Grafos II

Joaquim Madeira 08/06/2021

Ficheiro ZIP

- Está disponível no Moodle um ficheiro ZIP de suporte aos tópicos de hoje
- O tipo abstrato Grafo usando o TAD SortedList
- Versão "simples", que permite trabalho autónomo de desenvolvimento e teste
- Um módulo implementando a Travessia em Profundidade

Sumário

- Recap
- O TAD Grafo
- Travessia em Profundidade ("Depth-First")
- Travessia por Níveis ("Breadth-First")
- Ordenação Topológica
- Sugestão de leitura

Recapitulação

Grafo

• G(V, E)

 Quando muito uma aresta ligando qualquer par de vértices distintos

- $e_i = (v_j, v_k)$
 - v_i e v_k são vértices adjacentes
 - e_i é incidente em v_j e em v_k

Grafo

[Sedgewick & Wayne]

Aplicações

Graph	Vertex	Edge
communication	telephone, computer	cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transaction
transportation	street intersection, airport	highway, airway route
Internet	class C network	connection
game	board position	legal move
relationship	person	friendship
neural network	neuron	synapse
protein network	protein	protein-protein interaction
chemical compound	molecule	bond

[Sedgewick & Wayne]

Grafo orientado

• G(V, E)

- Grafo orientado
 - As arestas orientadas definem uma adjacência unidirecional
- $e_i = (v_j, v_k)$
 - v_i é o vértice origem e v_k o vértice destino
 - v_k é adjacente a v_j
 - e_i é incidente em v_k

Grafo orientado

Aplicações

Digraph	Vertex	Directed Edge
transportation	street intersection	one-way street
web	web page	hyperlink
food web	species	predator-prey relationship
scheduling	task	precedence constraint
financial	bank	transaction
cell phone	person	placed call
infectious disease	person	infection
game	board position	legal move
citation	journal article	citation
object class	object	pointer
inheritance hierarchy	class	inherits from
control flow	code block	jump

Ordenação Topológica

- Podemos desenhar um dado grafo orientado de maneira a que todas as arestas apontem para o mesmo lado ?
- Dado um conjunto de tarefas a realizar, e as respetivas precedências, qual a ordem pela qual devem ser escalonadas?
 - Usar BFS ou DFS!
 - Representar a solução com um grafo orientado acíclico!
- Usar para verificar se um grafo orientado é acíclico ou não

Exemplo

Unsorted graph

Topologically sorted graph

[guides.codepath.com]

Rede

- Uma rede é um grafo / grafo orientado com "pesos" associados às suas arestas
 - Weighted graph / digraph
 - Associar um ou mais valores a cada aresta
 - Custo, distância, capacidade, ...

[Wikipedia]

O TAD Grafo

Vértices

- Identificados por um valor inteiro de 0 a V-1
- Usar dicionários para mapear esses IDs noutros identificadores

 Não são permitidos lacetes nem arestas paralelas

Representação — Listas de adjacências

Representação — Listas de adjacências

Decisões

• Representar Grafos / Grafos Orientados / Redes

- O que é comum / diferente ?
- Operações básicas, apenas !!
- Lista ligada de vértices + Listas ligadas de adjacências

- Usar o TAD Sorted List !!
- Módulos adicionais para os vários algoritmos !!

Questões – Como definir?

- As operações básicas
- Operações auxiliares
- O cabeçalho da estrutura de dados
- Um nó da lista de vértices
- Um nó das listas de adjacências

```
typedef struct _GraphHeader Graph;
Graph* GraphCreate(unsigned short numVertices, unsigned short isDigraph,
                  unsigned short isWeighted);
Graph* GraphCreateComplete(unsigned short numVertices,
                          unsigned short isDigraph); 🡉
void GraphDestroy(Graph** p);
Graph* GraphCopy(const Graph* g);
Graph* GraphFromFile(FILE* f);
```

```
unsigned short GraphIsDigraph(const Graph* g);
unsigned short GraphIsComplete(const Graph* g);
unsigned short GraphIsWeighted(const Graph* g);
unsigned int GraphGetNumVertices(const Graph* g);
```

```
For a graph
double GraphGetAverageDegree(const Graph* g);
unsigned int GraphGetMaxDegree(const Graph* g);
unsigned int GraphGetMaxOutDegree(const Graph* g);
```

```
Graph.h // Vertices
              unsigned int* GraphGetAdjacentsTo(const Graph* g, unsigned int v);
                int* GraphGetDistancesToAdjacents(const Graph* g, unsigned int v);
                // For a graph
                unsigned int GraphGetVertexDegree(Graph* g, unsigned int v);
                // For a digraph
                unsigned int GraphGetVertexOutDegree(Graph* g, unsigned int v);
```

```
unsigned short GraphAddEdge(Graph* g, unsigned int v, unsigned int w);
unsigned short GraphAddWeightedEdge(Graph* g, unsigned int v, unsigned int w,
                                    int weight);
   CHECKING
unsigned short GraphCheckInvariants(const Graph* g);
   DISPLAYING on the console
void GraphDisplay(const Graph* g);
void GraphListAdjacents(const Graph* g, unsigned int v);
```

Estrutura de dados


```
struct _GraphHeader {
  unsigned short isDigraph;
  unsigned short isComplete;
  unsigned short isWeighted;
  unsigned int numVertices;
  unsigned int numEdges;
  List* verticesList;
};
```



```
struct _Vertex {
  unsigned int id;
  unsigned int inDegree;
  unsigned int outDegree;
  List* edgesList;
};
```

```
struct _Edge {
  unsigned int adjVertex;
  int weight;
};
```

Graph.c – Questões de implementação

- Como atravessar a lista de vértices ?
- Como atravessar uma lista de adjacências ?
- Como adicionar uma aresta?
- Usar o iterador do TAD Sorted List !!
- Como comparar vértices ou arestas ?
- Como devolver os índices dos vértices adjacentes ?

• ...

Graph.c

```
// The comparator for the VERTICES LIST
int graphVerticesComparator(const void* p1, const void* p2) {
  unsigned int v1 = ((struct _Vertex*)p1)->id;
  unsigned int v2 = ((struct _Vertex*)p2)->id;
 int d = v1 - v2;
 return (d > 0) - (d < 0);
// The comparator for the EDGES LISTS
int graphEdgesComparator(const void* p1, const void* p2) {
  unsigned int v1 = ((struct _Edge*)p1)->adjVertex;
  unsigned int v2 = ((struct _Edge*)p2)->adjVertex;
 int d = v1 - v2;
 return (d > 0) - (d < 0);
```

Graph.c

```
static unsigned int _GetMaxDegree(const Graph* g) {
 List* vertices = g->verticesList;
 if (ListIsEmpty(vertices)) return 0;
 unsigned int maxDegree = 0;
 ListMoveToHead(vertices);
 int i = 0;
 for (; i < g->numVertices; ListMoveToNext(vertices), i++) {
   struct _Vertex* v = ListGetCurrentItem(vertices);
   if (v->outDegree > maxDegree) {
     maxDegree = v->outDegree;
 return maxDegree;
```

Graph.c

```
// For a graph
unsigned int GraphGetMaxDegree(const Graph* g) {
 assert(g->isDigraph == 0);
 return _GetMaxDegree(g);
// For a digraph
unsigned int GraphGetMaxOutDegree(const Graph* g) {
 assert(g->isDigraph == 1);
 return _GetMaxDegree(g);
```

Tarefas

Analisar as funções desenvolvidas

Completar o que falta !!

Melhorar algumas das funções !!

Travessia em Profundidade

Travessia em profundidade – Depth-First

- Algoritmo idêntico ao da travessia em profundidade de uma árvore binária
- Versão recursiva / Versão iterativa com PILHA/STACK
- DIFERENÇAS :
- Há um vértice inicial start vertex s
- O número de vértices adjacentes é variável
- Podem haver ciclos e/ou mais do que um caminho para cada vértice
- Para não entrar em ciclo, marcar os vértices visitados!!

Travessia em profundidade – Depth-First

 Exploração / travessia sistemática de (todo) um grafo ou grafo orientado

Aplicações :

- Identificar os vértices alcançáveis a partir de um vértice inicial
- Encontrar um caminho entre dois vértices
- Encontrar um caminho entre o vértice inicial e cada um dos outros vértices alcançáveis

•

Algoritmo recursivo

Travessia em Profundidade (vértice v)

Marcar v como visitado

Para cada vértice w adjacente a v

Se w não está marcado como visitado

Então efetuar a Travesssia em Profundidade (w)

- Resultado ?
- Ficam marcados todos os vértices alcançados

Exploração de um labirinto

Exemplo

Algoritmo iterativo – A mesma ordem?

```
Travessia em Profundidade (vértice v)
      Criar um STACK vazio
      Push(stack, v)
       Marcar v como visitado
      Enquanto Não Vazio (stack) fazer
             v = Pop(stack)
             Para cada vértice w adjacente a v
                    Se w não está marcado como visitado
                    Então Push(stack, w)
                           Marcar w como visitado
```

Vértices alcançáveis

- Determinar o conjunto dos vértices alcançáveis significa encontrar um caminho entre o vértice inicial e cada um dos vértices alcançados
 - Pode não ser o caminho mais curto!!
 - Porquê ?
- Árvore de caminhos com raiz no vértice inicial
- Como registar a árvore ?
- Fácil: registar o predecessor de cada vértice no caminho a partir do vértice inicial
- Fazer o "traceback" para obter a sequência de vértices definindo o caminho

Árvore dos caminhos com origem em 0

[Sedgewick/Wayne]

Árvore dos caminhos com origem em 0

[Sedgewick/Wayne]

GraphDFSRec.h


```
typedef struct _GraphDFSRec GraphDFSRec;
GraphDFSRec* GraphDFSRecExecute(Graph* g, unsigned int startVertex);
void GraphDFSRecDestroy(GraphDFSRec** p);
// Getting the result
unsigned int GraphDFSRecHasPathTo(const GraphDFSRec* p, unsigned int v);
Stack* GraphDFSRecPathTo(const GraphDFSRec* p, unsigned int v);
  DISPLAYING on the console
void GraphDFSRecShowPath(const GraphDFSRec* p, unsigned int v);
```

GraphDFSRec.c

```
struct _GraphDFSRec {
  unsigned int* marked;
  int* predecessor;
  Graph* graph;
  unsigned int startVertex;
};
```

```
static void _dfs(GraphDFSRec* traversal, unsigned int vertex) {
 traversal->marked[vertex] = 1;
 unsigned int* neighbors = GraphGetAdjacentsTo(traversal->graph, vertex);
 for (int i = 1; i <= neighbors[0]; i++) {
   unsigned int w = neighbors[i];
   if (traversal->marked[w] == 0) {
     traversal->predecessor[w] = vertex;
     _dfs(traversal, w);
 free(neighbors);
```

GraphDSFRec.c

```
Stack* GraphDFSRecPathTo(const GraphDFSRec* p, unsigned int v) {
  assert(0 <= v && v < GraphGetNumVertices(p->graph));
 Stack* s = StackCreate(GraphGetNumVertices(p->graph));
 if (p->marked[v] == 0) {
   return s;
  // Store the path
  for (unsigned int current = v; current != p->startVertex;
       current = p->predecessor[current]) {
   StackPush(s, current);
 StackPush(s, p->startVertex);
 return s;
```

Tarefas

- Analisar o ficheiro GraphDFSRec.c
- NOVO MÓDULO:
- Implementar e testar a versão iterativa usando uma PILHA/STACK
- Questão :
- Os vértices de um grafo são atravessados na mesma ordem que na versão recursiva ?

Travessia por Níveis

Travessia por níveis – Breadth-First

- Algoritmo idêntico ao da travessia por níveis de uma árvore binária
- Versão iterativa com FILA/QUEUE
- Idêntico à travessia em profundidade iterativa de um grafo
- MAS, usando um estrutura de dados auxiliar distinta
- A ordem pela qual os vértices são visitados é diferente!!
- Progressão em círculos concêntricos a partir do vértice inicial
- APLICAÇÃO: determinar caminhos mais curtos!!

Algoritmo iterativo

```
Travessia por Níveis (vértice v)
      Criar FILA vazia
      Enqueue(queue, v)
      Marcar v como visitado
      Enquanto Não Vazia (queue) fazer
             v = Dequeue(queue)
             Para cada vértice w adjacente a v
                    Se w não está marcado como visitado
                    Então Enqueue (queue, w)
                           Marcar w como visitado
```

Caminhos mais curtos

- É encontrado o caminho mais curto entre o vértice inicial e cada um dos vértices alcançados
 - Porquê ?
- Árvore de caminhos mais curtos com raiz no vértice inicial
- Registar o predecessor de cada vértice no caminho a partir do vértice inicial
- E a distância (i.e., nº de arestas) para o vértice inicial
- Fazer o "traceback" para obter a sequência de vértices definindo o caminho

Árvore dos caminhos mais curtos

[Sedgewick/Wayne]

Tarefa

- NOVO MÓDULO:
- Implementar e testar a travessia por níveis usando uma FILA/QUEUE

Ordenação Topológica

Grafo das precedências das UCs de um curso

Ordenação Topológica

- Como ordenar as UCs de acordo com as precedências definidas ?
- Grafo orientado e acíclico !!
- Ordem ?
- Se existe um caminho de v para w, então w aparece após v na sequência de vértices ordenados
- Não podem existir ciclos !!
- Pode haver mais do que uma ordenação válida!!

Exemplo

Possíveis sequências de vértices ?

Exemplo

- Possíveis sequências de vértices ?
- v1, v2, v5, v4, v3, v7, v6 OU v1, v2, v5, v4, v7, v3, v6
- Como determinar ?

1º algoritmo

Criar G', uma cópia do grafo G

Enquanto for possível

Selecionar um vértice sem arestas incidentes

Imprimir o seu ID

Apagar esse vértice de G' e as arestas que dele emergem

- Usar o InDegree de cada vértice
- Ineficiência: cópia + sucessivas procuras através do conjunto de vértices

2º algoritmo

Registar num array auxiliar numEdges o InDegree de cada vértice Enquanto for possível

Selecionar um vértice v com numEdges[v] == 0 E não marcado Imprimir o seu ID

Marcá-lo como pertencendo à ordenação

Para cada vértice w adjacente a v

numEdges[w]--

Ineficiência: sucessivas procuras através do conjunto de vértices

3º alg. – Manter o conjunto de candidatos

Registar num array auxiliar numEdges o InDegree de cada vértice

Criar uma FILA vazia e inserir na FILA todos os vértices v com numEdges[v] == 0

Enquanto a FILA não for vazia

v = retirar próximo vértice da FILA

Imprimir o seu ID

Para cada vértice w adjacente a v

numEdges[w] --

Se numEdges[w] == 0 Então Inserir w na FILA

• PROBLEMA: o que acontece se existir um ciclo??

Exemplo

	Indegree Before Dequeue #						
Vertex	1	2	3	4	5	6	7
ν_1	0	0	0	0	0	0	0
ν_2	1	0	0	0	0	0	0
ν ₃	2	1	1	1	0	0	0
ν ₄	3	2	1	0	0	O	0
ν ₅	1	1	0	0	0	0	0
ν ₆	3	3	3	3	2	1	0
v_7	2	2	2	1	0	0	0
Enqueue	ν_1	ν_2	ν_5	ν4	v_3, v_7		ν ₆
Dequeue	v_1	ν_2	ν ₅	ν4	ν_3	ν ₇	ν ₆

Sugestões de Leitura

Sugestões de leitura

- M. A. Weiss, "Data Structures and Algorithm Analysis in C++", 4th. Ed., Pearson, 2014
 - Chapter 9
- R. Sedgewick and K. Wayne, "Algorithms", 4th. Ed., Addison-Wesley, 2011
 - Chapter 4