DAFTAR ISI

DAFTAR ISI	1
DAFTAR GAMBAR	ii
BAB 1. PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	2
1.3. Tujuan	2
1.4. Luaran yang Diharapkan	2
1.5. Kegunaan	2
BAB 2. TINJAUAN PUSTAKA	2
2.1. Tengkawang	2
2.2. Lemak Tengkawang	2
2.3. Purifikasi Lemak Tengkawang	3
2.4. Lignin	3
2.5. Tabir Surya	4
2.6. Sun Protection Factor	4
2.7. Adikarya Penelitian	5
BAB 3. METODE PENELITIAN	6
3.1. Diagram Alir Penelitian	6
3.2. Prosedur Penelitian	6
3.3. Variabel Penelitian	7
3.4. Indikator Pencapaian	7
3.5. Metode Analisis	7
BAB 4. BIAYA DAN JADWAL KEGIATAN	9
4.1. Anggaran Biaya	9
4.2. Jadwal Kegiatan	9
DAFTAR PUSTAKA	9
LAMPIRAN	11
Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran	17
Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	19
Lampiran 4. Surat Pernyataan Ketua Tim Pelaksana	20
DAFTAR TABEL	
Tabel 2.1 Nilai EE X I	
Tabel 2.2 Adikarya Penelitian	
Tabel 4. 1 Anggaran Biaya	
Tabel 4. 2 Jadwal Kegiatan	8

DAFTAR GAMBAR

Gambar 2. 1 Diagram Alir Penelitian	2
Gambar 3. 1 Diagram Alir Penelitian	6

BAB 1. PENDAHULUAN

1.1. Latar Belakang

Kanker kulit di Indonesia menempati urutan ketiga teratas dengan persentase sebesar 15,1% dari total 13 kanker yang paling umum diderita di Indonesia (Riskesdas, 2007). Kanker kulit disebabkan oleh radiasi sinar ultraviolet yang merusak DNA di dalam sel kulit manusia (Green *et al.*, 1999). Penggunaan tabir surya setiap hari dapat meminimalkan probabilitas terjadinya kanker kulit. Saat ini produk sehari – hari seperti pelembab, krem, losion, sampo, dan produk perawatan kulit lainnya telah banyak mengandung bahan pelindung matahari (Dutra *et al*, 2004). Produk kecantikan yang paling banyak diimpor oleh Indonesia adalah produk losion dan krim yang di dalamnya termasuk tabir surya dan krim penghitam kulit yang nilai mencapai \$80,54 juta atau setara dengan Rp. 1,71 triliun (BPS, 2017).

Bahan pelindung matahari yang biasa digunakan dalam tabir surya adalah titanium dioksida (TiO₂) yang bekerja sebagai fisikal bloker dengan cara memantulkan radiasi sinar UV yang mengenai kulit. Namun senyawa ini memilki efek yang tidak baik untuk kesehatan seperti yang dilampirkan oleh International Agency for Reasearch on Cancer (IARC) pada tahun 2004 yang menyatakan bahwa zat tersebut termasuk kedalam golongan karsinogenik yang dapat memicu kanker pada tubuh. Oleh sebab itu penggunaan bahan pelindung matahari dari bahan alam akhir – akhir ini sedang dikembangkan karena dipercaya lebih aman dan tidak banyak memiliki efek samping (Zulkarnain et al., 2013). Salah satu sumber hutan Indonesia yang juga berupa lemak nabati yang berasal dari hasil ekstraksi biji dan berpotensi mengandung SPF alami adalah lemak tengkawang. Pada tahun 1985 – 1989, ekspor tengkawang telah menghasilkan devisa sebesar \$7.439.167,75 yang berasal dari biji tengkawang sebanyak 10.677,01 ton (BPS, 1989) Kualitas dari biji tengkawang dilihat dari kandungan lemak dan kandungan asam lemak bebas (FFA). Semakin tinggi kandungan lemak dan semakin rendah kandungan FFA dari biji tengkawang, maka kualitasnya semakin bagus. Lemak tengkawang biasanya dimanfaatkan sebagai cocoa butter substitute dan digunakan juga dalam industri kosmetik. Sampel lemak tengkawang yang diperoleh dari Desa Nanga Yen, Kalimatan Barat.

Lignin adalah polimer alami yang memilki fungsi utama sebagai perekat pada lapisan tumbuhan. Lignin biasanya dimanfaatkan sebagai perekat, plastik biodegradable dan surfaktan pada sistem Enhance Oil Recovery (EOR). Kehadiran senayawa fenolik, keton dan ikatan intramolekul oksigen pada lignin menyebabkan adanya kemampuan pertahanan terhadap sinar UV, sehingga lignin disebut sebagai bahan penahan sinar UV alami. Senyawa fenolik selain dapat menangkal radiasi UV namun juga memberikan efek antioksidan yang baik. Terdapat penelitian yang membuktikan penambahan 2% (b/b) lignin kedalam tabir surya SPF 15 dapat menaikkan nilainya menjadi SPF 30 (Qian et al., 2014).

1.2.Rumusan Masalah

- Bagaimana nilai SPF tengkawang?
- Bagaimana pengaruh penambahan variasi jenis lignin terhadap peningkatan nilai SPF lemak tengkawang?
- Bagaimana pengaruh variasi konsentrasi lignin terhadap nilai SPF pada lemak tengkawang?

1.3.Tujuan

• Melakukan optimasi nilai SPF dari lemak tengkawang berdasarkan jenis dan rasio penambahan lignin.

1.4.Luaran yang Diharapkan

- Publikasi Ilmiah
- Laporan Kemajuan
- Laporan Akhir

1.5.Kegunaan

• Menciptakan produk kosmetik dengan nilai SPF tinggi menggunakan bahan-bahan alam Indonesia

BAB 2. TINJAUAN PUSTAKA

2.1. Tengkawang

Indonesia Tengkawang merupakan tanaman khas iklim tropika basah yang menjadi salah satu bukti keanekaragaman hayati di Indonesia, khususnya di Pulau Kalimantan (Winarni et al., 2017). Tengkawang termasuk dalam kingdom Plantae (tumbuhan), subkingdom Tracheobionta (tumbuhan berpembuluh), super divisi Spermatophyta (menghasilkan biji), divisi Magnoliopsida (berkeping dua/ dikotil), sub kelas Dilleniidae, ordo Theales, famili Dipterocarpaceae, dan genus Shorea.

Gambar 2. 1. (a) Pohon Tengkawang, (b) Tengkawang (Sumber: Djatmiko, 2007)

Buah tengkawang terdiri dari kelopak, kulit dan biji (Sumadiwangsa, 1977). Bagian yang mengandung lemak dalam buah tengkawang adalah bijinya, terutama keping biji. Hasil rata-rata pohon tengkawang selama panen raya adalah sekitar 250 - 800 kg biji kering. Ketika di luar masa panen raya buah tengkawang yang dihasilkan hanya sekitar 50 - 100 kg biji (Widiyanto dan Siarudin, 2013).

2.2. Lemak Tengkawang

Lemak tengkawang merupakan hasil olahan dari biji tengkawang. Sifat fisik lemak tengkawang yang khas adalah berbentuk padat pada suhu kamar, oleh karena itu dapat digunakan sebagai bahan pencampur lemak coklat, margarin,

kosmetika dan sebagainya (Sumadiwangsa, 1977). Kandungan lemak tengkawang yang berasal Sintang didominasi oleh asam stearat, asam oleat dan asam palmitat yang nilainya berturut – turut 42,6%, 31,29% dan 20,22% (Darmawan, 2020).

2.3. Purifikasi Lemak Tengkawang

Asam Pemurnian lemak bertujuan menghilangkan rasa dan bau yang tidak sedap, warna yang tidak menarik dan memperpanjang waktu simpan sebelum dikonsumsi atau digunakan sebagai bahan baku industri. Tahapan pemurnian lemak umumnya terdiri dari perawatan awal (*degumming*), netralisasi, pemucatan (*bleaching*) dan penghilangan bau (*deodorizing*).

- a. **Degumming**, merupakan tahap awal proses pemurnian dimana prinsipnya yaitu menghilangkan atau memisahkan gum (getah atau lendir) tanpa mengurangi jumlah asam lemak bebas (*free fatty acid*/FFA) dalam lemak.
- b. **Netralisasi** adalah proses pemisahan asam bebas lemak dengan cara mereaksikan asam lemak bebas dengan alkali atau reagen lainnya seperti itu membentuk sabun (Ketaren, 1986).
- c. **Pemucatan** merupakan tahap proses pemurnian untuk menghilangkan zat zat warna yang tidak disukai dalam minyak.
- d. **Deodorisasi** adalah tahap proses pemurnian minyak yang bertujuan untuk menghilangkan bau dan rasa yang tidak enak dalam minyak.)

2.4. Lignin

Lignin adalah polimer alami yang memiliki fungsi utama sebagai perekat pada lapisan tumbuhan. Lignin merupakan polimer kedua terbanyak setelah selulosa (Achmadi, 1990). Lignin biasanya dimanfaatkan sebagai perekat, plastik biodegradable dan surfaktan pada sistem Enhance Oil Recovery (EOR) (Suhartati et al., 2016). Lignin banyak mengandung UV kromofor group (fenolik, hidroksi group, ikatan rangkap dan gugus karbonil) yang memiliki peranan untuk mengabsorpsi sinar UV. (Kai et al., 2016).

Beberapa penelitian mengenai efek penambahan lignin pada nilai SPF telah dilakukan. Penambahan lignin pada beberapa jenis sediaan kosmetik dengan variasi jenis dan konsentrasi berhasil meningkat nilai SPF pada sediaan tersebut. Penambahan 1% (b/b) natrium lignosulfonate pada cream nivea berhasil meningkatnya nilai SPF yang sebelumnya bernilai 0,99 menjadi 1,46, sedangkan penambahan penambahan 2,5% enzimatik lignin pada cream tersebut berhasil meningkat nilai SPF menjadi 2,24. Lain halnya dengan penambahan 5% (b/b) alkali lignin pada cream yang sama berhasil meningkatkan nilai SPF yang semula bernilai 0,99 menjadi 3,68 . Penambahan lignin juga dilakukan pada beberapa sediaan kosmetik yang sudah memilki kandungan SPF. Penambahan 10% (b/b) alkali lignin pada LIFE hand cream yang sebelumnya memiliki nilai SPF 1,06 meningkat menjadi 5,33. Penambahan 2% (b/b) organosolv lignin pada tabir surya LIFE yang telah memiliki nilai SPF sebesar 18,22 mengalami peningkatan manjadi 35,32,

sedangkan penambahan 5% (b/b) organosolv lignin pada tabir surya yang sama berhasil meningkat nilai SPF hingga 55,72 (Qian et al., 2014, Qian et al., 2016)

2.5. Tabir Surya

Paparan radiasi sinar ultraviolet (UV) yang dibawa oleh sinar matahari masuk ke dalam bumi dapat menyebabkan beberapa efek negatif pada kulit seperti kulit terbakar, penuanan kulit dan kanker kulit (Kale et al., 2010). Berdasarkan panjang gelombangnya, radiasi sinar UV dikelompokan menjadi tiga yaitu, UV A yang memiliki panjang gelombang 320 – 400 nm, UV B memiliki panjang gelombang 290 – 320 nm sedangkan UV C berkisar dari 200 – 290 nm. Yang menjadi factor utama penyebab timbulnya efek negatif sinar matahari pada kulit adalah UV A dan UV B, sedangkan UV C sudah tersaring terlebih dahulu oleh lapisan ozon di atmosfer sebelum mencapai permukaan bumi (Dutra et al., 2004). Hasil penelitian menyatakan bahwa penggunaan tabir surya setiap hari ternyata dapat menurunkan probabilitas terjadinya kanker kulit (Green et al., 1999). Tabir surya merupakan bahan-bahan kosmetik yang secara fisik atau kimia dapat menghambat penetrasi sinar UV ke dalam kulit (Oroh dan Harun, 2001).

Tabir surya adalah sediaan kosmetika yang digunakan dengan tujuan untuk memantulkan atau menyerap secara efektif cahaya matahari terutama pada daerah emisi gelombang ultraviolet sehingga dapat mencegah terjadinya gangguan kulit karena paparan sinar matahari. Efek- efek tersebut yaitu eritema dan kulit terbakar, serta degenerasi kulit (penuaan dini), pengerutan kulit, dan kanker kulit jika paparan sinar matahari berlebihan dan berlangsung lama (Hadinoto et al., 2000).

2.6. Sun Protection Factor

Efisiensi tabir surya dalam melindung kulit dari bahaya matahari dinyatakan dalam nilai bahan pelindung matahari (SPF) yang diartikan sebagai energi UV yang dibutuhkan untuk menghasilkan *minimal erythema dose* (MED) pada kulit yang terlindungi dan dibagi dengan energi UV yang dibutuhkan untuk menghasilkan MED pada kulit yang tidak terlindungi. MED didefinisikan sebagai jangka waktu terendah terjadinya eritema yang ditandai dengan munculnya ruam merah pada kulit akibat radiasi sinar UV pada kulit yang tidak terlindungi (Wood *et al.*, 2000; Wolf *et al.*, 2001).

$$SPF = \frac{MED \ kulit \ yang \ dilindungi \ oleh \ sunscreen}{MED \ kulit \ yang \ tidak \ dilindungi \ oleh \ sunscreen}$$
(2.1)

Model matematika ini mensubtitusi nilai absorbansi dari spektrofotometri dengan panjang gelombang 290 – 320 nm dan dihitung setiap lima interval. Persamaan tersebut adalah sebagai berikut

$$SPF_{spectrophotometric} = CF \times \sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs(\lambda)$$
 (2.2)

Dimana, EE(1) adalah *erythermal effect spectrum;* I(1) adalah intesitas spektrum solar; Abs(1) adalah absorbansi produk tabir surya; CF adalah faktor

koreksi dengan nilai sepuluh (Mansur et~al., 1986). Dimana berdasarkan literatur dari (Sayre et~al., 1979) nilai dari EE \times I adalah tetap berdasarkan Tabel 2.1

Tabel 2.1 Nilai EE X I

Panjang Gelombang (nm)	EE × I (Normalisasi)
290	0,0150
295	0,0817
300	0,2874
305	0,3278
310	0,1864
315	0,0839
320	0,0180
Total	1,0000

(Sumber: Mansur et al., 1986)

2.7. Adikarya Penelitian

Perbedaan penelitian ini dengan beberapa penelitian yang tela ada sebelumnya dapat dilihat pada Tabel 2.2

Tabel 2.2 Adikarya Penelitian

		Nila	ai SPF	
		Sebelu m	Sesudah Penamba	
Bahan Uji	Jenis Lignin	Penam	han	Referensi
		bahan	Lignin	
		Lignin		
Cream Nivea	Alkali lignin 5 %			Qian et al.,
	(b/b)	0,99	3,68	2014
LIFE hand	Alkali lignin 10 %			Qian <i>et al.</i> ,
cream	(b/b)	1,06	5,33	2014
Tabir surya	Alkali lignin 2 %			Qian et al.,
LIFE SPF 15	(b/b)	18,22	35,32	2014
Pure Cream	Organosolv lignin			Qian et al.,
Nivea	5% (b/b)	0,99	6,67	2016
Pure Cream	Enzimatik lignin	0,99	2,24	Qian et al.,
Nivea	2,5% (b/b)			2016
	Sodium			Qian et al.,
Pure Cream	lignosulfonate	0,99	1,46	2016
Nivea	1% (b/b)			
Tabir surya	Organosolv lignin	18,22	55,72	Qian et al.,
LIFE SPF 15	5% (b/b)			2016
Lemak	Magnesium			Penelitian ini
tengkawang	lignosulfonat			
	Kalsium			
	lignosulfonat			

Natrium		
lignosulfonat		

BAB 3. METODE PENELITIAN

3.1. Diagram Alir Penelitian

Diagram alir penelitian ini menunjukkan tahapan yang akan dilaksanakan untuk mendapatkan nilai SPF tertinggi pada produksi bahan pelindung matahari dari tengkawang serta melihat pengaruh perbedaan jenis dan konsentrasi dari lignin pada nilai SPF lemak tengkawang.

3.2. Prosedur Penelitian

3.2.1 Purifikasi Lemak Tengkawang

- Degumming
- 1. Melelehkan ± 100 gram lemak tengkawang pada suhu 60-70 °C menggunakan hot plate
- 2. Menambahkan asam fosfat 20% sebanyak 1% (b/b) kemudian diaduk menggunakan *magnetic stirrer* dengan kecepatan 400 rpm selama 30 menit
- 3. Memisahkan kotoran yang terbentuk menggunakan corong pemisah
- 4. Mencuci lemak tengkawang dengan menambahkan air hangat dan mengocok campuran
- 5. Mendiamkan larutan hingga gum terbentuk kemudian membuang gum
- 6. Menimbang rendemen lemak tengkawang
- Netralisasi
- 1. Menambahkan larutan NaOH konsentrasi \pm 1M dengan volume sebesar 10% (b/b).
- 2. Melakukan pengadukan menggunakan *magnetic stirrer* dengan kecepatan 400 rpm selama 30 menit dengan suhu 60 70 °C

- 3. Memisahkan fasa sabun yang terbentuk menggunakan saringan kawat
- 4. Mencuci lemak tengkawang dengan menambahkan air hangat dan mengocok campuran dan menunggu hingga terbentuk dua fasa
- 5. Menimbang rendemen lemak tengkawang
- Pemucatan
- Mengaktivasi bentonite dengan dengan memanaskan bentonite pada suhu 200 °C selama 120 menit pada oven
- 2. Menambahkan bentonite kedalam lemak tengkawang dengan rasio 40% (b/b) dengan suhu 60 70 °C dan didiamkan selama 24 jam.
- 3. Memisahkan adsorben dengan lemak tengkawang menggunakan dengan metode filtrasi vakum menggunakan membran berporositas $0.8 \mu m$
- 4. Menimbang rendemen lemak tengkawang
- Pencampuran Lignin
- 1. Mencampurkan natrium lignosulfonate kedalam campuran fasa cair pelembab bibir dengan *magnetic stirrer* dengan kecepatan 600 rpm dalam keadaan gelap
- 2. Melakukan sentrifugasi dengan kecepatan 10.000 rpm selama 1 jam untuk mematikan pencampuran yang terjadi sempurna

3.3. Variabel Penelitian

Variabel Bebas

Variabel bebas yang digunakan adalah jenis dan konsentrasi lignin yang ditambahan ke dalam lemak tengkawang. Jenis lignin yang digunakan adalah Magnesium lignosulfonat, Kalsium lignosulfonate dan Natrium lignosulfonat. Konsentrasi lignin yang ditambahkan adalah sebesar 1% (b/b), 2,5% (b/b), 5% (b/b) dan 10% (b/b) (Qian et al., 2016)

Variabel Terikat
 Variabel terikat pada penelitian ini adalah nilai SPF

Variabel Kontrol

Variabel kontrol pada penelitian ini adalah jenis lemak tengkawang yang digunakan yaitu lemak tengkawang yang digunakan

3.4. Indikator Pencapaian

Indikator pencapaian dari penelitian ini adalah mendapatkan nilai SPF tertinggi pada produksi bahan pelindung matahari dengan menambahkan lignin kedalam lemak tengkawang

3.5. Metode Analisis

- Uji Karakterisasi Lemak Sesudah Purifikasi
- Uji Bilangan Asam
- 1. Melelehkan lemak tengkawang sebanyak 2 gram dalam labu erlenmeyer berukuran 100 mL
- 2. Menambahkan 25 mL etanol netral dan menggoyangkan secara perlahan hingga terbentuk dua lapisan terpisah antara minyak dan etanol
- 3. Melakukan titrasi dengan NaOH 0,1 N dengan penambahan indikator phenoftalein sebanyak 3 4 tetes

- Uji Bilangan Peroksida
- 1. Melelehkan lemak tengkawang sebanyak 2gram dalam labu erlenmeyer berukuran 250 mL
- 2. Menambahkan dengan kloroform dan mengocok campuran
- 3. Menambahkan katalis berupa asam asetat glasial dan larutan KI
- 4. Mengocok campuran dalam keadaan gelap selama 1 menit
- 5. Menambahkan 50 mL aquades dan indicator kanji
- 6. Melakukan titrasi campuran menggunakan larutan Na₂S₂O₃
- Uji Kadar Beta Karoten
- 1. Menyiapkan dua buah kuvet yang berisi n-heksana sebagai larutan blanko dan kuvet berisi sampel yang dianlisis
- 2. Melakukan kalibrasi dengan menekan *Blank Zero* untuk abosrbansi% transmisi pada 400 nm, masukkan larutan blanko dan mencatat abosrbansi dengan variasi 400 500 nm
- 3. Menimbang sampel 0,1 gram sampel dalam labu ukur 25 mL kemudian menambahkan n-heksana hingga garis batas kemudian dihomogenkan dan dimasukkan kedalam kuvet
- 4. Pada menu absorbansi% transmisi dimasukkan angka 446 m, menekan *Blank Zero*, dan dimasukkan kedalam kuvet berisi sampel dan dicatat hasil absorbansinya lalu melakukan triplo
- Uji Nilai SPF

Pengujian nilai SPF dilakukan dengan melakukan pengukuran absorbansi pada sampel lemak tengkawang.

- Melelehkan 1gram sampel lemak dan mencampurkan lemak tersebut dengan 50 mL campuran etanol dan kloroform dengan perbandingan 1:1 dan diencerkan hingga 200 ppm
- 2. Mengukur nilai absorbansi campuran pada panjang gelombang 290 320 nm dengan interval pengukuran 5 nm
- 3. Menghitung nilai SPF menggunakan persamaan 2.2
- Uji Nilai SPF

Pengujian nilai SPF dilakukan dengan melakukan pengukuran absorbansi pada sampel lemak tengkawang.

- Melelehkan 1gram sampel lemak dan mencampurkan lemak tersebut dengan 50 mL campuran etanol dan kloroform dengan perbandingan 1:1 dan diencerkan hingga 200 ppm
- 2. Mengukur nilai absorbansi campuran pada panjang gelombang 290 320 nm dengan interval pengukuran 5 nm
- 3. Menghitung nilai SPF menggunakan persamaan 2.2
- Uji Kadar Kelembaban

Pengujian kadar kelembaban dilakukan menggunakan instrument Corneometer 285 untuk mengetahui efek kelembaban setelah pemakaian emak tengkawang terhadap kulit

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Tabel 4. 1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang diperlukan	Rp2.924.000,00
2	Bahan Habis Pakai	Rp3.826.000,00
3	Perjalanan	Rp750.000,00
4	Lain-lain	Rp2.500.000,00
•	Jumlah	Rp10.000.000,00

4.2. Jadwal Kegiatan

Tabel 4. 2 Jadwal Kegiatan

Ionia Wasiatan		Bulan		Bulan			Donon gamma Jamah
Jenis Kegiatan	1	2	3	4	Penanggung Jawab		
Formulasi Tabir Surya					Azzahra Putri		
Uji Nilai SPF					Nadhira Alifa		
Uji Kelembaban					Nadhira Alifa		
Analisis Data					Azzahra Putri, Nadhira Alifa, Jason Jimmy		
Pembuatan Laporan					Azzahra Putri, Nadhira Alifa, Jason Jimmy		
Akhir					·		

DAFTAR PUSTAKA

- BPS. 2017. *Data Ekspor Tengkawang*. Statistical Year Book of Indonesia. Jakarta. BPS. 2017. *Perdagangan Luar Negeri*. Statistical Year Book of Indonesia. Jakarta. Darmawan, M. A. 2020. Proses Pemurnian Lemak Tengkawang (Shorea stenoptera) dengan Bentonite Aktivasi Termal dan Asam sebagai Alternatif Bahan Baku Pelembab. *Tesis*. Fakultas Teknik Universitas Indonesia, Depok.
- Djatmiko, W. 2007. URL: Wikipedia: https://id.wikipedia.org/wiki/Berkas: Tengkawang_070314_0290_utk.jpg. [10 Januari 2021]
- Dutra, E. A., Oliveira, D. A., Kedor-Hackmann, E. R., & Santoro, M. I. 2004. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. *Brazilian Journal of Pharmaceutical Sciences*. *3*(3).
- Green, A., William, G., & Neale, R. 1999. Does Daily Use of Sunscreen or β carotene Supplements Prevent Skin Cancer in Healthy Adults. Western Journal of Medicine. 354:723-729.
- Hadinoto, I., Soeratri, W., & Meity, C. 2000. Pengaruh pH terhadap Efektivitas Sediaan Tabir Matahari dengan Bahan Aktif Etil Heksil P- Metoksisinamat dan Oksibenzon dalam Basis Hidrofilik Krim secara In Vitro. *Kongres Ilmiah XIII Ikatan Sarjana Farmasi Indonesia. Jakarta.* 342-345.
- Kale, S., Onawae, A., Ansari, A., Ghoge, P., & Waje, A. 2010. Formulation and In- Vitro Determination of Sun Protection Factor of Ocimum basilum, Linn. Leaf Oils Sunscreen Cream. International Journal of Pharmacy and Pharmaceutical Sciences. 2:147.
- Kai, D., Tan, M., Chee, P., Chua, Y., Yap, Y., & Loh, X. 2016. Towards lignin-based functional materials in a sustainable world. Green Chemistry. 18(5), 1175-1200.

- Kemkes.go.id. 2021. Penderita *Kanker Diperkirakan Menjadi Penyebab Utama Beban Ekonomi Terus Meningkat*. URL:https://www.kemkes.go.id/article/view/1937/penderita-kanker-iperkirakan-menjadi-penyebab-utama-beban-ekonomi-terus-meningkat.html. Diakses 11 Februari 2020.
- Mansur, J., Breeder, M. N., & Azulay, R. 1986. Determinação do fator de proteção solar por espectrofotometria, An. Bras. *Dermatol.* 61:121-124.
- Oroh, E., & Harun, E. S. 2001. Tabir Surya (Sunscreen). *Berkala Ilmu Penyakit Kulit & Kelamin*. 13(1),1.
- Qian, Y., Qiu, X., & Zhu, S. 2014. *Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens*. Glasglow. The Royal Society of Chemistry.
- Qian, Y., Que, X., & Zhu, S. 2016. Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens. Washington D.C. ACS Publication.
- Sayre, R., Agin, P. P., Levee, G., & Marlowe, E. 1979. Comparison of in vivo and in vitro testing of sunscreening formulas, Photochem. *Photobiol.* 29:559-566.
- Suhartati, S., Puspito, R., Rizali, F., & Anggraini, D. 2016. Analisis Sifat Fisika dan Kimia Lignin Tandan Kosong Kelapa Sawit asal Desa Sape, Kabupaten Sanggau, Kalimantan Barat. *Jurnal Kimia VALENSI: Jurnal Penelitian dan Pengembangan Ilmu Kimia*.2(1):24-29.
- Sumadiwangsa, S. 1977. Biji Tengkawang sebagai Bahan Baku Lemak Nabati. *Laporan No. 91*. Lembaga Penelitian Hasil Hutan, Departemen Pertanian, Bogor.
- Widiyanto, A., & Siarudin, M. 2013. Minyak Lemak, Salah Satu Potensi Hasil Hutan Bukan Kayu yang Perlu Dikembangkan. *Forest Product (ForPro)*, 2(1), 8-17.
- Winarni, B. A. 2017. Analisis dan Produksi Finansial Pengusahaan Tengkawang oleh Rakyat di Kalimantan Barat. *Jurnal Hutan Tropis*. *5*(3):236-243.
- Wolf, R., Wolf, D., Morganti, P., dan Ruocco, V. 2001. Sunscreen. 19(4):452-459.
- Wood, C. &. 2000. Sunscreen Efficacy. Glob. Cosmet. Ind., Duluth. 167, 38-44.
- Zulkarnain, A. K., Ernawati, N., dan Sukardani, N. I. 2013. Aktivitas Amilum Bengkuang (Pachyrrizus erosus (L.) Urban) sebagai Tabir Surya pada Mencit dan Pengaruh Kenaikan Kadarnya terhadap Viskositas Sediaan. *Traditional Medicine Journal*, 18(1).

LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota dan Dosen Pendamping

A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Nadhira Alifa Hubeis
2.	Jenis Kelamin	Perempuan
2.	Program Studi	Teknik Bioproses
4.	NIM	1706987223
5.	Tempat dan Tanggal Lahir	Jakarta, 27 Juli 1999
6.	Alamat e-mail	dhiraalifahubeis@gmail.com
7.	No. Telepon/HP	081319402649

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Society for Biological Engineering	Koordinator Bidang Public Relation	Depok, 2020
2	Process Engineering and Energy Days	Wakil Koordinator Bidang Marketing and Communication Strategy	Depok, 2021
3	ShARE UI	Project Specialist	Depok, 2021

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1.	Publikasi Ilmiah	The 2 nd International Conference on Universal Wellbeing	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 11 Februari 2021

Ketua

(Nadhira Alifa Hubeis)

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Azzahra Putri Kinanti
2.	Jenis Kelamin	Laki-laki/Perempuan
3.	Program Studi	Teknik Bioproses
4.	NIM	1806207596
5.	Tempat dan Tanggal Lahir	Jakarta, 28 Agustus 2000
6.	Alamat e-mail	arraputri08@gmail.com
7.	No. Telepon/HP	087780135768

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	-	Status dalam Kegiatan	Waktu dan Tempat
_	SBE UISC 2021		Daring,2021
_	SBE UISC 2020		Depok,2020
	ILUNI FTUI	PIC Sponsorship	Depok,2019
_	IMTK FTUI		Depok,2018

C. Penghargaan yang Pernah Diterima

C. 1 C. B. C. D. C.			
No lenis Penghargaan	Pihak Pemberi Penghargaan	Tahun	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 11 Februari 2021 Anggota

(Azzahra Putri Kinanti)

C. Biodata Anggota ke-2

A. Identitas diri

1.	Nama Lengkap	Jason Jimmy Amadeus Palenewen
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Bioproses
4.	NIM	1906357383
5.	Tempat dan Tanggal Lahir	
6.	Alamat e-mail	Jason.jimmy@ui.ac.id
7.	No. Telepon/HP	08114341030

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	SPE UI SC 2021	Co-Director of Curriculum and Competition	Daring, 2021
2	SRE UI SC 2021	Staff of Relations	Daring, 2021
3	SBE UI SC 2020	Staff of External Events	Daring, 2020
2	IMTK FT UI 2020	Badan Pengurus Kemahasiswaan	Daring, 2020
3	Chemical Engineering in Charity 2020	Wakil Ketua Panitia	Bogor, 2020

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 1 English Debate OIM FT UI	Badan Eksekutif Mahasiswa Fakultas Teknik Universitas Indonesia	2020
2	Verbal Commendation	Student Energy-Model United Nations, Process Engineering Days 2020	2020

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 11 Februari 2021 Anggota

(Jason Jimmy Amadeus Palenewen)

D. Biodata Dosen Pendamping A. Identitas diri

1	Nama Lengkap	Prof. DrIng. Ir. Misri Gozan, IPU
2	Jenis Kelamin	Laki-Laki
3	Program Studi	Teknologi Bioproses
4	NIDN	0022096801
5	Tempat dan Tanggal Lahir	Cirebon, 22 September 1968
6	E-mail	mrgozan@gmail.com
7	Nomor Telepon/HP	085781176292

B. Riwayat Pendidikan

_	S1	S2	S3
Nama Institusi	Universitas Indonesia	Massey University	Technische Universität Dresden
Jurusan	Gas & Petrokimia	Process & Environmental Engineering	Geo-, Forestry-, and Hydroscience
Tahun Masuk-Lulus	1987-1993	1996-1998	2001-2004

C. Rekam Jejak Tri Dharma PT C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib / Pilihan	SKS
1	Neraca Massa dan Energi	Wajib	3
2	Pengantar Teknologi Bioproses	Wajib	3
3	Topik Khusus 1	Pilihan	3
4	Perancangan Produk Kimia &	Wajib	4
	Hayati		
5	Simulasi Sistem Bioproses	Wajib	3
6	Bioinformatika	Pilihan	3
7	K3L	Wajib	2

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Biopesticide Production and	LPDP RISPRO	2017-2019
	Sustainable Biorepellant		
	Carcinogenic of Tobacco		
2	Formulation, stability test and in	SHERA Centre for	2018
	vitro penetration test of emulgel	Development of	
	from tobacco leaves extract	Sustainable Region	
3	Techno-Economic Analysis of	SHERA Centre for	2018
	Biogas Power Plant from POME	Development of	
	(Palm Oil Mill Effluent)	Sustainable Region	
4	Biorefinery Concept	Badan Pengelola	2015-2016
	Development: Bioethanol and	Dana Perkebunan	
	Levulinic Acid Plant from EFB	Kelapa Sawit	
5	Evaluation of Separate and	Badan Pengelola	2018
	Simultaneous Kinetic Parameters	Dana Perkebunan	
	for Levulinic Acid and Furfural	Kelapa Sawit	

	Production from Pretreated Palm		
	Oil Empty Fruit Bunches		
6	Production and Characterization	Hibah Riset	2017
	of Cellulase from E. coli EgRK2	Kompetitif	
	Recombinant based	Kemendiknas	
7	Formulation of Tobacco Based	Hibah Kompetitif	2016
	Mosquito Repellent to Avoid	DRPM UI	
	Dengue Fever		
8	Biorefinery: Produksi	International	2014
	Polyhydroxybutyrate (PHB) dan	Collaboration-based	
	Polylactic Acid (PLA) dari	Research	
	Tandan Kosong Kelapa Sawit	Strengthening UI	
	(TKKS)		
9	Produksi Biopestisida Dan	BOPTN PUPT UI	2014
	Biorepellant Ramah Lingkungan		
	Karsinogenik Dari Daun		
	Tembakau Dengan Fermentasi		
	Dan Pirolisis		
10	Produksi Boetanol dari Limbah	Kemendiknas	2012-2014
	Padat Kelapa Sawit melalui		
	beberapa Metode Pra-Perlakuan		
	dan Hidrolisis		
11	Design and Construction of Pilot	INSENTIF	2009
	Scale Bioethanol Plant from	RISTEK	
	Bagasse through Multiple		
	Enzymes and SSF		
12	Production of Bioethanol from	INSENTIF	2007-2008
	Bagasse through multiple enzymes	RISTEK	
	and SSF		

C.3. Pengabdian kepada Masyarakat

No	Judul Pengabdian Kepada	Penyandang Dana	Tahun
	Masyarakat		
1	Peningkatan Produksi garam		
	dengan Metode Ulir-Filter-	Hibah Pengmas	2012-2013
	Membran di Desa Ambulu,	UI	2012-2013
	Kabupaten Cirebon		
2	In House Training		2011
	'Bioteknologi"	-	2011
3	Penyusunan Roadmap		
	Swasembada Garam Nasional	-	2011
	dan Kunjungan Lapangan		
4	Pelatihan Membangun Tim	_	2009
	yang Solid	-	2009
5		Hibah	
	Pelatihan Pembuatan Tempe	Kompetensi	2008
		Institusi UI	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-RE

Depok, 11 Februari 2021 Dosen Pendamping

(Prof. Dr.-Ing. Ir. Misri Gozan, IPU.)

Lampiran 2. Justifikasi Anggaran

Lampiran 2. Justinkasi Angga		T	T
1. Perlengkapan yang	Volume	Harga	Nilai (Rp)
Diperlukan		Satuan (Rp)	
Gelas Ukur 100 mL	5 buah	15.000	75.000
Gelas Ukur 250 mL	5 buah	20.000	100.000
Gelas Ukur 500 mL	5 buah	25.000	125.000
Pipet Tetes	10 buah	3.000	30.000
Pipet Volumetrik 100 mL	2 buah	152.000	304.000
Corong Pemisah 50 mL	1 buah	350.000	350.000
Timbangan	1 buah	450.000	450.000
Hot Plate	1 buah	340.000	340.000
Labu Vakum	1 set	800.000	800.000
Statif	1 buah	200.000	200.000
Buret	1buah	150.000	150.000
	SUI	BTOTAL (Rp)	2.924.000,00
2. Barang Habis Pakai	Volume	Harga	Nilai (Rp)
		Satuan (Rp)	\ 1 /
Lemak Tengkawang	3 kg	295.000	885.000
Natrium Lignosulfonat Magnesium Lignosulfonat	1 kg	15.000 15.000	15.000
Kalsium Lignosulfonat	1 kg	15.000	15.000 15.000
Ca-Bentonite	1 kg		
Kalium Iodate	4 kg 500 gram	20.000 1.655.000	80.000 1.655.000
Natrium Hidroksida	500 gram	340.000	340.000
Kalium Hidroksida	1 kg	37.000	37.000
Natrium Thiosulfat	1 kg	140.000	140.000
Asam Asetat Glasial	1 liter	62.000	62.000
Etanol	1 liter	55.000	55.000
Aseton	1 liter	42.000	42.000
Indikator phenolptalein	25 gram	290.000	290.000
Kanji	500 gram	150.000	150.000
Asam Fosfat	1 kg	45.000	45.000
T I DUNIT T OBTAIN		BTOTAL (Rp)	3.826.000,00
3. Perjalanan dalam Kota	Volume	Harga	Nilai (Rp)
3. I Oljaranan daram II-sta	Volume	Satuan (Rp)	T (Hur (Ttp)
Death Personal death and a bear	2		COO 000
Pembelian alat dan bahan	3	200.000	600.000
	orang/pulang		
	-pergi		
Uji Kelembaban	3	50.000	150.000
	orang/pulang		
	-pergi		
		BTOTAL (Rp)	750.000
4. Lain-lain	Volume	Harga	Nilai (Rp)
		Satuan (Rp)	·· \ -r/
Sewa Spektofotometri	1 semester	900.000	900.000
=			
Uji Kelembaban	10 kali	100.000	1.000.000

Swab Antigen	3 orang	200.000	600.000	
SUBTOTAL (Rp)		2.500.000		
TOTAL 1+2+3+4 (Rp)			10.000.000	
(Terbilang :) Sepuluh Juta Rupiah				

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama / NIM	Program	Bidang	Alokasi	Uraian Tugas
		Studi	Ilmu	Waktu	_
				(jam /	
				minggu)	
1	Nadhira Alifa Hubeis / 1706987223	Teknik Bioproses	Saintek	20	Melakukan studi literatur, melakukan proses purifikasi lemak tengkawang, melakukan uji nilai SPF dan kelemban, menganalisis data, dan menyusun laporan akhir
2	Azzahra Putri Kinanti / 1806207596	Teknik Bioproses	Saintek	20	Melakukan studi literatur, melakukan proses purifikasi lemak tengkawang, membuat formulasi, menganalisis data, dan menyusun laporan akhir
3	Jason Jimmy Amadeus Palenewen/ 1906357383	Teknik Bioproses	Saintek	20	Melakukan studi literatur, melakukan uji karakteristik lemak menganalisis data, dan menyusun laporan akhir

Lampiran 4. Surat Pernyataan Ketua Tim Pelaksana

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini: Nama : Nadhira Alifa Hubeis

NIM : 1706987223 Program Studi : Teknik Bioproses

Fakultas : Teknik

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Produksi Bahan Aktif Pelindung Matahari Berbahan Baku Lemak Tengkawang dan Lignin yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Depok, 10 Februari 2021 Yang menyatakan,

6000 Columbia

(Nadhira Alifa Hubeis) 1706987223