ShanghaiTech University CS276: Computational Photography Fall 2022 Final Project Requirements

Group member number: 1-3 students per group

Topic requirement

Optional:

- 1. Choose a project topic (related to the lectures we discussed).
- 2. Choose a paper to reproduce (we give a paper list, or you can propose one).

Big days

1. Click on the link below, and write down your group information (Due date: **Nov. 27**th **23:59**)

https://docs.qq.com/sheet/DVk9qSGFZWnN5YmhP?tab=BB08J2

(Contain your group member names, topic or the paper you decide to reproduce)

- 2. Check if your group topic is approved (Check date: Nov. 28th 23:59)
- 3. Final Presentation (Date: Week 17 Monday Dec.26th 18:00 20:00)
- 4. Final Report & Codes (Date: Week 18 Monday Jan. 2nd 23:59)

Final Presentation Requirements

- 1. 15-20 minutes
- 2. Clear & unified notations
- 3. Intuitive & brief explanation of the formula
- 4. Convincing experiments & interpretable results

Final Report Requirements

- 1. Latex is required. Use the proper template (IEEE, CVPR, etc.).
- 2. Must contain these sections: Introduction, Related Work, Implementation (Method), Experiments, Conclusions.

If the topic is proposed by yourselves,

- 1. Clearly identify your contribution.
- 2. Formally introduce the idea.
- 3. Show the significant differences between yours and others in experiment section.

If the topic is reproducing a paper,

- 1. Show your understanding of the idea of the paper.
- 2. Implement your own version of the method.
- 3. Show the insufficiencies of the method and make improvement.

Paper List

Choose one if you decide to reproduce the paper.

1) Neural Light Field

"Light Field Neural Rendering"

2) Neural Surface Reconstruction

"NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction", "SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse views."

3) NeRF with Polygon Rasterization

"MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures"

4) NeRF Acceleration

"TensoRF: Tensorial Radiance Fields", "Instant Neural Graphics Primitives"

5) NeRF with High Dynamic Range

"NeRF in the dark", "HDR-NeRF: High Dynamic Range Neural Radiance Fields"

6) NeRF with Denoising

"NAN: Noise-Aware NeRFs for Burst-Denoising"

7) Denoising for Cryo-EM and Cryo-ET

"Topaz-Denoise: general deep denoising models for cryoEM and cryoET"

8) NLOS Human Pose Estimation

"Optical Non-Line-of-Sight Physics-based 3D Human Pose Estimation." "HiddenPose: Non-Line-of-Sight 3D Human Pose Estimation"