SEMINARIO DEL 01/04

Ruggieri Andrea Stranieri Francesco MAD Lab

Introduzione

Review

EVOLUZIONE DEL PROGETTO

EVOLUZIONE DEL PROGETTO

N.B:. Un test ha riportato che valori inconsistenti sono ottenuti quando all'interno di un dato sono presenti tanti missing values. DA CORREGGERE

TRE FASI

FASE 1: TESTING

- Gen2 testata su 7 diversi tipi di dataset;
- Sono stati testati sia casi limite sia casi normali;
- Ogni test ha uno scopo ben preciso volte a valutare la correttezza di particolari **funzionalità**;
- Alla fine degli esperimenti sono state individuate **sette inconsistenze** che sono state risolte apportando modifiche direttamente sullo script.

FASE 2: IMPLEMENTAZIONE GEN3 (alg. EM su dati discreti)

- <u>Idea chiave:</u> memorizzare informazioni riguardante i dati mancanti all'interno di una particolare **struttura** a tabella;
- Estendere i passi di **Expectation** e di **Maximisation** in modo da lavorare su dati discreti.

FASE 3: TEST E MIGLIORAMENTI FINALI DEL CODICE

- Esecuzione dell'algoritmo su una struttura estremamente complessa (esempio reale: **PlayTennis**);
- Miglioramento e ottimizzazione del codice.

Test Eseguiti

Presentazione dei test

Analisi dei risultati

INTRODUZIONE

APPROCCIO METODOLOGICO

I risultati sono stati confrontati con **EM manuale** (**GEN2**) ed eventualmente sono stati eseguiti calcoli a mano;

Due tipi di **confronti** sono stati effettuati:

- Con le CPT al termine del passo di Maximisation;
- Con i dati rimpiazzati.

Siamo quindi passati all'interpretazione dei risultati, cercando di individuare inconsistenze:

- Errori;
- Valori diversi rispetto a bnlean;
- Valori non attesi.

Per ogni inconsistenza trovata abbiamo approfondito sulla possibile causa:

- Debug step-by-step;
- Eseguendo calcoli manuali;
- Eseguendo altri esperimenti con dataset simili.

TEST 1 – TANTI DATI

Dataset

A	0	0	M	0	1	0	M	1	1	0	1	0	0	1	1	1	0	M	0	0	0
В	1	0	0	M	0	1	1	0	1	M	1	1	0	0	M	1	M	1	1	1	0
С	0	M	1	0	0	0	1	M	M	1	1	0	1	1	1	M	1	0	1	1	0

Struttura della rete

[A] [B|A] [C|A.B]

Risultati ottenuti

	D2	D3	D4	D7	D 8	D9	D10	D15	D16	D17	D18
GEN2	1	0	1	1	1	1	1	1	1	1	0
BNLE ARN	1	0	1	0	1	1	1	1	1	1	0

% valori rimpiazzati correttamente: 91%

Aspetti testati

Osservati tanti dati. Sono attesi poche probabilità vicine a 1.

Confronto con bnlearn.

Errori risolti

L'indicizzazione sulle CPT ottenuta attraverso il metodo *expand.grid* risultava essere invertita e faceva ottenere probabilità finali invertite. Errore trovato dopo aver eseguito debug manuale sull'esempio. **RISOLTO**

In Maximisation: il *vettore column_cpt* contenente gli indici delle colonne delle CPT da aggiornare, veniva aggiornata ad ogni step in maniera errata. Errore trovato dopo aver eseguito a mano i calcoli e aver identificato l'inversione delle probabilità nelle CPT.

RISOLTO

In Maximisation: mancavano dei controlli da fare ai nodi parents qualora il nodo da computare consisteva di 2 o più genitori.

RISOLTO

TEST 2 – RETE COMPLESSA

Dataset

A	0	NA	1	1	1
В	1	1	0	NA	0
С	0	0	1	0	0
D	NA	1	0	0	0
E	0	0	1	1	NA

Struttura della rete

[A] [B|A] [C|A] [D|C] [E|A:D:B]

Risultati ottenuti

	Data 1	Data 2	Data 4	Data5
GEN2	0	1	0	1
BNLEARN	0	1	0	1

% valori rimpiazzati correttamente: 100%

Aspetti testati

Osservati i pochi dati, alcune probabilità nelle CPT devono essere uguali a 1.

La CPT del nodo E deve essere aggiornata correttamente.

Confronto con bnlearn.

Errori risolti

In Expectation: risultati inconsistenti nel nodo E per il dato 5. **RISOLTO**

Causa: indicizzazione sbagliata delle CPT in caso di tanti genitori. Questo errore si manifestava solo in casi rari e con particolarissimi condizioni. Il codice di Exectation è stato riscritto in larga percentuale per correggere questo errore.

In Maximisation: errore se il numero di esempi presenti all'interno del Dataset è troppo basso (problema divisione per 0). **RISOLTO**

TEST 4 – CASO LIMITE #1

Dataset

Α	1	NA	1	NA	1
В	1	1	1	1	NA
С	NA	1	1	1	1

Struttura della rete

[A] [B|A] [C|B]

Risultati ottenuti

	Data 1	Data 2	Data 4	Data5
GEN2	1	1	1	1
BNLEARN	1	1	1	1

% valori rimpiazzati correttamente: 100%

Aspetti testati

Tutti i valori del dataset osservati sono pari a 1.

Ci si aspetta che tutti i valori saranno rimpiazzati con 1.

Confronto con bnlearn.

Errori risolti

Nessun errore è stato riscontrato.

TEST 5 – CASO LIMITE #2

Dataset

Α	0	1	0	0	1	1	0
В	NA	NA	1	NA	NA	NA	NA
С	1	0	0	0	0	0	1

Struttura della rete

[A] [B|A] [C|B]

Risultati ottenuti

Validazione manuale: allo step numero 1 i risultati sono uguali ai calcoli.

	Data 1	Data 2	Data 4	Data 5	Data 6	Data 7
GEN2	1	0	1	0	0	1
BNLEARN	1	1	1	1	1	1

% valori rimpiazzati correttamente: 50%

Aspetti testati

Il nodo B prevede la presenza di valori Missing.

Confronto con bnlearn.

Errori risolti

Risultato incosistente con *bnlearn***:** calcoli eseguiti a mano e riportati nella slide successiva per valutare la correttezza di gen2.

TEST 5 – CASO LIMITE #2

N.B.: And and a avanti in iterazioni successivi $P(B=0|\theta)$ tende sempre a essere vicino a 0.5.

La validazione manuale conferma che i risultati riportati da GEN2 sono corretti. Tuttavia, è possibile notare che le probabilità calcolate in corrispondenza dei dati 2,5 e 6 sono molto vicini allo 0.5 e un metodo di inferenza approssimata come EM *bnlearn* potrebbe sbagliare.

TEST 6 – MISSING VALUES RARI

Dataset

Α	0	0	1	1	0	0	1	1
В	1	1	0	1	0	0	0	1
С	1	0	NA	0	1	0	NA	1

Struttura della rete

[A] [B|A] [C|B:A]

Risultati ottenuti

Validazione manuale: allo step numero 1 i risultati sono uguali ai calcoli.

	Data 3	Data 7
GEN2	1	1
BNLEARN	1	1

% valori rimpiazzati correttamente: 100%

Aspetti testati

I due missing values dovrebbero assumere lo stesso valore.

Dati i pochi dati mancanti, l'algoritmo si dovrebbe arrestare alle prime iterazioni.

CPT di A e B dovrebbero rimanere invariate e non cambiare mai.

Modalità di testing

Validazione attraverso calcoli manuali.

Confronto con bnlearn.

Errori risolti

Tutti i requisiti soddisfatti e calcoli corretti dopo la validazione manuale.

TEST 7 – RETE PARTICOLARE

Dataset

Α	0	1	0	NA
В	1	NA	1	1
С	0	0	1	1
D	1	0	0	1
E	1	0	1	1
F	NA	1	1	0

Struttura della rete

[A] [B] [C] [D] [E|A:B:C:D][F|A:D:E]

Risultati ottenuti

Validazione manuale: allo step numero 1 i risultati sono uguali ai calcoli

	Data 1	Data 2	Data 4
GEN2	0	1	1
BNLEARN	0	1	0

% valori rimpiazzati correttamente: 66%

Aspetti testati

Considerato i pochi dati, ci si aspetta che un numero limitato di probabilità di CPT varia.

Dati i pochi dati mancanti, l'algoritmo si dovrebbe arrestare alle prime iterazioni.

Modalità di testing

Validazione attraverso calcoli manuali.

Confronto con bnlearn.

Errori risolti

Risultato incosistente con bnlearn: validazione fatta a mano step by step attraverso esecuzione del codice in modalità debug.

TEST 8 – RISULTATI UGUALI

Dataset

Α	0	1	NA	1	0
В	1	0	1	NA	1
С	NA	0	0	0	1

Struttura della rete

[A] [B|A] [C|B]

Risultati ottenuti

Confronto tra i risultati ottenuti tra le varie generazioni.

	Data 1	Data 3	Data 4
GEN1	0	0	0
GEN2	0	0	0
GEN3	0	0	0

% valori rimpiazzati correttamente: 100%

Aspetti testati

Risultati (dati rimpiazzati e CPT) devono essere uguali per gen1, gen2 e gen3.

Dopo aver effettuato calcoli a mano ci si aspetta che tutti i dati mancanti vengano rimpiazzati con 0.

Errori risolti

Nessun errore è stato riscontrato.

Presentazione Gen3

Si tratta di un'estensione di GEN2 e ha l'obbiettivo di permettere l'esecuzione dell'algoritmo EM su dati discreti.

GEN3 aggiunge a GEN2 tre strutture dati:

- 1. table_posterior_prob: struttura in grado di memorizzare tutte le probabilità a posteriori dei dati mancanti. Questa struttura viene aggiornata nella fase di Expectation e utilizzata nella fase di Maximization;
- 2. matrix_to_compute: struttura in grado di memorizzare ogni combinazione di variabili e di indicizzare queste combinazioni con le CPT;
- 3. compute_probabilities: questa matrice è collegata direttamente a matrix_to_compute (stesso numero di riga e stesso indice). Questa struttura è presente sia in Expectation sia in Maximisation ma con due scopi diversi:
 - in Expectation, memorizza le informazioni parziali delle probabilità a posteriori;
 - in Maximisation, memorizza i calcoli parziali da salvare successivamente nelle CPT.

ESEMPIO PRATICO

Sia fissato il seguente dataset:

	Data_1	Data_2	Data_3	Data_4	Data_5	Data_6
A	1	0	2	1	NA	0
В	1	0	NA	1	0	1
С	0	3	2	NA	1	3

$$A = \{0,1,2\}$$

$$B = \{0,1\}$$

$$C = \{0,1,2,3\}$$

Sia fissata anche la seguente rete:

A	В	СРТ С								
0	0	0,2	0,2	0,3	0,3					
0	1	0,4	0,2	0,3	0,1					
1	0	0,2	0,2	0,3	0,3					
1	1	0,4	0,2	0,3	0,1					
2	0	0,2	0,2	0,3	0,3					
2	1	0,4	0,2	0,3	0,1					

ESEMPIO PRATICO

ESEMPIO PRATICO

Seconda struttura: matrix to compute

Punto di partenza: CPT

	A	В		CP	ГС	
/	0	0	0,2	0,2	0,3	0,3
	0	1	0,4	0,2	0,3	0,1
	1	0	0,2	0,2	0,3	0,3
	1	1	0,4	0,2	0,3	0,1
	2	0	0,2	0,2	0,3	0,3
\	2	1	/ 0,4	0,2	0,3	0,1

matrix_to_compute	matrix	to	compute
-------------------	--------	----	---------

ID_ROW	A	В
1	0	0
2	0	1
3	1	0
4	1	1
5	2	0
6	2	1

matrix_to_compute ha lo scopo di replicare la parte più a sinistra della CPT in modo da memorizzare ogni possibile combinazione delle variabili coinvolte.

Tale tabella faciliterà l'**indicizzazione** con le CPT, superando alcuni problemi sorti nell'implementazione di GEN2.

ESEMPIO PRATICO

Seconda struttura: compute probabilities

Punto di partenza: CPT

A	В		CPT C					
0	0	0,2	0,2	0,3	0,3			
0	1/	0,4	0,2	0,3	0,1			
1	4	0,5	0,5 0,2		0,2			
1		0,25	0,1	0,4	0,25			
2	0	0,3	0,1	0,2	0,4			
2	1	0,35	0,15	0,25	0,25			

compute_probabilities ha lo scopo di replicare la parte più a sinistra della CPT in modo da contenere ogni valore che poi verrà usato per aggiornare le CPT.

Particolare attenzione deve essere posta sulla chiave **ID_ROW** il cui valore si mappa direttamente sulla matrice **matrix** to **compute**.

compute_probabilities

ID_ROW	0	1	2	3		
1	0,2	0,2	0,3	0,3		
2	0,4	0,2	0,3	0,1		
3	0,5	0,2	0,1	0,2		
4	0,25	0,1	0,4	0,25		
5	0,3	0,1	0,2	0,4		
6	0,35	0,15	0,25	0,25		

ATTENZIONE: la spiegazione appena riportata di compute_probabil ities è solo la base del ragionamento applicato per implementare la GEN3 e superare problemi sorti in GEN2.

Nella realtà questa tabella, nello step di Maximisation è stata estesa leggermente per contenere un altro tipo di informazione, ossia la colonna denominatore che servirà come controllo del fatto che tutta la procedura implementata sia corretta.

ESEMPIO PRATICO

Note aggiuntive sull'implementazione:

- Il join tra matrix_to_compute e compute_probabilities, forma la struttura tabellare di una CPT come mostrato nella slide precedente.
- Una colonna di una CPT in bnlearn equivale a una riga di compute probabilities

- Le due informazioni sono state separate in due strutture particolari per tre motivi:
 - 1. Efficienza e accesso alle informazioni: ci sono delle situazioni in cui è necessario conoscere solo un'informazione e definire un'unica tabella può essere inefficiente;
 - **2. Testing**: avere due strutture logicamente separate permette di testare in maniera più efficiente se ciò che è stato implementato risulta essere corretto;
 - 3. Maggiore facilità nell'accesso alle CPT utilizzando solo compute_probabilities.

GEN3 - ITERAZIONE 1

STEP 1- Expectation

Node	Value	Data_3	Data_4	Data_5
A	0	0	0	0,299
A	1	0	0	0,4485
A	2	0	0	0,2523
В	0	0,7058	0	0
В	1	0,2941	0	0
С	0	0	0,25	0
С	1	0	0,1	0
С	2	0	0,4	0
С	3	0	0,25	0

STEP 2- Updating

	Data_1	Data_2	Data_3	Data_4	Data_5	Data_6
A	1	0	2	1	1	0
В	1	0	0	1 /	0	1
С	0	3	2	2	1	3

STEP 3- Maximisation

```
[,1]
0 0.3831776
1 0.4080997
2 0.2087227
0 0.5650407 0.1832061 0.7651449
1 0.4349593 0.8167939 0.2348551
0 0.0000000 0
1 0.2302158 0
2 0.0000000 0
3 0.7697842 1
, A = 1
0 0 0.625
1 1 0.050
2 0 0.200
3 0 0.125
0 0.0000000 0
1 0.2633391 0
2 0.7366609 1
3 0.0000000 0
```

Risultati Finali e miglioramento del codice

Presentazione risultati GEN3

L'esempio visto precedentemente è solo introduttivo sul funzionamento di EM manuale GEN3, vediamo ora un esempio più complesso prendendo in input il seguente dataset.

	Data_1	Data_2	Data_3	Data_4	Data_5	Data_6	Data_7	Data_8	Data_9	Data_10	Data_11	Data_12	Data_13	Data_14
OUTLOOK	0	0	NA	2	2	2	1	0	0	2	0	1	NA	2
TEMPERATURE	2	2	2	1	0	0	0	1	NA	1	1	1	2	1
HUMIDITY	2	2	2	NA	1	1	1	2	1	1	1	2	1	2
WIND	0	1	0	0	0	1	1	0	0	0	NA	1	0	1
PLAY_TENNIS	0	0	1	1	1	0	1	0	1	1	1	1	1	0

 $\begin{aligned} & \text{OUTLOOK} = \{0,1,2\} \\ & \text{TEMPERATURE} = \{0,1,2\} \\ & \text{HUMIDITY} = \{0,1,2\} \\ & \text{WIND} = \{0,1\} \\ & \text{PLAY_TENNIS} = \{0,1\} \end{aligned}$

GEN3 - ITERAZIONE 1 (1)

Expectation

Node ‡	Value \$	Data_3 ‡	Data_4 ‡	Data_9 ‡	Data_11	Data_13
HUMIDITY	0	0	0.378378378378378	0	0	0
HUMIDITY	1	0	0.405405405405405	0	0	0
HUMIDITY	2	0	0.216216216216216	0	0	0
OUTLOOK	0	0.484793973804036	0	0	0	0.400529456842301
OUTLOOK		0.283321153521839	0	0	0	0.312100875461533
OUTLOOK	2	0.231884872674124	0	0	0	0.287369667696166
PLAY_TENNIS	0	0	0	0	0	0
PLAY_TENNIS	1	0	0	0	0	0
TEMPERATURE	0	0	0	0.17777777777778	0	0
TEMPERATURE	1	0	0	0.27777777777778	0	0
TEMPERATURE	2	0	0	0.544444444444444	0	0
WIND	0	0	0	0	0.695652173913044	0
WIND	1	0	0	0	0.304347826086957	0

Updating

*	Data_1	Data_2	Data_	3 ‡ D	Data_4 ‡	Data_5		a_6 ‡	Data_7	‡	Data_8	Data_9	+	Data_10	Data	_11 ‡	Data_12	‡ D	ata_13	Data_14	‡
ОИТLООК		0	0	0	2		2	2		1		0	0		2	0		1		0	2
TEMPERATURE		2	2	2	1		0	0		0		1	2		1	1		1		2	1
HUMIDITY		2	2	2	1		1	1		1		2	1		1	1		2		1	2
WIND		0	1	0	0		0	1		1		0	0		0	0		1		0	1
PLAY_TENNIS		0	0	1	1		1	0		1		0	1		1	1		1		1	0

GEN3 - ITERAZIONE 1 (2)

Maximisation

```
Parameters of node HUMIDITY (multinomial distribution)
Conditional probability table:
       OUTLOOK
HUMIDITY
                0 1
      0 0.00000000 0.00000000 0.06855607
      1 0.40788403 0.50554432 0.66907135
      2 0.59211597 0.49445568 0.26237259
  Parameters of node OUTLOOK (multinomial distribution)
Conditional probability table:
OUTLOOK
      0 0.4203802
      1 0.1853873
      2 0.3942325
 Parameters of node TEMPERATURE (multinomial distribution)
Conditional probability table:
          OUTLOOK
                  0 1
TEMPERATURE
         0 0.03020697 0.38529379 0.36236778
         1 0.38702678 0.38529379 0.54355167
         2 0.58276625 0.22941241 0.09408056
  Parameters of node WIND (multinomial distribution)
Conditional probability table:
WIND
   0 0.621118
   1 0.378882
```

```
Parameters of node PLAY_TENNIS (multinomial distribution)
Conditional probability table:
  , TEMPERATURE = 0, WIND = 0
PLAY_TENNIS 0
         0 0.6000000 0.0000000 0.4000000
         1 0.4000000 1.0000000 0.6000000
  . TEMPERATURE = 1. WIND = 0
          HUMIDITY
PLAY_TENNIS 0
         0 0.0000000 0.0000000 0.8222222
         1 1.0000000 1.0000000 0.1777778
  , TEMPERATURE = 2, WIND = 0
PLAY_TENNIS 0
         0 0.5000000 0.0000000 0.5000000
         1 0.5000000 1.0000000 0.5000000
  , TEMPERATURE = 0, WIND = 1
          HUMIDITY
PLAY_TENNIS
         0 0.5500000 0.5000000 0.6000000
         1 0.4500000 0.5000000 0.4000000
  , TEMPERATURE = 1, WIND = 1
          HUMIDITY
PLAY_TENNIS
         0 0.3500000 0.0000000 0.5000000
         1 0.6500000 1.0000000 0.5000000
  , TEMPERATURE = 2, WIND = 1
          HUMIDITY
PLAY_TENNIS
         0 0.5000000 0.2500000 1.0000000
         1 0.5000000 0.7500000 0.0000000
```

GEN3 - ITERAZIONE 2

Expectation

Node ‡	Value ‡	Data_3 ‡	Data_4	Data_9	Data_11 ‡	Data_13
HUMIDITY	0	0	0.0874136981673394	0	0	0
HUMIDITY	1	0	0.85311197490565	0	0	0
HUMIDITY	2	0	0.0594743269270103	0	0	0
OUTLOOK	0	0.825044278652587	0	0	0	0.683287343301183
OUTLOOK	1	0.119607392114927	0	0	0	0.147023270838318
OUTLOOK	2	0.0553483292324859	0	0	0	0.169689385860499
PLAY_TENNIS	0	0	0	0	0	0
PLAY_TENNIS	1	0	0	0	0	0
TEMPERATURE	0	0	0	0.0302069682104547	0	0
TEMPERATURE	1	0	0	0.38702678019645	0	0
TEMPERATURE	2	0	0	0.582766251593095	0	0
WIND	0	0	0	0	0.62111801242236	0
WIND	1	0	0	0	0.37888198757764	0

Updating

^	Data_1	‡	Data_2	‡	Data_3	‡	Data_4	‡	Data_5	‡	Data_6	‡	Data_7	‡	Data_8	‡	Data_9	‡	Data_10	‡	Data_11	‡	Data_12	‡	Data_13	† Data_14	‡
OUTLOOK		0		0		0		2		2		2		1	(0		0		2		0		1		0	2
TEMPERATURE		2		2		2		1		0		0		0		1		2		1		1		1		2	1
HUMIDITY		2		2		2		1		1		1		1	2	2		1		1		1		2		1	2
WIND		0		1		0		0		0		1		1	(0		0		0		0		1		0	1
PLAY_TENNIS		0		0		1		1		1		0		1	(0		1		1		1		1		1	0

GEN3 – RISULTATO FINALE

Eseguiamo tutte le iterazioni successive fino ad arrivare alla fine dello script:

- il programma termina alla 12-esima iterazione fissando il parametro $\alpha = 0.001$;
- i dati finali risultano essere i seguenti:

• <u>I dati cerchiati, inizialmente cerchiati sono stati rimpiazzati.</u>

MIGLIORAMENTI

Il metodo dello *stopping criteria* è stato riscritto da zero in modo da essere maggiormente **comprensibile** e **adatto** per qualunque tipo di rete bayesiana discreta.

```
#works very well on every BN structures
stopping_criteria <- function(alpha) {
    delta = 0
    for (node in names(bn)){
        for (value in 1:length(cpt[[node]])){
            differenza = abs(cpt[[node]][value] - cpt_last[[node]][value])
            delta = delta + differenza
        }
    if (delta > alpha){
        return(FALSE)
    }else{
        return(TRUE)
    }
}
```

Limiti e Sviluppi Futuri

Limiti dello script

EM MANUALE – LIMITI

Lo script soffre ancora di alcuni problemi:

- In alcuni casi i risultati sono inconsistenti se all'interno di un dato sono presenti più valori mancanti;
- Contenuti online limitati per validare l'algoritmo anche con strutture esistenti.