***	· .				
w	hat	ic	clai	imed	10
**	naı	13	Cla	шисч	10.

1

2	[01]	An architecture for the measurement of photomask optical path difference, comprising:
3		A spatially coherent light source;
4		An interferometric beam processing module;
5		An optical microscope; and
6		A photosensitive detector;
7		Wherein said module is disposed to receive and divide light from said light source into a
8		number of phase-coherent light beams, each of which passes through a separate
9		aperture;
10		Wherein said microscope is disposed to image the multitude of said apertures in said
11		module with a given demagnification onto a photomask; and
12		Wherein said detector is disposed to record transmitted fringe intensity.
13		
14	[02]	The apparatus of claim 1 wherein said light source is a laser with a wavelength that is
15	appro	ximately the same as the actinic wavelength of said photomask.
16	[03]	The apparatus of claim 1 wherein said optical demagnification of said apertures is greater
17	than 5	50.
18	[04]	The apparatus of claim 1 wherein said module is of the Mach-Zehnder (MZ)
19	interf	erometer type.
20	[05]	The apparatus of claim 1 wherein the relative optical phase between said phase-coherent
21	light l	beams may be varied by suitable adjustments to said interferometric beam module.
22	[06]	The apparatus of claim 1 wherein said module is a dual-aperture screen.

- 1 [07] The apparatus of claim 1 wherein said module contains mirrors are fabricated using the
- techniques of micro-electrical and mechanical system (MEMS).
- 3 [08] The apparatus of claim 1 wherein said detector is a UV-sensitive CCD camera.
- 4 [09] The apparatus of claim 1 wherein said detector is a photomultiplier tube (PMT).
- 5 [10] The apparatus of claim 1 wherein the number of said apertures and said phase-coherent
- 6 light beams is two (2).
- 7 [11] An architecture for the measurement of photomask optical path difference, comprising:
- 8 A spatially coherent light source;
- 9 An interferometric beam processing module;
- 10 An optical microscope; and
- 11 A photosensitive detector;
- Wherein said module is disposed to receive and divide the light from said light source
- into a number of phase-coherent light beams, each of which passes through a
- separate aperture;
- Wherein said microscope is disposed to image the multitude of said apertures in said
- module with a given demagnification onto a photomask; and
- Wherein said detector is disposed to record reflected fringe intensity
- 18 [12] The apparatus of claim 11 wherein said light source is a laser with a wavelength that is
- approximately the same as the actinic wavelength of said photomask.
- 20 [13] The apparatus of claim 11 wherein said optical demagnification of said apertures is
- greater than 50.
- 22 [14] The apparatus of claim 11 wherein said module is of the Mach-Zehnder (MZ)
- 23 interferometer type.

- 1 [15] The apparatus of claim 11 wherein the relative optical phase between said phase-coherent
- 2 light beams may be varied by suitable adjustments to said interferometric beam module.
- 3 [16] The apparatus of claim 11 wherein said module is a dual-aperture screen.
- 4 [17] The apparatus of claim 11 wherein said module contains mirrors are fabricated using the
- 5 techniques of micro-electrical and mechanical system (MEMS).
- 6 [18] The apparatus of claim 11 wherein said detector is a UV-sensitive CCD camera.
- 7 [19] The apparatus of claim 11 wherein said detector is a photomultiplier tube (PMT).
- 8 [20] The apparatus of claim 11 wherein the number of said apertures and said phase-coherent
- 9 light beams is two (2).

10