(FT)

$$0 = \log_{\text{vac}} 0$$

III.2.2. Aus dem
$$\triangle$$
 ABP kenn gefunden werden : r_p · $sin\psi_1 = R_B$ · $sin\zeta_0$ (5a) und aus dem \triangle APS : r_g · $sin\psi_2 = r_p$ · $sin\zeta_1$

(80)
$$I_{I}$$
 S.3. Aus (4a) und (5a) wind : I_{B} · I_{D} · I

(do)
$$\sum_{D} \operatorname{dis} \cdot \sum_{D} \operatorname{dis} \cdot$$

da aus einer wirklichkeitstreueren Skizze wegen der sehr kleinen Winkel keine lität ist der Refraktionswinkel \varTheta « l°, jedoch ist diese Übertreibung notwendig , Die Größenverhältnisse der Skizze sind stark übertrieben dargestellt. In der Rea-II.3. zur zweiten Hilfsskizze

den durch eine beliebige Atmosphärenschicht i abgelenkten Lichtstrahl : so ergibt sich aus (60) and (60) die allgemeine Bestimmungsgleichung für II.3.1. Wird die Einschränkung auf zwei Atmosphärenschichten nun aufgehoben, geometrischen Zusammenhänge abgelesen werden könnten.

(ennüb famisetinitni, eleiv Durchläuft der Lichtstrahl jetzt also sehr viele (im Idealfall theoretisch unendlich r, r, r, sing, = R_B · no · singo (L)

0 5

H

1 +) = M'O erkennt man: II.3.2. direkt aus der Skizze trachtet werden kann. als eine flache Kreisbahn be-Linie, die in l. Näherung Strahl eine stetig gekrümmte die Erdatmosphäre geraden wird aus dem vor Eintritt in Atmosphärenschichten, so

t: Zentriwinkel der Erdkugel Beobachtungsort des Lichtstrahls im $\zeta_{O,w}$: "wahre" Zenitdistanz (8)

der zur Projektion des

 $0 = \frac{2b}{\sqrt[3]{net}} + \frac{nb}{n} + \frac{1}{1}$: britis brunkt bekennt und konstent für einen bestimmten Zeit-Boden (meb-)werte in B eib of bru on ab , tplot Differentiation von (T) II.3.3, Durch logarithmische oberfläche gehört Lichtstrahls auf die Erd-