Curso de Graduação em Engenharia Mecânica Cinemática dos Mecanismos

Aula 2 Graus de Liberdade e Cadeias Cinemáticas

Sumário da Aula

- Graus de Liberdade
 - Juntas
 - Corpos Rígidos
 - Tipos de Movimento
 - Juntas vs. DOF
 - Exemplos
- Cadeias Cinemáticas
 - Abertas e Fechadas
 - Mecanismos e Máquinas

- GDL ou DOF (Degree Of Freedom)
- O que significa Grau de Liberdade?

<u>Definição</u>: é o número de parâmetros independentes que são necessários para se definir a posição de um corpo no espaço em qualquer instante.

• No Plano: 3 GDL

No Espaço: 6 GDL

Corpo Rígido

<u>Definição</u>: Corpo que não sofre deformações em nenhuma de suas direções

• Link

Definição: Corpo que une 2 juntas

Tipos de Movimento

Rotação Pura

Translação Pura

- Movimento Complexo
 - Rotação + Translação

- Rotação Pura
 - Todos os pontos do corpo descrevem trajetórias circulares

- Translação Pura
 - Todos os pontos do corpo descrevem trajetórias paralelas (curvas ou retas)

Posição Inicial

Posição Final

- Movimento Complexo
 - Pode ser descrito como a combinação de rotação e translação

Juntas (Joints)

<u>Definição</u>: elemento que conecta 2 corpos e que permite a transmissão de força ou torque. Atuam como restrições geométricas.

Prismática

Cilíndrica

Esférica

Tipo	Símbolo	Esquema	GDL	β
Helicoidal	Н	s	1	θ
Rotação	R	θ	1	θ
Prismática	P	S	1	S
Cilíndrica	С	β	2	θs

Tipo	Símbolo	Esquema	GDL	β
Universal	T	θ_2	2	$\theta_1 \theta_2$
Plana	E	s_1 s_2	3	θ s_1 s_2
Esférica	S		3	θψφ

Tipo	Símbolo	Esquema	GDL	β
Contato	Со		1	Rotação SEM Escorrega- mento
Engrenagem	Eng		2	Rotação com Escorrega- mento
Came - Seguidor	cs	CAM	2	Translação com Escorrega- mento

Graus de Liberdade Mecanismos Planares

Critério de Kutzbach

$$N = 3.(B-1) - 2.n_{J1} - n_{J2}$$

• Onde:

N: Número de GDLs

B: Número de Total de Corpos (incluindo o solo)

n_{J1}: Número de Juntas com 1 GDL

n_{J2}: Número de Juntas com 2 GDLs

Graus de Liberdade Mecanismos Planares

Critério de Kutzbach

$$N = 3.(B-1) - 2.n_{J1} - n_{J2}$$

• Se:

N = 0 : Sistema Estático

N > 0 : Sistema com "N" graus de liberdade

N < 0 : Sistema Hiperestático

Mecanismos Planares - Exemplos

Pêndulo Simples

B = 2
$$n_{J1} = 1$$
 $n_{J2} = 0$
N = 3.(2-1) - 2.(1) - (0) = 1 GDL

Pêndulo Duplo

B = 3
$$n_{J1} = 2 n_{J2} = 0$$

N = 3.(3-1) - 2.(2) - (0) = 2 GDL

Mecanismos Planares – Pêndulo Simples

• Quais são os GDLs?

Mecanismos Planares – Pêndulo Simples

Equações de Posição:

$$\overrightarrow{P}$$
 = L.e $^{i\theta}$

$$\overrightarrow{P} = L.(\sin \theta \overrightarrow{i} + \cos \theta \overrightarrow{j})$$

Mecanismos Planares – Pêndulo Duplo

• Quais são os GDLs?

Mecanismos Planares – Pêndulo Duplo

Equações de Posição:

$$\overrightarrow{P} = L_1 \cdot e^{i\theta_1} + L_2 \cdot e^{i\theta_2}$$

$$\overrightarrow{P} = L_1.(\sin \theta_1 \overrightarrow{i} + \cos \theta_1 \overrightarrow{j}) + L_2.(\sin \theta_2 \overrightarrow{i} + \cos \theta_2 \overrightarrow{j})$$

Mecanismos Planares – Observações

(1) Contagem do solo

$$N = 3.(B-1) - 2.n_{J1} - n_{J2}$$

$$N = 3.(6-1) - 2.(7) - 0$$

$$N = 1$$

(2) Existem exceções ao Critério de Kutzbach

$$N = 3.(B-1) - 2.n_{J1} - n_{J2}$$

 $N = 3.(5-1) - 2.(6) - 0$
 $N = 0$, mas $N = 1$

Mecanismos Planares – Observações

(3) Molas

 $N = 3.(B-1) - 2.n_{J1} - n_{J2}$ N = 3.(3-1) - 2.(3) - 0 N = 0, mas pode ser N = 1ou N = 2 (extrem. móveis)

(4) Sistemas Hidráulicos e Pneumáticos

 $N = 3.(B-1) - 2.n_{J1} - n_{J2}$ N = 3.(2-1) - 2.(1) N = 1, mas pode ser N = 2(extremidades móveis)

Sumário da Aula

- Graus de Liberdade
 - Juntas
 - Corpos Rígidos
 - Tipos de Movimento
 - Juntas vs. DOF
 - Exemplos
- Cadeias Cinemáticas
 - Abertas e Fechadas
 - Mecanismos e Máquinas

Cadeias Cinemáticas Topologias

- Cadeias Abertas
 - A trajetória entre 2 corpos é única
 - Excluindo o solo, o número de corpos é igual ao número de juntas

Cadeias Cinemáticas

Topologias

- Cadeias Fechadas
 - Loops

$$n_L = n_J - n_B$$

n₁: Número de Loops

n_J: Número de Juntas

n_B: Número de Corpos (excluindo o solo)

Cadeias Cinemáticas Topologias

Cadeias Fechadas - Exemplos

$$n_L = n_J - n_B$$

n_B: Número de Corpos exclui o solo!

Cadeias Cinemáticas Topologias

Cadeias Parcialmente Fechadas

Cadeias Cinemáticas Graus de Liberdade

Não considerando o solo:

$$N = 3.n_B - \sum_{i=1}^{n_J} (3 - f_i)$$

• Onde:

N: Número de GDLs

n_B: Número de Corpos (excluindo o solo)

n_{.I}: Número de Juntas

f_i: GDL da junta i

Mecanismos Planares – Exemplos

Juntas múltiplas: n° juntas = n° corpos – 1 No caso acima:

$$f_1 = n_B - 1 = 3 - 1 = 2$$

$$N = 3.n_B - \Sigma (3 - f_i)$$

$$N = 3.8 - [8.(3-1) + 1(3-1) + 1(3-1) + 1(3-1)]$$

$$N = 2 gdl$$

Ou, no critério "antigo", considerando o solo:

$$N = 3.(n_B-1) - 2.n_{J1} - n_{J2}$$

$$N = 3.(9-1) - 2.(5 + 2 + 2 + 2) - 0$$

$$N = 2 gdl$$

Graus de Liberdade Mecanismos Planares – Exemplos

$$N = 3.n_B - \sum (3 - f_i)$$

n_B = 4 pois a cruzeta limita o movimento e daí funcionará como solo, travando a peça amarela (tb virará solo)

$$N = 3.4 - [6.(3-1)]$$

N = 0 gdI

$$N = 3.n_B - \sum_{i} (3 - f_i)$$

$$N = 3.3 - [3.(3-1) + 2.(3-2)]$$

N = 1 gdl (com contato)

N = 3 gdl (sem contato)

Graus de LiberdadeMecanismos Planares – Exemplos

Graus de Liberdade Pergunta da Aula Passada

Quantos GDLs possui uma mão?

Tipo	Símbolo	Esquema	GDL	β
Helicoidal	Н	s	1	θ
Rotação	R	θ	1	θ
Prismática	P	S	1	S
Cilíndrica	С	β	2	θs

Tipo	Símbolo	Esquema	GDL	β
Universal	T	θ_2	2	$\theta_1 \theta_2$
Plana	E	S_1 S_2	3	θ s ₁ s ₂
Esférica	S		3	θψφ

Pergunta da Aula Passada

$$N = 3.n_B - \sum_{i=1}^{N} (3 - f_i)^{-1}$$

$$_{B}^{n} = 16 (15 \text{ falanges} + \text{dorso})$$

$$f_i = 10 (1gdl) + 6 (2gdl)$$

$$N = 3.16 - [10.(3-1) + 6.(3-2)]$$
$$= 48 - [20+6] = 48 - 26$$

$$N = 22 GDL$$

X Junta Universal

Junta Rotacional

Próxima Aula

- Mecanismos Simples
- Mecanismos Complexos

Pergunta:

E o conjunto braço, ante-braço e mão, quantos GDLs possui?

