#### Centro Federal de Educação Tecnológica de Minas Gerais ENGENHARIA DA COMPUTAÇÃO

# Aula 08 Métodos de Interpolação Polinomial

Definição de "interpolação":

Na matemática, denomina-se interpolação o método que permite construir um novo conjunto de dados a partir de um conjunto discreto de dados pontuais previamente conhecidos.

Os problemas de **interpolação** e **aproximação** surgem ao se aproximar uma função F(x) por outra G(x) mais apropriada ao usos que dela se deseja fazer.

Os problemas de **interpolação** e **aproximação** surgem ao se aproximar uma função F(x) por outra G(x) mais apropriada ao usos que dela se deseja fazer.

A aproximação de funções por polinômios é uma das ideias mais antigas da análise numérica. Os principais motivos são:

- Polinômios são facilmente computáveis;
- Suas derivadas e integrais são novos polinômios;
- Suas raízes podem ser encontradas com relativa facilidade.

#### Importante:

Quando um erro substancial estiver associado aos dados amostrados, a interpolação polinomial é inapropriada e pode produzir resultados insatisfatórios quando usada para prever valores intermediários.

#### Importante:

Quando um erro substancial estiver associado aos dados amostrados, a interpolação polinomial é inapropriada e pode produzir resultados insatisfatórios quando usada para prever valores intermediários.

Neste caso, uma estratégia mais adequada seria determinar uma função de aproximação que ajuste a forma ou a tendência geral dos dados, sem necessariamente passar por todos os pontos individuais.

**Definição:** Chama-se polinômio de interpolação, de uma função y=f(x), sobre o conjunto de pontos distintos  $x_0$ ,  $x_1$ ,  $x_2$ ,  $x_3$ ,....,  $x_N$ , ao polinômio de grau máximo N que coincide com f(x) em  $x_0$ ,  $x_1$ ,  $x_2$ ,...,  $x_N$ . Tal polinômio será designado por  $P_N(x)$ .

**Definição:** Chama-se polinômio de interpolação, de uma função y=f(x), sobre o conjunto de pontos distintos  $x_0$ ,  $x_1$ ,  $x_2$ ,  $x_3$ ,...,  $x_N$ , ao polinômio de grau máximo N que coincide com f(x) em  $x_0$ ,  $x_1$ ,  $x_2$ ,...,  $x_N$ . Tal polinômio será designado por  $P_N(x)$ .

**Teorema Weierstrass:** Dados N+1 pontos distintos  $x_0$ ,  $x_1$ ,  $x_2$ ,...,  $x_N$  e N+1 valores  $y_0$ ,  $y_1$ ,  $y_2$ ,...,  $y_N$  existe somente um polinômio  $P_N(x)$ , de grau menor ou igual a N, tal que:

$$P_N(x_k) = y_k$$

**Exemplo:** Dada a seguinte tabela, determinar o polinômio de interpolação para a função definida por este conjunto de pontos.

| X <sub>(k)</sub> | f(x <sub>k</sub> ) |  |  |
|------------------|--------------------|--|--|
| -1               | 15                 |  |  |
| 0                | 8                  |  |  |
| 3                | -1                 |  |  |

#### **Graficamente, tem-se:**



#### Solução:

Como N=3, o polinômio deverá ter grau N-1=2, isto é:

$$P_2(x) = a_0 + a_1 x + a_2 x^2$$
, tal que  $P_2(x_k) = y_k$ 

Equação Geral para grau 2: 
$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 = y_0 \\ a_0 + a_1 x_1 + a_2 x_1^2 = y_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 = y_2 \end{cases}$$

#### Solução:

Explicitamente, na forma matricial, fica sendo:

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix} = \begin{bmatrix} f(x_0) \\ f(x_1) \\ f(x_2) \\ \dots \\ f(x_n) \end{bmatrix}$$

#### Solução:

Substituindo-se valores de x e y, chega-se a:

$$\begin{cases} a_0 - a_1 + a_2 &= 15 \\ a_0 &= 8 \\ a_0 + 3a_1 + 9a_2 &= -1 \end{cases}$$

#### Solução:

Substituindo-se valores de x e y, chega-se a:

$$\begin{cases} a_0 - a_1 + a_2 &= 15 \\ a_0 &= 8 \\ a_0 + 3a_1 + 9a_2 &= -1 \end{cases}$$

Resolvendo o sistema linear de equações, obtém-se:

$$P_2(x) = x^2 - 6x + 8$$

#### Solução:



**Exercícios:** Dada a tabela abaixo, encontrar o polinômio interpolador e, com isso, calcular f(1) e f(3):

| X <sub>(k)</sub> | f(x <sub>k</sub> ) |  |  |
|------------------|--------------------|--|--|
| -1               | 4                  |  |  |
| 0                | 1                  |  |  |
| 2                | -1                 |  |  |

Seja  $x_0, x_1, x_2, ..., x_N$  N+1 pontos distintos e y=f(x).

Podemos representar P(x) na forma:

$$P_{N}(x_{i}) = y_{0}L_{0}(x_{i}) + y_{1}L_{1}(x_{i}) + ... + y_{n}L_{n}(x_{i})$$

onde L<sub>(k)</sub> são polinômios de grau N, dados por:

$$L_{K}(x) = \frac{(x-x_{0})(x-x_{1})...(x-x_{k-1})(x-x_{k+1})...(x-x_{n})}{(x_{k}-x_{0})(x_{k}-x_{1})...(x_{k}-x_{k-1})(x_{k}-x_{k+1})...(x_{k}-x_{n})}$$

Onde, a forma de Lagrange para o polinômio interpolador é:

$$P_{N}(x) = \sum_{k=0}^{N} y_{k} L_{k}(x)$$

$$L_k(x) = \frac{\prod_{\substack{j=0\\j\neq k}}^{N} (x - x_j)}{\prod_{\substack{j=0\\j\neq k}\\j\neq k}}$$

**Exemplo**: Dada a tabela, calcular polinômio interpolador de grau 2, onde:

| X <sub>(k)</sub> | f(x <sub>k</sub> ) |
|------------------|--------------------|
| -1               | 15                 |
| 0                | 8                  |
| 3                | -1                 |

**Exercício**: Dada a tabela, calcular f(0.25) utilizando um polinômio de grau 2, onde:

$$f(x) = xe^{3x}$$

| X <sub>(k)</sub> | f(x <sub>k</sub> ) |
|------------------|--------------------|
| 0                | 0                  |
| 0.1              | 1.3499             |
| 0.2              | 1.8221             |
| 0.3              | 2.4596             |
| 0.4              | 3.3201             |
| 0.5              | 4.4817             |

Para a construção do polinômio de interpolação por este método, precisamos da notação de diferenças divididas de uma função, onde temos que:

$$P_{N}(x) = y_{0} + \sum_{i=1}^{n} d_{0}^{(i)} \prod_{j=0}^{i-1} (x - x_{j})$$

$$Q^{(n-1)} - Q^{(n-1)}$$

$$d_i^{(n)} = \frac{d_{i+1}^{(n-1)} - d_i^{(n-1)}}{x_{i+n} - x_i}$$

**Exercício:** Obter o polinômio interpolador para os pontos da tabela abaixo:

| X <sub>(k)</sub> | f(x <sub>k</sub> ) |
|------------------|--------------------|
| -2               | 4                  |
| -1               | -1                 |
| 0                | 2                  |
| 1                | 1                  |
| 2                | 8                  |

Sistemática da criação da tabela de diferenças divididas:

$$x_i \quad d_i^{(0)}$$

$$-2$$
 4

$$-1$$
  $-1$ 

0

1

2 8

Sistemática da criação da tabela de diferenças divididas:

$$x_i$$
  $d_i^{(0)}$   $d_i^{(1)} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$ 

-2 4

-1 -1

 $0 \quad 2$ 

1 ]

2 8

Sistemática da criação da tabela de diferenças divididas:

$$x_i$$
  $d_i^{(0)}$   $d_i^{(1)} = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$ 

$$-2$$
 4  $\frac{(-1-4)}{(-1+2)} = -5$ 

$$-1$$
  $-1$   $\frac{(2+1)}{(0+1)} = 3$ 

$$0 2 \frac{(1-2)}{1-0} = -1$$

1 1 
$$\frac{(8-1)}{(2-1)} = 7$$

Sistemática da criação da tabela de diferenças divididas:

$$x_{i} d_{i}^{(0)} d_{i}^{(1)} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} d_{i}^{(2)} = \frac{d_{i+1}^{(1)} - d_{i}^{(1)}}{x_{i+2} - x_{i}}$$

$$-2 4 \frac{(-1-4)}{(-1+2)} = -5 \frac{(3+5)}{(0+2)} = 4$$

$$-1 -1 \frac{(2+1)}{(0+1)} = 3 \frac{(-1-3)}{(1+1)} = -2$$

$$0 2 \frac{(1-2)}{1-0} = -1 \frac{(7+1)}{(2-0)} = 4$$

$$1 1 \frac{(8-1)}{(2-1)} = 7$$

Sistemática da criação da tabela de diferenças divididas:

$$x_{i} d_{i}^{(0)} d_{i}^{(1)} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} d_{i}^{(2)} = \frac{d_{i+1}^{(1)} - d_{i}^{(1)}}{x_{i+2} - x_{i}} d_{i}^{(3)} = \frac{d_{i+1}^{(2)} - d_{i}^{(2)}}{x_{i+3} - x_{i}}$$

$$-2$$
 4  $\frac{(-1-4)}{(-1+2)} = -5$   $\frac{(3+5)}{(0+2)} = 4$   $\frac{(-2-4)}{(1+2)} = -2$ 

$$-1$$
  $-1$   $\frac{(2+1)}{(0+1)} = 3$   $\frac{(-1-3)}{(1+1)} = -2$   $\frac{(4+2)}{(2+1)} = 2$ 

0 2 
$$\frac{(1-2)}{1-0} = -1$$
  $\frac{(7+1)}{(2-0)} = 4$ 

1 
$$\frac{(8-1)}{(2-1)} = 7$$

2 8

Sistemática da criação da tabela de diferenças divididas:

$$x_{i} \quad d_{i}^{(0)} \quad d_{i}^{(1)} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} \quad d_{i}^{(2)} = \frac{d_{i+1}^{(1)} - d_{i}^{(1)}}{x_{i+2} - x_{i}} \quad d_{i}^{(3)} = \frac{d_{i+1}^{(2)} - d_{i}^{(2)}}{x_{i+3} - x_{i}} \quad d_{i}^{(4)} = \frac{d_{i+1}^{(3)} - d_{i}^{(3)}}{x_{i+4} - x_{i}}$$

$$x_i \quad a_i \quad a_i = \frac{1}{x_{i+1} - x_i} \quad a_i = \frac{1}{x_{i+2} - x_i} \quad a_i = \frac{1}{x_{i+3} - x_i}$$

$$-2$$
 4  $\frac{(-1-4)}{(-1+2)} = -5$   $\frac{(3+5)}{(0+2)} = 4$   $\frac{(-2-4)}{(1+2)} = -2$   $\frac{(2+2)}{(2+2)} = 1$ 

$$-1$$
  $-1$   $\frac{(2+1)}{(0+1)} = 3$   $\frac{(-1-3)}{(1+1)} = -2$   $\frac{(4+2)}{(2+1)} = 2$ 

0 2 
$$\frac{(1-2)}{1-0} = -1$$
  $\frac{(7+1)}{(2-0)} = 4$ 

1 1 
$$\frac{(8-1)}{(2-1)} = 7$$

#### Solução:

$$P_{4}(x) = y_{0} + d_{0}^{1}(x - x_{0}) + d_{0}^{2}(x - x_{0})(x - x_{1}) + d_{0}^{3}(x - x_{0})(x - x_{1})(x - x_{2}) + d_{0}^{4}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3})$$

#### Solução:

$$P_{4}(x) = y_{0} + d_{0}^{1}(x - x_{0}) + d_{0}^{2}(x - x_{0})(x - x_{1}) + d_{0}^{3}(x - x_{0})(x - x_{1})(x - x_{2}) + d_{0}^{4}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3})$$

#### Resposta:

$$P_4(x) = x^4 - 3x^2 + x + 2$$

Uma forma de aproximação que se ajusta à tendência geral dos dados, sem necessariamente passar pelos pontos individuais, é chamada de **Regressão por Mínimos Quadrados.** 

Uma forma de aproximação que se ajusta à tendência geral dos dados, sem necessariamente passar pelos pontos individuais, é chamada de **Regressão por Mínimos Quadrados.** 

O exemplo mais simples de aproximação por mínimos quadrados é ajustar uma reta a um conjunto de pares de observação (x,y), sendo:

Uma forma de aproximação que se ajusta à tendência geral dos dados, sem necessariamente passar pelos pontos individuais, é chamada de **Regressão por Mínimos Quadrados.** 

O exemplo mais simples de aproximação por mínimos quadrados é ajustar uma reta a um conjunto de pares de observação (x,y), sendo:

$$y = a_1 x + a_0$$

As equações normais, que permitem determinar os coeficientes, são:

$$a_{1} = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{n\sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a_{0} = y - a_{1}x$$

Onde x e y são as médias de x e y, respectivamente.

| хi | yi  |
|----|-----|
| 1  | 0,5 |
| 2  | 2,5 |
| 3  | 2,0 |
| 4  | 4,0 |
| 5  | 3,5 |
| 6  | 6,0 |
| 7  | 5,5 |
|    |     |

| _         |    |     |       |       |                   |
|-----------|----|-----|-------|-------|-------------------|
| -         | хi | yi  | xi.yi | xi.xi |                   |
|           | 1  | 0,5 | 0,5   | 1     |                   |
|           | 2  | 2,5 | 5,0   | 4     |                   |
|           | 3  | 2,0 | 6,0   | 9     |                   |
|           | 4  | 4,0 | 16,0  | 16    |                   |
|           | 5  | 3,5 | 17,5  | 25    |                   |
|           | 6  | 6,0 | 36,0  | 36    |                   |
|           | 7  | 5,5 | 38,5  | 49    | Média xi Média yi |
| Somatório | 28 | 24  | 119,5 | 140   | 4 3,42857         |
|           |    |     |       |       |                   |

$$a_1 = \frac{7(119,5) - 28(24)}{7(140) - (28)^2} = 0.84$$

$$a_0 = 3,42857 - 0,84(4) = 0,07$$

$$y = 0.84x + 0.07$$



