Sistemi Elettronici Tecnologie e Misure

Misurare una tensione o una corrente Errore di consumo Non idealità di voltmetri ed amperometri Misure di resistenze Metodo a 2 e a 4 fili Specifiche di massima dei multimetri Esercizi

Tensione a vuoto e corrente di corto circuito

In genere si è interessati alla misura della tensione a vuoto o alla misura della corrente di corto circuito per poter risalire a dei circuiti equivalenti secondo il modello di Thévenin o Norton

Le caratteristiche di non idealità di voltmetri o amperometri non consentono di misurare le tensioni a vuoto o le correnti di cc

Voltmetro ideale

In genere il circuito di cui si vuol misurare la tensione è rappresentabile per mezzo di un eq. di Thevenin

□ La tensione che si vorrebbe misurare è la tensione a vuoto E₀ che si può ottenere solo per resistenza di ingresso del voltmetro idealmente infinita

In generale si definisce errore sistematico di consumo della misura X il valore ΔX dato da

$$\Delta X = X_m - X_{ideale}$$

dove X_m è il valore ottenuto dalla misura con lo strumento "reale" mentre X_{ideale} è il risultato di misura con strumento ideale

 \blacksquare La resistenza di ingresso di un voltmetro numerico è , in genere, di $10M\Omega$

Negli oscilloscopi è di 1MΩ

Esempio: caratteristiche del multimetro 34401

DC Voltage

Measurement Method: Continuously integrating, multi-slope III

A/D converter.

A/D Linearity: 0.0002% of reading ± 0.0001% of range

Input Resistance:

0.1 V, 1 V, 10 V ranges Selectable 10 M Ω or >10 G Ω [11]

100 V, 1000 V ranges 10 MΩ ±1%

Input Bias Current: < 30 pA at 25°C

Input Terminals: Copper alloy

Input Protection: 1000 V on all ranges

□ Nei tester analogici è tipicamente di $20k\Omega/V_{fs}$ (per es. con $10V_{fs}$ si ha $R_V=200k\Omega$)

Per esempio il tester analogico ICE 680

A causa della non idealità dei voltmetri la tensione che si misura non è più la tensione a vuoto E_o ma una tensione di valore inferiore E_m

$$E_m = \frac{R_V}{R_V + R_O} E_o$$
 da cui l'errore di consumo ΔE vale:

$$\Delta E = E_m - E_o = -E_o \cdot \frac{R_o}{R_o + R_V}$$

- Questo errore è dovuto alla presenza di R_V e tende a zero al tendere di R_V ad infinito $(R_V \gg R_0)$
- Inoltre

$$\Delta E = E_m - E_o = -E_o \cdot \frac{R_o}{R_o + R_V} = -E_o \cdot \frac{R_o}{R_V \cdot \left(1 + \frac{R_o}{R_V}\right)} \approx se R_V \gg R_0$$

$$\approx -E_o \cdot \frac{R_o}{R_V} da cui si ottiene \frac{\Delta E}{E_o} = -\frac{R_o}{R_V}$$

Amperometro ideale

In genere si vuol misurare la corrente elettrica I_0 che scorre in un ramo di un circuito (eq. Norton)

- La corrente che si vuol misurare è la corrente di corto circuito che scorre nel ramo AB
- Se l'amperometro fosse ideale si avrebbe V_{AB}=0V

Errore di consumo amperometro reale

Gli amperometri numerici presentano una resistenza serie di pochi ohm

- A volte non si trova la resistenza dell' amperometro ma la caduta di tensione ai capi dell'amperometro (V_{bv} burden voltage)
- □ Per esempio: nell'agilent 34401 con I_{fs} =1A si ha una caduta di tensione minore di 1.0V da cui R_a = V_{bv}/I_{fs} = 1V/1A quindi R_a <1 Ω (valore massimo)

	100,0000 11122	AAA 11 1 10 18177	0,000 - 0,010	0,000 - 0,010	0,000 - 0,010	0,1000 - 0,0002
Corrente DC	10,00000 mA	< 0,1V (tensione di carico)	0,005 + 0,010	0,030 + 0,020	0,050 + 0,020	0,0020 + 0,0020
	100,0000 mA	< 0.6 V	0,010 + 0,004	0,030 + 0,005	0,050 + 0,005	0,0020 + 0,0005
	1,000000 A	< 1,0 V	0,050 + 0,006	0,080 + 0,010	0,100 + 0,010	0,0050 + 0,0010
	3,00000 A	< 2,0 V	0,100 + 0,020	0,120 + 0,020	0,120 + 0,020	0,005 + 0,0020

Errore di consumo: amperometro reale

La caduta di tensione sul ramo AB non è dunque nulla in quanto la corrente I_m che circola nel ramo amperometrico introduce una caduta di tensione pari a R_aI_m

In seguito all'inserimento dell'amperometro la corrente misurata I_m è minore della corrente di cortocircuito I_o che si desidera misurare

Errore di consumo: amperometro reale

L'inserzione dello strumento provoca un effetto di carico che introduce un errore di consumo

$$\Delta I = I_m - I_{ideale}$$

$$\Delta I = \frac{R_o}{R_o + R_a} I_o - I_o$$

$$\Delta I = -\frac{R_a}{R_o + R_a} I_o$$

Il cui valore tende a zero al tendere a zero di R_a ($R_a << R_0$)

In generale per misurare una corrente si utilizza un voltmetro numerico a doppia rampa ed una resistenza R_s interna allo strumento di valore piccolo ma non nullo (tipici valori $0.1\Omega \div 10\Omega$)

Applicando la legge di Ohm possiamo misurare una resistenza R_x dal rapporto della caduta di tensione V ai capi di R_x e la corrente I che attraversa R_x ottenendo $R_x = \frac{V}{I}$

Questo metodo è chiamato "metodo voltamperometrico"

Il metodo voltamperometrico si basa sulla misura contemporanea della tensione V_o ai capi della resistenza e la misura della corrente I_o che la attraversa

Con riferimento al flusso di energia dal generatore al carico R_x il voltmetro può essere inserito a monte o a valle dell'amperometro

- □ I due schemi circuitali, "a monte" o "a valle", sono indifferenti soltanto nel caso ideale in quanto l'inserzione dei due strumenti non influenza in alcun modo il circuito
- Nella realtà il voltmetro avrà resistenza interna grande, ma non infinita, quindi assorbirà una corrente diversa da zero
- D'altro canto l'amperometro avrà resistenza interna piccola, ma certamente non nulla, per cui provocherà ai suoi capi una caduta di tensione diversa da zero

- Di conseguenza si presentano degli effetti sistematici (errori di consumo) dipendenti dal tipo di collegamento prescelto e dalle caratteristiche degli strumenti
- Tali effetti possono essere corretti o minimizzati con una scelta oculata sia della strumentazione che dello schema da utilizzare
- A volte gli errori di consumo, benché presenti sono più piccoli dell'incertezza di misura, in tal caso possono essere trascurati

Misurare una resistenza: voltmetro a monte

Amperometro: per misurare la corrente che scorre all'interno di una resistenza, deve essere montato in serie alla resistenza. Per non perturbare la misura dovrebbe presentare una resistenza interna idealmente nulla ($R_A=0\ \Omega$ i.e. corto circuito)

Misurare una resistenza: voltmetro a valle

Voltmetro: per misurare la caduta di tensione ai capi di R_x deve essere montato in parallelo alla resistenza incognita. Per non perturbare la misura dovrebbe presentare una resistenza di ingresso idealmente infinita ($R_V = \infty \Omega$ i.e. circuito aperto)

Voltmetro ed amperometro non sono ideali

- \square II voltmetro ha una resistenza di ingresso R_V
- L'amperometro ha una resistenza serie R_A

Voltmetro a valle dell'amperometro

Voltmetro a monte dell'amperometro

Schema voltmetro a monte: errore di consumo

$$R_m = \frac{V_m}{I_m} = \frac{V_m}{I_m} = \frac{V_{R_x} + V_{R_A}}{I_m} = R_x + R_A$$

$$\Delta R = R_m - R_x = R_A$$

$$\rightarrow \frac{\Delta R}{R_x} = \frac{R_A}{R_x} \ errore \ sist. \ relativo$$

N.B.: la resistenza R_V del voltmetro non influenza la misura

Schema voltmetro a valle: errore di consumo

$$R_m = \frac{V_m}{I_m}$$
 (il pedice m indica "misurata")

$$R_{m} = \frac{V_{m}}{I_{m}} = \frac{V_{m}}{I_{R_{x}} + I_{R_{v}}} = \frac{1}{(I_{R_{x}} + I_{R_{v}})/V_{m}} = \frac{1}{\frac{1}{R_{x}} + \frac{1}{R_{v}}} = \frac{R_{x} \cdot R_{v}}{R_{x} + R_{v}}$$

$$\Delta R = R_m - R_x = -\frac{R_x^2}{R_x + R_V}$$

$$\Delta R = R_m - R_x = -\frac{R_x^2}{R_x + R_V}$$

$$\rightarrow \frac{\Delta R}{R_{x}} = -\frac{R_{x}}{R_{x} + R_{v}} errore sist. relativo$$

N.B.: la resistenza dell'amperometro non influenza la misura

Quando conviene un metodo rispetto ad un altro?

Uguagliando, in modulo, i valori relativi degli errori di consumo $\left|-\frac{r_x}{r_x+R_V}\right| = \left|\frac{R_A}{r_X}\right|$ si ottiene

$$r_x^2 = R_A(r_x + R_V) \approx R_A R_V \rightarrow r_x \approx \sqrt{R_A R_V}$$

dove r_x individua il valore per cui l'errore di consumo con i due schemi è lo stesso

Quando conviene un metodo rispetto ad un altro?

$$r_{x} \approx \sqrt{R_{A}R_{V}}$$

- Se $R_x < r_x$ allora conviene utilizzare il voltmetro a valle (misure di resistenze piccole)
- Se $R_x > r_x$ allora conviene utilizzare il voltmetro a monte (misura di resistenze grandi)
- Se $R_x = r_x$ allora i due metodi sono equivalenti

Esempio: $R_A = 100\Omega$, $R_V = 1M\Omega$, R_x circa $1k\Omega$, $r_x = 10k\Omega \rightarrow R_x < r_x \rightarrow v$. a valle

Misura di resistenza (2 wires)

Le misure di resistenza sono ricavate per mezzo di un generatore di corrente l_o

 Si misura, sempre con un voltmetro numerico, la caduta di tensione sulla resistenza incognita

□ Inoltre I₀=V_t/R_t

Misura di resistenza (2 wires)

In realtà la misura ottenuta $R_{\rm m}$ non riguarda "solo" $R_{\rm x}$ ma anche le resistenze $R_{\rm w}$ dei fili di collegamento e le resistenze di contatto $R_{\rm c}$ delle boccole di collegamento

$$R_m = R_X + 2R_w + 2R_c$$

Le resistenze R_w dei fili di collegamento in un resistore del tipo indicato in figura vale circa:

$$R_w = \rho L/S = 1.68 \cdot 10^{-8} \cdot 2 \cdot 10^{-3} / 3 \cdot 10^{-8} \approx 1 \text{m}\Omega$$

Inoltre: R_c =non facile da valutare=10-20m Ω ?

In genere R_w ed R_c sono piccole (ordine di grandezza $m\Omega$) e quindi se R_x è sufficientemente grande l'effetto delle resistenze dovute ai collegamenti e alle boccole possono essere trascurate

$$R_m \sim R_X + \frac{2R_w}{4R_c} + \frac{2R_c}{4R_c} \sim V_X/I_o = R_t \cdot (V_X/V_t)$$

Misura di resistenza (4 wires)

Per misure di resistori (di piccolo valore) in cui il contributo di R_c e R_w non sia trascurabile occorre utilizzare il metodo a 4 morsetti in cui, con i morsetti di sensing la tensione V_x è misurata in due punti più vicini ad R_x (morsetti di sensing SENS_{HI} SENS_{I OW})

Misura di resistenza (4 wires)

Le due resistenze di contatto delle boccole di sensing non sono percorse da correnti significative in quanto le resistenza di ingresso del voltmetro è molto alta rispetto ad R_x

Misura di resistenza (4 wires)

Esempio: Multimetro 34401

Specifiche di massima dei multimetri

- Portata: valore di misura massimo ottenibile.
 Qualunque valore superiore alla portata è indicato con "overload" (o indicazione simile)
- Risoluzione: la più piccola variazione del misurando che può essere apprezzato sul display (cifra meno significativa)
- Accuratezza: è la capacità di uno strumento di misura di fornire valori tendenti al valor vero del misurando

- Condizioni nominali: sono le condizioni operative dello strumento per le quali le caratteristiche metrologiche dello strumento sono rispettate (per esempio: temperatura di funzionamento fra 0°C e 85°C)
- Condizioni limite di funzionamento: se superate possono portare al danneggiamento dello strumento (per esempio tensione massima misurabile senza danneggiamento di 300V)

Nelle misure di resistenza può essere importante conoscere la corrente di test utilizzata al fine di limitare l'autoriscaldamento, per effetto Joule, della resistenza stessa → problema dell'autoriscaldamento

■ DC Characteristics

Accuracy Specifications ± (% of reading + % of range) [1]

Function	Range [3]	Test Current or Burden Voltage	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient /°C 0°C – 18°C 28°C – 55°C
DC Voltage	100.0000 mV 1.000000 V 10.00000 V 100.0000 V 1000.000 V		0.0030 + 0.0030 0.0020 + 0.0006 0.0015 + 0.0004 0.0020 + 0.0006 0.0020 + 0.0006	0.0040 + 0.0035 0.0030 + 0.0007 0.0020 + 0.0005 0.0035 + 0.0006 0.0035 + 0.0010	0.0050 + 0.0035 0.0040 + 0.0007 0.0035 + 0.0005 0.0045 + 0.0006 0.0045 + 0.0010	0.0005 + 0.0005 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001 0.0005 + 0.0001
Resistance [4]	100.0000 Ω 1.000000 kΩ 10.00000 kΩ 100.0000 kΩ 1.000000 MΩ 10.00000 MΩ 100.0000 MΩ	1 mA 1 mA 100 μA 10 μA 5 μA 500 nA 500 nA // 10 MΩ	0.0030 + 0.0030 0.0020 + 0.0005 0.0020 + 0.0005 0.0020 + 0.0005 0.002 + 0.001 0.015 + 0.001 0.300 + 0.010	0.008 + 0.004 0.008 + 0.001 0.008 + 0.001 0.008 + 0.001 0.008 + 0.001 0.020 + 0.001 0.800 + 0.010	0.010 + 0.004 0.010 + 0.001 0.010 + 0.001 0.010 + 0.001 0.010 + 0.001 0.040 + 0.001 0.800 + 0.010	0.0006 + 0.0005 0.0006 + 0.0001 0.0006 + 0.0001 0.0006 + 0.0001 0.0010 + 0.0002 0.0030 + 0.0004 0.1500 + 0.0002

Visualizzazione:

- Display a 7 segmenti con un numero variabile di cifre
- Il separatore decimale (in inglese è "il punto") è spostato in funzione del range scelto dall'utente

Visualizzazione:

- Alcune cifre possono variare fra 0 e 9 ("cifre piene")
- Alcune cifre non possono assumere tutti i valori ("mezze cifre")
- Esempio:
 - □ letture fra 0000 a 9999: 4 digit (4 cifre piene)
 - □ letture fra 00000 a 19999: 4 ½ digit (4 cifre piene e quella più significativa che assume solo valori pari a 0 oppure 1)

Multimetro HP973A con fondo scala 40mV, 400mV, 4V...

- Display a 4 cifre di cui
 - 3 digit variano da 0 a 9
 - la cifra più significativa varia fra 0 e 4
- □ Si tratta di uno strumento a 3½ digit

Esempio

Multimetro HP34401A con fondo scala 100mV, 1V, 10V... (20% overrange)

- Display a 7 cifre di cui
 - 6 digit variano da 0 a 9
 - la cifra più significativa varia fra 0 e 1
- Si tratta di uno strumento a 6½ digit

Esercizio

Un generatore ideale di corrente eroga (5 ± 0.01) mA su due resistenze di valore R_1 =470 Ω ed R_2 =1.8k Ω , conosciute con un'incertezza dell'1%. Le due resistenze sono collegate in modo da ottenere un partitore di corrente.

Disegnate il circuito da studiare

In base ai valori ed alle tolleranze indicate in precedenza, determinate il valore di corrente che scorre in R_1 e l'incertezza corrispondente

In base al risultato ottenuto nel punto precedente, determinate la potenza dissipata in R_1 e la corrispondente incertezza

Supponete di misurare la corrente che scorre in R₁ per mezzo di un amperometro le cui caratteristiche sono indicate al fondo (utilizzate la colonna "1Year"): valutate l'incertezza che ci si attende dalla misura di I₁ (scegliete il fondo scala più opportuno) Determinate l'errore di consumo dovuto alla resistenza dell'amperometro.

DC Characteristics

Accuracy Specifications ± (% of reading + % of range) [1]

Function	Range [3]	R_ammeter	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient /°C 0°C – 18°C 28°C – 55°C
DC Current	10.00000 mA	10Ω	0.005 + 0.010	0.030 + 0.020	0.050 + 0.020	0.002 + 0.0020
	100.0000 mA	6Ω	0.01 + 0.004	0.030 + 0.005	0.050 + 0.005	0.002 + 0.0005
	1.000000 A	1Ω	0.05 + 0.006	0.080 + 0.010	0.100 + 0.010	0.005 + 0.0010
	3.000000 A	0.7Ω	0.10 + 0.020	0.120 + 0.020	0.120 + 0.020	0.005 + 0.0020

Un generatore ideale di corrente eroga (5 ± 0.01) mA su due resistenze di valore R_1 =470 Ω ed R_2 =1.8k Ω , conosciute con un'incertezza dell'1%. Le due resistenze sono collegate in modo da ottenere un partitore di corrente.

Disegnate il circuito da studiare

In base ai valori ed alle tolleranze indicate in precedenza, determinate il valore di corrente che scorre in R_1 e l'incertezza corrispondente

$$I = (5 \pm 0.01) \text{mA}$$

$$R_1 = 470\Omega, 1\% \rightarrow \delta R_1 = 4.7 \Omega$$

$$R_2 = 1.8 \ k\Omega$$
, $1\% \rightarrow \delta R_2 = 18 \ \Omega$

$$I_{R_1} = I \cdot \frac{R_2}{R_1 + R_2}$$

Un generatore ideale di corrente eroga (5 ± 0.01) mA su due resistenze di valore R_1 =470 Ω ed R_2 =1.8k Ω , conosciute con un'incertezza dell'1%. Le due resistenze sono collegate in modo da ottenere un partitore di corrente. Disegnate il circuito da studiare.

In base ai valori ed alle tolleranze indicate in precedenza, determinate il valore di corrente che scorre in R_1 e l'incertezza corrispondente

Modello mat.:
$$I_{R_1} = I \cdot \frac{R_2}{R_1 + R_2} = 3.964757 \dots mA$$

Incertezza: calcolo in base al modello deterministico

$$\delta I_{R_1} = \left|\frac{\partial I_{R_1}}{\partial I}\right| \delta I + \left|\frac{\partial I_{R_1}}{\partial R_1}\right| \delta R_1 + \left|\frac{\partial I_{R_1}}{\partial R_2}\right| \delta R_2 = \cdots \rightarrow \frac{\delta I_{R_1}}{I_{R_1}} = \frac{\delta I}{I} + \frac{R_1}{R_1 + R_2} \cdot \left[\frac{\delta R_1}{R_1} + \frac{\delta R_2}{R_2}\right]$$

$$\frac{\delta I_{R_1}}{I_{R_1}} = 0.6 \% \rightarrow \delta I_{R_1} = 24 \ \mu A \rightarrow I_{R_1} = (3.964 \pm 0.024) \ mA$$

In base al risultato ottenuto nel punto precedente, determinate la potenza dissipata in R_1 e la corrispondente incertezza

$$P = R_1 I_{R_1}^2 = 470 \cdot (3.965 \cdot 10^{-3})^2 = 7.389 \dots mW$$

$$\frac{\delta P}{P} = \frac{\delta R_1}{R_1} + 2\frac{\delta I_{R_1}}{I_{R_1}} = 1\% + 1.2\% = 2.2\% \rightarrow \delta P = \frac{2.2}{100} \cdot 7.389 \ mW = 0.16 \ mW$$

$$P = (7.39 \pm 0.16) \ mW$$

Supponete di misurare la corrente che scorre in R₁ per mezzo di un amperometro le cui caratteristiche sono indicate al fondo (utilizzate la colonna "1Year"). Valutate l'incertezza che ci si attende dalla misura di I₁ (scegliete il fondo scala più opportuno). Determinate l'errore di consumo dovuto alla resistenza dell'amperometro

DC Characteristics

	Accuracy Specifications ± (% of reading + % of range) [1]					
Function	Range [3]	R_ammeter	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient /°C 0°C – 18°C 28°C – 55°C
DC Current	10.00000 mA 100.0000 mA 1.000000 A 3.000000 A	10Ω 6Ω 1Ω 0.7Ω	0.005 + 0.010 0.01 + 0.004 0.05 + 0.006 0.10 + 0.020	0.030 + 0.020 0.030 + 0.005 0.080 + 0.010 0.120 + 0.020	0.050 + 0.020 0.050 + 0.005 0.100 + 0.010 0.120 + 0.020	0.002 + 0.0020 0.002 + 0.0005 0.005 + 0.0010 0.005 + 0.0020

$$I_{R_1} \sim 4 \ mA \rightarrow I_{fs} = 10 mA$$

$$\delta I_{R_1} = \pm \left(\frac{0.05}{100} \cdot 4 \cdot 10^{-3} + \frac{0.02}{100} \cdot 10 \cdot 10^{-3} \right) = 4 \,\mu A$$

Supponete di misurare la corrente che scorre in R_1 per mezzo di un amperometro le cui caratteristiche sono indicate al fondo (utilizzate la colonna "1Year"). Valutate l'incertezza che ci si attende dalla misura di I_1 (scegliete il fondo scala più opportuno). Determinate l'errore di consumo dovuto alla resistenza dell'amperometro

DC Characteristics

Accuracy Specifications \pm (% of reading + % of range) [1]

Function	Range [3]	R_ammeter	24 Hour [2] 23°C ± 1°C	90 Day 23°C ± 5°C	1 Year 23°C ± 5°C	Temperature Coefficient /°C 0°C - 18°C 28°C - 55°C
DC Current	10.00000 mA	10Ω	0.005 + 0.010	0.030 + 0.020	0.050 + 0.020	0.002 + 0.0020
	100.0000 mA	0Ω	0.01 + 0.004	0.030 + 0.005	0.050 + 0.005	0.002 + 0.0005
	1.000000 A	1Ω	0.05 + 0.006	0.080 + 0.010	0.100 + 0.010	0.005 + 0.0010
	3.000000 A	0.7Ω	0.10 + 0.020	0.120 + 0.020	0.120 + 0.020	0.005 + 0.0020

$$R_A = 10\Omega$$

Amp. Ideale:
$$I_{R_1} = I \cdot \frac{R_2}{R_1 + R_2}$$
 Amp. Reale: $I_{R_1} = I \cdot \frac{R_2}{R_1 + R_2 + R_A}$

$$\Delta I = I_{reale} - I_{ideale} = -17 \, \mu A$$