回帰分析

モデルの評価

村田 昇

講義概要

• 第1回:回帰モデルの考え方と推定

• 第2回: モデルの評価

・ 第3回: モデルによる予測と発展的なモデル

回帰分析の復習

線形回帰モデル

• 目的変数 を 説明変数 で説明する関係式を構成

- 説明変数: $x_1, ..., x_p$ (p 次元)

- 目的変数: y(1 次元)

• 回帰係数 $\beta_0,\beta_1,\ldots,\beta_p$ を用いた一次式

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

・ 誤差項 を含む確率モデルで観測データを表現

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \quad (i = 1, \dots, n)$$

簡潔な表現のための行列

• デザイン行列 (説明変数)

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1p} \\ 1 & x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix}$$

簡潔な表現のためのベクトル

• ベクトル (目的変数・誤差・回帰係数)

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

問題の記述

• 確率モデル

$$y = X\beta + \epsilon$$
, $\epsilon \sim$ 確率分布

• 回帰式の推定: **残差平方和** の最小化

$$S(\boldsymbol{\beta}) = (\boldsymbol{y} - X\boldsymbol{\beta})^{\mathsf{T}} (\boldsymbol{y} - X\boldsymbol{\beta})$$

解の表現

• 解の条件: **正規方程式**

$$X^{\mathsf{T}}X\boldsymbol{\beta} = X^{\mathsf{T}}y$$

• 解の一意性 : **Gram 行列 X**^T**X** が正則

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{v}$$

最小二乗推定量の性質

- **あてはめ値** $\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$ は X の列ベクトルの線形結合
- 残差 $\hat{\epsilon} = y \hat{y}$ はあてはめ値 \hat{y} と直交

$$\hat{\epsilon}^{\mathsf{T}}\hat{\mathbf{v}} = 0$$

• 回帰式は説明変数と目的変数の 標本平均 を通過

$$\bar{y} = (1, \bar{x}^{\mathsf{T}})\hat{\boldsymbol{\beta}}, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i,$$

寄与率

• 決定係数 (R-squared)

$$R^2 = 1 - \frac{\sum_{i=1}^{n} \hat{\epsilon}_i^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

• 自由度調整済み決定係数 (adjusted R-squared)

$$\bar{R}^2 = 1 - \frac{\frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2}{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- 不偏分散で補正

解析の事例

実データによる例

- 気象庁より取得した東京の気候データ
 - 気象庁 https://www.data.jma.go.jp/gmd/risk/obsdl/index.php
 - データ https://noboru-murata.github.io/multivariate-analysis/data/tokyo_weather.csv

東京の8月の気候の分析

• データの一部

日付	気温	降雨	日射	降雪	風向	風速	気圧	湿度	雲量
2022-08-01	30.60	0.00	24.53	0.00	SSE	2.80	1010.10	72.00	8.80
2022-08-02	31.60	0.00	24.78	0.00	SSE	2.50	1008.80	71.00	9.80
2022-08-03	31.50	0.00	21.24	0.00	SSE	2.30	1005.10	75.00	7.30
2022-08-04	24.60	18.00	3.46	0.00	NE	2.70	1006.00	89.00	10.00
2022-08-05	23.80	0.00	7.65	0.00	NE	2.90	1006.10	83.00	9.80
2022-08-06	25.20	0.00	17.06	0.00	SSE	2.40	1008.10	73.00	10.00
2022-08-07	27.60	0.00	14.45	0.00	SSE	2.20	1009.30	80.00	8.30
2022-08-08	29.80	0.00	22.52	0.00	S	4.50	1008.50	75.00	4.80
2022-08-09	30.90	0.00	25.50	0.00	S	5.50	1006.90	69.00	6.80
2022-08-10	30.50	0.00	25.99	0.00	S	5.30	1007.20	70.00	6.00
2022-08-11	29.50	0.00	22.90	0.00	S	5.40	1007.50	75.00	6.00
2022-08-12	28.30	2.00	15.36	0.00	S	5.80	1007.50	81.00	9.80

• 気温を説明する5種類の線形回帰モデルを検討

- モデル1: 気温 = F(気圧)

- モデル2: 気温 = F(日射)

- モデル3: 気温 = F(気圧, 日射)

- モデル4: 気温 = F(気圧, 日射, 湿度)

- モデル 5: 気温 = F(気圧, 日射, 雲量)

分析の視覚化

- 関連するデータの散布図
- モデル1の推定結果
- モデル2の推定結果
- モデル3の推定結果
- 観測値とあてはめ値の比較

モデルの比較

• 寄与率による比較

	モデル	決定係数	自由度調整済み決定係数
1	気温 = F(気圧)	0.064	0.031
2	気温 = F(日射)	0.641	0.628
3	気温 = F(気圧, 日射)	0.741	0.722
4	気温 = F(気圧, 日射, 湿度)	0.758	0.731
5	気温 = F(気圧, 日射, 雲量)	0.760	0.733

図 1: 散布図

図 2: モデル 1

図 3: モデル 2

図 4: モデル 3

図 5: モデルの比較

あてはめ値の性質

あてはめ値

• さまざまな表現

$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$$

$$(\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$
を代入)
$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\mathbf{y}$$

$$(\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$
を代入)
$$= X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= X\boldsymbol{\beta} + X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$
(B)

- (A) あてはめ値は **観測値の重み付けの和** で表される
- (B) あてはめ値と観測値は **誤差項** の寄与のみ異なる

あてはめ値と誤差

• 残差と誤差の関係

$$\hat{\epsilon} = y - \hat{y}$$

$$= \epsilon - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\epsilon$$

$$= (I - X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}})\epsilon \qquad (C)$$

- (C) 残差は **誤差の重み付けの和** で表される

ハット行列

定義

$$H = X(X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}$$

• ハット行列 H による表現

$$\hat{y} = Hy$$

$$\hat{\epsilon} = (I - H)\epsilon$$

- あてはめ値や残差は H を用いて簡潔に表現される

ハット行列の性質

- ・ 観測データ (デザイン行列) のみで計算される
- 観測データと説明変数の関係を表す
- 対角成分 (テコ比; leverage) は観測データが自身の予測に及ぼす影響の度合を表す

$$\hat{y}_j = (H)_{jj} y_j + (それ以外のデータの寄与)$$

- (A)_{ij} は行列 A の (i, j) 成分
- テコ比が小さい:他のデータでも予測が可能
- テコ比が大きい:他のデータでは予測が困難

推定量の統計的性質

最小二乗推定量の性質

• 推定量と誤差の関係

$$\hat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{y}$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}(X\boldsymbol{\beta} + \boldsymbol{\epsilon})$$

$$= (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}X\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

$$= \boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}$$

• 正規分布の重要な性質 (**再生性**)

正規分布に従う独立な確率変数の和は正規分布に従う

推定量の分布

- 誤差の仮定:独立,平均 0 分散 σ^2 の正規分布
- 推定量は以下の多変量正規分布に従う

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[\boldsymbol{\beta} + (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}\boldsymbol{\epsilon}] = \boldsymbol{\beta}$$
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \mathbb{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^{\mathsf{T}}] = \sigma^{2}(X^{\mathsf{T}}X)^{-1}$$
$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^{2}(X^{\mathsf{T}}X)^{-1})$$

通常 σ² は未知、必要な場合には不偏分散で代用

$$\hat{\sigma^2} = \frac{S}{n-p-1} = \frac{1}{n-p-1} \hat{\boldsymbol{\epsilon}}^{\mathsf{T}} \hat{\boldsymbol{\epsilon}} = \frac{1}{n-p-1} \sum_{i=1}^{n} \hat{\epsilon}_i^2$$

• これらの性質を利用してモデルの評価を行う

実習

R: 乱数を用いた人工データの生成

• 正規乱数を用いた線形単回帰モデル

```
set.seed(987) # 乱数のシード値を設定 x_obs <- c(1,3,5,7) # 説明変数の観測値 epsilon <- rnorm(length(x_obs), sd = 0.5) # 誤差項の生成 y_obs <- 2 - 3 * x_obs + epsilon # 目的変数の観測値 my_data <- tibble(x = x_obs, y = y_obs) # データフレームの作成 beta_lm <- lm(y ~ x, data = my_data) # 回帰係数の推定 coef(beta_lm) # 回帰係数の取得 summary(beta_lm) # 分析結果の概要の表示
```

R:数值実験 (Monte-Carlo 法)

• 実験のためのコードは以下のようになる

```
mc <- 5000 # 実験回数を指定
mc_trial <- function() { # 1回の試行を行うプログラム
    ## 乱数生成と推定の処理
    return(返り値)}
mc_data <-
    replicate(mc, my_trial()) |> # Monte-Carlo 実験
    t() |> as_tibble() # 転置 (関数 t()) してデータフレームに変換
#' 適切な統計・視覚化処理 (下記は例)
mc_data |>
    summarise(across(everything(), var)) # 各列の分散の計算
ggpairs(mc_data) # 散布図行列の描画
tibble(x = mc_data[[k]]) |> # k列目のベクトルで新しいデータフレームを作成
ggplot(aes(x = x)) + geom_histogram() # k列目のデータのヒストグラム
```

練習問題

- 最小二乗推定量の性質を数値実験 (Monte-Carlo 法) により確認しなさい
 - 以下のモデルに従う人工データを生成する

説明変数の観測データ:

{1, 20, 13, 9, 5, 15, 19, 8, 3, 4}

確率モデル:

$$y = -1 + 2 \times x + \epsilon$$
, $\epsilon \sim \mathcal{N}(0, 2)$

- 観測データから回帰係数を推定する
- 実験を複数回繰り返し推定値 $(\hat{eta}_0,\hat{eta}_1)$ の分布を調べる

誤差の評価

各係数の推定量の分布

- 推定された回帰係数の精度を評価
 - 誤差 ϵ の分布は平均 0 分散 σ^2 の正規分布
 - **β** の分布: p+1 変量正規分布

$$\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2 (X^\mathsf{T} X)^{-1})$$

 $-\hat{\beta}_i$ の分布: 1 変量正規分布

$$\hat{\beta}_j \sim \mathcal{N}(\beta_j, \sigma^2((X^\mathsf{T} X)^{-1})_{jj}) = \mathcal{N}(\beta_j, \sigma^2 \zeta_j^2)$$
* (A)_{ij} は行列 A の (j, j) (対角) 成分

標準誤差

標準誤差 (standard error): β_i の標準偏差の推定量

$$\mathrm{s.e.}(\hat{\beta}_j) = \hat{\sigma}\zeta_j = \sqrt{\frac{1}{n-p-1}\sum_{i=1}^n \hat{\epsilon}_i^2} \cdot \sqrt{((X^\mathsf{T}X)^{-1})_{jj}}$$

- 未知母数 σ^2 は不偏分散 $\hat{\sigma}^2$ で推定
- $-\hat{\beta}_i$ の精度の評価指標

実習

練習問題

- 数値実験により標準誤差の性質を確認しなさい
 - 人工データを用いて標準誤差と真の誤差を比較する

```
#' 標準誤差は以下のようにして取り出せる
data_lm <- lm(formula, data)
summary(data_lm)$coefficients # 係数に関する情報はリストの要素として保管されている
summary(data_lm)$coefficients[,2] # 列番号での指定
summary(data_lm)$coef[,"Std. Error"] # 列名での指定. coef と省略してもよい
```

- 広告費と売上データを用いて係数の精度を議論する
- 東京の気候データを用いて係数の精度を議論する

係数の評価

t 統計量

• 回帰係数の分布 に関する定理

t 統計量 (t-statistic)

$$t = \frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\hat{\sigma}\zeta_j}$$

は自由度 n-p-1 の t 分布に従う

- 証明には以下の性質を用いる
 - $-\hat{\sigma}^2 \, \, \, \, \, \, \, \hat{\beta} \, \, \,$ は独立となる
 - $-(\hat{\beta}_i \beta_i)/(\sigma \zeta_i)$ は標準正規分布に従う
 - $(n-p-1)\hat{\sigma}^2/\sigma^2 = S(\hat{\beta})/\sigma^2$ は自由度 n-p-1 の χ^2 分布に従う

t 統計量による検定

- 回帰係数 β_i が回帰式に寄与するか否かを検定
 - 帰無仮説 H_0 : $β_i$ = 0 (t 統計量が計算できる)
 - 対立仮説 H_1 : $β_i ≠ 0$
- p値:確率変数の絶対値が |t| を超える確率

$$(p \ \ \text{値}) = 2 \int_{|t|}^{\infty} f(x) dx \quad (両側検定)$$

- -f(x) は自由度 n-p-1 の t 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p 値は小さくならない

実習

練習問題

- 数値実験により t 統計量の性質を確認しなさい
 - 人工データを用いて t 統計量の分布を確認する

#' t統計量とその p 値は以下のようにして取り出せる
data_lm <- lm(formula, data)
summary(data_lm)\$coef[,c("t value","Pr(>|t|)")] # 列名での指定
summary(data_lm)\$coef[,3:4] # 列番号での指定

- 広告費と売上データを用いて係数の有意性を議論する
- 東京の気候データを用いて係数の有意性を議論する

モデルの評価

F 統計量

• **ばらつきの比** に関する定理:

$$\beta_1 = \cdots = \beta_p = 0$$
 ならば F 統計量 (F -statistic)

$$F = \frac{\frac{1}{p}S_r}{\frac{1}{n-p-1}S} = \frac{n-p-1}{p} \frac{R^2}{1-R^2}$$

は自由度 p, n-p-1 の F 分布に従う

- 証明には以下の性質を用いる
 - $-S_r$ と S は独立となる
 - S_r/σ^2 は自由度 p の χ^2 分布に従う
 - S/σ^2 は自由度 n-p-1 の χ^2 分布に従う

F統計量を用いた検定

- 説明変数のうち1つでも役に立つか否かを検定
 - 帰無仮説 $H_0: \beta_1 = \cdots = \beta_p = 0 (S_r \text{ が } \chi^2 \text{ 分布になる})$
 - 対立仮説 H_1 : ∃j $β_i ≠ 0$
- p値:確率変数の値がFを超える確率

$$(p \ \text{値}) = \int_{F}^{\infty} f(x) dx \quad (片側検定)$$

- f(x) は自由度 p, n-p-1 の F 分布の確率密度関数
- 帰無仮説 H_0 が正しければ p 値は小さくならない

実習

練習問題

- 数値実験により F 統計量の性質を確認しなさい
 - 人工データを用いて F 統計量の分布を確認しなさい

```
#' F統計量とその自由度は以下のようにして取り出せるdata_lm <- lm(formula, data)
summary(data_lm)$fstat
summary(data_lm)$fstatistic # 省略しない場合
```

- 広告費と売上データのモデルの有効性を議論しなさい
- 東京の気候データのモデルの有効性を議論しなさい

補足

R:診断プロット

- 回帰モデルのあてはまりを視覚的に評価
 - Residuals vs Fitted: あてはめ値 (予測値) と残差の関係
 - Normal Q-Q: 残差の正規性の確認
 - Scale-Location: あてはめ値と正規化した残差の関係
 - Residuals vs Leverage: 正規化した残差とテコ比の関係

などが用意されている

```
#' 関数 stats::lm() による推定結果の診断プロット
tw_lm6 <- lm(temp ~ press + solar + rain, data = tw_subset)
#' 関数 ggfortify::autoplot() を利用する
#' 必要であれば 'install.packages("ggfortify")' を実行
library(ggfortify)
autoplot(tw_lm6)
#' 診断プロットは 1 から 6 まで用意されており 1,2,3,5 がまとめて表示される
#' 個別に表示する場合は 'autoplot(tw_lm6, which = 1)' のように指定する
#' 詳細は '?ggfortify::autoplot.lm' を参照
```

次回の予定

- 第1回:回帰モデルの考え方と推定
- 第2回: モデルの評価
- 第3回:モデルによる予測と発展的なモデル