– DS N°6 – **PSI* 16-17**

PROBLÈME II (CCP MP 2015, extrait).

Toutes les fonctions étudiées dans ce problème sont à valeurs réelles. On pourra identifier un polynôme et la fonction polynomiale associée.

On admettra le théorème d'approximation de Weierstrass pour une fonction continue sur un segment $[a;b]\subset\mathbb{R}$:

Si f est une fonction continue sur un segment [a;b], il existe une suite de fonctions polynômes $(P_n)_{n\in\mathbb{N}}$ qui converge uniformément vers la fonction f sur [a;b].

Le problème aborde un certain nombre de situations en lien avec ce théorème. Les trois parties sont indépendantes.

I. Exemples et contre-exemples

Les trois questions de cette partie sont indépendantes.

1. Soit h la fonction définie sur l'intervalle]0;1] par $\forall x \in]0;1], h(x) = \frac{1}{x}$.

Expliquer pourquoi h ne peut être uniformément approchée sur l'intervalle]0;1] par une suite de fonctions polynômes. Analyser ce résultat par rapport au théorème de Weierstrass.

2. Montrer que si une suite $(P_n)_{n\in\mathbb{N}}$ de fonctions polynômes converge uniformément sur \mathbb{R} vers une fonction f, alors f est une fonction polynôme.

Analyser ce résultat par rapport au théorème de Weierstrass.

3. Cette question illustre la dépendance d'une limite vis-à-vis de la norme choisie.

Soit $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels. Soient N_1 et N_2 deux applications définies sur $\mathbb{R}[X]$ ainsi :

pour tout polynôme
$$P$$
 de $\mathbb{R}[X]$, $N_1(P) = \sup_{x \in [-2;-1]} |P(x)|$ et $N_2(P) = \sup_{x \in [1;2]} |P(x)|$.

- a) Vérifier que N_1 est une norme sur $\mathbb{R}[X]$. On admettra que N_2 en est également une.
- **b)** On note f la fonction définie sur l'intervalle [-2;2] ainsi :

pour tout
$$x \in [-2; -1]$$
, $f(x) = x^2$, pour tout $x \in [-1; 1]$, $f(x) = 1$ et pour tout $x \in [1; 2]$, $f(x) = x^3$.

Représenter graphiquement la fonction f sur l'intervalle [-2;2] et justifier l'existence d'une suite de fonctions polynômes $(P_n)_{n\in\mathbb{N}}$ qui converge uniformément vers la fonction f sur [-2;2].

Démontrer que cette suite de polynômes $(P_n)_{n\in\mathbb{N}}$ converge dans $\mathbb{R}[X]$ muni de la norme N_1 vers X^2 et étudier sa convergence dans $\mathbb{R}[X]$ muni de la norme N_2 .

II. Application : un théorème des moments

1. Soit f une fonction continue sur [a;b] (avec a < b). On suppose que :

pour tout entier naturel
$$k$$
, $\int_a^b x^k f(x) dx = 0$

 $(\int_a^b x^k f(x) dx$ s'appelle le moment d'ordre k de f sur [a;b]).

a) Si P est une fonction polynôme, que vaut l'intégrale $\int_a^b P(x)f(x) dx$?

– DS N°6 – **PSI* 16-17**

b) Démontrer, en utilisant le théorème de Weierstrass, que nécessairement f est la fonction nulle.

2. Application

Soit E l'espace vectoriel des applications continues de $[a\,;b]$ dans $\mathbb R$ muni du produit scalaire défini pour tout couple $(f,\ g)$ d'éléments de E par : $\langle f\,|g\rangle = \int_a^b f(x)g(x)\,\mathrm{d}x$.

On note F le sous-espace vectoriel de E formé des fonctions polynômes définies sur [a;b] et F^{\perp} l'orthogonal de F. Déterminer F^{\perp} . A-t-on $E=F\oplus F^{\perp}$?

- **3. a)** Pour tout entier naturel n, on pose $I_n = \int_0^{+\infty} x^n \mathrm{e}^{-(1-\mathrm{i})x} \, \mathrm{d}x$. Après avoir démontré l'existence de ces intégrales, établir une relation entre I_{n+1} et I_n et démontrer que, pour tout entier n, $I_n = \frac{n!}{(1-\mathrm{i})^{n+1}}$.
 - **b)** En déduire que, pour tout entier naturel k, $\int_0^{+\infty} x^{4k} e^{-x} x^3 \sin x \, dx = 0$.
 - c) Proposer une fonction f continue sur $[0; +\infty[$, non nulle et vérifiant : pour tout entier naturel $k, \int_0^{+\infty} u^k f(u) du = 0$.
 - d) Expliquer pourquoi la fonction f proposée à la question précédente ne peut être uniformément approchée sur $[0; +\infty[$ par une suite de polynômes.

III. Une approximation polynomiale de $x \mapsto \sqrt{x}$

Soit $(P_n)_{n\in\mathbb{N}}$ la suite de fonctions polynômes définie par :

$$P_0(x) = 0$$
 et pour tout entier naturel $n, P_{n+1}(x) = P_n(x) + \frac{1}{2} \left(x - (P_n(x))^2 \right)$.

1. Montrer que :

$$\forall x \in \mathbb{R}_+, \ \forall n \in \mathbb{N}, \ P_{n+1}(x) - \sqrt{x} = \left(P_n(x) - \sqrt{x}\right) \left(1 - \frac{1}{2}\left(P_n(x) + \sqrt{x}\right)\right).$$

Exprimer de même $P_{n+1}(x) + \sqrt{x}$ en fonction de $P_n(x) + \sqrt{x}$.

- **2.** Montrer que pour tout $x \in [0;1]$ et tout $n \in \mathbb{N}, 0 \leqslant P_n(x) \leqslant \sqrt{x}$
- **3.** Montrer que la suite $(P_n)_{n\in\mathbb{N}}$ converge simplement sur [0;1] vers $f: \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{x} \end{array} \right.$
- **4.** Donner le sens de variation des fonctions $\varphi_n \colon x \mapsto P_n(x) \sqrt{x}$ et $\psi_n \colon x \mapsto P_n(x) + \sqrt{x}$ sur [0;1].
- **5.** Montrer que la suite $(P_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur [0;1].

