Barra de Gimnasio Inteligente

Juan Bautista Muñoz Ruiz Ismael Expósito Jiménez

IDEA DEL PROYECTO

- Prácticamente no existe.
- Es útil para algunos ejercicios difíciles de asistir.
- Permite entrenar solo.
- Puede ayudar al spotter con pesos elevados.

Maquina Spotter

MATERIALES

Sensor IMU

Sensor Ultrasónico

Arduino MKR1000

Brick Lego EV3

Motor Lego EV3

Estructura

"Barra de gimnasio"

PLANIFICACIÓN

Planificación del proyecto

TAREAS Creación del Anteproyecto	MARZO			ABRE				MAYO			
Adquisición de materiales											
Creación de la estructura											
Integración y programación del servomotor											
Creación e Integración de la barra con el sensor IMU											
Programación y comunicación del imu con etarduino											
Desarrollo del prototipo											
Finalización del prototipo											
Presentación del proyecto											

Fecha estimada para la presentación del proyecto: 8-21 de Mayo de 2023

Juan Bautista Muñoz Ruiz
Ismael Expósito Jiménez

COMUNICACIÓN

COMUNICACIÓN

```
client.subscribe("subir")
client.subscribe("bajar")
client.subscribe("parar")
client.subscribe("apagar")
client.subscribe("mitad")
client.subscribe("mitad1")
client.subscribe("mitad2")
```

```
Subscribe Orden:
```

```
target_angle=370, S

target_angle=180, O

target_angle=0, O

target_angle=-250, M

target_angle=-410, D

motor.hold() D
```

Publica

```
if(!caidaB){
  if(distance>=base+3*incremento){
    client.publish("subir", "s");
  }
  ...
}else{
  client.publish("parar", "p");
  reset();
}
```

Brick Lego EV3

Subscribe

Broker (Shiftr)

Publica

Arduino

Protocolo MQTT

PROCESO DE DESARROLLO

Sensor posición Sensor Infrarrojos.

Sensor ultrasonido.

Motor

Servo motor.

Maqueta

Impresión 3D.

PROGRAMACIÓN EN LEGO BRICK EV3

- Tarjeta SD flasheada con la ISO de MicroPython.
- Visual Studio con extensión EV3 Micropython
- Internet compartido por cable desde el ordenador.
- Librerías: PyBricks y Umqtt.simple.

```
def callback(topic, message):
    #print("Mensaje recibido en
    orden=str(message)
    ordenProcesada=orden[2:3]
    print(ordenProcesada)

    #print(motor.angle())
if ordenProcesada=="b":
    motor.run_target(speed=1000, target_angle=-410, then=Stop.HOLD, wait=False) #aceleración progresiva
```

Interfaz de prueba de motor

PROGRAMACIÓN EN ARDUINO

 Detención de la caída de la barra

```
if (event->type == SENSOR_TYPE_ACCELEROMETER){
    x = event->acceleration.x;
    y = event->acceleration.z;
    z = event->acceleration.z;
}

if((x<-umbralCaida || x>umbralCaida)|| (y<-caidaB=true;
}else{
    salida= "NoCae";
}</pre>
```

Establecer la conexión

```
while (WiFi.status() != WL_CONNECTED) {
    Serial.print(".");
    delay(1000);
}

Serial.print("\nconnecting...");
while (!client.connect(arduinoID, name, token)) {
    Serial.print(".");
    delay(1000);
}
```

```
if(x==0 && y==0 && z==0){
  errorIMU();
}
```

Error IMU

CONSTRUCCIÓN

Mecanismo Piñón cremallera

Motor

Circuito + Sensor Ultrasonido

Sensor IMU en la barra

RESULTADO

- Se mantiene cerca de la barra pero sin tocarla.
- Si detecta caída se detiene para bloquear la barra.
 - Se "resetea" tras 5 segundos.

Video demostración

FIN