CELL INJURY-2

ILOs:

- By the end of this lecture, students should be able to:
- Define necrosis and apoptosis and its causes.
- Compare and differentiated the morphology of different type of necrosis in variant causes.
- Explain the mechanism of apoptosis and their clinical importance
- Define gangrene and explain its types.

DR.SAJDA GAJDHAR GENERAL PATHOLOGY

Irreversible cell injury (Cell Death)

Irreversible cell injury: Alterations in cell function and structure, which are uncorrectable if the damaging stimulus is removed. Occur in sever & progressive forms of injury.

Form: it has 2 form

1- Necrosis

Definition: Local death of a <u>large groups</u> cells within the <u>living</u> body.

- Swelling of cell
- 2- Rupture of cell membrane leakage of cellular contents
- 3 Induce inflammatory response
- 4- Enzymatic digestion of cells

Pathological picture:

Gross picture:

-Opaque, white area

Microscopic picture:

A- Cell: swelling

B- Cytoplasmic change

- 1- Eosinophilic: stained red
- 2- Indistinct cell membrane.

Cell death stimule

Normal Cell

Cell and organeles swell Altered chromatin

Membrane break down Cell contents released

C- Nuclus:

- 1 Pyknosis: Nuclear shrinkage with dense chromatin
- 2 Karyorrhexis fragmentation to multiple small fragments

3 Karyolysis: The nucleus dissolve

NORMAL

PYKNOSIS

KARYORHHEXIS

Normal cell

Types of necrosis:

1- Coagulative necrosis:

- Most common type of necrosis
- Cause: sudden cut of blood supply (ischemia)
- Site: in all organs except the brain.
- Gross picture: firm and opaque white.
- Microscopic picture: Dead tissues is preserved architecture for a span of at least some days with no cell details.

2- Liquefactive necrosis:

<u>Characterized by:</u> digestion of the dead cells → transformation of the tissue into a <u>liquid viscous mass</u>. <u>Cause & site</u>:

- __ CNS (brain and spinal cord)
- Bacterial or fungal infections (Abscess)

Gross picture: creamy yellow area (pus).

- 3- Caseation necrosis: " (cheese like)
- Cause: tuberculous (TB) infection
- Gross picture: friable white " (cheese like)
- Microscopic picture: loss of tissue architecture and cell details (tissue appear pink, structureless & homogenous)

4- Fat necrosis: local area of fat destruction. It is of two types:

A) Traumatic fat necrosis: trauma to adipose tissue (e.g. breast) \rightarrow rupture of fat cells

B) Enzymatic fat necrosis:

• It occurs in <u>acute/pancreatitis</u> \rightarrow released pancreatic enzymes liquefy fat cell in peritoneal cavity

5- Fibrinoid necrosis:

<u>Site</u>: in blood vessels (vasculitis)

Cause in autoimmune disease

Microscopic picture: pink fibrin like material in the walls of arteries

2- Apoptosis

<u>Definition</u>: Programmed cell death to remove unwanted cells (single cell or small groups of cells).

Apoptotic cells shrinkage then break up into plasma membrane–bound fragments, called *apoptotic bodies* → *phagocytosis*

Causes

A- Physiological

<u>OR</u>

B- Pathological

- **<u>A.Physiological</u>**: a normal phenomenon that serves to eliminate <u>cells that are no longer needed</u>.
- Example:
- During embryogenesis
- Death of cells that have served their useful purpose: neutrophils in an acute inflammatory response
- Elimination of harmful self-destructive cells: e.g. self reactive lymphocyte
- B.Pathological: eliminates injured cells
- Example:
- A. <u>DNA damage</u>: Radiation and cytotoxic anticancer drugs
- B. Odd Cells: in certain viral infections (HIV infections), transplanted cells.

Pathological picture:

- 1. Shrinkage of cells
- 2. Nuclear fragmentation
- 3. Formation of apoptotic bodies. The apoptotic cell fragmented into membrane-bound apoptotic bodies composed of cytoplasm and organelles, with or without nuclear fragments.

Nuclear Fragmentation

4. Phagocytosis of apoptotic cells, usually by macrophages.

Cell Shrinks

MOLECULAR MECHANISM OF APOPTOSIS

 Apoptosis is regulated by pathways that control the balance of death and survival inducing signals.

- Apoptosis progresses through one of the 2 pathways:
- 1. Intrinsic (mitochondrial) pathway: Major pathway
- 2. Extrinsic (Death Receptor) pathway:

In a healthy cell (through survival signals), Bcl-2 (Antiapoptotic) maintain the integrity of mitochondrial membranes, by holding back proapoptotic proteins Bax & Bak

CA&		
Feature	Necrosis	Apoptosis
Cell size	Enlarged (swelling)	Reduced (shrinkage)
Nucleus	Pyknosis → karyorrhexis → karyolysis	Fragmentation
Plasma membrane	Disrupted rupture	Intact
Cellular contents and inflammation	leak out of cell Enzymatic digestion	Intact; released in apoptotic bodies No Inflammatory response
	Inflammatory response	No illialilliatory response
Physiologic or pathologic role	Pathologic	Physiologic or pathologic

Gangrene

Definition: is massive tissue necrosis followed by putrefaction.

Porg smell Pocoubosition

Pathogenesis:

Putrefaction is caused by saprophytic bacteria which break down the protein of the necrotic tissue

liberating <u>hydrogen sulphide</u> that gives the tissue a <u>foul odour</u>. Hydrogen sulphide unites the iron of

haemoglobin forming iron sulphide that stains the gangrenous tissue black.

Types:

Dry gangrene: occurs in parts poor in blood supply and tissue fluids

Moist gangrene: in parts rich in tissue fluids

Infective gangrene

Gas gangrene

Dry gangrene

Etiology: Arterial occlusion by thrombus, embolus, ligation

Site : exposed organs such as limbs low limbs distal soon hours

Gross picture:

-limb is Black in color, Offensive, dry and mummified

-A red line separating healthy from dead area <u>line of demarcation</u>

-self separation may occur.

Moist (Wet) gangrene

Etiology: Sudden arterial and venous occlusion 1ess

Site:

Internal organs (intestine i.e strangulated hernia)

Gross picture:

-Intestine is Black in color ,Offensive, swollen and congested.

-No line of demarcation (masked by congestion)

Why it is wet or moist:

Tissue is congested and edematous due to occlusion of venous drainage.

small bowel

Sigmoid colon

Viable small bowel loops

Dry gangrene

- Common
- 1 Gradual arterial occlusion
- 2 Exposed parts (limbs) disnot (foot)
- 3 Tissue mummification : 3 Tissue mummification
- 4 Marked <u>line of demarcation</u>
- 5 Self separation my occur

Moist gangrene

- 1 Sudden arterial and venous occlusion
- 2 Internal organs (intestine)
- 3 Tissue oedema
- 4 poor line of demarcation
- Self separation absent

Infective gangrene

It is a gangrene in which bacteria cause both tissue necrosis (by its toxins) and putrefaction e.g. Bed sores, cancrum oris

cancrum oris

Infective gangrene of the cheeks of debilitated children recovering from fevers, Recovering from fever

Toxaemia is sever and bronchopneumonia may results from aspiration of the septic necrotic tissue.

Gas gangrene: Most dangurous

is a bacterial infection that produces gas within tissues.

It is a deadly form of gangrene usually caused by Clostridium perfringens (bacteria produces gases inside tissues)

common after crush accidents.

THE ANDRES TOOM