				- 1	$\frac{r_5-t_1)}{1)^2}$		$\frac{2^{t^2}t_1}{t^{1/2}}$
${\mathfrak r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5 + 2k^2t_1}{(t_1 + 2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2} k(2k^2 r_5 t_1)}{(t_1 + 2k^2 t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	3t1t	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$i \sqrt{2} k(t_1 - 2t_2) + k^2) (3t_1t_2 + 2k^2 r_5 (t_1 + t_2))$	0	0	0	0
	$\sigma_1^{\#1} \dagger^{\alpha\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1+}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_1^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^+lphaeta}^{ ext{#2}}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_{1}^{\sharp 1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	īkt ₁
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-\bar{l}kt_1$	0	0	0

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

	#	1	1	<u>س</u>	<u>س</u>	m	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} = 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$t_1^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2ik\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

$\omega_2^{\#_1}$ $\alpha_2^{\#_1}$ $\alpha_2^{\#_1}$ $\alpha_3^{\#_1}$	0	0	$\frac{t_1}{2}$	
$f_2^{\#_1}\alpha\beta$	$-\frac{\overline{i}kt_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_2^{\#_1}$	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0	
	$\omega_{2+}^{\#1} +^{lphaeta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_{2}^{\#1} +^{lphaeta\chi}$	

0

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{1}{(1+2k^2)^2t_1}$

 $\sigma_2^{\#1} + \alpha^{\beta}$

 $\tau_2^{\#1}$

 $\sigma_{2}^{\#1}$

0

 $(1+2k^2)^2t_1$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_2^{\#1} + \alpha \beta$

 $\sigma_{2}^{\#1} +^{\alpha \beta \chi}$

	Massive partic	le
?	Pole residue:	$\frac{-3t_1t_2(t_1+t_2)+3r_5(t_1^2+2t_2^2)}{r_5(t_1+t_2)(-3t_1t_2+2r_5(t_1+t_2))} > 0$
$J^P = 1^+$	[®] Polarisations:	3
? k^{μ}	Square mass:	$-\frac{3t_1t_2}{2r_5t_1+2r_5t_2} > 0$
?	Spin:	1
	Parity:	Even

	Massive particle				
?	Pole residue:	$-\frac{1}{r_2} > 0$			
	Polarisations:	1			
? ?	Square mass:	$-\frac{t_2}{r_2} > 0$			
	Spin:	0			
	Parity:	Odd			

(No mass less particles)

Unitarity conditions

 $r_2 < 0 \, \&\&\, r_5 > 0 \, \&\&\, t_1 < 0 \, \&\&\, t_2 > -t_1$