

GSeqAtt

Graph **Seq**uence Neural Network with an **Att**ention Mechanism for Traffic Speed Prediction

23.3.15

01 GSeqAtt 创新点

➤ GNAtt: 解决(有向)图中信息传播问题——a vertical mechanism

➤ GTransformer: 实现时间自我注意机制处理图序列——a horizontal mechanism

问题定义

> Graph to Be Processed by a GNN

$$G = (V, E, V^{attr}, E^{attr}, U^{attr})$$

> Road Network

$$G=(V,E)$$

➤ Linkage Graph

$$G^* = (V^*, E^*)$$

算法描述: GNAtt——GN Blocks + GATs

> GN Block: Graph to Graph

• 主要思想: 更新和聚合

$$G = (u, V, E)$$

(a) Full GN block

^{*}Relational inductive biases, deep learning, and graph networks

算法描述: GNAtt——GN Blocks + GATs

> GAT: Graph Attention Networks

• 优势: 适用于有向图,适用于inductive任务

$$e_{ij} = a\left(\left[Wh_i\middle|Wh_j
ight]\right), j \in \mathcal{N}_i \ lpha_{ij} = rac{exp(LeakyReLU(e_{ij}))}{\sum_{k \in \mathcal{N}_i} exp(LeakyReLU(e_{ik}))}$$

$$egin{aligned} h_i^{'} &= \sigma\left(\sum_{j \in \mathcal{N}_i} lpha_{ij} W h_j
ight) \ h_i^{'}(K) &= ig|_{k=1}^K \sigma\left(\sum_{j \in \mathcal{N}_i} lpha_{ij}^k W^k h_j
ight) \end{aligned}$$

算法描述: GNAtt——GN Blocks + GATs

➤ **GNAtt:** GN Block with an Attention Mechanism

Input:

$$G = (V, E, V^{attr}, E^{attr}, U^{attr})$$

Output:

$$G' = (V', E', V^{attr'}, E^{attr'}, U^{attr'})$$

平均汇聚函数

 \rightarrow

差分加权汇聚

$$\rho_{ori}^{e2v} = \frac{1}{|inEdge(v)|} \sum_{e_{w,v} \in inEdge(v)} h_{e_{w,v}}^{l},$$

$$\rho_{att}^{e2v} = \sum_{e_{w,v} \in inEdge(v)} \alpha_{(v,e_{w,v})} * h_{e_{w,v}}^{l}.$$

$$h_{e_{w,v}}^l = \phi^e(e_{w,v}, w, v, U^{attr}).$$

$$\alpha_{(\upsilon,e_{w,\upsilon})} = \frac{\exp\left(LeakyReLU\left(DS1\left(h_{e_{w,\upsilon}}^{l}\right)\right)\right)}{\sum_{e_{w,k} \in inEdge(\upsilon)} \exp\left(LeakyReLU\left(DS1\left(h_{e_{k,\upsilon}}^{l}\right)\right)\right)}.$$

算法描述: GTransformer

$$\mathcal{GSEQ}_{IN} = [\mathcal{G}_{in}^1, \mathcal{G}_{in}^2, \dots, \mathcal{G}_{in}^T], \quad \mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

$$\mathcal{G}_ele = \mathcal{V} \cup \mathcal{E} \cup G$$

$$\mathcal{GSEQ_OUT} = [\mathcal{G}_{out}^1, \mathcal{G}_{out}^2, \dots, \mathcal{G}_{out}^T].$$

算法描述: Mixed Attention

04 ◆ 数据集

➤ Q-Traffic dataset

- query sub-dataset
- traffic speed sub-dataset
- road network sub-dataset

Table 1. Statistics of the Traffic Speed Sub-dataset

Item	Description
Road segments	15,073
Total length	738.91 km
Interval	15 minutes
Time	April 1, 2017–May 31, 2017
Total records	265,967,808
Long/lat bounding box	(116.10, 39.69, 116.71, 40.18)

Table 2. Examples of the Geographical Attributes of Each Road Segment

Field	Туре	Description
link_id	Char(13)	road segment ID
width	Char(3)	width, 15: <=3.0 m; 30: (3.0 m, 5.0 m); 55: (5.5 m, 13 m);
		130: >13 m
direction	Char(1)	direction, 0: unknown, default two-way; 1: two-way; 2:
		one-way, from start node to end node; 3: one-way, from
		end node to start node
snodeid	Char(13)	start node ID
enodeid	Char(13)	end node ID
length	Char(8)	length (km)
speedclass	Char(1)	speed limit (km/h), 1: >130; 2: (100, 130); 3: (90, 100);
		4: (70, 90); 5: (50, 70); 6: (30, 50); 7: (11, 30); 8: <11
lanenum	Char(1)	number of lanes, 1: 1; 2: 2 or 3; 3: >=4

➤ Q-Traffic dataset

05 🔷 实验结果2

Data	Data Model	1 Hour		3 Hour			6 Hour			
Data		MAE	MAPE	RMSE	MAE	MAPE	RMSE	MAE	MAPE	RMSE
	MLP	3.4639	0.0761	5.2033	3.8042	0.0852	5.3786	3.8714	0.0954	5.7589
	Seq2Seq	3.3441	0.0712	4.9605	3.7053	0.0844	5.3310	3.8398	0.0936	5.7815
ad	GRU	3.6023	0.0782	5.3816	3.8271	0.0873	5.4769	3.9036	0.0940	5.7829
Roŝ	DCRNN	3.1801	0.0683	4.7700	3.6107	0.0836	5.2622	3.6679	0.0887	5.5405
an	STGCN	3.7518	0.0928	5.8262	4.3161	0.1025	6.0208	4.5795	0.1077	6.9070
ñč	Graph WaveNet	3.6133	0.0835	5.5938	3.8367	0.0939	5.6311	3.9329	0.0958	6.1191
Yue Quan Road	MTGNN	7.7003	0.1849	10.6605	10.6500	0.2539	14.2389	11.4670	0.2736	14.8771
Ϋ́ι	AGCRN	7.3494	0.1742	11.2873	8.7907	0.1862	11.7982	10.5558	0.2570	13.9753
	VertiAtt	3.3328	0.0704	4.7607	3.6382	0.0811	5.1676	3.6543	0.0884	5.4415
	HoriAtt	3.0470	0.0683	4.5744	3.5939	0.0799	5.1474	3.6325	0.0879	5.4032
	GSeqAtt	2.8914	0.0671	4.5623	3.2231	0.0776	5.0533	3.5711	0.0873	5.3287
	MLP	2.3964	0.0918	3.5636	2.6957	0.1062	4.0639	3.0638	0.1219	4.4889
	Seq2Seq	2.3019	0.0885	3.5112	2.6641	0.1056	4.0309	2.8125	0.1129	4.2554
	GRU	2.3545	0.0898	3.5392	2.6742	0.1061	4.0333	2.8480	0.1127	4.2570
Li	DCRNN	2.2722	0.0876	3.4725	2.6409	0.1035	3.9951	2.7202	0.1146	4.2474
Ping An Li	STGCN	2.6922	0.1010	4.0085	2.8591	0.1108	4.2573	3.1295	0.1161	4.5530
ng	Graph WaveNet	2.3997	0.0943	3.6222	2.7357	0.1069	4.2076	3.7439	0.1345	4.5576
Piı	MTGNN	3.5532	0.1469	5.3652	4.9791	0.2017	6.7455	5.2471	0.2126	7.0226
	AGCRN	3.4418	0.1274	5.0347	4.8049	0.1748	6.5659	5.1134	0.1865	6.8276
	VertiAtt	2.2456	0.0860	3.4508	2.3968	0.0892	3.5908	2.4516	0.0911	3.6027
	HoriAtt	1.9147	0.0735	3.1218	2.3525	0.0851	3.4376	2.3827	0.0873	3.5733
	GSeqAtt	1.8871	0.0700	2.9792	2.2011	0.0799	3.3431	2.2117	0.0843	3.4183
	MLP	4.9368	0.1579	7.2483	4.9726	0.1611	7.3456	5.8719	0.1777	7.8787
	Seq2Seq	3.0370	0.0899	4.3218	4.2041	0.1298	5.9677	4.8374	0.1542	6.9035
pr	GRU	3.1019	0.0907	4.4120	4.2916	0.1373	6.0957	5.0530	0.1641	7.1804
Roŝ	DCRNN	2.7982	0.0861	4.1683	3.6573	0.1101	5.3324	3.7953	0.1151	5.6461
an	STGCN	2.8467	0.0876	4.2055	4.0147	0.1208	5.9188	4.7712	0.1277	6.7191
Xue Yuan Road	Graph WaveNet	3.3635	0.1014	4.5819	4.4054	0.1376	6.2891	4.9939	0.1626	7.3846
	MTGNN	7.5150	0.2211	9.7463	7.7815	0.2345	10.8573	8.8588	0.2679	11.6632
	AGCRN	7.2704	0.1995	8.9715	7.7378	0.2209	10.1259	8.4098	0.2399	11.3825
	VertiAtt	2.7698	0.0818	4.0068	3.4129	0.1074	5.1399	3.6051	0.1104	5.4934
	HoriAtt	2.6293	0.0762	3.8756	3.1697	0.0982	5.1001	3.4064	0.1053	5.2924
	GSeqAtt	2.4062	0.0705	3.6453	2.9817	0.0879	4.3997	3.2312	0.0953	4.6851

谢谢观看

MANY THANKS!

23.3.16

