NFA

Specyfikacja problemu algorytmicznego

Zaprojektuj NFA nad alfabetem $\Sigma = \{0,1,2,3,a,b,c\}$, w którym automat analizuje słowa składające się z cyfr i liter (słowa wejściowe mieszane: cyfry i litery) i informuje komunikatem czy potrojenie wystąpiło pośród liter czy cyfr (3 symbole obok siebie).

Dane wejściowe

$$\begin{split} \Sigma &= \{0,1,2,3,a,b,c\} \\ Q &= \{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7,q_8,q_9,q_{10},q_{11},q_{12},q_{13},q_{14},q_{15},q_{16}\} \\ q0 &= \{q_0\} \\ A &= \{q_3,q_{16}\} \\ \delta(q,a) &= Q \times \Sigma \xrightarrow{} 2^Q \end{split}$$

Założenia początkowe

- 1) Program wczytuje z podanego pliku wszystkie słowa oraz wskazuje te z nich, które zostaną akceptowane przez automat. Poszczególne słowa w pliku są separowane za pomocą terminatora #.
- 2) Każde słowo jest analizowane oddzielnie w programie aż do symbolu terminującego.
- 3) Analizę zaczynamy od pierwszego symbolu z lewej strony sekwencji symboli.
- 4) Stan poczatkowy to q₀.
- 5) Jeśli zostanie wczytany symbol nie występujący z skończonym zbiorze Q automat kończy działanie, sekwencja symboli zostaje uznana za niewłaściwą.
- 6) Brak przejścia dla aktualnie analizowanego symbolu oznacza zatrzymanie NFA i również uznanie sekwencji symboli za niewłaściwą.
- 7) Funkcja δ(q,a) zostanie przedstawiona za pomocą poniższego diagramu stanów i tabeli przejść:

δ (q, a)	0	1	2	3	а	b	C
q0	{q0,q1}	{q0,q4}	{q0,q6}	{q0,q8}	{q0,q10}	{q0,q12}	{q0,q14}
q1	q2	X	X	X	X	X	X
q2	q3	X	X	X	X	X	X
q3	q3	q3	q3	q3	q3	q3	q3
q4	X	q5	X	X	X	X	X
q5	x	q3	X	X	X	X	X
q6	X	X	q7	X	X	X	X
q7	x	X	q3	X	X	X	X
q8	X	X	X	q9	X	X	X
q9	x	X	X	q3	X	X	X
q10	X	X	X	X	q11	X	X
q11	x	X	X	X	q16	X	X
q12	X	X	X	X	X	q13	X
q13	X	X	X	X	X	q16	X
q14	X	X	X	X	X	X	q15
q15	x	X	X	X	x	X	q16
q16	q16	q16	q16	q16	q16	q16	q16

Sprawdzenie poprawności działania

np. 223222

Automat po wczytaniu ostatniego symbolu znalazł się w stanie akceptującym. Wniosek: sekwencja 223222 jest zgodna ze specyfikacją i jest akceptowana przez ten automat.

np. abbc

Sekwencja abbc nie jest akceptowana przez ten automat. Automat nie znalazł się w stanie końcowym lub nie było przejścia.