

BUNDESREPUBLIK DEUTSCHLAND

12/01

CERTIFIED COPY OF PRIORITY DOCUMENT

Best Available Copy

Bescheinigung

Die Luk Lamellen und Kupplungsbau GmbH in 7580 Bühl hat eine Patentanmeldung unter der Bezeichnung

"Kraftübertragungseinrichtung"

am 12. Oktober 1992 beim Deutschen Patentamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patent-anmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole F 16 H 45/02 und B 60 K 17/06 der Internationalen Patentklassifikation erhalten.

München, den 7. Juli 1993
Der Präsident des Deutschen Patentamts
Im Auftrag

n: P 42 34 304.6

Maget

O LuK Lamellen und Kupplungsbau GmbH Industriestr. 3 7580 Bühl/Baden

0656 DE

5

<u>Patentansprüche</u>

1. Kraftübertragungseinrichtung mit Flüssigkeitskupplung, wie Föttinger-Kupplung, hydrodynamischer Drehmomentwand-10 ler oder dergleichen, mit wenigstens einem, mit einer . Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges, 15 wie Getriebe, verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, mit weiterhin wenigstens einem im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelasti-20 schen Dämpfer mit wenigstens einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher radial außen und im Kraftfluß zwischen wenigstens einem Turbinenrad und dem Abtriebsteil der Einrichtung angeordnet ist.

25

2. Kraftübertragungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zumindest der Kraftspeicher axial zwischen Turbinenrad und der antriebswellenseitigen Gehäusewandung angeordnet ist. 3. Kraftübertragungseinrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Federrate des drehelastischen Dämpfers zwischen 2 und 20 Nm/°, vorzugsweise zwischen 5 und 15 Nm/°, beträgt.

5

15

- 4. Kraftübertragungseinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die einzelnen Kraftspeicher des drehelastischen Dämpfers über den Umfang der Einrichtung betrachtet sich über einen Winkel in der Größenordnung zwischen 75 und 175° erstrecken.
- 5. Kraftübertragungseinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kraftspeicher zumindest annähernd auf denjenigen Durchmesser, auf dem sie angeordnet werden, vorgekrümmt sind.
- 6. Kraftübertragungseinrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Kraftspeicher sich zumindest radial außen wenigstens teilweise an einem Verschleißschutz abstützen.
- 7. Kraftübertragungseinrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der Verschleißschutz durch wenigstens ein separat eingelegtes Teil gebildet ist.
- 8. Kraftübertragungseinrichtung nach einem der Ansprüche 1 bis 7, daduch gekennzeichnet, daß Beaufschlagungsbereiche für die radial außen angeordneten Kraftspeicher

tragende Teile diese zumindest teilweise radial außen umfassen und mit dem Turbinenrad drehfest verbunden sind.

- 9. Kraftübertragungseinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die drehfeste Verbindung radial innen hergestellt ist.
 - 10. Kraftübertragungseinrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die drehfeste Verbindung im radial äußeren Bereich des Turbinenrades gebildet ist.
 - 11. Kraftübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich die
 Kraftspeicher andererseits an einem Ausgangsteil des
 Dämpfers abstützen, das zumindest indirekt mit dem
 Abtriebsteil der Kraftübertragungseinrichtung drehfest
 verbunden ist.

15

- 12. Kraftübertragungseinrichtung nach Anspruch 11, dadurch gekennzeichnet, daß das Ausgangsteil des radial außen liegenden Dämpfers das Eingangsteil eines weiteren, radial innenliegenden Dämpfers bildet, der sich wiederum andererseits an einem Ausgangsteil abstützt, das mit der Abtriebswelle der Kraftübertragungseinrichtung drehfest verbunden ist.
- 13. Drehmomentübertragungseinrichtung nach einem der An-

sprüche 1 bis 12, dadurch gekennzeichnet, daß die Beaufschlagungsbereiche für die Kraftspeicher zumindest indirekt über eine Schweißverbindung mit dem Turbinenrad verbunden sind.

5

14. Kraftübertragungseinrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß mit dem Dämpfer eine Überbrückungskupplung in Reihe geschaltet ist.

15. Drehmomentübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das
Ausgangsteil der Überbrückungskupplung mit dem Eingangsteil des drehelastischen Dämpfers drehfest verbunden ist.

15

16. Drehmomentübertragungseinrichtung nach Anspruch 15, dadurch gekennzeichnet, daß das Ausgangsteil der Überbrückungskupplung axial verlagerbar ist.

- 17. Kraftübertragungseinrichtung nach Anspruch 16, dadurch gekennzeichnet, daß das Ausgangsteil der Überbrückungs-kupplung relativ zum Eingangsteil des drehelastischen Dämpfers axial verlagerbar ist.
- 25

18. Kraftübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die
Reibfläche der Überbrückungskupplung im Durchmesserbereich des radial außen liegenden Dämpfers angeordnet

ist.

5

- 19. Drehmomentübertragungseinrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß das Ausgangsteil der Überbrückungskupplung axial zwischen der antriebsseitigen Gehäusewandung und dem radial außenliegenden drehelastischen Dämpfer angeordnet ist.
- 20. Drehmomentübertragungseinrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß das Ausgangsteil der Überbrückungskupplung als Kolben ausgebildet ist.
- 21. Drehmomentübertragungseinrichtung nach Anspruch 20,
 dadurch gekennzeichnet, daß das Ausgangsteil der Überbrückungskupplung axial und in Umfangsrichtung beweglich, jedoch abgedichtet auf einem von der Abtriebswelle
 der Kraftübertragungseinrichtung gehaltenen Bauteil
 gelagert ist.
 - 22. Kraftübertragungseinrichtung nach einem der Ansprüche 20 oder 21, dadurch gekennzeichnet, daß die drehfeste Verbindung zwischen dem Ausgangsteil der Überbrückungskupplung und dem Eingangsteil des Dämpfers formschlüssig ausgeführt ist.
 - 23. Kraftübertragungseinrichtung nach Anspruch 22, dadurch gekennzeichnet, daß der Formschluß durch eine stirn-

verzahnungsartige Ausbildung der zu verbindenden Teile ausgeführt ist.

24. Kraftübertragungseinrichtung nach Anspruch 20, dadurch gekennzeichnet, daß die Verbindung über Blattfedern hergestellt ist.

5

15

- 25. Kraftübertragungseinrichtung mit Flüssigkeitskeitskupplung mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, weiterhin mit wenigstens einem im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfer zumindest einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher im radial außen liegenden Bereich zwischen zumindest einem Turbinenrad und dem Abtriebsteil der Einrichtung angeordnet ist, wobei die Beaufschlagungsbereiche für den Dämpfer axial und drehfest mit dem Turbinenrad verbunden sind und zusammen mit diesem axial verlagerbar und relativ dazu verdrehbar zumindest indirekt auf dem Abtriebsteil der Einrichtung gelagert sind.
- 26. Kraftübertragungseinrichtung nach Anspruch 25, dadurch

gekennzeichnet, daß das Turbinenrad über ein Zwischenteil mit einer auf dem Abtriebsteil angeordneten Nabe gelagert ist.

- 5 27. Kraftübertragungseinrichtung nach Anspruch 26, dadurch gekennzeichnet, daß das Zwischenteil die axiale Verlagerung des Turbinenrades in zumindest eine Richtung begrenzt.
 - 28. Drehmomentübertragungseinrichtung nach einem der Ansprüche 26 oder 27, dadurch gekennzeichnet, daß das
 Zwischenteil aus Kunststoff besteht.
- 29. Drehmomentübertragungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die
 Beaufschlagungsbereiche für den Dämpfer über ein im
 Querschnitt L-förmiges, die Beaufschlagungsbereiche in
 Axialrichtung überragendes Teil mit dem Turbinenrad
 verbunden sind.
 - 30. Drehmomentübertragungseinrichtung nach Anspruch 29, dadurch gekennzeichnet, daß die Verbindung eine Schweißverbindung ist.
- 31. Kraftübertragungseinrichtung nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß das den Lförmigen Querschnitt aufweisende Bauteil das Ausgangsteil einer Überbrückungskupplung ist.

32. Kraftübertragungseinrichtung nach Anspruch 31, dadurch gekennzeichnet, daß das den L-förmigen Querschnitt aufweisende Bauteil Reibbeläge oder einen Reibbelag aufweist.

5

33. Kraftübertragungseinrichtung mit Flüssigkeitskupplung, wie Föttinger-Kupplung, hydrodynamischer Drehmomentwandler oder dergleichen, mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges, wie Getriebe, verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, mit weiterhin wenigstens zwei im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfern mit wenigstens je einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher des einen Dämpfers im Kraftfluß zwischen dem wenigstens einen Turbinenrad und dem Abtriebsteil der Einrichtung und der Kraftspeicher des anderen Dämpfers im Kraftfluß zwischen Gehäuse und zumindest einem Turbinenrad angeordnet sind.

25

15

5 34. Kraftübertragungseinrichtung nach Anspruch 33 dadurch gekennzeichnet, daß die Kraftspeicher des anderen Dämpfers radial außen angeordnet sind. 35. Kraftübertragungseinrichtung nach einem der Ansprüche 33 oder 34, dadurch gekennzeichnet, daß die zumindest eine Reibfläche einer Wandlerüberbrückungskupplung radial zwischen den Kraftspeichern des einen und des anderen Dämpfers angeordnet ist.

5

15

- 36. Kraftübertragungseinrichtung nach Anspruch 35 dadurch gekennzeichnet, daß das Ausgangsteil des anderen Dämpfers über die Wandlerüberbrückungskupplung mit dem Eingangsteil des einen Dämpfers verbunden ist.
- 37. Drehmomentübertragungseinrichtung nach einem der Ansprüche 33 bis 36, dadurch gekennzeichnet, daß das Eingangsteil des einen Dämpfers durch das Turbinenrad und das Eingangsteil des anderen Dämpfers durch das Gehäuse gebildet ist.
- 38. Drehmomentübertragungseinrichtung nach einem der Ansprüche 33 bis 37, dadurch gekennzeichnet, daß das Ausgangsteil des einen Dämpfers drehfest mit dem Abtriebsteil der Einrichtung verbunden ist.
- 39. Kraftübertragungseinrichtung nach einem der Ansprüche 33 bis 38, dadurch gekennzeichnet, daß das Turbinenrad über das Abtriebsteil der Einrichtung zentriert ist.
- 40. Kraftübertragungseinrichtung nach einem der Ansprüche 33 bis 39, dadurch gekennzeichnet, daß ein scheibenartiges,

als Kolben für die Wandlerüberbrückungskupplung ausgebildetes Bauteil über das Abtriebsteil der Einrichtung zentriert ist.

- oder 40, dadurch gekennzeichnet, daß zwischen dem als Kolben ausgebildeten scheibenartigen Teil und dem Abtriebsteil der Einrichtung eine Zentrierhülse angeordnet ist, die zumindest einen Dichtbereich aufweist, der mit dem radial inneren Bereich des als Kolben ausgebildeten scheibenartigen Bauteils zusammenwirkt.
 - 42. Kraftübertragungseinrichtung nach einem der Ansprüche 33 bis 41, dadurch gekennzeichnet, daß das Ausgangsteil des anderen Dämpfers auf dem Ausgangsteil des einen Dämpfers radial zentriert und axial verschieblich gehalten ist.

15

- 43. Kraftübertragungseinrichtung nach einem der Ansprüche 33 bis 42, dadurch gekennzeichnet, daß das Eingangsteil des einen Dämpfers mit dem als Kolben wirksamen, scheibenartigen Bauteil drehfest verbunden ist.
- 44. Kraftübertragungseinrichtung nach einem der Ansprüche 41 bis 43, dadurch gekennzeichnet, daß die Zentrierhülse und das als Kolben ausgebildete, scheibenartige Bauteil drehfest verbunden sind.
- 45. Kraftübertragungseinrichtung nach Anspruch 44, dadurch

gekennzeichnet, daß die drehfeste Verbindung spielbehaftet ist.

Luk Lamellen und Kupplungsbau GmbH Industriestr. 3 7580 Bühl/Baden

0656 DE

5

10

15

20

0

Kraftübertragungseinrichtung

Die Erfindung bezieht sich auf eine Kraftübertragungseinrichtung mit Flüssigkeitskupplung, wie Föttinger-Kupplung,
hydrodynamischer Drehmomentwandler oder dergleichen, mit
wenigstens einem, mit einer Antriebswelle verbindbaren
Gehäuse, das wenigstens ein über das Gehäuse angetriebenes
Pumpenrad und wenigstens ein mit der Eingangswelle eines
anzutreibenden Stranges, wie Getriebe, verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpenund Turbinenrad angeordnetes Leitrad aufnimmt, mit weiterhin
wenigstens einem im Kraftfluß zwischen dem Gehäuse und
einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfer mit wenigstens einem in Umfangsrichtung
wirksamen Kraftspeicher. Die Erfindung betrifft u.a. auch
solche Kraftübertragungseinrichtungen mit einer sogenannten
Überbrückungskupplung.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, derartige Einrichtungen zu verbessern, insbesondere deren Dämpfungswirkung, wobei die Möglichkeit geschaffen werden soll, große Winkelausschläge zwischen dem Eingangsteil und dem Ausgangsteil der Einrichtung zu realisieren. Bei Verwendung einer Wandlerüberbrückungskupplung soll durch die

5

15

25

Erfindung weiterhin die Möglichkeit der Übertragung eines hohen Momentes, bezogen auf den hierzu erforderlichen Schließdruck, geschaffen werden. Außerdem soll die erfindungsgemäße Einrichtung in besonders einfacher und kostengünstiger Weise herstellbar sein. Insbesondere soll durch konstruktive Maßnahmen ein geringer Fertigungs- und Montageaufwand ermöglicht werden. Weiterhin ist es Ziel der Erfindung, den Verschleiß zu minimieren, und die Lebensdauer des Gesamtaggregates zu verlängern. Kraftübertragungseinrichtungen, die mit einer Wandlerüberbrückungskupplung ausgerüstet sind, werden im allgemeinen so ausgelegt, daß die Wandlerüberbrückungskupplung erst bei höheren Drehzahlen schließt, das heißt, das Ein- und Ausgangsteil der Kraftübertragungseinrichtung verbindet. Durch das Schließen der Wandlerüberbrückungskupplung wird das Motormoment unter Umgehung des hydraulischen Teils des Drehmomentwandlers übertragen und schaltet so die Verluste aus, die durch den unvermeidbaren Schlupf im Wandler entstehen. Diese Schlupfverluste im Wandler zeigen sich in einem erhöhten Energieverbrauch. Weiteres Ziel der Erfindung ist es, beispielsweise zur Energieeinsparung, die Wandlerüberbrückungskupplung in einem möglichst großen Betriebsbereich geschlossen zu halten und dabei den Schwingungskomfort, der bei einer geöffneten Wandlerüberbrückungskupplung durch den Drehmomentwandler gegeben ist, zumindest zu erhalten. Hierzu ist es jedoch nötig, die Wandlerüberbrückungskupplung bereits bei niedriger Drehzahl zu schließen. Um den geforderten Komfort zu erreichen, ist es nötig, die Eigenfrequenz der Schwingungseigenform des Teiles des Antriebsstranges, der die gesamten Antriebsstrangteile vom Getriebeeingang bis zum Differential umfaßt, in einen Bereich zu verlegen, der im normalen Fahrbetrieb nicht berührt wird.

5

Dies wird gemäß der vorliegenden Erfindung dadurch erreicht, daß der Kraftspeicher radial außen und im Kraftfluß zwischen wenigstens einem Turbinenrad und dem Abtriebsteil der Einrichtung angeordnet ist. Durch die Anordnung der Kraftspeicher radial außen wird die Möglichkeit eröffnet, ein Maximum an Federkapazität bzw. Federvolumen unterbringen zu können. Dies ermöglicht bei gleichzeitig verhältnismäßig niedriger Federrate, die die Resonanzdrehzahl absenkt, sehr große Verdrehwinkel bzw. sehr große Federwege.

15

Besonders vorteilhaft kann es bei einer erfindungsgemäßen Einrichtung sein, wenn zumindest der Kraftspeicher axial zwischen Turbinenrad und der antriebswellenseitigen Gehäusewandung angeordnet ist.

20

Zweckmäßig, beispielsweise in den Auswirkungen auf Resonanzdrehzahlen, kann es sein, eine erfindungsgemäße Kraft-übertragungseinrichtung so auszulegen, daß die Federrate des drehelastischen Dämpfers zwischen 5 und 20 Nm/°, vorzugsweise zwischen 8 und 15 Nm/°, beträgt.

25

Weiterhin kann es sich als vorteilhaft erweisen, die einzelnen Kraftspeicher des drehelastischen Dämpfers - über den Umfang der Einrichtung betrachtet - sich über einen Winkel in der Größenordnung zwischen 75 und 175° erstrecken. Besonders für den Zusammenbau kann es sich als zweckmäßig erweisen, wenn die Kraftspeicher zumindest annähernd auf denjenigen Durchmesser, auf dem sie angeordnet werden, vorgekrümmt sind.

Es kann sich positiv auf die Lebensdauer einer erfindungsgemäßen Kraftübertragungseinrichtung auswirken, wenn die
Kraftspeicher sich zumindest radial außen wenigstens
teilweise an einem Verschleißschutz abstützen. Dabei kann es
zweckmäßig sein, wenn der Verschleißschutz durch wenigstens
ein separat eingelegtes Teil gebildet ist.

Besonders vorteilhaft kann es sein, wenn Beaufschlagungsbereiche für die radial außen angeordneten Kraftspeicher
tragende Teile diese zumindest teilweise radial außen umfassen und mit dem Turbinenrad drehfest verbunden sind.

Dabei kann es zweckmäßig sein, wenn die drehfeste Verbindung
radial innen hergestellt ist.

Für andere Fälle kann es dagegen von Vorteil sein, wenn die drehfeste Verbindung im radial äußeren Bereich des Turbinenrades gebildet ist.

Ganz allgemein kann es bei einer Kraftübertragungseinrichtung nach der Erfindung vorteilhaft sein, wenn sich die Kraftspeicher andererseits an einem Ausgangsteil des

25

Dämpfers abstützen, das zumindest indirekt mit dem Abtriebsteil der Kraftübertragungseinrichtung drehfest verbunden ist. Dabei kann es sich als besonders zweckmäßig erweisen, wenn das Ausgangsteil des radial außen liegenden Dämpfers das Eingangsteil eines weiteren, radial innenliegenden Dämpfers bildet, der sich wiederum andererseits an einem Ausgangsteil abstützt, das mit der Abtriebswelle der Kraftübertragungseinrichtung drehfest verbunden ist.

5

Für eine Ausführungsform einer erfindungsgemäßen Drehmomentübertragungseinrichtung kann es von Vorteil sein, wenn die Beaufschlagungsbereiche für die Kraftspeicher zumindest indirekt über eine Schweißverbindung mit dem Turbinenrad verbunden sind.

15

Ganz allgemein kann es zwecimäßig sein, mit dem Dämpfer eine Überbrückungskupplung in Reihe zu schalten.

20

Weiterhin kann es sich als vorteilhaft erweisen, wenn das Ausgangsteil der Überbrückungskupplung mit dem Eingangsteil des drehelastischen Dämpfers drehfest verbunden ist. Dabei kann es zweckmäßig sein, wenn das Ausgangsteil der Überbrückungskupplung axial verlagerbar ist.

Hierbei kann es wiederum von Vorteil sein, wenn das Ausgangsteil der Überbrückungskupplung relativ zum Eingangsteil des drehelastischen Dämpfers axial verlagerbar ist.

Als besonders vorteilhaft kann es sich erweisen, wenn die Reibfläche der Überbrückungskupplung im Durchmesserbereich des radial außen liegenden Dämpfers angeordnet ist.

Eine vorteilhafte Ausgestaltung einer erfindungsgemäßen Drehmomentübertragungseinrichtung kann vorsehen, daß das Ausgangsteil der Überbrückungskupplung axial zwischen der antriebsseitigen Gehäusewandung und dem radial außenliegenden drehelastischen Dämpfer angeordnet ist.

Als zweckmäßig kann es sich erweisen, wenn das Ausgangsteil der Überbrückungskupplung als Kolben ausgebildet ist. Dabei kann es von Vorteil sein, wenn das Ausgangsteil der Überbrückungskupplung axial und in Umfangsrichtung beweglich, jedoch abgedichtet auf einem von der Abtriebswelle der Kraftübertragungseinrichtung gehaltenen Bauteil gelagert ist.

Zweckmäßig kann es sein, wenn die drehfeste Verbindung zwischen dem Ausgangsteil der Überbrückungskupplung und dem Eingangsteil des Dämpfers formschlüssig ausgeführt ist. Dabei kann es von besonderem Vorteil sein, wenn der Formschluß durch eine stirnverzahnungsartige Ausbildung der zu verbindenden Teile ausgeführt ist.

Weiterhin kann es sich als zweckmäßig erweisen, wenn bei einer Kraftübertragungseinrichtung diese Verbindung über Blattfedern hergestellt ist.

25

15

20

Ein weiterer erfinderischer Grundgedanke bezieht sich auf eine Kraftübertragungseinrichtung mit Flüssigkeitskeitskupplung mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, weiterhin mit wenigstens einem im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfer mit zumindest einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher im radial außen liegenden Bereich zwischen zumindest einem Turbinenrad und dem Abtriebsteil der Einrichtung angeordnet ist, wobei die Beaufschlagungsbereiche für den Dämpfer axial und drehfest mit dem Turbinenrad verbunden sind und zusammen mit diesem axial verlagerbar und relativ dazu verdrehbar zumindest indirekt auf dem Abtriebsteil der Einrichtung gelagert sind.

20

15

5

Bei einer derartigen Kraftübertragungseinrichtung kann es von Vorteil sein, wenn das Turbinenrad über ein Zwischenteil mit einer auf dem Abtriebsteil angeordneten Nabe gelagert ist. Dabei kann das Zwischenteil die axiale Verlagerung des Turbinenrades in zumindest eine Richtung begrenzen.

25

Begünstigend - beispielsweise auf die Herstellkosten - kann es sich auswirken, wenn das Zwischenteil aus Kunststoff besteht.

Vorteilhaft kann es sein, wenn die Beaufschlagungsbereiche für den Dämpfer über ein im Querschnitt L-förmiges, die Beaufschlagungsbereiche in Axialrichtung überragendes Teil mit dem Turbinenrad verbunden sind, wodurch sich eine kompakte Bauweise realisieren läßt. In besonders zweckmäßiger Weise ist die Verbindung als Schweißverbindung ausgeführt.

5

15

25

Besonders vorteilhaft kann es sein, wenn das den L-förmigen Querschnitt aufweisende Bauteil das Ausgangsteil einer Überbrückungskupplung ist.

Dabei kann es zweckmäßig sein, wenn das den L-förmigen Querschnitt aufweisende Bauteil Reibbeläge oder einen Reibbelag aufweist.

Weiterhin bezieht sich die Erfindung auf eine Kraftübertragungseinrichtung mit Flüssigkeitskupplung, wie FöttingerKupplung, hydrodynamischer Drehmomentwandler oder dergleichen, mit wenigstens einem, mit einer Antriebswelle
verbindbaren Gehäuse, das wenigstens ein über das Gehäuse
angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges, wie Getriebe, verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein
zwischen Pumpen- und Turbinenrad angeordnetes Leitrad
aufnimmt, mit weiterhin wenigstens zwei im Kraftfluß
zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung
angeordneten drehelastischen Dämpfern mit wenigstens je

einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher des einen Dämpfers im Kraftfluß zwischen dem wenigstens einen Turbinenrad und dem Abtriebsteil der Einrichtung und der Kraftspeicher des anderen Dämpfers im Kraftfluß zwischen Gehäuse und zumindest einem Turbinenrad angeordnet sind.

5

15

25

Dabei kann es von Vorteil sein, wenn die Kraftspeicher des anderen Dämpfers radial außen angeordnet sind, jedoch kann es auch zweckmäßig sein, diesen radial innen anzuordnen.

Als vorteilhaft kann es sich erweisen, wenn bei einer Kraftübertragungseinrichtung die zumindest eine Reibfläche einer Wandlerüberbrückungskupplung radial zwischen den Kraftspeichern des einen und des anderen Dämpfers angeordnet ist. Dabei kann es zweckmäßig sein, wenn das Ausgangsteil des anderen Dämpfers über die Wandlerüberbrückungskupplung mit dem Eingangsteil des einen Dämpfers verbunden ist.

Eine bevorzugte Ausführungsform einer erfindungsgemäßen Drehmomentübertragungseinrichtung das Eingangsteil des einen Dämpfers durch das Turbinenrad und das Eingangsteil des anderen Dämpfers durch das Gehäuse gebildet ist, wobei es jedoch möglich ist, die unterschiedlichen Eingangteile dem jeweils anderen Dämpfer zuzuordnen.

Von Vorteil kann es sein, wenn das Ausgangsteil des einen Dämpfers drehfest mit dem Abtriebsteil der Einrichtung verbunden ist.

Ganz allgemein kann es zweckmäßig sein, wenn das Turbinenrad über das Abtriebsteil der Einrichtung zentriert ist.

5

Außerdem kann es von Vorteil sein, wenn ein scheibenartiges, als Kolben für die Wandlerüberbrückungskupplung ausgebildetes Bauteil über das Abtriebsteil der Einrichtung zentriert ist.

Als besonders vorteilhaft kann es sich erweisen, wenn zwischen dem als Kolben ausgebildeten scheibenartigen Teil und dem Abtriebsteil der Einrichtung eine Zentrierhülse angeordnet ist, die zumindest einen Dichtbereich aufweist, der mit dem radial inneren Bereich des als Kolben ausgebildeten scheibenartigen Bauteils zusammenwirkt.

25

15

Eine zweckmäßige Ausführungsform einer Kraftübertragungseinrichtung nach der Erfindung kann vorsehen, daß das Ausgangsteil des anderen Dämpfers auf dem Ausgangsteil des einen
Dämpfers radial zentriert und axial verschieblich gehalten
ist.

Von besonderem Vorteil kann es sein, wenn das Eingangsteil des einen Dämpfers mit dem als Kolben wirksamen, scheibenartigen Bauteil drehfest verbunden ist.

In vorteilhafter Weise können die Zentrierhülse und das als

Kolben ausgebildete, scheibenartige Bauteil drehfest verbunden sein.

Dabei kann es von Vorteil sein, wenn die drehfeste Verbindung spielbehaftet ist.

Anhand der Figuren 1 bis 4 sei die Erfindung näher erläutert.

Dabei zeigt:

Figur 1 einen vereinfacht dargestellten Schnitt durch eine erfindungsgemäße Einrichtung;

Figur 2 einen vereinfacht dargestellten Schnitt durch eine andere Ausführungsform einer erfindungsgemäßen Einrichtung; Figur 3 eine Teilansicht eines Schnittes mit teilweiser Ansicht gemäß den Pfeilen III der Figur 2, wobei aus Gründen der besseren Darstellung einzelne Teile entfernt wurden.

Figur 4 eine weitere Ausführungsform im vereinfacht dargestellten Schnitt.

25

15

5

Die in Figur 1 dargestellte Einrichtung 1 besitzt ein Gehäuse 2, das einen hydrodynamischen Drehmomentwandler 3 aufnimmt. Das Gehäuse 2 ist mit einer antreibenden Welle, die durch die Abtriebswelle, wie z.B. Kurbelwelle, einer Brennkraftmaschine gebildet sein kann, verbunden. Dabei kann die drehfeste Verbindung zwischen der Welle und dem Gehäuse 2 über ein nicht näher dargestelltes Antriebsblech erfolgen, das radial innen mit der antreibenden Welle und radial außen

mit dem Gehäuse 2 beispielsweise über Schrauben, die in die Befestigungsgewinde 4 eingreifen, drehfest verbunden ist.

5

15

Das Gehäuse 2 ist durch eine der antreibenden Welle benachbarte Gehäuseschale 5, sowie eine an dieser befestigten weiteren Gehäuseschale 6, die von der antreibenden Welle entfernt ist, gebildet. Die beiden Gehäuseschalen 5 und 6 sind radial außen über eine Schraubverbindung 7 fest miteinander verbunden und mit Hilfe eines Dichtansatzes 8 abgedichtet. Der eine Teil des Dichtungsbereiches 8 ist durch ein ringflanschartiges Teil 9 gebildet, das seinerseits mit der Gehäuseschale 6 fest verbunden ist. In dem dargestellten Ausführungsbeispiel wird zur Bildung der äußeren Schale des Pumpenrades 10 die Gehäuseschale 6 direkt herangezogen. In an sich bekannter Weise sind hierfür die Schaufelbleche 11 mit der Gehäuseschale 6 verbunden. Axial zwischen dem Pumpenrad 10 und der radialen Wandung 12 der Gehäuseschale 5 ist ein Turbinenrad 13 vorgesehen, drehbar auf einer Abtriebsnabe 14, die über eine Innenverzahnung mit einer Getriebeeingangswelle drehfest koppelbar ist, gelagert ist. Axial zwischen den inneren Bereichen der Pumpen 10 und des Turbinenrades 13 ist ein Leitrad 15 vorgesehen.

In dem durch die beiden Gehäuseschalen 5 und 6 gebildeten Innenraum ist weiterhin ein drehelastischer Dämpfer 16 aufgenommen, der eine drehelastische Koppelung der Abtriebsnabe 14 mit einem antreibenden Teil, das bei der

dargestellten Ausführungsform mittels einer Verschraubung 17 mit dem Turbinenrad 13 fest verbunden ist, gewährleistet. In Reihe mit dem drehelastischen Dämpfer 16 ist eine Wandler-überbrückungskupplung 18 vorgesehen.

5

15

25

Der drehelastische Dämpfer 16 umfaßt Kraftspeicher 19, die in dem dargestellten Ausührungsbeispiel durch je zwei ineinandergeschachtelte Schraubenfedern 20, 21 gebildet sind. Die Kraftspeicher 19 können sich dabei zumindest annähernd über den halben Umfang der Einrichtung 1 erstrecken, können jedoch auch wie dies insbesondere aus Figur 3 zu ersehen ist, jeweils den größten Teil eines Viertelkreises überdecken. Je nach Anwendungsfall ist es zweckmäßig, wenn ein Kraftspeicher 19 sich, in Umfangsrichtung betrachtet, über einen Winkel erstreckt, der in der Größenordnung zwischen 70 und 175 Grad liegt. Die einzelnen Schraubenfedern 20, 21 können dabei in zweckmäßiger Weise zumindest annähernd auf den beispielsweise aus Figur 3 ersichtlichen Radius, der dem Einbauradius entspricht, vorgekrümmt werden, wodurch die Montage der Einrichtung erheblich vereinfacht wird, da keine zusätzlichen Mittel erforderlich sind, um die Krümmung der Federn 20, 21 zu erhalten. Zumindest unter Fliehkraft stützen sich die Kraftspeicher 19 bzw. die Schraubenfedern 20, 21 an einem die Kraftspeicher 19 axial übergreifenden Bereich 22 ab, der mit dem zumindest teilweise die Beaufschlagungsbereiche für die Kraftspeicher 19 bildenden scheibenartigen Bauteil 23 verbunden ist. Das Bauteil 23 ist in dem dargestellten Beispiel mit Hilfe der VerbindungsZusammenbau radial innen verdrehbar auf der Abtriebsnabe 14 gelagert ist. Bei einer anders ausgeführten Lagerung des Turbinenrades 13 auf der Abtriebswelle 14 ist es jedoch auch möglich, das scheibenartige Bauteil 23 durch ein kreisringförmiges, torusähnliches Gebilde zu ersetzen, das dann beispielsweise in Bereich 23a mittels einer Verschweißung oder einer anderen Verbindungstechnik fest mit dem Turbinenrad 13 verbunden werden kann.

Zur Reduzierung des Verschleißes können zwischen dem axialen Bereich 22 und den Windungen der äußeren Schraubenfeder 20 zusätzliche Abstützschalen, die hier nicht näher dargestellt sind, vorgesehen sein.

15

5

Diese Abstützschalen können sich dabei über die Länge der Kraftspeicher 19 erstrecken, wie dies beispielsweise in Figur 3 dargestellt ist und sind im Querschnitt bogenförmig ausgebildet, so daß sie zumindest annähernd an die Außenkontur der Windungen der Schraubenfeder 20 angepaßt sind, wodurch die Kontaktbereiche zwischen den Schraubenfederwindungen und den Abstützschalen vergrößert werden können und somit der Verschleiß entsprechend verkleinert oder gar vermieden werden kann.

25

Radial innerhalb der Kraftspeicher ist das scheibenartige Bauteil 23 über Abstandsmittel wie Niete 24 mit einem kreisringförmigen Bauteil 25 axial – und drehfest verbunden. Dieses kreisringförmige Bauteil 25 bildet im Durchmesserbereich der Kraftspeicher 19 Beaufschlagungsbereiche für diese, die entsprechend den dort angeordneten Beaufschlagungsbereichen des scheibenartigen Bauteils 23 angeordnet sind. Die Beaufschlagungsbereiche in den Bauteilen 23 und 25 können durch axiale Verformungen der Bauteile aufeinander zu gebildet sein, wie beispielsweise durch angeprägte Taschen. Bei anderen Ausführungsformen kann es zweckmäßig sein, diese Beaufschlagungsbereiche durch zusätzlich angebrachte Bauteile zu bilden, beispielsweise durch Anschweißen von kreissegmentartigen Bereichen.

5

15

25

Radial innerhalb der Vernietung 24 weist das kreisringförmige Bauteil 25 einen Verbindungsbereich 26 auf, über den dieses drehfest mit dem im wesentlichen scheibenförmig ausgebildeten Kolben 27 der Wandlerüberbrückungskupplung 18 verbunden ist. Die drehfeste Verbindung im Bereich 26 läßt eine axiale Verlagerung des Kolbens 27 relativ zum Turbinenrad 13 und den mit diesem verbundenen Teilen zu und ist hier stirnverzahnungsähnlich ausgebildet. Die drehfeste, aber axial nachgiebige oder verlagerbare Verbindung im Verbindungsbereich 26 kann jedoch auch über andere geeignete Mittel, wie beispielsweise Blattfedern, hergestellt werden. Der Kolben 27 der Wandlerüberbrückungskupplung 18 ist mit seinem radial inneren, sich in Axialrichtung von der antriebsseitigen Wandung 12 des Gehäuseteiles 5 wegerstreckenden, Bereich 28 auf dem Nabenteil 14 axial verschieblich und relativ zu diesem verdrehbar gelagert. Mit Hilfe der

Dichtung 29 sind der Kolben 27 der Wandlerüberbrückungskupplung 18 und die Nabe 14 zueinander abgedichtet und können so
einen druckdichten Raum 30 bilden, der sich im wesentlichen
radial nach außen zwischen der Gehäusewandung 12 und der
dieser zugewandten Seite des Kolbens 27 erstreckt. Die
radial äußere Abdichtung des druckdichten Raums 30 wird bei geschlossener Wandlerüberbrückungskupplung 18 - durch
die Reibbereiche 31 des Kolbens 27 und 32 der Gehäusewandung
12 sowie den Reibbelag 33 gebildet, der auf einen der beiden
Reibbereiche 31, 32 aufgebracht ist.

5

15

25

Die Kraftspeicher 19 bzw. die Schraubenfedern 20, 21 sind, wie dies aus den Figuren hervorgeht, auf dem größtmöglichen Durchmesser angeordnet, so daß ein Maximum an Federkapazität, das heißt ein größtmögliches Federvolumen untergebracht werden kann. Dies ermöglicht sehr große Federwege bzw. sehr große Verdrehwinkel bei gleichzeitig relativ niedriger Federrate. Die dadurch ermöglichten Verdrehwinkel können beispielsweise in der Größenordnung zwischen 40 und 75 Grad liegen und die realisierbaren Verdrehraten in der Größenordnung zwischen 2 und 15 Nm/°. Die hier angeführten Werte verstehen sich bei Verwendung eines einzigen drehelastischen Dämpfers, also bei Verwendung eines einzigen Federnsatzes, wobei die Federn untereinander in Parallelschaltung wirksam sind. Für viele Anwendungsfälle kann es zweckmäßig sein, die Verdrehsteifigkeit bzw. die Verdrehrate des drehelastischen Dämpfers in die Größenordnung zwischen 4 und 12 Nm/° zu legen.

Das Ausgangsteil des drehelastischen Dämpfers 16 ist durch ein flanschförmiges bzw. scheibenartiges Bauteil 34 gebildet, das an seinem Außenumfang, also an seiner Außenperipherie, radiale Ausleger bzw. Arme 35 für die Beaufschlagung der Kraftspeicher 19 besitzt. Im Ruhezustand der Einrichtung 1 befinden sich diese Ausleger 35 in Axialrichtung zwischen den Taschen bzw. den Beaufschlagungsbereichen, die in die Bauteile 23 und 25 eingebracht sind. Dabei können, wie beispielsweise in Verbindung mit Figur 3 ersichtlich ist, die Kraftspeicher 19, in Umfangsrichtung betrachtet, etwas kürzer als der winkelmäßige Abstand zwischen zwei benachbarten Auslegern 3 und 30 ausgeführt sein, so daß, ausgehend von der Nullstellung oder Ruhestellung der Einrichtung, zunächst eine gewisse Verdrehung möglich ist, ohne daß die Kraftspeicher 19 komprimiert werden.

25

15

5

In seinem radial inneren Bereich ist der Flansch 34 mit einem axial sich erstreckenden flanschartigen Abschnitt der Nabe 14, beispielsweise über Niete 36 fest verbunden.

Diese Vernietung kann auch, anders als beim dargestellten Beispiel, unter direkter Heranziehung von Material aus der Nabe 14 gebildet werden. Zwischen der der Gehäusewandung 12 zugewandten radial sich erstreckenden axialen Begrenzungsfläche der Nabe 14 und der dieser zugewandten Seite der Gehäusewandung 12 ist eine Anlaufscheibe 37 angeordnet. Die Anlaufscheibe 37 begrenzt die axiale Verlagerung aller mit der Nabe 14 verbundenen Bauteile in Richtung auf die Gehäusewandung 12 zu und ist im wesentlichen kreisringförmig

ausgeführt. Durch in Axialrichtung sich erstreckende Bereiche 38, die aus der Anlaufscheibe in Richtung von der Gehäusewandung 12 weg aufgestellt sind und die in entsprechende Ausnehmungen der Nabe 14 eingreifen, wird die Anlaufscheibe 37 in Umfangsrichtung auf der Nabe 14 fixiert. Um gute Gleiteigenschaften der Anlaufscheibe 37 zu den mit ihr in Gleitverbindung stehenden Teilen sicherzustellen, kann diese beispielsweise aus einem beschichteten Blech oder einem Bronzeblech hergestellt sein. Weiterhin ist es möglich, an dieser Stelle ein Kunststoffteil einzusetzen.

5

15

25

Die Überbrückungskupplung 18 wird durch den von der im Innenraum des Gehäuses 2 enthaltenen Flüssigkeit, wie Öl, erzeugten Druck, der auf die dem Turbinenrad 13 zugewandten Seite des Kolbens 27 eine Axialkraft in Richtung auf die Gehäusewandung 12 zu erzeugt, geschlossen. Zum Öffnen der wird über den Zufuhrkanal 18 Überbrückungskupplung Druckmedium in den Ringraum 30 eingeführt, bis die daraus resultierende Axialkraft eine genügende Höhe erreicht, um den Kolben 27 axial in Richtung Turbinenrad 13 zu verschieben, und somit die Reibbereiche 31 des Kolbens 27 und 32 der Gehäusewandung 12 voneinander abgehoben werden. Bei geöffneter Überbrückungskupplung 18 kann Druckmittel zwischen den Reibbereichen 31 des Kolbens 27 und 32 der Gehäusewandung 12 aus dem Ringraum 30 radial nach außen abfließen.

Die in den Figuren 2 und 3 dargestellte Einheit 101 ist

vorwiegend in der Funktion, aber auch im Aufbau, der im Zusammenhang mit Figur 1 beschriebenen Einheit 1 ähnlich, und Teile, die eine ähnliche oder gleiche Funktion ausführen wie im Zusammenhang mit Figur 1 beschrieben, weisen ähnliche Bezugszeichen auf, die jedoch um 100 erhöht sind.

In der Kraftübertragungseinheit 101 ist ebenfalls zwischen dem Pumpenrad 110 und der radialen Wandung 112 der Gehäuseschale 105 ein Turbinenrad 113 angeordnet, das drehbar und axial verschieblich auf einem Zwischenteil 140 gelagert ist, welches wiederum unter Beifügung einer Dichtung 141 auf der Abtriebsnabe 114, die über eine Innenverzahnung mit der Getriebeeingangswelle drehfest koppelbar ist, gelagert ist. Das Zwischenteil 140 kann dabei als Kunststoffteil ausgeführt sein, oder aber auch beispielsweise aus Aluminium hergestellt sein. In dem durch die beiden Gehäuseschalen 105 und 106 gebildeten Innenraum ist wiederum ein drehelastischer Dämpfer 116 aufgenommen, der die Abtriebsnabe 114 mit einem antreibenden Teil, das hier in einem radial äußeren Bereich mit dem Turbinenrad 113 verschweißt ist, verbindet. Weiterhin ist in Reihe mit dem drehelastischen Dämpfer 116 eine Wandlerüberbrückungskupplung 118 vorgesehen.

Die Kraftspeicher 119 stützen sich zumindest unter Fliehkraft an dem sie axial übergreifenden Bereich 122 des
Antriebsteiles 123, das einen etwa L-förmigen Querschnitt
aufweist, ab. Das Turbinenrad 113 ist in seinem radial
äußeren Bereich mit dem Antriebsteil 123 über eine Schweiß-

5

naht 142 fest verbunden.

An dem freien, radial nach innen weisenden Schenkel 143 des L-förmigen Antriebsteiles 123, der der Gehäusewandung 112 direkt benachbart ist, ist der Reibbereich 131 der Wandlerüberbrückungskupplung 118 angeordnet. Diesem Reibbereich 131 gegenüber liegt der Reibbereich 132 der Gehäusewandung 112, wobei zwischen den beiden Reibbereichen 131 und 132 ein Reibbelag 133 angeordnet ist. Radial innerhalb der Reibfläche 131 ist der im wesentlichen radial verlaufende Schenkel 143 über eine Vernietung 144 mit einem Beaufschlagungsbereiche für die Kraftspeicher 119 bildenden Bauteil 125 verbunden. Dieses Bauteil 125 weist einen im wesentlichen U-förmigen Querschnitt auf, dessen einer Schenkel 125a sich radial weiter nach innen erstreckt, um eine Vernietung des Bauteiles 125 mit dem Antriebsteil 123 über die Niete 144 zu ermöglichen. Wie insbesondere aus Figur 3 hervorgeht, weist das Bauteil 125 im Durchmesserbereich seiner Vernietung eine wesentlich größere Erstreckung in Umfangsrichtung auf als in dem Durchmesserbereich, der zur Beaufschlagung der Kraftspeicher 119 ausgebildet ist. Die beiden Schenkel 125a, 125b des U-förmigen Bauteiles 125 erstrecken sich in radialer Richtung über die gesamte radiale Ausdehnung der Kraftspeicher 119, wobei der die beiden Schenkel 125a und 125b verbindende axial verlaufende Bereich radial außerhalb des Außendurchmessers der Kraftspeicher 119 angeordnet ist.

20

25

15

Die Kraftspeicher 119 stützen sich zumindest unter Fliehkraft an den Abstützschalen 145 ab, die die Kraftspeicher
119 zumindest über Teile ihres Außenumfangs umfassen, und
die sich ihrerseits an dem axial verlaufenden Abschnitt 122
des Antriebsteils 123 in Radialrichtung abstützen können.
Die Abstützschalen 145 erstrecken sich in Umfangsrichtung
jeweils zwischen zwei benachbarten Beaufschlagungsteilen 125
und werden durch diese durch entsprechende Ausnehmungen in
deren axial verlaufendem Verbindungsbereich zwischen den
beiden Schenkeln 125a und 125b sowohl in Umfangsrichtung als
auch in Axialrichtung gehalten. Die die Beaufschlagungsbereiche für die Kraftspeicher 119 bildenden Schenkel 125a
und 125b des Beaufschlagungsteiles 125 können zur Verminderung des Verschleißes gehärtet ausgeführt sein.

15

5

Außenperipherie radiale Ausleger 135 für die Beaufschlagung der Kraftspeicher 119 aufweist. Im Ruhezustand der Einrichtung 101 befinden sich diese Ausleger 135 in Axialrichtung zwischen den beiden Schenkeln 125a und 125b des Beaufschlagungsbauteiles 125 und werden so gewissermaßen von diesem U umschlossen. Dabei kann die Anordnung der Kraftspeicher 119 und der sie beaufschlagenden Teile 135 und 125

wiederum so ausgeführt sein, daß, ausgehend von der Null-

stellung der Einrichtung, zunächst eine gewisse Verdrehung

möglich ist, ohne die Kraftspeicher 119 zu komprimieren.

Das Ausgangsteil des drehelastischen Dämpfers 116 ist durch

ein flanschartiges Bauteil 134 gebildet, das an seiner

In seinem radial inneren Bereich ist der Flansch 134 mit der Nabe 114 fest verbunden, wie dies in dem Beispiel mit einer Schweißnaht dargestellt ist. Radial außerhalb dieser Verschweißung, also außerhalb des Verbindungsbereiches mit der Nabe 114, ist zwischen einem radial verlaufenden Abschnitt des Flansches 134, der der Gehäusewandung 112 zugewandt ist, und der Gehäusewandung 112 eine Anlaufscheibe 137 angeordnet. Die Anlaufscheibe 137 ist wiederum über axial sich erstreckende Bereiche 138, die in entsprechende Ausnehmungen des Flansches 134 eingreifen, in Umfangsrichtung fixiert.

5

15

25

Bei geschlossener Wandlerüberbrückungskupplung 118 ist ein Druckraum 130 gebildet, der in der einen axialen Richtung durch die Gehäusewandung 112 der Gehäuseschale 105 und in der entgegengesetzten axialen Richtung durch das Turbinenrad 113 und das Zwischenteil 140 begrenzt wird. Die Abdichtung des Druckraums erfolgt radial innen im Bereich der Nabe durch die Dichtung 141, weiterhin am radial inneren Zentrierbereich des Turbinenrades 113 durch die Dichtung 147 und radial außen über die Reibbereiche 131 des radial sich erstreckenden Schenkels 143 und 132 der Gehäusewandung 112, wobei zwischen diesen Reibbereichen ein Reibbelag 133 angeordnet ist. Die Dichtungen 141 und 147 können in vorteilhafter Weise durch sogenannte O-Ringe gebildet werden.

Die Wandlerüberbrückungskupplung 118 wird durch den von der

5

15

25

in dem Innenraum, der durch das Pumpenrad 110, das Turbinenrad 113 und das Leitrad 115 gebildet wird, enthaltenen Flüssigkeit, wie beispielsweise Öl, erzeugten Druck, der auf die dem Pumpenrad 110 zugewandte Seite des Turbinenrades 113 eine Axialkraft in Richtung auf die Gehäusewandung 112 zu erzeugt, geschlossen. Zum Öffnen der Überbrückungskupplung 118 wird über einen nicht näher dargestellten Zufuhrkanal Druckmedium in den Druckraum 130 eingeführt, bis die daraus resultierende Axialkraft eine genügende Höhe erreicht, um das gesamte Turbinenrad 113 mit den daran befestigten Bauteilen 123 und 125 sowie den Kraftspeichern 119 und den Verschleißschalen 145 in Richtung Pumpenrad 110 zu verschieben, wodurch die Reibbereiche 131 des radial sich erstreckenden Schenkels 143 und 132 der Gehäusewandung 112 in einen axialen Abstand zueinander gebracht werden. Das eingebrachte Druckmedium kann bei geöffneter Überbrückungskupplung 118 zwischen den Reibbereichen 131 des radial verlaufenden Schenkels 143 des L-förmigen Bauteils 123 und 132 der Gehäusewandung 112 aus dem Ringraum 130 radial nach außen abfließen. Bei der hier dargestellten Ausführungsform wirken also zumindest Teile der Außenschale des Turbinenrades 113 selbst als Kolben.

In Figur 4 ist eine weitere Ausführungsmöglichkeit einer erfindungsgemäßen Kraftübertragungseinrichtung dargestellt, wobei Teile, die in der Funktion bisher beschriebenen Teilen gleichen oder ähneln, gleiche Bezugszeichen aufweisen, die jedoch wiederum um 100 erhöht sind.

Die Einrichtung 201 besitzt ein Gehäuse 202, das einen hydrodynamischen Drehmomentwandler 203 aufnimmt. Das Gehäuse 202 ist beispielsweise mit der Kurbelwelle einer Brennkraftmaschine verbunden. Dabei ist die drehfeste Verbindung zwischen der Welle und dem Gehäuse 202 über das Antriebsblech 247 hergestellt, das radial innen mit der antreibenden Welle und radial außen mit dem Gehäuse 202 über Befestigungsmittel 204 drehfest verbunden ist. Das Antriebsblech 247 trägt weiterhin in seinem radial äußeren Bereich den Anlasserzahnkranz 248.

Die beiden Gehäuseschalen 205 und 206 sind radial außen über eine Schweißverbindung 207 fest miteinander verbunden und abgedichtet. In dem dargestellten Ausführungsbeispiel wird wiederum zur Bildung der äußeren Schale des Pumpenrades 210 die Gehäuseschale 206 direkt herangezogen. Axial zwischen dem Pumpenrad 210 und der radialen Wandung 212 der Gehäuseschale 205 ist ein Turbinenrad 213 angeordnet, das drehbar auf eine Abtriebsnabe 214, die wiederum mit einer Getriebeeingangswelle drehfest koppelbar ist, gelagert ist. Weiterhin ist ein Leitrad 215 vorgesehen, das axial zwischen den inneren Bereichen des Pumpenrades 210 und des Turbinenrades 213 angeordnet ist.

In dem durch die beiden Gehäuseschalen 205 und 206 gebildeten Innenraum ist weiterhin ein drehelastischer Dämpfer 249 aufgenommen, der eine drehelastische Verbindung der Ab-

25

15

triebsnabe 214 mit einem antreibenden Teil gewährleistet, das in diesem Fall durch Teile des Gehäuses 202 gebildet ist. Der drehelastische Dämpfer 249 weist zwei Dämpfungsstufen auf, wobei die Dämpfungsstufe oder der Dämpfer 216 radial innen angeordnet ist, und die Dämpfungsstufe bzw. der Dämpfer 250 im radial äußeren Bereich des Gehäuses 202. Zwischen dem radial außen liegenden Dämpfer 250 und dem radial innen liegenden Dämpfer 216 ist in Reihenschaltung eine Wandlerüberbrückungskupplung 218 angeordnet.

5

15

25

Der drehelastische Dämpfer 250 umfaßt Kraftspeicher 251, die sich zumindest annähernd über den halben Umfang der Einrichtung 201 erstrecken können, oder aber auch ähnlich angeordnet sein können, wie dies in Zusammenhang mit Figur 3 beschrieben ist. Die gewählte umfangsmäßige Erstreckung der Kraftspeicher 251 ist beispielsweise abhängig vom benötigten Federvolumen und von der benötigten Federrate, wobei auch die Anzahl der Kraftspeicher und deren Schaltung untereinander (Reihenschaltung oder Parallelschaltung) Einfluß nehmen. Aus den bereits weiter oben beschriebenen Gründen kann es weiterhin zweckmäßig sein, die Kraftspeicher zumindest annähernd auf den Radius vorzukrümmen, der ihrem Einbaudurchmesser in der Einrichtung 201 entspricht. Zumindest unter Fliehkrafteinwirkung stützen sich Kraftspeicher 251 an der Gehäuseschale 205 radial ab, wofür diese einen die Kraftspeicher 251 axial übergreifenden Bereich 222 besitzt. Zur Reduzierung des Verschleißes sind wiederum zwischen dem axialen Bereich 222 und dem Kraftspeicher 251 Abstützschalen 245 vorgesehen, die ähnlich ausgebildet sind, wie dies in Zusammenhang mit den Figuren 2 und 3 beispielhaft beschrieben wurde.

5

15

25

Zur Krafteinleitung in den Kraftspeicher 251 trägt die Gehäuseschale 205 unmittelbar Beaufschlagungsbereiche 252, die bei dem dargestellten Ausführungsbeispiel durch in das Blechmaterial der Gehäuseschale 205 eingeprägte Taschen gebildet sind, die zwischen benachbarte Kraftspeicher 251 sowohl axial als auch radial eingreifen. Auf der der Gehäusewandung 212 abgekehrten Seite der Kraftspeicher 251 sind weitere Beaufschlagungsbereiche 253 vorgesehen, die am axialen Bereich 222 der Gehäuseschale 205 befestigt sind. Beaufschlagungsbereiche 253 werden durch Taschen gebildet, die an einem kreisringförmigen Bauteil 254 angeprägt sind. Die Beaufschlagungsbereiche 253 erstrecken sich axial und radial zwischen benachbarte Kraftspeicher 251 und sind den Beaufschlagungsbereichen 252 gegenüberliegend angeordnet. Das kreisringförmige Bauteil 254 besitzt einen L- bzw. winkelförmigen Querschnitt, wobei in dem radial verlaufenden Schenkel die Beaufschlagungsbereiche 253 axial eingeprägt sind. Der äußere, axial verlaufende Schenkel des kreisringförmigen Bauteils 254 bildet eine Hülse, deren Außendurchmesser dem Innendurchmesser des axialen Bereiches 222 angepaßt ist, wobei dieser axiale Schenkel mit dem axialen Bereich 222 beispielsweise über eine Schweißverbindung verbunden ist. Die Beaufschlagungsbereiche 252 und 253 dienen gleichzeitig zur Verdrehsicherung der Abstützschalen 245.

5

15

25

Das Ausgangsteil des Dämpfers 250 ist durch ein kreisringförmiges Bauteil 255 gebildet, das an seiner radial äußeren
Peripherie radiale Ausleger 256 besitzt. Im Ruhezustand der
Einrichtung 201 befinden sich diese Arme 256 - in Axialrichtung betrachtet - zwischen den Beaufschlagungsbereichen 252
und 253. Die Anordnung der Beaufschlagungsbereiche für die
Kraftspeicher zueinander kann wiederum in ähnlicher Weise
erfolgen wie bisher beschrieben, so daß wiederum zuerst eine
gewisse Verdrehung ermöglicht ist, ohne die Kraftspeicher zu
komprimieren.

Radial innerhalb der Arme 256 bildet das kreisringförmige Bauteil 255 das Eingangsteil der Wandlerüberbrückungskupplung 218. Hierfür weist der Flansch 255 an seinen beiden axialen Begrenzungsflächen Reibbereiche auf, die mit entsprechend angeordneten Reibbereichen 231 an dem Kolbenbauteil 227 und 257 an den mit dem Turbinenrad 213 verbundenen Krafteinleitungsteil 223 zusammenwirken. Hierfür sind jeweils zwischen den sich gegenüberliegenden Reibbereichen Reibbeläge 233 angeordnet.

Das Krafteinleitungsteil 223 ist in seinem radial äußeren Bereich über eine Schweißverbindung 258 mit dem Turbinenrad 213 fest verbunden. Im Bereich seines radial nach innen sich erstreckenden Flansches 259 ist das Krafteinleitungsteil 223 über eine Vernietung 260 mit zwei Seitenscheiben 261 und 262

axial - und drehfest verbunden, die wiederum das Eingangsteil des Dämpfers 216, der radial innen angeordnet ist, bilden. Hierfür weisen die beiden Seitenscheiben 261 und 262 Ausnehmungen oder Fenster auf, die dazu geeignet sind, die Kraftspeicher 219 des Dämpfers 216 aufzunehmen und diese mit einer in Umfangsrichtung wirksamen Kraft zu beaufschlagen.

5

15

Die Seitenscheibe 262 und das Kolbenteil 227 der Wandlerüberbrückungskupplung 218, sind beispielsweise über einen Niet 263, relativ zueinander verdrehfest, jedoch axial verschieblich zueinander gehalten.

Die Kraftspeicher 219 des radial innen liegenden Dämpfers 216 stützen sich andererseits an Beaufschlagungsbereichen 235 des als Ausgangsteil dienenden Flansches 234 ab, der seinerseits in seinem radial inneren Bereich axial und drehfest mit der abtriebsseitigen Nabe 214 verbunden ist. In seinem radial äußeren Bereich bildet der Flansch 234 mit seiner in Axialrichtung sich erstreckenden, radialen Begrenzungsfläche 264 eine Zentrierung, auf der der Ausgangsflansch 255 des radial außen liegenden Dämpfers 250 in Radialrichtung zentriert gehalten ist, sich aber in Axialrichtung bewegen kann.

Der Kolben 227 der Wandlerüberbrückungskupplung 218 ist in seinem radial inneren Bereich mit einem in Axialrichtung sich erstreckenden, hülsenartigen Ansatz 265 verdrehbar und axial verschieblich auf einem Zwischenteil 266 gelagert, das

sowohl als Zentrierung für den Kolben 227 als auch als Anlaufscheibe für die Nabe 214 dient. Zur Zentrierung des Kolbens 227 weist das Zwischenteil 266, das aus Kunststoff oder beispielsweise auch Aluminium gefertigt sein kann, einen in Axialrichtung sich erstreckenden, zylinderförmigen Bereich 267 auf, der weiterhin noch die Dichtung 268 aufnimmt.

5

15

25

Auf der dem Zwischenteil 266 gegenüberliegenden axialen Seite der Nabe 214 ist das Turbinenrad 213 über ein Bauteil 269, das einen L-förmigen Querschnitt aufweist, verdrehbar auf der Nabe 214 gelagert, wobei wiederum zwischen dem Bauteil 269 und einem axialen Ansatz der Nabe 214 eine Dichtung 270 vorgesehen ist. Die Dichtungen 268 und 270 können vorteilhafterweise durch O-Ringe ausgeführt sein.

Bei der hier dargestellten Ausführungsform ist also der radial außen liegende Dämpfer 250 wirkungsmäßig zwischen den Antrieb, also das Gehäuse 202, und das Turbinenrad 213 geschaltet, wobei zwischen dem Dämpfer 250 und dem Turbinenrad 213 in Reihe zu dem Dämpfer 250 die Wandlerüberbrükkungskupplung 218 angeordnet ist. Der radial innen liegende Dämpfer 216 ist, ähnlich wie dies bisher beschrieben wurde, zwischen dem Turbinenrad 213 und der abtriebsseitigen Nabe 214 wirksam. Es kann jedoch auch eine derartige Anordnung vorgesehen sein, daß derjenige Dämpfer, der zwischen dem Turbinenrad 213 und der abtriebsseitigen Nabe 214 wirksam ist, im radial äußeren Bereich des Gehäuses 202 angeordnet

ist, und der zwischen der Antriebsseite und dem Turbinenrad 213 wirksame Dämpfer - wirkungsmäßig also der Dämpfer 250 - im radial inneren Bereich angeordnet werden kann. Ebenso kann die Wandlerüberbrückungskupplung 218 in Reihe mit zumindest einem der beiden Dämpfer geschaltet sein.

5

15

25

Die Wandlerüberbrückungskupplung 218 wird durch den von der in dem Innenraum des Gehäuses 202 enthaltenen Flüssigkeit erzeugten Druck, der den Kolben 227 mit einer Axialkraft in Richtung auf das Turbinenrad 213 zu beaufschlagt, geschlossen. Zum Öffnen der Überbrückungskupplung 218 wird über den Zufuhrkanal 239 Druckmedium in den Ringraum 230 eingeführt, wodurch der Kolben 227 in Richtung auf die Gehäusewandung 212 zu bewegt wird, und somit der Reibbereich 231 des Kolbens 227 von dem Reibbereich des Flansches 255 abgehoben wird. Dadurch kann sich der Flansch 255 axial von dem Krafteinleitungsteil 257 wegbewegen, wodurch die einander zugekehrten Reibbereiche, von denen einer einen Reibbelag 233 trägt, voneinander in Abstand gebracht werden. Bei dieser nun geöffneten Überbrückungskupplung 218 kann das Druckmittel zwischen den Reibbereichen des Kolbens 227, des Flansches 255 und des Krafteinleitungsteiles 223 aus dem Ringraum 230 in Radialrichtung nach außen abfließen.

Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt, sondern umfaßt auch Varianten, die insbesondere durch Kombination von einzelnen in Verbindung mit den verschiedenen Ausführungsformen beschriebenen Merkmalen bzw. Elementen gebildet werden können. Weiterhin können einzelne, in Verbindung mit den in den Figuren beschriebene Merkmale bzw. Funktionsweisen für sich alleine genommen eine selbständige Erfindung darstellen.

5

LuK Lamellen und Kupplungsbau GmbH Industriestr. 3 7580 Bühl/Baden

0656 DE

5 -

Zusammenfassung

Die Erfindung betrifft eine Kraftübertragungseinrichtung mit

10 Flüssigkeitskupplung mit einem im Kraftfluß zwischen dem
Gehäuse und einem Abtriebsteil der Einrichtung angeordneten
drehelastischen Dämpfer.

15

Fs. 1

Fig. Z

Fig.3

.