Topologia Algebrica

Topologia portami via.

Parigi 1905 H. Poincarè

Professore: Gilberto Bini

Umile scriba: Gabriele Bozzola

Ho scritto queste note come strumento personale per lo studio della topologia algebrica, e per questo motivo solo lontane dall'essere rigorose e sicuramente saranno ricche di errori e imprecisioni. Molte definizioni o concetti sono qui riportati perché, essendo uno studente di fisica, inizialmente ero a digiuno in merito ad argomenti che per gli studenti di matematica sono banalità. Queste note sono basate sulle lezioni del Professor Gilberto Bini dell'anno accademico 2016/2017, ma sono riportate in un ordine differente rispetto a quello cronologico, e alcune dimostrazioni sono state sistemate da me prima di essere scritte. I file .tex di questo documento sono tutti disponibili su GitHub all'indirizzo https://github.com/Sbozzolo/Topologia-Algebrica, chiunque lo desideri può forkarli e modificarli a piacere, correggendo i numerosi errori qui presenti.

Milano, 7 dicembre 2016

Gabriele Bozzola

Syllabus 2016-2017

- **26 September 2016**: General introduction. Homology of a complex. Singular homology.
- 4 October 2016 (one hour): The boundary operator. Arcwise connected components and H0
- 6 October 2016: Review of the fundamental group and relation with the first homology group.
- 11 October 2016: The homomorphism between homology group that is induced from continuous maps between topological space. Chain maps.
- 13 October 2016: Topological pairs and relative homology. The long exact sequence in relative homology. The connecting homomorphims.
- 18 October 2016: Homology theory via the axioms of Eilenberg and Steenrod. The homology of spheres.
- 20 October 2016: Applications of the homology of spheres. The definition of degree.
- 25 October 2016: CW-complex of finite type. Applications and various examples.
- 3 November 2016: Rational Homology Spheres.
- 8 November 2016: Cellular Homology: first examples and statements.
- 10 November 2016: The cellular homology complex. Singular homology is isomorphic to Cellular homology
- 15 November 2016: Examples of cellular homology: closed and compact topological surfaces, complex projective space and real projective space
- 17 November 2016: Some consequences of the generalized Jordan curve theorem. The invariance of dimension
- 22 November 2016:
- 24 November 2016:
- 29 November 2016:
- 1 December 2016:
- 6 December 2016:

- 13 December 2016:
- 15 December 2016:
- 20 December 2016:
- 10 January 2016:

Indice

1	Ricl	Richimi di algebra e geometria											
	1.1	Richiami di algebra e geometria											7
	1.2	Gruppo fondamentale											11
		1.2.1 Omomorfismo tra \mathbb{R} e \mathbb{R}^N										 	14
2	Om	Omologia singolare 17										17	
	2.1	Introduzione										 	17
	2.2	Simplessi singolari										 	17
	2.3	Omologia singolare										 	23
		$2.3.1 H_0(X) \dots \dots \dots \dots \dots \dots$											23
		$2.3.2 H_1(X) \dots \dots \dots \dots \dots \dots$											26
	2.4	Morfismi indotti											31
	2.5	Successioni esatte										 	34
		2.5.1 Successioni esatte in omologia										 	35
	2.6	Omologia singolare relativa											38
		2.6.1 Successioni spezzanti											39
	2.7	Omologia singolare ridotta											41
	2.8										45		
		2.8.1 Escissione e omotopia											46
		2.8.2 Omologia ridotta per una qualsiasi teoria											51
	2.9	Omologia delle sfere			_								53
		2.9.1 Teoria del grado											59
3	Om	nologia cellulare											63
	3.1	CW-complessi										 	63
	3.2	Congettura di Poincaré											65
	3.3	Costruzione dell'omologia cellulare											75
		3.3.1 Calcolo dell'omologia cellulare di alcuni s											81
	3.4	Successione di Mayer-Vietoris											87
4	Coo	omologia singolare											91
	4.1	Prodotto tensore										 	91
	4.2	Cambiamento di coefficienti											
	4.3	Coomologia singolare											102
	4.4	Prodotto cup											
		4.4.1 Richiami di algebra degli anelli											
		4.4.2 Prodotto cun											110

Lista dei simboli e abbreviazioni

Simbolo	Significato	Pag.	Simbolo	Significato	Pag.
\mathbb{N}	Numeri naturali	5	\mathcal{S}^n	n-sfera	53
\mathbb{Q}	Numeri razionali	5	\mathcal{D}^n	n-disco	53
\mathbb{Z}	Numeri interi	5	\mathcal{D}^n_+	Calotta superiore	
\mathbb{R}	Numeri reali	7		dell'n-disco	53
\mathbb{C}	Numeri complessi	5	Ш	Unione disgiunta	63
\mathbb{F}	Campo generico	5	e(X)	Caratteristica di	
$ar{U}$	Chiusura di ${\cal U}$	5		Eulero di X	70
int(U)	Interno di ${\cal U}$	5	$\mathbf{P}^n(\mathbb{C})$	Spazio proiettivo	
\oplus	Somma diretta	5	O+	complesso	71
${\cal R}$	Anello	7	\mathbb{C}^{\star}	Piano complesso	71
$\langle \dots \rangle$	Gruppo generato	8	0	privato dell'origine Prodotto tensore	71 91
Ker(f)	Nucleo di f	9	\otimes $\operatorname{Tor}_1()$	Modulo di torsione	91 96
$\operatorname{Im}(f)$	Immagine f	9			90
X	Spazio topologico	9	$\operatorname{Hom}(A,B)$	Spazio degli omomorfismi da A	
\hookrightarrow	Inclusione	10		a B	102
\simeq	Spazi omeomorfi	11	(i)	Ideale generato da i	110
\sim_H	Relazione di		PID	Dominio a ideali	
	omotopia	11	112	principali	110
π_1	Gruppo		U	Prodotto cup	110
	fondamentale	12		1	
~ → ·	Omeomorfismo	15			
Δ_k	Simplesso standard	17			
\sim_{hom}	Relazione di	22			
	omologia	23			
V	Bouquet	31			
f_{\sharp}	Applicazione				
	indotta da f sulle catene	31			
f_{\star}	Applicazione	31			
J*	indotta da f sui				
	gruppi di omologia	31			
П	Somma topologica	46			
$\mathcal G$	Gruppo dei				
	coefficienti	51			

4 Coomologia singolare

4.1 Prodotto tensore

Ho trovato che per n pari:

$$H_i(\mathrm{P}^n(\mathbb{R})) \cong egin{cases} \mathbb{Z} & \text{se } i = 0 \ \mathbb{Z}_2 & \text{se } i \text{ pari e } i < n \ 0 & \text{altrimenti} \end{cases}$$

Mentre per n dispari:

$$H_i(\mathrm{P}^n(\mathbb{R})) \cong egin{cases} \mathbb{Z} & \text{se } i = 0, n \\ \mathbb{Z}_2 & \text{se } i \text{ pari e } i < n \\ 0 & \text{altrimenti} \end{cases}$$

Non mi piace. Voglio cambiare i coefficienti.

Sia A, B gruppi abeliani, è ben definito il prodotto cartesiano:

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}$$

Sia F(A,B) il gruppo libero generato dalle coppie $(a,b) \in A \times B$ in notazione additiva. Il gruppo F(A,B) è abeliano in quanto A e B lo sono, e l'operazione di somma è:

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

Definizione 4.1.1 Se A, B sono \mathbb{Z} -moduli si definisce il **prodotto tensore** tra A e B, come:

$$A \otimes B = {F(A,B) / R(A,B)}$$

Dove F(A, B) è il gruppo libero generato da $A \times B$ con operazione $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$, e R(A, B) il gruppo generato in R(A, B) dalle espressioni:

$$(a_1 + a_2, b) - (a_1, b) - (a_2, b)$$

$$(a, b_1 + b_2) - (a, b_1) - (a, b_2)$$

$$n(a, b) - (na, b)$$

$$n(a, b) - (a, nb)$$

. Gli elementi di $A \otimes B$ sono $a \otimes b$ con $a \in A$ e $b \in B$ e vale che:

$$(a_1 + a_2) \otimes b = a_1 \otimes b + a_2 \otimes b$$
$$a \otimes (b_1 + b_2) = a \otimes b_1 + a \otimes b_2$$
$$n(a \otimes b) = (na) \otimes b$$
$$n(a \otimes b) = a \otimes (nb)$$

Infatti il quoziente manda a zero le espressioni in R(A, B).

Proposizione 4.1.2 (Proprietà universale) Sia G un gruppo abeliano e ψ : $A \times B \to G$ un'applicazione bilineare continua, allora esiste un unico omomorfismo φ : $A \otimes B \to G$ tale che il diagramma:

$$\begin{array}{c}
A \times B \xrightarrow{\psi} G \\
\downarrow^{\pi} \\
A \otimes B
\end{array}$$

è commutativo, con:

$$\pi \colon A \times B \to A \oplus B$$

 $(a,b) \mapsto a \otimes b$

In pratica ψ fattorizza per il prodotto tensoriale ($\psi = \varphi \circ \pi$). La proprietà è detta universale perché esiste mostra che esiste un solo prodotto tensoriale.

Dimostrazione: La costruzione di φ è banale, è tale che $\varphi(a \otimes b) = \varphi(\pi(a,b)) = \psi(a,b)$, bisogna solo verificare che è ben definita. Considero un elemento $c \otimes d$ equivalente a $a \otimes b$, cioè tali che $(a,b)-(c,d) \in R(A,B)$, devo mostrare che $\varphi(a \otimes b) = \varphi(c \otimes d)$, cioè che $\psi((a,b)) = \psi((c,d))$, ovvero che $\psi((a,b)) - \psi((c,d)) = 0$, ma $(a,b)-(c,d) \in R(A,B)$ e:

$$\psi((c,d) - (a,b)) = \sum_{\alpha} \psi((r_{\alpha}, s_{\alpha})) = \sum_{\alpha} \varphi(\pi((r_{\alpha}, s_{\alpha}))) = 0$$

 $\begin{array}{l} \operatorname{con}\left(r_{\alpha},s_{\alpha}\right) \operatorname{base} \operatorname{di}R(A,B), \operatorname{che}\operatorname{al}\operatorname{quoziente}\operatorname{vanno}\operatorname{a}\operatorname{zero}, \operatorname{ma}\varphi \ \mathrm{\grave{e}}\ \operatorname{un}\ \operatorname{omomorfismo}\operatorname{per}\operatorname{costruzione}\left(\operatorname{dato}\operatorname{che}\operatorname{per}\operatorname{ipotesi}\psi\operatorname{lo}\ \mathrm{\grave{e}}, \operatorname{e}\operatorname{il}\operatorname{prodotto}\operatorname{tensoriale}\ \mathrm{\grave{e}}\operatorname{bilineare}\right)\operatorname{quindi}\varphi(\pi((r_{\alpha},s_{\alpha})))=0. \end{array}$

Un'altra importante proprietà del prodotto tensore è il suo comportamento rispetto agli omomorfismi.

Proposizione 4.1.3 Siano $f: A \to B$ e $g: A' \to B'$ omomorfismi, posso definire:

$$f \otimes g \colon A \otimes A' \to B \otimes B'$$

 $a \otimes a' \to f(a) \otimes g(a')$

Allora $f \otimes g$ è omomorfismo di gruppi abeliani.

4 Coomologia singolare

Dimostrazione:

Proof.

Proposizione 4.1.4 Vale che $A \otimes B \cong B \otimes A$, cioè il prodotto tensore è simmetrico.

Dimostrazione: Se per la proprietà universale (con $G=B\otimes A$) trovo una mappa bilineare continua $\psi\colon A\times B\to A\otimes B$ allora esiste un omomorfismo $\varphi_1\colon A\otimes B\to B\otimes A$, quindi posso scambiare A e B e trovare un secondo omomorfismo $\varphi_2\colon B\otimes A\to A\otimes B$, e quindi mostrare che φ_1 e φ_2 sono inverse. Sia:

$$\psi \colon A \times B \to B \otimes A$$
$$(x, y) \mapsto y \otimes x$$

Questa applicazione è continua e bilineare, allora per l'universalità sono ben definite φ_1 e φ_2 , e:

$$A \otimes B \xrightarrow{\varphi_1} B \otimes A \xrightarrow{\varphi_2} A \times B$$
$$a \otimes b \longmapsto b \otimes a \longmapsto a \otimes b$$

Quindi $\varphi_1 \circ \varphi_2 = \mathbb{I}_{A \otimes B}$, e analogamente $\varphi_2 \circ \varphi_1 = \mathbb{I}_{B \otimes A}$.

Un'ulteriore proprietà da analizzare è il comportamento rispetto alle successioni esatte. Considero una successone esatta corta di \mathbb{Z} -moduli:

$$0 \longrightarrow R \stackrel{\alpha}{\longrightarrow} F \stackrel{\beta}{\longrightarrow} A \longrightarrow 0$$

Considero G gruppo abeliano, allora ho:

$$R \otimes G \xrightarrow{\alpha'} F \otimes G \xrightarrow{\beta'} A \otimes G$$

Questa successione è esatta? Per verificarlo utilizzo un lemma:

Lemma 4.1.5 Se A è uno \mathbb{Z} -modulo allora $A \otimes \mathbb{Z} \cong A$.

Dimostrazione: Costruisco esplicitamente l'isomorfismo. Siano τ e σ definiti da:

$$\tau \colon A \to A \otimes \mathbb{Z}$$
$$a \mapsto a \otimes 1$$

E:

$$\sigma \colon A \otimes \mathbb{Z} \to A$$
$$\tilde{a} \otimes n \mapsto n\tilde{a}$$

4 Coomologia singolare

Mostro che sono omomorfismi:

$$\tau(a+b) \otimes 1 = a \otimes 1 + b \otimes 1 = \tau(a) + \tau(b)$$

$$\sigma(\tilde{a} \otimes n + \tilde{b} \otimes m) = \sigma(n\tilde{a} \otimes 1 + m\tilde{b} \otimes 1) = \sigma((n\tilde{a} + m\tilde{b}) \otimes 1) =$$

$$= n\tilde{a} + m\tilde{b} = \sigma(\tilde{a} \otimes n) + \sigma(\tilde{b} \otimes m)$$

Poi σ e τ sono inversi, infatti:

$$A \longrightarrow A \otimes \mathbb{Z} \longrightarrow A$$
$$a \stackrel{\tau}{\longmapsto} a \otimes 1 \stackrel{\sigma}{\longmapsto} a$$

E:

$$A \otimes \mathbb{Z} \longrightarrow A \longrightarrow A \otimes Z$$

$$a \otimes n \stackrel{\sigma}{\longmapsto} n\tilde{a} \stackrel{\tau}{\longmapsto} n\tilde{a} \otimes 1 = \tilde{a} \otimes n$$

Quindi τ e σ costituiscono isomorfismi tra $A\otimes \mathbb{Z}$ e A.

Esempio 4.1.6 Considero la successione esatta corta:

$$0 \longrightarrow n\mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \stackrel{\beta}{\longrightarrow} \mathbb{Z}/_{n\mathbb{Z}} \longrightarrow 0$$

In particolare per n=6:

$$0 \longrightarrow 6\mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z}/6\mathbb{Z} \longrightarrow 0$$

Tensorizzo per \mathbb{Z} :

$$\begin{array}{ccc} 6\mathbb{Z} \otimes \mathbb{Z} & \xrightarrow{\alpha \otimes \mathbb{I}} & \mathbb{Z} \otimes \mathbb{Z} & \xrightarrow{\beta \otimes \mathbb{I}} & \mathbb{Z} /_{6\mathbb{Z}} \otimes \mathbb{Z} \\ \\ 6x \otimes y & \longmapsto & x \otimes y & \longmapsto & \bar{x} \otimes y \end{array}$$

Con \bar{x} classe modulo 6 di x. La successione è esatta perché passando all'isomorfismo la successione è:

$$0 \longrightarrow 6\mathbb{Z} \stackrel{\alpha}{\longrightarrow} \mathbb{Z} \stackrel{\beta}{\longrightarrow} \mathbb{Z}_6 \longrightarrow 0$$

La quale è esatta.

Esempio 4.1.7 Considero la stessa successione di prima, ma ora tensorizzo per $\mathbb{Z}/_{4\mathbb{Z}}\cong\mathbb{Z}_4$:

$$0 \longrightarrow 6\mathbb{Z} \otimes \mathbb{Z}_4 \xrightarrow{\alpha \otimes \mathbb{I}} \mathbb{Z} \otimes \mathbb{Z}_4 \xrightarrow{\beta \otimes \mathbb{I}} \mathbb{Z}_6 \otimes \mathbb{Z}_4 \longrightarrow 0$$
$$6x \otimes \bar{y} \longmapsto x \otimes \bar{y} \longmapsto \bar{x} \otimes \bar{y}$$

Considero in particolare l'applicazione:

$$6\mathbb{Z} \otimes \mathbb{Z}_4 \to \mathbb{Z} \otimes \mathbb{Z}_4$$
$$6x \otimes \bar{y} \mapsto x \otimes \bar{y}$$

Questa ha un nucleo non banale, usando il lemma precedente:

$$\mathbb{Z} \otimes \mathbb{Z}_4 \to \mathbb{Z}_4$$
$$x \otimes \bar{y} \mapsto \overline{xy}$$

E l'elemento x=6 e y=2 viene mandato in $\overline{12}$ che è 0 in \mathbb{Z}_4 .

Da questi esempi si nota che in generale successioni esatte non vanno in successioni esatte, cioè $R\otimes G\to F\otimes G\to A\otimes G$ non è sempre esatta. Per poter dire qualcosa di generale conviene fare la seguente osservazione:

Osservazione 4.1.8 Considero $\alpha \otimes \mathbb{I} : R \otimes G \to F \otimes G$ allora:

$$F \otimes G /_{(\alpha \otimes \mathbb{I})(R \otimes G)} \cong F /_{\alpha(R)} \otimes G$$

Dimostrazione: Costruisco esplicitamente l'isomorfismo:

$$\eta \colon {}^{F}/_{\alpha(R)} \otimes G \to {}^{F} \otimes G/_{(\alpha \otimes \mathbb{I})(R \otimes G)}$$
$$[\alpha] \otimes g \mapsto [\alpha \otimes g]'$$

Questa mappa è ben definita, infatti se $b \sim a$, cioè se [b] = [a] allora $-b + a \in \alpha(R)$, quindi:

$$[b] \otimes g \mapsto [b \otimes g]'$$
$$[a] \otimes g \mapsto [a \otimes g]'$$

Ma $b = a + \alpha(r)$ con $r \in R$ quindi $b \otimes g = (a + \alpha(r)) \otimes g = a \otimes g + \alpha(r) \otimes g$ e quindi:

$$[b \otimes g]' = [a \otimes g + \alpha(r) \otimes g]' = [a \otimes g]' + [\alpha(r) \otimes g]'$$

Ma;

$$[\alpha(r) \otimes g]' = [(\alpha \otimes \mathbb{I})(r \otimes g)]' = 0$$

In quanto [,]' è nello spazio quoziente rispetto $(\alpha \otimes \mathbb{I})$. L'applicazione è quindi ben definita e lineare, l'inversa è chiaramente la mappa $[a \otimes g]' \mapsto [a] \otimes g$, che è ben definita per il medesimo ragionamento.

Ma a questo punto $F/\alpha(R)\otimes G\cong A\otimes G$, infatti per il teorema fondamentale degli omomorfismi:

$$F/_{\operatorname{Im}(\alpha)} = F/_{\operatorname{Ker}(\beta)} \cong \operatorname{Im}(\beta) = A$$

Quindi $A\otimes G\cong F\otimes G/(\alpha\otimes \mathbb{I})(R\otimes G)$. In questo modo posso sempre costruire una successione esatta tensorizzando, rinunciando all'iniettività di $\alpha\otimes \mathbb{I}$, ma mantenendo $\mathrm{Ker}(\beta\otimes \mathbb{I})=\mathrm{Im}(\alpha\otimes \mathbb{I})$ e $\beta\otimes \mathbb{I}$ suriettiva:

$$0 \longrightarrow \operatorname{Ker}(\alpha \otimes \mathbb{I}) \stackrel{i}{\longrightarrow} R \otimes G \stackrel{\alpha \otimes \mathbb{I}}{\longrightarrow} F \otimes G \stackrel{\beta \otimes \mathbb{I}}{\longrightarrow} A \otimes G \longrightarrow 0$$

i è iniettiva perché è un inclusione, mentre $\beta \otimes \mathbb{I}$ è suriettiva in quanto è una proiezione al quoziente. Si mantiene $\mathrm{Ker}(\beta \otimes \mathbb{I}) = \mathrm{Im}(\alpha \otimes \mathbb{I})$ in quanto tensorizzando si perde l'esattezza solo a sinistra.

Definizione 4.1.9 *Se A* è uno \mathbb{Z} -modulo una successione esatta corta del tipo:

$$0 \longrightarrow R \xrightarrow{\alpha} F \xrightarrow{\beta} A \longrightarrow 0$$

con R e F \mathbb{Z} -moduli liberi è detta **risoluzione di** A oppure **presentazione di** A.

Osservazione 4.1.10 Esiste sempre almeno una risoluzione di A ottenuta prendendo F è il gruppo libero generato da A e R il gruppo delle relazioni da imporre per riottenere A. Tensorizzando:

$$0 \longrightarrow \operatorname{Ker}(\alpha \otimes \mathbb{I}) \longrightarrow R \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Potrebbero comunque esserci altre successioni esatte:

$$0 \longrightarrow R' \stackrel{\alpha}{\longrightarrow} F' \stackrel{\beta}{\longrightarrow} A \longrightarrow 0$$

Tensorizzando:

$$0 \longrightarrow \operatorname{Ker}(\alpha' \otimes \mathbb{I}) \longrightarrow R' \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F' \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Definizione 4.1.11 Si chiama modulo di torsione di A e di G il gruppo $\operatorname{Ker}(\alpha \otimes \mathbb{I})$, e lo si indica con $\operatorname{Tor}_1(A,G)$. Quindi vale che:

$$0 \longrightarrow \operatorname{Tor}_1(A,G) \longrightarrow R \otimes G \xrightarrow{\alpha \otimes \mathbb{I}} F \otimes G \xrightarrow{\beta \otimes \mathbb{I}} A \otimes G \longrightarrow 0$$

Lemma 4.1.12 Il modulo di torsione non dipende dalla scelta della risoluzione di A, cioè con risoluzioni differenti si ottengono moduli di torsione isomorfi.

Lemma 4.1.13 Se F_1 è un gruppo libero allora $\operatorname{Tor}_1(A, F_1) \cong 0$, e quindi il modulo di torsione è dovuto alla parte di torsione di G.

 ${\bf Dimostrazione} {:} \ {\sf Considero} \ {\sf una} \ {\sf presentazione} \ {\sf di} \ A {:}$

$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

Tensorizzo per F_1 :

$$0 \longrightarrow \operatorname{Tor}_1(A, F_1) \longrightarrow R \otimes F_1 \stackrel{\varphi}{\longrightarrow} F \otimes F_1 \longrightarrow A \otimes F_1 \longrightarrow 0$$

La mappa $\varphi = \alpha \otimes \mathbb{I}$ è iniettiva, infatti $R \cong \mathbb{Z}^r$, $F \cong \mathbb{Z}^n$ e $F_1 \cong \mathbb{Z}^{n_1}$, quindi $\varphi \colon \mathbb{Z}^r \otimes \mathbb{Z}^{n_1} \to \mathbb{Z}^n \otimes \mathbb{Z}^{n_1}$, cioè:

$$\mathbb{Z}^n \otimes \mathbb{Z}^{n_1} \to \mathbb{Z}^n \otimes \mathbb{Z}^{n_1}$$
$$v \otimes w \mapsto \alpha(v) \otimes w$$

Esercizio 11 Mostrare che $\mathbb{Z}^s \otimes \mathbb{Z}^r \cong \mathbb{Z}^{sr}$. Hint: $\{e_1 \otimes f_j\}$ è una base di $\mathbb{Z}^s \otimes \mathbb{Z}^r$ se $\{e_1\}$ e $\{f_j\}$ lo sono per \mathbb{Z}^s e \mathbb{Z}^r , mostrarlo.

Quindi:

$$\varphi \colon \mathbb{Z}^{rn_1} \to \mathbb{Z}^{nn_1}$$
$$\underline{v} \otimes \underline{w} \mapsto \alpha(\underline{v}) \otimes \underline{w}$$

[TERMINARE QUESTA DIMOSTRAZIONE, (MA COME?)] Essendo φ iniettiva per l'esattezza della successione deve essere $\mathrm{Tor}_1(A,F_1)\cong 0.$

Proposizione 4.1.14 Se A e B sono \mathbb{Z} -moduli allora $\operatorname{Tor}_1(A,B) \cong \operatorname{Tor}_1(B,A)$.

Dimostrazione: La dimostrazione è un diagram chase. Considero una risoluzione di B e di A:

$$0 \longrightarrow R_B \xrightarrow{\alpha} F_B \xrightarrow{\beta} B \longrightarrow 0$$
$$0 \longrightarrow R_A \xrightarrow{\alpha} F_A \xrightarrow{\beta} A \longrightarrow 0$$

Tensorizzo questa per B:

$$0 \longrightarrow \operatorname{Tor}_1(A,B) \longrightarrow R_A \otimes B \stackrel{\alpha}{\longrightarrow} F_A \otimes B \stackrel{\beta}{\longrightarrow} A \otimes B \longrightarrow 0$$

Tensorizzo altre cose e le metto in verticale, usando la simmetria:

Bisogna risalire da $\operatorname{Tor}_1(A,B)$ a $\operatorname{Tor}_1(B,A)$ e viceversa. Questa operazione è piuttosto noiosa. [MANCA]

Lemma 4.1.15 Siano A, B, C gruppi abeliani, vale che $\operatorname{Tor}_1(A, B) \oplus \operatorname{Tor}_1(A, C) \cong \operatorname{Tor}_1(A, B \oplus C)$.

Dimostrazione: Infatti considero una presentazione di *A*:

$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

Tensorizzo per $B \otimes C$:

$$0 \longrightarrow \operatorname{Tor}_1(A, B \oplus C) \longrightarrow R \otimes (B \oplus C) \longrightarrow F \otimes (B \oplus C) \longrightarrow A \otimes (B \oplus C) \longrightarrow 0$$

Ma posso anche tensorizzare separatamente per B e C:

$$0 \longrightarrow \operatorname{Tor}_1(A,B) \longrightarrow R \otimes B \longrightarrow F \otimes B \longrightarrow A \otimes B \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Tor}_1(A,C) \longrightarrow R \otimes C \longrightarrow F \otimes C \longrightarrow A \otimes C \longrightarrow 0$$

Sommandole:

$$0 \to \operatorname{Tor}_1(A,B) \oplus \operatorname{Tor}_1(A,C) \to R \otimes B \oplus R \oplus C \to F \otimes B \oplus F \oplus C \to A \otimes B \oplus A \otimes C \to 0$$

Ma quindi:

$$\operatorname{Tor}_1(A,B) \oplus \operatorname{Tor}_1(A,C) \cong \operatorname{Tor}_1(A,B \oplus C)$$

Essendo il modulo di torsione unico a meno di isomorfi.

Esempio 4.1.16 Considero \mathcal{D}^2 , ci attacco una \mathcal{S}^1 con la mappa:

$$f_n : \partial \mathcal{D}^2 = \mathcal{S}^1 \to \mathcal{S}^1$$

 $z \mapsto z^n$

sia $X_n = \mathcal{D}^2 \cup_{f_n} \mathcal{S}^1$ lo spazio topologico preso in considerazione. Usando l'omologia cellulare trovo che:

$$H_k(X_n)\cong egin{cases} \mathbb{Z} & \textit{se } k=0 \ ? & \textit{se } k\in\{1,2\} \ 0 & \textit{se } k\geq 3 \end{cases}$$

Infatti X_n è un CW complesso con una 0-cella, una 1-cella e una 2-cella, quindi la successione è:

$$0 \stackrel{d_3}{\longrightarrow} \mathbb{Z} \stackrel{d_2}{\longrightarrow} \mathbb{Z} \stackrel{d_1}{\longrightarrow} \mathbb{Z} \stackrel{d_0}{\longrightarrow} 0$$

Ho che $\operatorname{Ker}(d_0)=\mathbb{Z}$ e $\operatorname{Im}(d_1)=0$ in quanto $H_0(X_n)=\operatorname{Ker}(d_0)/\operatorname{Im}(d_1)$ ma so che $\operatorname{Ker}(d_0)=\mathbb{Z}$ e $H_0(X_n)=\mathbb{Z}$ quindi $\operatorname{Im}(d_1)=0$.

Ora calcolo $H_1(X_n) = \mathrm{Ker}(d_1)/\mathrm{Im}(d_2)$. Siccome $\mathrm{Im}(d_1) = 0$ allora $d_1 \colon \mathbb{Z} \to 0$, quindi $\mathrm{Ker}(d_1) = \mathbb{Z}$, mi rimane da calcolare $\mathrm{Im}(d_2)$, ma: $d_2 \colon S_2^{CW}(X_n) \to S_1^{CW}(X_n)$, per calcolarla:

$$\frac{\partial \mathcal{D}^2 \xrightarrow{f_n} X^{(1)}}{\downarrow} \\ X^{(1)}/_{X^{(0)}} = X^{(1)}$$

Quindi $\deg \varphi = \deg f = n$ data la definizione di f, per questo d_2 è la moltiplicazione per n:

$$d_2 \colon \mathbb{Z} \to \mathbb{Z}$$

$$x \mapsto nx$$

E quindi $\operatorname{Ker}(d_2)=0$ e $\operatorname{Im}(d_2)=Z$, da cui: $H_1(X_n)=\mathbb{Z}/n\mathbb{Z}=\mathbb{Z}_n$. Invece $H_2(X_n)=\operatorname{Ker}(d_2)/\operatorname{Im}(d_3)=0$, per cui:

$$H_k(X_n) = \begin{cases} \mathbb{Z} & \textit{se } k = 0 \\ \mathbb{Z}_n & \textit{se } k = 1 \\ 0 & \textit{se } k = 2 \\ 0 & \textit{se } k \ge 3 \end{cases}$$

Ora vorrei cambiare coefficienti.

4.2 Cambiamento di coefficienti

Sia G un gruppo abeliano e X uno spazio topologico, considero il complesso $(S_{\bullet}(X) \otimes G, \partial \otimes \mathbb{I}_G)$:

$$\ldots \longrightarrow S_{p+1}(X) \otimes G \xrightarrow{\partial \otimes \mathbb{I}_G} S_p(X) \otimes G \xrightarrow{\partial \otimes \mathbb{I}_G} S_{p-1}(X) \otimes G \longrightarrow \ldots$$

Un modo compatto per scrivere il complesso è $(S_{\bullet}(X;G),\partial)$. Ora i coefficienti non sono più in \mathbb{Z} , ma in G. Definisco l'omologia singolare a coefficienti in G come l'omologia singolare di questo complesso. Se $G=\mathbb{Z}$ si torna alla consueta omologia singolare.

Mi pongo questa domanda: se X è uno spazio topologico e G un gruppo abeliano, che relazione c'è tra $H_k(X) \oplus G$ e $H_k(X;G)$? Vale che $H_k(X) \oplus G \cong H_k(X;G)$?

Esempio 4.2.1 Considero X_9 , so che $H_1(X_9) \cong \mathbb{Z}_9$, quindi $H_1(X_9) \otimes \mathbb{Z}_6 = \mathbb{Z}_9 \otimes \mathbb{Z}_6$. Gli elementi di $\mathbb{Z}_9 \otimes \mathbb{Z}_6$ sono del tipo $[n]_9 \otimes [m]_6$, questi sono 54 elementi, ma molti possono essere zero. In effetti vale che:

Lemma 4.2.2 $\mathbb{Z}_n \otimes \mathbb{Z}_m \cong \mathbb{Z}_d$ dove d è il massimo comune divisore tra n e m.

Esercizio 12 Verificare il precedente lemma. Un modo per farlo è costruire esplicitamente l'isomorfismo:

$$\mathbb{Z}_n \otimes \mathbb{Z}_m \to \mathbb{Z}_d$$
$$[a]_n \otimes [b]_m \mapsto [ab]_d$$

Considero le successioni:

$$0 \longrightarrow Z_1(X_9) \longrightarrow S_1(X_9) \longrightarrow B_0(X_9) \longrightarrow 0$$

Е

$$0 \longrightarrow B_1(X_9) \longrightarrow Z_1(X_9) \longrightarrow H_1(X_9) \longrightarrow 0$$

Questa non è esatta, ma anzi definisce l'omologia, e in questo caso non spezza perché $H_1(X_9)$ ha torsione.

Teorema 4.2.3 (Teorema dei coefficienti universali) La successione:

$$0 \to H_k(S_{\bullet}(X)) \otimes G \to H_k(S_{\bullet}(X) \otimes G) \to \operatorname{Tor}_1(H_{k-1}(S_{\bullet}(X)), G) \to 0$$

spezza in modo non naturale, cioè non esiste un'unica sezione. Si ha quindi che $H_k(S_{\bullet}(X) \otimes G) \not\cong H_k(S_{\bullet}(X)) \otimes G$ ma c'è un pezzo di torsione, cioè vale che:

$$H_k(X;G) = H_k(S_{\bullet} \otimes G) \cong$$

$$\cong H_k(S_{\bullet}(X)) \otimes G \oplus \operatorname{Tor}_1(H_k(S_{\bullet}), G) = H_k(X) \otimes G \oplus \operatorname{Tor}_1(H_k(X), G)$$

Ho le successioni:

Quando tensorizzo escono fuori delle torsioni.

La successione orizzontale è esatta in quanto B_{p-1} è libero e quindi $\operatorname{Tor}_1(B_{p-1},G) \cong \operatorname{Tor}_1(G,B_{p-1}) \cong 0$.

In particolare nell'esempio:

$$H_k(X_9; \mathbb{Z}_6) \cong \begin{cases} H_0(X) \otimes G \oplus \operatorname{Tor}_1(H_1, G) & \text{se } k = 0 \\ H_1(X) \otimes G \oplus \operatorname{Tor}_1(H_0, G) & \text{se } k = 1 \\ H_2(X) \otimes G \oplus \operatorname{Tor}_1(H_1, G) & \text{se } k = 2 \end{cases}$$

Ma $\operatorname{Tor}_1(H_{-1},G)\cong 0$ in quanto $H_{-1}\cong 0$, quindi $H_0(X_9,\mathbb{Z}_6)\cong \mathbb{Z}_6$. Poi $\operatorname{Tor}_1(H_0,G)=\operatorname{Tor}_1(\mathbb{Z},\mathbb{Z}_6)=0$ in quanto \mathbb{Z} è libero, quindi $H_1(X_9,\mathbb{Z}_6)\cong \mathbb{Z}_9\otimes \mathbb{Z}_6\cong \mathbb{Z}_3$. Infine $\operatorname{Tor}_1(H_1,G)\cong \operatorname{Tor}_1(\mathbb{Z}_9,\mathbb{Z}_6)\cong \mathbb{Z}-3$. Quindi:

$$H_k(X_9, \mathbb{Z}_6) \cong egin{cases} \mathbb{Z}_6 & ext{se } k = 0 \\ \mathbb{Z}_3 & ext{se } k = 1 \\ \mathbb{Z}_3 & ext{se } k = 2 \end{cases}$$

Osservazione 4.2.4 Esempi di gruppi di coefficienti che si possono utilizzare sono \mathbb{Z} , \mathbb{Z}_n , \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{F} . In questi casi si ha che:

$$H_k(X,\mathbb{F}) \cong H_k(X) \otimes \mathbb{F}$$

Infatti questi sono moduli liberi e quindi non hanno torsione.

Osservazione 4.2.5 In generale se G è un gruppo abeliano finitamente generato c'è il teorema di struttura per cui $G \cong \mathbb{Z}^n \oplus T$, per cui dal teorema dei coefficienti universali:

$$H_k(X;G) \cong H_k(X) \otimes G \oplus \operatorname{Tor}_1(H_{n-1}(X),G) \cong$$

 $\cong H_n(X) \otimes (\mathbb{Z}^n \oplus T) \oplus \operatorname{Tor}_1(H_{n-1}(X),\mathbb{Z}^n \oplus T)$

Usando la bilinearità del prodotto tensore:

$$H_n(X) \otimes (\mathbb{Z}^n \oplus T) \cong H_n(X) \otimes \mathbb{Z}^r \oplus H_n(X) \otimes T$$

Questo in generale dipende da X, ma se in particolare X è un CW complesso finito, allora anche $H_n(X)$ è finitamente generato, quindi $H_n(X) \cong \mathbb{Z}^{s_n} \oplus T'$ per cui vale che:

$$H_n(X) \otimes \mathbb{Z}^{r_n} \cong (\mathbb{Z}^{s_n} \oplus T') \otimes \mathbb{Z}^r \cong \mathbb{Z}^{s_n r_n} \oplus \mathbb{Z}^{r_n} \otimes T' \cong \mathbb{Z}^{s_r}$$

 $H_n(X) \otimes T = (\mathbb{Z}^{s_n} \oplus T') \otimes T \cong T' \otimes T$

infatti $\mathbb{Z}^k \otimes T' = (\mathbb{Z} \otimes \mathbb{Z} \dots) \otimes T' = (\mathbb{Z} \otimes T')^k = 0$ in quanto T' è di torsione. [PERCHÉ'?????]. Poi ho $\operatorname{Tor}_1(H_{n-1}(X), \mathbb{Z}^{r_n} \oplus T) = \operatorname{Tor}_1(H_{n-1}(X), \mathbb{Z}^n) \oplus \operatorname{Tor}_1(H_{n-1}(X), T)$ per un lemma precedente, quindi in questo caso, siccome \mathbb{Z} è libero quindi $\operatorname{Tor}_1(H_{n-1}(X), \mathbb{Z}^{r_n}) = (\operatorname{Tor}_1(H_{n-1}(X), \mathbb{Z}))^{r_n} = 0$, allora:

$$\operatorname{Tor}_{1}(H_{n-1}(X), \mathbb{Z}^{r_{n}} \oplus T) \cong \operatorname{Tor}_{1}(H_{n-1}(X), \mathbb{Z}^{r_{n}}) \oplus \operatorname{Tor}_{1}(H_{n-1}(X), T) =$$

$$= \operatorname{Tor}_{1}(H_{n-1}(X), T) = \operatorname{Tor}_{1}(\mathbb{Z}^{s_{n-1}} \oplus T'_{n-1}, T)$$

Quindi:

$$H_n(X;G) \cong \mathbb{Z}^{s_n r_n} \oplus T'_n \oplus T \oplus \operatorname{Tor}_1(T'_{n-1},T)$$

Dove $H_k(X) \cong \mathbb{Z}^{s_k} \oplus T_k'$ e $G \cong \mathbb{Z}^r \oplus T$. $H_n(X;G)$ ha quindi una parte libera e delle parti di torsione che si calcolano sapendo fare $\mathbb{Z}_h \otimes \mathbb{Z}_k$ (infatti T e T' sono fatte così).

Esercizio 13 Considerare la successione:

$$0 \longrightarrow h\mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/h\mathbb{Z} \longrightarrow 0$$

Calcolare il modulo di torsione.

4.3 Coomologia singolare

Dato uno spazio topologico X e un gruppo abeliano G ho costruito le catene in X a coefficienti in G e ho definito l'omologia singolare a coefficienti in G come l'omologia di questo complesso. Posso fare anche un'altra costruzione, considero lo spazio degli omomorfismi da $S_k(X)$ a G $\mathrm{Hom}(S_k(X),G)$. A questo punto posso considerare il duale del complesso delle catene:

$$\dots \longrightarrow S_{p+1}(X) \xrightarrow{\partial} S_p(X) \xrightarrow{\partial} S_{p-1}(X) \longrightarrow \dots$$

Un elemento di $\operatorname{Hom}(S_p(X),G)$ è un omomorfismo $\varphi\colon S_p(X)\to G$, componendo φ con $\partial\colon S_{p+1}\to S_p$ ottengo $\varphi'=\varphi\circ\partial\colon S_{p+1}(X)\to G$, quindi la composizione per il bordo è un'operazione controvariante perché inverte il verso. Ho il complesso degli spazi di omomorfismi:

$$\ldots \longrightarrow \operatorname{Hom}(S_{p-1}(X), G) \stackrel{\delta}{\longrightarrow} \operatorname{Hom}(S_p(X), G) \stackrel{\delta}{\longrightarrow} \operatorname{Hom}(S_{p+1}(X), G) \longrightarrow \ldots$$

Come notazione si pone $\operatorname{Hom}(S_p(X),G)=S^p(X;G)$. δ è il **cobordo**, che non è nient'altro che la composizione per il bordo:

$$\delta \colon S^p(X;G) \to S^{p+1}(X;G)$$

 $\varphi \mapsto \varphi \circ \partial = \delta(\varphi)$

Questo è un operatore di bordo, cioè $\delta^2 = 0$, infatti:

$$\delta^2(\varphi) = \delta(\delta(\varphi)) = \delta(\varphi \circ \partial) = \varphi \circ \partial^2 = 0$$

Questo è un complesso.

Definizione 4.3.1 Si chiama coomologia singolare di uno spazio topologico X con coefficienti in G, e si indica con $H^p(X;G)$ l'omologia del complesso degli omomorfismi $S^{\bullet}(X;G)$.

Quindi per definizione la coomologia singolare è $H^P(X;G)=H_p(\mathrm{Hom}(S_{ullet}(X),G),\delta).$

A questo punto ho due possibilità: costruire i gruppi di omologia singolare $H_p(X)$ e considerare gli omomorfismi tra tali gruppi e G, oppure costruire il gruppo di coomologia, cioè prima considerare gli omomorfismi, e quindi costruire l'omologia. Quello che si trova è che in generale queste due costruzioni sono differenti, cioè:

$$\operatorname{Hom}(H_p(X),G) \ncong H^p(X;G)$$

Esempio 4.3.2 *Considero la successione esatta corta:*

$$0 \longrightarrow 4\mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/_{4\mathbb{Z}} \longrightarrow 0$$

E scelgo come gruppo $G = \mathbb{Z}_6$. Quando prendo il duale la successione si inverte essendo controvariante, e rimane esatta solo a sinistra. Per renderla esatta anche a destra bisogna aggiungere un termine analogo al modulo di torsione, in modo che la successione sia:

$$0 \longrightarrow \operatorname{Hom}(\mathbb{Z}_4,\mathbb{Z}_6) \longrightarrow \operatorname{Hom}(\mathbb{Z},\mathbb{Z}_6) \longrightarrow \operatorname{Hom}(4\mathbb{Z},\mathbb{Z}_6) \longrightarrow \operatorname{Ext}^1(\mathbb{Z}_4,\mathbb{Z}_6) \longrightarrow 0$$

La presenza di questi moduli è responsabile della non uguaglianza di $\operatorname{Hom}(H_p(X),G)$ e $H^p(X;G)$.

Definizione 4.3.3 Siano $A, B \mathbb{Z}$ -moduli, considero una risoluzione di A:

$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

Passando agli omomorfismi la successione si gira e si aggiunge il conucleo

$$0 \longrightarrow \operatorname{Hom}(A,B) \longrightarrow \operatorname{Hom}(F,B) \stackrel{\beta}{\longrightarrow} \operatorname{Hom}(R,B) \stackrel{\gamma}{\longrightarrow} \operatorname{coKer}(\beta) \longrightarrow 0$$

Il conucleo è esattamente quel gruppo che rende esatta la successione, cioè $\operatorname{Im}(\gamma)$, ma per il primo teorema degli isomorfismi:

$$\operatorname{coKer}(\beta) := \operatorname{Im}(\gamma) = \frac{\operatorname{Hom}(R,B)}{\operatorname{Ker}(\gamma)} \cong \frac{\operatorname{Hom}(R,B)}{\operatorname{Im}(\beta)}$$

Esistono anche altre presentazioni, ma si dimostra che tutti i conuclei sono isomorfi, questo gruppo è proprio il **modulo di estensione di** A e B.

Lemma 4.3.4 Se F è libero allora $\operatorname{Ext}^1(F,G)\cong 0$ con G gruppo abeliano generico.

Dimostrazione: Considero la presentazione:

$$0 \longrightarrow 0 \longrightarrow F \longrightarrow F \longrightarrow 0$$

Passando agli omomorfismi ho che il conucleo è zero infatti:

$$0 \longrightarrow \operatorname{Hom}(F,G) \longrightarrow \operatorname{Hom}(F,G) \longrightarrow 0 \stackrel{\gamma}{\longrightarrow} \operatorname{Ext}^1(F,G) \longrightarrow 0$$
 Quindi $\operatorname{Ext}^1(F,G) = \operatorname{Im}(\gamma) = 0.$ \Box

Il teorema dei coefficienti universali quindi si riformula anche per la coomologia:

Teorema 4.3.5 (Teorema dei coefficienti universali) Le successioni esatte corte:

$$0 \longrightarrow \operatorname{Ext}^{1}(H_{n-1}(X), G) \longrightarrow H^{n}(X; G) \longrightarrow \operatorname{Hom}(H_{n}(X), G) \longrightarrow 0$$

E:

$$0 \longrightarrow H_n(X) \oplus G \longrightarrow H_n(X;G) \longrightarrow \operatorname{Tor}_1(H_{n-1}(X),G) \longrightarrow 0$$

Spezzano in modo non naturale (cioè non esiste una sola sezione), e quindi:

$$H_n(X;G) \cong H_n(X) \oplus G \oplus \operatorname{Tor}_1(H_{n-1}(X),G)$$

 $H^n(X;G) \cong \operatorname{Hom}(H_n(X),G) \oplus \operatorname{Ext}^1(H_{n-1}(X),G)$

Dimostrazione: La dimostrazione per le due successioni è praticamente identica, dimostro quella in coomologia. Voglio costruire la successione:

$$0 \to \operatorname{Ext}^1(H_{p-1}(X), G) \to H^p(X; G) \to \operatorname{Hom}(H_p(X), G) \to 0$$

Per definizione $H^P(X;G)$ è l'omologia del complesso delle cocatene S^p con il cobordo, dove $S^p(X;G) = \text{Hom}(S_p(X),G)$ e il cobordo è:

$$\delta \colon S^p(X;G) \to S^{p+1}(X;G)$$

 $\varphi \mapsto \varphi \circ \partial$

Per definizione $H_p(X)=Z_p/B_p$ (cicli modulo i bordi), quindi ho:

$$0 \longrightarrow B_p \stackrel{i}{\longrightarrow} Z_p \stackrel{\pi}{\longrightarrow} H_p \longrightarrow 0$$

Non necessariamente questa spezza perché H_p può essere di torsione. Poi ho:

$$0 \longrightarrow Z_p \longrightarrow S_p \xrightarrow[i]{\partial} B_{p-1} \longrightarrow 0$$

Questa spezza perché tra le catene singolari ci sono quelle che si esprimono come bordo e quindi c'è una sezione, e B_{p-1} è libero. Poi ho a partire da:

$$0 \longrightarrow B_n \longrightarrow Z_n \longrightarrow H_n \longrightarrow 0$$

Passando agli omomorfismi:

$$0 \longrightarrow \operatorname{Hom}(H_p, G) \longrightarrow \operatorname{Hom}(Z_p, G) \stackrel{t_p}{\longrightarrow} \operatorname{Hom}(B_p, G) \longrightarrow \operatorname{Ext}^1(H_p, G) \longrightarrow 0$$

Per definizione ho che:

$$\operatorname{Ext}^{1}(H_{p},G) = \operatorname{Hom}(B_{p},G)/\operatorname{Im}(t_{p})$$

Oltre a ciò ho la successione:

$$0 \longrightarrow Z_{p+1} \longrightarrow S_{p+1} \longrightarrow B_p \longrightarrow 0$$

Passando agli omomorfismi:

$$0 \longrightarrow \operatorname{Hom}(B_p, G) \longrightarrow \operatorname{Hom}(S_{p+1}, G) \longrightarrow \dots$$

Oltre a ciò ho la successione:

$$0 \longrightarrow Z_{n-1} \longrightarrow S_{n-1} \longrightarrow B_{n-2} \longrightarrow 0$$

Prendendo gli omomorfismi:

$$0 \longrightarrow \operatorname{Hom}(B_{p-2}, G) \longrightarrow \operatorname{Hom}(S_{p-1}, G) \longrightarrow \operatorname{Hom}(Z_{p-1}, G) \longrightarrow 0$$

Infine, siccome ho la successione spezzante:

$$0 \longrightarrow Z_p \xrightarrow{\smile_{\omega}} S_p \longrightarrow B_{p-1} \longrightarrow 0$$

Ho quindi la mappa:

$$\Phi \colon \operatorname{Hom}(Z_p, G) \to \operatorname{Hom}(S_p, G)$$
$$\alpha \colon Z_p \to G \mapsto \varphi \circ \alpha \colon S_p \to G$$

cio
è $\Phi=\alpha\circ\varphi.$ Il mio obiettivo è trovare la successione esatta:

$$0 \longrightarrow \operatorname{Ext}^{1}(H_{p-1}, G) \stackrel{\beta_{2}}{\longrightarrow} H^{p}(X; G) \stackrel{\beta_{1}}{\longrightarrow} \operatorname{Hom}(H_{p}, G) \longrightarrow 0$$

Faccio diagram chase:

Costruisco β_1 . Per definizione:

$$H^p(X;G) = \mathrm{Ker}(\delta \colon S^p(X;G) \to S^{p+1}(X;G)) \big/_{\mathrm{Im}(\delta \colon S^{p-1}(X;G) \to S^p(X;G))}$$

Se $f \in H^p(X; G)$ allora $f \in S^p$ quindi $\delta(f) = 0$, cioè $f \in \text{Hom}(\delta_p, G) = S^p$. Considero

$$f \mapsto \alpha_2(f) \mapsto \tau_2 \circ \alpha_2(f) \mapsto \sigma \circ \tau_2 \circ \alpha_2(f) = \delta(f) = 0$$

Quindi $\sigma \circ \tau_2 \circ \alpha_2(f) = 0$, ma σ è iniettiva e quindi $\tau_2(\alpha_2(f)) = 0$, cioè $\alpha_2(f) \in \operatorname{Ker}(\tau_2) = \operatorname{Im}(\tau_1)$ e quindi $\exists g \in \operatorname{Hom}(H_p,G)$ tale che $\tau_1(g) = \alpha_2(f)$, e quindi ho trovato g a partire da f. Pongo $\beta_1(f) = g_f$. Ma f è un elemento del quoziente, quindi considero gli elementi al denominatore. Se $h \in S^{p-1}$ se $\beta_1(\delta(h)) = 0$ l'applicazione è ben definita in quanto manda tutto il denominatore in zero. Ma:

$$\alpha_2(\delta(h)) \mapsto \sigma \circ \tau_2 \circ \alpha_2(\delta(h)) = 0$$

Quindi $\tau_2(\alpha_2(\delta(h)))=0$ perciò esiste $v\in \mathrm{Hom}()$ tale che $\alpha_2(\delta(h))=\tau_1(v)$ e quindi $\beta_1(\delta(h))=v.$ Devo mostrare che v=0 τ_1 è iniettivo, devo mostrare che $\alpha_2\circ\delta(h)=0$, quindi ho:

$$S_p \xrightarrow{\partial} S_{p-1} \xrightarrow{h} G \longrightarrow$$

$$SZ_p \xrightarrow{i} S_p \xrightarrow{h \circ \partial} G \longrightarrow$$

Ma $\alpha(\delta(h))=\alpha_2(h\circ\partial)$ quindi $\alpha_2(h\circ\partial)=h\circ\partial\circ i\colon Z_p\to G$ Ma in Z_p ci sono solo quelli di bordo nullo, cioè se $c\in Z_p$:

$$(h \circ \partial \circ i)(c) = h \circ \partial(c) = h(0) = 0$$

Quindi:

$$\alpha_2 \circ \delta(h) = 0 \quad \Rightarrow \quad \tau_1(v) = 0$$

Ma quindi v=0 in quando τ_1 è iniettiva. Ma questo significa che β_1 è ben definita.

$$\beta_1 \colon H^p(X;G) \to \operatorname{Hom}(H_p,G)$$

$$\llbracket f \rrbracket \mapsto g_f \mid |; \tau_1(g_f) = \alpha_2(f)$$

Ora costruisco β_2 . Parto da $u \in \operatorname{Ext}^1(H_{p-1}, G)$. λ_2 è suriettiva, quindi esiste \tilde{u} tale che $\lambda(\tilde{u}) = u$, poi ho che $\alpha_1(\tilde{u}) \in \operatorname{Hom}(S_p, G) = S^p$, quindi:

$$\beta_2 \colon \operatorname{Ext}^1(H_{p-1}, G) \to H^p(X, G)$$

 $u \mapsto \alpha_1(\tilde{u})$

 β_2 è ben definita? Se \tilde{u} non fosse unico, ma se esistessero \tilde{u}_1, \tilde{u}_2 tali che $\lambda_2(\tilde{u}_1) = \lambda(\tilde{u}_1) = u$, siccome λ è un $\lambda_2(\tilde{u}_1 - \tilde{u}_2) = 0$, quindi $\tilde{u}_1 - \tilde{u}_2 \in \operatorname{Ker}(\lambda_2) = \operatorname{Im}(\lambda_1)$, quindi esiste $V \in \operatorname{Hom}(Z_{p-1},G)$ tale che $\lambda_1(V) = \tilde{u}_1 - \tilde{u}_2$ ma Δ è suriettiva, quindi esiste $w \in \operatorname{Hom}(S_{p-1},G)$ tale che $\Delta(w) = V$. Quindi:

$$\delta(w) = \alpha_1 \circ \lambda_1 \circ \Delta(w) = \alpha_1 \circ \lambda_1(V) = \alpha_1(\tilde{u}_1 - \tilde{u}_2)$$

Quindi:

$$\alpha_1(\tilde{u}_1) - \alpha_2(\tilde{u}_2) = \delta(w)$$

Le immagini differiscono per un cobordo, quindi β_2 è ben definita.

Devo mostrare che se $u \in \operatorname{Ext}^1(H_{p-1}, G)$ allora $\alpha_1(\tilde{u}) \in S^p$ è un cociclo, cioè $\delta(\alpha_1(\tilde{u})) = 0$, infatti

$$\delta \circ \alpha_1 = (\sigma \circ \tau_2 \circ \alpha_2)(\alpha_1) = \sigma \circ \tau_2 \circ \alpha_2 \circ \alpha_1 = 0$$

In quanto $\alpha_2 \circ \alpha_1 = 0$ perché la successione è esatta. Quindi $\delta(\alpha_1(\tilde{u})) = 0$ e quindi $\alpha_1(\tilde{u}) \in Z^p$. Così ho costruito le due applicazione che mi servivano, ma non ho ancora finito, devo mostrare che β_2 è suriettiva, β_1 iniettiva, e tutto il resto. Se $\beta_2(u) = 0$ allora $\alpha_1(\tilde{u}) = 0$ ma α è iniettiva quindi $\tilde{u} = 0$, quindi $\lambda(\tilde{u}) = u$ quindi u = 0, e perciò $\mathrm{Ker}(\beta_2) = 0$, e quindi β_2 è iniettiva. β_1 è suriettiva infatti se $v \in \mathrm{Hom}(H_p, G)$ allora $\Phi(\tau_1(v)) \in \mathrm{Hom}(S_p, G)$ ma $\delta \circ \Phi(\tau_1(v)) = (\sigma \circ \tau_2 \circ \alpha_2) \circ \Phi \circ \tau_1(v) = \sigma \circ \tau_2(\alpha_2 \circ \Phi) \circ \tau_1(v)$, ma ho:

$$0 \longrightarrow Z_p \xrightarrow{\psi} S_p \longrightarrow B_{p-1} \longrightarrow 0$$

Questa è spezzante, quindi $\varphi \circ \psi = \mathbb{I}_{Z_p}$, ma $\alpha_2 = \operatorname{Hom}(\psi, \mathbb{I}_G)$ e $\Phi = \operatorname{Hom}(\varphi, \mathbb{I}_G)$ quindi se $h \in \operatorname{Hom}(Z_p, G)$ allora;

$$(\alpha_2 \circ \Phi)(h) = \alpha_2(h \circ \varphi) - h \circ \varphi \circ \psi = h$$

Quindi $\alpha_2 \in \Phi = \mathbb{I}$ e quindi $\sigma \circ \tau_2 \circ \tau_2(v) = 0$ in quanto $\tau_2 \circ \tau_1 = 0$, dato che la colonna è esatta, quindi $\Phi(\tau_1(v))$ è un cociclo. Ora devo mostrare che $\beta_1(\Phi(\tau_1(v))) = v$, prendo la preimmagine attraverso τ_1 di

$$\beta_1(\Phi(\tau_1(v))) = \alpha_2 \circ \Phi(\tau_1(v)) = \mathbb{I}(\tau_1(v)) = \tau_1(v)$$

Quindi è proprio v. ora devo mostrare che $\mathrm{Im}(\beta_2)\mathrm{Ker}(\beta_1)$. Mostro che $\mathrm{Im}(\beta_2)\subseteq\mathrm{Ker}(\beta_1)$: Se $u\in\mathrm{Ext}^1(H_{p-1},G)$ allora $\beta_2(u)=\alpha_1(\tilde{u})$, è vero che $\beta_1(\alpha_1(\tilde{u}))=0$, ma $\alpha_2(\alpha_1(\tilde{u}))=0$, ma poi devo prendere la preimmagine quindi ho proprio 0.

Ora mostro che $\operatorname{Ker}(\beta_1) \subseteq \operatorname{Im}(\beta_2)$, sia $[\![f]\!] \in H^p(X;G)$, se $\beta_1([\![f]\!]) = 0$ allora $\alpha_2(f) = \tau_1(0)$ quindi $\alpha_2(f) = 0$, ma la successione è esatta e quindi esiste $f' \in \operatorname{Hom}(B_{p-1},G)$ tale che $\alpha_1(f') = f$. Voglio fare vedere che $[\![f]\!] = \beta_2(u)$ con $u \in \operatorname{Ext}^1(H_p,G)$. Definisco $u = \lambda_2(f')$, ma allora $\beta_2(u) = [\![f]\!]$ per definizione.

La successione è quindi esatta.

Mi rimane da vedere che spezza:

$$0 \longrightarrow \operatorname{Ext}^1(H_{p-1}(X),G) \stackrel{\beta_2}{\longrightarrow} H^p(X,G) \stackrel{\beta_1}{\longrightarrow} \operatorname{Hom}(H_p(X),G) \longrightarrow 0$$

Sia $y \in \operatorname{Hom}(H_p,G)$, definisco $\rho(y)$ come $\rho(y) = \Phi(\tau_1(y))$, in questo modo $\beta_1 \circ \rho = \mathbb{I}_{\operatorname{Hom}()}$.

Esempio 4.3.6 (Coomologia dello spazio proiettivo reale) So che l'omologia dello spazio proiettivo reale con n=3 è:

$$H_p(\mathrm{P}^3(\mathbb{R}), \mathbb{Z}_2) \cong egin{cases} \mathbb{Z} & \textit{se } p = 0 \\ \mathbb{Z}_2 & \textit{se } p = 1 \\ 0 & \textit{se } p = 2 \\ \mathbb{Z} & \textit{se } p = 3 \end{cases}$$

Applico il teorema dei coefficienti universali, per ogni $p \in \mathbb{N}$:

$$H^p(\mathrm{P}^3(\mathbb{R}), \mathbb{Z}_2) \cong \mathrm{Hom}(H_p(\mathrm{P}^3(\mathbb{R}), \mathbb{Z}_2)) \oplus \mathrm{Ext}^1(H_{p-1}(\mathrm{P}^3(\mathbb{R}), \mathbb{Z}_2))$$

Quindi:

$$H^{0}(\mathrm{P}^{3}(\mathbb{R}), \mathbb{Z}_{2}) \cong \mathrm{Hom}(\mathbb{Z}, \mathbb{Z}_{2})$$

$$H^{1}(\mathrm{P}^{3}(\mathbb{R}), \mathbb{Z}_{2}) \cong \mathrm{Hom}(\mathbb{Z}_{2}, \mathbb{Z}_{2}) \oplus \mathrm{Ext}^{1}(\mathbb{Z}, \mathbb{Z}_{2})$$

$$H^{2}(\mathrm{P}^{3}(\mathbb{R}), \mathbb{Z}_{2}) \cong \mathrm{Hom}(\mathbb{Z}_{2}) \oplus \mathrm{Ext}^{1}(\mathbb{Z}_{2}, \mathbb{Z}_{2}) \cong \mathrm{Ext}^{1}(\mathbb{Z}_{2}, \mathbb{Z}_{2})$$

$$H^{3}(\mathrm{P}^{3}(\mathbb{R}), \mathbb{Z}_{2}) \cong \mathrm{Hom}(\mathbb{Z}, \mathbb{Z}_{2}) \oplus \mathrm{Ext}^{1}(0, \mathbb{Z}_{2}) \cong \mathrm{Hom}(\mathbb{Z}, \mathbb{Z}_{2})$$

Calcolo i gruppi che mi mancano:

$$\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}_2) = \{ \varphi \colon \mathbb{Z} \to \mathbb{Z}_2 \} \cong \mathbb{Z}_2$$

Infatti considero l'azione sui generatori, devo decidere dove mandare il generatore di \mathbb{Z} , che è 1, lo posso mandare in 0 o in 1, quindi ho due possibili applicazioni, e quindi lo spazio degli omomorfismi è isomorfo a \mathbb{Z}_2 . Considerazioni analoghe valgono per

$$\operatorname{Hom}(\mathbb{Z}_2,\mathbb{Z}_2) = \{ \varphi \colon \mathbb{Z}_2 \to \mathbb{Z}_2 \} \cong \mathbb{Z}_2$$

Infatti 0 deve andare in 0 essendo un omomorfismo. Per calcolare $\operatorname{Ext}^1(\mathbb{Z},\mathbb{Z}_2)$ considero la risoluzione:

$$0 \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0$$

Passando agli omomorfismi:

$$0 \longrightarrow \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}_2) \longrightarrow \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}_2) \longrightarrow 0 \longrightarrow 0$$

Quindi $\operatorname{Ext}^1(\mathbb{Z},\mathbb{Z}_2) \cong 0$. Invece per $\operatorname{Ext}^1(\mathbb{Z},\mathbb{Z}_2)$ considero la risoluzione:

$$0 \longrightarrow 2\mathbb{Z} \xrightarrow{i} \mathbb{Z} \xrightarrow{\pi} \mathbb{Z}_2 \longrightarrow 0$$

Passando agli omomorfismi:

$$0 \longrightarrow \mathbb{Z}_2 \longrightarrow \mathbb{Z}_2 \longrightarrow \operatorname{Hom}(2\mathbb{Z}, \mathbb{Z}_2) \longrightarrow \operatorname{Ext}^1(\mathbb{Z}_2, \mathbb{Z}_2) \longrightarrow 0$$

Tra \mathbb{Z}_2 e \mathbb{Z}_2 l'unica possibile mappa iniettiva è l'isomorfismo, quindi la successione spezza e $\operatorname{Ext}^1(\mathbb{Z}_2,\mathbb{Z}_2) \cong \operatorname{Hom}(\mathbb{Z},\mathbb{Z}_2) \cong \mathbb{Z}_2$. Nel complesso quindi:

$$H^k(\mathbf{P}^3(\mathbb{R}), \mathbb{Z}_2) \cong \mathbb{Z}_2$$

In realtà si dimostra che $\forall n \in \mathbb{N}$:

$$H^k(\mathbf{P}^n(\mathbb{R}), \mathbb{Z}_2) \cong \mathbb{Z}_2$$

Mentre:

$$H^k(\mathbf{P}^n(\mathbb{C}), \mathbb{Z}) \cong \mathbb{Z}$$

4.4 Prodotto cup

Esempio 4.4.1 Sia $X = P^2(\mathbb{C})$ e $Y = S^2 \vee S^4$, è vero che X e Y sono omotopicamente equivalenti? Mi aspetto che non lo siano in quanto X è una varietà topologica, mentre Y no, dato che possiede un punto (quello a cui le due sfere sono incollate, che non possiede un intorno omeomorfo a \mathbb{R}^n). Per verificarlo posso usare gli invarianti topologici che conosco.

Gruppo fondamentale

Con Seifert-Van Kampen si trova che $\pi_1(X)\cong\{1\}$ e $\pi_1(Y)\cong\{1\}$, e quindi i gruppi fondamentali sono isomorfi.

Gruppi di omologia

Per calcolare i gruppi di omologia utilizzo la struttura di CW complesso, sia X che Y sono formati da una 0-cella, una 2-cella e una 4-cella, quindi il complesso delle catene è:

$$0 \longrightarrow S_4^{CW} \longrightarrow S_3^{CW} \longrightarrow S_2^{CW} \longrightarrow S_1^{CW} \longrightarrow S_0^{CW} \longrightarrow 0$$

E in entrambi i casi questa si riduce a:

$$0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow 0$$

Quindi entrambi gli spazi hanno come gruppi di omologia $H_k(X) \cong H_k(Y) \cong \mathbb{Z}$ per $k \in \{0,2,4\}$.

Gruppi di coomologia

Con il teorema di coefficienti universali $H^k(\bullet;G) \cong \operatorname{Hom}(H_k(\bullet),G) \oplus \operatorname{Ext}^1(H_{k-1}(\bullet),G)$, quindi essendo uguali i gruppi di omologia:

$$H^k(X;G) \cong H^k(Y;G) \cong \begin{cases} G & \text{se } k = 0 \\ 0 & \text{se } k = 1 \end{cases}$$

$$G & \text{se } k = 2$$

$$0 & \text{se } k = 3$$

$$G & \text{se } k = 4$$

(Infatti $H_k(X) \cong \mathbb{Z}$ e quindi $\operatorname{Hom}(\mathbb{Z}, G) \cong G$).

Ho quindi bisogno di strumenti più fini, per questo e per altri motivi rendo i gruppi di coomologia un anello.

4.4.1 Richiami di algebra degli anelli

Definizione 4.4.2 Un anello commutativo \mathcal{R} si dice **dominio di integrità** se il prodotto tra qualsiasi coppia di elementi non nulli è un elemento non nullo, cioè vale che se ab=0 allora o a=0 o b=0 $\forall a,b\in\mathcal{R}$.

Proposizione 4.4.3 In un dominio di integrità R valgono le leggi di cancellazione del prodotto, cioè:

$$\forall a, x, y \in \mathcal{R} \quad ax = ay \Rightarrow x = y$$

Definizione 4.4.4 *Un ideale* I *di un anello commutativo* \mathcal{R} *è un sottoinsieme di* \mathcal{R} *tale che* $\forall a, b \in \mathcal{R}$ $e \forall x, y \in I$ *sia* $ax + by \in I$.

Definizione 4.4.5 *Un dominio a ideali principali* (PID, principal ideal domain) è un dominio di integrità in cui ogni ideale è principale, cioè generato da un solo elemento, cioè $\forall I$ ideale esista $i \in A$ tale che $I = (i) = \{ ai \mid a \in A \}$. Con la scrittura (i) si indica l'ideale generato.

Esempio 4.4.6 *Esempi di PID sono* \mathbb{Z} , \mathbb{R} , \mathbb{F} , $\mathbb{K}[x]$.

4.4.2 Prodotto cup

Sia $H^{\star}(X,\mathcal{R}):=\bigoplus_k H^k(X,\mathcal{R})$, il prodotto cup \cup rende $(H^{\star}(X,\mathcal{R}),+,\cup)$ un anello. Sia X uno spazio spazio topologico, e \mathcal{R} un PID, $S^k(X,\mathcal{R})$ e $S^l(X,\mathcal{R})$ sono gli insiemi delle cocatene, voglio costruire una mappa:

$$\cup \colon S^k(X,\mathcal{R}) \times S^l(X,\mathcal{R}) \to S^{k+l}(X,\mathcal{R})$$
$$(\varphi,\psi) \mapsto \varphi \cup \psi$$

E quindi passare a livello di coomologia in modo da fornire la struttura ad anello.

Se $\varphi \cup \psi \in S^{k+l}(X, \mathcal{R})$ significa che $\varphi \cup \psi \in \operatorname{Hom}(S_{k+1}(X), \mathcal{R})$ e quindi $\varphi \cup \psi \colon S_{k+l}(X) \to \mathcal{R}$, e l'azione di questa mappa può essere definita solo sui simplessi singolari e quindi estesa per linearità su tutto lo spazio delle catene. Sia $\sigma \colon \Delta_{k+l} \to X$ un simplesso singolare, si può anche vedere il simplesso standard come inviluppo convesso di punti:

$$\Delta_{k+l} = [v_0, \dots, v_k, v_{k+1}, \dots, v_{k+l}]$$

E quindi si può restringere il simplesso singolare sulla parte generata dai primi k punti e su quella generata dagli ultimi l:

$$\sigma|_{[v_0,\ldots,v_k]}:\Delta_k\to X\quad \sigma|_{[v_{k+1},\ldots,v_{k+l}]}:\Delta_l\to X$$

A questo punto la definizione dell'azione di $\varphi \cup \psi$ su σ risulta naturale:

$$(\varphi \cup \psi)(\sigma) = \varphi \left(\sigma|_{[v_0, \dots, v_k]}\right) \cdot \psi \left(\sigma|_{[v_{k+1}, \dots, v_{k+l}]}\right)$$

Questa definizione è ben posta, il prodotto tra i due termini è infatti il prodotto in \mathcal{R} . Per passare a livello di coomologia (indicando con abuso di notazione $\cup^* = \cup$):

$$\cup \colon H^k(X,\mathcal{R}) \times H^l(X,\mathcal{R}) \to H^{k+l}(X,\mathcal{R})$$
$$(\llbracket \varphi \rrbracket, \llbracket \psi \rrbracket) \mapsto \llbracket \varphi \circ \psi \rrbracket$$

Verifico che questa applicazione è ben definita. Si ha che φ e ψ sono cocicli, cioè $\delta\varphi=\delta\psi=0$, e tutti gii altri elementi della classe differiscono per un cobordo da φ e ψ , cioè sono della forma $\varphi+\delta\varphi_1$ e $\psi+\delta\psi_1$. L'applicazione è ben definita se:

- 1. $\varphi \cup \psi$ è un bordo
- 2. Elementi omologhi in $H^k(X,\mathcal{R}) \times H^l(X,\mathcal{R})$ vengono mandati in elementi omologhi in $H^{k+l}(X,\mathcal{R})$.

Per verificare la prima di queste si utilizza il seguente lemma:

Lemma 4.4.7 vale che $\delta(\varphi \cup \psi) = \delta \varphi \cup \psi + (-)^k \varphi \cup \delta \psi$, quindi se φ e ψ sono cocilci, anche $\varphi \cup \psi$ lo è.

Esercizio 14 Verificare il lemma.

Per verificare la seconda richiesta mostro che esiste $\eta \in S^{k+l-1}(X)$ tale che:

$$(\varphi + \delta \varphi_1) \cup (\psi + \delta \psi_1) = \varphi \cup \psi + \delta \eta$$

Utilizzando il precedente lemma si ha che:

$$\delta(\varphi \cup \psi_1) = \underline{\delta}\varphi \cup \overline{\psi_1} + (-)^k (\varphi \cup \delta\psi_1) \Rightarrow \varphi \cup \delta\psi_1 = (-)^k \delta(\varphi \cup \psi_1) = \delta((-)^k \varphi \cup \psi_1)$$
$$\delta(\varphi_1 \cup \psi) = \delta\varphi_1 \cup \psi + \underline{(-)^{k-1}(\varphi_1 \cup \delta\psi)} \Rightarrow \delta\varphi_1 \cup \psi = \delta(\varphi_1 \cup \psi)$$
$$\delta(\varphi_1 \cup \delta\psi_1) = \delta\varphi_1 \cup \delta\psi_1 + \underline{(-)^{k-1}\varphi_1 \cup \delta^2\psi_1} \Rightarrow \delta\varphi_1 \cup \delta\psi_1 = \delta(\varphi_1 \cup \delta\psi_1)$$

Ma quindi definendo $\eta = (-)^k \varphi \cup \delta \psi_1 + \varphi_1 \cup \psi + \varphi_1 \cup \delta \psi_1$:

$$(\varphi + \delta\varphi_1) \cup (\psi + \delta\psi_1) = \varphi \cup \psi + \varphi \cup \delta\Psi_1 + \delta\varphi_1 \cup \psi + \delta\varphi_1 \cup \delta\psi_1 = \varphi \cup \psi + \delta\eta$$

La mappa è quindi ben definita a livello di coomologia e quindi si può dare la struttura ad anello a $H^*(X, \mathcal{R})$.

Se in particolare, come da qui in avanti assumo, X è connesso per archi:

$$H^0(X,\mathcal{R}) \cong \operatorname{Hom}(H_0(X),\mathcal{R}) \cong \operatorname{Hom}(\mathbb{Z},\mathcal{R}) \cong \mathcal{R}$$

Dove $\operatorname{Hom}(\mathbb{Z},\mathcal{R})\cong\mathcal{R}$ in quanto per specificare un omomorfismo da \mathbb{Z} a \mathcal{R} mi basta dire quale è l'immagine di 1, la quale può essere un qualunque elemento di \mathcal{R} . Ma \mathcal{R} è unitario, quindi possiede un elemento unità, e quindi si definisce l'unità in $H^0(X,\mathcal{R})$ e quindi in tutto $H^*0(X,\mathcal{R})$ come l'elemento che corrisponde a $\mathbb{I}_{\mathcal{R}}$ e che quindi corrisponde anche a $\mathbb{I}_{\operatorname{Hom}(H_0(X),\mathcal{R})}$, cioè $\mathbb{I}: [\![\varphi]\!] \mapsto [\![\varphi]\!]$. Osservo che in $H^*(X,\mathcal{R})$:

$$\llbracket\varphi\rrbracket \cup \llbracket\mathbb{I}\rrbracket = \llbracket\varphi \cup \mathbb{I}\rrbracket = \llbracket\varphi\rrbracket = \llbracket\mathbb{I} \cup \varphi\rrbracket = \llbracket\mathbb{I}\rrbracket \cup \llbracket\varphi\rrbracket$$

Quindi $H^{\star}(X, \mathcal{R})$ è un anello unitario, ma in generale non commutativo.

Lemma 4.4.8 Siano X e Y spazi topologici omotopicamente equivalenti allora gli anelli di coomologia sono isomorfi (come anelli).

Dimostrazione: Se X è equivalente a Y allora i gruppi di omologia sono isomorfi, cioè $H_{\star}(X) \cong H_{\star}(Y)$, per il teorema dei coefficienti universali anche i gruppi di coomologia sono isomorfi come \mathbb{Z} -moduli, cioè $H^{\star}(X) \cong H^{\star}(Y)$, devo mostrare che l'isomorfismo è

anche di anelli. Se $X \sim_H Y$ significa che esiste una mappa continua $f\colon X \to Y$ e una $g\colon Y \to X$ tali che $f\circ g \sim_H \mathbb{I}_Y$ e $g\circ f \sim_H \mathbb{I}_X$. Essendo f continua è ben definita

$$f_{\sharp} \colon S_k(X) \to S_k(Y)$$

 $\sigma \mapsto f \circ \sigma$

Ma anche:

$$f^{\sharp} \colon S^{k}(Y) \to S^{X}(X)$$

 $\varphi \mapsto f^{\sharp}(\varphi) = \varphi(f_{\sharp})$

Quindi si può passare alla coomologia:

$$f^* \colon H^k(Y) \to H^k(X)$$

$$\llbracket \varphi \rrbracket \mapsto \llbracket f^\sharp \circ \varphi \rrbracket$$

Questa mappa è un omomorfismo di anelli, cioè:

$$f^{\star}(\llbracket\varphi\rrbracket + \llbracket\psi\rrbracket) = f^{\star}(\llbracket\varphi\rrbracket) + f^{\star}(\llbracket\psi\rrbracket)$$
$$f^{\star}(\llbracket\varphi\rrbracket \cup \llbracket\psi\rrbracket) = f^{\star}(\llbracket\varphi\rrbracket) \cup f^{\star}(\llbracket\psi\rrbracket)$$

Infatti, il comportamento rispetto alla somma è vero perché è vero anche come \mathbb{Z} -moduli, mentre per il prodotto: Considero $\sigma \colon \Delta_{k+l} \to X$ simplesso singolare:

Si può applicare il medesimo ragionamento anche per g e per l'assioma omotopico $(f \circ g)^* = (\mathbb{I}_Y)^*$ e $(g \circ f)^* = (\mathbb{I}_X)^*$, ma quindi f^* e g^* sono una l'inversa dell'altra ed essendo anche omomorfismi sono isomorfismi.

Esempio 4.4.9 Se $X = S^n$, so che:

$$H_k(\mathcal{S}^n) \cong H^k(\mathcal{S}^n) \cong \begin{cases} \mathbb{Z} & \textit{se } k \in \{0, n\} \\ 0 & \textit{altrimenti} \end{cases}$$

Ho che $H^0(S^n)=\langle \mathbb{I} \rangle$ e $H^n(S^n)=\langle \alpha \rangle$ con α opportuno generatore. La tabella di moltiplicazione tra questi generatori è:

$$\begin{array}{c|cccc} & \mathbb{I} & \alpha \\ \hline \mathbb{I} & \mathbb{I} & \alpha \\ \alpha & \alpha & 0 \end{array}$$

Dove $\alpha^2=0$ in quanto α^2 è in $H^{2n}(X,G)'=0$. Quindi $H^{\star}(\mathcal{S}^n)=\mathbb{Z}[\mathbb{I}]\oplus\mathbb{Z}[\alpha]$, e il generico elemento è della forma $a+b\alpha$ con $a,b\in\mathbb{Z}$ e $\alpha^2=0$, quindi:

$$H^{\star}(\mathcal{S}^n) \cong \mathbb{Z}[\alpha]/(\alpha^2)$$

Esempio 4.4.10 A questo punto si posseggono gli strumenti necessari per risolvere il problema della distinzione tra $P^2(\mathbb{C})$ e $S^2 \vee S^4$. Per Mayer-Vietoris $H^*(S^2 \vee S^4) \cong H^*(S^2) \oplus H^*(S^4)$, quindi

$$H^{\star}(\mathcal{S}^2 \vee \mathcal{S}^4) \cong \mathbb{Z}[\alpha]/_{(\alpha^2)} \oplus \mathbb{Z}[\beta]/_{(\beta^2)}$$

Successivamente dimostrerò che:

$$H^{\star}(\mathbf{P}^{n}(\mathbb{C})) \cong Z[x]/_{(x^{n+1})}$$

Dove x è un generatore di $H^2(\mathrm{P}^2(\mathbb{C}))$. Ora mostro quindi che $\mathcal{S}^2 \vee \mathcal{S}^4 \not\sim_H \mathrm{P}^2(\mathbb{C})$.

$$H^{\star}(\mathbf{P}^{2}(\mathbb{C})) = \{ a_{0} + a_{1}x + a_{2}x^{2} \mid x^{3} = 0 \}$$

$$H^{\star}(\mathbf{P}^{2}(\mathbb{C})) = \{ (b_{0} + b_{1}\alpha, a_{0} + a_{1}\beta) \mid \alpha^{2} = 0, \ \beta^{2} = 0 \}$$

Se questi gruppi fossero isomorfi ci sarebbe una corrispondenza:

$$x \leftrightarrow (b_0 + b_1 \alpha, a_0 + a_1 \beta)$$

Ma quindi anche:

$$x^3 = 0 \leftrightarrow (b_0^3 + 3b_0^2 b_1 \alpha, a_0^3 + 3a_0^2 a_1 \alpha)$$

Ma se fosse un isomorfismo 0 dovrebbe andare in 0, cioè:

$$\begin{cases} b_0^3 + 3b_0^2 b_1 \alpha = 0 \Rightarrow b_0 = 0 \\ a_0^3 + 3a_0^2 a_1 \beta = 0 \Rightarrow a_0 = 0 \end{cases}$$

Cioè:

$$x \leftrightarrow (b_1 \alpha, a_1 \beta)$$

Ma prendendo il quadrato avrei che:

$$x^2 \leftrightarrow (0,0)$$

Che è assurdo.

Teorema 4.4.11 Siano x,y i generatori rispettivamente di $H^1(\mathrm{P}^n(\mathbb{R});\mathbb{Z}_2)$ e $H^2(\mathrm{P}^n(\mathbb{C});\mathbb{Z})$, cioè:

$$\langle x \rangle = H^1(\mathbf{P}^n(\mathbb{R}), \mathbb{Z}_2) \quad \langle y \rangle = H^2(\mathbf{P}^n(\mathbb{C}), \mathbb{Z})$$

allora vale che:

$$H^{\star}(\mathbf{P}^{n}(\mathbb{R}); \mathbb{Z}_{2}) \cong \mathbb{Z}_{2}[x]/(x^{n+1})$$

 $H^{\star}(\mathbf{P}^{n}(\mathbb{C}); \mathbb{Z}) \cong \mathbb{Z}[y]/(y^{n+1})$

Dimostrazione: La dimostrazione per i due risultati è la stessa, lo dimostro per il caso reale. La dimostrazione è per induzione, e in ciò che segue è sottinteso che il gruppo di coefficienti è \mathbb{Z}_2 . Per n=1 è noto che $\mathrm{P}^1(\mathbb{R})\cong\mathcal{S}^1$, e quindi ho già calcolato l'anello di coomologia:

$$H^{\star}(\mathbf{P}^1(\mathbb{R})) \cong \mathbb{Z}[x]/(x^2)$$

Per n>1 considero due indici i,j. Mostro che posso restringermi al caso in cui i+j=n. Se i+j< n considero $u\colon {\rm P}^k(\mathbb{R})\to {\rm P}^n(\mathbb{R})$, ho che $u^\star\colon H^l({\rm P}^n(\mathbb{R}))\stackrel{\sim}{\longrightarrow} H^l({\rm P}^l(\mathbb{R}))$ con $l\le j$, ma quindi:

$$0 + \alpha_i \in H^i(\mathbf{P}^n(\mathbb{R})) \mapsto u^*(\alpha_i) \neq 0$$
$$0 + \alpha_j \in H^j(\mathbf{P}^n(\mathbb{R})) \mapsto u^*(\alpha_j) \neq 0$$

 $\text{Ma } u^\star(\alpha_i \cup \alpha + j) \neq 0 \text{ e } \alpha_i \cup \alpha_j \in H^{i+j}(\mathbf{P}^k(\mathbb{R})). \text{ Se } u^\star(\alpha_i \cup \alpha_j) = 0 \text{ quindi } u^\star(\alpha_i) \cup u^\star(\alpha_j) = 0, \text{ ma } u^\star(\alpha_i) = 0 \text{ e } u^\star(\alpha_j) \neq 0 \text{ e ili prodotto cup non manda in zero. In altri termini se } i+j < n \text{ allora } \alpha_i \cup \alpha_j \text{ è generatore di } H^{i+j}(\mathbf{P}^n(\mathbb{R})) \text{ e mi riconduco al caso precedente. Posso quindi fissare } i,j \text{ tali che } i+j=n, \text{ e prendo } \alpha_i,\alpha_j \text{ generatori tali che } \langle \alpha_i \rangle = H^i(\mathbf{P}^n(\mathbb{R})) \text{ e } \langle \alpha_j \rangle = H^j(\mathbf{P}^n(\mathbb{R})).$

Per definizione $S^{n} = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} \mid \sum x_i^2 = 1\}$, considero:

$$S^{i} = \{ (x_{0}, \dots, x_{i}, 0, 0, \dots, 0) \in S^{n} \}$$
$$S^{j} = \{ (0, 0, \dots, x_{n-j}, \dots, x_{n}) \in S^{n} \}$$

Se i + j = n queste due sottosfere si intersecano in due punti:

$$\mathcal{S}^i \cap \mathcal{S}^j = \{ (0, \dots, \pm 1, \dots, 0) \}$$

So che $P^n(\mathbb{R}) = \mathcal{S}^n / \sim = P^n - 1(\mathbb{R}) \cup_{\pi} \mathcal{D}^n$, dove \sim è la relazione antipodale. Quindi

Figura 4.1: Intersezione tra \mathcal{S}^i e \mathcal{S}^j

 $P^n(\mathbb{R})-\{p\}$ è retratto di deformazione di $P^n-1(\mathbb{R})$. Costruisco il seguente diagramma commutativo:

$$H^{i}(\mathbf{P}^{n}(\mathbb{R})) \times H^{j}(\mathbf{P}^{n}(\mathbb{R})) \xrightarrow{\hspace{1cm} \cup} H^{n}(\mathbf{P}^{n}(\mathbb{R}))$$

$$\cong \uparrow \qquad \qquad \cong \uparrow \qquad \qquad \cong \uparrow \qquad \qquad \cong \uparrow \qquad \qquad \qquad \cong \uparrow \qquad \qquad \qquad \\ H^{i}(\mathbf{P}^{n}(\mathbb{R}), \mathbf{P}^{n}(\mathbb{R}) - \mathbf{P}^{j}(\mathbb{R})) \times H^{j}(\mathbf{P}^{n}(\mathbb{R}), \mathbf{P}^{n}(\mathbb{R}) - \mathbf{P}^{i}(\mathbb{R})) \xrightarrow{\hspace{1cm} \cup} H^{n}(\mathbf{P}^{n}(\mathbb{R}), \mathbf{P}^{n}(\mathbb{R}) - \{p\})$$

$$\downarrow \cong \qquad \qquad \downarrow \oplus \qquad \qquad \downarrow \oplus \qquad \qquad \downarrow \oplus \qquad \qquad \downarrow \oplus \qquad \downarrow$$

4 Coomologia singolare

Infatti ho \cup : $H^i(\mathrm{P}^n(\mathbb{R})) \times H^j(\mathrm{P}^n(\mathbb{R})) \to H^n(\mathrm{P}^n(\mathbb{R}))$. Poi ho la successione esatta lunga in omologia:

$$H^{n-1}(\mathbf{P}^n(\mathbb{R})) \rightarrow H^{n-1}(\mathbf{P}^n(\mathbb{R}) - \{\,p\,\}) \rightarrow H^{n-1}(\mathbf{P}^n(\mathbb{R}), \mathbf{P}^n(\mathbb{R}) - \{\,p\,\}) \rightarrow H^n(\mathbf{P}^n(\mathbb{R})) \rightarrow H^n(\mathbf{P}^n(\mathbb{R}) - \{\,p\,\})$$

 $\begin{array}{l} \operatorname{Ma} H^{n-1}(\mathbf{P}^n(\mathbb{R})) \cong H^{n-1}(\mathbf{P}^n-1(\mathbb{R})) \text{ quindi } H^{n-1}(\mathbf{P}^n(\mathbb{R})-\{\,p\,\}) \cong H^{n-1}(\mathbf{P}^n(\mathbb{R})) \text{ quindi } H^n(\mathbf{P}^n(\mathbb{R}),\mathbf{P}^n(\mathbb{R})-\{\,p\,\}) \cong H^n(\mathbf{P}^n(\mathbb{R})). \text{ Poi ho } \mathbf{P}^i(\mathbb{R}) \cong \mathcal{S}^i-\sim \operatorname{e} \, \mathbf{P}^j(\mathbb{R}) \cong \mathcal{S}^j-\sim, \\ \operatorname{quindi } H^i(\mathbf{P}^n(\mathbb{R}),\mathbf{P}^n(\mathbb{R})-\mathbf{P}^j(\mathbb{R})) \times H^j(\mathbf{P}^n(\mathbb{R}),\mathbf{P}^n(\mathbb{R})-\mathbf{P}^i(\mathbb{R})) \text{ vanno in } H^i(\mathbf{P}^n(\mathbb{R})) \times H^i(\mathbf{P}^n(\mathbb{R})). \end{array}$

 $\begin{array}{l} \operatorname{Poi}\operatorname{P}^n(\mathbb{R}) - (\operatorname{P}^n(\mathbb{R}) - \operatorname{P}^j(\mathbb{R}) \cup \operatorname{P}^n(\mathbb{R}) - \operatorname{P}^i(\mathbb{R})) = \operatorname{P}^n(\mathbb{R}) - (\operatorname{P}^n(\mathbb{R}) - (\operatorname{P}^j(\mathbb{R})) \cap \operatorname{P}^i(\mathbb{R})) = \operatorname{P}^n(\mathbb{R}) - \{\,p\,\} \, \operatorname{con} \, p = [0, \dots, 1, 0, \dots, 0]. \end{array}$

Faccio escissione con $U_i = \{ [x_0, \dots, x_n] \mid x_i \neq 0 \} \cong \mathbb{R}^n$, ma $U_i = \left(\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i} \right)$ è contraibile.