

Universidad Tecnológica de Bolívar

FÍSICA ELÉCTRICA

RC CIRCUIT SIMULATION

Mauro González, T67622

German De Armas Castaño, T68765

Angel Vega Rodriguez, T68186

Juan Jose Osorio Ariza, T67316

Revisado Por David Sierra Porta 27 de mayo de 2023

1. Datos experimentales

Constantes	
ε (V)	30
Resistencia (Ω)	80
Capacitancia (\mathcal{F})	0,2
RC (τ) [Seg]	16

Carga	
Tiempo [Seg]	Voltaje $[V]$
0,0	0,0
5,5	9,65
10,4	15,01
15,6	19,15
20,2	21,9
25,4	24,13
30,4	25,73
35,5	26,89
40,3	27,7
45,3	28,31
50,4	28,77
55,5	29,11
60,3	29,34
65,5	29,52
70,3	29,65
75,5	29,75
80,3	29,81
85,6	29,86
90,5	29,9
95,5	29,93
100,4	29,95

Cuadro 1: Carga del capacitor

▶ Linea de tendencia:

$$y = 0.202x + 14.8$$

Tiempo [Seg]	$\ln(1-\frac{V}{\varepsilon})$
0,00	0
5,50	-0,38812
10,40	-0,69381
15,60	-1,01703
20,20	-1,30933
25,40	-1,63134
30,40	-1,94958
35,50	-2,26657
40,30	-2,56829
45,30	-2,87647
50,40	-3,19418
55,50	-3,51773
60,30	-3,81671
65,50	-4,13517
70,30	-4,45102
75,50	-4,78749
80,30	-5,06193
85,60	-5,36731
90,50	-5,70378
95,50	-6,06046
100,40	-6,39693

Cuadro 2: y = mx

In(1-V/E) contra Tiempo [Seg]

Voltaje [V] contra Tiempo [Seg]

▷ Linea de tendencia:

$$y = -0.0629x - 0.0285$$

Descarga	
Tiempo [Seg]	Voltaje $[V]$
0,0	29,99
5,5	20,82
10,3	15,26
15,5	11,0
20,3	8,17
25,3	5,97
30,3	4,35
35,5	3,14
40,3	2,33
45,4	1,0
50,3	1,24
55,3	0,91
60,3	0,67
65,4	0,49
70,3	0,36
75,2	0,26
80,3	0,19
85,3	0,14
90,6	0,1
95,3	0,07

Cuadro 3: Descarga del capacitor

0,05

100,2

▷ Linea de tendencia:

$$y = -0.205x + 15.4$$

Tiempo [Seg]	$\ln(\frac{V}{\varepsilon})$
0,00	-0,0003
5,50	-0,3653
10,30	-0,6760
15,50	-1,0033
20,30	-1,3007
25,30	-1,6145
30,30	-1,9310
35,50	-2,2570
40,30	-2,5553
45,40	-3,4012
50,30	-3,1861
55,30	-3,4955
60,30	-3,8017
65,40	-4,1145
70,30	-4,4228
75,20	-4,7483
80,30	-5,0619
85,30	-5,3673
90,60	-5,7038
95,30	-6,0605
100,20	-6,3969

Cuadro 4: y = mx

In(V/E) contra Tiempo [Seg]

▶ Linea de tendencia:

$$y = -0.0629x - 0.0446$$

2. Charging a capacitor

2.1. Using the equations above what is the time constant τ ? (Seg)

Usando la ecuación,

$$\tau = R \cdot C \tag{1}$$

tenemos, $\tau = 80\Omega \cdot 0.2\mathcal{F} = 16Seg$

2.2. When $t = \tau$ what is the value of the voltage? (V)

Usando la ecuación,

$$V_c = \frac{q}{c} = \varepsilon (1 - e^{\frac{-t}{RC}}) \tag{2}$$

$$V_c = 30V(1 - e^{-1}) = 18,9636V$$

2.3. What percentage of the battery voltage is the voltage across the capacitor at this time?

Usando la ecuación (2) despejada,

$$\frac{V_c}{\varepsilon} = 1 - e^{\frac{-t}{RC}} \tag{3}$$

Si
$$t = \tau$$
, $\frac{V_c}{\varepsilon} = 1 - e^{-1} = 63,21\%$

2.4. When $t = 2\tau$ what is the value of the voltage? (V)

Según la ecuación (2), $V_c = 30V(1-e^{-2}) = 25,9399V$

2.5. What percentage of the battery voltage is the voltage across the capacitor at this time?

Si
$$t = 2\tau$$
, $\frac{V_c}{\varepsilon} = 1 - e^{-2} = 86,46\%$

2.6. By what percentage of the battery voltage did the voltage across the capacitor change from $t = \tau$ to $t = 2\tau$?

$$\% = \frac{NuevoValor - ValorInicial}{ValorInicial} \cdot 100$$
(4)

Desde t = t a t = 2τ , % = $\frac{25,9399V - 18,9636V}{18,9636V}$ · 100 = 36,7878%

2.7. Is the following statement true: During charging, the capacitor gains the largest fraction of its final voltage during the time $t = \tau$ to $t = 2\tau$?

La afirmación es incorrecta debido a que, **2.10.** en el intervalo de tiempo desde t=0 hasta $t=2\tau$, el capacitor gana un $\sim 63\,\%$ de su carga total, mientras que en el intervalo desde $t=\tau$ hasta $t=2\tau$, pasa de un $\sim 63\,\%$ a un $\sim 86\,\%$.

Siguiendo esta tendencia, aunque $t = 3\tau$, $t=4\tau$, $t=n\tau$..., el capacitor va a ir ganando cada vez menos voltaje, siendo asi, el intervalo hasta $t=\tau$ el momento en el que gana mas porcentaje de la carga total.

2.8. Looking at the plot, at 2.11.

about what time did the voltage reach 63 % of its total voltage? (Seg)

Basa

Según la tabla 1, alrededor de los 15,6 Seg, el capacitor ganó un 63 % de la carga total, siendo 19.15V

2.9. Assume you do not know the value of the capacitorC, calculate C from the knowledge of R and time constant found in question1. (F)

Despejando C de la ecuación (1), $C=\frac{\tau}{R}=\frac{16Seg}{80}=0.2\mathcal{F}$

2.10. What is the percent error between the calculated value and the exact value of C?

En este contexto, el porcentaje de error es de 0%, debido a que los valores calculados y teóricos para C son exactamente los mismos. Dicho de otra forma,

$$\% = \frac{0,2-0,2}{0,2+0,2} \cdot 100 = 0\%$$

2.11. Write your result as y = mx, what is the value of m? (1/s)

Basado en los datos de la tabla 2, y = -0.0629x - 0.0285

- 2.12. Using your plot and the result from question 4, what value of τ do you find? (s)
- 2.13. Again assuming we do not know the capacitance solve for C using your fitted value of τ and the known value of R. (F)
- 2.14. What is the percent error between the calculated value and the exact value of C?
- 3. Discharging a Capacitor
- 3.1. Is the time constant τ different when we discharge a capacitor?

No, la constante de tiempo (τ) es la misma tanto cuando cargamos como cuando descargamos un condensador. La constante de tiempo es una propiedad característica del circuito RC y está determinada por los valores de la resistencia (R) y la capacitancia (C) en el circuito. Representa el tiempo que tarda la tensión a través del condensador en alcanzar aproximadamente el 63,2 % de su valor final durante la carga y disminuir a aproximada-

Using your plot and the mente el 36,8% de su valor inicial durante la result from question 4 descarga.

3.2. When $t = \tau$ what is the value of the voltage?

Usando la ecuación,

$$V_c = \varepsilon \cdot e^{\frac{-t}{RC}} \tag{5}$$

$$V_c = 30 \cdot e^{-1} = 11,036V$$

3.3. What percentage of the battery voltage is the voltage across the capacitor at this time?

Usando la ecuación (3.2) despejada,

$$\frac{V_c}{\varepsilon} = e^{\frac{-t}{RC}} \tag{6}$$

Si t =
$$\tau$$
, $\frac{V_c}{\varepsilon} = e^{-1} = 36,78 \%$

3.4. When $t = 2\tau$ what is the value of the voltage? (V)

Según la ecuación (3.2), $V_c = 30 \cdot e^{-2} = 4,060V$

3.5. battery voltage is the voltage across the capacitor at this time?

Según la ecuación (3.3), $\frac{V_c}{\varepsilon} = e^{-2}$ 13,53%

3.6. By what percentage of the battery voltage did the voltage across the capacitor change from $t = \tau$ to t = 2τ ?

Usando la ecuación (4), $\% = \frac{4,060-11,036}{11,036}$ 100 = -63,211 % ¹

3.7. Is the following statement true: During discharging the capacitor loses the largest fraction of its initial voltage during the time t $= \tau$ to $t = 2\tau$

Durante la descarga de un capacitor, es incorrecto afirmar que el capacitor pierde la mayor fracción de su voltaje inicial durante el tiempo $t = \tau$ hasta $t = 2\tau$. En realidad, la mayor fracción de pérdida de voltaje ocurre durante el intervalo de tiempo desde t = 0hasta $t = \tau$.

De acuerdo con la constante de tiempo RC, que determina el comportamiento de carga y

What percentage of the descarga del capacitor, durante la descarga el capacitor experimenta una disminución exponencial en su voltaje. Durante el intervalo desde t = 0 hasta $t = \tau$, aproximadamente el 63,2 % de la carga inicial del capacitor se ha perdido. Esto se debe a que la descarga sigue una curva exponencialmente decreciente.

> Sin embargo, a medida que avanzamos desde $t = \tau$ hasta $t = 2\tau$, el capacitor continúa perdiendo carga, pero la fracción de pérdida de voltaje en este intervalo es menor en comparación con el intervalo anterior. Por lo tanto, el intervalo desde t=0 hasta $t=\tau$ es cuando el capacitor experimenta la mayor fracción de pérdida de su voltaje inicial durante la descarga.

> Looking at the plot 3.8. about what time did the voltage reach 36.8% of its total voltage? (s)

> Según la tabla 3, alrededor de los 15 Seg, el capacitor perdió un 63 % del voltaje total.

> 3.9. Assume you do not know the value of the resistor R, calculate R from the knowledge of C and the time constant found in question 1

Despejando R de la ecuación (1),

¹El negativo indica que la corriente esta disminuyendo

$$R = \frac{\tau}{C}$$
 (7)
$$R = \frac{16Seg}{0.2\mathcal{F}} = 80\Omega$$

3.10. What is the percent error between the calculated values and the exact value of R?

En este contexto, el valor teórico y calculado para R son exactamente los mismos, es decir, un 0% de diferencia entre los valores.

3.11. Write your result as y = mx, what is the value of m? (1/s)

Basado en los datos de la tabla 4, y=4. -0.0629x-0.0446

- 3.12. Using your plot and the result from question 11, what value of τ do you find? (s)
- 3.13. Again assuming we do not know resistance solve for R using your fitted value of τ and the known value of C. (Ω)
- 3.14. What is the percent error between the calculated value and the exact value of R?
- 4. Non-Ohmic Materials

Referencias

Datos de Referencia. (s.f.). https: //drive.google.com/drive/ folders/1n7157nrmw1cFU - QVgO -UZnVsMojdDCpP?usp=sharing