Elements of Econometrics.

Lecture 21.

Testing for Non-Stationarity.

FCS, 2022-2023

Regressions with Nonstationary Data

Monte Carlo experiment: X(0)=Y(0)=0; $X(t)=X(t-1)+\varepsilon_t$; $Y(t)=Y(t-1)+\mu_t$ (ε_t and μ_t are white noises with $\sigma^2_{\varepsilon}=\sigma^2_{\mu}=1$), T=100.

Sample 1:

Sample 2:

Spurious Regression Example

Dependent Variable: Y Method: Least Squares

Sample 1:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	5.634	0.227	24.822	0.0000
X	0.750	0.042	17.835	0.0000
R-squared	0.764	Mean depende	nt var 5.70)2
S.D. dependent var	4.652	S.E. of regress	ion 2.25	59
Sum squared resid	504.71	F-statistic	318.	.08
Durbin-Watson stat	0.284	Prob(F-statistic	0.00	000

Sample 2:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.052	0.324	3.248	0.0016
X	-0.158	0.136	-1.160	0.2488
R-squared	0.014	Mean depende	ent var 0.884	
S.D. dependent var	2.904	S.E. of regress	ion 2.899	•
Sum squared resid	823.6	F-statistic	1.346	
Durbin-Watson stat	0.136	Prob(F-statistic	0.249	

Pay attention to the Durbin-Watson Statistic: it indicates incorrect specification. Disturbance term is a Random Walk $(u_t=Y_t-\beta_1-0^*X_t)$.

STATIONARY AND NONSTATIONARY SERIES

X(0)=0; u=N(0;1) – the same for all series. Drift=0.5.

DETECTING NONSTATIONARITY: AUTOCORRELATION FUNCTION

$$Y_{t} = \theta_{0} + \theta_{1}Y_{t-1} + \theta_{2}Y_{t-2} + \dots + \theta_{p}Y_{t-p} + \phi_{1}\varepsilon_{t} + \phi_{2}\varepsilon_{t-1} + \dots + \phi_{q+1}\varepsilon_{t-q}$$

Autocorrelation function

$$\rho_{k} = \frac{E((X_{t} - \mu_{X})(X_{t+k} - \mu_{X}))}{\sqrt{E((X_{t} - \mu_{X})^{2})E((X_{t+k} - \mu_{X})^{2})}} \quad \text{for } k = 1, \dots$$

Autocorrelation function of an AR(1) process $X_t = \beta_2 X_{t-1} + \varepsilon_t$ $\rho_k = \beta_2^k$

Autocorrelation function of an MA(1) process $X_t = \varepsilon_t + \alpha_2 \varepsilon_{t-1}$ $\rho_1 = \frac{\alpha_2}{1 + \alpha_2^2}$

For example, the autocorrelation function for an AR(1) process $X_t = \beta_2 X_{t-1} + \varepsilon_t$ is $\rho_k = \beta_2^k$ if $\beta_2 < 1$ and the process is stationary. For MA(1) $\rho_k = 0$ for all k>1.

DETECTING NONSTATIONARITY: CORRELOGRAM

The figure shows the correlogram for the AR(1) process with β_2 = 0.8.

DETECTING NONSTATIONARITY: CORRELOGRAM

Autocorrelation function $\rho_k = \frac{\mathrm{E}((X_t - \mu_X)(X_{t+k} - \mu_X))}{\sqrt{\mathrm{E}((X_t - \mu_X)^2)\mathrm{E}((X_{t+k} - \mu_X)^2)}} \text{ for } k = 1, \dots$

AR(1) process with $\beta_2 = 0.6$

$$X_{t+i} = \beta_2 X_{t+i-1} + \varepsilon_{t+i}$$

$$\rho_k = \beta_2^k = 0.6^k$$

Random Walk

$$X_{t+i} = X_{t+i-1} + \varepsilon_{t+i}$$

$$\rho_k = \sqrt{t/(t+k)}$$

$$\rho_k = \sqrt{1/(1+k)} \quad (if \ t = 1)$$

Correlograms of an AR(1) process with β_2 = 0.6 and of the Random Walk for k=1,...,20.

GRAPHICAL TECHNIQUES FOR DETECTING NONSTATIONARITY

$$X_{t} = X_{t-1} + \varepsilon_{t}$$

Correlogram of a random walk (for k=51,...,200; t=1 (left) and t=50 (right))

In the case of nonstationary processes, the theoretical autocorrelation coefficients are not defined (since there may be no unique expectations and pop. variances) but for some processes one may be able to obtain an expression for $E(r_k)$, the expected value of the sample autocorrelation coefficients.

Partial Autocorrelations

Partial Autocorrelations (PAC)

The partial autocorrelation at lag k is the regression coefficient on Y_{t-k} when Y_t is regressed on a constant, Y_{t-1} , Y_{t-2} , ..., Y_{t-k} . This is a partial correlation since it measures the correlation of values that are k periods apart after removing the correlation from the intervening lags.

If the pattern of autocorrelation is one that can be captured by an autoregression of order less than k, then the partial autocorrelation at lag k will be close to zero.

Autocorrelation and Partial Autocorrelation Coefficients for Log(DPI), USA, 1059-2003 (EViews)

Sample: 1959 2003		Includ	Included observations: 45			
k	AC	PAC	Q-Stat	Prob		
1	0.929	0.929	41.474	0.000		
2	0.856	-0.051	77.497	0.000		
3	0.782	-0.042	108.31	0.000		
4	0.709	-0.038	134.25	0.000		
5	0.638	-0.029	155.77	0.000		
6	0.570	-0.016	173.40	0.000		
7	0.508	-0.006	187.76	0.000		
8	0.449	-0.020	199.26	0.000		
9	0.391	-0.029	208.24	0.000		
10	0.336	-0.026	215.05	0.000		
11	0.281	-0.034	219.98	0.000		
12	0.227	-0.039	223.29	0.000		
13	0.176	-0.022	225.35	0.000		
14	0.126	-0.038	226.43	0.000		
15	0.079	-0.016	226.87	0.000		
16	0.031	-0.061	226.94	0.000		
17	-0.016	-0.035	226.96	0.000		
18	-0.062	-0.038	227.26	0.000		
19	-0.105	-0.031	228.15	0.000		
20	-0.144	-0.023	229.91	0.000		

AC is Autocorrelation coefficient; PAC is Partial Autocorrelation coefficient. The Q-statistic at lag k is a test statistic for the null hypothesis that there is no autocorrelation up to order k (asymptotic χ^2 distribution, df=k)

GRAPHICAL DETECTION OF NONSTATIONARITY

First difference of *LGDPI*

This figure shows the differenced series, which appears to be stationary around a mean annual growth rate of between 2 and 3 percent.

FORMAL TESTS FOR NONSTATIONARITY

General model
$$Y_t = \beta_1 + \beta_2 Y_{t-1} + \delta t + \mathcal{E}_t$$
 Transformed:
$$Y_{t^-} Y_{t-1} = b_1 + (b_2 - 1) Y_{t-1} + dt$$
 Alternatives
$$-1 < \beta_2 < 1 \quad \text{or} \quad \beta_2 = 1$$

$$\delta = 0 \quad \text{or} \quad \delta \neq 0$$

Case (a): Stationary AR(1)
$$\beta_1 = * \qquad |\beta_2| < 1 \qquad \delta = 0$$
Case (b): Random Walk
$$\beta_1 = 0 \qquad \beta_2 = 1 \qquad \delta = 0$$
Case (c): Random Walk with Drift
$$\beta_1 \neq 0 \qquad \beta_2 = 1 \qquad \delta = 0$$
Case (d): Stationary AR(1) around Trend
$$\beta_1 = * \qquad |\beta_2| < 1 \qquad \delta \neq 0$$
Case (e): Random Walk around Trend
$$\beta_1 = * \qquad |\beta_2| < 1 \qquad \delta \neq 0$$

There are five cases. β_1 = * means β_1 is unrestricted. Case (e) will be excluded. Cases (a) and (b) do not include time trend, cases (c) and (d) include trend. Availability of trend will be used to distinguish between these cases.

TESTS OF NONSTATIONARITY: INTRODUCTION

General model
$$Y_t = \beta_1 + \beta_2 Y_{t-1} + \delta t + \varepsilon_t$$
 Alternatives
$$-1 < \beta_2 < 1 \ \text{or} \ \beta_2 = 1$$

$$\delta = 0 \ \text{or} \ \delta \neq 0$$

Case (e): Random Walk around Trend

$$\beta_1 = * \qquad \beta_2 = 1 \qquad \delta \neq 0$$

Excluded, as well as $|\beta_2| > 1$.

$$Y_{t} = \beta_{1} + Y_{t-1} + \delta t + \varepsilon_{t}$$

$$Y_{t} = 2\beta_{1} + 2\delta t - \delta + Y_{t-2} + \varepsilon_{t-1} + \varepsilon_{t}$$

$$Y_{t} = t\beta_{1} + \frac{t(t+1)}{2}\delta + Y_{0} + \sum_{s=1}^{t} \varepsilon_{s}$$

Lagging and substituting t times, we can express Y_t in terms of the initial Y_0 , the innovations, and a convex quadratic expression for t. It is not reasonable to suppose that any time series process can be characterized as a convex quadratic function of time.

TESTS OF NONSTATIONARITY: UNTRENDED DATA. DICKEY-FULLER TESTS.

 H_0 : β_2 = 1 and H_1 : β_2 < 1. The statistic $T(b_2$ -1) has a limiting distribution under H_0 . The figure shows the rejection regions for one-sided 5 percent (limit –12.1) and 1 percent (limit –16.6) tests for T = 25. The Table A.7 is available in Dougherty, Edition 5.

TESTS OF NONSTATIONARITY: UNTRENDED DATA

The second test proposed by Dickey and Fuller uses the conventional OLS t statistic for H_0 : $\beta_2 = 1$. The H_1 : $\beta_2 < 1$ (one-sided test). The distribution of the t statistic, established by simulation, is nonstandard (the Table A.6 is available in Dougherty, Ed. 5.

TESTS OF NONSTATIONARITY: UNTRENDED DATA

F test

$$Y_{t} = Y_{t-1} + \varepsilon_{t}$$

$$\hat{Y}_{t} = b_{1} + b_{2}Y_{t-1}$$

$$H_0$$
: $\beta_1 = 0$ and $\beta_2 = 1$
 H_1 :unrestricted model

The third Dickey–Fuller test (F-test) exploits the fact that, under H_0 , the model is a restricted version of that under H_1 with two restrictions: $\beta_2 = 1$ and, also, $\beta_1 = 0$. The OLS F statistic is constructed in the usual way, but its distribution is not standard (the Table A.8 is available in Dougherty, Ed.5).

TESTS OF NONSTATIONARITY POWER, UNTRENDED DATA

The power of the test with $T(b_2 - 1)$ is greatest for all values of $\beta_2 < 1$. The t test is next, and the F is test least powerful (since being two-sided while the first two are one-sided).

TESTS OF NONSTATIONARITY: TRENDED DATA

General model
$$Y_t = \beta_1 + \beta_2 Y_{t-1} + \delta t + \varepsilon_t$$
 Alternatives
$$-1 < \beta_2 < 1 \text{ or } \beta_2 = 1$$

$$\delta = 0 \text{ or } \delta \neq 0$$

$$\text{Case (c)} \qquad \beta_1 \neq 0 \qquad \beta_2 = 1 \qquad \delta = 0$$

$$Y_t = \beta_1 + Y_{t-1} + \varepsilon_t$$

$$\text{Case (d)} \qquad \beta_1 = * \qquad |\beta_2| < 1 \qquad \delta \neq 0$$

$$Y_t = \beta_1 + \beta_2 Y_{t-1} + \delta t + \varepsilon_t$$

Trended data: random walk with drift (Case (c)), or stationary process around deterministic trend (Case (d))? We fit the general model (d), and test H_0 : $\beta_2 = 1$ using as a test statistic either $T(b_2-1)$ or the t statistic for b_2 .

F test: we test the composite hypothesis H_0 : $\beta_2 = 1$, $\delta = 0$.

Critical values for the tests are given in Dougherty, Ed.5, Tables A.6-A.8.

TESTS OF NONSTATIONARITY: UNTRENDED DATA

Augmented Dickey–Fuller tests

Second-order autoregressive process

Necessary condition for stationarity: $|\beta_2 + \beta_3| < 1$

$$Y_t = \beta_1 + \beta_2 Y_{t-1} + \beta_3 Y_{t-2} + \varepsilon_t$$

$$\begin{split} Y_{t} - Y_{t-1} &= \beta_{1} + \beta_{2} Y_{t-1} - Y_{t-1} + \beta_{3} Y_{t-1} - \beta_{3} Y_{t-1} + \beta_{3} Y_{t-2} + \varepsilon_{t} \\ &= \beta_{1} + (\beta_{2} + \beta_{3} - 1) Y_{t-1} - \beta_{3} (Y_{t-1} - Y_{t-2}) + \varepsilon_{t} \\ \Delta Y_{t} &= \beta_{1} + (\beta_{2} + \beta_{3} - 1) Y_{t-1} - \beta_{3} \Delta Y_{t-1} + \varepsilon_{t} \\ &= \beta_{1} + (\beta_{2}^{*} - 1) Y_{t-1} + \beta_{3}^{*} \Delta Y_{t-1} + \varepsilon_{t} \end{split}$$

$$\beta_2^* = \beta_2 + \beta_3$$
 $\beta_3^* = -\beta_3$ $\Delta Y_{t-1} = Y_{t-1} - Y_{t-2}$

Under the null hypothesis H_0 : $\beta_2^* = 1$, the process is nonstationary. H_0 is tested as if the coefficient of Y_{t-1} is significantly different from 0. Under the null hypothesis, the estimator of β_2^* is superconsistent and the test statistics $T(b_2^* - 1)$, t, and F have the same distributions, and therefore critical values, as before.

TESTS OF NONSTATIONARITY: UNTRENDED DATA

Augmented Dickey–Fuller tests

General autoregressive process

$$Y_{t} = \beta_{1} + \beta_{2}Y_{t-1} + ... + \beta_{p+1}Y_{t-p} + \varepsilon_{t}$$

Necessary condition for stationarity:
$$\left|\beta_2 + \beta_3 + ... + \beta_{p+1}\right| < 1$$

$$\Delta Y_{t} = \beta_{1} + (\beta_{2}^{*} - 1)Y_{t-1} + \beta_{3}^{*} \Delta Y_{t-1} + ... + \beta_{p+1}^{*} \Delta Y_{t-p} + \varepsilon_{t}$$

$$\beta_2^* = \beta_2 + ... + \beta_{p+1}$$

Under the null hypothesis of non-explosive nonstationarity, the test statistics $T(b_2^* - 1)$, t, and F asymptotically have the same distributions and critical values as before.

In practice, the *t* test is particularly popular and is generally known as the augmented Dickey–Fuller (ADF) test.

ADF TESTS: DETERMINING NUMBER OF LAGS

Augmented Dickey–Fuller tests

How to determine p? Two main approaches.

- 1) The model is fitted with some $p = p_{\text{max}}$ and t test is performed on the coefficient of $\Delta Y_{t-p\text{max}}$. If not significant, dropped. Then two last terms, F test, if not significant, dropped, etc.
- 2) Information Criteria, Schwarz (SIC) or Akaike (AIC), minimum of:

$$SIC = \log\left(\frac{RSS}{T}\right) + \frac{k\log T}{T} = \log\left(\frac{RSS}{T}\right) + \frac{(p+2)\log T}{T}$$

$$AIC = \log\left(\frac{RSS}{T}\right) + \frac{2k}{T}$$

ADF TESTS OF NONSTATIONARITY, AN EXAMPLE: THE RuR/GBP EXCHANGE RATE, 10.01.2017-01.01.2021

The RuR/GBP (left) looks like random walk with or without drift, while D_RuR/GBP (right) could be stationary.

THE RuR/GBP EXCHANGE RATE, 10.01.2017-01.01.2021: Correlograms in Eviews for the levels and 1st differences.

Date: 02/14/21 Time: 17:41 Sample: 1/10/2017 1/01/2021 Included observations: 984

Date: 02/14/21 Time: 17:43 Sample: 1/10/2017 1/01/2021 Included observations: 969

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.979	0.979	946.64	0.000
	—	2	0.968	0.228	1873.2	0.000
1	ф	3	0.958	0.065	2780.9	0.000
	 	4	0.950	0.086	3674.9	0.000
1		5	0.942	0.020	4554.1	0.000
	ıþ	6	0.935	0.035	5420.7	0.000
	•	7	0.926	-0.015	6272.3	0.000
1	•	8	0.918	0.009	7110.5	0.000
	ф <u> </u>	9	0.912	0.048	7938.2	0.000
	ı þ ı	10	0.907	0.041	8757.1	0.000
	ı þ i	11	0.901	0.012	9566.4	0.000
	•	12	0.894	-0.017	10364.	0.000
	ı þ i	13	0.888	-0.002	11152.	0.000
I	ı þ i	14	0.882	0.016	11929.	0.000
1	ψ.	15	0.879	0.095	12703.	0.000
1	I II	16	0.874	-0.023	13469.	0.000
1	.∳1	17	0.870	0.018	14229.	0.000
	ψ	18	0.867	0.048	14983.	0.000
1	d i	19		-0.030	15730.	0.000
	- (1)	20	0.857	-0.016	16469.	0.000
	d ı	21	0.851	-0.027	17199.	0.000
	ı þ i	22	0.846	-0.004	17920.	0.000
	q ı	23		-0.057	18629.	0.000
1	d ı	24	0.831	-0.030	19326.	0.000
1	□ i	25	0.819	-0.115	20006.	0.000
		26	0.811	0.005	20672.	0.000
1	ψ	27	0.804	0.044	21328.	0.000
	.∳.	28	0.798	0.024	21975.	0.000
· -		29	0.791	-0.007	22611.	0.000
1		30	0.784	-0.007	23237.	0.000
	d i	31		-0.060	23849.	0.000
·		32	0.768	0.024	24450.	0.000
	ψ	33	0.763	0.027	25044.	0.000
	di	34		-0.027	25628.	0.000
·	ı þ i	35	0.749	0.004	26202.	0.000
1	d :	36	0.742	-0.026	26765.	0.000

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	ı þ ı	1 0.034	0.034	1.1490	0.284
ď,	į di	2 -0.060	-0.061	4.6053	0.100
di,	į di	3 -0.061	-0.057	8.2555	0.041
		4 0.004	0.004	8.2675	0.082
/	1	5 0.067	0.060	12.612	0.027
d i	d i	6 -0.048	-0.056	14.848	0.021
ψ.	 	7 -0.015	-0.004	15.064	0.035
Q i	ļ di	8 -0.057	-0.056	18.265	0.019
	 	9 0.016	0.013	18.526	0.030
ψ.	į (h	10 -0.017		18.826	0.043
q.	ļ (h	11 -0.045		20.789	0.036
		12 -0.006		20.821	0.053
	 	!	-0.006	20.847	0.076
Q i	ļ (ļ	14 -0.029		21.677	0.085
ı þ i	ļ Ņ	15 0.040		23.244	0.079
•	ļ (ļ	16 -0.023		23.762	0.095
	ļ	17 0.003		23.771	0.126
· P	ļ P	18 0.071	0.070	28.691	0.052
	!	19 0.001	-0.007	28.693	0.071
	ļ <u> </u>	20 0.010		28.797	0.092
	! ' ! !	21 0.013		28.971	0.115
	!	22 0.011	0.002	29.099	0.142
Į.	ļ P	23 0.052		31.794	0.105
•	ļ "	24 -0.009		31.869	0.130
<u></u> 0'	<u> </u>	25 -0.034		33.045	0.130
<u>q</u> .	ļ Ψ !	26 -0.076		38.740	0.052
ı ğ ı	│	27 0.034		39.870	0.053
.	ļ <u>ģ</u>	28 -0.020		40.268	0.063
<u> </u>	<u> </u>	29 -0.052		43.021	0.045
()	(30 -0.031	-0.028	43.996	0.048
9	ļ <u>"</u>	31 -0.030		44.893	0.051
	ļ 9	32 -0.019		45.252	0.060
! !		33 0.001	-0.004	45.252	0.076
		34 0.015		45.476	0.090
	ļ <u>"</u>	35 -0.006		45.513	0.110
ΨΨ	•	36 0.005	-0.009	45.536	0.133

ADF TESTS OF NONSTATIONARITY, AN EXAMPLE: THE RuR/GBP EXCHANGE RATE, 10.01.2017-01.01.2021

Null Hypothesis: RUR_GBP has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=21)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.032856 -3.967547 -3.414458 -3.129363	0.5820

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RUR_GBP)

Method: Least Squares

Date: 02/14/21 Time: 17:02

Sample (adjusted): 1/11/2017 1/01/2021

Included observations: 969 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RUR_GBP(-1)	-0.010181	0.005008	-2.032856	0.0423
C	0.756539	0.368665	2.052106	0.0404
@TREND("1/10/2017")	0.000241	0.000128	1.884975	0.0597

RuR/GBP is found to be nonstationary (random walk) since the null hypothesis of unit root is not rejected.

ADF TESTS OF NONSTATIONARITY, AN EXAMPLE: THE RuR/GBP EXCHANGE RATE, 10.01.2017-01.01.2021

Null Hypothesis: D(RUR_GBP) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=21)

	t-Statistic	Prob.*
% level % level	-29.73858 -3.967697 -3.414531	0.0000
	st statistic % level % level 0% level	st statistic -29.73858 % level -3.967697 % level -3.414531

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RUR_GBP,2)

Method: Least Squares

Date: 02/14/21 Time: 17:11

Sample (adjusted): 1/12/2017 1/01/2021

Included observations: 954 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(RUR_GBP(-1))	-0.965065	0.032452	-29.73858	0.0000
C	0.010068	0.043299	0.232522	0.8162
@TREND("1/10/2017")	4.00E-05	7.50E-05	0.532883	0.5942

D_RuR/GBP is found to be stationary since the null hypothesis of unit root is rejected.

ADF TESTS OF NONSTATIONARITY, AN EXAMPLE: THE RuR/GBP EXCHANGE RATE, 10.01.2017-01.01.2021.

Null Hypothesis: D(RUR_GBP) has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=21)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-29.70524 -2.567388 -1.941155 -1.616476	0.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(RUR_GBP,2)

Method: Least Squares

Date: 02/14/21 Time: 17:20

Sample (adjusted): 1/12/2017 1/01/2021

Included observations: 954 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(RUR_GBP(-1))	-0.963449	0.032434	-29.70524	0.0000

No trend, no intercept. D_RuR/GBP is found to be stationary since the null hypothesis of unit root is rejected.