# ITP20001/ECE20010 Data Structures

# **Chapter 5**

- introduction
- binary tree
- complete binary tree
  - max heap, min heap
  - Chapter 7 heap sorting
  - Chapter 9 priority queues
- binary search tree

#### Major references:

- 1. Fundamentals of Data Structures by Horowitz, Sahni, Anderson-Freed,
- 2. Algorithms 4<sup>th</sup> edition Part 1 & Part 2 by Robert Sedgewick and Kevin Wayne
- 3. Wikipedia and many resources available from internet

Prof. Youngsup Kim, idebtor@handong.edu, 2014 Data Structures, CSEE Dept., Handong Global University

Definition: A binary search tree is a binary tree in symmetric order.

- A binary tree is either
  - empty
  - a key-value pair and two binary trees
     [neither of which contain that key]

equal keys ruled out

- Symmetric order means that
  - every node has a key
  - every node's key is larger than all keys in its left subtree smaller than all keys in its right subtree



### **Operations: Insert**





Definition: A binary search tree is a binary tree in symmetric order. **Exercise:** Identify non-BST(s) and correct them if not.





Definition: A binary search tree is a binary tree in symmetric order.

**Exercise:** Identify BST(s). (c) (d) (b) (a) (e) 9.6



#### **Node structure:**



# **Operations:**

- Query search, min/max, successor, predecessor
- Insert
- Delete

#### Binary search tree(BST) node structure:

```
Key key

pValue value

pTree left pTree right
```

```
typedef int
                          // can be replace by different type
                 Key;
typedef char
                 Value;
typedef char*
                 pValue;
typedef struct node *pTree;
typedef struct node {
  pTree left;
                         // left child
                         // right child
  pTree
        right;
 Key
                         // sorted by key
        key;
 pValue value;
                          // associated data with key
} node;
```

Operations: Search or "contains"

### Search(T, k) – search the BST, T for a key k



Search operation takes time O(h), where h is the height of a BST.



### Operations: Search or "contains"

```
// does there exist a key-value pair with given key?
// search a key in binary search tree iteratively
int containsIteration(pTree node, Key key)
{
   if (node == NULL) return false;
   while (node) {
      if (key == node->key) return true;
      if (key < node->key)
            node = node->left;
      else
            node = node->right;
   }
   return false;
}
```



# Operations: Search or "contains"

```
// does there exist a key-value pair with given key?
// search a key in binary search tree recursively
int contains(pTree node, Key key)
{
  if (node == NULL) return false;
  if (key == node->key) return true;
  if (key < node->key)
    return contains(node->left, key);
  return contains(node->right, key);
}
```

#### **Operations: Insert**

- Insert(T, k)
  - Insert a node with Key = k into BST T
  - Time complexity? O(h)
- Step 1: if the tree is empty, then Root(T) = k
- Step 2:
   Pretending we are searching for k in BST, until we meet a null node
- Step 3: Insert k



Q: Where is it inserted at?

### **Operations: Insert**

- Insert(**T**, k)
  - Insert a node with Key = k into BST T
  - Time complexity? O(h)
- Step 1: if the tree is empty, then Root(T) = k
- Step 2:
   Pretending we are searching for k in BST, until we meet a null node
- Step 3: Insert k



The light nodes are compared with key.

### **Operations: Insert**

- Insert(T, k)
  - Insert a node with Key = k into BST T
  - Time complexity? O(h)
- Step 1: if the tree is empty, then Root(T) = k
- Step 2:
   Pretending we are searching for k in BST, until we meet a null node
- Step 3: Insert k



The light nodes are compared with key.

Q: Do you see the difference between the complete binary tree and binary search tree?



# **Operations: Delete**

- How can we delete a value from a BST in such a way as to maintain proper BST ordering?
  - delete(1);
  - delete(3);
  - delete(6);
  - delete(5);



# **Operations: Delete**

- case 1: leaf
  - a leaf replace with NULL
- case 2: one child case
  - a node with a left child only replaced with left child
  - a node with a right child only replaced with right child





**Operations: Delete** 

case 3: two children case

What can we replace 5 with?



**Operations: Delete** 

case 3: two children case

Where is predecessor or successor of root 7?



- 1. The rightmost node in the left subtree, the inorder **predecessor 6**, is identified.
- 2. Its value is copied into the node being deleted.
- 3. The inorder predecessor can then be deleted because it has at most one child.

NOTE: The same method works symmetrically using the inorder **successor** labelled **9.** 



**Operations: Delete** 

case 3: two children case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

#### **Options:**

- predecessor from left subtree: findMax (
- successor from right subtree: findMin (
  - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

It becomes leaf or one child case – easy cases of delete!

**Operations: Delete** 

case 3: two children case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

#### **Options:**

- predecessor from left subtree: findMax(node->left)
- successor from right subtree: findMin (node->right)
  - These are the easy cases of predecessor/successor

Now delete the original node containing successor or predecessor

It becomes leaf or one child case – easy cases of delete!

**Operations: Delete** 

- case 3: two children case
  - Replace with min from right or max from left
  - Where is predecessor or successor of root 5?



# **Operations: Delete**

- Delete(T, k)
  - Delete a node with Key = k into BST T
  - Time complexity: O(h)

#### Case 1: k has no child



We can simply delete it from the tree

# **Operations: Delete**

- Delete(T, k)
  - Delete a node with Key = k into BST T
  - Time complexity: O(h)

#### Case 2: k has one child





After removing it, connect it's subtree to it's parent node.

# **Operations: Delete**

- Delete(T, k)
  - Delete a node with Key = k into BST T
  - Time complexity: O(h)

### Case 3: k has two children



# **Operations: Delete**

- Delete(T, k)
  - Delete a node with Key = k into BST T
  - Time complexity: O(h)

#### Case 2: k has two children



Pull out successor, and connect the tree with it's child

**Q:** What if successor has **two** children?

### **Operations: Delete**

- Delete(T, k)
  - Delete a node with Key = k into BST T
  - Time complexity: O(h)

#### Case 2: k has two children



Pull out successor, and connect the tree with it's child

#### A: Not possible!

Because if it has two nodes, at least one of them is less than it, then in the process of finding successor, we won't pick it!

**Q:** What if successor has **two** children?

# **Operations: Delete**

- Delete(T, k)
  - Delete a node with Key = k into BST T
  - Time complexity: O(h)

#### Case 2: k has two children



Replace the key with it's successor

#### **More Operations:**

Query – search, min/max, successor, predecessor

#### Min/max

- For min, we simply follow the left pointer until we find a null node.
   Why?
- Similar for Max
- Time complexity: O(h)

Search operation takes time O(h), where h is the height of a BST.



# Observations: What do you see in the following BSTs?

A **balanced** tree of N nodes has a height of ~ log, N.





#### Observations: What do you see in the following BSTs?

- Observation: The shallower the BST the better.
  - Average case height is O(log N)
  - Worst case height is O(N)
  - Simple cases such as adding (1, 2, 3, ..., N), or the opposite order, lead to the worst case scenario: height O(N).
- For binary tree of height h:

max # of leaves: 2<sup>h-1</sup>

max # of nodes: 2<sup>h</sup> - 1

min # of leaves:

min # of nodes:



### Q: Calculate tree height.

- Height is max number of nodes in path from root to any leaf.
  - height(null) = o
  - height(a leaf) = ?
  - height( A ) = ?
- Hint:
  - use recursive.
  - use max(a, b).



- A:
  - height(a leaf) = 1
  - height(A) = 1 + max(



### **Conclusion:**

- If you have a sorted sequence, and we want to design a data structure for it
- Array or BST? and why?





# **Conclusion:**

- If you have a sorted sequence, and we want to design a data structure for it
- Array or BST? and why?

| Time Complexity |             |
|-----------------|-------------|
| BST             | O(h)        |
| Array           | $O(\log n)$ |



### **Conclusion:**

**Q.** When searching, we're traversing a path (since we're always moving to one of the children); since the length of the longest path is the height h of the binary search tree, then finding an element takes O(h).

### **Conclusion:**

**Q.** When searching, we're traversing a path (since we're always moving to one of the children); since the length of the longest path is the height h of the binary search tree, then finding an element takes O(h).

Since  $h = \lg n$  (where n is the number of elements), then it's good! – right?

# **Conclusion:**

**Q.** When searching, we're traversing a path (since we're always moving to one of the children); since the length of the longest path is the height h of the binary search tree, then finding an element takes O(h).

Since  $h = \lg n$  (where n is the number of elements), then it's good! – right?

No, of course, it is wrong! Why?

#### **Conclusion:**

**Q.** When searching, we're traversing a path (since we're always moving to one of the children); since the length of the longest path is the height h of the binary search tree, then finding an element takes O(h).

Since  $h = \lg n$  (where n is the number of elements), then it's good! – right?

No, of course, it is wrong! Why?

A. The nodes could be arranged in linear sequence in BST, so the height h could be n. In worst case, it is O(n) instead of O(h).

### **Conclusion:**

- We already know that n is fixed, but h differs from how we insert those elements!
- So why we still need BST?
  - Easier insertion and deletion
  - And with some optimization, we can avoid the worst case!



a skew binary search tree