

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

MTM3111 e MTM5512 - Geometria Analítica

Lista de exercícios 3.7 - Produto escalar (produto interno), propriedades e interpretação geométrica

Semana 6

Última atualização: 29 de janeiro de 2021

- 1. Considere os vetores $\vec{u}=(1,-2,3), \vec{v}=(-3,0,-2)$ e $\vec{w}=(1,2,1)$. Determine o que se pede.
 - (a) $\vec{u} \cdot \vec{v}$.
 - (b) $\vec{v} \cdot \vec{u}$.
 - (c) $\vec{u} \cdot \vec{w}$.
 - (d) $\vec{w} \cdot \vec{u}$.
 - (e) $\vec{u} \cdot (\vec{v} + \vec{w})$.
 - (f) $\vec{v} \cdot \vec{w}$.
 - (g) $\vec{w} \cdot \vec{v}$.
 - **(h)** $(2\vec{w}) \cdot (\vec{u} + \vec{v})$.

Observação. A notação $\vec{x} \cdot \vec{y}$ representa o produto escalar (ou produto interno) entre os vetores \vec{x} e \vec{y} . Em outros lugares, você também encontrará a notação $\langle \vec{x}, \vec{y} \rangle$.

- **2.** Seja $a \in \mathbb{R}$ e considere os vetores $\vec{u} = (4, a, -1)$ e $\vec{v} = (a, 2, 3)$ e os pontos A = (4, -1, 2) e B = (3, 2, -1). Determine a de modo que $\vec{u} \cdot (\vec{v} + \overrightarrow{BA}) = 5$.
- **3.** Seja $a \in \mathbb{R}$ e considere os vetores $\vec{u} = (1, a, -2a 1), \vec{v} = (a, a 1, 1)$ e $\vec{w} = (a, -1, 1)$. Determine a de modo que $\vec{u} \cdot \vec{v} = (\vec{u} + \vec{v}) \cdot \vec{w}$.
- **4.** Sejam \vec{u} e \vec{v} vetores.
 - (a) Usando as propriedades do produto interno, mostre que

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v}.$$

(b) Usando as propriedades do produto interno, mostre que

$$(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u} \cdot \vec{u} - 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v}.$$

(c) Utilize os itens (a) e (b) para concluir que

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) + (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = 2(\vec{u} \cdot \vec{u}) + 2(\vec{v} \cdot \vec{v}).$$

(d) Utilize os itens (a) e (b) para concluir que

$$(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) - (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = 4(\vec{u} \cdot \vec{v}).$$