

Description

The vs30N06-T2 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 60V, I_{D} = 30A$ $R_{DS(ON)} < 27m\Omega @ V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VS30N06-T2	VS30N06-T2	TO-252-2L	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	60	V	
Gate-Source Voltage	V _{GS}	±20	V A	
Drain Current-Continuous	I _D	30		
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	20	Α	
Pulsed Drain Current	I _{DM}	74	Α	
Maximum Power Dissipation	P _D	50	W	
Derating factor		0.33	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	144	mJ	
Operating Junction and Storage Temperature Range	T _J ,T _{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{θJC}	3	°C/W	
---	------------------	---	------	--

Electrical Characteristics (T_c=25°Cunless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	'					•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	60	(=)		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V,V _{GS} =0V	-	(=)	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	:	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.4	1.8	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	23	27	mΩ
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	-	30	-1	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =30V,V _{GS} =0V,	-	1900	-	PF
Output Capacitance	C _{oss}		_	130	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	95	1-1	PF
Switching Characteristics (Note 4)	-					
Turn-on Delay Time	t _{d(on)}	V_{DS} =30V, R_L =1.5 Ω V_{GS} =10V, R_G =3 Ω	-	5	-	nS
Turn-on Rise Time	t _r		-	2.6	-	nS
Turn-Off Delay Time	t _{d(off)}		=	16.1	=	nS
Turn-Off Fall Time	t _f		-	2.3	-	nS
Total Gate Charge	Qg	V _{DS} =30V,I _D =20A,	-	30		nC
Gate-Source Charge	Q _{gs}		=	4.5		nC
Gate-Drain Charge	Q_{gd}	- V _{GS} =10V	-	7.5		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =30A	-		1.2	V
Diode Forward Current (Note 2)	Is		-		30	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =20A	-	35	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	53	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition:Tj=25 $^{\circ}$ C,VDD=30V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-Junction Temperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance

Vseei Semiconductor Co., Ltd