

هوش مصنوعي

نيمسال اول ٢٠٠٠٠

مدرس: دكتر محمدحسين رهبان

تمرین پنجم _ بخش دوم

شماره دانشجویی: ۹۸۱۰۱۰۷۴

محمدجواد هزاره

سوال ۱

آ) با این روش اطلاعات پیشین خود از پارامترها را به تخمین اضافه میکنیم. به این صورت که تعدادی داده ی مصنوعی به نمونه اضافه میکنیم که از توزیع پیشین مورد نظر ما تبعیت میکنند و سپس با دادههای جدید و این دادهها تخمین را انجام میدهیم. با این کار به نحوی از بیشبرازش (overfitting) میتوان جلوگیری کرد.

ب) جداول CPT به صورت زیر خواهد بود.

Y	$\mathbb{P}(Y)$
Stop	$\frac{4}{9}$
Go	<u>5</u>

X_i	Y	$\mathbb{P}(X_1 Y)$	$\mathbb{P}(X_2 Y)$	$\mathbb{P}(X_3 Y)$	$\mathbb{P}(X_4 Y)$
0	Stop	$\frac{1}{4}$	$\frac{1}{4}$	1	$\frac{1}{4}$
1	Stop	$\frac{3}{4}$	$\frac{3}{4}$	0	$\frac{3}{4}$
0	Go	1	$\frac{2}{5}$	0	$\frac{3}{5}$
1	Go	0	<u>3</u> 5	1	<u>2</u> 5

بنابراین چون احتمال صفر داریم بهتر است از Laplace Smoothing استفاده کنیم. با توجه به تعداد دادههای مشاهده k=2 استفاده می کنیم. بنابراین جدولها به صورت زیر خواهند شد.

17	TD (1 7)
Y	$\mathbb{P}(Y)$
Stop	$\frac{4}{9}$
Go	<u>5</u>

X_i	Y	$\mathbb{P}(X_1 Y)$	$\mathbb{P}(X_2 Y)$	$\mathbb{P}(X_3 Y)$	$\mathbb{P}(X_4 Y)$
0	Stop	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{6}{8}$	$\frac{3}{8}$
1	Stop	<u>5</u> 8	$\frac{5}{8}$	$\frac{2}{8}$	$\frac{5}{8}$
0	Go	$\frac{7}{9}$	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{5}{9}$
1	Go	$\frac{2}{9}$	<u>5</u>	$\frac{7}{9}$	$\frac{4}{9}$

حال برای احتمال برچسب دادهی جدید داریم:

$$\begin{cases} \mathbb{P}(\text{Stop} \,|\, 1, 1, 1, 0) = \frac{4}{9} \times \frac{5}{8} \times \frac{5}{8} \times \frac{2}{8} \times \frac{3}{8} \approx 0.016 \\ \mathbb{P}(\text{Go} \,|\, 1, 1, 1, 0) = \frac{5}{9} \times \frac{2}{9} \times \frac{5}{9} \times \frac{7}{9} \times \frac{5}{9} \approx 0.030 \end{cases}$$

بنابراین برچسب Go به این داده تخصیص خواهد یافت.