$$u_0 = 1$$
 et
 $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 1}{1}$

- 1. Montrer que : $\forall n \in \mathbb{N}, 0 < u_n \leq 1$.
- 2. Montrer que (u_n) est monotone. En déduire qu'elle est convergente puis calculer sa limite.

Exercice 2 (5 points) Soit f la fonction définie par :

$$(x) = \frac{x^2}{x^2 + 1} \arctan(\frac{1}{x^2})$$

- 2. Montrer que f admet un prolongement par continuité en 0. On note par g son prolongement. +3. Calculer g'(x) pour $x \neq 0$ ainsi que g'(0). La dérivée g' est elle continue au point (x)
- 4. Peut-on appliquer le théorème de Rolle à g sur l'intervalle [-1,1].
 - On donne $\arctan(1) = \frac{n}{4}$.

Exercice 3 (10 points) Soient f et h les fonctions réelles d'une variable réelle définies par $f(x) = e^x - \frac{x^2}{2}$ et $h(x) = e^x - x - \frac{x^2}{2}$.

On considère la suite numérique définie par

$$U_0 = 0, U_{n+1} = f(U_n).$$

1. Enoncer la formule de Mac-Laurin- Lagrange à l'ordre n puis montrer que

$$1 + x + \frac{x^3}{3!} \le f(x) \le 1 + x + \frac{x^3}{3!} e^x, \ \forall x \in \mathbb{R}^+.$$

- 2. Etudier les variations de h sur R+. (Dresser un tableau de variations.)
- 3. En déduire que l'équation f(x) = x n'admet pas de solution sur \mathbb{R}^+ . 4. Que peut-on en déduire sur la nature de la suite (Un) ? Justifier la réponse.
- √ 5. Montrer que la suite (Un) est croissante.
- V6. Montrer que $U_n \ge n$, $\forall n \in \mathbb{N}$.
- \downarrow 7. Que peut-on dire sur inf U_n , min U_n , sup U_n , et max U_n ?
- 4. On pose $W_n = (-1)^n U_n$, $\forall n \in \mathbb{N}$. Que peut-on dire sur inf W_n , min W_n , sup W_n , et max W_n ?

$$q(x) = 1 + x + x^3e$$

$$V_0 = 0, V_{n+1} = g(V_n)$$

Montrer que

$$\lim_{n \to +\infty} V_n = +\infty.$$

<u>Indication</u>: On pourra montrer que $g(x) \ge f(x)$ sur \mathbb{R}^+ et que $V_n \ge U_n$, $\forall n \in \mathbb{N}$.

USTHB	
1ère année MI	

Analyse I Corrigé de l'examen final Sections 2 et 4

Année Universitaire Durée 1 h 30 min

Exercice 1 (5 points) Lorsqu'il s'agit d'une suite récurrente $u_{n+1} = f(u_n)$ il faut toujours etudier les variations de f. Ici $f(x) = \frac{x+1}{x+3}$.

$$l_{i}$$
 f est continue dérivable sur $]0,1]$ et $f'(x)=\frac{2}{\left(x+3\right)^{2}}>0$ donc f est stictement croissant

sur]0, 1].

2. Par récurrence on a $U_0=1\in]0,1]$. Supponsons que $0< u_n\leq 1$, comme f est strictement

croissante on a $f(0) = \frac{1}{3} < f(u_n) \le f(1) = \frac{2}{4}$ et donc $0 < u_{n+1} \le 1$, par suite $0 < u_n < 1$ pour tout n > 0.

3. f est strictement croissante donc (u_n) est monotone en particulier $u_1 = u_0 = \frac{1}{2} - 1 =$

 $-\frac{1}{2}$ < 0, la suite est donc décroissante, et comme elle est minorée on déduit qu'elle est convergente. Soit l sa limite donc l vérifie $0 \le l \le 1$ et l = f(l). ce qui conduit à résoudre $l^2+2l-1=0$ ce qui donne $l_1=-\sqrt{2}-1<0$ et $l_1=\sqrt{2}-1$

(1+0.5+0.5 point)[0,1] et donc $\lim u_n = \sqrt{2} - 1$. 4. $U_0 = 0 \in A$ donc $A \neq \phi$. Comme (u_n) est décroissante on a $\inf A = \lim u_n = \sqrt{2}$ $\min A$ n'existe pas car sinon la suite sera constante. $\sup A = \max A = U_0 = 0$ car $U_0 = 0$ $(4 \times 0.5 point)$ $0 \in A$

Exercice 2 (5 points)

point) .

I. $D_f = \mathbb{R}^*$. f est continue sur $]-\infty,0[$ et sur $]0,+\infty[$ car elle est produit d'une fraction rationnelle $(x \rightarrow \frac{x^2}{x^2+1} \text{ avec } x^2+1\neq 0)$ par la fonction $(x \rightarrow \arctan(\frac{1}{x^2}) \text{ avec } x^2\neq 0 \text{ sur}$

2. $\lim_{x\to 0} f(x) = 0$ car $\lim_{x\to 0} \frac{x^2}{x^2+1} = 0$ et $\lim_{x\to 0} \arctan(\frac{1}{x^2}) = \frac{\pi}{2}$, donc f est prolongeable par continuité en 0 et son prongement est $g(x) = \begin{cases} \frac{x^2}{5^2+1} \arctan(\frac{1}{x^2}) & \text{si } x \neq 0 \\ \frac{1}{5^2+1} \arctan(\frac{1}{x^2}) & \text{si } x \neq 0 \end{cases}$ (2×0.5)

3. Sur \mathbb{R}^* , a = f est dérivable sur $]-\infty,0[$ et sur $]0,+\infty[$ car elle est produit d'une fraction rationnelle $(x \rightarrow \frac{x^2}{x^2+1} \text{ avec } x^2+1 \neq 0)$ par la fonction $(x \rightarrow \arctan(\frac{1}{x^2}) \text{ avec } x^2 \neq 0 \text{ sur}$ \mathbb{R}^*) qui sont dérivables sur \mathbb{R}^* et on a $g'(x) = \frac{2x}{(-2+1)^2} \arctan \frac{1}{x^2} - \frac{2x^3}{(-2+1)(-4+1)}$.

Dérivabilité en 0 : on $\lim_{x\to 0} \frac{g(x)-g(0)}{x-0} = \lim_{x\to 0} \frac{x}{x^2+1} \arctan(\frac{1}{x^2}) = 0$ donc g est dérivable en 0 et on a q(0) = 0. $\lim_{x\to 0} g'(x) = \lim_{x\to 0} \left(\frac{2x}{(x^2+1)^2} \arctan \frac{1}{x^2} - \frac{2x^3}{(x^2+1)(x^4+1)} \right) = 0 = g'(0)$, par suite g' est conti-

 (4×0.5) nue au point 0

4. La fonction q est continue sur [-1,1], dérivable $]-1,1[sur et g(-1)=g(1)=\frac{\pi}{2}, donc$ on peut appliquer le théorème de Rolle à q sur l'intervalle [-1, 1].

Exercice 3 (10 points)

1. Formule de Mac-Laurin-Lagrange c'est la formule de Taylor-Lagrange sur [0,x], x>0. Si f est de classe C^n sur [0,x] et la dérivée d'ordre n+1 existe sur [0,x] alor il existe $c \in]0, x[tel que]$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$$

On applique cette formule à f à l'ordre 2. f est de classe C^{∞} sur \mathbb{R} et $f'(x) = e^x - x$, $f''(x) = e^x - 1$ et $f^{(3)}(x) = e^x$ donc il existe $c \in [0, x]$ tel que $f(x) = 1 + x + \frac{e^x}{3!}x^3$ de plus $1 < e^c < e^x$ et on a

$$1 + x + \frac{x^3}{2!} \le f(x) \le 1 + x + \frac{x^3}{2!}e^x, \ \forall x \in \mathbb{R}^+.$$

cette relation reste vraie si x = 0 auguel cas on a égalité.

2. h continue dérivable sur \mathbb{R}^+ et $h'(x) = e^x - x - 1$, or d'aprés l'inegalité 1 on a h'(x) = $f(x) + \frac{x^2}{2} - x - 1 \ge \frac{x^2}{2} + \frac{x^3}{2!} \ge 0$, par suite h est croissante de $[0, +\infty]$ à valeur dans $[h(0), \lim_{x \to +\infty} h(x)] = [1, +\infty].$

3. l'équation f(x) = x est équivalente à h(x) = 0 or $h(x) \ge 1 > 0$ sur \mathbb{R}^+ donc elle n'admet pas de solution sur R+. (1 point)

4. La suite (U_n) est divergente car sinon sa limite serait solution de f(x) = x qui d'après 3 h'existe pas. (1 point)

5. D'après l'inégalité en $1, f(x) \ge x$, donc $U_{n+1} = f(U_n) \ge U_n$ par suite (U_n) est croissante. point)

6. Par récurrence pour n=0 on a $U_0=0\geq 0$. On suppose que $U_n\geq n$ et on montre que $U_{n+1} \ge n+1$ Daprès l'inégalité en 1, $f(x) \ge x+1$, donc $U_{n+1}=f(U_n) \ge U_n+1 \ge n+1$ n+1, d'où le résultat.

7. Comme (U_n) est croissanté et $U_n \ge n$ on a $\lim U_n = +\infty$, donc $\inf U_n = \min U_n = U_0 =$ 0. $\sup U_n = \lim U_n = +\infty$ et max U_n n'existe pas (pour la section 2 $\sup U_n$, et max U_n (1 point) n'existent pas).

8. D'après 6 $W_{2n}=U_{2n}\geq 2n$ et $W_{2n+1}=-U_{2n+1}\leq 2n+1$ donc (W_n) n'est ni majorée ni minorée par suite inf Wn, min Wn, sup Wn, et max Wn n'existent pas. 9. Tout d'abrod la fonction f est croissante car $f'(x) = h'(x) + 1 \ge 0$, de plus g(x) =

 $1+x+x^3e^x \ge 1+x+\frac{x^3}{2^n}e^x \ge f(x)$ done on montrera par récurrence que $V_n \ge U_n, \ \forall n \in \mathbb{N}$ (1 point) pour n=0 on a $V_0=0\geq U_0=0$. On suppose que $V_n\geq U_n$, comme f est croissante on $a \ f(V_n) \ge f(U_n)$ et donc $V_{n+1} = g(V_n) \ge f(V_n) \ge f(U_n) = U_{n+1}$ et on conclut par le principe de récurrence que $V_n \geq U_n, \ \forall n \in \mathbb{N}$

Finalement $\lim_{n \to \infty} V_n \ge \lim_{n \to \infty} U_n = +\infty$ d'où $\lim_{n \to \infty} V_n = +\infty$.

(1.5 point)

(1 point)