```
In [2]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear model import LogisticRegression
         from sklearn.model selection import train test split
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import accuracy_score
         import warnings
         warnings.filterwarnings('ignore')
In [4]: df = pd.read_csv(r'C:\Users\HP\Downloads\IRIS.csv')
In [5]: df
Out[5]:
              sepal_length sepal_width petal_length petal_width
                                                                      species
           0
                                    3.5
                                                                    Iris-setosa
                       5.1
                                                 1.4
                                                              0.2
           1
                       4.9
                                    3.0
                                                 1.4
                                                              0.2
                                                                    Iris-setosa
           2
                       4.7
                                    3.2
                                                 1.3
                                                              0.2
                                                                    Iris-setosa
           3
                                                 1.5
                       4.6
                                    3.1
                                                              0.2
                                                                    Iris-setosa
           4
                       5.0
                                    3.6
                                                 1.4
                                                              0.2
                                                                    Iris-setosa
```

150 rows × 5 columns

6.7

6.3

6.5

6.2

5.9

3.0

2.5

3.0

3.4

3.0

145

146

147

148

149

<pre>6]: df.isna().sum()</pre>	
]: sepal_length	0
sepal_width	0
petal_length	0
petal_width	0
species	0
dtype: int64	
<pre>7]: df.duplicated()</pre>	.sum()

5.2

5.0

5.2

5.4

5.1

2.3 Iris-virginica

Iris-virginica

Iris-virginica

Iris-virginica

1.8 Iris-virginica

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [9]: df.describe()

Out[9]: sepal_length sepal_width petal_length petal_width

			[
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [10]: df.drop_duplicates(inplace=True)

In [11]: df

Out[11]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	•••	•••	•••	•••	•••	•••
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

147 rows × 5 columns

```
In [12]: df['species'].value_counts()
Out[12]: species
         Iris-versicolor
                            50
         Iris-virginica
                            49
         Iris-setosa
                            48
         Name: count, dtype: int64
In [13]: sns.lmplot(
            x="sepal_length",
             y="sepal_width",
             hue="species",
             data=df
         plt.title("Sepal Length VS Sepal Width")
         plt.show()
```



```
In [14]:
    sns.lmplot(
        x="petal_length",
        y="petal_width",
        hue="species",
        data=df
)

plt.title("Petal Length VS Petal Width")
plt.show()
```



```
In [15]: label_encoder = LabelEncoder()
    df['species'] = label_encoder.fit_transform(df['species'])
In [16]: df
```

Out[16]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0
	•••	•••	•••	•••	•••	•••
	145	6.7	3.0	5.2	2.3	2
	146	6.3	2.5	5.0	1.9	2
	147	6.5	3.0	5.2	2.0	2
	148	6.2	3.4	5.4	2.3	2
	149	5.9	3.0	5.1	1.8	2

147 rows × 5 columns

```
In [19]: x = df.drop(columns='species')
y = df.species
```

In [18]: x

Out[18]:

	sepal_length	sepal_width	petal_length	petal_width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
•••	•••	•••	•••	•••
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

147 rows × 4 columns

```
Out[20]: 0
         1
                0
         2
                0
         3
                0
                0
         145
                2
                2
         146
         147
                2
         148
                2
         149
                2
         Name: species, Length: 147, dtype: int32
In [21]: X_train, x_test, Y_train, y_test = train_test_split(x, y, test_size=0.2, random_sta
In [24]: from sklearn.linear_model import LogisticRegression
         # Instantiate the model
         model = LogisticRegression()
         # Fit the model with training data
         model.fit(X_train, Y_train)
Out[24]:
         LogisticRegression
         LogisticRegression()
In [25]: model.score(x_test, y_test)
Out[25]: 1.0
In [26]: model.score(X_train, Y_train)
Out[26]: 0.9743589743589743
In [27]: model.predict([[5.1,3.5,1.4,0.2]])
Out[27]: array([0])
In [28]: y_predicted = model.predict(x_test)
In [29]: y_predicted
Out[29]: array([2, 1, 1, 1, 0, 0, 1, 0, 2, 2, 0, 2, 0, 2, 1, 2, 2, 0, 1, 1, 0, 2,
                1, 0, 2, 0, 0, 2, 2, 0])
In [30]: from sklearn.metrics import confusion matrix
         cm = confusion_matrix(y_test, y_predicted) # compare between predicted values, actu
         cm
Out[30]: array([[11, 0, 0],
                [ 0, 8,
                          0],
                [ 0, 0, 11]], dtype=int64)
```

```
In [31]: import seaborn as sn
  plt.figure(figsize = (10,7))
  sn.heatmap(cm, annot = True)
  plt.xlabel('Predicted')
  plt.ylabel('Truth')
```

Out[31]: Text(95.72222222221, 0.5, 'Truth')


```
In [ ]:
```