Statistical Inference Course Notes

Xing Su

Contents

Overview
Probability
General Probability Rules
Conditional Probability
Baye's Rule
Random Variables
Probability Mass Function (PMF)
Probability Density Function (PDF)
Cumulative Distribution Function (CDF)
Survival Function
Quantile
Independence
IID Random Variables
Diagnostic Test
Example
Likelihood Ratios
Expected Values/Mean
Variance
Sample Variance
Entire Estimator-Estimation Relationship
Example - Standard Normal
Binomial Distribution
Example
Normal Distribution
Poisson Distribution
Asymptotics
Confidence Intervals - Z (using Central Limit Theorem)
Confidence Intervals - T (small samples)
Hypothesis Testing
Power
Multiple Testing

Type of Errors	26
Error Rates	26
Example	27
Resample Inference	29

Overview

- Statistical Inference = generating conclusions about a population from a noisy sample
- Goal = extend beyond data to population
- Statistical Inference = only formal system of inference we have
- ullet many different modes, but ${f two}$ broad flavors of inference (inferential paradigms): ${m Bayesian}$ vs ${m Frequencist}$
 - Frequencist -> uses long run proportion of times an event occurs independent identically distributed repetitions
 - * frequentist is what this class is focused on
 - * believes if an experiment is repeated many many times, the resultant percentage of success/something happening defines that population parameter
 - Bayesian -> probability estimate for a hypothesis is updated as additional evidence is acquired
- statistic = number computed from a sample of data
 - statistics are used to infer information about a population
- random variable = outcome from an experiment
 - deterministic processes (variance/means) produce additional random variables when applied to random variables, and they have their own distributions

Probability

- **Probability** = the study of quantifying the likelihood of particular events occurring
 - given a random experiment, **probability** = population quantity that summarizes the randomness
 - * not in the data at hand, but a conceptual quantity that exist in the population that we want to estimate

General Probability Rules

- discovered by Russian mathematician Kolmogorov, also known as "Probability Calculus"
- probability = function of any set of outcomes and assigns it a number between 0 and 1
 - $-0 \le P(E) \le 1$, where E = event
- probability that nothing occurs = 0 (impossible, have to roll dice to create outcome), that something occurs is 1 (certain)
- probability of outcome or event E, P(E) = ratio of ways that E could occur to number of all possible outcomes or events
- probability of something = 1 probability of the opposite occurring
- probability of the **union** of any two sets of outcomes that have nothing in common (mutually exclusive) = sum of respective probabilities

• if A implies occurrence of B, then P(A) occurring < P(B) occurring

• for any two events, probability of at least one occurs = the sum of their probabilities - their intersection (in other words, probabilities can not be added simply if they have non-trivial intersection)

- for independent events A and B, $P(A \cup B) = P(A) \times P(B)$
- for outcomes that can occur with different combination of events and these combinations are mutually exclusive, the $P(E_{total}) = \sum P(E_{part})$

Conditional Probability

- let B = an event so that P(B) > 0
- conditional probability of an event A, given B is defined as the probability that BOTH A and B occurring divided by the probability of B occurring

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

• if A and B are independent, then

$$P(A \mid B) = \frac{P(A)P(B)}{P(A)} = P(A)$$

- \bullet example
 - for die roll, $A = \{1\}, B = \{1, 3, 5\}$, then

$$P(1 \mid Odd) = P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)}{P(B)} = \frac{1/6}{3/6} = \frac{1}{3}$$

Baye's Rule

• definition

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A \mid B)P(B) + P(A \mid B^c)P(B^c)}$$

where B^c = corresponding probability of event B, $P(B^c) = 1 - P(B)$

Random Variables

- random variable = numeric outcome of experiment
- discrete (what you can count/categories) = assign probabilities to every number/value the variable can take
 - coin flip, rolling a die, web traffic in a day
- continuous (any number within a continuum) = assign probabilities to the range the variable can take
 - BMI index, intelligence quotients
 - Note: limitations of precision in taking the measurements may imply that the values are discrete, but we in fact consider them continuous
- rbinom(), rnorm(), rgamma(), rpois(), runif() = functions to generate random variables from the binomial, normal, Gamma, Poisson, and uniform distributions
- density and mass functions (population quantities, not what occurs in data) for random variables = best starting point to model/think about probabilities for numeric outcome of experiments (variables)
 - use data to estimate properties of population -> linking sample to population

Probability Mass Function (PMF)

- evaluates the probability that the **discrete random variable** takes on a specific value
 - measures the chance of a particular outcome happening
 - always ≥ 0 for every possible outcome
 - $-\sum$ possible values that the variable can take = 1
- Bernoulli distribution example
 - $-X = 0 \rightarrow tails, X = 1 \rightarrow heads$
 - * X here represents potential outcome
 - $-p(X=x) = (\frac{1}{2})^x (\frac{1}{2})^{1-x}$ for X=0,1
 - * x here represents a value we can plug into the PMF
 - * general form $\rightarrow p(x) = (\theta)^x (1-\theta)^{1-x}$
- dbinom(k, n, p) = return the probability of getting k successes out of n trials, given probability of success is p

Probability Density Function (PDF)

- evaluates the probability that the continuous random variable takes on a specific value
 - always \geq everywhere
 - total area under the must = 1
- areas under PDFs correspond to the probabilities for that random variable taking on that range of values (PMF)

• but the probability of the variable taking a specific value = 0 (area of a line is 0)

- Note: the above is true because it is modeling random variables as if they have infinite precision, when in reality they do not
- dnorm(), dgamma(), dpois(), dunif() = return probability of a certain value from the normal, Gamma, Poisson, and uniform distributions

Cumulative Distribution Function (CDF)

- CDF of a random variable $X = \text{probability that the random variable is } \leq \text{value } x$
 - $-F(x) = P(X \le x)$ <- applies when X is discrete/continuous
- PDF = derivative of CDF
 - integrate PDF -> CDF
 - * integrate(function, lower=0, upper=1) -> can be used to evaluate integrals for a specified range
- pbinom(), pnorm(), pgamma(), ppois(), punif() = returns the cumulative probabilities from 0 up to a specified value from the binomial, normal, Gamma, Poisson, and uniform distributions

Survival Function

- survival function of a random variable X = probability the random variable > x, complement of CDF
 - -S(x) = P(X > x) = 1 F(x), where F(x) = CDF

Quantile

- the α^{th} quantile of a distribution with distribution function $F = point x_{\alpha}$
 - $F(x_{\alpha}) = \alpha$
 - percentile = quantile with α expressed as a percent
 - median = 50th percentile
 - $-\alpha\%$ of the possible outcomes lie below it

- qbeta(quantileInDecimals, 2, 1) = returns quantiles for beta distribution
 - works for qnorm(), qbinom(), qgamma(), qpois(), etc.
- median estimated in this fashion = a population median
- probability model connects data to population using assumptions
 - population median = estimand, sample median = estimator

Independence

- two events A and B are *independent* if the following is true
 - $-P(A \cap B) = P(A)P(B)$
 - $-P(A \mid B) = P(A)$
- two random variables X and Y are *independent*, if for any two sets, A and B, the following is true
 - $-P([X \in A] \cap [Y \in B]) = P(X \in A)P(Y \in B)$
- independence = statistically unrelated from one another
- if A is *independent* of B, then the following are true
 - A^c is independent of B
 - A is independent of B^c
 - A^c is independent of B^c

IID Random Variables

- random variables are said to be IID if they are independent and identically distributed
 - **independent** = statistically unrelated from each other
 - identically distributed = all having been drawn from the same population distribution
- IID random variables = default model for random samples = default starting point of inference

Diagnostic Test

- Let + and be the results, positive and negative respectively, of a diagnostic test
- Let D = subject of the test has the disease, $D^c = \text{subject}$ does not
- sensitivity = $P(+ \mid D)$ = probability that the test is positive given that the subject has the disease (the higher the better)
- specificity = $P(-|D^c|)$ = probability that the test is negative given that the subject does not have the disease (the higher the better)
- **positive predictive value** = $P(D \mid +)$ = probability that that subject has the disease given that the test is positive
- negative predictive value = $P(D^c \mid -)$ = probability that the subject does not have the disease given the test is negative
- prevalence of disease = P(D) = marginal probability of disease

Example

• specificity of 98.5%, sensitivity = 99.7%, prevalence of disease = .1%

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid D^c)P(D^c)}$$

$$= \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + \{1 - P(- \mid D^c)\}\{1 - P(D)\}}$$

$$= \frac{.997 \times .001}{.997 \times .001 + .015 \times .999}$$

$$= .062$$

- low positive predictive value -> due to low prevalence of disease and somewhat modest specificity
 - suppose it was know that the subject uses drugs and has regular intercourse with an HIV infect partner (his probability of being + is higher than suspected)
 - evidence implied by a positive test result

Likelihood Ratios

• from Baye's Rules, we can derive the positive predictive value and false positive value

$$P(D \mid +) = \frac{P(+ \mid D)P(D)}{P(+ \mid D)P(D) + P(+ \mid D^c)P(D^c)}$$

$$P(D^c \mid +) = \frac{P(+ \mid D^c)P(D^c)}{P(+ \mid D)P(D) + P(+ \mid D^c)P(D^c)}$$

• if we divide the about quantities over each other (same denominator), we get the following

$$\frac{P(D\mid +)}{P(D^c\mid +)} = \frac{P(+\mid D)}{P(+\mid D^c)} \times \frac{P(D)}{P(D^c)}$$

- odds = p/(1-p)

 - $-\frac{P(D)}{P(D^c)}=$ odds of disease in absence of test $-\frac{P(D\mid +)}{P(+\mid D^c)}=$ odds of disease given a positive test result
- Diagnostic Likelihood Ratio of a positive test result is defined as

$$DLR_{+} = \frac{P(+\mid D)}{P(Dc\mid +)}$$

- in previous example, $DLR_+ = .997/(1-.985) = 66$
- $-DLR_{-} = (1 .997)/.985 = 0.003$
- post-test odds of $D = DLR_+ \times \text{pre-test odds of } D$
 - $-\ DLR_+=$ the factor by which you multiply your odds in the presence of a positive test to obtain your post-test odds

Expected Values/Mean

- useful for characterizing a distribution (properties of distributions)
- **mean** = characterization of the center of the distribution = expected value
- expected value operation = $linear \rightarrow E(aX + bY) = aE(X) + bE(Y)$
- variance/standard deviation = characterization of how spread out the distribution is
- sample expected values for sample mean and variance will estimate the population counterparts
- population mean
 - expected value/mean of a random variable = center of its distribution (center of mass)
 - discrete variables
 - * for X with PMF p(x), the population mean is defined a: $E[X] = \sum_{x} xp(x)$ where the **sum** is taken over all possible values of x
 - * E[X] = center of mass of a collection of location and weights x, p(x)
 - * coin example
 - $E[X] = 0 \times (1 p) + 1 \times p = p$
 - continuous variable
 - * for X with density f(x), the expected value = the center of mass of the density
 - * instead of summing over discrete values, the expectation integrates over a continuous function
 - $\cdot \text{ pdf} = f(x)$
 - f(x) = area under the curve = mean/expected value of X
- · sample mean
 - sample mean estimates the population mean
 - * sample mean = center of mass of observed data = empirical mean

$$\bar{X} = \sum_{x}^{n} x_i p(x_i)$$

where
$$p(x_i) = 1/n$$

- average of random variables = a random variable and its distribution has an expected value that is the **same** as the original distribution (centers are the same)
 - the mean of the averages = average of the original data -> estimates average of the population
 - E[sample mean] = population mean <- this estimator is **unbiased**
 - * derivation
 - · let $X_1, X_2, X_3, \ldots X_n$ be a collection of n samples from the population with mean μ · mean of this sample = $\frac{X_1 + X_2 + X_3 + \ldots + X_n}{n}$

 - · since E(aX) = aE(X), the expected value of the mean, $E\left[\frac{X_1 + X_2 + X_3 + \dots + X_n}{n}\right] = \frac{1}{n} \times$ $[E(X_1) + E(X_2) + E(X_3) + ... + E(X_n)]$
 - since each of the $E(X_i)$ is drawn from the population with mean μ , we expect that the
 - $\cdot \text{ so } \frac{1}{n} \times [E(X_1) + E(X_2) + E(X_3) + ... + E(X_n)] = \frac{1}{n} \times n \times \mu = \mu$
- Note: the more data that goes into the sample mean, the more concentrated its density/mass functions are around the population mean

Variance

- variance = measure of spread, the square of expected distance from the mean (expressed in X's units²)
 - $Var(X) = E[(X \mu)^2] = E[X^2] E[X]^2$
 - $-\,$ higher variances -> more spread, lower -> smaller spread
 - standard deviation = $\sqrt{var(X)}$ -> has same units as X
 - example
 - * for die roll, E[X] = 3.5
 - * $E[X^2] = 12 \times 1/6 + 22 \times 1/6 + 32 \times 1/6 + . + 62 \times 1/6 = 15.17$
 - * $Var(X) = E[X^2] E[X]^2 \approx 2.92$
 - example
 - * for coin flip, E[X] = p

 - * $E[X^2] = 0^2 \times (1-p) + 1^2 \times p = p$ * $Var(X) = E[X^2] E[X]^2 = p p^2 = p(1-p)$

Sample Variance

•
$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

- Note: samples are much more likely to have variances lower than the population \rightarrow why S^2 is calculated by dividing by n-1

- on the above line, any subset of data will most likely have a variance that is *lower than* the population
- dividing by n 1 will make the variance estimator larger to adjust for this fact \rightarrow leads to more accurate estimation
 - random variable, and thus has an associate population distribution
 - * $E[S^2]$ = population variance, where S = sample standard deviation
 - * with more data, its distribution gets more concentrated around population variance

• Note: for any variable, properties of the population = parameter, estimates of properties for samples = statistic

• distribution for mean of random samples

- $-\,$ expected value of the mean of this distribution = expected value of the sample = population mean
 - $* \ E[\bar{X}] = \mu$
- expected value of the variance of this distribution
 - * $Var(\bar{X}) = \sigma^2/n$
 - * as ${\bf n}$ becomes larger, the mean of random sample -> more concentrated around the population mean -> variance approaches 0
- Note: normally we only have 1 sample mean (from collected sample) and can estimate the variance $\sigma^2 = so$ we know a lot about the distribution of the means from the data observed

- Standard Error (SE)
 - SE of the mean = σ/\sqrt{n} –> effectively the standard deviation of the distribution of a statistic (i.e. mean)
 - * represents variability of means

Entire Estimator-Estimation Relationship

- Start with a sample
- $S^2 = \text{sample variance}$
 - estimates how variable the population is
 - estimates population variance σ^2
 - $-S^2$ = a random variable and has its own distribution centered around σ^2
 - * more concentrated around σ^2 as n increases
- $\bar{X} = \text{sample mean}$
 - estimates population mean μ
 - $-\bar{X}$ = a random variable and has its own distribution centered around μ
 - * more concentrated around μ as n increases
 - * variance of distribution of $\bar{X} = \sigma^2/n$
 - * estimate of variance = S^2/n
 - * estimate of standard error = S/\sqrt{n} -> "sample standard error of the mean"
 - * estimates how variable sample means (n size) from the population are

Example - Standard Normal

- variance = 1
- means of **n** standard normals (sample) have standard deviation = $1/\sqrt{n}$

```
# specify number of simulations with 10 as number of observations per sample
nosim <- 1000; n <-10
sd(apply(matrix(rnorm(nosim * n), nosim), 1, mean))</pre>
```

[1] 0.3208222

- rnorm() -> generate samples from the standard normal
- matrix() -> puts all samples into a nosim by n matrix, so that each row represents a simulation with nosim observations
- apply() -> calculates the mean of the n samples
- sd() -> returns standard deviation
- Note: standard uniform -> triangle straight line distribution -> mean = 1/2 and variance = 1/12

Binomial Distribution

- binomial random variable = sum of n Bernoulli variables = $\sum X_i$ where $X_i = Bernoulli(p)$
 - PMF -> $P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$
 - * $\binom{n}{x}$ = counts the number of ways selecting x items out of n options without replacement or regard to order
 - $\binom{n}{x} = \frac{n!}{x!(n-x)!}$ $\binom{n}{x}, \binom{n}{x} = 1$
- Bernoulli distribution -> binary outcome
 - only possible outcomes
 - * 1 = "success" with probability of p
 - * 0 = "failure" with probability of 1 p
 - PMF -> $P(X = x) = p^x (1 p)^{1-x}$
 - mean = p, variance = p(1-p)

Example

- of 8 children, whats the probability of 7 or more girls (50/50 chance)?
- $\binom{8}{7}.5^7(1-.5)^1 + \binom{8}{8}.5^8(1-.5)^0 \approx 0.04$
- choose (8, 7) -> R function to calculate n choose x
- pbinom(6, size=8, prob =0.5, lower.tail=F) -> probability of 6 or less out of 8 samples with probability of 0.5
 - lower.tail = F returns the complement

Normal Distribution

- normal/Gaussian distribution = random variable X
 - mean = μ , variance = σ^2
 - PMF -> $(2\pi\sigma^2)^{-1/2}e^{-(x-\mu)^2/2\sigma^2}$
 - notation -> $X \sim N(\mu, \sigma^2)$
- $X \sim N(0,1) =$ standard normal distribution (standard normal RVs often labeled Z)
 - $-\sim68\%$ of data/normal density -> between \pm 1 standard deviation from μ
 - ~95% of data/normal density \rightarrow between \pm 2 standard deviation from μ
 - $-\sim99\%$ of data/normal density -> between \pm 3 standard deviation from μ
 - $-\pm 1.28$ standard deviations from $\mu \to 10^{th}$ (-) and 90^{th} (+) percentiles
 - $-\pm 1.645$ standard deviations from $\mu \to 5^{th}$ (-) and 95^{th} (+) percentiles
 - $-\pm 1.96$ standard deviations from $\mu -> 2.5^{th}$ (-) and 97.5^{th} (+) percentiles
 - $-\pm 2.33$ standard deviations from $\mu \to 1^{st}$ (-) and 99^{th} (+) percentiles
- for any $X \sim N(\mu, \sigma^2)$, calculating the number of standard deviation from the mean **converts** the random variable to a standard normal

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

• conversely, a standard normal can then be converted to any normal distribution by multiplying by standard deviation and adding the mean

$$X = \mu + \sigma Z \sim N(\mu, \sigma^2)$$

- R Commands:
 - n^{th} percentiles -> qnorm(n, mean = mu, sd = sd)
 - probability larger than x -> pnorm(x, mean = mu, sd = sd, lower.tail = F)

Poisson Distribution

- used to model counts
 - PMF->

$$P(X = x; \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- where $X = 0, 1, 2, ... \infty$
- mean = λ , variance = λ
- modeling uses for Poisson distribution
 - count data
 - event-time/survival -> cancer trials, some patients never develop and some do, dealing with the data for both ("censoring"")
 - contingency tables -> record results for different characteristic measurements
 - approximating binomials –> instances where ${\bf n}$ is large and ${\bf p}$ is small (i.e. pollution on lung disease)
 - * $X \sim Binomial(n, p)$
 - $* \lambda = np$
 - rates -> $X \sim Poisson(\lambda t)$
 - * $\lambda = E[X/t] \rightarrow$ expected count per unit of time
 - * t = total monitoring time
 - * example: ppois(n, lambda = lambda * t) -> returns probability of n or fewer events happening given the rate and time

Asymptotics

- asymptotics = behavior of statistics as sample size $-> \infty$
- useful for simple statistical inference/approximations
- form basis for frequency interpretation of probabilities ("Law of Large Numbers")
- Law of Large Numbers (LLN) = IID sample statistic becomes population statistic to what it estimates as n increases (sample mean -> population mean)
- Note: an estimator is consistent if it converges to what it is estimating
 - sample mean, variance, standard deviation are all consistent for their population counterparts
- Central Limit Theorem
 - distribution of means of IID variables -> standard normal as ${\bf n}$ increases
 - for large values of n

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \frac{\text{Estimate - Mean of estimate}}{\text{Std. Err. of estimate}} \longrightarrow N(0, 1)$$

- this translates to the distribution of the sample mean \bar{X} is approximately $N(\mu, \sigma^2/n)$
- Note: speed at which the normalized coin flips converge to normal distribution depends on how biased the coin is (value of p)
- **Note**: does not guarantee that the normal distribution will be a good approximation, but just that eventually it will be a good approximation as $n \to \infty$

Confidence Intervals - Z (using Central Limit Theorem)

• Z confidence interval

$$Estimate \pm ZQ \times SE_{Estimate}$$

- -ZQ = quantile from the standard normal distribution
- sample mean = $\bar{X} \sim N(\mu, \sigma^2/n)$, with mean = μ and standard deviation = σ^2/n
- 95% confidence interval for $\mu = \bar{X} \pm 2\sigma^2/n$ (1.96 to be more accurate)
 - probability that \bar{X} is larger than $\mu + 2\sigma^2/n$ or smaller than $\mu 2\sigma^2/n = 5\%$
 - interpretation: if we were to repeated samples of size n from the population and construct this confidence interval for each case, approximately 95% of the intervals will contain μ
- Note: Poisson and binomial distributions have exact intervals that don't require CLT
- Wald confidence interval
 - for Bernoulli distributions, confidence interval takes the form

$$\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

- -p = unknown, so use $\hat{p} = X/n$ to replace
- -p(1-p) -> largest when p=1/2, confidence interval becomes $\hat{p} \pm \frac{1}{\sqrt{n}}$
- this is useful in *roughly estimating confidence intervals*
 - * generally need n = 100 for 1 decimal place, 10,000 for 2, and 1,000,000 for 3
- binom.test(success, n) = returns confidence interval
- Agresti/Coull interval (binomial distribution)
 - for smaller values of \mathbf{n} , when \mathbf{n} is not large enough for CLT
 - take number of successes, X, add 2
 - take number of failure, add 2
 - $-\hat{p} = \frac{X+2}{n+4}$, use this to construct confidence interval (tend to be *conservative*)
- Poisson Interval
 - $-X \sim Poisson(\lambda t)$
 - * estimate rate $\hat{\lambda} = X/t$
 - $* var(\hat{\lambda}) = \lambda/t$
 - * variance estimate = $\hat{\lambda}/t$
 - for small values of λ (few events larger time interval), should not use the asymptotic interval estimated here
 - as $t \to \infty$, the interval becomes the true 95% interval

Confidence Intervals - T (small samples)

• t Confidence Interval

$$Estimate \pm TQ \times SE_{Estimate} = \bar{X} \pm \frac{t_{n-1}S}{\sqrt{n}}$$

- -TQ = quantile from T distribution
- $-t_{n-1} = \text{relevant quantile} = \text{qt(0.975, df = n-1)}$
- t interval assumes data is IID normal
- works well with data distributions that are roughly symmetric/mound shaped, and does not work with skewed distributions
 - * skewed distribution -> meaningless to center interval around the mean \bar{X}
 - * logs/median can be used instead
- paired observations (multiple measurements from same subjects) can be analyzed by t interval of differences
- as more data collected (large degrees of freedom), t interval -> z interval
- William Gosset's t Distribution ("Student's T distribution")
 - test = Gosset's pseudoname which he published under
 - indexed/defined by degrees of freedom, and becomes more like standard normal as degrees of freedom gets larger
 - thicker tails centered around 0, thus confidence interval = wider than Z interval (more mass concentrated away from the center)
 - for *small* sample size (value of n), normalizing the distribution by $\frac{\bar{X}-\mu}{S/\sqrt{n}}$ -> t distribution, *not* the standard normal distribution
 - * S = standard deviation may be inaccurate, as the std of the data sample may not be truly representative of the population std
 - * using the Z interval here thus may produce an interval that is too narrow
- Independent Group t Intervals Same Variance
 - compare two groups in randomized trial ("A/B Testing")
 - * cannot use the paired t test because the groups are independent and may have different sample sizes
 - perform randomization to balance unobserved covariance that may otherwise affect the result
 - Confidence Interval for $\mu_y \mu_x$

$$\bar{Y} - \bar{X} \pm t_{n_x + n_y - 2, 1 - \alpha/2} S_p \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}$$

- * $t_{n_x+n_y-2,1-\alpha/2}$ = relevant quantile
- * $n_x + n_y 2 =$ degrees of freedom
- * $S_p \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2} = \text{standard error}$
- * $S_p^2 = \{(n_x 1)S_x^2 + (n_y 1)S_y^2\}/(n_x + n_y 2) = \text{pooled variance estimator}$
 - · This is effectively a weighted average between the two variances, such that different sample sizes are taken in to account
- * Note: this interval assumes constant variance across two groups; if variance is different, use the next interval
- Independent Group t Intervals Different Variance
 - Confidence Interval for $\mu_y \mu_x$

$$ar{Y} - ar{X} \pm t_{df} imes \left(rac{s_x^2}{n_x} + rac{s_y^2}{n_y}
ight)^{1/2}$$

- * t_{df} = relevant quantile with df as defined below
- * Note: normalized statistic does not follow t distribution but can be approximated through the formula with df defined below

$$df = \frac{\left(S_x^2/n_x + S_y^2/n_y\right)^2}{\left(\frac{S_x^2}{n_x}\right)^2/(n_x - 1) + \left(\frac{S_y^2}{n_y}\right)^2/(n_y - 1)}$$

*
$$\left(\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}\right)^{1/2} = \text{standard error}$$

- Comparing other kinds of data
 - binomial -> relative risk, risk difference, odds ratio
 - binomial -> Chi-squared test, normal approximations, exact tests
 - count -> Chi-squared test, exact tests
- R commands
 - t Confidence Intervals

* mean +
$$c(-1, 1)$$
 * $qt(0.975, n - 1)$ * $std / sqrt(n)$

- · c(-1, 1) =plus and minus, \pm
- Difference Intervals (all equivalent)

$$*$$
 mean2 - mean1 + c(-1, 1) * qt(0.975, n - 1) * std / sqrt(n)

- · n = number of paired observations
- qt(0.975, n-1) = relevant quantile for paired
- · $qt(0.975, n_x + n_y 2)$ = relevant quantile for independent
- * t.test(mean2 mean1)
- * t.test(data2, data1, paired = TRUE, var.equal = TRUE)
 - paired = whether or not the two sets of data are paired (same subjects different observations for treatment) <- TRUE for paired, FALSE for independent
 - · *var.equal* = whether or not the variance of the datasets should be treated as equal <- TRUE for same variance, FALSE for unequal variances
- * t.test(extra ~ I(relevel(group, 2)), paired = TRUE, data = sleep)
 - · relevel(factor, ref) = reorders the levels in the factor so that "ref" is changed to the first level \rightarrow doing this here is so that the second set of measurements come first $(1, 2 \rightarrow 2, 1)$ in order to perform mean₂ mean₁
 - · I(object) = prepend the class "AsIs" to the object
 - · Note: $I(relevel(group, 2)) = explanatory\ variable,\ must\ be\ factor\ and\ have\ two\ levels$

Hypothesis Testing

- Hypothesis testing = making decisions using data
 - **null** hypothesis (\mathbf{H}_0) = status quo
 - assumed to be true -> statistical evidence required to reject it for alternative or "research" hypothesis (\mathbf{H}_a)
 - * alternative hypothesis typically take form of >, < or \neq
 - Results

Truth	Decide	Result
$\overline{H_0}$	H_0	Correctly accept null
H_0	H_a	Type I error
H_a	H_a	Correctly reject null
H_a	H_0	Type II error

- $\alpha = \text{Type I error rate}$
 - probability of *rejecting* the null hypothesis when the hypothesis is *correct*
 - $-\alpha = 0.5$ -> standard for hypothesis testing
 - Note: as Type I error rate increases, Type II error rate decreases and vice versa
- for large samples (large n), use the **Z Test** for $H_0: \mu = \mu_0$
 - H_a :
 - * $H_1: \mu < \mu_0$
 - * $H_2: \mu \neq \mu_0$
 - * $H_3: \mu > \mu_0$
 - Test statistic $TS = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$
 - Reject the null hypothesis H_0 when
 - * $H_1: TS \leq Z_{\alpha} \text{ OR } -Z_{1-\alpha}$
 - * $H_2: |TS| \ge Z_{1-\alpha/2}$
 - * $H_3: TS \geq Z_{1-\alpha}$
 - Note: In case of $\alpha = 0.5$ (most common), $Z_{1-\alpha} = 1.645$ (95 percentile)
 - $-\alpha = low$, so that when H_0 is rejected, original model -> wrong or made an error (low probability)
- For small samples (small n), use the **T Test** for $H_0: \mu = \mu_0$
 - $-H_a$:
 - * $H_1: \mu < \mu_0$
 - * $H_2: \mu \neq \mu_0$
 - * $H_3: \mu > \mu_0$
 - Test statistic $TS = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$
 - Reject the null hypothesis H_0 when
 - * $H_1: TS \leq T_{\alpha} \text{ OR } -T_{1-\alpha}$
 - * $H_2: |TS| \ge T_{1-\alpha/2}$
 - * $H_3: TS \geq T_{1-\alpha}$
 - Note: In case of $\alpha = 0.5$ (most common), $T_{1-\alpha} = qt$ (.95, df = n-1)
 - R commands for T test:

- * t.test(vector1 vector2)
- * t.test(vector1, vector2, paired = TRUE)
 - · alternative argument can be used to specify one-sided tests: less or greater
 - · alternative default = two-sided
- * prints test statistic (t), degrees of freedom (df), p-value, 95% confidence interval, and mean of sample
 - $\cdot\,$ confidence interval in units of data, and can be used to interest the practical significance of the results
- rejection region = region of TS values for which you reject H_0
- **power** = probability of rejecting H_0
 - power is used to calculate sample size for experiments
- two-sided tests $\rightarrow H_a: \mu \neq \mu_0$
 - reject H_0 only if test statistic is too larger/small
 - for $\alpha = 0.5$, split equally to 2.5% for upper and 2.5% for lower tails
 - * equivalent to $|TS| \ge T_{1-\alpha/2}$
 - * example: for T test, qt(.975, df) and qt(.025, df)
 - **Note**: failing to reject one-sided test = fail to reject two-sided
- tests vs confidence intervals
 - $-(1-\alpha)\%$ confidence interval for $\mu = \text{set of all possible values that fail to reject } H_0$
 - if $(1-\alpha)\%$ confidence interval contains μ_0 , fail to reject H_0
- two-group intervals/test
 - Rejection rules the same
 - Test H_0 : $\mu_1 = \mu_2 -> \mu_1 \mu_2 = 0$
 - Test statistic:

$$\frac{Estimate - H_0Value}{SE_{Estimate}} = \frac{\bar{X}_1 - \bar{X}_2 - 0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

- R Command
 - * t.test(values ~ factor, paired = FALSE, var.equal = TRUE, data = data)
 - · paired = FALSE -> independent values
 - · factor argument must have only two levels
- p values
 - most common measure of statistical significance
 - p-value = probability under the null hypothesis of obtaining evidence as extreme or more than that of the obtained
 - * Given that H_0 is true, how likely is it to obtain the result (test statistic)?
 - attained significance level = smallest value for α for which H_0 is rejected -> equivalent to p-value
 - * if p-value $< \alpha$, reject H_0
 - * for two-sided tests, double the p-values
 - if p-value is small, either H_0 is true AND the observed is a rare event **OR** H_0 is false
 - R Command
 - * p-value = pt(statistic, df, lower.tail = FALSE)
 - · lower.tail = FALSE = returns the probability of getting a value from the t distribution that is larger than the test statistic

- * Binomial (coin flips)
 - · probability of getting x results out of n trials and event probability of p = pbinom(x, size = n, prob = p, lower.tail = FALSE)
 - · two-sided interval (testing for \neq): find the smaller of two one-sided intervals (X < value, X > value), and double the result
 - · Note: lower.tail = FALSE = strictly greater

* Poisson

- · probability of getting x results given the rate r = ppois(x 1, r, lower.tail = FALSE)
- · x-1 is used here because the upper tail includes the specified number (since we want greater than x, we start at x-1)
- r =events that should occur given the rate (multiplied by 100 to yield an integer)
- · Note: lower.tail = FALSE = strictly greater

Power

- Power = probability of rejecting the null hypothesis when it is false (the more power the better)
 - most often used in designing studies so that there's a reasonable chance to detect the alternative hypothesis if the alternative hypothesis is true
- β = probability of type II error = failing to reject the null hypothesis when it's false
- power = 1β
- example
 - $H_0: \mu = 30 \to \bar{X} \sim N(\mu_0, \sigma^2/n)$
 - $-H_a: \mu > 30 \rightarrow \bar{X} \sim N(\mu_a, \sigma^2/n)$
 - Power:

Power =
$$P\left(\frac{\bar{X} - 30}{s/\sqrt{n}} > t_{1-\alpha, n-1} ; \mu = \mu_a\right)$$

- * Note: the above function depends on value of μ_a
- * Note: as μ_a approaches 30, power approaches α
- assuming the sample mean is normally distributed, H_0 is rejected when $\frac{\bar{X}-30}{\sigma/\sqrt{n}} > Z_{1-\alpha}$
- or, $\bar{X} > 30 + Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$
- R commands:
 - alpha = 0.05; z = qnorm(1-alpha) -> calculates $Z_{1-\alpha}$
 - pnorm(mu0 + z * sigma/sqrt(n), mean = mua, sd = sigma/sqrt(n), lower.tail = FALSE) -> calculates the probability of getting a sample mean that is larger than $Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}$ given that the population mean is μ_a
 - * Note: using mean = mu0 in the function would = alpha
 - Power curve behavior
 - * Power increases as mu_a increases \rightarrow we are more likely to detect the difference in mu_a and mu_0
 - * Power increases as **n** increases \rightarrow with more data, more likely to detect any alternative mu_a

```
library(ggplot2)
mu0 = 30; mua = 32; sigma = 4; n = 16
alpha = 0.05
z = qnorm(1 - alpha)
nseq = c(8, 16, 32, 64, 128)
mu_a = seq(30, 35, by = 0.1)
power = sapply(nseq, function(n)
    pnorm(mu0 + z * sigma / sqrt(n), mean = mu_a, sd = sigma / sqrt(n),
          lower.tail = FALSE)
colnames(power) <- paste("n", nseq, sep = "")</pre>
d <- data.frame(mu a, power)</pre>
library(reshape2)
d2 <- melt(d, id.vars = "mu_a")</pre>
names(d2) <- c("mu_a", "n", "power")</pre>
g <- ggplot(d2,
             aes(x = mu \ a, y = power, col = n)) + geom line(size = 2)
```


• Solving for Power

- When testing $H_a: \mu > \mu_0$ (or < or \neq)

Power =
$$1 - \beta = P\left(\bar{X} > \mu_0 + Z_{1-\alpha} \frac{\sigma}{\sqrt{n}}; \mu = \mu_a\right)$$

- where $\bar{X} \sim N(\mu_a, \sigma^2/n)$
- Unknowns = μ_a , σ , n, β
- Knowns = μ_0 , α
- Specify any 3 of the unknowns and you can solve for the remainder; most common are two cases
 - 1. Given power desired, mean to detect, variance that we can tolerate, find the $\bf n$ to produce desired power (designing experiment/trial)
 - 2. Given the size \mathbf{n} of the sample, find the power that is achievable (finding the utility of experiment)
- **Note**: for $H_a: \mu \neq mu_0$, calculated one-sided power using $z_{1-\alpha/2}$; however, the power calculation here exclusdes the probability of getting a large TS in the opposite direction of the truth, but this is only applicable when μ_a and μ_0 are close together

• Power Behavior

- Power increases as α becomes larger
- Power of one-sided test > power of associated two-sided test
- Power increases as μ_a gets further away from μ_0
- Power increases as ${\bf n}$ increases (sample mean has less variability)
- Power increases as σ decreases (again less variability)
- Power usually depends only $\frac{\sqrt{n}(\mu_a-\mu_0)}{\sigma}$, and not μ_a , σ , and n
 - * effect size = $\frac{\mu_a \mu_0}{\sigma}$ -> unit free, can be interpretted across settings

• T-test Power

- for Gossett's T test,

$$Power = P\left(\frac{\bar{X} - \mu_0}{S/\sqrt{n}} > t_{1-\alpha, n-1}; \mu = \mu_a\right)$$

- * $\frac{\bar{X}-\mu_0}{S/\sqrt{n}}$ does not follow a t distribution if the true mean is μ_a and NOT μ_0 -> follows a non-central t distribution instead
- power.t.test -> evaluates the non-central t distribution and solves for a parameter given all others are specified
 - * power.t.test(n = 16, delta = 0.5, sd = 1, type = "one.sample", alt = "one.sided")\$power -> calculates power with inputs of n, difference in means, and standard deviation
 - · delta = argument for difference in means
 - · Note: since effect size = delta/sd, as n, type, and alt are held constant, any distribution with the same effect size will have the same power
 - * power.t.test(power = 0.8, delta = 0.5, sd = 1, type = "one.sample", alt = "one.sided")\$n -> calculates size n with inputs of power, difference in means, and standard deviation
 - · Note: n should always be rounded up (ceiling)

Multiple Testing

- Hypothesis testing/significant analysis commonly overused
- correct for multiple testing to avoid false positives/conclusions (two key components)
 - 1. error measure
 - 2. correction
- multiple testing is needed because of the increase in ubiquitous data collection technology and analysis
 - DNA sequencing machines
 - imaging patients in clinical studies
 - electronic medical records
 - individualized movement data (fitbit)

Type of Errors

| Actual \$H_0\$ = True | Actual \$H_a\$ = True | Total

$$H_a = \text{True (significant)} \mid V \mid S \mid R \text{ Total } \mid m_0 \mid m - m_0 \mid m$$

- m_0 = number of true null hypotheses, or cases where H_0 = actually true (unknown)
- $m-m_0$ = number of true alternative hypotheses, or cases where H_a = actually true (unknown)
- R = number of null hypotheses rejected, or cases where $H_a = \text{concluded to be true (measurable)}$
- m-R = number of null hypotheses that failed to be rejected, or cases where H_0 = concluded to be true (measurable)
- $V = \text{Type I Error} / \text{false positives, concludes } H_a = \text{True when } H_0 = \text{actually True}$
- T = Type II Error / false negatives, concludes $H_0 = \text{True when } H_a = \text{actually True}$
- S = true positives, concludes $H_a = \text{True when } H_a = \text{actually True}$
- U = true negatives, concludes $H_0 = \text{True when } H_0 = \text{actually True}$

Error Rates

- false positive rate = rate at which false results are called significant $E\left[\frac{V}{m_0}\right]$ -> average fraction of times that H_a is claimed to be true when H_0 is actually true
 - Note: mathematically equal to type I error rate -> false positive rate is associated with a post-prior result, which is the expected number of false positives divided by the total number of hypotheses under the real combination of true and non-true null hypotheses (disregarding the "global null" hypothesis). Since the false positive rate is a parameter that is not controlled by the researcher, it cannot be identified with the significance level, which is what determines the type I error rate.
- family wise error rate (FWER) = probabilit of at least one false positive $Pr(V \ge 1)$
- false discovery rate (FDR) = rate at which claims of significance are false $E[\frac{V}{R}]$
- controlling error rates (adjusting α)
 - false positive rate
 - * if we call all $P < \alpha$ significant (reject H_0), we are expected to get $\alpha \times m$ false positives, where m = total number of hypothesis test performed
 - * with high values of m, false positive rate is very large as well

- family-wise error rate (FWER)
 - * controlling FWER = controlling the probability of even one false positive
 - $*\ bonferroni$ correction (oldest multiple testing correction)
 - · for m tests, we want $Pr(V \ge 1) < \alpha$
 - · calculate P-values normally, and deem them significant if and only if $P < \alpha_{fewer} = \alpha/m$
 - * easy to calculate, but tend to be very ${\it conservative}$
- false discovery rate (FDR)
 - * most popular correction = controlling FDR
 - * for m tests, we want $E\left[\frac{V}{R}\right] \leq \alpha$
 - * calculate P-values normally and sort some from smallest to largest $\rightarrow P_{(1)}, P_{(1)}, ..., P_{(m)}$
 - * deem the P-values significant if $P_{(i)} \leq \alpha \times \frac{i}{m}$
 - * easy to calculate, less conservative, but allows for more false positives and may behave strangely under dependence (related hypothesis tests/regression with different variables)

- example

* 10 P-values with $\alpha = 0.20$

• adjusting for p-values

- Note: changing P-values will fundamentally change their properties but they can be used directly without adjusting /alpha
- bonferroni (FWER)
 - * $P_i^{fewer} = max(mP_i, 1) ->$ since p cannot exceed value of 1
 - * deem P-values significant if $P_i^{fewer} < \alpha$
 - * similar to controlling FWER

Example

```
set.seed(1010093)
pValues <- rep(NA,1000)
for(i in 1:1000){
 x \leftarrow rnorm(20)
  # First 500 beta=0, last 500 beta=2
  if(i \le 500){y \le rnorm(20)}else{ y \le rnorm(20,mean=2*x)}
  # calculating p-values by using linear model; the [2, 4] coeff in result = pvalue
  pValues[i] <- summary(lm(y ~ x))$coeff[2,4]</pre>
# Controls false positive rate
trueStatus <- rep(c("zero", "not zero"), each=500)</pre>
table(pValues < 0.05, trueStatus)</pre>
##
         trueStatus
##
         not zero zero
## FALSE 0 476
              500 24
##
    TRUE
# Controls FWER
table(p.adjust(pValues,method="bonferroni") < 0.05,trueStatus)</pre>
##
         trueStatus
##
         not zero zero
## FALSE 23 500
    TRUE
              477 0
##
# Controls FDR (Benjamin Hochberg)
table(p.adjust(pValues,method="BH") < 0.05,trueStatus)</pre>
##
         trueStatus
##
          not zero zero
##
     FALSE 0 487
##
    TRUE
              500 13
```

Resample Inference

- Bootstrap = useful tool for constructing confidence intervals and caclulating standard errors for difficult statistics
 - **principle** = if a statistic's (i.e. median) sampling distribution is unknown, then use distribution defined by the data to approximate it
 - procedures
 - 1. simulate *n* observations **with replacement** from the observed data -> results in 1 simulated complete data set
 - 2. calculate desired statistic (i.e. median) for each simulated data set
 - 3. repeat the above steps B times, resulting in B simulated statistics
 - 4. these statistics are approximately drawn from the sampling distribution of the true statistic of n observations
 - 5. perform one of the following
 - * plot a histogram
 - * calculate standard deviation of the statistic to estimate its standard error
 - * take quantiles (2.5th and 97.5th) as a confidence interval for the statistic ("bootstrap CI")
 - example
 - * Bootstrap procedure for calculating confidence interval for the median from a data set of n observations \rightarrow approximate sampling distribution

```
# load data
library(UsingR); data(father.son)
# observed dataset
x <- father.son$sheight
# number of simulated statistic
B <- 1000
# generate samples
resamples <- matrix(</pre>
                           # sample to draw frome
    sample(x,
           n * B,
                            # draw B datasets with n observations each
           replace = TRUE), # cannot draw n*B elements from x (has n elements) without replacement
    B, n)
                             # arrange results into n x B matrix
                             # (every row = bootstrap sample with n observations)
# take median for each row/generated sample
medians <- apply(resamples, 1, median)</pre>
# estimated standard error of median
sd(medians)
## [1] 0.76595
# confidence interval of median
quantile(medians, c(.025, .975))
##
       2.5%
               97.5%
## 67.18292 70.16488
# histogram of bootstraped samples
hist(medians)
```

Histogram of medians

- Note: better percentile bootstrap confidence interval = "bias corrected and accelerated interval" in bootstrap package
- Permutation Tests

- procedures

- * compare groups of data and test the null hypothesis that the distribution of the observations from each group = same
 - · Note: if this is true, then group labels/divisions are irrelevant
- * permute the labels for the groups
- * recalculate the statistic
 - · Mean difference in counts
 - · Geometric means
 - · T statistic
- \ast Calculate the percentage of simulations where the simulated statistic was more extreme (toward the alternative) than the observed

- variations

Data type	Statistic	Test name
Ranks	rank sum	rank sum test
Binary	hypergeometric prob	Fisher's exact test
Raw data		ordinary permutation test

- * Note: randomization tests are exactly permutation tests, with a different motivation
- * For matched data, one can randomize the signs
- $\ast\,$ For ranks, this results in the \mathbf{signed} \mathbf{rank} \mathbf{test}
- * Permutation strategies work for regression by permuting a regressor of interest
- * Permutation tests work very well in multivariate settings

- example

* we will compare groups **B** and **C** in this dataset for null hypothesis H_0 : there are no difference between the groups

• we will compare groups **B** and **C** in this dataset for null hypothesis H_0 : there are no difference between the groups

```
# subset to only "B" and "C" groups
subdata <- InsectSprays[InsectSprays$spray %in% c("B", "C"),]
# values
y <- subdata$count
# labels
group <- as.character(subdata$spray)
# find mean difference between the groups
testStat <- function(w, g) mean(w[g == "B"]) - mean(w[g == "C"])
observedStat <- testStat(y, group)
observedStat</pre>
```

[1] 13.25

- the observed difference between the groups is 13.25
- now we changed the resample the lables for groups ${\bf B}$ and ${\bf C}$

```
# create 10000 permutations of the data with the labels' changed
permutations <- sapply(1 : 10000, function(i) testStat(y, sample(group)))
# find the number of permutations whose difference that is bigger than the observed
mean(permutations > observedStat)
```

[1] 0

- we created 1000 permutations from the observed dataset, and found no~datasets with mean differences between groups ${\bf B}$ and ${\bf C}$ larger than the original data
- therefore, p-value is very small and we can reject the null hypothesis with any resonable α levels
- below is the plot for the null distribution/permutations

- as we can see from the black line, the observed difference/statistic is very far from the mean -> likely 0 is not the true difference
 - with this information, formal confidence intervals can be constructed and p-values can be calculated