Why is the Sea Salty?

Sources AND sinks are important

Some sources are obvious: e.g. rivers

Mackenzie River, Canada

Hydrothermal Inputs

Coastal Erosion

Storm waves from a winter northeaster pound the beach at the base of two houses at Camp Ellis in Saco. In subsequent years both of these houses were destroyed by storms. Erosion in this area has exceeded 25 meters (82 ft) since 1950 and is expected to continue.

Some sources are only obvious when you have a good viewpoint

Some Sinks are Obvious

Some you have to think about...

Rain to River to Sea

Rainfall Chemistry

Two main sources for ions:

Chemicals from particles (sea salt, dust, aerosols)
 Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, SO₄²⁻

TABLE 3.4 Typical Concentrations of Major lons in Continental and Marine Rainfall (in mg/l)

lon	Continental Rain	Marine and Coastal Rain
	· · · · · · · · · · · · · · · · · · ·	
Na ⁺	0.2-1	15
Mg ⁺⁺	0.05-0.5	0.4-1.5
K ⁺	$0.1-0.3^{a}$	0.2 - 0.6
Ca++	$0.1{\text}3.0^{\mathrm{a}}$	0.2-1.5
NH ₄ +	0.1-0.5 ^b	0.01-0.05
H ⁺	pH = 4-6	pH = 5-6
Cl-	0.2-2	1–10
SO ₄ ·····	$1-3^{2,b}$	1–3
NO ₁ -	0.4-1.3 ^b	0.1-0.5

^aIn remote continental areas; $K^+ = 0.02 - 0.07$; $Ca^{++} = 0.02 - 0.20$; $SO_4 = 0.2 - 0.8$

Chemicals from atmospheric gases (natural and pollution)
 SO₄²⁻, NH₄⁺, NO₃⁻, HCO₃⁻

^b In polluted areas; $NH_4^+ = 1-2$; $SO_4^{--} = 3-8$; $NO_3^- = 1-3$. *Sources:* See Table 3.1.

Rainfall and Weathering

Rainfall is acidic!

Natural

$$CO_2$$
 (g) \rightarrow CO_2 (aq)
 CO_2 (aq) + $H_2O \rightarrow H_2CO_3$
 $H_2CO_3 \rightarrow H^+ + HCO_3^-$
This gives a pH of ~5.6

Pollution

$$SO_2 + \bullet OH \rightarrow \rightarrow H_2SO_4$$

or SO_2 in cloud water
 $\rightarrow SO_2 + H_2O_2 \rightarrow H_2SO_4$
Rainfall in polluted areas can have pH < 4 (average annual)

Distance from the coast affects Rainfall Chemistry

Distance from the coast affects Rainfall Chemistry

,Cyclic' salt

Sea-salt aerosol formation:

- buoyant bubble reaches sea surface and bursts
- water rushes in to fill void
- creates upward-moving jet which breaks apart
- creates about 10 droplets of seawater ejected to about 15cm height
- these evaporate: produce sea-salt particles (2 to 20 μm radius) (smaller particles produced from bubble film)

Composition is SIMILAR to sea-salt (may differ in trace components). Residence time for sea-salt in marine atmosphere is 3 days. Therefore can be transported considerable distances to land. About 100×10^{12} g yr⁻¹ of sea-salt is deposited on continents .

Rain to River

Dissolved Material:

 Composition of dissolved salts in rivers is different than in rainfall

Concentration of dissolved salts in river > rain:

- effect of evaporation (2-3x)
- effect of weathering of rocks (10x)

Suspended Material:

- total suspended river load 10-20 x 10¹⁵ g yr⁻¹
- strongly impacted by humans
- = about 90% of the total material transport,
 BUT less important for marine chemistry
- enriched in insoluble elements (Al, Fe, Si) also Ca, Mg, Na, P

River Water TDS = 0.1 g kg⁻¹

(20 x higher conc. than Rainwater)

River Water Major Anion (top) and Cation (bottom) Composition (in moles)

Crustal Rock and River Water

What gets into river water?

The abundance of an element in river water and partitioning between dissolved and particulate material depends on:

- 1. Abundance in the Earth's crustal rocks*
- 2. Chemical nature of the element/ion
- 3. Nature of weathering reactions including the composition of rainfall*
- 4. Biological processes in soils*
- 5. Human influence*

* varies regionally

Chemical Weathering in Soils

Soil water becomes more acidic due to $CH_2O + O_2 CO_2 + H_2O$ (followed by dissociation of CO₂) also

oxidation of sulfide minerals to H₂SO₄ dissolution of organic acids

Acidic rainfall and soil water reacts with rocks in surface water, soil water and groundwater

_dissolved minerals some dissolved materials react to form 'secondary minerals'

This is 'Chemical Weathering' (compare with 'Physical Weathering)

Chemical Weathering

Mineral	Generalized Composition	Weathering Rock Type(s)	Main Reaction
Olivine	(Mg,Fe) ₂ SiO ₄	Igneous	Oxid. of Fe Cong. diss. by acids
Pyroxenes	$Ca(Mg,Fe)Si_2O_6$ or $(Mg,Fe)SiO_3$	Igneous	Oxid. of Fe Cong. diss. by acids
Amphiboles	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂ (also some Na and Al)	Igneous Metamorphic	Oxid. of Fe Cong. diss. by acids
Plagioclase feldspar	Solid solution between NaAlSi ₃ O ₈ (albite) and CaAl ₃ Si ₄ O ₈ (anorthite)	Igneous Metamorphic	Incong. diss. by acids
K-feldspar	KAISi ₃ O ₈	Igneous Metamorphic Sedimentary	Incong. diss. by acids
Biotite	$K(Mg,Fe)_3(AlSi_3O_{10})(OH)_2$	Metamorphic Igneous	Incong. diss. by acids Oxid. of Fe
Muscovite	$KAl_2(AlSi_3O_{10})(OH)_2$	Metamorphic	Incong. diss. by acids
Volcanic glass (not a mineral)	Ca,Mg,Na,K,Al,Fe-silicate	Igneous	Incong. diss. by acids and H ₂ O
Quartz	SiO ₂	Igneous Metamorphic Sedimentary	Resistant to diss.
Calcite	CaCO ₃	Sedimentary	Cong. diss. by acids
Dolomite	$CaMg(CO_3)_2$	Sedimentary	Cong. diss. by acids
Pyrite	FeS ₂	Sedimentary	Oxid. of Fe and S
Gypsum	CaSO ₄ • 2H ₂ O	Sedimentary	Cong. diss. by H ₂ O
Anhydrite	$CaSO_4$	Sedimentary	Cong. diss. by H ₂ O
Halite	NaCl	Sedimentary	Cong. diss. by H ₂ O

Chemical Weathering Mechanisms

Nature of reacting substance (H₂O, acids, O₂)

Congruent or incongruent dissolution

Congruent = Simple Dissolution (all products end up in solution)

Incongruent = dissolution plus some re-precipitation forms: Secondary Minerals

Note: cong. = congruent; incong. = incongruent; diss. = dissolution; oxid. = oxidation.

Where do the ions come from?

Chloride (Cl-)

- Dissolution of halite (NaCl) from sedimentary rocks (57%)
 NaCl (s) →Na⁺ (aq) + Cl⁻ (aq)
- Pollution (about 30%)
 (Sewage, road salt, mining, etc.)
- Sea salt deposition from atmosphere (13%)
 sea-salt contribution varies with location

 distance from coast

Potassium (K+)

Acid weathering of silicate minerals (87%)
 minerals found in sedimentary, igneous and metamorphic rocks

(e.g. weathering of potassium feldspar (orthoclase)):

$$2 \text{ KAISi}_3O_8 + 2 \text{ H}^+ + 9 \text{ H}_2O \rightarrow \text{ Al}_2\text{Si}_2O_5(OH)_4 + 2 \text{ K}^+ + 4 \text{ H}_4\text{SiO}_4$$

- Pollution (7%)
- Cyclic Salt (about 1%)
- Dissolution of evaporite deposits, etc. (remainder)

Calcium and Magnesium (Ca²⁺ and Mg²⁺)

- Weathering (90%)
 sedimentary rocks
 almost all from (calcite CaCO₃ and dolomite CaMg(CO₃)₂
 (see next section)
 a very little from CaSO₄
 a little from Ca-silicates
- Pollution (9%)
- Cyclic salt (1%)

Bicarbonate (HCO₃-)

- Weathering (98%)
 (the dissolution of limestone dominates river water chemistry).
- Pollution (<2%)
- Cyclic sea salt (1%)

Chemical Weathering and the Bicarbonate Ion

e.g.
$$CaCO_3 + CO_2 + H_2O \rightarrow Ca^{2+} + 2 HCO_3^{-}$$

calcite from rain soil water dissolved species

But bicarbonate can also be produced by chemical weathering of silicate minerals:

2 NaAlSi₃O₈ + 2 CO₂ + 11 H₂O
$$\rightarrow$$
 Al₂Si₂O₅(OH)₄ + 2 Na⁺ + 2 HCO₃⁻ + 4H₄SiO₄
Albite soil or rain Kaolinite dissolved species

CO₂ is the acid supply for weathering.

(Compare the source of C atoms in these two reactions.)

Chemical Weathering and the Bicarbonate Ion

Some HCO₃⁻ is also produced as a result of chemical weathering by other acids:

e.g.: oxidation of pyrite upon exposure to air produces sulfuric acid

$$4 \text{ FeS}_2 + 15 \text{ O}_2 + 8 \text{ H}_2\text{O} \rightarrow 2 \text{ Fe}_2\text{O}_3 + 8 \text{ H}_2\text{SO}_4$$

then:

$$H_2SO_4 \rightarrow 2 H^+ + SO_4^{2-}$$

this acid can attack limestone:

$$H_2SO_4 + 2 CaCO_3 \rightarrow 2 Ca^{2+} + 2 HCO_3^- + SO_4^{2-}$$

Overall:

About 64 % of HCO₃⁻ in river water comes from the atmosphere About 34 % comes from rock.

Sulfate (SO₄²⁻)

- pollution about 54%
- weathering about 33%
 oxidation of pyrite (FeS₂)
 weathering of gypsum and anhydrite (CaSO₄)
- volcanic activity 8%
- cyclic salt (2%)

River to Sea

Special physico-chemical and biological processes can add or remove elements from riverwater and/or seawater within estuaries:

- Exchanges with sediments
- Biological activity
- Human activity
- Ion-exchange reactions on clay minerals (later)
- Ionic strength changes ⇒ aggregation of colloidal materials
- Changes in pH ⇒ speciation changes (solubility changes)
- Changes in O₂ levels ⇒ redox reactions

Types of Estuaries

e.g. Baltic Sea, Black Sea, Mediterranean, etc...

How much time is there for processes to occur?

flushing time of an estuary: $\Rightarrow \tau = V_f / R$

(where: V_f = volume of freshwater in the estuary, R is the river runoff)

Usually τ is several (1-10) days for 'normal' estuaries

Addition and removal in estuaries: conservative vs. non-conservative mixing

