Computer Vision and Machine Learning

(Introduction)

Bhabatosh Chanda bchanda57@gmail.com

Outline

- Introduction
 - Motivation
 - · Visual pattern recognition
 - Applications
 - Illusion
 - · Image formation
 - · Perspective projection
 - · Photometric model

2/16/2023

Motivation

- Introduction of digital computer in mid-20th century
- The machine turns out to be superior to human being in number crunching.
- If it can mimic the ability of human being in pattern recognition and decision making.
- Birth of new subjects like computational intelligence, machine intelligence.

• This leads to development of *Computer vision and Pattern*

2/16/2023

2/16/2023

Visual pattern recognition

- In real life, human beings perform the pattern recognition tasks based on the information acquired from the *environment* through sensors like ears, eyes, nose, tongue and skin.
- Most of the *information* is acquired through *eyes*.
- Visual pattern recognition, thus, turns out to be most important activity in this context.
- recognition.

Visual data processing

- Visual or pictorial data processing by digital computer may be grouped into three categories:
 - Input: textual description; Output: an image Computer Graphics
 - Input: an image; Output: an image
 - Image Processing
 - Input: an image; Output: textual description

Image analysis and recognition \ Computer Vision

2/16/2023

5

Object recognition

- Referred to by three tasks:
- Image classification
 - Assigning a class label to an image.
 - May be multiple labels with confidence levels.
- Object localization
 - Drawing a bounding box around the targeted object.
- Object detection
 - Drawing a bounding box around each object of interest and assigning class label to those.

- Rendering realistic 3D scene in real-time
- Oculus / HTC / Hololens

2/16/2023

Other applications with DL

Scene types

Scenes are of two types:

- 3-D, example: usual outdoor and indoor scenes
- 2-D, example: document page, micrograph, satellite image, x-ray image, etc.

Types of images:

- Static image (single frame)
 - · Black and white, colour
- Sequence of images (video/movies)

Types of digital image

Black-and-white image

- Binary (two-tone) image
- Gray level (gray-tone) image

Color image

Another way of classifying images:

- Static image (single image)
- Image sequence (movie)

2/16/2023 46

Image formation

Sensor grabs and forms two-dimensional intensity map g(x,y) of the 3D scene, which is continuous in space and value.

Example: Camera, Scanner, Ultrasound sensor, Infra-red sensor, MRI, CT, etc.

Image formation

- There are two transformations that simultaneously take place in the camera
 - Geometric transformation (perspective projection)
 - Photometric transformation (light transportation)

Geometric transformation

- Consider pinhole camera model.
- Camera coordinate system coincides with world coordinate system.
- Origin (0,0,0) is at pinhole (optical centre)
- z-axis is same as optical axis of the camera and is perpendicular to image plane.
- λ is the focal length of the camera.
- P(X,Y,Z) and $p(\xi,\zeta)$ are world points an image point respectively.

Geometric transformation (perspective projection)

• Consider image plane in front of the pinhole (to avoid negative coordinate)

$$\xi = \frac{\lambda X}{Z}$$
 and $\zeta = \frac{\lambda Y}{Z}$

• In matrix-vector form:

$$\begin{bmatrix} X \\ Y \\ Z/\lambda \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/\lambda \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

 (X, Y, Z/λ) is homogeneous coordinate in image plane, to get Cartesian coordinate divide first two (X and Y) by the third (Z/λ).

Properties of perspective projection

- Straight lines in 3D scene (world) map into straight lines in image.
- Distant objects (in scene) appear smaller in the image.
- A set of parallel lines in 3D, not perpendicular to z-axis maps to a set of concurrent lines in 2d image.
 - Point through which the concurrent lines pass is called *vanishing point*.
 - All the vanishing points lie on a straight line, called horizon.

Photometric model

- Suppose light intensity \mathcal{F} is transported ideally to image plane (ξ , ζ).
- \bullet Scene reflectance $\ensuremath{\mathfrak{R}}$ is also transferred appropriately to image plane.
- Thus image intensity mapped is ideal one and is given by $f(\xi,\zeta) = \Re(\xi,\zeta) \mathscr{I}(\xi,\zeta)$
- However, light energy transport to real image plane undergoes some transformation. This may be modeled by photometric transformation.

$$g(x,y) = T[f(x,y)]$$

that satisfies the condition: $f(x,y) \ge 0$ and $g(x,y) \ge 0$

Thank you!

Any question?