Examen

(Durée 1h45)

Exercice N° 1:

Les amplificateurs opérationnels sont considérés parfaits et fonctionnent en régime non linéaire.

- 1. Quelle fonction assure les deux amplificateurs ? Justifier.
- 2. Déterminer les tensions aux points A et B en fonction de V_{cc} .
- 3. Déterminer V_{s1} et V_{s2} .
- 4. Tracer V_{s1} et V_{s2} en fonction de V_e .

Exercice N° 2:

Soit le montage de la figure 1 dont les caractéristiques internes et externes du transistor sont connues, ainsi que R_1 et R_2 .

- 1) Nommer les caractéristiques externes connues.
- 2) Déterminer R_C .
- 3) Pour le montage à transistors de la figure 2, donner le schéma équivalent statique et le schéma équivalent dynamique.

Exercice N° 3:

Donner la fonction de transfert du filtre, déduire son type et relever ses paramètres.

O. CHILALI

Bonne chance

Matière : Fonctions d'électronique appliquée, promotion : Master 1 professionnel, année : 2019/2020

Type du filtre	Fonction de transfert
Passe-bas 1 ^{er} ordre	$H_{max} \frac{1}{1+j\frac{w}{w_c}}$ - H_{max} : gain maximum dans la bande passante w_c : pulsation de coupure qui donne la fréquence de coupure f_c .
	$H_{max} \frac{1}{1 + \frac{2m}{w_0} jw + \left(j \frac{w}{w_0}\right)^2}$ - H_{max} : gain maximum dans la bande passante w_0 : pulsation propre qui donne la fréquence propre f_0 m : facteur d'amortissement Q : facteur de qualité= $\frac{f_0}{BP} = \frac{1}{2m}$ BP : bande passante.
Passe-haut 1 ^{er} ordre	$H_{max} rac{jrac{w}{w_c}}{1+jrac{w}{w_c}}$ - H_{max} : gain maximum dans la bande passante w_c : pulsation de coupure qui donne la fréquence de coupure f_c .
Passe-haut 2 ^{éme} ordre	$H_{max} = \frac{\left(j\frac{w}{w_0}\right)^2}{1 + \frac{2m}{w_0}jw + \left(j\frac{w}{w_0}\right)^2}$ - H_{max} : gain maximum dans la bande passante w_0 : pulsation propre qui donne la fréquence propre f_0 m : facteur d'amortissement Q : facteur de qualité= $\frac{f_0}{BP} = \frac{1}{2m}$ BP : bande passante.
	$H_{max} = \frac{\frac{2m}{w_0} jw}{1 + \frac{2m}{w_0} jw + \left(j \frac{w}{w_0}\right)^2}$ Ou $H_{max} = \frac{1}{1 + j \frac{1}{m} \left(\frac{w}{w_0} - \frac{w_0}{w}\right)}$ - H_{max} : gain maximum dans la bande passante w_0 : pulsation propre qui donne la fréquence propre f_0 m : facteur d'amortissement Q : facteur de qualité = $\frac{f_0}{BP} = \frac{1}{2m}$ BP : bande passante.
Coupe-bande 2 ^{éme} ordre	$H_{max} \frac{1 + \left(j \frac{w}{w_c}\right)^2}{1 + \frac{2m}{w_c} jw + \left(j \frac{w}{w_c}\right)^2}$ - H_{max} : gain maximum dans la bande passante w_0 : pulsation propre qui donne la fréquence propre f_0 m : facteur d'amortissement Q : facteur de qualité= $\frac{f_0}{BP} = \frac{1}{2m}$ BP : bande passante.

O. CHILALI

Bonne chance