Homework 4, MA573

Monotonicity in volatility

Jiamin JIAN

Exercise1:

Prove or disprove: Suppose f is convex and X is submartingale, prove that $g(t) = \mathbb{E}[f(X_t)]$ is increasing.

Solution:

This proposition is not right. We can give a counter example. Assume f(x) = -x, then f(x) is a convex function since $\forall x_1, x_2 \in \mathbb{R}$, and $\forall t \in [0, 1]$, we have $f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$ holds. Then we can verify the proposition that g(t) is increasing. Since $\forall s \leq t$,

$$\mathbb{E}[f(X_t) - f(X_s)|\mathcal{F}_s] = \mathbb{E}[-X_t + X_s|\mathcal{F}_s] = X_s - \mathbb{E}[X_t|\mathcal{F}_s].$$

Since X_t is a submartigale with respect to the filtration $\{\mathcal{F}_t\}_{t\in\mathbb{T}}$, then we have

$$\mathbb{E}[X_t|\mathcal{F}_s] \ge X_s,$$

thus we know that $\forall s \leq t$, $\mathbb{E}[f(X_t) - f(X_s)|\mathcal{F}_s] \leq 0$. Then we take expectation on the both side and by the definition of conditional expectation, we have

$$\mathbb{E}[f(X_t) - f(X_s)] \le 0.$$

Then we know that $\forall s \leq t, g(t) \leq g(s)$, such that g(t) is decreasing.

Exercise2:

Let $t \mapsto e^{-rt}S_t$ be a martingale, then prove that

$$C(t) = \mathbb{E}[e^{-rt}(S_t - K)^+]$$

is increasing.

Solution:

Since $e^{-rt}S_t$ is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\in\mathbb{T}}$, and the function $f(x) = x^+$ is a convex function, then by the Jensen's inequality in the conditional expectation, we have $\forall s \leq t$,

$$\mathbb{E}[e^{-rt}(S_t - K)^+ | \mathcal{F}_s] \ge (\mathbb{E}[e^{-rt}(S_t - K) | \mathcal{F}_s])^+ = (e^{-rs}S_s - e^{-rt}K)^+,$$

And we have

$$(e^{-rs}S_s - e^{-rt}K)^+ = ((e^{-rs}(S_s - K) + K(e^{-rs} - e^{-rt}))^+ \ge (e^{-rs}(S_s - K))^+$$

since $K(e^{-rs} - e^{-rt}) \ge 0$, $\forall s \le t$ and K > 0. Thus we know that $\mathbb{E}[e^{-rt}(S_t - K)^+ | \mathcal{F}_s] \ge (e^{-rs}(S_s - K))^+$, then we take expectation on the both side, we have that

$$\mathbb{E}[e^{-rt}(S_t - K)^+] \ge \mathbb{E}[(e^{-rs}(S_s - K))^+].$$

Such that $\forall s \leq t$, we have $C(s) \leq C(t)$, then C(t) is increasing.

Exercise3:

Suppose r = 0 and S is martingale, prove that $P(t) = \mathbb{E}[(S_t - K)^-]$ is increasing.

Solution:

Since S_t is a martingale with respect to the filtration $\{\mathcal{F}_t\}_{t\in\mathbb{T}}$, we have $\forall s\leq t$,

$$\mathbb{E}[(S_t - K)^- - (S_s - K)^- | \mathcal{F}_s] = \mathbb{E}[(S_t - K)^- | \mathcal{F}_s] - (S_s - K)^-,$$

which equivalent to

$$\mathbb{E}[(S_t - K)^- - (S_s - K)^- | \mathcal{F}_s] = (K - S_s) \mathbb{I}_{\{S_t < K\}} - (K - S_s)^+,$$

then we have

$$\mathbb{E}[(S_t - K)^- - (S_s - K)^- | \mathcal{F}_s] = \begin{cases} K - S_s - (K - S_s)^+, & S_t < K \\ -(K - S_s)^+, & S_t \ge K, \end{cases}$$

Then take expectation on the both side, we have

$$\mathbb{E}[(S_t - K)^- - (S_s - K)^-] = \begin{cases} \mathbb{E}[K - S_s - (K - S_s)^+], & S_t < K \\ \mathbb{E}[-(K - S_s)^+], & S_t \ge K, \end{cases}$$

since $K - S_s - (K - S_s)^+ \le 0$ and $-(K - S_s)^+ \le 0$, then we have $\forall s \le t, \mathbb{E}[(S_t - K)^- - (S_s - K)^-] \le 0$, thus $P(t) \le P(s)$. So, we proved that P(t) is decreasing.

solution 2:

Or we can just verify the relationship between $\mathbb{E}[(S_t - K)^- | \mathcal{F}_s]$ and $(S_s - K)^-$. If $S_t > K$,

$$\mathbb{E}[(S_t - K)^- | \mathcal{F}_s] = 0 \le (S_s - K)^-.$$

If $S_t \leq K$,

$$\mathbb{E}[(S_t - K)^- | \mathcal{F}_s] = K - S_s \le (S_s - K)^-.$$

Thus we have $\mathbb{E}[(S_t - K)^- | \mathcal{F}_s] \leq (S_s - K)^-$. Taking expectation on the both side, we have

$$\mathbb{E}[(S_t - K)^-] \le \mathbb{E}[(S_s - K)^-].$$

So we know that $\forall s \leq t, P(t) \leq P(s)$, then P(t) is decreasing.