Grundlagen und diskrete Mathematik

Übung 2 Abgabe: Kalenderwoche 41

Aufgabe 1

Gegeben sind die beiden aussagenlogischen Formeln $F:=p_1\to (p_2\wedge p_5)$ und $G:=(p_3\wedge p_2)\to p_4$ sowie eine Belegung B mit

$$B(p_n) = \begin{cases} 1 & \text{wenn } n \text{ eine Primzahl ist} \\ 0 & \text{sonst.} \end{cases}$$

- (a) Berechnen Sie $\widehat{B}(F)$ und $\widehat{B}(G)$.
- (b) Geben Sie eine Belegungen an, unter der F zu 0 und G zu 1 evaluiert wird.

Lösung:

(a)

$$\widehat{B}(F) = \widehat{B}(p_1 \to (p_2 \land p_5))$$

$$= \widehat{B}(\neg p_1 \lor (p_2 \land p_5))$$

$$= \max(\widehat{B}(\neg p_1), \widehat{B}(p_2 \land p_5))$$

$$= \max(1 - \widehat{B}(p_1), \widehat{B}(p_2 \land p_5))$$

$$= 1$$

$$\widehat{B}(G) = \widehat{B}((p_3 \land p_2) \to p_4)$$

$$= \widehat{B}(\neg (p_3 \land p_2) \lor p_4)$$

$$= \max(\widehat{B}(\dots), \widehat{B}(p_4))$$

$$= \widehat{B}(\neg (p_3 \land p_2))$$

$$= \widehat{B}(\neg (p_3 \land p_2))$$

$$= 1 - \widehat{B}(p_3 \land p_2)$$

$$= 1 - \min(\widehat{B}(p_3), \widehat{B}(p_2))$$

$$= 0$$

(b) Zum Beispiel

$$B(p_n) = \begin{cases} 1 & \text{falls } n = 1 \\ 0 & \text{sonst} \end{cases}$$
 oder $B(p_n) = \begin{cases} 1 & \text{falls } n \text{ ungerade} \\ 0 & \text{sonst} \end{cases}$

Aufgabe 2

Geben Sie von folgenden Formeln an, ob sie in DNF und/oder in KNF sind.

- (a) p
- (b) $p \wedge (\neg q \wedge p_1)$
- (c) $p \lor (q \to p)$
- (d) $p \lor (\neg p \land (p \lor q))$
- (e) $(p \lor q) \land (p \lor (p \lor p))$

Lösung:

- (a) p ist in KNF und DNF.
- (b) $(p \wedge (\neg q \wedge p_1))$ ist in KNF und DNF.
- (c) $p \lor (q \to p)$ ist nicht in KNF und nicht in DNF.
- (d) $p \vee (\neg p \wedge (p \vee q))$ ist weder KNF noch in DNF.
- (e) $(p \lor q) \land (p \lor (p \lor p))$ ist in KNF aber nicht in DNF.

Aufgabe 3

Bringen Sie folgende aussagenlogischen Formeln in DNF und KNF.

- (a) $p \to (q \lor (p_1 \land p_2))$
- (b) $p \to (q \to p_1)$
- (c) $(p \to q) \to p_1$

Lösung:

(a) DNF und KNF

$$p \to (q \lor (p_1 \land p_2)) \equiv \underbrace{\neg p \lor (q \lor (p_1 \land p_2))}_{DNF}$$

$$\equiv \neg p \lor ((q \lor p_1) \land (q \lor p_2))$$

$$\equiv \underbrace{(\neg p \lor q \lor p_1) \land (\neg p \lor q \lor p_2)}_{KNF}$$

(b) KNF und DNF

$$p \to (q \to p_1) \equiv \neg p \lor (q \to p_1)$$
$$\equiv \underbrace{\neg p \lor \neg q \lor p_1}_{KNF \text{ und } DNF}$$

(c) DNF und KNF

$$(p \to q) \to p_1 \equiv \neg(p \to q) \lor p_1$$

$$\equiv \neg(\neg p \lor q) \lor p_1$$

$$\equiv \underbrace{(p \land \neg q) \lor p_1}_{DNF}$$

$$\equiv \underbrace{(p \lor p_1) \land (\neg q \lor p_1)}_{KNF}$$

Aufgabe 4

Zeigen Sie, dass die aussagenlogische Formel F genau dann unerfüllbar ist, wenn die Formel $\neg F$ allgemeingültig ist.

Lösung: Wir nehmen an, dass F eine beliebige aussagenlogische Formel ist. Wir müssen zwei Dinge Zeigen:

- (a) Wenn F unerfüllbar ist, dann ist $\neg F$ allgemeingültig.
- (b) Wenn $\neg F$ allgemeingültig ist, dann ist F unerfüllbar.

Wir zeigen zuerst (a) und dann (b).

- (a) Wenn F unerfüllbar ist, dann gilt für jede Belegung B, die Gleichung $\hat{B}(F) = 0$ und somit $\hat{B}(\neg F) = 1 \hat{B}(F) = 1$. Also ist $\neg F$ allgemeingültig.
- (b) Ist $\neg F$ allgemeingültig, dann gilt für jede Belegung B die Gleichung $\hat{B}(\neg F) = 1$ und somit auch $\hat{B}(F) = 0$. Also ist F unerfüllbar.

Aufgabe 5

Bestimmen Sie mithilfe von Wahrheitstabellen ob folgende Formeln allgemeingültig, erfüllbar oder unerfüllbar sind.

(a)
$$p \to (q \to p)$$

(b)
$$(p \to q) \to (\neg q \to \neg p)$$

(c)
$$(p \to q) \to (q \to p)$$

(d)
$$(p \to q) \land (p \land \neg q)$$

Lösung:

(a) Allgemeingültig, da in der letzten Spalte der Wahrheitstabelle nur der Wahrheitswert 1 auftritt.

p	q	$q \rightarrow p$	$p \to (q \to p)$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

(b) Allgemeingültig, da in der letzten Spalte der Wahrheitstabelle nur der Wahrheitswert 1 auftritt.

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$	$(p \to q) \to (\neg q \to \neg p)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	0	1
1	1	0	0	1	1	1

(c) Erfüllbar und nicht allgemeingültig, da in der letzten Spalte beide Wahrheitswerte auftreten.

p	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \to (q \to p)$
0	0	1	1	1
0	$\mid 1 \mid$	1	0	0
1	0	0	1	1
1	1	1	1	1

(d) Unerfüllbar, da in der letzten Spalte der Wahrheitstabelle nur der Wahrheitswert 0 auftritt.

p	q	$\neg q$	$p \rightarrow q$	$p \land \neg q$	$(p \to q) \land (p \land \neg q)$
0	0	1	1	0	0
0	1	0	1	0	0
1	0	1	0	1	0
1	1	0	1	0	0

Aufgabe 6

Eine Menge logischer Verknüpfungen heisst funktional vollständig, wenn man alle Junktoren $(\land, \lor, \neg, \rightarrow)$ durch Kombinationen dieser Verknüpfungen äquivalent ausdrücken kann. Die Verknüpfungen \neg, \land sind zum Beispiel funktional vollständig weil man damit \rightarrow und \lor wie folgt ausdrücken kann:

- $A \lor B \equiv \neg(\neg A \land \neg B)$
- $A \to B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$.

Zeigen Sie, dass folgende Mengen von Verknüpfungen funktional vollständig sind:

(a)
$$\{\neg, \lor\}$$

- (b) $\{\neg, \rightarrow\}$
- (c) {|}, wobei $A | B := \neg (A \land B)$ (NAND-Operator).
- (d) $\{\oplus\}$, wobei $A \oplus B := \neg(A \vee B)$.

Lösung:

(a) Da wir bereits wissen, dass {¬, ∧} funktional vollständig ist, genügt es zu zeigen, dass wir ∧ darstellen können. Die Behauptung folgt also aus

$$A \wedge B \equiv \neg(\neg A \vee \neg B).$$

(b) Aus dem Vorhergehenden genügt es zu zeigen, dass wir mit $\{\neg, \rightarrow\}$ die Verknüpfung \lor darstellen können. Die Behauptung folgt also aus

$$A \lor B \equiv (\neg A) \to B.$$

(c) Aus dem Vorhergehenden genügt es zu zeigen, dass wir die Verknüpfungen ∨ und ¬ darstellen können. Die Behauptung folgt also aus

$$\neg A \equiv \neg (A \land A) \equiv A | A$$

und

$$A \vee B \equiv \neg(\neg A \wedge \neg B) \equiv \neg((A|A) \wedge (B|B)) \equiv (A|A)|(B|B).$$

(d) Aus dem Vorhergehenden genügt es zu zeigen, dass wir die Verknüpfung | darstellen können. Die Behauptung folgt also aus

$$((A \oplus A) \oplus (B \oplus B)) \oplus ((A \oplus A) \oplus (B \oplus B))$$

$$\equiv (\neg A \oplus \neg B) \oplus (\neg A \oplus \neg B)$$

$$\equiv \neg((\neg A \oplus \neg B) \vee (\neg A \oplus \neg B))$$

$$\equiv \neg(\neg A \oplus \neg B)$$

$$\equiv \neg(\neg A \vee \neg B)$$

$$\equiv \neg(A \wedge B)$$

$$\equiv A \mid B$$

Aufgabe 7 (Bonusaufgabe)

Implementieren Sie in einer Programmiersprache Ihrer Wahl aussagenlogische Formeln als Klasse/Datentyp. Stellen Sie folgende Funktionalitäten zur Verfügung:

- Eine Methode/Funktion eval(Formel, Belegung), mit der Sie Aussagenlogische Formeln unter einer gegebenen Belegung auswerten können.
- Methoden/Funktionen nnf(Formel), dnf(Formel), knf(Formel), um Formeln in die entsprechenden Normalformen umzuwandeln.

• Eine Methode/Funktion pretty_print(Formel), die Formeln in einer gut lesbaren Form ausgibt (z.B. als LATEX-Code).

Lösung: Vgl. OLAT im Code-Ordner.