Data Science Theory and Practices

The Perceptron Algorithm

Perfectly Separable and Inseparable Data

Joseph Chuang-Chieh Lin Dept. CSIE, Tamkang University

31st May 2021

Learning to Classify

• A core problem underlying many machine learning applications.

Learning to Classify

- A core problem underlying many machine learning applications.
- To help ground our discussion, we begin by a specific learning algorithm: the **Perceptron algorithm**.

Learning to Classify

- A core problem underlying many machine learning applications.
- To help ground our discussion, we begin by a specific learning algorithm: the **Perceptron algorithm**.
 - Assigning positive and negative weights to features.
 - Each positive example has a positive sum of weights.
 - Each negative example has a negative sum of weights.

A set of S in R^d , d = 2

Data and the assumption

- Given a set of points in \mathbb{R}^d space.
 - Each is labeled as positive (+) or negative (-).

- Assumption: There exists a vector w^* such that
 - For each positive example $\mathbf{x} \in S$, $\mathbf{x}^{\top} w^* \ge 1$
 - For each negative example $\mathbf{x} \in S$, $\mathbf{x}^{\top} w^* \leq -1$

The Perceptron algorithm

- Start with $w = \mathbf{0}$.
- Repeat the following until $\mathbf{x}^{\top}w$ has the correct sign for all $\mathbf{x} \in S$.
 - Let $\mathbf{x} \in S$ be an example for which the sign of $\mathbf{x}^{\mathsf{T}} w$ is NOT correct.
 - Update as follows:
 - If **x** is a positive example, let $w \leftarrow w + \mathbf{x}$.
 - If **x** is a negative example, let $w \leftarrow w \mathbf{x}$.

Check:

For
$$(1,0)$$
: $(1,-1)\cdot(1,0) = 1 > 0$

For
$$(0,1)$$
: $(1,-1)\cdot(0,1) = -1 < 0$

Check:

For
$$(1,0)$$
: $(1,-1)\cdot(1,0)=1>0$

For
$$(0,1)$$
: $(1,-1)\cdot(0,1)=-1<0$

An Exercise

• Try to work on this example:

Theorem

• If there exists a vector w^* such that

$$\mathbf{x}^{\top} w^* \ge 1$$
 for all positive $\mathbf{x} \in S$
 $\mathbf{x}^{\top} w^* \le -1$ for all negative $\mathbf{x} \in S$

then the number of updates of the Perceptron algorithm is at most $R^2|w^*|^2$, where $R = \max_{\mathbf{x} \in S} |\mathbf{x}|$.

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

- For each update,
 - if **x** is a positive example, $(w + \mathbf{x})^{\top} w^* = w^{\top} w^* + \mathbf{x}^{\top} w^*$
 - if **x** is a negative example, $(w \mathbf{x})^{\top} w^* = w^{\top} w^* \mathbf{x}^{\top} w^*$

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

- For each update,
 - if **x** is a positive example, $(w + \mathbf{x})^\top w^* = w^\top w^* + \mathbf{x}^\top w^* \ge w^\top w^* + 1$.
 - if **x** is a negative example, $(w \mathbf{x})^{\top} w^* = w^{\top} w^* \mathbf{x}^{\top} w^* \ge w^{\top} w^* + 1$.

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

- For each update,
 - if **x** is a positive example, $(w + \mathbf{x})^{\top}(w + \mathbf{x}) = |w|^2 + 2\mathbf{x}^{\top}w + |\mathbf{x}|^2$
 - if **x** is a negative example, $(w \mathbf{x})^{\top}(w \mathbf{x}) = |w|^2 2\mathbf{x}^{\top}w + |\mathbf{x}|^2$

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

- For each update,
 - if **x** is a positive example, $(w + \mathbf{x})^{\top}(w + \mathbf{x}) = |w|^2 + 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + |\mathbf{x}|^2$.
 - if \mathbf{x} is a negative example, $(w \mathbf{x})^{\top}(w \mathbf{x}) = |w|^2 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + |\mathbf{x}|^2$.

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

- For each update,
 - if **x** is a positive example, $(w + \mathbf{x})^{\top}(w + \mathbf{x}) = |w|^2 + 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + R^2$.
 - if **x** is a negative example, $(w \mathbf{x})^{\top}(w \mathbf{x}) = |w|^2 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + R^2$.

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

• If we make *M* updates,

$$w^{\top}w^* \ge M \cdot 1 = M.$$

$$|w|^2 \le MR^2.$$

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

• If we make *M* updates,

$$w^{\top}w^* \ge M \cdot 1 = M.$$
$$|w|^2 \le MR^2.$$

Note:
$$\frac{w^{\top}w^*}{|w^*|} \le |w|$$
.

- Fix some w^* satisfying the conditions.
- Keep track of

$$w^{\top}w^*$$
 and $|w|^2$.

• If we make *M* updates,

$$w^{\top}w^* \ge M \cdot 1 = M.$$
$$|w|^2 \le MR^2.$$

Note:
$$\frac{w^\top w^*}{|w^*|} \le |w|.$$

$$M \leq R^2 |w|^2$$
.

Online learning scenario

• Remove the assumption that the data is sampled from a fixed distribution.

• The data points come on by one at time.

Online learning scenario

• Remove the assumption that the data is sampled from a fixed distribution.

• The data points come on by one at time.

• The Perceptron algorithm can be adjusted in the online setting.

The Perceptron algorithm (online)

- Start with w = 0. For t = 1, 2, ..., do:
- Given example \mathbf{x}_t , predict sign($\mathbf{x}_t^{\mathsf{T}}w$).
- If the prediction was a mistake, then update:
 - If **x** is a positive example, let $w \leftarrow w + \mathbf{x}_t$.
 - If **x** is a negative example, let $w \leftarrow w \mathbf{x}_t$.

Theorem

- Given any online sequence $\mathbf{x}_1, \mathbf{x}_2, \dots$
- If there exists a vector w^* such that

$$\mathbf{x}_t^{\top} w^* \geq 1$$
 for all positive \mathbf{x}_t
 $\mathbf{x}_t^{\top} w^* \leq -1$ for all negative \mathbf{x}_t

then the number of updates of the online Perceptron algorithm is at most $R^2|w^*|^2$, where $R = \max_t |\mathbf{x}_t|$.

Inseparable data

• What if the best w^* is not perfect?

Inseparable data

• What if the best w^* is not perfect?

 $\mathbf{x}_t^{\top} \mathbf{w}^*$ is just "a bit wrong" for some \mathbf{x}_t

Hinge-loss

• The hinge-loss of w^* on a positive \mathbf{x}_t

$$\max(0, 1 - \mathbf{x}_t^\top w^*).$$

• The hinge-loss of w^* on a negative \mathbf{x}_t

$$\max(0, 1 + \mathbf{x}_t^\top w^*).$$

• Define the total hinge-loss $L_{\text{hinge}}(w^*, S)$

 $L_{\text{hinge}}(w^*, S)$: the sum of hinge-losses of w^* on all \mathbf{x}_t .

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, ...,$ the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|^2 + 2L(w^*, S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, \dots$, the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|^2 + 2L(w^*, S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

For each **update**,

if **x** is a positive example,
$$(w + \mathbf{x})^{\top}(w + \mathbf{x}) = |w|^2 + 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + R^2$$
.

if **x** is a negative example,
$$(w - \mathbf{x})^{\top}(w - \mathbf{x}) = |w|^2 - 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + R^2$$
.

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, ...,$ the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

For each **update**,

if **x** is a positive example,
$$(w + \mathbf{x})^{\top}(w + \mathbf{x}) = |w|^2 + 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + R^2$$
. if **x** is a negative example, $(w - \mathbf{x})^{\top}(w - \mathbf{x}) = |w|^2 - 2\mathbf{x}^{\top}w + |\mathbf{x}|^2 \le |w|^2 + R^2$.

This part is just the same as before.

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, ...,$ the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

• For each **update**, we increase $w^T w^*$ by a $\mathbf{x}_t^T w^*$

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, ...,$ the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

• For each **update**, we increase $w^T w^*$ by a $\mathbf{x}_t^T w^*$

$$(w + \mathbf{x}_t)^\top w^* = w^\top w^* + \mathbf{x}_t^\top w^*.$$
$$(w - \mathbf{x}_t)^\top w^* = w^\top w^* - \mathbf{x}_t^\top w^*.$$

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, \dots$, the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

• For each **update**, we increase $w^T w^*$ by a $\mathbf{x}_t^T w^*$

$$(w + \mathbf{x}_t)^\top w^* = w^\top w^* + (\mathbf{x}_t^\top w^*)$$
$$(w - \mathbf{x}_t)^\top w^* = w^\top w^* - (\mathbf{x}_t^\top w^*)$$

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, ...,$ the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

• For each **update**, we increase $w^{\mathsf{T}}w^*$ by $\mathbf{x}_t^{\mathsf{T}}w^*$ or $-\mathbf{x}_t^{\mathsf{T}}w^*$

$$(w + \mathbf{x}_t)^\top w^* = w^\top w^* + \mathbf{x}_t^\top w^*$$

$$(w - \mathbf{x}_t)^\top w^* = w^\top w^* - \mathbf{x}_t^\top w^*$$

$$\geq 1 - L_{\text{hinge}}(w^*, \mathbf{x}_t)$$

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, \dots$, the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof:

• For each **update**, we increase $w^{\mathsf{T}}w^*$ by $\mathbf{x}_t^{\mathsf{T}}w^*$ or $-\mathbf{x}_t^{\mathsf{T}}w^*$

$$(w + \mathbf{x}_t)^\top w^* = w^\top w^* + \mathbf{x}_t^\top w^*$$

$$(w - \mathbf{x}_t)^\top w^* = w^\top w^* - \mathbf{x}_t^\top w^*$$

$$\geq 1 - L_{\text{hinge}}(w^*, \mathbf{x}_t)$$

Sum over all mistakes $\Rightarrow w^{\top}w^* \geq M - L_{\text{hinge}}(w^*, S)$.

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, \dots$, the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof: Sum over all mistakes $\Rightarrow w^{\top}w^* \geq M - L_{\text{hinge}}(w^*, S) := M - L$.

$$w^{\top}w^{*}/|w^{*}| \leq |w|$$

$$(M-L)^{2} \leq (w^{\top}w^{*})^{2} \leq |w|^{2}|w^{*}|^{2}$$

$$(M-L)^{2} \leq MR^{2}|w|^{2}$$

$$M^{2} - 2ML + L^{2} \leq MR^{2}|w^{*}|^{2}$$

$$M - 2L + L^{2}/M \leq R^{2}|w^{*}|^{2} .$$

• On any sequence of examples $S = \mathbf{x}_1, \mathbf{x}_2, ...,$ the Perceptron algorithm makes at most

$$\min_{w^*}(R^2|w^*|+2L(w^*,S))$$

mistakes, where $R = \max_{t} |\mathbf{x}_t|$.

Proof: Sum over all mistakes $\Rightarrow w^{\top}w^* \geq M - L_{\text{hinge}}(w^*, S) := M - L$.

$$w^{\top}w^{*}/|w^{*}| \leq |w|$$

$$(M-L)^{2} \leq (w^{\top}w^{*})^{2} \leq |w|^{2}|w^{*}|^{2}$$

$$(M-L)^{2} \leq MR^{2}|w^{*}|^{2} \qquad \therefore M \leq R^{2}|w^{*}|^{2} + 2L - L^{2}/M$$

$$M^{2} - 2ML + L^{2} \leq MR^{2}|w^{*}|^{2} \qquad \leq R^{2}|w^{*}|^{2} + 2L.$$

$$M - 2L + L^{2}/M \leq R^{2}|w^{*}|^{2}.$$

How to generalize a linear separator?

• Solution: **Kernel Functions**.

How to generalize a linear separator?

• Solution: **Kernel Functions**.

Kernel functions

- Replace the dot product in the high dimensional space.
- Over pairs of data points such that for some function $\phi : R^d \mapsto R^N$, we have $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^\top \phi(\mathbf{x}')$.

Kernel functions

- Replace the dot product in the high dimensional space.
- Over pairs of data points such that for some function $\phi : R^d \mapsto R^N$, we have $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^\top \phi(\mathbf{x}')$.

• For example,

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^k$$
, for some $k \ge 1$.

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^{2} = (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2}$$

$$= 1 + 2x_{1}x'_{1} + 2x_{2}x'_{2} + x_{1}^{2}x'_{1}^{2} + 2x_{1}x_{2}x'_{1}x'_{2} + x_{2}^{2}x'_{2}^{2}$$

$$= \phi(\mathbf{x})^{\top} \phi(\mathbf{x}').$$

Kernel functions

- Replace the dot product in the high dimensional space.
- Over pairs of data points such that for some function $\phi : R^d \mapsto R^N$, we have $K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^\top \phi(\mathbf{x}')$.

For example,

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^k$$
, for some $k \ge 1$.

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^{\top} \mathbf{x}')^{2} = (1 + x_{1}x'_{1} + x_{2}x'_{2})^{2}$$

$$= 1 + 2x_{1}x'_{1} + 2x_{2}x'_{2} + x_{1}^{2}x'_{1}^{2} + 2x_{1}x_{2}x'_{1}x'_{2} + x_{2}^{2}x'_{2}^{2}$$

$$= \phi(\mathbf{x})^{\top} \phi(\mathbf{x}'). \quad \text{for } \phi(x) = (1, \sqrt{2}x_{1}, \sqrt{2}x_{2}, x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})$$

Data Science Theory and Practices, CSIE, TKU, Taiwan

Theorem (Kernel functions' legality)

- Suppose K_1 and K_2 are kernel functions. Then,
- For any constant $c \ge 0$, cK_1 is a legal kernel.
- For any scalar function f, $K_3 = f(\mathbf{x}) f(\mathbf{x'}) K_1(\mathbf{x}, \mathbf{x'})$ is a legal kernel.
- The sum $K_1 + K_2$ is a legal kernel.
- The product K_1K_2 is a legal kernel.

Popular kernel functions

Polynomial

$$K(\mathbf{x}, \mathbf{x}') = (c + \mathbf{x}^{\top} \mathbf{x}')^k$$
, for some $k \ge 1$ and constant $c \ge 0$.

Gaussian (Radial Basis Function; RBF)

$$K(\mathbf{x}, \mathbf{x}') = e^{-c|\mathbf{x} - \mathbf{x}'|^2}.$$

Theorem (Kernel functions' legality)

- Suppose K_1 and K_2 are kernel functions. Then,
- For any constant $c \ge 0$, cK_1 is a legal kernel.
- For any scalar function f, $K_3 = f(\mathbf{x}) f(\mathbf{x'}) K_1(\mathbf{x}, \mathbf{x'})$ is a legal kernel.
- The sum $K_1 + K_2$ is a legal kernel.

$$K_1 + K_2 = \phi_1(\mathbf{x})^{\top} \phi_1(\mathbf{x}') + \phi_2(\mathbf{x})^{\top} \phi_2(\mathbf{x}')$$

• The product K_1K_2 is a legal kernel.

$$\phi_1(\mathbf{x})$$
 $\phi_2(\mathbf{x})$

Popular kernel functions

Polynomial

$$K(\mathbf{x}, \mathbf{x}') = (c + \mathbf{x}^{\top} \mathbf{x}')^k$$
, for some $k \ge 1$ and constant $c \ge 0$.

Gaussian (Radial Basis Function; RBF)

$$K(\mathbf{x}, \mathbf{x}') = e^{-c|\mathbf{x} - \mathbf{x}'|^2}.$$

Why are they legal?

Popular kernel functions

Polynomial

$$K(\mathbf{x}, \mathbf{x}') = (c + \mathbf{x}^{\top} \mathbf{x}')^k$$
, for some $k \ge 1$ and constant $c \ge 0$.

Gaussian (Radial Basis Function; RBF)

$$K(\mathbf{x}, \mathbf{x}') = e^{-c|\mathbf{x} - \mathbf{x}'|^2}.$$

Why are they legal?

Gaussion:
$$f(\mathbf{x})f(\mathbf{x}')e^{2c\mathbf{x}^{\top}\mathbf{x}'}$$
 for $f(\mathbf{x}) = e^{-c|\mathbf{x}|^2}$.