GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:52:51; Search time 63.75 Seconds (without alignments) 66.482 Million cell updates/sec Run on:

US-10-034-974-7 104 1 WKACPGEDWLFCWGS 15 Title: Perfect score:

Seguence:

BLOSUM62 Gapop 10.0 , Gapext 0.5 Scoring table:

1586107 seqs, 282547505 residues Searched:

1586107 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

A_Geneseq_29Jan04:*
1: geneseqp1980s:*
2: geneseqp1990s:*
3: geneseqp2000s:* geneseqp2003as:* geneseqp2003bs:* geneseqp2004s:* geneseqp2001s: * geneseqp2002s:* Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description	Aae26735 Fibrin bi	Aae26758 Fibrin bi	Fibrin	Aae26733 Fibrin bi	Aae26744 Slow diss	Aae26745 Slow diss	Aae26743 Slow diss	Aae26753 Fibrin bi	
QI	AAE26735	AAE26758	AAE26762	AAE26733	AAE26744	AAE26745	AAE26743	AAE26753	AAE26732
% Query Match Length DB	15 5	15 5	15 5	15 5	19 5	19 5	19 5	9	15 5
% Query Match Le	100.0	70.2	67.3	63.5	63.5	63.5	63.5	9.09	9.09
Score	104	73	70	99	99	99	99	63	63
Result No.		N	ო	4	ഗ	9	7	60	on

6731 Fibri 6764 Fibri 6765 Fibri 6766 Fibri 1462 Propi	7981 Propion 9051 Drosoph 6777 Fibrin 6778 Fibrin	740294 Human co 745903 Human BL 706189 Anti-ang 826780 Fibrin b	5746 SIOW dis 5748 SIOW dis 5774 SIOW dis 5774 Fibrin b 5149 Novel hu	25013 Numan se 25040 Novel hu 226520 Protein 123786 Protein 13457 Arabidop 125967 Arabidop	A4922966 Arabidops A4913456 Arabidops A4913456 Arabidops A4913455 Arabidops A4960558 Human nor A4960568 Human nor A40507 Human pro
673 676 676 676	798 905 677 676	AAW40294 ABP45903 AAY06189 AAE26780 AAE26734	いびににははら	ABB50783 AB045040 AB026520 ABU23786 AAG13457 AAG52967	24040000
សសសស	040000	1 W W W W W	រលលស្សស	140L0WWU	N W W W 4 V 4 4
15 15 15 51	45 45 47 47 40 40 40 40	255 34 15 9	27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000444	2 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	מٰ ⊣ ס ס ס ס		4	4444444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Δ Γυ Γυ Γυ Γυ -	5.5 5.5 5.1 5.1 5.1	50 % 50 % 50 %	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	' ਰ ਰ ਰ ਰ ਰ ਰ ਟ	4444 455. 456666666666666666666666666666
10 11 13 14	119 119 119 119	22 22 23 24 24 25	26 27 28 30 31		3 6 6 4 4 4 4 4 4 5 5 4 5 5 4 5 5 5 5 5 5

ALI GAMENTS

RESULT 1 AAE26735

AAE26735 standard; peptide; 15 AA. 13-DEC-2002 (first entry) Fibrin binding peptide #6. AAE26735;

Fibrin binding peptide; thrombosis; pulmonary embolism; atherosclerosis; myocardial infarct; ischaemia; imaging; rheumatoid arthritis; vasotropic; anaemia; hypoxia; tumour; diabetic retinopathy; autoimmune disorder; inflammatory disorder; anglogenesis; stroke; cerebroprotective.

Unidentified.

WO200255544-A2.

18-JUL-2002.

21-DEC-2001; 2001WO-US049534.

23-DEC-2000; 2000US-00747403.

(DYAX-) DYAX CORP.

Wescott CR, Beltzer JP, Sato AK;

WPI; 2002-666875/71.

Novel synthetic fibrin-binding moiety, useful for detecting, imaging or localizing fibrin-containing clots by magnetic resonance imaging, radiolmaging and for treating diseases involving thrombus formation e.g. stroke.

Claim 10; Page 57; 89pp; English.

currenting a disease involving thrombus formation eg, deepvent intromosis, or treating and aisease involving thrombosis, atherosciences; myceracial infarct, reperfusion ischaemia or stroke. The binding moieties are useful of or detection, imaging and localisation of fibrin-containing clots by magnetic resonance imaging and localisation of fibrin-containing clots by magnetic resonance imaging and localisation of fibrin-containing clots by magnetic resonance imaging methods and are also useful in the diagnosis and treatment of coronary conditions where fibrin plays a role. The fibrin binding moieties are useful for detecting and diagnosing numerous pathophysiologies in which fibrin plays a role eg. peritoneal adhesions which often occur after surgery or inflammatory and neoplastic processes and are comprised of a fibrin network, fibroblasts, macrophages and new blood vessels; rheumatorid arthritis, upus or septic arthritis which often have bits of fibrin containing tissues called rice bodies in the synovial fluid of their just; thrombotypeoperic purpue, a type of ansemia in which deposits in carterioles causes turbulent blood flow resulting in stress and areterioles causes turbulent blood flow resulting in stress and destruction of red blood cells. The fibrin specific agents can also be useful corpusate, as well as the detection of tumours, diabetic corpusation, as well as the detection of tumours, diabetic corpusation will and containing molecular libraries. The present sequence is a fibrin fibring molecular libraries. The present sequence is a fibrin correction. The invention relates to a synthetic fibrin binding group having affinity for fibrin. The invention is useful for detecting fibrin in a mammalian subject which involves (a) detectably labelling the binding group; (b) administering to the subject the labelled polypeptide, and (c) detecting the labelled polypeptide in the subject. The invention is useful for treating a disease involving thrombus formation eg. deep-vein thrombosis, binding peptide

Sequence 15 AA;

0; Gaps 100.0%; Score 104; DB 5; Length 15; 100.0%; Pred. No. 2.6e-08; 0; Indels 0; Mismatches Matches 15; Conservative Query Match Best Local Similarity

1 WKACPGEDWLFCWGS 15

1 WKACPGEDWLFCWGS 15

ద

Search completed: May 19, 2004, 17:05:46 Job time : 64.75 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 17:07:54 ; Search time 51:875 Seconds (without alignments) 60.461 Million cell updates/sec	US-10-034-974-7
Run on:	Title:

104 1 WKACPGEDWLFCWGS 15 Perfect score: Sequence:

BLOSUM62 Gapop 10.0 , Gapext 0.5 Scoring table:

1145568 seqs, 278261457 residues Searched: Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database

Published Applications AA:*

1: /cgn2_6/ptodata/2/pubpaa/USO7_PUBCOMB.pep:*

2: /cgn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*

3: /cgn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*

4: /cgn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*

5: /cgn2_6/ptodata/2/pubpaa/USO6_PUBCOMB.pep:*

6: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

7: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

8: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

9: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

10: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

11: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

11: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

12: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

13: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

14: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

15: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

16: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

18: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

ΙD Query Score Match Length DB Result No.

Description

	Appli Appl	Appl	Appli	Appl	Appl	Appl	Appl	Appli	Appli	Appl	Appl	Appl	Appl	Appl	Appl	4, Ap	4, Ap	Appl	Appl	Appli	Appl	Appl	Appl	38	Appl	290,	, Apr			2	α.	6	, Apr						į	61				20, 3
	7.08	34,	٠,		16,					w`	ď	œ,	49,	50,	e,	91	8	'n	Si.		ຕັ	ď.	o`	329	tO.	CD.	73	73	ന	51	o	56	n	58	N	28	æ	Ξ	10	14	Н	16	Н	65
	Sequence	0	equenc	Sequence	Sequence	Sequence	Seguence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Seguence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	Sequence	quence	Seguence	Seguence	Seguence	Sednence	Seguence	Seguence	Sequence	Sequence	Sequence	· w	Seguence	Seguence	Seguence
1 1 1 1 1 1 1 1 1	US-10-034-974-7	S-10-034-974-3	-10-034-97	-10-034-974-	-10-034-974-	-10-034-974-1	-10-034-974-	-10-034-974-	-10-0	-10-034-974-3	0-034-974-	-10-034-974-3	-10-034-974-4	-10-034-974-5	0-034-974-3	-09-880-748-191	-10-293-418-19	10-036-869-1	-10-034-974-5	-10-034-974-6	-10-034-974-1	-10-034-974-1	10-034-974-2	-10-029-386-	-10-034-974-4	-10-424-599-19	-09-933-767-73	-004-860-7	-10-023-282-736	-10-282-122A-	09-764-864-1160	S-10-094-749-2	0-058-053A-30	5-10-058-053A-28	-10-058-053A-28	-10-058-053A-28	2-983-10	-10-058-053A-1	-632-983-10	4-599-144	8-053A-14	-10-058-053A-1	-053A-17	10-425-114-656
-	14	14	14	14	14	74	14	14	14	14	14	14	14	14	14	10	12	13	14		14	14	14		14	12	10	12	14	12		15	14		14		12	14	12	12		14		
	1.5 7.5						σ		15	15	15	15	on	σ	\leftarrow	255	S	34	თ	15	19	19	19	379	თ	65	96	8 6	o	ന	58	₩.	56	37	37	37	44	80	96	0	\circ	110	_	on
	100.0	۲.			ω,	'n	o.	٥.	57.7	4.	ന	e,	ď	o,	σı		49.0	48.6	48.1	48.1			48.1	•	46.2		44.2			•		43.8		m			43.3			٠.	43.3	43.3	43.3	43.3
	104	7.0	99	99	99	99	63	63	09	57	56	56	51	51	51	51	51	50.5	50	50	50	50	20	49	48	46	46	46	46	4	ď.		45	45	45	45	45	45	45	45	45	45	45	45
1	٥ ٦	1 m	ু ক	ഗ	9	7	ω	o	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

ALI GNMENTS

RESULT 1
US-10-034-974-7
; Sequence 7, Application US/10034974
; Publication No. US20030143158A1
; GENERAL INFORMATION:
; APPLICANT: DYAX CORP.

```
;;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Gaps
APPLICANT: Beltzer, James P.
APPLICANT: Wescott, Charles R.
TITLE OF INVENTION: FIERRIN BINDING MOLETIES USEFUL AS IMAGING AGENTS
FILE REFERENCE: DYX-024.1 PCT; DYX-024.1 US
CURRENT APPLICATION NUMBER: US 10/034,974
CURRENT FILING DATE: 2000-12-2.1
PRIOR FILING DATE: 2000-12-2.3
NUMBER O'S EQ ID NOS: 56
SOFTWARE: Patentin version 3.1
SEQ ID NO 7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ·,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Length 15;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Indels
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Query Match
100.0%; Score 104; DB 14;
Best Local Similarity 100.0%; Pred. No. 3.7e-07;
Matches 15; Conservative 0; Mismatches 0;
                                                                                                                                                                                                                                                                                                                                                                               FEATURE:
, OTHER INFORMATION: fibrin binding polypeptide
US-10-034-974-7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Search completed: May 19, 2004, 17:17:35 Job time : 58.875 secs
                                                                                                                                                                                                                                                                                                                             TYPE: PRT
ORGANISM: Artificial Sequence
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1 WKACPGEDWLFCWGS 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1 WKACPGEDWLFCWGS 15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ô
```

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

(without alignments) 85.504 Million cell updates/sec May 19, 2004, 16:59:56; Search time 16.875 Seconds Run on:

US-10-034-974-7 Perfect score: Title:

Sednence:

BLOSUM62 Gapop 10.0 , Gapext 0.5 Scoring table:

283366 Total number of hits satisfying chosen parameters:

283366 seqs, 96191526 residues

Searched:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

PIR_78:* Database:

1: pirl: * 2: pir2: * 3: pir3: * 4: pir4: *

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Description	glutathione transf	alpha-galactosidas	phenylalanyl-tRNA	CDP-diacylglycerol	CDP-diacylglycerol	polybromo 1 - chic	hypothetical prote	hypothetical prote	hypothetical prote	2-oxoacid-ferredox	protein T23G5.5 [i	catecholamine tran	probable coat prot
ΙD	JC5114	S74222	F97190	G85255	T04915	JC5056	T46478	G83281	528306	E69343	D88551	T43330	S54138
82	~	7	~	~	~	ς;	~1	~	7	~	7	7	7
g Query Match Length DB	215	624	339	423	423	1633	119	242	499	532	579	615	217
å Query Match	48.1	45.2	44.2	44.2	44.2	43.8	43.3	43.3	43.3	43.3	43.3	43.3	42.3
Score	20	47	46	46	46	45.5	45	45	45	45	45	45	44
Result No.	-	2	ო	4	ß	9	[~	œ	σı	10	11	12	13

in in 240.	noglycosi othetical othetical system,	PTS system, fructo frvA protein - Esc hypothetical prote cytochrome-c oxida	D-alanine-D-alanin hypothetical prote hypothetical prote	enzyme rotein nitrit reducts ical pr	로뜀쥬쥬	hypothetical prote photosystem II pro hypothetical prote CDP-dlacylglygerol glypican I precurs hypothetical prote
F3688 S3513 F8677 A5605 D8697 G8807	AB283 F9760 T1899 A8607			ли, шце ч	S593 A532 S514 B724	
559 2 777 2 578 2 558 2 551 2 52 2						292 353 129 429 2438 521 538 2538
21212462	1 0 0 A	ਜ਼ਿਜ਼ਿੰਦਿਲ	w 4₁ ny n			
		40.04 40.04 40.04	0000		30.00 30.00 40.00	2000 2000 2000 2000 2000 2000
ক ক ক ক ক ক ক ক ক ক ক ক ক	42 43 43 53 5	42.5 42.5 42	444	4 4 4 4 4 4	42 41.5 41.5	ਲਜਜਜਜ ਰਾਹਾਰਾ ਰਾ
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	20 21 23 23	24 25 26 72	3008	32 32 34 35	33 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44 44 44 54 54

Search completed: May 19, 2004, 17:08:25 Job time : 17.875 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:56:57; Search time 12.5 Seconds (without alignments) 62.484 Million cell updates/sec Run on:

Title: US-10-034-974-7
Perfect score: 104
Sequence: 1 WKACPGEDWLFCWGS 15

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

141681 seqs, 52070155 residues Searched: 141681 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

SwissProt_42:* Database : Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Description	Q97gk9 clostridium	Q14679 homo sapien	Q03614 caenorhabdi	Q02151 lactococcus	Q9ccq3 mycobacteri	P321,55 escherichia	013504 pichia past	Q13630 homo sapien	Q9xak7 streptomyce	Q12220 saccharomyc	Q06488 saccharomyc	Q9y910 aeropyrum p	Q84bq9 thermus the	075593 homo sapien	Q9ep82 mus musculu	Q96a84 homo sapien	Q91vf5 mus musculu
Ţ	SYFA CLOAB	Y173 HUMAN	NTDO CAEEL	YMEB LACLA	PRIA MYCLE	PTVA ECOLI	TRPF_PICPA	FCL HUMAN	VANL STRCO	DIP2 YEAST	RSC2 YEAST	TDXH AERPE	PRMA_THETH	FXH1 HUMAN	WDR4 MOUSE	EMU1 HUMAN	EMU1 MOUSE
DB	! -	П	7	Н	П	H	П	H	Н	۲-4	٦	ч	г		Н	+	-
å Query Match Length DB	339	1199	615	259	651	148	237	321	346	943	889	250	254	365	413	441	444
% Query Match	44.2	44.2	43.3	42.3	42.3	40.9	40.4	40.4	40.4	40.4	39.9	39.4	39.4	39.4	39.4	39.4	39.4
Score	46	46	45	44	44	42.5	42	42	42	42	41.5	41	41	41	41	41	41
Result No.	-	7	ო	寸	S	v	7	ω	o	10	11	12	13	14	15	16	17

013157 gallus gall P51802 rattus norv P13594 mus musculu Q94734 rana catesb 004928 a phosphati P27427 dhori virus P49253 oncorhymchu Q93hu3 rhodothermu Q93hu3 rhodothermu P71670 clostridium P02671 homo sapien Q8126 homo sapien Q8126 prosophila P14111 bacteriopha P98159 drosophila P14111 bacteriopha P38411 saccharomyc Q04772 saccharomyc Q94772 saccharomyc Q94782 homo sapien P15751 klebsiella O15482 homo sapien P15751 klebsiella O15482 homo sapien P15751 klebsiella O15482 homo sapien P15751 klebsiella O15480 momo sapien	
GFRZ_CHICK CGCL_RAT NCAZ_WOUSE SCAB_RANCA CDS1_ARATH VENV_LHVII AOF ONOMY GLGE_RHOMR GLGE_RHOMR GLGE_RHOMR GLOCE FIBA_TUMAN FILA_MOUSE MOKC_SCHPO NDL_DROME NDL_DROME VMLI_BPPZZ YB91_YEAST YMM3_YEAST YMM3_YEAST YMM3_YEAST YMM3_YEAST YMM3_YEAST YMM3_YEAST YMM3_YEAST ONSI_SOLIU ENY_HUMAN GSPL_KLEPN TX28_HUMAN GSPL_KLEPN TX28_HUMAN	AMY3_SCHPO YF92_MYCPN THIP_ECOLI PONB_LACPL SCB2_XENIA
4655 4657 47273 4727	521 1 521 1 521 1 536 1 646 1
<u> </u>	8 8 7 7 8 8 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 7 8 8 7 7 8
	, , , , , , , , , , , , , , , , , , ,
11122222222222222222222222222222222222	44444 5122 5122 5132 5132 5132 5132 5132 5132

Search completed: May 19, 2004, 17:06:20 Job time : 14.5 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:58:07 ; Search time 45.625 Seconds (without alignments) 103.732 Million cell updates/sec 1017041 Total number of hits satisfying chosen parameters: 1017041 seqs, 315518202 residues Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5 Title: US-10-034-974-7
Perfect score: 104
Sequence: 1 WKACPGEDWLFCWGS 15 Searched: Run on:

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Minimum DB seq length: 0 Maximum DB seq length: 200000000

SPIREMBL 25:* Database :

1: sp_archea:
2: sp_bacteria:*
3: sp_fungi:*
4: sp_human:*
5: sp_inverrebrate:*
6: sp_mammal:*
7: sp_mammal:*
7: sp_phage:*
10: sp_phage:*
11: sp_rodent:*
11: sp_verrebrate:*
13: sp_verrebrate:*
14: sp_unclassified:*
15: sp_archeap:*
16: sp_archeap:*
17: sp_archeap:*
17: sp_archeap:*
18: sp_archeap:*
18: sp_archeap:*
18: sp_archeap:*
19: sp_archeap:*
17: sp_archeap:*
18: sp_archeap:*
18: sp_archeap:*
18: sp_archeap:*
19: sp_archeap:*
10: sp_archeap:*
10: sp_archeap:*
11: sp_archeap:*
11: sp_archeap:*
12: sp_archeap:*
13: sp_archeap:*
14: sp_archeap:*
15: sp_archeap:*
16: sp_archeap:*
17: sp_archeap:*
18: sp_archeap:*
18: sp_archeap:*
18: sp_archeap:*
19: sp_archeap:*
10: sp_archeap:*
10: sp_archeap:*
10: sp_archeap:*
10: sp_archeap:*
11: sp_archeap:*
12: sp_archeap:*
13: sp_archeap:*
14: sp_archeap:*
15: sp_archeap:*
16: sp_archeap:*
17: sp_archeap:*
17: sp_archeap:*
18: sp_archeap:*
19: sp_archeap:*
19: sp_archeap:*
10: sp_archeap:*
11: sp_archeap:*
12: sp_archeap:*
12: sp_archeap:*
13: sp_archeap:*
14: sp_archeap:*
15: sp_archeap:*
16: sp_archeap:*
16: sp_archeap:*
17: sp_archeap:*
18: sp_arc

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description Result Query No. Score Match Length DB ID

drosophi drosophi 6 tupaia 6 coccomy 3 citrus 5 citrus 5 oryza s 3 mus mus	Obrqvi bacillus gi QTuz5 rhodopirall QBbis mus musculu QBbis mus musculu Q92451 trichoderma Q106X7 synethococo Q106X7 synethococo	44 444 4	4444,4087	07x920 oryza sativ 082tm7 nitrosomona 025950 archaeoglob 02950 archaeoglob 02950 archaeoglob 027x37 ciona intes 099677 tulare appl 089322 citrus vari 089321 citrus vari 089324 citrus vari 089326 citrus vari
5 Q95SN5 5 Q9W343 12 Q9W1Q6 12 Q8W325 12 Q8W325 12 Q8W325 11 Q94LV5	0 0 0 C	o	3 333 3	10 Q78920 Q02TM7 10 Q9FSJ6 17 Q25509 18 Q9RX93 5 Q7857 12 Q99HQ7 12 Q8V321 12 Q8V324 12 Q8V326
1952 4547 365 215 217 217 467 558	144 661 157 185 302 315	423 889 1199 289 503 551 605 1047	1602 1633 1689 119 120 242 315	384 393 428 1053 434 217 217 217 217
2.10 2.00 4.00 4.00 1.00 1.00 1.00 1.00 1.00 1		4 4 4 6 6 6 6 6 6 6		44444444444
გა გა • • • • • • • • • • • • • • • • • • •		444	4 4 4 4 V N N N V · · · · 4 4 4 4 4 4 V W N N N N N N N N N N	N N N N N N O O O O O O O o o o o o o o o o o o o o
	0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1	10 11 11 11 12 13 14 14	22 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3	36666666666666666666666666666666666666

Search completed: May 19, 2004, 17:07:46 Job time: 47.625 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

il ; Search time 38.25 Seconds	(without alignments)	66.482 Million cell updates/sec
May 19, 2004, 16:52:51		
Run on: May	(

BLOSUM62 Gapop 10.0 , Gapext 0.5 US-10-034-974-25 63 1 CPGEDWLFC 9 Title: Perfect score: Scoring table: Sequence:

1586107 seqs, 282547505 residues Searched:

1586107 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

A Geneseq 29Jan04:*

1. geneseqp1980s:*

2. geneseqp1990s:*

4. geneseqp2001s:*

5. geneseqp201s:*

6. geneseqp2003s:*

7. geneseqp2003bs:*

8. geneseqp2003bs:* Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Aae26735 Fibrin bi Aae26737 Fibrin bi Aae26778 Fibrin bi Aae26762 Fibrin bi Aae26761 Fibrin bi Aae26764 Fibrin bi Aae26764 Fibrin bi Aae26774 Fibrin bi Description AAE26753 AAE26777 AAE26777 AAE26778 AAE26762 AAE26760 AAE26780 AAE26780 П B Query Match Length 100.0 100.0 81.0 81.0 81.0 81.0 79.4 79.4 Score 63 63 51 53 50 50 50 Result No. 125459789

6758 Fibrin b	751 Fibrin b	26733 Fibri	744 Slow dis	e26745 Slow di	6743 Slow di	750 Fibrin	e26732 Fibr	u28117 Novel h	1361 Human	3286	1116 A GDP-	7263 Human p	3305 Novel hu	ഗ	2247 Human	0133 Novel	946 Human	3508 Human	9051 Drosophi	2 Fibrin b	e26734 Fibrin	6746 Slow dis	Aae26748 Slow diss	926747 Slow di	p47152 Human	11054 Human p	5903 Human E	2448 Novel h	Abr53214 Protein s	59	951	6031	3631 Human	1 Human s	8 Novel h
2675	2675	267	2674	AAE26745	2674	2675	AAE26732	2811	AAY81361	828	111	AB007263	330	75	TH	23	T#	95	905	675	673	674	674	2674	715	1105	290	244	32	602	AAU39512	ABM36031	AAB43631	058	ABG04658
		'n																																	
15	01	15	13	13	5	un	15	4	7	$^{\circ}$	\sim	\sim	S	O.	O)	16	22	1222	54	on	15	19	19	39	21	N	255	-	94	S	9	9	9	194	0
ø.	ė.	8.69	o,	ė.	ė.	ė	ů,	ø.	ė,	é	ė.	ů.	ė.	ė.	é	ů.	ъ.	65.1	4.	ë.	ë	۳.	ς.	ë.	e,	e,	ë.	ë.	e.	m.	_;	_:		ä	
48	44	44	44	44	44	42	42	42	42	42	42	42	42	42	42	45	41	41	40.5	40	40	40	40	40	40	40	40	40	40	40	ტ წ	39	39	39	99
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	58	30	31	32	33	34	32	36	37	38	39	40	41	42	43	77	45

ALI GNMENTS

RESULT 1

AAE26753 standard; peptide; 9 AA. 13-DEC-2002 (first entry) Fibrin binding loop #5. AAE26753; AAE26753

Fibrin binding peptide; thrombosis; pulmonary embolism; atherosclerosis; myocardial inferent; ischaemia; imaging; rheumatoid arthritis; vasotropic; anaemia; hypoxia; tumour; diabetic dringpthy; autoimmune disorder; inflammatory disorder; angiogenesis; stroke; osebbroprotective.

Unidentified.

WO200255544-A2.

18-JUL-2002.

21-DEC-2001; 2001WO-US049534.

23-DEC-2000; 2000US-00747403.

(DYAX-) DYAX CORP.

Sato AK;

Beltzer JP,

Wescott CR,

WPI; 2002-666875/71.

Novel synthetic fibrin-binding moiety, useful for detecting, imaging or localizing fibrin-containing clots by magnetic resonance imaging, radioimaging and for treating diseases involving thrombus formation e.g. stroke.

Claim 4; Page 55; 89pp; English.

pullmonary embolism, cardiogenic thrombosis, atheroscletosis, myocardial infarct, reperfusion ischaemia or stroke. The binding moieties are useful for detection, imaging and localisation of fibrin-containing clots by magnetic resonance imaging, radioimaging and other imaging methods and are also useful in the diagnosis and treatment of coronary conditions where fibrin plays a role. The fibrin binding moieties are useful for detecting and diagnosing numerous pathophysiologies in which fibrin plays a role og, peritoneal adhesions which often occur after surgery or inflammatory and neoplastic processes and are comprised of a fibrin network, fibroblasts, macrophages and blood vessels, rheumatoid arthitis, lugus or septic arthritis which often have bits of fibrin containing tissues called rice bodies in the symovial fluid of their The invention relates to a synthetic fibrin binding group having affinity for fibrin. The invention is useful for detecting fibrin in a mammalian subject which involves (a) detectably labelling the binding group; (b) administering to the subject the labelled polypeptide, and (c) detecting the labelled polypeptide in the subject. The invention is useful for treating a disease involving thrombus formation eq. deep-vein thrombosis, used to detect hypoxia or ischaemia of heart, kidney, liver, lung, brain or other organs, as well as the detection of tumours, diabetic retinopathy, early or high-risk atherosclerosis and other autoimmus and inflammatory disorders. Fibrin specific agents also could provide both direct or surrogate markers of disease models in which hypoxia and angiogenesis are expected to play a role. The invention is also useful for screening molecular libraries. The present sequence is a fibrin joints; thrombocytopenic purpura, a type of anaemia in which deposits in arterioles causes turbulent blood flow resulting in stress and destruction of red blood cells. The fibrin specific agents can also be dool gaibaid

Sequence 9 AA;

ö 0; Gaps 100.0%; Score 63; DB 5; Length 9; 100.0%; Pred. No. 1.4e+06; Live 0; Mismatches 0; Indels 9; Conservative Query Match Best Local Similarity Matches

RESULT 2

AAE26735 standard; peptide; 15 AA.

AAE26735;

(first entry) 13-DEC-2002

Fibrin binding peptide #6.

Fibrin binding peptide; thrombosis; pulmonary embolism; atherosclerosis; myocardial infarct; ischaemia; imaging; rheumatoid arthritis; vasotropic; anaemia; hypoxia; tumour; diabetic retinopathy; autoimmune disorder;

inflammatory disorder; angiogenesis; stroke; cerebroprotective

Unidentified.

WO200255544-A2.

18-JUL-2002.

21-DEC-2001; 2001WO-US049534.

23-DEC-2000; 2000US-00747403.

(DYAX-) DYAX CORP.

Wescott CR, Beltzer JP, Sato AK;

WPI; 2002-666875/71.

Novel synthetic fibrin-binding moiety, useful for detecting, imaging or localizing fibrin-containing clots by magnetic resonance imaging, radioimaging and for treating diseases involving thrombus formation e.g.

Claim 10; Page 57; 89pp; English.

stroke.

The invention relates to a synthetic fibrin binding group having affinity for fibrin. The invention is useful for detecting fibrin in a mammalian subject which involves (a) detectably labelling the binding group; (b) administering to the subject the labelled polypeptide, and (c) detecting the labelled polypeptide in the subject. The invention is useful for treating a disease involving thrombus formation eq. deep-vein thrombosis, pulmonary embolism, cardiogenic thrombosis, atherosclerosis, myocardial infarct, reperfusion ischaemia or stroke. The binding moleties are useful for detection, imaging and localisation of fibrin-containing clots by detecting and diagnosing numerous pathophysiologies in which fibrin plays magnetic resonance imaging, radioimaging and other imaging methods and are also useful in the diagnosis and treatment of coronary conditions where fibrin plays a role. The fibrin binding moleties are useful for

inflammatory and neoplastic processes and are comprised of a fibrin network, fibroblasts, macrophages and new blood vessels; rhetwardid network, fibroblasts, macrophages and new blood vessels; rhetwardid cortaining tissues called rice bodies in the synovial fluid of their containing tissues called rice bodies in the synovial fluid of their containing tissues called rice bodies in the synovial fluid of their containing tissues called rice bodies in the synovial fluid of their containing tissues called rice bodies in the synovial fluid of their containing tissues called rice bodies in the synovial fluid of their containing tissues causes turbulent blood flow resulting in stress and astropial contex regards, as well as the detection of tumours, diabetic content organs, as well as the detection of tumours, diabetic retinopathy, early or high-risk atherosclerosis and other autoimmume and intent or surrogate markers of disease models in which hypoxia and and angiogenesis are expected to play a role. The invention is also useful containing peptide ö 0; Gaps Query Match
100.0%; Score 63; DB 5; Length 15;
Best Local Similarity 100.0%; Pred. No. 0.0016;
Matches 9; Conservative 0; Mismatches 0; Indels completed: May 19, 2004, 17:05:47 4 CPGEDWLFC 12 1 CPGEDWLFC 9 Sequence 15 AA; Search ò ద

Job time : 39.25 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

(without alignments) 80.461 Million cell updates/sec May 19, 2004, 17:07:54; Search time 31.125 Seconds Total number of hits satisfying chosen parameters: 1145568 seqs, 278261457 residues Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries Gapop 10.0 , Gapext 0.5 Minimum DB seq length: 0 Maximum DB seq length: 2000000000 US-10-034-974-25 63 1 CPGEDWLFC 9 Scoring table: BLOSUM62 Title: Perfect score: Searched: Sequence: Run on:

Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

G Score Match Length DB

0	equence 7, A	equence 49,	Sequence 50, Appl		equence 34,	equence 52,	edneuce 36,	equence 46,	Sequence 30, Appl	equence 23,	ednence	equence 15,	equence 16,	equenc	edneuce 22'	9 4, Ap	aquence 286,	286,	uence 6, Apr		99	2316,	equence 24	equence 6,	9	ednence 19	equence 20	equence 31	equence 31	31653	equence 2100	quence 23/20	equence 191	equence 1914	aydence 1076		Sequence offor	equelice 200	equence 2223,	equence 21,	equence 33	equence 3,	e 37,	equence 265
5-10-034-974	1.	S-10-034-974-4	S-10-034-974-5	S-10-034-974-3	-10-034-974-3	10-034-974-	-10-034-974-3	0-034-974-4	-10-034-974-	-10-034-974-2	-10-034-974-5	-10-034-974-1	-10-034-974-1	-10-034-974	-10-034-974-2	-10-034-974-4	-10-221-278-	10-291-172-28	39-318-271-6	-10-221-278-6	-10-291-172-662	1-276-774-2	-034-974-2	1-034-974-6	0-034-974-1	-10-034-974	-10-034-974-20	-09-880-748-3	-10-293-418-3163	0-424-599-20105	-10-424-599-216	0-424-599-25/28	S-09-880-191	S-10-293-418-191	-10-424-399-13696 -00-006-001-1076	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0-369-493-84	-10-424-399-20996	-10-369-493-222	-10-034-974-2	-10-034-974-5	-10-034-974-3	-10-034-974-37	US-10-424-599-265394
ñ		-		H	-	Н				14	14	Ä	Ä		~	.	7 12	-	ص -	H	7	7	-	1	9	-1		1	-	е П	15 12	0 1		С	- (N E	7	e -	П	٦	ß	5 14	9
5	1.5	01	O	15	12	Oi	12	01	e-1	0,	4	7	13	7		T				455				ત	ä	Ä	-	7	7		4								51			_	-	10
	00	81.		_:	_:		ά.	'n	76.2	σ.	σ.	o,	ď	ď	vo.	ŵ.	ů.	ė,	ø.	66.7	'n		ς.	ë.	m.	ä	÷	e.	ë	e,	63.5	'n		.,	÷.	٠,	•	_;	_;	ö	ö	ö	60.3	•
63	63	51	51	. K	51	20	20	48	48	44	44	44	44	44	42	42	42	42	42	42	42	41	40	40	40	40	40	40	40	40	40	40	40	40	40	אַ	σ,	38.5	œ.	38	38	38	38	38
1	8	1 (7)	4	· 100	9	· (~	00	on	10	11	12	13	14	15	16	17	18	13	20	21	22	23	24	52	56	27	58	53	30	31	32	33	34	32	36	7	38	33	40	41	42	43	44	45

;

0; Gaps

Query Match 100.0%; Score 63; DB 14; Length 9; Best Local Similarity 100.0%; Pred. No. 1e+06; Matches 9; Conservative 0; Mismatches 0; Indels

1 CPGEDWLFC 9

ò

FEATURE: OTHER INFORMATION: fibrin binding loop

US-10-034-974-25

TYPE: PRT ORGANISM: Artificial Sequence

APPLICANT: Beltzer, James P.
APPLICANT: Wescott, Charles R.
APPLICANT: Saro, Aaron K.
TITLE OF INVENTION: FIRRIN BINDING MOIETIES USEFUL AS INAGING AGENTS
FILE REFERENCE: DYX-024.1 PCT; DXX-024.1 US
CURRENT APPLICATION NUMBER: US/10/034,974
CURRENT FILING DATE: 2001-12-21
PRIOR FILING DATE: 2000-12-23
NUMBER OF SEQ ID NOS: 56
SOFTWARE: Patentin version 3.1
SEQ ID NO 25

ALIGNMENTS

; Sequence 25, Application US/10034974 ; Publication No. US20030143158A1 ; GENERAL INFORMATION: ; APPLICANT: DYAX CORP. RESULT 1 US-10-034-974-25

Gaps

ö APPLICANT: DYAX CORP.

APPLICANT: DYAX CORP.

APPLICANT: Baltzer, James P.

APPLICANT: Wescott, Charles R.

APPLICANT: Sato, Aaron K.

TITLE OF INVENTION: FIRMN BINDING MOIETIES USEFUL AS IMAGING AGENTS

FILE REFERENCE: DYX-024.1 PCT; DXX-024.1 US

FILE REFERENCE: DYX-024.1 PCT; DXX-024.1 US

CURRENT PELLION NUMBER: US/10/034,974

DRIOR PILING DATE: 2000-112-21

PRIOR PILING DATE: 2000-112-23

NUMBER OF SEQ ID NOS: 56

SOFTWARE: Patentin version 3.1

SOFTWARE: Patentin version 3.1 ; 0 Query Match 100.0%; Score 63; DB 14; Length 15; Best Local Similarity 100.0%; Pred. No. 0.0039; Matches 9; Conservative 0; Mismatches 0; Indels ; FEATURE: ; OTHER INFORMATION: fibrin binding polypeptide US-10-034-974-7 Sequence 7, Application US/10034974; Publication No. US20030143158A1; GENERAL INFORMATION: TYPE: PRT ORGANISM: Artificial Sequence 1 CPGEDWLFC 9 RESULT 2 US-10-034-974-7 LENGIH: 15 임

1 CPGEDWLFC 9 |||||||||||| 4 CPGEDWLFC 12

g ò

Search completed: May 19, 2004, 17:17:36 Job time : 32.125 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:59:56; Search time 10.125 Seconds (without alignments) 85.504 Million cell updates/sec Run on:

US-10-034-974-25 63 1 CPGEDWLFC 9 Title:
Perfect score: 6
Sequence: 1

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

283366 seqs, 96191526 residues

Searched:

283366 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

PIR_78:*
1: pir1:*
2: pir2:*
3: pir3:*
4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Score	1				
42	Match	Match Length DB	DB	ID	Description
	66.7	236	2	B70488	cytochrome-c oxida
40	63.5	429	~	T21113	hypothetical prote
40	63.5	943	~1	S59317	DIP2 protein - yea
39	61.9	743	7	C56695	transducin-like en
38.5	61.1	513	N	T38770	alpha-amylase a pr
38	60.3	271		S12516	hypothetical prote
38	60.3	279	0	AH2408	permease protein o
38	60.3	1035	~	T16588	hypothetical prote
37	58.7	137	~	E86251	protein F25C20.8 [
37	58.7	144	~	G82092	conserved hypothet
37	58.7	262	N	A75009	probable aryl phos
37	58.7	388	~	E86239	protein F20B24.2 [
37	58.7	423	~	G85255	CDP-diacylglycerol

CDP-diacylglycerol	probable membrane	probable membrane	mscde precursor -	MEGF6 protein - ra	hypothetical prote	hypothetical prote	xylene monooxygena	epsilon	Ig epsilon chain C	hypothetical prote	probable transport	trans	probable heme bind	cytosine-specific	cal	hypothetical prote	sulfite reductase	sulfite reductase	sulfite reductase	fibrinogen alpha c	3-methyl-2-oxobuta	1	chloride channel p	voltage-gated chor	chloride channel p	fibrinogen alpha c	ч		channel	ride channel	lantibiotic subtil
T04915	S51456	S67084	v-4	T13954	T16064	T49766	T31263	B53116	Ξ	D65005	B91030	C85874	\$52833	T13145	T15075	T19233	H65057	C91081	D85926	FGHUA	G71526	C81683	S13410	S19725	S68210	D44234	T02240	523399	3707	O	Q)
m	00	o.	9	4	1 2					82 2		۸.	_	_	m	_	•	σ.	σ.	-	m	m					o	7	ထ	94 2	30 2
42	(D)	ത	N	57	224	10	34	0	12	18	18	18	20	33	38	46	59	59	590	64	67	67	80	81	82	998	88	06	96	56	103
58.7	58.7	58.7	58.7	58.7	58.7	57.9	57.9	57.1	57.1	57.1	57.1	57.1	57.1	57.1	\sim	57.1	57.1		57.1	~	57.1	57.1	57.1	57.1	57.1	57.1	57.1	57.1	Ļ.	57.1	57.1
37	37	37	37	37	37		36.5	ന	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36		36		36	
14	15	9	17	19	19	50	21	25	23	24	52	56	27	28	53	30	31	32	33	34	35	36	37	38	8		41	42	43	44	45

ئ

Search completed: May 19, 2004, 17:08:27 Job time : 12.125 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:56:57; Search time 7.5 Seconds (without alignments) 62.484 Million cell updates/sec Run on:

Title: US-10-034-974-25
Perfect score: 63
Sequence: 1 CPGEDWLFC 9

141681 seqs, 52070155 residues Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Searched:

141681 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

SwissProt_42:* Database : Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

			Q9wu45 cavia porce	P35525 rattus norv	Q9r0al mus musculu	P35523 homo sapien	Q64347 mus musculu	P35524 rattus norv	P39774 bacillus su	P39541 saccharomyc	Q07179 rhodobacter			Q9rrx5 deinococcus		Q02353 rattus norv	035276 rattus norv	060462 homo sapien		P30929 mumps virus	Q61847 mus musculu		P24798 gallus gall	P13637 homo sapien	rattus		Q92030 anguilla an
NIA3_MAIZE	CLC2_HUMAN	CLC2_RABIT	CLC2 CAVPO	CLC2_RAT	CLC2 MOUSE	CLC1 HUMAN	CLC1 MOUSE	CLC1 RAT	SPAB_BACSU	YJTS_YEAST	NIFV RHOCA	NUSM WHEAT	Y959 MYCTU	SYFB DEIRA	HSS1 HUMAN	HSS1_RAT	NRP2_RAT	NRP2 HUMAN	NRP2 MOUSE	RRPL MUMPM	MEPB MOUSE	MEPB RAT	A1A3 CHICK	A1A3 HUMAN	A1A3_RAT	A1A1 CHICK	A1A1 ANGAN
ч	-		-		П	П	-	-+	Н	۲-1	Н	~1	Н	Н	Н		-	,-	-+	Н	H		-	Н	Н	Н	Н
889	888	868	805	907	908	988	994	994	1030	233	382	670	672	820	882	882	925	931	931	2261	704	704	1010	1013	1013	1021	1022
57.1	57.1	57.1	57.1	57.1	57.1	57.1	57.1	57.1	57.1	55.6	ď.	55.6	55.6	55.6	55.6	55.6	55.6	55.6	55.6	55.6	54.8		54.8	54.8	54.8	54.8	54.8
36	36	36	36	36		36		36	36	35	35	35	35	35	35	35	35	35	35	35	34.5	34.5	34.5	34.5		34.5	34.5
18	19	20	21	22	23	24	52	26	27	28	59	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45

Search completed: May 19, 2004, 17:06:21 Job time : 8.5 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

May 19, 2004, 16:58:07; Search time 27.375 Seconds (without alignments) 103.732 Million cell updates/sec 1017041 Total number of hits satisfying chosen parameters: 1017041 seqs, 315518202 residues BLOSUM62 Gapop 10.0 , Gapext 0.5 US-10-034-974-25 63 1 CPGEDWLFC 9 Title: Perfect score: Sequence: Scoring table: Searched: Run on:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

1: sp.arches:*
2: sp_bacteria:*
3: sp_fungi:*
4: sp_human:*
5: sp_inamn:*
6: sp_inamnal:*
7: sp_inc:*
10: sp_phage:*
10: sp_phage:*
11: sp_rodent:*
11: sp_rodent:*
12: sp_inclassified:*
13: sp_virus:*
14: sp_unclassified:*
15: sp_arthus:*
16: sp_arthus:*
16: sp_arthus:*
17: sp_arthesp:*
16: sp_arthus:*
16: sp_arthus:*
16: sp_arthus:*
17: sp_arthesp:*
17: sp_arthesp:*
18: sp_arthus:*
16: sp_arthus:*
16: sp_arthus:*
17: sp_arthesp:*
17: sp_arthus:*
18: sp_arth SPTREMBL 25:* Database :

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description Π Result Query
No. Score Match Length DB

	ધનનનન છા	Q8qz69 cucurbit le Q8wzt2 neurospora Q8wmj2 pseudomonas Q80tg4 mus musculu Q7wk59 bordetella Q7wBu9 bordetella Q86wq6 homo sapien	- 10 a m 10 10 0	Qykkad arablaopsis Qywy2 anabaena sp Qxx5a enterchacte QyyuB streptomyce Q&zu5c pyrobaculum Q8lbx5 bacillus ce Q8bdf6 rubus yello Q8d648 bifidobacte	2 6 6 7 2 6
77 919	17 QBTMH2 5 QBMVN4 10 QBRUL5 5 QO9538 5 Q9NED7 2 QBGQ43		12 Q80007 12 Q80206 17 Q82729 11 Q8BLH8 16 Q8BKJ6	-010010	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1053 120 236 595 97 279 1952 4547	86 116 183 429 1236 196	2993 330 548 637 637	1226 1226 101 157 185 208	220 279 307 315 321 388 410 463	110892 110892 110832 1187 1187 1335 868
71.4 68.3 66.7 66.7 65.1 64.3		61.9 61.9 61.9 61.9 61.9			
4 4 4 4 4 4	a a a a a a w	ത ത ത ത ത ത ത ო ო ო ო ო ო ო			6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	9011111	15 14 17 19 20 21	22 24 27 27 27	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 C C C C C C C C C C C C C C C C C C C

Search completed: May 19, 2004, 17:07:48 Job time : 29.375 secs