Conversion (Base)₂ en (Base)₁₀

Exemple: 11000000 . 10101000 . 00001011 . 00001010

192 . 168 . 11

Valeur	128	64	32	16	8	4	2	1
Base	2	2	2	2	2	2	2	2
N° colonne	7	6	5	4	3	2	1	0
1er octet	1	1	0	0	0	0	0	0
Calcul	1 x 27	1 x 26	0 x 25	0 x 24	0 x 23	0 x 22	0 x 21	0 x 20
Résultat	128	64	0	0	0	0	0	0

128 + 64 = 192

 $(11000000)_2 = (192)_{10}$

	128	64	32	16	8	4	2	1
Base	2	2	2	2	2	2	2	2
N° colonne	7	6	5	4	3	2	1	0
2 ^{eme} octet	1	0	1	0	1	0	0	0
Calcul	1 x 2 ⁷	0 x 2 ⁶	1 x 2 ⁵	0 x 2 ⁴	1 x 2 ³	0×2^{2}	0 x 2 ¹	0 x 2 ⁰
Résultat	128	0	32	0	8	0	0	0

128 + 32 + 8 = 168

 $(10101000)_2 = (168)_{10}$

.

.

→ 192.168.11.10

Conversion (Base)₁₀ en (Base)₂

Exemple: 192.168.11.10

$(192)_{10} \rightarrow 8 \text{ bits } \rightarrow (1 \ 1)$	1 0	0	0	0	0	0)2
--	-----	---	---	---	---	-----

	128	64	32	16	8	4	2	1
N° colonne	7	6	5	4	3	2	1	0
1 ^{er} octet	1	1	0	0	0	0	0	0
Résultat	128	64	0	0	0	0	0	0

$(168)_{10} \rightarrow 8 \text{ bits} \rightarrow (1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0)_2$

	128	64	32	16	8	4	2	1
N° colonne	7	6	5	4	3	2	1	0
1 ^{er} octet	1	0	1	0	1	0	0	0
Résultat	128	64	0	0	0	0	0	0

- 1. 128 plus petit ou égal à 168 ? Oui → donc je mets 1
- 2. 128 + 64 = 192: plus petit ou égal à 168 ? Non \rightarrow donc je mets 0
- 3. 128 + 32 = 160: plus petit ou égal à 168 ? Oui \rightarrow donc je mets 1
- 4. 128 + 32 + 16 : plus petit ou égal à 168 ? Non → donc je mets 0
- 5. 128 + 32 + 8: plus petit ou égal à 168 ? Oui \rightarrow donc je mets 1
- 6. [...]

 $(1111\ 1111)_2 \rightarrow 128 + 64 + 32 + ... + 1 = 255$

Conversion (Base)₁₀ en (Base)₁₆

Exemple : $(168)_{10} \rightarrow (?)_{16}$

 $\underline{1^{\text{ere}}\,\text{\'e}\text{tape}}$: Conversion base 10 en base 2

168 → (10101000)₂

	512	256	128	64	32	16	8	4	2	1
N° colonne	9	8	7	6	5	4	3	2	1	0
1 ^{er} octet		1	1	0	1	0	0	1	1	0

<u>2eme étape</u> : Regroupe par paquet de 4 bits, et on converti en base 10

 $(1010)_2 \rightarrow (10)_{10}$

 $(1000)_2 \rightarrow (8)_{10}$

3eme étape : On converti base 10 en base 16

 $(10)_{10} \rightarrow (A)_{16}$

 $(8)_{10} \rightarrow (8)_{16}$

Conversion (Base)₁₆ en (Base)₁₀

Exemple : $(A8)_{16} \rightarrow (?)_{10}$

<u>1ere étape</u>: On va prendre chaque valeur hexadécimale et on découpe par paquet de 4 bits

 $(A)_{16} \rightarrow 1010$

 $(8)_{16} \rightarrow 1000$

<u>2eme étape</u>: On concatène notre résultat binaire

1010 1000

<u>3eme étape</u>: On converti binaire vers décimale

	128	64	32	16	8	4	2	1
Base	2	2	2	2	2	2	2	2
N° colonne	7	6	5	4	3	2	1	0
2 ^{eme} octet	1	0	1	0	1	0	0	0
Calcul	1 x 2 ⁷	0 x 2 ⁶	1 x 2 ⁵	0 x 2 ⁴	1 x 2 ³	0×2^{2}	0 x 2 ¹	0 x 2 ⁰
Résultat	128	0	32	0	8	0	0	0

<u>4eme étape</u>: On additionne nos différents résultats de notre tableau :

128 + 32 + 8 = 168

 $(B16)_{16} \rightarrow base 10$