Zaawansowano algorytmy wizyjno AGH, Katodra Automatyki i Robotyki

Termowizja

Konspekt stanowi uzupełnienie wykładu, nie pokrywa całości materiału przedstawionego na wykładzie i obowiązującego do zaliczenia

Termowizja

Dlaczego pomiar temperatury kamerą termowizyjną jest niezależny od odległości od obiektu, skoro liczba fotonów maleje z kwadratem odległości?

Dlaczego pomiar temperatury kamerą termowizyjną jest niezależny od kąta obserwacji powierzchni, skoro obserwowana powierzchnia jest różna dla różnych katów?

Kamery termowizyjne

Kamery termowizyjne:

- - duża precyzja, zasięg do 20 km
 - wysoka cena
 - czas na schłodzenie
- pracujące w temperaturze pokojowej
 - większe zakłócenia
 - niższa cena

Źródła błedów w pomiarach termowizyjnych

Źródła błędów w pomiarach termowizyjnych:

Emisyjność < 1

Współczynnik emisyjności = 1 – ciało doskonale czarne Współczynnik emisyjności = 0 – brak emisji promieniowania

- → pokrycie powierzchni materiałem o znanej emisyjności (spray, taśma czarna)
- → pokrycie części powierzchni materiałem o znanej emisyjności → obliczenie współczynnika emisyjności
- → odczytanie wartości z tabel

Odbicie promieniowania

→ wykonywanie pomiarów przy słabym oświetleniu lub w nocy

Współczynnik emisyjności i współczynnik odbicia sumują się do jedynki: $\varepsilon + \rho = 1$

Źródła błedów w pomiarach termowizyjnych

Własności transmisyjne atmosfery

Współczynnik transmisji promieniowania:

W zakresie średniofalowym silnie zależny od $\boldsymbol{\lambda},$

np. dla λ = 3.8-3.9 μ m τ bliskie 1, poza tym przedziałem gwałtownie spada Wartości dla 1 km:

dla λ =3 μ m: τ = 0.4

dla λ =4 μ m: τ = 0.9

dla λ =5 μ m: τ = 0.63

W zakresie długofalowym (λ >10 μ m) dobry τ , mało zależny od λ Kamery w tym zakresie są odpowiednie do pomiarów na duże odległości dla λ =10 μ m i więcej: τ =0.88

Niższe temperatury => lepsze τ dla tej samej wilgotności względnej (niższa wilgotność bezwzględna)

