Linear regresjon (enkel og multippel) ISTx1003 Statistisk læring og Data Science

Stefanie Muff, Institutt for matematiske fag

November 1 og 5, 2021

Plan for i dag

- Hvem er vi?
- Statistisk læring og data science
- De tre temaene i modulen:
 - regresjon
 - klassifikasjon og
 - klyngeananlyse
- Læringsressurser og pensum
- Prosjektoppgaven og Blackboard-informasjon
- Tema: regresjon med enkel lineær regresjon

Læringsmål (av modulen)

Etter du har gjennomført denne modulen skal du kunne:

- forstå når du kan bruke regresjon, klassifikasjon og klyngeananlyse til å løse et ingeniørproblem
- kunne gjennomføre multippel lineær regresjon på et datasett
- bruke logistisk regresjon og nærmeste nabo for å utføre en klassifikasjonsoppgave
- \bullet bruke hierarkisk og k-means klyngeanalyse på et datasett, forstå begrepet avstandsmål
- og kunne kommunisere resultatene fra regresjon/ klassifikasjon/klyngeanalyse til medstudenter og ingeniører
- bli en kritisk leser av resultater fra statistikk/maskinlæring/ statistisk læring/data science/kunstig intelligens når disse rapporteres i media, og forstå om resultatene er realistiske ut fra informasjonen som gis
- kunne besvare prosjektoppgaven på en god måte!

Hva er statistisk læring og data science?

Todo

Prosjektoppgaven

• Vi ser hvor informasjonen ligger på Blackboard og hvordan melde seg på gruppe.

• Vi ser på prosjektoppgaven på https://s.ntnu.no/isthub.

Læringsmål (i dag)

- Du kan lage en modell for å forstå sammenhengen mellom en respons og en eller flere forklaringsvariabler.
- Du kan lage en modell for å predikere en respons fra en eller flere forklaringsvariabler.

Læringsressurser

Alle ressurser er tilgjengelig her:

https://wiki.math.ntnu.no/istx1003/2021h/start

Tema Regresjon:

- Kompendium: Regresjon (pdf og html, by Mette Langaas)
- Korte videoer: (by Mette Langaas)
 - Multippel lineær regresjon: introduksjon (14:07 min)
 - Multippel lineær regresjon: analyse av et datasett (15:20 min)
- Denne forelesningen
- Disse slides med notater

Regresjon – motiverende eksempel

(Veiledet læring - vi kjenner responsen)

 Kropssfett er en viktig indikator for overvekt, men vanskelig å måle.

Spørsmål: Hvilke faktorer tillater præsis estimering av kroppsfettet?

Vi undersøker 243 mannlige deltakere. Kroppsfett (%), BMI og andre forklaringsvariabler ble målet. Kryssplott:

For en model for funker god for prediksjon trenger vi multippel linear regresjon. Men vi begynner med enkel linear regresjon (bare en forklaringsvariabel):

Enkel linear regresjon

- \bullet En kontinuerlig respons variabel Y
- Bare en forklaringsvariabel x_1
- Relasjon mellom Y og x_1 er antatt å være linear.

Hvis den lineare relasjonen mellom Y og x er perfekt, så gjelder

$$y_i = \beta_0 + \beta_1 x_{1i}$$

for alle i. Men..

Hvilken linje er best?

Enkel linear regresjon

a) Kan vi tilpasse den "rette" linje til dataene?

- $$\begin{split} \bullet & \ \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i}. \\ \bullet & \ \hat{e}_i = \hat{y}_i y \\ \bullet & \ \hat{\beta}_0 \ \text{og} \ \hat{\beta}_1 \ \text{velges slik at} \end{split}$$

$$SSE = \sum_{i} \hat{e}_{i}^{2}$$

minimeres.

b) Kan vi tolke linja? Hvor sikkert er jeg på $\hat{\beta}_1$ og linja? Vi trenger antakelser, KI og hypothesetest.

c) Fremtidige presisjoner av predikert y (kroppsfett)?

Linear regresjon – antakelser

$$Y_i = \underbrace{\beta_0 + \beta_1 x_{i1}}_{\hat{y}_i} + e_i$$

med

$$e_i \sim \mathsf{N}(0,\sigma^2)$$
 .

Do-it-yourself "by hand"

Her kan du finne de beste parametrene selv:

You can do this here:

https://gallery.shinyapps.io/simple_regression/

Multippel linear regresjon

Nesten det samme some enkel linear regresjon, vi bare summerer flere forklaringsvariabler:

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi} + e_i \ , \quad e_i \sim \mathsf{N}(0, \sigma^2) \ .$$

For eksempel:

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{bmi}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Regresjonsanalyse i fem steg

Vi skal bruke statmodels.api og statmodels.formula.api for lineær regresjon:

 $\bf Steg~1:~Bli~kjent~med~dataene~ved~å~se~på~oppsummeringsmål og~ulike typer plott$

Steg 2: Spesifiser en matematisk modell

Steg 3: Tilpass modellen

Steg 4: Presenter resultater fra den tilpassede modellen

Steg 5: Evaluer om modellen passer til dataene

Steg 1: Bli kjent med dataene

Vi kan for eksempel se på histogram og boxplot:

Ellers en parplot med kryssplotter for alle forklaringsvariable(r) (x_1, \dots, x_p) og respons y:


```
##
      bodyfat
                         age
                                        weight
                                                         height
   Min. : 0.70
                    Min.
                           :22.00
                                   Min. : 56.75
                                                     Min.
                                                            :162.6
##
    1st Qu.:12.50
                   1st Qu.:35.50
                                    1st Qu.: 72.30
                                                     1st Qu.:173.7
   Median :19.20
                   Median :43.00
                                   Median: 80.02
                                                     Median :177.8
   Mean
          :19.11
                           :44.83
                                           : 80.91
                                                            :178.5
##
                   Mean
                                   Mean
                                                     Mean
##
   3rd Qu.:25.20
                   3rd Qu.:54.00
                                   3rd Qu.: 89.32
                                                     3rd Qu.:183.5
##
   Max. :47.50
                   Max.
                           :81.00
                                   Max.
                                           :119.29
                                                     Max.
                                                            :196.8
                                                         hip
##
        bmi
                        neck
                                       abdomen
##
    Min.
           :19.06
                   Min.
                           :31.10
                                   Min.
                                           : 70.40
                                                     Min.
                                                            : 85.30
##
   1st Qu.:23.07
                   1st Qu.:36.40
                                   1st Qu.: 84.90
                                                     1st Qu.: 95.55
##
   Median :25.10
                   Median :38.00
                                   Median: 91.00
                                                     Median: 99.30
##
   Mean
          :25.34
                   Mean
                         :37.96
                                  Mean
                                         : 92.38
                                                     Mean
                                                            : 99.69
##
   3rd Qu.:27.34
                   3rd Qu.:39.40
                                   3rd Qu.: 99.15
                                                     3rd Qu.:103.15
##
   Max.
           :39.12
                    Max.
                           :43.90
                                    Max.
                                           :126.20
                                                     Max.
                                                            :125.60
```

I Python får du en oppsummering av datasettet (df) med df.describe().

Steg 2: Spesifiser modell

Nå må vi spesifisere en modell med å velge hvile forklaringsvariabler vi vil bruke

$$y \sim x_1 + x_2 + x_3$$
.

Eksempel 1:

$$bodyfat \sim bmi$$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + e_i \ ,$$

Eksempel 2:

$$bodyfat \sim bmi + age$$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Steg 3: Tilpass modellen

"Tilpasse" betyr:

- Vi estimerer $\beta_0,\,\beta_1,\,\dots$, og vi får estimater $\hat{\beta}_0,\,\hat{\beta}_1,\dots$
- Vi også estimerer σ^2 .

Steg 4: Resultat og tolkning av estimatene

		01	LS Regre	ssion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observatio Df Residuals: Df Model: Covariance Type	ons:	Wed, 08	bodyfat OLS Squares Sep 2021 18:58:47 243 241 ponrobust	Adj. F-st Prob Log- AIC: BIC:	uared: R-squared: atistic: (F-statistic Likelihood:):	0.539 0.537 281.8 2.06e-42 -761.28 1527. 1534.
========	coef	std (err	t	P> t	[0.025	0.975]
Intercept -	26.9844 1.8188			-9.746 16.788	0.000 0.000	-32.439 1.605	-21.530 2.032
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:		5.031 0.081 -0.033 2.452	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.	=======	2.311 3.079 0.215 198.

- \bullet Tilpasset regressjonslinie og 95% konfidensintervall for regressjonslinia.
- 95% prediksjonsintervall for nye personer (handtegnet)

Steg 5: Passer modellen?

Tukey-Anscome diagram:

Her vil man

- Ikke noe struktur
- Sentrering rundt 0 verdi

Kvantil-kvantil plot:

Her vil man at observasjoner ligger mer og mindre på linja.

Hvordan ser det ut når en modell ikke passer?

Multippel linear regresjon

Gjenta samme analyse med to kovariabler

		OLS F	Regress	ion Re	sults		
Dep. Varia Model: Method: Date: Time: No. Observ Df Residua Df Model: Covariance	ations: ls:	Least Squ Wed, 08 Sep	2021 55:28 243 240 2	F-sta Prob	======== ared: R-squared: tistic: (F-statistic ikelihood:	:):	0.580 0.577 165.9 5.67e-46 -749.88 1506. 1516.
=======	coe	f std err		t	P> t	[0.025	0.975]
Intercept bmi age	-31.254 1.752 0.132	0.104	16	.203 5.773 1.857	0.000 0.000 0.000	-36.750 1.547 0.079	-25.759 1.958 0.186

Med fem kovariabler:

		OLS F	legress	sion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Covariance Type:		bodyfat		R-squared: atistic: (F-statistic)	:	0.726 0.720 125.3 1.73e-64 -698.26 1409. 1429.	
========	coef	std err		t	P> t	[0.025	0.975]
Intercept bmi age weight neck abdomen	-35.2802 0.3881 0.0038 -0.1141 -0.4581 0.8888	0.224 0.027 0.029 0.216	1 - 3 - 2	5.809 1.730 0.141 3.883 2.123 0.486	0.000 0.085 0.888 0.000 0.035	-47.245 -0.054 -0.050 -0.172 -0.883 0.722	-23.316 0.830 0.058 -0.056 -0.033 1.056
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	- 6	.492).064).056 !.439	Jarq	in-Watson: ue-Bera (JB): (JB): . No.		2.345 3.310 0.191 4.64e+03

Hva betyr alt dette?

• coef: $\hat{\beta}_j$ • std err: $\hat{\mathrm{SE}}(\hat{\beta}_j)$

• t: $\frac{\hat{\beta}_j - 0}{\operatorname{SE}(\hat{\beta}_j)}$ • P>|t|: p-verdi

Hva betyr alt dette?

	coef	std err	t	P> t	[0.025	0.975]
Intercept bmi	-35.2802 0.3881	6.073	-5.809 1.730	0.000	-47.245 -0.054	-23.316 0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

Prediksjon:

$$\hat{y} =$$

Prediker bodyfat for en ny person med bmi=25, age=50, weight=75, neck=40, abdomen=95:

$$\hat{y} =$$

= 21.88

	coef	std err		P> t	[0.025	0.975]
Intercept	-35,2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

- Hva betyr $\hat{\beta}_0$?
- Hva betyr $\hat{\beta}_{abdomen} = 0.89$?

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

• 95% konfidensintervall: Intervall vi har stor tro at den inneholder den sanne β_j .

$$\begin{split} &\text{den sanne } \beta_j. \\ \bullet & [\hat{\beta}_j \pm \underbrace{t_{\alpha/2,df}}_{\approx 1.96} \cdot \text{SE}(\hat{\beta}_j)] \end{split}$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept bmi	-35.2802 0.3881	6.073	-5.809 1.730	0.000	-47.245 -0.054	-23.316 0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883		-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

ullet p-verdier og hypotesetester

Recap: Formell definisjon av p-verdien

 $p\text{-}\mathbf{verdien}$ er sannsynligheten for det viharobservert eller noe mer ekstremt, dersom H_0 er sann.

R^2 og justert R^2

```
Den. Variable:
                               bodyfat
                                                                            0.726
odel:
                                         Adj. R-squared:
                                                                            0.720
Method:
                        Least Squares
                                         F-statistic:
                                                                            125.3
                     Thu. 09 Sep 2021
                                         Prob (F-statistic):
Date:
                                                                         1.73e-64
                              09:16:49
                                         Log-Likelihood:
                                                                          -698.26
ime:
No. Observations:
                                         ATC:
                                                                            1409.
 Residuals:
                                         BIC:
                                                                            1429.
Of Model:
Covariance Type:
                            nonrobust
```

$$R^{2} = \frac{\text{TSS} - \text{SSE}}{\text{TSS}} = 1 - \frac{\text{SSE}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}},$$

med

$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

som måler den totale variabiliteten i (y_1, \dots, y_n) .

Men: For modellvalg bruker vi en justert versjon:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - m - 1}$$

TA og kvantil-kvantil plot

Binære forklaringsvariabler

Den enkleste modellen er

$$y_i = \beta_0 + \beta_1 x_{1i} + e_i \ . \label{eq:yi}$$

Hva betyr det når x_{1i} er enten 0 eller 1 (binær)?

$$\begin{array}{ll} \beta_0 + e_i & \quad \text{hvis } x_{1i} = 0 \\ \beta_0 + \beta_1 + e_i & \quad \text{hvis } x_{1i} = 1 \end{array}$$

Eksempel: Studie om kvikksølv (Hg)

Modell:

$$\log(Hg_{urin})_i = \beta_0 + \beta_1 \cdot x_{1i} + \beta_2 \cdot x_{2i} + \beta_3 \cdot x_{3i} + e_i \ , \label{eq:gurin}$$

Med

- $\log(Hg_{urin})$: log konsentrasjon av Hg i urin.
- x_1 binær variabel som er 1 hvis person røyker, ellers 0.
- x_2 antall amalgam fillinger i tennene
- \bullet x_3 antall fiskemåltider per måned.

Interpretasjon av regresjon med binær variabel

	coef	std err		P> t	[0.025	0.975]
Intercept	-2.1136	0.100	-21.101	0.000	-2.311	-1.916
smoking	0.3317	0.257	1.292	0.198	-0.175	0.839
amalgam_quant	0.1799	0.039	4.566	0.000	0.102	0.258
fisk_quant	0.0678	0.017	4.088	0.000	0.035	0.101

Modell for røyker:

Modell for non-røyker:

Kategoriske forklaringsvariabler

- Vi gjør ting enda mer fleksibel (eller komplisert!) når vi også tillater kategoriske forklaringsvariabler.
- Eksempel med 3 kategorier: Bil dataset med y=bensinforbruk og forklaringsvariabler vekt og origin∈ {American,European,Japanese}.

- Ide: dummy-variabel koding kalles one-hot koding i maskinlæring.
 - $x_{2i} = 0$ og $x_{3i} = 0$ hvis origin er "American"
 - $x_{2i} = 1$ og $x_{3i} = 0$ hvis origin er "European"
 - $x_{2i} = 0$ og $x_{3i} = 1$ hvis origin er "Japanese"

Modellen:
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + e_i$$

Dep. Variable:		mpg	R-squared:		0.70	2
Model:		OLS	Adj. R-squared		0.70	10
Method:	Least S	quares	F-statistic:		304.	7
Date:	Mon, 13 Se	p 2021	Prob (F-statis	tic):	1.28e-10	1
Time:	14	:42:02	Log-Likelihood		-1123.	9
No. Observations:		392	AIC:		2256	
Df Residuals:		388	BIC:		2272	
Df Model:		3				
Covariance Type:	non	robust				
	coef	std err	t	P> t	[0.025	0.975
Intercept	43.7322	1.113	39.277	0.000	41.543	45.92
origin[T.European]	0.9709	0.659	1.474	0.141	-0.324	2.26
origin[T.Japanese]	2.3271	0.665	3.501	0.001	1.020	3.63
weiaht	-0.0070	0.000	-21.956	0.000	-0.008	-0.00

Så hva er modellene for de tre opprinnelsen (origin) av bilene?