1. На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах).

	П1	П2	ПЗ	П4	П5	П6	П7
П1			25				20
П2						32	18
П3	25						10
П4					19	13	
П5				19			22
П6		32		13			14
П7	20	18	10		22	14	

Так как таблицу и схему рисовали

независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите длину кратчайшего пути из пункта Γ в пункт Д. **2.** Логическая функция Γ задаётся выражением (¬x V z) Λ (¬x V ¬y V ¬z).

?	?	?	F
0	1	0	0
1	1	0	0
1	1	1	0

На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

3. (И. Кушнир) В файле 3-0.xls приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Таблица «Магазин» содержит информацию о местонахождении магазинов. На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы

данных, определите какую долю (в процентах) от общей продажи группы товарной позиции $Ko\phi e$ составила выручка от товара $Ko\phi e$ в зернах в магазинах Первомайского района. В ответе укажите только целую часть получившегося числа.

- **4.** (Е. Джобс) По каналу связи передаются сообщения, содержащие только заглавные буквы русского алфавита. Для передачи используется двоичный код, допускающий однозначное декодирование. Укажите минимальную возможную длину закодированной последовательности АТТЕСТАТ.
- **5.** На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
- 1. Строится двоичная запись числа N.
- 2. К этой записи дописываются справа ещё два разряда по следующему правилу:
- а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
- б) над этой записью производятся те же действия справа дописывается остаток от деления суммы цифр на 2.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R. Какое наименьшее число, большее 108, может быть

получено в результате работы автомата?

6. (В. Шелудько) Определите наименьшее введённое значение переменной s, при котором программа выведет число 115.

Паскаль	Python	C++
var s, n: integer; begin readln(s); n := 11; while $s < 224$ do begin s := s + 15; n := n + 8 end; writeln(n) end.	s = int(input()) n = 11 while s < 224: s = s + 15 n = n + 8 print(n)	#include using namespace std; int main() { int s; cin >> s; int n = 11; while (s < 224) { $s = s + 15; n = n + 8; $ } cout << n; return 0; }

- 7. Для хранения в информационной системе документы сканируются с разрешением 300 ppi. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 5 Мбайт. В целях экономии было решено перейти на разрешение 150 ppi и цветовую систему, содержащую 16 цветов. Средний размер документа, отсканированного с изменёнными параметрами, составляет 512 Кбайт. Определите количество цветов в палитре до оптимизации.
- **8.** (П. Волгин) Сколько существует натуральных чисел, шестнадцатеричная запись которых содержит 6 знаков, не начинается с единицы и заканчивается на AB?
- **9.** Откройте файл электронной таблицы <u>9-0.xls</u>, содержащей вещественные числа результаты ежечасного измерения температуры воздуха на протяжении трёх месяцев. Найдите разность между максимальным и минимальным значениями температуры в апреле во второй половине дня (с 12:00). В ответе запишите только целую часть получившегося числа.
- **10.** С помощью текстового редактора определите, сколько раз, не считая сносок, встречается слово «крыльцо» или «Крыльцо» (в любом падеже) в тексте романа А.С. Пушкина «Капитанская дочка» (файл <u>10-34.docx</u>). В ответе укажите только число.
- 11. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы А, Б, В, Г, Д, Е. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт, при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит. Определите, сколько байт необходимо для хранения 20 паролей.
- 12. (Е. Джобс) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор.

Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (900) или нашлось(8000) или нашлось(70)
заменить(70, 8)
заменить(900, 70)
заменить(8000, 900)
КОНЕЦ ПОКА
КОНЕЦ
```

Известно, что на вход программы поступила строка из 71 символа. Определите минимальное четырехзначное число, которое может являться результатом работы исполнителя.

13. (А.Н. Носкин). На рисунке – схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей, ведущих из города А в город Л и проходящих через город Ж, но НЕ

проходящих через город Д?

- **14.** Число 572 записали в системах счисления с основаниями от 2 до 10 включительно. При каких основаниях в записи этого числа есть две одинаковые цифры, стоящие рядом? В ответе укажите сумму всех подходящих оснований.
- **15.** Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

$$ДЕЛ(40, A) \wedge ((\neg ДЕЛ(x, A) \wedge ДЕЛ(x, 54)) \rightarrow \neg ДЕЛ(x, 72))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

16. (П. Волгин) Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

```
F(0) = 3

F(n) = F(n-1), при 0 < n \le 15

F(n) = 2,5*F(n-3), при 15 < n < 95

F(n) = 3,3*F(n-2), при n \ge 95
```

С какой цифры начинается целая часть значения функции F(70)?

- **17.** (А. Кабанов) В файле <u>17-4.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Рассматривается множество элементов последовательности, которые оканчиваются на 5 или 7 и при этом не делятся ни на 9, ни на 11. Найдите количество таких чисел и сумму минимального и максимального из них.
- **18.** Квадрат разлинован на N×N клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Исходные данные записаны в файле 18-9.x1s в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

19. (С.А. Скопинцева) Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может увеличить количество камней в куче в три раза, добавить в кучу один камень, или 3 камня, при этом после каждого хода в куче должно быть нечетное количество камней. Например, пусть в куче было 8 камней. Тогда за один ход можно получить кучу из 9 камней или из 11 камней (увеличить количество камней в три раза нельзя, т.к. после этого хода получится четное количество камней — 24). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней. Выигрывает тот игрок, после хода которого количество камней в куче становится не менее 51.

В начальный момент в куче было S камней; $1 \le S \le 50$. Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника.

Ответьте на следующие вопросы:

Вопрос 1. Известно, что Ваня выиграл своим первым ходом после первого хода Пети. Назовите

минимальное значение S, при котором это возможно.

Bonpoc 2. Найдите два наибольших значения S, при которых у Пети есть выигрышная стратегия, причём Петя не может выиграть первым ходом, но может выиграть своим вторым ходом независимо от того, как будет ходить Ваня. Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Сколько существует значений S, при которых у Вани есть выигрышная стратегия, позволяющая ему выиграть вторым ходом при любой игре Пети.

20. Ниже записана программа. Получив на вход число x, эта программа печатает два числа, L и M. Укажите наименьшее из таких чисел x, при вводе которых алгоритм печатает сначала 3, а потом 7.

```
Паскаль
                                  Python
                                                    #include
                                                    using namespace std;
var x, L, M: longint;
                                                    int main()
begin
readln(x);
                        x = int(input())
                                                    int L, M, x;
L:=0; M:=0;
                        L = 0; M = 0
                                                    cin >> x:
while x > 5 do begin
                        while x > 5:
                                                    L = 0; M = 0;
L:=L+1;
                        L = L + 1
                                                    while (x>5) {
if M < (x \mod 10) then if M < (x \% 10):
                                                    L = L + 1;
M:= x \mod 10;
                        M = x \% 10
                                                    if (M < (x \% 10))
x = x \text{ div } 10;
                        x = x // 10
                                                    M = (x \% 10);
                        print("%d\n%d" % (L, M))
end;
                                                    x = x / 10;
writeln(L); write(M);
end.
                                                    cout \ll L \ll endl \ll M;
```

- 21. (Б. Михлин) Исполнитель К22 преобразует число, записанное на экране. У исполнителя есть три команды, которым присвоены номера:
- 1. Прибавь 1
- 2. Прибавь 4
- 3. Получи факториал следующего числа

Первая из них увеличивает число на экране на 1, вторая увеличивает число на 4. Факториалом числа N (обозначается как N!) называют произведение всех натуральных чисел от 1 до N. Третья команда заменяет число N на факториал следующего числа, т.е. на факториал (N+1). Например, для числа N=3 будет получено $24=(3+1)!\ 1\cdot 2\cdot 3\cdot 4$). Программа для исполнителя — это последовательность команд. Сколько существует программ, которые преобразуют исходное число 2 в число 24, и при этом траектория вычислений не содержит число 12?

22. Текстовый файл <u>24-s1.txt</u> состоит не более чем из 10⁶ символов и содержит только заглавные буквы латинского алфавита (ABC...Z). Текст разбит на строки различной длины. Необходимо найти строку, содержащую наибольшее количество букв Q (если таких строк несколько, надо взять ту, которая в файле встретилась позже). Определите, какая буква встречается в этой строке реже всего (но присутствует!). Если таких букв несколько, надо взять ту, которая стоит раньше в алфавите. Запишите в ответе эту букву, а затем — сколько раз она встречается во всем файле. Пример. Исходный файл:

ZZQAQB QAVQAB BAQTUB

В этом примере в первой и второй строках по две букву Q, в третьей — одна. Берём вторую строку, т.к. она стоит в файле позже. В этой строке реже других встречаются буквы V и В (по одному разу), выбираем букву В, т. к. она раньше стоит в алфавите. В ответе для этого примера надо записать В4, так как во всех строках файла буква В встречается 4 раза.

- **23.** Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [338472; 338494], числа, имеющие ровно 4 различных делителя. В ответе для каждого найденного числа запишите два его наибольших делителя в порядке возрастания.
- **24.** (Досрочный ЕГЭ-2022) В лесополосе осуществляется посадка деревьев: саженцы высаживают рядами на одинаковом расстоянии. Спустя некоторое время с помощью аэросъемки выясняют, какие саженцы прижились. Необходимо определить ряд с максимальным номером, в котором есть подряд

ровно К неприжившихся саженцев при условии, что справа и слева от них саженцы прижились. **Входные данные** представлены в файле <u>26-79.txt</u> следующим образом. . В первой строке записаны два числа: N – количество занятых мест (натуральное число, не превышающее 10 000) и К – длина цепочки неприжившихся саженцев, которую нужно найти. Каждая из следующих N строк содержит сведения об одном прижившемся саженце – два натуральных числа, не превышающих 100 000: номер ряда и номер саженца в ряду.

В ответе запишите сначала наибольший номер ряда, затем наименьший номер неприжившегося саженца.

Пример входного файла::

В примере требуется найти 3 подряд идущих неприжившихся саженца. Ответ: 50 65.

25. На вход программе подается последовательность целых чисел. Рассматриваются все непрерывные подпоследовательности исходной последовательности, такие что произведение элементов каждой из них не кратно M = 524288. Найдите количество таких подпоследовательностей.

Входные данные. Даны два входных файла (файл A и файл B), содержит в первой строке число N (1 \leq N \leq 10 000 000). Каждая из следующих N строк содержит одно натуральное число, не превышающее 10000.

Пример входного файла (для М = 20):

В этой последовательности есть 4 подпоследовательности, произведение элементов которых не делится на 20: $\{3\}$, $\{3, 17\}$, $\{17\}$ и $\{1\}$. Ответ — 4.

В ответе укажите два числа: сначала искомое количество подпоследовательностей для файла А, затем для файла В.