

BigData 이해와 활용, 처리과정

빅데이터 분석 개론 이 강윤 (keylee@gachon.ac.kr)

Internet Timeline

Science vs Engineering

The Antiparallel Structures of Scientific Inquiry and Engineering Design

Data Science – 3 interdisciplinary areas

- 빅데이터의 정의

- 디지털 환경에서 발생하는 대량의 모든 데이터
- 대규모의 데이터를 저장·관리·분석할 수 있는 하드웨어 및 소프트웨어 기술, 데이터를 유통·활용하는 모든 프로세스를 포함
- 빅데이터 플랫폼을 구성하는 하드웨어, 소프트웨어, 애플리케이션 간의 유기적 순환에 의해 가치를 창출

표 2-1 빅데이터의 정의

기관	정의
맥킨지	일반적인 데이터베이스 소프트웨어가 수집, 저장, 관리, 분석할 수 있는 범위를 초과하는 대규모의 데이터다.
가트너	향상된 시사점과 더 나은 의사결정을 위해 사용되는 것으로 비용 효율이 높고 혁신적이며 대용량 고속 및 다양성을 가지는 정보 자산이다.
위키피디아	기존 데이터베이스 관리 도구의 수집, 저장, 관리, 분석 역량을 넘어서는 대량의 정형 또는 비 정형 데이터셋 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술이다.
국가전략위원회	대용량 데이터를 활용 및 분석하여 가치 있는 정보를 추출하고 생성된 지식을 바탕으로 능동 적으로 대응하거나 변화를 예측하기 위한 정보화 기술이다.
삼성경제연구소	기존의 관리 및 분석 체계로는 감당할 수 없을 정도의 기대한 데이터 집합으로 대규모 데이터 터와 관계된 기술 및 도구(수집, 저장, 검색, 공유, 분석, 시각화 등)를 모두 포함한다.
한국정보회진흥원	저장, 관리, 분석할 수 있는 범위를 초과하는 규모의 데이터와 이것을 저장, 관리, 분석할 수 있는 하드웨어 및 소프트웨어 기술, 데이터를 유통 및 활용하는 과정을 통틀어 나타낸다. 즉, 빅데이터를 구성하는 하드웨어, 소프트웨어 그리고 이를 포괄하는 모든 프로세스를 의미하는 거대 플랫폼이다.

그림 2-1 빅데이터 플랫폼

■ 빅데이터의 개념

- _ 빅데이터의 출현
 - 기술의 발달과 비용 저하, 소셜 네트워크 서비스 발달, 그림자 정보와 사물 정보 증가 등의 ICT 패러다임의 변화
 - 빅데이터에 전문 역량과 기술을 더하여 전략적으로 활용할 방법이 주목됨
 - 경제적 가치 창출, 사회 문제 해결, 새로운 ICT 패러다임 견인이라는 신가치 창출

그림 2-2 빅데이터의 출현과 신가치 창출의 흐름

■ 빅데이터의 분류

– 정형 데이터

일정한 규칙으로 체계적으로 정리된 것으로 그 자체로 해석이 가능하여 바로 활용할 수 있음

– 반정형 데이터

고정된 필드에 저장되어 있지는 않지만 XML, HTML 등의 메타데이터와 스키마를 포함하는 것으로 파일 형태로 저장

– 비정형 데이터

고정된 필드나 스키마가 없는 것

스마트 기기에서 페이스북, 트위터, 유튜브 등으로 생성되는 소셜 데이터

IoT 환경에서 생성되는 위치 정보나 센서 데이터와 같은 사물 데이터 등

표 2-2 정형화 정도에 따른 빅데이터의 분류

구분	설명	수집 및 처리 난이도
정형 데이터	 고정된 필드에 저장 관계형 데이터베이스처럼 스키마 형식에 맞게 저장 예: RDB, 스프레드시트 	내부 시스템에 의한 데이터라 수집하기 쉬움 파일 형태의 스프레드시트는 형식을 가지고 있어 처리하기 쉬움 처리 난이도: 하
반정형 데이터	• 고정된 필드에 저장되어 있지는 않지만 메타 데이터나 스키마 등을 포함 • 예: XML, HTML, JSON, 웹 문서, 웹 로그	• API 형태로 제공되므로 데이터 처리 기술이 필요함 • 처리 난이도: 중
비정형 데이터	 데이터 구조가 일정하지 않음 규격화된 데이터 필드에 저장되지 않음 예: 소설 데이터, 텍스트 문서, 이미지/동영 상/음성 데이터, 문서 파일(PDF) 	 파일을 데이터 형태로 파싱해야 하므로 처리 하기 어려움 처리 난이도: 상

■ 빅데이터의 특징

- 데이터 측면

초기에는 빅데이터의 특징을 3V로 일컬어지는 규모, 다양성, 속도로 나타냄 빅데이터를 통한 가치 창출이 중요해지면서 정확성과 가치를 추가한 5V로 나타냄

표 2-3 빅데이터의 특징 - 데이터 측면

구분	특징	설명	
1차특징	규모	• ICT 기술의 발전으로 디지털 정보량이 기하급수적으로 폭증하여 제타바이트 시대로 진입	
	다양성	• 데이터의 종류 증가: 로그 기록, 소셜/위치/소비/현실 데이터 등 • 데이터의 유형 다양화: 텍스트 외에 멀티미디어 등의 비정형 데이터 증가	
	속도	 센서, 모니터링 등의 사물 정보와 스트리밍 등의 실시간 정보가 증가하면서 데이터의 생성 및 이동(유통) 속도 증가 대규모 데이터를 처리하고 가치 있는 정보를 활용하기 위한 데이터 처리 및 분석 속도 증가 	
	정확성	• 방대한 데이터를 기반으로 분석을 수행하므로 정확성 향상	
추가 특징	가치	• 빅데이터 분석으로 도출된 최종 결과물이 문제 해결을 위한 통찰력을 제공하므로 새로 운 가치 창출 가능	

01 빅데이터의 개념과 처리 과정

그림 1-2 빅데이터의 속성 [02]

■ 빅데이터의 특징

- 분석 환경 측면

데이터 분석 시스템의 구성 요소인 데이터, 하드웨어, 소프트웨어 분석 방법은 분석 환경에 따라 다른 특징을 나타냄

표 2-4 빅데이터의 특징 - 분석 환경 측면

요소	과거의 데이터 분석 환경	현재의 빅데이터 분석 환경
데이터	• 정형화된 수치 중심의 자료	 비정형의 다양한 데이터 예: 문자 데이터(SMS, 검색어), 영상 데이터 (CCTV, 동영상), 위치 데이터 등
하드웨어	고가의 저장 장치데이터베이스대규모 데이터웨어하우스	• 클라우드 컴퓨팅: 비용 대비 효율성 증대
소프트웨어 분 석 방법	 관계형 데이터베이스: RDBMS 통계 패키지: SAS, SPSS 데이터 마이닝 머신러닝 지식 발견 	오픈 소스 형태의 무료 소프트웨어 오픈 소스 통계 솔루션: R 텍스트 마이닝 오피니언 마이닝 감성 분석

■ 빅데이터의 특징

- 처리 방식 측면

빅데이터는 기존 데이터베이스 관리 시스템(DBMS)으로 처리하던 것에 비해 100배 이상 많은 정형, 비정형 데이터를 처리

표 2-5 빅데이터의 특징 - 처리 방식 측면

구분	이전의 데이터 처리 방식	빅데이터 처리 방식
데이터 트래픽	• 테래바이트 수준	• 페타바이트 수준: 최소 100테라바이트 이상 • 정보의 장기간 수집 및 분석 • 방대한 처리량
데이터 유형	• 정형 데이터 중심	 비정형 데이터 비증이 높음: SNS 데이터, 로그 파일, 클 릭스트림 데이터, 콜센터 로그 통신, CDR 로그 등 처리 복잡성 증대
프로세스 및 기술	• 단순한 프로세스 및 기술 • 정형화된 처리 및 분석 결과 • 원인 및 결과 규명 중심	 다양한 데이터 소스와 복잡한 로직 처리 처리 복잡도가 높아 분산 처리 기술 필요 새롭고 다양한 처리 방법 필요: 정의된 데이터 모델/상관 관계/절차 등이 없음 상관관계 규명 중심 하둡, NoSQL 등 개방형 소프트웨어 사용

NOTE_ 디지털 데이터 단위

- 1테라바이트(TeraByte; TB)=1024GB
- 1엑사바이트(ExaByte; EB)=1024PB
- 1요타바이트(YottaByte: YB)=1024ZB
- ・1回E世のE(PetaByte; PB)=1024TB
- 1제타바이트(ZetaByte: ZB)=1024EB

■ 빅데이터의 가치

- 혁신과 창조의 도구
 - 빅데이터 분석이 제공하는 스마트 서비스는 기존 비즈니스에 효율화, 개인화, 그리고 미래 예측력을 통한 혁신을 제공
 - 단순히 새로운 기술이나 비즈니스 모델이 아니라 새로운 패러다임으로의 변화를 의미
 - 빅데이터 자체부터 이를 활용한 사용자 애플리케이션까지 광범위하여 빅데이터 플랫폼과 에코시스템으로 확장

표 2-6 빅데이터 분석을 통한 비즈니스 혁신 방향

방향	설명
효율화	 빅데이터를 이용해 과거 및 현재의 현상을 파악할 수 있다. 물류, 재무, 기획, 마케팅 등 경영 전반의 데이터를 실시간으로 분석한 후 최선의 의사결정을 할 수 있다.
개인화	 온라인 이용자의 활동 정보와 SNS 등으로 축적된 개인 정보를 결합하여 사용자에게 특화된 서비스를 제공할 수 있다. 현재 개인 정보는 광고 분야에 활용 중인데 이를 넘어 의료, 교육 등 모든 분야로 확대가 가능하다.
미래 예측력	 과거 및 실시간 데이터를 분석하여 축적한 개인 정보로 개인 또는 조직 전체의 행동 및 의사결정 패턴을 도출할 수 있다. 미래에 적용 가능한 시나리오를 제시하고 예측 가능한 행동 및 발생 가능한 문제점을 사전에 방지 하는 서비스가 가능하다.

■ 빅데이터의 가치

- 사회·경제적 가치
 - 빅데이터는 정치, 사회, 경제, 문화, 과학 기술 등 사회 전반에 걸쳐 가치 있는 정보를 제공
 - 데이터의 도입과 활용은 산업 경쟁력 제고, 생산성 향상, 혁신을 위한 새로운 가치 창출을 할 것으로 기대

표 2-7 맥킨지가 제시한 빅데이터를 이용한 사회 경제적 가치 창출 방법

방법	설명
정보의 투명성	 이해 관계자가 적시에, 보다 쉽게 빅데이터에 접근할 수 있게 하는 것만으로도 가치 창출이 가능하다. 예: 공공 부문에서 분리된 부서가 관련 데이터에 보다 쉽게 접근할 수 있으면 데이터 검색과 처리 시간이 절감된다.
실험을 통한 소비자의 요구 발견, 트랜드 예 측, 성과 관리	 더 많은 거래 데이터를 디지털 형태로 축적함에 따라 더욱 정확하고 상세하게 소비자 요구를 발견하거나 트렌드 예측을 할 수 있다. 예: 관리자가 빅데이터를 사용하여 자연스럽게 발생하거나 통제된 실험으로 일어나는 성과의 변동성을 분석하고 나이가서 근본적인 원인과 결과를 분석하면 더 높은 수준으로 성과를 관리할 수 있다.
소비자 맞춤 비즈니스 를 위한 고객 세분화	 빅데이터를 통해 더 구체적으로 고객을 세분화하여 고객의 요구에 맞는 더 정확한 맞춤형 서비스를 제공할 수 있다. 예: 공공 부문에서 시민을 세분화하여 필요한 서비스를 제공할 수 있다.
자동화된 알고리즘을 통한 의사결정	 빅데이터 기술을 사용하여 전체 데이터셋을 정교하게 분석함으로써 의사결정을 개선하고 위험을 최소화할 수 있으며 가치 있는 인사이트를 발굴할 수 있다. 예: 판매 정보에 실시간 대응하여 재고 및 가격을 자동으로 조정하는 자동화 알고리즘은 소매업체의 의사결정을 최적화할 수 있다.
새로운 비즈니스 모델, 상품, 서비스의 혁신	 빅데이터를 통해 새로운 상품 및 서비스를 개발하거나 기존 상품 및 서비스를 강화하여 완전히 새로운 비즈니스 모델을 개발할 수 있다. 예: 실시간 위치 데이터를 이용하여 자동차를 운전하는 장소와 방법에 따라 내비게이션을 제공하고 상해보험 가격도 책정하는 완전히 새로운 위치 기반 서비스가 가능하다.

■ 빅데이터의 역할

- 미래 사회의 특성은 불확실성, 리스크, 스마트, 융합으로 대변됨
- 빅데이터를 활용해 여러 가지 가능성에 대한 시나리오 시뮬레이션을 하면 불확실한 상황 변화에 유연하게 대처 가능
- 빅데이터에 기반한 정보 패턴 분석으로 리스크에 대응할 수 있음
- 개인화 및 지능화된 서비스를 제공하여 삶의 질을 향상시킴

그림 2-3 미래 사회의 특성과 대응되는 빅데이터의 역할

■ 빅데이터 활용 전략

- 기업의 성공적인 빅데이터 활용
 - 리더십, 역량 관리, 기술 도입, 의사결정, 기업 문화가 필요 (미국 메사추세츠공대(MIT)의 에릭 브린욜프슨교수와 앤드류 맥아피 교수)

표 2-8 성공적인 빅데이터 활용 조건

조건	내용	
리더십	목표 설정을 위해 빅데이터를 활용한 성공이 무엇인지를 명확히 정의하고 이를 강력하게 추진할 수 있는 리더십이 필요하다.	
역량 관리	데이터 과학자, 시스템 개발자 등과 같은 전문 인력의 역량을 관리해야 한다.	
기술 도입	빅데이터 관련 시스템에 최적화된 기술을 도입하고 조직 내·외부의 데이터를 통합 및 가시화하는 기술을 도입해야 한다.	
의사결정	빅데이터 분석에 기반한 의사결정으로 조직의 유연성을 보장해야 한다.	
기업 문화	빅데이터를 활용할 수 있는 조직 문화가 필요하다.	

• 자원, 기술, 인력의 3가지 요소에 대한 전략을 수립

그림 2-4 성공적인 빅데이터 활용을 위한 3요소

■ 빅데이터 활용 전략

- 활용 가능한 빅데이터 발견하기
 - 가트너: 미래 사회에는 '데이터 경제 시대' 가 도래할 것으로 전망
 - 상호 연결과 협력으로 데이터 활용 영역이 확장되면 데이터 자원이 단계적으로 무한해질 것
 - 그에 따라 자원을 확보하는 방안도 단계적으로 확장

표 2-9 데이터 자원 확보를 위한 단계적 방법

단계	내용과 과제	방법
저장	 조직의 독자적인 데이터를 생성 및 저장하는 단계 인터넷을 통해 외부 데이터 수집(검색) 가능 데이터의 신뢰성과 품질 제고를 위한 노력이 필요 	생성, 저장, 수집(검색)
공유	• 기업 데이터를 외부 기관과 상호 교환하는 단계 • 1:1 또는 1:n의 공유 및 연계 가능	연계, 공유
통합	 특정 활동이나 목적을 위하여 연합. 그룹, 클럽이 상호 협력하는 공동의 장(집단)을 형성하는 단계 표준 데이터 풀과 연계하여 국경을 초월한 정보 교환과 상호 이용이 가능 	참여, 협력
공동 창출	• 오픈 플랫폼으로 데이터를 공유하는 단계 • 상호 협력과 참여로 공동의 자원을 창조	오픈, 창조

■ 빅데이터 활용 전략

- 빅데이터 처리 단계와 신기술 이해하기
 - 빅데이터는 데이터의 **수집** → **저장** → **처리** → **분석** → 표현의 단계를 거치며 세부 영역과 관련 기술이 개발
 - 조직과 기업의 혁신 전략으로 적용할 수 있게 빅데이터 플랫폼, 빅데이터 분석 기법 및 기술에 대한 이해가 필요
 - 분석 기술
 - 통계, 데이터 마이닝, 머신러닝, 딥러닝, 자연어 처리, 패턴 인식, 소셜 네트워크 분석, 비디오·오디오·이미지 프로세싱 등
 - 빅데이터의 활용·분석·처리를 포함하는 인프라
 - BI, DW, 클라우드 컴퓨팅, 분산 데이터베이스 (NoSQL), 분산 병렬 처리, 분산 파일 시스템 등
 - 빅데이터 관련 신기술
 - 대용량 데이터 처리를 위한 분산 처리 기술인 하둡과 인메모리, 의미 분석 기술인 데이터 마이닝, 자연어 처리, 머신러닝, 딥 러닝, 그리고 비정형 데이터 처리를 위한 NoSQL 기술

Simplified BigData Processing

수집 \rightarrow 저장 \rightarrow 처리 \rightarrow 분석 \rightarrow 표현

■ 빅데이터 처리 과정과 기술 (5단계)

■ 빅데이터 활용 전략

빅데이터 처리 단계와 신기술 이해하기

표 2-10 빅데이터의 처리 단계별 기술 영역

단계	기술 영역	내용
다시	/IE 07	410
데이터 소스	내부 데이터	데이터베이스, 파일 관리 시스템
	외부 데이터	파일, 멀티미디어, 스트리밍
수집	크롤링crawling	검색 엔진 로봇을 이용한 데이터 수집
7.8	ETL: 추출Extraction, 변환Transformation, 적재Loading	소스 데이터의 추출, 전송, 변환, 적재
	데이터 관리: NoSQL	비정형 데이터 관리
저장	저장소	빅데이터 저장
	서버	초경량 서버
처리	맵리듀스mapReduce	데이터 추출
시니	직업 처리	다중 작업 처리
	신경 언어 프로그래밍NLP, Neuro Linguistic Programming	자연어 처리
분석	머신러닝	데이터 패턴 발견
	직렬화serialization	데이터 간 순서화
표현	시각화visualization	데이터를 도표나 그래픽으로 표현
	획득acquisition	데이터의 획득 및 재해석

단계 역할 활용 기술 5개 레이어 Crawling, FTP, Open API, RSS, 수집 내/외부 데이터 연동 Log Aggregation, DB Aggregation, 내/외부 데이터 통합 Streaming 전처리 저장 대용량/실시간 데이터 처리 Distributed File. No-SQL. 분산 파일 시스템 저장 Memory Cached, Message Queue Structured Processing, 처리 데이터 선택, 변환, 통합, 축소 Unstructured Processing, 데이터 워크플로 및 자동화 Workflow, Scheduler SOL Like, 분석 대화형 데이터 질의 Distributed Programming, (탐색) 탐색적 Ad-Hoc 분석 후처리 Exploration Visualization 빅데이터 마트 구성 Data Mining, Machine Learning, 통계 분석, 고급 분석 Analysis Visualization 표현 보고서 및 시각화 Data Export/Import, Reporting, 활용 분석 정보 제공 Business Visualizatoin

■ 빅데이터 활용 전략

- 데이터 과학자 역량 강화하기
 - 빅데이터 시대에는 데이터를 분석하고 관리할 수 있는 인력에 대한 중요성이 커짐
 - 대규모 데이터 속에서 숨겨진 정보를 찾아내는 데이터 과학자는 '빅데이터 시대의 연금술사'
 - 존 라우치: 데이터 과학자에게 필요한 6가지 기본 자질
 - ① 수학 역량
 - ② 공학 역량
 - ③ 데이터를 분석할 때 필수적인 가설을 세우거나 검증할 때 필요한 비판적 시각
 - ④ 이를 잘 작성할 수 있는 글쓰기 역량
 - ⑤ 다른 사람에게 잘 전달할 수 있는 대화 능력
 - ⑥ 호기심과 개인의 행복
 - 데이터 과학자는 외부보다는 내부 인력으로 내재화하여 활용

Gachon Cognitive Computing Lab

