The Case for FPGAs The Case for More FPGAs

Outline

- Introduction
- Popularity of FPGAs
- Advantages of FPGAs
- New Era for FPGAs

A Weird Idea

- Back in the early 1980s, chip designers tried to get the most out of each and every transistor on their circuits
- Ross Freeman
 - □ proposed a chip packed with transistors that formed loosely organized logic blocks that in turn could be configured and reconfigured with software
 - □ sometimes a bunch of transistors wouldn't be used
 - □ betted that Moore's Law would eventually make transistors really cheap

World's first commercial FPGA introduced in 1985

3

What is an FPGA?

- Field-programmable gate array (FPGA)
 - ☐ An IC whose function and wiring can be re-programmed
 - □ Different from ASIC (application specific integrated circuit), it is not designed and made for a specific system

Intel Seals \$16.7 Billion Altera Deal

Dylan McGrath

12/28/2015 04:02 PM EST

Waxman said that by 2020 Intel believes a third of the data center market could be using the type of chips that Altera specializes in.

5

FPGA Everywhere

■ FPGAs inside a lot of consumer electronics

Numerous FPGA Applications

- Medical
- Advanced driving assistance
- Emulation system
- Military
- Aerospace

-

More FPGA Deployment

- Data center
- Machine learning
- Telecommunication

Why FPGA is a good match for Convolution Neural Network?

- FPGA offers
 - massively parallel architectures
 - efficient DSP resources (for numerical operations like dot-product accumulation)
 - adaptable to any numerical representations and sizes
 - □ large amount of on-chip memory

9

FPGAs for Logic Emulation

- State-of-the-art electronic system
 - ☐ Huge gate count (over hundreds of millions)
 - ☐ Before committing to silicon, need to verify that it can function correctly under all operating conditions
- FPGA-based logic emulation of electronic system can
 - □ Provide orders-of-magnitude faster debugging and functional verification compared to software based simulation
 - ☐ Bringup/develop/validate software part before silicon is ready

Moore's Law and FPGAs

- With technology scaling, FPGAs achieve
 - ☐ Increasing capacity
 - ☐ Faster performance
 - More functionality

- Cost: billions of US dollars
- Typical fab line occupies about 1 city block, employs a few hundred people.
- New fabrication processes require 6-8 month turnaround.
- Most profitable period is first 18 months-2 years.

Massive Investment for Advanced-Node Design and Manufacturing

	32/28nm node	22/20nm node
Fab Costs	\$3B	\$4B-7B
Process R&D	\$1.2B	\$2.1B-3B
Design Costs	\$50M-90M	\$120M-500M
Mask Costs	\$2M-3M	\$5M-8M
		Source: IBS May 2011
EDA Costs	\$400M-500M	\$800M-1.2B

Breakeven 60-100M units

13

Breakeven

30-40M

units

Why FPGAs in Consumer Products?

- Prohibitive fabrication cost for custom silicon in advanced process nodes
 - → not viable except for large volume requiring extremely high performance

- Need a cheaper alternative!
- FPGAs come to the rescue

Estimated FPGA/PLD Design Starts

15

FPGA vs ASIC

- FPGAs (field-programmable gate arrays) are standard parts:
 - □ Off-the-shelf
 - □ Pre-manufactured
 - ☐ Millions of customers share manufacturing costs
- ASIC:
 - ☐ Tailored to your application
 - □ Require own set of masks for manufacturing
 - ☐ High startup cost

FPGA vs ASIC

Source: Xilinx

17

Standard Parts vs Custom Silicon

- When to build your design with an FPGA or with custom silicon?
 - □ FPGAs have shorter design cycle
 - □ FPGAs have no manufacturing delay
 - ☐ FPGAs reduce inventory
 - □ FPGAs are slower, larger, more power-hungry

Which Way to Go?

ASICs

High performance

Low power

Low cost in high volumes

FPGAs

Off-the-shelf

Low development cost

Short time to market

Reconfigurability

2.5D FPGAs

- First commercial 2.5D IC
 - □ Xilinx Virtex-7 2000T
 - 4 dies
 - Die-to-die connection through interposer-based 2.5D technology
 - 6.8 billion transistors (~ 20 million ASIC gates)

2.5D FPGAs

■ Interposer-based inter-die connection

2.5D FPGAs

- Intel Stratix 10
 - ☐ Use Embedded Multi-Die Interconnect Bridge (EMIB) to connect two adjacent dies

2.5D FPGAs

■ Silicon-bridge based connection

23

Hybrid CPU-FPGA Device

■ Hybrid Xeon CPU-Arria 10 FPGA chip

