Decentralised Coordination of Electric Vehicle Aggregators

Alvaro Perez-Diaz
University of Southampton

Enrico Gerding
University of Southampton

Frank McGroarty
University of Southampton

Electric vehicles (EVs) are a key technology for reducing the environmental impact of transportation

But this is not without challenges:

- Large new source of demand
- Increased prices
- Congestion problems

- Intermediary
- Buy electricity
- Control charging
- Smarter decisions

- Intermediary
- Buy electricity
- Control charging
- Smarter decisions

- Intermediary
- Buy electricity
- Control charging
- Smarter decisions

- Intermediary
- Buy electricity
- Control charging
- Smarter decisions

- Reduce demand peaks
- Buy cheap energy
- Reduce costs

Multiple Aggregators

- Local knowledge: Smart decisions within each aggregator
- No global knowledge

Multiple Aggregators

- Local knowledge: Smart decisions within each aggregator
- No global knowledge

Enable inter-aggregator coordination to produce joint bidding and reduce electricity costs

- Self-interested and rational
- Buy energy in day-ahead market
- More demand higher prices

Joint bidding

Centralised approaches:

Mechanism design

(Perez-Diaz et al., Applied Energy, 2018)

Cooperative game theory

(Perez-Diaz et al., AAMAS 2018)

Framework:

- 1. Report requirements to coordinator
- 2. Coordinator performs global bidding
- 3. Redistribute purchased energy
- 4. Redistribute energy costs

Joint bidding

Centralised approaches:

Mechanism design

(Perez-Diaz et al., Applied Energy, 2018)

Cooperative game theory

(Perez-Diaz et al., AAMAS 2018)

Framework:

Privacy

- 1. Report requirements to coordinator
- 2. Coordinator performs global bidding

Black-box

- 3. Redistribute purchased energy
- 4. Redistribute energy costs

Joint bidding

Centralised approaches:

Mechanism design

(Perez-Diaz et al., Applied Energy, 2018)

Cooperative game theory

(Perez-Diaz et al., AAMAS 2018)

Framework:

Privacy

- 1. Report requirements to coordinator
- 2. Coordinator performs global bidding

Black-box

- 3. Redistribute purchased energy
- 4. Redistribute energy costs

Novel work: decentralised coordination

- Preserve privacy
- Transparent coordination step

Outline

- Day-ahead market
- Individual bidding
- Decentralised joint bidding
- Evaluation
- Conclusions and future work

Hours

- Run every day of the year
- Separate auction for each hour
- Futures market: one day in advance

- Day-ahead market
- Individual bidding
- Decentralised joint bidding
- Evaluation
- Conclusions and future work

Individual optimal bidding

Perez-Diaz et al., Applied Energy, 2018 Perez-Diaz et al., AAMAS 2018

Aggregator needs to decide energy allocation: $|\mathbf{E} = (E_0, \dots, E_{23})|$

$$\mathbf{E} = (E_0, \dots, E_{23})$$

Individual optimal bidding

Perez-Diaz et al., Applied Energy, 2018 Perez-Diaz et al., AAMAS 2018

- Aggregator needs to decide energy allocation: $\mathbf{E} = (E_0, \dots, E_{23})$

- Forecast:
 - Prices
 - Energy requirements

Individual optimal bidding

Perez-Diaz *et al.*, Applied Energy, 2018 Perez-Diaz et al., AAMAS 2018

- Aggregator needs to decide energy allocation: $\mathbf{E} = (E_0, \dots, E_{23})$

- Forecast:
 - Prices
 - Energy requirements

total cost

 $\mathbf{E}^* = \arg\min_{\mathbf{E}} \sum \hat{\mathcal{P}}_h(E_h) \cdot E_h$ Find optimal allocation:

... while satisfying energy requirement constraints: make sure energy is not bought too early or too late

- Day-ahead market
- Individual bidding
- Decentralised joint bidding
- Evaluation
- Conclusions and future work

computation: privacy preserving

Alternating Direction Method of Multipliers (ADMM)

- Iterative, decentralised
- Good convergence
- Very popular

(Boyd et al., 2010)

Decentralised algorithm

ullet Decision variables: $ec{E} = \left(ec{E}_1, \dots, ec{E}_N
ight)$

24-dimensional vectors: energy allocation for each aggregator

Decentralised algorithm

24-dimensional vectors: energy allocation for each aggregator

• Optimisation problem:

$$\min_{\vec{E}} \operatorname{Cost}(\vec{E})$$

Decentralised algorithm

24-dimensional vectors: energy allocation for each aggregator

• Optimisation problem:

$$\min_{\vec{E}} \operatorname{Cost}(\vec{E}) = \min_{\vec{E}} \sum_{i=1}^{N} \operatorname{Cost}_{i}(\vec{E})$$

Distribute the problem among N aggregators

Decentralised algorithm

ullet Decision variables: $ec{E} = \left(ec{E}_1, \dots, ec{E}_N
ight)$

24-dimensional vectors: energy allocation for each aggregator

• Optimisation problem:

$$\min_{\vec{E}} \operatorname{Cost}(\vec{E}) = \min_{\vec{E}} \sum_{i=1}^{N} \operatorname{Cost}_{i}(\vec{E})$$

Distribute the problem among N aggregators

Variables are not separable

Decentralised algorithm

ullet Decision variables: $ec{E} = \left(ec{E}_1, \dots, ec{E}_N
ight)$

24-dimensional vectors: energy allocation for each aggregator

Variables are not separable

• Optimisation problem:

$$\min_{\vec{E}} \operatorname{Cost}(\vec{E}) = \min_{\vec{E}} \sum_{i=1}^{N} \operatorname{Cost}_{i}(\vec{E})$$

Distribute the problem among N aggregators

subject to: $\vec{E}^i - \vec{E} = 0$, $i = 1, \dots, N$

global variable consensus

Introduce local variables: \vec{E}^i

and global variable: ${\cal E}$

Decentralised algorithm

Iterative algorithm:

1. Each aggregator solves local problem:

$$\vec{E}^i = \min\left(\left(\begin{array}{c} \text{Reduce own cost} \\ \text{with personal constraints} \right) + \rho \left(\begin{array}{c} \text{Be close to tentative} \\ \text{global solution} \end{array} \right) \right)$$

- 2. Coordinator collects all solutions, averages → tentative global solution
- 3. Report tentative global solution to all aggregators

Theoretical convergence to centralised optimal solution

(Boyd et al., 2010)

Coordination step

Coordination step

Coordinator performs an average of the proposed local solutions very cheap computation (Baroche *et al.*, 2018) well suited for implementation (Horta *et al.*, 2017) on blockchain: smart contract (Munsing *et al.*, 2017)

Juliette, PowerLedger, WePower

- Day-ahead market
- Individual bidding
- Decentralised joint bidding
- Evaluation
- Conclusions and future work

Empirical evaluation

- Night time scenario: EVs arrive in the evening, leave in the morning
- Real market data from Spanish day-ahead market (OMIE)
- Real driver behaviour from survey (MOBILIA)

Goal: study the convergence of the proposed decentralised algorithm

compare with the centralised optimal solution

Convergence analysis

Convergence analysis

- Day-ahead market
- Individual bidding
- Decentralised joint bidding
- Evaluation
- Conclusions and future work

Conclusions

- Novel decentralised coordination algorithm for EV aggregators
- Address privacy and transparency
- Use ADMM and global variable consensus
- Coordination step on blockchain
- Empirical evaluation: convergence, scalability

Conclusions

- Novel decentralised coordination algorithm for EV aggregators
- Address privacy and transparency
- Use ADMM and global variable consensus
- Coordination step on blockchain
- Empirical evaluation: convergence, scalability

Future work

- Larger problem sizes
- Blockchain implementation
- Study strategic manipulation

Conclusions

- Novel decentralised coordination algorithm for EV aggregators
- Address privacy and transparency
- Use ADMM and global variable consensus
- Coordination step on blockchain
- Empirical evaluation: convergence, scalability

Future work

- Larger problem sizes
- Blockchain implementation
- Study strategic manipulation

Thanks!

Related work: multi-aggregator

- Hierarchical charging: (Qi et al., 2013), (Shao et al., 2016)
 - High level coordinator
 - Aggregators cooperate
- Game theoretic: (Wu et al., 2016)
 - Minimise risk
 - Nash equilibrium (does not need to exist)
 - 3 Aggregators, 1000EV each
- Mechanism design: (Perez-Diaz et al., Applied Energy, 2018)
 - Derive optimisation, redistribution and VGC payments
 - No theoretical truthfulness
 - Very large numbers of aggregators and EVs
- Coop game theory: (Perez-Diaz et al., AAMAS 2018)
 - Coalitional game
 - Very large numbers of aggregators and EVs

Centralised Optimisation Algorithm

Perez-Diaz et al., Coordination and payment mechanisms for electric vehicle aggregators, Applied Energy (2018)

$$\min_{\{E_t\}} \sum_{t} \hat{\mathcal{P}}_t^{\text{convex}}(E_t) \cdot E_t$$

$$\sum_{j=0}^{t} E_j \ge \sum_{j=0}^{t} \hat{R}_j^{\text{late}}, \ \forall t = 0, \dots, 23$$

$$\sum_{j=0}^{t} E_j \le \sum_{j=0}^{t} \hat{R}_j^{\text{early}}, \ \forall t = 0, \dots, 23$$

$$E_t/\Delta t \le \hat{N}_t P_{\text{max}}, \ \forall t = 0, \dots, 23$$

Decentralised Optimisation Algorithm

$$\vec{E}_{[k+1]}^{(i)} = \arg \min_{\vec{E'}} \left(f_i(\vec{E'}) + \vec{\xi}_{[k]}^{(i),T} \left(\vec{E'} - \vec{E}_{[k]} \right) + \frac{\rho}{2} ||\vec{E'} - \vec{E}_{[k]}||_2^2 \right)$$

$$\vec{E}_{[k+1]} = \frac{1}{n} \sum_{i=1}^n \left(\vec{E}_{[k+1]}^{(i)} + \frac{1}{\rho} \vec{\xi}_{[k]}^{(i)} \right)$$

$$\vec{\xi}_{[k+1]}^{(i)} = \vec{\xi}_{[k]}^{(i)} + \rho \left(\vec{E}_{[k+1]}^{(i)} - \vec{E}_{[k+1]} \right)$$

$$f_i\left(\vec{E}^{(i)}\right) = \begin{cases} \sum_{t=0}^{23} \left[E_t^{(i),i} \cdot \hat{\mathcal{P}}_t\left(\sum_{j=1}^n E_t^{(i),j}\right) \right], & \text{if local } i \text{ constraints are } \\ \infty & , \text{ otherwise} \end{cases}$$