Определение 43 (Понятие непрерывности функции).

Функция $f: E \to \mathbb{R}$ называется непрерывной в точке $x_0 \in E$, если

$$\forall V(f(x_0)) \exists U(x_0) : \forall x \in U(x_0) \cap E \ f(x) \in V(f(x_0))$$

или, что то же самое,

$$\forall V(f(x_0)) \; \exists U(x_0) : f(U(x_0) \cap E) \subset V(f(x_0))$$

Определение 45 (Понятие точки разрыва).

Пусть $f: E \to \mathbb{R}$. Если $x_0 \in \mathbb{R}$ — предельная для E и f не непрерывна в точке x_0 , то точка x_0 называется точкой разрыва для функции f.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 47 (Понятие разрыва 1-ого рода (скачка)).

Пусть $f: E \to \mathbb{R}$. Если существуют односторонние пределы $f(x_0 \pm 0) \in \mathbb{R}$, но

$$f(x_0 + 0) \neq f(x_0 - 0),$$

то точка x_0 называется точкой разрыва первого рода или скачком.

Определение 48 (Понятие разрыва 2-ого рода).

Пусть $f: E \to \mathbb{R}$, x_0 – предельная для E. Если не существует хотя бы одного из односторонних пределов $f(x_0 \pm 0)$ в \mathbb{R} , то точка x_0 называется точкой разрыва второго рода.

Определение 46 (Понятие устранимого разрыва).

Пусть $f: E \to \mathbb{R}$ и $x_0 \in \mathbb{R}$. Если существует $\lim_{x \to x_0} f(x) = A \in \mathbb{R}$, но значение функции в точке x_0 либо не определено, либо отличается от A, то x_0 называется точкой устранимого разрыва функции f.

Определение 63 (Понятие производной функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Предел

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется производной функции f в точке x_0 и обозначается $f'(x_0)$.

Определение 64 (Понятие дифференцируемости функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0, x_0 + h \in \langle a, b \rangle$. Функция f называется дифференцируемой в точке x_0 , если существует такое число A, что

$$f(x_0 + h) - f(x_0) = Ah + o(h), \quad h \to 0.$$

Определение 67.

Пусть $f: \langle a, b \rangle \to \mathbb{R}$. Предел

$$\lim_{h \to 0+0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется правосторонней производной функции f в точке x_0 и обозначается $f'_+(x_0)$.

$$-143 -$$

ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ

Аналогично, предел

$$\lim_{h \to 0-0} \frac{f(x_0 + h) - f(x_0)}{h},$$

если он существует в $\overline{\mathbb{R}}$, называется левосторонней производной функции f в точке x_0 и обозначается $f'_-(x_0)$.

Определение 68.

Пусть $f: \langle a,b \rangle \to \mathbb{R}$, f дифференцируема в точке $x_0 \in \langle a,b \rangle$. Предельное положение AC секущей AB графика функции y = f(x) в точке x_0 называется касательной к графику функции y = f(x) в точке x_0 .

Определение 69.

Пусть $f:\langle a,b\rangle\to\mathbb{R}$, f непрерывна в точке $x_0\in\langle a,b\rangle$ и $f'(x_0)=\pm\infty$. Прямая $x=x_0$ называется (вертикальной) касательной к графику функции y=f(x) в точке x_0 .

Пусть T – множество, $\varphi, \psi: T \to \mathbb{R}$. Рассмотрим отображение

$$\gamma(t) = \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} : T \to \mathbb{R}^2.$$

Определение 70 (Понятия локального максимума и минимума).

Пусть $f: E \to \mathbb{R}$.

Точка $x_0 \in E$ называется точкой локального максимума (строгого локального максимума) функции f, если

$$\exists \overset{\circ}{U}(x_0) : \forall x \in \overset{\circ}{U}(x_0) \cap E \implies f(x) \le f(x_0) \quad (f(x) < f(x_0)).$$

Точка $x_0 \in E$ называется точкой локального минимума (строгого локального минимума) функции f, если

$$\exists \overset{\circ}{U}(x_0): \ \forall x \in \overset{\circ}{U}(x_0) \cap E \ \Rightarrow \ f(x) \ge f(x_0) \quad (f(x) > f(x_0)).$$

Определение 72 (Производная высшего порядка).

Пусть $(n-1) \in \mathbb{N}$ и определена функция $f^{(n-1)}: E_{n-1} \to \mathbb{R}$ – производная (n-1)-ого порядка функции f. Обозначим через E_n множество точек $x \in E_{n-1}$, для которых

$$E_{n-1} \cap (x - \delta, x + \delta)$$

— невырожденный промежуток при некотором $\delta > 0$, и в которых функция $f^{(n-1)}$ дифференцируема. Положим

$$f^{(n)}(x) = (f^{(n-1)})'(x), x \in E_n.$$

Введенная функция называется производной порядка n, или, короче, n-ой производной функции f. При этом функция f называется n раз дифференцируемой на множестве E_n .

Определение 74 (Дифференциал высшего порядка).

Пусть $n \in \mathbb{N}$, n > 1, $f : E \to \mathbb{R} - n$ раз дифференцируемая в точке $x_0 \in E$ функция, $h \in \mathbb{R}$. Величина

$$d^{n}f(x_{0})(h) = d\left(d^{n-1}f(x)(h)\right)(h),$$

называется n-ым дифференциалом функции f в точке x_0 , соответспвующим приращению h.

Определение 75 (Понятие многочлена Тейлора).

Пусть функция f имеет в точке x_0 все производные до порядка n включительно. Многочлен

$$P_n(x,x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

называется многочленом Тейлора порядка n функции f в точке x_0 . В случае $x_0=0$ многочлен Тейлора часто называют многочленом Маклорена.

Определение 77 (Классификация точек экстремума).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$ и $x_0 \in (a, b)$ – точка экстремума f.

- Если f дифференцируема в x₀, то экстремум называется гладким.
- 2. Если $f'(x_0-0) = +\infty$, $f'(x_0+0) = -\infty$, или $f'(x_0-0) = -\infty$, $f'(x_0+0) = +\infty$, то экстремум называется острым.
- 3. Если существуют (в $\overline{\mathbb{R}}$) $f'(x_0 \pm 0)$ и хотя бы одна из односторонних производных конечна, но $f'(x_0 - 0) \neq f'(x_0 + 0)$, то экстремум называется угловым.

Определение 78 (Понятие выпуклой функции).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$. Если $\forall x_1, x_2 \in \langle a, b \rangle$, $\lambda \in (0, 1)$, выполняется

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2),$$

то f называется выпуклой вниз (вверх) на (a, b).

Если $\forall x_1, x_2 \in \langle a, b \rangle, x_1 \neq x_2, \lambda \in (0, 1)$, выполняется

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2).$$

то f называется строго выпуклой вниз (верх).

Определение 79 (Понятие точки перегиба).

Пусть $f: \langle a, b \rangle \to \mathbb{R}, x_0 \in (a, b)$, причем

- 1. Существует $\delta > 0$, что на промежутках $(x_0 \delta, x_0]$, $[x_0, x_0 + \delta)$ функция f имеет разный характер выпуклости.
- 2. $f'(x_0) \in \overline{\mathbb{R}}$.

Тогда x_0 называется точкой перегиба f.

Определение 80 (Понятие асимптоты).

Прямая l называется асимптотой графика функции f, если расстояние от точки (x, f(x)), лежащей на графике, до прямой l стремится к нулю при удалении точки (x, f(x)) на бесконечность от начала координат.

Определение 81 (Понятие вертикальной асимптоты).

Прямая $x = x_0$ называется вертикальной асимптотой графика функции f, если выполнено хотя бы одно из (четырех) условий:

$$\lim_{x \to x_0 \pm 0} f(x) = +\infty, \quad \lim_{x \to x_0 \pm 0} f(x) = -\infty$$

Определение 82 (Понятие наклонной асимптоты).

Прямая g(x) = kx + b называется наклонной асимптотой графика функции f при $x \to \pm \infty$, если

$$\lim_{x \to \pm \infty} (f(x) - (kx + b)) = 0.$$

В случае, если k=0, прямая g(x)=b часто называется горизонтальной асимптотой.

Лемма 33 (Связь непрерывности и предела).

Пусть $f: E \to \mathbb{R}, x_0 \in E$.

1. Для того чтобы функция $f: E \to \mathbb{R}$ была непрерывной в точке x_0 , предельной для E, необходимо и достаточно, чтобы выполнялось

$$\lim_{x \to x_0} f(x) = f(x_0).$$

2. Если точка x_0 не является предельной для E, то f непрерывна в x_0 .

Лемма 34 (Характеристика непрерывности в терминах односторонних пределов).

Пусть $f: E \to \mathbb{R}$ и x_0 — предельная для E. Если существуют (в смысле определения) односторонние пределы $f(x_0+0)$ и $f(x_0-0)$, то непрерывность функции f в точке равносильна равенству

$$f(x_0 + 0) = f(x_0 - 0) = f(x_0).$$

Если существует (в смысле определения) лишь один из односторонних пределов $f(x_0 \pm 0)$, то непрерывность функции f в точке равносильна равенству

$$f(x_0 \pm 0) = f(x_0)$$

Теорема 26 (Локальные свойства непрерывных функций).

Пусть функция $f: E \to \mathbb{R}$ непрерывна в точке x_0 . Тогда:

- 1. Функция f(x) ограничена в некоторой окрестности x_0 .
- 2. Если $f(x_0) \neq 0$, то существует окрестность $U(x_0)$ такая, что в $U(x_0) \cap E$ знаки f(x) и $f(x_0)$ совпадают.

Пусть, кроме того, $g: E \to \mathbb{R}$ непрерывна в точке x_0 . Тогда:

- (в) Функция f(x) + g(x) непрерывна в x_0 .
- (г) Функция f(x)g(x) непрерывна в x_0 .
- (д) Функция $\frac{f(x)}{g(x)}$ непрерывна в x_0 , если $g(x_0) \neq 0$.

Теорема 27 (О непрерывности композиции).

Пусть $f: E_1 \to E_2, g: E_2 \to \mathbb{R}$, функция f(x) непрерывна в точке $x_0 \in E_1$, а функция g(y) непрерывна в точке $y_0 = f(x_0) \in E_2$. Тогда функция g(f(x)) непрерывна в точке x_0 .

Теорема 28 (Вейерштрасса).

Пусть $f \in C[a,b]$. Тогда:

- 1. f ограничена на [a, b].
- $2. \ f$ достигает на [a,b] наибольшего и наименьшего значений.

Теорема 29 (Первая теорема Больцано-Коши).

Пусть $f \in C[a,b]$ и $f(a) \cdot f(b) < 0$. Тогда

$$\exists c \in (a,b) : f(c) = 0.$$

Теорема 30 (Вторая теорема Больцано-Коши).

Пусть $f \in C[a,b], f(a) = A, f(b) = B, A < B.$ Тогда

$$\forall C \in (A,B) \ \exists c \in (a,b) : f(c) = C.$$

Теорема 32 (Критерий непрерывности монотонной функции).

Пусть f — монотонная на $\langle a,b \rangle$ функция. Тогда:

- 1. f не может иметь разрывов второго рода.
- 2. Непрерывность f равносильна тому, что множество ее значений промежуток.

Теорема 33 (Об обратной функции).

Пусть $f \in C(\langle a, b \rangle)$ и строго монотонна,

$$m=\inf_{\langle a,b\rangle}f,\quad M=\sup_{\langle a,b\rangle}f.$$

Справедливы следующие утверждения:

- 1. $f:\langle a,b\rangle o \langle m,M
 angle$ биекция.
- 2. f^{-1} строго монотонна и имеет тот же характер монотонности, что и f.
- 3. $f^{-1} \in C(\langle m, M \rangle)$.

Теорема 47 (Кантора).

Непрерывная на отрезке функция равномерно непрерывна на этом отрезке.

Теорема 48 (О связи производной и дифференцируемости).

Функция $f: \langle a, b \rangle \to \mathbb{R}$ дифференцируема в точке $x_0 \in \langle a, b \rangle$ тогда и только тогда, когда она имеет в этой точке конечную производную. В этом случае $A(x_0) = f'(x_0)$.

Лемма 60 (О непрерывности дифференцируемой функции).

Если функция $f: \langle a, b \rangle \to \mathbb{R}$ дифференцируема в точке $x_0 \in \langle a, b \rangle$, то она непрерывна в точке x_0 .

Лемма 61 (Об уравнении касательной).

Пусть $f:\langle a,b\rangle\to\mathbb{R},\ f$ дифференцируема в точке $x_0\in\langle a,b\rangle$. Уравнение касательной к графику функции y=f(x) в точке x_0 имеет вид

$$y = f(x_0) + f'(x_0)(x - x_0).$$

Теорема 49 (О производной суммы, произведения и частного).

Пусть $f, g: \langle a, b \rangle \to \mathbb{R}$, дифференцируемы в точке x_0 . Тогда:

1. Их сумма дифференцируема в точке x_0 и

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

2. Их произведение дифференцируемо в точке x_0 и

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

3. Их частное дифференцируемо в точке x_0 при условии, что $g(x_0) \neq 0$, и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Теорема 49 (О производной суммы, произведения и частного).

Пусть $f, g: \langle a, b \rangle \to \mathbb{R}$, дифференцируемы в точке x_0 . Тогда:

1. Их сумма дифференцируема в точке x_0 и

$$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$

Их произведение дифференцируемо в точке x₀ и

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

3. Их частное дифференцируемо в точке x_0 при условии, что $g(x_0) \neq 0$, и

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Теорема 50 (О производной композиции).

Пусть $f:\langle a,b\rangle\to\langle c,d\rangle,\ g:\langle c,d\rangle\to\mathbb{R},\ f$ дифференцируема в точке $x_0\in\langle a,b\rangle,\ g$ дифференцируема в точке $y_0=f(x_0).$ Тогда функция g(f) дифференцируема в точке x_0 и

$$(g(f))'(x_0) = g'(y_0)f'(x_0).$$

Следствие 17 (О дифференциале композиции).

В условиях предыдущей теоремы,

$$d(g(f))(x_0) = dg(y_0)(df(x_0)).$$

Следствие 18 (О дифференциале обратного отображения).

В условиях предыдущей теоремы,

$$df^{-1}(y_0) = (df(x_0))^{-1}$$
.

Теорема 53 (О производной функции, заданной параметрически).

Пусть $T=\langle a,b\rangle,\,t\in T,\,\varphi\in C(T),\,\varphi$ строго монотонна, $\varphi,\,\psi$ дифференцируемы в точке $t,\,\varphi'(t)\neq 0,\,f=\psi(\varphi^{-1})$ – параметрически заданная функция. Тогда f дифференцируема в $x=\varphi(t)$ и

$$f'(x) = \frac{\psi'(t)}{\varphi'(t)}.$$

Теорема 54 (Ферма).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$ дифференцируема в точке $x_0 \in (a, b)$. Если x_0 – точка экстремума, то $f'(x_0) = 0$.

Теорема 55 (Ролля).

Пусть $f \in C[a,b]$ и дифференцируема на (a,b), причем f(a) = f(b). Тогда

$$\exists \xi \in (a,b) : f'(\xi) = 0.$$

Теорема 56 (Лагранжа).

Пусть $f \in C[a, b]$ и дифференцируема на (a, b). Тогда

$$\exists \xi \in (a, b) : f(b) - f(a) = f'(\xi)(b - a).$$

Теорема 60 (Коши).

Пусть $f,g\in C[a,b]$ и дифференцируемы на (a,b). Тогда $\exists \xi\in (a,b),$ что выполняется

$$(f(b) - f(a)) g'(\xi) = (g(b) - g(a)) f'(\xi).$$

Если, кроме того, $g'(x) \neq 0$ на (a, b), то

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

Теорема 61 (Правило Лопиталя).

Пусть f, g дифференцируемы на $(a, b), g'(x) \neq 0$ на (a, b) и

$$\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = A \in \overline{\mathbb{R}}.$$

Тогда в любом из двух случаев:

- 1. $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0.$
- 2. $\lim_{x \to a+0} |g(x)| = +\infty$.

-162 -

§6. ФРАНЦУЗСКИЕ ТЕОІ

выполняется

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = A.$$

Теорема 57 (Критерий монотонности функции).

Пусть $f \in C[a, b]$ и дифференцируема на (a, b). Тогда:

- 1. Для того чтобы функция f возрастала (убывала) на [a,b] необходимо и достаточно, чтобы $f'(x) \ge 0$ ($f'(x) \le 0$) на (a,b).
- 2. Для строгого возрастания (строгого убывания) функции на [a,b] достаточно, чтобы f'(x) > 0 (f'(x) < 0) на (a,b).

Теорема 58 (Критерий постоянства функции).

Пусть $f \in C[a,b]$ и дифференцируема на (a,b). Для того чтобы f была постоянной на [a,b] необходимо и достаточно, чтобы f'(x) = 0 на (a,b).

Теорема 63 (Формула Тейлора с остатком в форме Пеано).

Пусть функция f в точке x_0 имеет производные до порядка n включительно. Тогда справедлива формула Тейлора с остатком в форме Пеано:

$$f(x) = P_n(x, x_0) + o((x - x_0)^n), \quad x \to x_0.$$

Теорема 64 (О единственности многочлена Тейлора).

Если существует многочлен

$$Q_n(x, x_0) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n,$$

удовлетворяющий условию

$$f(x) = Q_n(x, x_0) + o((x - x_0)^n), \quad x \to x_0,$$

то он единственен.

Теорема 68 (О связи монотонности и производной).

Пусть функция $f \in C[a,b]$ и дифференцируема на (a,b). Тогда справедливы соотношения:

$$f'(x) > 0$$
 на $(a,b) \Rightarrow f(x)$ строго возрастает на $[a,b] \Rightarrow f'(x) \ge 0$ на (a,b) .

$$f'(x) \ge 0$$
 на $(a,b) \Rightarrow f(x)$ возрастает на $[a,b] \Rightarrow f'(x) \ge 0$ на (a,b) .

$$f'(x) < 0$$
 на $(a,b) \Rightarrow f(x)$ строго убывает на $[a,b] \Rightarrow f'(x) \leq 0$ на (a,b) .

$$f'(x) \leq 0$$
 на $(a,b) \Rightarrow f(x)$ убывает на $[a,b] \Rightarrow f'(x) \leq 0$ на (a,b) .

Теорема 69 (Необходимое условие экстремума).

Пусть $f:\langle a,b\rangle\to\mathbb{R}$. Если $x_0\in(a,b)$ – точка экстремума, то либо $f'(x_0)=0$, либо f не дифференцируема в x_0 .

Теорема 69 (Необходимое условие экстремума).

Пусть $f:\langle a,b\rangle\to\mathbb{R}$. Если $x_0\in(a,b)$ – точка экстремума, то либо $f'(x_0)=0$, либо f не дифференцируема в x_0 .

Теорема 71 (Второе достаточное условие экстремума).

Пусть $f: \langle a, b \rangle \to \mathbb{R}$, $x_0 \in (a, b)$ и f имеет в точке x_0 производные до порядка $n \in \mathbb{N}$ включительно, причем $f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$, а $f^{(n)}(x_0) \neq 0$. Тогда:

- 1. Если n нечетно, то точка x_0 не точка экстремума.
- 2. Если n четно, то точка x_0 точка строгого локального минимума, если $f^{(n)}(x_0) > 0$, и точка строгого локального максимума, если $f^{(n)}(x_0) < 0$.

Теорема 74 (Критерий выпуклости дважды дифференцируемой функции).

Пусть $f:\langle a,b\rangle\to\mathbb{R},\,f\in C(\langle a,b\rangle)$ и дважды дифференцируема на (a,b). Тогда:

- 1. f выпукла вниз (вверх) на $\langle a,b\rangle$ тогда и только тогда, когда $f''(x)\geq 0$ на (a,b) ($f''(x)\leq 0$ на (a,b)).
- 2. Если f''(x) > 0 на (a,b) (f''(x) < 0 на (a,b)), то f строго выпукла вниз (вверх).

Теорема 76 (Формулы для коэффициентов наклонной асимптоты).

Для того чтобы прямая $g(x) = k_{\pm\infty}x + b_{\pm\infty}$ была асимптотой графика функции f при $x \to \pm\infty$, необходимо и достаточно, чтобы существовали два конечных предела

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = k_{\pm \infty},$$

-190 -

§ 10. ИССЛЕДОВАНИЕ ФУНКЦИИ С ПОМОЩЬЮ ПРОИЗВОДНІ

$$\lim_{x \to \pm \infty} (f(x) - kx) = b_{\pm \infty}.$$