Iodometric Determination of Cu in Brass Sample Solution

IODINE TITRATIONS

Iodimetry: A direct titration with only 1 reaction:

analyte + titrant (iodine
$$I_2$$
) \rightarrow product (iodide I^-) unknown known

Iodometry is the titration of iodine (I_2) produced when an oxidizing analyte is added to excess I-(iodide).

Then the iodine (I_2) is usually titrated with standard **thiosulfate** solution.

Iodometric titrations

Iodine titrations in which some oxidizing agent liberate I_2 from an I^- solution and then liberated I_2 is titrated with a standard solution of reducing agent

Estimation of CuSO₄, K₂Cr₂O₇, KMnO₄, Fe³⁺, H₂O₂, Br₂, Cl₂ etc.

$$2CuSO4 + 4KI \longrightarrow Cu2I2 + 2K2SO4 + I2$$

$$2Na2S2O3 + I2 \longrightarrow Na2S4O6 + 2NaI$$

- Detection of the end point using chemical Indicator
- In this titration a solution of starch is used as indicator
- Starch reacts with iodine in the presence of iodide to form an intensely blue-colored complex, which is visible at very low concentrations of iodine

$$I_2 + I^- \longrightarrow I_3^-$$
Starch $+I_3^- \longrightarrow Starch - I_3$

Aim: Estimation of Cu in brass sample using standard sodium thiosulfate solution (Iodometric titration)

Theory

Step 1:
$$2CuSO_4 + 4KI \longrightarrow Cu_2I_2 + 2K_2SO_4 + I_2$$
$$2Cu^{2+} + 2I^- \longrightarrow 2Cu^+ + I_2$$

Step 2:
$$I_2 + I^- \longrightarrow I_3^-$$

Step 3: Starch +
$$I_3$$
 \longrightarrow Starch- I_3 (Starch-triiodide complex) (Colourless) (Dark Blue)

Step 4:
$$2S_2O_3^{2-} + I_2 \longrightarrow S_4O_6^{2-} + 2I^{-}$$

Procedure:

0.5g of brass is dissolved in 10mL conc. HNO₃ and dilute it upto 100 mL with distilled water in standard measuring flask. Pipette 10 mL of this diluted alloy solution (test solution) into a conical flask then add a few drops of dilute NH₄OH solution until a slight permanent precipitate remains. The precipitate is redissolved by adding acetic acid drop by drop till the solution becomes clear. Then about 5 mL of a 5% KI solution is added and titrate the liberated iodine with 0.05N Na₂S₂O₃ solution from the burette using 1% starch solution as an indicator. The end point is marked with the disappearance of blue color. Repeat the titration 3-4 times.

> End Point

> > Colourless

Blue Black

Add Starch

I, Soln. Brown

OBSERVATIONS

Burette: 0.05 N Na₂S₂O₃ Solution

Flask: 10 ml diluted alloy solution + NH₄OH (dropwise till slight permanent Precipitation) + HAc (till

the precipitation dissolves) + 5% KI
Indicator: Starch solution (2-3 drop)
End point: Disappearance of Blue color

Observation table

Sr No	Initial Burette reading	Final Burette	Difference (ml)	Concurrent
	(ml)	reading(ml)		Reading (ml)
1	0.0	9.2	9.2	
2	0.0	8.2	8.2	8.2
3	0.0	8.2	8.2	
4	0.0	8.0	8.0	

Equations:

 $2CuSO_4 + 4KI = Cu_2I_2 + 2K_2SO_4 + I_2$

 $I_2 + 2Na_2S_2O_3 = Na_2S4O_6 + 2NaI$

(Sodium Tetrathionate)

 $2Na_2S_2O_3 = I_2 = 2CuSO_4 = 2Cu$

 $NaS_2O_3 = I = CuSO_4 = 2Cu$

Calculation:

1000 ml 1N Na₂S₂O₃ = 63.57g of Cu = 249.57 g CuSO₄·5H₂O

1 ml 1N Na₂S₂O₃ = 0.06357g of Cu = 0.24957 g CuSO₄·5H₂O

A ml of 0.05 N $Na_2S_2O_3 = 8.2$ ml

Quantity of Copper in the given solution = $A \times 0.05 \times 0.06357 \times 100/10$

$$= B = 0.26 g$$

% of Copper in the alloy = $X \times 100/W = 52\%$

Where W = weight of the alloy taken = 0.5 g

A = Constant Burette Reading and B = Quantity of Copper.

Results

- 1. 10 ml of diluted solution required = 8.2 ml of 0.05 N Na₂S₂O₃
- 2. Quantity of Copper in the given solution = 0.26 g
- 3. Percentage of Copper in the alloy = 52%.