PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: F15D 1/02, B05B 1/34, A62C 3/02

(11) International Publication Number:

WO 95/19504

D 1102, BUSB 1134, AU2C 3/02

(43) International Publication Date:

20 July 1995 (20.07.95)

(21) International Application Number:

PCT/AU95/00013

 $\mathbf{A1}$

AU

(22) International Filing Date:

13 January 1995 (13.01.95)

Published

With international search report.

(81) Designated States: AU, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

PM 3333

13 January 1994 (13.01.94)

(71) Applicant (for all designated States except US): ORION SAFETY INDUSTRIES PTY. LIMITED [AU/AU]; 29 Shepherd Street, Liverpool, NSW 2170 (AU).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MEYER, David, Jeffrey [AU/AU]; 202 High Street, Willoughby, NSW 2068 (AU).

(74) Agent: MAXWELL, Peter, Francis; Peter Maxwell & Associates, Blaxland House, 5 Ross Street, North Parramatta, NSW 2151 (AU).

(54) Title: FLUID FLOW CONDITIONER

(57) Abstract

A fluid flow conditioning plate (10) for removing swirl, etc. from an enclosed water stream especially for a fire fighting nozzle. The plate has circular holes lying on concentric circles (11, 12, 13). Two cross-sectional shapes for the holes are suggested. They may have a short upstream end tapering inwardly in the direction of the flow then a substantially longer portion of constant cross section and finally a short downstream end tapering outwardly in the direction of the flow. In the alternative the portion of constant cross section is shortened to accommodate a longer downstream end portion, of conical or trumpet shape, which acts as a diffuser. Various examples of ratios of hole to plate diameters, etc. are given as are examples of fog nozzles incorporating flow conditioners.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	· SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

FLUID FLOW CONDITIONER

FIELD OF THE INVENTION

This invention relates to flow conditioners for fluid nozzles or for fluid measurement.

For the sake of convenience, the invention will be described in relation to flow conditioners for jet type fire fighting water nozzles but it is to be understood that the invention is not limited thereto as it may be applied to other areas of fluid flow such as fluid jets for fountains or fluid measurement.

BACKGROUND ART

5

10

15

20

25

Prior art flow conditioners include the vane type and the tube bundle type both of which are located in the fluid stream. A common use of such flow conditioners is to condition the water stream for jet type fire fighting streams. Although these prior art conditioners are very effective at removing swirl from the water, they are less successful in conditioning other fluid flow properties.

Another kind of prior art flow conditioner is the single plate conditioner which consists of a circular plate having an array of 36 fluid passageways therethrough. Each passageway is tapered inwardly in the direction of the fluid flow and around the downstream end of each passageway is a tube which is typically 0.13 times the diameter of the plate. The thickness of the plate plus the tubes is also typically 0.13 times the diameter of the plate.

SUMMARY OF THE INVENTION

It is an object of the invention to provide improved

plate type flow conditioners which are simpler to manufacture than prior art plate type flow conditioners and which provide better performance than those prior art flow conditioners.

5

It is a further object of the invention to provide a modified single plate flow conditioner for use in an adjustable spray pattern nozzles such as fog nozzles of the kind used in fire fighting.

According to one aspect of the invention there is

10 provided a fluid flow conditioner comprising a plate having a plurality of fluid passageways therethrough, each fluid passageway having an upstream end that is tapered inwardly in the direction of fluid flow and a downstream end that is tapered outwardly in the direction of fluid flow.

15

According to another aspect of the invention there is provided a fluid flow apparatus comprising a nozzle having a nozzle piece, a pipe or body portion and a coupling flange and a fluid flow conditioner according to the invention.

20 BRIEF DESCRIPTION OF THE DRAWINGS

In order that the invention may be more readily understood and put into practical effect, reference will now be made to the accompanying drawings in which:-

25

- Fig. 1 is a front elevational view of a plate-type flow conditioner according to one embodiment of the invention,
- Fig. 2 is a side elevational view of the flow conditioner shown in Fig. 1,

	Fig.	3	is a front elevational view of a plate-type
			flow conditioner according to a second
			embodiment of the invention,
	Fig.	4	is a front elevational view of a plate-type
5			flow conditioner according to a third
			embodiment of the invention,
	Fig.	5	is an enlarged cross-sectional view of one
			kind of flow passageway of the plates shown
			in Figs. 1 to 4,
10	Fig.	6	is an enlarged cross-sectional view of a
			second kind of flow passageways for the
			plates shown in Figs. 1 to 4,
	Fig.	7	is a cross-sectional view of a jet-type
			water nozzle incorporating a plate-type
15			flow conditioner according to the invention
*.	•		in the body of the nozzle,
	Fig.	8	is a cross-sectional view of a jet type
			water nozzle incorporating a plate type
			flow conditioner according to the invention
20			with the conditioner located in the
			coupling of the nozzle,
	Fig.	9	coupling of the nozzle, is a cross-sectional view of a fog type
	Fig.	9	
	Fig.	9	is a cross-sectional view of a fog type
25	Fig.	9	is a cross-sectional view of a fog type water nozzle incorporating a plate type
25	Fig.		is a cross-sectional view of a fog type water nozzle incorporating a plate type flow conditioner according to the
25			is a cross-sectional view of a fog type water nozzle incorporating a plate type flow conditioner according to the invention,

> Fig. 11 is a front elevational view of a plate-type flow conditioner according to a fourth

> > embodiment of the invention.

Fig. 12 is a side elevational view of the flow conditioner shown in Fig. 11, and

Fig. 13 is a cross-sectional view of a nozzle having co-axial proportioners incorporating a flow conditioner of the kind shown in Figs. 11 and 12.

10 DESCRIPTION OF THE PREFERRED EMBODIMENT

The single plate-type flow conditioner shown in Figs. 1 and 2 consists of a plate 10 that has a diameter D. is a central fluid passageway 11, an inner array of six fluid passageways 12 and an outer array of twelve fluid passageways 13. The fluid passageway arrays 12 and 13 are located on circles which are concentric with the centre of the central fluid passageway 11. As shown in Fig. 2, each fluid passageway has a diameter d.

The flow conditioner 16 shown in Fig. 3 is similar to that shown in Fig. 1 and 2 except that there is a further outer array of 18 fluid passageways 14 located on a circle which is also concentric with the centre of the passageway 11.

11.

5

15

20

25

The flow conditioner 17 shown in Fig. 4 is similar to that shown in Fig. 1 and 2 except that there is a further outer array of 24 fluid passageways 15 located on a circle which is also concentric with the centre of the passageway

5

10

15

20

25

The fluid passageways are spaced evenly over the area of the plate so as to allow for easy manufacture. The number of holes per circle is only approximate and it appears not to be very important that a number of holes be left out in the outer circles thereby making manufacture slightly easier.

-5-

The diameter d of the fluid passageways depend on the number of passageways used in the flow conditioner. For the 19 passageway flow conditioner 10 shown in Figs. 1 and 2, the passageway size should be in the range of 0.1 to 0.18 times the diameter of the plate D. For the 37 passageway conditioner 16 shown in Fig. 3, the passageway size should be in the range 0.08 to 0.13 times the diameter of the plate D. For the 61 passageway conditioner 17 shown in Fig. 4, the passageway size should be in the range of 0.05 to 0.1 times the diameter of the plate D. It is not essential that all the passageways be of the same size but manufacture is simpler if all the passageways are of the same size.

The thickness of the plate 10 will depend upon the diameter d of the passageways. The thickness of the plate 10 must be a minimum of 0.6 times the diameter d of the passageways with the ultimate being between 1.0 and 1.7 times the diameter d of the passageways. Structural considerations will influence the choice of plate thickness.

The performance of a water jet nozzle depends on the number of fluid passageways. As the number of passageways

5

10

15

20

25

increases, the quality of the water jet increases. The minimum requirement is 19 passageways to produce a water jet that is visibly superior to the vane or tube bundle type flow conditioners of the prior art.

-6-

Increasing the number of holes beyond 19 to 37 and 61 has less effect on the quality of the water jet, however, the spacing between the flow conditioner must be reduced for optimum performance. The shortening of the nozzle/flow conditioner assembly is one of the principle advantages of the invention.

The geometry of alternative fluid passageways is shown in Figs. 5 and 6. As can be seen in Fig. 5, the upstream end 20 of the fluid passageway 11 is tapered inwardly in the direction of fluid flow and the downstream end 21 of the passageway 11 is tapered outwardly in the direction of fluid flow. The central portion 22 of the passageway 11 is of constant cross-section and is substantially longer than either of the upstream end 20 or the downstream end 21.

The upstream end 30 of the passageway 11 shown in Fig. 6 tapers inwardly in the direction of fluid flow. Adjacent to the inlet end 30 there is a smaller mid portion of the passageway 31 of constant cross-section and to the right of the mid portion 31 there is an outwardly tapering diffusion portion 32. The diffuser portion 32 is substantially longer than either the upstream portion 30 or the mid portion 31. In this instance, the diffuser portion is at least 0.3 times the thickness of the plate 10 and the mid portion 31 is from 0.2 to 0.5 times the diameter d of the

5

10

15

20

25

passageway. In this instance, each upstream end 20 and downstream end 21 is 0.1 times the diameter d of the passageway.

-7-

The geometry of the passageways has significant advantages including improved performance. For large diameter flow conditioners (100 mm and above), all passageways can be cast into the plate and the diffuser side of the passageway of the Fig. 6 embodiment requires no machining. For small diameter flow conditioners, the plate can be moulded or cast in a convenient plastics material. The included angle for the diffuser portion 32 of the Fig. 6 embodiment should be in the range of 0 to 15 degrees with 6 to 10 degrees being preferred. The diffuser could be trumpet shaped instead of conical.

Figs. 7 and 8 show a fire fighting nozzle having a flow conditioner 10 of the invention positioned within a nozzle 40 having a nozzle piece 41, a pipe or body portion 42 and a coupling flange 43.

With the 19-hole flow conditioner 10 of Figs. 1 and 2, the spacing S between the flow conditioner 10 and the nozzle piece 41 must be a minimum of seven pipe diameters. For the 37-passageway conditioner shown in Fig. 3, the spacing S must be between 4 and 7 pipe diameters. The use of shorter or longer spacing with the 37-passageway conditioner of Fig. 3 causes loss of performance.

The flow conditioner 10 may be incorporated into other fire fighting nozzles such as an adjustable spray pattern nozzle or a fog nozzle 50 as shown in Fig. 9. The fog

5

10

15

20

25

-8-

nozzle 50 has a coupling flange 51, a pipe or body portion 52, an adjustable nozzle piece 53 and a stem 54. In this instance, the flow conditioner 10 is used as a retaining plate for the stem 54 which has a threaded end which engages in a correspondingly threaded wall of the central passageway 11.

A flow conditioner of the invention may be incorporated into many variations of the fog nozzle including those fitted with co-axial type proportioners. A flow conditioner used in this manner must have a minimum of six holes with the preferred number being 36. The use of six holes produces little or no improvement in performance unless the water entering the nozzle is very turbulent.

A flow conditioner 60 suitable for use with a nozzle having co-axial proportioners is shown in Figs. 11 and 12. The flow conditioner 60 has a central bore 63 and two concentric arrays 61 and 62 of passageways. The inner array 61 has 18 passageways and the outer array 62 has 24 or 25 passageways. In this instance, the plate 60 is 18 mm thick and has a diameter of 152 mm and each passageway has a diameter of 16 mm and each upstream end and downstream end is 2 mm long.

The co-axial type nozzle 70 shown in Fig. 13
incorporates a flow conditioner 60 of Figs. 11 and 12. The
nozzle 70 includes a proportioner element 71, a coupling
72, a nozzle body 73, and a shaper 74. Within the shaper
74 there is a stem 75 having a steamhead 76 and stemplate
77. The conditioner 60 is located within nozzle body 73.

Various modifications may be made in details of design and construction of the flow conditioner without departing from the scope and ambit of the invention.

CLAIMS

5

15

25

1. A fluid flow conditioner comprising a plate having a plurality of fluid passageways therethrough, each fluid passageway having an upstream end that is tapered inwardly in the direction of fluid flow and a downstream end that is tapered outwardly in the direction of fluid flow.

-10-

- A fluid flow conditioner according to claim 1 wherein
 each fluid passageway has a portion of constant cross-section between the upstream end and the downstream end.
 - 3. A fluid flow conditioner according to claim 2 wherein the constant cross-section portion is substantially longer than the tapered upstream end or the tapered downstream end.
- 4. A fluid flow conditioner according to claim 2 wherein the tapered downstream end is substantially longer than the tapered upstream end or the portion of constant cross-section.
 - 5. A fluid flow conditioner according to claim 4 wherein the tapered downstream end is a diffuser.
 - 6. A fluid flow conditioner according to claim 5 wherein the diffuser is of conical shape.

- 7. A fluid flow conditioner according to claim 6 wherein the included angle of the conical shaped diffuser is in the range of 0 to 15 degrees.
- 8. A fluid flow conditioner according to claim 6 wherein the included angle of the conical shaped diffuser is in the range of 6 to 10 degrees.
- A fluid flow conditioner according to claim 6 wherein
 the diffuser is trumpet shaped.
- 10. A fluid flow conditioner according to any one of the preceding claims having a central fluid passageway, an inner array of six fluid passageways and an outer array of 12 fluid passageways, the inner and outer arrays being located on circles which are concentric with the centre of the central passageway.
- 11. A fluid flow conditioner according to claim 10 and
 20 further including another array of passageways located on a
 circle which is concentric with the centre of the
 passageways and which is located radially outwardly from
 the outer array.
- 12. A fluid flow conditioner according to claim 11 and further including another array of passageways located on a circle which is concentric with the centre of the

passageways and which is located radially outwardly from the outer array.

-12-

- 13. A fluid flow conditioner according to any one of claims
 1 to 9 having a central bore and inner and outer concentric arrays of passageways.
- 14. A fluid flow conditioner according to any one of claims
 1 to 13 wherein the diameter of each fluid passageway is in
 the range of 0.1 to 0.18 times the diameter of the plate.
 - 15. A fluid flow conditioner according to any one of claims 1 to 13 wherein the diameter of each fluid passageway is in the range of 0.8 to 0.13 times the diameter of the plate.

15

- 16. A fluid flow conditioner according to any one of claims
 1 to 12 wherein the diameter of each fluid passageway is in
 the range of 0.05 to 0.1 times the diameter of the plate.
- 20 17. A fluid flow conditioner according to any one of the preceding claims wherein the thickness of the plate is within the range of 0.6 to 1.7 times the diameter of each passageway.
- 25 18. A fluid flow conditioner according to claim 2 wherein the upstream end and downstream end of each passageway is
 0.1 times the diameter of the passageway.

- 19. A fluid flow conditioner according to claim 5 wherein the diffuser is 0.3 times the thickness of the plate.
- 20. A fluid flow conditioner according to claim 19 wherein the portion of constant cross-section is from 0.2 to 0.5 times the diameter of the passageway.
- 21. A fluid flow apparatus comprising a nozzle having a nozzle piece, a pipe or body portion and a coupling flange
 and a fluid flow conditioner according to any one of claims
 to 20.
- 22. A fluid flow apparatus according to claim 21 wherein the fluid flow conditioner is located in the pipe or body portion of the nozzle.
 - 23. A fluid flow apparatus according to claim 22 wherein the fluid flow conditioner is located in the coupling flange.

20

24. According to any one of claims 21, 22 or 23 and further including a stem portion connected to the central passageway of the fluid flow diffuser whereby the fluid flow apparatus constitutes a fog nozzle.

FIG. 5

FIG. 6

FIG. 7

FIG. 9

FIG. 10

CLASSIFICATION OF SUBJECT MATTER

Int. Cl.⁶ F15D 1/02 B05B 1/34 A62C 3/02

According to International Patent Classification (IPC) or to both national classification and IPC

В. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC F15D 1/02 B05B 1/34 A62C 31/02, 31/28

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched AU: IPC as above

Electronic data base consulted during the international search (name of data base, and where practicable, search terms used)

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
X Y	US,A, 4559275 (MATT) 17 December 1985 (17.12.85)	1, 2, 4-7 10-15, 17
Y	WO,A, 91/01452 (SALFORD UNIVERSITY BUSINESS SERVICES LTD) 7 February 1991 (07.02.91)	10-15, 17
x	FR,A, 2143866 (WESTINGHOUSE ELECTRIC CORP.) 9 February 1973 (09.02.73)	1, 2, 4-6
x	Patent Abstracts of Japan, M1610, page 75 JP,A, 6-47669 (BABCOCK HITACHI K.K.) 22 February 1994 (22.02.94)	1-3, 18

X	Further documents are listed in the continuation of Box C.	X	See patent family annex.
*	Special categories of cited documents :	"T"	later document published after the international
"A" "E" "L" "O" "P"	document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"X"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
		•	

Date of the actual completion of the international search 7 March 1995 (07.03.95)	Date of mailing of the international search report 1b Mov 1995 (16.03.95)
Name and mailing address of the ISA/AU	Authorized officer
AUSTRALIAN INDUSTRIAL PROPERTY ORGANISATION PO BOX 200 WODEN ACT 2606	
AUSTRALIA	I KILBEY
Facsimile No. 06 2853929	Telephone No. (06) 2832115

ategory*	Citation of document, with indication, where appropriate of the relevant passages	Relevant to Claim No.
x	WO,A, 93/11908 (DIAT) 24 June 1993 (24.06.93)	1-3, 21
x	WO,A, 87/.07853 (BRONZAVIA - AIR EQUIPMENT) 30 December 1987 (30.12.87) See in particular Figs 6a,b.	1, 2, 4-6
X	US,A, 4828184 (GARDNER) 9 May 1989 (09.05.89)	
A	US,A, 3840051 (AKASHI) 8 October 1974 (08.10.84)	
A	WO,A, 89/09654 (POOK) 19 October 1989 (19.10.89)	
Α	US,A, 3572391 (HIRSCH) 23 March 1971 (23.03.71)	
		-
		8
	*	

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

							END OF ANNEX
US	4828184	CA	1313216	EP	354660	JP	2083051
wo	7853/87	EP	269707	FR	2600125	US	4869431
wo	11908/93	AU FR	33567/93 2684900	EP NO	616564 942164	FI	942741
wo	1452/91	AU NO	60543/90 920253	EP US	483206 5341848	GB	2235064
US	4559275	CH JP	659864 59009306	DE	3320753	GB	2123981
	Patent Document Cited in Search Report	Patent Family Member					