GOVERNMENT POLYTECHNIC, NAGPUR.

(An Autonomous Institute of Govt. of Maharashtra)

COURSE CURRICULUM

PROGRAMME : DIPLOMA IN EC, CM, IT

LEVEL NAME : ENGINEERING SCIENCES AND TECHNICAL ARTS COURSES

COURSE CODE : EE303E

COURSE TITLE : ELECTRICAL ENGINEERING

PREREQUISITE : NIL

TEACHING SCHEME: TH: 04; TU: 00; PR: 02(CLOCK HRs.)

TOTAL CREDITS : 05 (1 TH/TU CREDIT = 1 CLOCK HR., 1 PR CREDIT = 2 CLOCK HR.)

TH. TEE EXAM : 03 HRs

PR. TEE EXAM : 02 HRs (Internal)

PT. EXAM : 01 HR

***** RATIONALE:

Knowledge of electrical engineering is essential for the students of Electronics/ Computer/ Information technology. Students should know the facts, concepts, principles and procedures in electrical engineering. This course describes the basic facts, concepts & principles for the understanding of basic elementary knowledge related to electrical area. It is very useful course for Solving &understanding the different electronic circuits.

COURSE OUTCOMES:

After completing this course students will be able to-

- 1. Follow the electrical safety precautions.
- 2. Solve the electrical circuits by using principle and basic laws.
- 3. Select transformers and motors for particular applications.
- 4. Connect electrical measuring instruments in the circuit
- 5. Use different machines for different application.
- 6. Operate electrical machines/equipment.

COURSE DETAILS: *

THEORY: A.

	EURY:		
Units	Specific Learning	Topics and subtopics	Hrs.
	Outcomes (Cognitive		
	Domain)		
1. Electrical	1. Recall electrical safety	1.1 Electrical Safety, Causes of	7
Safety	rules.	accidents, General safety rules,	
	2. Remove the electrocuted	Concept of electrical shock,	
	person from live	Effect of electric shock,	
	conductor	Method of removing	
	3. Interpret electrical safety	electrocuted person, Safety	
	signs and symbols	signs and symbols.	
	4. Carry out different	1.2 Artificial respiration-	
	methods of artificial	Schaefer's method, Silvestre's	
	respiration on electrocuted	method, mouth to mouth	
	person	respiration.	
	5. Use fire-fighting	1.3 First Aid	
	equipment on different	1.4Fire, Causes of Fire, Basic	
	types of fires.	ways of extinguishing the fire	
		•	
	6. Classify various types of	Classification of fire, Class A,	
	earthing.	B,C, D, Fire fighting	
	7. State the need of earthing.	equipments, fire extinguishers,	
	2/ 34/ 8	and their types.	
		1.5Earthing-Nessesity of earthing,	
	COLU	methods of reducing earth	
	J GTW	resistance.	
2. Fundamentals	1. Define the various	2.1 Concept of electric charge,	9
of electricity	electrical Parameters,	current, voltage drop, EMF,	
	work, power and energy	potential difference, Direction	
	2. State different effects of	of current and their SI units.	
	electric Current	2.2 Types of material-conductor,	
	3. State various law and its	insulator and semiconductor,	
	applications.	properties and application.	
	4. Calculate the temperature	2.3Resistance, unit of resistance,	
	coefficient of resistance	Law of resistance (Factors	
	5. Identify and draw	affecting resistance), Effect of	
	different electrical	temperature on resistance,	
	engineering symbols	Ohms law (simple numerical on	
	6. Describe line diagram of	2.3).	
	power system	2.4Resistance in series, properties	
	7. Solve series, parallel and	of series circuit, voltage	
	series- parallel resistive	distribution in series circuit,	
	<u> </u>		
	circuits	equivalent resistance of series	
		circuit, Applications of series	
		circuits,	
		2.5 Resistance in parallel,	
		properties of parallel circuit,	
		current distribution in parallel	
		circuit, equivalent resistance of	
		parallel circuit, Applications of	

		parallel circuits,	
		(Numerical problems based on	
		2.4,2.5)	
		2.6 Kirchhoff's current and	
		voltage law(no numerical)	
		2.7 Work, power, energy and their	
		SI units, Relation between H.P	
		and watts, Kwh and Kcal.	
		l	
		2.8 Connection of ammeter,	
		voltmeter and wattmeter in	
		single phase AC circuit. and its	
		measurement.	
		2.9Comparison between AC and	
		DC	
3. AC	1. Define terms related to	3.1 Generation of alternating	12
Fundamentals	AC fundamentals	voltage- single phase and three-	
1 dildamentars	2. Compare terms time	phase.	
	period and frequency,	3.2 Equation of sinusoidal	
	angular velocity and	alternating voltage and current,	
	frequency, frequency and	important terminology such as-	
	speed.	waveform, instantaneous value,	
	3. Solve problems related to	cycle, time period, frequency,	
	pure resistive, inductive	amplitude, Relation between	
	and capacitive circuit	time period and frequency,	
	4. Understand the concept of	angular velocity and frequency,	
	of reactance, I impedance	frequency and speed.	
	and power factor.	3. 3 Maximum, average and	
	5. State and compare types	R.M.S. value of sinusoidal	
	of electrical loads	waveform, form factor and	
	of electrical loads	peak factor.(No derivation)	
	000	3.4 A.C. Voltage applied to pure	
	- 0 \	resistor, pure inductor, and pure	
		capacitor. Concept of reactance,	
		Impedance and power factor,	
		power in single-phase circuits.	
		((Simple Numerical problem	
		based on 5.4 topic).	
4 E1 4 4 4 0		3.5 Types of loads.	
4 Electrostatics&	1. State Coulombs law of	4.1 Coulombs law of	12
Electromagnetism	Electrostatics	Electrostatics, Absolute and	
		relative permittivity, Concept of	
	2. Define terms related to	electric field, electric flux,	
	electrostatics	electric intensity, electric flux	
	3. Solve series, parallel	density, and electric potential,	
	capacitive circuits	potential gradient, dielectric	
		strength.	
	4. Apply laws of	4.2 Capacitance, dielectric	
	electromagnetism	constant, capacitance of parallel	
		plate capacitor, capacitance in	
		series and parallel and source of	
		capacitance in electrical	
		systems. Charging &	

		discharging of capacitor,	
		Dielectric loss. (Numerical	
		problems based on 3.2)	
		4.3 Types of capacitor and their	
		application	
		4.4 Faraday's Laws of	
		electromagnetic induction.	
		Direction of induced EMF and	
		current, Lenz's Law, Fleming's	
		right hand rule, Induced EMF,	
		Dynamically induced EMF,	
		statically induced EMF, self-	
		Inductance (L), Mutual	
		Inductance.	
		4.5 Energy stored in inductor, rise	
		and decay of current through	
	1 5	inductor	
5	1. State meaning of	5.1 Definition, principle of	12
Transformer	transformer.	operation, types of transformer,	
Transformer	2. Describe the concept of	5.2 EMF equation (No derivation),	
	transformation ratio, KVA	transformation ratio, KVA	
	rating of transformer,	rating of transformer, voltage	
	voltage regulation and efficiency	regulation and	
	3. Classify the different	efficiency.(Simple Numerical problem based on 4.2 topic).	
	types of transformer	5.3 Current Transformer and	
	types of transformer	Potential Transformer- Special	
	1 22	features and its applications.	
	3\2m =3	5.4Auto-transformer –Special	
		features, Schematic diagram	
		and its applications	
6. Drives	1. Classify different types of	6.1 Broad classification of A.C &	12
0. Dires	AC & DC motors.	D.C Drives.	12
	2. Select the particular motor	6.2DC Drives- General working	
	for particular application.	principle of D. C. motor.	
	3. Describe construction and	Types-shunt, series and	
	working of DC machines	compound motor. Application and selection for different	
	and AC machines.	applications need of starter, 3	
	4. Understand the need of	point starters, reversal of	
	starter.	rotation.	
	5. Control the speed of	6.3AC Drives-Single-phase	
	motor.	induction motors, their types,	
	6. Describe construction and	application and selection for	
	working of Stepper motor.	different applications, reversal	
		of rotation.	
		6.4 Principle of operation of	
		Stepper Motor and its	
		application. (No Numerical on	
		topic 6)	
		Total Hrs.	64
		I VVIII III II	

B. LIST OF PRACTICALS/LABORATORY EXPERIENCES/ASSIGNMENTS:

Practic	Specific Learning Outcomes (Psychomotor	Units	Hrs.
al's	Domain)		
1	Identify electrical measuring instruments, sources,		
	ICDP/ITDP, switches, loads, wires and execute	Electrical Safety	2
	safety precautions in laboratory.		
2	Connect voltmeter, ammeter and wattmeter in		2
	electrical circuit.		
3	Measure the current, voltage and resistance with the		2
	help of multi-meter or tong tester.		
4	Calculate the unknown resistance in an electric		2
	circuit using ohms law.	Fundamentals of	
5	Calculate the temperature coefficient of resistance	Electricity	2
	of conductors		
6	Measure the total resistance of series circuit &		2
	parallel circuit		
7	Find the branch current and mesh voltage using		2
	Kirchhoff's laws. (KCL & KVL)		
8	Use test lamps for testing single-phase and three –		2
	phase supply. Use of tester on single-phase supply.		
9	Test capacitor. Plot chagrining and discharging	Electrostatics&	2
	curve of capacitor.	Electromagnetism	
10	Measure the inductance of a given coil.	Electromagnetism	2
11	Connect voltage & current ratio of single- phase	Transformer	2
	transformer.	Tunstoffic	
12	Operate CRO and Observe the current & voltage		
	wave form for purely R,L& C ac circuit &interpret	AC Fundamentals	2
	the phasor relationship.		
13	Reverse the directions of rotation of DC shunt		2
	motor.		
14	Reverse the directions of rotation of single-phase	Drives	2
	capacitor start motor		-
15	Identify different parts of Stepper motor at fixed		2
	angular step.		
		Skill Assessment	2
		Total Hrs	32

SPECIFICATION TABLE FOR THEORY PAPER:

Unit	Units	Levels from (Cognition Proce	ognition Process Dimension			
No.		R	U	A			
01	Electrical Safety	02(00)	04(04)	00(00)	06(04)		
02	Fundamentals of electricity	02(00)	04(06)	06(00)	12(06)		
03	AC Fundamentals	06(04)	10(00)	00(06)	16(<mark>10</mark>)		
04	Electrostatics& Electromagnetism	00(02)	04(04)	06(00)	10(06)		
05	Transformer	02(02)	04(04)	06(00)	12(06)		
06	Drives	06(04)	08(04)	00(00)	14(04)		
	Total	18(<mark>12</mark>)	34(22)	18 (<mark>06</mark>)	70 (<mark>40</mark>)		

U – Understand A – Analyze / Apply R – Remember

***** QUESTION PAPER PROFILE FOR THEORY PAPER:

								Tarana and a				-							
Q.		Bit 1	1		Bit 2	2	3	Bit 3	3		Bit 4	\circ		Bit 5			Bit 6	5	
No	T	L	M	Т	L	M	T	L	M	T	L	M	T	L	M	T	L	M	option
01	2	R	2	2	R	2	3	R	2	5	R	2	6	R	2	4	R	2	
01	5	R	2																
02	3	R	4	1	U	4	2	U	4	1	U	4	4	U	4				
03	3	U	4	4	U	4	5	U	4	3	R	4	5	U	4				
04	6	R	4	6	U	4	6	U	4	6	R	4	6	R	4				
05	3	U	6	2	A	6	3	A	6										
06	4	A	6	5	A	6	2	U	6										

T= Unit/Topic Number L= Level of Question M= Marks

U-Understand A-Analyze/ Apply R-Remember

* ASSESSMENT AND EVALUATION SCHEME:

	V	Vhat	To Whom	Frequency	Max Marks	Min Marks	Evidence Collected	Course Outcomes
ory	CA (Continuous Assessment)	Progressive Test (PT)	Students	Two PT (average of two tests will be computed)	20		Test Answer Sheets	1, 2, 3
Direct Assessment Theory	Conti Assess	Assignments	Stud	Continuous	10		Assignment Book / Sheet	1, 2, 3
Direct Asse	TEE (Term End Examination)	End Exam	Students	End Of the Course	70	28	Theory Answer Sheets	1, 2, 3
				Total	100	40		
	essment)	Skill Assessment		Continuous	20		Rubrics & Assessment Sheets	4,5,6
Direct Assessment Practical	CA (Continuous Assessment)	Journal Writing	Students	Continuous	05		Journal	4,5,6
sessme	(Cor			TOTAL	25	10		
Direct As	TEE (Term End Examination)	End Exam	Students	End Of the Course	50	20	Rubrics & Practical Answer Sheets	4,5,6
ssessment		Feedback on ourse	Studente	After First Progressive Test	Stud	Student Feedback Form		1 2 2 45 6
Indirect Assessment	End C	Of Course	Students	End Of The Course		Questionn	aires	1, 2, 3, 4,5,6

SCHEME OF PRACTICAL EVALUATION:

S.N.	Description	Max. Marks
1	Drawing circuit diagram, selection of equipment's. writing procedure etc.	10
2	Performance	20
3	Calculation, Result, Drawing Graphs (if any)	10
4	Viva voce	10
	TOTAL	50

***** MAPPING COURSE OUTCOMES WITH PROGRAM OUTCOMES:

Course Outcomes				Progr	am Ou	tcomes	(POs)				PS	Os
(Cos)	1	2	3	4	5	6	7	8	9	10	1	2
1	3	-	-	-	2	-	1	-	-	-	-	-
2	3	-	-	IJ	~!	15	L.	-	-	-	-	-
3	3	1		57	Q	.03	7	1	-	1	-	-
4	3	1	2	2	1	100	- \	2	1	2	-	-
5	3	1	2	2 -	- 57T	TY	$\square J$	2	-	2	-	-
6	3	-	2	2			10	2	-	2	-	-

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

***** REFERENCE & TEXT BOOKS:

S.N.	Title	Author, Publisher, Edition and Year Of publication	ISBN Number
1.	Principle of Electrical	V. K. Mehta, S. Chand & Company	81-219-1053-6
	Engineering and Electronics	Ltd., Reprint, 1996	
2.	A Text Book Of Electrical	B. L. Theraja, A. K. Theraja,	81-219-2440-5
	Technology Vol-I	S.Chand& Co Ltd., Reprint, 2006	
3.	Basic Electrical Engineering	V. N. Mittle, Arvind Mittal, The	13: 978-0-07-
		McGraw Hill Education Pvt. Ltd,	059357-2
		Reprint, 2011	
4.	Experiments in Basic	S. K. Bhattacharya and K. M. Rastogi.,	978-81-224-
	Electrical Engineering	New Age International Publisher,	1042-6
		Reprint, 2009.	
5.	A Text Book on laboratory	S. G.Tarrekar and P. K. Kharbanda, S.	13: 978-
	courses in Electrical	Chand& Company Ltd., Third, 1990	8121901048
	Engineering		

***** E-REFERENCES:

- http://nptel.ac.in/courses/108108076/1, assessed on 18th January 2016
- http://www.electrical4u.com, assessed on 18th January 2016
- https://www.youtube.com/watch?v=A9KSGAnjo2U, assessed on 18th January 2016
- <u>www.learnerstv.com/Free-engineering-Video-lectures-ltv059-Page1.htm</u>assessed on 28th Feb 2016
- <u>www.studyyaar.com/index.../11-basic-electrical-a-electronics-engineerin</u>assessed on 28th Feb 2016
- www.faadooengineers.com/.../448-BASIC-ELECTRICAL-ENGINEERIN assessed on 28th Feb 2016.
- https://www.scribd.com/.../Lecture-Notes-Basic-Electrical-and-Electronic assessed on 28th Feb 2016

❖ LIST OF MAJOR EQUIPMENTS/INSTRUMENTS WITH SPECIFICATION

- 1. Meters: Ammeter MI 0-5-10 A,Voltmeter MI 0-150-300,Wattmeter 0-3000 W, Digital Multi-meter, Tong tester, Megger 500V/1000V Hand driven.
- 2. Rheostat assorted sizes, Variable Inductor, Capacitor
- 3. Single phase induction motor, 230 V, 50 Hz, 1 kw
- 4. Single phase transformer, 230/115 V, 50 Hz., 1 KVA
- 5. CRO, duel trace
- 6. DC Shunt Motor, 220 V, 3 HP

❖ LIST OF EXPERTS & TEACHERS WHO CONTRIBUTED FOR THIS CURRICULUM:

S.N.	Name	Designation	Institute / Industry
1.	Dr.C.S.Thorat	Principal Principal	Government Polytechnic,
			Nagpur.
2.	Mrs. K. M. Gaidhane	I/C, Head of Electrical	Government Polytechnic,
		Engineering	Nagpur.
3.	Mr. R. I. Kamble	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
4.	Mrs. S. P. Thote	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
5.	Dr. R. S. Surjuse	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
6	Mr. G. V. Gotmare	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
7	Mr. H, N. Kharkar	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
8	Mr. N. H. Adkine	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
9	Mrs. A.P. Gandhi	Lecturer in Electrical	Government Polytechnic,
		Engineering	Nagpur.
10	Mr. R. Y. Ghormade	HOD, Electrical Engineering	Dharampeth Polytechnic,
			Nagpur
11	Mr. B. P. Bale	Dy. Engineer.	MSDCL, Nagpur
12	Dr. S. S. Bharatkar	Lecturer in Electrical	Government Polytechnic,
		Engineering	Amravati

(Member Secretary PBOS)	(Chairman PBOS)