ECG Data Compression and Reconstruction Project Plan

Francesco Rosnati Numerical Analysis for Machine Learning Professor Edie Miglio PoliMi

August 7, 2024

Contents

1	Project Overview	2
2	First Macro Step: Preprocessing 2.1 Data Reader	3
3	2.3 Data Structurer	4
	3.1 Non CS-Based Compressor	4
4	Third Macro Step: Reconstruction 4.1 Reconstruction for Non CS-Based Compression	5 5
5	Fourth Macro Step: Evaluation of Results 5.1 Qualitative Assessment	
6	Implementation Plan 6.1 Initial Pipeline Development	

1 Project Overview

The project involves developing a Python software for ECG data processing, compression, and reconstruction using both non-CS-based and CS-based methods. The software will include modules for data reading, visualization, structuring, compression, reconstruction, and evaluation.

Figure 1: ECG of a heart in normal sinus rhythm

2 First Macro Step: Preprocessing

2.1 Data Reader

Purpose: Read ECG data from various formats.

- Implement functionality to read ECG data files.
- Ensure compatibility with different data formats (CSV, TXT, etc.).

2.2 Data Visualizer

 ${\bf Purpose} :$ Visualize ECG data, specifically the PQRST curves.

- Implement plotting functionality for ECG data.
- Note: Ensure compatibility with data structure from Data Structurer or provide a Data Destructurer to revert to the original format before visualization.

2.3 Data Structurer

Purpose: Organize ECG data into a structured format with defined signal lengths.

- Transform the original data into a long series of contiguous memory cells (like a long array).
- Define a parameter for signal length (e.g., 16 coefficients per signal).
- Ensure data is aligned and organized for further processing.
- Note: Coordinate with Data Visualizer to ensure compatibility or implement a Data Destructurer.

3 Second Macro Step: Processing/Compression

3.1 Non CS-Based Compressor

Purpose: Compress ECG data using traditional methods.

- Implement transformations (DWT, DCT, etc.).
- Apply sparsification with thresholding.

3.2 CS-Based Compressor with Fixed Dictionary

Purpose: Compress ECG data using compressed sensing with a fixed dictionary.

- Implement compression using CS.
- Utilize the Kronacker technique for improved compression.

3.3 CS-Based Compressor with Adaptive Dictionary Learning

Purpose: Compress ECG data using compressed sensing with adaptive dictionary learning.

- Implement dictionary learning methods (KSVD, MOD).
- Apply CS with the Kronacker technique.
- Learn a different dictionary for each patient.

4 Third Macro Step: Reconstruction

4.1 Reconstruction for Non CS-Based Compression

 ${\bf Purpose} \hbox{: } {\bf Reconstruct\ data\ from\ non-CS-based\ compressed\ measurements}.$

• Implement reconstruction methods (if different from CS-based, verify this).

4.2 Reconstruction for CS-Based Compression

Purpose: Reconstruct data from CS-based compressed measurements.

- Implement methods such as Basis Pursuit, Greedy algorithm, smooth-L0.
- Focus on smooth-L0 for implementation.
- Consider robustness to noise and implement LASSO for noisy cases.

5 Fourth Macro Step: Evaluation of Results

5.1 Qualitative Assessment

Purpose: Evaluate the quality of reconstructed ECG data.

• Use Data Visualizer to compare original and reconstructed signals.

5.2 Quantitative Assessment

Purpose: Measure the performance of compression and reconstruction.

- Metrics:
 - Actual compression rate.
 - Algorithm complexity and processing speed.
 - * Record times of various steps and analyze them.
 - Accuracy:
 - * Percentage Root Mean Square Difference (PRD).
 - * Signal to Noise Ratio (SNR).

6 Implementation Plan

6.1 Initial Pipeline Development

1. First Macro Step

- Develop Data Reader.
- Develop Data Visualizer.
- Develop Data Structurer.
- Note: Ensure compatibility between modules.

2. Non CS-Based Compressor

• Implement and integrate with the initial pipeline.

3. Reconstruction for Non CS-Based Compression

- \bullet Implement reconstruction method.
- Ensure integration with the initial pipeline.

4. Fourth Macro Step

- Implement qualitative and quantitative assessment methods.
- Ensure the entire pipeline is working and can be tested.

6.2 Future Enhancements

- Add CS-Based Compressor with Fixed Dictionary.
- Add CS-Based Compressor with Adaptive Dictionary Learning.
- Implement Reconstruction for CS-Based Compression.
- Evaluate and compare with the initial pipeline.