Examen-Correction

Nom: Prenom: No SCIPER:

Exercice 1. (Questions de cours)

- 1. Enoncer le Théorème de Lagrange.
- 2. Esquisser une figure dont le groupe d'isométries est cyclique d'ordre 8.
- 3. Entourer le label des affirmations qui sont correctes (la détermination de leur véracité devrait, normalement, ne nécessiter que peu de calculs) :
 - a) Un groupe dihedral est commutatif.
 - b) La composée de la symétrie d'axe la droite d'équation x + y = 2 et de la symétrie d'axe la droite d'équation 2x + y = 3 est une symétrie dont l'axe passe par le point d'intersection des deux droites.
 - c) L'image du point (4, -4) par la symétrie d'axe la droite d'équation 2x+3y = 1 est le point (6, -2).
 - d) Le groupe des isométries d'un hexagone régulier est d'ordre 6.

Question 1.2 Voir la figure 1.

Question 1.3

- a) Un groupe dihedral est commutatif: Faux
- b) La composée de la symétrie d'axe la droite d'équation x + y = 2 et de la symétrie d'axe la droite d'équation 2x + y = 3 est une symétrie dont l'axe passe par le point d'intersection des deux droites : Faux (la composee de deux symetries est soit un translation soit une rotation)
- c) L'image du point (4, -4) par la symétrie d'axe la droite d'équation 2x + 3y = 1 est le point (6, -2): Faux (le vecteur (6, -2)(4, -4) n'est pas perpendiculaire a l'axe de symetrie).
- d) Le groupe des isométries d'un hexagone régulier est d'ordre 6 : Faux (ordre 12)

Exercice 2. Soit φ defini par

$$\varphi(x,y) = \left(\frac{12}{13}x - \frac{5}{13}y + 1, -\frac{5}{13}x - \frac{12}{13}y + 2\right)$$

Figure 1 -

- 1. Quelle est la nature géométrique de φ : type de transformation, angle, points fixes (si ils existent).
- 2. Ecrire φ sous forme de transformations complexe.
- 3. Calculer φ^{2016} .

Question 2.1 φ est une symetrie affine car la matrice de sa partie lineaire est

$$\begin{pmatrix} 12/13 & -5/13 \\ -5/13 & -12/13 \end{pmatrix} = \begin{pmatrix} c & s \\ s & -c \end{pmatrix}, \ c^2 + s^2 = \frac{144}{169} + \frac{25}{169} = 1$$

celle d'une symetrie. L'ensemble des points fixes est obtenu en resolvant le systeme

$$\begin{cases} \frac{12}{13}x - \frac{5}{13}y + 1 = x \\ -\frac{5}{13}x - \frac{12}{13}y + 2 = y \end{cases} \iff \begin{cases} -\frac{1}{13}x - \frac{5}{13}y + 1 = 0 \\ -\frac{5}{13}x - \frac{25}{13}y + 2 = 0 \end{cases} \iff \begin{cases} x + 5y - 13 = 0 \\ x + 5y - 2\frac{13}{5} = 0 \end{cases}$$

qui n'a pas de solution : φ est donc une symetrie glissee.

Question 2.2

$$z \mapsto \overline{\beta z} + 1 + 2i, \ \beta = \frac{12}{13} + \frac{5}{13}i.$$

Question 2.3 Comme φ est une symetrie affine donc φ^2 est une translation de vecteur donne par

$$\varphi^2(0,0) = \varphi(1,2) = (15/13, -3/13)$$

et donc

$$\varphi^{2016} = t_{(15/13, -3/13)}^{1008} = t_{(\frac{15120}{13}, -\frac{3024}{13})}.$$

Exercice 3. Soit D la droite d'équation

$$x + y = 1$$
.

1. Soit s_D la symétrie orthogonale d'axe D. Pour $(x,y) \in \mathbb{R}^2$, on pose

$$s_D(x,y) = (X,Y).$$

Calculer (X, Y) en fonction de (x, y).

- 2. Exprimer s_D sous la forme d'une transformation sur les nombres complexes.
- 3. Soit r la rotation d'angle $\omega = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ et de centre (1,0). Exprimer r sous la forme d'une transformation sur les nombres complexes. Quel est l'ordre de r?
- 4. Soit D' = r(D) la transformée de D par la rotation r. Calculer l'isométrie composée $\varphi = s_{D'} \circ s_D$ en fonction de r (on pourra considérer les points fixes de s_D , r et $s_{D'}$).
- 5. Montrer que le groupe $G = \langle s_D, s_{D'} \rangle$ engendré par s_D et $s_{D'}$ est aussi le groupe engendré par s_D et φ et calculer son ordre.
- 6. Donner un polygone explicite \mathbf{P} et une isométrie du plan ψ tel que le groupe d'isométries de $\mathbf{P}' = \psi(\mathbf{P})$ soit G.

Question 3.1 On a $s_D(0,0) = (1,1)$ et la partie lineaire s_0 est donnee par $s_0(x,y) = (-y, -x)$ et donc

$$(X,Y) = (-y+1, -x+1).$$

Question 3.2 On a

$$s_D(z) = \overline{iz} + 1 + i.$$

Question 3.3 Le complexe 1 est le centre de la rotation r. On a donc

$$r(z) - 1 = \omega(z - 1) \iff r(z) = 1 - \omega + \omega z.$$

L'ordre de r est l'ordre de ω et on a $\omega^3 = 1$ donc r est d'ordre 3.

Question 3.4 On a

$$s_{D'} = r \circ s_D \circ r^{-1}.$$

En effet l'ensemble des points fixes de (la symetrie affine) $r \circ s_D \circ r^{-1}$ est l'image par r de l'ensemble des points fixes de s_D et s'est donc r(D) = D'; deux symetries ayant la meme droite de points fixes sont egales.

L'isometrie $\varphi = s_{D'} \circ s_D = r'$ est une rotation affine. Pour trouver son centre on remarque que le centre de r, $P_r = (1,0)$ appartient a D et donc a D' = r(D) car

$$P_r \in D \iff r(P_r) = P_r \in r(D) = D'.$$

comme P_r est un point fixe de s_D et $S_{D'}$, c'est un point fixe du compose r' et c'est donc le centre de r'. Pour trouver l'angle de r' il suffit de considerer la partie lineaire : on a

$$s_{D',0} = r_0 \circ s_{D,0} \circ r_0^{-1}$$
.

Comme r_0 est une rotation lineaire d'ordre 3 (donnee en complexes par $z \mapsto \omega z$) le groupe engendre par r_0 et $s_{D,0}$ est dihedral d'rodre 6 et on a

$$s_{D,0} \circ r_0 \circ s_{D,0} = r_0^{-1}.$$

On a donc

$$r'_0 = r_0 \circ s_{D,0} \circ r_0^{-1} \circ s_{D,0} = r_0 \circ s_{D,0} \circ s_{D,0} \circ r_0 \circ s_{D,0} \circ s_{D,0} = r_0^2.$$

Ainsi l'angle de r'_0 et donc de r' est ω^2 (qui est egalement d'ordre 3). Comme r' a le meme centre que r et est d'angle ω^2 , on a

$$r' = r^2$$
.

Question 3.5 On a $r' = s_{D'} \circ s_D$ et donc est contenu dans le groupe engendre par $s_{D'}$ et s_D ; par cette meme relation $s_{D'} = r' \circ s_D$ (on rapelle que $S_D^{-1} = s_D$) donc $s_{D'}$ s'ecrit comme compose de r' et s_D et est contenu dans le groupe engendre par r et s_D . Ainsi

$$G = \langle s_D, r \rangle = \langle s_D, s_{D'} \rangle.$$

Comme le point (1,0) est un point fixe de r' et s_D c'est un point fixe de tout element du groupe $\langle s_D, r \rangle$ et le conjugue ce groupe par la translation $t_{-(1,0)}$, admet l'origine (0,0) comme point fixe : si $g \in G$,

$$t_{-(1,0)} \circ g \circ t_{(1,0)}(0,0) = t_{-(1,0)}(g(1,0)) = t_{-(1,0)}((1,0)) = (0,0).$$

On obtient donc un groupe d'isometrie lineaires (donc le groupe G_0 engendre par les parties lineaires $s_{D,0}$ et $r'_0 = r_0^2$) endrendre par une rotation lineaire d'ordre 3 et une symetrie : ce groupe est fini dihedral d'ordre 6 et on a la relation

$$s_{D,0} \circ r'_0 \circ s_{D,0}^{-1} = r'_0^{-1}$$
.

en prenant conjugue inverse on obtient que G est dihedral d'ordre 6.

Question 3.6 Il suffit de prendre \mathbf{P}' le triangle equilateral de barycentre le point (1,0) et dont un des sommets est sur l'axe D'.

Exercice 4. (Première méthode) Soit g_0 un génerateur de G et h_0 un génerateur de H.

- 1. Montrer que l'ordre de (g_0, h_0) dans le groupe produit $G \times H$ divise mn.
- 2. Montrer que l'ensemble des entiers $k \in \mathbb{Z}$ tels que la première coordonnée de $(g_0, h_0)^k = (g_0, h_0) \times \cdots \times (g_0, h_0)$ (k fois) vaut e_G est l'ensemble des multiples de m.
- 3. Effectuer un raisonnement similaire et en déduire l'ordre de (g_0, h_0) .
- 4. Conclure la preuve du Théorème.

Question 4.1 On a

$$(g_0, h_0)^{mn} = (g_0^{mn}, h_0^{mn}) = (e_G, e_H)$$

donc mn est un multiplie de l'ordre de (g_0, h_0) .

Question 4.2 On a $(g_0, h_0)^k = (g_0^k, h_0^k)$ donc si la premiere coordonnee vaut e_G on a $g_0^k = e_G$ et k est un multiplie de m.

Question 4.3 De meme si la deuxieme coordonnee de $(g_0, h_0)^k = (g_0^k, h_0^k)$ vaut e_H , k est un multiplie de n. Ainsi si $(g_0, h_0)^k = (e_G, e_H)$ alors k est un multiplie commun de m et n et donc un multiple commun de leur ppmc qui vaut mn. Ainsi l'ordre de (g_0, h_0) , k_0 est un multiple de mn et comme par la première question mn est un multiple de k_0 . on a $k_0 = mn$.

Question 4.4 Le groupe $G \times H$ est d'ordre mn et (g_0, h_0) est d'ordre mn donc $\langle (g_0, h_0) \rangle = G \times H$ et $G \times H$ est cyclique.

Exercice 5. (Deuxième méthode) Soit $(\mathbb{C}^{\times}, .) = (\mathbb{C} - \{0\}, .)$ le groupe multiplicatif de \mathbb{C} (muni de la multiplication usuelle). Soient $\mu_m, \mu_n \subset \mathbb{C}^{\times}$ les sous-groupes des racines m-ièmes et n-ièmes de l'unité.

1. Montrer que l'application "produit"

$$\pi: \begin{array}{ccc} \mu_m \times \mu_n & \mapsto & \mathbb{C}^{\times} \\ (\zeta, \xi) & \mapsto & \zeta.\xi \end{array}$$

est un morphisme de groupes.

- 2. Montrer que l'image $Im(\pi)$ est un groupe cyclique.
- 3. Montrer que le noyau $\ker(\pi)$ peut s'identifier à un sous-groupe de μ_m et a un sous-groupe de μ_n . En déduire que $\ker(\pi) = \{(1,1)\}.$
- 4. Montrer que $\mu_m \times \mu_n$ est cyclique et conclure la preuve du Théorème.
- 5. Quel sous-groupe de \mathbb{C}^{\times} est le groupe $\mathrm{Im}(\pi)$?

Question 5.1 On a pour $\zeta, \zeta' \in \mu_m, \xi, \xi' \in \mu_n$

$$\pi((\zeta,\xi)\times(\zeta',\xi'))=\pi((\zeta\zeta',\xi\xi'))=\zeta\zeta'\xi\xi'=\zeta\xi\zeta'\xi'=\pi(\zeta,\xi).\pi(\zeta',\xi')$$

et donc par le critere de morphisme de groupe π est un morphisme.

Question 5.2 $\text{Im}(\pi)$ est un groupe fini (car image d'un groupe fini par un morphisme) de \mathbb{C}^{\times} et par le theoreme du cours d'est un groupe cyclique.

Question 5.3 Consierons l'application "projection sur la premiere coordonnee"

$$\pi_1: (\zeta, \xi) \in \ker(\pi) \mapsto \zeta \in \mu_m.$$

c'est un morphisme de groupes :

$$\pi_1((\zeta,\xi)\times(\zeta',\xi'))=\pi_1((\zeta\zeta',\xi\xi'))=\zeta\zeta'=\pi_1(\zeta,\xi).\pi_1(\zeta',\xi');$$

montrons qu'il est injectif : soit $(\zeta, \xi \in \ker(\pi))$ tel que $\zeta = 1$, alors comme

$$\pi(\zeta,\xi) = \zeta\xi = 1$$

on a $\xi = 1$ et $(\zeta, \xi) = (1, 1)$ et donc $\ker(\pi)$ s'identifie a son image par π_1 et est un sous-groupe de μ_m . De meme $\ker(\pi)$ s'identifie a son image par π_2 et est un sous-groupe de μ_n . Ains l'ordre $|\ker(\pi)|$ divise a la fois m et n qui sont premiers entre eux donc $|\ker(\pi)| = 1$ et $\ker(\pi) = \{(1, 1)\}$.

Question 5.4 Ainsi l'application π est injective et est un isomorphisme de groupes de $\mu_m \times \mu_n$ vers sont image $\pi(\mu_m \times \mu_n) \subset \mathbb{C}^{\times}$. comme ce dernier groupe est un sous-groupe fini de \mathbb{C}^{\times} il est cyclique.

Question 5.5 $\text{Im}(\pi)$ est un sous-groupe de \mathbb{C}^{\times} d'ordre mn, il n'y a uqu'un seul sous-groupe possible : le groupe des racine mn-iemes de l'unite

$$\mu_{mn} = \{ z \in \mathbb{C}, \ z^{mn} = 1 \}.$$