Definition. Let c be a number in the domain \mathbb{D} of a function f. Then f(c) is the absolute maximum value of f on \mathbb{D} if $f(c) \ge f(x)$ for all x in \mathbb{D} . f(c) is the absolute minimum value of f on D if $f(c) \le x$ for all x in \mathbb{D} .

Maximum and minimum values of f are called extreme values of f.

Definition. The number f(c) is a local maximum value of f if $f(c) \ge f(x)$ when x is near c. f(c) is the local minimum value of f if $f(c) \le f(x)$ when x is near c.

Increasing and decreasing test

- (i) If f'(x) > 0, on an interval, then f is increasing on that interval.
- (ii) If f'(x) < 0, on an interval, then f is decreasing on that interval.

Fermat's theorem. If f has a local maximum or minimum at c, and f'(c) exits, then f'(c) = 0.

Critical number. A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Result. If f has a local maximum or minimum at c, then c is a Critical number of f.

First derivative test. Suppose that c is a critical number of a continuous function f.

- (i) If f' changes from positive to negative at c, then f has a local maximum at c.
- (ii) If f' changes from negative to positive at c, then f has a local minimum at c.
- (iii) If f' is positive to the left and right of c or negative to the left and right of c, then f has no local maximum or minimum at c.

Second derivative test. Suppose f'' is continuous near c.

- (i) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- (ii) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

Example Find the intervals on which the function $f(x) = \sin x + \cos x$ is increasing or decreasing.

Solution. $f(x) = \sin x + \cos x$.

$$f'(x) = \cos x - \sin x$$
.

$$f''(x) = -\sin x - \cos x.$$

At critical points f'(x) = 0

i.e.,
$$\cos x - \sin x = 0$$
.

i.e.,
$$\sin x = \cos x$$
.

i.e.,
$$\tan x = 1$$
.

$$\therefore x = \frac{\pi}{4}, \, \frac{5\pi}{4}.$$

Let us evaluate the intervals at which f decrease or increases.

Interval	f'(x)	f
$0 < x < \frac{\pi}{4}$	+	increases in $(0, \frac{\pi}{4})$
$\frac{\pi}{4} < x < \frac{5\pi}{4}$	-	decreases in $(\frac{\pi}{4}, \frac{5\pi}{4})$
$\frac{5\pi}{4} < x < 2\pi$	+	increases in $(\frac{5\pi}{4}, 2\pi)$

Since f' changes from positive to negative at $x = \frac{\pi}{4}$,

f has a maximum at $x = \frac{\pi}{4}$.

Maximum value of
$$f = f(\frac{\pi}{4}) = \sin \frac{\pi}{4} + \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2}$$
.

Also f' changes from negative to positive at $x = \frac{5\pi}{4}$.

Minimum value of
$$f = f(\frac{5\pi}{4}) = \sin \frac{5\pi}{4} + \cos \frac{5\pi}{4} = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\sqrt{2}$$
.

Example Find the intervals on which the function $f(x) = x^4 - 2x^2 + 3$ is increasing or decreasing. Also find the local maximum and minimum values of f by using first derivative test.

Solution. $f(x) = x^4 - 2x^2 + 3$.

$$f'(x) = 4x^3 - 4x = 4x(x^2 - 1) = 4x(x - 1)(x + 1).$$

Critical numbers occur at points where f'(x) = 0

i.e.,
$$4x(x-1)(x+1) = 0$$
.

$$x = -1, x = 0, x = 1.$$

The critical numbers are x = -1, x = 0, x = 1.

Let us evaluate the intervals at which f decreases or increases.

Interval	4 x	x - 1	<i>x</i> + 1	f'(x)	f
x < -1	-	-	-	-	decreases in $(-\infty, -1)$
-1 < x < 0	-	-	+	+	increases in (-1,0)
0 < x < 1	+	(0)	+	-	decreases in (0,1)
x > 1	+	+	+	+	increases in $(1, \infty)$

Since f' changes from negative to positive at x = -1,

f has a local minimum at x = -1.

Minimum value of f = f(-1) = 1 - 2 + 3 = 1.

Also f' changes from positive to negative at x = 0.

 \therefore f has a maximum at x = 0.

Maximum value of f = f(0) = 3.

Again f' changes from negative to positive at x = 1.

 \therefore f has a local minimum at x = 1.

Minimum value of f = 1 - 2 + 3 = 2.

Example Using first derivative test, examine for maximum and minimum of the function $f(x) = x^3 - 3x + 3$, $x \in \mathbb{R}$.

Solution. $f(x) = x^3 - 3x + 3$.

$$f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1).$$

Critical numbers occur at points where f'(x) = 0.

i.e.,
$$3(x-1)(x+1) = 0$$
.

i.e.,
$$x = -1$$
, $x = 1$.

The critical numbers are x = -1, 1.

Let us evaluate the intervals at which *f* decreases or increases.

Interval	<i>x</i> – 1	x + 1	f'(x)	f
x < -1	_	-	+	increases in $(-\infty, -1)$
-1 < x < 1	-	+	-	decreases in (-1,1)
x > 1	+	+	-	increases in $(1, \infty)$

Since f' changes from positive to negative at x = -1.

f has a local maximum at x = -1.

:. Maximum value of $f = f(-1) = (-1)^3 - 3(-1) + 3 = -1 + 3 + 3 = 5$.

Also f' changes from negative to positive at x = 1.

- \therefore f has a local minimum at x = 1.
- :. Minimum value of $f = f(1) = 1^3 1 \times 3 + 3 = 1 3 + 3 = 1$.

Example Find the maximum and minimum of the function $f(x) = 2x^3 - 3x^2 - 36x + 10$. by using **Second derivative test.**

Solution. $f(x) = 2x^3 - 3x^2 - 36x + 10$.

$$f'(x) = 6x^2 - 6x - 36.$$

$$f''(x) = 12x - 6$$
.

Critical pints occur at f'(x) = 0.

i.e.,
$$6x^2 - 6x - 36 = 0$$
.

$$\therefore x^2 - x - 6 = 0.$$

$$\therefore (x-3)(x+2)=0.$$

$$\therefore x = -2, x = 3.$$

The critical points are at x = -2, x = 3.

At
$$x = -2$$
, $f''(x) = 12 \times (-2) - 6 = -24 - 6 = -30 = -ve$

 \therefore *f* is maximum at x = -2.

Maximum value of

$$f = 2(-2)^3 - 3(-2)^2 - 36(-2) + 10 = -16 - 12 + 72 + 10 = 54.$$

At
$$x = 3$$
, $f''(x) = 12 \times 3 - 6 = 36 - 6 = 30 = +ve$.

 \therefore f has minimum at x = 3.

.. Minimum value of

$$f = f(3) = 2 \times 3^3 - 3 \times 3^2 - 36 \times 3 + 10 = 54 - 27 - 108 + 10 = -71.$$