齐鲁工业大学 2019/2020 学年下学期《概率论与数理统计》

期末考试试卷(A卷)

(本试卷共 4 页)

题号	_		四	五	六	七	八	总分
得分								

得分	
阅卷人	

- 一、填空题(满分24分,其中每小空格3分)

2. 设 x 服从二项分布 B(n,p),已知 EX = 3.2, DX = 1.92,则参数 $n = _____$,

 $p = \underline{\hspace{1cm}}$.

3. 设 X 的分布律为

X	0	1	2	3
P	0.1	0.3	0.4	0.2

F(x) 为其分布函数,则 $F(2) = ______.$

- 4. 若随机变量 $X\sim N(-1,9), Y\sim N(2,16)$,相关系数 $\rho_{XY}=0$, 则
- 5. 设总体 $X \sim N(\mu, \sigma_2), \sigma_2$ 未知,给定样本 (X_1, X_2, \cdots, X_n) ,对均值作区间估计, 则置信度为1-α 的置信区间为_____.

得分 阅卷人

二、选择题(本题满分16分,每小题4分)

1. 同时掷两颗均匀骰子,出现的点数之和等于 10 的概率

为(

- (a) $\frac{1}{36}$; (b) $\frac{2}{36}$; (c) $\frac{3}{36}$; (d) $\frac{4}{36}$

- 2. 设 A, B 是任意两个事件,则 $P(A \cup B) = ($
 - (a) P(A) + P(B);

- (b) P(A) + P(B) P(A)P(B);
- (c) P(A) P(B) + P(AB);
- (d) P(A) + P(B) P(AB).
- 3. 随机变量 $X \sim N(-1,\sigma^2)$,且 P(X > c) = P(X < c),则 c 等于(

(a) (b) (b) (c) (c) (d)	(a)	0 ;	(b) 1;	(c) -1 ;	(d) σ
-----------------------------------	-----	-----	--------	----------	-------

- 4. 设 X_1, X_2, X_n 为总体X的一个简单随机样本, $EX = \mu, DX = \sigma_2$ 存在, \overline{X}, s_2 分别为样本均值和样本方差,下面结论正确的是(
 - (a) \overline{X} , s_2 分别为 μ, σ_2 的无偏估计量; (b) \overline{X} , s 分别为 μ, σ 的无偏估计量;
- (c) \overline{X} , s_2 分别为 μ , σ_2 的矩估计量; (d) \overline{X} , s_2 分别为 μ , σ_2 的极大似然估计量;

得分	
阅卷人	

三、(本题满分10分)

有朋友自远方来,他坐火车、坐船、坐汽车、坐飞机的概率 分别是 0.3、0.2、0.1 和 0.4,而他坐火车、坐船、坐汽车、

坐飞机迟到的概率分别是 1/4、1/3、1/12 和 0,实际上他迟到了,请推测他坐哪种交通工具来的可能性最大。

得分	
阅卷人	

四、(本题满分10分)

设随机变量 X 在区间[10,15]上服从均匀分布。现对 X 进行 10

次独立观测,试求有两次观测值大于14的概率。

名姓

| 号 |

级班业专

得分 阅卷人

五、(本题满分 12 分) 设 *X*,*Y* 相互独立,分布律如下:

X	-1	1	2	
	1/2	1/8	3/8	

Y	-1	1	
	1/3	2/3	

求: (1) (X,Y) 的概率分布表; (2) E(XY); (3) Z = X + Y 的概率分布表

得分 阅卷人

六、(本题满分10分)

设随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} A, & 0 < x < y, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

求: (1) A;

(2) (X,Y) 的边缘分布;

得分	
阅卷人	

七、(本题满分8分)

一袋盐的重量(克)X 服从正态分布, EX = 100, DX = 0.1, 现从中

随机取出 10 袋盐, 求这 10 袋盐的平均重量在 99.9~100.2 克的概率。 ($\Phi(2) = 0.9772, \Phi(1) = 0.8413$)

得分	
阅卷人	

八、(本题满分10分)

阅卷人 某种电子元件的寿命 $X \sim N(\mu, 20^2)$,合格的标准为 $\mu \ge 2000$ 小时,现从这批电子元件中抽取 10 个,测得寿命为(小时): 2010 1980 1950 2000 1975 2020 1990 1995 1985 1970, 试在水平 α =0.05 下检验电子元件是否合格? $(Z_{0.05} = 1.65, Z_{0.025} = 1.96, t_{0.05}(9) = 1.8331, t_{0.025}(9) = 2.2622)$

齐鲁工业大学 2019/2020 学年下学期《概率论与数理统计》

期末考试试卷 A

参考答案与评分标准

得分	
阅卷人	

、填空题(满分24分,其中每小空格3分)

1. 事件 A,B 满足 $AB = \Phi$ 称为互不相容,事件 A,B 满足P(AB) = P(A)P(B)称为相互独立。

2. 设x 服从二项分布 B(n,p), 已知 EX = 3.2, DX = 1.92, 则参数 n = 8, p = 0.4.

3. 设 X 的分布律为

X	0	1	2	3
P	0.1	0.3	0.4	0.2

F(x) 为其分布函数,则 F(2) = 0.8。

- 4. 若随机变量 $X\sim N(-1,9), Y\sim N(2,16)$,相关系数 $\rho_{_{XY}}=0$,则 E(X-2Y)=-5 , D(X-2Y) = 73 \circ
- 5. 设总体 $X \sim N(\mu, \sigma_2), \sigma_2$ 未知, 给定样本 $(X_1, X_2, ..., X_n)$, 对均值作区间估计, 则置信度为 $1-\alpha$ 的置信区间为 $(\overline{X}\pm\frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1))$ 。

得分 阅卷人

- 二、选择题(满分16分,其中每小题4分)
- 1. 同时掷两颗均匀骰子,出现的点数之和等于10 的概率为
- (a) $\frac{1}{36}$; (b) $\frac{2}{36}$; (c) $\frac{3}{36}$; (d) $\frac{4}{36}$

- 2. 设 A, B 是任意两个事件,则 $P(A \cup B) = (d)$
 - (a) P(A) + P(B);

- (b) P(A) + P(B) P(A)P(B);
- (c) P(A) P(B) + P(AB); (d) P(A) + P(B) P(AB).
- (a) 0;
- (b) 1; (c) -1; (d) σ .

- 4. 设 X_1, X_2, X_n 为总体X的一个简单随机样本, $EX = \mu, DX = \sigma_2$ 存在, \overline{X}, s_2 分别为样本均值和样本方差,下面结论正确的是(a)
 - (a) \overline{X} , s_2 分别为 μ , σ_2 的无偏估计量; (b) \overline{X} , s 分别为 μ , σ 的无偏估计量;
 - (c) \overline{X} , s_2 分别为 μ, σ_2 的矩估计量; (d) \overline{X} , s_2 分别为 μ, σ_2 的极大似然估计量;

得分	
阅卷人	

三、(本题满分 10 分)有朋友自远方来,他坐火车、坐船、坐汽车、坐飞机的概率分别是 0.3、0.2、0.1 和 0.4,而他坐火车、坐船、坐汽车、坐飞机迟到的概率分别是 1/4、1/3、

1/12 和 0,实际上他迟到了,请推测他坐哪种交通工具来的可能性最大。

解:设事件 A,B,C,D 分别表示"坐火车"、"坐船"、"坐汽车"、"坐飞机"。E 表示"迟到",则有

$$P(E) = P(A)P(E/A) + P(B)P(E/B) + P(C)P(E/C) + P(D)P(E/D)$$

$$= 0.3 \times \frac{1}{4} + 0.2 \times \frac{1}{3} + 0.1 \times \frac{1}{12} + 0.4 \times 0 = \frac{3}{20} \qquad (6 \%)$$

$$P(A/E) = \frac{0.3 \times +}{3/20} = \frac{1}{2}, \quad P(B/E) = \frac{0.2 \times +}{3/20} = \frac{4}{9}$$

$$P(C/E) = \frac{0.1 \times +}{3/20} = \frac{1}{18}, \quad P(D/E) = \frac{0}{3/20} = 0 \qquad (4 \%)$$

所以他坐船的可能性最大

得分	
阅卷人	

四、(本题满分 10 分)设随机变量 X 在区间[10,15]上服从均匀分布。现对 X 进行 10 次独立观测,试求有两次观测值大于 14 的概率。

解:
$$f_X(x) = \begin{cases} \frac{1}{5}, & 10 \le x \le 15 \\ 0, & 其他 \end{cases}$$
 (2分)

A= "X 的观测值大于 14"

$$P(A) = \int_{14}^{15} \frac{1}{5} dx = \frac{1}{5}$$
 (3 分)

Y 表示这 10 次观测中观测值大于 14 的次数,则 $Y \sim B(10, \frac{1}{5})$

 $P(Y=2) = C_{10}^2 \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^8 \tag{3 \%}$

得分	
阅卷人	

五、(本题满分 12 分)设X,Y相互独立,分布律如下

X	-1	1	2	Y	-1	1
	1/2	1/8	3/8		1/3	2/3

求: (1) (X,Y) 的概率分布表; (2) E(XY); (3) Z = X + Y 的概率分布表

解: (1)

Y	-1	1	2
-1	1/6	1/24	1/8
1	1/3	1/12	1/4

.....(4分)

(2)

EX =
$$-1 \times \frac{1}{2} + 1 \times \frac{1}{8} + 2 \times \frac{3}{8} = \frac{3}{8}$$
,
EY = $-1 \times \frac{1}{3} + 1 \times \frac{2}{3} = \frac{1}{3}$
EXY = EX · EY = $\frac{3}{8} \times \frac{1}{3} = \frac{1}{8}$ (4 分)

Z	-2	0	1	2	3	
	1/6	3/8	1/8	1/12	1/4	

......(4分) 六、(本题 10分)设随机变量(X,Y)的概率密度为

得分 阅卷人

$$f(x,y) = \begin{cases} A, & 0 < x < y, & 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

求: (1) A; (2) (X,Y) 的边缘分布;

解: (1)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = \int_{0}^{1} dx \int_{x}^{1} A dy = A \int_{0}^{1} (1 - x) dx = \frac{A}{2} = 1$$
$$\therefore A = 2 \qquad (4 分)$$

(2)
$$f_X(x) = \int_x^1 2dy = 2(1-x), \quad 0 < x < 1...$$
 (3 \(\frac{1}{2}\))

	$f_{_{_{\mathrm{V}}}}$	$(y) = \int_{0}^{y} 2a$	$dx = 2y, 0 < y < 1 \tag{3 } $				
		0	dx = 2y, $0 < y < 1$ (3分) 七、(本题 8 分) 一袋盐的重量(克)X 服从正态分				
	阅卷人		$\pi, EX = 100, DX = 0.1$,现 从中随机取出 10 袋盐, 求这 10				
袋畫	袋盐的平均重量在 99.9~100.2 克的概率。($\Phi(2) = 0.9772, \Phi(1) = 0.8413$)						
解: $X \sim N(100, 0.1)$ (1分)							
10 袋盐的平均重量 $\overline{X} \sim N(100, \frac{0.1}{10}) = N(100, 0.01)$, (2 分)							

$$\frac{\overline{X} - 100}{0.1} \sim N(0,1)$$
 (2 分)

$$P(99.9 < \overline{X} < 100.2) = P(-1 < \frac{\overline{X} - 100}{0.1} < 2)$$

= $\mathbf{\Phi}(2) - \mathbf{\Phi}(-1) = \mathbf{\Phi}(2) + \mathbf{\Phi}(1) - 1$ (2 $\%$)
= $0.9772 + 0.8413 - 1 = 0.8185$ (1 $\%$)

得分	,
阅卷人	1

八、(本题 10 分) 某种电子元件的寿命 X ~ N(µ,20²), 合格的 标准为μ≥2000小时,现从这批电子元件中抽取10个,测得寿

命为(小时): 2010 1980 1950 2000 19752020 1990 1995 1985 1970 试在水平 $\alpha=0.05$ 下检验电子元件是否合格.

$$(Z_{0.05} = 1.65, Z_{0.025} = 1.96, t_{0.05}(9) = 1.8331, t_{0.025}(9) = 2.2622)$$

解:
$$H_0: \mu = \mu_0 = 2000, \quad H_1: \mu < \mu_0$$
 (2分)

$$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{1987.5 - 2000}{20 / \sqrt{10}} = -1.9764$$
 (4 \(\frac{\(\frac{1}{2}\)}{20}\)

$$-Z_{0.05} = -1.65 \tag{1 分}$$

$$U < -Z_{0.05} \tag{1分}$$

所以拒绝
$$H_0$$
,认为电子元件不合格.....(1分)