

S Thenmozhi

Department of Computer Applications

OS Structures & Kernel Programming

S Thenmozhi

Department of Computer Applications

OS Structure

PES
UNIVERSITY
CELEBRATING 50 YEARS

- It is easier to create an operating system in pieces
- Every segment is also a part of the operating system
- OS structure strategy for connecting and incorporating various operating system components within the kernel
- Major Structures
 - Simple Structure
 - Monolithic Structure
 - Micro-Kernel Structure
 - Layered Structure
 - Modular Structure

OS Structure

PES UNIVERSITY CELEBRATING 50 YEARS

Simple Structure

- These operating systems do not have well-defined structures
- They are small, simple, and limited
- The interfaces and levels of functionality are not well separated.
- Example: MS-DOS written to provide the most functionality in the least space
- Not divided into modules
- Although MS-DOS has some structure, its interfaces and levels of functionality are not well separated

OS Structure

PES UNIVERSITY

Advantages

- Because there are only a few interfaces and levels, it is simple to develop.
- Because there are fewer layers between the hardware and the applications, it offers superior performance.

Disadvantages

- The entire operating system breaks if just one user program malfunctions.
- Since the layers are interconnected, and in communication with one another, there is no abstraction or data hiding.
- The operating system's operations are accessible to layers, which can result in data tampering and system failure.

OS Structure

PES UNIVERSITY CELEBRATING 50 YEARS

Monolithic Structure

- Kernel implemented as an only one process
- All the functional components of the kernel have access to all of its internal data structures and routines
- Example: UNIX. Comprises of two separable parts: Shell, Kernel
- Shell: Command interpreter, includes system libraries and compilers
- Kernel Consists of everything below the system-call interface and above the physical hardware
- Provides the file system, CPU scheduling, memory management, etc a large number of functions as one level

Unix Structure

OS Structure

(the users) shells and commands compilers and interpreters system libraries system-call interface to the kernel signals terminal file system CPU scheduling Kernel handling swapping block I/O page replacement character I/O system system demand paging terminal drivers virtual memory disk and tape drivers kernel interface to the hardware terminal controllers device controllers memory controllers terminals disks and tapes physical memory

Unix Structure

OS Structure

PES UNIVERSITY CELEBRATING 50 YEARS

Microkernel

- First introduced by Mach in mid 1980's
- Moves as much from the kernel into "user" space
- i.e, removing all non-essential components from the kernel and implementing them as system and user programs
- Communication takes place between user modules using message passing

- Advantages
 - Easier to extend a microkernel
 - Easier to port the operating system to new architectures
 - More reliable (less code is running in kernel mode) & More secure
- Disadvantages
 - Performance overhead of user space to kernel space communication

OS Structure

Mac OS Structure

OS Structure

Layered Approach

- The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.
- With modularity, layers are selected such that each layer uses functions (operations) and services of only lower-level layers
- Advantage: Simplicity of Construction and Debugging
- Disadvantage: fails if appropriate planning not done. Each layer adds overhead to the lower layers

OS Structure

PES UNIVERSITY CELEBRATING 50 YEARS

Modules

- Most modern operating systems implement kernel modules
 - Uses object-oriented approach
 - Each core component is separate
 - Each talks to the others over known interfaces
 - Each is loadable as needed within the kernel
- Overall, similar to layers but with more flexibility

Solaris Structure

- Other Structures
 - Hybrid-Kernel Structure
 - Exo-Kernel Structure
 - Virtual Machines
- Hybrid Kernel Structure
 - Hybrid-kernel structure is nothing but just a combination of both monolithic-kernel structure and micro-kernel structure.
 - It implement speed and design of monolithic and modularity and stability of micro-kernel structure

OS Structure

PES UNIVERSITY

- Exo-kernel Structure
 - Exokernel is an operating system developed at MIT
 - provide application-level management of hardware resources
 - Use abstractions as little as possible
- Virtual Machines
 - Virtual machine abstracts the hardware of our personal computer, including the CPU, disc drives, RAM, and NIC (Network Interface Card), into a variety of different execution contexts
 - Example: virtual Box

THANK YOU

S Thenmozhi

Department of Computer Applications

thenmozhis@pes.edu

+91 80 6666 3333 Extn 393