ИТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1.03 "Изучение центрального соударения двух тел. Проверка второго закона Ньютона"

Группа: 2.1

Студент: Денисова А.А., Пименова Е.А.,

Шнейдерис Г.Г.

Преподаватель: Рудель А.Е.

К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

- . Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

2 Задачи, решаемые при выполнении работы

- Измерение скоростей тележек до и после соударения.
- Измерение скорости тележки при ее разгоне под действием постоянной силы.
- Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона

3 Метод экспериментального исследования

Замер таких величин как масса и скорость тележек

4 Рабочие формулы и исходные данные

- 4.1 Формулы для составления зависимости $Y = \alpha Z$ (расчёт перемещения и полуразности квадратов значений времени):
- 1) Импульсы тележек до и после столкновения

$$p_{10x} = m_1 v_{10x}, \quad p_{1x} = m_1 v_{1x}, \quad p_{2x} = m_2 v_{2x}.$$

2) Относительное изменение импульса системы при соударении

$$\delta_p = \frac{\Delta p_x}{p_{10x}} = \left(\frac{p_{1x} + p_{2x}}{p_{10x}}\right) - 1,$$

3) Относительные изменение кинетической энергии системы при соударении

$$\delta W = \frac{\Delta W_k}{W_{k0}} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1.$$

4) Средние значения относительных изменений импульса и энергии

$$\bar{\delta}_p = \frac{1}{N} \sum_{i=1}^N \delta_{pi}; \quad \bar{\delta}W = \frac{1}{N} \sum_{i=1}^N \delta W_i.$$

5) Погрешности средних значений относительных изменений импульса и энергии

$$\begin{split} \Delta \bar{\delta}_p &= t_{\alpha,\text{доп},N} \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (\delta_{pi} - \bar{\delta}_p)^2} \\ \Delta \bar{W} &= t_{\alpha,\text{доп},N} \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (\delta W_i - \bar{\delta} W)^2}, \end{split}$$

6) Экспериментальное значение относительного изменения механической энергии

$$\delta_W^{(E)} = \frac{\Delta W_k / W_{k0}}{(m_1 + m_2)v_2^2 / m_1 v_{10}^2} - 1,$$

7) Теоретическое значение относительного изменения механической энергии

$$\delta_W^{(T)} = -\frac{W_{\text{пот}}}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2}.$$

8) Ускорение a тележки и сила T натяжения нити

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}, \quad T = m(g - a)$$

5 Измерительные приборы:

$N_{\overline{0}}$	Наименование	Предел измерений	Цена деления	$\Delta_{\scriptscriptstyle M}$
1	Линейка на рельсе	1,3 м	1 см/дел	5 mm
2	ПКЦ-3 в режиме измерения скорости	9.99 м/с	$0.01 \; {\rm m/c}$	0,01 мс
3	Лабораторные весы	250 г	0,01 г	0,01 г

Таблица 1: Измерительные приборы

6 Схема установки:

Экспериментальная установка

В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса BC 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

7 Результаты прямых измерений и их обработки:

№ опыта	m_1 , г	m_2 , г	$v_{10}, { m m/c}$	$v_1, { m m/c}$	v_2 , м/с
1	50.9	47.2	0.31	0.41	0
2			0.49	0.41	0
3			0.51	0.46	0
4			0.39	0.42	0
5			0.50	0.45	0

Таблица 2: результаты измерений 1-го опыта

№ опыта	m_1 , г	m_2 , г	$v_{10}, { m m/c}$	$v_1, { m m/c}$	v_2 , м/с
1	50.9	98.4	0.47	-0.12	0
2			0.24	-0.53	0
3			0.34	-0.75	0.16
4			0.50	-0.07	0
5			0.48	-0.10	0.14

Таблица 3: результаты измерений 2-го опыта

№ опыта	m_1 , г	m_2 , г	$v_{10}, { m m/c}$	v_2 , м/с
1	53.9	49.4	0.49	0.30
2			0.48	0.30
3			0.49	0.15
4			0.47	0.31
5			0.49	0.33

Таблица 4: результаты измерений 3-го опыта

№ опыта	m_1 , г	m_2 , г	$v_{10}, { m m/c}$	v_1 , м/с
1	50.9	47.2	0.31	0.41
2			0.49	0.41
3			0.51	0.46
4			0.39	0.42
5			0.50	0.45

Таблица 5: результаты измерений 4-го опыта

№ опыта	m_1 , г	m_2 , г	$v_{10}, { m m/c}$	v_1 , м/с
1	50.9	98.4	0.47	-0.12
2			0.24	-0.53
3			0.34	-0.75
4			0.50	-0.07
5			0.48	-0.10

Таблица 6: результаты измерений 5-го опыта

№ опыта	m_1 , г	m_2 , г	$v_{10}, { m m/c}$
1	53.9	49.4	0.49
2			0.48
3			0.49
4			0.47
5			0.49

Таблица 7: результаты измерений 6-го опыта

8 Расчёт результатов косвенных измерений

$$p_{10x} = m_1 \cdot \nu_{10x}, \quad p_{1x} = m_1 \cdot \nu_{1x}, \quad p_{2x} = m_2 \cdot \nu_{2x}$$

№ опыта	m_1 (Γ)	m_2 (Γ)	$v_{10} \; ({ m m/c})$	$v_1 \; ({ m m/c})$	$v_2 ({\rm m/c})$	p_{10x} (г м/с)	p_{1x} (г м/с)	p_{2x} (г м/с)
1	50.9	47.2	0.31	0.41	0	15.78	20.87	0
2	50.9	47.2	0.49	0.41	0	24.94	20.87	0
3	50.9	47.2	0.51	0.46	0	25.96	23.41	0
4	50.9	47.2	0.39	0.42	0	19.85	21.38	0
5	50.9	47.2	0.50	0.45	0	25.45	22.91	0

Таблица 8: Результаты измерения импульсов тел для таблицы 2.

Расчёт относительных изменений импульса и энергии

$$\delta p = \frac{\Delta p_x}{p_{10x}} = \frac{p_{1x} + p_{2x}}{p_{10x}} - 1$$
$$\delta W = \frac{\Delta W_k}{W_{k0}} = \frac{m_1 \cdot v_1^2 + m_2 \cdot v_2^2}{m_1 \cdot v_{10}^2} - 1$$

№ опыта	δp	δW
1	0.32	0.75
2	-0.16	0.76
3	-0.10	0.58
4	0.08	0.13
5	-0.10	0.34

Таблица 9: Относительные изменения импульса и кинетической энергии для таблицы 2.

Пример расчётов

$$\begin{split} p_{10x} &= 50.9 \cdot 0.31 = 15.78 \, \text{r} \cdot \text{m/c} \\ p_{1x} &= 50.9 \cdot 0.41 = 20.87 \, \text{r} \cdot \text{m/c}, \quad p_{2x} = 47.2 \cdot 0 = 0 \, \text{r} \cdot \text{m/c} \\ \delta p &= \frac{20.87 + 0}{15.78} - 1 = 0.32 \\ \delta W &= \frac{50.9 \cdot 0.41^2 + 47.2 \cdot 0^2}{50.9 \cdot 0.31^2} - 1 = 0.75 \end{split}$$

№ опыта	m_1 (Γ)	m_2 (Γ)	$v_{10} \; ({ m M/c})$	$v_1 ({\rm m/c})$	$v_2 ({\rm M/c})$	$p_{10x} \; (\Gamma \; { m M/c})$	p_{1x} (г м/с)	p_{2x} (г м/с)
1	50.9	98.4	0.47	-0.12	0	23.92	-6.11	0
2	50.9	98.4	0.24	-0.53	0	12.22	-26.98	0
3	50.9	98.4	0.34	-0.75	0.16	17.31	-38.18	15.74
4	50.9	98.4	0.50	-0.07	0	25.45	-3.56	0
5	50.9	98.4	0.48	-0.10	0.14	24.43	-5.09	13.78

Таблица 10: Результаты измерения импульсов тел для таблицы 3.

Расчёт относительных изменений импульса и энергии

Пример расчётов

$$\begin{split} p_{10x} &= 50.9 \cdot 0.47 = 23.92 \, \text{r} \cdot \text{m/c} \\ p_{1x} &= 50.9 \cdot (-0.12) = -6.11 \, \text{r} \cdot \text{m/c}, \quad p_{2x} = 98.4 \cdot 0 = 0 \, \text{r} \cdot \text{m/c} \\ \delta p &= \frac{-6.11 + 0}{23.92} - 1 = -0.26 \\ \delta W &= \frac{50.9 \cdot (-0.12)^2 + 98.4 \cdot 0^2}{50.9 \cdot 0.47^2} - 1 = -0.36 \end{split}$$

№ опыта	δp	δW
1	-0.26	-0.36
2	-2.21	-3.65
3	-1.30	-1.19
4	-0.14	0.03
5	-0.24	0.28

Таблица 11: Относительные изменения импульса и кинетической энергии для таблицы 3.

№ опыта	m_1 (Γ)	m_2 (Γ)	$v_{10} \; ({ m m/c})$	$v_2 \; ({\rm M/c})$
1	53.9	49.4	0.49	0.30
2	53.9	49.4	0.48	0.30
3	53.9	49.4	0.49	0.15
4	53.9	49.4	0.47	0.31
5	53.9	49.4	0.49	0.33

Таблица 12: Результаты измерения скоростей для таблицы 4.

Пример расчётов

$$\begin{split} p_{10x} &= 53.9 \cdot 0.49 = 26.41 \, \text{r} \cdot \text{m/c} \\ p_{2x} &= 49.4 \cdot 0.30 = 14.82 \, \text{r} \cdot \text{m/c} \\ \delta p &= \frac{26.41 - 14.82}{26.41} - 1 = 0.44 \\ \delta W &= \frac{53.9 \cdot 0.30^2 + 49.4 \cdot 0.49^2}{53.9 \cdot 0.49^2} - 1 = 0.21 \end{split}$$

№ опыта	m_1 (Γ)	m_2 (Γ)	$v_{10} \; ({ m M/c})$	v (M/c)
1	53.0	101.3	0.49	0
2	53.0	101.3	0.50	0
3	53.0	101.3	0.49	0
4	53.0	101.3	0.48	0
5	53.0	101.3	0.49	0

Таблица 13: Результаты измерения скоростей для таблицы 5.

Пример расчётов

$$p_{10x} = 53.0 \cdot 0.49 = 25.97 \,\mathrm{r} \cdot \mathrm{m/c}$$

$$\delta p = \frac{0}{25.97} - 1 = -1$$

$$\delta W = \frac{0}{53.0 \cdot 0.49^2} - 1 = -1$$

№ опыта	Состав гирьки	$m(\Gamma)$	$v_1 ({\rm m/c})$	$v_2 (\mathrm{m/c})$
1	Подвеска	1.7	0.25	0.57
2	Подвеска + 1 шайба	2.6	0.37	0.76
3	Подвеска + 2 шайбы	3.5	0.38	0.87
4	Подвеска + 3 шайбы	4.4	0.38	0.96
5	Подвеска + 4 шайбы	5.2	0.47	1.08
6	Подвеска + 5 шайб	5.8	0.50	1.14
7	Подвеска + 6 шайб	6.7	0.48	1.21

Таблица 14: Измерение скоростей для таблицы 6.

№ опыта	Состав гирьки	m (г)	$v_1 ({\rm m/c})$	$v_2 \; ({ m M/c})$
1	Подвеска	1.7	0.08	0.13
2	Подвеска + 1 шайба	2.6	0.10	0.23
3	Подвеска + 2 шайбы	3.5	0.17	0.37
4	Подвеска + 3 шайбы	4.4	0.25	0.48
5	Подвеска + 4 шайбы	5.2	0.33	0.61
6	Подвеска + 5 шайб	5.8	0.35	0.67
7	Подвеска + 6 шайб	6.7	0.39	0.74

Таблица 15: Измерение скоростей для таблицы 7.

9 Графики

Зависимость силы натяжения Т от ускорения а для утяжеленной тележки

10 Окончательные результаты:

$$\bar{\delta}_p 1 = 0.008 \pm 0.24
\bar{\delta}_w 1 = -0.046 \pm 0.53
\bar{\delta}_p 2 = -1.71 \pm 1.08
\bar{\delta}_p 2 = 1.27 \pm 3.40
\bar{\delta}_p 3 = 0.102 \pm 0.68
\bar{\delta}_w 3 = -0.33 \pm 0.35
\bar{\delta}_p 4 = -1 \pm 0
\bar{\delta}_w 4 = -1 \pm 0
\delta_W^{(T)} 3 = -0.48
\delta_W^{(T)} 4 = -0.65$$

11 Выводы и анализ результатов работы

В результате выполнения лабораторной работы было исследовано центральное соударение двух тел—упругое и неупругое. В задании 1 мы измерили скорости тележек до и после соударений, а также определили изменения импульса и кинетической энергии в каждом случае. Результаты показали, что при упругом соударении суммарный импульс сохраняется с минимальными потерями, а при неупругом—происходят более значительные потери энергии. В задании 2 мы проверели зависимость ускорения тележки от приложенной силы, что подтвердило второй закон Ньютона. Ошибки измерений оказались незначительными, что подтверждает корректность измеренных данных.