MEĐUISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za sklop na slici a) priključen je ulazni napon $u_{UL}(t)$ prema slici b). U t = 0 ms napon na kondenzatoru C_1 iznosi $U_{C1} = 1.5$ V dok na kondenzatoru C_2 iznosi $U_{C2} = 1.5$ V.

- a) Napisati izraz za izlazni napon u intervalu $0 < t < \infty$ ms (3 boda).
- b) Izračunati vrijednosti izlaznog napona u t = 0 ms i 5 ms (2 boda).
- c) Na istom grafu nacrtati ulazni i izlazni napon (1 bod).

ZADATAK 2. Silicij je dopiran donorima $N_D = 2 \cdot 10^{16} \text{ cm}^{-3}$. Odrediti:

- a) položaj Fermijeve energije na temperaturi T = 300 K (2 boda),
- b) tip i iznos koncentracije primjesa koju treba dodati da bi na T = 400 K Fermijeva energija bila na istoj udaljenosti od vrha vodljivog pojasa kao pod a) (**4 boda**).

ZADATAK 3. Koncentracije primjesa na n i p strani silicijske diode iznose $N_D = 4 \cdot 10^{15}$ cm⁻³ i $N_A = 2 \cdot 10^{17}$ cm⁻³. Parametri manjinskih nosilaca su $\mu_n = 800$ cm²/Vs, $\mu_p = 300$ cm²/Vs, $\tau_n = 0.5$ μ s i $\tau_p = 0.8$ μ s. Površina pn spoja iznosi S = 1 mm². Širine n i p strane diode su $W_n = 350$ μ m i $W_p = 0.8$ μ m. Napon propusne polarizacije pn-spoja je $U_D = 0.55$ V. Vrijedi T = 300 K. Pretpostaviti m = 1.

- a) Nacrtati raspodjele manjinskih nosilaca, izračunati i označiti rubne te ravnotežne koncentracije (6 bodova).
- b) Izračunati struju zasićenja I_S (2 boda).
- c) Izračunati iznos struje kroz diodu I_D (1 bod).
- d) Ako serijski otpor neutralnih p i n strana iznose redom 5 i 7 Ω , koliki je napon na stezaljakama diode U(1 bod)?

ZADATAK 4. Izlazna karakteristika nekog MOSFET-a prikazana je na slici. Faktor modulacije dužine kanala λ je približno jednak nuli.

- a) Uz obrazloženje, odrediti tip MOSFET-a
 (n ili p kanalni, obogaćeni ili osiromašeni)
 (1 bod).
- b) Izračunati napon praga U_{GS0} (**3 boda**).
- c) Izračunati debljinu oksida upravljačke elektrode t_{ox} ako je omjer širine i duljine kanala W/L = 20, te pokretljivost nosilaca μ =350 cm²/Vs (**2 boda**).
- d) Nacrtati prijenosnu karakteristiku i na njoj označiti položaj točaka A i B. (2 bod).

PITANJA

- 1. Pojačalo na slici ima strujno pojačanje uz kratkospojen izlaz $A_i = 150$, ulazni otpor $R_{ul} = 1 \text{ k}\Omega$ i izlazni otpor $R_{iz} = 4 \text{ k}\Omega$. Uz koji će otpor trošila R_T strujno pojačanje biti $A_I = i_{iz}/i_{ul} = 100$? Koliko je pri tome naponsko pojačanje $A_V = u_{iz}/u_{ul}$ (2 boda)?
 - a) $R_T = 8 \text{ k}\Omega, A_V = 200$
 - b) $R_T = 2 \text{ k}\Omega, A_V = 50$
 - c) $R_T = 8 \text{ k}\Omega, A_V = 100$
 - d) $R_T = 2 \text{ k}\Omega, A_V = 200$
 - e) $R_T = 8 \text{ k}\Omega, A_V = 50$

- **2.** U siliciju dopiranom samo jednom primjesom koncentracije N, Fermijeva energija na T=300 K nalazi se 0,1 eV od dna vodljivog pojasa. Na temperaturi T=400 K vrijedi da je N>> n_i . Za primjesu N te specifičnu vodljivost na T=400 K u odnosu na T=300 K vrijedi (**2 boda**):
 - a) N su donori, σ pada
 - b) N su akceptori, σ raste
 - c) N su donori, σ raste
 - d) N su akceptori, σ pada
 - e) N su donori, σ se ne mijenja
- 3. pn-dioda sa širokim stranama ima n-stranu 1000 puta jače dopiranu od p-strane i spojena je na napon U_D =0,6 V. Da li je uz rub osiromašenog područja veća koncentracija manjinskih nosilaca na p-strani ili na n-strani? Ako se p-strana suzi na vrijednost $W_p = L_n/10$, što se dešava sa strujom diode (2 boda):
 - a) Veća je koncentracija manjinskih nosilaca na n-strani; struja raste.
 - b) Veća je koncentracija manjinskih nosilaca na p-strani; struja raste.
 - c) Veća je koncentracija manjinskih nosilaca na n-strani; struja pada.
 - d) Veća je koncentracija manjinskih nosilaca na p-strani; struja pada.
 - Veća je koncentracija manjinskih nosilaca na p-strani; struja ostaje približno ista.
- **4.** Kroz diodu koja ima struju zasićenja I_S =10 fA teče struja i_D =1+0,2sin ω t [mA]. Uz zanemarenje serijskog otpora neutralnih strana te pretpostavku U_T =25mV, napon na diodi ima sljedeći oblik (**2 boda**):
 - a) $u_D=630+5\cdot\sin\omega t$, [mV]
 - b) $u_D = 700 + 25 \cdot \sin\omega t$, [mV]
 - c) $u_D = 700 + 5 \cdot \sin\omega t$, [mV]
 - d) $u_D = 550 + 5 \cdot \sin\omega t$, [mV]
 - e) $u_D=630+25\cdot\sin\omega t$, [mV]

- **5.** Koliku će valnu duljinu upadnog zračenja detektirati fotodioda sa širinom zabranjenog pojasa od 2,1 eV i kakva mora biti polarizacija fotodiode za tu detekciju (**2 boda**)?
 - a) $\lambda = 0.59 \,\mu\text{m}$, zaporna polarizacija,
 - b) $\lambda = 1.7 \mu m$, ne mora biti polarizirana
 - c) $\lambda = 1.7 \mu m$, zaporna polarizacija
 - d) $\lambda = 1.7 \,\mu\text{m}$, propusna polarizacija
 - e) $\lambda = 0.59 \,\mu\text{m}$, propusna polarizacija
- 6. Na ulaz sklopa ispravljača priključen je sinusni ulazni napon. Kako izgledaju izlazni naponi (2 boda)?

e)

7. Na slici su prikazane izlazne karakteristike tranzistora. Za tip tranzistora vrijedi (2 boda):

- a. n-kanalni MOSFET obogaćenog tipa,
- b. p-kanalni MOSFET obogaćenog tipa,
- c. *n*-kanalni MOSFET osiromašenog tipa,
- d. p-kanalni MOSFET osiromašenog tipa,
- e. p-kanalni MOSFET u triodnom području.