1-7 对偶与范式

1-7.1 对偶式

定义1-7.1 在给定的命题公式A中,将联结词\换成 A,将A换成\, 若有特殊变元F和T亦相互取代,所得 公式A*称为A的对偶式。

显然,A也是A*的对偶式。

例:求对偶式

a)
$$(P \lor Q) \land R$$
 $(P \land Q) \lor R$

b)
$$(P \wedge Q) \vee T$$
 $(P \vee Q) \wedge F$

c)
$$\mathbf{P} \uparrow \mathbf{Q}$$
 $\mathbf{P} \downarrow \mathbf{Q}$

d)
$$\mathbf{P} \downarrow \mathbf{Q}$$
 $\mathbf{P} \uparrow \mathbf{Q}$

e)
$$\neg (P \lor Q) \land (P \lor \neg (Q \land \neg S))$$

 $\neg (P \land Q) \lor (P \land \neg (Q \lor \neg S))$

f)
$$\neg P \lor Q \land R$$
 $\neg P \land (Q \lor R)$

定理 设A和A*是对偶式, P_1 , P_2 , P_1 是出现在A和A*中的原子变元,则

$$\neg A(P_1, P_2, ..., Pn) \Leftrightarrow A^*(\neg P_1, \neg P_2, ..., \neg Pn)$$
$$A(\neg P_1, \neg P_2, ..., \neg Pn) \Leftrightarrow \neg A^*(P_1, P_2, ..., Pn)$$

证明:由德.摩根定律

同理A($\neg P_1, \neg P_2, ..., \neg P_n$) $\Leftrightarrow \neg A^*(P_1, P_2, ..., P_n)$

例题: 设A (S,W,R) ⇔¬S ∧(¬ W ∨ R), 求它的等价式 解:由定理知: A^* (S,W,R) $\Leftrightarrow \neg S \vee (\neg W \wedge R)$ A^* ($\neg S$, $\neg W$, $\neg R$) $\Leftrightarrow S \lor (W \land \neg R)$ $\neg A^* (\neg S, \neg W, \neg R) \Leftrightarrow \neg (S \lor (W \land \neg R))$ 即为A的等价式

2023/2/27

定理 设 P_1 , P_2 , P_1 是出现在公式A和B中的所有原子 变元, 如果A \Leftrightarrow B, 则A* \Leftrightarrow B*。

证明: 见P30

范式

- 同一命题有很多相互等价的表达形式
- 一些复杂的命题需要经过繁琐的推导才能确定其是否等价
- 期望公式规范化——范式
- 两种范式: 合取范式与析取范式

析取范式

命题公式 A 如果可等价地写成如下形式:

 $A_1 \vee A_2 \vee ... \vee A_n$ (n\ge 1),

其中每个项 A_i (i=1,2,...,n) 是命题变元或其否定形式的合取式,称该公式为 A 的析取范式。

举例:

因为 $P\leftrightarrow Q \Leftrightarrow (P\land Q)\lor (\neg P\land \neg Q),$

则 $(P \land Q) \lor (\neg P \land \neg Q)$ 是 $P \leftrightarrow Q$ 的析取范式。

合取范式

命题公式 A 如果可等价地写成如下形式:

 $A_1 \wedge A_2 \wedge ... \wedge A_n$ (n≥1),

其中每个项 A_i (i=1,2,...,n)是命题变元或其否定形式的析取式, 称该公式为 A 的合取范式。

举例:

因为 $P\leftrightarrow Q \Leftrightarrow (\neg P \lor Q) \land (P \lor \neg Q)$ ($\neg P \lor Q$) $\land (P \lor \neg Q)$ 是 $P\leftrightarrow Q$ 的合取范式。

从定义可以看出:

- ❖ 在析取范式与合取范式中只含有联结词 "¬, ∧, ∨"。
- ❖ "¬"在命题变元之前。

注: PAQ 既是合取范式, 也是析取范式

注: 任何公式都存在与之等价的析取范式和合取范式

析取范式与合取范式的写法:

(1)去掉"→"和"↔"。

(2)将"一"移到命题变元前。

用公式 $\neg A(P_1,P_2,...,P_n) \Leftrightarrow A^*(\neg P_1,\neg P_2,...,\neg P_n)$

(3)用分配律、幂等律等公式进行整理,使之成为所要求的形式。

例: $求(P\leftrightarrow Q)\rightarrow R$ 的析取范式与合取范式。

先求析取范式:

(P↔Q)→R

⇔¬((¬P∨Q)∧(P∨¬Q))∨R ---去掉其它连结词

⇔(P/¬**Q)∨(¬P/Q)∨R** --- "¬" 移到命题变元前面

再求合取范式:

(P↔Q)→R

⇔¬((P∧Q)∨(¬P∧¬Q))∨R ---去掉其它连结词

⇔((¬P∨¬Q)∧(P∨Q))∨R --- "¬" 移到命题变元前面

⇔(¬P∨¬Q∨R)∧(P∨Q∨R) --- 整理

例

例: A, B, C, D 四个人中要派两个人出差,按下述三个条件有几种派法? ① 若 A 去则 C 和 D 中要去一个人。② B 和 C 不能都去。③ C 去则 D 要留下。

解: 令 A, B, C, D 分别表示 A去, B去, C去, D去。

- $\textcircled{1} A \rightarrow (C \overline{\vee} D) \Leftrightarrow A \rightarrow ((C \wedge \neg D) \vee (\neg C \wedge D)) \\ \Leftrightarrow \neg A \vee (C \wedge \neg D) \vee (\neg C \wedge D)$
- \bigcirc ¬(B \land C) \Leftrightarrow ¬B \lor ¬C
- $\textcircled{3} C \rightarrow \neg D \Leftrightarrow \neg C \lor \neg D$

总的条件为:

 $(\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land (\neg B \lor \neg C) \land (\neg C \lor \neg D)$

例

将几个条件的合取式化成析取范式:

$$\begin{array}{l} (\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land (\neg B \lor \neg C) \land (\neg C \lor \neg D) \\ \Leftrightarrow (\neg A \lor (C \land \neg D) \lor (\neg C \land D)) \land (\neg C \lor (\neg B \land \neg D)) \\ \Leftrightarrow (\neg A \land \neg C) \lor (C \land \neg D \land \neg C) \lor (\neg C \land D \land \neg C) \lor \\ (\neg A \land \neg B \land \neg D) \lor (C \land \neg D \land \neg B \land \neg D) \lor (\neg C \land D \land \neg B \land \neg D) \\ \Leftrightarrow (\neg A \land \neg C) \lor (\neg C \land D) \lor (\neg A \land \neg B \land \neg D) \lor (C \land \neg D \land \neg B) \\ \end{array}$$

例

最后的派法要使得 (¬A∧¬C)∨(¬C∧D)∨(¬A∧¬B∧¬D)∨(C∧¬D∧¬B) 为T。

可以取 $\neg A \land \neg C$ 为 T, 得 B 和 D 去。可以取 $\neg C \land D$ 为 T, 得 A 和 D 去,或者 B 和 D 去。可以取 $C \land \neg D \land \neg B$ 为 T, 得 A 和 C 去。

综上,最后得到三种派法: A和C去、A和D去、B和D去。

思考

一个公式的析取范式 或合取范式是否唯一?

※小项:是n个命题变元的合取式,其中每个变元必出现且仅出现一次(以本身或否定形式),称这个合取式为小项。

例如,含有两个变元的小项:

 $P \land Q$, $P \land \neg Q$, $\neg P \land Q$, $\neg P \land \neg Q$

❖若有n个变元,则有2n个小项。

小项编码:

- ❖ 含有 n 个变元的小项的角标用 n 位二进制码表示。
- ❖ 变元按字母次序排列。
- ❖ 用 1 表示变元本身, 0 表示变元的否定形式。

```
例: m_{00} \Leftrightarrow \neg P \land \neg Q, m_{01} \Leftrightarrow \neg P \land Q, m_{10} \Leftrightarrow P \land \neg Q, m_{11} \Leftrightarrow P \land Q m_{101} \Leftrightarrow P \land \neg Q \land R, m_{100} \Leftrightarrow P \land \neg Q \land \neg R
```

考察含有两个变元的所有小项的真值表:

			m ₀₀	m ₀₁	m ₁₀	m ₁₁
	Р	Q	¬P∧¬Q	¬P∧Q	P∧¬Q	P∧Q
00	F	F	Т	F	F	F
01	F	Т	F	Т	F	F
10	T	F	F	F	Т	F
11	T	Т	F	F	F	Т

- 1. 每个小项当且仅当其赋值与编码相同时,其真值为 T; 而其余 2ⁿ-1 组赋值均使该小项的真值为 F。
- 2. 全体小项的析取式为永真式,记为: $\sum m_i \Leftrightarrow m_0 \lor m_1 \lor ... \lor m_2^{n_{-1}} \Leftrightarrow T$

主析取范式定义: 若一个命题公式的析取范式为 $A_1 \lor A_2 \lor ... \lor A_n (n ≥ 1)$, 其中每个 A_i (i = 1, 2, ..., n) 都是小项,则称之为该命题公式的主析取范式。

主析取范式的求法:

- (1) 先写出给定公式的析取范式 $A_1 \lor A_2 \lor ... \lor A_n$ 。
- (2) 为使每个 A_i 都变成小项,对缺少变元的项 A_i 要补全变元,比如缺变元 R,就用 " \ (R \ \ ¬R)" 的形式补 R。
- (3) 用分配律等公式加以整理。

例: $求 P \rightarrow Q$ 的主析取范式。

解: $P \rightarrow Q \Leftrightarrow \neg P \lor Q \longrightarrow \pm 掉 其它连结词$

⇔(¬P∧(Q∨¬Q))∨((P∨¬P)∧Q) ---补变元

 $\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q) \lor (\neg P \land Q)$

--- 用分配律展开

 $\Leftrightarrow (\neg P \land Q) \lor (\neg P \land \neg Q) \lor (P \land Q)$

练习: 求 (P^Q) VR的主析取范式。

求主析取范式的真值表法:

- (1) 列出给定公式的真值表。
- (2) 找出该公式真值表中每个为"T"行的赋值所对应的小项。
- (3) 用"\"联结上述小项,即可。

例: $\bar{x} P \rightarrow Q$ 和 $P \leftrightarrow Q$ 的主析取范式

Р	Q	$P \rightarrow Q$	P↔Q
0	0	Т	Т
0	1	Т	F
1	0	F	F
1	1	Т	Т

$$P \rightarrow Q \Leftrightarrow m_{00} \lor m_{01} \lor m_{11}$$
$$\Leftrightarrow (\neg P \land \neg Q) \lor (\neg P \land Q) \lor (P \land Q)$$
$$P \leftrightarrow Q \Leftrightarrow m_{00} \lor m_{11} \Leftrightarrow (\neg P \land \neg Q) \lor (P \land Q)$$

定理 在真值表中,一个使公式的真值为T的赋值所对应的小项的析取,即为此公式的主析取范式。

思考题: 永真公式的主析取范式是什么样的?

- ❖ 大项定义: 是n个命题变元的析取式,其中每个变元必出现且仅出现一次(以本身或否定形式),称该析取式为大项。
- ❖有n个变元,则有 2n 个大项。

❖大项的编码:大项的编码正好与小项相反,用0表示变元本身,1表示变元的否定形式。

如: $M_{00}\Leftrightarrow P\lor Q$ $M_{01}\Leftrightarrow P\lor \neg Q$

 $M_{10} \Leftrightarrow \neg P \lor Q$ $M_{11} \Leftrightarrow \neg P \lor \neg Q$

显然, M_i⇔¬m_i

例: $M_{011} \Leftrightarrow P \lor \neg Q \lor \neg R \Leftrightarrow \neg (\neg P \land Q \land R)$

 $\Leftrightarrow \neg m_{011}$

考察含有两个变元的所有大项的真值表:

			M_{00}	M ₀₁	M ₁₀	M ₁₁
	Р	Q	P ee Q	$P ee \neg Q$	$\neg P \bigvee Q$	$\neg P \lor \neg Q$
00	F	F	F	Т	Т	Т
01	F	Т	Т	F	Т	Т
10	Т	F	Т	Т	F	Т
11	Т	Т	Т	Т	Т	F

- 1. 每个大项当且仅当其赋值与编码相同时,其真值为
 - F; 其余 2n-1 组赋值均使该大项的真值为 T。
- 2. 全体大项的合取式必为永假式

$$\prod_{i=0}^{2^{n}-1} \mathbf{M}_{i} \iff \mathbf{M}_{0} \wedge \mathbf{M}_{1} \wedge ... \wedge \mathbf{M}_{2^{n}-1} \iff \mathbf{F}$$

主合取范式定义: 若一个命题公式的合取范式为 $A_1 \land A_2 \land ... \land A_n (n \ge 1)$,其中每个 A_i (i=1,2,...,n) 都是大项,则称之为该命题公式的主合取范式。

求主合取范式的步骤:

- (1) 先写出给定公式的合取范式 $A_1 \land A_2 \land ... \land A_n$ 。
- (2) 为使每个 A_i 变成大项,对缺少变元的项 A_i 补全变元,比如缺变元 R,用 " \vee ($R \land \neg R$)"的形式补R。
- (3) 用分配律等公式加以整理。

2023/2/27

```
例: \bar{\chi}(P\rightarrow Q)\rightarrow R的主合取范式
(P\rightarrow Q)\rightarrow R
⇔¬(¬P∨Q)∨R -----去掉其它连结词
⇔(P∧¬Q)∨R ----- "¬" 移到命题变元前面
⇔(P∨R)∧(¬Q∨R) ----- 化成合取范式
\Leftrightarrow(P\lor(Q\land¬Q)\lorR)\land((P\land¬P)\lor¬Q\lorR) ---补变元
\Leftrightarrow (P\lorQ\lorR)\land (P\lor¬Q\lorR)\land
    (PV¬QVR)∧(¬PV¬QVR) ---用分配率整理
```

主合取范式的真值表求法:

- (1) 列出给定公式的真值表。
- (2) 找出该公式真值表中的每个为"F"行的赋值所对应的大项。
- (3) 用" / "联结上述大项,即可。

定理 在真值表中,一个使公式的真值为F的赋值所对应的大项的合取,即为此公式的主合取范式。

例: $\bar{x} P \rightarrow Q$ 和 $P \leftrightarrow Q$ 的主合取范式

Р	Q	P→Q	P↔Q
0	0	Т	Т
0	1	Т	F
1	0	F	F
1	1	Т	Т

$$P \rightarrow Q \Leftrightarrow M_{10} \Leftrightarrow \neg P \vee Q$$

$$P \leftrightarrow Q \Leftrightarrow M_{01} \wedge M_{10}$$

$$\Leftrightarrow (P \vee \neg Q) \wedge (\neg P \vee Q)$$

思考:

- 1. 永真公式的主析取范式是什么样? 是否有主合取范式?
- 2. 永假公式的主合取范式是什么样? 是否有主析取范式?
- 3. 若已知主合取范式,能否直接写出主析取范式?或者已知主析取范式,能否直接写出主合取范式?

例:已知A(P,Q,R)的主析取范式中含有下面小项 m_1 , m_3 , m_5 , m_7 ,求它的和主合取范式。

解: 在真值表中,除了使命题公式A为真的赋值,其余的就是使A为假的赋值。而主析取范式中包含的小项的编码,就是使命题公式 A 为真的赋值

例:已知A(P,Q,R)的主析取范式中含有下面小项 m_1 , m_3 , m_5 , m_7 ,求它的和主合取范式。

解: 所以赋值1,3,5,7,即001,011,101,111 就是使A为真的赋值。0,2,4,6即000,010,100,110是使A为假的赋值。

 $\begin{array}{l} \mathsf{A}(\mathsf{P},\mathsf{Q},\mathsf{R}) \Leftrightarrow \mathsf{m}_1 \vee \mathsf{m}_3 \vee \mathsf{m}_5 \vee \mathsf{m}_7 \Leftrightarrow \mathsf{M}_0 \wedge \mathsf{M}_2 \wedge \mathsf{M}_4 \wedge \mathsf{M}_6 \\ \Leftrightarrow \mathsf{M}_{000} \wedge \mathsf{M}_{010} \wedge \mathsf{M}_{100} \wedge \mathsf{M}_{110} \\ \Leftrightarrow (\mathsf{P} \vee \mathsf{Q} \vee \mathsf{R}) \wedge (\mathsf{P} \vee \neg \mathsf{Q} \vee \mathsf{R}) \wedge (\neg \mathsf{P} \vee \mathsf{Q} \vee \mathsf{R}) \\ \wedge (\neg \mathsf{P} \vee \neg \mathsf{Q} \vee \mathsf{R}) \end{array}$

2023/2/27

