Project: Creditworthiness

Step 1: Business and Data Understanding

Key Decisions:

Answer these questions

• What decisions needs to be made?

Ans: A small bank, where I am working, has recently faced a sudden influx of loan applications due to a competitor bank facing some scandal. Previously, bank used to manually process almost 200 loan applications per week. But due to an abrupt increase in loan applications, the manager wants an efficient way to categorize the applicants as creditworthy or not creditworthy. I have been entrusted to perform this task by using my knowledge of classification models and give a list of people who are creditworthy to my manager in the next two days.

What data is needed to inform those decisions?

Ans: To make an informed decision regarding applicant's credit worthiness, the following two datasets are required:

- 1. A training dataset where classification of creditworthy and noncredit worthy applicants is already done based on different parameters.
- 2. A dataset of new applicants on which the classification needs to be done.

Both of these datasets should have information such as applicants bank balance, savings, duration of balance in his account, etc. to determine their credit worthiness. *Note: We are not determining any significant variables/parameters yet that would help us in predicting the default risk.*

 What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

Ans: We would use a **Binary Classification Model** as the result that we are looking for has only two options, either creditworthy or not creditworthy.

Step 2: Building the Training Set

Data Cleaning Process:

Step 1: I used the **Field Summary** tool to investigate my data for any null / missing values and low variability data. The following graphs show you the results

Missing Data

Low Variability Data

Step 2: Remove low variability data columns from the dataset

		Field	Туре	
Þ.	\checkmark	Credit-Application-Result	V_String	Ŧ
	\checkmark	Account-Balance	V_String	•
	~	Duration-of-Credit-Month	Double	•
	$\overline{}$	Payment-Status-of-Previous-Credit	V_String	•
	~	Purpose	V_String	•
		Credit-Amount	Double	•
		Value-Savings-Stocks	V_String	•
		Length-of-current-employment	V_String	•
		Instalment-per-cent	Double	•
		Guarantors	V_String	•
		Duration-in-Current-address	Double	•
		Most-valuable-available-asset	Double	•
		Age-years	Double	•
		Concurrent-Credits	V_String	•
		Type-of-apartment	Double	•
		No-of-Credits-at-this-Bank	V_String	•
		Occupation	Double	•
		No-of-dependents	Double	•
		Telephone	Double	T.
		Foreign-Worker	Double	•
	$\overline{\mathbf{V}}$	*Unknown	Unknown	•

Step 3: Impute value in the column "Age-years".

Since the percentage of missing values in the column "Age-years" is only **2.4%**, it is not a good idea to drop the column. Instead we have imputed median value of the Age-year column where the data was missing. We have done this using the **Imputation tool** in Alteryx.

Age-years Type-of-apartment
Incoming value to replace
Null
O User specified value
Replace with value
○ Average
Median

To summarize:

- We identified missing data and low variability data
- Removed columns with high percentage of missing values
- Removed columns with low variability
- Imputed median value in the missing fields of Age-Years column

Step 3: Train your Classification Models

My Alteryx Workflow:

Model # 1: Logistic Stepwise

Significant Variables: Account Balance, Payment Status of Previous Credit, Purpose, Length of Current Employment, Installment

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.9621914	6.837e-01	-4.3326	1e-05 ***
Account.BalanceSome Balance	-1.6053228	3.067e-01	-5.2344	1.65e-07 ***
Payment.Status.of.Previous.CreditPaid Up	0.2360857	2.977e-01	0.7930	0.42775
Payment.Status.of.Previous.CreditSome Problems	1.2154514	5.151e-01	2.3595	0.0183 *
PurposeNew car	-1.6993164	6.142e-01	-2.7668	0.00566 **
PurposeOther	-0.3257637	8.179e-01	-0.3983	0.69042
PurposeUsed car	-0.7645820	4.004e-01	-1.9096	0.05618.
Credit.Amount	0.0001704	5.733e-05	2.9716	0.00296 **
Length.of.current.employment4-7 yrs	0.3127022	4.587e-01	0.6817	0.49545
Length.of.current.employment< 1yr	0.8125785	3.874e-01	2.0973	0.03596 *
Instalment.per.cent	0.3016731	1.350e-01	2.2340	0.02549 *
Most.valuable.available.asset	0.2650267	1.425e-01	1.8599	0.06289.

Model # 2: Decision Trees

Top 3 Significant Variables: Account Balance, Value Savings Stocks, Duration of Credit Month

Model # 3: Random Forest

Top 3 Significant Variables: Account Balance, Age.years, Duration of Credit Month

Variable Importance Plot

Model # 4: Boosted Model

Top Significant Variables: Account Balance, Credit Amount

Variable Importance Plot

Model Comparison

Model Comparison Report

Fit and error measures								
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy			
SW_CreditWorthiness	0.7600	0.8364	0.7306	0.8762	0.4889			
DT_CreditWorthiness	0.7467	0.8304	0.7035	0.8857	0.4222			
RF_CreditWorthiness	0.7933	0.8681	0.7368	0.9714	0.3778			
BM_CreditWorthiness	0.7867	0.8632	0.7515	0.9619	0.3778			

SW: Logistic Stepwise Model DT: Decision Tree Model RF: Random Forest Model BM: Boosted Model

The overall accuracy of the models is as follow:

Logistic Step Wise: 76% Decision Tree: 74.67% Random Forest: 79.33% Boosted Model: 78.67%

Biasness: Decision Tree and Logistic Stepwise Regression is biased towards their true positives but Random Forest and Boosted Model are not.

Confusion Matrix

Confusion matrix of BM_CreditWorthiness		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	28
Predicted_Non-Creditworthy	4	17
Confusion matrix of DT_CreditWorthiness		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	93	26
Predicted_Non-Creditworthy	12	19
Confusion matrix of RF_CreditWorthiness		
	A 1 1 0 19 11	A 1 A1 C 11 11
	Actual_Creditworthy	Actual_Non-Creditwortny
Predicted_Creditworthy	Actual_Creditworthy 102	Actual_Non-Creditwortny 28
Predicted_Creditworthy Predicted_Non-Creditworthy	_ ,	Actual_Non-Creditworthy 28 17
	102	_ ,
Predicted_Non-Creditworthy	102	
Predicted_Non-Creditworthy	102 3	28 17

Step 4: Writeup

• Which model did you choose to use? Please justify your decision using **all** of the following techniques. Please only use these techniques to justify your decision:

Ans: I chose Random Forest Model because:

- Overall Accuracy against your Validation set
 - The overall accuracy of Random Forest is 79.33%, which is the highest among all four models.
- o Accuracies within "Creditworthy" and "Non-Creditworthy" segments
 - Random Forest Model's accuracy to predict creditworthy people is
 97.14%
 - Its accuracy to predict non-creditworthy people is 37.37% which is quite low, but given the top two models based on accuracy_creditworthy score, Random Forest being on first and Boosted Model on second, they both have same accuracy of predicting non-creditworthy people. Hence we'll still choose Random Forest.
- ROC graph

Random Forest has the best line curve on the ROC

- Bias in the Confusion Matrices
 - Decision Tree and Logistic Stepwise Regression is biased towards their true positives but Random Forest and Boosted Model are not.
- How many individuals are creditworthy?

Ans: There are 408 people who are credit-worthy and 92 people who are not.