Lecture Summary: Critical Points for Multivariable Functions

Source: Week 11 Lec 04.pdf

Key Points

- Critical Points for Single-Variable Functions (Recap):
 - A point a is a critical point of f(x) if either:

$$f'(a) = 0$$
 or $f'(a)$ does not exist.

- Critical points include:
 - * Local maxima: $\frac{d^2 f}{dx^2}(a) < 0$.
 - * Local minima: $\frac{d^2 f}{dx^2}(a) > 0$.
 - * Saddle points: Neither maxima nor minima.
- Extension to Multivariable Functions:
 - For $f: \mathbb{R}^n \to \mathbb{R}$, a point \vec{a} is a critical point if:

$$\nabla f(\vec{a}) = 0$$
 or $\nabla f(\vec{a})$ does not exist.

- Critical points can be:
 - * Local maxima: $f(\vec{x}) \leq f(\vec{a})$ in a neighborhood of \vec{a} .
 - * Local minima: $f(\vec{x}) \ge f(\vec{a})$ in a neighborhood of \vec{a} .
 - * Saddle points: Not local extrema.

• Examples:

- Example 1: $f(x,y) = \sin(xy)$:
 - * Gradient $\nabla f = (y\cos(xy), x\cos(xy)).$
 - * Setting $\nabla f = 0$ gives critical points:

$$x = 0$$
 or $y = 0$ or $\cos(xy) = 0$.

- * cos(xy) = 0 yields infinitely many critical points.
- Example 2: $f(x,y) = x^2 + 6xy + 4y^2 2x 4y$:
 - * Gradient $\nabla f = (2x + 6y + 2, 6x + 8y 4)$.
 - * Solving $\nabla f = 0$ gives x = 2 and y = -1 as the critical point.
- Saddle Points:
 - A critical point \vec{a} is a saddle point if:

$$\nabla f(\vec{a}) = 0$$
 but \vec{a} is not a local extremum.

- Example: $f(x, y) = x^2 y^2$:
 - * At (0,0), $\nabla f = 0$, but f is a maximum in some directions and a minimum in others.

• Global Extrema:

– A point \vec{a} is a global maximum if:

$$f(\vec{a}) \ge f(\vec{x})$$
 for all $\vec{x} \in D$.

– A point \vec{a} is a global minimum if:

$$f(\vec{a}) \le f(\vec{x})$$
 for all $\vec{x} \in D$.

- For continuous functions on closed and bounded domains, global extrema always exist.

• Finding Global Extrema:

- Check critical points within the domain.
- Evaluate f on the boundary and reduce dimensions iteratively.
- Compare f values at all critical points and boundaries to determine global extrema.

• Example of Global Extrema:

- Function: $f(x,y) = x^3 + y^3 3x 3y^2 + 1$ on a square domain.
- Steps:
 - 1. Find critical points inside the domain: (1,0) and (1,2).
 - 2. Evaluate f on the edges and corners of the square.
 - 3. Compare all values to determine:

Absolute Maximum: f(2,0) = 3, Absolute Minimum: f(1,2) = -5.

Simplified Explanation

Critical Points: Points where the gradient is zero or undefined. These include potential maxima, minima, or saddle points.

Example: For $f(x,y) = x^2 + 6xy + 4y^2 - 2x - 4y$, solving $\nabla f = 0$ yields (2,-1) as a critical point.

Global Extrema: To find the largest or smallest value of f over a domain, check critical points and boundary values.

Conclusion

In this lecture, we:

- Defined critical points and explored their significance in multivariable functions.
- Distinguished between local extrema, saddle points, and global extrema.
- Demonstrated techniques to find global extrema on closed domains.

Critical points and extrema are fundamental concepts in optimization and analysis of multivariable functions.