Stage 3 Doing a Project

Marie Devlin, Lindsay Marshall

Doing a Project

- Your Stage 3 Project is
 - •Not just a large piece of coursework
 - •Demanding, challenging, rewarding
 - •Culmination of 3 years' study at Newcastle
 - •Chance to show what you can do
 - extending beyond material you've been taught
 - What you will tell employers about at interview

Stage 3 Project Module

- CSC3095 Project and Dissertation in Computing Science
 - 40 credits spread across both semesters (10 + 30)
- Semester 1:
 - Lectures on Research Methods and Skills
 - Begin research, planning and initial designs and experiments
- Semester 2:
 - One lecture about dissertation and poster
 - Complete implementation and evaluation
- 40 credits = 400 hours study

- Your project contributes 1/3 of your final year average and will have a significant effect on your degree classification
- If you fail your project, you will fail your degree

Projects in Computing Science

- Should involve learning about some unfamiliar aspect of Computing Science, and applying what you've learned to a realistic problem
 - You need to have a clear computer science challenge.
 - If you're doing one of the specialisms, your project must be related to that specialism.
- You are normally expected to undertake a significant amount of software development as part of the project
 - The choice of language and development environment is up to you (and your supervisor).

Choosing a project

- You can't do a project without an academic supervisor
- Most of you have signed up for a topic at the Project Fair.
 - If not or if you have changed your mind then talk to one of the module leaders as a matter of urgency.
- The theme coordinators will allocate you to a supervisor in NESS.
- You should meet your supervisor as soon as possible (by the end of Week 2) to discuss your project.
- If you don't have a supervisor in NESS and have not received email about this by the end of Week 1 then contact the theme leader.
- Second markers will be allocated later

Timetable - Semester 1

- Research Methods Lectures
 - Today: Doing a Project
 - Mondays 16:00, HERB GLT3 (Weeks 1-5 + 7)
 - 1. Project Planning + Aims and Objectives
 - 2. Information skills
 - 3. Giving Presentations
 - 4. Ethics
 - 5. Technical Writing

[Reading week: Project presentations]

- 6. Research design
- 7. Questionnaires

Submissions – Semester 1

- Submissions
 - Ethical approval form (unassessed, but must be approved): Details in the lecture in week 4 (Oct 24th) submit by October 28th.
 - Presentation (5%) submit to Ness See Ness for deadline
 - Presentations are given during Reading week (Nov 7th 11th)
 - Presentation booking slots will be available in Ness
 - Project Proposal (5%) submit to Ness See Ness for deadline

Timetable - Semester 2

- Lectures
 - 1 lecture on Dissertation and Posters, (a reminder will be sent!)
- Submissions
 - Poster (5%) and Demonstration (5%)
 - Submit poster electronically to NESS See Ness for deadline
 - Posters will be printed by the School.
 - Poster session and demos will take place 5th May in the Lindisfarne room

 Dissertation (80%) submit electronically to NESS - See Ness for deadline. There is *no* hard copy submission.

Supervisor's Role

- Your supervisor should:
 - Provide starting directions and references, suggestions during the year, advice
 - Act as the "customer" for what you produce
 - Run your software (if relevant)
 - Mark and give feedback on project deliverables
 - Look at, and comment on drafts of your proposal and dissertation
 - Meet regularly with you to discuss issues/progress

Supervisor's Role (2)

- The supervisor will NOT
 - Design, test or debug anything you produce
 - Write your dissertation for you
 - Teach any background material
 - Remind you to attend meetings
- This is **your** project, and **you** are responsible for how it is managed.

Managing your Supervisor

- To get the best out of your supervisor
 - Agree a regular schedule of meetings (e.g. weekly)
 - Stick to the schedule
 - if you can't make an appointment, contact the supervisor (preferably in advance!) to reschedule
 - Prepare well and take notes during meetings
 - Discuss ideas
 - If you want your supervisor to look at drafts, allow enough time to read

$$H_3C \bigvee_{N} \bigvee_{CH_3} H_3C \bigvee_{N} \bigvee_{$$

Communications

- It's useful to have a channel for communicating with your supervisor and share records of completed, in progress and planned work:
 - Brief minutes of meetings with supervisor
 - Draft of assignments (e.g. project proposal)
 - Links to papers read and notes on these papers
- You may use any agreed means to achieve this channel:
 - Email, ePortfolio, Blog, Facebook, Dropbox, Backpack, etc. etc.

Initial steps

- Define Aims, Objectives
- Research background material (prior work, papers, library, abstract journals, web, ...)
 - Supervisor should provide some starting points for you
- Organise the results of your research e.g. taxonomy matrix
- Don't get bogged down with trivia or distracted by irrelevancies
- Keep a log of project work to help you write the dissertation (and present the log in an appendix)

Recommended Texts

- Christian W. Dawson, *Projects in Computing and Information Systems: A Student's Guide*
- T. Cornford and S. Smithson, Project Research in Information Systems (2nd Edition)
- S. Rumsey, How to Find Information: a Guide for Researchers
- I. Ricketts, Managing Your Software Project: a student's guide
- M. Berndtsson et al, *Planning and Implementing your Final Year Project with Success!*
- B.J. Oates, Researching Information Systems and Computing

Theme coördinators

- Mobile and web: Lindsay Marshall
- Games: Graham Morgan
- Teaching and pedagogy: Marie Devlin
- Cloud and distributed systems: Paul Ezhilchelvan
- Algorithms: Jason Steggles
- Security: Feng Hao
- Cyber-physical systems: John Fitzgerald
- Software engineering: Steve Riddle
- Bio-computing: Phil Lord
- HCI: Patrick Olivier
- Anything else: Matt Collison

