9^{a} Lista de Exercícios de SMA332 - Cálculo II

Professor: Thais Jordão e Wagner Vieira Leite Nunes 17.02.2014

Exercício 1 Suponhamos que $\int_{2}^{4} \int_{1}^{\sqrt{y}} f(x,y) \, dy \, dx = \int_{D} f \, dv$. Obtenha uma representação geométrica da região de integração D na integral múltipla acima.

Exercício 2 Encontre as representações geométricas das regiões de integração e escreva a integral dupla equivalente, invertendo a ordem de integração, para cada um dos problemas abaixo, isto é, aplique o Teorema de Fubini. Verifique o resultado, calculando ambas as integrais:

de Fubini. Verifique o resultado, calculando ambas as integrais:

a)
$$\int_0^2 \int_1^{e^x} dy dx$$
 b) $\int_0^1 \int_{\sqrt{y}}^1 dx dy$ c) $\int_0^{\sqrt{2}} \int_{-\sqrt{4-2}y^2}^{\sqrt{4-2}y^2} y dx dy$ d) $\int_{-2}^1 \int_{x^2+4x}^{3x+2} dy dx$

Exercício 3 Calcule, utilizando integrais múltiplas, a área da região plana limitada, delimitada pelas seguintes curvas:

- a) representações geométricas dos gráficos das funções y = x e $y = -x^2 + x + 1$ com $-1 \le x \le 1$.
- b) representações geométricas dos gráficos das funções $y = \text{senx e } y = 1 \cos x \text{ com } 0 \le x \le \pi/2$.
- c) representações geométricas dos gráficos das funções y = x e $y = e^x$ com $0 \le x \le 1$.

Em cada um dos casos acima obtenha uma representação geométrica de cada uma das regiões dadas.

Exercício 4 Utilizando integrais múltiplas, calcule o volume do sólido S e obtenha a representção geométrica do mesmo, em cada um dos itens abaixo:

- a) S é o sólido limitado, delimitado pelos planos x = 0, y = 0, z = 0, x + y = 1 e pela superfície cilíndrica $z = 1 x^2$;
- b) S é o sólido limitado, delimitado pelos planos x=0, y=0, z=0 , x=y e pela superfície cilíndrica $z=4-y^2$;
- c) S é o sólido limitado, delimitado pelos planos x = 0, y = 0, z = 0, x = y e pelo cilindro $x^2 + z^2 = 1$.

Exercício 5 Determinar a área da região plana limitada, delimitada pelas representações geométricas dos gráficos da parábola $x-y=(x+y)^2+1$ e pela reta x-y=4, que está contido no primeiro quadrante. Obtenha uma representação geométrica da região acima. Sugestão: considere u=x-y e v=x+y.

Exercício 6 Calcular $\int_D (x-y)^2 \sin^2(x+y) \, dx \, dy$, onde D é o paralelogramo de vértices nos pontos $(\pi,0)$, $(2\pi,\pi)$, $(\pi,2\pi)$ e $(0,\pi)$. Obtenha uma representção geométrica da região D. Sugestão: usar a transformação: u=x-y e v=x+y.

Exercício 7 Determinar a área do anel circular, A, dado pela região anular, delimitada pelas duas círcunferências concêntricos de raios a e b, b > a. Obtenha uma representação geométrica da região A.

Exercício 8 Achar o volume do sólido S limitado, delimitado pelo parabolóide $x^2 + y^2 = 4z$, pelo cilindro $x^2 + y^2 = 8y$ e pelo plano z = 0. Obtenha uma representação geométrica do sólido S.

Exercício 9 Determinar o volume V do sólido S limitado, delimitado pelo tronco de cone $(z-3)^2 = x^2 + y^2$, para $z \in [0,2]$ e pelo tronco de cilindro $x^2 + y^2 \le 1$, para $z \in [2,5]$. Obtenha uma representação geométrica do sólido S.

Exercício 10 Determinar os intervalos de variação das coordenadas de um ponto pertencente ao sólido S onde:

- a) S é o sólido obtido quando se abre um furo de raio <u>a</u> na esfera de raio 2a, sendo o eixo do furo um diâmetro da esfera. Obtenha uma representação geométrica do sólido R.
- b) S é a região limitada delimitada pelos cilindros $x^2+y^2=16$ e $x^2+z^2=16$., Obtenha uma representação geométrica do sólido S.
- c) S é a região limitada, delimitada pelo parabolóide $r^2 = 9 z$ e pelo plano z = 0. Obtenha uma representação geométrica do sólido R.

Exercício 11 Determinar o volume V do sólido S que está contido no interior do tronco de cilindro $x^2+y^2=9$, para $z\in[0,6]$ e externo ao cone $x^2+y^2=\frac{1}{9}z^2$, para $z\in[0,\infty)$. Obtenha uma representação geométrica do sólido S.

Exercício 12 Consideremos a integral $\int_D z \, dx \, dy \, dz$, onde D é o sólido definido pelas desigualdades $x^2 + y^2 \le z$, $x^2 + y^2 + z^2 \le 2$, para $z \in [0, \infty)$. Determine os extremos de integração, e escreva as integrais iteradas usando:

- a) coordenadas cartesianas. Obtenha uma representação geométrica do sólido S em coordenadas caretesinas
 - b) coordenadas cilíndricas. Obtenha uma representação geométrica do sólido S em coordenadas cilíndricas.
- c) coordenadas esféricas. Obtenha uma representação geométrica do sólido S em coordenadas esféricas. Calcule a integral múltipla acima usando o sistema de coordenadas que você achar mais conveniente.

Exercício 13 Calcule o volume do sólido S limitado, delimitado pelo cilindro $x^2+y^2=9$, para $(x,y)\in\mathbb{R}^2$, pelo cone $x^2+y^2=z^2$, $z\in[0,3]$, pelo cilindro $x^2+y^2=1$ para $(x,y)\in\mathbb{R}^2$ e pelo plano z=0. Obtenha uma representação geométrica do sólido S. Sugestão: usar coordenadas cilíndricas.

Exercício 14 Calcular o volume do sólido S limitado, delimitado pelo tronco cilindro $x^2 + y^2 \le 4$, $z \in [0, 2]$ e pelo tronco de cone $x^2 + y^2 \le z^2$, $z \in [2, 5]$. Obtenha uma representação geométrica do sólido S.

Exercício 15 Seja S o sólido limitado, delimitado pelo parabolóide $z=2x^2+y^2+1$, pelo plano x+y=1 e pelos planos coordenados. Calcule o volume do sólido S. Obtenha uma representação geométrica do sólido S

Exercício 16 Calcule as integrais iteradas abaixo usando um sistema de coordenadas mais conveniente que facilite seu cálculo:

a)
$$\int_0^4 \int_0^3 \int_0^{\sqrt{9-x^2}} \sqrt{x^2 + y^2} \, dy \, dx \, dz$$
 b) $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} z^2 \, dz \, dx \, dy$

Exercício 17 Seja S o sólido limitado, delimitado pelo tetraedro formado pelo plano 12x + 20y + 15z = 60 e os planos coordenados. Calcule as integrais múltiplas:

a)
$$\int_{S} y \, dV$$
 b) $\int_{S} (x^2 + y^2) \, dV$