CS 320

Computer Language Processing Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are equivalent by identifying them with inductive relations, and proving that the inductive relations contain the same elements.

- 1. $A_1 : S ::= S + S \mid \mathbf{num}$ $A_2 : R ::= \mathbf{num} \ R' \text{ and } R' ::= +R \ R' \mid \epsilon$
- 2. $B_1: S ::= S(S)S \mid \epsilon$ $B_2: R ::= RR \mid (R)\epsilon$

Exercise 2 Consider the following expression language over naturals, and a *halving* operator:

$$expr ::= half(expr) \mid expr + expr \mid \mathbf{num}$$

where **num** is any natural number constant > 0.

We will design the operational semantics of this language. The semantics should define rules that apply to as many expressions as possible, while being subjected to the following safety conditions:

- the semantics should *not* permit halving unless the argument is even
- they should evaluate operands from left-to-right

Of the given rules below, choose a *minimal* set that satisfies the conditions above. A set is *not* minimal if removing any rule does not change the set of expressions that can be evaluated by the semantics, i.e. the domain of \rightsquigarrow , $\{x \mid \exists y.\ x \leadsto y\}$, remains unchanged. The removed rule is said to be *redundant*.

$$\frac{e \leadsto e'}{\text{half}(e) \leadsto e'} \tag{A}$$

$$\frac{n \text{ is a value} \qquad n = 2k}{\text{half}(n) \leadsto k} \tag{B}$$

$$\frac{n \text{ is a value}}{\text{half}(n) \leadsto \lfloor \frac{n}{2} \rfloor} \tag{C}$$

$$\frac{\text{half}(e) \rightsquigarrow \text{half}(e')}{\text{half}(e) \rightsquigarrow e'} \tag{D}$$

$$\frac{e \leadsto e'}{\text{half}(e) \leadsto \text{half}(e')} \tag{E}$$

$$\frac{e' \rightsquigarrow \text{half}(e)}{\text{half}(e) \rightsquigarrow e'} \tag{F}$$

$$\frac{n_1 \text{ is a value} \qquad n_2 \text{ is a value} \qquad n_1 + n_2 = k \qquad n_1 \text{ is odd}}{n_1 + n_2 \leadsto k} \tag{G}$$

$$\frac{e \leadsto e' \qquad n \text{ is a value}}{n + e \leadsto n + e'} \tag{H}$$

$$\frac{e_2 \leadsto e_2'}{e_1 + e_2 \leadsto e_1 + e_2'} \tag{I}$$

$$\frac{n_1 \text{ is a value} \qquad n_2 \text{ is a value} \qquad n_1 + n_2 = k \qquad n_1, n_2 \text{ are even}}{n_1 + n_2 \leadsto k} \qquad \text{(J)}$$

$$\frac{n_1 \text{ is a value} \qquad n_2 \text{ is a value} \qquad n_1 + n_2 = k}{n_1 + n_2 \leadsto k} \tag{K}$$

$$\frac{e_1 \leadsto e_1'}{e_1 + e_2 \leadsto e_1' + e_2} \tag{L}$$

Exercise 3 Consider a simple programming language with integer arithmetic, boolean expressions, and user-defined functions:

$$\begin{split} expr ::= true \mid false \mid \mathbf{num} \\ expr &== expr \mid expr + expr \\ expr &\&\& expr \mid if \ (expr) \ expr \ else \ expr \\ f(expr, \dots, expr) \mid x \end{split}$$

where f represents a (user-defined) function, x represents a variable, and **num** represents an integer.

1. Inductively define a substitution operation for the terms in this language, which replaces every free occurrence of a variable x with a given expression e.

The rule for substitution in an addition is provided as an example. Here, t[x := e] represents the term t, with every free occurrence of x simultaneously replaced by e.

$$\frac{t_1[x := e] \to t'_1 \qquad t_2[x := e] \to t'_2}{t_1 + t_2[x := e] \to t'_1 + t'_2}$$

- 2. Write the rules for the operational semantics for this language, assuming *call-by-name* semantics for function calls. In call-by-name semantics, function arguments are not evaluated before the call. Instead, the parameters are merely substituted into the function body.
- 3. Under the following environment (with function names, parameters, and bodies):

$$(sum, [x], if (x == 0) then 0 else x + sum(x + (-1)))$$

$$(rec, [\], rec())$$

$$(default, [b, x], if b then x else 0)$$

evaluate each of the following expressions, showing the derivations:

- (a) sum(2)
- (b) if (1 == 2) then 3 else 4
- (c) sum(sum(0))
- (d) rec()
- (e) default(false, rec())

How would the evaluations in each case change if we used *call-by-value* semantics instead?

Exercise 4 Consider the following type system for a language with integers, conditionals, pairs, and functions:

1. Given the following type derivation with type variables τ_1, \ldots, τ_5 , choose the correct options:

$$\frac{(x, \tau_4) \in \Gamma}{\Gamma \vdash x : \tau_4} \qquad \frac{(x, \tau_4) \in \Gamma}{\Gamma \vdash x : \tau_4}$$

$$\frac{\Gamma \vdash fst(x) : \tau_3}{\Gamma \vdash fst(x)(snd(x)) : \tau_2}$$

$$\frac{\Gamma \vdash fst(x)(snd(x)) : \tau_2}{\Gamma' \vdash x \Rightarrow fst(x)(snd(x)) : \tau_1}$$

- (a) There are no valid assignments to the type variables such that the above derivation is valid.
- (b) In all valid derivations, $\tau_2 = \tau_5$.
- (c) There are no valid derivations where $\tau_2 = \text{Int.}$
- (d) In all valid derivations, $\tau_4 = (\tau_3, \tau_5)$
- (e) In all valid derivations, $\tau_2 = \tau_4 \rightarrow \tau_1$
- (f) There is a valid derivation where $\tau_1 = \tau_2$.
- 2. For each of the following pairs of terms and types, provide a valid type derivation or briefly argue why the typing is incorrect:
 - (a) $x \Rightarrow x + 5$: Int \rightarrow Int
 - (b) $x \Rightarrow y \Rightarrow x + y$: Int \rightarrow Int \rightarrow Int
 - (c) $x \Rightarrow y \Rightarrow y(2) \times x$: Int \rightarrow Int \rightarrow Int
 - (d) $x \Rightarrow (x, x)$: Int \rightarrow (Int, Int)
 - (e) $x \Rightarrow y \Rightarrow if \ fst(x) \ then \ snd(x) \ else \ y$: (Bool, Int) \to (Int, Int) \to Int
 - (f) $x\Rightarrow y\Rightarrow if\ y\ then\ (z\Rightarrow y)\ else\ x$: (Bool \to Bool) \to Bool \to (Bool \to Bool)
 - (g) $x \Rightarrow y \Rightarrow if \ y \ then \ (z \Rightarrow y) \ else \ x$: (Int \rightarrow Bool) \rightarrow Bool \rightarrow (Int \rightarrow Bool)
- 3. Prove that there is no valid type derivation for the term

$$x \Rightarrow if \ fst(x) \ then \ snd(x) \ else \ x$$