TRIANGLES: DÉMONSTRATION DE CERTAINES PROPRIÉTÉS DU COURS

I) Somme des mesures des angles dans un triangle quelconque :

Soit ABC un triangle quelconque. On appelle I le milieu de [AB] et C' le symétrique de C par rapport à I, puis J le milieu de [AC] et B' le symétrique de B par rapport à J.

- 1) a) Démontrer que \widehat{BAC}' et \widehat{ABC} ont la même mesure.
 - b) En reprenant exactement la même démonstration avec la symétrie de centre *J*, quel résultat analogue obtiendrait-on? (on ne rédigera pas cette nouvelle démonstration et on considérera ce résultat comme acquis dans la suite de l'exercice)
- 2) a) Démontrer que (*BC*) et (*AC'*) sont parallèles.
 - b) En reprenant exactement la même démonstration avec la symétrie de centre *J*, quel résultat analogue obtiendrait-on? (on ne rédigera pas cette nouvelle démonstration et on considérera ce résultat comme acquis dans la suite de l'exercice)
 - c) Démontrer que C, A et B' sont alignés
- 3) a) Déterminer $\widehat{BAC}' + \widehat{BAC} + \widehat{CAB}'$
 - b) En déduire la somme des mesures des trois angles du triangle *ABC*.

II) Angles aigus d'un triangle rectangle : Soit \overrightarrow{ABC} un triangle rectangle en A. Montrer que \overrightarrow{ABC} et \overrightarrow{ACB} sont complémentaires.

III)Triangles ayant deux angles complémentaires :

Soit ABC un triangle tel que \widehat{ABC} et \widehat{ACB} soient complémentaires. Montrer que ABC est rectangle en A.

IV) Angles à la base dans un triangle isocèle :

Soit ABC un triangle isocèle en A et d la médiatrice de [BC].

- 1) Montrer que A appartient à d.
- 2) Déterminer les images de *A*, *B* et *C* par la symétrie d'axe *d*.
- 3) Montrer que les angles à la base du triangle *ABC* sont de même mesure.

V) Triangles isocèles ayant un angle de 60°:

Soit ABC un triangle isocèle en A et ayant un angle de 60° .

 1^{er} cas : L'angle de 60° est \widehat{BAC} : Déterminer \widehat{ABC} et \widehat{ACB} . En déduire que ABC est équilatéral.

 $2^{\text{ème}}$ cas : L'angle de 60° est \widehat{ABC} : Déterminer \widehat{ACB} et \widehat{BAC} . En déduire que ABC est équilatéral.

 $3^{\text{ème}}$ cas : L'angle de 60° est \widehat{ACB} : Pourquoi est-il inutile d'étudier ce troisième cas ?

VI) Point de concours des médiatrices :

Soit ABC un triangle quelconque et O le point d'intersection des médiatrices de [AB] et de [AC].

- 1) Montrer que OA = OB puis que OA = OC.
- 2) En déduire que *O* est le centre du cercle circonscrit au triangle.
- 3) En déduire également que O appartient aussi à la médiatrice de [BC]