Architecture Synthesis I

Scheduling with Pipeline Resources, Integer Linear Programming, Iterative Algorithms

Exercise class 10

Presenter: Jürgen Mattheis

In cooperation with: Pascal Walter Based on the lecture of: Marco Zimmerling

January 26, 2023

University of Freiburg, Chair for Embedded Systems

Gliederung

Organisation

Task 1

Task 2

Task 3

Organisation

Organisation I

- ▶ feedback for lecture until February 29
- ► feedback for me: https://forms.gle/f3YN8EFrZ1vsfPoC6

4 / 28

Task 1 I

Scheduling with Pipeline Resources

Jürgen Mattheis Architecture Synthesis I University of Freiburg

6 / 28

Scheduling with Pipeline Resources

Solution 1.1:

[...];

Determine candidates $U_{t,k}$ to be scheduled;

Determine set of occupied resources $O_{t,k}$;

Choose subset $S_t \subseteq U_{t,k}$ with maximal priority and $|S_{t,k}| + |O_{t,k}| \le \alpha(v_k)$; [...];

 $ightharpoonup O_{t,k}$ is the set of resources of type k that are occupied in the time slot t and are not yet available for the following operation. On each of these resources exactly one operation is executed in a pipeline-interval.

Schoduling with Dinaling Pacoures

Solution 1.1:

8 / 28

Schoduling with Dinaling Possuress

Solution 1.1:

Solution 1.1:

► the resulting latency is 12

Jürgen Mattheis Architecture Synthesis I University of Freiburg

Task 2 I

Integer Linear Programming

Task 2.1:

- resource type r₁: multiplication operation takes 2 time units and 2 units of this resource type are allocated
- resource type r₂: all other ALU Operations take 1 time unit and 2 units of this resource type are allocated

Task 2 II

Integer Linear Programming

Solution 2.1:

7

Task 2 III

Integer Linear Programming

Solution 2.1:

7

Task 2 IV

Jürgen Mattheis

Task 2 I

Integer Linear Programming

Solution 2.2:

7

► (i) Objective function:

$$\min. \quad L = \tau(v_n) - \tau(v_0)$$

► (ii) Introduction of binary variables:

$$x_{1,1} + x_{1,2} = 1$$
 $1 \cdot x_{1,1} + 2 \cdot x_{1,2} = \tau(v_1)$

$$x_{2,1} + x_{2,2} = 1$$
 $1 \cdot x_{2,1} + 2 \cdot x_{2,2} = \tau(v_2)$

$$x_{3,3} + x_{3,4} = 1$$
 $3 \cdot x_{3,3} + 4 \cdot x_{3,4} = \tau(v_3)$

$$x_{4.5} + x_{4.6} = 1$$
 $5 \cdot x_{4.5} + 6 \cdot x_{4.6} = \tau(v_4)$

$$x_{5.6} + x_{5.7} = 1$$
 6 · $x_{5.6} + 7$ · $x_{5.7} = \tau (v_5)$

Task 2 II

Integer Linear Programming

Solution 2.2:

1

$$x_{6,1} + x_{6,2} + x_{6,3} = 1$$
 $1 \cdot x_{6,1} + 2 \cdot x_{6,2} + 3 \cdot x_{6,3} = \tau(v_6)$
 $x_{7,3} + x_{7,4} + x_{7,5} = 1$ $3 \cdot x_{7,3} + 4 \cdot x_{7,4} + 5 \cdot x_{7,5} = \tau(v_7)$
 $x_{8,1} + \ldots + x_{8,5} = 1$ $1 \cdot x_{8,1} + \ldots + 5 \cdot x_{8,5} = \tau(v_8)$
 $x_{9,3} + \ldots + x_{9,7} = 1$ $3 \cdot x_{9,3} + \ldots + 7 \cdot x_{9,7} = \tau(v_9)$
 $x_{10,1} + \ldots + x_{10,6} = 1$ $1 \cdot x_{10,1} + \ldots + 6 \cdot x_{10,6} = \tau(v_{10})$
 $x_{11,2} + \ldots + x_{11,7} = 1$ $2 \cdot x_{11,2} + \ldots + 7 \cdot x_{11,7} = \tau(v_{11})$

Task 2 III

Integer Linear Programming

Solution 2.2:

Z

► (iii) Data dependencies:

$$egin{aligned} au(v_3) - au(v_1) &\geq 2 & au(v_3) - au(v_2) &\geq 2 \\ au(v_4) - au(v_3) &\geq 2 & au(v_5) - au(v_4) &\geq 1 \\ au(v_7) - au(v_6) &\geq 2 & au(v_5) - au(v_7) &\geq 2 \\ au(v_9) - au(v_8) &\geq 2 & au(v_{11}) - au(v_{10}) &\geq 1 \\ au(v_n) - au(v_5) &\geq 1 & au(v_n) - au(v_9) &\geq 1 \\ au(v_n) - au(v_{11}) &\geq 1 \\ au(v_1), au(v_2), au(v_6), au(v_8), au(v_{10}) &\geq au(v_0) &\geq 1 \end{aligned}$$

Task 2 IV

Integer Linear Programming

Solution 2.2:

- (iv) Resource limitations:
 - ightharpoonup t=1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \le 2$$
$$x_{10,1} \le 2$$

t = 2:

$$x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} + x_{6,1} + x_{6,2} + x_{8,1} + x_{8,2} \le 2$$

 $x_{10,2} + x_{11,2} \le 2$

t = 3:

$$x_{1,2} + x_{2,2} + x_{6,2} + x_{6,3} + x_{8,2} + x_{8,3} + x_{3,3} + x_{7,3} \le 2$$

 $x_{10,3} + x_{11,3} + x_{9,3} \le 2$

Task 2 V

Solution 2.2:

1

$$t = 4$$
:

$$x_{6,3} + x_{8,3} + x_{8,4} + x_{3,3} + x_{3,4} + x_{7,3} + x_{7,4} \le 2$$
$$x_{10,4} + x_{11,4} + x_{9,4} \le 2$$

$$t = 5$$

$$x_{8,4} + x_{8,5} + x_{3,4} + x_{7,4} + x_{7,5} \le 2$$

 $x_{10,5} + x_{11,5} + x_{9,5} + x_{4,5} \le 2$

$$t = 6$$
:

$$x_{8,5} + x_{7,5} \le 2$$

 $x_{10,6} + x_{11,6} + x_{9,6} + x_{4,6} + x_{5,6} \le 2$

▶
$$t = 7$$

$$(0 \le 2)$$
$$x_{11,7} + x_{9,7} + x_{5,7} \le 2$$

Integer Linear Programming I

Solution 2.3:

/

- ► Restating the resource limitations, and introducing additional variables:
 - ightharpoonup t=1:

$$x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} - \alpha(r_1) \le 0$$

 $x_{10,1} - \alpha(r_2) \le 0$

► Latency limitations:

$$L = \tau(v_n) - \tau(v_0) \le \bar{L} = 6$$

► New objective function:

min.
$$C = \alpha(r_1) \cdot c(r_1) + \alpha(r_2) \cdot c(r_2) = 2 \cdot \alpha(r_1) + \alpha(r_2)$$

Jürgen Mattheis Architecture Synthesis I University of Freiburg

Tasks 3 I

Iterative Algorithms

23 / 28

Tasks 3 II

Iterative Algorithms

Solution 3.1:

$$\tau(\nu_2) - \tau(\nu_1) \ge 10$$

$$\qquad \qquad \tau\left(\nu_{3}\right) - \tau\left(\nu_{2}\right) \geq 10$$

$$\qquad \qquad \tau\left(\nu_{4}\right) - \tau\left(\nu_{3}\right) \geq 10$$

$$\qquad \qquad \tau\left(\nu_{1}\right) - \tau\left(\nu_{5}\right) \geq 5 - 1 \cdot P$$

Tasks 3 III

Iterative Algorithms

Solution 3.2:

► solve system of inequalities for P:

$$ightharpoonup 0-25 \ge 5-P \Leftrightarrow P_{min}=30$$

$$L = 30$$

40

Tasks 3 IV

Iterative Algorithms

Tasks 3 V

Iterative Algorithms

Solution 3.3:

- $\vdash \tau(\nu_1) \tau(\nu_5) \geq 5 n \cdot 10 \Leftrightarrow n_{min} = 3$
- \blacktriangleright we have to add 2 more tokens on the edge between v_5 and v_1
- ► *L* = 30

Tasks 3 VI

Iterative Algorithms

