Trajectory based Order Reduction Documentation

Release 1.0

Bhargava Chintalapati

CONTENTS

This is my introduction to this project Contents:

CONTENTS 1

2 CONTENTS

INTRODUCTION TO PWLMOR

This is a project which merges Dynamical systems with Electrical Engineering. We here realize that naive choice of state variables is not computationally efficient. We can come up with a linear combination of state variables which make describing the system much more efficient than it is right now.

This system has a 3D state space but is actually a 2D annular ring in 3D space. So we would not need all the three dimensions to describe this system. Rather a plane roughly passing through the annular ring will capture the details of the circuit.

THIS IS A TITLE

That has a paragraph about a main subject and is set when the '=' is at least the same length of the title itself.

2.1 Subject Subtitle

Subtitles are set with '-' and are required to have the same length of the subtitle itself, just like titles.

Lists can be unnumbered like:

- Item Foo
- Item Bar

Or automatically numbered:

- 1. Item 1
- 2. Item 2

2.2 Weighing functions

The weighing functions decide which linear model is to be used in the integration.

Header 1	Header 2	Header 3
body row 1	column 2	column 3
body row 2	Cells may span columns.	
body row 3	Cells may span rows.	contain blocks.

body row 4

This is written by Bhargava Chintalapati

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

Trajectory based Order Reduction Documentation, Release 1.0				
	•			

CHAPTER

FOUR

REPORTS SUBMITTED

To check the correctness of the code we had to run a couple of checks on the level! model. The following results were obtained and have been juxtaposed with SPICE results

Verifying KCL at nodes