Exploring the Cocktail Party

A review of

Héctor M. de la Rosa Prado

A thesis presented for the degree of Bachelor in IT in Science

Department Name National Autonomous University of Mexico Mexico November 11, 2019

Contents

1	Introduction				
	1.1	History	10		
	1.2	Acknowledgements	10		
2	The	e Cocktail Party Problem	11		
	2.1	Segmentation vs Attention Problem	11		
	2.2	Ill-Posed Problems	11		
	2.3	Inverse Problems	11		
3	Tin	ne Series	13		
	3.1	Signal Processing	13		
	3.2	Speech Properties	13		
4	Transforms				
	4.1	Fourier Transform	15		
		4.1.1 Spectrums	15		
		4.1.2 Discrete Fourier Transform	15		
		4.1.3 Short-Time Fourier Transform	15		
	4.2	Wavelet	15		
5	Spectrograms				
	5.1	Linear vs Log	17		
		5.1.1 Amplitude vs Decibels	17		

4 CONTENTS

		5.1.2	Mel-Bins	17
	5.2	The Ph	hase Problem	17
		5.2.1	Linear	17
		5.2.2	Decibel	17
		5.2.3	Mel-bin	17
	5.3	Phase 1	Retrieval Techniques	17
		5.3.1	Phase Storage	17
		5.3.2	Griffin-lin Algorithm	17
		5.3.3	Vocoders	17
6	Mac	chine L	earning	19
	6.1	Superv	rised vs Unsupervised Learning	19
		6.1.1	Supervised Learning	19
		6.1.2	Unsupervised Learning	19
	6.2	Advano	cements	19
		6.2.1	AREAS**	19
	6.3	Problem	ms	19
		6.3.1	Data	19
		6.3.2	Interpretability	19
		6.3.3	Overfitting	19
		6.3.4	Hyper-parameters	19
		6.3.5	Computation	19
7	Dee	ep Lear:	ning	21
	7.1	Neural	Networks	22
		7.1.1	Structure	22
		7.1.2	Back-Propagation Algorithm	22
	7.2	Image	Processing	22
		721	Convolutional Neural Networks	22

CONTENTS		5
----------	--	---

		7.2.2 Attention	22
	7.3	Segmentation	22
		7.3.1 Medicine	22
		7.3.2 U-Net	22
8	Lite	erature Review	23
	8.1	Current SoTA with AI	23
		8.1.1 Speech Recognition	23
		8.1.2 Speech Separation	23
	8.2	Feature Extraction and Normalization	23
		8.2.1 Do Spectrograms belong in AI?	23
	8.3	Data Augmentation	23
	8.4	Targets and Masks	23
9	Met	chodology	25
	9.1	Computer Requirements	25
	9.2	Dataset	25
	9.3	Preprocessing	25
	9.4	Model	25
	9.5	Targets	25
	9.6	Error	25
10 Implementation 27			
	10.1	Libraries	27
		10.1.1 Librosa	27
		10.1.2 PyTorch	27
		10.1.3 TorchAudio	27
	10.2	Source Code	27
		10.2.1 Running Instructions	27

6 CONTENTS

11 Results	29
11.1 Initial Dataset	29
11.1.1 Quantified Losses	29
11.1.2 Quality Tests	29
11.1.3 Samples (images and audios)	29
11.2 Transfer learning	29
11.2.1 Quantified Losses	29
11.2.2 Quality Tests	29
11.2.3 Samples (images and audios)	29
11.3 Transfer Learning with fine tuning	29
11.3.1 Quantified Losses	29
11.3.2 Quality Tests	29
11.3.3 Samples (images and audios)	29
12 Discussion	31
12.1 Future Work	31

Thesis Title

Thesis Subtitle

Héctor M. de la Rosa Prado

Abstract

8 CONTENTS

Introduction

Imagine being in a public area with one of your friends. As you talk about your work and what you learned in school there are people around you making noise. They're also talking about their lives, what they plan on doing in the mall or the movie that just came out. Kids laughing with their parents talking, nearby traffic with car horns flaring in the distance. If you wanted to, you could hear them, but instead you ignore it.

You continue to listen to your friend, regardless of the noise in the background. You have no problem paying attention until suddenly you hear your name being mentioned in the crowd. For some reason, somewhere, someone said your name. You look around to see a familiar face walking towards you...

What we described in the short and imaginary story above is what is called the "Cocktail Party Effect". This effect was first coined by Cherry Colin[1] where he proposed a series of tests that would measure the limits of a human's ability to listen to a specific voice under different circumstances. The problem of getting a machine to do this same task was called the Cocktail Party Problem by Cherry.

The cocktail party problem is one of the biggest unsolved problems in computation. The short and imaginary story above gives us an example of how we, as humans, solve this problem in a seemingly effortless way. Thanks to evolution, humans can it so effortless, in fact, that most people don't even stop to appreciate how complicated the task actually is.

Its difficulty, however, is not the reason it is so widely studied. In fact, this small problem seems to be the barrier that has kept us from advancing in the automation of automation, or at least in the way we would like. The cocktail party is not only present in sound, but in just about any signal processing problem, from medical scanning to telecommunications[2], noise always seems to find its way into our sensors.

That is why a general solution to this problem will not only allow us to improve greatly in audio related tasks, such as speech recognition, transcriptions, audio classification, and audio/speech enhancements, but also in various fields like medical analysis and seismology. The reach of these advancements also promises a wide range of new technologies shortly after.

This is why, in this work, we will attempt to take a dive into how we can leverage the current improvements in artificial intelligence in tackling the problem. Ever since the latest boom of deep learning [3]

Even though, as we saw before, the problem generalizes beyond speech, we will limit our research to stick with voiced data. This is due to the complexity in examining signals as a whole, and because of the focus that most methods currently have on the subject.

Given how the difficulty of the problem lays much beyond my current limits as a researcher we will not show. We will accept limiting our problem greatly for practical reasons, in an attempt to get insight on . This also includes a review of how traditional methods attempt to solve the problem

1.1 History

1.2 Acknowledgements

The Cocktail Party Problem

- 2.1 Segmentation vs Attention Problem
- 2.2 Ill-Posed Problems
- 2.3 Inverse Problems

Time Series

- 3.1 Signal Processing
- 3.2 Speech Properties

Transforms

- 4.1 Fourier Transform
- 4.1.1 Spectrums
- 4.1.2 Discrete Fourier Transform
- 4.1.3 Short-Time Fourier Transform
- 4.2 Wavelet

Spectrograms

- 5.1 Linear vs Log
- 5.1.1 Amplitude vs Decibels
- 5.1.2 Mel-Bins
- 5.2 The Phase Problem
- 5.2.1 Linear
- 5.2.2 Decibel
- 5.2.3 Mel-bin
- 5.3 Phase Retrieval Techniques
- 5.3.1 Phase Storage
- 5.3.2 Griffin-lin Algorithm
- 5.3.3 Vocoders

Machine Learning

- 6.1 Supervised vs Unsupervised Learning
- 6.1.1 Supervised Learning
- 6.1.2 Unsupervised Learning
- 6.2 Advancements
- 6.2.1 AREAS**
- 6.3 Problems
- 6.3.1 Data
- 6.3.2 Interpretability
- 6.3.3 Overfitting
- 6.3.4 Hyper-parameters
- 6.3.5 Computation

Deep Learning

	TA T	1 70	т ,	•
7.1	Neura	~ I \	O + 337	anlza
<i>1</i> . I	Nema	ai 18	$\mathbf{e}_{\mathbf{L}}\mathbf{w}$	UI KS

7.1.1 Structure

Inputs

Weights

Bias

7.1.2 Back-Propagation Algorithm

Forward Propagation

Gradients

- 7.2 Image Processing
- 7.2.1 Convolutional Neural Networks
- 7.2.2 Attention
- 7.3 Segmentation
- 7.3.1 Medicine
- 7.3.2 U-Net

Literature Review

- 8.1 Current SoTA with AI
- 8.1.1 Speech Recognition
- 8.1.2 Speech Separation

Looking to Listen

- 8.2 Feature Extraction and Normalization
- 8.2.1 Do Spectrograms belong in AI?
- 8.3 Data Augmentation
- 8.4 Targets and Masks

Methodology

- 9.1 Computer Requirements
- 9.2 Dataset
- 9.3 Preprocessing
- 9.4 Model
- 9.5 Targets
- 9.6 Error

Implementation

- 10.1 Libraries
- 10.1.1 Librosa
- 10.1.2 PyTorch
- 10.1.3 TorchAudio
- 10.2 Source Code
- 10.2.1 Running Instructions

Results

-	-	-	T 1	
		.1	Initial	Lintagat
ш	. т	• т	IIIIIIIai	Dataset

- 11.1.1 Quantified Losses
- 11.1.2 Quality Tests
- 11.1.3 Samples (images and audios)
- 11.2 Transfer learning
- 11.2.1 Quantified Losses
- 11.2.2 Quality Tests
- 11.2.3 Samples (images and audios)
- 11.3 Transfer Learning with fine tuning
- 11.3.1 Quantified Losses
- 11.3.2 Quality Tests
- 11.3.3 Samples (images and audios)

Discussion

12.1 Future Work

Bibliography

- [1] C. E. Colin, "Some Experiments on the Recognition of Speech, with One and with Two Ears," The Journal of the Acoustical Society of America, vol. 25, no. 5, pp. 975–979, 1953.
- [2] L. Marchegiani, S. Karadogan, T. Andersen, J. Larsen, and L. Hansen, "The Role of Top-Down Attention in the Cocktail Party: Revisiting Cherry's Experiment after Sixty Years," in *Proceedings of the tenth International Conference on Machine Learning and Applications (ICMLA'11)*, (United States), IEEE, 2011.
- [3] I. Goodfellow, Y. Bengio, and A. Courville, *Deep Learning*. MIT Press, 2016.