Objetivo: Solución de Ecuaciones trigonometricas

Recordar que :

Primer cuadrante: $0 < \alpha < 90^{\circ}$ entonces se tiene :

 $sen \alpha > 0$, $cos \alpha > 0$, $tang \alpha > 0$, $cot g \alpha > 0$, $sec \alpha > 0$, $cos e c \alpha > 0$

Segundo cuadrante : $90^{\circ} < \alpha < 180^{\circ}$ entonces se tiene :

 $sen\alpha > 0$, $cos\alpha < 0$, $tang\alpha < 0$, $cotg\alpha < 0$, $sec\alpha < 0$, $cosec\alpha > 0$

Tercer cuadrante : $180^{\circ} < \alpha < 270^{\circ}$ entonces se tiene :

 $sen \alpha < 0$, $cos \alpha < 0$, $tang \alpha > 0$, cot g > 0, $sec \alpha < 0$, $cose c \alpha < 0$

Cuarto cuadrante : $270^{\circ} < \alpha < 360^{\circ}$ entonces se tiene :

 $sen \alpha < 0$, $cos \alpha > 0$, $tang \alpha < 0$, cot g < 0, $sec \alpha > 0$, $cose c \alpha < 0$

Ejemplo 1: Si $sen\alpha = -0.3675$ Determinar α con $0 < \alpha < 360^{\circ}$

Solución: Como $sen\alpha < 0$ entonces los α buscados están en el III cuadrante y en el IV cuadrante, así $\alpha = sen^{-1}(-0,3675)$ luego $\alpha = 201,5615^{\circ}$, $\alpha = 338,4385^{\circ}$

Ejemplo 2: Si $cos\alpha = -0.2256$ Determinar $\alpha con 0 < \alpha < 360^{\circ}$

Solución: Como $cos \alpha < 0$ entonces $los \alpha$ buscados están en el II cuadrante y en el III

Luego $\alpha = cos^{-1}(-02256)$ entonces $\alpha = 103,038^{\circ}$, $\alpha = 256,96^{\circ}$

Ejemplo 3: Si $cotg\beta = 0.45$ Determinar $\alpha con 0 < \alpha < 360^{\circ}$

Solución: Observe que $cotg\alpha=\frac{1}{tag\alpha}=0.45 \Longrightarrow tag\alpha=\frac{1}{0.45}=2.2222$ por otra parte

 $tag\alpha > 0$ entonces los α buscados están en el I cuadrante y en el III cuadrante

$$\alpha = tag^{-1}(2,2222) \Longrightarrow \alpha = 65,772^{\circ}, \alpha = 245,772$$

Ejercicio:

1) Si $sec\alpha = 2.33$ Determinar $\alpha con 0 < \alpha < 360^{\circ}$

2) Si $cosec\beta = 3,25$ Determinar β $con 0 < \beta < 360^{\circ}$

3) Si
$$cos(2\beta) = 0.345$$
 Determinar β con $0 < \beta < 360^{\circ}$

Ahora veamos el siguiente ejemplo:

Ejemplo4: Si $sen\alpha = -0.3675$ Determinar $\alpha \in IR$ (cambio la condición para α)

Solución: En este ejemplo se nos solicita en otras palabras encontrar la solución general

Para ellos buscamos en primer lugar la solución básica esto es $0 < \alpha < 360^{\circ}$:

$$\alpha = sen^{-1}(-0.3675) \Rightarrow \alpha = 201.5615^{\circ}$$
, $\alpha = 338.4385^{\circ}$ (de acuerdo al ejemplo 1)

Ahora podemos encontrar la solución general:

$$\alpha = 201,5615^{\circ} + K 360^{\circ} con ke Z$$

$$\alpha = 338,4385 + K 360^{\circ} con k \in \mathbb{Z}$$

La solución la escribimos formalmente $\{201,5615^{\circ} + K \ 360^{\circ}, 338,4385 + K \ 360^{\circ}: k \in \mathbb{Z} \}$

Ejemplo 5: Si $tag(3\alpha) = 0.679$ *Determinar* $\alpha \in IR$

Solución: A igual que el ejemplo anterior determinamos $0 < 3\alpha < 360^{\circ}$ (solución básica y observe que el angulo se llama 3α)

$$3\alpha = 34.17^{\circ}$$
, $3\alpha = 214.17^{\circ}$

Ahora buscamos la solución general:

$$3\alpha = 34.17^{\circ} + K \ 360^{\circ} \implies \alpha = 11.39^{\circ} + k \ 120^{\circ}$$

$$3\alpha = 214.17^{\circ} + K \ 360^{\circ} \implies \alpha = 71.39^{\circ} + k \ 120^{\circ}$$

$$\{11,39^{\circ} + k \ 120^{\circ}, 71,39^{\circ} + k \ 120^{\circ}: k \in \mathbb{Z}\}$$

Observe que: 34,17 +180=214,17

Asi podemos también escribir la solución anterior como sigue :

$$3\alpha = 34,17^{\circ} + K \ 180^{\circ} \implies \alpha = 11,39^{\circ} + k \ 60^{\circ}$$

 $\{11,39^{\circ} + k60^{\circ} : k\epsilon\mathbb{Z}\}\$ (esto ocurre con la función tangente y contangente)

Ejemplo 6: Resolver la ecuación $2sen^2x - 5senx + 2 = 0$

Solución: es una ecuación cuadrática luego $senx = \frac{5\pm\sqrt{25-16}}{4} = \frac{5\pm3}{4}$

senx=2 V $senx=\frac{1}{2}$, de aquí se sabe que senx=2 no tiene solución luego la solución sale de $senx=\frac{1}{2}$ podemos decir que la solución básica son: $x=\frac{\pi}{6}$, $x=\frac{5\pi}{6}$

Así la solución general será:

$$\left\{\frac{\pi}{6} + 2\pi K, \ \frac{5\pi}{6} + 2\pi k \colon k \in \mathbb{Z}\right\}$$

Ejemplo7: Resolver
$$\frac{sen(4x)}{1+\cos(4x)} = 2 - cotg(4x)$$

Solución:
$$\frac{sen(4x)}{1+\cos{(4x)}} = 2 - cotg(4x) \Rightarrow sen(4x) = \left(2 - \frac{\cos{(4x)}}{sen(4x)}\right)(1 + \cos{(4x)})$$
 con

$$sen(4x) \neq 0 \land 1 + cos(4x) \neq 0$$

$$sen(4x) = \frac{(2sen(4x) - \cos(4x))}{sen(4x)} (1 + \cos(4x)) \Longrightarrow$$

$$sen^{2}(4x) = (2sen(4x) - \cos(4x))(1 + \cos(4x))$$

$$1 - \cos^2(4x) = 2sen(4x) + 2sen(4x)\cos(4x) - \cos(4x) - \cos^2(4x)$$

$$1 = 2sen(4x) + 2sen(4x)\cos(4x) - \cos(4x) \Rightarrow$$

$$0 = 2sen(4x) - 1 + (2sen(4x) - 1)\cos(4x)$$

$$0 = (2sen(4x) - 1)(\cos(4x) + 1) \Rightarrow 2sen(4x) - 1 = 0 \lor \cos(4x) + 1 = 0$$
 pero sólo consideramos

$$2sen(4x) - 1 = 0$$
 (pues $cos(4x) + 1 \neq 0$ condicion inicial)

Así se tiene:
$$sen(4x) = \frac{1}{2} \Longrightarrow 4x = \frac{\pi}{6} + 2k\pi$$
 , $4x = \frac{5\pi}{6} + 2k\pi$

Luego la solución será:

$$\left\{\frac{\pi}{24} + k\frac{\pi}{2}, \frac{5\pi}{24} + k\frac{\pi}{2}\right\}$$