Définition : Considérons une fonction f définie sur un intervalle I symétrique par rapport à l'origine. On dit que f est :

Sa courbe représentative est caractérisée par une symétrie axiale par rapport à l'axe des ordonnées.

Sa courbe
représentative est
caractérisée par
une symétrie
centrale par
rapport à
l'origine.

E1 Considérons la fonction carré dont la courbe représentative est donnée ci-dessous.

Remarque :

Le repère ci-dessus _____ orthonormé.

Définition

La fonction carré est définie sur _____

$$f: \underline{\hspace{1cm}} \longrightarrow \hspace{1cm} \mathbb{R} \hspace{1cm}$$

Signe

La fonction carré est _____ sur ___

Parité

La fonction carré est une fonction _____.

$$(-x)^2 =$$

Par exemple $f(-2) = \underline{\hspace{1cm}}$ et $f(2) = \underline{\hspace{1cm}}$.

Variations

La fonction carré est

- _____ sur ____
- _____ sur ____.

Ordre

La fonction carré:

- _____ l'ordre sur _____
- _____ l'ordre sur _____

Par exemple :

- -3______-2 et $(-3)^2$ ______ $(-2)^2$.
- 3____2 et 3^2 ____2.

Equation f(x)=k

- Si k=0, alors f(x)=k admet ____ pour ____ solution.
- Si k>0, alors f(x)=k admet ___ et ___ pour solutions.
- Si k < 0, alors f(x) = k _____ solution.

Inéquation

- Si $k\leqslant 0$, l'ensemble des solutions
 - \circ de f(x) < k est $_$
 - \circ de $f(x)\geqslant k$ est _____
- ullet Si $k>0\,,$ l'ensemble des solutions
 - \circ de f(x) < k est _____
 - \circ de $f(x)\geqslant k$ est _____
- E2 Considérons la fonction cube dont la courbe représentative est donnée ci-dessous.

Établir les caractéristiques de la fonction cube. Tracer la courbe représentative de la fonction valeur absolue dans un repère orthonormé et sur l'intervalle [-5;5]. Établir les caractéristiques de la fonction valeur absolue.

- E4 Comparez les couples de nombres suivants en justifiant .
- **a.** $(-47)^2$ et $(-49)^2$.
- **b.** 18^3 et 17^3 .
 - $c. (-89)^3$ et $(-59)^3.$