Clustering beer text reviews using the K-means algorithm

Stefan Seastian 242

Motivation

- Beer is the most popular alcoholic drink
- Global beer market is huge (~600\$ billion)

Data about consumer needs => useful for

beer marketing

Proposed experiment

- Extract information from beer text reviews using unsupervised learning (clustering)
- Analyze resulting clusters and correlation with initial beer styles

```
,beer_style,review_text
0,Amber,"A - Pours up a gorgeous, crystal clear honey color with a creamy head that
1,Amber,"This bottle popped up in a mixed case from Shangys that a bunch of guys go
2,Amber,"Reviewed 8/19/2008 (bottle BB10Oct08): Pours an orangish amber body. Big f
3,Amber,"Thanks to Eyncognito for this 12 oz bottle. A: The oktoberfestbier is a br
4,Amber,"Found a 22 oz bottle at Sams wines and liquors in Chicago. Dark red amber
```

Sample experiment data

Related work

- Text clustering
 - Anna Huang 2008, comparison of distance measures over tf-idf features
 - Hu et al 2009, enrich document information by using Wikipedia category data
- Review analysis
 - lacob and Harrison 2013, extracts feature requests from app reviews, using linguistic rules

Related work

- Experiments on beer datasets
 - Braun and Timpe 2015, predict score based on text review, using SVM on bag of words model
 - McAuley and Leskovec 2013, recommender system that adapts to user experience; experience label is learned by model using rating and timestamp data

Dataset

- Started from 500k reviews from the BeerAdvocate website
- Reduced number of different styles by cutting those with few reviews, mapping others to parent style
- Select an equal distribution for each style

Style mapping

(using taxonomy published by BussinessInsider)

Model overview

- Use text review data from BeerAdvocate
- Extract features with tf-idf vectorizer
- Apply K-means with random seeds and kd tree seeds
- Analyze cluster results

Model overview

Operations over the initial dataset

Technologies used

- Python programming language
- Clustering algorithms implemented from scratch
- Pandas for data analysis
- Nltk for tokenizing and stemming
- Scikit learn for tf-idf vectorizer
- Matplotlib and Seaborn for plotting

Model parameters

 K = nr of clusters = 9 (number of distinct beer styles)

Number of features = 1000 (determined)

experimentally)

Nr features	Precision	Recall	F1
200	0.420	0.481	0.449
700	0.501	0.554	0.526
1000	0.537	0.532	0.534
1500	0.515	0.528	0.521

 Initialization: random seeds 0.53 F1 score, k-d trees 0.47 F1 score

Evaluation

- Correlation between initial beer styles and the clusters found within the dataset
- Confusion matrix: (x, y) = how many times a point of x has been misclassified as y
- Precision and recall are calculated for each row, then an average is taken

Results

Multilabel classification score

Mean precision	0.537
Mean recall	0.532
F1 score	0.534

Results Heatmap

Results best rated words per cluster

```
0 : ['chocol', 'coffe', 'roast', 'dark', 'black', 'stout', 'veri', 'beer', 'malt', 'flavor']
1 : ['wheat', 'banana', 'lemon', 'beer', 'clove', 'light', 'veri', 'tast', 'orang', 'citrus']
2 : ['lager', 'corn', 'macro', 'light', 'beer', 'adjunct', 'tast', 'yellow', 'grain', 'veri']
3 : ['hop', 'malt', 'nice', 'bitter', 'veri', 'amber', 'citrus', 'caramel', 'sweet', 'beer']
4 : ['porter', 'chocol', 'roast', 'coffe', 'dark', 'malt', 'brown', 'nice', 'veri', 'flavor']
5 : ['appl', 'spice', 'veri', 'yeast', 'light', 'sweet', 'beer', 'white', 'orang', 'flavor']
6 : ['cherri', 'raspberri', 'tart', 'beer', 'sweet', 'like', 'fruit', 'sour', 'veri', 'red']
7 : ['alcohol', 'dark', 'sweet', 'caramel', 'brown', 'veri', 'fruit', 'malt', 'hop', 'barleywin']
8 : ['beer', 'tast', 'like', 'veri', 'smell', 'good', 'drink', 'just', 'realli', 'flavor']
```

Obs. Cluster 8 contains common words for all reviews: beer, taste, smell, drink, flavour

Conclusions

- As expected, clusters were formed around similar beer styles
- The most important words for each cluster contain relevant characteristics
- Further improvements: more data, computation time optimizations