### INTRODUCTION

Diabetes is a long-lasting disease that happens when the pancreas fails to create enough insulin, or when the body cannot use the insulin produced efficiently. Insulin is a hormone that controls the level of sugar in the blood.

- According to the International Diabetes Federation (IDF), as of 2021, there were an estimated 303 million people with diabetes worldwide among them 153 million are women.
- Hence a good machine learning model is needed to predict whether a person is diabetic or not subject to his health data.
- Support vector machine is one of the important supervised machine learning classifier algorithm.
- SVM is effective for high-dimensional spaces, making It suitable for data with many feature.
- The SVM algorithm finds the hyperplane that separates the different classes in the data by maximizing the margin between them.

# **PROBLEM STATEMENT**

Diabetes prediction using Support Vector Machine classifier

# **BLOCK DIAGRAM**



# **METHODOLOGY**

- In supervised learning model we feed data to the machine learning model and the model learns from the data and its respective label.
- We train our model with several medical information such as
  - 1) Glucose level
  - 2) Insulin
  - 3) BMI
  - 4) Skin thickness
  - 5) Age
  - 6) Diabetes pedigree function

- The SVM analyzes our model based on the feature as mentioned above and classifies them as diabetic or non-diabetes and the draws the hyperplane.
- Initially we pre-process the data to standardize it.
- We divide the data into training and testing data and we also find the accuracy score of both.
- After we split the data we will feed it to the Support Vector Machine classifier.
- The trained SVM classifier will classify whether the patient Is diabetic or not based on the inputs given.

## **RESULT**

**INPUT DATA 1** 

```
input_data = (5,166,72,19,175,25.8,0.587,51)

# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the array as we are predicting for one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

# standardize the input data
std_data = scaler.transform(input_data_reshaped)

prediction = classifier.predict(std_data)
print(prediction)

if (prediction[0] == 0):
    print('The person is not diabetic')
else:
    print('The person is diabetic')

[1]
The person is diabetic
```

#### **INPUT DATA 2**

```
input_data = (1, 85, 66, 29, 0, 26.6, 0.351, 31)

# changing the input_data to numpy array
input_data_as_numpy_array = np.asarray(input_data)

# reshape the array as we are predicting for one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

# standardize the input data
std_data = scaler.transform(input_data_reshaped)

prediction = classifier.predict(std_data)
print(prediction)

if (prediction[0] == 0):
    print('The person is not diabetic')

else:
    print('The person is diabetic')

[0]
The person is not diabetic
```

## **CONCLUSION**

- The SVM algorithm is a powerful machine learning technique that has shown excellent performance in classification tasks.
- SVM-based diabetes prediction models have shown high accuracy and specificity in identifying patients at risk of developing diabetes
- Such models can help healthcare professionals to identify at-risk individuals early on and take preventative measures to mitigate the onset of diabetes
- more research and data collection are needed to improve the accuracy and robustness of the model.