Лабораторная работа № 8

Настройка сетевых сервисов. DHCP

Коннова Татьяна Алексеевна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	12
5	Контрольные вопросы	13

Список иллюстраций

3.1	Логическая схема локальной сети с добавленным DNS-сервером
3.2	Активация порта
	Конфигурация dns-сервера
3.4	Конфигурация dns-сервера
3.5	Окно настройки сервиса DNS
	Настройка DHCP-сервис на маршрутизаторе
	Информация о пулах DHCP
3.8	Информация о привязках выданных адресов
3.9	Проверка доступности устройств из разных подсетей
3.10	Проверка доступности устройств из разных подсетей
3.11	Запрос в режиме симуляции

1 Цель работы

Приобрести практические навыки по настройке динамического распределения IP-адресов посредством протокола DHCP (Dynamic Host Configuration Protocol) в локальной сети.

2 Задание

- 1. Добавить DNS-записи для домена donskaya.rudn.ru на сервер dns.
- 2. Настроить DHCP-сервис на маршрутизаторе.
- 3. Заменить в конфигурации оконечных устройствах статическое распределение адресов на динамическое.
- 4. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

В логическую рабочую область проекта добавим сервер dns и подключим его к коммутатору msk-donskaya-sw-3 через порт Fa0/2 (рис. 3.1), не забыв активировать порт при помощи соответствующих команд на коммутаторе (рис. 3.2).

Рис. 3.1: Логическая схема локальной сети с добавленным DNS-сервером

```
msc-donskaya-takonnova-sw-3(config) #msc-donskaya-takonnova-sw-3(config) #msc-donskaya-takonnova-sw-3(config) #%
Bad secrets

msc-donskaya-takonnova-sw-3(config) #interface f0/2
msc-donskaya-takonnova-sw-3(config-if) #switchport mode access
msc-donskaya-takonnova-sw-3(config-if) #switchport access vlan 3
msc-donskaya-takonnova-sw-3(config-if) #exit
```

Рис. 3.2: Активация порта

В конфигурации сервера укажем в качестве адреса шлюза 10.128.0.1 (рис. 3.3), а в качестве адреса самого сервера — 10.128.0.5 с соответствующей маской 255.255.255.0 (рис. 3.4).

Рис. 3.3: Конфигурация dns-сервера

Рис. 3.4: Конфигурация dns-сервера

Настроем сервис DNS (рис. 3.5):

- в конфигурации сервера выберем службу DNS, активируем её (выбрав флаг On);
- в поле Туре в качестве типа записи DNS выберем записи типа A(A Record);
- в поле Name укажем доменное имя, по которому можно обратиться, например, к web-сepвepy www.donskaya.rudn.ru, затем укажем его IP-адрес в соответствующем поле 10.128.0.2;
- нажав на кнопку Add, добавьте DNS-запись на сервер;
- аналогичным образом добавим DNS-записи для серверов mail, file, dns согласно распределению адресов из таблицы, сделанной в лабораторной работе №3;
- сохраним конфигурацию сервера.

Рис. 3.5: Окно настройки сервиса DNS

Настроем DHCP-сервис на маршрутизаторе, используя приведённые в лабораторной работе №8 команды для каждой выделенной сети(рис. 3.6):

- укажем IP-адрес DNS-сервера;
- перейдем к настройке DHCP;
- зададим название конфигурируемому диапазону адресов (пулу адресов), укажем адрес сети, а также адреса шлюза и DNS-сервера;
- зададим пулы адресов, исключаемых из динамического распределения (см. табл. 3.1).

Таблица 3.1: Регламент выделения ір-адресов (для сети класса С)

IP-адреса	Назначение	
1	Шлюз	
2-19	Сетевое оборудование	
20-29	Серверы	
30-199	Компьютеры, DHCP	
200-219	Компьютеры, Static	
220-229	Принтеры	
230-254	Резерв	

```
msc-donskaya-takonnova-gw-1(config) #ip name-server 10.128.0.5
msc-donskaya-takonnova-gw-1(config) #je dhcp pool dk
msc-donskaya-takonnova-gw-1(dhcp-config) #je dhcp pool dk
msc-donskaya-takonnova-gw-1(dhcp-config) #je dhcp pool dk
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.3.1
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.0.5
msc-donskaya-takonnova-gw-1(dhcp-config) #je dhcp excluded-address 10.128.3.1 10.128.2.29
msc-donskaya-takonnova-gw-1(config) #ip dhcp excluded-address 10.128.3.1 10.128.2.29
msc-donskaya-takonnova-gw-1(config) #je dhcp excluded-address 10.128.3.200 10.128.3.254
msc-donskaya-takonnova-gw-1(config) #je dhcp pool departments
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.4.1
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.0.5
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.0.5
msc-donskaya-takonnova-gw-1(dhcp-config) #etwork 10.128.5.0 255.255.255.0
msc-donskaya-takonnova-gw-1(dhcp-config) #etwork 10.128.5.0 255.255.255.0
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.5.1
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.5.1
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.5.1
msc-donskaya-takonnova-gw-1(dhcp-config) #default-router 10.128.5.1
msc-donskaya-takonnova-gw-1(dhcp-config) #etwork 10.128.0.5
msc-donskaya-takonnova-gw-1(dhcp-config) #etwork 10.128.6.0 255.255.255.0
msc-donskaya-takonnova-gw-1(config) #ip dhcp excluded-address 10.128.5.200 10.128.5.254
msc-donskaya-takonnova-gw-1(dhcp-config) #etwork 10.128.6.0 255.255.255.0
msc-donskaya-takonnova-gw-1(dhcp-config) #etwork 10.128.6.0 255.255.255.0
msc-donskaya-takonnova-gw-1(dhcp-config) #exit
msc-donskaya-takonnova-gw-1(dhcp-config) #exit
msc-donskaya-takonnova-gw-1(dhcp-config) #exit
msc-donskaya-takonnova-gw-1(dhcp-config) #exit
msc-donskaya-takonnova-gw-1(config) #ip dhcp excluded-address 10.128.6.1 10.128.6.29
msc-donskaya-takonnova-gw-1(config) #ip dhcp excluded-address 10.128.6.1 10.128.6.29
m
```

Рис. 3.6: Настройка DHCP-сервис на маршрутизаторе

Посмотрим информацию о настроенных пулах DHCP (рис. 3.7).

Рис. 3.7: Информация о пулах DHCP

Также посмотрим информацию о привязках выданных адресов (рис. 3.8).

msc-donskaya-tal	konnova-gw-1#sh ip	dhcp binding	
IP address	Client-ID/	Lease expiration	Type
	Hardware address		
10.128.3.30	000A.4128.EE8D		Automatic
10.128.3.31	0040.0BD4.15BA		Automatic
10.128.4.2	0060.47AD.983D		Automatic
10.128.5.30	00E0.F915.0919		Automatic
10.128.6.31	0001.4233.45AA		Automatic
10.128.6.32	0060.2FD6.89A9		Automatic
msc-donskava-tal	konnova-aw-1#		

Рис. 3.8: Информация о привязках выданных адресов

Изначально у нас были заданы статические ip-адреса, можем посмотреть их с помощью команды ipconfig (рис. ??).

Теперь на оконечных устройствах заменим в настройках статическое распределение адресов на динамическое с помощью галочки **DHCP** в настройках.

Проверим доступность устройств из разных подсетей (рис. 3.9, 3.10). Как видно, пинг проходит успешно.

```
Pinging 10.128.3.30 with 32 bytes of data:

Reply from 10.128.3.30: bytes=32 time<1ms TTL=127

Ping statistics for 10.128.3.30:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

Рис. 3.9: Проверка доступности устройств из разных подсетей

```
Pinging 10.128.4.2 with 32 bytes of data:

Request timed out.

Reply from 10.128.4.2: bytes=32 time<1ms TTL=127

Reply from 10.128.4.2: bytes=32 time=2ms TTL=127

Reply from 10.128.4.2: bytes=32 time<1ms TTL=127

Ping statistics for 10.128.4.2:

Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 2ms, Average = 0ms
```

Рис. 3.10: Проверка доступности устройств из разных подсетей

В режиме симуляции изучим, каким образом происходит запрос адреса по протоколу DHCP (рис. 3.11) (какие сообщения и какие отклики передаются по сети).

ent List	t				
is.	Time(sec)	Last Device	At Device	Туре	
	1.639	-	msc-donskaya-takonnova-sw-2	STP	
	1.640	msc-donskaya-takonnova-sw-2	msc-donskaya-takonnova-sw-1	STP	
	1.640		msc-donskaya-takonnova-sw-2	STP	
	1.641	msc-donskaya-takonnova-sw-2	msc-donskaya-takonnova-sw-1	STP	
	1.641		msc-donskaya-takonnova-sw-1	STP	
	1.642	-	msc-donskaya-takonnova-sw-1	STP	
	1.642	msc-donskaya-takonnova-sw-1	msc-donskaya-takonnova-mc-1	STP	
	1.642	-	msc-donskaya-takonnova-sw-1	STP	
	1.643	-	msc-donskaya-takonnova-sw-1	STP	
	1.643	msc-donskaya-takonnova-sw-1	msc-donskaya-takonnova-sw-4	STP	
	1.643	msc-donskaya-takonnova-sw-1	msc-donskaya-takonnova-mc-1	STP	
	1.643	msc-donskaya-takonnova-mc-1	msc-pavlovskaya-takonnova-mc-1	STP	
	1.643	-	msc-donskaya-takonnova-sw-1	STP	
	1.644	msc-donskaya-takonnova-sw-1	msc-donskaya-takonnova-gw-1	STP	
	1.644	msc-donskaya-takonnova-sw-1	msc-donskaya-takonnova-sw-4	STP	
	1.644	msc-donskaya-takonnova-mc-1	msc-pavlovskaya-takonnova-mc-1	STP	
	1.644	msc-pavlovskaya-takonnova-mc-1	msc-pavlovskaya-takonnova-sw-1	STP	
Visib	ole 1.645	msc-pavlovskaya-takonnova-mc-1	msc-pavlovskaya-takonnova-sw-1	STP	1

Рис. 3.11: Запрос в режиме симуляции

4 Выводы

В процессе выполнения данной лабораторной работы я приобрела практические навыки по настройке динамического распределения IP-адресов посредством протокола DHCP (Dynamic Host Configuration Protocol) в локальной сети.

5 Контрольные вопросы

1. За что отвечает протокол DHCP?

Протокол DHCP — это стандартный протокол, определяемый RFC 1541 (который заменяется RFC 2131), позволяющий серверу динамически распределять IP-адреса и сведения о конфигурации клиентам.

2. Какие типы DHCP-сообщений передаются по сети?

По данным источника, в DHCP-протоколе используются следующие типы сообщений:

- DHCPDISCOVER клиент отправляет пакет, пытаясь найти сервер DHCP в сети.
- DHCPOFFER сервер отправляет пакет, включающий предложение использовать уникальный IP-адрес.
- DHCPREQUEST клиент отправляет пакет с просьбой выдать в аренду предложенный уникальный адрес.
- DHCPACK сервер отправляет пакет, в котором утверждается запрос клиента на использование IP-адреса.
- 3. Какие параметры могут быть переданы в сообщениях DHCP?

Параметры DHCP могут включать IP-адреса, шлюзы, DNS-серверы, временные интервалы аренды и другие настройки сети.

4. Что такое DNS?

DNS (Система доменных имён, англ. Domain Name System) — это иерархическая децентрализованная система именования для интернет-ресурсов подключённых к Интернет, которая ведёт список доменных имён вместе с их числовыми IP-адресами или местонахождениями. DNS позволяет перевести простое запоминаемое имя хоста в IP-адрес.

5. Какие типы записи описания ресурсов есть в DNS и для чего они используются?

Основными ресурсными записями DNS являются:

- А-запись одна из самых важных записей. Именно эта запись указывает на IP-адрес сервера, который привязан к доменному имени.
- МХ-запись указывает на сервер, который будет использован при отсылке доменной электронной почты.
- NS-запись указывает на DNS-сервер домена.
- CNAME-запись позволяет одному из поддоменов дублировать DNSзаписи своего родителя.