POLYNOMIAL RINGS

COLTON GRAINGER (MATH 6130 ALGEBRA)

12. ASSIGNMENT DUE 2018-12-12

12.1. **[1, No. 9.1.4].** Given. Let (x) and (x, y) be ideals in the ring of polynomials $\mathbf{Q}[x, y]$.

To prove.

- i. (x) is prime and not maximal.
- ii. (x, y) is prime and maximal.

Proof. We can obtain an isomorphic copy of any ring R from its polynomial ring R[x] either

- by taking the image of R[x] under the evaluate at 0 ring homomorphism, or
- by quotienting out the ideal generated by the indeterminate (x).

That $R \cong \text{ev}_0\left(R[x]\right)$ is apparent; we'll justify $R \cong R[x]/(x)$. Consider the homomorphism $\pi \circ \iota \colon R \to R[x]/(x)$, as in the following commutative diagram.

For all nonzero $\alpha \in R$, in R[x] the ideal (x) does not contain α . Whence $\ker(\pi \circ \iota) = 0$. Similarly, for each $r + (x) \in R[x]/(x)$, there's $r \in R$ such that $\pi(\iota(r)) = r + (x)$. So $\pi \circ \iota$ is ring isomorphism.

In particular, consider the field \mathbf{Q} and the UFD $\mathbf{Q}[y]$:

- i. $\mathbf{Q}[x,y]/(x) \cong \mathbf{Q}[y]$ is an entire ring, but not a field. Thus (x) is prime, but not maximal [1, Sec. 7.4].
- ii. $\mathbf{Q}[x,y]/(x,y)\cong (\mathbf{Q}[x][y]/(y))/(x)\cong \mathbf{Q}[x]/(x)\cong \mathbf{Q}$ is a field. Thus (x,y) is maximal (so prime too). The isomorphism $\mathbf{Q}[x,y]/(x,y)\cong (\mathbf{Q}[x][y]/(y))/(x)$ follows from (x,y)=(x)+(y). \square

12.2. **[1, No. 9.1.10].** Given. Let R be the polynomial ring $\mathbf{Z}[x_1, x_2, x_3, \ldots]$, a UFD [1, Sec. 9.3]. Let \overline{R} be the quotient ring $\mathbf{Z}[x_1, x_2, x_3, \ldots]/(x_1x_2, x_3x_4, x_5x_6, \ldots)$.

To prove. \overline{R} contains infinitely many minimal prime ideals. We define a minimal prime ideal as "an ideal p in a commutative unital ring R that's prime and does not strictly contain another prime ideal."

Proof. We inject the set 2^N of infinite coin flips into the set of minimal prime ideals in \overline{R} via the function

the sequence
$$(e_1, e_2, e_3, ...) \mapsto \text{ the ideal } (x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, ...).$$

It's routine to verify this function is an injection. We now focus to argue each ideal in the image is a minimal prime ideal.

Date: 2018-12-10.

Compiled: 2019-01-03.

¹https://commalg.subwiki.org/wiki/Minimal_prime_ideal

• Observe $(x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, ...) \supset (x_1x_2, x_3x_4, x_5x_6, ...)$. So

$$\overline{R}/(x_{1+e_1}, x_{3+e_2}, x_{5+e_2}, \dots) \cong R/(x_{1+e_1}, x_{3+e_2}, x_{5+e_2}, \dots).$$

For each "coin flip", need indices to access "the complementary event". So define $\overline{e_n}=0$ if $e_n=1$, else $\overline{e_n}=1$. By quotienting, we're just killing off the indeterminates whose indices are "hit" by our particular sequence of coin flips. So

$$R/(x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, \ldots) \cong \mathbb{Z}[x_{1+\overline{e_1}}, x_{3+\overline{e_2}}, x_{5+\overline{e_3}}].$$

Relabelling indices,

$$\mathbf{Z}[x_{1+\overline{e_1}}, x_{3+\overline{e_2}}, x_{5+\overline{e_3}}] \cong \mathbf{R}.$$

Stringing these isomorphisms together, we conclude that the ideal $(x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, \ldots)$ is *prime* in \overline{R} because the quotient $\overline{R}/(x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, \ldots) \cong R$ is entire.

• Now consider any proper ideal $\alpha \subseteq (x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, \ldots)$. We can think of α as a sequence of coin flips that forgets at least one outcome. So verify that

$$\mathfrak{a} \not\supset (x_1x_2, x_3x_4, x_5x_6, \ldots).$$

In particular, there's some odd positive i for which the product $x_i x_{i+1} \notin \mathfrak{a}$ (one of the events forgotten!). Quotienting \mathfrak{a} out of \overline{R} , the ring $\overline{R}/\mathfrak{a}$ has $\overline{x_i}$ and $\overline{x_{i+1}}$ as zero divisors. Therefore \mathfrak{a} is not prime. We conclude $(x_{1+e_1}, x_{3+e_2}, x_{5+e_3}, \ldots)$ is a *minimal* prime ideal. \square

12.3. [1, No. 9.1.13]. Given. Let F be a field.

To prove. The rings $F[x,y]/(y^2-x)$ and $F[x,y]/(y^2-x^2)$ are not isomorphic.

Proof. As F is a field, F[y] is a Euclidean domain, hence F[x, y] is a UFD. So the irreducible polynomials in F[x, y] are exactly the prime polynomials. Now

- $y^2 x^2 = (y x)(y + x)$ is not prime, thus $F[x, y]/(y^2 x^2)$ has zero divisors;
- $y^2 x$ is irreducible, so prime, thus $F[x, y]/(y^2 x)$ is an entire ring.

Since the property of being an entire ring is invariant under ring isomorphism, the two quotients cannot be isomorphic. \Box

Lemma. Suppose F is a field. Let $f(x) \in F[x]$ be a polynomial of degree $n \ge 1$ and let bars denote passage to the quotient F[x]/(f(x)). For each $\overline{g(x)}$ there's a unique polynomial r(x) of degree strictly less than n such that $\overline{g(x)} = \overline{r(x)}$.

Proof. Let $f(x) \in F[x]$ as above, a nonconstant polynomial. Let $g(x) \in F[x]/(f(x))$. There exists $g(x) \in F[x]$ which projects to g(x). Now F[x] is a Euclidean domain (with a division algorithm that produces *unique* remainders), so divide g(x) by f(x) to obtain unique a(x), $r(x) \in F[x]$ such that

$$g(x) = a(x)f(x) + r(x)$$
 where $0 \le deg r < deg f$.

The difference $q(x) - r(x) \in (f(x))$, so in the quotient $\overline{q(x)} = \overline{r(x)}$. \square

Knowing the lemma holds, we know each for polynomial $\overline{g(x)} \in F[x]/(f(x))$, there's a unique $r(x) \in F[x]$ such that $\overline{g(x)} = \overline{r(x)}$, where $\overline{r(x)}$ is in the span of the elements $\overline{1}, \overline{x}, \ldots, \overline{x^{n-1}}$. To see this span is minimal, consider that its vectors are pairwise orthogonal.

²Consider $-x + y^2$ as a polynomial in x with coefficients in F[y]. It's linear. Into what non-constant polynomials could it factor?

12.4. **[1, No. 9.2.2].** Given. Let F be a finite field of order q and let f(x) be a polynomial in F[x] of degree $n \ge 1$.

To prove. F[x]/(f(x)) has q^n elements.

Proof. We enumerate each distinct vector $\overline{\mathbf{r}(\mathbf{x})}$ (of degree strictly less than \mathbf{n} as above) in $\mathbf{F}[\mathbf{x}]/(\mathbf{f}(\mathbf{x}))$ by the coefficient of its kth degree term for $\mathbf{k}=0,\ldots,n-1$. But each coefficient is in the finite field \mathbf{F}_q , so the number of distinct coefficients for $\overline{\mathbf{r}(\mathbf{x})}$ is \mathbf{q}^n . By lemma, $\overline{1},\overline{\mathbf{x}},\ldots,\overline{\mathbf{x}^{n-1}}$ is a basis. By considering the distinct coefficients of $\overline{\mathbf{r}(\mathbf{x})}$, we've taken exactly all distinct linear combinations of basis vectors. Since each of \mathbf{n} basis vectors can be scaled with one of \mathbf{q} scalars in the finite field \mathbf{F}_q , we conclude $|\mathbf{F}[\mathbf{x}]/(\mathbf{f}(\mathbf{x}))| = \mathbf{q}^n$. \square

12.5. **[1, No. 9.2.3].** Given. Let f(x) be a polynomial in F[x].

To prove. F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Proof. We apply the hierarchy theorem in full force to exploit that F[x] is a Euclidean domain. (\Rightarrow) Suppose that F[x]/(f(x)) is a field. Then (f(x)) is a maximal ideal. As F[x] is an entire ring, (f(x)) is prime. Because F[x] is a UFD, f(x) is irreducible. (\Leftarrow) Suppose f(x) is irreducible. Then as F[x] is a Euclidean domain, f(x) is prime. Now (f(x)) is a prime ideal in a PID, so (f(x)) is maximal. Therefore F[x]/(f(x)) is a field. \Box

12.6. **[1, No. 9.2.4].** Given. Let F be a finite field.

To prove. F[x] contains infinitely many primes.

Proof by contradiction. Suppose $\{p_1(x), \dots, p_n(x)\}$ is the finite set of all prime polynomials in F[x]. Consider the nonconstant polynomial

$$f(x) = \prod_{1}^{n} p_{i}(x) + 1$$

in F[x]. Since none of prime ideals $(p_i(x))$ contain 1, neither do they contain f(x). But F[x] is a Euclidean domain, so a UFD, and we must have a representation of

$$f(x) = \prod_{1}^{m} q_{j}(x)$$

as a product of irreducible, thus prime, polynomials $q_i(x)$. By construction of f(x),

$$\{q_1(x), \ldots, q_m(x)\}\$$
 and $\{p_1(x), \ldots, p_n(x)\}\$ are disjoint.

Absurd!— $\{p_1(x), \dots, p_n(x)\}$ is supposed to be the exhaustive set of primes! \square

12.7. **[1, No. 9.2.10].** To find. The greatest common divisor of $m(x) = x^3 + 4x^2 + x - 6$ and $n(x) = x^5 - 6x + 5$ in $\mathbf{Q}[x]$, expressed as a $\mathbf{Q}[x]$ -linear combination of m(x) and n(x).

Demonstration. A GCD of n(x) and m(x) is x-1. It's the last nonzero remainder in the extended Euclidean algorithm. In gruesome hard-coded detail (feel free to skim to the next page).

```
>>> R.<x> = PolynomialRing(QQ, sparse=True)
>>> # n.quo_rem(m) long divides n by m and returns (quotient, remainder)
>>> (x^5 - 6*x + 5).quo_rem(x^3 + 4*x^2 + x - 6)
(x^2 - 4*x + 15, -50*x^2 - 45*x + 95)
>>> (x^3 + 4*x^2 + x - 6).quo_rem(-50*x^2 - 45*x + 95)
(-1/50*x - 31/500, 11/100*x - 11/100)
>>> (-50*x^2 - 45*x + 95).quo_rem(11/100*x - 11/100)
(-50*00/11*x - 95*00/11, 0)
```

We also want Bézout coefficients, to see that x-1 is a linear combination of n(x) and m(x). Here's an imperative implementation³ of the extended Euclidean algorithm that records the desired coefficients.

```
>>> def extgcd(n,m):
>>>
        """a wrapper around SAGE to compute a GCD and Bézout coefficients"""
>>>
>>>
        # initialize remainder and Bézout coeff arrays
>>>
        r = []; s = [1,0]; t = [0,1]
>>>
>>>
        # we assume deg(n) >= deg(m)
>>>
>>>
        r.append(n)
        r.append(m)
>>>
>>>
        # while the last remainder is nonzero
>>>
        while r[-1] != 0:
>>>
>>>
            # long divide
>>>
>>>
            (quo,rem) = r[-2].quo\_rem(r[-1])
>>>
>>>
            # append remainder and latest Bézout coeffs
            r.append(rem)
>>>
>>>
            s.append(s[-2] - quo*s[-1])
            t.append(t[-2] - quo*t[-1])
>>>
>>>
        # second to last remainder and coeffs
>>>
        return r[-2], s[-2], t[-2]
>>>
```

Why is this procedure meaningful? Because we can quickly find a polynomial n(x)s(x) + m(x)t(x) that's an associate of $x - 1 \in GCD\{n(x), m(x)\}$, i.e., we may find "scalars" s and t to form linear combination of n(x) and m(x) that generates the ideal (x - 1).

```
>>> n = x^5 - 6*x + 5

>>> m = x^3 + 4*x^2 + x - 6

>>> ### extgcd returns a 3-tuple

>>> (gcd, s, t) = extgcd(n,m)

>>> print(gcd, s, t)

(11/100*x - 11/100, 1/50*x + 31/500, -1/50*x^3 + 9/500*x^2 - 13/250*x + 7/100)

>>> n*s + m*t == gcd
```

True

12.8. **[1, No. 9.3.3].** Given. Let F be a field.

To prove. The set R of polynomials in F[x] whose coefficient of x is equal to 0 is a subring of F[x]. Moreover, R is not a UFD.

³See https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/polynomial_element_generic.html, https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor.

Proof. Say r(x), $s(x) \in R$. Subtracting like powers, $r(x) - s(x) \in R$. Hence (R, +) is an abelian subgroup of F[x]. Say that $r(x) = \sum_{i=0}^{n} r_i x^i$ and $s(x) = \sum_{j=0}^{m} s_j x^j$. Then

$$r(x)s(x) = \sum_{k=0}^{mn} \sum_{i+j=k} r_i s_j x^k = r_0 s_0 + \underbrace{r_1 s_0 + r_0 s_1}_{\text{just 0}} x + \text{ higher order terms } \in R.$$

We conclude (R,\cdot) is a semigroup under the associative multiplication inherited from F[x]. (We could also say $1 \in R$.) So R is a subring of F[x].

Now consider $x^6 \in R$. Observe $(x^3)^2 = (x^2)^3 = x^6$. We'll show x^2 and x^3 are irreducible in R. Consider the possible factorizations, up to associates, of x^2 and x^3 :

- $x^3 = x^0x^3 = x^2x^1$. The first factorization is not into irreducibles and the later is not in R. $x^2 = x^0x^2 = x^2x^1$. Dido.

We conclude that χ^6 has two distinct factorizations; therefore R is not a UFD. \Box

12.9. [1, No. 9.4.7]. Given. The ring of polynomials $\mathbf{R}[x]$ and the ideal generated by $x^2 + 1$.

To prove. $\mathbf{R}[x]/(x^2+1)$ is a field that's isomorphic to the complex numbers.

Proof. We exhibit an isomorphism. Define $\varphi: \mathbb{C} \to \mathbb{R}[x]/(x^2+1)$ by $\alpha+b\mathfrak{i} \mapsto \overline{\alpha}+\overline{bx}$ for all $\alpha,b\in\mathbb{R}$.

• φ is a well defined ring homomorphism. Additivity is clear, $\varphi(\vec{u}) + \varphi(\vec{v}) = \varphi(\vec{u} + \vec{v})$. For multiplicativity, note in $\overline{\mathbf{R}[x]} \ \overline{0} = \overline{bd(x^2 + 1)}$. Exploit this!

$$\begin{split} \phi(\alpha+bi)\phi(c+di) &= \overline{\alpha c} + \overline{\alpha d x} + \overline{b c x} + \overline{b d x^2} \\ &= \overline{\alpha c - b d} + \overline{(\alpha d + b c) x} \\ &= \phi((\alpha+bi)(c+di)). \end{split}$$

- φ is injective. For say (real numbers) $a \neq c$ or $b \neq d$. Then $\varphi(a + bi) = \overline{a} + \overline{bx} \neq \overline{c} + \overline{dx} = \varphi(c + di)$.
- φ is surjective by lemma. Recall for each $\overline{g(x)} \in R[x]/(x^2+1)$ there's a unique r(x) of degree less than 2 such that $\overline{r(x)} = \overline{g(x)}$. Whence $\{\overline{1}, \overline{x}\}$ is a basis for the vector space $\mathbf{R}[x]/(x^2+1)$ over \mathbf{R} . φ is an **R**-linear map and takes $1 \mapsto \overline{1}$ and $i \mapsto \overline{x}$.

We conclude the field of complex numbers ${f C}$ is the extension of ${f R}$ in which the polynomial x^2+1 has a root. \Box 12.10. **[1, No. 9.4.12].** Given. The ring of polynomials $\mathbf{Z}[x]$ and the polynomial $x^{n-1} + x^{n-2} + \cdots + x + 1$.

To prove. $x^{n-1} + x^{n-2} + \cdots + x + 1$ is irreducible in $\mathbb{Z}[x]$ if and only if n is a prime.

*Proof.*⁴ (\Rightarrow) Suppose p is prime. Then $\sum_{i=0}^{p-1} x^i = \Phi_p(x)$ is the pth cyclotomic polynomial. Consider the transformation

$$\Phi_{p}(x+1) = \frac{(x+1)^{p} - 1}{x} = \sum_{k=1}^{p} {p \choose k} x^{k-1}.$$

We see $\Phi_{\mathfrak{p}}(x+1)$ is a monic polynomial, with coefficients

$$\frac{p!}{(p-k)!k!} \quad \text{divisible by p for } \quad k \in \{1,\dots,p-1\}.$$

Further, $p^2 \nmid p$, the constant coefficient of $\Phi_p(x+1)$. Applying Eisenstein's criterion, we conclude $\Phi_p(x+1)$ (hence $\Phi_p(x) = \sum_{i=0}^{p-1} x^i$) is irreducible over $\mathbf{Z}[x]$.

⁴ consulted: https://web.archive.org/web/20150524162238/https://crazyproject.wordpress.com/2011/01/ 03/prove-that-a-given-family-of-polynomials-is-reducible-over-zz/. The ideal to massage the convolution in the case that $\mathfrak n$ is composite was not my own. The write-up was entirely my own.

(\Leftarrow) Suppose n is composite. Consider $\sum_{i=0}^{n-1} x^i$. We'll reshape the indices of our sum from an $n \times 1$ vector down into a $d \times q$ matrix, where n = dq for integers d, q > 1. A naive attempt would be to write $\sum_{i=0}^{d-1} \sum_{j=0}^{q-1} x^{ij}$. One should verify ij is a poor choice of exponent given that we're trying to establish a one-to-one correspondence between $\{0,\ldots,d-1\}\times\{0,\ldots,q-1\}$ and $\{0,\ldots,n-1\}$. Rather, we rely on the (non-negative and therefore unique) division algorithm in $\mathbf Z$ to represent each $N \in \{0,\ldots,n-1\}$ uniquely as N = di + j where $0 \leqslant j < d$. The range of the index j forces $0 \leqslant i \leqslant \left\lfloor \frac{n-1}{q} \right\rfloor = d-1$.

By order considerations, the injection $(i,j)\mapsto di+j$ is a bijection between $\{0,\ldots,d-1\}\times\{0,\ldots,q-1\}$ and $\{0,\ldots,n-1\}$. We find here a reduction of $1+x+\ldots+x^{n-1}$ into nonconstant polynomials:

$$\sum_{i=0}^{n-1} x^i = \sum_{i=0}^{d-1} \sum_{j=0}^{q-1} x^{di+j} = \left(\sum_{i=0}^{d-1} x^{di}\right) \left(\sum_{j=0}^{q-1} x^j\right). \, \Box$$

12.11. **[1, No. 9.4.16].** Given. Let F be a field and let a(x) be a polynomial of degree n in F[x]. The polynomial $b(x) = x^n a(1/x)$ is called the reverse of a(x).

To demonstrate. (a) Describe the coefficients of b in terms of the coefficients of α . (b) α is irreducible if and only if b is irreducible.

Demonstration.

- (a) Both a(x) and its reverse b(x) have the same degree, the same number of coefficients, and are elements of the same polynomial ring F[x]. Explicitly, when $a(x) = \sum_{1}^{n} a_i$, $b_j = a_{n-j}$ and $b(x) = \sum_{1}^{n} b_j$.
- (b) Say that a(x) is reducible into d(x)q(x), nonconstant polynomials in F[x] of degree m and ℓ respectively. Now d(x) and q(x) are nonconstant if and only if $x^m d(1/x)$ and $x^\ell q(1/x)$ are nonconstant (in F[x]), which occurs if and only if the reverse $x^{m\ell}a(1/x) = x^m d(1/x)x^\ell q(1/x)$ is reducible into nonconstant polynomials in F[x]. \square

12.12. A variant of Eisenstein's Criterion [1, No. 9.4.17]. Given. Let $\mathfrak p$ be a prime ideal in the Unique Factorization Domain R and let $a(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a polynomial in R[x], $n\geqslant 1$. Suppose $a_n\notin \mathfrak p$, $a_{n-1},\ldots,a_0\in \mathfrak p$ and $a_0\notin \mathfrak p^2$.

To prove. a(x) is irreducible in F[x], where F is the quotient field of R.

Proof. Once we've established that a(x) is irreducible in R[x], by (the contrapositive to) Gauss' lemma, a(x) will be irreducible in F[x]. So let R and $\mathfrak p$ be as above. Let $a(x) \in R[x]$ with coefficients as above. To argue that a(x) is irreducible in R[x], we suppose it's not and approach a contradiction. So let a(x) = b(x)c(x) for nonconstant polynomials b(x), c(x) in R[x]. Consider residues under the reduction homomorphism $R[x] \to R/\mathfrak p[x]$. The equation

$$a(x) = b(x)c(x) \quad \text{in } R[x] \text{ reduces modulo } \mathfrak{p} \text{ to } \quad a_n x^n + \mathfrak{p} = \left(\sum (b_i + \mathfrak{p}) x^i\right) \left(\sum (c_j + \mathfrak{p}) x^j\right).$$

Because

- R/p is an integral domain⁵ and
- the reduced polynomials satisfy deg $\overline{a(x)} = \deg \overline{b(x)} + \deg \overline{c(x)}$

it must be that both residues $\overline{b(x)}$ and $\overline{c(x)}$ have zero for their constant terms. That is, in R/\mathfrak{p} , we have $b_0+\mathfrak{p}=c_0+\mathfrak{p}=\mathfrak{p}$. Pulling back to R, $a_0=b_0c_0\in\mathfrak{p}^2$ —a contradiction! Our assumption that a(x) is reducible must be faulty. \square

⁵I don't believe it's a UFD, but I could be wrong. In the case that $R={f Z}$, reduction mod a prime p does produce a UFD ${f F}_{
m p}$.

REFERENCES

[1] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 2004.