Dense Captioning for 3D Scenes with Transformers

- Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

I. Scan2Cap Recap

Point Cloud

Object Detection

Module

Relational Graph Module Captioning Module

Captions for the Object Proposals

Scan2Cap Recap

PointNet++ **Voting Module Point Cloud Proposal Module Object Proposals** with Features Object Masks

Relational Graph Module Captioning Module

Captions for the Object Proposals

Object Detection Module

Scan2Cap Recap

PointNet++ **Voting Module Point Cloud Relational Graph Proposal Module Object Proposals Object Proposals** with Enhanced with Features **Features** Object Masks Relation Features Relational Graph **Object Detection** Module Module

Captioning Module

Captions for the **Object Proposals**

I. Scan2Cap Recap

PointNet++ **Voting Module Context-Aware** Captions for the **Point Cloud Attention Relational Graph Object Proposals Proposal Module** Captioning **Object Proposals** PER WORD **Object Proposals** with Enhanced with Features **Features Object Masks** Relation Features **Object Detection** Relational Graph Captioning Module Module Module Antonio Oroz – Kağan Küçükaytekin

I. Scan2Cap Recap

I. Scan2CapMMT Recap

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

Beam Search

ITERATIVE SEARCH

Α

CHAIR

Beam Search

ITERATIVE SEARCH

Α

CHAIR

NEXT: 0.5

INBETWEEN: 0.3

BEHIND: 0.1

CAR: 0.01

Beam Search

ITERATIVE SEARCH

A CHAIR NEXT: 0.5

INBETWEEN: 0.3

BEHIND: 0.1

CAR: 0.01

Beam Search

ITERATIVE SEARCH

Α

CHAIR

NEXT: 0.5

• • •

Beam Search

A: 0.9

CHAIR: 0.4

BEAM SEARCH SIZE 2

A: 0.9

TABLE: 0.3

Beam Search

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

NEXT: 0.5

INBETWEEN: 0.3

BEHIND: 0.1

•

A: 0.9

TABLE: 0.3

NEXT: 0.3

INBETWEEN: 0.2

•

Beam Search

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

NEXT: 0.5

0.9 * 0.4 * 0.5 = 0.18

INBETWEEN: 0.3

0.9 * 0.4 * 0.3 = 0.108

BEHIND: 0.1

0.9 * 0.4 * 0.1 = 0.036

•

A: 0.9

TABLE: 0.3

NEXT: 0.3

0.9 * 0.3 * 0.3 = 0.081

INBETWEEN: 0.2

0.9 * 0.3* 0.2 = 0.054

•

Beam Search

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

NEXT: 0.5

0.9 * 0.4 * 0.5 = 0.18

INBETWEEN: 0.3

0.9 * 0.4 * 0.3 = 0.108

BEHIND: 0.1

0.9 * 0.4 * 0.1 = 0.036

MAX

A: 0.9

TABLE: 0.3

NEXT: 0.3

0.9 * 0.3 * 0.3 = 0.081

INBETWEEN: 0.2

0.9 * 0.3* 0.2 = 0.054

Beam Search

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

NEXT: 0.5

0.9 * 0.4 * 0.5 = 0.18

INBETWEEN: 0.3

0.9 * 0.4 * 0.3 = 0.108

BEHIND: 0.1

0.9 * 0.4 * 0.1 = **0.036**

•

MAX

A: 0.9

TABLE: 0.3

NEXT: 0.3

0.9 * 0.3 * 0.3 = 0.081

INBETWEEN: 0.2

0.9 * 0.3* 0.2 = 0.054

Beam Search

A: 0.9

CHAIR: 0.4

NEXT: 0.5

• • •

• • •

BEAM SEARCH SIZE 2

A: 0.9

CHAIR: 0.4

INBETWEEN: 0.3

Beam Search

Reinforcement Learning

CIDEr

This is a white sink... 0.41

This white a rectangular... 0.32

This is kitchen white... 0.24

This white a to sink... 0.001

This is is white oven... 0.09

Beam Search

Reinforcement Learning

CIDEr

This is a white sink... 0.41

This white a rectangular... 0.32

This is kitchen white... 0.24

This white a to sink... 0.001

This is is white oven... 0.09

$$-\frac{1}{k}\sum_{i=1}^{k} \left(r(w^{i}) - b\right) \log(p(w^{i}))$$

Beam Search

Reinforcement Learning

CIDEr

This is a white sink... 0.41

This white a rectangular... 0.32

This is kitchen white... 0.24

This white a to sink... 0.001

This is is white oven... 0.09

MEAN b=0.21

$$-\frac{1}{k}\sum_{i=1}^{k} \left(r(w^{i}) - b\right) \log(p(w^{i}))$$

Beam Search

Reinforcement Learning

$$r(w^i) - b$$

This is a white sink...

0.2

This white a rectangular...

0.11

This is kitchen white...

0.03

This white a to sink...

-0.21

This is is white oven...

-0.12

MEAN **b**=0.21

$$-\frac{1}{k}\sum_{i=1}^{k} \left(r(w^{i}) - b\right) \log(p(w^{i}))$$

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

III. Quantitative Results: vs Scan2Cap

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+GRU	34.31	21.42	20.13	41.33
VoteNet+MMT =Scan2CapMMT	32.99	21.92	20.96	44.40

III. Quantitative Results: vs Scan2Cap

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+CAC	36.15	21.58	20.65	41.78
VoteNet+MMT =Scan2CapMMT	32.99	21.92	20.96	44.40

III. Quantitative Results: vs Scan2Cap

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+RG+CAC = Scan2Cap	39.08	23.32	21.97	44.78
Scan2CapMMT = Scan2CapMMT	32.99	21.92	20.96	44.40

III. Quantitative Results: Reinforcement Learning

@0.5loU

Model	CIDEr	Bleu-4	Meteor	Rouge
VoteNet+RG+CAC = Scan2Cap	39.08	23.32	21.97	44.78
VoteNet+MMT = Scan2CapMMT	32.99	21.92	20.96	44.40
Scan2CapMMT RL	36.18	23.68	21.33	44.64

MMT: This is a brown refrigerator. It is to the left of the door.

S2C: This is a white refrigerator. It is to the left of the door.

GT: There is a stainless steel refrigerator in corner of the room. There are entry

doors to its left.

MMT: This is a brown table. It is in front of a window

S2C: This is a wooden chair. It is to the left of another chair.

GT: there is a large table in the room. it has ten chairs pulled up to it.

MMT: This is a black chair. It is at the table.

S2C: This is a wooden chair. It is

to the left of another chair.

GT: This is a brown chair. It is in

between two other chairs.

MMT: This is a brown door. It is to

the right of the door.

S2C: This is a white door. It is to

the left of the shelf.

GT: This is a stainless steel refrigerator. It is to the right of a

kitchen counter.

MMT: This is a black trash can. It is to the right of the door. S2C: This is a trash can. It sets against the wall.

GT: This is a gray trash can. It is to the right of a table.

MMT: This is a brown door. It is to the right of a bookshelf.

S2C: This is a white door. It is to the left of a couch.

GT: A light brown door beside a tall shelf. A black couch is to the right of it .

MMT: This is a black keyboard. It is on the desk.

S2C: This is a square pillow. It is on the couch.

GT: This is a small square gray pillow. It is located on a black couch.

MMT: This is a brown door. It is to the right of a bookshelf.

S2C: This is a white door. It is to the left of a couch.

GT: A light brown door beside a tall shelf. A black couch is to the right of it .

MMT: This is a black keyboard. It is on the desk.

S2C: This is a square pillow. It is on the couch.

GT: This is a small square gray pillow. It is located on a black couch.

MMT: This is a black chair. It is to the right of the desk.

S2C: This is a black office chair. It is in front of a desk.

GT: This is a long tan desk. It is located near a wall and a small cabinet.

MMT: This is a black chair. It is to the right of the

desk.

S2C: This is a brown couch. It is to the left of a brown table.

GT: It is a black sofa. It is located to the wall behind the fan.

MMT: This is a black monitor. It is on the desk.

S2C: N/A

GT: The monitor is located on top of the desk, and to the left of the other monitor facing the chair.

MMT: This is a black keyboard. It is on the desk.

S2C: N/A

GT: This is a long tan desk. It is located next to a black office

chair.

Antonio Oroz – Kağan Küçükaytekin

MMT: This is a brown door. It is to the right of a bookshelf.

S2C: This is a white door. It is to the left of a couch.

GT: A light brown door beside a tall shelf. A black couch is to the right of it .

MMT: This is a black keyboard. It is on the desk.

S2C: This is a square pillow. It is on the couch.

GT: This is a small square gray pillow. It is located on a black couch.

MMT: This is a brown couch. It is to the right of the desk.

S2C: This is a brown couch. It is to the left of a table.

GT: The couch is located in the corner of the room. It is to the right side of the door.

2.MMT: This is a black keyboard. It is on a desk.

S2C: This is a black monitor. It is on a desk. GT: A black computer screen is sitting on the desk. It is next to a black framed computer screen and to the left of it.

MMT: This is a black chair. It is to the right of the desk.

S2C: This is a black office chair. It is in front of a desk.

GT: This is a long tan desk. It is located near a wall and a small cabinet.

Scan2CapMMT

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

Scan2CapMMT

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

V. Our Contribution

PointNet++ **Voting Module Context-Aware** Captions for the **Point Cloud Attention Relational Graph Object Proposals Proposal Module** Captioning **Object Proposals** PER WORD **Object Proposals** with Enhanced with Features **Features Object Masks** Relation Features Relational Graph **Object Detection** Captioning Module Module Module

IV. Our Contribution

PointNet++ **Voting Module** Memory-Captions for the **Point Cloud Meshed Decoder Augmented Object Proposals Proposal Module Encoder Object Proposals Encoder Output** with Features **Encoder Mask** Object Masks **Object Detection Transformer Module** Module Antonio Oroz – Kağan Küçükaytekin

V. Exploring Transformers for Detection Module

VoteNet

Antonio Oroz – Kağan Küçükaytekin

54

*Vote grouping is an issue! Especially when objects are overlapping.

- *Vote grouping is an issue! Especially when objects are overlapping.
- *Radius for grouping is an important hyperparameter

- *Vote grouping is an issue! Especially when objects are overlapping.
- *Radius for grouping is an important hyperparameter
- *NMS only for eval

3DETR

Point Cloud

Group-Free-3D

Point Cloud

PointNet++

lames 6

lames 61

lames 62

ames 6

VoteNet 3DETR Group-Free-3D

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

VoteNet 3DETR Group-Free-3D

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

+No NMS +No NMS

VoteNet

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

3DETR

+No NMS
+Predict with every decoder output

Group-Free-3D

+No NMS
+Predict with every
decoder output

VoteNet

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

3DETR

+No NMS
+Predict with every decoder output

Group-Free-3D

+No NMS
+Predict with every
decoder output
+Use learnable pos.
embeddings

VoteNet

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

3DETR

+No NMS +Predict with every decoder output Group-Free-3D

+No NMS
+Predict with every
decoder output
+Use learnable pos.
embeddings
+More efficient
point sampling
strategy

VoteNet

- Vote grouping is an issue!
- Cluster radius
- NMS reliance

3DETR

+No NMS
+Predict with every decoder output
+Simplest, flexible

Group-Free-3D

+No NMS
+Predict with every
decoder output
+Use learnable pos.
embeddings
+More efficient
point sampling
strategy

VoteNet 3DETR Group-Free-3D

<u>mAP@0.5</u>: 39.9 <u>mAP@0.5</u>: 47 <u>mAP@0.5</u>: 49

Antonio Oroz – Kağan Küçükaytekin

74

VoteNet 3DETR Group-Free-3D

<u>mAP@0.5</u>: 39.9 <u>mAP@0.5</u>: 47 <u>mAP@0.5</u>: 49

1M Parameters 7.3M Parameters 14.5M Parameters

VoteNet 3DETR Group-Free-3D

<u>mAP@0.5</u>: 39.9 <u>mAP@0.5</u>: 47 <u>mAP@0.5</u>: 49

1M Parameters 7.3M Parameters 14.5M Parameters

Because of data constraints, Group-Free-3D is more likely to overfit, so examine 3DETR

76

V. Exploring Transformers for Detection Module

V. Exploring Transformers for Detection Module

V. Exploring Transformers for Detection Module

Context-Aware Captions for the **Point Cloud Attention Object Proposals Captioning** 3DETR PER WORD Captioning Module Antonio Oroz – Kağan Küçükaytekin 79

What we have done?

What we have done:

• Integrate 3DETR into the architecture

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps?

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps:

End-to-end overfit to small sample for whole task

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps:

- End-to-end overfit to small sample for whole task
- Try transfer Learning with pre-trained 3DETR-m

What we have done:

- Integrate 3DETR into the architecture
- Test end-to-end pipeline by overfitting to single sample without caption

Possible next steps:

- End-to-end overfit to small sample for whole task
- Try transfer Learning with pre-trained 3DETR-m
- No promise! Ablation studies on our model is our Prio 1.

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

V. Timeline until Final Presentation

- Reproduced Scan2Cap
- Started MMT Implementation

1. Presentation

V. Timeline until Final Presentation

- Finalized MMT Implementation
- Implemented Beam Search and RL
- Looked into Detection Module alternatives
- Prototype 3DETR Implementation into Scan2Cap pipeline

- Reproduced Scan2Cap
- Started MMT Implementation

1. Presentation

2. Presentation

Antonio Oroz – Kağan Küçükaytekin

90

V. Timeline until Final Presentation

- Started MMT Implementation

Reproduced Scan2Cap

- Finalized MMT Implementation
- Implemented Beam Search and RL
- Looked into Detection Module alternatives
- Prototype 3DETR Implementation into Scan2Cap pipeline

- Trying 3DETR with MMT
- Figuring out why ReinforcementLearning is unstable
- Qualitative and Quantitative Analysis
- Ablation Study

1. Presentation

2. Presentation

Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- III. Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

- I. Scan2CapMMT Recap
- II. Improving Scan2CapMMT
- **III.** Quantitative & Qualitative Results
- IV. Detection with Transformers
- V. Timeline until the Final Presentation

THANK YOU FOR YOUR ATTENTION:D