AI 응용시스템의 이해와 구축

4강. Feature Engineering

Feature Engineering

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

What's the least enjoyable part of data science?

- Building training sets: 10%
- Cleaning and organizing data: 57%
- Collecting data sets: 21%
- Mining data for patterns: 3%
- Refining algorithms: 4%
- Other: 5%

Cleaning Big Data: most time-consuming, least enjoyable data science task, Forbes

Feature Engineering이란

- 모델 정확도를 높이기 위해 주어진 데이터(raw data)를 예측 모델이 잘 표현할 수 있는 feature로 변형하는 과정.
- 종종 ML알고리즘을 작동하기 위해 데이터의 <u>도메인 지식</u>을 활용하기도 한다.
- 모델링 알고리즘에 따라 Feature Representation을 적절하게 변형하기도 한다.

Feature Engineering

모델의 학습능력을 돕기 위하여 피쳐의 형식을 변경하거나 피쳐를 골라내는 작업이 필요함.

- 1. Feature Representation: 피쳐를 어떻게 표현할것인지.
- 2. Data Cleaning
- 3. Feature Selection
- 4. Feature Extraction

Feature Engineering의 목표

- 머신러닝 알고리즘에 걸맞는 적절한 인풋 데이터셋을 준비
- 머신러닝 모델의 성능 향상
 - 모델 정확도,추론속도
- 모델 파이프라인의 cost 저하
 - 데이터셋의 크기

흔히 등장하는 trade off:

Infrastructure vs Quality

Feature Engineering Pipeline

"피쳐엔지니어링파이프라인/데이터 파이프라인"의 라이프사이클:

모델의 정확도와 리소스 활용을 반복적으로 발전하는 과정

- transforming: 데이터 클리닝
- projecting:
- combining features to a new version of data set

- Combining realthes to a new version of data set

Transform: 데이터 클리닝

Project: 고차원의

데이터에서 피처 추출

Combine: 피처 추출/

크로싱

Feature Engineering

최소한의 피쳐셋으로모델을 구성하고, 차차 반복적으로 피쳐들을 넣음.

- 가장 predictive power가 강하다고 생각하는 피쳐들로 시작
- Compute 리소스 절약

Feature Representation

Feature Representation

주어진 raw data를 피쳐벡터로 변형하는 작업에서 피쳐를 어떻게 표현할지를 결정.

Raw Data

```
patient 0:
    name: "Ken Adams"
    age: 65
    gender: male
    bp: 160, 80
    medical_history {
        diabetes,
    }
}
```


Feature Vector

```
[

"Ken Adams",

65,

0,

160,

80,

[0, 0, ..., 1, ... 0]
]
```

Feature Representation

피쳐 생성에서 필요한 작업

- 주어진 raw data를 피쳐로 맵핑
- 수치 데이터 (numeric features)를 어떻게 표현?
- 카테고리데이터(categorical features)를 어떻게 표현?
- "도메인지식"을 활용할수있나?

Numerical Features

수치데이터는 인코딩 없이 그대로 맵핑이 가능

- 모델 weight에 feature value 그대로 연산 가능하기 때문.

특별한 인코딩 없이 바로 수치로 feature 저장.

Raw Data

```
patient 0:
age: 65
bp: 160, 80
weight: 64.5cm
}
```


Feature Vector

```
age: 65,
bp_systolic: 160,
bp_diastolic: 80,
weight: 64.5
```

Categorical Features

Categorical Feature는? One-hot encoding으로 인코딩 가능.

Raw Data

```
patient 0:
    name: "Ken Adams"
    gender: male
    medical_history {
        diabetes,
    }
}
```


Feature vector

```
[
    "Ken Adams",
    0,
    [0, 0, ..., 1, ... 0]
]
```

One-Hot Encoding

- 단어를 표현하는 가장 기본적인 표현 방법.
- 단어집합(Vocabulary): 서로 다른 단어들의 집합. E.g. {apple, apples, ...}
- Vocabulary에 있는 단어에 고유한 정수를 부여하여 인코딩.
- 표현하고 싶은 단어의 고유한 정수를 인덱스로 간주하고, 해당 위치에 1을 부여 (아니면 0).

"나는 국민대학교 소프트웨어 융합대학원 인공지능 전공 학생이다"

1	2	3	4	5	6	7
국민대학	나는	소프트웨	융합대학	인공지능	전공	학생이다
교		ОН	원			

단어 표현

"국민대학교"를 위 테이블로표현하려면?

1	2	3	4	5	6	7
1	0	0	0	0	0	0

"소프트웨어"?

1	2	3	4	5	6	7
0	0	1	0	0	0	0

from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.utils import to_categorical text = "나는 국민대학교 소프트웨어 융합대학원 인공지능 전공 학생이다" tokenizer = Tokenizer() tokenizer.fit_on_texts([text]) print('단어 집합:',tokenizer.word_index)

단어 집합: {'국민대학교': 1, '나는': 2, '소프트웨어': 3, '융합대학원': 4, '인공지능': 5,

sub_text = "나는 국민대학교 학생이다"

encoded = tokenizer.texts_to_sequences([sub_text])[o]

[2, 1, 7]

one_hot = to_categorical(encoded) print(one_hot)

'전공': 6, '학생이다': 7}

print(encoded)

[[0. 0. 1. 0. 0. 0. 0. 0.] # 인덱스 2의 원-핫 벡터 [0. 1. 0. 0. 0. 1. 0. 0.] # 인덱스 1의 원-핫 벡터 [0. 0. 0. 0. 0. 0. 0. 1.]] # 인덱스 7의 원-핫 벡터

Categorical Features

Raw Data

```
patient 0:
    name: "Ken Adams"
    gender: male
    medical_history {
        diabetes,
        hypertension,
        obesity,
    }
}
```

Feature vector

```
"Ken Adams",
0,
[0, 0, ..., 1, ... 0]
[0, 1, ... ... 0]
[0, ..., 1 ... ... 0]
```

단점:

- Vocab의 크기가 커질수록 필요 공간이 증가.
- 비슷한 단어들간의 상관관계 표현 어려움.

필요공간:

SparseRepresentation으로 해결

상관관계:

 Word Embedding 등으로 해결 (Word2vec, Bert)

TensorFlow Code Example..

Properties of "Good Features"

충분히 존재하는 카테고리 피쳐

Good: patient_gender,

Bad: patient_id

ID는 predictive power가 없음!

명확히 이해하기 쉬운 피쳐

Good: patient age: 65

Bad: patient age: 1233444

디버깅할때 어려움. 차후 transformation 가능.

Magic value는 피할것

Good: patient age: 65 Bad: patient_age: -1

누락값을 -1으로 표시. 다른 값과 상관관계 없음!

시간이 지남에 따라 feature value가 변하지 않을 것

Good: city id: "kr/seoul"

Bad: inferred city id: "2330"

2330이 다른 모델의 아웃풋. 모델 변경시 stability 저하

Data Cleansing

Data Cleaning

ML 엔지니어로서, 매우 많은 시간을 데이터 클리닝에 소요하게 된다..

- Scaling: 피쳐 값들을 스케일링 하기
- Outlier handling: 아웃라이어 데이터 포인트
- Binning: Continuous한 수치값을 Discrete한 빈(bin)으로 변화
- Scrubbing: 불필요한 데이터를 삭제
- Missing value handling: 누락 값 핸들링

Feature Scaling

수치 데이터 (numerical feature)들의 레인지가 각각 서로 다를 때, 일반적으로 해당 numerical value 들을 표준화된 레인지로 스케일링하게된다. 이를 통하여 얻는 장점은:

Gradient Descent이 더 빨리 converge하게 된다.

"NaN trap" 방지: 학습 알고리즘이 많은 operation을 할때 precision limit때문에 NaN가 되는 문제를 방지.

모델이 적절한 weight를 계산하는데 도움: feature scaling없이는 값이 큰 feature에 더 먼저 신경을 쓰게 됨.

Feature Scaling: Z-score based scaling

Z-score (표준점수): 주어진 데이터 분포의 평균 (mean)값에서, 해당 수치가 얼마나 많은 standard deviation의 거리만큼 떨어져 있는지의 수치.

Outlier Handling

(미국) 각 도시별 보유 주택 통계 데이터

$$roomsPerPerson = \frac{totalRooms}{population}$$

인당 방 갯수가 너무 많은 outlier들이 등장.

Outlier Handling: Apply Logarithm

각 수치마다 Log를 계산하여 분포를 좁힐 수 있음.

$$roomsPerPerson = log(\frac{totalRooms}{population} + 1)$$

그래도 여전히 롱테일이 존재..

Outlier Handling: Data Clipping

한사람당 사용하는 방의 갯수가 4개라고 가정하면... rooms $PerPerson = max(\frac{totalRooms}{population}, 4)$

Data Clipping을 4로 실행했을 시, 분포가 더 정상적으로 보임.

Feature Binning (Bucketing)

캘리포니아의주택들을위도(latitude)에 따라 분포하면 클러스터가 존재한다.

- 34: Los Angeles
- 38: San Francisco

주택 가격을 예측한다고 가정할때, "위도"와 가격의 <u>선형 (linear)적인 상관관계</u>를 도출해내긴 어렵다.

Feature Binning (Bucketing)

Quantile Binning: 실제 bin range를 나눌때는 동일한 간격으로 나누기보다, 각 Bin 마다 동일한 갯수의 데이터가 존재하도록 분열 → 왜?

Feature Scrubbing

실제 데이터에는 여러가지 이유로 믿을 수 없는 데이터가 존재한다.

- Omitted: 누락된 데이터
- Duplicate: 동일한 데이터가 여러번 기록됨.
- 레이블(Label) 오류: 데이터 수집 시 잘못 저장된 레이블 오류
- 데이터(Feature) 오류: 피쳐 데이터 수집 시 오류 (예: 특정 센서데이터 오류)

이러한데이터 오류를 다양한 아래와 같은 Data Validation을 통해 모니터링하고, 잘못된데이터를 삭제해야한다.

- 최대, 최소값 (Maximum, Minimum)
- 평균, 중위값 (Mean, Median)
- 표준편차

Break.

<u> 퀴즈 4</u>

Handling Missing Data

실제 데이터셋에흔히 나오는 문제는 데이터 누락 (Missing Value)이다.

E.g. "[]", "NaN", "None", ..

누락된 값이 많은 데이터로 학습하면 모델 정확도에 큰 영향을 미친다.

어떻게 핸들해야 할까?

Handling Missing Data

- 1. Do Nothing
- 학습 알고리즘이 누락된 데이터를 처리하도록 허용.
- 일부알고리즘은누락데이터를무시할수 있는 기능이 있음 (예: xgboost, LightGBM)
- 일반적으로누락데이터 처리를 못할 경우가 많음 (e.g. LinearRegression)

Handling Missing Data

2. Remove Missing Value

- 누락된데이터 자체를 제거.
- 누락된데이터가얼마나 많느냐(반대로, 유의미한데이터가얼마나 많느냐)에 따라모델 정확도에 큰 영향.

Handling Missing Data: Imputation

결측값 대체 (Imputation):

결측값 (missing value)이 존재할 때, 해당 결측값 대신 추정한 대체값을 계산하여 넣는 방법.

Imputation 방법은 크게 두가지로 나뉜다:

- Single Imputation
- Multiple Imputation

Single Imputation

누락값(Missing value)들이 있으면 대체값을 어떻게 구할까?

Most Frequent Imputation

Most Frequent Value / Zero / Constant Imputation

- Most frequent: 가장 빈번히 나온 값으로 대체.
- Zero: 0으로 대체
- Constant: 지정한 상수값으로 대체

	0	1	2	3	4			0	1	2	3	4
0	NaN	41.0	6.984127	1.023810	322.0	most_frequent()	0	3.6591	41.0	6.984127	1.023810	322.0
1	8.3014	21.0	6.238137	0.971880	2401.0		1	8.3014	21.0	6.238137	0.971880	2401.0
2	NaN	52.0	8.288136	1.073446	496.0		2	3.6591	52.0	8.288136	1.073446	496.0
3	5.6431	NaN	5.817352	NaN	558.0		3	5.6431	52.0	5.817352	0.951362	558.0
4	NaN	52.0	6.281853	1.081081	565.0		4	3.6591	52.0	6.281853	1.081081	565.0
5	4.0368	NaN	4.761658	1.103627	413.0		5	4.0368	52.0	4.761658	1.103627	413.0
6	3.6591	52.0	4.931907	0.951362	1094.0		6	3.6591	52.0	4.931907	0.951362	1094.0
7	NaN	52.0	4.797527	1.061824	1157.0		7	3.6591	52.0	4.797527	1.061824	1157.0
8	NaN	42.0	4.294118	1.117647	1206.0		8	3.6591	42.0	4.294118	1.117647	1206.0
9	3.6912	52.0	4.970588	0.990196	1551.0		9	3.6912	52.0	4.970588	0.990196	1551.0

장점:

- 쉽고 빠르게 계산
- Categorical feature에 유용

단점:

- 다른 feature들과 무시 ○ Invalid data 생성
- 데이터에 bias 생성

Mean / Median Imputation

- 해당 feature column의 missing value들을, 다른 데이터셋의 평균(mean) 이나 중위(median)으로 대체.
- 숫자형 데이터(Numerical feature)에만 사용가능함.

	0	1	2	3	4			0	1	2	3	4
0	NaN	41.0	6.984127	1.023810	322.0		0	5.06632	41.0	6.984127	1.023810	322.0
1	8.3014	21.0	6.238137	0.971880	2401.0		1	8.30140	21.0	6.238137	0.971880	2401.0
2	NaN	52.0	8.288136	1.073446	496.0		2	5.06632	52.0	8.288136	1.073446	496.0
3	5.6431	NaN	5.817352	NaN	558.0		3	5.64310	45.5	5.817352	1.041653	558.0
4	NaN	52.0	6.281853	1.081081	565.0	mean()	4	5.06632	52.0	6.281853	1.081081	565.0
5	4.0368	NaN	4.761658	1.103627	413.0		5	4.03680	45.5	4.761658	1.103627	413.0
6	3.6591	52.0	4.931907	0.951362	1094.0		6	3.65910	52.0	4.931907	0.951362	1094.0
7	NaN	52.0	4.797527	1.061824	1157.0		7	5.06632	52.0	4.797527	1.061824	1157.0
8	NaN	42.0	4.294118	1.117647	1206.0		8	5.06632	42.0	4.294118	1.117647	1206.0
9	3.6912	52.0	4.970588	0.990196	1551.0		9	3.69120	52.0	4.970588	0.990196	1551.0

장점:

- 쉽고 빠르게 계산
- numerical feature에 유용

단점:

- 다른 feature들과 상관관계 무시
- 데이터에 bias 생성
- 동일한 값으로 모델 정확도에 영향 적음

kNN Imputation: **kNN**

- missing value가 있는 데이터셋을, 근사한 다른 데이터셋들을 이용하여 추정값으로대체.
- K개의 nearest neighbor를 찾은 후, 가장 많은 분류값으로 대체
- numerical feature 경우, NN중 거리에 따라 가중평균

장점:

- 다른 feature들과 상관관계를 이용하여 보다 정확
- numerical, categorical
 사용 가능

단점:

- Cost: 메모리 + 시간
- Outlier 민감

Multiple Imputation

Single Imputation의 경우, 대체값으로 타 데이터셋과 비슷한 값으로 추정 대체

헌데, missing value라 하면, 원래 있던 값보다 신뢰도가 떨어져야 하지 않나?

- 1. 다양한 single imputation방법으로 대체값 생성
- 2. 해당 데이터셋으로 학습 + 결과 추론
- 3. 추론한 결과값을 Pooling 하여 사용

When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts, BMC Medical Research Methodology

mice: Multivariate Imputation by Chained Equations in R, Journal of Statistical Software

Data Cleansing: Imputation Summary

- 모든 데이터셋에 완벽한 대체방법은 없음.
- 데이터 유형, 분포에 따라 성능의 차이가 나기도 한다.
- 한 feature당 누락된 데이터가 너무 많다면: Filter
- 혹은 계산하기 쉬운 방법으로 넣고 전체 모델링 시작.
 - 차후 다른 방법으로 하나씩 대체하거나 Multiple Imputation 방법을 사용

Feature Selection

Feature Selection

Feature Selection: 주어진 Feature들 중, 중요한 피쳐들만 골라내는 작업.

피쳐의 중요도: 수집된 데이터에서 특정 feature가 얼마나 중요한가?

- 얼마나 Output variable과 연관되었는가? Correlation Coefficient
- 얼마나 쓸모없는데이터 인가? Variance Threshold

전체 피쳐들

중요한 피쳐만 필터

선택된 피쳐들

Feature Selection

VarianceThreshold: 데이터셋에서 variance가 낮은 feature들을 threshold를 사용하여 필터할 수 있음.

e.g. zero-variance feature: 모든 데이터 샘플에 같은 값인 피쳐.

그럼 VarianceThreshold를 어떻게 세팅하나?

예) boolean 피쳐중 80% 이상 같은 값을 갖고 있는 피쳐들을 없애고 싶다.

boolean 피쳐는 <u>Bernoulli distribution</u>이므로, Bernoulli random variable의 variance는

$$Var[X] = p(1-p)$$

Variance Threshold Filter

```
Var[X] = p(1 - p)
= 0.8 \cdot (1 - 0.8) = 0.16
```

첫번째 열이 필터링 됨.

Feature Extraction

Feature Extraction

Feature Extraction에서는 주어진 데이터(raw data)에서 새로운 피쳐를 생성한다.

Feature Crossing

두개 이상의 feature를 "곱해서" 생성

비선형 (non-linear)적인 관계를 형성

Feature Crossing: Non-linearity

Task: 사진에서 병든나무 vs 건강한 나무를 분간하시오.

파랑: 병든 나무

노랑: 건강한 나무

선형적인 관계?

Yes

Feature Crossing 불필요

$$Y = f(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

Feature Crossing: Non-linearity

Task: 사진에서 병든나무vs 건강한 나무를

분간하시오.

파랑: 병든 나무

노랑:건강한나무

선형적인 관계?

No

Feature Crossing 필요

Feature Crossing

- Feature crossing을 이용하여 피쳐들과 아웃풋과의 nonlinearity를 인코딩하려는
 의도.
- 잇풋벡터의곱을 사용해서 새로운 피쳐로 사용. $x_3 = x_1 x_2$

• 그리고 새로운 피쳐를 본래 linear classifier에 사용

$$y = w_1x_1 + w_2x_2 + w_3x_3 + b$$

Feature Crossing

다양한 피쳐 크로스를 생성 가능

- [AxB]: 2개의 피쳐를 크로싱
- [AxBxCxDxE]: 5개 피쳐를 크로싱
- [AxA]: 한개의 피쳐를 스스로 제곱하여 크로싱.

딥러닝에서는 Feature Crossing 필요 없다는데?

- Correct.
- Multilayer Perceptron (MLP)으로 feature crossing을 표현 가능.
- 그러나 어느 feature들을 어떻게 crossing할지를 미리 도와주는 단계.

Feature Crossing: Categorical

일반적으로카테고리 피쳐들을 자주 크로싱: country=USA, language=English

```
country = [0, 0, 0, 1, ....0]
```

lang = $[0, 0, 0, \dots 1, \dots 0]$

```
country = [
1 if USA
1 if Korea
1 if Canada
...
]
```

```
lang = [
1 if English
1 if Spanish
1 if Korean
...
]
```

```
lang = [
    1 if en-US
    1 if es-US
    1 if ko-KR
    ...
]
```

Crossed Feature가 원래 피쳐 country, lang보다 훨씬 더 커다란 공간을 커버.

Other Feature Extraction

그 이외에도 각 문제의 도메인 지식을 사용하여 새로운 피쳐들을 생성하기도 함.

Text / Language	Stemming, 형태소 분리	go, goes, gone	n개의 단어들과 feature crossing		
	n-grams	홍길동이 학교에 갔다 -> "홍길동이 학교에", "학교에 갔다"			
	<u>tf-idf</u>	문서의 단어 중요도			
Image /	clipping	이미지 잘라내기			
Vision	channel	RGB, CMYK,			
	Canny filter	<u> 엣지 디텍터</u>			

바로 옆에 등장하는

Feature Engineering in Deep Learning?

딥러닝에서는raw input data에서 직접 학습을 통해 추론을 할 수 있다.

"From this perspective, a deep learning system is a fully trainable system beginning from raw input, for example image pixels, to the final output of recognized objects."

그렇다면 딥러닝에선 Feature Engineering이 필요 없을까?

Yes and No.

Spotify music recommendation model (<u>link</u>)

- 인풋: 푸리에변환에의한 사운드포맷
- Layer 1~3: Max pooling (scale)
- Layer 4: mean, max, L2 norm (time series)
- Layer 7~9: convolution
- 아웃풋: 아웃풋 통계 (convolution)

Layer 7~9을 제외한 나머지는 hard-coded 피쳐 변환.

모델 아키텍쳐 = Feature Engineering

Steps for Feature Engineering

- 1. 도메인 지식이 있는가? 그렇다면 손으로 피쳐를 작성하시오.
- 2. 선택한 피쳐들이 적합한가? 아니라면 Normalize하시오
- 3. **피쳐들이 독립적인가?** 그렇다면 product feature / conjunctive feature들을 생성해보라(리소스가 가능한 만큼)
- 4. 인풋 피쳐를 골라 내야 하나? 아니라면 반대개념의 피쳐도 생성해보라
- 5. 개별 피쳐를 평가해볼 필요가 있는가? 모델에 끼치는 영향 확인 혹은 전반적인 필터링이 필요?
- 6. 데이타가 "오염"되었다고생각하나? 아웃라이어들을걸러내시오
- 7. **어떤 모델로 시작해볼지?** 우선 linear predictor로 시작.

An Introduction to Variables and Feature Selection, Journal of Machine Learning Research (2003)

Feature Engineering from Structured Data

Colab 튜토리얼

- (Colab의 영어버전) <u>PetFinder</u> 데이터: 애완견 입양 플랫폼, 입양 될지 안될지 예측.
- (한글버전): Cleveland Health 데이터셋.
- 정형데이터(structured data)를 사용한 feature engineering
 - o Bin bucketing feature (버킷형 피쳐)
 - o One Hot 인코딩
 - 임베딩 피쳐
 - 피쳐 크로싱