MATDIP301 **USN**

Third Semester B.E. Degree Examination, June/July 2015 Advanced Mathematics - I

Max. Marks: 100 Time: 3 hrs.

Note: Answer any FIVE full questions.

Express the complex number 1 $\frac{(5-3i)(2+i)}{4+2i}$ in the form x + iy. (06 Marks) b. Find the modulus and the amplitude of $1 + \cos\theta + i \sin\theta$. (07 Marks) (07 Marks)

c. Find the cube roots of 1 + i.

a. Find the nth derivative of $e^{ax} \cos(bx + c)$. (06 Marks) 2

Find the nth derivative of $\frac{x}{(x+1)(2x+3)}$. (07 Marks)

If $x = \tan(\log y)$ prove that $(1 + x^2) y_{n+1} + (2nx - 1) y_n + n(n-1) y_{n-1} = 0$. (07 Marks)

Find the angle of intersection of the curves $r^n = a^n \cos \theta$, $r^n = b^n \sin \theta$. (06 Marks) 3

Find the Pedal equation of the curve $r = a(1 - \cos \theta)$. (07 Marks)

c. Using Macleaurin's series expand log(1 + x) upto the term containing x^4 . (07 Marks)

a. If u = f(x + ct) + g(x - ct) show that $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$. (06 Marks)

b. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ prove that $xu_x + yu_y + zu_z = 0$. (07 Marks)

c. If u = x + y, v = y + z, w = z + x find the value of $\frac{\partial(u, v, w)}{\partial(x, v, z)}$. (07 Marks)

a. Obtain the reduction formula for $\int \cos^n x dx$ where n is a positive integer. (06 Marks)

b. Evaluate $\int_{\sqrt{a^2-x^2}}^{a} dx$. (07 Marks)

c. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z}$, dz dy dx. (07 Marks)

Define beta and gamma functions and prove that $\Gamma(n+1) = n\Gamma(n)$. (06 Marks)

b. Show that $\int_{0}^{\pi/2} \sqrt{\sin \theta} \ d\theta \times \int_{0}^{\pi/2} \frac{1}{\sqrt{\sin \theta}} \ d\theta = \pi.$ (07 Marks)

c. Prove that $\beta(m, n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}$. (07 Marks)

For More Question Papers Visit - www.pediawikiblog.com MATDIP301

7	a.	Solve: $\frac{dy}{dx} = \cos(x + y + 1)$.	(06 Marks)
•		$Solve: (x^2 - y^2) dx - xydy = 0.$	(07 Marks)
	c.	Solve: $\frac{dy}{dx} + y \cot x = 4x \csc x$.	(07 Marks)
8	a. b.	Solve: $(D^3 - 6D^2 + 11D - 6) y = 0$. Solve: $(D^2 + 2D + 1) = x^2 + e^{+x}$. Solve: $(D^2 + D + 1)y = \sin 2x$.	(06 Marks) (07 Marks) (07 Marks)

.