Лекция 1 по курсу «Основы цифровой обработки сигналов» 2 сентября 2024 г.

Предисловие к лекционному курсу.

- 1. Дискретные преобразования сигналов.
- 1.1. Классификация сигналов: аналоговые, дискретные, цифровые.
- 1.2. Преобразование Фурье:

Свойства преобразования Фурье.

Спектры импульсных и периодических сигналов.

Эффект растекания спектра при ограничении длительности сигнала.

Предисловие к лекционному курсу

Лекционный цикл «Цифровая обработка сигналов» 5 курс (магистратура, специалитет)

M03-403, M01-401, M01-402, M01-403, M01-404, M01-405, M01-406, M01-407, M01-408, C01-019

Лектор: Тормагов Тимофей Алексеевич,

tormagov.ta@mipt.ru

9-й семестр (осенний):

«Основы цифровой обработки сигналов» (ФРКТ) «Цифровая обработка сигналов» (ФАКТ)

Дискретные преобразования сигналов Интерфейс ввода-вывода систем ЦОС реального времени

Основы цифровой фильтрации

10-й семестр (осенний):

«Цифровая обработка сигналов», (ФРКТ и ФАКТ).

Основы цифрового спектрального анализа
Многоскоростная обработка сигналов
Методы преобразования узкополосных радиосигналов
в цифровую форму

• Лекции по понедельникам 12:20—13:45 в Акт. зале ЛК.

Материалы лекций публикуются в LMS https://lms.mipt.ru/course/view.php?id=1493&type=lecture Аттестация

	ФРКТ	ФАКТ
9 семестр	Основы цифровой обработки	Цифровая обработка
(осенний)	сигналов	сигналов
	(семестровый)	(годовой)
	9 семестр — экзамен	9 семестр — зачет
10 семестр	Цифровая обработка сигналов	10 семестр — экзамен
(весенний)	(семестровый)	
	10 семестр — экзамен	

Зачет или экзамен состоит из письменной и устной части.

Письменная часть проводится по индивидуальным билетам, состоящим из теоритического вопроса и двух задач.

Устная часть состоит в обсуждении с экзаменатором своих решений и ответов на дополнительные вопросы по программе курса. Экзаменатору доступны результаты контрольных работ и решения задач с лекций.

Предисловие к лекционному курсу: задачи с лекций и контрольные работы

Задачи с лекций

- Типовые задачи для контрольных работ и экзамена (зачета).
- Решения оцениваются с помощью тестов для самопроверки по задачам с лекции в LMS

https://lms.mipt.ru/course/view.php?id=1493&type=lecture

Контрольные работы

- Форма текущего контроля по курсу.
- Варианты индивидуальные (120). Каждый вариант содержит три задачи.
- Для успешного результата на контрольной работе рекомендуется решать задачи с лекций и разбирать материалы прочитанных лекций.
- В каждом блоке проводится по одной контрольной работе во время одной из лекций. В семестре два блока.

Блок 1. Лекции 1-5.	Дискретные преобразование сигналов, интерфейсы ввода и вывода систем ЦОС реального времени.
Блок 2. Лекции 7-13.	Основы цифровой фильтрации.

• Во время контрольной работы студенты могут пользоваться конспектами лекций и справочной литературой, в том числе в электронном виде. Не запрещается (и даже поощряется) использование средств компьютерного моделирования, например, в целях проверки своих решений.

Предисловие к лекционному курсу: план лекций

	Блок 1. Дискретные преобразование сигналов, интерфейсы ввод систем ЦОС реального времени (темы контрольной работы №1).	да и вывода
1	1. Дискретные преобразования сигналов.	2 сентября
	1.1. Классификация сигналов: аналоговые, дискретные, цифровые.	2024 г.
	1.2. Преобразование Фурье. Свойства преобразования Фурье.	
	Дельта-функция и ее спектр. Спектры импульсных и периодических	
	сигналов. Эффект растекания спектра при ограничении длительности	
	сигнала.	
2	1.3. Дискретизация взятием отсчетов.	9 сентября
	Спектр дискретизованного сигнала. Эффект наложения. Теорема	2024 г.
	Котельникова во временной области. Теорема отсчетов в частотной	
	области. Особенности дискретизации синусоидальных сигналов.	
	1.4. Дискретное во времени преобразование Фурье (ДВПФ).	
	Оценка спектра сигналов по последовательности его отсчетов.	
	Четыре формы записи ДВПФ. Сходимость ДВПФ. Свойства ДВПФ.	
3	1.5. Дискретное преобразование Фурье (ДПФ).	16 сентября
	Дискретное преобразование Фурье (ДПФ) для последовательностей	2024 г.
	конечной длительности. Форма записи ДПФ. Связь между ДПФ и	
	ДВПФ в точках $v=n/N$. Интерполяция ДВПФ добавлением нулевых	
	отсчетов в сигнал (Zero Padding). Интерполяционная формула	
	восстановления ДВПФ по коэффициентам ДПФ в точках $v \neq n/N$.	
	Частотная ось ДПФ.	
	Дискретное преобразование Фурье (ДПФ) для периодических	
	последовательностей. Форма записи ДПФ. Связь между ДПФ и ДВПФ	
	для периодических последовательностей.	
	Свойства ДПФ. Дискретные экспоненциальные функции (ДЭФ).	

4	2. Интерфейс ввода систем ЦОС реального времени.	23 сентября
	Цифровая обработка сигналов в системах реального времени.	2024 г.
	Аналого-цифровой преобразователь (АЦП). Шум квантования n —	
	разрядного АЦП. Наложение спектров. Фильтры нижних частот для	
	защиты от наложения спектров. Аналоговые фильтры Баттерворта и	
	Чебышева 1-рода. Иллюстрация взаимосвязи между разрешающей	
	способностью АЦП и параметрами аналогового фильтра против	
	наложения.	
5	3. Интерфейс вывода систем ЦОС реального времени.	30 сентября
	Восстановление сигналов по их отсчётам. Интерфейс вывода.	2024 г.
	Идеальная интерполяция сигнала рядом Котельникова, реальные	
	фильтры. Каузальная аппроксимация идеального фильтра нижних	
	частот (аналогового). Восстановление сигналов по дискретным	
	отсчётам путём интерполяции. Ступенчатая интерполяция,	
	восстановление косинусоидального сигнала с помощью ЦАП.	
	Цифроаналоговое преобразование с запасом по частоте.	
6	Контрольная работа №1. Дискретные преобразование сигналов,	7 октября
	интерфейсы ввода и вывода систем ЦОС реального времени.	2024 г.
	Блок 2. Основы цифровой фильтрации. (темы контрольной работы N	º2) .
7	4. Основы цифровой фильтрации.	14 октября
	4.1. Дискретные линейные стационарные системы (LTI).	2024 г.
	Импульсная характеристика, частотная, амплитудно-частотная и	
	фазочастотная характеристики. Каузальность и физическая	
	реализуемость. Устойчивость (BIBO). Разностное уравнение	
	дискретной LTI системы. Описание в виде блок-схемы	
	4.2. Идеальные частотно-избирательные цифровые фильтры.	
	Mayor those appropriately with the design that the supplier of	
	Каузальная аппроксимация идеального фильтра нижних частот	

Предисловие к лекционному курсу: план лекций

8	4.3. <i>z</i> -преобразование в дискретных системах.	21 октября
	Переход от преобразования Лапласа к z-преобразованию. Свойства	2024 г.
	z-преобразования. z-преобразование тестовых сигналов.	
	Вычисление обратного z-преобразования. Метод разложения на	
	простые дроби. Метод контурного интегрирования (на основе	
	теоремы Коши о вычетах). Метод разложения в степенной ряд.	
9	4.4. Применение z-преобразования для анализа цифровых	28 октября
	фильтров.	2024 г.
	Определение двухстороннего z-преобразования. Передаточная	
	функция дискретной LTI системы. Связь ДВПФ и <i>z</i> -преобразования.	
	Передаточная функция и частотные характеристики системы.	
	Передаточная функция и разностное уравнение системы. Нуль-	
	полюсная диаграмма и критерий устойчивости по входу. Вычисление	
	АЧХ и ФЧХ методом геометрических построений.	
10	4.5. Формы реализации передаточных функций цифровых	11 ноября
	фильтров.	2024 г.
	Прямая форма (Direct form I). Прямая каноническая форма (Direct	
	form II). Прямая транспонирования и прямая каноническая	
	транспонированная формы. Последовательное (каскадное)	
	соединение блоков. Параллельное соединение блоков.	
	Биквадратный блок	
11	4.6*. Синтез БИХ-фильтров.	
	Метод размещения нулей и полюсов. Метод инвариантной	
	импульсной характеристики. Метод билинейного z-преобразования.	
12	4.7. Цифровые фильтры 1-го и 2-го порядков.	18 ноября
	Нерекурсивные фильтры 1-го и 2-го порядков. Рекурсивные блоки 1-	2024 г.
	го и 2-го порядков.	
13	4.8. Цифровые фильтры с конечной импульсной характеристикой	25 ноября
	(КИХ-фильтры).	2024 г.

	КИХ-фильтры с линейной фазовой характеристикой. Нерекурсивный способ реализации КИХ—фильтров. Рекурсивный способ реализации КИХ—фильтров. Метод частотной выборки. Примеры рекурсивной реализация фильтров с линейной фазовой характеристикой и целыми коэффициентами.		
14	Контрольная работа №2. Основы цифровой фильтрации.	2	декабря
		2024 г.	
15	Лекция-консультация перед экзаменом/зачетом. Разбор задач.	9	декабря
		2024 г.	
	Зачет ФАКТ	примерно	
		16 декабря	
		2024 г.	
	Экзамен ФРТК	Зимняя	
		сессия	

Основная литература

- 1. Романюк Ю.А. Основы цифровой обработки сигналов. Учебное пособие. Часть 1. М.: МФТИ, 2007.
- 2. Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Уч. пособие. М.: МФТИ, 2007.

Дополнительная литература

- 3. Солонина А.И. Цифровая обработка сигналов в зеркале МАТLAB: учеб. пособие.
- СПб.: БХВ-Петербург, 2021. 560 с.: ил.
- 4. Васильев, В. П. Основы теории и расчета цифровых фильтров: учебное пособие / В. П. Васильев, Э. Л. Муро, С. М. Смольский; под ред. С. М. Смольского .— 2-е изд., стереотип. М.: ИНФРА-М, 2020
- 5. Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2013 г.
- 6. Цифровая обработка сигналов / А. Оппенгейм, Р. Шафер; пер. с англ. под ред. С. Ф. Боева
- 3-е изд., испр. М.: Техносфера, 2019 .— 1048 с.Bсе печатные учебные пособия ([1–6]) есть в библиотеке МФТИ

1.1. Классификация сигналов: аналоговые, дискретные, цифровые.

Аналоговые или континуальные сигналы x(t) описываются непрерывными и кусочно-непрерывными функциями, причем как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала.

Дискретные сигналы, могут быть описаны в виде счетного набора отсчетов (значений) в заданные моменты времени $k\Delta t$, $k\in Z$, где Δt — шаг дискретизаци. Частота дискретизации f_{π} (размерность в Гц) — это величина, обратная шагу дискретизации $f_{\pi}=1/\Delta t$.

Цифровые сигналы, помимо того, что они являются дискретными, могут принимать лишь конечное число значений, соответствующих уровням квантования.

Процесс преобразования аналогового сигнала в цифровой состоит из операций дискретизации и квантования, которые осуществляются аналого-цифровым преобразователем (АЦП). Обычно число уровней квантования 2^m , где m — разрядность АЦП.

1.2. Преобразование Фурье: формулы анализа и синтеза

Все реальные сигналы имеют конечную удельную энергию:

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < \infty.$$

Например, если x(t) — напряжение (или ток), действующее на единичном сопротивлении, то интеграл представляет собой энергию, выделяемую на единичном сопротивлении, и эта энергия конечна. В этом случае x(t) — функция с интегрируемым квадратом на всей оси. По теореме Планшереля для функции x(t) существует функция X(f) также с интегрируемым квадратом на всей оси, связанна с x(t) соотношением:

$$\lim_{T\to\infty}\int_{-T}^{T}\left|X\left(f\right)-\int_{-T}^{T}x\left(t\right)e^{-j2\pi ft}dt\right|^{2}df=0.$$

Причем, если функции x(t) и X(f) абсолютно интегрируемы, то

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt,$$

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df.$$

Эти формулы представляют собой пару <u>преобразования</u> <u>Фурье (FT)</u>, где частота f измеряется в Герцах (Гц). Для частоты циклической частоты $\omega = 2\pi f$, измеряемой в рад/с (радианы в секунду), пара преобразования Фурье имеет вид:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) \exp(-j\omega t) dt,$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega.$$

Первый интеграл называется спектральной плотностью, а второй - интегралом Фурье.

1.2. Преобразование Фурье: свойства.

Далее будем использовать запись вида $x(t) \overset{FI}{\longleftrightarrow} X(f)$, что означает, что для сигнала x(t) преобразование Фурье будет X(f). Предположим, что $x(t) \overset{FT}{\longleftrightarrow} X(f)$ и $y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда справедливы следующие свойства преобразования Фурье.

1. Свойство линейности.

Для заданных чисел $\alpha \in C$ и $\beta \in C$

$$\alpha x(t) + \beta y(t) \stackrel{FT}{\longleftrightarrow} \alpha X(f) + \beta Y(f).$$

2. Теорема запаздывания.

Для заданной задержки по времени τ (или опережения в случае $\tau < 0$)

$$x(t-\tau) \stackrel{FT}{\longleftrightarrow} \exp(-j2\pi f \tau) X(f).$$

3. Теорема смещения.

$$x(t)\exp(-j2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} X(f+f_0).$$

4. Теорема Парсеваля-Релея.

$$\int_{-\infty}^{\infty} x(t) y^*(t) dt = \int_{-\infty}^{\infty} X(f) Y^*(f) df.$$

Здесь «*» означает комплексное сопряжение.

5. Теорема о спектре произведения.

$$x(t)y(t) \overset{FT}{\longleftrightarrow} X(f) \otimes Y(f),$$
$$x(t)y(t) \overset{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} X(\tilde{f})Y(f-\tilde{f})d\tilde{f}.$$

6. Теорема о спектре свертки.

$$x(t) \otimes y(t) \overset{FT}{\longleftrightarrow} X(f)Y(f),$$

$$\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau \overset{FT}{\longleftrightarrow} X(f)Y(f).$$

7. Теорема об изменении масштаба.

$$x(at) \stackrel{FT}{\longleftrightarrow} \frac{1}{a} X\left(\frac{f}{a}\right).$$

8. Теорема о спектре производной.

$$\frac{dx(t)}{dt} \stackrel{FT}{\longleftrightarrow} j2\pi fX(f).$$

9. Теорема о производной спектра:

$$t \cdot x(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{j2\pi} \frac{dX(f)}{df}$$
.

1.2. Преобразование Фурье: дельта-функция и ее спектр

Напоминание про дельта-функцию

Для дельта-функции справедливо соотношение

$$\int_{t_0-\varepsilon}^{t_0+\varepsilon} \delta(t-t_0) dt = 1 \quad \forall \varepsilon > 0.$$

Рассмотрим сигнал $y(t)=A\delta(t-t_0), A\in\mathbb{C}$. Это дельтафункция в точке t_0 оси времени. Площадь под графиком

$$\int_{t_0-\varepsilon}^{t_0+\varepsilon} A\delta(t-t_0) dt = A \quad \forall \varepsilon > 0.$$

Предположим, что дельта-функция интегрируема по интервалу $(-\infty,t)$. Тогда

$$\int_{-\infty}^{t} \delta(\tau - t_0) d\tau = \sigma(t - t_0),$$

где $\sigma(t-t_0)$ – функция единичного скачка или функция Хевисайда:

$$\sigma(t - t_0) = \begin{cases} 0 & \text{при} \quad t < t_0, \\ 1/2 & \text{при} \quad t = t_0, \\ 1 & \text{при} \quad t > t_0. \end{cases}$$

Функция единичного скачка является интегралом от дельтафункции, а значит

$$\sigma'(t-t_0) = \delta(t-t_0).$$

 $a-\partial$ ельта-функция, δ – функция единичного скачка

1.2. Преобразование Фурье: дельта-функция и ее спектр

Фильтрующее свойство дельта-функции: её свёртка с любой ограниченной и непрерывной в точке t_0 функцией x(t) равна

$$\int_{a}^{b} x(t)\delta(t-t_0)dt = \begin{cases} x(t_0), & a < t_0 < b, \\ (1/2)x(t_0), & t_0 = a \text{ или } t_0 = b, \\ 0, & t_0 < a, t_0 > b. \end{cases}$$

Если функция x(t) в точке $t=t_0$ имеет разрыв первого рода, TO

$$\int\limits_a^b x(t)\,\delta(t-t_0)\,dt=(1/\,2)[\,x(t_{0+})+x(t_{0-})],\quad a< t_0< b,$$
 где $x(t_{0+})$ и $x(t_{0-})-$ значения $x(t)$ справа и слева от точки

разрыва.

Если a – действительная величина, то выполняются следующие равенства:

$$\int_{-\infty}^{\infty} x(t) \, \delta(t-a) \, dt = x(a),$$

$$x(t) \cdot \delta(t-a) = x(a) \cdot \delta(t-a),$$

$$\delta[(t-t_0)/a] = |a| \, \delta(t-t_0),$$

$$\delta(at-t_0) = \frac{1}{|a|} \, \delta(t-\frac{t_0}{a}).$$

Спектр дельта-функции

Используя преобразование Фурье, находим, что

$$\int_{-\infty}^{\infty} \delta(t)e^{-j2\pi ft}dt = e^0 = 1,$$

т. е. спектр дельта-функции постоянен на всех частотах:

$$1 \stackrel{FT}{\longleftrightarrow} \delta(f),$$

1.2. Преобразование Фурье: спектры гармонических сигналов.

Спектры гармонических сигналов.

Вычислим обратное преобразование Фурье для $X(f) = \delta(f - f_0)$, т.е. от дельта-функции в точке f_0 оси частот.

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df = \int_{-\infty}^{\infty} \delta(f - f_0) \exp(j2\pi f t) df.$$
$$x(t) = \exp(j2\pi f_0 t).$$

Тогда с учетом того, что

$$\cos(2\pi f_0 t) = \frac{\exp(j2\pi f_0 t) + \exp(-j2\pi f_0 t)}{2},$$

$$\sin(2\pi f_0 t) = \frac{\exp(j2\pi f_0 t) - \exp(-j2\pi f_0 t)}{2j}.$$

получаем

$$1 \overset{FT}{\longleftrightarrow} \delta(f),$$

$$\exp(j2\pi f_0 t) \overset{FT}{\longleftrightarrow} \delta(f - f_0),$$

$$\cos(2\pi f_0 t) \overset{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0),$$

$$\sin(2\pi f_0 t) \overset{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) - \frac{1}{2} \frac{1}{2} \delta(f + f_0).$$

Пример. Определить спектр X(f) гармонического сигнала

$$x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$$

где
$$f_1 = 100$$
 Гц, $f_2 = 200$ Гц.

Решение. По свойствам преобразования Фурье

$$\cos(2\pi f_0 t) \stackrel{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0).$$

Тогда по свойству линейности преобразования Фурье

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2)$$

1.2. Преобразование Фурье: спектры импульсных сигналов.

Симметричный прямоугольный импульс длительностью τ .

Спектр находим с помощью формулы преобразования Фурье:

$$X_{1}(f) = \int_{-\infty}^{\infty} x_{1}(t) \exp(-j2\pi f t) dt = \int_{-\tau/2}^{\tau/2} E \exp(-j2\pi f t) dt =$$

$$= \frac{E}{-j2\pi f} \exp(-j2\pi f t) \Big|_{\tau/2}^{\tau/2} = E \frac{\sin(\pi f \tau)}{\pi f} = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Симметричный треугольный импульс длительностью τ .

$$x_2(t) = \begin{cases} E\left(1 - \frac{2|t|}{\tau}\right), & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \geq \tau/2. \end{cases}$$

- 1) Теорема о спектре производной: если $x_2(t) \longleftrightarrow X_2(f)$, то $\frac{dx_2(t)}{dt} \overset{FT}{\longleftrightarrow} j2\pi f X_2(f).$
- 2) Теорема запаздывания: если $x(t) \leftrightarrow X(f)$, то $x(t-\tau) \leftrightarrow \exp(-j2\pi f\tau)X(f)$.

$$X_{2}(f) = \frac{1}{j2\pi f} \left(e^{j\pi f \tau/2} - e^{-j\pi f \tau/2} \right) \frac{2E}{\tau} \frac{\tau}{2} \frac{\sin(\pi f \tau/2)}{\pi f \tau/2} = \frac{E\tau}{2} \frac{\sin^{2}(\pi f \tau/2)}{(\pi f \tau/2)^{2}}$$

1.2. Преобразование Фурье: спектры импульсных сигналов.

Спектр прямоугольного импульса $X_1(f) = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}$.

Спектр треугольного импульса $X_2(f) = \frac{E\tau}{2} \frac{\sin^2(\pi f \tau/2)}{(\pi f \tau/2)^2}$

Заметим, что ширина главного лепестка $X_2(f)$ в два раза больше, чем у $X_1(f)$.

Спектр треугольного импульса можно получить, используя теорему о свертке: если $x(t) \overset{FT}{\longleftrightarrow} X(f)$ и $y(t) \overset{FT}{\longleftrightarrow} Y(f)$,, то $\int_{-\infty}^{\infty} x(\tau) y(t-\tau) d\tau \overset{FT}{\longleftrightarrow} X(f) Y(f).$ Треугольный импульс можно рассматривать как сверку двух прямоугольных соответствующей высоты с длительностью $\tau/2$.

1.2. Преобразование Фурье: спектры импульсных сигналов.

Окно Ханна.

Определим спектр $W_H(f)$ аналогового окна Ханна длительностью au.

$$w_H(t) = egin{cases} rac{1}{2} igg(1 + \cosigg(rac{2\pi t}{ au}igg)igg), & ext{если } |t| < rac{ au}{2}, \ 0, & ext{если } |t| \geq rac{ au}{2}. \end{cases}$$

Способ 1.

Пусть w(t) — прямоугольное окно той же длительности.

$$w_H(t) = \frac{1}{2}w(t) + \frac{1}{4}w(t)\exp\left(j2\pi t \frac{1}{\tau}\right) + \frac{1}{4}w(t)\exp\left(-j2\pi t \frac{1}{\tau}\right).$$

Тогда по теореме смещения для преобразования Фурье

$$W_H(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

Далее остается подставить W(f).

$$W_{H}(f) = \frac{\sin(\pi f \tau)}{2\pi f (1 - \tau^{2} f^{2})}.$$

Способ 2.

Рассмотрим сигнал $x(t) = \frac{1}{2} \left(1 + \cos \left(\frac{2\pi t}{\tau} \right) \right)$.

Его спектр
$$X(f) = \frac{1}{2}\delta(f) + \frac{1}{4}\delta\left(f - \frac{1}{\tau}\right) + \frac{1}{4}\delta\left(f + \frac{1}{\tau}\right)$$
.

При этом $W_H(t) = W(t)x(t)$ и $W_H(f) = W(f) \otimes X(f)$.

Использую фильтрующее свойство δ -функции, получаем

$$W_H(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

1.2. Преобразование Фурье: leakage.

Эффект растекания спектральных компонент при ограничении длительности сигнала

Ограничение сигнала по длительности эквивалентно умножению на прямоугольную оконную функцию: y(t) = w(t)x(t).

Пусть $x(t) \overset{FT}{\longleftrightarrow} X(f), w(t) \overset{FT}{\longleftrightarrow} W(f), y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда $w(t)x(t) \overset{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f}) X(f-\tilde{f}) d\tilde{f}$.

Пример. Гармонический сигнал x(t) имеет вид

$$x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$$

где f_1 = 100 Гц, f_2 = 200 Гц. Определить, какой вид будет иметь спектр для x(t)w(t), где w(t) — некоторая оконная функция.

Решение. Пусть $x(t) \overset{FT}{\longleftrightarrow} X(f), w(t) \overset{FT}{\longleftrightarrow} W(f), y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2).$$

$$w(t)x(t) \stackrel{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f})X(f-\tilde{f})d\tilde{f}.$$

$$Y(f) = \frac{1}{2}W(f - f_1) + \frac{1}{2}W(f + f_1) + \frac{3}{2}W(f - f_2) + \frac{3}{2}W(f + f_2).$$

1.2. Преобразование Фурье: leakage.

w(t) - прямоугольное окно длиной $\tau = 0.05 \ c$.

w(t) - прямоугольное окно длиной $\tau = 0,1$ c.

w(t) - окно Ханна длиной $\tau = 0,1$ c.

1.2. Преобразование Фурье: частотные характеристики сигнала.

В общем случае спектральная плотность X(f) — комплексная функция частоты:

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt,$$

$$X(f) = \operatorname{Re} X(f) + j \operatorname{Im} X(f) = |X(f)| e^{j\varphi(f)},$$

где

Re
$$X(f) = \int_{-\infty}^{\infty} x(t) \cos 2\pi f t dt$$
,

$$\operatorname{Im} X(f) = -\int_{-\infty}^{\infty} x(t) \sin 2\pi f t \, dt,$$

|X(f)| – амплитудно-частотная характеристика (АЧХ),

$$\varphi(f) = \operatorname{arctg} \frac{\operatorname{Im} X(f)}{\operatorname{Re} X(f)}$$
 – фазочастотная характеристика (ФЧХ).

АЧХ в децибелах (дБ) измеряется относительно некоторого значения. Для окон обычно требуется определить уровень на частоте f относительно главного лепестка:

$$20\lg \left| \frac{W(f)}{W(0)} \right| = 10\lg \frac{\left| W(f) \right|^2}{\left| W(0) \right|^2}.$$

Свойства симметрии спектра реального сигнала

Для действительного сигнала

$$X(f) = X * (-f).$$

Это означает, что для действительного сигнала $\operatorname{Re} X(f)$ и |X(f)| – чётные функции, а $\operatorname{Im} X(f)$ и $\varphi(f)$ – нечётные функции частоты. Если в дополнение к этому x(t) – чётная функция, то

$$X(f) = X(-f),$$

т. е. спектральная плотность является действительной и чётной функцией частоты f.

Задачи с лекции

Задачи для самостоятельного решения с лекции 2 сентября 2024 г.

Nº1. Определить спектр $W_H(f)$ аналогового окна Ханна длительностью τ , начинающегося в момент времени t=0:

$$w_H(t) = \begin{cases} \frac{1}{2} \left(1 + \cos \left(\frac{2\pi(t - \tau/2)}{\tau} \right) \right), & \text{если } 0 \le t \le \tau, \\ 0, & \text{иначе.} \end{cases}$$

Nº2. Предположим, что сигнал $x(t) = \cos(2\pi f_0 t)$, $f_0 = 200$ Гц наблюдается с момента времени t=0 с в течении $\tau=0,1$ с. Найти спектр наблюдаемого участка сигнала.

№3. Гармонический сигнал x(t) имеет вид

$$x(t) = 3\cos(2\pi f_1 t) + \cos(2\pi f_2 t)$$

где
$$f_1 = 100$$
 Гц, $f_2 = 200$ Гц.

а) Изобразить график спектра сигнала x(t).

б) Определить, какой вид будет иметь спектр для сигнала x(t)w(t), где w(t) — симметричное относительно t=0 окно Ханна длительностью $\tau=0.1~\mathrm{c}$.

Примечание. Решения задач с лекций оцениваются с помощью тестов для самопроверки по задачам с лекции в LMS. Срок сдачи – день ближайшей контрольной работы.