

۱-سیستم متشکل از شش عامل را با دو توپولوژی زیر شبیه سازی کنید (وزن تمامی لینک های ارتباطی را برابر واحد در نظر بگیرید).

$$\dot{x}_i = \sum_{j=1}^n a_{ij} (x_i - x_j)$$

نتیجه جابجایی یک لینک در توپولوژی چیست؟

ب- یک سیستم رهبر پیرو با توپولوژی سوئیچینگ و دینامیک مرتبه اول در نظر بگیرید:

برای هر دو توپولوژی زیر به صورت جداگانه شبیه سازی انجام دهید و نتایج را گزارش کنید، برای رهبر، هم دینامیک با سیگنال مرجع ثابت و هم متغییر در نظر بگیرید(زمان شبیه سازی ها ۲۰ ثانیه).

به نام خداوند بخشنده منزبان

کنترل سیستم های چند وسیله ای

تمرین سری اول دکتر عطریانفر

دانشگاه صنعتی امیر کبیر دانشکده مهندسی برق

۲- فرض کنید دینامیک عاملهای یک سیستم چند عاملی به شکل زیر باشد

$$\dot{x}_{i,1} = x_{i,2}$$

$$\dot{x}_{i,2} = u_i + d_i \ |d_i| \le D$$

نشان دهید با انتخاب یک کنترل کننده مد لغزشی به شکل زیر، اجماع مرتبه دوم رخ خواهد داد:

$$u_i = -h_i sgn(\sum_{j=1}^n a_{ij}(s_i - s_j))$$

که در آن داریم:

$$\begin{split} s_i &= z_{i,2} + c_2 z_{i,1} + \int_0^t c_1 z_{i,1} \, d\tau \quad c_2, c_1 > 0 \\ z_{i,1} &= \sum_{j=1}^n a_{ij} (x_{i,1} - x_{j,1}) \\ z_{i,2} &= \sum_{j=1}^n a_{ij} (x_{i,2} - x_{j,2}) \\ h_i &\geq \frac{\left[\bar{E} + \varepsilon_i + \sqrt{n} D \lambda_{max}(L) \right]}{\frac{\lambda_2(L)}{\sqrt{n}}} \\ \bar{E} &= \max\{ \left| c_1 z_{i,1} + c_2 z_{i,2} \right| \} , \varepsilon_i > 0 \end{split}$$

را در نظر $V_c = 1/2S^TS$ را در نظر این فاز تابع لیاپانوف $V_c = 1/2S^TS$ را در نظر بگیرید که در آن S سطح لغزش جمعی یا همان بردار سطح لغزش عاملها است. ۲- فاز روی سطح لغزش، در این بخش نشان دهید دینامیک خطای جمعی پایدار (هرویتز) است.

به نام خداوند بخشنده مهربان

کنترل سیستم های چند وسیله ای اجماع

> تمرین سری اول دکتر عطریانفر

دانشگاه صنعتی امیرکبیر دانشکده مهندسی برق

شبیه سازی:

پروتکل بالا را برای سیستم زیر پیاده کنید

$$D=0.4 \qquad c_1=2, \qquad c_2=2.3, \varepsilon_1=\varepsilon_2=\varepsilon_3=\varepsilon_4=0.02$$

نتایج را یک بار با اغتشاش سینوسی و یک بار با اغتشاش پله ارائه کنید.

عرين عوين

۲ اسفند ۲ ۰ ۱ ۲

به نام خداوند بخشنده مهربان

کنترل سیستم های چند وسیله ای

تمرین سری اول دکتر عطریانفر

دانشگاه صنعتی امیر کبیر دانشکده مهندسی برق

۳- فرض کنید یک سیستم چند عاملی از مرتبه lداریم:

$$\dot{x}_{i}^{0} = x_{i}^{1} \\
\vdots \\
\dot{x}_{i}^{l-2} = x_{i}^{l-1} \\
\dot{x}_{i}^{l-1} = u_{i}$$

اگر پروتکل اجماع به صورت زیر پیشنهاد شود:

$$u_i = u_{i1} + u_{i2}$$
 $u_{i1} = b \sum_{k=1}^{l-1} x_i^k$, $u_{i2} = \sum_{j=1}^n c_{ij} (\sum_{k=0}^{l-2} \gamma_k (x_j^k - x_i^k))$

ثابت کنید اجماع سراسری و مجانبی به صورت $0 \to x^*, x_i^k \to 0$ رخ خواهد داد اگر همه مقادیر ویژه غیر صفر ماتریس k=1,2,...,l-1

$$b < \gamma_1 \lambda_i - \sqrt{(\gamma_1 \lambda_i)^2 + 4\gamma_0 \lambda_i}/2$$

که در آن λ_i مقادیر ویژه ماتریس L بوده و داریم λ_i بوده و داریم که در آن که در آن ازیر هستند:

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & b & b & \dots & b \end{bmatrix}_{l \times l} \qquad B = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 \\ \gamma_0 & \gamma_1 & \dots & \gamma_{l-2} & 0 \end{bmatrix}_{l \times l}$$

به نام خداوند بخشنده مهربان

کنترل سیستم های چند وسیله ای اجماع

تمرین سری اول دکتر عطریانفر

دانشگاه صنعتی امیرکبیر دانشکده مهندسی برق

۴- فرض کنید دینامیک عاملها به شکل زیر باشد و گراف بدون جهت می باشد.

$$\dot{x}_i = v_i \,, \qquad \dot{v}_i = u_i$$

نشان دهید با افزودن اطلاعات همسایه های مرتبه دوم (همسایه عاملهای همسایه) و ارائه پروتکل زیر، اجماع رخ خواهد داد و همچنین ثابت کنید در این حالت سرعت همگرایی به اجماع از حالتی که فقط از اطلاعات همسایه های مرتبه اول استفاده می کنیم بیشتر است.

$$u_i = \sum_{j \in N_i} a_{ij} \big[\gamma_1 \big(x_j - x_i \big) + \gamma_2 \big(v_j - v_i \big) \big] + \sum_{k \in N_i^2} a_{ij} \big[\gamma_1 (x_k - x_i) + \gamma_2 (v_k - v_i) \big]$$

که در آن N_i^2 مجموعه همسایه های مرتبه دوم هر عامل است.

شبیه سازی را برای دو حالت $\gamma_2 \leq \sqrt{\frac{4\gamma_2}{\lambda_i(L)}}$ و $\gamma_2 \leq \sqrt{\frac{4\gamma_2}{\lambda_i(L)}}$ و حالتی که فقط از اطلاعات همسایه های مرتبه اول استفاده می کنیم، مقایسه کنید (L و L) به ترتیب لاپلاسین گراف اولیه و گراف پس از افزودن لینک های همسایه های مرتبه دوم می باشند)

۲ اسفند ۲ ۰ ۱ ۲

به نام خداوند بخشنده مهربان

کنترل سیستم های چند وسیله ای

اجماع

تمرین سری اول دکتر عطریانفر

دانشگاه صنعتی امیرکبیر دانشکده مهندسی برق

۵- سیستم چندعاملی غیرخطی زیر را در نظر بگیرید:

$$\dot{x}_i = u_i + \varphi_i\left(x_i\right)\theta_i,$$

$$y_i = x_i, i = 1, \dots, N$$

که در آن $x_i \in \mathbb{R}$ و $y_i \in \mathbb{R}$ به ترتیب حالت، ورودی کنترلی و خروجی عامل i ام هستند.

تابع پیوسته $\varphi_i(x_i)$ شناخته شده و پارامتر $\theta_i \in \mathbb{R}$ ناشناخته است. هدف و بارامتر $\varphi_i(x_i)$ شناخته شده و پارامتر $\varphi_i(x_i)$ ناشناخته است. هدف الستفاده از گراف متصل بدون جهت و بواسطه ورودی کنترلی زیر

$$u_i = -z_i - \varphi_i \hat{\theta}_i$$

$$\dot{\hat{\theta}}_i = \varphi_i z_i$$

سیستم به هدف مطلوب می رسد. در رابطه قبل z_i خطای اجماع محلی و $\hat{ heta}_i$ تخمینی از پارامتر ناشناخته $heta_i$ می باشد.

$$z_i = \sum_{j=1}^{N} a_{ij} (y_i - y_j) + \mu_i (y_i - y_r)$$

راهنمایی: خطای تخمین نیز در تابع لیاپانوف در نظر گرفته شود.