Capstone design

Team F

2016310237 김동우 2016314577 김동한 2016311033 김영현 2017312329 최형규

Contents

- 1. Introduction
 - Al adaptation on our project
- 2. Image Classification
 - Quick review of Image Classification
 - MobileNet v1
- 3. Object Detection
 - Yolo v1
 - Limitation

1. Introduction input "apple" (99%) image classification object detection "apple" (99%) user drawing bounding

box

Keyword = 'apple'

Output ~= Keyword?

2. Image Classification

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- (1000) classes + (1.35M) dataset

(~2011) sift/surf descriptor based algorithm

(2012~) DNN algorithm

Multi-Layerd Perceptron (MLP)

convolutional Neural Network (CNN)

- flatten the input into 1-dimensional and inject into the fully connected layer
- important spatial informations are inherently lost

- more appropriate for images and video frames
- kernel slides through the entire input grid and creates a feature map
- keep spatial informations

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Convolution layer)

- map the input into the feature space to obtain important features of the image
- kernel size, num of kernel, stride, padding

Pooling layer)

- reduce the size of the feature map
- no params for pooling layer itself
- lower params, suppress overfitting, lower computation, lower hardware resources
- Max Pooling, Stochastic Pooling..
- pooling size, stride, padding

Max Pooling

				•	-					
12	1	5	1		12	9	5	1		
6	9	0	0	max pool	9	9	8	8	Deterministic	12
7	5	1	8	2×2 filter stride 1	7	6	8	8	Downsampling	7
0	3	6	5		3	6	6	5		

Stochastic Pooling

				_							
12	1	5	1		12	5	5	1			
6	9	0	0	stochastic pool	6	9	8	8	Deterministic	12	5
7	5	1	8	2×2 filter stride 1	5	5	8	6	Downsampling	5	8
0	3	6	5		3	6	5	5			

S3Pool

12	1	5	1		12	9	5	1			
6	9	0	0	max pool	9	9	8	8	Stochastic	9	8
7	5	1	8	2×2 filter stride 1	7	6	8	8	Downsampling →	6	8
0	3	6	5		3	6	6	5			

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Our proposed candidate models)

VGGNet-16/19

MobileNet

ResNet-50

Our proposed candidate models)

VGGNet-16/19

ResNet-50

MobileNet v1

Previous models...

- have tremendous number of parameters(weights)
- require high computational power & memories
- e.g. ALPHAGO used 1202 CPUs and 176 GPUs

However in real world...

- numerous environments s.t...
 - no GPUs
 - only one CPU, lack of memories

Figure 1. MobileNet models can be applied to various recognition tasks for efficient on device intelligence

MobileNet is exactly for these situations

- small num of parameters
- model with less complexity
- low latency & high speed

1) Depthwise convolution

$$M \cdot N \cdot D_F \cdot D_F$$

- calculate spatial correlation for each channel independently total computation of $D_K \cdot D_K \cdot M \cdot D_F \cdot D_F$

2) Pointwise convolution

- convolution with 1x1 kernel => control the size of out-channel
- calculate cross-channel correlation
- total computation of $M \cdot N \cdot D_F \cdot D_F$

3) Depthwise separable convolution

Figure 3. Left: Standard convolutional layer with batchnorm and ReLU. Right: Depthwise Separable convolutions with Depthwise and Pointwise layers followed by batchnorm and ReLU.

- total calculation for depthwise separable convolution:

$$D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F$$

total calculation for traditional convolution:

$$D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$$

- more than 8~9 times less computation

4) parameters for latency and accuracy

- 1) width multiplier: $latency(\alpha)$ (default=1.0, range=0.0~1.0)
- control the 'width' of the layer
- total computation of $D_K \cdot D_K \cdot \alpha M \cdot D_F \cdot D_F + \alpha M \cdot \alpha N \cdot D_F \cdot D_F$

Table 6. MobileNet Width Multiplier

ImageNet	Million	Million
Accuracy	Mult-Adds	Parameters
70.6%	569	4.2
68.4%	325	2.6
63.7%	149	1.3
50.6%	41	0.5
	Accuracy 70.6% 68.4% 63.7%	Accuracy Mult-Adds 70.6% 569 68.4% 325 63.7% 149

Table 7. MobileNet Resolution

Tuble 7: Mobile (et Résolution								
Resolution	ImageNet	Million	Million					
	Accuracy	Mult-Adds	Parameters					
1.0 MobileNet-224	70.6%	569	4.2					
1.0 MobileNet-192	69.1%	418	4.2					
1.0 MobileNet-160	67.2%	290	4.2					
1.0 MobileNet-128	64.4%	186	4.2					

- 2) resolution multiplier: $accuracy(\rho)$ (default=1.0, range=0.0~1.0)
- control the 'resolution' of the image
- in paper, author tests for image size of 224, 192, 169, 128

3. Object Detection

- Image classification : one class per one image
- what if multiple classes in one image?

(object detection)

(our usage of object detection)

- Object detection: localization + image classification
- Use Object detection for input with multiple classes of doodling

two-stage object detection

etc.

- localization & classification in different step
- relatively high accuracy, low speed
- e.g. R-CNN, Fast R-CNN...

VS

one-stage object detection

- localization & classification in same step
- relatively low accuracy, high speed
- e.g. Yolo, SSD...

two-stage object detection

etc.

- localization & classification in different step
- relatively high accuracy, low speed
- e.g. R-CNN, Fast R-CNN...

VS

one-stage object detection

- localization & classification in same step
- relatively low accuracy, high speed
- e.g. Yolo SSD...

Yolo v1

Figure 1: The YOLO Detection System. Processing images with YOLO is simple and straightforward. Our system (1) resizes the input image to 448×448 , (2) runs a single convolutional network on the image, and (3) thresholds the resulting detections by the model's confidence.

(one-stage object detection)

(performance on artwork)

Yolo)

- One-stage detection

Strength of Yolo)

- Extremely fast : real-time detection (45 fps)
- Low background error than state-of-the-art (fast r-cnn)
- Learns generalizable representations of object

S x S grid on input

- divides the input image into an S x S grid
- If the center of an object falls into a grid cell, that grid cell is responsible for detecting that object
- Each grid cell predicts B bounding boxes & confidence score(Pr(Class_i) * IOU^{truth}_{pred})

bounding boxes+confidence

- each bounding box predicts x, y, w, h, confidence($Pr(Object) * IOU_{pred}^{truth}$)

class probability map

 each grid cell predicts C conditional probabilies Pr(Class_i|Object)

<class-specific confidence score>

$$Pr(Class_i|Object) * Pr(Object) * IOU_{pred}^{truth} = Pr(Class_i) * IOU_{pred}^{truth}$$

final detections

- obtain class-specific confidence scores from each box
- class-specific confidence score encode both the probability of that class appearing in the box
 & how well the predicted box fits the object

Thank you