Faculty of Science
Vrije Universiteit Amsterdam

Coding and cryptography (X_405041) Resit 2-6-2021 (18:45-21:30)

Note

- (1) This exam consists of 7 problems.
- (2) Calculators, notes, books, etc., may not be used.
- (3) Do not hand in scrap, etc., and hand in the problems in consecutive order.
- (4) Justify your answers!
- (5) Throughout this exam, $K = \{0, 1\}$.

Problems

- (1) For each of the following linear codes in K^7 , explain either why it cannot exist, or construct an example. If you give an example, do show that your code has the right properties.
 - (a) A (7, 3, 4)-code.
 - (b) A (7,5,3)-code.
- (2) Let H be a matrix with as rows all vectors in K^9 of weight 1 or 8.
 - (a) Verify that H satisfies the conditions to be a parity check matrix for a binary linear code C.
 - (b) What is the rate of C?
 - (c) Determine d(C).
 - (d) Compute how many received words for C can be decoded under IMLD where we correct any error of weight at most 1. Do not simplify your answer to a number.
- (3) Let $F = GF(2^3)$ be constructed using the primitive irreducible polynomial $1 + x + x^3$ and let β be the class of x.
 - (a) Find a parity check matrix H (with entries in K) for the cyclic Hamming code C of length 7 with generator polynomial $m_{\beta}(x)$.
 - (b) Decode the received word w = 1110110 for this code.
- (4) All parts of this problem are independent of each other.
 - (a) Factorise $f(x) = x^8 + x^7 + x^5 + 1$ into irreducibles in K[x]. (You may use without proof which polynomials in K[x] are irreducible for degrees 1, 2 and 3.)
 - (b) Determine the generator polynomial of the smallest cyclic linear code in K^{10} that contains $x^6 + x^4 + x^3 + x^2 + 1$.
 - (c) Determine the number of idempotents I(x) in K[x] modulo $1 + x^{17}$ that have degree 14.

In problems (5) and (6), $GF(2^4)$ is constructed as K[x] modulo $1+x+x^4$ and β is the class of x, so $1 + \beta + \beta^4 = 0$. Moreover, β is primitive, and the table for its powers is:

0000	-	1101	β^7
1000	1	1010	β^8
0100	β	0101	β^9
0010	β^2	1110	β^{10}
0001	β^3	0111	β^{11}
1100	β^4	1111	β^{12}
0110	β^5	1011	β^{13}
0011	β^6	1001	β^{14}

- (5) Let β and $GF(2^4)$ be as in the table, let $\alpha = \beta^4 + \beta^{12}$, and let $m_{\alpha}(x)$ be the minimal polynomial of α in K[x].
 - (a) Determine the degree of $m_{\alpha}(x)$ in an efficient way.
 - (b) Find $m_{\alpha}(x)$ explicitly.
- (6) Let β and $GF(2^4)$ be as in the table. Let $C \subseteq K^{15}$ be the 2-error correcting BCH code with parity check matrix

$$H = \begin{bmatrix} 1 & 1\\ \beta & \beta^3\\ \beta^2 & \beta^6\\ \vdots & \vdots\\ \beta^{14} & \beta^{42} \end{bmatrix}.$$

If w is a received word, determine if $d(v, w) \leq 2$ for some v in C in two cases:

- (a) w has syndrome $wH = [s_1, s_3] = [\beta^9, \beta^{12}];$ (b) w has syndrome $wH = [s_1, s_3] = [1, \beta^7].$
- (7) Let n = 81.
 - (a) Perform the Miller-Rabin probabilistic primality test for n with a=2.
 - (b) Which conclusions can be drawn from the result in (a) concerning if n is prime or not?

	Distribution of points												
1a:	5	2a:	2	3a:	7	4a:	10	5a:	4	6a:	8	7a:	5
1h.	3	2h.	3	3h.	4	4b:	7	5b:	6	6b:	8	7b:	2
		2c:	7			4c:							
		2c: 2d:	3										
Maximum total = 90													
Exam grade = $1 + \text{Total}/10$													