IC252: Lab Assignment - 8

- **1)** Given the "cases.csv" dataset, plot the time graph of the Infected Fraction of population (Infected Fraction vs Time in Months). Do this for Delhi, Mumbai and Kolkata.
 - a) Compare these graphs. What do you infer from these graphs?
 - **b)** Calculate the variance of the *Infected Fraction*.

Hint:-

$$Infected \ Fraction = \frac{|Confirmed - Recovered - Deceased|}{Population}$$

$$Susceptible = \frac{|Population - Confirmed|}{Population}$$

$$Removed = \frac{|Recovered + Deceased|}{Population}$$

Extra work:- Plot the time graph of Susceptible and Removed population and compare with the Infected Fraction of the population. Plot all these in a single plane (graph). Do this for Delhi and Mumbai.

- 2) Given the "2021_IN_Region_Mobility_Report.csv" dataset for 2021, plot the following
 - **a)** *Retail mobility* of Delhi and Mumbai. Compare them in the same plane.
 - **b)** *Transit mobility* of Delhi and Mumbai. Compare them in the same plane.
 - **c)** What do you infer from these graphs?
 - **d)** Calculate the IQR in each case (Interquartile range).
 - e) What is the expected value of *Retail* and *Transit mobility* in Delhi and Mumbai?

Hint:-

In given dataset, "retail_and_recreation_percent_change_from_baseline" column represents *Retail mobility* and "transit_stations_percent_change_from_baseline" column represents *Transit mobility*.

Note:-

In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion. It is the spread of the data or observations. The IQR may also be called the midspread, middle 50%, or Hspread. It is defined as the spread difference between the 75^{th} and 25^{th} percentiles of the data. The lower quartile corresponds with the 25^{th} percentile and the upper quartile corresponds with the 75th percentile. So, IQR = Q3 - Q1. First, take the median of the data. Then Q3 (median of the lower half of the data) – Q1 (median of the upper half of the data)

- **3)** Given the "Cowin_Vaccine_Data_Districtwise.csv" dataset, do the following.
 - **a)** Plot the vaccination coverage of Delhi and Mumbai. (Basically, for each city you have to plot % of people vaccinated with first dose and % of people vaccinated with second dose in the same plane)
 - **b)** Calculate the correlation of first dose coverage with the following:

i.
$$\frac{Sites}{Area of city}$$

ii.
$$\frac{Sessions}{Area of city}$$

What can you infer from these correlations?

c) Find the state/ UT with the highest vaccination coverage (first dose).

Note:-

• Use the following values of population and area of the cities.

(Population of Delhi: 20,591,874, Population of Mumbai: 20,667,656, Population of Kolkata: 14,850,000, Area of Delhi: 1400 sq. km, Area of Mumbai: 670 sq.km, Area of Kolkata: 206 sq.km)

Empty (None) value should be ignored for any dataset.