Simpsons CharacterRecognition Project

Siqi Li, Lirong Ma, Zhangyi (Rocky) Ye, Haonan Zhang, Yuxuan (Nancy) Zhang, Luping (Rachel) Zhao

The Simpsons

Popular American animated sitcom

On air since 1989

Problem Statement

Problem: Large number of characters, sometimes we don't know who characters are while watching the show.

Goal: build deep learning models to detect and classify Simpsons characters.

Deployment:

Real-time character detection and classification. Viewers know who they are watching without pressing pause to check their phones.

Dataset

```
Public dataset

18,992 pictures for 18 characters

Divide into 3 sets of data

Training (60%)

Validation(20%)

Test (20%)
```

Dataset Examples - Easy

Dataset Examples - Medium

Dataset Examples - Hard

Dataset - Challenge

Wrong character labels

Missing bounding box labels for images with multiple characters

Affect our ability to test model performance for part 2

detection

Data Cleaning & Augmentation

Convert images to pixels and normalized

Randomly rotate images (rotationrange=15)

Randomly zoom inside pictures (zoom_range=0.2)

Randomly apply shearing transformations (shear_range=0.2)

Randomly flip images horizontally

Randomly shift images horizontally/vertically (shift_range=0.2)

VGG16/VGG19

	Softmax				
fc8	FC 1000				
fc7	FC 4096				
fc6	FC 4096				
	Pool				
conv5-3	3 × 3 conv, 512				
conv5-2	3×3 conv, 512				
conv5-1	3 × 3 conv, 512				
	Pool				
conv4-3	3 × 3 conv, 512				
conv4-2	3 × 3 conv, 512				
conv4-1	3 × 3 conv, 512				
	Pool				
conv3-2	3 × 3 conv, 256				
conv3-1	3 × 3 conv, 256				
	Pool				
conv2-2	3 × 3 conv, 128				
conv2-1	3 × 3 conv, 128				
	Pool				
conv1-2	3 × 3 conv, 64				
conv1-1	3 × 3 conv, 64				
	Input				

Softmax
FC 1000
FC 4096
FC 4096
Pool
3 × 3 conv, 512
Pool
3 × 3 conv, 512
Pool
3 × 3 conv, 256
3 × 3 conv, 256
Pool
3 × 3 conv, 128
3 × 3 conv, 128
Pool
3 × 3 conv, 64
3 × 3 conv, 64

VGG16

- Convolutional layers
- Pooling layer
- Flatten layer
- Dropout layer

VGG19

• Similar to VGG16, except it has four convolutional layers in the fourth and fifth block.

Xception (Extreme version of Inception)

19x19x728 feature maps

Object Detection: Faster R-CNN

Use sliding window and apply a CNN to many different Fixed Region Proposals?

crops of the image?

Inflexible Size

Too computationally expensive

Select 2000 region proposals in a few seconds on CPU and apply a CNN to each one of them?

Better, but not enough! The region proposals should be

Object Detection: Faster R-CNN

Part I - Simpson Characters Classification

Evaluation Metrics

Test Accuracy

Test Loss

Precision

Recall

VGG 16

Image size (32,32)

Image size (128,128)

VGG 19

Image size (32,32)

Image size (128,128)

Xception: Experiments

Image size (128,128) No augmentation

Image size (256,256) With augmentation

Best Model: Loss Curve

Image size: (128,128)

Augmentation:

randomly shift images horizontally and vertically

flip images horizontally

Test loss curve stabilized after ~ 50 epochs and test accuracy achieved 97.03% after 150 epochs

Best Model: Confusion Matrix

Predicted

Performed well in general
Relatively poorly on:
Grampa Simpson
(often confused
with Homer Simpson)

Best Model: Heatmap

Correct Classification

Misclassification

Most of the time, the model focusing on the correct part of the image

The model was unable to classify correctly when dissecting background

Part II - Object Detection and Classification

Evaluation metrics

Model level

Accuracy score = number of accurately classified characters / actual number of bounding boxes

Character level

Precision: fraction of relevant characters among the retrieved instances

true positive cases / predicted positive cases

Recall: fraction of total amount of relevant characters that were actually retrieved

true positive cases / actual positive cases

F1-score: a special weighted average of precision and recall

Best Model: Fast R-CNN

Test Metrics Performance - Top Six Accurate Characters

Character	Precision	Recall	F1 score
ned_flanders	0.913	0.929	0.921
marge_simpson	0.832	0.966	0.894
kent_brockman	0.800	1.000	0.889
principal_skinner	0.870	0.895	0.883
krusty_the_clown	0.826	0.927	0.874
chief_wiggum	0.939	0.795	0.861

Test Metrics Performance - Bottom Six Accurate Characters

Character	Precision	Recall	F1 score
abraham_grampa_simpson	0.636	0.977	0.771
charles_montgomery_burns	0.637	0.914	0.751
nelson_muntz	0.806	0.694	0.746
bart_simpson	0.541	0.949	0.689
moe_szyslak	0.629	0.733	0.677
comic_book_guy	0.547	0.690	0.611

Half of the characters have recall greater than 90%.

The characters from Simpson Family (Marge, Bart, etc.) are highly likely to be identified.

The ranks of Simpson characters do not show significant difference.

Only three characters have precision greater than 90%.

Some major characters (Bart Simpson) only have precision below 60%.

The model tends to predict more boxes as the major characters such as Bart Simpson and Abraham Grampa Simpson.

Easter Egg

Easter Egg

Easter Egg

Conclusion - Classification

Great performance for classification (Part I)

Misclassification due to multiple characters in the same image

CNN algorithms play an important role.

Conclusion - Detection

Good performance for detection (Part II)

Errors due to missing bounding box labels in the pictures.

Training and predicting takes incredibly long

Application

Real time TV show character detection for people not good at remembering names

Future Opportunities

Faster Algorithm: YOLO (v4)

References

- Attia, A. (2017, June 12). The Simpsons characters recognition and detection using Keras (Part 1).

 Retrieved from https://medium.com/alex-attia-blog/the-simpsons-character-recognition-using-keras-d8e1796eae36
- Carremans, B (2018, August 17). Classify butterfly images with deep learning in Keras. Retrieved from https://towardsdatascience.com/classify-butterfly-images-with-deep-learning-in-keras-b3101fe0f98
- He, K et al. (2015). Deep Residual Learning for Image Recognition. Retrieved from https://arxiv.org/pdf/1512.03385.pdf
- Krizhevsky, A et al. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Retrieved from https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- Simonyan, K and Zisserman, A (2015). <u>Very Deep Convolutional Networks for Large-Scale Image</u> recognition. Retrieved from https://arxiv.org/pdf/1409.1556.pdf
- Szegedy, C et al. (2014). Going deeper with convolutions. Retrieved from https://arxiv.org/abs/1409.4842

Thanks!

Any questions?

