

Predictive Engineering and Computational Sciences

Tools and Techniques for Code Verification using Manufactured Solutions

Nicholas Malaya, Roy Stogner, Robert Moser

Center for Predictive Engineering and Computational Sciences (PECOS)
Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin

SIAM UQ Conference, Raleigh, North Carolina, April 3rd, 2011

Introduction to MMS

What we have learned

What we are working on

Introduction to the Method of Manufactured Solutions

Verification of Scientific Software

- Verification ensures that the outputs of a computation accurately reflect the solution of the mathematical models.
- · Are we solving our equations correctly?

Method of Exact Solutions

 Numerically solve the equations for a solution that can be determined analytically.

Method of Manufactured Solutions

- Often, analytical solutions either:
 - Do not exist
 - ► Do not fully exercise equations
- Alleviate this using MMS: "create" our own solutions

Generating MMS using Symbolic Packages

MMS Creation Process

- · Start by "manufacturing" a suitable closed-form exact solution
- For example, the 10 parameter trigonometric solution of the form: (Roy, 2002)

$$\hat{u}(x, y, z, t) = \hat{u}_0 + \hat{u}_x f_s \left(\frac{a_{\hat{u}x}\pi x}{L}\right) + \hat{u}_y f_s \left(\frac{a_{\hat{u}y}\pi y}{L}\right) + \hat{u}_z f_s \left(\frac{a_{\hat{u}z}\pi z}{L}\right) + \hat{u}_t f_s \left(\frac{a_{\hat{u}t}\pi t}{L}\right)$$

 Apply this solution to equations of interest, solve for source terms (residual)

Accomplished using packages such as: Maple, Mathematica, SymPy, Macsyma

C-code output

MII = H1 / H2-Q = (0.3ei * a_ux * u_x * cos(a_ux * PI * x / L) + a_vy * v_y * cos(a_vy * PI * y / L) - a_vz * w_z * sin(a_wz * PI * z / L)) * PI * RHO * U * U / L / 0.2ei + (a_ux * u_x * cos(a_ux * PI * z / L)) *x/L) + 0.3et *a vv * v v * cos(a vv * PI * v/L) - a vz * v z * sin(a vz * PI * z/L)) * PI * BHO * V * V/L / 0.2et * (a ux * u x * cos(a ux * PI * x/L) + a vv * v v * cos(a vv * PI * v / L) - 0.3a1 * a vz * v z * sin(a vz * PI * z / L)) * PI * RHO * W * W / L / 0.2a1 * (0.4a1 * a ux * a ux * u x * sin(a ux * PI * x / L) + 0.3a1 * a uv * a /L) + 0.3ei * a_uz * a_uz * u_z * cos(a_uz * PI * z / L)) * MU * PI * PI * U * pow(L, -0.2ei) / 0.3ei * (0.3ei * a_uz * a_uz * u_z * cos(a_uz * PI * z / L) + 0.4ei * a_uv * a_uv * v_y * sin(a_vy * PI * y / L) + 0.3ei * a_vz * a_vz * v_z * sin(a_vz * PI * z / L)) * MU * PI * PI * V * pow(L, -0.2ei) / 0.3ei * (0.3ei * a_vz * a_vz * v_z * sin(a_vz * PI * x / L) + 0.3ei * a_uy * a wy * w * sin(a wy * PI * v / L) + 0.4ei * a wz * a wz * w z * cos(a wz * PI * z / L)) * NU * PI * PI * W * pow(L. -0.2ei) / 0.3ei + (a wz * u x * cos(a wx * PI * x / L) + a vv * v * cos(a vv * PI * v / L) - a vz * v z * sin(a vz * PI * z / L)) * PI * P / (Gamma - 0.1e1) / L - (0.2e1 * a rhox * a vx * rho x * v x * cos(a rhox * PI * x / L) * sin(a vx * PI * x / L) + 0.2e1 * a_rhoy * a_py * rho_y * p_y * sin(a_rhoy * PI * y / L) * cos(a_py * PI * y / L) + 0.2e1 * a_rhoz * a_pz * rho_z * p_z * cos(a_rhoz * PI * z / L) * sin(a_pz * PI * z / L)) * PI * PI * k * pow(L, -0.2ei) / R * pow(RHO, -0.2ei) + (U * U + V * V + W * W) * a_rhot * PI * rho_t * cos(a_rhot * PI * t / L) / L / 0.2ei - a_pt * PI * p_t * sin(a_pt * PI * t / L) / (Gamma - 0.1ei) / L -(a uv * u v * sin(a uv * PI * v / L) + a vx * v x * sin(a vx * PI * x / L) * PI * RHO * U * V / L - (a ux * u x * sin(a ux * PI * x / L) - a vx * v x * cos(a vx * PI * x / L) * PI * RHO * U *W/L+(avz*vz*cos(avz*PI*z/L)+avy*v*cos(avy*PI*v/L))*PI*880*V*W/L+(avz*vz*cos(avx*PI*x/L)+avy*av*cos(avy*PI*v/L))*PI*880*V*W/L+(avz*vz*cos(avx*PI*x/L)+avy*av*cos(avx*PI*x/L) * y / L) + a.pz * a.pz * p.z * cos(a.pz * PI * z / L)) * PI * PI * k * pov(L, -0.2at) / R / 880 - (0.4at * a.ux * a.ux * u.x * u.x * pov(cos(a.ux * PI * z / L). 0.2at) - 0.4at * a.ux * a.uv * a.uv * a.ux * ux * vy * cos(a ux * PI * x / L) * cos(a vy * PI * y / L) + 0.4e1 * a ux * a vz * u x * v z * cos(a ux * PI * x / L) * sin(a vz * PI * z / L) + 0.3e1 * a uy * a uy * u y * u y * u y * pow(sin(a uv * PI * v / L), 0.2e1) + 0.6e1 * a uv * a vz * u v * v x * sin(a uv * PI * v / L) * sin(a vx * PI * x / L) + 0.3e1 * a uz * u z * u z * u z * v z * pow(sin(a uz * PI * z / L), 0.2e1) pow(cos(a_vy * PI * y / L), 0.2ei) + 0.4ei * a_vy * a_wz * v_y * u_z * cos(a_vy * PI * y / L) * sin(a_wz * PI * z / L) + 0.3ei * a_vz * a_vz * v_z * v_z * pow(cos(a_vz * PI * z / L), 0.2ei) + 0.6e1 * a vz * a uy * v z * u y * cos(a vz * PI * z / L) * cos(a uy * PI * y / L) + 0.3e1 * a vz * a ux * u x * u x * u x * v x * pow(cos(a ux * PI * x / L), 0.2e1) + 0.3e1 * a uy * u y * u y * u y * t/L/L-a wt * PI * w t * 880 * W * sinfa wt * PI * t/L)/L + (U * U + V * V + W * V) * a rhox * PI * rho_x * U * cos(a rhox * PI * x / L)/L / 0.2ei - (U * U + V * V + W * V) * a_rhoy * PI * rho_y * V * sin(a_rhoy * PI * y / L) / L / 0.2ei + (U * U + V * V + W * W) * a_rhoz * PI * rho_z * W * cos(a_rhoz * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * PI * z / L) / L / 0.2ei - (a_rhox * a_rhox * rho_x * rho sin(a rhox * PI * x / L) + a rhoy * a rhoy * rho y * cos(a rhoy * PI * y / L) + a rhoz * a rhoz * rho z * sin(a rhoz * PI * z / L)) * PI * PI * k * P * poy(L, -0.2e1) / R * poy(RHD, -0.2e1) (0.2ei * a rhox * a rhox * rho x * rhox * PI * x / L). 0.2ei + 0.2ei * a rhox * a rhox * rho x * rho x * rhox * PI * y / L). 0.2ei + 0.2ei * a rhox * a rhox * rho_z * rho_z * pow(cos(a_rhoz * PI * z / L), 0.2e1)) * PI * PI * k * P * pow(L, -0.2e1) / R * pow(RED, -0.3e1) - (0.3e1 * a_rhox * a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * PI * z / L) - 0.3a1 * a_rhox * a_wx * rho_x * w_x * cos(a_rhox * PI * x / L) * cos(a_wx * PI * x / L) + 0.3a1 * a_rhoy * a_vz * rho_y * v_z * sin(a_rhoy * PI * y / L) * cos(a_vz * PI * z / L) + 0.3e1 * a rhoy * a yy * rho y * y y * sin(a rhoy * PI * y / L) * cos(a yy * PI * y / L) + 0.2e1 * a rhoz * a ux * rho z * u x * cos(a rhoz * PI * z / L) * cos(a ux * PI * x / L) + 0.2e1 * a rhoz * a vv * rho z * v v * cos(a rhoz * PI * z / L) * cos(a vv * PI * v / L) + 0.4e1 * a rhoz * a vz * rho z * v z * cos(a rhoz * PI * z / L) * sin(a vz * PI * z / L)) * MU * (0.3e1 * B mu *R * 880 + P) * PI * PI * V / (B_mu * R * 880 + P) * pow(L, -0.2e1) / 880 / 0.6e1 - a_pz * PI * p_z * Gamma * V * sin(a_pz * PI * z / L) / (Gamma - 0.1e1) / L - (0.3e1 * a_px * a_uy * p_z * p_ u.y.* sin(a_px * PI * x / L) * sin(a_uy * PI * y / L) + 0.3si * a_px * a_vx * p_x * v_x * sin(a_px * PI * x / L) * sin(a_vx * PI * x / L) - 0.2ei * a_py * a_ux * p_y * u_x * cos(a_py * PI * y / L) + 0.3ei * a_px * a_vx * p_x * v_x * cos(a_py * PI * y / L) + 0.3ei * a_px * a_vx * p_x * v_x * cos(a_px * PI * x / L) * sin(a_vx * PI * x / L) - 0.2ei * a_py * a_ux * p_y * u_x * cos(a_py * PI * y / L) + 0.3ei * a_px * a_vx * p_x * v_x * cos(a_px * PI * x / L) * sin(a_vx * PI * x / L) + 0.2ei * a_px * a_vx * p_x * v_x * cos(a_px * PI * x / L) * sin(a_vx * PI * x / L) + 0.2ei * a_px * a_vx * p_x * v_x * cos(a_px * PI * x / L) * sin(a_vx * PI * x /L) * cos(a ux * PI * x / L) + 0.4a1 * a py * a yy * p y * y y * cos(a py * PI * y / L) * cos(a yy * PI * y / L) + 0.2e1 * a py * a yz * cos(a py * PI * y / L) * sin(a yz z/L) - 0.3a1 * a pz * a vz * b z * vz * sin(a pz * P1 * z / L) + cos(a vz * P1 * z / L) - 0.3a1 * a pz * a vx * b z * v * v * sin(a pz * P1 * v / L)) * (0.3a1 * B pz *R *R80 + P) * MU * PI * PI * V / (B_mu * R * R80 + P) * pow(L, -0.2e1) / P / 0.6e1 + a_py * PI * p_y * Camma * V * cos(a_py * PI * y / L) / (Gamma - 0.1e1) / L - (0.3e1 * a_rhox * a_my * PI * p_y * Camma * V * cos(a_py * PI * y / L) / (Camma - 0.1e1) / L - (0.3e1 * a_rhox * a_my * PI * p_y * Camma * V * cos(a_py * PI * y / L) / (Camma - 0.1e1) / L - (0.3e1 * a_rhox * a_my * PI * p_y * Camma * V * cos(a_py * PI * y / L) / (Camma - 0.1e1) / L - (0.3e1 * a_rhox * a_my * PI * p_y * Camma * V * cos(a_py * PI * p_y * rho_x * u_y * cos(a_rhox * PI * x / L) * sin(a_uy * PI * y / L) + 0.3e1 * a_rhox * a_vx * rho_x * v_x * cos(a_rhox * PI * x / L) * sin(a_vx * PI * x / L) - 0.2e1 * a_rhoy * a_ux * rho_y * u_x said_nhoy = PI = y / L) = cod(a ux = PI = x / L) = 0.441 = a.mboy = a.yy = no.y = v.y = said_nhoy = PI = y / L) = cod(a.yy = PI = y / L) = 0.241 = a.mboy = a.yx = mboy = a.yy = no.y = v.y = said_nhoy = PI = y / L) = 0.341 = a.mbox = a.yx = mbox = a.yx = a.yx = mbox = a.yx = a.yx = mbox = a.yx = * PI * z / L) * cos(a_wy * PI * y / L)) * MU * (0.3e1 * B_mu * R * RHO + P) * PI * V / (B_mu * R * RHO + P) * pow(L, -0.2e1) / RHO / 0.6e1 + (0.4e1 * a_rhox * a_ux * rho_x * u_x * cos(a rhox * PI * x / L) * cos(a ux * PI * x / L) - 0.2ei * a rhox * a vv * rho x * v v * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) * cos(a vv *PI * x / L) * sin(a x = PI * z / L) + O.3al * a rhoy * a uy * rhoy * uy * sin(a rhoy * PI * y / L) * sin(a uy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * y x * sin(a rhoy * PI * y / L) + O.3al * a rhoy * a uy * rhoy * a uy L) * sin(a,vx * PI * x / L) - 0.3ei * a,rhoz * a,uz * rho,z * u,z * cos(a,rhoz * PI * z / L) * sin(a,uz * PI * z / L) + 0.3ei * a,rhoz * a,uz * rho,z * u,z * cos(a,rhoz * PI * z / L) * sin(a,uz * PI * z / L) * 0.3ei * a,rhoz * a,uz * rho,z * u,z * cos(a,rhoz * PI * z / L) * 0.3ei * a,rhoz * a,uz * rho,z * u,z * rhoz cos(a_wx*PI*x/L)) * MU*(0.341*B_mu*R*R800+P) * PI*V/(B_mu*R*R800+P) * pow(L, -0.241)/R80/0.641-a_px*PI*p_x*Gamma*U*sin(a_px*PI*x/L)/(Gamma*U*sin(a_p - 0.iei) / L + (0.4ei * a_px * a_ux * p_x * u_x * sin(a_px * PI * x / L) * cos(a_ux * PI * x / L) - 0.2ei * a_px * a_vy * p_x * v_y * sin(a_px * PI * x / L) * cos(a_vy * PI * y / L) + 0.2ei * apranze pre uze sintapre Piez / Diesintaue Piez L) * cos(a_vx * PI * x / L)) * (0.3e1 * B_mu * R * RBO + P) * MU * PI * PI * U / (B_mu * R * RBO + P) * pow(L, -0.2e1) / P / 0.6e1 - (0.3e1 * a_px * a_uz * p_x * u_z * sin(a_px * PI * x / L) * sin(a, wz * PI * z / L) - 0.3ei * a, px * a, wx * p, x * w, x * sin(a, px * PI * x / L) * cos(a, wx * PI * x / L) * 0.3ei * a, py * a, vz * p, y * v, z * cos(a, py * PI * y / L) * cos(a, vx * PI * x L) + 0.341 * a pv * a v * p v * cos(a pv * P1 * v / L) + 0.261 * a pz * a ux * p z * u x * sin(a pz * P1 * z / L) * cos(a ux * P1 * x / L) + 0.261 * a pz * a ux * p z * u x * sin(a pz * P1 * z / L) + 0.261 * a pz * a ux * pz * u x * sin(a pz * P1 * z / L) + 0.261 * a pz * a ux * pz * u x * sin(a pz * P1 * z / L) + 0.261 * a pz * a ux * pz * u x * sin(a pz * P1 * z / L) + 0.261 * a pz * a ux * pz * u x * sin(a pz * P1 * z / L) * cos(a pv * P1 * z / L) + 0.261 * a pz * a ux * pz * u x * sin(a pz * P1 * z / L) * cos(a pv * P1 * z / L) + 0.261 * a pz * a ux * pz * u x * sin(a pz * P1 * z / L) * cos(a pv * P1 * z / L) a_vy * p_z * v_y * sin(a_pz * PI * z / L) * cos(a_vy * PI * y / L) + 0.4e1 * a_pz * a_vz * p_z * v_z * sin(a_pz * PI * z / L) * sin(a_vz * PI * z / L)) * (0.3e1 * B_mu * R * RHO + P) * MU * PI * PI * W / (B_mu * R * RHO + P) * pow(L, -0.2e1) / P / 0.6e1;

Generic Verification Approach Using MMS

Example: Euler Equations

5th Order Weno Scheme

Detecting Bugs

Verification of FIN-S

- FANS, Spalart-Allmaras
- Model Derivative:

$$\frac{d(sa)}{dx} = \frac{1}{\rho} * \left(\frac{d(\rho * sa)}{dx} - sa \frac{d\rho}{dx} \right)$$

• In code:

$$\frac{d(sa)}{dx} = \frac{1}{\rho} * \frac{d(\rho * sa)}{dx} - sa\frac{d\rho}{dx}$$

Why is this not more commonly done!?!

Manufactured Analytical Solutions Abstractions Library

Goal: Provide a repository and standardized interface for MMS usage

High Priority:

- Extreme fidelity to generated MMS
- Portability
- Traceability
- Extensible

Low Priority:

• Speed/Performance

Verifying the "Verifier"

Precision is not negotiable: users must trust output!

MASA Testing

- Error target < 1e-15
 - Absolute error on local machines
 - ► Relative error (other)
 - ► On all supported compiler sets
- -O0 not sufficient
 - -fp-model precise (Intel)
 - -fno-unsafe-math-optimizations (GNU)
 - -Kieee -Mnofpapprox (PGI)
- "make check"
 - ► Run by Buildbot every two hours

Initializing MASA Tests PASS: init sh PASS: misc PASS: fail cond PASS: catch_exception PASS: register PASS: poly PASS: uninit PASS: Vec PASS: purge PASS: heat_const_steady PASS: enler1d Finalizing MASA Tests All 62 tests passed

[nick@magus trunk] \$ make check

Portability

Software Environment

- Built with: Autotools, C++
- Supports Intel, GNU, Portland Group compilers
- C/C++ interfaces
- Fortran interfaces
 - iso_c_bindings
 - ► Fortran 2003 Standard

Testing

- · SVN: version control
- Buildbot: automated testing
 - Multiple Platforms
- GCOV: line coverage
 - ► 15,826 lines of code
 - ▶ 13,195 lines of testing
 - ▶ 98%+ line coverage

Traceability

Doxygen provides code and model documentation

3.2 Euler Equations

where $\phi = \rho, u, v, w$ or p, and $f_s(\cdot)$ functions denote either sine or cosine function. Note that in this case,

 ϕ_a,ϕ_y and ϕ_a are constants and the subscripts do not denote differentiation.

Although? provide the constants used in the manufactured solutions for the 2D supersonic and subsonic cases for Euler and Navier-Stokes equations, only the source term for the 2D mass conservation equation (3.20) is presented.

Source terms for mass conservation (Q_u) , momentum (Q_u, Q_v) and (Q_u) and total energy (Q_v) equations are obtained by symbolic manipulations of compressible steady Euler equations above using Maple 13 (?) and are presented in the following sections for the one, two and three-dimensional cases.

3.2.2.1 1D Steady Euler

The manufactured analytical solutions (3.52) for each one of the variables in one-dimensional case of Euler equations are:

$$\rho(x) = \rho_0 + \rho_x \sin \left(\frac{a_{\mu\nu}\pi_x}{L}\right)$$

$$u(x) = u_0 + u_x \sin \left(\frac{a_{u\nu}\pi_x}{L}\right)$$

$$p(x) = p_0 + p_x \cos \left(\frac{a_{\mu\nu}\pi_x}{L}\right)$$
(3.26)

The MMS applied to Euler equations consists in modifying the 1D Euler equations (3.20) - (3.22) by adding a source term to the right-hand side of each equation:

$$\frac{\partial(\rho u)}{\partial x} - Q_{\rho}$$

$$\frac{\partial(\rho u^2)}{\partial x} + \frac{\partial(\rho)}{\partial x} - Q_{u}$$

$$\frac{\partial(\rho u v)}{\partial(\rho u v)} = \frac{\partial(\rho u)}{\partial(\rho u)}$$
(3.27)

so the modified set of equations (3.27) conveniently has the analytical solution given in Equation (3.53). Source terms Q_{μ} , Q_{u} and $Q_{e_{x}}$ are obtained by symbolic manipulations of equations above using Maple and are presented in the following sections. The following auxiliary variables have been included in order

Rho₁ =
$$\rho_0 + \rho_x \sin \left(\frac{a_{\mu x} \pi x}{L} \right)$$

 $U_1 = u_0 + u_x \sin \left(\frac{a_{ux} \pi x}{L} \right)$
 $P_1 = p_0 + p_x \cos \left(\frac{a_{\mu x} \pi x}{L} \right)$

where the subscripts refer to the 1D case

$$c = \partial(\rho u)$$

The mass conservation equation written as an operator is:

3.2 Euler Equations

rho x rho v rho z a_py a_pz a_rhoy a_ux a vx Table 3.6: Parameters used by the 3D Steady Euler

- · masa_eval_2d_exact_u()
- · masa_eval_2d_exact_v()
- · masa_eval_2d_exact_p()
- · masa eval 2d exact rho()
- · masa eval 2d grad u()
- · masa eval 2d grad v()
- · masa_eval_2d_grad_p() · masa_eval_2d_grad_rho()

3.2.3.3 3D Steady Euler

Initialization

· culer_3d

- · mosa init()
- · masa_eval_3d_source_rho_u()
- · masa_eval_3d_source_rho_v()
- · masa eval 3d source tho will
- · masa eval 3d source rho ef)
- · masa eval 3d source rho()
- · mass eval 3d exact of
- · masa_eval_3d_exact_v()
- · mass eval 3d exact with
- · masa_eval_3d_exact_p()

to improve readability and computational efficiency:

Available Solutions in MASA 0.40

Equations	Dimensions	Time
Euler	1,2,3, axi	Transient, Steady
Non linear heat conduction	1,2,3	Transient, Steady
Navier-Stokes	1,2,3, axi	Transient, Steady
N-S + Sutherland	3	Transient, Steady
N-S + ablation	1	Transient, Steady
Burgers	2	Transient, Steady
Sod Shock Tube	1	Transient
Euler + chemistry	1	Steady
RANS: Spalart-Allmaras	1	Steady
FANS: SA	2	Steady
FANS: SA + wall	2	Steady
Radiation	1	Steady
SMASA: Gaussian	1	Steady

Future Solution Development

Single Physics

- Additional RANS models (k- ω , k- ϵ , etc.)
- Shocks

Multiphysics

- Turbulence with chemistry
- Flow with improved transport

Importing New Solutions in MASA 0.40

- Model document detailing analytical solution and source terms
- Latex documents can be loaded directly into MASA documentation
- Source and analytical terms in C/C++/Fortran90
- · Willingness to share

Public Library

Current Release

- MASA 0.40.2
- https://red.ices.utexas.edu/projects/software
- Open source, LGPL V2.1, free

Maple MMS: 3D Navier-Stokes Energy Term

```
Qe = -\frac{a_{px}\pi p_x}{L}\frac{\gamma}{\gamma} \sin\left(\frac{a_{px}\pi x}{L}\right) \left[u_0 + u_x \sin\left(\frac{a_{ux}\pi x}{L}\right) + u_y \cos\left(\frac{a_{uy}\pi y}{L}\right) + u_z \cos\left(\frac{a_{uz}\pi z}{L}\right)\right] +
                                                                              +\frac{a_{py}\pi p_y}{I}\frac{\gamma}{c_{z-1}}\cos\left(\frac{a_{py}\pi y}{I}\right)\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{I}\right)+v_y\sin\left(\frac{a_{vy}\pi y}{I}\right)+v_z\sin\left(\frac{a_{vx}\pi z}{I}\right)\right]+
                                                                                     -\frac{a_{pz}\pi p_z}{r} - \frac{\gamma}{r} \sin\left(\frac{a_{pz}\pi z}{r}\right) \left[w_0 + w_x \sin\left(\frac{a_{wx}\pi x}{r}\right) + w_y \sin\left(\frac{a_{wy}\pi y}{r}\right) + w_z \cos\left(\frac{a_{wz}\pi z}{r}\right)\right] +
                                                                              +\frac{a_{\rho x}\pi\rho_{x}}{2L}\cos\left(\frac{a_{\rho x}\pi x}{L}\right)\left[u_{0}+u_{x}\sin\left(\frac{a_{ux}\pi x}{L}\right)+u_{y}\cos\left(\frac{a_{uy}\pi y}{L}\right)+u_{z}\cos\left(\frac{a_{ux}\pi z}{L}\right)\right]\left(\left[u_{0}+u_{x}\sin\left(\frac{a_{ux}\pi x}{L}\right)+u_{y}\cos\left(\frac{a_{uy}\pi y}{L}\right)+u_{z}\cos\left(\frac{a_{ux}\pi z}{L}\right)\right]^{2}+u_{z}\cos\left(\frac{a_{ux}\pi z}{L}\right)\left[u_{0}+u_{x}\sin\left(\frac{a_{ux}\pi x}{L}\right)+u_{y}\cos\left(\frac{a_{ux}\pi z}{L}\right)+u_{z}\cos\left(\frac{a_{ux}\pi z}
                                                                                                                                                       +\left[w_{0}+w_{x}\sin\left(\frac{a_{wx}\pi x}{I}\right)+w_{y}\sin\left(\frac{a_{wy}\pi y}{I}\right)+w_{z}\cos\left(\frac{a_{wz}\pi z}{I}\right)\right]^{2}+\left[v_{0}+v_{x}\cos\left(\frac{a_{vx}\pi x}{I}\right)+v_{y}\sin\left(\frac{a_{vy}\pi y}{I}\right)+v_{z}\sin\left(\frac{a_{vz}\pi z}{I}\right)\right]^{2}+\left[v_{0}+v_{x}\cos\left(\frac{a_{vx}\pi x}{I}\right)+v_{y}\sin\left(\frac{a_{vy}\pi y}{I}\right)+v_{z}\sin\left(\frac{a_{vx}\pi z}{I}\right)\right]^{2}+\left[v_{0}+v_{x}\cos\left(\frac{a_{vx}\pi x}{I}\right)+v_{y}\sin\left(\frac{a_{vy}\pi y}{I}\right)+v_{z}\sin\left(\frac{a_{vx}\pi z}{I}\right)\right]^{2}+\left[v_{0}+v_{x}\cos\left(\frac{a_{vx}\pi x}{I}\right)+v_{y}\sin\left(\frac{a_{vx}\pi x}{I}\right)+v_{z}\sin\left(\frac{a_{vx}\pi x}{I}\right)+v_{
                                                                                     -\frac{a_{\rho y}\pi \rho_{y}}{2I}\sin\left(\frac{a_{\rho y}\pi y}{I}\right)\left[v_{0}+v_{x}\cos\left(\frac{a_{vx}\pi x}{I}\right)+v_{y}\sin\left(\frac{a_{vy}\pi y}{I}\right)+v_{z}\sin\left(\frac{a_{vx}\pi z}{I}\right)\right]\left(\left[u_{0}+u_{x}\sin\left(\frac{a_{vx}\pi x}{I}\right)+u_{y}\cos\left(\frac{a_{vy}\pi y}{I}\right)+u_{z}\cos\left(\frac{a_{vx}\pi z}{I}\right)\right]^{2}+v_{z}\sin\left(\frac{a_{vx}\pi z}{I}\right)\left[u_{0}+u_{x}\sin\left(\frac{a_{vx}\pi z}{I}\right)+u_{y}\cos\left(\frac{a_{vx}\pi z}{I}\right)+u_{z}\cos\left(\frac{a_{vx}\pi z}{I}\right)+u_{z}\sin\left(\frac{a_{vx}\pi z
                                                                                                                                                       +\left[w_0+w_x\sin\left(\frac{a_{wx}\pi x}{r}\right)+w_y\sin\left(\frac{a_{wy}\pi y}{r}\right)+w_z\cos\left(\frac{a_{wz}\pi z}{r}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{r}\right)+v_y\sin\left(\frac{a_{vy}\pi y}{r}\right)+v_z\sin\left(\frac{a_{vz}\pi z}{r}\right)\right]^2\right)+\left[v_0+v_x\sin\left(\frac{a_{vx}\pi x}{r}\right)+v_y\sin\left(\frac{a_{vx}\pi x}{r}\right)+v_z\sin\left(\frac{a_{vx}\pi x}{r}\right)\right]^2
                                                                                     +\frac{a_{\rho x}\pi\rho_{z}}{2I}\cos\left(\frac{a_{\rho x}\pi z}{I}\right)\left[w_{0}+w_{x}\sin\left(\frac{a_{w x}\pi x}{I}\right)+w_{y}\sin\left(\frac{a_{w y}\pi y}{I}\right)+w_{z}\cos\left(\frac{a_{w x}\pi z}{I}\right)\right]\left(\left[u_{0}+u_{x}\sin\left(\frac{a_{u x}\pi x}{I}\right)+u_{y}\cos\left(\frac{a_{u y}\pi y}{I}\right)+u_{z}\cos\left(\frac{a_{u x}\pi z}{I}\right)\right]^{2}+u_{z}\cos\left(\frac{a_{u x}\pi z}{I}\right)+u_{z}\cos\left(\frac{a_{u x}\pi z}{I}\right)+u_{z}\cos
                                                                                                                   +\left[w_0+w_x\sin\left(\frac{a_{wx}\pi x}{L}\right)+w_y\sin\left(\frac{a_{wy}\pi y}{L}\right)+w_z\cos\left(\frac{a_{wz}\pi z}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vy}\pi y}{L}\right)+v_z\sin\left(\frac{a_{vx}\pi z}{L}\right)\right]^2+\left[v_0+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_z\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_z\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_z\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_z\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)
                                                                                     +\frac{a_{ux}\pi u_x}{2L}\cos\left(\frac{a_{ux}\pi x}{L}\right)\left\{\left(\left[w_0+w_x\sin\left(\frac{a_{wx}\pi x}{L}\right)+w_y\sin\left(\frac{a_{wy}\pi y}{L}\right)+w_z\cos\left(\frac{a_{wx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vy}\pi y}{L}\right)+v_z\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_y\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)\right]^2+\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{vx}\pi x}{L}\right)+v_x\sin\left(\frac{a_{
                                                                                                                                                       +3\left[u_0 + u_x \sin\left(\frac{a_{ux}\pi x}{L}\right) + u_y \cos\left(\frac{a_{uy}\pi y}{L}\right) + u_z \cos\left(\frac{a_{uz}\pi z}{L}\right)\right]^2\right)\left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_y \cos\left(\frac{a_{\rho y}\pi y}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi z}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_y \cos\left(\frac{a_{\rho y}\pi y}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi z}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi z}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi z}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_z \sin\left(\frac{a_{\rho x}\pi x}{L}\right)\right] + \left[\rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right]
                                                                                                                                                       +\left[p_0 + p_x \cos\left(\frac{a_{px}\pi x}{L}\right) + p_y \sin\left(\frac{a_{py}\pi y}{L}\right) + p_z \cos\left(\frac{a_{pz}\pi z}{L}\right)\right] \frac{2\gamma}{(\gamma - 1)}
                                                                                     -\frac{a_{uy}\pi u_y}{r}\sin\left(\frac{a_{uy}\pi y}{r}\right)\left[v_0+v_x\cos\left(\frac{a_{vx}\pi x}{r}\right)+v_y\sin\left(\frac{a_{vy}\pi y}{r}\right)+v_z\sin\left(\frac{a_{vx}\pi z}{r}\right)\right]\left[\rho_0+\rho_x\sin\left(\frac{a_{\rho x}\pi x}{r}\right)+\rho_y\cos\left(\frac{a_{\rho y}\pi y}{r}\right)+\rho_z\sin\left(\frac{a_{\rho x}\pi z}{r}\right)\right]
                                                                                                                                                 \cdot \left[u_0 + u_x \sin\left(\frac{a_{ux}\pi x}{r}\right) + u_y \cos\left(\frac{a_{uy}\pi y}{r}\right) + u_z \cos\left(\frac{a_{uz}\pi z}{r}\right)\right] +
                                                                                     -\frac{a_{uz}\pi u_z}{t}\sin\left(\frac{a_{uz}\pi z}{t}\right)\left[w_0+w_x\sin\left(\frac{a_{wx}\pi x}{t}\right)+w_y\sin\left(\frac{a_{wy}\pi y}{t}\right)+w_z\cos\left(\frac{a_{wz}\pi z}{t}\right)\right]\left[\rho_0+\rho_x\sin\left(\frac{a_{\rho x}\pi x}{t}\right)+\rho_y\cos\left(\frac{a_{\rho y}\pi y}{t}\right)+\rho_z\sin\left(\frac{a_{\rho z}\pi z}{t}\right)\right]
                                                                                                                                                 \cdot \left[u_0 + u_x \sin\left(\frac{a_{ux}\pi x}{r}\right) + u_y \cos\left(\frac{a_{uy}\pi y}{r}\right) + u_z \cos\left(\frac{a_{uz}\pi z}{r}\right)\right] +
```

But wait, there's more!

```
\begin{split} \frac{\partial \mathcal{L}^{2}(x_{1},x_{2},x_{3})}{\partial x_{1}^{2}(x_{1}^{2}(x_{2}^{2})-x_{1}^{2}x_{3})} & + \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(x_{1}^{2}x_{2}^{2}\right) + x_{2}^{2}x_{3}^{2} \left(\sum_{j=1}^{n} \left(x_{1}^{2}x_{3}^{2}\right) + x_{3}^{2}x_{3}^{2} \left(x_{3}^{2}x_{3}^{2}\right) + x_{3}^{2}x_{3}^{2} \left(\sum_{j=1}^{n} \left(x_{1}^{2}x_{3}^{2}\right) + x_{3}^{2}x_{3}^{2} \left(\sum_{j=1}^{n} \left(x_{1}^{2}x_{3}^{2}\right) + x_{3}^{2}x_{3}^{2} \left(\sum_{j=1}^{n} \left(x_{1}^{2}x_{3}^{2}\right) + x_{3}^{2}x_{3}^{2} \left(x_{3}^{2}x_{3}^{2}\right) + x_{3}^{2}x_{3}^{
```

 $a_{H}^{2}\pi^{2}k\rho_{\sigma}\left[2\cos\left(\frac{a_{H}\pi\sigma}{r}\right)^{2}\rho_{\sigma}+\sin\left(\frac{a_{H}\pi\sigma}{r}\right)\left[\rho_{0}+\rho_{\sigma}\sin\left(\frac{a_{H}\pi\sigma}{r}\right)+\rho_{\sigma}\cos\left(\frac{a_{H}\pi\nu}{r}\right)+\rho_{\sigma}\sin\left(\frac{a_{H}\pi\nu}{r}\right)\right]\left[\rho_{0}+\rho_{\sigma}\cos\left(\frac{a_{H}\pi\nu}{r}\right)+\rho_{\sigma}\sin\left(\frac{a_{H$

```
\begin{split} & = \max_{i} \left( \min_{i} \left( \left[ \left( i + i + i \right) \sin \left( \frac{i \pi_{i}^{2}}{2} \right) + i + i \cos \left( \frac{i \pi_{i}^{2}}{2} \right) + i \cos \left( \frac{i \pi_{i}^{2
```

```
\begin{split} & \frac{\partial \omega_{per} \sigma^{2} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right)}{\partial \omega_{per} \sigma^{2} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right)} & \frac{1}{2} \sin \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_{per}}{\partial \omega_{per}} \partial \omega_{per} \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \cos \left( \frac{\omega_{per}}{\omega_{per}} \right) \\ & \frac{\partial \omega_
```

 $-\frac{2a_{e1}a_{ep}\pi^2\mu v_1w_p}{r_2}\cos\left(\frac{a_{e1}\pi z}{r}\right)\cos\left(\frac{a_{ep}\pi y}{r}\right)$

Combinatorial Explosion

Explosion in source term size

- Complexity increases with more sophisticated mathematical models
 - Sutherland viscosity model has over 1,612,000 characters
- Large memory requirements (128 GB not sufficient for Sutherland)
- · Computational intensity
- segfaults

Hierarchic MMS

- · Decompose each equation into sub-terms
- Each term is operated on individually by the manufactured solution
- Resulting expressions are re-combined to regain source term

The Hierarchic MMS

Consider the full 3D Navier-Stokes energy equation:

$$\mathcal{L} = \frac{\partial(\rho e_t)}{\partial t} + \nabla \cdot (\rho \mathbf{u} e_t) + \nabla \cdot \mathbf{q} + \nabla \cdot (p \mathbf{u}) - \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{u})$$

Decompose:

$$\mathcal{L}_{1} = \frac{\partial(\rho e_{t})}{\partial t}$$

$$\mathcal{L}_{2} = \nabla \cdot (\rho \mathbf{u} e_{t})$$

$$\mathcal{L}_{3} = \nabla \cdot \mathbf{q}$$

$$\mathcal{L}_3 = \mathbf{v} \cdot \mathbf{q}$$

 $\mathcal{L}_4 = \nabla \cdot (p\mathbf{u})$

$$\mathcal{L}_4 = \mathbf{v} \cdot (p\mathbf{u})$$

$$\mathcal{L}_5 = -\nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{u})$$

Hierarchic MMS extensions:

- Expand each component of divergence
- Transient and steady cases ($\mathcal{L}_1 = 0$)
- Sutherland model only requires altering L₅
- Navier-Stokes → Euler and additional terms
- · Can assist in debugging

C-code output

Q_e = -0.2ei * cos(a_rhox * PI * x / L) * rho_x * sin(a_px * PI * x / L) * k * p_x * a_px * a_rhox * PI * PI * pow(L, -0.2ei) / R * pow(rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhoz * PI * z / L), -0.2e1) - 0.2e1 * sin(a_rhoy * PI * y / L) * rho_y * cos(a_py * PI * y / L) * k * p_y * a_rhoy * PI * PI * pow(L, -0.2e1) / R * pow(rho 0 + rho x * sin(a rhox * PI * x / L) + rho v * cos(a rhov * PI * v / L) + rho z * sin(a rhoz * PI * z / L) - 0.2e1 * cos(a rhoz * PI * z / L) * rho z * sin(a roz * PI * z (L) * k * p.z * a_pp * a_rhoz * PI * PI * pow(L, -0.2s1) / R * pow(rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhoz * PI * z / L), -0.2s1) -(v_x * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_0) * (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhoc * PI * z / L)) * (u_0 + u_x * sin(a_ux * PI * x / L) + u_y * cos(a_uy * PI * y / L) + u_z * cos(a_uz * PI * z / L)) * u_y * sin(a_uy * PI * y / L) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * u_y * sin(a_ux * PI * z / L) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * u_y * sin(a_ux * PI * z / L) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * PI * z / L)) * a_uy * PI / L + (w_0 + w_x * sin(a_ux * z / L)) * a_uy * PI / L sin(a wx * PI * x / L) + w x * sin(a wy * PI * y / L) + w z * cos(a wz * PI * z / L) + tho z * sin(a rhox * PI * x / L) + rho x * cos(a rhox * PI * y / L) + rho z * sin(a rhoz * PI * y / L) * z / L)) * (u_0 + u_x * sin(a_ux * PI * x / L) + u_y * cos(a_uy * PI * y / L) + u_z * cos(a_ux * PI * z / L)) * v_x * cos(a_ux * PI * x / L) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * v_x * cos(a_ux * PI * x / L) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * v_x * cos(a_ux * PI * x / L) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * v_x * cos(a_ux * PI * x / L) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * v_x * cos(a_ux * PI * x / L) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * v_x * cos(a_ux * PI * x / L) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI * x / L)) * a_ux * PI / L - (v_0 + v_x * sin(a_ux * PI u x * sin(a ux * PI * x / L) + u y * cos(a uy * PI * y / L) + u z * cos(a uz * PI * z / L)) * u z * sin(a uz * PI * z / L) * a uz * PI / L + sin(a vy * PI * y / L) * k * p y * a py * a py * 11 * PI * POW(L - O. 2ei) / B / (The O + rho x * sin(a rhox * PI * x / L) + rho y * cos(a rhoy * PI * y / L) + rho y * sin(a rhox * PI * x / L) + cos(a x x * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy * PI * x / L) + rho y * cos(a rhoy a_px * PI * PI * pow(L, -0.2e1) / R / (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_x * sin(a_rhox * PI * x / L)) + (w_0 + w_x * sin(a_wx * PI * x / L) + (w_0 + w_x * sin(a_wx * PI * x / L)) + (w_0 + w_x * sin(a_wx * PI * x / L)) wy * sin(a_wy * PI * y / L) + wz * cos(a_wz * PI * z / L)) * (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhox * PI * z / L)) * (vx * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_0) * v_z * cos(a_vz * PI * z / L) * a_vz * PI / L + cos(a_pz * PI * z / L) * k * p_z * a_pz * a_pz * DI * PI * row(L. -0.2e1) / R / (rho 0 + rho x * sin(a rhox * PI * x / L) + rho y * cos(a rhoy * PI * y / L) + rho z * sin(a rhoz * PI * z / L) - (0.2e1 * rhoy * rho x * rhoy * r * rho_x + sin(a_rhox * PI * x / L) * (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhox * PI * z / L))) * (p_0 + p_x * cos(a_px * PI * x / L) + rho_z * n v a sin(a my a PI a v / L) + n v a cos(a my a PI a v / L)) a k a rho v a a rhov a PI a PI a rou(L -0.2at) / R a rou(rho 0 + rho v a sin(a rhov a PI a v / L) + rho v a cos(a rhov a PI * y / L) + rho_z * sin(a_rhoz * PI * z / L), -0.3e1) - (0.2e1 * pow(sin(a_rhoy * PI * y / L), 0.2e1) * rho_y + cos(a_rhoy * PI * y / L) * (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a rhov * PI * v / L) + rho z * sin(a rhoz * PI * z / L)) * (n 0 + p x * cos(a rhov * PI * z / L) + p x * cos(a rhov * PI * v / L) + p x * cos(a rhov * PI * z / L) * k * rho v * a rhov * a_rhoy * PI * PI * pow(L, -0.2e1) / R * pow(rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_x * sin(a_rhox * PI * x / L), -0.3e1) - (0.2e1 * pow(cos(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_x * sin(a_rhox * PI * x / L), -0.3e1) - (0.2e1 * pow(cos(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_x * sin(a_rhox * PI * x / L), -0.3e1) PI * z / L), 0.2a1) * rho_z + sin(a_rhoz * PI * z / L) * (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhox * PI * z / L))) * (p_0 + p_x * cos(apr PI * x / L) * p.y * sin(apy PI * y / L) * p.z * cos(apr * PI * x / L) * k * rhoz * a.rhoz * a.rhoz * a.rhoz * PI * PI * pos(L, -0.2xi) / R * pos(rho,0 * rhoz * sin(a.rhoz * PI * x / L) * trb v * cos(a rhoy * PI * x / L) * rhoz * sin(a rhoz * PI * x / L) * rhoz * cos(a rhoy * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L) * cos(a v * PI * x / L pow(L, -0.2e1) - 0.4e1 / 0.3e1 * mu * u_x * v_z * cos(a_ux * PI * x / L) * sin(a_wz * PI * z / L) * a_ux * a_wz * PI * PI * pow(L, -0.2e1) - 0.2e1 * mu * u_y * v_x * sin(a_uy * PI * y / L) * sin(a,vx * PI * x / L) * a_uy * a_vx * PI * PI * pow(L, -0.2ei) + 0.2ei * mu * u_z * v_x * cos(a_vx * PI * x / L) * sin(a_uz * PI * z / L) * a uz * a vx * PI * PI * pow(L, -0.2ei) - 0.4ei / 0.3e1 * mu * v v * w z * cos(a vv * PI * v / L) * sin(a wz * PI * z / L) * a vv * a wz * PI * PI * now(L, -0.2e1) - 0.2e1 * mu * v z * w v * cos(a vz * PI * z / L) * cos(a wv * PI * v / L) * a_vz * a_wy * PI * PI * pow(L, -0.2e1) + (w_0 + w_x * sin(a_wx * PI * x / L) + w_y * sin(a_wy * PI * y / L) + w_z * cos(a_wz * PI * z / L)) * (tho_0 + tho_x * sin(a_thox * PI * x / L) + tho_y * tho_0 + tho_x * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * x / L) + tho_y * sin(a_thox * PI * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhoz * PI * z / L)) * (v_x * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_0) * u_y * cos(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_vz * PI L) * a_wy * PI * (-(0.3ei * pow(w_0 + w_x * sin(a_wx * PI * x / L) + w_y * sin(a_wy * PI * y / L) + w_z * cos(a_wx * PI * x / L), 0.2ei) + pow(v_x * cos(a_vx * PI * x / L) + v_y * sin(a_wy * PI * y / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_wx * PI * x / L) + v_z * cos(a_ PI * v / L) + v z * sin(a vz * PI * z / L) + v 0. 0.2e1) + sow(u 0 + u x * sin(a ux * PI * x / L) + u v * cos(a uv * PI * v / L) + u z * cos(a uz * PI * z / L). 0.2e1)) * (rho 0 + rho x * sin(a_rbox * PI * x / L) + rbo_y * cos(a_rboy * PI * y / L) + rbo_z * sin(a_rbox * PI * z / L)) / L / O.2ei - Gamma * (p. 0 + p. x * cos(a_px * PI * x / L) + p.y * sin(a_rbox * PI * x / L) + p.z * cos(a_pz * PI * z / L)) / L / (Gamma - 0.1ei)) * v_z * sin(a_pz * PI * z / L) * a_vz * PI / L + (-0.1ei) * (v_x * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v 0) * (rho 0 + rho x * sin(a_rhox * PI * x / L) + rho y * cos(a_rhoy * PI * y / L) + rho z * sin(a_rhoz * PI * z / L)) * (u 0 + u x * sin(a_ux * PI * x / L) + u y * cos(a_uy * PI * x / L) * v / L) + u z * cos(a uz * PI * z / L)) * v x * sin(a vx * PI * x / L) * a vx * PI * ((bos(u 0 + u x * sin(a ux * PI * x / L) + u v * cos(a uv * PI * v / L) + u z * cos(a uz * PI * z / L). 0.2e1) + pow(w_0 + w_x * sin(a_wx * PI * x / L) + w_y * sin(a_wy * PI * y / L) + w_z * cos(a_wz * PI * z / L), 0.2e1) + 0.3e1 * pow(v_x * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_0, 0.2ei)) * (rho 0 + rho x * sin(a_rhoz * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho z * sin(a_rhoz * PI * z / L)) / L / 0.2ei + Ganna * (p_0 + PI * z / L)) p_x * cos(a_px * PI * x / L) + p_y * sin(a_py * PI * y / L) + p_z * cos(a_pz * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * y / L) * a_vy * PI * z / L) * a_vy * PI / L - Gamma * (v_0 + v_x * PI * z / L)) / L / (Gamma - 0.1e1)) * v_y * cos(a_vy * PI * z / L)) * (v_0 * PI * z / L) * (v_0 * PI * z / L)) * (v_0 * PI * Z / L) * (v_0 * PI * Z / L)) * (v_0 * PI * Z / L) * (v_0 * PI * Z / L) * (v_0 * PI * Z / L)) * (v_0 * PI * Z / L) * (v_0 * PI * Z / L) * (v_0 * PI * Z / L)) * (v_0 * PI * Z / L) * (v_0 * PI * Z sin(a_wx * PI * x / L) + w_y * sin(a_wy * PI * y / L) + w_z * cos(a_wz * PI * z / L)) * sin(a_pz * PI * z / L) * p_z * a_pz * PI / L / (Gamma - 0.iei) + 0.iei / 0.2ei * cos(a_rhoz * PI * z / L) L) * (v 0 + v x * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl * x / L) + v v * sin(a vx * Pl sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_0, 0.2e1)) * rho z * a_rhoz * PI * ((pow(w 0 + v_x * sin(a_wx * PI * x / L) + w_y * sin(a_wy * PI * y / L) + w_z * cos(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI * z / L) + v_0 * sin(a_wz * PI / L), 0.2e1) + pow(y x * cos(a yx * PI * x / L) + y y * sin(a yy * PI * y / L) + y z * sin(a yz * PI * z / L) + y 0. 0.2e1) + 0.3e1 * pow(u 0 + u x * sin(a ux * PI * x / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a uy * PI * z / L) + u y * cos(a PI * y / L) + u_z * cos(a_uz * PI * z / L), 0.2e1)) * (rho_0 + rho_x * sin(a_rhox * PI * x / L) + rho_y * cos(a_rhoy * PI * y / L) + rho_z * sin(a_rhoz * PI * z / L)) / L / 0.2e1 + Gamma * (p_0 + p_x * cos(a_px * PI * x / L) + p_y * sin(a_py * PI * y / L) + p_z * cos(a_px * PI * z / L)) / L / (Gamma - 0.1e1)) * u_x * cos(a_ux * PI * x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L - Gamma * (u 0 + u_x * PI + x / L) * a_ux * PI / L + A_ux * sin(a,ux = PI = x/L) + u,y = cos(a,uy = PI = y/L) + u,z = cos(a,ux = PI = x/L)) + sin(a,ux = PI = x/L)) + u,z = a,ux = PI/L/(cassa = 0.14) + cassa = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = PI/L/(cassa = 0.14) + cassa = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = PI/L/(cassa = 0.14) + cassa = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = PI/L/(cassa = 0.14) + cassa = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = PI/L/(cassa = 0.14) + cassa = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = PI/L/(cassa = 0.14) + cassa = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + v,z = a,ux = (v,x = cos(a,ux = PI = x/L)) + ux + sin(a_ux * PI * x / L) * (u 0 + u x * sin(a_ux * PI * x / L) + u y * cos(a_uy * PI * y / L) + u x * cos(a_ux * PI * z / L))) * mu * u x * a_ux * a_ux * PI * PI * pow(L, -0.2ei) + (-now(einfa uv a PI a v / L) 0 2et) a u v + coefa uv a PI a v / L) a (u 0 + u v a einfa uv a PI a v / L) + u v a coefa uv a PI a v / L) + u v a coefa uv a PI a v / L) a mu a u v a a uv a a_uy * PI * PI * pov(L, -0.2e1) + (-pov(sin(a_uz * PI * z / L), 0.2e1) * u_z + cos(a_uz * PI * z / L) * (u_0 + u_x * sin(a_ux * PI * x / L) + u_y * cos(a_uy * PI * y / L) + u_z * cos(a_uz * PI * z / L) PI * z / L))) * mu * u z * a uz * a uz * PI * PI * pow(L, -0.2e1) - (pow(sin(a vz * PI * x / L), 0.2e1) * v x - cos(a vz * PI * x / L) * (v x * cos(a vz * PI * x / L) + v v * sin(a vv * PI * y / L) + v z * sin(a vz * PI * z / L) + v 0)) * mm * v z * a vx * a vx * a vx * PI * PI * pow(L, -0.2e1) - 0.4e1 / 0.3e1 * (pow(cos(a vy * PI * y / L), 0.2e1) * v y - sin(a vy * PI * y / L) * (v x * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_0)) * mu * v_y * a_vy * a_vy * PI * PI * pov(L, -0.2e1) - (pov(cos(a_vz * PI * z / L), 0.2e1) * v_z sin(a vz * PI * z / L) * (v x * cos(a vx * PI * x / L) + v v * sin(a vv * PI * v / L) + v z * sin(a vz * PI * z / L) + v 0)) * mu * v z * a vz * a vz * a vz * PI * PI * pov(L, -0.2e1) + (npw(cos(a wx *PI * x / L), 0.2ei) * wx + sin(a wx *PI * x / L) * (w 0 + wx + sin(a wx *PI * x / L) + w 2 * cos(a wx *PI * x / L)) * mu * wx * a wx * awx * PI * PI * pow(L, -0.2e1) + (-pow(cos(awy * PI * y / L), 0.2e1) * w_y + sin(awy * PI * y / L) * (w_0 + w_x * sin(awx * PI * x / L) + w_y * sin(awy * PI * y / L) + w_z * cos(awz * PI * z / L))) * mu * w y * a wy * a wy * PI * PI * pow(L, -0.2si) + 0.4si / 0.3si * (-pow(sin(a wz * PI * z / L), 0.2si) * w z + cos(a wz * PI * z / L) * (w 0 + w x * sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x / L) + (b + w x + sin(a wx * PI * x / L) + (b + w x / L) + (b y v * sin(a w * PI * v / L) + y z * cos(a wz * PI * z / L))) * mu * y z * a wz * a wz * PI * PI * now(L, -0.2e1) + cos(a rhox * PI * x / L) * (u 0 + u x * sin(a ux * PI * x / L) + u y * cos(a uv + PI * v / L) + u z * cos(a uz * PI * z / L)) * (cos(u 0 + u z * sin(a ux * PI * z / L) + u z * cos(a uv * PI * z / L) + u z * cos(a uz * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI * z / L) + cos(u v * PI sin(a_wx * PI * x / L) + w_y * sin(a_wy * PI * y / L) + w_z * cos(a_wz * PI * z / L), 0.2e1) + pow(v_x * cos(a_wx * PI * x / L) + v_y * sin(a_wy * PI * y / L) + v_z * sin(a_vz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / L) + v_z * sin(a_wz * PI * z / v.0, 0.2e1)) * rho_x * a_rhox * PI / L / 0.2e1 - sin(a_rhoy * PI * y / L) * (v_x * cos(a_vx * PI * x / L) + v_y * sin(a_vy * PI * y / L) + v_z * sin(a_vx * PI * z / L) + v_0) * (pow(a_0 + u_x + u_x + u_y * sin(a ux * PI * x / L) + u v * cos(a uv * PI * v / L) + u z * cos(a uz * PI * z / L). 0.2el) + nov(y 0 + y x * sin(a vx * PI * x / L) + y v * sin(a vv * PI * v / L) + y z * cos(a vz * PI * z/L). 0.2e1) + pow(v x * cos(a vx * PI * x / L) + v v * sin(a vx * PI * x / L) + v 0. 0.2e1)) * rho v * a rho v * PI / L / 0.2e1

Reduced source term C-output

 $800 + \ln Q_1 + \ln Q_1 + \ln Q_1 + \ln Q_2 + \ln Q_2 + \ln Q_2 + \ln Q_2 + \ln Q_3 + \ln Q_3$

Q = (0.3ei * a_ux * u_x * cos(a_ux * PI * x / L) + a_vy * v_y * cos(a_vy * PI * y / L) - a_vz * w_z * sin(a_wz * PI * z / L)) * PI * RHO * U * U / L / 0.2ei + (a_ux * u_x * cos(a_ux * PI * z / L)) *x/L) + 0.3ei *a vv * v v * cos(a vv * PI * v / L) - a vz * v z * sin(a vz * PI * z / L)) * PI * BHO * V * V / L / 0.2ei + (a ux * u x * cos(a ux * PI * x / L) + a vv * v v * cos(a vv * PI * v / L) - 0.3a1 * a vz * v z * sin(a vz * PI * z / L)) * PI * RHO * W * W / L / 0.2a1 * (0.4a1 * a ux * a ux * u x * sin(a ux * PI * x / L) + 0.3a1 * a uv * a (L) + 0.3e1 * a_ux * a_ux * cos(a_ux * PI * x / L)) * MU * PI * PI * U * pow(L, -0.2e1) / 0.3e1 * (0.3e1 * a_vx * a_vx * -x * cos(a_vx * PI * x / L) + 0.4e1 * a_vy * a_vy * -y * sin(a_vy * PI * y / L) + 0.3ei * a_vz * a_vz * v_z * sin(a_vz * PI * z / L)) * MU * PI * PI * V * pow(L, -0.2ei) / 0.3ei + (0.3ei * a_vz * a_vz * a_vz * v_z * sin(a_vz * PI * z / L) + 0.3ei * a_vz * a_vz * v_z * sin(a_vz * PI * z / L) + 0.3ei * a_vz * a_vz * v_z * sin(a_vz * PI * z / L) + 0.3ei * a_vz a_wy * w_y * sin(a_wy * PI * y / L) + 0.4ei * a_wz * a_wz * v_z * cos(a_wz * PI * z / L)) * MU * PI * PI * W * pow(L, -0.2ei) / 0.3ei + (a_ux * v_x * cos(a_ux * PI * x / L) + a_vy * v_y * cos(a_ux * PI * x / L) + a_vy * cos(a_ux * PI cos(a vv * PI * v / L) - a vz * vz * sin(a vz * PI * z / L) * PI * P / (Gama - 0.1e1) / L - (0.2e1 * a rhox * a vx * rho x * px * cos(a rhox * PI * x / L) * sin(a vx * PI * x / L) + 0.2e1 * a_rhoy * a_py * rho_y * p_y * sin(a_rhoy * PI * y / L) * cos(a_py * PI * y / L) + 0.2e1 * a_rhoz * a_pz * rho_z * p_z * cos(a_rhoz * PI * z / L) * sin(a_pz * PI * z / L)) * PI * PI * k * now(I = 0.2e1) / B = now(RHO = 0.2e1) + (II = II + V = V + V = V) = a rhot = PT = rhot = cos(a rhot = PT = t / I) / I / 0.2e1 - a nt = PT = nt = oin(a nt = PT = t / I) / (Gamma = 0.1e1) / I -(a uv * u v * sin(a uv * PI * v / L) + a vx * v x * sin(a vx * PI * x / L) * PI * RHO * U * V / L - (a uz * u z * sin(a uz * PI * z / L) - a vx * v x * cos(a vx * PI * x / L)) * PI * RHO * U *W/L+(a vz * v z * cos(a vz * PI * z / L) + a vv * v * cos(a vv * PI * v / L)) * PI * 880 * V * W/L + (a vx * a vx * cos(a vx * PI * x / L) + a vv * a v * p v * sin(a vv * PI * y / L) + a pz * a pz * p z * cos(a pz * PI * z / L)) * PI * PI * k * pow(L, -0.2ei) / R / 880 - (0.4ei * a ux * a ux * u x * u x * u x * pow(cos(a ux * PI * x / L), 0.2ei) - 0.4ei * a ux * a uy * n v s v v s cos(a nv s PI s v / L) s cos(a vv s PI s v / L) + 0 del s a nv s a vo s n v s v v s cos(a nv s PI s v / L) s sin(a vv s PI s v / L) + 0 del s a nv s a nv s n v s n v s pow(sin(a uv * PI * v / L), 0.2ei) + 0.6ei * a uv * a vz * u v * v x * sin(a uv * PI * v / L) * sin(a vx * PI * x / L) + 0.3ei * a uz * u z * u z * u z * v z * sow(sin(a uz * PI * z / L), 0.2ei) -0.6e1 * a uz * a uz * a uz * u z * u z * uz * sin(a uz * P1 * z / L) * cos(a uz * P1 * z / L) + 0.3e1 * a uz * a uz * v x * v x * pow(sin(a uz * P1 * z / L), 0.2e1) + 0.4e1 * a uv * v x pow(cos(a_vy * PI * y / L), 0.2ei) + 0.4ei * a_vy * a_wz * v_y * u_z * cos(a_vy * PI * y / L) * sin(a_wz * PI * z / L) + 0.3ei * a_vz * a_vz * v_z * v_z * pow(cos(a_vz * PI * z / L), 0.2ei) + O fiel sa ve sa uv s v e su v s confa ve s PI s v / L) s confa uv s PI s v / L) + O del sa uv sa uv s u v s uv s modiconfa uv s PI s v / L) + O del sa uv sa uv s uv s pow(cos(a wv * PI * v / L), 0.2e1) + 0.4e1 * a wz * a wz * w z * w z * w z * w z * pow(sin(a wz * PI * z / L), 0.2e1)) * MU * PI * PI * pow(L, -0.2e1) / 0.3e1 + (a ux * u x * cos(a ux * PI * x / L) + a vv * v * cos(a vv * PI * v / L) - a vz * v z * sis(a vz * PI * z / L)) * PI * P / L - a ut * PI * u t * RHO * U * sis(a ut * PI * t / L) / L + a vt * PI * v t * RHO * V * cos(a vv * PI * v / L) t/L) /L - a_wt * PI * w_t * R80 * W * sin(a_wt * PI * t / L) / L + (U * U + V * V + W * W) * a_rhox * PI * rho_x * U * cos(a_rhox * PI * x / L) / L / 0.2ei - (U * U + V * V + W * W) * a phoy a PI a phoy a V a uin(a phoy a PI a v / I) / I / O 2a1 + (II a II + V a V + V a V) a a phoy a PI a phoy a PI a v / I) / I / O 2a1 - (a phoy a a phoy sin(a rhox * PI * x / L) + a rhoy * a rhoy * rho y * cos(a rhoy * PI * y / L) + a rhoz * a rhoz * rho z * sin(a rhoz * PI * z / L)) * PI * PI * k * P * poy(L, -0.2e1) / R * poy(RHO, -0.2e1) -(0.2e1 * a rhox * rho x * rho rho_z * rho_z * pow(cos(a_rhoz * PI * z / L), 0.2e1)) * PI * PI * k * P * pow(L, -0.2e1) / R * pow(RED, -0.3e1) - (0.3e1 * a_rhox * a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rho_x * u_z * cos(a_rhox * PI * x / L) * sin(a_uz * rhox * u_z * cos(a_rhox * u_z * c PI * z / L) - 0.3e1 * a_rhox * a_wx * rho_x * w_x * cos(a_rhox * PI * x / L) * cos(a_wx * PI * x / L) + 0.3e1 * a_rhoy * a_vx * rho_y * v_x * sin(a_rhoy * PI * y / L) * cos(a_vx * PI * z / L) + 0.3e1 * a rhoy * a wy * rho y * y y * sin(a rhoy * PI * y / L) * cos(a wy * PI * y / L) + 0.2e1 * a rhoz * a ux * rho z * u x * cos(a rhoz * PI * z / L) * cos(a ux * PI * x / L) + 0.2e1 * a_rhoz * a_vy * rho_z * v_y * cos(a_rhoz * PI * z / L) * cos(a_vy * PI * y / L) + 0.4e1 * a_rhoz * a_wz * rho_z * v_z * cos(a_rhoz * PI * z / L) * sin(a_wz * PI * z / L)) * MU * (0.3e1 * B_mu * R * R80 + P) * PI * PI * PI * V / (B mu * R * R80 + P) * pow(L, -0.2ei) / R80 / 0.6ei - a pz * PI * p z * Camma * W * sin(a pz * PI * z / L) / (Gamma - 0.1ei) / L - (0.3ei * a pz * a uy * p z * uy * sin(a px * PI * x / L) * sin(a uy * PI * y / L) + 0.3e1 * a px * a vx * p x * v x * sin(a px * PI * x / L) * sin(a vx * PI * x / L) - 0.2e1 * a py * a ux * p y * u x * cos(a py * PI * y (1) = cos(a_nx + F1 x / L) + 0.444 = a_py = a_ny = p_y = v_y = cos(a_py + F1 + y / L) + cos(a_ny + F1 + y / L) + 0.244 = a_py = a_nx = p_y = v_x = cos(a_py + F1 + y / L) + a_n(a_nx + F1 + x / L) + cos(a_ny + F1 + y / L) + a_n(a_nx + F1 + x / L) + a_n(a_nx + x / L) + a_n(* R * RHO + P) * MU * PI * PI * V / (B_mu * R * RHO + P) * pow(L, -0.2e1) / P / 0.6e1 + a_py * PI * p_y * Gamma * V * cos(a_py * PI * y / L) / (Gamma - 0.1e1) / L - (0.3e1 * a_rhox * a_uy * rho_x * u_y * cos(a_rhox * PI * x / L) * sin(a_uy * PI * y / L) + 0.3e1 * a_rhox * a_vx * rho_x * v_x * cos(a_rhox * PI * x / L) * sin(a_vx * PI * x / L) - 0.2e1 * a_rhoy * a_ux * rho_y * u_x * sin(a rhov * PI * v / L) * cos(a ux * PI * x / L) + 0.4e1 * a rhov * a vv * rho v * v v * sin(a rhov * PI * v / L) * cos(a uv * PI * v / L) + 0.2e1 * a rhov * a uz * rho v * v z * sinfa through PT a v / L) a sinfa up a PT a v / L) - 0.3et a a through up a through up a programme PT a v / L) a crefa up a PT a v / L) - 0.3et a a through up a through up a programme PT a v / L) - 0.3et a a through up a through up a programme PT a v / L) - 0.3et a a through up a programme PT a v / L) - 0.3et a a through up a programme PT a v / L) - 0.3et a configuration of through up a v / L) - 0.3et a configuration of through up a v / L) - 0.3et a configuration of through up a v / L) - 0.3 *PI * z / L) * coa(a_wy * PI * y / L)) * MU * (0.3ei * B_mu * R * RHO + P) * PI * V / (B_mu * R * RHO + P) * pow(L, -0.2ei) / RHO / 0.6ei + (0.4ei * a_rhox * a_ux * rho_x * u_x * cos(a rhox * PI * x / L) * cos(a ux * PI * x / L) - 0.2ei * a rhox * a vv * rho x * v v * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) + 0.2ei * a rhox * a vz * rho x * v z * cos(a rhox * PI * x / L) * cos(a vv * PI * v / L) * sin(a_vx * PI * x / L) - 0.3ei * a_rhoz * a_uz * rho_z * u_z * cos(a_rhoz * PI * z / L) * sin(a_uz * PI * z / L) + 0.3ei * a_rhoz * a_vx * rho_z * u_z * cos(a_rhoz * PI * z / L) * Cos(a uv x PT x v / L)) x MI x (0 3et x R mu x R x RR0 + P) x PT x PT x H / (R mu x R x RR0 + P) x pou(L -0 2et) / RR0 / 0 6et - a nv x PT x n v x Campa x H x cin(a nv x PT x v / L) / (Campa - 0.iei) / L + (0.4ei * a_px * a_ux * p_x * u_x * sin(a_px * PI * x / L) * cos(a_ux * PI * x / L) - 0.2ei * a_px * a_vy * p_x * v_y * sin(a_px * PI * x / L) * cos(a_vy * PI * y / L) + 0.2ei * apx * a yz * p x * y z * sin(a px * PI * x / L) * sin(a yz * PI * z / L) + 0.3e1 * a pv * a uv * p v * u v * cos(a pv * PI * y / L) * sin(a uv * PI * v / L) + 0.3e1 * a pv * a vx * p v * v x * cos(a_py * PI * y / L) * sin(a_vx * PI * x / L) - 0.3e1 * a_px * a_ux * p_x * u_x * sin(a_px * PI * x / L) * sin(a_ux * PI * x / L) + 0.3e1 * a_px * a_ux * p_x * u_x * sin(a_px * PI * x / L) * sin(a_ux * PI * x / L) + 0.3e1 * a_px * a_ux * p_x * u_x * sin(a_px * PI * x / L) * sin(a_ux * PI * x L) * coa(a, vx * PI * x / L)) * (0.3ei * B, mu * R * RHO + P) * MU * PI * PI * U / (B, mu * R * RHO + P) * pow(L, -0.2ei) / P / 0.6ei - (0.3ei * a, px * a, ux * p, x * u, z * sin(a, px * PI * x / L) * sin(quar Pf * x / L) = 0.84 * apr * ave * p.r * ay * sin(apr * Pf * x / L) * con(ay * Pf * x / L) * 0.34 * app * ave * p.r * v.r * con(apr * Pf * x / L) * con(ay * Pf * x / L) * con a_vy * p_z * v_y * sin(a_pz * PI * z / L) * cos(a_vy * PI * y / L) + 0.4e1 * a_pz * a_vz * p_z * v_z * sin(a_pz * PI * z / L) * sin(a_vz * PI * z / L)) * (0.3e1 * B_mu * R * RHO + P) * MU * PI * PI * W / (B_mu * R * RHO + P) * pow(L, -0.2e1) / P / 0.6e1;

Shortcomings

Symbolic Shortcomings

- Hierarchic decomposition is an improvement, but is it enough?
 - Even with factorization, source terms still massive
 - Generating manufactured solutions was a full time job at PECOS
- Everything we have discussed has been generated outside of MASA
 - Not thrilled with Maple, Mathematica

Enter Automatic Differentiation

- AD numerically evaluates the derivative of a function
 - applies chain rule repeatedly
- Superior error characteristics (round-off)
- Slow (but we barely care)
- · Several libraries: NAG, Sacado, etc.

"Dual Numbers" - [Clifford 1873],[Study 1891]

- A new element ϵ
- Closed under addition and multiplication:

$$\left\{ \sum_{i=0}^{m} a_i \epsilon^i : a_i \in \mathbb{R}, m < \infty \right\}$$

• Take the quotient with $\epsilon^2 \equiv 0$

$$\mathbb{D}[\mathbb{R}] \equiv \{a + b\epsilon : a, b \in \mathbb{R}\}\$$

- Used with quaternions to represent rotations and translations
- · Arithmetic:

$$(a+b\epsilon) + (c+d\epsilon) = ((a+c) + (b+d)\epsilon)$$
$$(a+b\epsilon) - (c+d\epsilon) = ((a+c) - (b+d)\epsilon)$$
$$(a+b\epsilon) \times (c+d\epsilon) = (ac) + ad\epsilon + bc\epsilon + bd\epsilon^2$$
$$= ((ac) + (ad+bc)\epsilon)$$

"Hyper-dual Numbers" - [Fike 2009]

- Add two new elements ϵ_1 , ϵ_2 to $\mathbb R$
- Take the quotient with $\epsilon_1^2 \equiv \epsilon_2^2 \equiv 0$

$$\mathbb{H}[\mathbb{R}] \equiv \{ a + b\epsilon_1 + c\epsilon_2 + d\epsilon_1 \epsilon_2 : a, b, c, d \in \mathbb{R} \}$$

Arithmetic:

$$(a + b\epsilon_1 + c\epsilon_2 + d\epsilon_1\epsilon_2) + (e + f\epsilon_1 + g\epsilon_2 + h\epsilon_1\epsilon_2) =$$

$$((a + e) + (b + f)\epsilon_1 + (c + g)\epsilon_2 + (d + h)\epsilon_1\epsilon_2)$$

$$(a + b\epsilon_1 + c\epsilon_2 + d\epsilon_1\epsilon_2) - (e + f\epsilon_1 + g\epsilon_2 + h\epsilon_1\epsilon_2) =$$

$$((a - e) + (b - f)\epsilon_1 + (c - g)\epsilon_2 + (d - h)\epsilon_1\epsilon_2)$$

$$(a + b\epsilon_1 + c\epsilon_2 + d\epsilon_1\epsilon_2) \times (e + f\epsilon_1 + g\epsilon_2 + h\epsilon_1\epsilon_2) =$$

$$(ae) + (af + be)\epsilon_1 + (ag + ce)\epsilon_2 + (ah + de + bg + cf)\epsilon_1\epsilon_2$$

"Hyper-Dual Numbers"

- With $\epsilon_1^2 \equiv \epsilon_2^2 \equiv 0 \equiv (\epsilon_1 \epsilon_2)^2 = 0$
- Where $X \equiv x + \epsilon_1 + \epsilon_2$, we find:

$$f(X) = f(x) + f'(x)\epsilon_1 + f'(x)\epsilon_2 + f''(x)\epsilon_1\epsilon_2$$

- The Taylor series truncates exactly at the second-derivative term
- Using hyper-dual numbers results in first- and second-derivative calculations that are exact, regardless of step size
- methods for computing exact higher derivatives can be created by using more non-real parts (ϵ_3 , for instance)

Data Type Independence: Generic Programming

- Template arguments can be data types
- Class data members can depend on template argument
- · Methods and functions can as well

```
template <typename T>
class NumericVector {
T* data;
};
```

This is how MASA provides arbitrary precision, e.g. masa_eval_source< double >()

Constructing higher rank objects

Templated classes can be instantiated with plain data types

- or with other instantiated templated types
- or with other instantiations of themselves

Example

```
NumericVector<float> floatvec;
NumericVector<complex<double> > complexdoublevec;
NumericVector<NumericVector<float> > floatmatrix;
```

ADScalar $P = p_0 + p_x * cos(a_px * PI * x / L) +$

MASA PDE Examples

Manufactured Solution

 $rho_v * cos(a_rhov * PI * v / L);$

 $p_y * sin(a_py * PI * y / L);$

MASA PDE Examples

Source Terms: Euler // Gas state ADScalar T = P / RHO / R; ADScalar E = 1. / (Gamma-1.) * P / RHO;ADScalar ET = E + .5 * U.dot(U): // Mass, momentum and energy Scalar Q_rho = raw_value(divergence(RHO*U)); RawArray Q_rho_u = raw_value(divergence(RHO*U.outerproduct(U)) + P.derivatives()); Scalar Q_rho_e = raw_value(divergence((RHO*ET+P)*U));

MASA PDE Examples

Source Terms: Navier-Stokes

```
// Gas state
ADScalar T = P / RHO / R;
ADScalar E = 1. / (Gamma-1.) * P / RHO;
ADScalar ET = E + .5 * U.dot(U);
// Constitutive laws
Tensor GradU = gradient(U);
Tensor Tau = mu * (GradU + transpose(GradU) -
 2./3. * divergence(U) * RawArray::identity());
FullArray g = -k * T.derivatives();
Scalar Q_rho = raw_value(divergence(RHO*U));
RawArray Q_rho_u = raw_value(divergence(RHO*U.outerproduct(U) - Tau) +
                   P.derivatives()):
Scalar Q_rho_e = raw_value(divergence((RHO*ET+P)*U + q - Tau.dot(U)));
```

Operator-Overloaded Multi-precision

Example

```
template <typename T, typename S>
struct ShadowNumber {
T _val;
S _shadow;
};
```

 Simultaneous calculation with multiple floating point representations, to estimate rounding error.

Example

```
ShadowNumber<float, double> shadowed_float;
ShadowNumber<double, long double> shadowed_double;
```

Future AD work

Future Work

- Automatic Latex Generation
- Latex Parser MMS generator
- Complex multiphysics
- Inverse Problems

Stochastic MASA and QUESO Verification

Initial Effort

- Conjugate Prior(s)
 - Posterior is in the same family as the prior
- Initial problem: Gaussian
- QUESO: multilevel Monte Carlo
 - ► {5k, 50k, 500k} samples
- Tricky: sampling posterior
 - Convergence rates can be bounded

```
      5k Posterior Mean
      = 2.19617

      50k Posterior Mean
      = 2.18629

      500k Posterior Mean
      = 2.1789

      SMASA Posterior Mean
      = 2.17749

      5k Posterior Std.Dev.
      = 0.31234

      50k Posterior Std.Dev.
      = 0.313286

      500k Posterior Std.Dev.
      = 0.303793
```

SMASA Posterior Std.Dev. = 0.301511

Future work: expand AD to inverse problems.

Conclusions

Summary

- MMS is not a difficult concept, but can be tricky and time consuming
- Must have a high degree of confidence in your verification suite
- MASA is an open source library designed to:
 - ► Increase use of existing MMS in the community
 - Provide a standardized interface and toolset to the community
 - ► Serve as an example of high quality verification software
 - Available at: https://red.ices.utexas.edu/projects/software

Conclusions

Thank you!

Have a well verified day.

nick@ices.utexas.edu