Authentication

Prof. Dr. Helene Dörksen

helene.doerksen@th-owl.de

Lecture 3:

Statistical Pattern Recognition

Measured Data and Measurement Errors

Fact is:

- data is not perfect
- data comes with a margin of error or uncertainty

Measured Data and Measurement Errors

Not accurate, and not precise

Accurate and precise

Measured Data and Measurement Errors

How to handle errors in data?

Probability theory helps us to model random error and is therefore a solid basis for classifier design

If *A*, *B*, *C*,... are events, the probability of these events can be denoted by a real number between **0** and **1**, i.e.

The probability is linked to the relative frequency of that event happening, i.e., an experiment is observed a large number of times *N*, and if event *A* occurs *M* times then

$$P(A) = \frac{M}{N}$$

Probability rules can be easy illustrated by set-theoretical fundamentals:

A and B are (a) mutually exclusive (nonoverlapping)

$$P(A \text{ or } B) = P(A) + P(B)$$

A and B are (b) not mutually exclusive (overlapping)

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Complement of the event:

$$P(\bar{A}) = 1 - P(A)$$

Events, A and B, are **independent** if:

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

Probability information can be collected in

Contingency Table

	Age (yea			
Sex	< 30	30–45	>45	Total
Male (M)	60	20	40	120
Female (F)	40	30	10	80
Total	100	50	50	200

Conditional probability is the probability of some event A, given the occurrence of some other event B:

Main rule:

$$P(A|B) = P(A \text{ and } B)/P(B)$$

Other rules:

$$P(B|A) = P(A \text{ and } B)/P(A)$$

If the events A and B are statistically independent:

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

Multiplicative rule:

$$P(A \text{ and } B) = P(A|B) \cdot P(B)$$

= $P(B|A) \cdot P(A)$

Bayes' Rule:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

P(A|B) is known as the posterior probability

$$Posterior(probability) = \frac{likelihood \times prior(probability)}{evidence}$$

```
P(robot says defective | defective ) = 0.98
P(robot says defective | not defective ) = 1 - 0.99 = 0.01
                              P(defective) = 0.001
                          P(not defective) = 1 - 0.001 = 0.999
                           P(robot says defective)
                         = P(robot says defective | defective )P(defective )
                            + P(robot says defective | not defective )P(not defective )
                         = 0.98 \cdot 0.001 + 0.01 \cdot 0.999
                         = 0.00098 + 0.00999
                         = 0.01097
                                                                  P(defective robot says defective)
                                                               = \frac{P(\textit{robot says defective} \, \middle| \, \textit{defective} \, \middle) P(\textit{defective})}{P(\textit{robot says defective})}
                                                                                 P(robot says defective)
                              Bayes' Rule:
```

Diagnostic test **score** distributions for normal (1) and abnormal (2) population samples:

Corresponding contingency table:

	В	$ar{B}$
\overline{A}	a (TP)	b (FN)
$ar{A}$	c (FP)	d (TN)

Actual	Prec	Predicted				
		B	$ar{B}$	Sum		
	A	P(A and B)	$P(A \text{ and } \bar{B})$	P(A)		
	$ar{A}$	$P(\bar{A} \text{ and } B)$	$P(\bar{A} \text{ and } \bar{B})$	$P(ar{A})$		
		P(B)	$P(ar{B})$	1		

sensitivity,
$$P(B|A) = TP/(TP + FN) = a/(a+b)$$

specificity,
$$P(\bar{B}|\bar{A}) = TN/(TN + FP) = d/(d + c)$$

Naïve Bayes' Classifier

Assuming that the features (f₁, f₂, f₃, . . . , f_n) are independent:

Bayes' Classifier:
$$P(C|f_1, f_2, f_3, ..., f_n) = \frac{P(C)P(f_1, f_2, f_3, ..., f_n|C)}{P(f_1, f_2, f_3, ..., f_n)}$$

Class, C, is dependent on several features (f1, f2, f3, . . ., fn)

If the features are all independent, then

$$P(C|f_1,f_2,f_3,\ldots,f_n) \propto P(C)P(f_1|C)P(f_2|C)P(f_3|C)\ldots P(f_n|C)$$

$$\propto P(C)\prod_{i=1}^n P(f_i|C)$$

Advanced Probability Theory

Probability density function (**PDF**) of X:

$$P(x_1 \le X \le x_2) = \int_a^b f(x) dx$$

Cumulative distribution function (CDF) of X:

$$F(x) = P(X \le x) = \int_{0}^{x} f(u) du$$

Advanced Probability Theory

example of a PDF is the well-known normal (or Gaussian) distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Advanced Probability Theory

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

normal (or Gaussian) distribution

Correlation Coefficients

square of the correlation coefficient: r^2 called r-squared or coefficient of determination

Mahalanobis Distance

$$D_{\rm m}(\mathbf{x}, \mathbf{y}) = \operatorname{sqrt}((\mathbf{x} - \mathbf{y}) \Sigma^{-1} (\mathbf{x} - \mathbf{y})^{\mathrm{T}})$$

 Σ^{-1} is the inverse of the covariance matrix

A and B at the same Mahalanobis distance from the centroid μ

Mahalanobis Distance

Summary

- data is not perfect
- probability theory helps us to model error in the data

Bayes' Classifier

Probability density function (**PDF**)
Cumulative distribution function (**CDF**)
normal (or Gaussian) distribution

- Covariance matrices are related to correlation coefficients
- Mahalanobis distance is not always equivalent to Euclidean

Homework: Exercises and Labs

for the next week prepare practical exercises and labs from **Exercises Lec 3** (you will find it in the donwload area)