Introduction to Differential Equations

- 1. (a) Is the point $x=1,\ y=3$ (i.e the point (1,3)) a solution to the equation 2y+x=y+4? Why?
 - (b) Is the point (2,3) a solution to the equation $y^2 + x = y + 8$? Why?
 - (c) Is the point (1,1) a solution to the equation $x^2 + y^2 = 1$? Why?
 - (d) What does it mean that a point (a, b) is a solution to an equation?
- 2. (a) Is the function $y = x^2$ a solution to the equation $\frac{dy}{dx} = 2x$? Why?
 - (b) Is the function $y = -\frac{1}{x}$ a solution to the equation $\frac{dy}{dx} = y^2$?

If
$$y = -\frac{1}{x}$$
, then $\frac{dy}{dx} = \underline{\hspace{1cm}}$

If
$$y = -\frac{1}{x}$$
, then $y^2 =$ ______

If
$$y = -\frac{1}{x}$$
, is $\frac{dy}{dx} = y^2$?

(c) Is the function $y = \frac{x^2}{2}$ a solution to the equation $\frac{dy}{dx} = y + x$?

If
$$y = \frac{x^2}{2}$$
, then $\frac{dy}{dx} =$

If
$$y = \frac{x^2}{2}$$
, then $y + x = ______$

If
$$y = \frac{x^2}{2}$$
, is $\frac{dy}{dx} = y + x$?

3. (a) Is the function $y = e^{3x}$ a solution to the equation $\frac{dy}{dx} = 3y$?

If
$$y = e^{3x}$$
, then $\frac{dy}{dx} = \underline{\hspace{1cm}}$

If
$$y = e^{3x}$$
, then $3y = _____$

(b) Is the function $y = e^{3x} + 1$ a solution to the equation $\frac{dy}{dx} = 3y$?

If
$$y = e^{3x} + 1$$
, then $\frac{dy}{dx} =$

If
$$y = e^{3x} + 1$$
, then $3y =$ _____

(c) Is the function $y = 2e^{3x}$ a solution to the equation $\frac{dy}{dx} = 3y$?

If
$$y = 2e^{3x}$$
, then $\frac{dy}{dx} =$

If
$$y = 2e^{3x}$$
, then $3y = _____$

Equations of the form $\frac{dy}{dx}=y^2$ or $\frac{dy}{dx}=2x$ or $\frac{dy}{dx}=y+x$ are called differential equations. In fact, any equation of the form $\frac{dy}{dt}=g(y,t)$ is a <u>differential equation</u>. y=f(t) is a <u>solution</u> if when f(t) is substituted for y in the expression g(y,t), the result is $\frac{dy}{dt}$. In other words, like any other equation, when you substitute your answer into both sides of the equation you get a true statement.

4. Find a function that satisfies the equation $\frac{dy}{dx} = 3x$:

Can you name another such function?

5. Find a function that satisfies the equation $\frac{dy}{dx} = ky$:

Can you name another such function?

- 6. Which of the following is a solution to the differential equation $\frac{dy}{dt} = 9y$? (a) $f(t) = e^{9t}$ (b) $f(t) = 5e^{9t}$ (c) $f(t) = e^{3t}$ (d) $f(t) = e^{9t} + 5$

- 7. Which of the following is a solution to the differential equation $\frac{dy}{dt}=at$? (a) $f(t)=\frac{a}{2}t^2$ (b) $f(t)=\frac{a}{2}t^2+3$ (c) $f(t)=e^{at}$ (d) $f(t)=(at)^2$

- 8. Which of the following is a solution to $\frac{dy}{dt} = 2(y-1)$?
- (a) $1 e^{2t}$

(b) $1 + e^{2t}$

(c) $e^{2t} - 2t$

(d) $2 + e^{2t}$

In general, differential equations have an infinite number of solutions, but if we are given an initial starting point, there will be only one solution. A differential equation with an initial condition, is called an initial value problem.

9. Which of the following is **the** solution to the intial value problem

$$\frac{dy}{dt} = 9y \text{ with } y = 3 \text{ at } t = 0?$$
(a) $f(t) = e^{9t}$ (b) $f(t) = 3e^{9t}$ (c) $f(t) = 2e^{9t}$ (d) $f(t) = 4e^{9t}$ (e) $f(t) = 2e^{9t} + 1$

10. Which of the following is **the** solution to the intial value problem $\frac{dy}{dt}=5t$ with y=4.5 at t=1?

(a)
$$f(t) = \frac{5}{2}t^2$$
 (b) $f(t) = \frac{5}{2}t^2 + 2$ (c) $f(t) = 5t^2 + \frac{1}{2}$ (d) $f(t) = \frac{5}{2}t^2 + .5$

11. Solve the intial value problem $\frac{dy}{dt} = 6y$ with

(a)
$$y=2$$
 at $t=0$? (b) $y=2$ at $t=1$?

12. Find a function of the form $y = x^n$ that is a solution to the differential equation: $\frac{1}{2}x\frac{dy}{dx} = y$.