

CSC 384 Introduction to Artificial Intelligence

Knowledge Representation 2

Alice Gao and Randy Hickey
Winter 2023

Learning Goals

By the end of this lecture, you should be able to

- 1. Define logical consequence.
- 2. Define soundness and completeness.
- Describe the resolution rule.
- 4. Describe the two proof approaches (forward chaining and refutation proof).
- 5. Convert a formula into clausal form.

Outline

- 1. Logical Consequence
- 2. Resolution Proof
- 3. Convert Formula into Clausal Form

LOGICAL CONSEQUENCE

Models

- KB is a knowledge base consisting of multiple formulas.
- f is a formula. M is a model/interpretation.
- $M \models f$ means that f is true under M.
- M satisfies KB ($M \models KB$), if and only if every formula $f \in KB$ is true under M or $\forall f \in KB, M \models f$.
- One KB typically has many models.
- We intend the real world to be one model of KB.

Deducing Logical Consequences

- One KB does not contain all the true statements.
- How can we deduce true statements that are consistent with the KB but not in KB?

KB entails f or f is a logical consequence of KB \iff $(M \models KB) \rightarrow (M \models f)$ f is true in every model of KB.

RESOLUTION PROOF

Computing Logical Consequences

Want to reason with our knowledge

- 1. Represent the knowledge as logical formulas
- 2. Apply procedures to generate logical consequences
- Implement these procedures in programs.
- We will develop a proof procedure called resolution.

Proof Procedures

- They manipulate formulas syntactically.
- They do not know or care about the meanings.
- Yet, they respect the meanings of the formulas.
- $KB \vdash f$: we can prove f from KB.
 - through a purely syntactic manipulation of the formulas in KB.

Properties of Proof Procedures

Soundness

$$KB \vdash f \rightarrow KB \vDash f$$

- If we can prove f from KB, then f is a logical consequence of KB.
- "If we can prove f, then f is true."

Completeness

$$KB \models f \rightarrow KB \vdash f$$

- If f is a logical consequence of KB, then we can prove f from KB.
- "If f is true, then we can prove f."
- Resolution is sound and complete!

Clausal Form

 To construct a resolution proof, we must convert each formula to clausal form.

- A literal is an atomic formula or the negation of an atomic formula.
 - e.g. p(X) or $\neg p(X)$
- A clause is a disjunction (OR) of literals.
 - e.g. $p(X) \lor q(Y) \lor \neg r(Y, Z)$
 - We rewrite it: $(p(X), q(Y), \neg r(Y, Z))$

Resolution Rule

Resolution proof has one rule:

From the two clauses

$$(P, Q_1, \dots, Q_k)$$

 $(\neg P, R_1, \dots, R_n)$

We infer the new clause

$$(Q_1, \ldots, Q_k, R_1, \ldots, R_n)$$

Two Proof Approaches

Suppose we want to prove f from KB.

- Forward Chaining (or Direct Proof)
 - Start with the clauses from the KB.
 - Generate a new clause using the resolution rule.
 - Stop when we generate *f* .
- Refutation Proof (or Proof by Contradiction)
 - Start with the clauses from KB and a new clause $\neg f$.
 - Generate a new clause using the resolution rule.
 - Stop when we generate the empty clause.

Forward Chaining Example

Want to prove likes(C,peanuts) from:

- (elephant(C), giraffe(C))
- 2. $(\neg elephant(C), likes(C, peanuts))$
- 3. $(\neg giraffe(C), likes(C, leaves))$
- 4. \neg likes(C, leaves)

Forward Chaining Proof:

Step	Clauses to combine	Resulting clause
5	3 and 4	-giraffe(C)
6	1 and 5	elephant(C)
7	2 and 6	likes(C,peanuts)

Refutation Proof Example

Want to prove likes(C,peanuts) from:

- (elephant(C), giraffe(C))
- (¬elephant(C), likes(C, peanuts))
- 3. $(\neg giraffe(C), likes(C, leaves))$
- 4. \neg likes(C, leaves)

Refutation Proof:

Step	Clauses to combine	Resulting clause
5	Refutation clause	¬likes(C,peanuts)
6	2 and 5	¬elephant(C)
7	1 and 6	giraffe(C)
8	3 and 7	likes(C,leaves)
9	4 and 8	Empty clause

CONVERT A FORMULA INTO CLAUSAL FORM

Converting a Formula to Clausal Form

We follow the 8 steps below.

- 1. Eliminate implications.
- Move negations inwards (and simplify double negations).
- 3. Standardize variables.
- Skolemize.
- 5. Convert to Prenix Form.
- 6. Distribute conjunctions over disjunctions.
- 7. Flatten nested conjunctions and disjunctions.
- 8. Convert to clauses.

Step 1: Eliminate Implications

Recall the four logical connectives Λ , \forall , \neg , \rightarrow .

The implication is convenient but redundant.

$$p(x) \to q(y) \implies \neg p(x) \lor q(y)$$

Step 2: Move Negations Inwards

Move each negation inwards as much as possible.

$$\neg (f(X) \land g(X)) \Longrightarrow (\neg f(X) \lor \neg g(X)),$$
$$\neg \forall X f(X) \Longrightarrow \exists X \neg f(X)$$

$$\neg (f(X) \lor g(X)) \Longrightarrow (\neg f(X) \land \neg g(X)),$$
$$\neg \exists X f(X) \Longrightarrow \forall X \neg f(X)$$

Also, simplify double negations.

$$\neg \neg g(X) \Longrightarrow g(X)$$

Step 3: Standardize Variables

Rename variables so that each quantified variable is unique.

Example:

$$(\forall X \ p(X)) \land (\forall X \ q(X))$$

$$\Rightarrow$$

$$(\forall X \ p(X)) \land (\forall Y \ q(Y))$$

Step 4: Skolemize

A.k.a eliminate existential quantifiers by introducing new function symbols.

Example 1:

$$\exists X \ p(X) \Longrightarrow p(a)$$

Example 2:

$$\forall X \forall Y \exists Z \forall W \ p(X,Y,Z,W)$$

$$\Longrightarrow$$

$$\forall X \forall Y \forall W \ p(X,Y,f(X,Y),W)$$

If the existential quantifier does not have any universal quantifier outside of it,

Example:

$$\exists Y \ diligent(Y)$$

- Asserts that at least one individual is diligent.
- To remove \exists , we invent a name for this individual, say a constant symbol a to obtain

- a must be new,
 - New: not equal to any previous constant symbol.
 - We must know nothing about a.

What could go wrong if a is not new?

Example:

```
rabbit(a), \exists Y \ diligent(Y)
```

If we convert $\exists Y \ diligent(Y)$ to diligent(a), what goes wrong?

```
rabbit(a),
diligent(a)
```

If the existential quantifier

is within one or more universal quantifiers,

Example:

 $\forall X \exists Y \ likes(X,Y)$

Translate this formula:

What if we replace Y with a new constant symbol a? $\forall X \ likes(X, a)$

Translate this formula:

If the existential quantifier is within one or more universal quantifiers,

Example:

$$\forall X \exists Y \ likes(X,Y)$$

Each Y must be a function of the chosen X.

$$\forall X \ likes(X, g(X))$$

- g must be a new function symbol.
- g must be a function of all the universally quantified variables chosen before it.

Skolemize Exercises

$$\forall X \forall Y \forall Z \exists W \ p(X,Y,Z,W)$$

$$\forall X \forall Y \exists W \ p(X,Y,g(W))$$

$$\forall X \forall Y \exists W \forall Z \ (p(X,Y,W) \land q(Z,W))$$

Skolemize Exercise Solutions

```
\forall X \forall Y \forall Z \exists W \ p(X,Y,Z,W)
            \rightarrow \forall X \forall Y \forall Z \ p(X,Y,Z,h1(X,Y,Z))
                    \forall X \forall Y \exists W \ p(X,Y,g(W))
               \rightarrow \forall X \forall Y p(X,Y,g(h2(X,Y)))
         \forall X \forall Y \exists W \forall Z (p(X,Y,W) \land q(Z,W))
\rightarrow \forall X \forall Y \forall Z (p(X,Y,h3(X,Y)) \land q(Z,h3(X,Y)))
```

Step 5: Convert to Prenix Form

Bring all universal quantifiers to the front.

Example

$$\forall X \left(p(X) \lor \left(\forall Y \ q(X,Y) \lor r(Y) \right) \right)$$

$$\Longrightarrow$$

$$\forall X \forall Y \left(p(X) \lor \left(q(X,Y) \lor r(Y) \right) \right)$$

Step 6: Conjunctions over Disjunctions

Convert the formula into

a conjunction (AND) of disjunctions (OR).

Example:

$$p(X) \lor (q(X) \land r(X))$$

$$\Rightarrow$$

$$(p(X) \lor q(X)) \land (p(X) \lor r(X))$$

This step is like step 5. Do you see why?

Step 7: Flatten Nested Conjunctions and Disjunctions

Remove brackets (wherever possible)!

Examples:

$$p(X) \lor (q(X) \lor r(X)) \implies p(X) \lor q(X) \lor r(X)$$

$$p(X) \land (q(X) \land r(X)) \implies p(X) \land q(X) \land r(X)$$

Step 8: Convert to Clauses

Remove the universal quantifiers.

Break apart the conjunctions.

Example:

$$\forall X \left(p(X) \land \left(q(X) \lor r(Y) \right) \right)$$

Clause 1: p(X)

Clause 2: (q(X), r(Y))

Converting a Formula to Clausal Form

Rephrasing the 8 steps below.

- Eliminate implications.
- 2. Move negations inwards (and simplify double negations).
- 3. Rename variables.
- 4. Eliminate existential quantifiers.
- 5. Move universal quantifiers to the front.
- 6. Distribute conjunctions over disjunctions.
- 7. Remove brackets wherever possible.
- 8. Break apart the formula at the conjunctions into clauses.

Example: Converting a Formula into Clausal Form

$$\forall X \left(p(X) \right)$$

$$\rightarrow \left(\left(\forall Y \left(p(Y) \rightarrow p(f(X,Y)) \right) \right) \right)$$

$$\land \neg \left(\forall Y \left(\neg q(X,Y) \land p(Y) \right) \right) \right)$$

Step 1: Eliminate implications

$$\forall X \left(\neg p(X) \right)$$

$$\lor \left(\left(\forall Y \left(\neg p(Y) \lor p(f(X,Y)) \right) \right)$$

$$\land \neg \left(\forall Y (\neg q(X,Y) \land p(Y)) \right) \right)$$

Step 2: Move negations inwards

$$\forall X \left(\neg p(X) \right)$$

$$\lor \left(\left(\forall Y \left(\neg p(Y) \lor p(f(X,Y)) \right) \right) \right)$$

$$\land \left(\exists Y (q(X,Y) \lor \neg p(Y)) \right) \right)$$

Step 3: Rename variables

$$\forall X \left(\neg p(X) \right)$$

$$\lor \left(\left(\forall Y \left(\neg p(Y) \lor p(f(X,Y)) \right) \right)$$

$$\land \left(\exists Z (q(X,Z) \lor \neg p(Z)) \right) \right)$$

Step 4: Skolemize

$$\forall X \left(\neg p(X) \right)$$

$$\lor \left(\left(\forall Y \left(\neg p(Y) \lor p(f(X,Y)) \right) \right)$$

$$\land \left(q(X,g(X)) \lor \neg p(g(X)) \right) \right)$$

Step 5: Move all the universals to the front

$$\forall X \forall Y \left(\neg p(X) \right)$$

$$\vee \left(\left(\neg p(Y) \lor p(f(X,Y)) \right) \land \left(q(X,g(X)) \lor \neg p(g(X)) \right) \right)$$

Step 6: Conjunctions over disjunctions

$$\forall X \forall Y \left(\left(\neg p(X) \lor \left(\neg p(Y) \lor p(f(X,Y)) \right) \right) \right)$$

$$\land \left(\neg p(X) \lor \left(q(X,g(X)) \lor \neg p(g(X)) \right) \right)$$

Step 7: Flatten nested conjunctions and disjunctions

$$\forall X \forall Y \left(\left(\neg p(X) \lor \neg p(Y) \lor p(f(X,Y)) \right) \right)$$

$$\land \left(\neg p(X) \lor q(X,g(X)) \lor \neg p(g(X)) \right)$$

Step 8: Convert to clauses

Clause 1:

$$(\neg p(X), \neg p(Y), p(f(X,Y)))$$

Clause 2:

$$(\neg p(X) \lor, q(X, g(X)), \neg p(g(X)))$$