

1.

INITIATION OF AN INFORMATION TRANSACTION OVER A NETWORK VIA A WIRELESS DEVICE

Related Applications

[0001] The present application claims the benefit of U.S. Provisional Patent Application Serial No. 60/253,298 filed November 27, 2000, which is hereby incorporated by reference as if set forth fully herein, and is further a continuation-in-part of each of the following co-pending applications, all of which are hereby incorporated by reference as if set forth fully herein:

- U.S. Application Serial No. _____ (Attorney Docket No. 17331-0009) filed November 7, 2001 (which claims the benefit U.S. Provisional Patent Application Serial No. 60/245,867 filed November 7, 2000);
- U.S. Application Serial No. 09/974,766 filed October 9, 2001 (which claims the benefit U.S. Provisional Patent Application Serial No. 60/238,847 filed October 6, 2000);
- U.S. Application Serial No. 09/933,567 filed August 20, 2001 (which claims the benefit of U.S. Provisional Patent Application Serial No. 60/226,117, filed August 18, 2000); and
- U.S. Application Ser. No. 09/923,285 filed on August 6, 2001 (which claims the benefit of U.S. Provisional Patent Application Serial No. 60/223,232, filed August 4, 2000).

Technical Field

[0002] The field of the present invention relates generally to systems and methods for the storage, management, and delivery of information on or over a network. More particularly, the field of the present invention relates to systems and

methods for initiating a transfer of information over a network using a wireless, mobile and/or thin client device.

Background of the Invention

[0003] Wireless devices for communication and other consumer applications continue to grow in popularity. Examples of common wireless devices include wireless telephones (cellular and Internet), two-way pagers, and personal digital assistants (PDAs), to name a few. While wireless devices continue to proliferate, their ability to provide consumers with robust applications is limited in part due to infrastructure, and in part due to the rather limited user interface available for many wireless devices, particularly traditional cellular telephones.

[0004] Conducting personal or business affairs via a wireless device can be particularly cumbersome. In many situations, for example, it is necessary or desirable for consumers or others to provide personal information to third parties, such as vendors or service providers, to obtain goods or services, facilitate transactions, or for other purposes. However, providing personal information to third parties can be a tedious, inconvenient and repetitious task. Each time an individual provides personal information to a new recipient, a possibility exists that errors will occur. Moreover, it is often difficult to obtain information or conduct a transaction using a wireless device. With their limited interface, wireless devices are not well suited to either providing information to a wireless device user or facilitating a transaction desired by the user. There is thus a need to provide consumers with a more robust mechanism for conducting their affairs and managing their information and/or conducting transactions using a wireless device.

[0005] Furthermore, as information technology and network technology become more prolific, people find themselves repeatedly and manually inputting or otherwise providing the same data into different computer systems. For example, consumers may find themselves having to manually input their personal and billing information via each vendor website through which they choose to complete an electronic commerce (“e-commerce”) or mobile commerce (“m-commerce”) transaction. As the number of secure websites grows, consumers also find themselves having to manage numerous usernames and passwords. Thus, there is a further need for a convenient and secure system for automating the management of consumer information.

20190424-A0001

[0006] Automated or partially automated solutions for managing information historically have largely been localized processes. Using conventional techniques, users are able to create and store data files containing personal information on their personal computers or other client devices, such as personal digital assistants (“PDAs”), pagers, mobile telephones, etc. The data elements in such data files can be shared using specialized applications for filtering data out of the data file and into another application. However, such systems typically require a permanent download of proprietary data management software that might not be compatible among different devices. In addition, the data management software and data files are often stored on only a single personal computer or computerized device. If the personal computer or other computerized device becomes lost or stolen, the user’s data may no longer be accessible, and might end up in the possession of another person. If the personal computer or other computerized device crashes, the data can easily be lost.

[0007] Accordingly, there remains a need for a more secure, flexible and convenient system for storing information and a method for allowing the user to manage and distribute that information using a personal computer or other network-connected device. There further remains a need for such a system and method that provides central information storage and does not require a permanent download of proprietary software to a client device for management and distribution of the information. Additionally, there is a need for a mechanism that allows the consumer to authorize trusted third parties to access the central information storage and retrieve, insert and/or modify any necessary information on behalf of the consumer.

Summary of the Invention

[0008] The present invention generally relates to systems and methods for initiating and carrying out a transfer of information over a network using a wireless, mobile and/or thin client device.

[0009] According to certain embodiments, a central data repository accessible via a distributed network stores one or more information accounts, each of which comprise a plurality of consumer information elements associated with a consumer. The data in a given consumer’s information account is preferably accessible to and modifiable by the consumer. The consumer can cause a transfer of data into the consumer’s information account by entering a code, and optionally additional (e.g., authentication) information, into a wireless, mobile and/or thin client device. An

initiator service is preferably provided to receive the code from the consumer via the wireless, mobile and/or thin client device, and, in response thereto, cause the transfer of information associated with the code to the consumer's information account.

[0010] In certain applications, a promotion code regarding a product or service offered by a vendor may be published in promotional material, whereupon it may be viewed by a person desiring information about the product or service. The promotion code may be communicated by the person via the distributed network, using, for example, a wireless, mobile and/or thin client device, to an initiator service executed by a host server or other machine. The promotion code may, in certain embodiments, be accompanied by authentication information. Upon completing an authentication check, if necessary, based on the authentication information, the initiator service may retrieve information associated with the promotion code from a database. The database may be maintained on behalf of a vendor and may be accessible via the distributed network. The initiator service may then transfer the information into the information account on behalf of the requestor. The requestor may subsequently access the information account, from a network device having access to the information account, in order to retrieve the information regarding the product or service of the vendor.

[0011] According to other embodiments, the initiator service may receive from the user of a wireless, mobile and/or thin client device a request for access to the information account. After authenticating the user, if necessary, the initiator service may prompt the user to specify the information to be retrieved from the information account and to specify a recipient of the retrieved information. The initiator service may then manage the retrieval and distribution of the specified information.

[0012] In still other embodiments, the initiator service may be configured to interact with a wireless, mobile and/or thin client device for establishment and distribution of a temporary authorization to access an information account. The initiator service may authenticate the user , if necessary, and may prompt the user to specify at least one attribute defining an access privilege associated with the temporary authorization. The initiator service may further prompt the user of the mobile device to specify a recipient of the temporary authorization. The initiator service may then manage establishment and distribution of the temporary

authorization, allowing the recipient access to the user's information account according to the restrictions or parameters imposed by the temporary authorization.

[0013] Additional embodiments, examples, variations and modifications are also disclosed herein.

Brief Description of the Drawings

[0014] FIG. 1 is a high-level block diagram illustrating a system in accordance with one or more exemplary embodiments as disclosed herein.

[0015] FIG. 2 is an abstract illustration of an information account in accordance with exemplary embodiments as may be used, for example, in the system illustrated in FIG. 1.

[0016] FIG. 3 is an abstract illustration of another information account in accordance with other exemplary embodiments as may be used, for example, in the system illustrated in FIG. 1.

[0017] FIG. 4 is an abstract illustration of an exemplary database schema in accordance with certain exemplary embodiments.

[0018] FIG. 5 is a generalized interaction diagram illustrating the interaction between various system components of certain exemplary embodiments as disclosed herein.

[0019] FIG. 6 is a generalized interaction diagram illustrating the interaction between various system components when a new information account is created by a consumer via a vendor's website, in accordance with one or more exemplary embodiments.

[0020] FIG. 7 is a generalized interaction diagram illustrating the interaction between various system components in an exemplary wireless environment.

[0021] FIG. 8 is a high-level block diagram illustrating logical grouping of vendor servers into exchanges in accordance with one or more exemplary embodiments as disclosed herein.

[0022] FIG. 9 is an illustration of a web page displaying logos that identify a branded information account and exchange membership in accordance with one or more exemplary embodiments as disclosed herein.

[0023] FIG. 10 is an abstract illustration of exemplary system components for implementing revenue sharing models in accordance with certain exemplary embodiments.

[0024] FIG. 11 is a flow chart illustrating an exemplary single sign-on method in accordance with an exemplary embodiment of the present invention.

[0025] FIG. 12 is an abstract illustration of an exemplary “ticket” authentication table implemented as an XML data structure in accordance with certain exemplary embodiments.

[0026] FIG. 13 is a high-level block diagram illustrating a system that employs an initiator service for initiating mobile transactions in accordance with one or more exemplary embodiments.

Detailed Description of Exemplary Embodiments

[0027] In one or more embodiments, a system and method are provided for enabling consumers to store and maintain a comprehensive information profile (hereinafter “information account”) in a centralized data repository that is accessible over a distributed electronic network, such as the Internet. The information account may be used to store any type of data desired by the consumer, including, for example, demographic information, financial information, medical information, family information, contact information, documents, image files, multimedia files, etc. The centralized data repository is preferably accessible via a network by any authorized network device. In various embodiments, no specialized application programs are required to be permanently downloaded to the consumer’s network device in order to access the information account.

[0028] According to certain embodiments, at the consumer’s direction, selected information in the information account may be accessed and, if desired, shared with authorized vendors, business partners or any other entity that requires certain of the consumer’s information. The terms “vendor” and “business partner” are used herein in a general sense to refer to persons, businesses, enterprises or entities that make products or services available to consumers. As used herein, the terms “consumer,” “buyer,” and “user” are interchangeable.

[0029] Server-side software or temporary client-side software may, in some embodiments, be used to manage communications with the information account and to automatically integrate that consumer information into a process executed by a network device. As an example, the network device may execute a business process relating to a consumer-initiated activity, such as a retail transaction. The server-side software or temporary client-side software may receive consumer information from

the information account and use that information to automatically populate the input fields of a form or the input requirements of a process that is to be submitted to a vendor's server or other network device during an application, registration or transaction process.

[0030] The data in the information account is preferably stored using a tagged data format. In one embodiment, the data in the information account may be stored using the eXtensible Markup Language ("XML") data format, which is an open standard for describing data from the World Wide Web Consortium ("W3C"). As is known in the art, XML tags are used to define the types of information that are represented by the data element. The XML standard provides a great deal of flexibility in that custom tags may be defined for any type of information that the consumer may desire to store in the information account. Using any well-known XML-related querying, parsing, transforming and/or filtering techniques, individual data elements in the information account may be accessed, updated, deleted, created, or otherwise manipulated.

[0031] The information account may be structured as one or more data aggregates, e.g., XML data aggregates. An entire XML data aggregate is stored within a data field of a database table. This data field is a long text field containing all of the information associated with the given record. In one embodiment, all consumer information in the information account may be stored in a single XML data aggregate comprising consumer information elements and sub-elements. Attributes may also be associated with any element and sub-element in order to provide additional information. A transformation or filtering mechanism, such as "Style Sheets," may be applied to the single XML data stream in order to extract only selected data elements therefrom at the direction of the consumer.

[0032] In an alternative embodiment, the information account may be normalized into a plurality of discrete data aggregates, each aggregate representing a predetermined "information product." An information product refers to a package of consumer information relating to, for example, a specific product or service offered by a vendor or that is important to vendors with similar consumer information needs. For example, a mortgage information product might contain all consumer information that would be required to complete a lender's mortgage application. Individual information products may be retrieved from the information account and transmitted to authorized vendors at the request of the consumer.

[0033] Access constraints may be utilized in one or more embodiments as described herein to allow for the establishment of "exchanges." An exchange generally refers to a group of entities that are authorized to accept consumer information from the information account at the request of the consumer. The information account may be accessed for retrieval of information to be used in commerce with any vendor or entity that is a member of the exchange. In much the same way that a consumer may have several different credit cards or debit cards that are each accepted only by certain merchants, the consumer may have several information accounts that are each valid only on specified exchanges.

[0034] Exchanges may be implemented, for example, through "inflow" and/or "outflow" constraints imposed by the exchanges. An inflow constraint imposed by an exchange may, for example, dictate that only information accounts associated with specific other exchanges will be accepted or that no information accounts associated with other exchanges will be accepted. An outflow constraint may dictate that information accounts associated with an exchange may only be used within that exchange and within no other exchanges. Various business situations and partnerships may drive the implementation of inflow and outflow constraints. Revenue sharing models may be established in order to provide financial incentives to exchanges and/or individual vendors that facilitate the creation of an information account or the use of an information account to complete a transaction.

[0035] Exemplary embodiments will now be described with reference to the drawings, in which like numerals represent like elements throughout the several figures. A high-level block diagram of a system in accordance with an exemplary embodiment is shown in and described with reference to FIG. 1. As shown, a central data repository **102** is provided for storing consumer information that may be easily accessed from any network device attached to the network **106**. The network **106** may comprise any telecommunication and/or data network, whether public or private, such as a local area network, a wide area network, an intranet, an internet and any combination thereof and may be wireline and/or wireless. Various methodologies as described herein may be practiced in the context of distributed computing environments. The network **106** thus provides for the open and seamless distribution of consumer information to and from the information account **110**.

[0036] In the system illustrated in FIG. 1, the exemplary operating environment encompasses various network devices for accessing and reading

associated computer-readable media having stored thereon data and/or computer-executable instructions for implementing various methods of the present invention of data storage, management and distribution. Generally, a network device includes a communication device for transmitting and receiving data and/or computer-executable instructions over the network **106**, and a memory for storing data and/or computer-executable instructions. A network device may also include a processor for processing data and executing computer-executable instructions, as well as other internal and peripheral components that are well known in the art (e.g., input and output devices.) As used herein, the term “computer-readable medium” describes any form of computer memory or a propagated signal transmission medium. Propagated signals representing data and computer-executable instructions are transferred between network devices.

[0037] A network device may generally comprise any device that is capable of communicating with the resources of the network **106**. A network device may comprise, for example, a network server **108** & **114**, a client device **104**, a wireless client device **104a** or a dedicated storage device (e.g., the central data repository **102**.) In the embodiment shown in FIG. 1, a host server **108** hosts the software for interacting with the central data repository **102** and for communicating with other network devices. The host server **108** may interact with the central data repository **102** via the network **106** or via a direct communication link **111**. A vendor server **114** hosts vendor web page files **116** comprising a vendor website, through which products or services may be offered to consumers.

[0038] A client device **104** may comprise a desktop computer, a laptop computer and the like. A wireless client device **104a** may comprise a personal digital assistant (PDA), a digital and/or cellular telephone or pager, a handheld computer, or any other mobile device. These and other types of client devices **104** & **104a** will be apparent to one of ordinary skill in the art. For convenience, the following explanation will be made with reference to a client device **104** generically, but, unless otherwise indicated, it will be understood that the principles and concepts described will also encompass wired or wireless devices, such as wireless client device **104a** illustrated in FIG. 1. Moreover, although exemplary embodiments will be described herein in the context of the Internet or a web-based environment, it will be appreciated that the various principles and methods of operation will be applicable or may be practiced in other environments as well.

[0039] According to a preferred embodiment, a client device **104** may execute a browser **112** or another suitable application for interacting with web page files **116** hosted by a vendor server **114** and other network devices. Through the graphical user interface provided by a displayed web page file **116**, the vendor may require the consumer (i.e., the operator of the client device **104**) to input certain information pertaining to or associated with the consumer. According to certain embodiments, a consumer may be permitted to direct that the requested information be transmitted from the information account **110** to the client device **104** for processing. Although exemplary embodiments will be described herein in the context of a web-based environment, those skilled in the art will appreciate that other environments are suitable as well.

[0040] The description of exemplary embodiments with reference to FIG. 1 assumes the existence of a previously created information account **110**. An example illustrating actual creation of an information account **110** will be described below with reference to FIG. 6. In general, the information account **110** may be any data structure for storing consumer information. Preferably, however, the information account **110** is stored as a tagged data structure, such as one or more XML data aggregates. The data in the information account **110** is preferably encrypted so that anyone gaining unauthorized access to the information account **110** will not be able to read the data. Also, in a preferred embodiment, each information account **110** in the central data repository **102** is encrypted separately, so that someone authorized to access the information account of one consumer may not also gain access to the information account of another consumer.

[0041] In accordance with a preferred embodiment, the consumers may maintain sole responsibility for storing and updating the information in the information account **110**. Only the consumer, or those authorized by the consumer, may use the information account **110** to complete e-commerce or m-commerce activities. Consumers create an information account **110** either through a website hosted by the host server **108** or a website hosted by a vendor server **114**. For example, after manually completing a form displayed by a vendor's website, the consumer can choose to create an information account **110** and have the consumer information stored therein.

[0042] Upon creation of an information account **110**, a consumer may be given an identification number, a username and/or a password. Other types of

consumer authentication information are known in the art and may also be used in the context of the present invention. The system of FIG. 1 provides the consumer with a variety of methods of accessing the information account **110**, transferring selected information to a vendor and/or allowing a vendor limited and constrained access to the information account **110**, as described in further detail herein.

[0043] A web page file **116** displayed by the browser **112** may include input fields for the input of consumer information. The web page file **116** may also include an instruction (e.g., a "call") that causes the browser **112** to download and execute a client-side application **105**. JAVA applets are well known client-side applications and are particularly suited for use in various embodiments due to their platform-independent nature. However, any other type of client-side application may be used without departing from the spirit and scope of the present invention. The client-side application **105** resides in temporary memory storage of the client device **104**, such as cache memory or the like, and may be removed from the client device **104** after its execution is complete. The client-side application **105** is specific to the browser session only and not to the client device **104**. Multiple client-side applications **105** may be executed at the same time if multiple browser windows are executed by the client device **104**. The client-side application **105** provides functionality for facilitating communications between the browser **112** executed by the client device **104** and the database management system ("DBMS") **109** of the host server **108**.

[0044] One responsibility of the client-side application **105** is to provide authentication information associated with the consumer and the vendor to the host server **108**. Depending on the desired level of security within the system, authentication information may comprise a username, user ID, password, key, certificate and the like. Authentication information regarding the vendor may be embedded within the web page file **116** for extraction by the client-side application **105**. Alternatively, the client-side application **105** may communicate with the vendor server **114** to retrieve such vendor authentication information. Authentication information regarding the consumer may be supplied by the consumer via a user interface displayed by the client-side application **105** or by a displayed web-page file **116**. Communications relating to authentication information may be accomplished using a secure transmission protocol or handshake, such as the secure shell BSD, Point to Point Tunneling Protocol (PPTP), also commonly known as Virtual Private Network, and/or secure socket layering (SSL) protocol. Other methods for achieving

a secure connection over the network **106** will be apparent to those of ordinary skill in the art. Authentication information may also be encrypted and transmitted over an open network using any appropriate protocol.

[0045] The client-side application **105** is also responsible for determining the type of consumer information that is required by the input fields of the displayed web page file **116**. After determining the type of consumer information that is required, the client-side application **105** may formulate a database query in a language that is understood by the DBMS **109**. At a minimum, client-side application **105** communicates enough information to the DBMS **109** regarding the required consumer information so that the DBMS can formulate a database query. In one embodiment, the DBMS **109** exposes an application program interface (“API”) that can be utilized by the client-side application **105**. An example of one such API is known as the Simple Object Access Protocol (“SOAP”). SOAP is a protocol that provides for interoperability between heterogeneous HTTP-based software and XML-based software. SOAP provides access to services, objects, and servers in a platform-independent manner. Since SOAP relies on HTTP as the transport mechanism, and most firewalls allow HTTP to pass through, SOAP endpoints may usually be invoked from either side of a firewall.

[0046] The client-side application **105** may transmit the database query (or information to form the database query) to the host server **108** along with the above-mentioned authentication information over a secure connection. In such a scenario, the authentication information and the query information may be passed to the DBMS **109**. The DBMS **109** attempts to authenticate the vendor and the consumer using the authentication information and corresponding information that was previously stored in the data repository **102**. If authentication is successful, the DBMS **109** queries the information account **110** using the appropriate database connectivity protocol, such as the Open Database Connectivity (“ODBC”) protocol, the Java Database Connectivity Protocol (“JDBC”), or any other suitable protocol.

[0047] As mentioned above, the data in the information account **110** may be encrypted. Thus, in response to the query, the DBMS **109** may receive an encrypted search result. The search result, for example, may be in the form of a stream of XML data that has been filtered from the information account. The DBMS **109** or other program module executed by the host server **108** may be responsible for decrypting

the search result. The decrypted search results may then be transmitted to the client-side application **105** via the previously established or a new secure connection.

[0048] In the alternative, the client-side application **105** may manage authentication and querying as separate processes. As an example, authentication may be handled using a secure connection as described above. Upon acknowledgment of authentication, the secure connection may be closed and the query process may be handled using open network communication protocols. In response to the query, the encrypted search result may be transmitted to the client-side application **105** over the open network and the client-side application **105** may be responsible for decryption.

[0049] The client-side application **105** may also be responsible for parsing the data elements included in the search result and auto-populating the parsed data into the input fields of the displayed web page file **116**. Again, the client-side application **105** may translate the XML data into HTTP data using SOAP or another suitable protocol. Those skilled in the art will appreciate that in certain embodiments, especially where user verification of the consumer information is not required, the client-side application **105** may transmit the consumer information directly to the vendor server **114** without populating the consumer information into the displayed web page file **116**. If the input fields are auto-populated, the consumer has the opportunity to verify the information displayed in the input fields, make any necessary modifications, and then interact with the displayed web page file **116** to submit the information to the vendor server **114**.

[0050] Any modifications to the consumer information that are made by the consumer may be detected by the client-side application **105**, which may then transmit the modified data back to the host server **108** for an appropriate update of the information account **110**. In addition, the client-side application **105** may determine whether the consumer inputs new data into the input fields, and if so, transmit that new information to the host server **108** for storage in the data repository **102**. The consumer may interact with the displayed web page file **116** to submit the consumer information to the vendor server **114**. The vendor server **114** may then process the consumer information, as needed, by way of a processing module.

[0051] In an alternative embodiment, a server-side application **107** may be employed instead of a client-side application **105** to manage communications with the host server **108**. An authorized server-side application **107** may receive consumer

information directly from the host server 108 and present that consumer information to the client device 104 (e.g., via the browser 112) for display to the consumer. A web page file 116 hosted by the vendor server 114 may be accessed and displayed by the browser 112 of the client device 104. The displayed web page file 116 may present a user interface for input of consumer authentication information. In a preferred embodiment, the consumer authentication information is transmitted from the client device 104 to the host server 108 for authentication of the consumer. In addition, the client device 104 may also transmit a request that a “ticket” be provided to the vendor server 114.

[0052] In addition, in various embodiments, the client device 104 may transmit a request for a ticket, or a request that a ticket be provided to a vendor server 114. The term “ticket” in the present context generally refers to a temporary authorization (also referred to as an authorization code or authorization identifier) for at least partial access to a consumer’s information account 110. A wide variety of mechanisms may be used to implement the provision of tickets in response to user requests. As shown in FIG. 1, for example, an information account 110 may be associated with information in a data table or other data structure, such as a ticket authentication table 122, that correlates one or more tickets with a set of consumer-defined attributes (also referred to as authorization parameters). The ticket authentication table 122 may reside at the host server 108, in the data repository 102, or in another suitable location.

[0053] The consumer-defined attributes of the ticket may be used to define the access privileges that will be granted to the person or other entity that presents the ticket in connection with a request for access to the information account 110. The consumer-defined attributes of the ticket may specify such things as, for example, the number of times that the password may be used to access the information account 110 (e.g., one-time use), a period of validity associated with the ticket (e.g., ticket expires one week from issuance), whether the ticket carries read, write and/or modify privileges, etc. These are merely examples of consumer-defined attributes; in general, any type of restriction, limitation, condition or requirement may be specified as a consumer-defined attribute. Although a ticket is referred to herein as a temporary authorization, it should be understood that a ticket may have an indefinite period of validity. The ticket attributes may also include any other useful information, and may, for example, include any number of identifiers, such as a vendor identifier, a

data identifier, and filter identifiers, which may be used to ensure that the party using the ticket is in fact authorized to do so, and to ensure that only authorized data is released to that party.

[0054] A ticket authentication module **120** may be executed by the host server **108** (or other network device, depending upon the nature of the system) and may be configured to receive and interpret (e.g., parse) a ticket, including any associated identifiers. The ticket authentication module **120** may further compare the ticket information against data in the ticket authentication table **122** in order to determine, for example, whether the ticket is being used by the authorized party during a valid time period and/or for an authorized purpose, and whether the ticket has expired. The ticket authentication module **120** may also use the ticket authentication table **122** to determine the access privileges (read, write and/or modify) associated with the ticket. Additional verification checks may be performed by the authentication module for added security. For example, a request for access to an information account may include a ticket as well as a vendor identifier (or the like), which may be verified against a ticket attribute defining authorized vendor identifiers. In certain embodiments, ticket attributes relating to filter identifiers may be passed from the ticket authentication module **120** to other program modules (not shown) in order to call or establish filters that control the amount and/or type of information to be released from the information account **110** to the third party.

[0055] An exemplary ticket authentication table **122** implemented as an XML data structure is shown in FIG. 12 by way of illustration (although the ticket authentication table need not be implemented in an XML or other tagged data format). As shown, the authentication table **122** may comprise a main “Ticket” data structure **1202** that is made up of one or more “Ticket_n” (n = 1,2,3...) sub-data structures **1204**. Each “Ticket_n” sub-data structure **1204** may in turn include any number of consumer-defined attributes **1206**. Those skilled in the art will appreciate that the authentication table **122** may be implemented as any searchable data structure and is not limited to an XML embodiment. In addition, those skilled in the art will recognize that the architecture and program modules shown in FIG. 1 are for illustrative purposes only. Other architectures, configurations and program modules may be implemented in accordance with the spirit and scope of the present invention.

[0056] The use of tickets allows a consumer to provide select third parties with access to the consumer's information account **110**, on terms specified by the

consumer. Thus, the consumer is able to delegate certain responsibilities for managing and/or accessing the data stored in the information account 110. The use of tickets in conjunction with an on-line central data repository 102 relieves the consumer from the burden of having to carry, deliver and/or manage paper files in order to conduct personal and business affairs. Instead, the consumer may simply authorize a third party to access the information account 110 and retrieve, insert and/or modify any necessary information on behalf of the consumer.

[0057] A ticket may be issued by the consumer to any third party, for any purpose. For example, the consumer may issue to his doctor a ticket that provides the doctor with access to the consumer's medical-related information stored within the information account 110. The doctor's ticket may carry read-only privileges or may allow the doctor to add new medical information to or modify existing medical information within the information account 110. The consumer may issue multiple tickets to multiple third parties (e.g., doctors, etc.) Each ticket may provide access to the same or different information and carry the same or different privileges. Also, the consumer may issue the same ticket to multiple third parties. In another example, the consumer may provide his trusted agent or representative (e.g., manager or attorney) with a ticket that authorizes full access to the information account 110 for an unspecified duration (i.e., until revoked by the consumer). As may be seen the present invention allows the consumer to control the types, amounts and recipients of information stored in a central on-line data repository. For clarity, it should be appreciated that the "ticket" provided to a third-party may refer to a unique authorization identifier or code, while the attributes associated with the ticket are stored separately therefrom, such as in the ticket authentication table 122. Alternatively, however, a ticket may in some embodiments comprise a authorization code or identifier having one or more of the authorization parameters incorporated or encoded therein.

[0058] The consumer may generate requests for establishment of tickets, for example, by interacting with an information account enabled web page file 116. The information account enabled web page file 116 may provide an interface for allowing the consumer to select or create attributes for the ticket. Tickets may be established for specific third-parties, or for general types of third-parties. For example, a specific ticket having specific attributes may be established for a specific doctor, while a

general “medical” ticket may be established as a default ticket to be provided to a doctor in the absence of a specific ticket.

[0059] Tickets may be granted to third parties by the consumer or on behalf of the consumer. As an illustration, the consumer may sign-on to access the information account **110** using a client device **104** or mobile client device **104a** and, once authenticated, request that a ticket be established. The ticket may be provided to the consumer, who may then communicate the ticket manually, verbally, electronically, etc. to a desired third-party. As another example, the consumer may request that the host server **108** deliver the ticket to a designated third-party via e-mail (e.g., to an email address or email account designated by the consumer) or any other suitable type of communication. A ticket may also be inserted into an information account **110** owned by the third party. The third party may then present the ticket to the host server **108**, for example via an information account enabled website, in order to be authenticated to access the consumer’s information account **110**.

[0060] Tickets may also be delivered to a server associated with the third-party on behalf of the consumer. As an example, the host server **108** may authenticate the consumer using, e.g., standard browser authentication techniques. Upon authenticating the consumer, the host server **108** may redirect the browser **112** of the client device **104** to another web page data file **116** (e.g., another web page data file **116** hosted by of the vendor server **114**), including the ticket as a parameter in the URL. In response to detecting the ticket, the vendor server may extract the ticket and pass it to a server-side application **107**. The server-side application **107** may then use the ticket to authenticate itself to the host server **108**, for example using SOAP or another suitable protocol.

[0061] In accordance with one embodiment as described herein, a ticket generated by the host server **108** may comprise a “Globally Unique Identifier” (“GUID”). A GUID preferably comprises a unique number that is computed by adding the time and date to a network adapter’s internal serial number, or by any other suitable technique. The ticket may be encrypted. For example, the ticket may be encrypted using the vendor’s public key and the resulting binary encrypted blob may be base64 encoded so that it can be included as a parameter in a URL. At the vendor server **114**, the parameter may be extracted from the URL, base64 decoded and then decrypted using the vendor’s private key. Other encryption techniques may also be used.

[0062] In various embodiments, consumer authentication information may be submitted from the client device 104 to the server-side application 107 at the vendor server 114. The server-side application 107 may then transmit the consumer authentication information and vendor authentication information to the host server 108 for authentication of both the consumer and the vendor. The consumer authentication information may be encrypted at the client device 104 and decrypted only at the host server 108. Such an embodiment tends to place a significant amount of control over the consumer's data in the hands of the vendor.

[0063] The server-side application may be identified by an application identifier ("APPID"). The APPID may be associated at the host server 108 (e.g., by the DBMS 109) with a particular filtering mechanism. As mentioned, style sheets are well-known and highly suitable filtering tools for use in conjunction with XML data. In response to authenticating the server-side application 107 and identifying the appropriate filter, consumer information may be filtered from the information account 110 and transmitted back to the server-side application 107. The server-side application 107 may then parse the consumer information, for example, in order to auto-populate a form, which may or may not have been previously displayed to the consumer.

[0064] As in the case of the client-side application 105, the server-side application 107 may receive decrypted consumer information from the host server 108 via a secure connection, or may receive encrypted consumer information via the open network. Thus, the server-side application 107 may be configured to perform decryption as necessary. The consumer information thus received from the host server 108 may be presented to the consumer for verification. Any modifications or additions made to the consumer information may be submitted back to the server-side application 107 for communication to the host server 108. The DBMS 109 may then update and/or create the information account 110 in the appropriate manner. The consumer may interact with the displayed web page file 116 to submit the consumer information to the vendor server 114. The vendor server 114 may then process the consumer information, as needed, by way of a processing module.

[0065] Those skilled in the art will appreciate that the illustration and discussion of exemplary embodiments with reference to FIG. 1 is provided as a generalized example only. Specific details regarding data formats and network communication protocols have been omitted, as such details are well known in the art.

Furthermore, the present invention is not intended to be limited to the use of any particular data formats or protocols. Any existing or future formats or protocols may be used without departing from the spirit and scope of the invention. Furthermore, many network components were not shown or discussed with reference to FIG. 1, such as gateways, routers, hubs, switches, firewalls, DNS servers, authentication servers, certificate authorities, and the like. The functions and roles of such network components are also well known in the art and need not be described in detail herein.

[0066] FIG. 2 provides an abstract illustration of an information account 110 in accordance with an exemplary embodiment as described herein. In the illustrated embodiment, the consumer information is stored in the information account 110 as a single tagged (delimited) data stream. XML generally provides a suitable tagged data format; however, other tagged data formats can be employed as well. Thus, references to the XML standard in connection with exemplary embodiments are not intended to limit the scope of the present invention. The single XML data stream comprises a plurality of consumer information elements 202, each having a unique tag 204 or identifier. A consumer information element 202 may be divided into any number and/or level of sub-elements 206. As is well known in the art, an XML consumer information element 202 may also be associated with one or more attributes 208. An attribute 208 may provide additional information about the content, structure or formatting of a consumer information element 202.

[0067] A consumer information element 202 may comprise any type of data or information, including text strings, objects, files, applications, etc. Obviously, the more consumer information that is stored in the information account 110, the larger the XML data stream will be. The size of the XML data stream is limited only by the hardware and software limitations of the system (e.g., memory size, processor speed, bandwidth, etc).

[0068] An information account 110 is preferably unique to a single customer. Each information account 110 stored in the data repository 102 may thus comprise a discrete XML data stream. Each information account 110 stored in the data repository 102 may be individually encrypted. For example, one method for encrypting an information account 110 may involve use of the consumer's public key. Accordingly, only someone having access to the consumer's private key will be able to decrypt the consumer's information. Many other and/or additional methods for

encrypting information accounts 110 and/or the entire data repository 102 will occur to those skilled in the art.

[0069] Although not shown in FIG. 2, those skilled in the art will appreciate that a consumer information element 202 in one information account 110 may comprise a pointer or a reference to another data element or to another information account 110. In one embodiment, a consumer may create, for example, a list of business contacts. A new information account may be created for each individual specified as a business contact by the consumer. Authentication data within the new information account may be set as “anonymous” so that the first consumer may retain access privileges. At some point later, however, the individual named as the business contact may be given control of the new information account by changing the associated authentication information to be unique to that individual. The first consumer may then be granted limited access privileges to continue to access the new information account of the business contact (e.g., by way of a ticket). Alternatively, the first consumer may retain a copy of the business contact information in his own information account.

[0070] FIG. 3 provides an abstract illustration of an information account 110 in accordance with other exemplary embodiments. In the embodiment shown, an information account 110 is structured as multiple discrete XML aggregates 302a-c. The discrete XML aggregates 302a-c may comprise one primary “profile” record 302a and one or more information product records 302b-c. The profile record 302a may include a general profile of information elements 304 associated with the consumer. Information product records 302b-c contain consumer information elements that, for example, are specific to a particular product or service offered by a vendor or that are important to vendors with similar consumer information needs. Aggregation of data elements according to information products allows quick and efficient retrieval of specific consumer information from the information account 110 through a request-response system.

[0071] The number of aggregates or records included within the information account 110 of a given consumer depends upon the number of information products for which the consumer has elected to store information. For example, a consumer who has elected to store information about two separate products, such as a car loan and a mortgage loan, would have at least three data aggregates in his information account 110. One such data aggregate would represent the primary profile record and

each of the two other data aggregates would include information about one of the information products. Data aggregates may include but are not limited to the following information products: Home Loan, Auto Loan, Student Loan, Home Insurance, Auto Insurance, Life Insurance, Online Banking, Credit Card, Government Services, Education, Career, Travel, Retail, and Relocation. If a consumer creates or updates an information account via a vendor's web site and thereby inputs information regarding a new product, a new product record **302b-c** will be created in the information account. Each product record **302b-c** created for the consumer is of course associated with the primary profile record **302a**.

[0072] If an information account **110** is segmented into multiple discrete data aggregates, there may be a need for maintaining consistency among redundant data elements stored in multiple information products. "Latent referential processing" is one method for maintaining data consistency, and in this context refers to the use of a series of pointers or references to flag data that is redundant across multiple products. According to latent referential processing, when a record **302a-c** is created or updated, redundant information elements that are stored in other data aggregates typically are not also updated until the next time the information account is accessed. For example, if salary information is updated in a home loan information product record, redundant salary information in the consumer's auto loan information product record will generally not be immediately updated. Thus, latent referential processing allows data inconsistencies to exist within the information account after an update.

[0073] As is shown and described with reference to FIG. 4, a transaction log (e.g., a time stamp log) may be maintained for each redundantly stored aggregate in the information account to record the date and time of the most recent update for each data record **302a-c**. Each time a request is made to access the information account, the DBMS **109** may first examine the time stamp log to determine which data element in a set of redundant data elements has most recently been updated. After determining the most recently updated data element, all other redundant data elements are updated to be consistent with the most recently updated data element. Upon completion of the latent referential processing, the request to access the information account may be granted. Accordingly, latent referential processing is a new way of storing and tracking information that addresses the need of providing quick access to information that will be accessed more frequently than it will be updated.

[0074] In another embodiment, redundancy and consistency concerns are addressed by normalizing the data aggregates of the information account **110** to the extent possible. For example, an information account **110** may be configured such that the consumer's profile record **302a** stores the majority of the consumer's personal information. The profile record **302a** may comprise predefined data elements, such as "first name," "middle name," "last name," date of birth," etc. The profile aggregate **302a** may also be expanded to include any additional and/or custom fields. Additional aggregates corresponding to information products **302c** may contain pointers **306** to the data fields within the profile aggregate **302a**. Thus, the information account **110** may be configured to store within one aggregate a single instance of an information element that is referenced by other aggregates. As information product aggregates **302c** are formed independently of the profile aggregate **302a**, data elements that are not unique to those information product aggregates **302c** may be ported into the profile aggregate **302a** if desired.

[0075] FIG. 4 illustrates an exemplary database schema **400** in accordance with one or more exemplary embodiments as disclosed herein. In particular, the database schema **400** represents the situation where the information account **110** is segmented into multiple discrete data aggregates, as shown in FIG. 3. The database schema **400** may include a consumer authentication record **402** that stores consumer authentication information **404** such as, for example, a user ID, username, password, email address, access attempts, last attempt date/time, challenge word or phrase, challenge response, ticket parameters, and vendor credited with origination of the information account. These and other types of authentication information may be used to authenticate a consumer. The database schema **400** may also include a profile record **302a** that stores a primary information profile **304** of the consumer. There will typically be a one to one relationship between the consumer authentication table **402** and the profile record **302a**. The exemplary database schema **400** also includes one or more information product records **302b-c** that store product-specific information. Each profile record **302a** may be associated with one or many information product records **302b-c**.

[0076] The profile record **302a** and each information product record **302b-c** may further be associated with a transaction log record **406**. Each time the profile record **302a** or an information product record **302b-c** is acted upon, detailed transaction information **408** may be recorded in a new transaction log record **406** (not

to be confused with the above-mentioned time stamp log.) Transaction information **408** may provide the basis for all transaction billing and revenue sharing events. By way of example only, the transaction record **406** may identify the vendor server through which the information account **110** was created. The transaction record **406** may also identify the vendor server through which a transaction was completed using the information account **110**.

[0077] As used herein, the term “transaction” refers broadly to any activity related to an information account, including, but not limited to a *create* transaction, *delete* transaction, *update* transaction, *authentication* transaction, a request for information from authorized vendors, a client device and/or vendor server **114** request, a publishing and form filling transaction, and a *submit* transaction where the information account **110** is processed into the requesting vendors systems. A portion of any monies billed upon completion of a transaction may be shared with each of the vendor servers identified in the transaction record **406**.

[0078] FIG. 5. is a generalized interaction diagram illustrating the interaction between various system components of certain exemplary embodiments in connection with consumer-controlled storing, managing and/or distributing information. The exemplary embodiments discussed with reference to FIG. 5 employ a client-side application **105**, such as an applet, to manage communication between the client device **104** and the host server **108**. Alternative embodiments employing a server-side application **107** instead of the client-side application **105** have been discussed above. Those skilled in the art will appreciate the differences between the interactions involving a client-side application **105** and a server-side application **107**.

[0079] The generalized interaction diagram begins at step **501**, where the consumer operates a browser **112** to retrieve a web page file **116** from the vendor server **114** via the network **106**, using a consumer browser. The web page file **116** retrieved from the vendor server **114** may be enabled for interaction with the consumer's information account **110** and may thus include an instruction that causes the browser **112** to download a client-side application from the host server **108**. At step **502**, the client-side application is downloaded from the host server **108** to the browser **112**. At step **504**, the consumer interacts with the browser **112** to request use of the information account **110**, which in this example has already been created. The web page file **116** may display a selectable icon or other indicia that allows the consumer to request use of the information account **110**. Alternatively, the client-side

application **105** may provide the interface for requesting use of the information account **110**.

[0080] Next at step **506**, the client-side application **105** displays a login interface to the consumer. The login interface may be displayed, for example, in the open display window of the browser **112**, in a pop-up window, or in any other suitable manner. At step **508** the consumer inputs consumer authentication information, which is transferred from the browser to the client-side application **105**. Consumer authentication information may comprise, for example, a username, user ID, password, challenge phrase, email address, etc. At step **510**, the user authentication information is combined with vendor authentication information and is sent to the DBMS **109**. Vendor authentication information may comprise a vendor ID, password, product IP, application ID, and the like. Vendor authentication information may be used to authenticate the vendor and to determine the manner in which consumer information is to be filtered from the information account **110**.

[0081] After the DBMS **109** receives the authentication information, it submits an authentication request to the data repository **102** at step **512**. The authentication request may be a database query to determine if the supplied consumer authentication information and vendor authentication information are consistent with previously stored authentication information. In response to authenticating the consumer and the vendor, the DBMS **109** performs one or more database queries at step **514** to retrieve consumer information elements from the information account **110**. Depending on the structure of the information account, the DBMS **109** may retrieve certain products (identified by product ID) from the information account **110**, or may retrieve a set of data elements filtered according to a vendor ID or an application ID. If consumer information is retrieved according to products, an iterative lightweight transfer (“LWT”) process may be performed in order to get the best set of data elements for each new product ID. Lightweight transfer techniques are well-known in the art and generally involve the use of thin protocols and/or smart proxies that can cache results and perform buffered reads and writes, minimizing the number of network calls.

[0082] Once the DBMS **109** has retrieved the relevant consumer information, the consumer information elements may be merged (if appropriate) decrypted (if appropriate) and/or further filtered (if appropriate) at step **518**. Then, at step **520**, the resulting information elements are transmitted to the client-side application **105**, for

example in the form of an XML data stream. At step **522**, the client-side application **105** parses the received XML data and transforms it into the required format for populating the input fields of the displayed web page file **116**. The client-side application **105** then auto-populates the input fields of the displayed web-page file **116** at step **524**. The consumer may interact with the browser **112** to edit or modify the auto-populated information at step **526**. Because there may be multiple web page files **116** associated with the vendor website, steps **524** and **526** are repeated until all data has been auto-populated and/or edited on every included web page. The client-side application **105** monitors the edit process to determine if the consumer desires to modify and/or supplement any of the consumer information elements.

[0083] The consumer may then interact with the browser **112** at step **528** in order to submit the consumer information that has been entered into the displayed web page file(s) **116** to the vendor server **114**. The vendor server **114** receives and processes the consumer information elements at step **530**. After processing the consumer information, the vendor server **114** preferably transmits a “success page” or other acknowledgement to the consumer’s browser **112** at step **532**.

[0084] Either through a selectable icon or other indicia displayed on the success page or displayed by the client-side application **105**, or any other interactive means, the consumer may interact with the browser **112** at step **534** to submit an update request to the DBMS **109**. Update is an event whereby the information account **110** is updated to reflect any edits that the consumer may have made to the consumer information at step **526**. Thus, a consumer is permitted to update the information account **110** via a vendor’s website. As another option, the consumer may elect to update the information account **110** at a later time directly via the host server **108**.

[0085] At step **536** the client-side application submits the consumer’s XML data (possibly only the edited data) and the update request to the DBMS **109**. Then at step **538** the update request is submitted to the data repository for authentication. In the authentication process, consumer authentication information, vendor authentication information and, if appropriate, product identification information (which are all included in the update request) are verified. Upon authentication of the update request, the XML data is validated at step **540** and the update is performed at step **542**. The DBMS then sends the update result (success or failure) to the client-side application **105** at step **544**, which in turn displays the update result to the

browser **112** at step **546**. The exemplary generalized interaction diagram then ends at step **548**.

[0086] FIG. 6 is a generalized interaction diagram illustrating the interaction between main system components when a new information account is created by a consumer via a vendor's website. As mentioned, the consumer may create an information account by visiting a vendor's website that has been configured to allow creation of an information account. The vendor's website may, for example, require the user to manually input consumer information into the input fields of a form. The user may then direct that an information account be created to store the consumer information, so that the consumer will not be required to manually enter the consumer information again on any participating website.

[0087] The exemplary embodiments discussed with reference to FIG. 6 employ a client-side application **105**, such as an applet, to manage communication between the client device **104** and the host server **108**. Alternative embodiments employing a server-side application **107** instead of the client-side application **105** have been discussed above. Those skilled in the art will appreciate the differences between the interactions involving a client-side application **105** and a server-side application **107**.

[0088] The exemplary interaction diagram of FIG. 6 begins at step **601**, where the consumer operates a browser **112** to retrieve a web page file **116** from the vendor server **114** via the network **106**, using a consumer browser. The web page file **116** retrieved from the vendor server **114** may be enabled for interaction with the consumer's information account **110** and may thus include an instruction that causes the browser **112** to download a client-side application from the host server **108**. At step **602**, the client-side application is downloaded from the host server **108** to the browser **112**. At step **604**, the consumer interacts with the browser **112** to input consumer information into the input fields of the vendor's website. The client-side application **105** monitors the input of consumer information at step **606**.

[0089] Next at step **608** the consumer interacts with the browser **112** in order to submit the consumer information to the vendor server **114**. The vendor server **114** receives and processes the consumer information elements at step **610**. After processing the consumer information, the vendor server **114** transmits a "success page" or other acknowledgement to the consumer's browser **112** at step **612**. Either through a selectable icon or other indicia displayed on the success page or displayed

by the client-side application **105**, the consumer may interact with the browser **112** at step **614** to submit a request for creation of an information account **110** to the DBMS **109**. Thus, the consumer may be permitted to create an information account **110** via a vendor's website. As another option, the consumer may elect to create an information account **110** at a later time directly via the host server **108**.

[0090] At step **616** the client-side application submits the consumer's XML data and the create request to the host server **108**. Then at step **618** the host server **108** transmits an information account creation interface to the browser **112**. The consumer inputs consumer authentication information via the information account creation interface at step **622** and the browser **112** passes the create request (which may include the consumer authentication information, the vendor authentication information, etc.) to the client-side application **105** at step **624**.

[0091] At step **626**, the create request is combined with the consumer's XML data and is sent to the DBMS **109**. In response to receiving the authentication information, the DBMS **109** submits an authentication request to the data repository **102** at step **628**. The authentication request may be a database query to determine if the supplied consumer authentication information and vendor authentication information are consistent with previously stored authentication information. In response to authenticating the consumer and the vendor, the DBMS **109** validates the consumer's XML data at step **630** and creates a new information account **110** at step **632**.

[0092] Once the information account has been created, the DBMS **109** sends the create result (success or failure) to the client-side application **105** at step **634**, which in turn displays the create result to the browser **112** at step **636**. At step **638**, the host server **108** creates an acknowledgment email to be sent to the consumer's email account. At step **640**, the host server requests and receives the consumer's email address from the DBMS **109**. At step **642** the consumer's acknowledgment email is delivered to the consumer. The exemplary generalized interaction diagram then ends at step **644**.

[0093] FIG. 7 is a generalized interaction diagram illustrating the interaction between various system components in an exemplary wireless environment suitable for implementation of systems or methods for consumer-controlled storage, management and/or distribution of information. An exemplary wireless environment is suited for wireless devices such as digital or cellular telephones, personal digital

assistants (“PDAs”), portable computers, and the like. Such wireless devices generally include a display device and an input device (keypad, touch screen, microphone, etc.), each of limited size and utility. The difficulty of inputting detailed information and commands into a wireless device makes it desirable to provide a system whereby the backend DBMS 109 is able to communicate directly with various remote web servers, thus eliminating a significant amount of user-interaction with the wireless device.

[0094] The generalized interaction diagram of FIG. 7 begins at step 701, where the consumer operates a wireless client device 104a to access the host server 108. In the present context, a wireless client device refers to any user equipment, regardless of its specific nature, capable of communicating over a wireless communication path. Accessing the host server 108 may involve, for example, calling a dedicated access number using a mobile telephone device or two-way pager, or invoking an appropriate communication application in a PDA or portable computer, or by any other suitable means depending upon the particular client device. At step 702, the wireless client device 104a accesses the host server 108 via a wireless application (“WAP”) gateway. At step 704, the host server 108 returns a login interface, via the wireless application gateway, to the wireless client device 104a. At step 706 the consumer inputs consumer authentication information using an input device (e.g., keypad, touch screen, microphone, etc.) of the wireless client device 104a. Consumer authentication information may comprise, for example, one or more of a username, user ID, password, challenge phrase, email address, etc., and is dictated in part by the type of client device being used. In some embodiments, some or all of the consumer authentication information may be automatically gathered and submitted. For example, the consumer authentication information may include a unique serial number or mobile equipment identifier as may be obtained, e.g., from a subscriber identity module or equivalent thereof associated with the client device.

[0095] At step 708, the user authentication information is preferably combined with vendor authentication information and sent to the DBMS 109. Vendor authentication information may comprise a vendor ID, password, product ID, application ID, and the like. Vendor authentication information may be used to authenticate the vendor and to determine the manner in which consumer information is to be filtered from the information account 110. The vendor authentication information may be transferred from the vendor server 114 to the wireless application

gateway, where it is combined with the consumer authentication information prior to being transferred therewith to the DBMS 109, or, alternatively, the wireless application gateway may transfer the consumer authentication information to the vendor server 114, where it is packaged with the vendor authentication information and transferred to the DBMS 109. In any event, after the DBMS 109 receives the authentication information, it submits an authentication request to the data repository 102 at step 710. In response to authenticating the consumer and the vendor, the DBMS 109 performs one or more database queries to retrieve consumer information elements from the information account 110. Depending on the structure of the information account, the DBMS 109 may retrieve certain products (identified by product ID) from the information account 110, or may retrieve a set of data elements filtered according to a vendor ID or an application ID. If consumer information is retrieved according to products, an iterative lightweight transfer (“LWT”) process may be performed at step 712 in order to get the best set of data elements for each new product ID. Otherwise, the consumer information elements are retrieved from the data repository 102 using appropriate filters at step 714.

[0096] Once the DBMS 109 has retrieved the relevant consumer information, the consumer information elements may be merged (if appropriate), decrypted (if appropriate) and/or further filtered (if appropriate) at step 716. Then, at step 718, the resulting information elements are transmitted to the vendor server 114, for example, in the form of an XML data stream. The vendor server 114 receives and processes the consumer information elements at step 720. After processing the consumer information, the vendor server 114 transmits a delivery receipt acknowledgment to the host server 108 at step 722. The host server 108 may then pass an acknowledgment (success or failure) to the consumer (e.g., to the wireless client device 104a or to another client device 104) at step 724. The exemplary generalized interaction diagram then ends at step 726.

[0097] As shown in FIG. 8, information accounts 110 may be used in the context of one or more exchanges 802A&B. In this context, an exchange 802A&B may comprises a group of entities (e.g., vendor servers 114) that are authorized and configured to accept consumer information from a particular information account 110 at the request of the consumer. An information account 110 may, in some embodiments, be used to retrieve information for use in commerce with any vendor that is a member of the exchange 802A&B. An information account 110 may be

accepted in one or more exchanges **802A&B** according to various rules and relationships, as illustrated by the examples set forth herein. A consumer may also have several different information accounts **110**, each valid for use in one or more exchanges.

[0098] An exchange may comprise a logical grouping of servers or other network devices, and those skilled in the art will appreciate that there are a variety of suitable methods for implementing logical groupings of network devices on a distributed network. For example, an exchange identifier may be used to identify an exchange and may be associated with each network device that is a member of that exchange. In such an embodiment, look-up table of exchange identifiers may be maintained at the host server **108**, within the central data repository **102** or at another suitable location and may be used to authenticate an exchange identifier used in connection with a request for access to an information account **110**.

[0099] Exchanges **802A&B** may be implemented, for example, through inflow and/or outflow constraints. An inflow constraint may, for example, dictate that only information accounts **110** associated with specific other exchanges will be accepted within an exchange or that no information accounts **110** associated with other exchanges will be accepted. An outflow constraint may dictate that information accounts **110** associated with an exchange may be used within that exchange and within no other exchanges (i.e., a private exchange), or within only selected other exchanges. Various business situations and partnerships may drive the implementation of inflow and outflow constraints.

[0100] In various embodiments, an information account **110** may be branded so as to be associated with a particular vendor or other entity, product or service. By way of example only, if a consumer creates an information account **110** via a website maintained on behalf of a particular vendor, e.g., "Vendor X," the information account **110** may be branded as a "BrandX" information account **110X**. A BrandX information account **110X** may be stored in the central data repository in association with a BrandX identifier. BrandX logos or indicia may be displayed to the consumer when the consumer accesses the BrandX information account **110X**. Thus, although Vendor X "sponsors" the BrandX information account **110X**, the central data repository **102** that stores the BrandX information account **110X** may be maintained by another entity.

[0101] An exchange **802A&B** may be configured to accept one or more differently branded information accounts **110**. This concept is similar to automated teller machine (ATM) networks, in which a customer of one bank may use his ATM card (e.g., debit or credit card) to conduct transactions at the ATM of another bank. Typically, an ATM card includes a number of logos (also referred to as “bugs”) that indicate the financial networks that will accept the ATM card. ATMs also display logos identifying the financial networks to which they are connected. Thus, a bank customer may have a Wachovia® ATM card that is accepted in all Honor and PLUS network ATMs. Similarly, the various vendor servers **114** that make up a particular exchange may include logos or other indicia indicating the brands of information accounts **110** that will be accepted.

[0102] With reference to FIG. 8 and FIG. 9, a consumer interacting with a browser **112** of a client device **104** may be presented with a web page file **116Y** by a vendor server **114Y** maintained by Vendor Y. The displayed web page file **116Y** may display an enrollment application link **902** that, when selected, will cause an enrollment application to be presented to the consumer. An enrollment application may be a form or other interface that prompts the consumer to input selected information. The website of Vendor Y may be configured, as described above, for interaction with the central data repository **102** via the host server **108**. Furthermore, the vendor server **114Y** may be a member of “Exchange B” **802B** that also includes vendor server Z **114Z**. For the sake of example only, it may be assumed that the inflow constraints of Exchange B **802B** allow any member vendor server (**114Y&Z**) to accept BrandY information accounts **110Y**, BrandZ information accounts **110Z** and BrandX information accounts **110X**.

[0103] The displayed web page file **116Y** may thus display one or more brand logos **904** indicating the accepted brands of information accounts. The displayed web page file **116Y** may also display one or more exchange logos **906** indicating the exchanges of which the vendor server **114Y** is a member. In addition, the displayed web page file **116Y** may display an access/create link **908** for allowing a consumer to access or create a BrandY information account **110Y**. The displayed web page file **116Y** of FIG. 9 is shown by way of example only and that may other arrangements are possible. In perhaps a more practical example, the brand logos **904**, the exchange logos **906** and the access/create link **908** might be presented to the consumer only if

the consumer selects the enrollment application link **902**. Other types of user interfaces may also be used.

[0104] When used in the context of a private exchange (e.g., an exchange that does not accept foreign information accounts **110**) an information account may take the form of a “private” branded information account **110**. As an example, if Vendor X establishes a private Exchange A **802A** that offers a variety of financial services, a BrandX information account **110X** may be established for consumers who participate in the private exchange. The BrandX information account **110X** may be configured to store information that is relevant to the financial services offered by Vendor X. If appropriate outflow constraints are established, the BrandX information account **110X** may be accepted only within private Exchange A **802A**. Again, Vendor X may facilitate or otherwise sponsor the creation of the BrandX information account **110X**, while another entity may serve as the custodian of the data repository **102** for storing the BrandX information account **110X** and provide the underlying information technology.

[0105] If private Exchange A **802A** is not subject to outflow constraints, a BrandX information account **110X** may also be accessed at websites hosted by or on behalf of other vendors, such as Vendor Y and/or Vendor Z. Consequently, an on-line form associated with Vendor Y web page files **116Y** or Vendor Z web page files **116Z** may automatically be populated based on information elements originating from the BrandX information account **110X**. Similarly, if Exchange A **802A** is subject to appropriate inflow constraints, a BrandY information account **110Y** and a BrandZ information account **110Z** may also be used at any website hosted by a vendor server **114X** that is a member of the Exchange A **802A**. In general, any number of vendors or other entities may participate in an exchange.

[0106] Various licensing arrangements and revenue sharing agreements may be established between the custodian of the data repository **102** and the vendors that configure their vendor servers **114** for interaction with information accounts **110**. In particular, the custodian may choose to implement revenue sharing models in order to provide vendors with an incentive to promote and facilitate the creation and use of information accounts **110**. The custodian may earn revenues in exchange for the service of providing access to information accounts **110** for completion of transactions. For example, the custodian may be paid a per transaction commission by the requesting exchange or vendor each time an information account **110** is used

by a consumer to quickly fill out a form or other document for completing a transaction with a vendor. As another example, the custodian of the data repository **102** may receive revenue from the requesting exchange or vendor based on milestone transaction numbers. For example, the custodian may be paid a negotiated dollar amount for a negotiated number of transactions (e.g., \$100 for every 500 transactions completed using an information account).

[0107] The more information accounts **110** that are in existence, the more transactions that are likely to occur in commerce. Accordingly, the custodian of the data repository **102** may choose to implement various revenue sharing models in order to financially encourage vendors and other entities to promote and/or sponsor information accounts **110**. As an example, a revenue sharing model may specify that a lifetime revenue stream be paid to the originating vendor or entity that is credited with facilitating the creation of an information account **110**. A lifetime revenue stream may be effective for the life of the information account **110** and may take the form of a credit issued to the originating vendor or entity each time that information account **110** is used to complete a transaction. A credit may amount to a percentage (anywhere from 0% to 100%) of the revenue earned by the custodian of the data repository **102** in connection with the transaction, or an otherwise arranged fee. Revenue sharing models may also specify that credits be paid by the custodian of the data repository **102** to a transacting vendor or entity that accepts consumer information elements from an information account **110** in order to complete a transaction.

[0108] In the context of exchanges and branded information accounts, the amounts credited to originating entities and transacting entities may vary depending on the particular exchange and/or which brand of branded information account was used in order to complete a transaction. For example, referring back to FIG. 9, the custodian of the central data repository **102** may grant larger credits to a transacting vendor (Vendor X) when a BrandY information account **110Y** (that is, an information account from another exchange) is used to complete a transaction through the vendor server **114X**, as opposed to when a BrandX information account **110X** (that is, an information account from the same exchange) is used to complete a transaction through the vendor server. As mentioned, any number of factors or business relationships may affect the revenue sharing models adopted by the custodian of the central data repository **102**. As will be appreciated by those of skill in the art,

different and/or multiple revenue sharing models may be applied to different exchanges or associated with differently branded information accounts. Members of an exchange may also choose to establish their own additional revenue sharing models, for example, in an attempt to maximize the acceptance of a branded information account.

[0109] Revenue sharing models may further include credits paid to OEMs, consultants, software providers and/or any other party who facilitates the creation and/or construction of an exchange, introduces information accounts **110** to an exchange, or otherwise assists the custodian of the central data repository **102** in increasing its revenue base.

[0110] FIG. 10 is an abstract illustration of system components for implementing revenue sharing models in accordance with certain exemplary embodiments as disclosed herein. As shown, the central data repository **102** may store one or more transaction logs **1002** containing information relevant to any transaction that involved an information account **110**. The transaction log **1002** may identify, for example, the date, time and nature of the transaction, the originating entity, the transacting entity, whether the information account **110** was branded, etc. Many alternatives for storing and identifying transaction information are possible in the context of the illustrated embodiment. For example, each information account **110** may include or have associated therewith a unique transaction log **1002**. Alternatively, a transaction log **1002** may be used to store transaction information associated with multiple information accounts **110**.

[0111] An extraction module **1004** may be used to facilitate the extraction of transaction information from a transaction log **1002**. The extraction module **1004** may be executed by the host server **108** or by another network device that is in communication with the host server **108** or the central data repository **102**. The extraction module **1004** may be employed to extract selected transaction information from the transaction log **1002** and to translate or transform the extracted transaction information into a format that can be interpreted by a financial processing system **1006**. Thus, in certain embodiments, the extraction module **1004** may be configured to extract transaction data elements from a tagged data stream representing or associated with an information account **110**. SOAP and/or other well-known protocols may be used by the extraction module **1004** to interface between the transaction log **1002** and the financial processing system **1006**. The financial

processing system **1006** may comprise any system for processing transaction information and revenue sharing models in order to ensure that the appropriate party is billed in connection with a transaction involving an information account and that revenues are shared with the appropriate parties. By way of example only, the financial processing system may be a custom software module or an off-the-shelf software package, such as the well-known “Oracle Financials” package.

[0112] Those skilled in the art will appreciate that the system components and arrangement thereof shown in FIG. 10 are by way of example only. Various other methods for recording and processing transaction information may be used in accordance with the concepts and principals discussed or suggested herein.

[0113] In connection with the creation of an information account **110**, a consumer may be provided with consumer authentication information, which may include, for example, a username, password, user ID, biometric, challenge word, phrase or response, etc. This consumer authentication information may be stored in the consumer's information account **110**, along with other authentication-related information such as, for example, email address, access attempts, last attempt date/time, challenge query, ticket parameters, vendor credited with origination of the information account, etc. In certain embodiments as disclosed herein, a single sign-on mechanism (also referred to herein as a single sign-on feature) may be provided to allow a consumer to “sign-on” (i.e., to provide consumer authentication information as may be required) for authentication to securely access an information account **110** at a first website. Since a consumer's information account **110** may be accessible from more than one website, the authentication status may be handled in such a way so as to “follow” the consumer as the consumer accesses subsequent websites. At such subsequent websites, a consumer who has activated the single sign-on mechanism need not re-enter authentication information, assuming certain conditions are present.

[0114] A preferred single sign-on mechanism can be implemented, in certain embodiments, without requiring a manual download or installation of any program modules on the consumer's client device **104**. Nor does the single sign-on mechanism, at least in a preferred embodiment, require “add-ons”, “cookies” or other special configurations for a web browser, although such features may optionally be utilized in connection with or in addition to a single sign-on mechanism as disclosed herein. A preferred single sign-on mechanism is managed at the client device **104** via

one or more client-side applications **105** that are loaded into the browser **112** along with web page files **116** that comprise a consumer information account-enabled website. Applets (e.g., JAVA applets) are particularly well-suited for use as client-side applications **105** in this context, due to their platform independent nature. In an exemplary embodiment of the single sign-on mechanism, a client-side application **105** (e.g., applet) may communicate with the host server **108** to determine whether the user has already been authenticated, and if so, to cause the log-in interface to be bypassed. Re-authentication may thereby be performed automatically by way of the client-side application **105**.

[0115] FIG. 11 is a flow chart illustrating an exemplary single sign-on method. The method begins at step **1101**, whereupon a consumer using a client device **104** downloads an information account-enabled web page file **116** which is displayed by browser **112**. The web page file **116** may include an instruction (e.g., a "call") that causes the browser **112** to download and execute one or more client-side applications **105**, which may be used to manage, among other things, the general request/response process involved in accessing and retrieving information from an information account **110** for the client device **104**. Client-side application(s) **105** may further be used to implement and manage functions of the single sign-on feature at the client device **104**. Those skilled in the art will appreciate that management of single sign-on functions may be performed by the same or different client-side application(s) **105** that manage the general request/response process.

[0116] After the client device **104** has downloaded the information account-enabled web page file **116**, the user may activate an access/create link **908** of the consumer information account-enabled displayed web page file **116** and, assuming that the single sign-on feature is not activated, may subsequently supply consumer authentication information (e.g., username/password, etc.) via a sign-on interface in order to request access to an information account **110**. At step **1102**, the client-side application **105** responsible for authentication receives the consumer authentication information supplied by the user. Then, at step **1104** the client-side application **105** determines a browser identifier that uniquely identifies the browser from which the sign-on request was initiated and the sign-on time (i.e., the time the sign-on request was initiated.) The browser identifier may comprise any unique identification code, such as a product serial number (relating to hardware or software), a dynamically generated alphanumeric string, etc. The sign-on time may be determined, for

example, by interacting with a clock function executed by the client device 104. It is expected that the client device 104 (a personal computer, for example, has a system clock from which the current time may be read. However, it is also possible that to obtain the current time from a remote site across the network 106. The sign-on time may be stored as wither an absolute time value, or else as a relative time value with respect to a known reference time.

[0117] Those skilled in the art will appreciate that any equipment identifier that uniquely identifies the client device 104 may be substituted for the browser identifier. For example, mobile client devices 104a, such as network-enabled telephones, PDA, portable computers and the like may be assigned unique equipment identifiers, which may be static or dynamic. A client-side application 105 may thus be configured to determine any unique equipment identifier and to transmit that unique equipment identifier to the host server 108. Furthermore, an equipment identifier may be generated or determined at the network device 104 or may be received from another source, such as the host server 108, a certificate authority or some other authentication entity. Accordingly, any reference herein to a browser identifier is intended merely to provide an example of certain embodiments of the present invention and is not intended to limit the scope thereof.

[0118] The order in which the client-side application 105 receives or determines the consumer authentication information, the browser identifier and the sign-on time may vary in different embodiments. For example, in some embodiments the browser identifier may always be determined first and used to determine if the single sign-on feature was previously activated, while in other embodiments a different sequence may be employed. Accordingly, the sequence of exemplary steps 1102 – 1104 is not intended to be limiting.

[0119] At step 1106 the consumer authentication information, the browser identifier, the sign-on time and any other information associated with the sign-on process are stored in an authentication table 113, which is preferably maintained at the host server 108. Accordingly, the client-side application 105 may transmit the consumer authentication information, the browser identifier, the sign-on time, etc. to the host server 108. The host server 108 may utilize the database management system 109 for interacting with the authentication table 113. The authentication table 113 may alternatively be stored in another location accessible by the host server 108, such as the data repository 102, or another network server. Once authenticated, the

consumer can access the information account **110** via the vendor web-site **114** using the client device **104**.

[0120] In continuing to operate the browser **112** to access web page files **116** via the network **106**, the user may access a subsequent web-site that requires sign-on and authentication to access the consumer information account **110**. Like before, upon accessing a new vendor web-site **114**, the client device **104** may download an information account-enabled web-page file **116** that is displayed by the browser **112**, and the web-page file **116** may include an instruction (e.g., a “call”) that causes the browser **112** to download and execute one or more client-side applications **105**. The client-side application **105** responsible for authentication detects a subsequent request for access to the consumer information account **110** via the subsequent web-site at step **1108**. As an example, the subsequent request for access to the consumer information account **110** may occur when the user activates an access/create link **908** of the subsequent web-site. When the request for access to the consumer information account **110** is detected, the client-side application **105** determines a browser identifier at step **1110**. At step **1112**, the browser identifier (as determined at step **1110**) may be used to look up the associated consumer authentication information and previous sign-on time stored in the authentication table **113**. In particular, the client-side application **105** may transmit the browser identifier (as determined at step **1110**) to the database management system **109** at the host server **108**, which may access the authentication table **113** to determine the username, password, previous sign-on time, etc. associated with the browser identifier, if any.

[0121] Assuming that consumer authentication information was determined to be associated with the browser identifier, the method next moves to step **1114**, where a determination is made as to whether the single sign-on feature is activated. In certain exemplary embodiments, the authentication table **113** may also associate certain preferences with the browser identifier, consumer authentication information, sign-on time, etc. A preference may indicate, for example, whether the user has opted to activate or deactivate the single sign-on feature. By way of example, a dialog box or other interface may be presented to the user during the initial sign-on requesting input from the user as to whether the single sign-on feature should be activated. If single sign-on activation is optional, the database management system **109** (or other responsible network component) may be configured to access the authentication table **113** to determine whether a preference associated with the browser identifier (as

determined at step 1110) indicates that the user had previously activated the single sign-on mechanism. Once activated, the single sign-on feature may be automatically deactivated upon the occurrence of certain terminating events, such as the end of a browser session, a manual sign-off (logout) by the user, the expiration of a time-out interval (see step 1120 below), etc. The user may also be provided with the option to manually deactivate the single sign-on feature.

[0122] If the single sign- feature has not been activated, the method advances to step 1116, whereupon the user is prompted to sign-on again for further access to the information account 110. The user may optionally be prompted with a choice to activate the single sign-on feature during the sign-on process. After the user signs-on via the subsequent web-site, the method returns to step 1104 where the browser identifier and sign-on time are again determined. The method is then repeated from step 1104, as described above.

[0123] On the other hand, if the single sign-on feature has been activated, the method advances from step 1114 to step 1118, whereupon the authentication table 113 is consulted to look up the consumer authentication information and determine if and when the user had been previously authenticated by, for example, determining whether the current browser identifier (as determined at step 1110) matches the most recently stored browser identifier in the authentication table 113. If the browser identifiers do not match, or other specified criteria are not met, the user is considered to not have been previously authenticated and the method proceeds to step 1116 where the user is prompted to sign-on again for further access to the information account 110. If, however, the browser identifiers match, or other specified criteria are met, the consumer is considered to have been previously authenticated and the method advances to step 1120, where it is determined whether an authentication time-out interval has expired.

[0124] An authentication time-out interval may be defined, according to one example, as the maximum permitted duration of time between the occurrence of an event and a subsequent request for access to the information account 110. The event defining the starting point from which the time-out interval will be calculated may be the first manual sign-on, the most previous sign-on (manual or automatic) or other non-sign-on related events. Those skilled in the art will appreciate that the duration of the time-out interval may be specified globally or otherwise by a system administrator or other entity charged with maintaining the data repository 102. When the

subsequent request for access to the information account is initiated by the user, the elapsed time between the current time and the occurrence of the starting point event (e.g., the previous sign-on time) may be determined. If that elapsed time is greater than the duration of the time-out interval, the time-out interval may be considered to have expired. In the preferred embodiment, the time-out interval may be used to enhance the security of the single sign-on mechanism, forcing the user to sign-on again if too much time has elapsed between consecutive sign-on attempts, for example.

[0125] If it is determined at step **1120** that the time-out interval has expired, the method proceeds to step **1116** where the user is prompted to sign-on again for further access to the information account **110**. From step **1116** the method returns to step **1104** and is repeated as previously described. However, if it is determined at step **1120** that the time-out interval has not expired, the method advances to step **1122**. At step **1122**, the vendor server **114** that hosts the subsequent web-site is alerted that the user's previous authentication status remains valid, thus causing the vendor server **114** to by-pass any sign-on interface associated with the information account **110**. As an example, the client-side application **105** may receive a message from the host server **108** indicating that the user's previous authentication status remains valid and may pass that message to the vendor server **108** or may generate an instruction that causes the vendor server **108** to by-pass any sign-on interface associated with the information account **110**. After an automatic sign-on at step **1122**, the method returns to step **1108** to await detection of another request for access to the consumer information account **110** via a subsequent web-site that requires sign-on to access the information account **110**.

[0126] Although the single sign-on feature has, in certain instances, been described as being implemented by way of communications between the host server **108** and a client device **104** (e.g., via a client-side application **105**), those skilled in the art will appreciate that single sign-on feature may alternately be implemented by way of communications between the host server **108** and a vendor server **114** that hosts a web-site configured to provide access to the central data repository **102** upon authentication of the consumer. Analogously to execution of the client-side applications **105** by the client device **104**, the vendor server **114** may execute one or more server-side applications **107** for managing communications with the host server **108** and conducting authentication thereby. Accordingly, one or more server-side

applications 107 may be configured to perform the functions of the single sign-on feature, or functions similar thereto, that are described above with respect to one or more client-side applications 105. In implementing the single sign-on feature through use of server-side applications 107, vendor authentication information and/or an equipment identifier or APPID associated with the vendor server 114 may be transmitted to the host server 108, as appropriate. The vendor server may also communicate with the client device to receive consumer authentication information and/or a browser identifier, if needed.

[0127] As mentioned previously, once the user is authenticated to access the information account 110, selected consumer information elements may be filtered from the information account 110 and integrated into a vendor's business process on behalf of the user. As an example, the selected consumer information elements may include authentication information (usernames, passwords, biometrics, etc.) that is needed to access secure areas of vendor web-sites. Thus, after the user has successfully signed-on to the information account 110, subsequent authentications of the user for access to the information account 110 may be handled automatically by the single sign-on feature and other consumer authentication information may be auto-populated into sign-on interfaces of secure web-sites on behalf of the consumer. The present invention therefore reduces the consumer's need to repeatedly supply the consumer authentication information for accessing the information account 110 and can virtually eliminate the consumer's need to supply other authentication information for accessing other secure web-sites.

[0128] As described previously, for example with reference to FIG. 7, certain embodiments as set forth herein may be particularly well adapted for use in connection with wireless client devices 104a, such as mobile telephones, PDA, portable computers, pagers, etc. In one such embodiment, a mechanism may be provided that allows a consumer to trigger a transfer or flow of information to or from his/her information account 110 using a wireless client device 104a. Such a mechanism may be implemented, for example, as one or more program modules configured to perform an "initiator service." Among other activities, as further described in examples below, the initiator service may send and receive communications to the wireless client device 104a, interact with the database management system 109 or other program modules hosted by the host server 108 and vendor servers 114, and/or interact with the central data repository 102.

[0129] An exemplary embodiment employing an initiator service is shown in and described with respect to FIG. 13. In the embodiment shown in FIG. 13, the initiator service **1310** (which, as noted, may comprise one or more program modules that perform various functions of the initiator service) is run on the host server **108**, although it could alternatively be located on a different machine and at a different location. The consumer may use any wireless client device **104a** to access and communicate with the initiator service **1310**. To access the initiator service **1310**, the consumer may operate the wireless client device **104a** to access a special access number or code, such as a special telephone number (e.g., 1-800-enfoNow), a special Internet address (e.g., www.enfoNow.com), etc., and thereby connect, via the wireless application gateway, to the initiator service **1310**.

[0130] Once connected to the initiator service **1310**, the consumer may authenticate himself, for example by providing consumer authentication information (e.g., one or more of username, password, biometric, etc.) Alternately, or additionally, the initiator service **1310** may be configured to authenticate the wireless client device **104a** (as opposed to authenticating the consumer) by receiving a serial number or other type of equipment identification information therefrom. The initiator service **1310** may include functionality for authenticating the consumer and/or the wireless client device **104a**, or may communicate with another authentication program module for doing so.

[0131] The initiator service **1310** may be configured to prompt the user to enter instructions for importing/exporting information to/from the information account **110**. As the consumer may be using a wireless client device **104a** having limited input/output capabilities, the prompts generated by the initiator service **1310** and the instructions generated by the consumer are preferably as abbreviated as possible. For example, the prompts may be audio prompts, textual prompts or graphical prompts. The consumer's instructions may take the form of touch-tone signals or input commands generated via a graphical user interface, keypad or microphone (optionally in connection with voice recognition functionality at the initiator service **1310**). These and other methods of generating prompts and instructions are well understood in the art.

[0132] By way of illustration, the initiator service **1310** may prompt the consumer to input a promotion code. The promotion code, for example, may be displayed in marketing material, such as literature, signage, or other media,

concerning a product or service, which the user has viewed or otherwise encountered. The vendor of the product or service may store additional information about the product or service in a vendor database **1320**. When the consumer has viewed or otherwise come into contact with the marketing material and desires to receive additional information concerning the product or service, the consumer may transmit the promotion code to the initiator service **1310**, using the wireless client device **104a**.

[0133] Optionally, as noted, the consumer may also be prompted to enter authentication information, and/or authentication information (such as an equipment serial number) may be automatically generated or obtained from the wireless client device **104a**. Where the wireless client device **104a** is a wireless PDA, for example, a client-side application program may pre-populate one or more authentication fields with authentication data, and may automatically send that data or else await the user's affirmative approval to send it. In response to receiving the promotion code and optional authentication information from the consumer, the initiator service **1310** may be configured to request the additional information from the vendor database **1320**. In certain embodiments, the initiator service **1310** may interact with the vendor database **1320** via the database management system **109** or other appropriate program modules, in order to obtain the additional information and transfer it to the consumer's information account **110**.

[0134] The vendor database **1320** may be separate from the data repository **102** or, alternatively, may be stored within the data repository **102**. The additional information stored in the vendor database **1320** may comprise any of a wide variety of content, and may relate, for example, to promotional information, an offer for sale, links to shared documents, codes or addresses for reply to the vendor, etc. The additional information may be in the form of any type of digital or other data, and may, for example, comprise text, graphics, audio data, video data, multimedia data, HTML, code (such as Java applets), or any other type of data. In response to receiving the additional information from the vendor database **1320**, the initiator service **1310** may import the additional information into the consumer's information account **110**.

[0135] In certain embodiments, it is not necessary for the initiator service **1310** itself to receive information from the vendor server **1320**. Instead, the initiator service **1310** may issue commands to the database management system **109** or other suitable program module(s) to cause the extraction of information from the vendor

database **1320** and the transfer of that information into the consumer's information account **110**. By way of illustration only, the additional information may be imported into the information account **110** in the form of a specialty product **204**, discussed above with reference to FIG. 2. The additional information may also be imported into the information account **110** in any other suitable format.

[0136] In another embodiment, the consumer may interact with the initiator service **1310** in order to facilitate authorized exportation of information from the information account **110** to a third party. The third party may be, for example, a business partner of the consumer (e.g., a doctor, lawyer, travel agent, etc.) or any other party to which the consumer desires to release information. The consumer may provide the initiator service **1310** with an e-mail address, Uniform Resource Locator (URL), phone number, etc, to which the information is to be transmitted. Alternately, the information may be transferred to another information account **110** that is maintained by the third party.

[0137] In yet another embodiment, the consumer may interact with the initiator service **1310** to establish a "ticket." The consumer may provide the ticket to the third party in order to grant consumer-defined access privileges to the third party. Using a web browser **112** (or other suitable application) executed by a client device **104**, the third party may use the ticket to access the appropriate information from the consumer's information account **110**. In other embodiments, the third party may supply the ticket to the host server **108** (e.g., to the initiator service **1310** using a wireless client device **104a**) for authentication in order to access the consumer's information account **110** for the purposes authorized by the ticket.

[0138] Using the wireless client device **104a**, the consumer may set the access privileges of a ticket dynamically, in response to prompts from the initiator service **1310**. For example, initiator service **1310** prompts may ask the consumer whether the temporary password is to expire after a single use or a particular number of uses and whether the user is allowed to read, write and/or modify the data in the information account **110**. The initiator service **1310** prompts may also ask the user to select a template or filter that may be used by the initiator service **1310**, in conjunction with a filter program module and/or database management system **109**, to filter certain information from the consumer's information account **110**. To facilitate this process from a wireless client device **104a**, various pre-established ticket templates, having predetermined access privileges that are viewed as the most likely to be selected by a

consumer, may be made available for selection. The consumer may then select one of the tickets from a set of available predetermined tickets. In this manner, the consumer may know in advance, or be made aware, that a particular code or instruction may be generated by the wireless client device **104a** and transmitted to the initiator service **1310** in order to generate a ticket for a particular type of vendor or service provider – e.g., a doctor, a lawyer, an insurance agent, or another particular type of third-party.

[0139] In still further embodiments, the initiator service **1310** may be configured to interact with a wireless device **104a**, one or more information accounts **110** and one or more vendor servers **114** or other network devices to facilitate an e-commerce transaction. For example, the initiator service **1310** may access an information account **110** in response to receiving a code or other instruction from a wireless device **104a** in order to extract consumer information elements required by a vendor for completing a transaction. The consumer information elements may include, but are not limited to, a credit card number or other payment identifier, an address and a telephone number. The consumer information elements may also specify consumer preferences regarding color, size, quantity, shipping method, and the like. Alternatively, the consumer may specify such preferences via the wireless device **104a**. Upon completion of the transaction, the initiator service **1310** may receive an acknowledgment from a vendor server **114** and store the acknowledgment in the consumer's information account **110**.

[0140] An e-commerce transaction facilitated by the initiator service **1310** may involve a transfer of information into or from an information account. In particular, the consumer may desire to purchase information from a vendor, such as e-books and other text files, music files, video files, images files, software files and/or any other data files. The initiator service **1310** may be configured to facilitate the provision of a credit card number or other payment identifier (which may be stored in the consumer's information account **110**) to the vendor of such information, to receive data files from the vendor in exchange for the payment and to transfer the data files into the information account **110** of the consumer. The initiator service **1310** may interact with a payment center, a clearinghouse, a financial institution or another third party in order to facilitate provision of payment to a vendor on behalf of the consumer.

[0141] As another example, the consumer may desire to transfer information from his information account **110** to a vendor or service provider. The initiator

service **1310** may be configured to filter consumer information elements from the consumer's information account **110**, in response to instruction from the wireless client device **104a**, and to transmit the filtered information elements to a third-party device, such as a vendor server **114**. Again, the initiator service **1310** may facilitate the provision of payment identifier to the third-party device if necessary.

[0142] While various embodiments have been described with reference to FIG. 13 and otherwise in the context of a wireless client device **104a**, it will be appreciated by those skilled in the art that the principles of the invention are not so limited, and may, for example, be applicable to non-wireless devices (such as a standard non-wireless telephone), conventional computer workstations, and other user devices which have the ability, whether direct or indirect, to communicate over a distributed network. However, wireless client devices with limited input capabilities (as compared to, for example, a conventional computer workstation) are among the devices most likely to obtain the largest benefit from use of the techniques described above with respect to FIG. 13.

[0143] From a reading of the description above pertaining to various exemplary embodiments, many other modifications, features, embodiments and operating environments of the present invention will become evident to those of skill in the art. The features and aspects of the present invention have been described or depicted by way of example only and are therefore not intended to be interpreted as required or essential elements of the invention. It should be understood, therefore, that the foregoing relates only to certain exemplary embodiments of the invention, and that numerous changes and additions may be made thereto without departing from the spirit and scope of the invention as defined by any appended claims.