多而科夫健生同质 为解释的求相级基分布 P*(2) 不设证的名分科本	F内有面 m, 存在的 本保存 相同, $T_{m}(2^{(m)}, 2^{(m+1)}) \equiv p(2^{(m+1)} 2^{(m)}).$ 全有和的 $\pi(2^{(m)}, 2^{(m+1)}) \equiv p(2^{(m+1)} 2^{(m)}).$ 全有和的 $\pi(2^{(m)}, 2^{(m+1)}) \equiv p(2^{(m+1)} 2^{(m)}).$
	
	・ 可以以- 組基等新移民, …, Bx 中木句建等新砂橋死矣, T(2',2) =

