Trace ideals and their applications

Luka Horjak (luka1.horjak@gmail.com)

February 21, 2024

Contents Luka Horjak

Contents

Introduction			3
1	Оре	erators on Hilbert spaces	4
	1.1	Matrices and bounded operators	4
	1.2	Compact operators on Banach spaces	5
In	\mathbf{dex}		6

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Izbrana poglavja iz analize: Trace Ideals and Their Applications in the year 2023/24. The lecturer that year was prof. dr. Oleksiy Kostenko.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labeled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Operators on Hilbert spaces

1.1 Matrices and bounded operators

Definition 1.1.1. Let V be a finite-dimensional vector space over a field K. A *linear operator* A in V is a linear map $A: V \to V$.

Definition 1.1.2. Let $A: V \to V$ be a linear operator. A closed subspace $U \leq V$ is an invariant subspace for A if $A(U) \subseteq U$. The set of all invariant subspaces of A is denoted by Lat(A).

Remark 1.1.2.1. An operator A is invariant for U if we can write

$$A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$$

in the decomposition $V = U \oplus W$.

Remark 1.1.2.2. If $U \in \text{Lat}(A)$, then $p_{A|_U} \mid p_A$.

Definition 1.1.3. Let $q \in \mathbb{N}$ be the minimal integer such that¹

$$\ker(A - \lambda)^q = \ker(A - \lambda)^{q+1}.$$

The subspace $N_{\lambda} = \ker(A - \lambda)^q$ is called the *root subspace* of A.

Definition 1.1.4. A subspace $U \leq V$ is a *cyclic subspace* for $A: V \to V$ if

$$U = \operatorname{span} \left\{ A^n x \mid 0 \le n \le q \right\}$$

for some $x \in V$.

Definition 1.1.5. Let X be a Banach space. A linear operator $A: X \to X$ is bounded if the set

$$\left\{ \frac{\|Ax\|}{\|x\|} \mid x \in X \setminus \{0\} \right\}$$

is bounded.

 $^{^{1}}$ Such a q exists as V is finite-dimensional.

1.2 Compact operators on Banach spaces

Definition 1.2.1. Let X and Y be Banach spaces. A linear operator $T: X \to Y$ is compact if T maps bounded sets in X into pre-compact sets in Y. Equivalently, the set $T(B_X)$ is pre-compact.

Proposition 1.2.2. Let $k \in \mathcal{C}([0,1]^2)$ be a continuous function. Then the integral operator

$$(Kf)(x) = \int_0^1 k(x, y) f(y) dy$$

is a compact operator on $(\mathcal{C}([0,1]), \|\cdot\|_2)$ and $(\mathcal{C}([0,1]), \|\cdot\|_{\infty})$.

Proof. Introduction to functional analysis, proposition 5.4.9.

Definition 1.2.3. A sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ is weakly convergent with limit x if

$$\lim_{n \to \infty} f(x_n) = f(x)$$

for all functionals $f \in X^*$.

Definition 1.2.4. A sequence $(x_n)_{n\in\mathbb{N}}\subseteq X$ is normally convergent with limit x if

$$\lim_{n \to \infty} ||x_n - x|| = 0.$$

Theorem 1.2.5. A compact operator maps weakly convergent sequences into normal convergent sequences.

Proof. Let $T: X \to Y$ be a compact operator and let $(x_n)_{n \in \mathbb{N}}$ be a weakly convergent sequence with limit x. By the uniform boundedness principle, the sequence $(\|x_n\|)_{n \in \mathbb{N}}$ is bounded. But then for every functional $f \in Y^*$ it holds that

$$f(Tx_n) - f(Tx) = (T^*f)(x_n - x),$$

hence $(Tx_n)_{n\in\mathbb{N}}$ is weakly convergent. Suppose that it is not normally convergent – that is, there exists some $\varepsilon > 0$ and a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ such that

$$||Tx_{n_k} - Tx|| \ge \varepsilon$$

holds for all k. As T is compact, this subsequence has an accumulation point. The only possible accumulation point is clearly Tx.

Remark 1.2.5.1. If T is a bounded operator on a reflexive Banach space X, the converse holds as well.

Theorem 1.2.6. If $(T_n)_{n\in\mathbb{N}}$ is a sequence of compact operator with bounded limit T, then T is compact.

Proof. Introduction to functional analysis, theorem 5.4.4.

Theorem 1.2.7. Every compact operator on a Hilbert space is a normal limit of finite rank operators.

Proof. Introduction to functional analysis, theorem 5.4.10.

² Introduction to functional analysis, theorem 3.3.5.

\mathbf{Index}

В
bounded operator, 4
\mathbf{C}
compact operator, 5
cyclic subspace, 4
I
invariant subspace, 4
T
\mathbf{L}
linear operator, 4
$\mathbf N$
normal convergence, 5
\mathbf{R}
root subspace, 4
\mathbf{W}
weak convergence, 5