

Use Prim's Minimum Spanning Tree algorithm and Kruskal's Minimum Spanning Tree algorithm to find the shortest path of a maze.

Step 1: Similar to the previous question of finding the shortest path of the a maze. But instead of using Dijkstra's Algorithm, you will use Minimum Spanning Tree Algorithm.

Step 2: Comparing the performance of these two algorithm in solving this question by Big-O comparison

Ans:

Step 1:

Step 2:

Step 3:

Step4:

Step 5:

Prim's Minimum Spanning Tree algorithm:

The shortest path from S to E is 18

Kruskal's Minimum Spanning Tree algorithm; There are 14 vertices and 13 edges(number of vertoices - 1) After sorting:

Weight	Src	Dest
1	S	Α
1	D	F
1	K	М
2	В	С
2	В	D
2	D	G
3	S	В
3	D	Н
3	G	K
5	F	L
5	F	1
5	G	J
8	К	E

Now pick all edges one by one from sorted list of edges:

So the shorstet path from S to E is 18

Comparing the performance of Prim's Minimum Spanning Tree algorithm and Kruskal's Minimum Spanning Tree algorithm in solving this question:

The time complexity of Prim's Minimum Spanning Tree algorithm is: O((v + E)logV) The time complexity of Kruskal's Minimum Spanning Tree algorithm is: O(E * logV) Thus, Kruskal's Minimum Spanning Tree algorithm is faster.