半导体物理

主讲人: 蒋玉龙

微电子学楼312室,65643768

Email: yljiang@fudan.edu.cn

http://10.14.3.121

第四章 半导体中杂质和缺陷能级

- 4.1 硅、锗晶体中的杂质能级
- 4.2 Ⅲ-V族化合物中的杂质能级
- 4.3 缺陷、位错能级

4.1.1 替位式杂质和间隙式杂质

一按照球形原子堆积模型,金刚石晶体的一个原胞中的8个原子只 占该晶胞体积的34%,还有66%是空隙!

Si Si Si Si

Si B Si Si

Si Si Si Si

A一间隙式杂质原子:原子半径比较小

B-替位式杂质原子:原子的大小与被取代的晶体原子大小比较相近

杂质浓度:单位体积中的杂质原子数

4.1.2 施主杂质 施主能级 受主杂质 受主能级

一当V族元素P在Si中成为替位式杂质且电离时,能够释放电子而产 生导电电子并形成正电中心,称它们为施主杂质或n型杂质

成键后, P 原子多 余 1 个价电子

问题:该电子的运动状态和能量?

- 1. 比成键电子自由得多, $E_D >> E_V$
- 2. 与导带电子也有差别(受到 P+ 库 仑吸引作用)

•
$$E_D = E_C - E_{\text{库仑}}$$
(落在禁带中)

4.1.2 施主杂质 施主能级 受主杂质 受主能级

- 一施主电离注意点:
 - 1. 杂质能级用短线表示
 (分立能级,局域,未形成能带)
 - 2. $\Delta E_D \ll E_g$

T=0K, 束缚态

 $T \neq 0$ K, 能带角度: 电子从 E_D 跃迁到 E_C ,成为导带电子

空间角度: 电子脱离 P+ 离子的库

仑束缚,运动到无穷远

电离的原因: 热激发, 远红外光的照射

离化态

4.1.2 施主杂质 施主能级 受主杂质 受主能级

一当Ⅲ族元素B在Si中成为替位式杂质且电离时,能够接受电子而产生导电空穴并形成负电中心,称它们为受主杂质或p型杂质

4.1.3 杂质浅能级电离能的简单计算

一类氢原子模型的计算

氢原子:
$$E_n = -\frac{m_0 e^4}{8\varepsilon_0^2 h^2 n^2} = -\frac{13.6}{n^2} \text{ (eV)}$$

修正: 1°
$$\varepsilon_0 \to \varepsilon_0 \varepsilon_r$$
 $\varepsilon_r(Si)=12$ $\varepsilon_r(Ge)=16$.

2° $m_0 \rightarrow m^*$ 注意 Si, Ge 多能谷效应,

作各向同性处理后,
$$\frac{1}{m^*} = \frac{1}{3} \left(\frac{1}{m_t} + \frac{2}{m_t} \right)$$
 电导有效质量

类氢模型:
$$E_n = -\frac{m^* e^4}{8\varepsilon_0^2 \varepsilon_r^2 h^2 n^2} = -\frac{(m^*/m_0)}{\varepsilon_r^2} \frac{13.6}{n^2} \text{ (eV)}$$

4.1.3 杂质浅能级电离能的简单计算

一类氢原子模型的计算

氢原子基态电子的玻尔半径

施主杂质电子的玻尔半径:

$$a_B = \frac{h^2 \mathcal{E}_0}{\pi e^2 m_0} = 0.53 \, (\mathring{A}) \, \stackrel{\circ}{m_0} \Rightarrow \mathcal{E}_0 \mathcal{E}_r \\ m_0 \Rightarrow m_e^* \quad a^* = \frac{h^2 \mathcal{E}_r \mathcal{E}_0}{\pi e^2 m_e^*} = 0.53 \frac{m_0}{m_e^*} \mathcal{E}_r \, (\mathring{A})$$

Si:
$$m^*=0.26m_0$$

 $\varepsilon_r(Si)=12$

$$a^* = \frac{h^2 \varepsilon_r \varepsilon_0}{\pi e^2 m_e^*} = 0.53 \frac{m_0}{m_e^*} \varepsilon_r$$
$$0.53 \times \frac{1}{0.26} \times 12 = 24.5 \text{ (A)}$$

4.1.3 杂质浅能级电离能的简单计算

一类氢原子模型的计算

$$a^* = 24.5(A)$$

4.1.4 杂质的补偿作用

一当半导体中同时存在施主和受主时,考虑杂质补偿作用

空间角度的理解: 施主周围有多余的价电子, 受主周围缺少价电

子,施主多余的价电子正好填充受主周围空缺 的价键电子,使价键饱和,使系统能量降低

—— 稳定状态

能带角度的理解:

有效施主浓度(有效掺杂浓度) $N_{D(eff)} = N_D - N_A$

杂质补偿度
$$\gamma = 1 - \left| \frac{N_D - N_A}{N_D + N_A} \right|$$
 注意: $N_D \approx N_A$ 并非高纯半导体