

Class 10
Trigonometry

For more such worksheets visit www.edugain.com

Answer the questions

(1) Simplify
$$\frac{\cos\theta}{1-\tan\theta} + \frac{\sin^2\theta}{\sin\theta - \cos\theta}$$

- (2) If $x=r\sin\alpha\cos\beta$, $y=r\sin\alpha\sin\beta$ and $z=r\cos\alpha$, prove that $x^2+y^2+z^2=r^2$.
- (3) If $\triangle XYZ$ is right angled at Z, find the value of $\sin(X+Y)$.
- (4) If $cosec~\theta-sin~\theta=m$ and $sec~\theta-cos~\theta=n$, prove that $(m^2n)^{\frac{2}{3}}+(mn^2)^{\frac{2}{3}}=1$.
- (5) From a tower on a straight road, the angles of depression of two cars at an instant are 45° and 60°. If the cars are 10 m apart, find the height of the tower.
- (6) Find the value the given expression. $\frac{\cos 46^{\circ}38'}{\sin 43^{\circ}22'}$
- (7) If $12\ cot\theta=6$, find the value of $\dfrac{36\ cos\theta+34\ sin\theta}{6\ sin\theta-5\ cos\theta}$.
- (8) Simplify $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}}$
- (9) Without using trignometric tables, evaluate the value of $tan\ 9^{\circ}tan\ 81^{\circ}-cot\ 81^{\circ}cot\ 9^{\circ}$.

(10) Simplify
$$\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} + \sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

(11) Simplify 1 +
$$\frac{\tan^2 \beta}{1 + \sec \beta}$$
.

(12) If
$$cot A = \frac{20}{21}$$
, find $sin A$.

Choose correct answer(s) from the given choices

(13)
$$\csc^4\theta - \csc^2\theta$$

a.
$$tan^2\theta + cot^4\theta$$

b.
$$\cot^2\theta$$
 - $\cot^4\theta$

c.
$$\cot^2\theta + \tan^4\theta$$

d.
$$\cot^2\theta + \cot^4\theta$$

(14)
$$(\sin\theta + \sec\theta)^2 + (\cos\theta + \csc\theta)^2 = ?$$

a.
$$(1 + \sec \theta \csc \theta)^2$$

b.
$$(1 - \sin \theta \cos \theta)^2$$

c.
$$(1 + \sin \theta \cos \theta)^2$$

d.
$$(\sec \theta \csc \theta)^2$$

.vlar gene © 2018 Edugain (www.edugain.com).

Many more such worksheets can be generated at www.edugain.com

Answers

(1) $\sin\theta + \cos\theta$

Cow

- (2)
- **(3)** 1
- (4)
- **(5)** $5(3 + \sqrt{3})$ m
- (6)
- (7) $\frac{104}{7}$
- (8) $\sec \theta \tan \theta$
- **(9)** 0
- (10) 2 cosecθ
- (11) sec β
- (12) $\frac{21}{29}$
- (13) d. $\cot^2\theta + \cot^4\theta$
- **(14) a.** $(1 + \sec \theta \csc \theta)^2$
- (15) True