Database Systems Database Design

H. Turgut Uyar Şule Öğüdücü

2002-2012

License

©2002-2012 T. Uyar, Ş. Öğüdücü

- to Share to copy, distribute and transmit the work
 to Remix to adapt the work

Under the following conditions:

- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
 Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Legal code (the full license):

http://creativecommons.org/licenses/by-nc-sa/3.0/

Topics

Normalization

Introduction Normal Forms 3rd Normal Form

Entity/Relationship Model

Introduction E/R Diagrams

Functional Dependency

Definition

- ▶ Z: the set of all attributes of the relation R
- $ightharpoonup A, B \subseteq Z$
- ▶ A functionally determines $B: A \rightarrow B$ for every \boldsymbol{A} value there can only be one \boldsymbol{B} value
- every functional dependency is an integrity constraint

Sample Relation

Example

R

MOVIEID	TITLE	COU	LANG	ACTORID	NAME	ORD
6	Usual Suspects	UK	EN	308	Gabriel Byrne	2
228	Ed Wood	US	EN	26	Johnny Depp	1
70	Being John Malkovich	US	EN	282	Cameron Diaz	2
1512	Suspiria	IT	IT	745	Udo Kier	9
70	Being John Malkovich	US	FN	503	John Malkovich	14

▶ assumption: the language of the movie is the language of the country where it was made

Functional Dependency Examples

Example

- ► MOVIEID → COUNTRY
- ightharpoonup ACTORID ightharpoonup NAME
- ► MOVIEID → {TITLE, COUNTRY, LANGUAGE}
- ► {MOVIEID, ACTORID} → COUNTRY
- ► {MOVIEID, ACTORID} → MOVIEID
- ► {MOVIEID, ACTORID} → ORD
- ▶ {MOVIEID, ACTORID} → {COUNTRY, ORD}
- ightharpoonup COUNTRY ightharpoonup LANGUAGE

Irreducible Set

- ▶ S: the set of all FDs of the relation
- ▶ $T \subseteq S$, such that
 - lacktriangledown T contains as few elements as possible
 - every FD in S can be derived from the FDs in T
- ▶ let there be only one attribute on the right hand side of FDs

Irreducible Set Example

Example

- $\blacktriangleright \ \mathsf{MOVIEID} \to \mathsf{TITLE}$
- $ightharpoonup \operatorname{MOVIEID}
 ightarrow \operatorname{COUNTRY}$
- $\blacktriangleright \ \mathsf{COUNTRY} \to \mathsf{LANGUAGE}$
- ightharpoonup ACTORID ightharpoonup NAME
- ► {MOVIEID, ACTORID} → ORD

Dependency Diagram

Example

9 / 44

Normal Forms

- ▶ 1NF, 2NF, 3NF, BCNF, 4NF, 5NF
- every form narrows down the scope of the previous form
 - every relation in 2NF is also in 1NF
 - every relation in 3NF is also in 2NF, ...
- ▶ 1NF: attribute values are atomic

10 / 44

Normalization

Definition

normalization:

transition from one form to the next, narrower form

▶ transition between forms must be lossless

Theorem (Heath)

- Z: the set of all attributes of the relation R
- $ightharpoonup A, B, C \subseteq Z$
- ▶ if $A \rightarrow B$, then R can be obtained by joining the relations $\{A, B\}$ and $\{A, C\}$

Lossless Transition Example

Example

R1

MOVIEID	TITLE	COU	LANG
6	Usual Suspects	UK	EN
228	Ed Wood	US	EN
70	Being John Malkovich	US	EN
1512	Suspiria	IT	IT

R2

MOVIEID	ACTORID	NAME	ORD
6	308	Gabriel Byrne	2
228	26	Johnny Depp	1
70	282	Cameron Diaz	2
1512	745	Udo Kier	9
70	503	John Malkovich	1/

► R = R1 JOIN R2

12 / 4

Lossy Transition Example

Example

R1

MOVIEID	TITLE	COU	LANG
6	Usual Suspects	UK	EN
228	Ed Wood	US	EN
70	Being John Malkovich	US	EN
1512	Suspiria	IT	IT

R2

COU	ACTORID	NAME	ORD
UK	308	Gabriel Byrne	2
US	26	Johnny Depp	1
US	282	Cameron Diaz	2
IT	745	Udo Kier	9
HIC	EU3	John Malkovich	1.4

► R ≠ R1 JOIN R2

► {MOVIEID, ACTORID} → ORD

13 / 44

Anomalies

- insert
 - ▶ data is known but can not be inserted due to constraints
- delete
 - ▶ deleting some data causes some other data to be lost
- update
 - updating some data requires modifications in multiple tuples

14 / 44

Anomaly Examples

Example

- ► the country of the movie "Gattaca" is known to be US, but this cannot be inserted if there is no actor in the movie
- deleting that Gabriel Byrne acts in the movie "Usual Suspects" also deletes that the movie was made in the UK
- changing the country of the movie "Being John Malkovich" requires modifications in two tuples

2nd Normal Form

Definition

2NF: every non-key attribute depends on the primary key

transition from 1NF to 2NF

- ▶ in a relation R that conforms to 1NF:
 - ightharpoonup R(A,B,C,D), primary key: $\{A,B\}$
 - $A \rightarrow D$
- ▶ to be 2NF:
 - ightharpoonup R1(A, D), primary key: A
 - ► R2(A, B, C), primary key: {A, B} A is a foreign key referencing R1

15 / 44

1NF-2NF Transition Example

Example

- among the non-key attributes, only ORD depends on the primary key
 - ► A: MOVIEID
 - ▶ B: ACTORID
 - ► *C*: {NAME, ORD}
 - ► D: {TITLE, COUNTRY, LANGUAGE}

1NF-2NF Transition Example

Example

- ► R1(MOVIEID, TITLE, COUNTRY, LANGUAGE) primary key: MOVIEID
- ▶ R2(MOVIEID, ACTORID, NAME, ORD) primary key: {MOVIEID, ACTORID} MOVIEID is a foreign key referencing R1

17 / 44

1NF-2NF Transition Example

Example

- $\blacktriangleright \ \, \mathsf{R2} \,\, \mathsf{still} \,\, \mathsf{not} \,\, \mathsf{2NF} \colon \mathsf{ACTORID} \,\to\, \mathsf{NAME}$
 - ► A: ACTORID
 - ► B: MOVIEID
 - ► C: ORD
 - ► D: NAME
- ► R3(ACTORID, NAME) primary key: ACTORID
- ► R4(MOVIEID, ACTORID, ORD) primary key: {MOVIEID, ACTORID} ACTORID is a foreign key referencing R3

2NF Relation Examples

Example

R1

MOVIEID	TITLE	COU	LANG
6	Usual Suspects	UK	EN
228	Ed Wood	US	EN
70	Being John Malkovich	US	EN
1512	Suspiria	IT	IT

R3

ACTORID	NAME
308	Gabriel Byrne
26	Johnny Depp
282	Cameron Diaz
745	Udo Kier
EU3	John Mallinisish

ORD	ACTORID	MOVIEID
2	308	6
1	26	228
2	282	70
9	745	1512
1.4	EU3	70

Dependency Diagram Example

Example

2NF Corrected Anomalies

Example

- ▶ if the country of the movie "Gattaca" is known to be US, this can be inserted to R1
- ▶ if Gabriel Byrne is deleted from the movie "Usual Suspects", the country of the movie is still kept in R1
- ▶ changing the country of the movie "Being John Malkovich" requires updating only one tuple in R1

2NF Remaining Anomalies

Example

- ▶ it is known that movies made in Brazil are in Portuguese but this can not be inserted if there is no movie made in Brazil
- ▶ deleting the movie "Suspiria" also deletes that the language of movies made in Italy is Italian
- ▶ changing the language of the movies made in the US requires two tuples to be updated

3rd Normal Form

Definition

3NF: non-key attributes do not depend on any attributes other than the primary key

transition from 2NF to 3NF

- ▶ in a relation R that conforms to 2NF:
 - ► R(A, B, C, D), primary key: A ► $C \rightarrow D$
- ▶ for it to be 3NF:
 - R1(C,D), primary key: C
 - R2(A, B, C), primary key: A ${\it C}$ is a foreign key referencing ${\it R}1$

2NF-3NF Transition Example

Example

 $\blacktriangleright \ \, \text{R1: COUNTRY} \to \text{LANGUAGE}$

► A: MOVIEID ► B: TITLE ► C: COUNTRY ► D: LANGUAGE

► R5(COUNTRY, LANGUAGE) primary key: COUNTRY

► R6(MOVIEID, TITLE, COUNTRY) primary key: MOVIEID

COUNTRY is a foreign key referencing R5

3NF Relation Examples

Example

R6			
MOVIEID	TITLE	COU	
6	Usual Suspects	UK	
228	Ed Wood	US	
70	Being John Malkovich	US	
1512	Suspiria	IT	

11.5	
COU	LANG
UK	EN
US	EN
IT	IT

K3			
ACTORID	NAME		
308	Gabriel Byrne		
26	Johnny Depp		
282	Cameron Diaz		
745	Udo Kier		
503	John Malkovich		

	114	
MOVIEID	ACTORID	ORD
6	308	2
228	26	1
70	282	2
1512	745	9
70	503	14

Dependency Diagram Example

Example

3NF Corrected Anomalies

Example

- ▶ if movies made in Brazil are in known to be in Portuguese, this can be inserted into R5
- ▶ if the movie "Suspiria" is deleted, R5 still keeps that movies made in Italy are in Italian
- lacktriangle changing the language of the movies made in the US requires modifying only one tuple in R5

Boyce-Codd Normal Form

BCNF: all functional dependencies must be on candidate keys

▶ dependencies between attributes that are part of the keys have to be considered

BCNF Example

Example (let movie titles be unique)

- ► candidate keys:
 - ► {MOVIEID, ACTORID}
 - ► {TITLE, ACTORID}
- non-conforming functional dependencies:

 - MOVIEID → TITLE
 TITLE → MOVIEID

References

Required Reading: Date

- ► Chapter 11: Functional Dependencies
- ► Chapter 12: Further Normalization I: 1NF, 2NF, 3NF, BCNF

Entity/Relationship Model

- ▶ modeling approach
 - ► Chen 1976
- components
 - entities
 - properties
 - relationships

31 / 44

32 / 44

Entities

Definition

entity: set of "things" with the same attributes

- ▶ elements of the set are *instances* of the entity
- ▶ strong: can exist by itself
- ▶ weak: existence depends on another entity

Entity Examples

Example

► entity: movie, person

▶ person instance: Johnny Depp

strong entity: personweak entity: movie

3 / 44

Property Examples

Definition

Properties

property: data describing entities or relationships

- ▶ simple / composite
- ▶ key
- ▶ single / multiple valued
- empty
- ▶ base / derived

Example

▶ property: title, country, language

▶ simple: first name, last name

► composite: full name

▶ base: date of birth

► derived: age

35 / 44

Relationships

Definition

relationship: connections between entities

- ▶ participant: entities in the relationship
- ▶ degree: number of participants
- total / partial: all instances of the entity do / don't participate in the relationship

Relationship Types

- ▶ one-to-one
- ▶ one-to-many
- ► many-to-many

37 / 44

38 / 44

Relationship Examples

Example (one-to-one)

 $\,\blacktriangleright\,$ the capital relationship between countries and cities

Example (one-to-many)

▶ the management relationship between employees and projects

Example (many-to-many)

▶ the enrollment relationship between students and courses

Entity/Relationship Diagrams

entity: rectangle

weak: double lines

▶ property: ellipsis

derived: dashed linesmulti-valued: double linescomposite: sub-ellipses

relationship: diamond

between weak and strong: double lines

► total: connection double lines

▶ 1 or n depending on the type of the relationship

9 / 44

Entity/Relationship Diagram Example

Example

Entity/Relationship Diagram Example

Applying to Design

- every entity a relation
- ▶ every property an attribute
- ▶ every many-to-many relationship a relation
 - ► foreign keys to participating entities
- ► for every one-to-many relationship a foreign from the "many" side to the "one" side

References

Required Reading: Date

► Chapter 14: Semantic Modeling

13 / 1/1

*** / **