Robot de Asistencia en Ejercicios y Movilización durante la Rehabilitación

Speech

El Robot de Asistencia en Ejercicios y Movilización del Hospital Ada Lovelace transforma la rehabilitación con IA y Azure, ofreciendo precisión personalizada y transparencia total. Reduce tiempos de recuperación en un 40%, mejora la movilidad

en un 35% y optimiza la supervisión médica en tiempo real, integrándose perfectamente al ecosistema hospitalario para resultados cuantificables y revolucionarios.

Módulo

Funcionalidades Principales

El Robot de Asistencia en Ejercicios y Movilización (RAEM) es un sistema robótico avanzado diseñado para apoyar a pacientes en rehabilitación física tras cirugías, lesiones musculoesqueléticas o eventos neurológicos. Equipado con brazos articulados y plataformas ajustables, guía movimientos precisos adaptados a planes terapéuticos personalizados generados por IA. Integra dispositivos como electroestimuladores musculares (TENS/EMS), cintas de andar, cicloergómetros y tablas de inversión para ejercicios de resistencia, fuerza y flexibilidad. Por ejemplo, un paciente postoperatorio de rodilla realiza ejercicios de extensión supervisados por el RAEM, ajustando ángulos y resistencia en tiempo real según su progreso, registrado en la HCE.

Gestión de Emergencias Específicas

El RAEM maneja situaciones críticas durante la rehabilitación:

- 1. **Espasmos musculares severos**: Detecta rigidez vía sensores EMG, aplica TENS para relajación y notifica al fisioterapeuta.
- 2. **Desmayo o fatiga extrema**: Identifica caídas en frecuencia cardíaca (HRM) o respiración, detiene la sesión y activa el carro de emergencias.
- 3. **Dolor agudo repentino**: Registra quejas vocales o presión anómala (sensores de fuerza), ajusta el ejercicio y alerta al médico.
- 4. **Arritmias cardíacas**: Detecta irregularidades vía ECG, pausa la actividad y notifica a cardiología.
- 5. **Caídas o pérdida de equilibrio**: Sensores LiDAR y acelerómetros identifican desestabilización, activan soporte físico y emiten una alerta.
- 6. **Hipoglucemia**: Sensor de glucosa detecta niveles bajos, detiene el ejercicio y solicita asistencia inmediata.
- 7. **Dificultad respiratoria**: Sensores de frecuencia respiratoria identifican patrones anormales, ajustan la intensidad y notifican a neumología.

Interacción con Equipos Médicos

El RAEM se conecta con la HCE para registrar progreso y biomarcadores, integrándose con camas hospitalarias eléctricas para traslados, monitores multiparámetro para signos vitales y robots quirúrgicos para pacientes postoperatorios. Por ejemplo, colabora con el módulo de Diagnóstico Molecular enviando datos de bioimpedancia para evaluar inflamación muscular, optimizando el traslado a pruebas adicionales si es necesario.

Sensores del Dispositivo

- Electromiograma (EMG): Monitorea actividad muscular para ajustar ejercicios y detectar fatiga.
- Acelerómetros y giróscopos vestibles: Evalúan rango de movimiento y estabilidad.
- Sensor de frecuencia cardíaca (HRM): Vigila esfuerzo cardiovascular en tiempo real.
- Sensor de fuerza/presión: Mide resistencia aplicada y detecta dolor.
- **LiDAR y sensores ultrasónicos**: Previenen caídas y ajustan posicionamiento.
- Bioimpedancia: Analiza composición corporal para personalizar terapias.
- Smartwatches médicos: Sincronizan datos del paciente (pulso, pasos) con el RAEM.

Detección de Anomalías

La IA procesa datos de sensores en tiempo real mediante Azure Machine Learning, prediciendo riesgos como sobreesfuerzo muscular (sensibilidad del 95% en 2 segundos) o arritmias (detección en 1 segundo). Compara patrones históricos del paciente y alerta si las desviaciones superan el 10%, priorizando intervención inmediata.

Materiales y Diseño

El RAEM, de 50 kg, está construido con aleación de aluminio ligero y polímeros antimicrobianos, asegurando durabilidad y fácil limpieza. Su diseño ergonómico incluye brazos ajustables (alcance de 1.5 m) y una base móvil con ruedas omnidireccionales. La interfaz táctil de 15" es intuitiva para médicos y pacientes.

Módulo de Comunicación Integrado

Cuenta con una CPU de 8 núcleos, 32 GB de RAM y conectividad 5G, Wi-Fi 6 y BLE para sincronización con Azure Cloud Services. La batería de 48V ofrece 12 horas de autonomía, recargable en 2 horas.

Resiliencia

El RAEM opera con un uptime del 99.99%, gracias a redundancia en sensores críticos y un sistema de respaldo energético. Resiste caídas de 1 m y temperaturas de 0-40°C, con autodiagnóstico continuo vía Azure IoT Hub.

Beneficios Específicos

- Reduce tiempos de rehabilitación en un 40% mediante terapias optimizadas.
- Mejora la movilidad funcional en un 35% en pacientes neurológicos.
- Disminuye complicaciones (e.g., espasmos) en un 25% con detección temprana.
- Aumenta la eficiencia del personal en un 30% al automatizar supervisión.

Integración con el Hospital

El RAEM utiliza el ID único del paciente para sincronizar datos con la HCE y el asistente virtual de Ada Lovelace, compartiendo métricas con módulos como el Robot Quirúrgico Autónomo (postoperatorio) y el Monitor de Signos Vitales. Su conexión con Azure asegura análisis predictivo y escalabilidad, optimizando flujos desde rehabilitación hasta alta médica.