Exercice: (7.5 pts)

On considère le corps commutatif $\mathbb{Z}/5\mathbb{Z}$. Soit $\dot{a},\dot{b},\dot{c}\in\mathbb{Z}/5\mathbb{Z}$ et soit le système linéaire

suivant :
$$\begin{cases} \dot{2} x + \dot{3} y &= \dot{a} \\ \dot{2} x + \dot{4} y + \dot{2} z = \dot{b} & \dots (S) \\ \dot{4} x + \dot{2} y + \dot{2} z = \dot{c} \end{cases}$$

1- Pour quelles valeurs de \dot{a},\dot{b},\dot{c} le système (S) est-il de Cramer ?

Solution: Soit
$$A = \begin{pmatrix} \dot{2} & \dot{3} & \dot{0} \\ \dot{2} & \dot{4} & \dot{2} \\ \dot{4} & \dot{2} & \dot{2} \end{pmatrix} \in M_3(\mathbb{Z}/5\mathbb{Z})$$
 la matrice du système. On calcule le

déterminant de A, on trouve $\dot{2}0=\dot{0}$ donc le système (S) n'est pas de Cramer pour tous $\dot{a},\dot{b},\dot{c}\in\mathbb{Z}/5\mathbb{Z}$. (2 pts)

2- On pose $\dot{a} = \dot{4}, \dot{b} = \dot{4}, \dot{c} = \dot{3}.$

i- Dire pouquoi le système (S) n'est pas de Cramer.

Solution: D'après la question précédente le système (S) n'est pas de Cramer (0.5 pt).

ii- Déterminer, le rang, la matrice principale, les équations principales et les inconnues principales du système (S).

Solution : Comme le déterminant de A est nul, donc rgA < 3, et si on supprime dans la matrice A la 3ème ligne et la 3ème colonne, on obtient la matrice extraite carrée $\begin{pmatrix} \dot{2} & \dot{3} \\ \dot{2} & \dot{4} \end{pmatrix}$ de déterminant égal à $\dot{2} \neq \dot{0}$, donc rgA = rgS = 2, ainsi :

La matrice principale du système (S) est $\begin{pmatrix} \dot{2} & \dot{3} \\ \dot{2} & \dot{4} \end{pmatrix}$,

les équations principales du système (S) sont les deux premières équations du système (S),

et les inconnues principales du système (S) sont x et y. (2 pts)

iii- Appliquer le théorème de Rouché-Fontené pour dire si le système (S) est compatible (Préciser le(s) déterminant(s) bordant(s) le déterminant principal).

Solution : Le seul déterminant bordant le déterminant principal c'est : $\begin{vmatrix} \dot{2} & \dot{3} & \dot{4} \\ \dot{2} & \dot{4} & \dot{4} \\ \dot{4} & \dot{2} & \dot{3} \end{vmatrix}$ qui

est égal à $\dot{0}$, donc le système (S) est compatible. (1 pt)

iv- Résoudre (dans $(\mathbb{Z}/5\mathbb{Z})^3$) le système (S) dans le cas où il est compatible en précisant si le nombre de solutions est fini ou non.

Solution : Il suffit de résoudre le système de Cramer : $\begin{cases} \dot{2} \ x + \dot{3} \ y = \dot{4} \\ \dot{2} \ x + \dot{4} \ y = \dot{4} - \dot{2} \ z \end{cases}$

L'équation 1 retranchée de l'équation 2 donne $y=-\dot{z}$ z et en remplaçant dans la 1ère équation, on trouve \dot{z} $x=\dot{z}+z$ qu'on multiplie par \dot{z} pour obtenir $z=\dot{z}+\dot{z}$, ainsi l'ensemble des solutions du système est $\Gamma=\left\{\left(\dot{z}+\dot{z}\right),z-\dot{z}\right\}$, $z\in\mathbb{Z}/5\mathbb{Z}$ (1.5 pt).

On en déduit que l'ensemble de solutions est fini puisque, dans l'ensemble des solutions, z parcourt un ensemble fini qui est $\mathbb{Z}/5\mathbb{Z}$ (0.5 pt).