Machine Learning for IoT

LAB2: Pre-processing

LAB1-2: Smart Battery Monitoring (Simplified)

LAB2 Content

- Timeseries Processing:
 - Compression
 - Retention
 - Aggregation
- Audio Processing:
 - Resampling
 - Discrete Fourier Transform
 - Short-Time Fourier Transform
 - Mel Spectrogram
 - Mel-Frequency Cepstral Coefficients

Timeseries Processing

Redis TimeSeries Memory Model

- A Redis TimeSeries consists of a list of linked chunks
- Each chunk contains
 - Header
 - Information needed by Redis to manage the data
 - A set of Records
 - Each record consists of:
 - Timestamp: 64-bit (8 bytes)
 - Value: 64-bit (8 bytes)
- Chunk size is set when creating the TimeSeries
 - Default: 4 KB
 - Smaller → Less Memory, Slower Read/Write
 - Larger → More Memory, Faster Read/Write

CHUNK:

KB

TimeSeries Compression

- Lossless compression
 - Gorilla algorithm

Timestamp Compression:

Value Compression:

E (°C)	double		XOR
25	0x41c80000	1	0 0000000
25	0x41c80000	2	0x000000
25.5	0x41cc0000	2	0x00040000
26.625	0x41d50000		0x00130000
26.14	0x41d11eb8	2	0x00043333

TimeSeries Compression

- Lossless compression
 - Gorilla algorithm
- Memory savings:
 - Depends on data

• Best-case: 98.4%

Worst-case: 113.3%

Memory increases! But rare.

• Average-case: 90.0%

• Compression improves performance due to a lower number of memory accesses

• Note: Compression is active by default

Example

- Which is the memory usage to store temperature every 5 seconds after 1 month?
 - 1 month = 30 days * 24 hours * 60 minutes * 60 seconds = 2592000 seconds
 - # of records = 2592000 / 5 = 518400
 - Uncompressed Memory \approx 518400 * 16 bytes = 8294400 bytes = 7.910 MB
 - Compressed Memory $\approx 7.910 \text{ MB} 90\% = 0.791 \text{ MB}$
 - Approximations:
 - We neglected the header size
 - We neglected that the memory usage is always a multiple of the chunk size
 - We considered the average compression ratio

TimeSeries Aggregation

- Lossy Compression
- Aggregation Parameters:
 - Bucket Duration

ML4IoT

- Aggregation type: avg, sum, min, max, range, count, first, last.
- Note: Aggregation never changes the original timeseries but creates a new one

TimeSeries Retention

- You can prevent your timeseries growing indefinitely by setting a maximum age for samples compared to the last event time (in milliseconds).
- By default, retention is 0
 - i.e., the timeseries will be never trimmed

Audio Processing

Waveform

- Speech signals are defined as pressure variations travelling through the air
- The waveform represents how the relative air pressure varies over time

ML4IoT

Waveform

- The "quality" of the waveform depends on:
 - Resolution
 - E.g., int16 (2 bytes), int24 (3 bytes), int32 (4 bytes)
 - Sampling Frequency
 - E.g., 48 kHz, 44.1 kHz, 16 kHz, ...

Resampling

Downsample the signal from higher frequency to lower frequency

Waveform Properties

- Volume
 - Amplitude over time
 - Higher volume → louder
- Pitch
 - Related to frequency
 - Higher frequency → Higher sound

Audio Features

- Time domain
- Frequency domain
- Time-Frequency domain

Discrete Fourier Transform

- Time Domain $x_n \rightarrow$ Frequency Domain X_k
 - Compute this transformation for finite # frequencies
- DFT of a signal x of length N:

$$X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{kn}{N}}$$

- The DFT of a real signal is symmetric
- Frequency range: [0, SR/2]
 - SR is the sampling rate
- Frequency resolution: SR/N

Redundancy in the DFT

- Output:
 - Array of shape: (N/2 + 1)
- Example:
 - 1s at 16 kHz \rightarrow # samples = 16000
 - Output shape: (8001)

Computational efficiency: DFT vs FFT

- DFT is computationally expensive (N^2 , where N is the number of input samples)
 - N can be any positive integer value
- FFT is a more efficient implementation of DFT (Nlog₂N)
 - N must be a power of 2

N	# of DFT ops.	# of FFT ops.	FFT Efficiency
256	65 536	1 024	64 : 1
512	262 144	2 304	114:1
1024	1 048 576	5 120	205 : 1
2048	4 194 304	11 264	372 : 1
4096	16 777 216	24 576	683 : 1

DFT Limitation in speech processing

- Speech signals are not stationary
 - The DFT is the average of all the phonemes in a word
 - NO time information
- Problem: we need to understand
 - WHICH phonemes are in the word → frequency
 - WHEN phonemes appear in the word → time
- →Time-Frequency Domain

Short-Time Fourier Transform (STFT)

STFT Visualization

STFT parameters

- Frame Length /
- Frame step s
 - Also defined as percentage of overlap between two consecutive frames
- FFT Length
 - Commonly set equal to I

STFT Output: Spectrogram

- 2D Matrix of shape:
 - (# frequency bins, # frames) = (I/2 + 1, (L-I)/s + 1)
- Example:
 - L = 1 s (@16 kHz), I = 40 ms, s = 20 ms
 - # Frequency bins: (40 ms * 16 kHz) / 2 + 1 = 321
 - # Frames:
 - (16000 40 ms * 16 kHz) / (20 ms * 16 kHz) + 1 = 49

2000

1000

10

20

Frame

30

ML4IoT LAB2

STFT Limitation

- Pitch:
 - 2 frequencies are perceived similarly if they differ by a power of 2

Mel scale

• Frequency-to-Mel transform:

$$m = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$$

Mel Spectrogram

Mel Spectrogram

• Parameters:

- Lower Frequency (in Hz)
- Upper Frequency (in Hz)
- # of Mel Frequency Bins

• Output:

- 2D Matrix of shape:
 - (# Mel frequency bins, # frames)

• Example:

- Lower Frequency: 20 Hz
- Upper Frequency: 4000 Hz
- # of Mel Frequency Bins: 40

Log-Amplitude Mel Spectrogram

- Our perception of loudness is logarithmic
 - Apply logarithm on the amplitude of the spectrum

Glottal pulses

Vocal tract

Speech signal

Glottal pulses

Vocal tract

Speech signal

$$X(t) = E(t) + H(t)$$

Speech signal

$$X(t) = E(t) + H(t)$$
Glottal Pulses
Spectral
Envelope

35

Mel Frequency Cepstral Coefficients (MFCCs)

Spectrum ——— Cepstrum

Mel Frequency Cepstral Coefficients (MFCCs)

Supplemental Material

Redis TimeSeries

- [Online] Redis TimeSeries Documentation
- [Online] Redis TimeSeries Python SDK
- [Online] Redis TimeSeries Python Examples

Audio Processing

- [Online] TensorFlow Signal Processing Operations
- [Online] Introduction to Speech Processing (Tom Bäckström et al.)
- [Book] Theory and Applications of Digital Speech Processing (Lawrence Rabiner, Ronald Schafer)
- [Book] Multimedia signal processing theory and applications in speech, music and communications (Saeed Vaseghi)