

dr Anna Beata Kwiatkowska, UMK Toruń

Sieć warstwowa

Definicja 10.1

Siecią warstwową $G_L=(V_L,E_L,c)$ nazywamy sieć ważoną acykliczną, w której wszystkie wierzchołki V_L są podzielone na warstwy $V_1,V_2,...,V_l$.

- Pierwsza warstwa składa się ze źródła s.
- Druga składa się z wszystkich tych wierzchołków, które są bezpośrednimi następnikami s.
- Do V_3 należą wszystkie wierzchołki będące bezpośrednimi następnikami z warstwy V_2 , i tak dalej.
- Warstwa i-ta składa się z wszystkich wierzchołków leżących w odległości i-1 od s.
- Ostatecznie $V_1 = \{t\}$.

Każdy wierzchołek sieci warstwowej należy do jakiejś drogi z s do t, wszystkie drogi z s do t są tej samej długości l-1, czyli mają taką samą liczbę łuków. Każdy łuk prowadzi z wierzchołka w warstwie i do wierzchołka w warstwie i+1.

Sieć warstwowa

Przykład: Rozważmy sieć G=(V, E, c) z przepustowościami łuków i początkowym przepływem różnym od zera.

Sieć warstwowa

Przykład: Poniżej przedstawiona jest sieć G=(V, E, c) z przepustowościami łuków i początkowym przepływem równym zeru oraz jej sieć warstwowa $G_L=(V_L,E_L,c)$ (niebieskie łuki) z warstwami V_1, V_2, V_3, V_4 .

Użyteczne połączenia

Definicja 10.2

Rozważmy sieć G=(V, E, c) z przepustowościami łuków f. Połączenie między wierzchołkami $v \in V$ i $u \in V$ nazywamy połączeniem użytecznym z v do u, jeśli:

- 1. sieć zawiera łuk (v, u), taki że c(v,u) > f(v,u) lub
- 2. sieć zawiera łuk (v, u), taki, że $f(v,u) \neq 0$

W obydwu przypadkach określonych w definicji przepływ może być zwiększony:

- 1. poprzez zwiększenie przepływu wzdłuż (v,u),
- 2. poprzez zmniejszenie przepływu wzdłuż (u,v).

Algorytm wydzielania sieci warstwowej polega na cechowaniu wierzchołków.

1. Najpierw wierzchołek s otrzymuje cechę 1, czyli s jest przydzielany do pierwszej warstwy.

Algorytm wydzielania sieci warstwowej polega na cechowaniu wierzchołków.

 Następnie każdy wierzchołek połączony z s za pomocą użytecznego łuku cechowany jest liczbą 2, czyli przydzielany do warstwy V₂.

Algorytm wydzielania sieci warstwowej polega na cechowaniu wierzchołków.

Wierzchołek będący bezpośrednim następnikiem wierzchołka z warstwy poprzedniej połączony użytecznym łukiem warstwy otrzymuje cechę o jeden

Algorytm wydzielania sieci warstwowej polega na cechowaniu wierzchołków.

Postępujemy tak, aż zostanie ocechowany wierzchołek t.

Wszystkie wierzchołki nieocechowane wraz z incydentnymi łukami, wszystkie, które otrzymały cechę l taką jak t oraz łuki w obrębie warstwy – nie są rozpatrywane.

Wydzielanie sieci warstwowej a algorytm Dijkstry

Opisany algorytm przypomina algorytm Dijkstry, wyznaczania najkrótszych dróg z ustalonego wierzchołka w sieci.

W sieci pozostają tylko łuki użyteczne z wagą 1. W trakcie cechowania każdy wierzchołek otrzymuje cechę równą liczbie łuków na najkrótszej drodze z s powiększoną o 1.

Przepływ nasycony

Definicja 10.2

W sieci G=(V, E, c) z przepływem f:

- Łuk (v,u) nazywamy łukiem nasyconym, gdy f(x,y) = c(x,y).
- Drogę p z s do t nazywamy drogą nasyconą, jeśli przynajmniej jeden z jej łuków jest nasycony.
- Przepływ w sieci jest przepływem nasyconym, gdy każda droga z s do t jest nasycona.

Wniosek 10.1

Każdy maksymalny przepływ jest nasycony.

Dowód

Gdyby maksymalny przepływ nie był nasycony, to moglibyśmy go powiększyć, wykorzystując jedną z nienasyconych dróg. □

Oczywiście nie każdy przepływ nasycony jest maksymalny.

Potencjał sieci

Definicja 10.3

Rozważamy sieć warstwową $G_L=(V_L,E_L,\,c)$ ze źródłem s i ujściem t.

Dla każdego wierzchołka v∈V_L określamy potencjał *poten(v)* równy maksymalnej wartości przepływu, który można dodatkowo przesłać przez v. Potencjał wierzchołka v jest zatem równy wartości minimalnej:

 $poten(v) = min\{inpot(v), outpot(v)\},\$

gdzie: inpot(v) to wielkość przepływu, jaki może dodatkowo dopłynąć do v, outpot(v) to wielkość przepływu, jaki może dodatkowo wypłynąć z v, oraz poten(s) = outpot(s), poten(t) = inpot(t).

Potencjał sieci

Przykład:

poten(s)=70, poten(x)=20, poten(y)=30, poten(w)=20, poten(u)=40, poten(t)=60.

Otrzymywanie przepływu nasyconego

Efektywny algorytm otrzymywania przepływu nasyconego w sieci warstwowej G_L:

- 1. Wśród wierzchołków sieci, znajdujemy wierzchołek r, dla którego potencjał poten(r) jest najmniejszy. Przyjmujemy go za wierzchołek odniesienia.
- 2. Rozdzielamy *poten*(*r*) między łuki wychodzące z r, nasycając kolejne z nich, jest to przesłanie do następnej warstwy. Następie przesyłamy dalej między kolejnymi warstwami, aż osiągniemy t.
- 3. Rozdzielamy poten(r) między łuki wchodzące, nasycając kolejne z nich, jest to przesyłanie z poprzedniej warstwy. Następnie przesyłamy z poprzednich do następnych, aż cofniemy się do s.
- 4. Redukujemy G_L . Usuwamy z sieci G_L wszystkie łuki nasycone oraz wierzchołki w których wszystkie łuki wychodzące lub wszystkie łuki wchodzące zostały nasycone, wraz z tymi łukami. Aktualizujemy potencjały w pozostałych wierzchołkach.
- 5. Powtarzamy punkty 1-4 dla zredukowanej sieci warstwowej z poprawionymi potencjałami wierzchołków.

Przepływ nasycający sieć warstwową

Sieć warstwowa z przepływem nasycającym f(s,x) = f(x,w) = f(w,t) = 20 z zaznaczonymi (niebieski strzałki) łukami użytecznymi.

Algorytm szukania maksymalnego przepływu

Rozważamy algorytm Malhotry, Kumara i Maheshwariego (MKM) z 1978 roku – bazuje na algorytmie Dinica i jest najprostszym i najbardziej efektywnym w sieciach gęstych.

Rozważamy problem fazami:

- 1. Wydzielamy sieć warstwową G_L z sieci G i wyznaczamy dla niej przepływ nasycający f_L
- 2. Następnie rozpatrujemy sieć G z przepływem f_L i wydzielamy z niej kolejną sieć warstwową G'_L , którą nasycamy przepływem f'_L . Po tych dwóch fazach skumulowanym przepływem w sieci G jest $f_L + f'_L$.
- 3. Postępowanie kontynuujemy, aż do momentu, gdy nie można już wydzielić sieci warstwowej z G.
- 4. Suma kolejno otrzymanych przepływów jest maksymalnym przepływem w sieci G.

Pierwsza sieć warstwowa (łuki niebieskie).

Przepływ nasycający pierwszej sieci warstwowej f(s,x) = f(x,w) = f(w,t) = 20.

Druga sieć warstwowa (niebieskie łuki).

Druga sieć warstwowa (niebieskie łuki) z przepływem nasycającym (czerwone łuki) f(s,y) = f(u,t) = 20, f(y,x) = f(x,u) = 20, f(y,w) = f(w,u) = 10 Przepływ nasycający tę sieć warstwową ma wartość 20.

Trzecia sieć warstwowa (niebieskie łuki)

Trzecia sieć warstwowa (niebieskie łuki) z przepływem nasycającym (czerwone łuki) f(s,y)=f(y,w)=f(w,x)=f(x,u)=f(u,t)=20

Nie można już wydzielić sieci warstwowej. Maksymalny przepływ W(f)=60.

Złożoność algorytmu MKM

W sieci przepływowej o n wierzchołkach i m łukach:

- Wykonujemy co najwyżej n-iteracji rozsyłania
- W i-tej iteracji czas potrzebny do rozesłania przepływu, poprawienia wartości
 potencjałów i znalezienia wierzchołka odniesienia jest proporcjonalny do
 liczby wierzchołków n i liczby łuków m_i usuniętych w tej iteracji w rozważanej
 sieci, czyli O(n+m_i).
- Całkowita złożoność dla wszystkich iteracji wynosi prowadzących do nasycenia sieci wartwowej wynosi:

$$O(\sum_{i} (n + m_i)) = O(n^2 + m) = O(n^2)$$

- Cały algorytm składa się z n-1 faz, gdyż liczba warstw w kolejnej sieci warstwowej jest o co najmniej jeden większa od liczby warstw w poprzedniej sieci warstwowej (wysycamy co najmniej jeden łuk – długość drogi z s do t jest ograniczona przez n-1.
- Cały algorytm jest wykonywany zatem w czasie O(n³).

Problem najtańszego przepływu

Rozważmy sieć G=(V, E, c) z przepustowościami łuków f oraz źródłem s i ujściem t.

Problem najtańszego przepływu polega na szukaniu wartości najtańszego przepływu θ (zwanego docelowym przepływem) z s do t w sieci, w której oprócz przepustowości c z każdym łukiem (v,u) jest związany nieujemny koszt d przesłania jednostki przepływu po tym łuku.

Problem najtańszego przepływu:

Zminimalizować sumę $\sum_{(v,u)} d(v,u) f(v,u)$ przy następujących ograniczeniach:

- 1. $0 \le f(v, u) \le c(v, u)$ dla każdego $(u, v) \in E$,
- 2. $\sum_{i \in V} f(s, i) \sum_{j \in V} f(j, s) = \theta$ dla źródła s
- 3. $\sum_{i \in V} f(t, i) \sum_{j \in V} f(j, t) = -\theta$ dla ujścia t
- 4. $\sum_{i \in V} f(v, i) \sum_{i \in V} f(i, v) = 0$ dla każdego $v \in V \setminus \{s, t\}$.

Problem rozwiązuje algorytm Busackera i Gowena (patrz prace na ćwiczeniach)

Dziękuję z uwagę

dr Anna Beata Kwiatkowska

aba@mat.umk.pl

tel. 602 184 813