DE-Forest

No Author Given

No Institute Given

1 Results

Table 1. BAC

Dataset name DE-Fore	st-gm DE-Forest-AUC	C DE-Forest-bac	DE-Forest-gm-b	DE-Forest-AUC-l	DE-Forest-bac-b	RandomFS	RandomFS-b	DT	RF	RF-b
$datasets_all/glass5.dat 0.717 \pm$	$0.186 0.655 \pm 0.128$	0.668 ± 0.141	0.512 ± 0.038	0.512 ± 0.038	0.512 ± 0.038	0.601 ± 0.101	0.570 ± 0.141	0.767 ± 0.179	0.705 ± 0.111	0.638 ± 0.097
$datasets_all/winequality - white - 9_v s_4.dat = 0.539 \pm$		0.539 ± 0.087	0.567 ± 0.104	0.567 ± 0.104	0.567 ± 0.104	0.498 ± 0.006	0.500 ± 0.000	0.572 ± 0.107	0.549 ± 0.099	0.517 ± 0.050
$datasets_all/winequality - red - 8_vs_6 - 7.dat$ 0.560 \pm		0.559 ± 0.017	0.555 ± 0.000	0.555 ± 0.000	0.555 ± 0.000	0.555 ± 0.000	0.550 ± 0.017		0.554 ± 0.002	0.533 ± 0.027
$datasets_a ll/yeast1.dat = 0.624 \pm$		0.619 ± 0.014	0.596 ± 0.009	0.597 ± 0.010	0.596 ± 0.012	0.514 ± 0.015		0.634 ± 0.013		
$datasets_a ll/yeast6.dat 0.606 \pm$		0.601 ± 0.041	0.584 ± 0.037	0.584 ± 0.037	0.587 ± 0.036	0.503 ± 0.009		0.725 ± 0.053		0.619 ± 0.036
$datasets_a ll/clevel and -0_v s_4.dat 0.601 \pm$		0.590 ± 0.068	0.630 ± 0.111	0.630 ± 0.111	0.622 ± 0.118	0.521 ± 0.035		0.647 ± 0.064		0.618 ± 0.099
$datasets_a ll/ecoli - 0 - 1_v s_2 - 3 - 5.dat 0.752 \pm$		0.767 ± 0.071	0.750 ± 0.076	0.750 ± 0.076	0.750 ± 0.076	0.641 ± 0.080		0.809 ± 0.061		0.776 ± 0.058
$datasets_a ll/yeast-1_v s_7.dat$ 0.560 ±		0.590 ± 0.054	0.563 ± 0.034	0.563 ± 0.034	0.541 ± 0.037	0.510 ± 0.021		0.656 ± 0.051		0.556 ± 0.034
$datasets_a ll/abalone - 21_v s_8.dat = 0.674 \pm$		0.674 ± 0.071	0.606 ± 0.085	0.606 ± 0.085	0.606 ± 0.085	0.578 ± 0.067		0.665 ± 0.084		0.711 ± 0.099
$datasets_all/abalone19.dat 0.499 \pm$		0.502 ± 0.009	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000		0.508 ± 0.016		0.500 ± 0.000
$datasets_a ll/poker - 9_v s_7.dat 0.610 \pm$		0.610 ± 0.120	0.500 ± 0.000	0.512 ± 0.038	0.512 ± 0.038	0.550 ± 0.062		0.655 ± 0.127		0.512 ± 0.038
$datasets_a ll/ecoli 3.dat 0.681 \pm \\ datasets_a ll/abalone - 17_v s_7 - 8 - 9 - 10.dat 0.570 \pm \\$		0.683 ± 0.048 0.570 ± 0.035	0.673 ± 0.060 0.536 ± 0.027	0.673 ± 0.060 0.536 ± 0.027	0.679 ± 0.057 0.539 ± 0.028	0.519 ± 0.035 0.505 ± 0.015		0.715 ± 0.050 0.616 ± 0.041		0.683 ± 0.067 0.549 ± 0.027
$datasets_a ll/glass - 0 - 1 - 6_v s_5.dat$ 0.739 \pm		0.742 ± 0.132	0.609 ± 0.027	0.609 ± 0.027	0.609 ± 0.029	0.676 ± 0.159		0.842 ± 0.041		0.650 ± 0.128
$datasets_a lt/gtass = 0 = 1 = 6_c s_5 .aat = 0.735 \pm datasets_a lt/ecoli = 0 = 1 = 3 = 7_c s_2 = 6.dat = 0.579 \pm$		0.579 ± 0.109	0.562 ± 0.107	0.562 ± 0.107	0.562 ± 0.107	0.516 ± 0.047		0.752 ± 0.118		0.500 ± 0.020
$datasets_a ll/yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9.dat$ 0.674 \pm		0.679 ± 0.109	0.646 ± 0.047	0.646 ± 0.047	0.658 ± 0.039	0.536 ± 0.036		0.719 ± 0.030		0.694 ± 0.018
$datasets_all/yeast5.dat 0.727 \pm$		0.733 ± 0.042	0.653 ± 0.057	0.653 ± 0.057	0.653 ± 0.057	0.513 ± 0.015		0.798 ± 0.077		0.693 ± 0.027
$datasets_a ll/glass - 0 - 1 - 4 - 6_v s_2.dat$ 0.540 \pm		0.523 ± 0.052	0.504 ± 0.017	0.504 ± 0.017	0.503 ± 0.018	0.507 ± 0.025		0.537 ± 0.065		0.508 ± 0.027
$datasets_a ll/yeast - 0 - 5 - 6 - 7 - 9_v s_4.dat 0.613 \pm$		0.620 ± 0.034	0.566 ± 0.024	0.566 ± 0.024	0.566 ± 0.024	0.501 ± 0.006		0.669 ± 0.041		0.614 ± 0.055
$datasets_all/yeast3.dat 0.814 \pm$	$0.028 0.804 \pm 0.028$	0.810 ± 0.031	0.755 ± 0.043	0.755 ± 0.043	0.764 ± 0.043	0.502 ± 0.006	0.504 ± 0.009	0.836 ± 0.028	0.813 ± 0.034	0.807 ± 0.039
$datasets_a ll/kr - vs - k - zero_v s_e ight.dat 0.822 \pm$	$0.117 0.840 \pm 0.128$	0.840 ± 0.128	0.847 ± 0.081	0.874 ± 0.086	0.874 ± 0.086	0.500 ± 0.000	0.500 ± 0.000	0.953 ± 0.057	0.959 ± 0.046	0.914 ± 0.060
$datasets_a ll/ecoli - 0 - 6 - 7_v s_3 - 5.dat 0.771 \pm$	$0.068 0.767 \pm 0.077$	0.767 ± 0.077	0.620 ± 0.061	0.620 ± 0.061	0.621 ± 0.061	0.543 ± 0.057	0.544 ± 0.042	0.823 ± 0.066	0.815 ± 0.059	0.823 ± 0.040
$datasets_a ll/kddcup-rootkit-imap_v s_b ack.dat$ 0.991 ±		0.991 ± 0.027	0.936 ± 0.046	0.936 ± 0.046	0.936 ± 0.046	0.955 ± 0.054		1.000 ± 0.000		0.964 ± 0.027
$datasets_all/winequality - red - 8_v s_6.dat = 0.552 \pm$	0.024 0.568 ± 0.047	0.569 ± 0.047	0.553 ± 0.035	0.553 ± 0.035	0.554 ± 0.035	0.544 ± 0.022	0.516 ± 0.026	0.604 ± 0.069	0.557 ± 0.029	0.532 ± 0.028
$datasets_all/flare - F.dat = 0.523 \pm$		0.526 ± 0.024	0.540 ± 0.035	0.527 ± 0.026	0.532 ± 0.042	0.502 ± 0.007		0.570 ± 0.032		
$datasets_all/glass4.dat = 0.685 \pm$		0.708 ± 0.118	0.601 ± 0.075	0.601 ± 0.075	0.601 ± 0.075	0.627 ± 0.087		0.799 ± 0.080		0.666 ± 0.062
$datasets_a ll/haberman.dat 0.560 \pm$		0.553 ± 0.042	0.545 ± 0.042	0.551 ± 0.038	0.538 ± 0.039	0.521 ± 0.032		0.562 ± 0.041		0.537 ± 0.041
$datasets_a ll/poker - 8 - 9_v s_6.dat = 0.552 \pm$		0.540 ± 0.048	0.529 ± 0.032	0.529 ± 0.032	0.529 ± 0.032	0.500 ± 0.000		0.572 ± 0.066		0.516 ± 0.020
$datasets_a ll/yeast-1-4-5-8_v s_7.dat$ 0.499 \pm		0.500 ± 0.010	0.505 ± 0.013	0.505 ± 0.013	0.505 ± 0.013	0.500 ± 0.000		0.519 ± 0.023		0.509 ± 0.015
$datasets_a ll/ecoli - 0 - 2 - 6 - 7_v s_3 - 5.dat$ 0.714 ±		0.710 ± 0.132	0.663 ± 0.105	0.663 ± 0.105	0.663 ± 0.105			0.796 ± 0.067		0.774 ± 0.046
$datasets_a ll/glass - 0 - 1 - 6_v s_2.dat$ 0.547 \pm $datasets_a ll/yeast4.dat$ 0.565 \pm		0.531 ± 0.039 0.562 ± 0.042	0.517 ± 0.028 0.545 ± 0.026	0.517 ± 0.028 0.547 ± 0.027	0.511 ± 0.024 0.540 ± 0.024	0.508 ± 0.029 0.510 ± 0.016		0.564 ± 0.051 0.619 ± 0.046		0.515 ± 0.026 0.549 ± 0.023
$aatasets_a ll/paqe - blocks0.dat 0.899 \pm$		0.896 ± 0.014	0.886 ± 0.026	0.886 ± 0.027	0.883 ± 0.022			0.903 ± 0.046		
$datasets_a ll/ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6.dat$ 0.760 \pm		0.745 ± 0.059	0.683 ± 0.083	0.683 ± 0.013	0.670 ± 0.022	0.558 ± 0.026		0.831 ± 0.053		0.749 ± 0.048
$datasets_a tt/etott - 0 - 1 - 4 - 1_v s_2 - 3 - 3 - 0.aat - 0.700 \pm datasets_a tt/etott - 0.519 \pm$		0.525 ± 0.057	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.003			0.531 ± 0.033 0.539 ± 0.113		0.500 ± 0.000
$datasets_a ll/ecoli1.dat$ 0.000 \pm		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.010		
$datasets_all/glass0.dat$ 0.797 \pm		0.797 ± 0.048	0.792 ± 0.040	0.792 ± 0.040	0.785 ± 0.041	0.786 ± 0.033		0.757 ± 0.039		
$datasets_all/winequality - red - 4.dat = 0.507 \pm$		0.501 ± 0.007	0.509 ± 0.013	0.509 ± 0.013	0.503 ± 0.008	0.502 ± 0.006	0.500 ± 0.000	0.534 ± 0.039	0.510 ± 0.015	0.507 ± 0.009
$datasets_a ll/pima.dat 0.657 \pm$	$0.026 0.667 \pm 0.030$	0.655 ± 0.023	0.661 ± 0.029	0.672 ± 0.012	0.657 ± 0.020	0.586 ± 0.026	0.588 ± 0.031	0.654 ± 0.021	0.687 ± 0.016	0.678 ± 0.026
$datasets_a ll/abalone - 19_v s_1 0 - 11 - 12 - 13.dat 0.502 \pm$	$0.010 0.505 \pm 0.013$	0.506 ± 0.013	0.500 ± 0.001	0.500 ± 0.001	0.500 ± 0.001	0.500 ± 0.000	0.500 ± 0.000	0.514 ± 0.031	0.499 ± 0.001	0.503 ± 0.009
$datasets_a ll/ecoli2.dat$ 0.000 \pm		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
$datasets_all/abalone9 - 18.dat 0.614 \pm$		0.604 ± 0.052	0.543 ± 0.021	0.543 ± 0.021	0.535 ± 0.019	0.501 ± 0.007		0.630 ± 0.052		0.549 ± 0.031
$datasets_a ll/yeast - 1 - 2 - 8 - 9_v s_7.dat$ 0.541 ±		0.534 ± 0.028	0.515 ± 0.027	0.519 ± 0.027	0.519 ± 0.027			0.598 ± 0.056		0.525 ± 0.032
$datasets_all/winequality - white - 3_v s_7.dat = 0.578 \pm$		0.588 ± 0.038	0.559 ± 0.049	0.559 ± 0.049	0.559 ± 0.049	0.520 ± 0.024		0.635 ± 0.096		0.565 ± 0.050
$datasets_a ll/yeast - 2_v s_4.dat = 0.767 \pm$		0.767 ± 0.047	0.790 ± 0.050	0.790 ± 0.050	0.790 ± 0.050	0.597 ± 0.047		0.828 ± 0.031		0.817 ± 0.034
$datasets_all/winequality - red - 3_v s_5.dat 0.499 \pm$		0.498 ± 0.002	0.500 ± 0.001	0.500 ± 0.001	0.500 ± 0.001	0.500 ± 0.000		0.543 ± 0.064		0.500 ± 0.000
$datasets_a ll/glass 2.dat = 0.531 \pm datasets_a ll/yeast - 2_v s_8.dat = 0.723 \pm$		0.534 ± 0.058	0.518 ± 0.039	0.518 ± 0.039	0.518 ± 0.039	0.533 ± 0.050		0.598 ± 0.085 0.731 ± 0.088		0.523 ± 0.057
$datasets_a ll/yeast - 2_v s_8.dat = 0.123 \pm datasets_a ll/qlass 1.dat = 0.747 \pm$		0.688 ± 0.104 0.739 ± 0.043	0.549 ± 0.094 0.723 ± 0.026	0.549 ± 0.094 0.723 ± 0.026	0.549 ± 0.094 0.716 ± 0.030	0.505 ± 0.015 0.729 ± 0.052		0.731 ± 0.088 0.712 ± 0.032		0.614 ± 0.104 0.746 ± 0.058
$datasets_a ll/gass1.dat = 0.141 \pm datasets_a ll/zoo - 3.dat = 0.591 \pm$		0.739 ± 0.043 0.574 ± 0.113	0.723 ± 0.026 0.549 ± 0.101	0.723 ± 0.026 0.549 ± 0.101	0.716 ± 0.030 0.549 ± 0.101	0.729 ± 0.032 0.500 ± 0.000	0.703 ± 0.033 0.500 ± 0.000		0.746 ± 0.030 0.581 ± 0.107	
$datasets_a ll/glass - 0 - 1 - 5_v s_2.dat$ 0.591 \pm		0.574 ± 0.113 0.543 ± 0.063	0.497 ± 0.101 0.497 ± 0.006	0.499 ± 0.101 0.497 ± 0.006	0.497 ± 0.101 0.497 ± 0.006	0.520 ± 0.000 0.522 ± 0.037		0.578 ± 0.064		0.510 ± 0.128 0.510 ± 0.021
$datasets_a tr/gtass = 0 = 1 = 5_v s_2 \cdot aut = 0.500 \pm datasets_a tr/gtass = 0 = 1 = 0.500 \pm $		0.526 ± 0.030	0.504 ± 0.012	0.504 ± 0.012	0.504 ± 0.012			0.578 ± 0.004 0.591 ± 0.070		
$datasets_a ll/k dd cup - buffer_overflow_v s_b ack.dat$ 0.993 \pm		0.993 ± 0.020	0.947 ± 0.079	0.947 ± 0.079	0.947 ± 0.079	0.940 ± 0.063		1.000 ± 0.000		
$datasets_a ll/winequality - white - 3 - 9_a s_b data 0.593 \pm$		0.511 ± 0.026	0.504 ± 0.012	0.504 ± 0.012	0.500 ± 0.001			0.574 ± 0.052		
datasets _a ll/vehicle3.dat 0.000 ±		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
$datasets_all/vehicle1.dat$ 0.000 \pm		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
$datasets_a ll/page - blocks - 1 - 3_v s_4.dat 0.923 \pm$		0.933 ± 0.054	0.909 ± 0.047	0.909 ± 0.047	0.909 ± 0.047	0.891 ± 0.040	0.877 ± 0.057	0.938 ± 0.069	0.934 ± 0.041	0.906 ± 0.066
$datasets_a ll/ecoli - 0 - 6 - 7_v s_5.dat 0.729 \pm$		0.716 ± 0.170	0.692 ± 0.085	0.692 ± 0.085	0.692 ± 0.085	0.567 ± 0.054	0.593 ± 0.064	0.833 ± 0.067	0.823 ± 0.084	0.800 ± 0.103
$datasets_a ll/poker - 8 - 9_v s_5.dat = 0.500 \pm$	$0.000 0.504 \pm 0.012$	0.504 ± 0.012	0.504 ± 0.013	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000	0.500 ± 0.000	0.586 ± 0.072	0.508 ± 0.017	0.500 ± 0.000
$datasets_a ll/yeast - 0 - 3 - 5 - 9_v s_7 - 8.dat \ 0.578 \pm$	0.025 0.578 ± 0.031	0.577 ± 0.028	0.544 ± 0.031	0.544 ± 0.031	0.546 ± 0.025	0.505 ± 0.013	0.506 ± 0.012	0.618 ± 0.045	0.573 ± 0.016	0.575 ± 0.035

Table 2. F1score

		DE-Forest-AUC	C DE-Forest-bac	DE-Forest-gm-b	DE-Forest-AUC-b	DE-Forest-bac-b	RandomFS	RandomFS-b		RF	RF-b
$datasets_all/glass5.dat$	0.959 ± 0.022	0.954 ± 0.019	0.956 ± 0.019	0.939 ± 0.010	0.939 ± 0.010	0.939 ± 0.010	0.951 ± 0.016	0.947 ± 0.017		0.965 ± 0.014	
$datasets_all/winequality - white - 9_v s_4.dat$		0.958 ± 0.014	0.958 ± 0.014	0.962 ± 0.015	0.962 ± 0.015	0.962 ± 0.015	0.953 ± 0.008	0.956 ± 0.009	0.951 ± 0.016	0.958 ± 0.014	0.958 ± 0.0
$datasets_a ll/winequality - red - 8_v s_6 - 7.dat$	0.973 ± 0.002	0.972 ± 0.003	0.972 ± 0.003	0.974 ± 0.000	0.974 ± 0.000	0.974 ± 0.000	0.974 ± 0.000	0.973 ± 0.002	0.959 ± 0.005	0.972 ± 0.002	0.971 ± 0.0
$datasets_all/yeast1.dat$	0.716 ± 0.017	0.718 ± 0.006	0.712 ± 0.012	0.696 ± 0.008	0.697 ± 0.009	0.697 ± 0.011	0.610 ± 0.019	0.617 ± 0.019	0.698 ± 0.010	0.742 ± 0.009	0.734 ± 0.0
$datasets_all/yeast6.dat$	0.972 ± 0.004	0.973 ± 0.003	0.972 ± 0.003	0.972 ± 0.003	0.972 ± 0.003	0.972 ± 0.003	0.965 ± 0.002	0.966 ± 0.003	0.970 ± 0.005	0.977 ± 0.003	0.975 ± 0.0
$datasets_a ll/clevel and -0_v s_4.dat$		0.913 ± 0.016	0.913 ± 0.019	0.923 ± 0.028	0.923 ± 0.028	0.920 ± 0.029	0.893 ± 0.017	0.898 ± 0.017	0.905 ± 0.021	0.922 ± 0.024	0.922 ± 0.0
$datasets_a ll/ecoli - 0 - 1_v s_2 - 3 - 5.dat$	0.933 ± 0.021	0.932 ± 0.022	0.937 ± 0.022	0.935 ± 0.016	0.935 ± 0.016	0.935 ± 0.016	0.908 ± 0.026	0.897 ± 0.022	0.935 ± 0.011	0.949 ± 0.008	0.944 ± 0.0
$datasets_all/yeast - 1_v s_7.dat$	0.914 ± 0.010	0.915 ± 0.010	0.920 ± 0.012	0.918 ± 0.009	0.918 ± 0.009	0.913 ± 0.010	0.906 ± 0.007	0.903 ± 0.006	0.910 ± 0.007	0.919 ± 0.008	$0.916 \pm 0.$
$datasets_a ll/abalone - 21_v s_8.dat$	0.974 ± 0.004	0.974 ± 0.004	0.974 ± 0.004	0.972 ± 0.006	0.972 ± 0.006	0.972 ± 0.006	0.971 ± 0.006	0.968 ± 0.005	0.970 ± 0.005	0.977 ± 0.007	0.977 ± 0
$datasets_all/abalone19.dat$	0.988 ± 0.001	0.988 ± 0.001	0.988 ± 0.001	0.988 ± 0.000	0.988 ± 0.000	0.988 ± 0.000	0.988 ± 0.000	0.989 ± 0.000	0.984 ± 0.002	0.988 ± 0.000	0.988 ± 0
$datasets_all/poker - 9_v s_7.dat$	0.963 ± 0.017	0.962 ± 0.017	0.962 ± 0.017	0.951 ± 0.000	0.953 ± 0.005	0.953 ± 0.005	0.958 ± 0.009	0.952 ± 0.003	0.960 ± 0.014	0.969 ± 0.013	0.953 ± 0
$datasets_a ll/ecoli 3.dat$		0.900 ± 0.018	0.902 ± 0.011	0.904 ± 0.019	0.904 ± 0.019	0.907 ± 0.018	0.853 ± 0.016	0.860 ± 0.016	0.902 ± 0.018	0.906 ± 0.019	0.904 ± 0
$datasets_a ll/abalone - 17_v s_7 - 8 - 9 - 10.dat$	0.967 ± 0.003	0.967 ± 0.003	0.967 ± 0.002	0.966 ± 0.003	0.966 ± 0.003	0.966 ± 0.002	0.963 ± 0.001	0.963 ± 0.001	0.962 ± 0.003	0.967 ± 0.002	0.967 ± 0
$datasets_a ll/glass - 0 - 1 - 6_v s_5.dat$	0.957 ± 0.015	0.961 ± 0.019	0.961 ± 0.019	0.948 ± 0.016	0.948 ± 0.016	0.948 ± 0.016	0.954 ± 0.024	0.937 ± 0.020	0.965 ± 0.023	0.961 ± 0.017	0.951 ± 0
$datasets_all/ecoli - 0 - 1 - 3 - 7_vs_2 - 6.dat$	0.969 ± 0.011	0.969 ± 0.011	0.969 ± 0.011	0.968 ± 0.011	0.968 ± 0.011	0.968 ± 0.011	0.963 ± 0.005	0.963 ± 0.005	0.969 ± 0.009	0.973 ± 0.012	0.963 ± 0
$asets_a ll/yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9.dat$	0.908 ± 0.013	0.908 ± 0.012	0.910 ± 0.013	0.905 ± 0.014	0.905 ± 0.014	0.907 ± 0.012	0.869 ± 0.013	0.867 ± 0.009	0.897 ± 0.009	0.917 ± 0.010	0.918 ± 0
datasets _a ll/yeast5.dat	0.976 ± 0.005	0.977 ± 0.004	0.977 ± 0.005	0.971 ± 0.005	0.971 ± 0.005	0.971 ± 0.005	0.957 ± 0.002	0.957 ± 0.002	0.976 ± 0.006	0.979 ± 0.005	0.974 ± 0
$datasets_a ll/glass - 0 - 1 - 4 - 6_v s_2.dat$	0.873 ± 0.017	0.872 ± 0.016	0.871 ± 0.014	0.879 ± 0.007	0.879 ± 0.007	0.877 ± 0.008	0.877 ± 0.012	0.876 ± 0.007		0.872 ± 0.017	0.878 ± 0
$datasets_a ll/yeast - 0 - 5 - 6 - 7 - 9_v s_4.dat$	0.893 ± 0.014	0.892 ± 0.013	0.893 ± 0.010	0.882 ± 0.009	0.882 ± 0.009	0.882 ± 0.009	0.857 ± 0.005	0.858 ± 0.004	0.885 ± 0.022	0.894 ± 0.011	0.896 ± 0
datasets _a ll/yeast3.dat	0.936 ± 0.005	0.934 ± 0.009	0.936 ± 0.006	0.927 ± 0.010	0.927 ± 0.010	0.930 ± 0.010	0.840 ± 0.003	0.840 ± 0.004	0.933 ± 0.007	0.940 ± 0.008	0.940 ± 0
$datasets_a ll/kr - vs - k - zero_v s_e ight.dat$	0.991 ± 0.006	0.992 ± 0.007	0.992 ± 0.007	0.993 ± 0.004	0.995 ± 0.004	0.995 ± 0.004	0.972 ± 0.001	0.972 ± 0.001		0.997 ± 0.003	
$datasets_a ll/ecoli - 0 - 6 - 7_v s_3 - 5.dat$		0.932 ± 0.020	0.932 ± 0.020	0.899 ± 0.021	0.899 ± 0.021	0.900 ± 0.021	0.870 ± 0.021	0.868 ± 0.017	0.937 ± 0.021	0.948 ± 0.017	0.955 ±
$datasets_a ll/kddcup - rootkit - imap_v s_back.dat$		1.000 ± 0.001	1.000 ± 0.001	0.999 ± 0.001	0.999 ± 0.001	0.999 ± 0.001	0.999 ± 0.001				0.999 ±
$datasets_all/winequality - red - 8_v s_6.dat$		0.962 ± 0.004	0.963 ± 0.003	0.963 ± 0.004	0.963 ± 0.004	0.963 ± 0.004	0.964 ± 0.003			0.962 ± 0.004	0.962 ±
$datasets_{s}ll/flare - F.dat$		0.940 ± 0.003	0.940 ± 0.003	0.940 ± 0.005	0.939 ± 0.003	0.940 ± 0.004		0.940 ± 0.001		0.941 ± 0.003	
datasetsall/glass4.dat		0.941 ± 0.025	0.945 ± 0.024	0.929 ± 0.019	0.929 ± 0.019	0.929 ± 0.019	0.932 ± 0.020	0.935 ± 0.019		0.948 ± 0.019	
$datasets_a ll/haberman.dat$		0.664 ± 0.030	0.663 ± 0.030	0.666 ± 0.035	0.670 ± 0.030	0.661 ± 0.036	0.648 ± 0.033			0.664 ± 0.033	
$datasets_{\sigma}ll/poker - 8 - 9_{\sigma}s_{6}.dat$		0.977 ± 0.003	0.978 ± 0.004	0.977 ± 0.003	0.977 ± 0.003	0.977 ± 0.003	0.975 ± 0.001	0.975 ± 0.001		0.978 ± 0.004	
$datasets_a ll/yeast - 1 - 4 - 5 - 8_v s_7.dat$		0.934 ± 0.002	0.933 ± 0.004	0.935 ± 0.002	0.935 ± 0.002	0.935 ± 0.002	0.935 ± 0.000	0.935 ± 0.000	0.917 ± 0.008	0.934 ± 0.004	
$datasets_a ll/ecoli - 0 - 2 - 6 - 7_v s_3 - 5.dat$		0.912 ± 0.041	0.916 ± 0.036	0.908 ± 0.032	0.908 ± 0.032	0.908 ± 0.032	0.876 ± 0.034	0.877 ± 0.023		0.941 ± 0.017	
$datasets_oll/glass - 0 - 1 - 6_os_2, dat$		0.875 ± 0.017	0.876 ± 0.018	0.876 ± 0.015	0.876 ± 0.015	0.873 ± 0.013	0.867 ± 0.012		0.854 ± 0.023	0.878 ± 0.024	$0.873 \pm$
datasets _a ll/yeast4.dat		0.952 ± 0.003	0.953 ± 0.005	0.954 ± 0.003	0.954 ± 0.003	0.954 ± 0.003	0.950 ± 0.002	0.949 ± 0.001		0.956 ± 0.005	
$datasets_a ll/page - blocks0.dat$		0.969 ± 0.003	0.969 ± 0.003	0.968 ± 0.003	0.968 ± 0.003	0.967 ± 0.004				0.971 ± 0.002	
$tasets_n ll/ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6_v dat$		0.935 ± 0.015	0.940 ± 0.014	0.928 ± 0.019	0.928 ± 0.019	0.925 ± 0.017	0.893 ± 0.011	0.900 ± 0.020	0.938 ± 0.018	0.949 ± 0.011	0.945 ±
$datasets_a ll/poker - 8_a s_6.dat$		0.984 ± 0.003	0.984 ± 0.003	0.983 ± 0.001	0.983 ± 0.001	0.983 ± 0.001	0.983 ± 0.001	0.983 ± 0.001			
datasets _a ll/ecoli1.dat		0.000 ± 0.000				0.000 ± 0.000					
datasets_ll/glass0.dat		0.837 ± 0.020	0.833 ± 0.035	0.833 ± 0.028	0.833 ± 0.028	0.829 ± 0.029				0.821 ± 0.030	
$datasets_all/winequality - red - 4.dat$		0.949 ± 0.001	0.949 ± 0.002	0.951 ± 0.002	0.951 ± 0.002	0.950 ± 0.002	0.951 ± 0.001	0.950 ± 0.001		0.949 ± 0.003	
datasets _a ll/pima.dat		0.711 ± 0.027	0.700 ± 0.020	0.708 ± 0.026	0.718 ± 0.010	0.703 ± 0.017				0.728 ± 0.014	
$datasets_{o}ll/abalone - 19_{o}s_{1}0 - 11 - 12 - 13_{o}dat$		0.970 ± 0.002	0.971 ± 0.002	0.970 ± 0.001	0.970 ± 0.001	0.970 ± 0.001				0.970 ± 0.001	
datasets.ll/ecoli2.dat		0,000 ± 0,000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0,000 ± 0,000	
$datasets_a ll/abalone9 - 18.dat$		0.934 ± 0.008	0.933 ± 0.009	0.924 ± 0.005	0.924 ± 0.005	0.923 ± 0.005				0.930 ± 0.010	
$datasets_oll/yeast - 1 - 2 - 8 - 9_os_7.dat$		0.955 ± 0.005	0.955 ± 0.004	0.954 ± 0.004	0.954 ± 0.004	0.954 ± 0.004				0.955 ± 0.004	
$datasets_all/winequality - white - 3_vs_7.dat$		0.973 ± 0.005	0.973 ± 0.004	0.972 ± 0.004	0.972 ± 0.004	0.972 ± 0.004	0.969 ± 0.002	0.969 ± 0.004		0.975 ± 0.005	
$datasets_a ll/yeast - 2_v s_4.dat$		0.942 ± 0.012	0.939 ± 0.011	0.945 ± 0.012	0.945 ± 0.012	0.945 ± 0.012				0.947 ± 0.005	
$datasets_all/winequality - red - 3_vs_5.dat$		0.977 ± 0.002	0.977 ± 0.002	0.978 ± 0.001	0.978 ± 0.001	0.978 ± 0.001				0.977 ± 0.002	
datasets _a ll/qlass2.dat		0.889 ± 0.016	0.886 ± 0.015	0.888 ± 0.015	0.888 ± 0.015	0.888 ± 0.015	0.887 ± 0.016	0.884 ± 0.010		0.892 ± 0.023	
$datasets_a ll/yeast - 2_v s_s.dat$		0.964 ± 0.014	0.964 ± 0.014	0.945 ± 0.013	0.945 ± 0.013	0.945 ± 0.013	0.939 ± 0.003	0.939 ± 0.003		0.964 ± 0.010	
datasets _a ll/qlass1.dat		0.784 ± 0.038	0.777 ± 0.041	0.767 ± 0.024	0.767 ± 0.024	0.759 ± 0.028				0.779 ± 0.046	
datasets_ll/zoo - 3.dat		0.936 ± 0.026	0.936 ± 0.026	0.933 ± 0.026	0.933 ± 0.026	0.933 ± 0.026	0.927 ± 0.014			0.940 ± 0.024	
$datasets_a ll/glass - 0 - 1 - 5_u s_2.dat$		0.857 ± 0.020	0.862 ± 0.022	0.851 ± 0.011	0.851 ± 0.011	0.851 ± 0.011				0.875 ± 0.021	
$datasets_a ll/abalone - 20_v s_8 - 9 - 10.dat$		0.981 ± 0.002	0.981 ± 0.002	0.980 ± 0.001	0.980 ± 0.001	0.980 ± 0.001				0.981 ± 0.003	
$datasets_a ll/kddcup - buffer_overflow_vs_back.dat$		1.000 ± 0.001	1.000 ± 0.001	0.998 ± 0.002	0.998 ± 0.002	0.998 ± 0.002	0.998 ± 0.002			0.981 ± 0.003 1.000 ± 0.000	
$datasets_a ll/winequality - white - 3 - 9_v s_5.dat$		0.974 ± 0.002	0.974 ± 0.002	0.975 ± 0.002	0.975 ± 0.002	0.974 ± 0.002				0.977 ± 0.004	
$datasets_a ll/winequality - white - 3 - 9_v s_5.aat$ $datasets_a ll/vehicle3.dat$		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.977 ± 0.004 0.000 ± 0.000	
$datasets_a ll/vehicle1.dat$		0.000 ± 0.000				0.000 ± 0.000					
$aatasets_a u/venicie1.aat$ $datasets_a u/paqe - blocks - 1 - 3_v s_4.dat$		0.988 ± 0.000	0.988 ± 0.010	0.986 ± 0.009	0.986 ± 0.009	0.986 ± 0.009				0.989 ± 0.005	
$datasets_a ll/ecoli - 0 - 6 - 7_v s_4.aat$ $datasets_a ll/ecoli - 0 - 6 - 7_v s_5.dat$		0.988 ± 0.010 0.921 ± 0.047	0.988 ± 0.010 0.921 ± 0.047	0.986 ± 0.009 0.927 ± 0.023	0.986 ± 0.009 0.927 ± 0.023	0.986 ± 0.009 0.927 ± 0.023				0.989 ± 0.003 0.953 ± 0.022	
					0.021 ± 0.023						
	0.099 ± 0.001										
$datasets_a ll/poker - 8 - 9_v s_5.dat$ $datasets_a ll/yeast - 0 - 3 - 5 - 9_v s_7 - 8.dat$		0.982 ± 0.001 0.880 ± 0.012	0.982 ± 0.001 0.881 ± 0.009	0.982 ± 0.001 0.870 ± 0.011	0.982 ± 0.001 0.870 ± 0.011	0.982 ± 0.001 0.872 ± 0.009	0.982 ± 0.001 0.857 ± 0.006			0.982 ± 0.001 0.876 ± 0.007	

Table 3. Gmean

dataset_all_principality = white r_all_principality = white r_all_princip	Detect name	DF Forest on	DE Forest AUC	DF Forest has	DF Forest on h	DE Forest AUC I	DF Forest bee b	RandomFS	RandomFS-b	DT	RF	RF-b
datasets,												
datasets, riempinity = rel - S. s.a T. data 0.30 ± 0.00												
Section Column												0.271 ± 0.104
datasets,												
dataset_all_ read = 0 - 1 - 2 - 3 - 5 - 5 dat 0.72 ± 0.005 0.71 ± 0.007 0.73 ± 0.007 0								0.165 ± 0.039				
datasets,	$datasets_a ll/clevel and -0_v s_4.dat$	0.479 ± 0.166	0.464 ± 0.124	0.459 ± 0.142	0.520 ± 0.185	0.520 ± 0.185	0.499 ± 0.201	0.320 ± 0.086	0.342 ± 0.094	0.585 ± 0.096	0.526 ± 0.186	0.502 ± 0.166
dataset_all_ labelmer = -2 is_s, and model 0.595 ± 0.110	$datasets_a ll/ecoli - 0 - 1_v s_2 - 3 - 5.dat$	0.723 ± 0.094	0.722 ± 0.095	0.744 ± 0.085	0.718 ± 0.097	0.718 ± 0.097	0.718 ± 0.097	0.563 ± 0.119	0.503 ± 0.109	0.795 ± 0.069	0.791 ± 0.067	0.753 ± 0.072
Adaptives,	$datasets_all/yeast - 1_v s_7.dat$	0.412 ± 0.080	0.401 ± 0.101	0.466 ± 0.111	0.415 ± 0.077	0.415 ± 0.077	0.359 ± 0.089	0.275 ± 0.058	0.266 ± 0.040	0.601 ± 0.079	0.449 ± 0.068	0.402 ± 0.068
datasets.												
$ \frac{datasets_{n} plass = 0-1-4-6_{n,p,s} abs }{datasets_{n} peast = 0-1-4-6_{n,p,s} abs } = 0.56 = 0.77 \pm 0.081 \\ 20.031 \pm 0.071 \\ 20.032 \pm 0.003 \pm 0.032 \pm 0.011 \\ 20.032 \pm 0.003 \pm 0.003 \pm 0.003 \\ 20.032 \pm 0.003 \\ $												
$ \frac{datasets_{n} $												
$ \frac{datasets_{ii} I/set or = -k - rev_{io,s,ii} I/set or = -k - r$												
$ \frac{datasets_{h} deblay - coolds i - negro - r_{h, s_0} - S_{h}dt \ 0.749 \pm 0.081 \\ datasets_{h} deblay - coolds i - negro - r_{h}deblay - r_{h}debl$												
$ \frac{datasets_{n} $												
$ \frac{datasets_{s}[I][flarer-Falat 0.290 \pm 0.007}{datasets_{s}[I][glassAuf olice 1.25][glassAuf olice 1.25][glassAu$												
$ \frac{datasets_{s}[I]glassAuta}{datasets_{s}[I]grassAuta} = 0.612\pm0.164 \\ 0.632\pm0.029 \pm 0.185 \\ 0.632\pm0.014 \\ 0.632$												
$ \frac{datasets_{ii} hodermondat}{datasets_{ii} hodermondatasets_{ii} hodermondata$												
$ \frac{datasets_{A} Ijosch 8 - 9_{sol} data}{datasets_{A} Ijosch - 1 - 1 - 1 - 3_{sol} data}{datasets_{A} Ijosch - 1 - 1 - 1 - 1 - 3_{sol} data} = 0.033 \pm 0.011 0.033 \pm 0.011 0.034 \pm 0.035 \pm 0.036 0.038 \pm 0$												
$ \frac{datasets_{i,i} codi - 0 - 2 - 6 - \tau_{i,s - s} - 5dat \ 0.633 \pm 0.026 \ 0.633 \pm 0.035 \ 0.086 \ 0.35 \pm 0.086 \ 0.35 \pm 0.086 \ 0.35 \pm 0.086 \ 0.36 \pm 0.086 \ 0.38 \pm 0.0$												
$\frac{i}{atasets_{s} post Ada }{atasets_{s} post Ada Ada }{atasets_{s} post Ada }{atasets_{s} post Ada A$				0.648 ± 0.202	0.591 ± 0.158	0.591 ± 0.158	0.591 ± 0.158	0.440 ± 0.176	0.419 ± 0.108	0.779 ± 0.082	0.772 ± 0.088	0.752 ± 0.058
$ \begin{aligned} & datasets_{s,l} \ / coli - 1 - 1 - 7 - 3 - 5 - 5 - 6 dat & 0.89 \pm 0.016 & 0.89 \pm 0.016 & 0.88 \pm 0.013 &$					0.327 ± 0.065	0.327 ± 0.065	0.312 ± 0.057	0.320 ± 0.066				0.324 ± 0.065
$\frac{datasets_{s} ecoli - O - 1 - 4 - 7.s_2 - 3 - 5 - 6.dat}{datasets_{s} ecoli - O - 1 - 5.s_2 - 4.dat} = 0.000 + $	datasets _a ll/yeast4.dat	0.385 ± 0.123	0.381 ± 0.104	0.380 ± 0.108	0.339 ± 0.075	0.343 ± 0.078	0.322 ± 0.077	0.219 ± 0.059	0.182 ± 0.002	0.517 ± 0.083	0.422 ± 0.090	0.353 ± 0.061
$ \frac{datasets_{s} I peber - 8_{s, s}dat}{datasets_{s} I pests - 1 - 3_{s} dat} = 0.18 \pm 0.18 \pm 0.18 \\ datasets_{s} I call_{local} to 0.000 \pm 0.000 \pm 0.000 \\ datasets_{s} I pests - 1 - 2_{s, s}dat} = 0.18 \pm 0.18 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.18 \pm 0.18 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.18 \pm 0.18 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.18 \pm 0.18 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.18 \pm 0.18 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.06 \pm 0.000 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.06 \pm 0.000 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.06 \pm 0.000 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.06 \pm 0.000 \\ datasets_{s} I pests - 2_{s, s}dat} = 0.06 \pm 0.000 \\ datasets_{s} I p$	$datasets_a ll/page-blocks 0.dat$	0.896 ± 0.016	0.895 ± 0.018	0.893 ± 0.015	0.882 ± 0.014	0.882 ± 0.014	0.879 ± 0.024	0.847 ± 0.021	0.848 ± 0.025	0.901 ± 0.017	0.906 ± 0.016	0.903 ± 0.012
$ \frac{datasets_{s} cold Ada to $	$datasets_a ll/ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6.dat$	0.731 ± 0.095	0.682 ± 0.094	0.714 ± 0.080	0.621 ± 0.125	0.621 ± 0.125	0.604 ± 0.113	0.419 ± 0.057	0.457 ± 0.112	0.822 ± 0.060	0.763 ± 0.061	0.718 ± 0.062
$ \frac{datasets_{st} $			0.184 ± 0.163	0.184 ± 0.163	0.107 ± 0.003	0.107 ± 0.003						
	$datasets_a ll/ecoli1.dat$	0.000 ± 0.000	0.000 ± 0.000									
$\frac{datasets_{s} abclome}{datasets_{s} abclome} = 10s_{s} \cdot 0 - 11 - 2 - 13 - 24s \cdot 10 \cdot 13 \pm 0.013 \\ datasets_{s} abclome abclo$	$datasets_a ll/glass 0.dat$	0.796 ± 0.044	0.795 ± 0.025	0.796 ± 0.048	0.791 ± 0.041	0.791 ± 0.041	0.783 ± 0.042	0.784 ± 0.033				0.773 ± 0.066
$ \frac{datasets_{h} $												
$ \frac{datasets_{i,l} l_{index} - l_{index}}{datasets_{i,l} l_{index} - l_{index}} - l_{index} - l_{inde$												
$ \frac{datasets_{s,l} gast - 1 - 2 - 8 - 9, s-fat}{datasets_{s,l} female - 3, s-fat} = 0.322 \pm 0.090 \\ datasets_{s,l} female - 3, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.332 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.342 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} = 0.042 \pm 0.018 \\ datasets_{s,l} female - 2, s-fat} $												
$ \frac{datasets, ll/inimequality - white - 3_{sp} - dat 0.393 \pm 0.114 0.488 \pm 0.108 0.435 \pm 0.082 0.346 \pm 0.130 0.346 \pm 0.130 0.326 \pm 0.096 0.227 \pm 0.034 0.511 \pm 0.069 0.499 \pm 0.148 0.388 \pm 0.038 0.498 0.498 \pm 0.038 0.498 0.498 0.498 \pm 0.038 0.49$												
$\frac{datasets_{s}H/ gead - 2_{s,s} dat}{datasets_{s}H/ gead - 2_{s,s} dat} \ 0.76 \pm 0.085 \\ 0.77 \pm 0.060 \\ 0.33 \pm 0.080 \\ 0.32 $												
$ \frac{datasets_{a}l/ sinequality = red - 3_{a}s_{a}s_{a}t \ \ 0.119 \pm 0.000}{datasets_{a}l/ sinequality_{a}s_{a}t_{a}t_{a}t_{b}s_{a}t_{b}t_{a}t_{a}t_{a}t_{a}t_{a}t_{a}t_{a}t_{a$												
$ \frac{datasets_{b} glass-2 dat}{datasets_{b} glass-2 dat} = 0.363 \pm 0.000 \\ datasets_{b} glass-2 cost 3 datasets_{b} cost 3 datasets_{b} cost 3 datasets_{b} $	$adtasets_a u/yeast - 2_v s_4.adt$	0.746 ± 0.050										
$ \frac{datasets_{s} I / yeas i^{2} - 2 s_{s} dat}{datasets_{s} I / yeas i^{2} - 2 s_{s} dat}{datasets_{s} I / yeas i^{2} - 2 s_{s} dat} = 0.064 \pm 0.014 + 0.060 \pm 0.018 + 0.060 \pm 0.018 + 0.014 + 0.012 \pm 0.012 + 0.012 \pm 0.012 + 0.013 \pm 0.013 + $												
$datasets_h $												
$ \frac{datasets_{h} f_{0} so = 0 - 1 - 5_{x_{p}} s_{da}t \ 0.007 \pm 0.028 \ 0.370 \pm 0.224 \ 0.370 \pm 0.224 \ 0.319 \pm 0.198 \ 0.319 \pm 0.198 \ 0.319 \pm 0.198 \ 0.319 \pm 0.198 \ 0.319 \pm 0.018 \ 0.324 \pm 0.055 \ 0.498 \pm 0.105 \ 0.498 \pm 0.022 \ 0.091 \pm 0.220 \ 0.411 \pm 0.028 \ 0.412 \pm 0.028 \ 0.41$												
$\frac{datasets_{s,l} glass=0-1-5_{s,s}dat\ 0.428\pm0.127\ 0.385\pm0.129\ 0.490\pm0.128\ 0.298\pm0.038\ 0.298\pm0.038\ 0.298\pm0.038\ 0.337\pm0.081\ 0.333\pm0.055\ 0.498\pm0.105\ 0.599\pm0.100\ 0.322\pm0.053\ 0.498\pm0.105\ 0.$												
$\frac{datasets, ll/[addisc) = 0.0f_{exc} = 9 - 1.0 dat \ 0.247 \pm 0.141 \ \ 0.292 \pm 0.121 \ \ 0.248 \pm 0.015 \ \ 0.131 \pm 0.054 \ \ \ 0.131 \pm 0.054 \ \ \ 0.131 \pm 0.054 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$												
$ \frac{datasets_{ii} fisideny - buf_{fr, rer} fow_{s, nock dat} 0.933 \pm 0.021 }{datasets_{ii} rehircl_icl_{id} color_{i} } = \frac{0.931 \pm 0.023}{0.0000} = \frac{0.931 \pm 0.023}{0.0000} = \frac{0.931 \pm 0.023}{0.0000} = \frac{0.931 \pm 0.023}{0.0000} = \frac{0.991 \pm 0.089}{0.0000} = \frac{0.911 \pm 0.089}{0.0000} = \frac{0.936 \pm 0.070}{0.0000} = \frac{0.900}{0.0000} = \frac{0.0000}{0.0000} = \frac{0.0000}$												
$ \frac{datasets_a l l / wine quality - white - 3 - 9_{sp.} dat \ 0.147 \pm 0.055 \\ datasets_b l l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \pm 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b l / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / white l / 3.4d \ 0.000 \\ datasets_b / whit$												
$\frac{datasets_h rehiclé. Aut 0.000 \pm 0.000}{datasets_h rehiclé. Aut 0.000 \pm 0.000} 0.000 \pm 0.000 0.000$												
$\frac{datasets_{*} /enhic4 .dat.0000\pm0.000}{datasets_{*} /enhic4 .dat.0000\pm0.000} = 0.0000\pm0.0000 = $												
$\frac{datasets_{s,ll}/rape-blocks-1-3_{s,k}.dat}{datasets_{s,ll}/rape-blocks-1-0-6-7_{s,k}.dat} \ 0.999\pm0.0698 \ 0.931\pm0.088 \ 0.931\pm0.088 \ 0.995\pm0.051 \ 0.995\pm0.051 \ 0.995\pm0.051 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.084\pm0.245 \ 0.686\pm0.240 \ 0.885\pm0.241 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.080\pm0.081 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.995\pm0.081 \ 0.885\pm0.044 \ 0.899\pm0.084 \ 0.995\pm0.081 \ 0.9$												
$datasets_a ll/ecoli - 0 - 6 - 7_v s_5. dat 0.668 \pm 0.220 0.644 \pm 0.245 0.644 \pm 0.245 0.637 \pm 0.121 0.637 \pm 0.121 0.637 \pm 0.121 0.436 \pm 0.103 0.481 \pm 0.114 \textbf{0.822} \pm \textbf{0.080} 0.807 \pm 0.101 0.776 \pm 0.128 0.807 \pm 0.101 0.807 \pm 0.121 0.807 \pm 0$												
								0.436 ± 0.103				0.776 ± 0.128
$datasets_a U/poker - 8 - 9_v s_5. dat 0.109 \pm 0.002 0.129 \pm 0.058 0.129 \pm 0.058 0.129 \pm 0.059 0.109 \pm 0.002 0.109 \pm 0.002 0.109 \pm 0.002 0.109 \pm 0.002 0.405 \pm 0.168 0.149 \pm 0.078 0.109 \pm 0.002$			0.129 ± 0.058	0.129 ± 0.058	0.129 ± 0.059	0.109 ± 0.002	0.109 ± 0.002					0.109 ± 0.002
$datasets_a ll/yeast - 0 - 3 - 5 - 9_v s_7 - 8.dat 0.473 \pm 0.045 0.474 \pm 0.059 0.472 \pm 0.053 0.403 \pm 0.068 0.403 \pm 0.068 0.409 \pm 0.054 0.313 \pm 0.031 0.313 \pm 0.031 0.567 \pm 0.069 0.471 \pm 0.030 0.469 \pm 0.065 0.403 \pm 0.068 0.403 \pm 0.068 0.409 \pm 0.054 0.313 \pm 0.031 0.313 \pm 0.031 0.313 \pm 0.031 0.567 \pm 0.069 0.471 \pm 0.030 0.469 \pm 0.065 0.403 \pm 0.068 0.403 \pm $	$datasets_{-}II/neast_{-}0 - 3 - 5 - 9s_{7} - 8 dat$	0.473 ± 0.045	0.474 ± 0.059	0.472 ± 0.053	0.403 ± 0.068	0.403 ± 0.068	0.409 ± 0.054	0.313 ± 0.031	0.313 ± 0.031	0.567 ± 0.069	0.471 ± 0.030	0.469 ± 0.065

Table 4. Precision

Detect name	DE Foncet em	DE Forest AUC	DE Forest has	DE Forest sm b	DE-Forest-AUC-b	DF Forest has b	DandomFC	RandomFS-b	DT	RF	RF-b
datasets _a ll/glass5.dat		0.952 ± 0.026	0.954 ± 0.027	0.922 ± 0.019	0.922 ± 0.019	0.922 ± 0.019	0.945 ± 0.027	0.932 ± 0.026		0.965 ± 0.019	
$datasets_a ll/winequality - white - 9_v s_4.dat$		0.949 ± 0.020	0.949 ± 0.020	0.953 ± 0.023	0.953 ± 0.023	0.953 ± 0.023	0.941 ± 0.027		0.951 ± 0.016		
$datasets_all/winequality - red - 8_ss_6 - 7.dat$		0.972 ± 0.020	0.972 ± 0.020	0.981 ± 0.003	0.981 ± 0.003	0.981 ± 0.003			0.963 ± 0.002		
datasets.ll/yeast1.dat		0.720 ± 0.008	0.711 ± 0.014	0.701 ± 0.011	0.703 ± 0.013	0.703 ± 0.014	0.707 ± 0.091	0.698 ± 0.060		0.743 ± 0.011	
datasets _a ll/yeast6.dat		0.973 ± 0.003	0.972 ± 0.003	0.971 ± 0.007	0.971 ± 0.007	0.972 ± 0.007	0.956 ± 0.008	0.961 ± 0.012			0.978 ± 0.005
$datasets_a ll/cleveland - 0_a s_4.dat$		0.920 ± 0.030	0.912 ± 0.037	0.924 ± 0.041	0.924 ± 0.041	0.916 ± 0.044	0.874 ± 0.037	0.888 ± 0.045	0.906 ± 0.019	0.915 ± 0.042	0.927 ± 0.038
$datasets_a ll/ecoli - 0 - 1_v s_2 - 3 - 5.dat$		0.936 ± 0.023	0.939 ± 0.024	0.944 ± 0.013	0.944 ± 0.013	0.944 ± 0.013	0.931 ± 0.019	0.909 ± 0.048		0.953 ± 0.007	
$datasets_all/yeast - 1_v s_7.dat$	0.911 ± 0.021	0.911 ± 0.024	0.917 ± 0.021	0.920 ± 0.022	0.920 ± 0.022	0.912 ± 0.029	0.888 ± 0.029	0.884 ± 0.022	0.914 ± 0.008	0.917 ± 0.015	0.914 ± 0.018
$datasets_a ll/abalone - 21_v s_8.dat$	0.974 ± 0.007	0.974 ± 0.007	0.974 ± 0.007	0.972 ± 0.012	0.972 ± 0.012	0.972 ± 0.012	0.970 ± 0.013	0.964 ± 0.013	0.970 ± 0.006	0.979 ± 0.007	0.978 ± 0.007
$datasets_all/abalone 19.dat$	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.000	0.985 ± 0.001	0.985 ± 0.000
$datasets_a ll/poker - 9_v s_7.dat$	0.959 ± 0.024	0.959 ± 0.024	0.959 ± 0.024	0.936 ± 0.000	0.940 ± 0.012	0.940 ± 0.012	0.952 ± 0.020	0.938 ± 0.007	0.957 ± 0.017	0.968 ± 0.021	0.940 ± 0.012
$datasets_a ll/ecoli 3.dat$	0.911 ± 0.015	0.905 ± 0.021	0.906 ± 0.013	0.906 ± 0.022	0.906 ± 0.022	0.910 ± 0.022	0.837 ± 0.048		0.902 ± 0.016		
$datasets_a ll/abalone - 17_v s_7 - 8 - 9 - 10.dat$		0.963 ± 0.006	0.965 ± 0.005	0.968 ± 0.009	0.968 ± 0.009	0.966 ± 0.006	0.952 ± 0.003				
$datasets_a ll/glass - 0 - 1 - 6_v s_5.dat$		0.958 ± 0.023	0.958 ± 0.023	0.951 ± 0.025	0.951 ± 0.025	0.951 ± 0.025	0.952 ± 0.035		0.970 ± 0.019		
$datasets_a ll/ecoli - 0 - 1 - 3 - 7_v s_2 - 6.dat$		0.963 ± 0.018	0.963 ± 0.018	0.961 ± 0.018	0.961 ± 0.018	0.961 ± 0.018	0.952 ± 0.009		0.973 ± 0.012		
$datasets_a ll/yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9.dat$		0.909 ± 0.013	0.909 ± 0.015	0.912 ± 0.012	0.912 ± 0.012	0.909 ± 0.013	0.877 ± 0.034	0.889 ± 0.032		0.918 ± 0.011	
$datasets_a ll/yeast5.dat$		0.977 ± 0.005	0.976 ± 0.006	0.973 ± 0.006	0.973 ± 0.006	0.973 ± 0.006			0.976 ± 0.007		
$datasets_a ll/glass - 0 - 1 - 4 - 6_v s_2.dat$		0.855 ± 0.021	0.854 ± 0.020	0.850 ± 0.027	0.850 ± 0.027	0.850 ± 0.027			0.859 ± 0.019		
$datasets_a ll/yeast - 0 - 5 - 6 - 7 - 9_v s_4.dat$		0.892 ± 0.020	0.892 ± 0.014	0.889 ± 0.015	0.889 ± 0.015	0.889 ± 0.015	0.821 ± 0.017				0.900 ± 0.018
$datasets_all/yeast3.dat$		0.933 ± 0.009	0.935 ± 0.006	0.929 ± 0.009	0.929 ± 0.009	0.932 ± 0.009			0.934 ± 0.008		
$datasets_a ll/kr - vs - k - zero_v s_e ight.dat$		0.993 ± 0.006	0.993 ± 0.006	0.994 ± 0.003	0.995 ± 0.003	0.995 ± 0.003		0.963 ± 0.001		0.997 ± 0.003	
$datasets_a ll/ecoli - 0 - 6 - 7_v s_3 - 5.dat$		0.936 ± 0.016	0.936 ± 0.016	0.915 ± 0.025	0.915 ± 0.025	0.917 ± 0.026	0.855 ± 0.049	0.855 ± 0.037			0.958 ± 0.012
$datasets_a ll/kddcup-rootkit-imap_v s_b ack.dat$		1.000 ± 0.001	1.000 ± 0.001	0.999 ± 0.001	0.999 ± 0.001	0.999 ± 0.001			1.000 ± 0.000		
$datasets_all/winequality - red - 8_vs_6.dat$		0.966 ± 0.010	0.966 ± 0.009	0.962 ± 0.011	0.962 ± 0.011				0.956 ± 0.006		
$datasets_a ll/flare - F.dat$		0.930 ± 0.008	0.930 ± 0.008	0.932 ± 0.008	0.933 ± 0.012	0.930 ± 0.009		0.921 ± 0.002		0.937 ± 0.004	
datasets _a ll/glass4.dat datasets _a ll/haberman.dat		0.943 ± 0.027 0.657 ± 0.034	0.946 ± 0.026 0.655 ± 0.034	0.933 ± 0.027 0.655 ± 0.043	0.933 ± 0.027 0.659 ± 0.036	0.933 ± 0.027 0.649 ± 0.045	0.936 ± 0.026 0.632 ± 0.067		0.951 ± 0.020 0.659 ± 0.031		
$datasets_a u/naoerman.aat$ $datasets_a ll/poker - 8 - 9_v s_6.dat$		0.037 ± 0.034 0.974 ± 0.010	0.976 ± 0.034	0.976 ± 0.043	0.059 ± 0.036 0.976 ± 0.010	0.976 ± 0.045	0.967 ± 0.001	0.967 ± 0.094			
$aatasets_a ll/poker - 8 - 9_v s_6.aat$ $datasets_a ll/yeast - 1 - 4 - 5 - 8_v s_7.dat$		0.914 ± 0.010 0.915 ± 0.000	0.916 ± 0.010 0.917 ± 0.005	0.919 ± 0.008	0.919 ± 0.008	0.976 ± 0.010 0.919 ± 0.008	0.967 ± 0.001 0.915 ± 0.000		0.971 ± 0.004 0.920 ± 0.004		
$datasets_a ll/ecoli - 0 - 2 - 6 - 7_v s_3 - 5.dat$		0.904 ± 0.056	0.909 ± 0.052	0.917 ± 0.003 0.917 ± 0.042	0.917 ± 0.042	0.917 ± 0.003			0.936 ± 0.004		
$datasets_a ll/glass - 0 - 1 - 6_v s_2.dat$		0.853 ± 0.032	0.854 ± 0.032	0.859 ± 0.042	0.859 ± 0.042	0.850 ± 0.040	0.847 ± 0.031				
datasets _a ll/yeast4.dat		0.947 ± 0.002	0.949 ± 0.002	0.954 ± 0.011	0.954 ± 0.010	0.954 ± 0.014			0.949 ± 0.005		
$datasets_a ll/page - blocks 0.dat$		0.969 ± 0.003	0.969 ± 0.003	0.968 ± 0.003	0.968 ± 0.003	0.967 ± 0.004	0.961 ± 0.004		0.965 ± 0.003		
$datasets_a ll/ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6.dat$		0.939 ± 0.013	0.942 ± 0.015	0.937 ± 0.018	0.937 ± 0.018	0.937 ± 0.018			0.942 ± 0.016		
$datasets_all/poker - 8_vs_6.dat$		0.980 ± 0.006	0.980 ± 0.006	0.977 ± 0.001	0.977 ± 0.001	0.977 ± 0.001			0.979 ± 0.006		
datasets _a ll/ecoli1.dat	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000
datasets _a ll/glass0.dat	0.836 ± 0.029	0.842 ± 0.022	0.838 ± 0.037	0.840 ± 0.027	0.840 ± 0.027	0.836 ± 0.027	0.828 ± 0.028	0.792 ± 0.048	0.788 ± 0.028	0.826 ± 0.028	0.811 ± 0.048
$datasets_all/winequality - red - 4.dat$	0.938 ± 0.006	0.936 ± 0.003	0.936 ± 0.004	0.941 ± 0.008	0.941 ± 0.008	0.938 ± 0.006	0.938 ± 0.011	0.935 ± 0.001	0.940 ± 0.005	0.939 ± 0.005	0.939 ± 0.007
$datasets_all/pima.dat$		0.711 ± 0.027	0.700 ± 0.019	0.712 ± 0.025	0.721 ± 0.011	0.705 ± 0.016	0.659 ± 0.030	0.665 ± 0.035		0.729 ± 0.015	
$datasets_a ll/abalone - 19_v s_1 0 - 11 - 12 - 13.dat$	0.963 ± 0.006	0.965 ± 0.008	0.965 ± 0.008	0.961 ± 0.000	0.962 ± 0.002	0.961 ± 0.000	0.962 ± 0.003				
$datasets_a ll/ecoli2.dat$		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
$datasets_all/abalone9 - 18.dat$		0.932 ± 0.011	0.929 ± 0.013	0.930 ± 0.019	0.930 ± 0.019	0.930 ± 0.020	0.891 ± 0.009		0.919 ± 0.010		
$datasets_a ll/yeast - 1 - 2 - 8 - 9_v s_7.dat$		0.952 ± 0.012	0.954 ± 0.013	0.946 ± 0.014	0.948 ± 0.014	0.948 ± 0.014			0.950 ± 0.006		
$datasets_all/winequality - white - 3_v s_7.dat$		0.973 ± 0.008	0.974 ± 0.007	0.973 ± 0.010	0.973 ± 0.010	0.973 ± 0.010	0.964 ± 0.011		0.971 ± 0.010		
$datasets_a ll/yeast - 2_v s_4.dat$		0.945 ± 0.012	0.943 ± 0.010	0.946 ± 0.012	0.946 ± 0.012	0.946 ± 0.012	0.915 ± 0.035	0.924 ± 0.016			0.951 ± 0.009
$datasets_all/winequality - red - 3_v s_5.dat$		0.971 ± 0.000			0.973 ± 0.003						
$datasets_a ll/glass 2.dat$ $datasets_a ll/yeast - 2_v s_s.dat$		0.871 ± 0.027 0.965 ± 0.019	0.866 ± 0.026 0.965 ± 0.019	0.862 ± 0.035 0.933 ± 0.023	0.862 ± 0.035 0.933 ± 0.023	0.862 ± 0.035 0.933 ± 0.023	0.873 ± 0.037		0.880 ± 0.027 0.956 ± 0.011		
				0.933 ± 0.023 0.782 ± 0.023							
$datasets_a ll/glass1.dat$ $datasets_a ll/zoo - 3.dat$		0.792 ± 0.042 0.919 ± 0.038	0.782 ± 0.045 0.919 ± 0.038	0.782 ± 0.023 0.915 ± 0.036	0.782 ± 0.023 0.915 ± 0.036	0.773 ± 0.029 0.915 ± 0.036	0.785 ± 0.041 0.904 ± 0.018	0.775 ± 0.030 0.904 ± 0.018	0.736 ± 0.028 0.923 ± 0.030		0.793 ± 0.053 0.933 ± 0.038
$datasets_a ll/zoo - 3.dat$ $datasets_a ll/glass - 0 - 1 - 5_u s_2.dat$		0.919 ± 0.038 0.842 ± 0.039	0.919 ± 0.038 0.851 ± 0.045	0.915 ± 0.036 0.812 ± 0.011	0.915 ± 0.036 0.812 ± 0.011	0.915 ± 0.036 0.812 ± 0.011	0.904 ± 0.018 0.839 ± 0.038		0.923 ± 0.030 0.852 ± 0.027		
$aatasets_a ti/gtass - 0 - 1 - 5_v s_2.aat$ $datasets_a ti/gbalone - 20_v s_8 - 9 - 10.dat$		0.842 ± 0.039 0.978 ± 0.005	0.851 ± 0.045 0.978 ± 0.005	0.812 ± 0.011 0.974 ± 0.004	0.812 ± 0.011 0.974 ± 0.004	0.812 ± 0.011 0.974 ± 0.004			0.852 ± 0.027 0.978 ± 0.003		
$aatasets_a t / abatone - 20_v s_8 - 9 - 10.aat$ $datasets_a l l / kddcup - buffer_over flow_v s_back.dat$		1.000 ± 0.003	1.000 ± 0.001	0.974 ± 0.004 0.999 ± 0.002	0.974 ± 0.004 0.999 ± 0.002	0.974 ± 0.004 0.999 ± 0.002			1,000 ± 0,000		
$datasets_a tl/kaacup - out jer_over jtow_v s_b ack.aat$ $datasets_a ll/winequality - white - 3 - 9_v s_5.dat$		0.968 ± 0.003	0.968 ± 0.003	0.999 ± 0.002 0.967 ± 0.003	0.999 ± 0.002 0.967 ± 0.003	0.999 ± 0.002 0.967 ± 0.001			0.972 ± 0.004		
datasets _a tt/winequatity - white - 3 - 9 _v s ₅ .aat datasets _a ll/vehicle3.dat		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.972 ± 0.004 0.000 ± 0.000		
datasets _a ll/vehicle1.dat		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
$datasets_all/page - blocks - 1 - 3_ss_t.dat$		0.988 ± 0.010	0.988 ± 0.010	0.986 ± 0.009	0.986 ± 0.009	0.986 ± 0.009			0.985 ± 0.012		
$datasets_a ll/ecoli - 0 - 6 - 7_v s_5.dat$		0.915 ± 0.059	0.915 ± 0.059	0.939 ± 0.021	0.939 ± 0.021	0.939 ± 0.021			0.951 ± 0.012		
$datasets_a ll/poker - 8 - 9_v s_5.dat$		0.976 ± 0.003	0.976 ± 0.003	0.977 ± 0.004	0.976 ± 0.001	0.976 ± 0.001	0.976 ± 0.001		0.980 ± 0.003		
$datasets_a ll/yeast - 0 - 3 - 5 - 9_v s_7 - 8.dat$		0.886 ± 0.024	0.887 ± 0.022	0.877 ± 0.028	0.877 ± 0.028	0.884 ± 0.020			0.862 ± 0.014		

Table 5. Recall

Detect name	DF Forest em	DE Forest AUC	DF Forest has	DF Forest em h	DE Forest AUC I	DE-Forest-bac-b	DandomFC	RandomFS-b	DT	RF	RF-b
dataset sall/glass5.dat		0.962 ± 0.014	0.963 ± 0.014	0.958 ± 0.006	0.958 ± 0.006	0.958 ± 0.006	0.963 ± 0.008	0.964 ± 0.010		0.971 ± 0.010	
$datasets_a ll/winequality - white - 9_v s_4.dat$		0.968 ± 0.013	0.968 ± 0.014	0.974 ± 0.009	0.974 ± 0.009	0.974 ± 0.009	0.965 ± 0.010	0.970 ± 0.006			0.971 ± 0.006
$datasets_a ll/winequality - red - 8_v s_6 - 7.dat$		0.978 ± 0.003	0.978 ± 0.003	0.981 ± 0.001	0.955 ± 0.009	0.978 ± 0.003	0.980 ± 0.002				
datasets _a ll/yeast1.dat		0.741 ± 0.006	0.734 ± 0.011	0.729 ± 0.008	0.730 ± 0.010	0.731 ± 0.009	0.716 ± 0.008	0.717 ± 0.008		0.758 ± 0.010	
datasets _a ll/yeast6.dat		0.978 ± 0.003	0.977 ± 0.002	0.978 ± 0.001	0.978 ± 0.001	0.978 ± 0.001	0.976 ± 0.001	0.977 ± 0.001	0.968 ± 0.007	0.980 ± 0.004	
$datasets_a ll/clevel and -0_v s_4.dat$	0.928 ± 0.020	0.933 ± 0.010	0.933 ± 0.011	0.941 ± 0.017	0.941 ± 0.017	0.940 ± 0.018	0.923 ± 0.015	0.928 ± 0.010	0.908 ± 0.026	0.939 ± 0.011	0.941 ± 0.012
$datasets_a ll/ecoli - 0 - 1_v s_2 - 3 - 5.dat$	0.940 ± 0.019	0.939 ± 0.019	0.942 ± 0.020	0.943 ± 0.011	0.943 ± 0.011	0.943 ± 0.011	0.929 ± 0.016	0.922 ± 0.011	0.936 ± 0.012	0.952 ± 0.007	0.950 ± 0.010
$datasets_all/yeast - 1_v s_7.dat$	0.932 ± 0.012	0.934 ± 0.007	0.936 ± 0.009	0.937 ± 0.006	0.937 ± 0.006	0.937 ± 0.006	0.936 ± 0.003	0.932 ± 0.008	0.908 ± 0.010	0.935 ± 0.006	0.936 ± 0.007
$datasets_a ll/abalone - 21_v s_8.dat$		0.976 ± 0.005	0.976 ± 0.005	0.978 ± 0.004	0.978 ± 0.004	0.978 ± 0.004	0.978 ± 0.005	0.977 ± 0.003		0.979 ± 0.007	
$datasets_all/abalone19.dat$		0.991 ± 0.001	0.991 ± 0.002	0.992 ± 0.000	0.992 ± 0.000	0.992 ± 0.000		0.992 ± 0.000	0.983 ± 0.003	0.992 ± 0.000	0.992 ± 0.000
$datasets_a ll/poker - 9_v s_7.dat$		0.970 ± 0.014	0.970 ± 0.014	0.967 ± 0.000	0.968 ± 0.002	0.968 ± 0.002	0.970 ± 0.005			0.977 ± 0.007	
$datasets_a ll/ecoli 3.dat$		0.910 ± 0.018	0.911 ± 0.016	0.917 ± 0.014	0.917 ± 0.014	0.919 ± 0.014	0.894 ± 0.010	0.900 ± 0.006			0.915 ± 0.015
$datasets_a ll/abalone - 17_v s_7 - 8 - 9 - 10.dat$		0.973 ± 0.003	0.974 ± 0.002	0.976 ± 0.001	0.976 ± 0.001	0.976 ± 0.001	0.975 ± 0.001			0.974 ± 0.001	
$datasets_a ll/glass - 0 - 1 - 6_v s_5.dat$		0.965 ± 0.015	0.965 ± 0.015	0.960 ± 0.011	0.960 ± 0.011	0.960 ± 0.011				0.966 ± 0.013	
$datasets_a ll/ecoli - 0 - 1 - 3 - 7_v s_2 - 6.dat$		0.978 ± 0.006	0.978 ± 0.006	0.978 ± 0.007	0.978 ± 0.007	0.978 ± 0.007	0.974 ± 0.005	0.975 ± 0.003		0.979 ± 0.008	
$datasets_a ll/yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9.dat$		0.919 ± 0.010	0.920 ± 0.011	0.922 ± 0.008	0.922 ± 0.008	0.921 ± 0.009	0.906 ± 0.005	0.905 ± 0.004		0.927 ± 0.007	
datasets _a ll/yeast5.dat		0.979 ± 0.004	0.979 ± 0.004	0.976 ± 0.004	0.976 ± 0.004	0.976 ± 0.004	0.971 ± 0.001	0.971 ± 0.001		0.981 ± 0.004	
$datasets_a ll/glass - 0 - 1 - 4 - 6_v s_2.dat$		0.893 ± 0.025	0.892 ± 0.025	0.916 ± 0.005	0.916 ± 0.005	0.913 ± 0.008	0.910 ± 0.011	0.915 ± 0.006	0.847 ± 0.029	0.892 ± 0.024	
$datasets_a ll/yeast - 0 - 5 - 6 - 7 - 9_v s_4.dat$		0.908 ± 0.010	0.908 ± 0.011	0.909 ± 0.006	0.909 ± 0.006	0.909 ± 0.006	0.902 ± 0.004	0.901 ± 0.006		0.911 ± 0.010	
datasets _a ll/yeast3.dat		0.937 ± 0.008	0.938 ± 0.005	0.934 ± 0.007	0.934 ± 0.007	0.936 ± 0.007	0.891 ± 0.001 0.982 ± 0.001	0.891 ± 0.001 0.982 ± 0.001	0.932 ± 0.007	0.943 ± 0.006 0.997 ± 0.003	0.944 ± 0.007
$datasets_a ll/kr - vs - k - zero_v s_e ight.dat$ $datasets_a ll/ecoli - 0 - 6 - 7_v s_3 - 5.dat$		0.993 ± 0.005 0.937 ± 0.017	0.993 ± 0.005 0.937 ± 0.017	0.994 ± 0.003 0.921 ± 0.013	0.995 ± 0.003 0.921 ± 0.013	0.995 ± 0.003 0.922 ± 0.013	0.982 ± 0.001 0.905 ± 0.012			0.951 ± 0.003 0.951 ± 0.016	
$datasets_a u/econ - 0 - 6 - I_v s_3 - 5.aat$ $datasets_a u/econ - votkit - imap_v s_back.dat$		1.000 ± 0.001	1.000 ± 0.001	0.921 ± 0.013 0.999 ± 0.001	0.921 ± 0.013 0.999 ± 0.001	0.922 ± 0.013 0.999 ± 0.001		0.998 ± 0.002			0.999 ± 0.010 0.999 ± 0.001
$datasets_a ll/winequality - red - 8_v s_6.dat$		0.969 ± 0.007	0.970 ± 0.006	0.971 ± 0.004	0.971 ± 0.004	0.972 ± 0.004		0.972 ± 0.002		0.968 ± 0.006	0.972 ± 0.004
$datasets_a tl/winequality = rea = S_v s_0.aat$ $datasets_a ll/flare = F.dat$		0.952 ± 0.004	0.953 ± 0.004	0.950 ± 0.005	0.951 ± 0.004 0.951 ± 0.006	0.952 ± 0.004 0.952 ± 0.004		0.959 ± 0.002	0.939 ± 0.010	0.947 ± 0.006	0.946 ± 0.008
datasets _a ll/glass4.dat		0.945 ± 0.024	0.950 ± 0.004	0.941 ± 0.017	0.941 ± 0.000	0.941 ± 0.017		0.947 ± 0.002		0.953 ± 0.019	
datasets _a ll/haberman.dat		0.676 ± 0.024	0.677 ± 0.029	0.697 ± 0.031	0.700 ± 0.023	0.690 ± 0.034	0.733 ± 0.010			0.679 ± 0.035	0.686 ± 0.031
$datasets_a ll/poker - 8 - 9_v s_6.dat$		0.984 ± 0.002	0.985 ± 0.002	0.984 ± 0.002	0.984 ± 0.002	0.984 ± 0.002		0.983 ± 0.001		0.985 ± 0.002	0.984 ± 0.001
$datasets_a ll/yeast - 1 - 4 - 5 - 8_v s_7.dat$		0.953 ± 0.004	0.952 ± 0.002	0.954 ± 0.002	0.954 ± 0.002	0.954 ± 0.002	0.956 ± 0.001			0.952 ± 0.002	0.955 ± 0.002
$datasets_a ll/ecoli - 0 - 2 - 6 - 7_v s_3 - 5.dat$		0.927 ± 0.026	0.930 ± 0.021	0.925 ± 0.024	0.925 ± 0.024	0.925 ± 0.024	0.904 ± 0.023	0.909 ± 0.013		0.946 ± 0.015	
$datasets_a ll/glass - 0 - 1 - 6_v s_2.dat$		0.905 ± 0.011	0.906 ± 0.010	0.914 ± 0.009	0.914 ± 0.009	0.911 ± 0.008	0.897 ± 0.014	0.911 ± 0.011		0.896 ± 0.019	0.909 ± 0.005
datasets _a ll/yeast4.dat		0.960 ± 0.005	0.962 ± 0.003	0.966 ± 0.003	0.966 ± 0.003	0.966 ± 0.002	0.966 ± 0.001	0.966 ± 0.001	0.947 ± 0.006	0.964 ± 0.003	0.965 ± 0.002
$datasets_a ll/page-blocks 0.dat$	0.970 ± 0.003	0.970 ± 0.003	0.970 ± 0.002	0.969 ± 0.003	0.969 ± 0.003	0.968 ± 0.004	0.963 ± 0.004	0.963 ± 0.004	0.965 ± 0.003	0.971 ± 0.002	0.971 ± 0.001
$datasets_a ll/ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6.dat$		0.943 ± 0.010	0.946 ± 0.011	0.940 ± 0.011	0.940 ± 0.011	0.939 ± 0.010	0.921 ± 0.006	0.926 ± 0.012	0.936 ± 0.020	0.954 ± 0.010	0.952 ± 0.007
$datasets_a ll/poker - 8_v s_6.dat$	0.989 ± 0.002	0.989 ± 0.002	0.989 ± 0.002	0.988 ± 0.001	0.988 ± 0.001	0.988 ± 0.001	0.988 ± 0.001	0.988 ± 0.001	0.980 ± 0.008	0.989 ± 0.001	0.988 ± 0.001
$datasets_all/ecoli1.dat$	$\textbf{0.000}\pm\textbf{0.000}$	0.000 ± 0.000			$\textbf{0.000}\pm\textbf{0.000}$						
$datasets_a ll/glass 0.dat$	0.837 ± 0.027	0.842 ± 0.020	0.837 ± 0.034	0.839 ± 0.025	0.839 ± 0.025	0.836 ± 0.026	0.829 ± 0.028	0.793 ± 0.044		0.826 ± 0.026	0.807 ± 0.045
$datasets_a ll/winequality - red - 4.dat$		0.964 ± 0.002	0.962 ± 0.004	0.966 ± 0.002	0.966 ± 0.002	0.965 ± 0.003	0.967 ± 0.001				0.965 ± 0.001
$datasets_a ll/pima.dat$		0.721 ± 0.024	0.710 ± 0.017	0.722 ± 0.021	0.729 ± 0.011	0.715 ± 0.014		0.683 ± 0.026		0.736 ± 0.014	
$datasets_a ll/abalone - 19_v s_1 0 - 11 - 12 - 13.dat$		0.978 ± 0.004	0.979 ± 0.002	0.979 ± 0.002	0.979 ± 0.002	0.979 ± 0.002		$\textbf{0.980}\pm\textbf{0.000}$			
$datasets_a ll/ecoli 2.dat$		0.000 ± 0.000	$\textbf{0.000}\pm\textbf{0.000}$	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000		0.000 ± 0.000			
$datasets_a ll/abalone9 - 18.dat$		0.945 ± 0.006	0.944 ± 0.006	0.944 ± 0.005	0.944 ± 0.005	0.944 ± 0.003	0.940 ± 0.003	0.943 ± 0.003		0.943 ± 0.007	
$datasets_a ll/yeast - 1 - 2 - 8 - 9_v s_7.dat$		0.964 ± 0.006	0.966 ± 0.005	0.967 ± 0.003	0.967 ± 0.003	0.967 ± 0.003				0.965 ± 0.004	
$datasets_all/winequality - white - 3_v s_7.dat$		0.978 ± 0.005	0.979 ± 0.004	0.979 ± 0.003	0.979 ± 0.003	0.979 ± 0.003	0.978 ± 0.001	0.979 ± 0.001		0.981 ± 0.003	
$datasets_a ll/yeast - 2_v s_4.dat$		0.947 ± 0.010	0.945 ± 0.009	0.949 ± 0.010	0.949 ± 0.010	0.949 ± 0.010	0.920 ± 0.009			0.950 ± 0.005	
$datasets_all/winequality - red - 3_v s_5.dat$		0.982 ± 0.004	0.982 ± 0.004	0.985 ± 0.003	0.985 ± 0.003	0.985 ± 0.003		0.986 ± 0.000			
$datasets_a ll/glass2.dat$ $datasets_a ll/yeast - 2_v s_8.dat$		0.914 ± 0.010 0.971 ± 0.008	0.912 ± 0.010 0.971 ± 0.008	0.922 ± 0.007 0.961 ± 0.007	0.922 ± 0.007 0.961 ± 0.007	0.922 ± 0.007 0.961 ± 0.007	0.912 ± 0.017	0.918 ± 0.010 0.959 ± 0.001	0.876 ± 0.030 0.953 ± 0.011	0.908 ± 0.022 0.970 ± 0.007	0.921 ± 0.012 0.967 ± 0.007
$aatasets_a ll/yeast - 2_v s_s.aat$ $datasets_a ll/qlass1.dat$		0.971 ± 0.008 0.791 ± 0.037	0.971 ± 0.008 0.784 ± 0.040	0.961 ± 0.007 0.780 ± 0.021	0.780 ± 0.007	0.961 ± 0.007 0.772 ± 0.026	0.939 ± 0.001 0.783 ± 0.039	0.769 ± 0.001 0.769 ± 0.025	0.933 ± 0.011 0.731 ± 0.026	0.784 ± 0.007	
$datasets_a ll/gass1.dat$ $datasets_a ll/zoo - 3.dat$		0.791 ± 0.037 0.955 ± 0.015	0.784 ± 0.040 0.955 ± 0.015	0.780 ± 0.021 0.953 ± 0.018	0.780 ± 0.021 0.953 ± 0.018	0.772 ± 0.026 0.953 ± 0.018	0.783 ± 0.039 0.951 ± 0.009	0.769 ± 0.023 0.951 ± 0.009	0.731 ± 0.026 0.925 ± 0.029		0.960 ± 0.015
$datasets_a ll/glass - 0 - 1 - 5_v s_2.dat$ $datasets_a ll/glass - 0 - 1 - 5_v s_2.dat$		0.933 ± 0.013 0.883 ± 0.024	0.988 ± 0.015 0.888 ± 0.025	0.955 ± 0.018 0.895 ± 0.013	0.895 ± 0.018 0.895 ± 0.013	0.895 ± 0.018 0.895 ± 0.013		0.900 ± 0.009		0.899 ± 0.018	
$datasets_a ll/abalone - 20_v s_8 - 9 - 10.dat$		0.985 ± 0.0024	0.986 ± 0.023	0.986 ± 0.001	0.986 ± 0.001	0.986 ± 0.001				0.986 ± 0.002	
$datasets_a ll/kddcup - buffer_overflow_vs_back.dat$		1.000 ± 0.001	1.000 ± 0.001	0.999 ± 0.002	0.999 ± 0.002	0.999 ± 0.002		0.997 ± 0.001			
$datasets_a ll/winequality - white - 3 - 9_a s_b data$		0.981 ± 0.002	0.981 ± 0.002	0.983 ± 0.002 0.983 ± 0.002	0.983 ± 0.002 0.983 ± 0.002	0.982 ± 0.002		0.983 ± 0.001			
datasets _a tt/winequatity = witte = 3 = 5 _v s ₅ .uat datasets _a tl/vehicle3.dat		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.002	0.000 ± 0.002	0.000 ± 0.000		0.000 ± 0.000			
datasets _a ll/vehicle1.dat		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000		0.000 ± 0.000			
$datasets_a ll/page - blocks - 1 - 3_v s_4.dat$		0.988 ± 0.010	0.988 ± 0.010	0.986 ± 0.008	0.986 ± 0.008	0.986 ± 0.008	0.983 ± 0.008	0.983 ± 0.006		0.989 ± 0.004	
$datasets_a ll/ecoli - 0 - 6 - 7_v s_5.dat$		0.934 ± 0.038	0.934 ± 0.038	0.940 ± 0.016	0.940 ± 0.016	0.940 ± 0.016	0.917 ± 0.009	0.923 ± 0.011		0.956 ± 0.019	
$datasets_a ll/poker - 8 - 9_v s_5.dat$		0.988 ± 0.001	0.988 ± 0.000			0.987 ± 0.001					
$datasets_a ll/yeast - 0 - 3 - 5 - 9_v s_7 - 8.dat$		0.903 ± 0.012	0.905 ± 0.008	0.903 ± 0.005	0.903 ± 0.005	0.904 ± 0.005		0.902 ± 0.002			

Table 6. Specificity

					DE-Forest-AUC-b					RF	RF-b
datasets _a ll/glass5.dat		0.349 ± 0.245	0.373 ± 0.271	0.066 ± 0.071	0.066 ± 0.071	0.066 ± 0.071			0.578 ± 0.344		
$datasets_all/winequality - white - 9_v s_4.dat$		0.111 ± 0.166	0.111 ± 0.166	0.160 ± 0.201	0.160 ± 0.201	0.160 ± 0.201	0.030 ± 0.006		0.191 ± 0.204		
$datasets_a ll/winequality - red - 8_v s_6 - 7.dat$		0.141 ± 0.033	0.141 ± 0.033	0.130 ± 0.000	0.130 ± 0.000	0.130 ± 0.000	0.130 ± 0.000		0.162 ± 0.070		0.086 ± 0.053
$datasets_all/yeast1.dat$		0.510 ± 0.017	0.504 ± 0.019	0.464 ± 0.013	0.464 ± 0.014	0.462 ± 0.018	0.312 ± 0.023		0.571 ± 0.018		
$datasets_all/yeast6.dat$		0.269 ± 0.078	0.225 ± 0.083	0.191 ± 0.073	0.191 ± 0.073	0.196 ± 0.071			0.481 ± 0.106		0.257 ± 0.070
$datasets_a ll/cleveland - 0_v s_4.dat$ $datasets_a ll/ecoli - 0 - 1_v s_2 - 3 - 5.dat$		0.246 ± 0.114 0.563 ± 0.142	0.246 ± 0.128 0.593 ± 0.127	0.319 ± 0.207 0.556 ± 0.143	0.319 ± 0.207 0.556 ± 0.143	0.304 ± 0.219 0.556 ± 0.143	0.119 ± 0.066		0.387 ± 0.124 0.681 ± 0.123		0.295 ± 0.187
$aatasets_a ll/econi = 0 = 1_v s_2 = 3 = 5.aat$ $datasets_a ll/yeast = 1_v s_7.dat$		0.363 ± 0.142 0.183 ± 0.085	0.393 ± 0.127 0.245 ± 0.106	0.556 ± 0.143 0.190 ± 0.062	0.336 ± 0.143 0.190 ± 0.062	0.336 ± 0.143 0.146 ± 0.068			0.681 ± 0.123 0.405 ± 0.104		
$datasets_a ll/geast - 1_v s_7.aat$ $datasets_a ll/abalone - 21_v s_8.dat$		0.183 ± 0.083 0.372 ± 0.143	0.243 ± 0.106 0.372 ± 0.143	0.190 ± 0.062 0.233 ± 0.168	0.190 ± 0.062 0.233 ± 0.168	0.146 ± 0.068 0.233 ± 0.168	0.084 ± 0.040 0.177 ± 0.132	0.078 ± 0.023 0.122 ± 0.109			
datasets_ll/abalone19.dat		0.014 ± 0.019	0.014 ± 0.019	0.233 ± 0.108 0.008 ± 0.000	0.253 ± 0.103 0.008 ± 0.000	0.203 ± 0.103 0.008 ± 0.000	0.008 ± 0.000		0.032 ± 0.030		
$datasets_a ll/poker - 9_v s_7.dat$		0.250 ± 0.228	0.250 ± 0.228	0.033 ± 0.000	0.057 ± 0.073	0.005 ± 0.000 0.057 ± 0.073			0.347 ± 0.030		
datasets, ll/ecoli3.dat		0.458 ± 0.133	0.455 ± 0.102	0.429 ± 0.111	0.429 ± 0.111	0.439 ± 0.104	0.144 ± 0.063		0.525 ± 0.097		
$datasets_a ll/abalone - 17_v s_7 - 8 - 9 - 10.dat$		0.152 ± 0.052	0.166 ± 0.070	0.095 ± 0.053	0.095 ± 0.053	0.102 ± 0.056	0.035 ± 0.030		0.270 ± 0.081		
$datasets_a ll/glass - 0 - 1 - 6_v s_5.dat$		0.519 ± 0.251	0.519 ± 0.251	0.258 ± 0.149	0.258 ± 0.149	0.258 ± 0.149			0.719 ± 0.217		
$datasets_a ll/ecoli - 0 - 1 - 3 - 7_v s_2 - 6.dat$	0.180 ± 0.212	0.180 ± 0.212	0.180 ± 0.212	0.147 ± 0.209	0.147 ± 0.209	0.147 ± 0.209	0.057 ± 0.097	0.025 ± 0.003	0.536 ± 0.315	0.277 ± 0.231	0.025 ± 0.003
$datasets_a ll/yeast - 0 - 2 - 5 - 6_v s_3 - 7 - 8 - 9.dat$	0.428 ± 0.069	0.428 ± 0.070	0.439 ± 0.070	0.371 ± 0.087	0.371 ± 0.087	0.396 ± 0.070	0.166 ± 0.068	0.155 ± 0.044	0.543 ± 0.055	0.471 ± 0.064	0.461 ± 0.033
$datasets_all/yeast5.dat$	0.475 ± 0.114	0.484 ± 0.081	0.488 ± 0.082	0.329 ± 0.111	0.329 ± 0.111	0.329 ± 0.111			0.620 ± 0.150		
$datasets_a ll/glass - 0 - 1 - 4 - 6_v s_2.dat$		0.155 ± 0.111	0.155 ± 0.110	0.093 ± 0.032	0.093 ± 0.032	0.093 ± 0.032			0.227 ± 0.116		
$datasets_a ll/yeast - 0 - 5 - 6 - 7 - 9_v s_4.dat$		0.335 ± 0.101	0.331 ± 0.067	0.223 ± 0.045	0.223 ± 0.045	0.223 ± 0.045			0.455 ± 0.064		0.314 ± 0.102
$datasets_all/yeast3.dat$		0.672 ± 0.050	0.683 ± 0.058	0.576 ± 0.079	0.576 ± 0.079	0.592 ± 0.078			0.739 ± 0.051		
$datasets_a ll/kr - vs - k - zero_v s_e ight.dat$		0.687 ± 0.250	0.687 ± 0.250	0.701 ± 0.160	0.752 ± 0.168	0.752 ± 0.168	0.018 ± 0.001		0.910 ± 0.111		
$datasets_a ll/ecoli - 0 - 6 - 7_v s_3 - 5.dat$		0.597 ± 0.143	0.597 ± 0.143	0.320 ± 0.110	0.320 ± 0.110	0.320 ± 0.110			0.710 ± 0.117		
$datasets_a ll/kddcup-rootkit-imap_v s_b ack.dat$	0.982 ± 0.054	0.982 ± 0.054	0.982 ± 0.054	0.874 ± 0.092	0.874 ± 0.092	0.874 ± 0.092			1.000 ± 0.000		
$datasets_all/winequality-red-8_vs_6.dat$		0.168 ± 0.097	0.168 ± 0.097	0.135 ± 0.068	0.135 ± 0.068	0.135 ± 0.068			0.264 ± 0.135		
$datasets_a ll/flare - F.dat$		0.107 ± 0.053	0.098 ± 0.048	0.130 ± 0.070	0.103 ± 0.054	0.112 ± 0.087			0.201 ± 0.065		
datasets _a ll/glass4.dat		0.464 ± 0.220	0.465 ± 0.220	0.261 ± 0.139	0.261 ± 0.139	0.261 ± 0.139	0.311 ± 0.160		0.656 ± 0.138		0.380 ± 0.112
$datasets_a ll/haberman.dat$ $datasets_a ll/poker - 8 - 9_v s_6.dat$		0.433 ± 0.066 0.080 ± 0.092	0.429 ± 0.066 0.096 ± 0.094	0.394 ± 0.061 0.074 ± 0.063	0.401 ± 0.062 0.074 ± 0.063	0.386 ± 0.050 0.074 ± 0.063	0.310 ± 0.057		0.471 ± 0.063 0.175 ± 0.129		0.388 ± 0.063 0.048 ± 0.039
$aatasets_a ll/poker - 8 - 9_v s_6.aat$ $datasets_a ll/yeast - 1 - 4 - 5 - 8_v s_7.dat$		0.080 ± 0.092 0.043 ± 0.000	0.096 ± 0.094 0.049 ± 0.019	0.074 ± 0.063 0.056 ± 0.025	0.074 ± 0.063 0.056 ± 0.025	0.074 ± 0.063 0.056 ± 0.025	0.017 ± 0.001 0.043 ± 0.000		0.175 ± 0.129 0.124 ± 0.041		0.048 ± 0.039 0.062 ± 0.029
$datasets_a u/yeast - 1 - 4 - 5 - 8_v s_7.aat$ $datasets_a u/yeast - 1 - 4 - 5 - 8_v s_7.aat$ $datasets_a u/yeast - 1 - 4 - 5 - 8_v s_7.aat$	0.043 ± 0.000 0.498 ± 0.247	0.043 ± 0.000 0.474 ± 0.259	0.049 ± 0.019 0.490 ± 0.245	0.400 ± 0.190	0.036 ± 0.023 0.400 ± 0.190	0.036 ± 0.023 0.400 ± 0.190			0.124 ± 0.041 0.660 ± 0.137		
$datasets_a ll/glass - 0 - 1 - 6_v s_2.dat$	0.186 ± 0.077	0.155 ± 0.072	0.155 ± 0.072	0.121 ± 0.050	0.121 ± 0.050	0.110 ± 0.043			0.276 ± 0.086		
datasets _a ll/yeast4.dat		0.162 ± 0.082	0.160 ± 0.012 0.162 ± 0.082	0.124 ± 0.050	0.121 ± 0.053 0.128 ± 0.053	0.114 ± 0.046			0.290 ± 0.092		
$datasets_a ll/page - blocks0.dat$		0.826 ± 0.030	0.823 ± 0.026	0.803 ± 0.025	0.803 ± 0.025	0.799 ± 0.040	0.746 ± 0.035		0.842 ± 0.031		
$datasets_a ll/ecoli - 0 - 1 - 4 - 7_v s_2 - 3 - 5 - 6.dat$		0.501 ± 0.122	0.544 ± 0.108	0.425 ± 0.156	0.425 ± 0.156	0.400 ± 0.140	0.194 ± 0.048		0.725 ± 0.096		
$datasets_a ll/poker - 8_v s_6.dat$		0.061 ± 0.113	0.061 ± 0.113	0.012 ± 0.001	0.012 ± 0.001	0.012 ± 0.001			0.098 ± 0.221		
datasets _a ll/ecoli1.dat			0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000					
$datasets_all/glass0.dat$	0.757 ± 0.061	0.751 ± 0.033	0.757 ± 0.066	0.746 ± 0.058	0.746 ± 0.058	0.734 ± 0.059	0.742 ± 0.041	0.669 ± 0.072	0.730 ± 0.058	0.742 ± 0.064	0.742 ± 0.092
$datasets_all/winequality - red - 4.dat$		0.040 ± 0.015	0.040 ± 0.015	0.051 ± 0.025	0.051 ± 0.025	0.040 ± 0.015			0.130 ± 0.076		
$datasets_all/pima.dat$		0.613 ± 0.037	0.600 ± 0.030	0.600 ± 0.041	0.616 ± 0.019	0.598 ± 0.029	0.492 ± 0.035	0.494 ± 0.039			
$datasets_a ll/abalone - 19_v s_1 0 - 11 - 12 - 13.dat$		0.032 ± 0.025	0.032 ± 0.025	0.020 ± 0.000	0.020 ± 0.000	0.020 ± 0.000			0.068 ± 0.060		
$datasets_a ll/ecoli 2.dat$		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
$datasets_a ll/abalone9 - 18.dat$		0.286 ± 0.091	0.263 ± 0.099	0.143 ± 0.042	0.143 ± 0.042	0.125 ± 0.036	0.062 ± 0.013		0.342 ± 0.099		0.156 ± 0.056
$datasets_a ll/yeast - 1 - 2 - 8 - 9_v s_7.dat$		0.128 ± 0.078	0.103 ± 0.054	0.064 ± 0.052	0.070 ± 0.052	0.070 ± 0.052			0.256 ± 0.101		
$datasets_all/winequality - white - 3_v s_7.dat$		0.208 ± 0.102	0.198 ± 0.073	0.140 ± 0.096	0.140 ± 0.096	0.140 ± 0.096			0.296 ± 0.185		
$datasets_a ll/yeast - 2_v s_4.dat$		0.611 ± 0.090 0.014 ± 0.000	0.590 ± 0.087 0.014 ± 0.000	0.631 ± 0.091 0.014 ± 0.000	0.631 ± 0.091 0.014 ± 0.000	0.631 ± 0.091 0.014 ± 0.000	0.275 ± 0.085 0.014 ± 0.000		0.715 ± 0.055 0.113 ± 0.132		0.681 ± 0.060 0.014 ± 0.000
$datasets_a ll/winequality - red - 3_v s_5.dat$ $datasets_a ll/qlass 2.dat$		0.014 ± 0.000 0.167 ± 0.108	0.014 ± 0.000 0.155 ± 0.111	0.014 ± 0.000 0.114 ± 0.072	0.014 ± 0.000 0.114 ± 0.072	0.014 ± 0.000 0.114 ± 0.072			0.113 ± 0.132 0.320 ± 0.161		
$datasets_a tl/gtass2.aat$ $datasets_a tl/yeast - 2_v s_s.dat$		0.167 ± 0.108 0.406 ± 0.200	0.135 ± 0.111 0.406 ± 0.200	0.114 ± 0.072 0.137 ± 0.182	0.114 ± 0.072 0.137 ± 0.182	0.114 ± 0.072 0.137 ± 0.182	0.154 ± 0.096 0.051 ± 0.029		0.520 ± 0.161 0.510 ± 0.174		
datasets_ll/glass1.dat		0.706 ± 0.049	0.694 ± 0.046	0.666 ± 0.034	0.666 ± 0.034	0.659 ± 0.038			0.693 ± 0.043		
$datasets_a ll/zoo - 3.dat$		0.193 ± 0.214	0.193 ± 0.214	0.145 ± 0.188	0.145 ± 0.188	0.145 ± 0.188	0.049 ± 0.009		0.254 ± 0.211		
$datasets_a ll/qlass - 0 - 1 - 5_v s_2.dat$		0.187 ± 0.131	0.198 ± 0.127	0.098 ± 0.006	0.098 ± 0.006	0.098 ± 0.006	0.150 ± 0.070		0.302 ± 0.217		
$datasets_a ll/abalone - 20_v s_8 - 9 - 10.dat$		0.082 ± 0.063	0.067 ± 0.059	0.021 ± 0.023	0.021 ± 0.023	0.033 ± 0.000 0.021 ± 0.023			0.302 ± 0.117 0.203 ± 0.141		
$datasets_a ll/kddcup - buffer_overflow_vs_back.dat$		0.987 ± 0.039	0.987 ± 0.039	0.895 ± 0.156	0.895 ± 0.156	0.895 ± 0.156			1.000 ± 0.000		
$datasets_all/winequality - white - 3 - 9_v s_5.dat$		0.041 ± 0.052	0.041 ± 0.052	0.025 ± 0.024	0.025 ± 0.024	0.017 ± 0.001			0.174 ± 0.103		
datasets _a ll/vehicle3.dat			0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000				0.000 ± 0.000		
datasets _a ll/vehicle1.dat		0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.000	0.000 ± 0.00					
$datasets_all/page - blocks - 1 - 3_v s_4.dat$		0.879 ± 0.099	0.879 ± 0.099	0.832 ± 0.086	0.832 ± 0.086	0.832 ± 0.086	0.798 ± 0.074	0.771 ± 0.109	0.892 ± 0.128	0.879 ± 0.078	0.825 ± 0.125
$datasets_a ll/ecoli - 0 - 6 - 7_v s_5.dat$	0.517 ± 0.287	0.498 ± 0.308	0.498 ± 0.308	0.445 ± 0.154	0.445 ± 0.154	0.445 ± 0.154			0.716 ± 0.125		
$datasets_a ll/poker - 8 - 9_v s_5.dat$		0.020 ± 0.025	0.020 ± 0.025	0.020 ± 0.025	0.012 ± 0.000	0.012 ± 0.000			0.197 ± 0.143		0.012 ± 0.000
$datasets_a ll/yeast - 0 - 3 - 5 - 9_v s_7 - 8.dat$	0.249 ± 0.045	0.252 ± 0.060	0.249 ± 0.055	0.185 ± 0.060	0.185 ± 0.060	0.188 ± 0.049	0.109 ± 0.023	0.110 ± 0.023	0.382 ± 0.087	0.248 ± 0.031	0.249 ± 0.066