Estructura de Computadores

Unidad 4. El Procesador II: Diseño y control de la ruta de datos. Arquitectura uniciclo

Escuela Politécnica Superior - UAM

Copyright © 2007 Elsevier, "Digital Design and Computer Architecture"

Índice

- Introducción
- Ruta de datos uniciclo
- Control uniciclo
- Añadir más instrucciones
- Parámetros temporales en la ruta uniciclo

Introducción

APLICACIÓN SOFTWARE	PROGRAMAS
SISTEMAS OPERATIVOS	DRIVERS
ARQUITECTURA	INSTRUCCIONES REGISTROS
MICRO- ARQUITECURA	CAMINO DE DATOS CONTROLADORES
LÓGICA	SUMADORES MEMORIA
CIRCUITOS DIGITALES	PUERTAS LÓGICAS
CIRCUITOS ANALÓGICOS	AMPLIFICADORES FILTROS
DISPOSITIVOS	TRANSISTORES DIODOS
FÍSICA	ELECTRONES

- Arquitectura:
 - ➤ Es la visión que desde el punto de vista del programador se tiene del sistema computador (U3).
- Microarquitectura:
 - ➤ Es la implementación en hardware del computador (U4 y U5).
 - > Ruta de datos: bloques funcionales
 - > Ruta de control: señales de control internas

3

Microarquitectura

- Hay múltiples implementaciones de la misma arquitectura (juego de instrucciones):
 - Uniciclo (U4)
 - Cada instrucción se ejecuta en un ciclo de reloj
 - Multiciclo (U5)
 - Cada instrucción se divide en pasos cortos, cada uno de un ciclo de reloj mucho más rápido
 - Segmentado (pipelined)
 - Cada instrucción se divide en pasos cortos
 - Se ejecutan múltiples instrucciones a la vez, cada una en un paso (segmento) distinto.

Subconjunto del MIPS

- Para estudiar la microarquitectura consideramos inicialmente sólo un subconjunto del juego de instrucciones:
 - ✓ R-Type: and, or, add, sub, slt
 - ✓ I-Type, de memoria: lw, sw
 - ✓ I-Type, de saltos: beq
- Luego añadiremos más instrucciones (addi, j(J-Type)).
- En el laboratorio de prácticas se añadirán algunas más.

- Introducción
- Ruta de datos uniciclo
- Control uniciclo
- Añadir más instrucciones
- Parámetros temporales en la ruta uniciclo

7

Estado de la arquitectura

- Se puede conocer en qué situación se encuentra el micro conociendo los valores de:
 - PC
 - Banco de registros (los 32 registros)
 - Memoria (de código y de datos)
- Primeros elementos a considerar en la ruta de datos:

_

```
Ruta de datos: captura 1w
El análisis de la ruta de datos comienza con la instrucción:
  (0x8C112000) lw $s1,0x2000($0)
y los pasos para ejecutarla:
    > PASO 1: captura de instrucción (fetch)
                       CLK
                          WE3 RD1
              Instr
                                                             RD
                       A2
                                                            Data
        Memory
                       АЗ
                                                           WD
  Instr <= "100011 00000 10001 001000000000000"
    op: Instr [31:26] = "100011"
    rs: Instr [25:21] = "00000"
                                                         $0
    rt: Instr [20:16] = "10001"
                                                         $s1
    imm: Instr [15:0] = "001000000000000"
                                                         0x2000
```


Ruta de datos: leer memoria 1w

➤ PASO 5: leer el dato buscado de memoria y escribirlo en el registro destino, rt

A3: Instr [20:16] = "10001" (\$s1)

 $$s1 \le WD3 = MEM[0x00002000]$

lw \$s1,0x2000(\$0)

13

Ruta de datos: incrementar PC

➤ PASO 6: incrementar el PC en 4 para tener la dirección de la próxima instrucción

\$PC <= \$PC + 4

lw \$s1,0x2000(\$0)

+ Ruta de datos: instrucción SW Sobre esta ruta de datos, vemos qué falta para otras instrucciones: sw \$s1,0x2000(\$0)(0xAC112000) Empezamos con ✓ Pasos 1, 2, 3 y 4 iguales que en el caso de lw 010 Zero ALUResult Instruction Memory Data Memory WD3 Register WD Sign Extend ALUResult <= 0x00002000 = 0x00000000 + 0x00002000 15

+ Ruta de datos: Instrucciones tipo-R

Ejemplo: add \$s1, \$t1, \$t2 (0x012A8820)

- ✓ Leer dos registros fuente, rs y rt. Ambos son entradas de la ALU
- ✓ Lo que se escribe en registro es ALUResult y no lo que viene de memoria
- ✓ Se escribe en rd (en lugar de rt).

A3: Instr [15:11] = "10001" (\$s1)

\$s1 <= WD3 = ALUResult (\$t1+\$t2)

17

+ Ruta de datos: instrucción beq

Se decide si se salta o no con la bandera Z

✓ Cálculo de la dirección de salto (*Branch Target Address*):

$$BTA = (PC+4) + (Sign Extend \{imm << 2\})$$

Branch se pondrá a 1 si se está ejecutando un beq PCSrc se pondrá a 1 si Branch=1 y la condición de salto se cumple (Z=1)

- Introducción
- Ruta de datos uniciclo
- Control uniciclo
- Añadir más instrucciones
- Parámetros temporales en la ruta uniciclo

Unidad de Control

- La Unidad de Control UC, genera dos buses de control:
 - > ALUControl (3 bits): depende de opcode y funct
 - > Resto (6 bits): sólo depende de **opcode**, no depende de **funct**

21

Decodificador de la ALU

OPCODE	Funct	ALUControl _{2:0}
100011 (lw)	X	010 (Sumor)
101011 (sw)	^	010 (Sumar)
000100 (beq)	X	110 (Restar)
000000	100000 (add)	010 (Sumar)
000000	100010 (sub)	110 (Restar)
000000	100100 (and)	000 (Y lógico)
000000	100101 (or)	001 (O lógico)
000000	101010 (slt)	111 (SetLessThan)

- Introducción
- Ruta de datos uniciclo
- Control uniciclo
- Añadir más instrucciones
- Parámetros temporales en la ruta uniciclo

Instrucción	Op _{5:0}	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	ALUCtrl	Jump
R-type	000000	1	1	0	0	0	0		0
lw	100011	1	0	1	0	0	1	010	0
SW	101011	0	Х	1	0	1	Х	010	0
beq	000100	0	X	0	1	0	Х	110	0
addi	001000	1	0	1	0	0	0	010	0
j	000010	0	X	X	X	0	X	XX	1

Ruta de datos y de control						
Señal	Significado	Significado	de valores	Uso		
Senai		0	1			
MemToReg	Decide si al banco de registros les llega un dato de la memoria de datos o si le llega el resultado de la ALU	Resultado de la ALU	Dato de la memoria de datos	1: lw X: sw, beq, jump 0: Resto de operaciones		
MemWrite	Decide si se va a escribir un registro en la memoria de datos.	No	Sí	1: sw 0:Resto de operaciones		
Branch	Indica si se está ejecutando una instrucción beq	No	Sí	1: beq X: jump 0: Resto de operaciones		
PcSrc	Indica si hay que realizar el salto del beq. Sólo activa cuando Branch=1 y Z=1	No	Sí	1: beq y condición cumplida 0: Resto de operaciones		
ALUControl	Indica la operación a ejecutar en la ALU	-	-	-		
ALUSrc	Decide cuál será el segundo operando de la ALU	Registro RT [20:16]	Dato Inm	1: I-type, excepto beq 0: R-type, beq X: jump		
RegDst	Indica la dirección de registro destino	Registro RT [20:16]	Registro RD [15:11]	1: R-type 0: I-type, excepto sw y beq, jump X: sw, beq, jump		
RegWrite	Indica si el banco de registros debe guardar un resultado	No	Sí	0: sw, beq, jump 1: Resto de operaciones		
Jump	Indica si hay una instrucción de tipo jump	No	Sí	1: jump 0: Resto de operaciones		

- Introducción
- Ruta de datos uniciclo
- Control uniciclo
- Añadir más instrucciones
- Parámetros temporales en la ruta uniciclo

41

Parámetros temporales: Ciclo de reloj en uniciclo

• Todas las instrucciones utilizan el mismo ciclo de reloj, que tendrá que ser suficiente para la más lenta de todas.

Elemento	Parámetro	Retardo (ps)
T _{CLK→Q} Registro	t _{pcq_PC}	30
Leer de Memoria	t _{mem}	250
Leer del BancoReg	t _{RFread}	150
Multiplexor	t _{mux}	25
ALU	t _{ALU}	200
T _{SETUP} BancoReg	t _{RFsetup}	20
T _{SETUP} Registro	t _{setup}	20

Estructura de Computadores

Unidad 4. El Procesador II: Diseño y control de la ruta de datos. Arquitectura uniciclo

Escuela Politécnica Superior - UAM

Copyright © 2007 Elsevier, "Digital Design and Computer Architecture"