PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		(11) International Publication Number:	WO 94/28920
A61K 37/02, 39/12, C12Q 1/70, G01N 33/53	A1	(43) International Publication Date:	22 December 1994 (22.12.94)

(21) International Application Number:

PCT/US94/05739

(22) International Filing Date:

7 June 1994 (07.06.94)

(30) Priority Data:

073,028

7 June 1993 (07.06.93)

US

(71) Applicant: DUKE UNIVERSITY [US/US]; Erwin Road, Durham, NC 27706 (US).

(72) Inventors: BOLOGNESI, Dani, P.; 17 Harvey Place, Durham, NC 27705 (US). MATTHEWS, Thomas, J.; 5906 Newhall Road, Durham, NC 27713 (US). WILD, Carl, T.; 1702 B Vista Street, Durham, NC 27701 (US). BARNEY, Shaen, O'Lin; 106 Branchway Road, Cary, NC 27502 (US). LAMBERT, Dennis, M.; 101 Centerville Court, Cary, NC 27513 (US). PETTEWAY, Stephen, R., Jr.; 203 Le Gault Drive, Cary, NC 27513 (US).

(74) Agents: CORUZZI, Laura, A. et al.; Pennie & Edmonds, 1155 Avenue of the Americas, New York, NY 10036 (US). (81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KG, KR, KZ, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, UA, UZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SYNTHETIC PEPTIDE INHIBITORS OF HIV TRANSMISSION

(57) Abstract

The present invention relates to peptides which exhibit potent anti-retroviral activity. The peptides of the invention comprise DP-178 (SEQ ID:1) peptide corresponding to amino acids 638 to 673 of the HIV-1_{LAI} gp41 protein, and fragments, analogs and homologs of DP-178. The invention further relates to the uses of such peptides as inhibitory of human and non-human retroviral, especially HIV, transmission to uninfected cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	. 17	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belanus	. KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
·CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam

SYNTHETIC PEPTIDE INHIBITORS OF HIV TRANSMISSION

1. <u>INTRODUCTION</u>

The present invention relates to DP-178 (SEQ ID:1), a peptide corresponding to amino acids 638 to 673 of the HIV-1_{LAI} transmembrane protein (TM) gp41, and portions, analogs, and homologs of DP-178 (SEQ ID:1), all of which exhibit anti-viral activity. anti-viral activity includes, but is not limited to, the inhibition of HIV transmission to uninfected CD-4+ cells. Further, the invention relates to the use of DP-178 (SEQ ID:1) and DP-178 fragments and/or analogs or homologs as inhibitors of human and non-human retroviral, especially HIV, transmission to uninfected cells. Still further, the invention relates to the use of DP-178 as a HIV subtype-specific diagnostic. The present invention also relates to antiviral peptides analogous to DP-107, a peptide corresponding to amino acids 558 to 595 of the HIV-1_{LAI} transmembrane protein (TM) gp41, that are present in other enveloped 20 viruses. The present invention further relates to methods for identifying antiviral compounds that disrupt the interaction between DP-178 and DP-107, and/or between DP-107-like and DP-178-like peptides. The invention is demonstrated by way of a working 25 example wherein DP-178 (SEQ ID:1), and a peptide whose sequence is homologous to DP-178 are each shown to be potent, non-cytotoxic inhibitors of HIV-1 transfer to uninfected CD-4+ cells. The invention is further demonstrated by working examples wherein peptides having antiviral and/or structural similarity to DP-107 and DP-178 are identified.

2. BACKGROUND OF THE INVENTION

2.1. THE HUMAN IMMUNODEFICIENCY VIRUS

The human immunodeficiency virus (HIV) has been implicated as the primary cause of the slowly degenerative immune system disease termed acquired immune deficiency syndrome (AIDS) (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo, R. et al., 1984, Science 224:500-503). there are at least two distinct types of HIV: HIV-1 (Barre-Sinoussi, F. et al., 1983, Science 220:868-870; Gallo R. et al., 1984, 10 Science 224:500-503) and HIV-2 (Clavel, F. et al., 1986, Science 233:343-346; Guyader, M. et al., 1987, Nature 326:662-669). Further, a large amount of genetic heterogeneity exists within populations of each of these types. Infection of human CD-4+ T-15 lymphocytes with an HIV virus leads to depletion of the cell type and eventually to opportunistic infections, neurological dysfunctions, neoplastic growth, and ultimately death.

HIV is a member of the lentivirus family of retroviruses (Teich, N. et al., 1984, RNA Tumor Viruses, Weiss, R. et al., eds., CSH-Press, pp. 949-956). Retroviruses are small enveloped viruses that contain a diploid, single-stranded RNA genome, and replicate via a DNA intermediate produced by a virally-encoded reverse transcriptase, an RNA-dependent DNA polymerase (Varmus, H., 1988, Science 240:1427-1439). Other retroviruses include, for example, oncogenic viruses such as human T-cell leukemia viruses (HTLV-I,-II,-III), and feline leukemia virus.

The HIV viral particle consists of a viral core, composed of capsid proteins, that contains the viral RNA genome and those enzymes required for early replicative events. Myristylated Gag protein forms an

outer viral shell around the viral core, which is, in turn, surrounded by a lipid membrane envelope derived from the infected cell membrane. The HIV envelope surface glycoproteins are synthesized as a single 160 Kd precursor protein which is cleaved by a cellular protease during viral budding into two glycoproteins, gp41 and gp120. gp41 is a transmembrane protein and gp120 is an extracellular protein which remains non-covalently associated with gp41, possibly in a trimeric or multimeric form (Hammarskjold, M. and Rekosh, D., 1989, Biochem. Biophys. Acta 989:269-280).

HIV is targeted to CD-4⁺ cells because the CD-4 cell surface protein acts as the cellular receptor for the HIV-1 virus (Dalgleish, A. et al., 1984, Nature 312:763-767; Klatzmann et al., 1984, Nature 312:767-768; Maddon et al., 1986, Cell 47:333-348). Viral entry into cells is dependent upon gp120 binding the cellular CD-4⁺ receptor molecules (McDougal, J.S. et al., 1986, Science 231:382-385; Maddon, P.J. et al., 1986, Cell 47:333-348) and thus explains HIV's tropism for CD-4⁺ cells, while gp41 anchors the envelope glycoprotein complex in the viral membrane.

2.2. HIV TREATMENT

diseases represent a major world health problem.

Although considerable effort is being put into the successful design of effective therapeutics, currently no curative anti-retroviral drugs against AIDS exist.

In attempts to develop such drugs, several stages of the HIV life cycle have been considered as targets for therapeutic intervention (Mitsuya, H. et al., 1991, FASEB J. 5:2369-2381). For example, virally encoded reverse transcriptase has been one focus of drug development. A number of reverse-transcriptase-

targeted drugs, including 2',3'-dideoxynucleoside analogs such as AZT, ddI, ddC, and d4T have been developed which have been shown to been active against HIV (Mitsuya, H. et al., 1991, Science 249:1533-1544). While beneficial, these nucleoside analogs are not curative, probably due to the rapid appearance of drug resistant HIV mutants (Lander, B. et al., 1989, Science 243:1731-1734). In addition, the drugs often exhibit toxic side effects such as bone marrow suppression, vomiting, and liver function abnormalities.

Attempts are also being made to develop drugs which can inhibit viral entry into the cell, the earliest stage of HIV infection. Here, the focus has thus far been on CD4, the cell surface receptor for HIV. Recombinant soluble CD4, for example, has been shown to inhibit infection of CD-4+ T-cells by some HIV-1 strains (Smith, D.H. et al., 1987, Science 238:1704-1707). Certain primary HIV-1 isolates, however, are relatively less sensitive to inhibition 20 by recombinant CD-4 (Daar, E. et al., 1990, Proc. Natl. Acad. Sci. USA 87:6574-6579). In addition, recombinant soluble CD-4 clinical trials have produced inconclusive results (Schooley, R. et al., 1990, Ann. Int. Med. 112:247-253; Kahn, J.O. et al., 1990, Ann. Int. Med. 112:254-261; Yarchoan, R. et al., 1989, Proc. Vth Int. Conf. on AIDS, p. 564, MCP 137).

The late stages of HIV replication, which involve crucial virus-specific secondary processing of certain viral proteins, have also been suggested as possible anti-HIV drug targets. Late stage processing is dependent on the activity of a viral protease, and drugs are being developed which inhibit this protease (Erickson, J., 1990, Science 249:527-533). The

clinical outcome of these candidate drugs is still in question.

Attention is also being given to the development of vaccines for the treatment of HIV infection. HIV-1 envelope proteins (gp160, gp120, gp41) have been shown to be the major antigens for anti-HIV antibodies present in AIDS patients (Barin, et al., 1985, Science 228:1094-1096). Thus far, therefore, these proteins seem to be the most promising candidates to act as antigens for anti-HIV vaccine development. To this end, several groups have begun to use various portions of gp160, gp120, and/or gp41 as immunogenic targets for the host immune system. See for example, Ivanoff, L. et al., U.S. Pat. No. 5,141,867; Saith, G. et al., WO 92/22,654; Shafferman, A., WO 91/09,872; Formoso, C. et al., WO 90/07,119. Clinical results concerning these candidate vaccines, however, still remain far in the future.

Thus, although a great deal of effort is being directed to the design and testing of anti-retroviral drugs, a truly effective, non-toxic treatment is still needed.

3. SUMMARY OF THE INVENTION

The present invention relates to DP-178 (SEQ ID:1), a 36-amino acid synthetic peptide corresponding to amino acids 638 to 673 of the transmembrane protein (TM) gp41 from the HIV-1 isolate LAI, which exhibits potent anti-HIV-1 activity. As evidenced by the example presented below, in Section 6, the DP-178 (SEQ ID:1) anti-viral activity is so high that, on a weight basis, no other known anti-HIV agent is effective at concentrations as low as those at which DP-178 (SEQ ID:1) exhibits its inhibitory effects. The invention further relates to those portions, analogs, and

homologs of DP-178 which also show such antiviral activity. The antiviral activity of such DP-178 portions, analogs, and homologs, includes, but is not limited to the inhibition of HIV transmission to uninfected CD-4⁺ cells. The invention relates to the use of DP-178 (SEQ ID:1) and DP-178 fragments and/or analogs or homologs. Such uses may include, but are not limited to, the use of the peptides as inhibitors of human and non-human retroviral, especially HIV, transmission to uninfected cells, and as type and/or subtype-specific diagnostic tools.

10

20

25

35

An embodiment of the invention is demonstrated below wherein an extremely low concentration of DP-178 (SEQ ID:1), and very low concentrations of a DP-178 homolog (SEQ ID:3) are shown to be potent inhibitors of HIV-1 mediated CD-4⁺ cell-cell fusion (i.e., syncytial formation) and infection of CD-4⁺ cells by cell-free virus. Further, it is shown that DP-178 (SEQ ID:1) is not toxic to cells, even at concentrations 3 logs higher than the inhibitory DP-178 (SEQ ID:1) concentration.

The invention also relates to analogous DP178 peptides in other enveloped viruses that demonstrate similar antiviral properties.

The invention further relates to peptides analogous to DP-107, a peptide corresponding to amino acids 558-595 of the HIV-1_{LAI} transmembrane protein (TM) of gp41, that are present in other enveloped viruses, and demonstrate antiviral properties. The present invention is based, in part, on the surprising discovery that the DP-107 and DP-108 domains of the gp41 protein non-covalently complex with each other, and that their interaction is necessary for the normal activity of the virus. The invention, therefore, further relates to methods for identifying antiviral

compounds that disrupt the interaction between DP-107 and DP-178, and/or between DP-107-like and DP-178-like peptides.

Embodiments of the invention are demonstrated, below, wherein peptides having structural and/or similarity to DP-107 and DP-178 are identified.

3.1. **DEFINITIONS**

Peptides are defined herein as organic compounds comprising two or more amino acids covalently joined by peptide bonds. Peptides may be referred to with respect to the number of constituent amino acids, i.e., a dipeptide contains two amino acid residues, a tripeptide contains three, etc. Peptides containing ten or fewer amino acids may be referred to as oligopeptides, while those with more than ten amino acid residues are polypeptides.

Peptide sequences defined herein are represented by one-letter symbols for amino acid residues as follows:

- 20 A (alanine)
 - R (arginine)
 - N (asparagine)
 - D (aspartic acid)
 - C (cysteine)
- Q (glutamine)
 - E (glutamic acid)
 - G (glycine)
 - H (histidine)
 - I (isoleucine)
- L (leucine)
 - _____
 - K (lysine)
 - M (methionine)
 - F (phenylalanine)
 - P (proline)

WO 94/28920

- S (serine)
- T (threonine)
- W (tryptophan)
- Y (tyrosine)
- V (valine)

5

4. BRIEF DESCRIPTION OF THE FIGURES

- FIG. 1. Amino acid sequence of DP-178 (SEQ ID:1) derived from HIVLAI; DP-178 homologs derived from $HIV-1_{SF2}$ (DP-185; SEQ ID:3), $HIV-1_{RF}$ (SEQ ID:4), and HIV-1_{MN} (SEQ ID:5); DP-178 homologs derived from amino acid sequences of two prototypic HIV-2 isolates, namely, HIV-2_{rod} (SEQ ID:6) and HIV-2_{NHZ} (SEQ ID:7); control peptides: DP-180 (SEQ ID:2), a peptide incorporating the amino acid residues of DP-178 in a scrambled sequence; DP-118 (SEQ ID:10) unrelated to DP-178, which inhibits HIV-1 cell free virus infection; DP-125 (SEQ ID:8), unrelated to DP-178, was also previously shown to inhibit HIV-1 cell free virus infection (Wild et al., 1992, Proc. Natl. Acad. Sci USA 89:10,537-10,541); DP-116 (SEQ ID:9), unrelated to DP-178 had previously been shown to be negative for inhibition of HIV-1 infection using the cell-free virus infection assay (Wild, et al., 1992, Proc. Natl. Acad. Sci USA 89:10,537-10,541). Throughout the figures, the one letter amino acid code is used.
 - FIG. 2. Inhibition of HIV-1 cell-free virus infection by synthetic peptides. IC50 refers to the concentration of peptide that inhibits RT production from infected cells by 50% compared to the untreated control. Control: the level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.
 - FIG. 3. Inhibition of HIV-1 and HIV-2 cell-free virus infection by the synthetic peptide DP-178 (SEQ

ID:1). IC50: concentration of peptide that inhibits RT production by 50% compared to the untreated control. Control: Level of RT produced by untreated cell cultures infected with the same level of virus as treated cultures.

- FIG. 4A. Fusion Inhibition Assay. DP-178 (SEQ ID:1) inhibition of HIV-1 prototypic isolate-mediated syncytia formation. Data represents the number of virus-induced syncytia per cell.
- FIG. 4B. Fusion Inhibition Assay. DP-180 (SEQ ID:2): scrambled control peptide. DP-185 (SEQ ID:3): DP-178 homolog derived from HIV-1_{SF2} isolate. Control: number of syncytia produced in the absence of peptide.
- FIG. 5. Fusion inhibition assay: HIV-1 vs.

 HIV-2. Data represents the number of virus-induced syncytia per well. ND: not done.
 - FIG. 6. Cytotoxicity study of DP-178 (SEQ ID:1) and DP-116 (SEQ ID:9) on CEM cells. Cell proliferation data is shown.
- and maltose binding protein (MBP)-gp41 fusion proteins. DP107 and DP178 are synthetic peptides based on the two putative helices of gp41. The letter P in the DP107 boxes denotes an Ile to Pro mutation at amino acid number 578. Amino acid residues are numbered according to Meyers et al., Human Retroviruses and AIDS, 1991, Theoret. Biol. and Biophys. Group, Los Alamos Natl. Lab., Los Alamos, NM.
 - FIG. 8. A point mutation alters the conformation and anti-HIV activity of M41.
 - FIG. 9. Abrogation of DP178 anti-HIV activity. Cell fusion assays were carried out in the presence of 10 nM DP178 and various concentrations of M41 Δ 178 or M41 Δ 178.

FIG. 10. Binding of DP178 to leucine zipper of gp41 analyzed by ELISA.

FIG. 11A-B. Models for a structural transition in the HIV-1 TM protein. Two models are proposed which indicate a structural transition from a native oligomer to a fusogenic state following a trigger event (possibly gp120 binding to CD4). Common features of both models include (1) the native state is held together by noncovalent protein-protein interactions to form the heterodimer of gp120/41 and other interactions, principally though gp41 interactive sites, to form homo-oligomers on the virus surface of the gp120/41 complexes; (2) shielding of the hydrophobic fusogenic peptide at the N-terminus (F) in the native state; and (3) the leucine zipper domain (DP107) exists as a homo-oligomer coiled coil only in the fusogenic state. The major differences in the two models include the structural state (native or fusogenic) in which the DP107 and DP178 domains are complexed to each other. In the first model (A; FIG. 11A) this interaction occurs in the native state and in B during the fusogenic state. When triggered, the fusion complex in the model depicted in (A) is generated through formation of coiled-coil interactions in homologous DP107 domains resulting in 25 an extended a-helix. This conformational change positions the fusion peptide for interaction with the cell membrane. In the second model (B; FIG. 11B), the fusogenic complex is stabilized by the association of the DP178 domain with the DP107 coiled-coil.

FIG. 12. Motif design using heptad repeat positioning of amino acids of known coiled-coils.

FIG. 13. Motif design using proposed heptad repeat positioning of amino acids of DP-107 and DP-178.

FIG. 14. Hybrid motif design crossing GCN4 and DP-107.

FIG. 15. Hybrid motif design crossing GCN4 and DP-178.

FIG. 16. Hybrid motif design 107x178x4, crossing DP-107 and DP-178. This motif was found to be the most consistent at identifying relevant DP-107-like and DP-178-like peptide regions.

FIG. 17. Hybrid motif design ALLMOTI5, crossing GCN4, DP-107, and DP-178.

FIG. 18. Hybrid motif design crossing GCN4, DP-107, DP-178, c-Fos c-Jun, c-Myc, and Flu Loop 36.

FIG. 19. Motifs designed to identify N-terminal proline-leucine zipper motifs.

isolate) envelope protein gp41. Sequence search motific designations: Spades (*): 107x178x4; Hearts (*)

ALLMOTI5; Clubs (*): PLZIP; Diamonds (*):

transmembrane region (the putative transmembrane domains were identified using a PC/Gene program designed to search for such peptide regions).

Asterisk (*): Lupas method. The amino acid sequences identified by each motif are bracketed by the respective characters. Representative sequences chosen based on all searches are underlined and in bold. DP-107 and DP-178 sequences are marked, and additionally double-underlined and italicized.

FIG. 21. Search results for human respiratory syncytial virus (RSV) strain A2 fusion glycoprotein F1. Sequence search motif designations are as in FIG. 20.

FIG. 22. Search results for simian immunodeficiency virus (SIV) envelope protein gp41 (AGM3 isolate). Sequence search motif designations are as in FIG. 20.

FIG. 23. Search results for canine distemper virus (strain Onderstepoort) fusion glycoprotein 1. Sequence search motif designations are as in FIG. 20.

FIG. 24. Search results for newcastle disease virus (strain Australia-Victoria/32) fusion glycoprotein F1. Sequence search motif designations are as in FIG. 20.

parainfluenza 3 virus (strain NIH 47885) fusion

glycoprotein F1. Sequence search motif designations are as in FIG. 20.

FIG. 26. Search results for influenza A virus (strain A/AICHI/2/68) hemagglutinin precursor HA2. Sequence search designations are as in FIG. 20.

FIG. 27. Coiled-coil structural similarity and anti-RSV antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 48-amino acid RSV F2 peptide which spans sequences identified utilizing the computer-assisted searches described herein. For the exact location and motifs utilized, see FIG. 21. "+" symbols are relative indicators of either structural similarity or antiviral activity, with a greater number of "+" symbols indicating a higher relative similarity or antiviral activity.

FIG. 28. Coiled-coil structural similarity and anti-RSV antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 53-amino acid RSV F1 peptide which spans sequences identified utilizing the computer-assisted searches described herein. See FIG. 21 for the exact location and motifs used. "+" symbols are as described for FIG. 27.

FIG. 29. Coiled-coil structural similarity and anti-human parainfluenza 3 virus (HPF3) antiviral activity of 35-mer peptides synthesized utilizing the

30

15

20

sequence of a 56-amino acid HPF3 peptide which spans sequences identified utilizing computer-assisted searches described herein. For the exact location and motifs utilized, see FIG. 25. "+" symbols are as described in FIG. 27.

FIG. 30. Coiled-coil structural similarity and anti-HPF3 antiviral activity of 35-mer peptides synthesized utilizing the sequence of a 70-amino acid HPF3 peptide which spans sequences identified utilizing the computer-assisted searches described herein. For the exact location and motifs utilized, see FIG. 25. "+" symbols are as described in FIG. 27.

5. DETAILED DESCRIPTION OF THE INVENTION

Described herein are peptides that exhibit potent 15 antiviral activity. These peptides include DP-178 (SEQ ID:1), a gp41-derived 36 amino acid peptide, fragments and/or analogs of DP-178, and peptides which are homologous to DP-178. In addition, these peptides may include peptides exhibiting anti-viral activity 20 which are analogous to DP-107, a 38 amino acid peptide corresponding to residues 558 to 595 of the HIV-1, AL transmembrane (TM) gp41 protein, and which are present in other enveloped viral proteins. Also described here are assays for testing the antiviral activities 25 of such peptides. The present invention is based, in part, of the surprising discovery that the DP-107 and DP-178 domains of the gp41 protein complex with each other via non-covalent protein-protein interactions which are necessary for normal activity of the virus. As such, methods are described for the identification of antiviral compounds that disrupt the interaction between DP-107 and DP-178 peptides, and between DP-107-like and DP-178-like peptides. Finally, the use of the peptides of the invention as inhibitors of non-

human and human viral and retroviral, especially HIV, transmission are detailed, as is the use of the peptides as diagnostic indicators of the presence of specific, viruses, especially retroviruses.

While not limited to any theory of operation, the following model is proposed to explain the potent anti-HIV activity of DP178, based, in part, on the experiments described in the working examples, infra. In the viral protein, gp41, DP178 corresponds to a putative α -helix region located in the C-terminal end of the gp41 ectodomain, and appears to associate with a distal site on gp41 whose interactive structure is influenced by the leucine zipper motif, a coiled-coil structure, referred to as DP107. The association of these two domains may reflect a molecular linkage or "molecular clasp" intimately involved in the fusion process. It is of interest that mutations in the C-terminal α -helix motif of gp41 (i.e., the D178 domain) tend to enhance the fusion ability of gp41, whereas mutations in the leucine zipper region (i.e., the DP107 domain) decrease or abolish the fusion ability of the viral protein. It may be that the leucine zipper motif is involved in membrane fusion while the C-terminal α -helix motif serves as a molecular safety to regulate the availability of the leucine zipper during virus-induced membrane fusion.

On the basis of the foregoing, two models are proposed of gp41-mediated membrane fusion which are schematically shown in FIG. 11A-B. The reason for proposing two models is that the temporal nature of the interaction between the regions defined by DP107 and DP178 cannot, as yet, be pinpointed. Each model envisions two conformations for gp41 - one in a "native" state as it might be found on a resting virion. The other in a "fusogenic" state to reflect

15

20

25

conformational changes triggered following binding of gp120 to CD4 and just prior to fusion with the target cell membrane. The strong binding affinity between gp120 and CD4 may actually represent the trigger for the fusion process obviating the need for a pH change such as occurs for viruses that fuse within intracellular vesicles. The two major features of both models are: (1) the leucine zipper sequences (DP107) in each chain of oligomeric envelope are held apart in the native state and are only allowed access to one another in the fusogenic state so as to form the extremely stable coild-coils, and (2) association of the DP178 and DP107 sites as they exist in gp41 occur either in the native or fusogenic state. FIG. 11A depicts DP178/DP107 interaction in the native 15 state as a molecular class. On the other hand, if one assumes that the most stable form of the envelope occurs in the fusogenic state, the model in FIG. 11B can be considered.

When synthesized as peptides, both DP107 and 20 DP178 are potent inhibitors of HIV infection and fusion, probably by virtue of their ability to form complexes with viral gp41 and interfere with its fusogenic process; e.g., during the structural transition of the viral protein from the native 25 structure to the fusogenic state, the DP178 and DP107 peptides may gain access to their respective binding sites on the viral gp41, and exert a disruptive influence. DP107 peptides which demonstrate anti-HIV activity are described in Applicants' co-pending application Serial No. 07/927,532, filed August 7, 1992, which is incorporated by reference herein in its entirety.

As shown in the working examples, <u>infra</u>, a truncated recombinant gp41 protein corresponding the

ectodomain of gp41 containing both DP107 and DP178 domains (excluding the fusion peptide, transmembrane region and cytoplasmic domain of gp41) did not inhibit HIV-1 induced fusion. However, when a single mutation was introduced to disrupt the coiled-coil structure of the DP107 domain -- a mutation which results in a total loss of biological activity of DP107 peptides -- the inactive recombinant protein was transformed to an active inhibitor of HIV-1 induced fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107 domain.

For clarity of discussion, the invention will be described for DP178 peptide inhibitors of HIV.

However, the principles may be analogously applied to other fusogenic enveloped viruses, including but not limited to those viruses containing the peptides listed in Tables V through X, below.

15

20

25

5.1. <u>DP-178 AND DP-178-LIKE PEPTIDES</u>

The peptide DP-178 (SEQ ID:1) of the invention corresponds to amino acid residues 638 to 673 of the transmembrane protein gp41 from the HIV- $\mathbf{1}_{LAI}$ isolate, and has the 36 amino acid sequence (reading from amino to carboxy terminus):

NH2-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID:1)

In addition to the full-length DP-178 (SEQ ID:1)

36-mer, the peptides of the invention may include

truncations of the DP-178 (SEQ ID:1) peptide which
exhibit antiviral activity. Such truncated DP-178

(SEQ ID:1) peptides may comprise peptides of between 3
and 36 amino acid residues (i.e., peptides ranging in
size from a tripeptide to a 36-mer polypeptide), and

may include but are not limited to those listed in Tables I and II, below. Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. "X" may represent an amino group (-NH₂) and "Z" may represent a carboxyl (-COOH) group. Alternatively, as described below, "X" and/or "Z" may represent a hydrophobic group, an acetyl group, a FMOC group, an amido group, or a covalently attached macromolecule.

10

15

20

25

30

TABLE I DP-178 (SEO ID:1) CARBOXY TRUNCATIONS

X-YTS-Z X-YTSL-Z X-YTSLI-Z X-YTSLIH-Z X-YTSLIHS-Z X-YTSLIHSL-Z X-YTSLIHSLI-Z X-YTSLIHSLIE-Z X-YTSLIHSLIEE-Z X-YTSLIHSLIEES-Z X-YTSLIHSLIEESQ-Z X-YTSLIHSLIEESQN-Z X-YTSLIHSLIEESONO-Z X-YTSLIHSLIEESQNQQ-Z X-YTSLIHSLIEESQNQQE-Z X-YTSLIHSLIEESQNQQEK-Z X-YTSLIHSLIEESQNQQEKN-Z X-YTSLIHSLIEESQNQQEKNE-Z X-YTSLIHSLIEESQNQQEKNEQ-Z X-YTSLIHSLIEESQNQQEKNEQE-Z X-YTSLIHSLIEESQNQQEKNEQEL-Z X-YTSLIHSLIEESQNQQEKNEQELL-Z X-YTSLIHSLIEESQNQQEKNEQELLE-Z X-YTSLIHSLIEESQNQQEKNEQELLEL-Z X-YTSLIHSLIEESQNQQEKNEQELLELD-Z

X-YTSLIHSLIEESQNQQEKNEQELLELDK-Z X-YTSLIHSLIEESQNQQEKNEQELLELDKW-Z

X-YTSLIHSLIEESQNQQEKNEQELLELDKWA-Z X-YTSLIHSLIEESQNQQEKNEQELLELDKWAS-Z

X-YTSLIHSLIEESQNQQEKNEQELLELDKWASL-Z

X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLW-Z

X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWN-Z X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNW-Z

X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z

The one letter amino acid code is used.

Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

"Z" may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

TABLE II DP-178 (SEO ID:1) AMINO TRUNCATIONS

```
X-NWF-Z
                                                    X-WNWF-Z
                                                   X-LWNWF-Z
                                                  X-SLWNWF-Z
                                                 X-ASLWNWF-Z
                                                X-WASLWNWF-Z
                                               X-KWASLWNWF-Z
                                              X-DKWASLWNWE-Z
                                             X-LDKWASLWNWF-Z
                                            X-ELDKWASLWNWF-Z
                                           X-LELDKWASLWNWF-Z
                                          X-LLELDKWASLWNWF-Z
10
                                         X-ELLELDKWASLWNWF-Z
                                        X-QELLELDKWASLWNWF-Z
                                      X-EQELLELDKWASLWNWF-Z
                                      X-NEQELLELDKWASLWNWF-Z
                                    X-KNEQELLELDKWASLWNWF-Z
                                   X-EKNEQELLELDKWASLWNWF-Z
                                  X-QEKNEQELLELDKWASLWNWF-Z
                                 X-QQEKNEQELLELDKWASLWNWF-Z
                                X-NQQEKNEQELLELDKWASLWNWF-Z
                               X-QNQQEKNEQELLELDKWASLWNWF-Z
                              X-SQNQQEKNEQELLELDKWASLWNWF-Z
                             X-ESQNQQEKNEQELLELDKWASLWNWF-Z
                            X-EESQNQQEKNEQELLELDKWASLWNWF-Z
                           X-IEESQNQQEKNEQELLELDKWASLWNWF-Z
                          X-LIEESQNQQEKNEQELLELDKWASLWNWF-Z
20
                         X-SLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                        X-HSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                       X-IHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                      X-LIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                     X-SLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                    X-TSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                   X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
```

The one letter amino acid code is used.

Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

"Z" may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

The antiviral peptides of the invention also include analogs of DP-178 and/or DP-178 truncations which may include, but are not limited to, peptides comprising the DP-178 (SEQ ID:1) sequence, or DP-178 truncated sequence, containing one or more amino acid substitutions, insertions and/or deletions. Analogs of DP-178 homologs, described below, are also within the scope of the invention. The DP-178 analogs of the invention exhibit antiviral activity, and may, further, possess additional advantageous features, such as, for example, increased bioavailability, and/or stability, or reduced host immune recognition.

HIV-1 and HIV-2 envelope proteins are structurally distinct, but there exists a striking amino acid conservation within the DP-178-corresponding regions of HIV-1 and HIV-2. The amino acid conservation is of a periodic nature, suggesting some conservation of structure and/or function. Therefore, one possible class of amino acid substitutions would include those amino acid changes which are predicted to stabilize the structure of the DP-178 peptides of the invention.

Amino acid substitutions may be of a conserved or non-conserved nature. Conserved amino acid substitutions consist of replacing one or more amino acids of the DP-178 (SEQ ID:1) peptide sequence with amino acids of similar charge, size, and/or hydrophobicity characteristics, such as, for example, a glutamic acid (E) to aspartic acid (D) amino acid substitution. When only conserved substitutions are made, the resulting peptide is functionally equivalent to DP-178 (SEQ ID:1) or the DP-178 peptide from which it is derived. Non-conserved substitutions consist of replacing one or more amino acids of the DP-178 (SEQ ID:1) peptide sequence with amino acids possessing dissimilar charge, size, and/or hydrophobicity

characteristics, such as, for example, a glutamic acid (E) to valine (V) substitution.

Amino acid insertions may consist of single amino acid residues or stretches of residues ranging from 2 to 15 amino acids in length. One or more insertions may be introduced into DP-178 (SEQ ID:1), DP-178 fragments, analogs and/or DP-178 homologs (described below).

Deletions of DP-178 (SEQ ID:1), DP-178 fragments, analogs, and/or DP-178 homologs (described below) are also within the scope of the invention. Such deletions consist of the removal of one or more amino acids from the DP-178 or DP-178-like peptide sequence, with the lower limit length of the resulting peptide sequence being 4 to 6 amino acids. Such deletions may involve a single contiguous or greater than one discrete portion of the peptide sequences.

The peptides of the invention may further include homologs of DP-178 (SEQ ID:1) and/or DP-178 truncations which exhibit antiviral activity. Such DP-178 homologs are peptides whose amino acid sequences of sequences are comprised of the amino acid sequences of peptide regions of other (i.e., other than HIV-1_{LAI}) viruses that correspond to the gp41 peptide region from which DP-178 (SEQ ID:1) was derived. Such viruses may include, but are not limited to, other HIV-1 isolates and HIV-2 isolates. DP-178 homologs derived from the corresponding gp41 peptide region of other (i.e., non HIV-1_{LAI}) HIV-1 isolates may include, for example, peptide sequences as shown below.

 $NH_2-YTNTIYTLLEESQNQQEKNEQELLELDKWASLWNWF-COOH$ (DP-185; SEQ ID:3);

30

35

 $\mathrm{NH_2-YT}_{\underline{\mathbf{GI}}}$ $\underline{\mathbf{YN}}$ $\underline{\mathbf{LL}}$ $\underline{\mathbf{EESQNQQEKNEQELLELDKWA}}$ $\underline{\mathbf{N}}$ $\underline{\mathbf{LWNWF-COOH}}$ (SEQ ID:4);

 NH_2 -YTSLIYSLLEKSQIQQEKNEQELLELDKWASLWNWF-COOH (SEQ ID:5).

SEQ ID:3 (DP-185), SEQ ID:4, and SEQ ID:5 are derived from HIV-1_{SP2}, HIV-1_{RF}, and HIV-1_{MN} isolates, respectively. Underlined amino acid residues refer to those residues that differ from the corresponding position in the DP-178 (SEQ ID:1) peptide. One such DP-178 homolog, DP-185 (SEQ ID:3), is described in the Working Example presented in Section 6, below, where it is demonstrated that DP-185 (SEQ ID:3) exhibits antiviral activity. The DP-178 homologs of the invention may also include truncations, amino acid substitutions, insertions, and/or deletions, as described above.

In addition, striking similarities, as shown in FIG. 1, exist within the regions of HIV-1 and HIV-2 isolates which correspond to the DP-178 sequence. A DP-178 homolog derived from the HIV-2_{NHZ} isolate has the 36 amino acid sequence (reading from amino to carboxy terminus):

20

NH2-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-COOH (SEQ ID:7)

Table III and Table IV show some possible truncations of the HIV-2_{NIHZ} DP-178 homolog, which may comprise peptides of between 3 and 36 amino acid residues (i.e., peptides ranging in size from a tripeptide to a 36-mer polypeptide). Peptide sequences in these tables are listed from amino (left) to carboxy (right) terminus. "X" may represent an amino group (-NH₂) and "Z" may represent a carboxyl (-COOH) group. Alternatively, as described below, "X" and/or "Z" may represent a hydrophobic group, an acetyl group, a FMOC group, an amido group, or a covalently attached macromolecule, as described below.

TABLE III

HIV-2_{NHZ} DP-178 homolog carboxy truncations.

```
X-LEA-Z
    X-LEAN-Z
    X-LEANI-Z
    X-LEANIS-Z
   X-LEANISQ-Z
    X-LEANISQS-Z
    X-LEANISQSL-Z
    X-LEANISQSLE-Z
    X-LEANISQSLEQ-Z
    X-LEANISQSLEQA-Z
    X-LEANISQSLEQAQ-Z
    X-LEANISOSLEQAQI-Z
    X-LEANISQSLEQAQIQ-Z
    X-LEANISQSLEQAQIQQ-Z
    X-LEANISQSLEQAQIQQE-Z
    X-LEANISQSLEQAQIQQEK-Z
    X-LEANISQSLEQAQIQQEKN-Z
    X-LEANISQSLEQAQIQQEKNM-Z
    X-LEANISOSLEOAOIQOEKNMY-Z
15 X-LEANISQSLEQAQIQQEKNMYE-Z
    X-LEANISQSLEQAQIQQEKNMYEL-Z
    X-LEANISQSLEQAQIQQEKNMYELQ-Z
    X-LEANISQSLEQAQIQQEKNMYELQK-Z
    X-LEANISQSLEQAQIQQEKNMYELQKL-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLN-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNS-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSW-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWD-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDV-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVF-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFT-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTN-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNW-Z
   X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
25
```

The one letter amino acid code is used.

Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

"Z" may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

TABLE IV

HIV-2_{NIHZ} DP-178 homolog amino truncations.

```
X-NWL-Z
                                                    X-TNWL-Z
                                                   X-FTNWL-Z
                                                  X-VFTNWL-Z
                                                 X-DVFTNWL-Z
                                                X-WDVFTNWL-Z
                                               X-SWDVFTNWL-Z
                                              X-NSWDVFTNWL-Z
                                             X-LNSWDVFTNWL-Z
                                            X-KLNSWDVFTNWL-Z
                                           X-QKLNSWDVFTNWL-Z
                                          X-LQKLNSWDVFTNWL-Z
10
                                         X-ELQKLNSWDVFTNWL-Z
                                       X-YELQKLNSWDVFTNWL-Z
                                      X-MYELQKLNSWDVFTNWL-Z
                                     X-NMYELQKLNSWDVFTNWL-Z
                                    X-KNMYELQKLNSWDVFTNWL-Z
                                   X-EKNMYELQKLNSWDVFTNWL-Z
                                  X-QEKNMYELQKLNSWDVFTNWL-Z
15
                                 X-QQEKNMYELQKLNSWDVFTNWL-Z
                                X-IQQEKNMYELQKLNSWDVFTNWL-Z
                               X-QIQQEKNMYELQKLNSWDVFTNWL-Z
                              X-AQIQQEKNMYELQKLNSWDVFTNWL-Z
                             X-QAQIQQEKNMYELQKLNSWDVFTNWL-Z
                            X-EQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                           X-LEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                          X-SLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
20
                         X-QSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                        X-SQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                       X-ISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                      X-NISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                     X-ANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
                    X-EANISQSLEQAQIQQEKNMYELOKLNSWDVFTNWL-Z
                   X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
25
```

The one letter amino acid code is used.

Additionally,

"X" may represent an amino group, a hydrophobic group, including but not limited to carbobenzoxyl, dansyl, or T-butyloxycarbonyl; an acetyl group; a 9-fluorenylmethoxy-carbonyl (FMOC) group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

"Z" may represent a carboxyl group; an amido group; a T-butyloxycarbonyl group; a macromolecular carrier group including but not limited to lipid-fatty acid conjugates, polyethylene glycol, or carbohydrates.

5.2. DP-107 and DP-178 ANALOGOUS ANTIVIRAL PEPTIDES

Peptide sequences functionally corresponding, and thus analogous to, the DP-178 sequences of the invention, described, above, in Section 5.1 may be 5 found in other, non-HIV-1 envelope viruses. Further, peptide sequences functionally corresponding, and thus analogous to, DP-107, an HIV-1-derived antiviral peptide, may also be found in other, non-HIV-1 envelope viruses. DP-107 is a 38 amino acid peptide 10 corresponding to residues 558 to 595 of HIV-1, AL transmembrane (TM) gp41 protein, which exhibits potent anti-viral activity. DP-107 is more fully described in Applicant's co-pending U.S. Patent Application Ser. No. 07/927,532. These DP-107-like and DP-178-like analogous peptides and present in TM proteins of envelope viruses and preferably exhibit antiviral activity, most preferably antiviral activity which is specific to the virus in which their native sequences are found.

DP-107-like and DP-178-like peptides may be identified, for example, by utilizing a computer-assisted search strategy such as that described and demonstrated, below, in the Examples presented in Sections 9 through 16. The search strategy identifies regions in other viruses that are similar in predicted secondary structure to DP-107 and DP-178.

This search strategy is described fully, below, in the Example presented in Section 9. While this search strategy is based, in part, on a primary amino acid motif deduced from DP-107 and DP-178, it is not based solely on searching for primary amino acid sequence homologies, as such protein sequence homologies exist within, but not between major groups of viruses. For example, primary amino acid sequence homology is high within the TM protein of different

strains of HIV-1 or within the TM protein of different isolates of simian immunodeficiency virus (SIV). Primary amino acid sequence homology between HIV-1 and SIV, however, is low enough so as not to be useful. It is not possible, therefore, to find DP-107 or DP-178-like peptides within other viruses, whether structurally, or otherwise, based on primary sequence homology, alone.

Further, while it would be potentially useful to identify primary sequence arrangements of amino acids based on the physical chemical characteristics of different classes of amino acids rather than based on the specific amino acids themselves, for instance, a by concentrating on the coiled-coil nature of the peptide sequence, a computer algorithm designed by Lupas et al. to identify such coiled-coil propensities of regions within proteins (Lupas, A., et al., 1991 Science 252:1162-1164) is inadequate for identifying protein regions analogous to DP-107 or DP-178.

Specifically, analysis of HIV-1 gp160 (containing both gp120 and gp41) using the Lupas algorithm does not identify the coiled-coil region within DP-107. does, however, identify a region within DP-178 beginning eight amino acids N-terminal to the start of DP-178 and ending eight amino acids from the C-25 terminus. The DP-107 peptide has been shown experimentally to form a stable coiled coil. A search based on the Lupas search algorithm, therefore, would not have identified the DP-107 coiled-coil region. Conversely, the Lupas algorithm identified the DP-178 region as a potential coiled-coil motif. However, the peptide DP-178 derived from this region failed to form a coiled coil in solution. A possible explanation for the inability of the Lupas search algorithm to accurately identify coiled-coil sequences within the

HIV-1 TM, is that the Lupas algorithm is based on the

structure of coiled coils from proteins that are not structurally or functionally similar to the TM proteins of viruses, antiviral peptides (e.g. DP-107 and DP-178) of which are an object of this invention.

The computer search strategy of the invention, as demonstrated in the Examples presented below, in Sections 9 through 16, successfully identifies regions of viral TM proteins similar to DP-107 or DP-178. This search strategy was designed to be used with a commercially-available sequence database packages, preferably PC/Gene. A series of motifs were designed and engineered to range in stringency from very strict to very broad, as discussed in Section 9.

Among the protein sequence seach motifs which may be utilized in such a computer-assisted DP-107-like and DP-178-like antiviral peptide search are the 107x178x4 motif, the ALLMOTI5 motif, and the PLZIP series of motifs, each of which is described in the Example presented in Section 9, below, with 107x178x4 being preferred.

15

20

30

35

Coiled-coiled sequences are thought to consist of heptad amino acid repeats. For ease of description, the amino acid positions within the heptad repeats are sometimes referred to as A through G, with the first position being A, the second B, etc. The motifs used to identify DP-107-like and DP-178-like sequences herein are desined to specifically search for and identify such heptad repeats. In the descriptions of each of the motifs described, below, amino acids enclosed by brackets , i.e., [], designate the only amino acid residues that are acceptable at the given position, while amino acids enclosed by braces, i.e., {}, designate the only amino acids which are unacceptable at the given heptad position. When a set of bracketed or braced amino acids is followed by a number in parentheses i.e., (), it refers to the

number of subsequent amino acid positions for which the designated set of amino acids hold, e.g, a (2) means "for the next two heptad amino acid positions.

The ALLMOTI5 is written as follows:

```
{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)-

{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)-

{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)-

{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)-

{CDGHP}-{CFP}(2)-{CDGHP}-{CFP}(3)-
```

Translating this mofif, it would read: "at the first (A) position of the heptad, any amino acid residue except C, D, G, H, or P is acceptable, at the 10 next two (B,C) amino acid positions, any amino acid residue except C, F, or P is accepatble, at the fourth heptad position (D), any amino acid residue except C, D, G, H, or P is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, or P is acceptable. This motif is designed to search for five consecutive heptad repeats (thus the repeat of the first line five times), meaning that it searches for 35-mer sized peptides. It may also be designed to search for 28-mers, by only repeating the initial motif four times. With respect to the ALLMOTI5 motif, a 35-mer search is preferred. Those

25 Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention.

are listed in Table V, below, at the end of this

viral sequences identified via such an ALLMOTI5 motif

The 107x178x4 motif is written as follows:

```
30 [EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)-
[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)-
[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)-
[EFIKLNQSTVWY]-{CFMP}(2)-[EFIKLNQSTVWY]-{CFMP}(3)-
```

Translating this mofif, it would read: "at the first (A) position of the heptad, any amino acid

35 residue except E, F, I, K, L, N, Q, S, T, V, W, or Y

is acceptable, at the next two (B,C) amino acid positions, any amino acid residue except C, F, M or P is accepatble, at the fourth position (D), any amino acid residue except E, F, I, K, L, N, Q, S, T, V, W, or Y is acceptable, at the next three (E, F, G) amino acid positions, any amino acid residue except C, F, M or P is acceptable. This motif is designed to search for four consecutive heptad repeats (thus the repeat of the first line four times), meaning that it searches for 28-mer sized peptides. It may also be designed to search for 35-mers, by repeating the initial motif five times. With respect to the 107x178x4 motif, a 28-mer search is preferred. Those viral sequences identified via such a 107x178x4 motif are listed in Table V, below, at the end of this Section. The viral sequences listed in Table V potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention. The PLZIP series of motifs are as listed in FIG.

These motifs are designed to identify leucine zipper coiled-coil like heptads wherein at least one proline residue is present at some predefined distance N-terminal to the repeat. These PLZIP motifs find regions of proteins with similarities to HIV-1 DP-178 generally located just N-terminal to the transmembrane anchor. These motifs may be translated according to the same convention described above. Each line depicted in FIG. 19 represents a single, complete search motif. "X" in these motifs refers to any amino acid residue. In instances wherein a motif contains two numbers within parentheses, this refers to a variable number of amino acid residues. For example, X (1,12) is translated to "the next one to twelve amino acid residues, inclusive, may be any amino acid".

Tables VI through X, below, at the end of this

Section, list hits from such PLZIP motifs. The viral sequences listed in Table VI through X potentially exhibit antiviral activity, may be useful in the the identification of antiviral compounds, and are intended to be within the scope of the invention.

The Examples presented in Sections 17 and 18, below, demonstrate that respiratory syncytial virus and parainfluenza virus sequences identified via such a computer search exhibit antiviral and/or structural characteristics similar to those of DP-107 or DP-178.

The DP-107-like and DP-178-like analogous peptides may, further, contain any of the additional groups described for DP-178, above, in Section 5.1. For example, these peptides may include any of the additional amino-terminal groups which "X" of Tables I through IV may represent, and may also include any of the carboxy-terminal groups which "Z" of Tables I through IV may represent.

Additionally, such DP-107-like and DP-178-like peptides may furthr include DP-107-like or DP-178-like peptides, such as those listed in Tables V through X, above, containing one or more amino acid substitutions, insertions, and/or deletions. Also, analogs of such DP-107-like and DP-178-like peptides are intended to be within the scope of the invention. Such analogs of the invention may exhibit increased antiviral activity, and may, further, posses increased bioavailability, and/or stability, or reduced immune recognition.

The DP-107-like and DP-178-like amino acid substitutions, insertions and deletions, are as described for DP-178, above, in Section 5.1. Analog modifications are as described, below, in Section 5.3.

5

TABLE V

Search Results Summary for 107x178x4 and ALLMOTI5 Motifs

102×178×4	-		-	ALLMOTIE					\mid	
LIBRARY FILE				LIBRARY FILE						
PENV AVIRE 420-468	9			PENV1_FR8FV	341-376					
PENV AVISN 428-474	4			PENV2 FRSFV	341-378					
PENV BAEVM 396-462	2		•	PENV_AVIRE	420-472					
PENV BIVOB 544-803	3 631-696			PENV AVIGN	428-478					
PENV BIV27 673-632	12 880-724			PENV BAEVM	380-468					
PENV BLVAF 304-377	١,			PENV BIVOB	630-810	835-885				
PENV BLVAU 304-377	7,			PENV BIV27	669-639	884-724				
PENV BLVAV 304-377	7.			PENV BLVAF	304-378					
PENV BLVB2 311-377	7.			PENV_BLVAU	304-379					
	7			PENV BLVAV	304-379					
	7.			PENV BLVB2	304-379					
PENV CAEVG 165-192	12			PENV BLVB6	304-378					
PENV EIAV1 668-712	2			PENV BLVJ	304-378					
PENV EIAV2 688-695	9			PENV CAEVC	167-186	616-720	761-786	847-896		
PENV EIAV3 688-712	2			PENV CAEVO	154-193		749-783	846-883		
PENV EIAV5 669-696	8			PENV EIAV1	436-525	659-693	888-718			
PENV EIAV9 868-712	2			PENV_EIAV2	430-525	559-593	658-692			
PENV EIAVC 889-712	2			PENV EIAV3	436-526	569-593	858-716			
PENV EIAVW 668-712	2		•	PENV EIAVB	437-529	560-594	659-683			
	2			PENV EIAV8	438-525	659-693	868-718			
	4			PENV_EIAVC	438-525	669-693	659-716			
PENV FIVPE 650-680	30 722-748			PENV EIAVW	438-525		858-718			
PENV FIVSD 639-668	Г			PENV EIAVY	438-525		658-716			4
PENV FIVT2 640-679	19 721-748			PENV FENV1	503-555	_				
PENV FLVC8 609-638	18			PENV FIVPE	610-690	_				
PENV FLVGL 480-518	8		-	PENV FIVSD	601-6BB	713-764				
PENV FLVLB 610-639	91	,		PENV FIVT2	609-669	714-755			-	
PENV FLV8A 487-518	9			PENV FLVC8	497-549	561-595				
PENV FOAMV 318-365	55 866-893			PENV FLVGL	478-530	642-679				
PENV FSVGA 510-539	39			PENV FLVLB	488-550	562-595				
PENV FSVGB 480-618	8			PENV. FLV8A	476-527	539-573				
PENV FSV8M 483-622	12			PENV FOAMV	321-355	563-693	886-903		-	
PENV GALV 623-664	z.			PENV FR9FB	318-354					
PENV_HTL1A 342-378	9,			PENV FEVBA	488-550	562-586				
PENV_HTL1C 342-378	9,			PENV F9VGB	478-530	542-578			-	
PENV HTL1M 342-378	, e			PENV FBV6M	481-524	545-679				
PENV HTLV2 338-370				PENV FSV8T	488-532					
PENV_HV1A2 644-692		780-82		PENV DALV	623-676	587-621				
PENV HV1B1 645-694	94 631-683	791-918		PENV HTL1A	321-383			-		-
PENV HV188 640-589		786-81		PENV HTL1C	316-383					
PENV HV18N 682-580	0 628-879	787-81		PENV HTL1M	321-383				_	
PENV HV1BR 650-588				PENV HTLV2	317-377			*		
PENV HV1C4 557-808		803-836		PENV HV1A2	497-593 612-711	612-711	766-845			
				PENV HV181	505-594	505-594 610-712	767-843			
PENV HV1H2 645-594	34 631-683	781-818		PENV HV188	600-289	805-707	762-838	-	4	-

		I		-	Property Control	200	200	700.004			
	646-594	Т	781-818		PENV HVIBN	080-108	_	773.044		+	
	668-80b	642-684	BOZ-828		DENIV LIVICA	80000	_	779-85E			
1	000	072-070	10501		PENV UVIET	502-581	807-708	768-828			
	555-586	637-677	70,024		DENIV UVIUS	FOE 504	810-719	787-838			
	647-686	633-707	700 010		פבווע חעזוח	505-504 505-504	810712	787-843			
ľ	043-082 003 E0E	100-670	701-010		PENV HV1.13	517-80E	822.723	778-843			
PENV HVIMIN	636 E03	Τ	782.813		PENV HV1.18	497-588	803-704	759-835			
1	644-693		789-820		PENV HV1KB	611-546	666-699	618-718	772-848		
	545-594		791-818		PENV HV1MA	607-586	617-714	770-826			
	654-802		800-832		PENV HV1MF	603-592	622-710	765-841			
Γ	536-585		782-809		PENV HV1MN	506-595	617-713	774-841			
	641-689		787-815		PENV_HV1ND	496-584	601-702	757-825			
	545-593	631-683			PENV_HV10Y	497-593	610-711	766-842			
	545-593	631-683	791-818	-	PENV_HV1PV	605-594	610-712	767-843		·	
	538-584	822-674	782-809		PENV HVIRH	507-603	618-721	776-852			
	542-581	828-880	790-820		PENV HV181	496-585	_	758-830			
	545-593	630-682	782-822	`	PENV HV153	494-690	_	763-837			
	673-601	634-678	797-828		PENV HV19C	499-594	\neg	767-834			
	545-684	827-888	791-823		PENV HV1W1	488-584		767-836			
	632-691	821-648	653-697		PENV HV1W2	489-584		758-827			
	534-593	823-650	665-699		PENV HV122	602-591	_	764-831			
	523-550	555-582	644-688		PENV HV1Z8	604-693		766-640			
	624-661	556-583	613-640	845-893	PENV HV1Z8	512-601		882-719	774-831		
PENV_HV2NZ	524-651	550-583	813-840	662-669	PENV HV1ZH	622-594	_	777-838			
	533-592	622-698			PENV HV2BE	610-686	7				
PENV HV292	627-664	659-588	649-682.		PENV HV2CA	612-697	$\overline{}$				T
PENV HV2SB	557-584	614-673			PENV HV2D1	601-686	7				T
PENV HV2ST	527-554	559-586	648-692		PENV HV201	502-587	Т				
PENV MCFF	473-512				PENV HV2NZ	488-587	7				
PENV MCFF3	488-616				PENV HV2RO	511-596	_				
PENV MLVAV	517-544				PENV HV282	606-580	_				
PENV MLVCB	610-639				PENV HV2SB	626-588					
PENV MLVF6	523-553				PENV HV2ST	206-580					
PENV MLVFF	623-663				PENV IPMAE	367-422					
PENV MLVFP	623-663				PENV JBRV	403-455					
	510-540				PENV MCFF	473-626	_				
	40-81				PENV MCFF3	474-528	_				
	602-643				PENV MLVAV	603-666	_				
PENV_MLVRD 4	497-638		•		PENV MLVCB	498-550	\neg				
	407-538				PENV MLVF6	620-684	_				
	458-485	562-589			PENV MLVFF	620-684	_				
PENV MMTVG	458-485	682-689			PENV MLVFP	620-664	7				
PENV MPMV	422-470			•	PENV MLVHO	604-661	663-697				
	67.84				PENV MLVKI	40-82	\neg				
	42-68	186-223	780-B07		PENV MLVMO	602-554	Т			1	
PENV RMCFV	497-617				PENV MLVRD	407-648	601-696				
				,							

								868-904																																					
								668-663																																					
								683-851	1083-801			782-840		803-837		809-884																		1											
					780-818			321-366	660-708			827.884	796-933	669-703		635-725				812-853	811-848			773-808	780-818	782-818																			
					664-746			154-205	318-357	643-683	BOB-852	535-607	644-692	612-584		528-813	246-331	636-724	638-724	636-728	842-732			637-740	643-746							7			484-628										
561-595	558-612	658-612		107-141	185-223	640-674		101-140	168-208	651-823	851-898	336-370	549-621	330-386	877-726	465-508	134-218	540-812	540-612	517-818	521-820			184-222	184-222	184-222									375-476	487-532	487-532	504-549	377-469		485-547		508-548		272 570
497-548	477-539	477-538	408-474	43-86	22-64	484-528	342-378	1-41	5-48	269-310	566-628	257-291	264-288	263-291	566-654	114-151	71-118	464-505	464-505	466-509	470-513	400-488	408-476	21-62	21-62	21-62	208-242	208-242	208-242	208-242	380-458	384-440	378-454	378-454	108-142	360-452	380-452	377-469	112-148	377-464	377-478	380-453	378-478	378-454	34 66
PENV MLVRK	PENV MMTVB	PENV_MMTVG	PENV MPMV	PENV_MSVFB	PENV OMVVB	PENV_RMCFV	PENV RSFFV	PENV 8FV1	PENV SFV3L	PENV BIVA1	PENV BIVAG	PENV BIVAI	PENV BIVAT	PENV SIVCZ	PENV SIVOB	PENV SIVM1	PENV SIVM2	PENV BIVMK	PENV GIVML	PENV 91V84	PENV SIVEP	PENV BMRVH	PENV GRV1	PENV VILV	PENV VILV1	PENV VILV2	PHEMA CVBLY	PHEMA CVBM	PHEMA CVBQ	PHEMA_CVHOC	PHEMA LAAIC	PHEMA IABAN	PHEMA IABUD	PHEMA IACKA	PHEMA IACKO	PHEMA IACKP	PHEMA IACKO	PHEMA_IACKS	PHEMA_IACKV	PHEMA IADA1	PHEMA IADA2	PHEMA IADAS	PHEMA IADA4	PHEMA IADCZ	DUCKAN IANG
<u>a.</u>	Ь	d		۵	Ь	Ь	4	۵	4	٩	1	4		۵	Ь	<u>a</u>	۵.	d	a			٦		-	-	٩	a	۵	a	۵	Ь	۵	ď		<u>a</u>	Ь	Ь	d.	d	ā.	ā.		Ы	Ь	0
	883-888	897-724	703-730																																										
	673-700	652-679	668-685									891-718							 -													- 9													
866-801	319-357	692-619	597-824	834-708	851-678	627-654	784-816	671-715	277-289			642-668	846-722														484-528					499-643				608-633									
14-41	18-45	591-588	566-593	648-603	580-817	526-584	589-680	660-609	168-216	563-608	549-608	553-612	654-685	400-482	409-471	773-800	780-807	782-809	208-242	208-242	208-242	208-242	387-463	371-437	381-451	381-461	382-441	396 426	386-426	384-443	381-451	423-463	387-453	418-478	381-451	402-453	371-437	371-437	371-437	371-437	371-437	371-437	371-437	415-446	007 200
PENV SFV1	PENV SFV3L	PENV SIVA1	PENV SIVAG	PENV SIVAI	PENV BIVAT	PENV SIVCZ	PENV SIVGB	PENV SIVM1	PENV BIVM2	PENV BIVMK	PENV SIVML	PENV SIV84	PENV SIVSP	PENV BMRVH	PENV SRV1	PENV VILV	PENV VILV1	PENV VIEV2	PHEMA CVBLY	PHEMA CVBM	PHEMA CVBO	PHEMA CVHOC	PHEMA IAAIC	PHEMA IABAN	PHEMA JABUD	PHEMA IACKA	PHEMA IACKO	PHEMA IACKP	PHEMA IACKO	PHEMA IACKV	PHEMA IADA1	PHEMA IADA2	PHEMA IADA3	PHEMA IADA4	PHEMA IADCZ	PHEMA IADE1	PHEMA IADH1	PHEMA IADH2	PHEMA IADH3	PHEMA IADH4	PHEMA IADHS	PHEMA IADH8	PHEMA IADH7	PHEMA IADIR	BUELLA LAMAIO

Marka January 187-468 Marka January 187-469 Marka January 188-469 Mark	100							-			
384-42 PHEMA IADHS 394-440 S14-415 S	287.463			DUCK AND	2000			1		1	
201-451 201-	384-442			PHEMA IADH4	384.440						
E05-623 PHEIAL MDH 306-440 500-633 FIRMA MDH 306-440 500-653 SPA-65 378-471 306-415 500-653 SPA-66 378-471 500-561 500-463 SPA-66 378-471 378-471 500-463 SPA-66 SPA-66 378-471 500-463 SPA-67 SPA-66 SPA-66 500-462 SPA-67 SPA-66 SPA-66 500-462 SPA-67 SPA-66 SPA-66 500-462 SPA-67 SPA-66 SPA-66 500-462 SPA-67 SPA-66 SPA-66 500-463 SPA-67 SPA-66 SPA-66 500-464 SPA-67 SPA-66 SPA-66 500-462 SPA-67 SPA-66 SPA-66 500-463 SPA-67 SPA-66 SPA-66 500-464 SPA-67 SPA-68 SPA-66 500-464 SPA-68 SPA-68 SPA-68 500-465 SPA-68 SPA-68 SPA-68 <td>381-461</td> <td></td> <td></td> <td>PHEMA IADHS</td> <td>364-440</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	381-461			PHEMA IADHS	364-440				-		
604631 PHERIA LIDIR 3784440 388452 388457 378446 388457 388457 378456 388457 388457 378456 388457 388457 378456 388457 388457 378456 388457 388457 378456 388457 388457 378456 388457 388457 378456 388457 388457 378454 388457 388457 378454 388457 388457 378454 388457 388457 378454 388457 388457 378454 388457 388457 378454 388457 388457 378456 388457 388457 378456 388457 388457 378456 388458 388457 378456 388457 388457 378456 388458 388458 378466 388468 388468 378466 388468	606-632			PHEMA IADHB	364-440						
389-462 PHEMA, LOMR 379-471 GO-561 389-467 389-467 PHEMA, LOMY 21-56 389-467 BHEAST PHEMA, LAND 379-454 389-467 BHEAST PHEMA, LAND 379-456 389-468 BHEMA, LAND 379-456 390-484 380-489 BHEMA, LAND 379-456 390-484 387-483 BHEMA, LAND 379-456 390	504-531			PHEMA IADH7	364-440						
388-457 PHEMA IADMI 21-56 388-457 PHEMA IADMI 310-469 388-457 PHEMA IADMI 310-469 388-457 PHEMA IADMI 310-469 388-452 PHEMA IADMI 310-466 388-457 PHEMA IADMI 310-466 388-467 PHEMA IADMI 310-466 388-467 PHEMA IADMI 310-466 388-467 PHEMA IAHAL 310-466 388-467 PHEMA IAHAL 310-466 388-467 PHEMA IAHAC 310-466 388-467 PHEMA IAHAC 310-466 388-467 PHEMA IAHAC 310-466 388-468 PHEMA IAHAC 310-466 388-469 PHEMA IAHAC 310-466 388-466 PHEMA IAHAC 310-466 388-467 PHEMA IAHAC 310-466 <td>388-452</td> <td></td> <td></td> <td>PHEMA IADIR</td> <td>379-471</td> <td>608-651</td> <td></td> <td></td> <td></td> <td></td> <td></td>	388-452			PHEMA IADIR	379-471	608-651					
388-467 PHEMA IADNIZ 300-466 388-467 PHEMA IADNIZ 21-56 388-467 PHEMA IADNIZ 21-56 388-467 PHEMA IADNIZ 21-56 388-462 PHEMA IADNIZ 21-56 388-462 PHEMA IANN 310-466 388-462 PHEMA IANN 310-466 388-467 PHEMA IANN 310-466 388-468 PHEMA IANN 310-466 388-467 PHEMA IANN 310-466 388-468 PHEMA IANN 310-466 388-468 PHEMA IANN 310-466 388-468 PHEMA IANN 310-466 388-469 PHEMA IANN 310-466 <	388-457			PHEMA IADM1	21-55						
388457 PHEMA IADIY 21-65 388467 PHEMA IADIY 21-66 388467 PHEMA IADIY 21-66 388467 PHEMA IADIY 319-464 388467 PHEMA IADIY 310-468 388467 PHEMA IADIY 310-468 388467 PHEMA IADIY 310-468 388467 PHEMA IADIY 317-473 388467 PHEMA IADIY 317-473 388467 PHEMA IADIY 317-473 388467 PHEMA IADIY 317-473 388467 PHEMA IAHC 317-473 388468 PHEMA IAHC 317-479 388467 PHEMA IAHC 317-479 388468 PHEMA IAHC 317-479 388466 PHEMA IAHC 317-479 388467 PHEMA IAHC 317-49 388468 PHEMA IAHC 317-46 388468 PHEMA IAHC 317-46 388468 PHEMA IAHC 317-46 387463 PHEMA IAHC 317-46 387463<	388-467			PHEMA IADM2	380-458						
389-467 PHEMA, IADIZ 379-464 389-462 PHEMA, IADIZ 379-468 389-462 PHEMA, IADIZ 380-468 389-462 PHEMA, IADIZ 380-468 389-467 PHEMA, IADIZ 380-468 389-467 PHEMA, IADIZ 370-473 389-467 PHEMA, IADIZ 370-478 389-467 PHEMA, IADIZ 370-486 389-467 PHEMA, IADIZ 370-486 389-467 PHEMA, IADIZ 370-486 380-468 PHEMA, IADIZ 370-486 380-462 PHEMA, IADIZ 370-486 380-463 PHEMA, IADIZ 370-486 380-464 PHEMA, IADIZ 370-486 380-465 PHEMA, IADIZ 370-486 380-466 PHEMA, IADIZ 370-486 380-465 PHEMA, IADIZ	388-457			PHEMA IADNY	21-65						
388-462 PHEMA, IADUJ 21-68 388-462 PHEMA, IADUJ 380-469 388-462 PHEMA, IADUJ 380-469 388-467 380-469 377-479 388-467 PHEMA, IARP 377-479 388-467 PHEMA, IARDA 377-479 388-467 PHEMA, IARDA 377-479 388-467 PHEMA, IARDA 377-479 388-467 PHEMA, IARDA 377-479 388-467 PHEMA, IARCA 377-479 388-467 PHEMA, IARCA 370-489 388-467 PHEMA, IARCA 370-486 388-468 PHEMA, IARCA 370-486 388-469 PHEMA, IARCA 370-486 388-466 PHEMA, IARCA 370-486 388-467 PHEMA, IARCA 370-486 388-468 PHEMA, IARCA 370-486 388-469 PHEMA, IARCA 370-486 388-460 PHEMA, IARCA 370-486 388-461 PHEMA, IARCA 370-486 388-462 PHEMA, IARCA	388-457			PHEMA IADNZ	378-454						
388-462 PHEMA (ADU3 380-468 380-469 PHEMA (ADU3 377-47) S10-468 S10-469	388-462			PHEMA IADU1	21-66						
386-462 PHEMA, IARP 386-469 386-457 986-467 986-467 386-457 986-467 986-467 386-462 986-462 986-462 386-462 986-462 986-462 386-462 986-462 986-462 386-462 986-462 986-462 386-462 986-462 986-462 386-462 986-462 986-462 386-462 986-462 986-463 386-462 986-462 986-464 386-462 986-462 986-464 386-462 986-462 986-464 386-463 986-462 986-464 386-464 986-465 986-464 386-465 986-465 986-465 386-465 986-465 986-465 386-465 986-465 986-465 386-465 986-465 986-465 386-465 986-465 986-465 386-465 986-465 986-465 386-465 986-465	388-452			PHEMA IADU3	380-458					 	
388-457 PHERMA, IAFPR 377-477 388-457 PHERMA, IARIE 377-478 388-452 PHERMA, IARIE 377-478 388-452 PHERMA, IARIA 377-478 388-457 PHERMA, IARIA 377-478 388-457 PHERMA, IARIA 377-478 388-457 PHERMA, IARIA 378-465 388-457 PHERMA, IARIC 380-484 388-457 PHERMA, IARIC 380-484 388-457 PHERMA, IARIC 380-484 388-457 PHERMA, IARIC 317-416 388-458 PHERMA, IARIC 317-416 388-457 PHERMA, IARIC 317-416 388-458 PHERMA, IARIA 378-456 388-459 PHERMA, IARIA 378-456 388-450 PHERMA, IARIA 378-456 388-450 PHERMA, IARIA 378-456 388-450 PHERMA, IARIA 378-456 388-450 PHERMA, IARIA 378-456 388-451 PHERMA, IARIA 378-456 388-452 <t< td=""><td>388-452</td><td></td><td></td><td>PHEMA IAEN7</td><td>380-458</td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	388-452			PHEMA IAEN7	380-458				-		
388-457 PHEMA JAGNE 378-454 388-452 PHEMA JAGNE 378-473 388-452 PHEMA JAGNE 378-473 388-452 PHEMA JAGNE 379-456 388-452 PHEMA JACK 112-140 380-484 388-457 PHEMA JAHC 112-140 380-484 388-467 PHEMA JAHC 112-140 380-484 388-467 PHEMA JAHC 378-484 500-537 388-467 PHEMA JAHC 378-484 500-537 388-467 PHEMA JAHC 378-486 500-537 388-467 PHEMA JAHC 378-486 500-537 388-468 PHEMA JAHC 378-486 500-537 388-467 PHEMA JAHC 378-486 500-484 388-468 PHEMA JAHC 378-486 500-484 388-469 PHEMA JAHC	388-457	_		PHEMA_IAFPR	377-477						
188-452 PHEMA, IAGUZ 378-473 188-457 PHEMA, IAGUA 377-476 188-457 PHEMA, IAGUA 377-476 188-457 PHEMA, IAHAC 130-484 188-467 PHEMA, IAHC 112-149 380-484 188-467 PHEMA, IAHC 112-149 380-484 188-467 PHEMA, IAHC 112-149 380-484 188-467 PHEMA, IAHC 378-466 60-537 188-468 PHEMA, IAHC 378-466 60-537 188-466 PHEMA, IAHC 378-466 60-684 188-467 PHEMA, IAHC 378-466 60-684 188-468 PHEMA, IAHC 378-466 60-684 188-468 PHEMA, IAHC 378-466 60-684 188-469 PHEMA, IAHC 378-466 60-684 188-461 PHEMA, IAHC 378-466 60-684 188-463 PHEMA, IAHC 378-466 60-684 188-463 PHEMA, IAHC 378-466 60-684 188-463 PHEMA, IAHC </td <td>388-457</td> <td></td> <td></td> <td>PHEMA IAGRE</td> <td>378-454</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	388-457			PHEMA IAGRE	378-454						
4 388-462 PHEMA_IANIAL 377-478 388-467 BB-467 PHEMA_IAHAL 377-478 388-467 PHEMA_IAHC 112-149 360-484 388-467 PHEMA_IAHC 112-149 360-484 388-467 PHEMA_IAHC 360-484 560-484 388-467 PHEMA_IAHC 360-486 560-484 388-467 PHEMA_IAHC 378-466 560-484 388-466 PHEMA_IAHC 378-466 560-484 388-466 PHEMA_IAHC 378-466 560-484 426-478 PHEMA_IAHC 378-466 560-484 426-478 PHEMA_IAHC 378-466 560-484 426-478 PHEMA_IAHC 378-466 560-484 817-453 PHEMA_IAHC 378-466 560-484 817-453 PHEMA_IAHC 378-466 560-484 817-453 PHEMA_IAHC 378-466 560-484 818-463 PHEMA_IAHC 378-466 560-484 81-463 PHEMA_IAHC 378-466 <t< td=""><td>388-452</td><td></td><td></td><td>PHEMA_IAGU2</td><td>378-473</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	388-452			PHEMA_IAGU2	378-473						
388-467 918-467 918-465 918-	388-452			PHEMA IAGUA	377-478						
389-457 PHEMA IAHC9 112-148 360-484 380-452 PHEMA IAHC7 112-149 360-484 380-452 PHEMA IAHC7 112-149 360-484 380-452 PHEMA IAHC7 312-146 360-484 380-452 PHEMA IAHC9 379-465 379-465 380-452 PHEMA IAHC9 379-465 379-465 380-452 PHEMA IAHC9 379-465 379-465 425-478 PHEMA IAHC9 379-465 379-465 A30-452 PHEMA IAHC9 379-465 379-465 A37-453 PHEMA IAHM 379-465 379-465 A37-453 PHEMA IAHM 379-465 379-465 A37-453 PHEMA IAHN 379-465 379-465 A37-453 PHEMA IAHA 379-465 379-465 A37-463 PHEMA IAHA 379-465 379-465 B50-653 PHEMA IAHA 379-465 379-465 B51-463 PHEMA IAHA 379-465 379-465 B51-463 PHEMA IAHA 379-465 </td <td>388-457</td> <td></td> <td>•</td> <td>PHEMA IAHAL</td> <td>379-455</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	388-457		•	PHEMA IAHAL	379-455						
190-452 190-484 190-	388-457			PHEMA IAHCB	112-148	360-484	603-637				
386-462 94664 360-484 503-537 388-467 986-467 360-484 503-537 388-467 386-465 378-466 378-466 386-462 946-462 378-466 378-466 386-462 946-47 378-466 378-466 426-478 946-484 112-140 380-484 426-478 946-484 112-140 380-484 1 387-463 946-484 112-140 380-484 1 387-463 946-484 112-140 380-484 2 387-463 946-484 112-140 380-484 3 387-463 946-484 112-140 380-484 3 387-463 946-484 112-140 380-484 3 387-463 946-48 112-140 380-484 3 387-463 946-473 978-456 978-456 4 16-45 966-484 978-466 978-456 978-456 5 26-647 966-647 978-476 978-456 978-456 6 26-647 966-648 978-466	386-452			PHEMA IAHC7	112-140	į	503-537				
0.08-467 PHEMA_IAHDE 360-464 603-637 1.08-467 PHEMA_IAHCO 378-466 603-637 1.08-462 PHEMA_IAHKO 378-466 603-637 1.08-465 PHEMA_IAHC 112-146 380-484 1.08-465 PHEMA_IAHC 378-465 PHEMA_IAHC 378-465 1.08-463 PHEMA_IAHC 378-465 PHEMA_IAHC 378-465 1.08-463 PHEMA_IAHC 378-465 PHEMA_IAHC 378-465 1.08-463 PHEMA_IAHC 378-465 PHEMA_IAHC 378-465 1.08-443 PHEMA_IAHC 378-465 PHEMA_IAHC 378-465 1.08-443 PHEMA_IAHC 378-466 PHEMA_IAHC 378-466 1.08-443 PHEMA_IAHC 378-466 PHEMA_IAHC 378-466 1.08-445 PHEMA_IAHC 378-466 PHEMA_IAHC 378-466 <	388-452			PHEMA IAHCD	360-484	503-537		9			
V 388-467 PHEMA_IAHFO 379-466 386-462 PHEMA_IAHRO 379-466 386-465 PHEMA_IAHRO 379-466 386-466 PHEMA_IAHRO 112-146 380-484 426-478 PHEMA_IAHRO 112-146 380-484 426-478 PHEMA_IAHRO 112-146 380-484 1 387-463 PHEMA_IAHRO 112-146 380-484 2 387-463 PHEMA_IAHRO 379-466 PHEMA_IAHRO 379-466 3 387-463 PHEMA_IAHRO 379-466 PHEMA_IAHRO 379-466 3 387-463 PHEMA_IAHRO 379-466 BO-484 3 387-463 PHEMA_IAHRO 379-466 BO-484 3 387-463 PHEMA_IAHRO 379-466 BO-484 3 387-463 PHEMA_IAHRO 379-466 BO-648 3 381-461 PHEMA_IAHRO </td <td>388-457</td> <td></td> <td></td> <td>PHEMA_IAHDE</td> <td>360-484</td> <td>603-637</td> <td></td> <td></td> <td></td> <td></td> <td></td>	388-457			PHEMA_IAHDE	360-484	603-637					
386-462 PHEMA IAHK6 379-465 386-465 PHEMA IAHK7 378-465 426-456 PHEMA IAHK7 378-465 426-478 PHEMA IAHM 112-146 380-484 426-478 PHEMA IAHM 378-465 378-465 1 380-450 PHEMA IAHN 112-146 380-484 2 387-453 PHEMA IAHRA 378-465 380-484 3 387-463 PHEMA IAHRA 378-465 380-484 3 387-463 PHEMA IAHRA 378-465 380-484 3 387-463 PHEMA IAHRA 378-465 378-465 5 05-53 PHEMA IAHRA 378-465 378-465 6 05-54 PHEMA IAHRA 378-465 378-465 7 05-54 PHEMA IAHRA 378-465 378-465 8 06-54 PHEMA IAHRA 378-465 378-465 9 1-461 PHEMA IAHRA 378-465 378-465 1 12-14 378-465 378-465 378-465 1 12-14 378-465 378-465 378-465 1 12-461	388-457			PHEMA IAHFO	379-455						
386-466 PHEMA IAHK7 378-466 386-462 PHEMA IAHLE 112-146 360-484 426-478 PHEMA IAHLO 112-146 360-484 426-478 PHEMA IAHMIN 378-465 378-465 1 380-460 PHEMA IAHMIN 378-465 378-466 2 387-463 PHEMA IAHNO 378-466 380-484 3 387-463 PHEMA IAHRO 378-466 380-484 3 387-463 PHEMA IAHRO 378-466 380-484 3 387-463 PHEMA IAHRO 378-466 378-466 5 05-53 PHEMA IAHRO 378-466 378-466 6 05-54 PHEMA IAHRO 378-466 378-466 6 05-54 PHEMA IAHRO 378-466 378-466 7 05-54 PHEMA IAHRO 378-466 378-466 8 05-54 PHEMA IAHRO 378-466 378-466 9 05-54 PHEMA IAHRA IAHRA 378-466 378-466 9 05-64 PHEMA IAHRA IAHRA 378-466 378-466 9 05-64 PHEMA IAHRA IAHRA IAHRA	388-452		1	PHEMA IAHKB	379-455						
386-462 PHEMA IAHLE 112-146 380-484 425-478 PHEMA IAHLO 112-146 380-484 1 360-450 PHEMA IAHMIN 312-146 380-484 1 360-450 PHEMA IAHNIN 112-146 380-484 1 367-453 PHEMA IAHRO 318-456 380-484 1 367-453 PHEMA IAHRO 318-456 380-484 2 367-453 PHEMA IAHRO 318-456 380-484 3 381-451 PHEMA IAHRO 318-456 380-484 3 381-451 PHEMA IAHRO 318-456 380-484 4 25-478 PHEMA IAHRO 318-456 380-484 3 381-461 PHEMA IAHRO 318-456 380-484 3 381-461 PHEMA IAHRO 318-456 318-456 4 25-478 PHEMA IAHRO 318-456 318-456 5 66-53 PHEMA IAHRO 318-456 318-456 6 68-54 PHEMA IAHRO 318-456 318-456 7 84-443 PHEMA IAHRO 318-456 318-456 8 80-453 PHEMA IAHRO 318-456 318-456 8 80-454 PHEMA IAHRO 318-456 318-456 8 80-453 PHEMA IAHRO 318-456 318-456 8 80-454 PHEMA IAHRO <td< td=""><td>386-456</td><td></td><td></td><td>PHEMA IAHK7</td><td>379-455</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	386-456			PHEMA IAHK7	379-455						
425-478 PHEMA IAHLO 112-146 380-484 425-478 PHEMA IAHMI 378-465 380-484 1 380-450 PHEMA IAHNM 112-140 360-484 1 387-453 PHEMA IAHRA 112-140 360-484 1 387-453 PHEMA IAHRA 378-456 360-484 2 387-453 PHEMA IAHRA 378-456 360-484 2 387-453 PHEMA IAHRA 378-456 360-484 2 505-534 PHEMA IAHRA 378-456 378-456 2 605-534 PHEMA IAHRA 378-456 378-456 2 605-534 PHEMA IAHRA 378-456 378-456 2 605-534 PHEMA IAHRA 378-456 600-547 3 81-451 PHEMA IAHRA 378-456 600-547 4 15-445 PHEMA IAHRA 378-456 600-547 5 80-443 PHEMA IAHRA 378-476 600-547 5 80-453 PHEMA IAMA 377-453 600-547 5 80-544 PHEMA IAMA 377-453 600-547 5 80-554 PHEMA IAMA 382-456 600-547 5 80-554 PHEMA IAMA 380-456 600-547 5 80-554 PHEMA IAMA 380-456 600-547 5 80-554 PHEMA IAMA 380-4	388-452	-		PHEMA IAHLE	112-148		503-537				
426-478 PHEMA IAHMI 378-455 1 380-450 PHEMA IAHNM 378-455 1 385-456 PHEMA IAHNM 112-146 340-484 1 387-453 PHEMA IAHRA 112-146 340-484 1 374-453 PHEMA IAHRA 112-146 360-484 1 374-453 PHEMA IAHRA 112-146 360-484 1 387-453 PHEMA IAHRA 112-146 360-484 1 587-453 PHEMA IAHRA 378-455 60-547 1 587-454 PHEMA IAHRA 377-453 60-547 1 587-454 PHEMA IAMA 382-456 PHEMA IAMA 1 587-454 PHEMA IAMA 382-456 PHEMA IAMA 1 587-454 PHEMA IAMA 380-456 PHEMA IAMA 1 587-454 PHEMA IAME 380-456 PHEMA	425-478			PHEMA IAHLO	112-148	380-484	603-637				
180-460 PHEMA IAHNM 379-456 180-466 PHEMA IAHNN 112-146 360-484 187-453 PHEMA IAHRO 379-466 379-466 187-463 PHEMA IAHRO 379-466 360-484 188-461 PHEMA IAHRO 379-466 379-466 189-461 PHEMA IAHRO 379-469 379-466 189-462 PHEMA IAHRO 377-463 377-463 189-463 PHEMA IAHRA IAHRA 382-468 382-468 189-464 PHEMA IAHRA IAHRA 377-469 377-469 189-465 PHEMA IAHRA IAHRA 380-468<	425-478		•	PHEMA IAHMI	379-465					•	
10 385-456 PHEMA IAHNN 112-146 360-484 10 387-453 PHEMA IAHR 112-146 360-484 10 387-453 PHEMA IAHRA 378-456 360-484 11 437-437 PHEMA IAHRA 112-146 360-484 11 387-453 PHEMA IAHRA 112-146 360-484 12 436-476 PHEMA IAHRA 378-456 178-456 12 426-476 PHEMA IAHRA 378-456 178-456 178-456 12 436-476 PHEMA IAHRA 378-456 178-476 <td< td=""><td>380-450</td><td></td><td></td><td>PHEMA IAHNM</td><td>379-466</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	380-450			PHEMA IAHNM	379-466						
9 387-453 PHEMA IAHPR 112-140 360-484 387-453 PHEMA IAHRO 378-455 378-455 387-453 PHEMA IAHBA 378-456 378-466 387-441 PHEMA IAHBA 112-146 380-484 505-534 PHEMA IAHT 378-456 378-456 505-534 PHEMA IAHD 378-456 500-547 381-451 PHEMA IAHD 378-456 500-547 508-647 PHEMA IAHD 378-456 500-547 508-647 PHEMA IAMA 378-456 500-547 381-451 PHEMA IAMA 378-458 500-547 381-451 PHEMA IAMA 378-458 500-547 508-637 PHEMA IAMA 378-458 500-548 508-634 PHEMA IAMA 382-458 500-548 507-634 PHEMA IAMA 380-458 500-458 507-634 PHEMA IAME 380-458 500-458	385-456			PHEMA IAHNN	112-148	360-484	503-637				
387463 PHEMA IAHRO 378-456 387463 PHEMA IAHBA 378-456 371437 PHEMA IAHBP 112-146 360-484 387461 PHEMA IAHBW 112-146 360-484 505-534 PHEMA IAHTE 378-456 PHEMA IAHD 378-456 505-547 PHEMA IAHD 378-456 F02-547 505-547 PHEMA IAHD 378-456 F02-547 505-547 PHEMA IAHD 378-456 F06-548 505-547 PHEMA IAMA 377-453 F06-548 505-547 PHEMA IAMA 377-453 F06-548 507-548 PHEMA IAMA 377-453 F06-548 507-549 PHEMA IAMA 382-458 507-540 PHEMA IAMA 382-458 507-541 PHEMA IAMA 382-458 507-542 PHEMA IAMA 382-458 507-543 PHEMA IAMA 382-458 507-544 PHEMA IAMA 380-458 507-546 PHEMA IAME 380-458	387-453			PHEMA IAHPR	112-148	360-484	503-537				
387-463 PHEMA IAH8A 378-456 371-437 PHEMA IAH8P 112-146 360-484 387-453 PHEMA IAHT 112-146 360-484 505-534 PHEMA IAHT 378-456 508-647 PHEMA IAHD 378-456 508-647 PHEMA IAHD 378-456 508-647 PHEMA IAHB 378-456 508-647 PHEMA IAHB 378-478 506-547 608-643 PHEMA IAHB 378-478 506-548 784-443 PHEMA IAMA 377-453 PHEMA IAMA 784-454 403-539 PHEMA IAMA 382-468 784-454 PHEMA IAMA 380-458 PHEMA IAMA 784-454 PHEMA IAME 380-458 784-454 PHEMA IAME 380-458	387-453			PHEMA IAHRO	379-455						
371-437 PHEMA IAHSP 112-146 380-484 382-441 PHEMA IAHSW 112-146 380-484 505-534 PHEMA IAHTE 379-456 425-478 PHEMA IAHT 379-456 381-461 PHEMA IAHT 379-456 505-547 PHEMA IAHT 379-456 505-547 PHEMA IAHT 376-478 506-547 505-547 PHEMA IAHT 376-478 506-548 504-443 PHEMA IAHT 377-453 PHEMA IAHT 507-54 PHEMA IAHT 376-478 506-548 507-54 PHEMA IAHT 377-453 PHEMA IAHT 507-54 PHEMA IAHT 376-478 506-548 507-55 PHEMA IAHT 376-458	387-463			PHEMA IAHBA	378-456	_					
382-441 PHEMA IAHSW 112-146 360-484 387-453 PHEMA IAHTE 379-456 379-456 505-534 PHEMA IAHTO 378-456 378-456 425-478 PHEMA IAHDR 378-456 502-547 381-451 PHEMA IALAP 376-478 502-547 508-547 PHEMA IALAN 377-453 606-548 381-451 PHEMA IAMAR 377-453 606-548 415-454 PHEMA IAMAR 382-466 PHEMA IAMAR 507-534 PHEMA IAMAR 382-466 PHEMA IAMAR 507-534 PHEMA IAMAR 380-466 PHEMA IAMAR 424-454 402-539 PHEMA IAME2 380-458	371-437			PHEMA IAHSP	112-148	380-484	503-537				
387-463 PHEMA IMITE 378-456 605-534 PHEMA IMTO 378-456 425-478 PHEMA IALAP 378-456 381-461 PHEMA IALAP 378-478 508-647 PHEMA IALAP 376-478 381-461 PHEMA IALAP 376-478 415-445 PHEMA IALA 377-453 507-534 PHEMA IAMA 382-458 607-634 PHEMA IAMA 380-468 724-454 402-539 PHEMA IAME 380-468 724-454 402-539 PHEMA IAME 380-468	382-441			PHEMA IAHSW	112-148	360-484	503-537				
605-534 PHEMA IAHTO 378-456 425-476 PHEMA IAHUR 378-456 381-451 PHEMA IALAP 378-478 508-647 PHEMA IALEN 376-478 381-445 PHEMA IALEN 377-453 416-445 PHEMA IAMAR 377-453 507-634 PHEMA IAMAC 380-468 607-634 PHEMA IAMAC 380-468 724-454 402-539 PHEMA IAME 380-468 726-458 PHEMA IAME 380-468 727-453 PHEMA IAME 380-468	387-453			PHEMA WHTE	379-456						
426-478 PHEMA IAHUR 379-458 381-451 PHEMA IAAP 375-457 381-451 PHEMA IAEN 376-478 384-443 PHEMA IAEN 376-478 384-445 PHEMA IAEN 377-453 381-451 PHEMA IAMA 382-458 381-451 PHEMA IAMA 382-458 381-451 PHEMA IAMA 380-458 424-454 492-539 PHEMA IAME 380-458 424-454 493-539 PHEMA IAME 380-458 424-454 483-539 PHEMA IAME 380-458 424-454 PHEMA IAME 380-458	505-534			PHEMA IAHTO	379-455						
381-461 PHEMA IAJAP 375-467 381-461 PHEMA IAKE 376-478 608-647 PHEMA IAKE 376-478 416-445 PHEMA IAMAA 377-463 381-461 PHEMA IAMAA 377-463 507-634 PHEMA IAMAO 380-468 424-464 483-539 PHEMA IAME2 380-468	425-478			PHEMA IAHUR	379-456						
381-461 PHEMA IAKIE 376-478 506-547 PHEMA IAKA 376-478 384-443 PHEMA IAMAA 377-453 416-445 PHEMA IAMAA 377-453 507-534 PHEMA IAMAO 380-456 607-534 PHEMA IAMAO 380-456 424-454 480-539 PHEMA IAMEZ 380-458	381-461			PHEMA IAJAP	375-467	502-547					
508-547 PHEMA IALEN 376-478 384-443 PHEMA IAMAA 377-453 415-445 PHEMA IAMAA 377-453 381-451 PHEMA IAMAO 380-456 607-534 PHEMA IAMAO 380-456 424-454 483-539 PHEMA IAME2 380-458	381-461			PHEMA IAKIE	376-478	506-541					
384443 PHEMA IAMAA 416-446 PHEMA IAMAB 381-451 PHEMA IAMAO 607-634 PHEMA IAME1 424-464 493-639	508-547			PHEMA IALEN	376-478	508-548					
416-445 PHEMA IAMAB 381-451 PHEMA IAMAO 507-534 PHEMA IAME1 424-464 493-539 PHEMA IAME2	384-443			PHEMA IAMAA	377-463						
381-451 PHEMA IAMAO 607-534 PHEMA IAME1 424-464 493-539 PHEMA IAME2	416-445			PHEMA IAMAB	382-468	-					
507-534 PHEMA IAME1 A 424-454 493-539 PHEMA IAME2	381-451			PHEMA IAMAO	380-458						
424-454 483-539 PHEMA IAME2	607-634			PHEMA IAMES	380-456						
	424-464	493-539		PHEMA IAME2	380-458			1			

PHEMA IATKW 419-449 PHEMA IAUDO 387-463 PHEMA IAUS 426-478 PHEMA IAUS 389-464 PHEMA IAVIT 389-465 PHEMA IAZCO 387-463 PHEMA IAZCO 317-437 PHEMA IAZH2 371-437 PHEMA IAZH3 371-437 PHEMA IAZH3 371-437 PHEMA IAZH3 371-437 PHEMA IAZH3 371-437	500-538								
			PHEMA IAMIN	108-142	375-475			+	
			PHEMA IANTO	380-468					
			PHEMA IAPIL	378-477	486-534				
			 PHEMA IAPUE	376-478	508-548				
			PHEMA IARUD	378-464				-	
			PHEMA IASE2	378-464		-	-		
			PHEMA IABH2	379-474	508-552				
			PHEMA IASTA	112-148	377-469				
PHEMA_IAZIN 418-478	506-547		PHEMA IATKI	378-471	608-661				
PHEMA_IAZNJ 418-478	506-647		PHEMA IATKM	378-454					
PHEMA IAZUK 387-453			PHEMA_IATKO	382-470	504-548				
PHEMA INBBE 400-431	439-483		PHEMA IATKP		493-540				
	429-473		PHEMA IATKR		374-474				
	437-481		PHEMA IATKW	373-472	487-539				
PHEMA INBHK 391-418	429-473		PHEMA IATRA	21-55					
	438-482		PHEMA IAUDO	387-458				-	
PHEMA INBMD 389-420	428-472		PHEMA_IAUBS	376-478	508-548				
PHEMA INBME 393-424	432-478		PHEMA_IAVI7	381-457					
PHEMA INBOR 398-429	437-481		PHEMA IAWIL	376-477	605-647				
	437-481		PHEMA IAZCO	380-458		e".			
-	430-474		PHEMA IAZH2	364-440		·		-	
PHEMA INBVI 393-424	432-476		PHEMA IAZH3	364-440					
	438-483		PHEMA IAZIN	379-478	508-548				
PHEMA_INCCA 495-571			PHEMA IAZNJ	379-478	506-548	,			
			PHEMA IAZUK	380-456					
PHEMA INCGL 483-558			PHEMA INBBE	386-473					
PHEMA_INCHY 482-558			PHEMA INBBO	378-463					
PHEMA INCJH 498-672			PHEMA INBEN	386-471					
PHEMA_INCKY 482-558			PHEMA INBHK	381-463					
PHEMA_INCMI 482-558			PHEMA INBLE	387-472					
PHEMA INCNA 482-558			PHEMA INBMD	377.462	-				
PHEMA_INCP1 - 483-558			PHEMA INBME	381-468					
PHEMA INCP2 483-558			PHEMA INBOR	388-471				•	
PHEMA_INCP3 483-669			PHEMA INBSI	386-471					
PHEMA INCTA 483-568			PHEMA INBUS	379-464					
PHEMA INCYA 483-559			PHEMA_INBVI	381-488					
PHEMA NOVA 84-81			PHEMA INBVK	388-473					
PHEMA NDVB 64-91			PHEMA_INCCA	483-671					
PHEMA NDVD 84-91			PHEMA INCEN	471-659					
PHEMA_NDVH 64-01			PHEMA INCOL	471-559					
PHEMA_NOV! 84-91			PHEMA INCHY	470-558					
PHEMA_NDVM 64-91			PHEMA INCJH	484-672					
PHEMA NDVQ 64-91			PHEMA INCKY	470-658					
6			PHEMA INCMI	470-558					
			PHEMA INCNA	470-558					
PHEMA PHODV 39-88	46-73	-	PHEMA INCP1	471-669					

PHEMA PINW	79.110	244.303		-	BUENA MODS	474.660		-	-	
T	88-83	200.000	-	1	PHEMA INCP3	471.559			-	
4	27-61				PHEMA INCTA	471-559				
	27-61				PHEMA INCYA	471-558				
	27-78				PHEMA MEASE	46-90				
	23-70				PHEMA MEABH	46-80				
	27-01				PHEMA MEASI	46-87			-	
7	27-61				PHEMA MEABY	48-87				
	27-61				PHEMA MUMPM	34-99				
	166-214	268-283			PHEMA MUMPR	34-88			_	
	79-106				PHEMA_MUMPS	34-89				
PHEMA SENDF 7	78-106				PHEMA NDVA	8-52	477-528			
PHEMA SENDH	79-106				PHEMA NDVB	148				
	79-108				PHEMA NDVD	1-49				
PHEMA SENDZ 7	79-108				PHEMA NDVM	1-49				
	22-62	394-421			PHEMA NDVO	1-48				
PHEMA_VACCC 1	119-149	175-202	216-243		PHEMA_NDVTG	148				
	109-148	176-202	216-243		PHEMA NDVU	1-48				
PHEMA_VACCT 1	119-146	176-202	216-243		PHEMA_PHODV	39-73				
^	109-146	175-202	216-242		PHEMA PITHW	88-110				
=	318-388			-	PHEMA PI2H	247-281			_	
	120-147				PHEMA PIZHT	247-281				
	313-347				PHEMA PI3B	38-83		-		
	71-110	186-212		-	PHEMA PI3H4	13-110	384-428			
	71-110	185-212			PHEMA PISHA	20-110	384-428			
	33-60				PHEMA PISHT	13-110	384-428			
	33-60				PHEMA PI3HU	13-110	394-428			
	274-321				PHEMA PI3HV	13-110	394-428			
	270-317				PHEMA PISHW	13-110	394-428			
	10-37	113-140	564-681		PHEMA PI3HX	13-110	384-428			
	10-37	113-140	554-591		PHEMA PI4HA	64-88				
	35-62	162-179			PHEMA RACVI	188-214	258-280			
	35-62	162-179			PHEMA RINDK	46-87				
	146-173				PHEMA RINDL	46-87	191-226			
	59-88				PHEMA BENDE	67-110				
T	37-64		-		PHEMA SENDE	67-110			-	
					PHEMA SENDH	67-110				
1		301-335			PHEMA SEND	67-110				
<u></u>	1	240-274			PHEMA BENDZ	87-110				
	2	301-335			PHEMA 8V41	18-52	387-421			
>	96-123				PHEMA 8V6	27-82				
	96-123				PHEMA SVELN	27-82				
	146-176				PVENV BEV	185-229				
					PVENV DHVII	318-388				
	Ī		225-289	365-388	PVENV MCV1	262-288				
		124-161	256-289	366-389	PVENV MCV2	262-288			+	
PVG07 HBVII	71.98				PVENV THOGV	313-354			-	

													544-581	644-581																																
						-							350-388	350-388									608-659	730-784																						
													199-236	199-236									475-613	591-647							355-389	355-389														
				124-168	124-158			282-320	282-320	283-321	289-315	265-311	102-143	102-143				239-273					400-468	612-583							265-288	266-289			324-368	324-358							177-211	215-258		
267.295	257-295	257-295	257-296	46-80	46-80	71-110	71-110	81-129	81-128	81-128	217-268	213-264	1.67	1-67	165-194	155-194	1-43	139-173	23-57	77-111	30-64	30-64	84-135	271-308	301-338	240-278	301-338	143-177	143-177	64-88	117-158	117-158	61-109	69-103	114-175	114-175	304-338	267-301	304-338	63-67	11-46	68-98	92-129	6	407-441	
PVENV VACCO	PVENV VACCI	PVENV VACCP	PVENV VACCV	PVF01 VACCC	PVF01 VACCV	PVF03 VACCC	PVF03 VACCV	PVF06 VACCC	PVF06 VACCP	PVF05 VACCV	PVF11 VACCC	PVF11 VACCP	VF12 VACCC	PVF12 VACCP	PVF18 VACCC	PVF18 VACCP	PVFP3 FOWPV	PVFP4 FOWPV	PVFP7 FOWPV	PVFPL FOWP1	PVFUS VACCC	PVFUS VACCV	PVGO1 BPP22	PVG01_HBVII	PVG01 VACCC	PVG01_VACCV	PVGO1_VARV	PVG03_H8VEB	PVG03 HSVEK	PVG03 VARV	PVG05 VACCC	PVG06 VARV	PVG08 HSVI1	PVG07 HSVII	PVG07 VACCC	PVG07_VARV	PVG08 VACCC	PVG08 VACCV	PVGOB_VARV	PV010_H8VI1	PVG12 SPV1R	PVG16 HSV8A	PVG17 HEVII	PVG18 HSVI1	PVG1L_AMEPV	
						_	-								·			-	-			-	-			a.	r p	4	a	a.	<u>a.</u>	-			a .	4	Ь	<u>a</u>	۵	۵	٩	ā	٥	ď	о.	
								766-824													873-1007																				1278-1306	1278-1305	127B-1305	1278-1305	1278-1306	
								668-705					282-310								897-924																				1022-1084	1022-1084	_	084		
							383-410	581-622		497-528	911-118		175-205			1088-1115			87-148		348-373				87-114															2408-2435	642-678		642-676		- 1	١
308-338	271-301	308-338	11-46	177-204	174-208	260-287	287-314	373-400	31-68	253-290	33-64	286-326	148-173	95-122	442-489	651-678	2-29	16-49	18.52	138-165	142-168	360-384	4-31	116-148	34-81	47-74	682-809	65-92	56-83	550-584	477-504	1213-1264	382-408	1342-1369	261-288	447-481	388-422	200-227	14-44	8	399-426	399-426				
PVB08_VACCC	PVG09 VACCV	PVG09 VARV	PVG12 SPV1R	PVG17 HSVI1	PVG18 HSVII	PVG1 SPV1R	PVG1 SPV4	PVG22 HSVII	PVG24 HSVII	PVG28 HSVII	PVG2R AMEPV	PVG2 SPV1R	PVG2 SPV4	PVG34 HSVII	PVG37 HSVII	PVG39 H9VII	PVG3L AMEPV	PVG3_SPV1R	PVG3_6PV4	PVG46 H9VSA	PVQ48 HSVII	PVG48 HSV8A	PVG4R AMEPV	PVG4_SPV1R	PVG61 HSVI1	PVG62 HBVSA	PVG56 HBVII	PVGE SPV1R	PVG6 SPV4	PVG63 H8VI1	PVG64 HSVII	PVG66 HSVII	PVG68 H5VII	PVG67 H8VII	PVG68 HSVI1	PVG72 HSVII	PVG76 HSVI1	PVG76 HSVI1	PVG7 SPV4	PVGF1_IBVB	PVGL2 CVBF	PVGL2 CVBL9	PVGL2 CVBLY	PVGL2 CVBM		

																														46							-						556 3761-3785	1	
							100								_															1111-1146													3517-3558		
																														846-880													3475-3513		
	889-1055															643-677														750-784								1478-1641					3388-3424		
	880-882				*									203-244		324-381		1261-1321		733-787					162-196					644-678								1321-1369		912-848			2119-2158		
	437-828	74-108			184-218	285-328							288-300	162-196	87-121	262-286		939-1078		911-666				89-123	123-157			,		678-612	88-123					1213-1264	32B-410	601-546		723-767	388-422		1233-1267		
287-321	117-158	7-72	164-219	253-290	29-83	222-258	256-310	140-183	345-379	17-80	435-472	84-118	124-158	8-48	6-64	116-150	121-162	46-86	169-207	360-417	68-102	4-38	88-130	34-73	29-70	67-127	355-396	101-135	126-178	151-192	10-72	169-209	85-103	266-288	546-584	806-839	154-188	378-413	246-288	447-484	271-306	6-51	142-179	10-44	
PVG1_SPV4	PVG22 HSVII	PVG24 HSVII	PVG27 HSVII	PVG28 HSVI1	PVG2R AMEPV	PVG2_8PV1R	PVG2_SPV4	PVG33_HSVI1	PVG34 HSVII	PVG35 HSVII	PVG37 HSV!1	PVG38 H8VII	PVG39 HEVI1	PVG3 SPV1R	PVG3 SPV4	PVG43 H9VI1	PVG45_HSV6A	PVG48 HSVI1	PVG48 HSVII	PVG48 HSV8A	PVG49 HSVSA	PVG4R AMEPV	PVG4 SPV4	PVG61_H9VII	PVGE1 H9V6A	PVG63_HSVI1	PVGE4 HSVII	PVGEE H9VI1	PVGEE HEVEA	PVGE8 HSVI1	PVGE9 HSVI1	PVGE9 HSVSA	PVGE SPV1R	PVGB1 HSVII	PVG83 HSVII	PVG65 HBVII	PVG68 HSVI1	PVG67 HSVII	PVG68 HSVII	PVG72 HSVII	PVG75_HSVI1	PVG8 SPV1R	PVGF1 IBVB	PVGH3 HCMVA	
			1			ı			1356-1392				-							-																	1		488-533		-	1		488-518	
				1353-1389	1351-1387				1072-1148							951-679	852-879																				442-488	444-471	444-471		488-515	488-518	444-471	442-471	
1056-1112		978-1040		1072-1145	1067-1143	1129-1166	1129-1165	Ť	709-738	1057-1091	1056-1090	1067-1091	1056-1090	1056-1090		440-487	435-482																				216-243	216-243	218-243		442-471	213-243	216-243	213-243	
809-876	1030-1082	691-832	889-951	682-733	680-731	846-921	845-921		464-481	876-903	876-802	876-903	876-902	876-902	631-658	397-424	397-424				934-961	616-643	934-961	934-981	933-860	352-379	441-475										164-202	154-202	164-202	340-367	164-203	164-202	154-202	164-202	
710-797	643-684	38-63	502-543	99-110	69-107	468-509	468-509	88-102	189-233	809-838	808-835	809-838	808-835	809-835	96-122	26-88	50-88	427-464	447-474	428-453	443-470	488-613	443-470	443-470	443-470	83-120	381-408	469-510	489-510	124-161	63-97	65-86	63-97	295-322	285-322	111-148	38-65	38-65	38-65	252-293	38-65	39-66	38-65	38-65	
PVGL2 CVH22	PVGL2 CVM4 .	PVGL2 CVMAE	PVGL2 CVMJH	PVGL2_CVPF8	PVGL2_CVPPU	PVGL2 CVPR8	PVQL2 CVPRM	PVGL2 EBV	PVGL2 FIPV	PVGL2 IBV8	PVGL2 IBVB	PVGL2 IBVD2	PVGL2 IBVK	PVGL2 IBVM	PVGLB EBV	PVGLB HCMVA	PVGLB HCMVT	PVGLB HSVB1	PVGLB HSVB2	PVGLB HSVBC	PVGLB HSVE1	PVGLB HSVE4	PVGLB HSVEA	PVQLB HSVEB	PVGLB HSVEL	PVQLB HSVMD	PVGLB MCMVS	PVGLC HSV11	PVGLC_HSV1K	PVGLC HSVEB	PVGLC HSVMB	PVOLC HSVMG	PVGLC HSVMM	PVGLC VZVD	PVGLC VZVB	PVGLE HSV2	PVGLF BRBVA	PVGLF BRSVC	PVGLF BRSVR	PVGLF_CDVO	PVGLF HRSV1	PVGLF_HR3VA	PVGLF HRSVL	PVGLF HRSVR	

DVOIE MEABY	200 200	_		-	210,000,000	200 020 020	200	1000	200, 000,			
PVGLF MUMPM	20-54	447.488			PVGI 2 CVBLT	842.878	850-000 850-886	983-1108	1263-1306			
PVGLF MUMPR	20-54	447.489			PVAL2 CVRO	842.878		002.1400	1282-1305			T
PVGLF MUMPS	151-178	428-511			PVGL2 CVBV	842.878	REO-RRS	893-1109	1263-1305			
PVGLF NDVA	161-178	428-512			PVGL2 CVH22	770-818	1055-1112	200	20212021			T
PVGLF NOVB	161-178	428-612			PVGL2 CVM4	643-684	1001-1117	1270-1316				T
PVQLF_NDV!	151-178	420-612			PVGL2 CVMAE	591-632	949-1079	1218-1283				
PVGLF NDVM	151-178	428-512			PVGL2 CVMJH	502-543	860-876	1129-1174				T
PVGLF NDVT	161-178	420-612			PVGL2 CVPF9	69-110	448-482	692-733	889-923	1040-1188	1352-1389	T
PVGLF_NDVTG	151-178	426-512			PVGL2 CVPPU	69-110	448-480	690-731	887-921	1038-1184	1351-1387	
PVOLF_NDVU	151-178	429-512			PVGL2 CVPRB	224-268	468-509	665-688	816-862	1128-1166		
PVGLF PHODV	36-63	221-282	308-338		PVGL2 CVPRM	224-258	468-508	685-689	818-862	1128-1165		T
PVGLF PITHC	147-174	210-268	-		PVGL2 EBV	68-102						
PVGLF PIZH	90-117	141-175	238-266	483-528	PVGL2 FIPV	189-245	461-485	895-738	892-926	1043-1189	1355-1382	T
PVGLF PI2HG	90-117	141-176	238-266	483-528	PVGL2 IBV8	791-905	1057-1091					Γ
PVGLF PIZHT	80-117	141-175	238-268	483-528	PVGL2 IBVB	437-478	772-904	1056-1080				
PVGLF_PI3B	115-182	207-241	459-497		PVGL2 IBVD2	773-806	1057-1091					Γ
PVOLF PISH4	115-182	207-241	457-497		PVGL2 IBVK	437-478	772-804	1058-1080				
PVGLF RINDK	224-265	458-485			PVGL2 IBVM	437-478	772-904	1056-1090				
PVGLF RINDL	224-285.	458-508			PVGLB HCMVA	43-88	128-162	438-484	844-878			
PVGLF_SENDS	122-149	211-245	480-507		PVGLB_HCMVT	22-88	128-162	437-485	845-879			
PVOLF SENDF	122-148	211-245	480-607		PVGLB HSV11	828-880						
PVGLF SENDH	122-148	211-245	480-507		PVGLB HSV1F	827-889						
PVOLF SENDJ	122-148	211-245	480-507		PVGLB HSV1K	827-889						-
VOLF SENDZ	122-148	211-246	480-607		PVQLB HSV1P	826-890						
PVGLF 6V41	144-186	241-269	459-498		PVGLB HSV23	828-880						
PVQLF BV5	137-171	417.444			PVGLB H9V2H	828-880						
PVGLF TRTV	124-181	183-200	467-484		PVGLB HSV2S	817-871						
PVOLO BEFV	623-657				PVGLB HBV6U	37-71	185-223					
PVGLG BRSVC	92-123				PVGLB H5VB1	859-913		•				
PVGLG HRBV1	63-63				PVGLB H8VB2	440-474	848-902					
PVGLG HRBV4	88-107				PVGLB HSVBC	883-800				1		
PVGLG HRSV5	243-273				PVGLB HSVE1	642-578	911-961					
PVGLG HRSV8	66-93				PVGLB HSVE4	474-516	847-800					
PVGLG HBVE4	271-288				PVGLB HBVEA	642-578	911-961					Ī
PVGLG HBVEB	383-410				PVGLB HSVEB	642-578	911-881					T
PVOLG VEVIG	472-499				מאקטום חפאאנט	┰	000	270 000				
PVOLH FRV	549-578	619-648			PVGIR LISVA	┰	108 AAT	707-040				T
PVOTH HCMVA	107-136	270-297			PVAID MONNO	_	197.476	077 600	700 000			T
PVALU UCMVT	108.135				DVGI B DBVIE	_	27/2/2	0//-080	*80-000			T
PVALH HSVAR	62-89	360-403			PVALE VZVD	133	KOR A30	740.000				T
20/01 110/04	200 446	2000			PACE 4200	82.133	080-030	/09-809			-	T
שימון הטימי	300-10			,	PVGLC HSV11	469-610						
DVOI M BIINGE	E12,548	014.041	1138.1355		מאסור הפעות	010-077						
PVGLM BUNL7	913-850				PVGLC HBV23	443-477						T
PVOLM BUNYW	340-374	504-535	882-709		PVGLC HSVBC	235-269						Τ
												1

PVG! M DUGRV 94	946-972					PVGLC HSVEB	182-218		_			_	_
	73-100	693-720				PVGLC HSVMB	63-87						
	76-102					PVGLC_H9VMG	62-98						
PVGLM HANTL 76	76-102					PVGLC_HSVMM	63-97						
2	76-102					PVGLC PRVIF	183-235						
PVGLM PHV 69	88-88					PVGLC VZVD	280-321						
¥	72-110					PVGLC_VZV8	280-321				_		
PVGLM PUUMS 72	72-110					PVOLD HSVEA	89-123						
PVGLM SEOUR 73	73-100		694-721			PVGLD_H8VEB	139-173				·		
	73-100		694-721		٠	PVGLD HBVEK	139-173						
PVGLN BEFV 62	523-564					PVGLE_HSV11	111-146						
	ŀ	1145-1178	1184-1211	1506-1532		PVGLE_HSV2	111-159						
68		413-444				PVGLF BRSVA	146-202	604-648					
	=					PVOLF BRSVC	146-202	267-302	608-547				
	14-41					PVGLF BRSVR		267-302	508-554				٠
	88-113					PVOLF CDVO	228-297	340-381	58B-602		-		
PVGLY MOPEI 88	86-113	316-346				PVGLF HRSV1	116-203	267-302	508-549				
PVOLY PIARV 33	334-376					PVGLF HREVA	116-202	267-302	608-649				
PVGLY TACV 10	109-138	315-350				PVOLF HRSVL	116-202	267-302	509-547				
PVGLY TACV6 30	303-338					PVGLF HRSVR	116-202	267-302	608-549				
PVGLY TACV7 30	302-337					PVGLF MEASE	116-184	228-289	462-600				
	303-338					PVOLF MEASI	119-187	231-272	455-503				
	17-44					PVGLF MEASY	116-184	228-289	452-500				
PVGNM BPMV 40	403-430					PVGLF MUMPM	20-64	103-178	236-272	447-502			
PVGNM_CPSMV 19	192-221					PVGLF MUMPR	20-54	103-179	235-272	447-502			
PVGPB EBV 10	104-148					PVGLF MUMPS	20-54	103-178	236-272	447-502			
PVM1_REOVL 28	280-317					PVOLF NDVA	117-182	231-272	428-512				
PVM21 REOVD 82	825-882					PVGLF NDVB	122-182	231-272	428-517				
۵	624-661					PVGLF NDVI	133-182	238-272	428-517				
	824-881					PVOLF NDVM	117-182	231-272	428-512				
	159-196	343-370	456-463	631-690		PVOLF NDVT	117-182	231-272	428-517			-	
	124-162					PVGLF NDVTB	122-182	231-272	428-517				
	124-151					PVOLF NDVU	122-182	231-272	428-512		1		
	219-248					PVGLF PHODV	28-83	187-268	308-350	633-581	-		
	218-246					PVGLF PITHC	123-174	207-267	468-603				
	161-165					PVGLF PIZH	83-183	477-528			+		
	4/7-/47					ביסום היסום	501-50	070-774		1			
FVMAT PIZHT 86	90-123					PVGLF FIZHI	83-180	67//-	450 510		+		
	101.70					מאשר בוטם	117.102	207-241	400-010		-		
T	222.25					PVOLE BINDY	112-180	224.28E	448-403		-	-	
	176-209					PVALE RINDL	112-180	224-265	448-508		+		
	176-209					PVQLF SENDS	_	211-271	463-533				
		184-218				PVGLF SENDF	127-188	211-271	483-533				
		184-218				PVGLF SENDH		218-271	463-533				
_	21-48	184-218				PVOLF SENDJ		211-271	463-533				
		****	•			PC 12 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***						

																																									T					
																																						:								
																				663-684																				 -	 					
	451-487	457-498																		338-380	-								884-712							1228-1262			805-839							
464-608	241-276	180-224	Γ	104-138												464-498				160-201	270-311		-				414-456	407-448	374-453						323-359		916-950		604-583	Q						
96-189	103-171	105-161	508-812	30-70	30-81	30-66	30-85	30-107	30-85	30-85	30-85	30-81	30-67	26-86	271-306	_	488-523	363-397	478-510	63-87	103-137		447.481	447-481	357-408	364-416	334-378	327-372	32-68	440-474	226-260	226-260	228-280	466-608	47-111	612-587	643-677	643-677	Τ.	-	+-	72-108	72-108	72-108	73-111	149-251
PVGLF 8V41	PVGLF 6V6	PVGLF TRTV	PVGLG BEFV	PVGLG BRSVC	PVGLG HRSV1	PVGLG HRSV2	PVGLG HRSV3	PVGLG HRBV4	PVGLG HRSV6	PVGLG HRSV8	PVGLG HRSV7	PVGLG HRSV8	PVGLG HRSVA	PVGLO HRSVL	PVGLG HSVE4	PVGLG SIGMA	PVGLG 6YNV	PVOLO VHSVO	PVBLG VSVIG	PVGLH EBV	PVGLH HCMVA	PVGLH HCMVT	PVQLH HSV11	PVGLH HSV1E	PVGLH_HSV6G	PVGLH H8VBC	PVGLH HSVE4	PVOLH HBVEB	PVGLH HSVSA	PVGLH_MCMV8	PVGLH PRVKA	PVGLH_PRVN3	PVGLH PRVRI	PVQLH VZVD	PVOLI HCMVA	PVGLM BUNGE .	PVOLM BUNL7	PVGLM BUNSH	PVGLM BUNYW	PVOLM DUGBY	PVQLM HANTB	PVGLM_HANTH .	PVGLM HANTL	PVGLM HANTV	PVGLM PHV	PVGLM PTPV
P.	/A .	١d	á	á	١d	P\	/ط	/d	PV	2	29	₹	3	δ	4	\$	λd	<u>م</u>	3	3	2	ď	3	4	2	PV	PV	ΡV	PV	νq	νd	PΛ	/d	PV	Λd	ν	۸d	Λd	۷٩	Δd	7	Λď	PV	PV	PV	<u>a</u>
273-324	273-324	273-324	273-324	273-324	273-324					,																																				
		227-254		220-264	220-264	100-127	78-118		237-284														*								·															
	29-68					28-53	4-31	204-328	38-85	183-180	465-482																																			
PVMP CAMVC	PVMP_CAMVD	PVMP_CAMVE	PVMP CAMVN	PVMP_CAMVS						PVMT8_MYXVL	PVMT9 MYXVL																				Ÿ															

													T												T														F							
-									-								_																						-				L		-	
			36							_			-																-					_	_		_									
L			1128-1238				_					-													L				618-890											Ŀ					L	
			622-658							395-432		_								874-916									523-558																	
		613-669	90-124				388-422	388-423	395-432	333-367			ŀ	382-418	381-416	382-418		403-437		758-792	912-946			ŀ	619-663	618-662	618-862	618-662	337-371				151-208			204-252	204-262									
884-728	683-730	377-414	43-82	177-282	420-481	301-348	317-380	318-301	333-367	1		334-375	315-383	303-351	302-360	303-351	835-869	143-177	160-201	192-228	837-871	84-148	5-68	287-321	418-450		416-450	418-450		42-90	42-80	193-234	73-114	310-358	324-358	89-133	89-133	89-103	69-103	69-103	69-103	89-103	69-103	246-280	188-232	176-209
PVGLM_SEOUR	PVGLM SEOUS	PVGLN BEFV	PVGLP BEV	PVGLX HSVEB	PVGLX PRVRI	PVGLY JUNIN	PVGLY_LASSG	PVGLY_LASSJ	PVGLY LYCVA	PVGLY LYCVW	PVGLY MOPEI	PVGLY PIARV	PVGLY TACV	PVGLY TACVE	PVOLY TACV7	PVGLY TACVT	PVGNB CPMV	PVGNM BPMV	PVGNM CPMV	PVGNM CP8MV	PVGNM RCMV	PVGP8 EBV	PVM01 VACCC	PVM1 REOVL	PVM21 REOVD	PVM22 REOVD	PVM2 REOVJ	PVM2_REOVL	PVM3_REOVD	PVMA2_BR8VA	PVMA2_HRBVA	PVMAT CDVO	PVMAT INCJJ	PVMAT NDVA	PVMAT NDVB	PVMAT PI3B	PVMAT PI3H4	PVMAT_RABVA .	PVMAT RABVC	PVMAT RABVE	PVMAT RABVN	PVMAT RABVP	PVMAT RABVB	PVMAT SYNV	PVMAT VSVIG	PVME1 CVBM
															_	_	1									1	-	1		3	В			9	م	a	ď	а.	a	a.	а	۵	D.	<u>-</u>	<u> </u>	<u>a</u>
																			 - 																											;

				PVME1 CVPFS	80-140	707.717			T
				PVME1 CVPPU	212-257				T
				PVME1 CVPRM	212-257				T
				PVME1 CVTKE	28-62	175-208			1
				PVME1_FIPV	212-257				
				PVME1 IBV8	21-66	177-218	,		
				PVME1 IBVB	21-66	177-218			
				PVME1 IBVB2	21-56	177-218			
				PVME1 IBVK	36-84				
				PVMP CAMVC	187-254	270-324			
				PVMP CAMVD	187-264	270-324			
				PVMP CAMVE	187-254	270-324			
				PVMP CAMVN	187-254	270-324			Γ
				PVMP CAMVB	187-264	270-324			
-				PVMP CAMVW	187-254	270-324			
				PVMP CFRV	212-248				-
				PVMP EMVD	217-261				Γ
				PVMP BOCMV	76-118				Γ
				AND DO LINA	220 250	200,000			T
				TVMSA HYBUB	272.313				T
				PVMSA HPBDC	271-312				Ţ
	-			PVMSA HPBDU	234-276				
				PVMSA HPBDW	272-313	324-381			
				PVMSA_HPBG9	210-244				
				PVMGA HPBHE .	294-328				
				PVMSA WHV1	208-242				
				PVMSA WHV59	213-247			,	
				PVM9A WHV7	213-247				
				PVMSA WHVBI	213-247		0		
				PVMT1 DHV11	201-235				
-				PVMT1 IAANN	82-128	174-222			
			-	PVMT1 JABAN	92-128	174-222			
				PVMT1 IACAO	31-79				
-				PVMT1 IAFOW	92-128	174-222			Γ
				PVMT! IAFPR	92-128	174-222			
				PVMT1 IAFPW	92-128	174-222			Γ
				PVMT1 IALE1	92-128	174-222			
				PVMT1 IALE2	92-129	174-222			
				PVMT1 IAMAN	82-128	174-222			
				PVMT1 JAPOC	92-128	174-222			
				PVMT1 IAPUE	82-128	174-222			
				PVMT1 (AUDO	92-128	174-222			Γ
				PVMT1 IAWIL	92-128	174-222			Γ
				PVMT1 IAZII	92-128	174-222			Γ
		•	-	PVMT1 INBAC	176-209				Ţ.
				DVMT1 INRAD	175.200				Γ
				DIANT INDIE	175.309				T
					200				1
				D1/1/1/	476.200				-

																*											
				146-197																							
132-184	132-184	132-184	132-184	46-80																		_					
VMT2 INBAC	VMT2 INBAD	VMT2 INBLE	VMT2 INBBI	PVMT8 MYXVL																							
																			0								
																		•								•	
																								·			

TABLE VI

Search Results Summary for PCTLZIP, P1CTLZIP, and P2CTLZIP Motifs

PCTI ZIP		PICTIZIP				PzcTLZIP			
LIBRARY FILE		LIBRARY FILE				LIBRARY FILE	•		
PENV FOAMV	481-496	PENV BIVOS	434-460			PENV BIVOG	625-542		
PENV HV1MA	438-453	PENV BIV27	463-479			PENV BIV27	554-571		
PENV HV1MF	183-188	PENV_FOAMV	481-488	864-880		PENV_FENV1	30-47	630-647	
PENV HV1RH	445-480	PENV HV1KB	762-788			PENV FIVPE	781-788		
PENV HV18C	188-201	PENV HV1MA	437-453			PENV FIVSD	779-798		
PENV HV122	123-138	PENV HV1MF	183-188			PENV FIVT2	780-787		
PENV HV1ZH	438-463	PENV HV1RH	444-460			PENV FLVC8	38-55	824-841	1
PENV HV2BE	750-765	PENV HV161	738-764			PENV FLVGL	605-622		
PENV HV2D1	741-768	PENV HV18C	188-201			PENV FLVLB	625-642		
PENV HV2G1	741-758	PENV HV122	123-138		·	PENV FLVBA	602-618		ĺ
PENV HV2NZ	742-757	PENV_HV1Z3	117-133			PENV FOAMV	710-727	957-974	
PENV_HV2RO	761-788	PENV HV1ZH	437-463		1	PENV FSVGA	825-842		
PENV HV2SB	743-768	PENV HV2BE	750-765			PENV F8VGB	805-622		
PENV HV2ST	746-760	PENV HV2D1	741-758			PENV FSVSM	608-625		
PENV_JSRV	104-119	PENV HV201	741-756			PENV HV1OY	123-140		
PENV MMTVB	618-633	PENV_HV2NZ	742-767			PENV HV122	410-427		
PENV MMTVO	618-633	PENV_HV2RO	761-788			PENV HV1Z3	154-171		
PENV SIVMK	139-154	PENV HV2SB	743-758]	PENV HV2CA	750-767		
PENV SIVML	139-154	PENV_HV2ST	745-760			PENV MCFF	600-617		
PHEMA CVBLY	391-408	PENV_JSRV	104-119	641-557		PENV MCFF3	801-618		
PHEMA CVBM	391-408	PENV MCFF	397-413			PENV MLVAV	830-647		
PHEMA CVBQ	381-408	PENV MCFF3	397-413			PENV MLVCB	825-642		
PHEMA CVHOC	391-408	PENV MLVAV	427-443			PENV MLVF6	639-656		
PHEMA CVMAS	402-417	PENV MLVCB	422-438			PENV MLVFF	639-656		
PHEMA CVMS	403-418	PENV MLVHO	423-439			PENV MLVFP	639-629		
PHEMA INBAA	286-310	PENV MLVMO	428-442			PENV MLVHO	626-643		
PHEMA_INBBE	303-318	PENV MLVRD	424-440			PENV MLVKI	167-184		
PHEMA INBBO	283-308	PENV MLVRK	424-440			PENV MLVMO	629-646		
PHEMA INBEN	301-318	PENV MMTVB	618-633	-		PENV MLVRD	624-641		
PHEMA INBFU	288-301	PENV MMTVG	618-633			PENV MLVRK	824-841		
PHEMA INBOL	296-311	PENV 8FV1	884-880			PENV MSVFB	170-187		
PHEMA INBHK	283-308	PENV SFV3L	861-877			PENV RMCFV	603-620		
PHEMA INBIB	288-303	PENV SIVOB	93-109			PENV 8FV1	710-727	967-974	
PHEMA INBID	288-314	PENV BIVMA	138-164	802-818		PENV OFVSE	786.782	1/8-+08	
PHEMA INDICE	282.307	PENV SIV84	BOB-822			PENV SIVMK	785-782		
PHEMA INBME	288-311	PENV SIVSP	810-828			PENV SIVML	764-781	-	
PHEMA INBNA	288-303	PHEMA CDVO	36-62			PENV BIVS4	788-788		
PHEMA INBOR	301-318	PHEMA_CVBLY	391-408			PENV BIVSP	773-780		
PHEMA INBSI	301-316	PHEMA_CVBM	391-406			PENV SMRVH	538-553		
PHEMA INBSJ	298-313	PHEMA CVBQ	391-409		-	PENV BMSAV	42-58		
PHEMA INBUS	294-309	PHEMA CVHOC	391-408			PHEMA CDVO	36-53	200-217	
PHEMA INBVI	286-311	PHEMA CVMAS	402-417			PHEMA CVBLY	391-408		
PHEMA INBVK	303-318	PHEMA CVMS	403-418			PHEMA CVBM	391-408		
PHEMA INBYB	286-301	PHEMA IAAIC	237-253	-		PHEMA CVBQ	391-408		
									•

PHEMA MUMPM	133-148		PHEMA IABAN	221-237		PHEMA CVHOC	391-408	
PHEMA MUMPR	133-148		PHEMA IABUD	234-250		PHEMA IAAIC	322-338	
PHEMA MUMPS	133-148		PHEMA IACKA	234-250		PHEMA IABAN	306-323	
PHEMA PITHW	345-380		PHEMA IACKO	231-247	,	PHEMA IABUD	320-337	
PHEMA PI2H	85-80		PHEMA IACKV	230-248		PHEMA IACKA	320-337	
	65-80		PHEMA IADA1	234-250		PHEMA JACKG	316-333	
	368-383		PHEMA IADA3	237-253		PHEMA IACKP	302-319	
	7-84		PHEMA IADCZ	234-250		PHEMA IACKO	302-318	
¥	7-84		PHEMA IADH1	221-237		PHEMA IACKS	319-336	
PHEMA SVECP	7.94		PHEMA IADH2	221-237		PHEMA IACKV	316-332	
PHEMA SVELN	7-94		PHEMA IADH3	221-237		PHEMA IADA1	320-337	
PVENV DHVI1	42.67		PHEMA IADH4	221-237		PHEMA_IADA3	322-338	
PVEP7 CAPVK	89-104		PHEMA IADHS	221-237		PHEMA IADCZ	320-337	
PVEUS VACCE	72-87		PHEMA IADH8	221-237		PHEMA IADH1	306-323	
PVGO1 RPP22	242.257		PHEMA IADH7	221-237		PHEMA_IADH2	308-323	
PVOOT HRVFR	169-184		PHEMA IADM2	237-263		PHEMA IADH3	306-323	
PVG01 HSVII	210-226	317-332	PHEMA IADNZ	234-260		PHEMA IADH4	308-323	
PVGOR RPTA	184-199		PHEMA IAENB	221-237		PHEMA IADH8	306-323	
PVG07 RPT4	885-900		PHEMA IAEN7	237-253		PHEMA IADH7	306-323	
PVGOR HSVII	134-149		PHEMA JAFPR	230-248		PHEMA IADM2	322-338	
D/010 B00U3	182.188		PHEMA IAHAL	239-252		PHEMA_IADNZ	320-337	
PVA10 BPP7A	183-188		PHEMA IAHAR	235-261		PHEMA IADUS	322-338	,
DA/040 U0//04	109.124		PHEMA IAHCA	230-248		PHEMA IAENS	308-323	
0/014 app1	81.88		PHEMA IAHC7	230-246		PHEMA IAEN7	322-338	
DVO10 BDTA	468.483		PHEMA IAHCD	230-248		PHEMA IAFPR	316-332	
PVG26 BPT4	97-112		PHEMA IAHDE	230-248		PHEMA JAGRE	320-337	
PVG28 HSVI1	20-36		PHEMA IAHFO	238-252		PHEMA IAGU2	320-337	
PVG30 RPPH8	11-84		PHEMA IAHK8	238-252		PHEMA IAGUA	318-336	
PVG38 RPOX2	22.37		PHEMA IAHK7	238-252		PHEMA IAHAL	321-338	-
PVG36 H5VSA	108-123		PHEMA JAHLE	230-248		PHEMA IAHCB	316-332	
PVG37 BPT2	1253-1268		PHEMA IAHLO	230-248		PHEMA JAHC7	316-332	
PVG37 HSVI1	284-289		PHEMA IAHMI	238-252		PHEMA IAHCD	316-332	
PVGE5 H8VI1	22-37	143-158	PHEMA IAHNM	230-252		PHEMA IAHDE	316-332	
PVG58 HBVI1	288-283		PHEMA IAHRO	230-252		PHEMA IAHFO	321-338	
PVG68_H8VI1	102-117		PHEMA IAHBA	230-252		PHEMA IAHK®	321-338	
PVG59 HSVI1	287-282		PHEMA IAHBP	230-246		PHEMA JAHK7	321-338	
PVG86_H8VI1	518-533		PHEMA IAHSW	230-248		PHEMA IAHLE	316-332	
PVG9_BPPH2	234-248		PHEMA IAHTE	238-252		PHEMA IAHLO	315-332	
PVG9_BPPZA	234.248		PHEMA IAHTO	236-252		PHEMA IAHMI	321-338	
PVG8 6PV1R	67-72		PHEMA IAHUR	238-252		PHEMA IAHNM	321-338	
PVGF BPPHX	234-248	L	PHEMA IAKIE	235-251		PHEMA IAHNN	916-332	
PVOL2 CVBF	284-279		PHEMA IALEN	235-251		PHEMA IAHPR	316-332	
PVGL2 CVBL9	264-279		PHEMA IAMAA	233-248		PHEMA IAHRO	321-338	
PVOL2 CVBLY	284-279		PHEMA IAMAB	238-264		PHEMA IAHSA	321-338	
PVGL2 CVBM	264-278		PHEMA IAMAO	237-253		PHEMA IAHSP	316-332	
PVGL2 CVBQ	264-279		PHEMA IAME!	237-263		PHEMA IAHSW	315-332	
PVQL2 CVBV	264-278		PHEMA IAME2	237-263	_	PHEMA IAHTE	321-338	

03070 0 1070	443 463		DIJETTA 1844CA	700 000			DUELLA IAUTO	221.238	-	
PVGL2 CVPPU	440-455	504-519	PHEMA IAMIN	85-101	231-247		PHEMA IAHUR	321-338		T
PVGL2 CVPRB	218-233		PHEMA JANTO	237-263			PHEMA IAJAP	317-334		
PVGL2 CVPRM	218-233		PHEMA IAQU7	221-237			PHEMA IAMAA	319-338		
PVGL2 IBV6	1066-1071		PHEMA IARUD	234-250			PHEMA IAMAB	324-341		
PVGL2_IBVB	1055-1070		PHEMA IASE2	234-250			PHEMA IAMAO	322-338		
PVGL2 IBVD2	1058-1071		PHEMA IASH2	234-250			PHEMA IAME1	322-339		
PVGL2 IBVK	1055-1070		PHEMA IASTA	230-248			PHEMA IAME2	322-338		
PVGL2 IBVM	1056-1070		PHEMA IATAI	235-261			PHEMA IAME8	306-323		
PVGLB HSVSA	701-718		PHEMA IATKM	234.250			PHEMA IAMIN	316-333		
PVGLB PRVIF	203-218		PHEMA_IATKO	233-249			PHEMA IANTO	322-339		
PVGLC HSVBC	475-490		PHEMA IATKR	230-248			PHEMA IAPIL	320-337		
PVGLC HSVE4	444-469		PHEMA_IATKW	229-246		-	PHEMA IAQU7	306-323	-	
PVGLC_HSVEB	427-442		PHEMA_IAUDO	237-253			PHEMA IARUD	320-337	-	
PVGLC PRVIF	448-481		PHEMA IAUSS	236-261			PHEMA IASE2	320-337		
PVGLD HSV11	79-94		PHEMA IAVI7	238-264			PHEMA IASH2	321-338		
PVGLD HSV2	79-94		PHEMA IAXIA	235-251	-		PHEMA IASTA	316-332		
PVGLF BRGVA	285-280		PHEMA IAZCO	237-253			PHEMA IATKM	320-337		
PVGLF BRSVC	265-280		PHEMA IAZH2	221-237			PHEMA IAUDO	322-339	380-387	
PVGLF BRSVR	285-280		PHEMA IAZH3	221-237			PHEMA_IAVI7	323-340		
PVGLP HR8V1	285-280		PHEMA_IAZUK	237-253			PHEMA_IAZCO	322-338		
PVGLF_HRSVA	265-280		PHEMA INBAA	115-131	285-310		PHEMA IAZH2	306-323		
PVGLF HRSVL	285-280		PHEMA_INBBE	123-139	303-318		PHEMA IAZH3	306-323		
PVGLF HRSVR	265-280		PHEMA INBBO	116-132	293-308	·	PHEMA IAZUK	322-338		
PVOLF MUMPS	5-84		PHEMA INBEN	123-138	301-316		PHEMA MUMPM	101-118		
PVGLI VZVD	278-293		PHEMA INBFU	108-124	288-301		PHEMA MUMPR	101-118		
PVGLM_HANTB	800-915		PHEMA INBOL	119-135	298-311		PHEMA MUMPS	101-118		
PVGLM PTPV	743-758		PHEMA INBHK	118-132	283-308		PHEMA NDVA	93-110		
PVGLM SEOUR	901-916		PHEMA INBIB	108-124	288-303		PHEMA_NDVB	93-110		
PVGLM SEOUS	800-815		PHEMA INBID	120-138	289-314	-	PHEMA NDVD	93-110		
PVGLY LASSG	428-441		PHEMA INBLE	123-139	302-317		PHEMA NDVH	93-110		
PVOLY LASSJ	427-442		PHEMA INBMD	113-129	292-307		PHEMA NDVI	83-110		
PVGLY MOPEI	425-440		PHEMA INBME	118-132	206-311		PHEMA_NDVM	93-110	-	
PVM3_REOVD	521-538		PHEMA INBNA	108-124	288-303		PHEMA NDVQ	93-110		
PVM8A HPB08	380-385		PHEMA INBOR	123-139	301-318		PHEMA NDVTG	83-110		
PVMSA HPBV9	187-202		PHEMA INBBI	123-138	301-318		PHEMA NDVU	83-110		
PVMSA WHV1	378-393		PHEMA INBSJ	118-135	298-313		PHEMA PHODV	36-53		
PVMSA WHV69	383-388		PHEMA INBUS	116-132	284-308		PHEMA PITHW	486-503		
PVMSA WHV7	383-388		PHEMA INBVI	116-132	296-311		PHEMA PI3B	111-128		
PVMSA WHVB	383-398		PHEMA INBVK	123-139	303-318		PHEMA PI3H4	111-128	•	
PVMSA WHVBI	383-388		PHEMA INBYB	108-124	286-301		PHEMA PI3HA	111-128		
PVMSA WHVW8	234-249		PHEMA MUMPM	133-148			PHEMA PI3HT	111-128		
PVMT2 IAANN	25-40		PHEMA_MUMPR	133-148			PHEMA PI3HU	111-128		
PVMT2 IABAN	25-40		PHEMA MUMPS	133-148			PHEMA PI3HV	111-128		
PVMT2 IAFOW	26-40		PHEMA PITHW	345-360			PHEMA PISHW	111-128		
PVMT2 IAFPR	25-40		PHEMA PIZH	85-81		·	PHEMA PI3HX	111-128		
PVMT2 IAFPW	25-40		PHEMA PIZHT	65-91			PHEMA PI4HA	50-67		

DVAITS 141 C4	196.40	PUEMA DISE	1924.940			-	DUENA AVA	186.103		
PVMT2 IALE2	25-40	PHEMA PI3H4	324-340				PHEMA SV5	84-101		
PVMT2 IAMAN	26-40	PHEMA PISHA	324-340]		PHEMA SV6CM	94-101		
PVMT2 IAPUE	25-40	PHEMA PI3HT	324-340				PHEMA SV6CP	84-101		
PVMT2 IASIN	25-40	PHEMA PISHU	324-340				PHEMA_SVELN	84-101		
PVMT2 IAUDO	25-40	PHEMA PI3HV	324-340			_	PVF05_VACCC	280-297		
PVMT2 IAWIL	25-40	PHEMA PI3HW	324-340				PVF05_VACCP	280-287		
PVMTB_MYXVL	226-241	PHEMA PI3HX	324-340				PVF05 VACCV	281-298		
		PHEMA RINDK	368-383				PVF09 VACCC	176-183		
		PHEMA SV6	7-94				PVF09_VACCV	176-183		
		PHEMA SVECM	7-84				PVG27_HSVSA	209-228		
		PHEMA SVSCP	7-84				PVG2B_HSVII	173-180		
	_	PHEMA SVELN	7-84				PVG38 HSVI1	648-865		
		PVENV DHVI1	42-57				PVG43 HSVI1	109-128	521-538	
		PVENV EAV	25-41				PVG67 HSVI1	171-188		
		PVFP2 FOWPV	88-104				PVG72 HSVII	1252-1289		
		PVFP7_CAPVK	89-104				PVGF1_IBVB	3073-3080		
		PVFUS VACC8	72-87				PVGL2 IBV8	1094-1111		
		PVG01 HSVEB	169-164				PVGLB_HSVE1	736-753		
		PVG01 HSVII	208-228	317-332			PVGLB HSVE4	675-892		
		PVG0B HSVI1	134-149				PVGLB HSVEA	736-753		
		PVG10 HSV6A	109-124				PVOLB HSVEB	736-753		
		PVG11_H3VI1	103-119				PVGLB_HSVEL	736-753		
		PVG12 HSVI1	270-288				PVGLB ILTV8	597-614		
		PVG1 SPV1R	76-92				PVGLB ILTV8	607-624		
		PVG29 HSVI1	20-35				PYGLB ILTYT	807-824		
		PVG38 BPOX2	22-37				PVGLC PRVIF	180-197		
		PVG38 HBVSA	108-123	-			PVGLE VZVD	469-486		
		PVG37 HSVII	284-289				PVGLF 8V6	401-418		
		PVG41 H5VII	244-280				PVGLH HCMVA	365-382		
		PVG48 H8VI1	1244-1280				PVGLH HCMVT	364-381		
		PVG55 HSVI1	22-37	143-168			PVOLH HSV11	246-282	803-820	
		PVGE8 H3VI1	268-283				PVGLH HSV1E	246-282	803-820	
		PVG5B H6VI1	101-117				PVGLI HBV11	43-60		
		PVGEB HSVSA	130-148	330-348			PVGLM BUNL7	81-98		
		PVG59 HSVII	267-282				PVOLM BUNSH	81-98		
		PVG65 HSVI1	362-378	618-633			PVGLM PUUMH	712-729		
		PVG71 HSVSA	89-105				PVGLM PUUMS	712-728		
		PVG9 BPPH2	234-240				PVGLM RVFV	344-361		
		PVG9 BPPZA	234-249				PVOLM RVFVZ	344-361		
		PVG9 SPV1R	67-72				PVGLY LASSO	12-94		
		PVGF1 IBVB	2210-2228				PVGLY LASBJ	12.64		
		PVGL2 CVBF	123-139	174-190	264-279		PVGLY LYCVA	12-94		
		PVGL2 CVBL9	123-139	174-180	264-278		PVGLY LYCVW	12-84		
		PVGL2 CVBLY	123-139	174-190	264-279		PVGLY MOPEI	12-04		
		PVGL2 CVBM	123-139	174-190	264-279		PVM1_REOVD	280-297		
		PVGL2 CVBQ	31-47	123-139	174-190	264-279	PVM1 REOVL	280-297		

FVOLA CVOV
86-11
96-11
96-111
442-467
440-466
218-233
218-233
803-819
1068-1071
1055-1070
1058-1071
1056-1070
1055-1070
701-716
203-218
622-638
475-480
444-459
427-442
448-481
150-188
150-169
78-84
79-94
3-84
205-221
206-221
205-221
388-414
205-221
205-221
205-221
205-221
288-302
289-305
286-302
276-282
276-292
5.94
273-288
273-289
273-289
273-289
273-280
273-289

							-	Γ
	PVGLF KINDK	282-288						T
	PVGLF RINDL	262-288					1	
	PVGLF TRTV	175-191						
	PVGLI VZVD	278-283						
	PVQLM HANTB	355-371	900-915					
	PVQLM HANTH	499-515			٠			
	PVGLM HANTL	499-515						
	PVGLM HANTV	499-515						
	PVGLM PTRV	743-758					_	
	PVGLM PUUMH	608-626						
	PVGLM PUUMS	509-625						
	PVGLM SEOUR	356-371	901-818					
	PVGLM SEOUS	356-371	900-916					
	PVOLM UUK	828-842						
	PVGLP BEV	889-882						
	PVGLY LASSO	12-84	428-441					
	PVGLY LASSJ	12-94	427-442					
	PVGLY LYCVA	12-84						
	PVOLY LYCVW	12-94				•		
	PVGLY MOPEI	12-84	426-440				_	
	PVGLY PIARV	12-94						
	PVGNM CPMV	1021-1037						
	PVM3 REOVD	621-638						
	PVMAT MUMPS	191-207					2	
	PVMAT NDVA	135-161						
	PVMAT NOVB	136-151						
	PVMAT PI2HT	189-208					•	
	PVMAT 5V41	189-205						
	PVMAT 8V6	98-114	132-148		-			
	PVMP_CAMVC	118-134						
	PVMP_CAMVD	118-134						
	PVMP CAMVE	118-134						
	PVMP CAMVN	118-134						
	PVMP_CAMVS	118-134						.
,	PVMP CAMVW	118-134						
	PVMP FMVD	115-131	·					
٠	PVMSA HPBGS	380-386						
	PVMSA HPBV9 .	187-202						
-	PVM9A WHV1	378-383					-	
	PVMSA WHV59	383-388						
	PVMSA WHV7	383-398						
	PVMSA WHV8	383-388						
	PVMSA WHV81	383-388						
	PVMSA WHVW8	234-248						
	PVMT2 IAANN	25-40						
	PVMT2 IABAN	25-40						
	PVMT2 IAFOW	25-40						

TABLE VII

Search Results Summary for P3CTLZIP, P4CTLZIP, P5CTLZIP, and P6CTLZIP Motifs

Pactlzip			P4CTLZIP .			PECTLZIP	-		Pectizip			
LIBRARY FILE			LIBRARY FILE			LIBRARY FILE			LIBRARY FILE			
PENV BIV27	147-165		PENV1_FRSFV	380-389	_	PENV1_FRSFV	380-400		PENV BIVOB	47-98	625-546	
PENV CAEVC	810-828		PENV AVISU	98-117		PENV2 FRSFV	380-400		PENV BIV27	47-68	147.168	664-575
PENV CAEVG	808-826		PENV_BIV27	147-168		PENV_BAEVM	170-180		PENV FENV1	225-248	830-851	
PENV HV2BE	750-769		PENV HV12H	123-142		PENV FIVPE	781-801		PENV FLVC8	824-845		
PENV HV2D1	741-768		PENV HV2D2	9-29		PENV FIVSD	779-799		PENV FLVGL	447-488	805-828	
PENV HV201	741-768		PENV HV2SB	778-787		PENV FIVT2	780-800		PENV FLVLB	467-488	825-848	
PENV HV2NZ	742-760		PENV JSRV	541-560		PENV FLVGL	9-29		PENV FLVSA	444-496	802-623	
PENV HV2RO	751-789		PENV RSVP	533-552		PENV FOAMV	265-275	824-844	PENV FOAMV	153-174	857-978	
PENV HV2SB	743-761		PHEMA VACCC	173-192		PENV_FSVGA	9-29		PENV FSVGA	467-488	826-848	
PENV HV2ST	746-783		PHEMA VACCI	173-192		PENV HV1C4	428-44B		PENV FEVGB	447-488	606-626	
PENV JSRV	376-384		PHEMA_VACCT	173-192		PENV_HV2CA	760-770		PENV FSVSM	460-471	808-629	
PHEMA PI2H	118-138		PHEMA VACCV	173-192		PENV MLVF6	400-420		PENV FBVST	467-488		
PHEMA PIZHT	118-138		PVENV BEV	62-81		PENV_MMTVB	643-683		PENV GALV	62.73	519.540	
PHEMA 6V41	56-73		PVENV MCV1	61.80		PENV MMTVB	843-863		PENV HV2BE	760-771		
PVENV_THOGV	473-491		PVENV_MCV2	61-80		PENV OMVVS	76-95		PENV HV201	741-702		: : !
PVG18 BPP22	83-101		PVFUS ORFNZ	29-48		PENV RSVP	42-82		PENV HV2NZ	742-783		
PVG24 BPT4	116-133		PVG01 HSVEB	169-189		PENV SFV1	924-944		PENV HV2RO	761-772		
PVG38 HSVSA	344-362		PVG01 VACCC	376-395		PENV SFV3L	821-841		PENV HV2ST	745-788		
PVG40_HSVI1	14-32		PVG01_VACCV	315-334		PENV SIVM1	766-786		PENV MCFF	800-821		
PVG50 HSVSA	5.94		PVG01 VARV	376-385		PENV SIVMK	785-785		PENV_MCFF3	801-822		
PVG61 BPT4	63-81		PVG08 BPT4	627-646		PENV SIVML	764-784		PENV_MLVAV	830-851		
PVG51 HSVI1	84-102		PVG10 HSVI1	35-64		PENV SIVS4	769-789		PENV MLVCB	825-848		
PVG65 HSVI1	155-173		PVG11 H9VII	103-122	150-169	PENV SIVSP	773-783		PENV MLVF6	639-660		
PVGF1 IBVB	2788-2808	3374-3392	PVG1 BPPH2	31-50		PHEMA CDVO	493-613		PENV MLVFF	639-660		
PVGL2 CVH22	1053-1071		PV01 SPV1R	659-678		PHEMA CVBLY	391-411		PENV MLVFP	639-660		
PVGL2 IBV8	1058-1074		PVG20 BPT4	231-250		PHEMA CVBM	391-411		PENV MLVHO	826-647		
PVGL2 IBVB	1055-1073		PVG32 VZVD	90-109		PHEMA CVBO	391-411		PENV MLVKI	167-188		
PVGL2 IBVD2	1068-1074		PVG36 BPK3	132-151		PHEMA CVHOC	391-411		PENV MLVMO	629-850		
PVGL2 IBVK	1056-1073		PVG37 BPT2	19-38	629-648	PHEMA CVMA5	402-422		PENV MLVRD	924-946		
PVGL2 IBVM	1056-1073		PVG37 BPT4	19.38	825-644	PHEMA IACKO	81-101		PENV MLVRK	624-846		
PVGLB HSVB1	660-578	699-707	PVG39 H9VII	1038-1057		PHEMA IADMA	81-101		PENV MSVFB	170-191		
PVGLB HSVBC	692-710		PVG41 HSVII	82-81		PHEMA MUMPM	397.417		PENV AMCFV	603-624	-	
PVGLB HSVSA	584-802		PVG43 BPPF3	380-389		PHEMA MUMPR	397-417		PENV SFV1	957-978		
PVGLB ILTV8	740-758		PVG48 BPPF1	337-358		PHEMA MUMPS	387-417		PENV BFV3L	157-178	854-875	
PVGLB ILTV9	750-788		PVG69 HSVI1	142-161		PHEMA PHODV	483-513		PENV SIVA1	437-468		
PVGLB ILTVT	750-788		PVG61 HSVI1	117-138		PHEMA PITHW	322-342		PENV SIVAG	442-483		
PVGLC VZVD	431-448		PVG67 HSVII	318-337	1072-1091	PHEMA PI2H	13-33		PENV SIVAI	421-442		
PVGLC VZVS	431-448		PVGF1 IBVB	1587-1606	2108-2127	PHEMA PIZHT	13-33		PENV BIVAT	435-458		
PVGLF PI3H4	2.94			881-1010		PHEMA RINDL	497-517		PENV SMSAV	42-63		
PVOLH HEVBO	314-332		PVGL2 CVBL9	881-1010		PHEMA SENDS	322-342		PHEMA CVMA6	402-423		
PVQLH HSVE4	814-832		PVGL2 CVBLY	991-1010		PHEMA SENDF	322-342		PHEMA IADE1	266-287		
PVOLH HSVEB	807-825		PVGL2 CVBM	981-1010		PHEMA BENDH	322-342		PHEMA MUMPM	225-246		
PVGLI HSV11	6-94		PVGL2 CVBQ	991-1010		PHEMA SENDJ	322-342		PHEMA MUMPR	225-248		
PVGNM BPMV	878-886	ſ	PVGL2 CVBV	981-1010	Т	PHEMA BENDZ	322-342	_	PHEMA MUMPS	225-248		
PVM01 VACCC	134-162	177-195	PVOL2 CVH22	788-787	1116-1134	PVENV LELV	27-47	148-168	PHEMA PHODV	213-234		
						•					:	

237-267
-
288-318
31-61
26-46
161-171
- 1
328-348
327-347
_
1
f
- 1
- {
1
-
1
1
f i
i
ı
•
1000-1020

									_														_				239-260						`													
463-474	220-241	220-241	460-481	480-481	460-481	480-481	480-481	463-474	448-467	691-712	890-711	304-326	297-318	668-679	2-23	2-23	197-218	180-211	180-211	193-214	237-258	238-259	87-88	281-302	230-251	189-160	200-221	122-143	64-85	201-222	70-91	244-285	244-285	244-285	233-264	70-81	233-254	233-264	233-254	70-91	233-264	244-268	244-285	70-91	233-264	233-254
PVOLF M3H4	PVGLF RINDK	PVGLF RINDL	PVOLF SENDS	PVQLF SENDF	PVGLF SENDH	PVGLF SENDJ	PVGLF SENDZ	PVGLF SV41	PVGLF 6V6	PVGLH HCMVA	PVGLH HCMVT	PVGLH_H8VE4	PVQLH HSVEB	PVGLH H3V8A	PVGLI HBV2	PVQLI H9V23	PVGLM BUNGE	PVGLM BUNL7	PVOLM BUNSH	PVGLM BUNYW	PVGLY LAGSG	PVGLY LASSJ	PVGP8 EBV	PVM01 VACCC	PVM01_VACCV	PVMAT HRSVA	PVMAT RINDK	PVMAT TRTV	PVME1 CVHOC	PVM8A HPBDB	PVMSA HPBVO	PVM8A HPBV2	PVM8A HPBV4	PVM8A HPBV9	PVMBA HPBVA	PVMSA HPBVD	PVMSA HPBVI	PVMSA HPBVJ	PVMSA_HPBVL	PVM3A_HPBVN	PVMSA HPBVO	PVM9A HPBVP	PVMSA HPBVR	PVM8A_HPBV9	PVMSA HPBVW	PVMSA HPRVY
999-1019	925-945	12-32	12-32	12-32	141-181	310-330	309-329	309-329	308-328	312-332	312-332	308-328	308-328	74-94	74.94	74-94	74-84	201-221	209-228	283-313	207-227	212-232	212-232	212-232	212-232	63-63															,					
PVGLM SEOUS	PVGLM UUK	PVGLY LYCVA	PVGLY_LYCVW	PVGLY_PIARV	PVGNB_CPMV	PVMAT MUMPS	PVMAT NDVA	PVMAT NDVB	PVMAT PI2HT	PVMAT PI4HA	PVMAT PI4HB	PVMAT SV41	PVMAT_SV6	PVME1_IBV8	PVME1 IBVB	PVME1_IBVB2	PVME1 IBVK	PVMSA HPBDB	PVMSA HPBGS	PVMSA HPBHE	PVMSA_WHV1	PVM9A_WHV69	PVMSA WHV7	PVM9A WHV8	PVMBA WHVBI	PVM9A WHVW8																•				
																						-									·														-	
																																											-			
																																						-						1		-

																								,								
233-254	25-48	25-40	25-48	25-48	25-48	25-48	26-48	26-48	25-48	26-48	25-48	25-48																			*	
PVMSA HPBVZ						PVMT2_IALE1	PVMT2 IALE2	PVMT2 IAMAN			PVMT2 IAUDO																	•				
															-																	
	_																-															
																															-	
																														,	,	
									-																				-			
												*																				
																			,													
														-																		

TABLE VIII

Search Results Summary for P7CTLZIP, P8CTLZIP, and P9CTLZIP Motifs

03041210		109071719		PACTI ZIP			Γ
LIBRARY FILE		LIBRARY FILE		LIBRARY FILE			
	202-224	PENVI FRSFV	380-403	PENV BLVAF	303-327		
	498-520	PENV2 FRSFV	380-403	PENV BLVAU	303-327		
	483-516	PENV BIVOB	178-201	PENV BLVAV	303-327		
PENV HV1BN	494-518	PENV BIV27	207-230	PENV BLVB2	303-327		
PENV HV1BR	603-626	PENV FOAMV	804-887	PENV BLVBG	303-327		
PENV HVIEL 4	485-617	PENV HV123	176-188	\neg	303-327		
PENV_HV1H2	498-520	PENV HV2BE	3-26 781-804	_	781-805		
	488-520	PENV HV2CA	760-773	PENV FIVSD	779-803		
	610-632	PENV HV2D1	3-26 772.705	6 PENV FIVT2	780-804		-
	480-512	PENV HV2G1	772-785	PHEMA_CVBLY	391-415		
	504-528	PENV HV2NZ	777-800	PHEMA_CVBM	391-415		
	600-622	PENV JSRV	541-564	PHEMA CVBQ	391-416		İ
	498-518	PENV SFV1	864-887	PHEMA CVHOC	391-416		
	488-510	PENV SFV3L	861-884	PHEMA INCCA	442-466		
	498-520	PENV SIVM1	803-828	PHEMA INCEN	430-454		
	488-511	PENV SIVMK	802-825	PHEMA INCOL	430-454		
	123-145 485-517	PENV SIVML	801-824	PHEMA INCHY	429-453	-	
	Γ	PENV SIVS4	808-828	PHEMA INCUH	443-487	•	
	E05-627	PENV SIVSP	810-833	PHEMA INCKY	429-453		
Γ	498-520	PHEMA CDVO	200-223	PHEMA INCMI	428-453		
	378-388	PHEMA PIZH	86-98	. PHEMA INCNA	429-463		
	213-235	PHEMA PIZHT	99-98	PHEMA INCP1	430-464		
	213-236	PVF11 VACCC	161-184	PHEMA INCP2	430-454		
ပ္	37-59	PVF16 VACCC	25-48	PHEMA INCP3	430-464		
	21-43	PVF15_VACCP	3-28	PHEMA INCTA	430-464		
	37-59	PVG1L AMEPV	313-338	PHEMA INCYA	430-454		
Ī.	21-43	PVG28 HSVI1	491-514	PHEMA MUMPM	101-125		
	21-43	PVG43 H6VI1	322-345	PHEMA MUMPR	101-125		
	21-43	PVG62 HSVI1	229-252	PHEMA MUMPS	101-126		
	21-43	PVG67 HSVII	722-745	PHEMA PITHW	29-63		
	21-43	PVGL2 CVBF	10-33	PVENV BEV	62-86		
PHEMA IADH7	21-43	PVGL2 CVBL9	651-874	PVF05 VACCC	280-304		
	37-59	PVGL2 CVBLY	10-33	PVF05 VACCP	280-304		
	28-60	PVGL2 CVM4	1267-1280	PVF05 VACCV	281.305		
PHEMA IADU3	37-59	PVGL2 CVMAE	1215-1238	PVF09_VACCC	176-200	,	
PHEMA IAEN8	21-43	PVGL2 CVMJH	1128-1149	PVF09 VACCV	176-200		
	37-69	PVGL2 CVPFS	1274-1297	PVG01 VZVD	58-82	,	
	37-58	PVGL2 CVPPU	1272-1285	PVG10 HEVSA	356-378		
	37-69	PVGL2_CVPR8	1050-1073	PVG12 HSVSA	68-62		
PHEMA IAME2 3	37-59	PVGL2_CVPRM	1050-1073	PVG19 HSV11	88-112		
	21-43	PVGL2_FIPV	1277-1300	PVG28_HSVI1	173-107		
	37-59	PVGL2 IBV6	196-219	PVG43 HSVII	109-133		
PHEMA IAQU7	21-43	PVGL2 IBVB	195-218	PVG87 HSVII	108-132	1005-1029	
		PVGL2 IBVD2	198-219	PVG72 HSVI1	720-744		
	37.59	PVGL2 IBVD3	196-219	PVGF1 IBVB	3601-3626		

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PVGL2 BVW1 PVGL2 BWW1 PVGL2 BWW3 PVGLB HCMVA PVGLB HCMVA PVGLB HGWGA PVGLB HGWGA PVGLC HBVJ1 PVGLC HBVJ1 PVGLC HBVJ1 PVGLC HBVJ3 PVGLC HBV	196-218 178-201 178-201 178-201 178-201 178-201 178-201 178-201 178-201 180-680 190-680 190-680 1307-1410 1307-1410 1307-1410 1307-1410 1307-1410	PVGLB ILTV6 PVGLB ILTV7 PVGLE ILTV7 PVGLE HSV11 PVGLE YSV0 PVGLE SV6 PVGLH HSV11 PVGLH HSV11 PVGLH HSV11	607-821 607-831 607-831 413-437		
	PVGL2 18VU1		PVGLB ILTV3 PVGLE ILTVT PVGLE LASV11 PVGLE VZVD PVGLF SVG PVGLH HCMVA PVGLH HSV11 PVGLH HSV11 PVGLH HSV11	807-831 413-437		
	PVGL2 18VU2		PVQLB ILTVT PVGLE HSV11 PVGLE YSVD PVGLE VZVD PVGLF SVG PVGLH HCMVA PVGLH HCMVT PVGLH HSV11 PVGLH HSV11	413-437		
	PVGL2 BVU3		PVGLE HSV11 PVGLE VZVD PVGLF SVG PVGLH HCMVA PVGLH HCMVT PVGLH HSV11 PVGLH HSV11	413-437		
	PVGIB HCMV		PVGLE VZVO PVGLF SVG PVGLH HCMVA PVGLH HCMVT PVGLH HSV11 PVGLH HSV11 PVGLH HSV11	480.402		
	PVOLB HCMY		PVGLF SVG PVGLH HCMVA PVGLH HCMVT PVGLH HSV11 PVGLH HSV11	-00-40G		
	PVGLB HSV6A PVGLB HSV6A PVGLC HSV1 PVGLC HSV1 PVGLC HSV2 PVGLC HSV2 PVGLC HSV2 PVGLM BUNS PVGLM BUNS PVGLM BUNS PVGLM BUNS PVGLM BUNS PVGLY LASSI PVGLY LASS		PVGLH HCMVA PVGLH HCMVT PVGLH HSV11 PVGLH HSV1E	401-425		
	PVGLB MCMV		PVGLH HSV11 PVGLH HSV1E	674-598		
	PVGLC HSV11 PVGLC HSV12 PVGLC HSV2 PVGLC HSV2 PVGLM BUNL7 PVGLM BUNL7 PVGLM UUK PVGLY LASSG		PVGLH HSV11	573-597		
	PVGLC HSV2 PVGLC HSV2 PVGLM BUNL7 PVGLM BUNL7 PVGLM BUNL7 PVGLY LASSI PVGLY LASSI PVGLY LASSI PVGLY LASSI PVGLY LASSI PVGLY LYCVA		PVGLH HSV1E	443-487	803-827	
	PVGLC H6V2 PVGLC H6V23 PVGLM BUNIZ PVGLM BUNIZ PVGLM BUNIZ PVGLY LASSE		E INTIG PRINTED	443-487	803-827	
	PVGLC H8V23		PVGLM BUNL/	31-55		
0 44	PVGLM BUNGS PVGLM BUNGS PVGLM DUK PVGLY LASG PVGLY LASG PVGLY LASG PVGLY LYCVA PVGLY LYCVA		PVGLM BUNSH	31-56		
0	PVGLM BUNS: PVGLY JUNIN PVGLY JUNIN PVGLY LASSG PVGLY LASSG PVGLY LYCVA PVGLY LYCVA		PVGLM HANTH	894-718		
4 4	PYGLM UUK PYGLY LASSQ PYGLY LASSQ PYGLY LASSQ PYGLY LASSQ PYGLY LASSQ	966-999 12-35	PVGLM_RVFV	344-388		
44	PVGLY LASSG PVGLY LASSJ PVGLY LASSJ PVGLY LASSJ PVGLY LASSJ	12-36	PVGLM RVFVZ	344-368		
111 - 88 - 111 - 2	PVGLY LASSG PVGLY LASSJ PVGLY LYCVA PVGLY LYCVA		PVGLM UUK	591-595		
11 11 11 11 11 12	PVGLY LASSJ PVGLY LYCVA PVGLY LYCVA	12-35	PVGNM CPMV	311-335		
11 11 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PVGLY LYCVA	12-35	PVGP2_EBV	657-681		
1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PVGLY LYCVM	12-35	PVGP3 EBV	854-878		
A 1 1 1 2 2		12-36	PVM1_REOVD	280-304		
1 1 2 2	PVGLY MOPEI	12-35	PVM1_REOVL	280-304		
	PVGLY_TACV	12-35	PVM21_REOVD	168-192		
1 1 2	PVGLY TACVE	12-35	PVM22_REOVD	188-192		
2	PVGLY TACV7	12-36	PVM2_REOVJ	168-192		
	PVGLY_TACVT	12-35	PVM2 REOVE	168-192		
2	PVGNM CPMV	741-764	\neg	87-111		,
2	PVM1 REOVD	324-347	464-477 PVMAT SSPVB	314-338		
2	PVM1_REOVL		PVME1_CVBM	137-161		
	PVMAT MUMPS		PVME1_CVHOC	137-161		
	PVMSA HPBDB		PVME1_CVTKE	137-161		
,	PVMSA HPBDC	269-291	PVME1_IBV6	74-98		
	PVMSA HPBDU		PVME1_IBVB	74-98		
PVGLB_H6VB2 746-787	PVMSA HPBDW		PVME1 IBVB2	74-88		
	PVMSA_HPBHE	236-259	PVME1_BVK	74-98		
	-		PVMSA HPBGS	271-285		
PVGLC HSVMM 389-421			PVMBA_WHV1	269-283		
	482-504		PVMBA_WHV59	274-298		
PVGLF BRSVC 484-508			PVMSA_WHV7	274-288		
PVGLF BREVR 484-508			PVMSA WHV8	274-288		
PVGLF HRBV1 484-508	,		PVM9A_WHV8!	274-298		
PVGLF HRBVA 484-506			PVMSA_WHVW8	125-149		
PVGLF_HRSVL 484-508						
R				1		
PVGLG VHSVO 406-428						

100 100		000							
166-169 146-179 420-419 420-419 420-419 667-679 611-429 411		000-1-000							
143-168 424-48 426-48 426-49 426-479 66-479 66-479 141-38 141-	۱	00.700							
745-75 1640-1608 745-74-9		168-180						-	
426-448 426-448 426-448 426-448 426-448 426-429 426-427 426-429 426-427 426-428 426-426-428 426-428 426-428 426-428 426-428 426-428 426-428 426-428 42		743-786							
426-49 426-40 626-47 626-47 66		430-452	1546-1568	•					
205-740 205-270 605-270 614-430 614-430 504-280 195-77		426-448							
652-47 652-47 664-20 664-20 144-43 144-43 146-21 196-21 196-21 196-21 197-16 19		427-448							
050-479 050-	13	426-447							
186-176 14-430 14-430 190-136 186-217 186-217 180-164 131-163 280-316		857-879							
414-439 304-326 304-326 180-217 180-217 180-217 180-217 181-163 203-316 413-163 413		854-878							
104-329 104-320 105-317 105-317 105-317 105-317 105-316 105-31		414-438							
304-326 186-217 186-217 186-217 186-217 187-164 203-316 203-316		414-438							
166-217 102-164 102-17 116-217 112-164 121-163 220-316	T	900 700].	
192-164 196-217 196-217 110-164 131-165 200-316	T	204-320			,				
182-184 186-217 186-217 132-164 131-163 203-316		/17-QR							
196-217 196-217 192-164 131-163 203-316 199-199 199-19		132-154							
196-217 105-216 132-164 131-165 205-316 199-199 199-199-199-199-199-199-199-199		195-217							
196-217 131-163 230-316 200-316 131-163 200-316 131-163 200-316 131-163 131-16		196-217							
132-164 131-163 202-316 202-31		195-217							
203-316 203-316		132-164							
289-316		131-163							
		283-316							
								ŀ	
							*		
						÷			
					•				
		*							

TABLE IX

Search Results Summary for P12CTLZIP Motif

WO 94/28920

201212100												
LIBRARY FILE												
PENV1 FRSFV	380-407											
PENV2_FRSFV	380-407											
PENV AVISU	98-117											
PENV_BAEVM	202-224					٠						
PENV BIVOB	525-548						111					
PENV BIV27	147-168	207-230	463-479	654-575								
PENV BLVAF	303-327											
PENV BLVAU	303-327										,	
PENV_BLVAV	303-327											
PENV BLVB2	303-327											
PENV BLVB6	303-327											
PENV_BLVJ	303-327											
PENV FENV1	30-47	226-248	630-651									
PENV FLVC8	39-55	624-645										
PENV FLVGL	8-29	447-468	605-626									
PENV_FLVLB	487-488	613-646										
PENV FLVSA	444-485	602-623										
PENV FOAMV	153-174	266-276	300-325	481-488	710-727	884-887	924-951	826-298				
PENV FSVGA	9-29	487-488	825-646									
PENV F6VGB	447-488	805-628										
PENV FSVBM	450-471	608-628						,				
PENV FSVST	467-488							·				
PENV_GALV	52.73	619-540										
PENV HV1B1	488-520											
PENV HV188	493-616											
PENV HV1BN	484-516											
PENV HVIBR	503-526											
PENV HV1C4	428-448											
PENV HV1EL	495-617											
PENV HV1H2	498-520	·										
PENV HV1H3	498-520											
PENV HV1J3	510-532											
PENV HV1JR	490-512											
PENV HVIKB	504-526	652-679	752-788		ļ							
PENV HV1MA	438-453	600-622							8	×		
PENV HV1MF	486-518											
PENV HV1ND	488-510											
PENV HV10Y	123-140											
PENV HVIPV	488-620											
PENV HVIRH	445-480											
PENV HV191	489-511	738-754										
PENV HV122	123-146	410-427	495-517									
PENV HV1Z3	117-133	175-198										
	487-519											
PENV HV1Z8	506-527											

WO 94/28920 PCT/US94/05739

	97.00,	22, 20,	002.007							-	
PENV HV12H	123-142	438-403	440-040								
PENV HV2BE	3.28	750-775	781-804								
PENV HV2CA	760-777										
PENV HV2D1	3.28	741-788	772-785								
PENV HV2D2	9-28										
PENV HV2G1	741-788	772-795									
PENV_HV2NZ	742-787	777-800									
PENV_HV2RO	751-778										
PENV HV25B .	743-768	778-804									
PENV HV2ST	746-770										
PENV JSRV	104-119	299-326	376-388	541-564							
PENV MCFF	600-621										
PENV MCFF3	801-822		a.								
PENV MLVAV	830-851										
PENV MLVCB	625-646										
PENV MLVF6	639-660										
PENV MLVFF	639-660										
PENV MLVFP	639-660						٠	-			
PENV MLVHO	626-647										
PENV MLVKI	187-188										
PENV MLVMO	829-850										
PENV MLVRD	824-845										
PENV MLVRK	624-645										
PENV MMTVB	643-663										
PENV MMTVB	643-663								,		
PENV MPMV	213-235										
PENV MSVFB	170-181										
PENV OMVVS	76-100	658-683				*					
PENV RMCFV	603-624		٠								
PENV RSVP	42-68	533-652									
PENV 8FV1	300-326	710-727	864-887	924-951	967-978						
PENV GFV3L	167-178	304-328	707-724	861-884	921-948	954-975					
PENV_BIVA1	437-458										
PENV BIVAG	442-403										
PENV SIVAI	421-442										
PENV BIVAT	435-456										
PENV BIVGB	93-109										
PENV BIVM1	766-783	803-826									
PENV BIVM2	139-154	785-792	802-825								
PENV SIVMK	139-154	784-791	801-824								
PENV SIVML	769-789	806-829									
PENV GIVS4	773-783	810-833									
PENV SMSAV	42-03										
PENV SRV1	213-235			-							
PHEMA_CDVO	36-53	200-223	1								
PHEMA CVBLY	391-416										
PHEMA CVBM	391-415										
•			<u>ا</u> د								

WO 94/28920 PCT/US94/05739

1 1
133
306-323
37-59 21-43 320-337 320-337 81-101
37-5 320-: 81-10
1 1 1 1 1

				 _				
						`		
000						•		
ľ								
236-262 321-338								
197-223 318-336	,							
202-228 324-341								
37.59 322-339								
37-69 322-338			_					
37-69 322-339								
21-43				_				
85-101 231-247	316-333							
67								
37								
21-43 308-323								
2								
320-337					•			
321-338								
230-246 316-332								•
Ϊ								
					•	•		
230-246								
229-245,								
37.59 322-339	380-387							
37-59								
37.69 322-338								
21.43 308-323								
21-43 308-323								
116-131 296-310								
123-139 303-318				,				
116-132 283-308								
Γ								
		*						
Γ								
110-132 293-308				41			,	
Γ								
Γ								
123-139 302-317								
113-129 282-307								

Г	288-311				Ŀ					
288-303	Ц									
301-318										
301-316										
298-313										
284-308										
206-311		ļ								
303-318										
286-301						٠	·			
_										
										T
		Γ								
		Γ								
		Γ								
225-248 387-384	387-384	Γ	397-417							
	226-246		387-417							
133-148 226-248	226-248	Γ	367-384	397-417						
								-		
									†	
									-	Ī
13-234 483	493	493-513					-			
71	346		488.503							
	138	130								
	118-1	36					-			
72-299 324-340	324-34	0							†	
72-289 324-340	324-34	0							†	
Г	324-34	0							1	
1	324.34	0								
T	324-3	9								
T	2	Ş		Ī						
272.280 324.340	224.3	\$ 5								
T	324.3	İş								
Г								1		
;]					-	1	1		
;	:									

WO 94/28920 PCT/US94/05739

DUEMA DINDK	388.383									
PHEMA RINDL	4.30	-								
PHEMA SENDS	322-342									
PHEMA GENDE	322-342									
PHEMA SENDH	322-342									
PHEMA SENDJ	322-342								,	
PHEMA SENDZ	322-342						,			
PHEMA BV41	66-73	86-102	107-132							
PHEMA SV5	7-28	84-101	379-400			Œ.				
PHEMA SV5CM	7-28	84-101	379-400.							
PHEMA SVECP	7:28	84-101	379-400.		•					
PHEMA GV6LN	7-28	84-101	379-400.							
PHEMA VACCC	173-192									
PHEMA VACCI	173-182									
PHEMA VACCT	173-192				,					
PHEMA VACCV	173-182	·								
PVENV BEV	62-86	87-114								
PVENV DHVII	42-67	484-511								
PVENV EAV	25-41								1	
PVENV LELV	27-47	148-168								
PVENV MCV1	61-80								,	
PVENV MCV2	61-80	306-333								
PVENV THOGV	198-221	356-383	473-481							
PVF05 VACCC	280-305									
PVF06 VACCP	280-305								,	
PVF05 VACCV	280-305							•		
PVF09 VACCC	176-200				*		×			
PVF09_VACCV	178-200									
PVF11 VACCC	161-184									
PVF16 VACCC	25-48									
PVF16 VACCP	3-26						*			
PVFP1 FOWPV	297-323									
PVFP2 FOWPV	88-104									
PVFP7_CAPVK ·	89-111									
PVFP7 FOWPV	96-90									
PVFPB CAPVK	51.78									
PVFUB ORFNZ	29-49									
PVFUB VACCB	72-84									
PVG01 HSVEB	169-195									
PVG01 HSVI1	210-226	317-338	689-616							
PVG01 VACCC	299-319	376-386								
PVG01 VACCV	237-267	315-334								
PVG01 VARV	288-318	376-365								
PVG01 VZVD	58-82									
PVG03 VACCC	60-72									
PVG03 VARV	60-72									
PVG04 VACCC	11.33									

PVG04 VARV	11-33										
PVG08 VACCC	31.51						1				T
PVG06 VARV	31-61						†				
PVG08 HSVI1	134-148	169-185					+				
PV010 HSVI1	35.54										
PVG10 HSVBA	109-124	356-379				•					
PVG11 HSVII	103-122	150-178									
PVG12 HEVII	161-178	270-288									
PVG12 HSVSA	68-82								,		
PVG16 HSVEB	184-209										
PVQ19 HSVII	88-112									,	
PVG1L AMEPV	313-338								×		
•	78-92	659-678									
	300-327									,	
	314-336				·.						
PVG27 HSVII	168-184										
PVG27 H9V8A	209-228										
PVG28 HSVII	173-187	491-518									
PVG28 H6VSA	14-40										
PVG29 HSVI1	20-42										
PVG30 HSVII	166-181							•			
PVG32 VZVD	90-109										
PVG36 HSV8A	108-123	344-362									
	284-289								-		
	648-675	970-880	1038-1085								
	14-32										
PVQ41 HSVI1	11.38	62-81	244-280								
PVG43 HSVII	108-133	167-178	322-345	521-538							
PVG46 HSVII	134-150	680-607	937-963	1244-1270							
PVG48 H5V8A	71.93										
PVGEO H8VII	6-30	58-83									
PVG50 HBVBA	83-81	95-117	206-233								
PVG61_H8VI1	29-49	84-102									
PVG62 HSVI1	229-252										
PVGEE HSVII	22-37	143-158	288-309								
PVG65 HSV8A	86-106										
PVGEG HSVI1	1166-1178										
PVGEB HSVSA	130-146	266-288	293-319	330-346							
PVG59 H8VII	142-161	267-289									
	42-64	-							٠		
-	30-61	63-76									
PVG81 HSVII	78-102	117-136	*								
PVG83 HSVII	238-259	336-383									
PVG84 HSVI1	420-445										
PVG66 H9VI1	117-137	166-173	362-378	618-533	1147-1174				·		
PVG67 HSVII	108-132	171-188	318-344	722-746	1005-1029	1072-1091	1316-1341				-
PVG6 9PV1R	80-82										,
	·										}

	T				T				1			T										T	T	T		T						T		T						T	T		T	T	T	T
																		-	-					-		+		-		-		-				-			-	+	+	1		+	+	1
					ī																													-		-					+			+	+	†
					3601-3825																		,						-				ŀ													
					3374-3388																																									
					3073-3080								·										-																						Ī	
				-	2973-2999		1259-1280	1259-1280	1259-1280									1272-1286																												
					2788-2808		991-1017	991-1017	991-1017	1259-1280	1259-1280	1259-1280	7				1274-1297	1036-1082				1094-1111					1066-1080															-				
		1252-1289			2210-2228		284-279	651-674	284-279	891-1017	Г	Γ		1317-1338	1265-1288	1178-1187	1038-1084	788-814	1050-1073	1050-1073		1058-1081	Т	1059-1081		1066-1080	\vdash																-			
		720-744			2108-2127		174-180	264-279	174-180	264-279	174-180	264-279	1115-1134	1267-1280	1215-1238	1120-1148	800-818	604-619	814-840	814-840	1277-1300	771-797	770-788	Γ	Γ	770-798						760-777	977-197													
		535-561			1856-1877		123-138	174-190	123-139	174-190	123-138	174-190	1063-1071	899-1025	847-973	858-884	442-457	440-455	676-592	678-692	1041-1067	588-607	587-60 6	588-607		587-608	378-398					708-732	707-733		-						117-144	689-707	745-787			
184-208	89-105	445-471	124-151	67.72	1587-1808	167-178	10-33	8	10-33	123.139	31-47		768-784.	96-111	96-111	95-111	64-83	64-83	218-233	218-233	803-819	186-218		196-219	196-219	195-218		178-201	178-201	178-201	732-762		638-559	83-104	82-103	82-103	83-104	79-99	78-89	98-88	72-82	690-678		П	738-753	A76-A92
HSVII	HSVBA	HSVII	HSVSA	PV1R	BVB	HCMVA	SVBF	SVBLB	SVBLY	SVBM	SVBQ	SVBV	3VH22	SVM4	SVMAS	NMJH	CVPFS	SVPPU	CVPRB	SVPRM	Ad1:	BV6	BVB	BVD2	BVD3	BVK	BVM	BVU1	BVU2	BVU3	:BV	1CMVA														
PVG70 HSVII	PVG71 HSVBA	PVG72 HSVII	PVG74 HSVSA	PVGB_SPV1R	PVGF1 IBVB	PVGH3 HCMVA	PVGL2 CVBF	PVGL2 CVBL9	PVGL2 CVBLY	PVGL2 CVBM	PVGL2 (PVGL2 CVBV	PVGL2 CVH22	PVGL2 (PVGL2 (PVGL2 CVMJH	PVGL2	PVGL2 CVPPU	PVGL2 CVPRB	PVGL2 CVPRM	PVGL2 FIPV	PVGL2 IBV6	PVGL2 (BVB	PVGL2 IBVD2	PVGL2 IBVD3	PVGL2 IBVK	PVGL2 IBVM	PVGL2 IBVU1	PVGL2 IBVU2	PVGL2 IBVU3	PVGLB EBV	PVQLB HCMVA	PVGLB HCMVT	PVGLB HSV11	PVGLB H6V1F	PVOLB HBV1K	PVGLB HBV1P	PVGLB HSV23	PVGLB HSV2H	PVGLB H9V29	PVGLB H	PVGLB HSVB!	PVOLB HBVB2	PVGLB HSVBC	PVOLB HSVE1	PVA! R HRVEA

WO 94/28920

	,							-		
PVGLF NDVU	273-280									
PVGLF PHODV	268-285	305-328	367-383	531-558						
PVGLF PITHC	466-477									
PVGLF PI2H	450-471									
PVGLF_PI2HG	450-471									
PVGLF PIZHT	450-471									
PVGLF PI3B	283-310	405-428	463-474							
PVGLF PI3H4	2-20	283-310	453-474		•					
PVGLF RINDK	220-241	282-298	447-473							
PVOLF RINDL	220-241	282-288	447-473							
PVGLF SENDE	460-481									
PVGLF SENDF	480-481									
PVGLF SENDH	460-481									
PVGLF GENDJ	460-481									
PVGLF SENDZ	480-481	17								
PVGLF 6V41	453-474									
PVGLF SV6	401-425	448-487								
PVGLF TRTV	175-191	462-474								
ANHI DIDA	77-99									
PVGLG RABVE	454-474									
PVGLG RABVH	372-391	464-474							-	
PVGI G BARVP	454.474									
DVOLO DABVA	454.474									
מאסים שומאס	454.474									
מייסות שיים איים	2007							Ī		
PVGLG VHSVO	400-428									
PVGLH HCMVA	211-237	365-382	574-598	691-712						-
PVGLH HCMVT	210-238	364-381	673-697	690-711						
PVGLH HSV11	246-262	443-467	803-827							
PVGLH_HSV1E	245-282	443-467	803-827							
PVOLH HSVBG	314-332									
PVGLH HBVE4	304-326	814-839	,							
PVGLH HSVEB	287-318	807-832								
PVGLH HSV8A	454-479	858-878								
PVGLH MCMVS	670-680									
PVGLI HCMVA	158-180					,				
PVGLI HEV11	43-80									
PVQLJ HSVEB	44-63						·			
PVGLI VZVD	278-207					·				
PVOLM BUNGE	117-136	197-222								
PVOLM_BUNL7	31-66	81-98	180-211	1325-1345	1387-1410					
PVOLM BUNSH	31-55	81-98	180-211	1325-1345	1387-1410					
PVGLM BUNYW	183-218	1379-1404								
PVGLM HANTB	355-371		900-915	899-1019						
PVGLM HANTH	499-515		1000-1020							
PVGLM HANTL	489-616		1001-1021							
PVGLM HANTV	489-615	П	1001-1021						-	
PVGLM PHV	162-171									
	-									

VOTO M INVO	743.7AE	997.1018	1276-1302		-					
PVGLM PUUMH	166-174	509-525	712-728	-						
PVGLM PUUMS	166-174	609-525	712-728	1092-1117						
PVGLM RVFV	53-80	344-369	830-858							
PVGLM_RVFVZ	63-80	344-368	830-858	1158-1170						
PVOLM SEOUR	355-371	893-718	901-918	1000-1020						
PVGLM SEOUS	356-371	692-717	900-916	999-1019						
PVOLM UUK	681-585	655-674	826-642	926-952	966-999					
PVGLP BEV	430-462	869-888	1089-1124	1548-1588						
PVGLX PRVRI	149-178									
PVGLY JUNIN	12.38									
PVGLY LASSG	12-38	237-258	426-448							
PVGLY LASSJ	12.38	238-259	427-448							
PVOLY LYCVA	12.38					10				
PVOLY LYCVW	12.38	89-108								
PVGLY MOPEI	12-38	425-447								
PVGLY PIARV	12-38	441-488								
PVGLY TACV	12-38									
PVGLY_TACV6	12-38									
PVGLY TACV7	12.38									
PVGLY TACVT	12-38		-						-	
PVGNB CPMV	141-161	589-594	767-783	1110-1135	1165-1184					
PVGNM BPMV	978-898									
PVGNM CPMV	311.335	741-784	1021-1037							
PVGP2 EBV	857-981							•	•	
PVQP3 EBV	854-878									
PVGPB EBV	92-88									
PVM01 VACCC	134-159	177-185	281-302							
PVM01 VACCV	83-108	126-144	230-251		•					
PVM1 REOVD	141-188	227-245	280-304	324-347	414-438	464-477				
PVM1_REOVL	141-168	227-246	280-304	414-438	464-477					
PVM21 REOVD	166-182									
PVM22 REOVD	108-182		•				٠			
PVM2 REOVJ	168-192									
PVM2 REOVL	169-102									
PVM3 REOVD	304-328	521-540								
PVMAT BR9VA	37-62									
PVMAT CDVO	148-185	203-300								
PVMAT HR3VA	44-62	139-180			-					
PVMAT LPMV	311-338									
PVMAT MEASE	283-308									
PVMAT MEASH	283-308									
PVMAT MEASI	87-111									
PVMAT MEASU	283-308				٠					I
PVMAT MUMPS	191-207	227-250	310-330							
PVMAT NDVA	135-151	180-208	309-329							
PVMAT NDVB	136-161	180-208	308-328		-					

CHANGE PROPERTY	1000									
PVMAT PIZHT	132-154	189-205	308-328							
PVMAT PI4HA	312-332									
PVMAT_PI4HB	312-332									
PVMAT RINDK	200-221	239-260	283-308							
PVMAT BENDF	195-217									
PVMAT BENDH	195-217								-	
PVMAT SENDZ	195-217									
PVMAT 88PVB	283-309	314-338								
PVMAT 5V41	132-154	189-205	308-328							
PVMAT 8V6	98-114	132-148	308-336				-			
PVMAT SVCV	141-167									
PVMAT TRTV	122-143									
PVME1 CVBM	9-38	137-161	171-190	,						
PVME1_CVH22	136-155									
PVME1 CVHOC	9-38	64-85	137-161							
PVME1_CVMA6	10-37									
PVME1 CVMJH	10-37									
PVME1_CVPF3	174-183									
PVME1 CVPPU	174-193									
PVME1_CVPRM	174-193							٠		
PVME1_CVTKE	9-36	137-161	171-190							
PVME1_IBV8	74-98									
PVME1_IBVB	74-101									
PVME1_IBVB2	74-101									
PVME1_IBVK	74-98									
PVMEM EBV	131-157	178-203								
PVMP_CAMVC	118-134	147-164	183-201							
PVMP CAMVD	110-134	147-164	183-201							
PVMP CAMVE	118-134	147-164	183-201							
PVMP_CAMVN	118-134	147-164	183-201							
PVMP CAMVB	118-134	147-164	183-201	7						
PVMP CAMVW	118-134	147-184	183-201							
PVMP CERV	283-318							4		
PVMP_FMVD	116-131	180-198		٠						
PVMP SOCMV	122-147	273-288								
PVM8A HPBDB	201-228	269-295								
PVMSA HPBDC	184-221	288-284								
PVMSA HPBDU	157-184	231-267								
PVMSA HPBDW	184-221	269-298								
PVMSA HPBGS	208-238	271-296	380-395							
PVMSA HPBHE	238-282	293-320								
PVMSA HPBVO	70-96									
PVMSA HPBV2	185-202	244-270								
PVMSA HPBV4	185-202	244-270			٠.					·
PVMSA HPBV9	244-270									
PVM9A HPBVA	174-191	233-269								

		20.05									
	07.11	280/									
l	233-559										
	174-191	233-269									
	174-191	233-259									
PVM8A HPBVN	11-28	70-86									
Γ	174-181	233-269								•	
	185-202	244-270									
PVMSA HPBVR	185-202	244-270									
Γ	11-28	70-88									
PVMSA HPBVW	174-181	233-269									
Γ	174-181	233-259									
PVMSA HPBVZ	174-191	233-269									
	207-234	269-293	378-393			•					
	212-239	274-298	383.398								
	212-239	274-298	383-388								
	212-238	274-288	383-388								
	212-238	274-298	383-388								
	125-149	234-249									
Γ	25-46										
	25-48										
	25-40										
Ī	25-48				•	-					
	25-46										
	25-48										
	25-46						-				
	25-48										
PVMT2 IAPUE	25-46										
	25-48										
	26-48										
	25-48										
PVMT9 MYXVL	228-241										
								٠			
		_									
					·						·
			,								
				(
		7									
						٠			•		

TABLE X

Search Results Summary for P23CTLZIP Motif

				1	
P23LZIPC					
LIBRARY FILE	20,00			-	
	98-130	, , , ,			
PENV BAEVM	202-240	526-554 556 556	020		
PENV BIVOB	434-472	626-653	899-879		
	554-582	867-888			
PENV CAEVG	44-78				
	785-828				
PENV EIAV2	795-828				
PENV EIAV3	785-828				
PENV EIAVE	796-629				
PENV EIAVB	795-828				
PENV EIAVC	795-828				
PENV EIAVW	785-828				
PENV EIAVY	796-828				
PENV FIVPE	128-166				
PENV FIVT2	46-74				
PENV FLVGL	447-475				
PENV FLVLB	407-485				
PENV FLV8A	444-472				
PENV FOAMV	44-78	481-519	662-584		
	315-350				
	467-495				
	447-475				
PENV FSVSM	460-478				
	467-485				
PENV GALV	519-554				
PENV HV1A2	729-782				
PENV HV181	730-783				
PENV HV188	725-768				
PENV HV1BN	743-781				
PENV HV1BR	735-768				
PENV HV1C4	742-775				
PENV HVIEL	264-285	727-780			
	730-763				
PENV HV1H3	730-783				
PENV HV1J3	741-774				
PENV HV1JR	722-765				
PENV HV1KB	662-688	752-790			
PENV HV1MA	258-288	733-766			
PENV_HV1MF	728-781				
PENV HV1MN	392-430	731-784			
PENV HV1ND	248-279				
PENV HV10Y	729-762				
PENV HV1PV	730-783				
PENV HVIRH	738-772				
PENV HV18C	730-783				

PENV HV1W1	730-783			
PENV HV1WZ	+9/-17/			
PENV HV1Z2	264-286	727-760		
PENV HV1Z3	260-281			
PENV_HV1Z8	255-288	729-762		
PENV_HV1Z8	265-286			
PENV HV2BE	781-811			
PENV_HV2D1	772-802			
PENV_HV201	772-802			
PENV HV2NZ	777-814			
PENV HV29B	743-776			
PENV JSRV	288-332	484-616		
PENV MMTVB	436-472			
PENV MMTVG	436-472			
PENV RSVP	633-670	,		
PENV 6FV1	44-78	482-530		
PENV SFV3L	48-82	660-688		
PENV BIVCZ	746-778			
PENV BIVGB	247-277	353-386		
PENV SIVM1	788-800			
PENV SIVMK	785-788			
PENV BIVML	611-645	784-798		
PENV BIV84	458-489			
PENV BIVSP	482-480	810-840		
PHEMA CDVO	200-234			
	23-56			
PHEMA IACKA	23-66			
PHEMA IACKV	617-647			
PHEMA IADAS	23-66			
	23-65			
PHEMA IADHS	283-323.			
PHEMA IADNZ	23-55		~	
	16-61			
PHEMA JAGRE	23-55			
PHEMA IAMAA	22-54			
	27.59			
PHEMA_IARUD	23-65			
PHEMA IASE2	23-55		•	
PHEMA IASTA	617-547			
PHEMA MUMPM	19-62	101-132		
PHEMA MUMPR	19-62	101-132		
PHEMA MUMPS	19-62	101-132		
PHEMA NDVA	89-09			
PHEMA NOVB	89-09			
PHEMA NOVD	80-08			
PHEMA NOVH	80-88			
PHEMA NDVI	80-88			
			:	

	60-88				
	80-88				
PHEMA NDVTG	80-88				
PHEMA NDVU	80-88				
PHEMA PITHW	28-60	188-233			
PHEMA PIZH	13-48	334-369			
PHEMA PI2HT	13-48	334-389			
PHEMA PI3B	184-231				
PHEMA PI3H4	164-231				
PHEMA PI3HA	184-231				
PHEMA PISHT	194-231				
PHEMA PISHU	194-231				
PHEMA PI3HV	194-231				
PHEMA PI3HW	184-231				
PHEMA PISHX	184-231				
PHEMA PI4HA	245-280	338-376			
PHEMA RACVI	255-293				
PHEMA RINDL	282-313				
PHEMA SENDS	16-54	188-233			
PHEMA BENDF	16-54	186-233			
PHEMA SENDH	10-54	198-233			·
PHEMA GENDJ	18-54	186-233			
PHEMA_SEND2	23-54	198-233			
PHEMA 6V41	66-84	330-385			
PHEMA 8V6	7.36				
	7.41				
PHEMA BV6CP	7-41				
	7-36				
PHEMA VACCC	258-284				
PHEMA VACCI	268-284				
PHEMA_VACCT	259-294.				
PHEMA VACCV	258-284				
PVENV BEV	19-51	87-117			
PVENV DHVII	297-335				
PVENV MCV1	203-238				
PVENV MCV2	203-236			•	
PVENV VACCC	208-241				
	208-241				
PVENV VACCP	208-241				
PVENV VACCV	20B-241				
	2.40	61-93			
PVF03 VACCV	2-40	61-83			
-1	207-330				
	237-267				0
CAPVK	89-118				
VACCC	28-61				
PVFUS VACCV	28-61		•		

317-348				
92-120			,	
92-120 108-138				
99-136				
89-136				
113-146				
303-338				
266-301				
303-338				
150-183				
208-243				
68-108				
264-292	303-337	414-462		
300-337	847-67B			
70-108				
94-126				
			,	
491-521				
١.				
180-217				
209-244				
	180-228			
151-185				
643-677	648-682			
187-218				
•	202-233			
91-125				
108-140	167-185			
988-926				
329-367				
113-141				
29-64	84-120			
96-134				
100-129				
631-667	1091-1128			
342-376	480-508			
	195-233			
82-118				
78-109				
	363-401	420-452		
801-838	1290-1328			
160-188	1150-1185			

D1/075 1101/04	430.450				
	445-478	720-761	1158-1189	1262-1285	
PVG75 HSVI1	263-291	387-422			
PVQ78 HSVI1	187-221				
PVG7_SPV1R	18-48	-			
PVGF1 IBVB	1718-1747	1856-1891	2108-2148	3601-3633	
PVGH3 HCMVA	80-115	157-185			
PVGL2 CVBF	1259-1284				
PVGL2_CVBL9	651-681	1258-1284			
PVQL2_CVBLY		1258-1284		-	
PVGL2 CVBM		1259-1294			
PVGL2 CVBQ		1258-1284			
PVGL2 CVBV		1259-1294			
PVGL2 CVH22	1053-1088				
PVGL2 CVM4	1287-1304				
PVGL2 CVMAE	1216-1262				
	1126-1183				
PVGL2 CVPF6	632-665	736-784	1328-1383		
	630-663	734-782	1326-1381		
	512-540	1104-1139		_	
	408-441	1104-1139			
	635-668	739-787	1331-1388		
PVGL2 IBVB	153-188				
PVGLB HCMVA	116-147	706-743			
PVGLB HCMVT	116-147	707-744			
PVGLB H8V8U	72-110				
PVGLB H9VB1	254-288				
PVGLB HSVB2	264-299	746-774			
PVGLB H8VBC	253-287				
PYGLB ILTV8	442.472				
PVGLB_ILTV8	452-482				
PVGLB ILTVT	462-482	,			
PVGLB MCMVS	135-183	738-778			
PVGLC HBV11	467-500				
PVGLC HSV1K	467-500				
PVGLC H6V2	436-485				
PVGLC H8V23	438-488				
PVQLC HBVBC	476-607				
PVGLC VZVD	351-388	513-548			
PVGLC_VZVS	351-388	613-648			
PVQLD HSVEA	340-370				
PVGLD H8VEB	41-70	390-420			
PVGLD HSVEK	41-70	380-420			
PVOLE HSVE4	95-126				
PVGLE_H8VEB	63-100	380-420			
PVOLE HSVEL	63-100	382-422			
PVGLE PRVRI	332-369				

484-513 484-513 484-513 484-513 484-513 484-513 484-513 484-513 484-514 484-74 486-74 486-74 486-74 486-74 486-781 486-781 486-781 486-781 486-781 486-781 486-781 486-781 486-781 486-781 486-782 486-783 486-784 486-784 486-781 486-782 486-783 486-783 486-783 486-784 486-786 486-788 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 486-789 187-227 486-816 181-86 181-86 181-86 181-81 181-81	PVQLF BRBVA	286-301	482-511			
484-513 662-586 662-586 484-513 484-513 484-513 484-513 484-513 484-513 484-513 484-514 448-474 448-474 448-474 468-481 469-481 460-488 460	PVQLF BRSVC	484-513				
562-588 484-513 484-513 484-513 484-513 484-513 484-513 484-513 224-258 454-487 224-258 454-487 486-474 446-474 466-484 466-484 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-488 460-489 460-488 460-489 460-498 460-489 460-488 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498 460-489 460-498		484-513				
484-613 484-613 484-613 484-613 484-613 484-613 224-266 46-474 446-474 446-474 446-474 46-484 460-488	PVOLF CDVO	562-598				
484-613 484-613 484-613 484-613 224-268 461-484 448-474 448-474 448-474 448-474 448-474 448-474 448-474 453-481 460-488 460	PVGLF HRSV1	484-613				
464-613 484-613 227-256 451-484 444-474 444-474 444-474 5-38 446-474 453-481 460-488	PVGLF HRSVA	484-613				
484-613 224-256 224-256 464-874 448-474 448-474 448-474 6-38 6-38 448-474 448-474 6-38 448-474 453-481 453-481 460-488 460	PVGLF HRSVL	484-613				
224-266 451-484 227-258 464-87 224-256 451-484 446-474 446-474 45-484 450-488 460-488 450-482 180-220 180-220 180-220 180-220 180-220 180-220 180-220 180-220 181-219 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-227 181-228	PVGLF HRSVR	484-613				
227-259 454-487 224-259 451-484 449-14 449-14 5-38 132-185 132-185 531-685 469-484 453-481 453-481 453-481 460-488 450-488 450	PVGLF MEASE	224-258	451-484			
224-256 451-484 446-474 446-474 446-474 446-474 5-38 446-474 132-165 447-480 460-488 447-480 460-488 460-488 460-488 460-488 460-489 460-489 460-489	PVQLF MEASI	227-258	454-487			
446-474 446-474 5-3B 466-484 453-481 453-481 453-481 450-488 460-488 450-481 187-227 180-220 180-220 180-220 180-220 180-220 180-220 180-220 180-220 180-220 181-227 181-328 181-227 181-328 181-227 181-328	PVGLF MEASY	224-258	461-494			
449-474 6-38 449-474 132-165 46-484 46-484 45-481 45-481 47-480 220-252 447-480 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 460-486 691-719 691-719 691-719 692-718 692-1020 190-220 344-381 190-220 344-381 810-841 1081-119 810-641 1081-119	PVGLF MUMPM	448-474				
MUMPS 6-38 446-74 NDVI 132-185 PHODY 631-865 A60-481 SENDS 460-488 SENDS 460	PVGLF MUMPR	440-474				
NDVI 132-166	PVOLF MUMPS	6-38	448-474			
PHODV 631-666 PHINC 466-484 PI3B 453-481 PI3B 453-481 PI3H 453-481 PI3H 453-481 PI3H 453-481 PI3H 465-488 EENDE 460-488 EENDE 460-488 EENDZ 460-488 SENDZ 460-488 SENDZ 460-488 EENDZ 460-488 PIXTY 462-481 PIXTY 462-481 PIXTY 462-481 PIXTY 462-481 PIXTY 462-482 PIXTY 460-488 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-497 PIXTY 460-498 PIXTY 46	PVGLF NDVI	132-185				
PIJHC 466-484 PIJSB 463-481 PIJSB 463-481 PIJSH 463-481 RINDL 220-262 447-480 RENDE 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SENDJ 460-488 SOVE 460-488 HSVE 624-653 VSVIQ 460-488 CENDZ 460-488 HSVE 631-718 HGV-48 HSVE 631-718 HSVE 600-718 HSVE 718-27 HSVE 718-28 HSVE	PVGLF PHODY	531-585				
PI3B 463-481 PI3B 463-481 PI3H4 463-481 RINDL 220-252 447-480 RENDE 460-488 460-488 SENDH 460-488 460-488 SENDJ 460-488 460-488 SENDZ 440-474 7 TRIV 462-481 7 HSVE 327-384 7 FENDZ 440-474 7 YOSVIG 460-488 7	PVGLF PITHC	468-484				
RINDL 220-262 447-480 RINDL 220-262 447-480 EENDE 460-488 SENDF 460-488 SENDF 460-488 SENDJ 460-488 SENDZ 460-488 SENDZ 460-488 SENDZ 460-488 SENDZ 460-488 SENDZ 460-488 SENDZ 460-489 SENDZ	PVGLF PI38	453-481				
RINDK 220-262 447-480 RINDL 220-262 447-480 RENDE 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 SENDH 460-488 FENDH 460-489 SENDH 460-489 SENDH 460-489 SENDH 460-489 FENDH 460-497 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-489 FENDH 460-481 FENDH 460-481 FENDH 460-481 FENDH 460-481 FENDH 460-481 FENDH 460-489 FENDH 460-481 FENDH 460-489	PVGLF PI3H4	453-481				
RINDL 220-262 447-480 SENDE 460-488 460-488 SENDH 460-488 460-488 SENDJ 460-489 460-489 SENDZ 440-414 460-489 SENDZ 440-414 462-481 TRTV 462-481 460-489 VBVIQ 460-488 460-489 VBVJQ 460-489 460-489 VBVSJ 460-489 460-489 VBVSJ 460-489 460-489 HCMVA 681-719 460-489 HSVG 400-477 400-401 HSVG 600-643 600-641 BUNGE 180-220 344-381 BUNGE 180-220 344-381 BUNGW 180-220 344-321 BUNGW 180-220 344-321 BU	PVOLF RINDK	220-252	447-480			
SENDE 460-488 SENDF 460-488 SENDH 460-488 SENDJ 460-488 SENDZ 460-488 SENDZ 460-489 SENDZ 460-489 SENDZ 460-489 SENDZ 460-489 SENDZ 460-489 SENDZ 460-489 VBVIG 460-489 HCMYA 681-719 HCMYA 681-719 HSVEG 400-677 HSVEG 400-677 BUNG 160-220 BUNG 180-220 BUNG 180-220 BUNG 180-220 BUNG 244-272 BUNG 100-210 BUNG 244-272 BUNG <t< td=""><td>PVOLF RINDL</td><td>220-252</td><td>447-480</td><td></td><td></td><td></td></t<>	PVOLF RINDL	220-252	447-480			
SENDF 460-488 SENDJ 460-488 SENDJ 460-488 SENDZ 460-488 SENDZ 460-488 SVE 446-474 TRTV 462-481 HSVEB 327-364 SYNU 460-488 VBVIG 460-488 VBVO 450-488 VBVO 450-488 VEVSJ 460-488 VBVO 460-488 VBVO 460-488 HGMYA 480-718 HGWYA 188-184 HGWYA 186-184 BUNGE 197-227 438-489 BUNGE 197-227 438-489 BUNG 180-220 344-381 BUNY 180-220 344-32 889-916 BUNY 190-221 889-916 HANTB 610-641 1081-119	PVOLF BENDS	460-488				
SENDH 460-48B SENDJ 460-48B SENDJ 460-48B SENDZ 460-48B SAG 446-474 RAYE 462-481 FYNY 462-482 VSVIQ 460-48B VSVSJ 460-48B HCMVA 691-71B HSVEA 807-84B HSVEA 807-84B HSVEA 807-84B BUNGE 197-227 438-46B BUNGE 197-227 438-46B BUNG 180-220 344-381 BUNG 180-220 344-321 BUNYW 180-220 344-321 BUNYW 180-230 348-91B HANTR 410-41 108-1119	PVGLF SENDF	460-488				
SENDJ 460-488 SENDZ 460-488 SENDZ 460-488 SWG 44.474 RAY 462-481 HSVEB 327-364 EYNV 562-653 VBVIO 460-488 VBVJO 460-488 VBVJO 460-488 VBVJO 460-488 VBVSJ 460-488 HCMVA 691-718 HSVBG 800-871 HSVBG 800-873 HSVBG 807-843 EUNGE 197-227 438-468 BUNG 180-220 344-381 BUNG 180-220 344-381 BUNG 180-220 344-381 BUNY 180-220 344-321 BUNY 180-220 344-321 BUNY 180-220 344-321 BUNY 180-230 344-321 BUNY 180-230 344-472 BUNY 180-230 344-321 BUNG 180-210	PVGLF SENDH	480-488				
SENDZ 460-48B SVG 446-474 SVG 446-474 TMTV 452-481 HSVEB 327-364 SENNV 524-563 VBVIO 460-48B VBVO 460-48B VBVO 460-48B VBVSJ 460-48B VBVSJ 460-48B HCMVA 691-71B HBVBG 840-677 HBVBG 800-813 HSVEA 807-843 BUNGE 197-227 438-46B BUNGE 197-227 438-46B BUNG 180-220 344-381 BUNG 180-220 344-381 BUNG 180-220 344-381 BUNG 180-220 344-381 BUNG 180-220 344-321 BUNG 180-220 344-321 BUNG 180-220 344-321 BUNG 180-220 344-321 BUNG 180-230 344-321 BUNG		460-488				
8V6 446-474 4 62-481 446-474 4 62-481 448-474 62-481 624-653 624-654 6		460-488				
HSVEB 327-364 HSVEB 327-364 EVNV 624-663 VSVIQ 460-468 VSVVO 460-468 VSVVO 460-468 VSVVO 460-468 VSVVO 460-678 HSVEJ 460-679 HSVEJ 660-679 HSVEG 640-677 HSV		448-474				
HSVEB 327-364 EYNIV 624-563 VSVIG 460-488 VSVO 460-488 VSVO 460-488 HCMVA 891-719 HCMVT 690-718 HSVEG 640-677 HSVEG 64	PVOLF TRTV	462-481				
EYNV 624-653 VBVIG 460-488 VBVJO 460-488 VBVJO 460-488 VBVJO 460-488 VBVJO 460-488 HCMVA 681-718 HCMVT 680-718 HBVG 640-677 HBVE 807-843 HBVE 180-1020 BUNG 180-220 BUNG 180-220 BUNSH 180-220 BUNSH 180-220 BUNSH 180-220 BUNSH 180-220 BUNSH 180-220 244-273 886-816 BUNSH 109-220 244-273 886-816 BUNG 108-1119	PVGLG HSVEB	327-364				
VBVJQ 460-488 VBVJQ 467-482 VBVJQ 467-482 VBVQ 450-488 VBVQ 450-488 VBVQ 450-488 VBVQ 460-718 VBVQ 440-677 VBVZ 441-850 VBVQ 189-22 VBVJQ 189-21 VBVJQ 189-21 VBVJQ 189-21 VBVJQ 199-22 VBV	PVGLG SYNV	524-553				
V6VJO 467-482 VBVO 450-488 VEVSJ 450-488 HCMVA 681-718 HCMVT 680-718 HSVEG 440-677 HSVEB 807-843 HONGE 197-227 BUNGE 197-237 BUNGE 197-24-381 BUNGE 197-24-381		460-488 ·				
V6VS.J. 460-488 V6VS.J. 460-488 HCMVA 681-718 HCMVT 680-718 HSVGG 640-677 HSVEB 807-843 HONGE 197-227 438-469 BUNGE 197-227 438-469 BUNGH 180-220 B		467-492				
450-488 691-719 640-677 814-850 807-843 168-194 197-227 180-220 180-220 180-220 344-381 7 183-228 434-472 810-841 810-841 108-1020	PVGLG VBVO	450-488				
691-719 690-718 640-677 814-850 807-843 168-194 187-227 180-220 180-220 190-220 344-381 744-273 810-841 109-210 810-841 810-841 810-841	PVGLG VSVSJ	450-488				
080-718 040-677 040-677 040-677 040-677 041-660 062-1020 168-194 168-104 169-220 180-220 180-220 344-381 041-231 041-472 041-641 061-641 1081-1119 041-641 0	PVGLH HCMVA	891-718				
040-077 040-077 010-07-07-07-07-07-07-07-07-07-07-07-07-07	PVGLH HCMVT	690-718				
168-194 168-1020 197-227 438-468 982-1020 190-220 344-472 823-864 1081-1119 1081-119 1081-119 1081-119 1081-119 1081-119 1081-119 1081-119 1081-119 10	PVGLH HBV8G	840-877				
168-194 197-227 438-469 882-1020 180-220 344-381 180-220 344-381 V 183-228 434-472 823-854 V 183-228 637-672 886-915	PYOUH HBVE4	914-860				
168-194 197-227 438-469 862-1020 180-220 344-381 190-228 434-472 823-854 V 183-228 637-672 886-915 610-641 1081-1119	PVOLH HOVEB	807-843				
197-227 438-469 982-1020 180-220 344-381 190-220 344-381 V 183-228 434-472 823-854 V 143-229 637-972 886-915 6310-841 1081-1119	PVOLI HCMVA	158-194				
180-220 190-220 344-381 183-228 434-472 810-841 1081-119	PVGLM BUNGE	197-227	438-468	982-1020	1049-1084	
190-220 344-381 183-228 434-472 823-864 244-273 837-872 886-916 810-841 1081-1119	PVGLM BUNL7	180-220				
183-228 434-472 823-854 244-273 637-672 886-915 610-641 1081-1119	PVOLM BUNSH	180-220	344-381			
244-273 637-672 686-915	PVGLM BUNYW	183-228	434-472	823-854		
810-841	PVOLM DUGBV	244-273	637-672	886-915	935-966	1403-1441
	PVGLM HANTB	810-841	1081-1119	0000		
PVGLM HANTH 168-222 812-843 1082-1120	PVGLM HANTH	189-222	612-643	1082-1120		

				-	
PVGLM HANTL	169-222	612-643	1211-5901		
PVGLM HANTV	188-222	612-643	1083-1121	-	T
PVOLM PHV	616-649	1088-1121			
PVQLM PTPV	949-982	1275-1308			
PVGLM PUUMH	620-653	1092-1126			
PVGLM PUUMS	620-653	1092-1126			
PVGLM RVFV	820-853	830-883			
PVGLM RVFVZ	820-863	830-863	1166-1185		
PVGLM SEOUR	806-841	1082-1120			
PVGLM SEOUS	810-841	1081-1118			
	431-468	966-995			
PVGLP BEV	1491-1628				
PVGLY_JUNIN	12-46				
PVOLY LASSO	237-286				
PVGLY LASSJ	238-268				
PVQLY PIARV	12-50				
PVGLY TACV	12-50				
	12-50	89-124			
	12-50	89-124			
	12-50	89-124			
	1627-1666				
PVGNM BPMV	137-187	280-327	837-868		
PVGNM CPMV	209-242	741-771			
PVGNM CPSMV	50-88	479-515			
PVGNM RCMV	786-789				
PVGP2 EBV	78-111				
PVGP3_EBV	78-111				
PVM1 REOVD	280-318	324-381	·		
PVM1 REOVL	280-318				
PVM21 REOVD	168-199				
PVM22 REOVD	168-199			-	
PVM2 REOVJ	168-199				
PVM2 REOVL	168-199				
PVM3 REOVD	333-364				
PVMAT 9V6	308-342				
PVMAT_TRTV	122-160				
PVME1_CVBM	84-102				
PVME1 CVHOC	84-102				
PVME1_CVMA5	65-103				
PVME1 CVMJH	65-103				
PVME1 CVTKE	64-102				
PVMEM EBV	178-213				
PVMP CERV	93-126				
PVMP BOCMV	88-88	273-303			
PVMSA HPBDB	201-238	269-302			
PVMSA HPBDC	184-227	288-301			
PVMSA HPBDU	157-190	231-264			

and an analysis of the second	200	100		
3 12	169-195	236-269		
8	70-88			
24	244-272			
24	244-272			
24	244-272			
23	233-261			
\$	70-98			
23	233-281			
23	233-281			Ŧ
23	233-281			
70	70-98			
23	233-261			
24	244-272			
24	244-272			
8	70-98			
23	233-201			
HPBVY 23	233-261			
23	233-281			
20	207-241	269-305		
21.	212-246	274-310		
21.	212-248	274-310	,	
21.	212-248	274-310		
21.	212-248	274-310		
WHVW8 12	125-181			
9	10-44			
5.34	¥	141-170	ā	
24	246-282			
	٠			
1				
-				

5.3. SYNTHESIS OF PEPTIDES

The peptides of the invention may be synthesized or prepared by techniques well known in the art. for example, Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman and Co., NY, which is incorporated herein by reference in its Short peptides, for example, can be entirety. synthesized on a solid support or in solution. Longer peptides amy be made using recombinant DNA techniques. Here, the nucleotide sequences encoding the peptides 10 of the invention may be synthesized, and/or cloned, and expressed according to techniques well known to those of ordinary skill in the art. See, for example, Sambrook, et al., 1989, Molecular Cloning, A Laboratory Manual, Vols. 1-3, Cold Spring Harbor 15 Press, NY.

The peptides of the invention may alternatively be synthesized such that one or more of the bonds which link the amino acid residues of the peptides are non-peptide bonds. These alternative non-peptide bonds may be formed by utilizing reactions well known to those in the art, and may include, but are not limited to imino, ester, hydrazide, semicarbazide, and azo bonds, to name but a few. In yet another embodiment of the invention, peptides comprising the sequences described above may be synthesized with additional chemical groups present at their amino and/or carboxy termini, such that, for example, the stability, bioavailability, and/or inhibitory activity of the peptides is enhanced. For example, hydrophobic groups such as carbobenzoxyl, dansyl, or tbutyloxycarbonyl groups, may be added to the peptides' amino termini. Likewise, an acetyl group or a 9fluorenylmethoxy-carbonyl group may be placed at the (See "X" in Tables I to IV, peptides' amino termini. above.) Additionally, the hydrophobic group, t-

butyloxycarbonyl, or an amido group may be added to the peptides' carboxy termini. (See "Z" in Tables I to IV, above.) Further, the peptides of the invention may be synthesized such that their steric configuration is altered. For example, the D-isomer of one or more of the amino acid residues of the peptide may be used, rather than the usual L-isomer. Still further, at least one of the amino acid residues of the peptides of the invention may be substituted by one of the well known non-naturally occurring amino acid residues. Alterations such as these may serve to increase the stability, bioavailability and/or inhibitory action of the peptides of the invention.

Any of the peptides described above may,
additionally, have a non-peptide macromolecular
carrier group covalently attached to their amino
and/or carboxy termini. Such macromolecular carrier
groups may include, for example, lipid-fatty acid
conjugates, polyethylene glycol, or carbohydrates.
"X", in Tables I to IV, above, may therefore
additionally represent any of the above macromolecular
carrier groups covalently attached to the amino
terminus of a peptide. Likewise, "Z", in Tables I to
IV, may additionally represent any of the
macromolecular carrier groups described above.

5.4. ASSAYS FOR ANTIVIRAL ACTIVITY

The antiviral activity exhibited by the peptides of the invention may be measured, for example, by easily performed in vitro assays, such as those described below, which can test the peptides' ability to inhibit syncytia formation, or their ability to inhibit infection by cell-free virus. Using these assays, such parameters as the relative antiviral activity of the peptides, exhibit against a given strain of virus and/or the strain specific inhibitory

30

activity of the peptide can be determined. A cell fusion assay may be utilized to test the peptides' ability to inhibit HIV-induced syncytia formation in vitro. Such an assay may comprise culturing uninfected CD-4+ cells (such as Molt or CEM cells, for example) in the presence of chronically HIV-infected cells and a peptide to be assayed. For each peptide, a range of peptide concentrations may be tested. This range should include a control culture wherein no peptide has been added. Standard conditions for culturing, well known to those of ordinary skill in the art, are used. After incubation for an appropriate period (24 hours at 37°C, for example) the culture is examined microscopically for the presence of multinucleated giant cells, which are indicative of cell fusion and syncytia formation.

15

30

35

A reverse transcriptase (RT) assay may be utilized to test the peptides' ability to inhibit infection of CD-4+ cells by cell-free HIV. Such an assay may comprise culturing an appropriate concentration (i.e., TCID₅₀) of virus and CD-4+ cells in the presence of the peptide to be tested. Culture conditions well known to those in the art are used. As above, a range of peptide concentrations may be used, in addition to a control culture wherein no peptide has been added. After incubation for an appropriate period (e.g., 7 days) of culturing, a cell-free supernatant is prepared, using standard procedures, and tested for the present of RT activity as a measure of successful infection. The RT activity may be tested using standard techniques such as those described by, for example, Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and/or Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). These references are incorporated herein by reference in their entirety.

Standard methods which are well-known to those of skill in the art may be utilized for assaying non-retroviral activity. See, for example, Pringle et al. (Pringle, C.R. et al., 1985, J. Medical Virology 17:377-386) for a discussion of respiratory syncytial virus and parainfluenza virus activity assay techniques. Further, see, for example, "Zinsser Microbiology", 1988, Joklik, W.K. et al., eds., Appleton & Lange, Norwalk, CT, 19th ed., for a general review of such techniques. These references are incorporated by reference herein in its entirety.

5.5. USES OF THE PEPTIDES OF THE INVENTION

10

30

35

The DP-178 (SEQ ID:1) peptides of the invention, and DP-178 fragments, analogs, and homologs, exhibit potent antiviral activity. The DP-107-like and DP-178-like peptides of the invention preferably exhibit antiviral activity. As such, the peptides may be used as inhibitors of human and non-human viral and retroviral, especially HIV, transmission to uninfected cells.

The human retroviruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to all strains of HIV-1 and HIV-2 and the human T-lymphocyte viruses (HTLV-I and II). The non-human retroviruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to bovine leukosis virus, feline sarcoma and leukemia viruses, simian immunodeficiency, sarcoma and leukemia viruses, and sheep progress pneumonia viruses.

Non retroviral viruses whose transmission may be inhibited by the peptides of the invention include, but are not limited to human respiratory syncytial virus, canine distemper virus, newcastle disease virus, human parainfluenza virus, and influenza

viruses. Further, any virus or retrovirus containing peptides listed in Tables V through X above, may be inhibited by the peptides of the invention.

As discussed more fully, below, in Section 5.5.1 and in the Example presented, below, in Section 8, DP-107 and DP-178, and DP-107-like and DP-178-like peptides form non-covalent protein-protein interactions which are required for normal activity of the virus. Thus, the peptides of the invention may also be utilized as components in assays for the identification of compounds that interfere with such protein-protein interactions and may, therefore, act as antiviral agents. These assays are discussed, below, in Section 5.5.1.

5.5.1. ANTIVIRAL COMPOUND SCREENING SCREENING ASSAYS FOR COMPOUNDS THAT INTERACT WITH THE PKD1_GENE_PRODUCT

As demonstrated in the Example presented in Section 8, below, DP-107 and DP-178 portions of the TM protein gp41 form non-covalent protein-protein 20 intereactions. As also demonstrated, the maintenance of such interactions is necessary for normal viral infectivity. Thus, compounds which bind DP-107, bind DP-178, and/or act to disrupt normal DP-107/DP-178 protein-protein interactions may act as patent antiviral agents. Described below are assays for the identification of such compounds. Note that, while, for case and clarity of discussion, DP-107 and DP-178 peptides will be used as components of the assays described, but it is to be understood that any of the 30 DP-107-like or DP-178-like peptides described, above, in Sections 5.1 and 5.2 may also be utilized as part of these screens for antiviral compounds.

Compounds which may be tested for an ability to bind DP-107, DP-178, and/or disrupt DP-107/DP-178 interactions, and which therefore, potentially

represent antiviral compounds, include, but are not limited to, peptides made of D- and/or L-configuration amino acids (in, for example, the form of random peptide libraries; see Lam, K.S. et al., 1991, Nature 354:82-84), phosphopeptides (in, for example, the form of random or partially degenerate, directed phosphopeptide libraries; see, for example, Songyang, Z. et al., 1993, Cell 72:767-778), antibodies, and small organic or inorganic molecules. Synthetic compounds, natural products, and other sources of potentially effective materials may be screened in a variety of ways, as described in this Section. compounds, antibodies, or other molecules identified may be tested for an ability to inhibit viral activity, utilizing, for example, viral assays such as those described, above, in Section 5.4.

Among the peptides which may be tested are soluble peptides comprising DP-107 and/or DP-178 domains, and peptides comprising DP-107 and/or DP-178 domains having one or more mutations within one or both of the domains, such as the M41-P peptide described, below, in the Example presented in Section 8, which contains a isoleucine to proline mutation within the DP-178 sequence.

20

25

30

35

In one embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:

- (a) exposing at least one compound to a peptide comprising a DP-107 peptide for a time sufficient to allow binding of the compound to the DP-107 peptide;
 - (b) removing non-bound compounds; and
- (c) determining the presence of the compound bound to the DP-107 peptide, thereby identifying an agent to be tested for antiviral ability.

In a second embodiment of such screening methods is a method for identifying a compound to be tested for antiviral ability comprising:

- (a) exposing at least one compound to a peptide comprising a DP-178 peptide for a time sufficient to allow binding of the compound to the DP-178 peptide;
 - (b) removing non-bound compounds; and
- (c) determining the presence of the compound bound to the DP-178 peptide, thereby identifying an agent to be tested for antiviral ability.

One method utilizing these types of approaches that may be pursued in the isolation of such DP-107binding or DP-178-binding compounds is an assay which would include the attachment of either the DP-107 or the DP-178 peptide to a solid matrix, such as, for example, agarose or plastic beads, microtiter plate wells, petri dishes, or membranes composed of, for example, nylon or nitrocellulose. In such an assay 20 system, either the DP-107 or DP-178 protein may be anchored onto a solid surface, and the compound, or test substance, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. 25 anchored component may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody, preferably a monoclonal antibody, specific for the protein may be used to anchor the protein to the solid surface. surfaces may be prepared in advance and stored.

In order to conduct the assay, the labeled compound is added to the coated surface containing the anchored DP-107 or DP-178 peptide. After the reaction

is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the compound is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the labeled component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the compound (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody).

Alternatively, such an assay can be conducted in a liquid phase, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for DP-107 or DP-178, whichever is appropriate for the given assay, or ab antibody specific for the compound, i.e., the test substance, in order to anchor any complexes formed in solution, and a labeled antibody specific for the other member of the complex to detect anchored complexes.

By utilizing procedures such as this, large numbers of types of molecules may be simultaneously screened for DP-107 or DP-178-binding capability, and thus potential antiviral activity.

Further, compounds may be screened for an ability to inhibit the formation of or, alternatively, disrupt DP-107/DP-178 complexes. Such compounds may then be tested for antiviral capability. For ease of description, DP-107 and DP-178 will be referred to as "binding partners." Compounds that disrupt such interactions may exhibit antiviral activity. Such compounds may include, but are not limited to

molecules such as antibodies, peptides, and the like described above.

The basic principle of the assay systems used to identify compounds that interfere with the interaction between the DP-107 and DP-178 peptides involves preparing a reaction mixture containing peptides under conditions and for a time sufficient to allow the two peptides to interact and bind, thus forming a complex. In order to test a compound for disruptive activity, the reaction is conducted in the presence and absence of the test compound, i.e., the test compound may be initially included in the reaction mixture, or added at a time subsequent to the addition of one of the binding partners; controls are incubated without the test compound or with a placebo. The formation of any complexes between the binding partners is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound indicates that the compound interferes with the interaction of the DP-107 and DP-178 peptides.

interaction of the binding partners can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring one of the binding partners onto a solid phase and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance; i.e., by adding the test

The assay for compounds that interfere with the

substance to the reaction mixture prior to or simultaneously with the binding partners. On the other hand, test compounds that disrupt preformed complexes, e.g. compounds with higher binding constants that displace one of the binding partners from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are described briefly below.

In a heterogeneous assay system, one binding partner, e.g., either the DP-107 or DP-178 peptide, is anchored onto a solid surface, and its binding partner, which is not anchored, is labeled, either directly or indirectly. In practice, microtiter plates are conveniently utilized. The anchored species may be immobilized by non-covalent or covalent attachments. Non-covalent attachment may be accomplished simply by coating the solid surface with a solution of the protein and drying. Alternatively, an immobilized antibody specific for the protein may be used to anchor the protein to the solid surface. The surfaces may be prepared in advance and stored.

In order to conduct the assay, the binding partner of the immobilized species is added to the coated surface with or without the test compound.

After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways.

Where the binding partner was pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the binding partner is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for

the binding partner (the antibody, in turn, may be directly labeled or indirectly labeled with a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds which inhibit complex formation or which disrupt preformed complexes can be detected.

Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound, the reaction products separated from unreacted components, and complexes detected; e.g., using an immobilized antibody specific for one binding partner to anchor any complexes formed in solution, and a labeled antibody specific for the other binding partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds which inhibit complex or which disrupt preformed complexes can be identified.

In an alternate embodiment of the invention, a homogeneous assay can be used. In this approach, a 20 preformed complex of the DP-107 and DP-178 peptides is prepared in which one of the binding partners is labeled, but the signal generated by the label is quenched due to complex formation (see, e.q., U.S. Patent No. 4,109,496 by Rubenstein which utilizes this 25 approach for immunoassays). The addition of a test substance that competes with and displaces one of the binding partners from the preformed complex will result in the generation of a signal above background. In this way, test substances which disrupt DP-107/ 30 DP-178 protein-protein interaction can be identified.

5.5 PHARMACEUTICAL FORMULATIONS, DOSAGES AND MODES OF ADMINISTRATION

With respect to HIV, the peptides of the invention may be used as a therapeutic in the

treatment of AIDS. The peptides of the invention may be administered using techniques well known to those in the art. Preferably, agents are formulated and administered systemically. Techniques for formulation and administration may be found in "Remington's Pharmaceutical Sciences", 18th ed., 1990, Mack Publishing Co., Easton, PA. Suitable routes may include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullarý injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections, just to name a Most preferably, administration is intravenous. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For such transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

In addition, the peptides may be used as a prophylactic measure in previously uninfected individuals after acute exposure to an HIV virus. 25 Examples of such prophylactic use of the peptides may include, but are not limited to, prevention of virus transmission from mother to infant and other settings where the likelihood of HIV transmission exists, such as, for example, accidents in health care settings 30 wherein workers are exposed to HIV-containing blood products. The peptides of the invention in such cases may serve the role of a prophylactic vaccine, wherein the host raises antibodies against the peptides of the invention, which then serve to neutralize HIV viruses 35 by, for example, inhibiting further HIV infection.

Administration of the peptides of the invention as a prophylactic vaccine, therefore, would comprise administering to a host a concentration of peptides effective in raising an immune response which is sufficient to neutralize HIV, by, for example, inhibiting HIV ability to infect cells. The exact concentration will depend upon the specific peptide to be administered, but may be determined by using standard techniques for assaying the development of an immune response which are well known to those of ordinary skill in the art. The peptides to be used as vaccines are usually administered intramuscularly.

The peptides may be formulated with a suitable adjuvant in order to enhance the immunological response. Such adjuvants may include, but are not limited to mineral gels such as aluminum hydroxide; surface active substances such as lysolecithin, pluronic polyols, polyanions; other peptides; oil emulsions; and potentially useful human adjuvants such as BCG and Corynebacterium parvum. Many methods may be used to introduce the vaccine formulations described here. These methods include but are not limited to oral, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, and intranasal routes.

15

Alternatively, an effective concentration of polyclonal or monoclonal antibodies raised against the peptides of the invention may be administered to a host so that no uninfected cells become infected by HIV. The exact concentration of such antibodies will vary according to each specific antibody preparation, but may be determined using standard techniques well known to those of ordinary skill in the art.

Administration of the antibodies may be accomplished using a variety of techniques, including, but not limited to those described in this section.

Effective dosages of the peptides of the invention to be administered may be determined through procedures well known to those in the art which address such parameters as biological half-life, bioavailability, and toxicity. Given the data presented below in Section 6, DP-178, for example, may prove efficacious <u>in vivo</u> at doses required achieve circulating levels of 10ng per ml of peptide.

A therapeutically effective dose refers to that amount of the compound sufficient to result in 10 amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 15 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds which exhibit large therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of 25 circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the 30 therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which 35 achieves a half-maximal disruption of the PTK/adaptor

protein complex, or a half-maximal inhibition of the cellular level and/or activity of a complex component) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography (HPLC).

The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. (See e.g. Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p1).

It should be noted that the attending physician would know how to and when to terminate, interrupt, or adjust administration due to toxicity, or to organ dysfunctions. Conversely, the attending physician would also know to adjust treatment to higher levels if the clinical response were not adequate (precluding toxicity). The magnitude of an administrated dose in the management of the oncogenic disorder of interest 20 will vary with the severity of the condition to be treated and to the route of administration. The dose and perhaps dose frequency, will also vary according to the age, body weight, and response of the individual patient. A program comparable to that discussed above may be used in veterinary medicine.

As demonstrated in the Example presented below in Section 6, the antiviral activity of the peptides of the invention may show a pronounced type and subtype specificity, i.e., specific peptides may be effective in inhibiting the activity of only specific viruses. This feature of the invention presents many advantages. One such advantage, for example, lies in the field of diagnostics, wherein one can use the antiviral specificity of the peptide of the invention to ascertain the identity of a viral isolate. With

25

30

respect to HIV, one may easily determine whether a viral isolate consists of an HIV-1 or HIV-2 strain. For example, uninfected CD-4+ cells may be co-infected with an isolate which has been identified as containing HIV the DP-178 (SEQ ID:1) peptide, after which the retroviral activity of cell supernatents may be assayed, using, for example, the techniques described above in Section 5.2. Those isolates whose retroviral activity is completely or nearly completely inhibited contain HIV-1. Those isolates whose viral 10 activity is unchanged or only reduced by a small amount, may be considered to not contain HIV-1. Such an isolate may then be treated with one or more of the other DP-178 peptides of the invention, and subsequently be tested for its viral activity in order 15 to determine the identify of the viral isolate.

Use of pharmaceutically acceptable carriers to formulate the compounds herein disclosed for the practice of the invention into dosages suitable for systemic administration is within the scope of the invention. With proper choice of carrier and suitable manufacturing practice, the compositions of the present invention, in particular, those formulated as solutions, may be administered parenterally, such as by intravenous injection. The compounds can be formulated readily using pharmaceutically acceptable carriers well known in the art into dosages suitable for oral administration. Such carriers enable the compounds of the invention to be formulated as tablets, pills, capsules, liquids, gels, syrups, 30 slurries, suspensions and the like, for oral ingestion by a patient to be treated.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. Determination

of the effective amounts is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. The preparations formulated for oral administration may be in the form of tablets, dragees, capsules, or solutions.

10

15

35

The pharmaceutical compositions of the present invention may be manufactured in a manner that is itself known, <u>e.g.</u>, by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, 20 suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding

suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate.

Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added.

10

6. EXAMPLE: DP-178 (SEQ ID:1) IS A POTENT INHIBITOR OF HIV-1 INFECTION

In this example, DP-178 (SEQ ID:1) is shown to be a potent inhibitor of HIV-1 mediated CD-4⁺ cell-cell fusion and infection by cell free virus. In the fusion assay, this peptide completely blocks virus induced syncytia formation at concentrations of from 1-10 ng/ml. In the infectivity assay the inhibitory concentration is somewhat higher, blocking infection at 90ng/ml. It is further shown that DP-178 (SEQ ID:1) shows that the antiviral activity of DP-178 (SEQ ID:1) is highly specific for HIV-1. Additionally, a synthetic peptide, DP-185 (SEQ ID:3), representing a HIV-1-derived DP-178 homolog is also found to block HIV-1-mediated syncytia formation.

15

6.1. MATERIALS AND METHODS

6.1.1. PEPTIDE SYNTHESIS

Peptides were synthesized using Fast Moc 20 chemistry on an Applied Biosystems Model 431A peptide synthesizer. Amidated peptides were prepared using Rink resin (Advanced Chemtech) while peptides containing free carboxy termini were synthesized on Wang (p-alkoxy-benzyl-alcohol) resin (Bachem). 25 residues were double coupled to the appropriate resin and subsequent residues were single coupled. Each coupling step was followed by acetic anhydride capping. Peptides were cleaved from the resin by treatment with trifluoracetic acid (TFA) (10ml), H2O (0.5ml), thioanisole (0.5ml), ethanedithiol (0.25ml), and crystalline phenol (0.75g). Purification was carried out by reverse phase HPLC. Approximately 50mg samples of crude peptide were chromatographed on a Waters Delta Pak C18 column (19mm x 30cm, 15µ spherical) with a linear gradient; H2O/acetonitrile

0.1% TFA. Lyophilized peptides were stored desiccated and peptide solutions were made in water at about 1mg/ml. Electrospray mass spectrometry yielded the following results: DP-178 (SEQ ID:1):4491.87 (calculated 4491.94); DP-180 (SEQ ID:2):4491.45 (calculated 4491.94); DP-185 (SEQ ID:3):not done (calculated 4546.97).

6.1.2. <u>VIRUS</u>

The HIV-1 virus was obtained from R. Gallo 10 (Popovic, M. et al., 1984, Science 224:497-508) and propagated in CEM cells cultured in RPMI 1640 containing 10% fetal calf serum. Supernatant from the infected CEM cells was passed through a $0.2\mu m$ filter and the infectious titer estimated in a microinfectivity assay using the AA5 cell line to support virus replication. For this purpose, $25\mu l$ of serial diluted virus was added to $75\mu l$ AA5 cells at a concentration of 2 x 105/ml in a 96-well microtitre plate. Each virus dilution was tested in triplicate. 20 Cells were cultured for eight days by addition of fresh medium every other day. On day 8 post infection, supernatant samples were tested for virus replication as evidenced by reverse transcriptase activity released to the supernatant. The TCID₅₀ was calculated according to the Reed and Muench formula (Reed, L.J. et al., 1938, Am. J. Hyg. 27:493-497). The titer of the HIV-1_{LAI} and HIV-1_{MN} stocks used for these studies, as measured on the AA5 cell line, was approximately 1.4 x 10^6 and 3.8 x 10^4 TCID₅₀/ml, respectively.

6.1.3. CELL FUSION ASSAY

Approximately 7 x 10^4 Molt cells were incubated with 1 x 10^4 CEM cells chronically infected with the HIV-1_{LAI} virus in 96-well plates (one-half area cluster plates; Costar, Cambridge, MA) in a final volume of

100µl culture medium as previously described (Matthews, T.J. et al., 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5428). Peptide inhibitors were added in a volume of 10µl and the cell mixtures were incubated for 24 hr. at 37°C. At that time, multinucleated giant cells were estimated by microscopic examination at a 40x magnification which allowed visualization of the entire well in a single field.

6.1.4. CELL FREE VIRUS INFECTION ASSAY

10

20

Synthetic peptides were incubated at 37°C with either 247 TCID₅₀ (for experiment depicted in FIG. 2), or 62 TCID₅₀ (for experiment depicted in FIG.3) units of HIV-1_{LAI} virus or 25 TCID₅₀ units of HIV-2_{NIH2} and CEM CD4⁺ cells at peptide concentrations of 0, 0.04, 0.4, 4.0, and 40μg/ml for 7 days. The resulting reverse transcriptase (RT) activity in counts per minute was determined using the assay described, below, in Section 6.1.5. See, Reed, L.J. et al., 1938, Am. J. Hyg. 27: 493-497 for an explanation of TCID₅₀ calculations.

6.1.5. REVERSE TRANSCRIPTASE ASSAY

The micro-reverse transcriptase (RT) assay was adapted from Goff et al. (Goff, S. et al., 1981, J. Virol. 38:239-248) and Willey et al. (Willey, R. et al., 1988, J. Virol. 62:139-147). Supertanants from virus/cell cultures are adjusted to 1% Triton-X100. A 10µl sample of supernatant was added to 50µl of RT cocktail in a 96-well U-bottom microtitre plate and the samples incubated at 37°C for 90 min. The RT cocktail contained 75mM KCl, 2mM dithiothreitol, 5mM MgCl₂, 5µg/ml poly A (Pharmacia, cat. No. 27-4110-01), 0.25 units/ml oligo dT (Pharmacia, cat. No. 27-7858-01), 0.05% NP40, 50mM Tris-HCl, pH 7.8, 0.5µM non-

radioactive dTTP, and $10\mu\text{Ci/ml}$ ³²P-dTTP (Amersham, cat. No. PB.10167).

After the incubation period, 40µl of reaction mixture was applied to a Schleicher and Schuell (S+S) NA45 membrane (or DE81 paper) saturated in 2 x SSC buffer (0.3M NaCl and 0.003M sodium citrate) held in a S+S Minifold over one sheet of GB003 (S+S) filter paper, with partial vacuum applied. Each well of the minifold was washed four times with 200µl 2xSSC, under full vacuum. The membrane was removed from the minifold and washed 2 more times in a pyrex dish with an excess of 2xSSC. Finally, the membrane was drained on absorbent paper, placed on Whatman #3 paper, covered with Saran wrap, and exposed to film overnight at -70°C.

15

6.2. RESULTS

6.2.1. PEPTIDE INHIBITION OF INFECTED CELL-INDUCED SYNCYTIA FORMATION

The initial screen for antiviral activity assayed 20 peptides' ability to block syncytium formation induced by overnight co-cultivation of uninfected Molt4 cells with chronically HIV-1 infected CEM cells. results of several such experiments are presented 25 herein. In the first of these experiments, serial DP-178 (SEQ ID:1) peptide concentrations between 10μg/ml and 12.5ng/ml were tested for blockade of the cell fusion process. For these experiments, CEM cells chronically infected with either HIV-1 HIV-1 HIV-1 HIV-1 30 1pg, or HIV-1sg; virus were cocultivated overnight with uninfected Molt 4 cells. The results (FIG. 4) show that DP-178 (SEQ ID:1) afforded complete protection against each of the HIV-1 isolates down to the lowest concentration of DP-178 (SEQ ID:1) used. For HIV, AL 35 inhibition, the lowest concentration tested was

WO 94/28920

10

30

12.5ng/ml; for all other HIV-1 viruses, the lowest concentration of DP-178 (SEQ ID:1) used in this study was 100ng/ml. A second peptide, DP-180 (SEQ ID:2), containing the same amino acid residues as DP-178 (SEQ ID:1) but arranged in a random order exhibited no evidence of anti-fusogenic activity even at the high concentration of 40µg/ml (FIG. 4). These observations indicate that the inhibitory effect of DP-178 (SEQ ID:1) is primary sequence-specific and not related to non-specific peptide/protein interactions. The actual endpoint (i.e., the lowest effective inhibitory concentration) of DP-178 inhibitory action is within the range of 1-10 ng/ml.

The next series of experiments involved the preparation and testing of a DP-178 (SEQ ID:1) homolog for its ability to inhibit HIV-1-induced syncytia formation. As shown in FIG. 1, the sequence of DP-185 (SEQ ID:3) is slightly different from DP-178 (SEQ ID:1) in that its primary sequence is taken from the HIV-1_{SF2} isolate and contains several amino acid differences relative to DP-178 (SEQ ID:1) near the N terminus. As shown in FIG. 4, DP-185 (SEQ ID:3), exhibits inhibitory activity even at 312.5ng/ml, the lowest concentration tested.

The next series of experiments involved a comparison of DP-178 (SEQ ID:1) HIV-1 and HIV-2 inhibitory activity. As shown in FIG. 5, DP-178 (SEQ ID:1) blocked HIV-1-mediated syncytia formation at peptide concentrations below lng/ml. DP-178 (SEQ ID:1) failed, however, to block HIV-2 mediated syncytia formation at concentrations as high as 10µg/ml. This striking 4 log selectivity of DP-178 (SEQ ID:1) as an inhibitor of HIV-1-mediated cell fusion demonstrates an unexpected HIV-1 specificity in the action of DP-178 (SEQ ID:1). DP-178 (SEQ ID:1) inhibition of HIV-1-mediated cell fusion, but the

peptide's inability to inhibit HIV-2 medicated cell fusion in the same cell type at the concentrations tested provides further evidence for the high degree of selectivity associated with the antiviral action of DP-178 (SEQ ID:1).

5

6.2.2. PEPTIDE INHIBITION OF INFECTION BY CELL-FREE VIRUS

DP-178 (SEQ ID:1) was next tested for its ability to block CD-4+ CEM cell infection by cell free HIV-1 10 virus. The results, shown in FIG. 2, are from an experiment in which DP-178 (SEQ ID:1) was assayed for its ability to block infection of CEM cells by an HIV-1_{LAI} isolate. Included in the experiment were three control peptides, DP-116 (SEQ ID:9), DP-125 (SEQ ID:8), and DP-118 (SEQ ID:10). DP-116 (SEQ ID:9) 15 represents a peptide previously shown to be inactive using this assay, and DP-125 (SEQ ID:8; Wild, C. et al., 1992, Proc. Natl. Acad, Sci. USA 89:10,537) and DP-118 (SEQ ID:10) are peptides which have previously 20 been shown to be active in this assay. Each concentration (0, 0.04, 0.4, 4, and $40\mu g/ml$) of peptide was incubated with 247 $TCID_{50}$ units of $HIV-1_{IAI}$ virus and CEM cells. After 7 days of culture, cellfree supernatant was tested for the presence of RT 25 activity as a measure of successful infection. results, shown in FIG. 2, demonstrate that DP-178 (SEQ ID:1) inhibited the de novo infection process mediated by the HIV-1 viral isolate at concentrations as low as 90ng/ml (IC50=90ng/ml). In contrast, the two positive

30 control peptides, DP-125 (SEQ: ID:8) and DP-118 (SEQ ID:10), had over 60-fold higher IC50 concentrations of approximately 5μg/ml.

In a separate experiment, the HIV-1 and HIV-2 inhibitory action of DP-178 (SEQ ID:1) was tested with 35 CEM cells and either HIV-1_{LAI} or HIV-2_{NHZ}. 62 TCID₅₀

HIV-1_{LAI} or 25 GCID₅₀ HIV-2_{NDEZ} were used in these experiments, and were incubated for 7 days. As may be seen in FIG. 3, DP-178 (SEQ ID:1) inhibited HIV-1 infection with an IC50 of about 31ng/ml. In contrast, DP-178 (SEQ ID:1) exhibited a much higher IC50 for HIV-2_{NDEZ}, thus making DP-178 (SEQ ID:1) two logs more potent as a HIV-1 inhibitor than a HIV-2 inhibitor. This finding is consistent with the results of the fusion inhibition assays described, above, in Section 6.2.1, and further supports a significant level of selectivity (<u>i.e.</u>, for HIV-1 over HIV-2).

7. EXAMPLE: THE HIV-1 INHIBITOR, DP-178 (SEO ID:1) IS NON-CYTOXIC

In this Example, the 36 amino acid synthetic
15 peptide inhibitor DP-178 (SEQ ID:1) is shown to be non-cytotoxic to cells in culture, even at the highest peptide concentrations (40μg/ml) tested.

7.1. MATERIALS AND METHODS

Cell proliferation and toxicity assay:
Approximately 3.8x10⁵ CEM cells for each peptide concentration were incubated for 3 days at 37°C in T25 flasks. Peptides tested were DP-178 (SEQ ID:1) and DP-116 (SEQ ID:9), as described in FIG. 1. The concentrations of each peptide used were 0, 2.5, 10, and 40μg/ml. Cell counts were taken at incubation times of 0, 24, 48, and 72 hours.

7.2. RESULTS

30 Whether the potent HIV-1 inhibitor DP-178 (SEQ ID:1) exhibited any cytotoxic effects was assessed by assaying the peptide's effects on the proliferation and viability of cells in culture. CEM cells were incubated in the presence of varying concentrations of DP-178 (SEQ ID:1), and DP-116 (SEQ ID:9), a peptide

previously shown to be ineffective as a HIV inhibitor (Wild, C. et al., 1992, Proc. Natl. Acad. Sci. USA 89:10,537-10,541). Additionally, cells were incubated in the absence of either peptide.

The results of the cytoxicity study demonstrate that DP-178 (SEQ ID:1) exhibits no cytotoxic effects on cells in culture. As can be seen, below, in Table XI, even the proliferation and viability characteristics of cells cultured for 3 days in the presence of the highest concentration of DP-178 (SEQ ID:1) tested (40μg/ml) do not significantly differ from the DP-116 (SEQ ID:9) or the no-peptide controls. The cell proliferation data is also represented in graphic form in FIG. 6. As was demonstrated in the Working Example presented above in Section 6, DP-178 (SEQ ID:1) completely inhibits HIV-1 mediated syncytia formation at peptide concentrations between 1 and 10ng/ml, and completely inhibits cell-free viral infection at concentrations of at least 90ng/ml. Thus, this study demonstrates that even at peptide concentrations greater than 3 log higher than the HIV inhibitory dose, DP-178 (SEQ ID:1) exhibits no cytoxic effects.

TABLE XI

25

% Viability
at time (hours)

	Peptide	Peptide Concentration μ g/ml	0	24	48	72
30	DP178 (SEQ ID:1)	40	. 98	97	95	97
		10	98	97	98	98
•		2.5	98	93	96	96

	DP116 (SEQ ID:9)	40	98	95	98	97	
		10	98	95	93	98	
5		2.5	98	96	98	99	
	No Peptide	0	98	97	99	98	

8. EXAMPLE: THE INTERACTION OF DP178 AND DP107

15

25

Soluble recombinant forms of gp41 used in the example described below provide evidence that the DP178 peptide associates with a distal site on gp41 whose interactive structure is influenced by the DP107 leucine zipper motif. A single mutation disrupting the coiled-coil structure of the leucine zipper domain transformed the soluble recombinant gp41 protein from an inactive to an active inhibitor of HIV-1 fusion. This transformation may result from liberation of the potent DP178 domain from a molecular clasp with the leucine zipper, DP107, determinant. The results also indicate that the anti-HIV activity of various gp41 derivatives (peptides and recombinant proteins) may be due to their ability to form complexes with viral gp41 and interfere with its fusogenic process.

8.1. MATERIALS AND METHODS

8.1.1. CONSTRUCTION OF FUSION PROTEINS AND GP41 MUTANTS

Construction of fusion proteins and mutants shown in FIG. 7 was accomplished as follows: the DNA sequence corresponding to the extracellular domain of gp41 (540-686) was cloned into the Xmn I site of the expression vector pMal-p2 (New England Biolab) to give M41. The gp41 sequence was amplified from pgtat

(Malim et al., 1988, Nature 355: 181-183) by using polymerase chain reaction (PCR) with upstream primer 5'-ATGACGCTGACGGTACAGGCC-3' (primer A) and downstream primer 5'-TGACTAAGCTTAATACCACAGCCAATTTGTTAT-3' (primer B). M41-P was constructed by using the T7-Gen in vitro mutagenesis kit from United States Biochemicals (USB) following the supplier's. instructions. The mutagenic primer (5'-GGAGCTGCTTGGGGCCCCAGAC-3') introduces an Ile to Pro mutation in M41 at position 578. M41Δ107 was made using a deletion mutagenic primer 5'-CCAAATCCCCAGGAGCTGCTCGAGCTGCACTATACCAGAC-3' (primer C) following the USB T7-Gen mutagenesis protocol. M41Δ178 was made by cloning the DNA fragment corresponding to gp41 amino acids 540-642 into the Xmn 15 I site of pMal-p2. Primer A and 5'-ATAGCTTCTAGATTAATTGTTAATTTCTCTGTCCC-3' (primer D) were used in the PCR with the template pgtat to generate the inserted DNA fragments. M41-P was used as the template with primer A and D in PCR to generate M41-All inserted sequences and mutated residues were checked by restriction enzyme analysis and confirmed by DNA sequencing.

8.1.2. PURIFICATION AND CHARACTERIZATION OF FUSION PROTEINS

The fusion proteins were purified according to the protocol described in the manufacturer's brochure of protein fusion and purification systems from New England Biolabs (NEB). Fusion proteins (10 ng) were analyzed by electrophoresis on 8% SDS polyacrylamide gels. Western blotting analysis was performed as described by Sambrook et al, 1989, Molecular Cloning: A Laboratory Manual, 2d Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Ch. 18, pp. 64-75. An HIV-1 positive serum diluted 1000-fold,

WO 94/28920

or a human Fab derived from repertoire cloning was used to react with the fusion proteins. The second antibody was HRP-conjugated goat antihuman Fab. An ECL Western blotting detection system (Amersham) was used to detect the bound antibody. A detailed protocol for this detection system was provided by the manufacturer. Rainbow molecular weight marker (Amersham) were used to estimate the size of fusion proteins.

PCT/US94/05739

8.1.3. CELL FUSION ASSAYS FOR ANTI-HIV ACTIVITY

Cell fusion assays were performed as previously described (Matthews et al., 1987, Proc. Natl. Acad. Sci. USA 84: 5424-5481). CEM cells (7 X 10⁴) were incubated with HIV-1_{IIIB} chronically infected CEM cells (10⁴) in 96-well flat-bottomed half-area plates (Costar) in 100 µl culture medium. Peptide and fusion proteins at various concentrations in 10 µl culture medium were incubated with the cell mixtures at 37°C for 24 hours. Multinucleated syncytia were estimated with microscopic examination. Both M41 and M41-P did not show cytotoxicity at the concentrations tested and shown in FIG. 8.

Inhibition of HIV-1 induced cell-cell fusion activity was carried out in the presence of 10 nM DP178 and various concentrations of M41Δ178 or M41-PΔ178 as indicated in FIG. 9. There was no observable syncytia in the presence of 10 nM DP178. No peptide or fusion protein was added in the control samples.

30

8.1.4. ELISA ANALYSIS OF DP178 BINDING TO THE LEUCINE ZIPPER MOTIF OF GP41

The amino acid sequence of DP178 used is: YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF. For enzyme linked immunoassay (ELISA), M41 Δ 178 or M41-P Δ 178 (5 μ g/ml) in 0.1M NaHCO₃, pH 8.6, were coated on 96 wells

Linbro ELISA plates (Flow Lab, Inc.) overnight. well was washed three times with distilled water then blocked with 3% bovine serum albumin (BSA) for 2 hours. After blocking, peptides with 0.5% BSA in TBST (40 mM Tris-HCl pH7.5, 150 mM NaCl, 0.05% Tween 20) were added to the ELISA plates and incubated at room temperature for 1 hour. After washing three times with TBST, Fab-d was added at a concentration of 10 ng/ml with 0.5% BSA in TBST. The plates were washed three times with TBST after incubation at room temperature for 1 hour. Horse radish peroxidase (HRP) conjugated goat antihuman Fab antiserum at a 2000 fold dilution in TBST with 0.5% BSA was added to each well and incubated at room temperature for 45 minutes. plates were then washed four times with TBST. The peroxidase substrate o-phenylene diamine (2.5 mg/ml) and 0.15% H₂O₂ were added to develop the color. reaction was stopped with an equal volume of 4.5 N H₂SO₄ after incubation at room temperature for 10 minutes. The optical density of the stopped reaction mixture was measured with a micro plate reader (Molecular Design) at 490 nm. Results are shown in FIG. 10.

8.2. RESULTS

20

25

8.2.1. THE EXPRESSION AND CHARACTERIZATION OF THE ECTODOMAIN OF GP41

As a step toward understanding the roles of the two helical regions in gp41 structure and function, the ectodomain of gp41 was expressed as a maltose

30 binding fusion protein (M41) (Fig. 7). The fusogenic peptide sequence at the N-terminal of gp41 was omitted from this recombinant protein and its derivatives to improve solubility. The maltose binding protein facilitated purification of the fusion proteins under relatively mild, non-denaturing conditions. Because

WO 94/28920

the M41 soluble recombinant gp41 was not glycosylated, lacked several regions of the transmembrane protein (i.e., the fusion peptide, the membrane spanning, and the cytoplasmic domains), and was expressed in the absence of gp120, it was not expected to precisely reflect the structure of native gp41 on HIV-1 virions. Nevertheless, purified M41 folded in a manner that preserved certain discontinuous epitopes as evidenced by reactivity with human monoclonal antibodies, 98-6, 126-6, and 50-69, previously shown to bind conformational epitopes on native gp41 expressed in eukaryotic cells (Xu et al., 1991, J. Virol. 65: 4832-4838; Chen, 1994, J. Virol. 68:2002-2010). Thus, at least certain regions of native gp41 defined by these antibodies appear to be reproduced in the recombinant 15 fusion protein M41. Furthermore, M41 reacted with a human recombinant Fab (Fab-d) that recognizes a conformational epitope on gp41 and binds HIV-1 virions as well as HIV-1 infected cells but not uninfected cells as analyzed by FACS. Deletion of either helix 20 motif, i.e., DP107 or DP178, of the M41 fusion protein eliminated reactivity with Fab-d. These results indicate that both helical regions, separated by 60 amino acids in the primary sequence, are required to maintain the Fab-d epitope. 25

8.2.2. ANTI-HIV ACTIVITY OF THE RECOMBINANT ECTODOMAIN OF GP41

The wild type M41 fusion protein was tested for anti-HIV-1 activity. As explained, <u>supra</u>, synthetic peptides corresponding to the leucine zipper (DP107) and the C-terminal putative helix (DP178) show potent anti-HIV activity. Despite inclusion of both these regions, the recombinant M41 protein did not affect

WO 94/28920

5

HIV-1 induced membrane fusion at concentrations as high as 50 μ M (Table XII, below).

TABLE XII

DISRUPTION OF THE LEUCINE ZIPPER OF GP41 FREES THE ANTI-HIV MOTIF

		DP107	DP178	<u>M41</u>	<u>M41-P</u>	M41-P∆178
10	Cell fusion (IC∞)	1 μΜ	1 nM	>50 μM	83 nM	> 50 µM
	Fab-D binding (k _D)	-	-	3.5x10°	2.5x10 ⁻⁸	
	HIV infectivity (IC _∞)	1 μΜ	80 nM	> 16 μM	66 nM	>8 μM

15

- = No detectable binding of Fab-d to the fusion proteins.

Antiviral Infectivity Assays. 20 μ l of serially diluted virus stock was incubated for 60 minutes at ambient temperature with 20 μ l of the indicated concentration of purified recombinant fusion protein in RPMI 1640 containing 10% fetal bovine serum and antibiotics in a 96-well microtiter plate. 20 μ l of CEM4 cells at 6 x 10⁵ cells/ml were added to each well, and cultures were incubated at 37°C in a humidified CO₂ incubator. Cells were cultured for 9 days by the addition of fresh medium every 2 to 30 days. On days 5, 7, and 9 postinfection, supernatant samples were assayed for reverse transcriptase (RT) activity, as described below, to monitor viral replication. The 50% tissue culture infectious dose (TCID₅₀) was calculated for each condition according to the formula of Reed & Muench, 1937, Am. J. Hyg. 27:493-497. RT activity was determined by a modification of the published methods of Goff et al., 1981, J. Virol. 38:239-248 and Willey et al., 1988, J. Virol. 62:139-147 as described in Chen et al., 1993, AIDS Res. Human Retroviruses 9:1079-1086.

30

25

Surprisingly, a single amino acid substitution, proline in place of isoleucine in the middle of the leucine zipper motif, yielded a fusion protein (M41-P)

The affinity constants of Fab-d binding to the fusion proteins were determined using a protocol described by B. Friguet et al., 1985, J. Immunol. Method. 77:305-319.

which did exhibit antiviral activity (Table XII and Fig. 8). As seen in Table XII, M41-P blocked syncytia formation by 90% at approximately 85 nM and neutralized HIV-1_{IIIB} infection by 90% at approximately 70 nM concentrations. The anti-HIV-1 activity of M41-P appeared to be mediated by the C-terminal helical sequence since deletion of that region from M41-P yielded an inactive fusion protein, M41-PΔ178 (Table XII). That interpretation was reinforced by experiments demonstrating that a truncated fusion protein lacking the DP178 sequence, M41Δ178, abrogated the potent anti-fusion activity of the DP178 peptide in a concentration-dependent manner (FIG. 9). same truncated fusion protein containing the proline mutation disrupting the leucine zipper, M41-PΔ178, was not active in similar competition experiments (FIG. The results indicate that the DP178 peptide associates with a second site on gp41 whose interactive structure is dependent on a wild type leucine zipper sequence. A similar interaction may 20 occur within the wild type fusion protein, M41, and act to form an intramolecular clasp which sequesters the DP178 region, making it unavailable for anti-viral activity.

A specific association between these two domains 25 is also indicated by other human monoclonal Fab-d studies. For example, Fab-d failed to bind either the DP178 peptide or the fusion protein M41∆178, but its epitope was reconstituted by simply mixing these two reagents together (FIG. 10). Again, the proline mutation in the leucine zipper domain of the fusion protein, M41-PΔ178, failed to reconstitute the epitope in similar mixing experiments.

30.

9. EXAMPLE: METHOD FOR COMPUTER-ASSISTED IDENTIFICATION OF DP-107-LIKE AND DP-178-LIKE SEQUENCES

A number of known coiled-coil sequences have been well described in the literature and contain heptad 5 repeat positioning for each amino acid. Coiled-coil nomenclature labels each of seven amino acids of a heptad repeat A through G, with amino acids A and D tending to be hydrophobic positions. Amino acids E and G tend to be charged. These four positions (A, D, E, and G) form the amphipathic backbone structure of a monomeric alpha-helix. The backbones of two or more amphipathic helices interact with each other to form di-, tri-, tetrameric, etc., coiled-coil structures. In order to begin to design computer search motifs, a series of well characterized coiled coils were chosen including yeast transcription factor GCN4, Influenza Virus hemagglutinin loop 36, and human proto-oncogenes c-Myc, c-Fos, and c-Jun. For each peptide sequence, a strict homology for the A and D positions, and a list 20 of the amino acids which could be excluded for the B, C, E, F, and G positions (because they are not observed in these positions) was determined. Motifs were tailored to the DP-107 and DP-178 sequences by deducing the most likely possibilities for heptad 25 positioning of the amino acids of HIV-1 Bru DP-107, which is known to have coiled-coil structure, and HIV-1 Bru DP-178, which is still structurally undefined. The analysis of each of the sequences is contained in

- 30 as follows:
 - The only amino acids (using standard single letter amino acid codes) found in the A or D positions of GCN4 were [LMNV].

FIG. 12. For example, the motif for GCN4 was designed

All amino acids were found at B, C, E, F, and Gpositions except {CFGIMPTW}.

3. The PESEARCH motif would, therefore, be written as follows:

 $[LMNV] - \{CFGIMPTW\} (2) - [LMNV] - \{CFGIMPTW\} (3) - [LMNV] - [L$

[LMNV]-{CFGIMPTW}(2)-[LMNV]-{CFGIMPTW}(3)-

[LMNV]-{CFGIMPTW}(2)-[LMNV]-{CFGIMPTW}(3)-

 $[LMNV] - \{CFGIMPTW\} (2) - [LMNV] - \{CFGIMPTW\} (3)$

5

35

Translating or reading the motif: "at the first A position either L, M, N, or V must occur; at positions B and C (the next two positions) accept everything except C, F, G, I, M, P, T, or W; at the D position either L, M, N, or V must occur; at positions E, F, and G (the next 3 positions) accept everything except C, F, G, I, M, P, T, or W." This statement is contained four times in a 28-mer motif and five times in a 35-mer motif. The basic motif key then would be: [LMNV]-{CFGIMPTW}. The motif keys for the remaining well described coiled-coil sequences are summarized in FIG. 12.

slightly different than the 28-mer model sequences described above due to the fact that heptad repeat positions are not defined and the peptides are both longer than 28 residues. FIG. 13 illustrates several possible sequence alignments for both DP-107 and DP-178 and also includes motif designs based on 28-mer, 35-mer, and full-length peptides. Notice that only slight differences occur in the motifs as the peptides are lengthened. Generally, lengthening the base peptide results in a less stringent motif. This is very useful in broadening the possibilities for identifying DP-107-or DP-178-like primary amino acid sequences referred to in this document as "hits".

In addition to making highly specific motifs for each type peptide sequence to be searched, it is also possible to make "hybrid" motifs. These motifs are

made by "crossing" two or more very stringent motifs to make a new search algorithm which will find not only both "parent" motif sequences but also any peptide sequences which have similarities to one, the other, or both "parents". For example, in Table 3 the "parent" sequence of GCN4 is crossed with each of the possible "parent" motifs of DP-107. Now the hybrid motif must contain all of the amino acids found in the A and D positions of both parents, and exclude all of the amino acids not found in either parent at the other positions. The resulting hybrid from crossing GCN4 or [LMNV]{CFGIMPTW} and DP-107 (28-mer with the first L in the D position) or [ILQT]{CDFIMPST}, is [ILMNQTV] {CFIMPT}. Notice that now only two basic hybrid motifs exist which cover both framing possibilities, as well as all peptide lengths of the parent DP-107 molecule. FIG. 15 represents the hybridizations of GCN4 with DP-178. FIG. 16 represents the hybridizations of DP-107 and DP-178. It is important to keep in mind that the represented motifs, both parent and hybrid, are motif keys and not the depiction of the full-length motif needed to actually do the computer search.

15

25

30

Hybridizations can be performed on any combination of two or more motifs. Table 5 summarizes several three-motif hybridizations including GCN4, DP-107 (both frames), and DP-178 (also both frames). Notice that the resulting motifs are now becoming much more similar to each other. In fact, the first and third hybrid motifs are actually subsets of the second and fourth hybrid motifs respectively. This means that the first and third hybrid motifs are slightly more stringent than the second and fourth. It should also be noted that with only minor changes in these four motifs, or by hybridizing them, a single motif could be obtained

which would find all of the sequences. However, it should be remembered that stringency is also reduced. Finally, the most broad-spectra and least-stringent hybrid motif is described in FIG. 18 which summarizes the hybridization of GCN4, DP-107 (both frames), DP-178 (both frames), c-Fos, c-Jun, c-Myc, and Flu loop 36.

A special set of motifs was designed based on the fact that DP-178 is located only approximately ten amino acids upstream of the transmembrane spanning region of gp4l and just C-terminal to a proline which separates DP-107 and DP-178. It has postulated that DP-178 may be an amphipathic helix when membrane associated, and that the proline might aid in the initiation of the helix formation. The same arrangement was observed in Respiratory Syncytial Virus; however, the DP-178-like region in this virus also had a leucine zipper just C-terminal to the proline. Therefore, designed N-terminal prolineleucine zipper motifs were designed to analyze whether any other viruses might contain this same pattern. The motifs are summarized in FIG. 19.

The PC/Gene protein database contains 5879 viral amino acid sequences (library file PVIRUSES; CD-ROM release 11.0). Of these, 1092 are viral envelope or glycoprotein sequences (library file PVIRUSE1). Tables V through X contain lists of protein sequence names and motif hit locations for all the motifs searched.

10. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION
OF DP-107 AND DP-178-LIKE SEQUENCES
IN HUMAN IMMUNODEFICIENCY VIRUS

20

25

FIG. 20 represents search results for HIV-1 BRU isolate gp41 (PC/Gene protein sequence PENV_HV1BR).

35 Notice that the hybrid motif which crosses DP-107 and

DP-178 (named 107x178x4; the same motif as found in FIG. 16 found three hits including amino acids 550-599, 636-688, and 796-823. These areas include DP-107 plus eight N-terminal and four C-terminal amino acids; DP-178 plus seven N-terminal and ten C-terminal amino acids; and an area inside the transmembrane region (cytoplasmic). FIG. 20 also contains the results obtained from searching with the motif named ALLMOTI5, for which the key is found in FIG. 17 ({CDGHP} {CFP}x5). This motif also found three hits including DP-107 (amino acids 510-599), DP-178 (615-717), and a cytoplasmic region (772-841). These hits overlap the hits found by the motif 107x178x4 with considerable additional sequences on both the amino and carboxy termini. This is not surprising in that 107x178x4 is a subset of the ALLMOTI5 hybrid motif. Importantly, even though the stringency of ALLMOTI5 is considerably less than 107x178x4, it still selectively identifies the DP-107 and DP-178 regions of gp41 shown to contain sequences for inhibitory peptides of HIV-1. The 20 results of these two motif searches are summarized in Table V under the PC/Gene protein sequence name PENV HV1BR. The proline-leucine zipper motifs also gave several hits in HIV-1 BRU including 503-525 which is at the very C-terminus of gp120, just upstream of the cleavage site (P7LZIPC and P12LZIPC); and 735-768 in the cytoplasmic domain of gp41 (P23LZIPC). results are found in Tables VIII, IX, and X under the same sequence name as mentioned above. Notice that the only area of HIV-1 BRU which is predicted by the 30 Lupas algorithm to contain a coiled-coil region, is from amino acids 635-670. This begins eight amino acids N-terminal to the start and ends eight amino acids N-terminal to the end of DP-178. DP-107, despite the fact that it is a known coiled coil, is

not predicted to contain a coiled-coil region using the Lupas method.

11. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP-107-LIKE AND DP-178-LIKE SEQUENCES IN HUMAN RESPIRATORY SYNCYTIAL VIRUS

5

FIG. 21 represents search results for Human Respiratory Syncytial Virus (RSV; Strain A2) fusion glycoprotein F1 (PC/Gene protein sequence name PVGLF_ HRSVA). Motif 107x178x4 finds three hits including amino acids 152-202, 213-243, and 488-515. The arrangement of these hits is similar to what is found in HIV-1 except that the motif finds two regions with similarities to DP-178, one just downstream of what would be called the DP-107 region or amino acids 213-243, and one just upstream of the transmembrane region (also similar to DP-178) or amino acids 488-515. Motif ALLMOTI5 also finds three areas including amino acids 116-202, 267-302, and 506-549. The prolineleucine zipper motifs also gave several hits including amino acids 205-221 and 265-287 (P1LZIPC 265-280, P12LZIPC), and 484-513 (P7LZIPC and P12LZIPC 484-506, P23LZIPC). Notice that the PLZIP motifs also identify regions which share location similarities with DP-178 of HIV-1. 25

12. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP-107-LIKE AND DP-178-LIKE SEQUENCES IN SIMIAN IMMUNODEFICIENCY VIRUS

Motif hits for Simian immunodeficiency Virus gp41

(AGM3 isolate; PC/Gene protein sequence name
PENV_SIVAG) are shown in FIG. 22. Motif 107x178x4
finds three hits including amino acids 566-593, 597624, and 703-730. The first two hits only have three
amino acids between them and could probably be
combined into one hit from 566-624 which would

represent a DP-107-like hit. Amino acids 703 to 730 would then represent a DP-178-like hit. ALLMOTI5 also finds three hits including amino acids 556-628 (DP-107-like), 651-699 (DP-178-like), and 808-852 which represents the transmembrane spanning region. SIV also has one region from 655-692 with a high propensity to form a coiled coil as predicted by the Lupas algorithm. Both 107x178x4 and ALLMOTI5 motifs find the same region. SIV does not have any PLZIP motif hits in gp41.

10

13. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP-107-LIKE AND DP-178 LIKE SEQUENCES IN CANINE DISTEMPER VIRUS

Canine Distemper Virus (strain Onderstepoort) fusion glycoprotein F1 (PC/Gene Protein sequence name PVGLF_CDVO) has regions similar to Human RSV which are predicted to be DP-107-like and DP-178-like (FIG. 23). Motif 107x178x4 highlights one area just C-terminal to the fusion peptide at amino acids 252-293. acids 252-286 are also predicted to be coiled coil using the Lupas algorithm. Almost 100 amino acids Cterminal to the first region is a DP-178-like area at residues 340-367. ALLMOTI5 highlights three areas of interest including: amino acids 228-297, which completely overlaps both the Lupas prediction and the DP-107-like 107x178x4 hit; residues 340-381, which overlaps the second 107x178x4 hit; and amino acids 568-602, which is DP178-like in that it is located just N-terminal to the transmembrane region. overlaps another region (residues 570-602) predicted by the Lupas method to have a high propensity to form a coiled coil. Several PLZIP motifs successfully identified areas of interest including P6 and P12LZIPC which highlight residues 336-357 and 336-361 35 respectively; P1 and P12LZIPC which find residues 398-

414; and P12 and P23LZIPC which find residues 562-589 and 562-592 respectively.

14. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP-107-LIKE AND DP-178-LIKE SEQUENCES IN NEWCASTLE DISEASE VIRUS

FIG. 24 shows the motif hits found in Newcastle Disease Virus (strain Australia-Victoria/32; PC Gene protein sequence name PVGLF_NDVA). Motif 107x178x4 finds two areas including a DP-107-like hit at amino acids 151-178 and a DP-178-like hit at residues 426-512. ALLMOTI5 finds three areas including residues 117-182, 231-272, and 426-512. The hits from 426-512 include a region which is predicted by the Lupas method to have a high coiled-coil propensity (460-503). The PLZIP motifs identify only one region of interest at amino acids 273-289 (P1 and 12LZIPC).

15. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION
OF DP-107-LIKE AND DP-178-LIKE
SEQUENCES IN HUMAN PARAINFLUENZA VIRUS

20 Both motifs 107x178x4 and ALLMOTI5 exhibit DP-107-like hits in the same region, 115-182 and 117-182 respectively, of Human Parainfluenza Virus (strain NIH 47885; PC/Gene protein sequence name PVGLF_p13H4; (FIG. 25). In addition, the two motifs have a DP-178-25 like hit just slightly C-terminal at amino acids 207-Both motifs also have DP-178-like hits nearer the transmembrane region including amino acids 457-497 and 462-512 respectively. Several PLZIP motif hits are also observed including 283-303 (P5LZIPC), 283-310 30. (P12LZIPC), 453-474 (P6LZIPC), and 453-481 (P23LZIPC). The Lupas algorithm predicts that amino acids 122-176 have a propensity to form a coiled-coil.

WO 94/28920

16. EXAMPLE: COMPUTER-ASSISTED IDENTIFICATION OF DP-107-LIKE AND DP-178-LIKE SEQUENCES OF INFLUENZA A VIRUS

FIG. 26 illustrates the Lupas prediction for a coiled coil in Influenza A Virus (strain A/Aichi/2/68)

5 at residues 379-436, as well as the motif hits for 107x178x4 at amino acids 387-453, and for ALLMOTI5 at residues 380-456. Residues 383-471 (38-125 of HA2) were shown by Carr and Kim to be an extended coiled coil when under acidic pH (Carr and Kim, 1993, Cell 73: 823-832). The Lupas algorithyan predicts a coiled-coil at residues 379-436. All three methods successfully predicted the region shown to actually have coiled-coil structure; however, ALLMOTI5 predicted the greatest portion of the 88 residue stretch.

17. EXAMPLE: RSV ANTIVIRAL COMPOUNDS

In the Example presented herein, respiratory syncytial virus (RSV) peptide sequences identified by utilizing the computer-assisted coiled-coil peptide sequence searches described in Example 9, above, are shown to encode peptide domains that exhibit structural similarity to actual, known coiled-coil peptides, and are, additionally found to exhibit antiviral activity.

17.1 MATERIALS AND METHODS

Structural analyses consisted of circular dichroism (CD) studies, which were conducted according to the methods described in the Applicants' co-pending U.S. Patent Application Ser. No 08/073,028.

Anti-RSV antiviral activity was assayed as described in Pringle, C.R. et al., 1985, J. Medical Vir. 17:377-386.

A 48 amino acid RSV F2 peptide and a 53 amino acid RSV T67 peptide are utilized which span sequences that were identified via the computer assisted peptide sequence search strategies described in Example 9, above. See FIG. 21 for the exact position of these sequences and for the motifs utilized.

17.2 RESULTS

35-mer oligopeptides were synthesized which constituted portions of the 48 amino acid RSV F2 peptide sequence (FIG. 27) and portions of the 53 amino acid RSV T67 peptide sequence (FIG. 28). The oligopeptides were assayed, via CD analysis, for structural similarity to known coiled-coil structures, and for anti-RSV activity. As shown in FIGS. 27 and 28, a number of these oligopeptides exhibited substantial coiled-coil structural similarity and/or antiviral activity.

15

20

25

Thus, the computer assisted searches described, herein, in Example 9, for example, successfully identified viral peptide domains that represent highly promising anti-RSV antiviral compounds.

18. EXAMPLE: HPF3 ANTIVIRAL COMPOUNDS

In the Example presented herein, human parainfluenza virus 3 (HPF3) peptide sequences identified by utilizing the computer-assisted coiled-coil peptide sequence searches described in Example 9, above, are shown to encode peptide domains that exhibit structural similarity to actual, known coiled-coil peptides, and are, additionally found to exhibit antiviral activity.

18.1 MATERIALS AND METHODS

Structural analyses consisted of circular dichroism (CD) studies, which were conducted according

to the methods described in the Applicants' co-pending U.S. Patent Application Ser. No 08/073,028.

Anti-HPF3 antiviral activity was assayed as described in Pringle, C.R. et al., 1985, J. Medical Vir. 17:377-386.

A 56 amino acid and 70 amino acid HPF3 peptide are utilized which span sequences that were identified via the computer assisted peptide sequence search strategies described in Example 9, above. See FIG. 25 for the exact positions of these sequences and for the motifs utilized.

18.2 RESULTS

35-mer oligopeptides were synthesized which constituted portions of the 56 amino acid HPF3 peptide sequence (FIG. 29) and portions of the 70 amino acid HPF3 peptide sequence (FIG. 30). The oligopeptides were assayed, via CD analysis, for structural similarity to known coiled-coil structures, and for anti-HPF3 activity. As shown in FIGS. 29 and 30, a number of these oligopeptides exhibited substantial coiled-coil structural similarity and/or antiviral activity.

Thus, the computer assisted searches described, herein, in Example 9, for example, successfully identified viral peptide domains that represent highly promising anti-HPF3 antiviral compounds.

The present invention is not to be limited in scope by the specific embodiments described which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the

foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

WHAT IS CLAIMED IS:

1. A peptide having an amino acid sequence corresponding to an α -helix region of an extracellular domain of a viral envelope protein, which interacts with and binds to a second α -helix region of the viral envelope protein containing a leucine-zipper domain having a coiled-coil structure.

- 2. The peptide of Claim 1 wherein the peptide is recognized by a computer-assisted peptide sequence search utilizing an ALLMOTI5, 107x178x4 motif, or a PLZIP motif.
- 3. The peptide of Claim 1 in which the enveloped virus is a retrovirus.
 - 4. The peptide of Claim 3 in which the retrovirus is a human retrovirus.
- 5. The peptide of Claim 4 in which the human retrovirus is HIV-1 or HIV-2.
 - 6. The peptide of Claim 4 in which the human retrovirus is HTLV-I or HTLV-II
 - 7. The peptide of Claim 1 in which the enveloped virus is a non-human retrovirus.
- human retrovirus is bovine leukosis virus, feline sarcoma virus, feline leukemia virus, simian immunodeficiency virus, simian sarcoma virus, and sheep progress pneumonia virus.

35

- 9. The peptide of Claim 1 in which the enveloped virus is a non-retroviral virus.
- 10. The peptide of Claim 9 in which the virus is respiratory syncytial virus, influenza virus, parainfluenza virus, canine distemper virus, or newcastle disease virus.
- 11. A peptide having a formula selected from the group consisting of:

```
10
         X-YTS-Z
         X-YTSL-Z
         X-YTSLI-Z
         X-YTSLIH-Z
         X-YTSLIHS-Z
         X-YTSLIHSL-Z
         X-YTSLIHSLI-Z
15
         X-YTSLIHSLIE-Z
         X-YTSLIHSLIEE-Z
         X-YTSLIHSLIEES-Z
         X-YTSLIHSLIEESQ-Z
         X-YTSLIHSLIEESQN-Z
         X-YTSLIHSLIEESQNQ-Z
         X-YTSLIHSLIEESQNQQ-Z
         X-YTSLIHSLIEESQNQQE-Z
20
         X-YTSLIHSLIEESQNQQEK-Z
         X-YTSLIHSLIEESQNQQEKN-Z
         X-YTSLIHSLIEESQNQQEKNE-Z
         X-YTSLIHSLIEESQNQQEKNEQ-Z
         X-YTSLIHSLIEESQNQQEKNEQE-Z
         X-YTSLIHSLIEESQNQQEKNEQEL-Z
         X-YTSLIHSLIEESQNQQEKNEQELL-Z
25
         X-YTSLIHSLIEESQNQQEKNEQELLE-Z
         X-YTSLIHSLIEESQNQQEKNEQELLEL-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELD-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDK-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDKW-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWA-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWAS-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWASL-Z
30
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLW-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWN-Z
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNW-Z and
         X-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z (SEQ ID:1), or
```

```
X-NWF-Z
                                                    X-WNWF-Z
                                                   X-LWNWF-Z
                                                  X-SLWNWF-Z
                                                 X-ASLWNWF-Z
                                                X-WASLWNWF-Z
                                              X-KWASLWNWF-Z
                                              X-DKWASLWNWF-Z
                                            X-LDKWASLWNWF-Z
                                            X-ELDKWASLWNWF-Z
                                          X-LELDKWASLWNWF-Z
                                         X-LLELDKWASLWNWF-Z
                                        X-ELLELDKWASLWNWF-Z
                                       X-QELLELDKWASLWNWF-Z
                                      X-EQELLELDKWASLWNWF-Z
10
                                     X-NEQELLELDKWASLWNWF-Z
                                    X-KNEQELLELDKWASLWNWF-Z
                                   X-EKNEQELLELDKWASLWNWF-Z
                                  X-QEKNEQELLELDKWASLWNWF-Z
                                 X-QQEKNEQELLELDKWASLWNWF-Z
                                X-NQQEKNEQELLELDKWASLWNWF-Z
                               X-QNQQEKNEQELLELDKWASLWNWF-Z
                              X-SQNQQEKNEQELLELDKWASLWNWF-Z
15
                             X-ESQNQQEKNEQELLELDKWASLWNWF-Z
                            X-EESQNQQEKNEQELLELDKWASLWNWF-Z
                           X-IEESQNQQEKNEQELLELDKWASLWNWF-Z
                          X-LIEESQNQQEKNEQELLELDKWASLWNWF-Z
                         X-SLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                        X-HSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                       X-IHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
20
                      X-LIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
                    X-SLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
               and X-TSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-Z
    in which:
```

- amino acid residues are presented by the singleletter code;
 - X comprises an amino group, an acetyl group, a 9fluorenylmethoxy-carbonyl group, a hydrophobic group, or a macromolecule carrier group;
 - Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.
- 35 12. A peptide having a formula selected from the group consisting of:

```
X-LEA-Z
    X-LEAN-Z
    X-LEANI-Z
    X-LEANIS-Z
    X-LEANISQ-Z
    X-LEANISOS-Z
    X-LEANISQSL-Z
    X-LEANISQSLE-Z
    X-LEANISQSLEQ-Z
    X-LEANISQSLEQA-Z
    X-LEANISQSLEQAQ-Z
    X-LEANISQSLEQAQI-Z
    X-LEANISQSLEQAQIQ-Z
    X-LEANISQSLEQAQIQQ-Z
    X-LEANISQSLEQAQIQQE-Z
    X-LEANISQSLEQAQIQQEK-Z
    X-LEANISQSLEQAQIQQEKN-Z
    X-LEANISQSLEQAQIQQEKNM-Z
    X-LEANISQSLEQAQIQQEKNMY-Z
    X-LEANISQSLEQAQIQQEKNMYE-Z
    X-LEANISQSLEQAQIQQEKNMYEL-Z
    X-LEANISQSLEQAQIQQEKNMYELQ-Z
    X-LEANISQSLEQAQIQQEKNMYELQK-Z
    X-LEANISQSLEQAQIQQEKNMYELQKL-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLN-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNS-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSW-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWD-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDV-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVF-Z
20
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFT-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTN-Z
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNW-Z and
    X-LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z (SEQ ID:7), or
                                                     X-NWL-Z
                                                    X-TNWL-Z
25
                                                   X-FTNWL-Z
                                                  X-VFTNWL-Z
                                                 X-DVFTNWL-Z
                                                X-WDVFTNWL-Z
                                               X-SWDVFTNWL-Z
                                              X-NSWDVFTNWL-Z
                                             X-LNSWDVFTNWL-Z
                                            X-KLNSWDVFTNWL-Z
30
                                          X-QKLNSWDVFTNWL-Z
                                         X-LQKLNSWDVFTNWL-Z
                                        X-ELQKLNSWDVFTNWL-Z
                                       X-YELQKLNSWDVFTNWL-Z
                                      X-MYELQKLNSWDVFTNWL-Z
                                     X-NMYELQKLNSWDVFTNWL-Z
                                    X-KNMYELQKLNSWDVFTNWL-Z
35
                                   X-EKNMYELQKLNSWDVFTNWL-Z
                                  X-QEKNMYELQKLNSWDVFTNWL-2
```

X-QQEKNMYELQKLNSWDVFTNWL-Z
X-IQQEKNMYELQKLNSWDVFTNWL-Z
X-QIQQEKNMYELQKLNSWDVFTNWL-Z
X-AQIQQEKNMYELQKLNSWDVFTNWL-Z
X-QAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-EQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-LEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-SLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-QKSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-SQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-ISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-NISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
X-ANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z
and X-EANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL-Z

10

5

in which:

amino acid residues are presented by the singleletter code;

X comprises an amino group, an acetyl group, a 9fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecule carrier group;

Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.

20

15

13. A peptide having a formula selected from the group consisting of:

X-YTS-Z
X-YTSV-Z
25 X-YTSVI-Z
X-YTSVIT-Z
X-YTSVITI-Z
X-YTSVITIE-Z
X-YTSVITIEL-Z
X-YTSVITIELS-Z
X-YTSVITIELSNI-Z
X-YTSVITIELSNI-Z
X-YTSVITIELSNIKX-YTSVITIELSNIK-

X-YTSVITIELSNIK-Z X-YTSVITIELSNIKE-Z X-YTSVITIELSNIKEN-Z X-YTSVITIELSNIKENK-Z X-YTSVITIELSNIKENKC-Z X-YTSVITIELSNIKENKCN-Z X-YTSVITIELSNIKENKCNG-Z X-YTSVITIELSNIKENKCNGT-Z

X-YTSVITIELSNIKENKCNGT-Z X-YTSVITIELSNIKENKCNGTD-Z X-YTSVITIELSNIKENKCNGTDA-Z

```
X-YTSVITIELSNIKENKCNGTDAK-Z
    X-YTSVITIELSNIKENKCNGTDAKV-Z
    X-YTSVITIELSNIKENKCNGTDAKVK-Z
    X-YTSVITIELSNIKENKCNGTDAKVKL-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLI-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIK-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQ-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQE-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQEL-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELD-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDK-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKY-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYK-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKOELDKYKN-Z
10
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNA-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAV-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVT-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTE-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTEL-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELO-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKOELDKYKNAVTELOL-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLL-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLM-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELOLLMO-Z
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQS-Z and
    X-YTSVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z, or
                                                 X-QST-Z
                                                X-MQST-Z
20
                                               X-LMQST-Z
                                              X-LLMQST-Z
                                             X-QLLMQST-Z
                                            X-LQLLMQST-Z
                                           X-ELQLLMQST-Z
                                          X-TELQLLMQST-Z
                                         X-VTELQLLMQST-Z
25
                                        X-AVTELQLLMQST-Z
                                      X-NAVTELQLLMQST-Z
                                      X-KNAVTELQLLMQST-Z
                                    X-YKNAVTELQLLMQST-Z
                                   X-KYKNAVTELQLLMQST-Z
                                  X-DKYKNAVTELQLLMQST-Z
                                 .X-LDKYKNAVTELQLLMQST-Z
                                X-ELDKYKNAVTELOLLMOST-Z
30
                               X-QELDKYKNAVTELQLLMQST-Z
                              X-KQELDKYKNAVTELQLLMQST-Z
                             X-IKQELDKYKNAVTELQLLMQST-Z
                            X-LIKQELDKYKNAVTELQLLMQST-Z
                           X-KLIKQELDKYKNAVTELQLLMQST-Z
                          X-VKLIKQELDKYKNAVTELQLLMQST-Z
                         X-KVKLIKQELDKYKNAVTELQLLMQST-Z
35
                        X-AKVKLIKQELDKYKNAVTELQLLMQST-Z
                       X-DAKVKLIKQELDKYKNAVTELQLLMQST-Z
```

```
X-TDAKVKLIKQELDKYKNAVTELQLLMQST-Z
                     X-GTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
                    X-NGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
                   X-CNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
                  X-KCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
                 X-NKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
                X-ENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
               X-KENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
              X-IKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
             X-NIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
            X-SNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
           X-LSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
          X-ELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
         X-IELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
        X-TIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
10
       X-ITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
      X-VITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELOLLMOST-Z
     X-SVITIELSNIKENKCNGTDAKVKLIKQELDKYKNAVTELQLLMQST-Z
    X-TSVITIELSNIKENKCNGTDAKVKLIKOELDKYKNAVTELOLLMOST-Z
    in which:
         amino acid residues are presented by the single-
15
              letter code;
         X comprises an amino group, an acetyl group, a 9-
              fluoromethyoxymethyl-carbonyl group, a
              hydrophobic group, or a macromolecule
              carrier group;
20
         Z comprises a carboxyl group, an amido group, a
              hydrophobic group, or a macromolecular
              carrier group.
              A peptide having a formula selected from the
25
   group consisting of:
   X-FYD-Z
   X-FYDP-Z
   X-FYDPL-Z
   X-FYDPLV-Z
   X-FYDPLVF-Z
30
   X-FYDPLVFP-Z
   X-FYDPLVFPS-Z
   X-FYDPLVFPSD-Z
   X-FYDPLVFPSDE-Z
   X-FYDPLVFPSDEF-Z
   X-FYDPLVFPSDEFD-Z
   X-FYDPLVFPSDEFDA-Z
```

X-FYDPLVFPSDEFDAS-Z

X-FYDPLVFPSDEFDASI-Z

```
X-FYDPLVFPSDEFDASIS-Z
    X-FYDPLVFPSDEFDASISQ-Z
    X-FYDPLVFPSDEFDASISQV-Z
    X-FYDPLVFPSDEFDASISQVN-Z
    X-FYDPLVFPSDEFDASISQVNE-Z
    X-FYDPLVFPSDEFDASISQVNEK-Z
    X-FYDPLVFPSDEFDASISQVNEKI-Z
    X-FYDPLVFPSDEFDASISQVNEKIN-Z
    X-FYDPLVFPSDEFDASISQVNEKINQ-Z
    X-FYDPLVFPSDEFDASISQVNEKINQS-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSL-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLA-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAF-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFI-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIR-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRK-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKS-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSD-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDE-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDEL-Z
    X-FYDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z,
15
                                     X-DELL-Z
                                    X-SDELL-Z
                                   X-KSDELL-Z
                                  X-RKSDELL-Z
                                 X-IRKSDELL-Z
                                X-FIRKSDELL-Z
                               X-AFIRKSDELL-Z
                              X-LAFIRKSDELL-Z
20
                             X-SLAFIRKSDELL-Z
                            X-QSLAFIRKSDELL-Z
                          X-NQSLAFIRKSDELL-Z
                          X-INQSLAFIRKSDELL-Z
                        X-KINQSLAFIRKSDELL-Z
                       X-EKINOSLAFIRKSDELL-Z
                      X-NEKINQSLAFIRKSDELL-Z
25
                     X-VNEKINQSLAFIRKSDELL-Z
                    X-QVNEKINQSLAFIRKSDELL-Z
                   X-SQVNEKINQSLAFIRKSDELL-Z
                  X-ISQVNEKINQSLAFIRKSDELL-Z
                 X-SISQVNEKINQSLAFIRKSDELL-Z
                X-ASISQVNEKINQSLAFIRKSDELL-Z
               X-DASISQVNEKINQSLAFIRKSDELL-Z
              X-FDASISQVNEKINQSLAFIRKSDELL-Z
30
             X-EFDASISQVNEKINQSLAFIRKSDELL-Z
            X-DEFDASISQVNEKINQSLAFIRKSDELL-Z
           X-SDEFDASISQVNEKINQSLAFIRKSDELL-Z
          X-PSDEFDASISQVNEKINQSLAFIRKSDELL-Z
         X-FPSDEFDASISQVNEKINQSLAFIRKSDELL-Z
        X-VFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z
       X-LVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z
35
      X-PLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z
    X-DPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z
```

X-YDPLVFPSDEFDASISQVNEKINQSLAFIRKSDELL-Z

in which:

amino acid residues are presented by the singleletter code;

- X comprises an amino group, an acetyl group, a 9fluoromethyoxymethyl-carbonyl group, a hydrophobic group, or a macromolecule carrier group;
- Z comprises a carboxyl group, an amido group, a 10 hydrophobic group, or a macromolecular carrier group.
- A peptide having a formula selected from the group consisting of:
 - X-ITL-Z
 - X-ITLN-Z
 - X-ITLNN-Z
 - X-ITLNNS-Z
 - X-ITLNNSV-Z
 - X-ITLNNSVA-Z
- X-ITLNNSVAL-Z
 - X-ITLNNSVALD-Z
 - X-ITLNNSVALDP-Z
 - X-ITLNNSVALDPI-Z
 - X-ITLNNSVALDPID-Z
 - X-ITLNNSVALDPIDI-Z
 - X-ITLNNSVALDPIDIS-Z X-ITLNNSVALDPIDISI-Z
- X-ITLNNSVALDPIDISIE-Z
 - X-ITLNNSVALDPIDISIEL-Z
 - X-ITLNNSVALDPIDISIELN-Z
 - X-ITLNNSVALDPIDISIELNK-Z
 - X-ITLNNSVALDPIDISIELNKA-Z
 - X-ITLNNSVALDPIDISIELNKAK-Z
 - X-ITLNNSVALDPIDISIELNKAKS-Z
- X-ITLNNSVALDPIDISIELNKAKSD-Z
 - X-ITLNNSVALDPIDISIELNKAKSDL-Z
 - X-ITLNNSVALDPIDISIELNKAKSDLE-Z
 - X-ITLNNSVALDPIDISIELNKAKSDLEE-Z
 - X-ITLNNSVALDPIDISIELNKAKSDLEES-Z X-ITLNNSVALDPIDISIELNKAKSDLEESK-Z
 - X-ITLNNSVALDPIDISIELNKAKSDLEESKE-Z
 - X-ITLNNSVALDPIDISIELNKAKSDLEESKEW-Z
- X-ITLNNSVALDPIDISIELNKAKSDLEESKEWI-Z
- X-ITLNNSVALDPIDISIELNKAKSDLEESKEWIR-Z

```
X-ITLNNSVALDPIDISIELNKAKSDLEESKEWIRR-Z
    X-ITLNNSVALDPIDISIELNKAKSDLEESKEWIRRS-Z, or
                                    X-RRS-Z
                                   X-IRRS-Z
                                  X-WIRRS-Z
                                X-EWIRRS-Z
                               X-KEWIRRS-Z
                              X-SKEWIRRS-Z
                             X-ESKEWIRRS-Z
                            X-EESKEWIRRS-Z
                           X-LEESKEWIRRS-Z
                          X-DLEESKEWIRRS-Z
                         X-SDLEESKEWIRRS-Z
                        X-KSDLEESKEWIRRS-Z
                       X-AKSDLEESKEWIRRS-Z
                      X-KAKSDLEESKEWIRRS-Z
                     X-NKAKSDLEESKEWIRRS-Z
                    X-LNKAKSDLEESKEWIRRS-Z
                   X-ELNKAKSDLEESKEWIRRS-Z
                  X-IELNKAKSDLEESKEWIRRS-Z
                 X-SIELNKAKSDLEESKEWIRRS-Z
               X-ISIELNKAKSDLEESKEWIRRS-Z
               X-DISIELNKAKSDLEESKEWIRRS-Z
              X-IDISIELNKAKSDLEESKEWIRRS-Z
             X-PIDISIELNKAKSDLEESKEWIRRS-Z
            X-DPIDISIELNKAKSDLEESKEWIRRS-Z
           X-LDPIDISIELNKAKSDLEESKEWIRRS-Z
          X-ALDPIDISIELNKAKSDLEESKEWIRRS-Z
         X-VALDPIDISIELNKAKSDLEESKEWIRRS-Z
        X-SVALDPIDISIELNKAKSDLEESKEWIRRS-Z
       X-NSVALDPIDISIELNKAKSDLEESKEWIRRS-Z
      X-NNSVALDPIDISIELNKAKSDLEESKEWIRRS-Z
     X-LNNSVALDPIDISIELNKAKSDLEESKEWIRRS-Z
    X-TLNNSVALDPIDISIELNKAKSDLEESKEWIRRS-Z
    in which:
25
         amino acid residues are presented by the single-
          letter code;
         X comprises an amino group, an acetyl group, a 9-
              fluoromethyoxymethyl-carbonyl group, a
              hydrophobic group, or a macromolecule
30
            carrier group;
         Z comprises a carboxyl group, an amido group, a
              hydrophobic group, or a macromolecular
              carrier group.
```

```
16. A peptide having a formula selected from the
    group consisting of:
    X-ALG-Z
    X-ALGV-Z
    X-ALGVA-Z
    X-ALGVAT-Z
    X-ALGVATS-Z
    X-ALGVATSA-Z
    X-ALGVATSAQ-Z
    X-ALGVATSAQI-Z
    X-ALGVATSAQIT-Z
    X-ALGVATSAQITA-Z
    X-ALGVATSAQITAA-Z
    X-ALGVATSAQITAAV-Z
    X-ALGVATSAQITAAVA-Z
    X-ALGVATSAQITAAVAL-Z
    X-ALGVATSAQITAAVALV-Z.
    X-ALGVATSAQITAAVALVE-Z
    X-ALGVATSAQITAAVALVEA-Z
    X-ALGVATSAQITAAVALVEAK-Z
    X-ALGVATSAQITAAVALVEAKQ-Z
15 X-ALGVATSAQITAAVALVEAKQA-Z
    X-ALGVATSAQITAAVALVEAKQAR-Z
    X-ALGVATSAQITAAVALVEAKQARS-Z
    X-ALGVATSAQITAAVALVEAKQARSD-Z
    X-ALGVATSAQITAAVALVEAKQARSDI-Z
    X-ALGVATSAQITAAVALVEAKQARSDIE-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEK-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKL-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKLK-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKLKE-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKLKEA-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKLKEAI-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKLKEAIR-Z
    X-ALGVATSAQITAAVALVEAKQARSDIEKLKEAIRD-Z, or
25
                                   X-IRD-Z
                                  X-AIRD-Z
                                 X-EAIRD-Z
                                X-KEAIRD-Z
                               X-LKEAIRD-Z
                              X-KLKEAIRD-Z
                             X-EKLKEAIRD-Z
                            X-IEKLKEAIRD-Z
30
                           X-DIEKLKEAIRD-Z
                          X-SDIEKLKEAIRD-Z
                         X-RSDIEKLKEAIRD-Z
                        X-ARSDIEKLKEAIRD-Z
                       X-QARSDIEKLKEAIRD-Z
                      X-KQARSDIEKLKEAIRD-Z
                     X-AKQARSDIEKLKEAIRD-Z
35
                    X-EAKQARSDIEKLKEAIRD-Z
                   X-VEAKQARSDIEKLKEAIRD-Z
```

X-LVEAKQARSDIEKLKEAIRD-Z X-ALVEAKQARSDIEKLKEAIRD-Z X-VALVEAKQARSDIEKLKEAIRD-Z X-AVALVEAKQARSDIEKLKEAIRD-Z X-AAVALVEAKQARSDIEKLKEAIRD-Z X-TAAVALVEAKQARSDIEKLKEAIRD-Z X-ITAAVALVEAKQARSDIEKLKEAIRD-Z X-QITAAVALVEAKQARSDIEKLKEAIRD-Z X-AQITAAVALVEAKQARSDIEKLKEAIRD-Z X-SAQITAAVALVEAKQARSDIEKLKEAIRD-Z X-TSAQITAAVALVEAKQARSDIEKLKEAIRD-Z X-ATSAQITAAVALVEAKQARSDIEKLKEAIRD-Z X-VATSAQITAAVALVEAKQARSDIEKLKEAIRD-Z X-GVATSAQITAAVALVEAKQARSDIEKLKEAIRD-Z X-LGVATSAQITAAVALVEAKQARSDIEKLKEAIRD-Z io

in which:

amino acid residues are presented by the singleletter code;

X comprises an amino group, an acetyl group, a 9
15 fluoromethyoxymethyl-carbonyl group, a

hydrophobic group, or a macromolecule

carrier group;

Z comprises a carboxyl group, an amido group, a hydrophobic group, or a macromolecular carrier group.

- 17. The peptide of Claim 11, 12, 13, 14, 15 or 16 wherein X is a hydrophobic group.
- 25 18. The peptide of Claim 17 wherein the hydrophobic group X is carbobenzoxyl, dansyl, or t-butyloxycarbonyl.
- 19. The peptide of Claim 11, 12, 13, 14, 15 or 30 16 wherein Z is a hydrophobic group.
 - 20. The peptide of Claim 19 wherein the hydrophobic group Z is t-butyloxycarbonyl.

WO 94/28920 PCT/US94/05739

21. The peptide of Claim 11, 12, 13, 14, 15 or 16 wherein X is a macromolecular carrier group.

- 22. The peptide of Claim 21 wherein the macromolecular carrier group is a lipid-fatty acid conjugate, a polyethylene glycol, or a carbohydrate moiety.
- 23. The peptide of Claim 11, 12, 13, 14, 15 or 16 wherein Z is a macromolecular carrier group.
 - 24. The peptide of Claim 23 wherein the macromolecular carrier group Z is a lipid-fatty acid conjugate, a polyethylene glycol, or a carbohydrate moiety.
 - 25. The peptide of Claim 11, 12, 13, 14, 15 or 16 wherein at least one bond linking adjacent amino acid residues is a non-peptide bond.
- 26. The peptide of Claim 25 wherein the non-peptide bond is an inino, ester, hydrazine, semicarbazide, or azo bond.

15

35

- 27. The peptide of Claim 11, 12, 13, 14, 15 or
 16 wherein at least one amino acid residue is in a Disomer configuration.
- 28. The peptide of Claim 11, 12, 13, 14, 15 or 16 further comprising at least one amino acid insertion.
 - 29. The peptide of Claim 11, 12, 13, 14, 15 or 16 wherein the amino acid insertion is between 1 and 15 amino acid residues.

WO 94/28920 PCT/US94/05739

30. The peptide of Claim 11, 12, 13, 14, 15 or 16 having at least one less amino acid residue, wherein the amino acid residue(s) represents an amino acid deletion, and wherein the peptide comprises at least three amino acid residues.

5

10

- 31. The peptide of Claim 11, 12, 13, 14, 15 or 16 further comprising at least one amino acid substitution wherein a first amino acid residue is substituted for a second, different amino acid residue.
- 32. The peptide of Claim 31 wherein the amino acid substitution is a conserved substitution.
- 33. The peptide of Claim 31 wherein the amino acid substitution is a non-conserved substitution.
- of an enveloped virus to a cell, comprising contacting the cell with an effective concentration of the peptide of Claim 1 for an effective period of time so that no infection of the cell by the virus occurs.
- 35. A method for neutralizing an enveloped virus in a host, comprising administering to the host an effective concentration of the peptide of Claim 1 so that the host raises an immune response sufficient to neutralize the virus, and viral infection of uninfected cells in the host is inhibited.

30

35

36. A method for neutralizing an enveloped virus in a host, comprising administering to the host an effective concentration of an antibody raised against the peptide of Claim 1 so that viral infection of uninfected cells in the host is inhibited.

WO 94/28920

35

37. A method for the detection of an enveloped virus comprising:

contacting a viral isolate with an effective concentration of the peptide of Claim 1 for an effective amount of time so that viral infectivity is inhibited; and

assaying the viral isolate for viral enzyme activity.

- of an HIV retrovirus to a cell, comprising contacting the cell with an effective concentration of the peptide of Claim 11 or 12 for an effective period of time so that no infection of the cell by the retrovirus occurs.
- 39. A method for neutralizing an HIV retrovirus in a host, comprising administering to the host an effective concentration of the peptide of Claim 11 or 12 so that the host raises an immune response sufficient to neutralize the HIV retrovirus, and HIV infection of uninfected cells in the host is inhibited.
- in a host, comprising administering to the host an effective concentration of an antibody raised against the peptide of Claim 11 or 12 so that HIV infection of uninfected cells in the host is inhibited.
- 41. A method for the detection of HIV, comprising:

contacting a viral isolate with an effective concentration of the peptide of Claim 11 or 12 for an effective amount of time so that HIV viral infectivity is inhibited; and

WO 94/28920 PCT/US94/05739

assaying the viral isolate for retroviral enzyme activity.

- 42. A method for the inhibition of transmission of a respiratory syncytial virus to a cell, comprising contacting the cell with an effective concentration of the peptide of Claim 13 or 14 for an effective period of time so that no infection of the cell by the virus occurs.
- 43. A method for neutralizing a respiratory syncytial virus in a host, comprising administering to the host an effective concentration of the peptide of Claim 13 or 14 so that the host raises an immune response sufficient to neutralize the virus, and respiratory syncytial virus infection of uninfected cells in the host is inhibited.
- 44. A method for neutralizing a respiratory syncytial virus in a host comprising administering to the host an effective concentration of an antibody raised against the peptide of Claim 13 or 14 so that respiratory syncytial virus infection of uninfected cells in the host is inhibited.
- 45. A method for the detection of respiratory syncytial virus comprising:

contacting a viral isolate with an effective concentration of the peptide of Claim 13 or 14 for an effective amount of time so that respiratory syncytial viral infectivity is inhibited; and

assaying the viral isolate for respiratory syncytial virus enzyme activity.

30

46. A method for the inhibition of transmission of a parainfluenza virus to a cell comprising,

WO 94/28920 PCT/US94/05739

contacting the cell with an effective concentration of the peptide of Claim 15 or 16 for an effective period of time so that no infection of the cell by the virus occurs.

- 47. A method for neutralizing a parainfluenza virus in a host, comprising administering to the host an effective concentration of the peptide of Claim 15 or 16 so that the host raises an immune response sufficient to neutralize the virus, and parainfluenza infection of uninfected cells in the host is inhibited.
- 48. A method for neutralizing a parainfluenza virus in a host comprising administering to the host an effective concentration of an antibody raised against the peptide of Claim 15 or 16 so that parainfluenza infection of uninfected cells in the host is inhibited.
- 49. A method for the detection of parainfluenza virus comprising:

contacting a viral isolate with an effective concentration of the peptide of Claim 15 or 16 for an effective amount of time so that parainfluenza viral infectivity is inhibited; and

assaying the viral isolate for parainfluenza virus enzyme activity.

30

25

10

LOARILAVERYLKDOC	DP116 (SEQ ID:9)
CGGNNLLRAIEAQQHLLQLTVWGIKQLQARILAVERYLKDQ	DP125 (SEQ ID:8)
QQLLDVVKRQQEMLRLTVMGTKNLQARVTAIEKYLKDQ	DP118 (SEQ ID:10)
SSESFTLLEQWINWKLQLAEQWLEQINEKHYLEDIS	DP180 (SEQ ID:2)
LEANISQSLEQAQIQQEKNMYELQKLNSWDVFTNWL	HIV2NIHZ (SEQ ID:7)
LEANISKSLEQAQIQQEKNMYELQKLNSWDIFGNWF	HIV2ROD (SEQ ID:6)
YTSL1YSLLEKSQTQQEKNEQELLELDKWASLWNWF	HIV1MN (SEQ ID:5)
YTG I I YNLLEESONQOEKNEOELLELDKWANLWNWF	HIV1RF (SEQ ID:4)
YTNTIYNLLEESONQQEKNEQELLELDKWASLWNWF	HIV1SF2 (DP-185; SEQ ID:3)
YTSLIHSLIEESONQOEKNEOELLELDKWASLWNWF	HIV1LAI (DP-178; SEQ ID:1)

2

REVERSE TRANSCRIPTASE UNITS

2/31

SUBSTITUTE SHEET (RULE 26)

Number of Syncytia/well: concentration in μg/ml (micrograms/ml)									
DP178	10	5	1	0.2	0.1	0.05	0.025	0.0125	Control
<i>Syncytia</i> HIV1LAI	0	0	0	0	0	0 .	0	0	67
H]V1MN	Ö	Ö	Ö	0	0	ND	ND	ND	. 34
HIV1RF	. 0	0	0	0	0	ND	ND	ND	65
HIV1SF2	0	. 0	0	0	0	ND	ND	ND	58
			•				•		
DP125	10	5	. 1	0.2	0.1	0.05	0.025	0.0125	Control
Syncylia									
HIVILAI	0	0	54	69	80	75	79	82	67
HIVIMN	0	0	30	36	ND	· ND	ND	ND	34
HIVIRF	. 0	0	67	63	ND	ND	ND	ND	65
HIV1SF2	0	0	9	66	ND	ND	ND	ND	58
DP116 -	10	5	1	0.2	0.1	0.05	0.025	0.0125	Control
Syncylia									
HIVILAL	75	ND	· ND	ND	ND	ND	ND	ND	67
HIVIMN	35	ND	ND ·	ND	ND	ND	ND	ND	34
HIV1RF	81	ND	ND	ND	ND	ND	ND	ND	65
HIV1SF2	81	ND	ND	ND	ND	ND	ND	ND	58

FIG.4A

DP180	40	20	10	5	2.5	1.25	0.625	0.3125	Control
Syncylia HIV1LA1	50	>45	>45	>45	>45	>45	>45	>45	.58
DP185	40	20	10	5	2.5	1.25	0.625	0.3125	Control
Syncylia HIV1LAI	0	0	0	0	0	0	0 .	ND	60

FIG.4B_{4/31}
SUBSTITUTE SHEET (RULE 26)

					Н]	V1		v t	
	- ()	Numbe	r of	Syncy	lio/wel	l: conce	entration	in ng/ml	(nanograms/mi)
	DP178	20	10	5	2.5	1.25	0.625	0.3125	Control
	<i>Syncytia</i> HIV1	0	0	0	0	0 .	14	20	48
	DP116	20	10	5	2.5	1.25	0.625	0.3125	Control
	Syncylia HIV1	ND	48	ND	ND	ND	ND	ND	ND
			•		НІ	2	· ç		х-
		Numb <u>er</u>	of	Syncyt	io/well	: conce	ntration	in μg/ml	(micrograms/ml)
١.	DP178	20	-10	5	2.5	1.25	0.625	0.3125	Control
	Syncylia HIV2	50	54	55	57	63	77	78	76
	DP116	20	10	5	2.5	1.25	0.625	0.3125	Control
_	Byncylia HIV2	ND	58	ND	ND	ND	· ND	ND	ND

FIG.5

5/31

CELL CONCENTRATION X $10^6/m$ I

6/31

SUBSTITUTE SHEET (RULE 26)

8/31 SUBSTITUTE SHEET (RULE 26)

9 / 3 1 SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

11/31

SUBSTITUTE SHEET (RULE 26)

C	7
T	_
(٥
	_

Motifs		[LMNV] {CFGIMPTW} [IKLT] {CFGHIMPRVWY} [AILNV] {COFGHILPVWY} [ELR] {ACFGMPVWY}	
)	_
-	⋖	:	
	⋖		
•	0	V A R K K K K K K K K K	
tions	A	E N E C A A A C A A A A A A A A A A A A A A	
Posi	0	S K N < H L E N E O K S A L Q T E N E O L K S A L A S T K R R E Q L K H K T K E C L K H K T C C C C C C C C C C C C C C C C C C	
(V	X X A O X X A C X X A C X X X X X X X X X X X X	
(_	0 C T O C C C C C C C C C C C C C C C C C	
[×		
[0	M K Q L E D K V T D T L Q A E T I A R L E E K V E Q K L I S E E I E K T N E K F	
	А	M T I D E O E O E O E O E O E O E O E O E O E	
	Sequence	GCN4 (gcn4 yeast) C-FOS (fos_human) C-JUN (tap1_human) C-MYC (myo_human) FLU LOOP 36	

13/31

1	<u>つ</u>
T	_
C	り
Ī	

1104:16	200	[1LQT] {CFIMPSTY} [1LQTV] {CDFIMPST}	[1LQTV] {CDFIMPST}	[EKLNQV] {CDFKMPSVY}	[EKLNOV] {GFKMPS}		[EFKLOWY] {CFGMPRVY}	[FILMOSY] {APECADDIANY}		_			÷
		 		· · ·							1		
	<u></u>	' 	х О		0				3≡	<u>⊩</u> ≽			
			×		0	•			z	Z			
٠	\blacksquare		R Y		- Y - L K		L		₹	×	l		
		R Y	>	_	<u> </u>	3	* **			Ĺ			
		2	<u> </u>		- -	2			S	S			
		<u>Ш</u>	= -				= ≥		¥	Ψ			
,	<u>_</u>	V	-		> >		S	×	좆	즧			
				~	A V	v √	< <	_	0				
	\blacksquare		-		ر ـ ر	≥	: ≥=						
		∞ ∞	<u>~</u>			\times	<u>×</u>	ш	L	E			
		V V	4	≃ ∝	. A . R	9	0	_	_	⊸			
		00	<u> </u>	<u> </u>	K O L C		<u> </u>		<u> </u>		•		
			=	00		<u> </u>	<u> </u>	<u> </u>	ш	끸			
		2 Z	<u>×</u>	00				٠٠١	ш				
S	K			<u> </u>	· ×	- LU LL	. 	-	=	띍	٠.		
Positions 4 1 1 2 1 2 1		ပ ပ ပ	ပ		· —	00	Э.	<u>~</u>	$\overline{\mathbf{x}}$	궄			
<u>ن</u> ۔		≥ ≥ :	¥ >	ပ္			· ••	w	u	ᆈ			
05		> > :	>	≥ ≥	: ≩=	zz		0	0	0			
α.	0			> >	>	$\times \times$	×	O	0	0	•		
		10	→		· -	шш	ш	Z	S O N	2			
	A		<u> </u>	==	- 5	00	0	-6	0	의			
						zz	Z	- LL	<u></u>				
		= = :	I			00	o	ш	<u></u>				
		900	<u> </u>	ΞI	エ	S.N	S			-1		•	
ı	9	A A 0	2	00	0	ىيا ئىيا	ш						
		* * *	⋖.	00		<u> </u>	w	Я	S	S			
ſ	=	<u>ш ш г</u>	<u> </u>	<u> </u>	<u> </u>		, _	<u> </u>	<u> </u>	픠			
		44	⋖	==						=			
	ı	œ œ o	¥	« «	⋖ .	= =	T .	S	<u> </u>	7			
		<u> </u>		<u> </u>	∞			<u> </u>	- +	_			
L	9	N N N N N N N N N N N N N N N N N N N		N L L R A N L L R A		Y T S L I H S L		YTSL	> >	\equiv		• .	
		z z z	_		_	SS	S						
ſ	V	<u> </u>		<u> </u>	Z		<u> </u>			_			
L			-				- _			\dashv			
	e	UP-10/ (env_hv1bru)L1=D DP-107 (env_hv1bru)L1=D DP-107 (env_hv1bru)L1=D	לבווג"ווג ומו חוור ו–ו	UP-10/ (env_hv1bru)L2=D DP-107 (env_hv1bru)L2=D	(env_hv1bru)L2=D	DP-178 (env_hv1bru)Y1=A DP-178 (env_hv1bru)Y1=A	(env_hv1bru)Y1=A	DP-178 (env_hv1bru)Y1=0	(env_hv1bru)Y1=D	DE-11/0 (ENV_NV+DFU)TI=U			
	Sequence	0P-10/ 0P-107	5 6	UP-10/ DP-107	DP-107	0P-178 0P-178	DP-178	0P-178	0P-1/8	0/1-10	14	/ G	3 1

_	4
•	_
	<u>ن</u>
L	_

	Hubrid Motif		[ILMNOTV] {CFIMPT}	[ILMMOTV] {CFIMPT} [ILMMOTV] {CFIMPT}	[FK! MNOV] {CFUP}	[EKLMNOV] {CFNP}	[EKLMNOV] {CFMP}
	Parent Motif	[LMNV] {CFGIMPTW}	[ILQT] {CFINPSTY}	[ILQTV] {CDFIMPST} [ILQTV] {CDFIMPST}	[EKLNOV] {CDFKNPSVY}	[EKLNOV] (CFKWPS)	[EKLNOV] (CFKMPS) [E
		1.		A O O H L L O L T V W G I K O L O A R I L A V E R Y L K O O			
	-			0 >		DOHLLOL TVWGIKOLOARILAVERYL	0
	⋖	<u> </u>					포
		1.	;	~ ~ ~ ~			7
				<u></u>		<u>~</u>	2
	<u>e</u>	 		<u> </u>		<u>~</u>	믲
	_			<u> </u>		¥	V
	⋖	 	= :	==-		=	=
		LLSKNYHLENEVARLKKL	₹ :	≪ ≪	2	<u>~</u>	~
	6		0	3 0	<u>~</u>	<u>×</u>	띩
		~		38		$\frac{\square}{\square}$	<u>=</u>
	شسا	<u> </u>	<u> </u>	<u> </u>	0	9	의
osilions	¥	Lui	5	<u> </u>	=	<u></u>	
≘		2	≥= }	= 3=	ပ	ပ	ပ
ဆိ		<u> </u>	<u> </u>	> >	<u>≠</u>	<u>≠</u>	-
	_	三			_	-	
	-	<u>></u>	0 0	30			$=$ \perp
		<u> </u>			-	<u> </u>	3
		S	= :	= =	. =	_ :	-1
		=	8	38	-ㅎ	=	늙
		<u> </u>	≪ <	N N L L R A I E A (0	0	9
	M	MKOLEDKVEE	NNLLRAIEA		-	<u> </u>	
		×	≪ -	< <<			
		<u>.</u>	ء - ب	 	~	~ ~	≨
				ب ب			=
		0	Z 2	2 Z 2 Z	<u>ب</u>	ユ:	=
	◙	≥			Z	Z	
	Sequence	GCN4 (gcn4 yeast)	0P-107 (env_hv1bru)L1=0	0P-107 (env_hv1bru)L1=0	0P-107 (env_hv1bru)L2=0	DP-107 (env_hv1bru)L2=D NN L L R A I E A Q	UF-1U/ (env_nvibru)LZ=U

15/31

	<u> </u>)
₹ ([,	- •
Ĺ	_	-

Hybrid Motif	I DO I DO I DO I DO I DO I DO I DO I DO		[EKLMNOVY] {CFGWPW} [EKLMNOVMY] {CFGWP} [EFKLMNOVMY] {CFGWP}	<pre>:ILNQSY] {ACFGMPRVMY} [EILMNQSVY] {CFGMPW} :ILNQSWY] {CFGMPRVY} [EILMNQSVMY] {CFGMP} :FILNQSWY] {CFGMPRVY} [EFILMNQSVWY] {CFGMP}</pre>
Porent Motif		[LMNV] {CFGIMPTW}	[EKLOY] {ACFCMPRVMY} [EKLOMY] {GFCMPRVY} [EFKLOMY] {GFCMPRVY}	
				E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W F
	[A			E E S O N O O E K N E O E L L E L D K W A S L W N W E E S O N O O E K N E O E L L E L D K W A S L W N W E E S O N O O E K N E O E L L E L D K W A S L W N W F
			0 N 0 0 E K N E 0 E L L E L D K W A S L W N W P 0 N 0 0 E K N E 0 E L L E L D K W A S L W N W P 0 N 0 0 E K N E 0 E L L E L D K W A S L W N W F	
			2 Z 3= 3=	ASA
				≥= ≥=
			× ×	E E S O N O O E K N E O E L L E L D K I E E S O N O O E K N E O E L L E L D K I E S O N O O E K N E O E L L E L D K I
	\leq		3= 3= .	
		<u> </u>	~ ~ ~	
	_	<u> ~ _</u>	<u></u>	
	_	SKNYHLENEVARLKKI	0 N O O E K N E O E L L E L D K 0 N O O E K N E O E L L E L D K 0 N O O E K N E O E L L E L D K	888
		<u> </u>	<u></u>	<u> </u>
Sign	₽	<u>~</u>	900	- 2 2 2
Posilions		2	<u></u>	. w w w
Pos	-	<u> </u>	ZZZ	
		王	<u> </u>	ZZZ
	W	<u>></u>	- 2 2 2 -	888
1	_	~	ZZZ	W W W
			SSS	
- {	0		<u> </u>	
		LLI		E E E
ı	¥	>	<u></u>	Y T S L 1 H S L Y T S L H S L Y T S L 1 H S L H S L
		0	= = =	SISI
ſ	$\overline{}$	LLJ		
·	=	8	<u> </u>	
ſ	A 0	MKOLEDKVEELL	Y 1 S L 1 H S L 1 E E S Y 1 S L 1 H S L 1 E E E S Y 1 S L 1 H S L 1 E E E S	
ı	_			
	Sequence	GCN4 (gcn4 yeast)	0P-178 (env_hvlbru)Y1=A 0P-178 (env_hvlbru)Y1=A 0P-178 (env_hvlbru)Y1=A	0P-178 (env_hv1bru)Y1=0 0P-178 (env_hv1bru)Y1=0 0P-178 (env_hv1bru)Y1=0

16/31

Hybrid Motif	[EFIKLNOSTVWY] {CFIAP}			
Porent Motif	[ILQTV] {CDF [MPST} [EKLNQV] {CFKMPS} [EFKLQMY] {CFGMPRVY} [EF ILNOSMY] {CFGMPRVY}	[FILTV] {ACFLMPTV#}		
Sequence A D A D A D A D A D A D A D A D A D A	nv_hv1bru)L1=0 N N L L R A I E A Q Q H L L Q L T V W G I K Q L Q A R I L A V E R Y L K D Q nv_hv1bru)Y1=0 N N L L R A I E A Q Q H L L Q L T V W G I K Q L Q A R I L A V E R Y L K D Q nv_hv1bru)Y1=0 Y T S L I H S L I E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W F nv_hv1bru)Y1=0 Y T S L I H S L I E E S Q N Q Q E K N E Q E L L E L D K W A S L W N W F	FLU LOOP 36 IEKINEKFHOIEKEFSEVEGRIOOLEKY	17/31	FIG.16

/	,
<u>S</u>	
$\stackrel{\sim}{=}$	

Hybrid Motif	[EFIKLIANQTVWY] {CFIAP}	[EFILHANZASTWAY] {CFMP}	[EFKLIANOWY] {CFMP}	[EFIKLMNOSVMY] {CFWP}
Porent Molif	[LMAV] {CFGIMPTW} [ILOTV] {CDFIMPST} [EFKLCMY] {CFGIMPRVY}	[LMAV] {CFGIMPTW} [ILQTV] {CDFIMPST} [EFILNQSMY] {CFGMPRVY}	[LMAV] {CFGIMPTM} [EKLNOV] {CFKMPS} [EFKLOMY] {CFGMPRVY}	[LMAV] {CFGIMPTW} [EKLNQV] {CFRAMPS} [EFILNQSWY] {CFGIMPRVY}
	0	LAVERYLKOQ OKWASLWNWF	1 K D 0	L K D O
· <u>_</u>	LAVERYLK ASLWNWF		L A V E R Y L K D Q W A S L W N W F	KKL ARILAVERYLKDO LLELDKWASLWNWF
	RIKKI OLGARILAVE LELDKWASLW	L K K L L Q A R I E L L E L	L K K L O A R I C D K	RIKKI IQARIL DELLEL
Lions	S E C C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C C E	NYHLENEVARLKI LOLIVWGIKOLO SONOOEKNEOEL	ENEVAR WGIKOL NEOELL	Z X <
Posi O	N A H L C O C C C C C C C C C C C C C C C C C	N Y H L E L Q L T V S Q N Q Q	Y	NYHLENE OLTV#G
	M K Q L E D K V E E L L S K N N N L L R A I E A Q Q H L L Y I S L I M S L I E E S Q N Q	MKOLEDKVEELLSKN NNLLRAIEAQQHLL YTSLIHSLIEES	MKQLEDKVEELLSKN NNLLRAIEAQQHLLQ YTSLIHSLIEESQNQ	MKOLEOKVEELLSKN NNLLRAIEAOOHLLO YTSLIHSLIEES
A D A D	LEDKV LLRAI LIMSL	LEDKV	LEDKVE LRAIE/ LIHSL	LEDKVE LRAIEA YTSLIF
A	M K Q Y N N Y T S	X Z	Y N K	N X X
Sequence	GCN4 (gcn4 yeast) DP-107 (env_hv1bru)L1=D DP-178 (env_hv1bru)Y1=A	GCN4 (gcn4 yeast) OP-107 (env_hv1bru)L1=D OP-178 (env_hv1bru)Y1=D	GCN4 (gcn4 yeast) DP-107 (env_hv1bru)\2=D DP-178 (env_hv1bru)Y1=A	GCN4 (gcn4 yeast) DP-107 (env_hv1bru)L2=D DP-178 (env_hv1bru)Y1=D

8/31

Hybrid Molif	AFFIKILMAPPOTAWY Ford	COSHP} CCP} COSHP} COSHP} COSHP} COSHP} COSHP} COSHPP COS
Parent Motif	[LMN] {CFGIMPTW} [LLOTV] {CDFIMPST} [EKLNOV] {CFKMPS} [EFKLCMY] {CFCMPRVY} [EFILNQSWY] {CFGMPRVY} [MLT] {CFGHIMPRWYY} [AILNV] {COFGHILPVWY} [ELR] {ACFIMPTWY}	
	A 1.X F % N N S O X O X S X O X S X O X S X S O X S X S	
[X	
[K K K K K K K K K K K K K K K K K K K	-
[∞ ∞
_	R R R L L D R A K	FIG. 18
Ŀ		
<u>e</u>	ADEREC	
rositions	V C C C C C C C C C C C C C C C C C C C	
	Y H O L O D E O E O E O	1
Ŀ	N L L Z E E E E E	}
[2	K K A D E E E E E E E E E E E E E E E E E E	, •
_	H O H O H O H O H O H O H O H O H O H O	
Ŀ	B S S S S S S S S S S S S S S S S S S S	·
[N - E 0 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	
_	ANN TANN	
ב	11=0 M M M M M M M M M M M M M M M M M M M	
	gcn4 yeast) (env_hv1bru)! (env_hv1bru)! (env_hv1bru) (env_hv1bru) (fos_human) (top1_human) (myo_human)	19/31
		UTE SHEET (RULE 26)

P-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(1)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(2)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(3)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(5)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(5)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(7)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(8)-[LIV]-{P}(6)-[LIV]-{P}(6)-[LIV]
P-{P}(1)-[LIV]-{P}(1)-{P

FIG. 19

♥ALLMOTI5♥

Peptide

↑107x178x4↑

▼.....FLGFLG A AGSTMGARSM TLTVQARQ ◆LL SGIVQQQ DP107-NVL

LRAIEAOOHL LOLTYWGIKO LOARILAYER YLKDO-DP107 QLLG♠♥ I WGC

★107x178x4★

♥ALLMOTI5♥

LVS Coiled-Coil

SGKLICT TAVP ▼WNASWS NKSLEQIWNN MTWM *E ★WDREINN DP178-

YTSLIHSL IEESONOOEK NEOELLELDK*

◆ Transmembrane Region ◆

TNWLWYIK → IF IMIYGGLYGL RIVFAVLSIY NRVRQGYS → PL

+P23LZIPC+

SFQTHLPTPR GPDR *PEGIEE EGGERDRDRS IRLVNGSLAL IWDDLRSL + CL

♥ALLMOTI5♥

↑107x178x4↑

F ▼SYHRLRDLL LIVTRIVELL GRRGW ★EALKY WWNLLOYWSO

ELKNSAVSLL NAT

◆ AIAVAEG TDRVIEVVQG A

◆ CRAIRHIPR

RIRQGLERIL L

FIG. 20

21/31

♥ALLMOTI5♥

Peptide

↑107x178x4↑

♥......FLGFL LGVGSAIAS GVA <u>♦VSKVLHL EGEVNKIKSA</u>

+P1&12LZIPC+

↑107x178x4↑

SC ASISNIETY I * EFOOKNNRLLEITREFSYNAG A VTTPVSTMLTNSELLSL

♣P1&12LZIPC

♥ALLMOTI5♥

INDM →PI →TNDQ KKLMSNNVQI V→ RQQSYSI→ MS IIKEEVLAYV

VQ♥ LPLYGVID TPCWKLHTSP LCTTNTKEGS NICLTRTDRG WYCDNAGSVS

FFPQAETCKV QSNRVFCDTM NSLTLPSEIN LCNVDIFNPK

YDCKIMTSKT DVSSSVITSL GAIVSCYGKT KCTASNKNRG

IIKTFSNGCDYVSNKGMDTV SVGNTLYYVN KQEGKSLYVK G

+P7, 12, & 23LZIPC+

107x178x4

♥ALLMOTI5**♥**

EPINFYDPLVF *PSDE *FDASISOVNEKINOSLAF *I* RKSDELL*

◆ Transmembrane Region ◆

HNVNA → GK STIN → IMITTI IIVIIVILLS LIAVGLLLY ▼ C+

KARSTPVTLS KDQLSGINNI AFSN

FIG. 21

22/31

Peptide

♥ALLMOTI5♥

★107x178x4★

....FLGFLG

◆AAGTA MGAAA ◆TALTYOSOHLLAGILOOOKNLLAAY

↑107x178x4↑

EAQ♠ QQM ♠LKLTIWGVKNLNARYTALEKYLEDQARLN♠ AWG♥ CA

LYS Coiled-Coil

♥ALLMOTI5**♥ ♠**107x178x4**♠**

WKQVCHTTVP WQWNNRTPDW ◆NNMT *WLE ◆WEROISYLEGNIT

↑107x178x4 ↑

TOLEEARAOEEKNLD ↑ AYOKLSS* WSDFWSW * FDF ↑SKWLN +ILK

◆Transmembrane Region ◆

IGFLDYLGIIGLRLLYTY + YS + CIARVRQGYS PLSPQIHIHP WKGQPDNAEG

PGEGGDKRKN SSEPWQKESG TAEWKSNWCK RLTNWCSISS IWLYNS

♥ALLMOTI5♥

▼CLTL LVIILRSAFQY IQYGLGELKA AAQEAVVALA RLAQNAGYQIWL**▼**

ACRSAYRA IINSPRRVRQ GLEGILN

FIG. 22

23/31

4107x178x44

Peptide ▼ALLMOTI5▼

LVS Coiled-Coil

.....FAG

▼YYL AGVALGVATA AQITAGIALHQ **★***<u>SNLNAQAIQ</u>

SLRTSLEOSNKAIEEIREATOETVIA* VOGVODY NNEL VP

♥ALLMOTI5♥

★107x178x4★

P6 & 12LZIPC

AMQHMSCELVGQRLGLRLLRYYTELLSIFGPSLRD *PISA *▼EISIQALIYAL

GGEIHKILEKLGYSGSD ↑ MIAILESRGIKTKI ▼ THVDLPGKF IILSISY

+P1 & 12LZIPC+

PTLSEVKGVIVHRLEAV SYNIGSQEWYTTVPRYIATNGYLISNFDESSCVFVS

ESAICSQNSL YPMSPLLQQC IRGDTSSCAR TLVSGTMGNK FILSKGNIVA

NCASILCKCY STSTIINQSP DKLLTFIASD TCPLVEIDGA TIQVGGRQYP

LVS Coiled-Coil

♥ALLMOTI5♥

♣P12 & 23LZIPC♣

DMVYEGKVAL G *PAISLD *RL*DVGTNLGNALKKLDDAKVLI*

◆Transmembrane Region ◆

DSS÷ NOILETVR RS▼* SFN →FGSLL SVPILSCTAL ALLLLIYCC+

K RRYQQTLKQH TKVDPAFKPD LTGTSKSYVR SL

FIG. 23

24/31

Fusion ♥ALLMOTI5♥

Peptide

♥......<u>FIGAI</u> IGSVALGVA TAAQITAASA LIQANQNAAN **♦**ILRLKESITA

TIEAVHEYTDGLSQLAYA → VG KM → QQFVNDQFNNTAQELDCIKITQQV

♥ALLMOTI5♥

GVELNLYLTELTTV FGPQITSPAL *TQLTIQALYNAGGNMDYLLTKLGVG

P1 & 12LZIPC

LSVST TKGFASALVP KVVTQVGSVI EELDTSYCIE TDLDLYCTRI VTFPMSPGIY

SCLNGNTSAC MYSKTEGALT TPYMTLKGSV IANCKMTTCR CADPPGIISO

♥ALLMOTI5♥

↑107x178x4↑

NYGEAVSLID RHSCN ★♥VLSLD GITLRLSGEF DATYQKNISI LDSQVIVTG

LVS Coiled-Coil

N LDISTELGNY NNSISNALDK LEESNSKLDK YNVKLTSTSA +LIT YIA

membrane Region +

LTAISLVCGILSLV * * LACYLMY * KQKAQQKTLLWLGNNTLGQMRATTKM

FIG. 24

25/31

♥ALLMOTI5**♥**

Peptide

LVS Coiled-Coil

.....<u>FFGGV</u>

♦IG ♥TIALG *YATSAQITAAVALVEAKOARSDIEKLKE

AIRDTNKAVQSVQSSIGNLIVAIKSVQ* DYVNKE♥♠ IVPSIARLGCEAAG

♥ALLMOTI5♥

★107x178x4★

LQLGIALTQH *YSELTNIFGDNIGSLOEKGIKLOGIASLYRTNITEY*

♣P5 & 12LZIPC♣

IFTTSTVDKYDIYDLLFTESIKVRVIDVDLNDYSITLQVRL *PLLTRLLNTQIYR

VDSISYNI+ QNREWYI+ PLPSHIMTKGAFLGGADVKECIEAFSSYIC

PSDPGFVLNHEMESCLSGNISQCPRTVVKSDIVPRYAFVNGGVVANCITT

TCTCNGIGNRINQPPDQGVKIITHKECNTIGINGMLFNTNKEGTLAFYTP

♥ALLMOTI5**♥**

4107x178x44

+P6 & 23LZIPC**+**

NDITLNNSVALD +PIDI +SIELN +KAKSDLEESKEWI+ RRSNQKL+

◆ Transmembrane Region ◆

DSIGNWHOSSTT

+ⅢV♠ LIM IIILFIINVT II + IIAVKYY♥ R

IQKRNRVDQN DKPYVLTNK

FIG. 25

26/31

Fusion Peptide

..GLFGAI AGFIENGWEGMIDGWYGFRHQNSEGTG

★107x178x4★

♥ALLMOTI5♥

LVS Coiled-Coil

*Q ◆AADLKST ◆QAAIDQINGKLNRVIEKTNEKFHOIEKEFSEVEGRIO

DLEKYVEDTKIDL* WSYNAELLVALENOHTI♠ DLT♥ DSEMNKLFEKTR

RQLRENAEEMGNGCFKIYHKCDNACIESIRNGTYDHDVYRDEALNNRFQIKG

VELKSGYKDWILWISFAISCFLLCVVLLGFIMWACQRGNIRCNICI

FIG. 26

	YISVITIELSNIKENKCNGTDAKVKLIKOELDKYKNAVTFI OI I MOST	YTSVITIELSNIKENKCKSTDAKVKI IKOFI DKYK	1SV171EL SNIKENKCNGTDAKVKL I KOEL DKYKN	SVITIEL SNIKENKCNCTDAKVKL IKOEL DKYKNA	VITIEL SNIKENKCNGTDAKVKL IKOFI DKYKNAV	I TIEL SNIKENKCNGTDAKVKL IKOEL DKYKNAVT	TIEL SNIKENKCNGTDAKVKL IKOEL DKYKNAVTF	I EL SNIKENKCNGTDAKVKL I KOEL DKYKNAVTFI	EL SNIKENKCNGTDAKVKL IKQEL DKYKNAVTELO	L SNIKENKCNGTDAKVKL IKQELDKYKNAVTELOL	SNIKENKCNGTDAKVKL IKOELDKYKNAVIFI OI 1	NIKENKCNSTDAKVKL IKOFI DKYKNAVTFI OLI M	IKENKCNGTDAKVKL IKOELDKYKNAVTFI OI I MO	KENKCNGTDAKVKL I KOEL DKYKNAVTFI OLI MOS	ENKCNGTDAKVKL IKOFI DKYKNAVTFI OI I MOST	
	KSV F2	1-142	T-143	I-144	I-145	T-146	I-147	T-148	1-149	I-1 50	I-151	1-152	T-153	T-154	I-155	
6	3	+ / +	 	# /	+ /+	-/+		ı	-/+	ì,	*/ +	‡ /+	*/ +	+/+	+/+	
:	>		+													

-16.27

28/31

0	0
C	V
(<u>.</u>
_	-

															•		-	
	DEFDASTSOVNEKTNOSLAFITRKSDELL	GEP1INFYDPLVFPSDEFDAS1SQVNEKINGSLAFIRKSDFLI HNVNAGKSTT	I INFYDPL VFPSDEFDAS I SOVNEK I NOSLAF I RK	INFYOPLVFPSDEFDASISQVNEKINOSLAFIRKS	NFYDPLVFPSDEFDAS1SQVNEK INQSLAF IRKSD	FYDPLVFPSDEFDAS1SQVNEKINGSLAF IRKSDF	YDPLVFPSDEFDASISQVNEKINOSLAFIRKSDFI	DPL VFPSDEFDAS I SQVNEK I NOSLAF I RKSDFI I	PLVFPSDEFDAS1SQVNEKINOSLAF IRKSDELLH	LVFPSDEFDASISQVNEKINOSLAF IRKSDFLI HN	VFPSDEFDAS1SQVNEKINQSLAF IRKSDELLHNV	FPSDEFDASISQVNEKINGSLAFIRKSDELLHNVN	PSDEFDAS1SQVNEK INQSLAF I RKSDELL HNVNA	SDEFDAS1SQVNEK INOSLAF I RKSDELLI HNVNAG	T-116 (T-67 LIKE) DEFDASISQVNEKINQSLAFIRKSDELLHNVNAGK	EFDASI SQVNEK INQSLAF I RKSDELL HNVNAGKS	FDASISQVNEKINGSLAF IRKSDELI HNVNAGKST	DASI SQYNEK I NQSLAF I RKSDELLHNVNAGKSTT
RSV	1-67	F1-178	1-104	·1-105	.T-106	T-107	1-108	I-109	T-110	1-11	I-112	1-113	1-114	.T-115	1-116	I-117	<u>1-118</u>	1-119
8	-/+										-/+	-/+	-/+	-/+	-/+	-/+	-/+	- /+
A	‡		-/+	-/+	-/+	+	‡	‡	+	‡	‡	‡	‡	‡	#	‡	‡	‡

_	_	
C	7	7
C	`	1
C	_	
Ē	1.	_

									~													
YTPNDITLNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQKLDSIGNMHOSSTT	YTPNDITLNNSVALDPIDISIELNKAKSDLEESKE	TPND1TLNNSVALOP1D1S1ELNKAKSDLEESKEW	PNDITLNNSVALDPIDISIELNKAKSDLEESKEWI	ND!TLNNSVALDP!D!S!ELNKAKSDLEESKEW!R	DITLNNSVALDPIDISIELNKAKSDLEESKEWIRR	ITLNNSVALDPIDISIELNKAKSDLEESKEWIRRS	TLNNSVALDPIDISIELNKAKSDLEESKEWIRRSN	LNNSVALDPIDISIELNKAKSDLEESKEWIRRSNQ	NNSVALDPIDISIELNKAKSDLEESKEWIRRSNQK	NSVALDPIDISIELNKAKSDLEESKEWIRRSNQKL	SVALDPIDISIELNKAKSDLEESKEWIRRSNQKLD	VALDPIDISIELNKAKSDLEESKEWIRRSNQKLDS	ALDP ID I SIELNKAKSDLEESKEWI RRSNQKLDS I	LDPIDISIELNKAKSDLEESKEWIRRSNQKLDSIG	DP1D1S1ELNKAKSDLEESKEW1RRSNQKLDS1GN	P I D I S I E L NKAKSDLEESKEWI RRSNOKL DS I CNW	IDISIELNKAKSDLEESKEWIRRSNOKLDSIGNMH	DISIELNKAKSDLEESKEWIRRSNOKLDSIGNMHO	ISIELNKAKSDLEESKEWIRRSNOKLDSIGNMHOS	SIELNKAKSDLEESKEWIRRSNQKLDSIGNWHQSS	1ELNKAKSDLEESKEWIRRSNQKLDSIGNMHOSST	ELNKAKSDLEESKEWIRRSNOKLDSIGNMHQSSTT
HPF3 178	189	190	191	192	193	194	195	196	197	198	199	<u>5</u> 00	201	202	203	204	502	506	202	208	508	210
8	1	1	ı	1	-/+	-/+	+ +/+	+/+	+/+		+ /+											
ð.	1			ı		_	_	_	4-	#	±		±	±	‡	#	ŧ	-4-	-4-	-4-	±	±

		•
CD	HPF3 107	GTTALGVATSAQTTAAVALVEAKQARSDIEKLKEATRDTNKAVQSVQSSIGNLTVATKSVQDYVNKETVP
+/+	157	ALGVATSAQITAAVALVEAKQARSDIEKLKEAIRD
+/+	158	LGVATSAQITAAVALVEAKQARSDIEKLKEAIRDT
+/-	159	GVATSAQITAAVALVEAKQARSDIEKLKEAIRDTN
+/+	160	VATSAQITAAVALVEAKQARSDIEKLKEAIRDTNK
+/+	161	ATSAQITAAVALVEAKQARSDIEKLKEAIRDTNKA
+/-	162	TSAQ1TAAVALVEAKQARSD1EKLKEA1RDTNKAV
+/+	163	SAQ1TAAVALVEAKQARSD1EKLKEA1RDTNKAVO
+/+++	164	AQ1TAAVALVEAKQARSDIEKLKEAIRDTNKAVQS
+/+	165	Q1TAAVALVEAKQARSD1EKLKEA1RDTNKAVOSV
+/-	166	ITAAVALVEAKQARSDIEKLKEAIRDTNKAVOSVO
+/-	167	TAAVALVEAKQARSDIEKLKEAIRDTNKAVQSVQS
+/-	168	AAVAL VEAKQARSD I EKL KEA I RDTNKA VOS VOSS
+/-	169	AVALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSI
+/-	170	VALVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIG
+/-	171	ALVEAKQARSDIEKLKEA IRDTNKAVQSVQSSIGN
+/-	172	LVEAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNL
+/-	173	VEAKQARSD1EKLKEA1RDTNKAVQSVQSS1GNL1
+/++	174	EAKQARSDIEKLKEAIRDTNKAVQSVQSSIGNLIV
	T-40	AKQARSDIEKLKEA IRDTNKAVQSVQSSIGNLIVA
+/++	175	KQARSD1EKLKEA1RDTNKAVQSVQSS1GNL1VA1
+/+++	176	QARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIK
+/-	177	ARSDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKS
, 1 /-	178	RSD1EKLKEA1RDTNKAVQSVQSS1GNL1VA1KSV
_	179	SDIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQ
-	180	DIEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQD
-	181	IEKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDY
	182	EKLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYV
+/++	183	KLKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVN
+/+++	184	ŁKEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNK
	185	KEAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKE
-	186	EAIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEI
-	187	AIRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIV
-	188	IRDTNKAVQSVQSSIGNLIVAIKSVQDYVNKEIVP

FIG.30

31/31

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/05739

A. CLA	SSIFICATION OF SUBJECT MATTER		
IPC(5)	: A61K 37/02, 39/12; C12Q 1/70; G01N 33/53	. 222 224	
US CL	: 424/88, 89; 435/5, 7.1, 7.92-7.95, 974; 530/324-33 o International Patent Classification (IPC) or to both n	ntional classification and IPC	
B. FIEL	DS SEARCHED		
Minimum d	ocumentation searched (classification system followed	by classification symbols)	
U.S. :	424/88, 89; 435/5, 7.1, 7.92-7.95, 974; 530/324-331	, 333, 334	·.
Documentat	tion searched other than minimum documentation to the	extent that such documents are included	in the fields searched
Electronic o	data base consulted during the international search (nat	ne of data base and, where practicable,	search terms used)
APS, Bi			
AFS, DI	U313		
•			
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
	 	of the solvent mesages	Relevant to claim No.
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	
	NONE		NONE
NONE	NONE		
		•	
		· ·	
	·		• •
	· ·		
		-00	
		•	*
	· ·		
		•	•
			9
	·	•	
1		•	
	ther documents are listed in the continuation of Box C	See patent family annex.	
			constional filing date or priority
	special categories of cited documents:	tater document published after the in- date and not in conflict with the applie principle or theory underlying the in-	ration but cited to understand the
.v. q	ocument defining the general state of the art which is not considered obe of particular relevance		
·E·	narlier document published on or after the international filing date	considered novel or cannot be consid	cred to involve an inventive sup
.r. 9	locument which may throw doubts on priority claim(s) or which is	when the document is taken alone	
	cited to establish the publication date of another citation or other pecial reason (as specified)	"Y" document of particular relevance; t considered to involve an inventiv	e sten when the document is
•0•	locument referring to an oral disclosure, use, exhibition or other	combined with one or more other su being obvious to a person skilled in	ch documents, such combinition
1	means . document published prior to the international filing date but later than	*g. document member of the same pater	
1	the priority date claimed		
Date of th	e actual completion of the international search	Date of mailing of the international so	earen report
		2 6 SEP 1994	
07 SEP	TEMBER 1994	1.0/	
Name and	I mailing address of the ISA/US	Authorized officer	ma da
Commiss Box PCT	sioner of Patents and Trademarks	JEFFREY STUCKER	10-7
	ton, D.C. 20231	## 100 000 000 C	•
Facsimile	No. (703) 305-3230	Telephone No. (703) 308-0196	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/05739

Box I Oi	bservations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This intern	ational report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	Claims Nos.: 2 because they relate to subject matter not required to be searched by this Authority, namely:
tha	at the claimed subject matter is directed to mental processes.
	Claims Nos.: 13-16 and 42-49 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
bee	cause the sequences have not been submitted to the International Searching Authority in electronic form.
9. <u> </u>	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Jox II O	observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Intern	national Searching Authority found multiple inventions in this international application, as follows:
•	
•	*
الا	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite paymen
	of any additional fee.
· 🗀	As only some of the required additional search fees were timely paid by the applicant, this international search report cover only those claims for which fees were paid, specifically claims Nos.:
•	
• 🔲	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.