Session 4.

Advanced visualisations

[60 min]

Session 4.

Advanced visualisations

[60 min]

The grammar of graphics

[30 min]

What is Data Science?

- Artificial Intelligence?
- Machine Learning?
- Deep Learning?
- Big Data?

Visual language is a sign system.

- Images perceived as a set of signs.
- Sender encodes information in signs.
- Receiver decodes information from signs.
- In his foreword to the 1983 English translation Howard Wainer called Bertin's work, the most important work on graphics since the publication of Playfair's Atlas

Visual language is a sign system.

Bertin's semiology of graphics.

- 1. A, B, C are distinguishable
- 2. B is between A and C.
- 3. BC is twice as long as AB.
- ∴ Encode quantitative variables

"Resemblance, order and proportion are the three signifieds in graphics." - Bertin

Visual encoding variables. Visual Grammar.

- Position (x2)
- Size
- Value (Saturation)
- Texture
- Colour
- Orientation
- Shape
- (Time/Animation, Focus, Opacity)

Position Bertin's list: Nominal Ordered based on theoretical Size Quantitative considerations of Note: **Q < O < N** N Value O Q semiology N **Texture** 0 Bertin's Color N N Orientation "Levels of Organisation" N Shape

Mackinlay design criteria.

- Formalizes Bertin for machines.
- Expresiveness A set of facts is expressible in a visual language if the sentences (i.e. the visualisations) express all the facts in the set of data, and only the facts.
- Effectiveness A visualisation is more effective than another if the information conveyed by one visualisation is more readily perceived than the information in the other visualization.

Mackinlay design criteria.

Quantitative Ordinal Nominal **Position Position Position** Length Density Hue Angle Saturation Texture Hue Connection Slope Containment **Texture** Area Connection Volume Density Density Containment Saturation Saturation Length Shape Hue Angle Length Texture Slope Angle Slope Connection Area Containment Volume Area Shape Volume Shape

- Mackinlay's list:
 - based on his
 experiments with
 computer graphics,
 trying to automate and
 formalize the creation
 of charts
- The Vega visual language/grammar is built on Mackinlay's work

Stevens' power law.

sensation = intensity exponent

Our senses are not linear!

Stevens' power law.

• Stevens' list:

based on
psychological
experiments with
human senses

Visual language is a sign system.

- When designing visual information use correct encodings
- data → information correct data model
- information → knowledge correct visual representation
 - Bertin's semiology of graphics
 - Mackinlay design criteria
 - Stevens' power law

Data visualization zoo.

- The actual "A Tour through the Visualisation Zoo"
- Economics Observatory Visualisation Guidelines
- Financial Times Visual Vocabulary
- Vega Edition of the Visual Vocabulary
- The D3 Graph Gallery
- Andy Kirks's The Chartmaker Directory

Session 4.

Advanced visualisations

[60 min]

Data models

[30 min]

Data.

Information

Knowledge.

visualisation reference model

data -> visualisation process

task

data

physical type int, float, etc. abstract type nominal, ordinal, etc.

domain

metadata semantics conceptual model processing algorithms

mapping visual encoding visual metaphor image visual channel retinal variables

Jeffrey Heer, 2018. Adapted from UW CSE442.

data domain.

data models | conceptual models

- Data models are a low-level description of the data.
 - Math: sets with operations on them (+ / ·). How many? / What kind?
- Conceptual models are higher level mental abstractions.
 - Semantics and support reasoning. What does is mean/describe?

Examples:

- 1D float vs Temperature
- 3D float vs Space

N - Nominal (labels)

data types

- · Fruits: Apples, oranges, ...
- O Ordered
 - · Quality of meat: Grade A, AA, AAA
- O/Q Interval (Location of zero arbitrary)
 - (T) · Dates: Jan, 19, 2006; Location: (LAT 33.98, LONG -118.45)
 - · Like a geometric point. Cannot compare directly
 - Only differences (i.e. intervals) may be compared
 - Q Ratio (zero fixed)
 - · Physical measurement: Length, Mass, Temp, ...
 - Counts and amounts
 - Like a geometric vector, origin is meaningful

N - Nominal (labels)

data types

- · Operations: =, ≠
- O Ordered
 - Operations: =, ≠, <, >
- O/Q Interval (Location of zero arbitrary)
 - (T) Operations: =, \neq , <, >, -
 - Can measure distances or spans
 - Q Ratio (zero fixed)
 - Operations: =, ≠, <, >, -, %
 - Can measure ratios or proportions

S. S. Stevens, On the theory of scales of measurements, 1946

TIDY data

this (wide form)

Country	2019	2020	2021
Austria	42	13	69
Belgium	75	12	77

should be converted to this (long form)

Country	Year	Value
Austria	2019	42
Austria	2020	13
Austria	2021	69
Belgium	2019	75
Belgium	2020	12
Belgium	2021	77