Projet personnel – Système de discrimination des images WANG Réseaux de neurones

GOLEBIEWSKI ADRIEN

Classification d'une image

Objectif: réaliser un système de discrimination d'images réelles. La base de données d'images à notre disposition est une base de données classique de test (base Wang) et est composée de 10 types d'images: Jungle, Plage, Monuments, Bus, Dinosaures, Eléphants, Fleurs, Chevaux, Montagne et Plats.

- L'utilisateur proposera au système une nouvelle image « inconnue"
- le système affichera alors la classe d'appartenance de l'image.

Développement de deux approches :

- l'une reposant sur des descripteurs caractérisant l'image
- l'autre suivant une stratégie « Deep » donc à base de descripteurs CNN.

Approche Full-connected

Approche Deep

Classification d'une image – Chargement des descripteurs

Ce fichier propose d'utiliser 5 ensembles de mesures :

JCD,

PHOG,

CEDD,

FCTH,

Fuzzy Color Histogram

Α	В	C	D	E	F	G	Н	1	J	K	L	М	N	0	Р	
0.jpg	1.0	4.0	3.0	1.0	2.0	2.0	4.0	3.0	6.0	2.0	1.0	3.0	0.0	0.0	1.0	1.0
1.jpg	1.0	5.0	5.0	2.0	1.0	4.0	5.0	4.0	6.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0
10.jpg	5.0	5.0	2.0	1.0	1.0	3.0	5.0	5.0	5.0	2.0	1.0	0.0	1.0	0.0	1.0	0.0
100.jpg	1.0	4.0	2.0	2.0	1.0	3.0	2.0	2.0	2.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
101.jpg	6.0	6.0	1.0	0.0	0.0	1.0	1.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0
102.jpg	2.0	6.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	1.0	1.0	0.0	1.0	6.0
103.jpg	2.0	6.0	1.0	0.0	0.0	0.0	7.0	1.0	4.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0
104.jpg	3.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0
105.jpg	0.0	1.0	5.0	1.0	3.0	3.0	5.0	5.0	5.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0
106.jpg	5.0	5.0	1.0	0.0	0.0	0.0	6.0	0.0	1.0	3.0	0.0	1.0	0.0	0.0	0.0	0.0
107.jpg	1.0	4.0	2.0	0.0	0.0	1.0	1.0	0.0	1.0	2.0	0.0	1.0	0.0	0.0	1.0	4.0
108.jpg	1.0	5.0	2.0	1.0	1.0	2.0	4.0	2.0	4.0	6.0	1.0	5.0	3.0	0.0	3.0	0.0
109.jpg	1.0	5.0	5.0	0.0	0.0	1.0	3.0	0.0	2.0	2.0	0.0	1.0	0.0	0.0	0.0	1.0
11.jpg	3.0	3.0	3.0	1.0	1.0	1.0	3.0	2.0	5.0	3.0	3.0	5.0	1.0	0.0	1.0	0.0
110.jpg	0.0	3.0	3.0	0.0	0.0	2.0	3.0	1.0	5.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
111.jpg	2.0	2.0	4.0	0.0	0.0	0.0	1.0	1.0	2.0	0.0	0.0	3.0	0.0	0.0	2.0	2.0
112.jpg	2.0	4.0	3.0	2.0	1.0	5.0	3.0	1.0	4.0	2.0	0.0	0.0	0.0	0.0	0.0	2.0
113.jpg	1.0	4.0	2.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
114.jpg	3.0	3.0	5.0	0.0	0.0	2.0	0.0	0.0	2.0	1.0	0.0	2.0	0.0	0.0	3.0	2.0
115.jpg	3.0	6.0	4.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	5.0	5.0
116.jpg	1.0	3.0	2.0	1.0	1.0	3.0	3.0	2.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
117.jpg	5.0	6.0	1.0	0.0	0.0	0.0	2.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	6.0
118.jpg	4.0	6.0	2.0	0.0	0.0	1.0	2.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
119.jpg	4.0	5.0	3.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	2.0	0.0
12.jpg	3.0	3.0	5.0	1.0	3.0	4.0	3.0	3.0	5.0	1.0	1.0	1.0	1.0	0.0	2.0	0.0
120.jpg	1.0	7.0	2.0	0.0	0.0	0.0	5.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	1.0	3.0


```
#Calcul des descripteurs

#Création du vecteur resultat
target = np.zeros([1,1000])
target = np.array([0]*100+[1]*100+[2]*100+[3]*100+[4]*100+[5]*100+[6]*100+[7]*100+[8]*100+[9]*100)

#association des classes à chaque daframe
data[0] = pd.to_numeric(data[0].str.rstrip('.jpg'))
data=data.sort_values(by = 0).assign(classe=target)
```

- (1) on définit notre tableau cible, la vérité fondamentale de nos données en tant que variable « target ».
- (1) Mise en ordre des images + surpression des « .jpg » des valeurs de la 1ère colonne numérotant les images. Le label de chacune des images est donc un numéro unique.

Classification d'une image – Approche Full-connected

Approche technique choisie : **prédiction pour chaque mesure**

Séparation de notre jeu de données : base d'apprentissage Xtrain (80% de notre jeu de données) et un base de test, Xtest (20% de jeux de données).

Structure de discrimination de type Perceptron <u>Multi-couches</u> avec Keras/Tensorflow :

- 5 couches (Dernière couche à 10 neurones 1 pour chaque classe
- Loss : l'entroprie croisée catégorique
- Métrique d'évaluation : accuracy

Classifieur performant avec des scores de précision très correctes. Score de précision le plus élevé avec la mesure JCD (0,86)

Approche technique par mesure <u>plus pertinente</u> que l'approche par concaténation des mesures


```
# Pour un modèle avec une entrée et 10 classes (classification en catégories):
model = Sequential()
model.add(Dense(270, activation='tanh'))
model.add(Dense(90, activation='relu'))
model.add(Dense(60, activation='relu'))
model.add(Dense(30, activation='relu'))
model.add(Dense(10, activation='softmax'))
```

```
# fit the keras model on the dataset
model.fit(XTrain, yTrain, epochs=150, batch_size=100, validation_split=0.1, verbose=0)
```


Concaténation

Classification d'une image – Approche DeepLearning

- Les CNN permettent une extraction de features sans connaissances a priori, et permettent de traiter des données brutes en écartant la phase de feature engineering. Les CNN réalisent eux-mêmes tout le travail fastidieux d'extraction et description de features
- Algorithme CNN sans Data Augmentation:
 - Data Preparation (images, chemin d'accès, redimensionnement ...)
 - Data Strategy (normalisation des données, split, encodage)
 - Définition du modèle : 2Xconvolution, MaxPooling, un Dropout ,un flatte, un dense et un Dropout → Couches de notre modèle
 - Entraînement du modèle → **Résultat Prédiction** : 0.47 au bout de 3 epochs, >0.60 à parti de 10 epochs

Paramétrage de notre CNN

```
batch_size = 1
num_classes = 10
epochs = 5
img_rows,img_cols=256,256
input_shape = (img_rows, img_cols, 3)
e = 2
```

Définition de notre CNN

Apprentissage et Test

Classification d'une image – Approche DeepLearning avec DA

- **Mise en place d'un CNN avec Data Augmentation** (surplus de données manipulé en amont)
- Algorithme CNN avec Data Augmentation :
 - Data Preparation / Strategy : même processus
 - Utilisation de « ImagaDataGenerator « : Fonction
 Keras de génération d'images par Data Augmentation.
 - Définition du modèle : 2Xconvolution, MaxPooling, un Dropout ,un flatte, un dense et un Dropout →
 Couches de notre modèle
 - Méthode fit_generator() pour ajuster notre modèle sur les données générées par lots par un générateur Python. Résultats Prédiction : accuracy > 0.85

Data Augmentation

Apprentissage et Test

Enseignements du projet :

Nous pouvons dès lors affirmer que :

- <u>L'approche « full-connected »</u> se compose d'une série de couches entièrement connectées qui relient chaque neurone d'une couche à chaque neurone de l'autre couche. L'avantage est qu'il n'est pas nécessaire de faire des hypothèses particulières sur l'entrée. Ces types de réseaux ont tendance à avoir des performances plus faibles que les réseaux spécialisés adaptés à la structure d'un espace de problème.
- <u>Les architectures CNN</u> partent de l'hypothèse explicite que les entrées sont des images, ce qui permet d'encoder certaines propriétés de manière automatisée dans l'architecture du modèle. La phase de « feature engineering » est donc volontairement « oubliée »
- Bien que les réseaux « ful connected » ne fassent aucune hypothèse sur l'entrée, ils ont tendance à être moins performants et ne sont pas adaptés à l'extraction de caractéristiques. De plus, ils ont un nombre plus élevé de poids à former, ce qui entraîne un temps de formation élevé, tandis que les réseaux CNN sont formés pour identifier et extraire les meilleures caractéristiques des images pour le problème à traiter avec relativement moins de paramètres à former.