Observations for experiment no. 01:

Least count of the spectrometer = 20"

Readings for the measurement of angle of minimum deviation:

Reading of telescope position for direct image of the slit:

Left scale (θ_L): Circular Scale= 332° 40′, Vernier: 24; Total: **332.8**°

Right scale (θ_R): NOT Required.

Sr.	Colours of light	Reading of telescope position, Left scale ($ heta_1$)		$ heta_1$	$D_m = \theta_L \sim \theta_1$	$C = Sin\left(\frac{D_m + A_0}{2}\right)$	$\mu = C/E$
no.		Circular scale	Vernier scale			2	
1	Violet I	27° 40′	15	27.75°	54.95°	0.8438	1.6842
2	Violet II	27° 20′	48	27.6°	54.8°	0.8431	1.6828
3	Blue	26 [°] 20′	57	26.65°	53.85°	0.8386	1.6738
4	Green	24° 20′	29	24.5°	51.7°	0.8283	1.6533
5	Yellow I	24°	24	24.13°	51.33°	0.8265	1.6497
6	Yellow II	24°	21	24.12°	51.32°	0.8264	1.6495
7	Red	23° 40′	15	23.75°	50.95°	0.8246	1.6459

Readings for measurement of prism angle A₀:

	Po	sition of t						
Sr. no.	Left face (a)			Right Face (b)			$A_0 = \frac{a \sim b}{2}$	$E = Sin\left(\frac{A_0}{2}\right)$
	Circular scale	Vernier scale	а	Circular scale	Vernier scale	b	2	
1	37°	48	37.27°	276° 40′	54	276.97°	60.15°	0.501
2	37°	46	37.25°	276° 40′	56	276.98°	60.14°	0.301

Wavelengths for the colours of light:

Sr. No.	Colour of light	Wavelength in $\overset{\circ}{A}$
1	Violet I	4047
2	Violet II	4078
3	Blue	4352
4	Green	5461
5	Yellow I	5770
6	Yellow II	5790
7	Red	6500

Plot of the refractive index with respect to λ^{-2} :

From this plot, and employing the Cauchy's equation, we get the Cauchy's constants as:

Cauchy's linear equation:

$$\mu = A + B/\lambda^2$$

with **A** and **B** are the Cauchy's constants.

Slope (B): 1062599.001 Å^2

Intercept (A): 1.6186

-----end of data analysis-----

Error Analysis

Least count of spectrometer = $20'' = 9.696 \times 10^{-5} \ radian$

$$\left\{ As \ 1'' = \frac{\pi}{180} \frac{1}{3600} \ radian \right\}$$

Error in measuring the angle of prism

For one side circular scale of spectrometer = least count of spectrometer

Hence, for angle of prism, the error in measuring the angle of prism $(\delta A) = 2 \times Least\ Count$

Similarly, Error in measuring the minimum deviation $(\delta D_m) = 2 \times Least\ Count$.

Now, Error in refractive index measurement:

Form the formula, refractive index (μ) is

$$\mu = \frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)} = f(A, D_m)$$

Differentiating (complete) above formula, we have

$$d\mu = \frac{\partial f}{\partial A} \delta A + \frac{\partial f}{\partial D_m} \delta D_m$$

For error calculation

$$|d\mu| = \left| \frac{\partial f}{\partial A} \right| |\delta A| + \left| \frac{\partial f}{\partial D_m} \right| |\delta D_m|$$

$$d\mu = \frac{1}{2} \left[\left\{ \frac{\sin(A/2)\cos\left(\frac{A+D_m}{2}\right) - \cos(A/2)\sin\left(\frac{A+D_m}{2}\right)}{\sin^2(A/2)} \right\} \delta A + \left\{ \frac{\cos\left(\frac{A+D_m}{2}\right)}{\sin(A/2)} \right\} \delta D_m \right]$$

S. No.	Color of Light	Deviation (D_m)	Error in μ or $ d\mu $	$\boldsymbol{\mu_f} = \boldsymbol{\mu} \pm d\boldsymbol{\mu} $
1.	Violet I	54.95°	0.0003	1.6842 ± 0.0003
2.	Violet II	54.8°	0.0003	1.6828 ± 0.0003
3.	Blue	53.85°	0.0003	1.6738 ± 0.0003
4.	Green	51.7°	0.0003	1.6533 ± 0.0003
5.	Yellow I	51.33°	0.0003	1.6497 ± 0.0003
6.	Yellow II	51.32°	0.0003	1.6495 ± 0.0003
7.	Red	50.95°	0.0003	1.6459 ± 0.0003

***_____

For example, for Violet I (lambda=4047 A),

A=60.144,
$$D_m = 54.95^{\circ}$$
, $i(say) = \left(\frac{A + D_m}{2}\right) = \left(\frac{60.144 + 54.95}{2}\right) = 57.547$,

$$\begin{split} &\sin\left(\frac{A}{2}\right) = 0.5011, \ \sin^2\left(\frac{A}{2}\right) = 0.2511, \ \cos\left(\frac{A}{2}\right) = 0.8654, \\ &\sin(i) = \sin\left(\frac{A+D_m}{2}\right) = \sin(57.547) = 0.8438, \ \cos\left(\frac{A+D_m}{2}\right) = \cos(57.547) = 0.5366, \ \text{ and } \\ &\delta A = \delta D_m = 2 \times LC = 1.9392 \times 10^{-4} \ radian, \text{ then } \\ & |d\mu| = \frac{1}{2} \left[\left| \left\{ \frac{\sin(A/2)\cos\left(\frac{A+D_m}{2}\right) - \cos(A/2)\sin\left(\frac{A+D_m}{2}\right)}{\sin^2(A/2)} \right\} \right| \left| \delta A \right| + \left| \left\{ \frac{\cos\left(\frac{A+D_m}{2}\right)}{\sin(A/2)} \right\} \right| \left| \delta D_m \right| \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \left\{ \frac{\sin(A/2)\cos\left(\frac{A+D_m}{2}\right) - \cos(A/2)\sin\left(\frac{A+D_m}{2}\right)}{\sin^2(A/2)} \right\} \right| + \left| \left\{ \frac{\cos\left(\frac{A+D_m}{2}\right)}{\sin(A/2)} \right\} \right| \left| \delta D_m \right| \right. \\ & |d\mu| = \frac{1}{2} \left[\left| \left\{ \frac{0.5011 \times 0.5366 - 0.8654 \times 0.8438}{0.2511} \right\} \right| + \left| \left\{ \frac{0.5366}{0.5011} \right\} \right| \right] 1.939 \times 10^{-4} \\ & |d\mu| = \frac{1}{2} \left[\left| \left\{ \frac{0.2689 - 0.7302}{0.2511} \right\} \right| + \left| \left\{ \frac{0.5366}{0.5011} \right\} \right| \right] 1.939 \times 10^{-4} \\ & |d\mu| = \frac{1}{2} \left[\left| -1.8377 \right| + \left| 1.0709 \right| \right] 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| + \left| \frac{1.0709}{0.2511} \right| 1.939 \times 10^{-4} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| \frac{1.939}{0.2511} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| \frac{1.939}{0.2511} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| \frac{1.939}{0.2511} \right] \\ & |d\mu| = \frac{1}{2} \left[\left| \frac{1.8377}{0.2511} \right| \frac{1.939}{0.2511} \right] \\ & |d\mu| = \frac{1.8377}{0.2511} \left[\frac{1.939}{0.2511} \right] \\ & |d\mu| = \frac{1.939}{0.2511} \left[\frac{1.939}{0$$

 $|d\mu| = 0.000282 \sim 0.0003$