PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-006808

(43)Date of publication of application: 14.01.1991

(51)Int.CI.

HO1G HO1G 9/04

HO1G 9/24

(21)Application number :/01-142718

(71)Applicant: SHOWA DENKO KK

(22)Date of filing:

05.06.1989

(72)Inventor: NAITO KAZUMI

NAKAMURA HIDENORI

(54) MANUFACTURE OF SOLID ELECTROLYTIC CAPACITOR

(57)Abstract:

PURPOSE: To shorten electrolytic polymerization time and to desirably reduce loss coefficient by processing valve operation metal having a dielectric oxide film layer on a surface with oxidizer, and then forming a semiconductor layer on the film layer by electrolytic polymerization in electrolyte containing specific monomer.

CONSTITUTION: After valve operation metal having a dielectric oxide film layer on a surface is processed with oxidizer, and a semiconductor layer of solid electrolyte is formed on the film by electrolytic polymerization in electrolyte containing monomer represented by a formula (I). In the formula (I), R1, R2 are alkyl group, alkoxy group or H, X is O, S or NR3, and R3 is alkyl group or H. When the metal is dipped in the electrolyte to be electrolytically polymerized, electrolytic polymerization and simultaneously chemical polymerization occur. As a result, the electrolytic polymerization time is shortened. Further, the

polymerization occurs when the chemically polymerized part is very small, and a boundary resistance between the chemical polymerization layer and the electrolytic polymerization layer becomes vary small, and the DF value of a capacitor can be maintained desirably low.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration?

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

PATENT No. 2054306

(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平6-82592

(24)(44)公告日 平成6年(1994)10月19日

(51)Int.Cl.⁶
H 0 1 G 9/02

識別記号 庁内整理番号

技術表示箇所

9/04

3 3 1 G 9375-5E 3 0 1 9375-5E

9/24

C 9174-5E

請求項の数1(全 4 頁)

(21)出願番号

特願平1-142718

(22)出願日

平成1年(1989)6月5日

(65)公開番号

特開平3-6808

(43)公開日

平成3年(1991)1月14日

(71)出願人 99999999

FΙ

昭和電工株式会社

東京都港区芝大門1丁目13番9号

(72)発明者 内藤 一美

東京都大田区多摩川2-24-25 昭和電工

株式会社総合技術研究所内

(72)発明者 中村 英則

東京都大田区多摩川2-24-25 昭和電工

株式会社総合技術研究所内

(74)代理人 弁理士 寺田 實

審査官 植松 伸二

(54)【発明の名称】 固体電解コンデンサの製造方法

1

【特許請求の範囲】

【請求項1】表面に誘電体酸化皮膜層を有する弁作用金

2

属を酸化剤で処理した後、一般式(1)

R'、R²はアルキル基、アルコキシル基又は H 、 Xは O、 S又は NR²、R²はアルキル基又 は H

で表わされるモノマーを含む電解液中で電解重合によって前記誘電体酸化皮膜層上に半導体層を形成することを 特徴とする固体電解コンデンサの製造方法。

3

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は、高周波性能の良好な固体電解コンデンサの製造方法に関する。

〔従来の技術〕

固体電解コンデンサは表面に誘電体酸化皮膜を有するアルミニウム、タンタル、ニオブ等の弁作用金属に固体電解質である半導体を付着した構造を有している。

従来、この種の固体電解コンデンサの固体電解質には、 主に硝酸マンガンの熱分解により形成される二酸化マン*

* ガンが用いられている。しかし、この熱分解の際に必要な高熱と発生するNO,ガスの酸化作用等によって誘導体であるアルミニウム、タンタルなどの誘電体酸化皮膜の損傷が起り、そのため耐電圧は低下し、漏れ電流が大きくなり、誘電特性を劣化させる等大きな欠点がある。また再化成という工程も数回必要になる。

これらの欠点を補うために高熱を付加せずに固体電解質を形成する方法、つまり高伝導性の高分子半導体材料を固体電解質とする方法が試みられている。その例としては、下記の一般式(I)で表わされるモノマーを重合して得られる高分子化合物にドーパントをドープして得られる電導性高分子化合物を固体電解質とする固体電解コンデンサが知られている。

··· ··· (I)

R'、R²はアルキル基、アルコキシル基又は H 、 Xは O、 S又は NR³、R³はアルキル基又 は H

又、この種の電導性高分子化合物を固体電解質とする固体電解コンデンサの製造方法として、上記一般式(1)で表わされるモノマーを溶解した溶液中で電解重合することによって作製する方法も知られている。

(発明が解決しようとする課題)

しかしながら、上述した電解重合によって固体電解質を 外部電極とし 形成する場合、一般に誘電体酸化皮膜全域に固体電解質 50 られている。

層を形成するには長時間を必要としている。この欠点を無くすために誘電体酸化皮膜近辺に外部電極を多数配置して、外部電極からの重合開始によって時間短縮を図っているもの、或いは化学重合等により誘電体酸化皮膜層上に電導性高分子化合物層を形成し、この層を見掛けの外部電極として電解重合時間を短縮しているものが考えられている。

5

ところが前者の手法では、外部電極の配置個数に限りがあるため充分な重合時間を短縮する目的には使用できず、又、後者の手法では、先に化学重合して形成した電導性高分子化合物層が存在するため、後に電解重合した層との界面抵抗により作製した固体電解コンデンサの損失係数(以下DFと称する)が大きくなるという問題点が*

体電解コンデンサの損 くなるという問題点が R'R² *あった。

〔課題を解決するための手段〕

本発明は、上述した問題点を解決するためになされたもので表面に誘電体酸化皮膜層を有する弁作用金属を酸化剤で処理した後、一般式(I)

... ... (I)

R'、R²はアルキル基、アルコキシル基又は H 、 Xは O、 S又は NR²、R³はアルキル基又 は H

で表わされるモノマーを含む電解液中で電解重合によって誘電体酸化皮膜層上に固体電解質である半導体層を形成する固体電解コンデンサの製造方法にある。

以下、本発明について詳細に説明する。

本発明に於いて固体電解コンデンサの陽極として用いられる弁作用金属としては、例えばアルミニウム、タンタル、ニオブ、チタン及びこれらを基質とする合金等、弁作用を有する金属がいずれも使用できる。

弁作用金属の表面に設ける誘電体酸化皮膜は、弁作用金属の表面部分に設けられた弁作用金属自体の酸化物層であってもよく、或いは、弁作用金属の表面上に設けられた他の誘電体酸化物の層であってもよいが、特に弁作用金属自体の酸化物からなる層であることが好ましい。いずれの場合にも酸化物層を設ける方法としては、電解液を用いた陽極化成法など従来公知の方法を用いることができる。

次に、本発明で用いられる酸化剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、FeCl,、AICl,、SnCl,、塩素酸塩、過塩素酸塩、次亜塩素酸塩、過マンガン酸塩、クロム酸塩等が挙げられるが、とりわけ過硫酸塩が公害等の問題も無く、水に可溶であり、工業的に利用しやすいため好都合である。弁作用金属を酸化剤で処理する方法は、例えば酸化剤を含有する溶液に弁作用金属を浸漬し、引き上げて乾燥する方法が挙げられる。或いは酸化剤を含有する溶液を弁作用金属に噴霧して処理してもよく、一般に酸化剤を弁作用金属に均一に付着させればよい。

次に、本発明で用いられるモノマーは、前記の一般式 ([) の構造を有するものである。

代表例としてチオフェン、ピロール、フラン、N-メチ ルピロール、3ーメチルチオフェン等が挙げられる。と れらのモノマーを2種以上使用してもよい。酸化剤で処 理された表面に誘電体酸化皮膜層を有する弁作用金属 を、モノマーを溶解した電解液中に浸漬し、別に用意し た陰極とで電解反応を行うことによって、弁作用金属の 表面に高分子化合物が析出する。との場合、電解液中の 電解質イオンがドーパントとなるため重合と同時に電導 性高分子化合物である半導体となる。又、本発明で用い られる弁作用金属は均一に酸化剤処理がなされているた め、電解重合と同時に化学重合も生じる結果、電解重合 時間を短時間にすることができ、しかも化学重合した部 分部分が各々微小な時に電解重合が起るため、化学重合 層と電解重合層との界面抵抗もわずかなものとなる。 本発明に使用する電解液は従来公知の電解液を使用する ととができる。例えば、プロピレンカーボネート、エチ レンカーボネート、ケーブチロラクトン、アセトニトリ ル、ジメチルホルムアミド、スルフォラン、メチルスル 40 ホキシド、ニトロメタン、水等の溶媒にΓ、Cl-、F、B r^* , C10, r^* , BF, r^* , AsF, r^* , PF, r^* , F, CSO, r^* , BC1, r^* , N O_3 , POF_4 , CNT , SiF_5 , CH_6COO^{-} , $C_6H_8COO^{-}$, $CH_3C_6H_4$ SO, T、C。H, SO, T、SO, T、SiF。2-等のアルカリ金属塩もし くはハロゲンイオンを除いてアンモニウム塩からなる電 解質を溶解したものである。

又、前述した電導性高分子化合物にさらにドーパントとしてI₂、Br₂、SO₃、AsF₅、SbF₅、トルエンスルフォン酸、ベンゼンスルフォン酸等の電子受容体を化学的方法を用いてドープするか、或いは、BF₄-、ClO₄-、PF₆-、A 50 SF₆-、トルエンスルフォン酸イオン、ベンゼンスルフォ

7

ン酸イオン等のアニオンを電気化学的方法を用いてドープして使用してもよい。

本発明に用いる固体電解質は導電度が10°~10'S·cm⁻¹オーダーのものが得られ、電導度が高い程、作製した固体電解コンデンサの高周波でのDFが低く良好なものとなる。

本発明の方法による固体電解コンデンサは、上述した固体電解質層の上にカーボンペースト又は/及び銀ペースト等で陰極層を取り出し、更に樹脂やケース等、従来公知の方法で封口して製品とされる。

〔作用〕

酸化剤で処理した弁作用金属を電解液中に浸漬して電解重合すると、電解重合と同時に化学重合も生じ、その結果、電解重合時間が短時間となる。しかも、化学重合した部分部分が各々微小な時に電解重合が起り、化学重合層と電解重合層との界面抵抗もわずかなものとなる。従って作製した固体電解コンデンサのDF値は低く良好なものとなる。

〔実施例〕

以下、実施例及び比較例を示して説明する。

実施例1~6

りん酸とりん酸アンモニウム水溶液中で化成処理して表面に誘導体酸化皮膜層を形成した10μF/cm のアンモニウムエッチング箔(以下化成箔と称する)の小片0.5cm×0.5cmを120枚用意し、各実施例にそれぞれ20枚ずつ使用した。表1に記載したそれぞれの酸化剤溶液中に化成箔を浸漬し引き上げた。更に、表1に記載されたモノマーを0.2モル溶解させた0.05MBu,NBF,アセトニトリル溶液中に前述した酸化剤処理済の化成箔を浸漬し電解重合を行った。約1時間後、化成箔上に形成された電導性高30分子化合物を水で充分洗浄した後、乾燥した。形成された固体電解質の電導度は、おおよそ10~2005・cm⁻¹であった。次に固体電解質層を形成した化成箔に銀ペーストで陰極層を形成した後、樹脂封口して固体電解コンデンサを作製した。

表	1

		モノマー	酸化剤
実施的	列 1	ピロール	過硫酸アンモニウム20%水 溶液
"	2	Nーメチル ピロール	過硫酸アンモニウム20%水 溶液
"	3	3ーメチル チオフェン	過硫酸アンモニウム20%水 溶液
"	4	フラン・	塩化鉄10%アルコール溶液

..... 0200

	モノマー 酸化剤		酸化剤
"	5	チオフェン	塩化鉄10%アルコール溶液
"	6	ピロール	過硫酸カリ5%水溶液

比較例1~2

実施例と同様の化成箔を40枚用意し、各比較例に20枚づつ使用した。比較例1は、酸化剤処理をせずに実施例1の電解液中で3時間、電解重合を行った場合、比較例210は、実施例1の酸化剤処理を行い、更に続けて室温でピロールモノマー蒸気にあてて化学重合を行った後、実施例1の電解液中で1時間、電解重合を行った場合であり、この2通りの方法で半導体層を形成した。引き続き実施例と同様にして陰極層を形成し樹脂封口して固体電解コンデンサを作製した。

以上作製した固体電解コンデンサの性能を表2に示した。

	容量* μF	DF*	DF**
実施例1	2, 2	0.8	3,8
// 2	2.0	0.8	4.1
// 3	1.9	0.9	5.8
// 4	1.9	0.9	5.9
<i>"</i> 5	1.9	1.0	6.1
<i>"</i> 6	2, 1	0.8	4.3
比較例1	1.4	1.5	8.8
" 2	2.1	1.2	15, 4

* 120Hzでの値

** 10kHzでの値

〔発明の効果〕

以上説明したように、本発明の固体電解コンデンサの製造方法によれば、電解重合によって半導体層を形成する前に、酸化剤処理を行うので、電解重合時間が短くてすみ、かつDF値の良好な固体電解コンデンサを作製することができる。

40

20