Chapter 10 Vocabulaire relatif aux applications

10.1 Définition ensembliste d'une application

10.2 Opérations sur les applications

10.3 Image directe et image réciproque

Solution 10.1

1. Supposons $X_1 \subset X_2$ et montrons que $f(X_1) \subset f(X_2)$.

Soit y un élément de $f(X_1)$.

Par définition de $f(X_1)$, il existe un élément $x \in X_1$ tel que y = f(x).

Or $X_1 \subset X_2$ donc

$$x \in X_2$$
 et $y = f(x)$;

il s'en suit $y \in f(X_2)^1$.

Nous pouvons conclure que $f(X_1) \subset f(X_2)$.

2. Nous allons effectuer un raisonnement par double inclusion. Montrons d'abord que $f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$.

Soit $y \in f(X_1 \cup X_2)$.

Il existe $x \in X_1 \cup X_2$ tel que y = f(x). Comme $x \in X_1 \cup X_2$, nous savons que $x \in X_1$ ou $x \in X_2$.

- Si $x \in X_1$; alors $y = f(x) \in f(X_1)$, et a fortior $y \in f(X_1) \cup f(X_2)$.
- Si $x \in X_2$; alors $y = f(x) \in f(X_2)$, et a fortior $y \in f(X_1) \cup f(X_2)$.

Dans tous les cas, nous avons donc $y \in f(X_1) \cup f(X_2)$.

Nous avons donc montré que $f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$. Montrons maintenant que $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$.

Soit $y \in f(X_1) \cup f(X_2)$. Alors $y \in f(X_1)$ ou $y \in f(X_2)$.

• Supposons $y \in f(X_1)$, alors il existe $x \in X_1$ tel que y = f(x). Puisque $x \in X_1$, nous pouvons écrire

$$x \in X_1 \cup X_2$$
 et $y = f(x)$

c'est-à-dire $y \in f(X_1 \cup X_2)$.

• Supposons $y \in f(X_2)$, le raisonnement est analogue : il existe $x \in X_2$ tel que y = f(x). On a donc $x \in X_1 \cup X_2$ puis $y = f(x) \in f(X_1 \cup X_2)$.

Dans tous les cas, nous avons montré que $y \in f(X_1 \cup X_2)$, donc $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$.

Nous avons montré que

$$f(X_1 \cup X_2) \subset f(X_1) \cup f(X_2)$$
 et $f(X_1) \cup f(X_2) \subset f(X_1 \cup X_2)$;

par double inclusion, nous pouvons conclure $f(X_1) \cup f(X_2) = f(X_1 \cup X_2)$.

¹Nous avons démontré une propriété de y ($y \in f(X_2)$). Nous pouvons alors affirmer qu'elle est vérifiée par **tous** les objets qui ont les propriétés qui ont été annoncées par «Soit y…», c'est-à-dire ici tous les éléments de l'ensemble $f(X_1)$. On a donc $\forall y \in f(X_1), x \in f(X_2)$.

3. Soit $y \in f(X_1 \cap X_2)$. Il existe $x \in X_1 \cap X_2$ tel que y = f(x).

Puisque $x \in X_1 \cap X_2$, nous pouvons écrire que $x \in X_1$ et donc $y = f(x) \in f(X_1)$.

De même, $x \in X_2$ et donc $y = f(x) \in f(X_2)$.

Nous avons donc montré que $y \in f(X_1)$ et $y \in f(X_2)$, c'est-à-dire $y \in f(X_1) \cap f(X_2)$. Nous pouvons conclure

$$f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2)$$
.

4. L'inclusion $f(X_1) \cap f(X_2) \subset f(X_1 \cap X_2)$ est fausse en général.

Avec $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$:

$$f\left(\mathbb{R}_{+}\right)\bigcap f\left(\mathbb{R}_{-}\right)=[0,+\infty[\bigcap[0,+\infty[=[0,+\infty[$$

mais

$$f\left(\mathbb{R}_{+}\bigcap\mathbb{R}_{-}\right)=f\left(\left\{\,0\,\right\}\right)=\left\{\,0\,\right\}.$$

Solution 10.2

- **1.** Supposons $Y_1 \subset Y_2$. Soit $x \in f^{-1}(Y_1)$. Nous avons donc $f(x) \in Y_1$ d'où $f(x) \in Y_2$, c'est-à-dire $x \in f^{-1}(Y_2)$. Nous avons donc montré que $f^{-1}(Y_1) \subset f^{-1}(Y_2)$.
- **2.** Soit $x \in A$.

$$\begin{split} x \in f^{-1}(Y_1 \cup Y_2) &\iff f(x) \in Y_1 \cup Y_2 \\ &\iff f(x) \in Y_1 \text{ ou } f(x) \in Y_2 \\ &\iff x \in f^{-1}(Y_1) \text{ ou } x \in f^{-1}(Y_2) \\ &\iff x \in f^{-1}(Y_1) \cup f^{-1}(Y_2). \end{split}$$

Nous avons donc montré $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.

3. Soit $x \in A$.

$$\begin{split} x \in f^{-1}(Y_1 \cap Y_2) &\iff f(x) \in Y_1 \cap Y_2 \\ &\iff f(x) \in Y_1 \text{ et } f(x) \in Y_2 \\ &\iff x \in f^{-1}(Y_1) \text{ et } x \in f^{-1}(Y_2) \\ &\iff x \in f^{-1}(Y_1) \cap f^{-1}(Y_2). \end{split}$$

Nous avons donc montré $f^{-1}(Y_1\cap Y_2)=f^{-1}(Y_1)\cap f^{-1}(Y_2).$

Solution 10.3

Solution 10.4

Solution 10.5

Solution 10.6

$$f^{-1}(\mathbb{R}^*)$$
.

Solution 10.7

Voici les solutions. Ne reste plus qu'à les démontrer (voir le cours!).

- 1. f(2) = 4,
- **2.** $f(\{2\}) = \{4\},$
- **3.** $f(\{-1,0,1,2\}) = \{1,0,1,4\} = \{0,1,4\},$

4. $f^{-1}(4)$ n'a aucun sens car f n'est pas bijective,

5.
$$f^{-1}(\{4\}) = \{-2, 2\},$$

6.
$$f^{-1}(-2,0,1,4) = \{0,-1,1,-2,2\},\$$

7.
$$f(f^{-1}(-2,0,1,4)) = f(\{0,-1,1,-2,2\}) = \{0,1,4\},$$

8.
$$f^{-1}(f(\{-1,0,1,2\})) = f^{-1}(\{0,1,4\}) = \{0,-1,1,-2,2\},$$

9.
$$f([1,2]) = [1,4]$$
,

10.
$$f(]-1,4[) = [0,16[,$$

11.
$$f^{-1}(]1,2]) = \left[-\sqrt{2},-1\right] \cup \left[1,\sqrt{2}\right],$$

12.
$$f^{-1}([-1,4]) = [-2,2],$$

13.
$$f(\mathbb{R}) = \mathbb{R}_+$$
,

14.
$$f^{-1}(\mathbb{R}) = \mathbb{R}$$
,

15. Im
$$f = f(\mathbb{R}) = \mathbb{R}_{+}$$
.

Solution 10.8

1.

2. Une lecture graphique donne

$$f([0,2]) = [0,1]$$
 et $f^{-1}([0,2]) = [-4,-2] \cup [0,2]$.

La démonstration est un peu pénible...

Solution 10.9

Commençons par remarquer que pour tout $x \in \mathbb{R}$, $\varphi(x) = \lfloor 2x \rfloor - 2 \lfloor x \rfloor \in \mathbb{Z}$. Soit $x \in \mathbb{R}$, on a les encadrements

$$2x - 1 < \lfloor 2x \rfloor \le 2x$$
 et $x - 1 < \lfloor x \rfloor \le x$.

Il s'en suit

$$-1 < |2x| - 2|x| < 2$$
.

Tenant compte du fait que $\varphi(x) \in \mathbb{Z}$, on a donc $\varphi(x) = 0$ ou $\varphi(x) = 1$. Ainsi

$$\varphi(\mathbb{R}) \subset \{0,1\}.$$

Réciproquement, $\varphi(0) = 0$ et $\varphi(0.7) = 1$, d'où $\{0, 1\} \subset \varphi(\mathbb{R})$.

Conclusion

Par double inclusion,

$$\varphi(\mathbb{R}) = \{ 0, 1 \}.$$

Solution 10.11

10.4 Injection, surjection, bijection

Solution 10.12

1. On suppose $g \circ f$ injective. Montrons que f est injective. Soit $x_1, x_2 \in A$. On suppose $f(x_1) = f(x_2)$. Alors $g(f(x_1)) = g(f(x_2))$ et puisque $g \circ f$ est injective $x_1 = x_2$. L'application f est donc injective.

Par contre, g n'est pas nécessairement injective. En prenant par exemple $f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto x$ et $g: \mathbb{R} \to \mathbb{R}, x \mapsto x^4$, alors $g \circ f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto x^4$ est injective (car strictement croissante par exemple) mais g n'est pas injective car g(-1) = g(1).

On peut également utiliser $f: \{0,1\} \to \mathbb{R}, x \mapsto x \text{ et } g: \mathbb{R} \to \mathbb{Z}, x \mapsto |x|$.

Ou encore, $f = \arcsin \operatorname{et} g = \sin$.

2. On suppose que $g \circ f$ est surjective. Montrons que g est surjective. Soit $y \in C$. Puisque $g \circ f$ est surjective, il existe $x_1 \in A$ tel que $y = g \circ f(x_1)$. En posant $x = f(x_1)$, on a bien $x \in B$ et g(x) = y. L'application g est donc surjective.

Par contre, f n'est pas nécessairement surjective.

En prenant par exemple $f: \{0,1\} \to \mathbb{R}, x \mapsto 4 \text{ et } g: \mathbb{R} \to \{11\}, x \mapsto 11.$

Ou encore,
$$f: \mathbb{R}_+ \to \mathbb{R}, x \mapsto \sqrt{x}$$
 et $g: \mathbb{R} \to \mathbb{R}_+, x \mapsto x^2$.

3. Plusieurs exemples précédents répondent au critère.

Un exemple très simple : $g : \mathbb{R} \to \{0\}, x \mapsto 0 \text{ et } f : \{0\} \to \mathbb{R}, x \mapsto 3$.

Solution 10.13

En posant $g = f \circ f$, on a $g \circ f = f \circ f \circ f = \mathrm{Id}_E$ et $f \circ g = f \circ f \circ f = \mathrm{Id}_E$. L'application f est donc bijective et

$$f^{-1} = f \circ f.$$

Solution 10.14

1. (a) Soit $x \in A$, alors $f(x) \in f(A)$, ce qui s'écrit également $x \in f^{-1}(f(A))$. Conclusion: $A \subset f^{-1}(f(A))$.

(b) Soit $x \in f^{-1}(f(A))$, on a donc $f(x) \in f(A)$, c'est-à-dire qu'il existe $x' \in A$ tel que f(x') = f(x). Puisque f est injective, on a x = x' d'où $x \in A$.

Conclusion: on a montrer $f^{-1}(f(A)) \subset A$. Le résultat demandé découle de la question précédente par double inclusion.

(c) Soit $(x_1, x_2) \in E^2$ tel que $f(x_1) = f(x_2)$. On a alors $f(\{x_1\}) = \{f(x_1)\} = \{f(x_2)\} = f(\{x_2\})$ d'où

$$\left\{\;x_1\;\right\}=f^{-1}\left(f\left(\left\{\;x_1\;\right\}\right)\right)=f^{-1}\left(f\left(\left\{\;x_2\;\right\}\right)\right)=\left\{\;x_2\;\right\},$$

ce qui implique $x_1 = x_2$: f est alors injective.

2. (a) Soit $y \in f\left(f^{-1}(B)\right)$, il existe alors $x \in f^{-1}(B)$ tel que y = f(x). Or $x \in f^{-1}(B)$ signifie que $y = f(x) \in B$.

Conclusion: $f(f^{-1}(B)) \subset B$.

(b) Soit $y \in B$. Puisque f est surjective, il existe $x \in E$ tel que y = f(x). Or $y = f(x) \in B$, on a donc en effet

$$x \in f^{-1}(B)$$
 et $y = f(x)$.

Donc $y \in f(f^{-1}(B))$.

Conclusion : on a montrer $B \subset f\left(f^{-1}(B)\right)$. Le résultat demandé découle de la question précédente par double inclusion.

(c) Soit $y \in F$, on a $f(f^{-1}(\{y\}) = \{y\})$, en particulier, $f^{-1}(\{y\}) \neq \emptyset$, c'est-à-dire que y possède au moins un antécédent par f : f est surjective.

Variante. Puisque $f \in \mathcal{F}(E, F)$, $f^{-1}(F) = E$. On a donc $f(E) = f\left(f^{-1}(F)\right) = F$; c'est-à-dire f est surjective.

Solution 10.16 Solution 10.17

- 1. L'application de l'ensemble des habitants de mon quartier vers l'ensemble des modèles de voitures qui à toute personne associe son modèle de voiture n'est pas injective.
- 2. L'application de l'ensemble des élèves de la classe vers № qui à chaque personne associe son age n'est pas injective.
- **3.** L'application de l'ensemble des élèves de la classe vers l'ensemble des jours de l'année qui à chaque personne associe son jour d'anniversaire est injective.
- **4.** L'application de l'ensemble des églises vers l'ensemble des ville de france qui à toute église associe sa ville est surjective.
- **5.** L'application de l'ensemble des églises vers l'ensemble des ville de france qui à toute église associe sa ville n'est pas injective.
- **6.** L'application de \mathbb{R} vers \mathbb{R} qui à un réel associe son carré n'est pas surjective.
- 7. L'application de \mathbb{R}_+ vers \mathbb{R}_+ qui à un réel associe son carré est bijective.
- **8.** L'application de \mathbb{R}^2 dans \mathbb{R} qui à un couple (a, b) associe sa somme a + b n'est pas injective.

Solution 10.18

1. On a $g \circ f : \mathbb{N} \to \mathbb{N}$. De plus, pour $n \in \mathbb{N}$,

$$(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1) - 1 = n.$$

car n + 1 > 0. Finalement, on a $g \circ f = \mathrm{Id}_{\mathbb{N}}$.

2. L'application f n'est pas surjective car 0 n'a pas d'antécédent par f. L'application g n'est pas injective car g(1) = g(0) = 0.

Puisque $g \circ f = \operatorname{Id}_{\mathbb{N}}$, on a nécessairement, $f \circ g \neq \operatorname{Id}_{\mathbb{N}}$, car sinon f et g serait bijectives. Remarquez qu'en fait $f \circ g$ n'est ni injective car $f \circ g(1) = f \circ g(0)$, ni surjective car $g \circ g(1) = g \circ g(0)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$ n'est ni injective car $g \circ g(1) = g \circ g(1)$

Solution 10.20

- **1.** L'application f n'est pas injective car $f(-1) = f(1) = \frac{1}{2}$. Soit $y \in]0,1]$. On cherche $x \in \mathbb{R}$ tel que y = f(x), c'est-à-dire, $yx^2 + y 1 = 0$, ou encore $x^2 = \frac{1-y}{y}$. Puisque $y \in]0,1]$, on a $\frac{1-y}{y} \ge 0$. En posant $x = \sqrt{\frac{1-y}{y}}$, on a bien f(x) = y. Nous avons montré que f est surjective.
- **2.** Soit $(a, b) \in \mathbb{R}^2$. On cherche $(x, y) \in \mathbb{R}^2$ tel que f(x, y) = (a, b), c'est-à-dire (2x + 3y, x + 2y) = (a, b). On a

$$\begin{cases} 2x + 3y = a \\ x + 2y = b \end{cases} \iff \begin{cases} -y = a - 2b \\ x + 2y = b \end{cases} \iff \begin{cases} x = -3b + 2a \\ y = 2b - a \end{cases}$$
 (1)

L'équation f(x,y)=(a,b) admet une unique solution (x,y)=(-3b+2a,2b-a); l'application f est donc bijective. De plus, $f^{-1}:\mathbb{R}^2\to\mathbb{R}^2$, qui s'écrit également $f^{-1}:(a,b)\mapsto(-3b+2a,2b-a)$

$$\mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y) \mapsto (-3y + 2x, 2y - x)$$

3. L'application f n'est pas injective car f(0,-1)=f(0,1)=(0,2). De plus, un élément de $\mathrm{Im}(f)$ s'écrit f(x,y) avec $(x,y)\in\mathbb{R}^2$. Or $y^2+1\geq 1$, et donc $f(x,y)=(x,y^2+1)\in\mathbb{R}\times[1,+\infty[$. On a donc $\mathrm{Im}(f)\subset\mathbb{R}\times[1,+\infty[$. Montrons l'inclusion réciproque. Soit $(a,b)\in\mathbb{R}\times[1,+\infty[$. On cherche $(x,y)\in\mathbb{R}^2$ tel que f(x,y)=(a,b), c'est-à-dire $(x,y^2+1)=(a,b)$. Posons x=a et $y=\sqrt{b-1}$ (bien défini car $b\geq 1$). On a donc $f(x,y)=(x,y^2+1)=(a,\sqrt{b-1}^2+1)=(a,b)$. Nous avons donc trouver un antécédent de (a,b) par f, on a donc $R\times[1,+\infty[\subset\mathrm{Im}(f)]$. Par double inclusion, on a $\mathrm{Im}(f)=\mathbb{R}\times[1,+\infty[$.

Puisque $\text{Im}(f) \neq \mathbb{R}^2$, f n'est pas surjective.

4. C'est du cours! L'application f n'est pas injective car $f(0) = f(2i\pi) = 1$. L'application f n'est pas surjective car 0 n'a pas d'antécédent par f. On a vu dans le cours sur les nombres complexes que $\text{Im}(f) = \mathbb{C}^*$.

Une petite piqure de rappel : Si $z \in \mathbb{C}^*$, il existe $\theta \in \mathbb{R}$ tel que $z = |z|e^{i\theta}$. Nous avons vu que $w = \ln|z| + i\theta$ est un antécédent de z par f car, par définition de l'exponentielle complexe $f(w) = e^{\ln|z|+i\theta} = e^{\ln|z|}e^{i\theta} = |z|e^{i\theta}$.

Solution 10.21

Solution 10.22

Solution 10.23

Solution 10.24

1. La fonction f est une fonction rationnelle. Elle est définie dès lors que son dénominateur ne s'annule pas. Ainsi $D = \mathbb{C} \setminus \{2i\}$.

2. (a) Soit $(x, y) \in \mathbb{R}^2$.

$$(x+iy)^{2} = 8 - 6i \iff \begin{cases} x^{2} + y^{2} &= 10 \\ x^{2} - y^{2} &= 8 \\ 2xy &= -6 \end{cases}$$

$$\iff \begin{cases} 2x^{2} &= 18 \quad L_{1} \leftarrow L_{1} + L_{2} \\ 2y^{2} &= 2 \quad L_{2} \leftarrow L_{2} - L_{1} \iff x = \pm 3 \text{ et } y = \pm 1 \text{ et } xy < 0. \\ xy &= -6 \end{cases}$$

Conclusion

Les racines carrées de 8 - 6i sont 3 - i et -3 + i.

(b) Pour $z \in D$,

$$f(z) = 1 + i \iff z^2 = (1 + i)(z - 2i) \iff z^2 - (1 + i)z - 2 + 2i = 0.$$

Ce dernier polynôme a pour discriminant $8 - 6i = (3 - i)^2$ et pour racines

$$\frac{1+i-3+i}{2} = -1+i \quad \text{et} \quad \frac{1+i+3-i}{2} = 2.$$

Ces deux nombres complexes appartiennent bien à D, ainsi, 1 + i admet deux antécédents par f:

$$-1 + i$$
 et 2.

3. Pour $z \in D$,

$$f(z) = h \iff z^2 = h(z - 2i) \iff z^2 - hz + 2ih = 0.$$

Ce dernier polynôme a pour discriminant $\Delta = h^2 - 8ih = h(h - 8i)$. On remarque également que 2i, ne vérifie pas l'équation $z^2 - hz + 2ih = 0$.

Conclusion

- Si h = 0 ou h = 8i, h admet un unique antécédent par f.
- Sinon, h admet exactement deux antécédents par f.
- **4.** D'après la question précédente, tout élément $h \in \mathbb{C}$ admet (au moins) un antécédent par f dans D. Donc $f(D) = \mathbb{C}$.
- **5.** D'après la question précédente, tout élément $h \in \mathbb{C}$ admet (au moins) un antécédent par f.

Conclusion

L'application f est donc une surjection de D sur \mathbb{C} .

6. L'application f n'est pas injective car 1 + i admet deux antécédent par f.

Solution 10.25

Solution 10.26

Solution 10.27

- **1.** Pour tout $n \in \mathbb{N}$, on a $f \circ f(n) = n$. On a donc $f \circ f = id_{\mathbb{N}}$: f est bijective et $f^{-1} = f$. On a donc $Im(f) = \mathbb{N}$.
- 2. Soit $n, m \in \mathbb{N}$. On a $f(n) = f(m) \implies 2n = 2m \implies n = m$; f est donc injective. De plus, $Im(f) = \{2n \mid n \in \mathbb{N}\} = 2\mathbb{N}$, c'est-à-dire l'ensemble des entiers pairs. L'application f n'est donc pas surjective, par exemple 1 n'a pas d'antécédent par f.
- 3. On a f(0) = 1 et f(1) = -1. L'application f est donc surjective. De plus, f(2) = 1 = f(0): l'application f n'est donc pas injective.
- **4.** Soit $y \in [0, 1]$. On pose $x = \arcsin y$. On a donc $f(x) = |\sin(\arcsin(y))| = |y| = y$. L'application f est donc surjective. De plus, $f(0) = 0 = f(\pi)$: l'application f n'est donc pas injective.
- 5. On a $\lim_{-\infty} f = -1$, $\lim_{+\infty} f = 1$; de plus l'application f est strictement croissante, donc injective, et continue; on a donc $\operatorname{Im}(f) =]-1, 1[$, f n'est pas surjective.
- **6.** L'application f n'est pas injective car $f(-1) = f(1) = \frac{1}{2}$. Soit $y \in]0,1]$. On cherche $x \in \mathbb{R}$ tel que y = f(x), c'est-à-dire, $yx^2 + y 1 = 0$, ou encore $x^2 = \frac{1-y}{y}$. Puisque $y \in]0,1]$, on a $\frac{1-y}{y} \ge 0$. En posant $x = \sqrt{\frac{1-y}{y}}$, on a bien f(x) = y. Nous avons montré que f est surjective.
- 7. Une étude rapide montre que f est croissante sur [-1, 1], continue, et que f(-1) = -1, f(1) = 1. On a donc f([-1, 1]) = [-1, 1]. Puisque f est à valeurs dans [-1, 1], on en déduit $f(\mathbb{R}) = [-1, 1]$: l'application f est surjective. L'application f n'est pas injective; en effet, pour $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2} \iff 4x = 1 + x^2 \iff x^2 - 4x - 1 = 0.$$

Le discriminant de ce dernier trinôme est 16+4=20>0: l'équation $f(x)=\frac{1}{2}$ admet donc 2 solutions : f n'est pas injective.

- 8. Soit $(a, b) \in \mathbb{R}^2$. On cherche $(x, y) \in \mathbb{R}^2$ tel que f(x, y) = (a, b), c'est-à-dire (y, x) = (a, b). L'unique solution est (x, y) = (b, a). L'application f est donc bijective et $f^{-1}(a, b) = (b, a)$, c'est-à-dire, $f^{-1} = f$. Déterminons l'ensemble des points invariants par f. Soit $(x, y) \in \mathbb{R}^2$, on a f(x, y) = (x, y) si et seulement si (x, y) = (y, x) ou encore x = y. L'ensemble des points invariants de f est la droite f d'équation f est la symétrie orthogonale par rapport à cette même droite.
- **9.** Soit $(a, b) \in \mathbb{R}^2$. On cherche $(x, y) \in \mathbb{R}^2$ tel que f(x, y) = (a, b), c'est-à-dire (2x + 3y, x + 2y) = (a, b). On a

$$\begin{cases} 2x + 3y = a \\ x + 2y = b \end{cases} \iff \begin{cases} -y = a - 2b \\ x + 2y = b \end{cases} \iff \begin{cases} x = -3b + 2a \\ y = 2b - a \end{cases}$$
 (1)

L'équation f(x,y)=(a,b) admet une unique solution (x,y)=(-3b+2a,2b-a); l'application f est donc bijective. De plus, $f^{-1}:\mathbb{R}^2\to\mathbb{R}^2$, qui s'écrit également $f^{-1}:(a,b)\mapsto(-3b+2a,2b-a)$

$$\mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y) \mapsto (-3y + 2x, 2y - x)$$

10. L'application f n'est pas injective car f(0,-1)=f(0,1)=(0,2). De plus, l'application f n'est pas surjective car (0,0) n'a pas d'antécédent par f. En effet, pour $(x,y) \in \mathbb{R}^2$, on a $f(x,y)=(x,y^2+1)$; or $y^2+1\geq 1$, on ne peut donc pas avoir f(x,y)=(0,0). Cet remarque montre d'ailleurs que $\mathrm{Im}(f)\subset \mathbb{R}\times[1,+\infty[$. Montrons l'inclusion réciproque. Soit $(a,b)\in \mathbb{R}\times[1,+\infty[$. On cherche $(x,y)\in \mathbb{R}^2$ tel que f(x,y)=(a,b), c'est-à-dire $(x,y^2+1)=(a,b)$. Posons x=a et $y=\sqrt{b-1}$ (bien défini car $b\geq 1$). On a donc $f(x,y)=(x,y^2+1)=(a,\sqrt{b-1}^2+1)=(a,b)$. Nous avons donc trouver un antécédent de (a,b) par f, on a donc $R\times[1,+\infty[\subset \mathrm{Im}(f)]$. Par double inclusion, on a $\mathrm{Im}(f)=\mathbb{R}\times[1,+\infty[$.

11. Commençons par déterminer l'ensemble des points invariants par f. Soit $(x, y) \in \mathbb{R}^2$, on a

$$f(x,y) = (x,y) \iff \begin{cases} x = \frac{x+y}{2} \\ y = \frac{x+y}{2} \end{cases} \iff x = y.$$
 (2)

L'ensemble des points invariants par f est donc la droite Δ d'équation y = x. On a bien $\Delta \subset \operatorname{Im}(f)$ car pour $(a,b) \in \Delta$, $f(a,b) = (a,b)^2$. De plus, on a clairement $\operatorname{Im}(f) \subset \Delta$; en effet, pour $(x,y) \in \mathbb{R}^2$, on a $f(x,y) = \left(\frac{x+y}{2},\frac{x+y}{2}\right) \in \Delta$. Par double inclusion, on a $\operatorname{Im}(f) = \Delta$. L'application f n'est donc pas surjective. L'application f n'est pas injective car f(0,0) = (0,0) = f(-1,1). Géométriquement, f est la projection orthogonale sur Δ .

12. C'est du cours! L'application f n'est pas injective car $f(0) = f(2i\pi) = 1$. L'application f n'est pas surjective car 0 n'a pas d'antécédent par f. On a vu dans le cours sur les nombres complexes que $\text{Im}(f) = \mathbb{C}^*$.

Une petite piqure de rappel : Si $z \in \mathbb{C}^*$, il existe $\theta \in \mathbb{R}$ tel que $z = |z| e^{i\theta}$. Nous avons vu que $w = \ln|z| + i\theta$ est un antécédent de z par f car, par définition de l'exponentielle complexe $f(w) = e^{\ln|z| + i\theta} = e^{\ln|z|} e^{i\theta} = |z| e^{i\theta}$.

Solution 10.28 Solution 10.29

1. f n'est pas injective car les couples (0,0) et (1,-1) ont l'amême image par f. f est-elle surjective? Soit $\alpha \in \mathbb{R}$, existe-t-il un coupel $(x,y) \in \mathbb{R}^2$ vérifiant $x+y=\alpha$? On choisit par exemple x=0 et $y=\alpha$, ansi

$$(0, \alpha) \in \mathbb{R}^2$$
 et $f((0, \alpha)) = \alpha$

donc $(0, \alpha)$ est un antécédent de α par f, et f est surjective.

Remarque. On peut remarquer que $f^{-1}(\{\alpha\}) = \{(t, \alpha - t) \mid t \in \mathbb{R} \}.$

2. Soit $(u, v) \in \mathbb{R}^2$, (u, v) admet-il un antécédent par g? Un tel éventuel antécédent (x, y) vérifie $\begin{cases} x + y &= u \\ x - y &= v \end{cases}$. Or

$$\begin{cases} x+y = u \\ x-y = v \end{cases} \iff \begin{cases} x = \frac{1}{2}(u+v) \\ y = \frac{1}{2}(u-v) \end{cases}.$$

Ainsi, (u, v) admet un antécédent par g et de plus, cet antécédent est unique, il s'agit de

$$\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right).$$

Ceci prouve que g est bijective.

3. h n'est pas injective car les couples (0,0) et (1,-1) distincts ont la même image par h.
h n'est pas surjective car les couples (0, a) avec a ∈ R* n'ont pas d'antécédent par h. En effet, un éventuel antécédent (x, y) vérifie

$$\begin{cases} x + y = 0 \\ x^2 - y^2 = (x - y)(x + y) = a \end{cases} \quad \text{donc} \quad \begin{cases} x + y = 0 \\ 0 = x^2 - y^2 = a \end{cases}$$

et ce système n'admet aucune solution car $a \neq 0$.

²De manière générale, l'ensemble des points invariants est toujours inclus dans l'image de l'application.

4. k n'est pas injective car les couples (0,0) et (1,-1) distincts ont la même image par k.

k est-elle surjective?

Soit $(u, v) \in \mathbb{R}^2$, (u, v) admet-il un antécédent par k? Un tel éventuel antécédent (x, y) vérifie

$$\begin{cases} x+y &= u \\ x+y^3 &= v \end{cases} \iff \begin{cases} x &= u-y \\ y^3-y+u-v &= 0 \end{cases}$$

Or l'équation d'inconnue réelle $y^3-y=v-u$ admet au moins une solutions y_1 dans \mathbb{R} . En effet, l'application $\varphi:\mathbb{R}\to\mathbb{R}, y\mapsto y^3-y$ est continue et

$$\lim_{x \to -\infty} \varphi(y) = -\infty \quad \text{ et } \quad \lim_{x \to +\infty} \varphi(y) = +\infty.$$

Le couple $(u - y_1, y_1)$ est ainsi un antécédent de (u, v) par k et k est surjective.

5. ℓ n'est pas injective car les couples (0,0) et (-1,1) distincts ont la même image par ℓ .

En s'aidant de la méthode proposée à la question précédente, il apparaît que le couple (0, -1) n'admet pas d'antécédent par ℓ . En effet, un tel éventuel antécédent (x, y) vérifie

$$\begin{cases} x+y = 0 \\ x+y^2 = -1 \end{cases} \iff \begin{cases} x = -y \\ y^2 - y + 1 = 0 \end{cases}$$

et l'équation $y^2 - y + 1 = 0$ n'admet aucune solution réelle.

Solution 10.31

Solution 10.32

Solution 10.33

Solution 10.34