

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
15. März 2001 (15.03.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/18515 A1

(51) Internationale Patentklassifikation⁷: **G01L 1/20, G01D 5/252, G08C 19/34**

(74) Anwälte: BEISSEL, Jean usw.; Office Ernest T.
Freylinger S.A., Boîte postale 48, L-8001 Strassen (LU).

(21) Internationales Aktenzeichen: PCT/EP00/08756 (81) Bestimmungsstaaten (*national*): CA, JP, KR, US.

(22) Internationales Anmeldedatum:
7. September 2000 (07.09.2000) (84) Bestimmungsstaaten (*regional*): europäisches Patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

(25) Einreichungssprache: Deutsch

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
90437 8. September 1999 (08.09.1999) LU

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): I.E.E. INTERNATIONAL ELECTRONICS & ENGINEERING S.A.R.L. [LU/LU]; Zone Industrielle Findel, 2b, route de Trèves, L-2632 Luxembourg (LU).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): THINNES, Martin [DE/DE]; Hüttenberg 55, 54311 Trierweiler (DE).

(54) Title: SENSOR DEVICE AND METHOD FOR INTERROGATING A SENSOR DEVICE

(54) Bezeichnung: SENSOREINRICHTUNG UND VERFAHREN ZUR ABFRAGE EINER SENSOREINRICHTUNG

(57) Abstract: The invention relates to a sensor device (10) comprising *i* sensor elements (130) of a first type which, in a circuit-engineered ($n \times m$) matrix interconnection, are interconnected with n row conductors (112, 114, 116, 118) and m column conductors (120, 122, 124, 126, 128), whereby i, n , and m are natural numbers that do not equal zero, and whereby $1 \leq i \leq n \cdot m$. Each of the i sensor elements (130) is interconnected between a row conductor and a column conductor. According to the invention, the sensor device (10) comprises j additional sensor elements (132) of a second type, whereby j is a natural number not equal to zero, and whereby each of the j additional sensor elements (132) of the second type is interconnected between two row conductors (112, 114, 116, 118). Alternatively, the sensor device comprises k additional sensor elements (134) of a second type, whereby k is a natural number not equal to zero, and whereby each of the k additional sensor elements (134) of the second type is interconnected between two column conductors (120, 122, 124, 126, 128).

WO 01/18515 A1

(57) Zusammenfassung: Eine Sensoreinrichtung (10) umfaßt i Sensorelemente (130) eines ersten Typs, die in einer schaltungstechnischen ($n \times m$)-Matrix-Verschaltung mit n Zeilenleitern (112, 114, 116, 118) und m Spaltenleitern (120, 122, 124, 126, 128) verschaltet sind, wobei i , n und m natürliche Zahlen verschieden von Null sind und wobei $1 \leq i \leq n \cdot m$. Jedes der i Sensorelemente (130) ist dabei zwischen jeweils einem Zeilenleiter und einem Spaltenleiter verschaltet. Erfindungsgemäß weist die Sensoreinrichtung (10) j zusätzliche Sensorelemente (132) eines zweiten Typs auf, wobei j eine natürliche Zahl verschieden von Null ist und wobei jedes der j zusätzlichen Sensorelemente (132) des zweiten Typs zwischen jeweils zwei Zeilenleitern (112, 114, 116, 118) verschaltet ist. Alternativ weist die Sensoreinrichtung k zusätzliche Sensorelemente (134) eines zweiten Typs auf, wobei k eine natürliche Zahl verschieden von Null ist und wobei jedes der k zusätzlichen Sensorelemente (134) des zweiten Typs zwischen jeweils zwei Spaltenleitern (120, 122, 124, 126, 128) verschaltet ist.

Sensoreinrichtung und Verfahren zur Abfrage einer Sensoreinrichtung

Einleitung

Die vorliegende Erfindung betrifft eine Sensoreinrichtung mit mehreren Sensoren mit variablem Widerstand in Matrix-Verschaltung.

- Zur Abfrage, d.h. Auslesen von Sensorelementen mit variablem Widerstand, wie z.B. druckabhängigen oder temperaturabhängigen Widerständen, wird an
- 5 das Sensorelement eine elektrische Testspannung angelegt und der aufgrund der angelegten Spannung fließende Strom gemessen. Auf diese Weise läßt sich der momentane elektrische Widerstand des Sensorelements errechnen und daraus die zu messende Größe (Druck, Temperatur etc.) ermitteln.

- Eine Sensoreinrichtung mit drucksensiblen Sensoren kann zum Beispiel in einer
- 10 Sitzbelegungserkennung zur Steuerung eines aktiven Passagierrückhaltesystems in einem Fahrzeug angewandt werden. Eine solche Sensormatte umfaßt mehrere individuelle drucksensible Sensoren, die über die Fläche des Passagiersitzes verteilt in den Sitz integriert sind. Die Sensoren sind an ein Auswertegerät angeschlossen, das den Auslösezustand der einzelnen Sensoren überprüft. Ist der Sitz durch eine Person belegt, werden mehrere der Sensoren aufgrund der durch eine Person auf den Sitz ausgeübten Gewichtskraft ausgelöst, ein Zustand der von der angeschlossenen Auswerteschaltung als Belegungszustand des Sitzes erkannt und an die Airbagsteuerung weitergegeben wird.
- 15
- 20 Um die Sensoren selektiv abfragen zu können, muß im Prinzip jeder der Sensoren an die Auswerteschaltung angeschlossen werden. Um hierbei die Zahl der Anschlußleitungen zu reduzieren, ist es vorteilhaft die einzelnen Sensoren in einer Matrix-Verschaltung zu betreiben. Dies bedeutet, daß bei einer Anzahl von $n*m$ Sensorelementen, im wesentlichen n Zeilenleiter und m
- 25 Spaltenleiter vorgesehen sind, wobei zwischen jeweils einem Zeilenleiter und einem Spaltenleiter eines der Sensorelemente verschaltet ist.

Es ist anzumerken, daß eine solche Matrix-Verschaltung eine schaltungstechnische Anordnung darstellt. Das heißt, daß eine Matrix-Verschaltung in einer realen Anordnung weder voraussetzt, daß die Sensorelemente in einer regelmäßigen Gitterverteilung angeordnet sein müssen, noch daß die einzelnen

- 5 Verbindungsleiter geradlinig und parallel bzw. senkrecht zueinander verlaufen müssen.

- Zum Auswerten einer Sensoranordnung in Matrix-Verschaltung wird folgendermaßen vorgegangen. Zunächst legt man die gesamte Matrix-Verschaltung mit Ausnahme eines ersten Spaltenleiters auf das gleiche Potential, z.B. auf
10 Masse. An den ersten Spaltenleiter wird nun eine Testspannung angelegt und anschließend selektiv der an den einzelnen Zeilenleitern abfließende Strom gemessen. Auf diese Weise kann man selektiv die Widerstandswerte der zwischen dem ersten Spaltenleiter und den verschiedenen Zeilenleitern verschalteten Sensorelementen ermitteln. Wird diese Vorgehensweise für jeden
15 Spaltenleiter wiederholt, kann man sämtliche Sensorelemente nacheinander selektiv ausmessen. Es ist hier anzumerken, daß man alternativ die einzelnen Zeilenleiter mit der Testspannung beaufschlagen und den über die Sensorelemente abfließenden Strom an den Spaltenleitern messen kann um die einzelnen Sensorelemente abzufragen.
20 Möchte man bei einer derartigen Sensormatte die Zahl der Sensoren erhöhen, muß im allgemeinen auch die Zahl der Anschlußleitungen erhöht werden. Dies bedeutet, daß z.B. eine Erweiterung der $(n \times m)$ -Matrix zu einer $((n+1) \times m)$ -Matrix die Einführung eines weiteren Zeilenleiters bedingt, um die hinzugefügten Sensoren in die Matrix-Verschaltung einzubinden.
25 In der Praxis ist eine derartige Erhöhung der Zahl der Verbindungsleiter allerdings mit Problemen verbunden. Zum einen bereitet eine große Zahl von Leiterbahnen Schwierigkeiten bei der Gestaltung der Form der Sensormatte. In der Tat sind z.B. die einzelnen Sensoren in einem Sitzbelegungssensor in einer Sandwichstruktur aus zwei Trägerfolien und einem Abstandhalter angeordnet,
30 die einerseits ein zusammenhängendes Ganzes bilden muß, andererseits aber eine möglichst geringe Flächendeckung aufweist, um den Sitzkomfort nicht zu

beeinträchtigen. Die einzelnen Sensoren sind daher lediglich durch schmale Stege der Sandwichstruktur untereinander verbunden, durch die auch die Anschlußleitungen der Sensoren verlaufen müssen. Eine Erhöhung der Zahl der benötigten Verbindungsleiter erschwert die Verlegung der einzelnen Leiter
5 durch die schmalen Verbindungsstege, bzw. bedingt eine Verbreiterung der Verbindungsstege, was zu einer Erhöhten Spürbarkeit einer derartigen Sensormatte in dem Fahrzeugsitz führt.

Andererseits setzt eine Erhöhung der Zahl der Verbindungsleiter voraus, daß die Auswerteschaltung eine entsprechende Zahl von Ein- bzw. Ausgängen
10 aufweist. Jeder Zeilenleiter und jeder Spaltenleiter muß in der Tat mit der Auswerteschaltung verschaltet werden, um entweder die Beaufschlagung des jeweiligen Leiters mit einer geeigneten Testspannung oder die Messung des über den Leiter abfließenden Stromes zu ermöglichen. Eine Erhöhte Zahl der Verbindungsleiter führt demnach zu einer komplizierteren und damit teureren
15 Auswerteschaltung.

Aufgabe der Erfindung

Aufgabe der vorliegenden Erfindung ist es folglich, eine Sensoreinrichtung vorzuschlagen, die bei gleichbleibender Zahl der Anschlußleitungen, eine erhöhte Zahl von Sensoren aufweist.

Allgemeine Beschreibung der Erfindung

Diese Aufgabe wird durch eine Sensoreinrichtung gemäß Anspruch 1 oder 2
20 gelöst. Eine solche Sensoreinrichtung umfaßt i Sensorelemente eines ersten Typs, die in einer schaltungstechnischen $(n \times m)$ -Matrix-Verschaltung mit n Zeilenleitern und m Spaltenleitern verschaltet sind, wobei i , n und m natürliche Zahlen verschieden von Null sind und wobei $1 \leq i \leq n * m$. Es ist anzumerken,
25 daß eine solche Matrix-Verschaltung eine schaltungstechnische Anordnung darstellt. Das heißt, daß eine Matrix-Verschaltung in einer realen Anordnung weder voraussetzt, daß die Sensorelemente in einer regelmäßigen Gitterverteilung angeordnet sein müssen, noch daß die einzelnen Verbindungsleiter

geradlinig und parallel bzw. senkrecht zueinander verlaufen müssen. Jedes der i Sensorelemente ist dabei zwischen jeweils einem Zeilenleiter und einem Spaltenleiter verschaltet.

Erfnungsgemäß weist die Sensoreinrichtung j zusätzliche Sensorelemente eines zweiten Typs auf, wobei j eine natürliche Zahl verschieden von Null ist und wobei jedes der j zusätzlichen Sensorelemente des zweiten Typs zwischen jeweils zwei Zeilenleitern verschaltet ist. Alternativ weist die Sensoreinrichtung k zusätzliche Sensorelemente eines zweiten Typs auf, wobei k eine natürliche Zahl verschieden von Null ist und wobei jedes der k zusätzlichen Sensorelemente des zweiten Typs zwischen jeweils zwei Spaltenleitern verschaltet ist.

Die erfundungsgemäße Vorrichtung umfaßt also neben den in der üblichen und bekannten Matrix-Verschaltung verschalteten Sensorelementen einen oder mehrere weitere Sensoren, die zwischen jeweils zwei Zeilenleiter oder zwischen jeweils zwei Spaltenleiter verschaltet sind. In beiden Fällen ist ein individuelles Abfragen der zusätzlichen Sensorelemente möglich, ohne daß hierfür zusätzliche Verbindungsleitungen in die Sensoreinrichtung eingebracht werden müssen. Der Begriff Verbindungsleitungen bezeichnet hier lediglich Zeilen- bzw. Spaltenleiter, die aus der Sensoreinrichtung herausgeführt und direkt an die Auswerteschaltung angeschlossen werden müssen. Dieser Begriff ist demnach nicht auf die Leiterbahnen anzuwenden, mit denen die zusätzlichen Sensorelemente an die jeweiligen Zeilen- bzw. Spaltenleiter angeschlossen sind.

Zum individuellen Auswerten der aus der herkömmlichen Matrix-Verschaltung bekannten Sensorelemente wird auf die gleiche Art vorgegangen, wie bei einer bekannten Matrix-Verschaltung. Dazu legt man zunächst die gesamte Matrix-Verschaltung mit Ausnahme eines ersten Spaltenleiters auf das gleiche Potential, z.B. auf Masse. An den ersten Spaltenleiter wird nun eine Testspannung angelegt und anschließend selektiv der an den einzelnen Zeilenleitern abfließende Strom gemessen. Auf diese Weise kann man selektiv die Widerstandswerte der zwischen dem ersten Spaltenleiter und den verschiedenen Zeilenleitern verschalteten Sensorelementen ermitteln. Wird diese Vorgehensweise für

jeden der Spaltenleiter wiederholt, kann man sämtliche Sensorelemente nacheinander selektiv ausmessen. Es ist hier anzumerken, daß man alternativ die einzelnen Zeilenleiter mit der Testspannung beaufschlagen und den über die Sensorelemente abfließenden Strom an den Spaltenleitern messen kann

5 um die einzelnen Sensorelemente abzufragen. Bei dieser Vorgehensweise stören die zusätzlichen Sensorelemente die Abfrage der bekannten Sensorelemente nicht, da sie bedingt durch das Meßverfahren an beiden Anschlußpunkten auf gleicher Spannung liegen und somit nicht in das Meßergebnis eingehen.

Zum Auslesen der zusätzlichen zwischen jeweils zwei Spaltenleiter verschalteten Sensorelemente wird ein analoges Verfahren angewandt. Hierbei wird zunächst die gesamte Matrix-Verschaltung mit Ausnahme eines ersten Spaltenleiters auf das gleiche Potential, z.B. auf Masse gelegt. An den ersten Spaltenleiter wird nun eine Testspannung angelegt und anschließend selektiv der an anderen Spaltenleitern abfließende Strom gemessen. Auf diese Weise

10 kann man selektiv die Widerstandswerte der zwischen dem ersten Spaltenleiter und den jeweils anderen Spaltenleitern verschalteten Sensorelementen ermitteln. Wird diese Vorgehensweise für jeden der Spaltenleiter wiederholt, kann man sämtliche derart verschalteten Sensorelemente nacheinander selektiv ausmessen. Zum Auslesen der zwischen jeweils zwei Zeilenleitern verschalteten zusätzlichen Sensorelemente geht man analog vor. Es ist wiederum

15 anzumerken, daß die in der herkömmlichen Matrix-Verschaltung angeordneten Sensorelemente das Meßergebnis der zusätzlichen Sensorelemente nicht beeinflussen, da sie bedingt durch das Meßverfahren an beiden Anschlußpunkten auf gleicher Spannung liegen und somit nicht in das Meßergebnis eingehen.

20

25

Der Vorteil der erfindungsgemäßen Anordnung besteht somit darin, ohne zusätzliche Leitungen zusätzliche Sensorelemente messen zu können und dabei zugleich das bekannte Meßverfahren der Matrixelemente in den Kreuzungspunkten von Zeilen- und Spaltenleiter nicht zu stören. Bestehende

30 Auswerteschaltungen können also ohne Modifikation mit der erweiterten Sensoranordnung eingesetzt werden, die Erweiterung wird zwar dann nicht genutzt, stört aber den normalen Betrieb nicht.

Bei allen oben beschriebenen Meßschritten erfolgt die Ansteuerung der Spalten und Zeile entweder direkt über Treiber und Verstärkerschaltungen an jeder Zeile und Spalte oder über einzelne Treiber und Meßverstärker, die über einen Multiplexer auf die zu messenden oder anzusteuernden Zeilen bzw. Spalten 5 aufgeschaltet werden. In einer besonders vorteilhaften Ausgestaltung umfaßt eine Vorrichtung zum Abfragen der Sensorelemente $n+m$ Ansteuervorrichtungen, die an die n Zeilenleiter und an die m Spaltenleiter anschließbar sind, wobei jede Ansteuervorrichtung derart individuell umschaltbar ausgestaltet ist, daß sie in einem ersten Modus als Treiberzelle zum Beaufschlagen des 10 anzuschließenden Zeilen- bzw. Spaltenleiters mit einer elektrischen Treibspannung und in einem zweiten Modus als Meßwandler zum Verarbeiten des Signals an dem anzuschließenden Spalten- bzw. Zeilenleiter arbeitet. Eine derartige Auswerteschaltung ermöglicht eine besonders flexible Ansteuerung der einzelnen Zeilen- bzw. Spaltenleiter, die es ermöglicht, sowohl zwischen 15 jeweils einem Zeilenleiter und einem Spaltenleiter als auch zwischen jeweils zwei Zeilenleitern oder zwei Spaltenleitern zu messen.

In einer besonders vorteilhaften Ausgestaltung der Sensoreinrichtung umfaßt die Einrichtung $j+k$ zusätzliche Sensorelemente eines zweiten Typs, wobei j und k jeweils eine natürliche Zahl verschieden von Null ist und wobei jedes der 20 zusätzlichen Sensorelemente des zweiten Typs zwischen jeweils zwei Spaltenleitern oder jeweils zwei Zeilenleitern verschaltet ist. Durch Erweiterung der herkömmlichen Sensormatrix in beiden Dimensionen, d.h. sowohl zwischen Zeilenleitern als auch zwischen Spaltenleitern, kann die Zahl der mit der gleichen Anzahl von Verbindungsleitungen abzufragender Sensorelemente 25 optimiert werden. Maximal können auf diese Weise zwischen den n Zeilenleitern $\frac{n*(n-1)}{2}$ und zwischen den m Spaltenleitern $\frac{m*(m-1)}{2}$ zusätzliche Sensorelemente verschaltet werden. Der Fachmann kann hieraus ohne Probleme ersehen, daß je nach Anwendung und Bedarf auch weniger zusätzliche Sensorelemente in die bekannte Matrix-Verschaltung eingebracht werden 30 können.

Es ist anzumerken, daß die Sensorelemente des ersten Typs und die Sensorelemente des zweiten Typs derart ausgestaltet sein können, daß sie in der Sensoreinrichtung eine identische Funktion erfüllen. Die unterschiedlichen Sensorelemente können hierzu beispielsweise identisch ausgeführt sein.

- 5 Alternativ kann die gleiche Funktion, z.B. eine Druckmessung, der beiden Typen von Sensorelementen auch mit einer unterschiedlichen Bauform erreicht werden. Bei einer Sensormatte mit sogenannten Foliendrucksensoren können die Sensorelemente des ersten Typs beispielsweise derart ausgestaltet sein, daß sie in einem Durchgangsmodus, dem sogenannten "trough mode", funktionieren, während die Sensorelemente des zweiten Typs in einem Kurzschlußmodus, dem sogenannten "shunt mode" arbeiten.
- 10

- Bei Foliendrucksensoren, die im Durchgangsmodus arbeiten, ist ein erstes Kontaktelement auf einer ersten Trägerfolie und ein zweites Kontaktelement auf einer zweiten Trägerfolie angeordnet, wobei die beiden Trägerfolien in einem gewissen Abstand derart zueinander angeordnet sind, daß sich die beiden Kontaktelemente gegenüberstehen. Zwischen den beiden Kontaktelementen ist eine Schicht aus einem Halbleitermaterial angeordnet, die beim Auslösen des Sensors gegen die beiden Kontaktelemente gepreßt wird wobei der Widerstand zwischen den beiden Kontaktelementen je nach Anpreßdruck variiert. Ein solcher Sensortyp eignet sich besonders gut für die Herstellung von Sensormatten, da bei dieser Ausgestaltung die Zeilenleiter auf die eine Trägerfolie aufgedruckt werden, während die Spaltenleiter auf der anderen Trägerfolie angeordnet werden können. Durch diese Anordnung der unterschiedlichen Verbindungsbahnen auf verschiedenen Trägerfolien ergeben sich keine Probleme an den Kreuzungspunkten der verschiedenen Verbindungsleiter, da diese in verschiedenen Ebenen verlaufen.
- 15
 - 20
 - 25

- Foliendrucksensoren in Kurzschlußmodus weisen zwei Kontaktelemente auf, die auf einer ersten Trägerfolie in einem bestimmten Absatz zueinander angeordnet sind. Auf einer zweiten beabstandeten Trägerfolie ist eine Halbleiterschicht derart angebracht, daß sie den Bereich zwischen den beiden Kontaktelementen überdeckt und die beiden Kontaktelemente beim Zusammenpressen der Trägerfolien kontaktiert. Diese Art von Sensoren eignet sich folglich
- 30

besonders gut als Ausgestaltung für die zusätzlichen Sensorelemente, da die beiden Kontaktlemente auf einer Trägerfolie aufgebracht sind und daher leicht mit den auf dieser Trägerfolie verlaufenden Zeilen- bzw. Spaltenleiter kontaktiert werden können.

- 5 In einer vorteilhaften Ausgestaltung der Sensoreinrichtung ist mindestens eines der Sensorelemente des zweiten Typs derart ausgestaltet, daß das mindestens eine Sensorelement des zweiten Typs in der Sensoreinrichtung eine Funktion erfüllt, die von der Funktion der Sensorelemente des ersten Typs unterschiedlich ist. Ein solches Sensorelement mit unterschiedlicher Funktion kann beispielsweise eine Überwachung und/oder eine Kompensation von Umwelteinflüssen zulassen. In eine bekannte Sensoreinrichtung in Matrix-Verschaltung können auf diese Art mehrere Kompensationselemente eingebrachte werden, die es erlauben z.B. Temperatureinflüsse zu kompensieren ohne die Auflösung der ursprünglichen Sensormatrix zu verschlechtern.
- 10 15 Es ist anzumerken, daß von den zusätzlichen Sensorelementen einige die gleiche Funktion erfüllen können wie die *i* regulären Sensorelemente, während andere zusätzliche Sensorelemente eine unterschiedliche Funktion in der Sensoreinrichtung verrichten.

Beschreibung anhand der Figuren

- 20 Im folgenden werden verschiedene Ausgestaltungen der Erfindung anhand der beiliegenden Figuren beschrieben. Es zeigen:

- Fig.1: eine Sensoreinrichtung in Matrix-Verschaltung mit zusätzlichen, zwischen den Zeilenleitern verschalteten Sensorelementen;
- Fig.2: eine Sensoreinrichtung in Matrix-Verschaltung mit zusätzlichen, zwischen den Spaltenleitern verschalteten Sensorelementen;
- 25 Fig.3: eine vorteilhafte Schaltung zum Abfragen einer Sensoreinrichtung mit zusätzlichen Sensorelementen.

In Fig. 1 ist eine erste Ausgestaltung einer verbesserten Sensoranordnung dargestellt. Die Sensoranordnung 10 weist mehrere Zeilenleiter 112, 114, 116, 118 sowie mehrere Spaltenleiter 120, 122, 124, 126, 128 auf; es handelt sich

bei der dargestellten Ausführung also um eine (4 x 5)-Matrix-Verschaltung. An den Kreuzungspunkten zwischen jeweils einem der Zeilenleiter 112, 114, 116, 118 und einem der Spaltenleiter 120, 122, 124, 126, 128 sind in bekannter Weise (als Widerstand dargestellte) Sensorelemente 130 zwischen die jeweiligen Zeilen- und Spaltenleiter verschaltet. Bei der vorliegendem (4 x 5)-Matrix-Verschaltung können auf diese Weise $4 \times 5 = 20$ Sensorelemente 130 verschaltet werden. Diese Sensorelemente 130 können beispielsweise druck- oder temperaturabhängige Widerstände umfassen.

Bei der vorliegenden Sensoranordnung 10 sind zusätzlich zu den Sensorelementen 130 weitere Sensorelemente 132 vorhanden, die jeweils zwischen zwei Zeilenleitern 112, 114, 116, 118 verschaltet sind. Zwischen jedem Zeilenpaar 112-114, 112-116, 112-118, 114-116, 114-118, 116-118 kann dabei ein zusätzliches individuell abfragbares Sensorelement 132 verschaltet werden. In der gezeigten Konfiguration mit vier Zeilenleitern können somit maximal sechs zusätzliche, individuell abfragbare Sensorelemente 132 eingebracht werden. Es kann vom Fachmann leicht nachgeprüft werden, daß die maximale Zahl j_{\max} der zusätzlichen Sensorelemente 132 der Formel $j_{\max} = \frac{n * (n - 1)}{2}$ gehorcht, wobei n die Zahl der vorhandenen Zeilenleiter darstellt.

Die in Fig. 2 dargestellte Sensoranordnung ist im wesentlichen analog zu der in Fig. 1 dargestellten Anordnung zu verstehen. Im Unterschied zu der oben beschriebenen Ausgestaltung, sind bei dieser Ausgestaltung zusätzliche Sensorelemente 134 zwischen den Spaltenleitern 120, 122, 124, 126, 128 verschaltet. Zwischen jedem Spaltenpaar 120-122, 120-124, 120-126, 120-128, 122-124, 122-126, 122-128, 124-126, 124-128, 126-128 kann dabei ein zusätzliches individuell abfragbares Sensorelement 134 verschaltet werden. In der gezeigten Konfiguration mit fünf Spaltenleitern können somit maximal zehn zusätzliche, individuell abfragbare Sensorelemente 134 eingebracht werden. Es kann vom Fachmann leicht nachgeprüft werden, daß die maximale Zahl k_{\max} der zusätzlichen Sensorelemente 134 der Formel $k_{\max} = \frac{m * (m - 1)}{2}$ gehorcht, wobei m die Zahl der vorhandenen Spaltenleiter darstellt.

Es ist anzumerken, daß zur optimalen Ausnutzung des Verschaltungspotentials der vorhandenen Zeilen- und Spaltenleiter zusätzliche Sensorelemente in beiden Dimensionen in die Matrix-Verschaltung eingebracht werden können. Eine solche Ausgestaltung der Sensoreinrichtung stellt im wesentlichen eine

- 5 Kombination der beiden Ausgestaltungen der Fig. 1 und Fig. 2 dar. Die maximale Anzahl der derart zusätzlich in die bekannte Matrix-Verschaltung eingebrachten, individuell abfragbaren Sensorelemente 132, 134 beträgt somit

$$j_{\max} + k_{\max} = \frac{n * (n - 1)}{2} + \frac{m * (m - 1)}{2}.$$

In der Fig. 3 ist eine vorteilhafte Anordnung zum Abfragen der oben beschrie-

- 10 benen Sensoreinrichtungen gezeigt. Die eigentliche Sensoranordnung 10 (hier eine (4×4) -Matrix) ist hier nur unvollständig gezeigt; zur besseren Übersichtlichkeit der Figur sind lediglich zwei Sensorelemente 130 und jeweils ein zusätzliches Sensorelement 132 und 134 eingezeichnet, es ist jedoch für den Fachmann klar, daß entsprechende Sensorelemente 130, 132, 134 vorteilhaft
15 auch zwischen den anderen Spalten- und Zeilenleitern bzw. zwischen den jeweiligen Zeilenleitern und/oder zwischen den jeweiligen Spaltenleitern verschaltet sind.

Die Sensoranordnung 10 ist über eine Steck- oder Klemmverbindung 30 mit der

Vorrichtung 32 zum Abfragen der Sensorelemente verbunden. Diese umfaßt

- 20 mehrere, vorzugsweise in einem gemeinsamen Gehäuse 34 angeordnete, Ansteuervorrichtungen 36, von denen jede über die Steck- oder Klemmverbin-
dung 30 an jeweils einen Zeilen- bzw. Spaltenleiter 12-18, 20-26 anschließbar ist. Zur besseren Übersichtlichkeit der Figur sind auch hier lediglich einige der Ansteuervorrichtungen 36 dargestellt.

- 25 Jede Ansteuervorrichtung 36 umfaßt einen gegengekoppelten Operationsver-
stärker 38, dessen invertierender Eingang 40 an den jeweiligen Zeilen- bzw.
Spaltenleiter 12-18, 20-26 anschließbar ist und dessen nicht-invertierender
Eingang 42 zwischen einem Anschluß 44 einer Treiberspannung und einem
Anschluß 46 eines Referenzpotentials umschaltbar ist. Die Umschaltung
30 geschieht dabei vorzugsweise über einen elektronisch gesteuerten Schalter 48.
Das Referenzpotential stellt eine virtuelle Masse dar, deren Potential zwischen

der realen Masse und der Versorgungsspannung der Schaltung liegt, z.B. beider halben Versorgungsspannung.

Bei dieser Ausgestaltung nutzt man das Prinzip aus, daß ein solcher gegengekoppelter Operationsverstärker 38 versucht, die Spannungsdifferenz zwischen

- 5 dem invertierenden und dem nicht invertierenden Eingang zu Null zu machen. Soll eine bestimmte Ansteuervorrichtung 36 demnach als Treiberzelle arbeiten, z.B. die an den Spaltenleiter 20 angeschlossene Ansteuervorrichtung, schaltet man den nicht-invertierenden Eingang 40 des jeweiligen Operationsverstärkers 38 auf den Anschluß 44 der Treiberspannung. Der Operationsverstärker 38
- 10 treibt dann über den Gegenkopplungswiderstand 50 die an dem invertierenden Eingang 40 angeschlossene Spalte 20.

Zum Abfragen der zwischen dem Spaltenleiter 120 und den verschiedenen Zeilenleitern 112-118 verschalteten Sensorelementen 130 müssen die restlichen Spaltenleiter 122-126 und die Zeilenleiter 112-118 auf das Referenzpotential gelegt werden. Hierzu werden die nicht-invertierenden Eingänge 42 der entsprechenden Operationsverstärker 38 auf den Anschluß 46 für die Referenzspannung geschaltet. Diese Operationsverstärker 38 arbeiten dann als Strom-Spannungswandler, die den über die jeweils angeschlossene Zeile bzw.

- 15 Spalte fließenden Strom, d.h. den Strom, der über das zu messende Sensorelement 130 abfließt, in eine dem Widerstand des Sensorelements proportionale Ausgangsspannung am Ausgang 52 des Operationsverstärkers umwandelt.
- 20

Der Widerstandswert der Gegenkopplung der einzelnen Operationsverstärker 38 ist vorzugsweise veränderbar. Dies geschieht in der dargestellten Ausgestaltung durch einen zweiten Gegenkopplungswiderstand 54, der mittels eines

- 25 elektronisch gesteuerten Schalters 56 zu dem ersten Gegenkopplungswiderstand 50 parallel hinzugeschaltet werden kann. Hierdurch läßt sich vorteilhaft die Meßempfindlichkeit der als Meßwandler geschalteten Ansteuervorrichtungen 36 verändern, so daß eine hohe Genauigkeit bei der Messung erreicht wird. Weiterhin läßt sich mit den variablen Gegenkopplungswiderständen an den als
- 30 Treiberzellen geschalteten Ansteuervorrichtungen der in die Sensoranordnung 10 hineinfließende Strom regeln.

Mit der vorgestellten Vorrichtung zum Abfragen mehrerer Sensorelemente ist ein möglicher Meßablauf wie folgt:

Zunächst legt man alle Zeilen- und Spaltenleiter durch Aufschalten der nicht-invertierenden Eingänge 42 der Operationsverstärker 38 auf den jeweiligen

- 5 Anschluß 46 auf das Referenzpotential, d.h. die virtuelle Masse. Die Sensoranordnung 10 ist jetzt unbestromt im Ruhezustand.

Zum Beginn des Meßzyklus wir an einer Spalte 120 der nicht-invertierende Eingang 42 des Operationsverstärkers 38 mit dem Anschluß 44 der Treiberspannung beschaltet. Jetzt können alle Widerstandswerte der zwischen dem

- 10 Spaltenleiter 120 und den verschiedenen Zeilenleitern 112-118 verschalteten Sensorelemente 130 nacheinander bestimmt werden.

Anschließend wird der nicht-invertierende Eingang 42 des an den Spaltenleiter 120 angeschlossenen Operationsverstärkers 38 wieder auf das Referenzpotential geschaltet und die nächste Spalte 122 angesteuert. Auf diese Weise werden

- 15 alle Spalten nacheinander abgearbeitet, anschließend werden analog die zwischen den Zeilenleitern verschalteten Sensorelemente 132 und die zwischen den Spaltenleitern verschalteten Sensorelemente 134 ausgelesen. Am Ende eines solchen Meßzyklus sind dann die Widerstandswerte sämtlicher Sensorelemente 130, 132 und 134 bestimmt. In einem zweiten Meßzyklus

- 20 können dann, nach Verändern der Gegenkopplungswiderstände an den Operationsverstärkern 38, beispielsweise sämtliche Sensorelemente in einem anderen Meßbereich abgefragt werden. Durch Vergleich der beiden gemessenen Widerstandswerte können bereits Rückschlüsse auf Defekte in der Matrix gezogen werden.

Patentansprüche

1. Sensoreinrichtung (10) umfassend i Sensorelemente (130) eines ersten Typs, wobei die i Sensorelemente (130) in einer schaltungstechnischen $(n \times m)$ -Matrix-Verschaltung mit n Zeilenleitern (112, 114, 116, 118) und m Spaltenleitern (120, 122, 124, 126, 128) verschaltet sind, wobei i , n und m natürliche Zahlen verschieden von Null sind und wobei $1 \leq i \leq n * m$, wobei jedes der i Sensorelemente (130) zwischen jeweils einem Zeilenleiter (112, 114, 116, 118) und einem Spaltenleiter (120, 122, 124, 126, 128) verschaltet ist, gekennzeichnet durch j zusätzliche Sensorelemente (132) eines zweiten Typs, wobei j eine natürliche Zahl verschieden von Null ist und wobei jedes der j zusätzlichen Sensorelemente (132) des zweiten Typs zwischen jeweils zwei Zeilenleitern (112, 114, 116, 118) verschaltet ist.
2. Sensoreinrichtung (10) umfassend i Sensorelemente (130) eines ersten Typs, wobei die i Sensorelemente (130) in einer schaltungstechnischen $(n \times m)$ -Matrix-Verschaltung mit n Zeilenleitern (112, 114, 116, 118) und m Spaltenleitern (120, 122, 124, 126, 128) verschaltet sind, wobei i , n und m natürliche Zahlen verschieden von Null sind und wobei $1 \leq i \leq n * m$, wobei jedes der i Sensorelemente (130) zwischen jeweils einem Zeilenleiter (112, 114, 116, 118) und einem Spaltenleiter (120, 122, 124, 126, 128) verschaltet ist, gekennzeichnet durch k zusätzliche Sensorelemente (134) eines zweiten Typs, wobei k eine natürliche Zahl verschieden von Null ist und wobei jedes der k zusätzlichen Sensorelemente (134) des zweiten Typs zwischen jeweils zwei Spaltenleitern (120, 122, 124, 126, 128) verschaltet ist.
3. Sensoreinrichtung nach Anspruch 1, gekennzeichnet durch k zusätzliche Sensorelemente (134) eines zweiten Typs, wobei k eine natürliche Zahl verschieden von Null ist und wobei jedes der k zusätzlichen Sensorelemente (134) des zweiten Typs zwischen jeweils zwei Spaltenleitern (120, 122, 124, 126, 128) verschaltet ist.

4. Sensoreinrichtung nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß
$$1 \leq j \leq \frac{n * (n - 1)}{2}$$
5. Sensoreinrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß
$$1 \leq k \leq \frac{m * (m - 1)}{2}$$
- 5 6. Sensoreinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sensorelemente (130) des ersten Typs und die Sensorelemente (132, 134) des zweiten Typs derart ausgestaltet sind, daß sie in der Sensoreinrichtung eine identische Funktion erfüllen.
7. Sensoreinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens eines der Sensorelemente (132, 134) des zweiten Typs derart ausgestaltet ist, daß das mindestens eine Sensorelement (132, 134) des zweiten Typs in der Sensoreinrichtung eine Funktion erfüllt, die von der Funktion der Sensorelemente (130) des ersten Typs unterschiedlich ist.
- 10 15 8. Vorrichtung zum Abfragen einer Sensoreinrichtung (10) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch n+m Ansteuervorrichtungen (36), die an die n Zeilenleiter (112, 114, 116, 118) und an die m Spaltenleiter (120, 122, 124, 126, 128) anschließbar sind, wobei jede Ansteuervorrichtung (36) derart individuell umschaltbar ausgestaltet ist, daß sie in einem ersten Modus als Treiberzelle zum Beaufschlagen des anzuschließenden Zeilen- bzw. Spaltenleiters mit einer elektrischen Treibspannung und in einem zweiten Modus als Meßwandler zum Verarbeiten des Signals an dem anzuschließenden Spalten- bzw. Zeilenleiter arbeitet.
- 20

1 / 3

Fig. 1

2 / 3

Fig. 2

3 / 3

Fig. 3

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 00/08756

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 G01L1/20 G01D5/252 G08C19/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 G01L G01D G08C H03M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	DE 196 25 730 A (TEVES GMBH ALFRED) 2 January 1998 (1998-01-02) abstract; figure 1 ----	1-8
Y	US 4 673 933 A (BAUER JERRY R) 16 June 1987 (1987-06-16) column 1, line 45 -column 3, line 62; figures 1-5 ----	1-8
A	US 5 668 544 A (CHANG HERMAN ET AL) 16 September 1997 (1997-09-16) the whole document ----	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

22 January 2001

Date of mailing of the international search report

01/02/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Lloyd, P

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/08756

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 19625730 A	02-01-1998	NONE	
US 4673933 A	16-06-1987	NONE	
US 5668544 A	16-09-1997	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 00/08756

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 G01L1/20 G01D5/252 G08C19/34

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 G01L G01D G08C H03M

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	DE 196 25 730 A (TEVES GMBH ALFRED) 2. Januar 1998 (1998-01-02) Zusammenfassung; Abbildung 1 ---	1-8
Y	US 4 673 933 A (BAUER JERRY R) 16. Juni 1987 (1987-06-16) Spalte 1, Zeile 45 -Spalte 3, Zeile 62; Abbildungen 1-5 ---	1-8
A	US 5 668 544 A (CHANG HERMAN ET AL) 16. September 1997 (1997-09-16) das ganze Dokument ---	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

22. Januar 2001

01/02/2001

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Lloyd, P

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 00/08756

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 19625730 A	02-01-1998	KEINE	
US 4673933 A	16-06-1987	KEINE	
US 5668544 A	16-09-1997	KEINE	

*Docket # 2003 p18854
Applic. # 10/1586, 234
Applicant: Kanges et al.*

Lerner Greenberg Stemer LLP
Post Office Box 2480
Hollywood, FL 33022-2480
Tel: (954) 925-1100 Fax: (954) 925-1101