Learning Linear Bayesian Networks with Latent Variables

Anima Anandkumar

U.C. Irvine

Joint work with Daniel Hsu, Adel Javanmard, and Sham Kakade.

Latent Variable Modeling

Goal: Discover hidden effects from observed measurements

Document modeling

Observed: words.

Hidden: topics.

Social Network Modeling

Observed: social interactions.

Hidden: communities, relationships

Bio-Informatics

• Observed: gene expressions.

• Hidden: gene regulators.

Learning latent variable models: efficient methods and guarantees

Challenges: High-Dimensional Regime

- Identifiability: when can hidden variables be discovered?
- Design of learning algorithms with provable guarantees?
- Sample and Computational complexities?

Challenges: High-Dimensional Regime

- Identifiability: when can hidden variables be discovered?
- Design of learning algorithms with provable guarantees?
- Sample and Computational complexities?

Our Approach: Two Perspectives

Challenges: High-Dimensional Regime

- Identifiability: when can hidden variables be discovered?
- Design of learning algorithms with provable guarantees?
- Sample and Computational complexities?

Our Approach: Two Perspectives

Graphical Modeling

 Bayesian networks: Markov conditions on directed acyclic graphs.

Challenges: High-Dimensional Regime

- Identifiability: when can hidden variables be discovered?
- Design of learning algorithms with provable guarantees?
- Sample and Computational complexities?

Our Approach: Two Perspectives

Graphical Modeling

 Bayesian networks: Markov conditions on directed acyclic graphs.

Method of Moments

- Linear models: linear structural equation models (SEMs)
- Tractable approaches for solving equations (convex/non-convex).

Summary of Results

Model Class

- Linear Bayesian networks with hidden variables
- Multi-Level DAGs and DAGs with effective depth one.

Characterize Identifiability

- Structural condition: expansion of bipartite graph from hidden to observed nodes.
- Parametric condition: satisfied for generic parameters.

Learning Method

 Learning mixing matrix: from hidden to observed nodes.

Exploit sparsity in connections.

 ℓ_1 based method.

• Learning parameters in the hidden layer.

Exploit form of moments. spectral method.

Outline

- Introduction
- 2 Model

- 3 Learning Algorithm
- 4 Conclusion

Linear Bayesian Networks

BN: Markov relationships on DAG

- Pa_i : parents of node i.
- $\mathbb{P}_{\theta}(x) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(x_i|x_{\mathrm{Pa}_i})$

Linear Model

- n observed variables $\{x_i\}$ and k hidden variables $\{h_i\}$.
- ullet For each observed variable: $x_i = \sum_{j \in \mathrm{Pa}_i} a_{ij} h_j + arepsilon_i.$
- Condition on noise: Noise variables ε_i are uncorrelated
- \bullet Non-degeneracy: Linear indep. on hidden variables, columns of A.

Moment Forms and Overview of Learning

Consider (exact) second-order observed moments

$$\mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top} + \mathbb{E}[\varepsilon\varepsilon^{\top}].$$

Learning

- In three stages: Denoising, unmixing and learning latent parameters
- Denoising: Separate noise ε from signal
- Unmixing : Separate mixing matrix A from hidden variables h_i . Also known as blind deconvolution/dictionary learning.
- Learning latent parameters: learn deeper layers, learn hidden structures etc.

Denoising

$$\mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top} + \mathbb{E}[\varepsilon\varepsilon^{\top}]$$

- When ε_i are uncorrelated, $\mathbb{E}[\varepsilon \varepsilon^{\top}]$ is a diagonal matrix.
- Recall non-degeneracy conditions: $Rank(A\mathbb{E}[hh^{\top}]A^{\top}) = k$.
- Thus, denoising is Diagonal + Low Rank when n > k, e.g. when n > 3k, can estimate diagonal part using off-diagonal parts.
- For details, refer to the paper.

Denoising

$$\mathbb{E}[xx^{\top}] = A\mathbb{E}[hh^{\top}]A^{\top} + \mathbb{E}[\varepsilon\varepsilon^{\top}]$$

- When ε_i are uncorrelated, $\mathbb{E}[\varepsilon\varepsilon^{\top}]$ is a diagonal matrix.
- Recall non-degeneracy conditions: $Rank(A\mathbb{E}[hh^{\top}]A^{\top}) = k$.
- Thus, denoising is Diagonal + Low Rank when n > k, e.g. when n > 3k, can estimate diagonal part using off-diagonal parts.
- For details, refer to the paper.

Main focus: unmixing A from $A\mathbb{E}[hh^{\top}]A^{\top}$

Some Intuitions on Blind Deconvolution

Main Task

Recover mixing matrix A from

$$A\mathbb{E}[hh^{\top}]A^{\top}$$

Ill-posed without further restrictions

One possibility: restriction on hidden variables $\{h_i\}$

- $\mathbb{E}[hh^{\top}]$ is diagonal: e.g. h is the set of basis vectors in \mathbb{R}^k , when h is uncorrelated, can obtain diagonal covariance matrix: (ICA), or when h is drawn from Dirichlet distribution.
- ullet No restrictions on A (other than non-degeneracy).
- Recovery through third (or higher) order moment e.g. simultaneous diagonalization, through tensor decompositions (Anandkumar et. al. 2012).

Some Intuitions on Blind Deconvolution

Main Task

Recover mixing matrix A from

$$A\mathbb{E}[hh^{\top}]A^{\top}$$

Ill-posed without further restrictions

One possibility: restriction on hidden variables $\{h_i\}$

- $\mathbb{E}[hh^{\top}]$ is diagonal: e.g. h is the set of basis vectors in \mathbb{R}^k , when h is uncorrelated, can obtain diagonal covariance matrix: (ICA), or when h is drawn from Dirichlet distribution.
- No restrictions on A (other than non-degeneracy).
- Recovery through third (or higher) order moment e.g. simultaneous diagonalization, through tensor decompositions (Anandkumar et. al. 2012).

Shortcoming: cannot handle arbitrary hidden dependencies.

Constraints for Blind Deconvolution

Unmixing Task

Recover mixing matrix A from

$$A\mathbb{E}[hh^\top]A^\top$$

Different outlook: restriction on mixing matrix A

- No restrictions on hidden variables $\{h_i\}$ (other than non-degeneracy): can handle arbitrary hidden dependencies, e.g. correlated topic models.
- Restriction on support of *A*: corresponds to bipartite graph from hidden to observed layers.
- May be applicable in many settings, e.g. gene regulation, community memberships in social networks.

Constraints for Blind Deconvolution

Unmixing Task

Recover mixing matrix A from

$$A\mathbb{E}[hh^{\top}]A^{\top}$$

Different outlook: restriction on mixing matrix A

- No restrictions on hidden variables $\{h_i\}$ (other than non-degeneracy): can handle arbitrary hidden dependencies, e.g. correlated topic models.
- Restriction on support of A: corresponds to bipartite graph from hidden to observed layers.
- May be applicable in many settings, e.g. gene regulation, community memberships in social networks.

Sufficient Conditions for Identifiability

Unmixing Task: Recover A from $A\mathbb{E}[hh^{\top}]A^{\top}$

Structural Condition: (Additive) Graph Expansion

$$|\mathcal{N}(S)| \geq |S| + d_{\max}$$
, for all $S \subset [k]$

Parametric Conditions: Generic Parameters

$$||Av||_0 > |\mathcal{N}_A(\operatorname{supp}(v))| - |\operatorname{supp}(v)|$$

Identifiability Result

Under above conditions, A can be uniquely recovered from $A\mathbb{E}[hh^{\top}]A^{\top}$.

Some Intuitions Behind Identifiability Result

 Identifiability of mixing matrix under graph expansion and for generic parameters.

Intuitions

- For non-degenerate $A\mathbb{E}[hh^{\top}]A^{\top}$, we know the $\operatorname{Col}(A)$, the column space of A.
- Under above conditions, sparsest vectors in Col(A) are columns of A, and thus identifiable.

Unmixing: search for sparse vectors in Col(A)

Outline

Introduction

Model

3 Learning Algorithm

4 Conclusion

Tractable Algorithm for Unmixing

Unmixing Task

Recover mixing matrix A from $A\mathbb{E}[hh^{\top}]A^{\top}$

Exhaustive search

$$\min_{z \neq 0} \|Az\|_0$$

Convex relaxation

$$\overline{\min_z \|Az\|_1, \quad b^\top z = 1, }$$
 where b is a row in A .

Change of Variables

$$\min_{w} \| (A\mathbb{E}[hh^{\top}]A^{\top})^{1/2}w \|_{1}, \quad e_{i}^{\top} (A\mathbb{E}[hh^{\top}]A^{\top})^{1/2}w = 1.$$

Under "reasonable" conditions, the above program exactly recovers \boldsymbol{A}

Learning Latent Space Parameters

Recall so far...

Recover mixing matrix A from $A\mathbb{E}[hh^{\top}]A^{\top}$.

Now learning hidden structures

• In general, $\mathbb{E}[hh^{\top}]$ is not enough to recover joint distribution of h

Learning Multi-level DAGs

Repeat this recursively, i.e., un-mix $\mathbb{E}[hh^{\top}]$ to recover higher layers.

Learning Latent Space Parameters

Recall so far...

Recover mixing matrix A from $A\mathbb{E}[hh^{\top}]A^{\top}$.

Now learning hidden structures

• In general, $\mathbb{E}[hh^{\top}]$ is not enough to recover joint distribution of h

Learning Multi-level DAGs

Repeat this recursively, i.e., un-mix $\mathbb{E}[hh^{\top}]$ to recover higher layers.

Learning DAGs with Effective Depth 1

Effective Depth 1

Each hidden variable is connected to at least one observed variable.

Linear Structural Equations

- Recall, $x = Ah + \varepsilon$
- ullet Now additionally, $h_j = \sum_{i \in \mathrm{Pa}_j} \lambda_{ji} h_i + \eta_j$, or

$$h = \Lambda h + \eta$$

- This implies that $x = A(I \Lambda)^{-1}\eta + \varepsilon$
- η_i are uncorrelated: $\mathbb{E}[\eta\eta^{\top}]$ is diagonal.

Spectral approach for learning

Learning DAGs with Effective Depth 1

Effective Depth 1

Each hidden variable is connected to at least one observed variable.

Linear Structural Equations

- Recall, $x = Ah + \varepsilon$
- ullet Now additionally, $h_j = \sum_{i \in \mathrm{Pa}_j} \lambda_{ji} h_i + \eta_j$, or

$$h = \Lambda h + \eta$$

- \bullet This implies that $\boxed{x = A(I \Lambda)^{-1} \eta + \varepsilon}$
- η_i are uncorrelated: $\mathbb{E}[\eta\eta^{\top}]$ is diagonal.

Spectral approach for learning

Learning DAGs with Effective Depth 1

$$x = A(I - \Lambda)^{-1}\eta + \varepsilon$$

- Employ spectral approach to learn $A(I-\Lambda)^{-1}$.
- Therefore, $\mathbb{E}[xx^{\top}] = A(I \Lambda)^{-1}\mathbb{E}[\eta\eta^{\top}](A(I \Lambda)^{-1})^{\top} + \mathbb{E}[\varepsilon\varepsilon^{\top}]$
- $\begin{array}{c} \bullet \text{ Similarly for third order moment, } \mathbb{E}[xx^\top\langle\lambda,x\rangle] = \\ \hline \left[A(I-\Lambda)^{-1}\mathbb{E}[\eta\eta^\top\langle\eta,A^\top\lambda\rangle](A(I-\Lambda)^{-1})^\top + \mathbb{E}[\varepsilon\varepsilon^\top\langle\lambda,\varepsilon\rangle] \right] \end{array}$
- Simultaneous diagonalization of second and third order moments: through SVD or tensor decompositions.
- Un-mix A from $A(I-\Lambda)^{-1}$ through ℓ_1 optimization.

Learning both structure and parameters of depth-1 DAGs

Outline

- Introduction
- 2 Model

- 3 Learning Algorithm
- 4 Conclusion

Conclusion

Learning Linear Latent Bayesian Networks

- Considered learning with arbitrary hidden variable dependencies
- Constraints on the mixing matrix: expansion of bipartite graph from hidden to observed layer, generic parameters and non-degeneracy.
- Established identifiability of mixing matrix.
- Recovering mixing matrix through ℓ_1 optimization.
- Able to learn multi-level DAGs and DAGs with effective depth 1

Outlook: Learning over-complete basis

- When more hidden variables than observed variables
- Require higher order moments
- Interesting questions on identifiability and efficient algorithms.