SAMPLE QUESTION PAPER

MATHEMATICS CLASS-X (2016-17) SUMMATIVE ASSESSMENT -II

MARKING SCHEME SECTION -A

2. 3.	136	[1] [1] [1] [1]
••	SECTION-B	[*]
SHC TOTAL		
5.	Here a=4, d=4 and a_n = 96 So, a_{n} = a+ (n-1)d 96 = 4+(n-1)4	[1/2]
	∴ n=24	[1/2]
	Now, $S_{24} = \frac{n}{2}(a+a_n)$	[1/2]
	$\therefore \qquad S_{24} = 1200$	[1/2]
6.	Let A(-1, 3), B(2, p) and C(5, -1) be 3 collinear points.	
	Then Area $\triangle ABC = 0$	[1/2]
	Then, $\frac{1}{2} [-1(p+1)+2(-1-3)+5(3-p)]=0$	[1]
	i.ep-1-8+15-5p=0	
	i.e. 6=6p	
	i.e. $p=1$	[1/2]
7.	For equal roots, b^2 -4ac=0	[1/2]
	Here, $a = k$, $b = -k$ and $c = 1$	
	$k^2 - 4(k)(1) = 0$	[1/2]
	i.e. $k(k-4)=0$ i.e. $k=0$ or $k=4$	[1/2]
	rejecting $k=0$, we get $k=4$.	[1/2]
8.	Perimeter of $\triangle ABC = AB + BC + CA$ = $AB + [BP + CP] + CA$ = $AB + BQ + CR + CA$ (Tangents from an external point are equal) = $AQ + AR$ = $AR + AR$ (Tangents from an external point are equal)	[1/2] [1/2] [1/2]
	=2AR	[1/2]

9. Point R divides PQ in ratio 2:3.

[1/2]

Co-ordinates of point R are given by

$$x = (2 \times -3 + 3 \times 2)/5 = 0$$
 [1/2]

$$y = (2 \times 4 + 3 \times -1)/5 = 1$$
 [1/2]

So, the required point R is (0,1) [1/2]

10.

Tangents drawn to a circle from same external point are equal in length. So, [1/2]

$$AE = CE$$
 ----- (1)

And
$$EB = ED$$
 -----(2)

Adding (1) and (2), we get,

$$AB = CD. ag{1/2}$$

SECTION - C

11. $x^2 + 12x - 45 = 0$

Using the method of completing the square,

$$x^2 + 12x - 45 + 36 = 36$$
 [1/2]

i.e. $x^2 + 12x + 36 = 36 + 45$

i.e.
$$(x+6)^2=81$$

i.e.
$$(x+6) = \pm 9$$

i.e.
$$x = 3 \text{ or } -15$$

12.
$$\frac{a+9d}{a+29d} = \frac{1}{3}$$
 [1]

i.e. 3a + 27 d = a + 29 d

Also, $S_6 = 42$

i.e.
$$\frac{6}{2}(2a+5d)=42$$
 [1]

i.e. 3(2a+5a)=42 Using... (1)

i.e. 3(7a)=42

i.e.
$$a=2$$

13. Let AB represent the lighthouse.

 $\angle ACB = 45^{\circ} \text{ and } \angle ADB = 30^{\circ}$

Fig [1]

In ΔABC,

 $\tan 45^{\circ} = AB/BC$

1=75/BC

Now, in $\triangle ABD$,

tan 30°= AB/BD

i.e.
$$1/\sqrt{3} = 75/$$
 (BC+CD)

i.e.
$$1/\sqrt{3} = 75/(75 + CD)$$

i.e.
$$75+CD=75\sqrt{3}$$

i.e.CD=
$$75(\sqrt{3}-1)$$
 m [1]

14. Let A(-1,3), B(1,-1) and C(5,1) be the vertices of \triangle ABC.

Median through C would be the line joining C and midpoint of side AB. Let it be point D

$$D = (\frac{-1+1}{2}, \frac{3-1}{2})$$
 [1]

Coordinates of D are (0,1) [1/2]

Length of median CD =
$$\sqrt{(5-0)^2 + (1-1)^2}$$
 [1]

$$= 5 \text{ units.}$$
 [1/2]

15. No. of cards left = 52-3=49

$$P(\text{face card}) = \frac{9}{49}$$

$$P(\text{red card}) = \frac{23}{49}$$
 [1]

$$P(a \text{ king}) = \frac{3}{49}$$

16.
$$\frac{\theta}{360} \times 2\pi r = 44$$
. [1/2]
Putting r=42cm, we get $\theta = 60^{\circ}$ [1]

Now, Area of minor segment= Area of minor sector- Area of Δ Since $\theta = 60^{\circ}$, so the triangle formed will be an equilateral Δ . Δ Area of minor segment = Area of minor sector- Area of equilateral Δ i.e. Area of minor segment = $\frac{\theta}{360} \times 2\pi r^2 \cdot \frac{\sqrt{3}}{4} a^2$ [1]
= $924.441\sqrt{3}$ cm² [1/2]

17. Time required to fill the conical vessel= Volume of cone / volume of water coming out of cylindrical pipe per unit time = $\frac{1}{3} \frac{\pi r_2^2 h_1}{\pi r_2^2 h_2}$ [1]
= $\frac{1}{4} \frac{\pi r_2^2 h_2}{\pi r_2^2 h_2}$ [1]
= 4.8 minutes [1/2]

18. Area of shaded region = Area of semicircle with diameter PS – Area of semicircle with diameter QS + Area of semicircle with diameter PQ. So, required area = $\frac{1}{12} \frac{\pi (40)^2 \times 72 | \pi (2)^2 \times 20 \times 100}{\pi (36)^2 \times 100}$ [1]
= $\frac{3}{2} \frac{\pi r_1^2 h_1}{\pi r_2^2 h_2}$ [1]
= $\frac{1}{2} \frac{\pi (40)^2 \times 72 | \pi (2)^2 \times 20 \times 100}{\pi (36)^2 \times 100}$ [1]

19. No. of lead shots = $\frac{Volume\ of\ cuboid\ Volume\ of\ sphere}{\sqrt{1} \frac{1}{3} \frac{1}{\pi r_2} \frac{1}{3}}$ [1]
= $\frac{24 \times 22 \times 12 \times 3}{\pi \times 3 \times 3 \times 3 \times 4}$ [1]
= $\frac{24 \times 22 \times 12 \times 3}{\pi \times 3 \times 3 \times 3 \times 3 \times 4}$ [1]
= $\frac{20}{3}$. Required surface area = $\frac{2\pi rh}{2} + 2x \left[\frac{2\pi r^2}{3}\right]$ [1]
= $\frac{2}{3} \times \frac{2\pi r^2}{3} \times \frac{2\pi r^2}{3}$ [1]

Cost of polishing = Rs.374 x 10 = Rs.3740 [1/2]

21. Correct Construction of $\frac{\Delta ABC}{2}$ [2]
Correct construction of similar triangle [2]

According to question,

$$\frac{90}{x} - \frac{90}{x+15} = \frac{1}{2}$$
 [1]

i.e.
$$x^2 + 15x - 2700 = 0$$
 [1]

Solving for x we get,

$$x = -60 \text{ or } 45$$
 [1]

Rejecting x=-60, we get, x=45

So,
$$x=45 \text{ km/hr}$$
 [1/2]

Time = Distance / Speed

$$=\frac{90}{45}$$

$$=2 \text{ hours}$$

23. (i) Cards marked with numbers which are multiples of 3 are 3, 9, 15, 21, 27, 33, 39 and 45.

So,
$$P$$
 (getting a number divisible by 3) = $\frac{8}{25}$ [1]

(ii)
$$P$$
 (composite number) = $\frac{10}{25}$ [1]

(iii)
$$P$$
 (not a perfect square) = $1 - P$ (perfect square) = $1 - \frac{4}{25} = \frac{21}{25}$ [1]

(iv)
$$P$$
 (multiple of 3 and 5) = $\frac{2}{25}$ [1]

24.

Construction: Join OR, OC and OS. [1/2]

In \triangle ORA and \triangle OCA

$$OR = OC (radii)$$

AO=AO (common)

AR= AC (tangents from an external point)

$$\Delta ORA \cong \Delta OCA$$
 (By SSS rule) [1]

$$\therefore \angle RAO = \angle CAO \text{ (CPCT)} \dots (1)$$

Similarly $\triangle OSB \cong \triangle OCB$ (By SSS rule)

$$\therefore \angle SBO = \angle CBO \text{ (CPCT)} \dots (2)$$

 $\angle RAB + \angle SBA = 180^{\circ}$ (Co- interior angles)

 $2\angle OAB + 2\angle OBA = 180^{\circ} (From (1) & (2)$

$$\angle OAB + \angle OBA = 90^{\circ} \dots (3)$$

In $\triangle AOB$,

 $\angle OAB + \angle OBA + \angle AOB = 180^{\circ}$ (Angle sum property)

$$90^{\circ} + \angle AOB = 180^{\circ} \text{ (From 3)}$$

$$\angle AOB = 90^{\circ}$$

25. Quadratic formula,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 [1]
 $a = p^2$, $b = (p^2 - q^2)$, $c = -q^2$ [1/2]
 $x = [-(p^2 - q^2) \pm \sqrt{[(p^2 - q^2)^2 - 4p^2(-q^2)]/2p^2}$ [1]
 $x = [-p^2 + q^2 \pm (p^2 + q^2)]/2p^2$ [1/2]

$$\mathbf{x} = \left[-(\mathbf{p}^2 - \mathbf{q}^2) \pm \sqrt{\left[(\mathbf{p}^2 - \mathbf{q}^2)^2 - 4\mathbf{p}^2 (-\mathbf{q}^2) \right] / 2\mathbf{p}^2} \right]$$

$$\mathbf{y} = \left[-\mathbf{p}^2 + \mathbf{q}^2 + (\mathbf{p}^2 + \mathbf{q}^2) \right] / 2\mathbf{p}^2$$
[1]

$$x = [-p^2 + q^2 \pm (p^2 + q^2)] / 2p^2$$
[1/2]

$$x = q^2/p^2 \text{ or -1}$$
 [1]

26. Diagonals of a parallelogram bisect each other,

So, midpoint of AC = midpoint of BD
$$[1/2]$$

i.e.
$$\left(\frac{1+k}{2}, \frac{2-2}{2}\right) = \left(\frac{2-4}{2}, \frac{3-3}{2}\right)$$
 [1/2]

i.e.
$$\frac{(1+k)}{2} = -1$$

i.e.
$$k = -3$$

Now ar ABCD= 2 Area of \triangle ABD

$$=2 \times \frac{1}{2} \times [1(6) + 2(-1) - 4(-5)]$$
= 24 sq units. [1]

AB=
$$\sqrt{(1-2)^2 + (-2-3)^2}$$

= $\sqrt{26}$ units [1/2]

 $Ar(ABCD) = base \times height$

$$= AB \times h$$

So,
$$24 = \sqrt{26} \times h$$

So,
$$h = 24/\sqrt{26}$$
 units [1]

27.

Let FC be the lake and D be a point 100m above the lake.

Let A be the helicopter at height h metre above the lake and let E be its reflection \therefore CE = h metre $\angle BDE = 60^{\circ}$, $\angle ADB = 30^{\circ}$ and DB = x metre [1 mark for correct figure and description]

$$Tan 30^\circ = \frac{h-100}{x}$$

$$1/\sqrt{3} = \frac{h - 100}{x}$$

$$h = x/\sqrt{3} + 100 ----(1)$$

$$Tan 60^\circ = \frac{h+100}{x}$$

$$\sqrt{3} \ {\rm x} = h + 100$$

$$h = \sqrt{3}x - 100 - (2)$$

From equation 1 & 2

$$x/\sqrt{3} + 100 = \sqrt{3}x - 100$$

$$x = 100\sqrt{3}m$$

and so
$$h=200$$
m [1]

i.e. height of the helicopter is 200m.

28. (i) Volume of each container =
$$\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1 r_2)$$
 [1/2]

$$= \frac{1}{3} \times \frac{22}{7} \times 30(20^2 + 40^2 + 20 \times 40)$$

$$= 88000 cm^3 = 88 l$$
 [1]

Total milk = 880 l

a) Milk in 1 container= 88 l

So number of containers
$$=\frac{880}{88} = 10$$
 [1]

b)
$$Cost = 880 \times 35 = Rs.30800$$
 [1/2]

29.

[Correct Figure 1 mark]

 $\angle APB = 90^{\circ}$ (angle in a semicircle)

 $\angle ODB = 90^{\circ}$ (tangent is perpendicular to the radius)

ΔAPB and ΔODB

$$\angle APB = \angle ODB = 90^{\circ}$$
 [1/2]

$$\angle ABP = \angle OBD \text{ (common)}$$
 [1/2]

$$\triangle APB \sim \triangle ODB (AA)$$
 [1/2]

$$\therefore \frac{OD}{AP} = \frac{OB}{AB} \text{ (CPST)}$$
 [1/2]

$$\frac{8}{AP} = \frac{13}{26}$$
 [1/2]

$$AP = 16cm$$
 [1/2]

30. (i)
$$a_3 = 600$$
 \therefore a + 2d= 600 ----- (1)

$$a_7 = 700 \quad \therefore a + 6d = 700 \quad ----(2)$$

From (1) & (2)

$$d = 25$$
 , $a = 550$

(i)
$$a_{1} = 550$$

(ii)
$$a_{10} = a + 9d = 550 + 9 \times 25 = 775$$
 [1]

(iii)
$$S_7 = \frac{7}{2}(2 \times 550 + 6 \times 25)$$

$$= 4375$$
 [1]

31.
$$r = 7 \text{cm}, h = 50 \times 0.5 = 25 \text{cm}$$
 [1/2]

Total Surface Area =
$$2\pi r (r + h)$$
 [1/2]

$$=2 \times \frac{22}{7} \times 7 \times (7 + 25)$$

$$= 1408 \text{ cm}^2$$
 [1]

Volume of the box =
$$25 \times 25 \times 25 = 15625 \text{ cm}^3$$
 [1/2]

Volume of the solid formed =
$$\pi r^2 h$$
 [1/2]

$$= \frac{22}{7} \times 7 \times 7 \times 25 = 3850 \text{ cm}^3$$
 [1/2]

Space left =
$$15625 - 3850 = 11775 \text{ cm}^3$$
 [1/2]