

More examples
$$Z = \{a, AB, b, 12\}$$

$$\Sigma = \{a,b\}$$
 $W(\Sigma) = \{\lambda, a, b, aa, ab, ba, bb, aaa, ...\}$

inducted in every Universal Language)

More examples X = aba y = bab $Z = \{a,b\}$ $X = ababab\}$ $X = ababab\}$ $X = ababab\}$ X = ababab

Neutral element
$$Y = ababab$$
 $Y = ababab$ $Y = ababab$ $Y = bababa$ $Y = abaaba$ $Y = abaaba$ $Y = babbab$

 $x^2 = abaaba$ $y^3 = babbab$ $x^{-1} = aba$ z = aab $z^{-1} = baa$

 $W(\Sigma) = \{ \lambda, \alpha, b, aa, ab, ba, ba, ba, aaa, ... \}$ $A \text{ language } A \text{ language } L_1$ $L_2 = \{ \lambda \}$ $L_1 = \{ aa, ba, aaa \}$

Another language $L_3 = \{\lambda, \alpha, \alpha \alpha \alpha\}$ ALL are SUBSETS OF $W(\Sigma)$ ALL are language OVER Σ

Φ = {}
No words

Examples of operations with languages L1= {ab, a} L2= { bbb, ba} L1 U L2 = {ab, a, bbb, ba} L1. Lz = { abbbb, abba, abbb, aba}

L,2= L1. L1 = { ab ab, aba, aab, aa}

 $\angle_{1}^{+} = \angle_{1}^{1} \cup \angle_{1}^{2} \cup \angle_{1}^{3} \cup \ldots$

→ Z = {a,b}

 $W(\Sigma) = \{\lambda, a, b, aa, ab, ba, bb, ...\}$

 $\Sigma^{1} = \Sigma \quad \Sigma^{2} = \{aa, ab, ba, bb\}$

Disnotasymbol

L* = LOUL 10L2 V... =

= >U {ab,a}u {abab,aba,aab,aa}u...

1 = L+U2

 $\Sigma^* = W(\Sigma) \equiv ALL \text{ the words over } \Sigma$ including λ

 $L_1 = \{ab, a\} \qquad L_1^{-1} = \{ba, a\}$

Reflected