimientos?:

sube 6; baja 3; sube 9; baja 5; baja 2

El sótano 4 equivale a -4. Una subida es un número positivo, y una bajada, uno negativo. Por tanto:

$$-4 + 6 - 3 + 9 - 5 - 2 = 15 - 14 = 1$$

Se encuentra en la primera planta.

9 Las temperaturas medias que se alcanzan en un mismo mes, en distintas ciudades, son:

Ordénalas de menor a mayor.

$$-7 \,^{\circ}\text{C} < -2 \,^{\circ}\text{C} < 0 \,^{\circ}\text{C} < 3 \,^{\circ}\text{C} < 10 \,^{\circ}\text{C} < 12 \,^{\circ}\text{C}$$

10 La temperatura de un congelador baja 2 °C cada 3 minutos hasta llegar a –18 °C. ¿Cuánto tardará en llegar a –12 °C si cuando lo encendemos la temperatura es de 16 °C?

La diferencia de temperatura entre $16 \, ^{\circ}\text{C} \text{ y} - 12 \, ^{\circ}\text{C}$ es de $16 + 12 = 28 \, ^{\circ}\text{C}$.

Cada 3 minutos, la temperatura baja 2 °C. En bajar 28 °C tardará:

$$\frac{28}{2} \cdot 3 \text{ minutos} = 14 \cdot 3 = 42 \text{ minutos}$$

11 Aristóteles murió en el año 322 a.C. y vivió 62 años. ¿En qué año nació?

(Año en que murió) – (Año en que nació) = N.º de años vividos

$$(322 \text{ a.C.})$$
 – (Año en que nació) = 62

$$(-322)$$
 – (Año en que nació) = 62

$$-322 - 62 =$$
Año en que nació

$$-384$$
 = Año en que nació

Aristóteles nació en el año 384 a.C.

Fracciones

- 12 Calcula mentalmente.
 - a) La mitad de $\frac{7}{8}$.
 - b) La tercera parte de $\frac{9}{5}$.
 - c) La mitad de la quinta parte de -4.
 - d) El triple de la mitad de $\frac{2}{3}$.

a)
$$\frac{7}{16}$$

b)
$$\frac{3}{5}$$

c)
$$-\frac{2}{5}$$

Pág. 4

13 Calcula mentalmente.

- a) Los dos quintos de 400.
- b) El número cuyos dos quintos son 160.
- c) Los tres séptimos de 140.
- d) El número cuyos cinco sextos son 25.

a)
$$\frac{2}{5}$$
 de 400 = $2 \cdot 80$ = 160

b)
$$\frac{2}{5}$$
 de $\boxed{}$ = 160 \rightarrow por a) se sabe que el número es 400

c)
$$\frac{3}{7}$$
 de 140 = $3 \cdot 20$ = 60

d)
$$\frac{5}{6}$$
 de $\boxed{}$ = 25 \rightarrow el número es 30

14 Calcula mentalmente.

a)
$$\frac{4}{3}$$
 de 21

b)
$$\frac{5}{2}$$
 de 10

c)
$$\frac{3}{10}$$
 de 1 millón d) $\frac{7}{20}$ de cien mil

d)
$$\frac{7}{20}$$
 de cien mil

a)
$$\frac{4}{3}$$
 de 21 = $4 \cdot 7$ = 28

b)
$$\frac{5}{2}$$
 de 10 = $5 \cdot 5$ = 25

c)
$$\frac{3}{10}$$
 de 1 millón = $3 \cdot 100\,000 = 300\,000$

d)
$$\frac{7}{20}$$
 de cien mil = $7 \cdot 5000 = 35000$

15 Compara mentalmente los siguientes pares de fracciones:

$$a) \frac{2}{5} y \frac{2}{7}$$

b) 3 y
$$\frac{7}{2}$$

c)
$$\frac{7}{8}$$
 y 1

$$d)\frac{5}{8}y\frac{3}{8}$$

a)
$$\frac{2}{7} < \frac{2}{5}$$

b)
$$3 < \frac{7}{2}$$

c)
$$\frac{7}{8}$$
 < 1

$$d)\frac{3}{8} < \frac{5}{8}$$

16 DE Expresa en forma de fracción de hora.

- a) 15 minutos
- b) 20 minutos
- c) 10 minutos

- d) 1 minuto
- e) 120 segundos
- f) 1 segundo

Pág. 5

a)
$$\frac{15}{60} = \frac{1}{4}$$

a)
$$\frac{15}{60} = \frac{1}{4}$$
 b) $\frac{20}{60} = \frac{1}{3}$ c) $\frac{10}{60} = \frac{1}{6}$ d) $\frac{1}{60}$

c)
$$\frac{10}{60} = -\frac{1}{60}$$

d)
$$\frac{1}{60}$$

e)
$$120'' = 2' \rightarrow \frac{2}{60} = \frac{1}{30}$$
 f) $1 \text{ h} = 3600'' \rightarrow \frac{1}{3600}$

f) 1 h =
$$3600'' \rightarrow \frac{1}{3600}$$

PÁGINA 32

17 Representa, aproximadamente, en la recta numérica.

18 Calcula tres fracciones equivalentes a $\frac{8}{12}$. ¿Cuál es la correspondiente frac-

$$\frac{8}{12} = \frac{4}{6} = \frac{2}{3} = \frac{10}{15}$$
 \rightarrow Por tanto, $\frac{4}{6}$, $\frac{2}{3}$ y $\frac{10}{15}$ son tres fracciones equivalentes a $\frac{8}{12}$.

La fracción irreducible es $\frac{2}{3}$.

19 Expresa como número mixto las siguientes fracciones:

a)
$$\frac{5}{3}$$

b)
$$\frac{-7}{3}$$

b)
$$\frac{-7}{3}$$
 c) $\frac{45}{5}$

$$d)\frac{-48}{5}$$

e)
$$\frac{93}{10}$$

d)
$$\frac{-48}{5}$$
 e) $\frac{93}{10}$ f) $\frac{2437}{621}$

a)
$$\frac{5}{3} = \frac{3}{3} + \frac{2}{3} = 1 + \frac{2}{3}$$

b)
$$\frac{-7}{3} = \frac{-6}{3} - \frac{1}{3} = -2 - \frac{1}{3}$$

c)
$$\frac{45}{5} = 9$$

d)
$$\frac{-48}{5} = \frac{-45}{5} - \frac{3}{5} = -9 - \frac{3}{5}$$

e)
$$\frac{93}{10} = \frac{90}{10} + \frac{3}{10} = 9 + \frac{3}{10}$$

c)
$$\frac{45}{5} = 9$$

d) $\frac{-48}{5} = \frac{-45}{5} - \frac{3}{5} = -9 - \frac{3}{5}$
e) $\frac{93}{10} = \frac{90}{10} + \frac{3}{10} = 9 + \frac{3}{10}$
f) $\frac{2437}{621} = \frac{1863}{621} + \frac{574}{621} = 3 + \frac{574}{621}$

20 Calcula.

a)
$$6 - \left[\frac{10}{3} - \left(1 + \frac{5}{6} \right) \right]$$

b)
$$\frac{3}{2} - \left(\frac{7}{8} + \frac{3}{4}\right) - \left(-\frac{1}{2}\right)$$

c)
$$\frac{4}{3} - \frac{3}{4} + \left(-\frac{1}{6}\right) - \left(\frac{13}{12} - \frac{1}{2}\right)$$
 d) $-\frac{7}{2} - \left[2 + \frac{2}{7} - \left(-\frac{3}{4}\right)\right]$

d)
$$-\frac{7}{2} - \left[2 + \frac{2}{7} - \left(-\frac{3}{4}\right)\right]$$

los eiercicios v problemas

Pág. 6

a)
$$6 - \frac{10}{3} + 1 + \frac{5}{6} = \frac{36}{6} - \frac{20}{6} + \frac{6}{6} + \frac{5}{6} = \frac{27}{6} = \frac{9}{2}$$

b)
$$\frac{3}{2} - \frac{7}{8} - \frac{3}{4} + \frac{1}{2} = \frac{4}{2} - \frac{7}{8} - \frac{3}{4} = \frac{16}{8} - \frac{7}{8} - \frac{6}{8} = \frac{3}{8}$$

c)
$$\frac{4}{3} - \frac{3}{4} - \frac{1}{6} - \frac{13}{12} + \frac{1}{2} = \frac{16}{12} - \frac{9}{12} - \frac{2}{12} - \frac{13}{12} + \frac{6}{12} = \frac{-2}{12} = \frac{-1}{6}$$

d)
$$-\frac{7}{2} - \left[2 + \frac{2}{7} + \frac{3}{4}\right] = -\frac{7}{2} - 2 - \frac{2}{7} - \frac{3}{4} = \frac{-98}{28} - \frac{56}{28} - \frac{8}{28} - \frac{21}{28} = \frac{-183}{28}$$

21 Reduce a una sola fracción cada una de estas expresiones:

a)
$$\frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16}$$

b)
$$\left(\frac{3}{5} - \frac{1}{4} + 2\right) - \left(\frac{3}{4} - \frac{2}{5} + 1\right)$$

c)
$$\left(1 + \frac{1}{3}\right) - \left(\frac{3}{4} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right)$$

c)
$$\left(1 + \frac{1}{3}\right) - \left(\frac{3}{4} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right)$$
 d) $\left(\frac{3}{5} + \frac{1}{3}\right) - \left[1 - \left(\frac{3}{4} - \frac{1}{2}\right) + \frac{2}{3} - \frac{3}{20}\right]$

a)
$$\frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} = \frac{8}{16} - \frac{4}{16} - \frac{2}{16} - \frac{1}{16} = \frac{1}{16}$$

b)
$$\left(\frac{3}{5} - \frac{1}{4} + 2\right) - \left(\frac{3}{4} - \frac{2}{5} + 1\right) = \left(\frac{12}{20} - \frac{5}{20} + \frac{40}{20}\right) - \left(\frac{15}{20} - \frac{8}{20} + \frac{20}{20}\right) = \frac{47}{20} - \frac{27}{20} = \frac{20}{20} = 1$$

c)
$$\left(1 + \frac{1}{3}\right) - \left(\frac{3}{4} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 + \frac{1}{3} - \frac{3}{4} - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} =$$

$$= 1 + \frac{2}{3} - \frac{4}{4} - \frac{1}{2} = 1 + \frac{2}{3} - 1 - \frac{1}{2} =$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{4}{6} - \frac{3}{6} = \frac{1}{6}$$

$$d)\left(\frac{3}{5} + \frac{1}{3}\right) - \left[1 - \left(\frac{3}{4} - \frac{1}{2}\right) + \frac{2}{3} - \frac{3}{20}\right] = \left(\frac{9}{15} + \frac{5}{15}\right) - \left[1 - \left(\frac{3-2}{4}\right) + \frac{2}{3} - \frac{3}{20}\right] =$$

$$= \frac{14}{15} - \left(1 - \frac{1}{4} + \frac{2}{3} - \frac{3}{20}\right) =$$

$$= \frac{14}{15} - 1 + \frac{1}{4} - \frac{2}{3} + \frac{3}{20} =$$

$$= \frac{56}{60} - \frac{60}{60} + \frac{15}{60} - \frac{40}{60} + \frac{9}{60} =$$

$$= \frac{-20}{60} = \frac{-1}{3}$$

Pág. 7

22 Calcula.

a)
$$\left(-\frac{3}{4}\right) \cdot \frac{8}{9} \cdot \frac{5}{-6}$$

a)
$$\left(-\frac{3}{4}\right) \cdot \frac{8}{9} \cdot \frac{5}{-6}$$
 b) $\left(1 + \frac{1}{2} - \frac{1}{8}\right) : \left(3 + \frac{1}{7}\right)$

c)
$$\frac{\frac{3}{4} - \left(\frac{1}{2} + \frac{1}{8}\right)}{\frac{1}{2} - \frac{3}{14}}$$
 d) $\frac{\frac{3}{2} \cdot \left(-\frac{5}{3}\right)}{\frac{5}{3} \cdot \frac{7}{6}}$

$$\mathbf{d}) \frac{\frac{3}{2} \cdot \left(-\frac{5}{3}\right)}{\frac{5}{3} : \frac{7}{6}}$$

a)
$$\frac{3 \cdot 8 \cdot 5}{4 \cdot 9 \cdot 6} = \frac{5}{9}$$

b)
$$\left(\frac{8}{8} + \frac{4}{8} - \frac{1}{8}\right) : \left(\frac{21}{7} + \frac{1}{7}\right) = \frac{11}{8} : \frac{22}{7} = \frac{11 \cdot 7}{22 \cdot 8} = \frac{7}{16}$$

c)
$$\frac{\frac{3}{4} - \frac{1}{2} - \frac{1}{8}}{\frac{1}{2} - \frac{3}{14}} = \frac{\frac{6}{8} - \frac{4}{8} - \frac{1}{8}}{\frac{7}{14} - \frac{3}{14}} = \frac{\frac{1}{8}}{\frac{4}{14}} = \frac{\frac{1}{8}}{\frac{2}{7}} = \frac{7}{16}$$

d)
$$\frac{-\frac{3\cdot 5}{2\cdot 3}}{\frac{5\cdot 6}{7\cdot 3}} = \frac{\frac{-5}{2}}{\frac{10}{7}} = \frac{-5\cdot 7}{2\cdot 10} = \frac{-7}{4}$$

23 Con una barrica que contiene 510 l de vino, ¿cuántas botellas de 3/4 de litro se pueden llenar? ¿Cuántas de litro y medio?

 $510: \frac{3}{4} = \frac{510 \cdot 4}{3} = 680 \rightarrow \text{Se pueden llenar } 680 \text{ botellas de } \frac{3}{4} \text{ de litro.}$

1 litro y medio = 1 + $\frac{1}{2}$ = $\frac{3}{2}$

 $510: \frac{3}{2} = \frac{510 \cdot 2}{3} = 340 \rightarrow \text{Se pueden llenar } 340 \text{ botellas de litro y medio.}$

Este último caso también se puede resolver observando que 1 botella de litro y medio equivale a 2 botellas de $\frac{3}{4}$ de litro. Por tanto, el número de botellas de litro y medio que se pueden llenar será la mitad del número de botellas de $\frac{3}{4}$ de litro: $\frac{680}{2}$ = 340.

24 Calcula qué fracción de hora ha pasado entre las diez y cuarto y las once menos veinte.

Entre las diez y cuarto y las once menos veinte han pasado 25 minutos, que equivalen a $\frac{25}{60}$ de hora = $\frac{5}{12}$ de hora.

Pág. 8

25 En cierta parcela se cultivan $\frac{4}{5}$ partes de trigo, y el resto, 100 m², de maíz.

¿Cuál es la superficie de la parcela?

Trigo
$$\rightarrow \frac{4}{5}$$
 partes \rightarrow sobra $\frac{1}{5}$

Maíz
$$\rightarrow \frac{1}{5}$$
 parte que equivale a 100 m²

Superficie de la parcela = $100 \cdot 5 = 500 \text{ m}^2$

- **26** \square Ana se gasta $\frac{2}{3}$ del dinero en ropa y $\frac{1}{4}$ del total en comida.
 - a) ¿Cuál es la fracción gastada?
 - b) ¿Qué fracción le queda por gastar?
 - c) Si salió de casa con 180 €, ¿qué cantidad no se ha gastado?

a)
$$\frac{2}{3} + \frac{1}{4} + \frac{8}{12} + \frac{3}{12} = \frac{11}{12}$$

b)
$$1 - \frac{11}{12} = \frac{12}{12} - \frac{11}{12} = \frac{1}{12}$$

c) La fracción que no se ha gastado es $\frac{1}{12}$:

$$\frac{1}{12}$$
 de 180 € = $\frac{180}{12}$ = 15 € es la cantidad que no se ha gastado.

27 Con una garrafa de $\frac{5}{2}$ de litro se llenan 25 vasos. ¿Qué fracción de litro

entra en 1 vaso?

$$\frac{5}{2}$$
 de litro : 25 vasos = $\frac{5}{2}$: 25 = $\frac{5}{50}$ = $\frac{1}{10}$

En 1 vaso entra $\frac{1}{10}$ de litro.

28 \square De una botella de $\frac{3}{4}$ de litro se ha consumido la quinta parte. ¿Qué fracción

de litro queda?

Si se ha consumido la quinta parte, quedan sin consumir $\frac{4}{5}$ de la botella:

$$\frac{4}{5}$$
 de $\frac{3}{4}$ de litro = $\frac{4}{5} \cdot \frac{3}{4} = \frac{3}{5}$ de litro quedan sin consumir.

Potencias

29 ■□□ Calcula.

$$b)-2^4$$

f)
$$(-2)^{-3}$$

a)
$$(-2)^4$$
 b) -2^4 c) $(-2)^3$ d) -2^{-3} e) 2^{-3} f) $(-2)^{-3}$ g) $(-1)^{-16}$ h) 1^{-17} i) -1^{-30}

Pág. 9

b)
$$-16$$

$$c) - 8$$

d)
$$\frac{1}{-2^3} = -\frac{1}{8}$$

e)
$$\frac{1}{2^3} = \frac{1}{8}$$

e)
$$\frac{1}{2^3} = \frac{1}{8}$$
 f) $\frac{1}{(-2)^3} = \frac{1}{-8}$

g)
$$\frac{1}{(-1)^{16}} = 1$$

h)
$$\frac{1}{1^{17}} = 1$$

i)
$$-\frac{1}{1^{30}} = -1$$

30 Ordena de menor a mayor.

$$3^{-3}$$

$$-3)^{-1}$$

$$3^{-3}$$
 $(-3)^{-1}$ -3^{0} $(-3)^{-4}$ 3^{-2}

Calculamos el valor de cada una de las potencias:

$$3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$

$$3^{-3} = \frac{1}{3^3} = \frac{1}{27}$$
 $(-3)^{-1} = \frac{1}{(-3)^1} = -\frac{1}{3}$ $-3^0 = -1$

$$-3^0 = -3^0$$

$$(-3)^{-4} = \frac{1}{(-3)^4} = \frac{1}{81}$$
 $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$

$$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$$

Por tanto:

$$-1 < -\frac{1}{3} < \frac{1}{81} < \frac{1}{27} < \frac{1}{9} \quad \rightarrow \quad -3^0 < (-3)^{-1} < (-3)^{-4} < 3^{-3} < 3^{-2}$$

31 **□**□□ Calcula.

a)
$$\left(-\frac{5}{3}\right)^2$$

b)
$$-\left(\frac{3}{7}\right)^{-1}$$

c)
$$\left(-\frac{1}{6}\right)^{-2}$$

$$\mathbf{d})\left(\frac{1}{2}\right)^{-3}$$

e)
$$\left(\frac{4}{3}\right)^3$$

$$f)\left(\frac{2}{3}\right)^{-1}$$

$$\mathbf{g}$$
) $\left(-\frac{7}{6}\right)^{-1}$

$$h$$
) $\left(\frac{5}{2}\right)^{-2}$

i)
$$-\left(\frac{1}{4}\right)^{-3}$$

a)
$$\frac{5^2}{3^2} = \frac{25}{9}$$

b)
$$-\frac{7}{3}$$

c)
$$(-6)^2 = 36$$

d)
$$2^3 = 8$$

e)
$$\frac{4^3}{3^3} = \frac{64}{27}$$

f)
$$\frac{3}{2}$$

g)
$$-\frac{6}{7}$$

$$h)\left(\frac{2}{5}\right)^2 = \frac{4}{25}$$

i)
$$-(4)^3 = -64$$

32 Expresa como potencias de base 10.

- a) Cien millones.
- c) Una milésima.
- e) Una millonésima.
- g) Diez mil billones.

a)
$$100 \cdot 1000000 = 10^2 \cdot 10^6 = 10^8$$

c)
$$0.001 = 10^{-3}$$

e)
$$0.000001 = 10^{-6}$$

g)
$$10\,000 \cdot 10^{12} = 10^4 \cdot 10^{12} = 10^{16}$$

- b) Diez billones.
- d) Cien mil millones.
- f) Cien milésimas.
- h) Mil centésimas.

b)
$$10 \cdot 10^{12} = 10^{13}$$

d)
$$100\,000 \cdot 1\,000\,000 = 10^5 \cdot 10^6 = 10^{11}$$

f)
$$100 \cdot 0.001 = 10^2 \cdot 10^{-3} = 10^{-1}$$

h)
$$1000 \cdot 0.01 = 10^3 \cdot 10^{-2} = 10$$

los ejercicios y problemas

Pág. 10

33 Escribe en forma de potencia de base 2 ó 5.

a)
$$-625$$

b)
$$\frac{1}{128}$$

c)
$$-\frac{1}{25}$$

$$d)\frac{1}{5}$$

$$g)\frac{1}{64}$$

$$h)-\frac{1}{8}$$

a)
$$-5^4$$

b)
$$\frac{1}{2^7} = 2^{-7}$$

a)
$$-5^4$$
 b) $\frac{1}{2^7} = 2^{-7}$ c) $-\frac{1}{5^2} = -5^{-2}$

d)
$$5^{-1}$$

$$f) -5^3$$

g)
$$\frac{1}{2^6}$$
 = 2^{-6}

h)
$$-\frac{1}{2^3} = -2^{-3}$$

PÁGINA 33

34 Calcula.

a)
$$-3 \cdot (4-2)^{-2} + 10 \cdot \left(\frac{5}{4}\right)^{-1}$$

b)
$$\frac{4}{5} \cdot \left(\frac{1}{5}\right)^{-1} + \left(\frac{2}{3}\right)^2 \cdot (2-5)$$

c)
$$(1-4) \cdot 3^{-2} + \left(\frac{2}{5}\right)^{-1} - 6 \cdot 2^{-3}$$

d)
$$\left(\frac{8}{5}\right)^{-1}$$
 + $(3-5) \cdot \left(\frac{7}{2}\right)^2$ + $2^{-3} \cdot 3$

a)
$$-3 \cdot 2^{-2} + 10 \cdot \frac{4}{5} = -3 \cdot \frac{1}{2^2} + \frac{40}{5} = -\frac{3}{4} + 8 = -\frac{3}{4} + \frac{32}{4} = \frac{29}{4}$$

b)
$$\frac{4}{5} \cdot \frac{5}{1} + \frac{4}{9} \cdot (-3) = 4 - \frac{4}{3} = \frac{12}{3} - \frac{4}{3} = \frac{8}{3}$$

c)
$$(-3) \cdot \frac{1}{3^2} + \frac{5}{2} - 6 \cdot \frac{1}{2^3} = -\frac{3}{9} + \frac{5}{2} - \frac{6}{8} = -\frac{1}{3} + \frac{5}{2} - \frac{3}{4} = \frac{-4}{12} + \frac{30}{12} - \frac{9}{12} = \frac{17}{12}$$

d)
$$\frac{5}{8}$$
 + (-2) $\cdot \frac{49}{4}$ + $\frac{1}{2^3}$ $\cdot 3 = \frac{5}{8} - \frac{98}{4}$ + $\frac{3}{8} = \frac{8}{8} - \frac{49}{2} = 1 - \frac{49}{2} = \frac{2}{2} - \frac{49}{2} = -\frac{47}{2}$

35 ■□□ Calcula.

$$a) \left(\frac{3}{5}\right)^2 \cdot \left(\frac{9}{10}\right)^{-1}$$

a)
$$\left(\frac{3}{5}\right)^2 \cdot \left(\frac{9}{10}\right)^{-1}$$
 b) $\left(\frac{7}{2}\right)^3 : \left(-\frac{2}{21}\right)^{-2}$

c)
$$\left(-\frac{1}{5}\right)^{-1} \cdot \left(\frac{2}{5}\right)^2 \cdot \left(\frac{2}{3}\right)^{-3}$$
 d) $\left[\left(\frac{4}{7}\right)^{-1} \cdot \frac{3}{28}\right] : 2^{-4}$

$$\mathbf{d})\left[\left(\frac{4}{7}\right)^{-1}\cdot\frac{3}{28}\right]:2^{-4}$$

a)
$$\frac{9}{25} \cdot \frac{10}{9} = \frac{10}{25} = \frac{2}{5}$$

b)
$$\frac{7^3}{2^3}$$
 : $\left(-\frac{21}{2}\right)^2 = \frac{7^3}{2^3}$: $\frac{21^2}{2^2} = \frac{7^3 \cdot 2^2}{21^2 \cdot 2^3} = \frac{7^3}{7^2 \cdot 3^2 \cdot 2} = \frac{7}{3^2 \cdot 2} = \frac{7}{9 \cdot 2} = \frac{7}{18}$

Pág. 11

c)
$$-5 \cdot \frac{2^2}{5^2} \cdot \left(\frac{3}{2}\right)^3 = \frac{-5 \cdot 2^2 \cdot 3^3}{5^2 \cdot 2^3} = \frac{-3^3}{5 \cdot 2} = -\frac{27}{10}$$

d)
$$\left[\frac{7}{4} \cdot \frac{3}{28}\right]$$
 : $\frac{1}{2^4} = \frac{3}{16}$: $\frac{1}{16} = \frac{3 \cdot 16}{16 \cdot 1} = 3$

36 Calcula.

a)
$$\left(\frac{3}{2} - \frac{7}{4}\right)^3 : \left(\frac{9}{8} - \frac{5}{4}\right)^2$$

b) $\left(\frac{1}{6} - \frac{2}{3}\right)^2 - \left(\frac{4}{3} - \frac{5}{6}\right)^2 : \left(\frac{2}{3} - 1\right)^2$
c) $\left(\frac{3}{2} - \frac{3}{4}\right)^{-2} \cdot \left(\frac{1}{3} - \frac{7}{9}\right)^{-1} + 4$
d) $\left(\frac{1}{4} - \frac{7}{12}\right) + \left(\frac{5}{4} - \frac{5}{2}\right) \left(\frac{1}{4} - 4\right)^{-1}$
a) $\left(\frac{3}{2} - \frac{7}{4}\right)^3 : \left(\frac{9}{8} - \frac{5}{4}\right)^2 = \left(\frac{6}{4} - \frac{7}{4}\right)^3 : \left(\frac{9 - 10}{8}\right)^2 = \left(\frac{-1}{4}\right)^3 : \left(\frac{-1}{8}\right)^2 = -\left(\frac{1}{2}\right)^6 : \left(\frac{1}{2}\right)^6 = -1$
b) $\left(\frac{1}{6} - \frac{2}{3}\right)^2 - \left(\frac{4}{3} - \frac{5}{6}\right)^2 : \left(\frac{2}{3} - 1\right)^2 = \left(\frac{1}{6} - \frac{4}{6}\right)^2 - \left(\frac{8}{6} - \frac{5}{6}\right)^2 : \left(\frac{2}{3} - \frac{3}{3}\right)^2 = \frac{1}{2}$

$$= \left(\frac{-3}{6}\right)^2 - \left(\frac{3}{6}\right)^2 : \left(\frac{1}{3}\right)^2 = \left(-\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 : \left(\frac{1}{3}\right)^2 =$$

$$= \frac{1}{4} - \left(\frac{1}{2} : \frac{1}{3}\right)^2 = \frac{1}{4} - \left(\frac{3}{2}\right)^2 = \frac{1}{4} - \frac{9}{4} = \frac{-8}{4} = -2$$

c)
$$\left(\frac{3}{2} - \frac{3}{4}\right)^{-2} \cdot \left(\frac{1}{3} - \frac{7}{9}\right)^{-1} + 4 = \left(\frac{6}{4} - \frac{3}{4}\right)^{-2} \cdot \left(\frac{3}{9} - \frac{7}{9}\right)^{-1} + 4 =$$

$$= \left(\frac{3}{4}\right)^{-2} \cdot \left(\frac{-4}{9}\right)^{-1} + 4 = \left(\frac{4}{3}\right)^{2} \cdot \left(-\frac{9}{4}\right) + 4 =$$

$$= \frac{-4^{2} \cdot 9}{3 \cdot 4} + 4 = -12 + 4 = -8$$

$$d)\left(\frac{1}{4} - \frac{7}{12}\right) + \left(\frac{5}{4} - \frac{5}{2}\right) \cdot \left(\frac{1}{4} - 4\right)^{-1} = \left(\frac{3}{12} - \frac{7}{12}\right) + \left(\frac{5}{4} - \frac{10}{4}\right) \cdot \left(\frac{1}{4} - \frac{16}{4}\right)^{-1} =$$

$$= \frac{-4}{12} + \left(-\frac{5}{4}\right) \cdot \left(-\frac{15}{4}\right)^{-1} =$$

$$= -\frac{1}{3} + \left(-\frac{5}{4}\right) \cdot \left(\frac{-4}{15}\right) = -\frac{1}{3} + \frac{1}{3} = 0$$

Pág. 12

- 37 Resuelto en el libro de texto.
- 38 Reduce aplicando las propiedades de las potencias.

$$a)\,\frac{(-2)^3\cdot 4^2}{32}$$

a)
$$\frac{(-2)^3 \cdot 4^2}{32}$$
 b) $\frac{125}{25^2 \cdot (-5)^2}$ c) $\frac{3^2 \cdot 9^4}{(3^5)^2}$

c)
$$\frac{3^2 \cdot 9^4}{(3^5)^2}$$

a)
$$\frac{-2^3 \cdot (2^2)^2}{2^5} = \frac{-2^3 \cdot 2^4}{2^5} = \frac{-2^7}{2^5} = -2^2 = -4$$

b)
$$\frac{5^3}{(5^2)^2 \cdot (-5)^2} = \frac{5^3}{5^4 \cdot 5^2} = \frac{5^3}{5^6} = \frac{1}{5^3} = \frac{1}{125}$$

c)
$$\frac{3^2 \cdot (3^2)^4}{3^{10}} = \frac{3^2 \cdot 3^8}{3^{10}} = \frac{3^{10}}{3^{10}} = 1$$

PIENSA Y RESUELVE

Problemas para contar

39 De cuántas formas se puede vestir? ¿Y si además tiene 3 pares de zapatos?

Por cada pantalón que elija, tiene 5 camisas para ponerse; como tiene 4 pantalones, en total tiene $4 \cdot 5 = 20$ formas diferentes de vestirse.

Para cada una de las 20 formas anteriores, puede elegir 3 pares de zapatos. En total tendrá $20 \cdot 3 = 60$ formas diferentes de vestirse.

40 En cada uno de los siguientes casos, ¿cuántos caminos distintos hay para llegar de A a B, sin retroceder en ningún momento?

Hay 5 formas de ir de A a B.

- b) Para calcular las diferentes posibilidades, organizamos el problema de la siguiente manera:
 - Calculamos los caminos que hay de A a B pasando por C:

De A a C hay 1 camino y de C a B, 4 caminos \rightarrow 1 · 4 = 4 formas.

Pág. 13

Calculamos los caminos que hay de A a B, pasando por D y sin pasar por C:
 De A a D hay 2 caminos, y de D a B, otros 3 → 2 · 3 = 6 formas.

Calculamos los caminos que hay de A a B pasando por E pero no por C ni D:
 De A a E hay 3 caminos, y de E a B, otros 2 → 3 · 2 = 6 formas.

Calculamos los caminos que hay de A a B pasando por F y sin pasar por C, D y E:
 De A a F hay 4 caminos, y de F a B, uno → 4 · 1 = 4 formas.

• Por tanto, el número total de caminos de A a B es: 4 + 6 + 6 + 4 = 20

Hay 10 caminos distintos.

41 Una manifestación ocupa una superficie de 3 600 m². Si en un metro cuadrado caben 3 personas, ¿cuántas personas han acudido a la manifestación?

Si en 1 m² caben 3 personas, en 3 600 m² cabrán 3 600 \cdot 3 = 10 800 personas.

Pág. 14

En total, 4 + 3 + 2 + 1 = 10 triángulos rectángulos.

En un restaurante nos ofrecen para comer un menú que consta de 4 primeros platos, 3 segundos y 4 postres. ¿De cuántas formas distintas podemos comer?

Elegido un primer plato y un segundo, podemos elegir entre 4 postres. Como hay 3 segundos, en total habrá $3 \cdot 4 = 12$ maneras de comer con un primer plato fijo. Al haber 4 primeros platos, en total podemos elegir $4 \cdot 12 = 48$ menús diferentes.

44 Cuatro jugadores llegan a la fase final de un campeonato de tenis. Hay una copa para el campeón y una placa para el subcampeón. Calcula de cuántas formas se pueden repartir los premios y descríbelas.

Llamamos a los jugadores A, B, C y D.

Hacemos un diagrama en árbol:

En total hay $3 \cdot 4 = 12$ formas de repartir los premios.

Pág. 15

- 45 Ceis amigos van a jugar un campeonato de pádel, jugando todos contra todos.
 - a) ¿Cuántos partidos han de jugar?
 - b) ¿Cuántos partidos jugarían si el campeonato fuera a doble vuelta?
 - a) Llamamos a los jugadores A, B, C, D, E y F.

Usamos la siguiente tabla para contar el número de partidos y describirlos:

	A	В	С	D	E	F
A	×	A · B	$A \cdot C$	$A \cdot D$	A · E	A · F
В	×	X	$B \cdot C$	$B \cdot D$	B · E	B · F
С	×	X	×	$C \cdot D$	$C \cdot E$	$C \cdot F$
D	×	×	×	×	D · E	D · F
E	×	X	X	×	×	E · F
F	X	X	X	X	X	×

En la tabla se refleja que el campeonato no es a doble vuelta y que un jugador no juega contra sí mismo. Hay, por tanto, 15 partidos.

- b) Jugarán el doble de partidos que en el apartado anterior; es decir:
 - $15 \cdot 2 = 30$ partidos.

Los describimos usando la siguiente tabla:

	A	В	С	D	E	F
A	×	A · B	$A \cdot C$	$A \cdot D$	Α·Ε	A · F
В	B · A	×	$B \cdot C$	$B \cdot D$	B · E	B · F
С	$C \cdot A$	$C \cdot B$	X	C · D	$C \cdot E$	$C \cdot F$
D	D · A	D · B	D·C	X	D·E	D · F
E	$E \cdot A$	$E \cdot B$	$E \cdot C$	$E \cdot D$	×	$E \cdot F$
F	F · A	F · B	F · C	F · D	F · E	×

46 Ca Se tienen apiladas 20 cajas con latas de refresco en cada una de las cuales hay 6 filas y 8 columnas. Calcula el número total de latas de refresco que hay.

Cada caja contiene $6 \cdot 8 = 48$ latas de refresco.

En 20 cajas habrá: 20 · 48 = 960 latas de refresco

PÁGINA 34

47 En una zona de montañas hay 4 casas rurales que están comunicadas por los caminos indicados en este dibujo:

Calcula el número de rutas posibles que se pueden seguir para ir de A a D.

Elegido un camino para ir de A a B, y otro para ir de B a C, hay 4 caminos posibles para ir de C a D. Como de A a B hay 3 caminos posibles, y de B a C, 2 caminos, en total habrá: $3 \cdot 2 \cdot 4 = 24$ rutas posibles para ir de A a D.

48 Cuántos números capicúas hay entre el 2 000 y el 5 000?

Los números capicúas que hay entre 2 000 y 3 000 son de la forma 2aa2, siendo a = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Hay 10 números capicúas entre 2000 y 3000.

Análogamente, entre 3 000 y 4 000 y entre 4 000 y 5 000:

El total de números capicúas entre 2 000 y 5 000 es de $10 \cdot 3 = 30$.

Fracciones

49 En un depósito, el lunes había 3 000 litros de agua y estaba lleno. El martes se gastó $\frac{1}{6}$ del depósito. El miércoles se sacaron 1 250 litros.

¿Qué fracción queda?

Lunes \rightarrow depósito lleno = 3 000 l

Martes
$$\rightarrow$$
 se gastó $\frac{1}{6}$ del depósito = $\frac{1}{6}$ de 3 000 = 500 l

Miércoles \rightarrow se sacaron 1 250 l

Litros que quedan $\rightarrow 3000 - 1250 - 500 = 1250 l$

La fracción que representa el número de litros que queda es $\frac{1250}{3000} = \frac{5}{12}$.

50 Una pelota pierde en cada bote $\frac{2}{5}$ de la altura a la que llegó en el bote anterior.

¿Qué fracción de la altura inicial, desde la que cayó, alcanzará cuatro botes después?

En el primer bote alcanzará una

altura de $\frac{3}{5}$ de la altura inicial;

en el segundo bote la altura será $\frac{3}{5}$ de $\frac{3}{5}$ de la altura inicial...

... luego en cuatro botes la altura alcanzada será $\left(\frac{3}{5}\right)^4 = \frac{81}{625}$ de la altura inicial.

Pág. 17

51 Los $\frac{3}{8}$ de un poste están pintados de blanco; los $\frac{3}{5}$ del resto, de azul, y el resto, que mide 1,25 m, de rojo.

¿Cuál es la altura del poste? ¿Cuánto mide la parte pintada de azul?

Pintados de blanco
$$\rightarrow \frac{3}{8} \rightarrow \text{el resto es } \frac{5}{8}$$

Pintados de azul
$$\rightarrow \frac{3}{5}$$
 del resto = $\frac{3}{5}$ de $\frac{5}{8}$ = $\frac{3}{8}$

Pintados de rojo \rightarrow 1,25 m

Fracción pintada de blanco o azul =
$$\frac{3}{8} + \frac{3}{8} = \frac{6}{8} = \frac{3}{4}$$

El resto, que es $\frac{1}{4}$, está pintado de rojo, y representa 1,25 m \rightarrow

ALTURA DEL POSTE =
$$1,25 \cdot 4 = 5 \text{ m}$$

La parte pintada de azul mide $\frac{3}{8}$ de 5 = 1,875 m.

52 Una canica cae al suelo y se eleva cada vez a los $\frac{2}{3}$ de la altura anterior. Después de haber botado tres veces, se ha elevado 2 m de altura.

¿Desde qué altura cayó?

$$\frac{2}{3}$$
 de $\frac{2}{3}$ de $\frac{2}{3}$ de la altura incial es 2 m \rightarrow

$$\left(\frac{2}{3}\right)^3$$
 de la altura inicial = 2 m $\rightarrow \frac{8}{27}$ de la altura inicial = 2 m

Altura inicial =
$$\frac{2 \cdot 27}{8}$$
 = 6,75 m

53 Un jardinero riega en un día $\frac{2}{5}$ partes del jardín. ¿Cuántos días tardará en regar todo el jardín?

¿Cuánto ganará si cobra 50 € por día?

En 1 día riega
$$\frac{2}{5}$$
 partes \rightarrow en medio día riega: $\frac{2}{5}$: $2 = \frac{1}{5}$ del jardin.

Luego todo el jardin lo regará en 5 medios días, es decir, en 2 días y medio.

En 1 día cobra
$$50 \in \rightarrow$$
 en 2 días y medio: $50 \cdot 2,5 = 125 \in$.

54 □□□ En un puesto de frutas y verduras, los 5/6 del importe de las ventas de un día corresponden al apartado frutas. Del dinero recaudado en la venta de fruta, los 3/8 corresponden a las naranjas. Si la venta de naranjas asciende a 89 €, ¿qué caja ha hecho el establecimiento?

Pág. 18

Del dinero total recaudado, la fracción que corresponde a la venta de naranjas es:

$$\frac{3}{8}$$
 de $\frac{5}{6} = \frac{3}{8} \cdot \frac{5}{6} = \frac{15}{48} = \frac{5}{16}$

Por lo tanto, $\frac{5}{16}$ equivale a 89 \in \rightarrow $\frac{1}{16}$ equivale a 17,8 \in (resultado de di-

vidir 89 entre 5) → el total de dinero recaudado será 17,8 · 16 = 284,8 €.

55 □□□ A Pablo le descuentan al mes, del sueldo bruto, la octava parte de IRPF y la décima parte para la Seguridad Social. Si el sueldo neto es 1 302 €, ¿cuál es su sueldo bruto mensual?

Calculamos la fracción total que se descuenta del sueldo bruto:

IRPF
$$\rightarrow \frac{1}{8}$$

S. Social $\rightarrow \frac{1}{10}$ $\left. \frac{1}{8} + \frac{1}{10} = \frac{5}{40} + \frac{4}{40} = \frac{9}{40} \right.$

Por tanto, la fracción que cobra del sueldo bruto es $1 - \frac{9}{40} = \frac{31}{40}$.

$$\frac{31}{40}$$
 del sueldo bruto = $1302 \rightarrow$ Sueldo bruto = $\frac{1302 \cdot 40}{31}$ = 1680

Su sueldo bruto mensual es de 1680 €.

56 De una clase de alumnos, $\frac{3}{7}$ del total han ido al museo de ciencias y $\frac{2}{5}$ a un concierto.

- a) ¿Adónde han ido más alumnos?
- b) Si 6 alumnos no han ido a ninguna actividad, ¿cuántos alumnos hay en la clase?
- a) Comparamos las fracciones $\frac{3}{7}$ y $\frac{2}{5}$:

$$\begin{vmatrix} \frac{3}{7} &= \frac{15}{35} \\ \frac{2}{5} &= \frac{14}{35} \end{vmatrix} \begin{cases} \frac{15}{35} > \frac{14}{35} \to \frac{3}{7} > \frac{2}{5} \end{cases}$$

Han ido más alumnos al museo de Ciencias.

b) Fracción de alumnos que han ido a alguna actividad:

$$\frac{3}{7} + \frac{2}{5} = \frac{15}{35} + \frac{14}{35} = \frac{29}{35}$$

Fracción de alumnos que no han ido a ninguna actividad:

$$1 - \frac{29}{35} = \frac{35}{35} - \frac{29}{35} = \frac{6}{35}$$

 $\frac{6}{35}$ equivale a 6 alumnos $\rightarrow \frac{35}{35}$ equivaldrá a 35 alumnos.

En la clase hay 35 alumnos.

Pág. 19

57 En una fiesta de cumpleaños se comen, en una primera ronda, $\frac{3}{8}$ de la tarta, y, después, la quinta parte de lo que sobraba.

¿Qué fracción de tarta no se ha comido?

Primera ronda
$$\rightarrow$$
 se comen $\frac{3}{8} \rightarrow$ sobra $\frac{5}{8}$

Segunda ronda
$$\rightarrow$$
 se comen $\frac{1}{5}$ de lo que sobra = $\frac{1}{5} \cdot \frac{5}{8} = \frac{1}{8}$

Fracción del total de tarta comida =
$$\frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$$

La fracción de tarta que no se ha comido es $\frac{1}{2}$.

58 Una familia se va de vacaciones diez días. Se alojan en un hotel con pensión completa cuyo coste representa 3/5 de su presupuesto, gastándose 2/3 del resto en ocio.

Si regresan a su casa con 640 €, ¿cuál era su presupuesto para las vacaciones?

Fracción gastada en el hotel con pensión completa
$$\rightarrow \frac{3}{5}$$
. Sobran $\frac{2}{5}$.

Fracción gastada en ocio
$$\rightarrow \frac{2}{3}$$
 de $\frac{2}{5} = \frac{4}{15}$

Fracción total gastada
$$\rightarrow \frac{3}{5} + \frac{4}{15} = \frac{9}{15} + \frac{4}{15} = \frac{13}{15}$$

Fracción sin gastar
$$\rightarrow 1 - \frac{13}{15} = \frac{15}{15} - \frac{13}{15} = \frac{2}{15}$$

$$\frac{2}{15}$$
 equivale a 640 € → $\frac{1}{15}$ equivale a 640 : 2 = 320 €

El presupuesto para las vacaciones ha sido de $320 \cdot 15 = 4800 \in$.

59 De un solar se venden primero los 2/3 de su superficie y después los 2/3 de lo que quedaba. El ayuntamiento expropia los 3 200 m² restantes para un parque público.

¿Cuál era la superficie del solar?

$$1^{\underline{a}}$$
 venta $\rightarrow \frac{2}{3} \rightarrow \text{queda por vender } \frac{1}{3}$

$$2^{a}$$
 venta $\rightarrow \frac{2}{3}$ de $\frac{1}{3} = \frac{2}{9}$

Fracción que representa el solar vendido =
$$\frac{2}{3} + \frac{2}{9} = \frac{6}{9} + \frac{2}{9} = \frac{8}{9}$$

Fracción que representa el solar sin vender, que es la superficie expropiada:

$$\frac{9}{9} - \frac{8}{9} = \frac{1}{9}$$
, que equivale a 3 200 m²

La superficie del solar será $3200 \cdot 9 = 28800 \text{ m}^2$.

Pág. 20

60 On obrero ha tardado 1 hora y tres cuartos en acuchillar 3/5 partes de un piso. Si ha empezado a las 10 de la mañana, ¿a qué hora acabará?

1 hora y tres cuartos = 1 +
$$\frac{3}{4}$$
 = $\frac{4}{4}$ + $\frac{3}{4}$ = $\frac{7}{4}$ de hora

$$\frac{3}{5}$$
 partes del piso tarda $\frac{7}{4}$ de hora $\rightarrow \frac{1}{5}$ tardará $\frac{7}{4}$: $3 = \frac{7}{12}$ de hora =

$$= \frac{7}{12} \text{ de } 60 \text{ minutos} = \frac{7 \cdot 60}{12} = 35 \text{ minutos}.$$

En acuchillar todo el piso tardará $35 \cdot 5 = 175$ minutos; es decir, 2 horas y 55 minutos.

Si ha empezado a las 10 de la mañana, acabará a la una menos cinco de la tarde (12 h 55 min) en acuchillar todo el piso.

61 Un tren tarda 3 horas y cuarto en recorrer 5/9 de un trayecto de 918 km.

- a) Calcula el tiempo que tarda en realizar el trayecto si sigue a la misma veloci-
- b) ¿Cuál ha sido su velocidad media?

a) 3 horas y cuarto =
$$3 + \frac{1}{4} = \frac{13}{4}$$
 de hora

En recorrer $\frac{5}{9}$ del trayecto tarda $\frac{13}{4}$ de hora \rightarrow En recorrer $\frac{1}{9}$ tardará:

$$\frac{13}{4}$$
: 5 = $\frac{13}{20}$ de hora = $\frac{13}{20}$ de 60 minutos = $\frac{13 \cdot 60}{20}$ = 39 minutos

En realizar todo el trayecto tardará $9 \cdot 39 = 351$ minutos; esto es, 5 horas y 51 minutos.

b) velocidad =
$$\frac{\text{espacio}}{\text{tiempo}}$$
 5 h y 51 minutos = 5 h + $\frac{51}{60}$ h = $\frac{351}{60}$ h

velocidad
$$\frac{918 \text{ km}}{\frac{351}{60} \text{ h}} = \frac{918 \cdot 60}{351} \approx 156,92 \text{ km/h}$$

62 Reduce.

a)
$$\frac{(a^3)^2 \cdot b^4}{(ab)^2}$$

b)
$$\frac{a^2 \cdot (b \cdot c)^2}{(ab)^3 \cdot c}$$

a)
$$\frac{(a^3)^2 \cdot b^4}{(ab)^2}$$
 b) $\frac{a^2 \cdot (b \cdot c)^2}{(ab)^3 \cdot c}$ c) $\frac{(ab)^2 - (ab)^3}{(ab)^4}$

a)
$$\frac{(a^3)^2 \cdot b^4}{(ab)^2} = \frac{a^6 \cdot b^4}{a^2 b^2} = a^4 \cdot b^2$$

b)
$$\frac{a^2 \cdot (b \cdot c)^2}{(ab)^3 \cdot c} = \frac{a^2 \cdot b^2 \cdot c^2}{a^3 \cdot b^3 \cdot c} = \frac{c}{ab}$$

c)
$$\frac{(ab)^2 - (ab)^3}{(ab)^4} = \frac{a^2b^2 - a^3b^3}{a^4b^4} = \frac{a^2b^2(1 - ab)}{a^4b^4} = \frac{1 - ab}{a^2b^2}$$

Pág. 21

63 Reduce aplicando las propiedades de las potencias.

a)
$$\frac{2^2 \cdot 3^4}{9 \cdot 12 \cdot 6}$$
 b) $\frac{4 \cdot 45 \cdot 24}{3^3 \cdot 2^4 \cdot 5}$ c) $\frac{8 \cdot 27^{-1}}{12^{-1}}$

b)
$$\frac{4 \cdot 45 \cdot 24}{23 \cdot 24 \cdot 5}$$

c)
$$\frac{8 \cdot 27^{-1}}{12^{-1}}$$

a)
$$\frac{2^2 \cdot 3^4}{9 \cdot 12 \cdot 6} = \frac{2^2 \cdot 3^4}{3^2 \cdot 2^2 \cdot 3 \cdot 2 \cdot 3} = \frac{2^2 \cdot 3^4}{2^3 \cdot 3^4} = \frac{1}{2}$$

b)
$$\frac{4 \cdot 45 \cdot 24}{3^3 \cdot 2^4 \cdot 5} = \frac{2^2 \cdot 3^2 \cdot 5 \cdot 2^3 \cdot 3}{3^3 \cdot 2^4 \cdot 5} = \frac{2^5 \cdot 3^3 \cdot 5}{3^3 \cdot 2^4 \cdot 5} = 2$$

c)
$$\frac{8 \cdot 27^{-1}}{12^{-1}} = \frac{2^3 \cdot 3^{-3}}{2^{-2} \cdot 3^{-1}} = 2^5 \cdot 3^{-2} = \frac{2^5}{3^2}$$