

Contouring

Dual Marching Cubes

Scientific Visualization Professor Eric Shaffer

Dual Marching Cubes

Operates on structured grids...like Marching Cubes

Generates quadrilaterals...dual to the vertices generated by Marching Cubes

Dual Marching Cubes: Algorithm

How Many Vertices in a Cell?

- Each bipolar edge generates a vertex in cells around it
 - Corner of a quadrilateral of the isosurface
 - Quad will intersect four cells
- Some vertices are shared....

- Cases are based on MC cases
 - Each polygonal patch in a cell will generate a vertex in DMC
- Can create a table of cases....

Table-based algorithm from:

Nielson, G. M. (2004). Dual Marching Cubes. In *Proceedings of IEEE Visualization 2004*, pages 489–496, Los Alamitos, CA. IEEE Computer Society.

Duality

Each polygonal patch in a MC cell → vertex in the dual

We can associate a set of bipolar edges with the dual vertex

Each bipolar edge creating vertex for a MC patch, will be in the set for the associated dual vertex

These edges are used to position the dual vertex

Positioning Vertices

For each bipolar grid edge $\mathbf{e} = (v, v'),$ $w_{\mathbf{e}} \leftarrow \mathtt{LinearInterpolation}(v, F(v), v', F(v'), \sigma)$

For each grid cube \mathbf{c} ,

For each isosurface vertex $w_{\mathbf{c}}^{m}$ in \mathbf{c} ,

coordinates $(w_{\mathbf{c}}^m) \leftarrow$

centroid of $\{w_{\mathbf{e}} : \text{edge } \mathbf{e} \text{ is associated with } w_{\mathbf{c}}^m \}$

Triangulation

Can replace each quadrilateral around bipolar edge by two triangles.

To construct the isosurface patch with two triangles, use the diagonal that minimizes the maximum triangle angle.

Non-manifold Cases

Comparison

Marching Cubes

- Closed, manifold, and intersection-free
- Often generates thin and tiny polygons

Dual Contouring

- Closed and intersection-free
- Generates better-shaped polygons
- Can be non-manifold

Manifold Dual Marching Cubes

Table-based algorithm from:

Nielson, G. M. (2004). Dual Marching Cubes. In *Proceedings of IEEE Visualization 2004*, pages 489–496, Los Alamitos, CA. IEEE Computer Society.

Manifold Dual Marching Cubes

Manifold Dual Marching Cubes avoids creating non-manifold edges by using isosurface patches 2B-II and 3B-II instead of 2B-I and 3B-I whenever two cubes with configurations 2B and 3B share their ambiguous facets.

Manifold Dual Marching Cubes

(a) MARCHING CUBES.

For other approaches....

S. Schaefer, T. Ju and J. Warren, "Manifold Dual Contouring," in IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 3, pp. 610-619, May-June 2007, doi: 10.1109/TVCG.2007.1012.

Tanweer Rashid, Sharmin Sultana, Michel A. Audette, "Watertight and 2-manifold Surface Meshes Using Dual Contouring with Tetrahedral Decomposition of Grid Cubes"

(c) DUAL MARCHING CUBES.

(d) MANIFOLD DUAL MC.

Comaparison with Marching Cubes

MC

DMC

Extensions: Contouring on Adaptive Grids

Benefits

Better use of polygon budget...fewer polygons in low curvature areas

Waste less time processing lots of small empty cubes

S. Schaefer and J. Warren, "Dual marching cubes: primal contouring of dual grids," *12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings.*, Seoul, South Korea, 2004

Dual Contouring on Hermite Data

Hermite data \rightarrow Exact intersections and normal

Used on data from implicit surfaces

Retains sharp features

Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring on hermite data. In: ACM SIGGRAPH (2002)

