14/09/2025 07:09 Structures de données

Les structures de données

Variables & Constantes

Activité 1

Ecrire un programme qui permet de calculer la quantité de peinture nécessaire pour peindre des portes de la forme suivante, sachant qu'un Kg de peinture permet de peindre une surface moyenne de 6 m².

Solution Python

```
Python

PI = 3.14159265
QPM2 = 6 # 6 m²/Kg

# Entrée des données

1 = float(input('Largeur de la porte : '))
h = float(input('Hauteur de la porte : '))
n = int(input('Donner le nbre de portes : '))

# Traitements
sp = (1 * (h - 1/2)) + PI * 1 * 1 / 8
qp = (n * 2 * sp) / QPM2

# Affichage
print('Quantité de peinture requise :', qp, 'Kg')
```

Activité 2

- 1. Relever à partir du programme précédent la structure générale d'un programme.
- 2. Quelle est la différence entre les objets PI, QPM2 et 1, h et n?

Activité 3

Un projectile est laissé en chute libre sans vitesse initiale à partir d'un point M haut du sol. On souhaite écrire un programme qui permet de calculer le temps de chute.

$$t_{chute} = \sqrt{\frac{2 \cdot h}{g}}$$

$$h : \text{hauteur du chute} \\ \text{g : Accélération du pesanteur}$$

A Retenir

Une constante est un objet ayant une valeur fixe tout le long de l'exécution d'un algorithme ou d'un programme.

Une constante est caractérisée par son nom et sa valeur.

Une variable est un objet pouvant prendre différentes valeurs tout le long de l'exécution d'un algorithme ou d'un programme.

Une variable est caractérisée par son nom, son type et son contenu.

Types de données

Activité 4

Relever les types de données utilisés dans le programme suivant :

```
Python

nom = 'Sahar'

age = 18

genre = 'F'

p = 60.0

h = 1.60

imc = p / (h * h)

ok = (imc >= 18) and (imc <= 23)

if genre in ['G', 'g']:

sal = 'Mr'

elif genre in ['F', 'f']:

sal = 'Mlle/Mme'

else:

sal = ''

...
```

A retenir

Le type d'une variable permet de déterminer le domaine de valeurs possible que peut prendre cette variable.

La connaissance du type permet également de :

- Déduire les opérateurs applicables sur les variables de ce type
- Déduire l'espace mémoire (en octets) qui sera réservé à ces variables
- Déterminer l'ensemble de fonctions prédéfinies compatible avec ce type de variables

Le type Entier

En algorithme, le type entier représente un sous ensemble du corps des entiers relatifs \mathbb{Z} .

En Python

Python définit un seul type entier int et sa taille est illimitée.

Opérations sur les entiers

Le tableau suivant définit les opérations sur les entiers.

On suppose dans les exemples suivants que a = 5, b = 3.

Opérateurs

Algorithme	Signification	Exemple Python
+	Addition	c = a + b # c = 8
-	Soustraction	d = a - b # d = 2
*	Multiplication	e = a * b # e = 15
/	Division réelle	f = a / b # f = 1.666666
div	Quotient de la division entière	g = a // b # g = 1
mod	Reste de la division entière	h = a % b # h = 2
	Exponentiation	i = a ** b # i = 125

Activité 5

Evaluer les expressions arithmétiques, algorithmiques, suivantes :

- a. 17 DIV 5
- b. 17 MOD 5
- c. ((58 DIV 7) MOD 2) + 5
- d. (49 MOD 17) DIV (4 * 3)

Le type réel

Le type réel représente les valeurs à virgule flottantes, exemple : 1.5, 170.5, etc.

En Python

Le langage Python définit le type float pour représenter les nombres décimaux.

Fonctions pour les types numériques

Nom Fonction	Python	Rôle	Test
abs(x)	abs(x)	Valeur Absolue de x	abs(-73) = 73
racine(x)	sqrt(x)	La racine carré de x	racine(19) = 4.358898943540674
ent(x)	int(x)	Supprime la partie fractionnaire de x et renvoie un entier	ent(-33.399999999999) = -33
arrondi(x)	round(x)	Retourne l'entier le plus proche de x	arrondi(-4.399999999999915) = -4
alea(a, b)	from random import randint randint(a, b)	Spécifique Python Retourne un entier aléatoire dans l'intervalle [a, b]	alea(10, 30) = 22

Activité 6

Ecrire un programme qui permet d'afficher les valeurs suivantes :

0.0 -55.36 3.14 60 10 ⁻⁹ 1.23 -38.0	5.6 10 ⁶
--	---------------------

Solution

```
# program prog03
print(0.0)
print(-55.36)
print(3.14)
print(60E-9)
print(1.23)
print(-38.0)
print(5.6E6)
```

Le type booléen

Une variable de type booléen prend uniquement deux valeurs différentes vrai ou faux.

En Python

Le type booléen correspond à bool en Python.

Les opérateurs

Opérateur	Signification	Python
NON	Fonction inverse	not a
ET	Fonction ET	a and b
OU	Fonction OU	a or b

Compléter les tableaux de vérités suivants :

Fonction NON

Figure 1, Schéma électrique

А	NON A
Faux	-
Vrai	-

Fonction OU

Figure 2, Schéma électrique

А	В	A OU B
F	V	-
F	V	-
V	F	-
V	V	-

Fonction XOR

Figure 4, Schéma électrique

h	1	
Α	В	A XOR B
F	V	
F	V	
V	F	
V	V	

Fonction ET

Figure 3, Schéma électrique

Α	В	A ET B
F	V	-
F	V	-
V	F	-
V	V	-

Activité 9

Evaluer les expressions logiques suivantes :

- (x <= 4) ET (x >= 1) pour x = 3
- (x <= 2) ET (x >= 0) pour x = -4
- NON ($x \le 55$) OU ($x \ge 0$) pour x = 21

Le type caractère

Il s'agit du domaine constitué des **caractères alphabétiques** et **numériques** . Une variable de ce type ne peut contenir qu'un seul et unique caractère.

Les caractères sont ordonnés selon leurs code ASCII. En ASCII, il est possible de représenter 256 caractères.

La table suivante contient les 128 premiers caractères standard, code $0 \rightarrow 127$, les caractères de code 128 \rightarrow 255 ne sont pas standard.

	Regular A	SCII Chart	(characte	er codes	0 - 127)		
000 (nu	 016 ► (dle) 032 sp	048 0	064 0	080 P	096 `	112 p
001 © (so	h) 017 ∢ (dcl) 033 !	049 1	065 A	081 Q	097 a	113 q
002 ⊕ (st	x) 018 t (dc2) 034 "	050 2	066 B	082 R	098 b	114 r
003 ♥ (et	x) 019 !! (dc3) 035 #	051 3	067 C	083 ន	099 с	115 s
004 + (eo	t) 020 ¶ (dc4) 036 \$	052 4	068 D	084 T	100 d	116 t
005 🏚 (en	q) 021 S (nak) 037 %	053 5	069 E	085 U	101 e	117 u
006 + (ac	k) 022 - (syn) 038 &	054 6	070 F	086 V	102 f	118 v
007 • (be	 023 ‡ (etb) 039 '	055 7	071 G	087 ឃ	103 g	119 พ
008 a (bs) 024 † (can) 040 (056 8	072 H	088 X	104 h	120 x
009 (ta	b) 025 į (em.)	041)	057 9	073 I	089 Y	105 i	121 y
010 (1f) 026 (eof) 042 *	058 :	074 J	090 Z	106 j	122 z
011 J (vt) 027 ← (esc) 043 +	059 ;	075 K	091 [107 k	123 {
012 * (np) 028 L (fs)	044 ,	060 <	076 L	092 \	108 1	124
013 (cr) 029 ↔ (gs)	045 -	061 =	077 M	093]	109 m	125 }
014 🗗 (so) 030 ▲ (rs)	046 .	062 >	078 N	094 ^	110 n	126 ~
015 🗘 (si) 031 ▼ (us)	047 /	063 ?	079 0	095 _	111 o	127 ۵

En Python

Python ne possède pas un type caractère un str de longueur 1 est considéré comme étant un caractère.

Fonctions prédéfinies sur les caractères

Le tableau suivant résume les principales fonctions prédéfinies sur les caractères :

Fonction	Python	Exemples
Code ASCII d'un caractère	ORD(car)	$ORD("0") \rightarrow 48$ $ORD("A") \rightarrow 65$ $ORD("a") \rightarrow 97$
Caractère correpondant à un code ASCII	CHR(code)	CHR(48) \rightarrow "0" CHR(65) \rightarrow "A" CHR(97) \rightarrow "a"
Mettre un caractère en majuscules	car.upper()	MAJUS("a") \rightarrow "A" MAJUS("A") \rightarrow "A" MAJUS("0") \rightarrow "0"

Activité 10

Ecrire un programme qui permet de saisir une lettre Majuscule puis l'affiche en miniscules.

Solution

```
Algorithme

Algorithme prog05

Début

Ecrire("Entrer une lettre majuscule : ")

Lire(cmaj)

cmin 

Chr(Ord(cmaj) + 32)

Ecrire("Miniscule('", cmaj, "') = '", cmin, "'")

Fin
```

TDO

Objet	Туре	
cmin, cmaj	caractère	

Le type chaîne de caractères

Une chaîne de caractères est une suite de caractères. Elle peut être définie comme suit :

Objet	Type/Nature
Prénom	Chaîne
Nom	Chaîne

En Python

Le type str correspond en Paython à une chaîne de caractères. En Python, on ne peut pas limiter le nombre de caractères dans une chaîne.

Activité 11

Décalrer deux variables nom et prenom. Puis, les initialiser avec votre nom et prénom.

Solution

```
Python
nom = "MANI"
prenom = "Mohamed Anis"
```

Accès aux caractères

Les caractères d'une chaîne sont accessibles via leur indice qui commence toujours à partir de 0. La fonction len(ch) indique le nombre de caractères dans la chaîne, <u>en comptant aussi les espaces vides</u>.

Figure 5, Indices dans une chaîne

Exemple:

Le caractère "t" dans la chaîne "Python" se trouve à la position : 2

Fonctions sur les chaînes - Python

Le tableau suivant résume l'ensemble des fonctions prédéfinies sur les chaînes en Pascal

Fonction	Algorithme	Python	Test
Retourne la longueur d'une chaine de caractères	long(ch)	len(ch)	long("Bac 2022") → 8
Retourne la première position de ch1 dans ch2	pos(ch1, ch2)	ch2.find(ch1)	pos("02", "Bac 2022") → 5
Retourne une sous chaîne de caractères de ch de la position p1 jusqu'à p2 non incluse.	sous_chaine(ch, p1, p2)	ch[p1:p2]	sous_chaine("Baccar", 3, 6) → "car"
Supprime les caractères de ch à partir de la position p1 à la position p2 non incluse.	efface(ch, p1, p2)	ch[:p1] + ch[p2:]	ch ← "Baccar" ch ← efface(ch, 3, 6) ch contient "Bac"
Convertit une chaine ch en une valeur numérique.	Valeur(ch)	# pour les entiers x = int(ch) # pour les réels x = float(ch)	x ← valeur("18.5") x contient 18.5
Convertit une valeur numérique en chaine.	ch ← ConvCh(x)	# x réel ou entier ch = str(x)	ch ← ConvCh(15) ch contient "15"

Le type tableau

Le type tableau permet de stocker un ensemble de valeurs de même type. Les éléments du tableau sont accessibles via le nom du tableau suivi par l'indice de l'élément.

Exemple:

t[3]: Permet d'accéder à la case d'indice 3 dans le tableau t.

Un tableau est déclaré de la façon suivante :

nom_type = tableau de nbre_éléments type

Exemple

Pour déclarer un tableau qui peut contenir jusqu'à 20 entiers, on écrit :

tab = tableau de 15 entier

Déclaration en Python

En Python, on écrit tout simplement :

Indexation

En Python, l'indexation se fait toujours à partir de l'indice **0**, qui est l'indice du premier élément. L'indice du dernier élément étant **14**.

Activité 12

Déclarer les tableaux suivants en Python :

Decidier les tableaux sulvants en Python .											
te	58	64	11	70	1	7	62	6	52	69	
	0	1	2	3	4	5	6	7	8	9	
tr	2.5	0.6	9.5	4.5	4.2	2.3	1.6	9.9			
	0	1	2	3	4	5	6	7			
tb	True	False	False	False	True	False		False	True		
	0	1	2	3	4	5	•••	24	25		

from numpy import array te = array([int()] * 10) tr = array([float()] * 7) tb = array([bool()] * 26)