Assignment 29 (Robustness & Reliability in MOP)

1

Consider the following bi-objective minimization problem with 2 decision variables and 1 inequality constraint:

min
$$F(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x})) = (|\sin(\frac{\pi}{2} \cdot x_1)|, \sqrt{x_1} + \frac{e^{x_2 - 1}}{3})$$

subject to $g_1(\vec{x}) = 8 \cdot x_1 + 2 \cdot x_2 - x_1^2 \ge 18$

And the solutions $x_A = (2, 2)$ and $x_B = (5, 1)$. A Latin hypercube strategy is used for sampling, but instead of randomly selecting the solution inside each box, the upper right solution of the box is selected (e.g. for a box whose corners are (0,0), (0,1), (1,0) and (1,1), the solution (1,1) is selected). The neighborhood has a size of H = 4 and $\delta_1 = \delta_2 = 1$. Please answer the following questions:

• What are the mean effective fitness values of x_A and x_B ? What can you say about the robutsness of the solutions according to these mean effective fitness values?

For x_A , let the 4 neighbours be (2,1), (1, 2), (2, 3), (3, 2) & For x_B , let the 4 neighbours be (6,1), (5, 2), (4,1), (5,0)

Computing the fitness values & constraints,

Neighbour, x _A ,	Fitness, $F(\vec{x}_A) = (f_1(\vec{x}_A), f_2(\vec{x}_A))$	Constraint, $g_1(\vec{x}_A)$
(2,1)	(0.05,1.74)	14 ≱ 18
(1,2)	(0.02,1.90)	11 ≱ 18
(2,3)	(0.05,3.87)	18 ≥ 18
(3,2)	(0.08, 2.63)	19 ≥ 18

$$f(x_A^{eff}) = (0.05, 2.535)$$

Neighbour, x _B ,	Fitness, $F(\vec{x}_B) = (f_1(\vec{x}_B), f_2(\vec{x}_B))$	Constraint, $g_1(\vec{x}_B)$
(6,1)	(0.16,2.78)	14 ≱ 18
(5,2)	(0.13,3.14)	19 ≥ 18
(4,1)	(0.10,2.33)	18 ≥ 18
(5,0)	(0.13, 2.35)	15 ≱ 18

$$f(x_B^{eff}) = (0.13, 2.65)$$

 \mathbf{x}_{A} more robust than \mathbf{x}_{B}

• Using the same Latin hypercube strategy, what is the reliability value of x_A and x_B ?

For 2 (r) cases, out of 4 (N) in each of the solutions satisfies the constraints.

So the estimate of reliability by $\frac{r}{N}$ for $x_A & x_B$ we get $\frac{2}{4} = 0.5$ for both solutions.

• What should be the value of the required probability R so both solutions x_A and x_B are reliable? What value R would make both of them unreliable?

Since $\frac{r}{N} \ge R$ holds for probability a value of **R = 0.5** makes both solutions x_A & x_B as reliable.

Any value of **R >0.5** violates $\frac{r}{N} \ge R$, thus making $x_A \& x_B$ unreliable.