

Fórmulas de Matemática para o Enem

E aí, vestibulando?

Desesperado com tantas fórmulas para aprender até o Enem? Calma que a gente tá aqui para te ajudar nisso!

Nesse e-book, você encontrará as matérias e suas principais fórmulas que mais caem na prova de Matemática no Enem. Assim, você já sai na frente da concorrência, sabendo de cor e salteado as fórmulas que com certeza você vai precisar na hora do Exame!

Partiu gabaritar Matemática no Enem?: D

Índice

01	Análise Combinatória	4
02	Formulário	5
03	Geometria Analítica	6
04	Geometria Espacial	7
05	Geometria Plana	8
06	Logaritmos	9
07	Porcentagem	11
08	Probabilidade	12
09	Progressão Aritmética (P.A)	13
10	Progressão Geométrica (P.A)	14
11	Trigonometria	15

Análise Combinatória

Permutação Simples

$$P_n = n!$$

Permutação com Repetição

$$p_{n}(\alpha \ \beta \ ... \ \gamma) = \frac{n!}{\alpha! \ \beta! \ ... \ \gamma!}$$

Combinação Simples

$$C_{n,p} = \frac{n!}{p! (n-p)!}$$

Arranjo Simples

$$A_{n,p} = \frac{n!}{(n-p)!}$$

02

Formulário

Grandezas diretamente proporcionais

$$\frac{x}{y} = k$$

Grandezas inversamente proporcionais

$$y.x = k$$

Escala

$$\frac{D}{R} = \frac{\text{(desenho)}}{\text{(realidade)}} = \text{adimensional}$$

Geometria Analítica

Distância entre dois pontos

$$\begin{cases} A = (x_1, y_1) \\ B = (x_2, y_2) \end{cases} = d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Equação de reta

$$Y = mx + q$$
 (reduzida)

$$ax + by + c = 0$$
 (geral)

$$\frac{x}{p} + \frac{y}{q} = 1$$
 (segmentária)

Paralelismo e perpendicularismo

$$\begin{cases} r: y = m_1 x + q_1 \\ t: y = m_2 x + q_2 \end{cases}$$

$$r//s: m_1 = m_2$$

$$r \perp t : m_1 \cdot m_2 = -1$$

Equação da circunferência

$$C = (x_0, y_0)$$

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Geometria Espacial

Principais sólidos

Figura	Área lateral	Área da base	Área total	Volume
Cubo	4a²	a²	6a²	a³
Paralelepípedo	2(bc + ac)	ab	2(bc + ac + ab)	abc
Prisma	n retângulos	depende	A + 2A B	A _B .h
Cilindro	2πRh	πR^2	2A _B + A _L	A _B .h
Cone	πRg	πR^2	A _B + A _L	$\frac{A_{B}.h}{3}$
Pirâmide	n triângulos	depende	A _B + A _L	$\frac{A_{B}.h}{3}$
Esfera			4πR²	$\frac{4}{3}\pi R^3$

Razões tronco de cone e tronco de pirâmide

$$\frac{H}{h} = \frac{R}{r} = \frac{G}{g}$$
, se for na pirâmide $\frac{H}{h} = \frac{L}{l}$

Relação com áreas e volumes

$$\left(\frac{H}{h}\right)^2 = \frac{A}{a} \qquad \qquad \left(\frac{H}{h}\right)^3 = \frac{V}{v}$$

Geometria Plana

Relações métricas no triângulo retângulo

a)
$$c^2 = a^2 + b^2$$

b)
$$a^2 = c.m$$

c)
$$b^2 = c.n$$

d)
$$h^2 = m.n$$

e)
$$c.h = a.b$$

Principais triângulos pitagóricos

06

Logaritmos

Definição

$$\log_{b} a = c \leftrightarrow b^{\circ} = a (a > 0, b > 0 e b \neq 1)$$

Propriedades

a)
$$\log_{_{\rm b}} 1 = 0$$

b)
$$\log_{b} b = 1$$

c)
$$\log_{b^m} a = 1 \cdot \log_b a$$

d)
$$\log_b a^m = m \cdot \log_b a$$

e)
$$b^{\log_b a} = a$$

Operações

$$\log_b a + \log_b c = \log_b (a.c)$$

$$\log_b a - \log_b c = \log_b \left(\frac{a}{c}\right)$$

Mudança de base

$$\log_b a = \frac{\log_{c^a}}{\log_{c^b}}$$

Função do 1º Grau

$$Y = mx + q$$

$$m = \frac{\Delta y}{\Delta x} \quad \text{ou} \quad m = tg\theta$$

Função do 2º Grau

$$y = a(x - x_1)(x - x_2)$$

$$\Delta = b^2 - 4ac$$

$$x_1 = \frac{-b + \sqrt{\triangle}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$V = (x_v, y_v) = \left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$$

Porcentagem

Aumento de x% de um valor y = y(1+x%)

Desconto de x% de um valor y = y(1-x%)

Probabilidade

Probabilidade Condicional

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Probabilidade da União de dois

eventos

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Eventos independentes

$$P(A \cap B) = P(A) \cdot P(B)$$

Probabilidde Complementar

$$\overline{P} = 1 - P$$

Progressão Aritmética

Termo Geral

Soma dos N termos

$$a_n = a_1 + (n - 1) \cdot r$$

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

Progressão Geométrica

Termo Geral

Soma dos N termos

Soma da PG infinita

$$a_n = a_1 \cdot q^{n-1}$$

$$S_n = \frac{a_1 (q^n - 1)}{q - 1}$$

$$S_{\infty} = \frac{a_1}{1 - q}$$

Trigonometria

Razões trigonométricas

$$sen\theta = \frac{cateto\ oposto}{hipotenusa}$$

$$\cos\theta = \frac{\text{cateto adjacente}}{\text{hipotenusa}}$$

$$tg\theta = \frac{cateto\ oposto}{cateto\ adjacente}$$

$$\sec\theta = \frac{1}{\cos\theta}$$

$$cossec\theta = \frac{1}{sen\theta}$$

$$cotg\theta = 1$$
 $tg\theta$

Relação fundamental

$$sen^2\theta + cos^2\theta = 1$$

$$\begin{cases} -1 \le \text{sen}\theta \le 1 \\ -1 \le \text{cos}\theta \le 1 \end{cases}$$

Triângulo egípcio

Lei dos senos e dos cossenos

Lei dos senos

$$\frac{a}{\text{sen(x)}} = \frac{b}{\text{sen(y)}} = \frac{c}{\text{sen(z)}} = 2R$$

Lei dos cossenos

$$b^{2} = a^{2} + c^{2} - 2ac \cdot cos(y)$$

Áreas

Figura Área Observação Quadrado a^2 a = lado

Retângulo $b \times h$ b = base, h = altura

Paralelogramo b x h

Losango $\frac{D.d}{2}$ D = diagonal maior, d = diagonal menor

Trapézio $\frac{(B+b).h}{2}$ B = base maior, b = base menor, h = altura

Triângulo (I) $\frac{b \cdot h}{2}$

Triângulo (II) $\frac{a.b.sen\theta}{2}$ θ = ângulo formado pelos lados a e b

Triângulo cateto.cateto
Retângulo 2

Figura	Área	Observação
Círculo	πR^2	R = Raio C = 2πR (comprimento circunferência)
Setor circular (fatia da pizza)	$\frac{\pi R^2 \alpha}{360^{\circ}}$	α = ângulo do setor
Segmento circular (borda de catupiry)	A _{setor} – A _{triângulo}	
Coroa circular	$\pi(R^2-r^2)$	Área entre duas circunferências concêntricas

Setor circular

Atenção!

Área ≠ Perímetro