AGEC 3333 Agricultural Marketing and Price Analysis

Lecture 2 - Prices over space

Rodney Beard

September 19, 2016

Lecture:

M Notebook:

AGEC 3333 Agricultural Marketing and Price Analysis

Rodney Beard

Introduction

Mathematical excursion

programming

Non-linear programming

Spatial equilibrium

Objective

Explain how the set of prices is connected over space?

AGEC 3333

Agricultural Marketing and Price Analysis

Rodney Beard

Introduction

Mathematical excursion

Linear programming

Non-linear programming

Spatial equilibrium

Ocean freight rates for grain, select ports, 23 No. 2005

US Dollars per Tonne								
From/To	Algeria	Egypt	Iran	Korea	Morocco			
Australia	na	32	29	19	na			
EU	24	26	na	na	22			
US Gulf	na	35	Na	45	32			

AGEC 3333 Agricultural Marketing and Price Analysis

Rodney Beard

Introduction

Mathematical excursion

Linear programming

Non-linear programming

Spatial equilibrium

AGEC 3333 Agricultural Marketing and

Price Analysis Rodney Beard

Introduction

excursion

programming

Non-linear programming

Mathematical excursion

programming

programming

Spatial equilibrium

Example

Consider a US exporter selling wheat to Egypt. The price of wheat in the US is \$165/tonne and the cost of transporting wheat from the US to Egypt is \$35/tonne. The break even price for wheat in Egypt for the US exporter to make a profit is therefore \$200/tonne.

Spatial equilibrium

We will review some necessary mathematics for understanding non-linear programming. The topics covered will include:

- unconstrained optimization
- optimization with equality constraints
- linear optimization with inequality and posssibly also equality constraints (linear programming)
- non-linear optimization with inequality and posssibly also equality constraints (non-linear programming)

programming

Non-linear programming

Spatial equilibrium pricing

This includes both maximization and minimization. To convert a maximization to a minimization function and vice versa multiply the function to be maximized or minimized by -1. Let's consider the problem of a monopolist as this is closest in structure to the net aggregate welfare maximization problem that we are interested in.

 $\Pi = p(Q)Q - C(Q)$

Profit = Revenue - Costs:

we will assume linear demand p(Q) = a - bQ and linear constant marginal costs C(Q) = cQ then our profit function becomes quadratic (verify this for yourself!).

We will use the Python module SymPy to analyze this problem. First we need to import SymPy:

To maximize or minimize a function subject to equality constraints we introduce what is called a Lagrangian. Our problem is to maximize for example utility U(x, y)subject to a budget constraint $p_x x + p_y y = M$ To do this we construct the Lagrangian function $L(x, y, \lambda) = U(x, y) + \lambda [M - p_x x - p_y y]$ Then differentiate with respect to x, y, λ $\frac{\partial L}{\partial x} = \frac{\partial U}{\partial x} - \lambda p_x = 0$ $\frac{\partial L}{\partial v} = \frac{\partial U}{\partial v} - \lambda p_y = 0$ $\frac{\partial L}{\partial Y} = M - p_X x - p_Y y = 0$

Example

$$U = xy$$

 $L(x, y, \lambda) = xy + \lambda [M - p_x x - p_y y]$
Now we solve this using SymPy

AGEC 3333

Agricultural Marketing and Price Analysis

Rodney Beard

Introduction

Mathematical excursion

programming

Non-linear programming

Spatial equilibrium pricing

This is just a brief introduction to linear programming. We will do more in the farm and agribusiness management class. Consider the following problem:

 $\max 3x_1 + 2x_2$ subject to $2 x_1 + 3 x_2 \le 100$ $x_1 + x_2 \le 80$ $x_1 \le 40$ $x_1 \ge 0$ $x_2 > 0$

We can solve this using Pulp.

Example: Transportation problem

$$\begin{aligned} & \min \sum_{i} \sum_{j} c_{ij} x_{ij} \\ & \text{subject to} \\ & \sum_{i} x_{ij} = D_{j}, \ \forall j \ \mathsf{Demands} \\ & \sum_{j} x_{ij} = S_{i}, \ \forall i \ \mathsf{Supplies} \\ & x_{ii} > 0 \end{aligned}$$

AGEC 3333

Agricultural Marketing and Price Analysis

Rodney Beard

Introduction

Mathematical

Linear programming

Non-linear programming

Exercise

Using the demand and supply estimates in Table 2.Q p. 33 of the Textbook solve for the equilibrium quantities in each country and then use Pulp to solve a transportation problem. AGEC 3333

Agricultural Marketing and Price Analysis

Rodney Beard

Mathematical

Linear programming

Non-linear programming

With non-linear programming we wish to maximimize (minimize) a possibly linear objective with either linear or non-linear constraints.

$$\max f(\vec{x})$$

$$s.t.g(\vec{x}) \leq 0$$

$$h(\vec{x}) = 0$$

Mathematical excursion

programming

Non-linear programming

Spatial equilibrium pricing

$$\max_{x \in \mathcal{R}^2} \sqrt{x_2}$$

$$x_2 \ge (a_1 x_1 + b_1)^3$$

$$x_2 \ge (a_2 x_1 + b_2)^3$$

$$x_2 > 0, a_1 = 2, b_1 = 0, a_2 = -1, b_2 = 1$$

source: http://ab-initio.mit.edu/wiki/index.php/
NLopt_Tutorial

Rodney Beard

Introduction

Mathematical excursion

programming

Non-linear programming

- Assume a linear inverse demand for region i, $P_i = a_i - b_i Q_i^D$
- Area under the demand curve for a given price is the area of the consumer welfare triangle $\frac{1}{2}(a_i P_i)Q_i^D$
- Plus the area of the producer revenue $P_iQ_i^D$
- Simplifying this is $(a_i 0.5b_iQ_i^D)Q_i^D$

Linear programming

Non-linear programming

Spatial equilibrium pricing

We need to maximize either one of the following

$$\begin{split} \textit{NAW}_V &= \sum_{i=1}^n (a_i - 0.5b_i Q_i^D) Q_i^D - \sum_{i=1}^n (\alpha_i + 0.5\beta_i Q_i^S) Q_i^S \\ &- \sum_{i=1}^n \sum_{j=1}^n C_{ij} T_{ij} \text{ with vertical axis intercept} \end{split}$$

$$NAW_{H} = \sum_{i=1}^{n} (a_{i} - 0.5b_{i}Q_{i}^{D})Q_{i}^{D} - \sum_{i=1}^{n} 0.5(\alpha_{i} + \beta_{i}Q_{i}^{S})(Q_{i}^{S} + \frac{\alpha_{i}}{\beta_{i}})$$
$$-\sum_{i=1}^{n} \sum_{i=1}^{n} C_{ij}T_{ij} \text{ with horizontal axis intercept}$$

Spatial equilibrium pricing

subject to

$$\sum_{j=1}^n T_{ji} \geq Q_i^D, \ \forall i$$

and

$$\sum_{j=1}^n T_{ij} \leq Q_i^S \ \forall i$$

and

$$T_{ij}, Q_i^D, Q_i^S \geq 0, \forall i$$

Lagrangian

$$L = \sum_{i=1}^{n} \left[(a_{i} - 0.5b_{i}Q_{i}^{D})Q_{i}^{D} - (\alpha_{i} + 0.5\beta_{i}Q_{i}^{S})Q_{i}^{S} \right] - \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij}T_{ij} + \sum_{i=1}^{n} \lambda_{i}^{D} \left(\sum_{j=1}^{n} T_{ji} - Q_{i}^{D} \right) + \sum_{i=1}^{n} \lambda_{i}^{S} \left(Q_{i}^{S} - \sum_{j=1}^{n} T_{ij} \right) - \sum_{i=1}^{n} \sum_{j=1} \lambda_{ij}^{T} T_{ij}$$

AGEC 3333

Agricultural Marketing and Price Analysis

Rodney Beard

Introduction

Mathematical excursion

programming

Non-linear

Karush-Kuhn-Tucker conditions (KKT)

$$\frac{\partial L}{\partial Q_i^D} = a_i - b_i Q_i^D - \lambda_i^D \le 0$$
$$\frac{\partial L}{\partial Q_i^D} Q_i^D = 0$$

non-negativity condition

$$\lambda_i^D(\sum_{j=1}^n T_{ji} - Q_i^D) = 0$$

complementary slackness condition

$$\frac{\partial L}{\partial Q_i^S} = -(a_i + b_i Q_i^D) + \lambda_i^S \le 0$$
$$\frac{\partial L}{\partial Q_i^S} Q_i^S = 0$$

non-negativity condition

AGEC 3333

Agricultural Marketing and Price Analysis

Rodney Beard

Introdu

Mathematical excursion

programming

Non-linear programming

Mathematical excursion

Linear programming

Non-linear programming

Spatial equilibrium pricing

$$\lambda_i^D(\sum_{i=1}^n T_{ij} - Q_i^S) = 0$$

complementary slackness condition

$$\frac{\partial L}{\partial T_{ij}} = -C_{ij} + \lambda_j^D - \lambda_i^S - \lambda_{ij}^T \le 0$$
$$\frac{\partial L}{\partial T_{ii}} T_{ij} = 0$$

non-negativity condition

$$\lambda_{ij}^T T_{ij} = 0, j = 1, 2, \ldots, n$$

complementary slackness condition

(a)

Mathematical excursion

programming

Non-linear programming

Spatial equilibrium pricing

Pre-scaled parameters for tomato case study: Supply and demand intercept and slope parameters

(a)					
	Intercept parameters		Slope parameters		
Region	Supply Demand		Supply	Demand	
Mexico	- 2532	8732.3	0.00146	0.00578	
US	- 1279	2217.1	0.00021	0.00011	
Canada	-2128	5,131.1	0.0059	0.00581	
EU	-5337	4258.7	0.00043	0.00022	
L. Amer.	3306	2806.5	0.00059	0.00036	

Pre-scaled parameters for tomato case study: Transportation cost parameters

(b)							
	US Dollars per ton						
Region	Mexico	US	Canada	EU	L. Amer.		
Mexico	0.00	58.50	96.63	155.55	161.88		
US	58.50	0.00	42.21	106.98	142.05		
Canada	96.63	42.21	0.00	106.47	164.43		
EU	155.55	106.98	106.47	0.00	137.37		
L. Amer.	161.88	142.05	164.43	137.37	0.00		

AGEC 3333 Agricultural Marketing and Price Analysis

Rodney Beard

Introduc

Mathematical excursion

programming

Non-linear programming

Mathematical excursion

programming

Non-linear programming

- Determining the free-flow equilibrium can be used to find starting values for the NLP
- Find the scaled demands and supplies across all regions
- ► Then solve for the equilibrium price
- ► The equilibrium price of the aggregate demand and supplies is the "free-flow" equilibrium price

Other alternative approaches

AGEC 3333 Agricultural Marketing and <u>Pr</u>ice Analysis

Rodney Beard

Introduc

Mathematical excursion

programming

Non-linear programming

- Gravity models (Econometrics)
- Spatial general Equilibrium models (GTAP, Monash type models)
- Regional input-output models