Atividade 1 - Planejamento de Experimento

Gabriel de Jesus Pereira

Exercício 3.7

The tensile strength of Portland cement is being studied. Four different mixing techniques can be used economically A completely randomized experiment was conducted and the following data were collected:

Mixing Technique		Tensile Strength (lb/in^2)		
1	3129	3000	2865	2890
2	3200	3300	2975	3150
3	2800	2900	2985	3050
4	2600	2700	2600	2765

O enunciado da questão nos diz que a resistência à tração do cimento de Portland está sendo estudada. Diz também que quatro diferentes técnicas de misturas podem ser utilizadas de forma econômica. Após isso, nos dá dados das quatro diferentes misturas da resistência à tração do cimento.

(a) Test the mixing techniques affect the strength of the cement. Use $\alpha = 0.05$.

O item (a) pede para testar o efeito das técnicas de mistura na resistência à tração do cimento, com um nível de significância de 5%.

O problema se trata de um experimento de fator único com a=4 (quantidade de misturas diferentes) e n=4 (réplicas de resistência à tração do cimento). Como se trata de diferentes níveis de fator único que queremos comparar, devemos utilizar Análise de Variância.

Calculando o total e a média para cada grupo:

Mixing Technique	Tensile Strength (lb/in^2)				y_i	\hat{y}_i
1	3129	3000	2865	2890	11884	2671
2	3200	3300	2975	3150	12625	3156.25

Mixing Technique		Tensile Strength (lb/in^2)			y_{i}	\hat{y}_i
3	2800	2900	2985	$3050 \\ 2765$	11735	2933.75
4	2600	2700	2600		10665	2666.25

$$y_{..} = 11884 + 12625 + 11735 + 10665 = 46909$$

$$\hat{y}_{..} = \frac{2971.00 + 3156.25 + 2933.75 + 2666.25}{4} = 2931.8125$$

Em que:

 $y_{i.} = \sum_{i=1}^{n} y_{ij}$: O total de observações em cada tratamento.

 $\bar{y}_{i.} = y_{i.}/n$: A média das observações em cada tratamento.

 $y_{..} = \sum_{i=1}^a \sum_{j=1}^n y_{ij}$: O total de todas as observações.

 $\bar{y}_{..}=y_{..}/N, N=an$: A média de todas as observações.

Soma total corrigida dos quadrados:

$$SS_T = \sum_{i=1}^4 \sum_{j=1}^4 (y_{ij} - \bar{y}_{..})^2 = 643648.4375$$

$$SS_{Treatments} = \frac{1}{4} \sum_{i=1}^{4} y_{i.}^{4} - \frac{y_{i.}^{4}}{16} = 489740.4375$$

$$SS_E = SS_T - SS_{Treatments} = 643648.4375 - 489740.4375 = 153908$$

$$MS_{Treatments} = \frac{SS_{Treatments}}{a-1} = \frac{489740.4375}{4-1} = 163246.8125$$

$$MS_E = \frac{SS_E}{N-a} = \frac{153908}{16-4} = 12825.667$$

$$F_0 = \frac{MS_{Treatments}}{MS_E} = \frac{163246.8125}{12825.667} = 12.728$$

Agora construindo a tabela da ANOVA:

Souce of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0
Mixing Techniques	489740.4375	3	163246.8125	12.728
Error	153908	12	12825.667	
Total	643648.4375	15		

Calculando a Fno R, chegamos em $F_{0.05,3,12}=3.49,\,(p-valor=4.88e-4)$

Dessa forma, vemos que F_0 (12.728) > $F_{0.05,3,12}$ (3.49). Assim, rejeitamos H_0 e concluímos que as diferentes técnicas de misturas afetam a resistência à tração do cimento.

(b) Construct a graphical display as described in Section 3.5.3 to compare the mean tensile strengths for the four mixing techniques. What are your conclusions?

(c) Use Fisher LSD method with $\alpha = 0.05$ to make comparisons between pairs of means.

$$LSD = t_{0.25,12} \sqrt{\frac{2MS_E}{4}} = 2.179 \sqrt{\frac{2x12825.667}{4}} = 174.4947$$

- (d) Construct a normal probability plot of the residuals. What conclusions would you draw about the validity of the normality assumption?
- (e) Plot the residuals versus the predicted tensile strength. Comment on the plot.
- (f) Prepare a scatter plot of the results to aid the interpretation of the results of this experiment.