

V Olimpíada Matemática de Andalucía

Granada-Sevilla, 18 de febrero de 2023

Problemas

1. Tenemos piezas cuadradas de tamaño 1×1 en las que podemos pintar cada borde de un color A, B, C, D, no repitiéndose colores en cada pieza.

Formamos un rectángulo $n \times m$ pegando piezas cuadradas con la condición de que los bordes que se pegan son del mismo color.

¿Para qué números n y m es esto posible si en cada lado del rectángulo los bordes de las piezas que lo forman son del mismo color, y en los cuatro lados del rectángulo aparecen los cuatro colores?

- **2.** Determina todos los números enteros positivos primos p, q, r, que verifican: p+q+r=2023 y pqr+1 es un cuadrado perfecto.
- **3.** Encuentra todas las funciones crecientes $f: \mathbb{N} \to \mathbb{R}$ tales que para cada $m, n \in \mathbb{N}$:

$$f(m^2 + n^2) = f(m)^2 + f(n)^2,$$

Se recuerda que $\mathbb{N} = \{0, 1, 2, \ldots\}$ y que una función f es creciente cuando $f(m) \leq f(n)$ si m < n.

4. Encuentra todos los números naturales $n \geq 3$ para los que es posible rellenar un polígono regular de n lados con al menos dos polígonos regulares sin solapamientos (los polígonos del recubrimiento pueden tener distinto número de lados).