Teoría de Gráficas 2020-2

Guía de ejercicios para al Evaluación Parcial 01

FECHA DE EXAMEN PARCIAL 01 VIERNES 28-FEBRERO-2020 De 09:00 a 10:00 HORAS - Salón P-118

Instrucciones: La siguiente lista que fungirá como guía para el examen parcial, se recomienda resolver todos los ejercicios de la misma.

LISTA DE EJERCICIOS

- 1. Sea G(V(G),A(G)) y H=(V(H),A(H)) gráficas. Demostrar que la relación $G\sim H$ si y solamente si $G\cong H$, es una relación de equivalencia.
- 2. ¿Cuántas gráficas distintas de orden cuatro existen salvo isomorfismo?
- 3. Demostrar que, salvo isomorfismo, para cualquier $n \in \mathbb{N} \setminus \{0\}$ la gráfica completa de orden n es única.
- 4. Demostrar que, salvo isomorfismo, para cualquier $\{n,m\}\subseteq\mathbb{N}\setminus\{0\}$ si |X|=n y |Y|=m entonces la gráfica bipartita completa G[X,Y] es única.²
- 5. ¿Qué relación existe entre K_1 y $K_{1,1}$?
- 6. Demuestra que todo camino con extremos x y y contiene una trayectoria con extremos x y y.
- 7. Demostrar que en toda gráfica G se cumple que $|A(G)| \leq {|V(G)| \choose 2}$. ¿En qué caso se da la igualdad?
- 8. Considerar a G[X,Y] para demostrar que:
 - $|A(G[X,Y])| \le |X||Y|$.
 - $4|A(G[X,Y])| \le |V(G[X,Y])|^2$.
 - $\bullet \ \, \hbox{$\not$$ in qu\'e caso se cumple que } 4|A(G[X,Y])| = |V(G[X,Y])|^2?$
- 9. Sea G una gráfica. Considerar lo siguiente:
 - $\delta(G) := \min(\{d_G(x) \in \mathbb{N} \cup \{0\} \mid x \in V(G)\})^3$
 - $\Delta(G) := \max(\{d_G(x) \in \mathbb{N} \cup \{0\} \mid x \in V(G)\})^4$

Demostrar que

$$\delta(G) \le \frac{2|A(G)|}{|V(G)|} \le \Delta(G)$$

- 10. Sea $n \in \mathbb{N} \setminus \{0\}$, considerar $Q_n = (V(Q_n), A(Q_n))$ donde $X = \{0,1\}$ y
 - $V(Q_n) = X^n$
 - $\{x,y\} \in A(Q_n) \Leftrightarrow x$ differe de y en exactamente una coordenada.
 - a) Dar un diagrama de Q_n para $n \in \{1, 2, 3, 4\}$
 - b) Determinar el orden y el tamaño de Q_n para toda $n \in \mathbb{N} \setminus \{0\}$.
 - c) Demostrar que para toda $n \in \mathbb{N} \setminus \{0\}$ se tiene que Q_n es bipartita.

Evaluación Parcial 01 Febrero 2020

¹Por ello, a la gráfica completa de orden n la denotaremos como K_n .

²Por ello, a la gráfica bipartita completa G[X,Y] la denotaremos como $K_{|X|,|Y|}$.

 $^{^3}$ A $\delta(G)$ se le conoce como el **grado mínimo de** G.

 $^{^4}$ A $\Delta(G)$ se le conoce como el **grado máximo de** G.

Teoría de Gráficas 2020-2

- 11. Sea $n \in \mathbb{N} \setminus \{0\}$, considerar $B_n = (V(B_n), A(B_n))$ donde $X = \{m \in \mathbb{N} \setminus \{0\} \mid 1 \leq m \leq n\}$ y
 - $V(B_n) = \wp(X)$
 - $\{x,y\} \in A(B_n) \Leftrightarrow |x \triangle y| = 1.5$
 - a) Dar un diagrama de B_n para $n \in \{1, 2, 3, 4\}$
 - b) Determinar el orden y el tamaño de B_n para toda $n \in \mathbb{N} \setminus \{0\}$.
 - c) Demostrar que para toda $n \in \mathbb{N} \setminus \{0\}$ se tiene que B_n es bipartita.
- 12. Considerar G[X,Y] para demostrar que:

 - Si G[X,Y] es k-regular, con $k \in \mathbb{N} \setminus \{0\}$, entonces |X| = |Y|.
- 13. Demostrar que para una gráfica G las siguientes son equivalentes:
 - lacksquare G es conexa.
 - Para cualquier $\{x,y\} \subset V(G)$ con $x \neq y$ existe una trayectoria con extremos x y y.
 - ullet Existe un camino cerrado en G que contiene a todos los vértices y a todas las aristas de G.
- 14. lacktriangle Demostrar que en cualquier gráfica G, si $\binom{|V(G)|-1}{2} < |A(G)|$ entonces G es conexa.
 - lacksquare Encontrar, para cada $n\in\mathbb{N}\setminus\{0,1\}$, una gráfica disconexa G de orden n tal que $\binom{|V(G)|-1}{2}=|A(G)|$.
- 15. lacktriangle Demostrar que en cualquier gráfica G, si $\frac{|V(G)|-2}{2}<\delta(G)$ entonces G es conexa.
 - lacksquare Encontrar, para cada $n\in\mathbb{N}$ par positivo, una gráfica disconexa G que sea $(rac{n-2}{2})$ -regular.
- 16. Demostrar o dar contraejemplo de las siguientes proposiciones:
 - lacksquare \overline{G} es conexa $\Rightarrow G$ es disconexa.
 - G es disconexa $\Rightarrow \overline{G}$ es conexa.

Evaluación Parcial 01 Febrero 2020

 $^{^5}x\triangle y=(x\setminus y)\cup(y\setminus x)$