

トップエスイー ソフトウェア開発実践演習

セキュアプログラミング実践

NECソリューションイノベータ株式会社 小松佑樹 株式会社エヌ・ティ・ティ・データ 武田晃

キヤノン株式会社 堤忠臣 株式会社NTTデータ・アイ 新田海馬

開発における問題点

- セキュアプログラミング(脆弱性を作り込まない 設計・実装)は、つながるサービスには必須に なっている
- 設計・コードレビュー, 静的解析, 脆弱性診断等, 基本的なセキュアプログラミングによって開発し たソフトウェアにおいても脆弱性はなくならない. 想定外のデータ入力による不正動作

手法・ツールの適用による解決

【ファジング】

予測できない入力データを与えて, バグや脆弱 性を検出する手法(ブラックボックス, グレー ボックス、ホワイトボックス)

【静的解析】

ソフトウェアを実際に動作させることなく解析す

取り組み内容

調査 適用 解析 整理 手法・ツー 手法・ツー ルの特徴 社内展開 既知の脆 ルを脆弱 の課題を 検出し 弱性調査 性に適用 た脆弱性 把握 の解析

既知の脆弱性調査

- Lighttpd のサービス拒否の脆弱性(CVE-2012-5533)
- Apache HTTP Serverのパストラバーサルの脆弱性 (CVE-2021-41773)
- Apache HTTP Serverのサービス拒否の脆弱性(CVE-2021-41524)

手法・ツールを脆弱性のあるソフトウェアに適用

【ブラックボックス】

- booFuzz
- GitLab Protocol Fuzzer CE
- **OWASP ZAP**
- Wfuzz
- **API Fuzzer**

【グレーボックス】

- **AFL**
- LibFuzzer
- HonggFuzz

【ホワイトボックス】

Angr

KLEE

【静的解析】

用

- Infer
- Flawfinder

■CVE-2012-5533

→ Connectionヘッダに不正な文字列「, , 」を含む場合に不正動作する

社内展開の例

今後の展望

- ホワイトボックスファジングのより簡便な利用方法の模索
- 各種ファジングについて導入するための指南書の作成
- 検出できなかった脆弱性の原因について、ツールの性能な のか環境の問題なのかの切り分けが必要

Apache |

HTTP

Server

lighttpd