California State University, Long Beach Mechanical and Aerospace Engineering

MAE490A Project: Extendable Skateboard Group#2 Edwar Rivera, Ryan Ma, Tyler Bernardin, Thomas Anderson

Proposed Concept

- Skateboard deck that can convert from a shortboard to a longboard
- Eliminates the need for purchasing both types of boards while providing the same performance for each board
- Used for transportation (no tricks)
- Deck can be used with standard off-the-shelf trucks and wheels

Design Considerations

- Weight
- Board thickness
- Minimum and maximum length
- Ease of use
- Aesthetic
- Safety

Design Concepts: Version 1

Design Concepts: Version 2

Design Concepts: Version 3

Final Design (isometric, top)

Final Design (isometric, bottom)

Final Design: Cam Clamps

Critical component for holding extensions in place

Open Clamp

Critical Design Points

- Fixture points
 - Stress on extension at fixture
- Extension base
 - Moving parts; short ←→ longboard
 - Load transfer between user and reaction force

Figure: Bottom face of longboard assembly

Simulation Approach

- Emphasis on evaluating longboard configuration
- Assumed user weight of average American male (~200lb)
- Material initially based on existing skateboards
 - Light-weight metal as alternative

Figure: Conditions reflecting design approach

Key Measures & Simulation Conditions

- Measure product viability by:
 - Yield stress in direction of gravity
 - Deflection
 - Impact strength
- Fixture points
 - Truck base plates extensions
 - Clamp extensions
- Contact sets
 - Deck housing
 - Housing extensions

Figure: Exploded view of final assembly

First Simulation Results: Static Study Shortboard

Material used: Aluminum Alloy 6061

Force Applied: 200lbf normal to board surface

Fixtures: Wheels

Mesh Type: Curvature based Mesh

Results:

- Factor of Safety 10.0
- Max Deflection 0.073 mm

Second Simulation Results: Static Study Longboard

Material used: Aluminum Alloy 6061

Force Applied: 200lbf normal to board

surface

Fixtures: Wheels

Mesh Type: Curvature based Mesh

Results:

• Factor of Safety: 0.86

Max Deflection: 1.5 mm

Third Simulation: Drop Test Shortboard

Drop Test: 15mph on edge of board

Max Stress: 2.819e+07

Material Yield Strength: 5.516e+07 N/m²

Mesh Type: Standard

Fourth Simulation Results: Drop Test Longboard

Drop Test: 15mph on edge of board

Max Stress: 8.065e+07 N/m^2

Material Yield Strength: 5.516e+07 N/m²

Mesh Type: Standard

Conclusion/Improvements

- Design challenge primary in longboard configuration
- Design considerations
 - Geometry of model
 - Component thickness
 - Material selection
- Additional simulations
 - Torsional strength
 - Drop test
 - Mesh convergence
 - holding force of the clamp
- Explore composite materials to reduce weight & increase strength

Thank you