

Sec 2.1 Reading

Def 2.1.1: Linear Transformations2

Afunction T from Rm to Rn is called a linear transformation if there exists an nxm matrix A s.t.

$$T(\hat{x}) = A\hat{x}$$

for all & in the vector space Rm.

In linear algebra, the linear functions of m variables are those of the form

Afunction with a constant term is called affine.

Exl

Consider the vectors [0] and [2]. Show the effect of the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \vec{x}$$

$$T\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T\begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$

(The L is votated 90° counterclock wise)

Ex 2

Consider the linear transformation $T(\vec{x}) = A\vec{x}$, with $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Find $T\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $T\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

$$\begin{bmatrix}
1 & 2 & 3 \\
0 & 3 & 4 & 5 \\
0 & 7 & 8 & 4
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
0 & 7 & 4
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 3 \\
0 & 7 & 4
\end{bmatrix}
\begin{bmatrix}
0 & 3 & 4 & 5 & 6 \\
0 & 7 & 8 & 4
\end{bmatrix}
\begin{bmatrix}
0 & 3 & 4 & 5 & 6 \\
0 & 7 & 8 & 4
\end{bmatrix}
\begin{bmatrix}
0 & 3 & 4 & 6 & 6 \\
0 & 7 & 8 & 4
\end{bmatrix}
\begin{bmatrix}
0 & 3 & 4 & 6 & 6 \\
0 & 7 & 8 & 4
\end{bmatrix}$$
1st col.

Theorem 2.1.2. The columns of the matrix of a linear transformation

Consider a linear transformation T from Rm to Rn. Then, the matrix of T is

To justify Theorem 2.1.2.

$$A = \begin{bmatrix} | & | & | & | \\ \vec{v_1} & \vec{v_2} & \cdots & \vec{v_m} \\ | & | & | & | \end{bmatrix}$$

The standard vectors et, ez, ..., em are often denoted by i, j, k.

Ex 3

Consider a linear transformation $T(\vec{x}) = A\vec{x}$ from \mathbb{R}^m to \mathbb{R}^n .

- (a) What is the relationship among $T(\vec{v})$, $T(\vec{w})$, and $T(\vec{v}+\vec{w})$, where \vec{v} and \vec{w} are vectors in \mathbb{R}^m ?
- (b) What is the relationship between $T(\vec{v})$ and $T(K\vec{v})$, where \vec{v} is a vector in \mathbb{R}^m and K is a scalar?

Theorem 1.3.10: Linear Transformations

Let Anxm be a matrix, x, y in Rm, KER

(i)
$$A(\vec{x}+\vec{y}) = A\vec{x} + A\vec{y}$$
, $\forall \vec{x}, \vec{y} \text{ in } \mathbb{R}^m$

(ii)
$$A(K\dot{x}) = K A\dot{x}$$
, $\forall \dot{x} \in \mathbb{R}^m$, $\forall k \in \mathbb{R}$

Ex4

(on sider a linear trans. T from \mathbb{R}^2 to \mathbb{R}^3 s.t. $T(\vec{v_1}) = \frac{1}{2} \vec{v_1}$ and $T(\vec{v_2}) = 2\vec{v_2}$. Sketch $T(\vec{x})$ for the given \vec{x} .

Using a parallelogram, we can represent \hat{x} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

$$\vec{\chi} = C_1 \vec{v_1} + C_2 \vec{v_2}$$

By Theorem 2.1.3,

$$T(\vec{x}) = T(c_1\vec{v}_1 + c_2\vec{v}_2)$$

= $c_1T(\vec{v}_1) + c_2T(\vec{v}_2)$
= $\frac{1}{2}c_1\vec{v}_1 + 2c_2\vec{v}_2$

Def 2.1.4: Distribution vectors and transition matrices

A vector $\hat{\mathbf{x}}$ in \mathbb{R}^n is said to be a distribution vector if its components and up to I and all the components are positive or zero.

A square matrix A is said to be a transition matrix (or stochastic matrix) if all its columns are distribution vectors.

If A is a transition matrix and x is a distribution vector, then Ax will be a distribution vector as well.