

Data Bootcamp Group Project

Yelp Business Data: Restaurants in the United States

Yue Cui, Ewan (Yuanhao) Zhao, Heropeia Hu

Introduction

This project studies **restaurants in the United States** that are listed on **Yelp.com** with related datasets collected from the Yelp Dataset (https://www.kaggle.com/yelpdataset/yelp-dataset/version/4) webpage on Kaggle. Given that the main focus of this project is business instead of users, the Yelp business (https://www.kaggle.com/yelpdataset/yelp-dataset/version/4#yelp business.csv) and the Yelp business attributes (https://www.kaggle.com/yelp-dataset/yelp-

dataset/version/4#yelp business attributes.csv) are the two most frequently used datasets in this case.

In this project, the first **research purpose** is to **analyze data relathionships** among restaurants categories, attributes and stars rating. After completion, we are able to tell the insights of which **cuisine categories** and **business attributes** contribute to higher stars rating. Secondly, based on the analysis, we create search basis for western coast restaurants by names, cities, and parking facilities. The customized recommendations could benefit both users and business owners to better locate friendly services and restaurants in local areas.

The project strucutres as follows:

• I. Data Frame Presentation

- 1.1 Business Dataset Cleaning
- 1.2 Attribute Dataset Cleaning
- 1.3 Business and Attribute Data Frames Merging
- 1.4 Data Visualization

II. Data Relationships

- 2.1 Relationship Analysis of Star Ratings
 - Relationship between Review Counts and Ratings
 - Relationship between Cuisines and Ratings
 - Relationship between States and Ratings
- 2.2 Multiple Linear Regression
 - Attributes and Ratings
 - Cuisines and Ratings
- 2.3 Linear Regression Model Using Machine Learning

• III. West Coast Restaurant Recommendation Tool

- Restaurants located on the **West Coast**: CA, NV, AZ, OR, WA
 - Restaurant recommendation by NAME
 - Restaurant recommendation by CITY
 - Restaurant recommendation by PARKING Facilities

Project

```
In [1]:
        # importing necessery libraries for future analysis of the dat
        aset
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib.image as mpimg
        %matplotlib inline
        import seaborn as sns
        import statsmodels.formula.api as smf
        import matplotlib.dates as mdates
        import statsmodels.api as sm
        from statsmodels.api import add constant
        from os import path
        from PIL import Image
        from wordcloud import WordCloud, STOPWORDS, ImageColorGenerato
        r
        import re
        pd.set option('display.max columns', None)
        pd.set option('display.max rows', 500)
        pd.set option('display.max columns', 500)
```

```
In [2]: # loading datasets
        business = pd.read csv('/Users/heropeia/Desktop/Final Project/
        Data/yelp business.csv')
        attribute = pd.read csv('/Users/heropeia/Desktop/Final Projec
        t/Data/yelp business attributes.csv')
        busi attr = pd.read csv('/Users/heropeia/Desktop/Final Projec
        t/Data/yelp business attributes.csv')
```

I. Data Frame Presentation

In this section, two original data frames will be **cleaned**, **reshaped** and **merged** to develop into a new data frame showing both basic information and detailed attributes of restaurants in the United States. This data **cleaning process** would make analysis tasks in the next two sections much **easier** to complete.

1.1 Business Dataset Cleaning

A. Brief Overview of the Yelp_business Dataset

In [3]:

business

Out[3]:

	business_id	name	neighborhood	address	city	state	I
0	FYWN1wneV18bWNgQjJ2GNg	"Dental by Design"	NaN	"4855 E Warner Rd, Ste B9"	Ahwatukee	AZ	_
1	He-G7vWjzVUysIKrfNbPUQ	"Stephen Szabo Salon"	NaN	"3101 Washington Rd"	McMurray	PA	
2	KQPW8lFf1y5BT2MxiSZ3QA	"Western Motor Vehicle"	NaN	"6025 N 27th Ave, Ste 1"	Phoenix	AZ	
3	8DShNS-LuFqpEWIpoHxijA	"Sports Authority"	NaN	"5000 Arizona Mills Cr, Ste 435"	Tempe	AZ	
4	PfOCPjBrlQAnzNXj9h_w	"Brick House Tavern + Tap"	NaN	"581 Howe Ave"	Cuyahoga Falls	ОН	
174562	ALV5R8NkZ1KGOZeuZl3uoA	"Whitby Toyota"	NaN	"1025 Dundas Street W"	Whitby	ON	
174563	gRGalHVu6BcaUDIAGVW_xQ	"Village Auto Body"	NaN	"3957 Brecksville Rd"	Richfield	ОН	
174564	XXvZBIHoJBU5d6-a-oyMWQ	"AAM"	NaN	"1600 W Broadway Rd, Ste 200"	Tempe	AZ	
174565	lNpPGgM96nPIYM1shxciHg	"Bronze Beauty Spray Tanning"	NaN	"300 Camp Horne Rd, Ste 250"	Pittsburgh	PA	
174566	viKaP26BcHU6cLx8sf4gKg	"Phoenix Pharmacy"	NaN	"1701 East Thomas Rd, Ste 105"	Phoenix	AZ	

174567 rows \times 13 columns

Columns

```
In [4]:
        # check type of every column in the dataset
        business.dtypes
Out[4]:
        business_id
                          object
        name
                          object
        neighborhood
                          object
        address
                          object
        city
                          object
                          object
        state
                          object
        postal_code
        latitude
                         float64
                         float64
        longitude
        stars
                         float64
                           int64
        review_count
        is_open
                           int64
        categories
                          object
        dtype: object
In [5]:
        business.columns
Out[5]: Index(['business_id', 'name', 'neighborhood', 'address', 'city', 'state',
                'postal_code', 'latitude', 'longitude', 'stars', 'review_count',
                'is_open', 'categories'],
              dtype='object')
```

Rows

```
In [6]:
       # check the amount of rows in the given dataset to understand the size we are w
        orking with
        print('There are '+str(len(business))+' rows in this dataset.')
```

There are 174567 rows in this dataset.

B. Examine Missing Data

```
In [7]:
        # find columns that have null values
        # use'sum' function to show how many nulls are found in each column in dataset
        obj = business.isnull().sum()
        for key,value in obj.iteritems():
            print(key,":",value)
        business id : 0
        name: 0
        neighborhood: 106552
        address : 0
        city: 1
        state: 1
        postal_code : 623
        latitude : 1
        longitude : 1
        stars: 0
        review count: 0
        is_open : 0
        categories : 0
```

Missing Data Heatmap

Figure 1. The **heat map** above demonstrates the proportion of **null values** in each column. More specifically, the lighter the strip is, the larger the amount of null values is within the column.

```
In [8]:
         sns.heatmap(business.isnull())
Out[8]:
         <matplotlib.axes._subplots.AxesSubplot at 0x1c182026d0>
            0
8313
                                                            - 1.0
           16626
           24939
           33252
                                                            - 0.8
```



```
In [9]: \mid # drop neighborhood column which has no actual meaning and has too many null va
        business.drop(['neighborhood'], axis=1, inplace=True)
        business.drop(['is_open'],axis=1,inplace=True)
        # remove quotation marks in name and address column
        business.name=business.name.str.replace('"','')
        business.address=business.address.str.replace('"','')
```

Summary of the Business Dataset after Preprocessing

```
In [10]:
         print('Rows
                        :',business.shape[0])
         print('Columns :', business.shape[1])
         print('\nFeatures :\n :',business.columns.tolist())
                                   :',business.isnull().values.sum())
         print('\nMissing values
         print('\nUnique values : \n', business.nunique())
         Rows
                  : 174567
         Columns : 11
         Features:
              : ['business id', 'name', 'address', 'city', 'state', 'postal code', 'l
         atitude', 'longitude', 'stars', 'review count', 'categories']
         Missing values
                           : 627
         Unique values :
          business id
                         174567
         name
                         132618
         address
                        138564
                          1093
         city
         state
                             67
         postal code
                        16004
         latitude
                         138432
         longitude
                         138844
                              9
         stars
         review count
                          1061
         categories
                          76419
         dtype: int64
```

C. Filter and Categorize the U.S. Restaurants

Filter the U.S. Restaurants

```
In [11]: US_states = ["AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DC", "DE", "FL", "GA",
                    "HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD",
                   "MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH", "NJ",
                   "NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI", "SC",
                   "SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI", "WY"]
         usa=business.loc[business['state'].isin(US_states)]
         us_restaurants=usa[usa['categories'].str.contains('Restaurants')]
         us restaurants
```

Out[11]:

	business_id	name	address	city	state	postal_code]
4	PfOCPjBrlQAnzNXj9h_w	Brick House Tavern + Tap	581 Howe Ave	Cuyahoga Falls	ОН	44221	4
10	XOSRcvtaKc_Q5H1SAzN20A	East Coast Coffee	737 West Pike St	Houston	PA	15342	40
14	fNMVV_ZX7CJSDWQGdOM8Nw	Showmars Government Center	600 E 4th St	Charlotte	NC	28202	3
28	DjoS-Oe4ytRJzMGUPgYUkw	Panera Bread	38295 Chestnut Ridge Rd	Elyria	ОН	44035	4 1
29	gAy4LYpsScrj8POnCW6btQ	Toast Cafe	2429 Hwy 160 W	Fort Mill	SC	29708	35
174520	Gr-20Bg4XyduSKbvnE-i9g	Salt & Lime Modern Mexican Grill	9397 E Shea Blvd, Ste 115	Scottsdale	AZ	85260	3
174522	7wQXbUU2Mwvivg9wmBlrkg	Brown Bag Delis	1001 Liberty Ave	Pittsburgh	PA	15222	40
174523	nkDSE-yhvLX4ij5fSzvb5Q	Tonic Bar & Grill	971 Liberty Ave	Pittsburgh	PA	15222	4C
174532	Ls_nR1MEcsOw5KuTlhodfQ	Cole's Public House	209 S Main St	Amherst	ОН	44001	4:
174558	UdEmYOnk2iJDY9lpEPAlJQ	Floridino's Pizza & Pasta	590 N Alma School Rd, Ste 35	Chandler	AZ	85224	3

32472 rows × 11 columns

```
In [12]: | us restaurants.is_copy=False
         us_restaurants['category']=pd.Series()
         us restaurants.loc[us restaurants.categories.str.contains('American'), 'categor
         y'] = 'American'
         us restaurants.loc[us restaurants.categories.str.contains('Mexican'), 'categor
         y'] = 'Mexican'
         us_restaurants.loc[us_restaurants.categories.str.contains('Italian'), 'categor
         v'l = 'Italian'
         us_restaurants.loc[us_restaurants.categories.str.contains('Japanese'), 'categor
         y'] = 'Japanese'
         us restaurants.loc[us restaurants.categories.str.contains('Chinese'), 'categor
         y'] = 'Chinese'
         us restaurants.loc[us restaurants.categories.str.contains('Thai'), 'category']
         = 'Thai'
         us restaurants.loc[us restaurants.categories.str.contains('Mediterranean'), 'ca
         tegory'] = 'Mediterranean'
         us_restaurants.loc[us_restaurants.categories.str.contains('French'), 'category'
         1 = 'French'
         us_restaurants.loc[us_restaurants.categories.str.contains('Vietnamese'), 'categ
         ory'] = 'Vietnamese'
         us_restaurants.loc[us_restaurants.categories.str.contains('Greek'),'category']
         = 'Greek'
         us restaurants.loc[us restaurants.categories.str.contains('Indian'),'category']
         = 'Indian'
         us restaurants.loc[us restaurants.categories.str.contains('Korean'),'category']
         = 'Korean'
         us restaurants.loc[us restaurants.categories.str.contains('Hawaiian'),'categor
         y'] = 'Hawaiian'
         us restaurants.loc[us restaurants.categories.str.contains('African'), 'category'
         ] = 'African'
         us_restaurants.loc[us_restaurants.categories.str.contains('Spanish'),'category'
         ] = 'Spanish'
         us restaurants.loc[us restaurants.categories.str.contains('Middle eastern'),'ca
         tegory'] = 'Middle eastern'
         us restaurants.category[:20]
```

/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py:5191: Futu reWarning: Attribute 'is_copy' is deprecated and will be removed in a future version.

```
object. getattribute (self, name)
```

/opt/anaconda3/lib/python3.7/site-packages/pandas/core/generic.py:5192: Futu reWarning: Attribute 'is_copy' is deprecated and will be removed in a future version.

return object.__setattr__(self, name, value)

```
Out[12]:
          4
                American
          10
                      NaN
          14
                American
          28
                      NaN
          29
                American
          40
                Japanese
          44
                 Italian
          45
                      NaN
          46
                      NaN
          52
                American
          53
                      NaN
          54
                American
          64
                      NaN
          72
                      NaN
          75
                      NaN
          76
                      NaN
          80
                      NaN
          81
                American
          88
                      NaN
          91
                 Italian
          Name: category, dtype: object
In [13]:
```

```
# drop null values in category, delete original column categories and reset the
us restaurants = us restaurants.dropna(axis=0, subset=['category'])
del us restaurants['categories']
us restaurants = us restaurants.reset index(drop=True)
```

D. Data Frame Presentation

us_restaurants

Out[14]:

	business_id	name	address	city	state	postal_code	la
0	PfOCPjBrlQAnzNXj9h_w	Brick House Tavern + Tap	581 Howe Ave	Cuyahoga Falls	ОН	44221	41
1	fNMVV_ZX7CJSDWQGdOM8Nw	Showmars Government Center	600 E 4th St	Charlotte	NC	28202	35
2	gAy4LYpsScrj8POnCW6btQ	Toast Cafe	2429 Hwy 160 W	Fort Mill	SC	29708	35.
3	tRVx2c89coruPRwYhGTcTw	Yuzu	13603 Madison Ave	Lakewood	ОН	44107	41.
4	BnuzcebyB1AfxHokjNWqSg	Carrabba's Italian Grill	245 Lancaster Ave	Frazer	PA	19355	40.
19151	5zva2MTtB5IX6TaoVLL-NA	Zorbas Grill	440 W Warner Rd	Tempe	AZ	85284	33.
19152	vpwyL6NHm-pTWJ5IeJb9yw	Cocina Mendoza	300 Mt Lebanon Blvd	Pittsburgh	PA	15234	40
19153	Gr-20Bg4XyduSKbvnE-i9g	Salt & Lime Modern Mexican Grill	9397 E Shea Blvd, Ste 115	Scottsdale	AZ	85260	33
19154	nkDSE-yhvLX4ij5fSzvb5Q	Tonic Bar & Grill	971 Liberty Ave	Pittsburgh	PA	15222	40.
19155	UdEmYOnk2iJDY9lpEPAlJQ	Floridino's Pizza & Pasta	590 N Alma School Rd, Ste 35	Chandler	AZ	85224	33

19156 rows \times 11 columns

1.2 Attribute Dataset Cleaning

A. Brief Overview of the Yelp_business_attribute Dataset

```
In [15]: # replace all Na as NaN
         attribute = attribute.replace('Na', np.nan)
```

Out[15]:

	business_id	AcceptsInsurance	ByAppointmentOnly	BusinessAccepts
0	FYWN1wneV18bWNgQjJ2GNg	NaN	NaN	
1	He-G7vWjzVUysIKrfNbPUQ	NaN	NaN	
2	8DShNS-LuFqpEWIpoHxijA	NaN	NaN	
3	PfOCPjBrlQAnzNXj9h_w	NaN	NaN	
4	o9eMRCWt5PkpLDEogOPtcQ	NaN	NaN	
152036	kLFm_kehXNZkUc10a2-Eaw	NaN	NaN	
152037	$gRGalHVu6BcaUDIAGVW_xQ$	NaN	NaN	
152038	XXvZBIHoJBU5d6-a-oyMWQ	NaN	NaN	
152039	lNpPGgM96nPIYM1shxciHg	NaN	NaN	
152040	viKaP26BcHU6cLx8sf4gKg	NaN	NaN	

152041 rows × 82 columns

Columns

In [16]: attribute.dtypes

Out[16]:	business_id	object
	AcceptsInsurance	float64
	ByAppointmentOnly	object
	BusinessAcceptsCreditCards	object
	BusinessParking_garage	object
	BusinessParking street	object
	BusinessParking validated	object
	BusinessParking lot	object
	BusinessParking valet	object
	HairSpecializesIn_coloring	object
	HairSpecializesIn_africanamerican	object
	HairSpecializesIn_curly	object
	HairSpecializesIn_perms	object
	HairSpecializesIn kids	object
	-	object
	HairSpecializesIn_extensions	_
	HairSpecializesIn_asian	object
	HairSpecializesIn_straightperms	object
	RestaurantsPriceRange2	object
	GoodForKids	object
	WheelchairAccessible	object
	BikeParking	object
	Alcohol	object
	HasTV	object
	NoiseLevel	object
	RestaurantsAttire	object
	Music_dj	object
	Music_background_music	object
	Music_no_music	object
	Music_karaoke	object
	Music_live	object
	Music_video	object
	Music_jukebox	object
	Ambience_romantic	object
	Ambience_intimate	object
	Ambience_classy	object
	Ambience_hipster	object
	Ambience_divey	object
	Ambience_touristy	object
	Ambience_trendy	object
	Ambience_upscale	object
	Ambience_casual	object
	RestaurantsGoodForGroups	object
	Caters	object
	WiFi	object
	RestaurantsReservations	object
	RestaurantsTakeOut	object
	HappyHour	object
	GoodForDancing	object
	RestaurantsTableService	object
	OutdoorSeating	object
	RestaurantsDelivery	object

```
object
BestNights_monday
BestNights_tuesday
                                       object
BestNights_friday
                                       object
BestNights wednesday
                                       object
BestNights_thursday
                                       object
BestNights sunday
                                       object
BestNights_saturday
                                       object
GoodForMeal_dessert
                                       object
GoodForMeal latenight
                                       object
GoodForMeal_lunch
                                       object
GoodForMeal dinner
                                       object
GoodForMeal_breakfast
                                       object
GoodForMeal brunch
                                       object
CoatCheck
                                       object
                                       object
Smoking
DriveThru
                                       object
DogsAllowed
                                       object
BusinessAcceptsBitcoin
                                       object
Open24Hours
                                       object
BYOBCorkage
                                       object
                                       object
BYOB
                                      float64
Corkage
DietaryRestrictions_dairy-free
                                      float64
DietaryRestrictions_gluten-free
                                       object
DietaryRestrictions vegan
                                       object
DietaryRestrictions_kosher
                                       object
DietaryRestrictions halal
                                       object
DietaryRestrictions soy-free
                                       object
DietaryRestrictions vegetarian
                                       object
AgesAllowed
                                       object
RestaurantsCounterService
                                       object
dtype: object
```

Rows

```
In [17]:
         # check the amount of rows in the given dataset to understand the size we are w
         orking with
         print('There are '+str(len(attribute))+' rows in this dataset.')
```

There are 152041 rows in this dataset.

B. Examine Missing Data

```
In [18]: # check null values for each column
         obj = attribute.isnull().sum()
         for key,value in obj.iteritems():
             print(key,":",value)
```

business id : 0 AcceptsInsurance: 152041 ByAppointmentOnly: 151946 BusinessAcceptsCreditCards: 128460 BusinessParking_garage : 131649 BusinessParking street: 112687 BusinessParking_validated: 112687 BusinessParking_lot: 113734 BusinessParking valet: 112687 HairSpecializesIn_coloring : 112687 HairSpecializesIn africanamerican: 152040 HairSpecializesIn_curly: 152040 HairSpecializesIn_perms : 152040 HairSpecializesIn_kids : 152040 HairSpecializesIn_extensions : 152040 HairSpecializesIn asian: 152040 HairSpecializesIn straightperms: 152040 RestaurantsPriceRange2: 152040 GoodForKids: 146737 WheelchairAccessible: 131067 BikeParking: 112759 Alcohol: 141629 HasTV: 149207 NoiseLevel: 151824 RestaurantsAttire: 151955 Music dj : 151958 Music background music : 152021 Music no music : 152021 Music karaoke : 152021 Music live : 152021 Music video: 152021 Music jukebox: 152021 Ambience romantic: 152021 Ambience intimate: 151979 Ambience classy: 151979 Ambience hipster: 151979 Ambience divey: 151979 Ambience touristy: 152008 Ambience trendy: 151979 Ambience upscale: 151979 Ambience casual: 151979 RestaurantsGoodForGroups: 151979 Caters : 149872 WiFi : 151944 RestaurantsReservations: 149688

RestaurantsTakeOut: 151745

HappyHour : 145859

GoodForDancing: 151868

RestaurantsTableService: 149757

OutdoorSeating: 150305 RestaurantsDelivery: 151293

BestNights monday: 148948 BestNights_tuesday : 152007 BestNights_friday: 152007 BestNights wednesday: 152007 BestNights_thursday : 152007 BestNights sunday: 152007 BestNights_saturday : 152007 GoodForMeal_dessert : 152007 GoodForMeal latenight: 150227 GoodForMeal_lunch : 150227 GoodForMeal dinner: 150227 GoodForMeal_breakfast : 150227 GoodForMeal_brunch : 150227 CoatCheck: 150227 Smoking : 151750 DriveThru: 151127 DogsAllowed: 146036 BusinessAcceptsBitcoin: 151637 Open24Hours : 150600 BYOBCorkage: 152037 BYOB: 151958 Corkage : 152041 DietaryRestrictions_dairy-free : 152041 DietaryRestrictions_gluten-free : 151931 DietaryRestrictions vegan: 151931 DietaryRestrictions kosher: 151931 DietaryRestrictions halal: 151931 DietaryRestrictions soy-free: 151931 DietaryRestrictions vegetarian : 151931 AgesAllowed: 151931

RestaurantsCounterService: 152038

Missing Data Heatmap

Figure 2. The **heat map** above demonstrates the proportion of **null values** in each column. More specifically, the lighter the strip is, the larger the amount of null values is within the column.

```
In [19]:
         sns.heatmap(attribute.isnull())
```

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x1c255da1d0>

Remove columns that are not important for restaurant if the column:

- 1. is hard to understand
- 2. has too many null values
- 3. irrelevant
- 4. categorical repetition

```
In [20]: | full list = ['business_id', 'AcceptsInsurance', 'ByAppointmentOnly',
                 'BusinessAcceptsCreditCards', 'BusinessParking_garage',
                 'BusinessParking_street', 'BusinessParking_validated',
                 'BusinessParking_lot', 'BusinessParking_valet',
                 'HairSpecializesIn coloring', 'HairSpecializesIn africanamerican',
                 'HairSpecializesIn_curly', 'HairSpecializesIn_perms',
                 'HairSpecializesIn_kids', 'HairSpecializesIn_extensions',
                 'HairSpecializesIn asian', 'HairSpecializesIn straightperms',
                 'RestaurantsPriceRange2', 'GoodForKids', 'WheelchairAccessible',
                 'BikeParking', 'Alcohol', 'HasTV', 'NoiseLevel', 'RestaurantsAttire',
                 'Music dj', 'Music background music', 'Music no music', 'Music karaoke',
                 'Music_live', 'Music_video', 'Music_jukebox', 'Ambience_romantic',
                 'Ambience_intimate', 'Ambience_classy', 'Ambience_hipster',
                 'Ambience_divey', 'Ambience_touristy', 'Ambience_trendy',
                 'Ambience upscale', 'Ambience casual', 'RestaurantsGoodForGroups',
                 'Caters', 'WiFi', 'RestaurantsReservations', 'RestaurantsTakeOut',
                 'HappyHour', 'GoodForDancing', 'RestaurantsTableService',
                 'OutdoorSeating', 'RestaurantsDelivery', 'BestNights_monday',
                 'BestNights_tuesday', 'BestNights_friday', 'BestNights_wednesday',
                 'BestNights_thursday', 'BestNights_sunday', 'BestNights_saturday',
                 'GoodForMeal_dessert', 'GoodForMeal_latenight', 'GoodForMeal_lunch',
                 'GoodForMeal_dinner', 'GoodForMeal_breakfast', 'GoodForMeal brunch',
                 'CoatCheck', 'Smoking', 'DriveThru', 'DogsAllowed',
                 'BusinessAcceptsBitcoin', 'Open24Hours', 'BYOBCorkage', 'BYOB',
                 'Corkage', 'DietaryRestrictions dairy-free',
                 'DietaryRestrictions gluten-free', 'DietaryRestrictions vegan',
                 'DietaryRestrictions kosher', 'DietaryRestrictions halal',
                 'DietaryRestrictions soy-free', 'DietaryRestrictions vegetarian',
                 'AgesAllowed', 'RestaurantsCounterService']
         list to keep = ['business id', 'BusinessAcceptsCreditCards', 'BusinessParking lo
         t',
                 'GoodForKids', 'WheelchairAccessible', 'Alcohol', 'RestaurantsAttire',
                 'WiFi', 'RestaurantsReservations', 'RestaurantsTakeOut',
                 'HappyHour', 'RestaurantsDelivery', 'Smoking', 'Open24Hours']
         list to remove = [i for i in full list if i not in list to keep]
         print(str(list to remove))
```

['AcceptsInsurance', 'ByAppointmentOnly', 'BusinessParking garage', 'Busines sParking_street', 'BusinessParking_validated', 'BusinessParking_valet', 'Hai rSpecializesIn_coloring', 'HairSpecializesIn_africanamerican', 'HairSpeciali zesIn curly', 'HairSpecializesIn perms', 'HairSpecializesIn kids', 'HairSpec ializesIn_extensions', 'HairSpecializesIn_asian', 'HairSpecializesIn_straigh tperms', 'RestaurantsPriceRange2', 'BikeParking', 'HasTV', 'NoiseLevel', 'Mu sic_dj', 'Music_background_music', 'Music_no_music', 'Music_karaoke', 'Music _live', 'Music_video', 'Music_jukebox', 'Ambience_romantic', 'Ambience_intim ate', 'Ambience classy', 'Ambience hipster', 'Ambience divey', 'Ambience tou risty', 'Ambience_trendy', 'Ambience_upscale', 'Ambience_casual', 'Restauran tsGoodForGroups', 'Caters', 'GoodForDancing', 'RestaurantsTableService', 'Ou tdoorSeating', 'BestNights_monday', 'BestNights_tuesday', 'BestNights_frida y', 'BestNights_wednesday', 'BestNights_thursday', 'BestNights_sunday', 'Bes tNights_saturday', 'GoodForMeal_dessert', 'GoodForMeal_latenight', 'GoodForM eal_lunch', 'GoodForMeal_dinner', 'GoodForMeal_breakfast', 'GoodForMeal_brun ch', 'CoatCheck', 'DriveThru', 'DogsAllowed', 'BusinessAcceptsBitcoin', 'BYO BCorkage', 'BYOB', 'Corkage', 'DietaryRestrictions_dairy-free', 'DietaryRest rictions_gluten-free', 'DietaryRestrictions_vegan', 'DietaryRestrictions_kos her', 'DietaryRestrictions_halal', 'DietaryRestrictions_soy-free', 'DietaryR estrictions_vegetarian', 'AgesAllowed', 'RestaurantsCounterService']

C. Data Frame Presentation

In [21]:

attribute.drop(['AcceptsInsurance', 'ByAppointmentOnly', 'BusinessParking_garag e', 'BusinessParking_street', 'BusinessParking_validated', 'BusinessParking_val et', 'HairSpecializesIn_coloring', 'HairSpecializesIn_africanamerican', 'HairSp ecializesIn_curly', 'HairSpecializesIn_perms', 'HairSpecializesIn_kids', 'HairS pecializesIn extensions', 'HairSpecializesIn asian', 'HairSpecializesIn straigh tperms', 'RestaurantsPriceRange2', 'BikeParking', 'HasTV', 'NoiseLevel', 'Music _dj', 'Music_background_music', 'Music_no_music', 'Music_karaoke', 'Music_live' , 'Music_video', 'Music_jukebox', 'Ambience_romantic', 'Ambience intimate', 'Am bience_classy', 'Ambience_hipster', 'Ambience_divey', 'Ambience_touristy', 'Amb ience_trendy', 'Ambience_upscale', 'Ambience_casual', 'RestaurantsGoodForGroup s', 'Caters', 'GoodForDancing', 'RestaurantsTableService', 'OutdoorSeating', 'B estNights_monday', 'BestNights_tuesday', 'BestNights_friday', 'BestNights_wedne sday', 'BestNights_thursday', 'BestNights_sunday', 'BestNights_saturday', 'Good ForMeal_dessert', 'GoodForMeal_latenight', 'GoodForMeal_lunch', 'GoodForMeal_di nner', 'GoodForMeal breakfast', 'GoodForMeal brunch', 'CoatCheck', 'DriveThru', 'DogsAllowed', 'BusinessAcceptsBitcoin', 'BYOBCorkage', 'BYOB', 'Corkage', 'Die taryRestrictions_dairy-free', 'DietaryRestrictions_gluten-free', 'DietaryRestri ctions_vegan', 'DietaryRestrictions_kosher', 'DietaryRestrictions_halal', 'Diet aryRestrictions_soy-free', 'DietaryRestrictions_vegetarian', 'AgesAllowed', 'Re staurantsCounterService'],axis = 1, inplace = True) attribute

Out[21]:

	business_id	BusinessAcceptsCreditCards	BusinessParking_lot	Good
0	FYWN1wneV18bWNgQjJ2GNg	NaN	NaN	
1	He-G7vWjzVUysIKrfNbPUQ	NaN	NaN	
2	8DShNS-LuFqpEWIpoHxijA	NaN	NaN	
3	PfOCPjBrlQAnzNXj9h_w	NaN	NaN	
4	o9eMRCWt5PkpLDEogOPtcQ	NaN	False	
152036	kLFm_kehXNZkUc10a2-Eaw	NaN	False	
152037	$gRGalHVu6BcaUDIAGVW_xQ$	NaN	NaN	
152038	XXvZBIHoJBU5d6-a-oyMWQ	True	NaN	
152039	lNpPGgM96nPIYM1shxciHg	NaN	NaN	
152040	viKaP26BcHU6cLx8sf4gKg	NaN	NaN	

152041 rows × 14 columns

1.3 Business and Attribute Data Frames Merging

After merging the Business data frame with the Attribute data frame, several attribute-related columns have been deleted given that either that attribute is categorized with varied levels or there are far too few "True" values within the column. The undesirable columns are 'GoodForKids', 'Open24Hours', 'RestaurantsReservations', 'RestaurantsAttire', 'BusinessAcceptsCreditCards'.

Columns retained include 'BusinessParking_lot', 'WheelchairAccessible', 'Alcohol', 'RestaurantsTakeOut', 'HappyHour', 'RestaurantsDelivery', 'Smoking'. These attributes will be used as independent variables later in regressions.

Below is the combined data frame:

```
In [22]:
         us_restaurants_attribute = pd.merge(us_restaurants,attribute,left_on='business_
         id',right_on='business_id',how='inner')
         us_restaurants_attribute = us_restaurants_attribute.fillna(0)
         us_restaurants_attribute.replace('True', 1, inplace=True)
          us_restaurants_attribute.replace('False', 0, inplace=True)
          us_restaurants_attribute = us_restaurants_attribute[['business_id', 'name', 'ad
         dress', 'city', 'state', 'postal_code',
                                        'latitude', 'longitude', 'stars', 'review_count',
          'category',
                                        'BusinessParking_lot' ,'WheelchairAccessible' ,'A
         lcohol',
                                        'RestaurantsTakeOut' , 'HappyHour', 'RestaurantsDe
         livery', 'Smoking']]
         us_restaurants_attribute
```

Out[22]:

	business_id	name	address	city	state	$postal_code$	
0	PfOCPjBrlQAnzNXj9h_w	Brick House Tavern + Tap	581 Howe Ave	Cuyahoga Falls	ОН	44221	
1	fNMVV_ZX7CJSDWQGdOM8Nw	Showmars Government Center	600 E 4th St	Charlotte	NC	28202	4
2	gAy4LYpsScrj8POnCW6btQ	Toast Cafe	2429 Hwy 160 W	Fort Mill	SC	29708	3
3	tRVx2c89coruPRwYhGTcTw	Yuzu	13603 Madison Ave	Lakewood	ОН	44107	۷
4	BnuzcebyB1AfxH0kjNWqSg	Carrabba's Italian Grill	245 Lancaster Ave	Frazer	PA	19355	4
18956	WUGbiFUhH6Iil_GCDoXU4g	Boston Market	829 Providence Rd	Charlotte	NC	28207	;
18957	vpwyL6NHm-pTWJ5IeJb9yw	Cocina Mendoza	300 Mt Lebanon Blvd	Pittsburgh	PA	15234	۷
18958	Gr-20Bg4XyduSKbvnE-i9g	Salt & Lime Modern Mexican Grill	9397 E Shea Blvd, Ste 115	Scottsdale	AZ	85260	
18959	nkDSE-yhvLX4ij5fSzvb5Q	Tonic Bar & Grill	971 Liberty Ave	Pittsburgh	PA	15222	4
18960	UdEmYOnk2iJDY9lpEPAlJQ	Floridino's Pizza & Pasta	590 N Alma School Rd, Ste 35	Chandler	AZ	85224	;

 $18961 \text{ rows} \times 18 \text{ columns}$

1.4 Data Visualization

A. Geographic Distribution of the U.S. Restaurants

Figure 3. This **geographic distribution** is plotted by using the columns - *longtitude* and *latitude* - from the data frame.

B. State-level and City-Level Restaurant Distributions

State-level

Figure 4. The **bar plot** presents the **number of restaurants in each state** in descending order. Within this Yelp dataset, the state with the **highet** amount of restaurants is **Arizona** of **6411** restaurants in total, whereas **Indiana** only have **one** restaurant.

```
In [24]:
         state_count = us_restaurants['state'].value_counts().sort_values(ascending = Fa
         1se)
         plt.figure(figsize = (12,6))
         sns.barplot(state count.index, state count.values, alpha = 0.8, order = state c
         plt.title('Number of Restaurants by State', fontsize = 16)
         plt.ylabel('Number of Restaurants', fontsize = 12)
         plt.xlabel('State', fontsize = 12)
         for i, v in enumerate(state count):
             plt.text(i, v, str(v), horizontalalignment = center, fontsize=11)
         plt.show()
```


City-level

Figure 5. The wordcloud demonstrates the number of restaurants in each city through font size. Las Vegas, Phoenix, Charlotte, Scottsdale, Cleveland and Pittsburgh are cities with the **higest** number of restaurants.

```
In [25]:
         city_count = us_restaurants['city'].value_counts()
         wordcloud = WordCloud(width = 1000, height = 600, background_color='white', max_
         font_size = 150,
                                min_font_size = 5, colormap = "viridis",
                                collocations = False).generate_from_frequencies(city_coun
         t)
         # Display the generated image:
         plt.imshow(wordcloud, interpolation='bilinear')
         plt.axis("off")
         plt.tight_layout(pad = 1)
         plt.figure(figsize = (200,100))
         plt.show()
```


<Figure size 14400x7200 with 0 Axes>

C. Ratings and Cuisines

Rating

Figure 6. The **bar plot** presents the number of restaurants by **ratings (stars)**. In this dataset, there are only **375** restaurants winning **full scores** (5 stars) and **61** restaurants rated as **1-star**. Over **10,000** restaurants are rated between **3.0** and **4.0** stars.

```
In [26]:
         star_count = us_restaurants['stars'].value_counts().sort_values(ascending = Fal
         plt.figure(figsize = (12,5))
         sns.barplot(star_count.index, star_count.values, alpha = 0.8, order = star_coun
         plt.title('Number of Restaurants by Ratings', fontsize = 16)
         plt.ylabel('Number of Restaurants', fontsize = 12)
         plt.xlabel('Number of Stars', fontsize = 12)
         for i, v in enumerate(star_count):
             plt.text(i, v, str(v), horizontalalignment = center', fontsize = 11)
         plt.show()
```


Figure 7. The **bar plot** presents the number of restaurants according to **ratings (stars)** in each state. Corresponding to the above plot, in most of the states, the **mode** is **3.5** or **4.0** stars.

```
In [27]:
         fig,ax = plt.subplots()
         fig.set_size_inches(15, 8)
          sns.countplot(x="state", hue = 'stars', palette='Set3_r', data=us_restaurants)
```

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x1c1b7fe810>

Cuisine

Figure 8. This wordcloud shows that the three main types of cuisine in the United States, based on the Yelp restaurant dataset, are American, Mexican and Italian. Asian and Mediterranean cusines are also highly welcomed according to the number of each type of restaurants.

```
In [28]:
         category_count = us_restaurants['category'].value_counts()
         wordcloud = WordCloud(width = 550, height = 300, background_color = 'white',
                                max font size = 160, min font size = 10, colormap = "nipy
          _spectral",
                                collocations = False).generate_from_frequencies(category_
         count)
         plt.imshow(wordcloud, interpolation='bilinear')
         plt.axis("off")
         plt.tight_layout(pad = 1)
         plt.figure(figsize = (100,60))
         plt.show()
```


<Figure size 7200x4320 with 0 Axes>

Figure 9. More explicitly, this **bar plot** sorts the number of restaurant **by cusine** in descending order and presents that there are 7314 American restaurants and only 47 African restaurants in the United States.

```
In [29]:
         plt.figure(figsize=(15,6))
         sns.barplot(category_count.index, category_count.values, alpha=0.8, order = cat
         egory_count.index)
         plt.title('Number of Restaurants by Cuisine', fontsize = 16)
         plt.ylabel('Number of Restaurants', fontsize = 12)
         plt.xlabel('Type of Cuisine', fontsize = 12)
         for i, v in enumerate(category_count):
             plt.text(i, v, str(v), horizontalalignment = center', fontsize = 11)
         plt.show()
```


Figure 10. The **bar plot** presents the number of restaurants according to the **type of cuisines** in each state. It is evident that the American cuisine indeed dominates in nearly every state. Moreover, there are also a large number of **Mexican** restaurants in **Neveda** and **Arizona**.

```
In [30]:
         fig,ax = plt.subplots()
         fig.set_size_inches(16, 8)
         sns.countplot(x="state", hue = 'category', palette="Set3", data=us restaurants)
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1c1fd8a6d0>

II. Data Relationships

Yelp connects people with great local businesses. For customers, rating a business with stars and reviews helps elevate next experience. For restaurant business owners, deciding on which business attribute to improve and cuisine type to provide is crucial in order to receive more positive feedbacks.

This section concentrates mainly on **relationships** between **restaurant rating** and its relevant factors that include attributes and cuisine types. Multiple linear regressions have been presented in the **second part** of this section for a more **direct** demonstration.

2.1 Relationship Analysis of Star Ratings

A. Relationship between Review Counts and Ratings

OLS Regression Results

In [31]: print(smf.ols('stars ~ review_count',data=us_restaurants_attribute).fit().summa ry())

		OLS Regres	ssion kesul	.ts 		======
==						
Dep. Variable:		stars	R-square	2d •		0.0
30		Bearb	it bquare			0.0
Model:		OLS	Adj. R-s	squared:		0.0
30		025	110,0 10 1	,quarou.		0.0
Method:	T.	east Squares	F-statis	stic:		59
1.8	_	oudo squares	1 200012	.020		
Date:	Wed.	13 May 2020	Prob (F-	-statistic):		9.44e-1
29	,		(_			
Time:		01:40:19	Log-Like	elihood:		-2042
9.			5			
No. Observations	:	18961	AIC:			4.086e+
04						
Df Residuals:		18959	BIC:			4.088e+
04						
Df Model:		1				
Covariance Type:		nonrobust				
=======================================	=======	==========	-=======	:=======		======
====						
	coef	std err	t	P> t	[0.025	0.
975]	0001	550 511	J	2. 101	[01020	
Intercept	3.4282	0.006	596.747	0.000	3.417	
3.440						
review_count	0.0006	2.56e-05	24.327	0.000	0.001	
0.001						
===========	=======	=========		:=======		======
==						
Omnibus:		516.880	Durbin-W	Watson:		1.9
80						
Prob(Omnibus):		0.000	Jarque-E	Bera (JB):		559.8
32			1	(-)		
Skew:		-0.412	Prob(JB)	:		2.72e-1
22			3 (- -)			
Kurtosis:		3.168	Cond. No) .		24
9.						·
==========	=======	========		:=======	=======	======
==						

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

Independent variable - 'review count' - is positively correlated with ratings and its corresponding **coefficient** is **0.0006**. It indicates that the **rating** of a restaurant will have increased by 0.0006 if there is one more review. The Adjusted R-square of this model is 3.0%.

B. Relationship between Cuisines and Ratings

```
In [32]:
         us_restaurants_attribute[['category','stars']].groupby('category').mean().sort_
         values(by = ['stars'], ascending = False)
Out[32]:
                         stars
```

category	
French	3.950000
Mediterranean	3.884774
Hawaiian	3.849794
Greek	3.819085
Thai	3.817343
Spanish	3.797753
African	3.776596
Vietnamese	3.760479
Korean	3.721374
Indian	3.676396
Japanese	3.658140
Italian	3.464809
Mexican	3.427841
American	3.420282
Chinese	3.299412

The above **data frame** presents the **average rating by cuisine**. According to the Yelp dataset, French restaurants in the United States have the highest average rating of 3.95 stars, whereas **Chinese** restaurants only have **3.30** stars on average.

C. Relationship between States and Ratings

```
In [33]:
         us_restaurants_attribute[['state','stars']].groupby('state').mean().sort_values
         (by = ['stars'], ascending = False)
```

Out[33]:

	Juli
state	
NY	3.666667
NV	3.553055
PA	3.508041
IN	3.500000
AZ	3.495213
WI	3.471207
NC	3.433303
ОН	3.432498
IL	3.380822
SC	3.368421

stars

The above **data frame** presents the **average rating by state**. According to the Yelp dataset, restaurants in New York State have the highest average rating of 3.67 stars, whereas restaurants in **South Carolina** only have **3.37 stars** on average.

2.2 Multiple Linear Regression

A. Multiple Linear Regression: Attributes and Ratings

Model 1. Relationship between Attributes and Restaurant Ratings (Full Model)

Dependent Variable: 'stars'

Independent Variable: 'review_count', 'BusinessParking_lot', 'WheelchairAccessible', 'Alcohol', 'RestaurantsTakeOut', 'HappyHour', 'RestaurantsDelivery', 'Smoking'

```
In [34]: | x = us_restaurants_attribute[['review_count','BusinessParking_lot' ,'WheelchairAccessi
         ble' ,'Alcohol',
                                        'RestaurantsTakeOut' , 'HappyHour', 'RestaurantsDelivery'
          , 'Smoking']]
         y = us_restaurants_attribute['stars']
         x = sm.add\_constant(x)
         model = sm.OLS(y,x).fit()
         predictions = model.predict(x)
         print_model = model.summary()
         print(print_model)
```

	OLS F	Regression			========	
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squ Wed, 13 May 01:4	OLS Addiares F-8 2020 Pro 10:19 Log 18961 AIC 18952 BIC 8 Obust	squared: j. R-squared: statistic: bb (F-statisti g-Likelihood: c:	c):	0.032 0.032 78.39 5.08e-128 -20412. 4.084e+04 4.091e+04	
			t			0.9
 const 425	3.4120	0.007	510.977	0.000	3.399	3.
review_count	0.0006	2.59e-05	24.661	0.000	0.001	0.
BusinessParking_lot	0.2890	0.081	3.561	0.000	0.130	0.
WheelchairAccessible 078	0.0539	0.012	4.387	0.000	0.030	0.
Alcohol 802	0.3097	0.251	1.233	0.218	-0.183	0.
RestaurantsTakeOut 275	-0.1657	0.225	-0.737	0.461	-0.606	0.
HappyHour 139	0.0480	0.047	1.031	0.302	-0.043	0.
RestaurantsDelivery 683	0.1565	0.269	0.583	0.560	-0.370	0.
Smoking 681	0.1890	0.251	0.752	0.452	-0.303	0.
Omnibus: Prob(Omnibus): Skew: Kurtosis:	535 (-(5.075 Dur 0.000 Jar 0.419 Pro 3.179 Cor	rbin-Watson: cque-Bera (JB)	:	1.980 581.303 5.91e-127 1.17e+04	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec
- [2] The condition number is large, 1.17e+04. This might indicate that there are strong multicollinearity or other numerical problems.

/opt/anaconda3/lib/python3.7/site-packages/numpy/core/fromnumeric.py:2495: FutureWarn ing: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead.

```
return ptp(axis=axis, out=out, **kwargs)
```

Analysis:

Coefficients of 'review_count', of 'BusinessParking_lot' and of 'WheelchairAccessible' are significant on **95**% level.

Model has a 3.2% Adjusted R-square, which gives a good base and would improve as much.

Model 2. Relationship between Attributes and Restaurant Ratings (Only with **Significant Regressors**)

Dependent Variable: 'stars'

Independent Variable: 'review_count', 'BusinessParking_lot', 'WheelchairAccessible'

```
In [35]: | x = us_restaurants_attribute[['review_count','BusinessParking_lot' ,'WheelchairAccessi
         ble']]
         y = us_restaurants_attribute['stars']
         x = sm.add\_constant(x)
         model = sm.OLS(y,x).fit()
         predictions = model.predict(x)
         print_model = model.summary()
         print(print_model)
```

stars			ared:	0.032		
		-	-			
-						
_			•	:):		
		_	Likelihood:			
		_				
1		BIC:			4.087e+04	
	_					
coef	std	err	t	P> t	[0.025	0.9
3.4133	0.	007	516.770	0.000	3.400	3.
0.0006	2.59e	-05	24.634	0.000	0.001	0.
0.2881	0.	081	3.550	0.000	0.129	0.
			4.307	0.000	0.029	0.
				========	1.980	
				:	574.777	
		-	` '		1.54e-125	
			,		3.52e+03	
	. 13 May 01:4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 13 May 2020 01:40:19 18961 18957 3 nonrobust coef std 	Ceast Squares F-sta 7. 13 May 2020 Prob 01:40:19 Log-I 18961 AIC: 18957 BIC: 3 nonrobust coef std err 3.4133 0.007 0.0006 2.59e-05 0.2881 0.081 0.0527 0.012 529.532 Durbi 0.000 Jarqu -0.417 Prob(3.177 Cond.	Deast Squares F-statistic: 13 May 2020 Prob (F-statistic) 01:40:19 Log-Likelihood: 18961 AIC: 18957 BIC: 3 nonrobust coef std err t 3.4133 0.007 516.770 0.0006 2.59e-05 24.634 0.2881 0.081 3.550 0.0527 0.012 4.307 529.532 Durbin-Watson: 0.000 Jarque-Bera (JB): -0.417 Prob(JB): 3.177 Cond. No.	Deast Squares F-statistic: 13 May 2020 Prob (F-statistic): 01:40:19 Log-Likelihood: 18961 AIC: 18957 BIC: 3 nonrobust coef std err t P> t 3.4133 0.007 516.770 0.000 0.0006 2.59e-05 24.634 0.000 0.2881 0.081 3.550 0.000 0.0527 0.012 4.307 0.000 529.532 Durbin-Watson: 0.000 Jarque-Bera (JB): -0.417 Prob(JB): 3.177 Cond. No.	Teast Squares F-statistic: 207.7 13 May 2020 Prob (F-statistic): 1.46e-132 01:40:19 Log-Likelihood: -20414. 18961 AIC: 4.084e+04 18957 BIC: 4.087e+04 3 nonrobust coef std err t P> t [0.025 3.4133 0.007 516.770 0.000 3.400 0.0006 2.59e-05 24.634 0.000 0.001 0.2881 0.081 3.550 0.000 0.129 0.0527 0.012 4.307 0.000 0.029 529.532 Durbin-Watson: 1.980 0.000 Jarque-Bera (JB): 574.777 -0.417 Prob(JB): 574.777

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec
- [2] The condition number is large, 3.52e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Analysis:

Independent variables - 'review_count', 'BusinessParking_lot' and 'WheelchairAccessible' - are positively associated with **restaurant ratings** with coefficients **0.0006**, **0.2881** and **0.0527**, respectively.

This model has a **3.2**% Adjusted R-square.

B. Multiple Linear Regression: Cuisines and Ratings

```
In [36]:
          dummy = pd.get dummies(us restaurants attribute['category'])
          us_restaurants_attribute_reg = pd.concat([us_restaurants_attribute,dummy],axis=
          us_restaurants_attribute_reg.head()
Out[36]:
                             business_id
                                                     address
                                                                  city state postal_code
                                                                                           latitu
                                              name
                                                         581
                                         Brick House
                                                              Cuyahoga
                  PfOCPjBrlQAnz__NXj9h_w
                                                                        OH
           0
                                            Tavern +
                                                       Howe
                                                                                   44221
                                                                                          41.119
                                                                  Falls
                                                Tap
                                                         Ave
                                           Showmars
                                                       600 E
           1 fNMVV_ZX7CJSDWQGdOM8Nw Government
                                                              Charlotte
                                                                         NC
                                                                                   28202
                                                                                          35.2210
                                                       4th St
                                             Center
                                                        2429
           2
                  gAy4LYpsScrj8POnCW6btQ
                                           Toast Cafe
                                                     Hwy 160
                                                              Fort Mill
                                                                         SC
                                                                                   29708
                                                                                         35.0472
                                                       13603
                  tRVx2c89coruPRwYhGTcTw
                                                                        ОН
           3
                                               Yuzu
                                                     Madison
                                                             Lakewood
                                                                                   44107
                                                                                         41.4768
                                                         Ave
                                                         245
                                          Carrabba's
                  BnuzcebyB1AfxHokjNWqSg
                                                    Lancaster
                                                                         PA
           4
                                                                Frazer
                                                                                   19355 40.0410
                                          Italian Grill
                                                         Ave
In [37]:
          us restaurants attribute reg.columns
Out[37]: Index(['business_id', 'name', 'address', 'city', 'state', 'postal_code',
                  'latitude', 'longitude', 'stars', 'review count', 'category',
                  'BusinessParking lot', 'WheelchairAccessible', 'Alcohol',
                  'RestaurantsTakeOut', 'HappyHour', 'RestaurantsDelivery', 'Smoking',
                  'African', 'American', 'Chinese', 'French', 'Greek', 'Hawaiian',
                  'Indian', 'Italian', 'Japanese', 'Korean', 'Mediterranean', 'Mexica
```

Model 1. Relationship between Cuisines and Restaurant Ratings (Full Model)

'Spanish', 'Thai', 'Vietnamese'],

dtype='object')

Dependent Variable: 'stars'

n',

Independent Variable: 'review count', 'Business Parking lot', 'Wheel chair Accessible', 'Alcohol', 'Restaurants Take Out', 'HappyHour', 'RestaurantsDelivery', 'Smoking', 'African', 'American', 'Chinese', 'French', 'Greek', 'Hawaiian', 'Indian', 'Italian', 'Japanese', 'Korean', 'Mediterranean', 'Mexican', 'Spanish', 'Thai', 'Vietnamese'

OLS Regression Results

	OLS .	Regression =======	Results =======			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Least Sq Wed, 13 May 01:	stars R-s OLS Adj uares F-s 2020 Pro	<pre>b (F-statist -Likelihood: :</pre>	ic):	0.074 0.073 68.67 1.89e-294 -19993. 4.003e+04 4.021e+04	
Covariance Type:		obust				
	=======	=======	========	=======	:========	
===	coef	std err	t	P> t	[0.025	0.9
75]					•	
const	3.3767	0.011	294.311	0.000	3.354	3.
review_count	0.0006	2.55e-05	22.807	0.000	0.001	0.
BusinessParking_lot 391	0.2355	0.079	2.964	0.003	0.080	0.
WheelchairAccessible 076	0.0517	0.012	4.254	0.000	0.028	0.
Alcohol 883	0.4012	0.246	1.632	0.103	-0.081	0.
RestaurantsTakeOut 277	-0.1541	0.220	-0.701	0.483	-0.585	0.
HappyHour 149	0.0593	0.046	1.300	0.194	-0.030	0.
RestaurantsDelivery 680	0.1649	0.263	0.627	0.530	-0.350	0.
Smoking 679	0.1971	0.246	0.801	0.423	-0.285	0.
African 487	0.3005	0.095	3.148	0.002	0.113	0.
American 002	-0.0271	0.013	-2.076	0.038	-0.053	-0.
Chinese 097	-0.1334	0.018	-7.225	0.000	-0.170	-0.
French 516	0.4251	0.046	9.193	0.000	0.334	0.
Greek 440	0.3795	0.031	12.297	0.000	0.319	0.
Hawaiian 467	0.3825	0.043	8.889	0.000	0.298	0.
Indian 299	0.2313	0.034	6.719	0.000	0.164	0.
Italian 055	0.0216	0.017	1.281	0.200	-0.011	0.
Japanese 226	0.1782	0.025	7.250	0.000	0.130	0.
Korean 325	0.2435	0.042	5.861	0.000	0.162	0.
Mediterranean 497	0.4352	0.031	13.891	0.000	0.374	0.
Mexican 018	-0.0119	0.015	-0.775	0.438	-0.042	0.
Spanish 454	0.3173	0.070	4.550	0.000	0.181	0.
Thai 408	0.3493	0.030	11.698	0.000	0.291	0.
Vietnamese	0.2851	0.037	7.680	0.000	0.212	0.

2		0
ാ	2	Ö

=======================================	:========		===========
Omnibus:	486.381	Durbin-Watson:	1.982
Prob(Omnibus):	0.000	Jarque-Bera (JB):	526.848
Skew:	-0.392	Prob(JB):	3.95e-115
Kurtosis:	3.229	Cond. No.	1.78e+18

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The smallest eigenvalue is 2.99e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Analysis:

Coefficients of 'review_count', of 'BusinessParking_lot', of 'WheelchairAccessible', of 'African', of 'American', of 'Chinese', of 'French', of 'Greek', of 'Hawaiian', of 'Indian', of 'Japanese', of 'Korean', of 'Mediterranean', of 'Spanish', of 'Thai', and of 'Vietnamese' are significant on 95% level.

This model has a 7.3% Adjusted R-square.

Model 2. Relationship between Cuisines and Restaurant Ratings (Only with **Significant Regressors**)

Dependent Variable: 'stars'

Independent Variable: 'review_count', 'BusinessParking_lot', 'WheelchairAccessible', 'African', 'Chinese', 'French', 'Greek', 'Hawaiian', 'Indian', 'American', 'Japanese', 'Korean', 'Mediterranean', 'Spanish', 'Thai', 'Vietnamese'

```
In [39]: x = us_restaurants_attribute_reg[['review_count',
                      'BusinessParking_lot', 'WheelchairAccessible',
'African', 'Chinese', 'French', 'Greek', 'Hawaiian',
'Indian', 'American', 'Japanese', 'Korean', 'Mediterranean',
                      'Spanish', 'Thai', 'Vietnamese']]
            y = us_restaurants_attribute_reg['stars']
            x = sm.add\_constant(x)
            model = sm.OLS(y,x).fit()
            predictions = model.predict(x)
            print_model = model.summary()
            print(print_model)
```

OLS Regression Results

Dep. Variable: stars R-squared: 0.073	
Model: OLS Adj. R-squared: 0.073	
Method: Least Squares F-statistic: 93.83	
Date: Wed, 13 May 2020 Prob (F-statistic): 2.89e-298	
Time: 01:40:19 Log-Likelihood: -19997.	
No. Observations: 18961 AIC: 4.003e+04	
Df Residuals: 18944 BIC: 4.016e+04	
Df Model: 16	
Covariance Type: nonrobust	
===	======
coef std err t P> t [0.025	0.9
75]	0.9
const 3.3805 0.010 339.024 0.000 3.361	3.
400	
review_count 0.0006 2.55e-05 22.780 0.000 0.001	0.
001	
BusinessParking_lot 0.2347 0.079 2.954 0.003 0.079	0.
390	
WheelchairAccessible 0.0491 0.012 4.056 0.000 0.025 073	0.
African 0.2990 0.102 2.937 0.003 0.099	0.
499	
Chinese -0.1351 0.018 -7.313 0.000 -0.171 099	-0.
French 0.4237 0.049 8.643 0.000 0.328 520	0.
Greek 0.3769 0.032 11.673 0.000 0.314	0.
440	•
Hawaiian 0.3801 0.046 8.352 0.000 0.291	0.
469	0
Indian 0.2287 0.036 6.322 0.000 0.158 300	0.
American -0.0292 0.012 -2.377 0.017 -0.053	-0.
005	-0.
Japanese 0.1756 0.025 6.905 0.000 0.126	0.
Korean 0.2421 0.044 5.514 0.000 0.156	0.
328	•
Mediterranean 0.4326 0.033 13.187 0.000 0.368	0.
497	
Spanish 0.3148 0.074 4.239 0.000 0.169	0.
460	
Thai 0.3466 0.031 11.101 0.000 0.285	0.
408	
Vietnamese 0.2831 0.039 7.235 0.000 0.206	0.
360	
Omnibus: 478.825 Durbin-Watson: 1.981	
Prob(Omnibus): 0.000 Jarque-Bera (JB): 517.657	
Skew: -0.390 Prob(JB): 3.91e-113	
Kurtosis: 3.219 Cond. No. 4.52e+03	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 4.52e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Analysis:

There are positive correlations between most of the independent variables and restaurant ratings. However, regressors - Chinese and American - are negatively related to ratings with coefficients -0.1351 and -0.0292, respectively. Therefore, according to these negative coefficients, restaurants that offer either Chinese or American cuisine receive lower ratings, holding other factors constant.

This model has a 7.3% Adjusted R-square.

2.3 Linear Regression Model Using Machine Learning

The **linear model** is fitted. The **coefficient of determination** (**R-square**) of the prediction is stated as the **accuracy score** down below:

```
In [40]: | x = us restaurants attribute_reg[['review_count',
                 'BusinessParking_lot', 'WheelchairAccessible', 'Alcohol',
                 'RestaurantsTakeOut', 'HappyHour', 'RestaurantsDelivery', 'Smoking',
                 'African', 'American', 'Chinese', 'French', 'Greek', 'Hawaiian',
                 'Indian', 'Italian', 'Japanese', 'Korean', 'Mediterranean', 'Mexican',
                 'Spanish', 'Thai', 'Vietnamese']]
         y = us restaurants attribute reg['stars']
         from sklearn.model_selection import train test split
         x train, x test, y train, y test = train test split(x,y)
         from sklearn.linear_model import LinearRegression
         skl lin regr = LinearRegression().fit(x train,y train)
         print('Accuracy Score', skl lin regr.score(x test,y test))
```

Accuracy Score 0.060915574784172984

Estimate the **intercept** and **coefficients** for the linear regression

```
In [41]: coeff_df = pd.DataFrame(data = skl_lin_regr.coef_,index= [['review_count',
                 'BusinessParking_lot', 'WheelchairAccessible', 'Alcohol',
                 'RestaurantsTakeOut', 'HappyHour', 'RestaurantsDelivery', 'Smoking',
                 'African', 'American', 'Chinese', 'French', 'Greek', 'Hawaiian',
                 'Indian', 'Italian', 'Japanese', 'Korean', 'Mediterranean', 'Mexican',
                 'Spanish', 'Thai', 'Vietnamese']], columns=['Coefficient'])
         print('intercept',skl_lin_regr.intercept_)
         print(coeff_df)
```

intercept 3.588553178637596

-	
	Coefficient
review_count	0.000647
BusinessParking_lot	0.227975
WheelchairAccessible	0.060645
Alcohol	0.436569
RestaurantsTakeOut	-0.278883
HappyHour	0.075031
RestaurantsDelivery	0.174091
Smoking	0.149317
African	0.037444
American	-0.253741
Chinese	-0.335352
French	0.178142
Greek	0.170937
Hawaiian	0.142166
Indian	0.013161
Italian	-0.190130
Japanese	-0.063393
Korean	0.028687
Mediterranean	0.240314
Mexican	-0.236008
Spanish	0.061829
Thai	0.149302
Vietnamese	0.056641

Generate **predicted values** (y_hat) for restaurant ratings by using the **linear model**

```
In [42]:
         lin reg predict stars = pd.DataFrame(data=skl lin regr.predict(x test))
         lin_reg_predict_stars.rename(columns={0:'Stars_Rating_Predictions'}, inplace=Tr
         lin_reg_predict_stars.set_index('Stars_Rating_Predictions')
```

Out[42]:

Stars_Rating_Predictions
6.858890
3.429535
3.850802
3.342576
3.349046
3.255789
3.565400
3.412450
3.416161
3.388776
4741 rows × 0 columns

III. West Coast Restaurants Recommendation Tool

This section discovers **restaurants on the West Coast**. Three West Coast restaurant recommendation tools have been created and can be applied for restaurant search through entering 1) restaurant numbers, 2) city indices and 3) needs for parking facilities with detailed instructions.

A. Filter Restaurants Located on the West Coast (CA, NV, AZ, OR, WA)

Filter Restaurants on the West Coast

```
In [43]:
         west_states = ["CA","NV","AZ","OR","WA"]
         western = business.loc[business['state'].isin(west_states)]
         restaurants = western[western['categories'].str.contains('Restaurants')]
         western = us_restaurants.loc[us_restaurants['state'].isin(west_states)]
         restaurants
```

Out[43]:

	business_id	name	address	city	state	postal_code	
45	rDMptJYWtnMhpQu_rRXHng	McDonald's	719 E Thunderbird Rd	Phoenix	AZ	85022	3
46	1WBkAuQg81kokZIPMpn9Zg	Charr An American Burger Bar	777 E Thunderbird Rd, Ste 107	Phoenix	AZ	85022	3
52	Pd52CjgyEU3Rb8co6QfTPw	Flight Deck Bar & Grill	6730 S Las Vegas Blvd	Las Vegas	NV	89119	3
53	4srfPk1s8nlm1YusyDUbjg	Subway	6889 S Eastern Ave, Ste 101	Las Vegas	NV	89119	3
54	n7V4cD-KqqE3OXkoirJTyA	GameWorks	6587 Las Vegas Blvd S, Ste 171	Las Vegas	NV	89119	3
174469	6HdzmAatFoB8UDep4n9QIw	IHOP	5170 S Fort Apache Rd	Las Vegas	NV	89148	3(
174479	vGDhK2Lc4Np5iZYZ7FGoQA	Escobar Mexican Kitchen	1219 E Glendale Ave, Ste 14	Phoenix	AZ	85020	3
174504	5zva2MTtB5IX6TaoVLL-NA	Zorbas Grill	440 W Warner Rd	Tempe	AZ	85284	3
174520	Gr-20Bg4XyduSKbvnE-i9g	Salt & Lime Modern Mexican Grill	9397 E Shea Blvd, Ste 115	Scottsdale	AZ	85260	:
174558	UdEmYOnk2iJDY9lpEPAlJQ	Floridino's Pizza & Pasta	590 N Alma School Rd, Ste 35	Chandler	AZ	85224	3

$17734 \text{ rows} \times 11 \text{ columns}$

Figure 11. The bar plot demonstrates Top 10 cities on the West Coast with the highest number of restaurants. The city with the most restaurants is Las Vegas and there are 5,899 restaurants located within that city. Other cities include **Phoenix**, **Scottsdale**, **Mesa**, **Tempe**, Chandler, Henderson, Glendale, Gilbert, Peoria.

```
In [44]: city_rank = restaurants.city.value_counts()[:10]
    plt.figure(figsize = (12,6))
    sns.barplot(city_rank.index, city_rank.values, palette = sns.color_palette("GnB
    u_r", len(city_rank)))
    plt.title('Number of Restaurants by City (Top 10)', fontsize = 16)
    plt.ylabel('Number of restaurants', fontsize = 12, labelpad = 10)
    plt.xlabel('City', fontsize = 12, labelpad = 10)
    plt.tick_params(labelsize = 14)
    plt.xticks(rotation = 15)
    for i, v in enumerate(city_rank):
        plt.text(i, v*1.02, str(v), horizontalalignment = 'center', fontsize = 11)
```


Merge Business with Attributes for Restaurants on the West Coast

```
In [45]:
         info = restaurants.merge(busi_attr,left_on='business_id',right_on='business_id'
         ,how='inner')
         info
```

Out[45]:

	business_id	name	address	city	state	postal_code	1
0	rDMptJYWtnMhpQu_rRXHng	McDonald's	719 E Thunderbird Rd	Phoenix	AZ	85022	33
1	1WBkAuQg81kokZIPMpn9Zg	Charr An American Burger Bar	777 E Thunderbird Rd, Ste 107	Phoenix	AZ	85022	33
2	Pd52CjgyEU3Rb8co6QfTPw	Flight Deck Bar & Grill	6730 S Las Vegas Blvd	Las Vegas	NV	89119	36
3	4srfPk1s8nlm1YusyDUbjg	Subway	6889 S Eastern Ave, Ste 101	Las Vegas	NV	89119	36
4	n7V4cD-KqqE3OXkoirJTyA	GameWorks	6587 Las Vegas Blvd S, Ste 171	Las Vegas	NV	89119	36.
		•••					
17535	AEYNihHmGIjmUciRFo3qwA	Yin's Chinese Resturant	1950 W Indian School Rd	Phoenix	AZ	85015	33
17536	6HdzmAatFoB8UDep4n9QIw	ІНОР	5170 S Fort Apache Rd	Las Vegas	NV	89148	36.
17537	vGDhK2Lc4Np5iZYZ7FGoQA	Escobar Mexican Kitchen	1219 E Glendale Ave, Ste 14	Phoenix	AZ	85020	33
17538	Gr-20Bg4XyduSKbvnE-i9g	Salt & Lime Modern Mexican Grill	9397 E Shea Blvd, Ste 115	Scottsdale	AZ	85260	3:
17539	UdEmYOnk2iJDY9lpEPAlJQ	Floridino's Pizza & Pasta	590 N Alma School Rd, Ste 35	Chandler	AZ	85224	38

17540 rows \times 92 columns

B. Restaurant Recommendation by NAME

```
In [46]:
         def search by rest(df name, sector num):
             df_name = df_name.sort_values('name')
             df_name = df_name.dropna()
             dt = dict(enumerate(df_name['name'].unique()))
             if sector num == 'library':
                 print(dt)
                 sector_num_2 = input("choose restaurant number (type 'library' to view
                 return search_by_rest(df_name, sector_num_2)
             elif re.findall('[^0-9]',sector_num) != []:
                 print('Invalid Input \n')
                 sector_num_2 = input("choose restaurant number (type 'library' to view
          options): ")
                 return search_by_sector(df_name, sector_num_2)
             elif int(sector num) not in dt.keys():
                 print('Invalid Input \n')
                 sector_num_2 = input("choose restaurant number (type 'library' to view
                 return search_by_sector(df_name, sector_num_2)
             else:
                  result = df_name.groupby(['name']).get_group(dt[int(sector_num)])
                 return result
```

Instruction:

This **recommendation tool** could be applied for searching **SPECIFIC restaurants on the** West Coast with a list of restaurant numbers in which each number corresponds to a unique restaurant in the above 'info' data frame. Please type 'library' in the space for the entire restaurant list. Or, enter a number directly for restaurant search.

```
In [47]:
          search by rest(info, sector num = input("choose sector number (type 'library' to
          view options): "))
          choose sector number (type 'library' to view options): 43
Out[47]:
                   business id
                                name address
                                                 city state postal_code
                                                                         latitude longitude st
                                  2nd
                                          3333
                                Annual
                7SBtCKKeHbdB6-
                                           Blue
                                 Asian
                                                        NV
                                                                  89139 36.041673 -115.184999
                      dIIkcZXw
                                       Diamond Vegas
                                 Food
                                            Rd
                                Festival
```

C. Restaurant Recommendation by CITY

```
In [48]:
         def search by city(df city, city num):
             df_city = df_city.sort_values('city')
             df_city = df_city.dropna()
             dt = dict(enumerate(df_city['city'].unique()))
             if city_num == 'library':
                 print(dt)
                 city_num_2 = input("choose city number (type 'library' to view option
         s): ")
                 return search_by_city(df_city, city_num_2)
             elif re.findall('[^0-9]', city_num) != []:
                 print('Invalid Input \n')
                 city_num_2 = input("choose city number (type 'library' to view option
         s): ")
                 return search_by_city(df_city, city_num_2)
             elif int(city_num) not in dt.keys():
                 print('Invalid Input \n')
                 city_num_2 = input("choose city number (type 'library' to view option
         s): ")
                 return search_by_city(df_city, city_num_2)
             else:
                 result = df_city.groupby(['city']).get_group(dt[int(city_num)])
                 return result
```

Instruction:

This recommendation tool could be applied for searching West Coast restaurants by city index with a list of city indices in which each number corresponds to a city on the West Coast. Please type 'library' in the space for the entire city list. Or, enter a number directly for city-level restaurant search.

```
In [49]: search_by_city(info, city_num = input("choose city index(type 'library' to view
         options): "))
```

choose city index(type 'library' to view options): 24

Out[49]:

	business_id	name	address	city	state	postal_code	latituc
16046	ro4h-3oXNxk4KLa6jV5Q	Montesano's Italian Deli	3441 W Sahara Ave Ste B2	Las Vegas	NV	89102	36.14329
8898	7gIK3en6jVyiColBvlHNPA	Noble Roman's Take-n-Bake Pizza	4190 S Rainbow Blvd	Las Vegas	NV	89103	36.1125
16022	IF9C_h3NONhXZ7bbyhtnxA	Osi's Kitchen	4604 W Sahara Ave, Ste 6	Las Vegas	NV	89102	36.14496
8895	94GNGMxmruuqRLRhLqllWw	Wendy's	8900 W Charleston Blvd	Las Vegas	NV	89117	36.1595
8816	nt2-Zk4FmGY2SYSDBIogHw	Durango Taco Shop	7785 N Durango Dr	Las Vegas	NV	89131	36.3024;
						•••	
3145	_8yxceldCT7oeowJC-yDPA	Benjarong Authentic Thai Cuisine	7425 S Durango Dr, Ste 101	Las Vegas	NV	89113	36.0533
459	OVTZNSkSfbl3gVB9XQIJfw	Cravings Buffet	3400 Las Vegas Blvd S	Las Vegas	NV	89109	36.1212;
4564	VZQ7R-LYP8Ja9kODnJpw	Z India	1116 S Rainbow Blvd	Las Vegas	NV	89146	36.15849
4562	ZCQa7CJxZ-53Zxd_pobWug	Le Cafe Ile St. Louis	3655 Las Vegas Blvd S	Las Vegas	NV	89109	36.11235
6883	FYqFfaxVRW6pdviONXIoDw	Fleming's Prime Steakhouse	6515 S Las Vegas Blvd	Las Vegas	NV	89119	36.06956

 $5818 \text{ rows} \times 92 \text{ columns}$

D. Restaurant Recommendations by PARKING Facilities

```
In [50]:
         def search_by_parking(df_attribute,
                                garage=None, street=None, validated=None,
                               lot=None, valet=None):
             result = df_attribute
             temp = ['False','Na','True']
             if garage == 'y':
                 result = result.loc[result['BusinessParking_garage']=='True']
             else:
                 result = result.loc[result['BusinessParking garage'].isin(temp),:]
             if street == 'y':
                 result = result.loc[result['BusinessParking_street'] == 'True']
             else:
                 result = result.loc[result['BusinessParking_street'].isin(temp),:]
             if validated == 'v':
                 result = result.loc[result['BusinessParking_validated']== 'True']
             else:
                 result = result.loc[result['BusinessParking_validated'].isin(temp),:]
             if lot == 'y':
                 result = result.loc[result['BusinessParking lot']== 'True']
             else:
                 result = result.loc[result['BusinessParking lot'].isin(temp),:]
             if valet == 'y':
                 result = result.loc[result['BusinessParking valet']== 'True']
                 result = result.loc[result['BusinessParking_valet'].isin(temp),:]
             return result
```

Instruction:

This **recommendation tool** could be applied for searching **West Coast restaurants by PARKING facilities**. Please type 'y/n' in the space below for a **desirable restaurant search** according to your need for **parking****.

**Notes: Most of the restaurants in this case only satisfy one of the conditions below. There are two restaurants in Las Vegas having both a garage and valet service.

```
In [51]:
         search_by_parking(info,
                           garage=(input('Need a garage[y/n]:')),
                           street=(input('Need a street parking[y/n]:')),
                           validated=(input('Validated parking[y/n]:')),
                           lot=(input('Need a lot[y/n]:')),
                           valet=(input('Need a valet[y/n]:')))
```

Need a garage[y/n]:y Need a street parking[y/n]:n Validated parking[y/n]:n Need a lot[y/n]:n Need a valet[y/n]:y

Out[51]:

	business_id	name	address	city	state	postal_code	latitude	lon
2104	KjOpQ4QCf- sk_dbFJX_52w	Fido's Kitchen	7875 W Sahara Ave, Ste 103	Las Vegas	NV	89117	36.143204	-115.2
2433	tpZfJdRi64OTBN4g7lRM3Q	Seoul Market	1801 E Tropicana Ave, Ste 12	Las Vegas	NV	89119	36.100196	-115.

- END -