EXERCISE - IV

ADVANCED SUBJECTIVE QUESTIONS

- **1.** Prove that the locus of the middle point of the chord of contact of tangents from any point of the circle $x^2 + y^2 = r^2$ to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is given by the equation $\left(\frac{x^2}{a^2} \frac{y^2}{b^2}\right)^2 = \frac{(x^2 + y^2)}{r^2}$. **Sol.**
- **3.** A line through the origin meets the circle $x^2+y^2=a^2$ at P & the hyperbola $x^2-y^2=a^2$ at Q. Prove that the locus of the point of intersection of the tangent at P to the circle and the tangent at Q to the hyperbola is curve $a^4(x^2-a^2)+4x^2y^4=0$. **Sol.**

2. Find the equations of the tangents to the hyperbola $x^2 - 9y^2 = 9$ that are drawn from (3, 2). Find the area of the triangle that these tangents from with their chord of contact.

Sol.

4. The normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ drawn at an extremity of its latus rectum is parallel to an asymptote. Show that the eccentricity is equal to the square root of $(1+\sqrt{5})/2$.

Sol.

5. Ascertain the co-ordinates of the two points Q & R, where the tangents to the hyperbola $\frac{x^2}{45} - \frac{y^2}{20} = 1$ at the point P(9, 4) intersects the two asymptotes. Finally prove that P is the middle point of QR. Also compute the area of the triangle CQR where C is the centre of the hyperbola.

6. A point P divides the focal length of the hyperbola $9x^2 - 16y^2 = 144$ in the ratio S'P : PS = 2 : 3 where S & S' are the foci of the hyperbola. Through P a straight line is drawn at an angle of 135° to the axis OX. Find the points of intersection of this line with the asymptotes of the hyperbola.

Sol.

Sol.

7. Find the length of the diameter of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ perpendicular to the asymptote of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ passing through the first & third quadrants. **Sol.**

8. The tangent at P on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets one of the asymptote in Q. Show that the locus of the mid point of PQ is a similar hyperbola. **Sol.**

9. A transversal cuts the same branch of a hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 in P,P' and the asymptotes in Q, Q'.

Prove that (i) PQ = P'Q' & (ii) PQ' = P'QSol.

& (ii)
$$PQ' = P'Q$$

10. From any point of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,

tangents are drawn to another hyperbola which has the same asymptotes. Show that the chord of contact cuts off a constant area from the asymptotes. Sol.

11. Through any point P of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$,

a line QPR is drawn with a fixed gradient m, meeting the asymptotes in Q & R. Show that the product,

(QP) · (PR) =
$$\frac{a^2b^2(1+m^2)}{b^2-a^2m^2}$$
.

Sol.

12. If a rectangular hyperbola have the equation, $xy = c^2$, prove that the locus of the middle points of the chords of constant length 2d is $(x^2 + y^2) (x y - c^2) = d^2xy.$

Sol.

13. Prove that infinite number of triangles can be inscribed in the rectangular hyperbola, $x y = c^2$ whose sides touch the parabola, $y^2 = 4ax$. **Sol.**

15. Tangents are drawn from any point on the rectangular hyperbola $x^2 - y^2 = a^2 - b^2$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Prove that these tangents are equally inclined to the asymptotes of the hyperbola. **Sol.**

14. The normals at three points P, Q, R on a rectangular hyperbola $xy = c^2$ intersect at a point on the curve. Prove that the centre of the hyperbola is the centroid of the triangle PQR.