

CONCOURS D'ENTREE EN 3ième ANNEE – SESSION AVRIL 2020

EPREUVE DE MATHEMATIQUES

Durée 2h00

Exercice 1. 6 pts

1)	Soit la suite de fonctions (f_n) définie sur l'intervalle $[0, +\infty[$ par $f_n(x) =$	$= \frac{nx}{1+n^2x^2}.$
----	---	--------------------------

a) Etudier la convergence simple de cette suite. 1pt

b) Etudier la convergence uniforme de cette suite. 1pt

2) Soit la suite de fonctions (f_n) définie sur \mathbb{R} par $f_n(x) = \frac{x}{1+nx^2}$.

a) Etudier la convergence simple de cette suite. 1pt

b) Etudier la convergence uniforme de cette suite. 1pt

3) On définit la fonction f par $f(x) = \sum_{n=1}^{+\infty} \sin(\frac{1}{\sqrt{n}})x^n$

a) Déterminer le rayon de convergence de cette série entière. **0,5pt**

b) Etudier la convergence de cette série au point x = -R.

0,75pt

c) Etudier la convergence de cette série au point x = R.

0,75pt

Exercice 2. 6pts

1) Soit la matrice
$$A = \begin{bmatrix} -2 & -1 & -1 \\ -2 & -1 & 1 \\ -1 & -1 & 3 \end{bmatrix}$$

a) Vérifier si A est inversible.

0,75pt

b) Déterminer l'inverse de A le cas échéant.

0,75pt

2) On définit les matrices M et N par M =
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 3 & -1 \end{bmatrix}$$
 et N = $\begin{bmatrix} 4 & 0 & -1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.

a) Vérifier si M est diagonalisable ou non.

0,75pt

b) Si M est diagonalisable, déterminer une matrice de passage P et une matrice diagonale D telles que M⁻¹PM= D.

0,75pt

c) Vérifier si N est diagonalisable ou non.

0,75pt

d) Si N est diagonalisable, déterminer une matrice de passage Q et une matrice diagonale Δ telles que $N^{-1}PN=\Delta$.

0,75pt

3) On définit la matrice B par B =
$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

a) Déterminer les valeurs propres de la matrice B.

0,75pt

b) Soit n un entier naturel non nul. Déterminer la matrice Bⁿ.

0,75pt