AI 6102: Machine Learning Methodologies & Applications

L3: Linear Models: Regression

Sinno Jialin Pan

Nanyang Technological University, Singapore

Homepage: http://www.ntu.edu.sg/home/sinnopan

Recall: Supervised Learning

In mathematics

- Given: a set of N labeled data $\{(x_1, y_1), ..., (x_N, y_N)\}$, where x_i is m-dimensional vector of numerical values, and y_i is a scalar
- We aim to learn a mapping $f: x \to y$ by requiring $f(x_i) = y_i$
- The learned mapping f is expected to make precise predictions on any unseen x^* as $f(x^*)$

Hypothesis

- A mapping or function f: x → y can be considered as an element of some space of possible functions
 H: R^m → R, often called hypothesis space
- Supervised learning aims to find a hypothesis $f \in \mathcal{H}$ from training data $\{(x_1, y_1), ..., (x_N, y_N)\}$, s.t. for any test x^* , $f(x^*) = y^*$

Assumption

- The training data instances $(x_1, y_1), ..., (x_N, y_N)$, are independent and identically distributed (i.i.d.), and drawn from an unknown joint probability distribution $P_{tr}(x, y)$
- Unseen test data instances $\{(x^*, y^*)\}$ are also i.i.d, and drawn from an unknown joint probability distribution $P_{ts}(x, y)$
- The two joint probability distributions are the same: $P_{tr}(\mathbf{x}, y) = P_{ts}(\mathbf{x}, y)$

Loss Function

- Denote by $\hat{y} = f(x)$ the prediction of the function $f(\cdot)$ on a data instance x, and y is the ground-truth output of x
- Let $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+ \geq 0$ be a loss function to measure the difference between the ground-truth output y and the prediction \hat{y} of a hypothesis $f(\cdot)$ on any input data instance x

$$\ell(f(\mathbf{x}), y) = \ell(\hat{y}, y)$$

Risk Minimization

• The risk associated with a hypothesis $f(\cdot)$ is defined as the expectation of the loss function over all possible input-output pairs drawn from a joint probabilistic distribution P(x, y):

$$R(f) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim P}[\ell(f(\mathbf{x}), \mathbf{y})]$$

• Recall: in supervised learning, the learned hypothesis $f(\cdot)$ is expected to make precise predictions on any test data instance x^* , i.e., $f(x^*) = y^*$

$$f^* = \arg\min_{f} R_{ts}(f) = \arg\min_{f} \mathbb{E}_{(x,y) \sim P_{ts}}[\ell(f(x), y)]$$

Test data is unseen in training! And even in the test phase, y is not observed!

Risk Minimization (cont.)

Definition of expectation

$$f^* = \arg\min_{f} R_{ts}(f)$$

$$= \arg\min_{f} \mathbb{E}_{(x,y)\sim P_{ts}} [\ell(f(x),y)]$$

$$= \arg\min_{f} \mathbb{E}_{(x,y)\sim P_{ts}} \left[\frac{P_{tr}(x,y)}{P_{tr}(x,y)} \ell(f(x),y) \right]$$

$$= \arg\min_{f} \int_{\mathcal{V}} \int_{x} P_{ts}(x,y) \left(\frac{P_{tr}(x,y)}{P_{tr}(x,y)} \ell(f(x),y) \right) dxdy$$

$$\mathbb{E}_{\boldsymbol{x} \sim P}[g(\boldsymbol{x})] = \int_{\boldsymbol{x}} P(\boldsymbol{x})g(\boldsymbol{x}) d\boldsymbol{x} = \int_{x_1} \dots \int_{x_m} P(\boldsymbol{x})g(\boldsymbol{x}) dx_1 \dots dx_m$$

Risk Minimization (cont.)

$$f^* = \arg\min_{f} R_{ts}(f)$$

$$= \arg\min_{f} \int_{y} \int_{x} \underbrace{P_{ts}(x, y)} \underbrace{\left(\frac{P_{tr}(x, y)}{P_{tr}(x, y)} \ell(f(x), y)\right) dx}_{Assumption} dxdy$$

$$= 1 \underbrace{P_{tr}(x, y) = P_{ts}(x, y)}_{P_{tr}(x, y)} \underbrace{\left(\frac{P_{ts}(x, y)}{P_{tr}(x, y)} \ell(f(x), y)\right) dx}_{P_{tr}(x, y)} dxdy$$

$$= \arg\min_{f} \int_{y} \int_{x} P_{tr}(x, y) \ell(f(x), y) dxdy$$

Definition of expectation

$$= \arg\min_{f} \mathbb{E}_{(x,y)\sim P_{tr}}[\ell(f(x),y)]$$

Empirical Risk Minimization

$$f^* = \arg\min_{f} \mathbb{E}_{(x,y)\sim P_{tr}}[\ell(f(x),y)] = \arg\min_{f} R_{tr}(f)$$

- The distribution $P_{tr}(\mathbf{x}, y)$ is unknown, thus we are not able to sample (infinite) input-output pairs $\{(\mathbf{x}, y)\}$ to learn a hypothesis $f(\cdot)$
- In practice, only a finite number of training pairs are available, $(x_1, y_1), ..., (x_N, y_N)$
- Approximate the expected risk by empirical risk:

$$\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim P_{tr}}[\ell(f(\boldsymbol{x}),\boldsymbol{y})] \approx \frac{1}{N} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i),y_i) = \widehat{R}_{tr}(f)$$

Empirical Risk Minimization (cont.)

• In practice, the hypothesis f can be learned by minimizing the empirical risk

$$\hat{f} = \arg\min_{f} \hat{R}_{tr}(f) = \arg\min_{f} \frac{1}{N} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), y_i)$$

• Given a training data set, N is a constant, thus for convenience in presentation, $\frac{1}{N}$ is dropped

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), y_i)$$

Overfitting Revisit

Overfitting: when test error begins to increase even though training error continues to decrease

Overfitting v.s. Model Complexity

- Observations of the two examples:
 - Increasing model complexity could make training error or training loss to keep being decreased
 - When model complexity keeps increasing, test error or test loss will increase after some point
- After a model is learned, we can use validation set to evaluate it to reduce the risk of overfitting (tuning hyper-parameters)
- Can we reduce the risk of overfitting when learning a model?

Occam's Razor Principle

- Given two models of similar performance, we should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it is fitted accidentally by noise in data
 - Overfitting results in models that are more complex than necessary
- Therefore, we should include model complexity when learning a model

Structural Risk Minimization (cont.)

Empirical Risk Minimization

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), y_i)$$

Structural Risk Minimization

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), y_i) + \lambda \Omega(f)$$

- $\Omega(f)$ is known as a penalty or regularization term to control the model complexity of f
- $\lambda > 0$ is a trade-off hyper-parameter

Structural Risk Minimization (cont.)

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), y_i) + \lambda \Omega(f)$$

- How to learn f?
 - Design a specific form of f in terms of some parameters, denoted by a vector $\boldsymbol{\theta} \in \mathbb{R}^{t \times 1}$, i.e., $f(x; \boldsymbol{\theta})$
 - The parameterized $f(x; \theta)$ defines a family of functions with different values of θ
 - Learning f is equivalent to learning the values of θ

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

Structural Risk Minimization (cont.)

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- Popular regularization terms include
 - the squared L2 norm: $\|\boldsymbol{\theta}\|_2^2$
 - $\|\boldsymbol{\theta}\|_{2}^{2} = \sum_{i=1}^{t} \theta_{i}^{2}$
 - Tends to prefer a model with a smaller value for each parameter θ_i
 - the L1 norm: $\|\boldsymbol{\theta}\|_1$
 - $\|\boldsymbol{\theta}\|_1 = \sum_{i=1}^t |\theta_i|$
 - Tends to prefer a model with a smaller value for each parameter θ_i , and fewer parameters with non-zero values
 - Induce sparsity, i.e., some θ_i 's tend to be zeros

Linear Models: Regression

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

• In general, for regression, $f(x_i; \theta)$ is defined as

$$f(x; \theta) = w \cdot x + b$$
 θ is a concatenation of w and b

• Given x_i , the prediction of $f(x; \theta)$ is the linear combination of its m feature values with weights w plus a bias term b

$$x_i \begin{bmatrix} x_{1i} \\ x_{2i} \\ \dots \\ x_{mi} \end{bmatrix} w \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_m \end{bmatrix} \hat{y} = f(x; \theta) = w \cdot x + b = \sum_{i=1}^m x_i w_i + b$$

Linear Models: Classification

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}_i; \boldsymbol{\theta}), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

• In general, for classification, $f(x_i; w)$ is defined as

$$f(\mathbf{x}; \boldsymbol{\theta}) = h(\mathbf{w} \cdot \mathbf{x} + b)$$

where h(z) is function to map continuous values to discrete values (denoting different categories)

For example,

$$h(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

Next Lecture

Linear Regression: One-Dimension

- Each instance is represented by only one input feature
- To learn a linear function f(x) in terms of w and b (both are scalars) from $\{x_i, y_i\}, i = 1, ..., N$

1D Linear Regression (cont.)

$$[\widehat{w}, \widehat{b}] = \arg\min_{[w,b]} \sum_{i=1}^{N} \ell(\widehat{y}_i, y_i)$$
 Drop the regularization term for simplicity at first where $\widehat{y}_i = wx_i + b$

- The loss function $\ell(\hat{y}_i, y_i)$ is to measure the difference between \hat{y}_i and y_i
 - For regression, the magnitude of the difference, i.e., $|\hat{y}_i y_i|$
- To make the resultant optimization problem easier to solve
 - We expect the loss function has some good properties, e.g.,
 differentiable everywhere
 - The square of magnitude, $|\hat{y}_i y_i|^2 = (\hat{y}_i y_i)^2$ or $\frac{1}{2}(\hat{y}_i y_i)^2$

Regression Loss Function

Optimization

• Learn w and b by minimizing the square loss

$$[\widehat{w}, \widehat{b}] = \arg\min_{[w,b]} \frac{1}{2} \sum_{i=1}^{N} (wx_i + b - y_i)^2$$

- The objective of the optimization problem
- The objective is convex
- Unconstrained optimization problem

• \widehat{w} and \widehat{b} can be obtained by solving the equations

Closed-form Solution

$$\frac{\partial \left(\frac{1}{2}\sum_{i=1}^{N}(wx_i+b-y_i)^2\right)}{\partial w} = 0$$

$$\frac{\partial \left(\frac{1}{2}\sum_{i=1}^{N}(wx_i+b-y_i)^2\right)}{\partial b} = 0$$

$$\sum_{i=1}^{N}(wx_i+b-y_i)x_i = 0$$

$$\sum_{i=1}^{N}(wx_i+b-y_i) = 0$$

Chain rule of calculus

$$y = g(x)$$

$$z = f(y) = f(g(x))$$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}$$

$$z_{i} = wx_{i} + b - y_{i}$$

$$\frac{\partial z_{i}^{2}}{\partial w} = \frac{\partial z_{i}^{2}}{\partial z_{i}} \frac{\partial z_{i}}{\partial w}$$

$$= 2z_{i} \frac{\partial (wx_{i} + b - y_{i})}{\partial w}$$

$$= 2z_{i}x_{i}$$

$$\sum_{i=1}^{N} (wx_i + b - y_i)x_i = 0$$

$$\sum_{i=1}^{N} (wx_i + b - y_i) = 0$$

$$\sum_{i=1}^{N} (wx_i + b - y_i)x_i = 0$$

$$b = \frac{1}{N} \sum_{i=1}^{N} (y_i - wx_i)$$

$$\sum_{i=1}^{N} (wx_i + b - y_i)x_i = 0$$

$$b = \frac{1}{N} \sum_{i=1}^{N} (y_i - wx_i)$$

$$\sum_{i=1}^{N} (wx_i + b - y_i)x_i = 0$$

$$b = \frac{1}{N} \sum_{i=1}^{N} y_i - w \frac{1}{N} \sum_{i=1}^{N} x_i = \bar{y} - w\bar{x}$$

$$\sum_{i=1}^{N} (wx_i + b - y_i)x_i = 0$$

$$b = \overline{y} - w\overline{x}$$

$$\sum_{i=1}^{N} (wx_i + \overline{y} - w\overline{x} - y_i)x_i = 0$$

$$b = \overline{y} - w\overline{x}$$

$$\sum_{i=1}^{N} (wx_i + \bar{y} - w\bar{x} - y_i)x_i = 0$$

$$b = \bar{y} - w\bar{x}$$

$$w \sum_{i=1}^{N} (x_i - \bar{x})x_i = \sum_{i=1}^{N} (y_i - \bar{y})x_i$$

$$b = \bar{y} - w\bar{x}$$

$$w \sum_{i=1}^{N} (x_i - \bar{x}) x_i = \sum_{i=1}^{N} (y_i - \bar{y}) x_i$$

$$b = \bar{y} - w\bar{x}$$

$$w = \frac{\sum_{i=1}^{N} (y_i - \bar{y}) x_i}{\sum_{i=1}^{N} (x_i - \bar{x}) x_i}$$

$$b = \bar{y} - w\bar{x}$$

Multi-Dimension Case

• Each instance has m dimensions, a linear function f(x) is defined as

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$$

• By defining $w_0 = b$, and $x_0 = 1$, f(x) can be rewritten as

Optimization

• Learn w by minimizing the total square loss

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)^2$$

• A closed-form solution can be obtained by setting the derivative of the objective w.r.t. **w** to zero, and solving the resultant equations

$$\frac{\partial \left(\frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)^2\right)}{\partial \boldsymbol{w}} = \mathbf{0}$$

Brief Linear Algebra Review

- Linear algebra plays a crucial role in deriving solutions for various machine learning methods
- You are highly recommended to refer to Part I of the Deep Learning book at https://www.deeplearningbook.org/
- Transpose of a vector or matrix

Matrix/Vector Concepts

- Square matrix
 - If a matrix A has the same number of rows and columns,
 then it is said to be square matrix

$$\mathbf{A} (m \times m)$$

- Symmetric matrix
 - If a square matrix A satisfies $A = A^T$

Matrix Multiplication

- Matrix multiplication is associative
 - (AB)C = A(BC)
- Matrix multiplication is distributive
 - A(B+C) = AB + AC
- Matrix multiplication is NOT commutative in general
 - $-AB \neq BA$
- The identity matrix, $I(m \times m)$, is a symmetric matrix with ones on the diagonal and zeros everywhere else $I(m \times m)$
 - If **A** is a square matrix $(m \times m)$: AI = IA = A
 - If A is $(N \times m)$: AI = A
 - If A is $(m \times N)$: IA = A

2 (110 : 110)			
1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

Matrix Operations

• The transpose of \mathbf{A}^T :

$$(\mathbf{A}^T)^T = \mathbf{A}$$

• The transpose of **AB**:

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

• The transpose of $\mathbf{A}\mathbf{x}$

$$(\mathbf{A}\mathbf{x})^T = \mathbf{x}^T \mathbf{A}^T$$

• The transpose of $\mathbf{x}^T \mathbf{y}$

$$(\mathbf{x}^T \mathbf{y})^T = \mathbf{y}^T \mathbf{x}$$

• The transpose of a scalar is the scalar itself

$$a^T = a$$

Matrix Operations (cont.)

• For a square matrix \mathbf{A} $(m \times m)$, if it is invertible, then there exists a unique matrix, denoted by \mathbf{A}^{-1} , such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

- If it is not invertible, then such a matrix A^{-1} does not exist
- Non-square matrices do not have inverses by definition
- Properties of the inverse (A and B are invertible)
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$

Linear System

• Given the following system of linear equations

$$2x_1 + x_3 = 5$$

$$3x_1 - 4x_2 + 2x_3 = 4$$

$$2x_2 - 3x_3 = -3$$

$$-x_1 + 2x_2 - 5x_3 = 1$$

• They can be written in a more compact form as

Linear System (cont.)

• If **A** is square, and invertible, then we multiply both sides of the equation by A^{-1} to obtain a **unique** solution

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Linear System (cont.)

• If **A** is not invertible, solutions are **not** unique, we can find a solution by using the pseudo inverse (also known as generalized inverse) of **A** instead, denoted by **A**[†]

$$x = A^{\dagger}b$$

• Special case: when **A** is square $(k \times k)$ but not invertible

 $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}\mathbf{A}^{\dagger} = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$, where $\lambda_i \in \{0,1\}$, at least one $\lambda_i = 0$

$$\mathbf{A}\mathbf{A}^{\dagger}=\mathbf{A}^{\dagger}\mathbf{A}$$

1	0	0	0
0	1	0	0
0	0	0	0
0	0	0	0

Closed-form Solution for Linear Regression

$$\frac{\partial \left(\frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)^2\right)}{\partial \boldsymbol{w}} = \mathbf{0}$$

$$\frac{1}{2} \sum_{i=1}^{N} \frac{\partial (\boldsymbol{w} \cdot \boldsymbol{x}_{i} - y_{i})^{2}}{\partial \boldsymbol{w}} = \mathbf{0}$$

$$\sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i) \boldsymbol{x}_i = \mathbf{0}$$

$$\sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_i) \mathbf{x}_i - \sum_{i=1}^{N} y_i \mathbf{x}_i = \mathbf{0}$$

$$z_{i} = \mathbf{w} \cdot \mathbf{x}_{i} - y_{i}$$

$$\frac{\partial z_{i}^{2}}{\partial \mathbf{w}} = \frac{\partial z_{i}^{2}}{\partial z_{i}} \frac{\partial z_{i}}{\partial \mathbf{w}} = 2z_{i} \frac{\partial (\mathbf{w} \cdot \mathbf{x}_{i} - y_{i})}{\partial \mathbf{w}}$$

$$\frac{\partial (\mathbf{w} \cdot \mathbf{x}_{i} - y_{i})}{\partial \mathbf{w}} = \frac{\partial (\mathbf{w} \cdot \mathbf{x}_{i})}{\partial \mathbf{w}} - 0 = \mathbf{x}_{i}$$

The Matrix Cookbook

https://www.math.uwaterloo.ca/~hwo lkowi/matrixcookbook.pdf

$$a\mathbf{x} = \mathbf{x}a$$

$$\sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_i) \mathbf{x}_i - \sum_{i=1}^{N} y_i \mathbf{x}_i = \mathbf{0}$$

$$\sum_{i=1}^{N} \mathbf{x}_i (\mathbf{w} \cdot \mathbf{x}_i) - \sum_{i=1}^{N} y_i \mathbf{x}_i = \mathbf{0}$$

$$\mathbf{x}_i (\mathbf{w} \cdot \mathbf{x}_i) = \mathbf{x}_i (\mathbf{w}^T \mathbf{x}_i) = \mathbf{x}_i (\mathbf{x}_i^T \mathbf{w}) = (\mathbf{x}_i \mathbf{x}_i^T) \mathbf{w}$$

$$\sum_{i=1}^{N} (\mathbf{x}_i \mathbf{x}_i^T) \mathbf{w} - \sum_{i=1}^{N} y_i \mathbf{x}_i = \mathbf{0}$$

$$\mathbf{x}_i \in \mathbb{R}^{(m+1)\times 1} \text{ and } \mathbf{x}_i^T \in \mathbb{R}^{1\times (m+1)}, \text{ thus } \mathbf{x}_i \mathbf{x}_i^T \text{ is a } (m+1) \text{ by } (m+1) \text{ matrix}$$

$$\left(\sum_{i=1}^{N} (x_i x_i^T)\right) w - \sum_{i=1}^{N} y_i x_i = 0$$

$$x_i \in \mathbb{R}^{(m+1)\times 1} \text{ and } x_i^T \in \mathbb{R}^{1\times (m+1)}, \text{ thus }$$

$$x_i x_i^T \text{ is a } (m+1) \text{ by } (m+1) \text{ matrix}$$

 $\mathbf{x}_{i}^{T}\mathbf{x}_{i}$ Inner product, scalar

 $\boldsymbol{x}_{i}\boldsymbol{x}_{i}^{T}$ (m+1) by (m+1) matrix

$x_{0i}x_{0i}$	$x_{0i}x_{1i}$		$x_{0i}x_{mi}$
$x_{1i}x_{0i}$	$x_{1i}x_{1i}$		$x_{1i}x_{mi}$
	• • •	• • •	• • •

$$\left(\sum_{i=1}^{N} (\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T})\right) \boldsymbol{w} - \sum_{i=1}^{N} y_{i} \boldsymbol{x}_{i} = \boldsymbol{0}$$

$$\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$$

$$(m+1)$$
 by $(m+1)$ matrix

$x_{0i}x_{0i}$	$x_{0i}x_{1i}$	 $x_{0i}x_{mi}$
$x_{1i}x_{0i}$	$x_{1i}x_{1i}$	 $x_{1i}x_{mi}$
$x_{mi}x_{0i}$	$x_{mi}x_{1i}$	 $x_{mi}x_{mi}$

$$\sum_{i=1}^{N} (x_i x_i^T)$$

$\sum_{i=1}^{N} x_{0i} x_{0i}$	$\sum_{i=1}^{N} x_{0i} x_{1i}$		$\sum_{i=1}^{N} x_{0i} x_{mi}$
$\sum_{i=1}^{N} x_{1i} x_{0i}$	$\sum_{i=1}^{N} x_{1i} x_{1i}$:	$\sum_{i=1}^{N} x_{1i} x_{mi}$
$\sum_{i=1}^{N} x_{mi} x_{0i}$	$\sum_{i=1}^{N} x_{mi} x_{1i}$:	$\sum_{i=1}^{N} x_{mi} x_{mi}$

$$\sum_{i=1}^{N} (x_i x_i^T)$$

$\sum_{i=1}^{N} x_{0i} x_{0i}$	$\sum_{i=1}^{N} x_{0i} x_{1i}$		$\sum_{i=1}^{N} x_{0i} x_{mi}$
$\sum_{i=1}^{N} x_{1i} x_{0i}$	$\sum_{i=1}^{N} x_{1i} x_{1i}$:	$\sum_{i=1}^{N} x_{1i} x_{mi}$
$\sum_{i=1}^{N} x_{mi} x_{0i}$	$\sum_{i=1}^{N} x_{mi} x_{1i}$		$\sum_{i=1}^{N} x_{mi} x_{mi}$

$$\sum_{i=1}^{N} (\boldsymbol{x}_i \boldsymbol{x}_i^T) = \mathbf{X} \mathbf{X}^T$$

$$(m+1)$$
 by N

N by
$$(m+1)$$

X

<i>x</i> ₀₁	<i>x</i> ₀₂	 x_{0N}
<i>x</i> ₁₁	<i>x</i> ₁₂	 x_{1N}
x_{m1}	x_{m2}	 x_{mN}

v	T
x	-

<i>x</i> ₀₁	<i>x</i> ₁₁	 x_{m1}
<i>x</i> ₀₂	<i>x</i> ₁₂	 x_{m2}
x_{0N}	x_{1N}	 x_{mN}

$$XX^{T}w - Xy = 0$$

$$XX^{T}w = Xy$$

$$When XX^{T} \text{ is invertible}$$

$$(XX^{T})^{-1}XX^{T}w = (XX^{T})^{-1}Xy$$

$$w = (XX^{T})^{-1}Xy$$

What if XX^T is NOT invertible?

When XX^T is NOT Invertible

- We can use the pseudo inverse (also known as generalized inverse) of $\mathbf{X}\mathbf{X}^T$ instead, i.e., $(\mathbf{X}\mathbf{X}^T)^{\dagger}$
- In this case

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^T)^{\dagger}\mathbf{X}\mathbf{y}$$

Regularized Linear Regression

Recall structural risk minimization

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i), y_i) + \lambda \Omega(f)$$

$$\widehat{w} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_i - y_i)^2 + \frac{2}{2} ||\mathbf{w}||_2^2$$

A regularization term to control the complexity of the model

Also known as Ridge regression

Optimization

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_i - y_i)^2 + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

- Still an unconstrained optimization problem, and the objective is still convex
- A closed-form solution can be obtain by setting the derivative of the objective w.r.t. w, and solving the resultant equation

$$\frac{\partial \left(\frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2\right)}{\partial \boldsymbol{w}} = \mathbf{0}$$

Closed-form Solution

$$\frac{\partial \left(\frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2\right)}{\partial \boldsymbol{w}} = \mathbf{0}$$

$$\left(\frac{\partial \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{w} \cdot \boldsymbol{x}_i - y_i)^2}{\partial \boldsymbol{w}}\right) + \left(\frac{\partial \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2}{\partial \boldsymbol{w}}\right) = \mathbf{0}$$

$$\left(\sum_{i=1}^{N} (x_i x_i^T)\right) w - \sum_{i=1}^{N} y_i x_i + \lambda w = 0$$

$$\frac{\partial \|\mathbf{w}\|_2^2}{\partial \mathbf{w}} = \frac{\partial (\mathbf{w} \cdot \mathbf{w})}{\partial \mathbf{w}} = 2\mathbf{w}$$

The matrix cookbook

$$\left(\sum_{i=1}^{N} (x_i x_i^T)\right) w - \sum_{i=1}^{N} y_i x_i + \lambda w = 0$$

$$\mathbf{X}\mathbf{X}^T\mathbf{w} - \mathbf{X}\mathbf{y} + \lambda \mathbf{I}\mathbf{w} = \mathbf{0}$$

$$(\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})\mathbf{w} - \mathbf{X}\mathbf{y} = \mathbf{0}$$

Always invertible as long as λ is positive

$$(\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}\mathbf{y} \quad \longrightarrow \quad \mathbf{w} = (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$

Why $XX^T + \lambda I$ Invertible?

- A square matrix is invertible if and only if it does not have a zero eigenvalue
- If a symmetric matrix **A** is positive semidefinite, then all of its eigenvalues are non-negative (≥ 0)
 - When a symmetric matrix \mathbf{A} ($d \times d$) is said to be positive semidefinite iif for any non-zero column vector \mathbf{x} ($d \times 1$), $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$
- If a symmetric matrix **A** is <u>positive definite</u>, then all of its eigenvalues are positive (> 0)
 - When a symmetric matrix \mathbf{A} ($d \times d$) is said to be positive definite iif for any non-zero column vector \mathbf{x} ($d \times 1$), $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$
- A positive definite matrix is invertible (all eigenvalues > 0, and of course non-zero)

Why $XX^T + \lambda I$ Invertible? (cont.)

- XX^T is a positive semidefinite
 - Need to prove for any non-zero (m + 1)- dimensional column vector $\mathbf{z}, \mathbf{z}^T \mathbf{X} \mathbf{X}^T \mathbf{z} \ge 0$
 - Proof: Denote $y = \mathbf{X}^T \mathbf{z}$. Then $\mathbf{z}^T \mathbf{X} \mathbf{X}^T \mathbf{z} = [\mathbf{y}^T \mathbf{y}] \|\mathbf{y}\|_2^2 \ge 0$
- $\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I}$ is positive definite if $\lambda > 0$ $\|\mathbf{y}\|_2^2 = 0$ iff $\mathbf{y} = \mathbf{X}^T \mathbf{z} = \mathbf{0}$
 - Need to prove for any non-zero (m + 1)- dimensional column vector \mathbf{z} , $\mathbf{z}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}) \mathbf{z} = \mathbf{z}^T \mathbf{X} \mathbf{X}^T \mathbf{z} + \lambda \mathbf{z}^T \mathbf{z} > 0$
 - Proof: $\mathbf{z}^{T}(\mathbf{X}\mathbf{X}^{T} + \lambda \mathbf{I})\mathbf{z} = \mathbf{z}^{T}\mathbf{X}\mathbf{X}^{T}\mathbf{z} + \lambda \mathbf{z}^{T}\mathbf{z} > 0$ $\geq 0 > 0 \text{ since } \lambda > 0$ and \mathbf{z} is non-zero

Large-scale Issue

$$(m+1) \times (m+1)$$

$$\mathbf{w} = (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1}\mathbf{X}\mathbf{y}$$

- The computation complexity of computing an inverse of a $(m+1) \times (m+1)$ matrix is $O((m+1)^3)$
- When m is large, it is time consuming
- Rather than computing the inverse to obtain a closed-form solution, consider the following linear system

$$(\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})\mathbf{w} = \mathbf{X}\mathbf{y}$$
 Linear system: $\mathbf{A}\mathbf{x} = \mathbf{b}$

• We can solve it by using various numerical methods, e.g., Gaussian elimination, etc.

Large-scale Issue (cont.)

$$\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_{i} - y_{i})^{2} + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

- Alternatively, rather than trying to derive an analytical solution, we can apply numerical methods to iteratively minimize the objective, e.g., gradient descent
- Denote the objective by

Gradient Descent

Implementation using scikit-learn

- API: sklearn.linear_model: Linear Models https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
 - Classical linear regressors
 - linear_model.LinearRegression → linear regression without regularization
 - linear_model.Ridge → regularized linear regression

Classical linear regressors linear_model.LinearRegression(*[, ...]) Ordinary least squares Linear Regression. linear_model.Ridge([alpha, fit_intercept, ...]) Linear least squares with I2 regularization. linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation. linear_model.SGDRegressor([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD

Example

>>> from sklearn.linear_model import LinearRegression

```
>>> from sklearn.linear_model import Ridge
>>> import numpy as np

>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
```

```
>>> rr = Ridge(alpha=0.1)
>>> rr.fit(X, y)
>>> pred_train_rr= rr.predict(X)
>>> lr = LinearRegression()
>>> lr.fit(X, y)
>>> pred_train_lr= lr.predict(X)
```

Model training and testing

Nonlinear Regression

Kernel methods (L5)

Regression: Real-world Example

Indoor WiFi localization

Thank you!