

Teil 1: Grundlagen der Elektrotechnik

Aufgabe 4: Magnetisches Feld

Durch die Leiter L_1 und L_2 fließt der Strom I_2 bzw. I_2 . Die Leitungsquerschnitte der unendlich langen Leiter sind vernachlässigbar klein.

Es gilt: $e = -1,602 \cdot 10^{-19} \, \text{C}$

- a) Wie viele Elektronen fließen pro Sekunde durch den Leiter L_1 , wenn der Strom I_1 = 2 A beträgt?
- b) Das resultierende magnetische Feld \vec{H} für einen beliebigen Raumpunkt (x, y, z) beträgt in kartesischen Koordinaten:

$$\vec{H}_{Allg} = \frac{I}{2\pi\sqrt{x^2 + y^2}} \cdot \begin{pmatrix} -\frac{y}{\sqrt{x^2 + y^2}} \\ \frac{x}{\sqrt{x^2 + y^2}} \end{pmatrix} = \frac{I}{2\pi(x^2 + y^2)} \cdot {-y \choose x}$$

Anmerkung: Z-Komponente entfällt da die Leiter parallel zur Z-Achse sind

Berechnen Sie die magnetischen Feldstärke $\overrightarrow{H_1}$ und $\overrightarrow{H_2}$ in einem beliebigen Punkt (x, y) für die jeweiligen Leiter L₁ und L₂. Hierfür muss die Formel von $\overrightarrow{H}_{Allg}$ so angepasst werden, dass der betrachtete Leiter in den Ursprung verschoben wird. Fügen Sie anschließend $\overrightarrow{H_1}$ und $\overrightarrow{H_2}$ mittels Superposition zu $\overrightarrow{H_{ges}}$ zusammen.

c) Die Koordinaten eines Punktes P seien nun (5/2/0). Der Abstand "a" der Leiter zum Ursprung beträgt 3 Meter. Durch die beiden Leiter fließt ein Strom von 2A. Ermitteln Sie für den Punkt P den Betrag der resultierenden magnetischen Feldstärke \vec{H} $[\frac{A}{m}]$ und die magnetische Flussdichte B, wenn die Anordnung in Luft verlegt ist.

Magnetische Feldkonstante:
$$\mu_0 = 4 \cdot \pi \cdot 10 - 7 \frac{\textit{VS}}{\textit{Am}}$$

d) Zeichnen Sie qualitativ den Verlauf von \vec{H} für $\frac{I_1}{I_2} = -\frac{1}{2}$.