

Report No. SZEE090626262306 Page 1 of 33

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION

Product Name: Bluetooth communication system

Model Number : VTCS3500

Trade Name : V-Tune

FCC ID : XKZVTCS3500

Report Number: SZEE090626262306

Date : July 22, 2009

Standards	Results
	PASS

Prepared for:

Ningbo HD Powersports Safety Products Co.,Ltd #6,Xin Heng Ba Lu,Ci Cheng Jiang Bei District, Ningbo, China

TEL: +86-574-8752 6400 FAX: +86-574-8752 6404

Prepared by:

CENTRE TESTING INTERNATIONAL

Building C, Hongwei Industrial Zone, Baoan 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

This report shall not be reproduced, except in full, without the written approval of CENTRE TESTING INTERNATIONAL

广东省深圳市宝安区 70 区鸿威工业园 C 栋 Building C, Hongwei Industrial Zone, Baoan 70 District, Shenzhen

Page 2 of 33

TABLE OF CONTENTS

Description	Page
1. CERTIFICATION INFORMATION	4
2. TEST SUMMARY	5
3. MEASUREMENT UNCERTAINTY	5
4. PRODUCT INFORMATION	6
5. TEST EQUIPMENT	7
6. AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT	8
6.1. LIMITS	8
6.2. BLOCK DIAGRAM OF TEST SETUP	8
6.3. TEST PROCEDURE	8
6.4. TEST RESULT	g
7. NUMBER OF HOPPING FREQUENCY	10
7.1. LIMITS	10
7.2. BLOCK DIAGRAM OF TEST SETUP	10
7.3. TEST PROCEDURE	10
7.4. TEST RESULT	10
8. 20DB SPECTRUM BANDWIDTH MEASUREMENT	11
8.1. LIMITS	11
8.2. BLOCK DIAGRAM OF TEST SETUP	11
8.3. TEST PROCEDURE	11
8.4. TEST RESULT	11
9. CARRIER FREQUENCY SEPARATION	13
9.1. LIMITS	13
9.2. BLOCK DIAGRAM OF TEST SETUP	13
9.3. TEST PROCEDURE	13
9.4. TEST RESULT	13
10. TIME OF OCCUPANCY (DWELL TIME)	14
10.1. LIMITS	14
10.2. BLOCK DIAGRAM OF TEST SETUP	14

10	.S.	1E31 PROCEDURE	14
10	.4.	TEST RESULT	14
11.	RAD	DIATED EMISSIONS MEASUREMENT	16
11	.1.	LIMITS	16
11	.2.	BLOCK DIAGRAM OF TEST SETUP	16
11	.3.	TEST PROCEDURE	17
11	.4.	TEST RESULT	17
10	.4.1	Charging Mode	18
10	.4.2	Transmitting Mode @ 2441MHz	19
10	.4.3	Transmitting Mode @ 2402MHz & 2480MHz	22
12.	M	AXIMUM PEAK OUTPUT POWER MEASUREMENT	23
12	.1.	LIMITS	23
12	.2.	BLOCK DIAGRAM OF TEST SETUP	23
12	.3.	TEST PROCEDURE	23
12	.4.	TEST RESULT	23
13.	В	AND EDGE EMISSIONS MEASUREMENT	24
13	.1.	BLOCK DIAGRAM OF TEST SETUP	24
13	.2.	TEST PROCEDURE	24
13	.3.	TEST RESULT	24
APPE	END	X 1 PHOTOGRAPHS OF TEST SETUP	26
APPE	END	X 2 EXTERNAL PHOTOGRAPHS OF EUT	28
APPE	END	X 3 INTERNAL PHOTOGRAPHS OF EUT	32
N/A	mea	ans not applicable.	

Report No. SZEE090626262306 Page 4 of 33

1. CERTIFICATION INFORMATION

Applicant & Address:

Ningbo HD Powersports Safety Products Co.,Ltd

#6,Xin Heng Ba Lu,Ci Cheng Jiang Bei District, Ningbo, China

Ningbo Yueny Electronic Co., Limited

Manufacturer & Address:

#579, Zhongshan Road (east) Ningbo, China

Type of Test: FCC Part 15 (Certification)

FCC ID: XKZVTCS3500

Equipment Under Test: Bluetooth communication system

Test Model: VTCS3500

Trade Name: V-Tune

Serial Number: N/A

Date of test: June 26,2009 to July 21, 2009

Condition of Test Sample: Normal

The above equipment was tested by Centre Testing International for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart B and the measurement procedure according to ANSI C63.4.

The test results of this report relate only to the tested sample identified in this report.

Prepared by:

Reviewed by:

Approved by :

Jim Zhang

Manager

Date : Oct. 10, 2009

Page 5 of 33

2. TEST SUMMARY

EMISSION FCC Part 15							
Clause	Test Item	Rule	Result				
6	AC Power Line Conducted Emissions	15.207	PASS				
7	Maximum Peak Conducted Output Power	15.247(b)(3)	PASS				
8	Number of Hopping Frequency	15.247(a)(1)	PASS				
9	20dB Spectrum Bandwidth	None					
10	Carrier Frequency Separation	15.247(a)(1)	PASS				
11	Time of Occupancy (Dwell time)	15.247(a)	PASS				
12	Radiated Emission	15.209	PASS				

TABLE FOR TEST MODES								
Voltage:	AC120V/ 60Hz	Mode:	Max. Transmitting & normal					
Temperature:	24℃	Humidity:	53%					
Test	Item	Mode	Channel _ Frequency					
AC Power Line Con	ducted Emissions	Charging & transmitting	CH0 _ 2402MHz					
Maximum Peak Cor Power	nducted Output	transmitting	CH0 _ 2402MHz CH39_ 2441MHz CH78 _ 2480MHz					
Number of Hopping	Frequency	transmitting	All channels					
20dB Spectrum Bar	ndwidth	transmitting	CH0 _ 2402MHz CH39_ 2441MHz CH78 _ 2480MHz					
Carrier Frequency S	Frequency Separation transmitting		CH13_ 2415MHz CH14_ 2416MHz CH15_ 2417MHz					
Time of Occupancy	(Dwell time)	transmitting	CH39_ 2441MHz					
Radiated Emission		Charging Transmitting	CH39_ 2441MHz					

Note: in all the transmitting modes, the transmitting is generated with the help of software BEN_TEST.exe provided by customer, or just by the product.

3. MEASUREMENT UNCERTAINTY

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement items	Uncertainty
AC Power Line Conducted Emissions	2.6 dB
Maximum Peak Conducted Output Power	0.5 dB
Radiated Emissions	3.4 dB

Report No. SZEE090626262306 Page 6 of 33

4. PRODUCT INFORMATION

Items	Description
Rating	DC 3.7V by internal battery
Battery Information	Model Name: JK 062240P
	Capacitance: 600mAh
	Rated voltage: DC 3.7V
Port	USB port: input port for charging by adaptor or USB port of
	computer
	Audio port: output port to earphone
Adaptor information	Model Name: DNS-117GB0500500
	Input: AC100V-240V 50/60Hz
	Output: DC5V 500mA
Intentional Transceiver	Intentional Transceiver
Modulation	Frequency Hopping Spread Spectrum (FHSS)
Frequency Range	2402 ~ 2480 MHz
Channel Number	79 (at intervals of 1MHz)
Antenna	internal Antenna (irremovable)
	Type: a simple cable made by manufacturer of the whole product
	Gain: 0 dBi

Statement: the product has two kinds of enclosure with the same material, PCB and electrics inside. The two enclosure are shown below. Enclosure 1 is the test model, and all data is applicable to enclosure 2.

Enclosure 1:

Enclosure 2:

Page 7 of 33

5. TEST EQUIPMENT

Equipment	Manufacturer	Model Number	Serial Number	Due Date
Receiver	R&S	ESCI	100435	01/29/2010
LISN	R&S	ENV216	100098	06/13/2010
Spectrum Analyzer	Agilent	E4443A	MY45300910	09/07/2009
Biconilog Antenna	A.H.System	SAS-521-2	487	06/05/2010
Horn Antenna	ETS-LINDGREN	3117	00057407	06/27/2010
Loop Antenna	ETS-LINDGREN	6502	00071730	09/22/2009
3M Chamber & Accessories	ETS-LINDGREN	FACT-3	N/A	05/11/2010

Report No. SZEE090626262306 Page 8 of 33

6. AC Power Line Conducted Emissions Measurement

6.1. LIMITS

Frequency	Conducted Limit (dBuV) – Class B Digital Device					
(MHz)	Q.P.	Average(dBuV)				
0.150 - 0.5	66-56	56-46				
0.5 – 5	56	46				
5 - 30	60	50				

Note: the tighter limit applies at the band edges.

6.2. BLOCK DIAGRAM OF TEST SETUP

6.3. TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room and connected to the main through Line Impedance Stability Network (LISN). This provided a 50ohm coupling impedance for the tested equipments.
- b. The bandwidth of the field strength meter (Receiver) was set at 9kHz in $150kHz \sim 30MHz$.
- c. The disturbance levels and the frequencies of at least two highest disturbances were recorded from each power line which comprises the EUT.

Page 9 of 33

6.4. TEST RESULT

		0.100		0.0			•				00.000		
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin IB)	
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F
1	0.3460	44.27	37.87	24.92	9.98	54.25	47.85	34.90	59.06	49.06	-11.21	-14.16	Р
2	0.5180	39.27	31.61	16.00	10.00	49.27	41.61	26.00	56.00	46.00	-14.39	-20.00	Р
3	1.0300	43.52	37.57	21.06	9.85	53.37	47.42	30.91	56.00	46.00	-8.58	-15.09	Р
4	1.2020	42.39	35.69	17.75	9.85	52.24	45.54	27.60	56.00	46.00	-10.46	-18.40	Р
5	1.8860	41.10	33.38	14.51	9.83	50.93	43.21	24.34	56.00	46.00	-12.79	-21.66	Р

Test Results-N

		0.130		0.0		IMHZ	J	0			30.000		
No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lir (dB	nit uV)		rgin dB)	
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F
1	0.3379	38.89	37.18	24.41	9.98	48.87	47.16	34.39	59.25	49.25	-12.09	-14.86	Р
2	1.0220	35.75	33.93	16.69	9.85	45.60	43.78	26.54	56.00	46.00	-12.22	-19.46	Р
3	1.8820	35.20	28.59	7.10	9.83	45.03	38.42	16.93	56.00	46.00	-17.58	-29.07	Р

80.0 dBuV

Report No. SZEE090626262306 Page 10 of 33

7. NUMBER OF HOPPING FREQUENCY

7.1. LIMITS

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.2. BLOCK DIAGRAM OF TEST SETUP

7.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer to Peak in Max Hold.
- 3. Make EUT work continually, till all operation channels were recorded.

7.4. TEST RESULT

Number of Hopping Frequency is 79, with frequency space = 1MHz.

Report No. SZEE090626262306 Page 11 of 33

8. 20DB SPECTRUM BANDWIDTH MEASUREMENT

8.1. LIMITS

None

8.2. BLOCK DIAGRAM OF TEST SETUP

8.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

8.4. TEST RESULT

Channel	Frequency (MHz)	20 dB BW (MHz)	Result
CH0	2402	1.0200	
CH39	2441	1.0100	1.0200 MHz
CH78	2480	1.0200	

Channel 0 2402 MHz

Page 12 of 33

Channel 39 _ 2441 MHz

Channel 78 _ 2480 MHz

Report No. SZEE090626262306 Page 13 of 33

9. CARRIER FREQUENCY SEPARATION

9.1.LIMITS

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

As the system's 20 dB bandwidth is 1.0200 MHz, and output power is -18.67 dBm, thus, Carrier Frequency Separation should be greater than 0.6800 MHz.

9.2. BLOCK DIAGRAM OF TEST SETUP

9.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

9.4. TEST RESULT

Carrier Frequency Separation: 1 MHz

Test Result: Pass

Report No. SZEE090626262306 Page 14 of 33

10. TIME OF OCCUPANCY (DWELL TIME)

10.1. LIMITS

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

10.2. BLOCK DIAGRAM OF TEST SETUP

10.3. TEST PROCEDURE

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.
- 3. Measured pulse time and Time separation.

10.4. TEST RESULT

The average time of occupancy = 120 us * (30/300ms) *(79*0.4s) = 0.3792 s Test Result: Pass

Pulse time: 120us

Page 15 of 33

Total 30 pulses in a period of 300 ms

Page 16 of 33

11. RADIATED EMISSIONS MEASUREMENT

11.1. LIMITS

The field strength of any emissions, which appear outside of operating frequency band and restricted band specified on 15.205(a), shall not exceed the general radiated emission limits as below.

Frequency (MHz)	Field strength (μV/m)	Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Note: the tighter limit applies at the band edges.

11.2. BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30 - 1000MHz

Page 17 of 33

For radiated emissions from 1GHz to 24GHz

11.3. TEST PROCEDURE

A. Above 30MHz

- a. The EUT was placed on the top of a turntable 0.8 meters above the ground in the chamber, 3 meters away from the antenna (wideband antenna), which was mounted on the top of a variable-height antenna tower. The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- B. Below 30MHz
- a. The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 1 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the EUT was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

11.4. TEST RESULT

Note: Limit $dB\mu V/m @1m = Limit dB\mu V/m @300m + 90$

Limit $dB\mu V/m @1m = Limit dB\mu V/m @30m + 50$

Limit $dB\mu V/m$ @1m = Limit $dB\mu V/m$ @3m +10

Page 18 of 33

10.4.1 Charging Mode

Test Results - H (Measurement Distance: 3m)

Test Results - V (Measurement Distance: 3m)

Page 19 of 33

10.4.2 Transmitting Mode @ 2441MHz

A. Below 1GHx

Test Results - H (Measurement Distance: 3m)

Test Results - V (Measurement Distance: 3m)

Page 20 of 33

B. Above 1GHz

Test Results - H (Measurement Distance: 3m)

Page 21 of 33

Test Results - V (Measurement Distance: 3m)

Page 22 of 33

10.4.3 Transmitting Mode @ 2402MHz & 2480MHz

Test Results – 2402MHz – Higher of V&H (Measurement Distance: 3m)

Test Results -2480MHz - Higher of V&H (Measurement Distance: 3m)

The other results in other freq. band is also compliant to the requirement without deviation.

Report No. SZEE090626262306 Page 23 of 33

12. MAXIMUM PEAK OUTPUT POWER MEASUREMENT

12.1. LIMITS

The limit for peak output power is 1 Watt.

12.2. BLOCK DIAGRAM OF TEST SETUP

12.3. TEST PROCEDURE

Same as 11.3

12.4. TEST RESULT

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

Where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain. (Note: In an open-area test measurement, the effect due to the metal ground plane should be subtracted from the maximum field strength value in order to reference it to free space, before calculating TP.)

Channel _ Freq. (MHz)	Higher Measured FS (dBuV/m)	Max FS (V/m)	Max Power (mW)	Max. Limit (W)	Result (P/F)
CH0 _ 2402	85.23				
CH39 _ 2441	82.51	0.018	1.0003	1	Р
CH78_ 2480	84.53				

Report No. SZEE090626262306 Page 24 of 33

13. BAND EDGE EMISSIONS MEASUREMENT

13.1. BLOCK DIAGRAM OF TEST SETUP

13.2. TEST PROCEDURE

- A. Set the spectrum analyzer as, Span = 10MHz; RBW = 100kHz; VBW = 300kHz; Sweep = auto; Detector function = peak; Trace = max hold
- B. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.
- C. Using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

13.3. TEST RESULT

Channel _ Freq. (MHz)	Fundamental Emission (dBuV/m)	Delta (dB)	Final Emission (dBuV/m)	Detector	Limit (dBuV/m)	Result (P/F)
CH0 _ 2402	85.23	-44.11	41.12	Peak	74 (Peak) 54(AV)	Р
CH78_ 2480	84.53	-54.86	29.67	Peak		Р

Page 25 of 33

Page 26 of 33

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

TEST SETUP OF CONDUCTED EMISSION

TEST SETUP OF RADIATED EMISSION (30MHz-1GHz)

Page 27 of 33

TEST SETUP OF RADIATED EMISSION (above 1GHz)

Page 28 of 33

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF EUT

Full View of EUT (Enclosure 1) and Auxiliary Units

View of Adaptor

Page 29 of 33

View of EUT(Enclosure 1) -front view

View of EUT(Enclosure 1) -side view

View of EUT(Enclosure 1) -back view

Page 30 of 33

Uncovered Covered
View of EUT(Enclosure 1) –port

Page 31 of 33

View of EUT(Enclosure 2) -1

View of EUT(Enclosure 2) -2

Page 32 of 33

APPENDIX 3 INTERNAL PHOTOGRAPHS OF EUT

Internal View-Untied, front

Internal View-Untied, back

Front

Back

Internal View-tied

Detail view of PCB

----- End of report -----