Отчёт

по лабораторной работе 8

Кочетов Андрей Владимирович

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	9

List of Figures

3.1	рис.1. 1-й алгоритм																7
3.2	рис.2. 2-й алгоритм																7
3.3	рис.3. 3-й алгоритм																8
3.4	рис.4. 4-й алгоритм																8

List of Tables

1 Цель работы

Реализовать алгоритм.

2 Задание

Лабораторная работа подразумевает написание программы на языке python, которая реализует целочисленную арифметику многократной точности.

3 Выполнение лабораторной работы

1. Реализовал 1-й алгоритм

```
import math

#1

u = "25534"
v = "34789"
b = 10
n = 5
j=n
k=0
w=list()

for i in range(l,n+1):
    w.append((int(u[n-i]) + int(v[n-i])+k)%b)
    k = (int(u[n-i])+int(v[n-i]) + k) //b
    j = j-1
u.reverse()
```

Figure 3.1: рис.1. 1-й алгоритм

2. Реализовал 2-й алгоритм.

```
#2
u = "45678"
v = "23456"

j=n
k=0
w=list()
for i in range(1,n+1):
    w.append((int(u[n-i]) + int(v[n-i])+k)%b)
    k = (int(u[n-i]) + int(v[n-i]) + k) //b
    j = j -1
w.reverse()
print(w)
```

Figure 3.2: рис.2. 2-й алгоритм

3. Реализовал 3-й алгоритм

Figure 3.3: рис.3. 3-й алгоритм

4. Реализовал 4-й алгоритм и запустил код.

```
| Simple | S
```

Figure 3.4: рис.4. 4-й алгоритм

4 Выводы

Я написал программный код, который реализует целочисленную арифметику многократной точности.