Relation among Expansiveness, Shadowing property, and Topological stability on impulsive dynamical system

Jiye Jung Mathematics, Chungnam university, Daejeon, South Korea

Abstract

This paper is a study of expansiveness, shadowing property, and topological stability on impulsive dynamical system. Especially, we extend a well-known stability property of continuous flow by R.F, Thomas(1982) to impulsive dynamical system.

1 Impulsive dynamical system

[9] Let X be a metric space and \mathbb{R}_+ be the set of real numbers. The triple (X, π, \mathbb{R}_+) is called a semidynamical system, if the continuous function $\pi: X \times \mathbb{R}_+ \to X$ satisfies the conditions:

(a)
$$\pi(x,0) = x$$
, for all $x \in X$

(b)
$$\pi(\pi(x,t),s) = \pi(x,t+s)$$
, for all $x \in X$ and $t,s \in \mathbb{R}_+$

For fixed $t \in \mathbb{R}_+$, we can define $\pi_t : X \to X$ by $\pi_t(x) = \pi(x,t)$, for $x \in X$. And for fixed $x \in X$, we can also define $\pi_x : \mathbb{R}_+ \to X$ as $\pi_x(t) = \pi(x,t)$, for $t \in \mathbb{R}_+$. Easy to know that π_t is a homeomorphism of X and π_x is a continuous. π_x called the trajectory of x. Let $F(x,t) = \{y : \pi(y,t) = x\}$. We denote the positive orbit of x by $\pi^+(x) = \{\pi(x,t) : t \in \mathbb{R}_+\}$.

[9] An impulsive dynamical system $(X, \pi; M, I)$ consists of a semdynamical system, (X, π) , a non-empty closed subset M of X and a continuous function $I: M \to X$ such that for every $x \in M$, there exists $\epsilon_x > 0$ such that

$$F(x,(0,\epsilon_x)) \cap M = \emptyset$$
 and $\pi(x,(0,\epsilon_x)) \cap M = \emptyset$

Let
$$M^+(x) = \pi^+(x) \cap M \setminus \{x\}, I(x) = x^+.$$

Define $\Phi: X \to (0, +\infty]$

$$\Phi(x) = \left\{ \begin{array}{ll} s & \pi(x,s) \in M, \pi(x,t) \not \in M \text{ for } 0 < t < s \\ +\infty & M^+(x) = \emptyset \end{array} \right.$$

Existance of s is shown in [Lemma 2.1 [4]].

Given $x \in X$ we define a function $\tilde{\pi}_x : [0, s) \to X$ where $s \in \mathbb{R}_+ \cup \{\infty\}$. This function is called *impulsive trajectory* of x and defined inductively as follows. Set $x = x_0$. If $M^+(x_0) = \emptyset$, then $\tilde{\pi}_x(t) = \pi(x, t)$ for all $t \in \mathbb{R}_+$. If $M^+(x_0) \neq \emptyset$, then there exists a positive $s_0 \in \mathbb{R}_+$ such that $\pi(x_0, s_0) = x_1 \in M$ and $\pi(x_0, t) \notin M$ for $0 < t < s_0$. We define $\tilde{\pi}_x$ on $[0, s_0]$ by

$$\tilde{\pi}_x(t) = \begin{cases} \pi(x,t) & 0 \le t < s_0 \\ x_1^+ & t = s_0 \end{cases}$$

We continue the above process starting at x_1^+ . If $M^+(x_1) = \emptyset$, then $\tilde{\pi}(t) = \pi(x_1^+, t - s_0)$ for $t \ge s_0$. If else, $M + (x_1^+) \ne \emptyset$, shich implies the existence of an $s_1 > 0$ as before, and we define

$$\tilde{\pi}_x(t) = \begin{cases} \pi(x_1^+, t - s_0) & s_0 \le t < s_0 + s_1 \\ x_2^+ & t = s_0 + s_1 \end{cases}$$

where $x_2 = \pi(x_1^+, s_0 + s_1)$. Repeating this process, if $M^+(x_n^+) = \emptyset$ for n process ends after a finite number of steps. If else, $M^+(x_n^+) \neq \emptyset$, b = 1, 2, ..., the process continues indefinitely. However $M^+(x_n^+) \neq \emptyset$ for n, we can get

$$\tilde{\pi}_x(t) = \begin{cases} \pi(x_n^+, t - t_n) & t_n \le t < t_{n+1} \\ x_{n+1}^+ & t = t_{n+1} \end{cases}$$

Where $\pi(x_n^+, s_n) = x_{n+1}$, $I(x_{n+1}) = x_{n+1}^+$, $t_n = \sum_{i=0}^{n-1} s_i$

Let $(X, \tilde{\pi}; M, I)$ be an impulsive semidynamical system. If $x \in X$, then

- (a) $\tilde{\pi}(x,0) = x$
- (b) $\tilde{\pi}(\tilde{\pi}(x,t),s) = \tilde{\pi}(x,t+s)$, with $t,s \in [0,T(x))$ such that $t+s \in [0,T(x))$

Definition 1.1 ([8], Definition 3.1.) Let (X, π) be a semidynamical system. Any closed set $S \subset X$ containing $x \in X$ is called a section or a λ -section through x, with $\lambda > 0$, if there exists a closed set $L \subset X$ such that

- (a) $F(L,\lambda) = S$
- (b) $F(L, [0, 2\lambda])$ is neighbourhood of x
- (c) $F(L,\mu) \cap F(L,\nu) = \emptyset$, for $0 \le \mu < \nu \le 2\lambda$.

The set $F(L, [0, 2\lambda])$ is called a tube or λ tube and the set L is called a bar. Any tube $F(L, [0, 2\lambda])$ given by a section S through $x \in X$ such that $S \subseteq M \cap F(L, [0, 2\lambda])$ is called TC-tube on x. We say that a point $x \in M$ fulfills the Tube Condition, shortly TC, if there exists a TC-tube $F(L, [0, 2\lambda])$ through x. Also we define $F(L, [0, 2\lambda])$ given by a section S through $x \in X$ such that $S = M \cap F(L, [0, 2\lambda])$ is called STC-tube on x. We say that a point $x \in M$ fulfills the Strong Tube Condition, shortly STC, if there exists a STC-tube $F(L, [0, 2\lambda])$ through x.

Theorem 1.2 ([8], Theorem 3.4.) If in an impulsive system $(X, \tilde{\pi}; M, I)$ given by a semidynamical system (X, π) each point contained in the impulse set M satisfies TC, then Φ is upper semicontinuous.

Theorem 1.3 ([8], Theorem 2.7.) Assume that $(X, \tilde{\pi}; M, I)$ is an impulsive system given by a dynamical system (X, π) . Then for any $x \notin M$ the function Φ is lower semicontinuous at x.

Proof) Let $x \notin M$ and $\Phi(x) = c \in (0, +\infty)$. The function Φ is lower semicontinuous at x if and only if for any sequence $x_n \to x$ with $\Phi(x_n) \to t$ we have $t \geq c$. Suppose to the contrary that there exists a sequence $p_n \to x$ with $\Phi(p_n) \to t < c$. For n large enough we have $p_n \notin M$ as M is closed. Thus $\pi(\Phi(p_n), p_n) \in M = \overline{M}$. On the other hand, $\pi(\Phi(p_n), p_n) \to \pi(t, x)$, so $\pi(t, x) \in M$, which means that $c = \Phi(x) \leq t < c$ and contradiction. So proof finished. \square

Theorem 1.4 ([8], Theorem 3.8.) Assume that $(X, \tilde{\pi}; M, I)$ is an impulsive system given by a semidynamical system (X, π) and no start point of the system belongs to M. Then:

- (1) if each element of M satisfies TC then Φ is continuous at x if and only if $x \notin M$,
- (2) Φ is not lower semicontinuous at x if and only if $x \in M$,
- (3) if each element of M satisfies STC then $\Phi|_M$ is lower semicontinuous.

2 Definition of expansiveness, shadowing property and topological stability on Impulsive dynamical system

Let $\phi: X \times \mathbb{R} \to X$ be a flow of compact metric space X.

- Impulsive semidynamical system $(X, \tilde{\pi}; M, I)$ is expansive if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. if $x, y \in X$ satisfy $d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) < \delta \ \forall t \in \mathbb{R}$ for $x, y \in X$ and a continuous map $s : \mathbb{R} \to \mathbb{R}$ with s(0) = 0, then $y \in F(x, (0, \epsilon)) \cup \tilde{\pi}(x, [0, \epsilon))$
- given $\delta, a > 0$ real numbers, a finite (δ, a) -pseudo orbit is a pair of sequences $(\{x_i\},_0^k, \{t_i\}_0^{k-1})$ so that $t_i \geq a$ and $d(\tilde{\pi}_{t_n}(x_n), x_{n+1}) < \delta$ for $k \in \mathbb{N}$. An infinite (δ, a) -pseudo orbit is a pair of doubly infinite sequences $(\{x_i\},_{-\infty}^{\infty}, \{t_i\}_{-\infty}^{\infty})$ so that $t_i \geq a$ and $d(\tilde{\pi}_{t_n}(x_n), x_{n+1}) < \delta$ for all $i \in \mathbb{Z}$.
- A finite(infinite) (δ, a) -pseudo orbit $(\{x_n\}, \{t_n\})$ is ϵ traced by the orbit $(\tilde{\pi}_t(z))$ if ther exists an increasing homeomorphis $\alpha : \mathbb{R} \to \mathbb{R}$ with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\pi}_{t-\sum_{i=0}^{n-1} t_i}(x_n)) < \epsilon \text{ whenever } t \ge 0, \sum_{i=0}^{n-1} t_i \le t < \sum_{i=0}^{n} t_i \text{ } n = 0, 1, 2, \dots$$

• Impulsive semidynamical system $(X, \tilde{\pi}; M, I)$ is said to have the *pseudo orbit tracing* property, POTP, if for all $\epsilon > 0$ there exists $\delta > 0$ such that every $(\delta, 1)$ -pseudo-orbit is ϵ -traced by an orbit of $\tilde{\pi}$. This property also called as the shadowing property.

• Impulsive dynamical system $(X, \tilde{\pi}; M, I)$ is said to be topologically stable if for any $\epsilon > 0$ there is $\delta > 0$ such that for every other Impulsive dynamical system (X, ψ, M, I) with $d(\tilde{\phi}_t, \tilde{\psi}_{s(t)}) < \delta$ for all $t \in [0, 1]$, for some continuous map s from [0, 1] to itself. there exists $h: X \to X$ continuous such that $d(h, id) < \epsilon$ and $h(orbit\ of\ \tilde{\psi}) \subset orbit\ of\ \tilde{\phi}$.

3 Properties on impulsive dynamical system

[9] Troughout this section we shall consider an impulsive semidynamical system $(X, \tilde{\pi}; M, I)$, where (X, d) is a metic space. Moreover, we shall assume the following additional hypotheses:

- (H1) No initial point in (X, π) velongs to the impulsive set M and each element of M satisfies the condition(STC), consiquently Φ is continuous on $X \setminus M$ and $\Phi|_M$ is continuous on M.
- (H2) $M \cap I(M) = \emptyset$
- (H3) For each $x \in X$, the motion $\pi(x, t)$ is defined for every $t \ge 0$, that is, $[0, +\infty)$ denotes the maximal interval of definition of $\tilde{\pi}_x$

Proposition 3.1 If $(X, \tilde{\pi}; M, I)$ be an expansive Impulsive dynamical system, then each fixed point of $\tilde{\pi}$ is an isolated point of X.

Proof) Since $\tilde{\pi}$ is expansive, there is a constant δ for $\epsilon = 1$ by definition of expansive. If $d(x,y) < \delta$, then putting s(t) = 0, $\forall t \in \mathbb{R}$, we have $d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) < \delta \ \forall t \in \mathbb{R}$. By the fact that $\tilde{\pi}_t(x) = x \ \forall t \in \mathbb{R}$ hence $y \in F(x, (0,1)) \cup \tilde{\pi}(x, [0,1)) = \{x\}$, so y = x.

From now on we shall always assume $\tilde{\pi}$ has no fixed points.

Lemma 3.2 ([6] Corollary 3.9) Let $\{x_n\}$ be a sequence in X which converges to $x \in X \setminus M$. Then, given $t \geq 0$, there is a sequence $\{\epsilon_n\} \subset \mathbb{R}_+$ such that $\epsilon_n \to 0$ as $n \to \infty$ and $\tilde{\pi}(x_n, t + \epsilon_n) \to \tilde{\pi}(x, t)$.

Lemma 3.3 ([7] Lemma 2) Let $(X, \tilde{\pi}; M, I)$ be an impulsive dynamical system and π has no fixed point. There is $T_0 > 0$ such that, for $0 < T < T_0$ there is $\gamma > 0$ such that $d(\tilde{\pi}_T(x), x) > \gamma$ for all $x \in X \setminus M$.

Proof) Let $x \in X \setminus M$ be given. Let T_0 be the smallest positive number satisfying $\tilde{\pi}_{T_0}(x) = x$. To contrary we suppose that there is $t \in (0, T_0)$ such that for given $n \in \mathbb{N}$ there exists $z_n \in X$ such that

$$d(\tilde{\pi}_t(z_n), z_n) < 1/n$$

for all $n \in \mathbb{N}$. Since X is compact, we may assume that $z_n \to x$, as $n \to \infty$. M is closed set, so we can insist on $z_n \in X \setminus M$ for all $n \in \mathbb{N}$. Think about three cases below.

Case (1) $t < \Phi(x)$.

Let $\epsilon > 0$ be given. There is $N_1 \in \mathbb{N}$ such that $d(z_n, x) < \epsilon/4$ whenever $n > N_1$. Take $N_2 \in \mathbb{N}$ satisfying $1/n < \epsilon/4$ whenever $n > N_2$. By Lemma 3.2 there is a sequence $\{\epsilon_n\} \subset \mathbb{R}_+$ such that

$$\epsilon_n \to 0$$
 as $n \to \infty$ and $\tilde{\pi}_{t+\epsilon_n}(z_n) \to \tilde{\pi}_t(x)$.

Hence there is $N_3 \in \mathbb{N}$ such that $d(\tilde{\pi}_{t+\epsilon_n}(z_n), \tilde{\pi}_t(x)) < \epsilon/4$, for all $n > N_3$. Since $\pi(\bullet, x)$: $\mathbb{R} \to \mathbb{R}$ is continuous for all $x \in X$. Since Φ is continuous, there is $N_4 > 0$ such that

$$|\Phi(z_n) - \Phi(x)| < \frac{\Phi(x) - t}{2},$$

whenever $n > N_4$. Since $\epsilon_n \to 0$ there is $N_5 \in \mathbb{N}$ such that if $n > N_5$ then $\epsilon_n < \frac{\Phi(x) - t}{2}$. Take $N = \max\{N_i : i = 1, \dots, 5\}$. Then we have

$$\begin{split} d(\tilde{\pi}_t(x), x) &< d(\tilde{\pi}_t(x), \tilde{\pi}_t(z_n)) + d(\tilde{\pi}_t(z_n), z_n) + d(z_n, x) \\ &< d(\tilde{\pi}_t(x), \tilde{\pi}_{t+\epsilon_n}(z_n)) + d(\tilde{\pi}_{t+\epsilon_n}(z_n), \tilde{\pi}_t(z_n)) + d(\tilde{\pi}_t(z_n), z_n) + d(z_n, x) \\ &< \epsilon/4 + \epsilon/4 + \epsilon/4 + \epsilon/4 \\ &< \epsilon \end{split}$$

Case (2) $t > \Phi(x)$.

In this case, there exists $m \in \mathbb{N}$ such that $t = \sum_{i=0}^{m-1} \Phi(x_i^+) + t'$ with $0 \le t' < \Phi(x_m^+)$. Define $(z_n)_i$ by

$$(z_n)_1 = \pi_{\Phi(z_n)}(z_n)$$
 and $(z_n)_{i+1} = \pi_{\Phi((z_n)_i^+)}((z_n)_i^+), i = 1, \dots, m-1$

Set $t_n = \sum_{i=0}^{m-1} \Phi((z_n)_i^+)$. Since $\Phi(z_n) \to \Phi(x)$, we have

$$(z_n)_1^+ = I((z_n)_1) \to I(x_1) = x_1^+.$$

Now, since $\Phi((z_n)_1^+) \to \Phi(x_1^+)$, because $x_1^+ \notin M$, we get

$$(z_n)_2 = \pi_{\Phi(z_n)_1^+}(z_n)_1^+ \to \pi_{\Phi(x_1^+)}(x_1^+) = x_2.$$

By continuing with this process, we obtain

$$(z_n)_i \to x_i$$
 and $(z_n)_i^+ \to x_i^+$, for all $i = 1, \dots, m$.

Thus $\sum_{i=0}^{m-1} \Phi((z_n)_i^+) \to \sum_{i=0}^{m-1} \Phi(x_i^+)$. If we define $t_n' = t - \sum_{i=0}^{m-1} \Phi((z_n)_i^+)$ then $t_n' \to t'$. Let $\epsilon > 0$ be given. There is $N_1 \in \mathbb{N}$ such that $d(z_n, x) < \epsilon/4$ whenever $n > N_1$. Take $N_2 \in \mathbb{N}$ satisfying $1/n < \epsilon/4$ whenever $n > N_2$. By Lemma 3.2, there is a sequence $\{\epsilon_n\} \subset \mathbb{R}_+$ such that

$$\epsilon_n \to 0$$
 as $n \to \infty$ and $\tilde{\pi}_{t+\epsilon_n}(z_n) \to \tilde{\pi}_t(x)$.

Hence there is $N_3 \in \mathbb{N}$ such that $d(\tilde{\pi}_{t+\epsilon_n}(z_n), \tilde{\pi}_t(x)) < \epsilon/4$, for all $n > N_3$. Since $\pi(\bullet, x)$: $\mathbb{R} \to \mathbb{R}$ is continuous for all $x \in X$. Since Φ is continuous, there is $N_4 > 0$ such that

$$\left| \sum_{i=0}^{m} \Phi((z_n)_i^+) - \sum_{i=0}^{m} \Phi(x_i^+) \right| < \frac{\sum_{i=0}^{m} \Phi(x_i^+) - t}{2}$$

whenever $n > N_4$. Since $\epsilon_n \to 0$ there is $N_5 \in \mathbb{N}$ such that

$$\epsilon_n < \frac{\sum_{i=0}^m \Phi(x_i^+) - t}{2}$$

whenever $n > N_5$. Take $N = \max\{N_i : i = 1, ..., 5\}$. Then

$$\epsilon_n < \frac{\sum_{i=0}^m \Phi(x_i^+) - t}{2} < \frac{\sum_{i=0}^m \Phi((z_n)_i^+) - t}{2} < \sum_{i=0}^m \Phi((z_n)_i^+) - t$$

and

$$d(\tilde{\pi}_{t}(x), x) < d(\tilde{\pi}_{t}(x), \tilde{\pi}_{t}(z_{n})) + d(\tilde{\pi}_{t}(z_{n}), z_{n}) + d(z_{n}, x)$$

$$< d(\tilde{\pi}_{t}(z_{n}), \tilde{\pi}_{t+\epsilon_{n}}(z_{n})) + d(\tilde{\pi}_{t+\epsilon_{n}}(z_{n}), \tilde{\pi}_{t}(x)) + d(\tilde{\pi}_{t}(z_{n}), z_{n}) + d(z_{n}, x)$$

$$< \epsilon/4 + \epsilon/4 + \epsilon/4$$

$$< \epsilon$$

So that $\tilde{\pi}_t(x) = x$ and contradicting the choice of T_0 .

Case (3) $t = \Phi(x)$.

Since $z_n \to x$ and $d(\tilde{\pi}_t(z_n), z_n) \to 0$ as $n \to \infty$, we get $d(x, \tilde{\pi}_t(z_n)) \to 0$ as $n \to \infty$. Also, from the continuity of Φ , we obtain $\Phi(z_n) \to t$ as $n \to \infty$. Then we have $d(\tilde{\pi}_t(z_n), M) \to 0$ as $n \to \infty$. So

$$d(x, M) \leq d(x, \tilde{\pi}_t(z_n)) + d(\tilde{\pi}_t(z_n), M).$$

Letting $n \to \infty$, we get d(x, M) = 0. This is a contradiction to $x \in X \setminus M$.

Lemma 3.4 Let (X, π, M, I) be an expansive impulsive dynamical system such that $I(M) \cap M = \emptyset$ where π is continuous flow without fixed point. For given $\epsilon > 0$ there is r, if $(t_i), (u_i)$ be a sequence of \mathbb{R}_+ satisfying $t_i \to \infty$ as $i \to \infty$, $u_0 = t_0 = 0$, $0 < t_{i+1} - t_i \le r$, $0 < u_{i+1} - u_i \le r$, $d(\tilde{\pi}_{t_i}(x), \tilde{\pi}_{u_i}(y)) < r$ for $x, y \in X$ then $y \in F(x, (0, \epsilon)) \cup \tilde{\pi}(x, [0, \epsilon))$.

Proof) Let $\epsilon > 0$ be given. Since I(M) is compact and $I(M) \cap M = \emptyset$, by [6] Remark 1.6 (2), there exists $\xi > 0$ such that $\Phi(z) \geq \xi$ for all $z \in I(M)$. Choose r so that $0 < r < \xi$ and

$$r + 2 \sup_{z \in X|u| < r} d(z, \pi_u(z)) < \delta$$

where δ corresponds to ϵ by expansiveness. Let $(t_i), (u_i)$ and $x, y \in X$ satisfy the hypotheses. Define $s : \mathbb{R} \to \mathbb{R}$ by $s(t_i) = u_i$. Since $r < \xi$, neither $\tilde{\pi}(x, (t_i, t_{i+1})) \cap I(M)$ nor

 $\tilde{\pi}(y,(u_i,u_{i+1})) \cap I(M)$ can not have more than one point. So we can think the three case below.

Case1) If $\tilde{\pi}(x,(t_i,t_{i+1})) \cap I(M) = \emptyset$ and $\tilde{\pi}(y,(u_i,u_{i+1})) \cap I(M) = \emptyset$, then extending s linearly on each interval $[t_i,t_{i+1})$. If $t \in [t_i,t_{i+1})$, then

$$d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) \leq d(\tilde{\pi}_t(x), \tilde{\pi}_{t_i}(x)) + d(\tilde{\pi}_{t_i}(x), \tilde{\pi}_{u_i}(y)) + d(\tilde{\pi}_{u_i}(y), \tilde{\pi}_{s(t)}(y))$$

$$\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_u(z))$$

$$< \delta.$$

Case2) If $\tilde{\pi}(x, (t_i, t_{i+1})) \cap I(M) \neq \emptyset$ and $\tilde{\pi}(y, (u_i, u_{i+1})) \cap I(M) = \emptyset$ then extending s linearly on each interval $[t_i, t_{i+1}]$. If $t \in [t_i, t')$, then

$$d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) \leq d(\tilde{\pi}_t(x), \tilde{\pi}_{t_i}(x)) + d(\tilde{\pi}_{t_i}(x), \tilde{\pi}_{u_i}(y)) + d(\tilde{\pi}_{u_i}(y), \tilde{\pi}_{s(t)}(y))$$

$$\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_u(z))$$

$$< \delta.$$

If $t \in [t', t_{i+1})$, then

$$\begin{split} d(\tilde{\pi}_{t}(x), \tilde{\pi}_{s(t)}(y)) &\leq d(\tilde{\pi}_{t}(x), \tilde{\pi}_{t_{i+1}}(x)) + d(\tilde{\pi}_{t_{i+1}}(x), \tilde{\pi}_{u_{i+1}}(y)) + d(\tilde{\pi}_{u_{i+1}}(y), \tilde{\pi}_{s(t)}(y)) \\ &\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_{u}(z)) \\ &< \delta. \end{split}$$

Case3) If $\tilde{\pi}(x, (t_i, t_{i+1})) \cap I(M) = \emptyset$ and $\tilde{\pi}(y, (u_i, u_{i+1})) \cap I(M) \neq \emptyset$ then extending s linearly on each interval $[t_i, t_{i+1}]$. If $t \in [t_i, s^{-1}(u'))$, then

$$d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) \leq d(\tilde{\pi}_t(x), \tilde{\pi}_{t_i}(x)) + d(\tilde{\pi}_{t_i}(x), \tilde{\pi}_{u_i}(y)) + d(\tilde{\pi}_{u_i}(y), \tilde{\pi}_{s(t)}(y))$$

$$\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_u(z))$$

$$< \delta.$$

If $t \in [s^{-1}(u'), t_{i+1})$, then

$$\begin{split} d(\tilde{\pi}_{t}(x), \tilde{\pi}_{s(t)}(y)) &\leq d(\tilde{\pi}_{t}(x), \tilde{\pi}_{t_{i+1}}(x)) + d(\tilde{\pi}_{t_{i+1}}(x), \tilde{\pi}_{u_{i+1}}(y)) + d(\tilde{\pi}_{u_{i+1}}(y), \tilde{\pi}_{s(t)}(y)) \\ &\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_{u}(z)) \\ &< \delta. \end{split}$$

Case4) If $\tilde{\pi}(x,(t_i,t_{i+1})) \cap I(M) \neq \emptyset$ and $\tilde{\pi}(y,(u_i,u_{i+1})) \cap I(M) \neq \emptyset$, then we set s(t') = u' and e extending s linearly on each interval $[t_i,t')$ and $[t',t_{i+1})$. If $t \in [t_i,t')$, then

$$d(\tilde{\pi}_t(x), \tilde{\pi}_{s(t)}(y)) \leq d(\tilde{\pi}_t(x), \tilde{\pi}_{t_i}(x)) + d(\tilde{\pi}_{t_i}(x), \tilde{\pi}_{u_i}(y)) + d(\tilde{\pi}_{u_i}(y), \tilde{\pi}_{s(t)}(y))$$

$$\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_u(z))$$

$$< \delta.$$

If $t \in [t', t_{i+1})$

$$d(\tilde{\pi}_{t}(x), \tilde{\pi}_{s(t)}(y)) \leq d(\tilde{\pi}_{t}(x), \tilde{\pi}_{t_{i+1}}(x)) + d(\tilde{\pi}_{t_{i+1}}(x), \tilde{\pi}_{u_{i+1}}(y)) + d(\tilde{\pi}_{u_{i+1}}(y), \tilde{\pi}_{s(t)}(y))$$

$$\leq r + 2 \sup_{z \in X|u| \leq r} d(z, \tilde{\pi}_{u}(z))$$

$$< \delta.$$

4 Main theorem

Theorem 4.1 Let $(X, \tilde{\pi}; M, I)$ be an expansive impulsive dynamical system without fixed point and $I(M) \cap M = \emptyset$. If (X, π, M, I) has P.O.T.P then topologically stable.

Proof) For given $\epsilon > 0$, we take T_0 as in Lemma 3.3 and take r as in Lemma 3.4. Whitout loss of generality, we can assume that $0 < \epsilon < T_0/2$ and $0 < r < \epsilon$. Using Lemma 3.3, there is $\gamma > 0$ so that $d(\tilde{\pi}_r(y), y) \ge \gamma$ for all $y \in X$. From definition of expansiveness we also take $\epsilon' < \min\{\gamma, r\}$ and if $d(\tilde{\pi}_{s(t)}(x), \tilde{\pi}_t(y)) \le \epsilon'$ for all $x, y \in X$ and a continuous map $s : \mathbb{R}_+ \to \mathbb{R}_+$ with s(0) = 0, then $y = \tilde{\pi}_t(x)$ with $|t| \le r$. Also choose $0 < \delta < \epsilon'/12$ so that every $(\delta, 1)$ -pseudo orbit is $\epsilon'/12$ -traced by an orbit of $\tilde{\pi}$. Assume (X, ψ, M, I) be another impulsive dynamical system with $d(\tilde{\pi}_t, \tilde{\psi}_t) < \delta$ for all $t \in [0, 1]$. Note that $d(\tilde{\pi}_t, \tilde{\psi}_t) = \sup_{x \in X} d(\tilde{\pi}_t(x), \tilde{\psi}_t(x))$. Now we fix a point $y \in X$. Since $d(\tilde{\pi}_1\tilde{\psi}_n(y), \tilde{\psi}_{n+1}(y)) < \delta$ for all $n \in \mathbb{Z}$, therefore $(\tilde{\psi}_n(y), t_n = 1)$ is a $(\delta, 1)$ -pseudo orbit for $\tilde{\pi}$. Using the definition of shadowing property, there exists $z \in X$ and $\alpha : \mathbb{R} \to \mathbb{R}$ increasing homeomorphism with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\pi}_{t-n}(\tilde{\psi}_n(y)) < \epsilon'/12$$
 whenever $n \le t < n+1, n = 0, 1, 2, \cdots$.

For the case when $n \leq t < n+1$,

$$\begin{split} d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\psi}_t(y)) &\leq d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\pi}_{t-n}(\tilde{\psi}_n(y))) + d(\tilde{\pi}_{t-n}(\tilde{\psi}_n(y)), \tilde{\psi}_{t-n}(\tilde{\psi}_n(y))) \\ &< \epsilon'/12 + \epsilon'/12 = \epsilon'/6. \end{split}$$

So this means that we proved here for an orbit $(\psi_t(y))$ there exists a point $z \in X$ and increasing homeomorphism $\alpha : \mathbb{R} \to \mathbb{R}$ with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\psi}_t(y)) < \epsilon'/6 \text{ for all } t \in \mathbb{R}_+.$$

Assume $z' \in X$ and $\alpha' : \mathbb{R} \to \mathbb{R}$ increasing homeomorphism with $\alpha'(0) = 0$ and such that we have also

$$d(\tilde{\pi}_{\alpha'(t)}(z'), \tilde{\psi}_t(y)) < \epsilon'/6 \text{ for all } t \in \mathbb{R}_+.$$

Then $d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\pi}_{\alpha'(t)}(z')) < \epsilon'/3$ for all $t \in \mathbb{R}_+$. Using expansiveness and the way we choose ϵ' implies $z' = \pi_t(z)$ with $|t| \le r < \epsilon$. It means that we proved every orbit of ψ is $\epsilon'/6$ -traced by a unique orbit of π . Now for $y \in X$ define the set A_y as follows $A_y = \{x \in X : \text{ for every } \eta, T > 0, \text{ there exists a homeomorphism } \alpha : \mathbb{R}_+ \to \mathbb{R}_+ \text{ with } \alpha(0) = 0 \text{ such that } d(\tilde{\pi}_{\alpha(t)}(x), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta \text{ for all } t \in [0, T]\}$. We know that $(\psi_t(y))$ is uniquely traced by an orbit of π say $(\pi_t(z))$ we want to show

- (1) $A_y \subseteq (\pi_t(z))$ and time diameter of $A_y < \epsilon$,
- (2) A_y is a closed set in Y.

To prove (1) As we know $d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\psi}_t(y)) < \epsilon'/6$ for all $t \in \mathbb{R}_+$ so $z \in A_y$. Assume $\{\eta_i\}, \{T_i\}$ are sequences of positive real numbers such that $\eta \to 0, T_i \to \infty$. If $x \in A_y$, there are $\alpha_i : \mathbb{R}_+ \to \mathbb{R}_+$ homeomorphisms with $\alpha_i(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha_i(t)}(x), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta_i \text{ for } t \in [0, T_i]$$

Using $d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\psi}_t(y)) \leq \epsilon'/6$ for all $t \in \mathbb{R}_+$ we have

$$d(\tilde{\pi}_{\alpha_i(t)}(x), \tilde{\pi}_{\alpha(t)}(z)) < \epsilon'/3 + \eta \text{ for } t \in [0, T_i]$$

Since $\eta_i \to 0$, WLOG assume $\eta_i < \epsilon'/6$ for all i. Take $T_i' = \alpha(T_i)$. It is clear that $T_i' \to \infty$, so

$$d(\tilde{\pi}_{\alpha_i\alpha^{-1}(u)}(x), \tilde{\pi}_u(z)) < \epsilon'/3 + \eta_i \text{ for all } u \in [0, T_i'].$$

Denote $\gamma_i = \alpha_i \alpha^{-1}$ it is clear $\gamma_i : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing homeomorphism with $\gamma_i(0) = 0$ for all i. By continuity of γ_i choose $0 < s_i < n$ such that $|u - u'| < s_i$ implies $|\gamma_i(u) - \gamma_i(u')| < r$. Now,

$$\begin{split} d(\tilde{\pi}_{\gamma_{i+1}(u) - \gamma_{i}(u)} \tilde{\pi}_{\gamma_{i}(u)}(x), \tilde{\pi}_{\gamma_{i}(u)}(x)) &= d(\tilde{\pi}_{\gamma_{i+1}(u)}(x), \tilde{\pi}_{\gamma_{i}(u)}(x)) \\ &\leq d(\tilde{\pi}_{\gamma_{i+1}(u)}(x), \tilde{\pi}_{u}(z)) + d(\tilde{\pi}_{u}(z), \tilde{\pi}_{\gamma_{i}(u)}(x)) \\ &< \epsilon'/3 + \eta_{i+1} + \epsilon'/3 + \eta_{i} < \epsilon' \end{split}$$

for all $u \in [0, T_i']$. Let $\gamma_{i+1}(u) - \gamma_i(u) = \Gamma(u)$ then $\Gamma : \mathbb{R}_+ \to \mathbb{R}_+$ is homeomorphism and $\Gamma(0) = 0$.

Since $\epsilon' < \gamma$, $\Gamma(u) \neq r$ for all $u \in [0, T'_i]$. Suppose that there is $s \in [0, T'_i]$ such that $|\gamma_{i+1}(s) - \gamma_i(s)| > r$. Then there is $k \in [0, T'_i]$ such that $|\gamma_{i+1}(k) = \gamma_i(k)| = r$ by the continuity of Γ . But this is a contradiction. Hence we have $|\gamma_{i+1}(u) - \gamma_i(u)| < r$ for all $u \in [0, T'_i]$.

So we can take $0 < \xi_i < r$ such that $u \le T_i' < u'$ and $|u' - u| < \xi_i$ imply $|\gamma_{i+1}(u') - \gamma_i(u)| < |\gamma_{i+1}(u') - \gamma_{i+1}(u)| + |\gamma_{i+1}(u) - \gamma_i(u)| < r$. Fix i and define a sequence (u_j) of real numbers such that $u_0 = 0, u_j < u_{j+1}, u_j \to \infty$ as $j \to \infty$, and $u_{j+1} - u_j < \min\{\xi_i, s_i\}$ if $u_j \in [T_i', T_{i+1}']$ for $j \ge 0$. It follows that if we take $t_j = \gamma_i(u_j)$ if $u_j \in [T_i', T_{i+1}]$ and so on that $t_{j+1} - t_j < r$ for all $j \in \{0\} \cup \mathbb{N}$ and $t_0 = u_0 = 0$ and

$$d(\tilde{\pi}_{t_i}(x), \tilde{\pi}_{u_i}(z)) < \epsilon' < r \text{ for all } j \in \{0\} \cup \mathbb{N}$$

Using Lemma 3.5 we have that $x = \tilde{\pi}_t(z)$ with $|t| < \epsilon$ and this proves (1).

Now to prove (2) because of (1) we only need to show that A_y is closed in the orbit $(\tilde{\pi}_t(z))$ with relative topology. Let z' be a limit point of A_y and assume $z' \in (\tilde{\pi}_t(z))$. Take $\{z_i\}$ be a sequence in A_y such that $z_i \to z'$. Given $\eta, T > 0$ there are $\alpha_i : \mathbb{R} \to \mathbb{R}$ homeomorphisms with $\alpha_i(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta/2 \text{ for all } t \in [0, T], \text{ all } i \in \mathbb{N}$$

There is ξ such that if $|t-t'| < \xi$ then $d(\pi_{t'}(z'), \pi_t(z')) < \eta/2$. Since all z_i and z' are in the same orbit, WLOG we can suppose $\tilde{\pi}_{\Phi(z_i)}(z_i) = \tilde{\pi}_{\Phi(z')}(z')$ and $\Phi(z_i) \geq \Phi(z')$ or $\Phi(z_i) < \Phi(z')$ for all $i \in \mathbb{N}$.

Case1) $\Phi(z_i) \ge \Phi(z')$ for all $i \in \mathbb{N}$.

Let $\Phi(z') + \tau_i = \Phi(z_i)$ then $\tilde{\pi}_{\tau_i}(z_i) = z'$. There is sufficiently large $i \in \mathbb{N}$ such that $\tau_i < \min\{\xi, \Phi(z')\}$. We can pick the $t_i > 0$ such that $\alpha_i(t_i) = 2\tau_i$. Define $\beta : \mathbb{R}_+ \to \mathbb{R}_+$ by

$$\beta(t) = \begin{cases} \frac{\tau_i}{t_i} t & 0 \le t < t_i \\ \alpha_i(t) - \tau_i & t \ge t_i \end{cases}$$

Then β is a homeomorphism and $\beta(0) = 0$.

Let $0 \le t < t_i$. Then $\left| \frac{\tau_i}{t_i} t - \{ \alpha_i(t) - \tau_i \} \right| \le \tau_i < \xi$. Since $\tau_i < \alpha_i(t)$, we can write down

$$\tilde{\pi}_{\alpha_i(t)}(z_i) = \tilde{\pi}_{\alpha_i(t) - \tau_i}(z').$$

Since $\frac{\tau_i}{t_i}t < \tau_i < \Phi(z')$, $\alpha_i(t) - \tau_i < \tau_i < \Phi(z')$. So we know that $\pi_{\left[\tilde{\pi}\frac{\tau_i}{t_i}t(z'), \tilde{\pi}_{\alpha_i(t) - \tau_i}(z')\right]} \cap M = \emptyset$. So we can get

$$d(\tilde{\pi}_{\beta(t)}(z'), \tilde{\psi}_t(y)) \leq d(\tilde{\pi}_{\beta(t)}(z'), \tilde{\pi}_{\alpha_i(t)}(z_i)) + d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\psi}_t(y))$$

$$= d(\tilde{\pi}_{\frac{\tau_i}{t_i}t}(z'), \tilde{\pi}_{\alpha_i(t)-\tau_i}(z')) + \epsilon'/6 + \eta/2$$

$$\leq \eta + \epsilon'/6.$$

If $t \geq t_i$ we have,

$$\begin{split} d(\tilde{\pi}_{\beta(t)}(z'), \tilde{\psi}_t(y)) &= d(\tilde{\pi}_{\alpha_i(t) - \tau_i}(z'), \tilde{\psi}_t(y)) \\ &= d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\psi}_t(y)) \\ &\leq \eta/2 + \epsilon'/6 \leq \eta + \epsilon'/6. \end{split}$$

Case2) $\Phi(z_i) < \Phi(z')$ for all $i \in \mathbb{N}$.

Let $\Phi(z_i) + \tau_i = \Phi(z')$ then $\tilde{\pi}_{\tau_i}(z') = z_i$. there is sufficiently big $i \in \mathbb{N}$ such that $2\tau_i < \min\{\Phi(z_i), \xi\}$. We can pick the $t_i > 0$ such that $\alpha_i(t_i) = \Phi(\tau_i)$. Define $\beta : \mathbb{R}_+ \to \mathbb{R}_+$

$$\beta(t) = \begin{cases} \frac{2\tau_i}{t_i}t & 0 \le t < t_i\\ \alpha_i(t) + \tau_i & t \ge t_i \end{cases}$$

Then β is homeomorphism and $\beta(0) = 0$. If $0 \le t < t_i$ then $\left| \frac{2\tau_i}{t_i} t - \{\alpha_i(t) + \tau_i\} \right| \le 2\tau_i < \xi$. If $0 \le t < t_i$

$$\begin{split} d(\tilde{\pi}_{\beta(t)}(z'), \tilde{\psi}_{t}(y)) &\leq d(\tilde{\pi}_{\beta(t)}(z'), \tilde{\pi}_{\alpha_{i}(t)}(z_{i})) + d(\tilde{\pi}_{\alpha_{i}(t)}(z_{i}), \tilde{\psi}_{t}(y)) \\ &= d(\tilde{\pi}_{\frac{2\tau_{i}}{t_{i}}t}(z'), \tilde{\pi}_{\alpha_{i}(t)+'\tau_{i}}(z')) + \epsilon'/6 + \eta/2 \\ &\leq \eta + \epsilon'/6. \end{split}$$

If $t \geq t_i$ we have,

$$d(\tilde{\pi}_{\beta(t)}(z'), \tilde{\psi}_t(y)) = d(\tilde{\pi}_{\alpha_i(t) + \tau_i}(z'), \tilde{\psi}_t(y))$$
$$= d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\psi}_t(y))$$
$$\leq \eta/2 + \epsilon'/6 \leq \eta + \epsilon'/6.$$

So $z' \in A_y$ and A_y is closed.

In order to be able to define a function h on X we need to select a certain point in the set A_y in this way. We denote the largest limit point of A_y to $L(A_y)$. "A point $x \in A_y$ is called a largest limit of $A_y(l.l.A_y)$ if and only if $x = \tilde{\pi}_w(x')$ with $w \ge 0$ for all $x' \in A_y$ ". This point $x = l.l.A_y$ is the unique point in A_y with this property. Define $h: X \to X$ by

$$h(y) = l.l.A_y$$
 for all $y \in X$.

By uniqueness of $l.l.A_y$ this function is well defined, from definition of A_y , if $x \in A_y$ we have for every $\eta, T > 0$, there is a homeomorphism $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha(t)}(x), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta \text{ for all } t \in [0, T]$$

If we take $\eta < \epsilon'/2$, then at t = 0, $d(x,y) < \epsilon' < \epsilon$. And this means that $d(y,l.l.A_y) < \epsilon$ so that $d(h,I) < \epsilon$. Now to show $h(\text{orbit of }\tilde{\psi}) \subseteq (\text{orbit of }\tilde{\pi})$. Let $y \in X$, as we show above the orbit $(\tilde{\psi}_t(y))$ is $\epsilon'/6 - traced$ by a nuique orbit of $\tilde{\pi}$ say $(\tilde{\pi}_t(z))$ (i.e., $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ increasing homeomorphism with $\alpha(0) = 0$ such that $d(\tilde{\pi}_{\alpha(t)}(z), \tilde{\psi}_t(y)) \le \epsilon'/6$ for all $t \in \mathbb{R}_+$.) Let $\tilde{\psi}_u(y)$ is point of the orbit $(\tilde{\psi}_t(y))$. Obviously $d(\tilde{\pi}_{\alpha(t+u)-\alpha(u)}\tilde{\pi}_{\alpha(u)}(z), \tilde{\psi}_t\tilde{\psi}_u(y))) \le \epsilon'/6$ for all $t \in \mathbb{R}_+$. Now if we take $\gamma(t) = \alpha(t+u) - \alpha(u), \ \gamma : \mathbb{R}_+ \to \mathbb{R}_+$ is increasing homeomorphism with $\gamma(0) = 0$ (i.e., a reparametrization for the orbit $\tilde{\pi}_t(z)$). Therefore $\tilde{\pi}_{\alpha(u)}(z) \in A_{\tilde{\psi}_u(y)}$. So $h(\tilde{\psi}_u(y)) = l.l.A_{\tilde{\psi}_u(y)} \in A_{\tilde{\psi}_u(y)} \subset (\tilde{\pi}_t(z^*))$ for some $z^* \in X$. And this means that $h(\text{orbit of }\tilde{\psi}) \subseteq (\text{orbit of }\tilde{\pi})$.

To show h is continuous, let $\eta, T > 0, y \in X$ and define $A_{y,\eta,T} = \{x: \text{ there exists a homeomerphism } \alpha : \mathbb{R}_+ \to \mathbb{R}_+ \text{ with } \alpha(0) = 0 \text{ such that } d(\tilde{\pi}_{\alpha(t)}(x), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta \text{ for all } t \in [0, T] \}.$

Properties of such sets are

- (a) $0 < \eta_2 \le \eta_1 \Rightarrow A_{u,\eta_2,T} \subseteq A_{u,\eta_1,T}$ for all $y \in X, T \in \mathbb{R}_+$
- (b) $0 < T_1 \le T_2 \Rightarrow A_{Y,\eta,T_2} \subseteq A_{y,\eta,T_1}$ for all $y \in X, T \in \mathbb{R}_+$
- (c) $0 < \eta_2 \le \eta_1$ and $0 < T_1 \le T_2 \Rightarrow A_{u,\eta_2,T_2} \subseteq A_{u,\eta_1,T_1}$ for all $y \in X$
- (d) if $\{\eta_i\}$, $\{T_i\}$ are sequences of positive real numbers with $\eta_i \to 0$ and $T_i \to \infty$ as $i \to \infty$, then $A_y = \bigcap_i A_{y,\eta_i,T_i}$

Lemma 4.2 For every $\lambda > 0, y \in X \setminus M$ there are $\eta, T > 0$ such that $d(x, A_y) < \lambda$ for all $x \in A_{y,\eta,T}$

Proof) Let $\{\eta_i\}, \{T_i\}$ be sequences in \mathbb{R}_+ satisfying $\eta_i \to 0, T_i \to \infty$ as $i \to \infty$. Assume that $\eta_i < \epsilon'/6$ for all $i \in \mathbb{N}$. Let $\{z_i\}$ be a sequence of points with $z_i \to x$ as $i \to \infty$, where

 $z_i \in A_{y,\eta_i,T_i}$ for each $i \in \mathbb{N}$. Then for each $i \in \mathbb{N}$, there is a homeomorphisms $\alpha_i : \mathbb{R}_+ \to \mathbb{R}_+$ with $\alpha_i(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta_i \text{ for all } t \in [0, T_i], i \in \mathbb{N}$$

Since $z_i \to x$, one can take sequences $\{\beta_i\}, \{w_i\}$ in \mathbb{R}_+ with $\beta_i \to 0, w_i \to \infty$ as $i \to \infty$ such $_{
m that}$

$$d(\tilde{\pi}_t(z_i), \tilde{\pi}_t(x)) < \beta_i \text{ for } t \in [0, w_i].$$

Since $y \in X \setminus M$ and $d(z_i, y) < \epsilon'/6 + \eta_i$, there is $N \in \mathbb{N}$ such that $z_i \in X \setminus M$ whenever i > N. So $\Phi((z_i)_n^+) \to \Phi(x_n^+)$. Define $\gamma_i : \mathbb{R}_+ \to \mathbb{R}_+$ by $\gamma_i \left(\sum_{n=0}^k \Phi((z_i)_n^+)\right) = \sum_{n=0}^k \Phi(x_n^+)$ for $t = \sum_{n=0}^{k} \Phi((z_i)_n^+)$ otherwise γ_i is defined linearly for $t \neq \sum_{n=0}^{k} \Phi((z_i)_n^+)$. Then we have $\gamma_i(0) = 0, \ \gamma_i \to id$ as $i \to \infty$ and $d(\tilde{\pi}_t(z_i), \tilde{\pi}_{\gamma_i(t)}(x)) < \beta_i$ for $t \in [0, w_i]$. We first show that $\gamma_i \to id$ as $i \to \infty$. Indeed, since for each $n \in \mathbb{N}$, $\Phi((z_i)_n^+) \to \Phi(x_n^+)$ as $i \to \infty$ we get $\sum_{n=0}^k \Phi((z_i)_n^+) \to \sum_{n=0}^k \Phi(x_n^+)$ as $i \to \infty$. Since γ_i is defined linearly for $t \neq \sum_{n=0}^k \Phi((z_i)_n^+)$, $\gamma_i(t) = \frac{b_{k+1} - b_k}{a_{k+1} - a_k}(t - a_k) + b_k$ where $a_k = \sum_{n=0}^k \Phi((z_i)_n^+), b_k = \sum_{n=0}^k \Phi(x_n^+)$. Note that $d(\gamma_i, id) = \sum_{n=0}^k \Phi(x_n^+)$ $\sup_{l\in\mathbb{R}_+} d(\gamma_i(l), l)$. From the fact that $a_k \to b_k$ and $a_{k+1} \to b_{k+1}$ as $i \to \infty$, we get

$$\lim_{i \to \infty} d(\gamma_i, id) = \lim_{i \to \infty} d\left(\frac{b_{k+1} - b_k}{a_{k+1} - a_k}(l - a_k) + b_k, l\right)$$
$$= \lim_{i \to \infty} d(l, l)$$
$$= 0$$

Obviously $\gamma_i \to id$ as $i \to \infty$.

Now we show that $d(\tilde{\pi}_t(z_i), \tilde{\pi}_{\gamma_i(t)}(x)) < \beta_i$ for $t \in [0, w_i]$.

Case1) $t = \sum_{n=0}^{k} \Phi((z_i)_n^+)$ for some $k \in \mathbb{N} \cup \{0\}$.

Then $\gamma_i(t) = \sum_{n=0}^{k} \Phi(x_n^+)$. Since $(z_i)_{k+1} \to x_{k+1}$ as $i \to \infty$, there is N such that if i > Nthen $d((z_i)_{k+1}^+, x_{k+1}^+) < \beta_i$. So we get that

$$d\left(\tilde{\pi}_{t}(z_{i}), \tilde{\pi}_{\gamma_{i}(\alpha_{i}(t))}(x)\right) = d\left(\tilde{\pi}_{\sum_{n=0}^{k} \Phi((z_{i})_{n}^{+})}(z_{i}), \tilde{\pi}_{\sum_{n=0}^{k} \Phi(x_{n}^{+})}(x)\right)$$
$$= d\left((z_{i})_{k+1}^{+}, x_{k+1}^{+}\right) < \beta_{i}$$

for
$$t \in [0, w_i]$$
 and $i > N$.
Case2) $\sum_{n=0}^k \Phi((z_i)_n^+) < t < \sum_{n=0}^{k+1} \Phi((z_i)_n^+)$ for some $k \in \mathbb{N} \cup \{0\}$.

In this case,
$$\sum_{n=0}^{k} \Phi(x_n^+) < \gamma_i(t) < \sum_{n=0}^{k+1} \Phi(x_n^+)$$
. Let $t = \sum_{n=0}^{k} \Phi((z_i)_n^+) + t_i$ and $\gamma_i(t) = \sum_{n=0}^{k} \Phi(x_n^+) + t_i$

 p_i . Since $\sum_{n=0}^k \Phi((z_i)_n^+) \to \sum_{n=0}^k \Phi(x_n^+)$ and $\gamma_i \to id$ as $i \to \infty$ we have $t_i \to p_i$, i.e., $|t_i - p_i| \to 0$ as $i \to \infty$. By continuity of π_t , $\pi(\cdot, z)$ and compactness of X, there is N' such that if i > N' then $d(\pi_{t_i}(p)), \pi_{p_i}(p)) < \beta_i/2$ for all $p \in X$ and $d(\pi_t(z_i)_k^+), \pi_t(x_k^+)$ for all $t \in \mathbb{R}_+$. Hence

$$d(\tilde{\pi}_{t}(z_{i}), \tilde{\pi}_{\gamma_{i}(\alpha_{i}(t))}(x)) = d(\pi_{t_{i}}((z_{i})_{k}^{+}), \pi_{p_{i}}(x_{k}^{+}))$$

$$\leq d(\pi_{t_{i}}((z_{i})_{k}^{+}), \pi_{p_{i}}((z_{i})_{k}^{+})) + d(\pi_{p_{i}}((z_{i})_{k}^{+}), \pi_{p_{i}}(x_{k}^{+}))$$

$$< \beta_{i}/2 + \beta_{i}/2 = \beta_{i}$$

So we have

$$d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\pi}_{\gamma_i(\alpha_i(t))}(x)) < \epsilon'/6 + \eta_i \text{ for all } t \in [0, \alpha_i^{-1}(w_i)],$$

and $\alpha_i^{-1}(w_i) \to \infty$ as $i \to \infty$. So one can assume that there are sequence of positive real numbers $\{\beta_i\}, \{\nu_i\}$ with $\beta_i \to 0, \nu_i \to \infty$ such that

 $d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\pi}_{\gamma_i(t)}(x)) < \beta_i$ for all $t \in [0, \nu_i]$. Then we have

$$d(\tilde{\pi}_{\gamma_i(\alpha_i(t))}(x), \tilde{\psi}_t(y)) \leq d(\tilde{\pi}_{\gamma_i(\alpha_i(t))}(x)), \tilde{\pi}_{\alpha_i(t)}(z_i)) + d(\tilde{\pi}_{\alpha_i(t)}(z_i), \tilde{\psi}_t(y))$$
$$< \beta_i + \epsilon'/6 + \eta_i, \text{ for all } t \in [0, k_i]$$

where $k_i = \min\{\nu_i, T_i\}$. Hence $x \in A_{y,\eta_i+\beta_i,k_i}$ for all i. Since $\eta_i + \beta_i \to 0, k_i \to \infty$ as $i \to \infty$, $x \in A_y$. Suppose that $d(z_i, A_y) \ge \lambda$ for all i, then $d(x, A_y) \ge \lambda$. This is a contradiction and finishes the proof of the lemma. \square

Lemma 4.3 For every $\lambda > 0$ there are $\eta, T > 0$ such that for every $y \in X$, $d(x, A_y) < \lambda$ for all $x \in A_{y,\eta,T}$.

Proof) For every point $y \in X$ let U_y be a neighbourhood of y such that if $y' \in U_y$ there is a homeomorphism $\beta_{y'}: \mathbb{R}_+ \to \mathbb{R}_+$ with the property that $\beta_{y'}(0) = 0$ and

$$d(\tilde{\psi}_{\beta_{t},(t)}(y), \tilde{\psi}_{t}(y')) < \eta_{y}/2 \text{ for all } t \in [0, T_{y}]$$

where η_y, T_y are taken as in lemma 3.7(i.e., $d(x, A_y) < \lambda/2$ for all $x \in A_{y,\eta_y,T_y}$). Let x be any point in $A_{y',\eta_y/2,\beta_{y'}^{-1}(T_y)}$. There exists $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ homeomorphism with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha(t)}(x), \tilde{\psi}_t(y')) < \epsilon'/6 + \eta_y/2 \text{ for } t \in [0, \beta_{y'}^{-1}(T_y)]$$

Hence

$$d(\tilde{\pi}_{\alpha(t)}(x), \tilde{\psi}_{\beta_{\eta'}(t)}(y)) < \epsilon'/6 + \eta_y \text{ for } t \in [0, \tilde{T}_y],$$

where $\tilde{T}_y = min\{T_y, \beta_{y'}^{-1}(T_y)\}$ It consequence that

$$d(\tilde{\pi}_{\alpha(\beta_{y'}^{-1}(t))}(x), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta_y \text{ for } t \in [0, \beta_{y'}(\tilde{T}_y)].$$

Since $\beta_{y'}(\tilde{T}_y) = min\{\beta_{y'}(T_y), T_y\}$, $A_{y',\eta_y/2,\beta_{y'}^{-1}(T_y)} \subseteq A_{y,\eta_y,\beta_{y'}(\tilde{T}_y)} \subseteq A_{y,\eta_y,T_y}$ for all $y' \in U_y$. By compactness of X, there are points y_1, y_2, \ldots, y_k with an open cover U_1, U_2, \ldots, U_k and $\eta_1, \eta_2, \ldots, \eta_k, T_1, T_2, \ldots T_k$ takens as above. Let $\eta = \min_{1 \leq i \leq k} \{\eta_i\}, T = \max_{1 \leq i \leq k} \{T_i\}$. Now if y' be any point in X, there exists $j, 1 \leq j \leq k$ such that $y' \in U_j$. But $A_{y',\eta/2,\beta_{y'}^{-1}(T_j)} \subseteq A_{y_j,\eta_j,T_j}$, therefore if we take $z \in A_{y',\eta/2,\beta_{y'}^{-1}(T_j)}$ we will have $d(z,A_{y_j}) < \lambda/2$. Since $A_{y'} \subseteq A_{y',\eta/2,\beta_{y'}^{-1}(T_j)} \subseteq A_{y_j,\eta,T}$, we have $d(A_{y'},A_{y_j}) < \lambda/2$. Hence $d(z,A_{y'}) \leq d(z,A_{y_j}) + d(A_{y_j},A_{y'}) < \lambda$. \square

Lemma 4.4 Let $\{y_i\}, \{z_i\}$ be sequences of points in X. Then if $z_i \in A_{y_i}$ for all $i, z_i \to z$, $y_i \to y$, then $z \in A_y$.

Proof) Take $\{\lambda_i\}$ to be a sequence of positive real number such that $\lambda_i \to 0$. Using lemma 5.9, there are $\eta_i, T_i > 0$ such that $d(x, A_y) < \lambda_i$ for all $x \in A_{y,\eta_i,T_i}$ and for every $y \in Y$. Since $y_i \to y$ there is a subsequences $\{y_{j_i}\}$ of $\{y_i\}$ and homermorphism $\beta_i : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies $\beta_i(0) = 0$ such that

$$d(\tilde{\psi}_{\beta_i(t)}(y), \tilde{\psi}_t(y_{j_i})) < \eta_i/2 \text{ for } t \in [0, T_i], \text{ all } i.$$

But $z_{j_i} \in A_{y_{j_i}}$, therefore there is homeomorphisms $\alpha_i : \mathbb{R}_+ \to \mathbb{R}_+$ with $\alpha_i(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha_i(t)}(z_{j_i}), \tilde{\psi}_t(y_{j_i})) < \epsilon'/6 + \eta_i/2 \text{ for } t \in [0, T_i]$$

So

$$d(\tilde{\pi}_{\alpha_i(t)}(z_{j_i}), \tilde{\psi}_{\beta_i(t)}(y)) \leq d(\tilde{\pi}_{\alpha_i(t)}(z_{j_i}), \tilde{\psi}_t(y_{j_i})) + d(\tilde{\psi}_t(y_{j_i}), \tilde{\psi}_{\beta_i(t)}(y))$$
$$< \epsilon'/6 + \eta_i \text{ for } t \in [0, T_i].$$

Hence

$$d(\tilde{\pi}_{\alpha_i(\beta_i^{-1}(t))}(z_{j_i}), \tilde{\psi}(y)) < \epsilon'/6 + \eta_i \text{ for } t \in [0, \beta_i(T_i)].$$

It means that $z_{j_i} \in A_{y,\eta_i,\beta_i(T_i)}$ for all i. WOLG we can suppose $\eta_i \to 0$, $T_i \to \infty$. Then one can take subsequence $\{z_{j_i}\}$ for $\{z_{j_i}\}$ such that $z_{j_i} \in A_{y,\eta_i,\beta_{j_{i_k}}(T_{j_{i_k}})}$. By Lemma 3.7, we have $d(z_{j_{i_k}},A_y) < \lambda_{j_{i_k}}$ for all i. But $z_{j_{i_k}} \to z$, $\lambda_{j_{i_k}} \to 0$ therefore $d(z,A_y) = 0$. A_y is closed set, hence $z \in A_y$. \square

Now, we have to show that h is continuous. Assume $\{y_i\}$ is sequence of X and converse to y. Claim $\lim_{i\to\infty}h(y_i)=\lim_{i\to\infty}l.l.A_{y_i}=l.l.A_y$. Define $z_i=l.l.A_{y_i}$. Since X is compact, WLOG $z_i\to z'$ for some $z'\in X$. By using Lemma 3.8, $z'\in A_y$. For given $x\in A_y$ and $\{\lambda_i\}$, sequence of \mathbb{R}_+ with converge to 0, we can choose $\eta_i, T_i>0$ as in lemma5.9. (i.e., $d(x,A_y)<\lambda$ for all $x\in A_{y,\eta,T}$.) Since $y_i\to y$, there exists a subsequence $\{y_{k_i}\}$ such that

$$d(\tilde{\psi}_t(y_{k_i}), \tilde{\psi}_{\beta_{k_i}(t)}(y)) < \eta_i/2 \text{ for } t \in [0, T_i]$$

Since $x \in A_y$, there exists a homeomorphism $\alpha_i : \mathbb{R}_+ \to \mathbb{R}_+$ with $\alpha(0) = 0$ such that

$$d(\tilde{\pi}_{\alpha_i(t)}(x), \tilde{\psi}_t(y)) < \epsilon'/6 + \eta_i/2 \text{ for } t \in [0, \beta_{k_i}^{-1}(T_i)].$$

Therefore

$$d(\tilde{\pi}_{\alpha_i(t)}(x), \tilde{\psi}_{\beta_{k_i}(t)}(y_{k_i})) < \epsilon'/6 + \eta_i/2 \text{ for } t \in [0, \tilde{T}_i],$$

where $\tilde{T}_i = \min\{\beta_{k_i}^{-1}(T_i), T_i\}$. So

$$d(\tilde{\pi}_{\alpha_i(\beta_{k_i}^{-1}(t)(t)}(x), \tilde{\psi}_t(y_{k_i})) < \epsilon'/6 + \eta_i/2 \text{ for } t \in [0, \beta_{k_i}(\tilde{T}_i)].$$

Since $\beta_{j_{i_k}}(\tilde{T}_i) \leq \beta_{j_{i_k}}(\beta_{j_{i_k}}^{-1}(T_i)) = T_i$, we get $x \in A_{y_{k_i},\eta_i,\beta_{j_{i_k}}(\tilde{T}_i)} \subset A_{y_{k_i},\eta_i,T_i}$. By Lemma 3.8, $d(x,A_{y_{k_i}}) < \lambda_i$ for all $i \in \mathbb{N}$. Because $A_{y_{k_i}}$ is closed, we can choose $x_{k_i} \in A_{y_{k_i}}$ such that $d(x,x_{k_i}) = d(x,A_{y_{k_i}}) = \lambda_i$. Obviously $x_{k_i} \to x$. Since $z_{k_i} = l.l.A_{y_{k_i}}$, there is a sequence $\{w_{k_i}\}$ of \mathbb{R}_+ such that $z_{k_i} = \tilde{\pi}_{w_{k_i}} x_{k_i}$. Let $w_{k_i} \to w > 0$. Then we get

$$z' = \lim_{i \to \infty} z_{k_i}$$

$$= \lim_{i \to \infty} \tilde{\pi}_{w_{k_i}}(x_{k_i})$$

$$= \tilde{\pi}_w(x)$$

Hence $z' = \tilde{\pi}_w(x)$. This means that $z' = l.l.A_y$. By the uniqueness of $l.l.A_y$, so z = z'. So we showed $\lim_{i\to\infty} h(y_i) = h(y)$. This means that h is continuous and complete the proof of Theorem 3.6 \square

References

- [1] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems: Recent Advances, North-Holland Mathematical Library, vol. 52, North-Holland, Amsterdam. 1994.
- [2] A. Arbieto and E. Rego, On The Entropy of Continuous Flows With Uniformly Expansive Points, arXiv. (2019)
- [3] A. Artigue, Positive expansive flows, Topology Appl., 165 (2014), 121-132.
- [4] E.M. Bonotto and M. Federson, Topological conjugation and asymptotic stability in impulsive semidynamical systems, J. Math. Anal. Appl., **326** (2007), no. 2, 869–881.
- [5] E.M. Bonotto, D.P. Demuner, and G.M. Souto, Weak Topological Conjugacy Via Character of Recurrence on Impulsive Dynamical Systems, Bull. Braz. Math. Soc., 50 (2019), no. 2, 399—417.
- [6] E.M. Bonotto, M.C. Bortolan, A.N. Carvalho, and R. Czaja, Global attractors for impulsive dynamical systems-a precompact approach, J. Differential Equations, 259 (2015), no. 7, 2602—2625.
- [7] R. Bowen and P. Walters, *Expansive one-parameter flows*, J. Differential Equations, **12** (1972), 180—193.
- [8] K. Ciesielski, On semicontinuity in impulsive dynamical systems, Bull. Pol. Acad. Sci. Math., **52** (2004), no. 1, 71–80.

- [9] Saroop K. Kaul, On impulsive semidynamical systems II. Recursive properties. Non-linear Anal., 16 (1991), no. 7-8, 635--645.
- [10] R.F. Thomas, Stability properties of one-parameter flows, Proc. London Math. Soc., 45 (1982), no. 3, 479—505.