Vaja 43: Vsiljeno nihanje nihajnega kroga

Matevž Demšar

3. maj 2024

Povzetek. Pri vaji smo opazovali vzbujeno nihanje električnega nihajnega kroga.

Uvod. Podobno kot pri vaji s torzijskim nihalom opazujemo amplitudo nihanja v odvisnosti od faznega zamika in poskušamo najti resonanco. Za razliko od poskusa s torzijskim nihalom pa namesto frekvence vzbujanja spreminjamo osnovno lastno frekvenco nihalnega kroga s spreminjanjem kapacitete kondenzatorja. Ta je odvisna od induktivnosti tuljave in kapacitete kondenzatorja po formuli:

$$\nu_0 = \frac{1}{2\pi\sqrt{LC}}$$

Meritve. Najprej moramo izmeriti induktivnost tuljave. Pri znani kapaciteti kondenzatorja in frekvenci nihanja lahko to izrazimo kot

$$L_0 = \frac{1}{4\pi^2 \nu_0^2 C_0}$$

$$\nu = 593 \ kHz$$

$$C_0 = 580 \ pF$$

$$L_0 = 124 \ \mu H$$

Meritev opravimo tako, da vrtljivi kondenzator obračamo in beležimo amplitudo ΔU v odvisnosti od kota φ . Ker je vrednost ΔU v nekaterih primerih manj stabilna in jo je zato težje odčitati, si privsaki vrednosti zapišemo tudi pričakovano napako meritve Δ . Meritev ponovimo dvakrat za vsako vrednost upora, tako da pri eni meritvi kot φ povečujemo, pri eni pa zmanjšujemo. Nato postopek ponovimo še trikrat z različnimi vezanimi upornikomi.

Za lažjo predstavo si pomagajmo z grafom.

$R = 0 \ \Omega$			$R = 5 \Omega$		
φ [°]	$2\Delta U \ [mV]$	$\Delta [mV]$	φ [°]	$\Delta U \ [mV]$	$\Delta [mV]$
90	20	2	90	19	3
110	24	2	110	37	7
125	39	3	125	39	7
135	46	5	135	43	3
140	52	4	145	60	6
145	62	5	150	75	5
150	80	4	155	110	10
155	118	8	160	217	5
158	166	6	162	303	7
160	232	6	163	348	8
161	300	6	164	350	4
162	424	16	165	305	5
163	660	40	167	208	6
164	944	8	170	135	5
165	620	20	175	90	5
167	285	6	180	70	5
170	154	6	190	50	5
175	96	6	200	10	5
180	65	4	175	88	5
190	50	5	170	130	4
200	12	2	168	178	4
190	50	5	166	260	10
180	68	4	164	350	4
175	94	6	160	205	7
170	155	5	150	75	5
168	210	6	130	43	7
166	370	10	100	20	3
165	612	12			
164	904	16			
163	554	18			
162	370	8			
160	215	5			
155	110	3			
150	75	5			
140	52	4			
130	43	4			
120	36	3			
100	18	2			
80	17	3			

Tabela 1: Vrednosti amplitude v odvisnosti od kota, za katerega zasukamo kondenzator.

Slika 1: Graf prikazuje amplitudo nihanja v odvisnosti od kota vrtljivega kondenzatorja.

$R = 10 \ \Omega$			$R = 20 \ \Omega$		
φ [°]	$2\Delta U \ [mV]$	$\Delta [mV]$	φ [°]	$\Delta U \ [mV]$	$\Delta [mV]$
90	19	3	90	20	2
110	21	2	110	20	2
125	36	4	125	35	5
135	45	5	135	43	3
145	62	6	145	55	5
155	100	5	155	90	3
160	166	4	160	120	6
162	204	4	162	130	4
163	218	6	163	130	4
164	220	6	164	133	4
165	210	6	166	128	7
170	125	5	170	100	5
180	76	6	180	60	5
195	45	7	190	44	3
175	85	5	200	14	2
168	150	5	185	55	8
166	190	10	175	75	5
164	220	6	168	113	5
161	188	4	165	128	3
150	70	5	161	125	3
130	40	5	150	67	5
100	20	3	140	48	3
			120	34	4
			100	19	3

Tabela 2: Vrednosti amplitude v odvisnosti od kota, za katerega zasukamo kondenzator.

Ker je frekvenca nihanja odvisna od kapacitete koncenzatorja, ta pa od kota φ , želimo najti zvezo med slednjima. V navodilih je v ta namen priložena Tabela 3. S pomočjo pythonove knjižnico scipy.optimize

φ [°]	C[pF]
20	16
30	31
40	50
50	65
60	87
70	110
80	145
90	185
120	320
130	380
140	445
150	510
160	580
170	650
180	710
190	790
200	860

Tabela 3: Vrednost kapacitete kondenzatorja za nekatere vrednosti kota φ

ocenimo, da se da vrednost kapacitete kondenzatorja v odvisnosti od kota kar dobro aproksimirati s formulo

$$C \propto 0,02 \cdot \varphi^2 + 0,025 \cdot \varphi + 0,58,$$

v kateri je kapaciteta Cizražena v pikofarradih ali $10^{-12}\ F.$

Slika 2: Ker je v tabeli podana vrednost kapacitete kondenzatorja le za nekaj vrednosti kota φ , si pomagamo s pythonovo funkcijo scipy.optimize, da lažje aproksimiramo kapaciteto kondenzatorja tudi pri kotih, ki niso v tabeli. Napako aproksimacije scipy.optimize ocenjuje na 16,6%

Slika 3: Resonančne krivulje.

Resonančna krivulja. Opremljeni z meritvami in formulo za aproksimacijo kapacitete kondenzatorja lahko narišemo resonančno krivuljo nihajnega kroga kot graf $\frac{\nu}{\nu_0}\left(\frac{U}{U_i}\right)$, kjer U_i predstavlja odmik napetosti pri najmanjši kapaciteti kondenzatorja. Resonančne krivulje za nihajni krog pri različnih uporih prikazuje Slika 3.

Lissajoujeve figure. Na Sliki 4 vidimo skico Lissajoujevih figur pri nekaterih vrednostih φ . Z njimi lahko ocenimo fazni zamik med inducirano in vzbujeno napetostjo, ki ga označimo z δ .

Slika 4: Lissajoujeve figure. Na vsakem grafu narišemo tudi okvir - najmanjši pravokotnik, v katerem leži celotna krivulja - in razdaljo med presečiščema z y osjo. Višino okvirja b in razdaljo med presečiščema a potrebujemo za oceno faznega zamika med inducirano in vzbujeno napetostjo.

Fazni zamik δ dobimo po formuli $\sin(\delta)=a/b$. Opazimo, da je v resonanci Lissajoujeva figura krožnica, z grafa pa se vidi tudi, ali je δ večji ali manjši od 90°, saj so pri vrednostih $\delta<90$ ° krivulje "nagnjene"v desno, pri $\delta>90$ ° pa v levo. Opremljeni s tem znanjem lahko ocenimo faznih zamik pri izbranih vrednostih φ .

$$\delta_1 \approx 166^{\circ}$$
 $\delta_2 \approx 96^{\circ}$
 $\delta_3 \approx 37^{\circ}$