Formule per l'esame di Probabilità e Statistica (2015–2016)

- Dato uno spazio Ω allora \mathcal{A} è una tribù su Ω se
 - 1. $\Omega \in \mathcal{A}$;
 - 2. se $A \in \mathcal{A}$ allora $A^c \in \mathcal{A}$;
 - 3. se $\{A_i\}_{i\in I}$ è un insieme numerabile di sottoinsiemi di Ω tali che $A_i \in \mathcal{A}$ per $\forall i \in I$ allora $\bigcup_{i \in I} A_i \in \mathcal{A}$
- Dato un spazio probabilizzabile (Ω, \mathcal{A}) , una **Probabilità** Pr è un'applicazione $Pr: \mathcal{A} \to \mathbb{R}^+$ tale che
 - 1. (non negatività) se $A \in \mathcal{A}$ allora $Pr(A) \geq 0$;
 - 2. (normalizzazione) $Pr(\Omega) = 1$;
 - 3. $(\sigma$ -additività) Se $\{A_i\}_{i=1}^{\infty}$ è una successione di eventi di \mathcal{A} a due a due incompatibili (cioè $A_i \cap A_j = \emptyset, i \neq j$), allora

$$\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \Pr(A_i)$$

• Se A è un evento di probabilità Pr(A) allora la probabilità che A non si verifichi è

$$\Pr(A^c) = 1 - \Pr(A)$$

 \bullet Se A e B sono due eventi, allora la probabilità che se ne verifichi almeno uno è data da

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

• Se A è un evento che implica l'evento B, cioè se $A \subseteq B$, allora

$$\Pr(B) = \Pr(A) + \Pr(B \cap A^c) \ge \Pr(A)$$

• Sia $\{A_i\}_{i=1}^{\infty}$ una famiglia di eventi che costituisce una Classe Completa di Ω tale che

$$-\Pr(A_i) > 0, i = 1, 2, \cdots$$

Sia B un qualunque evento. Allora

$$\Pr(B) = \sum_{i=1}^{\infty} \Pr(A_i \cap B) = \sum_{i=1}^{\infty} \Pr(A_i) \Pr(B|A_i)$$

• Sia $\{A_i\}_{i=1}^{\infty}$ una Classe Completa di eventi tale che

$$-\Pr(A_i) > 0, i = 1, 2, \cdots$$

e B un qualunque evento con Pr(B) > 0. Allora

$$\Pr(A_i|B) = \frac{\Pr(A_i)\Pr(B|A_i)}{\sum_{j=1}^{\infty}\Pr(A_j)\Pr(B|A_j)} \qquad j = 1, 2, \dots$$

• Dato un insieme $S = \{a_1, a_2, \cdots, a_n\}$ di n oggetti distinti, il numero degli allineamenti che si possono formare con r oggetti scelti tra gli n – ritenendo diversi due allineamenti o perché contengono oggetti differenti o perché gli stessi oggetti si susseguono in ordine diverso o, infine, perché uno stesso oggetto si ripete un numero diverso di volte – è dato da

$$D_{n,r}^* = n^r$$

• Dato un insieme $S = \{a_1, a_2, \cdots, a_n\}$ di n oggetti distinti, il numero degli allineamenti che si possono formare con $1 \le r \le n$ oggetti scelti tra gli n – ritenendo diversi due allineamenti o perché contengono oggetti differenti o perché gli stessi oggetti si susseguono in ordine diverso – è dato da

$$D_{n,r} = n(n-1)(n-2)\cdots(n-r+1)$$

- Dato un insieme $S = \{a_1, a_2, \dots, a_n\}$ di n oggetti distinti, il numero degli allineamenti che si possono formare con tutti essi ritenendo diversi due allineamenti perchè gli oggetti si susseguono in ordine diverso è dato da n! (si pone 0! = 1).
- Dato un insieme $S = \{a_1, a_2, \dots, a_n\}$ di n oggetti distinti, il numero degli allineamenti che si possono formare con $1 \le r \le n$ oggetti scelti tra gli n ritenendo diversi due allineamenti solo perché contengono oggetti differenti è dato da

$$C_{n,r} = \frac{D_{n,r}}{r!}$$

• Se (X_1, \dots, X_n) sono variabili casuali indipendenti ed identicamente distribuite come una $N(\mu, \sigma^2)$ allora

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

e quindi

$$\frac{\sqrt{n}\left(\bar{X} - \mu\right)}{\sigma} \sim N(0, 1) \qquad ;$$

 $\bullet\,$ Se $X \sim \mathrm{Bi}(p,n)$ allora, per n pnon troppo piccolo, la distribuzione di

$$\frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$

è approssimabile con quella di una normale standard;

- Se (X_1, \dots, X_n) sono variabili casuali indipendenti ed identicamente distribuite come una $N(\mu, \sigma^2)$ allora $\frac{\sqrt{n}(\bar{x}-\mu)}{s} \sim t$ di student con n-1 gradi di libertà, dove $\bar{s} = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$;
- Se (X_1, \dots, X_n) sono variabili casuali indipendenti ed identicamente distribuite come una normale $N(\mu, \sigma^2)$ allora la quantità Pivot

$$C = \frac{(n-1)\bar{S}^2}{\sigma^2}$$

ha distribuzione χ^2 con (n-1) gradi di libertà;

• Se (X_1, \dots, X_n) e (Y_1, \dots, Y_n) sono variabili casuali indipendenti ed identicamente distribuite come una normale $N(\mu_x, \sigma_x^2)$ e $N(\mu_y, \sigma_y^2)$ rispettivamente allora la quantità Pivot

$$F = \frac{\bar{S}_x^2/\sigma_x^2}{\bar{S}_y^2/\sigma_y^2}$$

ha distribuzione F con $(n_x - 1, n_y - 1)$ gradi di libertà;

• Se (X_1, \dots, X_n) e (Y_1, \dots, Y_n) sono variabili casuali indipendenti ed identicamente distribuite come una normale $N(\mu_x, \sigma_x^2)$ e $N(\mu_y, \sigma_y^2)$ rispettivamente allora $\frac{(\bar{y}-\bar{x})}{s\sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t_{n+m-2}$ dove \bar{y} e \bar{x} sono le medie dei due campioni mentre

$$s^{2} = \frac{1}{n+m-2} \left[\sum_{i=1}^{n} (y_{i} - \bar{y})^{2} + \sum_{i=1}^{m} (x_{i} - \bar{x})^{2} \right]$$

se le due varianze sono supposte uguali (cioè $\sigma_y^2 = \sigma_x^2$);

• Se X è una variabile casuale normale $N(\mu, \sigma^2)$ allora la sua densità è

$$m(x; \mu, \sigma^2) = \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \left[-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2} \right] - \infty < x < \infty$$

con $E(X) = \mu \, \operatorname{e} \, \operatorname{Var}(X) = \sigma^2;$

 \bullet Se X è una variabile casuale binomiale $\mathrm{Bi}(p,n)$ allora la sua funzione di probabilità è

$$m(x; p, n) = \binom{n}{x} p^x (1-p)^{n-x}$$
 $x = 0, 1 \dots, n; \ 0 \le p \le 1$

 $\operatorname{con} E(X) = n \ p \ \operatorname{eVar}(X) = n \ p \ (1 - p);$

• Se X è una variabile casuale di Poisson $P(\lambda)$ allora la sua funzione di probabilità è

$$m(x; \lambda) = \frac{\lambda^x \exp[-\lambda]}{x!}$$
 $x = 0, 1 \dots; \ 0 \le \lambda < +\infty$

con $E(X) = \lambda$ e $Var(X) = \lambda$;

• Se X è una variabile casuale esponenziale $\operatorname{Exp}(\lambda)$ allora la sua funzione di probabilità è

$$m(x; \lambda) = \lambda \exp[-\lambda x]$$
 $0 \le \lambda < +\infty$

con
$$E(X) = 1/\lambda$$
 e $Var(X) = 1/\lambda^2$;

• Se X è una variabile casuale ipergeometrica $\operatorname{IperG}(M,N,n)$ allora la sua funzione di probabilità è

$$m(x; M, N, n) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}} , \max[0, n-(N-M)] \le x \le \min(n, M)$$

con
$$E(X) = np$$
 e $Var(X) = np(1-p)\frac{N-n}{N-1}$ dove si è posto $p = M/N$;

 \bullet Se X è la variabile casuale geometrica $\mathrm{Ge}(\mathbf{p})$ allora la sua funzione di probabilità è

$$m(x; p) = p(1-p)^{x-1}, \qquad x = 1, 2, 3, \dots$$

con
$$E(X) = 1/p \text{ e Var}(X) = (1-p)/p^2$$

• Se (Y_1, \ldots, Y_n) sono variabili casuali indipendenti ed identicamente distribuite come una $N(\mu, \sigma^2)$ e S^2 è lo stimatore corretto di σ^2 , allora

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

e quindi

$$\frac{\sqrt{n}(\overline{Y} - \mu)}{\sigma} \sim N(0, 1)$$

 $\frac{\sqrt{n}(\overline{Y} - \mu)}{S} \sim t_{n-1}$ (t di Student con n-1 gradi di libertà.)

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

• Se $Y \sim \text{Bi}(n, \vartheta)$, per n non troppo piccolo, la distribuzione di

$$\frac{\hat{\vartheta} - \vartheta}{\sqrt{\vartheta(1 - \vartheta)/n}},$$

dove $\hat{\vartheta} = Y/n$, è approssimabile con quella di una normale standard.

• Se $(y_{11}, \ldots, y_{1n_1})$ è un campione casuale semplice estratto da una variabile casuale $Y_1 \sim N(\mu_1, \sigma_1^2)$ e $(y_{21}, \ldots, y_{2n_2})$ è un campione casuale semplice, indipendente dal precedente, estratto da una variabile casuale $Y_2 \sim N(\mu_2, \sigma_2^2)$, allora

– posto S_i^2 lo stimatore non distorto di $\sigma_i^2~(i=1,2)$

$$\frac{\frac{S_1^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_2^2}} \sim F_{n_1 - 1, n_2 - 1}$$

– se assumiamo $\sigma^2 = \sigma_1^2 = \sigma_2^2$ abbiamo

$$\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$$

dove \overline{Y}_1 e \overline{Y}_2 sone le medie dei due gruppi mentre

$$S^{2} = \frac{1}{n_{1} + n_{2} - 2} \left[\sum_{i=1}^{n_{1}} (Y_{1i} - \overline{Y}_{1})^{2} + \sum_{i=1}^{n_{2}} (Y_{2i} - \overline{Y}_{2})^{2} \right]$$

• Se $Y_1 \sim \text{Bin}(n_1, \vartheta_1)$ e $Y_2 \sim \text{Bin}(n_2, \vartheta_2)$ sono indipendenti, per n_1 e n_2 non troppo piccoli, la distribuzione di

$$\frac{\hat{\vartheta}_1 - \hat{\vartheta}_2 - (\vartheta_1 - \vartheta_2)}{\sqrt{\vartheta_1(1 - \vartheta_1)/n_1 + \vartheta_2(1 - \vartheta_2)/n_2}},$$

dove $\hat{\vartheta}_1 = Y_1/n_1$ e $\hat{\vartheta}_2 = Y_2/n_2$, è approssimabile con quella di una normale standard.

- Se (y_{i1},\ldots,y_{in_i}) è un campione casuale semplice estratto da una variabile casuale $Y_i \sim N(\mu_i,\sigma^2)$ $(i=1,\cdots,k)$ e $n=\sum_{i=1}^k n_i$ allora
 - Formula della scomposizione della varianza

$$v^{2} = \frac{1}{n} \sum_{i=1}^{k} n_{i} v_{i}^{2} + \frac{1}{n} \sum_{i=1}^{k} n_{i} (\overline{y}_{i} - \overline{y})^{2}.$$

dove v^2 è la varianza totale e \overline{y} è la media della distribuzione marginale, mentre v_i^2 sono le varianze condizionate e \overline{y}_i sono le medie condizionate.

- Rapporto di correlazione

$$\eta^2 = \frac{\text{varianza tra i gruppi}}{\text{varianza totale}}$$

Funzione di ripartizione della distribuzione normale standard

Tavole costruite con IATEX, R, Sweave e xtable da Claudio Agostinelli, claudio.agostinelli@unitn.it, 2016

0.99970.99970.99970.99970.99970.99970.99970.99970.99970.9998

Alcuni quantili della distribuzione t
 di Student con r gradi di libertà

$$F_r(t) = \int_{-\infty}^t \frac{\Gamma[(r+1)/2]}{\sqrt{\pi r} \Gamma[r/2] (1+x^2/r)^{(r+1)/2}} dx$$

	0,6	0,75	0,9	0,95	0,975	0,99	0,995
1	0.3249			$\frac{1}{6.3138}$	12,7062		
2	0,28870	*	*	,	4,3027	6,9646	9,9248
3	0,27670	,	*	,	3,1824	4,5407	5,8409
4	0,27070				2,7764	3,7469	4,6041
5	0,26720				2,5706	3,3649	4,0321
6	0,26480	0,7176 1	,4398	1,9432	2,4469	3,1427	3,7074
7	0,26320	0,71111	,4149	1,8946	2,3646	2,9980	3,4995
8	0,26190	0,7064 1	,3968	1,8595	2,3060	2,8965	3,3554
9	0,26100	0,7027 1	,3830	1,8331	2,2622	2,8214	3,2498
10	0,26020	0,6998 1	,3722	1,8125	2,2281	2,7638	3,1693
11	0,25960	0,6974 1	,3634	1,7959	2,2010	2,7181	3,1058
12	0,25900	0,6955 1	,3562	1,7823	2,1788	2,6810	3,0545
13	$0,\!25860$	0,6938 1	,3502	1,7709	2,1604	2,6503	3,0123
14	0,25820	0,6924 1	,3450	1,7613	2,1448	2,6245	2,9768
15	0,25790	0,69121	,3406	1,7531	2,1314	2,6025	2,9467
16	0,25760	0,6901 1	,3368	1,7459	2,1199	2,5835	2,9208
17	0,25730	0,6892 1	,3334	1,7396	2,1098	2,5669	2,8982
18	0,2571	0,6884 1	,3304	1,7341	2,1009	2,5524	2,8784
19	0,25690	0,6876 1	,3277	1,7291	2,0930	2,5395	2,8609
20	0,25670	0,6870 1	,3253	1,7247	2,0860	2,5280	2,8453
21	0,25660	0,6864 1	,3232	1,7207	2,0796	2,5176	2,8314
22	0,25640	0,6858 1	,3212	1,7171	2,0739	2,5083	2,8188
23	$0,\!25630$	0,6853 1	,3195	1,7139	2,0687	2,4999	2,8073
24	0,25620	0,6848 1	,3178	1,7109	2,0639	2,4922	2,7969
25	0,25610	0,6844 1	,3163	1,7081	2,0595	$2,\!4851$	2,7874
26	0,25600	0,6840 1	,3150	1,7056	2,0555	2,4786	2,7787
27	$0,\!25590$	0,6837 1	,3137	1,7033	2,0518	2,4727	2,7707
28	$0,\!25580$	0,6834 1	,3125	1,7011	2,0484	2,4671	2,7633
29	0,25570	0,6830 1	,3114	1,6991	2,0452	2,4620	2,7564
30	$0,\!25560$	0,6828 1	,3104	1,6973	2,0423	2,4573	2,7500
50	0,25470	0,67941	,2987	1,6759	2,0086	2,4033	2,6778
75	0,25420	0,6778 1	,2929	1,6654	1,9921	2,3771	2,6430
100	0,2540	0,6770 1	,2901	1,6602	1,9840	2,3642	2,6259
$-\infty$	0,25330	0,6745 1	,2816	1,6449	1,9600	2,3263	2,5758

Alcuni quantili della distribuzione χ^2 con rgradi di libertà

$$F_r(c) = \int_0^c \frac{1}{\Gamma[r/2]2^{r/2}} x^{r/2-1} \exp\left[-\frac{x}{2}\right] dx$$

1 0,000 0,000 0,001 0,004 0,016 2,706 3,841 5,024 6,635 7,	995
1 0,000 0,000 0,001 0,004 0,016 2,706 3,841 5,024 6,635 7,	
	פוכ
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10,	597
	838
	860
5 0,412 0,554 0,831 1,145 1,610 9,236 11,070 12,833 15,086 16,	750
6 0,676 0,872 1,237 1,635 2,204 10,645 12,592 14,449 16,812 18,	548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20,	278
8 1,344 1,646 2,180 2,733 3,490 13,362 15,507 17,535 20,090 21,	955
$9 1{,}735 2{,}088 2{,}700 3{,}325 4{,}168 14{,}684 16{,}919 19{,}023 21{,}666 23{,}$	589
$10 \qquad 2,156 2,558 3,247 3,940 4,865 15,987 18,307 20,483 23,209 25,$	188
11 2,603 3,053 3,816 4,575 5,578 17,275 19,675 21,920 24,725 26,	757
$12 \ \ 3,074 3,571 4,404 5,226 6,304 \ 18,549 21,026 23,337 26,217 28,$	300
$13 \ \ 3,565 4,107 5,009 5,892 7,042 \ 19,812 22,362 24,736 27,688 29,$	819
$14 \ \ 4,075 4,660 5,629 6,571 7,790 \ 21,064 23,685 26,119 29,141 31,$	319
$15 \ 4,601 5,229 6,262 7,261 8,547 \ 22,307 24,996 27,488 30,578 32,$	801
$16 5{,}142 5{,}812 6{,}908 7{,}962 9{,}312 23{,}542 26{,}296 28{,}845 32{,}000 34{,}$	267
17 5,697 6,408 7,564 8,672 10,085 24,769 27,587 30,191 33,409 35,	718
$18 \qquad 6,265 7,015 8,231 9,390 10,865 25,989 28,869 31,526 34,805 37,$	156
	582
	997
	401
	796
	181
	559
	928
	290
	645
	993
	336
	672
	766
	490
	952
70 43,275 45,442 48,758 51,739 55,329 85,527 90,531 95,023 100,425 104,	
80 51,172 53,540 57,153 60,391 64,278 96,578 101,879 106,629 112,329 116,	321

Alcuni quantili della distribuzione F con r_1 e r_2 gradi di libertà

$$F_{r_1,r_2}(c) = \int_0^c \frac{\Gamma((r_1+r_2)/2)}{\Gamma(r_1/2)\Gamma(r_2/2)} \left(\frac{r_1}{r_2}\right)^{r_1/2} x^{(r_1/2-1)} \left(1 + \frac{r_1}{r_2}x\right)^{-(r_1+r_2)/2} dx$$

Per ogni coppia di r_1 (colonna) e r_2 (riga), la tavola fornisce il quantile f_{α} di ordine α corrispondente. I quantili inferiori della distribuzione F di Fisher–Snedecor si possono determinare tramite la relazione $f_{1-\alpha}(r_1,r_2)=1/f_{\alpha}(r_2,r_1)$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tavole	per Fordi								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2	3	4	5	6	7	8	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18,513	19,000	19,164	,	,	,	,	$19,\!371$	$19,\!385$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	10,128	$9,\!552$	$9,\!277$		9,013	8,941	8,887	8,845	8,812
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	7,709	6,944	$6,\!591$	$6,\!388$	$6,\!256$	6,163	6,094	6,041	5,999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6,608	5,786	5,409	$5,\!192$	5,050	4,950	$4,\!876$	4,818	4,772
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	5,987	5,143	4,757	$4,\!534$	$4,\!387$	4,284	4,207	4,147	4,099
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	5,591	4,737	4,347	4,120	3,972	3,866	3,787	3,726	$3,\!677$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	5,318	$4,\!459$	4,066	3,838	3,687	$3,\!581$	3,500	3,438	3,388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$5,\!117$	$4,\!256$	3,863	3,633	3,482	3,374	3,293	3,230	$3,\!179$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4,965	4,103	3,708	3,478	3,326	3,217	$3,\!135$	3,072	3,020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	4,844	3,982	$3,\!587$	3,357	3,204	3,095	3,012	2,948	2,896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	4,747	$3,\!885$	3,490	3,259	3,106	2,996	2,913	2,849	2,796
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	4,667	3,806	3,411	3,179	3,025	2,915	2,832	2,767	2,714
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	4,600	3,739	3,344	3,112	2,958	2,848	2,764	2,699	2,646
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	4,543	3,682	$3,\!287$	3,056	2,901	2,790	2,707	2,641	$2,\!588$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	4,494	3,634	3,239	3,007	$2,\!852$	2,741	2,657	$2,\!591$	$2,\!538$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	$4,\!451$	$3,\!592$	$3,\!197$	2,965	2,810	2,699	2,614	$2,\!548$	$2,\!494$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	4,414	$3,\!555$	3,160	2,928	2,773	2,661	2,577	2,510	$2,\!456$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	4,381	$3,\!522$	3,127	2,895	2,740	2,628	$2,\!544$	$2,\!477$	$2,\!423$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	$4,\!351$	3,493	3,098	2,866	2,711	$2,\!599$	$2,\!514$	$2,\!447$	$2,\!393$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	4,242	$3,\!385$	2,991	2,759	2,603	2,490	2,405	2,337	2,282
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	4,171	3,316	2,922	2,690	$2,\!534$	$2,\!421$	2,334	2,266	2,211
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	4,085	3,232	2,839	2,606	2,449	2,336	2,249	2,180	2,124
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	4,034	3,183	2,790	$2,\!557$	2,400	2,286	2,199	2,130	2,073
∞ 3,841 2,996 2,605 2,372 2,214 2,099 2,010 1,938 1,880	60	4,001	3,150	2,758	$2,\!525$	2,368	$2,\!254$	$2,\!167$	2,097	2,040
	120	3,920	3,072	2,680	2,447	2,290	2,175	2,087	2,016	1,959
	∞	3,841	2,996	2,605	2,372	2,214	2,099	2,010	1,938	1,880

Tavole :	per l'	ordine	quantilico	$\alpha =$	0.95
----------	--------	--------	------------	------------	------

ravoie	per Fordi		$\alpha = 0$						
	10	15	20	30	40	50	60	120	∞
1	241,882	245,950	248,013	250,095	251,143	251,774	252,196	253,2532	254,314
2	19,396	19,429	19,446	19,462	$19,\!471$	$19,\!476$	19,479	$19,\!487$	19,496
3	8,786	8,703	8,660	8,617	8,594	8,581	8,572	8,549	$8,\!526$
4	5,964	$5,\!858$	5,803	5,746	5,717	5,699	$5,\!688$	$5,\!658$	$5,\!628$
5	4,735	4,619	4,558	4,496	4,464	4,444	$4,\!431$	4,398	$4,\!365$
6	4,060	3,938	3,874	3,808	3,774	3,754	3,740	3,705	3,669
7	3,637	3,511	3,445	3,376	3,340	3,319	3,304	3,267	3,230
8	3,347	3,218	3,150	3,079	3,043	3,020	3,005	2,967	2,928
9	3,137	3,006	2,936	2,864	2,826	2,803	2,787	2,748	2,707
10	2,978	2,845	2,774	2,700	2,661	2,637	2,621	$2,\!580$	$2,\!538$
11	2,854	2,719	2,646	2,570	2,531	2,507	2,490	2,448	2,404
12	2,753	2,617	2,544	2,466	2,426	2,401	2,384	2,341	$2,\!296$
13	2,671	2,533	2,459	2,380	2,339	2,314	2,297	$2,\!252$	2,206
14	2,602	2,463	2,388	2,308	2,266	2,241	2,223	$2,\!178$	2,131
15	2,544	2,403	2,328	2,247	2,204	$2,\!178$	2,160	$2,\!114$	2,066
16	2,494	$2,\!352$	2,276	2,194	$2,\!151$	2,124	2,106	2,059	2,010
17	2,450	2,308	2,230	2,148	2,104	2,077	2,058	2,011	1,960
18	2,412	2,269	2,191	2,107	2,063	2,035	2,017	1,968	1,917
19	2,378	2,234	2,155	2,071	2,026	1,999	1,980	1,930	1,878
20	2,348	2,203	2,124	2,039	1,994	1,966	1,946	1,896	1,843
25	2,236	2,089	2,007	1,919	1,872	1,842	1,822	1,768	1,711
30	2,165	2,015	1,932	1,841	1,792	1,761	1,740	1,683	1,622
40	2,077	1,924	1,839	1,744	1,693	1,660	1,637	1,577	1,509
50	2,026	1,871	1,784	1,687	1,634	1,599	1,576	1,511	1,438
60	1,993	1,836	1,748	1,649	1,594	1,559	1,534	$1,\!467$	1,389
120	1,910	1,750	1,659	1,554	1,495	1,457	1,429	1,352	$1,\!254$
∞	1,831	1,666	1,571	1,459	1,394	1,350	1,318	1,221	1,000
1 .		100 TT TO	~		~1.		114 1	1.	1110

Tavole per	l'ordine	quantilico	$\alpha = 0.9$	75
------------	----------	------------	----------------	----

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tavole	per Fordi	ne quant	$\alpha = 0$	0,975					
2 38,506 39,000 39,165 39,248 39,298 39,331 39,355 39,373 39,387 3 17,443 16,044 15,439 15,101 14,885 14,735 14,624 14,540 14,473 4 12,218 10,649 9,979 9,605 9,364 9,197 9,074 8,980 8,905 5 10,007 8,434 7,764 7,388 7,146 6,978 6,853 6,757 6,681 6 8,813 7,260 6,599 6,227 5,988 5,820 5,695 5,600 5,523 7 8,073 6,542 5,890 5,523 5,285 5,119 4,995 4,899 4,823 8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,551 3,779 <td></td> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td>		1	2	3	4	5	6	7	8	9
3 17,443 16,044 15,439 15,101 14,885 14,735 14,624 14,540 14,473 4 12,218 10,649 9,979 9,605 9,364 9,197 9,074 8,980 8,905 5 10,007 8,434 7,764 7,388 7,146 6,978 6,853 6,757 6,681 6 8,813 7,260 6,599 6,227 5,988 5,820 5,695 5,600 5,523 7 8,073 6,542 5,890 5,523 5,285 5,119 4,995 4,899 4,823 8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 <	1	647,789	799,500	864,163	899,583	921,848	937,111	948,217	956,656	963,285
4 12,218 10,649 9,979 9,605 9,364 9,197 9,074 8,980 8,905 5 10,007 8,434 7,764 7,388 7,146 6,978 6,853 6,757 6,681 6 8,813 7,260 6,599 6,227 5,988 5,820 5,695 5,600 5,523 7 8,073 6,542 5,890 5,523 5,285 5,119 4,995 4,899 4,823 8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096	2	38,506	39,000	39,165	39,248	39,298	39,331	$39,\!355$	39,373	$39,\!387$
5 10,007 8,434 7,764 7,388 7,146 6,978 6,853 6,757 6,681 6 8,813 7,260 6,599 6,227 5,988 5,820 5,695 5,600 5,523 7 8,073 6,542 5,890 5,523 5,285 5,119 4,995 4,899 4,823 8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096 4,474 4,121 3,891 3,728 3,607 3,512 3,436 13 6,414 4,965	3	17,443	16,044	15,439	15,101	14,885	14,735	14,624	$14,\!540$	14,473
6 8,813 7,260 6,599 6,227 5,988 5,820 5,695 5,600 5,523 7 8,073 6,542 5,890 5,523 5,285 5,119 4,995 4,899 4,823 8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096 4,474 4,121 3,891 3,728 3,607 3,512 3,436 13 6,414 4,965 4,347 3,996 3,767 3,604 3,483 3,388 3,312 14 6,298 4,857	4	12,218	10,649	9,979	9,605	9,364	9,197	9,074	8,980	8,905
7 8,073 6,542 5,890 5,523 5,285 5,119 4,995 4,899 4,823 8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096 4,474 4,121 3,891 3,728 3,607 3,512 3,436 13 6,414 4,965 4,347 3,996 3,767 3,604 3,483 3,388 3,312 14 6,298 4,857 4,242 3,892 3,663 3,501 3,380 3,285 3,209 15 6,200 4,765 4,153 3,804 3,576 3,415 3,293 3,125 3,049	5	10,007	8,434	7,764	7,388	7,146	6,978	6,853	6,757	6,681
8 7,571 6,059 5,416 5,053 4,817 4,652 4,529 4,433 4,357 9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096 4,474 4,121 3,891 3,728 3,607 3,512 3,436 13 6,414 4,965 4,347 3,996 3,767 3,604 3,483 3,388 3,312 14 6,298 4,857 4,242 3,892 3,663 3,501 3,380 3,285 3,209 15 6,200 4,765 4,153 3,804 3,576 3,415 3,293 3,199 3,123 16 6,115 4,687	6	8,813	7,260	6,599	6,227	5,988	5,820	5,695	5,600	$5,\!523$
9 7,209 5,715 5,078 4,718 4,484 4,320 4,197 4,102 4,026 10 6,937 5,456 4,826 4,468 4,236 4,072 3,950 3,855 3,779 11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096 4,474 4,121 3,891 3,728 3,607 3,512 3,436 13 6,414 4,965 4,347 3,996 3,767 3,604 3,483 3,388 3,312 14 6,298 4,857 4,242 3,892 3,663 3,501 3,380 3,285 3,209 15 6,200 4,765 4,153 3,804 3,576 3,415 3,293 3,199 3,123 16 6,115 4,687 4,077 3,729 3,502 3,341 3,219 3,125 3,049 17 6,042 4,619 4,011 3,665 3,438 3,277 3,156 3,061 2,985	7	8,073	$6,\!542$	5,890	5,523	$5,\!285$	5,119	4,995	4,899	4,823
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	7,571	6,059	5,416	5,053	4,817	4,652	$4,\!529$	4,433	$4,\!357$
11 6,724 5,256 4,630 4,275 4,044 3,881 3,759 3,664 3,588 12 6,554 5,096 4,474 4,121 3,891 3,728 3,607 3,512 3,436 13 6,414 4,965 4,347 3,996 3,767 3,604 3,483 3,388 3,312 14 6,298 4,857 4,242 3,892 3,663 3,501 3,380 3,285 3,209 15 6,200 4,765 4,153 3,804 3,576 3,415 3,293 3,199 3,123 16 6,115 4,687 4,077 3,729 3,502 3,341 3,219 3,125 3,049 17 6,042 4,619 4,011 3,665 3,438 3,277 3,156 3,061 2,985 18 5,978 4,560 3,954 3,608 3,382 3,221 3,100 3,005 2,929 19 5,922 4,508 3,903 3,559 3,333 3,172 3,051 2,956 2,880	9	7,209	5,715	5,078	4,718	4,484	4,320	4,197	4,102	4,026
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6,937	$5,\!456$	4,826	4,468	4,236	4,072	3,950	3,855	3,779
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6,724	$5,\!256$	4,630	4,275	4,044	3,881	3,759	3,664	$3,\!588$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$6,\!554$	5,096	4,474	4,121	3,891	3,728	3,607	3,512	3,436
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6,414	4,965	4,347	3,996	3,767	3,604	3,483	3,388	3,312
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$6,\!298$	4,857	4,242	3,892	3,663	3,501	3,380	$3,\!285$	3,209
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6,200	4,765	$4,\!153$	3,804	3,576	3,415	3,293	3,199	3,123
18 5,978 4,560 3,954 3,608 3,382 3,221 3,100 3,005 2,929 19 5,922 4,508 3,903 3,559 3,333 3,172 3,051 2,956 2,880 20 5,871 4,461 3,859 3,515 3,289 3,128 3,007 2,913 2,837 25 5,686 4,291 3,694 3,353 3,129 2,969 2,848 2,753 2,677 30 5,568 4,182 3,589 3,250 3,026 2,867 2,746 2,651 2,575 40 5,424 4,051 3,463 3,126 2,904 2,744 2,624 2,529 2,452 50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	16	6,115	4,687	4,077	3,729	3,502	3,341	3,219	3,125	3,049
19 5,922 4,508 3,903 3,559 3,333 3,172 3,051 2,956 2,880 20 5,871 4,461 3,859 3,515 3,289 3,128 3,007 2,913 2,837 25 5,686 4,291 3,694 3,353 3,129 2,969 2,848 2,753 2,677 30 5,568 4,182 3,589 3,250 3,026 2,867 2,746 2,651 2,575 40 5,424 4,051 3,463 3,126 2,904 2,744 2,624 2,529 2,452 50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	17	6,042	4,619	4,011	3,665	3,438	3,277	3,156	3,061	2,985
20 5,871 4,461 3,859 3,515 3,289 3,128 3,007 2,913 2,837 25 5,686 4,291 3,694 3,353 3,129 2,969 2,848 2,753 2,677 30 5,568 4,182 3,589 3,250 3,026 2,867 2,746 2,651 2,575 40 5,424 4,051 3,463 3,126 2,904 2,744 2,624 2,529 2,452 50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	18	5,978	$4,\!560$	3,954	3,608	3,382	3,221	3,100	3,005	2,929
25 5,686 4,291 3,694 3,353 3,129 2,969 2,848 2,753 2,677 30 5,568 4,182 3,589 3,250 3,026 2,867 2,746 2,651 2,575 40 5,424 4,051 3,463 3,126 2,904 2,744 2,624 2,529 2,452 50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	19	5,922	4,508	3,903	3,559	3,333	3,172	3,051	2,956	2,880
30 5,568 4,182 3,589 3,250 3,026 2,867 2,746 2,651 2,575 40 5,424 4,051 3,463 3,126 2,904 2,744 2,624 2,529 2,452 50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	20	5,871	$4,\!461$	3,859	3,515	3,289	3,128	3,007	2,913	$2,\!837$
40 5,424 4,051 3,463 3,126 2,904 2,744 2,624 2,529 2,452 50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	25	5,686	$4,\!291$	3,694	3,353	3,129	2,969	2,848	2,753	2,677
50 5,340 3,975 3,390 3,054 2,833 2,674 2,553 2,458 2,381 60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	30	$5,\!568$	$4,\!182$	3,589	3,250	3,026	$2,\!867$	2,746	$2,\!651$	$2,\!575$
60 5,286 3,925 3,343 3,008 2,786 2,627 2,507 2,412 2,334 120 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222	40	5,424	4,051	3,463	3,126	2,904	2,744	2,624	2,529	$2,\!452$
$120 \qquad 5,152 3,805 3,227 2,894 2,674 2,515 2,395 2,299 2,222$	50	5,340	3,975	3,390	3,054	2,833	2,674	2,553	2,458	2,381
	60	$5,\!286$	3,925	3,343	3,008	2,786	2,627	2,507	2,412	2,334
∞ 5,024 3,689 3,116 2,786 2,567 2,408 2,288 2,192 2,114	120	$5,\!152$	3,805	3,227	2,894	2,674	2,515	2,395	2,299	$2,\!222$
	∞	5,024	3,689	3,116	2,786	$2,\!567$	2,408	2,288	2,192	2,114

Tavole per l'ordine quantilico $\alpha = 0.975$

ravoie	per Forai	ne quant	$mco \alpha =$	0,975					
	10	15	20	30	40	50	60	120	∞
1	968,627	984,867	993,103	1001,414	$1005,\!598$	1008,117	1009,800	1014,020	1018,258
2	39,398	$39,\!431$	39,448	39,465	$39,\!473$	$39,\!478$	39,481	39,490	$39,\!498$
3	14,419	$14,\!253$	14,167	14,081	14,037	14,010	13,992	13,947	13,902
4	8,844	8,657	8,560	8,461	8,411	8,381	8,360	8,309	$8,\!257$
5	6,619	$6,\!428$	$6,\!329$	6,227	$6,\!175$	6,144	6,123	6,069	6,015
6	5,461	$5,\!269$	$5,\!168$	5,065	5,012	4,980	4,959	4,904	4,849
7	4,761	$4,\!568$	$4,\!467$	4,362	4,309	$4,\!276$	4,254	4,199	4,142
8	$4,\!295$	4,101	3,999	3,894	3,840	3,807	3,784	3,728	3,670
9	3,964	3,769	3,667	3,560	3,505	3,472	3,449	3,392	3,333
10	3,717	$3,\!522$	3,419	3,311	$3,\!255$	3,221	3,198	3,140	3,080
11	3,526	3,330	$3,\!226$	3,118	3,061	3,027	3,004	2,944	2,883
12	3,374	3,177	3,073	2,963	2,906	2,871	2,848	2,787	2,725
13	3,250	3,053	2,948	2,837	2,780	2,744	2,720	2,659	$2,\!595$
14	3,147	2,949	2,844	2,732	2,674	2,638	2,614	$2,\!552$	$2,\!487$
15	3,060	$2,\!862$	2,756	2,644	$2,\!585$	2,549	2,524	2,461	$2,\!395$
16	2,986	2,788	2,681	2,568	2,509	$2,\!472$	$2,\!447$	2,383	2,316
17	2,922	2,723	2,616	2,502	2,442	2,405	2,380	2,315	2,247
18	$2,\!866$	2,667	$2,\!559$	2,445	2,384	2,347	2,321	$2,\!256$	$2,\!187$
19	2,817	2,617	2,509	2,394	2,333	$2,\!295$	2,270	2,203	$2{,}133$
20	2,774	2,573	$2,\!464$	2,349	$2,\!287$	2,249	2,223	$2,\!156$	2,085
25	2,613	$2,\!411$	2,300	2,182	2,118	2,079	2,052	1,981	1,906
30	2,511	2,307	$2,\!195$	2,074	2,009	1,968	1,940	1,866	1,787
40	2,388	$2,\!182$	2,068	1,943	1,875	1,832	1,803	1,724	1,637
50	2,317	2,109	1,993	1,866	1,796	1,752	1,721	1,639	1,545
60	$2,\!270$	2,061	1,944	1,815	1,744	1,699	1,667	1,581	1,482
120	$2,\!157$	1,945	1,825	1,690	1,614	$1,\!565$	1,530	1,433	1,310
$-\infty$	2,048	1,833	1,708	1,566	1,484	1,428	1,388	1,268	1,000
1	• • •	TACE 37 D	~	. 11 1	C1 11	1 111	1 1.	111.0	

Tavole	per 1	'ordine	quantilico	$\alpha = 0$	99
--------	-------	---------	------------	--------------	----

ravole	per l'ordine	e quantilic	so $\alpha = 0.99$,					
	1	2	3	4	5	6	7	8	9
1	4052,181	4999,500	5403,352	5624,583	5763,650	5858,986	5928,356	5981,070	6022,473
2	$98,\!503$	99,000	$99,\!166$	99,249	99,299	99,333	$99,\!356$	$99,\!374$	$99,\!388$
3	34,116	30,817	29,457	28,710	28,237	27,911	27,672	27,489	27,345
4	21,198	18,000	16,694	15,977	$15,\!522$	15,207	14,976	14,799	14,659
5	$16,\!258$	$13,\!274$	12,060	11,392	10,967	10,672	10,456	10,289	10,158
6	13,745	10,925	9,780	9,148	8,746	8,466	8,260	8,102	7,976
7	$12,\!246$	$9,\!547$	8,451	7,847	7,460	7,191	6,993	6,840	6,719
8	$11,\!259$	8,649	$7,\!591$	7,006	6,632	6,371	6,178	6,029	5,911
9	$10,\!561$	8,022	6,992	6,422	6,057	5,802	5,613	$5,\!467$	$5,\!351$
10	10,044	$7,\!559$	$6,\!552$	5,994	5,636	$5,\!386$	5,200	5,057	4,942
11	9,646	7,206	6,217	5,668	5,316	5,069	4,886	4,744	4,632
12	$9,\!330$	6,927	5,953	5,412	5,064	4,821	4,640	4,499	$4,\!388$
13	9,074	6,701	5,739	$5,\!205$	4,862	4,620	4,441	4,302	4,191
14	8,862	$6,\!515$	$5,\!564$	5,035	4,695	$4,\!456$	$4,\!278$	4,140	4,030
15	8,683	$6,\!359$	$5,\!417$	4,893	$4,\!556$	4,318	4,142	4,004	$3,\!895$
16	8,531	$6,\!226$	$5,\!292$	4,773	$4,\!437$	4,202	4,026	3,890	3,780
17	8,400	6,112	5,185	4,669	4,336	4,102	3,927	3,791	$3,\!682$
18	8,285	6,013	5,092	4,579	4,248	4,015	3,841	3,705	$3,\!597$
19	8,185	5,926	5,010	4,500	$4,\!171$	3,939	3,765	3,631	$3,\!523$
20	8,096	5,849	4,938	4,431	4,103	3,871	3,699	3,564	$3,\!457$
25	7,770	$5,\!568$	4,675	4,177	$3,\!855$	3,627	3,457	3,324	3,217
30	$7,\!562$	5,390	4,510	4,018	3,699	3,473	3,304	3,173	3,067
40	7,314	$5,\!179$	4,313	3,828	3,514	3,291	3,124	2,993	2,888
50	7,171	5,057	4,199	3,720	3,408	3,186	3,020	2,890	2,785
60	7,077	4,977	4,126	3,649	3,339	3,119	2,953	2,823	2,718
120	6,851	4,787	3,949	3,480	3,174	2,956	2,792	2,663	$2,\!559$
∞	6,635	4,605	3,782	3,319	3,017	2,802	2,639	$2,\!511$	$2,\!407$
1 /	* , TAT	D V D C		11 1 (1	1. V	. 11. 1	1.	11:6	,

Tavole per l'ordine quantilico $\alpha = 0.99$

<u> ravole</u>	e per l'ordine	quantilic	$\alpha = 0.99$						
	10	15	20	30	40	50	60	120	∞
1	6055,847 6	5157,2856	6208,7306	6260,6496	5286,782	6302,517	6313,030	6339,391	6365,864
2	$99,\!399$	$99,\!433$	99,449	$99,\!466$	$99,\!474$	$99,\!479$	99,482	99,491	$99,\!499$
3	$27,\!229$	$26,\!872$	26,690	$26,\!505$	$26,\!411$	$26,\!354$	26,316	26,221	26,125
4	$14,\!546$	14,198	14,020	13,838	13,745	13,690	$13,\!652$	$13,\!558$	$13,\!463$
5	10,051	9,722	9,553	$9,\!379$	9,291	9,238	9,202	9,112	9,020
6	$7,\!874$	$7,\!559$	7,396	7,229	7,143	7,091	7,057	6,969	6,880
7	6,620	6,314	$6,\!155$	5,992	5,908	5,858	5,824	5,737	$5,\!650$
8	5,814	$5,\!515$	$5,\!359$	5,198	5,116	5,065	5,032	4,946	$4,\!859$
9	$5,\!257$	4,962	4,808	4,649	$4,\!567$	$4,\!517$	4,483	4,398	4,311
10	4,849	$4,\!558$	$4,\!405$	4,247	4,165	4,115	4,082	3,996	3,909
11	4,539	$4,\!251$	4,099	3,941	3,860	3,810	3,776	3,690	$3,\!602$
12	$4,\!296$	4,010	3,858	3,701	3,619	3,569	3,535	3,449	3,361
13	4,100	3,815	$3,\!665$	3,507	3,425	3,375	3,341	$3,\!255$	$3,\!165$
14	3,939	3,656	3,505	3,348	3,266	3,215	3,181	3,094	3,004
15	$3,\!805$	$3,\!522$	3,372	3,214	3,132	3,081	3,047	2,959	$2,\!868$
16	3,691	3,409	$3,\!259$	3,101	3,018	2,967	2,933	$2,\!845$	2,753
17	$3,\!593$	3,312	3,162	3,003	2,920	2,869	2,835	2,746	$2,\!653$
18	3,508	$3,\!227$	3,077	2,919	2,835	2,784	2,749	2,660	$2,\!566$
19	3,434	$3,\!153$	3,003	2,844	2,761	2,709	2,674	$2,\!584$	$2,\!489$
20	3,368	3,088	2,938	2,778	2,695	2,643	2,608	2,517	$2,\!421$
25	3,129	2,850	2,699	2,538	$2,\!453$	2,400	2,364	2,270	2,169
30	2,979	2,700	2,549	$2,\!386$	2,299	2,245	2,208	2,111	2,006
40	2,801	$2,\!522$	2,369	2,203	2,114	2,058	2,019	1,917	1,805
50	2,698	2,419	2,265	2,098	2,007	1,949	1,909	1,803	1,683
60	2,632	$2,\!352$	2,198	2,028	1,936	1,877	1,836	1,726	1,601
120	$2,\!472$	$2,\!192$	2,035	1,860	1,763	1,700	1,656	1,533	1,381
∞	2,321	2,039	1,878	1,696	1,592	1,523	1,473	1,325	1,000
1 /	1 TA/T	LV D C		1.1. 1. (1)	1 · A	. 11. 1	1. ,	. 11.	,