1 import pandas as pd

```
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
1 df = pd.read_csv('https://github.com/YBI-Foundation/Dataset/raw/main/Bank%20Churn%20Modelling.csv')
2 print(df)
         CustomerId
                       Surname CreditScore Geography Gender
                                                               Age
                                                                   Tenure \
   0
           15634602
                      Hargrave
                                        619
                                               France
                                                       Female
                                                                42
           15647311
                          Hill
   1
                                                Spain
                                                       Female
   2
           15619304
                          Onio
                                        502
                                               France
                                                       Female
                                                                42
                                                                          8
   3
           15701354
                          Boni
                                               France
                                                       Female
                                                                         1
   4
           15737888
                     Mitchell
                                        850
                                                Spain
                                                       Female
                                                                43
                                                                         2
           15606229
                      Obijiaku
                                        771
                                               France
   9995
                                                                         5
                                                         Male
                                                                39
   9996
           15569892 Johnstone
                                        516
                                               France
                                                         Male
                                                                35
                                                                        10
   9997
           15584532
                           liu
                                        709
                                               France Female
                                                                36
                                                                         7
   9998
           15682355
                     Sabbatini
                                        772
                                              Germany
                                                         Male
                                                                42
                                                                         3
   9999
           15628319
                        Walker
                                        792
                                               France Female
           Balance Num Of Products Has Credit Card Is Active Member
   0
          83807.86
   1
         159660.80
                                                                     0
   2
                                  3
                                                   1
              0.00
                                  2
                                                   0
                                                                     0
   3
   4
         125510.82
                                  1
                                                   1
                                                                     1
              0.00
   9995
                                  2
                                                   1
                                                                     0
   9996
          57369.61
                                  1
                                                   1
                                                                     1
   9997
              0.00
                                                   0
                                                                     1
          75075.31
   9998
                                  2
                                                   1
                                                                     0
   9999 130142.79
         Estimated Salary Churn
                101348.88
   0
                               1
                112542.58
   1
                               0
   2
                113931.57
                               1
                 93826.63
   3
                               0
   4
                 79084.10
                               0
   9995
                 96270.64
                               0
   9996
                101699.77
                               0
   9997
                 42085.58
                               1
                 92888.52
   9998
                               1
                 38190.78
   [10000 rows x 13 columns]
```

# 1 df.head()

|   | CustomerId | Surname  | CreditScore | Geography | Gender | Age | Tenure | Balance   | Num Of Products | Has Credit Card | Is Active Member | . Е |
|---|------------|----------|-------------|-----------|--------|-----|--------|-----------|-----------------|-----------------|------------------|-----|
| 0 | 15634602   | Hargrave | 619         | France    | Female | 42  | 2      | 0.00      | 1               | 1               | 1                |     |
| 1 | 15647311   | Hill     | 608         | Spain     | Female | 41  | 1      | 83807.86  | 1               | 0               | 1                |     |
| 2 | 15619304   | Onio     | 502         | France    | Female | 42  | 8      | 159660.80 | 3               | 1               | C                | )   |
| 3 | 15701354   | Boni     | 699         | France    | Female | 39  | 1      | 0.00      | 2               | 0               | C                | )   |
| 4 | 15737888   | Mitchell | 850         | Spain     | Female | 43  | 2      | 125510 82 | 1               | 1               | 1                | ı   |

# 1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 13 columns):
                      Non-Null Count Dtype
    Column
#
    -----
                      -----
0
    CustomerId
                      10000 non-null int64
1
    Surname
                      10000 non-null
                                      object
2
    CreditScore
                      10000 non-null
                                      int64
3
    Geography
                      10000 non-null
                                      object
4
    Gender
                      10000 non-null
                      10000 non-null
    Age
                                      int64
    Tenure
                      10000 non-null int64
    Balance
                      10000 non-null
                                      float64
    Num Of Products
                      10000 non-null
8
                                      int64
    Has Credit Card
                      10000 non-null
                                      int64
    Is Active Member
                      10000 non-null
10
                                      int64
    Estimated Salary 10000 non-null
                                      float64
11
12
    Churn
                      10000 non-null int64
dtypes: float64(2), int64(8), object(3)
memory usage: 1015.8+ KB
```

```
1 df.duplicated('CustomerId').sum()
1 df = df.set_index('CustomerId')
1 df.info()
   <class 'pandas.core.frame.DataFrame'>
   Int64Index: 10000 entries, 15634602 to 15628319
   Data columns (total 12 columns):
        Column
                          Non-Null Count Dtype
        -----
                          -----
    0
        Surname
                         10000 non-null object
                        10000 non-null int64
        CreditScore
                         10000 non-null object
        Geography
        Gender
                          10000 non-null object
        Age
                          10000 non-null int64
        Tenure
                          10000 non-null int64
        Balance
                         10000 non-null float64
        Num Of Products 10000 non-null int64
Has Credit Card 10000 non-null int64
        Is Active Member 10000 non-null int64
    10 Estimated Salary 10000 non-null float64
                          10000 non-null int64
    11 Churn
   dtypes: float64(2), int64(7), object(3)
   memory usage: 1015.6+ KB
```

#### 1 df.describe()

|       | CreditScore  | Age          | Tenure       | Balance       | Num Of Products | Has Credit Card | Is Active Member | Estimated Salary |
|-------|--------------|--------------|--------------|---------------|-----------------|-----------------|------------------|------------------|
| count | 10000.000000 | 10000.000000 | 10000.000000 | 10000.000000  | 10000.000000    | 10000.00000     | 10000.000000     | 10000.000000     |
| mean  | 650.528800   | 38.921800    | 5.012800     | 76485.889288  | 1.530200        | 0.70550         | 0.515100         | 100090.239881    |
| std   | 96.653299    | 10.487806    | 2.892174     | 62397.405202  | 0.581654        | 0.45584         | 0.499797         | 57510.492818     |
| min   | 350.000000   | 18.000000    | 0.000000     | 0.000000      | 1.000000        | 0.00000         | 0.000000         | 11.580000        |
| 25%   | 584.000000   | 32.000000    | 3.000000     | 0.000000      | 1.000000        | 0.00000         | 0.000000         | 51002.110000     |
| 50%   | 652.000000   | 37.000000    | 5.000000     | 97198.540000  | 1.000000        | 1.00000         | 1.000000         | 100193.915000    |
| 75%   | 718.000000   | 44.000000    | 7.000000     | 127644.240000 | 2.000000        | 1.00000         | 1.000000         | 149388.247500    |
| max   | 850.000000   | 92.000000    | 10.000000    | 250898.090000 | 4.000000        | 1.00000         | 1.000000         | 199992.480000    |

## **Encoding**

```
1 df['Geography'].value_counts()
   France
              5014
   Germany
              2509
              2477
   Spain
   Name: Geography, dtype: int64
1 df.replace({'Geography':{'France':2,'Germany':1,'Spain':0}},inplace=True)
1 df['Gender'].value_counts()
   Male
             4543
   Female
   Name: Gender, dtype: int64
1 df.replace({'Gender':{'Male':0,'Female':1}},inplace=True)
1 df['Num Of Products'].value_counts()
        5084
        4590
   3
         266
          60
   Name: Num Of Products, dtype: int64
1 df.replace({'Num Of Products':{1:0,2:1,3:1,4:1}},inplace=True)
```





1 df.groupby(['Churn','Geography']).count()

|       |           | Surname | CreditScore | Gender | Age  | Tenure | Balance | Num Of Products | Has Credit Card | Is Active Member | Estimated |
|-------|-----------|---------|-------------|--------|------|--------|---------|-----------------|-----------------|------------------|-----------|
| Churn | Geography |         |             |        |      |        |         |                 |                 |                  |           |
| 0     | 0         | 2064    | 2064        | 2064   | 2064 | 2064   | 2064    | 2064            | 2064            | 2064             |           |
|       | 1         | 1695    | 1695        | 1695   | 1695 | 1695   | 1695    | 1695            | 1695            | 1695             |           |
|       | 2         | 4204    | 4204        | 4204   | 4204 | 4204   | 4204    | 4204            | 4204            | 4204             |           |
| 1     | 0         | 413     | 413         | 413    | 413  | 413    | 413     | 413             | 413             | 413              |           |
|       | 1         | 814     | 814         | 814    | 814  | 814    | 814     | 814             | 814             | 814              |           |
|       | 2         | 810     | 810         | 810    | 810  | 810    | 810     | 810             | 810             | 810              |           |

## **Define Label and Features**

1 sns.countplot(x = 'Churn', data = df);



```
1 x.shape,y.shape ((10000, 11), (10000,))
```

## **Random Under Sampling**

```
<Axes: ylabel='Frequency'>
        2000
        1750
        1500
Random Over Sampling
1 from imblearn.over_sampling import RandomOverSampler
1 ros = RandomOverSampler(random_state=2529)
         --- |
1 x_ros,y_ros = ros.fit_resample(x,y)
1 \ x\_ros.shape, y\_ros.shape, x.shape, y.shape
    ((15926, 11), (15926,), (10000, 11), (10000,))
1 y.value_counts()
         7963
         2037
    Name: Churn, dtype: int64
 1 y_ros.value_counts()
         7963
         7963
    Name: Churn, dtype: int64
1 y_ros.plot(kind = 'hist')
    <Axes: ylabel='Frequency'>
        8000
        7000
        6000
        5000
        4000
        3000
        2000
```

#### **Train Test Split**

1000

0

1 from sklearn.model\_selection import train\_test\_split

0.2

### Split Original Data

1 x\_train,x\_test,y\_train,y\_test = train\_test\_split(x,y,test\_size = 0.3,random\_state=2529)

0.6

0.8

1.0

## Split Random Under Sample Data

1 x\_train\_rus,x\_test\_rus,y\_train\_rus,y\_test\_rus = train\_test\_split(x\_rus,y\_rus,test\_size = 0.3,random\_state=2529)

Split Random Over Sample Data

```
1 x_train_ros,x_test_ros,y_train_ros,y_test_ros = train_test_split(x_ros,y_ros,test_size = 0.3,random_state=2529)
```

## **Standard Features**

```
1 from sklearn.preprocessing import StandardScaler
2 sc = StandardScaler()
```

#### **Standard Original Data**

```
1 x_train[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_train[['CreditScore','Age','Tenure'
1 x_test[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_test[['CreditScore','Age','Tenure','Balance','Estimated Salary']]
```

### Standardize Random Under Sample Data

```
1 x_train_rus[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_train_rus[['CreditScore','Age',
1 x_test_rus[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_test_rus[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_test_rus[['CreditScore','Age','Tenure','Balance','Balance','Tenure','Balance','Tenure','Balance','Tenure','Balance','Tenure','Balance','Tenure','Balance','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Tenure','Te
```

#### Standardize Random over Sample Data

```
1 x_train_ros[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_train_ros[['CreditScore','Age',
1 x_test_ros[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_test_ros[['CreditScore','Age','Tenure','Balance','Estimated Salary']] = sc.fit_transform(x_test_ros[['CreditScore','Age','Tenure','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balance','Balan
```

#### **Support Vector Machine Classifier**

```
1 from sklearn.svm import SVC
2 svc = SVC()

1 svc.fit(x_train,y_train)

v SVC
SVC()

1 y_pred = svc.predict(x_test)
```

# **Model Accuracy**

```
1 from sklearn.metrics import confusion_matrix,classification_report
```

```
1 confusion_matrix(y_test,y_pred)
```

```
array([[2381, 33], [ 436, 150]])
```

1 print(classification\_report(y\_test,y\_pred))

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 2414    | 0.91     | 0.99   | 0.85      | 0            |
| 586     | 0.39     | 0.26   | 0.82      | 1            |
| 3000    | 0.84     |        |           | accuracy     |
| 3000    | 0.65     | 0.62   | 0.83      | macro avg    |
| 3000    | 0.81     | 0.84   | 0.84      | weighted avg |

## **Hyperparameter Tunning**

1 from sklearn.model\_selection import GridSearchCV

```
1 param_grid = {'C':[0.1,1,10],
                  'gamma':[1,0.1,0.01],
2
                  'kernel':['rbf'],
3
                  'class_weight':['balanced']}
4
1 grid = GridSearchCV(SVC(),param_grid,refit = True,verbose = 2, cv = 2)
2 grid.fit(x_train,y_train)
   Fitting 2 folds for each of 9 candidates, totalling 18 fits
   [CV] END ..C=0.1, class_weight=balanced, gamma=1, kernel=rbf; total time=
    [CV] END ..C=0.1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   3.0s
    [CV] END C=0.1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   1.3s
    [CV] END C=0.1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   1.1s
   [CV] END C=0.1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                   1.29
    [CV] END C=0.1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                    1.25
    [CV] END ....C=1, class_weight=balanced, gamma=1, kernel=rbf; total time= \,
                                                                                   1.3s
    [CV] END ....C=1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   1.3s
    [CV] END ..C=1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   0.95
   [CV] END ..C=1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
    [CV] END .C=1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
   [CV] END .C=1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
   [CV] END ...C=10, class_weight=balanced, gamma=1, kernel=rbf; total time= [CV] END ...C=10, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   1.8s
                                                                                   1.3s
    [CV] END .C=10, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   1.1s
    [CV] END .C=10, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   1.1s
    [CV] END C=10, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                   1.0s
    [CV] END C=10, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                   1.05
     ▶ GridSearchCV
     ▶ estimator: SVC
          ▶ SVC
1 print(grid.best_estimator_)
   SVC(C=10, class_weight='balanced', gamma=1)
1 grid predictions = grid.predict(x test)
1 confusion_matrix(y_test,grid_predictions)
   array([[2159, 255], [ 343, 243]])
1 print(classification_report(y_test,grid_predictions))
                  precision
                               recall f1-score
                                                   support
               0
                       0.86
                                  0.89
                                            0.88
                                                       2414
                                            0.45
                                                        586
                       0.49
                                  0.41
                                             0.80
                                                       3000
       accuracy
      macro avg
                       0.68
                                  0.65
                                            0.66
                                                       3000
                                            0.79
                                                       3000
   weighted avg
                       0.79
                                  0.80
```

#### **Model with Random Under Sampling**

[174, 422]])

1 print(classification\_report(y\_test\_rus,y\_pred\_rus))

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 627     | 0.74     | 0.75   | 0.73      | 0            |
| 596     | 0.72     | 0.71   | 0.73      | 1            |
| 1223    | 0.73     |        |           | accuracy     |
| 1223    | 0.73     | 0.73   | 0.73      | macro avg    |
| 1223    | 0.73     | 0.73   | 0.73      | weighted avg |

### **Hyperparameter Tunning**

```
1 param grid = \{'C':[0.1,1,10],
2
                  'gamma':[1,0.1,0.01],
3
                  'kernel':['rbf'],
4
                 'class_weight':['balanced']}
1 grid_rus = GridSearchCV(SVC(),param_grid,refit = True,verbose = 2, cv = 2)
2 grid_rus.fit(x_train_rus,y_train_rus)
   Fitting 2 folds for each of 9 candidates, totalling 18 fits
   [CV] END ..C=0.1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   1.2s
    [CV] END ..C=0.1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   2.45
    [CV] END C=0.1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   0.45
    [CV] END C=0.1, class_weight=balanced, gamma=0.1, kernel=rbf; total time= \,
                                                                                   0.45
    [CV] END C=0.1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                   0.5s
    [CV] END C=0.1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                    0.4s
    [CV] END ....C=1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   0.4s
    [CV] END ....C=1, class_weight=balanced, gamma=1, kernel=rbf; total time=
    [CV] END ..C=1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
   [CV] END ..C=1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
   [CV] END .C=1, class_weight=balanced, gamma=0.01, kernel=rbf; total time= [CV] END .C=1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                   0.2s
                                                                                   0.2s
    [CV] END ...C=10, class_weight=balanced, gamma=1, kernel=rbf; total time= \,
                                                                                   0.25
    [CV] END ...C=10, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                                   0.2s
    [CV] END .C=10, class_weight=balanced, gamma=0.1, kernel=rbf; total time= \,
                                                                                   0.25
    [CV] END .C=10, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                                   0.2s
    [CV] END C=10, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                   0.2s
    [CV] END C=10, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
     GridSearchCV
     ▶ estimator: SVC
          ▶ SVC
1 print(grid rus.best estimator )
   SVC(C=1, class weight='balanced', gamma=0.1)
1 grid_predictions_rus = grid_rus.predict(x_test_rus)
1 confusion_matrix(y_test_rus,grid_predictions_rus)
   array([[476, 151],
           [172, 424]])
1 print(classification_report(y_test_rus,grid_predictions_rus))
                  precision
                               recall f1-score
                                                   support
                       0.73
                                 0.76
                                            0.75
                                                        627
               0
                       0.74
                                 0.71
                                            0.72
                                                       596
                                            0.74
                                                      1223
       accuracy
                                 0.74
                       0.74
                                            0.74
      macro avg
                                                       1223
   weighted avg
                       0.74
                                 0.74
                                            0.74
                                                      1223
```

#### **Model with Random Over Sampling**

```
1 svc_ros = SVC()
1 svc_ros.fit(x_train_ros,y_train_ros)
```

```
▼ SVC
SVC()
```

```
1 y_pred_ros = svc_ros.predict(x_test_ros)
```

#### **Model Accuracy**

0.75

0.75

0.75

0.75

0.75

0.75

0.75

4778

4778

4778

## **Hyperparameter Tunning**

weighted avg

accuracy macro avg

```
1 param_grid = {'C':[0.1,1,10],
                 'gamma':[1,0.1,0.01],
2
3
                 'kernel':['rbf'],
4
                 'class_weight':['balanced']}
1 grid_ros = GridSearchCV(SVC(),param_grid,refit = True,verbose = 2, cv = 2)
2 grid_ros.fit(x_train_ros,y_train_ros)
   Fitting 2 folds for each of 9 candidates, totalling 18 fits
   [CV] END ..C=0.1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                               6.7s
   [CV] END ..C=0.1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                               3.8s
   [CV] END C=0.1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                               2.85
   [CV] END C=0.1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                               3.55
   [CV] END C=0.1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                3.7s
   [CV] END C=0.1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                                3.0s
   [CV] END ....C=1, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                               3.2s
   [CV] END ....C=1, class_weight=balanced, gamma=1, kernel=rbf; total time=
   [CV] END ..C=1, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
   [CV] END ..C=1, class weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                               2.4s
   [CV] END .C=1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                               2.7s
   [CV] END .C=1, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                               5.1s
   [CV] END ...C=10, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                               3.1s
   [CV] END ...C=10, class_weight=balanced, gamma=1, kernel=rbf; total time=
                                                                               2.95
   [CV] END .C=10, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                               2.85
   [CV] END .C=10, class_weight=balanced, gamma=0.1, kernel=rbf; total time=
                                                                               4.0s
    [CV] END C=10, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
                                                                               2.9s
   [CV] END C=10, class_weight=balanced, gamma=0.01, kernel=rbf; total time=
     ▶ GridSearchCV
     ▶ estimator: SVC
          ▶ SVC
1 print(grid_ros.best_estimator_)
   SVC(C=10, class_weight='balanced', gamma=1)
1 grid_predictions_ros = grid_ros.predict(x_test_ros)
1 confusion_matrix(y_test_ros,grid_predictions_ros)
   array([[2047, 332],
          [ 68, 2331]])
1 print(classification_report(y_test_ros,grid_predictions_ros))
                 precision
                              recall f1-score
```

| accuracy     |      |      | 0.92 | 4778 |
|--------------|------|------|------|------|
| macro avg    | 0.92 | 0.92 | 0.92 | 4778 |
| weighted avg | 0.92 | 0.92 | 0.92 | 4778 |

## Let's Compare

1 print(classification\_report(y\_test,y\_pred))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.85      | 0.99   | 0.91     | 2414    |
|              | 0.82      | 0.26   | 0.39     | 586     |
| accuracy     | 0.02      | 0.20   | 0.84     | 3000    |
| macro avg    | 0.83      | 0.62   | 0.65     | 3000    |
| weighted avg | 0.84      | 0.84   | 0.81     | 3000    |

1 print(classification\_report(y\_test,grid\_predictions))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.86      | 0.89   | 0.88     | 2414    |
| 1            | 0.49      | 0.41   | 0.45     | 586     |
| accuracy     |           |        | 0.80     | 3000    |
| macro avg    | 0.68      | 0.65   | 0.66     | 3000    |
| weighted avg | 0.79      | 0.80   | 0.79     | 3000    |

1 print(classification\_report(y\_test\_rus,y\_pred\_rus))

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0<br>1                                | 0.73<br>0.73 | 0.75<br>0.71 | 0.74<br>0.72         | 627<br>596           |
| accuracy<br>macro avg<br>weighted avg | 0.73<br>0.73 | 0.73<br>0.73 | 0.73<br>0.73<br>0.73 | 1223<br>1223<br>1223 |

1 print(classification\_report(y\_test\_rus,grid\_predictions\_rus))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.73      | 0.76   | 0.75     | 627     |
| 1            | 0.74      | 0.71   | 0.72     | 596     |
| accuracy     |           |        | 0.74     | 1223    |
| macro avg    | 0.74      | 0.74   | 0.74     | 1223    |
| weighted avg | 0.74      | 0.74   | 0.74     | 1223    |

1 print(classification\_report(y\_test\_ros,y\_pred\_ros))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.74      | 0.77   | 0.76     | 2379    |
| 1            | 0.76      | 0.74   | 0.75     | 2399    |
| accuracy     |           |        | 0.75     | 4778    |
| macro avg    | 0.75      | 0.75   | 0.75     | 4778    |
| weighted avg | 0.75      | 0.75   | 0.75     | 4778    |

1 print(classification\_report(y\_test\_ros,grid\_predictions\_ros))

|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0<br>1                                | 0.97<br>0.88 | 0.86<br>0.97 | 0.91<br>0.92         | 2379<br>2399         |
| accuracy<br>macro avg<br>weighted avg | 0.92<br>0.92 | 0.92<br>0.92 | 0.92<br>0.92<br>0.92 | 4778<br>4778<br>4778 |