

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 15 Apr 2022 1 of 11

Sample Information

Patient Name: 馮輝展 Gender: Male ID No.: U120767399 History No.: 37969736

Age: 59

Ordering Doctor: DOC5310D 曾彥寒 Ordering REQ.: D6NG13A Signing in Date: 2022/04/15

Path No.: S111-99030 **MP No.:** F22029

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S111-75796A Percentage of tumor cells: 20%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	2
Relevant Therapy Details	3
Alert Details	5

Report Highlights

- 1 Relevant Biomarkers
- 4 Therapies Available
- 0 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	None detected	NTRK3	None detected	
ERBB2	None detected	RET	None detected	
KRAS	None detected	ROS1	None detected	
MET	None detected			

Date: 15 Apr 2022

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	NRAS p.(Q61L) c.182A>T NRAS proto-oncogene, GTPase Allele Frequency: 4.02%	None	anti-CTLA-4 + anti-PD-1 anti-PD-1 binimetinib cabozantinib	0
	Prognostic significance: None Diagnostic significance: None			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	Sequence Varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
NRAS	p.(Q61L)	c.182A>T	COSM583	chr1:115256529	4.02%	NM_002524.5	missense	1992

Biomarker Descriptions

NRAS (NRAS proto-oncogene, GTPase)

<u>Background:</u> The NRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. NRAS mutations are particularly common in melanomas (up to 25%) and are observed at frequencies of 5-10% in acute myeloid leukemia, colorectal, and thyroid cancers^{4,5}. The majority of NRAS mutations consist of point mutations at G12, G13, and Q61^{4,6}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{7,8}.

Potential relevance: Currently, no therapies are approved for NRAS aberrations. The EGFR antagonists, cetuximab⁹ and panitumumab¹⁰, are contraindicated for treatment of colorectal cancer patients with NRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. NRAS mutations are associated with poor prognosis in patients with low-risk myelodysplastic syndrome¹¹ as well as melanoma¹². In a phase III clinical trial in patients with advanced NRAS-mutant melanoma, binimetinib improved progression free survival (PFS) relative to dacarbazine with median PFS of 2.8 and 1.5 months, respectively¹³.

Relevant Therapy Summary

In this cancer type	In other cancer type	In this cancer	type and other car	ncer types	X No eviden	ce
NRAS p.(Q61L)	c.182A>T					
Relevant Therapy		FDA	NCCN	ЕМА	ESMO	Clinical Trials*
binimetinib		×	0	×	×	×
anti-CTLA-4 + anti-PD-	1	×	×	×	0	×
anti-PD-1		×	×	×	0	×

Date: 15 Apr 2022 3 of 11

Relevant Therapy Summary (continued)

■ In this cancer type
O In other cancer type
In this cancer type and other cancer types
X No evidence

NRAS p.(Q61L) c.182A>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
cabozantinib	×	×	×	0	×

Relevant Therapy Details

Current NCCN Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

NCCN information is current as of 2022-02-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

NRAS p.(Q61L) c.182A>T

O binimetinib

Cancer type: Cutaneous Melanoma Variant class: NRAS Q61L mutation

NCCN Recommendation category: 2B

Population segment (Line of therapy):

Metastatic, Unresectable, Progression (Second-line therapy, Subsequent therapy); Useful in certain circumstances

Reference: NCCN Guidelines® - NCCN-Cutaneous Melanoma [Version 2.2022]

Date: 15 Apr 2022 4 of 11

Current ESMO Information

In this cancer type In ot

O In other cancer type In this cancer type and other cancer types

ESMO information is current as of 2022-02-01. For the most up-to-date information, search www.esmo.org.

NRAS p.(Q61L) c.182A>T

anti-CTLA-4 + anti-PD-1

Cancer type: Cutaneous Melanoma Variant class: NRAS mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage III, Stage IV; Unresectable (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Cutaneous Melanoma [Annals of Oncology 30: 1884–1901. doi:10.1093/annonc/mdz411]

O anti-PD-1

Cancer type: Cutaneous Melanoma Variant class: NRAS mutation

ESMO Level of Evidence/Grade of Recommendation: I / A

Population segment (Line of therapy):

Stage III, Stage IV; Unresectable (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Cutaneous Melanoma [Annals of Oncology 30: 1884–1901. doi:10.1093/annonc/mdz411]

O cabozantinib

Cancer type: Thyroid Gland Medullary Carcinoma Variant class: RAS mutation

ESMO Level of Evidence/Grade of Recommendation: II / C

Population segment (Line of therapy):

Metastatic (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Thyroid Cancer [Annals of Oncology 30: 1856–1883, 2019 doi:10.1093/annonc/mdz400]

Date: 15 Apr 2022 5 of 11

Clinical Trials in Taiwan region:

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

Resistance

Breakthrough

Fast Track

FDA information is current as of 2022-02-16. For the most up-to-date information, search www.fda.gov.

NRAS p.(Q61L) c.182A>T

cetuximab

Cancer type: Colorectal Cancer Label as of: 2021-09-24 Variant class: NRAS Q61 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

BRAF V600E Mutation-Positive Metastatic Colorectal Cancer (CRC)

 in combination with encorafenib, for the treatment of adult patients with metastatic colorectal cancer (CRC) with a BRAF V600E mutation, as detected by an FDA-approved test, after prior therapy.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf

Date: 15 Apr 2022 6 of 11

NRAS p.(Q61L) c.182A>T (continued)

panitumumab

Cancer type: Colorectal Cancer Label as of: 2021-08-25 Variant class: NRAS Q61 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test for this use) metastatic colorectal cancer (mCRC):

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.
- Limitation of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC or for whom RAS mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf

Current NCCN Information

Ocontraindicated Not recommended Resistance Preakthrough A Fast Track

NCCN information is current as of 2022-02-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

NRAS p.(Q61L) c.182A>T

cetuximab

Cancer type: Colon Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2021]

cetuximab

Cancer type: Rectal Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2021]

Date: 15 Apr 2022 7 of 11

NRAS p.(Q61L) c.182A>T (continued)

panitumumab

Cancer type: Colon Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 3.2021]

panitumumab

Cancer type: Rectal Cancer Variant class: NRAS exon 3 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 2.2021]

Current EMA Information

EMA information is current as of 2022-02-16. For the most up-to-date information, search www.ema.europa.eu/ema.

NRAS p.(Q61L) c.182A>T

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-30 Variant class: NRAS exon 3 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2021-12-07 Variant class: NRAS exon 3 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Date: 15 Apr 2022 8 of 11

Current ESMO Information

Contraindicated

Not recommended

Breakthrough

A Fast Track

ESMO information is current as of 2022-02-01. For the most up-to-date information, search www.esmo.org.

NRAS p.(Q61L) c.182A>T

cetuximab

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

"It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A].'

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

cetuximab + chemotherapy

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS (exons 2-4) gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

panitumumab

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

"It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Date: 15 Apr 2022 9 of 11

NRAS p.(Q61L) c.182A>T (continued)

panitumumab + chemotherapy

Cancer type: Colorectal Cancer Variant class: NRAS exon 3 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Date: 15 Apr 2022 10 of 11

•						
SI	\mathbf{a}	n	2	tı	ır	es
VI.	ч		u		41	CJ

Testing Personnel:

Laboratory Supervisor:

Pathologist:

Date: 15 Apr 2022 11 of 11

References

1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244

- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Janku et al. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers. PLoS ONE. 2011;6(7):e22769. PMID: 21829508
- Ohashi et al. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res. 2013 May 1;19(9):2584-91. PMID: 23515407
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf
- 11. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 3.2022]
- 12. Johnson et al. Treatment of NRAS-Mutant Melanoma. Curr Treat Options Oncol. 2015 Apr;16(4):15. doi: 10.1007/s11864-015-0330-z. PMID: 25796376
- 13. Dummer et al. Binimetinib versus dacarbazine in patients with advanced NRAS-mutant melanoma (NEMO): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017 Apr;18(4):435-445. PMID: 28284557