Trees

- Family Tree
- Parse Trees
 - e.g. for x + (y * (z+w))

- Trees to organize data bases / file systems
 - e.g. The UNIX file system
- Search Trees

Intro to Data Structures and Algorithms ©

ADT - Trees, Slide 1

Rooted Trees Basic Terminology

- nodes (vertices)
- root
- parent
- children
- siblings
- degree

Intro to Data Structures and Algorithms ©

Trees - Recursive Definition

- The empty tree Λ has no nodes
- Given trees $T_1, T_2, ..., T_k$ with roots $r_1, r_2, ..., r_k$ respectively, and a node r, we can form the tree T by making r the root, and making $r_1, r_2, ..., r_k$ the children of r

Intro to Data Structures and Algorithms ©

ADT - Trees, Slide 3

Trees - More Terminology

- path
- · ancestor
- descendent
- subtree
- leaf
- · height
- depth

Intro to Data Structures and Algorithms ©

Ordered Trees

The children of each node are ordered

Leftmost-Child Right-Sibling

Intro to Data Structures and Algorithms $\ensuremath{\mathfrak{G}}$

Binary Trees

Recursive Definition:

A binary tree

- contains no nodes (Λ), or,
- root
- has 3 disjoint sets of nodes:
 - a <u>root</u>
 - a binary subtree called its <u>left subtree</u>
 - a binary subtree called its <u>right subtree</u>

Intro to Data Structures and Algorithms ©

Positional Trees

Recursive Definition:

A <u>k-ary</u> tree

- contains no nodes (Λ), or,
- has k+1 disjoint sets of nodes:
 - a root
 - k k-ary sub-trees

Intro to Data Structures and Algorithms $\ensuremath{\mathfrak{G}}$

Complete k-ary Tree

- · All leaves have same depth
- All internal nodes have degree $\,\mathbf{k}\,$
- k-ary tree of height h has:
 - k nodes at depth 1
 - $\mathbf{k} * \mathbf{k} = \mathbf{k}^2$ nodes at depth 2

 $\begin{array}{lll} -\ k\star k\star \dots \star k &=& k^h\ \ \mbox{leaves} \\ -\ 1\ +\ k\ +\ k^2+\dots + k^{h-1} &=& \frac{k^h-1}{k-1} \end{array} \mbox{internal nodes}$

Intro to Data Structures and Algorithms ©

Tree ADT

Make-Tree $(r, T_1, ..., T_k)$ - make a tree T with root r and $T_1, T_2, ..., T_k$ as its sub-trees

Root (I) - return the root of tree I

Parent (n,T) - return the parent of node n Λ if n is the root

Leftmost-Child (n,T) - return the first child of n Λ if n is a leaf

Right-Sibling (n,T) - return the right sibling of n $\Lambda \ \ \text{if n is rightmost}$

Intro to Data Structures and Algorithms ©

ADT - Trees, Slide 13

Binary Tree ADT

Make-Tree (r, T_1, T_r) - make a tree T with root r and T_1, T_r as its subtrees

Root(T) - return the root of tree T

Parent (n,T) - return the parent of node n Λ if n is the root

Left-Child(n,T) - return the left child of n Λ if n is a leaf

Right-Child (n,T) - return the right child of n Λ if n is rightmost

Intro to Data Structures and Algorithms ©

Example

	element	parent	leftmost child	right sibling
0	A	-1	1	-1
1	В	0	-1	2
2	С	0	3	-1
3	D	2	-1	4
4	E	2	-1	-1
5	F	-1	6	-1
6	G	5	-1	-1

Intro to Data Structures and Algorithms ©

ADT - Trees, Slide 21

Tree Walks

```
InOrder-Tree-Walk(x)
```

- 1 if $x \neq NIL$
- 2 InOrder-Tree-Walk(left[x])
- 3 print key[x]
- 4 InOrder-Tree-Walk(right[x])

PreOrder-Tree-Walk(x)

- 1 if $x \neq NIL$
- 2 print key[x]
- 3 PreOrder-Tree-Walk(left[x])
- 4 PreOrder-Tree-Walk(right[x])

PostOrder-Tree-Walk(x)

- 1 if $x \neq NIL$
- 2 PostOrder-Tree-Walk(left[x])
- 3 PostOrder-Tree-Walk(right[x])
- 4 print key[x]

Running Time: O(n)

Intro to Data Structures and Algorithms ©

Example

PreOrder: 1 2 4 5 8 3 6 9 7
InOrder: 4 2 8 5 1 6 9 3 7
PostOrder: 4 8 5 2 9 6 7 3 1

Intro to Data Structures and Algorithms ©

ADT - Trees, Slide 23

Example:

Arithmetic Tree:

PreOrder: + a * - b c + d e

InOrder: ((a) + ((b-c) * (d+e)))

PostOrder: a b c - d e + * +

Intro to Data Structures and Algorithms $\ensuremath{\mathfrak{G}}$