苏州大学 高等代数 期终考试试卷 (A)卷 共1页

(考试形式 在线考试 2020年7月)

- 二、主观题(4个大题,每一大题有两道题,采用二选一的方式:学号末位奇数的学生 做(1),学号末位偶数的学生做(2),错选不给分)
- 1. (计算题, 10分)
- (1). 设实二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 4x_1x_3 8x_2x_3$, 求一正 交替换把该二次型化为标准形.
- (2). 设 ξ_1, ξ_2, ξ_3 是3维欧氏空间 V 的一组标准正交基,A 是 V 上的对称变换,在这 $\begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$. 求一组标准正交基 η_1, η_2, η_3 , 使得 $\mathcal A$ 在这组 基下的矩阵为对角阵
- 2. (计算题, 10分)
- (1). 设 $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$, 求 $\lambda E_3 A$ 的不变因子, A的最小多项式和若当标准型. (2). 设 $A = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, 求 $\lambda E_3 A$ 的不变因子, A的最小多项式和若当标准型.

- (1). 设 σ 是数域F上的n维向量空间V的一个线性变换, σ 在V的一组基 α_1 , α_2 , ..., α_n 下的矩阵是A, 设 A_i 是A的第j 个列向量. 证明: $A_{i_1}, A_{i_2}, \cdots, A_{i_t}$ 是 A_1, A_2, \cdots, A_n 的极大线性无关组当且仅当 $\sigma(\alpha_{i_1}), \sigma(\alpha_{i_2}), \cdots, \sigma(\alpha_{i_t})$ 是 $\sigma(V)$ 的一组基.
- (2). 设V是数域F上的一个n维向量空间, α_1 , α_2 , ..., α_n 是V的一组基, A是一 个 $n \times s$ 矩阵, 设 A_j 是A 的第j 个列向量, $(\beta_1, \beta_2, \dots, \beta_s) = (\alpha_1, \alpha_2, \dots, \alpha_n)A$. 证 明: $A_{i_1}, A_{i_2}, \cdots, A_{i_t}$ 是 A_1, A_2, \cdots, A_s 的极大线性无关组当且仅当 $\beta_{i_1}, \beta_{i_2}, \cdots,$ $\beta_{i_{*}}$ 是 $\beta_{1},\beta_{2},\cdots,\beta_{s}$ 的极大线性无关组.
- 4. (证明题, 8分)
- (1). 设 σ 是数域F上的n维向量空间V的一个线性变换, 证明: $V = \sigma(V) \oplus \sigma^{-1}(0) \Leftrightarrow$ 若 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是 $\sigma(V)$ 的一组基,则 $\sigma(\alpha_1), \sigma(\alpha_2), \cdots, \sigma(\alpha_r)$ 是 $\sigma^2(V)$ 的一组基.
- (2). 设 σ 是数域F上的n维向量空间V的一个线性变换, 证明: $V = \sigma(V) \oplus \sigma^{-1}(0) \Leftrightarrow$ $rank(\sigma^2) = rank(\sigma).$