Detecting Snow Cover on GPS Antenna ASEN6090 Final Project

Kyle Wolma Logan Finch Praveen Vikram

Department of Aerospace Engineering Sciences Colorado University kyle.wolma@colorado.edu logan.finch@colorado.edu praveen.vikram@colorado.edu

May 04, 2012

Outline

- Goals
- Sites
- Model
- ▶ MP₁ Results
- SNR Results
- Position Results
- Confusions

Goals

- Generate an index representative of snow cover over GPS antenna.
- Considerations for Reflections study:
 - How much of an effect will Snow cover directly over the antenna have on received signal power from lower elevation angles.

Sites

Sites for Primary Study

- ► P360 *
- ▶ P101 *
- ► AB33
- ▶ P455

^{*} sites have a digital camera installed on site.

 Basic EM wave propogation (Plane solution to Maxwell's Equations)

$$E = E_0 e^{j(k.r - \omega t)}, \tag{1}$$

Where,

$$\frac{\omega^2}{k^2} = \frac{c^2}{\epsilon}$$

However, If ϵ is complex

$$E = E_0 \exp[j(Re(k).r - \omega t)] \exp[-Im(k).r]. \tag{2}$$

- Dielectric of Snow?
 - Phase velocity in a medium is dependent on the frequency of the wave-front.
 - As a consequence the dielectric constant of a medium is dependent on the frequency of the EM-wave.
 - Phase velocity of the wave is given by

$$v = \frac{\omega}{k} = \frac{c}{n}$$

Where, *n* is the refractive index of the the medium

$$n = \sqrt{\epsilon}$$

Dielectric of Snow for GPS L1 frequency?

Model - ϵ for Snow

- Snow is a mixture of Ice, Air and Water.
- ▶ From [1]
 - Consider a 2 component mixture: ice and air
 - Let their volume fractions be p_i and $p_a = (1 p_i)$
 - ▶ let their dielectric constants be ϵ_i and ϵ_a
 - ▶ The Dielectric constant of the combination is given by,

$$\epsilon_s E_S = \epsilon_i p_i E_i + \epsilon_a p_a E_a \tag{3}$$

▶ Where E_s , E_i and E_a is the mean electric field strength for the EM wave under consideration in the different media.

[1] Y. Ozawa and D. Kuroiwa, "Dielectric Properties of ice, snow and supercooled water" in Microwave propagation in Snowy districts, no. 6, pp. 31-71, 1971

Model - ϵ for Snow

- ▶ From [2]
 - ▶ The Dielectric constant of the combination is given by,

$$\epsilon_s = \epsilon_s' - j\epsilon_s''$$

Where

$$\epsilon_s' = 1 + 2\rho_d$$

$$\epsilon_s'' = \epsilon_s' \times 1.59 \times 10^6 \times \frac{0.52\rho_d + 0.62\rho_d^2}{7 + 1.7\rho_d + 0.7\rho_d^2} \times (f_{L1}^{-1} + 1.23 \times 10^{-6} \sqrt{f_{L1}})e^{0.036T}$$

Where,
ρ_d is relative density of dry snow
T is the temperature of snow in Celsius.

[2] M.E. Tiuri, A.H. Sihvola, E.G. Nyfors, M.T. Hallikaiken, "The complex dielectric constant of snow at microwave frequencies", IEEE J Ocean. Eng. OE-9 (5), pp. 377-382, 1984

 R.T.K Jaldehag, J.M. Johansson, J.L. Davis, and P. Elosegui, "Geodesy using the Swedish Permanent GPS Network: Effects of snow accumulation on estimates of site position", Geophys. Res. Lett, 23, pp. 1601-1604, 1996

- Snow Cause:
 - Scattering
 - Excess path length
- Vary elevation cutoff
 - ► (a) ≈ Snow on Antenna
 - ▶ (b) \approx Snow on Antena
 - (c) \approx No snow on Antena

- J. Stepanek, and W.C David, "GPS signal reception under snow cover: A Pilot study establishing the potential usefulness of GPS in avalanche search and rescue", Wilderness and Environemental Medicine, 8, pp. 101-104, 1997
 - Antenna burried under snow cover of incremental depths
 - 5,15,25,35,45,55cm, 1m, 1.5m
 - parameters measured: signal quality, number of satellites visible and signal strength
 - reference reading taken above snow cover
 - No SNR data.
 - deals with signal quality flag from commercial receiver

Table 1. Location A, February 10, 1996, snow density 0.6 g/cm³, humidity 78%, skycover 6/8, temperature 34°F

	Cover	Reference	Depth of burial (cm)						
			0	5	15	25	35	45	55
Latitude	No signal	43:59:32	43:59:31	43:59:32	43:59:31	43:59:32	43:59:32	43:59:29	43:59:32
Longitude	No signal	92:30:69	92:30:72	92:30:67	92:30:71	92:30:69	92:30:69	92:30:73	92:30:71
Altitude in feet	No signal	1290	1185	1392	1279	1141	1056	1124	1264
Signal quality	No signal	Q1	Q1	Q1	Q1	Q1	Q1	Q2	Q1
Satellite no./force	No signal	14/4	14/6	14/5	14/4	28/3	28/4	28/4	28/4
	No signal	19/6	19/4	19/4	19/4	19/4	19/3	19/0	19/0
	No signal	22/5	22/7	22/5	22/5	22/2	22/3	22/1	22/2
	No signal	25/1	25/5	18/6	18/6	18/5	18/4	18/3	18/2
	No signal	28/3	28/6	31/3	31/3	31/2	31/3	31/3	31/0
	No signal	29/6	29/7	29/6	29/5	29/5	29/3	29/6	29/4

SNR

- Generate a statistical map if expected SNR values w.r.t Elevation angle.
- ▶ Data from 2011 DOY 200-250 was used to generate the map
- ► Each SV was considered seperately
 - Individual Tracks could be tagged as 'Bad'
 - Each SV has varying transmit power

SNR Map

SNR Index

▶ 2009 to 2012

▶ 2009 to 2012

Year

▶ 2009 to 2012

Year

2012.5

