

Trigonometric identity	Hyperbolic identity	
$\cos^2\theta + \sin^2\theta \equiv 1$	$\cosh^2 x - \sinh^2 x \equiv 1$	
$\cos 2\theta \equiv \cos^2 \theta - \sin^2 \theta$	$\cosh 2x \equiv \cosh^2 x + \sinh^2 x$	
$\sin 2\theta \equiv 2\sin\theta\cos\theta$	$\sinh 2x \equiv 2\sinh x \cosh x$	
$1 - \tanh^2 x = \operatorname{sech}^2 x$		
$\coth^2 x - 1 = co \operatorname{sech}^2 x$		
$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$		
$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$		
$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$		
$\cosh^2 x = \frac{\cosh 2x + 1}{2}$		
$\sinh^2 x = \frac{\cosh 2x - 1}{2}$		
2		
or sinh x = fn(x-	$t \sqrt{y^2 + 1}$	
on Cosh x = ln (x	(x^2) (x31)	
$antanhx = \frac{1}{2}ln$	$\left(\frac{l+x}{l-x}\right)$ $\left(x ^2\right)$	
2 Ch	(/- X / (/ X / 1)	

Maclaurin's series:

$$f(x) = f(0) + x f'(0) + \frac{x^2}{2!} f''(0) + \dots + \frac{x^r}{r!} f^{(r)}(0) + \dots$$

$$e^x = \exp(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^r}{r!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{r+1} \frac{x^r}{r} + \dots$$

$$(-1 < x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^r \frac{x^{2r+1}}{(2r+1)!} + \dots$$
 (all x)

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^r \frac{x^{2r}}{(2r)!} + \dots$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^r \frac{x^{2r+1}}{2r+1} + \dots$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2r+1}}{(2r+1)!} + \dots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2r}}{(2r)!} + \dots$$

$$\tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2r+1}}{2r+1} + \dots$$

$$(all x)$$

$$\tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2r+1}}{2r+1} + \dots$$

$$(-1 < x < 1)$$

Ch-3 Integration Using thy perbolic functions / trigonometric functions PLXS fixi S,n-1(x) Ja-x2 205 -1 (X) Ja2-X2 $sinh^{-1}(\frac{x}{a})$ $\sqrt{\alpha^2 + \chi^2}$ $Oosh-\left(\frac{x}{a}\right)$ $\sqrt{\chi^2}$ a^2 tanh" x /- X 2 Reduction Formula Arc length along a curve. $S = \begin{cases} x_{1} \\ x_{1} \end{cases} / / + (\frac{\partial y}{\partial x})^{2} dx$ $S = \int_{X_1}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_1}^{X_2} \int_{X_2}^{X_2} \int_{X_2}^{X$ proof: $(ds)^2 = (dx)^2 + (dy)^2$ (ds) = (dx) + (dy)2 $\left(\frac{ds}{dt}\right)^2 = \left(\frac{dx}{dt}\right)^2 \left(\frac{dy}{dt}\right)^2$ $\frac{ds}{dx} = \sqrt{|+(\frac{dy}{ax})|^2}$

 $S = \int_{\alpha}^{\beta} \int_{r}^{r} r^{2} + (\frac{\alpha r}{\sigma \theta})^{2} d\theta$ proof: (ds) = (dr) 2 (r d0) surface & revolution S=2TI y ds (rotate about x-axis) approximation using rectangles.

Ch-4 Differsion transform Frist Order: dy + yp(x)=Q(x) fix, dy + yfix, P(x)=fix, Q(x) of yfix = $f(x) = f(x) \frac{dy}{dx} + y f'(x)$ y fix> P(x) = yf'(x) PLX) = f'(x) FLX) $\int P(x) dx = \int \frac{f'(x)}{f(x)} dx = ln(f(x))$ f(x) = e P(x)dx -> Integrating Factor $y = \int f(x) \cdot Q(x) dx$ Second Order $a\frac{dy}{dx^2}+b\frac{dy}{dx}+cy=0$

and +bn+c=0 -> our xiliony equation General Solution: L Complementary function

570 y= Ce + De Dex $\Delta = 0 \qquad y = (Cx + D)e^{3ix}$ < < 0 y = e dx (Cosbx+Ds,nBx) NI= X+Bi DI= X-Bi d. Particular Integral y fix) Assumed Form F(x) anx tintaix tas bnx tintbix tbix tbo bekx ore kx aisinkx + az Goskx bisinkx + bz Goskx Notice: if the assumption is point of yo and does not nork, yp = x F(x)

Ch-5 Complex Numbers Cortesian Form: Z=X+iy Modules-argument form: Z=r(os0+isin0) 1, (asa+1 sind). 12(038+ 4 sin 8)= $r, r, [Cos(\alpha+\beta)+isin(\alpha+\beta)]$ $r, (\alpha 3 \alpha + 7 \sin \alpha) = \frac{r}{r_2} \left[\cos (\alpha - \beta) + 7 \sin (\alpha - \beta) \right]$ Y2 (253 B + 1 Sin B) Exponential Form: Z= reig De Moirre's Theorem: Zn= Cosnotisinno 1. Express Wind and sinno as polynomials of asp or sin 0 (usng trigonometric identifies)

d. express cosho and sinho $z + \frac{1}{2} = 2030$ $z^{n} + \frac{1}{2}n = 20300$ $Z-\frac{1}{2}=2i\sin\theta$ $Z^n-\frac{1}{2n}=2i\sin\theta$ Summation use complex numbers Rosts of Unity The not 10073 of mity are $l, w, w^2, w^3, \ldots, w^{n-1}$ where w= e = 1 /tw+w2+ 111 + wn-1 = 0 nth root of any complex number Z=r(os0+isn0) $Zh = rh(cos \theta + 2k\pi + isin \theta + 2k\pi)$ K=0,1,1,1,n-1

Ch-6	Matrix
Intersection	of three planes:
1. Do not	mterceet
	t in two paramel lines
	t in a sigle point
4. Sheaf:	Share a common line
	prism: each par intered a line
	three Paner me Donables
	three ernes one porablet
det M 70	: one unique solution (3)
det M = 0	: in consistant equations
	005
	Consistant asuations
	Consistent equations

Eigenvalues & Eigenvectors
AX = XX
Characteristic equation:
1/2-2/2
each 1 ,3 associated with eigenvector X.
Solve $(A-N_{\kappa}I)X=0$
$\mathcal{D}_1 + \mathcal{D}_2 + \cdots + \mathcal{D}_n = \alpha_n + \alpha_n + \cdots + \alpha_n$
3,7,1,1,2,1,3,1
Diagona lization
A(e,e>, "en) = (Ae, Aez", Aen)
$=(\lambda e,\lambda e,\dots \lambda e)$
$=(e_1,e_2,\cdots,e_n)$
P

AP=	PD			
A = P				
Congley - H				
assume fre Po(A)=		13tic equi	ation is Pa	(N) = Olet(A-NI
1/8(10)-				

