

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

Tutorial (SEM cold-FET Mixer)

The following cold-FET mixer (biased @ $V_{DSO}=0$ V) is used to design a SEM up-converter where the LO signal V_1 is applied to the gate, which is biased @ ($V_{GSO}=V_0$) while the IF input signal is applied to the drain using a low-pass filter and the output signal is extracted at the drain port using a high-pass filter.

The nonlinear operation of the cold-FET (NL) is expressed by the 2 following equations that give the output current I_{OUT} as a function of input and output control voltages V_1 and V_2 :

$$V_{GS} = V_0 + V_1$$
 (eq1) where V_0 is a constant (gate bias voltage)
 $I_{OUT} = p V_2 - q V_2 V_{GS}^2 + r V_1$ (eq2) where p, q and r are constants

The SEM cold-FET mixer is shown below and the main frequencies are :

$$f_{LO} = 9 \text{ GHz}$$
, $f_{IF} = 0.5 \text{ GHz}$ et $f_{RF} = f_{LO} + f_{IF} = 9.5 \text{ GHz}$ ($\omega_{RF} = \omega_{LO} + \omega_{IF}$).

The two control voltages V_1 and V_2 of the FET mixer are :

- LO voltage at gate port : $V_1 = V_{LO} \cos(\omega_{lO}t)$ (eq3)
- IF voltage at drain port : $V_2 = V_{IF} \cos(\omega_{IF} t)$ (eq4)

- 1) Using equations 1 to 4, express the output current I_{OUT} as a function of signal magnitudes (V_{LO} , V_{IF}), nonlinearity constants (p, q, r), gate bias V_0 and the mixing frequencies. The following notations can be used for mixing frequencies: $\omega_{IM} = (\omega_{IO} \omega_{IF})$; $\omega_1 = (2\omega_{IO} \omega_{IF})$; $\omega_2 = (2\omega_{IO} + \omega_{IF})$
- 2) The high-pass filter is designed to reject frequencies lower than 5GHz while the low-pass frequency is designed to cut frequencies greater than 5GHz. Therefore, what are the mixing frequencies at the RF output port?
- 3) Determine the expression of the voltage conversion gain G_{CV}.
- 4) If the LO port is assumed to be matched to R_{LO},
 - a) express the LO power applied at the LO port
 - b) express the LO power at the RF output port
 - c) express in dB the LO-to-RF isolation
 - d) what is the LO-to-IF isolation?
 - e) express the equivalent impedance Z_{IN} seen by the IF generator @ ω_{IF} at the IF input port