Statisztikai Elemzés

Vida Péter 16 May 2018

Adatok

A adathalmaz erről a linkről származik (https://www.kaggle.com/abcsds/pokemon).

Az adataink a data/Pokemon.csv fájl tartalmazza. Soronként egy-egy pokémonról a következőket tudjuk:

- Name: a neve
- Type.1: az elsődleges típusa
- Type.2: a másodlagos típusa (lehet üres is)
- Total: az alábbi tulajdonágok összege:
 - HP: életerő pontok
 - Attack: támadóérték
 - Defense: védelmi érték
 - Sp..Atk: speciális támadás
 - Sp..Def: speciális védekezés
 - Speed: sebesség
- Generation: melyik generációból való.
- Legendary: legendás pokémon-e

```
data <- read.csv('data/Pokemon.csv')
labels(data)[2]</pre>
```

```
## [[1]]
## [1] "X." "Name" "Type.1" "Type.2" "Total"
## [6] "HP" "Attack" "Defense" "Sp..Atk" "Sp..Def"
## [11] "Speed" "Generation" "Legendary"
```

Az adatok közül nem vettem figyelembe a pokémonok mega evolúcióját, mivel ez egy ideiglenes állapot. Ez 13 sor törlését jelentette. Hasonló elgondolásból a pokémonok primal formája is kikerült az adathalmazból. Illetve a Hoopa "Unbound" alakja is.

```
data <- data[!grepl("Mega",data$Name,fixed=TRUE),]
data <- data[!grepl("Primal",data$Name,fixed=TRUE),]
data <- data[!grepl("Unbound",data$Name,fixed=TRUE),]</pre>
```

Az adatokban a pokémonok, melyeknek különböző formái vannak, külön pokémonoknak számítanak. A duplikátumok elkerülése végett, ezeket a formákat kiszűrtem, a tulajdonságaikat pedig átlagoltam. Ilyen pokémonok voltak:

```
for (x in levels(factor(data$X.))) {
  rows <- data[data$X. == x,]
  if (nrow(rows) > 1) {
    data <- data[data$X. != x,]
    name <- rows$Name[1]
    name <- strsplit(gsub("(.)([[:upper:]])", "\\1 \\2", name),' ')[[1]][[1]]
    print(name)
    levels(data$Name) <- c(levels(data$Name),name)
    statlab <- c('Total','HP','Attack','Defense','Sp..Atk','Sp..Def','Speed')
    base <- rows[1,]
    base$Name <- name</pre>
```

```
for (l in statlab) {
      base[[1]] <- mean(rows[[1]])
    data[nrow(data)+1,] <- base</pre>
  }
## [1] "Deoxys"
## [1] "Wormadam"
## [1] "Rotom"
## [1] "Giratina"
## [1] "Shaymin"
## [1] "Darmanitan"
## [1] "Tornadus"
## [1] "Thundurus"
## [1] "Landorus"
## [1] "Kyurem"
## [1] "Keldeo"
## [1] "Meloetta"
## [1] "Meowstic"
## [1] "Aegislash"
## [1] "Pumpkaboo"
## [1] "Gourgeist"
A legendás pokémonok nagytöbbségében jobb tulajdonságokkal rendelkeznek, így az adathalmazunkat érdemes
szétválasztani.
legendsplit <- split(data,data$Legendary)</pre>
```

Így a normális és a legendás pokémonok számának megoszlása: 674 és 46.

Normális és legendás pokémonok közti különbségek

Tulajdonságok

normal <- legendsplit\$False
legendary <- legendsplit\$True</pre>

```
layout(matrix(c(1,1,1,2,4,6,3,5,7),3,3))
labels <- c('Normal','Legendary')
labels.short <- c('L','N')
boxplot(normal$Total,legendary$Total,main="Total",names = labels)
boxplot(legendary$HP,normal$HP,main="HP",names = labels.short,horizontal = TRUE)
boxplot(legendary$Attack,normal$Attack,main="Attack",names = labels.short,horizontal = TRUE)
boxplot(legendary$Defense,normal$Defense,main="Defense",names = labels.short,horizontal = TRUE)
boxplot(legendary$Speed,normal$Speed,main="Speed",names = labels.short,horizontal = TRUE)
boxplot(legendary$Sp..Atk,normal$Sp..Atk,main="Special Attack",names = labels.short,horizontal = TRUE)
boxplot(legendary$Sp..Def,normal$Sp..Def,main="Special Defense",names = labels.short,horizontal = TRUE)</pre>
```


Ez alapján azt láthatjuk, hogy többségében a legendás pokémonok jobb tulajdonsagokkal rendelkeznek a normálisakkal szemben.

Eloszlások

Tudjuk, hogy a legendás pokémonok tulajdonságai alapvetően magasabb értékűek a normális pokémonokénál. De vajon van-e hasonlóság abban, hogy az adott intervallumaikukon hogyan oszlanak el?

Ehhez a különböző tulajdonságok átlagát transzformáljuk valamely közös pontba, mondjuk legyen a 0. Majd kétmintás Kolmogorov-Szmirnov próbával teszteljük az eloszlások hasonlóságát, 95%-os szignifikancia szint mellett.

```
tests.ks <- list()</pre>
stats.names <- c('HP','Attack','Defense','Speed','Sp..Atk','Sp..Def')</pre>
for (i in stats.names) {
  layout(matrix(c(1:2),1,2,byrow = TRUE))
  tmp.norm <- normal[[i]] - mean(normal[[i]])</pre>
  tmp.legend <- legendary[[i]] - mean(legendary[[i]])</pre>
  dens.norm <- density(tmp.norm)</pre>
  dens.leg <- density(tmp.legend)</pre>
  limits.x <- c(min(min(tmp.norm), min(tmp.legend)), max(max(tmp.norm), max(tmp.legend)))</pre>
  limits.y <- c(0,max(max(dens.norm$y),max(dens.leg$y)))</pre>
  \#layout(matrix(c(1,2),1,2,byrow = FALSE))
  #hist(tmp.norm, freq = FALSE, xlim = limits.x, ylim = limits.y, main = i,xlab = '')
  plot(dens.norm,xlim = limits.x, ylim = limits.y,main = i,xlab = '')
  #hist(tmp.legend, freq = FALSE, xlim = limits.x, ylim = limits.y, add=T, border = 2)
  lines(dens.leg,col = 2)
  plot(ecdf(tmp.norm),main='Tapasztalati eloszlásfüggvények')
```

```
plot(ecdf(tmp.legend),add=TRUE,col=2)

tests.ks[[i]] <- ks.test(tmp.norm,tmp.legend)
}</pre>
```

Warning in ks.test(tmp.norm, tmp.legend): p-value will be approximate in
the presence of ties

HP

Tapasztalati eloszlásfüggvényel

Warning in ks.test(tmp.norm, tmp.legend): p-value will be approximate in
the presence of ties

Attack

Tapasztalati eloszlásfüggvényel

Warning in ks.test(tmp.norm, tmp.legend): p-value will be approximate in
the presence of ties

Defense

Tapasztalati eloszlásfüggvényel

 $\mbox{\tt \#\#}$ Warning in ks.test(tmp.norm, tmp.legend): p-value will be approximate in $\mbox{\tt \#\#}$ the presence of ties

Speed

Tapasztalati eloszlásfüggvényel

Warning in ks.test(tmp.norm, tmp.legend): p-value will be approximate in
the presence of ties

Sp..Atk

Tapasztalati eloszlásfüggvényel

Warning in ks.test(tmp.norm, tmp.legend): p-value will be approximate in
the presence of ties

Tapasztalati eloszlásfüggvényel


```
ks.value <- function(alpha,n,m) {
    sqrt(-1/2*log(alpha/2)) * sqrt((n+m)/(n*m))
}

#tests.f
alpha = 0.05
c <- ks.value(alpha,length(normal$Name),length(legendary$Name))</pre>
```

95%-os szignifikancia szint mellett a kritikus tartomány: |D| > 0.2069615.

- Életerő
 - A próba statisztika értéke $0.1850729 \le 0.2069615$, tehát nem vetettük el a nullhipotézist.
- Támadás
 - A próba statisztika értéke $0.1134047 \le 0.2069615$, tehát nem vetettük el a nullhipotézist.
- Védekezés
 - A próba statisztika értéke $0.136176 \le 0.2069615$, tehát nem vetettük el a nullhipotézist.
- Sebesség
 - A próba statisztika értéke 0.2247452 > 0.2069615, tehát elvetettük a nullhipotézist.
- Speciális Támadás
 - A próba statisztika értéke $0.1190814 \le 0.2069615$, tehát nem vetettük el a nullhipotézist.
- Speciális Védekezés
 - A próba statisztika értéke $0.1601729 \le 0.2069615$, tehát nem vetettük el a nullhipotézist.

Típusok

A pokémonoknak legalább egy és maximum két típusa lehet. A típusnak a támadásoknál van szerepe, a különféle képességek más más típusra máshogy hathatnak. ("It's super effective!") Mivel a két típussal rendelkező pokémonok mindkét típusuknak megfelelően erősebbek és gyengébbek a más típusokkal szemben, a típus szerinti összegzésbe mindkét típus szerint beleszámoltam őket. Az adatok összessége így több mint az

eredeti, de talán átfogóbb képet kaphatunk.

Másodlagos típus

Először az elsődleges és másodlagos típusok megoszlásást külön a normális és a legendás pokémonok között vizsgáltam.

```
norm.type1.summary <- summary(normal$Type.1)</pre>
norm.type2.summary <- summary(normal$Type.2)[-1]</pre>
norm.types.summary <- t(cbind(as.matrix(norm.type1.summary),as.matrix(norm.type2.summary)))
norm.types.summary.normaled <- norm.types.summary/sum(norm.types.summary)</pre>
norm.types.summary.normaled.ordered <- norm.types.summary.normaled[,order(colSums(norm.types.summary.normaled)]
leg.type1.summary <- summary(legendary$Type.1)</pre>
leg.type2.summary <- summary(legendary$Type.2)[-1]</pre>
leg.types.summary <- t(cbind(as.matrix(leg.type1.summary),as.matrix(leg.type2.summary)))</pre>
leg.types.summary.normaled <- leg.types.summary/sum(leg.types.summary)</pre>
leg.types.summary.normaled.ordered <- leg.types.summary.normaled[,order(colSums(leg.types.summary.norma</pre>
types.summary <- cbind(colSums(norm.types.summary),colSums(leg.types.summary))</pre>
types.summary.normaled <- cbind(types.summary[,1]/sum(types.summary[,1]),types.summary[,2]/sum(types.summary
maxval <- max(max(colSums(norm.types.summary.normaled)), max(colSums(leg.types.summary.normaled)))</pre>
maxval <- c(0,maxval)</pre>
label.x <- 'Density'</pre>
legendtext.1 <- c('Type.1','Type.2')</pre>
layout(matrix(c(1,2),1,2,byrow = TRUE))
barplot(norm.types.summary.normaled.ordered,las=1,horiz = TRUE,legend.text = legendtext.1,main = 'Types
barplot(leg.types.summary.normaled.ordered,las=1,horiz = TRUE,xlim = maxval,legend.text = legendtext.1,
```

Types in normal pokemons

Types in legendary pokemons


```
num.water <- sum(norm.types.summary[,colnames(norm.types.summary)=='Water'])
num.normal <- sum(norm.types.summary[,colnames(norm.types.summary)=='Normal'])
num.sum <- sum(norm.types.summary)</pre>
```

- A repülő típus főleg másodlagosként szerepel
- Normális pokémonoknál a legyakoribb típus a víz, de ez 114 darabot jelent, míg a második leggyakoribb, a "Normal" 95 darab (az 997-ből), ez pedig nem tekinthető szignifikáns különbségnek (1.9057172%).
- Legendás pokémonoknál jellemzőbbnek tűnik a második típus megléte.
 - A legendás pokémonoknak 58.6956522%-a,
 - Ezzel szemben a normálisoknak 47.9228487%-a rendelkezik másodlagos típussal

```
layout(matrix(1,1,1))
barplot(t(types.summary.normaled),beside = TRUE,las = 2,legend.text = labels)
```


Észrevehető, hogy legendás pokémonok gyakrabban sárkány, repülő illetve psychic típusúak.

Generáció szerinti bontás

```
data.gens <- split(data,data$Generation)
normal.gens <- split(normal,normal$Generation)
legendary.gens <- split(legendary,legendary$Generation)</pre>
```

Pokémonok száma

Megvizsgáltam, hogy a generációkban hogyan oszlik meg az új pokémonok száma, és erre lineáris modell illesztésével előrejelezni, hogy a következő

```
poke.num <- rep(0,6)
poke.num.cum <- rep(0,6)
gen.list <- c(1:length(data.gens))</pre>
```

```
for (i in gen.list) {
   poke.num[i] <- length(data.gens[[i]]$Name)
   poke.num.cum[i] <- sum(poke.num[1:i])
}

regr <- function(coefs,x) coefs[1] + x * coefs[2]

plot(poke.num)
num.model <- lm(poke.num~gen.list)
lines(num.model$fitted.values)</pre>
```



```
#lines(regr(num.model$coefficients,c(1:6)))
plot(poke.num.cum)
num.cum.model <- lm(poke.num.cum~gen.list)
lines(num.cum.model$fitted.values)</pre>
```



```
#regr <- function(coefs,x) sum(c(1,x)*coefs)
gen7.num <- regr(num.model$coefficients,7)
gen7.num.cum <- regr(num.cum.model$coefficients,7)</pre>
```

A modell alapján a 7. generációban 94.8 új pokémon lesz, azaz összesen 814.8. A kumulált modell szerint a 7. generációban összesen 855.6 darab ($\Delta=40.8$). A valódi 7. generációban ezzel szemben 86 új pokémon volt, így lett összesen 807.

Tehát ha nem a kumulált pokémon számot néztük, pontosabb becslést kapunk.

Ha a modellünket kiegészítjük a 7. generáció pokémonjainak számával a 8. generációra az alábbi becslést kapjuk.

```
gen7.num.exact <- 86
gen.list.ext <- c(1:7)
poke.num.ext <- c(poke.num,gen7.num.exact)
plot(poke.num.ext)
legend('topright', legend = c('Eredeti','Kiegészített'), col=c(2,1),lty = 1)
num.ext.model <- lm(poke.num.ext~gen.list.ext)
lines(num.ext.model$fitted.values)
lines(regr(num.model$coefficients,c(1:7)),col=2)</pre>
```



```
gen8.num <- c(0,0)
gen8.num[1] <- regr(num.model$coefficients,8)
gen8.num[2] <- regr(num.ext.model$coefficients,8)
#num.model$coefficients - num.ext.model$coefficients</pre>
```

Ez alapján a modell alapján a becslés a 8. generáció új pokémonjainak számára 82.5714286, míg az előző modell alapján 87.6 ($\Delta=5.0285714$).

Tulajdonságok

Generációkra lebontva a legendás pokémonok száma elenyésző, így őket nem vettem bele a vizsgálatba a továbbiakban.

```
#gen1 <- list(both = data.gens$'1', normal = normal.gens$'1', legendary = legendary.gens$'1')
gen1 <- normal.gens$'1'
gen2 <- normal.gens$'2'
gen3 <- normal.gens$'3'
gen4 <- normal.gens$'4'
gen5 <- normal.gens$'5'
gen6 <- normal.gens$'6'
boxplot(gen1$Total,gen2$Total,gen3$Total,gen4$Total,gen5$Total,gen6$Total,main='Generációk össz tulajdon</pre>
```

Generációk össz tulajdonságai

Innen azt vehetjük észre, hogy a negyedik generációban összességében erősebb pokémonok érkeztek.

Típusok

Itt arra voltam kíváncsi, hogy vannak-e különböző típus trendek a különböző generációkban.

```
gens.types.summary <- NULL</pre>
gens.types.summary.normaled <- NULL</pre>
for (gen in normal.gens) {
  #print(i$Type.1)
gen.type1.summary <- summary(gen$Type.1)</pre>
gen.type2.summary <- summary(gen$Type.2)[-1]</pre>
gen.types.summary <- t(cbind(as.matrix(gen.type1.summary),as.matrix(gen.type2.summary)))</pre>
types.sum <- colSums(gen.types.summary)</pre>
types.summary.normaled <- colSums(gen.types.summary) / nrow(gen)
gens.types.summary <- cbind(gens.types.summary,types.sum)</pre>
gens.types.summary.normaled <- cbind(gens.types.summary.normaled,types.summary.normaled)</pre>
#barplot(types.summary)
}
#qens.types.summary <- t(qens.types.summary)</pre>
gens.types.summary.normaled <- t(gens.types.summary.normaled)</pre>
#barplot(gens.types.summary,horiz = FALSE,las=2,beside = TRUE)
barplot(gens.types.summary.normaled,horiz = FALSE,las=2,beside = TRUE,col=c(2:7))
```


- Az első generációban a méreg és a víz típusú pokémonok a gyakoriak, de a méreg típus csak az első generációban volt ilyen meghatározó.
- A második generációban a repülő pokémonok száma kiugró.
- A hatodik generációban pedig a "Fairy" típus örvendett nagy népszerűségnek.

Próba

Legyen a nullhipotézisünk, hogy a pokémon típusa nem függ attól hogy hanyadik generációs.

```
alpha <- 0.05
gens.types.summary
             types.sum types.sum types.sum types.sum types.sum
## Bug
                    12
                               10
                                          14
                                                      9
                                                                18
                                                                            3
## Dark
                     0
                                6
                                          10
                                                      6
                                                                16
                                                                            4
## Dragon
                     3
                                1
                                           6
                                                      3
                                                                 7
                                                                            8
                                                      7
## Electric
                     8
                                7
                                           4
                                                                 9
                                                                            3
                     5
                                8
                                           5
                                                      2
                                                                 2
## Fairy
                                                                           11
                                           7
                                                      7
## Fighting
                     8
                                3
                                                                12
                                                                            4
                                                                            7
## Fire
                    11
                                8
                                           6
                                                      4
                                                                13
                                                                            7
## Flying
                    16
                               17
                                          11
                                                     14
                                                                15
## Ghost
                     3
                                1
                                           6
                                                      7
                                                                 9
                                                                            7
## Grass
                                9
                                          17
                                                     13
                                                                19
                                                                            9
                    14
## Ground
                    14
                               10
                                          12
                                                     10
                                                                10
                                                                            1
                     4
                                5
                                                                            4
## Ice
                                           5
                                                      6
                                                                 6
                    22
                               15
                                                                            8
## Normal
                                          18
                                                     15
                                                                17
## Poison
                    33
                                4
                                           5
                                                      8
                                                                 7
                                                                            2
## Psychic
                    13
                                9
                                          16
                                                      6
                                                                14
                                                                            5
                                7
                                                      7
                                                                            7
## Rock
                    11
                                          11
                                                                 9
## Steel
                     2
                                4
                                           7
                                                      8
                                                                11
                                                                            4
## Water
                    32
                               17
                                          27
                                                                            8
                                                     13
                                                                17
res <- chisq.test(gens.types.summary)</pre>
## Warning in chisq.test(gens.types.summary): Chi-squared approximation may be
## incorrect
crit <- qchisq(alpha,res$parameter)</pre>
##
##
    Pearson's Chi-squared test
##
## data: gens.types.summary
## X-squared = 157.73, df = 85, p-value = 2.809e-06
```

A próbához tartozó kritikus tartományunk 5%-os szignifikancia szint mellett : $\chi^2 > 64.7493958$. A próba eredménye 157.7262994 > 64.7493958, tehát a nullhipotézist elvetjük, és a pokémon típusa függ attól, hogy hanyadik generációs.

A dokumentumról

Ez a dokumentum R Studio-ban készült, a forrása egy .Rmd (R Markdown) fájl (mellékelve). A dokumentumban szereplő kódrészletek a generálásakor kiértékelődtek, és azok kimenete látszik. A csatolt .r fájlban a dokumentumban szereplő kódrészletek vannak összegyűjtve.