[Spring 2023] DATA MINING THEORY AND APPLICATION (IIE 4102)

Practice-HW3 Clustering Analysis

논문참조 강세정, 김규현, 신재욱, 장현우

01

Introduction

Research Objective
Data

02

Body

Hierarchical Clustering
Partitional Clustering

03

Conclusion

Result
Limitation & Development

Contents

Clustering Analysis

01. Research Objective

- 다양한 Hierarchical Clustering과 Partitional Clustering을 모두 사용하여 어떠한 방법론이 날씨 데이터들을 더 우수하게 군집화하는지 비교해보고자 함
- 거리가 가까운 날씨 데이터들 간에 어떠한 유사한 특징이 있는지 파악해보고자 함

02. Data

데이터는 기상청(ASOS)에서 서울 지역에 대해 직접 수집함

- 데이터 기간: 10년 (2013.03.29~2023.03.28)
- National Geographic의 '날씨' 정의에 기반해 변수들을 선택함

일강수량, 평균 풍속, 평균 현지기압에 결측치 존재

- 일강수량: 0으로 채움 [data['일강수량'].fillna(0)]
- 평균 풍속, 평균 현지기압 : 보간법(interpolation) 사용 [data.interpolate()]

IQR 기준으로 결측치(outlier) 제거

- (1Q 1.5 * IQR, 3Q + 1.5 * IQR) 범위 밖의 값을 가지는 row 제거
- $-(3652, 6) \rightarrow (3536, 6)$

① data.head()

	평균기온	일강수량	평균 풍속	평균 상대습도	평균 현지기압	평균 전운량
0	5.4	0.0	3.4	28.6	1010.4	1.9
1	4.9	0.2	2.3	43.1	1011.9	7.8
2	6.3	0.0	2.7	46.4	1012.7	0.0
3	9.2	0.5	2.2	44.5	1009.3	7.3
4	7.2	8.5	2.7	86.1	1002.7	7.6

② data.info()

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(6)

memory usage: 171.3 KB

③ data.describe()

	평균기온	일강수량	평균 풍속	평균 상대습도	평균 현지기압	평균 전운량
count	3536.000000	3536.000000	3536.000000	3536.000000	3536.000000	3536.000000
mean	13.507749	3.177489	2.241502	60.838660	1006.238009	4.765639
std	10.511083	12.241339	0.659321	14.769925	7.920814	3.078080
min	-14.900000	0.000000	0.600000	21.800000	981.000000	0.000000
25%	4.600000	0.000000	1.800000	49.900000	999.800000	2.100000
50%	14.550000	0.000000	2.100000	60.800000	1006.500000	4.800000
75%	22.900000	0.300000	2.700000	70.925000	1012.500000	7.400000

max 33.700000 176.200000 4.000000 99.800000 1026.800000 10.000000

결측치 제거 이후 data.info()

<class 'pandas.core.frame.DataFrame'>

2 평균 풍속 3536 non-null float64 3 평균 상대습도 3536 non-null float64 4 평균 현지기압 3536 non-null float64 5 평균 전운량 3536 non-null float64 dtypes: float64(6)

memory usage: 193.4 KB

StandardScaling 이후 data.describe()

평균 전운증	평균 현지기압	평균 상대습도	평균 풍속	일감수량	평균기온	
3.536000e+03	3.536000e+03	3.536000e+03	3.536000e+03	3.536000e+03	3.536000e+03	count
-2.009453e-17	1.851510e-14	-1.366428e-16	4.822688e-17	-6.832142e-17	-3.617016e-17	mean
1.000141e+00	1.000141e+00	1.000141e+00	1.000141e+00	1.000141e+00	1.000141e+00	std
-1.548469e+00	-3.186740e+00	-2.643492e+00	-2.490039e+00	-2.596071e-01	-2.703029e+00	min
-8.661295e-01	-8.129113e-01	-7.407083e-01	-6.697259e-01	-2.596071e-01	-8.475823e-01	25%
1.116466e-02	3.308094e-02	-2.617818e-03	-2.146478e-01	-2.596071e-01	9.917137e-02	50%
8.559664e-01	7.906860e-01	6.829938e-01	6.955085e-01	-2.350965e-01	8.936833e-01	75%
4 7007690+00	2.6062440+00	2.6292570+00	2.6675140+00	4.4438390+04	4.0242450+00	-

Contents

Clustering Analysis

Hierarchical Clustering

01. 관측치들 간 거리 계산 방식 선정 :#변물러스터의 실루엣계수 평균값의 편차가적도록 threshold 설정

① Complete: Silhouette Average Score 0.226

② Centroid: Silhouette Average Score 0.022

③ Average: Silhouette Average Score 0.182

Ward : Silhouette Average Score 0.179

Complete 방식

군집별 평균 silhouette score 값의 편차가 작은 Ward, Complete 방식 선정

▶ 군집별 평균 silhouette_score 값 / 군집별 데이터 수

hc_cluster 1 0.306824 2 0.055304 3 0.304332 4 0.254853 Name: silhouette_coeff, dtype: float64	2 1566 4 1286 1 573 3 111	hc_cluster 1	2 3 4 1	3153 328 38 17
Name: SIINOUETTE_COETT, dtype: Tloat64 표준편차: 0.11911213167712349	dtype: int64	표준편차: 0.09339620399460181	dt ypi	e: int64

Ward 방식

02. EDA / Interpretation

① Ward

평균 기온 - 평균 풍속

평균 현지기압 – 평균 전운량

군집별 평균

nc_cluster	횡균기온	일감수량	평균 풍속	평균 상대습도	평균 현지기압	평균 전문량	silhouette_coeff
1	-1.341538	-0.257939	0.037732	-1.060858	1.231961	-1.018271	0.306824
2	-0.231883	-0.236145	-0.027873	-0.317785	0.340211	-0.252696	0.055304
3	0.833078	4.601439	0.318327	1.896140	-1.128353	1.464540	0.304332

군집별 표준편차

f		평균기온	일감수량	평균 풍속	평균 상대습도	평균 현지기압	평균 전문량	silhouette_coef
	hc_cluster							
4	1	0.497139	0.014425	1.020855	0.573219	0.501741	0.519271	0.10616
4	2	0.741035	0.086646	0.986619	0.764795	0.666116	0.867639	0.11667
2	3	0.435673	2.552235	0.995108	0.455473	0.522917	0.338407	0.20260
3	4	0.612362	0.508210	1.003554	0.674607	0.630762	0.758999	0.13515

- cluster1: 기온이 매우 낮고, 상대습도와 전운량도 매우 낮음, 비가 거의 오지 않음 → 건조한 겨울 날씨
- cluster2 : 비는 거의 오지 않았으나 나머지 모든 값이 0에서 크게 벗어나지 않는 수치를 보임. 기온이 다소 낮고 기압이 다소 높음 → 건조한 가을 날씨
- cluster3 : 기온이 높고, 강수량과 상대습도 및 전운량이 매우 높음 → 습하고 비오는 여름 날씨
- cluster4: cluster3과 유사하지만 비가 별로 오지 않았음 → 비오기 전후 여름 날씨

Body

Contents

Clustering Analysis

Hierarchical Clustering(CONT.)

02. EDA / Interpretation(CONT.)

② Complete

평균 기온 - 평균 풍속

평균 기온 - 평균 풍속 - 평균 상대습도

군집별 평균

군집별 표준편차

	9671	соте	00 07	ac adiex	SE CANO	00 000	3111100CCCC_COCTT
hc_cluster							
1	0.497139	0.014425	1.020855	0.573219	0.501741	0.519271	0.106167
2	0.741035	0.086646	0.986619	0.764795	0.666116	0.867639	0.116672
3	0.435673	2.552235	0.995108	0.455473	0.522917	0.338407	0.202608
4	0.612362	0.508210	1.003554	0.674607	0.630762	0.758999	0.135154

- 전체 표본의 평균이 0이 되어야 하므로 표의 값에 의하면 압도적으로 많은 데이터가 cluster 2에 속해야 하고, 실제로도 그렇게 나타남
- 따라서 cluster 2는 특징 설명이 제한되며 1, 3, 4에 대해서만 특징 추론 가능
- cluster 1과 4는 모든 경향성이 유사하나 cluster 1이 더욱 극단적인 값들을 가짐
- cluster 1 : 비오고 습한 한여름 날씨
- cluster 3 : cluster 1과 4에 비해서는 기온이 다소 낮으며 강수량이 높지 않음 → 습한 봄가을 날씨
- cluster 4 : 비오고 습한 여름 날씨

▶ 계층적 클러스터링의 경우, Ward 방식으로 관측치들 간 거리를 계산하는 것으로 결정 이후에 Partitional Clustering과 비교

Clustering Analysis

Average Silhouette Score:0.456

Name: k_silhouette_coeff, dtype: float64 표준편차: 0.10129124855096026

Partitional Clustering

01. 군집 개수 결정

SSE, calinski harabasz score, silhouette score를 고려해 6으로 결정

02. K-means Clustering

군집별 centroid 좌표값

	평균기온	일강수량	평균 풍속	평균 상대습도	평균 현지기압	평균 전운량
0	0.591840	-0.250977	-0.022115	-0.583067	-0.316184	-0.691171
1	0.235707	0.130939	1.292674	0.703508	-0.655242	0.812549
2	-0.729474	-0.225823	-0.674428	-0.004291	0.835885	0.099950
3	0.972875	-0.019733	-0.549066	0.757095	-0.909000	0.758778
4	0.805164	4.931109	0.353817	1.923832	-1.092103	1.482840
	-1 105100	-0.254253	0.516300	-1.002442	1.027414	-1.019355

기존 데이터 + cluster

	평균기온	일강수량	평균 풍속	평균 상대습도	평균 현지기압	평균 전운량	cluster
0	-0.771461	-0.259607	1.757358	-2.183032	0.525524	-0.931114	5
1	-0.819037	-0.243267	0.088738	-1.201168	0.714925	0.985936	2
2	-0.685825	-0.259607	0.695509	-0.977710	0.815939	-1.548469	5
3	-0.409887	-0.218756	-0.062955	-1.106368	0.386630	0.823474	2
4	-0.600189	0.434860	0.695509	1.710565	-0.446736	0.920951	1
	-		-				-
531	-0.095888	-0.259607	0.088738	-1.627771	-0.232081	1.050921	0
532	-0.095888	-0.259607	0.088738	-0.063561	0.121468	-0.216282	0
533	-0.390857	-0.259607	2.060743	-1.817373	0.070961	-1.288530	5
534	-0.590674	-0.259607	0.088738	-1.086053	0.626538	-1.191053	5
535	-0.409887	-0.259607	-0.214648	-0.510478	0.866446	-0.606190	2

군집별 데이터 개수

03. Evaluation

- ① 평균 silhouette score, 군집별 silhouette score 확인
- ② 군집 결과 시각화

_means_cluster

평균 기온 - 평균 풍속 - 평균 상대습도

04. EDA/Interpretation

군집별 평균

평균 현지기압 – 평균 전운량

k_means_cluster 0	0.593272	-0.250989	-0.022379	-0.582577	-0.317472	-0.690385	0.0	0,44644
1	0.238161	0.131257	1.294977	0.703038	-0.656666	0.812738	1.0	0.301433
2	-0.729672	-0.225554	-0.673264	-0.003117	0.834815	0.100746	2.0	0.42343
3	0.972032	-0.019428	-0.549491	0.758346	-0.908560	0.759895	3.0	0.47514
4	0.805164	4.931109	0.353817	1.923832	-1.092103	1,482840	4.0	0.36963
5	-1.195199	-0.254253	0.516300	-1.002442	1.027414	-1.018255	5.0	0.60028

	평균기온	일강수량	평균 중속	평균 상대습도	평균 현지기압	평균 전운량	cluster	k_silhouette_coeff
k_means_cluster								
0	0.486617	0.075140	0.761143	0.654974	0.579369	0.645533	0.0	0.092822
1	0.749448	0.595983	0.692122	0.739553	0.769205	0.679346	0.0	0.098109
2	0.549628	0.134836	0.642902	0.738083	0.500183	0.789422	0.0	0.104006
3	0.427181	0.496910	0.584156	0.629009	0.576952	0.609181	0.0	0.101862
4	0.456518	2.507175	1.034144	0.450827	0.544162	0.332438	0.0	0.157579
5	0.581044	0.028578	0.975306	0.597545	0.586415	0.540348	0.0	0.059316

- Cluster0: 기온이 높은 편이며 비가 거의 오지 않고 습도와 전운량이 낮음 → 맑고 따뜻한 날
- Cluster1: 습도와 전운량이 높으며 풍속이 매우 높음. 적은 양의 비가 내림 → 흐리고 바람부는 날
- Cluster2 : 기온이 낮은 편이며 바람이 전혀 불지 않고 기압이 매우 높음 → 선선한 날
- Cluster3: 기온이 매우 높고 기압은 매우 낮으며 전운량이 매우 높음. 그러나 비는 별로 오지 않음 → 덥고 습한 날
- Cluster4 : Cluster3과 유사하지만 비가 매우 많이 옴 → 비오고 습한 날
- Cluster5: 기온이 매우 낮으나 비가 전혀 오지 않고 상대습도가 매우 낮으며 전운량이 매우 적음 → 춥고 맑은 날

Body / Conclusion

Contents

Clustering Analysis

Partitional Clustering(CONT.)

04. EDA/Interpretation(CONT.)

Conclusion

01, Result

수집한 날씨 데이터에 가장 어울리는 Clustering Method = K-means Clustering

Average Silhouette Score 값이 0.456으로 clustering method 중 가장 높으며, 군집 간의 편차도 적음

이는 시각화 결과에서도 확인할 수 있음

각 군집에 해당하는 데이터 수의 편차 역시 K-means Clustering 방식에서 가장 작음

수집한 날씨 데이터의 Clustering 결과

K-means Clustering을 활용한 결과, 아래와 같이 최근 10년간의 서울 날씨를 군집화 할 수 있음

02. Limitation

- Cluster0 : 기온이 높은 팬이며 비가 거의 오지 않고 습도와 선운량이 낮음 → 맑고 따뜻한 달
- Cluster1 : 습도와 전운량이 높으며 풍속이 매우 높음. 적은 양의 비가 내림 → 흐리고 바람부는
- Cluster2 : 기온이 맞은 썬이머 마님이 신여 둘시 않고 기입이 매우 숲음 → 신신만 달
- Cluster3 : 기온이 매우 높고 기압은 매우 낮으며 선문량이 매우 높음. 그러나 비는 별로 오지 않음 → 넙고 습한
- Cluster4 : Cluster3과 유사하지만 비가 매우 많이 옴 → 비오고 습한 닐
- Cluster5 : 기온미 배우 낮으나 비가 전혀 오지 않고 상대급도가 배우 낮으며 전문당이 배우 작음 → 춥고 날

(1) Data 관련 한계

→ 이상치에 민감한 군집화 알고리즘이기에 사전에 이상치를 제거해주는데, 수집한 데이터 중 "강수량" 데이터가 대부분 이상치로 인식됨

(2) Clustering 관련 한계(k-means clustering 알고리즘)

- 클러스터 중심의 초기 배치에 민감함. 즉, 결과가 최적이 아닐 수 있음
- 군집이 구형이며 크기가 같다고 가정한 채 진행됨
- threshold, 클러스터 개수 k값을 입력 파라미터로 지정해주었는데, 그 값의 변화에 따라 결과가 크게 달라짐

03. Development

(1) Data 관련 개선점

→ 대부분 이상치로서 존재하는 강우량 데이터를 적절히 대체할 수 있는, 증발산량 등의 변수를 적절히 활용할 수 있으리라 생각함

(2) Clustering 관련 개선점

→ 위의 한계점을 보완하기 위해, 계층적 또는 밀도 기반 클러스터링과 같은 보다 정교한 클러스터링 기술을 통해 보다 우수한 군집화를 진행할 수 있음

Data Source

Contents — Clustering Analysis

[데이터 출처]

- (1) 기상청(2013.03.29~2023.03.28, 10년 치)
- 일별 종관기상관측(ASOS) 자료 https://data.kma.go.kr/data/grnd/selectAsosRltmList.do?pgmNo=36

[참고 문헌]

- (1) WEATHER
- https://education.nationalgeographic.org/resource/resource-library-weather/