Data Science Lecture Notes 13

Donghui Yan

University of Massachusetts Dartmouth

Donghui Yan

Outline

- Introduction
- Trees
- Random Forests
- The randomForest package

Revisiting the classification problem

• Given a training sample $(X_1, Y_1), ..., (X_n, Y_n)$, we wish to learn the relationship $f: X \mapsto Y$ s.t.

$$\min_{f \in \mathcal{F}} \mathbb{E}l(f(X), Y)$$

for any loss metric l(.,.) that we care

- \blacktriangleright X_i called features, $Y_i \in \{1, 2, ..., J\}$ labels
- \triangleright \mathcal{F} is the function class that the target function f resides
- Restrict F to recursively defined piecewise constant functions

 → trees.

Tree-based classifiers

- Recursive partition of the space into disjoint regions (rectangles)
- Formally, a piecewise constant function

$$f(X) = \sum_{i=1}^{T} h(R_i).1_{\{X \in R_i\}}$$

where $\bigcup_{i=1}^{T} R_i$ is a partition of the space s.t. $\bigcap_{i=1}^{T} R_i = \emptyset$

- Classification by majority vote on the labels
 - Of all data points in the same leaf node as X
 - Or average on values for regression.

Space partition and classification tree

▶ 1^{st} partition: $R_1, (R_2 \cup R_3)$. 2^{nd} partition: R_2, R_3

 $h(R_1) = 0', h(R_2) = 0', h(R_3) = x'.$

A real example of a classification tree

Risk analysis of heart attack patients (UCSD Medical Center)

ightharpoonup G = "high risk", F = "low risk".

Construction of a tree

A tree is built by recursive splitting of tree nodes until stop.

- ightharpoonup The root node \leftrightarrow the entire data space
- ► "Split" means partition the data corresponding to a tree node.

Construction of a tree

- Construction of a tree revolves around 3 elements
 - ► The selection of splits (on which feature and at which point)
 - ► The stopping rule
 - ► The assignment of each terminal node to a class
 - Often related to the splitting criterion
- Additionally, there is the issue of how to prune a tree
 - ► Trade-off between predictive power and tree complexity.

Construction of a tree (the basic algorithm)

- Root node
 ⇔ the training set
- Set up a list (initially empty), L_{act} , for active nodes
- Put the root node into the list
- Repeat the following until a stopping criterion is met
 - Scan through L_{act} and gather candidate splitting points
 - ► Calculate reduction of node impurity for all candidates
 - ightharpoonup Candidate leading to max reduction of impurity \rightarrow splitting point
 - ▶ Split the corresponding node and place its child nodes into L_{act} .

Classification or prediction with a tree

- Let X denote an observation in the test set
- Let the root node be the working node N_w
- Repeat the following until reaching a leaf node
 - Let N_w^L be left child of N_w and N_w^R right child
 - ightharpoonup Compare X with the splitting point at node N_w
 - If X is smaller then $N_w \leftarrow N_w^L$
 - Otherwise $N_w \leftarrow N_w^R$
- Majority vote over node N_w and label X accordingly.

Splitting criteria

- Node impurity based
 - ► Gini (CART, 1984)
 - ► Entropy (J. Quinlan, 1983; Fayyad et al, 1992)
- Node separation based
 - Various clustering and SVM based criteria (Ho, 1998)
 - Linear discriminant analysis based (Loh et al, 1988-)
 - Margin tree (Tibshirani and Hastie, 2006)
- Miscellaneous
 - Mingers' statistic (1986), G statistic (Mingers, 1987), corrections to entropy (Marshall, 1986; Quinlan, 1986).

Node impurity based criteria (continued)

• The "goodness-of-split" function has the form

$$\theta(s,t) = \phi(\mathbf{p}) - P_L \cdot \phi(\mathbf{p}_L) - P_R \cdot \phi(\mathbf{p}_R)$$

- Some commonly used impurity functions
 - Gini: $\phi(\mathbf{p}) = \sum_{j=1}^{J} p_j (1 p_j)$ (CART, 1984)
 - ► Entropy: $\phi(\mathbf{p}) = -\sum_{j} p_{j} \log p_{j}$ (C4.5, Fayyad et al, 1992)
- Others
 - ► Twoing: $\theta(s,t) = \frac{P_L P_R}{4} \left[\sum_j |p_{jL} p_{jR}| \right]^2$ (CART, 1984).

Node impurity based criteria

Theorem [Breiman, 1994]. Optimal splits do not split classes.

- Property of some splitting criteria
 - ► Gini sends the *largest* class to left node and the rest to the right
 - The entropy criterion split classes s.t. $|P_L 0.5|$ is maximized, hence it produces relatively balanced trees
 - ► Twoing is similar to the entropy criterion.

Example Gini-tree and Twoing-tree

Some notable work

- CART (Breiman, Friedman, Olshen and Stone, 1984)
 - ▶ Split on multiple features or linear combination of features
 - ► Gini and Twoing for node splitting
- C4.5 and its variants (J. Quinlan, 1986-1989)
 - Entropy minimization
- CRUISE, QUEST and variants (Loh et al, 1988-)
 - Multi-way split of nodes
 - linear discriminant function for node split
- Multiple response
 - M. Segal (1992)
 - H. Zhang (1998).

A historical note about CART

- pre-CART age
 - ▶ Regression trees date back to AID (Morgan and Sonquist, 1963)
- The development of CART
 - ► Work began in 1973 when Breiman and Friedman, independently, "reinvented the wheel" and used tree methods in classifiers
 - Breiman and Friedman joined forces and later joined by Stone
 - Olshen was an early user and then contributed in theory
 - Idea of a book in 1980 and published by 1984.

"While the pregnancy has been rather prolonged, we hope that the baby appears acceptably healthy to the members of our statistical community" (CART)

Some practical issues

- How to choose the right-sized tree
 - ► Too big a tree tends to overfit
 - ► Too small would cause "lack of fit" (performance suffers)
 - ► How to grow a right sized tree?
 - "Grow and prune" (CART, Breiman et al 1984).
- How to deal with missing values
 - "Missing values" in data is a rule in real world
 - Solutions
 - Simply ignore all instance with missing attributes
 - Replace missing values with the mean or mode of the attribute over all instances with the same target value (Loh and Shih, 1997)
 - "Surrogate" split (Breiman et al 1984).

Tree-based regression

- Essentially the same as the classification tree
- Except different choices of loss function
 - ► Least absolute deviation regression

$$l(\hat{f}, (X_i, Y_i)_{i=1}^{N_t}) = \sum_{i=1}^{N_t} |\hat{f}(X_i) - Y_i|$$

Least squared error

$$l(\hat{f}, (X_i, Y_i)_{i=1}^n) = \sum_{i=1}^{N_t} (\hat{f}(X_i) - Y_i)^2$$

- The minimizer is average of points in same leaf node
- Least squared error is favored for computational reason.

Trees in R

- The "tree" package
 - ► Ripley (2015-)
 - Classification and regression trees based on CART
- The "rpart" package
 - ► Therneau, Atkinson, and Ripley (2004-)
 - Recursive partitioning for classification, regression and survival trees
 - Implemented most of CART.

The Iris flower data

- Introduced by Fisher (1936) for discriminant analysis
- Three species of Iris with each 50 observations
 - ► Iris setosa, Iris versicolor and Iris virginica
 - Four features
 - The length and width of the sepals and petals.

R code on the Iris data (training)

```
##Uncomment if use this package for the first time
##install.packages("tree");
library(tree);

data(iris);
n<-nrow(iris);
idx<-sample(1:n, floor(n/2), replace=FALSE);
iris_train<-iris[idx,]; iris_test<-iris[-idx,];
labels<-class.ind(iris$Species);

myiris<-tree(Species ~ ., data=iris_train);</pre>
```

The fitted tree on the Iris data

R code on the Iris data (test)

```
test.cl <- function(true, pred) {
   true <- max.col(true)
   cres <- max.col(pred)
   table(true, cres)
}

conf<-test.cl(labels[-idx,], predict(myiris, iris_test));
acc<-sum(diag(conf))/sum(conf);
cat("The accuracy on the test set is", acc,"\n");</pre>
```

Test on the Iris data

The confusion matrix is given by

The accuracy on the test set is 0.96

Accuracy = (23+23+26)/(23+23+26+3) = 0.96.

Summary

- Flexible (continuous + categorical variables)
- Fast to construct and predict, 'good' interpretations
- Invariant to monotone transformations on individual variables
- Automatic incorporation of variable selection
- Not stable and prune to perturbations (noise) in the training set
- "Good but not great classifiers" (Leo Breiman)

One way to turn into a 'great' classifier is by ensemble

- ▶ Boosting (Freund and Schapire, 1995)
- ▶ Bagging (Random Forests, Breiman (1996, 1999)).

Random Forests (RF)

RF was proposed by Leo Breiman in 1999.

- Excellent empirical performance comparable or better than the best classifiers such as Boosting and SVM
- Blazingly fast and often requires little parameter tuning
- Huge impacts in statistics, machine learning and many applied areas
- RF is *mysterious* in terms of theory and the behavior of RF is still not fully understood thus far.

Ideas of RF

- Ensemble of tree-based classifiers (CART)
- The tree-based classifier is CART
 - Except that RF grows the tree to the *maximum*
 - Leaf node size 1 for classification
 - 5 for regression
- Ensemble implemented by bagging
 - Each tree built by sampling with replacement from data
 - Ensemble to reduce resulting variance
- Philosophy of RF
 - Ensemble of good CARTs (instead of the best).

An illustration of RF

An algorithmic description of RF

Two aspects of RF

- ► The growth of trees (focus of discussion)
- ► The prediction (easy, simply let a test example *X* fall off each individual tree and then majority vote).

Some notations

- ▶ The training sample $S = (X_i, Y_i)_{i=1}^n$
- ► Feature space $\mathcal{F} = \{1, ..., p\}$ or $\mathcal{F}_L = \{\sum_{i=1}^L \alpha_i f_i : \alpha_i \in \mathcal{U}[-1, 1], f_i \in \mathcal{F}\}$ for linear combinations of random variables.
- ightharpoonup mtry = # tries on different (sets of) features at each node
- $ightharpoonup t = ext{current node}, t_L = ext{left subnode of } t, t_R = ext{right subnode of } t.$

The growth of a tree in RF

- 1. Sample with replacement from $\mathcal S$ to get $\mathcal S^{(k)}=(X_i^{(k)},Y_i^{(k)})_{i=1}^n.$
- 2. Set $t \leftarrow \mathcal{S}^{(k)}$.
- 3. Recurse
 - 3.1. For j = 1, ..., mtry
 - Sample a feature f from \mathcal{F} and search for best splitting point s
 - Compute reduction of node impurity (or drop in oob) at node t

End

- 3.2. Keep the pair (f, s) that reduce the node impurity the most
- 3.3. Split node at (f, s) to get $t = t_L \cup t_R$
- 3.4. Set $t \leftarrow t_L$ or $t \leftarrow t_R$

Until there is only one point left in the node.

Performance of RF

- RF is comparable to Adaboost on 19 datasets (Breiman 1999)
- Compared to SVM, ANN, LR, NB, kNN, BSTDT, BAGDT w.r.t. metrics including accuracy, AUC, squared error loss
 - RF ranks the 2^{nd} (closely after boosted decision tree) on 11 low dimensional data (Caruana et al, 2005)
 - RF has the best overall performance on 11 datasets with dimension $761 \sim 685569$ (Caruana et al, 2008)
- RF performs much better (and much faster) than SVM and kNN on a Tissue Microarray image scoring problem where data has a dimension of 2601 (My own recent experience).

Performance comparison (Breiman, 2001)

		Forest-RC						
Data set	Adaboost	Selection	Two features	One tree				
Glass	22.0	24.4	23.5	42.4				
Breast cancer	3.2	3.1	2.9	5.8				
Diabetes	26.6	23.0	23.1	32.1				
Sonar	15.6	13.6	13.8	31.7				
Vowel	4.1	3.3	3.3	30.4				
Ionosphere	6.4	5.5	5.7	14.2				
Vehicle	23.2	23.1	22.8	39.1				
German credit	23.5	22.8	23.8	32.6				
Image	1.6	1.6	1.8	6.0				
Ecoli	14.8	12.9	12.4	25.3				
Votes	4.8	4.1	4.0	8.6				
Liver	30.7	27.3	27.2	40.3				
Letters	3.4	3.4	4.1	23.8				
Sat-images	8.8	9.1	10.2	17.3				
Zip-code	6.2	6.2	7.2	22.7				
Waveform	17.8	16.0	16.1	33.2				
Twonorm	4.9	3.8	3.9	20.9				
Threenom	18.8	16.8	16.9	34.8				

Performance comparison (Caruana et al, 2005)

Table 3. Normalized scores of each learning algorithm by problem (averaged over eight metrics)

MODEL	COVT	ADULT	LTR.P1	LTR.P2	MEDIS	SLAC	HS	MG	CALHOUS	COD	BACT	MEA
BST-DT	.938	.857	.959	.976	.700	.869	.933	.855	.974	.915	.878*	.896
RF	.876	.930	.897	.941	.810	.907*	.884	.883	.937	.903*	.847	.892
BAG-DT	.878	.944*	.883	.911	.762	.898*	.856	.898	.948	.856	.926	.887
BST-DT	.922*	.865	.901*	.969	.692*	.878	.927	.845	.965	.912*	.861	.885
RF	.876	.946*	.883	.922	.785	.912*	.871	.891*	.941	.874	.824	.884
BAG-DT	.873	.931	.877	.920	.752	.885	.863	.884	.944	.865	.912*	.882
RF	.865	.934	.851	.935	.767*	.920	.877	.876	.933	.897*	.821	.880
BAG-DT	.867	.933	.840	.915	.749	.897	.856	.884	.940	.859	.907*	.877
SVM	.765	.886	.936	.962	.733	.866	.913*	.816	.897	.900*	.807	.862
ANN	.764	.884	.913	.901	.791*	.881	.932*	.859	.923	.667	.882	.854
SVM	.758	.882	.899	.954	.693*	.878	.907	.827	.897	.900*	.778	.852
ANN	.766	.872	.898	.894	.775	.871	.929*	.846	.919	.665	.871	.846
ANN	.767	.882	.821	.891	.785*	.895	.926*	.841	.915	.672	.862	.842
BST-DT	.874	.842	.875	.913	.523	.807	.860	.785	.933	.835	.858	.828
KNN	.819	.785	.920	.937	.626	.777	.803	.844	.827	.774	.855	.815
KNN	.807	.780	.912	.936	.598	.800	.801	.853	.827	.748	.852	.810
KNN	.814	.784	.879	.935	.633	.791	.794	.832	.824	.777	.833	.809
BST-STMP	.644	.949	.767	.688	.723	.806	.800	.862	.923	.622	.915*	.791
SVM	.696	.819	.731	.860	.600	.859	.788	.776	.833	.864	.763	.781
BST-STMP	.639	.941	.700	.681	.711	.807	.793	.862	.912	.632	.902*	.780
BST-STMP	.605	.865	.540	.615	.624	.779	.683	.799	.817	.581	.906*	.710
DT	.671	.869	.729	.760	.424	.777	.622	.815	.832	.415	.884	.709
DT	.652	.872	.723	.763	.449	.769	.609	.829	.831	.389	.899*	.708
LR	.625	.886	.195	.448	.777*	.852	.675	.849	.838	.647	.905*	.700

Performance comparison (Caruana et al, 2008)

Table 3. Bootstrap analysis of rankings by average performance across problems

AVG	1st	2ND	3RD	4TH	5ТН	6тн	7TH	8TH	9тн	10TH
RF	0.728	0.207	0.053	0.011	0.001	0.000	0.000	0.000	0.000	0.000
ANN	0.054	0.184	0.293	0.248	0.117	0.070	0.023	0.010	0.000	0.000
BSTDT	0.059	0.228	0.195	0.208	0.179	0.079	0.040	0.011	0.000	0.000
SVM	0.036	0.175	0.196	0.194	0.162	0.099	0.091	0.043	0.005	0.000
LR	0.092	0.133	0.079	0.074	0.110	0.176	0.245	0.091	0.000	0.000
BAGDT	0.002	0.012	0.105	0.134	0.242	0.276	0.133	0.079	0.017	0.000
BSTST	0.009	0.014	0.028	0.071	0.088	0.115	0.296	0.358	0.021	0.000
KNN	0.021	0.047	0.052	0.059	0.087	0.160	0.122	0.177	0.263	0.013
PRC	0.000	0.000	0.000	0.001	0.013	0.024	0.050	0.231	0.682	0.000
NB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.987

Related work and variants

- Some pre-RF variants
 - Random subspace method (T. Ho, 1995)
 - Grow a tree on data randomly projected over a subset of features
 - ► Randomized shallow trees (Amit and Geman, 1997)
 - Node split by random selection from many geometric features
 - Randomized trees (T. Dietterich, 1998)
 - Node split by a random choice over the best 20
- Perfect RF (Cutler et al, 1999)
 - Random feature selection and "random" split
- Greedy and Purely RF (Biau, Devroye and Lugosi, 2008).

Random Forests in R

- The "randomForest" package
 - Fortran original by Leo Breiman and Adele Cutler
 - R port by Andy Liaw and Matthew Wiene
 - Classification and regression based on a forest of trees.

The 'randomForest' function

```
randomForest(xtrain, y, xtest=xtest, ytest=ytest,
    ntree=NTREE, mtry=MTRY,
    replace=TRUE,classwt=NULL,cutoff,strata,
    sampsize=nrow(xtrain),
    nodesize=if(!is.null(y) && !is.factor(y)) 5 else 1,
    importance=FALSE, localImp=FALSE,nPerm=1,
    proximity=FALSE,oob.prox=FALSE,
    norm.votes=TRUE,do.trace=FALSE,
    keep.forest=!is.null(y) && is.null(xtest),
    corr.bias=FALSE, keep.onbag=FALSE);
```

- ightharpoonup ntree = # trees
- ightharpoonup mtry = # tries in selecting variables
- ightharpoonup node size = 5 if regression and 1 if classification.

The spam filter example

- The goal is to design an automatic spam detector
- Information collected from 4601 email messages
 - For which one knows if it is *email* or *spam*
- Formulate as a supervised classification problem
 - Or (logistic) regression problem with discrete response
- Data available at ftp.ics.uci.edu
 - ▶ Donated by *George* Forman of HP Lab, Palo Alto, CA.

The spam filter example

- Similar as typical applications, most importantly
 - ▶ What features to use?
- Follow the tradition of document/text processing
 - ► Use relative frequencies of 57 commonly used words
 - One instance of the popular 'Bag of words'
- Why may this help?

	george	you	your	hp	free	hpl	!	our	re	edu	remove
spam	0.00	2.26	1.38	0.02	0.52	0.01	0.51	0.51	0.13	0.01	0.28
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

Features breakdown

- 48 quantitative predictors
 - e.g., business, address, internet, free, and george (customizable for users)
- % characters that match one of 6 special characters
- Avg length of uninterrupted sequences of capital letters
- Length of longest uninterrupted sequence of capital letters
- Sum of length of uninterrupted sequences of capital letters.

R code on the Spam data

```
##The spam data
##install.packages("randomForest");
library(randomForest);
x<-read.table("spam.Data",sep=",");</pre>
n < -nrow(x); p < -ncol(x);
x[,p] < -as.factor(x[,p]);
##Split the data according to HTF for comparison
T<-3065;
idx2<-sample(1:n,T, replace=FALSE);
xtrain < -x[idx2,1:(p-1)]; y < -x[idx2,p];
xtest < -x[-idx2,1:(p-1)]; ytest < -x[-idx2,p];
```

R code on the Spam data (continued)

```
set.seed(111);
MTRY<-2*floor(sqrt(p)); NTREE<-100;</pre>
nc<-2; cutoff<-rep(1/nc,nc);</pre>
myrf<-randomForest(xtrain,y,xtest=xtest,ytest=ytest,</pre>
          ntree=NTREE, mtry=MTRY,
          replace=TRUE, classwt=NULL, cutoff, strata,
          sampsize=nrow(xtrain),
          nodesize=if(!is.null(y) && !is.factor(y)) 5 else 1,
          importance=FALSE, localImp=FALSE,nPerm=1,
          proximity=FALSE,oob.prox=FALSE,
          norm.votes=TRUE,do.trace=FALSE,
          keep.forest=!is.null(y) && is.null(xtest),corr.bias=FA
          keep.onbag=FALSE);
```

Test on the Spam data

```
> print(myrf);
                     Number of trees: 100
No. of variables tried at each split: 8
        00B estimate of error rate: 5.32%
Confusion matrix:
          1 class.error
0 1809 59 0.03158458
  104 1093 0.08688388
               Test set error rate: 4.3%
Confusion matrix:
        1 class.error
0.898 22 0.02391304
1 44 572 0.07142857
```

German Credit data (numeric)

- Numeric version of data is used (a few indicator variables added)
- Response variable is whether the credit is good or bad
- Possible factors
 - Status of checking acct, duration(month), credit history, purpose
 - Credit amount, Savings acct/bonds, Present employment since
 - ► Installment rate in % disposable income, Personal status and sex
 - Other debtors/guarantors, Present residence since, Property, Age
 - ▶ Other installment plans, Housing, # existing credits at this bank
 - ▶ Job, # people being liable to provide maintenance for
 - Telephone, foreign worker.

R code on the German credit data

```
##The German Credit data
##install.packages("randomForest");
library(randomForest);
x <- read.table("germanCreditNum.Data",header=FALSE,sep="");</pre>
n \leftarrow nrow(x); p \leftarrow ncol(x);
x[,p] < -as.factor(x[,p]);
set.seed(111);
idx2<-sample(1:n,floor(n/2), replace=FALSE);
xtrain < -x[idx2,1:(p-1)]; y < -x[idx2,p];
xtest < -x[-idx2,1:(p-1)]; ytest < -x[-idx2,p];
```

R code on the German credit data (continued)

```
set.seed(111);
MTRY<-floor(2*sqrt(p-1)); NTREE<-50;
nc<-2; cutoff<-rep(1/nc,nc);</pre>
myrf<-randomForest(xtrain,y,xtest=xtest,ytest=ytest,</pre>
          ntree=NTREE, mtry=MTRY,
          replace=TRUE, classwt=NULL, cutoff, strata,
          sampsize=nrow(xtrain),
          nodesize=if(!is.null(y) && !is.factor(y)) 5 else 1,
          importance=FALSE, localImp=FALSE,nPerm=1,
          proximity=FALSE,oob.prox=FALSE,
          norm.votes=TRUE,do.trace=FALSE,
          keep.forest=!is.null(y) && is.null(xtest),corr.bias=FA
          keep.onbag=FALSE);
```

Test on the German credit data

```
> print(myrf);
                     Number of trees: 50
No. of variables tried at each split: 9
        00B estimate of error rate: 27.4%
Confusion matrix:
    1 2 class.error
1 313 46 0.1281337
2 91 50 0.6453901
               Test set error rate: 23.4%
Confusion matrix:
      2 class.error
1 309 32 0.09384164
2 85 74 0.53459119
```