CS685 Homework 6

$Yue\ Hao,\ {\tt yhao3@gmu.edu}$

1. The increased size of the filter results in more blurry image.

Figure 1: house1.jpg under the effect of the filter. The increased size of the filter results in more blurry image.

- 2. For the edge detection, the number of components decreases when the threshold increases. The results for house image are as follow.
 - threshold = 0.0, number of connected components = 14032.
 - threshold = 0.3, number of connected components = 1597.
 - threshold = 0.7, number of connected components = 82.

Figure 2: Edge detection on house1.jpg.

- 3. (a) According to our results in Fig. 3, If we rotate the input image, the detected corner positions rotate by the same amount.
 - (b) According to our results in Fig. 3, If we scale down the input image, the corner detector will generate different positions, rather than scaling accordingly,

Figure 3: Harris corner detector house house images. The result for house1-rotated.jpg is re-rotated back for display.

4. (a) Results are shown in Fig 4. The window size for SSD is 5x5.

house1.jpg | house2.jpg

house1.jpg | house1-rotated.jpg

house1-4down.jpg I house2.jpg

Figure 4: SIFT results.

(b) Results are shown in Fig 5.

house1.jpg I house2.jpg, 2094 tentative matches

house1.jpg I house1-rotated.jpg, 230 tentative matches

house1-4down.jpg I house2.jpg, 154 tentative matches

Figure 5: SIFT results.

- (c) This algorithm is based on the observation that if the queried object appears in a image in the dataset. The positions of matching SIFT features will form a dense cluster, which distinct itself from other images. The algorithm is described as follow:
 - Compute the SIFT feature for each image in dataset I that matches the queried image. The positions of these matching points for image i (in I) is a set denoted as P_i .
 - Use Spectral Clustering[1] algorithm to cluster set P_i into **two** subsets. Calculate the average the pair-wise euclidean distances **within** each subset. The two average distances are denoted as d_i^+ and d_i^- and $d_i^+ < d_i^-$, and the subsets are denoted as P_i^+ and P_i^- respectively.
 - Calculate $r_i = \frac{d_i^+}{d_i^-}$ for each image, and the results are in a set $R = \{r_i\}$.
 - Use K-means to cluster set R_i into **two** subsets. Find the subset with lower r value, denoted as R^+ .
 - Return the image set I^+ , which has the same index i as r_i in R^+ .

Note: there is a limitation in this algorithm, that it assumes the querying object only appears at most once in each image in the dataset.

References

[1] Andrew Y. Ng and Michael I. Jordan and Yair Weiss, On Spectral Clustering: Analysis and an algorithm, ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, 2001.