CS 480/557 Introduction to Information Security

Presentation #10

Computer Security Threats

Tjaden - Ch. 8

Overview

- . Computer Security
 - 1. Physical Security 2. Human Security 3. Program Security
- . Computer security threats
 - Unintentional:
 - Coding faults Operational faults
- Environmental faults
- Intentional (malicious code):
 - · Trojan horses
 - Trap doors
 - Viruses
 - Worms

Dr. Mohamed Abouta

Computer Security Threat

Physical Security

- Physical security entails restricting access to some object by physical
 - Examples: locked doors and human guards
- Neglecting physical security can undermine other security mechanisms that protect a system
 - Example: a system with an superb file-protection mechanism
 - The disk drive that stores the file-system is publicly accessible
 - An attacker could attach his own computer to the drive and read its contents

Dr. Mohamed Aboutab

Computer Security Three

Human Factors

- . Human factors the users of computer systems impact security
- Users can undermine system security through their naïveté, laziness, or dishonesty
 - Users of a system should also be educated about its security mechanisms so that they are unlikely to accidentally undermine them
 - Explain to users why certain passwords are weak or help them choose strong ones
 - Users of a system should be screened so that they are unlikely to purposely abuse the system privileges they are given
 - People who have exhibited a pattern of dishonest behavior in the past are risky users

Dr. Mohamed About

Computer Security Threa

Program Security

- Program security requires that the software that runs on a computer system must be:
 - Written correctly (NO coding faults)
 - Installed and configured properly (NO operational faults)
 - Used in the manner in which they were intended (NO environmental faults)
 - Properly behaved (NO malicious code)
- Flaws in any of these areas may be discovered and exploited by attackers

Dr. Mohamed Aboutab

Computer Security Threats

Program Security (cont)

- Coding faults development bugs that can be exploited to compromise system security
- Examples:
 - Condition validation errors a requirement is either incorrectly specified or incompletely checked
 - Synchronization errors operations are performed in an improper order

Dr. Mohamed Aboutabl

Computer Security Threats

Condition Validation Error - An "Incorrect Specification" Example

- ❖ The uux (Unix-to-Unix command execution) utility
- Used to execute a sequence of commands on a specified (remote) system
- For security reasons, the commands executed by uux should be limited to a set of "safe" commands
 - The date command (displays the current date and time) is a safe command and should be allowed
 - The rm command (removes files) is not a safe command and should not be allowed

Dr. Mohamed Aboutabl

Computer Security Threats

Condition Validation Error - Example (cont)

- Processing uux requests:
 - For each command:
 - Check the command to make sure it is in the set of "safe"
 commands.
 - · Skip the command's arguments until a delimiter is reached
 - Example:
 - cmd1 arg1 arg2 ; cmd2 ; cmd3 arg1
 - The problem: some implementations did not include the ampersand (&) in the list of delimiters though it is a valid delimiter
 - The result: unsafe commands (e.g. cmd4) could be executed if they followed an ampersand:
 - cmd2 & cmd4 arg1

Dr. Mohamed Abouta

Computer Security Threats

Synchronization Error - Improper Order of Execution : An Example

- . The mkdir utility creates a new subdirectory
 - Creates a new, empty subdirectory (owned by root)
 - Changes ownership of the subdirectory from root to the user executing mkdir
- The problem:
 - If the system is busy, it may be possible to execute a few other commands between the two steps of mkdir
 - Example:
 - Delete the new directory after step one and replace it with a link to another file on the system
 - When step two executes it will give the user ownership of the file

Dr. Mohamed Aboutabl

Computer Security Three

Program Security (cont)

- Malicious code programs specifically designed to undermine the security of a system
 - Trojan horses
 - Login spoof
 - Root kits
 - Trap doors
 - Viruses
 - Virus scanning
 - Macro viruses
 - Worms
 - The Morris worm

Dr. Mohamed Abou

Computer Security Threats

Trojan Horses

- History a hollow wooden horse used by the Greeks during the Trojan War
- Today a Trojan horse is a program that has two purposes: one obvious and benign, the other hidden and malicious
- Examples:
 - Login spoof
 - Mailers, editors, file transfer utilities, etc.
 - Compilers

ohamed Aboutabl Computer Security Th

Trojan Horses (cont)

- * Examples (cont):
 - Salami
 - Programmer writes bank software that credits interest to customer accounts each month
 - The result of the interest computation on many accounts may not be a whole number of cents
 - Example:
 - 0.25 percent of \$817.40 is \$2.0435
 - Should be rounded down to \$2.04 in interest
 - Programmer instructs program to deposit fractional cents into the programmer's account

Dr. Mohamed Aboutabl

Computer Security Threats

Trojan Horses (cont)

- Examples (cont):
 - Root kits
 - A root kit is collections of Trojan Horse programs that replace widely-used system utility programs:
 - Is and find (hides files)
 - ps and top (hides processes)
 - netstat (hides network connections)
 - Goal: conceal the intruder's presence and activities from users and the system administrator

Dr. Mohamed Abouta

Computer Security Threats

Trap Doors

- Trap doors are flaws that designers place in programs so that specific security checks are not performed under certain circumstances
- Example: a programmer developing a computer-controlled door to a bank's valut
 - After the programmer is done the bank will reset all of the access codes to the vault
 - However, the programmer may have left a special access code in his program that always opens the vault

Dr. Mohamed Aboutab

Computer Security Threats

Viruses

- A virus is a fragment of code created to spread copies of itself to other programs
- Require a host (typically a program):
 - In which to live
 - From which to spread to other hosts
- . A host that contains a virus is said to be infected
 - A virus typically infects a program by attaching a copy of itself to the program
- Goal: spread and infect as many hosts as possible

Dr. Mohamed Aboutab

Computer Security Three

Viruses (cont)

- $\ensuremath{\clubsuit}$ Virus may prepend its instructions to the program's instructions
 - Every time the program is run the virus' code is executed
 - Infection propagation mechanism to spread infection to other
 hosts
 - Manipulation routine (optional) mechanism to perform other actions:
 - Displaying a humorous message
 - Subtly altering stored data
 - Deleting files
 - Killing other running programs
 - Causing system crashes
 - Etc.

Dr. Mohamed Aboutabl

Computer Security Threat

Virus es (cont) Virus Code Program Code Program Code An Uninfected Program A Virus The Infected Program

Defending Against Computer Viruses

- Virus scanning programs check files for signatures of known viruses
 - Signature = some unique fragment of code from the virus that appears in every infected file
- Problems:
 - Polymorphic viruses that change their appearance each time they infect a new file
 - No easily recognizable pattern common to all instances of the virus
 - New viruses (and modified old viruses) appear regularly
 - Database of viral signatures must be updated frequently

Dr. Mohamed Aboutabl

Computer Security Threats

Macro Viruses

- More than just programs can serve as hosts for viruses
- * Examples: spreadsheet and word processor programs
 - Usually include a macro feature that allows a user to specify a series of commands to be executed
 - Macros provide enough functionality for a hacker to write a macro virus:
 - Executed every time an infected document is opened
 - Has an infection propagation mechanism
 - · May have a manipulation routine
 - Example: Microsoft Word:
 - AutoOpen macro run automatically whenever the document containing it is opened
 - AutoClose macro run automatically whenever the document containing it is closed

Dr. Mohamed Aboutab

Computer Security Threats

The Melissa Macro Virus

- Appeared in March, 1999
- * Exploited Microsoft Word macros
- Spread by e-mail:
 - Victim received an e-mail message with the subject line "Important Message From NAME"
 - Infected Word document as an attachment:
 - When an infected document was opened:
 - · Virus attempted to infect other documents
 - E-mail a copy of an infected document to up to fifty other people
 - E-mail addresses of the new victims were taken from a user's
 Outlook address book
 - Value to use for NAME in the subject line was read from the Outlook settings

Dr. Mohamed Aboutabl

Computer Security Threats

Melissa's Impact

- In three days, infected more than 100,000 computers
- Some sites received tens of thousands of e-mail messages in less than an
 - Mail server crashes
 - System performance degradation
- . Besides spreading the virus:
 - Modified the settings in Microsoft Word to conceal its presence
 - Occasionally modified the contents of the documents that it infected
 - Occasionally sent sensitive documents without the owner's knowledge

Dr. Mohamed Aboutab

Computer Security Threat

Worms

- ❖ Virus = a program fragment
- ❖ Worm = a stand -alone program that can replicate itself and spread
- Worms can also contain manipulation routines to perform other actions:
 - Modifying or deleting files
 - Using system resources
 - Collecting information
 - Etc.

Dr. Mohamari Abrust

Computer Security Threats

The Morris Worm

- Appeared in November, 1988
- . Created by a Computer Science graduate student
- Brought down thousands of the ~60,000 computers then attached to the Internet
 - Academic, governmental, and corporate
 - Suns or VAXes running BSD UNIX

Mohamed Aboutabil Computer Security

Operation of the Morris Worm

- Used four different attack strategies to try to run a piece of code called the grappling hook on a target system
- When run, the grappling hook:
 - Made a network connection back to the infected system from which it had originated
 - Transferred a copy of the worm code from the infected system to the target system
 - $\hfill \blacksquare$ Started the worm running on the newly infected system

Dr. Mohamed Aboutabl

Computer Security Threats

Attack Strategy #1: Exploiting sendmail

- . Many versions of sendmail had a debug option
 - Allowed an e-mail message to specify a program as its recipient
- Named program ran with the body of the message as input
- The worm created an e-mail message:
 - Contained the grappling hook code
 - Invoked a command to strip off the mail headers
 - Passed the result to a command interpreter

Attack Strategy #2: Exploiting the finger daemon

- The finger daemon, fingerd, is a remote user information server
 - Which users currently logged onto the system
 - How long each has been logged on
 - The terminal from which they are logged on
 - Etc
- A buffer overflow bug in fingerd on VAXes allowed the worm to execute the grappling hook code

Dr. Mohamed Aboutab

Computer Security 1

Buffer Overflows

- A program's stack segment:
 - Temporary working space for the program
 - Example: Subroutines

```
int foo(int P1, int P2) /* subroutine "foo" */
{
    int L1, L2; /* local variables L1 and L2 */
    L1 = P1 + P2;
    return(L1); /* return value */
}
int main() /* main program */
{
    ...
    x = foo(1,2); /* call to subroutine "foo" */
    ...
}
```

foo foo Stack frames main Stack Co. Minamed Alexands Stack Co. Minamed Alexands Stack Dr. Minamed Alexands Stack Dr. Minamed Alexands Stack Sta

Stack Frames (cont)

- A stack frame contains the corresponding routine's:
 - Parameters
 - Return address (i.e. next instruction to execute upon completion)
 - Saved registers
 - Local variables
- Many architectures have registers:
 - SP, the stack pointer, points to the top of the stack
 - BP, the base pointer, points to a fixed location within the frame
 - Used to reference the procedure's parameters and local variables

Dr. Mohamed Aboutabl

omputer Security Threats

Stack Frames (cont) ❖ The main routine calls foo: ■ foo's parameters are first pushed onto the stack ■ The next instruction in main to execute after foo finishes, the return address, is pushed ■ Control is transferred to foo ■ foo's prologue: • Save caller's (main's) base pointer • Set callee's (foo's) bp equal to the current sp • Increment sp to reserve space on the stack for foo's local variables

Computer Security Threats

Stack Frames (cont) The execution of foo: P1 = BP-4 P2 = BP-3 L1 = BP L2 = BP+1 The statement "L1 = P1 + P2" would performed by the following assembly language instruction: add BP-4, BP-3, BP // adds first two arguments and stores the result in the third


```
A Buffer Overflow

int foo(char*s) /* subroutine "foo" */
{
    char buffer[10]; /* local variable*/
    stropy(buffer,s);
}

int main() /* main program */
{
    char name[]= "ABCDEFGHIJKL";
    foo(name); /* call to subroutine "foo" */
}
```


A Buffer Overflow (cont) SP Stack after execution of foo (but before the epilogue): C D E F G H I J J BP K L s Stack C. Malament Alcoulded C. Desperate Security Threats 27

A Buffer Overflow (cont)

- The string overflowed foo's buffer:
 - Overwrote main's bp
 - Overwrote the return address with 'L' = 89 (ASCII)
- When foo finishes control will be transferred to the instruction at address 89
 - Frror
- The Morris worm sent a specially crafted 243-byte string to the finger daemon:
 - Overflowed a buffer and overwrote the return address
 - The fingerd executed the /bin/sh program which executed the grappling hook code

Computer Security Threats

Attack Strategy #3: Exploiting rsh

- rsh = "remote shell"
 - Allows users to execute commands on a remote host from a machine that the remote host trusts
 - /etc/hosts.equiv
 - .rhosts
- The worm used rsh to run the grappling hook code on remote computers that trusted an infected machine

Dr. Mohamed Aboutab

Computer Security Three

Attack Strategy #4: Exploiting rexec

- * rexec = remote execution
 - Protocol that enables users to execute commands remotely
 - · Must specify:
 - A host
 - A valid username and password for that host
- The worm attempted to crack passwords on each computer that it infected so that it could use rexecto infect other hosts
 - No password
 - The username
 - The username appended to itself
 - The user's last name or nickname
 - The user's last name reversed
 - Dictionary attack using 432-word dictionary carried with the worm
 - Dictionary attack using ~25,000 words in /etc/dict/words

Dr. Mohamed Abouta

Computer Security Threats

Operation of the Worm

- Performed many actions to try to camouflage its activity:
 - Changed its process name to sh
 - Erased its argument list after processing it
 - Deleted its executable from the filesystem once it was running
 - Various steps to make sure that a core file would not be generated
 - Spent most time sleeping
 - Forked every three minutes, parent process exited and the child continued
 - Changed the worm's process identification number (pid) often
 - Prevent the worm from accumulating too much CPU time
 - All constant strings inside the worm were XORed character-by-character with the value 81 ₁₆
 - Used a simple challenge and response mechanism to determine whether or not a machine it had just infected was already running a copy of the worm
 - Immortal one in seven times this check was not performed

Dr. Mohamed Aboutabl

Computer Security Threats

. |

Aftermath

- The worm spread quickly and infected a large percentage of the computers connected to the Internet
- Noticed within hours
- Took days for researchers to discover how the worm worked and how to stop it
- In 1990, Morris was convicted by a federal court of violating the Computer Crime and Abuse Act of 1986:
 - Three years of probation
 - Four hundred hours of community service
 - \$10,050 fine

Dr. Mohamed Aboutabl

Computer Security Threats

Summary

- Program security requires that the programs that run on a computer system be:
 - Written correctly
 - Installed and configured properly
 - Used in the manner in which they were intended
 - Do not behave maliciously
 - Trojan horses a program that has two purposes: one obvious and benign, the other hidden and malicious
 - Viruses a fragment of code created to spread copies of itself to other programs
 - Worms a stand -alone program that can replicate itself and spread

Dr. Mohamed Aboutabl

Computer Security Threats