2 A ball is thrown vertically downwards to the ground, as illustrated in Fig. 2.1.

Fig. 2.1

The ball is thrown with speed u from a height of 1.5 m. The ball then hits the ground with speed $8.7 \,\mathrm{m\,s^{-1}}$. Assume that air resistance is negligible.

(a) Calculate speed u.

$$u = \dots m s^{-1}$$
 [2]

(b) State how Newton's third law applies to the collision between the ball and the ground.

.....[2]

- (c) The ball is in contact with the ground for a time of $0.091 \, \text{s}$. The ball rebounds vertically and leaves the ground with speed $5.4 \, \text{m} \, \text{s}^{-1}$. The mass of the ball is $0.059 \, \text{kg}$.
 - (i) Calculate the magnitude of the change in momentum of the ball during the collision.

change in momentum = Ns [2]

	(ii)	Determine the magnitude of the average resultant force that acts on the ball during the collision.
	(iii)	average resultant force =
		average force = N [2]
(d)	On	e ball was thrown downwards at time $t = 0$ and hits the ground at time $t = T$. Fig. 2.2, sketch a graph to show the variation of the speed of the ball with time t from $t = 0$ = t . Numerical values are not required.
		speed $0 \frac{1}{t}$
		Fig. 2.2 [1]
(e)	Sta	te and explain the variation, if any, with time <i>t</i> of the gradient of the graph in (d) when air stance is not negligible.
		[2]
		[Total: 12]