

Licence 3^e année parcours Mathématiques 2018-2019 M67, GÉOMÉTRIE ÉLÉMENTAIRE

DEVOIR SURVEILLÉ

21 mai 2019

[durée : 3 heures]

Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Construction à la règle et au compas)

a) Soient O et I deux points distincts du plan. Construire à la règle et au compas à partir de ces deux points les sommets $A_1 = I, A_2, \ldots, A_8$ d'un octogone régulier inscrit dans le cercle de centre O et de rayon OI (c.-à-d. des points $A_1 = I, A_2, \ldots, A_8$ deux à deux distincts situés sur le cercle de centre O passant par I tels que $A_1A_2 = A_2A_3 = \cdots = A_7A_8 = A_8A_1$).

b) Déterminer l'aire de cet octogone régulier en fonction du rayon R = OI.

Exercice 2 (Quadrilatère « des milieux »)

Étant donné un quadrilatère convexe (dit « de départ ») on appelle « quadrilatère des milieux » le quadrilatère convexe dont les sommets sont les milieux des côtés du quadrilatère de départ.

- a) Montrer que quel que soit le quadrilatère de départ, le quadrilatère des milieux est un parallélogramme.
- b) Quel est le rapport entre l'aire du quadrilatère de départ et l'aire du quadrilatère des milieux?
- c) Si le quadrilatère de départ est lui-même un parallélogramme, sous quelle condition le quadrilatère des milieux est-il un rectangle? et un carré?

Exercice 3 (Triangle rectangle et cercles)

a) Soit ABC un triangle rectangle en C. Soient a = BC et b = AC les longueurs des côtés de l'angle droit. Montrer que la longueur h de la hauteur issue de C vérifie

$$\frac{1}{h^2} = \frac{1}{a^2} + \frac{1}{b^2}.$$

b) Soit C_1 un cercle de diamètre [OM]. Soit A un point de C_1 différent de O et M. Soit C_2 le cercle de centre O passant par M. On note B et C les points d'intersection de (OA) et C_2 . Montrer que

$$\frac{1}{MB^2} + \frac{1}{MC^2} = \frac{1}{MA^2}.$$

c) Exprimer les longueurs des arcs \widehat{MB} et \widehat{MC} de \mathcal{C}_2 en fonction des longueurs des arcs \widehat{AO} et \widehat{AM} de \mathcal{C}_1 .

Exercice 4 (Kangourou 2019)

La figure ci-contre est faite de trois cercles de même rayon R dont les centres sont alignés. Le cercle du milieu passe par les centres des deux autres. Quel est le périmètre de cette figure?

^{1.} On considère toujours l'arc le plus court : par exemple dans le cas de \widehat{MB} on parle de l'arc ne contenant pas C, dans le cas de \widehat{AM} on parle de l'arc ne contenant pas O.