Section 11.3 - Polar Coordinates

Carlesian coordinates Rectangular coordinates.

I directed distance from origin to P.

1 directed angle from the initial ray (the positive x-axis) to [OP)

O positive: counterclockwise

O negative: clockwise.

Example: $P(2, \frac{\pi}{3})$; $Q(-1, \frac{\pi}{6})$; $R(-1, -\frac{\pi}{4})$; $S(1, -\frac{\pi}{3})$

$$P\left(-2, -\frac{2\pi}{3}\right)$$

$$P\left(-2, \frac{4\pi}{3}\right)$$

$$P\left(2, -\frac{5\pi}{3}\right)$$

Note: Polar Coordinates of a point are not unique.

Polar Graphing:

[r=a]: circle centered at the origin with radius = [a].

 $\Theta = \alpha$: Straight line through the origin making an angle α with the initial ray.

Example: $A(3,\pi)$ B(1,0) $C(-2,\frac{\pi}{3})$ $D(1,-\frac{\pi}{2})$ $E(1,\frac{3\pi}{2})$ $F(-2,\pi)$ $H(1,\frac{5\pi}{6})$.

Relating Polar to Cartesian Coordinates

$$\cos 0 = \frac{x}{r} \implies x = r \cos 0$$

 $\sin 0 = \frac{y}{r} \implies y = r \sin 0$

$$\int \chi^2 + y^2 = 1^2$$

Examples:

1)
$$r^2 \cos \sin \theta = \lambda$$

 $xy = \lambda$

2)
$$r = 4 \sec \theta$$

$$r = \frac{4}{\cos \theta}$$

$$r\cos \theta = 4$$

$$x = 4$$

3)
$$r = -2 \csc\theta$$

 $r = -\frac{2}{\sin \theta}$
 $r \sin \theta = -2$
 $y = -2$

Remark:
$$r = a \sec \theta$$

$$r = b \csc \theta$$

vertical line x=a. Horizontal line y=b.

4)
$$r^{2} = 4r \cos \theta$$

 $\chi^{2} + y^{2} = 4x$
 $\chi^{2} - 4\chi + 4^{2} = 0$
 $\chi^{2} - 4\chi + 4 - 4 + 4^{2} = 0$
 $(x-2)^{2} + 4^{2} = 4$

Center (2,0), radius = 2.

 $r = a\cos\theta$ circle center $(\frac{a}{2},0)$ and radius $\frac{|a|}{2}$ $r = a\sin\theta$ circle center $(0,\frac{a}{2})$ and radius $\frac{|a|}{2}$

[r=a] circle center (0,0) and radius [a].

Exercises:

3) Plot the following points (given in polar coordinates) Then find all the polar coordinates of each point.

$$a)$$
 $(2, \frac{\pi}{2})$

$$\left(-2, -\frac{\pi}{2}\right) \quad \left(2, -\frac{3\pi}{2}\right) \quad \left(2, -\frac{3\pi}{2}\right)$$

$$\left(a, -\frac{\pi}{2} \right) \left(a, \frac{3\pi}{2} \right) \left(-a, -\frac{3\pi}{2} \right)$$

$$(-2, 2\pi)$$
 $(2, -\pi)$

Graph the sets of points whose polar coordinates satisfy the equations and mequalities.

$$F=2$$
 (circle of center (9,0) and radius 2)

$$16) O = \frac{2\pi}{3} \quad ; \quad r \leq -2$$

$$24$$
) $-\frac{\pi}{4} \leq 0 \leq \frac{\pi}{4}$, $-1 \leq i \leq 1$

Replace the polar wordinates with equivalent Cartesian equations. Then identify the graph.

32)
$$\Gamma = -3\sec\theta$$

$$\Gamma = \frac{-3}{\cos\theta}$$

$$\Gamma(\cos\theta = -3)$$

$$\chi = -3$$

vertical line
$$[x=-3]$$

45)
$$1^2 = -4r\cos\theta$$

 $x^2 + y^2 = -4x^2$
 $x^2 + 4x + 4y^2 = 0$
 $(x + 2)^2 + y^2 = 0$
(x + 2)^2 + y^2 = 4
circle of center (-2,0) and radius 2

Replace the Cartesian equations with equivalent polar equations.

(60)
$$xy = 2$$

$$r\cos\theta \ r\sin\theta = 2$$

$$r^2 \frac{\sin 2\theta}{2} = 2$$

$$r^2 \sin 2\theta = 4$$

(3)
$$x^{2} + (4-2)^{2} = 4$$
 $r^{2} \cos^{2} \theta + (r \sin \theta - 2)^{2} = 4$
 $r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta - 4 r \sin \theta + 4 = 4$
 $r^{2} (\cos^{2} \theta + \sin^{2} \theta) - 4 r \sin \theta = 0$
 $r^{2} - 4 r \sin \theta = 0$
 $r (r - 4 \sin \theta) = 0$
 $r = 0$
 $r = 0$
 $r = 4 \sin \theta$.

(special case)

Hyperbola of equ. [xy=1]