Univariate linear discrete-time

model
$$x(t+1) = Rx(t)$$

fixed points $x* = 0$, if $R \neq 1$,
otherwise $x*$ can be any number
stability $x* = 0$ stable if $|R| < 1$
solution $x(t) = R^t x(0)$

Univariate affine discrete-time

model
$$x(t+1) = a + bx(t)$$

fixed points $x* = \frac{a}{1-b}$, if $b \neq 1$,
 $x*$ is any real if $b = 1$, $a = 0$,
otherwise $x*$ doesn't exist
stability $x*$ stable if $|b| < 1$
solution $x(t) = b^t x(0) + (1 - b^t) \frac{a}{1-b}$,
or $x(t) = x(0) + at$, if $b = 1$

Univariate nonlinear discrete-time

Steve Walker

what to know

model
$$x(t + 1) = f(x(t))$$

fixed points $x* = f(x*)$, no general sol'n
stability $x*$ stable if $|f'(x*)| < 1$
solution use a computer

Univariate linear continuous-time

model
$$\frac{dx}{dt} = rx$$

fixed points $x* = 0$ if $r \neq 0$,
otherwise $x*$ can be any number
stability $x* = 0$ stable if $r < 0$
solution $x(t) = x(0)e^{rt}$

Univariate affine continuous-time

fixed points
$$x \star = \frac{-a}{b}$$
 if $b \neq 0$,
 $x \star$ is any real if $a = b = 0$,
otherwise, $x \star$ doesn't exist
stability $x \star$ stable if $b < 0$
solution $x(t) = x(0)e^{bt} + \frac{-a}{b}(1 - e^{bt})$,
or $x(t) = at$, if $b = 0$

Univariate nonlinear continuous-time

model
$$\frac{dx}{dt} = f(x)$$

fixed points $0 = f(x*)$, no general sol'n
stability $x*$ stable if $f'(x*) < 0$
solution use a computer unless 1. piecewise lin-
ear, 2. partial fractions help, 3. table
of integrals after separation, or 4 *maybe*
change of variables if you're feeling brave

McMaster University, Department of Mathematics

Bivariate linear discrete-time

model
$$\begin{bmatrix} x(t+1) \\ y(t+1) \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
 fixed points $\begin{bmatrix} x \\ y \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, if $\tau \neq \Delta + 1$, otherwise $\begin{bmatrix} x \\ y \\ x \end{bmatrix}$ any vector in a $(2-r)$ -dimensional space stability $\begin{bmatrix} x \\ y \\ x \end{bmatrix}$ is stable if $|\tau| < \Delta + 1$ and $\Delta < 1$ solution See general multivariate affine case below notation $\tau = a + d$, $\Delta = ad - bc$

Multivariate affine discrete-time

model
$$\mathbf{x}(t+1) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}$$

fixed points $\mathbf{x} \star = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$, if $r = n$,
otherwise $\mathbf{x} \star$ can be any vector in an $(n-r)$ -dimensional space spanned by the \mathbf{v}_i associated with $\lambda_i = 1$
stability $\mathbf{x} \star$ is stable if $|\lambda_i| < 1 \ \forall i$
solution If the \mathbf{v}_i are linearly independent, $\mathbf{x}(t) = \sum_i \phi_i \lambda_i^t \mathbf{v}_i + (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$, otherwise use a computer notation \mathbf{v}_i and λ_i the i th eigenvector and eigenvalue of \mathbf{A} .
 ϕ_i are components of $\mathbf{V}^{-1}(\mathbf{x}(0) - (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b})$ if it exists, where \mathbf{V} has the \mathbf{v}_i as columns n and r are the size and rank of $\mathbf{I} - \mathbf{A}$, for identity matrix, \mathbf{I} .

Multivariate nonlinear discrete-time

Steve Walker

what to know

model
$$\mathbf{x}(t+1) = \mathbf{f}(\mathbf{x}(t))$$

fixed points $\mathbf{x} \star = \mathbf{f}(\mathbf{x} \star)$, no general sol'n
stability $\mathbf{x} \star$ stable if $|\lambda_i| < 1 \ \forall i$
solution use a computer
notation λ_i is the i th eigenvalue of the Jaccobian
matrix of partial derivatives of $\mathbf{f}(\mathbf{x})$ with respect to \mathbf{x} at $\mathbf{x} \star$

Bivariate linear continuous-time

model
$$\begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} a \ b \\ c \ d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 fixed points $\begin{bmatrix} x \star \\ y \star \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, if $\Delta \neq 0$, otherwise $\begin{bmatrix} x \star \\ y \star \end{bmatrix}$ any vector in a $(2-r)$ -dimensional space stability $\begin{bmatrix} x \star \\ y \star \end{bmatrix}$ stable if $\tau, -\Delta < 0$ solution See general multivariate affine case below notation $\tau = a + d$, $\Delta = ad - bc$

Multivariate affine continuous-time

fixed points
$$\mathbf{x} \star = -\mathbf{A}^{-1}\mathbf{b}$$
 if $r = n$, otherwise $\mathbf{x} \star$ can be any vector in an $(n-r)$ -dimensional space spanned by the \mathbf{v}_i associated with $\lambda_i = 0$ stability $\mathbf{x} \star = \mathbf{0}$ stable if $\operatorname{Re}(\lambda_i) < 0 \ \forall i$ solution If the \mathbf{v}_i are linearly independent, $\mathbf{x}(t) = \sum_i \phi_i e^{\lambda_i t} \mathbf{v}_i - \mathbf{A}^{-1}\mathbf{b}$, otherwise use a computer notation \mathbf{v}_i and λ_i the i th eigenvector and eigenvalue of \mathbf{A} ϕ_i are components of $\mathbf{V}^{-1}(\mathbf{x}(0) - \mathbf{A}^{-1}\mathbf{b})$ if it exists, where \mathbf{V} has the \mathbf{v}_i as columns n and r are the size and rank of \mathbf{A}

Multivariate nonlinear continuous-time

model
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x})$$

fixed points $\mathbf{0} = \mathbf{f}(\mathbf{x}\star)$, no general sol'n
stability $\mathbf{x}\star$ stable if $\mathrm{Re}(\lambda_i) < 0 \ \forall i$
solution use a computer
notation λ_i is the *i*th eigenvalue of the Jaccobian
matrix of partial derivatives of $\mathbf{f}(\mathbf{x})$ with respect to \mathbf{x} at $\mathbf{x}\star$

McMaster University, Department of Mathematics