

Markov Decision Processes Online Algorithms

CS4246/CS5446

Al Planning and Decision Making

Online search

So far

Sequential decision problems & MDP

- Solution mechanisms
 - Value iteration
 - Policy iteration

Curse of dimensionality

• State space grows exponential with the number of variables

- VI/PI iterates through all states; so exponential with the number of variables
- To handle curse of dimensionality
 - Use function approximation
 - Linear function of features
 - Deep neural networks
 - Do online search with sampling

Online search

- At every step, construct a search tree
 - Up to a fixed depth *D*
 - Root is the current state
 - |A| children of the root (and other action nodes)
 - |S| children of observation nodes

- To compute the value at the root:
 - Initialize leaf with value estimates (or zeros)
 - At observation node, compute the expected values of the children
 - At the action nodes, compute the max of the children

Q: Have we fixed the curse of dimensionality?

Sparse sampling

Don't search the entire tree!

- Tree size: $|A|^D |S|^D$
- Sparse sampling¹
 - Estimate by sampling k observations at observation nodes instead of using |S| states as possible observations
 - Tree size now: $|A|^D k^D$
 - Curse of dimensionality is solved ...
 ... but still exponential with the search depth curse of history

Monte Carlo Tree Search

MCTS²

Commonly used to solve MDP and games

MCTS

- Repeatedly run trials from the root (current state in online search)
- Trial:
 - Repeatedly select the node to go to at the next level until
 - Target depth is reached, or
 - Selected node has not been discovered create a new node; run a simulation using a default policy till required depth
 - Backup the outcomes all the way to the root
- Anytime policy: When time is up, use the action that looks best at the root at that time

MCTS

ullet For MDP, a tree (actually DAG) node n is associated with a state s

- ullet A node n^\prime at the next level is selected by applying an action a to s
 - Sample next state s' (corresponding to n') according to P(s'|s,a)
- Action a is selected to balance exploration with exploitation

Estimated

- Estimated value $\dot{V}(n)$ at node n is the average return of all trials at n
 - Return $r_t(n)$ of trial t starting from n with state s and next node n' is $r_t(n) = R(s) + \gamma r_t(n')$
- Estimated Q-function at n, $\hat{Q}(n,a)$, is the average return of all trials at n that start with action a**Estimated**
 - $\hat{Q}(r,a)$ at the root r is used to select the action to take at the root node
- All these are updated in the backup operation to the root

Upper confidence tree (UCT)

UCT³

Used for tuning the performance

Confidence interval

Action selection is guided by this function:

$$\pi_{UCT}(n) = \arg \max_{a} \hat{Q}(n, a) + c \sqrt{\frac{\ln(N(n))}{N(n, a)}}$$

- Where, N(n) and N(n,a) count the number of trials through n and (n,a) respectively and c is a constant
- UCT will eventually converge to the optimal policy with enough trials D-1 times
 - Worst case can be very bad⁴ $\Omega(\exp(\exp(...\exp(1)...)))$
 - Often works well in practice
 - E.g., PROST planner⁵, which uses UCT, won the international probabilistic planning competition in 2011 & 2014

³Levente Kocsis and Csaba Szepesvari. "Bandit based monte-carlo planning". In: European conference on machine learning. Springer. 2006, pp. 282-293.

MCTS in practice

Player 2 uses MCTS

- Visualizing MCTS:
 - https://www.youtube.com/watch?v=FvRSxNLTg7U&ab_channel=DaveDyer

MCTS in practice – AlphaGo Zero

- AlphaGo Zero⁶
 - Uses MCTS + Approximate Policy Iteration
 - Play against Self to learn
 - Defeated AlphaGo (that beat Lee Sedol) 100-0!

- Go has a state space size of about 10^{170}
 - Need function approximation to represent value and policy functions
- AlphaGo Zero uses deep neural network with two heads (outputs)
 - Value head outputs real value estimate of the value function (board position)
 - Policy head outputs a vector of size 19 × 19 (maps board position to action)
 - Each item represents the probability that the policy will play that board position

AlphaGo Zero – MCTS

• Variant of UCT that exploits the policy head output: P(s,a)

$$\pi_{UCT}(s) = \arg\max_{a} \hat{Q}(s, a) + c P(s, a) \sqrt{\frac{\sum_{b} N(s, b)}{1 + N(s, a)}}$$

- When leaf node is reached, the value head output is used to evaluate the state instead of doing a roll-out (simulation)
- Go is a zero-sum, turn taking game instead of MDP
 - Search alternates between:
 - selecting action that maximizes when it is first player's turn
 - selecting the action that minimizes for second player's turn
 - At termination: reward +1 for the first player win and -1 for second player win

AlphaGo Zero – Approximate Pl

- Recollect: Policy iteration has 2 stages, policy evaluation and policy improvement
- AlphaGo Zero does both using supervised learning
- With the current value function, MCTS can be viewed as a policy improvement operator – gives improved policy values for the evaluated states
- Self-play with search gives the policy evaluation for the evaluated states
- Supervised learning is used to interpolate the values and the policy over the whole domain using data from a set of states

Reading

- Sutton and Barto [Section 8.11]
- Sutton and Barto [Section 2.7]
- [RN] 16.2.4, 6.4 (Online algorithms, MCTS)

Thank you!