STAT 3690 Lecture Note

Week Three (Jan 23, 25, & 27, 2023)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

Statistical modelling (con'd)

Transformation of random vectors

- Derive the pdf of continuous $oldsymbol{Y} = oldsymbol{g}(oldsymbol{X})$ from the pdf of continuous $oldsymbol{X}$
- Prerequisite
 - $\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and $\boldsymbol{Y} = [Y_1, \dots, Y_p]^{\top}$ $- \boldsymbol{g} = (g_1, \dots, g_p) \colon \mathbb{R}^p \to \mathbb{R}^p$ is a continuous one-to-one map with inverse $\boldsymbol{g}^{-1} = (h_1, \dots, h_p)$, i.e., $Y_i = g_i(\boldsymbol{X})$ and $X_i = h_i(\boldsymbol{Y})$
- Elaborate supp $(Y) = \{ [y_1, \dots, y_p]^\top : [h_1(y_1, \dots, y_p), \dots, h_p(y_1, \dots, y_p)]^\top \in \text{supp}(X) \}$
- Jacobian matrix of \mathbf{g}^{-1} is $\mathbf{J}_{\mathbf{g}^{-1}} = [\partial x_i / \partial y_j]_{p \times p} = [\partial h_i(y_1, \dots, y_p) / \partial y_j]_{p \times p}$ - Also, $|\det(\mathbf{J}_{\mathbf{g}^{-1}})| = |\det([\partial y_i / \partial x_j]_{p \times p})|^{-1} = |\det([\partial g_i(x_1, \dots, x_p) / \partial x_j]_{p \times p})|^{-1}$
- Then

$$f_{\boldsymbol{Y}}(y_1,\ldots,y_p) = f_{\boldsymbol{X}}(h_1(y_1,\ldots,y_p),\ldots,h_p(y_1,\ldots,y_p))|\det(\mathbf{J}_{\boldsymbol{g}^{-1}})|\mathbf{1}_{\operatorname{supp}(\boldsymbol{Y})}(y_1,\ldots,y_p)$$

• Exercise: Let $X = [X_1, X_2]^{\top}$ follow the standard bivariate normal, i.e., its pdf is

$$f_{\mathbf{X}}(x_1, x_2) = (2\pi)^{-1} \exp\{-(x_1^2 + x_2^2)/2\} \mathbf{1}_{\mathbb{R}^2}(x_1, x_2).$$

Find out the joint pdf of $Y = [Y_1, Y_2]^{\top}$, where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $0 \le Y_2 < 2\pi$ is the angle from the positive x-axis to the ray from the origin to the point (X_1, X_2) , that is, Y is X in the polar coordinate.

• Exercise: Given positive α , β and θ , $\boldsymbol{X} = [X_1, X_2]^{\top}$ follow

$$f_{\boldsymbol{X}}(x_1, x_2) = \frac{1}{\Gamma(\alpha)\Gamma(\beta)\theta^{\alpha+\beta}} x_1^{\alpha-1} x_2^{\beta-1} \exp\left(-\frac{x_1 + x_2}{\theta}\right) \mathbf{1}_{\mathbb{R}^+ \times \mathbb{R}^+}(x_1, x_2),$$

where $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$, e.g., $\Gamma(n) = (n-1)!$ for positive integer n. Find out the joint pdf of $\mathbf{Y} = [Y_1, Y_2]^\top$, where $Y_1 = X_1/(X_1 + X_2)$ and $Y_2 = X_1 + X_2$.

Mean matrix

- $E(\boldsymbol{X}) = [E(X_{ij})]_{n \times p}$, where - Random $n \times p$ matrix $\boldsymbol{X} = [X_{ij}]_{n \times p}$
- (Linearity) $E(\mathbf{A}X + \mathbf{B}Y) = \mathbf{A}E(X) + \mathbf{B}E(Y)$, where
 - Fixed $\mathbf{A} \in \mathbb{R}^{\ell \times n}$ and $\mathbf{B} \in \mathbb{R}^{\ell \times m}$
 - Random matrices $\mathbf{X} = [X_{ij}]_{n \times p}$ and $\mathbf{Y} = [Y_{ij}]_{m \times p}$

Covariance matrix

- Random p-vector $\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and random q-vector $\boldsymbol{Y} = [Y_1, \dots, Y_q]^{\top}$
- Covariance matrix (defined via expectation) $\Sigma_{XY} = \text{cov}(X, Y) = \text{E}[\{X \text{E}(X)\}\{Y \text{E}(Y)\}^{\top}]$
 - Also, $\Sigma_{XY} = E(XY^{\top}) E(X)E(Y^{\top})$ - The (i, j)-entry of Σ_{XY} is $cov(X_i, Y_j)$
- $\Sigma_{\mathbf{A}X+\boldsymbol{a},\mathbf{B}Y+\boldsymbol{b}} = \mathbf{A}\Sigma_{XY}\mathbf{B}^{\top}$ for fixed $\mathbf{A} \in \mathbb{R}^{m \times p}$, $\boldsymbol{a} \in \mathbb{R}^{m}$, $\mathbf{B} \in \mathbb{R}^{\ell \times q}$ and $\boldsymbol{b} \in \mathbb{R}^{\ell}$
- $\Sigma_{X} \geq 0$, where $\Sigma_{X} = \text{cov}(X)$ is short for $\Sigma_{XX} = \text{cov}(X, X)$

Sample covariance matrix

- Samples $X_k = [X_{k1}, ..., X_{kp}]^{\top}$ and $Y_k = [Y_{k1}, ..., Y_{kq}]^{\top}, k = 1, ..., n$
- $(\boldsymbol{X}_k, \boldsymbol{Y}_k) \stackrel{\text{iid}}{\sim} (\boldsymbol{X}, \boldsymbol{Y})$, where $\boldsymbol{X} = [X_1, \dots, X_p]^{\top}$ and $\boldsymbol{Y} = [Y_1, \dots, Y_q]^{\top}$
- Sample mean vectors

$$- \bar{X} = n^{-1} \sum_{k=1}^{n} X_{k} = [\bar{X}_{.1}, \cdots, \bar{X}_{.p}]^{\top}$$

$$* \bar{X}_{.i} = n^{-1} \sum_{k=1}^{n} X_{ki}$$

$$- \bar{Y} = n^{-1} \sum_{k=1}^{n} Y_{k} = [\bar{Y}_{.1}, \cdots, \bar{Y}_{.q}]^{\top}$$

$$* \bar{Y}_{.j} = n^{-1} \sum_{k=1}^{n} Y_{kj}$$

• Sample covariance matrix:

$$\mathbf{S}_{\boldsymbol{X}\boldsymbol{Y}} = \frac{1}{n-1} \sum_{k=1}^{n} \{ (\boldsymbol{X}_k - \bar{\boldsymbol{X}}) (\boldsymbol{Y}_k - \bar{\boldsymbol{Y}})^{\top} \}$$

- The (i,j)-entry of $\mathbf{S}_{\boldsymbol{X}\boldsymbol{Y}}$ is $(n-1)^{-1}\sum_{k=1}^n (X_{ki}-\bar{X}_{\cdot i})(Y_{kj}-\bar{Y}_{\cdot j})$, i.e., the sample covariance between X_i (the ith entry of \boldsymbol{X}) and Y_j (the jth entry of \boldsymbol{Y})
- Unbiasedness: $E(\mathbf{S}_{XY}) = \boldsymbol{\Sigma}_{XY}$
- $-\mathbf{S}_{\mathbf{A}\boldsymbol{X}+\boldsymbol{a},\mathbf{B}\boldsymbol{Y}+\boldsymbol{b}} = \mathbf{A}\mathbf{S}_{\boldsymbol{X}\boldsymbol{Y}}\mathbf{B}^{\top} \text{ for } \mathbf{A} \in \mathbb{R}^{m \times p}, \, \boldsymbol{a} \in \mathbb{R}^{m}, \, \mathbf{B} \in \mathbb{R}^{\ell \times q} \text{ and } \boldsymbol{b} \in \mathbb{R}^{\ell}$
- $S_X \ge 0$
- Implementation in R: cov() (or var() if X = Y)

Computing sample mean vectors and sample covariance matrices via R

```
options(digits = 4)
set.seed(1)

# mean vector and covariance matrix
(Mu = runif(3))
```

```
A = matrix(runif(15), nrow = 3, ncol = 5)
(Sigma = A %*% t(A))
# generation of samples
n = 100
sample = MASS::mvrnorm(n, Mu, Sigma)
colnames(sample) = c('W', 'H', "BP")
head(sample)
# reference for various scatterplots https://www.statmethods.net/graphs/scatterplot.html
# scatterplots for paired features
pairs(sample)
# (spinning) 3D scatterplot
rgl::plot3d(sample[,1], sample[,2], sample[,3], col = "red", size = 6)
# sample mean vector for [V1, V2, V3]^T
(MuHat = apply(sample, 2, mean))
(MuHat = colMeans(sample))
# sample covariance matrix for [W,H,BP]^T
## following the definition
S = 0; for (i in 1:n){S = S + 1/(n-1) * (sample[i,]-MuHat) %*% t(sample[i,]-MuHat)}; S = 0; for (i in 1:n){S = S + 1/(n-1) * (sample[i,]-MuHat) %*% t(sample[i,]-MuHat)}; S = 0; for (i in 1:n){S = S + 1/(n-1) * (sample[i,]-MuHat) %*% t(sample[i,]-MuHat)}; S = 0; for (i in 1:n){S = S + 1/(n-1) * (sample[i,]-MuHat) %*% t(sample[i,]-MuHat)}; S = 0; for (i in 1:n){S = S + 1/(n-1) * (sample[i,]-MuHat) %*% t(sample[i,]-MuHat)}; S = 0; S = 0
## via var()
(S = var(sample))
## via cov()
(S = cov(sample))
var(sample[,2], sample[,1])
# sample covariance matrix for W & [H,BP] ^T
cov(sample[,1], sample[,2:3])
# sample covariance matrix for H & [BP,W]^T
cov(sample[,2], sample[,c(3,1)])
# another sample
(Mu2 = runif(2))
A2 = matrix(runif(10), nrow = 2, ncol = 5)
(Sigma2 = A2 \% * \% t(A2))
sample2 = MASS::mvrnorm(n, Mu2, Sigma2)
colnames(sample2) = c('CH', 'HR')
head(sample2)
cov(sample, sample2)
sample_c = cbind(sample, sample2)
cov(sample c)
cov(sample, sample2)
```

Multivariate normal (MVN) distribution (J&W Sec 4.2)

Definition

```
• Standard MVN

- \mathbf{Z} = [Z_1, \dots, Z_p]^{\top} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \Leftrightarrow Z_1, \dots, Z_p \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1) \\
- \text{pdf} \qquad \qquad f_{\mathbf{Z}}(\mathbf{z}) = (2\pi)^{-p/2} \exp(-\mathbf{z}^{\top} \mathbf{z}/2) \cdot \mathbf{1}_{\mathbb{R}^p}(\mathbf{z})
```

- General MVN
 - $-\boldsymbol{X} = [X_1, \dots, X_p]^{\top} \sim \text{MVN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Leftrightarrow \text{there exists } \boldsymbol{\mu} \in \mathbb{R}^p, \, \mathbf{A} \in \mathbb{R}^{p \times p} \text{ and } \boldsymbol{Z} \sim \text{MVN}_p(\mathbf{0}, \mathbf{I}) \text{ such that } \boldsymbol{X} = \mathbf{A}\boldsymbol{Z} + \boldsymbol{\mu} \text{ and } \boldsymbol{\Sigma} = \mathbf{A}\mathbf{A}^{\top}$
 - * Limited to non-degenerate cases, i.e., invertible $\mathbf{A}~(\Leftrightarrow \mathbf{\Sigma}>0)$
 - pdf

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = (2\pi)^{-p/2} (\text{det}\boldsymbol{\Sigma})^{-1/2} \exp\{-(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})/2\} \cdot \mathbf{1}_{\mathbb{R}^p}(\boldsymbol{x})$$