# ME4010 Computational Methods for Mechanical Engineering

#### **Chapter 5 Curve Fitting and Interpolation**

Instructor: Nikolai V. Priezjev

Office: 430 Russ Engineering Center

Phone: 937-775-3214

Email: <u>nikolai.priezjev@wright.edu</u>

The course is adopted from Prof. Huang at WSU



## Curve Fitting and Interpolation







### Regression

- Antoine equation:  $P_v = 10^{\left(A + \frac{B}{T + C}\right)}$
- Heat capacity for a gas:  $c_p = a_0 + a_1T + a_2T^2 + a_3T^3 + \dots$
- Thermal conductivity:  $k = cT^n$
- Viscosity:  $\mu = \frac{C_1 T^n}{T + C_2}$
- Drag law:  $C_D = c \operatorname{Re}^n$
- Heat transfer correlations:  $Nu = c \operatorname{Re}^{n_1} \operatorname{Pr}^{n_2} (\mu / \mu_w)^{n_3}$

Nusselt number



### Linear Regression – Least Squares Fit

- Fitting a straight line,  $y=a_0+a_1x$ , to a set of paired observations:  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ .
- Minimize the sum of the residual errors for all available data:

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{measured}} - y_{i,\text{model}})^2 = \sum_{i=1}^n [y_i - (a_0 + a_1 x_i)]^2$$



### Least-Squares Fit of a Straight Line

$$S_{r} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i,\text{measured}} - y_{i,\text{model}})^{2} = \sum_{i=1}^{n} [y_{i} - (a_{0} + a_{1}x_{i})]^{2}$$

$$\frac{\partial S_{r}}{\partial a_{0}} = -2\sum_{i=1}^{n} (y_{i} - a_{0} - a_{1}x_{i}) = 0$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum \left[ (y_i - a_o - a_1 x_i) x_i \right] = 0$$

$$0 = \sum y_i - \sum a_0 - \sum a_1 x_i \Rightarrow \sum y_i = na_0 + \left(\sum x_i\right) a_1$$

$$0 = \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2 \Rightarrow \sum y_i x_i = \left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1$$

•

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a_{0} = \frac{\sum x_{i}^{2}\sum y_{i} - \sum x_{i}\sum x_{i}y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

### Example

| X | 0    | 1    | 2    | 3    | 4     | 5     | 6     | 7     | 8     | 9     |
|---|------|------|------|------|-------|-------|-------|-------|-------|-------|
| У | 4.00 | 6.10 | 8.30 | 9.90 | 12.40 | 14.30 | 15.70 | 17.40 | 19.80 | 22.30 |

$$\sum_{k=1}^{10} x_k = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45$$

$$\sum_{k=1}^{10} y_k = 4 + 6.1 + 8.3 + 9.9 + 12.4 + 14.3 + 15.7 + 17.4 + 19.8 + 22.3 = 130.2$$

$$\sum_{k=1}^{10} x_k^2 = (0)^2 + (1)^2 + (2)^2 + (3)^2 + (4)^2 + (5)^2 + (6)^2 + (7)^2 + (8)^2 + (9)^2 = 285$$

$$\sum_{k=0}^{10} x_k y_k = 0 + 6.1 + 16.6 + 29.7 + 49.6 + 71.5 + 94.2 + 121.8 + 158.4 + 200.7 = 748.6$$



$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}} = \frac{10 \times 748.6 - 45 \times 130.2}{10 \times 285 - 45^{2}} = 1.972$$

$$a_{0} = \frac{\sum x_{i}^{2}\sum y_{i} - \sum x_{i}\sum x_{i}y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}} = \frac{285 \times 130.2 - 45 \times 748.6}{10 \times 285 - 45^{2}} = 4.145$$

$$|y = 1.972x + 4.145|$$







$$y = bx^{m}$$

$$\ln(y) = \ln(bx^{m}) = m\ln(x) + \ln(b)$$

$$Y \qquad a_{1} \quad X \qquad a_{0}$$
Once  $a_{1}$  and  $a_{0}$  are known, the constants,
$$b = e^{a_{0}} \text{ and } m = a_{1}$$



### Example

$$y = bx^m$$

$$ln(y) = m ln(x) + ln(b)$$

 $\mathbf{Y} = a_1 \mathbf{X} = a_0$ 

| X <sub>i</sub> | y <sub>i</sub> | $X_i = In(x_i)$ | $Y_i = In(y_i)$ | X <sub>i</sub> Y <sub>i</sub> | X,2    |
|----------------|----------------|-----------------|-----------------|-------------------------------|--------|
| 1              | 0.5            | 0.0000          | -0.6931         | 0.0000                        | 0.0000 |
| 2              | 1.7            | 0.6931          | 0.5306          | 0.3678                        | 0.4805 |
| 3              | 3.4            | 1.0986          | 1.2238          | 1.3445                        | 1.2069 |
| 4              | 5.7            | 1.3863          | 1.7404          | 2.4128                        | 1.9218 |
| 5              | 8.4            | 1.6094          | 2.2182          | 3.4253                        | 2.5903 |
| 15             | 19.700         | 4.7875          | 4.9300          | 7.5503                        | 6.1995 |

$$\sum_{k=1}^{5} X_k = 4.7875, \sum_{k=1}^{5} Y_k = 4.9300,$$

$$\sum_{k=1}^{5} X_k^2 = 6.1995, \sum_{k=1}^{5} X_k Y_k = 7.5503$$

$$\sum_{k=1}^{5} X_k^2 = 6.1995, \sum_{k=1}^{5} X_k Y_k = 7.5503$$

Sum

$$a_{1} = \frac{n\sum X_{i}Y_{i} - \sum X_{i}\sum Y_{i}}{n\sum X_{i}^{2} - (\sum X_{i})^{2}} = 1.75 \Rightarrow m = 1.75$$

$$a_{0} = \frac{\sum X_{i}^{2}\sum Y_{i} - \sum X_{i}\sum X_{i}Y_{i}}{n\sum X_{i}^{2} - (\sum X_{i})^{2}} = -0.69 \Rightarrow b = e^{-0.69} = 0.5$$

$$y = 0.5x^{1.75}$$







$$y = be^{mx}$$

$$\ln(y) = \ln(be^{mx}) = mx + \ln(b)$$

$$Y \qquad a_1 \qquad a_0$$
Once  $a_1$  and  $a_0$  are known, the constants,

 $b = e^{a_0}$  and  $m = a_1$ 

$$y = \frac{1}{mx + b}$$

$$1/y = mx + b$$

$$Y = a_1 \qquad a_0$$

Once  $a_1$  and  $a_0$  are known, the constants,

$$b = a_0$$
 and  $m = a_1$ 



$$y = \frac{mx}{b+x}$$

$$1/y = b/m1/x + 1/m$$

$$Y = a_1 \quad X = a_0$$
Once  $a_1$  and  $a_0$  are known, the constants,
$$m = 1/a_0 \text{ and } b = ma_1 = a_1/a_0$$



# Polynomial Regression



A parabola is preferable



# 2<sup>nd</sup> Order Polynomial

$$y = a_o + a_1 x + a_2 x^2$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{measured}} - y_{i,\text{model}})^2 = \sum_{i=1}^n \left[ y_i - \left( a_0 + a_1 x_i + a_2 x_i^2 \right) \right]^2$$

$$\frac{\partial S_r}{\partial a_o} = -2\sum_i (y_i - a_o - a_i x_i - a_2 x_i^2) = 0$$

$$\frac{\partial S_r}{\partial a_i} = -2\sum_i (y_i - a_o - a_i x_i - a_2 x_i^2) x_i = 0$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum (y_i - a_o - a_1 x_i - a_2 x_i^2) x_i^2 = 0$$



$$\sum y_{i} = n \cdot a_{o} + a_{1} \sum x_{i} + a_{2} \sum x_{i}^{2}$$

$$\sum x_{i} y_{i} = a_{o} \sum x_{i} + a_{1} \sum x_{i}^{2} + a_{2} \sum x_{i}^{3}$$

$$\sum x_{i} y_{i} = a_{o} \sum x_{i} + a_{1} \sum x_{i}^{2} + a_{2} \sum x_{i}^{3}$$

$$\sum x_{i}^{2} y_{i} = a_{o} \sum x_{i}^{2} + a_{1} \sum x_{i}^{3} + a_{2} \sum x_{i}^{4}$$

$$\sum x_{i}^{2} y_{i} = a_{o} \sum x_{i}^{2} + a_{1} \sum x_{i}^{3} + a_{2} \sum x_{i}^{4}$$

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 \\ \sum x_i & \sum x_i^2 & \sum x_i^3 \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} \begin{cases} a_0 \\ a_1 \\ a_2 \end{cases} = \begin{cases} \sum y_i \\ \sum x_i y_i \\ \sum x_i^2 y_i \end{cases}$$

A system of 3x3 equations needs to be solved to determine the coefficients of the polynomial.



### Example:

Sum

| $x_i$ | $\boldsymbol{y_i}$ | $x_i^2$   | $x_i^3$ | $x_i^4$ | $x_i y_i$ | $x_i^2 y_i$ |
|-------|--------------------|-----------|---------|---------|-----------|-------------|
| 0     | 2.1                | 0         | 0       | 0       | 0         | 0           |
| 1     | 7.7                | 1         | 1       | 1       | 7.7       | 7.7         |
| 2     | 13.6               | 4         | 8       | 16      | 27.2      | 54.4        |
| 3     | 27.2               | 9         | 27      | 81      | 81.6      | 244.8       |
| 4     | 40.9               | 16        | 64      | 256     | 163.6     | 654.4       |
| 5     | 61.1               | 25        | 125     | 625     | 305.5     | 1527.5      |
| 15    | 152.6              | <i>55</i> | 225     | 979     | 585.6     | 2489        |

$$\sum x_i = 15, \sum y_i = 152.6, \sum x_i^2 = 55, \sum x_i^3 = 225$$
$$\sum x_i^4 = 979, \sum x_i y_i = 585.6, \sum x_i^2 y_i = 2488.8$$



$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{bmatrix}$$

$$a_0 = 2.47857, a_1 = 2.35929, a_2 = 1.86071$$



$$y = 2.47857 + 2.35929 x + 1.86071 x^2$$



#### Multiple Linear Regression - example

Heat Transfer Data External to 3/4-inch OD Tubes

| <b>Point</b> | Re    | Pr    | $\mu/\mu_w$ | Nu    |
|--------------|-------|-------|-------------|-------|
| 1            | 49000 | 2.3   | 0.947       | 277   |
| 2            | 68600 | 2.28  | 0.954       | 348   |
| 3            | 84800 | 2.27  | 0.959       | 421   |
| 4            | 34200 | 2.32  | 0.943       | 223   |
| 5            | 22900 | 2.36  | 0.936       | 177   |
| 6            | 1321  | 246   | 0.592       | 114.8 |
| 7            | 931   | 247   | 0.583       | 95.9  |
| 8            | 518   | 251   | 0.579       | 68.3  |
| 9            | 346   | 273   | 0.29        | 49.1  |
| 10           | 122.9 | 1518  | 0.294       | 56    |
| 11           | 54.0  | 1590  | 0.279       | 39.9  |
| 12           | 84.6  | 1521  | 0.267       | 47    |
| 13           | 1249  | 107.4 | 0.724       | 94.2  |
| 14           | 1021  | 186   | 0.612       | 99.9  |
| 15           | 465   | 414   | 0.512       | 83.1  |
| 16           | 54.8  | 1302  | 0.273       | 35.9  |



#### Nusselt number

$$Nu = a \operatorname{Re}^{b} \operatorname{Pr}^{c} (\mu / \mu_{w})^{d}$$
$$\ln(Nu) = \ln(a) + b \ln(\operatorname{Re}) + c \ln(\operatorname{Pr}) + d \ln(Mu)$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n \left[ \ln(Nu_{i,\text{measured}}) - \ln(Nu_{i,\text{model}}) \right]^2$$
$$= \sum_{i=1}^n \left[ \ln Nu_i - \left( \ln a + b \ln Re_i + c \ln Pr_i + d \ln Mu_i \right) \right]^2$$

$$\frac{\partial S_r}{\partial a} = 2 \left[ n \ln a + b \sum_{i=1}^n \ln Re_i + c \sum_{i=1}^n \ln Pr_i + d \sum_{i=1}^n \ln Mu_i - \sum_{i=1}^n \ln Nu_i \right] / a = 0$$

$$\frac{\partial S_r}{\partial b} = 2 \left[ \ln a \sum_{i=1}^n \ln Re_i + b \sum_{i=1}^n \left( \ln Re_i \right)^2 + c \sum_{i=1}^n \ln Re_i \cdot \ln Pr_i + d \sum_{i=1}^n \ln Re_i \cdot \ln Mu_i - \sum_{i=1}^n \ln Re_i \cdot \ln Nu_i \right] = 0$$

$$\frac{\partial S_r}{\partial c} = 2 \left[ \ln a \sum_{i=1}^n \ln Pr_i + b \sum_{i=1}^n \ln Re_i \cdot \ln Pr_i + c \sum_{i=1}^n \left( \ln Pr_i \right)^2 + d \sum_{i=1}^n \ln Pr_i \cdot \ln Mu_i - \sum_{i=1}^n \ln Pr_i \cdot \ln Nu_i \right] = 0$$

$$\frac{\partial S_r}{\partial d} = 2 \left[ \ln a \sum_{i=1}^n \ln \mathbf{M} \mathbf{u}_i + b \sum_{i=1}^n \ln \mathbf{R} \mathbf{e}_i \cdot \ln \mathbf{M} \mathbf{u}_i + c \sum_{i=1}^n \ln \mathbf{P} \mathbf{r}_i \cdot \ln \mathbf{M} \mathbf{u}_i + d \sum_{i=1}^n \left( \ln \mathbf{M} \mathbf{u}_i \right)^2 - \sum_{i=1}^n \ln \mathbf{M} \mathbf{u}_i \cdot \ln \mathbf{N} \mathbf{u}_i \right] = 0$$



$$\begin{bmatrix} n & \sum_{i=1}^{n} \ln Re_{i} & \sum_{i=1}^{n} \ln Pr_{i} & \sum_{i=1}^{n} \ln Mu_{i} \\ \sum_{i=1}^{n} \ln Re_{i} & \sum_{i=1}^{n} \left(\ln Re_{i}\right)^{2} & \sum_{i=1}^{n} \ln Re_{i} \cdot \ln Pr_{i} & \sum_{i=1}^{n} \ln Re_{i} \cdot \ln Mu_{i} \\ \sum_{i=1}^{n} \ln Pr_{i} & \sum_{i=1}^{n} \ln Re_{i} \cdot \ln Pr_{i} & \sum_{i=1}^{n} \left(\ln Pr_{i}\right)^{2} & \sum_{i=1}^{n} \ln Pr_{i} \cdot \ln Mu_{i} \\ \sum_{i=1}^{n} \ln Mu_{i} & \sum_{i=1}^{n} \ln Re_{i} \cdot \ln Mu_{i} & \sum_{i=1}^{n} \ln Pr_{i} \cdot \ln Mu_{i} \\ \sum_{i=1}^{n} \ln Mu_{i} & \sum_{i=1}^{n} \ln Re_{i} \cdot \ln Mu_{i} & \sum_{i=1}^{n} \ln Pr_{i} \cdot \ln Mu_{i} \\ \end{bmatrix}$$

$$\begin{bmatrix} 16 & 117.32401 & 71.450325 & -9.7193108 \\ 117.32401 & 962.16498 & 421.87845 & -52.829532 \\ 71.450325 & 421.87845 & 424.75516 & -61.5206146 \\ -9.7193108 & -52.8295326 & -61.5206146 & 9.7626619 \end{bmatrix} \begin{bmatrix} \ln a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 74.2386856 \\ 574.29163 \\ 302.39407 \\ -39.6257973 \end{bmatrix}$$

$$\ln a = -0.626014 \Rightarrow a = e^{-0.626014} = 0.534719$$

$$b = 0.558832, c = 0.252376, d = -0.0677135$$

$$Nu = 0.66 \,\mathrm{Re}^{0.54} \,\mathrm{Pr}^{0.25}$$

$$Nu = 0.53 \,\mathrm{Re}^{0.56} \,\mathrm{Pr}^{0.25} (\mu / \mu_w)^{-0.068}$$



### Interpolation

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$





### Construction of Polynomials

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

• Since n+1 data points are required to determine n+1 coefficients, simultaneous linear systems of equations can be used to calculate "a"s.

$$f(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 \cdots + a_n x_0^n$$

$$f(x_1) = a_0 + a_1 x_1 + a_2 x_1^2 \cdots + a_n x_1^n$$

$$\vdots$$

$$f(x_n) = a_0 + a_1 x_n + a_2 x_n^2 \cdots + a_n x_n^n$$

where "x"s are the knowns and "a"s are the unknowns.

- However, this requires the solution of a large matrix.
- There are a variety of mathematical formats in which this polynomial can be expressed:
  - The Newton polynomial
  - The Lagrange polynomial



### Newton's Divided-Difference Interpolating Polynomials

#### **Linear Interpolation**

•  $P_1(x)$  is a first-order interpolating polynomial passing through  $(x_0, f(x_0))$  and  $(x_1, f(x_1))$ .

$$\frac{P_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$



#### **Quadratic Interpolation**

• If three data points are available, 0,1 and 2, the estimate is improved by introducing some curvature into the line connecting the points.

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

• A simple procedure can be used to determine the values of the coefficients.

$$x = x_{0} b_{0} = f(x_{0})$$

$$x = x_{1} b_{1} = \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$\frac{f(x_{2}) - f(x_{1})}{x_{2} - x_{1}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

$$x = x_{2} b_{2} = \frac{x_{2} - x_{1}}{x_{2} - x_{0}}$$



#### General Form of Newton's Interpolating Polynomials/

$$f_{n}(x) = f(x_{0}) + (x - x_{0}) f[x_{1}, x_{0}] + (x - x_{0})(x - x_{1}) f[x_{2}, x_{1}, x_{0}]$$

$$+ \dots + (x - x_{0})(x - x_{1}) \dots (x - x_{n-1}) f[x_{n}, x_{n-1}, \dots, x_{0}]$$

$$b_{0} = f(x_{0})$$

$$b_{1} = f[x_{1}, x_{0}]$$

$$b_{2} = f[x_{2}, x_{1}, x_{0}]$$

$$\vdots$$

$$b_{n} = f[x_{n}, x_{n-1}, \dots, x_{1}, x_{0}]$$

$$f[x_{i}, x_{j}] = \frac{f(x_{i}) - f(x_{j})}{x_{i} - x_{j}}$$

$$f[x_{i}, x_{j}, x_{k}] = \frac{f[x_{i}, x_{j}] - f[x_{j}, x_{k}]}{x_{i} - x_{k}}$$

$$\vdots$$

$$f[x_{n}, x_{n-1}, \dots, x_{1}, x_{0}] = \frac{f[x_{n}, x_{n-1}, \dots, x_{1}] - f[x_{n-1}, x_{n-2}, \dots, x_{0}]}{x_{n} - x_{0}}$$



| f(x)     | First                                             | Second                                                            | Third                                                                           |
|----------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|
| J (**)   | divided differences                               | divided differences                                               | divided differences                                                             |
| $f[x_0]$ |                                                   |                                                                   |                                                                                 |
|          | $f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$ |                                                                   |                                                                                 |
| $f[x_1]$ | $f[x_0]$                                          | $[x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_2]}{x_2 - x_0}$        | $x_1$                                                                           |
|          | $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$ |                                                                   | $f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$ |
| $f[x_2]$ | $f[x_1]$                                          | $, x_2, x_3$ ] = $\frac{f[x_2, x_3] - f[x_1, x_3]}{x_3 - x_1}$    | $x_2$                                                                           |
|          | $f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$ |                                                                   | $f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$ |
| $f[x_3]$ | $f[x_2]$                                          | , $x_3$ , $x_4$ ] = $\frac{f[x_3, x_4] - f[x_2, x_4]}{x_4 - x_2}$ | $x_3$                                                                           |
|          | $f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$ |                                                                   | $f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$ |
| $f[x_4]$ | $f[x_3]$                                          | , $x_4$ , $x_5$ ] = $\frac{f[x_4, x_5] - f[x_3, x_5]}{x_5 - x_3}$ | $x_4$                                                                           |
|          | $f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$ |                                                                   |                                                                                 |
| $f[x_5]$ |                                                   |                                                                   |                                                                                 |



# Example

| $\boldsymbol{\mathcal{X}}$ | f(x)    |
|----------------------------|---------|
| 2.0                        | 0.85467 |
| 2.3                        | 0.75682 |
| 2.6                        | 0.43126 |
| 2.9                        | 0.22364 |
| 3.2                        | 0.08567 |



| i | $\mathcal{X}_{i}$ | $f[x_i]$ | $f[x_{i-1}, x_i]$ | $f[x_{i-2}, x_{i-1}, x_i]$ | $f[x_{i-3},\cdots,x_i]$ | $f[x_{i-4},\cdots,x_i]$ |
|---|-------------------|----------|-------------------|----------------------------|-------------------------|-------------------------|
| 0 | 2.0               | 0.85467  |                   |                            |                         |                         |
|   |                   |          | -0.32617          |                            |                         |                         |
| 1 | 2.3               | 0.75682  |                   | -1.26505                   |                         |                         |
|   |                   |          | -1.08520          |                            | 2.13363                 |                         |
| 2 | 2.6               | 0.43126  |                   | 0.65522                    |                         | -2.02642                |
|   |                   |          | -0.69207          |                            | -0.29808                |                         |
| 3 | 2.9               | 0.22364  |                   | 0.38695                    |                         |                         |
|   |                   |          | -0.45990          |                            |                         |                         |
| 4 | 3.2               | 0.08567  |                   |                            |                         |                         |



# The 5 coefficients of the Newton's interpolating polynomial are:

$$b_0 = f[x_0] = 0.85467$$

$$b_1 = f[x_0, x_1] = -0.32617$$

$$b_2 = f[x_0, x_1, x_2] = -1.26505$$

$$b_3 = f[x_0, x_1, x_2, x_3] = 2.13363$$

$$b_4 = f[x_0, x_1, x_2, x_3, x_4] = -2.02642$$



$$P_{4}(x) = b_{0} + b_{1}(x - x_{0}) + b_{2}(x - x_{0})(x - x_{1}) + b_{3}(x - x_{0})(x - x_{1})(x - x_{2})$$

$$+ b_{4}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3})$$

$$= 0.85467 - 0.32617(x - 2.0) - 1.26505(x - 2.0)(x - 2.3)$$

$$+ 2.13363(x - 2.0)(x - 2.3)(x - 2.6)$$

$$- 2.02642(x - 2.0)(x - 2.3)(x - 2.6)(x - 2.9)$$

# $P_4(x)$ can now be used to estimate the value of the function f(x) say at x = 2.8.

$$P_4(2.8) = 0.85467 - 0.32617(2.8 - 2.0)$$

$$-1.26505(2.8 - 2.0)(2.8 - 2.3)$$

$$+2.13363(2.8 - 2.0)(2.8 - 2.3)(2.8 - 2.6)$$

$$-2.02642(2.8 - 2.0)(2.8 - 2.3)(2.8 - 2.6)(2.8 - 2.9) = 0.275$$



### Lagrange Interpolating Polynomials

#### **Linear Interpolation**

•  $P_1(x)$  is a first-order interpolating polynomial passing through  $(x_0, f(x_0))$  and  $(x_1, f(x_1))$ .

$$P_1(x) = L_0(x) f(x_0) + L_1(x) f(x_1)$$

at 
$$x=x_0$$
 ,  $L_0(x)=1$  and  $L_1(x)=0$  and at  $x=x_1$ ,  $L_0(x)=0$  and  $L_1(x)=1$ 

The conditions can be satisfied if  $L_0(x)$  and  $L_1(x)$  are defined in the following way.

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and  $L_1(x) = \frac{x - x_0}{x_1 - x_0}$ 



#### Given data points:

at 
$$x_0 = 2$$
,  $y_0 = 3$  and at  $x_1 = 5$ ,  $y_1 = 8$ 

P(x) should satisfy the following conditions:

$$P(x = 2) = 3$$
 and  $P(x = 5) = 8$   
$$P(x) = 3L_0(x) + 8L_1(x)$$

P(x) can satisfy the above conditions if

at 
$$x = x_0 = 2$$
,  $L_0(x) = 1$  and  $L_1(x) = 0$  and at  $x = x_1 = 5$ ,  $L_0(x) = 0$  and  $L_1(x) = 1$ 

$$L_0(x) = \frac{x-5}{2-5}$$
 and  $L_1(x) = \frac{x-2}{5-2}$ 



$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

$$P(x) = \left(\frac{x-5}{2-5}\right)(3) + \left(\frac{x-2}{5-2}\right)(8)$$

$$P(x) = \frac{5x - 1}{3}$$

at 
$$x = 4$$
,  $P(4) = \frac{5 \times 4 - 1}{3} = 6.333$ 



The Lagrange interpolating polynomial passing through three given points;  $(x_0, y_0)$ ,  $(x_1, y_1)$  and  $(x_2, y_2)$  is:

$$P_{2}(x) = L_{0}(x)y_{0} + L_{1}(x)y_{1} + L_{2}(x)y_{2}$$

$$P_{2}(x) = L_{0}(x) f(x_{0}) + L_{1}(x) f(x_{1}) + L_{2}(x) f(x_{2})$$



At  $x_0$ ,  $L_0(x)$  becomes 1.

At all other given data points  $L_0(x)$  is 0.

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

At  $x_1$ ,  $L_1(x)$  becomes 1.

At all other given data points  $L_1(x)$  is 0.

$$L_{1}(x) = \frac{(x-x_{0})(x-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})}$$

At  $x_2$ ,  $L_2(x)$  becomes 1.

At all other given data points  $L_2(x)$  is 0.

$$L_{2}(x) = \frac{(x-x_{0})(x-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})}$$



# General form of the Lagrange Interpolating Polynomial

$$P_{n}(x) = L_{0}(x) y_{0} + L_{1}(x) y_{1} + L_{2}(x) y_{2} + \dots + L_{n}(x) y_{n}$$

$$P_{n}(x) = L_{0}(x) f(x_{0}) + L_{1}(x) f(x_{1})$$

$$+ L_{2}(x) f(x_{2}) + \dots + L_{n}(x) f(x_{n})$$



$$L_{k}(x) = \prod_{\substack{i=0\\i\neq k}} \frac{(x-x_{0})(x-x_{1})(x-x_{2}) \times \cdots \times (x-x_{k-1})(x-x_{k+1}) \times \cdots \times (x-x_{n-1})(x-x_{n})}{(x_{k}-x_{0})(x_{k}-x_{1})(x_{k}-x_{2}) \times \cdots \times (x_{k}-x_{n-1})(x_{k}-x_{2}) \times \cdots \times (x_{k}-x_{n-1})(x_{k}-x_{n})}$$

$$(x-x_0)(x-x_1)(x-x_2) \times \cdots \times (x-x_{k-1})(x-x_{k+1}) \times \cdots \times (x-x_{n-1})(x-x_n)$$

$$(x_k - x_0)(x_k - x_1)(x_k - x_2) \times \cdots$$

$$\times (x_k - x_{k-1})(x_k - x_{k+1}) \times \cdots$$

$$\times (x_k - x_{n-1})(x_k - x_n)$$

$$L_k(x) = \frac{(x - x_0)(x - x_1)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)(x_k - x_1)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$



#### Data Set

#### Polynomial

$$\{(x_1,y_1)\}$$

$$p(x) = y_1$$

$$\{(x_1, y_1), (x_2, y_2)\}$$

$$p(x) = y_1 \frac{(x - x_2)}{(x_1 - x_2)} + y_2 \frac{(x - x_1)}{(x_2 - x_1)}$$

$$\{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$$

$$\{(x_1, y_1), (x_2, y_2), (x_3, y_3)\} \qquad p(x) = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + y_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

$$p(x) = y_1 \frac{(x - x_2)(x - x_3) \cdots (x - x_m)}{(x_1 - x_2)(x_1 - x_3) \cdots (x_1 - x_m)} + y_2 \frac{(x - x_1)(x - x_3) \cdots (x - x_m)}{(x_2 - x_1)(x_2 - x_3) \cdots (x_2 - x_m)} + \begin{cases} (x_1, y_1), (x_2, y_2), \cdots, (x_m, y_m) \end{cases}$$

$$\cdots + y_m \frac{(x - x_1)(x - x_2) \cdots (x - x_{m-1})}{(x_m - x_1)(x_m - x_2) \cdots (x_m - x_{m-1})}$$

$$p(x) = \sum_{i=1}^m y_i \prod_{j=1 \atop j \neq i}^m \frac{(x - x_j)}{(x_i - x_j)}$$



# Example

$$f(x) = \frac{1}{x}$$

Find the Lagrange Interpolating Polynomial using the three given points.

$$(x_0, y_0) = (2, 0.5)$$

$$(x_1, y_1) = (2.5, 0.4)$$

$$(x_2, y_2) = (4, 0.25)$$



$$P_{2}(x) = L_{0}(x)y_{0} + L_{1}(x)y_{1} + L_{2}(x)y_{2}$$

$$L_{0}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} = \frac{(x - 2.5)(x - 4)}{(2 - 2.5)(2 - 4)}$$

$$= x^{2} - 6.5x + 10$$

$$L_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} = \frac{(x - 2)(x - 4)}{(2.5 - 2)(2.5 - 4)}$$

$$= \frac{-x^{2} + 6x - 8}{0.75}$$

$$L_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{2} - x_{1})} = \frac{(x - 2)(x - 2.5)}{(4 - 2)(4 - 2.5)}$$

$$= \frac{x^{2} - 4.5x + 5}{3}$$



$$P(x) = L_0(x) f(x_0) + L_1(x) f(x_1) + L_2(x) f(x_2)$$

$$= (x^2 - 6.5x + 10) (0.5)$$

$$+ \left(\frac{-x^2 + 6x - 8}{0.75}\right) (0.4)$$

$$+ \left(\frac{x^2 - 4.5x + 5}{3}\right) (0.25)$$

$$= 0.05x^2 - 0.425x + 1.15$$

$$P(3) = 0.05(3)^{2} - 0.425(3) + 1.15$$
$$= 0.325 \approx f(3) = 1/3 = 0.333$$



# Cubic Spline

$$f_i(x) = a_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^3 + b_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^2 + c_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right) + d_i$$

| X | у         |  |  |  |
|---|-----------|--|--|--|
| 0 | 0         |  |  |  |
| 1 | 0.841471  |  |  |  |
| 2 | 0.909297  |  |  |  |
| 3 | 0.14112   |  |  |  |
| 4 | -0.756802 |  |  |  |
| 5 | -0.958924 |  |  |  |



There will be 20 unknowns:  $a_i, b_i, c_i$  and  $d_i$  where i = 1, 2, 3, 4 and 5.  $n \times 4$  unknowns where n+1 is the number of points



# Cubic Spline

- 1. Each polynomial,  $f_i(x)$ , must pass through the endpoints of the interval.
- 2. At the interior knots, the slopes of the polynomials from the adjacent intervals are equal.
- 3. At the interior knots, the curvature of the polynomials from the adjacent intervals are equal.



$$f_{i}(x) = a_{i} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{3} + b_{i} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{2} + c_{i} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right) + d_{i}$$

$$f'_{i}(x) = \left[3a_{i} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{2} + 2b_{i} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right) + c_{i}\right] / (x_{i} - x_{i-1})$$

$$f''_{i}(x) = \left[6a_{i} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right) + 2b_{i}\right] / (x_{i} - x_{i-1})^{2}$$

$$i - 2 \qquad i - 1$$

$$f_{i-1} \qquad i + 1$$



# 1. Each polynomial, $y_i(x)$ , must pass through the endpoints of the interval.

$$2 \times n$$
 equations

$$f_i(x) = a_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^3 + b_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^2 + c_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right) + d_i \int_{i+1}^{i+1} \frac{i+1}{x_i - x_{i-1}}$$

$$f_i(\mathbf{x}_{i-1}) \Rightarrow d_i = \mathbf{y}_{i-1}$$

$$f_i(\mathbf{x}_i) \Rightarrow a_i + b_i + c_i + d_i = \mathbf{y}_i$$



2. At the interior knots, the slopes of the polynomials from the adjacent intervals are

equal.

$$n-1$$
 equations

$$f'_{i}(x) = \left[3a_{i}\left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{2} + 2b_{i}\left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right) + c_{i}\right]/(x_{i} - x_{i-1})$$

$$f'_{i+1} = \frac{i+1}{x_{i}}$$

$$f_{i-1}'(\mathbf{x}_{i-1}) = f_i'(\mathbf{x}_{i-1}) \Rightarrow 3a_{i-1} + 2b_{i-1} + c_{i-1} = c_i$$
  
$$f_i'(\mathbf{x}_i) = f_{i+1}'(\mathbf{x}_i) \Rightarrow 3a_i + 2b_i + c_i = c_{i+1}$$



3. At the interior knots, the curvature of the polynomials from the adjacent intervals are

equal.

$$n-1$$
 equations  $x-x_{i-1}$ 

$$f_i''(x) = \left[ 6a_i \left( \frac{x - x_{i-1}}{x_i - x_{i-1}} \right) + 2b_i \right] / (x_i - x_{i-1})^2$$

$$f_{i-1}''(\mathbf{x}_{i-1}) = f_i''(\mathbf{x}_{i-1}) \Rightarrow 3a_{i-1} + b_{i-1} = b_i$$
$$f_i''(\mathbf{x}_i) = f_{i+1}''(\mathbf{x}_i) \Rightarrow 3a_i + b_i = b_{i+1}$$



 The additional 2 equations can be obtained by assuming the second derivatives at the endpoints be zero, so

$$f_1''(x_0) = 0 \Rightarrow b_1 = 0$$
$$f_n''(x_n) = 0 \Rightarrow 3a_n + b_n = 0$$



## OK, how do we solve it?

Make unknowns to be  $y'_i$ , where  $f'_{i-1}(x_i) = f'_i(x_i) = y'$ 

at 
$$x = x_{i-1} \begin{cases} d_i = y_{i-1} \\ c_i = y_{i-1} \end{cases}$$

$$\begin{cases} a_i + b_i + c_i + d_i = y_i \end{cases}$$

at 
$$x = x_i$$
 
$$\begin{cases} a_i + b_i + c_i + d_i = y_i \\ 3a_i + 2b_i + c_i = y_i' \end{cases}$$



$$\begin{vmatrix} a_i + b_i = y_i - c_i - d_i = y_i - y_{i-1} - y'_{i-1} \\ 3a_i + 2b_i = y'_i - c_i = y'_i - y'_{i-1} \end{vmatrix}$$



$$b_i = -y_i' - 2y_{i-1}' + 3(y_i - y_{i-1})$$

$$c_i = y_{i-1}'$$

$$d_i = y_{i-1}$$



$$f_{i}''(x_{i}) = f_{i+1}''(x_{i}) \Rightarrow 3a_{i} + b_{i} = b_{i+1}$$

$$3 \left[ y_{i}' + y_{i-1}' - 2(y_{i} - y_{i-1}) \right] + \left[ -y_{i}' - 2y_{i-1}' + 3(y_{i} - y_{i-1}) \right]$$

$$= \left[ -y_{i+1}' - 2y_{i}' + 3(y_{i+1} - y_{i}) \right]$$

$$b_{i+1}$$

$$|y_{i-1}' + 4y_i' + y_{i+1}' = 3(y_{i+1} - y_{i-1})|$$



### Point 0

$$f_1''(\mathbf{x}_0) = 0 \Longrightarrow b_1 = 0$$

$$-y_1' - 2y_0' + 3(y_1 - y_0) = 0$$

$$|2y_0' + y_1' = 3(y_1 - y_0)|$$



#### Point 1 to 4

$$y_{i-1}' + 4y_i' + y_{i+1}' = 3(y_{i+1} - y_{i-1})$$

at 
$$x_1$$
:  $y_0' + 4y_1' + y_2' = 3(y_2 - y_0)$ 

at 
$$x_2$$
:  $y_1' + 4y_2' + y_3' = 3(y_3 - y_1)$ 

at 
$$x_3$$
:  $y_2' + 4y_3' + y_4' = 3(y_4 - y_2)$ 

at 
$$x_4$$
:  $y_3' + 4y_4' + y_5' = 3(y_5 - y_3)$ 



#### Point 5

$$f_5''(\mathbf{x}_5) = 0 \Longrightarrow 3a_5 + b_5 = 0$$

$$3\left[y_{5}' + y_{4}' - 2(y_{5} - y_{4})\right]$$

$$\overbrace{a_{5}}$$

$$+\left[-y_{5}'-2y_{4}'+3(y_{5}-y_{4})\right]=0$$

$$b_{5}$$

$$y_4' + 2y_5' = 3(y_5 - y_4)$$



#### In Matrix Form

$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} y'_0 \\ y'_1 \\ y'_2 \\ y'_3 \\ y'_4 \end{bmatrix} = \begin{bmatrix} 3(y_1 - y_0) \\ 3(y_2 - y_0) \\ 3(y_3 - y_1) \\ 3(y_4 - y_2) \\ 3(y_5 - y_3) \\ 3(y_5 - y_4) \end{bmatrix} = \begin{bmatrix} 2.524413 \\ 2.727891 \\ -2.101053 \\ -4.998297 \\ -3.300132 \\ -0.606366 \end{bmatrix}$$

The solution is:

$$\begin{bmatrix} y_0' \\ y_1' \\ y_2' \\ y_3' \\ y_4' \\ y_5' \end{bmatrix} = \begin{bmatrix} 0.994576 \\ 0.535262 \\ -0.407732 \\ -1.00539 \\ -0.569018 \\ -0.0186741 \end{bmatrix}$$



# Coefficients for equation i

$$\begin{vmatrix} a_i = y_i' + y_{i-1}' - 2(y_i - y_{i-1}), & b_i = -y_i' - 2y_{i-1}' + 3(y_i - y_{i-1}) \\ c_i = y_{i-1}', & d_i = y_{i-1} \end{vmatrix}$$

| i | a <sub>i</sub> | b <sub>i</sub> | C <sub>i</sub> | d <sub>i</sub> |
|---|----------------|----------------|----------------|----------------|
| 1 | -0.15310       | 0.00000        | 0.99458        | 0.00000        |
| 2 | -0.00812       | -0.45931       | 0.53526        | 0.84147        |
| 3 | 0.12323        | -0.48368       | -0.40773       | 0.90930        |
| 4 | 0.22144        | -0.11397       | -1.00539       | 0.14112        |
| 5 | -0.18345       | 0.55034        | -0.56902       | -0.75680       |



# Cubic Spline Interpolation

$$f_i(x) = a_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^3 + b_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^2 + c_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right) + d_i$$



## In-class example

| X   | у    |
|-----|------|
|     |      |
| 1   | 1    |
| 1.5 | 0.5  |
| 2   | 2    |
| 2.5 | 0.25 |
| 3   | 4    |

$$\begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} y'_0 \\ y'_1 \\ y'_2 \\ y'_3 \\ y'_4 \end{bmatrix} = \begin{bmatrix} 3(y_1 - y_0) \\ 3(y_2 - y_0) \\ 3(y_3 - y_1) \\ 3(y_4 - y_2) \\ 3(y_5 - y_4) \end{bmatrix} = \begin{bmatrix} -1.5 \\ 3. \\ -0.75 \\ 6. \\ 11.25 \end{bmatrix}$$

$$\begin{bmatrix} y_0' \\ y_1' \\ y_2' \\ y_3' \\ y_4' \end{bmatrix} = \begin{bmatrix} -1.3660714285714284 \\ 1.2321428571428572 \\ -0.5625 \\ 0.267857142857143 \\ 5.491071428571428 \end{bmatrix}$$



### What is the value at x=2.2?

$$\begin{vmatrix} a_i = y_i' + y_{i-1}' - 2(y_i - y_{i-1}), & b_i = -y_i' - 2y_{i-1}' + 3(y_i - y_{i-1}) \\ c_i = y_{i-1}', & d_i = y_{i-1} \end{vmatrix}$$

| i | a <sub>i</sub> | <b>b</b> i | c <sub>i</sub> | d <sub>i</sub> |
|---|----------------|------------|----------------|----------------|
| 1 |                |            |                |                |
| 2 |                |            |                |                |
| 3 | 3.20536        | -4.39286   | -0.5625        | 2              |
| 4 |                |            |                |                |

$$f_i(x) = a_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^3 + b_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right)^2 + c_i \left(\frac{x - x_{i-1}}{x_i - x_{i-1}}\right) + d_i$$

$$\frac{x - x_{i-1}}{x_i - x_{i-1}} = 0.4; f(2.2) = 1.27729$$





