Graphs

Undir: $m \leq \binom{n}{2}$, $\sum_{v} deg(v) = 2m$

Dir: $m \le n * (n-1)$, $\sum_{v} indeg(v) = \sum_{v} outdeg(v) = m$

Subgraph: result of removing an edge, $V' \subseteq V, E' \subset E$ Induced SG: result of removing node. Is subgraph, $e \in E' \leftrightarrow$

 $(e \in E \land (u, v)) \in V.$

u connected to v: $(u \sim v) \rightarrow \exists$ path from u to v

G connected if $(u \sim v) \ \forall (u, v)$

Representations

Adj. Matrix: row 1 = outgoing edge, col 1 = incoming edge

- Undir: $G = G^T$
- Find a neighbour: O(n)
- Access(v) = O(1), traverse V = O(n)
- Traverse all edges of v = O(n)
- Traverse all edges of $G = O(n^2)$
- $O(V^2) = O(n^2)$ space

Adj. List: $\sum_{v} outdeg(v) = E$

- O(V + E) = O(n + m) space
- Find a neighbour: O(1)
- Traverse all edges of v = O(|neighbours(v)|)
- Traverse all edges of G = O(m)
- Access(v) = O(1), traverse V = O(n)

Trees

Tree: connected, acyclic graph

- Add edge \rightarrow cycle; Remove edge \rightarrow not connected
- n 1 edges

Forest: graph with trees as connected components

Spanning tree: $T \subseteq G$ S.T V(T) = V(G)

Undir. is a tree \leftrightarrow connected and E = V - 1

- O(n+m) time (list), $O(n^2)$ (matrix)
- $\Theta(n)$ space for both list and matrix
- Finds all nodes, finds shortest path from s to all others

BFS

- O(n+m) time (list), $O(n^2)$ (matrix)
- Finds all nodes, finds shortest path from s to all others

Edge Classes

The edge (u, v) refers to the FOREST, not the graph.

- Tree: $(u, v) \in \text{Forest}$
- Forward: v is descendant of u
- Back: v is ancestory of u (back = fwd in undirs)
- Cross: none of the above are true.
- Und: DFS tree/fwd only, BFS tree/cross only
- Dir: DFS: all edges, BFS: no fwd edges

DAGs

- Source: no incoming edges
- Sink: no outgoing edges
- Multiple sources/sinks are possible. At least one of each in every DAG.
- Source & Sink \rightarrow no cycles
- A Digraph is a DAG \leftrightarrow DFS has no back edges

Toposort

- Produces ordering s.t $(u,v) \in E \to u$ appears before v in the ordering
- Digraph has a Toposort \leftrightarrow it is a DAG
- Run DFS, order in decreasing order of finish time
- -O(n+m)
- Orders are not unique.

SCCs

- Run DFS. Run DFS on G^T , in decreasing order of ftime. The forests of the transpose DFS are the SCCs.
- Independent of toposort ordering

Minimum Spanning Trees

- Spanning tree w/ minumum weight
- DFS and BFS build spanning trees, but not necessarily the MST.
- Optimal Substructure: if T = MST of $G \to T[U]$, where $U \subset$ V, if T[U] is connected it is an MST.

Prim: add best vertex

Kruskal's Algorithm $(O((m+n)\log(n)))$

- Only consider edges that do NOT create a cycle (safe edges)
- Add lowest-cost edge on each iteration
- Has greedy-choice property

Edge Switching

- Let $e' \notin T$, where $T \cup \{e'\}$ has a cycle. For any $e \in E$, where e is in the cycle, $T \cup \{e'\} - \{e\}$ is a tree.

Single-Source Shortest Paths (SSSPs)

- The problem: find the min-cost path from source s to each vertex v.

Dijkstra

- List + binary heap (as a min-PQ): $O((m+n)\log(n))$
- Matrix: $O(n^2 + m \log(n))$
- Fib heap: $\Theta(m + n \log(n))$
- No negative cycles (undir), no negative edges (dir)

Relaxing an Edge

- d(v) only updated w/ relax $\rightarrow d(v) \ge d(s, v)$

relax(u, v): if d(v) > d(u) + w(u, v):

$$d(v) \leftarrow d(u) + w(u,v)$$

Bellman-Ford