

Universidade do Minho Escola de Ciências

Nome (

Mestrado Integrado em Engenharia Informática

Número (

Análise

Exame :: 20 de junho de 2018

Departamento de Matemática e Aplicações

Nos grupos de escolha múltipla cada resposta certa vale 1 valor e cada resposta errada desconta 0.25 valores.									
		P	ARTE 1 DO EX	(AN	ΛE				
			ı						
Assinale	neste enunciado, se a	afirmação (é verdadeira ou fa	alsa	; não deve apresentar qualquer justificação.	. /			
Ouestão 1		V							
Questão 2.	Se $X \subset \mathbb{R}^3$ é um con As superfícies de níve	(x,z)=x+2y+z são planos paralelos.))						
		$y) \leq x+1$, então $\lim_{(x,y) o (0,0)} f(x,y) = 1$.)						
Questão 4.	A função definida por $f(u,v)=u\cos v$ satisfaz a equação $\cos v\frac{\partial f}{\partial u}-\frac{\sin v}{u}\frac{\partial f}{\partial v}=1.$								
	estão 5. Se o gráfico da função f é uma superfície se $f_y(0,0)=0.$				sférica centrada na origem, então $f_x(0,0) = 0$	\supset			
Α	ssinale neste enunciado	o, a afirmaç	ão verdadeira; nã	ão d	deve apresentar qualquer justificação.				
Questão 1.	Se $X = \{(x,y) \in \mathbb{R}^2$	$2: x^2 + y^2$	≤ 1 e $x \neq 0$ } ent	tão					
\bigcirc	\boldsymbol{X} é um conjunto fech	iado.	(\bigcirc	$(0,1) \in X.$				
\bigcirc	$\partial X = \{(x,y) \in \mathbb{R}^2 : x \in \mathbb$	$x^2 + y^2 = 1$	}.	\bigcirc	nenhuma das anteriores.				
Questão 2. Se f é uma função descontínua em $(a,b)\in\mathbb{R}^2$, então									
\circ	$\lim_{(x,y)\to(a,b)} f(x,y) = f$	(a,b).		\bigcirc	$\lim_{(x,y) o(a,b)}f(x,y)$ não existe.				
\bigcirc	f não é derivável em $(a,b).$				nenhuma das anteriores.				
Questão 3.	Se f é uma função o	derivável em	n (a,b) , então						
$\bigcirc f_x(a,b)$ e $f_y(a,b)$ existem ambas.				\bigcirc	pelo menos uma das derivadas parciais de primeira ordem existe.				
0	$f_x(a,b)$ e $f_y(a,b)$ podem ou não existir.				nenhuma das derivadas parciais de primeira ordem existe.				
	Se f é uma função re nis de terceira ordem pe			cla	sse \mathscr{C}^3 , no máximo quantas das suas derivadas				
\circ	3.	4 .		\bigcirc	8. nenhuma das anteriore	S.			
	Seja f uma função onal de f em (a,b) ao			(u_1)	(u_1,u_2) um vetor não nulo. Então, a derivada				
0	$\nabla f(u_1, u_2).$	$\bigcirc \nabla f(a)$	(u_1,u_2) .	0	$ abla f(a,b) \cdot rac{(u_1,u_2)}{\ (u_1,u_2)\ }.$ nenhuma das anteriore	es.			

Nos grupos de verdadeiro/falso cada resposta certa vale 1 valor e cada resposta errada desconta 0,5 valores.

As respostas às questões deste grupo devem ser convenientemente justificadas e dadas na folha de teste.

Questão 1. [4 valores] Considera a função $f(x,y)=\frac{1-e^{x+y-1}}{x^2+(y-1)^2}$. Calcule, caso exista,

a)
$$\lim_{(x,y)\to(1,0)} f(x,y)$$
.

b)
$$\lim_{(x,y)\to(0,1)} f(x,y)$$
.

 $\text{Quest\~ao 2.} \quad \text{[6 valores]} \quad \text{Seja } f: \mathbb{R}^2 \longrightarrow \mathbb{R} \text{ tal que } f(x,y) = \begin{cases} \frac{x^3y}{x^2+y^2} + x & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$

- a) Mostre que f é uma função contínua.
- c) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.

b) Calcule $\nabla f(1,1)$.

d) Verifique se f é derivável em (0,0).

PARTE 2 DO EXAME

I

Assinale neste enunciado, se a afirmação é verdadeira ou falsa; não deve apresentar qualquer justificação.

 \cap \cap

- estão 1. O vetor $\nabla f(a,b)$ é normal à curva de nível de f em (a,b).
- Questão 2. Se $f_x(a,b) = f_y(a,b) = 0$, então (a,b) é um extremante local de f.

- ximo
- Questão 3. Sejam $\mathcal{R}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ e $f:\mathcal{R}\longrightarrow\mathbb{R}$ uma função contínua. Então f tem máximo e mínimo.
 - 0 0

- Questão 4. Se $\int_0^1 \int_3^4 f(x,y) \, dx dy = 0$, então $\int_0^1 \int_3^4 f^2(x,y) \, dx dy = 0$.
- Questão 5. Seja P um ponto de \mathbb{R}^3 situado no semieixo negativo das ordenadas. As coordenadas esféricas de P satisfazem as condições $\rho>0$, $\theta=\frac{3\pi}{2}$ e $\phi=\frac{\pi}{2}$.

П

As respostas às questões deste grupo devem ser convenientemente justificadas e dadas na folha de teste.

- Questão 1. [3 valores] Considere a superfície definida por $z=x^3 \ln y$ e o ponto $P=(2,e^3,24)$. Defina, caso exista, o plano tangente à superfície no ponto P.
- Questão 2. [3 valores] Encontre um sistema de equações relativo ao método dos multiplicadores de Lagrange para o ponto de abcissa máxima sobre a superfície definida por

$$x^4 + y^4 + z^4 + xy + yz + xz = 6.$$

Obs.: Não resolva o sistema.

- Questão 3. [4 valores] Considere o sólido representado na figura, limitado pela superfície esférica de equação $x^2+y^2+(z+1)^2=18$, pela superfície cónica de equação $x^2+y^2-(z+1)^2=0$ e pelo plano de equação z=0.
 - a) Escreva uma expressão integral que permita determinar o volume do sólido, usando um sistema de coordenadas apropriado.
 - b) Calcule o volume do sólido, usando a expressão apresentada na alínea anterior.

Assinale neste enunciado, a afirmação verdadeira; não deve apresentar qualquer justificação.

Questão 1. Sejam
$$m{f}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$$
, $m{g}:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ e $m{h}=m{g}\circ m{f}$, tais que $m{f}(x,y)=(x^2y,e^x)$ e $Jm{g}(0,1)=\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix}$. Nestas condições $\frac{\partial m{h}}{\partial x}(0,1)$ é
$$\bigcirc \quad (0,0,0). \qquad \bigcirc \quad (0,1,1). \qquad \bigcirc \quad (1,0,0). \qquad \bigcirc \quad \text{nenhuma das anteriores.}$$
 Questão 2. Seja $f:\mathbb{R}^3\to\mathbb{R}$ uma função de classe \mathscr{C}^2 e P um ponto crítico de f . Se a matriz hessiana de f

stão 2. Seja $f:\mathbb{R}^3 o\mathbb{R}$ uma função de classe \mathscr{C}^2 e P um ponto crítico de f. Se a matriz hessiana c no ponto P é $\begin{pmatrix} -1 & a & 0 \\ a & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, então

- $\bigcirc \quad \forall a \in \mathbb{R}, \ P \ \text{\'e ponto de sela de } f. \\ \bigcirc \quad \text{se } |a| < 1, \ P \ \text{\'e maximizante local de } f. \\ \bigcirc \quad \text{nenhuma das anteriores.}$
- Questão 3. A mudança da ordem de integração no integral $\int_0^1 \int_{x-1}^{e^x} f(x,y) \, dy dx$ permite escrever este integral

- onenhuma das anteriores.

Questão 4. A área da elipse definida por $\frac{x^2}{4}+y^2=1$ é

Questão 5. Seja $\mathcal{R}=\{(x,y)\in\mathbb{R}^2:1\leq x\leq 3\ \text{e}\ x^2\leq y\leq x^2+2\}$. Usando a mudança de variáveis definida por $u=x\ \text{e}\ v=y-x^2$, a área de \mathcal{R} é dada por

$$\bigcirc \int_{1}^{3} \int_{0}^{2} dv du.$$

$$\bigcirc \int_{1}^{3} \int_{0}^{2} (2u - 1) dv du.$$

$$\bigcirc \text{nenhuma das and}$$

nenhuma das anteriores.

EXAME GLOBAL

I

Assinale neste enunciado, se a afirmação é verdadeira ou falsa; não deve apresentar qualquer justificação.

		V	Г
Questão 1.	Se $X\subset\mathbb{R}^3$ é um conjunto finito então $\overset{\circ}{X}=\emptyset.$	\bigcirc	\circ
Questão 2.	$\text{Se } f:\mathbb{R}^2 \to \mathbb{R} \text{ \'e tal que } \forall (x,y) \in \mathbb{R}^2, \ -1 \leq f(x,y) \leq x+1 \text{, ent\~ao } \lim_{(x,y) \to (0,0)} f(x,y) = 1.$	\bigcirc	\bigcirc
Questão 3.	Se $f_x(a,b)=f_y(a,b)=0$, então (a,b) é um extremante local de f .	\bigcirc	\bigcirc
Questão 4.	Sejam $\mathcal{R}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ e $f:\mathcal{R}\longrightarrow\mathbb{R}$ uma função contínua. Então f tem máximo		
e mínimo		\bigcirc	\bigcirc

Questão 5. Seja P um ponto de \mathbb{R}^3 situado no semieixo negativo das ordenadas. As coordenadas esféricas de P satisfazem as condições $\rho>0$, $\theta=\frac{3\pi}{2}$ e $\phi=\frac{\pi}{2}$.

As respostas às questões deste grupo devem ser convenientemente justificadas e dadas na folha de teste.

Considera a função $f(x,y)=rac{1-e^{x+y-1}}{x^2+(y-1)^2}$. Calcule, caso exista $\lim_{(x,y) o(0,1)}f(x,y)$.

 $[\text{3 valores}] \quad \text{Seja } f: \mathbb{R}^2 \longrightarrow \mathbb{R} \text{ tal que } f(x,y) = \begin{cases} \frac{x^3y}{x^2+y^2} + x & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$ Questão 2.

- a) Mostre que f é uma função contínua.
- c) Verifique se f é derivável em (0,0).

- b) Calcule $\frac{\partial f}{\partial x}(0,0)$ e $\frac{\partial f}{\partial y}(0,0)$.
- Encontre um sistema de equações relativo ao método dos multiplicadores de Lagrange Questão 3. [3 valores] para o ponto de abcissa máxima sobre a superfície definida por

$$x^4 + y^4 + z^4 + xy + yz + zx = 6.$$

Obs.: Não resolver o sistema.

Considere o sólido representado na figura, limitado pela Questão 4. [2 valores] superfície esférica de equação $x^2 + y^2 + (z+1)^2 = 18$, pela superfície cónica de equação $x^2 + y^2 - (z+1)^2 = 0$ e pelo plano de equação z = 0. Escreva uma expressão integral que permita determinar o volume do sólido, usando um sistema de coordenadas apropriado.

Ш

Assinale neste enunciado, a afirmação verdadeira; não deve apresentar qualquer justificação.

Questão 1. Se f é uma função real de duas variáveis reais de classe \mathscr{C}^3 , no máximo quantas das suas derivadas parciais de terceira ordem podem ser distintas?

 \bigcirc 3.

nenhuma das anteriores.

Questão 2. Seja f uma função derivável em (a,b) e $u=(u_1,u_2)$ um vetor não nulo. Então, a derivada direcional de f em (a,b) ao longo de \boldsymbol{u} é dada por

- $\bigcirc \quad \nabla f(u_1,u_2). \qquad \qquad \bigcirc \quad \nabla f(a,b) \cdot (u_1,u_2). \qquad \bigcirc \quad \nabla f(a,b) \cdot \frac{(u_1,u_2)}{\|(u_1,u_2)\|}. \qquad \bigcirc \quad \text{nenhuma das anteriores}.$

Questão 3. Sejam $\boldsymbol{f}:\mathbb{R}^2\longrightarrow\mathbb{R}^2$, $\boldsymbol{g}:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ e $\boldsymbol{h}=\boldsymbol{g}\circ\boldsymbol{f}$, tais que $\boldsymbol{f}(x,y)=(x^2y,e^x)$ e $J\boldsymbol{g}(0,1)=\begin{pmatrix}1&0\\0&1\\2&1\end{pmatrix}$.

Nestas condições $\frac{\partial \boldsymbol{h}}{\partial x}(0,1)$ é

- \bigcirc (0,0,0).
- \bigcirc (0, 1, 1).
- (1,0,0).
- nenhuma das anteriores.

Questão 4. A área da elipse definida por $\frac{x^2}{4}+y^2=1$ é:

- $\bigcirc 2\pi^2$.
- nenhuma das anteriores.

Questão 5. Seja $\mathcal{R}=\{(x,y)\in\mathbb{R}^2:1\leq x\leq 3 \text{ e } x^2\leq y\leq x^2+2\}.$ Usando a mudança de variáveis definida por u=x e $v=y-x^2$, a área de ${\mathcal R}$ é dada por

$$\bigcirc \int_1^3 \int_0^2 dv du.$$

$$\bigcirc 2 \int_{1}^{3} \int_{v^2}^{u^2} dv du.$$

$$\int_{1}^{3} \int_{0}^{2} (2u-1) \, dv du.$$

nenhuma das anteriores.