CheatSheet Metodi · Quack

Quack &	Metodi Cheatsheet	A/A: 22/23
	Congruenze Lineari	
Awertenze:		
Questo laworo non inte	ende sostituire le lezioni o le esercitazioni	del corso, bensi fornire
	ndo passo per passo, gli esercizi piú "i	meccanici"/"sequenziali".
	N cisono esercizi su dimostrazioni.	
	per la revisione sul file e per il costa	nte aviuto in olauni
esercizi!		
Indice		
Congruenze Lineari		3
Tearenna Cinese del Res	to	5
Gruppi		6
Eulero		7
Permutazioni		9
RSA		40
Normoli, Ideoli		32
Polinomi		45
Cadici Lineari Cadici Ciobici		49
Cadici Cickici		22

Avack &	Metodi Cheatsheet	Probabilità all'appella
	Teorema Cinese del Resta	complete: 65%
$\begin{cases} X \equiv 3 \mod 44 \\ X \equiv 4 \mod 42 \end{cases}$		
1) Prima cosa day Rase	é controllare se i divisori sono c	and so a see and the P. T. R.
(14, 42) = 4, (12, 43) = 4, (42, 43)		opinii. se si pose appoint
	ls dz dz, Nz dz dz, Nz dz dz, Nz d	ds dz
N= 44- 56- 56- 54- N	1= 456 Nz= 443 Ns= 432 (N44=4 mo	J d.
3) Eseguiamo ora la consu	vensor con i sequenti volori: Ny = 1 mo	zd dz
	risolviamo le conquenze:	
1) 156 y = 1 mod 11 Si	xó semplificoure [*] in 2y≡4 mod 44 e qo	sindi y=6 (* 11.14=194, 196-194=2, 2.6=12=1 mod 11)
e) susy = 4 mod se Si pu	ó semplikicare [*] in -y = 1 mod sz e qu	sindi g (12.32.344, 143.3441)
	5 semplificare in zy=1 mod 13 e quindi	Ψ=₹
4) Una saluzione é in que	144	
	are del sistema é c= 156.6.3 + 1(3.(-1).4.	
5) lutte le soluzioni sono di K in Z.	nella Rouma c+NK. La minima sol.	. positivo la si ottiene al vourioure
	5000 4084 + 4746K, K E Z. La minima soluti	sing la sile con K-2
over 4084-3432=6		EICHE ALL STATE CONT 11 = 2
	verificare la voliditai dei nastri ri	sultati.
(4084 = 3 mod ±±	4084 11 4084 12 4084	43_
(4084 = 3 mod 33 (4084 = 4 mod 33	78 371 48 340 18 54 Z	314
(5800 = 3 mod 44	5800 44 5900 42 5800 30 520 100 480 80	446
5800 = 4 mod 12 5800 = 2 mod 13 K=1	8 4 4 80 2	
$652 = 3 \mod 44$ $652 = 4 \mod 42$	652 44 652 42 652 102 59 52 54 2	
652 = 2 mod 13		

Quack &	Metodi Cheatsheet	P1 1-01 : 00: 00
COOLCK CO	Ellero	Probabilità all'appell
F 0-4 141.	gli interi n to q(n)= 46	
3) Travo divisori	ger interi n to gen 1= 46	
Divisori di 16:	3 2 4 8 36	
	the incrementati di 1 sono primi	
	sono per p sono 2,3,5,47. Dungue n= 2°	3 . 5° . 45°
	io nella formula q(n)= x9-4. x-1= 16	
	2 5 ^{C-3} 4 13 ^{d-3} 16 = 16	
4) Parto dol grado co	n base maggiore e trovo per quoli volorii posso (ancora otterere= 16
In questo caso	des, perché con des auro 16:46 e va b	ene, can dea non ha nulla
in 47 e 46 e va	bene, mou con d=2 aurei 17.16=16, impose	sibile. Dividiamo i due casi:
d = 4 n=	2° · 3 · 5° · 17	
φ(n).	2 . 3 . 2 . 5 . 4 . 16 = 46	
4.s) Ad	esec ricaus che c=o, ma anche b=o. a pos e	osere anche 1, in quanto quando
0.	= 4 moltiplicas per 1 e quindi visultato rimano	e la stessa
Cao	95 = 95 = 10 (b) = 500; 76 = 76	
	o=0 n=47, q(n)=46 = 46, trow il primo	n= 47
	out necessary plant to the present	b n=34
d=0 n=	20 3 5 5 (p(n)= 20-4. 4. 3 6.4. 2. 50-4. 4= 46. Ricano	che C±4, perché C=2 generou 5.4 = 20
C=4	1=2°.36.5 ((11)=2°-1.1.36-12.4=16 Ricas che	b s 1 parché b = 2 generou 3.24 = 24
	1 = 2° 3.5 φ(n)=2° 4.2.4=46. Ricaso che c	
	0 = 2 n=22 3.5 q(n)=2.124=16 trac il t	
	n= 2° 5 φ(n)= 2° -3 + 4 = 46 da ai ricano	
	a. 3 n. z3. s y(n)=4.4.46 travo il quo	
C=0	n=20-3b ((n)=20-4-3-3b-4-2=46. Troug the bis	
	esiste au to	5 6 7 76

Quack 🖭	Metodi Cheatsheet	Probabilità all'	appello
	Eulero	completo: 70°	
Continuo es Determinar	e tutti ali interi ntc q(n)=16		
·d=0			
C=O			
b ₌₄ n ₌ 5	2° 3 ((n) = 2° -4 · 2 = 36 , da ω α α α 4		
	1=24 3 ((n)= 8.2=46 trap quarto n=4	8	
	$z^{\alpha} = \varphi(n) = z^{\alpha-3} = 46$, do $\omega = \alpha = 9$		
	n=25 q(n)=24= 36 trac quinto n= 36	5	
esoluzioni sono di	7,34,60,40,48,32		
6 Cololare 9898	9 mod 29.		
1) Colcolo senza es			
PS bom Lt = 8P			
z) Divido l'esponent	he per y(d) awaro il primo ed-s, in	questo caso za quindi y(za)=z	8
98989 28 149 3535	li 98989 <u>-</u> <mark>3535 · 28 +</mark> 9		
7			
	no (13) = 1 mod 29, quindi colcolioumo	la conquerza sul resto	
	anta (1138) 3535 = 1 mod 29, 119 = 119 mod 29		
	la conquenza sul resto		
442 = 424 = 5 mod			
11 ⁸ = -6 ² = 16 mod 29	29 kg		
11° = 41° - 4 = 46 mod 24	436 = 2 mod 39		
5) Conclusioni	370 E 11105 E1		
	98989 = 2 mod 29		

wack &	Metodi Cheatsheet	Probabilità all'appelle
	Pemutouzioni	completo: 70%
Sia 5 e Sta la perm		
S = (4 2 3 4 5 6 7 8 2 3	9 to 12 13 (10 t	
OScrivere 5 came prodati	o di cicli disgiunti e determinare l'ordine.	
	pemente di gaurdave i cicli	
8 = (3 2 3 4 5 6 7 8 9 52 53 6 7 51 2 3	9 30 4 5 8	
8 = (1 9 4 6 14)(2, 42	,s,=)(s, 43, 8).	
2) L'ordine é il 1	m.c.m della cardinalità dei cioli.	
151-5-4-3-60		
st. ε)(ε,εε,ρ)= σ otal 0	2,5.8,3)(44,4,40)(2,6) in S43 si calcol, il	prodotto 5'r.
1) Bisagrav concatenava	e le due permutazioni	
Z= 9 13 7 1 12	5 8 3 34 4 30 2 6	
13 7 9 12 5	s 3 Lt at 1 E 8	
	83 4 10 11 6 2	
82453	3 13 9 6 10 11 11 12	
(0)		
5.6= (4 13 7 1 12	5 8 3 44 4 40 2 6 3 43 9 6 40 4 44 42)	
N.B : 3 r + r.3		
3 Somere of.		
3) Risorius 8 ⁻⁴ come		
8° = (1, 9, 4, 6. 11) (2, 12	2,5,3)(3,43,8).	
2) Scrius come 13 r	med ordine	
quindi per (1,9,4,6.3	4) 43 = 8 mod 5	
	٩, 4, 6. 43 (٤, 32, 3, 3) (4. 3, 43, 8)	
3) Sporto di x posiz	ioni : es $(3(96)^3, (3(56), (65))$	43)

wack &	Metodi Cheatshee	et Robabilità ell'appelle
	R5A	Completo: 99 %
Suppore the low	chiave pubblica sia (N,r)=(143,6	67), duque p=33 e q=33 Riceviamo
il meseaggio 13. De	cibriamolo	
1) Colado (p(n)=(p-1)(q-1)	
q(N)=30. 32=3	lo lo	
2) Applico Euclide	e Bezart a glus e r. (Evolide da	ve radiare = 1!)
= E E=(F3,OSE)	43b - 24a	
3) Trovo 5, awero col	lui ohe moltiplica b.	
13 ⁴³ mod 143.		
4) (soleolo mex mo	od N. riscrivo s in binourio e cre	o la sevente tabella
45 - 40 ± 0 ± ± 64		
Co=4		
C3= 32.	130	
	35 = 35 mod 343	
	13 = 65 mod 163	
	3° = -65 mod 443	
	13 ⁴ = 13 mod 143	
	3 = 52 mod 343	
	ë il messaggio decifirato	
K messaggio c	decilirato é 52.	

Juack &		Tetodi (heatsh	eet	Probabi	esta ele	apello
		Normoli; 1	deal Horl	iSmi	Comple	eto: 90°	%
Scrivere la tabe	20a di Z6/1	le Ze/K con	H=<[3]6> e	K= < [2]] e >		
Controllo il grup	po, se ald	liano auremo	che Hek	sono e	attagruppi na	xmoli, dur	que
lateroli dx = lat	enoli sx. Tro	viamo i later	oli .				
Ze abeliano. H							
laterali di He		1]6 = {[4]6,[4]	16 e H+[2]6	= { [2]6, [[5]6]. late	rolidik:	sono
Ke K+[4]6= 1[4]6			00.1				
Ora metto i later	roli su righe (e colonne ed e	effettus i colo	oli.			
+ +	H+[4]6	H+[2]6	+	K	K+[3] ₆		
Н Н	9[F] +H	H+[2]6	К	K	K+[4]e		
H+[1]6 H+1	4]6 H+[2]6	н	K+[4]6	K+[3]6	K		
H+[z] ₆ H+[2]6 H	∂[t]+H					
e di atomabiana) (8	ottoanello	4 = { (& d) : a	, c, d ∈ Q } c	li Mat (z	xz, Q.) prac	ne che l'o	uplicazio
q: A→A, definite	عمص والع	$ = \begin{pmatrix} \alpha & 0 \\ 0 & d \end{pmatrix} \in \Omega$	momorfiemo d	li anelli	. Determinaure	s Kerφe	lm q.
Obbiama prac				(a.b) =	q(a) q(b)		
Y (a d) (y z)	A. dobbiamo	prawe ch	e e	10.10	2 (0.4	·× 0	0.01.4
φ((α d) +	$\left(\frac{x}{y}\right)^{2} \varphi\left(\frac{x}{c}\right)$	$(a)^{+} \varphi(\overset{\times}{y}\overset{\circ}{z}) \rightarrow$	φ(c d) + (y;	$\varphi(c)$	A q+5)= (0	d+ z)= (o d)+(×
φ((c d).	$ \hat{y} = \varphi(\hat{c})$	a) · q(y z) -	all ally s) = $(cx+dy)$	dz) = lo d	2) = (0 0	(2 °) - (1
Kery={(c a)e							
Im φ={φ((~a)):	(cd) EA) * {(o	d): a,deu.	lm q é sattaau	rello di/	4		

