Math: From An Economist's Perspective

For Personal Reference, happy to circulate

Sai Zhang

Check the Github Page for this project, or email me!

HERE WE GO!

Math is fascinating, certainly. It is clean, organized, beautiful, philosophical, but it is also hard to grasp. I started this project for one simple purpose: As an Economic Ph.D. student, math was not my strongest suit and I NEED to change that. Hence, this math-learning notebook will be tailored according to the need of an economist, instead of being, you know, math math.

Here, I cover the math knowledge ranging from basic concepts, to fundamental theories including linear algebra and real analysis, and more integrated topics including optimization, dynamic methods stochastic control, etc. There are several valuable sources I referred to in the process of making this notebook. Two general aspects are reviewed here: math theories and their application in economic research. I organize the theoretical contents based on Hoy et al. (2011)'s *Mathematics of Economics*, Carter (2001)'s *Fundations of Mathematical Economics* and Eichhorn and Gleißner (2016)'s *Mathematics and Methodology for Economics*; Intriligator (2002)'s *Mathematical Optimization and Economic Theory*, Vali (2014)'s *Principles of Mathematical Economics* and De la Fuente (2000)'s *Mathematical Methods and Models for Economists* are my main references for the application of math thoeries in specific economic questions. Although the above listed books are rather thorough and well-organized, I referred to other great ones, when in need, for specific topics.

I thank Prof. Brijesh Pinto at USC Economics for reminding me the importance of math and the pleasure of playing with it in the math camp prior to my Ph.D. study. Though brief and abstract, the math camp had actually inspired me to go back to the beginning, really dive in and put together this personal learning notes.

Since this notebook approaches math in an application perspective, I will not only review the theoretical aspects of each topic, but include some necessary modelling simulation techniques and codes as well. All the codes, including the LATEX file of this notebook can be found on my Github page. Building this review is truly a memorable journey for me. I would love to share this review and all the related materials to anyone that finds them useful. And unavoidably, I would make some typos and other minor mistakes (hopefully not big ones). So I'd really appreciate any correction. If you find any mistakes, please either set up a branch on Github or send the mistakes to this email address saizhang.econ@gmail.com, BIG thanks in advance!

Contents

1	Basic Concepts			
	1.1 Chap1Sec1 1.2 Chap1Sec2 1.3 Chap1Sec3 1.4 Chap1Sec4	3 3 3		
2	Linear Algebra	4		
3	Real Analysis			
4	Optimization			
5	Dynamic Method	7		
Bi	Bibliography			

BASIC CONCEPTS

Contents

1.1	Chap1Sec1	3
1.2	Chap1Sec2	3
1.3	Chap1Sec3	3
1.4	Chap1Sec4	3

In this chapter, I review the fundamental concepts that will reoccur constantly in this notebook.

In Section 1.1, I summarize the basic elements of set theory,

1.1 Chap1Sec1

In this section, I

1.2 Chap1Sec2

In this section, I

1.3 Chap1Sec3

1.4 Chap1Sec4

LINEAR ALGEBRA

REAL ANALYSIS

OPTIMIZATION

DYNAMIC METHOD

BIBLIOGRAPHY

Michael Carter. Foundations of mathematical economics. MIT press, 2001.

Angel De la Fuente. *Mathematical methods and models for economists*. Cambridge University Press, 2000.

Wolfgang Eichhorn and Winfried Gleißner. *Mathematics and Methodology for Economics*. Springer, May 2016. doi: 10.1007/978-3-319-23353-6. URL https://ideas.repec.org/b/spr/sptbec/978-3-319-23353-6.html.

Michael Hoy, John Livernois, Chris McKenna, Ray Rees, and Thanasis Stengos. *Mathematics for economics*. MIT press, 2011.

Michael D Intriligator. Mathematical optimization and economic theory. SIAM, 2002.

Shapoor Vali. *Principles of mathematical economics*. Springer, 2014.