Teaching Economics to the Machines

Hui Chen, Yuhan Cheng, Yanchu Liu, Ke Tang

Present by Li Ziming

Motivation

- Is theory dead?
 - Simply applying AI without considering economic implications can produce powerful predictive ability.
 - Theory provides **motivations** to identify features and **restrictions** for forecasting.
- Economic models and ML models have comparative advantages.
 - Structural economic models can convey appealing economic insights but suffer from poor fit with data.
 - Non-structural ML models offer rich flexibility but have over-fitting issues.

Research Questions

- (1) How to combine economic models with machine learning?
- (2) Do transfer learning approach outperform?
- (3) Why is transfer learning better?

Contribution

- Contribute to literature of applying ML to finance and economics.
 - Prior literature: solve the pricing equations (Chen et al., 2022) and Bellman equations (Kong et al., 2020) implied by structural models.
 - Extend: bring economic restrictions from structural models into ML model.
- Contribute to literature on derivative pricing.
 - Prior literature: stochastic differential models outperform best ML (Jang and Lee, 2019); knowledge in finance modify performance of NN (Garcia and Gençay, 2000).
 - Extend: transfer learning approach better than deep learning and traditional stochastic differential models in terms of pricing power and hedging power.

Transfer learning approach

- Predict $y \in Y$ using a function of potential features f(x) for $x \in X$.
 - Search for function $\hat{f}(\cdot)$ from given function family H (set of neural networks).
 - Minimizes the loss function L(f(x), y) over a given training set S.
- Bayesian framework: use theoretical restrictions to form informative prior for function $f(\cdot)$ and fine-tune it with real data.
 - If theoretical restrictions between x and y valid, $Q_{(y|x)}$ consistent with $P_{(y|x)}$.
 - Misspecification also useful: increase biases but restrictions reduce variance.

Transfer learning approach

- Source domain
 - Randomly generate training samples within X and calculate theoretical model output $g(X_i)$.
 - A sufficiently deep neural network can approximate arbitrary functions.
 - True model without any noise, train on source domain with numerous epochs and large learning rates.

A neural network with L layers: $F(L; \sigma_1, \sigma_2, \sigma_3, ..., \sigma_L; W_1, W_2, W_3, ..., W_L)(X_i)$

$$\widehat{W}_1, \widehat{W}_2, \widehat{W}_3, \dots, \widehat{W}_L = argmin\lambda_0 L_0 + \sum_{j=1}^{\#X_i} \lambda_j L_j$$

Transfer learning approach

- Target domain
 - Fine-tune original form with the last few layers initialized according to real data, choose K and replace the layers K+1 to L.
 - Make the model not seriously deviate from economics theory and can flexibly modify within certain range.
 - Noisy in empirical data, train on target domain with low learning rate and epochs.

$$\begin{split} \widetilde{W_1}, \widetilde{W_2}, \widetilde{W_3}, \dots, \widetilde{W_L} \\ &= argmin \sum_{i=1}^N |F(L; \sigma_1, \dots, \sigma_K, \widehat{\sigma_{K+1}}, \dots, \widehat{\sigma_L}; W_1, W_2, W_3, \dots, W_L)(X_i) - y_i | w_i \\ \text{Final pricing model: } F(L; \sigma_1, \dots, \sigma_K, \widetilde{\sigma_{K+1}}, \dots, \widetilde{\sigma_L}; \widetilde{W_1}, \widetilde{W_2}, \widetilde{W_3}, \dots, \widetilde{W_L})(X_i) \end{split}$$

An application to option pricing

- Source domain
 - Input: random generated $X_i = (S_i, K_i, T_i, Vol_i, d_i, r_i, Z_i)$
 - Economic restriction: stochastic volatility model (SBAR、CEV)
 - Objective function: \widehat{W}_1 , \widehat{W}_2 , \widehat{W}_3 , ..., $\widehat{W}_L = argmin\lambda_1L_1 + \lambda_2L_2 + \lambda_3L_3$
 - $L_1 = \sum_{i=1}^{N} \left| \frac{1}{|\delta_1| + \epsilon_c} (F(L; \sigma_1, \sigma_2, \sigma_3, \dots, \sigma_L; W_1, W_2, W_3, \dots, W_L)(X_i) g(X_i)) \right|$
 - Delta: $L_2 = \sum_{i=1}^{N} \left| \frac{\partial F(X_i)}{\partial S} \frac{\partial g(X_i)}{\partial S} \right|$
 - Vega: $L_2 = \sum_{i=1}^{N} \left| \frac{\partial F(X_i)}{\partial vol} \frac{\partial g(X_i)}{\partial vol} \right|$

Target domain

- Input: real world option data
- Objective function: $\widetilde{W}_1, \widetilde{W}_2, \widetilde{W}_3, \dots, \widetilde{W}_L =$ $argmin \sum_{i=1}^N |F(L; \sigma_1, \dots, \sigma_K, \widetilde{\sigma_{K+1}}, \dots, \widetilde{\sigma_L}; W_1, W_2, W_3, \dots, W_L)(X_i) y_i|w_i$
- Hyper-parameters and NN structure tuned based on grid search and K-fold validation.
- Residual learning method
 - Avoid VGP to make NN deep enough.
 - $f(\cdot)$ learns to fit residual term $\sigma_i(w_iI_i + b_i) = f(w_iI_i + b_i) + I_i$
- Performance metric
 - pricing discrepancy: $\widetilde{\epsilon_{it}} = |\sigma(P_{it}; K_i, T_{it}, r_i, S_t, d_i) \sigma(\widehat{P_{it}}; K_i, T_{it}, r_i, S_t, d_i)|$
 - MAE weight **in-the-money contracts** more than out-of-the-money.

- Compare implied volatility MAE of option pricing models
 - Representative deep learning method: DNN
 - Well-established parametric pricing model: Heston

• Feature importance

• Incremental rise in loss function on training dataset when specific feature omitted.

Feature	Mean	Median	Std	$Q_{25\%}$	$Q_{75\%}$
S	0.080802	0.065811	0.053689	0.046090	0.102313
K	0.254765	0.281755	0.125342	0.152587	0.338298
T	0.008463	0.008559	0.006065	0.005045	0.011809
r	0.163964	0.189252	0.067358	0.108908	0.221215
d	0.000165	-0.000035	0.001459	-0.000547	0.000336
IV1	0.015858	0.010775	0.015948	0.004021	0.022601
mom1	0.000232	0.000170	0.000491	-0.000098	0.000386
mom4	0.001008	0.000723	0.001664	-0.000079	0.001711
hv1	0.002691	0.000421	0.007501	-0.000077	0.001748
hv9	0.000717	0.000350	0.002214	-0.000284	0.001217
volume1	0.000003	0.000020	0.000195	-0.000064	0.000073
volume5	0.000080	0.000124	0.000267	-0.000005	0.000233
Put-Call Ratio	0.003640	0.001666	0.007027	0.000419	0.003318
Earnings-Price Ratio	-0.000080	0.000025	0.000776	-0.000248	0.000297
spmom1	0.000114	0.000064	0.000399	-0.000108	0.000275
spmom4	0.000489	0.000240	0.001012	-0.000001	0.000539

Function smoothness

• the surface associated with transfer learning demonstrates a enhanced smoothness compared to the more jagged surface produced by deep learning.

Pricing surfaces for deep learning model

Pricing surfaces for transfer learning model

Attribution Analysis

• Regress pricing errors for DL and TL on explanatory variables.

•
$$\widetilde{\epsilon_{it}}^{DL} - \widetilde{\epsilon_{it}}^{TL} = x_{it-1}\beta + u_{it}$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(112.86) (191.94) (169.05) 0.0332*** 0.0222*** 0.0202*** (121.22) (80.22) (71.96)
0.0332*** 0.0222*** 0.0202*** (121.22) (80.22) (71.96)
(121.22) (80.22) (71.96)
7-14 0.0159*** 0.0101*** 0.00972***
$(72.82) \qquad (45.52) \qquad (43.91)$
90+ $0.0224***$ $0.0416***$ $0.0367***$
$(121.44) \qquad (145.59) \qquad (127.98)$
market IV 0.149*** 0.345*** 0.368*** 0.154*** 0.257*** 0.243***
$(150.35) \qquad (252.29) \qquad (254.94) \qquad (155.14) \qquad (191.32) \qquad (182.81)$
$\textbf{\textit{BAspread}} \qquad -0.00056^{***} -0.00057^{***} -0.00039^{***} -0.000154^{***} 0.000182^{***} 0.000178^{***}$
(-19.73) (-18.93) (-14.19) (-6.58) (7.51) (7.20)
$\textbf{distance} \qquad \qquad 0.000843^{***} 0.000435^{***} 0.000366^{***} 0.000746^{***} 0.000525^{***} 0.000523^{***}$
(82.72) (42.13) (35.97) (74.49) (50.79) (50.78)
vol20 $-0.139***$ $-0.137***$ $-0.134***$ $-0.164***$ $-0.177***$ $-0.162***$
(-65.73) (-65.12) (-63.96) (-78.01) (-82.90) (-75.25)
$left_tail_vol$
$(85.61) \qquad (101.13) \qquad (101.14) \qquad (83.49) \qquad (95.15) \qquad (94.38)$

OTM	0.00103***	0.132***	0.133***	-0.00439***	0.119***	0.118***
	(4.28)	(251.35)	(254.45)	(-17.78)	(221.35)	(219.36)
DOTM	0.0705***	0.99***	0.967***	0.057***	0.977***	0.926***
	(161.79)	(159.80)	(152.26)	(127.17)	(158.25)	(148.42)
ITM	-0.0462***	-0.0524***	-0.053***	-0.052***	-0.0666***	-0.0683***
	(-82.92)	(-64.82)	(-65.77)	(-93.73)	(-81.98)	(-84.56)
DITM	-0.0595***	-0.00969***	-0.0135***	-0.0644***	-0.0145***	-0.0276***
	(-72.30)	(-8.88)	(-12.22)	(-78.18)	(-13.19)	(-24.83)
IV_ITM		-0.00484	-0.00918***		0.0359***	0.0771***
		(-1.82)	(-3.34)		(13.20)	(28.16)
IV_DITM		-0.171***	-0.147***		-0.173***	-0.0543***
		(-52.70)	(-40.89)		(-52.22)	(-15.12)
IV_DOTM		-1.85***	-1.8***		-1.81***	-1.67***
		(-156.45)	(-147.36)		(-153.97)	(-139.54)
IV_OTM		-0.378***	-0.394***		-0.345***	-0.316***
		(-233.35)	(-233.93)		(-208.03)	(-187.47)
IV_T		-0.394***	-0.404***		-0.135***	-0.0765***
		(-176.27)	(-130.53)		(-115.47)	(-55.51)
IV_T_OTM			0.0484***			-0.0713***
			(26.38)			(-50.50)
IV_T_ITM			0.00943			-0.166***
			(1.21)			(-21.78)
IV_T_DOTM			-0.0496***			-0.2***
			(-13.46)			(-59.77)
IV_T_DITM			-0.0593***			-0.291***
			(-8.94)			(-46.24)
const	0.0894***	0.035***	0.035***	0.0871***	0.0628***	0.0648***
	(321.07)	(103.06)	(100.15)	(311.28)	(197.30)	(204.45)
R^2	0.02265	$\stackrel{ ightarrow}{0.04427}$	$\stackrel{\circ}{0.04454}$	0.02400	0.03613	0.03807

Conclusion

- Introduce transfer learning that incorporate economic model into ML.
 - Transfer learning approach yields **lower pricing and hedging errors** compared to stochastic volatility models and direct use of deep learning.
- Transfer learning overcome inherent drawbacks of data-driven methods.
 - Suitable for high-volatility market environments characterized by small-sample.
 - More robust to various **shocks**.
- Economic models created by human help AI to overcome inherent flaws.
 - Even with considerable effort in feature engineering, its improvement is hard to match the help of theoretical models in the source domain for neural networks.

New ideas

- Apply transfer learning approach to prediction tasks in other contexts.
 - Macroeconomic forecast (total output, inflation, labor supply, consumption)
 - Other pricing model (stocks, bonds, futures)