

Réduire la traînée pour améliorer le vol

thème 2018/2019 : transport

Numéro d'inscription: 39425

Qu'est-ce qui a provoqué le crash du 737 Max ?

Amélioration de la traînée totale en minimisant:

1 - la traînée induite

2- la traînée de frottement

Plan:

- 1. Introduction
- 2. Méthodologie adoptée
- 3. Recherche de la forme optimale
- 4. Analyses et interprétations des
- résultats
- 5. Conclusion
- 6- Simulation numérique

Les forces s'exerçant sur une aile d'avion: aile d'un avion **Poids** La résultante aérodynamique poussée (R) Traînée **Portance** (Rx)(Rz) Traînée Traînée de Traînée de induite frottement forme

- Cx: coefficient de la traînée
- ©z: coefficient de la portance
- : masse volumique du fluide
- V: vitesse loin de l'obstacle
- \$\sum_{\text{: la surface projetée d'une aile}}\$

1-la traînée induite (induite par la portance):

Soient les profils d'aile suivants:

```
1 / NACA 63-210 :
```

2/ Boeing 737:

3/ NACA_2415:

4/ NACA_4409:

Quelle est la forme optimale pour l'aile?

Un code python a permis de tracer les profils d'aile suivants et de déterminer Cz pour chacun :

1 / NACA 63-210 :

2/ Boeing 737:

Cz = 0.644

Cz = 0.749

3/NACA_2415:

4/ NACA_4409:

Cz = 0.925

Cz = 0.607

On a :

$$Cx_i = \frac{C_z}{\pi \lambda}$$

• Cx i : coefficient de traînée induite

\(\lambda\) : l'allongement

Cz : coefficient de la portance

$\lambda = b^2/s$

b: envergure de l'aile

S: la surface portante

de l'aile

remarquons que $Cx i \uparrow si Cz \uparrow et si \lambda \uparrow$

Pour calculer le coefficient de traînée correspondant à chaque forme on a besoin de ce tableau:

caractéristiques Profil d'aile	b: envergure	S: surface alaire	λ: allongement
NACA_4409	18.3 m	22.3 m ²	15
Série NACA 63	17.32 m	15 m ²	20
Boeing 737	28,9 m	91,04 m ²	9.17
NACA 2415	1.5 m	0.406 m ²	5.54

$$Cx i = Cz^2 / \pi \lambda = (0.644)^2 / 20\pi$$

= 0.0066

 $C_{x}=0.0066$

* NACA-2415:

$$Cx i = Cz^2 / \pi \lambda = (0.749)^2 / 5.54\pi$$

= 0.0322

 $C_{x}=0.0322$

* NACA-4409:

$$Cx i = Cz^2 / \pi \lambda = (0.925)^2 / 15\pi$$

= 0.0181

 $C_{x}=0.0181$

* **Boeing 737**:

$$Cx i = Cz^2 / \pi \lambda = (0.607)^2 / 9.17\pi$$

= 0.0322

 $C_{x}=0.0127$

Conclusion:

* La meilleure forme donnant Cx minimal est

NACA 63-210

* On conclut que le profil d'aile pour le <u>Boeing 737</u> n'est pas la meilleure forme pour laquelle la traînée est minimale, ce qui a diminué la portance et donc il 'y avait une perte d'équilibre ce qui à causé les accidents.

Les évolutions des efforts aérodynamiques d'une aile placée dans un écoulement, en fonction de l'angle d'incidence, sont sujettes à une chute rapide de la portance et à une très forte augmentation de la traînée au-delà d'une valeur limite appelée angle de décrochage.

question

Quel <u>angle d'incidence a</u> permettant d'avoir, à la fois, la portance la plus grande possible et la traînée la plus faible possible ?

Soit le profil <u>NACA 63-210</u>, la variation de l'angle d'incidence α fait varier Cx et Cz.

En utilisant des valeurs expérimentales, on donne le tableau suivant :

Angles d'incidence α	Coefficients de portance (100Cz)	Coefficients de traînée (100Cx)
-4°	-9	1
0°	20	1
4°	51	1.8
8°	80	3.3
12°	105	5.5
16°	133	10
19°	143	14.6
20°	126	21.1

la polaire est le rapport entre le coefficient de portance Cz et le coefficient de traînée Cx :

polaire = Cz/Cx

La finesse maximale du profil NACA 63-210 est obtenue pour $\alpha = 4^{\circ}$

2. Traînée de frottement:

- * Continuons avec la forme optimale déjà trouvée dans la première partie NACA 63-210.
- * Faisons varier la vitesse.
- * Fixons tous les autres paramètres.
- * Une mesure de la portance et de la trainée en fonction de la vitesse donne :

Vitesse du vent (m/s)	2,42	2,94	3,42	3,72	4,33	4,61	4,97	5,44
Portance (N)	0,2	0,3	0,4	0,5	0,7	0,725	0,8	0,9
Trainée (N)	0,8	0,8	0,8	0,85	1,3	1,35	1,5	1,9

la traînée <u>augmente</u> avec la vitesse.

Merci de votre attention