Linear Algebr

You are observing starfish that made their way to a previously uninhabited tide-pool. You'd like to predict the year-on-year population of these starfish.

You start with a simple assumption

#new children per year \sim size of current population

- 1.1 Come up with a mathematical model for the number of star fish in a given year. Your model should
 - Define any notation (variables and parameters) you use
 - Include at least one formula/equation
 - Explain how your formula/equation relates to the starting assumption

Let

(Birth Rate) K = 1.1 children per starfish per year (Initial Pop.) $P_0 = 10$ star fish

and define the model \mathbf{M}_1 to be the model for starfish population with these parameters.

2.1 Simulate the total number of starfish per year using Excel.

Recall the model M_1 (from the previous question).

Define the model \mathbf{M}_{1}^{*} to be

$$P(t) = P_0 e^{0.742t}$$

- 3.1 Are \mathbf{M}_1 and \mathbf{M}_1^* different models or the same?
- 3.2 Which of \mathbf{M}_1 or \mathbf{M}_1^* is better?
- 3.3 List an advantage and a disadvantage for each of M_1 and M_1^* .

In the model M_1 , we assumed the starfish had K children at one point during the year.

- 4.1 Create a model \mathbf{M}_n where the starfish are assumed to have K/n children n times per year (at regular intervals).
- 4.2 Simulate the models M_1 , M_2 , M_3 in Excel. Which grows fastest?
- 4.3 What happens to \mathbf{M}_n as $n \to \infty$?

Exploring \mathbf{M}_n

We can rewrite the assumptions of \mathbf{M}_n as follows:

- At time t there are $P_n(t)$ starfish.
- $P_n(0) = 10$
- During the time interval (t, t + 1/n) there will be (on average) K/n new children per starfish.
- 5.1 Write an expression for $P_n(t+1/n)$ in terms of $P_n(t)$.
- 5.2 Write an expression for ΔP , the change in population from time t to $t + \Delta t$.
- 5.3 Write an expression for $\frac{\Delta P}{\Delta t}$.
- 5.4 Write down a differential equation relating P'(t) to P(t) where $P(t) = \lim_{n \to \infty} P_n(t)$.

Define the model \mathbf{M}_{∞} by

- P(0) = 10
 - P'(t) = kP(t)

and recall the model M_1 defined by

- $P_1(0) = 10$

• $P_1(t+1) = KP(t)$ for $t \ge 0$ years and K = 1.1.

6.2 Suppose that M_1 accurately predicts the population.

6.1 If k = K = 1.1, does the model \mathbf{M}_{∞} produce the same

population estimates as M_1 ?

6.3 What are some advantages and disadvantages of the models M_1 and M_{∞} ?

After more observations, scientists notice a seasonal effect on starfish. They propose a new model called S:

- P(0) = 10
- $P'(t) = k \cdot P(t) \cdot |\sin(2\pi t)|$
- 7.1 What can you tell about the population (without trying to compute it)?
- 7.2 Assuming k = 1.1, estimate the population after 10 years.
- 7.3 Assuming k = 1.1, estimate the population after 10.3 years.

Consider the following argument:

At t = 0, the change in population $\approx P'(0) = 0$, so

$$P(1) \approx P(0) + P'(0) \cdot 1 = P(0) = 10.$$

At t = 1, the change in population $\approx P'(1) = 0$, so

$$P(2) \approx P(2) + P'(2) \cdot 1 = P(0) = 10.$$

And so on.

So, the population of starfish remains constant.

8.1 Do you believe this argument? Can it be improved?

(Simulating \mathbf{M}_{∞} with different Δs) Time | Pop. ($\Delta = 0.1$) |

0.1 11.1 0.2 12.2 0.2 12.321 0.4 14.884
0.2 12.321 0.4 14.884
0.3 13.67631 0.6 18.15848
0.4 15.1807041 0.8 22.1533456

Time

Pop. $(\Delta = 0.2)$

 $\Delta = 0.2$ on the same plot. What does the graph show?

Compare $\Delta = 0.1$ and $\Delta = 0.2$. Which approximation

9.2 Graph the population estimates for $\Delta = 0.1$ and

9.3 What Δs give the largest estimate for the population

9.4 Is there a limit as $\Delta \rightarrow 0$?

at time *t*?

grows faster?

(Simulating \mathbf{M}_{∞} with different Δs)

- 9.1 Compare $\Delta = 0.1$ and $\Delta = 0.2$. Which approximation grows faster?
- 9.2 Graph the population estimates for $\Delta=0.1$ and $\Delta=0.2$ on the same plot. What does the graph show?

- 9.3 What Δs give the largest estimate for the population at time t?
- 9.4 Is there a limit as $\Delta \rightarrow 0$?

Consider the following models for starfish growth

- M # new children per year ∼ current population
- N # new children per year ∼ resources available per individual
- **O** # new children per year ~ current population times the fraction of total resources remaining
- 10.1 Guess what the population vs. time curves look like for each model.
- 10.2 Create a differential equation for each model.
- 10.3 Simulate population vs. time curves for each model (but pick a common initial population).

Recall the models

- **M** # new children per year ∼ current population
- N # new children per year ∼ resources available per individual
- **O** # new children per year ∼ current population times the fraction of total resources remaining
- 11.1 Determine which population grows fastest in the short term and which grows fastest in the long term.
- 11.2 Are some models more sensitive to your choice of Δ when simulating?
- 11.3 Are your simulations for each model consistently underestimates? Overestimates?
- 11.4 Compare your simulated results with your guesses from question 10.1. What did you guess correctly? Where were you off the mark?

A simple model for population growth has the form

$$P'(t) = kP(t)$$

where *k* is the *birth rate*.

12.1 Create a better model for population that includes both births and deaths.

The Lotka-Volterra Predator-Prey models two populations, F (foxes) and R (rabbits), simultaneously. It takes the form

$$F'(t) = (B_F - D_F) \cdot F(t)$$

$$R'(t) = (B_R - D_R) \cdot R(t)$$

where B_2 stands for births and D_2 stands for deaths.

- 13.1 Come up with appropriate formulas for B_F , B_R , D_F , and D_R , given your knowledge about how foxes and rabbits might interact.
- 13.2 When would B_F and D_F be at their max/min?
- 13.3 When would B_R and D_R be at their max/min?

Suppose the population of *F* (foxes) and *R* (rabbits) evolves over time following the rule

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

- 14.1 Simulate the population of foxes and rabbits with a spreadsheet.
- 14.2 Do the populations continue to grow/shrink forever? Are they cyclic?
- 14.3 Should the humps/valleys in the rabbit and fox populations be in phase? Out of phase?

Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

- 15.1 Is the max population of the rabbits being over/under estimated? Sometimes over, sometimes under?
- 15.2 What about the foxes?
- 15.3 What about the min populations?

Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

Component Graph & Phase Plane. For a differential equation involving the functions $F_1, F_2, ..., F_n$, and the variable t, the *component graphs* are the n graphs of $(t, F_1(t)), (t, F_2(t)),$

The *phase plane* or *phase space* associated with the differential equation is the n-dimensional space with axes corresponding to the values of F_1, F_2, \ldots, F_n .

- 16.1 Plot the Fox vs. Rabbit population in the *phase plane*.
- 16.2 Should your plot show a closed curve or a spiral?
- 16.3 What "direction" do points move along the curve as time increases? Justify by referring to the model.
- 16.4 What is easier to see from plots in the phase plane than from component graphs (the graphs of fox and rabbit population vs. time)?

Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

$$F'(t) = (0.01 \cdot R(t) - 1.1) \cdot F(t)$$

$$R'(t) = (1.1 - 0.1 \cdot F(t)) \cdot R(t)$$

Equilibrium Solution. An *equilibrium solution* to a differential equation or system of differential equations is a solution that is constant in the independent variable(s).

- 17.1 By changing initial conditions, what is the "smallest" curve you can get in the phase plane? What happens at those initial conditions?
- 17.2 What should F' and R' be if F and R are equilibrium solutions?17.3 How many equilibrium solutions are there for the fox-
- and-rabbit system? Justify your answer.

 17.4 What do the equilibrium solutions look like in the
- 17.4 What do the equilibrium solutions look like in the phase plane? What about their component graphs?

Recall the logistic model for starfish growth:

O # new children per year ∼ current population times the fraction of total resources remaining

which can be modeled with the equation

$$P'(t) = k \cdot P(t) \cdot \left(1 - \frac{R_i}{R} \cdot P(t)\right)$$

where

- P(t) is the population at time t
- r (t) is the population at time

• k is a constant of proportionality

• *R* is the total number of resources

• R_i is the resources that one starfish wants to consume

Use k = 1.1, R = 1, and $R_i = 0.1$ unless instructed otherwise.

- 18.1 What are the equilibrium solutions for model **O**?
- 18.2 What does a "phase plane" for model **O** look like?
- 18.3 Classify the behaviour of solutions that lie *between* the equilibrium solutions. E.g., are they increasing, decreasing, oscillating?

What do graphs of equilibrium solutions look like?

Classification of Equilibria. An equilibrium solution *f* is called ■ *attracting* if solutions locally converge to *f*

- attracting it solutions locally converge to
- repelling if solutions locally diverge from fstable if solutions do not locally diverge from f
- *unstable* if solutions do not locally converge to *f*
- *semi-stable* if solutions locally converge to *f* from one side and locally diverge from *f* on another.

Let

$$F'(t) = ?$$

be an unknown differential equation with equilibrium solution f(t) = 1.

- 19.1 Draw an example of what solutions might look like if f is attracting.
- 19.2 Draw an example of what solutions might look like if f is repelling.
- 19.3 Draw an example of what solutions might look like if f is *stable*.
- 19.4 Could f be stable but *not* attracting?

Classification of Equilibria. An equilibrium solution f is called

- **attracting** if solutions locally converge to *f*
- \blacksquare repelling if solutions locally diverge from f
- **stable** if solutions do not locally diverge from *f*
- **unstable** if solutions do not locally converge to f
 - **semi-stable** if solutions locally converge to *f* from one side and locally diverge from f on another.

Recall the starfish population model **O** given by

$$P'(t) = k \cdot P(t) \cdot \left(1 - \frac{R_i}{R} \cdot P(t)\right)$$

Use k = 1.1, R = 1, and $R_i = 0.1$ unless instructed otherwise.

- 20.1 Classify the equilibrium solutions for model **O** as attracting/repelling/stable/unstable/semi-stable.
- 20.2 Does changing k change the nature of the equilibrium solutions? How can you tell?

A *slope field* is a plot of small segments of tangent lines to solutions of a differential equation at different initial conditions.

On the left is a slope field for model \mathbf{O} , available at https://www.desmos.com/calculator/ghavqzqqjn

- 21.1 If you were sketching the slope field for model **O** by hand, what line would you sketch (a segment of) at (5,3)? Write an equation for that line.
- 21.2 How can you recognize equilibrium solutions in a slope field?
- 21.3 Describe different solutions to the *differential equation* using words. Do all of those solutions make sense in terms of *model O*?

- 3d slope fields are possible, but hard to interpret.
- On the left is a slope field for the Foxes–Rabbits model.
- https://www.desmos.com/3d/fsfbhvy2h9
- 22.1 What are the three dimensions in the plot?
- 22.2 What should the graph of an equilibrium solution look like?
- 22.3 What should the graph of a typical solution look like?
- 22.4 What are ways to simplify the picture so we can more easily analyze solutions?

Phase Portrait. A *phase portrait* or *phase diagram* is the plot of a vector field in phase space where each vector rooted at (x, y) is tangent to a solution curve passing through (x, y) and its length is given by the speed of a solution passing through (x, y).

On the left is a phase portrait for the Foxes–Rabbits model.

https://www.desmos.com/calculator/vrk0q4espx

- 23.1 What do the x and y axes correspond to?
- 23.2 Identify the equilibria in the phase portrait. What are the lengths of the vectors at those points?
- 23.3 Classify each equilibrium as stable/unstable.
- 23.4 Why is the vector at (5, 100) longer than the vector at (10, 100)? Justify numerically.

Sketch your own vector field where the corresponding system of differential equations:

- 24.1 Has an attracting equilibrium solution.
- 24.2 Has a repelling equilibrium solution.
- 24.3 Has no equilibrium solutions.

Recall the slope field for model ${\bf O}.$

- 25.1 What would a phase portrait for model **O** look like? Draw it.
- 25.2 Where are the arrows the longest? Shortest?
- 25.3 How could you tell from a 1d phase portrait whether an equilibrium solution is attracting/repelling/etc.?

The following differential equation models the life cycle of a tree. In the model

- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$

 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

and 0 < b < 2

to make a phase portrait for the tree model.

https://www.desmos.com/calculator/vrk0q4espx

- 26.2 What do equilibrium solutions mean in terms of tree growth?
- 26.3 For b = 1 what are the equilibrium solution(s)?

The following differential equation models the life cycle of a tree. In the model

- H(t) = height (in meters) of tree trunk at time t
- A(t) = surface area (in square meters) of all leaves at time t

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$

 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

and 0 < b < 2

- 27.1 Fix a value of b and use a spreadsheet to simulate some solutions with different initial conditions. Plot the results on your phase portrait from 26.1.
- 27.2 What will happen to a tree with (H(0), A(0)) = (20, 10)? Does this depend on b?
- 27.3 What will happen to a tree with (H(0),A(0)) = (10,10)? Does this depend on b?

The tree model

 $H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$ $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

was based on the premises

 $P_{\text{height 1}}$ CO₂ is absorbed by the leaves and turned directly

into trunk height.

The tree is in a swamp and constantly sinks at a speed proportional to its height.

 $P_{\text{leaves 1}}$ Leaves grow proportionality to the energy available.

28.3 Applying Euler's method to this system shows solutions that pass from the 1st to 4th quadrants of the

28.2 What does the parameter *b* represent?

ity to the leaf area.

equations?

such a tree?

The tree absorbs energy from the sun proportional-

 $P_{\text{energy 2}}$ It costs energy proportional to the square of the

28.1 How are the premises expressed in the differential

height for the tree to maintain its current size.

phase plane. Is this realistic? Describe the life cycle of

Recall the tree model

$$H'(t) = 0.3 \cdot A(t) - b \cdot H(t)$$

 $A'(t) = -0.3 \cdot (H(t))^2 + A(t)$

- 29.1 Find all equilibrium solutions for $0 \le b \le 2$.
- 29.2 For which *b* does a tree have the possibility of living forever? If the wind occasionally blew off a few random leaves, would that change your answer?
- 29.3 Find a value b_5 of b so that there is an equilibrium with H = 5.
 - Find a value b_{12} of b so that there is an equilibrium with H = 12.
- 29.4 Predict what happens to a tree near equilibrium in condition b_5 and a tree near equilibrium in condition b_{12} .

Consider the system of differential equations

$$x'(t) = x(t)$$
$$y'(t) = 2y(t)$$

- 30.1 Make a phase portrait for the system.
- 30.2 What are the equilibrium solution(s) of the system?
- 30.3 Find a formula for x(t) and y(t) that satisfy the initial conditions $(x(0), y(0)) = (x_0, y_0)$.
- 30.4 Let $\vec{r}(t) = (x(t), y(t))$. Find a matrix *A* so that the differential equation can be equivalently expressed as

$$\vec{r}'(t) = A\vec{r}(t).$$

30.5 Write yo