Evolution of Complexity

A Brief History of Evolution

Natural selection, adaptation, complexity

Outline

1. Course Themes

- 2. Historical Developments
 - Pre-Darwinian evolution
 - Natural selection
 - The modern synthesis

- Adam Prügel-Bennett
- Background is as a mathematical physicists
- Worked in mathematical modelling of complex systems for 20 years
- Over the last twelve years I've worked mainly on modelling evolving populations

- Adam Prügel-Bennett
- Background is as a mathematical physicists
- Worked in mathematical modelling of complex systems for 20 years
- Over the last twelve years I've worked mainly on modelling evolving populations

- Adam Prügel-Bennett
- Background is as a mathematical physicists
- Worked in mathematical modelling of complex systems for 20 years
- Over the last twelve years I've worked mainly on modelling evolving populations

- Adam Prügel-Bennett
- Background is as a mathematical physicists
- Worked in mathematical modelling of complex systems for 20 years
- Over the last twelve years I've worked mainly on modelling evolving populations

- Adam Prügel-Bennett
- Background is as a mathematical physicists
- Worked in mathematical modelling of complex systems for 20 years
- Over the last twelve years I've worked mainly on modelling evolving populations
- I would describe myself

- Adam Prügel-Bennett
- Background is as a mathematical physicists
- Worked in mathematical modelling of complex systems for 20 years
- Over the last twelve years I've worked mainly on modelling evolving populations
- I would describe myself

Expert in the evolution of simple systems

- The exemplar of a complex systems is life
- We believe life evolved
- Other complex systems (e.g. the economy) have much in common with life
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved
- Other complex systems (e.g. the economy) have much in common with life
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved—more on that later
- Other complex systems (e.g. the economy) have much in common with life
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved—more on that later
- Other complex systems (e.g. the economy) have much in common with life
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved—more on that later
- Other complex systems (e.g. the economy) have much in common with life—"Nature red in tooth and claw"
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved—more on that later
- Other complex systems (e.g. the economy) have much in common with life—"Nature red in tooth and claw"
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved—more on that later
- Other complex systems (e.g. the economy) have much in common with life—"Nature red in tooth and claw"
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design

- The exemplar of a complex systems is life
- We believe life evolved—more on that later
- Other complex systems (e.g. the economy) have much in common with life—"Nature red in tooth and claw"
- It is a fair to postulate that the only way for a complex system to develop is through evolution and "natural selection"
- Complex systems are too too complex to design—"The law of unintended consequences" makes design almost impossible

Why Complexity?

• The much more challenging question is

why does evolution lead to complexity?

 The modern argument of "intelligent design" and its pre-Darwinian predecessor "natural theology" questions the plausibility of complexity arising spontaneously

Why Complexity?

• The much more challenging question is

why does evolution lead to complexity?

 The modern argument of "intelligent design" and its pre-Darwinian predecessor "natural theology" questions the plausibility of complexity arising spontaneously

Why Complexity?

• The much more challenging question is

why does evolution lead to complexity?

- The modern argument of "intelligent design" and its pre-Darwinian predecessor "natural theology" questions the plausibility of complexity arising spontaneously
- One theme of this course is to explore the rise of complexity through unintelligent design

- No established definition
- One fruitful characterisation is that it is a system with many levels of organisation
- Properties at high levels are often 'emergent'—i.e. they are not directly predictable from lower levels

- No established definition—I know it when I see it
- One fruitful characterisation is that it is a system with many levels of organisation
- Properties at high levels are often 'emergent'—i.e. they are not directly predictable from lower levels

- No established definition—I know it when I see it
- One fruitful characterisation is that it is a system with many levels of organisation
- Properties at high levels are often 'emergent'—i.e. they are not directly predictable from lower levels

- No established definition—I know it when I see it
- One fruitful characterisation is that it is a system with many levels of organisation
- Properties at high levels are often 'emergent'—i.e. they are not directly predictable from lower levels

- No established definition—I know it when I see it
- One fruitful characterisation is that it is a system with many levels of organisation
- Properties at high levels are often 'emergent'—i.e. they are not directly predictable from lower levels

cell biology cell nucleus

mitochondria

membranes

Proteins

DNA

Amino acids

sugars

cell biology cell nucleus mitochondria membranes organisms specialisation

cell differentiation communication

Proteins

DNA

Amino acids

sugars

populations

cell biology
cell nucleus
mitochondria
membranes

organisms

specialisation

cell differentiation communication

Proteins

DNA

DN

Amino acids

sugars

populations

eco-systems

CELL NUCLEUS

NUCLEAR PORE

NUCLEOLUS

ENDOPLASMIC

RETICULUM

cell biology
cell nucleus
mitochondria
membranes

organisms

specialisation

cell differentiation communication

Proteins

DNA

Amino acids

sugars

Outline

- 1. Course Themes
- 2. Historical Developments
 - Pre-Darwinian evolution
 - Natural selection
 - The modern synthesis

In the Beginning

- ullet Carolus Linnaeus published his $System a\ Naturae$ in 1735
- The 10th edition published in 1758 set up the formal classification that is used with few changes today
- Systematic biology took off

In the Beginning

- ullet Carolus Linnaeus published his $System a\ Naturae$ in 1735
- The 10th edition published in 1758 set up the formal classification that is used with few changes today
- Systematic biology took off

In the Beginning

- ullet Carolus Linnaeus published his $System a\ Naturae$ in 1735
- The 10th edition published in 1758 set up the formal classification that is used with few changes today
- Systematic biology took off

Changing World View

- At end of the 18th century and beginning of the 19th century the world view was changing due to revolutions in geology due to James Hutton, William Smith and Charles Lyell
- James Hutton published this paper Theory of the Earth, or an Investigation of the Laws Observable in the Composition,

 Dissolution and Restoration of Land upon the Globe in 1785
- Charles Lyell's Principles of Geology published in 1830 was convincing enough to become the accepted view of Geology
- This over turned the biblical view of creation
- It also showed the world was very much older than than traditionally believed

Changing World View

- At end of the 18th century and beginning of the 19th century the world view was changing due to revolutions in geology due to James Hutton, William Smith and Charles Lyell
- James Hutton published this paper Theory of the Earth, or an Investigation of the Laws Observable in the Composition,
 Dissolution and Restoration of Land upon the Globe in 1785
- Charles Lyell's Principles of Geology published in 1830 was convincing enough to become the accepted view of Geology
- This over turned the biblical view of creation
- It also showed the world was very much older than than traditionally believed

Changing World View

- At end of the 18th century and beginning of the 19th century the world view was changing due to revolutions in geology due to James Hutton, William Smith and Charles Lyell
- James Hutton published this paper Theory of the Earth, or an Investigation of the Laws Observable in the Composition,

 Dissolution and Restoration of Land upon the Globe in 1785
- Charles Lyell's *Principles of Geology* published in 1830 was convincing enough to become the accepted view of Geology
- This over turned the biblical view of creation
- It also showed the world was very much older than than traditionally believed

Changing World View

- At end of the 18th century and beginning of the 19th century the world view was changing due to revolutions in geology due to James Hutton, William Smith and Charles Lyell
- James Hutton published this paper Theory of the Earth, or an Investigation of the Laws Observable in the Composition,

 Dissolution and Restoration of Land upon the Globe in 1785
- Charles Lyell's Principles of Geology published in 1830 was convincing enough to become the accepted view of Geology
- This over turned the biblical view of creation
- It also showed the world was very much older than than traditionally believed

Changing World View

- At end of the 18th century and beginning of the 19th century the world view was changing due to revolutions in geology due to James Hutton, William Smith and Charles Lyell
- James Hutton published this paper Theory of the Earth, or an Investigation of the Laws Observable in the Composition,

 Dissolution and Restoration of Land upon the Globe in 1785
- Charles Lyell's Principles of Geology published in 1830 was convincing enough to become the accepted view of Geology
- This over turned the biblical view of creation
- It also showed the world was very much older than than traditionally believed

- The ideas of evolution (although that term was used very differently) were current around the 1800's
- A famous early proponent was Charles Darwin's grandfather Erasmus Darwin
- The obstacle to the acceptance of these early theories were partly religious, but also because they failed to give an adequate explanation for how such complex organism evolved
- In contrast "natural theology" advocated by the likes of William Paley used the complexity of life as evidence for God.

- The ideas of evolution (although that term was used very differently) were current around the 1800's
- A famous early proponent was Charles Darwin's grandfather Erasmus Darwin
- The obstacle to the acceptance of these early theories were partly religious, but also because they failed to give an adequate explanation for how such complex organism evolved
- In contrast "natural theology" advocated by the likes of William Paley used the complexity of life as evidence for God.

- The ideas of evolution (although that term was used very differently) were current around the 1800's
- A famous early proponent was Charles Darwin's grandfather Erasmus Darwin
- The obstacle to the acceptance of these early theories were partly religious, but also because they failed to give an adequate explanation for how such complex organism evolved
- In contrast "natural theology" advocated by the likes of William Paley used the complexity of life as evidence for God.

- The ideas of evolution (although that term was used very differently) were current around the 1800's
- A famous early proponent was Charles Darwin's grandfather Erasmus Darwin
- The obstacle to the acceptance of these early theories were partly religious, but also because they failed to give an adequate explanation for how such complex organism evolved
- In contrast "natural theology" advocated by the likes of William Paley used the complexity of life as evidence for God.

- Around 1800 Jean Baptiste Pierre Antoine de Monet Lamarck put forward the view that species weren't fixed
- Although he advocated that species could change he did not see all of life as sharing a common ancestral tree
- He is remembered mostly for his theory of "acquired characteristics" which provide a mechanism for explaining adaptation
- He was a controversial figure whose main contribution was to create a reaction against his ideas lead by the founder of comparative anatomy Georges Cuvier

- Around 1800 Jean Baptiste Pierre Antoine de Monet Lamarck put forward the view that species weren't fixed
- Although he advocated that species could change he did not see all of life as sharing a common ancestral tree
- He is remembered mostly for his theory of "acquired characteristics" which provide a mechanism for explaining adaptation
- He was a controversial figure whose main contribution was to create a reaction against his ideas lead by the founder of comparative anatomy Georges Cuvier

- Around 1800 Jean Baptiste Pierre Antoine de Monet Lamarck put forward the view that species weren't fixed
- Although he advocated that species could change he did not see all of life as sharing a common ancestral tree
- He is remembered mostly for his theory of "acquired characteristics" which provide a mechanism for explaining adaptation
- He was a controversial figure whose main contribution was to create a reaction against his ideas lead by the founder of comparative anatomy Georges Cuvier

- Around 1800 Jean Baptiste Pierre Antoine de Monet Lamarck put forward the view that species weren't fixed
- Although he advocated that species could change he did not see all of life as sharing a common ancestral tree
- He is remembered mostly for his theory of "acquired characteristics" which provide a mechanism for explaining adaptation
- He was a controversial figure whose main contribution was to create a reaction against his ideas lead by the founder of comparative anatomy Georges Cuvier

Systema Naturae

 $Philosophie\ zoologique$

 $Philosophie\ zoologique$

Philosophie zoologique

Voyage of the Beagle

- Darwin sailed out on the Beagle in December 1831, it lasted 5 years
- His published account of this The Voyage of the Beagle gave him an international reputation as a naturalist
- It also raised the questions which lead to the theory of natural selection

Voyage of the Beagle

- Darwin sailed out on the Beagle in December 1831, it lasted 5 years
- His published account of this The Voyage of the Beagle gave him an international reputation as a naturalist
- It also raised the questions which lead to the theory of natural selection

Voyage of the Beagle

- Darwin sailed out on the Beagle in December 1831, it lasted 5 years
- His published account of this The Voyage of the Beagle gave him an international reputation as a naturalist
- It also raised the questions which lead to the theory of natural selection

- On his return, Darwin examined his collection of finches
- He had believed these finches were all one species
- However, on close examination they proved to be many species
- The simplest explanation was that a single migrant had adapted to the habitat on different islands

- 1. Geospiza magnirostris
- 3. Geospiza parvula
- 2. Geospiza fortis
 4. Certhidea olivacea

- On his return, Darwin examined his collection of finches
- He had believed these finches were all one species
- However, on close examination they proved to be many species
- The simplest explanation was that a single migrant had adapted to the habitat on different islands

- 1. Geospiza magnirostris
- 3. Geospiza parvula
- 2. Geospiza fortis
 4. Certhidea olivacea

- On his return, Darwin examined his collection of finches
- He had believed these finches were all one species
- However, on close examination they proved to be many species
- The simplest explanation was that a single migrant had adapted to the habitat on different islands

- 1. Geospiza magnirostris
- 3. Geospiza parvula
- 2. Geospiza fortis
 4. Certhidea olivacea

- On his return, Darwin examined his collection of finches
- He had believed these finches were all one species
- However, on close examination they proved to be many species
- The simplest explanation was that a single migrant had adapted to the habitat on different islands

- 1. Geospiza magnirostris
- 3. Geospiza parvula
- 2. Geospiza fortis 4. Certhidea olivacea

- Having appreciated the ability of animals to adapt to the environment, Darwin sought an mechanistic explanation
- Strongly influenced by Thomas Malthus's Essay on the Principle of Population (1798) Darwin developed the theory of **natural** selection

Natural variations in populations that provide small selective advantages will take over the population

- Having appreciated the ability of animals to adapt to the environment, Darwin sought an mechanistic explanation
- Strongly influenced by Thomas Malthus's Essay on the Principle of Population (1798) Darwin developed the theory of **natural** selection

Natural variations in populations that provide small selective advantages will take over the population

- Having appreciated the ability of animals to adapt to the environment, Darwin sought an mechanistic explanation
- Strongly influenced by Thomas Malthus's Essay on the Principle of Population (1798) Darwin developed the theory of **natural** selection

Natural variations in populations that provide small selective advantages will take over the population

- Having appreciated the ability of animals to adapt to the environment, Darwin sought an mechanistic explanation
- Strongly influenced by Thomas Malthus's Essay on the Principle of Population (1798) Darwin developed the theory of **natural** selection

Natural variations in populations that provide small selective advantages will take over the population

- Darwin was shy and hesitant, he also realised the huge controversy that his theory was likely to cause
- He did what any reasonable person would do
- He spent the next twenty years collecting evidence
- During this time, he published the definitive work on cirripedes (marine invertebrates including barnacles)

- Darwin was shy and hesitant, he also realised the huge controversy that his theory was likely to cause
- He did what any reasonable person would do
- He spent the next twenty years collecting evidence
- During this time, he published the definitive work on cirripedes (marine invertebrates including barnacles)

- Darwin was shy and hesitant, he also realised the huge controversy that his theory was likely to cause
- He did what any reasonable person would do—he procrastinated
- He spent the next twenty years collecting evidence
- During this time, he published the definitive work on cirripedes (marine invertebrates including barnacles)

- Darwin was shy and hesitant, he also realised the huge controversy that his theory was likely to cause
- He did what any reasonable person would do—he procrastinated
- He spent the next twenty years collecting evidence
- During this time, he published the definitive work on cirripedes (marine invertebrates including barnacles)

- Darwin was shy and hesitant, he also realised the huge controversy that his theory was likely to cause
- He did what any reasonable person would do—he procrastinated
- He spent the next twenty years collecting evidence
- During this time, he published the definitive work on cirripedes (marine invertebrates including barnacles)

Alfred Russel Wallace

- While Darwin waited another naturalist, Alfred Wallace, again influenced by Malthus, arrived at the same theory of natural selection
- Wallace, inspired by Darwin's *Voyages of the Beagle*, became a collector of natural history
- He had explored South America and Malaya
- After this last trip he sent his new ideas to his mentor, Charles Darwin

Alfred Russel Wallace

- While Darwin waited another naturalist, Alfred Wallace, again influenced by Malthus, arrived at the same theory of natural selection
- Wallace, inspired by Darwin's *Voyages of the Beagle*, became a collector of natural history
- He had explored South America and Malaya
- After this last trip he sent his new ideas to his mentor, Charles Darwin

Alfred Russel Wallace

- While Darwin waited another naturalist, Alfred Wallace, again influenced by Malthus, arrived at the same theory of natural selection
- Wallace, inspired by Darwin's *Voyages of the Beagle*, became a collector of natural history
- He had explored South America and Malaya
- After this last trip he sent his new ideas to his mentor, Charles Darwin

Alfred Russel Wallace

- While Darwin waited another naturalist, Alfred Wallace, again influenced by Malthus, arrived at the same theory of natural selection
- Wallace, inspired by Darwin's *Voyages of the Beagle*, became a collector of natural history
- He had explored South America and Malaya
- After this last trip he sent his new ideas to his mentor, Charles Darwin

- Darwin received Wallace's manuscript in 1858
- They agreed to publish jointly (a position which Wallace was always happy with)
- Spurred into action Darwin wrote the On the Origins of Species a year later
- Darwin's reputation combined with his enormously persuasive arguments drawing form his 20 years of collecting evidence led to a very swift acceptance of his theory

- Darwin received Wallace's manuscript in 1858
- They agreed to publish jointly (a position which Wallace was always happy with)
- Spurred into action Darwin wrote the *On the Origins of Species* a year later
- Darwin's reputation combined with his enormously persuasive arguments drawing form his 20 years of collecting evidence led to a very swift acceptance of his theory

- Darwin received Wallace's manuscript in 1858
- They agreed to publish jointly (a position which Wallace was always happy with)
- Spurred into action Darwin wrote the *On the Origins of Species* a year later
- Darwin's reputation combined with his enormously persuasive arguments drawing form his 20 years of collecting evidence led to a very swift acceptance of his theory

- Darwin received Wallace's manuscript in 1858
- They agreed to publish jointly (a position which Wallace was always happy with)
- Spurred into action Darwin wrote the *On the Origins of Species* a year later
- Darwin's reputation combined with his enormously persuasive arguments drawing form his 20 years of collecting evidence led to a very swift acceptance of his theory

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - ★ Missing fossil record
 - ★ Difficulty of evolving complex structures (e.g. the eye)

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - ★ Missing fossil record
 - ★ Difficulty of evolving complex structures (e.g. the eye)

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - ★ Missing fossil record
 - ★ Difficulty of evolving complex structures (e.g. the eye)

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - ★ Missing fossil record
 - ★ Difficulty of evolving complex structures (e.g. the eye)

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - * Missing fossil record
 - ★ Difficulty of evolving complex structures (e.g. the eye)

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - * Missing fossil record
 - ★ Difficulty of evolving complex structures (e.g. the eye)

- Darwin used a wide range of arguments including
 - * the power of artificial selection by human breeders
 - * the population of isolated islands by chance migrations
 - * the relatedness of species in a tree like structure
- Darwin also addressed many of the perceived problems with evolution
 - ★ Missing fossil record
 - * Difficulty of evolving complex structures (e.g. the eye)

Struggling to Understand

- Although evolution was readily accepted, the theory of natural selection remained controversial
- It seemed too incredible that random variations were capable of producing the level of complexity and sophistication that makes up life
- Attempting to mollify his critics Darwin wrote six editions of the Origins of Species, the final editions accepting the possibility of mechanisms besides natural selection

Struggling to Understand

- Although evolution was readily accepted, the theory of natural selection remained controversial
- It seemed too incredible that random variations were capable of producing the level of complexity and sophistication that makes up life
- Attempting to mollify his critics Darwin wrote six editions of the Origins of Species, the final editions accepting the possibility of mechanisms besides natural selection

Struggling to Understand

- Although evolution was readily accepted, the theory of natural selection remained controversial
- It seemed too incredible that random variations were capable of producing the level of complexity and sophistication that makes up life
- Attempting to mollify his critics Darwin wrote six editions of the Origins of Species, the final editions accepting the possibility of mechanisms besides natural selection

- Darwin struggled unsuccessfully to understand inheritance
- Although Gregor Mendel published his *Experiments in Plant Hybridization* (1865) it remained neglected until 1900
- A criticism of natural selection which troubled Darwin for the rest of his life was
 - Under reproductive crossover any variation should be averaged out
 - How can there be enough variation for natural selection to work?

- Darwin struggled unsuccessfully to understand inheritance
- Although Gregor Mendel published his *Experiments in Plant Hybridization* (1865) it remained neglected until 1900
- A criticism of natural selection which troubled Darwin for the rest of his life was
 - Under reproductive crossover any variation should be averaged out
 - How can there be enough variation for natural selection to work?

- Darwin struggled unsuccessfully to understand inheritance
- Although Gregor Mendel published his Experiments in Plant Hybridization (1865) it remained neglected until 1900
- A criticism of natural selection which troubled Darwin for the rest of his life was
 - ★ Under reproductive crossover any variation should be averaged out
 - How can there be enough variation for natural selection to work?

- Darwin struggled unsuccessfully to understand inheritance
- Although Gregor Mendel published his *Experiments in Plant Hybridization* (1865) it remained neglected until 1900
- A criticism of natural selection which troubled Darwin for the rest of his life was
 - Under reproductive crossover any variation should be averaged out
 - How can there be enough variation for natural selection to work?

- Darwin struggled unsuccessfully to understand inheritance
- Although Gregor Mendel published his Experiments in Plant Hybridization (1865) it remained neglected until 1900
- A criticism of natural selection which troubled Darwin for the rest of his life was
 - Under reproductive crossover any variation should be averaged out
 - * How can there be enough variation for natural selection to work?

- This criticism of natural selection dominated the evolutionary debate for the next 70-100 years
- After Darwin's death in 1882, the advocates of natural selection lost ground
- Lamarck's theory of "acquired characteristics" was revived
- A theory of large mutations (so called *saltations*) producing dramatics changes in an organism's structure became popular—in part to explain speciation
- This was contrasted against the gradualist, small change, approach of conventional Darwinism

- This criticism of natural selection dominated the evolutionary debate for the next 70-100 years
- After Darwin's death in 1882, the advocates of natural selection lost ground
- Lamarck's theory of "acquired characteristics" was revived
- A theory of large mutations (so called *saltations*) producing dramatics changes in an organism's structure became popular—in part to explain speciation
- This was contrasted against the gradualist, small change, approach of conventional Darwinism

- This criticism of natural selection dominated the evolutionary debate for the next 70-100 years
- After Darwin's death in 1882, the advocates of natural selection lost ground
- Lamarck's theory of "acquired characteristics" was revived
- A theory of large mutations (so called saltations) producing dramatics changes in an organism's structure became popular—in part to explain speciation
- This was contrasted against the gradualist, small change, approach of conventional Darwinism

- This criticism of natural selection dominated the evolutionary debate for the next 70-100 years
- After Darwin's death in 1882, the advocates of natural selection lost ground
- Lamarck's theory of "acquired characteristics" was revived
- A theory of large mutations (so called *saltations*) producing dramatics changes in an organism's structure became popular—in part to explain speciation
- This was contrasted against the gradualist, small change, approach of conventional Darwinism

- This criticism of natural selection dominated the evolutionary debate for the next 70-100 years
- After Darwin's death in 1882, the advocates of natural selection lost ground
- Lamarck's theory of "acquired characteristics" was revived
- A theory of large mutations (so called saltations) producing dramatics changes in an organism's structure became popular—in part to explain speciation
- This was contrasted against the gradualist, small change, approach of conventional Darwinism

- This criticism of natural selection dominated the evolutionary debate for the next 70-100 years
- After Darwin's death in 1882, the advocates of natural selection lost ground
- Lamarck's theory of "acquired characteristics" was revived
- A theory of large mutations (so called saltations) producing dramatics changes in an organism's structure became popular—in part to explain speciation
- This was contrasted against the gradualist, small change, approach of conventional Darwinism

- The rediscovery of Mendelian genetics in 1900 was seen as a blow to natural selection
- In truth, the obstacle to natural selection was probably a desire to believe in teleological arguments of the importance of man
- It took a new generation to discard these objections
- ullet These young Turks were outsiders who had read the $Origin\ of\ Species$ but ignored the establishment thinking

- The rediscovery of Mendelian genetics in 1900 was seen as a blow to natural selection
- In truth, the obstacle to natural selection was probably a desire to believe in teleological arguments of the importance of man
- It took a new generation to discard these objections
- These young Turks were outsiders who had read the *Origin of Species* but ignored the establishment thinking

- The rediscovery of Mendelian genetics in 1900 was seen as a blow to natural selection
- In truth, the obstacle to natural selection was probably a desire to believe in teleological arguments of the importance of man
- It took a new generation to discard these objections
- ullet These young Turks were outsiders who had read the $Origin\ of\ Species$ but ignored the establishment thinking

- The rediscovery of Mendelian genetics in 1900 was seen as a blow to natural selection
- In truth, the obstacle to natural selection was probably a desire to believe in teleological arguments of the importance of man
- It took a new generation to discard these objections
- These young Turks were outsiders who had read the *Origin of Species* but ignored the establishment thinking

- The new thinking was brought about by three mathematical biologists Ronald A. Fisher, Sewell Wright and John. B. S. Haldane
- The main contribution was to show that the particulate nature of inheritance (i.e. existence of discrete genes) was necessary to evolution
- If inheritance is based on discrete genes then diversity won't be lost through reproductive crossover
- This synthesis between natural selection and genetic inheritance was grounded on mathematical models

- The new thinking was brought about by three mathematical biologists Ronald A. Fisher, Sewell Wright and John. B. S. Haldane
- The main contribution was to show that the particulate nature of inheritance (i.e. existence of discrete genes) was necessary to evolution
- If inheritance is based on discrete genes then diversity won't be lost through reproductive crossover
- This synthesis between natural selection and genetic inheritance was grounded on mathematical models

- The new thinking was brought about by three mathematical biologists Ronald A. Fisher, Sewell Wright and John. B. S. Haldane
- The main contribution was to show that the particulate nature of inheritance (i.e. existence of discrete genes) was necessary to evolution
- If inheritance is based on discrete genes then diversity won't be lost through reproductive crossover
- This synthesis between natural selection and genetic inheritance was grounded on mathematical models

- The new thinking was brought about by three mathematical biologists Ronald A. Fisher, Sewell Wright and John. B. S. Haldane
- The main contribution was to show that the particulate nature of inheritance (i.e. existence of discrete genes) was necessary to evolution
- If inheritance is based on discrete genes then diversity won't be lost through reproductive crossover
- This synthesis between natural selection and genetic inheritance was grounded on mathematical models

Influence of the Synthesis

- Fisher, Wright and Haldane influence was slow to take off
- Fisher's classic book, *The Genetical Theory of Natural Selection* (1930) took 17 years to sell out its first print run of 1500 copies
- Both Fisher and Wright were difficult characters who were not absorbed into mainstream biology
- Fortunately, Haldane was a supremely good publicist, writing many popular science books and articles
- The spread of the synthesis was through a few mainstream biologists Dobzhansky, Julian Huxley, Mayr, Stebbins, Simpson and later authors

- Fisher, Wright and Haldane influence was slow to take off
- Fisher's classic book, *The Genetical Theory of Natural Selection* (1930) took 17 years to sell out its first print run of 1500 copies
- Both Fisher and Wright were difficult characters who were not absorbed into mainstream biology
- Fortunately, Haldane was a supremely good publicist, writing many popular science books and articles
- The spread of the synthesis was through a few mainstream biologists Dobzhansky, Julian Huxley, Mayr, Stebbins, Simpson and later authors

- Fisher, Wright and Haldane influence was slow to take off
- Fisher's classic book, *The Genetical Theory of Natural Selection* (1930) took 17 years to sell out its first print run of 1500 copies
- Both Fisher and Wright were difficult characters who were not absorbed into mainstream biology
- Fortunately, Haldane was a supremely good publicist, writing many popular science books and articles
- The spread of the synthesis was through a few mainstream biologists Dobzhansky, Julian Huxley, Mayr, Stebbins, Simpson and later authors

- Fisher, Wright and Haldane influence was slow to take off
- Fisher's classic book, *The Genetical Theory of Natural Selection* (1930) took 17 years to sell out its first print run of 1500 copies
- Both Fisher and Wright were difficult characters who were not absorbed into mainstream biology
- Fortunately, Haldane was a supremely good publicist, writing many popular science books and articles
- The spread of the synthesis was through a few mainstream biologists Dobzhansky, Julian Huxley, Mayr, Stebbins, Simpson and later authors

- Fisher, Wright and Haldane influence was slow to take off
- Fisher's classic book, *The Genetical Theory of Natural Selection* (1930) took 17 years to sell out its first print run of 1500 copies
- Both Fisher and Wright were difficult characters who were not absorbed into mainstream biology
- Fortunately, Haldane was a supremely good publicist, writing many popular science books and articles
- The spread of the synthesis was through a few mainstream biologists Dobzhansky, Julian Huxley, Mayr, Stebbins, Simpson and later authors

Modern Arguments

- By the beginning of the 1960's natural selection and the modern synthesis—often referred to as neo-Darwinism triumphed
- It became part of popular science with the publication of Dawkin's The Selfish Gene in 1976
- However, debate still continues about what are the important elements of evolution

Modern Arguments

- By the beginning of the 1960's natural selection and the modern synthesis—often referred to as neo-Darwinism triumphed
- It became part of popular science with the publication of Dawkin's **The Selfish Gene** in 1976
- However, debate still continues about what are the important elements of evolution

Modern Arguments

- By the beginning of the 1960's natural selection and the modern synthesis—often referred to as neo-Darwinism triumphed
- It became part of popular science with the publication of Dawkin's The Selfish Gene in 1976
- However, debate still continues about what are the important elements of evolution

Fisher versus Wright

- Fisher and Wright quickly argued about the importance of fluctuations
- Wright had studied breeding in longhorn cattle and believed that inbreeding was important
- Wright contested that small populations were necessary to explore a complex fitness landscape

Fisher versus Wright

- Fisher and Wright quickly argued about the importance of fluctuations
- Wright had studied breeding in longhorn cattle and believed that inbreeding was important
- Wright contested that small populations were necessary to explore a complex fitness landscape

Fisher versus Wright

- Fisher and Wright quickly argued about the importance of fluctuations
- Wright had studied breeding in longhorn cattle and believed that inbreeding was important
- Wright contested that small populations were necessary to explore a complex fitness landscape

- The mechanism for speciation (one species becoming two) has caused considerable contention
- The *saltationists* put this down to large mutations
- Geographical isolation was considered one of the major causes of speciation
- Ernst Mayr contend that speciation caused mainly by isolation is one of the driving forces of invention in evolution
- He argues (following Wright) that small populations at the peripheral locations are far more likely to be the source of innovation

- The mechanism for speciation (one species becoming two) has caused considerable contention
- The *saltationists* put this down to large mutations
- Geographical isolation was considered one of the major causes of speciation
- Ernst Mayr contend that speciation caused mainly by isolation is one of the driving forces of invention in evolution
- He argues (following Wright) that small populations at the peripheral locations are far more likely to be the source of innovation

- The mechanism for speciation (one species becoming two) has caused considerable contention
- The *saltationists* put this down to large mutations
- Geographical isolation was considered one of the major causes of speciation
- Ernst Mayr contend that speciation caused mainly by isolation is one of the driving forces of invention in evolution
- He argues (following Wright) that small populations at the peripheral locations are far more likely to be the source of innovation

- The mechanism for speciation (one species becoming two) has caused considerable contention
- The *saltationists* put this down to large mutations
- Geographical isolation was considered one of the major causes of speciation
- Ernst Mayr contend that speciation caused mainly by isolation is one of the driving forces of invention in evolution
- He argues (following Wright) that small populations at the peripheral locations are far more likely to be the source of innovation

- The mechanism for speciation (one species becoming two) has caused considerable contention
- The *saltationists* put this down to large mutations
- Geographical isolation was considered one of the major causes of speciation
- Ernst Mayr contend that speciation caused mainly by isolation is one of the driving forces of invention in evolution
- He argues (following Wright) that small populations at the peripheral locations are far more likely to be the source of innovation

- Building on Mayr's view Eldedge and Gould proposed the theory of punctuated evolution in 1972
- Their view is that evolution consists of periods of very rapid evolution around speciation events followed by long periods of stasis
- This was put forward as an explanation for the rapid changes found in the fossil record
- From Darwin onward this had been attributed to incompleteness

- Building on Mayr's view Eldedge and Gould proposed the theory of punctuated evolution in 1972
- Their view is that evolution consists of periods of very rapid evolution around speciation events followed by long periods of stasis
- This was put forward as an explanation for the rapid changes found in the fossil record
- From Darwin onward this had been attributed to incompleteness

- Building on Mayr's view Eldedge and Gould proposed the theory of punctuated evolution in 1972
- Their view is that evolution consists of periods of very rapid evolution around speciation events followed by long periods of stasis
- This was put forward as an explanation for the rapid changes found in the fossil record
- From Darwin onward this had been attributed to incompleteness

- Building on Mayr's view Eldedge and Gould proposed the theory of punctuated evolution in 1972
- Their view is that evolution consists of periods of very rapid evolution around speciation events followed by long periods of stasis
- This was put forward as an explanation for the rapid changes found in the fossil record
- From Darwin onward this had been attributed to incompleteness

- Another area of contention is at what level selection operates
- One position taken by Richard Dawkin's and his followers is that evolution occurs only at the level of genes
- They refute the notion of group selection where a trait is taken up because it advantages the group
- Whether this is a semantic argument or one of real substance remains an open question

- Another area of contention is at what level selection operates
- One position taken by Richard Dawkin's and his followers is that evolution occurs only at the level of genes
- They refute the notion of group selection where a trait is taken up because it advantages the group
- Whether this is a semantic argument or one of real substance remains an open question

- Another area of contention is at what level selection operates
- One position taken by Richard Dawkin's and his followers is that evolution occurs only at the level of genes
- They refute the notion of group selection where a trait is taken up because it advantages the group
- Whether this is a semantic argument or one of real substance remains an open question

- Another area of contention is at what level selection operates
- One position taken by Richard Dawkin's and his followers is that evolution occurs only at the level of genes
- They refute the notion of group selection where a trait is taken up because it advantages the group
- Whether this is a semantic argument or one of real substance remains an open question

- Evolution is a one off—it is not an experimental science
- In the last 50 years we have an explosion in our knowledge of the low-level mechanism of evolution
- Evolution in the test tube is now common place and can test our understanding of micro-evolution (evolution within a species)
- Experimental biology and paleontology are continually refining our knowledge of what happened—they can't tell us about what might have happened
- ullet Mathematical models have been supplemented by computer simulations— $artificial\ life$

- Evolution is a one off—it is not an experimental science
- In the last 50 years we have an explosion in our knowledge of the low-level mechanism of evolution
- Evolution in the test tube is now common place and can test our understanding of micro-evolution (evolution within a species)
- Experimental biology and paleontology are continually refining our knowledge of what happened—they can't tell us about what might have happened
- Mathematical models have been supplemented by computer simulations— $artificial\ life$

- Evolution is a one off—it is not an experimental science
- In the last 50 years we have an explosion in our knowledge of the low-level mechanism of evolution
- Evolution in the test tube is now common place and can test our understanding of micro-evolution (evolution within a species)
- Experimental biology and paleontology are continually refining our knowledge of what happened—they can't tell us about what might have happened
- ullet Mathematical models have been supplemented by computer simulations— $artificial\ life$

- Evolution is a one off—it is not an experimental science
- In the last 50 years we have an explosion in our knowledge of the low-level mechanism of evolution
- Evolution in the test tube is now common place and can test our understanding of micro-evolution (evolution within a species)
- Experimental biology and paleontology are continually refining our knowledge of what happened—they can't tell us about what might have happened
- Mathematical models have been supplemented by computer simulations— $artificial\ life$

- Evolution is a one off—it is not an experimental science
- In the last 50 years we have an explosion in our knowledge of the low-level mechanism of evolution
- Evolution in the test tube is now common place and can test our understanding of micro-evolution (evolution within a species)
- Experimental biology and paleontology are continually refining our knowledge of what happened—they can't tell us about what might have happened
- Mathematical models have been supplemented by computer simulations— $artificial\ life$

- Evolution is a one off—it is not an experimental science
- In the last 50 years we have an explosion in our knowledge of the low-level mechanism of evolution
- Evolution in the test tube is now common place and can test our understanding of micro-evolution (evolution within a species)
- Experimental biology and paleontology are continually refining our knowledge of what happened—they can't tell us about what might have happened
- ullet Mathematical models have been supplemented by computer simulations— $artificial\ life$