Course B. Tech Computer Science and Engineering (Artificial Intelligence and Machine Learning) Subject: Discrete Mathematics, Code: ETCS-201 Semester: III

Time: 03 Hours - Max Marks: 70

Instructions to the Students:

- 1. This Question paper consists of two Sections. All sections are compulsory.
- Section A comprises 10 questions of short answer type. All questions are compulsory. Each question carries 2 marks.
- Section B comprises 8 long answer type questions out of which students must attempt any
 Each question carries 10 marks.
- 4. Do not write anything on the question paper.

Q.No.	SECTION -A (SHORT ANSWER TYPE QUESTIONS)	Marks
	now that the function $f: R \to R$, defined as $f(x) = x^2$, is neither se-one nor onto.	(2)
	plain transitive relation on a set with example.	(2)
c_St	ate "Well-Ordering Principle".	(2)
	hat is recurrence relations? Also, solve the following currence relations: $a_r + 5a_{r-1} + 6a_{r-2} = 0.$	(2)
e, St	ate pigeon-hole principle.	(2)
?f. Ex	plain "Satisfiable" and "valid propositional logic" with counter ample	(2)
g W	hat is permutation group?	(2)
	fine semi- group and group. Give an example of a finite	(2)
i. /Wl	ni-group which is not a group. nat is Chromatic number of a graph?	(2)
-		(2)
j. WI	nat is planar graph? Describe with an example.	(2)

SECTION -B (LONG ANSWER TYPE QUESTIONS)

- 2. If f be a real function defined by $f(x) = \sqrt{x-1}$. Find $(f \circ f \circ f)(x)$. Also, show that $f \circ f \neq f^2$.
- 3 If R and S are two equivalence relations on a set A, then R \cap S is also
 an equivalence relations on set A. Is union of two equivalence relations on
 a set is an equivalence relations on a set. Justify your answer.
 - 4. (a) If ${}^{2n+1}P_{n-1}$: ${}^{2n-1}P_n = 11:21$, then find the value of $n^2 + n + 15$. $(2 \times 5 = 10)$
 - (b) Find the number of 6 digit even integers which can be formed such that (i) Repetition of digits is allowed.
 - (ii) Repetition of digits is not allowed.
- (a) It is known that at the university 60% Professors play tennis,
 50% Professors play Football, 70% hockey, 20% tennis and football,
 30% tennis and hockey, 40% football and hockey. If someone claimed that 20% Professors play all 3 sports. Would you believe the claim?
- (b) Solve a_r 2a_{r-1} 3a_{r-2} = 0, a₀ = 3, a₁ = 1, by using generating functions.
 (a) Prove the following statement: (2×5=10)
 "If 3n+2 is odd, then n is odd".
 - (b) Prove that

 If x, y are integers such that xy is odd, then both x and y are odd".
- If G is an abelian group and N is a normal subgroup of G, then prove that

 G/N is abelian. Show by an example that the converse need not be true.

 Prove that every field is an integral domain. Is converse true? Justify your answer.

 Let G be a connected Planar simple graph with e-edges and v -vertices. Let r

 be number of regions in planar representation of G,

 then prove that r = e-v + 2.

===END OF PAPER===