Express Mail Label No.: EV 305 260 544 US

CONTROL FOR A SWITCHING POWER SUPPLY HAVING AUTOMATIC BURST MODE OPERATION

Jin-ho Choi Dong-young Huh

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the priority of Korean Patent Application Nos. 02-81391 and 03-71424, filed on 18 December 2002 and 14 October 2003, respectively, in the Korean Intellectual Property Office, the disclosures of which are hereby incorporated by reference in their entireties.

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0002] The present invention relates to a switching power supply (SPS), and more particularly, to control for a switching power supply (SPS) having an automatic burst mode operation.

2. Description of the Related Art

[0003] In general, a switching power supply (SPS) is a device for converting a direct current (DC) supply voltage into one or more DC output voltages that have a greater or lesser magnitude than the DC supply voltage. Such SPSs have been widely used with power electronic devices, particularly battery-powered devices, such as portable cellular phones and laptop computers. Typically, these SPSs have a normal operation mode and a standby operation mode. In the normal operation mode, the

power electronic devices consume a relatively large amount of power. In the standby operation mode, by contrast, the power electronic devices consume a relatively small amount of power. These power electronic devices may automatically enter the standby operation mode if a user has not used them for a predetermined amount of time and may automatically enter the normal operation mode if the user begins to use them again.

[0004] In most electronic devices, power consumption in the standby operation mode is much smaller than that in the normal operation mode. To reduce power consumption in the standby operation mode, the control of input power in the standby operation mode has been gradually tightened. Conventionally, to meet such control requirements, an output voltage of the SPS is reduced or an additional power source is used to reduce power consumption in the standby operation mode. However, such approaches for entering the standby operation mode are not desirable because they require additional components, thereby resulting in high production costs. Moreover, because there is an output voltage below the level needed for functioning of the electronic devices, the extent to which power consumption of the electronic devices can be decreased is limited. Also, when using a conventional SPS in the standby operation mode, a substantial switching loss occurs in the conventional SPS despite the reduction in power consumption due to a reduced output voltage. In addition, the conventional SPS changes a duty cycle of a power switch in order to compensate for changes in power requirements at its output end and operate at a predetermined frequency irrespective of the amount of power supplied. As a result, the power switch within the conventional SPS operating in the standby operation mode performs switch-on/off operations at the same rate as when the SPS is operating in the normal operation mode. In the standby operation mode, such switching operations consume a considerable amount of power, which increases the lower limit of power consumption in the standby operation mode.

[0005] In an attempt to solve such problems, a switching power supply (SPS) has been proposed which uses active circuitry to provide the normal operation mode and a low power burst mode that enables a standby operation of an electronic device. U.S. Pat. No. 6,252,783 discloses the operation and configuration of such an SPS. In the normal operation mode, the active circuitry couples an output voltage of the SPS to a conventional switch driver circuit (or a control module circuit). This switch driver circuit changes a duty cycle of an output having a fixed frequency of a switch driver in

order to regulate the output voltage of the SPS to a desired level. When the electronic device is operating in the low power burst mode, the active circuitry separates the output voltage of the SPS from the switch driver circuit and applies a periodic signal to the switch driver. This periodic signal causes the switch driver to provide the output having the fixed frequency for certain time intervals. These time intervals are interleaved with time intervals during which the output of the switch driver is inactive—i.e., the switch driver turns the switch off. In addition, when the electronic device is operating in the low power burst mode, the active circuitry applies an input signal to the switch driver. This signal causes the switch driver to repeatedly turn the switch on and off at a fixed frequency—i.e., at a minimum duty cycle. The low power burst mode during which the switch driver provides the output having the fixed frequency is appropriately controlled so that a supply voltage to the switch driver changes between two reference voltages.

[0006] Such SPS having the low power burst mode reduces the switching loss by performing and stopping switch-on/off operations for a predetermined amount of time in the standby operation mode. This reduces power consumption. In addition, the SPS can maintain an output voltage in the standby operation mode at a lower level than in the normal operation mode and can control the switch-on/off operations of the switch in the standby operation mode by using the low power burst mode at a predetermined time interval irrespective of the output voltage of the SPS.

[0007] However, such SPS having the low power burst mode may have audible noises as the maximum amplitude of current increases. As the maximum amplitude of current increases, so does the importance of the switching loss. The SPS may have conduction loss and core loss as well as switching loss. When a light load is used by the entire system, the switching loss increases relatively. Thus, when using the light load, frequent audible noises are caused and more power is consumed with the increase in the maximum amplitude of current.

SUMMARY OF THE INVENTION

[0008] In one embodiment, the present invention provides a control module for use with a switching power supply (SPS) having an automatic burst mode operation. The use of the control module limits or maintains the maximum amplitude of current to

below a predetermined value irrespective of changes in an output voltage of the SPS, and conversion from a burst operation mode to a normal operation mode can be easily performed.

[0009] According to an embodiment of the present invention, a control module of a switching power supply (SPS) having normal and standby operation modes is provided. The control module controls switch-on/off operations of a switching device of the SPS using a feedback voltage that is inversely proportional to an output voltage. The control module includes a voltage set-up unit operable to provide a first voltage used for a switch-on operation of the switching device in response to changes in the feedback voltage and a second voltage used for a switch-off operation of the switching device in response to changes in the feedback voltage, in the standby operation mode. A switching control unit, coupled to the voltage set-up unit, is operable to generate a control signal. The control signal is used to turn on the switching device when the first voltage is provided from the voltage set-up unit and is used to turn off the switching device when the second voltage is provided from the voltage set-up unit.

[0010] According to another embodiment of the present invention, a control module of a switching power supply (SPS) having normal and standby operation modes is provided. The control module controls switch-on/off operations of a switching device using a feedback voltage that is inversely proportional to an output voltage. The control module includes a first voltage supply means operable to supply a first voltage that is proportional to the feedback voltage, in response to a first control signal. A second voltage supply means is operable to supply a second voltage of a predetermined magnitude, in response to a second control signal. A control signal generating means is operable to generate the first control signal or the second control signal according to an amount of the feedback voltage. A selector is operable to receive and to output the first voltage or the second voltage. A switching control signal generating means is operable to generate a switching control signal for the switching device in response to an output signal from the selector.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The above and other aspects and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with

Atty. Docket No.: 25502/81101

reference to the attached drawings in which:

- [0012] FIG. 1 is a circuit diagram of a switching power supply (SPS) according to an embodiment of the present invention;
- [0013] FIG. 2 is a circuit diagram of an implementation for a control module according to an embodiment of the present invention;
- [0014] FIGS. 3 and 4 are timing diagrams showing waveforms of voltages of inputs and outputs of control module according to an embodiment of the present invention;
- [0015] FIG. 5 is a graph showing a relationship between a feedback voltage and a maximum amplitude of current flowing between a drain and source of a transistor, in the implementation for a control module of FIG. 2;
- [0016] FIG. 6 is a circuit diagram of another implementation for a control module according to an embodiment of the present invention;
- [0017] FIGS. 7 and 8 are circuit diagrams of yet another implementation for a control module according to an embodiment of the present invention; and
- [0018] FIG. 9 is a timing diagram showing waveforms of signals for control module according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

- [0019] The present invention will now be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. In the drawings, the forms of elements may be exaggerated for clarity. To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common among the figures.
- [0020] FIG. 1 is a circuit diagram of a switching power supply (SPS) 10 according to an embodiment of the present invention. The SPS 10 can operate in a burst mode. SPS 10 may be incorporated in or used by an electronic device. As depicted in FIG. 1, the SPS 10 includes a power supply unit 100 for power supply, a feedback circuit unit 200 for feedback of an output voltage, a switching control unit 300 for control of switch-on/off operations in the power supply unit 100, and a mode set-up unit 400 for set-up of

Atty. Docket No.: 25502/81101

an operation mode.

[0021] The power supply unit 100 includes a bridge diode circuit BD 102, a primary coil L_1 104, a filter capacitor C_{in} 106 a transistor Q_{sw} 108 and a current sense resistor R_{sense} 110. The bridge diode circuit BD 102 operates as a full wave rectifier and outputs a direct current output power which can be used for a supply voltage V_{in} . The primary coil L_1 104 is connected to the supply voltage V_{in} and the transistor Q_{sw} 108, which can be a MOS field effect transistor. The filter capacitor C_{in} 106 filters current pulses provided by the bridge diode circuit BD 102 to generate the supply voltage V_{in} as a substantially direct current voltage. The transistor Q_{sw} 108 is used as a power switch and performs switch-on/off operations under the control of a control module 310 in control unit 300. The current sense resistor R_{sense} 110 is used to provide a current feedback to the control module 310. In particular, the current sense resistor R_{sense} 110 develops a sense voltage V_{sense} which is indicative of the amount of current flowing between a drain and a source of the transistor Q_{sw} 108.

[0022] The feedback circuit unit 200 may include a phototransistor PC_2 202 and a capacitor C_{fb} 204. The phototransistor PC_2 202 and a photodiode PC_1 424 of the mode set-up unit 400 may implement a photocoupler. The phototransistor PC_2 202 generates a current of a predetermined amplitude, based on an amplitude of current flowing through the photodiode PC_1 424. The capacitor C_{fb} 204, which may have a predetermined amount of charge that varies with the predetermined amplitude of current generated by the phototransistor PC_2 , 202 changes a feedback voltage V_{fb} based on the predetermined amount of charge. In other words, the feedback voltage V_{fb} changes with a voltage of an operation mode set by the mode set-up unit 400. The feedback voltage V_{fb} is input to the switching control unit 300.

[0023] The switching control unit 300 includes the control module 310, a capacitor C_2 312, a diode D_2 314, and a secondary coil L_3 316. The control module 310 receives the feedback voltage V_{fb} , the sense voltage V_{sense} indicative of the amount of current flowing between a drain and source of the transistor Q_{sw} 108, and a charge voltage V_{cc} of the capacitor C_2 312. In response to the received voltages or signals, the control module 310 generates a switching control signal V_g to control switch-on/off operations of the transistor Q_{sw} 108. The secondary coil L_3 316 is provided with energy by switch-on/off operations of the transistor Q_{sw} 108 and generates current pulses. The diode D_2 314

rectifies the current pulses generated by the secondary coil L_3 316, and the capacitor C_2 312 smoothes the rectified current pulses, such that the charge voltage V_{cc} is provided to the control module 310 as a substantially direct current supply voltage.

[0024] In one embodiment, the control module 310 may comprise a voltage set-up unit and a switching control unit. The voltage set-up unit can generate or provide one or more voltage signals. A first voltage signal may be used for a switch-on operation of the switching device or transistor Q_{sw} 108, for example, in response to changes in the feedback voltage V_{fb} or other signals. A second voltage signal may be used for a switchoff operation of the transistor Q_{sw} 108, for example, in response to changes in the feedback voltage V_{fb} or other signals, in the standby operation mode. The switching control unit may generate a control signal for turning on and off the switching device or transistor Q_{sw} 108. In particular, the control signal is used to turn on the switching device or transistor Q_{sw} 108 when the first voltage signal is provided by the voltage setup unit, and the control signal is used to turn off the transistor Q_{sw} 108 when the second voltage is provided from the voltage set-up unit. Exemplary implementations for the voltage set-up unit and a switching control unit are described herein. embodiments, the control module 310 can be implemented in hardware, software, or a combination thereof.

[0025] As shown, the mode set-up unit 400 may include a plurality of resistors R₁ 402, R₂ 404, R₃ 406, R₆ 408, and R₇ 410, diodes D₁ 412 and D₃ 414, capacitors C₁ 416 and C_{ref} 418, a transistor Q₁ 420, an error amplifier Amp₁ 422, and the photodiode PC₁ 424. The resistors R₆ 408 and R₇ 410, the diode D₃ 414, and the transistor Q₁ 420 are used to perform the switch-on/off operations. In particular, the resistors R₆ 408 and R₇ 410 are used to provide a proper bias to the transistor Q₁. The resistors R₁ 402 R₂ 404 and R₃ 406 are used to determine a mode control voltage V_a. Based on whether the operation mode is a normal operation mode or a standby operation mode, the mode control voltage V_a may be determined by Equations 1 or 2 below,

$$V_a = V_{out} \times \frac{R_2}{R_1 + R_2}$$
 (in the normal operation mode)(1)

$$V_a = V_{out} \times \frac{R_2}{R_1 // R_3 + R_2}$$
 (in the standby operation mode)(2)

Atty. Docket No.: 25502/81101

wherein
$$R_1 // R_3$$
 represents $\frac{R_1 R_3}{R_1 + R_3}$.

[0026] An operational amplifier 422 functioning as the error amplifier Amp_1 has an inverting input (-) and a non-inverting input (+). The mode control voltage V_a is applied to the inverting input (-), and a reference voltage V_{ref} is applied to the non-inverting input (+). An output of the operational amplifier is connected to an anode of the photodiode PC_1 424. The operational amplifier determines whether the photodiode PC_1 424 operates by comparing the mode control voltage V_a with the reference voltage V_{ref} . As described herein, the photodiode PC_1 424 and the phototransistor PC_2 202 of the feedback circuit unit 200 implement the photocoupler. The photodiode PC_1 424 operates or does not operate based on the compared result of the mode control voltage V_a and the reference voltage V_{ref} .

[0027] The SPS 10 having the configuration described above operates as follows.

[0028] In the normal operation mode, the supply voltage V_{in} (generated as a direct current output power by full wave rectification of the alternating current input power AC by the bridge diode circuit BD 102) is provided to the primary coil L_1 104. The supply voltage V_{in} provided to the primary coil L_1 104 causes an output voltage V_{out} to be generated in the secondary coil L_2 at a duty cycle defined by the switch-on/off operations of the transistor Q_{sw} 108. The duty cycle is determined based on a gate driving signal V_g output from the control module 310 for control of the transistor Q_{sw} 108. The magnitude of the output voltage V_{out} generated in the secondary coil L_2 is large enough to enable the normal operation of an electronic device using the SPS 10.

[0029] To maintain the output voltage V_{out} at a specific level, it is necessary to control the duty cycle at which the transistor Q_{sw} 108 performs the switch-on/off operations. The output voltage V_{out} is fed back for control of the duty cycle. More specifically, a high signal indicating the normal operation mode is applied to a base of the transistor Q_1 and turns on the transistor Q_1 in the mode set-up unit 400. Once the transistor Q_1 is turned on, a reverse bias is applied to the diode D_3 . This turns off the diode D_3 , and thus the mode control voltage V_a applied to the inverting input (-) of the error amplifier Amp_1 422 is determined per Equation 1 above. The operational amplifier 422 amplifies the mode control voltage V_a to a predetermined level and outputs the result to the photodiode PC_1 424. Because of the photocoupler arrangement

of the photodiode PC_1 424 with the phototransistor PC_2 202, the amplitude of current flowing through the phototransistor PC_2 202 is determined based on the input to the photodiode PC_1 424 (i.e., the output from the operational amplifier 422). This current charges the feedback capacitor C_{fb} 204, and the feedback voltage V_{fb} is determined based on the amount of charge in the feedback capacitor C_{fb} 204. As a result, the feedback voltage V_{fb} is inversely proportional to the magnitude of the mode control voltage V_a . The feedback voltage V_{fb} is input to the control module 310.

[0030] The charge voltage V_{cc} of the capacitor C_2 312 also is input to the control module 310. The supply voltage V_{in} applied to the primary coil L_1 104 in the normal operation mode causes a coil voltage to be generated in the secondary coil L_3 316. Thus, the charge voltage V_{cc} of the capacitor C_2 312 is applied to the control module 310. A sense voltage V_{sense} used to sense the amount of current flowing between the drain and source of the transistor Q_{sw} 108 also is input to the control module 310. The control module 310 (receiving the feedback voltage V_{fb} , the charge voltage V_{cc} of the capacitor C_2 312, and the sense voltage V_{sense}) outputs a gate voltage V_g to the gate node of the transistor Q_{sw} 108, thereby controlling the switch-on/off operations of the transistor Q_{sw} 108 to maintain the normal operation mode.

[0031] In the standby operation mode, the supply voltage V_{in} that is generated by full wave rectification of the alternating current input power AC by the bridge diode circuit BD 102 is provided to the primary coil L_1 104. The supply voltage V_{in} provided to the primary coil L_1 104 causes the output voltage V_{out} to be generated in the secondary coil L_2 at a duty cycle through the switch-on/off operations of the transistor Q_{sw} 108. The duty cycle is determined based on the gate driving signal output from the control module 310 for control of the transistor Q_{sw} 108. The magnitude of the output voltage V_{out} generated in the secondary coil L_2 is large enough to enable the standby operation of the electronic device using the SPS 10 and is smaller than the output voltage V_{out} in the normal operation mode.

[0032] To maintain the output voltage V_{out} at a specific level, it is necessary to control the duty cycle at which the transistor Q_{sw} 108 performs the switch-on/off operations. For control of the duty cycle, the output voltage V_{out} can be fed back to switching control unit 300. More specifically, a low signal indicating the standby operation mode is applied to the base of the transistor Q_1 of mode set-up unit 400. This

turns off the transistor Q_1 . Once the transistor Q_1 is turned off, a forward bias is applied to the diode D₃ in mode set-up unit 400. This turns off the diode D₃, and thus the mode control voltage V_a applied to the inverting input (-) of the operational amplifier 422 is determined per Equation 2 above. When comparing Equations 1 and 2, it can be seen that the mode control voltage V_a of Equation 2 (in the standby operation mode) is greater than that of Equation 1 (in the normal operation mode). The operational amplifier 422 amplifies the mode control voltage V_a to a level higher than in the normal operation mode and inputs the amplified mode control voltage V_a to the photodiode PC₁ 424. Because of the photocoupler arrangement of the photodiode PC₁ 424 with the phototransistor PC₂ 202, the amplitude of current flowing through the phototransistor PC₂ 202 is determined based on the input to the photodiode PC₁ 424 (i.e., the output from the operational amplifier 422). The feedback capacitor C_{fb} 204 is charged with such a current, and the feedback voltage V_{fb} is determined based on the amount of charge in the feedback capacitor C_{fb} 204. As a result, the feedback voltage V_{fb} is inversely proportional to the magnitude of the mode control voltage V_a. Since the mode control voltage V_a in the standby operation mode is greater than that in the normal operation mode, the feedback voltage V_{fb} in the standby operation mode is smaller than that in the normal operation mode (e.g., substantially near 0V) and is input to the control module 310.

[0033] The charge voltage V_{cc} of the capacitor C_2 312 is also input to the control module 310. The supply voltage V_{in} provided to the primary coil L_1 104 in the standby operation mode causes a voltage to be generated in the secondary coil L_3 316 of the switching control unit 300. Thus, the charge voltage V_{cc} of the capacitor C_2 312 is applied to the control module 310. The sense voltage V_{sense} (used to sense the amount of current flowing between the drain and source of the transistor Q_{sw} 108) is also input to the control module 310. In response to the feedback voltage V_{fb} , the charge voltage V_{cc} of the capacitor C_2 312, and the sense voltage V_{sense} , the control module 310 outputs the gate voltage V_g to the gate node of the transistor Q_{sw} 108, thereby controlling the switch-on/off operations of the transistor Q_{sw} 108 to maintain the standby operation mode.

[0034] FIG. 2 is a circuit diagram of an implementation for a control module 310 according to an embodiment of the present invention.

[0035] As depicted in FIG. 2, the control module 310 may include a comparator CP_2 320 and a comparator CP_3 322, both of which can be implemented as operational amplifiers. The operational amplifier of the comparator CP_2 320 receives the feedback voltage V_{fb} through its inverting input (-) and a first or second feedback reference voltage V_{fl} or V_{f2} (which can be smaller than the feedback voltage V_{fb}) through its non-inverting input (+). The operational amplifier of the comparator CP_3 322 receives the feedback voltage V_{fb} through its non-inverting input (+) and a third feedback reference voltage V_{fb} (which can be smaller than the feedback voltage V_{fb}) through its inverting input (-).

[0036] The output signals of the comparators CP₂ 320 and CP₃ 322 are input to an S input and an R input of an RS flip-flop FF 324, respectively. The output of the comparator CP₂ 320 is also input to a base of the transistor Q₂ 326. An emitter of the transistor Q₂ 326 is grounded, and a collector of the transistor Q₂ 326 is connected to resistors R₄ 346 and R₅ 348. Resistors R₄ 346 and R₅ 348 are serially connected with each other and to an input end of the feedback voltage V_{fb} through diodes D₄ 332 and D₅ 334. The diodes D₄ 332 and D₅ 334 are arranged in opposite directions. In other words, a cathode of the diode D₄ 332 faces the input end of the feedback voltage V_{fb}, and an anode of the diode D₄ 332 faces the collector of the transistor Q₂ 326. A cathode of the diode D₅ 334 faces the input end of the transistor Q₂ 326, and an anode of the diode D₅ 334 faces the input end of the feedback voltage V_{fb}. Therefore, the anodes of the diodes D₄ 332 and D₅ 334 are interconnected.

[0037] A first switch SW_1 336 may selectively connect a node between the cathode of the diode D_5 334 and the collector of the transistor Q_2 326 with either a second static current source I_2 342 or the Q output of the RS flip-flop FF 324. A second switch SW_2 may selectively connect a node between the anode of the diode D_4 332 and the anode of the diode D_5 334 with either a first current source I_1 344 or the Q output of the RS flip-flop FF 324. A third switch SW_3 may selectively connect a node between the input end of the feedback voltage V_{fb} and the cathode of the diode D_4 332 with either the first current source I_1 344 or the Q output of the RS flip-flop FF 324.

[0038] A voltage V_C at a connection point between the resistors R_4 346 and R_5 348 is input to the inverting input (-) of the operational amplifier of a comparator CP_1 350. The non-inverting input (+) of the operational amplifier of the comparator CP_1 350 is

input to the sense voltage V_{sense} through an offset direct current source V_{offset} . The sense voltage is developed based on the amount of current flowing through the transistor Q_{sw} 108 and the resistance of the current sense resistor R_{sense} 110. The output of the comparator CP_1 350 is input to a gate driver 311. The gate driver 311 also receives an output of an oscillator OSC 352 and outputs the gate voltage V_g . The switch-on/off operations of the transistor Q_{sw} 108 are controlled by using the gate voltage V_g , and the duty cycle at which the switch-on/off operations are performed is determined by a signal output from the oscillator OSC 352.

[0039] FIGS. 3 and 4 are timing diagrams showing waveforms of voltages of inputs and outputs of control module 310 according to an embodiment of the present invention.

[0040] Referring to FIGS. 2 and 3, when a light load is connected to or applied to the SPS 10, the feedback voltage V_{fb} gradually decreases. If the standby operation mode starts through user's manipulation at time T0, the feedback voltage V_{fb} input to the control module 310 begins to decrease and reaches near 0V (e.g., approximately More specifically, the feedback voltage V_{fb} becomes lower than the third feedback reference voltage Vf₃, the second feedback reference voltage Vf₂ after a predetermined amount of time, and the first feedback reference voltage Vf1 after T0. At time T1 at which the feedback voltage V_{fb} reaches near 0V, the second feedback voltage Vf₂ (at a high level) and the feedback voltage V_{fb} (at a low level) are input to the noninverting input (+) and the inverting input (-) of the operational amplifier of the comparator CP₂ 320, respectively. Thus, the output of the comparator CP₂ 320 is a high signal. The high signal output from the comparator CP₂ 320 is input to the S input of the RS flip-flop FF 324 and the base of the transistor Q₂ 326. The third feedback voltage Vf3 (at a high level) and the feedback voltage Vfb (at a low level) are input to the inverting input (-) and the non-inverting input (+) of the operational amplifier of the comparator CP₃ 322, respectively. Thus, the output of the comparator CP₃ 322 is a low signal. The low signal output from the comparator CP₃ 322 is input to the R input of the RS flip-flop FF 324.

[0041] The RS flip-flop FF 324, receiving the high and low signals respectively from the comparators CP_2 320 and CP_3 322, outputs a high signal through its Q output. this signal may be selectively applied to any one of the nodes between the V_{fb} input and

the collector of transistor Q_2 326. The high signal output from the RS flip-flop FF 324 is maintained for a predetermined amount of time. The transistor Q_2 326 receives the high signal through its base from the comparator CP_2 320 and is turned on. The first switch SW_1 is switched (on) to connect the second current source I_2 342 to the node between diode D_5 334 and the collector of the transistor Q_2 326, the second switch SW_2 is switched (off) to connect the output from the RS flip-flop FF 324 to the node between diode D_4 332 and diode D_5 334, and the third switch SW_3 is switched (on) to connect the first current source I_1 344 to the input terminal of the feedback voltage V_{fb} . As a result, a voltage V_b at the connection point between the cathode of the diode D_5 334 and the collector of the transistor Q_2 326 becomes 0V, and the current from the first current source I_1 344 flows through the third switch SW_3 toward the input terminal of the feedback voltage V_{fb} .

[0042] Because the voltage V_b is 0V, a low signal is input to the inverting input (-) of the operational amplifier of the comparator CP_1 350, and the sense voltage V_{sense} (at a high level) is input to the non-inverting input (+) of the operational amplifier of the comparator CP_1 350. Thus, the output of the comparator CP_1 350 is a high signal. The high signal is input to the gate driver 311, and the gate driver 311 outputs a switch-off signal by using an inverter (not shown) therein. The transistor Q_{sw} 108 of FIG. 1 receives the switch-off signal output from the gate driver 311 through its gate node and is thus turned off.

on due to the transistor Q_{sw} 108 not performing the switch-on/off operations. As the output voltage V_{out} gradually decreases, the feedback voltage V_{fb} gradually increases. At time T3 at which the feedback voltage V_{fb} begins to be greater than the second feedback reference voltage V_{f2} , the second feedback reference voltage V_{f2} (at a low level) is input to the non-inverting input (+) of the operational amplifier of the comparator CP_2 320, and the feedback voltage V_{fb} (at a high level) is input to the inverting input (-) of the operational amplifier of the comparator CP_2 322. As for the comparator CP_3 322, by time T3, the feedback voltage V_{fb} (at a low level) is input to the inverting input (-) of the operational amplifier of the comparator CP_3 322, and the third feedback reference voltage V_{f3} (at a high level) is input to the non-inverting input (+) of the operational amplifier of the comparator CP_3 322 and the third feedback reference voltage V_{f3} (at a high level) is input to the non-inverting input (+) of the operational amplifier of the comparator CP_3 322 is a low signal.

[0044] The RS flip-flop FF 324 receiving low signals respectively from the comparators CP₂ 320 and CP₃ 322 through its S and R inputs continues outputting a high signal through its Q output. The transistor Q₂ 326 receives the low signal at its base from the comparator CP₂ 320 and is turned off. As a result, a current from the second static current source I₂ flows the resistors R₄ 346 and R₅ 348 through the first switch SW₁. In other words, the voltage V_b at the connection point between the cathode of the diode D₅ 334 and the collector of the transistor Q₂ 326 has a predetermined magnitude, and the voltage V_c at the connection point between the resistors R₄ 346 and R₅ 348 has a predetermined magnitude, that is, $\frac{R_5}{R_4 + R_5} \times V_b$. Since the voltage V_b is at a higher level than the sense voltage V_{sense}, the comparator CP₁ 350 outputs a low signal to the gate driver 311. The gate driver 311 in turn generates a gate voltage signal used to perform the switch-on/off operations of the transistor Q_{sw} 108 of FIG. 1. Between the drain and source of the transistor Q_{sw} 108, referring again to FIG. 3, a current I_{ds} having a triangle waveform flows during the on-state of the transistor Q_{sw} 108. The maximum amplitude of current I_{ds} is determined based on the magnitude of voltage V_c at the connection point between the resistors R₄ 346 and R₅ 348. The voltage V_c at the connection point between the resistors R₄ 346 and R₅ 348 can be maintained at a specific level by controlling the second static current source I2, which allows the maximum amplitude of current I_{ds} to be maintained below a predetermined level. The timings for switch-on/off operations are determined based on waveforms of signals of

[0045] At time T_4 , when the feedback voltage V_b begins to be greater than the third feedback reference voltage V_{f3} , the output of the comparator CP_3 322 changes from low to high, and thus the output of the RS flip-flop FF 324 changes from high to low. The transistor Q_2 326 is turned off, and the first switch SW_1 also is turned off in response to the low signal output from the RS flip-flop FF 324. Thus, the voltage V_c at the connection point between the resistors R_4 346 and R_5 348 reaches 0V. As a result, the output of the comparator CP_1 350 is a high signal. The high signal is input to the gate driver 311, and the gate driver 311 outputs the switch-off signal by using the inverter (not shown) therein. The transistor Q_{sw} 108 of FIG. 1 receives the switch-off signal output from the gate driver 311 at its gate node, is turned off, and does not perform the switch-on/off operations.

inputs to the gate driver 311 from the oscillator OSC 352.

[0046] As the load on the entire system becomes light due to the transistor Q_{sw} 108 not performing the switch-on/off operations, the feedback voltage V_{fb} begins to decrease again. Thereafter, at time T_5 at which the feedback voltage V_{fb} is lower than the first feedback reference voltage V_{f1} , the output of the comparator CP_2 320 changes from low to high, and the output of the comparator CP_3 322 changes from high to low. Thus, the transistor Q_2 326 is turned on, and the RS flip-flop FF 324 generates a high signal. The operation of control module 310 after time T_5 is the same as that after time T_1 and as such, will not be repeated. Likewise, the operation of control module 310 after time T_6 at which the feedback voltage V_{fb} begins to be greater than the second feedback reference voltage V_{f2} is the same as that after time T_3 and as such, will not be repeated.

[0047] After completion of the standby operation mode, the feedback voltage V_{fb} is greater than the third feedback reference voltage V_{f3} at time T_7 . At time T_7 , the normal operation mode starts. Feedback voltage V_{fb} decreases thereafter, and is maintained at a level greater than the second feedback reference voltage V_{f2} and smaller than the third feedback reference voltage V_{f3} . The output of the comparator CP_2 320 is maintained at a low level during the normal operation mode, and the output of the comparator CP_3 322 is maintained at a high level. The output of the RS flip-flop FF 324 is maintained at a low level.

Referring to FIGS. 2 and 4, because the voltage V_c at the connection point [0048] between the resistors R₄ 346 and R₅ 348 is 0V from time T₁ (at which the normal operation mode is changed to the standby operation mode) to time T₂ (at which the transistor Q_{sw} 108 is turned on), the transistor Q_{sw} 108 does not performs the switchon/off operations even when the output from the oscillator OSC 352 is input to the gate driver 311. However, the transistor Q_{sw} 108 performs the switch-on/off operations from time T₃, at which the voltage V_c is maintained at a specific level with changes in the feedback voltage V_{fb}. Thereafter, the timings for switch-on/off operations are determined based on the output from the oscillator OSC 352. In other words, while the output signal from the oscillator OSC 352 increases, the transistor Q_{sw} 108 is turned on, and the current I_{ds} flowing between the drain and source of transistor Q_{sw} 108 is generated. As described above, since the current Ids flowing between the drain and source of transistor Q_{sw} 108 in the standby operation mode is maintained below a predetermined level at the connection point between the resistors R₄ 346 and R₅ 348, it does not exceed a maximum limit of current Ilimit.

[0049] Once the feedback voltage V_{fb} is greater than the third feedback reference voltage V_{f3} after time T_3 , the voltage V_c at the connection point between the resistors R_4 346 and R_5 348 becomes 0V. Thus, the transistor Q_{sw} 108 does not performs the switch-on/off operations even when the output from the oscillator OSC 352 is input to the gate driver 311. The operation after time T_6 is the same as that after time T_3 , and thus will not be repeated.

[0050] The transistor Q_{sw} 108 performs the switch-on/off operations from time T_7 (at which the standby operation mode is changed to the normal operation mode), and the duty cycle is determined based on a waveform of the voltage of the output from the oscillator OSC 352.

[0051] FIG. 5 is a graph showing a relationship between the feedback voltage V_{fb} and a maximum amplitude I_{peak} of current I_{ds} flowing between the drain and source of transistor Q_{sw} 108 in the implementation for the control module 310 of FIG. 2.

[0052] Referring to FIG. 5, when the feedback voltage V_{fb} begins to increase, the maximum amplitude I_{peak} of current I_{ds} linearly increases (see reference numeral 610). When the feedback V_{fb} begins to decrease, the maximum amplitude I_{peak} of current I_{ds} also linearly decreases (see reference numeral 620). However, when the feedback voltage V_{fb} begins to increase again, particularly if the feedback voltage V_{fb} increases within 0.5 - 0.7V, the maximum amplitude I_{peak} of current I_{ds} is maintained at a specific level, e.g., 0.5A. If the feedback voltage V_{fb} increases out of the scope of 0.5 - 0.7V, the maximum amplitude I_{peak} of current I_{ds} linearly increases again (see reference numeral 630).

[0053] FIG. 6 is a circuit diagram of another implementation of a control module 310 according to an embodiment of the present invention. In FIG. 6, identical reference numerals to those of FIG. 2 represent identical elements to those of FIG. 2. Hereinafter, repetitive descriptions will be avoided, and descriptions with reference to FIG. 6 will focus on differences with FIG. 2 accordingly.

[0054] Referring to FIG. 6, in another implementation for the control module 310 according to an embodiment of the present invention, the voltage V_c at the connection point between the resistors R_4 346 and R_5 348 is input to the inverting input (-) of the operational amplifier of the comparator CP_1 350, but a signal indicating the waveform

of the output signal from the oscillator OSC 352 is input to the non-inverting input (+) of the operational amplifier of the comparator CP₁ 350. In the implementation for control module 310 of FIG. 2, the non-inverting input (+) of the operational amplifier of the comparator CP₁ 350 receives the sense voltage V_{sense} determined based on the current I_{ds} flowing between the drain and source of transistor Q_{sw} 108, and thus the control module 310 circuit of FIG. 2 operates in a current mode. By contrast, in the implementation for control module 310 of FIG. 6, the non-inverting of the comparator CP₁ 350 receives the signal indicating the waveform of the voltage of the output from the oscillator OSC 352, and thus the control module 310 circuit of FIG. 6 operates in a voltage mode. Because the control module 310 in the voltage mode does not need the sense voltage V_{sense} of FIG. 1, it does not need the sense resistor R_{sense} 110 of FIG. 1 either. The operations of the control module 310 according to this other embodiment of the present invention are the same as those of the control module 310 according to the first embodiment of the present invention and will not be described again.

[0055] FIGS. 7 and 8 are circuit diagrams of yet another implementation for a control module 310 according to an embodiment of the present invention.

[0056] As depicted in FIG. 7, the input terminal of the feedback voltage V_{fb} of the control module 310 of FIG. 1 is connected to a base b_3 of a transistor Q_3 702 (which can be a PNP bipolar junction transistor) through diodes D_6 and D_7 that are sequentially disposed between the input terminal of the feedback voltage V_{fb} and the base b_3 of the transistor Q_3 702. An anode of the diode D_6 and a cathode of the diode D_7 face the input terminal of the feedback voltage V_{fb} of the control module 310 of FIG. 1. On the other hand, a cathode of the diode D_6 and an anode of the diode D_7 face transistor Q_3 702. Thus, the diode D_6 and the diode D_7 are arranged in opposite directions. A connection point between the diode D_6 and the diode D_7 is connected to a current source I_3 .

[0057] An emitter e₃ of the transistor Q₃ 702 is connected to both a selector 700 and a collector c₄ of a transistor Q₄ 712 (which can be an NPN bipolar junction transistor). A burst current limit signal Bi_b is input to a base b₄ of the transistor Q₄ 712. An emitter of the transistor Q₄ 712 is grounded.

[0058] Meanwhile, a current source I_4 , that is separate from the current source I_3 , is connected to a base b_5 of a transistor Q_5 722 (which can be a PNP bipolar junction

transistor). An emitter e_5 of the transistor Q_5 722 is connected to both the selector 700 and a collector C_6 of a transistor Q_6 716 (which can be an NPN bipolar junction transistor). A normal operation signal Bu is input to a base b_6 of the transistor Q_6 716. An emitter of the transistor Q_6 716 is grounded.

[0059] The selector 700 may comprise two transistors Q_7 718 and Q_8 720 (which can be NPN bipolar junction transistors) and one current source I_5 724. A base of the transistor Q_7 718 is connected to the emitter e_3 of the transistor Q_3 702 and the collector c_4 of the transistor Q_4 712. A base of the transistor Q_8 720 is connected to the emitter e_5 of the transistor Q_5 722 and the collector c_6 of the transistor Q_6 716. The emitter of the transistor Q_7 718 and the emitter of the transistor Q_8 720 are connected to each other and connected to an output O of the selector 700. The output O of the selector 700 is grounded through the static current source I_5 724 inside the selector 700, but it is connected to a inverting input of the comparator CP_1 350 outside the selector 700.

[0060] A non-inverting input of the comparator CP_1 350 (having its inverting input connected to the output of the selector 700) is connected to receive the sense voltage V_{sense} through the direct current source V_{offset} . This sense voltage V_{sense} is, as shown in FIG 1, indicative of the amount of current flowing through the transistor Q_{sw} 108 and resistance of the current sense resistor R_{sense} 110. The output of the comparator CP_1 350 is input to the gate driver 311. The gate driver 311 receives the output of the oscillator OSC 352 in addition to the output of the comparator CP_1 350 and outputs the gate voltage V_g . The transistor Q_{sw} 108 is switched on/off by the gate voltage V_g . A duty cycle of the switch-on/off operations is determined based on a signal output from the oscillator OSC 352.

[0061] Below is a description of the operation of this implementation for the control module 310 according to an embodiment of the present invention.

[0062] A voltage at the base b_3 of the transistor Q_3 702 is maintained at a specific level by the current source I_3 . This voltage is level-shifted to the emitter e_3 of the transistor Q_3 702. A voltage at the base b_5 of the transistor Q_5 722 is maintained at a specific level (i.e., the feedback voltage V_{fb}) by the current source I_4 . This voltage is also level-shifted to the emitter e_5 of the transistor Q_5 722. The voltage at the base b_3 of the transistor Q_3 702 and the voltage at the base b_5 of the transistor Q_5 722 are selectively input to the selector 700. At least one of these voltages may be input or

neither of them may be input. However, the two voltages are not simultaneously input.

[0063] Whether the voltage at the emitter e_3 of the transistor Q_3 702 is input to the selector 700 is determined based on the burst current limit signal Bi_b. In particular, when the burst current limit signal Bi_b is high, the transistor Q_4 712 is turned on. As a result, the voltage at the emitter e_3 of the transistor Q_3 702 is not input to the selector 700. On the other hand, when the burst current limit signal Bi_b is low, the transistor Q_4 712 is turned off. As a result, the voltage at the emitter e_3 of the transistor Q_3 702 is input to the selector 700.

[0064] Whether the voltage at the emitter e_5 of the transistor Q_5 722 is input to the selector 700 is determined based on the normal operation signal Bu. In particular, when the normal operation signal Bu is high, the transistor Q_6 716 is turned on. As a result, the voltage at the emitter e_5 of the transistor Q_5 722 is not input to the selector 700. On the other hand, when the normal operation signal Bu is low, the transistor Q_6 716 is turned off. As a result, the voltage at the emitter e_5 of the transistor Q_5 722 is input to the selector 700.

[0065] The voltage at the emitter e_3 of the transistor Q_3 702 is input to the base of the transistor Q_7 718 inside the selector 700. Similarly, the voltage at the emitter e_5 of the transistor Q_5 722 is input to the base of the transistor Q_8 720 inside the selector 700. Either the transistor Q_7 718 or the transistor Q_8 720 inside the selector 700 is turned on. In other words, either the voltage at the emitter e_3 of the transistor Q_3 702 or the voltage at the emitter e_5 of the transistor Q_5 722 is input to the selector 700. When the voltage at the emitter e_3 of the transistor Q_3 702 is input to the selector 700, it is provided to the emitter of the transistor Q_7 718 and is then output outside the selector 700 through the output O of the selector 700.

[0066] The output of the selector 700 is fed to the inverting input of the comparator CP_1 350. The sense voltage V_{sense} is input to the non-inverting input of the comparator CP_1 350. The sense voltage V_{sense} is, as shown in FIG. 1, determined based on the amplitudes of current flowing through the transistor Q_{sw} 108 and a resistance of the current sense resistor R_{sense} 110. The comparator CP_1 350 compares the output of the selector 700 with the sense voltage V_{sense} and outputs the result of the comparison to the gate driver 311. The gate driver 311 receives a signal of the oscillator OSC 352 that determines a duty cycle of the switch-on/off operations in addition to the output of the

comparator CP₁ 350 and outputs the gate voltage V_g.

[0067] Referring to FIG. 8, comparators CP_4 812 and CP_5 814 are arranged in parallel. The comparator CP_4 812 includes an operational amplifier that receives the feedback voltage V_g through its non-inverting input (+) and receives a first feedback reference voltage V_{fl} ' that is smaller than the feedback voltage V_{fb} through its inverting input (-). The comparator CP_5 includes an operational amplifier that receives the feedback voltage V_g through its inverting input (-) and receives a second feedback reference voltage V_{f2} ' that is smaller than the feedback voltage V_g through its non-inverting input (+).

[0068] The output of the comparator CP_4 812 is inverted by an inverter 810 and is then used as the burst current limit signal Bi_b that is input to the base b_4 of the transistor Q_4 712 in FIG. 7. The output of the comparator CP_4 812 that outputs the burst current limit signal Bi_b and the output of the comparator CP_5 are input to the S input and the R input of the RS flip-flop FF, respectively. Also, the output of the comparator CP_4 812 is also input to an input end of an OR gate 800 as well as to the S input of the RS flip-flop FF 816. The other input end of the OR gate 800 is connected to \overline{Q} output of the RS flip-flop FF 816. The normal operation signal Bu is output from the output of the OR gate 800 and is input to the base b_6 of the transistor Q_6 716. The logic state of each of circuit elements is determined based on the input feedback voltage V_{fb} . Output signals of circuit elements of FIGS. 7 and 8 with respect to the input feedback voltage V_{fb} are shown in the following Table 1.

Table 1

	CP ₄	CP ₅	Bu	Bi_b	Q
Normal operation mode	Н	L	Н	L	L
$V_{f1}' \leq V_{fb} \leq V_{f2}'$	L	L	L	Н	L
$V_{fb} \leq V_{f2}$. L	Н	Н	Н	Н
V_{f2} ' $\leq V_{fb} \leq V_{f1}$ '	L	L	Н	Н	H

[0069] Hereinafter, the operation of this implementation for control module 310 according to an embodiment of the present invention will be described with reference to Table 1. First, in a normal operation mode where the feedback voltage V_{fb} is greater than the first feedback reference voltage V_{fl} , the output of the comparator CP₄ 812 is

high (H) and the output of the comparator CP_5 is low (L). The output of the comparator CP_4 812 is inverted into low (L) by the inverter 810 and is generated as a burst current limit signal Bi_b of low (L) value. The high signal (H) output from the comparator CP_4 812 and the low signal (L) output from the comparator CP_5 are input to the S input and the R input of the RS flip-flop FF 816, respectively. A low signal (L) is output from the \overline{Q} output of the RS flip-flop FF 816 that receives the high signal (H) and the low signal (L) from the comparators CP_4 812 and CP_5 814. The low signal (L) output from the \overline{Q} output of the RS flip-flop FF 816 is input to one input end of the OR gate 800. The high signal (H) output from the comparator CP_4 812 is input to the other input end of the OR gate 800. The OR gate 800 that receives the low signal (L) from the \overline{Q} output of the RS flip-flop FF 816 and the high signal (H) from the comparator CP_4 812 outputs a high signal (H) and a normal operation signal Bu of high (H).

[0070] Next, in a burst mode where the feedback voltage V_{fb} gradually decreases and is then smaller than the first feedback reference voltage V_{f1} ' and greater than the second feedback reference voltage V_{f2} ', the comparators CP_4 812 and CP_5 814 output low signals (L). The output signal of the comparator CP_4 812 is inverted into a high signal (H) by the inverter 810 and is generated as a burst current limit signal Bi_b of high (H) value. The low signals (L) output from the comparators CP_4 812 and CP_5 814 are input to the S input and the R input of the RS flip-flop FF 816, respectively. A low signal (L) is output from the \overline{Q} output of the RS flip-flop FF 816 that receives the low signals (L) from the comparators CP_4 812 and CP_5 814. The low signal (L) output from the \overline{Q} output of the RS flip-flop FF 816 is input to one end of the OR gate 800. The low signal (L) output from the comparator CP_4 812 is input to the other end of the OR gate 800. The OR gate 800 that receives the low signals (L) from the \overline{Q} output of the RS flip-flop FF 816 and the comparator CP_4 812 outputs a low signal (L), and thus, generates a normal operation signal Bu of low (L).

[0071] Next, when the feedback voltage V_{fb} is smaller than the second feedback reference voltage V_{f2}', the comparator CP₄ 812 outputs a low signal (L) and the comparator CP₅ 814 outputs a high signal (H). The low signal (L) of the comparator CP₄ 812 is inverted into a high signal (H) and is generated as the burst current limit signal Bi_b of high (H) value. The low signal (L) output from the comparator CP₄ 812 and the high signal (H) output from the comparator CP₅ 814 are input to the S input and

the R input of the RS flip-flop FF 816, respectively. A high signal (H) is output from the \overline{Q} output of the RS flip-flop FF 816 that receives the low signal (L) from the comparator CP_4 812 and the high signal (H) from the comparator CP_5 814. The high signal (H) output from the \overline{Q} output of the RS flip-flop FF 816 is input to on input end of the OR gate 800. The low signal (L) output from the comparator CP_4 812 is input to the other input end of the gate 800. The OR gate 800 that receives the high signal (H) from the \overline{Q} output of the RS flip-flop FF 816 and the low signal (L) from the comparator CP_4 812 outputs a high signal (H) and generates the normal operation signal Bu of high (H).

[0072]Next, the feedback voltage V_{fb} increases again and is then smaller than the first feedback reference voltage V_{fl}' and greater than the second feedback reference voltage V_{f2}', [Q: How can this be? If V_{f2} and V_{f1} are fixed, then V_{f1} must always be less than V_{f2}.] the comparators CP₄ 812 and CP₄ 814 output low signals (L). The output signal (L) of the comparator CP₄ 816 is inverted into a high signal (H) by the inverter 810 and is generated as the burst current limit signal Bi_b of high (H) value. The low signals (L) output from the comparators CP₄ 812 and CP₅ 814 are input to the S input and the R input of the RS flip-flop FF 816, respectively. A high signal (H) is output from the \overline{Q} output of the RS flip-flop FF 816 that receives the low signals (L) from the comparators CP₄ 812 and CP₅ 814. The high signal (H) output from the \overline{Q} output of the RS flip-flop FF 816 is input to one input end of the OR gate 800. The low signal (L) output from the comparator CP₄ 812 is input to the other input end of the gate 800. The OR gate 800 that receives the high signal (H) from the \overline{Q} output of the RS flip-flop FF 816 and the low signal (L) from the comparator CP₄ 812 outputs a high signal (H) and generates the normal operation signal Bu of high (H).

[0073] As described above, both the burst current limit signal Bi_b and the normal operation signal Bu may be high (H) at the same time, but both may not be low (L) at the same time. If both the burst current limit signal Bi_b and the normal operation signal Bu are high (H), then no signal is input to the selector 700 of FIG. 7. On the other hand, if both the burst current limit signal Bi_b and the normal operation signal Bu are low (L), then two signals would simultaneously be input to the selector 700 of FIG. 7. Thus, with some embodiments, it is possible for no signal to be input to the selector 700, but it is not possible for two signals to be simultaneously input to the

Atty. Docket No.: 25502/81101

selector 700.

[0074] FIG. 9 is a timing diagram showing waveforms of signals for a control module 310 according to an embodiment of the present invention.

[0075] Referring to FIGS. 7, 8, and 9, when a load on the entire system becomes light, the feedback voltage V_{fb} begins to decrease. When the feedback voltage V_{fb} becomes smaller than the first feedback reference voltage V_{fb}, this implementation for the control module 310 according to an embodiment of the present invention operates in the burst current limit mode. This is because the burst mode and the normal operation mode are distinguished based on the first feedback reference voltage V_{fl}'. In other words, when the feedback voltage V_{fb} is greater than the first feedback reference voltage V_{fl}', this implementation of the control module 310 operates in the normal operation mode. On the other hand, when the feedback voltage V_{fb} is smaller than the first feedback reference voltage V_{fl}', this implementation of the control module 310 operates in the burst mode in which the amplitude of a current is limited. After a period of time has passed, the feedback voltage V_{fb} is smaller than the second feedback reference voltage V₁₂'. In this case, the control module 310 does not perform the switch-on/off operations. This is because the second feedback reference voltage V_{f2}' is used as a reference voltage to determine whether the switch-on/off operations are performed. In other words, when the feedback voltage V_{fb} is greater than the second feedback reference voltage V₁₂', the switch-on/off operations are performed. However, when the feedback voltage V_{fb} is smaller than the second feedback reference voltage V_{f2} ', the switch-on/off operations are not performed.

[0076] More specifically, from time T_0 to time T_1 , the control module 310 operates in the normal operation mode. In this case, the high signal (H) and the low signal (L) are input to the non-inverting input of the comparator CP_4 812 and the inverting input of the comparator CP_5 814, respectively. Thus, the burst current limit signal Bi_b of low (L) and the normal operation signal Bu of high (H) are generated by the operation of the control module 310 of FIG. 8. As a result, in FIG. 7, the voltage at the emitter e_3 of the transistor Q_3 702 is input to the selector 700, is then output from the selector 700 to the inverting input of the comparator CP_1 350, and is generated by the gate driver 311 as a gate control signal (the gate voltage V_g) used to perform the switch-on/off operations in the normal operation mode. Since the voltage at the emitter e_3 of the transistor Q_3 702

is proportional to the feedback voltage V_{fb} , an output current changes in proportion to the feedback voltage V_{fb} . Thus, from time T_0 to time T_1 , the feedback voltage V_{fb} gradually decreases, and thus, the amplitude of a current also gradually decreases.

[0077]From time T_1 to time T_2 , the control module 310 operates in the burst current limit mode. During this period, the low signals (L) are input to the noninverting input of the comparator CP₄ 812 and the inverting input of the comparator CP₅ 814, respectively. Thus, the burst current limit signal Bi b of high (H) and the normal operation signal Bu of low (L) are generated by the operation of the control module 310 of FIG. 8. As a result, in FIG. 7, the voltage at the emitter e₅ of the transistor Q₅ 722 is input to the selector 700, is then output from the selector 700 to the inverting input of the comparator CP₁ 350, and is generated by the gate driver 311 as the gate control signal (the gate voltage V_g) used to perform the switch-on/off operations in the burst current limit mode. Since the voltage at the emitter e_5 of the transistor Q_5 722 is proportional to a voltage of a specific amplitude that is introduced by the current source I₄, an output current changes in proportion to the voltage of the specific amplitude. As a result, the output current is maintained at a specific level in proportion to the voltage of the specific amplitude. Thus, during the period from time T₁ to time T₂, although the feedback voltage V_{fb} gradually decreases, the amplitude of the output current is limited below a predetermined level and is then maintained at a specific level.

[0078] From time T_2 to time T_3 , the control module 310 does not perform the switch-on/off operations. During this period, the low signal (L) and the high signal (H) are input to the non-inverting input of the comparator CP_4 812 and the inverting input of the comparator CP_5 814, respectively. Thus, the burst current limit signal Bi_b of high (H) and the normal operation signal Bu of low (L) are generated by the operation of the control module 310 of FIG. 8. Thus, in FIG. 7, both the voltage at the emitter e_3 of the transistor Q_3 702 and the voltage at the emitter e_5 of the transistor Q_5 722 are not input to the selector 700. As a result, the gate control signal (the gate voltage V_g) is not generated by the gate driver 311.

[0079] From time T₃ to time T₄, the control module 310 still does not perform the switch-on/off operations. During this period, the low signals (L) are input to the non-inverting input of the comparator CP₄ 812 and the inverting input of the comparator CP₅ 814. However, the burst current limit signal Bi_b of high (H) and the normal operation

signal Bu of high (H) are generated by the operation of the control module 310 of FIG. 8. In contrast to the period from time T_1 to time T_2 , the normal operation signal Bu of high (H) is generated because of the RS flip-flop FF 816. In FIG. 7, neither the voltage at the emitter e_3 of the transistor Q_3 702 nor the voltage at the emitter e_5 of the transistor Q_5 722 is input to the selector 700. As a result, the gate control signal (the gate voltage V_g) is not generated by the gate driver 311.

[0080] From time T_4 to time T_5 , if the presence of an external load is not sensed, or rather if a decrease in the external load is sensed, the feedback voltage V_{fb} begins to decrease again. The operation of the control module 310 from time T_5 to time T_6 (during which the feedback voltage V_{fb} decreases and is smaller than the first feedback reference voltage V_{fl} '), from time T_6 to time T_7 (during which the feedback voltage V_{fb} is smaller than the second feedback reference voltage V_{f2} '), and from time T_7 to time T_8 (during which the feedback voltage V_{fb} increases again and is greater than the second feedback reference voltage V_{f2} ') are identical to the operation of the control module 310 from time T_1 to time T_2 , from time T_2 to time T_3 , and from time T_3 to time T_4 , respectively. At time T_8 where the feedback voltage V_{fb} is greater than the first feedback reference voltage V_{f1} ', the control module 310 operates in the normal operation mode as long as the decrease in the external load is not sensed.

[0081] The operation of one implementation of the control module 310 (for example, as shown in and described with reference to FIG. 2) is determined based on the results of the comparison of three feedback reference voltages V_{fl} , V_{f2} , and V_{f3} with the feedback voltage V_{fb} . On the other hand, the operation of another implementation of the control module 310 (for example, as shown in and described with reference to FIGS. 7 and 8) is determined based on the result of the comparison of two feedback reference voltages V_{fl} ' and V_{f2} ' with the feedback voltage V_{fb} . Accordingly, it is possible to reduce power consumption necessary for converting from the burst mode into the normal operation mode and to design an internal circuit more simply.

[0082] As described herein, the control module 310 according to the present invention delimits a maximum amplitude of current below a predetermined level by using an automatic burst operation mode and a current operation mode, thereby preventing occurrence of audible noises and providing low power consumption. In particular, when using two sense levels—e.g., the first feedback reference voltage and

Atty. Docket No.: 25502/81101

the second feedback reference voltage—it is possible to design the internal circuit more simply and reduce power consumption required for conversion from the burst mode into the normal operation mode, thereby preventing malfunction of the control module 310.

[0083] While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be therein without departing from the spirit and scope of the invention as defined by the appended claims and their equivalents.