

FACULTAD DE CIENCIAS E INGENIERÍA CARRERA DE INGENIERÍA DE SOFTWARE

TEMA:

Explicar los fundamentos básicos del protocolo EIGRP. Configurar una red utilizando el protocolo EIGRP.

AUTORES:

Adrián Arturo Crespo Avella Nelly Estephania Figueroa Pisco Guido Jahir Gaibor Zambrano Pablo Andrés Lima Mosquera Victor Manuel Lluilema Pisco

ASIGNATURA:

Escalabilidad de redes

DOCENTE:

Ing. Fernando David Valle Medina

FECHA DE ENTREGA:

22/10/2024

PERIODO:

Agosto a diciembre 2024

MILAGRO-ECUADOR

Link: https://drive.google.com/file/d/1BHkXPE3XyeVy09x0pjv-Cii1isYIEr0Y/view?usp=sharing

 $\label{eq:control} Taller~N^\circ 2$ 1. Explica un cuadro comparativo entre los protocolos: IGRP, RIP e EiGRP

Característica	IGRP	ROTURA	Protocolo de Internet de las cosas (EIGRP)
Tipo de Protocolo	Protocolo de puerta de enlace interior (IGP)	Protocolo de puerta de enlace interior (IGP)	Protocolo de puerta de enlace interior (IGP)
Algoritmo de enrutamiento	Vector de distancia	Vector de distancia	Híbrido (Vector de distancia y estado del enlace)
Convergencia	Lenta	Muy lento	Rápido
Clase de Protocolo (Classful o Classless)	Con clase	Con clase	Sin clase
Soporte para VLSM y CIDR	No	No	Si
Métricas utilizadas	Ancho de banda, retraso, confiabilidad, carga	Conteo de saltos	Ancho de banda, retraso, confiabilidad, carga, MTU
Actualizaciones de Enrutamiento	Actualizaciones periódicas (90 segundos)	Actualizaciones periódicas (30 segundos)	Actualizaciones incrementales
Tamaño de Métrica y Precisión	24 bits	256 (8 bits)	32 bits
Intervalo de actualización	90 segundos	30 segundos	90 segundos (por defecto)
Detección de Cambios en la Topología	Temporizadores de retención	Temporizadores de retención	DUAL (Algoritmo de actualización por difusión)
Tipos de mensajes utilizados	Actualizar, consultar, responder	Actualización, solicitud, respuesta	Actualizar, Consultar, Responder, Hola
Balance de carga	Sí, hasta 4 rutas iguales	Sí, hasta 4 rutas iguales	Sí, hasta 16 rutas desiguales
Tamaño Máximo de Salto (Hop Count)	255	15	224
Autenticación	No	Sí (RIPv2)	Sí (MD5)
Manejo de Vecinos	No	No	Sí (Hola Protocolo)
Rendimiento en redes grandes	Limitado	Limitado	Eficiente
Propiedad	Cisco	RFC 1058 (RIPv1), RFC 2453 (RIPv2)	Cisco
Uso Moderno y Estado Actual	Obsoleto	Limitado, principalmente en redes pequeñas	Ampliamente utilizado en redes empresariales

Explicaciones de los protocolos:

- IGRP (Interior Gateway Routing Protocol): Protocolo de enrutamiento desarrollado por Cisco en los años 80 y que se creó, principalmente, para solventar las deficiencias de RIP. Se basa en el algoritmo de vector de distancia, y utiliza métricas como el ancho de banda, la carga y la confiabilidad para tomar decisiones de enrutamiento. Aun así, ha quedado obsoleto, ya que el protocolo EIGRP es más eficiente.
- RIP (Routing Information Protocol): Es uno de los protocolos de enrutamiento más antiguos
 y simples, ya que utiliza como única métrica el número de saltos. RIP es idóneo para redes
 pequeñas por su limitación de 15 saltos. Con el inicio de la versión 2, RIP ya soportaba
 VLSM, pero sigue siendo limitado en términos de rendimiento y de escalabilidad para las
 redes grandes.
- **EIGRP** (Enhanced Interior Gateway Routing Protocol): Un protocolo híbrido que une las características del vector de distancia y el estado del enlace. Esto tiene un tiempo de convergencia rápido, ya que utiliza el algoritmo DUAL, lo que ayuda a brindar soporte para grandes redes. Se dice que es uno de los protocolos más eficientes y escalables en las redes modernas de hoy en día. Aunque este es un protocolo propietario de Cisco, todavía hay mucho uso para su rendimiento y conjunto de características en muchas implementaciones.

Resumiendo, IGRP y RIP han sido en su mayoría desplazados a protocolos utilizados en redes de menor tamaño o como objeto de estudio, en contraste EIGRP sigue siendo importante en ámbitos de negocios, proporcionando una combinación sólida de escalabilidad, rapidez de convergencia y flexibilidad.

2. Explica un cuadro comparativo entre el protocolo EIGRP y OSPF.

Característica	EIGRP	OSPF
Tipo de Protocolo	Vector distancia híbrido.	Estado de enlace.
Algoritmo de Enrutamiento	Dual (Difusión difusa).	SPF (Shortest Path First).
Convergencia	Rápida, debido al algoritmo Dual y a las actualizaciones incrementales.	Más lenta que EIGRP, pero más estable.
Clase de Protocolo	Classless (soporta VLSM y CIDR).	Classless (soporta VLSM y CIDR).
Dominio de Enrutamiento	Sistema autónomo (AS).	Área
Formación de Vecindad	Mensajes Hello, establecimiento de vecindad y formación de adyacencias.	Mensajes Hello, establecimiento de vecindad y sincronización de bases de datos.
Método de Selección de Rutas	Métricas administrativas (K1, K2, K3, K4) y ancho de banda.	Costo (basado en el ancho de banda).
Métricas Utilizadas	Banda, retardo, carga, fiabilidad.	Costo (calculado a partir del ancho de banda).
Actualizaciones de Enrutamiento	Triggered updates, query responses, y actualizaciones periódicas.	Triggered updates y actualizaciones periódicas.
Formato de Mensajes	Hellos, actualizaciones, queries, acknowledgments.	Hellos, database description, link- state request, link-state update, link-state acknowledgment.
Tamaño de Tabla de Enrutamiento	Tiende a ser más pequeña que en OSPF.	Tiende a ser más grande, especialmente en redes grandes.
Balanceo de Carga	Equal-cost load balancing, designal (variando las	Equal-cost load balancing.

	métricas).	
Autenticación	MD5 y contraseña.	MD5 y contraseña.
Detección de Cambios en la Topología	Rápida detección de cambios gracias al algoritmo Dual.	Detección de cambios mediante el envío de actualizaciones de estado de enlace.
Manejo de Topologías Grandes	Escalable, gracias al algoritmo Dual y a la segmentación en áreas (opcional).	Puede ser menos eficiente en redes muy grandes, pero la jerarquización de áreas ayuda.
Propiedad y Estándar	Cisco	IETF (estándar abierto).
Compatibilidad Multivendor	Limitada (principalmente Cisco).	Amplia, debido a su naturaleza estándar.
Uso Tífico	Redes Cisco, redes con alta disponibilidad y rendimiento.	Redes multivendor, grandes ISPs, redes con requisitos de estabilidad.
Costos Administrativos	Puede requerir más configuración, pero ofrece mayor flexibilidad.	Configuración más sencilla, pero menos opciones de ajuste fino.
Soporte Multiprotocolo	Sí	Sí
Resumen de Rutas	Automático y manual	Automático y manual
Limitaciones y Escalabilidad	Propietario de Cisco, puede ser complejo de configurar.	Puede ser menos eficiente en redes muy pequeñas, pero más estable.
Casos de Uso Típicos	Redes corporativas de Cisco, redes con alta disponibilidad y rendimiento.	ISPs, redes de gran tamaño, redes multivendor.

3. Explica el funcionamiento del algoritmo DUAL

Definición

El algoritmo DUAL (Diffusing Update Algorithm) es utilizado en el protocolo de enrutamiento EIGRP (Enhanced Interior Gateway Routing Protocol) para garantizar rutas de red sin bucles.

Propósito

Encargado de garantizar la selección de la mejor ruta posible en una red, asegurando que tanto las rutas principales como las de respaldo no presenten bucles. Este algoritmo, implementado en el protocolo EIGRP, mantiene la estabilidad y eficiencia de la red al calcular y actualizar las rutas de manera óptima, evitando problemas de enrutamiento y asegurando una rápida convergencia cuando ocurren cambios en la topología de la red.

Componentes Clave del Algoritmo

Para que el algoritmo funcione correctamente, es fundamental contar con varios componentes esenciales. A continuación, se detallan los distintos componentes claves:

- Sucesor y distancia factible: El sucesor es el enrutador vecino que proporciona la mejor ruta hacia una red de destino. Se trata de la ruta con el menor costo o métrica, y es la que se utiliza para el reenvío de paquetes en la red. La distancia factible es la métrica más baja calculada para llegar a la red de destino a través del sucesor.
- Sucesor factible y condición de factibilidad: El sucesor factible es un enrutador vecino que tiene una ruta de respaldo sin bucles hacia el mismo destino que el sucesor. este sucesor factible actúa como una ruta alternativa en caso de fallo de la ruta principal. La condición de factibilidad es el criterio que debe cumplir un sucesor factible. Esta condición se cumple cuando la distancia notificada desde un vecino hacia una red de destino es menor que la distancia factible del enrutador local hacia la misma red. Si esta condición se satisface, se garantiza que la ruta de respaldo no producirá bucles.
- **Distancia notificada o distancia publicada:** Es la métrica que un enrutador vecino informa sobre su propio costo para llegar a una red de destino. Esta métrica se utiliza para evaluar si un vecino puede convertirse en un sucesor factible.

Estructura de las Tablas en DUAL

El algoritmo utiliza dos tablas principales: la tabla de vecinos y la tabla de topología.

• Tabla de vecinos: Esta tabla contiene información sobre los enrutadores vecinos que han intercambiado rutas con el enrutador local. A través de esta tabla, el algoritmo DUAL puede conocer las rutas posibles y sus métricas.

• Tabla de topología: Almacena todas las rutas conocidas, tanto las mejores como las de respaldo (sucesores y sucesores factibles). De gran importancia para el cálculo de rutas, ya que permite a DUAL seleccionar rutas sin bucles y proporcionar una rápida convergencia en caso de cambios en la topología de la red.

Proceso de Selección de Rutas

- 1. Recopilación de información de los vecinos: El enrutador recibe información sobre las rutas disponibles desde sus enrutadores vecinos. Dicha información se almacena en la tabla de vecinos, que contiene las rutas y las métricas proporcionadas por cada vecino.
- 2. Cálculo de la mejor ruta (Sucesor): A partir de la información recopilada, DUAL calcula la distancia factible, y selecciona el sucesor, que es la mejor ruta, basada en la métrica más baja. Esta ruta es instalada en la tabla de enrutamiento para el tráfico activo.
- **3. Identificación de rutas de respaldo:** Luego, el algoritmo DUAL determina si alguno de los vecinos puede actuar como un sucesor factible, es decir, una ruta de respaldo que no cause bucles.
- **4. Monitoreo del estado de la red:** Las rutas pueden estar en dos estados.
 - Pasivo: Las rutas están estables y no requieren cambios.
 - Activo: Si la ruta principal (sucesor) falla, el enrutador entra en estado activo y busca un nuevo sucesor utilizando la información de los sucesores factibles.

Proceso de Reconvergencia

Este proceso ocurre cuando una ruta principal presenta fallos y el sistema busca rutas alternativas para mantener la conectividad de la red sin necesidad de recalcular toda la topología.

- 1. **Detección de falla:** Al fallar el sucesor, el enrutador entra en estado activo y busca un sucesor factible. Si existe un sucesor factible, la red cambia sin recalcular todas las rutas, lo que asegura una rápida convergencia.
- 2. **Difusión de actualizaciones:** Si no hay un sucesor factible, DUAL inicia un proceso de difusión de consultas a los vecinos para encontrar una nueva ruta. Estos vecinos responden con información sobre sus propios sucesores, permitiendo la creación de nuevas rutas.
- 3. **Convergencia:** El enrutador selecciona un nuevo sucesor basado en la información recibida, actualiza la tabla de enrutamiento y vuelve a un estado pasivo, lo que indica que la red está estable.

Prevención de Bucles de Enrutamiento

El algoritmo DUAL previene bucles asegurándose que las rutas utilizadas sean completamente seguras o verificadas. La clave está en la condición de factibilidad, que garantiza que un sucesor factible, o ruta de respaldo, solo se elija si la distancia notificada por el vecino es menor que la distancia factible local. Esto asegura que la ruta alternativa no formará un bucle.

Tipos de Mensajes Utilizados

El algoritmo DUAL utiliza cuatro tipos de mensajes clave para mantener la comunicación y gestionar las rutas de la red:

- 1. Mensajes de consulta (Query)
- 2. Mensajes de respuesta (Reply)
- 3. Mensajes de actualización (Update)
- 4. Mensajes de acuse de recibo (Acknowledgement)

Ventajas del Algoritmo DUAL

- **1. Rápida convergencia:** Minimiza el tiempo de recuperación de fallos utilizando rutas predefinidas.
- **2. Prevención de bucles:** Gracias a la condición de factibilidad, evita la creación de bucles de enrutamiento.
- 3. Eficiencia: Solo recalcula rutas afectadas, no toda la topología.

Limitaciones del algoritmo DUAL

- **1. Mayor complejidad:** La implementación y mantenimiento del algoritmo es más complejo comparado con otros protocolos.
- **2. Consumo de recursos:** El proceso de consultas y respuestas puede aumentar el uso de memoria y procesamiento en redes grandes.

5. Elabora de 3 preguntas (Opción múltiple) de acuerdo a la siguiente estructura explica la justificación de la respuesta. Se debe crear una pregunta por cada una de las siguientes fuentes: 1 compendio, 1 presentaciones, 1 clase síncrona.

Tema:		Protocolo EIGRP	
Subt	ubtema: Subtema 1: Configuración del protocolo EIGRP		
Fuen	te:	Compendio	
		PLANTEAMIENTO:	
	¿Para verificar que s	e halla establecido comunicación y se pueda encontrar adyacencias	
1	con los routers directamente conectados que comando se utiliza?		
	Opción A	No se utiliza ningún comando en específico.	
	Opción B	router eigrp sistema-autónomo	
	Opción C	show ip eigrp neighbors	
	Opción D	no ip route-cache	
	Alternativa Correc	cta C	

Tema: Proto		Protocolo EIGRP
Subt	Subtema: Subtema 1: Configuración del protocolo EIGRP	
Fuen	ente: Presentación	
	PLANTEAMIENTO:	
1	¿Para qué se utiliza la interfaz pasiva?	
	Opción A	Para aumentar los controles de seguridad
	Opción B	Para ver la interfaz local en la cual se recibió este paquete de saludo.
	Opción C	para configurar la ID del router EIGRP y tiene prioridad sobre cualquier dirección de loopback
	Opción D	Para que las subredes se incluyen en las actualizaciones de routing.
	Alternativa Correc	ta A

Tema	Protocolo EIGRP		
Subt	ema:	Subtema 1: Configuración del protocolo EIGRP	
Fuen	te:	Clase sincrónica	
	PLANTEAMIENTO:		
1	¿El router de cisco con que IP viene por defecto para trabajar?		
	Opción A	No viene con ninguna IP	
	Opción B	IP V15	
	Opción C	IP V6	
	Opción D	IP V4	
	Alternativa Correct	ta D	