0 Preamble

0.0 Initialize Environment

Start Warning

Run the following only if you need to **initialize** source data for the entire project environment.

```
In [ ]: %run grabSource.py
```

Run the following only if you need to **overwrite** source data for the entire project environment.

```
In [ ]: %run grabSource.py overwrite
```

End Warning

0.1 Global Packages

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import matplotlib.dates as mdates
  import seaborn as sns
  from scipy import stats
```

0.2 Local Packages

```
In [2]: from ingestRaw import *
   from transformClean import *
   from segmentData import congressPresidentParty
   from segmentFunctions import *
```

0.3 Import Data

```
In [3]: congressVotes_raw = ingestCongressVote()
```

1 Data Mining

1.1 Verify Data Types

```
In [4]:
         congressVotes_raw.dtypes
Out[4]: congress
                                               Int64
         chamber
                                              object
         rollnumber
                                               Int64
         date
                                     datetime64[ns]
                                               Int64
         session
         clerk_rollnumber
                                               Int64
         yea_count
                                               Int64
         nay_count
                                               Int64
         {\tt nominate\_mid\_1}
                                             float64
         nominate_mid_2
                                             float64
         nominate_spread_1
                                             float64
         nominate_spread_2
                                             float64
         nominate_log_likelihood
                                             float64
         bill_number
                                             object
                                              object
         vote_result
         vote_desc
                                              object
                                              object
         vote_question
         dtl_desc
                                              object
         dtype: object
```

1.2 Initial Distributions

```
In [5]: congressVotes_raw.describe(include= 'all').transpose()
```

Out[5]:

	count	unique	top	freq	mean	min
congress	111753.0	<na></na>	<na></na>	<na></na>	73.920467	1.0
chamber	111753	2	House	59125	NaN	NaN
rollnumber	111753.0	<na></na>	<na></na>	<na></na>	368.390665	1.0
date	111753	NaN	NaN	NaN	1936-01-13 13:05:30.997825792	1789- 05-16 00:00:00
session	33447.0	<na></na>	<na></na>	<na></na>	1.437139	1.0
clerk_rollnumber	33447.0	<na></na>	<na></na>	<na></na>	279.685622	1.0
yea_count	111753.0	<na></na>	<na></na>	<na></na>	123.063506	0.0
nay_count	111753.0	<na></na>	<na></na>	<na></na>	75.268816	0.0
nominate_mid_1	111753.0	NaN	NaN	NaN	0.003677	-1.0
nominate_mid_2	111753.0	NaN	NaN	NaN	0.011355	-1.0
nominate_spread_1	111753.0	NaN	NaN	NaN	0.009661	-2.523
nominate_spread_2	111753.0	NaN	NaN	NaN	-0.00862	-8.037
nominate_log_likelihood	111753.0	NaN	NaN	NaN	-45.255432	-303.886
bill_number	87840	15840	HR1	633	NaN	NaN
vote_result	33447	64	Passed	12024	NaN	NaN
vote_desc	24949	17578	In the nature of a substitute.	256	NaN	NaN
vote_question	33439	721	On Agreeing to the Amendment	7201	NaN	NaN
dtl_desc	87943	85745	TO ADJOURN.	559	NaN	NaN
4						•

1.3 Preliminary Filtering

Voting outcomes are freeform text entry and have changed over time from the reporting source. Results for this analysis reduce the Vote Result to clear Pass/Fail markers. These markers are only used in recent years, beginning at Congress Number 101 (1989). This reduction produces sufficient results to conduct reasonable analysis without any claims to the utility of older data.

1.4 Appending Segments

1.5 Final Distributions

```
In [8]: congressVotes_clean.describe(include= 'all').transpose()
```

Out[8]:		count	unique	top	freq	mean	min	
	congress	18849.0	<na></na>	<na></na>	<na></na>	109.857181	101.0	
	chamber	18849	1	House	18849	NaN	NaN	
	date	18849	NaN	NaN	NaN	2007-08-28 IaN 17:15:15.040585472	1990- 01-24 00:00:00	0
	yea_count	18849.0	<na></na>	<na></na>	<na></na>	260.250464	0.0	
	nay_count	18849.0	<na></na>	<na></na>	<na></na>	153.634782	0.0)
	nominate_mid_1	18849.0	NaN	NaN	NaN	aN 0.015747	-1.0	
	nominate_mid_2	18849.0	NaN	NaN	NaN	0.051274	-1.0	
	nominate_spread_1	18849.0	NaN	NaN	NaN	N 0.008296	-1.85	
	nominate_spread_2	18849.0	NaN	NaN	NaN	-0.001108	-6.046	
	nominate_log_likelihood	18849.0	NaN	NaN	NaN	-57.191051	-303.886	-
	bill_number	17838	5717	HR1	133	NaN	NaN	
	vote_result	18849	2	Passed	12024	NaN	NaN	
	president_party	18849	2	Democrat	10993	NaN	NaN	

2 Distribution Analysis

2.1 Testing Normality

```
In [9]: sample = congressVotes_clean['nominate_mid_1'].tolist()
    s_mean = np.mean(sample)
    s_mid = np.median(sample)
    s_dev = np.std(sample)
    plt.figure(figsize=(10, 6))
    sns.histplot(sample, bins=40, kde=False, color='gray', alpha=0.6, stat= 'density')
    plt.axvline(s_mid, color='red', linestyle='dashed', linewidth= 2)
    x = np.linspace(s_mean - 3*s_dev, s_mean + 3*s_dev, 100)
    pdf = stats.norm.pdf(x, s_mean, s_dev)
    plt.plot(x, pdf, color='blue', linestyle='solid', linewidth= 2)
    plt.yticks([])
    plt.xlabel('Nominate Score')
    plt.title('Nominate Score with Normal Overlay')
    plt.show()
```

Nominate Score with Normal Overlay


```
In [10]:
    res = stats.probplot(congressVotes_clean['nominate_mid_1'], dist= 'norm')
    q_theoretic, q_sample = res[0][0], res[0][1]
    slope, intercept = res[1][0], res[1][1]
    se = stats.sem(q_theoretic)
    upper_CI = q_theoretic*slope + intercept + 1.96 * se
    lower_CI = q_theoretic*slope + intercept - 1.96 * se
    fig, ax = plt.subplots(figsize=(6, 6))
    ax.plot(q_theoretic, q_sample, 'o', color='gray')
    ax.axline(
        (0, intercept),
        slope= slope,
        color= 'blue',
        lw= 2
    )
    plt.show()
```


Visual inspection of the data shows a modicum normality in its distribution. However, given the large size of the population data, the *visually* minor deviations from normality break the necessary assumptions of the population being a normal distribution for the purposes of statistical metrics.

Additionally, because of the dataset size, formal statistical tests of significance with normality are an inappropriate and inviable measure of determinance because the observation count overpowers the testing power of the statistic. Bootstrapping the test mitigates some of this issue even though the results (below) futher confirm the non-normality of the population.

```
In [11]: testsNormality = pd.DataFrame()
for i in range(100):
    stats.shapiro(congressVotes_clean['nominate_mid_1'].sample(1000))
    _tests = congressVotes_clean.groupby('congress').apply(lambda x: stats.shapiro(
        testsNormality[i] = _tests.apply(lambda x: round(x[1], 4))
x = len(testsNormality[(testsNormality > 0).any(axis= 1)])
f"Number of non-zero probability results in 100 bootstrapped tests: {x}"
```

Out[11]: 'Number of non-zero probability results in 100 bootstrapped tests: 0'

2.2 Grouping Considerations

An assumptive expectation of this report is the Congressional Sessions are functionally different from each other or progressively deviate over time and Presidential terms. Changes in Congress would manifest on the nominate spectrum (Liberal v Conservative) through changes in measures of central tendency and variability.

2.2(a) Moments of Mean

```
In [12]: g = sns.FacetGrid(
             congressVotes_clean,
             sharex= False,
             col_wrap= 3,
             col= 'congress',
             hue= 'vote_result',
             palette= {
                 'Passed': 'blue',
                 'Failed': 'gray'
             }
         g.map(plt.scatter, 'date', 'nominate_mid_1', edgecolor= "w").add_legend()
         for ax, (group_name, group_data) in zip(g.axes.flat, congressVotes_clean.groupby('c
             mean_nominate = group_data['nominate_mid_1'].mean()
             ax.axhline(mean_nominate, color= 'red', linestyle= 'dashed')
             ax.text(
                 x=.1, y=(mean_nominate + 1)/2,
                 s= f"{mean_nominate:.4f}",
                 transform= ax.transAxes,
                 va= 'center',
                 bbox= dict(boxstyle= "round", fc= "#ededed", alpha= .7)
         for ax in g.axes.flat:
             ax.xaxis.set_major_locator(mdates.MonthLocator(interval= 8))
         plt.show()
```



```
In [13]: | subsetPass = congressVotes_clean[congressVotes_clean['vote_result'] == 'Passed']
         df1 = testMannWhitney(
             congressVotes_clean,
             'congress',
             'nominate_mid_1',
             alternative= 'two-sided'
         ).rename(columns= {"P-Value": "P-Value FULL"}).drop(columns= "U-Statistic").set_ind
         df2 = testMannWhitney(
             congressVotes_clean[congressVotes_clean['vote_result'] == 'Passed'],
             'congress',
             'nominate_mid_1',
             alternative= 'two-sided'
         ).rename(columns= {"P-Value": "P-Value PASS"}).drop(columns= "U-Statistic").set_ind
         statsMannWhitney = df1.join(
             df2, how= 'outer')
         statsMannWhitney[(statsMannWhitney > .05).any(axis= 1)].round(4)
```

congress_1	congress_2		
101	117	0.8038	0.4316
102	110	0.2069	0.0000
	118	0.8440	0.0000
103	111	0.9986	0.0000
	116	0.1003	0.6549
104	105	0.1095	0.1688
	106	0.0006	0.1163
	107	0.2226	0.0276
	112	0.0000	0.7804
105	106	0.2078	0.9568
	107	0.4377	0.5012
	112	0.0099	0.1641
	115	0.0859	0.1064
106	107	0.0668	0.4338
	112	0.4338	0.0716
	115	0.3801	0.0264
107	115	0.0016	0.1271
108	109	0.3072	0.6265
	113	0.9787	0.3892
109	113	0.4101	0.4938
110	116	0.2706	0.0007
	118	0.0639	0.0920
111	118	0.0000	0.2023
112	113	0.1133	0.0000
	115	0.3117	0.0010
113	114	0.0000	0.1271
116	118	0.0516	0.0000

The nominate mean scores for each Congress are very near zero and have minimal fluctuation, suggesting the distributions (about the mean) of the entire dataset do not vary

much at the subsetting of each Congressional Session. While there were instances of every Congress failing to reject the Null of the MannWhitney test, it's notable the pattern is inconsistent when accounting for expected similarities of adjacent Sessions or similar party compositions.

2.2(b) Moments of Variance

```
In [14]: plt.figure(figsize=(10, 6))
         sns.violinplot(
             congressVotes_clean[congressVotes_clean['congress'].between(101, 106)],
             x= 'congress', y= 'nominate_mid_1', hue= 'president_party',
             palette={'Republican': 'red', 'Democrat': 'blue'})
         plt.show()
         plt.figure(figsize=(10, 6))
         sns.violinplot(
             congressVotes_clean[congressVotes_clean['congress'].between(107, 112)],
             x= 'congress', y= 'nominate_mid_1', hue= 'president_party',
             palette={'Republican': 'red', 'Democrat': 'blue'})
         plt.show()
         plt.figure(figsize=(10, 6))
         sns.violinplot(
             congressVotes_clean[congressVotes_clean['congress'].between(113, 118)],
             x= 'congress', y= 'nominate_mid_1', hue= 'president_party',
             palette={'Republican': 'red', 'Democrat': 'blue'})
         plt.show()
```


Unlike the evaluation of the mean with each Congress, the variance of nominate scores in each Congress are not alike and have a large deviation from their adjacent session numbers; identifying the Presidential party by color futher suggests there is no similarity by the controlling political direction. This shows that (adjacent) time and Presidential term have no influence over maintaining a homogeneous Congressional body.

```
'nominate_mid_1'
).set_index(['congress_1', 'congress_2'])
statsFlignerKilleen[statsFlignerKilleen['P-Value'] > 0.05]
```

Out[15]: F-Statistic P-Value

congress_1	congress_2		
101	102	2.951981	0.085772
	105	0.000253	0.987301
	106	1.207169	0.271894
	112	3.446848	0.063373
102	104	2.077593	0.149476
	105	1.429748	0.231806
	106	0.008113	0.928230
	107	2.095153	0.147767
	112	0.043467	0.834848
	113	1.135791	0.286543
103	107	0.537586	0.463435
	113	3.365391	0.066580
	117	0.013017	0.909164
	118	2.234465	0.134963
104	106	0.834449	0.360989
	107	0.405101	0.524467
	112	1.932455	0.164490
	113	0.000572	0.980925
105	106	3.273554	0.070405
	112	0.705325	0.401000
106	107	1.944735	0.163155
	112	0.464275	0.495633
	113	0.051944	0.819715
	117	3.483006	0.062002
107	113	2.323881	0.127402
	115	2.622761	0.105341
	117	0.098244	0.753948
	118	1.481963	0.223468
108	109	1.777416	0.182467

		F-Statistic	P-Value
congress_1	congress_2		
	110	1.156731	0.282144
	115	2.894726	0.088870
	116	1.203002	0.272723
109	110	0.997220	0.317984
	115	0.005993	0.938294
	116	0.244353	0.621080
	118	1.428072	0.232079
110	115	0.716279	0.397367
	116	0.550549	0.458094
	118	3.673943	0.055269
112	113	1.694659	0.192988
113	117	3.342221	0.067523
115	116	0.266338	0.605799
116	118	1.906856	0.167313
117	118	2.060120	0.151198

The only notable similarity between each Congress appears to be when the incumbent party retains it's control with subsequent Congressional Sessions; this is the only component to align with the initial assumptions made by this report.