

Radio Frequency Exposure Report

On Behalf of

SHENZHEN HAOHUITONG TECHNOLOGY LTD.

6F Jianda Building,10# Keyuan Road, Nanshan High-Tech Park, Nanshan, Shenzhen, 518053, China

Product Name: MVOICE SPEAKERPHONE

Model/Type No.: MVOICE 1000-B

FCC ID: **2AJJA-MVE1000B**

Prepared By: Shenzhen Hongcai Testing Technology Co., Ltd.

1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial Park, No.8 Baoqing Road, Baolong Industrial Zone, Longgang District,

Shenzhen, Guangdong, China

Tel: +86-755-86337020

Fax:+86-755-86337028

Report Number: HCT16GR185E-2

Tested Date: August 3~31,2016

Issued Date: August 31, 2016

Tested By: Jerry Zhao/ Jerry Zhao

Reviewed By:

Durnyang

Approved By:

Tony Wu

Owen.Yang
EMC Technical Supervisor

EMC Technical Manager

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 Product Description for Equipment Under Test (EUT)	3
1.2 Objective	
1.3 GENERAL DESCRIPTION OF TEST	
1.4 HUMAN EXPOSURE ASSESSMENT RESULTS	5

Report No.: HCT16GR185E-2 Page 2 of 6

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Applicant:	SHENZHEN HAOHUITONG TECHNOLOGY LTD.	
Address of Applicant:	6F Jianda Building,10# Keyuan Road, Nanshan High-Tech Park, Nanshan, Shenzhen, 518053, China	
Manufacturer :	SHENZHEN HAOHUITONG TECHNOLOGY LTD.	
Address of manufacturer:	6F Jianda Building,10# Keyuan Road, Nanshan High-Tech Park, Nanshan, Shenzhen, 518053, China	

General Description of E.U.T

Items	Description
EUT Description:	MVOICE SPEAKERPHONE
Model No.:	MVOICE 1000-B
Frequency Band:	2402~2480MHz
Number of Channels:	79
Type of Modulation:	GFSK, Pi/4 DQPSK, 8-DPSK
Antenna Gain:	2.2dBi
Antenna Type:	Internal Antenna
Rated Voltage:	Input: DC 5V/1A from micro USB

Remark: * The test data gathered are from the production sample provided by the manufacturer.

Report No.: HCT16GR185E-2 Page 3 of 6

1.2 Objective

The objective of the following report is used to demonstrate that EUT operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the relative provisions of FCC 47CFR Part 1.1307

1.3 General Description of Test

Items	Description
EUT Frequency band	 ☐ FHSS: 2.400GHz ~ 2.483GHz ☐ WLAN: 2.400GHz ~ 2.483GHz ☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz ☐ WLAN: 5.745GHz ~ 5825GHz ☐ Others:
Device category	☐Portable (<20cm separation) ☐Mobile (>20cm separation) ☐Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm2) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) ☐ Others:
Antenna diversity	Single antenna ☐Multiple antennas: ☐Tx diversity ☐Rx diversity ☐Tx/Rx diversity
Max. output power	-8.98dBm (0.0001W)
Antenna gain (Max)	2.2dBi (Numeric gain:1.66)
Evaluation applied	
Note:	

- 1. The maximum output power is -8.98dBm (0.0001W) at 2480MHz (with 1.66 numeric antenna gain.)
- 2. For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would be lesser.

Report No.: HCT16GR185E-2 Page 4 of 6

1.4 Human Exposure Assessment Results

Calculation

Given
$$E = \frac{\sqrt{30 \times P \times G}}{d}$$
 & $S = \frac{E^2}{3770}$

Where E = Field Strength in Volts / meter

P = Power in Watts

G=Numeric antenna gain

d=Distance in meters

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

EUT parameter (data from the separate report)	
Given $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$	Where G: numerical gain of transmitting antenna; TP: Transmitted power in watt; d: distance from the transmitting antenna in meter
Max average output power in Watt (TP)	-8.98dBm (0.0001W)
Antenna gain (G)	2.2dBi (Numeric gain:1.66)
Exposure classification	S=1mW/cm ²
Minimum distance in meter (d) (from transmitting structure to the human body)	20cm (0.2m)

Report No.: HCT16GR185E-2 Page 5 of 6

Yields

$$S = \frac{30xPxG}{3770d^2}$$
, P=0.0001W, G=1.66, d=0.2
S=0.00003mW//cm²

Or

$$d = \sqrt{\frac{30 x P x G}{3770 S}} \;, \quad \text{S=1, P=0.0001W, G=1.66} \\ \text{d=0.0011m} \label{eq:def}$$

Conclusion:

S=0.00003mW/cm² is significant lower than the General Population Exposure Power Density Limit 1mW/cm² or except the distance when human body proximity to the antenna is less than 2.25cm then will reach the General Population Exposure Power Density Limit

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW / cm² even if the calculation indicates that the power density would be larger.)

Report No.: HCT16GR185E-2 Page 6 of 6