A Book of Abstract Algebra (2nd Edition)

Chapter 32	Problem	6FG
Unapier 32	., r iobieiii	0LG

Bookmark

Show all steps: ON

ON

Problem

In the next three parts, let ω be a primitive pth root of unity, where p is a prime.

Use part 5 to prove that $Gal(\mathbb{Q}(\omega) : \mathbb{Q})$ is an abelian group.

Step-by-step solution

Step 1 of 2

Consider a primitive pth root of unity ω where p is a prime. The objective is to prove that $Gal(\mathbb{Q}(w);\mathbb{Q})$ is an abelian group.

Comment

Step 2 of 2

Suppose that $\alpha, \beta \in Gal(\mathbb{Q}(\omega); \mathbb{Q})$.

Then $\alpha(\omega) = \omega^i$ and $\beta(\omega) = \omega^j$ for $1 \le i, j \le p-1$.

$$(\alpha \circ \beta)(\omega) = \alpha(\beta(w))$$

= $\alpha(w^j)$

 $=(\alpha(\omega))^j$, since α is a homomorphism

$$=\left(\omega^{i}\right)^{j}$$

$$= w^{ij}$$

and similarly

$$(\beta \circ \alpha)(\omega) = \beta(\alpha(w))$$

= $\beta(w^i)$

=
$$\left(\beta\left(\omega\right)\right)^i$$
 , since β is a homomorphism = $\left(\omega^j\right)^i$ = w^{ij}

This shows that $Gal(\mathbb{Q}(w);\mathbb{Q})$ is an abelian group.

Comment