Seminar 06: Inferenzstatistik

MSc Albert Anoschin & Prof. Matthias Guggenmos Health and Medical University Potsdam

Häufigkeits- und Wahrscheinlichkeitsverteilungen

Empirische Häufigkeitsverteilung

Screentime (h/Tag)	Absolute Häufigkeit	50						46								
0	6	45														
1	17	_ 40														
2	21	<u>je</u> 35														
3	12	kei					31		29							
4	31	Häufigkeiten 35 25									2.4					
5	46	편 25			21					23	24					
6	29			17												
7	23	njo		1/									15			
8	24	Absolute 15				12										
9	7	10	6									7				
10	15	5												3		
12	3	_													1	1
13	1	0	-			_		-	_	_	_		_			
14	1		0	1	2	3	4	5	6	7	8	9	10	12	13	14
Gesamt	236						Scre	entir	ne in	Stun	den					

Ein Zufallsexperiment

Screentime (h/Tag)	Absolute Häufigkeit
0	6
1	17
2	21
3	12
4	31
5	46
6	29
7	23
8	24
9	7
10	15
12	3
13	1
14	1
Gesamt	236

Sie ziehen zufällig eine Person aus der Stichprobe

1. Wie wahrscheinlich ist es, dass die gezogene Person täglich 10 Stunden am Bildschirm verbringt?

Berechnung der relativen Häufigkeit: $rac{15}{236}=0.064$

Umrechnung in Prozent: $0.064 \cdot 100$

Zufallsexperiment

Screentime	Absolute	Relative			
(h/Tag)	Häufigkeit	Häufigkeit			
0	6	0.025			
1	17	0.072			
2	21	0.089			
3	12	0.051			
4	31	0.131			
5	46	0.195			
6	29	0.123			
7	23	0.097			
8	24	0.102			
9	7	0.030			
10	15	0.064			
12	3	0.013			
13	1	0.004			
14	1	0.004			
Gesamt	236	1			

Zufallsexperiment

Screentime	Absolute	Relative
(h/Tag)	Häufigkeit	Häufigkeit
0	6	0.025
1	17	0.072
2	21	0.089
3	12	0.051
4	31	0.131
5	46	0.195
6	29	0.123
7	23	0.097
8	24	0.102
9	7	0.030
10	15	0.064
12	3	0.013
13	1	0.004
14	1	0.004
Gesamt	236	1

Sie ziehen zufällig eine Person aus der Stichprobe.

- 1. Wie wahrscheinlich ist es, dass die gezogene Person täglich 10 Stunden am Bildschirm verbringt?
- 2. Wie wahrscheinlich ist es, dass die gezogene Person täglich 10 Stunden oder weniger am Bildschirm verbringt?

Berechnung der kumulativen Häufigkeiten:

- 1. Addieren der relativen Häufigkeiten
- 2. Umrechnen in Prozent: 98%

"Eine Person, die eine Screentime von 10h/Tag aufweist, liegt im 98. Perzentil."

Psychologische Messungen sind "Zufallsexperimente"

- Wenn die Wahrscheinlichkeitsverteilung eines Merkmals bekannt ist, lässt sich die Wahrscheinlichkeit für ein bestimmtes Ergebnis (Outcome) des Zufallsexperiments berechnen.
- **Problem:** Wir können praktisch nie die gesamte Population messen und müssen daher die Populationsparameter (μ und σ) aus der **Stichprobe schätzen** ($\hat{\mu}$ und $\hat{\sigma}$).
- Uns kommt dabei zugute, dass viele Merkmale in der Population normalverteilt sind, d.h. ihre Ausprägung lässt sich mit einer theoretischen Wahrscheinlichkeitsfunktion beschreiben
 → Normalverteilung.
- Theoretische Wahrscheinlichkeitsverteilungen sind mathematisch definiert (z.B. durch Mittelwert und Standardabweichung).

Unterschiedliche Wahrscheinlichkeitsverteilungen

0.30 Wahrscheinlichkeit P(x) 0.25 0.20 0.15 0.10 0.05 0.00 6 5 4 Augenzahl x

Körpergröße

Stichprobe von 100 Frauen aus der Population

