Resource-light Acquisition of Inflectional Paradigms

Radoslav Klíč and Jirka Hana

Geneea Analytics / MFF UK Praha

Outline

- 1 Introduction
- 2 Paramor
- 3 Seeding
- 4 Allomorphy
- 5 Results

Introduction

Introduction

- Morphology analysis necessary (IR etc.) but manual approach is expensive.
- We assume limited resources: plain text corpus and consultation with a native speaker.
- Our approach: modification and extension of Paramor, an unsupervised paradigm learner.
- We try to 'nudge' it towards correct analysis

Paradigms

Introduction

 Classical Czech paradigms have slots for all combinations of relevant morphological categories.

Case	Singular	Plural
nom	mat k +a	mat k +y
gen	mat k +y	mat ek +0
dat	mat c +e	mat k +ám
acc	mat k +u	mat k +y
voc	mat k +o	mat k +y
loc	mat c +e	mat k +ách
inst	mat k +ou	mat k +ami

■ Low knowledge of grammar of the given language → simplified paradigms defined as a set of suffixes + set of stems e.g., (a, y, e, u, o, ou, 0, ám, ách, ami) + (žen, matk, ...)

Paramor Seeding Allomorphy Results

Paramor - Schemes

- lacktriangle All splits of all words in the corpus o c-stems and c-suffixes
- In Paramor, partial paradigms are modelled by *schemes*.
- Scheme defined by a set of c-suffixes e.g., (0, ed, ing, s).
- $lue{}$ scheme's stem set ightarrow all c-stems which form a word in the corpus with all the scheme's suffixes.
- Observation: adding a suffix cannot increase the number of scheme's adherent stems.

Scheme lattice

Paramor algorithm

- Bottom-up search. Starts with single-suffix schemes and ascends the lattice. Stops when the c-stem ratio drops below 0.25.
- Scheme clustering. Join similar schemes into scheme clusters. Similarity → similarity of (stem, suffix) pair sets. For example, schemes (0, ly, ness) and (0, ly, er, est) could be merged, as they share a lot of stem-suffix pairs like deep + 0, deep + ly.
- Scheme cluster pruning.

Seeding

- Modified Paramor accepts manually entered input in the form of inflected word forms with marked morpheme boundary.
- Seed example: matk/matc/matek + a, u, y / e / 0
- Usage:
 - Add two-suffix schemes to the initial scheme set for bottom-up search
 - Protect some scheme clusters from discarding.
 - Induction of allomorphy rules.

Allomorphy

- Allomorphy more surface variants of a stem.
- Problem: try adding -e suffix to a scheme (matk, noh) + (a, y, u, ou)
- Oh no! neither matke nor nohe is in the corpus. (Although matce and noze are)
- Leads to
 - Incomplete schemes
 - Schemes with shifted morpheme boundary. (mat) + (ka, ky, ce)

Allomorphy – usage of the seed

- Induction of stem equivalence rules.
- From a seed entry

we generate:

$$*k \leftrightarrow *c / \{a, u, ovi, em, y, u, um\}, \{i, ich\}$$

Evaluation

- Most common 'gold' data: lemmatised corpora
- For each word pair (w_1, w_2)
 - Do w_1 and w_2 belong to the same lemma?
 - Is there a scheme cluster generating both w_1 and w_2 ?
- Count true/false positives/negatives \rightarrow precision and recall \rightarrow F-score.

Results

F-score obtained with and without seeding:

Corpus	no seed	seed
CZ	69.63	72.99
si	74.83	75.61
de	63.98	64.52
cat	62.74	65.95

Results

- Derivation vs inflection $(v\acute{y}uk + a, v\acute{y}uk + ov\acute{y})$
- Prefixes (ne-, nej-)