WYKŁAD 3

MAŁOSYGNAŁOWA ANALIZA CZĘSTOTLIWOŚCIOWA (AC) SIECI NIELINIOWYCH

Definicja sieci nieliniowej

Sieć nieliniowa jest to sieć elektryczna zawierająca co najmniej jedną idealną gałąź nieliniową.

Jakie mogą być idealne gałęzie nieliniowe?

Nazwa	schemat	równanie	zdefiniowanie
Przewodność nieliniowa	n+ $i=f(u)$ $n u$	i = f(u)	Prądowe
Rezystancja nieliniowa	n+ i $n u=f(i)$	u = f(i)	Napięciowe
Źródło prądowe sterowane napięciem (ŹPSN) nieliniowe	nb+ nb- ub na+ ia=f(ub) ua	$i_a = f(u_b)$	Prądowe

Źródło prądowe sterowane prądem (ŹPSP) nieliniowe	nc+ ic $na+$ $ia=f(ic)$ $na ua$	$i_a = f(i_c)$	Prądowe
Źródło napięciowe sterowane napięciem (ŹNSN) nieliniowe	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$u_a = f(u_b)$	Napięciowe
Źródło napięciowe sterowane prądem (ŹNSP) nieliniowe	nc+ ic $na+$ ia $ua=f(ic)$	$u_a = f(i_c)$	Napięciowe
Pojemność nieliniowa	q(u) u n - u	i = dq(u)/dt	Prądowe
Indukcyjność nieliniowa	u v	$u = d\psi(i)/dt$	Napięciowe

W praktyce idealne elementy nieliniowe występują w modelach elementów nieliniowych takich jak diody, tranzystory itp.

Definicja małosygnałowej analizy częstotliwościowej (AC) sieci nieliniowych

• Jest to obliczanie amplitudy i fazy odpowiedzi sieci nieliniowej w stanie ustalonym przy wymuszeniu sinusoidalnym o nieskończenie małej amplitudzie.

UWAGI:

- Sieci nieliniowe przy nieskończenie małych amplitudach wymuszeń pracują jak sieci zastępcze zlinearyzowane w otoczeniu punktów pracy elementów.
- Sieci zastępcze zlinearyzowane analizujemy za pomocą analizy AC tak jak w wykładzie 2.
- Sieć zastępczą liniową do analizy AC nazywamy siecią IMMITANCYJNĄ.
- W tej sieci przyjmuje się wymuszenia sinusoidalne o amplitudzie jednostkowej (1V, 1A) i fazie 0 stopni. Amplituda i faza odpowiedzi sieci zastępczej liniowej opisuje wzmocnienie i przesunięcie fazy rozwiązania małosygnałowego sieci nieliniowej.
- UWAGA: mały sygnał sinusoidalny występuje na tle punktu pracy OP:
 x_{OP} + A*sin(ω*t), gdzie A << |x_{OP}|

Interpretacja geometryczna pracy małosygnałowej elementu nieliniowego i(u)

Niech i(u) będzie funkcją ciągła i różniczkowalna w otoczeniu punktu u₀.

Styczna opisuje model immitancyjny elementu i(u) w analizie małosygnałowej AC w punkcie pracy u_0 . Jest ona opisana równaniem: $i-i(u_0)=\frac{di(u_0)}{du}(u-u_0)=i'(u-u_0)$.

Jeżeli u(t) jest wymuszeniem sinusoidalnym o amplitudzie A to zniekształcona odpowiedź nieliniowa ma amplitudę B, zaś odpowiedź małosygnałowa AC ma amplitudę i'*A.

Jak utworzyć małosygnałową sieć immitancyjną?

- Elementy nieliniowe zastępujemy elementami zlinearyzowanymi w punkcie pracy.
- Elementy rezystancyjne liniowe pozostawiamy bez zmian.
- Elementy reaktancyjne liniowe zastępujemy elementami immitancyjnymi za pomocą transformacji w dziedzinę wskazów (operator jω), jak w wykładzie 2.
- a) Model immitancyjny przewodności nieliniowej (np. dla diody) w punkcie pracy uo.

Ogólnie przewodność nieliniowa jest opisana równaniem i = f(u), f(0)=0 (el. bierny).

Na przykład dla diody jest to równanie: $i = I_s(\exp(u/U_T - 1))$.

Linearyzacja przewodności w punkcie pracy:

$$i - f(u_0) = \frac{df(u_0)}{du}(u - u_0), \qquad \frac{df(u_0)}{du} = \frac{I_s \exp(u_0/U_T)}{U_T} = G_0$$

czyli przyrost prądu = G_0 *przyrost napięcia

Stąd równanie immitancyjne: $I = G_0U$,

b) Analogicznie model immitancyjny rezystancji nieliniowej u = f(i) w punkcie pracy i₀:

$$U = \frac{df(i_0)}{di}I = R_0I$$

c) Analogicznie model immitancyjny źródła prądowego sterowanego dwoma napięciami:

 $i_a = f(u_a, u_b)$ ma postać:

$$I_a = \frac{\partial f(u_{a0}, u_{b0})}{\partial u_a} U_a + \frac{\partial f(u_{a0}, u_{b0})}{\partial u_b} U_b$$

d) Model immitancyjny źródła prądowego stałego $i = j_0$:

 $i - j_0 = 0$ (po przekształceniu do równania przyrostowego – przyrost jest zerowy)

I = 0 (równanie immitancyjne ROZWARCIA)

e) Model immitancyjny źródła napięciowego stałego $u=e_0$:

 $u - e_0 = 0$ (po przekształceniu do równania przyrostowego – przyrost zerowy)

U = 0 (równanie immitancyjne ZWARCIA)

f) Model immitancyjny źródła prądowego sinusoidalnego i=A*sin(ωt+f):

I=Aexp(jf) (wskazowe źródło prądowe - typowo A=1, f=0)

g) Model immitancyjny źródła napięciowego sinusoidalnego u=A*sin(ωt+f):

U=Aexp(jf) (wskazowe źródło napięciowe - typowo A=1, f=0)

h) Model immitancyjny pojemności i indukcyjności liniowej – tak jak w Wykładzie 2.

$$I = j\omega C U = Y U$$
; $U = j\omega L I = Z I$

i) Model immitancyjny pojemności nieliniowej w punkcie pracy u₀

Gdy pojemność nieliniowa opisana jest pojemnością dynamiczną:

$$i = C(u_0) \frac{du}{dt}$$
 \rightarrow wówczas MODEL IMMITANCYJNY ma postać: $I = j\omega C(u_0)U$

gdzie np. dla pojemności dyfuzyjnej diody $C(u_0) = \frac{Q_0}{U_T} e^{u_0/U_T}$.

(do analizy małosygnałowej AC bierzemy wartość pojemności dynamicznej w punkcie pracy u₀)

j) Model immitancyjny indukcyjności nieliniowej w punkcie pracy io

Analogicznie: $u = L(i_0) \frac{di}{dt} \rightarrow \text{MODEL IMMITANCYJNY}$: U = ZI, $Z = j\omega L(i_0)$

(do analizy małosygnałowej AC bierzemy wartość indukcyjności dynamicznej w punkcie pracy)

Uwaga: W analizie małosygnałowej AC rozróżniamy oznaczenia wartości punktów pracy np. u₀ , i₀ od oznaczeń wskazów sygnałów sinusoidalnych np. U, I

Przykład 1: Analiza małosygnałowa AC poniższej sieci nieliniowej

Elementy sieci nieliniowej:

$$j_1(t) = j_{10} + A*sin(\omega t + \phi)$$

pojemność opisana ładunkiem: $q_3(u_3) = Q_0^* \exp(u_3/U_T)$ lub pojemnością dynamiczną

$$C_3(u_{30}) = dq_3(u_{30})/du_3 = (Q_0/U_T)*exp(u_{30}/U_T)$$

indukcyjność opisana strumieniem: $\psi_4(i_4) = \Psi_0^*(i_4/I_0)^3$ lub indukcyjnością dynamiczną

$$L_4(i_{40}) = d\psi_4(i_{40})/di_4 = (3 \Psi_0/I_0)^*(i_{40}/I_0)^2$$

przewodność nieliniowa: $i_5(u_3) = I_0*arctg(u_3/U_0)$

Obliczamy elementy sieci immitancyjnej:

$j_1 = j_{10} + A\sin(\omega t + \phi)$	model immitancyjny	J_1 =Aexp(j ϕ) typowo A=1, ϕ =0
$i_2=G_2$ u_2	model immitancyjny	$I_2=G_2 U_2$
i ₆ =G ₆ u ₆	model immitancyjny	$I_6=G_6$ U_6
$i_5=i_5(u_3)$	model immitancyjny	I ₅ = g ₅₃₀ U ₃ , gdzie g530=di ₅ (u ₃₀)/du ₃ , gdzie u ₃₀ wartość u ₃ w p. pracy
$i_3 = C_3(u_{30}) du_3/dt$	model immitancyjny	I_3 = j ω C ₃ (u_{30})U ₃ = Y ₃₀ U ₃ gdzie u_{30} wartość u_3 w p. pracy
$u_4 = L_4(i_{40}) di_4/dt$	model immitancyjny	U ₄ = jωL ₄ (i ₄₀) I ₄ = Z ₄₀ I ₄ gdzie i ₄₀ wartość i ₄ w p. pracy

Rysujemy sieć immitancyjną

Układamy równania immitancyjne ZMPW (tylko gałąź nr 4 jest zdefiniowana napięciowo):

$$G_2^*V_1 + j\omega C_{30}^*V_1 + I_4 = J_1$$
 (J₁=1)
-I₄- g₅₃₀*V₁+ G₆*V₂= 0
 $j\omega L_{40}^*I_4$ - (V₁-V₂)= 0

UWAGA: punkty pracy elementów C₃ i L₄ : u₃₀, i₄₀ muszą być znane z analizy OP.

Ogólnie równania ZMPW do analizy małosygnałowej AC mają postać:

$$Y(\omega, punkt_pracy) X = B$$

Modele reaktancyjne nieliniowe elementów półprzewodnikowych

Model reaktancyjny nieliniowy Shichmanna - Hodgesa tranzystora MOS z kanałem wzbogacanym i bez diod pasożytniczych do podłoża

Podłoże B zwykle najbardziej ujemne

Podłoże B zwykle najbardziej dodatnie

UWAGA: prąd i napięcia w NMOS i PMOS strzałkujemy jednakowo, jak na rysunku.

napięcie progowe

$$V_t = V_{t0} + \frac{\gamma typ v_{SB}}{\sqrt{2\phi_f + typ v_{SB}} + \sqrt{2\phi_f}}$$

Dla NMOS wartości tych napięć będą dodatnie: $v_{SB}>=0$, $V_{t0}>0$, $V_t>0$; Dla PMOS wartości tych napięć będą ujemne: $v_{SB}<=0$, $V_{t0}<0$, $V_t<0$.

Wzór na prąd drenu:

$$i_{D} = \begin{cases} 0, & typ(v_{GS} - V_{t}) \leq 0 \\ 0.5K_{n} \frac{W}{L} v_{DS} \left[2(v_{GS} - V_{t}) - v_{DS} \right] (1 + \lambda v_{DS}), & typ(v_{GS} - V_{t}) > 0, typ v_{DS} \leq typ(v_{GS} - V_{t}) \\ 0.5K_{n} \frac{W}{L} (v_{GS} - V_{t})^{2} (1 + \lambda v_{DS}), & typ(v_{GS} - V_{t}) > 0, typ v_{DS} \geq typ(v_{GS} - V_{t}) \end{cases}$$

Uwaga:

Dla NMOS te wartości będą dodatnie: $v_{DS}>=0$, $v_{GS}>=0$, $v_{SB}>=0$, $V_{t0}>0$, $K_n>0$, $\lambda>0$

Dla PMOS te wartości będą ujemne: $v_{DS} \le 0$, $v_{GS} \le 0$, $v_{SB} \le 0$, $V_{t0} \le 0$, $V_{t0} \le 0$, $V_{t0} \le 0$

Parametry modelu tranzystora MOS

Uwaga: typowe wartości są zgrubne. W projekcie należy użyć wartości parametrów podanych w temacie projektu.

symbol	objaśnienie	Typowa wartość
Тур	1 dla NMOS, -1 dla PMOS	1 lub -1
V_{t0}	Napiecie progowe przy zerowej polaryzacji (>0 dla NMOS, <0 dla PMOS)	1 lub -1 [V]
ϕ_f	Potencjał powierzchniowy (>0)	0.65 [V]
γ	Współczynnik potencjału progowego (>0)	0.3 [1/V]
W	Szerokość kanału (>0)	5 [um]
L	Długość kanału (>0)	5 [um]
$K_n = \mu_n C_{ox}$	Współczynnik transkonduktancji NMOS (>0)	3e-5 [A/V ²]
$K_p = \mu_p C_{ox}$	Współczynnik transkonduktancji PMOS (<0)	-3e-5 [A/V ²]
λ	Współczynnik modulacji długości kanału (>0 dla NMOS, <0 dla PMOS)	0.02 ew0.005 [1/V]
C_{GS0}	Pojemność bramka-źródło na jednostkę W	1 [uF/m]
C_{GD0}	Pojemność bramka-dren na jednostkę W	1 [uF/m]
C_{GB0}	Pojemność bramka-podłoże na jednostkę L	1 [uF/m]

Model reaktancyjny nieliniowy Shockley'a diody (bez efektu przebicia Zenera)

$$i_D(u_D) = I_s \left(\exp(\frac{u_D}{NU_T}) - 1 \right)$$

$$C_D(u_D) = \frac{\tau I_s}{NU_T} \exp(\frac{u_D}{NU_T}) + \frac{C_{j0}}{\left(1 - \frac{u_D}{V_j}\right)^m}$$

Parametry

Symbol	Objaśnienie	Typowa wartość
IS	Prąd nasycenia	5e-15 [A]
N	Współczynnik nieidelaności	1
TT	Czas przelotu	130 [ns]
CJ0	Pojemność złączowa przy zerowej polaryzacji	19 [pF]
VJ	Napięcie odniesienia	2 [V]
M	Wykładnik złącza zależny od profilu domieszek	0.9
U _T =kT/q	Potencjał elektrotermiczny	25mV

Model reaktancyjny nieliniowy Ebersa-Molla tranzystora bipolarnego

$$\begin{split} i_{B} &= typ \frac{I_{s}}{BF} \left(\exp(\frac{typ \ u_{BE}}{NF \ UT}) - 1 \right) + typ \frac{I_{s}}{BR} \left(\exp(\frac{typ \ u_{BC}}{NR \ UT}) - 1 \right) \\ i_{C} &= typ \ IS \left(\exp(\frac{typ \ u_{BE}}{NF \ UT}) - \exp(\frac{typ \ u_{BC}}{NR \ UT}) \right) - typ \frac{I_{s}}{BR} \left(\exp(\frac{typ \ u_{BC}}{NR \ UT}) - 1 \right) \\ C_{BE} &= TF(1 + 1/BF) \frac{IS}{NF \ UT} \exp(\frac{typ \ u_{BE}}{NF \ UT}) + \frac{CJE0}{\left(1 - \frac{typ \ u_{BE}}{VJE}\right)^{MJE}} \\ C_{BC} &= TR \frac{IS}{NR \ UT} \exp(\frac{typ \ u_{BC}}{NR \ UT}) + \frac{CJC0}{\left(1 - \frac{typ \ u_{BC}}{VJC}\right)^{MJC}} \end{split}$$

Parametry

Symbol	Objaśnienie	Typowa wartość
typ	Parametr typu tranzystora	1 dla NPN, -1 dla PNP
IS	Prąd nasycenia	6e-14 [A]
BF	Wzmocnienie prądowe w przód	100
BR	Wzmocniennie prądowe wstecz	70
NF	Współczynnik nieidealności w przód	1
NR	Współczynnik nieidealności wstecz	1
RB	Rezystancja rozproszona bazy	50 [Ω]
TF	Czas przelotu w przód	0.8 [ns]
TR	Czas przelotu wstecz	55 [ns]
CJC	Pojemność złączowa BC przy zerowym nap.	15 [pF]
CJE	Pojemność złączowa BE przy zerowym nap.	108 [pF]
VJC	Potencjał odniesienia pojemności BC	0.51 [V]
VJE	Potencjał odniesienia pojemności BE	0.7 [V]
MJC	Wykładnik pojemności BC	0.4
MJE	Wykładnik pojemności BE	0.35
UT=kT/q	Potencjał elektrotermiczny	25 [mV]

Modele immitancyjne elementów diode, mos i bjt (biblioteka MOSSLIB)

Funkcje DIODE, MOSFET i BJT z biblioteki MOSSLIB są użyteczne do analiz AC,OP,TR. Wywołujemy je wewnątrz funkcji do układania macierzy Y sieci.

Co oblicza funkcja DIODE?

```
i_D = f(u_D) (przewodność nieliniowa diody)

i_D = f(UD) + f'(UD) * (u_D - UD) (linearyzacja w punkcie pracy UD)

i_D - f(UD) = f'(UD) * (u_D - UD) (równanie dla przyrostów)

I_D = GD * U_D (równanie immitancyjne dla wskazów)

CD = C_D(UD) (pojemność diody)
```

Model immitancyjny diody (dla danego UD zwraca on wielkości GD i CD)

Wywołujemy: [ID,JD,GD,CD]=DIODE(UD,IS,UT,TT,CD0,N,U0,m)

Gdzie UD = napięcie stałe na diodzie otrzymane z analizy OP

Co oblicza funkcja BJT?

```
i_B - f_B(UBE, UBC) = GBE * (u_{BE} - UBE) + GBC * (u_{BC} - UBC) (przyrosty)

i_C - f_C(UBE, UBC) = GCE * (u_{BE} - UBE) + GCC * (u_{BC} - UBC) (przyrosty)

I_B = GBE * U_{BE} + GBC * U_{BC} (wskazy)

I_C = GCE * U_{BE} + GCC * U_{BC} (wskazy)

CBE = C_{RE}(UBE), CBC = C_{RC}(UBC)
```

Model immitancyjny BJT (dla UBE, UBC zwraca GBE,GBC,GCE,GCC,CBE,CBC)

Wywołujemy: [IB,JB,GBE,GBC,IC,JC,GCE,GCC,CBE,CBC]=

=BJT(UBE,UBC,IS,NF,NR,UT,BF,BR,TF,TR,CBE0,CBC0,Uje0,me,Ujc0,mc,typ)

gdzie UBE, UBC = napięcia stałe na BJT otrzymane z analizy OP

Co oblicza funkcja MOS

$$i_D - f_D(UGS, UDS, USB) = GG * (u_{GS} - UGS) + GD * (u_{DS} - UDS) + GB * (u_{SB} - USB)$$

$$I_D = GG * U_{GS} + GD * U_{DS} + GB * U_{SB}$$
(wskazy)

 $CGS = C_{GS}(UGS), CGD = C_{GD}(UGS - UDS), CGB = C_{GB}(UGS + USB)$

Model immitancyjny MOS (dla UGS,UDS,USB zwraca GG,GD,GB,CGS,CGD,CGB)

Wywołujemy: [ID,JD,GG,GD,GB,CGS,CGD,CGB]=MOSFET...

(UGS,UDS,USB,Vt0,gamma,fif,Kn,lambda,W,L,CGS0,CGD0,CGB0,U0,m,typ)

gdzie: UGS, UDS, USB = napięcia stałe MOSFET z analizy OP

Przykład 2: układ jednotranzystorowy (podobny do układów z projektu)

Z analizy OP pobieramy stałe napięcia i prądy: v10,v20,v30,v40,v50, i10, i70 oraz potencjał bazy wewnętrznej tranzystora: v60.

Parametry modelu immitancyjnego tranzystora bjt obliczamy funkcją BJT na podstawie UBE= v60-v40, UBC= v60-v50. BJT zwraca: [GBE,GBC,GCE,GCC,CBE,CBC].

Sieć immitancyjna liniowa dla Przykładu 2.

W sieci immitancyjnej niewiadomymi będą wskazy odpowiedzi sinusoidalnych: V1,V2,V3,V4,V5,V6,I1,I7

Równania immitancyjne ZMPW do analizy małosygnałowej AC dla Przykładu 2.

GBE,GBC,GCE,GCC,CBE,CBC obliczamy z funkcji BJT.

 $11+j\omega C2*(V1-V2)=0$

 $-j\omega C2*(V1-V2)+G3*V2-G4*(V3-V2)+G12*(V2-V6)=0$

G4*(V3-V2)+G6*(V3-V5)+I7=0

 $G5*V4+j\omega C5*V4-GBE*(V6-V4)-GBC*(V6-V5)-j\omega CBE*(V6-V4)-GCE*(V6-V4)+\dots$

 $-GCC^*(V6-V5)=0$

 $-G6*(V3-V5)-j\omega CBC*(V6-V5)+GCE*(V6-V4)+GCC*(V6-V5)=0$

 $-G12*(V2-V6)+GBE*(V6-V4)+GBC*(V6-V5)+j\omega CBE*(V6-V4)+j\omega CBC*(V6-V5)=0$

V1=A

V3=0 (napięciowe źródło zasilające E7 zastępujemy zwarciem)

Algorytm do analizy małosygnałowej AC sieci nieliniowej

```
Dane.
         fmin, fmax, skala ('lin','log'), npoints, mout, nout,
         punkty pracy wszystkich elementów nieliniowych (z analizy OP);
i=1; f=fmin
if strcmp(skala,'lin'), deltaf=(fmax-fmin)/(npoints-1); else deltaf=10^(1/npoints); end
dla każdej gałęzi nieliniowej obliczenie modeli immitancyjnych w ich punktach pracy (w
tym wywołanie DIODE, MOSFET, BJT);
while(1)
 dla pulsacji \omega = 2\pi f ułożenie wg. ZMPW macierzy Y i wektora B sieci immitancyjnej;
 X = Y \setminus B:
 syg=X(mout)-X(nout); % ew. syg może być względem masy lub prąd
 ff(i)=f; ch_amp(i)=abs(syg); ch_faz(i)=180*unwrap(angle(syg))/pi; i=i+1;
 if strcmp(skala,'lin'), f=f+deltaf; else f=f*deltaf; end
 if (f>fmax) break; end
end
wykres charakterystyk amplitudowych i fazowych na podstawie ff, ch_amp, ch_faz;
```

Kod i symulacja Spice

```
* przyklad 2 wzmacniacz npn
vin 1 0 0 AC 1
c2 1 2 10u
q1 5 6 4 mq1
rbb 2 6 50
                      *uwaga rezystancja bazy wyprowadzona na zewnątrz modelu bjt
r3 2 0 10k
r4 3 2 10k
r5 4 0 10k
r6 3 5 10k
c5 4 0 10u
vcc 3 0 5
.Model mq1 npn is=1e-14 bf=100 br=10 nf=1 nr=1 rb=0 tf=1n tr=1n cjc=1p cje=1p vjc=0.7 vje=0.7 mjc=0.3 mje=0.3
                                                                                                               *w modelu rb zerowa
.OP
.AC dec 100 10 1g
.end
```


Kod i rozwiązanie dla Przykładu 2 (Matlab)

```
fmin=1e1; fmax=1e9; skala='log'; npoints=100; mout=5; n=8;
G12=1/50; G3=1/1e4; G4=1/1e4; G5=1/1e4; G6=1/1e4; C2=100e-6; C5=100e-6;
IS=1e-14; NF=1; NR=1; UT=0.0257; BF=100; BR=10;
TF=1e-9; TR=1e-9; CBE0=1e-12; CBC0=1e-6; Uje0=0.9; me=0.3; Ujc0=0.9; mc=0.3; typ=1;
%rozwiazanie OP
xop=[0,2.4907,5,1.87899,3.13962,2.49061,0,0]; UBE=xop(6)-xop(4); UBC=xop(6)-xop(5);
[IB.JB.GBE.GBC.IC.JC.GCE.GCC,CBE,CBC]=BJT(UBE,UBC,IS,NF,NR,UT,BF,BR,TF,TR,CBE0,CBC0,Uje0,me,Ujc0,mc,typ);
i=1; f=fmin; if strcmp(skala, 'lin'), deltaf=(fmax-fmin)/(npoints-1); else, deltaf=10^(1/npoints); end
while(1)
   %zmienne ZMPW [v1,...,v6,i1,i7]
   Y=zeros(n); B=zeros(n,1); omega=2*pi*f;
   Y(1,7)=1; Y(1,1)=1;*omega*C2; Y(1,2)=-1;*omega*C2;
   Y(2,1)=-1;*omega*C2; Y(2,2)=1;*omega*C2+G3+G4+G12; Y(2,3)=-G4; Y(2,6)=-G12;
   Y(3,2)=-G4; Y(3,3)=G4+G6; Y(3,5)=-G6; Y(3,8)=1;
   Y(4,4)=G5+1;*omega*C5+GBE+1;*omega*CBE+GCE; Y(4,6)=-GBE-GBC-1;*omega*CBE-GCC; Y(4,5)=GBC+GCC;
   Y(5,3)=-G6; Y(5,4)=-GCE; Y(5,5)=G6+1;*omega*CBC-GCC; Y(5,6)=-1;*omega*CBC+GCE+GCC;
   Y(6,2) = -G12; Y(6,4) = -GBE-1; *omega*CBE; Y(6,5) = -GBC-1; *omega*CBC; Y(6,6) = G12 + GBE + GBC + 1; *omega*CBE+1; *omega*CBC;
   Y(7,1)=1;
   Y(8,3)=1;
   B(7,1)=1;
    X = Y \setminus B;
    syg=X(mout); % syg względem masy
   ff(i)=f; ch amp(i)=20*log10(abs(syg)); ch faz(i)=180*unwrap(angle(syg))/pi; i=i+1;
   if strcmp(skala, 'lin'), f=f+deltaf; else f=f*deltaf; end
    if (f>fmax), break; end
end
subplot(2,1,1)
semilogx(ff,ch amp,'r-');
xlabel('f'); ylabel('V(5) dB'); title('wykres wzmocnienia');
subplot(2,1,2)
semilogx(ff,ch faz,'b-');
xlabel('f'); ylabel('arg(V(5))'); title('wykres fazy');
```


Przykład 3: układ z tranzystorem NMOS (napięcie USB do podłoża jest zerowe)

Uwaga: Podłoże zwarte ze źródłem: USB=0

Równania immitancyjne ZMPW z niewiadomymi V1, V2, V3, I1, Iz:

GD0, GG0, YGD0=jω*CGD, YGS0=jω*CGS, YGB0=jω*CGB obliczamy z MOSFET.

YGD0*(V1-V2)+(YGS0+YGB0)*V1+I1=0
- YGD0*(V1-V2)+GD0*V2+GG0*V1-G*(V3-V2)=0
G*(V3-V2)+Iz=0
V1=A
V3=0