Definition. (Norm)

For a vector space X over a subfield of complex numbers, if a map $\|.\|: X \mapsto \mathbb{R}$ satisfies the following so-called axioms of norm:

- (i) $||x|| \ge 0, \forall x \in X$, and $||x|| = 0 \Leftrightarrow x = \overrightarrow{0} \in X$ (positive definite)
- (ii) $\|\alpha x\| = |\alpha| . \|x\|, \forall \alpha \in K, \forall x \in X$ (absolutely homogenous)
- (iii) $||x + y|| \le ||x|| + ||y||$ (triangle inequality)

Then ||.|| is called a **norm** on X. A vector space on which a norm is defined is called a **normed vector space**(线性赋范空间).

relationship between metric and norm

Proposition. For a normed vector space (X, ||.||), a map $d: X \times X \mapsto \mathbb{R}$ defined as d(x, y) = ||x - y|| is a metric on X.

Theorem. For a vector space X over the number field K, a metric d on X is a norm(satisfies the axioms of norm) iff d satisfies the following properties:

$$d(x - y,0) = d(x,y), \forall x, y \in X$$

$$d(\alpha x,0) = |\alpha| d(x,0), \forall x \in X, \forall \alpha \in K$$

Lemma. (Young's inequality)

If
$$1 < p, q < +\infty$$
 and $\frac{1}{p} + \frac{1}{q} = 1$, then for any $a, b \ge 0$,
$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab$$

It can be proved by considering the monotonicity of the function, by regarding a as a variable and b a constant.

Corollary. If $f, g \in L^p(E)$, then $fg \in L^p(E)$.

Lemma. (Hölder's inequality)

If
$$1 < p, q < +\infty$$
 and $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(E)$, $g \in L^q(E)$, then

$$\int_{E} |fg| \, d\mu \le ||f||_{L^{p}} ||g||_{L^{q}}$$

By integration or sum of inequalities obtained through Young's.

E.g. when the measure space is $(\mathbb{N}, \sigma(\mathbb{N}), \mu)$ where μ is the counting measure, we obtain that for any $\{a_n\} \in l^p$, $\{b_n\} \in l^q$,

$$\sum_{i=1}^{\infty} |a_i b_i| \le \left(\sum_{i=1}^{\infty} |a_i|^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} |b_i|^q\right)^{\frac{1}{q}} = \|\{a_n\}\|_{l^p} \|\{b_n\}\|_{l^q}$$

Theorem. (Minkowski's inequality)

For $p \ge 1$,

 $f,g \in L^p(E)$ then

$$||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$$

Convergence in Normed Vector Space

Definition.

Suppose (X, ||.||) is a normed vector space, and $\{x_n \mid n \in \mathbb{N}\}$ a sequence of points in it. Then $\{x_n\}$ is said to converge in x_0 iff $\lim_{n \to \infty} ||x_n - x_0|| = 0$, denoted as $x_n \stackrel{\|.\|}{\to} x_0$ or simply $x_n \to x_0$.

some properties:

1. $x_n \to x_0$ and $x_n \to y_0$ implies $x_0 = y_0$.

2. $x_n \to x_0$ implies that $\exists M \ge 0, ||x_n|| \le M$

3. $x_n \rightarrow x_0, y_n \rightarrow y_0 \Rightarrow x_n + y_n \rightarrow y_0 + x_0$

4. $x_n \to x$, $\alpha_n \to \alpha \Rightarrow \alpha_n x_n \to \alpha x$, $\alpha, \alpha_n \in K$

Examples:

For $(C[a,b], \|.\|_{L^{\infty}})$, $f_n \to f \Leftrightarrow \|f_n - f\|_{L^{\infty}} \to 0 \Leftrightarrow \max_{x \in [a,b]} |f_n(x) - f(x)| \to 0$, that is, f_n converges to f uniformly.

Proposition. Closure of a subspace is still a subspace.

Definition.

Two norms on a vector space X are said equivalent iff $||x_n||_1 \to 0 \Leftrightarrow ||x_n||_2 \to 0$ for any $\{x_n\} \subset X$.

Lemma.

For a vector space X and two norms $\|.\|_1, \|.\|_2$ defined on it,

$$||x_n||_1 \to 0 \Rightarrow ||x_n||_2 \to 0$$
 for any $\{x_n\} \subset X$ iff $\exists c > 0, \forall x \in X, ||x||_2 \le c||x||_1$.

Note that if $\forall c > 0$, $\exists x \in X$, $||x||_2 > c||x||_1$, then for $c = 1, 2, ..., \exists x_1, x_2, ..., s.t.$ $\frac{||x_n||_1}{||x_n||_2} \le \frac{1}{n} \cdot y_n \triangleq \frac{x_n}{||x_2||_2}, \text{ then } ||y_n||_1 \to 0 \text{ but } ||y_n||_2 = 1.$

Theorem.

Two norms on a vector space X are said equivalent iff $\exists c_1, c_2 > 0, \forall x \in X$, $c_1 ||xVert_1 \leq ||x||_2 \leq c_2 ||x||_1$.

Examples of non-equivalent norms: see 张海樟课件 week12a

Definition. (Continuous Map between normed vector spaces)

For two normed vector spaces $(X,\|.\|_X)$ and $(Y,\|.\|_Y)$, a map $T:X\mapsto Y$ is called **continuous at** $x_0\in X$, if for any $\{x_n\}\in X\stackrel{\|.\|_X}{\to} x_0$, $\{Tx_n\}\stackrel{\|.\|_Y}{\to} Tx_0$. If T is continuous at every point of X, then T is said to be continuous on X.

Based on the observation of $(\mathbb{R}, |.|)$ which is also a normed vector space, it's natural to have the following:

Proposition.

a map $T: X \mapsto Y$ is continuous at $x_0 \in X$ iff $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x \in X$ s.t. $\|x - x_0\|_X < \delta$, $\|Tx - Tx_0\|_Y < \varepsilon$.

Theorem.

For any normed vector space $(X, \|.\|)$, $\|.\|: X \mapsto \mathbb{R}$ is a continuous map between $(X, \|.\|)$ and $(\mathbb{R}, |.|)$.

Since for any norm $\|.\|$, the map $d(x, y) = \|x - y\|$ is always a metric, we have the following definition of dense set in normed vector space (dense set is originally defined on metric space)

Definition. (Dense Set)

For a normed vector space $(X, \|.\|)$, $M \subset N \subset X$, if $N \subset \overline{M} = M \cup M'$, where M' is the set of all limit points of M, then M is a dense set for N.

When N = X, M is called a dense set of X.

Definition. (Separable Space)

A normed vector space is called separable iff it has a **countable** dense set.

E.g. of separable spaces:

- 1. \mathbb{R}^n : \mathbb{Q}^n is a countable dense set for \mathbb{R}^n
- 2. C[a,b]: The set of polynomials with rational cofactors is a countable dense set for C[a,b]. Note that any function in $C[a,b] \subset L^2[a,b]$ can be expanded as its Fourier series($\sin nx$, $\cos nx$), and $\sin nx$, $\cos nx$ can be rewritten as Taylor series which are composed of polynomials with rational cofactors.
- 3. $L^p[a,b]$: C[a,b] is a dense set of $L^p[a,b]$ For some other examples, see 张海樟's lecture notes.

Definition. (Homeomorphic Map between Normed Vector Spaces)

For two normed vector space $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$, a continuous bijection $T: X \mapsto Y$ of which the inverse T^{-1} is also continuous is called a **homeomorphic** map between $(X, \|.\|_X)$ and $(Y, \|.\|_Y)$.