

CSI 436/536 (Spring 2025) Machine Learning

Lecture 11: Support Vector Machines

Chong Liu

Department of Computer Science

Mar 3, 2025

Announcement

HW 2 due today.

• HW 1 and 2 review this Wednesday.

Midterm exam next Monday.

Midterm presentation next Wednesday.

Recap: Regularization

- Linear regression
 - Solving the Least Square problem {with GD, SGD and direct solver}
- Regularization
 - Controls the parameter complexity of the fitted function
 - Prevents overfitting!
 - Different regularization: L-2 (most popular) and L-1
- Case study: Predict House Price
 - Effect of regularization on training test and test error
 - Regularization path (Effect of regularization on coefficients)

Today

- Move back to binary classification problem
 - Spam email / non-spam email
- Margin
- Support Vector Machines
- Warning: While without any proof, today's lecture will be very technical. Feel free to interrupt me at any point to ask questions.
- Midterm exam overview

Discussion: which is the best classifier?

Linear classification

- Input: $x = [x_1, x_2] \in \mathbb{R}^2$
- Output: $y \in \{1, -1\}$
- Data: *n* data points
- Decision line:
 - $\bullet \ w^T x + b = 0$
 - $w \in \mathbb{R}^2$, $b \in \mathbb{R}$ are parameters
 - In-class exercise: Rewrite $x_2 = x_1 5$ in $w^T x + b = 0$ form.

Margin: min distance of data point to line

- Any data point:
 - $x \in \mathbb{R}^2$
- Any line:

•
$$w^T x + b = 0$$

Margin:

•
$$r = \frac{|w^T x + b|}{||w||}$$

 Red line: We want to learn a maxmargin classifier!

Max-margin classifier

 Discussion: by maximizing margin, which data points are important?

Support vectors:

- Data points closest to red line.
- Only support vectors affect the training process.
- Support vector machines (SVM)
 == max-margin classifier

- Assumption:
 - Linearly separable data points
- Recap: Linear classifier

• If
$$y = 1, w^T x + b > 0$$

• If
$$y = -1$$
, $w^T x + b < 0$

- Key idea of SVM:
 - If $y = 1, w^T x + b \ge 1$
 - If y = -1, $w^T x + b \le -1$
 - Why? Support vectors are only data points that matter.

- Key idea of SVM:
 - If $y = 1, w^T x + b \ge 1$
 - If y = -1, $w^T x + b \le -1$
- Recap: Margin for any data point x

•
$$r = \frac{|w^T x + b|}{||w||}$$

 Total margin between support vectors:

•
$$\gamma = \frac{2}{||w||}$$

- Key idea of SVM:
 - If $y = 1, w^T x + b \ge 1$
 - If y = -1, $w^T x + b \le -1$
- Total margin between support vectors:
 - $\gamma = \frac{2}{||w||}$
- Optimization problem of SVM:
 - $\max_{w,b} \frac{2}{||w||}$
 - s.t. $y_i(w^T x_i + b) \ge 1, i = 1, ..., n$

- Optimization problem of SVM:
 - $\max_{w,b} \frac{2}{||w||}$
 - s.t. $y_i(w^Tx_i + b) \ge 1, i = 1, ..., n$
- Equivalent optimization problem:
 - $\min_{w,b} \frac{1}{2} ||w||$
 - s.t. $y_i(w^Tx_i + b) \ge 1, i = 1, ..., n$
 - Quadratic programming problem
 - Can be solved using some optimization tools, e.g., CPLEX.

- Equivalent optimization problem:
 - $\min_{w,b} \frac{1}{2} ||w||$
 - s.t. $y_i(w^Tx_i + b) \ge 1, i = 1, ..., n$
- In-class exercise:
 - Write the optimization problem with three support vectors:

$$(6,2) +, (7,1) -, (8,2) -.$$

Take a deeper look at optimization problem

- Equivalent optimization problem:
 - $\min_{w,b} \frac{1}{2} ||w||$
 - s.t. $y_i(w^Tx_i + b) \ge 1, i = 1, ..., n$
- In-class exercise: Write the Lagrange function
 - $\min_{w,b} \left| \frac{1}{2} ||w|| + \sum_{i=1}^{n} \lambda_i \left(1 y_i (w^T x_i + b) \right) \right|$ Related to a New surrogate loss function Hinge loss!

L-2 regularization on parameter!

Weight of each data point

What if data points are not linearly separable?

•
$$y_i(w^Tx_i + b) \ge 1$$
 is violated. x_2

- What can we do?
 - Key idea: we give some tolerance.
- New constraint:
 - $y_i(w^Tx_i + b) \ge 1 \xi$
 - $\xi > 0$
 - Discussion: what happens when O ξ is very large / small?

Soft-Margin Support Vector Machines

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

$$s.t. \quad y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i \in [n]$$

$$\xi_i \ge 0 \quad \forall i \in [n]$$

Equivalent to minimizing *Hinge losses*:

$$\min_{\mathbf{w},b} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max \left[1 - y_i(\mathbf{w}^T \mathbf{x} + b), 0\right]$$

Hyperparameter C in **soft-margin SVM** and how they affect the margins and "support vectors".

As C increases, smaller tolerance and fewer soft-margin support vectors.

Checkpoint of Lecture 1-11

- Tasks of ML:
 - Classification (spam / non-spam email) and regression (house price)
- Philosophy of designing ML algorithms:
 - Regularization: Control the complexity of parameters
 - Prevent overfitting
 - Fun fact: L-2 regularization is associated with max margin classifier
 - Optimization: Toolbox of ML
 - ML problem => optimization problem
 - Direct solver, GD, SGD, and much more!
 - Minimize the loss / parameter complexity
 - Maximize the margin

Midterm exam

- What does the exam look like?
 - 80 min (3 4:20pm) on Mon Mar 10 at LC 4
 - Please arrive 5min earlier!
 - Closed-book exam
 - Given individually (not in groups!)
 - Counts 20% towards your final grades
 - No make-up exam
- What to bring?
 - Your pen only.
- What not to bring?
 - Your book, note, lecture slide, or cheat sheet.

What are you expected to know?

- Basic mathematical tools
 - In our math review (Lecture 2-4)
 - Linear algebra, calculus and optimization, probability and statistics

What are you expected to know?

- Basic concepts of machine learning
 - Classification and regression
 - Input space (feature space), output space (label space), hypothesis class
 - Confusion matrix of binary classification
 - Accuracy
 - Holdout / cross validation / hyperparameter
 - Problem of overfitting
 - Loss function
 - Linear model

What are you expected to know?

- Understanding how machine learning algorithms work
 - Why do we need surrogate loss in classification?
 - Why do we need SGD? Drawback of GD?
 - How to define a linear classifier / linear regression?
 - Why do we need SVM? Difference between linear classifier and SVM.
 - Why do we need regularization? How to apply it?
- Important tips:
 - Review HW 1 and 2 and all in-class exercise problems.