Álgebra I Práctica 7 - Polinomios

$\underline{Generalidades}$

- 1. Calcular el grado y el coeficiente principal de $f \in \mathbb{Q}[X]$ en los casos
 - i) $f = (4X^6 2X^5 + 3X^2 2X + 7)^{77}$.
 - ii) $f = (-3X^7 + 5X^3 + X^2 X + 5)^4 (6X^4 + 2X^3 + X 2)^7$.
 - iii) $f = (-3X^5 + X^4 X + 5)^4 81X^{20} + 19X^{19}$.
- 2. Calcular el coeficiente de X^{20} de f en los casos
 - i) $f = (X^{18} + X^{16} + 1)(X^5 + X^4 + X^3 + X^2 + X + 1)$ en $\mathbb{Q}[X]$ y en $(\mathbb{Z}/2\mathbb{Z})[X]$.
 - ii) $f = (X 3i)^{133}$ en $\mathbb{C}[X]$.
 - iii) $f = (X-1)^4(X+5)^{19} + X^{33} 5X^{20} + 7$ en $\mathbb{Q}[X]$.
 - iv) $f = X^{10}(X^5 + 4)^7$ en $(\mathbb{Z}/5\mathbb{Z})[X]$.
- 3. Hallar, cuando existan, todos los $f \in \mathbb{C}[X]$ tales que
 - i) $f^2 = Xf + X + 1$.

iii) $(X+1)f^2 = X^3 + Xf$.

ii) $f^2 - Xf = -X^2 + 1$.

- iv) $f \neq 0$ y $f^3 = \operatorname{gr}(f) \cdot X^2 f$.
- 4. Hallar el cociente y el resto de la división de f por g en los casos
 - i) $f = 5X^4 + 2X^3 X + 4$, $g = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - ii) $f = 8X^4 + 6X^3 2X^2 + 14X 4$, $g = 2X^3 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - iii) $f = 4X^4 + X^3 4$, $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - iv) $f = X^5 + X^3 + X + 1$, $q = 2X^2 + 1$ en $(\mathbb{Z}/3\mathbb{Z})[X]$.
 - v) $f = X^n 1$, q = X 1 en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ v $(\mathbb{Z}/p\mathbb{Z})[X]$.
- **5**. Determinar todos los $a \in \mathbb{C}$ tales que
 - i) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$.
 - ii) $X^4 aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$.
 - iii) El resto de la división de $X^5 3X^3 X^2 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.
- **6.** Definición: Sea K un cuerpo y sea $h \in K[X]$ un polinomio no nulo. Dados $f, g \in K[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g \pmod{h}$. Probar que
 - i) $\equiv \pmod{h}$ es una relación de equivalencia en K[X].
 - ii) Si $f_1 \equiv g_1 \pmod{h}$ y $f_2 \equiv g_2 \pmod{h}$ entonces $f_1 + f_2 \equiv g_1 + g_2 \pmod{h}$ y $f_1 \cdot f_2 \equiv g_1 \cdot g_2 \pmod{h}$.
 - iii) Si $f \equiv g \pmod{h}$ entonces $f^n \equiv g^n \pmod{h}$ para todo $n \in \mathbb{N}$.
 - iv) r es el resto de la división de f por h si y sólo si $f \equiv r \pmod{h}$ y r = 0 ó gr(r) < gr(h).
 - v) ¿Qué se obtiene al trabajar con los polinomios de $\mathbb{R}[X]$ módulo $X^2 + 1$?

7. Hallar el resto de la división de f por h para

i)
$$f = X^{353} - X - 1$$
 y $h = X^{31} - 2$,

ii)
$$f = X^{1000} + X^{40} + X^{20} + 1$$
, $h = X^6 + 1$,

iii)
$$f = X^{200} - 3X^{101} + 2$$
, $h = X^{100} - X + 1$,

en
$$\mathbb{Q}[X]$$
, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- **8**. Sea $n \in \mathbb{N}$, sea $a \in K$. Probar que en K[X] vale:
 - i) $X a \mid X^n a^n$.
 - ii) Si n es impar entonces $X + a \mid X^n + a^n$.
 - iii) Si n par entonces $X + a \mid X^n a^n$.

Calcular los cocientes en cada caso.

9. Calcular el máximo común divisor entre f y g y escribirlo como combinación lineal de f y g siendo

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $g = X^4 - X^3 - X^2 + 1$.

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $g = X^3 + X$.

iii)
$$f = X^5 + X^4 - X^3 + 2X - 3$$
, $q = X^4 + 2X + 1$.

10. Sea
$$X^{(n)} := X(X-1)(X-2)\dots(X-n+1) = \prod_{i=0}^{n-1} (X-i) \in \mathbb{Z}[X].$$

Para cada polinomio P(X) se definen $\Delta P(X) := P(X+1) - P(X)$.

Probar que

i)
$$\Delta X^{(n)} = nX^{(n-1)}$$
.

iii)
$$\Delta^k P(X) = 0$$
 para todo $k > gr(P)$.

ii)
$$\sum_{i=0}^{k-1} i^{(n)} = \frac{k^{(n+1)}}{n+1}.$$

iv)
$$P(X) = \sum_{k>0} \frac{\Delta^k P(0)}{k!} X^{(k)}.$$

- * 11. Sean P_1, P_2, \ldots, P_n los vértices de un polígono regular de n lados inscripto en una circunferencia de radio 1.
 - i) Calcular en función de $n \in \mathbb{N}$ el producto de las distancias de un vértice dado a los demás, esto es

$$P_1P_2 \cdot P_1P_3 \cdot P_1P_4 \dots P_1P_n$$

- ii) Hallar en función de $n \in \mathbb{N}$ el producto de las longitudes de las diagonales del polígono.
- * 12. (Números de Stirling de segunda especie) Sea S(n,k) el número de particiones de un conjunto de n elementos con exactamente k partes.

2

i) Probar que $X^n = \sum_{k=0}^n S(n,k)X^{(k)}$ donde los polinomios $X^{(k)}$ son los del ejercicio 10.

Sugerencia: contar funciones $f:\{1,\ldots,n\}\to\{1,\ldots,x\}$ con $x\in\mathbb{N}$.

ii) Hallar $P(X) \in \mathbb{Q}[X]$ de grado 8 tal que $\sum_{i=0}^{n} i^{7} = P(n), \quad \forall n \in \mathbb{N}.$

* 13. Sea $P \in \mathbb{C}[X]$ un polinomio de grado $n \in \mathbb{N}$ tal que $P(0), P(1), \dots, P(n-1)$ y P(n) son números enteros. Probar que $P(m) \in \mathbb{Z}$ para todo entero m y que $n!P(X) \in \mathbb{Z}[X]$. Sugerencia: Ejercicio 10, item (iv).

Evaluación y raíces

14. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 - 2X^2 - X + 2$.

15. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n - 5X^2 + 2X + 1$ por $X^3 - X$.

i) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 3 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.

ii) Hallar todos los $f \in \mathbb{Z}[X]$ de grado 3 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.

iii) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 4 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$

17. Sean a, b y c las raíces complejas de $2X^3 - 3X^2 + 4X + 1$.

i) Hallar

(a)
$$a + b + c$$
.

(e)
$$a^3 + b^3 + c^3$$

(h)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{a}$$

(b)
$$ab + ac + bc$$

(f)
$$a^4 + b^4 + c^4$$

$$a^4 + b^4 + c^4$$

(d)
$$a^2 + b^2 + c^2$$

(g)
$$a^2b^2 + a^2c^2 + b^2c^2$$

$$\begin{array}{llll} \text{(a)} & a+b+c, & \text{(e)} & a^3+b^3+c^3, & \text{(h)} & \frac{1}{a}+\frac{1}{b}+\frac{1}{c}, \\ \text{(b)} & ab+ac+bc, & \text{(f)} & a^4+b^4+c^4, \\ \text{(c)} & abc, & \text{(g)} & a^2b^2+a^2c^2+b^2c^2, & \text{(i)} & \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}. \end{array}$$

ii) Encontrar un polinomio de grado 3 cuyas raíces sean a + b, a + c y b + c.

18. Evaluación de polinomios: Sea $f = a_n x^n + \cdots + a_0 \in K[X]$. Queremos calcular la cantidad de sumas y productos necesarios para calcular $f(\alpha)$, $\alpha \in K$, por medio de los siguientes algoritmos:

i) Algoritmo inquenuo: Se calculan todos los α^k recursivamente, guardando todos los resultados, luego se multiplica cada uno por su coeficiente a_k y se suma. ¿Cuántas sumas y cuántos productos se utilizaron?

ii) Método de Horner (por el matemático inglés William George Horner, 1786-1837, aunque también era conocido por el matemático italiano Paolo Ruffini, 1765-1822, y mucho antes en realidad por el matemático chino Qin Jiushao, 1202-1261). Es el algoritmo que describe el mecanismo siguiente:

$$n = 2$$
: $f(\alpha) = a_0 + \alpha(a_1 + \alpha a_2)$

$$n = 3$$
: $f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha a_3))$

$$n = 4$$
: $f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha(a_3 + \alpha a_4)))$

Y en general

$$f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha(a_3 + \dots + \alpha(a_{n-2} + \alpha(a_{n-1} + \alpha a_n)) \dots))).$$

¿Cuántas sumas y cuántos productos se utilizaron?

19. (Polinomio interpolador de Lagrange) Sea $n \in \mathbb{N}$ y sean $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_n \in \mathbb{C}$ tales que $a_i \neq a_k$ si $j \neq k$. Probar que

$$f = \sum_{k=0}^{n} b_k \left(\prod_{\substack{0 \le j \le n \\ i \ne k}} \frac{X - a_j}{a_k - a_j} \right)$$

es el único polinomio en $\mathbb{C}[X]$ que es nulo o de grado menor o igual que n y que satisface $f(a_k) = b_k$ para todo $0 \le k \le n$.

20. Hallar $f \in \mathbb{Q}[X]$ de grado mínimo tal que

i)
$$f(1) = 3$$
, $f(0) = \frac{1}{4}$, $f(\frac{1}{2}) = 3$ y $f(-1) = 1$. ii) $f(2) = 0$, $f(-3) = \frac{1}{2}$, $f(3) = -1$ y $f(-2) = 1$.

- i) Sea $f \in \mathbb{Z}[X]$ y sean $a, b \in \mathbb{Z}$ y $m \in \mathbb{N}$. Probar que si $a \equiv b \pmod{m}$ entonces $f(a) \equiv f(b)$ **21**. \pmod{m} .
 - ii) Probar que no existe $f \in \mathbb{Z}[X]$ tal que f(3) = 4 y f(-2) = 7.
- **22**. Sea $f \in \mathbb{Z}[X]$ tal que f(a) = f(b) = f(c) = f(d) = 7 con a, b, c, d enteros distintos. Probar que $f(m) \neq 14$ para todo $m \in \mathbb{Z}$.
- **23**. Hallar todos los $f \in \mathbb{Z}[X]$ tales que
 - i) f es mónico de grado 3 y $f(\sqrt{2}) = 5$.
- ii) f es mónico de grado 3 y f(1) = -f(-1).
- 24. Hallar las raíces en \mathbb{C} y factorizar en $\mathbb{C}[X]$ los polinomios cuadráticos

i)
$$X^2 - 2X + 10 = 0$$
.

iii)
$$X^2 + (1+2i)X + 2i = 0$$
.

ii)
$$X^2 = 3 + 4i$$
.

iv)
$$X^2 + (3+2i)X + 5 + i = 0$$
.

25. Hallar las raíces en \mathbb{Q} y factorizar en $\mathbb{Q}[X]$ los polinomios cuadráticos

i)
$$X^2 + 6X - 1 = 0$$
.

ii)
$$X^2 + X - 6 = 0$$
.

- **26**. Hallar la forma binomial de cada una de las raíces complejas del polinomio $X^6 + X^3 2$.
- 27. Sea $\omega = e^{\frac{2\pi}{7}i}$. Probar que $\omega + \omega^2 + \omega^4$ es raíz del polinomio $X^2 + X + 2$.
- i) Sean $f,g\in\mathbb{C}[X]$ y sea $a\in\mathbb{C}$. Probar que a es raíz de f y de g si y sólo si a es raíz de (f:g).
 - ii) Hallar todas las raíces complejas de $X^4 + 3X 2$ sabiendo que tiene una raíz común con $X^4 +$ $3X^3 - 3X + 1$.
- **29**. Hallar todos los $f \in \mathbb{C}[X]$ tales que $X^3 f' = f^2$.
- **30**. Determinar la multiplicidad de a como raíz de f en los casos

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$.

iv)
$$f = (X-2)^2(X^2-4) - (X-2)(X+7)$$
, $a = 2$.

ii)
$$f = 4X^4 + 5X^2 - 7X + 2$$
, $a = \frac{1}{2}$

ii)
$$f = 4X^4 + 5X^2 - 7X + 2$$
, $a = \frac{1}{2}$. v) $f = (X - 2)^2(X^2 - 4) + (X - 2)^3(X - 1)$, $a = 2$.

iii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$.

vi)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$.

- **31**. Sea $n \in \mathbb{N}$. Determinar los $a \in \mathbb{C}$ tales que $f = nX^{n+1} (n+1)X^n + a$ tiene sólo raíces simples en \mathbb{C} .
- **32**. Determinar los $a \in \mathbb{R}$ tales que $f = X^{2n+1} (2n+1)X + a$ tiene al menos una raíz múltiple en \mathbb{C} .
- 33. Sea $f = X^{20} + 8X^{10} + 2a$. Determinar todos los valores de $a \in \mathbb{C}$ para los cuales f admite una raíz múltiple en \mathbb{C} . Para cada valor hallado determinar cuántas raíces distintas tiene f y la multiplicidad de cada una de ellas.
- i) Probar que para todo $a\in\mathbb{C},$ el polinomio $f=X^6-2X^5+(1+a)X^4-2aX^3+(1+a)X^2-2X+1$ **34**. es divisible por $(X-1)^2$.
 - ii) Determinar todos los $a \in \mathbb{C}$ para los cuales f es divisible por $(X-1)^3$.

- **35**. Determinar todos los $a \in \mathbb{C}$ tales que 1 sea raíz doble de $X^4 aX^3 3X^2 + (2+3a)X 2a$.
- **36**. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} X^k \in \mathbb{C}[X]$ tiene todas sus raíces complejas simples.
- 37. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} \frac{X^k}{k!} \in \mathbb{C}[X]$ tiene todas sus raíces complejas simples.
- **38**. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^4 + 2X^2 + 1$$
 y $f_{n+1} = (X - i)(f_n + f'_n), \forall n \in \mathbb{N}.$

Probar que i es raíz doble de f_n para todo $n \in \mathbb{N}$.

39. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^3 + 2X - 1$$
 y $f_{n+1} = Xf_n^2 + X^2f_n', \forall n \in \mathbb{N}.$

Probar que $gr(f_n) = 2^{n+1} - 1$ para todo $n \in \mathbb{N}$.

- i) Sea $f \in \mathbb{C}[X]$. Probar que $a \in \mathbb{C}$ es raíz de multiplicidad k de f si y sólo si es raíz de multiplicidad $k-1 \ de \ (f:f').$
 - ii) Sea $f \in \mathbb{Q}[X]$. Probar que si f es irreducible, entonces tiene todas sus raíces (en \mathbb{C}) simples.
- * 41. Sea P(x) un polinomio de grado a lo sumo n tal que $P(i) = \frac{1}{i+1}$ para $i = 0, 1, \dots, n$. Hallar P(n+1).
- * **42**. Sea P(x) un polinomio de grado a lo sumo n tal que $P(i) = 2^i$ para $i = 0, 1, \ldots, n$. Hallar P(n+1).

<u>Factorización</u>

43. Factorizar en $\mathbb{C}[X]$ los polinomios

i)
$$X^6 - 8$$
.

iii)
$$X^7 - (-1 + i)$$

v)
$$X^6 - (2-2i)^{12}$$

ii)
$$X^4 + 3$$
.

iii)
$$X^7 - (-1+i)$$
.
iv) $X^{11} - 2i(\sqrt{2} - \sqrt{6}i)^{-1}$.
v) $X^6 - (2-2i)^{12}$.
vi) $X^{12} + X^6 + 1$.

vi)
$$X^{12} + X^6 + 1$$
.

44. Factorizar en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios

i)
$$X^3 - 1$$

ii)
$$X^4 - 1$$

i)
$$X^3 - 1$$
. ii) $X^4 - 1$. iii) $X^6 - 1$.

iv)
$$X^8 - 1$$
.

45. Factorizar en $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios

i)
$$X^6 - 8$$
.

ii)
$$X^4 + 3$$
.

iii)
$$X^{12} + X^6 + 1$$
.

- i) Probar que $(X^n 1 : X^m 1) = X^{(n:m)} 1$.
 - ii) Hallar $(X^{a^n-1}-1:X^{a^m-1}-1)$ para $a\geq 2$ entero.
- 47. Hallar todas las raíces racionales de

i)
$$2X^5 + 3X^4 + 2X^3 - X$$
.

iii)
$$3X^4 + 8X^3 + 6X^2 + 3X - 2$$

i)
$$2X^5 + 3X^4 + 2X^3 - X$$
.
ii) $3X^4 + 8X^3 + 6X^2 + 3$
iii) $X^5 - \frac{1}{2}X^4 - 2X^3 + \frac{1}{2}X^2 - \frac{7}{2}X - 3$.
iv) $X^4 + 2X^3 - 3X^2 - 2$.

iv)
$$X^4 + 2X^3 - 3X^2 - 2$$

- **48.** Factorizar los siguientes polinomios en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$
 - i) $X^4 X^3 + X^2 3X 6$.
 - ii) $X^4 6X^2 + 1$.
 - iii) $X^5 X^3 + 17X^2 16X + 15$ sabiendo que 1 + 2i es raíz.
 - iv) $X^5 + 2X^4 + X^3 + X^2 1$ sabiendo que $-\frac{1}{2} + \frac{\sqrt{5}}{2}$ es raíz.
 - v) $f = X^6 + X^5 + 5X^4 + 4X^3 + 8X^2 + 4X + 4$ sabiendo que $\sqrt{2}i$ es raíz múltiple de f.
 - vi) $X^4 + 2X^3 + 3X^2 + 10X 10$ sabiendo que tiene una raíz imaginaria pura.
 - vii) $X^5 3X^4 2X^3 + 13X^2 15X + 10$ sabiendo que una de sus raíces es una raíz sexta primitiva de la unidad.
- **49**. Hallar todas las raíces complejas del polinomio $X^6 X^5 7X^4 7X^3 7X^2 8X 6$ sabiendo que tiene dos raíces cuya suma es 2 y cuyo producto es -6.
- **50**. i) Hallar todas las raíces complejas de $f = X^5 4X^4 X^3 + 9X^2 6X + 1$ sabiendo que $2 \sqrt{3}$ es raíz de f.
 - ii) Hallar $f \in \mathbb{Q}[X]$ mónico de grado mínimo que tenga a $1 + 2\sqrt{5}$ y a $3 \sqrt{2}$ como raíces.
 - iii) Sea $f \in \mathbb{Q}[X]$ un polinomio de grado 5. Probar que si $\sqrt{2}$ y $1 + \sqrt{3}$ son raíces de f entonces f tiene una raíz racional.
 - iv) Sea $f \in \mathbb{Q}[X]$ tal que $f(1+\sqrt{2}) = 3$, $f(2-\sqrt{3}) = 3$ y $f(1+\sqrt{5}) = 3$. Calcular el resto de la división de f por $(X^2 2X 1)(X^2 4X + 1)(X^2 2X 4)$.
- **51**. Factorizar el polinomio $X^4 + X^3 3X^2 + 4X 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$ sabiendo que la suma de tres de sus raíces es $-\frac{3}{2} + \frac{\sqrt{3}}{2}i$.
- **52**. Hallar todos los $a \in \mathbb{C}$ tales que $f = X^4 (a+4)X^3 + (4a+5)X^2 (5a+2)X + 2a$ tenga a a como raíz doble. Para cada valor de a hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 53. Determinar todos los $a \in \mathbb{C}$ tales que 2 es una raíz múltiple del polinomio

$$f = aX^5 + 8X^4 - 26X^3 + 44X^2 - 40X - (32a + 16).$$

Para cada valor de a hallado factorizar el polinomio en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$.

54. Hallar todos los $a \in \mathbb{C}$ para los cuales al menos una de las raíces de

$$f = X^6 + X^5 - 3X^4 + 2X^3 + X^2 - 3X + a$$

sea una raíz sexta primitiva de la unidad.

Para cada valor de $a \in \mathbb{Q}$ hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

- **55.** Sea $z \in \mathbb{C}$ y sea $f_z = X^3 2zX^2 z^2X + 2z \in \mathbb{C}[X]$.
 - i) Sean $\alpha, \beta, \gamma \in \mathbb{C}$ las tres raíces de f_z . Probar que $\alpha\beta\gamma = -2z$.
 - ii) Determinar los valores de $z \in \mathbb{C}$ para los cuales f_z tiene dos raíces cuyo producto es igual a 2. Para cada valor hallado factorizar f_z en $\mathbb{C}[X]$.
- **56**. (Lema de Gauss) Sea p un número primo y $f \in \mathbb{Z}[X]$ un polinomio. Supongamos que todos los coeficientes de f son múltiplos de p y que $f(X) = f_1(X)f_2(X)$ con $f_1, f_2 \in \mathbb{Z}[X]$. Probar que alguno de los factores f_1, f_2 tiene todos los coefficientes múltiplos de p.

Sugerencia: Considerar $\overline{f}, \overline{f_1}, \overline{f_2} \in (\mathbb{Z}/p\mathbb{Z})[X]$.

- **57**. Sea $f \in \mathbb{Z}[X]$ de grado 7 tal que toma alguno de los valores 1 o -1 para 7 valores enteros diferentes de X. Probar que f es irreducible en $\mathbb{Z}[X]$.
- **58**. Encontrar todos los $a \in \mathbb{Z}$ tales que (X a)(X 10) + 1 sea reducible en $\mathbb{Z}[X]$.
- **59**. Encontrar $a, b, c \in \mathbb{Z} \{0\}$ distintos tales que X(X a)(X b)(X c) + 1 sea reducible en $\mathbb{Z}[X]$.
- * **60**. Sean a_1, a_2, \ldots, a_n enteros distintos.
 - i) Probar que $(X a_1)(X a_2) \dots (X a_n) 1$ es irreducible en $\mathbb{Z}[X]$.
 - ii) Probar que $(X a_1)^2 (X a_2)^2 \dots (X a_n)^2 + 1$ es irreducible en $\mathbb{Z}[X]$.