Perfect ightharpoonup
ightharpoo

\square EASY LEVEL (1–15)

1. Sum of Elements

Given an array of size nnn, find the sum of all elements.

Constraints: $1 \le n \le 1051 \le n \le 10^5 \le n \le 105$, $|ai| \le 109 = |a_i| \le 10^9 = 109$

2. Maximum Element

Find the maximum element in the array.

Constraints: 1<n<1051 \le n \le 10^51<n<105

3. Minimum and Maximum Difference

Find the difference between the maximum and minimum elements.

Constraints: 1<n<1051 \le n \le 10^51<n<105

4. Count Even Numbers

Count how many even numbers exist in the array.

Constraints: 1\le n \le 10^51 \le \le 10^5

5. Reverse the Array

Print the array elements in reverse order.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

6. Sum of Positive Numbers

Compute the sum of all positive numbers in the array.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

7. Unique Elements Count

Count distinct elements in the array.

Constraints: 1\le n\le 10^51\le n\le 10^51\le n\le 10^51\le n\le 10^50\le a_i \le 10^90\le a_i \le 10^90\le a_i

8. First Repeated Element

Find the first element that appears more than once.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

9. Prefix Sum Query

Given an array and qqq queries, each query asks for the sum of elements from lll to

rrr.

Constraints: $1 \le n, q \le 1051$ \le n,q \le $10^51 \le n, q \le 105$

10. Array Rotation

Rotate the array right by kkk steps.

Constraints: $1 \le n \le 105, 0 \le k < n1$ \le n \le 10^5, 0 \le k < $n1 \le n \le 105, 0 \le k < n$

11. Check Sorted

Check if the array is sorted in non-decreasing order.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

12. Count Negatives

Count how many negative numbers are in the array.

Constraints: 1\le n \le 105, -109\le a_i \le n \le 10^5, -10^9 \le a_i \le

10^91<n<105,-109<ai<109

13. Sum of Alternate Elements

Find the sum of elements at even indices.

Constraints: 1<n<1051 \le n \le 10^51<n<105

14. Product of All Elements (mod M)

Output the product of all array elements modulo 109+710⁹ + 7109+7.

Constraints: $1 \le n \le 105, 1 \le a \le 1091$ \le n \le 10^5, 1 \le a_i \le 10^91 \le n \le 10^5, 1 \le a_i \le 10^91 \le n \le 10^91 \le 10^91

15. Number of Zeros

Count how many zeros appear in the array. **Constraints:** $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

© MEDIUM LEVEL (16–35)

16. Equal Pair Count

Count how many pairs (i,j)(i,j)(i,j) exist such that $ai=aja_i=a_jai=aj$ and i< ji < ji < j.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

17. Second Largest Element

Find the second largest unique element.

Constraints: $2 \le n \le 1052 \le n \le 105$

18. Remove Duplicates

Print the array after removing duplicates while keeping order.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

19. Frequency Query

Output how many times a given value xxx appears.

Constraints: $1 \le n, q \le 1051$ \le n, q \le $10^51 \le n, q \le 105$

20. Balanced Array

Check if the sum of the first half equals the sum of the second half.

Constraints: $2 \le n \le 105, n2 \le n \le 105, n \ge 105, n$

21. Majority Element

Find an element that appears more than n/2n/2n/2 times (if exists).

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

22. K-th Largest Element

Find the k-th largest number in the array.

Constraints: $1 \le n \le 105, 1 \le k \le n1$ \le n \le 10^5, 1 \le k \le n1 \le n \le 105, 1 \le k \le n1

23. Missing Number

Given integers from 1 to nnn with one missing, find the missing one.

Constraints: 2≤n≤1062 \le n \le 10^62≤n≤106

24. Pair with Given Sum

Check if any two numbers sum to xxx.

Constraints: 1<n<105,|ai|<1091 \le n \le 10^5, |a i| \le 10^91<n<105,|ai|<109

25. Rearrange by Parity

Move all even numbers to the front, odd to the back.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

26. Subarray Sum Equals K

Count the number of subarrays with sum equal to kkk.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

27. Longest Increasing Subarray

Find the length of the longest increasing contiguous subarray.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

28. Difference Array Operations

After qqq range increment operations, output final array. **Constraints:** $1 \le n, q \le 1051$ \le n,q \le $10^5 1 \le n, q \le 105$

29. Sort by Frequency

Sort elements by descending frequency.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

30. Minimum Number of Moves to Equal Array

You can increment/decrement an element by 1. Find min moves to make all equal.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

31. Cyclic Shift Equality

Check if one array can be rotated to become another.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

32. Equalize Array

Delete minimum elements so that all remaining are equal.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

33. Remove Adjacent Duplicates

Continuously remove adjacent duplicates until none remain.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

34. Smallest Missing Positive

Find the smallest positive integer missing from the array.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

35. Longest Subarray with Equal 0s and 1s

Given an array of 0s and 1s, find the longest subarray with equal 0s and 1s.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

HARD LEVEL (36–50)

36. Maximum Subarray Sum (Kadane's Algorithm)

Find the maximum possible subarray sum.

Constraints: 1\le n \le 106, -109\le a_i \le n \le 10^6, -10^9 \le a_i \le

10^91≤n≤106,−109≤ai≤109

37. Subarray with Given XOR

Count subarrays with XOR equal to kkk.

Constraints: $1 \le n \le 105, 0 \le ai \le 1091$ \le n \le 10^5, 0 \le a_i \le 10^91 \le n \le 10^5, 0 \le a_i \le 10^91 \le n \le 10^91 \le

38. Number of Inversions

Count pairs (i,j)(i,j)(i,j) where i < ji < ji < j and $ai > aja_i > a_jai > aj$.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

39. Find Peak Element

Find an index iii where $ai>ai-1a_i>a_{i-1}ai>ai-1$ and $ai>ai+1a_i>a_{i+1}ai>ai+1$

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

40. Subarray Minimums Sum

Find sum of minimums of all subarrays.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

41. Next Greater Element

For each element, find the next greater element to its right.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

42. Trapping Rain Water

Find how much water can be trapped between bars.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

43. Maximum Product Subarray

Find maximum product of a contiguous subarray. **Constraints:** 1≤n≤1051 \le n \le 10^51≤n≤105

44. Minimum Swaps to Sort

Find the minimum number of swaps to sort the array.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

45. Merge Intervals in Array

Given intervals [1, r], merge overlapping ones. **Constraints:** $1 \le n \le 1051$ \le n \le $10^5 1 \le n \le 105$

46. Sliding Window Maximum

For window size kkk, find max in each window.

Constraints: $1 \le n \le 105, 1 \le k \le n1$ \le n \le 10^5, 1 \le k \le n1 \le n \le 105, 1 \le k \le n1

47. Median of Two Sorted Arrays

Find the median of two sorted arrays.

Constraints: 1≤n,m≤1051 \le n,m \le 10^51≤n,m≤105

48. Longest Subarray Sum \leq K

Find the longest subarray with sum $\leq K$.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

49. Split Array into Equal Sum Parts

Find number of ways to split array into 3 contiguous parts with equal sum.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

50. Maximize Sum after K Negations

Given kkk operations, in each you can flip the sign of one element; maximize final sum.

Constraints: $1 \le n \le 105, 1 \le k \le 1091$ \le n \le 10^5, 1 \le k \le 10^91 \le n \le 105, 1 \le k \le 1091

Would you like me to include **sample input/output + explanation** for each of these 50 problems (like Codeforces format)?

It'll make them fully ready for coding practice.

You said:

queue

ChatGPT said:

Nice f — you want **50 Codeforces-style problem statements on Queues** (with **constraints**, like real contests).

Here's a full competitive-programming-ready set — from $easy \rightarrow hard$, all based on queue logic, simulation, or advanced applications (monotonic queue, BFS, etc.).

\square EASY LEVEL (1–15)

1. Simple Queue Simulation

Given nnn enqueue and dequeue operations, print the final contents of the queue.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

2. Front and Back of Queue

Process qqq queries of 3 types:

- \circ 1 x \rightarrow push x
- \circ 2 \rightarrow pop front
- \circ 3 \rightarrow print front element

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

3. Empty or Not

Given qqq operations, after each one, print "YES" if the queue is empty else "NO".

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

4. Reverse a Oueue

Given nnn integers, reverse them using a queue.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

5. Queue Size Tracker

Process enqueue/dequeue operations and print current queue size after each operation.

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

6. Last Element in Queue

After a series of enqueue/dequeue operations, print the element at the back (or -1 if empty).

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

7. Customer Queue at Bank

Each customer takes tit_iti seconds to serve. Print total waiting time for all customers. **Constraints:** $1 \le n \le 105, 1 \le t \le 1041$ \le n \le $10^5, 1$ \le t_i \le $10^41 \le n \le 105, 1 \le t \le 104$

8. Circular Oueue Implementation

Simulate a circular queue of capacity kkk. Output "FULL" or "EMPTY" after each operation.

Constraints: $1 \le q \le 105, 1 \le k \le 1051$ \le q \le 10^5, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le q \le 105, 1 \le k \le 10^51 \le 105, 1 \l

9. Queue Sum Queries

Support operations: enqueue(x), dequeue(), and print sum of all elements.

Constraints: $1 \le q \le 105, |x| \le 1091 \le q \le 10^5, |x| \le 10^91 \le q \le 105, |x| \le 109$

10. Check Front and Rear Equal

Check if front and rear elements are equal at any point.

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

11. Multiple Oueues

Maintain kkk queues; process enqueue/dequeue operations for specific queues.

Constraints: $1 \le k, q \le 1051$ \le k,q \le $10^51 \le k, q \le 105$

12. Queue of Strings

Implement queue operations for strings instead of integers.

Constraints: $1 \le q \le 105, |s| \le 201 \le q \le 10^5, |s| \le 201 \le q \le 105, |s| \le 20$

13. Sum of First and Last Element

Print sum of front and back after every operation.

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

14. Queue Rotation

Rotate queue kkk times to the right.

Constraints: $1 \le n \le 105, 0 \le k < n1$ \le n \le 10^5, 0 \le k < $n1 \le n \le 105, 0 \le k < n$

15. Copy Queue

Copy contents of one queue into another and print both.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

Ø MEDIUM LEVEL (16–35)

16. Queue Using Two Stacks

Implement a queue using two stacks (efficiently). **Constraints:** $1 \le q \le 1051$ \le q \le 10^51\le q\le 105

17. Print Queue Elements in Reverse without Extra Queue

Use recursion to reverse and print queue.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

18. People Waiting for Ticket

Each person has a priority (smaller number = higher priority). Print order of service.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

19. Queue Reordering

Given a queue, bring all even numbers to the front while maintaining order.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

20. Printer Queue Simulation

Given jobs with priorities, print the order in which jobs complete.

Constraints: $1 \le n \le 105, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le priority \le 1091 \le n \le 10^5, 1 \le 10$

10^91\le n\le 105,1\le priority\le 109

21. Time to Get Ticket

A person at position kkk in queue wants a ticket. Each person buys one per round.

Find how long it takes for person kkk.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

22. Queue Balancing

Two queues contain integers. You can move front element from one to another.

Find min moves to make their sums equal.

Constraints: 1≤n≤105,1≤ai≤1091 \le n \le 10^5, 1 \le a_i \le 10^91≤n≤105,1≤ai≤109

23. Queue Rotation to Target

Given a queue and a target number, find how many rotations to bring target to front.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

24. Sliding Window Average

For window size kkk, print average of elements in each window using a queue.

Constraints: $1 \le n \le 105, 1 \le k \le n1$ \le n \le 10^5, 1 \le k \le n1 \le n \le 105, 1 \le k \le n1

25. Pair Sum in Queue

Check if there exists two elements in queue that sum to xxx.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

26. First Non-Repeating Character in Stream

For each character input, print first non-repeating character so far.

Constraints: $1 \le |s| \le 1051$ \le |s| \le 10^51 \s| \s| \s| 105

27. Interleave Two Halves of Oueue

Given a queue of even size, rearrange elements by interleaving first and second

halves.

Constraints: $2 \le n \le 1052 \le n \le 105$

28. Reverse First K Elements of Queue

Reverse the first kkk elements, leave rest unchanged. **Constraints:** $1 \le k \le n \le 1051 \le k \le n \le 105$

29. Gas Station Oueue

Each car has fuel and cost to move to next. Find if possible to complete circle.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

30. Circular Tour

Similar to Gas Station — find starting point index to complete loop.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

31. Queue Stability Check

Given two queues, check if they are rotations of each other.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

32. Merge Two Queues Alternately

Merge two queues by taking elements alternately. **Constraints:** $1 \le n,m \le 1051 \le n,m \le 105$

33. Queue of Operations

Each operation has a delay time. Print order of completion.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

34. Team Formation using Queues

Students enter queues based on their teams. Simulate team-based enqueue.

Constraints: $1 \le n, q \le 1051$ \le n,q \le $10^51 \le n, q \le 105$

35. Queue to Stack Conversion

Implement a stack using two queues.

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

\(\) HARD LEVEL (36–50)

36. Maximum in Sliding Window (Monotonic Queue)

Find maximum in every subarray of size kkk.

Constraints: $1 \le n \le 106, 1 \le k \le n1$ \le n \le 10^6, 1 \le k \le n1 \le n \le 106, 1 \le k \le n1

37. Sum of Minimums of Subarrays (Monotonic Queue)

Find sum of minimum elements in all subarrays.

Constraints: $1 \le n \le 1051$ \le n \le $10^5 1 \le n \le 105$

38. Queue-Based BFS Traversal

Given a graph, perform BFS and print visit order.

Constraints: 1≤n,m≤1051 \le n,m \le 10^51≤n,m≤105

39. Shortest Path in Grid (BFS)

Given a grid of 0s (free) and 1s (blocked), find shortest path using queue BFS.

Constraints: $1 \le n,m \le 1031$ \le n,m \le $10^31 \le n,m \le 103$

40. Rotten Oranges

Given a grid of oranges, compute minimum time for all to rot using BFS.

Constraints: $1 \le n,m \le 1031$ \le n,m \le $10^31 \le n,m \le 103$

41. Course Schedule (Topological Sort with Queue)

Determine if all courses can be finished given dependencies.

Constraints: 1≤n,m≤1051 \le n,m \le 10^51≤n,m≤105

42. Knight Moves on Chessboard

Find minimum moves for knight to reach target using queue-based BFS.

Constraints: $1 \le n \le 5001$ \le n \le $5001 \le n \le 500$

43. Shortest Path in Binary Maze

Find shortest path from source to destination using BFS queue.

Constraints: 1≤n,m≤1031 \le n,m \le 10^31≤n,m≤103

44. Queue Reconstruction by Height

Given people with (height, count), reconstruct queue order.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

45. Truck Tour (Queue Simulation)

Each station gives petrol and has a distance. Find first station to complete circle.

Constraints: $1 \le n \le 1051$ \le n \le $10^51 \le n \le 105$

46. Snake and Ladder Game (BFS Queue)

Find minimum dice throws to reach end.

Constraints: $1 \le N \le 1041 \le N \le 10^4 \le 10^4 \le N \le 104$

47. Minimum Operations to Convert A to B

Use queue BFS where operations are multiply by 2 or subtract 1.

Constraints: $1 \le a,b \le 1061$ \le a,b \le $10^61 \le a,b \le 106$

48. Queue Using Linked List (Custom Implementation)

Implement queue without STL, using linked list nodes.

Constraints: $1 \le q \le 1051$ \le q \le $10^51 \le q \le 105$

49. Maximum Distance from Land (Multi-source BFS)

In a grid of 0s and 1s, find max distance from any 0 to nearest 1 using queue.

Constraints: 1\le n,m\le 10001\le n,m\le 10001\le n,m\le 10001

50. Circular Queue Game

N people stand in a circle. Every k-th person is removed (Josephus problem). **Constraints:** $1 \le n \le 106, 1 \le k \le n1$ \le n \le 10^6, 1 \le k \le n1 \le n \le 106, 1 \le k \le n \

Would you like me to make **input/output examples** + **explanation** for these 50 queue problems (in Codeforces-style format)?

It'll make them directly usable for practice or mock contests.

You said	l:

matrix

ChatGPT said:

Excellent — you want 50 Codeforces-style matrix problem statements with constraints (like real contests).

These cover basic matrix operations \rightarrow submatrix queries \rightarrow graph/grid BFS \rightarrow combinatorics on matrices — all sorted by difficulty.

□ EASY L	EVEL	(1-15)
----------	-------------	--------

1. Matrix Sum

Given a matrix of size n×mn \times mn×m, print the sum of all its elements.

Constraints: $1 \le n, m \le 1000, |a_i| \le 1091 \le n, m \le 1000, |a_{ij}| \le 1000,$

 $10^91 \le n,m \le 1000, |aij| \le 109$

2. Row Sum and Column Sum

For each row and column, print their sums.

Constraints: 1≤n,m≤10001 \le n,m \le 10001≤n,m≤1000

3. Transpose of Matrix

Print the transpose of an n×mn \times mn×m matrix.

Constraints: 1≤n,m≤10001 \le n,m \le 10001≤n,m≤1000

4. Check Symmetric Matrix

Check if an $n \times n$ \times $nn \times n$ matrix is symmetric (a[i][j]=a[j][i]a[i][j] = a[j][i]a[i][j]=a[j][i]).

Constraints: $1 \le n \le 10001$ \le n \le $10001 \le n \le 1000$

5. Diagonal Sum

Print the sum of the primary and secondary diagonals of a square matrix.

Constraints: $1 \le n \le 10001$ \le n \le $10001 \le n \le 1000$

6. Identity Matrix Check

Check whether the given matrix is an identity matrix.

Constraints: 1≤n≤10001 \le n \le 10001≤n≤1000

7. Upper and Lower Triangular Matrix Check

Check if a square matrix is upper or lower triangular.

Constraints: 1 \(\sigma n \le 10001 \le n \le 10001 \le n \le 10001

8. Matrix Multiplication

Multiply two matrices AAA ($n \times mn \times m$) and BBB ($m \times pm \times p$).

Constraints: $1 \le n, m, p \le 2001$ \le n, m, p \le $2001 \le n, m, p \le 200$

9. Matrix Rotation (90° Clockwise)

Rotate a square matrix 90° clockwise.

Constraints: 1<n<10001 \le n \le 10001<n<1000

10. Find Maximum Element in Matrix

Output the largest element in the matrix.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

11. Replace Negative with Zero

Replace all negative elements with 0.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

12. Check Sparse Matrix

A matrix is sparse if more than half its elements are zero — print "YES" or "NO".

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

13. Search Element in Matrix

Given an n×mn \times mn×m sorted matrix, search for element xxx.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

14. Count Odd and Even Elements

Count how many even and odd numbers exist in the matrix. **Constraints:** 1\le n,m\le 10001 \le n,m\le 10001\le n,m\le 10001

15. Matrix Border Sum

Find the sum of elements on the boundary of the matrix.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

© MEDIUM LEVEL (16–35)

16. Add and Subtract Two Matrices

Compute C=A+BC=A+BC=A+B and D=A-BD=A-B.

Constraints: 1≤n,m≤5001 \le n,m \le 5001≤n,m≤500

17. Row with Maximum 1s

Each row is sorted (0s followed by 1s). Find the row with maximum 1s.

Constraints: $1 \le n,m \le 1031 \le n,m \le 103$

18. Column with Maximum Sum

Find the column that has the maximum sum.

Constraints: $1 \le n,m \le 1031 \le n,m \le 103$

19. Wave Print of Matrix

Print elements column-wise in a wave pattern.

Constraints: $1 \le n,m \le 1031 \le n,m \le 103$

20. Spiral Order Print

Print the matrix elements in spiral order.

Constraints: 1≤n,m≤10001 \le n,m \le 10001≤n,m≤1000

21. Matrix Rotation by K (90° each time)

Rotate matrix kkk times by 90° clockwise.

Constraints: 1\le n \le 1000, 1 \le k \le 41\le 1000, 1 \le k \le 41\le 1000, 1 \le 1000, 1 \le k \le 41\le 1000, 1 \le 1000, 1 \l

22. Matrix Reflection

Reflect matrix horizontally or vertically.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

23. Sum of Each Submatrix (Prefix Sum)

Given queries (x1,y1,x2,y2)(x1, y1, x2, y2)(x1,y1,x2,y2), find the sum of that submatrix.

Constraints: $1 \le n, m \le 103, 1 \le q \le 1051$ \le n,m \le $10^3, 1$ \le q \le

 $10^51 \le n, m \le 103, 1 \le q \le 105$

24. Matrix Binary Search

Matrix is sorted row-wise and column-wise. Search for xxx.

Constraints: 1<n,m<1031 \le n,m \le 10^31<n,m<103

25. Zero Matrix Transformation

If any element is 0, set its entire row and column to 0.

Constraints: $1 \le n,m \le 1031$ \le n,m \le $10^31 \le n,m \le 103$

26. Count Special Elements

An element is special if it's max in its row but min in its column. Count them.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

27. Sum of Diagonal and Boundary Elements

Output total of both diagonals and boundaries (avoid double-counting corners).

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

28. Matrix Rearrangement by Row Sum

Sort rows of matrix by their row sum.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

29. Replace Each Element by Sum of Neighbors

Replace each element with sum of its 8 neighbors.

Constraints: 1≤n,m≤5001 \le n,m \le 5001≤n,m≤500

30. Matrix Row Swap

Given two row indices i,ji, ji,j, swap them.

Constraints: 1≤n,m≤10001 \le n,m \le 10001≤n,m≤1000

31. Matrix Column Swap

Given two column indices i,ji, ji,j, swap them.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

32. Sum of All Submatrices

Find sum of all possible submatrices.

Constraints: 1\le n,m\le 10001\le n,m\le 10001\le n,m\le 1000

33. Count Islands (Grid of 0s and 1s)

Count connected groups of 1s (using 8-direction DFS/BFS). **Constraints:** 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 10001

34. Matrix Path Sum

Find minimum path sum from top-left to bottom-right. **Constraints:** 1\le n,m\le 10001\le n,m\le 10001\le n,m\le 10001

35. Matrix Prefix XOR Queries

Given matrix of integers, answer XOR of submatrix queries. **Constraints:** $1 \le n,m \le 500, 1 \le q \le 1051$ \le n,m \le 500, 1 \le q \le

 $10^51 \le n, m \le 500, 1 \le q \le 105$

\(\) HARD LEVEL (36–50)

36. Rotate Matrix Layer by Layer (In-place)

Rotate matrix rings without extra space.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

37. Largest Square of 1s (DP)

Given binary matrix, find area of largest square submatrix of 1s.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

38. Maximum Rectangle of 1s

Find area of largest rectangle of 1s in a binary matrix.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

39. Matrix Chain Multiplication (DP)

Given dimensions, find minimum number of multiplications.

Constraints: $1 \le n \le 5001$ \le n \le $5001 \le n \le 500$

40. Flood Fill Algorithm

Given matrix and starting point, fill connected region with new color.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

41. Shortest Path in Binary Matrix (BFS)

Find shortest path from top-left to bottom-right avoiding blocked cells.

Constraints: 1≤n,m≤5001 \le n,m \le 5001≤n,m≤500

42. Rotten Oranges Problem

Find time required for all oranges to rot (multi-source BFS).

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

43. Word Search in Matrix

Check if a word exists in the matrix (horizontal/vertical/diagonal).

Constraints: 1≤n,m≤2001 \le n,m \le 2001≤n,m≤200

44. Spiral Fill of Matrix

Fill numbers from 1 to $n \times nn \setminus times nn \times n$ in spiral order.

Constraints: 1 \(\le n \\ \le 10001 \\ \\ \le 10

45. Zigzag Diagonal Traversal

Traverse all diagonals in zigzag order.

Constraints: 1\le n,m\le 10001 \le n,m \le 10001\le n,m\le 1000

46. Matrix Exponentiation

Given a square matrix and integer kkk, compute Akmod (109+7)A $^k \mod (10^9+7)$ Akmod(109+7).

Constraints: $1 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 1091 \le n \le 100, 1 \le k \le 100$

47. Determinant of Matrix (Modular Arithmetic)

Compute determinant of $n \times nn \times n$ matrix modulo $109+710^{4}9+7109+7$.

Constraints: $1 \le n \le 5001 \le n \le 5001 \le n \le 500$

48. Rank of Matrix (Gaussian Elimination)

Find rank of given matrix using row-reduction.

Constraints: $1 \le n,m \le 5001$ \le n,m \le $5001 \le n,m \le 500$

49. Find Path with Maximum Product

Move only right or down; find path with maximum product.

Constraints: 1≤n,m≤5001 \le n,m \le 5001≤n,m≤500

50. K-th Smallest Element in Matrix

Matrix is sorted row-wise and column-wise; find k-th smallest element.

 $\textbf{Constraints:}\ 1 \leq n,m \leq 1000,1 \leq k \leq n \times m1 \ \ \text{le } n,m \ \ \text{le } 1000,\ 1 \ \ \text{le } k \ \ \text{le } n \ \ \text{times}$

 $m1 \le n, m \le 1000, 1 \le k \le n \times m$

Would you like me to add **sample input/output + explanation** for each of these 50 matrix problems (like Codeforces or LeetCode style)?

It will make them directly usable for daily practice or mock contests.

You said:

stack

ChatGPT said:

Here are **50 competitive-style stack problem statements with realistic Codeforces-like constraints** — covering classic, medium, and advanced stack-based algorithms (Next Greater Element, Histogram, Parentheses Matching, Monotonic Stack, etc.):

☐ 50 Stack Problem Statements (Codeforces Style)

♦ Basic Level (1–10)

- 1. **Simple Stack Operations** Given a sequence of operations (push x, pop), simulate the stack and print the remaining elements.
 - o Constraints: $1 \le n \le 10^5$
- 2. **Top of Stack** After a sequence of operations, print the top element or "Empty" if stack is empty.
 - o Constraints: $1 \le n \le 10^4$

- 3. **Reverse Stack Elements** Reverse the contents of a given stack using only stack operations.
 - o Constraints: $1 \le n \le 10^5$
- 4. **Balanced Parentheses** Check if a string containing () [] {} is balanced.
 - o Constraints: $1 \le |s| \le 10^6$
- 5. **Postfix Evaluation** Evaluate a postfix expression using a stack.
 - o Constraints: 1 ≤ |expression| ≤ 10^5
- 6. **Infix to Postfix Conversion** Convert a valid infix expression to postfix using a stack
 - o Constraints: 1 ≤ |expression| ≤ 10^5
- 7. **Valid Parentheses with Extra Characters** Given an expression, ignore non-bracket characters and check if it's balanced.
 - o Constraints: $1 \le |s| \le 10^6$
- 8. **Minimum Stack** Implement a stack that supports push, pop, top, and retrieving the minimum in O(1).
 - o Constraints: $1 \le n \le 10^5$
- 9. **Stack Permutation** Determine if a given output sequence can be produced using a stack given an input sequence 1...n.
 - o Constraints: $1 \le n \le 10^5$
- 10. **Next Greater Element (NGE)** For each element in array, find the next greater element to its right.
 - o Constraints: $1 \le n \le 2 \times 10^5, 1 \le a[i] \le 10^9$

♦ Intermediate Level (11–30)

- 11. **Next Smaller Element (NSE)** Find the next smaller element for every element in array.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 12. **Previous Greater Element (PGE)** For each element, find the nearest greater element to its left.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 13. **Previous Smaller Element (PSE)** For each element, find nearest smaller element to its left.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 14. **Largest Rectangle in Histogram** Find the largest rectangular area possible in a histogram.
 - o Constraints: $1 \le n \le 10^5, 1 \le h[i] \le 10^9$
- 15. **Trapping Rain Water** Given an array of heights, find total trapped rainwater.
 - o Constraints: $1 \le n \le 10^5$
- 16. **Stock Span Problem** For each day, find how many consecutive days before it have price ≤ today's price.
 - o Constraints: $1 \le n \le 10^5$
- 17. **Remove Adjacent Duplicates** Given a string, repeatedly remove adjacent duplicates using a stack.
 - o Constraints: $1 \le |s| \le 10^6$
- 18. **Simplify Path** Simplify a Unix-style file path (/a/./b/../c/).
 - o Constraints: $1 \le |path| \le 10^5$

- 19. **Celebrity Problem** Find if there's a person known by everyone but knows no one (using stack reduction).
 - o Constraints: $1 \le n \le 10^3$
- 20. **Valid String After Removing Stars** Given a string with *, remove the character before each *.
 - o Constraints: $1 \le |s| \le 10^6$
- 21. **Decode String** Given an encoded string like 3[a2[c]], decode it using stack simulation.
 - o Constraints: $1 \le |s| \le 10^5$
- 22. **Minimum Add to Make Parentheses Valid** Find minimum insertions to make parentheses balanced.
 - o Constraints: $1 \le |s| \le 10^6$
- 23. **Reverse Substrings Between Parentheses** Reverse text inside parentheses from innermost to outermost.
 - o Constraints: $1 \le |s| \le 10^5$
- 24. **Remove K Digits** Given number string and integer k, remove k digits to form smallest possible number.
 - o Constraints: $1 \le |num| \le 10^5$
- 25. Score of Parentheses Compute score of balanced parentheses string where () = 1, $(A) = 2 \times A$.
 - o Constraints: $1 \le |s| \le 10^6$
- 26. **Validate Stack Sequences** Given push/pop sequences, check if they are valid stack operations.
 - o Constraints: $1 \le n \le 10^5$
- 27. **Next Greater Element II (Circular Array)** Find NGE considering array as circular.
 - o Constraints: $1 \le n \le 10^5$
- 28. **Remove All Adjacent Duplicates in K Group** Given string, remove adjacent k duplicates repeatedly.
 - o Constraints: $1 \le |s| \le 10^6$
- 29. Evaluate Expression Evaluate arithmetic expression with +, -, *, /, (,).
 - o Constraints: $1 \le |expr| \le 10^5$
- 30. **Basic Calculator II** Evaluate string with integers and operators +, -, *, / without parentheses.
 - o Constraints: $1 \le |expr| \le 10^5$

♦ Advanced Level (31–50)

- 31. **Longest Valid Parentheses** Find length of longest valid parentheses substring.
 - o Constraints: $1 \le |s| \le 10^6$
- 32. **132 Pattern** Check if array contains 132 pattern using stack.
 - o Constraints: $1 \le n \le 10^5$
- 33. **Maximal Rectangle in Binary Matrix** Given a matrix of 0/1, find area of largest rectangle containing only 1s.
 - o Constraints: $1 \le n$, $m \le 200$
- 34. **Asteroid Collision** Simulate asteroid collisions given directions and sizes using stack.

- o Constraints: $1 \le n \le 10^5$
- 35. **Online Stock Span** Process stock prices online (stream input).
 - o Constraints: $1 \le q \le 10^5$
- 36. **Remove Outermost Parentheses** Remove the outermost parentheses from every primitive substring.
 - o Constraints: $1 \le |s| \le 10^6$
- 37. Monotonic Stack Count Count pairs (i, j) where a[i] > a[j] and i < j using monotonic stack logic.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 38. **Min Stack with GetMin in O(1)** Design a stack with push, pop, getMin in O(1) without using extra space.
 - o Constraints: $1 \le n \le 10^5$
- 39. **Next Greater Frequency Element** For each element, find next element to its right with greater frequency.
 - o Constraints: $1 \le n \le 10^5$, $1 \le a[i] \le 10^5$
- 40. **Sum of Subarray Minimums** Find sum of minimums of all subarrays.
 - o Constraints: $1 \le n \le 10^5$
- 41. **Sum of Subarray Ranges** Find sum of ranges (max-min) for all subarrays using monotonic stacks.
 - o Constraints: $1 \le n \le 10^5$
- 42. **Remove Duplicate Letters** Remove duplicate letters so that every letter appears once and result is smallest lexicographically.
 - o Constraints: $1 \le |s| \le 10^5$
- 43. **Daily Temperatures** For each day, find how many days until a warmer temperature.
 - o Constraints: $1 \le n \le 10^5$
- 44. **Monotone Increasing Digits** Given n, find largest number \leq n with digits in non-decreasing order.
 - o Constraints: $1 \le n \le 10^18$
- 45. Find Nearest Greater Frequency Element (Left) Similar to NGE but considering element frequency.
 - o Constraints: $1 \le n \le 10^5$
- 46. **Largest Rectangle of 1s in Matrix (Stack-based)** Use histogram approach for each row.
 - o Constraints: $1 \le n$, $m \le 200$
- 47. **Next Greater Element Distance** Find the distance (index difference) to the next greater element for each element.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 48. **Car Fleet Problem** Given position and speed, find number of car fleets reaching the target.
 - o Constraints: $1 \le n \le 10^5$
- 49. **Visible People in Queue** Count how many people each person can see in a queue using stack.
 - o Constraints: $1 \le n \le 10^5$
- 50. **Min Add/Remove to Make Parentheses Valid** Find min number of parentheses to add/remove for valid string.
 - o Constraints: $1 \le |s| \le 10^6$

Would you like me to next provide 50 stack problems with input/output examples and expected results (like Codeforces test format)?

You said:

tree

ChatGPT said:

Perfect • — here are **50 Codeforces-style Tree problem statements** with **realistic competitive programming constraints**.

They cover Tree Traversal, LCA, DFS, BFS, Binary Search Tree, Tree DP, Diameter, Subtree Queries, etc.

★ 50 Tree Problem Statements (Codeforces Style)

♦ Basic Level (1–10): Tree Foundations

- 1. **Tree Traversals** Given a binary tree, print its preorder, inorder, and postorder traversals.
 - o Constraints: $1 \le n \le 10^5$
- 2. **Height of Tree** Find the height (max depth) of a binary tree.
 - o Constraints: $1 \le n \le 10^5$
- 3. **Count Leaf Nodes** Given a tree, count total number of leaf nodes.
 - o Constraints: $1 \le n \le 10^5$
- 4. Check if Binary Tree is Balanced A binary tree is balanced if left and right subtree height differs by ≤ 1 .
 - o Constraints: $1 \le n \le 10^5$
- 5. **Sum of All Nodes** Given a tree, compute the sum of all node values.
 - o Constraints: $1 \le n \le 10^5$, $|val| \le 10^9$
- 6. **Mirror Tree** Convert a given binary tree into its mirror image.
 - o Constraints: $1 \le n \le 10^5$
- 7. **Level Order Traversal** Print nodes of tree level by level using a queue.
 - o Constraints: $1 \le n \le 10^5$
- 8. Check if Two Trees are Identical Return YES if both trees have same structure and node values.
 - o Constraints: $1 \le n \le 10^5$
- 9. **Parent Array to Tree** Given parent array representation of a tree, print its adjacency list.
 - o Constraints: $1 \le n \le 10^5$
- 10. **Find Root of Tree** Given parent array, find the node that is the root (parent = -1).
 - o Constraints: $1 \le n \le 10^5$

♦ Intermediate Level (11–30): Structural + DFS/BFS + Subtrees

- 11. **Number of Children** For every node, count how many children it has.
 - o Constraints: $1 \le n \le 10^5$
- 12. **Subtree Size** For every node, find the number of nodes in its subtree.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 13. **Sum of Subtree Nodes** For each node, find sum of all nodes in its subtree.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 14. **Diameter of Tree** Find the length of the longest path between any two nodes.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 15. Check if Tree is Binary Search Tree (BST) Verify if given binary tree is BST.
 - o Constraints: $1 \le n \le 10^5$
- 16. **Lowest Common Ancestor** (**LCA**) Find LCA of two given nodes in a tree.
 - o Constraints: $1 \le n \le 2 \times 10^5$, $1 \le q \le 10^5$
- 17. **Path Sum in Tree** Check if there exists a root-to-leaf path whose sum equals s.
 - o Constraints: $1 \le n \le 10^5$
- 18. **Convert Tree to Array (Euler Tour)** Perform an Euler Tour and store visiting order of nodes.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 19. **Depth of Each Node** Find the depth (distance from root) for all nodes.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 20. **Parent of Each Node** For all nodes (except root), find its parent.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 21. Check if Tree is Full A full tree has either 0 or 2 children per node.
 - o Constraints: $1 \le n \le 10^5$
- 22. **Binary Tree Paths** Print all paths from root to leaf nodes.
 - o Constraints: $1 \le n \le 10^5$
- 23. **Tree Center** Find the center(s) of an unweighted tree.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 24. Count of Nodes at Each Depth Count how many nodes exist at every level.
 - o Constraints: $1 \le n \le 10^5$
- 25. **Check if Tree is Symmetric** Determine if left and right subtrees are mirror images.
 - o Constraints: $1 \le n \le 10^5$
- 26. **Distance Between Two Nodes** Compute shortest path distance between nodes u and v.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 27. **Tree Edge Count** Verify that number of edges is n-1.
 - o Constraints: $1 \le n \le 10^5$
- 28. **K-th Ancestor Query** For queries (u, k), find the k-th ancestor of node u.
 - o Constraints: $1 \le n$, $q \le 2 \times 10^5$
- 29. **Tree Leaves in Order** List all leaf nodes in left-to-right order.
 - o Constraints: $1 \le n \le 10^5$
- 30. **Zig-Zag Traversal** Print nodes level by level but alternate direction each time.
 - o Constraints: $1 \le n \le 10^5$

◆ Advanced Level (31–50): DP, Heavy-Light, Binary Lifting, Subtree Queries

- 31. **Binary Lifting Preprocessing** Preprocess tree for O(log n) LCA queries.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 32. **Tree Flattening with Euler Tour + Range Updates** Flatten tree and perform subtree queries using segment tree.
 - o Constraints: $1 \le n$, $q \le 2 \times 10^5$
- 33. **Subtree Sum Queries** Given value of each node, answer sum queries for subtree rooted at node v.
 - o Constraints: $1 \le n$, $q \le 2 \times 10^5$
- 34. Path Queries (Sum on Path) Given node values, answer sum on path u-v.
 - o Constraints: $1 \le n$, $q \le 2 \times 10^5$
- 35. **Tree Diameter Using Two BFS** Compute diameter using two BFS passes.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 36. **Find All Articulation Points in Tree** Identify nodes that increase connected components when removed.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 37. **Find All Bridges** Identify all edges that disconnect the tree if removed.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 38. **Binary Tree to Doubly Linked List** Convert binary tree to DLL in inorder traversal order.
 - o Constraints: $1 \le n \le 10^5$
- 39. Count Paths with Sum k Count all paths in tree that sum to k.
 - o Constraints: $1 \le n \le 10^5$
- 40. **Tree Centroid Decomposition** Decompose the tree into centroids.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 41. **Tree DP Longest Path from Each Node** For every node, compute the length of the longest path starting from it.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 42. **Tree Rerooting DP** Compute maximum distance sum when each node is considered as root.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 43. **Count Nodes at Distance k** Given node u and integer k, count nodes at distance k from u.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 44. **Find Tree Diameter Path (not just length)** Output nodes forming the diameter path.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 45. Weighted Tree Diameter Find diameter where each edge has a weight.
 - o Constraints: $1 \le n \le 2 \times 10^5$, $1 \le w \le 10^9$
- 46. **Check for Binary Heap Property** Verify if given binary tree satisfies min-heap or max-heap property.
 - o Constraints: $1 \le n \le 10^5$
- 47. Count Good Nodes Node v is good if its value \geq all ancestors. Count such nodes.
 - o Constraints: $1 \le n \le 10^5$
- 48. **Subtree Even Count** Count how many nodes have an even-sized subtree.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 49. **Find Tree Diameter Using DP on Tree** Use recursive DP to find diameter.
 - o Constraints: $1 \le n \le 2 \times 10^5$
- 50. **Tree Coloring Problem** Color nodes in such a way that adjacent nodes have different colors (2-coloring check).

Would you like me to next give 50 tree problems with input/output examples and expected answers (like Codeforces test cases)?

It'll include sample test formats like:

```
Input
5
1 2
1 3
3 4
3 5
Output
Height = 3
?
```

You said:

Linked list

ChatGPT said:

Excellent — here are **50 Codeforces-style Linked List problem statements** with **realistic competitive programming constraints**, divided by difficulty: Covers **singly**, **doubly**, **circular linked lists**, and **advanced pointer/algorithm problems** (**merge**, **reverse**, **detect cycle**, **etc.**)

∞ 50 Linked List Problem Statements (Codeforces Style)

♦ Basic Level (1–10): Core Operations

- 1. **Create a Linked List** Construct a singly linked list from given elements and print it.
 - o Constraints: $1 \le n \le 10^5$
- 2. **Insert at Beginning** Insert a new node at the beginning of the linked list.
 - o Constraints: $1 \le n \le 10^5$
- 3. **Insert at End** Insert a new node at the end of the linked list.
 - o Constraints: $1 \le n \le 10^5$
- 4. **Insert at Position** Insert a node at a given 1-based index position.
 - o Constraints: $1 \le n \le 10^5$
- 5. **Delete from Beginning** Delete the first node of a linked list.
 - o Constraints: $1 \le n \le 10^5$
- 6. **Delete from End** Delete the last node of the linked list.

- o Constraints: $1 \le n \le 10^5$
- 7. **Delete by Value** Delete first occurrence of a given value from linked list.
 - o Constraints: $1 \le n \le 10^5$, $|a[i]| \le 10^9$
- 8. **Search Element** Search for an element in linked list and return its position.
 - o Constraints: $1 \le n \le 10^5$
- 9. **Length of Linked List** Find total number of nodes.
 - Constraints: $1 \le n \le 10^5$
- 10. **Display Linked List in Reverse (Recursive)** Print elements in reverse order using recursion.
 - o Constraints: $1 \le n \le 10^5$

◆ Intermediate Level (11–30): Two Pointers, Merging, and Reversal

- 11. **Reverse Linked List (Iterative)** Reverse a singly linked list iteratively.
 - o Constraints: $1 \le n \le 10^5$
- 12. **Reverse Linked List (Recursive)** Reverse using recursion.
 - o Constraints: $1 \le n \le 10^5$
- 13. **Middle Element of Linked List** Find the middle node using slow/fast pointer.
 - o Constraints: $1 \le n \le 10^5$
- 14. **Nth Node from End** Find nth node from end using two-pointer method.
 - o Constraints: $1 \le n \le 10^5$
- 15. **Remove Duplicates (Sorted List)** Remove duplicates from a sorted linked list.
 - o Constraints: $1 \le n \le 10^5$
- 16. **Remove Duplicates (Unsorted List)** Remove duplicates from unsorted list using hash set.
 - o Constraints: $1 \le n \le 10^5$
- 17. **Merge Two Sorted Lists** Merge two sorted linked lists into one sorted list.
 - o Constraints: $1 \le n$, $m \le 10^5$
- 18. **Intersection of Two Linked Lists** Find intersection point where two linked lists meet.
 - o Constraints: $1 \le n$, $m \le 10^5$
- 19. **Detect Cycle in Linked List** Check if the list has a cycle using Floyd's cycle detection.
 - o Constraints: $1 \le n \le 10^5$
- 20. **Remove Cycle in Linked List** Detect and remove loop without losing nodes.
 - o Constraints: $1 \le n \le 10^5$
- 21. Find Starting Node of Cycle If cycle exists, find node where cycle begins.
 - o Constraints: $1 \le n \le 10^5$
- 22. **Palindrome Linked List** Check if list reads same forward and backward.
 - o Constraints: $1 \le n \le 10^5$
- 23. **Rotate Linked List by K Places** Rotate list to the right by k nodes.
 - o Constraints: $1 \le n \le 10^5$
- 24. **Swap Two Nodes (by Data)** Swap two nodes given their values.
 - o Constraints: $1 \le n \le 10^5$
- 25. **Swap Nodes in Pairs** Swap every two adjacent nodes.
 - o Constraints: $1 \le n \le 10^5$
- 26. **Reverse Nodes in K-Groups** Reverse nodes in groups of size k.

- o Constraints: $1 \le n \le 10^5$, $1 \le k \le n$
- 27. **Sort Linked List (Merge Sort)** Sort list using merge sort algorithm.
 - o Constraints: $1 \le n \le 10^5$
- 28. **Add Two Numbers** (**Linked Lists**) Two linked lists represent integers in reverse order. Add them.
 - o Constraints: $1 \le n$, $m \le 10^5$
- 29. **Remove Nth Node from End** Delete nth node from end of list.
 - o Constraints: $1 \le n \le 10^5$
- 30. Partition List Around Value X Rearrange so that nodes $\leq x$ come before $\geq x$.
 - o Constraints: $1 \le n \le 10^5$

♦ Advanced Level (31–50): Doubly, Circular, and Structural Challenges

- 31. **Implement Doubly Linked List** Perform insert/delete at both ends.
 - o Constraints: $1 \le n \le 10^5$
- 32. **Insert at Beginning (Doubly List)** Insert a node at beginning.
 - o Constraints: $1 \le n \le 10^5$
- 33. **Insert at End (Doubly List)** Insert a node at the end.
 - o Constraints: $1 \le n \le 10^5$
- 34. **Delete Given Node (Doubly List)** Delete a specific node in O(1).
 - o Constraints: $1 \le n \le 10^5$
- 35. **Reverse Doubly Linked List** Reverse using next and prev pointers.
 - o Constraints: $1 \le n \le 10^5$
- 36. **Convert Array to Doubly Linked List** Create DLL from given array.
 - o Constraints: $1 \le n \le 10^5$
- 37. **Implement Circular Linked List** Insert nodes to form a circular linked list.
 - o Constraints: $1 \le n \le 10^5$
- 38. **Detect Circular List** Check if given list is circular.
 - o Constraints: $1 \le n \le 10^5$
- 39. **Split Circular Linked List** Split circular list into two halves.
 - o Constraints: $1 \le n \le 10^5$
- 40. **Josephus Problem (Circular List)** Eliminate every k-th node until one remains.
 - o Constraints: $1 \le n \le 10^5$, $1 \le k \le n$
- 41. **Flatten Multilevel Linked List** Flatten list where each node has a child pointer.
 - o Constraints: $1 \le n \le 10^5$
- 42. **Clone Linked List with Random Pointers** Deep copy a list with random pointers.
 - o Constraints: $1 \le n \le 10^5$
- 43. **Intersection of Two Sorted Lists (Value-wise)** Find intersection list (common elements).
 - o Constraints: $1 \le n$, $m \le 10^5$
- 44. Union of Two Sorted Lists Merge two lists and remove duplicates.
 - o Constraints: $1 \le n$, $m \le 10^5$
- 45. **Find Merge Point of Two Lists** Return node where two lists merge.
 - o Constraints: $1 \le n$, $m \le 10^5$
- 46. **Segregate Even and Odd Nodes** Rearrange so that all even-valued nodes come before odd-valued ones.

- o Constraints: $1 \le n \le 10^5$
- 47. **Intersection Point in Y-Shaped Linked List** Find node where lists join (classic Y problem).
 - o Constraints: $1 \le n$, $m \le 10^5$
- 48. **Check Circular Palindrome List** Check if circular linked list is palindrome.
 - o Constraints: $1 \le n \le 10^5$
- 49. **Find Pair Sum Equal to K (Sorted DLL)** Check if there exists pair with sum = K.
 - o Constraints: $1 \le n \le 10^5$
- 50. **LRU Cache** (**Linked List + HashMap**) Implement LRU cache using doubly linked list.
 - o Constraints: $1 \le n \le 10^5$, $1 \le capacity \le 10^4$

Would you like me to next give 50 Linked List problems with input/output examples (like Codeforces test cases) — for example:

```
Input 5 1 2 3 4 5 reverse Output 5 4 3 2 1 ?
```

You said:

HashMap

ChatGPT said:

Here are **50 HashMap problem statements** (with Codeforces-style constraints) — ranging from beginner to advanced — designed for **Java or C++** practice ©

☐ 50 HashMap Problem Statements

Basic Level (1–10)

1. Count the frequency of each element in an array.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

2. Given a string, count occurrences of each character.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

3. Check if two strings are anagrams using HashMap.

Constraints: $1 \le |s|, |t| \le 10^5$

4. Find the first non-repeating character in a string.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

5. Given an array, find if there are two numbers with sum = k.

Constraints: $1 \le n \le 10^5, -10^9 \le arr[i], k \le 10^9$

6. Find number of pairs with given difference k.

Constraints: $1 \le n \le 10^5$

7. Given an array, find the element with maximum frequency.

Constraints: $1 \le n \le 10^5$

8. Count distinct elements in each window of size k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

9. Determine if array contains duplicate elements.

Constraints: $1 \le n \le 10^5$

10. Remove all duplicate elements from an array while preserving order.

Constraints: $1 \le n \le 10^5$

Intermediate Level (11–30)

11. Count subarrays with sum equal to k.

Constraints: $1 \le n \le 10^5$, $-10^9 \le arr[i] \le 10^9$

12. Find length of longest subarray with sum = 0.

Constraints: $1 \le n \le 10^5$

13. Find length of longest substring without repeating characters.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

14. Group all words that are anagrams.

Constraints: $1 \le n \le 10^4$, $1 \le |word| \le 100$

15. Find the intersection of two arrays.

Constraints: $1 \le n$, $m \le 10^5$

16. Given a binary array, count subarrays with equal 0s and 1s.

Constraints: $1 \le n \le 10^5$

17. Find common elements in three sorted arrays using HashMap.

Constraints: $1 \le n_1, n_2, n_3 \le 10^5$

18. Given a string, find all substrings that occur more than once.

Constraints: $1 \le |\mathbf{s}| \le 10^4$

19. Count number of subarrays having XOR = k.

Constraints: $1 \le n \le 10^5$, $0 \le arr[i]$, $k \le 10^9$

20. Find the longest consecutive sequence in an unsorted array.

Constraints: $1 \le n \le 10^5$

21. Given an array, find if any two elements occur more than k distance apart.

Constraints: $1 \le n \le 10^5$

22. Find frequency of each word in a sentence.

Constraints: $1 \le |\text{sentence}| \le 10^5$

23. Find all pairs of elements whose product is divisible by k.

Constraints: $1 \le n \le 10^5$

24. Count distinct elements in each prefix of an array.

Constraints: $1 \le n \le 10^5$

25. Find subarrays with equal number of even and odd numbers.

26. Find maximum distance between two equal elements.

Constraints: $1 \le n \le 10^5$

27. Find elements occurring more than $\lfloor n/3 \rfloor$ times.

Constraints: $1 \le n \le 10^5$

28. Given an array, find the smallest subarray with same degree as array.

Constraints: $1 \le n \le 10^5$

29. Find all elements that appear exactly twice.

Constraints: $1 \le n \le 10^5$

30. Given a pattern and a string, determine if the string follows the pattern.

Constraints: $1 \le |pattern|, |s| \le 10^4$

Advanced Level (31–50)

31. Implement LRU Cache using HashMap + LinkedList.

Constraints: $1 \le \text{capacity} \le 10^4$, $1 \le \text{operations} \le 10^5$

32. Implement LFU Cache using HashMap + frequency map.

Constraints: same as above

33. Find number of subarrays with at most k distinct integers.

Constraints: $1 \le n \le 10^5$

34. Find number of subarrays with exactly k distinct integers.

Constraints: $1 < n < 10^5$

35. Given a list of emails, merge accounts with common emails.

Constraints: $1 < n < 10^4$, 1 < |email| < 100

36. Find all unique triplets that sum to zero.

Constraints: $1 \le n \le 10^4$

37. Find all pairs of strings that are rotations of each other.

Constraints: $1 \le n \le 10^4$

38. Given two arrays, find pairs (a, b) such that a + b = k.

Constraints: $1 \le n$, $m \le 10^5$

39. Find the number of substrings with exactly k distinct characters.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

40. Detect if a subarray with sum divisible by k exists.

Constraints: $1 \le n \le 10^5$

41. Find all subarrays with equal number of 1s, 2s, and 3s.

Constraints: $1 \le n \le 10^5$

42. Given two strings, check if they are isomorphic.

Constraints: $1 \le |\mathbf{s}|, |\mathbf{t}| \le 10^5$

43. Given an array, find the count of elements smaller than the current element on the right side.

Constraints: $1 \le n \le 10^5$

44. Count number of pairs with equal sum.

Constraints: $1 \le n \le 10^5$

45. Find the subarray with maximum frequency of repeating elements.

Constraints: $1 \le n \le 10^5$

46. Design a system to count unique users visiting a website per day.

Constraints: $1 < n < 10^{5}$

47. Implement a phone directory using HashMap.

Constraints: up to 10⁵ entries

48. Given list of students and marks, find top k scorers.

Constraints: $1 \le n \le 10^5$

49. Given a sequence of words, find the most common bigram (pair of consecutive words).

Constraints: $1 \le |\text{text}| \le 10^5$

50. Implement a word frequency counter that supports updates (insert/delete words

dynamically).

Constraints: $1 \le q \le 10^5$

Would you like me to include sample input/output examples for 10 of these HashMap problems (like in Codeforces format)?

That will help you understand their competitive structure.

You said:

BST

ChatGPT said:

Here are **50 Binary Search Tree (BST) problem statements** with **Codeforces-style constraints**, ranging from basic to advanced — perfect for Java or C++ practice (4)

50 BST Problem Statements

☐ Basic Level (1–10)

1. Insert a node into a Binary Search Tree.

Constraints: $1 \le n \le 10^4$, $1 \le \text{node value} \le 10^9$

2. Search for a value in a BST.

Constraints: $1 \le n \le 10^4$

3. Find the minimum and maximum value in a BST.

Constraints: $1 \le n \le 10^5$

4. Find the height of a BST.

Constraints: $1 \le n \le 10^5$

5. Perform inorder, preorder, and postorder traversal of a BST.

Constraints: $1 \le n \le 10^5$

6. Count total number of nodes in a BST.

Constraints: $1 \le n \le 10^5$

7. Find the sum of all nodes in a BST.

Constraints: $1 \le n \le 10^5$

8. Check if a binary tree is a valid BST.

9. Find the kth smallest element in a BST.

Constraints: $1 \le n \le 10^5$

10. Find the kth largest element in a BST.

Constraints: $1 \le n \le 10^5$

☐ Intermediate Level (11–30)

11. Delete a node from a BST.

Constraints: $1 \le n \le 10^5$

12. Find the lowest common ancestor (LCA) of two nodes in a BST.

Constraints: $1 < n < 10^{5}$

13. Check if two BSTs are identical.

Constraints: $1 \le n \le 10^5$

14. Convert a BST to a sorted doubly linked list.

Constraints: $1 \le n \le 10^5$

15. Convert a sorted array to a balanced BST.

Constraints: $1 \le n \le 10^5$

16. Find the floor and ceil of a given key in a BST.

Constraints: $1 \le n \le 10^5$

17. Find the inorder successor of a given node.

Constraints: $1 \le n \le 10^5$

18. Find the inorder predecessor of a given node.

Constraints: $1 \le n \le 10^5$

19. Check if a BST is height-balanced.

Constraints: $1 \le n \le 10^5$

20. Print all leaf nodes of a BST.

Constraints: $1 \le n \le 10^5$

21. Find distance between two nodes in a BST.

Constraints: $1 \le n \le 10^5$

22. Find the diameter (longest path) of a BST.

Constraints: $1 \le n \le 10^5$

23. Count the number of nodes in a given range [L, R].

Constraints: $1 \le n \le 10^5$

24. Find sum of all nodes within range [L, R].

Constraints: $1 \le n \le 10^5$

25. Find the closest value to a given target in BST.

Constraints: $1 \le n \le 10^5$

26. Check if a BST contains dead end (no further insert possible).

Constraints: $1 \le n \le 10^5$

27. Print BST elements in descending order.

Constraints: $1 \le n \le 10^5$

28. Count pairs of nodes from two BSTs whose sum equals X.

Constraints: $1 \le n_1, n_2 \le 10^5$

29. Find median of BST.

Constraints: $1 \le n \le 10^5$

30. Convert BST to Min Heap.

● Advanced Level (31–50)

31. Construct BST from preorder traversal.

Constraints: $1 \le n \le 10^5$

32. Construct BST from postorder traversal.

Constraints: $1 \le n \le 10^5$

33. Construct BST from level order traversal.

Constraints: $1 \le n \le 10^5$

34. Serialize and deserialize a BST.

Constraints: $1 \le n \le 10^5$

35. Find the largest BST in a binary tree.

Constraints: $1 \le n \le 10^5$

36. Merge two balanced BSTs into one balanced BST.

Constraints: $1 \le n_1, n_2 \le 10^5$

37. Find the mode(s) (most frequent element) in a BST.

Constraints: $1 \le n \le 10^5$

38. Find pairs of nodes whose sum is equal to target K.

Constraints: $1 \le n \le 10^5$

39. Flatten a BST into a sorted linked list.

Constraints: $1 \le n \le 10^5$

40. Recover BST where two nodes are swapped.

Constraints: $1 \le n \le 10^5$

41. Convert BST to Greater Sum Tree (GST).

Constraints: $1 \le n \le 10^5$

42. Find minimum absolute difference between any two nodes.

Constraints: $1 \le n \le 10^5$

43. Find the path from root to a given node in BST.

Constraints: $1 \le n \le 10^5$

44. Find all root-to-leaf paths in BST.

Constraints: $1 \le n \le 10^5$

45. Check if BST is symmetric (mirror image).

Constraints: $1 \le n \le 10^5$

46. Print boundary traversal of BST.

Constraints: $1 \le n \le 10^5$

47. Count number of unique BSTs possible with n distinct keys.

Constraints: $1 \le n \le 10^3$

48. Generate all structurally unique BSTs with values 1 to n.

Constraints: $1 \le n \le 10$

49. Implement an iterator for BST (BSTIterator class).

Constraints: $1 \le n \le 10^5$

50. Find maximum sum path in BST (from any node to any node).

Constraints: $1 \le n \le 10^5$

Would you like me to provide 10 sample BST problems with input/output examples (like Codeforces format)?

That will make them ready for implementation and practice.

You said:
heap
ChatGPT said:
Here's a list of 50 Heap / Priority Queue problem statements with Codeforces-style constraints , ranging from basic to advanced. Perfect for Java, C++, or Python practice.
□ 50 Heap / Priority Queue Problems
□ Basic Level (1–10)
 Implement Min Heap — Insert elements and extract min. Constraints: 1 ≤ n ≤ 10⁵ Implement Max Heap — Insert elements and extract max. Constraints: 1 ≤ n ≤ 10⁵ Find k smallest elements in an array using a heap. Constraints: 1 ≤ n ≤ 10⁵, 1 ≤ k ≤ n Find k largest elements in an array using a heap. Constraints: 1 ≤ n ≤ 10⁵, 1 ≤ k ≤ n Heapify an array — Convert a given array into a min heap. Constraints: 1 ≤ n ≤ 10⁵ Heapify an array — Convert a given array into a max heap. Constraints: 1 ≤ n ≤ 10⁵ Find the median in a stream of integers using two heaps. Constraints: 1 ≤ n ≤ 10⁵ Kth largest element in a stream — Maintain heap to extract kth largest dynamically. Constraints: 1 ≤ n ≤ 10⁵ Sort a nearly sorted array (every element at most k positions away). Constraints: 1 ≤ n ≤ 10⁵, 1 ≤ k ≤ n
10. Priority queue operations — Implement insert, remove, and peek efficiently. Constraints: $1 \le n \le 10^5$
 Intermediate Level (11–30) 11. Merge k sorted arrays using a min heap. Constraints: 1 ≤ k ≤ 10³, total elements ≤ 10⁵ 12. Top K frequent elements from an array using a heap. Constraints: 1 ≤ n ≤ 10⁵

13. Find k closest numbers to X in a sorted array using heap.

14. **Sliding window maximum** — Find maximum in every window of size k.

Constraints: $1 \le n \le 10^5$

15. **Sliding window minimum** — Find minimum in every window of size k.

Constraints: $1 \le n \le 10^5$

16. Find kth smallest/largest in BST using min/max heap.

Constraints: $1 \le n \le 10^5$

17. Reorganize string with no adjacent duplicates using max heap.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

18. Connect ropes with minimum cost using min heap.

Constraints: $1 \le n \le 10^5$

19. Find k smallest pairs from two sorted arrays using min heap.

Constraints: $1 \le n, m \le 10^5, 1 \le k \le n \times m$

20. Kth smallest/largest element in matrix where rows & columns sorted.

Constraints: $1 \le n$, $m \le 10^3$

21. Find k pairs with largest sums from two arrays using max heap.

Constraints: $1 \le n$, $m \le 10^5$

22. Sort nearly sorted sequence (priority queue)

Constraints: $1 \le n \le 10^5$, $k \le n$

23. Find median of two sorted arrays using heaps.

Constraints: $1 \le n, m \le 10^5$

24. Task scheduler (rearrange tasks with cooling period) using heap.

Constraints: $1 \le |tasks| \le 10^5$

25. **Rearrange characters in string** to avoid k distance repetition.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

26. Top k largest sums of subarrays using heap.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^5$

27. Find k smallest elements in unsorted stream using max heap.

Constraints: $1 \le n \le 10^5$

28. Find k largest elements in unsorted stream using min heap.

Constraints: $1 \le n \le 10^5$

29. **Task scheduling with priority queue** — execute tasks in priority order.

Constraints: $1 \le n \le 10^5$

30. **Merge k sorted linked lists** using heap.

Constraints: $1 \le k \le 10^3$, total nodes $\le 10^5$

● Advanced Level (31–50)

31. Find k closest points to origin using min/max heap.

Constraints: $1 \le n \le 10^5$

32. Sliding window median using two heaps.

Constraints: $1 \le n \le 10^5$

33. Minimum cost to hire k workers using heap.

Constraints: $1 \le n \le 10^5$

34. **Maximum sum of k non-overlapping subarrays** using heap.

Constraints: $1 \le n \le 10^5$

35. Implement Dijkstra's algorithm using min heap.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$

36. Find kth largest element in min heap without changing the heap.

37. Find kth smallest element in max heap without changing the heap.

Constraints: $1 \le n \le 10^5$

38. Stream of integers, maintain median dynamically.

Constraints: $1 \le n \le 10^5$

39. **Reorder log files** using heap based on priority/lexicographic order.

Constraints: $1 \le n \le 10^5$

40. Kth smallest number in multiplication table using heap.

Constraints: $1 \le m, n \le 10^3$

41. **Online leader board** using max heap.

Constraints: $1 \le n \le 10^5$

42. Maximize sum after k negations using min heap.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^5$

43. Sliding window top k frequent elements using heap.

Constraints: $1 \le n \le 10^5$

44. Merge intervals with earliest end using heap

Constraints: $1 \le n \le 10^5$

45. Kth largest rectangle area in histogram using heap.

Constraints: $1 \le n \le 10^5$

46. Kth closest sum to target in array using heap.

Constraints: $1 \le n \le 10^5$

47. **Find top k scores dynamically** in competition using heap.

Constraints: $1 \le n \le 10^5$

48. Streaming top k elements using heap efficiently.

Constraints: $1 \le n \le 10^5$

49. **Median maintenance in sliding window** using heap.

Constraints: $1 \le n \le 10^5$

50. **Heap-based scheduling problem** — minimize total waiting time.

Constraints: $1 \le n \le 10^5$

If you want, I can next make 10 Heap problems with input/output examples in Codeforces format, ready to implement and practice.

Do you want me to do that?

You said:

trie

ChatGPT said:

Here's a **list of 50 Trie / Prefix Tree problem statements** with **Codeforces-style constraints**, ranging from basic to advanced. Perfect for Java, C++, or Python practice.

☐ Basic Level (1–10)

1. **Implement a Trie** — Insert a word and search for exact matches.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

2. **Check if a word exists in Trie** — Return true/false.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

3. **Delete a word from Trie** — Remove a given word.

Constraints: $1 \le n \le 10^5$

4. Insert multiple words and print all words stored in Trie.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

5. Count words with a given prefix in a Trie.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

6. Check if Trie contains any word with given prefix.

Constraints: $1 < n < 10^{5}$

7. **Find the longest common prefix** of all inserted words.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

8. Count total number of words stored in Trie.

Constraints: $1 \le n \le 10^5$

9. Find number of words ending with a specific suffix using reverse Trie.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

10. List all words starting with a given prefix.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

☐ Intermediate Level (11–30)

11. **Autocomplete suggestions** — Given a prefix, return top k lexicographically smallest words.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10$

12. **Implement dictionary with frequency** — Insert words with frequency, search by frequency.

Constraints: $1 \le n \le 10^5$

13. Check if Trie contains palindrome words.

Constraints: $1 \le n \le 10^5$

14. Count pairs of words where one is prefix of another.

Constraints: $1 \le n \le 10^5$

15. Find all words that can be formed from a set of characters using Trie.

Constraints: $1 \le n \le 10^5$

16. **Word search in 2D board using Trie** — find all words from dictionary in board.

Constraints: board size $\leq 12 \times 12$, dictionary $\leq 10^4$

17. **Implement spell checker** — Suggest words with edit distance 1.

Constraints: $1 \le n \le 10^5$

18. **Longest word formed by other words** — Check if a word can be built from other words in Trie.

Constraints: $1 < n < 10^{5}$

19. Find shortest unique prefix for every word.

Constraints: $1 \le n \le 10^5$

20. Insert words and count number of words matching exactly or as prefix.

21. Check if a string can be segmented into dictionary words (Word Break problem).

Constraints: $1 \le |s| \le 10^5$, dictionary $\le 10^4$

22. Count total number of nodes in Trie.

Constraints: $1 \le n \le 10^5$

23. Implement case-insensitive Trie.

Constraints: $1 \le n \le 10^5$

24. Check if given word can be formed using letters from multiple words in Trie.

Constraints: $1 \le n \le 10^5$

25. Find all anagrams in a dictionary using Trie.

Constraints: $1 \le n \le 10^5$, word length ≤ 100

26. Count words matching a pattern with wildcards?

Constraints: $1 \le n \le 10^5$, word length ≤ 100

27. Find top k frequent words with given prefix using Trie + heap.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10$

28. **Trie with numeric keys** — Store and search phone numbers.

Constraints: $1 \le n \le 10^5$, number length ≤ 15

29. Find all words differing by at most one character from given word.

Constraints: $1 \le n \le 10^5$

30. **Autocomplete system** — maintain Trie with frequency of searches.

Constraints: $1 \le n \le 10^5$

● Advanced Level (31–50)

31. Count total words that are prefixes of other words.

Constraints: $1 \le n \le 10^5$

32. Find all concatenated words (words formed by concatenating other words).

Constraints: $1 \le n \le 10^5$

33. Implement Trie with deletion and prefix count in O(word length).

Constraints: $1 \le n \le 10^5$

34. **Dictionary with replacement operations** — Replace words and maintain frequency.

Constraints: $1 \le n \le 10^5$

35. Find maximum length chain of words where each word is prefix of next.

Constraints: $1 \le n \le 10^5$

36. **Find longest palindrome prefix** using Trie + reverse insertions.

Constraints: $1 \le n \le 10^5$

37. Word search with 8-directional movement in grid using Trie.

Constraints: board size $\leq 12 \times 12$, dictionary $\leq 10^4$

38. Trie to store IP addresses and find longest common subnet.

Constraints: $1 \le n \le 10^5$

39. Find all words matching regex pattern using Trie.

Constraints: $1 \le n \le 10^5$

40. **Implement autocomplete with ranking** — Return top k based on frequency and lexicographic order.

Constraints: $1 \le n \le 10^5$

41. Find missing words from paragraph using Trie dictionary.

Constraints: $1 \le n \le 10^5$

42. Detect words that are prefixes of other words in dictionary.

43. Find shortest word not present in dictionary (minimal string not in Trie).

Constraints: $1 \le n \le 10^5$

44. Store words with emoji/unicode characters in Trie.

Constraints: $1 \le n \le 10^5$

45. Find number of words in Trie with exactly k occurrences of a character.

Constraints: $1 \le n \le 10^5$

46. Implement Trie for multi-language dictionary.

Constraints: $1 \le n \le 10^5$

47. Find maximum depth of Trie (longest inserted word).

Constraints: $1 \le n \le 10^5$

48. Check if a Trie can represent a prefix-free code.

Constraints: $1 \le n \le 10^5$

49. Dynamic insert and delete in Trie while maintaining prefix count.

Constraints: $1 \le n \le 10^5$

50. Find minimum unique prefix for a new word before inserting into Trie.

Constraints: $1 \le n \le 10^5$

If you want, I can **next make 10 Trie problems with input/output examples**, in **Codeforces-style format**, ready to implement.

Do you want me to do that?

You said:

graph

ChatGPT said:

Here's a **list of 50 Graph problem statements** with **Codeforces-style constraints**, ranging from basic to advanced — suitable for Java, C++, or Python practice. ⊕

50 Graph Problems

□ Basic Level (1–10)

1. Implement a graph using adjacency list and adjacency matrix.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

2. **Perform BFS traversal** starting from a given node.

Constraints: $1 \le n \le 10^5$

3. **Perform DFS traversal** starting from a given node.

Constraints: $1 \le n \le 10^5$

4. Check if a graph is connected (single component).

5. Count the number of connected components in an undirected graph.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

6. Check if a graph contains a cycle (undirected).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

7. Check if a graph contains a cycle (directed).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

8. Find shortest path from source to all nodes in unweighted graph using BFS.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

9. **Graph representation conversions** — adjacency list ↔ adjacency matrix.

Constraints: $1 \le n \le 10^5$

10. **Find degree of each vertex** in undirected graph.

Constraints: $1 \le n \le 10^5$

☐ Intermediate Level (11–30)

11. **Topological sort** of a directed acyclic graph (DAG).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

12. Check if a directed graph is DAG.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

13. **Detect bridges** (edges whose removal increases number of components).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

14. **Detect articulation points** (vertices whose removal increases components).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

15. Find strongly connected components (SCC) in a directed graph (Kosaraju/Tarjan).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

16. Find number of paths from u to v in DAG.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

17. Check if graph is bipartite.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

18. Find shortest path in weighted graph using Dijkstra's algorithm.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 2 \times 10^5$

19. Find shortest path using Bellman-Ford (handles negative weights).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 2 \times 10^5$

20. **Floyd-Warshall algorithm** — all-pairs shortest paths.

Constraints: $1 \le n \le 500$

21. Check if undirected graph is a tree.

Constraints: $1 \le n \le 10^5$, m = n-1

22. Count number of triangles in undirected graph.

Constraints: $1 \le n \le 10^3$

23. Find connected components sizes.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

24. **Graph coloring** — check if graph can be colored with k colors.

Constraints: 1 < n < 20

25. Minimum number of edges to make graph connected.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

26. Check if a graph is Eulerian — has Eulerian path/circuit.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

27. **Check if a graph is Hamiltonian** (NP-hard, small n).

Constraints: $1 \le n \le 20$

28. Transpose a directed graph.

Constraints: $1 \le n \le 10^5$

29. **Graph reachability** — can we reach v from u?

Constraints: $1 \le n \le 10^5$

30. Number of paths of length k in unweighted graph using adjacency matrix

exponentiation.

Constraints: $1 \le n \le 200, 1 \le k \le 10^9$

● Advanced Level (31–50)

31. **Kruskal's algorithm** — find Minimum Spanning Tree (MST).

Constraints: $1 \le n \le 10^5$, $0 \le m \le 2 \times 10^5$

32. **Prim's algorithm** — MST using min-heap.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 2 \times 10^5$

33. **Maximum flow (Edmonds-Karp)** — find max flow in network.

Constraints: $1 \le n \le 500, 1 \le m \le 10^4$

34. **Maximum flow (Dinic's algorithm)** — for larger graphs.

Constraints: $1 \le n \le 10^4$, $1 \le m \le 10^5$

35. **Minimum cut problem** — find min cut in a flow network.

Constraints: $1 \le n \le 500, 1 \le m \le 10^4$

36. Check if graph is strongly connected.

Constraints: $1 \le n \le 10^5$, $0 \le m \le 10^5$

37. Shortest path with exactly k edges.

Constraints: $1 \le n \le 500, 1 \le k \le 100$

38. All-pairs shortest path in weighted DAG using DP.

Constraints: $1 \le n \le 500$

39. **Graph diameter** — longest shortest path between any two vertices.

Constraints: $1 < n < 10^5$

40. Find second shortest path between two vertices.

Constraints: $1 \le n \le 10^5$

41. Longest path in a DAG using topological sort.

Constraints: $1 \le n \le 10^5$

42. Check if graph is planar (small n).

Constraints: $1 \le n \le 10$

43. **Traveling Salesman Problem (TSP)** using DP (small n).

Constraints: $1 \le n \le 20$

44. **Minimum cost to connect all points** in 2D plane (MST).

Constraints: $1 \le n \le 10^4$

45. Find articulation bridges and points in weighted graph.

Constraints: $1 < n < 10^5$

46. Count number of simple cycles in undirected graph (small n).

Constraints: $1 \le n \le 20$

47. **Dynamic connectivity** — add/remove edges and check connectivity.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

48. Weighted graph shortest path with negative cycles — detect if reachable.

Constraints: $1 \le n \le 500$, $-10^9 \le weights \le 10^9$

49. **Find number of spanning trees** in a graph using Matrix Tree Theorem.

Constraints: $1 \le n \le 100$

50. **Graph compression / condensation** — shrink SCCs into single nodes.

Constraints: $1 \le n \le 10^5$

I can also **create 10 sample Graph problems with Codeforces-style input/output examples** for you, which would make it ready to practice and implement.

Do you want me to do that next?

You said:

Union find

ChatGPT said:

Here's a **list of 50 Union-Find / Disjoint Set Union (DSU) problem statements** with **Codeforces-style constraints**, ranging from basic to advanced — perfect for Java, C++, or Python practice.

∞ 50 Union-Find / DSU Problems

☐ Basic Level (1–10)

1. Implement basic Union-Find with path compression and union by rank.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

2. Check if two elements are in the same set.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

3. Union two sets containing given elements.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

4. Count number of connected components after a series of unions.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

5. Find size of the set containing a given element.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

6. Check connectivity in a dynamic graph using DSU.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

7. **Implement union by size** instead of union by rank.

Constraints: $1 \le n \le 10^5$

8. Count total number of elements in all sets of size > k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

9. **Merge multiple sets efficiently** using union-find.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

10. Check if a graph is fully connected after a series of union operations.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

☐ Intermediate Level (11–30)

11. Number of connected components after adding edges one by one.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

12. Count number of redundant connections in a graph using DSU.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

13. **Detect cycle in an undirected graph** using union-find.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

14. Implement Kruskal's algorithm for MST using union-find.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$

15. Check if adding an edge will create a cycle.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

16. Find largest connected component after a series of unions.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

17. **Dynamic connectivity** — Add edges and answer connectivity queries.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

18. **Merge accounts / friends networks** — given pairs of connected elements.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

19. Find number of sets with size exactly k.

Constraints: $1 \le n \le 10^5$

20. Check if all nodes in subset are connected.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

21. **Union-find with rollback** — undo last union operations efficiently.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

22. Find size of largest connected component at each step of adding edges.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

23. Number of connected components in 2D grid (islands problem) using DSU.

Constraints: $1 \le n, m \le 1000$

24. **Dynamic connectivity in online graph** — answer queries in real time.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

25. Check if graph is bipartite using union-find.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

26. Union-find with additional info per set — e.g., sum of weights in each set.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

27. Merging user groups in social network efficiently.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

28. Union-find with minimum / maximum element tracking per set.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

29. Find number of connected components after removing some edges using DSU on complement graph.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

30. **DSU on tree** — maintain info on subtrees using union-find techniques.

● Advanced Level (31–50)

31. Dynamic connectivity with undo and redo operations.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

32. Offline dynamic connectivity problem — batch process queries efficiently.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

33. Union-find with parity / XOR information — detect odd/even cycles.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

34. Check if adding edges will make a graph fully connected at minimum cost.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$

35. Count number of redundant edges in graph forming MST.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$

- 36. Union-find with weighted edges track sum of weights per connected component. Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$
- 37. **MST with edge replacement queries** update MST dynamically using DSU. **Constraints:** $1 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$
- 38. Offline connectivity with time intervals edge exists during certain intervals. Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$
- 39. Count number of distinct sets at each step after series of union operations.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

40. **Union-find on 2D grid** — count connected components dynamically.

Constraints: $1 \le n, m \le 1000$

41. DSU with rollback for divide and conquer queries.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

42. Check if graph remains bipartite after each edge addition.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

43. **Dynamic merging of intervals** using union-find.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

44. DSU for network connectivity with restricted unions.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

45. Union-find with custom merge function (e.g., max/min/sum).

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

46. Check if all sets are of equal size after union operations.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

47. Union-find for counting components with at least k elements.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

48. Track maximum element in each connected component dynamically.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

49. Merge friendship circles in social network dynamically and answer queries.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

50. Union-find with rollback and query for sum/max/min in a set.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

If you want, I can make 10 Union-Find problems with input/output examples in Codeforces-style format, ready to implement and practice.

Do you want me to do that next?

T 7	
YOU	said:

Two pointer

ChatGPT said:

Here's a **list of 50 Two-Pointer / Sliding Window problem statements** with **Codeforcesstyle constraints**, ranging from basic to advanced — suitable for Java, C++, or Python practice. **♦**

♦ 50 Two-Pointer / Sliding Window Problems

□ Basic Level (1–10)

1. Find a pair with given sum in a sorted array.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

2. Find all pairs with sum equal to k in a sorted array.

Constraints: $1 \le n \le 10^5$

3. Remove duplicates from sorted array in-place.

Constraints: $1 \le n \le 10^5$

4. Move all zeros to the end of array maintaining relative order.

Constraints: $1 \le n \le 10^5$

5. Reverse a subarray from index l to r.

Constraints: $1 \le n \le 10^5$

6. Merge two sorted arrays into one sorted array in-place.

Constraints: $1 \le n$, $m \le 10^5$

7. Check if array has two elements whose difference is exactly k.

Constraints: $1 \le n \le 10^5$, $0 \le k \le 10^9$

8. Find maximum sum of any subarray of size k (fixed window size).

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

9. Count pairs with difference $\leq k$.

Constraints: $1 \le n \le 10^5$, $0 \le k \le 10^9$

10. Find smallest subarray with sum \geq S.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

☐ Intermediate Level (11–30)

11. Longest subarray with sum \leq S.

Constraints: $1 \le n \le 10^5$

12. Longest subarray with at most K distinct integers.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^5$

13. Count subarrays with sum \leq S.

14. Sort array of 0s, 1s, 2s (Dutch National Flag problem).

Constraints: $1 \le n \le 10^5$

15. Find two numbers whose sum is closest to target.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

16. Find maximum product subarray of size k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

17. Container with most water (LeetCode style).

Constraints: $1 \le n \le 10^5$

18. Trapping rainwater between bars using two pointers.

Constraints: $1 \le n \le 10^5$

19. Check if array contains a continuous subarray sum divisible by k.

Constraints: $1 \le n \le 10^5$

20. **Partition array into two subsets with equal sum** (use two pointers on sorted array).

Constraints: $1 \le n \le 10^5$

21. Find all unique triplets with sum 0 (3Sum problem).

Constraints: $1 \le n \le 10^5$

22. Count number of subarrays with sum exactly K in non-negative array.

Constraints: $1 \le n \le 10^5$

23. Find maximum length subarray with sum $\leq K$.

Constraints: $1 \le n \le 10^5$

24. Find pairs with sum closest to target in rotated sorted array.

Constraints: $1 \le n \le 10^5$

25. Maximize sum of two non-overlapping subarrays of size k.

Constraints: $1 \le n \le 10^5$

26. Longest subarray with at most K 0s replaced by 1s.

Constraints: $1 \le n \le 10^5$

27. Find minimum window containing all elements of another array.

Constraints: $1 \le n \le 10^5$, $1 \le m \le 10^5$

28. Subarrays with sum in given range [L, R].

Constraints: $1 \le n \le 10^5$

29. Count number of subarrays with exactly K distinct integers.

Constraints: $1 \le n \le 10^5$

30. Maximize length of subarray after removing at most k elements.

Constraints: $1 \le n \le 10^5$

● Advanced Level (31–50)

31. Find all quadruplets with sum = target (4Sum problem).

Constraints: $1 \le n \le 10^5$

32. **Maximum sum rectangle in 2D matrix** using sliding window.

Constraints: $1 \le n, m \le 500$

33. Longest substring without repeating characters using sliding window.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

34. Maximum average subarray of size $\geq k$.

Constraints: $1 \le n \le 10^5$

35. Count subarrays with sum divisible by K.

36. Find smallest subarray covering all unique elements.

Constraints: $1 \le n \le 10^5$

37. Maximize sum of subarray after at most K swaps using two pointers.

Constraints: $1 \le n \le 10^5$

38. **Sliding window median** — maintain median dynamically.

Constraints: $1 \le n \le 10^5$

39. Longest substring containing at most K distinct vowels.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

40. Count subarrays where max - min $\leq K$.

Constraints: $1 \le n \le 10^5$

41. Longest subarray with sum divisible by K.

Constraints: $1 \le n \le 10^5$

42. Find smallest range covering elements from k sorted arrays.

Constraints: $1 \le n \le 10^3$, $1 \le k \le 10^3$

43. Maximum length subarray with alternating even/odd elements.

Constraints: $1 \le n \le 10^5$

44. Longest arithmetic subarray using two pointers.

Constraints: $1 \le n \le 10^5$

45. Count number of subarrays with XOR \leq K.

Constraints: $1 \le n \le 10^5$

46. Find longest subarray with sum exactly K using sliding window.

Constraints: $1 \le n \le 10^5$

47. Maximize sum of non-overlapping subarrays of size k.

Constraints: $1 \le n \le 10^5$

48. Sliding window maximum / minimum problem.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

49. Longest subarray with at most K changes to make all equal.

Constraints: $1 \le n \le 10^5$

50. Count number of subarrays with at most K odd numbers.

Constraints: $1 \le n \le 10^5$

I can **next create 10 Two-Pointer problems with input/output examples** in **Codeforces-style format**, ready to implement and practice.

Do you want me to do that?

You said:

sliding window

ChatGPT said:

Here's a **list of 50 Sliding Window problem statements** with **Codeforces-style constraints**, suitable for Java, C++, or Python practice. ♦

♦ 50 Sliding Window Problems

□ Basic Level (1–10)

1. Maximum sum subarray of size k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

2. Minimum sum subarray of size k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

3. Average of all subarrays of size k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

4. **Count subarrays with sum exactly k** (non-negative array).

Constraints: $1 \le n \le 10^5$

5. Longest subarray with sum \leq S.

Constraints: $1 \le n \le 10^5$

6. **Longest subarray with sum exactly k** (non-negative array).

Constraints: $1 \le n \le 10^5$

7. Count subarrays with sum \leq k (non-negative array).

Constraints: $1 < n < 10^5$

8. Maximum of all subarrays of size k (Sliding Window Maximum).

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

9. **Minimum of all subarrays of size k** (Sliding Window Minimum).

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

10. Number of subarrays with sum \geq S (non-negative array).

Constraints: $1 \le n \le 10^5$

☐ Intermediate Level (11–30)

11. Longest substring without repeating characters.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

12. Longest substring with at most k distinct characters.

Constraints: $1 \le |s| \le 10^5$, $1 \le k \le 26$

13. Longest substring containing at most k vowels.

Constraints: $1 < |s| < 10^5$

14. Count number of substrings with at most k distinct characters.

Constraints: $1 \le |s| \le 10^5$

15. Longest subarray containing at most k zeros.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

16. Longest subarray containing at most k ones.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

17. Count subarrays with exactly k odd numbers.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

18. Longest subarray with at most k changes to make all equal.

Constraints: $1 < n < 10^5$

19. Maximum sum of subarray with at most k elements removed.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

20. Longest substring containing exactly k distinct characters.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

21. Longest substring with at most k repeating characters allowed.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

22. Longest substring with all unique vowels.

Constraints: $1 \le |s| \le 10^5$

23. Count number of substrings with sum divisible by k (numeric string).

Constraints: $1 \le |\mathbf{s}| \le 10^5$

24. Find maximum average subarray of size k.

Constraints: $1 \le n \le 10^5$

25. Sliding window product maximum/minimum.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

26. Longest subarray with difference between max and min $\leq k$.

Constraints: $1 \le n \le 10^5$

27. Count number of subarrays with max - min \leq k.

Constraints: $1 \le n \le 10^5$

28. Longest subarray with alternating even/odd numbers.

Constraints: $1 \le n \le 10^5$

29. Longest arithmetic subarray (subarray with constant difference).

Constraints: $1 \le n \le 10^5$

30. Maximum sum rectangle in 2D matrix (Kadane + sliding window).

Constraints: $1 \le n, m \le 500$

● Advanced Level (31–50)

31. Longest substring with at most k repeating letters.

Constraints: $1 \le |s| \le 10^5$

32. Count subarrays with exactly k distinct elements.

Constraints: $1 \le n \le 10^5$

33. Count number of substrings with exactly k vowels.

Constraints: $1 \le |s| \le 10^5$

34. Longest subarray where sum of even-indexed and odd-indexed elements $\leq k$.

Constraints: $1 \le n \le 10^5$

35. Maximum sum of non-overlapping subarrays of size k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

36. **Sliding window median** — maintain median dynamically.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

37. Longest subarray with sum divisible by k.

Constraints: $1 \le n \le 10^5$

38. Find smallest window containing all unique elements.

Constraints: $1 \le n \le 10^5$

39. Maximize sum of subarray after at most k swaps using sliding window.

Constraints: $1 \le n \le 10^5$

40. Longest substring with equal number of 0s and 1s.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

41. Count subarrays where $XOR \le k$.

Constraints: $1 \le n \le 10^5$

42. Maximum sum of subarray with at most k negative numbers.

43. Longest substring with at most k consonants.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

44. Longest substring with equal frequency of characters.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

45. Longest subarray with at most k increases/decreases allowed.

Constraints: $1 \le n \le 10^5$

46. Sliding window sum with updates (dynamic).

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

47. Longest substring with exactly k repeating characters.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

48. Longest subarray where all elements $\leq k$ after replacements.

Constraints: $1 \le n \le 10^5$

49. Count number of subarrays with sum in range [L, R].

Constraints: $1 \le n \le 10^5$

50. Maximum sum subarray after removing at most one element (Kadane + sliding

window).

Constraints: $1 \le n \le 10^5$

I can also **create 10 Sliding Window problems with sample input/output examples** in **Codeforces-style format**, ready for implementation.

Do you want me to do that next?

You said:

Binary search

ChatGPT said:

Here's a **list of 50 Binary Search / Binary Search on Answer problems** with **Codeforces-style constraints**, ranging from basic to advanced, suitable for Java, C++, or Python practice.

À

♦ 50 Binary Search Problems

□ Basic Level (1–10)

1. Find an element in a sorted array.

Constraints: $1 \le n \le 10^5$, $-10^9 \le arr[i] \le 10^9$

2. Find the first occurrence of x in a sorted array.

Constraints: $1 \le n \le 10^5$

3. Find the last occurrence of x in a sorted array.

4. Count occurrences of x in a sorted array.

Constraints: $1 \le n \le 10^5$

5. Find the square root of a number using binary search.

Constraints: $1 \le n \le 10^{18}$

6. Find the smallest number $\geq x$ in a sorted array.

Constraints: $1 \le n \le 10^5$

7. Find the largest number $\leq x$ in a sorted array.

Constraints: $1 \le n \le 10^5$

8. Search in a rotated sorted array (no duplicates).

Constraints: $1 \le n \le 10^5$

9. **Find the peak element** in an array (element greater than neighbors).

Constraints: $1 \le n \le 10^5$

10. Find the position to insert an element in a sorted array.

Constraints: $1 \le n \le 10^5$

☐ Intermediate Level (11–30)

11. Binary search on answer: minimize maximum subarray sum.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

12. Binary search on answer: minimum capacity to ship packages within D days.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^4$

13. Find square root with decimal precision.

Constraints: $1 \le n \le 10^{18}$, precision = 10^{-6}

14. Aggressive cows / Largest minimum distance.

Constraints: $2 \le n \le 10^5$, $1 \le x[i] \le 10^9$

15. Minimum maximum element after dividing array into k parts.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

16. Search in a rotated sorted array (with duplicates).

Constraints: $1 \le n \le 10^5$

17. Find fixed point (arr[i] = i) in sorted array.

Constraints: $1 \le n \le 10^5$

18. Find square root in integer array without using sqrt function.

Constraints: $1 \le n \le 10^{18}$

19. Find the smallest missing number in sorted array of distinct integers.

Constraints: $1 \le n \le 10^5$

20. Find peak in bitonic array (first increasing then decreasing).

Constraints: $1 \le n \le 10^5$

21. Find rotation count in rotated sorted array.

Constraints: $1 \le n \le 10^5$

22. Maximum average subarray of size k.

Constraints: $1 \le n \le 10^5$

23. **Koko Eating Bananas** (minimum eating speed).

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^9$

24. Allocate minimum number of pages (binary search on answer).

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

25. Capacity to ship packages (split array sum \leq mid).

26. Find the smallest divisor such that sum of division \leq threshold.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

27. Find square root in large numbers (binary search integer part).

Constraints: $1 \le n \le 10^{18}$

28. Find element closest to x in sorted array.

Constraints: $1 \le n \le 10^5$

29. Find first bad version (classic LeetCode problem).

Constraints: $1 \le n \le 10^9$

30. **Search in 2D matrix** (matrix sorted row-wise and column-wise).

Constraints: $1 \le n, m \le 10^3$

● Advanced Level (31–50)

31. Minimum largest sum among m subarrays (LeetCode "Split Array Largest Sum").

Constraints: $1 < n < 10^5$

32. Find smallest radius to cover all houses with heaters.

Constraints: $1 \le n \le 10^5$

33. Allocate tasks to workers minimizing maximum workload.

Constraints: $1 \le n \le 10^5$

34. Minimize max distance to gas station (floating-point binary search).

Constraints: $1 \le n \le 10^4$, precision = 10^{-6}

35. Find minimum speed to complete journey within T hours.

Constraints: $1 \le n \le 10^5$

36. Find minimum time to produce m items (factory problem).

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

37. Find smallest x such that f(x) is true (generic binary search on answer).

Constraints: $1 \le n \le 10^9$

38. Maximum minimum distance between elements after removing k elements.

Constraints: $1 \le n \le 10^5$

39. Find square root to given precision for very large numbers.

Constraints: $1 \le n \le 10^{18}$, precision = 10^{-9}

40. Minimize maximum difference among k pairs.

Constraints: $1 \le n \le 10^5$

41. **Aggressive cows in 2D coordinates** (binary search on distance).

Constraints: $1 \le n \le 10^5$

42. Find minimum time to paint n boards (painters partition problem).

Constraints: $1 < n < 10^5$

43. Minimize maximum waiting time for customers (queue allocation).

Constraints: $1 \le n \le 10^5$

44. Find minimum capacity to deliver packages within D days (sum ≤ capacity).

Constraints: $1 \le n \le 10^5$

45. Maximize minimum distance in placing antennas.

Constraints: $1 < n < 10^5$

46. Minimum largest element after dividing array into k parts (binary search answer).

Constraints: $1 \le n \le 10^5$

47. **Find element in infinite sorted array** (simulate array with get(i)).

Constraints: $n \to \infty$

48. Search in mountain array (bitonic array).

Constraints: $1 \le n \le 10^5$

49. Minimize maximum absolute difference between elements in k subarrays.

Constraints: $1 \le n \le 10^5$

50. Binary search on floating-point answer (max distance / speed / precision problem).

Constraints: $1 \le n \le 10^5$, precision = 10^{-6}

I can next **create 10 Binary Search problems with sample input/output** in **Codeforces-style format**, ready to implement and practice.

Do you want me to do that?

You said:

prefix sum

ChatGPT said:

Here's a list of 50 Prefix Sum / Cumulative Sum problem statements with Codeforcesstyle constraints, ranging from basic to advanced, suitable for Java, C++, or Python practice.

÷

♦ 50 Prefix Sum Problems

□ Basic Level (1–10)

1. Compute prefix sum array of a given array.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

2. Compute sum of elements from L to R using prefix sum.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

3. Count number of elements in subarray equal to k using prefix sum of frequency array.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^5$

4. Compute running average of array elements.

Constraints: $1 \le n \le 10^5$

5. Count number of even/odd elements in range [L, R].

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

6. Cumulative sum modulo M of array elements.

Constraints: $1 < n < 10^5$, $1 < M < 10^9$

7. **Find sum of all subarrays of size k** using prefix sum.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

8. Find sum of squares in subarray [L, R] using prefix sums.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^4$

9. Count number of positive numbers in subarray [L, R].

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

10. Compute cumulative sum and print at each step.

Constraints: $1 \le n \le 10^5$

☐ Intermediate Level (11–30)

11. Maximum sum subarray of size k using prefix sum.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

12. Subarray sum divisible by k (count using prefix sum modulo).

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^9$

13. **Number of subarrays with sum exactly S** using prefix sum + hashmap.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^4$

14. 2D prefix sum / cumulative sum in matrix.

Constraints: $1 \le n, m \le 10^3$

15. Sum of all rectangles in 2D matrix queries.

Constraints: $1 \le n, m \le 10^3, 1 \le q \le 10^5$

16. Number of subarrays with sum \leq S in non-negative array.

Constraints: $1 \le n \le 10^5$

17. Compute XOR of all subarrays using prefix XOR.

Constraints: $1 \le n \le 10^5$

18. Count number of subarrays with even sum using prefix sum modulo 2.

Constraints: $1 \le n \le 10^5$

19. **Count number of subarrays with odd sum** using prefix sum modulo 2.

Constraints: $1 \le n \le 10^5$

20. Find longest subarray with sum = 0 using prefix sum + hashmap.

Constraints: $1 \le n \le 10^5$, $-10^9 \le arr[i] \le 10^9$

21. Range update + range sum query using prefix sum technique.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

22. **Difference array** + **prefix sum** for multiple range additions.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

23. **Find maximum subarray sum** using prefix sum.

Constraints: $1 \le n \le 10^5, -10^9 \le arr[i] \le 10^9$

24. Compute prefix sum of absolute values.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

25. Compute prefix sum for string of digits.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

26. Count number of subarrays with sum multiple of k.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^9$

27. Range sum queries for dynamic array using prefix sum.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

28. Maximum subarray sum in circular array using prefix sums.

Constraints: $1 < n < 10^5$

29. Minimum length subarray with sum \geq S using prefix sum + binary search.

Constraints: $1 \le n \le 10^5$

30. Prefix sum of multiples of k in array.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^9$

● Advanced Level (31–50)

31. 2D cumulative XOR in matrix for queries.

Constraints: $1 \le n, m \le 500, 1 \le q \le 10^5$

32. **Maximum sum rectangle in 2D matrix** using prefix sum + Kadane.

Constraints: $1 \le n, m \le 500$

33. Count number of submatrices with sum = 0 using 2D prefix sum.

Constraints: $1 \le n, m \le 500$

34. Range addition + prefix sum query in large array (difference array technique).

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

35. Sum of all subarrays of length $\geq k$.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

36. Maximum sum of subarray after at most one deletion.

Constraints: $1 \le n \le 10^5$

37. Number of subarrays with sum in range [L, R].

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

38. **Prefix sum of weighted array** (weight = index * value).

Constraints: $1 \le n \le 10^5$

39. Count number of subarrays with sum divisible by k in 2D matrix.

Constraints: $1 \le n, m \le 500, 1 \le k \le 10^9$

40. Maximum average subarray of size $\geq k$ using prefix sums + binary search.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

41. Number of subarrays with sum \leq S using prefix sum + sliding window.

Constraints: $1 \le n \le 10^5$

42. **Dynamic prefix sum with updates** (Fenwick tree / BIT implementation).

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

43. Sum of diagonal rectangles in 2D matrix using prefix sum.

Constraints: $1 \le n, m \le 500$

44. Maximum sum submatrix with at most K elements removed.

Constraints: $1 \le n, m \le 500$

45. Count number of subarrays with positive sum using prefix sum.

Constraints: $1 \le n \le 10^5$

46. **Prefix sum of differences array** (arr[i+1] - arr[i]).

Constraints: $1 \le n \le 10^5$

47. **Maximum sum subarray modulo M** using prefix sums + binary search.

Constraints: $1 \le n \le 10^5$, $1 \le M \le 10^9$

48. Sum of all odd-length subarrays using prefix sum.

Constraints: $1 \le n \le 10^5$

49. 2D prefix sum for range updates in matrix.

Constraints: $1 \le n, m \le 500, 1 \le q \le 10^5$

50. Count number of subarrays where sum = multiple of k in large array.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^9$

I can **next create 10 Prefix Sum problems with input/output examples** in **Codeforces-style format**, ready to implement and practice.

Do you want n	ne to do that?
---------------	----------------

You said:

back tracking

ChatGPT said:

Here's a **list of 50 Backtracking problem statements** with **Codeforces/LeetCode-style constraints**, ranging from easy to advanced, suitable for Java, C++, or Python practice. \$\Delta\$

♦ 50 Backtracking Problems

☐ Basic Level (1–10)

1. Generate all subsets of a given set.

Constraints: $1 \le n \le 16$

2. Generate all permutations of a string.

Constraints: $1 \le |\mathbf{s}| \le 10$

3. Generate all permutations of an array of n distinct numbers.

Constraints: $1 \le n \le 10$

4. **Print all subsets whose sum = k** (Subset Sum).

Constraints: $1 \le n \le 20$, $1 \le arr[i] \le 100$

5. Generate all binary strings of length n.

Constraints: $1 \le n \le 16$

6. Generate all palindromic partitions of a string.

Constraints: $1 \le |\mathbf{s}| \le 16$

7. Print all combinations of r elements from n elements.

Constraints: $1 \le n \le 16$, $1 \le r \le n$

8. Generate all subsets with distinct elements.

Constraints: $1 \le n \le 16$

9. Print all strings formed from a given set of characters of length n.

Constraints: $1 \le n \le 10$, $|charset| \le 10$

10. Generate all permutations with duplicates allowed.

Constraints: $1 \le n \le 10$

☐ Intermediate Level (11–30)

11. **Solve N-Queens problem** (place n queens on $n \times n$ board).

Constraints: $1 \le n \le 12$

12. **Rat in a Maze problem** (find all paths from top-left to bottom-right).

Constraints: $1 \le n$, $m \le 10$

13. Word Search (existence of word in grid).

Constraints: $1 \le n$, $m \le 10$, $|word| \le 10$

14. **Sudoku Solver** (fill a 9×9 board).

Constraints: 9×9 board

15. Generate all valid parentheses sequences of length 2n.

Constraints: $1 \le n \le 12$

16. Combination Sum (all unique combinations that sum to target).

Constraints: $1 \le n \le 20$, $1 \le \text{target} \le 100$

17. Combination Sum II (each number used once).

Constraints: $1 \le n \le 20$, $1 \le \text{target} \le 100$

18. Letter Combinations of a Phone Number (map digits to letters).

Constraints: $1 \le |\text{digits}| \le 10$

19. Palindrome Partitioning II (all possible palindrome partitions).

Constraints: $1 \le |\mathbf{s}| \le 16$

20. **Restore IP Addresses** from string of digits.

Constraints: $4 \le |\mathbf{s}| \le 12$

21. **Permutations II** (handle duplicates in array).

Constraints: 1 < n < 10

22. Find all subsets with sum divisible by k.

Constraints: $1 \le n \le 20$, $1 \le arr[i] \le 100$

23. Generate all words of length n with given vowels/consonants rules.

Constraints: $1 \le n \le 10$

24. Find all ways to climb stairs with 1, 2, or 3 steps.

Constraints: $1 \le n \le 20$

25. Find all sequences of dice throws summing to target.

Constraints: $1 \le n \le 10$, $1 \le \text{target} \le 30$

26. Knight's Tour problem (visit all squares of chessboard).

Constraints: $n = 5 \sim 8$

27. Subset sum with negative numbers allowed.

Constraints: $1 \le n \le 20$, $|arr[i]| \le 50$

28. Print all k-length sequences from n numbers without repetition.

Constraints: $1 \le n \le 10$, $1 \le k \le n$

29. Find all partitions of integer n into sum of positive integers.

Constraints: $1 \le n \le 20$

30. Generate all strings avoiding consecutive repeated characters.

Constraints: $1 \le n \le 10$, $|charset| \le 10$

● Advanced Level (31–50)

31. **N-Knights problem** (place knights on n×n board without attacking).

Constraints: $1 \le n \le 10$

32. **M Coloring problem** (graph coloring with backtracking).

Constraints: $1 \le n \le 10$, $1 \le m \le n$

33. **Hamiltonian Path problem** in small graph.

Constraints: $1 \le n \le 10$

34. Find all magic squares of order n.

Constraints: $3 \le n \le 4$

35. Find all solutions for cryptarithmetic puzzles (SEND + MORE = MONEY).

Constraints: Letters ≤ 10

36. All possible expressions evaluating to target (add operators +, -, *, /).

Constraints: $1 \le |\text{digits}| \le 10$, target ≤ 1000

37. Count number of unique paths in grid with obstacles using backtracking.

Constraints: $1 \le n, m \le 10$

38. Rat in a 3D Maze problem (3D grid paths).

Constraints: $1 \le n, m, k \le 5$

39. All valid Sudoku boards (generate all solutions).

Constraints: 9×9 board

40. All possible words from phone keypad with constraints.

Constraints: $1 \le |\text{digits}| \le 10$

41. All combinations of coins to sum target (infinite supply).

Constraints: $1 \le n \le 20$, $1 \le \text{target} \le 100$

42. All combinations of coins to sum target (limited supply).

Constraints: $1 \le n \le 20$, $1 \le \text{target} \le 100$

43. All arrangements of numbers to satisfy inequality constraints.

Constraints: 1 < n < 10

44. Word Ladder all shortest transformation sequences.

Constraints: $|word| \le 5$, $n \le 100$

45. Print all possible knight moves sequences of length k.

Constraints: $1 \le n \le 8$, $1 \le k \le 10$

46. All subsets with sum in range [L, R].

Constraints: $1 \le n \le 20$

47. Find all balanced bracket sequences with multiple types of brackets.

Constraints: $1 \le n \le 10$

48. All solutions to the 8-Queens problem.

Constraints: n = 8

49. Find all ways to partition array into k subsets.

Constraints: $1 \le n \le 10, 1 \le k \le n$

50. All arrangements of numbers forming a magic square.

Constraints: $n \le 3$

I can also **create 10 Backtracking problems with input/output examples** in **Codeforces-style format**, ready to implement and practice.

Do you want me to do that next?

You said:

dynamic programing

ChatGPT said:

Here's a **list of 50 Dynamic Programming (DP) problem statements** with **Codeforces/LeetCode-style constraints**, ranging from basic to advanced, suitable for Java, C++, or Python practice. **♦**

♦ 50 Dynamic Programming Problems

□ Basic Level (1–10)

1. Fibonacci number (nth term).

Constraints: $1 \le n \le 10^5$

2. **Climbing stairs** (1 or 2 steps).

Constraints: $1 \le n \le 10^5$

3. **Min cost climbing stairs** (array of costs).

Constraints: $1 \le n \le 10^5$, $1 \le cost[i] \le 10^4$

4. Longest Increasing Subsequence (LIS) using DP.

Constraints: $1 \le n \le 10^3$, $|arr[i]| \le 10^4$

5. Longest Common Subsequence (LCS) of two strings.

Constraints: $1 \le |s1|, |s2| \le 10^3$

6. **0/1 Knapsack problem** (maximize value with weight limit).

Constraints: $1 \le n \le 100, 1 \le W \le 10^3$

7. Minimum number of coins to make amount (coin change problem).

Constraints: $1 \le n \le 50$, $1 \le amount \le 10^4$

8. Count number of ways to make amount (coin change combinations).

Constraints: $1 \le n \le 50$, $1 \le \text{amount} \le 10^4$

9. **Maximum sum subarray** (Kadane's Algorithm / DP).

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

10. Edit distance between two strings.

Constraints: $1 \le |s1|, |s2| \le 500$

☐ Intermediate Level (11–30)

11. Maximum sum increasing subsequence.

Constraints: $1 \le n \le 10^3$, $|arr[i]| \le 10^4$

12. Number of ways to reach nth stair with steps 1,2,3.

Constraints: $1 \le n \le 10^5$

13. **Subset sum problem** (check if sum exists).

Constraints: $1 \le n \le 100$, $1 \le \text{sum} \le 10^3$

14. Partition equal subset sum.

Constraints: $1 \le n \le 100, 1 \le arr[i] \le 100$

15. Longest Palindromic Subsequence.

Constraints: $1 \le n \le 500$

16. Longest Palindromic Substring using DP.

Constraints: $1 \le n \le 1000$

17. **Paint House problem** (minimum cost to paint n houses with k colors).

Constraints: $1 \le n \le 1000$, $1 \le k \le 20$

18. Maximum product subarray.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^4$

19. Count number of binary strings without consecutive 1s.

Constraints: $1 \le n \le 10^5$

20. Minimum jumps to reach end of array.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^3$

21. Matrix chain multiplication (min cost).

Constraints: $1 \le n \le 100$

22. **Egg dropping problem** (min trials).

Constraints: $1 \le n \le 100, 1 \le k \le 100$

23. Rod cutting problem (maximize profit).

Constraints: $1 \le n \le 100$

24. Count ways to tile $2 \times n$ board using 1×2 and 2×1 tiles.

Constraints: $1 \le n \le 10^5$

25. **Distinct subsequences** (number of times s2 appears in s1).

Constraints: $1 \le |s1|, |s2| \le 1000$

26. **Min cost path in matrix** (right, down, diagonally).

Constraints: $1 \le n, m \le 500$

27. Max sum path in matrix (only right/down).

Constraints: $1 \le n$, $m \le 500$

28. Maximum length chain of pairs.

Constraints: $1 \le n \le 10^3$, $1 \le pair[i] \le 10^4$

29. Palindrome partitioning (min cuts).

Constraints: $1 \le n \le 500$

30. Weighted job scheduling (maximize profit).

Constraints: $1 \le n \le 10^4$, $1 \le \text{profit}[i] \le 10^4$

● Advanced Level (31–50)

31. Russian Doll Envelopes (max envelopes nested).

Constraints: $1 \le n \le 10^3$

32. Max sum rectangle in 2D matrix using DP.

Constraints: $1 \le n, m \le 500$

33. Maximum sum submatrix no larger than K.

Constraints: $1 \le n$, $m \le 100$

34. Longest Bitonic Subsequence.

Constraints: $1 \le n \le 10^3$

35. Min cost to cut a stick into pieces (DP).

Constraints: $1 \le n \le 100$

36. Burst Balloons (maximize coins).

Constraints: $1 \le n \le 500$

37. Minimum falling path sum in matrix.

Constraints: $1 \le n, m \le 500$

38. Max sum path with obstacles in grid using DP.

Constraints: $1 \le n, m \le 500$

39. **Distinct subsequences with modulo** (large numbers).

Constraints: $1 \le n \le 10^3$

40. Count number of ways to decode a numeric string.

Constraints: $1 \le |\mathbf{s}| \le 10^5$

41. **Max coins from picking array elements with neighbors removed** (House Robber problem).

Constraints: $1 \le n \le 10^5$

42. Max coins in circular array (circular House Robber).

Constraints: $1 \le n \le 10^5$

43. Longest repeating subsequence.

Constraints: $1 \le |\mathbf{s}| \le 500$

44. Wildcard pattern matching (DP with ?, *).

Constraints: $1 \le |\mathbf{s}|, |\mathbf{p}| \le 500$

45. Count distinct ways to climb stairs modulo 10°+7.

Constraints: $1 \le n \le 10^5$

46. Minimum number of insertions to make string palindrome.

Constraints: $1 \le |\mathbf{s}| \le 500$

47. Max path sum in binary tree (tree DP).

Constraints: $1 \le n \le 10^5$

48. Min cost to reach last cell in weighted grid using DP.

Constraints: $1 \le n, m \le 500$

49. Max sum increasing path in matrix.

Constraints: $1 \le n, m \le 500$

50. Count number of ways to partition integer n into sums.

Constraints: $1 \le n \le 1000$

I can next create 10 Dynamic Programming problems with sample input/output examples in Codeforces-style format, ready for implementation.

Do you want me to do that next?

You said:

greddy Algorithm

ChatGPT said:

Here's a **list of 50 Greedy Algorithm problem statements** with **Codeforces/LeetCode-style constraints**, ranging from basic to advanced, suitable for Java, C++, or Python practice.

\$

◆ 50 Greedy Algorithm Problems

□ Basic Level (1–10)

1. Activity Selection Problem – select maximum non-overlapping activities. Constraints: $1 \le n \le 10^5$, $1 \le \text{start}[i] < \text{end}[i] \le 10^9$

2. **Fractional Knapsack Problem** – maximize value with fractional items.

Constraints: $1 \le n \le 10^5$, $1 \le weight[i]$, value[i] $\le 10^9$

3. Minimum number of coins to make amount (if coins unlimited).

Constraints: $1 \le n \le 100$, $1 \le \text{amount} \le 10^4$

4. Maximum sum of absolute differences in array.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

5. **Job sequencing with deadlines** (maximize profit).

Constraints: $1 \le n \le 10^5$, $1 \le deadline[i]$, profit[i] $\le 10^9$

6. Huffman Coding / Minimum cost of ropes.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

7. **Maximum number of events one can attend** (sorted by end time).

Constraints: $1 \le n \le 10^5$

8. Minimize sum of differences by pairing numbers.

Constraints: $1 \le n \le 10^5$, n even, $|arr[i]| \le 10^9$

9. Largest number formed from array of numbers.

Constraints: $1 \le n \le 10^5$, $0 \le arr[i] \le 10^9$

10. Minimize the maximum height difference when dividing items.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

☐ Intermediate Level (11–30)

11. Assign tasks to workers minimizing total completion time.

Constraints: $1 \le n \le 10^5$

12. Fractional job allocation / maximize profit.

Constraints: $1 \le n \le 10^5$

13. Gas station / minimum refills to reach destination.

Constraints: $1 \le n \le 10^5$, $1 \le distance[i] \le 10^9$

14. Minimum number of platforms required for trains.

Constraints: $1 \le n \le 10^5$, $1 \le arrival[i]$, departure[i] $\le 10^9$

15. **Interval covering problem** – minimum number of points to cover all intervals.

Constraints: $1 \le n \le 10^5$, $1 \le l[i] \le r[i] \le 10^9$

16. Minimum number of arrows to burst balloons.

Constraints: $1 \le n \le 10^5$, $0 \le x[i]$, $y[i] \le 10^9$

17. Minimize waiting time / completion time of tasks.

Constraints: $1 \le n \le 10^5$, $1 \le duration[i] \le 10^9$

18. Largest sum of subsequence with no adjacent elements.

Constraints: $1 \le n \le 10^5$

19. Minimum coins to reach target with limited denominations.

Constraints: $1 \le n \le 100$, $1 \le \text{amount} \le 10^4$

20. Maximum meetings in one room (sorted by start/end).

Constraints: $1 \le n \le 10^5$

21. Activity selection with start time priority.

Constraints: $1 \le n \le 10^5$

22. Maximize sum of numbers after deleting k elements.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

23. Minimum cost to connect ropes.

Constraints: $1 \le n \le 10^5$, $1 \le arr[i] \le 10^9$

24. Maximize stock profit with unlimited transactions.

Constraints: $1 \le n \le 10^5$, $0 \le price[i] \le 10^9$

25. Minimize product of two arrays after rearranging.

Constraints: $1 \le n \le 10^5$, $|arr[i]| \le 10^9$

26. Fractional assignments of tasks to maximize efficiency.

Constraints: $1 \le n \le 10^5$

27. **Assign cookies to children** (maximize satisfied children).

Constraints: $1 \le n \le 10^5$, $1 \le \text{size}[i]$, greed $[i] \le 10^9$

28. Maximum points by picking cards from ends.

Constraints: $1 \le n \le 10^5$, $|points[i]| \le 10^4$

29. Minimize cost of connecting sticks.

Constraints: $1 \le n \le 10^5$, $1 \le \text{sticks}[i] \le 10^9$

30. Select intervals with maximum coverage.

Constraints: $1 \le n \le 10^5$, $1 \le l[i] \le r[i] \le 10^9$

● Advanced Level (31–50)

31. Minimum number of conference rooms for overlapping intervals.

Constraints: $1 \le n \le 10^5$

32. Minimize maximum difference in array after k operations.

Constraints: $1 \le n \le 10^5$

33. Maximize number of envelopes nested (Russian Doll Envelopes).

Constraints: $1 \le n \le 10^5$

34. Maximize number of tasks completed before deadline.

Constraints: $1 \le n \le 10^5$

35. Fractional knapsack with multiple constraints.

Constraints: $1 \le n \le 10^5$

36. Maximize score by merging stones.

Constraints: $1 \le n \le 10^3$

37. Minimum cost to hire workers for tasks.

Constraints: $1 \le n \le 10^5$

38. **Minimize total waiting time for customers** (like ATM problem).

Constraints: $1 < n < 10^5$

39. Maximum profit from stock transactions with cooldown.

Constraints: $1 \le n \le 10^5$

40. Minimize sum of absolute differences after rearranging two arrays.

Constraints: $1 < n < 10^{5}$

41. Maximum sum of elements in k disjoint intervals.

Constraints: $1 \le n \le 10^5$

42. Minimum number of coins with special constraints.

Constraints: $1 \le n \le 10^5$

43. Optimal task scheduling with penalties.

Constraints: $1 \le n \le 10^5$

44. Select maximum number of intervals with limited resources.

Constraints: $1 < n < 10^5$

45. Maximize number of points in game with greedy picks.

46. Minimize max distance to supply (like antenna placement).

Constraints: $1 \le n \le 10^5$

47. Maximize profit by selling products with deadlines.

Constraints: $1 \le n \le 10^5$

48. Minimize number of lectures to cover topics.

Constraints: $1 \le n \le 10^5$

49. Minimize total time in scheduling jobs on machines.

Constraints: $1 \le n \le 10^5$

50. Maximize number of tasks done under weight/capacity constraint.

Constraints: $1 \le n \le 10^5$

I can next create 10 Greedy Algorithm problems with sample input/output examples in Codeforces-style format, ready to implement and practice.

Do you want me to do that next?

You said:

intervels

ChatGPT said:

Here's a **list of 50 Interval-related problem statements** (covering **merging, scheduling, covering, and optimization**) with **Codeforces/LeetCode-style constraints**, ranging from basic to advanced, suitable for Java, C++, or Python practice. **♦**

♦ 50 Interval Problems

□ Basic Level (1–10)

1. Merge overlapping intervals.

Constraints: $1 \le n \le 10^5$, $0 \le \text{start}[i] \le \text{end}[i] \le 10^9$

2. Insert a new interval into a list of sorted intervals.

Constraints: $1 \le n \le 10^5$

3. Check if a new interval overlaps with any existing interval.

Constraints: $1 \le n \le 10^5$

4. Interval intersection between two lists of intervals.

Constraints: $1 \le n$, $m \le 10^5$

5. **Remove covered intervals** (intervals completely inside others).

Constraints: $1 \le n \le 10^5$

6. **Maximum number of non-overlapping intervals** (activity selection).

7. Minimum number of intervals to remove to make rest non-overlapping.

Constraints: $1 \le n \le 10^5$

8. Check if intervals can be arranged without overlap.

Constraints: $1 \le n \le 10^5$

9. Count number of overlapping intervals at any point.

Constraints: $1 \le n \le 10^5$

10. Find gaps between intervals (interval complement).

Constraints: $1 \le n \le 10^5$

☐ Intermediate Level (11–30)

11. Maximum length covered by merged intervals.

Constraints: $1 \le n \le 10^5$

12. Minimum number of points to cover all intervals.

Constraints: $1 \le n \le 10^5$

13. Check if intervals form a continuous coverage from L to R.

Constraints: $1 \le n \le 10^5$

14. Find the interval with maximum overlap count.

Constraints: $1 \le n \le 10^5$

15. Insert multiple intervals and merge all.

Constraints: $1 \le n, m \le 10^5$

16. Sort intervals by start or end time.

Constraints: $1 \le n \le 10^5$

17. Find the longest chain of intervals where each interval starts after previous ends.

Constraints: $1 \le n \le 10^5$

18. Minimum intervals to remove for complete coverage.

Constraints: $1 \le n \le 10^5$

19. Check if intervals cover a certain point or range.

Constraints: $1 \le n \le 10^5$

20. Maximum number of intervals covering a given point.

Constraints: $1 \le n \le 10^5$

21. Count disjoint sets of intervals.

Constraints: $1 \le n \le 10^5$

22. Find median interval length.

Constraints: $1 \le n \le 10^5$

23. Merge k sorted lists of intervals.

Constraints: $1 \le k \le 10^3$, total intervals $\le 10^5$

24. Check if any intervals overlap in a list.

Constraints: $1 \le n \le 10^5$

25. Maximum number of intervals to select under weight constraint.

Constraints: $1 \le n \le 10^5$, $1 \le weight[i] \le 10^9$

26. Count intervals overlapping with query interval.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

27. Find earliest interval ending after a given start.

Constraints: $1 \le n \le 10^5$

28. Minimize sum of lengths of chosen intervals to cover all points.

29. Maximum sum of weights of non-overlapping intervals.

Constraints: $1 \le n \le 10^5$, $1 \le weight[i] \le 10^9$

30. Maximum number of intervals starting before a certain time.

Constraints: $1 \le n \le 10^5$

● Advanced Level (31–50)

31. Weighted interval scheduling (maximize total weight).

Constraints: $1 \le n \le 10^5$

32. Find interval with maximum coverage after removing k intervals.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

33. Find union length of multiple intervals.

Constraints: $1 \le n \le 10^5$

34. Count number of intervals fully contained within each interval.

Constraints: $1 \le n \le 10^5$

35. Check if a point lies in majority of intervals.

Constraints: $1 \le n \le 10^5$

36. Find the k-th point in merged intervals.

Constraints: $1 \le n \le 10^5$, $1 \le k \le 10^9$

37. Dynamic insertion and deletion of intervals, count overlaps.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

38. Interval covering problem (minimum intervals covering all points).

Constraints: $1 \le n \le 10^5$

39. Maximum gap between intervals after merging.

Constraints: $1 \le n \le 10^5$

40. Intervals intersection with query interval.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

41. Find the smallest interval covering a given set of points.

Constraints: $1 \le n \le 10^5$

42. Merge overlapping intervals online (real-time).

Constraints: $1 \le n \le 10^5$

43. Find interval that overlaps with maximum number of other intervals.

Constraints: $1 \le n \le 10^5$

44. **Select maximum weighted intervals without overlap** (weighted activity selection).

Constraints: $1 \le n \le 10^5$

45. Minimize cost of interval coverage with penalties for uncovered gaps.

Constraints: $1 < n < 10^{5}$

46. Find first interval fully containing a given query interval.

Constraints: $1 \le n \le 10^5$, $1 \le q \le 10^5$

47. Split intervals into minimum number of non-overlapping groups.

Constraints: $1 \le n \le 10^5$

48. Find maximum number of intervals that intersect at a common point.

Constraints: $1 \le n \le 10^5$

49. Count number of points covered by at least k intervals.

Constraints: $1 \le n \le 10^5$, $1 \le k \le n$

50. Find interval with maximum overlap after shifting all intervals by d units.

Constraints: $1 \le n \le 10^5$, $0 \le d \le 10^9$