BIOSTATISTICS & COMPUTER SCIENCE

INTRODUCTION

STATISTICS

Imposing form of mathematics

It Suggests: Tables, Figures, Charts/ Graphs

Commonly Found in: Newspapers, Journals, Books, Various reports, Speeches, Lectures, TV, Social Media.

STATISTICS

S. No.	Country	Total Cases
1	Russia	1,80,53,359
2	Ukraine	49,90,465
3	Australia	53,08,287
4	India	4,30,39,972
5	Nepal	9,78,648
6	China	1,74,868
7	Germany	2,32,77,316
8	UK	2,17,47,638
9	USA	8,22,52,965
10	Pakistan	15,26,952

STATISTICS

- Numbers play an essential role in statistics.They provide raw data and information regarding the study.
- ☐ These numbers are refined and presented in a more understandable form.
- Statistics can be defined as:
 - □ Collection
 - □ Organization
 - □Summarization/Presentation
 - □Analysis and
 - □ Appropriate Interpretation of the information.

Statistics was first used by Professor Gottfried Achenwall, a professor in University of Marburg in the year 1749.

Biostatistics

- ☐ When the tools of statistics are applied to analyze the Medical, Biological and Pharmaceutical sciences data, then it can be named as biostatistics.
- ☐ Biostatistics is contraction of biology and statistics.
- ☐ Sometimes "Biostatistics" is also referred as "Biometry" or "Biometrics."

Frequency Distribution

□ A frequency distribution is a list, table (i.e.: frequency table) or graph (i.e.: bar plot or histogram) that displays the frequency of various outcomes in a sample

Frequency Distribution

Discrete Frequency Distribution

- Two Elements
 - The Variable &
 - The Frequency

Continuous Frequency Distribution

- Two Elements
 - The Variable
 - Class Limits, Class Intervals, Class Mid Point/Class Mark
 - The Frequency

No. of Children	No. of Families
1	20
2	150
3	15
4	10
5	5

Weight (in Kg)	No. of Children
0-10	30
10-20	70
20-30	50
30-40	35
40-50	15

Frequency Distribution

No. of Children	No. of Families
1	20
2	150
3	15
4	10
5	5

Weight (in Kg)	No. of Children
0-10	30
10-20	70
20-30	50
30-40	35
40-50	15

Frequency Distribution

Number of classes should be 5 to 15. (But no rigidity / - it may be 15+ Classes)

- ☐ One should avoid class intervals as 3, 7, 11, 26 etc. Preferable 5 or multiple of 5.
- ☐ The starting point/Lower limit should be 0 or 5 or multiple of 5

To ensure continuity and get correct intervals, we should adopt 'exclusive' method of classification. (Upper limit is Exclusive)

☐ Some times inclusive method is adopted and needs correction

Measures of Central Tendency (Average)

Measures of Central Tendency (Average)

Objectives of Average

To get a single value that describes the characteristics of entire group.

To facilitate comparison measures of central value.

It offer the base for computing other measures like Variation/ Dispersion, Skewness, Kurtosis etc.

Measures of Central Tendency (Average)

Arithmetic Mean/Mean (Simple Mean)

Normal Formula

Short Cut Method

Individual Data

$$\bar{X} = \frac{X_1 + X_2 \dots + X_n}{N} = \frac{\Sigma X}{N}$$
 $\bar{X} = A + \frac{\Sigma d}{N}$ Here, d= (X-A)

$$\bar{X} = A + \frac{\Sigma d}{N}$$
 Here, d= (X-A

Discrete Series

$$\bar{X} = \frac{\Sigma f X}{N}$$

$$\bar{X} = A + \frac{\Sigma f d}{N}$$

Continuous Series

$$\bar{X} = \frac{\Sigma f m}{N}$$

$$\bar{X} = A + \frac{\Sigma f d}{N}$$
 here, d=(m-A)

Weighted Mean (Arithmetic Mean)

$$\overline{X_w} = \frac{W_1 X_1 + W_2 X_2 \dots + W_n X_n}{W_1 + W_2 + \dots + W_n}$$

$$\overline{X_w} = \frac{\Sigma W X}{\Sigma W}$$