Esercizi risolti

1) Modelli di programmazione lineare - Primo PDF

Un'azienda produce due diversi tipi di profumo costituiti da alcol e da essenze. Al momento, sono necessari 10 litri di essenza di rosa, 5 litri di mughetto e 8 litri di limone. Le essenze sono ottenute distillando delle basi vendute sul mercato in flaconi. Ogni tipo di flacone ha un costo diverso, un tempo di distillazione diverso e permette di ricavare una diversa quantità delle tre essenze. Le caratteristiche dei flaconi sono riassunte nella seguente tabella:

Flacone	Costo (€)	Ore richieste per flacone	Rosa (ml)	Mughetto (ml)	Limone (ml)
1	90	20	100	110	320
2	120	16	120	290	210
3	170	12	160	330	130

Scrivere il modello di programmazione lineare che determina l'approvvigionamento di costo minimo, tenendo anche conto che:

- le ore totali disponibili per il processo di distillazione sono 1500;
- ogni ordine per un diverso tipo di flaconi costa 20 €;
- si vogliono acquistare flaconi di almeno due tipi;
- i flaconi dello stesso tipo vengono distillati uno di seguito all'altro e ogni volta che si distilla un tipo di flacone bisogna effettuare il set-up dell'impianto, della durata di 8 ore.

Il problema presentato assomiglia al problema della produzione su più linee/quantità di schiuma, ma qui non abbiamo a che fare con una massimizzazione delle quantità, quanto piuttosto con un problema di costo minimo.

Possiamo sicuramente vedere che abbiamo diverse cose da considerare:

- le ore richieste
- il costo
- i ml/millilitri prodotti

Tutto questo, in funzione dei tre flaconi, assumendo una generica quantità f_i per la produzione di flaconi. Si può quindi immaginare di voler minimizzare il costo per i tre flaconi presentati, considerando però che ogni ordine dei singoli tipi di flacone costa 20€.

Generalmente, dunque, la variabile decisionale, assumerà forma:

 x_i : quantità di flacone i, $\forall i \in \{1,2,3\}$

 y_i : variabile logica che vale 1 si utilizza il flacone i, $\forall i \in \{1,2,3\}$

Vincoli di attivazione, per una costante M abbastanza grande:

$$x_1 \le My_1, x_2 \le My_2, x_3 \le My_3$$

Da cui la funzione obiettivo:

$$min 90x_1 + 120x_2 + 110x_3 + 20y_1 + 20y_2 + 20y_3$$

s. t.

I vincoli sono come segue (s.t rispetto alla funzione obiettivo)

- Per le ore, si considera che sono 1500, abbiamo le singole ore ma, ogni volta che si usa un tipo di flacone, si impiegano 8 ore, che devono essere considerate nel modello:

$$20x_1 + 16x_2 + 12x_3 \le 1500 - 8y_1 - 8y_2 - 8y_3$$

- Si considerano ora i tre tipi di profumi, sapendo che la resa è data dai litri e qui consideriamo i millilitri. Quindi, moltiplichiamo i litri per 1000:
 - o $100x_1 + 120x_2 + 160x_3 \ge 10000$ (rosa)
 - $0.0110x_1 + 290x_2 + 330x_3 \ge 5000$ (mughetto)
 - o $320x_1 + 210x_2 + 130x_3 \ge 8000$ (limone)

Si vogliono acquistare flaconi di almeno due tipi, quindi:

$$y_1 + y_2 + y_3 \ge 2$$

- Sono necessarie alcune quantità rispetto ai litri, quindi:
 - $\circ \quad x_1 \ge 10000$
 - $x_2 \ge 5000$
 - $x_3 \ge 8000$

Dominio delle variabili:

$$x_i \in Z_+, y_i \in \{0,1\}, \forall i \in \{1,2,3\}, \forall j \in \{R,M,L\}$$

Fatto dal prof in classe

 Un'associazione umanitaria internazionale deve spedire i regali di Natale per i bambini di due orfanotrofi in Africa. Quest'anno si regaleranno puzzle, orsacchiotti e trenini, secondo le richieste minime sintetizzate in tabella:

Orfanotrofio	Puzzle	Orsacchiotti	Trenini
A: Tanzania	2500	3000	1400
B: Kenia	2100	2400	1300

I regali saranno smistati a partire da 3 centri di raccolta. I regali sono stati confezionati in pacchi per la spedizione, e ciascun centro di raccolta ha composto dei pacchi diversi. La composizione dei pacchi e il numero di pacchi disponibili sono indicati nella seguente tabella:

Centro	Puzzle per pacco	Orsacchiotti per pacco	Trenini per pacco	Pacchi disponibili	
1	10	4	15	220	
2	5	12	7	240	
3	14	9	16	260	

La spedizione avverrà per via aerea: da ciascun centro potrà partire al massimo un aereo per ciascuna destinazione, tenendo conto che il Centro 2 ha al massimo un aereo a disposizione. Ciascun aereo ha un costo fisso (tasse aeroportuali in partenza) e un costo variabile per pacco, secondo i dati (in euro) riportati in tabella

Centro	Costo fisso	Costo variabile	per pacco verso:
Centro	per aereo	Tanzania	Kenia
1	500	10	12
2	300	15	14
3	400	5	25

Si vuole determinare un piano di smistamento dei regali di costo minimo, considerando che il governo della Tanzania incentiva l'arrivo di puzzle chiedendo una sovrattassa di 1000 € qualora il numero di puzzle arrivati non superi di 500 unità la richiesta minima.

 x_{ij} : pacchi da inviare da $i \in \{1,2,3\}$ dal paese $j \in \{T,K\}$ y_{ij} : variabile binaria che vale 1 se aereo parte da i a j

$$\min 10x_{1T} + 12x_{1K} + 15X_{2T} + 14X_{2T} + 5_{3T} + 25x_{3K}$$
s. t.

 $10x_{1T} + 5x_{2T} + 14x_{3T} \ge 2500$ //(richieste minime puzzle Tanzania)

 $4x_{1T} + 12x_{2T} + 2x_{3T} \ge 3000$ //(richieste minime orsacchiotti Tanzania)

 $15x_{1T} + 7x_{2T} + 16x_{3t} \ge 1400$ //(richieste minime trenini Tanzania)

 $10x_{1K} + 5x_{2K} + 14x_{3T} \ge 2100$ //(richieste minime puzzle Kenya)

 $4x_{1K} + 12x_{2K} + 2x_{3T} \ge 2400$ //(richieste minime orsacchiotti Kenya)

 $15x_{1K} + 7x_{2K} + 16x_{3t} \ge 1300$ //(richieste minime trenini Kenya)

 $x_{1T} + x_{1K} \le 220$ //(disponibilità pacchi centro 1 Tanzania/Kenya)

 $x_{2T} + x_{2K} \le 240$ //(disponibilità pacchi centro 2 Tanzania/Kenya)

 $x_{3T} + x_{3K} \le 260$ //(disponibilità pacchi centro 3 Tanzania/Kenya)

Introduco la variabile binaria per i costi fissi e modifico la f.o. Devo fare in modo che non parta l'aereo se non attivo il paese.

$$\min 10x_{1T} + 12x_{1K} + 15X_{2T} + 14X_{2T} + 5_{3T} + 25x_{3K} + 500(y_{1T} + y_{1K}) + 300(y_{2T} + y_{2K}) + 400(y_{3T} + y_{3K})$$

L'attivazione vale:

$$//y_{ij} \sim x_{ij} \qquad x_{ij} \leq My_{ij}, \forall i \in \{1,2,3\}, \forall j \in \{K,T\}$$

Non serve dimensionare per forza bene M; basta dire "costante sufficientemente grande"; non sarebbe del tutto sbagliato dire $M \to +\infty$

Per modellare "il centro 2 che ha al massimo un aereo a disposizione", usiamo le variabili.

$$y_{2T} + y_{2K} \le 1$$

Il vincolo che "parta al massimo un aereo a destinazione" è già contenuto nell'attivazione (e non sarebbe necessario)

$$y_{ij} \leq 1$$

lo posso decidere se prendere la penalità o meno:

w=1 se prendo la penalità di 1000 euro, 0 altrimenti

La variabile ha impatto sulla f.o., infatti aggiungerò 1000w.

Se io decido di pagare le penalità, allora modifico il vincolo di puzzle della Tanzania:

$$10x_{1T} + 5x_{2T} + 14x_{3T} \ge 2500 + 500(1 - w)$$

Se w = 0, pago la penalità e sono libero di inviare 2500 pacchi

Se w=1, non pago la penalità invio almeno 3000 pacchi

Il seguente vincolo sarebbe ridondante, perché modella la stessa cosa:

$$10x_{1T} + 5x_{2T} + 14x_{3T} \ge 3000(1 - w)$$

Domini: $x_{ij} \in Z_+, y_{ij} \in Z_+, w \in \{0,1\}$

3. In vista delle prossime festività natalizie, Babbo Natale e la Befana devono programmare l'utilizzo della flotta di slitte e scope volanti. Ciascuna slitta o scopa da utilizzare deve prima passare dalla manutenzione. Le operazioni di manutenzione per una slitta o scopa richiedono dei pezzi di ricambio e un costo di manodopera, secondo i dati indicati in tabella:

Tipo	Sottopattini	Bulloni	Perni	Costo manodopera €
A: Slitta normale	2	10	20	25
B: Slitta lusso	4	12	25	20
C: Scopa normale	0	5	30	35
D: Scopa lusso	0	9	25	30

Le previsioni sulle richieste dei bambini indicano la necessità di approntare almeno 1200 mezzi tra slitte e scope, indipendentemente dal tipo. Inoltre, Babbo Natale può contare su 600 aiutanti al massimo e la Befana può contare su 900 aiutanti al massimo (gli aiutanti di Babbo Natale e della Befana possono, ovviamente, guidare solo slitte i primi e scope le seconde). Per l'acquisto dei pezzi di ricambio sono disponibili le seguenti confezioni:

Confezione	Sottopattini	Bulloni	Perni	Costo unitario €
1	5	30	70	20
2	7	45	90	25

Le confezioni di tipo 1 sono in promozione: se si acquistano più di 200 confezioni di tipo 1 si ha uno sconto di 500 €. Vogliamo aiutare Babbo Natale e la Befana a determinare il numero di mezzi, per tipo, da utilizzare, cercando di minimizzare i costi complessivi di manutenzione (pezzi di ricambio e manodopera) e considerando che esattamente tre tipi di mezzi dovranno circolare.

Si vede che in effetti, noi consideriamo operazioni su tipi di slitte e di scope, ciascuno con un proprio sottotipo. Possiamo immaginare delle variabili decisionali che considerano due dati principali:

 x_i : tipo di slitta/scopa manutenuta considerando la categoria $i \in \{A, B, C, D\}$

 y_i : confezione di pezzi di ricambio del tipo $j \in \{1,2\}$

La funzione obiettivo allora considera i costi da minimizzare, sapendo che abbiamo sia dei costi di manodopera che di manutenzione:

$$min(20y_1 + 25y_2 + 25x_A + 25x_B + 35x_C + 30x_D)$$

Ora, passiamo ai vincoli da inserire.

$$x_A + x_B + x_C + x_D \ge 1200$$

(in quanto, "indipendentemente dal tipo, si ha necessità di approntare almeno 1200 tra slitte e scope", quindi considero tutti i tipi di mezzi)

Poi, dato che si considerano:

- gli aiutanti di Babbo Natale che possono essere al massimo 600 (guidano solo slitte) e si considera di introdurre una variabile logica:

$$x_A + x_B \le 600$$

- gli aiutanti della Befana che possono essere al massimo 900 (guidano solo scope) e:

$$x_C + x_D \le 900$$

Logicamente, si può intuire guardando le due tabelle, che i pezzi dei kit devono essere di più rispetto a quelli in manutenzione:

$$5y_1 + 7y_2 \ge 2x_A + 4x_B$$
$$30y_1 + 45y_2 \ge 10x_A + 12x_B + 5x_C + 9x_D$$
$$70y_1 + 90y_2 \ge 20x_A + 25x_B + 30x_C + 25x_D$$

Si considera inoltre uno sconto di 500 euro se si acquistano più di 200 confezioni. Questo accade usando una variabile logica che comporta la modifica in funzione obiettivo:

z: variabile logica che vale 1 se decido di acquistare più di 200 confezioni, 0 altrimenti

$$min(20y_1 + 25y_2 + 25x_A + 25x_B + 35x_C + 30x_D) - 500z$$

In ultimo, consideriamo che "esattamente tre tipi di mezzi dovranno circolare", quindi il vincolo logico dipende da una variabile binaria indicizzata ai mezzi, che abbiamo già:

$$z_A + z_B + z_C + z_D = 3$$

Questo è un caso per cui, quando $y_i = 1, x_i > 0$, tale da dover aggiungere i vincoli che seguono:

$$x_A \ge 3*z_A$$
, $x_B \ge 3*z_B$, $x_C \ge 3*z_C$, $x_D \ge 3*z_D$

Domini: $x_i \in Z_+, y_i \in Z_+, z \in \{0,1\}$

4. Una ditta di trasporti distribuisce frigoriferi in 4 città A, B, C e D a partire da 3 centri di distribuzione 1, 2 e 3 e vuole valutare la convenienza ad aprire il centro 4. Il costo di trasporto di un frigorifero in euro, le richieste delle città e le disponibilità dei centri di distribuzione (già aperti o potenziali) sono sintetizzati nella seguente tabella:

	Città A	Città B	Città C	Città D	Disponibilità
					centri
Centro 1	4	3	2	3	1800
Centro 2	2	4	3	1	3000
Centro 3	2	3	4	5	1800
Centro 4	3	1	2	2	1000
Richieste città	1000	2000	1700	1300	

Scrivere il modello di programmazione lineare che permetta di minimizzare i costi di trasporto e di valutare la convenienza ad aprire il nuovo centro 4 considerando che:

- il costo di apertura del nuovo centro è di 1000 euro;
- il centro 4, per poter essere aperto, deve servire una domanda di almeno 600 frigoriferi;
- il centro 4, per poter essere aperto, deve servire almeno 2 città diverse.

Il problema assomiglia alla categoria dei problemi di trasporto (cfr. pag. 9 dispense prof).

Per cominciare, impostiamo la variabile decisionale:

 x_{ij} = apertura nella città $i \in \{A, B, C, D\}$ del centro $j \in \{1,2,3,4\}$

Proviamo a scrivere la funzione obiettivo:

$$\min \left(4x_{A1} + 3x_{B1} + 2x_{C1} + 3x_{D1} + 2x_{A2} + 4x_{B2} + 3x_{C2} + 1x_{D2} + 2x_{A3} + 3x_{B3} + 4x_{C3} + 5x_{D3} + 3x_{A4} + 1x_{B4} + 2x_{C4} + 2x_{D4} \right) \\ s. t.$$

A questo punto, inseriamo i vincoli sulla disponibilità:

 $x_{A1} + x_{B1} + x_{C1} + x_{D1} \le 1800$ (caso centro 1)

 $x_{A2} + x_{B2} + x_{C2} + x_{D2} \le 3000$ (caso centro 2)

 $x_{A3} + x_{B3} + x_{C3} + x_{D3} \le 1800$ (caso centro 3)

 $x_{A4} + x_{B4} + x_{C4} + x_{D4} \le 1000$ (caso centro 4)

Poi, inseriamo i vincoli sulle richieste delle città:

 $x_{A1} + x_{A2} + x_{A3} + x_{A4} \ge 1000$ (caso richieste città A)

 $x_{B1} + x_{B2} + x_{B3} + x_{B4} \ge 2000$ (caso richieste città B)

 $x_{C1} + x_{C2} + x_{C3} + x_{C4} \ge 1700$ (caso richieste città C)

 $x_{D1} + x_{D2} + x_{D3} + x_{D4} \ge 1300$ (caso richieste città D)

Si vuole "valutare la convenienza di aprire il centro 4", si considera una variabile binaria, sapendo dai due vincoli relativi al centro 4 che occorre modellarlo sulla base delle città ("servire almeno 2 città diverse"), quindi occorre una variabile a due indici:

 y_{ij} : variabile logica che vale 1 se decidiamo di aprire nella città $i \in \{A, B, C, D\}$ il centro $j \in \{1, 2, 3, 4\}$, 0 altrimenti

Introduciamo i vincoli relativi al centro 4:

$$x_{A4} + x_{B4} + x_{C4} + x_{D4} \ge 600$$
 (il centro 4 deve servire almeno una domanda di 600 frigoriferi) $y_{A4} + y_{B4} + y_{C4} + y_{D4} \ge 2$ (il centro 4 deve servire almeno 2 città diverse)

Ora, occorre attivare le variabili, quindi legare x_{ij} ad y_{ij} .

Questo è reso fattibile dai vincoli di big-M:

$$x_{A1} \le y_{A1}, x_{A2} \le y_{A2}, x_{A3} \le y_{A3}, x_{A4} \le y_{A4}, x_{B1} \le y_{B1}, x_{B2} \le y_{B2}, x_{B3} \le y_{B3}, x_{B4} \le y_{B4}, x_{C1} \le y_{C1}, x_{C2} \le y_{C2}, x_{C3} \le y_{C3}, x_{C4} \le y_{C4}, x_{D1} \le y_{D1}, x_{D2} \le y_{D2}, x_{D3} \le y_{D3}, x_{D4} \le y_{D4}$$

Ora, consideriamo il fatto di pagare 1000 euro se effettivamente andiamo ad aprire un nuovo centro 4; attenzione che non è specifico a *tutti* i centri, ma al centro 4 in particolare.

Introduciamo quindi una variabile logica:

k: variabile logica che vale 1 se decido di aprire un nuovo centro 4, 0 altrimenti

Vincolo di attivazione logica che considera il fatto di andare ad aprire *tutti* i centri, in quanto se lo mettessi ad 1 come sotto, significherebbe che devo aprire *in tutte* le città:

$$x_{A4} + x_{B4} + x_{C4} + x_{D4} \le k$$

Quindi, avremo che si deve creare un vincolo di attivazione spurio

$$x_{A4} + x_{B4} + x_{C4} + x_{D4} \le k(x_{A4} + x_{B4} + x_{C4} + x_{D4}) + k$$

La modifica finale è come segue:

$$min\left(4x_{A1} + 3x_{B1} + 2x_{C1} + 3x_{D1} + 2x_{A2} + 4x_{B2} + 3x_{C2} + 1x_{D2} + 2x_{A3} + 3x_{B3} + 4x_{C3} + 5x_{D3} + 3x_{A4} + 1x_{B4} + 2x_{C4} + 2x_{D4}\right) + 1000k$$

Domini:
$$x_{ij} \in Z_+, y_{ij} \in Z_+, y_i \in \{0,1\}, \forall i \in \{A,B,C,D\}, \forall j \in \{1,2,3,4\}$$

Fatto dal prof in classe

5. Un risparmiatore ha a disposizione, all'inizio di aprile, un budget di 100.000 euro e vorrebbe disporre, all'inizio di agosto, di almeno 150.000 euro attraverso un mix di investimenti. Tutti gli investimenti sono a disposizione all'inizio di ciascuno dei prossimi mesi (da aprile a luglio) e le loro caratteristiche sono riassunte nella seguente tabella, in termini di durata (in mesi), rendimento percentuale e livello di rischio:

Investimento	durata (mesi)	rendimento	rischio
A	1	10%	2
В	2	19%	3
C	3	33%	5
D	1	15%	4

Scrivere il modello di programmazione lineare che aiuti il risparmiatore ad arrivare alla cifra desiderata minimizzando il livello di rischio e tenendo conto che:

- il capitale rientrato alla fine di un investimento è immediatamente a disposizione per altri investimenti;
- a inizio maggio, non è possibile investire nello stesso periodo sia in B che in C;
- per poter usufruire dell'investimento A a inizio aprile è necessario investire, nello stesso periodo, almeno 10.000 euro in B e 30.000 euro in D;
- è possibile investire solo multipli interi di 1.000 euro.

$$x_{ij}$$
: \in investiti in $i \in \{A, B, C, D\}$ all'inizio del mese $j \in \{1,2,3,4\}$ $x_{A1} + x_{B1} + x_{C1} + x_{D1} \le 100000$ //(aprile)

SI considera che ritornano tutti gli investimenti e i capitali che ho investito:

$$x_{A2} + x_{B2} + x_{C2} + x_{D2} \leq 100000 + 0.1x_{A1} - x_{B1} - x_{C1} + 0.15x_D //(\text{maggio})$$
// $x_{C3} = 0$ in soluzioni ottime, perché tanto tornerebbe dopo 3 mesi
$$x_{A3} + x_{B3} + x_{C3} + x_{D3} \leq 100000 + 0.1x_{A2} + 0.19x_{B1} + 0.15x_{D1} + 0.1x_{A2} + 0.15x_{D2} - x_{C1} - x_{B2} - x_{C2}$$
//(giugno)
$$x_{A4} + x_{D4} \leq 100000 + 0.1x_{A1} + 0.19x_{B1} + 0.33x_{C1} + 0.15x_{D1} + 0.1x_{A2} + 0.19x_{B2} + 0.15x_{D2} + 0.1x_{A3} + 0.15x_{D3} - x_{C2} - x_{B3} //(\text{luglio})$$

$$0.1(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 0.19(x_{B1} + x_{B2} + x_{B3}) + 0.33(x_{C1} + x_{C2}) + 0.15(x_{D1} + x_{D2} + x_{D3} + x_{D4}) \geq 150000 //(\text{agosto})$$

Per la f.o., si deve minimizzare il livello di rischio:

$$\min 2(x_{A1} + x_{A2} + x_{A3} + x_{A4}) + 3(x_{B1} + x_{B2} + x_{B3}) + 5(x_{C1} + x_{C2}) + 4(x_{D1} + x_{D2} + x_{D3} + x_{D4})$$

- "a inizio maggio, non è possibile investire nello stesso periodo sia in B che in C"

Logicamente, si esprime come un OR logico

$$y_{B2}, y_{C2} \in \{0,1\}, \text{ con } y_{ij} = 1 \text{ se } x_{ij} = 0, 0 \text{ altrimenti}$$

 $y_{B2} + y_{C2} \le 1$

Occorre poi attivare le variabili:

$$x_{B2} \le My_{B2}, x_{C2} \le My_{C2}$$

Per M costante sufficientemente grande

 "per poter usufruire dell'investimento A ad inizio aprile è necessario investire, nello stesso periodo, almeno 10000 euro in B e 30000 euro in D"

 $//z_B = 1$ se almeno 10000 in B, 0 altrimenti $//z_D = 1$ se almeno 30000 in D, 0 altrimenti

Quando A vale qualcosa, almeno una delle due tra B e D vale 0:

$$x_{A1} \leq Mz_B, x_{A1} \leq Mz_D$$

Poi:

$$x_{B1} \ge 10000z_B, x_{D1} \ge 30000z_D$$

- "è possibile investire solo multipli interi di 1000 euro"

Questo ha a che fare con i domini:

 $x_{ij} \in R_+$

Ho due modi per scriverlo:

 $x_{ij} \in Z_+$, (modificando tutti i vincoli esprimendo tutto in migliaia di euro, es. 150000 come 150) $w_{ij} \in Z_+$, $x_{ij} = 1000w_{ij}$ (vincolo più generale, per esprimere tutto in funzione delle migliaia di euro)

Fatto dal prof in classe

6. Per l'assortimento di scatole di cioccolatini, sono disponibili praline di forme (cuore, fiore, stella o chicco) e gusti (latte, fondente o caffè) diversi. Le praline sono acquistate dalla sede centrale in confezioni, ciascuna contenente praline della stessa forma e dello stesso gusto. Il numero di praline per confezione dipende dalla forma: 70 cuori, 50 fiori, 100 stelle o 200 chicchi. Il costo per confezione dipende dal gusto: 30 euro per il latte, 50 euro per il fondente e 40 euro per il caffè. Le disponibilità di confezioni per le diverse forme e i diversi gusti sono riassunti nella tabella sotto. Il confezionamento avviene in tre diversi stabilimenti. Ogni stabilimento produce lo stesso numero di scatole dello stesso peso, ma con una composizione diversa: ciascuno stabilimento richiede 900 kg di cioccolato in tutto, e una quantità minima diversa di cioccolato dei diversi gusti, come dalla tabella.

Gusto	Disponibilità				Richiesta minima (kg)		
	Cuore	Fiore	Stella	Chicco	Stab. 1	Stab. 2	Stab. 3
Latte	Sì	Sì	No	No	500	100	100
Fondente	Sì	No	Sì	No	100	500	100
Caffè	No	Sì	Sì	Sì	100	100	500

Ciascuna pralina a forma di cuore, fiore, stella e chicco pesa, rispettivamente, 30, 50, 20 e 10 grammi. Si scriva un modello di programmazione lineare che minimizzi i costi tenendo conto che:

- si vogliono acquistare almeno 10 confezioni di cuori di cioccolato fondente;
- prima della spedizione negli stabilimenti, le praline acquistate sono pretrattate su linee diverse a seconda della forma, indipendentemente dal gusto, e ogni linea ha un costo fisso di setup pari a 200 euro;
- si vogliono acquistare praline di almeno 3 forme, indipendentemente dal gusto;
- si può evitare di rifornire uno stabilimento a scelta, pagando 15 000 euro a un fornitore esterno.

 x_{ij} : # confezioni del gusto $i \in \{L, F, C\}, j \in \{1,2,3,4\}$

 $x_{F1} \ge 10$ //almeno 10 confezioni di cuori di cioccolato fondente $\min 30(x_{L1} + x_{L2}) + 50(x_{F1} + x_{F3}) + 40(x_{C2} + x_{C3} + x_{C4})$

Queste confezioni devono soddisfare una richiesta minima; # di kg che arriva allo stabilimento $1 \ge 900$

Con le variabili decisionali che ho, non ho la possibilità di modellare il problema correttamente. y_{ij}^k : # di confezioni di gusto $i \in \{L, F, C\}$ per la forma $j \in \{1,2,3,4\}$ per lo stabilimento $k \in \{1,2,3\}$ Devo legare le variabili:

$$x_{L1} = y_{L1}^1 + y_{L2}^2 + y_{L3}^3$$

Questo sarebbe evitabile; non mi interessa lo stabilimento, ma semplicemente acquistare le richieste minime.

$$70x_{L1} * 0.03 + 70x_{F1} * 0.03 + 0.05 * 50(x_{L2} + x_{C2}) + 0.02 * 100(x_{F3} + x_{C3}) + 0.01 * 200(x_{C4}) \ge 3 * 900$$
 (moltiplico la forma per il peso)

(cioccol. Latte >= 500); non serve per forza avere una variabile a 3 indici

$$70x_{L1} * 0.03 + 0.05 * 50x_{L2} \ge 500 + 100 + 100$$

$$0.03 * 70x_{F1} + 0.02 * 100x_{F3} \ge 100 + 500 + 100$$

$$0.05 * 50x_{L2} + 0.02 * 100x_{C3} + 0.01 * 200x_{C4} \ge 100 + 100 + 500$$

 w_i : variabile logica che vale 1 se acquisto la forma $j \in \{1,2,3,4\}$, 0 altrimenti

Questo comporta una modifica della f.o., dato che aggiungeremo:

$$200(w_1 + w_2 + w_3 + w_4)$$

Per attivare le variabili abbiamo bisogno di un vincolo di big-M (sapendo che vale per il cioccolato e, quando questo vale 0, pretrattiamo rispetto alla singola forma; questo giustifica la somma:

$$x_{L1} + x_{F1} \le Mw_1$$

$$x_{L2} + x_{F2} \le Mw_2$$

$$x_{F3} + x_{L3} \le Mw_3$$

$$x_{L4} \le Mw_4$$

"prima della spedizione negli stabilimenti, le praline acquistate sono pretrattate su linee diverse a seconda della forma, indipendentemente dal gusto"

$$w_1 + w_2 + w_3 + w_4 \ge 3$$

Se non rifornisco uno stabilimento, non sono costretto a dover rispettare le quantità di richiesta minima. Dal punto di vista specifico, ogni stabilimento <u>non</u> ha le stesse richieste; quindi, dovremmo associare più variabili binarie per ognuno.

Per esempio, introduciamo:

z=0 se produco in stabilimento, 1 se non produco in stabilimento

In questo modo, andiamo ad introdurre in funzione obiettivo -900z dato che non rispettiamo genericamente la richiesta minima; tuttavia, occorre indicizzarla.

z=1 se non produco in stabilimento $i\in\{1,2,3\}$, 0 altrimenti Vincolo di attivazione se scegliessi un certo stabilimento, legando le singole variabili

$$z_1 - z_2 - z_3 = 3 - z$$

Occorre aggiungere il non rispetto delle richieste minime prima:

$$70x_{L1} * 0.03 + 0.05 * 50x_{L2} \ge 500z_1 + 100z_2 + 100z_3$$

 $0.03 * 70x_{F1} + 0.02 * 100x_{F3} \ge 100z_1 + 500z_2 + 100z_3$

$$0.05*50x_{L2} + 0.02*100x_{C3} + 0.01*200x_{C4} \ge 100z_1 + 100z_2 + 500z_3$$

La f.o. è correttamente:

$$\min 30(x_{L1}+x_{L2}) + 50(x_{F1}+x_{F3}) + 40(x_{C2}+x_{C3}+x_{C4}) + 200(w_1+w_2+w_3+w_4) + 15000z$$

Aggiungiamo i domini:

$$x_{ij} \in Z_+, z \in \{0,1\}, z_i \in \{0,1\}, w_i \in \{0,1\}$$