

Внимание! Лекция 10

Роман Дерунец

Сибирские нейросети

ЛабПЦТ НГУ

иир нгу

Обо мне

- Спикер Data Fest 2023, 2024, Data Fest Siberia 4, 5, Технопром 2024, IT-Город 2024, AINL 2025
- Стипендиат Mediascope (стипендия имени В.В. Гродского)
- Финалист Phystech GigaChat Challenge, Urbancode, Cup IT,
 Лига приключений, Al Journey 2023

Обо мне: science

- 1. Pisets: A Robust Speech Recognition System for Lectures and Interviews, NAACL 2025
- 2. Интеллектуальная вопросно-ответная система на основе интеграции генеративной нейросетевой модели языка и неструктурированной базы знаний: Свидетельство о государственной регистрации программы для ЭВМ № 2025611584
- 3. Knowledge as Recollection: Advancing Multimodal Retrieval-Augmented Generation, AINL
 2025, принято к публикации;
- 4. TabaQA at SemEval-2025 Task 8: Column Augmented Generation for Question Answering over Tabular Data, ACL 2025, принято к публикации
- 5. Соавтор MERA Code

Обо мне: educational

- Региональный центр "Альтаир": курсы по Python и машинному обучению, интенсивы в рамках кубка губернатора Новосибирской области 🖾 Альтаир
- Синьцзянский университет: зимняя школа искусственного интеллекта 2023 и 2024

Как мы уже поняли, word2vec

Koca

Языковое моделирование

Embeddings from Language Models

LSTM и GRU — это хорошо! <u>Но</u>

• На длинных последовательностях контекст утекает....

Модели с вниманием

Белогубов. Мне, Аким Акимыч, только бы обратили внимание. Юсов (строго). Что ты шутишь этим, что ли? Белогубов. Как можно-с!.. Юсов. Обратили внимание... Легко сказать! Чего еще нужно чиновнику? Чего он еще желать может? Белогубов. Да-с! А. Н. Островский. Доходное место

Модели с вниманием: шаг назад

С ранних шагов нейробиологии было понятно, что внимание — это сложно

Модели с вниманием: шаг назад

А вы внимательно смотрите на презентацию? Внимательно ли меня слушаете? С ранних шагов нейробиологии было понятно, что внимание — это сложно

Recurrent models of visual attention 2014, Mnih et al. §

- каждый момент времени t на вход сети поступает предыдущее состояние h(t-1) и произведенное из него положение I для нового«взгляда»;
- этот новый «взгляд» с помощью функции fh преобразуется в вектор признаков gt (от слова glimpse), который служит входом на шаге t;
- с помощью f получаем следующее скрытое состояние h, из него уже текущее «действие» а («действием» может быть, например, выдача ответа о том, какой объект удалось распознать) и положение следующего «взгляда» I+1

Recurrent visual attention

- Сеть должна произвести следующее действие, но при этом функция ошибки получается не сразу, а только после того, как все «взгляды» закончатся, и модель выдаст собственно ответ в виде очередного а
- Нам нужно обучать последовательность взглядов, как нам это делать?

Recurrent visual attention

- (Williams, 1992), алгоритм REINFORCE
- Погружаться в RL сегодня не будем

(a) 60x60 Cluttered Translated MNIST				
Model	Error			
FC, 2 layers (64 hiddens each)	28.58%			
FC, 2 layers (256 hiddens each)	11.96%			
Convolutional, 2 layers	8.09%			
RAM, 4 glimpses, 12×12 , 3 scales	4.96%			
RAM, 6 glimpses, 12×12 , 3 scales	4.08%			
RAM, 8 glimpses, 12×12 , 3 scales	4.04%			
RAM, 8 random glimpses	14.4%			

Царь: Вызывает антирес
Ваш технический прогресс:
Как у вас там сеют брюкву —
С кожурою али без?..
Посол: Йес!

Леонид Филатов. Сказка про Федотастрельца, удалого молодца

Encoder-decoder (Sutskever et al., 2014; Cho et al. 2014)

- скрытое состояние используется как сжатое представление всей предшествующей истории
- следующее слово мы предсказываем из этого сжатого представления
- кодировщик сжимает некий вход в распределенное представление z, и оно подается каждый раз на вход рекуррентной сети, которая работает декодировщиком
- Какой важный недостаток?

Encoder-decoder

- С увеличением длины входа качество падает радикально из-за попытки уместить всё в один вектор
- Скрытое пространство тоже ограничено, тяжело увеличивать его размерность

Порождающие системы encoder-decoder

• Нет контекста между диалогами

HRED (Sordoni et al., 2015)

Диалог как двухуровневая система: последовательность высказываний <- последовательность слов

- Encoder RNN для сворачивания каждого высказывания
- Context RNN для вектора контекста
- Decoder RNN последовательно предсказывает слова системы

Внимание (Bahdanau et al. 2014)

Решение проблем с длинным контекстом:

- Soft alignment model выдает веса *a*, которые показывают, насколько та или иная часть входа важна для текущего выхода
- *h* для каждого слова получается с помощью двунаправленной LSTM
- всю модель можно обучать одновременно

Решение:

- Soft alignment model выдает веса *a*, которые показывают, насколько та или иная часть входа важна для текущего выхода
- h для каждого слова получается с помощью двунаправленной LSTM
- всю модель можно обучать одновременно

Декодер получает на вход линейную комбинацию представлений каждого x, веса которые меняются со временем

$$\alpha_{ts} = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)\right)}{\sum_{s'=1}^{S} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_{s'})\right)}$$

$$\mathbf{c}_{t} = \sum_{s'=1} \alpha_{ts} \bar{\mathbf{h}}_{s}$$
 [Context vector] (2)

$$oxed{a_t = f(oldsymbol{c}_t, oldsymbol{h}_t) = anh(oldsymbol{W}_{oldsymbol{c}}[oldsymbol{c}_t; oldsymbol{h}_t])}$$

[Attention weights]

• t: sequence length, d: # layers and k: # neurons at each layer.

	training	training	test	test
Model	complexity	memory	complexity	memory
RNN	$t \times k^2 \times d$	$t \times k \times d$	$t \times k^2 \times d$	$k \times d$
RNN+attn.	$t^2 \times k^2 \times d$	$t^2 \times k \times d$	$t^2 \times k^2 \times d$	$t \times k \times d$

Мягкое внимание (Luong et al. 2015a, Jean et al. 2015) 👺

- Encoder двунаправленная RNN, есть оба контекста
- Сеть внимания дает оценку релевантности

Мягкое внимание

- Снова end-to-end обучение, лишь небольшой трюк
- Тем не менее, сеть внимания работает так, как мы хотим

Становится понятнее, что происходит

Лучше с порядком слов

Google Translate 2016

- в GNMT используются по восемь уровней LSTM в кодировщике и декодировщике
- но помогает ли это?

Google Translate 2016

- в GNMT используются по восемь уровней LSTM в кодировщике и декодировщике
- добавляются остаточные связи между уровнями, как в ResNet
- нижний слой двунаправленный, чтобы был контекст слева и справа
- + сегментация слов

Show and Tell (Vinyals et al. 2015)

• Давайте делать подписи к картинкам

Show and Tell

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying

A skateboarder does a trick

A little girl in a pink hat is

A red motorcycle parked on the

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

Show, Attend, and Tell (Xu et al. 2015)

• Внимание может быть на что угодно!

$$L_s = \sum_s p(s \mid \mathbf{a}) \log p(\mathbf{y} \mid s, \mathbf{a}) \le \log \sum_s p(s \mid \mathbf{a}) p(\mathbf{y} \mid s, \mathbf{a}) = \log p(\mathbf{y} \mid \mathbf{a})$$

- Hard attention обучается максимизацией вариационной нижней оценки
- веса а интерпретируются как вероятности событий s того, что модель «посмотрит» в момент времени t на часть изображения i, и на вход рекуррентной сети для порождения текста подается представление той части изображения а*, которая выпадет на кубике с вероятностями а

- В мягком на вход RNN подается ожидание вектора из s
- Модель на каждом шаге "смотрит" на все части изображения, но некоторые из них более важны

is(0.37),

Внимание! Спасибо за внимание!

Внимание! Спасибо за внимание!

Внимание! Спасибо за внимание!

FOCUS EXPERIMENT

Based on the findings of J M Tanger, S C Murphy, M B Thompson a 'Flashed face distortion effect', Perception, 40 (2011) p628-630

www.ToThePointAtWork.com

