Sistemas Complejos

Integrantes:

- Oscar Julian Reyes Torres
- Valeria Bermudez Carvajal
- Santiago Gutierrez Orjuela

Para esta primera simulación de nuestra red ad-hoc se creó un script que se evidencia a continuación y que está disponible en el siguiente enlace, el cual hace uso de las librerías de ns3:

```
/*Importa librerias*/
#include "ns3/mobility-module.h" //Libreria de mobilidad
#include "ns3/wifi-module.h" //Libreria Wifi
#include "ns3/core-module.h" //Libreria de nucleo
#include "ns3/netwoek-module.h"
NS_LOG_COMPONENT_DEFINE ("red Adhoc");
       int verbose=1;
     if(verbose){
   wifi.EnableLogComponents();
        wifi.SetStandard(WIFI_PHY_STANDARD_80211b);
        //Creacion de 2 nodos
NodeContainer nodes;
       //Eleccion capa fisica y MAC
YanswifiPhyHelper wifiPhy = YanswifiPhyHelper::Default();
NqoswifiMacHelper wifiMac = NqoswifiMacHelper::Default();
wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager","DataMode", StringValue (phyMode), "ControlMode", StringValue (phyMode));
wifiMac.SetType("ns3::AdhocWifiMac");
        YansWifiPhyHelper wifiChannel:
        wifichannel.SetPropagationDelay("ns3::ConstantSpeedPropagationDelayModel"); wifiChannel.AddPropagationLoss("ns3::FixedRssLossModel","Rss", DoubleValue(rss));
        wiliclaimet.vaudripdagationLoss(inSt.ilzachastosshoutt, nss, po
wifiPhy.SerChannel (wifiChannel.Create());
NetDeviceContainer devies = wifi.Install(wifiPhy, wifiMac,nodes);
    //Ajustes de Movilidad
MobilityHelper mobility;
    Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
    positionAlloc ->Add (Vector(0.0,0.0,0.0));
positionAlloc ->Add (Vector(5.0,0.0,,0.0));
     mobility.SetPositionAllocator (positionAlloc);
    //Eleccion del modelo de movilidad
mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
    AsciiTraceHelper ascii; wifiPhy.EnableAsciiAll(ascii.CreateFileStream("net-adhoc.tr"));
    wifiPhy.EnnablePcap("net-adhoc", devices)
    //Constructores del Programa
Simulator::Run():
    Simulator::Destroy();
```

ESCUELA DE CIENCIAS EXACTAS E INGENIERÍA Sistemas Complejos Joaquín Fernando Sanchez Cifuentes

Simulación de red Ad Hoc

Lamentablemente, para esta simulación se vio obstruida por el módulo *NqosWifiMAcHelper* el cual fue descontinuado y tampoco permitía el establecimiento de la capa MAC para los nodos creados.

La siguiente parte fue la instalación del protocolo de enrutamiento B.A.T.M.A.N. en todos los dispositivos que van a hacer parte de la red y de esta forma empezar con una simulación de ping.

Para la instalación del protocolo B.A.T.M.A.N. se hizo uso del sudo <u>apt-get install batctl</u> comando desde la terminal de linux en ambos nodos de cómputo, para este caso la distribución de ubuntu 20.04:

Posteriormente, se creó un script que configura el enrutamiento en este protocolo, el cual reposa en el siguiente enlace

Vale la pena mencionar que para compilar y ejecutar los script anteriormente mencionados, es importante definir la dirección ip correspondiente a cada nodo de cómputo, para esto, se consulta el nombre y las propiedades de las interfaces de cada computador.

Para el primer nodo de cómputo desde la terminal usamos el comando <u>ifconfig</u> reflejando estar conectado a una red Wifi doméstica:

Sistemas Complejos

Joaquín Fernando Sanchez Cifuentes Simulación de red Ad Hoc

```
oscar@oscar-NBLK-WAX9X: ~
oscar@oscar-NBLK-WAX9X:~$ ifconfig
lo: flags=73<UP,LOOPBACK,RUNNING>
                                   mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 :: 1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Bucle local)
        RX packets 23907 bytes 2396755 (2.3 MB)
        RX errors 0 dropped 0 overruns 0 frame 0 TX packets 23907 bytes 2396755 (2.3 MB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlp2s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 192.168.0.23 netmask 255.255.255.0 broadcast 192.168.0.255
        inet6 fe80::708a:7174:fed8:778 prefixlen 64 scopeid 0x20<link>
        inet6 2800:484:4c81:6329:372:2118:1b87:c94b prefixlen 64 scopeid 0x0<global>
        inet6 2800:484:4c81:6329:fa05:ce58:adaa:ce6f prefixlen 64 scopeid 0x0<global>
        ether 64:6c:80:a1:3d:0b txqueuelen 1000 (Ethernet)
        RX packets 103452 bytes 77195732 (77.1 MB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 64547 bytes 28734404 (28.7 MB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
oscar@oscar-NBLK-WAX9X:~$
```

Posteriormente, haciendo uso del comando <u>iwconfig</u> se observa la interfaz inalámbrica con el protocolo IEEE 802.11 mediante un access point.

```
J∓l
                                                      oscar@oscar-NBLK-WAX9X: ~
oscar@oscar-NBLK-WAX9X:~$ iwconfig
         no wireless extensions.
wlp2s0
         IEEE 802.11 ESSID: "JUDIAN 5g"
         Mode:Managed Frequency:5.22 GHz Access Point: F4:95:1B:D5:77:D4
         Bit Rate=58.5 Mb/s Tx-Power=23 dBm
         Retry short limit:7
                               RTS thr:off
                                             Fragment thr:off
         Power Management:on
         Link Quality=36/70 Signal level=-74 dBm
         Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
         Tx excessive retries:0 Invalid misc:324
                                                    Missed beacon:0
oscar@oscar-NBLK-WAX9X:~$
```

Dada la información anteriormente recolectada, se procedió a realizar la configuración en ambos dispositivos mediante el script del siguiente enlace

Un aspecto a tener en cuenta, es que la WLAN0 se cambió por el nombre de acuerdo a el de cada computador, además la dirección IP, se modificó en su último octeto con el fin de diferenciar cada nodo.

Sistemas Complejos

Joaquín Fernando Sanchez Cifuentes Simulación de red Ad Hoc

Para el Equipo 1 se asigno la dirección → 192.168.0.3

```
home > oscar > Descargas > AdHoc_Network-master > PC-Huawei > $ configuracionBATMAN.sh

#Autores: Oscar Julian Reyes Torres, Valeria Bermudez Carvajal, Santiago Gutierrez Orjuela
#Profesor: Joaquin Fernando Sanchez Cifuentes
#Tema: Simulacion de red Ad-Hoc
#Fecha: 01 de mayo de 2022
#Configuracion Equipo 1 - Red Ad Hoc (192.168.0.3)

#!/bin/bash

#Modo
modprobe batman-adv
#Se para el proseso de red de la maquina
usdo pkill NetworkManager
#se apaga la interfaz wan de la maquina yse asigna el modo adhoc
ifconfig wlan0 down
iwconfig wlan0 mode ad-hoc

#Asignacion del acces point y el channel
iwconfig wlan0 mode ad-hoc essid RED-Adhoc ap 02:18:55:AD:0C:02 channel 1

#Se enciende la interfaz wan de la maquina
ip link set wlan0 up
sleep 1
#Se asigna la interfaz virtual de BATMAN a la WAN
batctl if add wlan0
ifconfig bat0 192.168.0.3

echo "Configuracion realizada exitosamente"
```

Para el Equipo 2 se asigno la dirección → 192.168.0.4

```
*confBATMAN.sh
  Guardar
                                      ~/Descargas/AdHoc_Network-master/PC-Dell-Valeria
1 #Autores: Oscar Julian Reyes Torres, Valeria Bermudez Carvajal, Santiago Gutierrez Orjuela
2 #Profesor: Joaquin Fernando Sanchez Cifuentes
 3 #Tema: Simulacion de red Ad-Hoc
 4 #Fecha: 01 de mayo de 2022
 5 #Configuracion Equipo 1 - Red Ad Hoc (192.168.0.4)
 7 #!/bin/bash
 9 #Modo
10 modprobe batman-adv
11 #Se para el proseso de red de la maquina
12 sudo pkill NetworkManager
13 #se apaga la interfaz wan de la maquina y se asigna el modo adhoc
14 ifconfig wlp3s0 down
15 iwconfig wlp3s0 mode ad-hoc
16
17 ifconfig wlp3s0 mtu 1532
18 #Asignacion del acces point y el channel
19 iwconfig wlp3s0 mode ad-hoc essid RED-Adhoc ap 02:1B:55:AD:0C:02 channel 1
20 sleep 1
21 #Se enciende la interfaz wan de la maquina
22 ip link set wlp3s0 up
23 sleep 1
24 #Se asigna la interfaz virtual de BATMAN a la WAN
25 batctl if add wlp3s0
26 ifconfig bat0 up
27 #Se asigna la IP a la interfaz virtual
28 ifconfig bat0 192.168.0.4
30 echo "Configuracion realizada exitosamente"
```

A continuación, se procede a ejecutar el script en ambos nodos de cómputo, lo anterior en modo root al cual se accede con el comando <u>chmod +x configuracionBATMAN.sh</u>:

```
oscar@oscar-NBLK-WAX9X:~/Descargas/AdHoc_Network-master/PC-Huawei-Oscar$ chmod +x configuracionBATMAN.sh
oscar@oscar-NBLK-WAX9X:~/Descargas/AdHoc_Network-master/PC-Huawei-Oscar$
```

Sistemas Complejos

Joaquín Fernando Sanchez Cifuentes Simulación de red Ad Hoc

Dado lo anterior se procede a la verificación que la red se configuró correctamente mediante los comandos de *ifconfig* e *iwconfid*

Se evaluó que la interfaz virtual bat0 se haya creado correctamente con la ip que se indico en cada uno de los dispositivos, además de que la red LAN está caída.

```
valc@valc-Aspire-A315-51:~/Documentos/AdHoc_Network$ ifconfig
bat0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu  1500
        inet 192.168.0.4 netmask 255.255.255.0 broadcast 192.168.0.255
        inet6 fe80::9cd0:1ff:fea2:61a2 prefixlen 64 scopeid 0x20<link>
        ether 9e:d0:01:a2:61:a2 txqueuelen 1000 (Ethernet)
        RX packets 12 bytes 504 (504.0 B)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 15 bytes 1900 (1.9 KB)
        TX errors 0 dropped 42 overruns 0 carrier 0 collisions 0
enp2s0f1: flags=4099<UP,BROADCAST,MULTICAST>  mtu  1500
        ether d8:c4:97:8f:0f:d8 txqueuelen 1000 (Ethernet)
        RX packets 0 bytes 0 (0.0 B)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 0 bytes 0 (0.0 B)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
        inet6 :: 1 prefixlen 128 scopeid 0x10<host>
        loop txqueuelen 1000 (Bucle local)
RX packets 1380 bytes 111800 (111.8 KB)
        RX errors 0 dropped 0 overruns 0 frame 0
TX packets 1380 bytes 111800 (111.8 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlp3s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu  1532
        inet6 fe80::525b:c2ff:feaa:f591 prefixlen 64 scopeid 0x20<link>
        ether 50:5b:c2:aa:f5:91 txqueuelen 1000 (Ethernet)
        RX packets 1055 bytes 691790 (691.7 KB)
        RX errors 0 dropped 0 overruns 0 frame 0
        TX packets 1073 bytes 210679 (210.6 KB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Luego podemos evidenciar que la interfaz inalámbrica de cada uno de los dispositivos cambió sus propiedades tal como el modo que debe estar en adhoc, el essid y el access point o cell:

Sistemas Complejos

Por otra parte, comprobamos la tabla de enrutamiento del protocolo BATMAn, la cual nos muestra los dispositivos conectados a la red, el resultado fue el siguiente:

```
root@valc-Aspire-A315-51:/home/valc/Documentos/AdHoc_Network# sudo batctl o

[B.A.T.M.A.N. adv 2021.0, MainIF/MAC: wlp3s0/50:5b:c2:aa:f5:91 (bat0/9e:d0:01:a2:61:a2 BATMAN_IV)]

Originator last-seen (#/255) Nexthop [outgoingIF]

* 30:52:cb:9a:d0:8f 0.360s (223) 30:52:cb:9a:d0:8f [ wlp3s0]
```

Por último, realizamos la prueba de ping entre los dispositivos y ambas direcciones, esto con el fin de que los paquetes que se transmiten por la red, están llegando a su destino, además podemos evidenciar propiedades como el origen, destino, saltos y el tiempo de retardo 192.168.0.4 a 192.168.0.3

```
valc@valc-Aspire-A315-51:~/Documentos/AdHoc_Network$ ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3) 56(84) bytes of data.
64 bytes from 192.168.0.3: icmp_seq=1 ttl=64 time=2.22 ms
64 bytes from 192.168.0.3: icmp_seq=2 ttl=64 time=9.39 ms
64 bytes from 192.168.0.3: icmp_seq=3 ttl=64 time=3.56 ms
64 bytes from 192.168.0.3: icmp_seq=4 ttl=64 time=2.70 ms
64 bytes from 192.168.0.3: icmp_seq=5 ttl=64 time=1.41 ms
64 bytes from 192.168.0.3: icmp_seq=6 ttl=64 time=1.54 ms
64 bytes from 192.168.0.3: icmp_seq=7 ttl=64 time=1.80 ms
64 bytes from 192.168.0.3: icmp_seq=8 ttl=64 time=1.18 ms
64 bytes from 192.168.0.3: icmp_seq=9 ttl=64 time=3.04 ms
64 bytes from 192.168.0.3: icmp_seq=10 ttl=64 time=9.24 ms
64 bytes from 192.168.0.3: icmp_seq=11 ttl=64 time=1.41 ms
64 bytes from 192.168.0.3: icmp_seq=11 ttl=64 time=1.23 ms
64 bytes from 192.168.0.3: icmp_seq=12 ttl=64 time=5.43 ms
```

Referencias

- Armando Mercado, R. B. (12 de junio de 2018). ACADEMIA. Obtenido de Redes inalámbricas ad hoc: Academia.edu
- Hernández, S. M. (20 de septiembre de 2020). Enrutamiento BABEL y BATMAN en una red Ad Hoc. Obtenido de Universidad Distrital: udistrital.edu.co
- Rosas, M. A. (2020 de noviembre de 03). Diseño de la Topología de una red Ad Hoc.
 Obtenido de Universidad Politecnica de Catalunya: upcommons.upc.edu