1 VECTORES LIBRES

Dados dos puntos en el plano (A y B, podemos trazar una flecha que vaya del primero al segundo. A esta flecha la llamaremos vector (fijo) y se denota \overrightarrow{AB} o \overrightarrow{v} .

- Módulo: La longitud del vector
- Dirección: La recta que contiene al vector y cualquiera de sus paralelas
- Sentido: El que va del origen al final o su contrario. Viene representado por punta "la cabeza de la flecha"

Dos vectores (fijos) son **equipolentes** cuando tienen el mismo módulo, misma dirección y mismo sentido. Un vector fijo y todos sus equipolentes forman lo que de denomina un **vector libre**. Un vector libre viene determinado por sus coordenadas:

2 COORDENADAS Y MÓDULO DE UN VECTOR

Un vector se puede ver como el desplazamiento que tenemos que hacer horizontalmente y verticalmente para ir del origen al extremo del mismo. Al desplazamiento horizontal le llamaremos primera coordenada y al vertical, segunda.

- Dados $A(x_1, y_2), B(x_2, y_2) \rightarrow \overrightarrow{AB}(x_2 x_1, y_2 y_1)$
- A partir de las coordenadas del punto podremos calcular su módulo. Dados $\overrightarrow{u}(x,y)$, $\rightarrow |\overrightarrow{u}| = \sqrt{x^2 + y^2}$

2.1. Ejemplo

Determina las coordenadas y el módulo del vector libre cuyo representante es el vector que va de A(1,1) a B(7,5)

3 OPERACIONES CON VECTORES

3.1. Producto de un número por un vector

Definición Dado $k \in \mathbb{R}$ y \overrightarrow{u} se define $k \cdot \overrightarrow{u}$ como un \overrightarrow{v} que:

- $\bullet |\overrightarrow{v}| = |k| \cdot |\overrightarrow{u}|$
- v̄ // ū
- Mismo sentido que \overrightarrow{u} si k > 0 o sentido contrario si k > 0

Además se cumple que si $\overrightarrow{u}(x_1,y_1) \to k \overrightarrow{u}(k \cdot x_1,k \cdot y_1)$

3.1.1. Ejemplos

3.2. Suma y resta de vectores

Definición de suma Dados \overrightarrow{u} y \overrightarrow{v} se define la suma como el vector que si los ponemos seguidos va del origen del primer vector al extremo del segundo vector. Además se cumple que si $\overrightarrow{u}(x_1,y_1)$ y $\overrightarrow{v}(x_2,y_2) \rightarrow \overrightarrow{u} + \overrightarrow{v}(x_1+x_2,y_1+y_2)$

Definición de resta Dados \overrightarrow{u} y \overrightarrow{v} se define la resta como la suma del primero con el opuesto del segundo. Además se cumple que si $\overrightarrow{u}(x_1,y_1)$ y $\overrightarrow{v}(x_2,y_2) \to \overrightarrow{u} - \overrightarrow{v}(x_1-x_2,y_1-y_2)$

4 Punto medio de un segmento

Dados dos puntos del plano, $A(x_1,y_1)$ y $B(x_2,y_2)$, el punto medio es $M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$.

La demostración es sencilla aplicando la propiedad geométrica que cumple el punto medio: $\overrightarrow{AM} = \overrightarrow{MB}$

4.1. Ejemplo

5 Puntos alineados

Dados los puntos A,B y C estarán alineados si los vectores \overrightarrow{AB} y \overrightarrow{BC} son colineales, o tienen la misma dirección, y por tanto: $\exists k \in \mathbb{R} | \overrightarrow{BC} = k \cdot \overrightarrow{AB}$

5.1. Ejemplo

