S1 Appendix. Algorithms of calibration methods.

1 Algorithm for Rejection ABC

A description of the Rejection ABC algorithm is found below, as described in (1).

- 1. Randomly sample parameter values θ^* independently from the prior distribution $\pi(\theta)$.
- 2. Simulate data set y from the model, using sampled parameter θ^* and obtain a summary statistic(s) s.
- 3. If $d(t,s) \le \epsilon$, retain θ^* , otherwise reject, where d expresses the Euclidean distance between target t and summary statistics s, with each statistic being normalized with a division by the standard deviation of the simulated set of the statistic, and ϵ represents a tolerance level.
- 4. Return to 1 and repeat until desired posterior size is attained. Where posterior size is the number of parameter combinations retained.

2 Algorithm for Bayesian Calibration followed by Sampling Importance Resampling

A description of the BcSIR algorithm as described in (2).

1. **Sampling Stage:** Draw initial random sample of N inputs $(\theta_i, i = 1, 2, ..., N)$ from the prior distribution $\pi(\theta)$.

2. Importance Stage:

- a) For each θ_i , run model, obtain output and calculate the likelihood L_i
- b) Compute importance weights:

$$w_i = \frac{L_i}{\sum_{i=1}^N L_i}. (1)$$

3. **Resampling Stage:** Resample desired posterior size from the initial *N* parameter inputs with replacement, using the computed weights as sampling weights.

3 Algorithm for AbcSmc

A description of the AbcSmc algorithm is found below, as described in (3), where N is the number of parameter combinations sampled, ρ is the fraction retained in the posterior, and $n = \lfloor \rho * N \rfloor$ is the size of the posterior:

- 1. Set the SMC iterator l = 1.
 - a) For sample iterator i = 1, ..., N:
 - i. Sample parameter vector $\theta_i^{(1)}$ independently from prior distributions $\pi(\theta)$
 - ii. Simulate data $x_i^{(1)} \sim p(x_i^{(1)} | \theta_i^{(1)})$.
- 2. Calculate Partial least squares regression (PLS) model for $\theta^{(l)}$ and $x^{(l)}$
- 3. Transform observed data and each $x_i^{(l)}$ to new independent, orthogonal metrics using PLS model
- 4. Calculate Euclidean distance between transformed observed and transformed simulated metrics
- 5. Set $\Theta^{(l)} = \text{best } \theta^{(l)}$, the best *n* samples, ranked by smallest distance.
- 6. The user determines the convergence of the algorithm when a desired posterior is attained. If l > 1 and Θ has converged, stop here. Otherwise:
 - a) Set τ_{l+1}^2 equal to twice the variance of $\Theta^{(l)}$
 - b) For j = 1, ..., n:
 - $\text{i. Set weight } \omega_j^{(l)} \propto \left\{ \begin{array}{l} 1/n & : l = 1 \\ \pi(\Theta_j^{(l)})/\sum_{k=1}^n \omega_j^{(l-1)} K(\Theta_j^{(l)}|\Theta_k^{(l-1)};\tau_l^2) & : l > 1 \end{array} \right. \\ \text{where } K(\Theta_j^{(l)}|\Theta_k^{(l-1)};\tau_l^2) \text{ is a Gaussian perturbation kernel with mean } \Theta_k^{(l-1)} \text{ and variance } \tau_l^2 \text{, evaluated at } \Theta_j^{(l)}.$
 - c) Normalize $\omega_i^{(l)}$ to sum to 1.
 - d) Set l = l + 1
 - i. For i = 1, ..., N:
 - A. Choose θ_i^* from $\Theta^{(l-1)}$ with probabilities $\omega^{(l-1)}$.
 - B. Sample $\theta_i^{(l)}$ from $Gaussian(\theta_i^*, \tau_l^2)$
 - C. Simulate data $x_i^{(l)} \sim p(x_i^{(l)}|\theta_i^{(l)})$.
 - e) Go to step 2.

4 Algorithm for Seq ABC

A description of the Seq ABC algorithm, as described in (4), where N is the number of parameter values sampled, $N\alpha = \lfloor \alpha N \rfloor$ is the number of parameter values to retain at each step among the N parameter values ($\alpha \in [0,1]$) and $Pacc_{min}$, a positive number between 0 and 1, is the stopping criterion of the algorithm.

1. **for** l=1 **do**

- a) for i = 1 to N do
 - i. Sample parameter value $\theta_i^{(0)}$ from the prior distribution $\pi(\theta)$ and simulate data set y from the model such that $y \sim f(y|\theta_i^{(0)})$.
 - ii. Set $d_i^{(0)} = d(x,y)$, that is, distance between simulated data y and observed data x
 - iii. Set the weight, $w_i^{(0)} = 1$
- b) end for
- c) Let $\epsilon_1 = Q_{p^{(0)}}(\alpha)$, the first α -quantile of the set of distance $d^{(0)}$, where $d^{(0)} = \left\{d_i^{(0)}\right\}_{1 \le i \le N}$

d) Let
$$\left\{(\theta_i^{(1)}, w_i^{(1)}, d_i^{(1)})\right\} = \left\{(\theta_i^{(0)}, w_i^{(0)}, d_i^{(0)}) | d_i^{(0)} < \epsilon_1, 1 \le i \le N\right\}$$

- e) Take σ_1^2 as twice the weighted empirical variance of $\{(\theta_i^{(1)}, w_i^{(1)})\}_{1 \le i \le N\alpha}$
- f) Set Pacc = 1, where Pacc is the stopping criterion for the current step.

g)
$$l \leftarrow l + 1$$

2. end for

- 3. While $Pacc > Pacc_{min}$ do, where $Pacc_{min}$ is the stopping criterion for the algorithm
 - a) for $i = N_{\alpha} + 1$ to N do
 - i. Pick θ_i^* from $\theta_j^{(l-1)}$ with probability $\frac{w_j^{(l-1)}}{\sum_{l=1}^{N_{\alpha}} w_k^{(l-1)}}$, $1 \leq j \leq N_{\alpha}$

ii. Generate
$$\theta_i^{(l-1)}|\theta_i^* \ N(\theta_i^*,\sigma_{(l-1)}^2)$$
 and $x \ f(x|\theta_i^{(l-1)})$

iii. Set
$$d_i^{(l-1)} = d(S(x), S(y))$$

iv. Set
$$w_i^{(l-1)} = \frac{\pi(\theta_i^{(l-1)})}{\sum_{i=1}^{N_\alpha}(w_i^{(l-1)}/\sum_{k=1}^{N_\alpha}w_k^{(l-1)})\sigma_{(l-1)}^{-1}\psi(\sigma_{(l-1)}^{-1}(\theta_i^{(l-1)}-\theta_i^{(l-1)}))}$$

b) end for

c) Set
$$Pacc = \frac{1}{N-N_{\alpha}} \sum_{k=N}^{N} 1_{d_{\epsilon}^{(l-1)} < \epsilon_{l-1}}$$

d) let
$$\epsilon_l=Q_{d^{(l-1)}}(\alpha)$$
 where $d^{(l-1)}=\left\{d_i^{(l-1)}\right\}_{1\leq i\leq N}$

e) Let
$$\left\{ (\theta_i^{(l)}, w_i^{(l)}, d_i^{(l)}) \right\} = \left\{ (\theta_i^{(l-1)}, w_i^{(l-1)}, d_i^{(l-1)}) | d_i^{(l-1)} \le \epsilon_l, 1 \le i \le N \right\}$$

f) Take
$$\sigma_l^2$$
 as twice the weighted empirical variance of $\left\{(\theta_i^{(l)}, w_i^{(l)})\right\}_{1 \leq i \leq N_\alpha}$

g)
$$l \leftarrow l + 1$$

4. end while

Where
$$\forall u \in [0,1]$$
 and $X = \left\{x_1, ..., x_n\right\}$, $Q_X(u) = \inf\left\{x \in X | F_X(x) \ge u\right\}$ and $F_X(x) = \frac{1}{n} \sum_{k=1}^n 1_{x_k} \le x$.
Where $\psi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

5 Algorithm for Incremental Mixture Importance Sampling

We used the BcIMIS algorithm as described in (5), where $N_0 = B * 10$ is the initial sample size, B is the incremental sample size at each iteration of the algorithm and k is the number of iterations.

1. Initial stage:

- a) Sample N_0 parameter values or inputs $\theta_1, \theta_2, ..., \theta_{N_0}$ from the prior distribution $p(\theta)$.
- b) For each θ_i , run model and calculate the likelihood L_i , and form the importance weights:

$$w_i^{(0)} = \frac{L_i}{\sum_{j=1}^{N_0} L_j}. (2)$$

2. **Importance Sampling Stage:** For k = 1, 2, ..., repeat the following steps:

- a) Choose the current maximum weight input as the center $\theta^{(k)}$. Estimate $\Sigma^{(k)}$ from the weighted covariance of the B inputs with the smallest Mahalanobis distances to $\theta^{(k)}$, where the distances are calculated with respect to the covariance of the importance weights and $\frac{1}{N_k}$.
- b) Sample *B* new inputs from a multivariate Gaussian distribution H_k with covariance matrix $\Sigma^{(k)}$.
- c) Calculate the likelihood of the new inputs and combine the new inputs with the previous ones. From the importance weights:

$$w_i^{(k)} = cL_i x \frac{p(\theta_i)}{q^{(k)}(\theta_i)},\tag{3}$$

Where c is chosen so that the weights add to 1, $q^{(k)}$ is the mixture sampling distribution $q^{(k)} = \frac{N_0}{N_k} p + \frac{B}{N_k} \sum_{s=1}^k H_s$, H_s is the s-th multivariate normal distribution, $N_0 = B*10$ is the initial sample size and $N_k = N_0 + Bk$ is the total number of inputs up to iteration k.

3. Resample Stage:

- a) The algorithm stops when the expected fraction of unique parameter combinations in resample is at least $(1 \frac{1}{e}) = 0.632$
- b) Once the stopping criterion is satisfied, resample J inputs with replacement from $\theta_1,...,\theta_{N_k}$ with weights $w_1,...,w_{N_K}$, where K is the number of iterations at the importance sampling stage.

List of references

- [1] Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman MW. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Molecular biology and evolution. 1999;16(12):1791–1798.
- [2] Menzies NA, Soeteman DI, Pandya A, Kim JJ. Bayesian methods for calibrating health policy models: a tutorial. PharmacoEconomics. 2017;35(6):613–624.
- [3] Hladish TJ, Pearson CA, Chao DL, Rojas DP, Recchia GL, Gómez-Dantés H, et al. Projected impact of dengue vaccination in Yucatán, Mexico. PLoS neglected tropical diseases. 2016;10(5).
- [4] Lenormand M, Jabot F, Deffuant G. Adaptive approximate Bayesian computation for complex models. Computational Statistics. 2013;28(6):2777–2796.
- [5] Raftery AE, Bao L. Estimating and projecting trends in HIV/AIDS generalized epidemics using incremental mixture importance sampling. Biometrics. 2010;66(4):1162–1173.