Introduction to the Tidyverse

Author

Date

Today's outline

- What you have learnt so far
- Taking it a step further introducing the Tidyverse
- Data wrangling with dplyr
- Data visualisation with ggplot2
- Final exercise
- Feedback & concluding remarks

R and R Studio

"It is important to note the differences between R and RStudio. *R is a programming language* used for statistical computing while RStudio uses the R language to develop statistical programs. In R, you can write a program and run the code independently of any other computer program. *RStudio however, must be used alongside R in order to properly function*. Often referred to as an IDE, or *integrated development environment*, RStudio allows users to develop and edit programs in R by supporting a large number of statistical packages, higher quality graphics, and the ability to manage your workspace.

R and RStudio are not separate versions of the same program, and cannot be substituted for one another. R may be used without RStudio, but RStudio may not be used without R (Source)."

What you have learnt so far

- Familiarity with the RStudio interface
- Working with scripts
- Simple data structures
- First data wrangling and visualisations

Tidy data – a philosophy of data

• Wickham (2014) aimed to standardise the data preparation process

«Each variable is a column, each observation is a row, and each type of observational unit is a table.»

```
head(table1, n = 4) %>%
  kable(format = "html")
```

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898

Another example

```
head(penguins, n = 5) %>%
  select(1:5) %>%
  kable(format = "html")
```

species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
Adelie	Torgersen	39.1	18.7	181
Adelie	Torgersen	39.5	17.4	186
Adelie	Torgersen	40.3	18.0	195
Adelie	Torgersen	NA	NA	NA
Adelie	Torgersen	36.7	19.3	193

From tidy data to the tidyverse

- The tidyverse is an opinionated collection of R packages designed to facilitate data science
- Its tools (read: packages) use/generate tidy data both as input/output
- dplyr: Helps to transform messy data to tidy data
- ggplot2: Uses tidy data to create graphics

The whole workflow

Source: Teach Data Science

Questions?

How does Base R relate to the Tidyverse?

- Yesterday you learnt Base R commands, today Tidyverse commands
- Two different approaches to achieving the same goal
- Treat them as friends!
- A few examples

Extract variables (columns)

Base R

```
penguins[, c("island", "year")] # by name
penguins[, c(2, 8)] # by column index
```

Tidyverse

```
select(penguins, island, year) # by name
select(penguins, 2, 8) # by column index
```

Extract observations (rows)

Base R

```
# Using [,]
penguins[penguins$body_mass_g > 3500 & penguins$island == "Torgersen",]
```

Tidyverse

```
filter(penguins, body_mass_g > 3500 & island == "Torgersen")
```

Filter rows with conditions evaluated within groups

In words: Penguin with maximum "bill_length_mm" for each "species".

Base R

Tidyverse

```
penguins %>%
  group_by(species) %>%
  filter(bill_length_mm == max(bill_length_mm, na.rm = TRUE))
```

Questions?

Introducing the pipe

- The pipe operator: %>%
- Takes one return value and feeds it in as an input to another function
- Think of it as: "and then"
- Helps you to write code that is easier to read and understand

```
penguins %>%
  select(species, island, sex, bill_length_mm, year)

penguins %>%
  select(species, island, sex, bill_length_mm, year) %>%
  filter(year == 2007)
```

```
penguins %>%
  select(species, island, sex, bill_length_mm, year) %>%
  filter(year == 2007) %>%
  group_by(island)
```

```
penguins %>%
  select(species, island, bill_length_mm, year) %>%
  filter(year == 2007) %>%
  group_by(island) %>%
  summarise(bill_length = mean(bill_length_mm, na.rm = TRUE))
```

Base R equivalent

```
penguins <- penguins[,c("species", "island", "bill_length_mm", "year")]
penguins <- penguins[penguins$year == 2007, ]
penguins <- penguins[!(is.na(penguins$bill_length_mm)),]
tapply(penguins$bill_length_mm, penguins$island, mean)</pre>
```

```
## Biscoe Dream Torgersen
## 45.03864 44.53913 38.80000
```

Questions?

Recap & outlook

- Introduced to the tidy philosophy
- Tools of the Tidyverse
- Comparison of Base R and Tidyverse
- Next up: Data wrangling with dplyr

Time to exercise!