

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - II Semester		L	T	P	C
		3	0	0	3
MATHEMATICS - III (BS1203)					

Course Objectives:

- To familiarize the techniques in partial differential equations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real world applications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl and divergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus (L5)
- apply the Laplace transform for solving differential equations (L3)
- find or compute the Fourier series of periodic signals (L3)
- know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms (L3)
- identify solution methods for partial differential equations that model physical processes (L3)

Unit – I: Vector calculus:

(10 hrs)

Vector Differentiation: Gradient – Directional derivative – Divergence – Curl – Scalar Potential.

Vector Integration: Line integral – Work done – Area – Surface and volume integrals – Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof).

Unit –II: Laplace Transforms:

(10 hrs)

Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function – Inverse Laplace transforms – Convolution theorem (with out proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Unit –III: Fourier series and Fourier Transforms:

(10 hrs)

Fourier Series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) – Fourier sine and cosine integrals – Sine and cosine transforms – Properties – inverse transforms – Finite Fourier transforms.

Unit -IV: PDE of first order:

(8 hrs)

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT V: Second order PDE and Applications:

(10 hrs)

Second order PDE: Solutions of linear partial differential equations with constant coefficients – RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, x^my^n .

Applications of PDE: Method of separation of Variables – Solution of One dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. **B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. **Dean. G. Duffy,** Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press.
- 3. **Peter O' Neil,** Advanced Engineering Mathematics, Cengage.
- 4. **Srimantha Pal, S C Bhunia,** Engineering Mathematics, Oxford University Press.