

Ozko-kotno sipanje rentgenske svetlobe (SAXS)

0.07

- Valovanje se siplje na objektih (sipalcih), ki so podobno veliki kot je valovna dolžina tega valovanja.
- Pri sipanju na več objektih (sipalcih) se pojavi interferenčni vzorec, če so razdalje med temi objekti podobne.

Monochromatic light waves hitting barrier with two openings

- Kot ojačitev valovanja proti vpadlemu snopu je povezan z razdaljami med objekti (sipalci)
- Če hočemo gledati razdalje med molekulami, moramo imeti tudi valovno dolžino v področju od nekaj Å do nekaj nm (rentgenska svetloba)

Ozko-kotno sipanje rentgenske svetlobe (SAXS)

700 1.8 0.07 18000 siplie na obiektih

- Valovanje se siplje na objektih (sipalcih), ki so podobno veliki kot je valovna dolžina tega valovanja.
- Pri sipanju na več objektih (sipalcih) se pojavi interferenčni vzorec, če so razdalje med temi objekti podobne.

Kot ojačitev valovanja proti vpadlemu snopu je povezan z razdaljami med objekti (sipalci)

 Če hočemo gledati razdalje med molekulami, moramo imeti tudi valovno dolžino v področju od nekaj Å do nekaj nm (rentgenska svetloba)

Preprosti primeri (SAXS)

https://www.youtube.com/watch?v=ym42jYPM34Y

Fotonska korelacijska spektroskopija (PCS) DLS, FCS

- Valovanje se siplje na objektih (sipalcih), ki so podobno veliki kot je valovna dolžina tega valovanja.
- Ker večji objekti difundirajo počasneje kot manjši, slednji zastirajo valovanje manj časa. Intenziteta sipane svetlobe se torej pri manjših delcih s časom spreminja hitreje in bolj naključno kot pri večjih.
- Avtokorelacijska funkcija intenzitete torej pri manjših delcih hitreje pada s časom.

Stik kapljevine in površine

minimizacija sil in kapilarni vlek

 Robčki, krpe in gobe vlečejo vodo v svojo notranjost s kapilarnim vlekom.

Omočenje ni zaželjeno, teža prevlada nad interakcijo voda-podlaga

Omočenje je zaželjeno, interakcija voda-podlaga prevlada nad težo

Vodni drsalci

so prelahki ali res ne marajo vode?

Večja kot je površinska napetost, večje maksimalno breme na enoto površine lahko prenese

Površinska napetost na molekularnem nivoju

- Površine snovi z različnimi kemijskimi lastnostmi se odbijajo ali privlačijo
- Površina ene snovi pa se vedno privlači, zato želijo molekule zmanjšati površino

Ponovimo koncept

Površinska napetost deluje tudi brez gravitacije!

Minimizacija površine

vodi v okroglo obliko ... npr. pri vodnih ali milnih mehurčkih

Krogla ima manjšo površino kot kocka enakega volumna

 $S = 6 \text{ cm}^2$

 $S = 4,5 \text{ cm}^2$

Razrez vodne kapljice s hidrofobnim nožem

Velikost mehurčka

 je povezana s tlačnimi razlikami in površinsko napetostjo - stiskanje površine mehurčka namreč uravnoteži povečanje tlaka v mehurčkih

$$\Delta p = \frac{2\gamma}{R}$$

 Učinkovitejšo izmenjavo plinov v pljučih omogoča velika površina mnogo majhnih

pljučnih mešičkov. Ker mišice ne morejo zadržati poljubno velikih tlačnih razlik poljubno majhnih pljučnih mešičkov, se stene pljučnih mešičkov "zmehčajo" s površinsko aktivnimi snovmi (surfaktanti), da se pljuča ne sesedejo.

Prava molekularna slika

Površine z nabojem

Nabita površina pritegne delce iz raztopine z nasprotnim nabojem.
Popolno nakopičenje slednjih pa prepreči osmotski tlak, ki jih vleče nazaj v raztopino.

Stabilnost disperzije nabitih delcev

- Električna dvojna plast senči elektrostatsko polje naboja na površini, zato se lahko enako nabiti delci bolj približajo.
- Če je senčenje dovolj močno (velika ionska moč raztopine), lahko pridejo tako blizu, da prevladajo privlačne interakcije s kratkim dosegom
 - → delci se združujejo v skupke, disperzija je nestabilna.
- Odločilen je električni potencial na meji dvojne plasti – ζ-potencial.

Stabilnost disperzije nabitih delcev

"Vezan naboj" – samo proti-ioni, NISO fiksni!

Mleko kot disperzija

