安徽大学 2011-2012 学年第 2 学期

《 复变函数 》考试试卷 (A 卷)

(闭卷 时间 120 分钟)

院/系_		- 专业	姓名	学号			
	题号	_	=	Ξ	四	总分	
	得 分						
一、判断题(每小题 2 分, 共 20 分) 得 分							
1.	-	x,y)+iv(x,y f'(z _o)存在的 mann方程。]充要条件;	是 $u(x,y)$,	$v(x,y)$ 在 z_0	处可微并.	且满足
2.	3 (-) / -	: 中区域 <i>D</i> 上 = sin v ,则 <i>f</i>				-	
3.	如果 $f(z)$ 是 \mathbb{C} 中区域 D 上的复值函数, $a \in D$, $f(z)$ 在 a 处导数 $f'(a)$ 存在,则 $f(z)$ 在 a 处解析。						
4.	设 $f(z)$ 是 \mathbb{C} 中非空单连通开集 D 内解析函数,存在 D 中序列 $\{z_n\}$,使得 $f(z_n)=0$ 且 $\{z_n\}$ 存在极限点 a ,则对任意 $z\in D$, $f(z)\equiv 0$ 。 ••••••••()						
5.	如果 $f(z)$ 是 \mathbb{C} 中非空开集 D 上的复值函数, $a \in D$, $f(z)$ 在 $D-\{a\}$ 上解析, a 是 $f(z)$ 的可去奇点,则 $f(z)$ 是 D 上的亚纯函数。 • • • • • • • • • • • • • • • • • • •						
6.	v是 u 的共轭调和函数,则 u 是 v 的共轭调和函数。•••••••••••()						
7.	如果 $f(z)$ 是 $\{z \mid z \in \mathbb{C}, z > 1\}$ 上解析函数,并且 ∞ 是 $f(z)$ 的可去奇点,则 $f(z)$ 在 ∞ 处的留数为零。 · · · · · · · · · · · · · · · · · · ·						
8.	一个幂级数在其收敛圆周上的敛散性有三种可能:(1)处处发散,(2)处处收敛,(3)既有收敛点,又有发散点。************************************						
9.	如果函数 $f(z)$ 在区域 D 内解析,在 D 内 $f'(z) \neq 0$,则 $f(z)$ 在 D 内单叶。						
10.	如果 z_0 是 f	(z)的极点,	则 z_0 是 $e^{f(z)}$	的本性奇点		• • • • • • • • •	•()

二、计算题(每小题10分,共50分)

得分

1. 求单位圆盘到上半平面的所有分式线性变换。

2. 设 f(z) 是 \mathbb{C} 内的解析函数, $a,b \in \mathbb{C}$,并且 $a \neq b$,计算积分 $\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z) \mathrm{d}z}{(z-a)(z-b)}$,其中 Γ 是一条不过 a,b 的光滑 Jordan 曲线。

3. 分别在|z|<1, 1<|z|<2和 $2<|z|<\infty$ 内将 $f(z)=\frac{1}{z^2-z-2}$ 展成洛朗级数。

4. 设
$$f(z) = \frac{e^z}{z(z-1)}$$
,

- 1) 求f(z)在扩充复平面中所有奇点。(3分)
- 2) 指出每个奇点的类别。(3分)
- 3) 计算 f(z) 在每个孤立奇点处的留数。(4分)

5. 求 $z^6 + 4z^4 + 1 = 0$ 在区域 $\{z: 1 \triangleleft z \mid < 2\}$ 内根的个数。

三、证明题(每小题10分,共20分)

得分

1. 设D是围线C的内部,f(z)在区域D内解析,在闭域 $\overline{D} = D + C$ 上连续,其模 |f(z)|在C上为常数M。试证:若f(z)不恒等于一个常数,则f(z)在D内至 少有一个零点。

2. 设在原点 z = 0 附近 f(z) 的洛朗展式为 $f(z) = \sum_{n=-\infty}^{+\infty} C_n z^n$ 。证明: f(z) 在 z = 0 的 某邻域内存在原函数的充要条件是 $C_{-1} = 0$ 。

四、思考题(每小题5分,共10分)

得分

1. 问在点 z = 0 处解析,且满足 $f(\frac{1}{n}) = \frac{1}{n^2}$, $f(-\frac{1}{n}) = -\frac{1}{n^2}$,n = 1, 2L 的函数 f(z) 是否存在?

2. 设z=0是 f(z)的本性奇点,试问 z=0是否一定是 $\frac{1}{f(z)}$ 的本性奇点? 说明理由。