CAP3_ALGEBRA_RELAZIONALE

Table of contents

- Algebra e calcolo relazionale
 - Algebra relazionale
 - Operatori insiemistici (\$ cup, cap, -\$)
 - Ridenominazione (\$rho_{a/b}(R)\$)
 - Selezione (\$ sigma_{ varphi}(R)\$)
 - Proiezione (\$ Pi_{a_1, dotsc, a_n}(R)\$)
 - JOIN
 - JOIN NATURALE (\$R bowtie S\$)
 - JOIN COMPLETO
 - JOIN ESTERNO
 - JOIN E PROIEZIONI
 - PRODOTTO CARTESIANO (\$ times\$)
 - VISTE (\$:=\$)
- Esempi esercizi
- Esempi prova itinere

Algebra e calcolo relazionale

#algebra-relazionale #procedurali #ridenominazione #selezione #proiezione #join #viste

I linguaggi possono essere distinti in:

- dichiarativi, specificano le proprietà del risultato("che cosa")
 - · calcolo relazionale
 - SQL
 - Query By Example (QBE)
- procedurali, specificano le modalità di generazione del risultato ("come")
 - · algebra relazionale

Algebra relazionale

Insieme di operatori:

- su relazioni
- · che producono relazioni
- · possono essere composti

Con l'algebra relazionale lavoriamo su tabelle/relazioni e applichiamo strutture algebriche con semantiche ben fondate, per produrre altre tabelle.

Operatori insiemistici ($\cup, \cap, -$)

Le relazioni sono degli **insiemi** di n-uple.

- unione $A \cup B$, unisce tutti gli attributi delle tabelle, i duplicati vengono eliminati;
- intersezione $A \cap B$, produce relazione di n-uple uguali tra entrambe le relazioni;
- differenza A-B, relazione di n-uple non contenute in B.

△ Nota sulla compatibilità

La possibilità di operare con \cup e \cap sussiste fintanto che le due relazioni in questione abbiano cardinalità uguale. Questo è dato dal fatto che l'intersezione è una unione con sottrazione; le due relazioni devono essere quindi compatibili per l'unione se vogliamo che l'intersezione sia possibile.

Ridenominazione ($ho_{a/b}(R)$)

Operatore monadico (su una tabella) che *modifica lo schema*, non l'istanza, cambiando il nome di 1 o più attributi.

$$\text{REN}_{newName \leftarrow oldName}(Operando)$$

$$ho_{A_1,\ldots,A_n\leftarrow a_1,\ldots,a_n}\!(R)$$

Gli attributi a_1,\ldots,a_n assumono nuovo nome A_1,\ldots,A_n per la relazione R.

≔ Ridenominare 2 tabelle

L'unione tra 2 tabelle con attributi "Madre" e "Padre" non è possibile siccome il nome degli attributi è diverso, possiamo tuttavia ridenominare questi

 $REN_{qenitore \leftarrow padre}(Paternita) \cup REN_{qenitore \leftarrow madre}(Maternita)$

Selezione ($\sigma_{arphi}(R)$)

Operatore monadico (su una sola tabella) che produce un risultato con lo stesso schema dell'operando e contiene una selezione delle n-uple che soddisfano un predicato (TRUE, FALSE). Semplicemente: prende una condizione e ritorna i risultati soddisfacenti la condizione.

$$SEL_{Condizione}(Operando)$$

$$\sigma_{Condizione}(R)$$

dove Condizione è una formula proposizionale.

: Impiegati che guadagnano più di 50

SEL_{stipendio} > 50 (Impiegati)

∷≣ Impiegati che guadagnano più di 50 e lavorano a 'Milano'

SEL_{stipendio} > 50 AND filiale = 'Milano' (Impiegati)

⚠ Nota sui valori NULL

Nell'algebra relazionale (quindi in psql) i valori non sono distinti l'uno dall'altro. Questo significa che operazioni come $A \neq B$ dove A=0 e B= NULL, restituiranno sempre unknown siccome non è ben definito.

A	B	$(A \neq B)$	A IS DISTINCT FROM B
0	0	false	false
0	1	true	true

A	B	(A eq B)	A IS DISTINCT FROM B
0	NULL	unknown	true
NULL	NULL	unknown	false

Proiezione ($\Pi_{a_1,\ldots,a_n}(R)$)

Decomposizione verticale, operatore ortogonale.

Anche lui operatore monadico, parametrico.

Semplicemente: prende una lista di attributi riguardante a una tabella e restituisce solo quelli specificati.

$$PROJ_{ListaAttributi}(Operando)$$

≡ Cognome e filiale di tutti gli impiegati

PROJ_{cognome,nome}(Impiegati)

Una proiezione contiene al più tante n-uple quante l'operando, può contenerne di meno. Se X è una superchiave di R, allora $\mathrm{PROJ}_X(R)$ contiene esattamente tante n-uple quante R. Possiamo usare selezione e proiezione insieme, per restituire risultati di una selezione per delle colonne specifiche solo del SELECT:

≡ Matricola e cognome degli impiegati che guadagnano più di 50

PROJ_{matricola,cognome}(SEL_{stipendio > 50}(Impiegati))

Non possiamo correlare informazioni presenti in relazioni diverse, né informazioni in n-upla diverse di una stessa relazione.

JOIN

Permette di correlare dati in relazioni diverse.

Cardinalità:

- il join di R_1 e R_2 contiene un numero di n-uple:
 - ullet compreso fra 0 e il prodotto di $|R_1|$ e $|R_2|$
- se coinvolge una chiave di R_2 allora il numero di n-uple è:
 - compreso fra 0 e $|R_1|$
- ullet se il join coinvolge una chiave di R_2 e vincolo d'integrità referenziale, allora il numero di n-uple è
 - pari a $|R_1|$

 $R_1 \ {
m JOIN} \ R_2$ e' una relazione su $X_1 X_2$ (intesa come unione):

$$\{t ext{ su } X_1X_2 \mid ext{ esistono } t_1 \in R_1 \wedge t_2 \in R_2 ext{ con } t[X_1] = t_1 \wedge t[X_2] = t_2\}$$

Per ogni riga che si trova nella tabella di sinistra, guardiamo quante di righe hanno un attributo in comune con la tabella di destra e uniamo nel caso in cui questa incidenza esista.

JOIN NATURALE ($R\bowtie S$)

Immaginiamo di avere una due tabelle e volessimo unire le due, seguendo un criterio: numero deve essere contenuto in entrambe.

Possiamo farlo con il **join naturale** dove i miei attributi coincidono su un attributo. Noi non dobbiamo fare nulla, il join e' automatico se l'attributo comune esiste.

≡ JOIN NATURALE				
numero	voto			
1	25			
2	13			
3	27			
4	28			

numero	candidato
1	mario rossi
2	nicola russo
3	mario bianchi
4	remo neri

numero	candidato	voto
1	mario rossi	25
2	nicola russo	13
3	mario bianchi	27
4	remo neri	28

Produce un risultato:

- sull'unione degli attributi degli operandi;
- con n-uple costruite ciascuna a partire da una n-upla di ognuno degli operandi;

JOIN COMPLETO

Ogni n-upla contribuisce al risultato. Nessuna viene eliminata. Tuttavia se non troviamo attributi uguali, il join diventa incompleto.

JOIN ESTERNO

Estende con valori n-uple che verrebbero tagliate fuori da un join interno, si può fare sulla sinistra, destra o completo:

- sinistro mantiene tutte le n-uple del primo operando;
- · destro del secondo operando;
- completo su entrambi gli operandi.

⋮ ■ JOIN LEFT con le tabelle di prima

impiegato	reparto
Rossi	А
Neri	В
Bianchi	В

reparto	capo	
В	Mori	
С	Bruni	

impiegati JOIN_{LEFT} reparti

impiegato	reparto	capo
neri	В	mori
bianchi	В	mori
rossi	Α	NULL

impiegati JOIN_{RIGHT} reparti

impiegato	reparto	саро
neri	В	mori
bianchi	В	mori
NULL	С	bruni

impiegati JOIN_{FULL} reparti

impiegato	reparto	capo
neri	В	mori
bianchi	В	mori
rossi	Α	NULL
NULL	С	bruni

JOIN E PROIEZIONI

Se prendessimo due tabelle e facessimo INNER JOIN (JOIN NATURALE), con una successiva PROIEZIONE, non e' detto che si ritorni alla tabella originale. Quando il JOIN non e' completo, allora accade.

$$\operatorname{PROJ}_{X_1}(R_1 \operatorname{JOIN} R_2) \subseteq R_1$$

Se facessimo l'operazione inversa (prima due PROIEZIONI e poi il JOIN), otterremmo piu' n-uple di quelle di partenza.

$$(\operatorname{PROJ}_{X_1}(R)) \operatorname{JOIN} (\operatorname{PROJ}_{X_2}(R)) \supseteq R$$

PRODOTTO CARTESIANO (imes)

Sarebbe un JOIN NATURALE su relazioni senza attributi in comune.

Contiene sempre un numero di n-uple pari al prodotto delle cardinalita' degli operandi (tutte combinabili).

Di solito viene susseguito con un SELECT se vogliamo dargli un senso:

Bruni

Mori

Bruni

Mori

Bruni

Α

В

В

В

В

Rossi

Neri

Neri

Bianchi

Bianchi

В

Α

В

Α

В

$$SEL_{condizione}(R_1 \text{ JOIN } R_2)$$

L'operazione viene chiamata theta-join ($R\bowtie_{ heta} S$), JOIN con condizione:

$$R_1 \text{ JOIN}_{condizione} R_2$$

Se l'operazione di confronto (condizione) nel theta-join è sempre l'uguaglianza (=) allora si parla di equi-join:

В	Bruni
Codice	Capo

Impiegati $\mathrm{JOIN}_{Reparto=Codice}$ Reparti

Impiegato	Reparto	Codice	Capo
Rossi	А	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

VISTE (:=)

Sono rappresentazioni dei dati per schema esterno.

- · relazioni derivate, cui contenuto è funzione di altre relazioni;
- · relazioni di base, a contenuto autonomo.

Ci sono 2 tipi di relazioni derivate:

- <u>viste materializzate</u>, funzionano molto bene fintanto che le relazioni rimangono costanti nel tempo, ovvero non cambiano troppo frequentemente (che non vedremo);
- <u>relazioni virtuali (viste)</u>, supportate da tutti i DBMS, un'interrogazione su una vista viene eseguita "ricalcolando" la vista;

Rimpiazzare pezzi grossi in un nome che mi dà significato, aiuta nella comprensione delle interrogazioni da farsi. Nello schema esterno ogni utente vede solo:

- · ciò che gli interessa;
- ciò che è autorizzato a vedere.

 $nomeVista_{listaAttributi} := PROJ_{attributi}(Operando) \text{ UNION } \cdots$

≡ Modello e prezzo di tutti i prodotti costruiti da un produttore

 $tuttiProdotti(model, price) := \\ PROJ_{model,price}(PC) \ UNION \\ PROJ_{model,price}(LAPTOP) \ UNION \\ PROJ_{model,price}(PRINTER)$

Esempi esercizi

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

 ${
m SEL}_{stipendio>50~{
m AND}~Filiale='Milano'}(Impiegati)$

≡ Matricola e cognome di tutti gli impiegati

 $PROJ_{matricola, cognome}(Impiegati)$

≡ Matricola e cognome degli impiegati che guadagnano piu' di 50

 $PROJ_{matricola,cognome}(SEL_{stipendio>50}(Impiegati))$

Impiegati

Matricola	Nome	Eta	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

Impiegato	Capo	
7309	5698	
5998	5698	
9553	4076	
5698	4076	
4076	8123	

≡ Nome e stipendio dei capi degli impiegati che guadagnano piu' di 50

 $PROJ_{nome, stipendio}(Supervisione\ JOIN_{capo=matricola}\ (SEL_{stipendio} > 50(Impiegati)))$

≡ Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

 $PROJ_{\it matricola, nome, stipendio, matricolaC, nomeC, stipendioC}$

 $(SEL_{stipendio} > stipendioC)$

 $(\text{REN}_{matricolaC,nomeC,stipendioC \leftarrow matricola,nome,stipendio}(Impiegati)$

 ${\rm JOIN}_{matricolaC=capo}$

 $(Supervisione \ JOIN_{impiegato=matricola} \ Impiegati)))$

Esempi prova itinere

• Dato lo schema di relazione R(X), sotto quali condizioni l'espressione dell'algebra relazionale $\sigma_{A=B}(R)$ è ben definita, cioè non causa un errore?

Nell'algebra relazionale il simbolo = indica la clausola WHERE di SQL.

Nessun errore si presenta fintanto che non siano presenti valori NULL.

- Date due tabelle con schemi $R_1(X_1)$, $R_2(X_2)$, dove $X_1 \cup X_2 = \{A\}$, sapendo che $\#(r_1) = n$ e $\#(r_2) = 0$ (cioè l'istanza di R2 è vuota), indicare le cardinalità delle seguenti espressioni dell'algebra relazionale:
 - $R1\bowtie_{NAT} R2$ (join naturale) \rightarrow 0
 - $R1\bowtie_{LEFT}R2$ (left outer join) \rightarrow n
 - $R1 \bowtie_{FULL} R2$ (full outer join) \rightarrow n + 0
- Fornire un esempio di una coppia di valori (per A e B) per la quale i due predicati ($A \neq B$) e (A IS DISTINCT FROM B) forniscono risultati diversi.

Vedere tabella in alto.

• Date due tabelle con schemi $R_1(X_1)$, $R_2(X_2)$, sotto quali condizioni l'espressione dell'algebra relazionale $R1 \cap R2$ è ben definita, cioè non causa un errore?

Non causa errore fintanto che le due relazioni abbiano la stessa cardinalità.

- Date due tabelle con schemi $R_1(X_1)$, $R_2(X_2)$, dove $X_1 \cap X_2 = \emptyset$, sapendo che $\#(r_1) = 0$ e $\#(r_2) = n_2$ (cioè l'istanza di R_1 è vuota), indicare le cardinalità delle seguenti espressioni dell'algebra relazionale:
 - $R_1 \times R_2$ (prodotto cartesiano) ightarrow 0
 - $R_1 \bowtie_{RIGHT} R_2$ (right outer join) \rightarrow n₂
 - $R_1 \bowtie_{FULL} R_2$ (full outer join) \rightarrow n₂ + 0

up to: 10-05