

ICP-SLAM as LS Optimization problem

■ Comments	
# Order (according to me)	
• STATUS	
■ Week (according to Prof Madhav's original email)?	

Prof's notes on ICP-SLAM

Prof Madhav's notes on ICP-SLAM

(This Notion page link if you're viewing a PDF)

Prof's notes on ICP-SLAM

0. Need for SLAM Backend or Multiview ICP "Optimization" Key Insight

> Why is this \widehat{X}_{ij} different from the observations X_{ij} ? Various ways to approach this "multiview ICP"

1. ICP-SLAM as Optimization

Num of variables

O. Need for SLAM Backend or Multiview **ICP "Optimization"**

In the figure:

- Blue frame $\{0\}$ lacksquare $\mathbf{T}_0 = [\mathbf{I}|\mathbf{0}]$ is the origin.
- Blue tree \frown $X_{0j} = \begin{bmatrix} x_{0j} & y_{0j} & z_{0j} \end{bmatrix}^T$: where $j = \{1, \ldots, n\}$ are the coordinates of n points in frame $\{0\}$ obtained from depth, azimuth and elevation measurements.
 - Since the depth for every pont j in frame $\{0\}$ is in error, hence \mathbf{X}_{0j} is also in error.
 - So is the case for X_{1j} (frame 1) and hence, relative pose estimates between successive frames $\{i,i+1\}$ i.e. $\widehat{T}_{01},\widehat{T}_{12},\ldots,\widehat{T}_{(m-1,\,m)}$ are all in error.
- How to alleviate this error?
 - Filtering methods: Last topic of the semester (After Vision)
 - Optimization methods: Now Pose this as "multiview optimization".

Key Insight

- If there is a frame $\{q\}$ in which the depth measurements and the point cloud \mathbf{X}_{qj} are particularly noiseless: Can this be used to alleviate other views in terms of poses and 3D points estimated in those views
- If a set of n points are viewed in m frames or observations, what is the best estimate for these n points and m poses.
 - Multiview Aggregation
 - Multiview Consistency
- Let the points $j=\{1,\ldots,n\}$ be represented in frames $i=\{1,\ldots,m\}$ as $\mathbf{X}_{ij}=\left[\begin{array}{cc}x_{ij}&y_{ij}&z_{ij}\end{array}\right]^{\mathrm{T}}$ as mn observations. $\widehat{\mathbf{X}}_{ij}$ are estimated from ICP while \mathbf{X}_{ij} are obtained directly through a sensor say LiDAR.
- Also based on the observation of j in $\{0\}$ which is X_{0j} and \widehat{T}_{0i} estimated from ICP as $\widehat{T}_{0i}=\widehat{T}_{01}\widehat{T}_{12}\dots\widehat{T}_{(i-1,\,i)}$ we predict what is X_{0j} in frame i as

$$\widehat{\mathbf{X}}_{ij} = \widehat{\mathbf{T}}_{i0} \mathbf{X}_{0j} \tag{0.1}$$

Why is this $\widehat{\mathrm{X}}_{ij}$ different from the observations X_{ij} ?

- Two reasons! Participate by commenting! (for students)
 - 1. TODO through participation
 - 2. TODO through participation

Various ways to approach this "multiview ICP"

We go with the first procedure below.

1. When I aggregate the same n points from multiple views $\widehat{\mathrm{X}}_{0j}^i=\widehat{\mathrm{T}}_{0i}\mathrm{X}_{ij}$, I get m sets of n points in frame $\{0\}$ that I average as

$$\widehat{\mathbf{X}}_{0j} = \sum_{i=1}^{m} \frac{\widehat{\mathbf{X}}_{0j}^{i}}{m} \tag{0.2}$$

or such aggregation over the m frames.

2. I can also use an ICP estimate directly between the points in frames $\{0\}$ and $\{i\}$ and get a $\widehat{T}_{0i\mathbf{d}}$ and say that the 2 sets of points should be the

same which is

$$\widehat{\mathbf{X}}_{ij\mathbf{d}} = \widehat{\mathbf{T}}_{i0\mathbf{d}} \mathbf{X}_{0j} \tag{0.3}$$

should be the same as \widehat{X}_{ij} predicted/estimated <u>by (0.1)</u>. The difference is that here, we are estimating ICP directly while above, we are estimating ICP between immediate pair of point clouds.

1. ICP-SLAM as Optimization

 \vec{X} (represented by the arrow above) are direct measurements (say from LiDAR) and \widehat{T} are obtained from ICP. (\vec{X}_{0p} below could also refer to 1. described above but for the sake of this derivation, we will keep things simple and refer to it as direct LiDAR measurement).

$$\sum_{i=1}^m \left\| ec{X}_{ip} - \widehat{T}_{i0} ec{X}_{0p}
ight\|_2^2$$

Over n points from j=1 o n (Remember m is frames)

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \vec{X}_{ij} - \hat{T}_{i0} \vec{X}_{0j} \right\|_{2}^{2}$$

$$\hat{\mathcal{T}}_{i0} = \left[\hat{\mathcal{T}}_{0i} \right]^{-1} = \left[\hat{\mathcal{T}}_{01}, \hat{\mathcal{T}}_{12}, \dots, \hat{\mathcal{T}}_{r-ij} \right]^{-1}$$

$$\hat{\mathcal{T}}_{i0} = \left[\hat{\mathcal{T}}_{0i} \right]^{-1} = \left[\hat{\mathcal{T}}_{01}, \hat{\mathcal{T}}_{12}, \dots, \hat{\mathcal{T}}_{r-ij} \right]^{-1}$$

What are the optimum locations of the 3D points $ec{X}_{0j}$, j=1 o n and the location of the Mobile Robot $ec{T}_{0i}$, i=1 o m so that

$$\sum_{i=1}^m \sum_{j=1}^n \left\| ec{X}_{ij} - \widehat{T}_{i0} ec{X}_{0j}
ight\|_2^2$$
 or

$$\sum_{i=1}^m \sum_{j=1}^n \left\lVert r_{ij}
ight
Vert_2^2$$

is minimized?

Num of variables

$$egin{aligned} ec{X}_{0j}$$
 , $j=1
ightarrow n$; $ec{T}_{0i}$, $i=1
ightarrow m \Longrightarrow 12 ext{M} + 3 ext{N}$ $oxed{12m} + 3 ext{N}$ $X_{ij} = f_{ij} \left(R_i, t_i, X_j
ight) = d ext{ropping suffix 0} \ &= f\left(R_i, t_i, X_i
ight)_{|R_{iO}, \, t_{iO}, \, X_{jO}|} + J_{ij} \delta_{ij} \end{aligned}$ (1.2)

$$J_{ij}|_{(3\times15)} = \begin{bmatrix} \frac{\partial \mathbf{f_{ij}}}{\partial \mathbf{T}_i} & \frac{\partial \mathbf{f_{ij}}}{\partial \mathbf{X}_j} \\ (3\times12) & \frac{\partial \mathbf{f_{ij}}}{\partial \mathbf{X}_j} \end{bmatrix}$$
(1.3)

$$X_{ij} = f_{ij} (T_i(\xi_i), X_j)$$
 (1.4.1)

Rotation about arbitrary axis links:

- Moodle file
- Notion link

$$J_{ij}|_{(3\times9)} = \left[\left(\frac{\partial \mathbf{f_{ij}}}{\partial \mathbf{T}_i} \frac{\partial \mathbf{T}_i}{\partial \xi_i} \right)_{(3\times6)} \quad \frac{\partial \mathbf{f_{ij}}}{\partial \mathbf{X}_j}|_{(3\times3)} \right]$$
(1.4.2)

$$J_{ij}_{(3\times9)} = \begin{bmatrix} \left(I_{3}_{(3\times3)} - [T \oplus X_{j}]_{X}_{(3\times3)}\right)_{(3\times6)} & \frac{\partial \mathbf{f_{ij}}}{\partial \mathbf{X}_{j}}_{(3\times3)} \end{bmatrix}$$

$$\delta_{ij}_{(9\times1)}$$

$$(1.5)$$

• What is \oplus ? It is a pose composition whose can simply be written as a $matrix \times vector$ as follows:

$$T \oplus X_j = TX_j = \begin{bmatrix} RX_j + t_i \end{bmatrix}$$
 The product TX_j is now a vector. What is $[TX_j]_X$ then? $TX_j = \begin{bmatrix} RX_j + t_i \end{bmatrix}$

 $[TX_j]_X$ is a skew symmetric matrix version of $[TX_j]$

If $\mathbf{P} = [x,y,z]^{\mathrm{T}}$ is a vector, it's skew symmetric form is given by:

$$\left[\mathrm{P}
ight]_X = \left[egin{array}{ccc} 0 & -z & y \ z & 0 & -x \ -y & x & 0 \end{array}
ight]$$

• Cross product as skew-symmetric matrix:

$$egin{aligned} \mathbf{a} imes \mathbf{b} &= egin{aligned} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \end{aligned} \ &= (a_2b_3 - a_3b_2)\,\mathbf{i} + (a_3b_1 - a_1b_3)\,\mathbf{j} + (a_1b_2 - a_2b_1)\,\mathbf{k} \ &\mathbf{a} imes \mathbf{b} = [\mathbf{a}]_ imes \mathbf{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} \ &\mathbf{a} imes \mathbf{b} = [\mathbf{b}]_ imes^\mathrm{T} \mathbf{a} = egin{bmatrix} 0 & b_3 & -b_2 \ -b_3 & 0 & b_1 \ b_2 & -b_3 & 0 \end{bmatrix} egin{bmatrix} a_1 \ a_2 \ a_2 \end{bmatrix}$$

 J_{ij} can be split as:

$$J_{ij} = egin{bmatrix} oldsymbol{\mathrm{J}_{ij\,\mathrm{L}\,(3 imes6)}} & oldsymbol{\mathrm{J}_{ij\,\mathrm{M}\,(3 imes3)}} \ oldsymbol{\mathrm{Localization}\,\mathit{Jacobian}} & oldsymbol{\mathrm{Mapping}\,\mathit{Jacobian}} \end{bmatrix}$$

- Localization Jacobian: Associated with the pose derivatives
- Mapping Jacobian: Associate with the map (point cloud) derivatives
 Then,

$$= {
m J}_{(3mn,6m+3n)} \,\, \delta_{(6m+3n)}$$

- For every one of the m robot locations, there are n points giving rise to 3n ICP equations. Note each point gives 3 ICP equations.
- ullet For m such robot locations, we have $3 \mathrm{nm} \ \mathrm{equations}$.
- Each of the m poses has 6 parameters in the tangent vector $oldsymbol{\xi}_i$ and each point has 3 components: $6 ext{m} + 3 ext{n} ext{ variables}$

$$\hat{X}_{ij} = T_{i0} X_{0j} = \left[egin{array}{c} \hat{x}_{ij} \ \hat{y}_{ij} \ \hat{z}_{ij} \end{array}
ight]$$

 \hat{X}_{ij_X} is a skew symmetric matrix given by

$$\left[\hat{X}_{ij}
ight]_{X} = \left[egin{array}{ccc} 0 & -\hat{z}_{ij} & \hat{y}_{ij} \ \hat{z}_{ij} & 0 & -\hat{x}_{ij} \ -\hat{y}_{ij} & \hat{x}_{ij} & 0 \end{array}
ight]$$

$$\xi = \left[egin{array}{c} \omega_1 \ \omega_2 \ \omega_3 \ t_x \ t_y \ t_x oldsymbol{t_x} \end{array}
ight]$$

where $[\omega_1, \omega_2, \omega_3]^T$ represent the axis about which the rotation occurred

heta is the magnitude of the rotation $\omega = \left[\omega_1, \omega_2, \omega_3
ight]^T$ and

$$R = \exp\left([\omega]_X
ight) = I_{3 imes 3} + \left(rac{\sin heta}{ heta}
ight)\omega_X + \left(rac{1-\cos heta}{ heta^2}
ight)\omega_X^2 \qquad heta^2 = \omega^T\omega$$

Here, $[\omega]_X$ is the skew symmetric matrix of ω .

After LM or Gauss Newton, we get

$$X_{oj}$$
 (n+1) = X_{oj} (n)+d X_{oj} (2.1)

$$\xi_i(n+1) \leftarrow \xi_i(n) - \delta \xi$$
 (2.1)

$$R_i(n+1) \text{ or } R_{i0}(n+1) \leftarrow \exp([\omega_i(n+1)]_X)$$
 (2.3)

$$\begin{bmatrix} \delta \xi_i \\ \delta x_j \end{bmatrix} = \begin{bmatrix} J^T J J^{-1} J^T \begin{bmatrix} \hat{x}_{ij} - \hat{R}_{io} \vec{x}_{oj} + \hat{t}_{io} \end{bmatrix}$$