Outils mathématiques

Le produit en croix

Prenons l'exemple de la masse volumique « rho » notée ρ (en kg/m^3) exprimée en fonction de la masse m (kg) et du volume V (m^3). On sait que :

$$\rho = \frac{m}{V}.$$

Dans un exercice ou en TP, on vous demande de trouver m. Comment faire?

Le triangle

Conseil : Je commence par dessiner le triangle avec un T dedans. La barre horizontale du T symbolise une division, la verticale une multiplication. Pour remplir le triangle, je commence par la case du haut, celle au dessus de la barre horizontale comme dans l'équation : on y met la masse m. Le volume V est en bas à droite dans l'équation, je le met aussi en bas à droite dans le triangle. Reste la masse volumique ρ que je met dans la case vide restante, en bas à gauche.

Conseil : Pour trouver m, je cache le haut de la pyramide. Il ne reste que ρ et V séparés par une barre verticale : je dois les multiplier. On a donc

$$m = \rho \times V$$

Substitution

Conseil : Je trouve une équation simple avec des chiffres, qui a la même forme que l'équation de la masse volumique. Par exemple :

$$5 = \frac{10}{2}$$
.

Le 5 occupe la place du ρ , le 10 celle du m et le 2 celle de V.

Pour retrouver m, j'écris 10 = ? en fonction de 5 et 2. On est obligé d'écrire :

$$10 = 5 \times 2$$
,

et donc en remplaçant à nouveau par les lettres, on retrouve

$$m = \rho \times V$$
.

Conversions (1)

Les préfixes permettent d'alléger l'écriture des résultats.

préfixe	kilo	hecto	déca		déci	centi	milli
abréviation	k	h	da		d	C	m
facteur	1000	100	10	1	0,1	0,01	0,001
puissance de 10	10^{3}	10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}	10^{-3}

Conversions (2)

Conseil : Pour les volumes, il faut surtout se rappeler que $1\,\mathrm{L} = 1\,\mathrm{dm}^3.$