章节 06 类型的幂

LATEX Definitions are here.

泛性质

默认函子 $\stackrel{\text{C}}{\to}$: C $\stackrel{\text{Cat}}{\times}$ C $\stackrel{\text{Cat}}{\to}$ C 在范畴 C 中有下述性质 :

• $(a \times x) \xrightarrow{c} b \simeq x \xrightarrow{c} (a \xrightarrow{c} b) \simeq a \xrightarrow{c} (x \xrightarrow{c} b)$, x 为任意 C 中对象
—— **泛性质**, 指数与加乘法运算间的关系。 下图便干理解证明:

函子性

如何证明 $\stackrel{c}{\rightarrow}$ 构成函子呢 ? 请看

- $\overset{\mathsf{c}}{\to}$: $(:_{\mathsf{a_1}}\mathrm{id} :_{:_{\mathsf{b_1}}}\mathrm{id}) \longmapsto :_{(\mathsf{a_1}}\overset{\mathsf{c}}{\to}_{\mathsf{b_1}})\mathrm{id}$ ——即函子 $\overset{\mathsf{c}}{\to}$ 能**保持恒等箭头**;
- $\overset{\mathsf{c}}{\to}: (f_2 \overset{\mathsf{c}}{\circ} f_1 \overset{\mathsf{c}}{\cdot} g_1 \overset{\mathsf{c}}{\circ} g_2) \longmapsto h_1 \overset{\mathsf{c}}{\circ} h_2$ —— 即函子 $\overset{\mathsf{c}}{\to}$ **保持箭头复合运算** 。
 下图有助于形象理解证明过程:

下图 (自上到下分别为图 1 和图 2)后面会用到。

范畴 C 内任意两对象 a_1 和 b_1 间的箭头构成一个集合 $a_1\overset{c}{\to}b_1$,说明 $\overset{c}{\to}$ 只能将两个对象打到一个集合。下面使 $\overset{c}{\to}$ 升级为函子:若还知道箭头 $f_1:a_2\overset{c}{\to}a_1$ 以及 $g_1:b_1\overset{c}{\to}b_2$,则规定

• $(\stackrel{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{b}_1) : \mathsf{C}^{\mathrm{op}} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{Set} \;$ 为函子且 $(\stackrel{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{b}_1) : \mathsf{a}_1 \longmapsto (\mathsf{a}_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{b}_1) \; ,$ 并且有 $(\stackrel{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{b}_1) : f_1 \longmapsto (f_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{b}_1) = (f_1 \overset{\mathsf{C}}{\underset{\mathsf{D}_1}{\rightarrow}} :_{\mathsf{b}_1} \mathrm{id}) = \mathsf{b}_1^{(f_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}})}$

图 1 有助于理解。

$$\begin{array}{c} (_\overset{\mathsf{C}}{\rightarrow} g_1) : \mathsf{C}^{\mathrm{op}} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{Set} \,, \\ (_\overset{\mathsf{C}}{\rightarrow} g_1) : \mathsf{a}_1 \longmapsto (\mathsf{a}_1 \overset{\mathsf{C}}{\rightarrow} g_1) = (_{:\mathsf{a}_1} \mathrm{id} \overset{\mathsf{C}}{\rightarrow} g_1) = \mathsf{a}_1 \overset{\mathsf{C}}{(_\circ g_1)} \\ (_\overset{\mathsf{C}}{\rightarrow} g_1) : f_1 \longmapsto (f_1 \overset{\mathsf{C}}{\rightarrow} g_1) = (f_1 \overset{\mathsf{C}}{\circ} _) \overset{\mathsf{C}}{\circ} \overset{\mathsf{Set}}{(_\circ g_1)} = (_\overset{\mathsf{C}}{\circ} g_1) \overset{\mathsf{C}}{\circ} \overset{\mathsf{Set}}{\circ} (f_1 \overset{\mathsf{C}}{\circ} _) \end{aligned}$$

图 2 有助于理解。

不难看出

• よ:
$$C \xrightarrow{Cat} (C^{op} \xrightarrow{Cat} Set)$$

• $b_1 \longmapsto (- \xrightarrow{c} b_1)$ 构成一个函子,称作预层 $g_1 \longmapsto (- \xrightarrow{c} g_1) = (- \circ g_1)$ 构成一个函子间映射,即自然变换

图 2 有助于理解。

$$\begin{array}{l} (f_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} _) : \overset{\mathsf{Cop}^\mathsf{Cat}}{\searrow} \mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{Set} \,, \\ (f_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} _) : \mathsf{b}_1 \longmapsto (f_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{b}_1) = (f_1 \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} :_{\mathsf{b}_1} \mathrm{id}) = \mathsf{b}_1 \overset{\mathsf{C}}{\stackrel{\mathsf{C}}{\rightarrow}} \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{Set} \\ (f_1 \overset{\mathsf{C}}{\rightarrow} _) : g_1 \longmapsto (f_1 \overset{\mathsf{C}}{\rightarrow} g_1) = (f_1 \overset{\mathsf{C}}{\circ} _) \overset{\mathsf{C}}{\circ} \overset{\mathsf{C}}{\rightarrow} \mathsf{Set} \overset{\mathsf{C}}{\underset{\mathsf{C}}{\rightarrow}} \mathsf{Set} \\ (f_1 \overset{\mathsf{C}}{\rightarrow} _) : g_1 \longmapsto (f_1 \overset{\mathsf{C}}{\rightarrow} g_1) = (f_1 \overset{\mathsf{C}}{\circ} _) \overset{\mathsf{C}}{\circ} \overset{\mathsf{C}}{\rightarrow} \mathsf{Set} & (f_1 \overset{\mathsf{C}}{\circ} _) \end{aligned}$$

图 1 有助于理解。

不难看出

• 尤:
$$C^{\mathrm{op}} \xrightarrow{\mathsf{Cat}} (C \xrightarrow{\mathsf{Cat}} \mathsf{Set})$$
 $\mathsf{a}_1 \longmapsto (\mathsf{a}_1 \xrightarrow{\mathsf{C}} _)$ 构成一个函子
 $f_1 \longmapsto (f_1 \xrightarrow{\mathsf{C}} _) = (f_1 \circ _)$ 构成一个函子间映射,即自然变换
该函子戏称为**尤达嵌入**。

积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作积闭范畴;

若范畴包含始对象 , 所有类型的和 , 则可将其称作是**余积闭范畴** ;

若范畴满足上述条件,则可称作双积闭范畴。

很明显我们讨论的范畴 C 就是**双积闭范畴**。