Decision Tree Learning

Impurity

- Entropy đo mức độ không đồng nhất (impurity) của một tập dữ liệu.
- · Công thức entropy:

$$H(p_1) = -p_1 \log_2(p_1) - p_0 \log_2(p_0)$$

Information gain

- Tại mỗi nút (node), ta chọn đặc trưng (feature) nào giảm entropy nhiều
 nhất tức là tăng độ tinh khiết (purity).
- Trong học máy, giảm entropy được gọi là Information Gain (IG).
- Information Gain được tính theo công thức:

$$ext{IG} = H(p_{ ext{root}}) - \left(w^{ ext{left}}H(p_1^{ ext{left}}) + w^{ ext{right}}H(p_1^{ ext{right}})
ight)$$

- Nhánh trái (left): xác suất dương $p_1^{
 m left}$, tỷ lệ dữ liệu $w^{
 m left}$
- Nhánh phải (right): xác suất dương $p_1^{
 m right}$, tỷ lệ dữ liệu $w^{
 m right}$
- IG càng lớn thì đặc trưng càng tốt để phân nhánh.

Step

Ý tưởng chính

- Dùng information gain để chọn feature tốt nhất để tách tại mỗi nút của cây.
- Quá trình này lặp lại đệ quy trên từng nhánh con đến khi thỏa mãn tiêu chí dừng (stopping criteria).

Quy trình tổng quát

- 1. Bắt đầu từ root node với toàn bộ tập huấn luyện.
- 2. Với mỗi đặc trưng:

- Tính **information gain**.
- 3. Chọn feature có IG lớn nhất để phân tách dữ liệu → tạo nhánh trái và phải.
- 4. Chuyển mỗi tập con sang cây con tương ứng (trái/phải).
- 5. Lặp lại quá trình phân tách tại mỗi node con cho đến khi đạt tiêu chí dừng.

Tiêu chí dừng có thể gồm:

- Node chứa toàn bộ ví dụ cùng lớp (entropy = 0).
- Đạt độ sâu tối đa cho phép (max depth).
- Information gain < ngưỡng định sẵn.
- Số lượng ví dụ quá ít tại node.

Continuous value

- Với continuous feature (như weight, age,...), cây quyết định:
 - Tạo nhiều ngưỡng chia tiềm năng
 - Tính IG cho mỗi ngưỡng
 - Chọn ngưỡng cho IG cao nhất
- Nếu IG từ đặc trưng liên tục này cao hơn tất cả đặc trưng khác, thì dùng nó để tách dữ liệu tại node.
- Quy trình đệ quy lặp lại như thường cho các nhánh con sau khi chia.

Regression Tree

Quá trình huấn luyện Regression Tree

Tại mỗi node:

- 1. Xét các đặc trưng có thể chia tách
- 2. Với mỗi đặc trưng:
 - Tách tập dữ liệu thành 2 nhánh.
 - **Tính phương sai** của nhãn mục tiêu (Y) ở mỗi nhánh.
 - Tính trung bình trọng số của phương sai sau khi chia

Decision Tree Learning 2

$$ext{Weighted Variance} = w^{ ext{left}} \cdot ext{Var}_{ ext{left}} + w^{ ext{right}} \cdot ext{Var}_{ ext{right}}$$

3. Tính **Giảm phương sai**

$$Var_{root}-Weighted\ Variance$$

4. Chọn đặc trưng chia tách có giảm phương sai lớn nhất.