Kvadratická rovnice, skupina $Alpha \alpha$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-5x^2 - 4x + 7 = 0$$
 .. ??? .. 2

(b)
$$-6x^2 + x - 4 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 7x^2 + 3x + 6$$
 ??? $-3/14$

(d)
$$f(x) = -3x^2 - 2x - 3$$
 ??? $-8/3$

(e)
$$-4x^2 - 4x + 24 = 0$$
 . ??? . -1

(f)
$$2x^2 - 13x + 18 = 0$$
 .. ??? .. $5/2$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Alpha \alpha$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 - 9x - 1 = 0$$
 ... ??? ... 1

(b)
$$-6x^2 - x + 1 = 0$$
 .. ??? .. 2

(c)
$$f(x) = -3x^2 - 4x - 2$$
 ??? $\frac{2}{3}$

(d)
$$f(x) = 7x^2 - 3x + 5$$
 ??? $61/28$

(e)
$$-x^2 - 4x + 21 = 0$$
 . ??? . -2

(f)
$$x^2 - 12x + 32 = 0$$
 .. ??? .. 12

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Alpha \alpha$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$2x^2 + 3x + 1 = 0$$
 ... ??? ... 2

(b)
$$-5x^2 - x + 7 = 0$$
 .. ??? .. 1

(c)
$$f(x) = 2x^2 + 6x + 6$$
 ??? $-3/2$

(d)
$$f(x) = -2x^2 + 4x + 5$$
 ??? $9/2$

(e)
$$-x^2 - 2x + 3 = 0$$
 .. ??? .. 1

(f)
$$-20x^2 - 9x - 1 = 0$$
 ??? $-9/20$

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Alpha \alpha$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-2x^2 + x - 4 = 0$$
 ... ??? ... 0

(b)
$$-2x^2 - 2x + 1 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 5x^2 + 2x + 1$$
 . ??? . $\frac{1}{5}$

(d)
$$f(x) = -2x^2 - 4x - 9$$
 ??? $-5/2$

(e)
$$-x^2 + 9x - 20 = 0$$
 .. ??? .. 10

(f)
$$-5x^2 + 2x + 3 = 0$$
 . ??? . $-8/5$

e

Kvadratická rovnice, skupina $Beta\ \beta$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 - 4x - 1 = 0$$
 ... ??? ... 0

(b)
$$-9x^2 - 4x + 5 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 4x^2 - 3x + 4$$
 ??? $^{3/8}$

(d)
$$f(x) = 8x^2 + 9x + 3$$
 ??? $^{15}/_{32}$

(e)
$$-4x^2 - 20x - 24 = 0$$
 ??? -4

(f)
$$-4x^2 - 10x - 6 = 0$$
 ??? $-5/2$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Beta\ \beta$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 + 4x + 7 = 0$$
 ... ??? ... 0

(b)
$$-3x^2 - 3x + 1 = 0$$
 . ??? . 0

(c)
$$f(x) = -x^2 - x + 9$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = 6x^2 - 6x + 1$$
 ??? $-1/2$

(e)
$$-x^2 - 3x - 2 = 0$$
 .. ??? .. -6

(f)
$$3x^2 + 3x - 18 = 0$$
 .. ??? .. 5

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Beta~\beta$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-6x^2 + 9x + 2 = 0$$
 . ??? . 2

(b)
$$3x^2 + x - 4 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 7x^2 - x - 8$$
 ??? $-1/14$

(d)
$$f(x) = 9x^2 - 6x + 4$$
 . ??? . 1

(e)
$$-x^2 + 9x - 20 = 0$$
 . ??? . 8

(f)
$$-8x^2 + 2x + 1 = 0$$
 . ??? . $^{3/4}$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Beta β -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 + x + 2 = 0$$
 ... ??? ... 2

(b)
$$7x^2 - 5x - 3 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -7x^2 - 6x + 3$$
 ??? $3/7$

(d)
$$f(x) = -x^2 - 3x + 4$$
 ??? $^{17}/_4$

(e)
$$4x^2 + 24x + 32 = 0$$
 . ??? . -5

(f)
$$-9x^2 + 3x + 6 = 0$$
 . ??? . $-5/3$

Kvadratická rovnice, skupina $Gamma \ \gamma$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 - 2x - 8 = 0$$
 ... ??? ... 1

(b)
$$-x^2 - x + 5 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -x^2 - x + 7$$
 ??? $-1/2$

(d)
$$f(x) = 4x^2 + 2x - 5$$
 ??? $-21/4$

(e)
$$x^2 + 8x + 12 = 0$$
 .. ??? .. -11

(f)
$$7x^2 + 9x + 2 = 0$$
 .. ??? .. $-9/7$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Gamma \ \gamma$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$2x^2 - 2x - 4 = 0$$
 ... ??? ... 2

(b)
$$-x^2 - 2x + 2 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -6x^2 - 9x + 2$$
 ??? $-3/4$

(d)
$$f(x) = 3x^2 - 3x + 3$$
 . ??? . $\frac{3}{4}$

(e)
$$-x^2 - 15x - 54 = 0$$
 . ??? . -15

(f)
$$-16x^2 + 10x - 1 = 0$$
 . ??? . $\frac{5}{8}$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Gamma~\gamma$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 + 3x + 3 = 0$$
 ??? 0

(b)
$$2x^2 + 2x - 2 = 0$$
 ??? 1

(c)
$$f(x) = 4x^2 + x - 6$$
 . ??? . $-1/8$

(d)
$$f(x) = -7x^2 - 2x - 4$$
 ???? $-13/7$

(e)
$$-4x^2 + 4x + 8 = 0$$
 ... ??? ... 1

(f)
$$6x^2 - 3x - 9 = 0$$
 ... ??? ... $5/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Gamma γ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 + 6x - 1 = 0$$
 ... ??? ... 2

(b)
$$-x^2 - 3x - 6 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 9x^2 + 2x + 8$$
 ??? $-1/9$

(d)
$$f(x) = -9x^2 + x + 1$$
 ??? $^{19}/_{36}$

(e)
$$x^2 - 7x + 6 = 0$$
 ... ??? ... 7

(f)
$$12x^2 - 5x - 3 = 0$$
 ??? $-13/_{12}$

4.

Kvadratická rovnice, skupina $Delta \delta$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-8x^2 - 4x + 6 = 0$$
 .. ??? .. 2

(b)
$$8x^2 + 6x + 6 = 0$$
 ... ??? ... 2

(c)
$$f(x) = x^2 - 3x + 8$$
 .. ??? .. $3/2$

(d)
$$f(x) = 5x^2 + 3x - 2$$
 ??? $-29/20$

(e)
$$5x^2 - 25x + 20 = 0$$
 .. ??? .. 6

(f)
$$5x^2 + 6x + 1 = 0$$
 ... ??? ... $-6/5$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Delta \delta$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 - 7x + 1 = 0$$
 ... ??? ... 2

(b)
$$4x^2 - 8x + 5 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 5x^2 + 3x - 6$$
 ??? $-3/10$

(d)
$$f(x) = x^2 + 3x - 4$$
 ??? $-17/4$

(e)
$$-2x^2 - 12x - 16 = 0$$
 ??? -6

(f)
$$-x^2 - 7x - 12 = 0$$
 .. ??? .. 1

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Delta \delta$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-2x^2 + x + 1 = 0$$
 ... ??? ... 2

(b)
$$-3x^2 - 2x - 7 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 7x^2 + 4x - 2$$
 . ??? . $\frac{2}{7}$

(d)
$$f(x) = 2x^2 - 6x + 5$$
 . ??? . -2

(e)
$$-3x^2 - 27x - 60 = 0$$
 . ??? . -8

(f)
$$-14x^2 - 17x - 5 = 0$$
 ??? $-3/14$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Delta \delta$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 + 4x + 6 = 0$$
 ... ??? ... 0

(b)
$$-2x^2 - 7x + 2 = 0$$
 .. ??? .. 0

(c)
$$f(x) = x^2 + 5x + 5$$
 ??? $-5/2$

(d)
$$f(x) = -x^2 - 7x - 1$$
 ???? $47/4$

(e)
$$-x^2 + 9x - 14 = 0$$
 .. ??? .. 7

(f)
$$-6x^2 + 2x + 4 = 0$$
 ??? $-5/$

4.

e

Kvadratická rovnice, skupina $Epsilon \ \epsilon$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$7x^2 + 4x - 6 = 0$$
 ... ??? ... 2

(b)
$$-6x^2 + 5x + 1 = 0$$
 .. ??? .. 1

(c)
$$f(x) = 8x^2 + 2x + 5$$
 ??? $-1/8$

(d)
$$f(x) = 3x^2 + 3x - 8$$
 ??? $-19/4$

(e)
$$-x^2 - 3x - 2 = 0$$
 .. ??? .. -3

(f)
$$-6x^2 - 4x + 2 = 0$$
 . ??? . $4/3$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Epsilon \epsilon$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$2x^2 - 5x - 6 = 0$$
 ... ??? ... 2

(b)
$$-x^2 + 4x + 4 = 0$$
 . ??? . 2

(c)
$$f(x) = 4x^2 - 3x - 7$$
 ??? $\frac{3}{8}$

(d)
$$f(x) = 6x^2 + 4x + 3$$
 ??? $\frac{5}{6}$

(e)
$$-x^2 - 5x - 6 = 0$$
 . ??? . -4

(f)
$$9x^2 + 3x - 6 = 0$$
 . ??? . $-5/3$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Epsilon~\epsilon$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 + x + 3 = 0$$
 ??? 0

(b)
$$x^2 - 8x + 5 = 0$$
 ??? 0

(c)
$$f(x) = -8x^2 + 2x + 2$$
 ??? $-1/8$

(d)
$$f(x) = -4x^2 - x + 8$$
 ??? $65/16$

(e)
$$-5x^2 - 30x - 40 = 0$$
 . ??? . -6

(f)
$$4x^2 - 10x + 4 = 0$$
 . ??? . $-3/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Epsilon \epsilon$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-9x^2 - 4x - 4 = 0$$
 .. ??? .. 1

(b)
$$-3x^2 + 4x + 1 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 8x^2 - 2x - 6$$
 ??? $-1/8$

(d)
$$f(x) = 2x^2 + 8x - 1$$
 ??? $-17/2$

(e)
$$x^2 - 3x + 2 = 0$$
 ... ??? ... 3

(f)
$$5x^2 + 4x - 1 = 0$$
 .. ??? .. $-4/5$

4.

e

Kvadratická rovnice, skupina $Zeta \zeta$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 - 6x + 2 = 0$$
 .. ??? .. 2

(b)
$$2x^2 + 7x + 9 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 6x^2 - x + 2$$
 ??? $-1/12$

(d)
$$f(x) = 2x^2 - 8x + 7$$
 ??? $-9/2$

(e)
$$-x^2 - 15x - 54 = 0$$
 ??? -15

(f)
$$-10x^2 - 4x + 6 = 0$$
 ??? 8/5

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Zeta \zeta$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 + 2x - 7 = 0$$
 ... ??? ... 0

(b)
$$4x^2 - 2x + 7 = 0$$
 ??? 0

(c)
$$f(x) = 9x^2 + 4x + 3$$
 . ??? . $-2/9$

(d)
$$f(x) = -9x^2 - 4x - 1$$
 ??? $-1/18$

(e)
$$x^2 + 3x - 4 = 0$$
 ??? -3

(f)
$$2x^2 + x - 21 = 0$$
 .. ??? .. $-13/2$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Zeta \zeta$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 + 3x + 1 = 0$$
 ... ??? ... 1

(b)
$$5x^2 - 9x + 6 = 0$$
 ???? 0

(c)
$$f(x) = 3x^2 - x - 8$$
 . ??? . $-1/6$

(d)
$$f(x) = -9x^2 - x - 2$$
 ??? $-35/36$

(e)
$$-x^2 - 5x - 4 = 0$$
 ... ??? ... -3

(f)
$$4x^2 - 6x - 4 = 0$$
 ... ??? ... $3/2$

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Zeta \zeta$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 - 2x + 2 = 0$$
 . ??? . 2

(b)
$$x^2 - 4x + 4 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 5x^2 - 3x - 7$$
 ??? $\frac{3}{10}$

(d)
$$f(x) = 2x^2 + 2x - 6$$
 ??? $-7/2$

(e)
$$6x^2 - 24x + 18 = 0$$
 . ??? . 5

(f)
$$-2x^2 - 5x + 3 = 0$$
 . ??? . $\frac{7}{2}$

Kvadratická rovnice, skupina $Eta~\eta$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 + x + 6 = 0$$
 ... ??? ... 1

(b)
$$-3x^2 - x - 7 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -x^2 + 7x - 3$$
 . ??? . $\frac{7}{2}$

(d)
$$f(x) = -5x^2 + x + 8$$
 ??? $^{161}/_{20}$

(e)
$$2x^2 + 8x - 42 = 0$$
 .. ??? .. -3

(f)
$$14x^2 - 5x - 1 = 0$$
 .. ??? .. $5/14$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Eta \eta$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 - 5x - 4 = 0$$
 ... ??? ... 2

(b)
$$3x^2 - 4x + 3 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -3x^2 - 3x - 1$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = -6x^2 - 4x + 5$$
 ??? $^{19}/_{6}$

(e)
$$3x^2 + 15x + 18 = 0$$
 .. ??? .. -5

(f)
$$-4x^2 + 2x + 6 = 0$$
 . ??? . $-5/2$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Eta~\eta$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 7x + 1 = 0$$
 ... ??? ... 2

(b)
$$-2x^2 + 2x + 9 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 8x^2 + 9x - 6$$
 ??? $9/16$

(d)
$$f(x) = -x^2 - 4x - 4$$
 . ??? . 2

(e)
$$-6x^2 - 6x + 72 = 0$$
 . ??? . -1

(f)
$$-2x^2 - 3x + 20 = 0$$
 ??? $-13/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Eta \eta$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 - 2x - 3 = 0$$
 ... ??? ... 2

(b)
$$2x^2 - x - 2 = 0$$
 ??? 2

(c)
$$f(x) = -7x^2 + 3x + 4$$
 ???? $\frac{3}{14}$

(d)
$$f(x) = 2x^2 - x + 5$$
 . ??? . $^{19}/8$

(e)
$$2x^2 + 6x - 20 = 0$$
 .. ??? .. -4

(f)
$$-3x^2 - 11x - 10 = 0$$
 ??? $\frac{1}{3}$

4.

Kvadratická rovnice, skupina $Theta \theta$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-8x^2 + x + 8 = 0$$
 ... ??? ... 2

(b)
$$6x^2 + x + 1 = 0$$
 ??? 1

(c)
$$f(x) = -x^2 - 7x + 3$$
 ??? $-7/x$

(d)
$$f(x) = -7x^2 - 2x - 3$$
 ??? $-20/7$

(e)
$$-2x^2 - 16x - 24 = 0$$
 . ??? . -5

(f)
$$4x^2 - 4x - 8 = 0$$
 ... ??? ... -3

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Theta \theta$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 - 4x - 4 = 0$$
 .. ??? .. 2

(b)
$$4x^2 - x + 2 = 0$$
 ... ??? ... 2

(c)
$$f(x) = x^2 + 6x + 2$$
 . ??? . 3

(d)
$$f(x) = x^2 + 7x + 2$$
 ??? $-45/4$

(e)
$$-2x^2 + 10x - 12 = 0$$
 ??? 8

(f)
$$2x^2 - 3x - 9 = 0$$
 ... ??? ... $3/2$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Theta \theta$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$8x^2 - 9x - 4 = 0$$
 ... ??? ... 2

(b)
$$4x^2 - 6x + 3 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -x^2 - 2x - 5$$
 . ??? . 1

(d)
$$f(x) = 7x^2 + x - 1$$
 ??? $-15/28$

(e)
$$-2x^2 + 8x - 6 = 0$$
 .. ??? .. 4

(f)
$$-4x^2 + 2x + 12 = 0$$
 ??? $-7/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Theta \theta$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 3x + 3 = 0$$
 ... ??? ... 0

(b)
$$3x^2 + 4x + 6 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -4x^2 - 7x + 3$$
 ???? $-7/8$

(d)
$$f(x) = -3x^2 + x + 4$$
 ??? $^{25}/_{12}$

(e)
$$-3x^2 - 9x - 6 = 0$$
 .. ??? .. -3

(f)
$$3x^2 - 15x + 18 = 0$$
 .. ??? .. 1

4.

Kvadratická rovnice, skupina $Iota \iota$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 - 9x - 1 = 0$$
 ... ??? ... 2

(b)
$$2x^2 - 3x - 5 = 0$$
 ??? 1

(c)
$$f(x) = -2x^2 + 4x - 1$$
 . ??? . 1

(d)
$$f(x) = -7x^2 - x - 3$$
 ???? $^{-41}/_{28}$

(e)
$$-x^2 - 5x + 36 = 0$$
 .. ??? .. -7

(f)
$$-x^2 - 2x + 15 = 0$$
 .. ??? .. -2

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Iota \iota$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 - x + 3 = 0$$
 ... ??? ... 0

(b)
$$-4x^2 - 4x + 5 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -2x^2 + 2x - 3$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = 6x^2 + x + 5$$
 ??? $59/24$

(e)
$$-x^2 + 9x - 14 = 0$$
 .. ??? .. 9

(f)
$$4x^2 - x - 3 = 0$$
 ... ??? ... $\frac{7}{4}$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Iota \iota$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-6x^2 - 2x + 3 = 0$$
 .. ??? .. 1

(b)
$$8x^2 + 2x + 7 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -5x^2 - x - 3$$
 ??? $-1/10$

(d)
$$f(x) = 8x^2 + 9x + 5$$
 ??? $-1/32$

(e)
$$x^2 + x - 6 = 0$$
 ??? 1

(f)
$$-3x^2 + 5x + 2 = 0$$
 .. ??? .. $5/3$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina *Iota ι* -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-3x^2 - 5x - 1 = 0$$
 .. ??? .. 1

(b)
$$6x^2 + 3x + 3 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -6x^2 + 6x - 4$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = -x^2 - x + 1$$
 . ??? . $\frac{3}{4}$

(e)
$$x^2 - 15x + 56 = 0$$
 ... ??? ... 15

(f)
$$4x^2 + 12x + 8 = 0$$
 . ??? . -3

4.

Kvadratická rovnice, skupina Kappa κ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 + 4x - 6 = 0$$
 .. ??? .. 0

(b)
$$2x^2 - 2x + 3 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 8x^2 + 3x + 2$$
 ??? $-3/16$

(d)
$$f(x) = -x^2 - 3x + 1$$
 ??? $^{11}/_4$

(e)
$$2x^2 + 16x + 24 = 0$$
 . ??? . -8

(f)
$$-8x^2 - 10x - 2 = 0$$
 ??? $-3/4$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Kappa κ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - x + 7 = 0$$
 ??? 0

(b)
$$3x^2 - 4x - 1 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 4x^2 - 9x + 5$$
 ??? $9/8$

(d)
$$f(x) = -2x^2 - 5x - 2$$
 ??? $9/8$

(e)
$$-x^2 - 7x - 12 = 0$$
 . ??? . -8

(f)
$$4x^2 + 18x + 20 = 0$$
 . ??? . $\frac{1}{2}$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Kappa κ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 + 9x + 3 = 0$$
 ... ??? ... 2

(b)
$$-4x^2 - 6x + 2 = 0$$
 .. ??? .. 0

(c)
$$f(x) = -4x^2 + 8x - 7$$
 ???

(d)
$$f(x) = 5x^2 + 6x + 2$$
 ??? $-4/5$

(e)
$$x^2 - 4x - 45 = 0$$
 ... ??? ... 2

(f)
$$-20x^2 - 6x + 2 = 0$$
 ??? $-7/10$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Kappa \kappa$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 9x - 2 = 0$$
 .. ??? .. 2

(b)
$$-x^2 + 3x - 1 = 0$$
 ... ??? ... 1

(c)
$$f(x) = x^2 + 4x + 4$$
 . ??? . 2

(d)
$$f(x) = -x^2 - 9x + 1$$
 ??? 83/4

(e)
$$-3x^2 - 6x + 9 = 0$$
 .. ??? .. 0

(f)
$$x^2 + 5x + 4 = 0$$
 .. ??? .. -3

4.

Kvadratická rovnice, skupina $Lambda \lambda$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$9x^2 + x - 1 = 0$$
 ... ??? ... 0

(b)
$$5x^2 - 9x + 2 = 0$$
 ... ??? ... 1

(c)
$$f(x) = 6x^2 + 4x + 8$$
 ??? $-1/3$

(d)
$$f(x) = 3x^2 + 6x + 5$$
 . ??? . 2

(e)
$$-2x^2 - 26x - 84 = 0$$
 ??? -14

(f)
$$-6x^2 - 9x - 3 = 0$$
 ??? $-3/2$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Lambda \lambda$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$9x^2 - 2x - 4 = 0$$
 ... ??? ... 2

(b)
$$3x^2 - 6x + 1 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 6x^2 - 5x - 6$$
 ??? $\frac{5}{12}$

(d)
$$f(x) = 2x^2 + 5x + 3$$
 ??? $-13/8$

(e)
$$x^2 - 4x - 12 = 0$$
 ... ??? ... 6

(f)
$$-2x^2 - 11x - 9 = 0$$
 ??? $-11/2$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Lambda~\lambda$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-2x^2 + 7x - 4 = 0$$
 ... ??? ... 2

(b)
$$-7x^2 - x - 5 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -5x^2 - 5x + 2$$
 ??? 1/2

(d)
$$f(x) = 5x^2 + 7x - 6$$
 ??? $-109/20$

(e)
$$-2x^2 + 10x + 12 = 0$$
 .. ??? .. 8

(f)
$$10x^2 - 4x - 6 = 0$$
 .. ??? .. 8/5

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Lambda \lambda$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 5x - 6 = 0$$
 ... ??? ... 2

(b)
$$5x^2 - x + 3 = 0$$
 ??? 0

(c)
$$f(x) = 4x^2 - x - 8$$
 . ??? . $\frac{1}{8}$

(d)
$$f(x) = 4x^2 + 7x - 4$$
 ??? $-81/16$

(e)
$$4x^2 - 24x + 20 = 0$$
 .. ??? .. 4

(f)
$$x^2 + 6x - 16 = 0$$
 ... ??? ... 10

e

Kvadratická rovnice, skupina $Mu \mu$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 + x - 4 = 0$$
 ... ??? ... 0

(b)
$$x^2 + 6x + 3 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -x^2 + x + 2$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = 6x^2 + 4x - 1$$
 ??? $-5/3$

(e)
$$x^2 - 7x + 6 = 0$$
 ... ??? ... 7

(f)
$$-5x^2 - 15x - 10 = 0$$
 ??? 1

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina Mu μ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 + 6x + 2 = 0$$
 ... ??? ... 0

(b)
$$-x^2 + 2x + 3 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -2x^2 - x + 4$$
 ??? $-1/4$

(d)
$$f(x) = 2x^2 - 3x - 1$$
 ??? $-13/8$

(e)
$$-2x^2 + 4x + 16 = 0$$
 . ??? . 2

(f)
$$3x^2 - 12x + 9 = 0$$
 . ??? . -2

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina Mu μ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$2x^2 - 7x + 4 = 0$$
 ... ??? ... 2

(b)
$$2x^2 + 3x - 8 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -7x^2 - 6x - 9$$
 ??? $-3/7$

(d)
$$f(x) = 5x^2 - x + 1$$
 . ???? . $\frac{9}{20}$

(e)
$$-4x^2 + 12x - 8 = 0$$
 .. ??? .. 4

(f)
$$4x^2 + 6x + 2 = 0$$
 .. ??? .. $-1/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Mu \mu$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - 5x + 2 = 0$$
 ??? 2

(b)
$$x^2 + x - 2 = 0$$
 ???? 2

(c)
$$f(x) = 3x^2 + 7x - 9$$
 . ??? . $\frac{7}{6}$

(d)
$$f(x) = 6x^2 - 5x - 5$$
 ??? $-85/24$

(e)
$$-4x^2 + 16x - 12 = 0$$
 . ??? . 3

(f)
$$-8x^2 + 18x - 10 = 0$$
 . ??? . $\frac{9}{4}$

e

Kvadratická rovnice, skupina $Nu \nu$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - 5x - 5 = 0$$
 ??? 2

(b)
$$-4x^2 - 7x + 1 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 5x^2 + 2x - 6$$
 . ??? . $\frac{1}{5}$

(d)
$$f(x) = -2x^2 + 7x + 1$$
 ??? $53/8$

(e)
$$4x^2 - 8x - 32 = 0$$
 .. ??? .. 2

(f)
$$-12x^2 + 2x + 2 = 0$$
 . ??? . $\frac{5}{6}$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Nu \nu$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 + 6x + 2 = 0$$
 ... ??? ... 0

(b)
$$7x^2 - 3x + 9 = 0$$
 ... ??? ... 0

(c)
$$f(x) = -2x^2 - 2x - 3$$
 ??? $-1/2$

(d)
$$f(x) = -2x^2 + x - 5$$
 ??? $^{-19}/8$

(e)
$$x^2 + 7x + 6 = 0$$
 ??? -4

(f)
$$-x^2 - 6x - 5 = 0$$
 .. ??? .. -4

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Nu \nu$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 + 5x + 2 = 0$$
 .. ??? .. 0

(b)
$$3x^2 - 5x + 2 = 0$$
 .. ??? .. 1

(c)
$$f(x) = -x^2 + 8x + 4$$
 ???? -4

(d)
$$f(x) = -x^2 - 2x - 2$$
 ??? 0

(e)
$$x^2 + 6x + 8 = 0$$
 ... ??? ... -4

(f)
$$30x^2 - 16x + 2 = 0$$
 ??? $-2/15$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Nu \nu$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$7x^2 + x + 2 = 0$$
 ??? 0

(b)
$$-4x^2 - 5x - 7 = 0$$
 .. ??? .. 1

(c)
$$f(x) = -4x^2 + 5x - 4$$
 ??? $-5/8$

(d)
$$f(x) = -7x^2 + 6x + 4$$
 ??? $^{23}/_{7}$

(e)
$$-x^2 + 4x + 21 = 0$$
 .. ??? .. 4

(f)
$$-4x^2 - 12x - 5 = 0$$
 . ??? . -3

4.

e

Kvadratická rovnice, skupina $Xi \xi$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$8x^2 - 9x - 6 = 0$$
 ??? 2

(b)
$$3x^2 - 3x + 5 = 0$$
 ??? 1

(c)
$$f(x) = -7x^2 + 5x + 1$$
 ???? $-5/14$

(d)
$$f(x) = 5x^2 + 5x - 6$$
 ??? $-29/4$

(e)
$$-4x^2 - 20x - 24 = 0$$
 . ??? . -2

(f)
$$x^2 + 8x + 15 = 0$$
 ... ??? ... -8

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Xi \xi$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-5x^2 + 2x - 3 = 0$$
 .. ??? .. 0

(b)
$$-x^2 - 2x + 9 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -5x^2 + 2x - 4$$
 ??? $-1/5$

(d)
$$f(x) = -x^2 - x - 4$$
 . ??? . $-7/4$

(e)
$$-2x^2 + 8x - 6 = 0$$
 .. ??? .. 4

(f)
$$-48x^2 + 14x - 1 = 0$$
 ??? $-1/24$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Xi \xi$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 - x + 6 = 0$$
 ??? 0

(b)
$$4x^2 + 4x + 2 = 0$$
 ???? 0

(c)
$$f(x) = -3x^2 - 9x + 3$$
 ??? $-3/2$

(d)
$$f(x) = -5x^2 - x - 8$$
 ??? $-79/20$

(e)
$$-4x^2 + 16x + 20 = 0$$
 .. ??? .. 7

(f)
$$24x^2 - 17x + 3 = 0$$
 . ??? . $-1/24$

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Xi \xi$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 - 5x + 1 = 0$$
 .. ??? .. 2

(b)
$$-2x^2 - 8x + 3 = 0$$
 .. ??? .. 1

(c)
$$f(x) = 7x^2 + 3x - 6$$
 ???? $-3/14$

(d)
$$f(x) = 4x^2 - 2x - 6$$
 ??? $-13/4$

(e)
$$-2x^2 - 8x + 24 = 0$$
 . ??? . -4

(f)
$$-32x^2 + 12x - 1 = 0$$
 ??? $-1/8$

Kvadratická rovnice, skupina *Omicron o* -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - 2x - 3 = 0$$
 ??? 1

(b)
$$-x^2 - 8x - 2 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 4x^2 + 5x - 4$$
 . ??? . $-5/8$

(d)
$$f(x) = -9x^2 + 2x - 2$$
 ??? $-17/9$

(e)
$$x^2 - 6x + 5 = 0$$
 ??? 7

(f)
$$3x^2 - 5x - 2 = 0$$
 ... ??? ... $5/3$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina *Omicron o* -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 + 3x - 8 = 0$$
 ??? 1

(b)
$$7x^2 + 4x - 6 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -4x^2 - 2x + 2$$
 ??? $\frac{1}{4}$

(d)
$$f(x) = 7x^2 + 5x - 4$$
 ??? $-81/28$

(e)
$$-3x^2 - 15x - 12 = 0$$
 . ??? . -3

(f)
$$4x^2 + 8x + 3 = 0$$
 .. ??? .. -2

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina Omicron o -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-7x^2 - 3x + 2 = 0$$
 . ??? . 1

(b)
$$-x^2 - 3x + 2 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 5x^2 + x - 9$$
 ??? $-1/10$

(d)
$$f(x) = 2x^2 - 5x + 7$$
 ??? $3/8$

(e)
$$3x^2 - 12x + 9 = 0$$
 ... ??? ... 4

(f)
$$-20x^2 + 6x + 2 = 0$$
 ??? $\frac{3}{10}$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina *Omicron o*-iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-7x^2 + x - 2 = 0$$
 ... ??? ... 0

(b)
$$-3x^2 + 3x + 2 = 0$$
 .. ??? .. 0

(c)
$$f(x) = -x^2 + 4x + 7$$
 . ??? . 2

(d)
$$f(x) = -3x^2 + 2x - 3$$
 ??? $-\frac{7}{6}$

(e)
$$3x^2 + 27x + 60 = 0$$
 .. ??? .. -9

(f)
$$-4x^2 + 6x - 2 = 0$$
 .. ??? .. $\frac{1}{2}$

4.

e

Kvadratická rovnice, skupina Pi π -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-6x^2 - 4x - 8 = 0$$
 .. ??? .. 2

(b)
$$-3x^2 - 3x - 4 = 0$$
 .. ??? .. 0

(c)
$$f(x) = 8x^2 - 2x - 9$$
 ??? $-1/8$

(d)
$$f(x) = -2x^2 - 7x - 5$$
 ??? $^{29}/8$

(e)
$$x^2 + 6x - 16 = 0$$
 ... ??? ... -5

(f)
$$-10x^2 + 6x + 4 = 0$$
 . ??? . $3/5$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Pi π -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-4x^2 + 9x + 5 = 0$$
 ... ??? ... 2

(b)
$$-2x^2 - 2x + 2 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -7x^2 + 3x - 2$$
 ??? $-3/14$

(d)
$$f(x) = x^2 - 6x - 8$$
 . ??? . -13

(e)
$$-3x^2 + 15x - 18 = 0$$
 ... ??? ... 5

(f)
$$4x^2 + x - 5 = 0$$
 ... ??? ... $-1/4$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Pi π -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 - 2x - 3 = 0$$
 ... ??? ... 2

(b)
$$-x^2 - x + 4 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -x^2 - 3x + 8$$
 ??? $-3/2$

(d)
$$f(x) = x^2 + x - 2$$
 . ??? . $-5/4$

(e)
$$-2x^2 - 2x + 12 = 0$$
 . ??? . -4

(f)
$$4x^2 + x - 3 = 0$$
 ... ??? ... $-\frac{7}{4}$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Pi π -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$7x^2 + x + 1 = 0$$
 ??? 0

(b)
$$6x^2 + 8x + 2 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -3x^2 + 9x - 1$$
 ???? $\frac{3}{2}$

(d)
$$f(x) = -7x^2 - 3x + 2$$
 ??? $65/28$

(e)
$$-x^2 + 13x - 36 = 0$$
 . ??? . 11

(f)
$$6x^2 + 10x + 4 = 0$$
 .. ??? .. $\frac{1}{3}$

4.

Kvadratická rovnice, skupina $Rho \rho$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - 3x - 5 = 0$$
 ??? 2

(b)
$$5x^2 - x + 1 = 0$$
 ??? 1

(c)
$$f(x) = -x^2 + 8x + 1$$
 . ??? . -4

(d)
$$f(x) = -4x^2 + 7x - 5$$
 ??? $-31/16$

(e)
$$-x^2 - 11x - 28 = 0$$
 .. ??? .. -10

(f)
$$6x^2 + 8x + 2 = 0$$
 ... ??? ... $-4/3$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Rho \rho$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 8x - 6 = 0$$
 ... ??? ... 2

(b)
$$-8x^2 - 2x - 6 = 0$$
 ... ??? ... 1

(c)
$$f(x) = 2x^2 - x - 1$$
 .. ??? .. $\frac{1}{4}$

(d)
$$f(x) = -5x^2 - 8x + 1$$
 ??? $37/10$

(e)
$$-3x^2 - 3x + 60 = 0$$
 .. ??? .. -1

(f)
$$-3x^2 - 10x - 7 = 0$$
 . ??? . $-4/3$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Rho \rho$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-3x^2 + 3x + 4 = 0$$
 . ??? . 2

(b)
$$x^2 + 2x + 6 = 0$$
 ... ???? ... 2

(c)
$$f(x) = 2x^2 + 4x - 5$$
 ???? -1

(d)
$$f(x) = -x^2 + 4x + 8$$
 ???

(e)
$$4x^2 - 4x - 24 = 0$$
 . ??? . 2

(f)
$$6x^2 + 19x + 15 = 0$$
 ??? $-1/6$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Rho \rho$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-6x^2 - 5x - 1 = 0$$
 .. ??? .. 2

(b)
$$6x^2 - 9x + 2 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -5x^2 - 5x - 4$$
 ??? $-1/2$

(d)
$$f(x) = -2x^2 - x - 2$$
 ??? $-\frac{7}{8}$

(e)
$$x^2 - 15x + 54 = 0$$
 .. ??? .. 12

(f)
$$-2x^2 + x + 28 = 0$$
 . ??? . $^{15}/_{2}$

Kvadratická rovnice, skupina $Sigma~\sigma$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 7x + 1 = 0$$
 ... ??? ... 2

(b)
$$-2x^2 - 8x - 3 = 0$$
 .. ??? .. 0

(c)
$$f(x) = -5x^2 + 7x - 3$$
 ???? $\frac{7}{10}$

(d)
$$f(x) = 3x^2 + 4x - 6$$
 ??? $-22/3$

(e)
$$7x^2 - 28x + 21 = 0$$
 .. ??? .. 7

(f)
$$-2x^2 + 4x + 16 = 0$$
 . ??? . -6

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Sigma\ \sigma$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-3x^2 + 6x + 1 = 0$$
 .. ??? .. 2

(b)
$$-5x^2 + 4x + 2 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -3x^2 + 2x + 5$$
 ??? $\frac{1}{3}$

(d)
$$f(x) = 2x^2 - x - 1$$
 ??? $-5/8$

(e)
$$-2x^2 + 2x + 4 = 0$$
 .. ??? .. 1

(f)
$$-4x^2 - 12x - 8 = 0$$
 . ??? . 1

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Sigma~\sigma$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 - 4x - 5 = 0$$
 ... ??? ... 2

(b)
$$4x^2 - 6x + 2 = 0$$
 .. ??? .. 1

(c)
$$f(x) = 7x^2 + 7x + 2$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = x^2 - 8x + 1$$
 ??? $-31/2$

(e)
$$x^2 - 3x - 10 = 0$$
 ... ??? ... 4

(f)
$$6x^2 - 15x + 9 = 0$$
 ??? $-1/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Sigma\ \sigma$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 - 4x + 7 = 0$$
 ... ??? ... 0

(b)
$$x^2 + 4x + 2 = 0$$
 ??? 0

(c)
$$f(x) = -6x^2 - x + 3$$
 ??? $-1/12$

(d)
$$f(x) = 5x^2 + 3x - 6$$
 ??? $-69/20$

(e)
$$-3x^2 - 24x - 45 = 0$$
 . ??? . -8

(f)
$$-4x^2 + 2x + 2 = 0$$
 .. ??? .. $\frac{1}{2}$

4.

Kvadratická rovnice, skupina $Tau \tau$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 + 4x - 4 = 0$$
 ... ??? ... 2

(b)
$$-x^2 + 3x + 1 = 0$$
 .. ??? .. 2

(c)
$$f(x) = x^2 + x - 1$$
 . ??? . $-1/2$

(d)
$$f(x) = 8x^2 + 2x - 8$$
 ??? $-33/8$

(e)
$$2x^2 + 2x - 12 = 0$$
 .. ??? .. -1

(f)
$$8x^2 + 18x + 10 = 0$$
 . ??? . $\frac{1}{4}$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Tau \tau$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$7x^2 + 2x + 3 = 0$$
 ... ??? ... 0

(b)
$$x^2 - 6x - 8 = 0$$
 ??? 1

(c)
$$f(x) = -6x^2 + 2x - 1$$
 ??? $-1/6$

(d)
$$f(x) = 5x^2 + 2x - 3$$
 ??? $-17/10$

(e)
$$-4x^2 - 12x - 8 = 0$$
 . ??? . -3

(f)
$$-6x^2 + 15x - 9 = 0$$
 . ??? . $-1/2$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Tau \ au$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 - 4x + 7 = 0$$
 ... ??? ...

(b)
$$-7x^2 + 9x + 5 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 4x^2 + 3x - 2$$
 ??? $-3/8$

(d)
$$f(x) = -3x^2 + 3x - 3$$
 ??? $-3/4$

(e)
$$-2x^2 + 6x + 56 = 0$$
 .. ??? .. 0

(f)
$$-4x^2 + 6x + 10 = 0$$
 . ??? . $3/2$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Tau \tau$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 + 5x - 7 = 0$$
 ... ??? ... 2

(b)
$$-4x^2 + 3x - 5 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -3x^2 - 8x - 5$$
 ??? $\frac{4}{3}$

(d)
$$f(x) = x^2 - 6x + 4$$
 . ??? . -7

(e)
$$-x^2 - x + 2 = 0$$
 ... ??? ... 1

(f)
$$x^2 + 5x + 6 = 0$$
 .. ??? .. -1

4.

e

Kvadratická rovnice, skupina $Upsilon \ \upsilon$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-3x^2 - 7x - 3 = 0$$
 . ??? . 2

(b)
$$-x^2 - 7x - 1 = 0$$
 .. ??? .. 2

(c)
$$f(x) = 9x^2 - x - 4$$
 ??? $-1/18$

(d)
$$f(x) = x^2 + 2x - 3$$
 ??? $-5/2$

(e)
$$-6x^2 - 12x + 18 = 0$$
 ???

(f)
$$x^2 - 2x - 24 = 0$$
 .. ??? .. 2

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Upsilon \ \upsilon$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 + 9x - 5 = 0$$
 ... ??? ... 2

(b)
$$-x^2 - 4x - 3 = 0$$
 ... ??? ... 1

(c)
$$f(x) = 6x^2 + 3x + 2$$
 ??? $-1/4$

(d)
$$f(x) = -2x^2 - 4x + 7$$
 ???? $^{11}/_2$

(e)
$$x^2 + 7x + 6 = 0$$
 ... ??? ... -7

(f)
$$4x^2 + 10x + 4 = 0$$
 .. ??? .. $3/2$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Upsilon \ \upsilon$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 + 2x - 1 = 0$$
 .. ??? .. 1

(b)
$$-2x^2 - 3x + 9 = 0$$
 . ??? . 2

(c)
$$f(x) = 3x^2 - 4x - 3$$
 ??? $\frac{2}{3}$

(d)
$$f(x) = -2x^2 - 2x + 3$$
 ??? 2

(e)
$$-5x^2 + 30x - 40 = 0$$
 ???

(f)
$$3x^2 - 12x + 9 = 0$$
 . ??? .

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina Upsilon v-iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - x + 2 = 0$$
 ??? 0

(b)
$$5x^2 + 4x + 7 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -7x^2 + 5x + 2$$
 ??? $\frac{5}{14}$

(d)
$$f(x) = 6x^2 - 8x - 6$$
 ??? $-17/3$

(e)
$$2x^2 - 24x + 70 = 0$$
 . ??? . 12

(f)
$$12x^2 + 2x - 4 = 0$$
 . ??? . $-\frac{7}{6}$

4.

e

Písmeno Braillovei

abecedy

Kvadratická rovnice, skupina $Phi \phi$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 - 2x + 1 = 0$$
 ... ??? ... 0

(b)
$$-6x^2 - 5x + 4 = 0$$
 .. ??? .. 2

(c)
$$f(x) = -5x^2 + 4x + 4$$
 ??? $-2/5$

(d)
$$f(x) = 4x^2 - 3x + 1$$
 ???? $-1/16$

(e)
$$2x^2 + 14x + 20 = 0$$
 .. ??? .. -7

(f)
$$-40x^2 + 18x - 2 = 0$$
 ??? $-1/20$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Phi \phi$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$6x^2 + 4x + 8 = 0$$
 .. ??? .. 0

(b)
$$x^2 - 6x + 8 = 0$$
 ... ??? ... 0

(c)
$$f(x) = x^2 - 7x - 4$$
 ???? $-7/2$

(d)
$$f(x) = -x^2 + 5x + 6$$
 ??? $37/4$

(e)
$$-2x^2 + 18x - 40 = 0$$
 ??? 11

(f)
$$12x^2 + 10x + 2 = 0$$
 ??? $-1/6$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Phi \phi$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 + 4x + 1 = 0$$
 ... ??? ... 2

(b)
$$9x^2 - 6x + 3 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 5x^2 + 7x - 3$$
 ??? $-7/10$

(d)
$$f(x) = -x^2 + x + 9$$
 ??? $^{19}/_4$

(e)
$$-2x^2 + 22x - 56 = 0$$
 ??? 11

(f)
$$3x^2 + 11x + 6 = 0$$
 . ??? . $-11/3$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Phi \phi$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$2x^2 - 3x - 5 = 0$$
 ... ??? ... 2

(b)
$$3x^2 + 2x + 5 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -7x^2 + 4x - 2$$
 ??? $-2/7$

(d)
$$f(x) = 5x^2 - 2x + 3$$
 ??? $^{13}/_{10}$

(e)
$$-x^2 - 14x - 48 = 0$$
 . ??? . -17

(f)
$$3x^2 - x - 2 = 0$$
 ... ??? ... $5/3$

e

Kvadratická rovnice, skupina $\mathit{Chi}\ \chi$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$9x^2 + 3x + 7 = 0$$
 ... ??? ... 0

(b)
$$5x^2 - 8x + 2 = 0$$
 ... ??? ... 0

(c)
$$f(x) = 2x^2 - 9x - 4$$
 . ??? . $\frac{9}{4}$

(d)
$$f(x) = 7x^2 - 4x - 6$$
 ??? $-46/7$

(e)
$$x^2 - 11x + 28 = 0$$
 .. ??? .. 11

(f)
$$45x^2 + x - 2 = 0$$
 . ??? . $-19/45$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $\mathit{Chi}\ \chi$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$x^2 - 4x + 9 = 0$$
 ... ??? ... 0

(b)
$$x^2 - 5x + 4 = 0$$
 ... ??? ... 1

(c)
$$f(x) = -3x^2 + 3x + 3$$
 ??? $\frac{1}{2}$

(d)
$$f(x) = -4x^2 - 4x + 1$$
 ??? 2

(e)
$$x^2 + 6x + 8 = 0$$
 ... ??? ... -5

(f)
$$-18x^2 - 15x - 3 = 0$$
 ??? $-1/6$

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $\mathit{Chi}\ \chi$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$3x^2 + 4x + 2 = 0$$
 ... ??? ... 0

(b)
$$5x^2 + 3x - 5 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 2x^2 - 3x - 5$$
 ??? $-3/4$

(d)
$$f(x) = -3x^2 - 6x - 5$$
 ??? $\frac{1}{2}$

(e)
$$-x^2 + 4x - 3 = 0$$
 .. ??? .. 6

(f)
$$-2x^2 - 6x - 4 = 0$$
 .. ??? .. 1

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $\mathit{Chi}\ \chi$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-2x^2 + x - 1 = 0$$
 ... ??? ... 0

(b)
$$-x^2 + x + 2 = 0$$
 ???? 2

(c)
$$f(x) = 6x^2 - 4x + 2$$
 . ???? . $\frac{1}{3}$

(d)
$$f(x) = 8x^2 - 5x - 5$$
 ??? $-105/32$

(e)
$$-2x^2 - 2x + 4 = 0$$
 .. ??? .. -1

(f)
$$-8x^2 + 6x - 1 = 0$$
 . ??? . $-1/4$

4.

e

Kvadratická rovnice, skupina $Psi \ \psi$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 - 4x + 3 = 0$$
 .. ??? .. 2

(b)
$$4x^2 - 2x - 5 = 0$$
 .. ??? .. 1

(c)
$$f(x) = 3x^2 - 3x + 4$$
 ??? $-1/2$

(d)
$$f(x) = -x^2 - 5x + 5$$
 ??? $\frac{35}{4}$

(e)
$$2x^2 - 20x + 48 = 0$$
 . ??? . 11

(f)
$$3x^2 - x - 4 = 0$$
 .. ??? .. $1/3$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Psi \psi$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$2x^2 + 4x + 2 = 0$$
 ... ??? ... 1

(b)
$$-9x^2 - 5x + 4 = 0$$
 .. ??? .. 0

(c)
$$f(x) = 3x^2 + x + 6$$
 . ??? . $-1/6$

(d)
$$f(x) = -5x^2 + x + 6$$
 ??? $^{121}/_{20}$

(e)
$$3x^2 - 27x + 60 = 0$$
 .. ??? .. 7

(f)
$$-12x^2 + 7x - 1 = 0$$
 . ??? . $\frac{1}{12}$

Písmeno Braillovei abecedy

Kvadratická rovnice, skupina $Psi \ \psi$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-x^2 - 8x - 7 = 0$$
 ... ??? ... 2

(b)
$$4x^2 + x + 3 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 5x^2 - 3x - 4$$
 ??? $\frac{3}{10}$

(d)
$$f(x) = -5x^2 + x + 2$$
 ??? $^{21}/_{20}$

(e)
$$4x^2 + 8x - 12 = 0$$
 .. ??? .. 0

(f)
$$-8x^2 + 2x + 1 = 0$$
 . ??? . $-3/4$

3.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Psi \psi$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-5x^2 - 6x - 5 = 0$$
 .. ??? .. 0

(b)
$$8x^2 - 4x - 8 = 0$$
 ... ??? ... 2

(c)
$$f(x) = 6x^2 - 4x + 6$$
 . ??? . $\frac{1}{3}$

(d)
$$f(x) = 5x^2 + 2x - 9$$
 ??? $-47/10$

(e)
$$x^2 - 3x + 2 = 0$$
 ??? 3

(f)
$$-x^2 - 2x + 24 = 0$$
 . ??? . -10

e

d`

Kvadratická rovnice, skupina $Omega\ \omega$ -i

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-3x^2 - x + 1 = 0$$
 ... ??? ... 2

(b)
$$-x^2 + 7x - 5 = 0$$
 ... ??? ... 2

(c)
$$f(x) = -9x^2 - x - 4$$
 ??? $\frac{1}{18}$

(d)
$$f(x) = -5x^2 + 7x - 1$$
 ??? $39/20$

(e)
$$2x^2 - 8x - 42 = 0$$
 ... ??? ... 4

(f)
$$42x^2 + x - 1 = 0$$
 ... ??? ... $-1/42$

1.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Omega~\omega$ -ii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$4x^2 - 2x + 4 = 0$$
 . ??? . 0

(b)
$$x^2 - 7x - 1 = 0$$
 ... ??? ... 0

(c)
$$f(x) = x^2 + 2x + 3$$
 ??? -1

(d)
$$f(x) = x^2 - 2x - 4$$
 ???? -3

(e)
$$-4x^2 - 8x + 12 = 0$$
 ??? -2

(f)
$$-7x^2 + 8x - 1 = 0$$
 ??? 6/

2.

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Omega~\omega$ -iii

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$5x^2 + 7x - 9 = 0$$
 ... ??? ... 2

(b)
$$-4x^2 - 5x - 5 = 0$$
 .. ??? .. 0

(c)
$$f(x) = 2x^2 + 5x + 2$$
 ??? $-5/4$

(d)
$$f(x) = 6x^2 - 2x - 9$$
 ??? $-14/3$

(e)
$$-2x^2 - 14x - 24 = 0$$
 ??? -8

(f)
$$-9x^2 - 12x - 3 = 0$$
 ??? $-2/3$

Písmeno Braillovej abecedy

Kvadratická rovnice, skupina $Omega \omega$ -iv

Meno:

V (a) a (b) zjisti počet řešení. V (c) x-ovú polohu vrcholu, a v (d) y-ovú polohu vrcholu. V (e) a (f) zjisti součet řešení. Pokud ti vyjde stejný výsledek jako je za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$-3x^2 + 7x + 7 = 0$$
 .. ??? .. 2

(b)
$$3x^2 - x + 1 = 0$$
 ??? 0

(c)
$$f(x) = x^2 - 2x - 2$$
 . ??? . -1

(d)
$$f(x) = -x^2 + 3x - 6$$
 ??? $-3/4$

(e)
$$6x^2 - 12x - 18 = 0$$
 .. ??? .. 3

(f)
$$-14x^2 + 15x - 4 = 0$$
 ??? $\frac{15}{14}$

Kvadratická rovnice (riešenia)

(f) $^{13}/_2 X$ (f) $^{12} \checkmark$ (f) $^{-9}/_{20} \checkmark$ (f) $^{2}/_5 X$	(f) $-5/2$ (f) -1 X (f) $1/4$ X (f) $1/3$ X	(f) $-9/7 \checkmark$ (f) $5/8 \checkmark$ (f) $1/2 ×$ (f) $5/12 ×$	(f) $^{-0/5}$ (f) $^{-17/14}$ X (f) $^{1/3}$ X	(f) $-2/3 \times$ (f) $-1/3 \times$ (f) $5/2 \times$ (f) $-4/5 \checkmark$	(f) $-2/5 \times$ (f) $-1/2 \times$ (f) $3/2 \checkmark$ (f) $-5/2 \times$	(f) $5/14\checkmark$ (f) $1/2 \times$ (f) $-3/2 \times$ (f) $-11/3 \times$	(f) 1 <i>x</i> (f) 3/2 (f) 1/2 <i>x</i> (f) 5 <i>x</i>	(f) $-2\checkmark$ (f) $^{1}/_{4}X$ (f) $^{5}/_{3}\checkmark$ (f) $-3\checkmark$	(f) $-5/4 X$ (f) $-9/2 X$ (f) $-3/10 X$ (f) $-5 X$	(f) $-3/2$ \((f) $-11/2$ \((f) $2/5$ \text{ (f) } -6 \text{ (f) } -6 \text{ (f) }	(f) $-3x$ (f) $4x$ (f) $-3/2x$ (f) $9/4$
(e) -1\(\epsilon\) (e) -2\(\epsilon\) (e) -2\(\epsilon\) (e) 9\(\epsilon\)	(e) -5 <i>x</i> (e) -3 <i>x</i> (e) 9 <i>x</i> (e) -6 <i>x</i>	(e) -8 <i>X</i> (e) -15 \(delta\) (e) 1 \(delta\) (e) 7 \(delta\)		(e) -3\(\cdot\) (e) -5\(\cdot\) (e) -6\(\cdot\) (e) 3\(\cdot\)	(e) -15 \((e) -3 \) (e) -5 \((e) -5 \) (e) 4 \(x \)	(e) -4 <i>X</i> (e) -5 <i>\(</i> (e) -1 <i>\(</i> (e) -3 <i>X</i>	(e) -8X (e) 5X (e) 4\ (e) -3\	(e) −5 x (e) 9 √ (e) −1 x (e) 15 √	(e) -8\(\cdot\) (e) -7\(\cdot\) (e) 4\(\cdot\) (e) -2\(\cdot\)	 (e) -13<i>X</i> (e) 4<i>X</i> (e) 5<i>X</i> (e) 6<i>X</i> 	(e) 7 \((e) 2 \((e) 3 \) \((e) 3 \) \((e) 4 \) \((e) 4 \) \((e) 4 \)
(d) -8/3 \(d) (131/28 \textbf{x}\) (d) 7 \(d) 7 \textbf{x}\) (d) -7 \(d) -7 \(d) -7 \textbf{x}	(d) 15/32 \(d) -1/2 \(d) 3 \times (d) 25/4 \times (d) 25/4 \times (d) 3 \(d) 3 \times (d) 3 \(d) 3 \	(d) $-21/4$ \checkmark (d) $9/4$ x (d) $-27/7$ x (d) $37/36$ x	(d) $^{-49}/_{20}$ (d) $^{-49}/_{4}$ (d) $^{1/2}$ (d) $^{45}/_{4}$ (e)	(d) $^{-35}/_4$ X (d) $^{7}/_3$ X (d) $^{129}/_{16}$ X (d) $^{-9}$ X	(d) $-1 X$ (d) $-5/9 X$ (d) $-71/36 X$ (d) $-13/2 X$	(d) 161/20 / (d) 17/3 X (d) 0 X (d) 39/8 X	(d) $-20/7$ (d) $-41/4X$ (d) $-29/28X$ (d) $49/12X$	(d) -83/28 X (d) 119/24 X (d) 79/32 X (d) 5/4 X	(d) $^{13}/_{4}$ X (d) $^{9}/_{8}$ x (d) $^{1}/_{5}$ X (d) $^{85}/_{4}$ X	(d) 2 \(d) -1/8 \(d) -169/20 \(d) -113/16 \(d) \)	(d) $-5/3\checkmark$ (d) $-17/8X$ (d) $19/20X$ (d) $-145/24X$
(c) $-3/14 \checkmark$ (c) $-2/3 \checkmark$ (c) $-3/2 \checkmark$ (c) $-1/5 \checkmark$	(c) $3/8 \checkmark$ (c) $-1/2 X$ (c) $1/14 X$ (c) $-3/7 X$		7/2 \ -3/10 \ -2/7 X -5/2	(c) -1/8 \(c) 3/8 \(c) 1/8 \(c	(c) $\frac{1}{12}$ X (c) $-\frac{2}{9}$ 4 (c) $\frac{1}{6}$ X (c) $\frac{3}{10}$ 4	(c) $7/2 \checkmark$ (c) $-1/2 ×$ (c) $-9/16 ×$ (c) $3/14 \checkmark$	(c) $-7/2$ \(c) -3 \(c) -1 \(c) -1 \(c) $-7/8$ \(c)	(c) $1\checkmark$ (c) $1/2\checkmark$ (c) $-1/10\checkmark$ (c) $1/2\checkmark$	(c) -3/16 \(c) 9/8 \(c) 1 \(c) - 2 \)X	(c) $^{-1}/_3\checkmark$ (c) $^{-1}/_2\checkmark$ (d) $^{-1}/_2\checkmark$ (e) $^{-1}/_2\checkmark$ (f) $^{-1}/_8\checkmark$ (f)	(c) $\frac{1}{2}$ (c) $-\frac{1}{4}$ (c) $-\frac{3}{7}$ (c) $-\frac{7}{6}$ x
(b) 0 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i>	(b) 2 × (b) 2 × (b) 2 × (b) 2 ×			(b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i>	(b) 0 <i>x</i> (b) 0 <i>x</i> (b) 0 <i>x</i> (b) 1 <i>x</i>	(b) 0 <i>x</i> (b) 0 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i>	(b) 0 x (d)	(b) 2 <i>x</i> (b) 2 <i>x</i> (b) 0 <i>x</i> (b) 0 <i>x</i>	(b) 0 <!--</b--> (c) 2x (d) 2x (e) 2x (f) 2x (f) 2x	(b) 2 <i>x</i> (b) 2 <i>x</i> (c) (b) 0 <i>x</i> (d)	(b) 2 × (b) 2 × (b) 2 × (b) 2 ×
(a) 2\(\lambda\) (a) 2\(\lambda\) (a) 2\(\lambda\) (a) 0\(\lambda\)	(a) 2 <i>X</i> (a) 0 <i>V</i> (a) 2 <i>V</i> (a) 2 <i>V</i>			(a) 2\(\alpha\) (a) 2\(\alpha\) (a) 0\(\alpha\) (a) 0\(\alpha\)	(a) 2 \(\)(a) 0 \(\)(a) 2 \(\)(a) 2 \(\)	 (a) 2 X (a) 2 \(\) (a) 2 \(\) (a) 2 \(\) 	(a) 2 \((a) 2 \((a) 2 \) (a) 2 \((a) 2 \) (a) 0 \((a) 0 \)	(a) 2 \((a) 0 \) (a) 0 \((a) 2 \) (a) 2 \((a) 2 \) (a) 2 \((a) 2 \) (b) 2 \((a) 2 \) (b) 2 \((a) 2 \) (b) 2 \((a) 2 \) (c) 3 \((a)	(a) 0 \((a) 0 \((a) 0 \) (a) 2 \((a) 2 \) (a) 2 \((a) 2 \)	 (a) 2X (a) 2 (a) 2 (a) 2 	(a) 0 \((a) 0 \((a) 0 \) (a) 0 \((a) 2 \) (a) 2 \((a) 2 \)
$i : \mathbf{Z}$ $ii : \mathbf{I}$ $iii : \mathbf{I}$ $iii : \mathbf{M}$ $iv : \mathbf{A}$	$i : \mathbf{\tilde{Z}}$ $ii : \mathbf{\tilde{A}}$ $iii : \mathbf{B}$ $iv : \mathbf{A}$		1 ii iii iii iii iv	$i: \mathbf{O}$ $ii: \mathbf{L}$ $ii: \mathbf{E}$ $iv: \mathbf{E}$	$i : \mathbf{E}$ $ii : \mathbf{R}$ $iii : \mathbf{I}$ $iv : \mathbf{K}$	$i: \hat{\mathbf{U}}$ $i: \mathbf{H}$ $ii: \mathbf{H}$ $iii: \mathbf{E}$ $iv: \mathbf{L}$	$i: \mathbf{U}$ $ii: \mathbf{C}$ $iii: \mathbf{H}$ $iv: \mathbf{D}$	$i: \mathbf{M}$ $i: \mathbf{O}$ $ii: \mathbf{O}$ $iii: \mathbf{S}$ $iv: \mathbf{T}$	$i: \mathbf{R}$ $ii: \mathbf{U}$ $ii: \mathbf{K}$ $iii: \mathbf{K}$ $iv: \mathbf{A}$	$i: \hat{\mathbf{U}}$ $ii: \mathbf{P}$ $iii: \mathbf{A}$ $iv: \mathbf{L}$	$i: \mathbf{W}$ $ii: \mathbf{O}$ $iii: \mathbf{L}$ $iv: \mathbf{F}$
		7									

Kvadratická rovnice (riešenia)

(f) $-8\checkmark$ (f) $^{7}/_{24}X$ (f) $^{17}/_{24}X$ (f) $^{3}/_{8}X$	(f) $5/3$ \((f) -2 \((f) $3/10$ \((f) $3/2$ \((f) $3/2$ \)	(f) $3/5$ (f) $-1/4$ (f) $-1/4$ X (f) $-5/3$ X	(f) $-4/3$ \checkmark (f) $-10/3$ x (f) $-19/6$ x (f) $1/2$ x	(f) $2x$ (g) $-3x$ (f) $5/2x$ (f) $1/2\checkmark$	(f) −9/4 X (f) 5/2 X (f) 3/2 ✓ (f) −5 X	(f) $2\checkmark$ (f) $-5/2$ X (f) $4\checkmark$ (f) $-1/6$ X	(f) 9/20 x (f) −5/6 x (f) 1/3 √ (f) 1/3 x	(f) $-1/45 \times$ (f) $-5/6 \times$ (f) $-3 \times$ (f) $3/4 \times$	(f) $\frac{1}{3}$ (f) $\frac{7}{12}$ (f) $\frac{1}{4}$ (f) $\frac{1}{4}$	(f) $^{-1}/_{42}\checkmark$ (f) $^{8/7}X$ (f) $^{-4/3}X$ (f) $^{15}/_{14}\checkmark$
(e) -5X (e) 4\(\epsilon\) (e) 4X (e) -4\(\epsilon\)	(e) 6 <i>X</i> (e) -5 <i>X</i> (e) 4 \checkmark (e) -9 \checkmark	(e) -6 <i>X</i> (e) 5 <i>√</i> (e) -1 <i>X</i> (e) 13 <i>X</i>	(e) -11 <i>x</i> (e) -1 <i>x</i> (e) 1 <i>x</i> (e) 15 <i>x</i>	(e) 4 <i>x</i> (e) 1 <i>x</i> (e) 3 <i>x</i> (e) -8 <i>x</i>	(e) -1\(\'\) (e) -3\(\'\) (e) 3\(\'\) (e) -1\(\'\)	(e) -2 <i>x</i> (e) -7 <i><</i> (e) 6 <i><</i> (e) 12 <i><</i>	> **	(e) 11 \(c) - 6 \(x) (e) 4 \(x) (e) - 1 \(c)	(e) 10 <i>X</i> (e) 9 <i>X</i> (e) -2 <i>X</i> (e) 3	(e) 4\(\cdot\) (e) -2\(\cdot\) (e) -7\(\cdot\) (e) 2\(\cdot\)
(d) $^{-29}/_4$ \checkmark (d) $^{-15}/_4$ x (d) $^{-159}/_{20}$ x (d) $^{-25}/_4$ x	(d) -17/9 × (d) -137/28 × (d) 31/8 × (d) -8/3 ×	(d) 9/8 X (d) -17 X (d) -9/4 X (d) 65/28 \leftrigor	(d) -31/16 ((d) 21/5 X (d) 12 X (d) -15/8 X	(d) $-22/3\checkmark$ (d) $-9/8$ X (d) -15 X (d) $-129/20$ X	(d) $-65/8 \text{ X}$ (d) $-16/5 \text{ X}$ (d) $-9/4 \text{ X}$ (d) -5 X	(d) -4 <i>x</i> (d) 9 <i>x</i> (d) 7/2 <i>x</i> (d) -26/3 <i>x</i>	(d) 7/16 <i>X</i> (d) 49/4 <i>X</i> (d) 37/4 <i>X</i> (d) 14/5 <i>X</i>	d) -46/7 \langle d) 2 \langle d) - 2 \kappa d) - 2 \kappa d) - 185 \langle 32 \kappa d	(d) 45/4 <i>X</i> (d) 121/20 <i>Z</i> (d) 41/20 <i>X</i> (d) -46/5 <i>X</i>	(d) $^{29/20}$ X (d) $^{-5}$ X (d) $^{-55/6}$ X (d) $^{-15/4}$ X
$\frac{5}{14}$ X $\frac{1}{5}$ X $-\frac{3}{2}$ \(-\frac{3}{14} \(-\frac{3}{14}	$\frac{-5/8}{4}$ \(-1/4 \times \) \(-1/10 \sqrt{2} \)	(c) 1/8 X (c) 3/14 X (c) -3/2 < (c) 3/2 <		(c) $7/10 \checkmark$ (c) $1/3 \checkmark$ (c) $-1/2 \checkmark$ (c) $-1/12 \checkmark$	(c) $-1/2 \checkmark$ (c) $1/6 \%$ (c) $-3/8 \checkmark$ (c) $-4/3 \%$	(c) 1/18 X (c) -1/4 \langle (c) 2/3 \langle (c) 5/14 \langle	(c) 2/5 X (c) 7/2 X (c) -7/10 < (c) 2/7 X	(c) 9/4 \(c) 1/2 \(c) 3/4 \(c) 3/4 \(c) 1/3 \(c)	(c) $1/2 \times$ (c) $-1/6 \checkmark$ (c) $3/10 \checkmark$ (c) $1/3 \checkmark$	(c) $-1/18 \times$ (c) $-1/4 \times$ (c) $-5/4 \checkmark$ (c) $1 \times$
		(b) 0 \((b) 2 \) (b) 2 \((b) 2 \)		(b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i>	(b) 2 × (b) 2 × (b) 2 × (b) 0 ×	(b) 2 × (b) 2 × (b) 2 × (b) 0 ×	(b) 2 × (b) 2 × (b) 0 × (b) 0 ×	(b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i> (b) 2 <i>x</i>	(b) 2 <i>x</i> (b) 2 <i>x</i> (b) 0 <i>x</i> (b) 2 <i>x</i>	(b) 2 \(\text{(b) 2 \(\text{(b) 0 \) \}}}}}}}}}}}}}}
	(a) 2 <i>X</i> (a) 2 <i>X</i> (a) 2 <i>X</i> (a) 2 <i>X</i> (a) 0 ✓	(a) 0 <i>x</i> (a) 2 <i>√</i> (a) 2 <i>√</i> (a) 0 <i>√</i>	(a) 2 \((a) 2 \\ (b) 2 \\ (b) 2 \\ (c)	(a) 2 \((a) 2 \) (a) 2 \((a) 2 \) (a) 2 \((a) 0 \)	(a) 2 \((a) 0 \((a) 0 \) (a) 0 \((a) 0 \) (a) 2 \((a) 2 \)	(a) 2 \((a) 2 \) (a) 2 \((a) 2 \) (a) 2 \((a) 0 \)	(a) 0 \((a) 0 \) (a) 2 \((a) 2 \) (a) 2 \((a) 2 \)	(a) 0 (a) 0 (a) 0 (a) 0 (a) 0	(a) 2 \((a) 1 \((a) 2 \) (a) 2 \((a) 2 \) (a) 0 \((a) 0 \)	(a) 2 \((a) 0 \) (a) 2 \((a) 2 \) (a) 2 \((a) 2 \) (a) 2 \((a) 2 \)
$i: \check{\mathbf{C}}$ $ii: \check{\mathbf{C}}$ $iii: \mathbf{E}$ $iii: \mathbf{L}$ $iv: \mathbf{C}$	i : Ž ii : I iii : T iv : O		i : Č ii : O iii : K iv : L	$i: \mathbf{U}$ $i: \mathbf{R}$ $ii: \mathbf{R}$ $iii: \mathbf{A}$ $iv: \mathbf{N}$,-	,-	$i : \mathbf{H}$ $ii : \mathbf{A}$ $iii : \mathbf{A}$ $iv : \mathbf{N}$	$i : \mathbf{Z}$ $ii : \mathbf{U}$ $iii : \mathbf{B}$ $iv : \mathbf{R}$		$i: \mathbf{G}$ $ii: \mathbf{G}$ $ii: \mathbf{O}$ $iv: \mathbf{F}$
3	٥		9	0						5
	(a) $2\checkmark$ (b) $0x$ (c) $5/14x$ (d) $-29/4\checkmark$ (e) $-5x$ (a) $0\checkmark$ (b) $2x$ (c) $1/5x$ (d) $-15/4x$ (e) $4\checkmark$ (a) $0\checkmark$ (b) $0\checkmark$ (c) $-3/2\checkmark$ (d) $-159/20x$ (e) $4x$ (a) $2\checkmark$ (b) $2x$ (c) $-3/14\checkmark$ (d) $-25/4x$ (e) $-4\checkmark$	i: $\dot{\mathbf{C}}$ (a) 2\(\) (b) 0\(\) (c) \(\) \\ \ iii : \bold \) (a) 0\(\) (b) 2\(\) (c) \(\) \\ \ \ iii : \bold \) (a) 0\(\) (b) 2\(\) (c) \(\) \\ \ \ iii : \bold \) (a) 0\(\) (b) 0\(\) (c) \(-3\) 2\(\) (d) \(-15\) 4\(\) (e) 4\(\) \\ iv : \bold \) (a) 0\(\) (b) 0\(\) (c) \(-3\) 2\(\) (d) \(-15\) 2\(\) (e) 4\(\) \\ iv : \bold \] (a) 2\(\) (b) 2\(\) (c) \(-3\) 14\(\) (d) \(-25\) 4\(\) (e) \(-4\) \\ \\ i : \bold \] (a) 2\(\) (b) 2\(\) (c) \(-5\) 8\(\) (d) \(-17\) 9\(\) (e) 6\(\) \\ iii : \bold \] (a) 2\(\) (b) 2\(\) (c) \(-1\) 10\(\) (d) \(31\) 8\(\) (e) \(4\) \\ iv : \bold \] (a) 0\(\) (b) 2\(\) (c) 2\(\) (d) \(-8\) 3\(\) (e) \(-9\) \\ iv : \bold \) (a) 0\(\) (b) 2\(\) (c) 2\(\) (d) \(-8\) 3\(\) (e) \(-9\) \\ \end{array}	i: $\dot{\mathbf{C}}$ (a) $2 \checkmark$ (b) $0 \mathbf{X}$ (c) $5/14 \mathbf{X}$ (d) $-29/4 \checkmark$ (e) $-5 \mathbf{X}$ ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \mathbf{X}$ (c) $1/5 \mathbf{X}$ (d) $-15/4 \mathbf{X}$ (e) $4 \checkmark$ iv: \mathbf{O} (a) $2 \checkmark$ (b) $0 \checkmark$ (c) $-3/2 \checkmark$ (d) $-159/20 \mathbf{X}$ (e) $4 \mathbf{X}$ iv: \mathbf{O} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-3/14 \checkmark$ (d) $-25/4 \mathbf{X}$ (e) $-4 \checkmark$ i: $\dot{\mathbf{Z}}$ (a) $2 \mathbf{X}$ (b) $2 \checkmark$ (c) $-1/4 \mathbf{X}$ (d) $-17/9 \checkmark$ (e) $6 \mathbf{X}$ ii: \mathbf{I} (a) $2 \mathbf{X}$ (b) $2 \checkmark$ (c) $-1/4 \mathbf{X}$ (d) $-137/28 \mathbf{X}$ (e) $-5 \mathbf{X}$ iv: \mathbf{O} (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $-1/10 \checkmark$ (d) $31/8 \mathbf{X}$ (e) $-6 \checkmark$ (iv: \mathbf{O} (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $2 \checkmark$ (d) $-8/3 \mathbf{X}$ (e) $-6 \checkmark$ (f) ii: \mathbf{G} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $3/14 \mathbf{X}$ (d) $-17 \mathbf{X}$ (e) $5 \checkmark$ (f) $-1/4 \mathbf{X}$ (g) $-17 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-17 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (g) $-1/4 \mathbf{X}$ (e) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (f) $-1/4 \mathbf{X}$ (g) $-1/4 $	i: $\dot{\mathbf{C}}$ (a) 2\(\beta \) (b) 0\(\beta \) (c) $^{5/14}\mathbf{X}$ (d) $^{-29}4\mathbf{V}$ (e) $^{-5}\mathbf{X}$ (f) iii: \mathbf{E} (a) 0\(\beta \) (b) 2\(\beta \) (c) $^{1/5}\mathbf{X}$ (d) $^{-15}4\mathbf{X}$ (e) $^{4}\mathbf{V}$ (f) iv: \mathbf{E} (a) 0\(\beta \) (b) 2\(\beta \) (c) $^{-3/2}\mathbf{V}$ (d) $^{-15}4\mathbf{X}$ (e) $^{4}\mathbf{V}$ (f) iv: \mathbf{C} (a) 2\(\beta \) (b) 2\(\beta \) (c) $^{-3/14}\mathbf{V}$ (d) $^{-25}4\mathbf{X}$ (e) $^{-4}\mathbf{V}$ (f) ii: \mathbf{I} (a) 2\(\beta \) (b) 2\(\beta \) (c) $^{-1/10}\mathbf{V}$ (d) $^{-17/9}\mathbf{V}$ (e) $^{6}\mathbf{K}$ (f) iii: \mathbf{I} (a) 2\(\beta \) (b) 2\(\beta \) (c) $^{-1/10}\mathbf{V}$ (d) $^{31/8}\mathbf{X}$ (e) $^{-5}\mathbf{X}$ (f) iv: \mathbf{O} (a) 0\(\beta \) (b) 2\(\beta \) (c) $^{-1/10}\mathbf{V}$ (d) $^{31/8}\mathbf{X}$ (e) $^{-5}\mathbf{X}$ (f) ii: \mathbf{G} (a) 2\(\beta \) (b) 2\(\beta \) (c) $^{-1/4}\mathbf{X}$ (d) $^{-9/4}\mathbf{X}$ (e) $^{-1}\mathbf{X}$ (f) iv: \mathbf{G} (a) 2\(\beta \) (b) 2\(\beta \) (c) $^{-3/2}\mathbf{V}$ (d) $^{-9/4}\mathbf{X}$ (e) $^{-1}\mathbf{X}$ (f) iv: \mathbf{G} (a) 2\(\beta \) (b) 2\(\beta \) (c) $^{-3/2}\mathbf{V}$ (d) $^{-9/4}\mathbf{X}$ (e) $^{-1}\mathbf{X}$ (f) iv: \mathbf{G} (a) 2\(\beta \) (b) 0\(\beta \) (c) $^{-1/4}\mathbf{V}$ (d) $^{-1/16}\mathbf{V}$ (e) $^{-1/1}\mathbf{V}$ (f) iv: \mathbf{G} (a) 2\(\beta \) (b) 0\(\beta \) (c) $^{-1/4}\mathbf{V}$ (d) $^{-1/16}\mathbf{X}$ (e) $^{-1/4}\mathbf{V}$ (f) iv: \mathbf{G} (a) 2\(\beta \) (b) 0\(\beta \) (c) $^{-1/4}\mathbf{V}$ (d) $^{-1/5}\mathbf{X}$ (e) $^{-1/4}\mathbf{V}$ (f) iv: \mathbf{K} (a) 2\(\beta \) (b) 0\(\beta \) (c) $^{-1/2}\mathbf{V}$ (d) $^{-1/6}\mathbf{X}$ (e) $^{-1/4}\mathbf{V}$ (f) iv: \mathbf{K} (a) 2\(\beta \) (b) 0\(\beta \) (c) $^{-1/2}\mathbf{V}$ (d) $^{-1/6}\mathbf{X}$ (e) $^{-1/4}\mathbf{V}$ (f)	i: $\dot{\mathbf{C}}$ (a) $2 \checkmark$ (b) $0 \times$ (c) $5/14 \times$ (d) $-29/4 \checkmark$ (e) $-5 \times$ (f) ii: \mathbf{E} (a) $0 \checkmark$ (b) $2 \times$ (c) $1/5 \times$ (d) $-15/4 \times$ (e) $4 \checkmark$ (f) iii: \mathbf{L} (a) $0 \checkmark$ (b) $2 \times$ (c) $-3/2 \checkmark$ (d) $-159/20 \times$ (e) $4 \times$ (f) iv: \mathbf{L} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $-3/2 \checkmark$ (d) $-159/20 \times$ (e) $4 \times$ (f) iv: \mathbf{L} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-3/14 \checkmark$ (d) $-15/3 \sim$ (e) $-4 \checkmark$ (f) ii: \mathbf{I} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-17/9 \checkmark$ (e) $6 \times$ (f) ii: \mathbf{I} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-137/28 \times$ (e) $-5 \times$ (f) ii: \mathbf{I} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/10 \checkmark$ (d) $31/8 \times$ (e) $-5 \checkmark$ (f) iv: \mathbf{I} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $1/8 \times$ (d) $9/8 \times$ (e) $-6 \checkmark$ (f) iii: \mathbf{L} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $3/4 \times$ (d) $-9/4 \times$ (e) $-1 \times$ (f) iii: \mathbf{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $3/2 \checkmark$ (d) $-9/4 \times$ (e) $1 \times$ (f) iii: \mathbf{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $1/4 \checkmark$ (d) $-31/16 \checkmark$ (e) $1 \times$ (f) iii: \mathbf{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $1/4 \checkmark$ (d) $-31/16 \checkmark$ (e) $1 \times$ (f) iii: \mathbf{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $-1/2 \checkmark$ (d) $-15/8 \times$ (e) $1 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/8 \times$ (e) $1 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/8 \times$ (e) $1 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/8 \times$ (e) $3 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/2 \times$ (e) $3 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/2 \times$ (e) $3 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/2 \times$ (e) $3 \times$ (f) iii: \mathbf{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $-1/2 \checkmark$ (d) $-15/2 \times$ (e) $3 \times$ (f) (f)	i: $\dot{\mathbf{C}}$ (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $5_{14}\mathbf{X}$ (d) $-29_{4}\mathbf{Y}$ (e) $-4\checkmark$ (f) ii: \mathbf{E} (a) $0\checkmark$ (b) $2\mathbf{X}$ (c) $1_{5}\mathbf{X}$ (d) $-15_{4}\mathbf{X}$ (e) $4\checkmark$ (f) iii: \mathbf{L} (a) $0\checkmark$ (b) $0\checkmark$ (c) $-3/2\checkmark$ (d) $-159/20\mathbf{X}$ (e) $4\mathbf{X}$ (f) iv: \mathbf{L} (a) $0\checkmark$ (b) $0\checkmark$ (c) $-3/2\checkmark$ (d) $-159/20\mathbf{X}$ (e) $4\mathbf{X}$ (f) iv: \mathbf{O} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-17/9\checkmark$ (e) $6\mathbf{X}$ (f) ii: \mathbf{I} (a) $2\mathbf{X}$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-137/28\mathbf{X}$ (e) $-5\mathbf{X}$ (f) ii: \mathbf{I} (a) $2\mathbf{X}$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-13/8\mathbf{X}$ (e) $-9\checkmark$ (f) ii: \mathbf{I} (a) $0\checkmark$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-3/8\mathbf{X}$ (e) $-9\checkmark$ (f) ii: \mathbf{I} (a) $0\checkmark$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-9/8\mathbf{X}$ (e) $-9\checkmark$ (f) ii: \mathbf{I} (a) $0\checkmark$ (b) $2\checkmark$ (c) $-3/4\mathbf{X}$ (d) $-9/4\mathbf{X}$ (e) $-1\mathbf{X}$ (f) ii: \mathbf{I} (a) $0\checkmark$ (b) $2\checkmark$ (c) $-3/2\checkmark$ (d) $-9/4\mathbf{X}$ (e) $-11\mathbf{X}$ (f) ii: \mathbf{I} (a) $0\checkmark$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-31/16\checkmark$ (e) $-11\mathbf{X}$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $0\checkmark$ (c) $1/4\checkmark$ (d) $21/5\mathbf{X}$ (e) $11\mathbf{X}$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $0\checkmark$ (c) $1/4\checkmark$ (d) $-12/8\mathbf{X}$ (e) $15\mathbf{X}$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/4\checkmark$ (d) $-15/8\mathbf{X}$ (e) $15\mathbf{X}$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/8\mathbf{X}$ (e) $15\mathbf{X}$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/8\mathbf{X}$ (e) $14\mathbf{X}$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/20\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/20\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1\checkmark$ (f) iii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/2\checkmark$ (d) $-16/2\mathbf{X}$ (e) $-1/2\checkmark$ (f) $-1/2\checkmark$ (f) $-1/2\checkmark$ (f) $-1/2\checkmark$ (f) $-1/$	i: $\dot{\mathbf{C}}$ (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $5/14\mathbf{X}$ (d) $-29/4\mathbf{V}$ (e) $-5\mathbf{X}$ (f) ii: \mathbf{E} (a) $0\checkmark$ (b) $2\mathbf{X}$ (c) $1/5\mathbf{X}$ (d) $-15/2\mathbf{X}$ (e) $4\checkmark$ (f) ii: \mathbf{L} (a) $0\checkmark$ (b) $2\mathbf{X}$ (c) $-3/2\checkmark$ (d) $-159/20\mathbf{X}$ (e) $4\mathbf{X}$ (f) ii: \mathbf{L} (a) $0\checkmark$ (b) $2\mathbf{X}$ (c) $-3/2\checkmark$ (d) $-159/20\mathbf{X}$ (e) $4\mathbf{X}$ (f) ii: \mathbf{L} (a) $2\mathbf{X}$ (b) $2\mathbf{X}$ (c) $-3/2\checkmark$ (d) $-17/9\checkmark$ (e) $6\mathbf{X}$ (f) ii: \mathbf{T} (a) $2\mathbf{X}$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-137/20\mathbf{X}$ (e) $-4\checkmark$ (f) ii: \mathbf{T} (a) $2\mathbf{X}$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-137/20\mathbf{X}$ (e) $-4\checkmark$ (f) ii: \mathbf{T} (a) $2\mathbf{X}$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-13/20\mathbf{X}$ (e) $-4\checkmark$ (f) ii: \mathbf{T} (a) $2\mathbf{X}$ (b) $2\checkmark$ (c) $-1/4\mathbf{X}$ (d) $-9/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{G} (a) $2\checkmark$ (b) $2\checkmark$ (c) $3/4\mathbf{X}$ (d) $-9/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{G} (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $1/4\checkmark$ (d) $2/5\mathbf{X}$ (e) $1/4\mathbf{X}$ (f) ii: \mathbf{G} (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $1/4\checkmark$ (d) $-3/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{G} (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $1/4\checkmark$ (d) $-15/3\mathbf{X}$ (e) $1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $1/4\checkmark$ (d) $-15/3\mathbf{X}$ (e) $1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $0\mathbf{X}$ (c) $1/4\checkmark$ (d) $-15/3\mathbf{X}$ (e) $1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) ii: \mathbf{K} (a) $2\checkmark$ (b) $2\checkmark$ (c) $-1/2\checkmark$ (d) $-15/3\mathbf{X}$ (e) $-1/4\mathbf{X}$ (f) $-1/2\mathbf{X}$	i: $\dot{\mathbf{C}}$ (a) $2 \checkmark$ (b) $0 \times$ (c) $\frac{5}{14} \times$ (d) $-\frac{29}{4} \checkmark$ (e) $-\frac{5}{4} \times$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \times$ (c) $\frac{1}{3} \times$ (d) $-\frac{15}{4} \times$ (e) $4 \checkmark$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \times$ (c) $\frac{3}{2} \checkmark$ (d) $-\frac{15}{4} \times$ (e) $4 \checkmark$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $-\frac{3}{2} \checkmark$ (d) $-\frac{15}{4} \times$ (e) $4 \checkmark$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-\frac{3}{2} \checkmark$ (d) $-\frac{17}{2} \times$ (e) $-\frac{4}{4} \checkmark$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-\frac{1}{4} \times$ (d) $-\frac{17}{2} \times$ (e) $-\frac{5}{4} \times$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \times$ (b) $2 \checkmark$ (c) $-\frac{1}{4} \times$ (d) $-\frac{17}{2} \times$ (e) $-\frac{5}{4} \checkmark$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-\frac{1}{4} \times$ (d) $-\frac{17}{2} \times$ (e) $-\frac{5}{4} \checkmark$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{3}{4} \times$ (d) $-\frac{17}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{3}{4} \times$ (d) $-\frac{17}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{3}{4} \times$ (d) $-\frac{1}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{3}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \times$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \wedge$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \wedge$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \wedge$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $2 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \wedge$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $\frac{1}{4} \wedge$ (d) $-\frac{3}{4} \wedge$ (e) $-\frac{1}{4} \wedge$ (f) ii: $\dot{\mathbf{E}}$ (f) ii: $\mathbf{$	i: \dot{C} (a) $2 \checkmark$ (b) $0 \times$ (c) $5/4 x \times$ (d) $-29/4 \times$ (e) $-5 \times$ (f) ii: \dot{E} (a) $0 \checkmark$ (b) $2 \times$ (c) $1/5 \times$ (d) $-15/4 \times$ (e) $4 \checkmark$ (f) ii: \dot{E} (a) $0 \checkmark$ (b) $2 \times$ (c) $1/5 \times$ (d) $-15/4 \times$ (e) $4 \checkmark$ (f) ii: \dot{L} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $-3/4 \checkmark$ (d) $-15/9 \times$ (e) $4 \checkmark$ (f) ii: \dot{L} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $-5/5 \checkmark$ (d) $-17/9 \checkmark$ (e) $6 \times$ (f) ii: \dot{L} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-13/2 \times$ (e) $-4 \checkmark$ (f) ii: \dot{L} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-13/2 \times$ (e) $-6 \times$ (f) ii: \dot{L} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-3/3 \times$ (e) $-6 \times$ (f) ii: \dot{L} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-9/3 \times$ (e) $-6 \times$ (f) ii: \dot{L} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-9/3 \times$ (e) $-1/4 \times$ (f) ii: \dot{L} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-1/3 \checkmark$ (d) $-9/3 \times$ (e) $-1/4 \checkmark$ (f) ii: \dot{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $1/4 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) ii: \dot{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $1/4 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) ii: \dot{L} (a) $2 \checkmark$ (b) $0 \times$ (c) $1/3 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) ii: \dot{L} (a) $2 \checkmark$ (b) $2 \times$ (c) $1/3 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) ii: \dot{L} (a) $2 \checkmark$ (b) $2 \times$ (c) $1/3 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) ii: \dot{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $1/3 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) ii: \dot{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $1/3 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) $-1/3 \times$ (f) ii: \dot{R} (a) $2 \checkmark$ (b) $2 \times$ (c) $1/3 \checkmark$ (d) $-1/3 \times$ (e) $1/4 \checkmark$ (f) $-1/3 \times$ (f) $-1/3 \times$ (f) $-1/3 \times$ (g) $-1/3 \times$ (e) $-1/3 \times$ (f) $-1/3 \times$ (f) $-1/3 \times$ (g) $-1/3 \times$	i: $\hat{\mathbf{C}}$ (a) $2 \checkmark$ (b) $0 \times$ (c) $5/44 \times$ (d) $-29/4 \checkmark$ (e) $-5 \times$ (f) ii: \mathbf{E} (a) $0 \checkmark$ (b) $2 \times$ (c) $1/5 \times$ (d) $-139/30 \times$ (e) $4 \checkmark$ (f) ii: \mathbf{E} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $-3/4 \checkmark$ (d) $-139/30 \times$ (e) $4 \checkmark$ (f) ii: \mathbf{E} (a) $0 \checkmark$ (b) $0 \checkmark$ (c) $-3/4 \checkmark$ (d) $-17/9 \checkmark$ (e) $6 \checkmark$ (f) ii: \mathbf{E} (a) $2 \times$ (b) $2 \times$ (c) $-1/4 \times$ (d) $-17/9 \times$ (e) $6 \checkmark$ (f) ii: \mathbf{E} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-17/3 \times$ (e) $-4 \checkmark$ (f) ii: \mathbf{E} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-17/3 \times$ (e) $-9 \checkmark$ (f) ii: \mathbf{E} (a) $2 \times$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-17/3 \times$ (e) $-9 \checkmark$ (f) ii: \mathbf{E} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-1/7 \times$ (e) $-9 \checkmark$ (f) ii: \mathbf{E} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $-1/4 \times$ (d) $-1/7 \times$ (e) $-1/7 \times$ (f) ii: \mathbf{E} (a) $2 \checkmark$ (b) $2 \checkmark$ (c) $3/4 \times$ (d) $-1/7 \times$ (e) $-1/7 \times$ (f) $-1/7 \times$ (f) $-1/7 \times$ (g) $-1/7 $

