RA/Nome:	

Faça somente 5 das 7 questões abaixo.

- 1. Seja $X = \{x_1, \dots, x_n\}$ um conjunto finito com $n \ge 2$ elementos.
- (a) Mostre que podem ser definidas pelo menos n+1 topologias não-homeomorfas em X.
- (b) Para n=2, descreva todas as topologias não-homeomorfas que podem ser definidas em X.

Curiosidade: Para n=5, existem exatamente 6942 topologias não-homeomorfas em X.

- **2.** Para $a, b \in \mathbb{Z}$, b > 0, considere $N_{a,b} = \{a + nb; n \in \mathbb{Z}\}$.
- (a) Mostre que a família $\{N_{a,b}\}$ é base de uma topologia τ em \mathbb{Z} .
- (b) Mostre que, em τ , cada conjunto $N_{a,b}$ é fechado.
- (c) Mostre que τ é Hausdorff.
- **3.** Seja X um espaço topológico e $f: X \to \mathbb{R}$ uma função contínua tal que f(x) = 0 para todo $x \in D$, onde $D \subset X$ é um conjunto denso. Mostre que f(x) = 0, para todo $x \in X$.
- **4.** Seja X um espaço topológico normal, e A,B dois fechados disjuntos de X. Prove que existem abertos U,V de X tais que $A\subset U,B\subset V$ e $\overline{U}\cap \overline{V}=\emptyset$
- **5.** Mostre:
- (a) Um subespaço fechado de um espaço topológico compacto é compacto.
- (b) Um subespaço compacto de um espaço topológico de Hausdorff é fechado.
- **6.** Seja O(n), $n \ge 2$, o conjunto das matrizes A, de dimensão $n \times n$, tais que $AA^t = A^tA = Id$. Considere O(n) como subespaço topológico de \mathbb{R}^{n^2} . Mostre que O(n) é compacto e desconexo.
- 7. Seja $f:[0,1] \to S^n$ $(n \ge 2)$ um laço em x_0 . Assuma que f é homotópico a um laço $g:[0,1] \to S^n$ em x_0 que não é sobrejetor, e prove que $\pi_1(S^n) = \{0\}$, para $n \ge 2$.

Departamento de Matemática - IMECC - Unicamp Exame de Análise no \mathbb{R}^n - 16 de Julho de 2012.

- **1. Questão.** Seja $U \subset \mathbb{R}^n$ aberto e $f: U \to \mathbb{R}$ diferenciável. Mostre que se $\left| \frac{\partial f}{\partial x_i}(x) \right| \leq M$, para todo $x \in U$ e i = 1, ..., n, então $f(\Omega)$ é limitado quando $\Omega \subset U$ é limitado e convexo.
- **2. Questão.** Seja $f:(a,b)\to\mathbb{R}$ uma função de classe C^2 e seja $x_0\in(a,b)$ um ponto crítico de f. Mostre que se f''(x)<0 para todo $x\in(a,b)$, então x_0 é ponto de máximo global. Este é o único ponto em (a,b) onde f(x) assume seu máximo global?
- 3. Questão. Demonstre o teorema da aplicação inversa, usando o teorema do posto.
- **4. Questão.** Seja $\Omega \subset \mathbb{R}^3$ um aberto conexo e limitado tal que $S = \partial \Omega$ é uma superfície de classe C^{∞} .
- (a) Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação de classe C^1 . Usando o Teorema de Stokes (em sua forma mais geral), mostre que

$$\int_{\Omega}div(F)dx=\int_{\partial\Omega}(F\cdot n)dS \ \ (\text{Teorema da Divergência}).$$

(b) Seja $u: \mathbb{R}^3 \to \mathbb{R}$ de classe C^2 . Mostre que

$$\int_{\Omega} \Delta u dx = \int_{\partial \Omega} \frac{\partial u}{\partial n} dS,$$

onde $\Delta u = \sum_{i=1}^{3} \frac{\partial^{2} u}{\partial x_{i}^{2}}$ e $\frac{\partial u}{\partial n}$ denota a derivada de u na direção do vetor normal a $\partial\Omega$.

5. Questão. Sejam ω_1 e ω_2 1-formas de classe C^1 em \mathbb{R}^3 . Se $\omega_2(x) \neq 0$ para todo $x \in \mathbb{R}^3$ e $\omega_1 \wedge \omega_2 = 0$, então $\omega_1 = f\omega_2$, onde $f : \mathbb{R}^3 \to \mathbb{R}$ é uma função de classe C^1 .