Promega Technologies-实时荧光定量PCR: Workflow

2012

Bill SUN
Technical Sales Specialist

Promega World-Wide Connection

Promega Provides Outstanding Life Science Research Tools

实时荧光定量PCR: Workflow

gDNA

纯化

定量

RNA质量判断

- 1. RNA浓度:
 - 1 OD260=40 μg/ml
- 2. RNA纯度:

OD260/OD280 ≥1.7

3. RNA完整性:

取约1μg RNA, 在1%琼脂糖胶中电泳 典型的结果如右图所示:

RNA纯化方法

柱膜法: SV Total RNA Isolation System, Z3100

特点	Trizol法	柱膜法
RNA产量	++++	++
RNA纯度	++	++++
DNA污染	+++	-
RNA完整性	++	++++
操作时间	长	短

RQ1 RNase-Free DNase (Cat.# M6101)

裂解细胞

加入异丙醇,震荡5秒

准备吸附柱

- 1. 裂解物上柱离心;
- 2. DNA酶消化;
- 3. 清洗RNA

洗脱至DEPC水

RNA反转录——一般注意事项

- 1. 扩增前与扩增后的处理分开在不同的区域进行,并使用专用的移液器;
- 2. 戴手套操作并经常更换;
- 3. 使用带滤芯枪头;
- 4. 使用无菌、无核酸酶、低挂壁的管子;
- 5. GoScript™ Reverse Transcriptase, GoScript™ 5X Reaction Buffer 和PCR Nucleotide Mix置于冰上融化,勿加热融化;

Protocol——GoScript反转录

条件优化: 模板RNA与引物

Components	Amount
Experimental RNA (up to 5μg/reaction)	<i>X</i> μl
Oligo(dT) (0.5 μg/reaction) and/or Random Primer (0.5 μg /reaction) or gene-specific primer (20 pmol /reaction)]	<i>X</i> μl
Nuclease-Free Water	<i>X</i> μl
Final volume	5 μΙ

模板量:根据待测基因的丰度调整:1 pg – 5 μg。

引物选择:

- 1. 随机引物可以反转录总RNA; Oligo dT引物只能反转录带poly A尾的mRNA,不能反转录 真核生物的部分无poly A尾的RNA(18s等)、原核生物RNA(细菌);
- 2. 加入随机引物+Oligo dT组合可以提高反转录效率;
- 3. 基因特异的引物:与目的基因3'端配对的一条引物;
- 4. 引物浓度: Oligo dT 0.01–0.125 μg/μl,Random Primer 0.01–0.1 μg/μl, Gene-specific primer 0.5–1 μM。

条件优化: RT Mix

Components	Amount
Nuclease-Free Water (to a final volume of 15 μl)	<i>X</i> μl
GoScript™ 5X Reaction Buffer	4 μΙ
MgCl2 (final concentration 2.5 mM)	2 μΙ
PCR Nucleotide Mix (final concentration 0.5 mM each dNTP)	1 μΙ
RNasin® Ribonuclease Inhibitor (final concentration 1 U/μl) (optional)	0.5 μΙ
GoScript™ Reverse Transcriptase	1 μΙ
Final volume	15 μΙ

镁离子浓度:

- 1. GoScript™ 5X Reaction Buffer不含镁离子,需要加入试剂盒中提供的25 mM 镁离子。
- 2. 绝大多数的反转录反应,推荐镁离子终浓度2.5 mM, 即2 µl/20 µl体系。
- 3. 优化镁离子浓度时,建议每0.25 mM为一个梯度,在1.5 mM 5 mM范围内优化。

Promega

条件优化: RT程序

变性:

- 1. 推荐70 ℃,在65 ℃-75 ℃范围内优化;
- 2. 复杂二级结构RNA升高温度以打破二级结构;长片段RNA降低温度保证RNA质量。
- 3. "warm-start" cDNA合成:复杂二级结构RNA的延伸,可在70 ℃变性后直接加入RT Mix进行42 ℃延伸。
- 4. 低灵敏度可以接受的话,取消变性阶段,直接将RNA模板、引物、与RT Mix混合后延伸。

退火:延长退火时间至>5 min可以提高检测灵敏度。

延伸:

- 1. 延伸时间可以缩短至5 min;
- 2. 绝大部分cDNA合成在15 min内可以完成;
- 3. 长于12 kb的RNA,可降低延伸温度至42 ℃-37 ℃;
- 4. 复杂二级结构RNA,延伸温度升高至42 ℃-55 ℃;
- 5. 延长延伸时间>1 hr,可提高cDNA的产量;
- 6. 将延伸条件(42 ℃,60 min)改为两步可提高反转录效率(如改成37 ℃ 1 min、50 ℃ 1 sec、40 cycle)。

GoScript™ Reverse Transcription System

最适温度

7.5Kb transcript RNA: oligo d(T) cDNA

延伸温度

37 °C **42** °C

GoScript ™Reverse Transcriptase 最适延伸温度37 ℃-42 ℃

GoScript[™] Reverse Transcription System

复杂二级结构RNA: 50℃孵育

普通PCR,产物跑胶分析 Controls:

Nocturnin

B2M Kanamycin

Loading Order: 1-NTC, 2-noRT control, 3-GoScript, 4-Company A

Real Time PCR定量

Sample	Nocturnin	B2M
GoScript	21.8±0.4	16.7 ± 0.3
Company A	24.1 ± 0.5	16.6 ± 0.4

复杂结构RNA,可调整孵育温度至50 ℃-55 ℃

GoScript[™] Reverse Transcription System

抵抗抑制剂

		Ethanol (%)					
RT	0	0.1	0.5	1.0	5	10	20
GoScript	+++	+++	+++	+++	+++	++	++
Company A	++	++	++	++	++	++	+

		Hematin (μM)					
RT	0	1	5	10	20	40	60
GoScript	+++	+++	++	+	+	-	-
Company A	++	++	+	+	+	-	-

低浓度抑制剂存在时,不影响反转录效率!

GoScript™ Reverse Transcription System

8.9Kb 模板

长达8.9Kb的mRNA也能高 效反转录

GoScript[™] Reverse Transcription System

Promega

灵敏度: 扩增中等丰度基因 (Lamin A)

高灵敏度,可对单细胞内的基因表达进行定量

实时荧光定量PCR: Workflow

实时荧光定量PCR的背景及重要性

End-Point vs. Real-Time PCR(终点法与实时荧光定量PCR)

Leading Real-Time PCR Chemistries

Promega

实时荧光定量PCR原理

探针法

荧光基团标记的探针

染料法

结合DNA双链的染料

探针法原理——FRET (Fluorescence Resonance

Energy Transfer, 荧光共振能量转移)

染料法原理——与双链DNA特异性结合的荧光染料

Real Time PCR: 探针法 vs 染料法

特点	探针法	染料法
多重PCR	++	-
灵敏度	+++	+++
特异性	++++	++
溶解曲线分析	-	++++
实验设计简易	++	++++
Price	\$\$\$	\$

Standard curve

Confidential and Proprietary. Not for Further Disclosure

Real Time PCR数据分析: 扩增曲线

Amplification curve (扩增曲线)

Rn: 一个反应管经 n次热循环的 荧光经参比荧光校正后的强度。

Baseline: 基线

ΔRn: Rn减去基线。

Threshold: 荧光(Rn)超过本底达到可检测水平时的临界数值。

C_T: threshold cycle,阈值对应的

循环数

Real Time PCR数据分析:标准曲线

Standard curve

Slope(斜率): relates to efficiency

Intercept: C_T for 1 ng template

R²: linearity(线性度)

Efficiency: PCR efficiency (PCR扩增效率)

• 100% efficient: slope = -3.3

• Expect -3.3 \pm 0.3

Real Time PCR数据分析:溶解曲线

T_m:: Melting Temperature (解链温度), PCR双链产物的退火温度。

实时荧光定量PCR-质量控制

引物质量的判断(预实验时针对靶基因设计2-3对引物,比较下列参数):

特异性:熔解曲线要保证是单峰,产物跑胶验证分子量;

灵敏度: 同一个样本的检测, Ct值越小越好;

扩增效率: 越接近100%越好,通常在90%-110%之间

Confidential and Proprietary, Not for Further Disclosure

绝对定量 vs 相对定量

绝对定量:标准曲线.

- 1. 构建含目的片段DNA的标准品模板
- 2. 测定纯化模板的 A₂₆₀, 使用下面的 公式计算模板每微升的绝对拷贝数:

DNA (copy/
$$\mu$$
L) =
$$\frac{6.02 \times 10^{23} (copy/mol) \times DNA \text{ concentration } (\mu g / \mu L)}{DNA \text{ length (bp)} \times 660 \text{ (daltons/bp)}}$$

绝对定量 vs 相对定量

3. 将标准品模板进行倍比稀释后进行定量PCR,建立标准曲线,根据样品的 C_T 值在标准曲线中计算出对应的拷贝数。

绝对定量 vs 相对定量

处理组

相对定量: 传统方法

GOI **GAPDH**

对照组

测灰度	对照组	处理组	
GOI	10	4.5	
GAPDH	8	9	
GOI/GAPDH	1.125	0.5	
处理组/对照组	1	0.44	

绝对定量 vs 相对定量

相对定量: 2-ΔΔСΤ.

GoTaq [®] qPCR	内参基因 GAPDH	目的基因 对照组(C)	目的基因(GOI) 待测组(X1)	目的基因(GOI) 待测组(X2)
C_T	21.10	33.33	29.56	25.93
ΔC_T		12.23	8.46	4.83
$\Delta\Delta C_{T}$		0	-3.77	-7.40
$2^{-\Delta\Delta C}_{T}$		1	13.64	168.9

Livak et al., 2001, METHODS, 25: 402-408

Cat No: A6001, A6002

qPCR检测试剂

2x Master Mix 成分:

- dNTPs;
- MgCl₂;
- 专利的缓冲液配方: 在有抑制剂存在或难扩增的PCR反应仍有优异表现;
- GoTaq® Hot Start Polymerase (热启动酶):提高反应特异性;
- BRYT Green® dye(专利染料): 荧光信号更强,C_T值出现更早;
- CXR passive reference dye(参比荧光染料)。

BRYT Green® dye

DNA结合染料:不饱和式结合 vs 饱和式结合

不饱和式结合: SYBR Green I

*高浓度时对PCR反 应有抑制作用 饱和式结合: BRYT Green® dye

*对PCR反应无抑制作用,可与双链DNA呈饱和式结合,荧光更亮,灵敏度更高。

GoTaq® qPCR Master Mix (Cat No. A6001)

以人类基因组DNA为模板扩增GAPDH

GoTaq® qPCR Master Mix (Promega) 与其他公司SYBR green master mix相比产生的荧光更强,C_T值出现的更早!

GoTaq® Hot Start Polymerase (热启动酶)

No Hot Start (24 hrs @ 22 ℃)

Hot Start (0 hrs @ 22°C)

Hot Start (24 hrs @ 22 ℃)

GoTag® qPCR Master Mix的热启动特性表现优异!

GoTaq® Hot Start Polymerase (热启动酶)

酶的热稳定性

其他公司的SYBR green master mix 与Promega master mixes 同时加热到96°C, 至图示时间时取出进行Real Time PCR。

GoTaq® qPCR Master Mix支持更多的循环数目(45-50个循环),也与需要较长激活时间(96 ℃,10 min)的热循环程序兼容!

专利的缓冲液配方

Amplification of Transforming Growth Factor Beta

对难扩增的反应有优异表现!

PCR程序

ABI 7500 FAST Default Cycling Parameters

Activation: 95°C for 20 sec

40 cycles:

Denaturation: 95°C for 3 sec Anneal/Extend: 60°C for 30 sec

兼容快速PCR反应!

PCR: 50µl amplification of 30ng human gDNA using alpha-1 antitrypsin primer pair, 360bp amplicon.

Promega

Company A

8μl of product visualized vs Bench Top 100bp DNA Ladder: 2% Agarose/TAE/EtBr

与终点法兼容,可以进一步将PCR产物跑胶来验证产物分子量!

与多种Real Time PCR仪兼容

Applied Bio

7000 7300 7700

7700 7900HT StepOne StepOnePlus GeneAmp 5700 需要额外添加CXR reference dye. 将100X CXR Reference Dye 添 加入反应体系中至

GoTaq qPCR Master Mix直接使用

Roche

Bio-Rad

Applied Bio 7500

LightCycler 1.5

iCycler iQ5

<u>Stratagene</u>

7500Fast

LightCycler 2.0

MyCycler

Mx3000p

LightCycler 480

Chromo4

Mx3500p

GoTaq® qPCR Master 适用于任何可检测SYBR® Green I 或 FAM™ 染料的仪器。

GoTaq® 2-Step RT-qPCR System (A6010)

- 以两个性能卓越的技术为基础,建立 可靠的、整体的基因定量解决方案
- 试剂盒组合,表现更优异,节省实验经费
- 通用的操作步骤
- 组分独立,反应条件灵活掌控
- 出厂前验证,质量有保证

GoScript™ Reverse
Transcription System
50 rxn

GoTaq[®] qPCR Master Mix 200 rxn

GoTaq® 1-Step RT-qPCR System (A6020)

- GoTaq® qPCR Master Mix, 2X
- ➢ GoScript™ RT Mix for 1-Step RT-qPCR, 50X
- > CXR Reference Dye, 30 μM
- \triangleright MgCl₂, 25mM
- Nuclease-Free Water

PCR程序:标准、快速

反应体系灵活,操作简便

适用于各种Real Time PCR仪

qRT-PCR 一步法vs 两步法

一步法的优点:方便,适用于大量样品的高通量检测

两步法的优点:灵活,适用于单个样品中检测多个基因

参考文献

重点推荐:

Clinical Chemistry 55:4 611–622 (2009) **Special Report**

The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin, 1* Vladimir Benes, 2 Jeremy A. Garson, 3,4 Jan Hellemans, 5 Jim Huggett, 6 Mikael Kubista, 7,8 Reinhold Mueller, 9 Tania Nolan, 10 Michael W. Pfaffl, 11 Gregory L. Shipley, 12 Jo Vandesompele, 5 and Carl T. Wittwer 13,14

Any Questions?

灵敏度更高

适用范围更广

A6001, A6002;

A6010;

A6020.

"Brighter Dye, Brighter Choice"

