برنامه زیر، فقط به صورت کامل تحویل گرفته میشود . یعنی تمامی قسمت ها و عملیات های خواسته شده باید در کد برنامه لحاظ شده باشد.

ضمناً همه افراد گروه در روز تحویل باید حضورر داشته باشد.

با تشكر

در این پروژه،مطلوب است طراحی و پیاده سازی واحد کنترل و واحد محاسبه منطق پردازنده 16 بیتی زیر در Verilog HDL.

مجموعه دستورالعمل برای پردازنده مذکور به شرح زیر است:

- 1. Add: R[rd] = R[rs] + R[rt]
- 2. Subtract : R[rd] = R[rs] R[rt]
- 3. And: R[rd] = R[rs] & R[rt]
- 4. Or: R[rd] = R[rs] | R[rt]
- 5. SLT: R[rd] = 1 if R[rs] < R[rt] else 0
- 6. Jr: PC=R[rs]
- 7. Lw: R[rt] = M[R[rs]+SignExtImm]
- 8. Sw: M[R[rs]+SignExtImm] = R[rt]
- 9. Beq: if(R[rs]==R[rt]) PC=PC+1+BranchAddr
- 10. Addi: R[rt] = R[rs] + SignExtImm

11. J: PC=JumpAddr

Jal: R[7]=PC+2;PC=JumpAddrSLTI: R[rt] = 1 if R[rs] < imm else 0

SignExtImm = { 9{immediate[6]}, imm

JumpAddr = { (PC+1)[15:13], address}

BranchAddr = { 7{immediate[6]}, immediate, 1'b0 }

بر اساس مجموعه دستورالعمل ارائه شده، مسیر داده و واحد کنترل طراحی و پیاده سازی می شود.

سیگنال های کنترلی که باید به ترتیب برای واحد کنترل و واحد ALU در نظر بگیرید به شرح زیر است:

Control signals									
Instruction	Reg	ALUSrc	Memto	Reg	MemRead	Mem	Branch	ALUOp	Jump
	Dst		Reg	Write		Write			
R-type	1	0	0	1	0	0	0	00	0
LW	0	1	1	1	1	0	0	11	0
SW	0	1	0	0	0	1	0	11	0
addi	0	1	0	1	0	0	0	11	0
beq	0	0	0	0	0	0	1	01	0
j	0	0	0	0	0	0	0	00	1
jal	2	0	2	1	0	0	0	00	1
slti	0	1	0	1	0	0	0	10	0

ALU Control						
ALU op	Function	ALUcnt	ALU Operation	Instruction		
11	XXXX	000	ADD	Addi,lw,sw		
01	XXXX	001	SUB	BEQ		
00	00	000	ADD	R-type: ADD		
00	01	001	SUB	R-type: sub		

00	02	010	AND	R-type: AND
00	03	011	OR	R-type: OR
00	04	100	slt	R-type: slt
10	xxxxxx	100	slt	i-type: slti

نکته: در فایل نهایی پروژه شما باید یک قسمت شماتیک RTL از مدار و حتما ماژول testbench و waveform برای بررسی سریع و دقیقتر مدار باشد.