Course3_Module5

Ensemble Learning — Bagging, Random Forest, Extra Trees, Boosting & Stacking

1) Tư duy chung về Ensemble

- Mục tiêu: kết hợp nhiều mô hình "yếu" → giảm phương sai (variance) và/hoặc thiên lệch (bias) để tổng thể khái quát hóa tốt hơn.
- Hai cách gộp phổ biến:
 - o Averaging (hồi quy): trung bình dự đoán.
 - Voting (phân loại): đa số phiếu.

2) Bagging (Bootstrap Aggregating)

2.1 Ý tưởng cốt lõi

- Tạo B bản sao dữ liệu bằng bootstrap (lấy mẫu có hoàn lại, cùng kích thước với tập gốc).
- Huấn luyện **B** mô hình độc lập (thường là cây quyết định không tỉa).
- Gộp: trung bình (regression) hoặc bỏ phiếu (classification).
- Tác dụng chính: giảm phương sai nhờ trung bình nhiều dự đoán độc lập.

2.2 Thuật toán (step-by-step)

- 1. Với $b=1\dots B$: sinh mẫu bootstrap $S^{(b)}$ từ tập huấn luyện S.
- 2. Huấn luyện mô hình $f^{(b)} = \mathrm{base_learner}(S^{(b)}).$
- 3. Dự đoán:

2.3 Out-of-Bag (OOB)

- Mỗi mô hình không "thấy" ~36.8% điểm (không được chọn vào bootstrap).
- Dùng những điểm OOB đó để đánh giá lỗi/tỉ lệ đúng mà không cần tập validation riêng.

2.4 Khi tăng số cây ${\cal B}$

Sai số thường giảm dần và hội tụ; thêm cây vượt điểm bão hòa không làm xấu
 đi (nhưng tốn thời gian).

3) Random Forest (RF)

3.1 Khác gì so với Bagging?

- Ngoài bootstrap trên **mẫu**, RF còn **ngẫu nhiên hoá đặc trưng tại mỗi nút**: chỉ xét $m_{\rm trv}$ đặc trưng ngẫu nhiên khi tìm split tốt nhất.
- Mục tiêu: giảm tương quan giữa các cây → giảm phương sai sau khi gộp.

3.2 Cấu hình thực hành (sklearn)

- bootstrap=True (mặc định); cỡ mẫu phụ do max_samples.
- Mỗi split chọn trong **tập con đặc trưng** (vd. \sqrt{p} cho phân loại).
- n_estimators đủ lớn đến khi lỗi ổn định.

4) Extra Trees (Extremely Randomized Trees)

4.1 Ý tưởng

- Không nhất thiết dùng bootstrap (mặc định dùng toàn bộ mẫu).
- Tăng ngẫu nhiên thêm 1 bước: với mỗi đặc trưng được chọn, lấy ngưỡng split ngẫu nhiên, rồi chọn split tốt nhất trong các ngưỡng ngẫu nhiên đó.
- Hệ quả: nhanh hơn, giảm tương quan giữa cây, có thể đổi trade-off bias/variance.

4.2 Thực hành (sklearn)

• ExtraTreesClassifier tương tự RF nhưng splitter ngẫu nhiên; có tuỳ chọn bootstrap.

5) Boosting (AdaBoost, Gradient Boosting)

5.1 Khác biệt với Bagging

- Bagging: huấn luyện song song, mô hình độc lập.
- Boosting: huấn luyện tuần tự, mỗi mô hình tập trung vào điểm khó của mô hình trước (trọng số/"residual" lớn).

5.2 AdaBoost (với base learner là decision stump)

Thuật toán (binary) — step-by-step

- 1. Khởi tạo trọng số mẫu đều nhau: $w_i^{(1)}=rac{1}{N}.$
- 2. Lặp $t=1\dots T$:
 - ullet Huấn luyện hth_tht để **min** lỗi có trọng số $arepsilon_t = \sum_i w_i^{(t)} \, [y_i
 eq h_t(x_i)].$
 - Tính **hệ số** $lpha_t = rac{1}{2} \ln rac{1-arepsilon_t}{arepsilon_t}.$
 - Cập nhật **trọng số**:

$$w_i^{(t+1)} \propto w_i^{(t)} \expig(-lpha_t\,y_i\,h_t(x_i)ig)$$

- Chuẩn hoá $w^{(t+1)}$ để tổng bằng 1.

1. Mô hình cuối:

$$F(x) = ext{sign} \Big(\sum_{t=1}^T lpha_t \, h_t(x) \Big)$$

 AdaBoost gián tiếp tối ưu hoá hàm mất mát mũ (exponential loss) và liên hệ chặt với khái niệm margin.

5.3 Gradient Boosting (GBM)

Ý tưởng: xây mô hình cộng dồn $F_M(x)=\sum_{m=1}^M \nu\,\gamma_m\,h_m(x)$, trong đó mỗi hmh_mhm khớp gradient âm của loss trên phần dư.

Thuật toán (khung tổng quát, phân loại nhị phân với log-loss)

- 1. Khởi tạo $F_0(x) = rg \min_c \sum_i \ell(y_i,c)$ (với log-loss là $\operatorname{logit}^{-1}$ hằng).
- 2. Với $m=1\ldots M$:
 - Tính pseudo-residual: $r_i^{(m)} = igl[\partial \ell(y_i, F(x_i))/\partial Figr]_{F=F_{m-1}}$
 - ullet Khớp cây bé $h_m(x)$ vào $\{(x_i,r_i^{(m)})\}.$
 - Tìm γ_m (line search) rồi **cộng dồn**: $F_m(x) = F_{m-1}(x) +
 u \gamma_m \, h_m(x) (
 u = learning \ rate).$

Loss thường dùng

- log_loss (binomial deviance) cho phân loại xác suất, bền vững hơn trước outliers so với exponential loss.
- Đặt loss="exponential" trong GBM sẽ khôi phục AdaBoost.

Meo tuning nhanh

- Giảm learning_rate, tăng n_estimators (đổi lại thời gian).
- Dùng subsample < 1 (stochastic GBM) để giảm phương sai.

6) Stacking

- Huấn luyện nhiều mô hình nền (RF, SVM, LR, v.v.), lấy predictions/probabilities của chúng làm đặc trưng đầu vào cho một metalearner (thường là logistic/linear).
- Kết hợp có thể là majority vote hoặc trọng số theo năng lực mô hình.

7) So sánh nhanh & khi nào dùng?

Phương pháp	Cách xây	Mục tiêu chính	Khi nên dùng
Bagging	Bootstrap + gộp song song	↓ Variance	Base learner "ồn" (như cây sâu), muốn OOB để ước lượng nhanh.
Random Forest	Bagging + chọn đặc trưng ngẫu nhiên ở mỗi split	↓ Variance (↓tương quan)	Cân bằng giữa hiệu quả & dễ dùng; baseline mạnh.
Extra Trees	(Thường) không bootstrap + ngưỡng split ngẫu nhiên	↓ Tương quan, ↑ tốc độ	Dữ liệu lớn, cần cây rất ngẫu nhiên/nhanh.
AdaBoost	Tuần tự, tăng trọng số điểm khó	→ Bias; nhay outliers (exponential loss)	Dữ liệu sạch/vừa, muốn mô hình mảnh mai (stumps).
Gradient Boosting	Tuần tự, tối ưu theo gradient của loss	Bias-variance trade-off linh hoạt	Cần mô hình mạnh, có thời gian tuning; xem thêm HistGB.

8) Công thức/điểm nhấn "nhớ lâu"

 Bagging giảm phương sai: trung bình nhiều mô hình ít tương quan → phương sai trung bình giảm; tương quan càng thấp hiệu quả càng cao (động lực của RF/ExtraTrees).

- OOB error ≈ lỗi hold-out nội bộ: tiện để chọn BBB, độ sâu cây con.
- AdaBoost tối ưu exponential loss và cải thiện margin; trọng số mẫu cập nhật theoexp $(-\alpha_t y_i h_t(x_i))$.
- **GBM** với loss="log_loss" ~ deviance (giống logistic regression), **bền** hơn với ngoại lai; loss="exponential" ~ AdaBoost.

9) Mẫu cấu hình sklearn

```
# Bagging
from sklearn.ensemble import BaggingClassifier
model = BaggingClassifier(
  n_estimators=200, bootstrap=True, oob_score=True, n_jobs=-1, random_sta
te=42
)
# Random Forest
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(
  n_estimators=400, max_features="sqrt", bootstrap=True, n_jobs=-1, rando
m_state=42
# Extra Trees
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier(
  n_estimators=400, max_features="sqrt", bootstrap=False, n_jobs=-1, rando
m state=42
)
# Gradient Boosting (trees nhỏ, learning_rate thấp)
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(
```

```
n_estimators=300, learning_rate=0.05, max_depth=3, subsample=0.8, rand
om_state=42
)

# AdaBoost (stumps)
from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(
    n_estimators=300, learning_rate=0.1, random_state=42
)
```