

Tarea 6

13 de diciembre de 2019

 $2^{\rm o}$ semestre 2019 - Profesores G. Diéguez - F. Suárez

Rafael Fernández - 17639123

Respuestas

Pregunta 1

Sean G y H grafos simples con caminos Hamiltonianos.

Sea $C_G = (g_1, g_2, ..., g_n)$ con $g_i \in V(G), i \in \{1..n\}$ un Camino Hamiltoniano en G.

Sea $C_H = (h_1, h_2, ..., h_m)$ con $h_i \in V(H), i \in \{1..m\}$ un Camino Hamiltoniano en H.

Sea $I = G \times V$. Por definición de producto cartesiano entre grafos, tenemos los siguientes caminos en I:

$$C_{1} = ((g_{1}, h_{1}), (g_{1}, h_{2}), ..., (g_{1}, h_{m}))$$

$$C_{2} = ((g_{2}, h_{m}), (g_{2}, h_{m-1}), ..., (g_{2}, h_{1}))$$

$$C_{3} = ((g_{3}, h_{1}), (g_{3}, h_{2}), ..., (g_{3}, h_{m}))$$

$$\vdots$$

$$C_{n} = \begin{cases} ((g_{n}, h_{1}), (g_{n}, h_{2}), ..., (g_{n}, h_{m})) & n \text{ impar} \\ ((g_{n}, h_{m}), (g_{n}, h_{m-1}), ..., (g_{n}, h_{1})) & n \text{ par} \end{cases}$$

Luego, entre cada camino $C_i, C_{i+1}, \forall i \in \{1, ..., n-1\}$, por la definición del producto cruz, existen aristas de la forma:

$$a_{i,i+1} \begin{cases} ((g_i, h_m), (g_{i+1}, h_m)) & i \text{ impar} \\ ((g_i, h_1), (g_{i+1}, h_1)) & i \text{ par} \end{cases}$$

Por lo tanto, tenemos el camino $C=C_1,a_{1,2},C_2,a_{2,3},...,C_{n-1},a_{n-1,n},C_n$, el cual es Hamiltoniano ya que contiene a todos los vértices de I.

Pregunta 2

Pregunta 2.a

Por demostrar:

G es árbol \Leftrightarrow tiene exactamente un ciclo al agregar una arista cualquiera

 (\Rightarrow)

Sea $v_1, v_2 \in V(G)$. Ya que G es arbol, existe un camino único $v_2, ..., v_2$ que conecta ambos vértices. Luego, al agregar la arista (v_2, v_1) se habrá formado un ciclo. Ya que el camino que unía a los vértices era único, el ciclo es único. \blacksquare .

(\Leftarrow) Sea G un grafo que al agregar una arista cualquiera se forma exactamente un ciclo. Ya que al agregar una arista $(v_1, v_2), v_1, v_2 \in V(G)$, se forma un ciclo, entonces debe existir un camino $v_2, ..., v_1$ entre ambos vertices. Ya que el ciclo es único, el camino debe ser único. Como elegimos v_1, v_2 genéricos, esto se cumple para todos los vértices, por lo que hay un camino único entre cada par de vértices ⇒ G es un árbol. ■.

Pregunta 2.b

Sea T un bosque con k árboles (componentes conexas).

Luego,
$$|V(T)| = n = \sum_{i=1}^{k} |V(k_i)|$$
, donde k_i es el i-esimo árbol.

Por la definición alternativa vista en clases, sabemos que cada árbol tiene $|V(k_i)|-1$ aristas. Ya que no hay caminos entre árboles, no hay aristas entre estos y la cantidad total de aristas es la siguiente:

$$|E(T)| = \sum_{i=1}^{k} (|V(k_i)| - 1)$$

$$= \sum_{i=1}^{k} |V(k_i)| - \sum_{i=1}^{k} 1$$

$$= n - k$$

3

Pregunta 2.c

Sea G = (V, E) un grafo cualquiera. Sea $v \in V(G)$ un vértice de grado k > 1.

Sabemos por teorema visto en clases que los árboles son estructuras recursivas (T-v también es árbol).

Luego, para cada uno de los vértices adyacetes a v se tiene un árbol. Sabemos que un árbol no vacío tiene al menos un nodo hoja.

En el caso de que v sea nodo raíz, tiene k hijos y por lo tanto k sub-árboles, lo que implica que tiene al menos k nodos hojas.

En otro caso, v tiene k-1 hijos , lo que significa al menos k-1 hojas Ya que cada árbol tiene por lo menos 1 nodo hoja, tenemos por lo menos k-1 hojas. Luego hay 2 casos:

- Grado del nodo padre de v es $1 \Rightarrow$ es nodo hoja \Rightarrow al menos k hojas en total.
- Grado nodo padre es mayor a $1 \Rightarrow$ existe al menos otro sub-árbol hermano de $v \Rightarrow$ al menos k hojas en total.