인공신경망 퍼셉트론의 이해

인공 신경 세포(Artificial Neuron)

- 뉴런
 - _ 입력
 - 편향(bias)

- 신경망(network)
 - 뉴런의 연결

입력과 출력

- 편향(bias)
 - 편향을 조정해 출력을 맞춤

Input x	Output y
Size of house	Price
Time spent for studying	Score in exam

뉴런 연산

• 뉴런 식

• 가중치와 편향

Python

행렬 곱 연산

활성화

- 활성화 함수
 - 뉴런의 출력 값을 정하는 함수

활성화 함수 종류

• ReLU(교재 p43)

- Rectified(정류된)
 Linear Unit(선형 함수, y=x를 의미)
 - 선형 함수를 정류 하여 0 이하는 모 두 0으로 한 함수
 - Max(x, 0) - 양수만 사용
- 2010년 이후
 - 층이 깊어질수록 (deep) 많이 활용
 - 양수를 그대로 반환하므로 값 의 왜곡이 적 어지는 효과
 - 토론토 대학 힌트 교수

Sigmoid

- s자 형태의 곡선이라는 의미
 - 예전에 많이 사용

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

ELU

Different Activation Functions and their Graphs

Python

입출력의 예

- 출력함수로
 - 동일(identity) 함수를 적용

$$y = f(\sigma) = f(w \cdot x + b) = w \cdot x + b$$

with **identity** (or **linear**) activation functions

1

f(x)	=	r
$\int (X)$	_	x

Input x	Output y
0	$y = f(2 \cdot 0 + 1) = 1$
1	$y = f(2 \cdot 1 + 1) = 3$
2	$y = f(2 \cdot 2 + 1) = 5$

일반화된 인공신경망

활성화 함수와 편향

- 결과 값이 임계 값 역할
 - 결과가 임계 값 이상이면 활성화
 - 결과가 임계 값 미만이면 비활성화

Input layer Output layer

x_1 w_1 x_2 w_2 x_3 w_4 x_4

Perceptron Unit

$$f_{w}(x) = \begin{cases} \sum w_{i}x_{i} \ge \theta \to \text{neuron fires} \\ \sum w_{i}x_{i} < \theta \to \text{neuron doesn't fire} \end{cases}$$

입력 2개, 출력 3개인 신경망 연산

인공신경망의 시그모이드 함수

- 활성화 함수의 예
 - 시그모이드 함수
 - 출력 값이 (0~1)

가중치

• 3 × 3의 가중치 실수

인공 신경망 행렬 연산

입력의 특징(x₁ x₂ x₃ ... x_i)과 입력의 자료 수

- 특징 n개가 있는 뉴런 신경망에서 하나의 출력 계산
 - ✓ 샘플 수 1개에 대한 계산

 $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \qquad \mathbf{w}^T = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$ $(1 \times n) \qquad (n \times 1)$ $\mathbf{x} \mathbf{w}^T = w_1 x_1 + w_2 x_2 + \cdots w_n x_n$ = z $(1 \times n)$ = z $(1 \times n)$

n: MNIST 손글씨에서 손글씨 이미지

하나의 펙셀 수인 786(28 x 28)을 의미

✓ 샘플 수 s개에 대한 계산

신경망 행렬 계산

- 특징 2개
 - 샘플 수 4

뉴런 계산

계산 사례

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 (9 12 15)

© sacko

층과 가중치

• 뉴런 층과 가중치 층

뉴런이 있는 층

Figure 7. Layers of neuron vs Layers of weights

행령의 다른 표현

- 입력을 오른쪽 행렬에 배치
- 가중치는 왼쪽 행렬에 배치
- 곱의 순서도 변환

Using multiple observations

하나의 출력 뉴런 연산

• 활성화 함수로 시그모이드 함수 적용

입력이 하나 중간층과 출력층으로 구성

- 중간층 뉴런 수가 2인 경우
 - 샘플 수 3

입력 특징이 2개, 중간층과 출력층

- 중간층의 누런 수가 3인 경우
 - 샘플 수 4

특징이 2인 이진 분류

샘플 수 4

Neural Networks

