Summation, Product, Transpose

Dyadic Product, Horizontal / Vertical dot product

Trace, Identity Tensor, Inverse of a Tensor

Summahon:

$$(T+S)a = Ta + Sa = Wa$$

$$[W] = [T] + [S]$$

Product of two tensor:

and also
$$(ST)a = T(Sa)$$

and $ST = S(Ta)$

$$[TS] = [T][S]$$

$$BUT [ST] \neq [TS], ST \neq TS$$

$$[ST] = [S][T]$$

$$(T(SV))\alpha \equiv T((SV)\alpha) \equiv T(S(V\alpha))$$

Transpose:

$$(T^T)^T = T$$

 $(AB...Z) = Z^T...B^TA^T$

Dyadic Product:

$$(a \otimes b) (\alpha c + \beta d) = \alpha (b \cdot (\alpha c + \beta d)) = \alpha (\alpha b \cdot c + \beta b \cdot d)$$

$$\alpha, \beta : scalar$$

$$= \alpha (b \cdot a) + \beta (a \cdot b) = \alpha (a \cdot b \cdot c + \beta b \cdot d)$$

Define a tensor using dyatic product:

Tij = ei . Tej = e. .
$$(a \otimes b)$$
ej = ei $a (b \cdot ej)$ = $aibj$

we assume that $T=ab$

ai bj

$$T = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix}$$

$$e_1 \otimes e_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$e_{1} \otimes e_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Trace of a tensor:

$$\begin{cases} tr(T+S) = trT + trS \\ tr(\alpha T) = \alpha tr(T) \end{cases}$$

$$\begin{cases} tr(\alpha \otimes b) = \alpha \cdot b \end{cases}$$

$$trT^{T} = trT$$

tr(AB)
$$C = AB$$
, $Cij = AimBmj$
 C $tr(C) = Cii = AimBmi$
 $tr(ABCO) = AimBmn Cnj Oji$
 E
 $tr(E) = Eij$

Identity Tensor (I) and Inverse of a Tensor:

 $Ia = a = a$
 $TI = IT = T$
 $I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

1. $ST = I$ that means $S = T$

2. $(T)[T] = [T][T] = [I]$

3. $(T)^T = (T)^T$

4. $(TS)^T = S^TT$, $(ABC...O)^T = D^T...CBA$
 $Ta = b \longrightarrow TTa = Tb \Longrightarrow Ia = Tb \Longrightarrow a = Tb$
 I

if T is invertible in there is a one-to-one mapping T

that can transform a into b.

It T is not invertible $(det T = 0)$ in there is more than one mapping like T that transform a into b.

Example 2.14.2

(a)
$$T = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
 [d, d₂ d₃] = $\begin{bmatrix} c_1 d_1 & c_1 d_2 & c_1 d_3 \\ c_2 d_1 & c_2 d_2 & c_2 d_3 \\ c_3 d_1 & c_3 d_2 & c_3 d_3 \end{bmatrix}$

$$det(T) = 0$$

(b) if
$$Ta = b$$
 then $T(a+h) = b$ wher $h \perp d (h \cdot d = 0)$

$$T(a+h) = (c \otimes d)(a+h) = c(d \cdot (a+h)) = c(d \cdot a+d \cdot h)$$

$$= c(d \cdot a) = (c \otimes d) = Ta = b$$

$$d \cdot h = 0$$

Harizontal / Vertical dot product: