TRIGONOMETRY

REVIEW

Si
$$\alpha + \beta = 90^{\circ}$$
, Además $\tan \alpha = \frac{3}{4}$

Efectúe:

$$A = 4 \cot \beta + 7$$

Recordar:

Si

$$\alpha + \beta = 90^{\circ}$$

se cumple que

$$RT(\alpha) = CO-RT(\theta)$$

Resolución:

$$\tan \alpha = \cot \beta = \frac{3}{4}$$

Reemplazando

$$A = 4 \cot \beta + 7$$

$$A = 4\left(\frac{3}{4}\right) + 7$$

$$A = 3 + 7$$

$$\therefore A = 10$$

Calcule tan 5x; Si:

$$sen(5x + 32^\circ) = cos(x + 4^\circ)$$

Recordar:

Si RT (
$$\alpha$$
) = CO-RT (θ)

$$\alpha + \beta = 90^{\circ}$$

Resolución:

$$\underline{\operatorname{sen}(5x + 32^{\circ})} = \underline{\cos(x + 4^{\circ})}$$

$$5x + 32^{\circ} + x + 4^{\circ} = 90^{\circ}$$

$$6x + 36^{\circ} = 90^{\circ}$$

$$6x = 54^{\circ}$$

$$x = 9^{\circ}$$

Piden:

$$tan 5x = tan 45^{\circ}$$

$$\therefore$$
 tan $5x = 1$

Calcule

$$P = \frac{7 \sec 27^{\circ} + 3 \csc 63^{\circ}}{3 \csc 63^{\circ} - \sec 27^{\circ}}$$

Recordar:

Si
$$\alpha + \beta = 90^{\circ}$$

se cumple que

$$RT(\alpha) = CO-RT(\theta)$$

Resolución:

$$27^{\circ} + 63^{\circ} = 90^{\circ}$$

Reemplazando:

$$\sec 27^{\circ} = \csc 63^{\circ}$$

$$P = \frac{7 \sec 27^{\circ} + 3 \csc 63^{\circ}}{3 \csc 63^{\circ} - \sec 27^{\circ}}$$

$$P = \frac{7 \sec 27^{\circ} + 3 \sec 27^{\circ}}{3 \sec 27^{\circ} - \sec 27^{\circ}}$$

$$P = \frac{10 \sec 27}{2 \sec 27}$$

$$\therefore P = 5$$

Reduzca:

$$M = (sen 74^{\circ} + cos 16^{\circ}) csc 74^{\circ}$$

Recordar:

R.T. Complementaria

Si
$$\alpha + \beta = 90^{\circ}$$

R.T. Recíproca

$$\operatorname{sen} \alpha \cdot \operatorname{csc} \alpha = 1$$

Resolución:

$$74^{\circ} + 16^{\circ} = 90^{\circ}$$

$$sen 74^{\circ} = cos 16^{\circ}$$

Reemplazando:

$$M = (sen 74^{\circ} + cos 16^{\circ}) csc 74^{\circ}$$

$$M = (sen 74^{\circ} + sen 74^{\circ}) \csc 74^{\circ}$$

$$\mathbf{M} = (2 sen 74^{\circ}) \csc 74^{\circ}$$

M = 2

Halle el valor de β ; si:

$$\tan(7\beta - 58^{\circ}) = \frac{1}{\cot(\beta + 8^{\circ})}$$

Recordar:

R.T. Recíproca

 $\tan\alpha\cdot\cot\alpha=1$

Resolución:

$$\tan(7\beta - 58^{\circ}) = \frac{1}{\cot(\beta + 8^{\circ})}$$

$$\tan(7\beta - 58^{\circ}) \cdot \cot(\beta + 8^{\circ}) = 1$$

$$\beta - 58^{\circ} = \beta + 8^{\circ}$$

$$6\beta = 66^{\circ}$$

$$\beta = 11^{\circ}$$

Halle el valor de θ ; Si:

$$1 = \frac{\csc(\theta - 12^{\circ})}{\sec(7\theta - 58^{\circ})}$$

Recordar:

R.T. Complementaria

Si $\sec \alpha = \csc \beta$ se cumple que

$$\alpha + \beta = 90^{\circ}$$

Resolución:

$$1 = \frac{\csc(\theta - 12^{\circ})}{\sec(7\theta - 58^{\circ})}$$

$$\sec(7\theta - 58^{\circ}) = \csc(\theta - 12^{\circ})$$

$$(70 - 58^{\circ}) + (0 - 12^{\circ}) = 90^{\circ}$$

$$8\theta - 70^{\circ} = 90^{\circ}$$

$$8\theta = 160^{\circ}$$

$$\theta = 20^{\circ}$$

Escriba verdadero (V) o falso (F) según corresponda:

a) El punto A(6;-3)
$$\in$$
 IIC (F)

b) El punto
$$B(-6;6) \in IC$$
 (F)

c) El punto
$$C(2;2) \in IVC$$
 (F)

d) El punto
$$D(-1;-3) \in IIIC$$
 (V)

Del grafico, calcule:

$$P = \frac{a + b + m}{n}$$

Resolución:

Del gráfico:

$$a = 4$$
 $m = -5$

$$b = 6$$
 $n = 2$

Piden:

$$P = \frac{a+b+m}{n}$$

$$P = \frac{4 + 6 + (-5)}{2}$$

$$\therefore P = \frac{5}{2}$$

Del grafico, calcule: $a \cdot b$

Resolución:

Simetría respecto al eje Y:

$$a = 6$$

$$b = -5$$

Piden: a.b = (6)(-5)

 \therefore a.b = -30

Nuestro radar presenta fallas y solo nos muestra las coordenadas de los puntos A y B como se muestra en la figura. Se nos pide calcular: \underline{m}

Resolución:

Simetría respecto al eje X:

$$m = -3$$

$$n = -3$$

Piden:
$$\frac{m}{n} = \frac{-3}{-3}$$

$$\therefore \frac{m}{n} = 1$$