Презентация к лабораторной работе #2

Подготовил: Терентьев Егор Дмитриевич 1032192875 НФИбд-03-19

Прагматика выполнения

Scilab – это система компьютерной математики, которая предназначена для выполнения инженерных и научных вычислений. Знакомство со scilab значительно упростило процесс построение математических моделей для выбора правильной стратегии при решении задач поиска.

Цель работы

Построение математических моделей для выбора правильной стратегии при решении задач поиска.

Задачи для выполнения

Условие задачи:

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 14.4 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4.7 раза больше скорости браконьерской лодки.

У меня был вариант 36, поэтому цифры были следующие:

- скорость катера больше скорости лодки в 4.7 раз
- расстояние 14.4

При выполненении данной лабораторной работы, нам нужно было:

- Провести рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в 4.7 раз, а расстояние 14.4
- Построить траекторию движения катера и лодки для двух случаев и задать самостоятельно начальные значения
- Определить по графику точку пересечения катера и лодки.

Результаты выполнения

По ходу выполнения мы:

• ввели начальные значения для времени, места нахождения лодки браконьеров в момент обнаружения, места нахождения катера береговой охраны

- ввели полярные координаты
- затем нахожу расстояния х(Для двух случаев: х1 и х2)
- После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера разложили на две составляющие: 1. радиальная скорость это скорость, с которой катер удаляется от полюса 2. тангенциальная скорость это линейная скорость вращения катера относительно полюса.

Решение исходной задачи свелось к решению системы из двух дифференциальных уравнений:

presentation.md

$$\begin{array}{lll}
N_{\theta=0} \\
4) \times / \mathcal{T} & \text{unu} \\
\frac{x}{\mathcal{T}} = \frac{14,4-x}{4,7\cdot\mathcal{T}} & \frac{x}{4,7\cdot\mathcal{T}} = \frac{14,4+x}{4,7\cdot\mathcal{T}} \\
\times = \frac{14,4-x}{4,7\cdot\mathcal{T}} & \times = \frac{14,4+x}{4,7\cdot\mathcal{T}} \\
\times = \frac{14,4-x}{4,7} & \times = \frac{14,4+x}{4,7\cdot\mathcal{T}} \\
4,7 \times = 14,4-x & 47x = 14,4+x \\
5,7 \times = 14,4 & 3,7 \times = 14,4 \\
\times = \frac{14}{19} & x_2 = \frac{144}{37}
\end{array}$$

$$V_{7} = \Gamma \frac{d\Gamma}{dt} \qquad \frac{d\Gamma}{dt} = V$$

$$V_{7} = \Gamma \frac{d\theta}{dt}$$

6)
$$\frac{d\Gamma}{dt} = 121,09.7$$
 $C = \frac{144}{37}$
 $C = \frac{144}{37}$
 $C = \frac{144}{37}$
 $C = \frac{144}{37}$
 $C = \frac{144}{37}$

• затем следовало построить траекторию движения катера и лодки для двух случаев и задать самостоятельно начальные значения. По итогу вышло следующее:

Получаю график для первого случая:

Получаю график для второго случая:

Аналитечески нахожу точки пересечения для двух графиков:

По итогу выполнения работы мы научились:

- Построение математических моделей для выбора правильной стратегии при решении задач поиска.
- Работать со scilab для постороения мат.моделей