Laborator nr. 10 **Rezolvarea sistemelor de ecuații liniare**

1 Algoritmul eliminării Gaussiene – varianta paralelă

Formularea problemei:

Se consideră un sistem format din n ecuații liniare cu n necunoscute:

$$a_{0,0}x_0 + a_{0,1}x_1 + \dots + a_{0,n-1}x_{n-1} = b_0$$

$$a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} = b_1$$

$$\dots$$

$$a_{n-1,0}x_0 + a_{n-1,1}x_1 + \dots + a_{n-1,n-1}x_{n-1} = b_{n-1},$$

Metoda eliminării Gaussiene constă în reducerea sistemului la forma triunghiulară:

$$x_0 + a'_{0,1}x_1 + \dots + a'_{0,n-1}x_{n-1} = b'_0$$

$$x_1 + \dots + a'_{1,n-1}x_{n-1} = b'_1$$

$$\dots$$

$$x_{n-1} = b'_{n-1}$$

și rezolvarea ecuațiilor în ordine inversă. Algoritmul 1 prezintă varianta paralelă a algoritmului de rezolvare a sistemelor de ecuații liniare prin metoda eliminării Gaussiene.

- Notații:
 - A[0..n-1,0..n-1] este un tablou bidimensional, de dimensiune nxn.
 - B[0..n-1] este un tablou unidimensional, de dimensiune n.
- Premise:
 - Coeficienții inițiali $a_{i,j}$, i, j = 0, 1, ..., n-1 sunt memorați în tabloul A.
 - Coeficienții $a'_{i,j}$, i, j = 0, 1, ..., n-1 vor fi memorați tot în tabloul A.
 - Tabloul *B* va memora coeficienții inițiali b_i , i = 0, 1, ..., n-1 și soluția sistemului.

Figurile 1-3 prezintă un exemplu de implementare pentru algoritmul propus pentru un sistem de ecuații linare format din 8 ecuații și 8 necunoscute. Sunt utilizate 8 procese, dintre care, inițial, este activ procesorul cu id-ul 3.

2 Aplicații

Implementați, utilizând MPI, algoritmul de rezolvare a sistemelor de ecuații liniare prin metoda eliminării Gaussiene.

Algoritmul 1 Algoritmul eliminării Gaussiene - varianta paralelă

```
1: function ELIMINARE_GAUSSIANA_PARALELA(A, B, n)
        for k = 0 to n - 1 do
2:
            for j = k + 1 to n - 1 do
3:
                A[k,j] = \frac{A[k,j]}{A[k,k]}
4:
            end for
5:
            B[k] = \frac{B[k]}{A[k,k]}
6:
            A[k, k] = 1
7:
            for i = k + 1 to n - 1 par do
8:
                 for j = k + 1 to n - 1 do
9:
10:
                     A[i,j] = A[i,j] - (A[i,k] \cdot A[k,j])
11:
                 end for
                 B[i] = B[i] - (A[i,k] \cdot B[k])
12:
                 A[i,k] = 0
13:
            end for
14:
        end for
15:
16: end function
```

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	О	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	О	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	О	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P_5	0	o	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	О	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	o	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3) (0,4) (0,5) (0,6) (0,7)
P_1	0	1	(1,2)	(1,3) (1,4) (1,5) (1,6) (1,7)
P_2	0	0	1	(2,3) (2,4) (2,5) (2,6) (2,7)
P_3	0	0	0	1 (3,4) (3,5) (3,6) (3,7)
P_4	0	0	0	(4,3) \(\bar{4}(4,4) \(\bar{4}(4,5) \(\bar{4}(4,6) \(\bar{4}(4,7) \)
P_5	0	0	0	(5,3) Y (5,4) Y (5,5) Y (5,6) Y (5,7)
P_6	0	0	0	(6,3) Y (6,4) Y (6,5) Y (6,6) Y (6,7)
P ₇	0	0	0	(7,3)\$(7,4)\$(7,5)\$(7,6)\$(7,7)

Figura 1: Pasul de împărțire cu A[3,3]

Figura 2: Etapa de comunicație – "broadcast" linia 3

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_1	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_3	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P_4	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

Figura 3: Pasul de eliminare pentru linia j > 3