SYNTHESIS OF LOGIC FUNCTIONS

COMBINATIONAL LOGIC CIRCUITS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Synthesis of XOR/XNOR Gate

Synthesis of BCD-to-7-Segment Decoder

SYNTHESIS OF XOR/XNOR GATE

EXCLUSIVE-OR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Equivalent Logic Circuit

$$Y = \bar{A}B + A\bar{B}$$

EXCLUSIVE-NOR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	1	
0	1	0	
1	0	0	
1	1	1	

Equivalent Logic Circuit

$$Y = \bar{A}\bar{B} + AB$$

EXERCISE

Develop a logic circuit with four input variables that will only produce a 1 output when exactly three input variables are 1s.

Solution

EXERCISE

Reduce the combinational logic circuit to a minimum form.

Solution

SYNTHESIS OF BCD-TO7-SEGMENT DECODER

THE 7-SEGMENT DISPLAY

A standard **7-segment display** consists of **seven LEDs** (segments) arranged in a rectangular layout to form the number 8. Each segment is labeled from *a* to *g*, and an optional eighth segment (DP) is used for the decimal point.

Segment Arrangement

EXPRESSION FOR SEGMENT A

Truth Table

N	DCBA	f_a
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

N	DCBA	f_a
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

Segment Arrangement

EXPRESSION FOR SEGMENT A

Truth Table

N	DCBA	f_a
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

N	DCBA	f_a
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

K-Map

EXPRESSION FOR SEGMENT A

Truth Table

N	DCBA	f_a
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

DCBA	f_a
1001	
1010	
1011	
1100	
1101	
1110	
1111	
	1001 1010 1011 1100 1101 1110

QM Method

EXERCISE

Using Karnaugh Map and the Quine-McCluskey method, synthesize the minimized Boolean expressions for each segment (a-g) of a 7-segment display decoder.

Segment Arrangement

LABORATORY

