РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № <u>3</u>

дисциплина: Моделирование информационных процессов

Студент: Худицкий Василий

Олегович

Группа: НКНбд-01-19

МОСКВА

20<u>22</u> г.

Постановка задачи

1. Реализация модели на NS-2

Требуется смоделировать CMO M|M|1 с параметрами lambda = 30.0, mu = 33.0, с помощью сети передачи данных, состоящей из двух узлов, соединённых симплексной линией связи с полосой пропускания 100 Кб/с и задержкой 0 мс, очередью с обслуживанием типа DropTail. От одного узла к другому по протоколу UDP осуществляется передача пакетов

2. График в GNUplot.

Визуализировать результаты моделирования в NS-2 с помощью GNUplot.

Выполнение работы

1. Реализация модели на NS-2

Перешёл в директорию, в которой выполняются лабораторные работы, создал файл для реализации модели на NS-2 (рис. 1):

```
▼ Терминал - openmodelica@openmodelica-VirtualBox: ~/mip/lab-ns — + ×
Файл Правка Вид Терминал Вкладки Справка

openmodelica@openmodelica-VirtualBox:~$ cd mip/lab-ns
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ touch lab3.tcl
```

Рисунок 1Необходимые команды в терминале

Открыл его на редактирование и добавил указанный в листинге код.

Листинг:

```
set ns [new Simulator]
```

открытие на запись файла out.tr для регистрации событий set tf [open out.tr w]

\$ns trace-all \$tf

задаём значения параметров системы

set lambda 30.0

set mu 33.0

размер очереди для M|M|1 (для M|M|1|R: set qsize R)

set qsize 100000

устанавливаем длительность эксперимента

set duration 1000.0

```
# задаём узлы и соединяем их симплексным соединением
# с полосой пропускания 100 Кб/с и задержкой 0 мс,
# очередью с обслуживанием типа DropTail
set n1 [$ns node]
set n2 [$ns node]
set link [$ns simplex-link $n1 $n2 100kb 0ms DropTail]
# наложение ограничения на размер очереди:
$ns queue-limit $n1 $n2 $qsize
# задаём распределения интервалов времени
# поступления пакетов и размера пакетов
set InterArrivalTime [new RandomVariable/Exponential]
$InterArrivalTime set avg_ [expr 1/$lambda]
set pktSize [new RandomVariable/Exponential]
$pktSize set avg_ [expr 100000.0/(8*$mu)]
# задаём агент UDP и присоединяем его к источнику,
# задаём размер пакета
set src [new Agent/UDP]
$src set packetSize_ 100000
$ns attach-agent $n1 $src
# задаём агент-приёмник и присоединяем его
set sink [new Agent/Null]
$ns attach-agent $n2 $sink
$ns connect $src $sink
# мониторинг очереди
set qmon [$ns monitor-queue $n1 $n2 [open qm.out w] 0.1]
$link queue-sample-timeout
# процедура finish закрывает файлы трассировки
proc finish {} {
```

```
global ns tf
$ns flush-trace
close $tf
exit 0
}
# процедура случайного генерирования пакетов
proc sendpacket {} {
global ns src InterArrivalTime pktSize
set time [$ns now]
$ns at [expr $time +[$InterArrivalTime value]] "sendpacket"
set bytes [expr round ([$pktSize value])]
$src send $bytes
}
# планировщик событий
$ns at 0.0001 "sendpacket"
$ns at $duration "finish"
# расчет загрузки системы и вероятности потери пакетов
set rho [expr $lambda/$mu]
set ploss [expr (1-$rho)*pow($rho,$qsize)/(1-pow($rho,($qsize+1)))]
puts "Теоретическая вероятность потери = $ploss"
set aveq [expr $rho*$rho/(1-$rho)]
puts "Теоретическая средняя длина очереди = $aveq"
# запуск модели
$ns run
```

2. График в GNUplot.

В каталоге с проектом создал отдельный файл graph_plot. Открыл его на редактирование и добавил указанный в листинге код. Сделал файл исполняемым.

Запустил симуляцию модели, после чего запустил скрипт в созданном файле graph_plot(puc. 2):

```
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ touch graph_plot
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ chmod u+x graph_plot
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ ns lab3.tcl
Теоретическая вероятность потери = 0.0
Теоретическая средняя длина очереди = 9.09090909090864
openmodelica@openmodelica-VirtualBox:~/mip/lab-ns$ ./graph_plot
```

Рисунок 2Команды в терминале для пункта 2

Скрипт создал файл qm.pdf с результатами моделирования (рис. 3):

Рисунок ЗРезультаты моделирования

Листинг:

set xlabel "t"

#!/usr/bin/gnuplot -persist

задаём текстовую кодировку,

тип терминала, тип и размер шрифта
set encoding utf8
set term pdfcairo font "Arial,9"

задаём выходной файл графика
set out 'qm.pdf'

задаём название графика
set title "График средней длины очереди"

задаём стиль линии
set style line 2

подписи осей графика

```
set ylabel "Пакеты"
# построение графика, используя значения
# 1-го и 5-го столбцов файла qm.out
plot "qm.out" using ($1):($5) with lines title "Размер очереди (в пакетах)",\
"qm.out" using ($1):($5) smooth csplines title " Приближение сплайном ", \
"qm.out" using ($1):($5) smooth bezier title " Приближение Безье "
```

Заключение

В ходе выполнения лабораторной работы я приобрёл навыки визуализации результатов моделирования с помощью средства GNUplot, рассмотрев пример моделирования СМО М|М|1 с помощью средства имитационного моделирования NS-2.

Кроме того, посмотрев на визуализацию результатов моделирования и теоретическую среднюю длину очереди, можно сделать вывод, что при продолжительности моделирования, равной 1000 с, длина очереди может значительно отклоняться от теоретической средней длины.