GICR_CTLR, Redistributor Control Register

The GICR CTLR characteristics are:

Purpose

Controls the operation of a Redistributor, and enables the signaling of LPIs by the Redistributor to the connected PE.

Configuration

A copy of this register is provided for each Redistributor.

Attributes

GICR CTLR is a 32-bit register.

Field descriptions

31	30292827	26	25	24	<u>2322212019181716151413121110987654</u>	. 3	2	1	0
UWF	RES0	DPG1S	DPG1NS	DPG0	RES0	RWP	IR	CES	EnableLPIs

UWP, bit [31]

Upstream Write Pending. Read-only. Indicates whether all upstream writes have been communicated to the Distributor.

UWP	Meaning
0b0	The effects of all upstream writes
	have been communicated to the
	Distributor, including any
	Generate SGI packets. For more
	information, see 'Generate SGI
	(ICC)' in ARM® Generic
	Interrupt Controller Architecture
	Specification, GIC architecture
	version 3.0 and version 4.0 (ARM
	IHI 0069).

0b1	Not all the effects of upstream writes, including any Generate SGI packets, have been
	communicated to the Distributor.
	For more information, see
	'Generate SGI (ICC)' in ARM®
	Generic Interrupt Controller
	Architecture Specification, GIC
	architecture version 3.0 and
	version 4.0 (ARM IHI 0069).

Bits [30:27]

Reserved, res0.

DPG1S, bit [26]

Disable Processor selection for Group 1 Secure interrupts. When GICR TYPER.DPGS == 1:

DPG1S	Meaning
ObO A Group 1 Secure SPI	
	configured to use the 1 of N
	distribution model can select
	this PE, if the PE is not asleep
	and if Secure Group 1
	interrupts are enabled.
0b1	A Group 1 Secure SPI
	configured to use the 1 of N
	distribution model cannot
	select this PE.

When GICR TYPER.DPGS == 0 this bit is RAZ/WI.

When <u>GICD_CTLR</u>.DS==1, this field is RAZ/WI. In GIC implementations that support two Security states, this field is only accessible by Secure accesses, and is RAZ/WI to Non-secure accesses.

It is implementation defined whether these bits affect the selection of PEs for interrupts using the 1 of N distribution model when $\underline{\text{GICD_CTLR}}.ARE_S == 0.$

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

DPG1NS, bit [25]

Disable Processor selection for Group 1 Non-secure interrupts. When <u>GICR_TYPER</u>.DPGS == 1:

DPG1NS	Meaning
0b0	A Group 1 Non-secure SPI
	configured to use the 1 of N
	distribution model can select
	this PE, if the PE is not
	asleep and if Non-secure
	Group 1 interrupts are
	enabled.
0b1	A Group 1 Non-secure SPI
	configured to use the 1 of N
	distribution model cannot
	select this PE.

When \underline{GICR} \underline{TYPER} .DPGS == 0 this bit is RAZ/WI.

It is implementation defined whether these bits affect the selection of PEs for interrupts using the 1 of N distribution model when GICD CTLR.ARE NS==0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

DPG0, bit [24]

Disable Processor selection for Group 0 interrupts. When GICR TYPER.DPGS == 1:

DPG0	Meaning
0b0	A Group 0 SPI configured to use
	the 1 of N distribution model can
	select this PE, if the PE is not
	asleep and if Group 0 interrupts
	are enabled.
0b1	A Group 0 SPI configured to use
	the 1 of N distribution model
	cannot select this PE.

When \underline{GICR} \underline{TYPER} .DPGS == 0 this bit is RAZ/WI.

When <u>GICD_CTLR</u>.DS == 1, this field is always accessible. In GIC implementations that support two Security states, this field is RAZ/WI to Non-secure accesses.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

Bits [23:4]

Reserved, res0.

RWP, bit [3]

Register Write Pending. This bit indicates whether a register write for the current Security state is in progress or not.

RWP	Meaning
0b0	The effect of all previous writes to the following registers are visible to all agents in the system:
	 GICR_ICENABLER0 GICR_CTLR.DPG1S GICR_CTLR.DPG1NS GICR_CTLR.DPG0 GICR_CTLR, which clears EnableLPIs from 1 to 0. In FEAT_GICv4p1, GICR_VPROPBASER, which clears Valid from 1 to 0.
0b1	The effect of all previous writes to the following registers are not guaranteed by

• GICR ICENABLER0

being propagated:

- GICR CTLR.DPG1S
- GICR CTLR.DPG1NS
- GICR CTLR.DPG0
- <u>GICR_CTLR</u>, which clears EnableLPIs from 1 to 0.
- In FEAT_GICv4p1, <u>GICR_VPROPBASER</u>, which clears Valid from 1 to 0.

the architecture to be visible to all agents in the system while the changes are still

IR, bit [2]

LPI invaldiate registers supported.

This bit is read-only.

IR	Meaning
0b0	This bit does not indicate whether
	the GICR INVLPIR, GICR INVALLR
	and GICR SYNCR are implemented
	or not.

0b1	GICR_INVLPIR, GICR_INVALLR
	and GICR_SYNCR are
	implemented.

If <u>GICR_TYPER</u>.DirectLPI is 1 or <u>GICR_TYPER</u>.RVPEI is 1, <u>GICR_INVLPIR</u>, <u>GICR_INVALLR</u>, and <u>GICR_SYNCR</u> are always implemented.

Arm recommends that implementations report GICR_CTLR.IR as 1 in these cases.

CES, bit [1]

Clear Enable Supported.

This bit is read-only.

CES	Meaning
0b0	The IRI does not indicate whether
	GICR_CTLR.EnableLPIs is res1
	once set.
0b1	GICR_CTLR.EnableLPIs is not
	res1 once set.

Implementing GICR_CTLR.EnableLPIs as programmable and not reporting GICR_CLTR.CES == 1 is deprecated.

Implementing GICR_CTLR.EnableLPIs as res1 once set is deprecated.

When GICR_CLTR.CES == 0, software cannot assume that GICR_CTLR.EnableLPIs is programmable without observing the bit being cleared.

EnableLPIs, bit [0]

In implementations where affinity routing is enabled for the Security state:

EnableLPIs	Meaning
0b0	LPI support is disabled.
	Any doorbell interrupt
	generated as a result of a
	write to a virtual LPI
	register must be
	discarded, and any ITS
	translation requests or
	commands involving LPIs
	in this Redistributor are
	ignored.
0b1	LPI support is enabled.

Note

If <u>GICR_TYPER</u>.PLPIS == 0, this field is res0. If <u>GICD_CTLR</u>.ARE_NS is written from 1 to 0 when this bit is 1, behavior is an implementation defined choice between clearing GICR_CTLR.EnableLPIs to 0 or maintaining its current value.

When affinity routing is not enabled for the Non-secure state, this bit is res0.

When written from 0 to 1, the Redistributor loads the LPI Pending table from memory to check for any pending interrupts.

After it has been written to 1, it is implementation defined whether the bit becomes res1 or can be cleared by to 0.

Where the bit remains programmable:

- Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs from 1 to 0 before writing GICR_PENDBASER or GICR_PROPBASER, otherwise behavior is unpredictable.
- Software must observe GICR_CTLR.RWP==0 after clearing GICR_CTLR.EnableLPIs from 1 to 0 before setting GICR_CTLR.EnableLPIs to 1, otherwise behavior is unpredictable.

Note

If one or more ITS is implemented, Arm strongly recommends that all LPIs are mapped to another Redistributor before GICR CTLR.EnableLPIs is cleared to 0.

The reset behavior of this field is:

• On a GIC reset, this field resets to 0.

The participation of a PE in the 1 of N distribution model for a given interrupt group is governed by the concatenation of <u>GICR_WAKER</u>.ProcessorSleep, the appropriate <u>GICR_CTLR</u>.DPG{1, 0} bit, and the PE interrupt group enable. The behavior options are:

PS	DPG{1S, 1NS, 0}	Enable	PE Behavior
0b0	0b0	0d0	The PE cannot be selected.
0b0	000	0b1	The PE can be selected.

PS	DPG{1S, 1NS, 0}	Enable	PE Behavior
0d0	0b1	*	The PE cannot be selected.
0b1	*	*	The PE cannot be selected when GICD_CTLR.E1NWF == 0. When GICD_CTLR.E1NWF == 1, the mechanism by which PEs are selected isimplementation defined.

If an SPI using the 1 of N distribution model has been forwarded to the PE, and a write to GICR_CTLR occurs that changes the DPG bit for the interrupt group of the SPI, the IRI must attempt to select a different target PE for the SPI. This might have no effect on the forwarded SPI if it has already been activated.

Accessing GICR_CTLR

GICR CTLR can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
GIC Redistributor	RD_base	0x0000	GICR_CTLR

Accesses on this interface are RW.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	<u>Registers</u>

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.