

Contents

NB SciLifeLab

- Workflow
- Mapping
- Aligners
- Alignment
- Visualisation
- Quantification
- Long reads
- Summary

Workflow

NBS SciLifeLab

Mapping

Mapping

- Aligning reads back to a reference sequence
- Mapping to genome vs transcriptome
- Splice-aware alignment (genome)

Aligners

Considerations

- Speed
- Accuracy
- Resources
- Settings
- Purpose (General/Specific)
- Support & Community

Features

- Reference index
- Read pair alignment
- Consider base quality scores
- Sophisticated indexing to decrease CPU and memory usage
- Resolving multi-mappers
 - Report first X alignments and flag read as multi-mapping
- Use known annotations (junctions)
- 2-pass approach

Aligners | Speed

Program	Time_Min	Memory_GB
HISATx1	22.7	4.3
HISATx2	47.7	4.3
HISAT	26.7	4.3
STAR	25	28
STARx2	50.5	28
GSNAP	291.9	20.2
TopHat2	1170	4.3

Aligners | Accuracy

Increasing Accuracy

- Novel variants / RNA editing
- Allele-specific expression
- Genome annotation
- Gene and transcript discovery
- Differential expression

STAR, HiSat2, GSNAP, Novoalign (Commercial)

Mapping

• Reads (FASTQ)

```
@ST-E00274:179:HHYMLALXX:8:1101:1641:1309 1:N:0:NGATGT
NCATCGTGGTATTTGCACATCTTTTCTTATCAAATAAAAAGTTTAACCTACTCAGTTATGCGCATACGTTTTTGATGG
+
#AAAFAFA<-AFFJJJAFA-FFJJJJFFFAJJJJ-<FFJJJ-A-F-7--FA7F7-----FFFJFA<FFFFJ<AJ--FF-
```

```
@instrument:runid:flowcellid:lane:tile:xpos:ypos
read:isfiltered:controlnumber:sampleid
```

• Reference Genome/Transcriptome (FASTA)

Annotation (GTF/GFF)

```
#!genome-build GRCz10
#!genebuild-last-updated 2016-11
4 ensembl_havana gene 6732 52059 . - . gene_id "ENS
```

chr source feature start end score strand frame attribute

Alignment

• SAM/BAM (Sequence Alignment Map format)

```
ST-E00274:188:H3JWNCCXY:4:1102:32431:49900 163 1 1 60 8S13
```

query flag ref pos mapq cigar mrnm mpos tlen seq qual opt

Alignment formats

Format	Size_GB
SAM	7.4
BAM	1.9
CRAM lossless Q	1.4
CRAM 8 bins Q	0.8
CRAM no Q	0.26

Visualisation | tview

samtools tview alignment.bam genome.fasta

ATTTCATCTTCTAATTTAGAATCTT atttcatcttctaatttagaatctt	GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC gccaatcaagccctctcgaagttggcaatatctataac	TCAAC tgcttctgagattctaagtaccttagat tcaac GCTTCTGAGATTCTAAGTACCTTAGAT	GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAA	ctccattcaagacttaattgact ctccattcaagacttaattgact
	gccaatcaagccctctcgaagttggcaatatctataac			ctccattcaagacttaattgact
AGGTTTAAT aatctt	gccaatcaagccctctcgaagttggcaatatctataac	tcaacctctgcttctgagattcta CTTAGAT	GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	CTCCATTCAAGACTTAA
	gccaatcaagccctctcgaagttggcaatatctataac		GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	
	gccaatcaagccctctcgaagttggcaatatctataac		GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	
	GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC		GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	
AGGTTTAATTTCATCTTCTAAT T	GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTAC	GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	CTCCATTCAAGACTTAATTGACT
ggtttaatttcatcttctaatttag T	GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTAC	CATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	CTCCATTCAAGACTTAATTGACT
GGTTTAATTTCATCTTCTAATTTAG	GCCAATCAAGCCTTCTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACC	cattactataattggtgttatcgggtcttccaactc	ctccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAG	CAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACC	tgttatcgggtcttccaacto	ctccattcaagacttaattgact
AGGTTTAATTTCATCTTCTAATTTAG	CAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTT	gggtcttccaacto	ctccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAG	gccctctcgaagttggcaatatctataac	tcaacctctgcttctgagattctaagtaccttagat	gcc GGTCTTCCAACTC	CTCCATTCAAGACTTAATTGACT
GGTTTAATTTCATCTTCTAATTTAGAAT	CCCTCTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTTAGAT	GCCA ggtcttccaacto	ctccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAGAATCT	ctctcgaagttggcaatatctataac	tcaacctctgcttctgagattctaagtaccttagat	gccaag ggtcttccaacto	ctccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAGAATCT	CTCGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTTAGAT	GCCAAGTA GTCTTCCAACTC	CTCCATTCAAGACTTAATTGACT
GGTTTAATTTCATCTTCTAATTTAGAATCT	CGAAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTTAGAT	GCCAAGTACA gtcttccaacto	ctccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAGAATCT	AAGTTGGCAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTTAGAT	GCCAAGTACATT cttccaacto	ctccattcaagacttaattgact
ggtttaatttcatcttctaatttagaatctt	gcc CAATATCTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTTAGAT	GCCAAGTACATTACTATAA cttccaacto	ctccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAGAATCTT	GCCA CTATAAC	TCAACCTCTGCTTCTGAGATTCTAAGTACCTTAGAT	GCCAAGTACATTACTATAATTGGTG CTTCCAACTC	CTCCATTCAAGACTTAATTGAC
GGTTTAATTTCATCTTCTAATTTAGAATCTT	GCCAA	cttctgagattctaagtaccttagat	gccaagtacattactataattggtgttatcgggtcttccaac	CTCCATTCAAGACTTAATTGACT
ggtttaatttcatcttctaatttagaatctt	gccaatcaagcc		gccaagtacattactataattggtgttatcgggtcttccaac	tccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAGAATCTT			gccaagtacattactataattggtgttatcgggtcttccaac	tccattcaagacttaattgact
ggtttaatttcatcttctaatttagaatctt	gccaatcaagccc		gccaagtacattactataattggtgttatcgggtcttccaact	tccattcaagacttaattgact
GGTTTAATTTCATCTTCTAATTTAGAATCTT			gccaagtacattactataattggtgttatcgggtcttccaacto	
GGTTTAATTTCATCTTCTAATTTAGAATCTT	GCCAATCAAGCCCTC		gccaagtacattactataattggtgttatcgggtcttccaacto	
GGTTTAATTTCATCTTCTAATTTAGAATCTT	GCCAATCAAGCCCTCTCGAAG		gccaagtacattactataattggtgttatcgggtcttccaacto	
GGTTTAATTTCATCTTCTAATTTAGAATCTT			gccaagtacattactataattggtgttatcgggtcttccaactc	
	GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC		gccaagtacattactataattggtgttatcgggtcttccaactc	
TTCATCTTCTAATTTAGAATCTT	GCCAATCAAGCCCTCTCGAAGTTGGCAATATCTATAAC		GCCAAGTACATTACTATAATTGGTGTTATCGGGTCTTCCAACTC	
			gccaagtacattactataattggtgttatcgggtcttccaactc	
			gccaagtacattactataattggtgttatcgggtcttccaacto	
			gccaagtacattactataattggtgttatcgggtcttccaactc	
			gccaagtacattactataattggtgttatcgggtcttccaactc	
				ctccattcaagacttaattgac
				CTCCATTCAAGACTTAATTGACT
			TCCAACTO	CTCCATTCAAGACTTAATTGAC
				ctccattcaagacttaattgac
				ctccattcaagacttaattgact
				ctccattcaagacttaattgact
				ctccattcaagacttaattgac
				tccattcaagacttaattgac
				ccattcaagacttaattgac

Visualisation | IGV

♣ IGV, UCSC Genome Browser

Visualisation | SeqMonk

Quantification | Counts

- Read counts = gene expression
- Reads can be quantified on any feature (gene, transcript, exon etc)
- Intersection on gene models
- Gene/Transcript level

Quantification | Counts

- Read counts = gene expression
- Reads can be quantified on any feature (gene, transcript, exon etc)
- Intersection on gene models
- Gene/Transcript level

♣ featureCounts, HTSeq

Quantification | Multi-mapping

- Added (BEDTools multicov)
- Discard (featureCounts, HTSeq)
- Distribute counts (Cufflinks)
- Rescue
 - Probabilistic assignment (Rcount, Cufflinks)
 - Prioritise features (Rcount)
 - Probabilistic assignment with EM (RSEM)

[&]amp; Fu, Yu, et al. "Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers." BMC genomics 19.1 (2018): 531

⁹ Parekh, Swati, et al. "The impact of amplification on differential expression analyses by RNA-seq." Scientific reports 6 (2016): 25533

Quantification | Abundance

- Count methods
 - Provide no inference on isoforms
 - Cannot accurately measure fold change
- Probabilistic assignment
 - Deconvolute ambiguous mappings
 - Transcript-level
 - o cDNA reference

Kallisto, Salmon

- Direct from FastQ to counts
- Ultra-fast & alignment-free
- Uses transcriptome reference
- Subsampling & quantification confidence
- Transcript-level estimates improves gene-level estimates
- Kallisto/Salmon > transcript-counts > tximport() > gene-counts

RSEM, Kallisto, Salmon, Cufflinks2

Long-Read RNA-Seq

- PacBio, Nanopore etc
- Long reads, full transcripts
- High error rate
- Expensive

• Results are comparable with MinION data.

♣ GMAP, BBMap, STAR

Summary

- STAR, HISAT2 and GSNAP are good general purpose aligners
- Use HISAT2 if RAM is limited
- Consider using 2-pass mapping
- Be stringent with junction discovery criteria
- Map to genome for annotation/discovery
- For well known transcriptomes, Kallisto/Salmon offers ultra-fast quantification
- For long reads, GMAP and BBMap are good choice of aligners

