2회차

신뢰구간(Confidence Interval)

모집단의 평균(혹은 비율 등)이 포함될 것으로 예상되는 값의 범위 - 구간추정

• **신뢰구간** : 점추정치 ± 오차범위

• 신뢰수준 : 구간이 모수를 포함할 확률

유의수준은 가설검정 파트 설명 참고

예) 95%의 신뢰수준에서 택배가 도착하는 데 걸리는 시간은 1~1.5일입니다.

→ 해석: 95% 확률로 택배가 도착하는 데 1 ~ 1.5일 걸린다

신뢰구간 : 1 ~ 1.5일 (1.25 ± 0.25 일)

◦ 점추정치 : 1.25, 오차범위: 0.25

• 신뢰수준: 95%

▼ 참고) 신뢰구간 계산

Z분포(표준정규분포) 기반 신뢰구간

모집단 표준편차를 알고 있을 때 사용

lack N - ar X : 표본평균

• σ^2 : 모집단의 표준편차

• $z_{lpha/2}$: 신뢰수준에 따른 Z값

• $\frac{\sigma}{\sqrt{n}}$: 표준오차

t분포 기반 신뢰구간

모집단 표준편차를 모를 때 사용

 $lack {ar V}$ • ar X : 표본평균

s: 표본의 표준편차

• $t_{lpha/2,df}$: 신뢰수준에 따른 t값

• $\frac{s}{\sqrt{n}}$: 표준오차를 근사한 값(표본의 표준편차로 모집단의 표준편차 대체)

분포(Distribution)

정규분포(Normal Distribution)

종모양의 확률 분포

- 평균에서 확률이 가장 솟아오르고, 평균을 중심으로 멀어지면서 확률이 낮아진다.

정규분포의 특징

- 1. 좌우 대칭
 - 평균 = 중앙값 = 최빈값
- 2. 범위(신뢰구간)
 - ±1σ 범위 → 약 68% 확률
 - ±2σ 범위 → 약 95.5% 확률
 - ±3σ 범위 → 약 99.7% 확률
- 3. 더하기, 빼기, 나누기를 해도 여전히 정규분포 유지 \rightarrow 표준화가 가능한 이유

표준화(Standardization)

- 분포의 평균과 분산 값을 0과 1로 통일하는 작업
- 표준화(standard scaler) 공식: X (값) 에서 평균 μ 을 빼고 표준편차 σ 로 나눈 값

• 표준화의 예시

👺 은중이는 이번 시험에서 수학은 85점, 영어는 90점을 받았다.

은중이네 반 학생들의 성적을 고려했을 때, 은중이는 어떤 과목을 더 잘봤다고 할 수 있을까?

은중이네 반 전체 성적

학생	수학	영어
은중	85	90
상연	77	95
재준	92	93
상학	70	92
연진	65	87
루미	63	79
세리	76	88
병헌	95	95
재석	80	77
석진	68	78

과목 평균과 표준편차

과목	평균	표준편차
수학	77.1	7
영어	87.4	11

은중이는 두 과목 모두 평균보다 좋은 점수를 받았다.

은중이 점수(원점수, Z-score)

과목	점수	표준화점수 (Z-score)
수학	85	0.72
영어	90	0.37

표준화 점수를 보니 은중이는 반의 전체 수준을 고려했을 때 수학을 영어보다 잘봤다는 것을 알 수 있다.

• 표준정규분포(Z-분포, Standard Normal Distribution, Z-Distribution)

평균이 0이고 분산이 1인 정규분포

 $Z \sim N(0,1)$

t-분포(t-Distribution)

모집단의 표준편차 σ를 모를 때, 대신 표본의 표준편차 s를 추정해서 사용하는 분포 s의 불확실성을 반영하기 위해 정규분포보다 꼬리가 더 두꺼운 t-분포를 사용 특히 표본 수가 적을 때(n < 30) 사용

- 자유도(df)가 커질수록 t값은 작아진다 = t-분포는 Z 분포에 가까워진다!
 - 。 표본의 개수가 많아질수록, 표본표준편차 s가 σ에 더 가까워짐

○ 추정의 불확실성이 줄어들면서 t-분포의 꼬리도 얇아지며 정규분포와 유사해진다.

카이제곱 분포

정규분포를 따르는 독립 확률변수들의 제곱합으로 만들어지는 분포

D

- $Z_i \sim N(0,1)$: 독립적인 표준정규분포 확률변수
- k: 자유도(degrees of freedom, df)
- χ^2 : 카이제곱 확률변수

F분포

두 개의 **카이제곱 분포 확률변수 비율**로 정의되는 분포

D

- χ_1^2,χ_2^2 : 독립적인 카이제곱 확률변수
- df_1, df_2 : 자유도

가설검정

가설검정이란 관찰된 효과가 우연에 의한 것인지 여부를 판단하는 과정을 의미합니다.

가설검정의 대표 예시 : A/B TEST

- A와 B 두 가지 처리(조건)를 비교해서 어떤 것이 더 효과적인지 통계적으로 검정하는 방법 흔히
 - A = 기존 버전 (Control) 대조군
 - 。 B = 새로운 버전 (Treatment) 실험군

가설검정의 주요 개념

항목	설명
귀무가설(H _o)	밝히고자 하는 가설의 부정 : 두 그룹의 클릭률 차이는 없다 (즉, 차이 = 0)
대립가설(H₁)	밝히고 싶은 가설 : 두 그룹의 클릭률 차이는 있다 (즉, 차이 ≠ 0)
검정통계량	표본에서 관찰한 값이 귀무가설 아래에서 얼마나 평범한 값인지 보여주는 숫자
유의수준 α	귀무가설(H _o)을 기각할 기준 - 보통 0.05 (5%)
p-value	실제 데이터에서의 차이가 우연히 나올 확률
판단 기준	p-value < 0.05 → H₀ 기각 (차이 유의함)

검정통계량

표본에서 관찰한 값이 귀무가설 아래에서 얼마나 평범한 값인지 보여주는 숫자 표본 데이터를 한 숫자로 요약해서, '이게 흔한 일인가, 드문 일인가?' 판단하는 척도

D

p-value와 유의수준

귀무가설이 맞다고 가정했을 때, 지금과 같은 데이터가 나올 확률

- 유의수준: p-value의 수치를 통계적으로 유의한지 여길 것에 대한 기준점
 - 。 유의수준을 5%라 가정 → p-value가 0.05 이하이면 통계적으로 유의하다 (= 결과가 우연히 발생한 게 아니다)
- 유의수준(α)과의 관계
 - ∘ 유의수준 α: 기준선 역할을 하는 값. 보통 0.05 (5%) 사용 (=귀무가설 채택 기준)
- p-value 에 따른 판단
 - p-value < α → 귀무가설 기각 = 우연히 일어났을 가능성이 거의 없다 = 통계적으로 유의미하다
 - 。 p-value ≥ α → 귀무가설 기각 못함 = 우연히 일어났을 가능성이 높다 = 통계적으로 유의미하지 않다.

제 1종 오류와 제 2종 오류

가설검정에서 두 가지의 오류가 발생할 수 있다.

	귀무가설 (H_0) 이 참	귀무가설(H_0) 이 거짓
귀무가설(H_0) 채택	올바른 결정	제 2종 오류
귀무가설(H_0) 기각	제 1종 오류	올바른 결정

가설검정의 기본 순서

▼ STEP1: 가설 설정 - 귀무가설과 대립가설 각각 설정

STEP2: 가설에 적합한 검정 방법 선택

STEP3: 유의수준 결정

STEP4: 검정방법에 따라서 표본의 검정통계량과 p-value 계산

STEP5: 유의수준과 p-value를 비교하여 귀무가설의 기각여부 결정

가설검정의 종류

분포에 따른 구분

검정 방식	검정통계량	관련 분포	활용대상	대상
Z-검정	$Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$	표준정규분포	집단 개수: 주로 2개 표본의 평균 비교 모집단의 분산을 알 수 있는 경우	연속형 자료
t-검정	$t=rac{ar{X}-\mu_0}{s/\sqrt{n}}$	t분포	집단 개수: 주로 2개 표본의 평균 비교 모집단의 분산을 알 수 없는 경우	연속형 자료
카이제곱검정	$\chi^2 = \sum_{i=1}^{rac{(O-E)^2}{E}} \chi^2 = \sum_{i=1}^k rac{(ar{X}_i - \mu_i)^2}{\sigma_i^2/n}$	카이제곱분포	집단 개수: 주로 2개 이상 독립성 검정 : 두 범주형 변수가 독립 적인지 적합도 검정 : 데이터가 특정 분포를 따르는지 동질성 검정 : 여러 집단이 동일한 분 포를 따르는지	범주형 자료
F-검정	$F = rac{MS_{ m between}}{MS_{ m within}} = rac{SS_{ m between}}{df_{ m between}} = rac{\sum_{j=1}^k n_j (ar{X}j - ar{X} ar{Z} ar{Z})^2}{k-1} = rac{\sum_{j=1}^k \sum_{i=1}^{n_j} (X_{ij} - ar{X}_i)^2}{N-k}$	F분포	집단 개수: 주로 3개 이상 두 개 이상의 그룹의 분산 비교 3개 이상의 집단 간 평균의 차이 비교 회귀모델에서의 전체 유의성 검정	범주형 자료

상황에 따른 구분

비교 대상	상황	검정	관련 분포	전제조건
평균	한 집단 vs 기준값	단일표본 t검정	t분포	정규성
	독립된 두 집단	이표본 t검정	t분포	정규성, 등분산성
	대응된 두 집단	대응표본 t검정	t분포	정규성
	세 집단 이상	ANOVA	F분포	정규성, 등분산성, 독립 성

• 현실적으로 모집단의 분산을 알 수 있는 경우가 많지 않기 때문에 Z-검정보다는 t-검정을 주로 사용합니다.

t검정

1개 또는 2개의 집단 간 **평균 차이**를 비교하는 검정 방법. 정규분포를 가정.

t-검정의 전제

- 정규성: 정규분포에서 나온 데이터라는 전제를 가짐
- 등분산성 : 비교 대상의 분산이 같다
 - → 전제가 어긋날 경우 비모수검정(non-parametric test)을 고려해야 함

t-검정의 종류

• 단일표본 t검정 (One-Sample t-test)

- 。 하나의 집단 평균이 특정 기준값과 다른지 비교
- 예:학생들의 평균 수면시간이 7시간과 다른가?
 - 귀무가설 : 모집단의 평균은 7시간이다.
 - 대립가설: 모집단의 평균은 7시간이 아니다.
- 연구 맥락에 따라 의미 있는 기준값을 설정하는 것이 중요

• 이표본 t검정 (Two-Sample t-test)

- 。 독립표본 t검정과 동의어
- 。 서로 독립된 두 집단의 평균 차이 비교
- 。 예 : 남학생과 여학생의 평균 키가 다른가?
 - 귀무가설 : 두 집단의 평균은 같다.
 - 대립가설 : 두 집단의 평균은 다르다.
- 전제 조건 : 정규성, 등분산성
 - 정규성이 어긋날 경우 → Mann-Whitney U검정 사용 (비모수 대안)
 - 등분산성이 아닐 경우 → Welch t검정을 사용 (정규성 가정은 여전하지만 분산은 달라져도 괜찮음)

• 대응표본 t검정 (Paired t-test)

- 。 같은 집단에서 전과 후를 비교하거나, 쌍을 이룬 데이터 비교
- 예 : 약 복용 전후의 혈압 차이 → 비교 대상이 같은 사람, 같은 특성
- 두 시점의 차이값(후 전) 자체가 정규성을 가져야 함
 - 정규성 어긋날 경우 : Wilcoxon signed-rank 검정 사용

▼ 대응 여부 구분하기

구분	독립 t검정	대응 t검정
데이터 구조	두 집단이 전혀 다른 사람들	같은 사람의 전/후 변화
예시	실험군 vs 대조군	복용 전 vs 복용 후
검정 이름	이표본 t검정	대응표본 t검정

정규성과 등분산성 확인

정규성: 표본이 정규분포를 따르는 모집단에서 나왔다고 가정

• 등분산성 : 두 집단의 분산이 동일하다고 가정

정규성 검정 방법

방법	설명	사용 시기
Q-Q플랏	정규분포와 데이터의 분위수를 비교하는 시각적 도 구	탐색적 단계, 직관적 확인
샤피로-윌크 검정	귀무가설: "정규분포이다" (p < 0.05면 정규성 기각)	소표본일 때 효과적
Kolmogorov-Smirnov 검정 (KS 검정)	이론적 분포(정규분포 등)와 데이터 분포의 차이 검 정	대체로 샤피로보다 덜 민감
히스토그램 확인	데이터 분포의 대칭성과 종모양을 시각적으로 확인	보조 자료로 사용

[⇒] p > 0.05라도 정규성을 확정할 수는 없음 : 단지 정규분포가 아닌 것 같지 않다~ 수준의 판단

등분산성 검정

방법	설명	사용 시기
Levene 검정	귀무가설: "두 집단의 분산은 같다"	가장 널리 쓰이며 정규성 민감도 낮음
F-검정	두 집단 분산이 같은지를 검정 (정규성 민감)	정규성에 민감해 실제로는 잘 사용되지 않음
Bartlett 검정	세 집단 이상에서 분산 동질성 검정	2개 이상 집단의 분산이 동일한지 검정 (정규성 가정 강함)

[⇒] 등분산성이 기각되면 Welch t검정 또는 Welch ANOVA 사용

실무에서의 판단 흐름

전제 조건 결과	n ≤ 30	n > 30
정규성 만족	t검정	t검정
정규성 불만족	비모수 검정 권장	t검정 가능 (분포 확인 후)
등분산성 불만족	Welch t검정	Welch t검정

통계 실습

- 1. 신뢰구간 구하기
 - 2. t검정 실습
 - a. 단일표본
 - b. 독립표본(2표본)
 - c. 대응표본

다음 수업 안내

일시 : 10/1(수) 10시

수업내용

- 1. ANOVA 검정, 다중검정
- 2. 카이제곱 검정 (적합성 검정, 독립성 검정)
- 3. 상관분석 (상관계수)