REMARKS

.

This is in response to the Office Action dated February 24, 2005. In view of the foregoing amendments and following representations, reconsideration is respectfully requested.

Initially, filed concurrently herewith, is a certified copy of Swiss Patent Application No. 2002 1612/02. The Examiner is requested to kindly acknowledge the filing of the certified priority document.

Next, the specification and abstract have been reviewed and revised, and a substitute specification and abstract has been prepared. No new matter has been added. Also enclosed is a "marked-up" copy of the original specification and abstract to show the changes that have been incorporated into the substitute specification and abstract. The enclosed copy is entitled "Version with Markings to Show Changes Made."

Next, on pages 2-3 of the Office Action, claims 10-34 are rejected over the prior art, with the Examiner particularly relying on Sidler (U.S. Patent No. 6,010,112).

In response, claims 10-34 have been cancelled and replaced with new claims 35-50. Each of the new claims has been drafted so as to comply with the provisions of 35 U.S.C. § 112, second paragraph and to more clearly distinguish over the cited prior art references. In particular, each of independent claims 35 and 43 requires, *inter alia*, a cylinder/piston arrangement disposed within a housing that defines a pressure chamber or a reservoir for a pressure medium. Note that this arrangement facilitates assembly of the device, saves space, and provides a device that can be closed

within a short period of time. In view of the presentation of the new claims, it is submitted that the present invention is not disclosed or suggested by the prior art references as will be demonstrated below.

Sidler discloses a shut-off device including a piston/cylinder unit connected to a slide valve plate 11 that is slidable between opened and closed positions. The shut-off device is driven by a driving device 20, which comprises a piston/cylinder unit 22, 25 defining an upper working chamber 23 connected to a pressure medium reservoir 19 by way of a valve 30. As clearly illustrated in Figs. 2-3, the pressure medium reservoir is separately connected to the cylinder head 25' of the piston/cylinder unit 22, 25. Clearly the piston/cylinder unit of Sidler is <u>not</u> located <u>within</u> the pressure medium reservoir 19 as required in independent claim 35 and independent claim 43.

Pierson (USPN 4,709,901) is cited by the Examiner to teach a parallel piston/cylinder arrangement for providing a balanced control of the slide plate movement. However, the Pierson arrangement does not disclose or suggest the deficiencies of the Sidler arrangement, i.e. a pressure medium reservoir integrated within a valve housing. Further, King (USPN 4,703,915) is cited by the Examiner to teach a particular slide valve having particular bearing materials. However, King does not disclose anything regarding the claimed plate driving arrangement. Thus, it is submitted that the collective teachings of the applied Sidler, Pierson and King references do not disclose or suggest the shut-off device as defined in new independent claims 35 and 43. Further, dependent claims 34-42 and 44-50 are allowable at least by virtue of their dependencies.

In view of the above, it is submitted that the present application is now clearly in condition for allowance. The Examiner therefore is requested to pass this case to issue.

In the event that the Examiner has any comments or suggestions of a nature necessary to place this case in condition for allowance, then the Examiner is requested to contact Applicant's undersigned attorney by telephone to promptly resolve any remaining matters.

Respectfully submitted,

Hans J. SIDLER

By:

Michael S. Huppert

Registration No. 40,268 Attorney for Applicant

MSH/kjf Washington, D.C. 20006-1021 Telephone (202) 721-8200 Facsimile (202) 721-8250 May 24, 2005

SUBSTITUTE SPECIFICATION & ABSTRACT (Marked-up Version)

For U.S. Patent Application -Hans J. SIDLER (Serial No. 10/668,191)

DEVICE FOR PROTECTION AGAINST EXPLOSIONS IN A PIPE-LINE

BACKGROUND OF THE INVENTION

The <u>present</u> invention relates to a shut-off device for protection against explosions in a pipe-line according to the <u>pre-characterising clause of Claim 1</u>.

A shut-off device for protection against explosions of this type is known for example from DE-A-198 21 756. This specification discloses a slide valve plate for rapid shutting of pipe-lines, connected to a piston slidable within a cylinder and actuated by a pressure medium. The pressure medium is supplied from an external pressure reservoir to a working chamber in the cylinder via a closing valve. As a flame detected in the pipe-line propagates or a sudden pressure rise is suddenly detected, the closing valve opens, the piston is actuated and the slide valve plate, which is movable transversely to the direction of flow, is brought into the closed position within the shortest possible time, making it possible to prevent flame propagation and thus an explosion. Such shut-off devices for protection against explosion are used especially in chemical or foodstuffs plants but also in mining, cement, textile and wood-processing plants where dust explosions can occur, triggered off-for example by a spark, friction, plant overheating etc. The disadvantage of these devices is, as a rule, that they take up a relatively great deal of space and their construction and assembly are complicated.

SUMMARY OF THE INVENTION

The task of the present invention is to create a shut-off device for

Version with Markings to Show Changes Made

protection against explosions of the type described at the beginning, above, which is simple to assemble, space-saving and can be shut within the shortest possible time.

This purpose is achieved in accordance with the <u>present</u> invention by the shut-off device for protection against explosion—which has the features of Claim 1 as described below.

Further embodiments of the shut-off device for protection against explosion in accordance with the invention form the subject of the related Claims.

Due to the fact that the cylinder is arranged within a pressure chamber enclosed by a housing which forms the pressure medium reservoir, there is no need for an external reservoir which would take up a lot of space, and a compact, space-saving shut-off device is created. In addition, the communication route between the pressure chamber and the working chamber is short so that a very short closing time can be achieved.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be explained in detail with reference to the drawings. The following is shown:

Figure 1: A Figure 1 is a front view and part section of a design of the shut-off device for protection against explosion constructed in accordance with the invention, and

Figure 2: A Figure 2 is a longitudinal section sectional view through the

shut-off device as shown in Figure 1.

DETAILED DESCRIPTION OF THE INVENTION

Figures 1 and 2 show a shut-off device 1 for rapid shutting of a pipe-line. The pipe-line, in which the shut-off device 1 is mounted transversely to the direction of flow A as in Figure 2, is not shown on the drawing. The shut-off device 1 in accordance with the invention offers a simple way of connecting the pipeline at two flange parts 2, 3 (Figure 2) forming a pipe passage 4, which 4.

The flange parts are provided for this purpose with a number of bolt holes 5 (Figure 1) at the face for bolting-on the pipe-line flanges. The flange parts 2, 3 are bolted to a slide valve housing 7 by means of the bolts 6. The slide valve housing 7 has a gap 9 in which a slide plate 10 is slidably arranged transversely to the direction of flow A.

The two flange parts 2, 3 have passages 12, 13 as <u>shown</u> in Figure 2, with their diameter enlarged in the areas facing each other. Annular sealing elements 14, 15, each with a sealing ring 16, 17 fitted in the end face, are arranged in this area of the enlarged diameter of the through passages 12, 13. The two sealing rings 16, 17 sit sealingly at the slide valve plate 10 and form at the same time a guide for the movable slide valve plate 10. Therefore, they are made of a material with good sliding properties to ensure that the friction produced during the movement of the slide valve plate 10, which negatively affects the closing time, is as low as possible. The sealing elements 14, 15 in the enlarged part of the through passages 12, 13, can be fastened for example

by means of carrier rings 18, 19 arranged at the periphery of the sealing elements 14, 15.

The slide valve plate 10 in the example of design shown here is in the form of what is referred to as a circular aperture valve plate which has a through aperture 20 opening up a pipe passage 4. The part of the slide valve plate 10 which shuts the pipe passage 4 as the slide valve plate 10 shifts, is designated by the numeral 21. In this area, the slide valve plate 10 is coupled on each side to a piston rod 25, 26 (Figure 1). The piston rods 25, 26, 26 are each connected to a piston 27, 28, and are slidably guided through an end wall 31 of a housing 30 (the guide apertures are designated in Figure 1 by the numerals 32, 33) which is firmly connected to the valve housing 7. Both The pistons 27, 28 are each slidably guided in a cylinder 35, 36, extending between the end wall 31, which has already been mentioned, and another end wall 37 of the housing 30 located opposite to it. The housing 30 has in addition a jacket 39 connecting the two end walls 31, 37 and enclosing the pressure chamber 40 which houses the two cylinders 35, 36. In accordance with the invention, the pressure chamber 40 forms a reservoir for a pressure medium, preferably air (or another gas) supplied from a pressure source at a mains pressure common in industrial systems by means which are not described in detail here, envisaged to actuate the piston and to provide the associated movement of the slide valve plate 10 into a position shutting the pipe passage 4.

To actuate the piston, the pressure medium is introduced from the

pressure chamber 40 via a closing valve 45 into a respective working chamber 46, 47 of the two cylinders 35, 36 which are formed between the pistons 27, 28 and the end wall 37 of the housing 30 forming the cylinder head. A displacement chamber 48, 49 located on the other side of the respective piston 27, 28 communicates with a quick-venting valve 51 via the outlet port 50 arranged in the end wall 31 in the area of the respective cylinder 35, 36 on the side of the slide valve plate (only one of these outlet ports 50 with a venting valve 51 is shown on the drawing - see also Figure 2).

The closing valve 45 is fitted in the end wall 37 forming the cylinder head which also has a pressure chamber outlet port 55. Furthermore, a connecting duct 57, which is closable by a valve disk 56 of the closing valve 45, forking forks out and leading leads to the working chambers 46, 47 of the two cylinders 35, 36 and is made formed in the end wall 37. The pressure chamber outlet port 55 communicates with the connecting duct 57 when the closing valve 45 is made to open. The closing valve 45 is constructed and controlled essentially in the same way as the type disclosed in DE-A-198 21 756 and will not be described here in detail. The control elements 60, which are available for controlling the movement of the piston or the slide valve plate and a part of the closing valve 45, are arranged on the end wall 37 outside the housing 30 and are encapsulated by a cap 61, which can be placed over the housing 30,30 to protect the control elements 60 from dust contamination and thus the resultant possible risk of explosion.

An end piece 70 (the bolts are designated by the numeral 71 in Figure 2) with-includes a recess 72 adjoining the gap 9 in the housing 7, in which an abutment strip 73 extending over the width of the slide valve plate is guided in its movement in the direction of the slide valve plate 10,10. The end piece 70 is fixed to the slide valve housing $\frac{7}{10}$ at its end facing away from the housing 30. Two or more elastomer parts 74, for example pieces of silicone cord, are loosely placed with in the existing gaps 75, between the abutment strip 73 and the end piece 70. The abutment strip 73 is made resistant to the impact produced by the slide valve plate 10 moving into the closed position, optimum position. Optimum damping of the impact being is provided by the compressible elastomer parts 74 and the gaps 75 offering a possibility of deflection. The slide valve plate 10 does not need to be widened in the impact area which would otherwise disadvantageously increase its weight to disadvantage. The elastomer parts 74, which offer the advantage of multiple use, are very easy to replace when it is eventually necessary to do so. The elastomer parts 74 are also available as a finished product.

The shut-off device is compact and space-saving as well as simple to assemble and economic thanks to an arrangement of the cylinders 35, 36 in accordance with the invention in a pressure chamber 40 enclosed by a housing 30, forming a reservoir for the pressure medium. In addition, an especially short shutting time is achieved thanks to the direct arrangement of the

pressure chamber outlet port 55 at the connecting duct 57 leading to the working chambers 46, 47.

It would be quite possible to accommodate in the pressure chamber 40, which forms the reservoir for the pressure medium, a single piston/cylinder unit co-acting with the slide valve plate 10 in place of the two adjacent piston/cylinder units, making the connecting route, between the pressure chamber and the working chamber possibly even shorter because the branch at the connecting duct 57 would be eliminated and the latter could terminate directly in the one working chamber. Using two piston/cylinder units with two piston rods 25, 26 located on the sides of the slide valve plate 10 is of advantage particularly when using a valve plate with a circular aperture because the area 21'21, which is rear-most in relation to the closing direction of the part 21 closing the pipe passage 4, is offset in relation to the fixing point of the piston rods 25, 26 and can even protrude into a recess 31' in the end wall 31 of the housing 30 on the side of the valve plate, thereby further shortening the total length of the shutting off shut-off device 1 and of the closing time. In addition, only a smaller weight needs to be set in motion when two smaller pistons are used, and the transmission of forces to the slide valve plate 10 is more favourable favorable.

The slide valve plate 10 in the valve housing 7 is guided by the sealing rings 16, 17 fitted to the flange parts 2, 3 and also by plastic or coated metal guides 8 or the like on the side, in the lower part of the valve housing. By using

these guides, the friction at the slide valve plate can be kept low, thereby allowing the pipe passage 4 to be shut at a faster speed. In addition, the sealing rings 16, 17 in the flange parts 2, 3 which are boltable to the slide valve housing 7 can be easily replaced without having to dismantle the valve housing 7.

The invention is sufficiently well explained on the basis of one example of a particular design. Of course, it could be designed in a different way. For example, two or more closing valves in adjacent locations could also be arranged in place of one closing valve 45.

ABSTRACT

A shut-off device (1) for protection against explosions in a pipe-line is fitted with a slide valve plate (10) movable transversely to the direction of flow (A), the said. The slide valve plate being-is connected via a piston rod (25, 26) to a piston (27, 28) slidably guided in a cylinder (35, 36) and actuated by a pressure medium. The pressure medium is supplied from a pressure medium reservoir via a closing valve (45) to a working chamber (46, 47) of the cylinder (35, 36), thereby actuating the piston and causing the slide valve plate (10) to move into a position closing the pipe passage (4). At least one cylinder (35, 36) is provided, arranged within a pressure chamber (40) enclosed by a housing (30), which forms the pressure medium reservoir. Thus, a compact, space-saving shut-off device is created which can be shut within a very short time.