Índice

"Quantas vezes a gente, em busca da ventura, Procede tal e qual o avozinho infeliz: Em vão, por toda parte, os óculos procura, Tendo-os na ponta do nariz!" (Mário Quintana)

ÍNDICI	E	2
VISÃO	GERAL	5
1.1	DADOS E INFORMAÇÕES	5
1.2	CONVERSÃO DE DADOS EM INFORMAÇÕES	5
1.3	DIVISÃO DE TAREFAS – Seres Humanos x Sistemas de Computação	5
1.4	INFORMÁTICA	6
1.5	TIPOS DE DADOS	6
1.6	O OUE É UM COMPUTADOR?	6
	6.1 UNIDADE CENTRAL DE PROCESSAMENTO	9
1.6	6.2 MEMÓRIA	9
	6.3 DISPOSITIVOS DE ENTRADA	
1.6	6.4 DISPOSITIVOS DE SAÍDA	
1.7		9
	7.1 ENTRADA / SAÍDA DE DADOS	
	7.2 PROGRAMA	
	7.3 PROCESSAMENTO	
1.8		
1.9		
1.10	EXERCÍCIOS	11
NOÇÕI	ES DE LÓGICA	13
2.1	LÓGICA	13
2.2	LÓGICA DE PROGRAMAÇÃO	13
2.3	ALGORITMO	14
2.4	PROGRAMAÇÃO	14
2.5		
	5.1 LINGUAGEM NATURAL	
2	5.2 FLUXOGRAMA	15
	5.3 LINGUAGEM ESTRUTURADA	
2.6		
2.7	EXERCÍCIOS	17
ITENS	FUNDAMENTAIS	19
3.1	INTRODUÇÃO	19
3.2	TIPOS DE DADOS	19
3.2	2.1 INTEIRO	
3.2	2.2 REAL	19
3.2	2.3 CARACTER	19
3.2	2.4 LÓGICO	20
	FORMAÇÃO DE IDENTIFICADORES	20
3.4	CONSTANTES	
3.5	VARIÁVEĮS	
3.6	COMENTÁRIOS	
3.7	EXERCÍCIOS	
EXPRE	SSÕES E OPERADORES	23
4.1	INTRODUÇÃO	23
4.2	EXPRESSÕES ARITMÉTICAS	23
4.3	EXPRESSÕES LÓGICAS	
4.4	EXERCÍCIOS	25

ESTRUTURA SEQUENCIAL			
5.1 COMANDO DE ATRIBUIÇÃO	27		
5.2.1 COMANDO DE ENTRADA	27		
5.2.2 COMANDO DE SAÍDA			
5.4 TESTE DE MESA	28		
5.5 EXERCÍCIOS			
ESTRUTURAS CONDICIONAIS			
6.1 ESTRUTURA CONDICIONAL SIMPLES			
6.2 ESTRUTURA CONDICIONAL COMPOSTA	32		
6.3.1 SELEÇÃO ENCADEADA HETEROGÊNEA	33		
6.3.2 SELEÇÃO ENCADEADA HOMOGÊNEA			
SELEÇÃO DE MÚLTIPLA ESCOLHA			
7.1 SELEÇÃO DE MÚLTIPLA ESCOLHA			
7.2 EXERCÍCIOS	41		
ESTRUTURAS DE REPETIÇÃO	42		
8.1 ESTRUTURAS DE REPETIÇÃO	42		
8.2 ESTRUTURA DE REPETIÇÃO COM VARIÁVEL DE CONTROLE			
8.3 ESTRUTURA DE REPETIÇÃO COM TESTE NO INÍCIO	43 43		
8.5 EXERCÍCIOS	44		
VETORES E MATRIZES.	45		
9.1 ESTRUTURA DE DADOS	45		
VARIÁVEIS COMPOSTAS HOMOGÊNEAS	45		
9.3.1 MANIPULAÇÃO DE VETORES	45		
9.4 MATRIZES - VARIÁVEIS COMPOSTAS MULTIDIMENSIONAIS			
9.4.1 DECLARAÇÃO DE MATRIZES			
9.4.2 MANIPULÁÇÃO DE MATRIZES 9.4.3 PERCORRENDO UMA MATRIZ BIDIMENSIONAL	48		
9.5 EXERCÍCIOS			
REGISTROS			
10.1 ESTRUTURA DE DADOS			
10.2 REGISTROS	51		
10.2.2. MANIPULAÇÃO DE UM REGISTRO	51		
10.2.3. REGISTRO DE CONJUNTOS	51		
10.2.5 CONTINTO DE REGISTROS	52		
10.2.6 MANIPULAÇÃO DE CONJUNTO DE REGISTROS 10.3 EXERCÍCIOS	53		
MODULARIZAÇÃO			
11.1 DECOMPOSIÇÃO			
11.2 MÓDULOS			
11.3 SUB-ROTINA			
11.3.1 PASSAGEM DE PARÂMETROS POR VALOR			
11.4 FUNÇÃO	60		
11.5 EXERCÍCIOS			
LISTAS DE EXERCÍCIOS			
LISTA 1: LÓGICA			
LISTA 2: ESTRUTURA SEQÜENCIAL 66			

DIDI IOCDAFIA	0.5
Lista 9: Modularização	
Lista 8: Registros	82
Lista 7: Vetores e Matrizes.	
Lista 6: Estruturas de Repetição	
Lista 5: Revisão	
Lista 4: Seleção de Múltipla Escolha	
Lista 3: Estrutura Condicional	

"As coisas são sempre melhores no começo" (Blaise Pascal)

1.1 DADOS E INFORMAÇÕES

"Dados" são conjuntos de fatos distintos e objetivos, relativos a eventos. Os dados, por si só, tem pouca relevância ou propósito. Por exemplo, se for dito que a temperatura ambiente é de 32°C, provavelmente todos compreenderão, mas se for dito que a temperatura é de 82F, a compreensão dependerá do conhecimento do ouvinte sobre essa unidade de medida. O dado 32°C é rapidamente convertido em sensação térmica, portanto ele tem algum significado ou importância. Nesse caso, pode-se dizer que ele é uma informação. Informações são dados com algum significado ou relevância.

Se o ouvinte não tem nenhum conhecimento sobre a unidade de medida F, ela não fornece a exata sensação de frio ou calor.

A informação é a compreensão dos dados, a matéria-prima para o processamento mental. Sem dados e um mecanismo (processo) de compreensão desses dados existe o processamento mental e, se não houver esse processamento mental, os dados não se transformam em informações, continuam sendo apenas dados.

DADO x INFORMAÇÃO			
DADO	INFORMAÇÃO		
Data de Nascimento: 16/07/61	Idade: 41 anos		
Soma de Preço Unitário x Quantidade	Valor Total da Fatura: R\$ 2500,00		
Medição x Métrica de Temperatura = 38º C	Quente		
Medição x Métrica de Distância = 100 Km	Longe		

1.2 CONVERSÃO DE DADOS EM INFORMAÇÕES

Os sistemas de computação trabalham somente com dados. Eles permitem a coleta, processamento, armazenamento e distribuição de enormes quantidades de dados. A conversão de dados em informações é uma tarefa do ser humano, mas os sistemas de computação podem auxiliar alguns processos que ajudam nessa conversão:

Contextualização	Relacionar os dados coletados com outros existentes
Categorização Separar os dados em categorias	
Cálculo	Analisar matemática ou estatisticamente os dados
Condensação	Resumir os dados para uma forma concisa

1.3 DIVISÃO DE TAREFAS – Seres Humanos x Sistemas de Computação

Quando o ser humano trabalha com informações, existem determinadas tarefas que podem ser realizadas:

Pensar / Criar	Absorver e combinar conhecimentos e informações de modo não programado para		
	criar novas informações e conhecimentos. É o processo criativo propriamente dito.		
Tomar Decisões	Usar informações para definir, avaliar e selecionar entre possíveis ações a serem to-		
	madas.		
Realizar Ações Físicas Qualquer combinação de movimentos físicos, com algum propósito.			
Comunicar-se	Apresentar conhecimentos e informações para outras pessoas, de modo que elas		
	entendam. Daí, a diferença entre comunicar e transmitir.		
Processar Dados	Capturar, transmitir, armazenar, recuperar, manipular ou apresentar dados.		

Os equipamentos são criados para facilitar e agilizar as tarefas realizadas pelos seres humanos Isso inclui os sistemas de computação, que têm como uma de suas finalidades até substituir o ser humano em uma ou mais tarefas ligadas à informação. Das tarefas

apresentadas, a mais adequada para os sistemas de computação realizarem é o **Processamento de Dados**. As outras apresentam características humanas difíceis de serem[®]imitadas".

Dentro do processamento de dados, algumas tarefas são básicas:

Capturar	Buscar os dados onde eles existem e trazê-los	
Manipular	Tratas os dados de forma que possam ser organizados e ganhar sentido (transfor-	
	mando-se em informação)	
Armazenar	Guardar os dados de maneira organizada	
Recuperar	Buscar os dados que foram armazenados de forma organizada	
Apresentar Mostrar os dados de forma compreensível		
Transmitir	Enviar e receber dados de outros locais	

A Tecnologia da Informação é formada por dispositivos que processam dados de forma precisa e rápida, facilitando alguma tarefa para o ser humano. O equipamento mais importante dessa tecnologia é o computador, e a informática estuda essa tecnologia.

1.4 INFORMÁTICA

Informática é o estudo de tudo o que se relaciona à tecnologia da informação. Éuma união de trechos de duas outras palavras e foi criada pelos franceses.

INFORMÁTICA = INFORmação + AutoMÁTICA

Outra definição possível para informática é: "O estudo do tratamento da informação, utilizando-se, como ferramenta básica, recursos dos sistemas de computação."

Este conceito amplia bastante a idéia inicial. Primeiro, porque a informática é tratada como um estudo, por isso, é dotada de conceitos próprios e distintos. Como estudo, seu objetivo é o tratamento da informação, usando como ferramenta os recursos de sistemas de computação, ou seja, o computador e outros recursos ligados a ele.

1.5 TIPOS DE DADOS

Os sistemas de computação, atualmente, manipulam vários tipos diferentes de dados:

Números	Podem ser organizados, alterados, calculados e armazenados.		
Textos	Podem ser escritos, corrigidos, alterados na forma e cor, armazenados e impressos.		
Imagens	Podem ser estáticas (em duas ou três dimensões) ou em movimento (animações e vídeos). Po-		
	dem ser criadas, alteradas, armazenadas e reproduzidas.		
Sons	Podem ser gerados eletronicamente (sintetizados) ou gravados diretamente da realidade. Podem		
	ser alterados, armazenados e reproduzidos.		

1.6 O QUE É UM COMPUTADOR?

Para facilitar a compreensão do funcionamento e dos componentes de um computador, é apresentada, a seguir, uma analogia entre o funcionamento de um computador e o local de trabalho de um operador, formado basicamente pelos utensílios comuns de um escritório (obviamente, sem um computador). Layout e funcionamento desse local de trabalho:

Regras para realizar as tarefas:

- No arquivo de aço (1), estão armazenadas as instruções para realização de cada tarefa. Essas instruções apresentam uma següência de passos a serem seguidos.
- Quando o operador (2) receber as instruções, ele deve copiar cada uma delas no quadro-negro (3), que possui 16 áreas para isso (A1 -A16). Cada instrução deve ser escrita em uma das áreas livres do quadro-negro, sempre iniciando pela área A1.
- 3) Após copiar as instruções, o operador deve começar a realizar cada uma delas, respeitando a seqüência. Caso alguma indique ao operador para escrever em uma área já ocupada do quadro, ele deve apagar o conteúdo anterior e escrever o novo conteúdo.
- 4) Os dados que serão usados para realizar as tarefas encontram-se escritos em fichas empilhadas ao lado do operador, no escaninho (4). As fichas deverão ser usadas na seqüência em que se encontram e, ao ser usada, a ficha deve ser descartada.
- 5) O operador possui uma calculadora (5) para realizar todos os cálculos matemáticos necessários para a realização da sua tarefa (dependendo das instruções).
- 6) Para apresentar os resultados da tarefa realizada, o operador possui uma máquina de escrever (6), utilizada para escrever os resultados.

Suponha-se que o operador receba a seguinte seqüência de instruções que estavam armazenadas no arquivo de aço:

- 1) Peque uma ficha e copie o seu valor no quadro área A16
- 2) Pegue uma ficha e copie o seu valor no quadro área A15
- 3) Some o conteúdo de A15 com o de A16 e coloque o resultado em A16
- Se n\u00e3o houver mais fichas, avance para a \u00e1rea A6; caso contr\u00e1rio, avance para a \u00e1rea A5
 - 5) Volte para a área A2
 - 6) Datilografe o conteúdo de A16
 - 7) Pare

O operador copiava as *instruções*, uma a uma, nas primeiras áreas do quadro-negro. O quadro ficava com a seguinte aparência:

A1 Pegue uma ficha e copie o seu valor no quadro, área A16	A2 Pegue uma ficha e copie o seu valor no quadro, área A15	A3 Some o conteúdo de A15 com o de A16 e coloque o resultado em A16	A4 Se não houver mais fi- chas, avance para a área A6; caso contrário, avan- ce para a área A5
A5 Volte para a área A2	A6 Datilografe o conteúdo de A16	A7 Pare	A8
A9	A10	A11	A12

Terminada a cópia das instruções, o operador começa a realizar cada uma delas, na seqüência em que foram apresentadas. Como exemplo, supõe-se que existam, no escaninho, quatro fichas com os seguintes valores: 7, 1, 4 e 2. Veja o que acontece no quadro e nas áreas afetadas:

Volte para a	área A2
A15	A16
4	12

Se não	houver mais		
fichas, avan	ce para a		
área A6; caso contrário,			
avance para a área A5			
A15	A16		
2	14		

	Pegue uma fi seu valor na	
ĺ	A15	A16
	2	12

Datilografe o A16	conteúdo de	
A15	A16	
2	14	

Some o conteúdo de A15 com o de A16 e coloque o resultado em A16		
A15	A16	
2	14	

Pare		
A15	A16	
2	14	

A palavra computador vem da palavra latina "computare", que significa calcular. Pode até parecer estranho, mas essa idéia não está de toda errada, mesmo assim, é muito pouco para se ter uma idéia do que seja um computador, então, eis mais uma definição:

Computador é uma máquina que recebe e trabalha os dados de maneira a obter umresultado. Para realizar isso, ele é programável, ou seja, responde a um grupo de comandos específicos (instruções) de uma maneira bem definida e pode executar uma lista pré-gravada desses comandos. Essa lista é chamada de programa.

A partir dessa definição, podem ser retiradas algumas conclusões importantes:

O computador é uma máquina.

Realiza um trabalho com os dados para obter resultados.

O trabalho realizado pelo computador chama-se Processamento.

O computador é programável. Pode realizar somente tarefas bem definidas, e cada uma delas corresponde a uma única instrução, que sempre é realizada da mesma maneira. Além disso, ele pode responder a uma lista de instruções prégravadas, realizando uma instrução após a outra.

Essa lista de instruções pré-gravadas é chamada de **Programa**. Existem computadores que apresentam programas fixos e invariáveis – o computador realiza sempre as mesmas tarefas - que já acompanham o computador. Também existem computadores cujos programas instalados são diferentes, portanto realizam tarefas diferentes de acordo com os programas.

Outra definição para computador: "É um sistema integrado, composto de hardware e de software."

Concluindo:

O computador é um sistema formado por determinados componentes que, atuando em conjunto, permitem que ele realize as tarefas que foram determinadas. Esse sistema é composto, basicamente, de dois elementos, **Hardware** e **Software**.

Hardware é a parte física do computador, ou seja, o próprio computador e todos os dispositivos ligados a ele (periféricos). O hardware é composto por "dispositivos eletrônicos que fornecem capacidade de computação, dispositivos de interconectividade (por exemplo, switches de rede, dispositivos de telecomunicação) que permitem o fluxo dos dados e dispositivos eletromecânicos (por exemplo, sensores, motores, bombas) que fornecem funções do mundo exterior". Normalmente, o hardware de um sistema de computação apresenta a sequinte estrutura geral:

1.6.1 UNIDADE CENTRAL DE PROCESSAMENTO

A Unidade Central de Processamento UCP (CPU .Central Processing Unit), é o cérebro do computador, o componente de hardware que realmente executa as instruções apresentadas pelo programa. A Unidade Central de Processamento possui dois componentes principais:

- Unidade de Controle (UC): responsável pelo controle do fluxo dos dados entre aspartes do computador e por sua interpretação (se são dados ou instruções). Na simulação de computador, é o operador.
- Unidade Lógica e Aritmética (ULA): responsável pelos cálculos e pela manipulação dos dados. Na simulação de computador, é a calculadora.

1.6.2 MEMÓRIA

Possibilita ao computador armazenar dados e instruções durante o processamento. Podem existir dois tipos de memória em um computador:

- Memória de "Acesso Direto" ou Memória Principal, também conhecida por RAM (Memória de Acesso Randômico): o armazenamento dos dados e programas é temporário. Na simulação de computador, é o quadro-negro.
- Dispositivos de Armazenamento Secundários: dispositivos que permitem ao computador armazenar permanentemente grandes quantidades de dados ou programas. Na simulação de computador, é o arquivo de aço.

1.6.3 DISPOSITIVOS DE ENTRADA

Dispositivos através dos quais os dados e instruções entram no sistema de computação para o processamento. Traduz essas entradas para um código que a Unidade Central de Processamento entende. Na simulação de computador, é o escaninho com as fichas.

1.6.4 DISPOSITIVOS DE SAÍDA

Dispositivos que permitem a visualização dos resultados do processamento dos da-dos. Na simulação de computador, é a máquina de escrever.

-Software é o conjunto de instruções (programas de computador) que, quando executadas, produzem o desempenho desejado e dados que permitem que os programas manipulem adequadamente a informação. É a parte lógica do computador, aquela com a qual não existe contato físico. Na simulação de computador, são as instruções realizadas pelo operador e o conteúdo das fichas utilizadas por ele.

Observando a simulação de computador, apresentada anteriormente, percebe-se que as operações de um computador dependem da lógica das instruções que ele realiza. Essas instruções são criadas pelo homem e alimentadas no computador, que apenas as executa, de acordo com os seus componentes internos.

1.7 CICLO DE PROCESSAMENTO

O computador, de maneira simplificada, realiza uma determinada seqüência ("ciclo") para processar os dados. É chamado de Ciclo de Processamento, e é representado graficamente da seguinte maneira:

1.7.1 ENTRADA / SAÍDA DE DADOS

O computador lê os dados a serem processados (a partir de periféricos de entrada) e os coloca na memória principal. Após o processamento, o computador envia uma cópia dos resultados, a partir da memória principal, para os periféricos de saída. Essa saída pode ser composta por dados de entrada modificados ou por novos dados gerados pelo processamento.

1.7.2 PROGRAMA

Lista de instruções que o computador deve seguir, ou seja, é a seqüência das operações necessárias para que os dados sejam processados. Normalmente esse programa está gravado num dispositivo de armazenamento secundário e é copiado para a memória principal do computador durante o processamento.

1.7.3 PROCESSAMENTO

É o trabalho realizado pela CPU do computador. O que ela faz depende do programa, mas quem processa os dados é o hardware do computador. Para que o processamento aconteça, os dados devem estar na memória principal.

1.8 REPRESENTAÇÃO DA INFORMAÇÃO

A informação e os dados necessitam de meios para que sejam exibidos. Normalmente são utilizados modelos que imitam a realidade.

O sistema de computação funciona, basicamente, da mesma maneira, pois **imita** a informação real criando um modelo eletrônico para trabalhar. Esse modelo é numérico e aritmético. Alguns pontos em comum entre os equipamentos de computação e a matemática permitem essa imitação da realidade. Esses pontos em comum são a **Numeração** e a **Aritmética Binária**.

Os sistemas de computação trabalham com o sistema de numeração binário. Cada símbolo 0 ou 1 da numeração binária é chamado de dígito binário. Em inglês, **BinaryDigit**, que resulta: **Bi**nary digi**T** = BIT

Como esse bit é usado para modelar (representar a informação), pode-se definir que "Bit é a menor unidade da informação".

Os bits servem muito bem para a representação de números, mas o sistema de computação não trabalha apenas com informações numéricas, então, como representar le-tras e símbolos?

Para entender como o sistema faz isso, imagine a existência de duas lâmpadas e a necessidade de criar uma maneira (um modelo) para indicar o estado do movimento de um carro em determinado momento.

As lâmpadas apresentam dois "estados" possíveis: acesa ou apagada. Com isso foi criada uma tabela que associa os estados das lâmpadas aos estados do movimento do carro

Se em vez de lâmpadas houvesse bits – 0 (apagada) ou 1 (acesa), a tabela ficaria com os valores apresentados à direita.

0 0	Carro andando em frente
0 1	Carro virando à direita
10	Carro virando à esquerda
11	Carro parado

Com isso é possível criar tabelas de equivalência entre as combinações possíveis dos bits e as informações que devem ser representadas. Quando são usados dois bits, o número de combinações possíveis é quatro, pois na numeração binária existe a seguinte relação: Número de combinações = 2ⁿ sendo n = número de bits.

O sistema de computação utiliza uma tabela de equivalência entre combinações de bits e caracteres (números, letras e símbolos). É claro que, se o sistema utilizasse ape-

nas dois bits, só conseguiria representar quatro caracteres, o que não é o caso, pois ele pode utilizar qualquer quantidade de bits para representar os dados.

Normalmente, utilizam-se grupos de oito bits. Usando a fórmula anterior: número de combinações = 2⁸ = 256. Portanto, o sistema de computação utilizando oito bits conseque representar até 256 caracteres diferentes (256 combinações diferentes).

1.9 BYTES

Cada um desses grupos de oito bits é chamado de **byte**. Pode-se considerar cada byte representando um caractere, portanto o byte é utilizado para medir o tamanho dos trabalhos realizados no sistema de computação, principalmente se for levado em consideração que sistemas antigos utilizavam somente textos em seus trabalhos. Por exem-plo: um livro com 250 páginas tem, aproximadamente, 1.000.000 de caracteres (contan-do-se espaços, que também são caracteres). Caso fosse usado um computador para edi-tar esse mesmo texto, ele continuaria tendo o mesmo número de caracteres que o livro real, mas esses caracteres seriam modelados em bytes. Esse texto seria representado, então, por 1.000.000 de bytes, ou melhor, o tamanho desse texto para o computador seria de 1.000.000 de bytes.

Como em outras unidades de medida, no caso de bytes, são usados múltiplos para representar grandes quantidades (por exemplo, 1000 m = 1 km). Estes símbolos servi-rão para fazer um arredondamento de valores, o que facilitará a operação: 210

Quantidade de Bytes	Valor	Nome
210 = 1024 bytes	1024 bytes	1 Kb - Kilobyte
220 = 1.048.576 bytes	1024 Kb	1 Mb - Megabyte
230 = 1.073.741.824 bytes	1024 Mb	1 Gb - Gigabyte
240 = 1.099.511.627.776 bytes	1024 Gb	1 Tb - Terabyte

1.10 EXERCÍCIOS

- Verifique a configuração de algum computador que você tenha acesso. Verifique tipo do processador, capacidade de memória RAM, capacidade do HD e sistema operacional utilizado.
- Recorte dois anúncios de propagandas de lojas de computadores. Um para computadores de marca (Itautec, Dell, HP) e outro para computadores sem marca. Compare configurações e preços.
 - 3) Explique a diferença entre dados e informações.
- Baseado na resposta anterior, comente por que o computador processa dados e não informações.
- 5) Entre os componentes de um sistema de computação, qual é o responsável pelo processamento dos dados?
 - 6) Defina programa e a sua função em um sistema de computação.
- 7) Utilizando as suas palavras e os conceitos apresentados neste capítulo, defina computador.
 - 8) Quais são os principais componentes de um sistema de computação?
 - 9) Quando se afirma que um computador é programável, o que isso significa?
- 10) Utilize a simulação de computador apresentada para "processar" as instruções a seguir e apresente o resultado final dessa tarefa. No escaninho, existem quatro fichas com os seguintes valores: 5, 3, 2 e 2: