$12n_{0680} (K12n_{0680})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3449u^{20} + 3669u^{19} + \dots + 71498b - 42457, \ -23077u^{20} - 82531u^{19} + \dots + 71498a + 43556, \\ &u^{21} + 4u^{20} + \dots - 2u + 1 \rangle \\ I_2^u &= \langle b, \ u^5 + 2u^4 + 4u^3 + 4u^2 + a + 3u + 2, \ u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1 \rangle \\ I_3^u &= \langle -au + b - u, \ -u^2a + a^2 + au - 3u^2 + 2u - 4, \ u^3 - u^2 + 2u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 33 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 3449u^{20} + 3669u^{19} + \dots + 71498b - 42457, \ -23077u^{20} - 82531u^{19} + \dots + 71498a + 43556, \ u^{21} + 4u^{20} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_{7} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{12} &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_{4} &= \begin{pmatrix} 0.322764u^{20} + 1.15431u^{19} + \dots + 4.24348u - 0.609192 \\ -0.0482391u^{20} - 0.0513161u^{19} + \dots - 0.0347422u + 0.593821 \end{pmatrix} \\ a_{8} &= \begin{pmatrix} 1 \\ u^{2} \end{pmatrix} \\ a_{3} &= \begin{pmatrix} 0.274525u^{20} + 1.10300u^{19} + \dots + 4.20873u - 0.0153711 \\ -0.0482391u^{20} - 0.0513161u^{19} + \dots - 0.0347422u + 0.593821 \end{pmatrix} \\ a_{6} &= \begin{pmatrix} -0.224552u^{20} - 1.13479u^{19} + \dots - 2.45920u + 0.935718 \\ 0.166117u^{20} + 0.596254u^{19} + \dots + 0.165739u - 0.324387 \end{pmatrix} \\ a_{11} &= \begin{pmatrix} u \\ u^{3} + u \end{pmatrix} \\ a_{9} &= \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix} \\ a_{10} &= \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix} \\ a_{5} &= \begin{pmatrix} -0.406179u^{20} - 1.57648u^{19} + \dots - 2.97737u + 0.847101 \\ -0.0482391u^{20} - 0.0513161u^{19} + \dots - 0.0347422u - 0.406179 \end{pmatrix} \\ a_{2} &= \begin{pmatrix} 0.0868835u^{20} + 0.255951u^{19} + \dots + 1.16347u + 0.290428 \\ 0.0482391u^{20} + 0.0513161u^{19} + \dots + 0.0347422u + 0.406179 \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{58626}{35749}u^{20} - \frac{459843}{71498}u^{19} + \dots + \frac{105825}{71498}u - \frac{777975}{71498}u^{19} + \dots$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{21} - 10u^{20} + \dots - 4u - 1$
c_3, c_6	$u^{21} + 4u^{20} + \dots - 128u + 64$
c_5, c_9	$u^{21} - 2u^{20} + \dots + 224u + 64$
c_7, c_8, c_{11}	$u^{21} - 4u^{20} + \dots - 2u - 1$
c_{10}, c_{12}	$u^{21} + 4u^{20} + \dots - 304u - 97$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{21} - 4y^{20} + \dots + 152y - 1$
c_{3}, c_{6}	$y^{21} + 30y^{20} + \dots + 90112y - 4096$
c_{5}, c_{9}	$y^{21} + 28y^{20} + \dots + 82944y - 4096$
c_7, c_8, c_{11}	$y^{21} + 22y^{20} + \dots - 10y - 1$
c_{10}, c_{12}	$y^{21} + 14y^{20} + \dots - 131266y - 9409$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.904622 + 0.417722I		
a = 1.45274 - 0.01148I	6.05963 + 7.34750I	-14.4555 - 4.2838I
b = 0.92182 - 2.09929I		
u = -0.904622 - 0.417722I		
a = 1.45274 + 0.01148I	6.05963 - 7.34750I	-14.4555 + 4.2838I
b = 0.92182 + 2.09929I		
u = -0.766571 + 0.752408I		
a = -1.037380 + 0.144450I	7.09375 - 1.76941I	-12.87851 - 0.26190I
b = 0.29405 + 2.35369I		
u = -0.766571 - 0.752408I		
a = -1.037380 - 0.144450I	7.09375 + 1.76941I	-12.87851 + 0.26190I
b = 0.29405 - 2.35369I		
u = 0.182461 + 1.208850I		
a = -0.276557 - 0.201585I	2.74625 - 2.07596I	-5.86030 + 3.17371I
b = -0.119527 + 0.423528I		
u = 0.182461 - 1.208850I		
a = -0.276557 + 0.201585I	2.74625 + 2.07596I	-5.86030 - 3.17371I
b = -0.119527 - 0.423528I		
u = -0.734798		
a = -1.01042	-10.5256	-25.3380
b = -1.32151		
u = 0.200947 + 1.339400I		
a = -1.31937 + 2.00455I	1.78822 - 2.54403I	-24.8123 + 5.5170I
b = -0.552581 - 0.279603I		
u = 0.200947 - 1.339400I		
a = -1.31937 - 2.00455I	1.78822 + 2.54403I	-24.8123 - 5.5170I
b = -0.552581 + 0.279603I		
u = -0.341638 + 1.336290I		
a = 0.828590 - 0.644391I	-6.25683 + 3.88389I	-16.6815 - 2.9719I
b = -1.256020 - 0.461833I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.341638 - 1.336290I		
a = 0.828590 + 0.644391I	-6.25683 - 3.88389I	-16.6815 + 2.9719I
b = -1.256020 + 0.461833I		
u = 0.512237		
a = -5.60059	-2.52473	-76.9450
b = -0.289328		
u = -0.35905 + 1.50519I		
a = 0.78634 + 2.07126I	12.2217 + 11.9532I	-11.90704 - 5.00504I
b = 1.39494 - 1.98909I		
u = -0.35905 - 1.50519I		
a = 0.78634 - 2.07126I	12.2217 - 11.9532I	-11.90704 + 5.00504I
b = 1.39494 + 1.98909I		
u = 0.06735 + 1.55292I		
a = -1.37220 + 0.85690I	5.79361 - 0.73866I	-10.20116 + 0.28003I
b = 1.86679 - 0.98776I		
u = 0.06735 - 1.55292I		
a = -1.37220 - 0.85690I	5.79361 + 0.73866I	-10.20116 - 0.28003I
b = 1.86679 + 0.98776I		
u = -0.21280 + 1.64374I		
a = -0.63755 - 2.25205I	15.1889 + 1.8962I	-10.30157 - 0.70895I
b = -0.62112 + 3.12830I		
u = -0.21280 - 1.64374I		
a = -0.63755 + 2.25205I	15.1889 - 1.8962I	-10.30157 + 0.70895I
b = -0.62112 - 3.12830I		
u = 0.334401		
a = -0.860564	-0.669543	-14.6190
b = 0.297521		
u = 0.077997 + 0.278544I		
a = -0.18883 + 1.76255I	-0.764279 + 0.134030I	-11.95123 + 0.33972I
b = 0.728300 - 0.059767I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.077997 - 0.278544I		
a = -0.18883 - 1.76255I	-0.764279 - 0.134030I	-11.95123 - 0.33972I
b = 0.728300 + 0.059767I		

$$II. \\ I_2^u = \langle b, \ u^5 + 2u^4 + 4u^3 + 4u^2 + a + 3u + 2, \ u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{5} - 2u^{4} - 4u^{3} - 4u^{2} - 3u - 2 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{5} - 2u^{4} - 4u^{3} - 4u^{2} - 3u - 2 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{5} - u^{4} - 2u^{3} - u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ u^{5} + u^{4} + 2u^{3} + u^{2} + u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{5} - 2u^{4} - 6u^{3} - 4u^{2} - 4u - 2 \\ -u^{5} - u^{4} - 2u^{3} - u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^5 u^4 + 5u^3 + 4u^2 + 7u 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_6	u^6
C4	$(u+1)^6$
<i>C</i> ₅	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{7}, c_{8}	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$
c_9, c_{10}, c_{12}	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$
c_{11}	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_6	y^6
c_5, c_9, c_{10} c_{12}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_7, c_8, c_{11}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.873214		
a = -0.422181	-9.30502	-14.4810
b = 0		
u = 0.138835 + 1.234450I		
a = 0.26610 + 1.72116I	1.31531 - 1.97241I	-15.7816 + 4.5012I
b = 0		
u = 0.138835 - 1.234450I		
a = 0.26610 - 1.72116I	1.31531 + 1.97241I	-15.7816 - 4.5012I
b = 0		
u = -0.408802 + 1.276380I		
a = -0.417699 - 0.090629I	-5.34051 + 4.59213I	-11.43321 - 5.39767I
b = 0		
u = -0.408802 - 1.276380I		
a = -0.417699 + 0.090629I	-5.34051 - 4.59213I	-11.43321 + 5.39767I
b = 0		
u = 0.413150		
a = -4.27462	-2.38379	-3.08970
b = 0		

III. $I_3^u = \langle -au + b - u, -u^2a + a^2 + au - 3u^2 + 2u - 4, u^3 - u^2 + 2u - 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} a \\ au + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} au + a + u \\ au + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} - a + u - 3 \\ -au - u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{2} - u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - a + u - 3 \\ -au - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au - u^{2} - a + 2u - 4 \\ -au - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^2a 5u^2 + 3a + 7u 15$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3	$(u^2+u-1)^3$
c_4, c_6	$(u^2 - u - 1)^3$
c_{5}, c_{9}	u^6
c_{7}, c_{8}	$(u^3 - u^2 + 2u - 1)^2$
c_{10}, c_{12}	$(u^3 - u^2 + 1)^2$
c_{11}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6	$(y^2 - 3y + 1)^3$
c_5, c_9	y^6
c_7, c_8, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{10}, c_{12}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -1.075750 + 0.460350I	2.03717 - 2.82812I	-12.9982 + 11.8301I
b = -0.618034		
u = 0.215080 + 1.307140I		
a = -0.80169 - 1.20521I	-5.85852 - 2.82812I	-13.61882 - 1.93520I
b = 1.61803		
u = 0.215080 - 1.307140I		
a = -1.075750 - 0.460350I	2.03717 + 2.82812I	-12.9982 - 11.8301I
b = -0.618034		
u = 0.215080 - 1.307140I		
a = -0.80169 + 1.20521I	-5.85852 + 2.82812I	-13.61882 + 1.93520I
b = 1.61803		
u = 0.569840		
a = 1.83945	-9.99610	-8.90830
b = 1.61803		
u = 0.569840		
a = -2.08457	-2.10041	-16.8580
b = -0.618034		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^6)(u^2+u-1)^3(u^{21}-10u^{20}+\cdots-4u-1)$
c_3	$u^{6}(u^{2}+u-1)^{3}(u^{21}+4u^{20}+\cdots-128u+64)$
c_4	$((u+1)^6)(u^2-u-1)^3(u^{21}-10u^{20}+\cdots-4u-1)$
<i>C</i> 5	$u^{6}(u^{6} - u^{5} + \dots + u - 1)(u^{21} - 2u^{20} + \dots + 224u + 64)$
c_6	$u^{6}(u^{2}-u-1)^{3}(u^{21}+4u^{20}+\cdots-128u+64)$
c_7, c_8	$(u^{3} - u^{2} + 2u - 1)^{2}(u^{6} + u^{5} + 3u^{4} + 2u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{21} - 4u^{20} + \dots - 2u - 1)$
<i>c</i> 9	$u^{6}(u^{6} + u^{5} + \dots - u - 1)(u^{21} - 2u^{20} + \dots + 224u + 64)$
c_{10}, c_{12}	$(u^3 - u^2 + 1)^2(u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1)$ $\cdot (u^{21} + 4u^{20} + \dots - 304u - 97)$
c_{11}	$(u^{3} + u^{2} + 2u + 1)^{2}(u^{6} - u^{5} + 3u^{4} - 2u^{3} + 2u^{2} - u - 1)$ $\cdot (u^{21} - 4u^{20} + \dots - 2u - 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^6)(y^2-3y+1)^3(y^{21}-4y^{20}+\cdots+152y-1)$
c_3, c_6	$y^{6}(y^{2} - 3y + 1)^{3}(y^{21} + 30y^{20} + \dots + 90112y - 4096)$
c_5, c_9	$y^{6}(y^{6} - 7y^{5} + 17y^{4} - 16y^{3} + 6y^{2} - 5y + 1)$ $\cdot (y^{21} + 28y^{20} + \dots + 82944y - 4096)$
c_7, c_8, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2(y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1)$ $\cdot (y^{21} + 22y^{20} + \dots - 10y - 1)$
c_{10}, c_{12}	$(y^3 - y^2 + 2y - 1)^2 (y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)$ $\cdot (y^{21} + 14y^{20} + \dots - 131266y - 9409)$