

Das Ziel des Praktikums besteht im Kennenlernens des Zusammenhangs von Strom und Spannung im elektrischen Grundstromkreis. Dazu werden die Spannungs- und Stromverläufe in einem Gleichstromkreis mit verschiedenen Widerständen gemessen und ausgewertet.

Inhaltsverzeichnis

Ak	Abbildungsverzeichnis II				
Та	belle	nverzeichnis	III		
1	Vork	pereitung	1		
	1.1	Aktive und passive Zweipole	1		
	1.2	Abgegebene Leistung des aktiven Zweipole	1		
	1.3	Anwendung des HELMHOLTZschen Überlagerungssatzes	2		
2	Versuchsaufbau und Versuchsdurchführung				
	2.1	Kennlinie des aktiven Zweipols	4		
	2.2	Strom-Spannungs-Kennlinie des Grundstromkreises	4		
	2.3	Analyse eines Netzwerkes	6		
	2.4	Quellspannungen	7		
	2.5	Zweigstrom I_{AB}	7		
3	Aus	wertung	9		
Lit	eratu	ır	10		
A	A Anhang				
Er	kläru	ıng			

Abbildungsverzeichnis

2.1	Versuchsaufbau aktiver Zweipol	4
2.2	Darstellung in Abhängigkeit von R_a	5
2.3	Versuchsaufbau	6

Tabellenverzeichnis

1	Messwerte für aktive Zweipole	1
2	Messwerte und Berechnungen im aktiven Zweipol	5

1 Vorbereitung

1.1 Aktive und passive Zweipole

Für einen aktiven Zweipol wurden nacheinander die Spannungen $U_1,\,U_2$ und der dazugehörige Strom I_1 bzw. I_2 gemessen. Über das Ohm'sche Gesetz

$$U = R \cdot I$$

kann der Widerstand R berechnet werden. Die Ergebnisse sind in Tabelle 1 zu sehen.

No.	U/V	I/A	R/Ω
1	6,5	0,5	13
2	3,5	1,5	2,3

Tabelle 1: Messwerte für aktive Zweipole

Des Weiteren wurden die Leerlaufspannung U_q , der Kurzschlussstrom I_k und der Innenwiderstand R_i gemessen bzw. über die Beziehung

$$R_i = \frac{U_q}{I_{li}}$$

berechnet.

Es ergeben sich die Kenngrößen $U_l=8\,\mathrm{V}$, $I_k=2,67\,\mathrm{A}$ und $R_i=3\,\Omega$.

1.2 Abgegebene Leistung des aktiven Zweipole

Die abgegebene Leistung P_a des aktiven Zweipols wird über die Formel

$$P_a = U \cdot I \tag{1}$$

bzw.

$$P_a = U_q^2 \cdot \frac{R_a}{(R_i + R_a)^2}$$
 (2)

berechnet.

Im Diagramm $\ref{eq:condition}$ ist die abgegebene Leistung P_a in Abhängigkeit des Widerstands R_a = $(0...15)~\Omega$ nach (2) dargestellt.

1.3 Anwendung des HELMHOLTZschen Überlagerungssatzes

Zu bestimmen ist der Strom I_{AB} in der Schaltung $\ref{eq:condition}$ mit Hilfe des HELMHOLTZschen Überlagerungssatzes.

Bilder/Helmholtz.png

Dafür wird nacheinander eine Spannungsquelle ausgewählt und die anderen Spannungsquellen durch Kurzschlüsse ersetzt.

Für die Spannungsquelle U_1 mit $U_{q1}=10\,V$ ergibt sich zunächst der Gesamtwiderstand R_{qes1} über

$$R_{ges1} = R_1 + R_2 + (R_3 \parallel R_4) = 1250 \,\Omega$$
 (3)

Somit ergibt sich über das Ohm'sche Gesetz der Strom I_{AB1} zu

$$I_1 = \frac{U_{q1}}{R_{ges1}} = 8 \, mA \, .$$

Wegen der Stromteilerregel gilt für die Beziehung zwischen I_{AB1} und I_1

$$\frac{I_{AB1}}{I_{AB1}} = \frac{R_3}{R_3 + R_4}$$

bzw.

$$I_{AB1} = \frac{R_3}{R_3 + R_4} \cdot I_1 = 4 \, mA \,. \tag{4}$$

Für die Spannungsquelle U_2 mit $U_{q2}=10\,V$ ergibt sich zunächst mit $R_{ges2}=1250\,\Omega$ der gleiche Gesamtwiderstand wie in (3). Analog ergibt sich der Strom I_{AB2} zu

$$I_{AB2} = \frac{R_4}{R_3 + R_4} \cdot I_2 = 4 \, mA \,. \tag{5}$$

Für U_3 mit $U_{q3}=10\,V$ ergibt sich zunächst der Gesamtwiderstand R_{ges3} über

$$R_{ges3} = R_3 + (R_1 + R_2) \parallel R_4 = 833 \,\Omega.$$

Über die Stromteilerregel ergibt sich der Strom I_{AB3} zu

$$I_{AB3} = \frac{R_1 + R_2}{R_1 + R_2 + R_4} \cdot I_3 = 12 \, mA \,. \tag{6}$$

Mit den Ergebnissen für I_{AB1} , I_{AB2} und I_{AB3} nach (4), (5) und (6) ergibt sich der Gesamtstrom I_{AB} zu

$$I_{AB} = I_{AB2} + I_{AB3} - I_{AB1} = 8 \, mA$$
.

Der Strom I_{AB1} muss hierbei negativ betrachtet werden, da er in die entgegengesetzte Richtung fließt.

2 Versuchsaufbau und Versuchsdurchführung

2.1 Kennlinie des aktiven Zweipols

Der Versuchsaufbau besteht aus einer Spannungsquelle, zwei Multimetern zur Spannungsbzw. Strommessung, und einem Schiebewiderstand. Der Versuchsaufbau ist in Abbildung 2.1 dargestellt.

Bilder/Versuchsaufbau.png

Abbildung 2.1: Versuchsaufbau aktiver Zweipol

Zuerst wird $R_a=0\,\Omega$ eingestellt, um den Kurzschlussstrom I_k zu messen. Dann wird der Schiebewiderstand aus der Schaltung abgeklemmt. Dadurch wird die Leerlaufspannung U_l gemessen. Es ergeben sich die Werte

$$I_k = 2,67 A$$
$$U_l = 8 V.$$

2.2 Strom-Spannungs-Kennlinie des Grundstromkreises

Für verschiedene Widerstände R_a werden nun die Spannung und der Strom gemessen. Die Messwerte sind in Tabelle 1 zu sehen. Zu jedem Messwertpaar kann der Wirkungsgrad η berechnet und in die Tabell eingetragen werden. Dieser ist definiert als

$$\eta = \frac{R_a}{R_i + R_a}$$

mit $R_i=3\Omega$ aus der Versuchsvorbereitung. A	Außerdem wird die abgegebene Leistung P_a
nach (1) berechnet und in die Tabelle eingetrag	agen.

R_a/Ω	U_{AB}/V	I/mA	η	P_a / mW
3	0,63	182,4	0,11	114
6	1,06	164,4	0,2	174
12	1,71	137,5	0,33	235
24	2,47	101,2	0,5	250
48	3,31	68,2	0,67	226
96	3,98	41,3	0,8	164
192	4,44	23,1	0,89	103
384	4,71	12,3	0,94	58

Tabelle 2: Messwerte und Berechnungen im aktiven Zweipol

Mit den Kenngrößen $U_l=5,02\,\mathrm{V}$ und $I_k=208\,\mathrm{mA}$ des aktiven Zweipols lässt sich die maximale Leistung, die der aktive Zweipol abgeben kann, berechnen. Diese ist gegeben durch

$$P_{a,max} = U_l \cdot I_k = 1,04 W.$$

In den Diagrammen 2.2a und 2.2b sind die Messwerte graphisch dargestellt. In Abbildung 2.2a sind die normierten Kennlinien $\frac{U_a}{U_l}=f\left(\frac{R_a}{R_i}\right)$ und $\frac{I}{I_k}=f\left(\frac{R_a}{R_i}\right)$, in Abbildung 2.2b die nach der Maximalleistung normierte abgegebene Leistung $\frac{P_a}{P_{a,max}}=f\left(\frac{R_a}{R_i}\right)$ sowie der Wirkungsgrad $\eta=f\left(\frac{R_a}{R_i}\right)$ dargestellt.

(a) Strom und Spannung

(b) Leistung und Wirkungsgrad

Abbildung 2.2: Darstellung in Abhängigkeit von R_a

2.3 Analyse eines Netzwerkes

Der Versuchsaufbau entspricht dem in Abbildung 2.3 zu sehenden Aufbau und besteht aus drei Spannungsquellen, vier Widerständen sowie einem Multimeter zur Spannungs-, Stromund Widerstandsmessung.

Bilder/Versuchsaufbau.png

Abbildung 2.3: Versuchsaufbau

Widerstände

Zuerst werden mit dem Multimeter die Widerstände der Widerstände R_1 , R_2 , R_3 und R_4 gemessen. Es ergeben sich die Werte

$$R_1 = 820 \,\Omega$$

$$R_2 = 558 \,\Omega$$

$$R_3 = 525 \,\Omega$$

$$R_4 = 678 \,\Omega$$

sowie ein Ersatzinnenwiderstand $R_{i,ers}$ bei überbrückten Quellspannungen von

$$R_{i,ers} = 1055 \Omega$$
.

Der berechnete Ersatzinnenwiderstand $R_{i,ers,berechnet}$ beträgt

$$R_{i,ers,berechnet} = (R_1 + R_2) \parallel R_3 + R_4 \Omega = 1058 \Omega$$
.

2.4 Quellspannungen

Die Quellspannungen U_{q1} , U_{q2} und U_{q3} werden mit dem Multimeter gemessen. Es wurden die Werte

$$U_{q1} = -8,03 V$$

 $U_{q2} = 11,14 V$
 $U_{q3} = 10,26 V$

sowie eine Leerlaufspannung $U_{l,AB}$ von

$$U_{l,AB} = 8,28 V$$

gemessen.

2.5 Zweigstrom I_{AB}

Analog zum Vorgehen in der Vorbereitung (1.3) wird der Zweigstrom I_{AB} berechnet. Dazu wird jeweils eine Spannungsquelle verwendet und die anderen beiden überbrückt. Zunächst erfolgt die theoretische Berechnung des Zweigstroms I_{AB} mit den Widerständen R_1 , R_2 , R_3 und R_4 sowie den Quellspannungen U_{q1} , U_{q2} und U_{q3} . Es ergibt sich für U_{q1} zunächst der Gesamtwiderstand R_{ges1} zu

$$R_{ges1} = R_1 + R_2 + (R_3 \parallel R_4) = 1674 \,\Omega\,,$$

dadurch der Gesamtstrom I_1 mit

$$I_1 = \frac{U_{q1}}{R_{qes1}} = -4,80 \, mA$$

und schließlich der Zweigstrom I_{AB1}

$$I_{AB1} = \frac{R_3}{R_3 + R_4} \cdot I_1 = -2, 1 \, mA \,. \tag{7}$$

Analog wird für U_{q2} der Gesamtwiderstand R_{ges2} zu

$$R_{qes2} = R_1 + (R_2 \parallel R_3) + R_4 = 1674 \,\Omega$$
,

der Gesamtstrom I_2 mit

$$I_2 = \frac{U_{q2}}{R_{gas^2}} = 6.7 \, mA$$

und schließlich der Zweigstrom I_{AB2}

$$I_{AB2} = \frac{R_3}{R_3 + R_4} \cdot I_2 = 2,9 \, mA \tag{8}$$

berechnet.

Zum Schluss ergibt sich für U_{q3} mit dem Gesamtwiderstand R_{ges3} zu

$$R_{aes3} = R_3 + (R_1 + R_2) \parallel R_4 = 979 \Omega$$
,

und $I_3=10,4\,mA$ schließlich der Zweigstrom I_{AB3}

$$I_{AB3} = \frac{R_1 + R_2}{R_1 + R_2 + R_4} \cdot I_3 = 7 \, mA \,. \tag{9}$$

Als Gesamtzweigstrom ergibt sich damit durch Addition der einzelnen Zweigströme (7), (8) und (9) der Wert

$$I_{AB} = I_{AB1} + I_{AB2} + I_{AB3} = 7,8 \, mA \,.$$
 (10)

Überprüft man diese Werte mit dem Multimeter, so ergeben sich die Werte

$$I_{AB1} = -2, 1 \, mA$$

 $I_{AB2} = 2, 9 \, mA$
 $I_{AB3} = 7, 0 \, mA$
 $I_{AB} = 7, 8 \, mA$.

Es ist zu sehen, dass die gemessenen Werte mit den berechneten Werten übereinstimmen.

3 Auswertung

Literatur

A Anhang HTWD

A Anhang

Erklärung

Der Verfasser erklärt, dass er die vorliegende Arbeit selbständig, ohne fremde Hilfe und ohne Benutzung anderer als die angegebenen Hilfsmittel angefertigt hat. Die aus fremden Quellen (einschließlich elektronischer Quellen) direkt oder indirekt übernommenen Gedanken sind ausnahmslos als solche kenntlich gemacht. Die Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht vorgelegt worden. Zudem bestätigt der Verfasser, dass er den Lehrstuhlleitfaden in der jeweiligen geltenden Fassung gelesen und verstanden hat und sich daher über die gestellten Anforderungen und Bewertungsmaßstäbe im Klaren ist.

Datum, Ort	Name des Autors