2021-2022年秋季学期泛函分析期末考试试卷(A)

任课教师:

学号:

姓名:

成绩:

一、 (15分) 设 A_1,A_2 是赋范空间 X 中的子集. 如果 A_1 是紧集, A_2 是闭集且 $A_1\cap A_2=\emptyset$. 证明: 存在 r>0, 使得

$$(A_1 + U(0,r)) \cap A_2 = \emptyset,$$

其中 $U(0,r) = \{x \in X : ||x|| < r\}.$

得分 二、 (15分) 当 $1 < r < s < \infty$ 时, 有 $L^s[a,b] \subset L^r[a,b]$.

草稿区

得分 三、 (15分) 设 A 是赋范空间 X 的子集. 证明: A 在 X 中是有界集当且仅, 当对任意的 $x^* \in X^*$, 集合 $x^*(A) \equiv \{x^*(z): z \in A\}$ 是有界集.

得 分 四、 (15分) 设 $\|\cdot\|$ 是 C[0,1] 中的完备范数使得: 当 $\lim_{n\to\infty}\|x_n-x_0\|=0$ 时,对任意的 $t\in[0,1]$,都有 $\lim_{n\to\infty}x_n(t)=x_0(t)$. 证明: $\|\cdot\|$ 等价于上确界范数 $\|\cdot\|_\infty$,也即是: 存在常数 $C_1,C_2>0$ 使得

 $C_1 ||x||_{\infty} \le ||x|| \le C_2 ||x||_{\infty}, \quad \forall x \in C[0, 1].$

$$\rho(x,y) = \begin{cases} 0 & \text{mff } x = y, \\ \|x - y\| + 1 & \text{mff } x \neq y. \end{cases}.$$

证明: ρ 是 X 上的一个距离, 但不能由范数诱导.

得分 六、 (15分) 设 X 是赋范空间, X_0 是 X 的稠密子空间. 证明: 对于每一个 $x \in X$, 存在元列 $\{x_n\}_{n=1}^{\infty} \subset X_0$ 使得 $x = \sum_{n=1}^{\infty} x_n \text{ 且 } \sum_{n=1}^{\infty} \|x_n\| < \infty.$

草稿区

七、 (10分) 设 Y 是可分 Banach 空间 X 的闭子空间. 已知商空间 $X/Y \equiv \{x+Y: x \in X\}$ 在商范数

$$||x + Y|| = \inf\{||x + y|| : y \in Y\}$$

下仍然是 Banach 空间; 相应的商映射 $\pi: X \to X/Y$ 定义为

$$\pi(x) = x + Y, \quad \forall x \in X.$$

证明: X/Y 也是可分的.