Henry Watson

Georgetown University

8/14/23

• Introductions

- Introductions
- Math Camp Logistics and schedule

- Introductions
- Math Camp Logistics and schedule
- 3 Variables and measurement

- Introductions
- Math Camp Logistics and schedule
- Variables and measurement
- 4 Algebra

- Introductions
- Math Camp Logistics and schedule
- 3 Variables and measurement
- 4 Algebra
- 5 Functions

- Introductions
- Math Camp Logistics and schedule
- Variables and measurement
- 4 Algebra
- 6 Functions
- 6 Series, sequences, and limits

Week's Agenda

Week's Agenda

• Lecture 1: Notation, functions and limits

Week's Agenda

- Lecture 1: Notation, functions and limits
- Lecture 2: Linear Algebra

3 / 46

Week's Agenda

- Lecture 1: Notation, functions and limits
- Lecture 2: Linear Algebra
- Lecture 3: Calculus 1 Derivatives

- Lecture 1: Notation, functions and limits
- Lecture 2: Linear Algebra
- Lecture 3: Calculus 1 Derivatives
- Lecture 4: Calculus 2 Integrals and multivariate calculus

Week's Agenda

- Lecture 1: Notation, functions and limits
- Lecture 2: Linear Algebra
- Lecture 3: Calculus 1 Derivatives
- Lecture 4: Calculus 2 Integrals and multivariate calculus
- Lecture 5: Probability

Schedule

	Monday 14th	Tuesday 15th	Wednesday 16th	Thursday 17th	Friday 18th
9:30 - 12:00	Notation, func- tions, and lim- its	Linear algebra	Calculus 1	Calculus 2	Probability
12:00 - 12:10	Break	Break	Break	Break	Break
12:10 - 1:00	Problem Set	Problem Set	Problem Set	Lunch Break	LaTeX
1:00 - 2:00	Lunch Break	Lunch Break	Lunch Break	Problem Set	Lunch Break
2:00 - 2:30	Review PS	Review PS	Review PS	Review PS	Q&A with Prof Klasnja
2:30 - 3:30	Software Instal- lation	R - Day 1	R - Day 2	R - Day 3	Q&A Contin- ued

Familiarity

- Familiarity
- Recognition

5 / 46

- Familiarity
- Recognition
- Confidence

Ultimate goal is to improve our understanding of the world

- Ultimate goal is to improve our understanding of the world
- We use quantitative methods to test theories regarding the relationships between concepts

- Ultimate goal is to improve our understanding of the world
- We use quantitative methods to test theories regarding the relationships between concepts
- The goal of a "causal claim" is rarely achieved in full, but we can make compelling arguments

- Ultimate goal is to improve our understanding of the world
- We use quantitative methods to test theories regarding the relationships between concepts
- The goal of a "causal claim" is rarely achieved in full, but we can make compelling arguments
- Qualitative methods can answer "how" and "why" questions

Variables and Constants

• Theory: A set of statements that involve concepts.

- Theory: A set of statements that involve concepts.
- Concept: abstract ideas used to understand the world

- Theory: A set of statements that involve concepts.
- Concept: abstract ideas used to understand the world
 - Participation, voting, democracy, war

- Theory: A set of statements that involve concepts.
- Concept: abstract ideas used to understand the world
 - Participation, voting, democracy, war
- Measure: an operational indicator of a concept

- Theory: A set of statements that involve concepts.
- Concept: abstract ideas used to understand the world
 - Participation, voting, democracy, war
- Measure: an operational indicator of a concept
- Variable: A concept or measure that takes different values in a given set.

- Theory: A set of statements that involve concepts.
- Concept: abstract ideas used to understand the world
 - Participation, voting, democracy, war
- Measure: an operational indicator of a concept
- Variable: A concept or measure that takes different values in a given set.
- Constant: A concept or measure that has a single value for a given set.

• A set is a collection of elements.

- A set is a collection of elements.
- Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.

- A set is a collection of elements.
- Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:

8 / 46

- A set is a collection of elements.
- Common sets: Natural numbers (N), Integers (Z), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:
 - Finite or infinite: \mathbb{Z} is infinite, but all the integers from 1 to 10 is finite.

Sets and Sample Spaces

- A set is a collection of elements.
- Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:
 - Finite or infinite: Z is infinite, but all the integers from 1 to 10 is finite.
 - **Countable or uncountable:** a countable set is one whose each of its element can be associated with a natural number (or an integer).

Sets and Sample Spaces

- A set is a collection of elements.
- Common sets: Natural numbers (N), Integers (Z), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:
 - Finite or infinite: \mathbb{Z} is infinite, but all the integers from 1 to 10 is finite
 - Countable or uncountable: a countable set is one whose each of its element can be associated with a natural number (or an integer).
 - Bounded or unbounded: A bounded set has finite size (but may have infinite elements).

Sets and Sample Spaces

- A set is a collection of elements.
- Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:
 - Finite or infinite: Z is infinite, but all the integers from 1 to 10 is finite.
 - **Countable or uncountable:** a countable set is one whose each of its element can be associated with a natural number (or an integer).
 - Bounded or unbounded: A bounded set has finite size (but may have infinite elements).
- Some important sets that we are going to use as political scientists:

- A set is a collection of elements.
- Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:
 - Finite or infinite: Z is infinite, but all the integers from 1 to 10 is finite.
 - **Countable or uncountable:** a countable set is one whose each of its element can be associated with a natural number (or an integer).
 - **Bounded or unbounded:** A bounded set has finite size (but may have infinite elements).
- Some important sets that we are going to use as political scientists:
 - Solution set: a set that contains all solutions for an equation

- A set is a collection of elements.
- Common sets: Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Real Numbers (\mathbb{R}), etc.
- A set can be:
 - Finite or infinite: Z is infinite, but all the integers from 1 to 10 is finite.
 - **Countable or uncountable:** a countable set is one whose each of its element can be associated with a natural number (or an integer).
 - **Bounded or unbounded:** A bounded set has finite size (but may have infinite elements).
- Some important sets that we are going to use as political scientists:
 - Solution set: a set that contains all solutions for an equation
 - Sample space: a set that contains all values that a variable can take.

100

 Much as sets contain elements, they also can contain, and be contained by, other sets.

- Much as sets contain elements, they also can contain, and be contained by, other sets.
- Notation:

- Much as sets contain elements, they also can contain, and be contained by, other sets.
- Notation:
 - A ⊂ B: "A is a proper subset of B" implies that set B contains all the elements in A, plus at least one more

- Much as sets contain elements, they also can contain, and be contained by, other sets.
- Notation:
 - A ⊂ B: "A is a proper subset of B" implies that set B contains all the elements in A, plus at least one more
 - A ⊆ B: "A is a subset of B". In this case, it allows A and B to be the same.

- Much as sets contain elements, they also can contain, and be contained by, other sets.
- Notation:
 - A ⊂ B: "A is a proper subset of B" implies that set B contains all the elements in A, plus at least one more
 - A ⊂ B: "A is a subset of B". In this case, it allows A and B to be the same.
- **Intersection:** $A \cap B$. The set of elements common to two sets.

- Much as sets contain elements, they also can contain, and be contained by, other sets.
- Notation:
 - A \subset B: "A is a **proper subset** of B" implies that set B contains all the elements in A, plus at least one more
 - A ⊆ B: "A is a subset of B". In this case, it allows A and B to be the same.
- Intersection: $A \cap B$. The set of elements common to two sets.
- Union: A ∪ B. The set that contains all elements in both sets.

- Much as sets contain elements, they also can contain, and be contained by, other sets.
- Notation:
 - A ⊂ B: "A is a proper subset of B" implies that set B contains all the elements in A, plus at least one more
 - A ⊂ B: "A is a subset of B". In this case, it allows A and B to be the same.
- Intersection: A ∩ B. The set of elements common to two sets.
- Union: A ∪ B. The set that contains all elements in both sets.
- Mutually exclusive sets: the intersection is the empty set.

$A \subset B$ (Proper Subset)

$A \cap B$ (Intersection)

$$A \cap B = \emptyset$$
 (Mutually Exclusive)

Categorical

Solving Equations

- Categorical
 - Nominal: No mathematical relationship; difference of kind.

- Categorical
 - Nominal: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender

Categorical

- Nominal: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
- Ordinal: Meaningful order, no meaningful "distance" between categories.

- Categorical
 - **Nominal**: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level

- Categorical
 - Nominal: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level
- Numerical

- Categorical
 - **Nominal**: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level
- Numerical
 - Interval: Meaningful order and distance between values.

- Categorical
 - **Nominal**: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level
- Numerical
 - Interval: Meaningful order and distance between values.
 - Age, budget, polity scores, vote share, feeling thermometer

- Categorical
 - **Nominal**: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level
- Numerical
 - Interval: Meaningful order and distance between values.
 - · Age, budget, polity scores, vote share, feeling thermometer
 - Discrete: countable

- Categorical
 - **Nominal**: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level
- Numerical
 - Interval: Meaningful order and distance between values.
 - · Age, budget, polity scores, vote share, feeling thermometer
 - Discrete: countable
 - Continuous: non-countable

- Categorical
 - **Nominal**: No mathematical relationship; difference of kind.
 - Occupation, colors, political party, gender
 - Ordinal: Meaningful order, no meaningful "distance" between categories.
 - Ideology, agree/disagree, education level
- Numerical
 - Interval: Meaningful order and distance between values.
 - Age, budget, polity scores, vote share, feeling thermometer
 - Discrete: countable
 - Continuous: non-countable
 - Ratio: meaningful zero (re-scaled thermometer)

Why it Matters

Solving Equations

Why it Matters

- Visualizaton
 - Categorical: pie charts, bar charts
 - Numerical (especially Continuous): histograms, box plots

Why it Matters

- Visualizaton
 - Categorical: pie charts, bar charts
 - Numerical (especially Continuous): histograms, box plots
- Analysis
 - Numerical data can use summary statistics (mean, median, standard deviation)
 - Categorical Categorical : cross-tabulation
 - Categorical Continuous : difference in means
 - Continuous Continuous : scatter plots, regression

• For variables that stand for real numbers or integers, these properties will always hold:

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:
 - (a+b)+c=a+(b+c)

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:
 - (a+b)+c=a+(b+c)
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:
 - (a+b)+c=a+(b+c)
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Commutative properties:

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:
 - (a+b)+c=a+(b+c)
 - $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Commutative properties:
 - a + b = b + a

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a + b = b + a
 - $a \cdot b = b \cdot a$

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a + b = b + a
 - $a \cdot b = b \cdot a$
- Distributive properties:

Basic properties of arithmetic

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Commutative properties:

•
$$a + b = b + a$$

•
$$a \cdot b = b \cdot a$$

- Distributive properties:
 - $a \cdot (b+c) = ab+ac$

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a + b = b + a
 - $a \cdot b = b \cdot a$
- Distributive properties:
 - $a \cdot (b+c) = ab+ac$
- Identity properties:

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a + b = b + a
 - $a \cdot b = b \cdot a$
- Distributive properties:
 - $a \cdot (b+c) = ab+ac$
- Identity properties:
 - a + 0 = a

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a + b = b + a
 - $a \cdot b = b \cdot a$
- Distributive properties:
 - $a \cdot (b+c) = ab+ac$
- Identity properties:
 - a + 0 = a
 - $a \cdot 1 = a$

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Commutative properties:

•
$$a + b = b + a$$

•
$$a \cdot b = b \cdot a$$

Distributive properties:

•
$$a \cdot (b+c) = ab+ac$$

Identity properties:

•
$$a + 0 = a$$

•
$$a \cdot 1 = a$$

Inverse properties (for real numbers not integers):

- For variables that stand for real numbers or integers, these properties will always hold:
- Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a+b=b+a
 - $a \cdot b = b \cdot a$
- Distributive properties:
 - $a \cdot (b+c) = ab+ac$
- Identity properties:
 - a + 0 = a
 - $a \cdot 1 = a$
- Inverse properties (for real numbers not integers):
 - (-a) + a = 0

 For variables that stand for real numbers or integers, these properties will always hold:

Solving Equations

Associative properties:

•
$$(a+b)+c=a+(b+c)$$

•
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

- Commutative properties:
 - a+b=b+a
 - $a \cdot b = b \cdot a$
- Distributive properties:
 - $a \cdot (b+c) = ab+ac$
- Identity properties:
 - a + 0 = a
 - $a \cdot 1 = a$
- Inverse properties (for real numbers not integers):
 - (-a) + a = 0
 - $a^{-1} \cdot a = 1$

Order of operations

• Order of operations - PEMDAS:

- Order of operations PEMDAS:
 - Parentheses ()

- Order of operations PEMDAS:
 - Parentheses ()
 - Exponents (^x)

- Order of operations PEMDAS:
 - Parentheses ()
 - Exponents (x)
 - Multiplication (·)

- Order of operations PEMDAS:
 - Parentheses ()
 - Exponents (x)
 - Multiplication (·)
 - Division (÷)

Order of operations

Variables & measures

- Order of operations PEMDAS:
 - Parentheses ()
 - Exponents (x)
 - Multiplication (·)
 - Division (÷)
 - Addition (+)

- Order of operations PEMDAS:
 - Parentheses ()
 - Exponents (x)
 - Multiplication (·)
 - Division (÷)
 - Addition (+)
 - Subtraction (-)

- Order of operations PEMDAS:
 - Parentheses ()
 - Exponents (x)
 - Multiplication (·)
 - Division (÷)
 - Addition (+)
 - Subtraction (-)

Rules of Algebra

Inequalities

• All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:
 - If a is positive and x > y, then ax > ay.

18 / 46

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:
 - If a is positive and x > y, then ax > ay.
 - If a is negative and x > y, then ax < ay.

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:
 - If a is positive and x > y, then ax > ay.
 - If a is negative and x > y, then ax < ay.
- Division:

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:
 - If a is positive and x > y, then ax > ay.
 - If a is negative and x > y, then ax < ay.
- Division:
 - If a is positive and x > y, then $\frac{x}{a} > \frac{y}{a}$.

- All pairs of real numbers have exactly one of the following relations: x = y, x > y, or x < y.
- Solving inequalities is similar to solving equations but there are a few extra properties
- Adding any number to each side of these relations will not change them; this includes inequalities.
- Multiplication:
 - If a is positive and x > y, then ax > ay.
 - If a is negative and x > y, then ax < ay.
- Division:
 - If a is positive and x > y, then x/a > y/a.
 If a is negative and x > y, then x/a < y/a.

Exponents, logarithms, and roots

• Exponential: x^a

- Exponential: x^a
- Roots: $\sqrt[3]{x}$
 - All roots can be expressed as fractional exponents
 - $\sqrt[a]{x} = x^{1/a}$
- Logarithm: inverse of exponents log_ax
 - To what power would you need to raise a to to get x?

Exponents, logarithms, and roots

- Exponential: x^a
- Roots: $\sqrt[3]{x}$
 - All roots can be expressed as fractional exponents
 - $\sqrt[a]{x} = x^{1/a}$
- Logarithm: inverse of exponents log_ax
 - To what power would you need to raise a to to get x?
- Natural log: log base e
 - $e \approx 2.7183$
 - Useful properties in calculus
 - Taking the natural log of a variable allows us to interpret relationships in terms of percentage changes

Exponent rules

Exponent, logarithms and root rules

Exponent rules

•
$$x^a \cdot x^b = x^{a+b}$$

Exponent, logarithms and root rules

Exponent rules

Variables & measures

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$

Exponent, logarithms and root rules

Exponent rules

Variables & measures

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$

Exponent, logarithms and root rules

Exponent rules

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$
- $\frac{x^a}{y^b} = x^{a-b}$

Exponent, logarithms and root rules

Exponent rules

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$
- $\frac{x^a}{y^b} = x^{a-b}$
- $\frac{X^a}{7^a} = (\frac{X}{7})^a$

Rules of Algebra

000000

Exponent rules

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$
- $\frac{x^a}{y^b} = x^{a-b}$
- $\frac{X^a}{7^a} = (\frac{X}{7})^a$

Logarithm rules

Exponent rules

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$
- $\frac{x^a}{x^b} = x^{a-b}$
- $\frac{x^a}{z^a} = (\frac{x}{z})^a$

Logarithm rules

• $log(x_1 \cdot x_2) = log(x_1) + log(x_2)$ for $x_1, x_2 > 0$

Exponent rules

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$
- $\frac{x^a}{x^b} = x^{a-b}$
- $\frac{x^a}{z^a} = (\frac{x}{z})^a$

Logarithm rules

- $log(x_1 \cdot x_2) = log(x_1) + log(x_2)$ for $x_1, x_2 > 0$
- $log(\frac{x_1}{x_2}) = log(x_1) log(x_2)$ for $x_1, x_2 > 0$

Exponent rules

Variables & measures

- $x^a \cdot x^b = x^{a+b}$
- $x^a \cdot z^a = (xz)^a$
- $(x^a)^b = x^{ab}$
- $\frac{x^a}{a^b} = x^{a-b}$
- $\frac{x^a}{7a} = (\frac{x}{7})^a$

Logarithm rules

Solving Equations

- $log(x_1 \cdot x_2) = log(x_1) + log(x_2)$ for $x_1, x_2 > 0$
- $log(\frac{x_1}{x_2}) = log(x_1) log(x_2)$ for $x_1, x_2 > 0$
- $log(x^b) = b \cdot ln(x)$ for x > 0

Exponent, logarithms and root rules

Root rules

- $\sqrt{x} = x^{\frac{1}{2}}$
- $\sqrt[n]{x} \cdot \sqrt[n]{z} = \sqrt[n]{xz}$ for n > 1
- $\bullet \ \ \frac{\sqrt[n]{x}}{\sqrt[n]{z}} = \sqrt[n]{\frac{x}{z}}$ for n > 1

Functions and its characteristics

 Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work)

- Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work)
- Functions assign one element of the range to an element of the domain (one x is assigned to one y)

- Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work)
- Functions assign one element of the range to an element of the domain (one x is assigned to one y)
- Noted as $f(x): A \to B$ or "f maps A into B"

- Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work)
- Functions assign one element of the range to an element of the domain (one x is assigned to one y)
- Noted as $f(x): A \rightarrow B$ or "f maps A into B"
- A is the *domain*, or set of possible x values.

- Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work)
- Functions assign one element of the range to an element of the domain (one x is assigned to one y)
- Noted as $f(x): A \to B$ or "f maps A into B"
- A is the *domain*, or set of possible x values.
- B is the *codomain*, or set of possible y values.

- Functions provide a specific description of the association or relationship between two (or among several) concepts (in theoretical work) or variables (in empirical work)
- Functions assign one element of the range to an element of the domain (one x is assigned to one y)
- Noted as $f(x): A \to B$ or "f maps A into B"
- A is the *domain*, or set of possible x values.
- B is the *codomain*, or set of possible y values.
- To be a function, there must only be one unique value in its range (y) for each value in its domain (x)

Graph examples

In which of these graphs can we observe a function?

Solving Equations

Figure: b)

Graph examples

In which of these graphs can we observe a function?

Figure: b)

Function composition

• We can chain multiple functions using function composition.

- We can chain multiple functions using function composition.
 - This is written either as $g \circ f(x)$ or g(f(x)).

- We can chain multiple functions using function composition.
 - This is written either as $g \circ f(x)$ or g(f(x)).
 - It is read as "g composed with f" or "g of f of x"

- We can chain multiple functions using function composition.
 - This is written either as $g \circ f(x)$ or g(f(x)).
 - It is read as "g composed with f" or "g of f of x"
 - Generally, $g \circ f(x) \neq f \circ g(x)$

- We can chain multiple functions using function composition.
 - This is written either as $g \circ f(x)$ or g(f(x)).
 - It is read as "g composed with f" or "g of f of x"
 - Generally, $g \circ f(x) \neq f \circ g(x)$
- Example: Suppose f(x) = 2x and $g(x) = x^3$

- We can chain multiple functions using function composition.
 - This is written either as $g \circ f(x)$ or g(f(x)).
 - It is read as "g composed with f" or "g of f of x"
 - Generally, $g \circ f(x) \neq f \circ g(x)$
- Example: Suppose f(x) = 2x and $g(x) = x^3$
 - $g \circ f(x) = (2x)^3 = 8x^3$

- We can chain multiple functions using function composition.
 - This is written either as $g \circ f(x)$ or g(f(x)).
 - It is read as "g composed with f" or "g of f of x"
 - Generally, $g \circ f(x) \neq f \circ g(x)$
- Example: Suppose f(x) = 2x and $g(x) = x^3$
 - $g \circ f(x) = (2x)^3 = 8x^3$
 - $f \circ g(x) = 2(x^3) = 2x^3$

Figure: y=2+x

Figure: y=2+x

 This is the classic linear equation y = a + bx or y = mx + n

Solving Equations

Figure: y=2+x

 This is the classic linear equation y = a + bx or y = mx + n

Solving Equations

a and b are constants and x is the variable.

Figure: y=2+x

 This is the classic linear equation y = a + bx or y = mx + n

Solving Equations

- a and b are constants and x is the variable.
- a is the intercept and b is the slope of the line, or the amount that y changes given a one-unit increase in x.

Examples of functions of one variable - Quadratic function

Figure: $y = -2x^2 + 8x + 6$

Examples of functions of one variable - Quadratic function

Figure: $y = -2x^2 + 8x + 6$

• This is the classical quadratic function:

$$f(x) = ax^2 + bx + c$$
 or
 $f(x) = \alpha + \beta_1 x + \beta_2 x^2$

Examples of functions of one variable - Quadratic function

Figure: $y = -2x^2 + 8x + 6$

- This is the classical quadratic function: $f(x) = ax^2 + bx + c$ or
 - $f(x) = ax^2 + bx + c$ or $f(x) = \alpha + \beta_1 x + \beta_2 x^2$
- If we set a > 0 ($\beta_2 > 0$) we get a curve shaped like an U (a convex parabola).

Examples of functions of one variable - Quadratic function

Figure: $y = -2x^2 + 8x + 6$

- This is the classical quadratic function: $f(x) = ax^2 + bx + c$ or $f(x) = \alpha + \beta_1 x + \beta_2 x^2$
- If we set a > 0 ($\beta_2 > 0$) we get a curve shaped like an U (a convex parabola).
- If we set a < 0 ($\beta_2 < 0$) we get a curve shaped like an inverse U (a concave parabola).

Exponent, logarithms and roots - Graphs Exponential function

Logarithmic function

Root function

Solving Equations

Henry Watson (Georgetown)

8/14/23

Functions and Theorizing

• Functions are important for theorizing about politics

- Functions are important for theorizing about politics
- Most quantitative social science boils down to how two variables relate!

- Functions are important for theorizing about politics
- Most quantitative social science boils down to how two variables relate!
- Our examples suggest a precise function between x and y

- Functions are important for theorizing about politics
- Most quantitative social science boils down to how two variables relate!
- Our examples suggest a precise function between x and y
- In statistics, you will theorize the functional form of the relationship

- Functions are important for theorizing about politics
- Most quantitative social science boils down to how two variables relate!
- Our examples suggest a precise function between x and y
- In statistics, you will theorize the functional form of the relationship
- Statistical methods will estimate the most appropriate parameters; "a line of best fit"

Anscombe's Quartet

Variables & measures

Solving Equations

1 Isolate the variable you are looking for

- 1 Isolate the variable you are looking for
- 2 Combine like terms

- 1 Isolate the variable you are looking for
- 2 Combine like terms
- § Factor and cancel

- 1 Isolate the variable you are looking for
- 2 Combine like terms
- § Factor and cancel
- 4 Operate on both sides of the equation

- 1 Isolate the variable you are looking for
- 2 Combine like terms
- § Factor and cancel
- Operate on both sides of the equation
- 6 Check your answer

$$(a-b)^2 = a^2 - 2ab + b^2$$

0000000

Special products

Variables & measures

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

0000000

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

$$(a+b)(a-b) = a^2 - b^2$$

Special products

Variables & measures

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

$$(a+b)(a-b) = a^2 - b^2$$

6
$$(a+b+c)^2 = a^2+b^2+c^2+2(ab+ac+bc)$$

00000000

2
$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

$$(a+b)(a-b) = a^2 - b^2$$

6
$$(a+b+c)^2 = a^2+b^2+c^2+2(ab+ac+bc)$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

Factoring

$$\frac{3x^4 + 3x^3 - 6x^2}{6x^2 + 12x} \tag{1}$$

Factoring

$$\frac{3x^4 + 3x^3 - 6x^2}{6x^2 + 12x} \tag{1}$$

$$\frac{3x^2(x^2+x-2)}{6x(x+2)}$$
 (2)

$$\frac{3x^4 + 3x^3 - 6x^2}{6x^2 + 12x} \tag{1}$$

$$\frac{3x^2(x^2+x-2)}{6x(x+2)}$$
 (2)

$$\frac{3x^2(x+2)(x-1)}{6x(x+2)}$$
 (3)

Factoring

$$\frac{3x^4 + 3x^3 - 6x^2}{6x^2 + 12x} \tag{1}$$

$$\frac{3x^2(x^2+x-2)}{6x(x+2)}$$
 (2)

$$\frac{3x^2(x+2)(x-1)}{6x(x+2)}$$
 (3)

$$\frac{3x^2(x-1)}{6x} \tag{4}$$

Factoring

$$\frac{3x^4 + 3x^3 - 6x^2}{6x^2 + 12x} \tag{1}$$

$$\frac{3x^2(x^2+x-2)}{6x(x+2)}$$
 (2)

$$\frac{3x^2(x+2)(x-1)}{6x(x+2)}$$
 (3)

$$\frac{3x^2(x-1)}{6x} \tag{4}$$

$$\frac{x(x-1)}{2} \tag{5}$$

Quadratic polynomials can be factored into the product of two terms:

$$(x\pm?)\times(x\pm?)$$

$$x^2 - 8x + 16 = 9 (6)$$

Solving Equations

00000000

ററാക്ററററ

Quadratics and Special Products

Quadratic polynomials can be factored into the product of two terms:

$$(x\pm?)\times(x\pm?)$$

 $x^2-8x+16=9$ (6)

 $(x\pm?)\times(x\pm?)=x^2-8x+16$

Quadratic polynomials can be factored into the product of two terms:

$$(x\pm?)\times(x\pm?)$$

Variables & measures

$$x^2 - 8x + 16 = 9 (6)$$

Solving Equations

ററാക്ററററ

$$(x\pm?)\times(x\pm?) = x^2 - 8x + 16$$

$$(x-4)^2 = 9 (7)$$

Quadratic polynomials can be factored into the product of two terms:

$$(x\pm?)\times(x\pm?)$$

Variables & measures

$$x^2 - 8x + 16 = 9 (6)$$

Solving Equations

ററാക്ററററ

$$(x\pm?)\times(x\pm?) = x^2 - 8x + 16$$

$$(x-4)^2 = 9 (7)$$

$$(x-4) = \pm 3 \tag{8}$$

Quadratic polynomials can be factored into the product of two terms:

$$(x\pm?)\times(x\pm?)$$

Variables & measures

$$x^2 - 8x + 16 = 9 \tag{6}$$

Solving Equations

ററാക്ററററ

$$(x\pm?)\times(x\pm?) = x^2 - 8x + 16$$

$$(x-4)^2 = 9 (7)$$

$$(x-4) = \pm 3 \tag{8}$$

$$x = 4 \pm 3 \tag{9}$$

Quadratic polynomials can be factored into the product of two terms:

$$(x\pm?)\times(x\pm?)$$

$$x^2 - 8x + 16 = 9 (6)$$

Solving Equations

ററാക്ററററ

$$(x\pm?)\times(x\pm?) = x^2 - 8x + 16$$

$$(x-4)^2 = 9 (7)$$

$$(x-4) = \pm 3 \tag{8}$$

$$x = 4 \pm 3 \tag{9}$$

$$x = 1 \text{ OR } x = 7$$

Henry Watson (Georgetown)

Why two solutions?

Why two solutions?

$$x^2 + 7x = -12 \tag{10}$$

$$x^2 + 7x = -12 \tag{10}$$

$$x^2 + 7x + 12 = 0 (11)$$

Another example

$$x^2 + 7x = -12 \tag{10}$$

$$x^2 + 7x + 12 = 0 (11)$$

How can we use special products here? Find a and b

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$
 (12)

Another example

$$x^2 + 7x = -12 \tag{10}$$

$$x^2 + 7x + 12 = 0 (11)$$

How can we use special products here? Find a and b

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$
 (12)

Solving Equations

ററററ്റററ

$$(x+3)(x+4) = 0 (13)$$

Another example

$$x^2 + 7x = -12 \tag{10}$$

$$x^2 + 7x + 12 = 0 (11)$$

How can we use special products here? Find a and b

$$(x+a)(x+b) = x^2 + (a+b)x + ab$$
 (12)

Solving Equations

ററററ്റററ

$$(x+3)(x+4) = 0 (13)$$

Either
$$x + 3 = 0 \text{ OR } x + 4 = 0$$

 $x = -3 \text{ OR } x = -4$

Useful if special products can't easily be found!

$$3x^2 + 8x - 13 = 0 (14)$$

Solving Equations

Quadratic Formula

Useful if special products can't easily be found!

$$3x^2 + 8x - 13 = 0 (14)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{15}$$

Quadratic Formula

$$3x^2 + 8x - 13 = 0 (16)$$

Quadratic Formula

$$3x^2 + 8x - 13 = 0 \tag{16}$$

$$x = \frac{-8 \pm \sqrt{8^2 - (4 * 3 * -13)}}{2 * 3} \tag{17}$$

$$3x^2 + 8x - 13 = 0 \tag{16}$$

$$x = \frac{-8 \pm \sqrt{8^2 - (4 * 3 * -13)}}{2 * 3} \tag{17}$$

$$x = \frac{-8 + \sqrt{220}}{6}$$
 (18)
$$x = \frac{-8 - \sqrt{220}}{6}$$
 (20)

$$x \approx 1.14$$
 (19) $x \approx -3.81$ (21)

4□ > 4□ > 4 = > 4 = > = 90

Checking our work graphically

• A sequence is an ordered list of numbers

- A sequence is an ordered list of numbers
 - A sequence can be infinite, such as 1,2,3,4...

- A sequence is an ordered list of numbers
 - A sequence can be infinite, such as 1,2,3,4...
 - Or a sequence can be finite, such as 5,10,15,20,25

- A sequence is an ordered list of numbers
 - A sequence can be infinite, such as 1,2,3,4...
 - Or a sequence can be finite, such as 5,10,15,20,25
- A series is the sum of a sequence.

- A sequence is an ordered list of numbers
 - A sequence can be infinite, such as 1,2,3,4...
 - Or a sequence can be finite, such as 5,10,15,20,25
- A series is the sum of a sequence.
 - Typically noted as $\sum_{i=1}^{N} x_i$ which means add the terms in the sequence beginning at x_1 and stopping at x_n .

- A sequence is an ordered list of numbers
 - A sequence can be infinite, such as 1,2,3,4...
 - Or a sequence can be finite, such as 5,10,15,20,25
- A series is the sum of a sequence.
 - Typically noted as $\sum_{i=1}^{N} x_i$ which means add the terms in the sequence beginning at x_1 and stopping at x_n .
 - For an infinite sequence, $N = \infty$

Variables & measures

Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.

- Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.
 - A sequence/series/function *converges* if it has a finite limit.

Variables & measures

- Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.
 - A sequence/series/function *converges* if it has a finite limit.
 - A sequence/series/function *diverges* if it has no limit or the limit is $\pm \infty$

41 / 46

- Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.
 - A sequence/series/function *converges* if it has a finite limit.
 - A sequence/series/function *diverges* if it has no limit or the limit is $\pm \infty$
- The limit of a sequence is the number L such that as we approach infinity, x_i gets arbitrarily close to L. Noted as: $\lim_{i\to\infty} x_i = L$

- Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.
 - A sequence/series/function converges if it has a finite limit.
 - ullet A sequence/series/function *diverges* if it has no limit or the limit is $\pm\infty$
- The limit of a sequence is the number L such that as we approach infinity, x_i gets arbitrarily close to L. Noted as: $\lim_{i\to\infty} x_i = L$
- Example of the limit of a sequence:

- Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.
 - A sequence/series/function *converges* if it has a finite limit.
 - A sequence/series/function diverges if it has no limit or the limit is $\pm \infty$
- The limit of a sequence is the number L such that as we approach infinity, x_i gets arbitrarily close to L. Noted as: $\lim_{i\to\infty} x_i = L$
- Example of the limit of a sequence:
 - The limit of the sequence $\{i\}_{i=1}^{\infty}$ does not have an "endpoint" and approaches infinity, so it diverges.

- Limits help us describe the behavior of a sequence, series, or function as it approaches a given value.
 - A sequence/series/function converges if it has a finite limit.
 - A sequence/series/function diverges if it has no limit or the limit is $\pm \infty$
- The limit of a sequence is the number L such that as we approach infinity, x_i gets arbitrarily close to L. Noted as: $\lim_{i\to\infty} x_i = L$
- Example of the limit of a sequence:
 - The limit of the sequence $\{i\}_{i=1}^{\infty}$ does not have an "endpoint" and approaches infinity, so it diverges.
 - The limit of the sequence $\{\frac{3}{10^i}\}_{i=1}^{\infty}$ approaches zero as $i \to \infty$, so it converges.

• The limit of a series is similar, but you are not looking for an "endpoint". In this case, you are looking for the sum of all elements in an infinite sequence. For example:

- The limit of a series is similar, but you are not looking for an "endpoint". In this case, you are looking for the sum of all elements in an infinite sequence. For example:
 - $\lim_{n\to\infty} \sum_{i=1}^n i = \infty$ So, this series is divergent.

- The limit of a series is similar, but you are not looking for an "endpoint". In this case, you are looking for the sum of all elements in an infinite sequence. For example:
 - $\lim_{n\to\infty}\sum_{i=1}^n i=\infty$ So, this series is divergent.
 - $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{2^i}$. This series converges. Where?

- The limit of a series is similar, but you are not looking for an "endpoint". In this case, you are looking for the sum of all elements in an infinite sequence. For example:
 - $\lim_{n\to\infty}\sum_{i=1}^n i=\infty$ So, this series is divergent.
 - $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{2^i}$. This series converges. Where?
- For a function y = f(x), the limit is the value of y that the function tend towards as small steps are taken towards a value x = c

- The limit of a series is similar, but you are not looking for an "endpoint". In this case, you are looking for the sum of all elements in an infinite sequence. For example:
 - $\lim_{n\to\infty} \sum_{i=1}^n i = \infty$ So, this series is divergent.
 - $\lim_{n\to\infty}\sum_{i=1}^n\frac{1}{2^i}$. This series converges. Where?
- For a function y = f(x), the limit is the value of y that the function tend towards as small steps are taken towards a value x = c
- Piecewise function: the function (relationship between x and y) is different for different parts of the domain

Solving Equations

Piecewise Function Example

Example: Estimate the value of the following limits: $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$ for the following function:

Piecewise Function Example

Example: Estimate the value of the following limits: $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$ for the following function:

An infinite number of mathematicians walk into a bar. The first one tells the bartender he wants a beer. The second one says he wants half a beer. The third one says she wants a fourth of a beer.

The bartender interrupts, puts two beers on the bar and says, "You people need to learn your limits."

Solving Equations

• The function $f(x) = \frac{1}{x-5}$ is undefined at which value of x?

- The function $f(x) = \frac{1}{x-5}$ is undefined at which value of x?
- The function f(x) has a limit at x = 5

- The function $f(x) = \frac{1}{x-5}$ is undefined at which value of x?
- The function f(x) has a limit at x = 5
- What is the value of $\lim_{x\to 5} f(x)$

- The function $f(x) = \frac{1}{x-5}$ is undefined at which value of x?
- The function f(x) has a limit at x = 5
- What is the value of $\lim_{x\to 5} f(x)$
- Does that value change whether we approach the limit from negative or positive?

- The function $f(x) = \frac{1}{x-5}$ is undefined at which value of x?
- The function f(x) has a limit at x = 5
- What is the value of $\lim_{x\to 5} f(x)$
- Does that value change whether we approach the limit from negative or positive?
- Functions are continuous if they do not have sudden breaks, and discontinuous otherwise

Math Camp Exercises - Day 1

- M&S Chapter 1: Exercises 3, 5
- 2 M&S Chapter 2: Exercises 16, 17, 19, 20, 21, 22, 26, 29
- 3 M&S Chapter 3: Exercises 2, 3
- 4 M&S Chapter 4: Exercises 3, 4, 5, 6, 9

