1.Importing Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import matplotlib.axes as ax

from sklearn.preprocessing import StandardScaler,MinMaxScaler
   from sklearn.model_selection import train_test_split
   from sklearn.metrics import mean_squared_error
   from sklearn.ensemble import RandomForestRegressor
```

2.Loading Data

```
In [2]: | from sklearn.datasets import load_boston
        boston data = load boston()
        boston_data
Out[2]: {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
                 4.9800e+00],
                [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+00],
                [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+00],
                [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+00],
                [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+00],
                [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+00]]),
         'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
                18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
                15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
                13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
                21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
                35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16., 22.2, 25., 33., 23.5,
                19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
                20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
                23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
                33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
                21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
                20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
                23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
                15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
                17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
                25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
                23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
                32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
                34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
                20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
                26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
                31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
                22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
                42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
                36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
                32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
                20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
                20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
                22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
                21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
                19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
                32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
                18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
                16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
                13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
                             5., 6.3, 5.6, 7.2, 12.1, 8.3, 8.5,
                12.5, 8.5,
                                                                       5., 11.9,
                27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,
                                                          7.,
                                                                7.2,
                                                                      7.5, 10.4,
                 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11.
                 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
                10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
```

```
15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
        19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
        29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
        20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
        23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
 'feature names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RA
D',
        'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
 'DESCR': ".. boston dataset:\n\nBoston house prices dataset\n------
---\n\n**Data Set Characteristics:** \n\n
                                              :Number of Instances: 506 \n\n
of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usuall
                     :Attribute Information (in order):\n
                                                                 - CRIM
                            - ZN
                                       proportion of residential land zoned for lots ov
crime rate by town\n
                                     proportion of non-retail business acres per town\n
er 25,000 sq.ft.\n
                          - INDUS
- CHAS
           Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n
           nitric oxides concentration (parts per 10 million)\n
                                                                                  avera
ge number of rooms per dwelling\n
                                         - AGE
                                                    proportion of owner-occupied units
built prior to 1940\n
                             - DIS
                                        weighted distances to five Boston employment ce
ntres\n
               - RAD
                          index of accessibility to radial highways\n
full-value property-tax rate per $10,000\n
                                                  - PTRATIO pupil-teacher ratio by tow
                      1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town\n
n\n
           - B
- LSTAT
           % lower status of the population\n
                                                     - MEDV
                                                                Median value of owner-o
                                :Missing Attribute Values: None\n\n
ccupied homes in $1000's\n\n
                                                                       :Creator: Harris
on, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttps://archiv
e.ics.uci.edu/ml/machine-learning-databases/housing/\n\nThis dataset was taken from t
he StatLib library which is maintained at Carnegie Mellon University.\n\nThe Boston hou
se-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for c
lean air', J. Environ. Economics & Management, \nvol.5, 81-102, 1978.
                                                                       Used in Belslev,
Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980.
                                                            N.B. Various transformation
s are used in the table on\npages 244-261 of the latter.\n\nThe Boston house-price data
has been used in many machine learning papers that address regression\nproblems.
                            - Belsley, Kuh & Welsch, 'Regression diagnostics: Identif
\n.. topic:: References\n\n
ying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n
n,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the T
enth International Conference of Machine Learning, 236-243, University of Massachusett
s, Amherst. Morgan Kaufmann.\n",
 'filename': 'C:\\Users\\G.SAI KRISHNA\\anaconda3\\lib\\site-packages\\sklearn\\dataset
s\\data\\boston house prices.csv'}
```

In [3]: data=pd.DataFrame(data=boston_data.data,columns=boston_data.feature_names)

In [4]: data['MEDV']=boston_data.target

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
Column Non-Null Count Dtype

#	Column	Non-Null Count	υτype
0	CRIM	506 non-null	float64
1	ZN	506 non-null	float64
2	INDUS	506 non-null	float64
3	CHAS	506 non-null	float64
4	NOX	506 non-null	float64
5	RM	506 non-null	float64
6	AGE	506 non-null	float64
7	DIS	506 non-null	float64
8	RAD	506 non-null	float64
9	TAX	506 non-null	float64
10	PTRATIO	506 non-null	float64
11	В	506 non-null	float64
12	LSTAT	506 non-null	float64
13	MEDV	506 non-null	float64

dtypes: float64(14)
memory usage: 55.5 KB

In [6]: data.head(10)

Out[6]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9

3.Data Preprocessing

```
In [7]: #Handling Null Values
        data.isnull().sum()
Out[7]: CRIM
                     0
                     0
         ΖN
         INDUS
                     0
         CHAS
                     0
         NOX
                     0
                     0
         RM
                     0
         AGE
         DIS
                     0
         RAD
                     0
         TAX
                     0
         PTRATIO
                     0
                     0
         LSTAT
         MEDV
                     0
         dtype: int64
```

In [8]: data.describe()

Out[8]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.54
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.70
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.00
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.00
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.00
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.00
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.00
4									•

4.Data Splitting

```
In [9]: x=data.drop(['MEDV'],axis=1)
y=data['MEDV']
```

In [10]: x.head()

Out[10]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

```
Out[11]: 0
              24.0
              21.6
         2
              34.7
         3
              33.4
         4
              36.2
         Name: MEDV, dtype: float64
         5.Data Scaling
In [12]: | scaler_x = StandardScaler()
         x = scaler_x.fit_transform(x)
Out[12]: array([[-0.41978194, 0.28482986, -1.2879095 , ..., -1.45900038,
                  0.44105193, -1.0755623 ],
                [-0.41733926, -0.48772236, -0.59338101, ..., -0.30309415,
                  0.44105193, -0.49243937],
                [-0.41734159, -0.48772236, -0.59338101, ..., -0.30309415,
                  0.39642699, -1.2087274 ],
```

[-0.41344658, -0.48772236, 0.11573841, ..., 1.17646583,

[-0.40776407, -0.48772236, 0.11573841, ..., 1.17646583,

[-0.41500016, -0.48772236, 0.11573841, ..., 1.17646583,

6.Training & Testing Data

0.44105193, -0.98304761],

0.4032249 , -0.86530163],

0.44105193, -0.66905833]])

In [11]: | y.head()

```
In [13]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)
In [14]: x_train.shape
Out[14]: (354, 13)
In [15]: x_test.shape
Out[15]: (152, 13)
In [16]: y_train.shape
Out[16]: (354,)
In [17]: y_test.shape
Out[17]: (152,)
```

7. Random Forest Regression

Training the Model

Predicting Test Values

```
In [19]: y pred = rfr.predict(x test)
         y_pred
Out[19]: array([23.8649, 30.313 , 22.0392, 10.8742, 20.5112, 20.9013, 21.1548,
                20.2765, 20.0401, 18.4683, 8.5282, 15.1039, 14.8617,
                47.3892, 33.9982, 20.9845, 34.6679, 25.4874, 21.1749, 23.7837,
                21.9821, 19.7088, 24.1614, 20.3698, 18.0315, 18.6928, 15.9858,
                43.9416, 18.6259, 14.774 , 17.4063, 20.4513, 20.9547, 22.9134,
                17.7156, 8.6921, 30.1649, 14.454, 14.6563, 22.8025, 20.7983,
                22.3097, 15.0248, 23.2536, 22.491 , 20.5788, 16.3919, 14.9816,
                25.2653, 16.2098, 19.7328, 20.142, 40.1847, 14.8773, 19.9407,
                19.5109, 18.9039, 24.1756, 20.1048, 21.6727, 20.9496, 33.0194,
                28.604 , 18.2651, 27.2308, 16.3462, 18.0122, 18.1677, 21.8204,
                20.0745, 22.7805, 24.3898, 31.512, 29.0344, 9.0521, 43.3805,
                21.9193, 22.715, 19.4919, 26.9377, 18.0274, 23.7381, 42.8931,
                42.2137, 24.2931, 23.0369, 14.4315, 25.738, 16.4235, 18.8312,
                12.7482, 22.4625, 30.4702, 21.3455, 22.0251, 11.6095, 23.2518,
                14.9602, 18.9726, 23.9216, 19.9358, 28.1455, 21.1187, 28.1366,
                          9.1435, 19.4267, 21.7074, 23.0575, 34.3257, 13.5123,
                18.2186, 18.478, 17.1325, 21.0765, 10.1944, 19.722, 10.7995,
                47.1577, 30.5152, 10.5338, 19.3249, 20.4651, 20.5921, 18.579,
                34.1507, 19.101, 20.5561, 34.8378, 14.0063, 10.9678, 14.9268,
                19.6606, 13.2385, 34.5584, 20.6294, 15.5886, 26.7282, 9.2076,
                10.7778, 20.813, 32.2243, 24.2117, 24.4897, 17.0145, 34.7306,
                34.2757, 11.4451, 8.9918, 29.1161, 24.3784])
```

Visualizing Model Performance

```
In [20]: error=mean_squared_error(y_pred,y_test)
error
```

Out[20]: 14.102739131381625

```
In [21]: plt.figure()
    plt.plot(x_test,y_test,'+',color="green")
    plt.plot(x_test,y_pred,'^',color="blue")
    plt.title("Decision Tree Regession")
    plt.xlabel("Input")
    plt.ylabel("Output")
    plt.show()
```



```
In [22]: print("Accuracy : "+str(100 - error)+"%")
```

Accuracy: 85.89726086861837%