NãO RE

- Linguagem Recursiva
 - Problema decidível
 - Possui solução algorítmica
 - Solução é tratável computacionalmente?

- O fato de um algoritmo resolver um dado problema não significa que seja aceitável na prática
- Exemplo:
 - Caixeiro Viajante
 - Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma única vez
 - Supondo que sempre há uma estrada entre duas cidades quaisquer, o problema é encontrar a menor rota para a viagem.

$$n = L$$

- A figura ilustra o exemplo para quatro cidades c1, c2, c3, c4, em que os números nos arcos indicam a distância entre duas cidades.
- O percurso < (c1) c3, c4, c2, c1> é uma solução para o problema,
 cujo percurso total tem distância 24.

$$C_1 \rightarrow C_4 \rightarrow C_3 \rightarrow C_2 \rightarrow C_1$$

 $9 + 3 + 5 + 9 = 25$
 $n = 4$
 $(n-1)!$
 $9.8.7.6.5.4.3.2.1$
 $\Rightarrow \text{ Nas tratavel}$

- Um algoritmo simples seria verificar todas as rotas e escolher a menor delas.
- Há (*n* 1)! rotas possíveis e a distância total percorrida em cada rota envolve *n* adições, logo o número total de adições é *n*!
- Suponha agora 50 cidades: o número de adições seria 50! ≈ 10⁶⁴
- Em um computador que executa 10º adições por segundo, o tempo total para resolver o problema com 50 cidades seria maior do que 10⁴⁵ séculos só para executar as adições

Classes de Complexidade

for (i=0, i < n; i++){

for (j=0; i < n; i++){

op;

if (cond) {break;}

1 milénio ≈ 3 × 1010 segundos

1 século ≈ 3 × 109 segundos

- Custo Assintótico
 - O custo assintótico de uma função f(n) representa o limite do comportamento de custo quando n cresce
 - Notação O prov caso
 - Notação Ω melhor caso
 - Notação Θ

Notação O

- Trazida da matemática por Knuth (1968):

$$-g(n) = O((n)) \int_{\infty}^{\infty} \int_{\infty}^{\infty} ds$$

$$-L\hat{e}-se: \int_{\infty}^{\infty} \int_{\infty}^{\infty} ds$$

- g(n) é de ordem no máximo f(n)
- f(n) domina assintoticamente g(n)
- (f(n) é um limite assintótico superior para g(n))

Formalmente:

$$g(n) = O(f(n)), c > 0 e n0 | 0 \le g(n) \le c.f(n), \forall n >= n0$$

- Se dizemos que g(n) = O(n2), significa que existem constantes c e m | $g(n) \le c$. n2 para n >= m
- Exemplo:

```
g(0) = 1
g(1) = 4
g(n) = (n+1)^{2}
(n+1)^{2} <= cn^{2}
n^{2} + 2n + 1 <= cn^{2}
2n + 1 <= (c-1)n^{2}
```


- Notação Ω
 - Ω define um limite inferior para a função, por um fator constante.
 - Escreve-se $g(n) = \Omega(f(n))$, se existirem constantes positivas c e n0 | para n >= n0, o valor de g(n) é maior ou igual a c.f(n)

Formalmente:

$$g(n) = \Omega(f(n)), c > 0 e n0 | 0 \le c.f(n) \le g(n), \forall n >= n0$$

- Notação Θ
 - A notação Θ limita a função por fatores constantes
 - g(n) = $\Theta(f(n))$ se existirem constantes positivas c1 e c2 e n0 tais que para n >= n0, o valor de g(n) está sempre entre c1.f(n) e c2.f(n) inclusive.

Formalmente:

$$g(n) = \Theta(f(n)), c1 > 0 e c2 > 0 e n0 |$$

0 <= c1.f(n) <= g(n) <= c2.f(n), \forall n >= n0