Die ZEIT: churn or no churn

Capstone Project Presentation - neuefische Data Science Bootcamp

Team: Carlotta Ulm, Silas Mederer,

Jonas Bechthold

Date: 26 November 2020

AGENDA

Introduction Churn prediction for newspaper **Machine Learning** Baseline model, feature selection & model improvement **Model Deployment Recommendations**

02

Data Insights

Dataset description Who is a typical churn customer?

04

Artificial Neural Network

Deep Neural Network Training and Tuning

06

Future Work

Target

- Predict subscribers that will churn in near future.
- 2. Show interesting data insights and give recommendations for churn prevention (e.g. time)

Metrics

Approach: Binary classification

Metrics (churn):

Recall: Identify as many as possible real subscription churns

 Precision: Avoid too many disturbing mails to loyal subscribers

Image Source

O1 Introduction

Publishing

Print and online

Customer Relation

Revenues, planability, stability

Churn

Early detection and prevention

01 Introduction - Dataset

Data

- Size ≈ 210.000
- 177 features
- Subscription orders from >2012
- Churn period 2019 2020

Restriction

- max 4 subscriptions per Household
- Size ≈ 184.000
- Loss of 12 %

Feature Overview

Customer Information

- title
- city/metropolitan
- country
- zip codes

Time Information

- reading time
- churn date
- newsletter

Subscription Information

- channel
- subscription type
- payment
- billing/student...

Activity Information

- newsletter
- shop buys
- opens/clicks etc.

O2 Data Insights

O2 Data Insights - Churn rate

"If I always choose churn, I have an **accuracy** round 0.303 and a **F1 score** of 0.352."

- Naive Predictor 2020

02 Data insights - Geographical Representation

1 digit zip code (e.g. 2xxxx)

2 digit zip code (e.g. 21xxx)

O2 Data insights- Subscription type

Higher percentage of loyal customers for combined print & Christ and Welt subscription than for the digital or only print subscription.

no churn churn

02 Data insights - Payment

no churn

Payment type has an impact on the churn rate:

- Bankeinzug: people are financially secured

 —▶ 22 % churn
- Rechnung: people who want to have control over their payments
 41 % churn

02 Data insights - Time of churn

02 Whole Dataset -- Churners

Gender

43.3%

Subscription

54.8% 41.7% 3.5%

Payment method

Direct debit: 52 % Invoice: 45.3%

Credit card: 1.7% Paypal: 1%

Gender

47%

Subscription

64.8% 33.6% 1.6%

Payment method

Direct debit: 58.4 %

Credit card: 1.4% Invoice: 39% **Paypal: 1,2%**

02 Whole Dataset -- Churners

Studentenabo

11%

Studentenabo 16%

Subscription type

Subscription type

03 - Machine Learning

Baseline

- Preprocessing
- Different ml methods
 - LogReg
 - o KNN
 - o SVC
 - o RF
 - AdaBoost
 - XGBoost

Optimization

- Feature engineering
- Feature selection
- Random search
- Grid search
- Model combination

Reflection

- Evaluation
- Post processing

Baseline model!

Raw data different approaches

	n=165	Predicted: NO	Predicted: YES	
		NO	11.3	
	Actual:			
	NO	TN = 50	FP = 10	60
	Actual:			
L	YES	FN = 5	TP = 100	105
		55	110	

Recall: TP/actual yes = 100/105 = 0.95 **Precision:** TP/predicted yes = 100/110 = 0.91

F1: weighted average of recall and precision

03 - Best Single Classifier - Random Forest

Optimization:

- 1. Feature Selection
- 2. Majority downsampling (no churn) for data balance
- 3. Randomize Search to explore and evaluate hyper parameter space (wide grid)
- 4. Grid Search to search for optimal parameters (narrow grid)

- Best Classifier - Voting

03 - Best Classifier - Comparison

03 - Voting Classifier - Results

Voting Classifier - Probability Threshold

P (churn) ≥ 0.45

P (churn) ≥ 0.40

O3 Voting Classifier -Analysis of FN

Gender

41.5%

Subscription

43%

Payment method

Direct debit: 63.5 % Invoice: 33%

Credit card: 2.6% Pavpal: 0.9%

Studentenaho

6.3%

Subscription type

04 Artificial Neural Network

Correct predictions

False predictions

30% (23,3%)

Churns Predicted = Recall

04 Artificial Neural Network - Embedding

05 Deployment

05 Deployment

Input:

dataset

Output:

predictions & proba-plot

Options:

Stacking Voting

Recommendations

06 Future Work

More & different data

- Time relation
- Online activities

Machine Learning

- Tune ANN or try CNN
- Error Analysis

Subscriber specific churn prevention

- Develop incentives to keep customers
- Personalize mail contact

THANKS

Silas

Academic background in nature science looking for jobs in solutions engineering or consulting

LinkedIn: <u>silas-mederer</u>

GitHub: sls-mdr

Carlotta

Graduate economist with a passion for data science and machine learning.

LinkedIn: carlotta-von-ulm-erbach

GitHub: carlotta-ulm

Please keep this slide for attribution

Jonas

Data scientist with research experience and engineering background.

LinkedIn: jonas-bechthold

GitHub: jb-ds2020