TRIGONOMETRIC EQUATIONS

OBJECTIVES

The most general value of θ satisfying $\sin^2 \theta = \frac{1}{4}$ is 1.

1)
$$n\pi \pm \frac{\pi}{6}$$

1)
$$n\pi \pm \frac{\pi}{6}$$
 2) $2n\pi \pm \left(\frac{\pi}{6} \text{ or } \frac{5\pi}{6}\right)$ 3) $(2n-1)\pi \pm \frac{\pi}{6}$ 4) $2n\pi \pm \frac{\pi}{3}$

3) (2n-1)
$$\pi \pm \frac{\pi}{6}$$

4)
$$2n\pi \pm \frac{\pi}{3}$$

The solution of $7\sin^2 x + 3\cos^2 x = 4$ is 2.

1)
$$2n\pi \pm \left(\frac{\pi}{6} \text{ or } \frac{5\pi}{6}\right)$$
 2) $2n\pi \pm \left(\frac{\pi}{3} \text{ or } \frac{2\pi}{3}\right)$ 3) $n\pi \pm \frac{\pi}{3}$ 4) $n\pi \pm \frac{2\pi}{3}$

3)
$$n\pi \pm \frac{\pi}{3}$$

4)
$$n\pi \pm \frac{2\pi}{3}$$

The solution of the equation $tan^2\theta + cot^2\theta = 2$ is **3.**

1)
$$\theta = \mathbf{n}\pi \pm \frac{\pi}{4}$$
, $\mathbf{n} \in \mathbf{z}$

2)
$$\theta = n\pi \pm \frac{\pi}{3}$$
, $n \in \mathbf{z}$

3)
$$\theta = 2n\pi \pm \frac{\pi}{4}$$
, $n \in z$

4)
$$\theta = 2n\pi \pm \frac{\pi}{3}$$
, $n \in \mathbf{z}$

The general solution of the equation $\sin\theta + \cos\theta = -\sqrt{2}$ is 4.

1)
$$n\pi + (-1)^n \frac{\pi}{2} - \frac{\pi}{4}$$
 2) $n\pi - \frac{3\pi}{4}$ 3) $2n\pi - \frac{3\pi}{4}$ 4) $2n\pi + \frac{3\pi}{4}$

2)
$$n\pi - \frac{3\pi}{4}$$

3)
$$2n\pi - \frac{3\pi}{4}$$

4)
$$2n\pi + \frac{3\pi}{4}$$

If $\sqrt{3}\cos\theta - \sin\theta$ is positive and $\theta \in (-\pi, \pi)$ the value of θ lies in 5.

$$\left(-\frac{\pi}{6},\frac{5\pi}{6}\right)$$

1)
$$\left(-\frac{\pi}{6}, \frac{5\pi}{6}\right)$$
 2) $\left(-\frac{\pi}{3}, \frac{2\pi}{3}\right)$ 3) $\left(-\frac{\pi}{4}, \frac{3\pi}{4}\right)$

4)
$$\left(\frac{-2\pi}{3}\frac{\pi}{3}\right)$$

- The equation $\sqrt{3} \sin x + \cos x = 4$ has 6.
 - 1) only one solution

2) Two Solutions

3) infinitely many solutions

- 4) No Solution
- The general solution of the equation $\tan\theta + \tan 4\theta + \tan 7\theta = \tan \theta \tan 4\theta \tan 7\theta$ is 7.

1)
$$\theta = \frac{n\pi}{2}$$
, $\mathbf{n} \in \mathbf{z}$ 2) $\theta = \frac{n\pi}{12}$, $\mathbf{n} \in \mathbf{z}$ 3) $\theta = \frac{n\pi}{7}$, $\mathbf{n} \in \mathbf{z}$ 4) $\theta = \frac{n\pi}{4}$

2)
$$\theta = \frac{n\pi}{12}$$
, $n \in \mathbb{R}$

3)
$$\theta = \frac{n\pi}{7}$$
, $n \in \mathbb{R}$

4)
$$\theta = \frac{n\pi}{4}$$

The general value of ' θ ' satisfying $\tan\theta + \tan 2\theta + \sqrt{3} \tan\theta \tan 2\theta = \sqrt{3}$ is 8.

1) (n+1)
$$\frac{\pi}{9}$$

2) (n+1)
$$\frac{\pi}{3}$$

3)
$$(3n+1)\frac{\pi}{3}$$

1) (n+1)
$$\frac{\pi}{9}$$
 2) (n+1) $\frac{\pi}{3}$ 3) $(3n+1)\frac{\pi}{3}$ 4) (3n+1) $\frac{\pi}{9}$

9.	The general value of ' θ ' satisfying the equation $\tan\theta$ $\tan(120^{\circ}$	$+\theta$) tan(120°	$-\mathbf{\theta}) = \frac{1}{\sqrt{3}} \text{ is}$
----	---	----------------------	---

1) (6n+1)
$$\frac{\pi}{18}$$
 2) $(3n+1)\frac{\pi}{3}$ 3) $(6n+1)\frac{\pi}{6}$ 4) $(2n+1)\frac{\pi}{6}$

2)
$$(3n+1)\frac{\pi}{3}$$

3)
$$(6n+1)\frac{\pi}{6}$$

4)
$$(2n+1)\frac{\pi}{6}$$

10. The number of solutions of the equation
$$\sin 5\theta = \frac{1}{2}$$
 lying in $[0, \pi]$ is

1)3

2)6

4) 10

11. If $2 \tan^2 \theta = \sec^2 \theta$, then the general value of θ is

(a)
$$n\pi + \frac{\pi}{4}$$

(b)
$$n\pi - \frac{\pi}{4}$$

(c)
$$n\pi \pm \frac{\pi}{4}$$

(b)
$$n\pi - \frac{\pi}{4}$$
 (c) $n\pi \pm \frac{\pi}{4}$ (d) $2n\pi \pm \frac{\pi}{4}$

12. If $\cot \theta + \tan \theta = 2\csc \theta$, the general value of θ is

(a)
$$n\pi \pm \frac{\pi}{3}$$

(b)
$$n\pi \pm \frac{\pi}{6}$$

(b)
$$n\pi \pm \frac{\pi}{6}$$
 (c) $2n\pi \pm \frac{\pi}{3}$ (d) $2n\pi \pm \frac{\pi}{6}$

(d)
$$2n\pi \pm \frac{\pi}{6}$$

13. If $\tan m \theta = \tan n\theta$, then the general value of θ will be in

(a) A. P.

(b) G. P.

(c) H. P.

None of these (d)

14. If $\sin\left(\frac{\pi}{4}\cot\theta\right) = \cos\left(\frac{\pi}{4}\tan\theta\right)$, then $\theta =$

(a)
$$n\pi + \frac{\pi}{4}$$

(b)
$$2n\pi \pm \frac{\pi}{4}$$

(c)
$$n\pi - \frac{\pi}{4}$$

(b)
$$2n\pi \pm \frac{\pi}{4}$$
 (c) $n\pi - \frac{\pi}{4}$ (d) $2n\pi \pm \frac{\pi}{6}$

15. General value of θ satisfying the equation $\tan^2 \theta + \sec 2\theta = 1$ is

(a)
$$m\pi, n\pi + \frac{\pi}{3}$$

(b)
$$m\pi, n\pi \pm \frac{\pi}{3}$$

(c)
$$m\pi, n\pi \pm \frac{\pi}{6}$$

(a) $m\pi, n\pi \pm \frac{\pi}{3}$ (b) $m\pi, n\pi \pm \frac{\pi}{3}$ (c) $m\pi, n\pi \pm \frac{\pi}{6}$ (d) None of these

(Where m and n are integers)

The solution of the equations $x + y = \frac{2\pi}{3}$ and $\cos x + \cos y = \frac{3}{2}$ where x and y are real is **16.**

1)
$$x = -\frac{\pi}{3}$$
, $y = \pi$ 2) $x = \pi$, $y = \frac{-\pi}{3}$ 3) $x = \pi$, $y = \frac{\pi}{2}$ 4) doesn't exist

17. If $4 \sin^4 x + \cos^4 x = 1$, then x =

(b)
$$n\pi \pm \sin^{-1}\frac{2}{5}$$

(c)
$$n\pi + \frac{\pi}{6}$$

(b) $n\pi \pm \sin^{-1} \frac{2}{5}$ (c) $n\pi + \frac{\pi}{6}$ (d) None of these

18. The solution of the equation $\begin{vmatrix} \cos \theta & \sin \theta & \cos \theta \\ -\sin \theta & \cos \theta & \sin \theta \\ -\cos \theta & -\sin \theta & \cos \theta \end{vmatrix} = 0, \text{ is}$

(a)
$$\theta = n\pi$$

(b)
$$\theta = 2n\pi \pm \frac{\pi}{2}$$

(b)
$$\theta = 2n\pi \pm \frac{\pi}{2}$$
 (c) $\theta = n\pi \pm (-1)^n \frac{\pi}{4}$ (d) $\theta = 2n\pi \pm \frac{\pi}{4}$

(d)
$$\theta = 2n\pi \pm \frac{\pi}{4}$$

19.	$\mathbf{If} \sin 5x + \sin 3x + \sin x = 0,$	then the value of x other than 0 lying between	$0 \le x \le \frac{\pi}{2}$ is
			,

(a) $\frac{\pi}{\epsilon}$

(b) $\frac{\pi}{12}$ (c) $\frac{\pi}{2}$

20. If $tan(\pi \cos \theta) = \cot(\pi \sin \theta)$, then $sin(\theta + \frac{\pi}{4})$ equals

(a) $\frac{1}{\sqrt{2}}$

(b) $\frac{1}{2}$ (c) $\frac{1}{2\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$

21. If $(1 + \tan \theta)(1 + \tan \phi) = 2$, then $\theta + \phi =$

(a) 30°

(b) 45° (c) 60°

(d) 75°

22. The solutions of the equation $4 \cos\theta - 3 \sec\theta = 2 \tan\theta$ are

2) $-\frac{\pi}{10}$, $\frac{3\pi}{10}$ 3) $\frac{\pi}{10}$, $-\frac{3\pi}{10}$ 4) $-\frac{\pi}{10}$, $-\frac{\pi}{10}$

The general value of ' θ ' satisfying $\tan \theta + 4 \cot 2\theta + 1 = 0$ is 23.

1) $n\pi + \frac{\pi}{4}$, $n\pi + \tan^{-1} 2$

2) $n\pi - \frac{\pi}{4}, n\pi + \tan^{-1} 2$

3) $n\pi + \frac{\pi}{4}, n\pi - \tan^{-1} 2$

24. The equation $\sin x + \sin y + \sin z = -3$ for $0 \le x \le 2\pi$, $0 \le y \le 2\pi$, $0 \le z \le 2\pi$, has

(a) One solution

(b) Two sets of solutions

(c) Four sets of solutions

(d) No solution

25. If
$$2\sin^2\theta = 3\cos\theta$$
, where $0 \le \theta \le 2\pi$, then $\theta =$

(a) $\frac{\pi}{6}, \frac{7\pi}{6}$ (b) $\frac{\pi}{3}, \frac{5\pi}{3}$ (c) $\frac{\pi}{3}, \frac{7\pi}{3}$ (d) None of these

26. The value of θ in between 0° and 360° and satisfying the equation $\tan \theta + \frac{1}{\sqrt{3}} = 0$ is equal to

(a) $\theta = 150^{\circ} \text{ and } 300^{\circ}$

(b) $\theta = 120^{\circ}$ and 300° (c) $\theta = 60^{\circ}$ and 240° (d) $\theta = 150^{\circ}$ and 330°

27. The most general value of θ satisfying the equations $\tan \theta = -1$ and $\cos \theta = \frac{1}{\sqrt{2}}$ is

(a) $n\pi + \frac{7\pi}{4}$ (b) $n\pi + (-1)^n \frac{7\pi}{4}$ (c) $2n\pi + \frac{7\pi}{4}$

(d) None of these

28. The value of θ lying between and $\pi/2$ and satisfying the equation

$$\begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4 \sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{vmatrix} = 0$$

- (a) $\frac{7\pi}{24}$ or $\frac{11\pi}{24}$ (b) $\frac{5\pi}{24}$ (c) $\frac{\pi}{24}$

 $\sqrt{1 + \sin 2A} - \sqrt{1 - \sin 2A} = -2 \sin A$ is true if A lies in the intervals **29.**

1) $\left(2n\pi - \frac{\pi}{4}, 2n\pi + \frac{\pi}{4}\right)$

2) $\left(2n\pi + \frac{\pi}{4}, 2n\pi + \frac{3\pi}{4}\right)$

3) $\left(2n\pi + \frac{3\pi}{4}, 2n\pi + \frac{5\pi}{4}\right)$

4) $\left(2n\pi + \frac{5\pi}{4}, 2n\pi + \frac{7\pi}{4}\right)$

General solution of $\sin^2 \theta \sec \theta + \sqrt{3} \tan \theta = 0$ is **30.**

- 1) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}, \ \theta = n\pi, \ n \ \epsilon Z$
- 2) $\theta = n\pi$, $n \in \mathbb{Z}$

3) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}$, $n \in \mathbb{Z}$

4) $\theta = \frac{n\pi}{2}$, $n \in \mathbb{Z}$

The most general values of x for which $sinx + cosx = \min_{a \in R} \{1, a^2 - 4a + 6\}$ are given by 31.

1) nπ

- 2) $2n\pi + \frac{\pi}{2}$ 3) $n\pi + (-1)^n \frac{\pi}{2} \frac{\pi}{4}$ 4) $2n\pi + \frac{\pi}{4}$

32. The only value of x for which $2^{\sin x} + 2^{\cos x} > 2^{1-(1/\sqrt{2})}$ holds, is

- (a) $\frac{5\pi}{4}$
- (b) $\frac{3\pi}{4}$
- (c) $\frac{\pi}{2}$
- (d) All values of x

33. If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta$, then the general value of θ is

- (a) $n\pi$
- (b) $\frac{n\pi}{c}$ (c) $n\pi \pm \frac{\pi}{2}$ (d) $\frac{n\pi}{2}$

34. If $\sin 3\alpha = 4 \sin \alpha \sin(x + \alpha) \sin(x - \alpha)$, then $x = -\alpha$

- (a) $n\pi \pm \frac{\pi}{6}$
- (b) $n\pi \pm \frac{\pi}{3}$ (c) $n\pi \pm \frac{\pi}{4}$ (d) $n\pi \pm \frac{\pi}{2}$

35. The general solution of $\sin^2\theta \sec\theta + \sqrt{3}\tan\theta = 0$ is

(a) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{3}, \theta = n\pi, n \in \mathbb{Z}$

(b) $\theta = n\pi, n \in \mathbb{Z}$

(c) $\theta = n\pi + (-1)^{n+1} \frac{\pi}{2}, n \in \mathbb{Z}$

(d) $\theta = \frac{n\pi}{2}, n \in \mathbb{Z}$

(d) None of these

www.sakshieducation.com				com	
36.	5. If $\cos 3x + \sin \left(2x - \frac{7\pi}{6}\right) = -2$, then $x = \text{(where } k \in Z\text{)}$				
	(a) $\frac{\pi}{3}(6k+1)$	(b) $\frac{\pi}{3}(6k-1)$	(c) $\frac{\pi}{3}$	-(2k+1)	d) None o
37. If $tan(cotx) = cot(tanx)$, then $sin2x =$					
1) ($(2n+1)\frac{\pi}{4}$	2) $\frac{4}{(2n+1)\pi}$	$3) \frac{4\pi}{2n+1}$	4) $\frac{2}{(2n+1)^{2}}$	$\frac{1}{1)\pi}$ $(n\neq -1)$

38. If $tanm\theta = cotn\theta$, then the G.S. of $\theta =$

(a) 0

(a) Zero

1)
$$\frac{(k+1)\pi}{2(m+n)}$$
 2) $\frac{(2k+1)\pi}{2(m+n)}$ 3) $\frac{(2n+1)\pi}{m+n}$ 4) $\frac{(n+1)\pi}{m+n}$

39. The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt{3}$, where $0 < \theta < 2\pi$ is

(c)2

(c) One

(d) 3

(d) Infinite

40. If
$$|k| = 5$$
 and $0^{\circ} \le \theta \le 360^{\circ}$, then the number of different solutions of $3\cos\theta + 4\sin\theta = k$ is

41. The solution of equation $\cos^2 \theta + \sin \theta + 1 = 0$ lies in the interval

(b) Two

(b) 1

(a)
$$\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$
 (b) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ (c) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$ (d) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$

42. The number of solution of the equation $2\cos(e^x) = 5^x + 5^{-x}$, are

- (a) No solution (b) One solution
- (c) Two solutions (d) Infinitely many solutions

43. If cot $(\alpha + \beta) = 0$, then $\sin(\alpha + 2\beta) =$

(a)
$$\sin \alpha$$
 (b) $\cos \alpha$ (c) $\sin \beta$ (d) $\cos 2\beta$

If $\sin 2x \cos 2x \cos 4x = \lambda$ has a solution, then λ lies in the interval 44.

The equation $\sin^6 x + \cos^6 x = a^2$ has real solution, if **45.**

1) a
$$\varepsilon$$
 (-1, 1) \cup (2, 3) 2) a ε [-1, $\frac{1}{2}$] \cup [1/2, 1] 3) a ε (-1/2, 1/2) \cup (3/2, 2) 4) a ε (-1/2, 1)

If 32 $\tan^8 \theta = 2\cos^2 \alpha - 3\cos \alpha$ and $3\cos 2\theta = 1$, then the general value of α is 46.

1)
$$2n\pi$$
, $n \in \mathbb{Z}$ 2) $2n\pi \pm \frac{2\pi}{3}$, $n \in \mathbb{Z}$ 3) $2n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$ 4) $n\pi \pm \frac{\pi}{3}$, $n \in \mathbb{Z}$

47. If $\cos 2\theta = (\sqrt{2} + 1) \left(\cos \theta - \frac{1}{\sqrt{2}} \right)$, then the value of θ is

(a)
$$2n\pi + \frac{\pi}{4}$$

(b)
$$2n\pi \pm \frac{\pi}{4}$$

(c)
$$2n\pi - \frac{\pi}{4}$$

(b) $2n\pi \pm \frac{\pi}{4}$ (c) $2n\pi - \frac{\pi}{4}$ (d) None of these

48. If $2\cos^2 x + 3\sin x - 3 = 0$, $0 \le x \le 180^{\circ}$, then x =

49. The values of θ satisfying $\sin 7\theta = \sin 4\theta - \sin \theta$ and $0 < \theta < \frac{\pi}{2}$ are

(a)
$$\frac{\pi}{9}, \frac{\pi}{4}$$

(b)
$$\frac{\pi}{3}, \frac{\pi}{9}$$
 (c) $\frac{\pi}{6}, \frac{\pi}{9}$ (d) $\frac{\pi}{3}, \frac{\pi}{4}$

$$(c) \frac{\pi}{6}, \frac{\pi}{6}$$

(d)
$$\frac{\pi}{3}, \frac{\pi}{4}$$

50. If $0 \le x \le \pi$ and $81^{\sin^2 x} + 81^{\cos^2 x} = 30$, then x =

(a)
$$\pi/6$$

(b)
$$\pi / 2$$

(c)
$$\pi/4$$

(b)
$$\pi/2$$
 (c) $\pi/4$ (d) $3\pi/4$

51. If $\cos A \sin \left(A - \frac{\pi}{6} \right)$ is maximum, then the value of A is equal to

(a)
$$\frac{\pi}{3}$$

(b)
$$\frac{\pi}{4}$$

(b)
$$\frac{\pi}{4}$$
 (c) $\frac{\pi}{2}$

(d) None of these

52. If $12 \cot^2 \theta - 31 \csc \theta + 32 = 0$, then the value of $\sin \theta$ is

(a)
$$\frac{3}{5}$$
 or 1

(a)
$$\frac{3}{5}$$
 or 1 (b) $\frac{2}{3}$ or $\frac{-2}{3}$ (c) $\frac{4}{5}$ or $\frac{3}{4}$ (d) $\pm \frac{1}{2}$

(c)
$$\frac{4}{5}$$
 or $\frac{3}{4}$

(d)
$$\pm \frac{1}{2}$$

53. The general solution of $a\cos x + b\sin x = c$, where a, b, c are constants

(a)
$$x = n\pi + \cos^{-1}\left(\frac{c}{\sqrt{a^2 + b^2}}\right)$$

(b)
$$x = 2n\pi - \tan^{-1}\left(\frac{b}{a}\right)$$

(c)
$$x = 2n\pi - \tan^{-1}\left(\frac{b}{a}\right) \pm \cos^{-1}\left(\frac{c}{\sqrt{a^2 + b^2}}\right)$$

(d)
$$x = 2n\pi + \tan^{-1} \left(\frac{b}{a} \right) \pm \cos^{-1} \left(\frac{c}{\sqrt{a^2 + b^2}} \right)$$

54. If $1 + \sin x + \sin^2 x + \dots$ to $\infty = 4 + 2\sqrt{3}$, $0 < x < \pi$, then

(a)
$$x = \frac{\pi}{6}$$
 (b) $x = \frac{\pi}{3}$

(b)
$$x = \frac{\pi}{2}$$

(c)
$$x = \frac{\pi}{3}$$
 or $\frac{\pi}{6}$

(c)
$$x = \frac{\pi}{3}$$
 or $\frac{\pi}{6}$ (d) $x = \frac{\pi}{3}$ or $\frac{2\pi}{3}$

55. If $5\cos^2\theta + 7\sin^2\theta - 6 = 0$, then the general value of θ is

(a)
$$2n\pi \pm \frac{\pi}{4}$$
 (b) $n\pi \pm \frac{\pi}{4}$

(b)
$$n\pi \pm \frac{\pi}{4}$$

(c)
$$n\pi + (-1)^n \frac{\pi}{4}$$

(c) $n\pi + (-1)^n \frac{\pi}{4}$ (d) None of these

56	If the colution for	a of	a agrain A.D.	than the numerically s	mallagt	
			p > 0, q > 0 are in A.P.	, then the numerically s	manest	
con	ımon difference of A	A.P. is				
(a)	$\frac{\pi}{p+q}$	(b) $\frac{2\pi}{p+q}$ (c) $\frac{2\pi}{20}$	$\frac{\pi}{p+q} \qquad \qquad (d) \; \frac{1}{p+q}$			
57.	The general valu	e of α for which (1	$1+\sin\alpha$) $(1+x^2)+x$ co	$s\alpha = 0$ is an identity in x	is (for	
	7. The general value of α for which $(1+\sin\alpha)(1+x^2) + x \cos\alpha = 0$ is an identity in x is (for integral values of n)					
	$1) 2n\pi + \frac{\pi}{2}$	$2) \ 2n\pi - \frac{\pi}{2}$	3) $n\pi + \frac{\pi}{2}$	4) $n\pi + \frac{3\pi}{2}$		
58.	If $1+\cos(x-y)=0$	then				
	$1)\cos x - \cos y = 0$	$2)\cos x + \cos x$	$s y = 0 3) \sin x + \sin y$	$y = 0 4) \cos x + \sin y = 0$		
59.	If 'a' is any real n	number, the number	er of roots of cotx - ta	anx = a in the first quadra	ant is	
	1) 2	2) 0	3) 1	4) infinite		
60.	The values of x	between 0 and 2π	which satisfy the ed	quation sinx $\sqrt{8\cos^2 x} = 1$	are in	
	A.P. The common difference of the A.P is					
	1) π/8	2) π/4	3) 3π/8	4) $\frac{5\pi}{8}$		
61.	The number of pair	rs (x, y) satisfying	the equations $\sin x + \sin x$	$y = \sin(x + y)$ and $ x + y = 1$ is		
	(a) 2	(b) 4				
	(c) 6	(d) ∞				
62.	The equation $3\cos x$	$+4\sin x = 6$ has				
	(a) Finite solution	(b) Infinite solution	on(c) One solution	on (d) No solution		
63.	The set of values of	\hat{x} for which the ex	Expression $\frac{\tan 3x - \tan 2x}{1 + \tan 3x \tan 2x}$	==1 , is		
	(a) <i>\phi</i>	(b) $\frac{\pi}{4}$				
	(c) $\left\{ n\pi + \frac{\pi}{4} : n = 1, 2, 3 \dots \right\}$	$\left. \left\{ 2n\pi + \frac{\pi}{4} : n = 1, \right. \right.$	2,3}			

64. One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

(a) $\left[0, \frac{\pi}{2}\right]$ (b) $\left[-\frac{\pi}{2}, 0\right]$ (c) $\left[\frac{\pi}{2}, \pi\right]$ (d) $\left[\pi, \frac{3\pi}{2}\right]$

65. The number of values of θ in [0, 2π] satisfying the equation $2\sin^2\theta = 4 + 3\cos\theta$ are

(a) 0

(b) 1

(c)

2

(d) 3

66. For $0 \le x \le 2\pi$, match the following

Trigonometric equation

Number of solutions

I. $\tan^2 x + \cot^2 x = 2$

a) 2

II. $\sin^2 x - \cos x = 1/4$

b) 0

III. $4\sin^2\theta + 6\cos^2\theta = 10$

c) 1

IV. $\sin x = 1$

d) 4

1) d, a, b, c

2) d, a, c, b

3) d, b, c, a

4) d, c, a, b

67. A: $3 \sin x + 4 \cos x = 7$ has no solution

R: a cos x + b sin x = c has no solution if $|c| > \sqrt{a^2 + b^2}$

- 1) Both A and R are true and R is correct explanation of A
- 2) Both A and R are true and R is not correct explanation of A
- 3) A is true but R is false
- 4) A is false but R is true

HINTS AND SOLUTIONS

1. (a)
$$\theta = n\pi \pm \alpha; n \in \mathbb{Z}$$
.

2. (a)
$$\cos^2 x = 1 - \sin^2 x$$

$$\sqrt{3}\sin x + \cos x = 4$$

$$\Rightarrow \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = 2$$

$$\Rightarrow \sin(x+30^{\circ}) = 2$$

11. (c)
$$2 \tan^2 \theta = \sec^2 \theta \Rightarrow 2 \tan^2 \theta = \tan^2 \theta + 1$$

$$\Rightarrow \tan^2 \theta = 1 = \tan^2 \left(\frac{\pi}{4}\right) \Rightarrow \theta = n\pi \pm \frac{\pi}{4}.$$

12. (c)
$$\cot \theta + \tan \theta = 2 \csc \theta \implies \frac{2}{\sin \theta} = \frac{1}{\sin \theta \cos \theta}$$

$$\Rightarrow \cos \theta = \frac{1}{2} \text{ Or } \sin \theta = 0 \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3} \text{ Or } \theta = n\pi.$$

13. (a)
$$\tan m\theta = \tan n\theta \Rightarrow m\theta = p\pi + n\theta \Rightarrow \theta = \frac{p\pi}{(m-n)}$$

Hence different values of θ are in A.P. with $\frac{\pi}{m-n}$ as common difference.

14. (a) We have
$$\frac{\pi}{4} \cot \theta = \frac{\pi}{2} - \frac{\pi}{4} \tan \theta \Rightarrow \tan \theta + \cot \theta = 2$$

$$\Rightarrow \sin 2\theta = 1 = \sin \frac{\pi}{2} \Rightarrow \theta = n\pi + \frac{\pi}{4}.$$

15. (b)
$$\sec 2\theta = \frac{1}{\cos 2\theta} = \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta}$$
,

$$\tan^2 \theta + \frac{1 + \tan^2 \theta}{1 - \tan^2 \theta} = 1$$
.

$$\Rightarrow$$
 tan $\theta = 0$ Of tan $\theta = \pm \sqrt{3}$

Now $\tan \theta = 0 \Rightarrow \theta = m\pi$, where m is an integer and $\tan \theta = \pm \sqrt{3} = \tan(\pm \pi/3) \Rightarrow \theta = n\pi \pm \frac{\pi}{3}$, where n is an integer. Thus $\theta = m\pi, n\pi \pm \frac{\pi}{3}$, where m and n are integers.

17. (a)
$$4 \sin^4 x = 1 - \cos^4 x = (1 - \cos^2 x)(1 + \cos^2 x)$$

$$\Rightarrow \sin^2 x [4 \sin^2 x - 1 - (1 - \sin^2 x)] = 0$$

$$\Rightarrow \sin^2 x [5 \sin^2 x - 2] = 0 \Rightarrow \sin x = 0 \text{ Or } \sin x = \pm \sqrt{2/5} \text{ .}$$

$$\Rightarrow x = n\pi$$

18. (b) After solving the determinant
$$2\cos\theta = 0$$

$$\implies \theta = 2n\pi \pm \frac{\pi}{2} .$$

19. (c)
$$\sin 5x + \sin 3x + \sin x = 0$$

$$\Rightarrow$$
 $-\sin 3x = \sin 5x + \sin x = 2\sin 3x\cos 2x$

$$\Rightarrow \sin 3x = 0 \Rightarrow x = 0$$

Or
$$\cos 2x = -\frac{1}{2} = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right)$$

$$\Rightarrow 2x = 2n\pi \pm \left(\pi - \frac{\pi}{3}\right) \Rightarrow x = n\pi \pm \left(\frac{\pi}{3}\right)$$

For
$$x \in [0, \frac{\pi}{2}], \Rightarrow x = \frac{\pi}{3}$$
.

20. (c)
$$\tan(\pi \cos \theta) = \tan\left(\frac{\pi}{2} - \pi \sin \theta\right)$$

$$\therefore \sin \theta + \cos \theta = \frac{1}{2} \implies \sin \left(\theta + \frac{\pi}{4} \right) = \frac{1}{2\sqrt{2}}.$$

21. (b)
$$(1 + \tan \theta) (1 + \tan \phi) = 2 \Rightarrow \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = 1$$

$$\Rightarrow$$
 $\tan(\theta + \phi) = 1 \Rightarrow \theta + \phi = \frac{\pi}{4} = 45^{\circ}$.

- 22. (c)
- 23. (c)
- 24. (a) Given $\sin x + \sin y + \sin z = -3$ is satisfied only when $x = y = z = \frac{3\pi}{2}$, for $x, y, z \in [0, 2\pi]$.
- 25. (b) $2-2\cos^2\theta = 3\cos\theta$

$$\Rightarrow 2\cos^2 + 3\cos\theta - 2 = 0$$

$$\Rightarrow$$
 $\cos \theta = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm 5}{4}$

Neglecting (-) sign, we get

$$\cos \theta = \frac{1}{2} = \cos \left(\frac{\pi}{3}\right) \implies \theta = 2n\pi \pm \frac{\pi}{3}.$$

- 26. (d) We have, $\tan \theta + \frac{1}{\sqrt{3}} = 0$ or $\tan \theta = -\frac{1}{\sqrt{3}}$
 - θ lies in between 0° and 360°
 - $\therefore \theta = 150^{\circ} \text{ and } 330^{\circ}.$
- 27. (c) $\tan \theta = -1 = \tan \left(2\pi \frac{\pi}{4} \right), \cos \theta = \frac{1}{\sqrt{2}} = \cos \left(2\pi \frac{\pi}{4} \right)$

Hence general value is $2n\pi + \left(2\pi - \frac{\pi}{4}\right) = 2n\pi + \frac{7\pi}{4}$.

28. (a) determinant = $\begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ \sin^2 \theta & \cos^2 \theta & 1 + 4 \sin 4\theta \end{vmatrix} = 0$

$$\Rightarrow 1 + 4\sin 4\theta + \cos^2 \theta + \sin^2 \theta = 0$$

$$\Rightarrow$$
 4 sin 4 θ = -2 \Rightarrow sin 4 θ = $\frac{-1}{2}$

$$\Rightarrow 4\theta = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}, (0 < 4\theta < 2\pi)$$

Since, $0 < \theta < \frac{\pi}{2} \implies 0 < 4\theta < 2\pi \implies \theta = \frac{7\pi}{24}, \frac{11\pi}{24}$.

- 29.(3)
- 30.(a)
- 31.(b)
- 32. (a) Since A.M. $\geq G.M. \frac{1}{2} (2^{\sin x} + 2^{\cos x}) \geq \sqrt{2^{\sin x} \cdot 2^{\cos x}}$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} \ge 2.2^{\frac{\sin x + \cos x}{2}}$$

$$\Rightarrow 2^{\sin x} + 2^{\cos x} > 2^{1 + \frac{\sin x + \cos x}{2}}$$

and we know that $\sin x + \cos x \ge -\sqrt{2}$

$$\therefore 2^{\sin x} + 2^{\cos x} > 2^{1-(1/\sqrt{2})}, \text{ for } x = \frac{5\pi}{4}.$$

33. (b) $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta$

$$\tan 6\theta = \frac{\tan \theta + \tan 2\theta + \tan 3\theta - \tan \theta \tan 2\theta \tan 3\theta}{1 - \sum \tan \theta \tan 2\theta}$$

= 0, (from the given condition)

$$\Rightarrow 6\theta = n\pi \Rightarrow \theta = n\pi/6$$
.

34. (b) $3 \sin \alpha - 4 \sin^3 \alpha = 4 \sin \alpha (\sin^2 x - \sin^2 \alpha)$

$$\therefore \sin^2 x = \left(\frac{\sqrt{3}}{2}\right)^2 \implies \sin^2 x = \sin^2 \pi / 3$$

$$\implies x = n\pi \pm \pi/3$$
.

35. (b) The given equation can be written as

$$\Rightarrow \frac{\sin^2 \theta}{\cos \theta} + \sqrt{3} \tan \theta = 0 \Rightarrow \tan \theta \sin \theta + \sqrt{3} \tan \theta = 0$$

$$\tan \theta (\sin \theta + \sqrt{3}) = 0 \implies \tan \theta = 0 \implies \theta = n\pi, n \in \mathbb{Z}.$$

36. (a) We have $\cos 3x + \sin \left(2x - \frac{7\pi}{6}\right) = -2$

$$\Rightarrow 1 + \cos 3x + 1 + \sin \left(2x - \frac{7\pi}{6}\right) = 0$$

$$\Rightarrow (1 + \cos 3x) + 1 - \cos \left(2x - \frac{2\pi}{3}\right) = 0$$

$$\Rightarrow 2\cos^2\frac{3x}{2} + 2\sin^2\left(x - \frac{\pi}{3}\right) = 0$$

$$\Rightarrow \cos \frac{3x}{2} = 0$$
 and $\sin \left(x - \frac{\pi}{3}\right) = 0$

$$\Rightarrow \frac{3x}{2} = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$
 and $x - \frac{\pi}{3} = 0, \pi, 2\pi \dots \Rightarrow x = \frac{\pi}{3}$

$$\cos \frac{3x}{2} = 0$$
 and $\sin \left(x - \frac{\pi}{3}\right) = 0$ is $x = 2k\pi + \frac{\pi}{3} = \frac{\pi}{3}(6k+1)$, where $k \in \mathbb{Z}$.

39. (c)
$$\sec \theta + \tan \theta = \sqrt{3}$$

$$\sec \theta - \tan \theta = \frac{1}{\sqrt{3}}$$

$$\tan \theta = \frac{1}{2} \left(\sqrt{3} - \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}} = \tan \left(\frac{\pi}{6} \right)$$

$$\Rightarrow \theta = n\pi + \frac{\pi}{6}$$
.

 \therefore Solutions for $0 \le \theta \le 2\pi$ are $\frac{\pi}{6}$ and $\frac{7\pi}{6}$.

40. (b)
$$3\cos\theta + 4\sin\theta = 5\left[\frac{3}{5}\cos\theta + \frac{4}{5}\sin\theta\right] = 5\cos(\theta - \alpha)$$

Where
$$\cos \alpha = \frac{3}{5}$$
, $\sin \alpha = \frac{4}{5}$

Now $3\cos\theta + 4\sin\theta = k$

$$\therefore$$
 5 cos($\theta - \alpha$) = $k \Rightarrow$ cos($\theta - \alpha$) = ± 1

$$\Rightarrow \theta - \alpha = 0^{\circ}, 180^{\circ} \Rightarrow \theta = \alpha, 180^{\circ} + \alpha$$
.

41. (d) We have,
$$\cos^2 \theta + \sin \theta + 1 = 0$$

$$\implies 1 - \sin^2 \theta + \sin \theta + 1 = 0$$

$$\Rightarrow \sin^2 \theta - \sin \theta - 2 = 0 \Rightarrow (\sin \theta + 1)(\sin \theta - 2) = 0$$

 $\sin \theta = 2$, which is not possible and $\sin \theta = -1$.

Therefore, solution of given equation lies in the interval $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$.

42. (a) We know
$$\frac{5^x + 5^{-x}}{2} \ge 1$$
, (using A.M. \ge G.M.)

But since $\cos(e^x) \le 1$

So, there does not exist any solution.

43. (a) Given, cot
$$(\alpha + \beta) = 0 \Rightarrow \cos(\alpha + \beta) = 0$$

$$\Rightarrow \alpha + \beta = (2n+1)\frac{\pi}{2}, n \in I$$

$$\therefore \sin(\alpha + 2\beta) = \sin(2\alpha + 2\beta - \alpha) = \sin[(2n+1)\pi - \alpha]$$

$$= \sin(2n\pi + \pi - \alpha) = \sin(\pi - \alpha) = \sin \alpha.$$

47. (b)
$$2\cos^2\theta - (\sqrt{2} + 1)\cos\theta - 1 + \frac{(\sqrt{2} + 1)}{\sqrt{2}} = 0$$

$$\Rightarrow \cos \theta = \frac{(\sqrt{2} + 1) \pm \sqrt{(\sqrt{2} + 1)^2 - \frac{8}{\sqrt{2}}}}{4}$$

$$\Rightarrow \cos \theta = \cos \left(\frac{\pi}{4}\right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4}.$$

48. (a)
$$2 - 2\sin^2 x + 3\sin x - 3 = 0$$

$$\Rightarrow (2\sin x - 1)(\sin x - 1) = 0 \Rightarrow \sin x = \frac{1}{2} \text{ OT } \sin x = 1$$

$$\Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{\pi}{2} \text{ i.e., } 30^\circ, 150^\circ, 90^\circ.$$

49. (a)
$$\sin 7\theta + \sin \theta - \sin 4\theta = 0$$

$$\Rightarrow 2\sin 4\theta \cos 3\theta - \sin 4\theta = 0$$

$$\Rightarrow \sin 4\theta (2\cos 3\theta - 1) = 0 \Rightarrow \sin 4\theta = 0, \cos 3\theta = \frac{1}{2}$$

Now
$$\sin 4\theta = 0 \implies 4\theta = \pi \implies \theta = \frac{\pi}{4}$$
.

and
$$\cos 3\theta = \frac{1}{2} \implies 3\theta = \frac{\pi}{3} \implies \theta = \frac{\pi}{9}$$
.

50. (a) We have,
$$81^{\sin^2 x} + 81^{\cos^2 x} = 30$$

put $x = \frac{\pi}{6}$

Then
$$(81)^{\sin^2 \pi/6} + (81)^{\cos^2 \pi/6} = 30$$

 $\Rightarrow (81)^{1/4} + (81)^{3/4} = 30 \Rightarrow 30 = 30$

51. (a)
$$\cos A \sin \left(A - \frac{\pi}{6} \right) = \frac{1}{2} \left[\sin \left(2A - \frac{\pi}{6} \right) - \sin \frac{\pi}{6} \right]$$

But
$$\sin\left(2A - \frac{\pi}{6}\right) - \frac{1}{2}$$
 attain maximum value at $2A - \frac{\pi}{6} = \frac{\pi}{2} \Rightarrow A = \frac{\pi}{3}$.

52. (c)
$$12 \cot^2 \theta - 31 \csc \theta + 32 = 0$$

 $12(\csc^2 \theta - 1) - 31 \csc \theta + 32 = 0$
 $(4 \csc \theta - 5)(3 \csc \theta - 4) = 0$
 $\csc \theta = \frac{5}{4}, \frac{4}{3}; \quad \therefore \quad \sin \theta = \frac{4}{5}, \frac{3}{4}.$

53. Put
$$a = b = c = 1$$
, then $\cos\left(x - \frac{\pi}{4}\right) = \cos\frac{\pi}{4}$

$$\Rightarrow$$
 $x = 2n\pi + \frac{\pi}{4} \pm \frac{\pi}{4}$ which is given by option (d).

54. (d)
$$1 + \sin x + \sin^2 x + = 4 + 2\sqrt{3}$$

$$\Rightarrow \frac{1}{1 - \sin x} = 4 + 2\sqrt{3} \Rightarrow \sin x = 1 - \frac{1}{4 + 2\sqrt{3}}$$

$$\Rightarrow \sin x = 1 - \frac{(4 - 2\sqrt{3})}{4} = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2}$$
$$\Rightarrow x = \frac{\pi}{3} \text{ or } \frac{2\pi}{3}.$$

55. (b)
$$5-5\sin^2\theta+7\sin^2\theta=6 \implies 2\sin^2\theta=1$$

$$\Rightarrow \sin^2\theta=\frac{1}{2}=\sin^2\left(\frac{\pi}{4}\right)\Rightarrow \theta=n\pi\pm\frac{\pi}{4}.$$

56. (b) Given
$$\cos p\theta = -\cos q\theta = \cos(\pi + q\theta)$$

$$\implies p\theta = 2n\pi \pm (\pi + q\theta), n \in I$$

$$\Rightarrow \theta = \frac{(2n+1)\pi}{p-q} \text{ or } \frac{(2n-1)\pi}{p+q}, n \in I$$

Both the solutions form an A.P. $\theta = \frac{(2n+1)\pi}{p-q}$ gives us an A.P. with common difference $\frac{2\pi}{p-q}$ and $\theta = \frac{(2n-1)\pi}{p+q}$ gives us an A.P. with common difference $=\frac{2\pi}{p+q}$. Certainly, $\frac{2\pi}{p+q} < \left| \frac{2\pi}{p-q} \right|$.

- 57. (b)
- 58. (b)
- 59. (c)
- 60. (b)

61. (c)
$$2\sin\frac{1}{2}(x+y)\cos\frac{1}{2}(x-y) = 2\sin\frac{1}{2}(x+y)\cos\frac{1}{2}(x+y)$$

$$\sin\frac{1}{2}(x+y) = 0$$
 Or $\sin\frac{1}{2}x = 0$ Or $\sin\frac{1}{2}y = 0$

Thus x + y = -1, x - y = -1.

When x+y=0, we have to reject x+y=1 and check with the options or x+y=-1 and solve it with x-y=1 or x-y=-1 which gives $\left(\frac{1}{2},-\frac{1}{2}\right)$ or $\left(-\frac{1}{2},\frac{1}{2}\right)$ as the possible solution. Again solving with x=0, we get $(0,\pm 1)$ and solving with y=0, we get $(\pm 1,0)$ as the other solution. Thus we have six pairs of solution for x and y.

62. (d)
$$3\cos x + 4\sin x = 6$$

$$\Rightarrow \frac{3}{5}\cos x + \frac{4}{5}\sin x = \frac{6}{5} \Rightarrow \cos(x - \theta) = \frac{6}{5},$$

So, that equation has no solution.

63. (a)
$$\tan(3x - 2x) = \tan x = 1 \implies x = n\pi + \frac{\pi}{4}$$

64. But this value does not satisfy the given equation. Hence option (a) is the correct answer(a)

$$f(x) = \cos x - x + \frac{1}{2}, \ f(0) = \frac{3}{2} > 0$$

$$f\left(\frac{\pi}{2}\right) = 0 - \frac{\pi}{2} + \frac{1}{2} = \frac{1-\pi}{2} < 0$$
, $\left(\because \pi = \frac{22}{7} \text{ nearly}\right)$

 \therefore One root lies in the interval $\left[0, \frac{\pi}{2}\right]$.

65. (a)
$$2-2\cos^2\theta = 4+3\cos\theta \implies 2\cos^2\theta + 3\cos\theta + 2 = 0$$

$$\Rightarrow \cos\theta = \frac{-3 \pm \sqrt{9 - 16}}{4},$$

which is imaginary, hence no solution.

- 66. (a)
- 67. (a)