Understanding the Infection Dynamics of COVID-19 through a SuEIR Model and Deep Learning

Chloe You, Matt (Mateusz) Faltyn

December 13, 2022

Presentation Structure

- Project Objectives
- COVID-19 SuEIR Model
- 3. Solving the Model: Numerical Approximation vs Deep Learning
- 4. Estimating Parameters
- 5. Discussion

Project Objectives

- 1. Examine and explain the COVID-19 SuEIR Model presented in **Zou et al 2020**.
- 2. Numerically solve the SuEIR Model via artificial neural network ODE solvers (Chen et al 2020) to:
 - 2.1. First, generate "ground truth data" via numerical simulation using given parameters $\theta = (\beta, \sigma, \gamma, \mu)$ and initial conditions
 - 2.2. Next, compute the ground truth R_0
 - 2.3. Then, generate 10 simulations of 4 time series (S, E, I, R) by selectively perturbing the ground truth parameters
- 3. Reimplement and analyze the parameter learning method presented in Zou et al 2020 to do the following for each of the perturbed simulations:
 - 3.1. Find the parameters $\theta' = (\beta', \sigma', \gamma', \mu')$ to calculate R_0

COVID-19 SuEIR Model

$$\frac{dS_t}{dt} = -\frac{\beta(I_t + E_t)S_t}{N},$$

$$\frac{dE_t}{dt} = \frac{\beta(I_t + E_t)S_t}{N} - \sigma E_t,$$

$$\frac{dI_t}{dt} = \mu \sigma E_t - \gamma I_t,$$

$$\frac{dR_t}{dt} = \gamma I_t,$$

Unreported Recovered

R

Removed

Variables

S : Susceptible population

E: Exposed population

I: Infectious population

R: Recovered population

N: Total population

 β : Contact rate (E and I)

 μ : Discovery rate

 σ : Transition rate (E \rightarrow I)

 γ : Transition rate (I \rightarrow R)

Simulation Parameters (ode45 vs NeuroDiffEq)

Simulation #	N	S_0	E_0	I_0	R_0	beta	mu	sigma	gamma	Explanation
0	1000	800	100	50	50	0.25	0.075	0.09	0.12	Ground truth
1	1000	800	100	50	50	0.5	0.05	0.09	0.12	Varying beta / low mu
2	1000	800	100	50	50	0.4	0.05	0.09	0.12	Varying beta / low mu
3	1000	800	100	50	50	0.3	0.05	0.09	0.12	Varying beta / low mu
4	1000	800	100	50	50	0.2	0.05	0.09	0.12	Varying beta / low mu
5	1000	800	100	50	50	0.1	0.05	0.09	0.12	Varying beta / low mu
6	1000	800	100	50	50	0.5	0.1	0.09	0.12	Varying beta / high mu
7	1000	800	100	50	50	0.4	0.1	0.09	0.12	Varying beta / high mu
8	1000	800	100	50	50	0.3	0.1	0.09	0.12	Varying beta / high mu
9	1000	800	100	50	50	0.2	0.1	0.09	0.12	Varying beta / high mu
10	1000	800	100	50	50	0.1	0.1	0.09	0.12	Varying beta / high mu

Solving Model via ode45 (Runge-Kutta (4,5))

Runge-Kutta Method of 4th Order:

• Consider the differential Equation

$$\frac{dy}{dx} = f(x,y), y(x_0) = y_0$$

Calculate successively

•
$$k_1 = hf(x_0, y_0)$$

•
$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

•
$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

•
$$k_4 = hf(x_0 + h, y_0 + k_3)$$

Find
$$k = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$y_1 = y_0 + k$$
 and $x_1 = x_0 + h$

NeuroDiffEq: Solving DEs via Neural Networks

Solve Model via NeuroDiffEq

Chen et al 2020

8

MAE: ode45 vs NeuroDiffEq

MAPE: ode45 vs NeuroDiffEq

Summing Errors: ode45 vs NeuroDiffEq

Good? Simulation 5 Comparison

Bad? Simulation 6 Comparison

Simulations with Higher Beta Perform Worse

Simulation #	N	S_0	E_0	I 0	R_0	beta	mu	sigma	gamma	Explanation
0	1000			_			0.075	0.09		Ground truth
1	1000	800	100	50	50	0.5	0.05	0.09	0.12	Varying beta / low mu
2	1000	800	100	50	50	0.4	0.05	0.09	0.12	Varying beta / low mu
3	1000	800	100	50	50	0.3	0.05	0.09	0.12	Varying beta / low mu
4	1000	800	100	50	50	0.2	0.05	0.09	0.12	Varying beta / low mu
5	1000	800	100	50	50	0.1	0.05	0.09	0.12	Varying beta / low mu
6	1000	800	100	50	50	0.5	0.1	0.09	0.12	Varying beta / high mu
7	1000	800	100	50	50	0.4	0.1	0.09	0.12	Varying beta / high mu
8	1000	800	100	50	50	0.3	0.1	0.09	0.12	Varying beta / high mu
9	1000	800	100	50	50	0.2	0.1	0.09	0.12	Varying beta / high mu
10	1000	800	100	50	50	0.1	0.1	0.09	0.12	Varying beta / high mu

Parameter Estimation Method

$$L(\boldsymbol{\theta}; \mathbf{I}, \mathbf{R}) = \frac{1}{T} \sum_{t=1}^{T} \left[\left(\log(\widehat{I}_t + p) - \log(I_t + p) \right)^2 + \left(\log(\widehat{R}_t + p) - \log(R_t + p) \right)^2 \right]$$
$$\widehat{\boldsymbol{\theta}} = (\widehat{\beta}, \widehat{\sigma}, \widehat{\gamma}, \widehat{\mu}) = \operatorname{argmin}_{\boldsymbol{\theta}} L(\boldsymbol{\theta}; \mathbf{I}, \mathbf{R})$$

- I₊ and R₊ denote the reported simulation numbers
- \widehat{I}_t and \widehat{R}_t are described as differentiable functions of the parameters. We only need to supply the initial conditions.
- Apply different optimizers onto the loss function under some constraints*
 - o L-BFGS-B
 - Powell

Parameter Bounds

$$\widehat{\boldsymbol{\theta}} = (\widehat{\beta}, \widehat{\sigma}, \widehat{\gamma}, \widehat{\mu})$$

- β : contact rate between the susceptible and the E and I groups
 - o (0,1)
- σ : ratio of cases in E that are either confirmed as infectious or dead/recovered without confirmation
 - \circ (0.01, 1)
- γ : transition rate between I and R
 - o (0.05, 0.3)
 - o assuming it takes 3 to 20 days to recover
- μ : discovery rate of the infected cases
 - 0 (0, 1)

Parameter Estimation Results

		Neural ODE Solve	r	Traditional ODE Solver			
Simulation #	Estimated R ₀	Diff of estimated and simulation specific R ₀	Diff of estimated and ground truth R ₀ = 2.9	Estimated R ₀	Diff of estimated and simulation specific R ₀	Diff of estimated and ground truth R ₀	
1	3.24	-2.52	0.3	2.43	-3.334	-0.5	
2	2.28	-2.33	-0.7	4.59	-0.021	1.7	
3	1.59	-1.87	-1.3	3.46	0.002	0.5	
4	2.12	-0.19	-0.8	2.31	0.004	-0.6	
5	1.48	0.33	-1.5	1.15	-0.003	-1.8	
6	2.85	-3.12	-0.1	2.51	-3.462	-0.4	
7	2.89	-1.89	0.0	4.76	-0.018	1.8	
8	1.60	-1.98	-1.3	3.58	-0.003	0.6	
9	1.99	-0.40	-0.9	2.39	0.001	-0.5	
10	1.91	0.72	-1.0	1.19	-0.004	-1.7	

Table: estimated R₀ and bias. Using a **more informed initial parameter** (0.15, 0.075, 0.05, 0.1) for L-BFGS-B optimizer.

Parameter Estimation Results

		Neural ODE Solve	r	Traditional ODE Solver			
Simulation #	Estimated R ₀	Diff of estimated and simulation specific R ₀	Diff of estimated and ground truth R ₀ =2.9	Estimated R ₀	Diff of estimated and simulation specific R ₀	Diff of estimated and ground truth R ₀	
1	3.24	-2.52	0.3	2.43	-3.33	-0.5	
2	2.28	-2.33	-0.7	4.59	-0.02	1.7	
3	1.59	-1.87	-1.3	3.46	0.00	0.5	
4	2.12	-0.19	-0.8	2.31	0.00	-0.6	
5	0.77	-0.38	-2.2	1.16	0.01	-1.8	
6	2.85	-3.12	-0.1	2.51	-3.46	-0.4	
7	2.89	-1.89	0.0	4.76	-0.02	1.8	
8	1.60	-1.98	-1.3	3.58	0.00	0.6	
9	1.99	-0.40	-0.9	2.39	0.00	-0.5	
10	1.91	0.72	-1.0	38.12	36.93	35.2	

Table: estimated R_0 and bias. Using a **more uninformed initial parameter** (0.5, 0.5, 0.5, 0.05) for L-BFGS-B optimizer.

Discussion

- Parameter estimates using values from Neural ODE solvers weren't as accurate as the traditional ODE solver, but were able to give R_□ ranges that are more realistic
- Uninformed initial parameter estimates might lead to unrealistic results
 - Nonconvex function so optimizer might've got stuck at local optimum

Appendix

Compute R₀ from Next Generation Matrix

Let $x = (x_1, x_2, x_3, x_4)^T$ denote the number of infected individuals in compartment S, E, I, R.

The ODE system can now be expressed as $d\mathbf{x}/dt = \mathbf{F}(\mathbf{x}) - \mathbf{V}(\mathbf{x})$ with $F(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\beta(x_2 + x_3)x_1}{N} \\ 0 \\ 0 \end{bmatrix}$, $V(\mathbf{x}) = \begin{bmatrix} \frac{\beta(x_2 + x_3)x_1}{N} \\ \sigma x_2 \\ \gamma x_3 - \mu \sigma x_2 \\ -\gamma x_3 \end{bmatrix}$

Let **F** and **V** be the partial Jacobian matrices of functions F(x) and V(x) wrt. x_i , i = 1, 2, 3, 4.

$$\mathbf{F} = \begin{bmatrix} \frac{\partial F_2(\mathbf{x}^*)}{\partial x_2} & \frac{\partial F_2(\mathbf{x}^*)}{\partial x_3} \\ \frac{\partial F_3(\mathbf{x}^*)}{\partial x_2} & \frac{\partial F_3(\mathbf{x}^*)}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \beta & \beta \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{V} = \begin{bmatrix} \frac{\partial V_2(\mathbf{x}^*)}{\partial x_2} & \frac{\partial V_2(\mathbf{x}^*)}{\partial x_3} \\ \frac{\partial V_3(\mathbf{x}^*)}{\partial x_2} & \frac{\partial V_3(\mathbf{x}^*)}{\partial x_3} \end{bmatrix} = \begin{bmatrix} \sigma & 0 \\ -\mu\sigma & \gamma \end{bmatrix}$$

Then the next-generation matrix $G = \mathbf{F} \mathbf{V}^{-1}$ can be computed as $\mathbf{G} = \mathbf{F} \mathbf{V}^{-1} = \begin{bmatrix} \frac{\beta}{\sigma} + \frac{\beta\mu}{\gamma} & \frac{\beta}{\gamma} \\ 0 & 0 \end{bmatrix}$

 R_0 is given by the largest eigenvalue of next generation matrix G:

$$\mathcal{R}_0 = \frac{\beta}{\sigma} + \frac{\beta\mu}{\gamma}$$

Variation in beta leads to variation in simulated R₀

		1	1	1			(•)
Simulation #	beta	mu	sigma	gamma	Explanation	simulation specific R0	diff from ground truth R0
0	0.25	0.075	0.09	0.12	Ground truth	2.9	
1	0.5	0.05	0.09	0.12	Varying beta / low mu	5.8	2.8
2	0.4	0.05	0.09	0.12	Varying beta / low mu	4.6	1.7
3	0.3	0.05	0.09	0.12	Varying beta / low mu	3.5	0.5
4	0.2	0.05	0.09	0.12	Varying beta / low mu	2.3	-0.6
5	0.1	0.05	0.09	0.12	Varying beta / low mu	1.2	-1.8
6	0.5	0.1	0.09	0.12	Varying beta / high mu	6.0	3.0
7	0.4	0.1	0.09	0.12	Varying beta / high mu	4.8	1.8
8	0.3	0.1	0.09	0.12	Varying beta / high mu	3.6	0.6
9	0.2	0.1	0.09	0.12	Varying beta / high mu	2.4	-0.5
10	0.1	0.1	0.09	0.12	Varying beta / high mu	1.2	-1.7

Powell seems to underestimate R₀ more

		Traditiona	I ODE Solver	Neural ODE Solver		
Simulation #	simulation specific R0	Powell Estimated R ₀	L-BFGS-B Estimated R ₀	Powell Estimated R ₀	L-BFGS-B Estimated R ₀	
1	5.8	1.02	3.24	3.25	2.43	
2	4.6	5.27	2.28	2.29	4.59	
3	3.5	3.49	1.59	1.59	3.46	
4	2.3	2.31	2.12	0.36	2.31	
5	1.2	1.04	0.77	1.52	1.16	
6	6.0	0.28	2.85	0.002	2.51	
7	4.8	0.34	2.89	0.003	4.76	
8	3.6	0.45	1.60	1.93	3.58	
9	2.4	1.01	1.99	2.00	2.39	
10	1.2	0.99	1.91	1.91	38.12	

Table: Using a **more uninformed initial parameter** (0.5, 0.5, 0.5, 0.05).

Similar performances but L-BFGS-B slight upper hand

		Traditiona	I ODE Solver	Neural ODE Solver		
Simulation #	simulation specific R0	Powell Estimated R ₀	L-BFGS-B Estimated R ₀	Powell Estimated R ₀	L-BFGS-B Estimated R ₀	
1	5.8	2.62	2.43	3.28	3.24	
2	4.6	4.59	4.59	1.64	2.28	
3	3.5	1.03	3.46	1.39	1.59	
4	2.3	2.31	2.31	1.23	2.12	
5	1.2	0.93	1.15	1.57	1.48	
6	6.0	2.51	2.51	2.83	2.85	
7	4.8	4.76	4.76	2.89	2.89	
8	3.6	3.58	3.58	1.24	1.60	
9	2.4	7.84	2.39	1.50	1.99	
10	1.2	1.19	1.19	1.48	1.91	

Table: Using a more informed initial parameter (0.15, 0.075, 0.05, 0.1).