Ústní zkouška

z Úvodu do matematické analýzy, části prvé

Verze: 0m3g4r3kt

Přednášející: His Divine Wisdom Sir Adam Clypatch

16. února 2024

NENÍ-LI ŘEČENO JINAK, VŠECHNY POJMY A DŮKAZY FORMULUJTE PEČLIVĚ S DŮRAZEM NA FORMÁLNÍ SPRÁVNOST.

Část	Hodnocení
Základní definice	0/0
Lehké úlohy a důkazy	/6
Těžké ulohy a důkazy	/ 12

Základní definice (0 bodů)

Neznalost základních definic znamená bezpodmínečné nesložení zkoušky.

- (1) Přirozená čísla.
- (2) Konvergentní posloupnost.
- (3) Limita posloupnosti v $\pm \infty$.
- (4) Infimum a supremum.
- (5) Délka intervalu.

Lehké úlohy a důkazy (6 bodů)

Pojmy užité v úlohách nemusíte definovat. Používáte-li k řešení úlohy nebo k důkazu předchozí tvrzení, zformulujte je.

- (1) Trojúhelníková nerovnost.
- (2) Dokažte, že když $a,b:\mathbb{N}\to\mathbb{R}$ jsou posloupnosti, $\lim a=A\in\mathbb{R}$ a $\lim b=B\in\mathbb{R},$ pak

$$\lim(a+b) = A+B.$$

(3) Spočtěte

$$\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n}).$$

Těžké úlohy a důkazy (12 bodů)

Nemusíte dokonale zformulovat svá řešení. Obecná idea rozvinutá důležitými detaily postačuje.

(1) Ať $a: \mathbb{N} \to \mathbb{R}$ je posloupnost a $b: \mathbb{N} \to \mathbb{R}$ je posloupnost "průměrů" posloupnosti a, tj.

$$b_n \coloneqq \frac{1}{n} \sum_{k=1}^n a_k.$$

- (a) Dokažte, že když $\lim a = 0$, pak i $\lim b = 0$. Platí i opačná implikace? Dokažte nebo uveďte protipříklad.
- (b) Dokažte s použitím bodu (a), že když $\lim a = L \in \mathbb{R}$, pak rovněž $\lim b = L$.

Návod: Pro dané $\varepsilon > 0$ a $n_0 \in \mathbb{N}$, od kterého dále již platí $|a_n| < \varepsilon$, rozložte členy posloupnosti b_n na dvě složky, které lze obě seshora odhadnout číslem závislým na ε . V bodě (b) využijte faktu, že když $\lim_{n \to \infty} a_n = L$, pak $\lim_{n \to \infty} (a_n - L) = 0$.

(2) Dokažte, že

$$\lim_{n\to\infty}\frac{4^n}{n!}=0.$$

Návod:

- (a) Ukažte, že posloupnost $a_n := 4^n/n!$ je klesající a zdola omezená, a tedy má z věty o konvergenci monotónních posloupností limitu.
- (b) Vyjádřete a_{n+1} pomocí a_n a využijte získaného vzorce pro výpočet $\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}$.