LOMBREA ANCA RALUCA OPREA FELICIA PASCALAU RAZVAN CRISTIAN 36/12

PROIECT IDENTIFICAREA SISTEMELOR

ARX neliniar

1.Introducere

2. Structura metodei ARX neliniare

3.Algoritm

4. Rezultate de reglare

5.Concluzie

1. Introducere – ARX neliniar

- Model autoregresiv cu intrare exogenă
- Model parametric de tip polinomial
- leşirea y(k) la pasul curent este o combinaţie neliniară cu ponderi a şi b între ieşirile şi intrările anterioare ale sistemului.
- Un model de grad m conține produse între variabilele întârziate al căror grad este maxim m și este liniar în parametrii.

2. NARX polinomial

- $y(k) = g(y(k-1), y(k-2), ..., y(k-na), u(k-1), u(k-2), ..., u(k-nb); \theta) + e(k)$
- $y(k) = g(d(k); \theta) + e(k)$
- ullet $\Theta \in \mathbb{R}^{na+nb}$: parametrii aleşi potrivit pentru identificarea unui sistem dinamic neliniar
- $\bullet \quad \theta = [a_1 \dots a_{na} b_1 \dots b_{nb}]^T$
- g este un polinom de grad m ale cărui variabile sunt ieșirile și intrările precedente, iar coeficienții sunt parametrii θ
- $d(k) = [y(k-1) ... y(k-na) u(k-1) ... u(k-nb)]^T = \phi(k)$, vector de regresori

Exemplu NARX polinomial

■ na = nb = 1, m = 1 $y(k) = a_1y(k-1) + b_1u(k-1) + c_1 + e(k)$

 \blacksquare na = nb = 2, m = 2

$$y(k) = a_1y(k-1) + a_2y(k-2) + a_3y(k-1)^2 + a_4y(k-2)^2 + b_1u(k-1) + b_2u(k-2) + b_3u(k-1)^2 + b_4u(k-2)^2 + c_1y(k-1)u(k-1) + c_2y(k-1)u(k-2) + c_3y(k-2)u(k-1) + c_4y(k-2)u(k-2) + d + e(k)$$

Predicție și simulare

■ Predicție cu un pas înainte

$$x(k) = [y(k-1) \ y(k-2) \ ... \ y(k-n_a) \ u(k-1) \ u(k-2) \ ... \ u(k-n_b)]^T$$

$$\hat{y}_{pred}(k) = g(d(k); \theta)$$

Simulare

$$\hat{\mathbf{x}}(k) = [\hat{y}(k-1) \, \hat{y}(k-2) \, \dots \, \hat{y}(k-n_a) \, u(k-1) \, u(k-2) \, \dots \, u(k-n_b)]^T$$

$$\hat{y}_{sim}(k) = g(\mathbf{d}(k); \theta)$$

■ leşirile simulate la momente negative sau 0 sunt egale cu 0!

3. Algoritm

- $X(k) = [y(k-1) \ y(k-2) \ ... \ y(k-n_a) \ u(k-1) \ u(k-2) \ ... \ u(k-n_b)], \ k \in \mathbb{R}^n$ $X(k) = [x_1(k) \ x_2(k) \ x_3(k) \ ... \ x_n(k)], \ n = na+nb$
- Se calculează X(k) şi φ(k) atât pentru datele de identificare, cât şi pentru cele de validare

Exemplu

Pentru na = nb = 1, m = 2

Se vor alege primele 6 linii din matricea P pentru care suma elementelor de pe fiecare coloană este $\leq m$.

■ Aflarea regresorilor și a parametrilor

 ϕ_{id} folosind datele de identificare

 ϕ_{val} folosind datele de validare

$$\Theta = \Phi_{id} \setminus y_{identificare}$$

Aflarea predicției

$$\hat{y}_{pred} = \phi * \Theta$$

■ Aflarea simulării

$$\hat{y}_{sim}(1) = [-\hat{y}_{sim}(0) \dots -\hat{y}_{sim}(1-na) \ u(0) \dots u(1-nb)]$$

$$\hat{y}_{sim}(2) = [-\hat{y}_{sim}(1) \dots -\hat{y}_{sim}(2-na) \ u(1) \dots u(2-nb)]$$

...

$$\hat{y}_{sim}(n) = [-\hat{y}_{sim}(n) ... -\hat{y}_{sim}(n-na) u(n) ... u(n-nb)]$$

Rezultate de reglare

Eroarea medie pătratică pe datele de identificare pentru y predicție

	m=1	m=2	m=3	m=4
na=nb=1	0.512	0.0344	0.0334	0.0334
na=nb=2	0.326	1.53e-04	8.38e-06	7.20e-06
na=nb=3	0.232	5.32e-06	4.32e-06	<mark>3.75e-06</mark>

Eroarea medie pătratică pe datele de identificare pentru y_{simulare}

	m=1	m=2	m=3	m=4
na=nb=1	0.676	0.431	0.430	0.425
na=nb=2	0.402	5.20e-03	5.29e-04	5.05e-04
na=nb=3	0.285	NaN	NaN	NaN

Rezultate de reglare

Eroarea medie pătratică pe datele de validare pentru y_{predicție}

	m=1	m=2	m=3	m=4
na=nb=1	0.291	0.016	0.0157	0.0157
na=nb=2	0.164	4.97e-05	6.45e-06	7.66e-06
na=nb=3	0.0994	<mark>4.41e-06</mark>	5.40e-06	6.06e-06

Eroarea medie pătratică pe datele de validare pentru y_{simulare}

	m=1	m=2	m=3	m=4
na=nb=1	0.380	0.217	0.188	0.183
na=nb=2	0.196	NaN	NaN	NaN
na=nb=3	0.117	NaN	NaN	NaN

■ Cel mai bun caz de **predicție** pentru datele de **identificare**

Cel mai bun caz de **simulare** pentru datele de **identificare**

■ Cel mai bun caz de **predicție** pentru datele de **validare**

■ Cel mai bun caz de **simulare** pentru datele de **validare**

5. Concluzie

■ Pentru predicție, MSE scade odată cu creșterea gradului sau cu a ordinelor na și nb, iar cele mai bune rezultate se obțin pentru gradul m=4 și ordinul na=nb=3.

Pentru simulare pe datele de identificare MSE_{sim} scade asemănător cu MSE_{pred}, dar odată cu depășirea gradului 2 pentru ordin ≥ 3 nu se mai obțin rezultate datorită instabilității sistemului.

Simularea pe datele de validare produce rezultate valide pentru o gamă mai restrânsă de combinații între m și na=nb.