# Lecture 11: Binomial and Poisson Random Variables

Chapter 3.3-3.5

# Goals for Today

#### Define

- ► Binomial random variables
- ► Poisson random variables

Say instead of P(1st W in 5th game), we want the probability that they win exactly one out of the five games. Five ways:

Say instead of P(1st W in 5th game), we want the probability that they win exactly one out of the five games. Five ways:

| Pattern | Probability                       | Equals               |
|---------|-----------------------------------|----------------------|
|         | $p \times (1-p)^4$                | $= p \times (1-p)^4$ |
| LWLLL   | $(1-p) \times p \times (1-p)^3$   | $= p \times (1-p)^4$ |
| LLWLL   | $(1-p)^2 \times p \times (1-p)^2$ | $= p \times (1-p)^4$ |
| LLLWL   | $(1-p)^3 \times p \times (1-p)$   | $= p \times (1-p)^4$ |
| LLLLW   | $(1-p)^4 \times p$                | $= p \times (1-p)^4$ |

## Step Back... Example of n choose x

Say I give you n=3 balls labeled 1 thru 3. How many different ways can you choose x=2 of them? 3 ways:

Step Back... n choose x in General

## Conditions for Binomial Distribution

## Back to Soccer Example

#### Probability of exactly one win?

| Pattern | Probability                       | Equals               |
|---------|-----------------------------------|----------------------|
|         | $p \times (1-p)^4$                | $= p \times (1-p)^4$ |
|         | $(1-p) \times p \times (1-p)^3$   | $= p \times (1-p)^4$ |
| LLWLL   | $(1-p)^2 \times p \times (1-p)^2$ | $= p \times (1-p)^4$ |
| LLLWL   | $(1-p)^3 \times p \times (1-p)$   | $= p \times (1-p)^4$ |
|         | $(1-p)^4 \times p$                | $= p \times (1-p)^4$ |

# Back to Soccer Example

# Back to Soccer Example



Say you want to count the number of rare events in a large population over a unit of time. Ex:

Say you want to count the number of rare events in a large population over a unit of time. Ex:

▶ # of car accidents at an intersection on a given week

Say you want to count the number of rare events in a large population over a unit of time. Ex:

- ▶ # of car accidents at an intersection on a given week
- # of ambulance calls on any given day in Portland

Say you want to count the number of rare events in a large population over a unit of time. Ex:

- # of car accidents at an intersection on a given week
- # of ambulance calls on any given day in Portland
- # of soldiers in the Prussian army killed accidentally by horse kick from 1875 to 1894

Say you want to count the number of rare events in a large population over a unit of time. Ex:

- # of car accidents at an intersection on a given week
- # of ambulance calls on any given day in Portland
- # of soldiers in the Prussian army killed accidentally by horse kick from 1875 to 1894

The Poisson distribution helps us model such counts.

## Conditions for Poisson Distribution

# Exercise 3.47 on Page 158

# Exercise 3.47 on Page 158

#### Next Time

#### Chapter 4: Foundations for Inference

- ▶ Variability in estimates  $\overline{x}$ ,  $\widehat{p}$ , etc.
- ▶ In fact, we can associate a distribution to these estimates