Non-metal radionuclides such as <sup>123</sup>I, <sup>125</sup>I and <sup>131</sup>I may be covalently linked to the moiety Z by a substitution or addition reaction well known from the state of art.

In a second embodiment, the compound of formula (I) comprises a moiety Z carrying one or more imageable moieties M useful in the PET imaging modality. M then denotes a radioemitter with positron-emitting properties. Preferred groups M are the radionuclides <sup>11</sup>C, <sup>18</sup>F, <sup>18</sup>C<sub>0.4</sub> <sup>13</sup>N, <sup>15</sup>O and <sup>18</sup>Pb. <sup>18</sup>F is specifically preferred.

When M denotes a metallic radionuclide then Z comprises a chelating agent suitable for forming a stable chelate with M. Such chelating agents are well known from the state of art and typical examples of such chelating agents are described in Table I of WO 01/77145 and to the previous part on Radio and SPECT imaging.

In another preferred embodiment Z is the DOTA chelating agent and M is  $^{68}$ Ga which can be readily introduced in to the chelate using microwave chemistry.

Non-metal radionuclides such as <sup>19</sup>F may be covalently linked to the moiety Z by a substitution or addition reaction well known from the state of art and also described eg. in WO03/080544 which is hereby incorporated by reference.

In a third embodiment, the compound of formula (I) comprises a moiety Z carrying one or more imageable moieties M useful in the MR imaging modality. M here denotes a paramagnetic metal such those mentioned in US patent 4,647,447, Gq<sup>3+</sup>, Dy<sup>3+</sup>, Fe<sup>3+</sup> and Mn<sup>2+</sup> are particularly preferred and Z comprises a chelating agent, in particular a chelating agent such as acyclic or cyclic polyaminocarboxylates (e.g. DTPA, DTPA-BMA, DOTA and DO3A) as described e.g. in US patent 4,647,447 and WO 86/02841. M may also denote metal oxides such as superparamagnetic, ferrimagnetic or ferromagnetic species which are absorbed by z. e.g. such that Z function as a coating to the metal oxide. Metal oxides for use as MR contrast agents are described e.g. in US patent 6,230,777 which is hereby incorporated by reference.

In a fourth embodiment the compound of formula (I) comprises a moiety Z carrying one or more imageable moieties M useful in the X-ray imaging modality. M here denotes a heavy metal such as W, Au and Bi preferably in the form of oxides which may be absorbed to Z. lodinated aryl derivatives are particularly well known as X-ray contrast agents, e.g. lopamiron<sup>TM</sup> and Omnipaque TM.

Ultrasound imaging agents in the form of gas filled microvesicles can be utilised in the imaging of receptors e.g. when they are functionalised for binding to the vector V as described in the state of art e.g. in WO98/18500.