Giorno 10: odinali e albergo MultiHilbert

Dati due insiemi (A, \leq) e $(B \leq)$ bene ordinati, diciamo che hanno la stessa lunghezza se esiste una mappa biettiva $f: A \to B$ che preserva l'ordine, cioè che se $a_1 \leq a_2$ allora $f(a_1) \leq f(a_2)$. Questa è una relazione di equivalenza e possiamo considerare classi di equivalenza di insiemi bene ordinati che hanno la stessa liunghezza.

Ognuna di queste classi è un *ordinale*. L'ordinale degli insiemi di 3 elementi coincide con gli insiemi di cardinalità 3, quindi l'ordinale 3 e il cardinale 3 sono rappresentati dalla stessa classe di insiemi pur avendo definizione diversa.

L'insieme dei numeri naturali \mathbb{N} è bene ordinato quindi determina un ordinale ω_0 infinito, che ha cadinalità \aleph_0 . Se consideriamo l'insieme $\mathbb{N}_{+2} = \mathbb{N} \cup \{a,b\}$ con il buon ordine dato da $n \in \mathbb{N} : n \leq a \leq b$, allora \mathbb{N}_{+2} definisce un altro ordinale $\omega_0 + 2$ (esistono mappe biettive tra \mathbb{N} e \mathbb{N}_{+2} , ma non mappe biettive che preservino l'ordine). Tuttavia la cardinalità di \mathbb{N} e \mathbb{N}_{+2} è la stessa ed è sempre \aleph_0 . Quindi ci sono più ordinali diversi di cardinali diversi.

Un ordinale è detto ordinale limite se non ha un precedente ad esempio ω_0 è un ordinale limite, mentre $\omega_0 + 1$ ha ω_0 come precedente perché $s(\omega_0) = \omega_0 + 1$.

Gli ordinali soddisfano gli assiomi di Peano. In particolare, se abbiamo un insieme che è ordinale $K=\{1,2,\ldots,k\}\subset\mathbb{N}$ possiamo definire il successivo $K+1=\{1,2,\ldots,k,k+1\}\subset\mathbb{N}$

A questo punto: plot twist! Esiste una cosa che si chiama assioma della scelta:

Nota: Dato un insieme X e ogni famiglia $A_{\alpha} \subset X$ di sottoinsiemi etichettati da $\alpha \in I$, esiste sempre una funzione $\sigma: I \to X: \alpha \mapsto \sigma(\alpha) \in A_{\alpha}$ che sceglie un elemento $\sigma(\alpha)$ in ogni sottoinsieme A_{α} della famiglia.

Occhio che la famiglia può essere finita, infinita (numerabile o non numerabile). Ad esempio, se prendiamo $I=\mathbb{R}$ e $A_x=\{(x,y):y\in\mathbb{R},x\in I\}\subset\mathbb{R}\times\mathbb{R}$ allora esiste una funzione $\sigma:\mathbb{R}\to\mathbb{R}:x\mapsto\sigma(x)$. Vi sembra ovvio? Beh da un lato questo è il motivo per cui è un assioma, dall'altro è perché non avete idea di quanto può essere infinito un insieme infinito. E comunque per scegliere la funzione σ ci vorrebbe infinito tempo visto che devo scegliere infiniti elementi $\sigma(\alpha)\in A_\alpha$ e in generale ogni A_α può essere fatto a modo suo.

Con l'assioma della scelta si può dimostrare che su ogni insieme esiste un buon ordine. Questo significa che potete ordinare \mathbb{Q} (o \mathbb{R}) in modo che ogni sottoinsieme abbia un minimo! E se ci pensate un attimo non avete la più pallida idea di come questo ordinamento sia fatto.

Ora se ogni insieme X ha (almeno) un buon ordinamento, significa che ogni coppia (X, \leq) (ogni insieme ben ordinato) definisce un ordinale. Quindi ad esempio pure \mathbb{R} definisce un ordinale.

Teorema: la cardinalità di [0,1) è più grande della cardinalità di \mathbb{N} .

Nota: Se I=[0,1) avesse la cardinalità di \mathbb{N} , sarebbe numerabile, cioè esisterebbe una mappa biettiva $\lambda:\mathbb{N}\to I$, il che significa che potrei elencare gli elementi di I facendo una lista $(\lambda(0),\lambda(1),\lambda(2),\ldots)$. Questa lista sarebbe una

cosa tipo

```
\begin{aligned} 0 &\mapsto 0.277394776559 \dots \\ 1 &\mapsto 0.000473656649 \dots \\ 2 &\mapsto 0.9983664756349 \dots \\ 3 &\mapsto 0.1227365549000 \dots \end{aligned}
```

. . .

ma si può sempre costruire un numero $x \in I$ che non sta nella lista (quindi la funzione λ non può essere biettiva). Basta prendere $x = 0.d_1d_2d_3d_4\ldots$ dove d_1 è una cifra diversa dalla prima cifra di $\lambda(0)$, dove d_2 è una cifra diversa dalla seconda cifra di $\lambda(1)$, dove d_3 è una cifra diversa dalla terza cifra di $\lambda(2)$, e avanti così

Il numero così costruito è diverso da tutti i numeri nella lista per almeno una cifra.

Ok, ci sono delle cosucce da sistemare ma in sostanza questo si chiama dimostrazione diagonale di Cantor. I punti di I sono infiniti, ma sono di più dei punti di \mathbb{N} . Tra l'altro non si può dimostrare né che ci siano, né che non ci siano infiniti più grandi di \mathbb{N} ma più piccoli di \mathbb{R} . Pure questo è un assioma della matematica. Usualmente si assume che non ce ne siano e si definisce \aleph_1 la cadinalità di \mathbb{R} . Questo assioma si chiama ipotesi del continuo.

Tra l'altro poi le funzioni $f: \mathbb{R} \to \mathbb{R}$ sono infinite di una cadinalità più grande e si assume siano \aleph_2 e evanti così.

Quindi voi potete contare

$$0123\ldots\omega_0\omega_0+1\omega_0+2\omega_0+3\ldots2\omega_0\ldots3\omega_0\ldots4\omega_0\ldots(\omega_0)^2\ldots(\omega_0)^3\ldots\ldots$$

Ma siccome pure \mathbb{R} definisce un ordinale prima o poi incontro un ordinale che non è più numerabile (che si chiama il *primo ordinale non numerabile*, che scriviamo ω_1 , perché gli ordinali non numerabili sono un sottoinsieme dei numerabili e quindi devono avere un minimo). Poi si continua a contare fino ad arrivare a \mathbb{R} (e tutti gli ordinali da ω_0 a \mathbb{R} hanno necessariamnete cardinalità \aleph_1 per l'ipotesi del continuo.)

Mal di testa?

Ora possiamo rifare la storiella dell'albergo di MultiHilbert. Quello di prima è solo il piano terra che ha ω_0 camere, poi c'è il primo piano con le camere da $\omega_0 + 1$ a $2\omega_0$. E via così per tutti i piani numerabili.

Questo ha sempre \aleph_0 stanze tante quante le camere dell'albergo originale.

Poi abbiamo la depandance \aleph_1 che comincia con la stanza ω_1 e pure lei ha infiniti piani infiniti.

Poi la depandance ω_2 (il primo ordinale di cardinalità \aleph_2) e avanti così all'infinito.

Nota: quando Cantor ha scritto sta roba (intorno al 1850), il suo maestro Kronecher, ha detto che era pazzo. Questi si chiamano numeri transfiniti di Cantor. Oggi non c'è dubbio che Cantor avesse ragione. È tutto ben definito, tutto dimostrabile, tutto certificato.

Detto questo, Cantor aveva manie di persecuzione, forse era bipolare e passava 6 mesi fuori e sei mesi dentro il manicomio.