Multimodale Mensch-Maschine-Interaktion

Prof. Dr. Jan-Torsten Milde SoSe 2025

Multimodale Mensch-Maschine-Interaktion

- Dauer: 12/10 Wochen, Format: 1.5 Stunden Vorlesung + 1.5 Stunden praktische Übungen pro Woche
 - Vorlesung: Montag, 15.30-17.00 Uhr in 46.012
 - Übung: Dienstag, 15.30-17.00 Uhr in 46.012
- Ziele: Die Studierenden sollen
 - die Grundlagen und aktuellen Entwicklungen der multimodalen Mensch-Maschine-Interaktion verstehen,
 - relevante KI-Technologien kennenlernen und ein
 - eigenes prototypisches System entwickeln und implementieren, das multimodale Interaktion ermöglicht.
- Bewertungskriterien:
 - Regelmäßige Teilnahme und aktive Mitarbeit (Diskussionen und Übungen)
 - Zwischenpräsentationen/Berichte zu Experimenten mit KI-Anwendungen
 - Abschließende Präsentation und Demonstration des Prototyps
 - Dokumentation des Prototyps (Konzept, Design, Implementierung, Evaluation)

Semesterplan

	7 17 18		THE RESERVE OF STREET		
Datum	Mo (WP)	Mo (MMHCI)	Fr (BegS)	Anmerkung	
14.4.	+	+	-	Karfreitag	
21.4.	-	-	+	Ostermontag	
28.4.	+	+	-	Kommission	
05.5.	+	+	+	Kommission, ab	
				9.50	
12.5.	+	+	+	-	
19.5.	+ (MR)	-	+	ACHI, Nizza	
26.5.	+	+	+	_	
02.6.	+	+	+	Präsentation FE	
				bis 8.6.	
09.6.	-	-	+	Pfingstmontag,	
				Erfindermesse	
16.6.	+	+	+	_	
23.6.	+	+	+	Live-Coding	
30.6.	+	+	+	-	
07.7.	+ (MR)	-	-	SMC, Graz	
14.7.	+	+	+	_	

Themenüberblick

- Woche 1: Einführung und Grundlagen
- Woche 1/2: Sprachverarbeitung (Natural Language Processing – NLP) und LLMs
- Woche 3: Computer Vision
- Woche 4: Sprachsynthese (Text-to-Speech - TTS) und Auditive Interaktion
- Woche 5: Gestenerkennung und Haptische Interaktion
- Woche 6: Multimodale Fusion und Fission

- Woche 7: Kontextbewusstsein und Personalisierung
- Woche 8: Architekturen multimodaler Systeme und User Interface Design
- Woche 9: Aktuelle KI-Anwendungen in der MMI (Teil 1)
- Woche 10: Aktuelle KI-Anwendungen in der MMI (Teil 2)
- Woche 11: Prototypenentwicklung (Fokus Implementierung)
- Woche 12: Prototypenentwicklung und Abschluss

Woche 1

Einführung und Grundlagen

- Multimodale Mensch-Maschine-Interaktion
 - Definition nach Gemini: "Unter multimodaler Mensch-Maschine-Interaktion (MMI) versteht man die Interaktion zwischen Mensch und Computer, bei der mehrere verschiedene Eingabe- und/oder Ausgabemodalitäten gleichzeitig genutzt werden, um die Kommunikation natürlicher, effizienter und intuitiver zu gestalten"
 - Der Mensch verwendet eine Vielzahl von Modalitäten zur **Wahrnehmung** und **Kommunikation**.
 - Im Kontext der **multimodalen** Mensch-Maschine-Interaktion liegt der Fokus oft auf Modalitäten, die sich gut für die **Interaktion mit technischen Systemen eignen**, wie z.B. Sprache, Sehen (Gesten- und Objekterkennung), Tasten (Touchscreens, haptisches Feedback) und in Zukunft möglicherweise verstärkt auch andere sensorische Eingaben.
- Was ist KI?
 - Siehe Foliensatz "Schüler Tag"
- Sprache und Computer
 - Das heutige Thema

Modalitäten des Menschen

- Wahrnehmung (Sinne):
 - Visuell: Sehen (über die Augen)
 - **Auditiv**: Hören (über die Ohren)
 - Taktil/Haptisch: Tasten, Berührung, Druck, Vibration (über die Haut)
 - Olfaktorisch: Riechen (über die Nase)
 - **Gustatorisch**: Schmecken (über die Zunge)
 - Propriozeptiv: Körpergefühl, Wahrnehmung der eigenen Körperhaltung und Bewegung (über Rezeptoren in Muskeln, Gelenken und Sehnen)
 - Vestibulär: Gleichgewichtssinn (im Innenohr)
 - **Thermozeption**: Temperaturwahrnehmung (über die Haut)
 - Nozizeption: Schmerzempfindung (über Nervenendigungen im ganzen Körper)

- Kommunikation:
 - Sprache (verbal): Gesprochene Worte, Tonfall,
 Sprachmelodie
 - Schrift (textuell): Geschriebene Buchstaben, Symbole, Zeichen
 - **Gestik**: Handbewegungen, Armbewegungen
 - **Mimik**: Gesichtsausdrücke
 - Körpersprache: Körperhaltung, Blickkontakt, räumliches Verhalten
 - **Prosodie** (paraverbal): Sprechtempo, Lautstärke, Pausen
 - Haptische Kommunikation: Berührungen zur nonverbalen Übermittlung von Botschaften
 - Piktogramme und Symbole: Visuelle Zeichen zur Informationsübertragung

Praktische Übung: Technik/Wordle

Themen

- Diskussion über Beispiele für multimodale Interaktionen im Alltag.
- Kennenlernen der Kursumgebung und relevanter Software-Tools
 - python mit virtual environment
 - pip
 - bash
 - git
- Wortverarbeitung mit regulären Ausdrücken

Technik

- Wir wollen Bilder generieren
 - Dazu verwenden wir Fooocus
 - https://github.com/lllyasviel/Fooocus.git
- Aufgabe:
 - Installieren Sie Fooocus und generieren Sie ein Bild von einem Avatar mit pinken Haaren.

Computerlinguistische Grundlagen

Sprachverarbeitung

Übung: Wortanalyse

- Agenda
 - Das Wordle Problem
 - Wortbildung im Deutschen
 - Erzeugung eines Lexikon
 - Reguläre Ausdrücke
 - Größenabschätzung
 - Häufigkeitsverteilungen
 - Endliche Automaten
 - Klassifikator auf Basis der Daten

Wordle

- Einfaches Spiel, bei dem ein (englisches) Wort mit 5 Buchstaben erraten werden muss
 - Farbkodierung markiert
 Buchstaben

Wordle

Erste Fragen

- Wieviele deutsche Worte mit 5 Buchstaben existieren ?
- Wie kann man ein korrektes deutsches Wort erkennen und somit von einem "fehlerhaften" Wort untercheiden?
- Wie kann man (schnell) ein Lexikon mit deutschen Worten erstellen?

Kombinationen

- Um die Anzahl der Worte abzuschätzen betrachten wir die Gesamtzahl aller Buchstabenkombinationen für ein Wort der Länge 5
 - Beobachtung: es existieren 26 + 4 Buchstaben im Deutschen (Groß-Kleinschreibung werden ignoriert)
 - Das Wort hat eine Länge von 5
 - Zeicheninventar (30) und Wortlänge (5) sind endlich
 - Hieraus folgt: es kann auch nur endlich viele Buchstabenkombinationen geben

Kombinationen

- Das Wort XXXX der Länge 5 hat dann
 - X = 30 * X = 30 * X = 30 * X = 30
 mögliche Kombinationen
 - Also 30^5 Kombinationen
 - Das schätzen wir ab mit
 - 30^5 < 32^5
 - $32^5 = 2^5 = 2^2 = 2^10 * 2^10 * 2^5$
 - = (1024 * 1024) * 32
 - Also ungefähr 32.000.000 (32 Millionen) Buchstabenkombinationen
 - Aber: davon sind die allermeisten Kombinationen kein deutsches Wort
 - Fragt sich nur: welche davon?

Übung: Lexikon

Ausfgabe

- Erstellen Sie ein Lexikon mit deutschen Wörtern mit 5 Buchstaben
- Nutzen Sie dazu VSCode und reguläre Ausdrücke
 - Wo bekommen Sie die Daten her ?
 - Welche Vorverarbeitung ist notwendig?
 - Wie groß muss ein Lexikon sein ?
 - Was, außer der Wortform, könnte noch im Lexikon stehen?
- Arbeiten mit dem Lexikon
 - Woran erkenne ich ein Wort des Deutschen ?
 - Wie kann ich Eigenschaften von deutschen Wörtern algorithmisch/regelbasiert erkennen?
 - Wodurch unterscheidet sich ein Wort einer anderen Sprache vom Deutschen?

Weitere Wochen

Sprachverarbeitung (Natural Language Processing – NLP) und LLMs

Vorlesung:

- Grundlagen der Sprachverarbeitung: Tokenisierung, Parsing, semantische Analyse.
- Überblick über aktuelle NLP-Modelle: Bag-of-Words, TF-IDF, Word Embeddings (Word2Vec, GloVe, FastText).
- Einführung in Transformer-basierte Modelle (z.B. BERT, GPT).
- Anwendungsbeispiele von NLP in der MMI (Sprachsteuerung, Chatbots, Sprachsuche).

- Experimentieren mit einer NLP-Bibliothek (z.B. NLTK, spaCy) für grundlegende Textverarbeitungsaufgaben.
- Ausprobieren eines einfachen vortrainierten Sprachmodells (z.B. über eine API).

Computer Vision

Vorlesung:

- Grundlagen der Bildverarbeitung: Bildmerkmale, Filter, Objekterkennung.
- Überblick über aktuelle Computer Vision Modelle: Convolutional Neural Networks (CNNs), Region-based CNNs (R-CNNs), YOLO, Transformers für Vision.
- Anwendungsbeispiele von Computer Vision in der MMI (Gesichtserkennung, Gestenerkennung, Objekterkennung in interaktiven Umgebungen).

- Experimentieren mit einer Computer Vision Bibliothek (z.B. OpenCV, TensorFlow, PyTorch) für einfache Bildverarbeitungsaufgaben.
- Ausprobieren eines vortrainierten Bilderkennungsmodells (z.B. über eine API).

Sprachsynthese (Text-to-Speech - TTS) und Auditive Interaktion

Vorlesung:

- Grundlagen der Sprachsynthese: Konkatenative Synthese, Parametrische Synthese (z.B. WaveNet, Tacotron).
- Akustische Merkmale und deren Verarbeitung in der MMI (z.B. Geräuscherkennung, Sprechererkennung).
- Design von auditiven Interfaces und Sounddesign-Prinzipien.
- Integration von Sprache und Audio in multimodalen Systemen.

- Verwendung von TTS-Engines (online oder lokal).
- Experimentieren mit der Erzeugung und Manipulation von einfachen Sounds.

Gestenerkennung und Haptische Interaktion

Vorlesung:

- Verschiedene Ansätze zur Gestenerkennung (bildbasiert, sensorbasiert).
- Grundlagen der Haptik: Taktile und kinästhetische Rückmeldung.
- Haptische Geräte und deren Integration in MMI-Systeme.
- Anwendungsbeispiele von Gesten und Haptik in der Interaktion (z.B. virtuelle Realität, Robotik).

- Experimentieren mit einer einfachen Gestenerkennungsbibliothek oder einem Sensor (falls verfügbar).
- Untersuchung von haptischen Feedback-Mechanismen (z.B. Vibration).

Multimodale Fusion und Fission

Vorlesung:

- Konzepte der multimodalen Fusion: Feature-Level Fusion, Decision-Level Fusion.
- Strategien zur Kombination von Informationen aus verschiedenen Modalitäten.
- Konzepte der multimodalen Fission: Aufteilung von Informationen auf verschiedene Ausgabemodalitäten.
- Design von kohärenten multimodalen Interaktionen.

- Entwurf eines einfachen Fusions- oder Fissionsmechanismus für ein hypothetisches Szenario.
- Diskussion über die Vor- und Nachteile verschiedener Fusionsstrategien.

Kontextbewusstsein und Personalisierung

Vorlesung:

- Bedeutung von Kontext in der MMI (Benutzerkontext, Umgebungs Kontext, Aufgabenkontext).
- Methoden zur Kontextmodellierung und -erfassung (z.B. Sensoren, Benutzerprofile).
- Personalisierungstechniken in multimodalen Systemen (z.B. adaptive Interfaces, Empfehlungssysteme).
- KI-basierte Ansätze für kontextbewusste und personalisierte Interaktion.

- Brainstorming von Kontextfaktoren für das eigene Projekt.
- Entwurf eines einfachen Mechanismus zur Berücksichtigung eines Kontextfaktors.

Architekturen multimodaler Systeme und User Interface Design

Vorlesung:

- Übersicht über typische Architekturen für multimodale Systeme.
- Komponenten und Interaktionen in multimodalen Systemen.
- Spezifische Herausforderungen im User Interface Design für multimodale Interaktionen.
- Gestaltungsrichtlinien und Best Practices für multimodale Interfaces.

- Erste Skizzen und Wireframes für das User Interface des Abschlussprojekts unter Berücksichtigung der Multimodalität.
- Diskussion von Designentscheidungen im Hinblick auf Usability und Effektivität.

Aktuelle KI-Anwendungen in der MMI (Teil 1)

Vorlesung:

- Detaillierte Vorstellung aktueller KI-Anwendungen in verschiedenen Bereichen der MMI:
- Intelligente Assistenten (z.B. Alexa, Google Assistant, Siri) und ihre multimodalen Fähigkeiten.
- Multimodale Chatbots und Dialogsysteme.
- KI für Gesten- und Bewegungsverfolgung in interaktiven Umgebungen.
- Analyse der zugrundeliegenden KI-Modelle und Architekturen.

- Experimentieren mit den multimodalen F\u00e4higkeiten eines bestehenden intelligenten Assistenten oder einer anderen KI-Anwendung.
- Analyse der Stärken und Schwächen der Interaktion.

Aktuelle KI-Anwendungen in der MMI (Teil 2)

- Vorlesung: Fortsetzung der Vorstellung aktueller KI-Anwendungen:
 - Multimodale Interaktion in Virtual und Augmented Reality.
 - KI-gestützte multimodale Interaktion in Robotik.
 - Anwendungen im Bereich Healthcare und Assistive Technologies.
 - Kreative Anwendungen multimodaler KI (z.B. in der Kunst).
 - Diskussion ethischer und gesellschaftlicher Auswirkungen dieser Technologien.
- Praktische Übung:
 - Recherche und Präsentation von weiteren aktuellen KI-Anwendungen im Bereich MMI durch die Studierenden (kurze Impulsvorträge).

Prototypenentwicklung (Fokus Implementierung)

Vorlesung:

- Best Practices für die Softwareentwicklung von MMI-Systemen.
- Überblick über relevante Frameworks und Bibliotheken für die Prototypenentwicklung.
- Tipps und Tricks für die Integration verschiedener Modalitäten in einem System.
- Methoden zur (einfachen) Evaluation von Prototypen.

- Beginn der Implementierung der Prototypen in Kleingruppen oder einzeln.
- Erste Integration von mindestens zwei Modalitäten.

Prototypenentwicklung und Abschluss

Vorlesung:

- Abschließende Hinweise zur Prototypenentwicklung und -dokumentation.
- Tipps für die Präsentation der Projekte.
- Diskussion über zukünftige Trends und Herausforderungen in der MMI.

- Fertigstellung der Prototypen (Ende des Semesters)
- Vorbereitung der Abschlusspräsentationen (Ende des Semesters)
- Erste informelle Präsentationen und Feedback-Runden.