



## Olimpiada Națională de Matematică

# Etapa Judeţeană/a Sectoarelor Municipiului Bucureşti, 2025

### CLASA a XII-a – soluții

**Problema 1.** Fie  $(G, \cdot)$  un grup, cu elementul neutru e, iar A o submulţime nevidă a sa. Notăm cu  $AA = \{xy | x, y \in A\}$ .

- a) Arătați că dacă G este finit, atunci AA = A dacă şi numai dacă  $e \in A$  şi |AA| = |A|.
- b) Dați un exemplu de grup G și o submulțime  $A \subseteq G$ , cu  $AA \neq A$ , |AA| = |A| și AA < G. (Notația H < G înseamnă că H este un subgrup propriu al grupului G, adică un subgrup al lui

(Notația H < G înseamnă că H este un subgrup propriu al grupului G, adică un subgrup al lu G diferit de grupul G.)

Gazeta Matematică

### Soluţie.

Reciproc, dacă  $e \in A$  şi |AA| = |A|, avem că  $A = e \cdot A \subseteq AA$  şi cum  $|A| = |AA| < \infty$ , rezultă că AA = A.

**Problema 2.** Fie  $(G,\cdot)$  un grup, iar H < G un subgrup propriu al lui G. Dacă există morfisme  $f,g,h:G\longrightarrow G$  ale grupului G, cu proprietatea că f(xy)=g(x)h(y) pentru orice  $x,y\in G\setminus H$ , arătați că:

- a) q = h;
- b) dacă G este neabelian, iar H = Z(G), atunci f = g = h.

(Mulțimea  $Z(G) = \{c \in G | cx = xc, \forall x \in G\}$  se numește centrul grupului G.)

#### Soluţie.

a) Notând cu e elementul neutru al grupului G, pentru orice  $x \in G \setminus H$  avem că  $x^{-1} \in G \setminus H$ , astfel că

$$e = f(e) = f(x \cdot x^{-1}) = g(x) \cdot h(x^{-1}) = g(x) \cdot h(x)^{-1},$$

$$g(a) = g(ax \cdot x^{-1}) = g(ax) \cdot g(x^{-1}) = h(ax) \cdot h(x^{-1}) = h(ax \cdot x^{-1}) = h(a).$$

b) Fie G neabelian și H=Z(G). Ținând cont de punctul anterior avem că g=h, astfel că relația din enunț devine

$$f(xy) = g(x)g(y) = g(xy)$$
 pentru orice  $x, y \in G \setminus Z(G)$ .

Pentru orice  $a \in Z(G)$  și  $x \in G \setminus Z(G)$ , avem  $ax, x^{-1} \in G \setminus Z(G)$ , astfel că:

$$f(a) = f(ax \cdot x^{-1}) = g(ax \cdot x^{-1}) = g(a).$$

Fie  $x \in G \setminus Z(G)$ . Atunci există  $y \in G \setminus Z(G)$  cu proprietatea că  $xy \neq yx$ . Dacă  $xy \in Z(G)$  atunci am avea

$$xy = y(xy)y^{-1} = yx \neq xy,$$

ceea ce reprezintă o contradicție. Prin urmare,  $xy \in G \setminus Z(G)$ , și, cum  $y^{-1} \in G \setminus Z(G)$ , avem:

$$f(x) = f(xy \cdot y^{-1}) = g(xy \cdot y^{-1}) = g(x).$$

**Problema 3.** a) Fie  $a, b \in \mathbb{R}$  două numere reale, cu a < b, iar  $f : [a, b] \longrightarrow \mathbb{R}$  o funcție strict monotonă cu proprietatea că  $\int_a^b f(x) dx = 0$ . Arătați că  $f(a) \cdot f(b) < 0$ .

b) Determinați șirurile convergente  $(a_n)_{n\geq 1}$  de numere reale, pentru care există o funcție strict monotonă  $f: \mathbb{R} \longrightarrow \mathbb{R}$  cu proprietatea că

$$\int_{a_{n-1}}^{a_n} f(x) dx = \int_{a_n}^{a_{n+1}} f(x) dx, \quad \text{pentru orice } n \in \mathbb{N}, n \ge 2.$$

Solutie.

a) Dacă  $f([a,b]) \subseteq [0,\infty)$  sau  $f([a,b]) \subseteq (-\infty,0]$ , atunci  $m = \left| f\left(\frac{a+b}{2}\right) \right| > 0$ , iar pe unul dintre intervalele  $\left(a,\frac{a+b}{2}\right)$  sau  $\left(\frac{a+b}{2},b\right)$  are loc inegalitatea |f(x)| > m pentru orice x din acel interval. Atunci

$$0 = \left| \int_a^b f(x) \, dx \right| = \int_a^b |f(x)| \, dx = \int_a^{\frac{a+b}{2}} |f(x)| \, dx + \int_{\frac{a+b}{2}}^b |f(x)| \, dx \ge m \cdot \frac{b-a}{2} > 0 \,,$$

În mod evident, dacă  $(a_n)_{n\geq 1}$  este un şir constant, cu  $a_n=a,\,a\in\mathbb{R}$ , atunci şirul este convergent,

cu 
$$\lim_{n\to\infty} a_n = a$$
 și  $\int_{a_k}^{a_{k+1}} f(x) dx = 0$  pentru orice  $k \ge 1$  și orice funcție  $f: \mathbb{R} \longrightarrow \mathbb{R}$ .

Dacă  $\{a_n | n \ge 1\} = \{a, b\}$  şi există  $n_0 \in \mathbb{N}^*$  cu  $a_n = a$  pentru orice  $n \ge n_0$ , atunci  $(a_n)_{n \ge 1}$  este convergent, cu  $\lim_{n \to \infty} a_n = a$ , şi există funcția  $f : \mathbb{R} \longrightarrow \mathbb{R}$  definită prin f(x) = 2x - a - b, care

este strict monotonă și verifică egalitățile 
$$\int_{a_k}^{a_{k+1}} f(x) dx = 0$$
 pentru orice  $k \ge 1$ .

Fie  $(a_n)_{n\geq 1}$  un şir convergent de numere reale pentru care există o funcție strict monotonă  $f: \mathbb{R} \longrightarrow \mathbb{R}$  cu proprietatea că

$$\int_{a_1}^{a_2} f(x) \, dx = \int_{a_2}^{a_3} f(x) \, dx = \dots = \int_{a_n}^{a_{n+1}} f(x) \, dx = \dots$$

Fie  $I = \int_{a_k}^{a_{k+1}} f(x) dx$  pentru orice  $k \ge 1$  şi  $a = \lim_{n \to \infty} a_n$ . Pentru un r > 0 fixat există atunci un

rang  $n_r \geq 1$ , astfel încât  $a_n \in (a-r, a+r)$  pentru orice  $n \geq n_r$ . Cum f este strict monotonă, dacă  $M = \max(|f(a-r)|, |f(a+r)|)$ , atunci |f(x)| < M pentru orice  $x \in (a-r, a+r)$ . Pentru orice  $p \in \mathbb{N}^*$  avem:

$$p \cdot |I| = |p \cdot I| = \left| \sum_{k=1}^{p} \int_{a_{n_r+k}}^{a_{n_r+k}} f(x) \, dx \right| = \left| \int_{a_{n_r}}^{a_{n_r+p}} f(x) \, dx \right| \le \left| \int_{a_{n_r}}^{a_{n_r+p}} |f(x)| \, dx \right| < \int_{a-r}^{a+r} |f(x)| \, dx \le 2r \cdot M.$$

$$\int_{a_i}^{a_j} f(x) \, dx = \sum_{l=i}^{j-1} \int_{a_l}^{a_{l+1}} f(x) \, dx = (j-i) \cdot I = 0$$

și, de asemenea,  $\int_{a_j}^{a_k} f(x) dx = (k-j) \cdot I = 0$ , respectiv  $\int_{a_i}^{a_k} f(x) dx = 0$ ..... **1p** Funcția f fiind strict monotonă, rezultă atunci că

 $f(a_i) \cdot f(a_i) < 0, \ f(a_i) \cdot f(a_k) < 0$  și  $f(a_i) \cdot f(a_k) < 0.$  Dar atunci

$$(f(a_i) \cdot f(a_i) \cdot f(a_k))^2 = (f(a_i) \cdot f(a_i)) \cdot (f(a_i) \cdot f(a_k)) \cdot (f(a_i) \cdot f(a_k)) < 0,$$

**Problema 4.** Fie  $f:[0,1]\longrightarrow \mathbb{R}$  o funcție continuă. Definim funcția  $\tilde{f}:[0,1]\longrightarrow \mathbb{R}$  prin

$$\tilde{f}(x) = \begin{cases} \frac{1}{x} \cdot \int_{0}^{x} f(t) dt &, \text{ dacă } x > 0, \\ f(0) &, \text{ dacă } x = 0. \end{cases}$$

Arătați că:

- a) funcția  $\tilde{f}$  este continuă în 0 și derivabilă pe (0,1];
- b) are loc egalitatea

$$\int_0^1 f^2(x) \, dx = \left( \int_0^1 f(x) \, dx \right)^2 + \int_0^1 \left( f(x) - \tilde{f}(x) \right)^2 \, dx.$$

Soluţie.

a) Funcția f fiind continuă pe [0,1], rezultă că funcția  $F:[0,1] \longrightarrow \mathbb{R}$  definită prin  $F(x) = \int_0^x f(t) \, dt$  este derivabilă pe [0,1], cu F' = f. Rezultă atunci că funcția  $\tilde{f}$  este derivabilă pe [0,1], ca produs de funcții derivabile.

Rămâne să mai arătăm doar că  $\tilde{f}$  este continuă în 0. Cum f este continuă,  $\lim_{x\to 0} f(x) = f(0)$ , astfel că, aplicând regula lui l'Hôspital, avem:

$$\lim_{x \to 0} \tilde{f}(x) = \lim_{x \to 0} \frac{F(x)}{x} = \lim_{x \to 0} \frac{F'(x)}{x'} = \lim_{x \to 0} f(x) = f(0) = \tilde{f}(0),$$

$$\begin{split} G'(x) &= \left(\tilde{f}(x) - I\right)^2 + 2x \cdot \left(\tilde{f}(x) - I\right) \cdot \tilde{f}'(x) = \\ &= \left(\tilde{f}(x) - I\right) \cdot \left(\tilde{f}(x) - I + 2x \cdot \left(\left(-\frac{1}{x^2}\right) \cdot \int_0^x f(t) \, dt + \frac{1}{x} \cdot f(x)\right)\right) = \\ &= \left(\tilde{f}(x) - I\right) \cdot \left(2f(x) - \tilde{f}(x) - I\right) = 2f(x) \cdot \left(\tilde{f}(x) - I\right) + I^2 - \tilde{f}^2(x) = \\ &= I^2 - 2If(x) + f^2(x) - \left(f(x) - \tilde{f}(x)\right)^2 \,, \qquad \text{pentru orice } x \in (0, 1]. \end{split}$$

Deoarece există  $\lim_{x\to 0}G'(x)=(I-f(0))^2\in\mathbb{R}$ , rezultă că G este derivabilă în 0, cu  $G'(0)=(I-f(0))^2$ , şi G' este continuă pe [0,1]. Obţinem atunci:

$$\int_0^1 f^2(x) dx - \left(\int_0^1 f(x) dx\right)^2 - \int_0^1 \left(f(x) - \tilde{f}(x)\right)^2 dx =$$

$$= \int_0^1 \left(f^2(x) + I^2 - 2If(x) - \left(f(x) - \tilde{f}(x)\right)^2\right) dx =$$

$$= \int_0^1 G'(x) dx = G(1) - G(0) = 0,$$