Similarly, we can define the <u>adjacency table</u> and the <u>adjacency matrix</u> of a graph:

Definition: Let (V, E) be an undirected graph with m vertices, and let these vertices be ordered as $v_1, v_2, ..., v_m$. The adjacency matrix for this graph

is given by
$$\begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mm} \end{pmatrix} \text{ where } b_{ij} = 1 \text{ if } v_i \text{ and } v_j \text{ are }$$

adjacent to each other and $b_{ij} = 0$ if v_i and v_j are not adjacent to each other.

Remark: "Being adjacent to" is a symmetric relation on the set of vertices V, so the adjacency matrix is symmetric, **i.e.** $b_{ij} = b_{ji} \quad \forall i, j \quad 1 \leq i, j \leq m$. It is not reflexive so all the entries on the diagonal are zero.

9.1 Complete graphs

Definition: A graph (V, E) is called <u>complete</u> if $\forall v, v' \in V$ s.t. $v \neq v'$, the edge $vv' \in E$. In other words, a <u>complete</u> graph has the highest number of edges possible given its number of vertices.

Examples:

- 1. The triangle is a complete graph.
- 2. The pentagram is <u>not</u> a complete graph.

Notation: A complete graph with n vertices is denoted by K_n .

Q: How does the adjacency matrix of a complete graph look like?

A: All entries are 1 except on the diagonal, where they are all zero.

9.2 Bipartite graphs

Definition: A graph (V, E) is called bipartite is \exists subsets V_1 and V_2 s.t.

- 1. $V_1 \cup V_2 = V$
- $2. V_1 \cap V_2 = \emptyset$
- 3. Every edge in E is of the form vw with $v \in V_1$ and $w \in V_2$.

A bipartite graph is called a complete bipartite graph if $\forall v \in V_1 \quad \forall w \in V_2 \quad \exists vw \in E$.

Notation: A complete bipartite graph where the set V_1 has p elements and the set V_2 has q elements is denoted by $K_{p,q}$.

Example:

 $V_1 = \{a, b\}$ $V_2 = \{c, d, e\}$ $V = \{a, b, c, d, e\}$ $E = \{ac, ad, ae, bc, bd, be\}$ is a complete bipartite graph.

Next, relate graphs to each other via functions with special properties.

9.3 Isomorphisms of Graphs

Definition: An isomorphism between two graphs (V, E) and (V', E') is a bijective function $\varphi : V \to V'$ satisfying that $\forall a, b \in V$ with $a \neq b$ the edge $ab \in E \Leftrightarrow$ the edge $\varphi(a)\varphi(b) \in E'$.

Recall: A function $\varphi: V \to V'$ is bijective \Leftrightarrow it has an inverse $\varphi^{-1}: V' \to V$. The bijection $\varphi: V \to V'$ that gives the isomorphism between (V, E) and (V'E') thus sets up the following:

- 1. A 1-1 correspondence of the vertices V of (V, E) with the vertices V' of $(V', E') \rightsquigarrow$ comes from $\varphi : V \to V'$ being bijective.
- 2. A 1-1 correspondence of the edges E of (V, E) with the edges E' of $(V', E') \rightsquigarrow$ comes from the additional property in the definition of an isomorphism that $\forall a, b \in V$ with $a \neq b, ab \in E \Leftrightarrow \varphi(a)\varphi(b) \in E'$.

Remark: Just like an isomorphism of groups discussed earlier in the course, an isomorphism of graphs means (V, E) and (V', E') have the same "iso" form "morphe". "Being isomorphic" is an equivalence relation, so we get classes of graphs that have the same form as our equivalence classes.

Definition: If there exists an isomorphism $\varphi: V \to V'$ between two graphs (V, E) and (V', E'), then (V, E) and (V', E') are called isomorphic.

9.4 Subgraphs

Task: Understand sub-objects of a graph.

Definition: Let (V, E) and (V', E') be graphs. The graph (V', E') is called a subgraph of (V, E) if $V' \subseteq V$ and $E' \subseteq E$, i.e. if (V', E') consists of a subset V' of the vertices of (V, E) and a subset E' of edges (V, E) between vertices in V'.

Example: Star of David on the flag of Israel

$$V = \{a, b, c, d, e, f\} \\ E = \{ac, ce, ae, bf, fd, bd\}$$

2 triangle subgraphs of the star of David:

$$V' = \{a, c, e\}$$
 $E' = \{ac, ce, ae\}$
 $V" = \{b, f, d\}$ $E" = \{bf, fd, bd\}$

9.5 Vertex Degrees

Task: Use numbers to understand incidence relationships.

Definition: Let (V, E) be a graph. The <u>degree</u> deg v of a vertex $v \in V$ is defined as the number of edges of the graph that are incident to v, i.e. the number of edge with v as one of their endpoints.

Example:

$$\begin{aligned} & \text{def } f = \text{deg } g = 0 \\ & \text{deg } d = \text{deg } e = \text{deg } a = 1 \\ & \text{deg } b = \text{deg } c = 2 \\ & \text{deg } h = 3 \end{aligned}$$

Definition: A vertex of degree 0 is called an <u>isolated</u> vertex.

Definition: A vertex of degree 1 is called a pendant vertex.

Theorem: Let (V, E) be a graph. Then $\sum_{v \in V} \deg v = 2\#(E)$, where $\sum_{v \in V} \deg v$ is the sum of the degrees of all the vertices of the graph, and #(E) is the number of edges of the graph.

Proof: $\sum_{v \in V} \deg v$ is the sum of all the entries in the adjacency matrix. Every edge $vv' \in E$ contributes 2 to the sum $\sum_{v \in V} \deg v$, 1 for the vertex v and 1 for the vertex $v' \Rightarrow$ each edge must be counted twice, so $\sum_{v \in V} \deg v = 2\#(E)$.

qed

Corollary: $\sum_{v \in V} \deg v$ is an even integer.

Proof: Since $\sum_{v \in V} \deg v = 2\#(E)$, and $\#(E) \in \mathbb{N}$, the result follows.

qed

Corollary: In any graph, the number of vertices of odd degrees must be even.

Proof: Assume not, then $\sum_{v \in V} \deg v$ is an odd integer as $odd + even = odd \Rightarrow \Leftarrow$ to the previous corollary.

qed

Definition: A graph is called k-regular for some non-negative integer k if every vertex of the graph has degree equal to k.

Example: A rectangle is 2-regular.

 $\deg a = \deg b = \deg c = \deg d = 2.$

Definition: A graph (V, E) is called regular is $\exists k \in \mathbb{N}$ s.t. (V, E) is k-regular.

Corollary: Let (V, E) be a k-regular graph. Then k#(V) = 2#(E) where

#(V) is the number of vertices and #(E) is the number of edges.

Proof: By the theorem, $\sum_{v \in V} \deg v = 2\#(E)$, but (V, E) is k-regular $\Rightarrow \deg$ $v = k \ \forall v \in V$. Therefore $\sum_{v \in V} \deg v = \#(V) \times k = 2\#(E)$.

qed

Example: Consider a complete graph (V, E) with n vertices. (V, E) is (n - E)1)-regular because every vertex is adjacent to all the remaining (n-1)

vertices.

Corollary: A complete bipartite graph $k_{p,q}$ is regular $\Leftrightarrow p = q$

Proof: Recall that $V = V_1 \cup V_2 \ V_1 \cap V_2 = \emptyset$ for a bipartite graph, where $\#(V_1) = p \text{ and } \#(V_2) = q.$ "\(= " \) If $p = q, \forall v \in V_1$ satisfies that deg v = p = q and $\forall v \in V_2$ satisfies

that deg v = p = q since the graph is complete $\Rightarrow (V, E)$ is p-regular.