

The OSI Layers

OSI Security Model

The OSI Layers

- Open System Interconnection or OSI layers
- Reference model for how information from software in one device moves to an application on another computer

The OSI Layers

- Maps to various implementations
- ◆ TCP/IP architecture for example

OSI MODEL	TCP/IP MODEL	
Application Layer		
Presentation Layer	Application Layer	
Session Layer		
Transport Layer	Transport Layer	
Network Layer	Internet Layer	
Data Link Layer	Network Access Layer	
Physical Layer		

The OSI and IoT

 OSI maps to different protocols and standards for web and loT worlds

	IOT STACK	WEB STACK
TCP/IP	IOT applications	Web applications
Data Format	Binary, JSON, CBOR	HTML, XML, JSON
Application Layer	CoAP, MQTT, XMPP, AMPQP	HTTP, DHCP, DNS, TLS/SSL
Transport Layer	UDP, DTLS	TCP, UDP
Internet Layer	IPv6/IP Routing	IPv6, IPv4, IPSec
	6LOWPAN	
Network/Link Layer	IEEE 802.15.4 MAC	Ethernet (IEEE 802.3),
	IEEE 802.15.4 PHY / Physical Radio	Ethernet (IEEE 802.3), DSL, ISDN, WIreless LAN (IEEE 802.11), Wi-Fi

Application Layer

- Represents processes on the level of applications and users, IoT and otherwise
- Links the business application access to network services
- Messaging protocols found at this layer CoAP, MQTT, XMPP, AMPQP and HTTP

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Presentation Layer

- Formats and encrypts data for communication.
- Resolves compatibility issues in the communication between the application and the network.
- For example, TLS class of cryptographic protocols

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Session Layer

- Connections between local and remote applications are initiated, managed and terminated here
- Manages sessions over multiple devices on the same network

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Transport Layer

- Manages the host-to-host data transmission
- Ensures that data transfers between hosts are completed.
- Manages error recovery and retransmission of lost data.
- TCP and UDP are two common protocols in this layer

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Network Layer

- Responsible for routing and transferring data packets between different nodes across various networks
- Includes the IP the Internet Protocol part of TCP/IP
- Of concern to IoT is that it also includes IPv4 and IPv6

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Data Link Layer

- Later where data transfer between two directly connected nodes in a network takes place
- Divided into two sub layers:
 - Medium access control layer (MAC layer)
 - Logical link control layer (LLC).
- Various IEEE 802 standards apply to this layer
 - IEEE 802.15.4 or low rate
 Wireless PAN for example

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

- Layer where networks are organized
- Foundation of IoT and its connected
- Includes the essential physical structure needed to make the IoT possible
 - E.g., cables and radio frequency links
 - Essential transmission specifications, communication protocols and hardware on a device and data level.=

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

OST Intuitive Model

Using OSI to figure out why an application isn't working

Layer 1: Physical

Is the network cable plugged in?

Layer 2: Data Link

Do you have a link light?

Layer 3: Network

Are you getting an IP?

Layer 4: Transport

Can you connect to your default gateway?

Layer 5: Session

Do you have DNS server information?

Can you ping 4.2.2.2 but not google.com?

Layers 6&7: Presentation & Application –

Can you browse to a site?

Common Attacks by Layer

OSI Security Model

Examples of Attacks at Each Level

Layer	Description	Attack
7	Application	Social Engineering, UserID/Password sniffing. Lack of role-based security for admin and support. Spoofing authentication credentials
6	Presentation	Phishing, TLS/SSL sniffing Breaking weak or faulty encryption
5	Session	Hacking – Telnet and FTP hacking Access to unsecured applications
4	Transport	TCP Sessions sniffing Port sniffing
3	Network	Man in the Middle Attacks Port sniffing
2	Data Link	Spoofing MAC/ARP sniffing
1	Physical	Sniffing, physical device compromise

Application Level Security

- Refers to the applications that support the end user functions
 - Applications at this layer include FTP, SMTP and other services
 - Supports user applications with that authentication and authorization
- Main security challenge for IIoT is unauthorized access to control systems
 - Entry point to introduce additional vectors e.g, creating backdoors for future attacks
 - Common attack vector using social engineering, phishing and other deceptive exploits
- First line of defense is strong organizational procedures and policies on issuing, revoking and changing authentication credentials

Application Level Security

- UserID/Password is common authentication
 - Often implemented with weak account policy
 - Users suffer from password fatigue
 - Tend to use the same password across accounts
 - Tend to use short easy to guess passwords
 - Tend to not change their passwords

Mitigations

- Password policy requiring strong passwords and regular rotations
- Use generated tokens instead of passwords
 - These have higher entropy and are harder to crack
 - Eliminates the problem of password reuse
- MFA multi-factor authentication
 - Requires authentication from two of three possible sources
 - What the user knows password or token
 - Where the user is specific IP address
 - Something the user has mobile phone for a confirmation code

Presentation Level Security

- Encryption is performed at this layer
- Common attacks often involve weak or missing encryption
 - There must be both encryption for data in transit and encryption for data at rest
- Exploitable weaknesses can occur when:
 - An encryption standard is used that is too weak, one that has known weaknesses for example
 - Flawed implementation of the encryption such as:
 - Keys are too short
 - Salts are not used in digests allowing the use of rainbow tables to reverse engineer passwords
 - Using an encryption library that has not been fully vetted
 - Using a home-grown encryption library that is not full tested
 - Flawed application of an encryption application
 - Failure to encrypt data when it should be
 - Not encrypting some data that is accessible

Presentation Level Security

- Presentation level security can be subverted at the application level
- Called a Man in the Browser (MiTB) attack
 - Access is gained at the application level to steal or alter data before it become encrypted
- Often the result of human engineering
 - Compromised user installs malware
 - Or malware is installed from a phishing or other attack
- Can be mitigated to a degree by isolation
 - Applications used for systems control do not have access to other applications
 - No public access to the user control apps
 - Only the absolute minimum network access to private networks
- Ideally, control systems only connect to the system they control

Man in the Browser

Session Level Security

- The main attacks at this level deal with interfering with sessions or some sort of session hijack
- Man in the Middle (MiTD) attacks occur when an adversary can intercept communications between two parties in a session
- A main risk is that an adversary could take over an automated system by hijacking a session between the system and an operator
- Some potential exploits
 - Failure to use regular confirmation of identity of participant
 - Ignoring warning about expired TSL certificate for example
 - Failure to rotate credentials during a session
 - The longer a set of credentials is used, the more likely they are to be hacked
 - Failure to securely transmit session information
 - Often makes the session tokens or ids guessable by an adversary

Transport Level Security

- Internet based attacks probe for open ports
 - Can be used to inject malware
 - Malware often opens other ports as a backdoor
- Mitigations involve
 - Regular port scans
 - Use of non-standard ports to confound probing for commonly used ports
 - Firewalls to block access to most ports except those explicitly allowed on a whitelist
- Known or published IP addresses are potential targets
- Mitigations involve
 - Use of an API gateway to map external IP addresses to internal addresses
 - Use of filtering and firewalling on the gateway
 - Establishment of a DNZ

Demilitarized Zone and Honey Pots

- DMZs connect internal networks to the outside world
 - Internal networks cannot be accessed directly
 - Must go through the DMZ
 - Including standard application-level attacks
- Honeypots are fake networks
 - Designed to distract attackers
 - They wind up attacking the honeypot instead of the industrial system

Network Layer Security

- Level at which most network hardware operates
 - Switches, routers, firewalls, etc.
- Attacker can reroute traffic via a compromised router
 - Many commercial routers have security flaws
- Malware insertion into network devices is a common attack
 - Used by the NSA as part of their Tailored Access Operations (TAO)
 - Network devices are physically intercepted during shipment
 - Malware is installed to create backdoors
- Security analyses often overlook off the shelf hardware

ARP Spoofing Attack

Network Layer Security

- Mitigations involve
 - Using NAT and other address translation strategies
 - Physically secure network equipment
 - Breeches at this layer commonly occur inside the organization
 - The use of VPNs where possible
 - However, this does add a layer of latency and complexity
 - Full security audits of all network equipment

Data Link Layer Security

- This layer works on the MAC address and packet layer
- Common attack is to force a Network Interface Controller (NIC) into promiscuous mode
 - This allows it to absorb traffic intended for other machines
- This is also the layer where attackers may spoof a MAC address
- Mitigation
 - A common mitigation is to create separate virtual LANS (VLANs) on a single physical LAN
 - Access control lists can then be applied to the different VLANs
 - Disabling unused ports also helps at this layer too

Physical Layer Security

- Most common attack is compromised physical devices
 - Access to the devices creates opportunities for insertion of malware or physical taps or attacks
- First line of defense
 - Physically isolate and lock up all the equipment
 - Allow access only to vetted people who need access
 - Use the lowest level of access needed
- Social engineering attacks try to convince staff to allow access to bad actors
 - Mitigation is to have strongly enforced security measures
 - "We will not open the server room for anyone who claims to have lost their keycard."
- Physical interception is done by accessing cables and other devices – data taps for example
 - Also done by monitoring EM signals from monitors and other devices

Physical Layer Security

- Common vector to disable physical devices
 - Power overloads
 - EM pulses or physical damage
- Mitigations
 - Any device, cable or other "thing" connected to the network is vulnerable
 - Use proper shielding and physical isolation when necessary
 - Have a good disaster recover plan for loss of physical assets

Defense in Depth

OSI Security Model

Defense in Depth

- Any IoT security solution must include a security model and plan for each of the OSI levels or their equivalent
- Any deployed system is as insecure as the security at its weakest level

OSI mitigations

OSI Model as It Relates to Security Security Security OSI Model Threats Solutions Supplying Services to LAYER 7 Application APPLICATION Procedures Static Passwords. Anti - Virus (DNS, TELNET, SNMP Private Software OS Community hardening, Strings Patching, Ensures data that arrives from the network can be Intrusion LAYER 6 used by the Viruses, Worms, Detection. PRESENTATION application Auditing (Encryption, JPG) Personal Establishes. Patches Information maintains and Encryption Retrieval managessessions LAYER 5 Authenication between Root Privilege SESSION Access, Net Bios applications (RPC, DoS Net Bips) Segments and LAYER 4 reassembles data int oa Data Stream TRANSPORT Protecting | Firewalls, Access (TCP, UDP) Endpoint Identity, Control List. Best way to move Preventing VPN's, Network Data from Point A unauthorized **Based Intrusion** LAYER 3 to Point B access to internal Detection, Content NETWORK (Routers) systems Filtering Error Notification. ARP spoof, MAC Private VLANs, LAYER 2 Network Topology, Flooding. Static ARP Entries. STP Root Priority Flow Cantrol Spanning Tree DATA (Switches) At tack =0 Managed Power nadequate Power, UPS, Restricted LAYER 1 Wires, Signals, Unfet tered Access, Taps and ccess, Open Wall PHYSIC AL Shutdown open Repeaters Ports wall ports

Layer One Attacks

- Traditional cybersecurity improvements push attackers toward alternative paths
 - The physical layer has become a fertile ground for attacks
 - Effectively, the soft underbelly of cybersecurity
- Can take the form of a compromised employee planting a device on the network
- Rogue and insecure hardware is often missed during security audits
 - Legitimate hardware can be altered to provide insecure access
- Zero-trust network security causes attackers to look at physical access via hardware exploits
 - Even air-gapping is not an effective solution
 - For example, STUXNET

Hardware Security Challenges

- Firmware can be updated with compromised versions
 - Often overlooked in security testing
- Recommended mitigation
 - automated security validation tools that can scan for configuration anomalies within their platform and evaluate security-sensitive bits within their firmware
- Hardware uses multiple components from different manufacturers, each using a different supply chain
 - Security has to be enforced across the supply chain
- Problem made more urgent by the increased use of systems on chips (SoCs)
 - SoCs consolidate multiple traditional components on a single chip
 - Bypasses the more traditional network security analysis