1

(2.0.8)

Assignment-9

Satyam Singh EE20MTECH14015

Abstract—This assignment deals with matrices multiplication.

 $A^2B = \begin{pmatrix} 7 & -3\\ 20 & -4\\ 25 & -5 \end{pmatrix} \tag{2.0.6}$

Download tex file from

https://github.com/satyam463/Assignment-9/blob/main/Assignment%209.tex

Now LHS is

$$A(AB) = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 8 & 0 \\ 10 & -2 \end{pmatrix}$$
 (2.0.7)

 $A(AB) = \begin{pmatrix} 7 & -3 \\ 20 & -4 \\ 25 & -5 \end{pmatrix}$

1 Problem Statement

Let

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (1.0.1) Hence verified.

Verify directly that $A(AB) = A^2B$

2 solution

$$A^{2} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}$$
 (2.0.1)

$$A^{2} = \begin{pmatrix} 2 & -1 & 1 \\ 5 & -2 & 3 \\ 6 & -3 & 4 \end{pmatrix}$$
 (2.0.2)

and

$$AB = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (2.0.3)

$$AB = \begin{pmatrix} 5 & -1 \\ 8 & 0 \\ 10 & -2 \end{pmatrix} \tag{2.0.4}$$

Now RHS is

$$A^{2}B = \begin{pmatrix} 2 & -1 & 1 \\ 5 & -2 & 3 \\ 6 & -3 & 4 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (2.0.5)