高等数学期中试题

2013 -2014 学年第一学期

考证	【科目: <u>高等数学B(上)</u>	考试	式时间: <u>2013 年10 月 28 日</u>
姓	名:	学	号:
本试题共 $_{6}$ 道大题,满分 $_{100}$ 分			
1.	(每空4分,共48分)		
	(1)	0 0,贝	則 $f(x)$ 的逆函数 $f^{-1}(x) = $
	(2) 求极限: $\lim_{x\to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{\ln(1+x)} =$		$\lim_{n \to \infty} \left(\frac{1+n^2}{n^2-2} \right)^{n^2} = \underline{\qquad}.$
	(3) $f(x) = \begin{cases} \frac{\sin x}{x} e^{\frac{1}{x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$	[I] x =	= 0 是第 类间断点.
	$(4) \lim_{x \to a+0} f(x) = \infty 的定义:$		
	(5) 设函数 $f(x)$ 在 $x = a$ 处可	导, 且	$ \exists \lim_{h \to 0} \frac{f(a-2h)-f(a+h)}{h} = 1, \ \forall f'(a) = \underline{\qquad}. $
	(6) 设函数 $f(x) = \arctan e^x -$	$\ln $	$\sqrt{\frac{e^{2x}}{1+e^{2x}}}, \ \mathbb{M} \ f'(1) = \underline{\qquad}.$
	(7) 平面曲线 $\begin{cases} x = e^t \sin 2t \\ y = e^t \cos t \end{cases}$	在 (0	0,1) 处的切线方程为
	(8) 设函数 $f(x) = \ln(x + \sqrt{1 - x})$	$\overline{-x^2}$),	$f'''(\sqrt{3}) =$
	(9) 设函数 $f(x)$ 由方程 $2^{xy} = 1$		
	$(10) 求不定积分: \int \sin^2 \frac{x}{2} dx =$		求定积分: $\int_{-1}^{1} \frac{1}{x^2 - 9} dx =$
2.	(10分) 若 $f(x)$ 是 [0,1] 上不恒	为零	的非负连续函数, 证明 $\int_0^1 f(x)dx > 0$.
3.	(10分) 证明 $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.		
4.	(12分) 若 f 在 $x = 0$ 处可导,	且 f	$ f(x) \le \sin x , $
5.	(10分) 设 $f(x)$ 在 $[a,b]$ 上连续	$x_i \in$	$\in [a,b], t_i > 0 (i=1,2,\cdots,n), oxed{eta} \sum_{i=1}^n t_i = 1.$ 证明
	至少存在一点 $\xi \in [a,b]$ 使得 f	$(\xi) =$	$=\sum_{i=1}^n t_i f(x_i).$
6.	(10分) 设 $f(x) = \lim_{n \to \infty} \frac{\ln(e^n + x^n)}{n}$	$, x \ge$	≥ 0 . 求 $f(x)$, 并判断函数 $f(x)$ 是否连续.