)
(Imie i nazwisko) (A. B. C. D)

Parametry:

M = 2 N = 15

norma = 1 (zadanie 1)

norma = 0 (zadanie 2)

Raport z Pracowni nr 2

Zadanie 1.

1. Cel zadania

Celem zadania było zbadanie zbieżności algorytmu przybliżającego rozwiązanie macierzy metodą iteracji Seidela w zależności od rozmiaru macierzy dla normy kolumnowej.

2. Metody

W doświadczeniu wykorzystano kilka klas stworzonych w języku Python. Odpowiedni projekt stworzono w środowisku Visual Studio Code i kompilowano w zintegrowanym ze środowiskiem terminalu PowerShell na komputerze personalnym o procesorze AMD Ryzen 7 3700X.

3. Przyjęte parametry

N = 15

norma = 1 (kolumnowa) k określone w trakcie doświadczenia alfa określona w trakcie doświadczenia zakres wartości n określony w trakcie doświadczenia

4. Przebieg doświadczenia i wyniki

Doświadczenie rozpoczęto od modyfikowania metody *testy()* w pliku *zadanie1.py*, tworząc w niej algorytm obliczający średnie wyniki iteracji Seidela dla macierzy o różnych rozmiarach i prezentujący je w formie wykresu, następnie kilkukrotnie edytowano parametr alfa, parametr definiujący ilość powtórzeń losowania i pomiaru nowych wartości macierzy tego samego rozmiaru dla uzyskania średniej i zakres N rozmiarów (n) macierzy, do momentu dobrania kombinacji wartości parametrów pozwalającej na wyraźne zaprezentowanie zbieżności metody na wykresie.

Następnie, na bazie kodu metody *testy()* i wniosków wyciągniętych z pracy nad jej utworzeniem i modyfikacją opracowano metodę *badaj_zbieznosc*. Metoda, tak jak metoda *testy()*, wywoływana była w instancji klasy *Zadanie1* z pliku *zadanie1.py*. Na bazie wniosków wyciągniętych z opracowania metody testy() inicjalizując instancje klasy *Zadanie1* przyjęto parametry:

k = 5 alfa = 0.01

W wyniku wykonania kodu otrzymano wyniki, zilustrowane na poniżej zamieszczonych wykresach:

Wykres 1. Zależność dokładności rozwiązania po k=5 iteracjach od rozmiaru macierzy n.

Wykres 2. Zależność wartości normy macierzy D po k=5 iteracjach od rozmiaru macierzy n.

n	średnia norma	średnia niedokładność
3	0.8583878246686126	0.009097933490743665
7	1.141947036684496	0.007878809607653766
11	1.233759540183447	0.0037862210009352486
15	1.2284336728306595	0.0014852075704223282
19	1.2331110793625684	0.0010538452035147423
23	1.2082224697528745	0.0005483423718025024
27	1.2360617211800005	0.0003628217796030831
31	1.2325242940359646	0.0002806636011253642
35	1.2061050889926992	0.00019939936823508729
39	1.196608582183106	0.00014425680641601157
43	1.1959711146946712	0.00010987646867420008
47	1.1839266215378257	7.66305800001385e-05
51	1.187971399598804	7.656068469862982e-05
55	1.1745199947024934	4.5701521178911777e-05
59	1.204621019017632	4.532362491181379e-05

Tabela 1. Uzyskane dokładne średnie wartości zawarte w wykresach 1 i 2.

5. Wnioski

W wyniku przeprowadzonego eksperymentu udało się wykazać, że metoda iteracji Seidela stosowana na macierzy jest zbieżna, i w miarę stosowania na macierzach coraz

większych rozmiarów osiąga bliską zbieżność do dokładnego rozwiązania macierzy po wykonaniu coraz mniejszej ilości iteracji.

Zadanie 2.

1. Cel zadania

Celem zadania było zbadanie wpływu parametru epsilon na efektywność uzyskiwania rankingu stron Google PageRank za pomocą iteracji Seidela i metody potęgowej, wykorzystując metodę *iteruj roznica*.

2. Metody

W doświadczeniu wykorzystano kilka klas stworzonych w języku Python. Odpowiedni projekt stworzono w środowisku Visual Studio Code i kompilowano w zintegrowanym ze środowiskiem terminalu PowerShell na komputerze personalnym o procesorze AMD Ryzen 7 3700X.

3. <u>Przyjęte parametry</u>

N = 15

norma = 0 (wierszowa)

gamma, n, k, epsilony - określone w trakcie doświadczenia

4. <u>Przebieg doświadczenia i wyniki</u>

Doświadczenie rozpoczęto od modyfikowania metody *testy()* w pliku *zadanie2.py*, tworząc w niej algorytm obliczający liczbę iteracji wymaganych do uzyskania przybliżenia ostatecznego rankingu stron macierzy Google PageRank, przyjmując różny parametr epsilon dla iteracji z warunkiem stopu opartym sprawdzaniu, czy różnica niedokładności ostatnich dwóch przybliżeń jest mniejsza od parametru epsilon, następnie dobierając połączenie parametrów pozwalające na relatywnie szybkie zobrazowanie przejrzystych wyników.

W wyniku testowania wybrano następujące wartości parametrów:

- -gamma = 0.1
- n = 150
- k = 20
- wartości epsilonów = [0.1, 0.046415888336127795, 0.021544346900318846, 0.01, 0.004641588833612782, 0.002154434690031882, 0.001, 0.00046415888336127773, 0.00021544346900318845, 0.0001, 4.641588833612772e-05, 2.1544346900318867e-05, 1e-05, 4.641588833612782e-06, 2.1544346900318822e-06]

Następnie, na bazie kodu i wniosków wyciągniętych w ramach pracy nad metodą *testy()* opracowano metodę *badaj_zbieznosc*. Metoda ta, wywoływana jako obiekt klasy Zadanie2 z pliku Zadanie2.py, ponad funkcjonalność opisaną w metodzie *testy()*, powtarzała pomiar k razy dla każdego badanego epsilona, notując średnie: ilość iteracji, liczbę linków na stronie i niedokładność rozwiązania.

W wyniku wykonania kodu otrzymano wyniki, zilustrowane na poniżej zamieszczonym wykresie oraz tabeli:

Wykres 3. Porównanie prędkości zbliżania się

metoda potęgowa

		średnia ilość	
epsilon	śr niedokładność	iteracji	średnia ilość linków
0.1	0.11394133160461235	40.0	298.0666666666666
0.046415888336127795	0.11549677953594677	40.0	296.81333333333333
0.021544346900318846	0.11032044064176987	40.0	298.97999999999996
0.01	0.11107160733864596	40.0	299.460000000000004
0.004641588833612782	0.11772936152694553	40.0	301.41999999999996
0.002154434690031882	0.10040277981337498	43.0	299.640000000000004
0.001	0.03813749061157777	67.0	302.59999999999997

0.00046415888336127773	0.051863998992197236	60.0	299.6
0.00021544346900318845	0.024878851014482492	83.0	297.8066666666667
0.0001	0.014096359496009219	93.0	300.806666666666
4.641588833612772e-05	0.008263260800653465	100.0	300.5466666666667
2.1544346900318867e-05	0.0007897970974183619	123.0	300.37333333333333
1,00E-05	0.0021163165484855582	125.0	300.88
4.641588833612782e-06	0.00011579748880057161	147.0	300.18
2.1544346900318822e-06	9.385077878463425e-05	153.0	301.4933333333333

Tabela2. Ukazująca dokładne wartości parametrów wymienione w podpunkcie 4. metoda iteracii Seidela

	!!!	etoda iteracji seldela	
epsilon	śr niedokładność	średnia ilość iteracji	średnia iośćlinków
0.1	0.01758565535631092	20.0	300.5866666666664
0.046415888336127795	0.018032131777107992	21.0	296.593333333333
0.021544346900318846	0.01791201625734044	96.0	298.43333333333334
0.01	0.00784916897968418	721.0	301.0999999999997
0.004641588833612782	0.003813574672941632	1189.0	299.9866666666667
0.002154434690031882	0.001785125341080802	1771.0	302.7399999999999
0.001	0.0008301878691885517	2314.0	300.0
0.00046415888336127773	0.0003773241827546254	2980.0	299.36
0.00021544346900318845	0.000176116178848317	3583.0	298.6799999999995
0.0001	8.506151047825948e-05	4190.0	299.2133333333333
4.641588833612772e-05	3.773591830660336e-05	5037.0	297.5866666666664
2.1544346900318867e-05	1.754510350436972e-05	5326.0	298.833333333333
1,00E-05	8.145752235302027e-06	5782.0	300.1466666666665
4.641588833612782e-06	3.6626972223032657e-06	6814.0	299.046666666666
2.1544346900318822e-06	1.8164208655776018e-06 Tabela 2 c.d.	6967.0	300.1066666666667

5. <u>Wnioski</u>

W wyniku przeprowadzonego eksperymentu udało się wykazać, że wraz ze zmniejszaniem się parametru epsilon, stosując metodę iteracji Seidela będzie ona stopniowo wymagała znacznie większej ilości iteracji do osiągnięcia różnicowego warunku stop iteracji.