

Learning Black-Box Attackers with Transferable Priors and Query Feedback

Jiancheng Yang*, Yangzhou Jiang*,

Xiaoyang Huang, Bingbing Ni, Chenglong Zhao.

Dec. 2020

It is a Siamese cat

(confidence: 99.9%).

Problem Setting

Black-box adversarial attack, where only classification confidence of a victim model is available.

Query Black-Box

Victim Model

Introduction – Methodology – Experiments – Conclusion

Introducing a surrogate model to the victim model.

High consistency between gradients from vision models

Gradient Estimation Method

Estimate gradient with stochastic finite differences (a.k.a evolutionary strategies)

$$\nabla \mathbb{E}[F(\theta)] \approx \frac{1}{\sigma n} \sum_{i=1}^{n} \delta_i F(\theta + \sigma \delta_i)$$

• Using antithetic sampling (using a pair of function evaluations at $(x + \epsilon \ and \ x - \epsilon)$ to reduce variance:

$$g = \frac{\beta}{2\sigma^2 P} \sum_{i=1}^{P} \epsilon_i \left(f(x + \epsilon_i) - f(x - \epsilon_i) \right)$$

- Related methods:
 - NES (Natural Evolutionary Strategies) [1]
 - Banditto [2]
 - P-RGF
 [3]

[1] Ilyas A, et al. Black-box adversarial attacks with limited queries and information. ICML'18.

NEURAL INFORMATION [2] Ilyas A, et al. Prior convictions: Black-box adversarial attacks with bandits and priors. ICLR'19.

PROCESSING SYSTEMS [3] Cheng S, et al. Improving black-box adversarial attacks with a transfer-based prior. NeurIPS'19.

Gradient Estimation with Surrogate Model

- Reduce sampling space with surrogate gradient priors.
- Related methods:
 - **PRGF**_D [1]:
 - Sample perturbation from surrogate gradient centered subspace.
 - Estimate optimal λ to balance between gradient prior and random search.
 - Subspace attack [2]:
 - Sample perturbation with gradients from a set of surrogate models.
 - Use dropout layer to obtain sample diversity.

Random search

- Sample a random update δ at each iteration, and update greedily if it improves the objective function
- Related methods:
 - SimBA / SimBA (DCT) [1]
 - Randomly sample a vector from a predefined orthonormal basis in image space or frequency space, and either add or subtract it to the target image
 - Square attack [2]
 - Query target model with randomly sampled square-shaped noise.

Methodology: SimBA++

SimBA++: A strong baseline combining transferability-based and query-based black-box attack.

Please refer to the paper for a detailed algorithm.

Methodology: SimBA++

SimBA++: A strong baseline combining transferability-based and query-based black-box attack.

Pseudo Algorithm SimBA++

While not Success or Exceed Attack Budget:

Every n_0 iteration:

Run transferability-based attack (e.g., TIMI [1])

Then:

Run query-based attack (e.g., SimBA [2]) guided by surrogate model

Return adversarial example

This simple algorithm surprisingly **outperforms** several previous **state of the art**!

Please refer to the paper for a detailed algorithm.

NEURAL INFORMATION [1] Dong Y, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks. CVPR'19. PROCESSING SYSTEMS [2] Guo C, et al. Simple black-box adversarial attacks. ICML'19.

Methodology: LeBA

Learnable Black-Box Attack (LeBA): Updating the surrogate model with query feedback, in a High-Order Gradient Approximation (HOGA) learning scheme

Gradient Approximation (HOGA) learning scheme.

Please refer to the paper for a detailed algorithm.

Methodology: LeBA

Learnable Black-Box Attack (LeBA): Updating the surrogate model with query feedback, in a High-Order Gradient Approximation (HOGA) learning scheme.

Pseudo Algorithm LeBA

While not Success or Exceed Attack Budget:

Every n_O iteration:

Run transferability-based attack (e.g., TIMI [1])

Then:

Run query-based attack (e.g., SimBA [2]) guided by surrogate model

Cache the query feedback

Run **HOGA** to update the surrogate model to approximate **forward pass** and **backward pass** of victim model

Compute Forward Loss $l_F = MSE(\mathbf{S}_T, \mathbf{P}_T)$; Create gradient graph and compute $\mathbf{g}_s = \frac{\partial log \mathbf{S}_T}{\partial \mathbf{X}_{adv}}$; Compute Backward Loss l_B using $l_B = MSE(\mathbf{g}_s(\mathbf{X}_{adv}^{'} - \mathbf{X}_{adv}), \gamma(log \mathbf{P}_T^{'} - log \mathbf{P}_T))$; Back-propagate $l_B + \lambda l_F$ with high-order gradient;

Return adversarial example

It improves the SimBA++ further!

Please refer to the paper for a detailed algorithm.

Introduction – Methodology – Experiments – Conclusion

Attack success with high query efficiency under l_2 -norm threat model.

Clean: Siamese cat

Adversarial: Chihuahua

NEURAL INFORMATION PROCESSING SYSTEMS

Original Image 0.902, 0.00, 0

Attack Step 60%

Attack Step 80%

Attack Success

Attack Performance on ImageNet

High attack **success** rate (ASR) with improved **query efficiency**, even compared with recent Square Attack (ECCV'20).

	Inception-V3		ResNet-50		VGG-16		Inception-V4		IncRes-V2	
Methods	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q
NES [23] ICML'18	88.2%	1726.3	82.7%	1632.4	84.8%	1119.6	80.7%	2254.3	52.5%	3333.3
Bandits _{TD} [24] ICLR'19	97.7%	836.1	93.0%	765.3	91.1%	275.9	96.2%	1170.9	89.7%	1569.3
Subspace [20] NeurIPS'19	96.6%	1635.8	94.4%	1078.7	96.2%	1085.8	94.7%	1838.2	91.2%	1780.6
RGF [10] NeurIPS'19	97.7%	1313.5	97.5%	1340.2	99.7%	823.2	93.2%	1860.1	85.6%	2135.3
P-RGF [10] NeurIPS'19	97.6%	750.8	98.7%	229.6	99.9%	685.5	96.5%	1095.6	88.9%	1380.2
P-RGF _D [10] NeurIPS'19	99.0%	637.4	99.3%	270.5	99.8%	393.1	98.3%	913.6	93.6%	1364.5
Square [2] ECCV'20	99.4%	351.9	99.8%	401.4	100.0%	142.3	98.3%	475.6	94.9%	670.3
TIMI [14] CVPR'19	49.0%		68.6%	=	51.3%	=	44.3%	-	44.5%	=
SimBA [19] ICML'19	97.8%	874.5	99.6%	873.9	100.0%	423.3	96.2%	1149.8	92.0%	1516.1
SimBA+ (Ours)	98.2%	725.2	99.7%	717.0	$\boldsymbol{100.0\%}$	365.9	96.8%	946.2	92.5%	1234.7
SimBA++ (Ours)	99.2%	295.7	99.9%	187.3	99.9%	166.0	98.3%	420.2	95.8%	555.1
LeBA (Ours)	99.4%	243.8	99.9%	178.7	99.9%	145.5	98.7%	347.4	96.6%	514.2

Attack over Defensive Methods

High attack success rate (ASR) with improved query efficiency, even compared with recent Square Attack (ECCV'20).

	JPEG Co	mpression	Guided	Denoiser	Adversarial Training		
Methods	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	
NES [23] ICML'18	14.9%	2330.9	57.6%	2773.8	59.4%	2773.6	
Bandits _{TD} [24] ICLR'19	95.8%	1086.7	20.3%	759.6	96.6%	1121.4	
Subspace [20] NeurIPS'19	46.7%	2073.4	93.2%	1619.2	93.4%	1651.7	
RGF [10] NeurIPS'19	74.4%	846.9	22.0%	2419.1	87.6%	2095.3	
P-RGF _D [10] NeurIPS'19	94.8%	751.2	82.6%	1588.3	98.4%	1092.8	
Square [2] ECCV'20	98.8%	342.3	98.2%	392.6	98.5%	387.6	
TIMI [14] CVPR'19	48.2%	-	39.3%	-	39.2%	-	
SimBA [19] ICML'19	96.0%	762.8	98.0%	971.6	98.0%	978.0	
SimBA+ (Ours)	96.8%	663.4	98.2%	797.1	98.0%	779.4	
SimBA++ (Ours)	98.2%	325.1	98.5%	407.9	98.7%	422.9	
LeBA (Ours)	98.8%	273.0	98.8%	343.6	98.9%	355.0	

Updating the Surrogate Model

The updated surrogate model trained on Data S1

- works better than original surrogated model: LeBA (test) > LeBA (training)
- could generalize to new Data S2: LeBA (test) > SimBA++

	Methods	Inception-V3		ResNet-50		VGG-16		Inception-V4		IncRes-V2	
Data		ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q
S1	SimBA++	99.2%	295.7	99.9%	187.3	99.9%	166.0	98.3%	420.2	95.8%	555.1
	LeBA (training)	99.4%	243.8	99.9%	178.7	99.9%	145.5	98.7%	347.4	96.6%	514.2
	LeBA (test)	99.4%	230.6	99.9%	172.3	99.9%	138.5	98.4%	322.4	96.6%	510.2
S2	SimBA++	99.7%	183.0	100.0%	110.4	100.0%	98.6	98.8%	245.1	97.6%	325.8
	LeBA (test)	99.8 %	151.3	100.0%	97.2	100.0%	96.2	98.9 %	215.9	97.6%	290.8

- We propose SimBA++ and Learnable Black-Box Attack (LeBA) by combing transferability-based and query-based attack.
- With a novel High-Order Gradient Approximation (HOGA) scheme, we update the surrogate model within limited queries.
- The proposed methods empirically establish a new state of the art, in terms of attack success and query efficiency.

Check out the code for this study

https://github.com/TrustworthyDL/LeBA

Thanks for Listening

WeChat *jekyll4168*

WeChat *j1098122556*