Asymmetric Ciphers: Discrete Logarithmic algorithms

2019. 3. 25

Contents

- Introduction to crypto
- Symmetric-key cryptography
 - Stream ciphers
 - Block ciphers
 - Block cypher operation modes
- Asymmetric-key cryptography
 - RSA
 - Diffie Hellman and Elgamal
 - ECC
 - Digital signature
 - Public key Infrastructure

- Cryptographic hash function
 - Attack complexity
 - Hash Function algorithm
- Integrity and Authentication
 - Message authentication code
 - GCM
 - Digital signature
- Key establishment
 - server-based
 - Public-key based
 - Key agreement (Diffie-Hellman)

3 kinds of public key crypto

- There are 3 kinds of mathematically hard one-way functions on which the public key crypto are based.
 - Factoring integers
 - RSA
 - Discrete Logarithm
 - Diffie-Hellman, Elgamal, DSA
 - Elliptic curve: generalized discrete log
 - ECDH, ECDSA

Group

Def:

A set G and an binary operation \odot on elements of G have the following properties:

- 1. The operation is closed.
- 2. The operation is associative.
- 3. There is an element $1 \in G$ called identity, such that $a \odot 1 = 1 \odot a = a$ for all $a \in G$.
- 4. There is an element a^{-1} called inverse, such than $a \odot a^{-1} = a^{-1} \odot a = 1$ for all $a \in G$.
- 5. A set G is called abelian Group if the operation is commutative.

Examples of Group

```
(1)(Z, +);

(2)(C, \cdot)

(3)(Z*_{11}, multiplicative modulo p)
```

Order of an element

Def:

An order, ord(a), of an element a of a group (G, \odot) is the smallest positive integer k such that

$$a^{k} = \underbrace{a \odot a \odot a \odot a \odot ... \odot a}_{\text{k times}} = 1$$

where 1 is the identity of G.

Cyclic Group

Def:

A group G which contains an element a with maximum order ord(a) = |G| is said to be cyclic.

(|G| is a finite number of elements, called cardinality or order of group G)

Elements with maximum order are called primitive elements or generators.

Example of Cyclic Group

Suppose a group $Z^*_{11} = \{1, 2, 3, ..., 10\}$.

What happens if we compute 2^x mod 11.

Observation:

"2" generates all members of Z^*_{11} at every 11^{th} computation.

So, Z^*_{11} is a cyclic group, and 2 is called a generator of Z^*_{11} . (ord(2) = $|Z^*_{11}|$)

```
2<sup>1</sup> mod 11=2

2<sup>2</sup>mod 11=4

2<sup>3</sup>mod 11=8

2<sup>4</sup>mod 11=5

2<sup>5</sup>mod 11=10

2<sup>6</sup>mod 11=9

2<sup>7</sup>mod 11=7

2<sup>8</sup>mod 11=3

2<sup>9</sup>mod 11=6

2<sup>10</sup>mod 11=1

2<sup>11</sup>mod 11=2

2<sup>12</sup>mod 11=4
```

```
a cyclic group Z^*_{11} = \{1, 2, 3, ..., 10\}.
ord(5) = ?
```

For a group $Z^*_{11} = \{1, 2, 3, ..., 10\}$,

ord(1) = 1, ord(2) = 10, ord(3) = 5, ord(4) = 5, ord(5) = 5, ord(6) = 10, ord(7) = 10, ord(8) = 10, ord(9) = 5, ord(10) = 2

How can we constitute a cyclic group Z^*_p ?

Theorem:

For every prime p, (Z^*_p, \cdot) is a finite cyclic group.

Discrete Logarithm Problem(DLP)

Given a finite cyclic group Z_p^* of order p-1 and a primitive element $g \in Z_p^*$ and another element $y \in Z_p^*$.

The DLP is the problem of determining the integer x such that

$$1 \le x \le p-1$$

 $g^x = y \mod p$, i.e., $x = \log_g y \mod p$

In the previous example,

 $2^x = 3 \mod 11$, then what is x?

 $5^x = 41 \mod 47$, then what is x?

Diffie-Hellman key exchange

p, g: public

Select $a \in \{2,3,...,p-2\}$ (private to Alice) Compute $A=g^a \mod p$ Select $b \in \{2,3,...,p-2\}$ (private to Bob) Compute $B = g^b \mod p$

$$K_{AB}=B^a \mod p = g^{ab} \mod p$$

$$K_{AB} = A^b \mod p = g^{ab} \mod p$$

Message m
Encrypt:
$$x=E_{KAB}(m)$$

Decrypt: $m=D_{KAB}(x)$

Security of D-H

- Suppose an attacker can only listen the channel(passive attack).
 - What can he know? g, p, A, B
 - What does he want to know? K_{AB}=g^{ab} mod p
- One way of solving the problem is:
 - Compute $a = log_g A \mod p$ or $b = log_g B \mod p$
- This computation is a very hard problem if p is large enough.

Brute Force Attack

- Attacks against the DLP
 - Goal: solve $g^x = y \mod p$ or $x = \log_g y \mod p$
 - g, $y \in Z_p^*$,
 - n=the number of elements of Z_p^* (cardinality of $Z_p^*=p-1$)
 - Brute force attack requires O(n) steps.
 - If this is the only possible attack, $n \ge 2^{80}$. (more than 80 bits)

Square-Root Attacks

- This attack is possible for any group.
- the Square-Root method can compute \times in \sqrt{n} steps.
- •So, choose n=2¹⁶⁰.

(ref: Handbook of Applied Cryptography, Alg 3.56, 3.60)

Attack: Index-Calculus Methods

- This attack works for a certain group, especially Z_p* and GF(2^m)*.
- For this reason, in practice $p=2^m \ge 2^{1024}$
- (ref: Handbook of Applied Cryptography, Alg 3.68)

Encryption with D-H

p, g: public

Select a $\in \{2,3,...,p-2\}$ (private to Alice) Compute A= q^a mod p

Select b $\in \{2,3,...,p-2\}$ (private to Bob) Compute B= gb mod p

$$K_{AB} = B^a \mod p = g^{ab} \mod p$$

$$K_{AB} = A^b \mod p = g^{ab} \mod p$$

Message m

Encrypt: x=m·K_{AB} mod p

Decrypt: $m = x \cdot K_{AB}^{-1} \mod p$

Elgamal Encryption algorithm

- Was published around 1985
- Very similar to D-H, but the steps are reordered.
- Is a probabilistic encryption.

Select p,
$$g \in \{2,3,...,p-2\}$$

 $K^- = d \in \{2,3,...,p-2\}$
 $K^+ = \beta = g^d \mod p$

$$(K^+=\beta, g, p)$$

Select i ∈ $\{2,3,...,p-2\}$

 $K_E = g^i \mod p$ (ephemeral key)

 $K_M = \beta^i \mod p$ (session key)

Message m

Encrypt: $x=m\cdot K_M \mod p$

 (x, K_E)

 $K_M = K_E^d \mod p$ Decrypt: $m = x \cdot K_M^{-1} \mod p$

Proof

Bob computes:

$$x \cdot K_{M}^{-1} = x(K_{E}^{d})^{-1}$$

= $m K_{M} K_{E}^{-d}$
= $m \beta^{i} (g^{i})^{-d}$
= $m (g^{d})^{i} (g^{i})^{-d}$
= m

In Elgamal encryption, the public key($K^+=\beta$) is fixed, but i is chosen for each message. So, K_E must be different for every plaintext. And the procedures are reduced to two steps.