MATH 1426 IMS. Shanghai Tech

Error Analysis

Introduction

Representation of Numbers in a Computer

Numerical Computations: Stability and Error Analysis

Application: Numerical Differentiation

Boris Houska 1-1

Contents

Introduction

Representation of Numbers in a Computer

Numerical Computations: Stability and Error Analysis

Application: Numerical Differentiation

Objectives

In this lecture we will learn about

- the fact that many computer programs store numbers with finite precision only
- the IEEE standard for storing floating point numbers
- applications, including numerical differentiation

Contents

Introduction

• Representation of Numbers in a Computer

Numerical Computations: Stability and Error Analysis

Application: Numerical Differentiation

Scientific Computing

Computers or calculators typically store numbers with finite precision:

- Example 1: 8 + 8 == 16 ?
- Example 2: $(\sqrt{5})^2 == 5$?
- Example 3: 1.1 + 0.1 == 1.2 ?

Let's try this with JULIA:

$$\begin{array}{ll} \mbox{julia>}(1.1+0.1) == 1.2 & \mbox{julia>} 1.1+0.1 \\ \mbox{false} & 1.200000000000002 \end{array}$$

Problem: numerical error: $\approx 2 * 10^{-16}$.

Scientific Computing

Computers or calculators typically store numbers with finite precision:

- Example 1: 8 + 8 == 16 ?
- Example 2: $(\sqrt{5})^2 == 5$?
- Example 3: 1.1 + 0.1 == 1.2 ?

Let's try this with JULIA:

$$\begin{array}{ll} \mbox{julia}{>} (1.1+0.1) == 1.2 & \mbox{julia}{>} 1.1+0.1 \\ \mbox{false} & 1.2000000000000002 \end{array}$$

Problem: numerical error: $\approx 2 * 10^{-16}$.

Scientific Computing

Computers or calculators typically store numbers with finite precision:

- Example 1: 8 + 8 == 16 ?
- Example 2: $(\sqrt{5})^2 == 5$?
- Example 3: 1.1 + 0.1 == 1.2 ?

Let's try this with JULIA:

${\sf julia}{>}(1.1+0.1) == 1.2$	$julia \! > 1.1 + 0.1$
false	1.200000000000000002

Problem: numerical error: $\approx 2 * 10^{-16}$.

IEEE standard for double-precision floating point numbers:

$$x = \pm (1+m) \cdot 2^e$$
 with $m = \sum_{i=1}^{52} m_i 2^{-i}$ and $e = \sum_{i=0}^{10} c_i 2^i - \bar{c}$,

Names: m = mantissa, e = exponent.

Storage requirement

- 1 bit to store the sign.
- 11 bits to store $c_{10}, \ldots, c_0 \in \{0, 1\}$; offset $\bar{c} = 1023$.
- 52 bits to store $m_1, \dots m_{52} \in \{0, 1\}$

In total: (1 + 11 + 52) bits = 64 bits = 8 bytes

IEEE standard for double-precision floating point numbers:

$$x = \pm (1+m) \cdot 2^e \quad \text{with} \quad m = \sum_{i=1}^{52} m_i 2^{-i} \quad \text{and} \quad e = \sum_{i=0}^{10} c_i 2^i - \bar{c} \; ,$$

Names: m = mantissa, e = exponent.

Storage requirement:

- 1 bit to store the sign.
- 11 bits to store $c_{10}, \ldots, c_0 \in \{0, 1\}$; offset $\bar{c} = 1023$.
- 52 bits to store $m_1, \ldots m_{52} \in \{0, 1\}$.

In total: (1 + 11 + 52) bits = 64 bits = 8 bytes

IEEE standard for double-precision floating point numbers:

$$x = \pm (1+m) \cdot 2^e \quad \text{with} \quad m = \sum_{i=1}^{52} m_i 2^{-i} \quad \text{and} \quad e = \sum_{i=0}^{10} c_i 2^i - \bar{c} \; ,$$

Names: m = mantissa, e = exponent.

Storage requirement:

- 1 bit to store the sign.
- 11 bits to store $c_{10}, \ldots, c_0 \in \{0, 1\}$; offset $\bar{c} = 1023$.
- 52 bits to store $m_1, \ldots m_{52} \in \{0, 1\}$.

In total: (1 + 11 + 52) bits = 64 bits = 8 bytes.

```
julia>bits(1.1)
```

```
julia>bits(1.1)
julia>bits(0.1)
```

```
julia>bits(1.1)
julia>bits(0.1)
julia>bits(1.2)
julia > bits(1.1+0.1)
```

- ullet Numbers between 1 and $1+2^{-52}$ cannot be represented.
- The (relative) rounding $eps = 2^{-52}$ is called *machine precision*.
- The absolute rounding error $eps*2^e$ depends on exponent e. (if we work with larger numbers, we get larger rounding errors)

Important to remember: $eps = 2^{-52} \approx 2 * 10^{-16}$

- Numbers between 1 and $1 + 2^{-52}$ cannot be represented.
- The (relative) rounding $eps = 2^{-52}$ is called *machine precision*.
- The absolute rounding error $eps*2^e$ depends on exponent e. (if we work with larger numbers, we get larger rounding errors)

Important to remember: $eps = 2^{-52} \approx 2 * 10^{-16}$.

Contents

Introduction

Representation of Numbers in a Computer

• Numerical Computations: Stability and Error Analysis

Application: Numerical Differentiation

Numerical function evaluation

Let us evaluate the function

$$\Phi(x) = \sin(10^8 x)$$

at $x = \pi$. The exact solution is $\Phi(\pi) = 0$.

julia
$$>\sin(10^8 \text{ pi})$$

-3.9082928156687315 $e-8$

Caution: The function Φ is ill-conditioned, i.e., the evaluation error is much larger than $eps \approx 2*10^{-16}!$

Numerical function evaluation

Let us evaluate the function

$$\Phi(x) = \sin(10^8 x)$$

at $x = \pi$. The exact solution is $\Phi(\pi) = 0$.

julia>
$$\sin(10^8 \text{ pi})$$

-3.9082928156687315 $e-8$

Caution: The function Φ is ill-conditioned, i.e., the evaluation error is much larger than $\exp s \approx 2*10^{-16}!$

Numerical function evaluation

Let us evaluate the function

$$\Phi(x) = \sin(10^8 x)$$

at $x = \pi$. The exact solution is $\Phi(\pi) = 0$.

julia>
$$\sin(10^8 \text{ pi})$$

-3.9082928156687315 $e-8$

Caution: The function Φ is ill-conditioned, i.e., the evaluation error is much larger than $eps \approx 2*10^{-16}!$

There exists a variety of ways to represent numbers:

- Floating point numbers be it 64bit ("double precision") or 32bit ("single precision").
- Integers are often stored differently. Remark: julia>bits(3) is not the same as julia>bits(3.)!!!
- Arbitrary precision arithmetics are an alternative (not our focus).
- Verified arithmetics store intervals rather than single numbers

There exists a variety of ways to represent numbers:

- Floating point numbers be it 64bit ("double precision") or 32bit ("single precision").
- Integers are often stored differently. Remark:julia>bits(3) is not the same as julia>bits(3.)!!!
- Arbitrary precision arithmetics are an alternative (not our focus).
- Verified arithmetics store intervals rather than single numbers.

There exists a variety of ways to represent numbers:

- Floating point numbers be it 64bit ("double precision") or 32bit ("single precision").
- Integers are often stored differently. Remark:julia>bits(3) is not the same as julia>bits(3.)!!!
- Arbitrary precision arithmetics are an alternative (not our focus).
- Verified arithmetics store intervals rather than single numbers.

There exists a variety of ways to represent numbers:

- Floating point numbers be it 64bit ("double precision") or 32bit ("single precision").
- Integers are often stored differently. Remark:julia>bits(3) is not the same as julia>bits(3.)!!!
- Arbitrary precision arithmetics are an alternative (not our focus).
- Verified arithmetics store intervals rather than single numbers.

Contents

Introduction

Representation of Numbers in a Computer

Numerical Computations: Stability and Error Analysis

• Application: Numerical Differentiation

The derivative of a twice continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ can be approximated by finite differences:

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x)}{h}$$

The mathematical approximation error, given by

$$\left| \frac{f(x+h) - f(x)}{h} - \frac{\partial f}{\partial x}(x) \right| \approx \frac{h}{2} \left| \frac{\partial^2 f}{\partial x^2}(x) \right| = \mathbf{O}(h),$$

tends to zero for $h \to 0$

The numerical error is approximately

$$O\left(\frac{eps}{h}\right)$$

$$h \approx \operatorname{argmin}_h \left(h + \frac{\operatorname{eps}}{h} \right) = \sqrt{\operatorname{eps}}$$

The derivative of a twice continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ can be approximated by finite differences:

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x)}{h}$$

• The mathematical approximation error, given by

$$\left| \frac{f(x+h) - f(x)}{h} - \frac{\partial f}{\partial x}(x) \right| \approx \frac{h}{2} \left| \frac{\partial^2 f}{\partial x^2}(x) \right| = \mathbf{O}(h),$$

tends to zero for $h \to 0$.

The numerical error is approximately

$$O\left(\frac{eps}{h}\right)$$

$$h \approx \operatorname{argmin}_h \left(h + \frac{\operatorname{eps}}{h} \right) = \sqrt{\operatorname{eps}}$$

The derivative of a twice continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ can be approximated by finite differences:

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x)}{h}$$

• The mathematical approximation error, given by

$$\left| \frac{f(x+h) - f(x)}{h} - \frac{\partial f}{\partial x}(x) \right| \approx \frac{h}{2} \left| \frac{\partial^2 f}{\partial x^2}(x) \right| = \mathbf{O}(h),$$

tends to zero for $h \to 0$.

The numerical error is approximately

$$\mathbf{O}\left(\frac{\mathrm{eps}}{h}\right)$$

$$h \approx \operatorname{argmin}_h \left(h + \frac{\operatorname{eps}}{h} \right) = \sqrt{\operatorname{eps}}$$

The derivative of a twice continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ can be approximated by finite differences:

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x)}{h}$$

• The mathematical approximation error, given by

$$\left| \frac{f(x+h) - f(x)}{h} - \frac{\partial f}{\partial x}(x) \right| \approx \frac{h}{2} \left| \frac{\partial^2 f}{\partial x^2}(x) \right| = \mathbf{O}(h),$$

tends to zero for $h \to 0$.

The numerical error is approximately

$$\mathbf{O}\left(\frac{\mathrm{eps}}{h}\right)$$

$$h \approx \operatorname{argmin}_h \left(h + \frac{\operatorname{eps}}{h} \right) = \sqrt{\operatorname{eps}}$$
.

In order to reduce the mathematical approximation error, we can use central differences

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x-h)}{2h}$$

to approximate the derivative of f.

The mathematical approximation error is now

$$\left| \frac{f(x+h) - f(x-h)}{2h} - \frac{\partial f}{\partial x}(x) \right| \le \mathbf{O}(h^2).$$

• The numerical error is still in the order of

$$\frac{\text{eps}}{h} = \mathbf{O}\left(\frac{\text{eps}}{h}\right)$$

• In practice, if f is well conditioned, we choose $h pprox \sqrt[3]{\mathrm{eps}}$

In order to reduce the mathematical approximation error, we can use central differences

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x-h)}{2h}$$

to approximate the derivative of f.

• The mathematical approximation error is now

$$\left| \frac{f(x+h) - f(x-h)}{2h} - \frac{\partial f}{\partial x}(x) \right| \le \mathbf{O}(h^2).$$

• The numerical error is still in the order of

$$\frac{\text{eps}}{h} = \mathbf{O}\left(\frac{\text{eps}}{h}\right)$$

ullet In practice, if f is well conditioned, we choose $hpprox\sqrt[3]{ ext{eps}}$

In order to reduce the mathematical approximation error, we can use central differences

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x-h)}{2h}$$

to approximate the derivative of f.

• The mathematical approximation error is now

$$\left| \frac{f(x+h) - f(x-h)}{2h} - \frac{\partial f}{\partial x}(x) \right| \le \mathbf{O}(h^2).$$

The numerical error is still in the order of

$$\frac{\mathrm{eps}}{h} = \mathbf{O}\left(\frac{\mathrm{eps}}{h}\right)$$

ullet In practice, if f is well conditioned, we choose $hpprox\sqrt[3]{ ext{eps}}$

In order to reduce the mathematical approximation error, we can use central differences

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) - f(x-h)}{2h}$$

to approximate the derivative of f.

• The mathematical approximation error is now

$$\left| \frac{f(x+h) - f(x-h)}{2h} - \frac{\partial f}{\partial x}(x) \right| \le \mathbf{O}(h^2).$$

The numerical error is still in the order of

$$\frac{\mathrm{eps}}{h} = \mathbf{O}\left(\frac{\mathrm{eps}}{h}\right)$$

• In practice, if f is well conditioned, we choose $h \approx \sqrt[3]{\mathrm{eps}}$.

Summary

- Programs often store numbers with finite precision only.
- IEEE double precision floating point numbers: $eps \approx 2*10^{-16}$.
- Error and stability analysis is important!
- Application: numerical differentiation.