Course intro and circuits intro

Kjartan Halvorsen

2020-02-12

1 Course intro

1.1 Who am I

1.2 What the course is about

- Lab, so hands on work. Both analysis, implementation and experimentation. Simulation included.
- Circuits. Props: breadboard, multimeter, power supply, function generator, oscilloscope
 - Basic, but interesting electrical circuits. Dynamical properties.
 - Learn to use multimeter, power supply, function generator, oscilloscope
- Pneumatic systems. Props: tank, cylinders, valves
 - Tank system, PID control
 - Pneumatic cylinders, valves
- PLC
 - Used in industry to control processes.

1.3 Study guide

- Hand out
- Go through.
 - Emphasize objective
 - Go through plan

1.4 Groups

• Form four groups

2 Circuit intro

- 2.1 Get the material
- 2.2 Present the lab instructions
- 2.3 Circuit and physical implementation

Draw breadboard with resistor. Connect!

Describe the ideal voltage source: Will provide any current that the circuit may demand, at a perfectly constant voltage u.

2.4 Important relationsships

2.4.1 Ohm's law

u = Ri

2.4.2 Kirchoff's current law

2.4.3 Kirchoff's voltage law

2.5 Series connection

In the equivalent circuit with a single resistor R_3 , then clearly $u_3 = u$. And for the original circuit $u = u_1 + u_2$. The same current i flows through all the elements, so from Ohm's law $u_k = R_k i_k$, we get $u_3 = u_1 + u_2$ and

$$R_3 i = R_1 i + R_2 i = (R_1 + R_2) i$$

 $R_3 = R_1 + R_2$

This means that $i = \frac{u}{R_1 + R_2}$. So what is the voltage over R_2 ?

$$u_2 = R_2 i = u \frac{R_2}{R_1 + R_2}.$$

2.6 Parallel connection

In an equivalent circuit with only one resistor R_3 , we must have $u_3 = u = R_3 i_0$, which implies $i_0 = \frac{u}{R_3}$. For the two resistors in the circuit, we have $u_1 = u = R_1 i_1$ and $u_2 = u = R_1 i_1$, which gives

$$i_1 = \frac{u}{R_1}$$
 and $i_2 = \frac{u}{R_2}$

From Kirchoff's current law $i_0 = i_1 + i_2$, so we get

$$\frac{u}{R_3} = \frac{u}{R_1} + \frac{u}{R_2} = u\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

hence

$$\frac{1}{R_3} = \frac{1}{R_1} + \frac{1}{R_2}$$

The reciprocal $\frac{1}{R}$ of a resistance is called admittance.

2.7 Safety instructions

2.7.1 Connect everything first, then turn on the power supply

2.7.2 Use low voltage, 5V