TiRa labra - Toteutusdokumentti

Jarmo Isotalo

October 1, 2012

1 Toteutettavat algoritmit

Toteutan työssäni 3 kekoa, binäärikeon, binomikeon ja d-ary keon

2 Toteutuneet aika- ja tilavaativuudet (O-analyysi)

2.1 Aikavaatimus

Tarkastelen tässä vain muutaman eri tapauksen aikavaativuuksia:

- Keon alustaminen Create Jokaisessa keossa, binääri-,kolmi-, ja d-keossa operaatio on kutakuinkin saman kestoinen:
 - (a) Aluksi alustetaan taulukko ja tallennetaan tietoon kunkin lapsien määrä. Binäärikeossa lapsia on kaksi, kolmikeossa kolme ja d-keossa d
 kappaletta. O(1)
 - (b) Koska Create tehdään tyhjälle keolle, on operaatio vakioaikainen. Tässä asetetaan taulun ensimmäiseen indeksiin parametrina saatu arvo. O(1)
- 2. Kekoon lisääminen Insert Jokaisessa keossa, binääri-,kolmi-, ja d-keossa operaatio on kutakuinkin saman kestoinen:
 - (a) Aluksi parametrina saatu elementti lisätään keon viimeiseen indeksiin.O(1)
 - (b) Sitten indeksille suoritetaan $heapify_up$, joka siirtää elementtiä ylöspäin, kunnes keko noudattaa taas kekoehtoa. Tässä oletetaan, että keko noudatti kekoehtoa ennen elementin lisäämistä. Tätä tapahtuu keon korkeuden verran. Eli insertin aikavaativuus on toteutuksessani $O(\log n)$

- 3. Keosta poistaminen Delete Jokaisessa keossa, binääri-,kolmi-, ja d-keossa operaatio on kutakuinkin saman kestoinen:
 - (a) Elementtiä keosta poistettaessa poistetaan elementti keon taulukon indeksistä 0. O(1)
 - (b) Sen jälkeen siirretään keossa viimeisenä oleva elementti kekotaulukon indeksiin nolla. O(1)
 - (c) Sitten kutsutaan $heapify_down$ äsekettäin indeksiin nolla siirretylle, kunnes kekoehto toteutuu. $O(\log n)$. Lisäksi $heapify_down$ tarkastaa onko elementillä suurempia lapsia. Tämän aikavaatimuus on

Kekojen toteutuken vuoksi O notaation ajat ovat samankaltaisia, mutta todellisuudessa lasten määrän lisääminen nopeuttaa keon toimintaa. Kunnolliset BenchMarkit tulossa TODO

	Binary Heap	Three Heap	D-ary Heap
Create	O(1)	O(1)	O(1)
Insert	$O(\log n)$	$O(\log n)$	$O(\log n)$
Delete	$O(\log n)$	$O(\log n)$	$O(\log n)$

2.2 Tilavaatimus

Tarkastelen tässä vain niiden metodien tilavaatimuksia, joiden aikavaatimuudet yllä1:

- 1. Keon alustaminen Create Jokaisessa keossa, binääri-,kolmi-, ja d-keossa operaatio on kutakuinkin saman kestoinen:
 - (a) Aluksi alustetaan taulukko ja tallennetaan tietoon kunkin lapsien määrä. Binäärikeossa lapsia on kaksi, kolmikeossa kolme ja d-keossa d kappaletta. O(1)
 - (b) Koska Create tehdään tyhjälle keolle, on operaatio vakiotilainen. Tässä asetetaan taulun ensimmäiseen indeksiin parametrina saatu arvo. O(1). Apumuuttujia ei tarvita.
- 2. Kekoon lisääminen Insert Jokaisessa keossa, binääri-,kolmi-, ja d-keossa operaatio on kutakuinkin saman kestoinen:
 - (a) Aluksi parametrina saatu elementti lisätään keon viimeiseen indeksiin.O(1)

- (b) Sitten indeksille suoritetaan $heapify_up$, joka siirtää elementtiä ylöspäin, kunnes keko noudattaa taas kekoehtoa. Tässä oletetaan, että keko noudatti kekoehtoa ennen elementin lisäämistä. $heapify_up$ -metodia kutsutaan siis rekursiivisesti. Tätä tapahtuu keon korkeuden verran. Insertin tilavaatimus on rekursiopinon kokoinen eli $O(\log n)$
- 3. Keosta poistaminen Delete Jokaisessa keossa, binääri-,kolmi-, ja d-keossa operaatio on kutakuinkin saman kestoinen:
 - (a) Elementtiä keosta poistettaessa poistetaan elementti keon taulukon indeksistä 0. O(1)
 - (b) Sen jälkeen siirretään keossa viimeisenä oleva elementti kekotaulukon indeksiin nolla. O(1)
 - (c) Sitten kutsutaan $heapify_down$ äsekettäin indeksiin nolla siirretylle, kunnes kekoehto toteutuu. $heapify_down$ -metodia kutsutaan rekursiiviseti eli sen tilavaatimus on rekursiopinon kokoinen $O(\log n)$ Lisäksi $heapify_down$ tarkastaa onko elementillä suurempia lapsia. Tämän tilavaativuus on O(d), jossa d on lasten määrä eli vakio. tilavaatius on

	Binary Heap	Three Heap	D-ary Heap
Create	O(1)	O(1)	O(1)
Insert	$O(\log n)$	$O(\log n)$	$O(\log n)$
Delete	$O(\log n)$	$O(\log n)$	$O(\log n)$

3 Lähteet

https://en.wikipedia.org/wiki/Heap_(data_structure)

Binäärikeko ja D-keko

http://en.wikipedia.org/wiki/Binary_heaphttp://en.wikipedia.org/wiki/D-ary_heaphttp://www.cs.helsinki.fi/u/tapasane/keot.pdf http:

//www.cs.unc.edu/~plaisted/comp750/05-binheaps.ppt

Binomikeko:

http://cs.anu.edu.au/people/Warren.Armstrong/apac/trunk/module2/binomial_heaps.pdf https://www.cse.yorku.ca/~aaw/Sotirios/BinomialHeapAlgorithm.html http://en.wikipedia.org/wiki/Binomial_heap