Lean Divide-&-Conquer Density Functional The	eory
(LDC-DFT)	6/3/11
- Divide-&-conquer density functional theory (DC-D	OFT)
\bullet Key approximation: $\widehat{H} \to \widehat{H}^{\alpha}$	
9 Interpretation	
1) Projection	
$\hat{H}^{\alpha} = \sum_{n = \infty} m\rangle\langle m H n\rangle\langle n $	(٢)
$m,n\in\Omega_{\alpha}$	
2 Boundary potential Vbc (Ir)	
e.g. Dirichlet (hand wall) boundary condition	2
$V_{bc}^{\alpha}(Ir) = \begin{cases} 0 & (Ir \in \Omega_{\alpha}) \\ \infty & (else) \end{cases} $	(2)
	-P(Ir)
Pa(Ir)	
	
K-JZd-A	17
- Improved boundary potential: Minimize /Pa(1r)-F	(Ir)!
According to the Hohenberg-Kohn theorem, Pa(1r) co	prresponds
to a unique external potential V(Ir), which is	distinct
from the actual potential corresponding to the total	l $P(Ir)$.
o To reduce $ P^{\alpha}(ir) - P(ir) $, we use perturbation	n
$V_{bc}^{\alpha}(ir) = \int dir' \frac{\delta V(ir)}{\delta \rho(ir')} \left[\rho^{\alpha}(ir') - \rho(ir) \right]$	(3)
J SP(Ir)	

Purification for FMO (Tsuneyuki, CPL 476, 104 ('09)), but

we want material / geometry - indipendent recipes!

 Local	appro	Xime	ation (c	F. PRB	39,	4930	(389))	
37	T(ir)	0.	S(11-11)					VY To all the Control of the Control	
SI	P(Ir')	weeds.	X						
Annual continuous processinal annual action and action and action and action and action action and action and action action and action	Company of the Compan	The second secon		A STATE OF THE PARTY OF THE PAR	and the second second second second second	ter sa terre transaction production consequences for the object of the sales		Committee of the second state of the second	

by Prodan & Kohn (PNAS 102, 11635 ('05)) to be the

Short range of the influence of V(Ir) on P(Ir) at

nearby points Ir.

• Substituting Eq. (4) in (3), $V_{bc}^{\alpha}(Ir) \stackrel{?}{=} P^{\alpha}(Ir) - P(Ir)$ (5)

 $\begin{cases} P^{\alpha}(Ir) > P(Ir) : Positive V_{bc}^{\alpha}(Ir) reduces P^{\alpha}(Ir) \end{cases}$ $\begin{cases} Negative increases \end{cases}$

$$(\hat{H}+\lambda\hat{V})(10\rangle+\lambda|1\rangle+\cdots)=(\epsilon_0+\lambda\epsilon_1+\cdots)(10\rangle+\lambda|1\rangle+\cdots)(\delta)$$

$$\hat{H}$$
 $|0\rangle$ = $|\epsilon_0|0\rangle$

$$+\lambda\left(\hat{H}|1\rangle+\hat{V}|0\rangle\right)$$
 $+\lambda\left(C_{0}|1\rangle+C_{1}|0\rangle\right)$

Equating the linear terms of
$$\lambda$$
 in the 1.h.s. & r.h.s.,

$$\hat{H} | 1 \rangle + \hat{V} | 0 \rangle = \epsilon_0 | 1 \rangle + \epsilon_1 | 0 \rangle \tag{7}$$

<01 x Fg. (6)

$$\frac{\langle 0|\hat{H}|1\rangle + \langle 0|\hat{V}|0\rangle = \epsilon_0 \langle 0|1\rangle + \epsilon_1 \langle 0|0\rangle}{\epsilon_0 \langle 0|1\rangle}$$

$$\vdots \quad \epsilon_1 = \langle 0|\hat{V}|0\rangle$$

$$\vdots \quad \epsilon_1 = \langle 0|\hat{V}|0\rangle \tag{8}$$

Substituting Eq. (8) in (7),

$$(\hat{H} - \epsilon_0) | 11 \rangle = -(\hat{V} - \langle 0|\hat{V}|0 \rangle) | 10 \rangle \qquad (9)$$

Each local Kohn-Sham orbital Yn(11) with energy En

will be corrected as
$$\frac{\hat{V}_{bc}^{d} - \langle \Psi_{n}^{\alpha} | \hat{V}_{bc}^{d} | \Psi_{n}^{\alpha} \rangle}{\hat{H}_{a} - \epsilon_{n}^{\alpha}} = \frac{\hat{V}_{bc}^{d} - \langle \Psi_{n}^{\alpha} | \hat{V}_{bc}^{d} | \Psi_{n}^{\alpha} \rangle}{\hat{H}_{a} - \epsilon_{n}^{\alpha}} = (10)$$

- LDC algorithm

- 1. Obtain {that(ir), En] using periodic boundary condition
- 2. for ∀n

$$|\Psi_{n}^{\alpha}\rangle \leftarrow |\Psi_{n}^{\alpha}\rangle - \frac{\hat{V}_{bc}^{\alpha} - \langle \Psi_{n}^{\alpha}|\hat{V}_{bc}^{\alpha}|\Psi_{n}^{\alpha}\rangle}{\hat{H}_{a} - \epsilon_{n}^{\alpha}} |\Psi_{n}^{\alpha}\rangle \qquad (10)$$

(Gram-Schmidt orthogonalization)

$$|\psi_{n}^{\alpha}\rangle \leftarrow |\psi_{n}^{\alpha}\rangle - \sum_{m=1}^{n-1} |\psi_{m}^{\alpha}\rangle\langle\psi_{m}^{\alpha}|\psi_{n}^{\alpha}\rangle \tag{11}$$

$$|\Psi_n^{\alpha}\rangle \leftarrow \frac{|\Psi_n^{\alpha}\rangle}{\sqrt{\langle \Psi_n^{\alpha}|\Psi_n^{\alpha}\rangle}} \tag{12}$$

3. (Subspace diagonalization)

Diagonalize Kyml Ĥalyn > to obtain new { 4hur, En}

@ Explanation = reduced Pain-P(Ir)

DF perambation theory?
$$SV_{bc}(ir) = \int dir' \chi_{KS}^{-1}(ir,ir') \frac{SP(ir')}{P_{global}(ir')}$$

$$V_{bc}(ir) = \int dir' \chi_{KS}^{-1}(ir,ir') \frac{SP(ir')}{P_{global}(ir')}$$

$$V_{bc}(ir') = \int dir' \chi_{KS}^{-1}(ir,ir') \frac{SP(ir')}{P_{global}(ir')}$$

$O(N) - O(N^3)$ Crossover

4/8/14 L: Cubic box length 1: Cubic domain length b: Buffer length O(N) DFT computation time O(N3) DFT DFT complexity V=2 N<103 $\left(\frac{L}{l}\right)^{3} \times \left(l+2b\right)^{3\nu} = L^{3\nu}$ V=3 N>103 $\left(\frac{L}{l}\right)^2 = \left(\frac{L}{l+2h}\right)^{2\nu}$ For minimizing computational time, $l = l_x = 2b/(\nu-1)$. $\frac{2b}{2b} = \left(\frac{2b}{2b} + 2b\right)^{2}$ $\frac{L}{2b} = \left(\frac{L}{\nu}\right)$ Assuming L is small enough so that $\nu = 2$ (to be checked), $\frac{L}{2h}\left(1-\frac{L}{8h}\right)=0$:. L = 8b With LDC-DFT, b=3.57 au to achieve the energy convergence of 5×10-3 a.u., then the O(N3) - O(N) crossover point is L=8x3.57= 28.56 au. $N = 512 \times \left(\frac{28.56}{45.44}\right)^3 = 125.26 \text{ atoms}. \left(\frac{10^3 \text{ indeed}}{10^3 \text{ indeed}}\right)$