Ch11-A Principal Component Analysis

Contents

11 ASub	11. Subsections					
A.1	Principal Component Analysis					
A.2	Princial Component					
A.3	Computing 1st PC					
A.4	Example:					
A.5	Scaling					
A.6	Another Interpretation					
A.7	PVE					

Textbook: James et al. ISLR 2ed.

11A Subsections

[ToC]

A.1 Principal Component Analysis

- Unsupervised Learning
- Can be part of exploratory data analysis
- No way to check your work
- Dimensionality reduction technique
- Ex.
 - Cancer researcher might look at gene expression levels in 100 patients
 - Online Shopping site

A.2 Princial Component

- Low-dimentional representation of data
- Can't see all paired scaterplot
- Which low-dimentional plot will make the observations most distinctive?
- The first principal component of *i*th observation is

$$Z_{i1} = \phi_{11}X_{i1} + \phi_{21}X_{i2} + \dots + \phi_{p1}X_{ip}$$

- normalized: $\sum_{j=1}^{p} \phi_{j1}^2 = 1$.
- loadings: $\phi_{11}, \ldots, \phi_{p1}$
- orthogonal: $\sum_{j=1}^{p} \phi_{j1}\phi_{j2} = 0$.

A.3 Computing 1st PC

- Low-dimentional representation of data
- Can't see all paired scaterplot
- Which low-dimentional plot will make the observations most distinctive?
- The first principal component

$$\underset{\phi_{11},...,\phi_{p1}}{\text{Maximize}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left\{ \sum_{j=1}^{p} \phi_{j1} x_{ij} \right\}^{2} \right\} \quad \text{subject to} \quad \sum_{h=1}^{p} \phi_{j1}^{2} = 1.$$

- It's maximizing average of Z_{i1}^2 .
- Same as maximizing variance of Z_{i1}
- PC1 is the direction that the data varies the most.

- Second PC is same, but maximizing variance of Z_{i2} that is uncorrelated with Z_{i1} .
- PC2 will be orthogonal to PC1.

A.4 Example:

A.5 Scaling

• Scaling is important

A.6 Another Interpretation

• First two PC makes up a linear surface that is CLOSEST to obs.

•

A.7 PVE

- Proportion of Variation Explained
- Total variance in the data

$$\sum_{j=1}^{p} Var(X_j) = \sum_{j=1}^{p} \frac{1}{n} \sum_{i=1}^{n} x_{ij}^{2}$$

• Variance explained by the mth PC is

$$\frac{1}{n} \sum_{i=1}^{n} Z_{im}^2$$

• PVE

$$\frac{\sum_{i=1}^{n} Z_{im}^{2}}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^{2}}$$

