INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE MATEMÁTICA MATEMÁTICA DISCRETA

9 de mayo de 2009 Total: 35 puntos Tiempo: 2 h. 30 m.

SEGUNDO EXAMEN PARCIAL

Instrucciones: Trabaje en forma ordenada y clara. Escriba todos los procedimientos que utilice para resolver los ejercicios propuestos.

1. Se
a $A=\{0,2,4,6\},$ sea $\mathcal R$ una relación sobre
 A,cuya matriz asociada está definida por

$$M_{\mathcal{R}}[i,j] = \begin{cases} 1 & \text{si } i=3 \ \lor \ j=2 \ \lor \ i=j \\ 0 & \text{en cualquier otro caso} \end{cases}$$

y sea S otra relación sobre A, definida por

$$aSb \Leftrightarrow a+b \in A$$

- (a) Determine el gráfico de \mathcal{R} y el gráfico de \mathcal{S} (2 puntos)
- (b) Determine la matriz asociada de $\overline{S} \circ \mathcal{R}^{-1}$ (2 puntos)
- (c) Determine el gráfico de $(\mathcal{R} \cup \mathcal{S}) (\mathcal{R} \cap \mathcal{S})$ (2 puntos)
- 2. En ${\mathbb Z}$ se define la relación ${\mathcal R}$ de la siguiente manera:

$$a\mathcal{R}b \Leftrightarrow [a=b \lor a+b=12]$$

- (a) Demuestre que \mathcal{R} es una relación de equivalencia. (4 puntos)
- (b) Determine el conjunto cociente \mathbb{Z}/\mathcal{R} . (2 puntos)
- 3. Si $f(x) = ax^3$ con $a \neq 0$ y g(x) = 2x + 3, determine $(f^{-1} \circ g \circ f)(x)$ (4 puntos)
- 4. Sean $f:A\longrightarrow B$ una función, M y N dos conjuntos tales que $M\subseteq N\subseteq B$. Demuestre que $f^{-1}(M)\subseteq f^{-1}(N)$ (3 puntos)

5.	Considere 1	la relación	\mathcal{R}	definida	sobre	un	conjunto	A:	\neq (\emptyset

- (a) Demuestre que $R^{-1} \circ R$ es simétrica (3 puntos)
- (b) ¿Qué condiciones se requieren para que $R^{-1} \circ R$ es reflexiva? (2 puntos)
- 6. Sea $f: \mathbb{R} \to \mathbb{R}$ una función biyectiva, y sea $g: \mathbb{R} \to \mathbb{R}$ una función cuyo criterio está dado por g(x) = f(x) + k, para $k \in \mathbb{R}$.
 - (a) Muestre que g es una función inyectiva. (2 puntos)
 - (b) Muestre que g es una función sobreyectiva. (2 puntos)
 - (c) Determine $g^{-1}(x)$. (1 punto)
- 7. Sean $A = \{0, 1, 2, 3, 4, 5\}$ y considere la función $f: A \to A$ definida por

$$f(a) = \begin{cases} a - 1 & \text{si } a \ge 2\\ a + 1 & \text{si } a < 2 \end{cases}$$

- (a) Determine si f es inyectiva (1 puntos)
- (b) Determine si f es sobreyectiva (1 puntos)
- (c) Calcule $f(\lbrace 2, 4, 5 \rbrace)$ (2 puntos)
- (d) Calcule $f^{-1}(\{3,5\}) \cup f^{-1}(f(\{4\}))$ (2 puntos)