CS 120: Intro to Algorithms and their Limitations

Problem Set 9

Due: December 6, 2023 11:59pm Denny Cao

Collaborators:

No. of late days used on previous psets: 6 No. of late days used after including this pset: 7

§1 $P_{\text{search}} \nsubseteq NP_{\text{search}}$

```
Claim — \Pi \in P_{\text{search}}.
```

Proof of claim. To show that Π is in P_{search} , we show that there exists a Word-RAM program P such that f(P) can be found in polynomial time. Let P be the Word-RAM program that returns whether or not an input $x \in \mathbb{N}$ is at least 1:

```
Input : An input x occupying memory location M[0]
Output : A value y ∈ {0,1} in memory location M[0]
Variables : input_len, output_len, output_ptr, zero, word_len, mem_size
1 zero = 0;
2 output_len = input_len + zero;
3 output_ptr = 0;
4 if M[output_ptr] >= 1 GOTO 6;
5 if zero == 0 GOTO 7;
6 M[output_ptr] = 1;
7 HALT;
```

Algorithm 1: Word-RAM Program *P*

We verify that f(P) can be found in polynomial time. We break inputs $\varepsilon \in \mathbb{N}$ for P into two cases:

- 1. $\varepsilon \geq 1$: The total operations performed in this case is 6 regardless of the amount of bits to represent ε in the Word-RAM program, and thus takes time O(1).
- 2. $\varepsilon = 0$: The total operations performed in this case is also 6, and thus takes time O(1).

As in both cases, P halts in O(1) and P halts for all $\varepsilon \in \mathbb{N}$, it follows that, for all inputs ε for P, $f(P) = \{0,1\}$ and can be found in O(1) time which is polynomial time, and the proof is complete.

```
Claim — \Pi \notin NP_{search}.
```

Proof of claim. To show that $\Pi \notin \mathsf{NP}_{\mathsf{search}}$, we show that there exists a Word-RAM program P such that a solution x cannot be verified in polynomial time. Let P be the Word-RAM program as follows:

```
Input : An input x occupying memory location M[0]
  Variables : input_len, output_len, output_ptr, zero, word_len, mem_size
1  zero = 0;
2  output_len = input_len + zero;
3  output_ptr = 0;
4  if zero == 0 GOTO 4 ;
5  HALT;
```

Algorithm 2: Word-RAM Program *P*

Consider the case when the verifier V must verify if a solution x=0 is correct for P. This will only happen if P does not halt. However, if P does not halt, then the verifier V would run indefinitely, and thus V would not run efficiently in polynomial time, and the proof is complete.

§2 Undecidability of Arithmetic Overflows

(a) Proof. Let P' be a Word-RAM equivalent program for a RAM program P. We form a new program P'' where integer overflows cannot occur by an algorithm $\varphi = \texttt{ConvertNoOverflowP}$ which takes P' as input. We describe φ :

```
1 ConvertNoOverflowP (P'(V', (C'_0, \dots, C'_{\ell-1})))
        C'' = (\ );
 \mathbf{2}
        foreach i \in [\ell] do
 3
             if C'_i in the form var_i = var_i + var_k or var_i = var_i \times var_k then
 4
                 \operatorname{start}_j = \operatorname{len}(C'') + 3;
 5
                 \operatorname{start}_k = \operatorname{len}(C'') + 5;
 6
                 end_i = len(C'') + 15;
 7
                 end_k = len(C'') + 13;
 8
                 end_S = len(C'') + 10;
                 C''.append(counter<sub>i</sub> = 0);
10
                 C''.append(counter<sub>S</sub> = 0);
11
                 C''.append(IF counter<sub>i</sub> == var<sub>i</sub> GOTO end<sub>i</sub>);
12
                 C''.append(counter<sub>k</sub> = 0);
13
                 C''.append(IF counter<sub>k</sub> == var<sub>k</sub> GOTO end<sub>k</sub>);
14
                 C''.append(IF counter<sub>S</sub> == S GOTO end<sub>S</sub>);
15
                 C''.append(counter<sub>S</sub> = counter<sub>S</sub> + one);
16
                 C''.append(counter<sub>k</sub> = counter<sub>k</sub> + one);
17
                 C''.append(IF zero == 0 GOTO start<sub>k</sub>);
18
                 C''.append(MALLOC());
19
                 C''.append(counter<sub>k</sub> = counter<sub>k</sub> + one):
20
                 C''.append(IF zero == 0 GOTO start<sub>k</sub>);
21
                 C''.append(counter<sub>i</sub> = counter<sub>i</sub> + one);
\mathbf{22}
                 C''.append(IF zero == 0 GOTO start<sub>i</sub>);
23
             C''.append(C'_i);
24
        return P(V+3,C'');
```

Algorithm 3: ConvertNoOverflowP

For P', integer overflow occurs when an operation var_j op var_k results in a value greater than or equal to 2^w , where $w = \operatorname{word_len}$. We bound the greatest value of var_j op var_k by the maximum value of $\operatorname{var}_j \times \operatorname{var}_k$, as multiplication will result

in the largest value. We can thus bound the number of bits needed to represent an operation without integer overflow with

$$\lceil \log_2(\operatorname{var}_i \operatorname{op} \operatorname{var}_k) \rceil \le \lceil \log_2(\operatorname{var}_i \times \operatorname{var}_k) \rceil$$

We can avoid integer overflow by calling MALLOC m times if var_j op $var_k \geq 2^w$. The amount of times we call MALLOC will be

$$m = var_i \times var_k - S$$

As $w = \lfloor \log \max\{S, x[0], \dots, x[n-1]\} \rfloor$, and thus $w \geq \log S$, where S is the length of memory, if we call MALLOC $\operatorname{var}_j \times \operatorname{var}_k - S$ times prior to var_j op var_k , we will obtain a new value for S, S', such that $S' \geq \operatorname{var}_j$ op var_k . This is because, with each MALLOC call, we increment S by 1.

From Theorem 7.1 in Lecture 7, for every RAM program P, there exists a Word-RAM Program P' such that P' halts on x if and only if P halts on x, and if they halt, then P'(x) = P(x). It follows then that, if we show that, for every Word-RAM Program P' there exists a Word-RAM Program P'' such that P' halts on x if and only if P' halts on x, and if they halt, then P''(x) = P'(x), by transitivity of biconditional statements, our proof is complete.

(b) Proof. It suffices to show that ${\tt HaltOnEmpty}$ reduces to ${\tt ArithmeticOverflow}$, or that there is an algorithm A that solves ${\tt HaltOnEmpty}$ given an oracle for ${\tt ArithmeticOverflow}$. We describe the reduction below:

```
1 A(P):
Input : A RAM program P
```

Output: yes if P halts on ε , no otherwise

- **2** Construct from P a RAM program Q_P such that Q_P overflows on ε if and only if P halts on ε ;
- 3 Run the ArithmeticOverflow oracle on Q_P and return its result;

Algorithm 4: Reduction from HaltOnEmpty to ArithmeticOverflow

We construct Q_P as follows:

```
1 Q_P(P):
2 P' = \text{ConvertNoOverflowP}(P);
3 C'' = ();
4 end = len(P'.C);
5 C''.append(x = 2);
6 C''.append(counter = 0);
7 C''.append(IF counter == word_len GOTO end + 7);
8 C''.append(x = x \times 2);
9 C''.append(counter = counter + 1);
10 C''.append(IF zero == 0 GOTO end + 3);
11 C''.append(HALT);
12 Q_P = P';
13 foreach i \in [7] do
14 |Q_P.C.append(C''_i);
15 return Q_P;
```

Algorithm 5: The RAM Program Q_P constructed from P

Claim — Q_P overflows on ε if and only if P halts on ε .

Proof of claim. We construct Q_P by first creating an equivalent Word-RAM program P' for P such that there will be no integer overflows for operations by calling ConvertNoOverflowP(P) from Question 2.a. As P' can still overflow by setting a variable to a value larger than 2^w , we set a variable $x = 2^{w+1}$ if P' halts. As P' by construction does not result in overflows otherwise, by adding C'', we ensure that it halts if and only if it overflows

The claim implies that plugging this construction of Q_P into Algorithm 4 gives a correct reduction from HaltOnEmpty to ArithmeticOverflow, and thus completes the proof that ArithmeticOverflow is unsolvable.