Lecture 12: Fast Reinforcement Learning ¹

Emma Brunskill

CS234 Reinforcement Learning

Winter 2019

Class Structure

- Last time: Fast Learning (Bandits and regret)
- This time: Fast Learning (Bayesian bandits to MDPs)
- Next time: Fast Learning of Exploration

Settings, Frameworks & Approaches

- Over next couple lectures will consider 2 settings, multiple frameworks, and approaches
- Settings: Bandits (single decisions), MDPs
- Frameworks: evaluation criteria for formally assessing the quality of a RL algorithm
- Approaches: Classes of algorithms for achieving particular evaluation criteria in a certain set
- Note: We will see that some approaches can achieve multiple frameworks in multiple settings

Table of Contents

- Recall: Multi-armed Bandit framework
- 2 Optimism Under Uncertainty for Bandits
- Bayesian Bandits and Bayesian Regret Framework
- Probability Matching
- 5 Framework: Probably Approximately Correct for Bandits
- 6 MDPs

Recall: Multiarmed Bandits

- ullet Multi-armed bandit is a tuple of $(\mathcal{A},\mathcal{R})$
- A: known set of m actions (arms)
- $\mathcal{R}^a(r) = \mathbb{P}[r \mid a]$ is an unknown probability distribution over rewards
- ullet At each step t the agent selects an action $a_t \in \mathcal{A}$
- ullet The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- Goal: Maximize cumulative reward $\sum_{ au=1}^t r_ au$

Regret

Action-value is the mean reward for action a

$$Q(a) = \mathbb{E}[r \mid a]$$

Optimal value V*

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

Q(a₁) > Q(a₂)

Regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

Total Regret is the total opportunity loss

$$L_t = \mathbb{E}[\sum_{ au=1}^t V^* - Q(a_ au)]$$

Maximize cumulative reward ← minimize total regret

Table of Contents

- Recall: Multi-armed Bandit framework
- Optimism Under Uncertainty for Bandits
- Bayesian Bandits and Bayesian Regret Framework
- Probability Matching
- 5 Framework: Probably Approximately Correct for Bandits
- 6 MDPs

Approach: Optimism Under Uncertainty

- Estimate an upper confidence $U_t(a)$ for each action value, such that $Q(a) \leq U_t(a)$ with high probability
- ullet This depends on the number of times $N_t(a)$ action a has been selected
- Select action maximizing Upper Confidence Bound (UCB)

$$a_t = \arg\max_{a \in A} [U_t(a)] \qquad \qquad \text{in equality}$$
 2 things could happen
$$-either \quad \alpha_f = a \times \text{ regret of } O$$

$$-or \quad \alpha_f \neq a \times \quad U_f(a_f) \quad \text{decrease}$$

UCB Bandit Regret

% best machine played

UCB

$$a_t = \arg\max_{a \in \mathcal{A}} \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

• Theorem: The UCB algorithm achieves logarithmic asymptotic total regret

 $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = gaps$ $\lim_{t\to\infty} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$ $\lim_{t\to\infty} L_t \leq 8\log t \sum_{a|\Delta_a>0} \Delta_a = Q(a^*) - Q(a)$

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- Optimism under uncertainty, UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 $(r \sim \text{Bernoulli}(0.1))$, get 0, $\hat{Q}(a^3) = 0$

empivizate estimate

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}} P^{\text{princular arm}} UCB(a_3) = \sqrt{\frac{2 \log 3}{1}}$$

$$UCB(a_1) = \int + \sqrt{\frac{2 \log 3}{1}} = UCB(a_2)$$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 ($r \sim \text{Bernoulli}(0.95)$), get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}}$$

- \bullet t = 3, Select action $a_t = \arg \max_a UCB(a)$,
- Observe reward 1
- Ompute upper confidence bound on each action

Check Your Understanding

- True (unknown) parameters for each arm (action) are
 - surgery: $Q(a^1) = \theta_1 = .95$
 - buddy taping: $Q(a^2) = \theta_2 = .9$
 - doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)
 - Sample each arm once
 - Take action a^1 $(r \sim \text{Bernoulli}(0.95))$, get +1, $\hat{Q}(a^1) = 1$
 - Take action a^2 ($r \sim \text{Bernoulli}(0.90)$), get +1, $\hat{Q}(a^2) = 1$
 - Take action a^3 ($r \sim \text{Bernoulli}(0.1)$), get 0, $\hat{Q}(a^3) = 0$
 - ② Set t = 3, Compute upper confidence bound on each action

$$UCB(a) = \hat{Q}(a) + \sqrt{\frac{2 \log t}{N_t(a)}} \qquad UCB(a_1) = UCB(a_2) = 1 + \sqrt{\frac{2 \log 3}{I}}$$

$$UCB(a_2) = \sqrt{\frac{2 \log 5}{I}}$$

- \bullet t = t + 1, Select action $a_t = 1$, Observe reward 1
- **1** Compute upper confidence bound on each action α_i
- Assume ties are evenly split. Prob of each arm if using ϵ -greedy (with ϵ =0.1)? If using UCB? ω

Toy Example: Ways to Treat Broken Toes, Optimism, Assessing Regret

pull as got a 1

$$OCB(a_1) = 1 + \sqrt{\frac{2\log 4}{2}}$$
 $OCB(a_2) = 1 + \sqrt{\frac{2\log 4}{2}}$

True (unknown) parameters for each arm (action) are

• surgery:
$$Q(a^1) = \theta_1 = .95$$

- buddy taping: $Q(a^2) = \theta_2 = .9$
- doing nothing: $Q(a^3) = \theta_3 = .1$
- UCB1 (Auer, Cesa-Bianchi, Fischer 2002)

, ,		
Action	Optimal Action	Regret
a^1	a^1	0
a ²	a^1	.05=.959
a^3	a^1	,85 = .95-11
a^1	a^1	0
a^2	a^1	.05
71		

Check Your Understanding

- An alternative would be to always select the arm with the highest lower bound
- Why can this yield linear regret?
- Consider a two arm case for simplicity

Greedy Bandit Algorithms and Optimistic Initialization

- Simple optimism under uncertainty approach
 - Pretend already observed one pull of each arm, and saw some optimistic reward
 - Average these fake pulls and rewards in when computing average empirical reward
- Comparing regret results:
- Greedy: Linear total regret
- Constant ϵ -greedy: Linear total regret
- **Decaying** ϵ -greedy: Sublinear regret if can use right schedule for decaying ϵ , but that requires knowledge of gaps, which are unknown
- **Optimistic initialization**: Sublinear regret if initialize values sufficiently optimistically, else linear regret

Table of Contents

- Recall: Multi-armed Bandit framework
- Optimism Under Uncertainty for Bandits
- 3 Bayesian Bandits and Bayesian Regret Framework
- Probability Matching
- 5 Framework: Probably Approximately Correct for Bandits
- 6 MDPs

Bayesian Bandits

- \bullet So far we have made no assumptions about the reward distribution ${\cal R}$
 - Except bounds on rewards $\mathcal{L} = (0, 1)$
- ullet Bayesian bandits exploit prior knowledge of rewards, $p[\mathcal{R}]$
- They compute posterior distribution of rewards $p[\mathcal{R} \mid h_t]$, where $h_t = (a_1, r_1, \dots, a_{t-1}, r_{t-1})$
- Use posterior to guide exploration
 - Upper confidence bounds (Bayesian UCB)
 - Probability matching (Thompson Sampling)
- Better performance if prior knowledge is accurate

Short Refresher / Review on Bayesian Inference

- In Bayesian view, we start with a prior over the unknown parameters
 - Here the unknown distribution over the rewards for each arm
- Given observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule

Short Refresher / Review on Bayesian Inference

- In Bayesian view, we start with a prior over the unknown parameters
 - Here the unknown distribution over the rewards for each arm.
- Given observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule
- For example, let the reward of arm i be a probability distribution that depends on parameter ϕ_i (unknown)
- Our initial prior over ϕ_i is $p(\phi_i)$
- We pull arm i and observe reward r_{i1}

Then we can use this to update our estimate over
$$\phi_i$$
 as $p_i = p(r_{i1}|\phi_i)p(\phi_i) = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{\int_{\phi_i} p(r_{i1}|\phi_i)p(\phi_i)d\phi_i}$

Short Refresher / Review on Bayesian Inference II

- In Bayesian view, we start with a prior over the unknown parameters
- Given observations / data about that parameter, update our

uncertainty over the unknown parameters using Bayes Rule defend it is likelihood
$$p(\phi_i|r_{i1}) = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{\int_{\phi_i} p(r_{i1}|\phi_i)p(\phi_i)d\phi_i}$$

 In general computing this update may be tricky to do exactly with no additional structure on the form of the prior and data likelihood

Short Refresher / Review on Bayesian Inference: Conjugate

- In Bayesian view, we start with a prior over the unknown parameters
- Given observations / data about that parameter, update our uncertainty over the unknown parameters using Bayes Rule

$$p(\phi_i|r_{i1}) = \frac{p(r_{i1}|\phi_i)p(\phi_i)}{\int_{\phi_i} p(r_{i1}|\phi_i)p(\phi_i)d\phi_i}$$

- In general computing this update may be tricky
- But sometimes can be done analytically
- If the parametric representation of the prior and posterior is the same, the prior and model are called conjugate.
- For example, exponential families have conjugate priors

Short Refresher / Review on Bayesian Inference: Bernoulli

- Consider a bandit problem where the reward of an arm is a binary outcome $\{0,1\}$ sampled from a Bernoulli with parameter θ
 - E.g. Advertisement click through rate, patient treatment succeeds/fails, ...
- The Beta distribution $Beta(\alpha, \beta)$ is conjugate for the Bernoulli distribution

$$p(\theta|\alpha,\beta) = \theta^{\alpha-1} (1-\theta)^{\beta-1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

where $\Gamma(x)$ is the Gamma family.

Short Refresher / Review on Bayesian Inference: Bernoulli

- Consider a bandit problem where the reward of an arm is a binary outcome $\{0,1\}$ sampled from a Bernoulli with parameter θ
 - E.g. Advertisement click through rate, patient treatment succeeds/fails, ...
- The Beta distribution $Beta(\alpha, \beta)$ is conjugate for the Bernoulli distribution

$$\overbrace{p(\theta|\alpha,\beta)} = \theta^{\alpha-1} (1-\theta)^{\beta-1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

where $\Gamma(x)$ is the Gamma family.

- Assume the prior over θ is a $Beta(\alpha, \beta)$ as above
- Then after observed a reward $r \in \{0,1\}$ then updated posterior over θ is $Beta(r+\alpha,1-r+\beta)$

◆ロ > ◆回 > ◆ 直 > ◆ 直 > り へ で

Framework: Regret and Bayesian Regret

- How do we evaluate performance in the Bayesian setting?
- Frequentist regret assumes a true (unknown) set of parameters

$$Regret(\mathcal{A}, T; \theta) = \sum_{t=1}^{T} \mathbb{E}\left[Q(a^*) - Q(a_t)\right]$$

Bayesian regret assumes there is a prior over parameters

$$extit{BayesRegret}(\mathcal{A}, \mathcal{T}; heta) = \mathbb{E}_{ heta \sim p_{ heta}} \left[\sum_{t=1}^{\mathcal{T}} \mathbb{E} \left[Q(extit{a}^*) - Q(extit{a}_t) | heta
ight]
ight]$$

Table of Contents

- Recall: Multi-armed Bandit framework
- Optimism Under Uncertainty for Bandits
- Bayesian Bandits and Bayesian Regret Framework
- Probability Matching
- 5 Framework: Probably Approximately Correct for Bandits
- 6 MDPs

Approach: Probability Matching

- Assume we have a parametric distribution over rewards for each arm
- Probability matching selects action a according to probability that a is the optimal action $\sqrt{\Pr^{r,ov}(s,a)} = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t]$

$$\pi(a \mid h_t) = \mathbb{P}[Q(a) > Q(a'), \forall a' \neq a \mid h_t]$$

- Probability matching is optimistic in the face of uncertainty
 - Uncertain actions have higher probability of being max
- Can be difficult to compute probability that an action is optimal analytically from posterior
- Somewhat incredibly, a simple approach implements probability matching

Thompson Sampling

- 1: Initialize prior over each arm a, $p(\mathcal{R}_a)$
- 2: **loop**
- 3: For each arm a **sample** a reward distribution \mathcal{R}_a from posterior
- 4: Compute action-value function $Q(a) = \mathbb{E}[\mathcal{R}_a]$
- 5: $a_t = \arg \max_{a \in \mathcal{A}} Q(a)$
- 6: Observe reward *r*
- 7: Update posterior $p(\mathcal{R}_a|r)$ using Bayes law
- 8: end loop

Thompson Sampling Implements Probability Matching

J Pustching

$$egin{aligned} \pi(a \mid h_t) &= \mathbb{P}[Q(a) > Q(a'), orall a'
eq a \mid h_t] \ &= \mathbb{E}_{\mathcal{R} \mid h_t} \left[\mathbb{1}(a = rg \max_{a \in \mathcal{A}} Q(a))
ight] \end{aligned}$$

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose Beta(1,1) (Uniform) $P(\theta_i) = Befa(t_i, t_i)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1):

Toy Example: Ways to Treat Broken Toes, Thompson Sampling¹

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose Beta(1,1)
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - 2 Select $a = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 3$

¹Note:This is a made up example. This is not the actual expected efficacies of the various treatment options for a broken toe

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - **1** Per arm, sample a Bernoulli θ given prior: 0.3 0.5 0.6
 - Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 3$
 - **3** Observe the patient outcome's outcome: 0

- p(03/1=0)
- **1** Update the posterior over the $Q(a_t) = Q(a^3)$ value for the arm pulled

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 3$
 - Observe the patient outcome's outcome: 0
 - **①** Update the posterior over the $Q(a_t) = Q(a^3)$ value for the arm pulled
 - Beta (c_1, c_2) is the conjugate distribution for Bernoulli
 - If observe 1, $c_1 + 1$ else if observe 0 $c_2 + 1$
 - New posterior over Q value for arm pulled is:
 - **1** New posterior $p(Q(a^3)) = p(\theta(a^3)) = Beta(1,2)$

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,1): 0.3 0.5 0.6
 - ② Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 4$
 - Observe the patient outcome's outcome: 0

New posterior $p(Q(a_3^2)) = p(\theta(a_3)) = Beta(1,2)$ Repare (1,1)

 Θ_{ι}

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3

Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
- ullet Surgery: $heta_1 = .95$ / Taping: $heta_2 = .9$ / Nothing: $heta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(1,1), Beta(1,1), Beta(1,2): 0.7, 0.5, 0.3
 - 2 Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 - 3 Observe the patient outcome's outcome: 1 $\psi = 0s + 1$
 - New posterior $p(Q(a^1)) = p(\theta(a^1)) = Beta(2, 1)$

Beta (2,1) Beta (1,1) Beta (4,2)

Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(2,1), Beta(1,1), Beta(1,2): 0.71, 0.65, 0.1
 - ② Select $a_t = \arg\max_{a \in A} Q(a) = \arg\max_{a \in A} \theta(a) = 1$
 - Observe the patient outcome's outcome: 1
 - New posterior $p(Q(a^1)) = p(\theta(a^1)) = Beta(3, 1)$

Toy Example: Ways to Treat Broken Toes, Thompson Sampling

- True (unknown) Bernoulli parameters for each arm/action
- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Thompson sampling:
- Place a prior over each arm's parameter. Here choose $\theta_i \sim \text{Beta}(1,1)$
 - Sample a Bernoulli parameter given current prior over each arm Beta(2,1), Beta(1,1), Beta(1,2): 0.75, 0.45, 0.4
 - 2 Select $a_t = \arg \max_{a \in A} Q(a) = \arg \max_{a \in A} \theta(a) = 1$
 - **3** Observe the patient outcome's outcome: 1
 - New posterior $p(Q(a^1)) = p(\theta(a^1)) = Beta(4, 1)$

Toy Example: Ways to Treat Broken Toes, Thompson Sampling vs Optimism

- ullet Surgery: $heta_1 = .95$ / Taping: $heta_2 = .9$ / Nothing: $heta_3 = .1$
- How does the sequence of arm pulls compare in this example so far?

Optimism	TS	Optimal		
a^1	a ³ .	al		
a^2	a^1	a1		
a^3	a^{1}	a ¹		
a^1	a^1 .	۵'		
a^2	a^{1}	۹,		

Toy Example: Ways to Treat Broken Toes, Thompson Sampling vs Optimism

- ullet Surgery: $heta_1 = .95$ / Taping: $heta_2 = .9$ / Nothing: $heta_3 = .1$
- Incurred (frequentist) regret?

Optimism	TS	Optimal	Regret Optimism	Regret TS
a^1	a^3	a^1	0	4 .85
a^2	a^1	a^1	0.05	. 0
a^3	a^1	a^1	0.85	0
a^1	a^1	a^1	0	0
a^2	a^1	a^1	0.05	0

Thompson sampling implements probability matching

- Thompson sampling(1929) achieves Lai and Robbins lower bound
- Bounds for optimism are tighter than for Thompson sampling
- But empirically Thompson sampling can be extremely effective

Thompson Sampling for News Article Recommendation (Chapelle and Li, 2010)

- Contextual bandit: input context which impacts reward of each arm, context sampled iid each step
- Arms = articles
- Reward = click (+1) on article (Q(a)=click through rate)

Bayesian Regret Bounds for Thompson Sampling

Regret(UCB,T)

$$extit{BayesRegret}(extit{TS}, extit{T}) = extit{E}_{ heta \sim p_{ heta}} \left[\sum_{t=1}^{ extit{T}} Q(extit{a}^*) - Q(extit{a}_t) | heta
ight]$$

 Posterior sampling has the same (ignoring constants) regret bounds as UCB

Table of Contents

- Recall: Multi-armed Bandit framework
- Optimism Under Uncertainty for Bandits
- Bayesian Bandits and Bayesian Regret Framework
- Probability Matching
- 5 Framework: Probably Approximately Correct for Bandits
- 6 MDPs

Framework: Probably Approximately Correct

- Theoretical regret bounds specify how regret grows with T
- Could be making lots of little mistakes or infrequent large ones
- May care about bounding the number of non-small errors
- More formally, probably approximately correct (PAC) results state that the algorithm will choose an action a whose value is ϵ -optimal $(Q(a) \geq Q(a^*) \epsilon)$ with probability at least 1δ on all but a polynomial number of steps
- Polynomial in the problem parameters (# actions, ϵ , δ , etc)
- Most PAC algorithms based on optimism or Thompson sampling

Toy Example: Probably Approximately Correct and Regret

- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Let $\epsilon = 0.05$.
- O = Optimism, TS = Thompson Sampling: W/in $\epsilon = I(Q(a_t) \geq Q(a^*) \epsilon)$

0	TS	Optimal	O Regret	O W/in ϵ	TS Regret	
a^1	a^3	a^1	0	٧	0.85	7
a^2	a^1	a^1	0.05	4	0	<i>V</i> (
a^3	a^1	a^1	0.85	7	0	Y
a^1	a^1	a^1	0	۲	0	Ý
a^2	a^1	a^1	0.05	4	0	Ч

Toy Example: Probably Approximately Correct and Regret

- Surgery: $\theta_1 = .95$ / Taping: $\theta_2 = .9$ / Nothing: $\theta_3 = .1$
- Let $\epsilon = 0.05$.
- O = Optimism, TS = Thompson Sampling: W/in $\epsilon = I(Q(a_t) \geq Q(a^*) \epsilon)$

0	TS	Optimal	O Regret	O W/in ϵ	TS Regret	TS W/in ϵ
a^1	a^3	a^1	0	Y	0.85	N
a^2	a^1	a^1	0.05	Y	0	Y
a^3	a^1	a^1	0.85	N	0	Y
a^1	a^1	a^1	0	Y	0	Y
a^2	a^1	a^1	0.05	Y	0	Y

Table of Contents

- Recall: Multi-armed Bandit framework
- Optimism Under Uncertainty for Bandits
- Bayesian Bandits and Bayesian Regret Framework
- Probability Matching
- Framework: Probably Approximately Correct for Bandits
- 6 MDPs

Fast RL in Markov Decision Processes

fabular MDPs

- Very similar set of frameworks and approaches are relevant for fast learning in reinforcement learning
- Frameworks
 - Regret
 - Bayesian regret
 - Probably approximately correct (PAC)
- Approaches
 - Optimism under uncertainty
 - Probability matching / Thompson sampling
- Framework: Probably approximately correct

Fast RL in Markov Decision Processes

- Very similar set of frameworks and approaches are relevant for fast learning in reinforcement learning
- Frameworks
 - Regret
 - Bayesian regret
 - Probably approximately correct (PAC)
- Approaches
 - Optimism under uncertainty
 - Probability matching / Thompson sampling
- Framework: Probably approximately correct

Optimistic Initialization: Model-Free RL

- \bullet Initialize action-value function Q(s,a) optimistically (for ex. $\frac{r_{max}}{1-\gamma})$
 - where $r_{max} = \max_{a} \max_{s} R(s, a)$
 - Check your understanding: why is that value guaranteed to be optimistic?
- Run favorite model-free RL algorithm
 - Monte-Carlo control
 - Sarsa
 - Q-learning ...
- Encourages systematic exploration of states and actions

Optimistic Initialization: Model-Free RL

- Initialize action-value function Q(s,a) optimistically (for ex. $\frac{r_{max}}{1-\gamma}$)
 - where $r_{max} = \max_a \max_s R(s, a)$
- Run model-free RL algorithm: MC control, Sarsa, Q-learning . . .
- In general the above have no guarantees on performance, but may work better than greedy or ϵ -greedy approaches
- Even-Dar and Mansour (NeurIPS 2002) proved that • If run Q-learning with learning rates \mathbf{q}_i on time step i, $\mathbf{q}_i = \mathbf{q}_i$
 - If initialize $V(s) = \frac{r_{max}}{(1-\gamma)\prod_{i=1}^{T}\alpha_i}$ where α_i is the learning rate on step i and T is the number of samples need to learn a near optimal Q
 - Then greedy-only Q-learning is PAC
- Recent work (Jin, Allen-Zhu, Bubeck, Jordan NeurIPS 2018) proved that (much less) optimistically initialized Q-learning has good (though not tightest) regret bounds

Approaches to Model-based Optimism for Provably Efficient RL

- Be very optimistic until confident that empirical estimates are close to true (dynamics/reward) parameters (Brafman & Tennenholtz JMLR 2002)
- Be optimistic given the information have
 - Compute confidence sets on dynamics and reward models, or
 - Add reward bonuses that depend on experience / data
 - We will focus on the last class of approaches

Model-Based Interval Estimation with Exploration Bonus (MBIE-EB)

(Strehl and Littman, J of Computer & Sciences 2008)

(max = 1

```
2: Asalsa) = 0 Us Ha Alsa, s') = 0 Us, da, vs' re(s,a) = 0 Us Va
 1: Given \epsilon, \delta, m
 3: B= 1-2 N2log(15/14/2m/8)
    t=0, st = initial state
 5: Q+ (s,a)= /(1-2) Vs, Va
 6: loop
       a_t = \arg\max_{a \in \mathcal{A}} Q(s_t, a)
       Observe reward r_t and state s_{t+1}
 8.
       nsc(s,a)++ n(s,a,s')++ rc(s,a)=rc(s,a)+++
R(s,a)=rc(s,a) /nsc(s,a) T(s'Is,a)=n(s,a,s')/n(s,a) Vs.a-)
 9:
10:
11:
12:
       while not converged do
          d while

\tilde{Q}(s,a) = \hat{R}(s,a) + \gamma \sum_{s'} \hat{T}(s'|s,a) \max_{a'} \tilde{Q}(s',a') + \beta / \sqrt{N_{sa}(s_{c}a)}
13:
       end while
14:
                          Vs, a sit usa(s,a)=0
15: end loop
```

r E (O,1) bounded

Model-Based Interval Estimation with Exploration Bonus (MBIE-EB)

(Strehl and Littman, J of Computer & Sciences 2008)

```
1: Given \epsilon, \delta, m
 2: \beta = \frac{1}{1-\alpha} \sqrt{0.5 \ln(2|S||A|m/\delta)}
 3: n_{sas}(s, a, s') = 0 \ s \in S, \ a \in A, \ s' \in S
 4: rc(s, a) = 0, n_{sa}(s, a) = 0, \tilde{Q}(s, a) = 1/(1 - \gamma) \ \forall \ s \in S, a \in A
 5: t = 0. s_t = s_{init}
 6: loop
 7:
      a_t = \arg\max_{a \in A} Q(s_t, a)
       Observe reward r_t and state s_{t+1}
 8:
           n_{sa}(s_t, a_t) = n(s_t, a_t) + 1, n_{sas}(s_t, a_t, s_{t+1}) = n_{sas}(s_t, a_t, s_{t+1}) + 1
 9:
          rc(s_t, a_t) = \frac{rc(s_t, a_t)n_{sa}(s_t, a_t) + r_t}{(n_{sa}(s_t, a_t) + 1)}
10:
           \hat{R}(s,a) = \frac{rc(s_t,a_t)}{n(s_t,a_t)} and \hat{T}(s'|s,a) = \frac{n_{sas}(s_t,a_t,s')}{n_{cs}(s_t,a_t)} \forall s' \in S
11:
12:
           while not converged do
                \tilde{Q}(s,a) = \hat{R}(s,a) + \gamma \sum_{s'} \hat{T}(s'|s,a) \max_{a'} \tilde{Q}(s',a') + \frac{\beta}{\sqrt{n_{sa}(s,a)}} \forall s \in S, a \in A
13:
14:
           end while
15: end loop
```

Framework: PAC for MDPs

- For a given ϵ and δ , A RL algorithm $\mathcal A$ is PAC if on all but N steps, the action selected by algorithm $\mathcal A$ on time step t, a_t , is ϵ -close to the optimal action, where N is a polynomial function of $(|S|, |A|, \gamma, \epsilon, \delta)$
- Is this true for all algorithms? №

MBIE-EB is a PAC RL Algorithm

Theorem 2. Suppose that ϵ and δ are two real numbers between 0 and 1 and $M = \langle S, A, T, \mathcal{R}, \gamma \rangle$ is any MDP. There exists an input $m = m(\frac{1}{\epsilon}, \frac{1}{\delta})$, satisfying $m(\frac{1}{\epsilon}, \frac{1}{\delta}) = O(\frac{|S|}{\epsilon^2(1-\gamma)^4} + \frac{1}{\epsilon^2(1-\gamma)^4}]$, $\frac{|S|M|}{\epsilon(1-\gamma)\delta}$, and $\beta = (1/(1-\gamma))\sqrt{\ln(2|S||A|m/\delta)/2}$ such that if MBIE-EB is executed on MDP M, then the following holds. Let \mathcal{A}_t denote MBIE-EB's policy at time t and s_t denote the state at time t. With probability at least $1 - \delta$, $V_M^{At}(s_t) \ge V_M^*(s_t) - \epsilon$ is true for all but $O(\frac{|S||A|}{\epsilon(1-\gamma)^5})(|S| + \ln \frac{|S||A|}{\epsilon(1-\gamma)}) \ln \frac{1}{\delta} \ln \frac{1}{\epsilon(1-\gamma)}$ timesteps t.

A Sufficient Set of Conditions to Make a RL Algorithm PAC

 Strehl, A. L., Li, L., Littman, M. L. (2006). Incremental model-based learners with formal learning-time guarantees. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (pp. 485-493)

MBIE-EB Empirically: 6 Arms Simulation

MBIE-EB Empirically: 6 Arms Results

