Week 5 Notes

- 1) Handling non-standard forms (\geq , = constraints; minimizations; unrestricted variables), and generalizing the simplex method
- 2) Interpreting basic sensitivity information graphically and from the solver.

(1) Non-standard forms:

- Minimize Z: Change to maximize -Z
- = Constraints: Add an "artificial" variable with a LARGE negative Z-coefficient.
- ≥ Constraints: Add a "surplus" variable AND an "artificial" variable.
- Unrestricted in sign variables:
 - \circ IF there is a lower limit L to the amount allowed, then Replace x_i with $x'_i + L$ to make the new variable meet the non-negativity requirement.

(0, 8)

(1.273, 2.909)

o If there is no lower limit, replace x_i with $x_i^+ - x_i^-$

First Approach: "BigM" - i.e., Add more variables and "penalize" them

Let's look at Problem 3 from HW2: Serving steak and potatoes with one change: Suppose we want exactly 40 oz of protein.

 x_1 = ounces of steak to serve; x_2 = ounces of potatoes to serve

Min cost $Z = 8 x_1 + 4 x_2$ needs fixing: Subject to:

gr of carbs
$$5x_1 + 15 x_2 \ge 50$$
 needs fixing:
gr protein $20x_1 + 5 x_2 = 40$ needs fixing:

gr fat
$$15x_1 + 2x_2 \le 60 \text{ OK}$$

Non-negativity $x_1, x_2 \ge 0$

(WRONG) Tableau:

	x1	x2	s1	s2	s3	s4	rhs
Z	8	4	0	0	0	0	0
s1	5	15	<mark>-1</mark>	0	0	0	50
s2	20	5	0	<mark>-1</mark>	0	0	40
s3	20	5	0	0	1	0	40
s4	15	2	0	0	0	1	60

Fix the first 2 constraints: ADD "artificial" variables with Penalties

$$5 x_1 + 15 x_2 - s_1 + a_1 = 50$$

$$20 x_1 + 5 x_2 - s_2 + a_2 = 40$$

	x1	x2	s1	s2	s3	s4	a1	a2	rhs
Z	8	4	0	0	0	0	<mark>1000</mark>	<mark>1000</mark>	0
a1	5	15	-1	0	0	0	1	0	50
a2	20	5	0	-1	0	0	0	1	40
s3	20	5	0	0	1	0	0	0	40
s4	15	2	0	0	0	1	0	0	60

Fix the Z equation to ensure the basic variables all have zero coefficients:

$$Z + 8 x_1 + 4 x_2 + 0 s_1 + 0 s_2 + 0 s_3 + 0 s_4 + 1000 a_1 + 1000 a_2 = 0$$

$$-1000(5x_1 + 15 x_2 - s_1 + 0 s_2 + 0 s_3 + 0 s_4 + a_1 = 50)$$

$$-1000(20x_1 + 5 x_2 + 0 s_1 - s_2 + 0 s_3 + 0 s_4 + a_2 = 40)$$

	x1	x2	s1	s2	s3	s4	a1	a2	rhs
Z	-24992	-19996	1000	1000	0	0	0	0	-90000
a1	5	15	-1	0	0	0	1	0	50
a2	20	5	0	-1	0	0	0	1	40
s3	20	5	0	0	1	0	0	0	40
s4	15	2	0	0	0	1	0	0	60

See Excel.....

Alternate approach: Two Phase (Avoid not knowing a good estimate for M)

Phase 1: minimize $Z=a_1+a_2$ (i.e. maximize $Z=-a_1-a_2$) until the artificial variables are all non-basic

Phase 2: remove them from the tableau, add in the original objective

 $Z = -8 x_1 - 4 x_2$, fixing the z-row as necessary, and continue.

Phase 1:

Fix the Z equation!

$$Z + a_1 + a_2 = 0$$

$$-(5x_1 + 15x_2 - s_1 + 0s_2 + 0s_3 + 0s_4 + a_1 = 50)$$

$$-(20x_1 + 5x_2 + 0s_1 - s_2 + 0s_3 + 0s_4 + a_2 = 40)$$

See Excel...

2) Sensitivity

Barbie and Ken Sensitivity Report from the Solver:

Variable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$1	barbies =	6000	0	6	1E+3	0.428571429
\$B\$2	kens =	2000	0	6.5	0	.5 6.5

Constraints

		Final	Shadow Constraint		Allowable	Allowable	
Cell	Name	Value	Price	R.H. Side Increase		Decrease	
\$B\$10	cardboard	32000	0	35000	1E+30	3000	
\$B\$8	plastic	100000	0.464285714	100000	10500	28000	
\$B\$9	nylon	30000	0.085714286	30000	11666.66667	30000	

Barbie and Ken Sensitivity Final Tableau:

	barbie	ken	plastic slack	nylon slack	cardboard slack	right hand side
Z	0	0	0.4642857	0.0857143	0	49000
ken	0	1	0.0714286	-0.171429	0	2000
barbie	1	0	0	0.2	0	6000
Cardboard slack	0	0	-0.285714	-0.114286	1	3000

Maximize Z = 6 B + 6.5 K

