

BIW 4-01	TRAGWERKSSICHERHEIT	4. Beleg	8. FS SS 2023	
Ausgabe:	27.06.2022	7 17 11 11 11 10 1 (500)		
Abgabe: digital bis 30.06.2023		Zuverlässigkeitstheorie I. Ordnung (FORM) –		
Konsulent:	F. Niklas Schietzold, VMB/203	Sicherheitsindex		
Name:	Philipp Göbel	Matrikel: 4607083		

Aufgabe

Berechnen Sie für den dargestellten Rahmen den Sicherheitsindex β nach Zuverlässigkeitstheorie I. Ordnung für die möglichen Versagensmodi bei vollständigem Systemversagen.

Die Normalkraftwirkung darf vernachlässigt werden.

Das Tragwerk besteht aus Walzträgern HEA 320 mit $W_{pl}=1,628\cdot 10^{-3}~\text{m}^3$. Die Fließspannung f_y sei an allen Stellen des Systems gleich groß, also voll korreliert.

Die Systemabmessungen betragen $h=4.0~\mathrm{m}$ und $l=3.5~\mathrm{m}$.

Dokumentieren Sie Ihr Vorgehen in nachvollziehbarer Art und Weise. Unnachvollziehbarer Quellcode oder unkommentierte Tabellenkalkulationen werden nicht akzeptiert.

Abbildung 1: System und Belastung

Hinweise

- Bei Bedarf sind Integrale mit Hilfe von numerischer Integration zu lösen. Dokumentieren Sie Ihr Vorgehen in nachvollziehbarer Art und Weise.
- Geben Sie Quellcodes, Worksheets oder Tabellenkalkulationen als Teil des Lösungswegs ab, wenn Sie die numerische Integrationen damit durchführen. Bitte beachten Sie, dass diese Lösungswege gut nachvollziehbar und kommentiert sind.
- Bitte geben Sie dieses Deckblatt mit Ihrem Namen und Matrikelnummer ab.

Teilaufgaben

- 1. Die Lasten H und V werden durch eine normalverteilte Last-Zufallsvariable beschrieben. V besitzt einen deterministischen Anteil von 40 kN. Die Fließspannung ist normalverteilt.
 - Belastung

$$X_1 \sim \mathcal{NV}(\mu_{X1} = 30 \text{ kN}; \ \sigma_{X1} = 5 \text{ kN})$$

 $H = 2 \cdot X_1$
 $V = 6 \cdot X_1 + 40 \text{ kN}$

• Fließspannung

$$f_y = X_2 \sim \mathcal{NV}(\mu_{X2} = 28.8 \cdot 10^4 \text{ kN/m}^2; \ \sigma_{X2} = 2.64 \cdot 10^4 \text{ kN/m}^2)$$

- 2. Die Lasten H und V sind jeweils normalverteilt und voneinander stochastisch unabhängig (keine Korrelation). In der Last V ist einen deterministischen Anteil von 60 kN enthalten. Die Fließspannung ist normalverteilt.
 - \bullet Belastung H

$$X_1 \sim \mathcal{NV}(\mu_{X1} = 30 \text{ kN}; \ \sigma_{X1} = 5 \text{ kN})$$

 $H = 2 \cdot X_1$

 \bullet Belastung V

$$X_2 \sim \mathcal{NV}(\mu_{X2} = 30 \text{ kN}; \ \sigma_{X2} = 5 \text{ kN})$$

 $V = 6 \cdot X_2 + 60 \text{ kN}$

• Fließspannung

$$f_y = X_3 \sim \mathcal{NV}(\mu_{X3} = 28.8 \cdot 10^4 \text{ kN/m}^2; \ \sigma_{X3} = 2.64 \cdot 10^4 \text{ kN/m}^2)$$

- 3. Die Lasten H und V werden durch eine Zufallsvariable unter Extremwertverteilung beschrieben. In der Last V ist einen deterministischen Anteil von 40 kN enthalten. Die Fließspannung ist logarithmisch-normalverteilt.
 - Belastung

$$X_1 \sim \text{Ex-max}_{\text{Typ I}} (\mu_{X1} = 25 \text{ kN}; \ \sigma_{X1} = 5 \text{ kN})$$

 $H = 6 \cdot X_1$
 $V = 13 \cdot X_1 + 40 \text{ kN}$

Fließspannung

$$f_y = X_2 \sim \mathcal{LNV}(\mu_{X2} = 28.8 \cdot 10^4 \text{ kN/m}^2;$$

 $\sigma_{X2} = 2.64 \cdot 10^4 \text{ kN/m}^2;$
 $x_{02} = 19.9 \cdot 10^4 \text{ kN/m}^2)$

Fakultativ: Ermitteln Sie durch numerische Integration für Aufgabe 3 die Versagenswahrscheinlichkeiten P_f für Versagen des Gesamtsystems. Vorzugsweise ist dafür eine Monte-Carlo-Simulation durchzuführen.

Vergleichen Sie das Ergebnis der numerischen Integration mit dem Ergebnis aus Aufgabe 3!

bauingenieur24 Informationsdienst • Dr.-Heinrich-Mohn-Straße 19 • 63571 Gelnhausen • Tel. +49 (0) 6051 / 8870953 • info@bauingenieur24.de

4. Be	les Fol	en	460708	Cibel >	23.06,23
	-				
Aufgobe	2		7 1 5	13 1/ 0	7
3: - 7	p, (3.6	6 Xz + 40) - \$ (2	x,)] = - 2p, [-	= Xx + 9.	X2 + 60 J
1: 1	T- 12 (2)	(x_n) $\mathcal{I} = \frac{1}{\omega_n}$ \mathcal{I}	24 X 7		
wpi	45 6	mil while	5 7 1		
	Co3 +	C13 Mx1 + C23/1	re + MKT		
190 =	((013.5)	(c23 6x2)	2 1 5x32)0.5		
	mit		36855, 0	ç	
		C13 = 12 5WM	= 1474,20		
		623 = - 9 Uni	= -5528,26		
	3,327	-7 maßge	Scud		
00 -	(74	pex + pex3		24	7948 4A
BO =	((crq . 6	5×1)2+ 6×32) 0	unit cace	Supi	, , , ,
	12,450)			
P43 (B3	\ = 1	$- \Phi(\beta_3) = 0$,000438		
43 (0)		9 (83)			

bauingenieur24 Informationsdienst = Dr.-Heinrich-Mohn-Straße 19 = 63571 Gelnhausen = Tel. +49 (0) 6051 / 8870953 = info@bauingenieur24.de

Projekt:	Bearbeiter: Philipp Göbel	Datum: 23.06.23
4. Beley FORM	4607083	Blatt:
Augabe 3 $a = \frac{\pi}{\sqrt{6}} \cdot \frac{1}{6\pi} = 0.257$		
$6 = \mu_{yy} - \frac{0.572}{a} = 22.75$		
δu = //n (1 + (1κο) =		
μω = /4 (5×2 - ×02) - 2	= 10,730	
B: - Wp. [3 (13 X2 + 40) - 5		4 + 60]
() - 12 6x,] = [
$h_{j}(y) = h_{j}(y_{1}, y_{2}) = C_{1j}\left(\frac{-3}{\ln (\mathfrak{D}^{W}(y_{1}))}\right)^{\frac{1}{4}}$	+ e y = 6 a + /4 u + × 0,2	= 0
mit $F(x_n) = \exp(-\exp(-\alpha(x_n-5)))$) -> y, - a.ln(In(0°	m(y1)))+6
y2 = /u (x2) -/u4 -0 x	iz - bu · exp(bu · yz	+/uu?
	νν(y, 11) +5) + 5u exp(50	1.72 +/Uu) + X012
H (y*); = 86, (y1) =	1 · φ · (y') / (y') / (y') · ln (Φ(y)) / (exp (σ u y z + μ u))	
B; (4) = H; (4) H; (4) 1000		
	$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \right) \cdot \frac{1}{2}$	1

bauingenieur24 Informationsdienst = Dr.-Heinrich-Mohn-Straße 19 = 63571 Gelnhausen = Tel. +49 (0) 6051 / 8870953 = info@bauingenieur24.de

MPOSIUM)			content for cons	The same of the same of
jekt:	504	Bearbeiter: Philipp	Göbel	Datum: 23.07.23
4. Beley	FORM	Philipp 460708	3	Blatt: 4
V 8 - X	1 (ys) - ps (ys)			
y;				
Startwast	4 = 107			
37047-0	7 [0]		<u>x</u>	(
$\Phi(z) = \frac{1}{\sqrt{20}}$	$\frac{1}{2}\int e^{-\frac{x^2}{2}} dx$	$\varphi(x) = $	1 e 2	
PIE / Yza			24	
	607			
Start wat	y = [0]			
=> nech	2000 Ituaho-	uu (sieho	- Anhony)	
3 = 40	52.10-7			
	= 1- 0(3) - 0). 4999		
P\$(13)	= 7/3 (1/6)			
	tanadianat ■ DrHeinrich-Mohn-Straße		12 (0) (051 / 887	0953 • info@bauingenieu

```
using Distributions
using QuadGK
println()
Wpl = 1.628e-3
#Teilaufgabe 1
println("Teilaufgabe 1")
muh_x1 = 30
sigma_x1 = 5
muh_x2 = 28.8e4
sigma_x2 = 2.64e4
c03 = -1/Wpl*60
c13 = 1/Wpl*33/5
c14 = -1/Wpl*24/5
beta3 = (c03+c13*muh_x1+muh_x2)/sqrt((c13*sigma_x1)^2 + sigma_x2^2)
beta4 = (c14*muh_x1+muh_x2)/sqrt((c14*sigma_x1)^2+sigma_x2^2)
println("c03: ", c03)
println("c13: ", c13)
println("c14: ", c14)
println("beta3: ", beta3)
println("beta4: ", beta4)
beta = min(beta3, beta4)
Pf = cdf(Normal(), beta)
println("Pf beträgt bei einem beta=",beta)
println(1-Pf)
println("----")
println()
#Teilaufgabe 2
println("Teilaufgabe 2")
muh_x1 = 30
sigma_x1 = 5
muh_x2 = 30
sigma_x2 = 5
muh_x3 = 28.8e4
sigma_x3 = 2.64e4
c03 = -1/Wpl*60
c13 = -1/Wpl*-12/5
c23 = -1/Wpl*9
c14 = -1/Wpl*-24/5
beta3 = (c03+c13*muh_x1+c23*muh_x2+muh_x3) / sqrt((c13*sigma_x1)^2 +
(c23*sigma_x2)^2 + sigma_x3^2
beta4 = (c14*muh_x1+muh_x3) / sqrt( (c14*sigma_x1)^2 + sigma_x3^2 )
println("c03: ", c03)
println("c13: ", c13)
println("c23: ", c23)
println("c14: ", c14)
println("beta3: ", beta3)
println("beta4: ", beta4)
```

```
beta = min(beta3, beta4)
Pf = cdf(Normal(), beta)
println("Pf beträgt bei einem beta=",beta)
println(1-Pf)
println("----")
println()
#Teilaufgabe 3
println("Teilaufgabe 3")
sigma_x1 = 5
muh_x1 = 25
sigma_x2 = 28.8e4
muh_x2 = 2.64e4
x02 = 19.9e4
a = 1/sigma_x1*pi/sqrt(6)
b = muh_x1 - 0.5772/a
sigma_u = sqrt(log(1+(sigma_x2/(muh_x2-x02))^2))
muh_u = log(sigma_x2-x02)-sigma_u^2/2
println()
println("a: ",a," b: ", b)
println("sigma_u :",sigma_u,"
                                muh_u: ",muh_u)
println()
c03 = -1/Wpl*60
c13 = -1/Wpl*12.3
c14 = 1/Wpl*-14.4
println("c03: ", c03)
println("c13: ", c13)
println("c14: ", c14)
# Funktion klein phi
function phi(y)
   return 1/sqrt(2*pi)*exp(-y^2/2)
#Funktion groß phi
function Gphi(y)
   return 1/sqrt(2*pi) * quadgk(y -> exp(-y^2/2), -Inf, Inf)[1]
# besetzten der Anfangsarrays und Zähler
y = [0.0; 0.0]
alpha = [0.0 \ 0.0 \ ; \ 0.0 \ 0.0]
beta = [0.0; 0.0]
p = 0
for i = 1:2000
    h3
       = c03 + c13/a * log(log(Gphi(y[1]))) + c13*b + exp(sigma_u*y[2]+muh_u)
x02
    h4 = c14/a * log(log(Gphi(y[1]))) + c14*b + exp(sigma_u*y[2]+muh_u) + x02
    H3 = [c13/a * phi(y[1]) / (Gphi(y[1]) * log(Gphi(y[1]))); sigma_u *
exp(sigma_u*y[2]+muh_u)]
    H4 = [c14/a * phi(y[1]) / (Gphi(y[1]) * log(Gphi(y[1]))); sigma_u *
exp(sigma_u*y[2]+muh_u)]
```

```
global beta[1] = (h3 - H3' * y) / sqrt(H3' * H3)
global beta[2] = (h4 - H4' * y) / sqrt(H4' * H4)

global alpha[1,:] = -H3 / sqrt(H3' * H3)
global alpha[2,:] = -H4 / sqrt(H4' * H4)

global y = alpha * beta

global p += 1
end

println("Für die Iteration erhalten wir nach ", p, " Iterationen, ein beta von:
", beta[1])
println()
Pf = cdf(Normal(), beta[1])
println("Pf beträgt bei einem beta=", beta[1], " : ", 1-Pf)
```