

Reproducible Research Case Study

Identifying Harmful Constituents in Particulate Matter Air Pollution

Roger D. Peng, Associate Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

What Causes PM to be Toxic?

- · PM is composed of many different chemical elements
- · Some components of PM may be more harmful than others
- · Some sources of PM may be more dangerous than others
- · Identifying harmful chemical constituents may lead us to strategies for controlling sources of PM

NMMAPS

- · The National Morbidity, Mortality, and Air Pollution Study (NMMAPS) was a national study of the short-term health effects of ambient air pollution
- Focused primarily on particulate matter (PM₁₀) and ozone (O₃)
- · Health outcomes included mortality from all causes and hospitalizations for cardiovascular and respiratory diseases
- Key publications
 - http://www.ncbi.nlm.nih.gov/pubmed/11098531
 - http://www.ncbi.nlm.nih.gov/pubmed/11354823
- Funded by the Health Effects Institute
 - Roger Peng currently serves on the Health Effects Institute Health Review Committee

NMMAPS and Reproducibility

- · Data made available at the Internet-based Health and Air Pollution Surveillance System (http://www.ihapss.jhsph.edu)
- · Research results and software also available at iHAPSS
- · Many studies (over 67 published) have been conducted based on the public data http://www.ncbi.nlm.nih.gov/pubmed/22475833
- · Has served as an important test bed for methodological development

What Causes Particulate Matter to be Toxic?

Research

Cardiovascular Effects of Nickel in Ambient Air

Morton Lippmann,1* Kazuhiko Ito,1 Jing-Shiang Hwang,2 Polina Maciejczyk,1 and Lung-Chi Chen1*

¹New York University School of Medicine, Nelson Institute of Environmental Medicine, Tuxedo, New York, USA; ²Insti Science, Academia Sinica, Taiwan

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665439/

- · Lippmann *et al.* found strong evidence that Ni modified the short-term effect of PM₁₀ across 60 US communities
- · No other PM chemical constituent seemed to have the same modifying effect
- · To simple to be true?

A Reanalysis of the Lippmann et al. Study

Research

Does the Effect of PM₁₀ on Mortality Depend on PM Nickel and Vanadium Content? A Reanalysis of the NMMAPS Data

Francesca Dominici, ¹ Roger D. Peng, ¹ Keita Ebisu, ² Scott L. Zeger, ¹ Jonathan M. Samet, ³ and Michelle L. Bell ²

¹Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; ²School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA; ³Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2137127/

- Reexamine the data from NMMAPS and link with PM chemical constituent data
- Are the findings sensitive to levels of Nickel in New York City?

- · Long-term average nickel concentrations appear correlated with PM risk
- · There appear to be some outliers on the right-hand side (New York City)

· Regression line statistically significant (p < 0.01)

· Adjusted regression line (blue) no longer statistically significant (p < 0.31)

What Have We Learned?

- · New York does have very high levels of nickel and vanadium, much higher than any other US community
- · There is evidence of a positive relationship between Ni concentrations and PM₁₀ risk
- · The strength of this relationship is highly sensitive to the observations from New York City
- · Most of the information in the data is derived from just 3 observations

Lessons Learned

- · Reproducibility of NMMAPS allowed for a secondary analysis (and linking with PM chemical constituent data) investigating a novel hypothesis (Lippmann *et al.*)
- · Reproducibility also allowed for a critique of that new analysis and some additional new analysis (Dominici *et al.*)
- Original hypothesis not necessarily invalidated, but evidence not as strong as originally suggested (more work should be done)
- · Reproducibility allows for the scientific discussion to occur in a timely and informed manner
- · This is how science works