Gender Classification using LDA, KNN, SVM, Naive Bayes and Decision Tree Learning

SUBMITTED BY

NAME: MAYANK WADHAWAN

UFID: 59148122

Topics Covered

- Applications
- ▶ Introduction
- Data Set
- Classifications Used
- ▶ Running Code
- Existing Approaches
- Results
- ► Future Improvements
- ▶ Conclusion
- Project Demonstration

Applications

Gender classification has many applications like:-

- Targeted advertisement
- Video Games (Avatar)
- Statistics

Introduction

- Gender classification on images.
- Firstly, there is learning phase
 - 1. 312 images read from folder
 - 2. Converted to gray
 - 3. Gaussian filter applied
 - 4. HOG features extracted
 - 5. Data fed into 5 different classifiers
 - ▶ LDA, KNN, SVM, Naïve Bayes and Decision Tree Learning

Introduction (continued)...

- Secondly, Prediction is done
 - 1. Test image read from gallery
 - 2. Converted to Gray
 - 3. Gaussian Filter Applied
 - 4. HOG features extracted
 - 5. Sent to classifiers for prediction
 - 6. Result verified by comparing actual label with predicted label

Data Set – FEI Face Database

	Male	Female
Training Images	156	156
Testing Images	40	40
Total Images	196	196

Classifiers Used

- 1. Linear Discriminant Analysis
- 2. Naive Bayes
- 3. K-Nearest neighbors
- 4. Support Vector Machines
- 5. Decision tree learning

Linear Discriminant Analysis (LDA)

- ▶ LDA is used to reduce the dimensions of a data set into lower dimensions.
- ▶ This new feature space will have better class label separation.
- ▶ LDA is a supervised algorithm because it takes in consideration of class labels of data.
- Whereas, PCA is unsupervised algorithm.

LDA vs PCA

Naive Bayes Classifier

- Simple
- ▶ Probabilistic classifier
- ▶ It uses Bayes Theorem.

K-Nearest neighbors

- K -Nearest neighbor algorithm has 2 steps.
 - 1. Training phase Store the data and class labels.
 - 2. Algorithm is given two inputs,
 - 1. the value of k
 - 2. new data to be classified.
 - ▶ Then we find the k closest neighbors of the new data.
- The new data is then assigned a class label . How?
 - ▶ Whatever Class label had maximum occurrences in the k closest neighbors

K-Nearest neighbors

Support Vector Machines

- ▶ In SVM, input space is mapped to feature space using kernels (functions).
- We can see that in feature space, we can separate data groups using a straight line.

Decision Tree Learning

- Decision tree learning is a learning algorithm.
- It looks a lot like flow chart.
 - ▶ The internal nodes in this tree contains tests.
 - ▶ The branches if this tree are the outcome.
 - ▶ The leaves of this tree have the label of class.

Decision Tree Learning

Running Application Code

- Refer to Readme file
- Project demonstration (later)

Existing Approaches

- Age and gender classification can be done using convolutional neural networks.
 - Accuracy of 86.8 percent.
- Gender classification based on gait.
 - ► Accuracy of 97.9%
- Gender classification using Local Directional Pattern (LDP).
 Accuracy of 95.05
- Gender classification based on speech.
 - ► Accuracy of 98% and 95 for noisy speech.
 - ▶ Disadvantage Have to speak closer to mic

Result (Confusion Matrix)

LDA		Predicted Label	
Actual		Male	Female
Label	Male	40	0
	Female	1	39

KNN		Predicted Label	
Actual		Male	Female
Label	Male	40	0
	Female	2	38

SVM		Predicted Label	
Actual		Male	Female
Label	Male	40	0
	Female	3	37

Naïve Bayes		Predicted Label	
Actual		Male	Female
Label	Male	38	2
	Female	6	34

Result (Confusion Matrix) continued...

Decisio n Tree		Predi	cted Label
Actual		Male	Female
Label	Male	31	9
	Female	6	34

Results (Continued)...

Classifier	Accuracy	Misclassification Rate (Error Rate)
Linear Discriminant Analysis	98.75%	1.25 %
K-Nearest neighbors	97.5%	2.5%
Support Vector Machines	96.25%	3.75%
Naive Bayes	90%	10%
Decision Tree Learning	81.25%	18.75%

Results (Continued)...

Classifier	Precision	Specificity
Linear Discriminant Analysis	1	0.975
K-Nearest Neighbors	1	0.95
Support Vector Machines	1	0.925
Naive Bayes	0.95	0.85
Decision Tree Learning	0.775	0.85

Results (Screenshots)

Future Improvements

- Gender classification works very accurately for images.
- This project can be extended for video stream.
 - ▶ Since the time taken to predict is not that small, therefore output streaming would have some delay.

Conclusion

- ▶ Linear Discriminant Analysis, K-Nearest neighbors and Support Vector Machines have very good accuracy.
- In my project, LDA had highest accuracy among all the classifiers.
- ▶ LDA had only one wrong classification, KNN had 2 wrong classifications and SVM had 3 wrong classifications.
- Therefore, they can be used accurately for gender classification.
- Naive Bayes classification had 8 wrong classification with accuracy of 90%.
- Decision tree learning 15 wrong classifications with accuracy of 81.25%.
- Therefore these two algorithms are not suited for Gender Classification.

Project Demonstration !!!

Thanks for watching !!!