#### Slide 4: More About Sufficient Statistics

STATS 511: Statistical Inference

Kean Ming Tan

#### **Curved Exponential Family**

Suppose that  $X_1, \ldots, X_n \sim N(\mu, \mu^2)$ . We have shown that the distribution belongs to an exponential family with

$$T(\mathbf{x}) = \left(\sum_{i=1}^n X_i^2, \sum_{i=1}^n X_i\right)$$
 and  $w(\boldsymbol{\theta}) = \left(-\frac{1}{2\mu^2}, \frac{1}{\mu}\right)$ .

Here,  $w(\theta)$  forms a curve in the 2-dimensional space. That is, as  $\mu$  varies, we get a curve in the "xy" plane.

#### An Example on Non Exponential Family

Suppose that  $X_1, \ldots, X_n$  is a random sample from a "right-half" normal distribution with  $\sigma^2 = 1$ . Find a sufficient statistic for  $\mu$ .

#### Minimal Sufficient Statistic

As in previous example, there are many choices of sufficient statistics for the parameter of interest, and of course the "smaller" ones are more useful for data reduction. This motivates the concept on minimal sufficient statistic.

Minimal Sufficient Statistic: T(X) is a minimal sufficient statistic for  $\theta$  if T(X) is sufficient, and is a function of any other sufficient statistic.

## How to Find Minimal Sufficient Statistic (Theorem 6.2.13)

Theorem: Let  $f(\mathbf{x} \mid \boldsymbol{\theta})$  be the pdf and pmf of a sample  $\mathbf{X}$ . Suppose there exists a function  $T(\mathbf{x})$  such that, for every two sample points  $\mathbf{x}$  and  $\mathbf{y}$ , the ratio  $f(\mathbf{x} \mid \boldsymbol{\theta})/f(\mathbf{y} \mid \boldsymbol{\theta})$  is constant as a function of  $\boldsymbol{\theta}$  if and only if  $T(\mathbf{x}) = T(\mathbf{y})$ . Then  $T(\mathbf{X})$  is a minimal sufficient statistic for  $\boldsymbol{\theta}$ .

```
f(x10)= h(x) c(0) exp{ = w3(0) Ti(x)}
          let k=3
    Poroof idea: if T(x) is not linearly independent
  then Ti(x)= a3T2(x) +a3T3(x)
 Radio: h(x) = exp = (w_1(0)(T_1(x) - T_1(y)))

+ w_2(0)(T_2(x) - T_2(y))
                            (c)(t)(x)(t) (0)(w+
=) h(x) exp[w_1(0)(a_2(T_2(x)-T_2(5)))

h(5) + a_3(T_2(x)-T_2(5))

+ w_2(0)(T_2(x)-T_2(5))
                             + W2(0) (T)(x) -T)(5)
=\frac{h(x)}{h(x)} = \frac{h(x)}{h(x)} = \frac{h(x)}{h(x)} = \frac{h(x)}{h(x)} = \frac{h(x)}{h(x)}
             - + (wzlo) + azwr(o) (Tz(z)-Tz(z)) }
   so, if who is not lineary independent,
    it does not imply TCx)=T(x)
```

#### An Example: Multinomial Distribution

We have three boxes labelled Box 1, Box 2, and Box 3. We toss n > 1 balls into Box 1, Box 2, or Box 3 (n is given). Suppose that Box 1, Box 2, and Box 3 each has probability  $p_1$ ,  $p_2$ , and  $p_3$  of a ball landing in their respective box. Let  $X_1$ ,  $X_2$ , and  $X_3$  be the number of balls that land in Box 1, Box 2, and Box 3 respectively. Then,

$$(X_1, X_2, X_3) \sim Multinomial(n, p_1, p_2, p_3).$$

Claim:  $(X_1, X_2)$  is the minimal sufficient statistic for  $\theta = (p_1, p_2, p_3)$ .

$$N = k + 000$$
 $N = V + 1000$ 
 $N = k + 1000$ 

$$\frac{x'ixsixsj}{Ui} b'x' b^{5}xs b^{3}x$$

$$= \frac{x'_1 x_{3}_1 x_{3}_1}{\text{exs}} \left[ x'_1 \log b_1 + x_{5}_1 \log b_{5} + x_{3}_1 \log b_{3} \right]$$

$$= \frac{x'i \, x \, s_i \, x^3 \, i}{Si} \left\{ \frac{1}{Si} \left( \frac{1}{Si} \, \frac{1}{$$

T(x)= (x, x2, x2) & not rowinimal Softicient statistic because those one cinerally dependent.

Proof: In these situation's we need to enation. instant noituation bevo stirewser

$$M(0) = (108 \frac{6^{2}}{6^{1}}) \cdot 108 \frac{6^{2}}{6^{1}}) \cdot 108 \frac{6^{2}}{6^{1}}$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{5}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{2}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{2}}{6!} (u - x^{1} - x^{5}) i$$

$$= \frac{x^{1}, x^{2}}{6!} (u - x^{1} - x^{2}) i$$

$$= \frac{x^{1}, x^{2}}{6!} (u - x^{1} - x^{2}) i$$

$$= \frac{x^{1}, x^{2}}{6!} (u - x^{1} - x^{2}) i$$

$$= \frac{x^{1}, x^{2}}{6!} (u - x^{1} - x^{2}) i$$

$$= \frac{x^{1}}{6!} (u - x^{1} - x^{2$$

# Ancillary Statistics (Exact opposite of sufficient statistic)

Sufficient statistics contain all the information about  $\theta$  that is available in the sample. Now, we consider a statistic  $S(\mathbf{X})$  that has no information about  $\theta$ .

**Definition:** A statistic  $S(\mathbf{X})$  whose distribution does not depend on the parameter  $\boldsymbol{\theta}$  is called an ancillary statistic.

Examples: see 6.2.17–6.2.19 in your textbook

the continuous 
$$x_1, x_2, \dots, x_n$$
 which  $x_1, x_2, \dots, x_n$  be the pressed on  $x_1, x_2, \dots, x_n$  does not depend on  $x_1, x_2, \dots, x_n$ 

8 / 13

#### Complete Statistics

**Definition:** Let  $f(t \mid \theta)$  be a family of pdfs or pmfs for a statistics  $T(\mathbf{X})$ . The family of probability distributions is called complete if  $E_{\theta}\{g(T)\}=0$  for all  $\theta$  implies  $P_{\theta}(g(T)=0)=1$  for all  $\theta$ .  $T(\mathbf{X})$  is also called a complete statistic.

Complete Sufficient Statistic: If T(X) is a complete statistic and a sufficient statistic, then we call T(X) the complete sufficient statistic.

**Theorem 6.2.25:** Let  $X_1, \ldots, X_n$  be iid observations from an exponential family. Then the statistic

$$T(\mathbf{X}) = \left(\sum_{i=1}^n t_1(X_i), \ldots, \sum_{i=1}^n t_1(X_k)\right)$$

is complete as long as the parameter space  $\Theta$  contains an open set in  $\mathbb{R}^k$ .

#### Multinomial and Curved Exponential Family Example



$$\mathbb{E}\left[\mathsf{T}_{i}(x)\right] = \mathbb{E}\left[\mathsf{S}x_{i}^{2}\right]$$

| Duiz    | type          | Problem:   |            |                |
|---------|---------------|------------|------------|----------------|
| (X12 X2 | $, \chi_{2})$ | on Mudinor | nial (n, 1 | P1, P2, P14P2) |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |
|         |               |            |            |                |

#### Non-Exponential Family Example

Let  $X_1, \ldots, X_n \sim Unif(0, \theta)$  be iid Uniform random variables. We know that  $T(\mathbf{X}) = X_{(n)}$  is sufficient statistic for  $\theta$ . Is  $T(\mathbf{X})$  complete sufficient statistic?

location-scale family

(i) Let  $f_0(x)$  be some Pdf  $f_0(x) = f_0(x-0)$ (ocation Parameter)

 $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x}{3}} (x-\alpha)^{2}$   $f(x) = \frac{2\pi}{\sqrt{2\pi}} e^{-\frac{x}{3}}$   $Ex: \qquad x \sim N(\pi i)$ 

Scale family

f (x)= -t (x)

Ex:  $\chi^{0} \in \chi^{0}(0)$   $\chi^{0}(x)^{2} = \frac{1}{9} = \frac{1}{2}$  Oraco

The substance of the solution of the substance of the location with substance live 2'x out

 $\overline{Ex}$ :  $x^{1}x^{5}\cdots x^{n}\omega M(n^{1})$ 

KI-KS on cylonen

15== xev-xal on outlook

#### 2) Scale family

The statio of any two x stemove the scale

 $Ex: X_1, X_2 \sim N(0_1\sigma^2)$  Scale family

 $S(x) = \frac{x_1}{x_1}$  is the ancillary?

ley 7= x the 1001)

SO S(V) = 5/2

another example. (Both Location & scale tamily)

XIDXSD... > XU ON (MOS)

ancillary statistic XI-U ~ N(0,1)

 $\frac{\chi_{5}-\chi_{1}}{\chi_{4}-\chi_{1}}$ ,  $\frac{\chi_{1}-\text{median}(\chi_{5})}{\chi_{6}-\chi_{6}}$ 

### Applications of Ancillary and Complete Sufficient Statistic

Basu's Theorem: If T(X) is a complete and minimal sufficient statistic, then T(X) is independent of every ancillary statistics S(X).

C.S.S Stadistic **Example:**  $X_1, \ldots, X_n \sim Uniform(0, \theta)$ . Show that  $T(\mathbf{X}) = X_{(n)}$ and  $S(\mathbf{X}) = (X_{(n)} - X_{(1)})/(X_{[2n/3]} - X_{[n/3]}).$  $\lambda = \frac{R}{X}$  en outjeophe (011)  $S(x) = \frac{Y(n)}{6} - \frac{Y(n)}{8} = \frac{Y(n) - Y(n)}{8} = \frac{Y(n) - Y(n)}{8} = \frac{Y(n)}{8} - \frac{Y(n)}{8} = \frac{Y(n)}{8} - \frac{Y(n)}{$ 

12/13

| Quiz Type Problem:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (XI ) X22X3) No Moldinamial (M,P, 2P2) P14P2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a) what's the sampe of P,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (6) Find a Misis foot (Pis P2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 91 919mo) ii 7 2I (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (1) P1+P2+P1+P2=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $f(x_j) = P(x_j) b_{x_i} (\frac{5}{7} - b_i)_{x_i} (\frac{5}{7} - b_i)_{x_i} (\frac{5}{1} - b_i)_{x$ |
| $= \mathcal{L}(x) b_{\mathcal{I}_1} (\bar{\mathcal{I}}_{-b_1})_{\mathcal{A}_{\mathcal{I}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| = 2 (a) 626 \ 21/026 +21/02(-1-65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $T(x) = (x_1 > x_2)$ $W(0) = (log A > log (-1/2 - Pi))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 130th log Pr and log ( = -Pr) in not<br>Cinearly independent. (NONlinear dependent<br>But we only check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\Rightarrow$ $\omega(0) \in \mathbb{R}^2$ for (inex) depende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| can't apply our exponential theorem because we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| only have one force fortametor, ( we cannot have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a open solved $\omega(0) = T(x)$ is not coss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

TO Prove Time not complete, we with 3 a g(.) S.+ IE[g(T)] but S(+) \$0 T(x)=  $(x_1,x_2)$   $(x_2,x_2)$   $(x_1,x_2)$   $(x_1,x_2)$  $E(x_5) = \frac{5}{2} - 261$   $E(x_5) = \frac{5}{2} - 261$   $E(x_5) = \frac{5}{2} - 261$   $= (x_5) = \frac{5}{2} - 261$ =1 E[9(4)] = 0 BUT 3(4) =0 AFE 7 => There tope the TCX in not complete. Another Example: x12x5211 2 xu ~ M(1125) Show that  $X + S_{x}$   $S_{x}^{3} = 1 \leq (x_{1} - x_{2})^{2}$ 

rot 2.2.5 in x=(x)T talk world sw

| ul. By Raso's theorem is & IL of any                                                       |
|--------------------------------------------------------------------------------------------|
| ancillary Statistics                                                                       |
|                                                                                            |
| Check of Sn in ancillous                                                                   |
|                                                                                            |
| $T_{N} \leq (x_{i}-x_{j})$ does not depend on                                              |
| u => So in ancillag                                                                        |
|                                                                                            |
| $\Rightarrow$ $\times$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                             |
| = X II Sn<br>(Cosos) (ancillary)                                                           |
| Because of Busis theorem.                                                                  |
| V                                                                                          |
| 2192009 milliog 200mod-noor A                                                              |
|                                                                                            |
| Lx(4) 1 Oct < \alpha \gamma\ x(0)=0 x(+)=\lambda t                                         |
| $\chi(t;H) - \chi(t;) \sim \text{Poission}\left(\int_{t_i}^{t_{i+1}} \lambda t  dt\right)$ |
| (4) I [X(+2) - X(+1)] II II X(+n) - X(+n-2)                                                |
| Let say we observe $\chi(i), \chi(i), \dots, \chi(n)$                                      |
| Find a Cossos foor A                                                                       |

By 
$$*$$
 No Rollian  $f(x) = e^{-\lambda x}$ 

Solution  $f(x) = e^{-\lambda x}$ 
 $f(x) = e^{-\lambda x}$ 

By ##  $V_1 \sim POission ( Ni-1)$ No Poission ( Ni-1)

$$\frac{\alpha_{i} a_{i} ... a_{i}}{\frac{1}{3}} = \frac{\alpha_{i} a_{i} ... a_{i}}{\frac{1$$

$$= h(y) \cdot C(\lambda) \prod_{i=1}^{N} \lambda^{i} (i-\frac{1}{2})^{i}$$

h(y).c(x) exp ( 10g x & 53ig => W(X)= 10g > T(Y)= E y; ue can drow opensed => T (V) 2 C.S.S

# **Up Next - Methods for Estimation**