Programmierung 1

Vorlesung 17

Livestream beginnt um 14:15 Uhr

Laufzeit rekursiver Prozeduren

Programmierung 1

Wohlfundierte Induktion (Noethersche Induktion)

- ▶ Sei $\forall x \in X : A(x)$ eine **allquantifizierte Aussage** über eine Menge X.
- ▶ Eine Induktionsrelation > ist eine terminierende Relation auf X. Um die allquantifizierte Aussage zu beweisen, zeigen wir den Induktionsschritt: für jedes Argument x folgt aus der Tatsache, dass für jedes kleinere Argument y A(y) gilt, dass A(x) gilt.

▶ Wohlfundierte Induktion:

$$(\forall x \in X \ (\forall y \in X: x > y \Rightarrow A(y)) \Rightarrow A(x)) \Rightarrow \forall x \in X: A(x)$$

Induktionsschritt

Breite vs. Tiefe

Proposition 10.7 (Breite versus Tiefe) $\forall t \in \mathcal{B}$: $bt = 2^{dt}$.

Beweis Durch strukturelle Induktion über $t \in \mathcal{B}$. Wir unterscheiden zwei Fälle.

Sei t = []. Dann $bt = 1 = 2^{dt}$ gemäß der Definition von b und d.

Sei $t = [t_1, t_2]$. Dann gilt:

$$bt = bt_1 + bt_2$$

$$= 2^{dt_1} + 2^{dt_2}$$

$$= 2 \cdot 2^{dt_1}$$

$$= 2^{1+dt_1}$$

$$= 2^{1+\max\{dt_1, dt_2\}}$$

$$= 2^{dt}$$

Definition *b*

Induktion für t_1 und t_2

t balanciert, also $dt_1 = dt_2$

t balanciert, also $dt_1 = dt_2$

Definition *d*

Größe vs. Tiefe

Proposition 10.8 (Größe versus Tiefe) $\forall t \in \mathcal{B}$: $st = 2^{dt+1} - 1$.

Beweis Durch strukturelle Induktion über $t \in \mathcal{B}$. Wir unterscheiden zwei Fälle.

Sei t = []. Dann $st = 1 = 2^{dt+1} - 1$ gemäß der Definition von b und d.

Sei $t = [t_1, t_2]$. Dann gilt:

$$st = 1 + st_1 + st_2$$

$$= 1 + 2^{dt_1+1} - 1 + 2^{dt_2+1} - 1$$

$$= 2 \cdot 2^{dt_1+1} - 1$$

$$= 2^{1+dt_1+1} - 1$$

$$= 2^{1+max\{dt_1, dt_2\}+1} - 1$$

$$= 2^{dt+1} - 1$$

Definition *s*

Induktion für t_1 und t_2

t balanciert, also $dt_1 = dt_2$

t balanciert, also $dt_1 = dt_2$

Definition *d*

Bäume mit mindestens zwei Nachfolgern

Wir betrachten Bäume $\mathcal{M} \subseteq \mathcal{T}$, bei denen **jeder innere Knoten mindestens zwei** Nachfolger hat:

- 1. $[] \in \mathcal{M}$.
- 2. Wenn $n \ge 2$ und $t_1, \ldots, t_n \in \mathcal{M}$, dann $[t_1, \ldots, t_n] \in \mathcal{M}$.

Bäume mit mindestens zwei Nachfolgern

$$b: \mathcal{T} \to \mathbb{N}_+$$

 $b[t_1, \dots, t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } b t_1 + \dots + b t_n$
 $s: \mathcal{T} \to \mathbb{N}_+$
 $s[t_1, \dots, t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } 1 + s t_1 + \dots + s t_n$

Proposition 10.9 (Breite versus Größe) $\forall t \in \mathcal{M}: 2 \cdot bt > st$.

Beweis Durch strukturelle Induktion über $t \in \mathcal{M}$. Wir unterscheiden zwei Fälle.

Sei t = []. Dann $2 \cdot bt = 2 > 1 = st$ gemäß der Definition von b und s.

Sei $t = [t_1, ..., t_n]$ mit $n \ge 2$. Dann gilt:

$$2 \cdot bt = 2(bt_1 + \dots + bt_n)$$
 Definition b

$$= 2 \cdot bt_1 + \dots + 2 \cdot bt_n$$

$$\geq (st_1 + 1) + \dots + (st_n + 1)$$
 Induktion für t_1, \dots, t_n

$$> st_1 + \dots + st_n + 1$$
 $n \geq 2$

$$= st$$
 Definition s

Sekundäre Listenrekursion

$$s: \mathcal{T} \to \mathbb{N}_+$$

$$s[t_1, \dots, t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } 1 + s t_1 + \dots + s t_n$$

- ▶ Neben der **primären Baumrekursion** verwenden die Prozeduren eine **sekundäre Listenrekursion** die durch "… " formuliert ist.
- In den **Anwendungsgleichungen** ist die sekundäre Listenrekursion nicht mehr sichtbar:

$$s[t_1, t_2] = 1 + s t_1 + s t_2$$

$$b[t_1, t_2, t_3] = b t_1 + b t_2 + b t_3$$

$$d[t_1, t_2] = 1 + \max\{d t_1, d t_2\}$$

- ▶ Rekursionsfunktion: $\lambda[t_1,...,t_n] \in \mathcal{T}.\langle t_1,...,t_n\rangle$
- ▶ Terminierungsfunktion: $\lambda t \in \mathcal{T}.t$.

Binäre Charakterisierung von Bäumen

$$\mathcal{T} := \mathcal{L}(\mathcal{T})$$

- Ein reiner Baum ist die Liste seiner Unterbäume.
- Daraus folgt: ein **Baum** ist
 - entweder die leere Liste
 - oder ein Paar t::t' von Bäumen, wobei t' die Liste der restlichen Unterbäume ist
- Wir können die Größe von Bäumen mit einer binärrekursiven Prozedur ohne Sekundärrekursion berechnen:

```
size: \mathcal{T} \to \mathbb{N}_+

size \ nil = 1

size(t::t') = size \ t + size \ t'
```

Kapitel 11 Laufzeit rekursiver Prozeduren

Laufzeitunterschied

```
fun rev' xs = foldl op:: nil xs
```

- > rev' hat eine sehr viel kürzere Laufzeit als rev.
- Wir werden zeigen:
 - > rev hat quadratische Komplexität
 - > rev' hat lineare Komplexität

Laufzeit

@:
$$\mathcal{L}(X) \times \mathcal{L}(X) \rightarrow \mathcal{L}(X)$$

$$nil@ys = ys$$

$$(x::xr)@ys = x::(xr@ys)$$

Wovon hängt die Laufzeit der Prozedur ab?

Die Laufzeitfunktion einer Prozedur gibt die Laufzeit abhängig von der Größe der Argumente an.

Konkatenation von Listen

@:
$$\mathcal{L}(X) \times \mathcal{L}(X) \rightarrow \mathcal{L}(X)$$

$$nil@ys = ys$$

$$(x::xr)@ys = x::(xr@ys)$$

Rekursionsbaum:

$$([1,2,3], ys) \rightarrow ([2,3], ys) \rightarrow ([3], ys) \rightarrow ([], ys)$$

• Größenfunktion: $\lambda(xs, ys).|xs|$.

Laufzeitfunktion: $\lambda n.n+1$.

Laufzeit

- ▶ Vorläufige Definition (wird später verfeinert): Die Laufzeit einer Prozedur für ein Argument x ist die Größe des Rekursionsbaums für x.
- ▶ Eine **Größenfunktion** für eine terminierende Prozedur $p: X \to Y$ ist eine **natürliche Terminierungsfunktion** $s \in X \to \mathbb{N}$ für p, die die folgende Bedingung erfüllt:

 $\forall n \in \mathbb{N} \exists k \in \mathbb{N} \ \forall x \in X$:

wenn sx = n, dann ist die Laufzeit von p für x kleiner als k.

Die Prozedur p sei wie folgt gegeben.

$$p: \mathbb{N} \times \mathbb{N} -> \mathbb{N}$$

$$p(0,k) = 0$$

$$p(n,k) = p(n-1,0) + ... + p(n-1,k) \text{ für } k>0.$$

Die Funktion λ (n,k) $\in \mathbb{N} \times \mathbb{N}$. n ist...

C: beides

D: weder noch

Laufzeit

- Vorläufige Definition (wird später verfeinert): Die Laufzeit einer Prozedur für ein Argument x ist die Größe des Rekursionsbaums für x.
- ▶ Eine **Größenfunktion** für eine terminierende Prozedur $p: X \to Y$ ist eine **natürliche Terminierungsfunktion** $s \in X \to \mathbb{N}$ für p, die die folgende Bedingung erfüllt:

 $\forall n \in \mathbb{N} \exists k \in \mathbb{N} \ \forall x \in X$: wenn s x = n, dann ist die Laufzeit von p für x kleiner als k.

- Die Zahl s x ist die Größe von x.
- ▶ Die Laufzeitfunktion von p gemäß s ist die Funktion $r \in \mathbb{N} \to \mathbb{N}_+$, die für jedes $n \in \mathbb{N}$ die maximale Laufzeit liefert, die p für Argumente der Größe n benötigt.

Wir vereinbaren: r = 1, falls es keine Argumente der Größe 0 gibt; r = r(n-1), falls n>0 und es keine Argumente der Größe n gibt.

Faltung von Listen

$$foldl: (X \times Y \to Y) \times Y \times \mathcal{L}(X) \to Y$$

 $foldl(f, s, nil) = s$
 $foldl(f, s, x::xr) = foldl(f, f(x, s), xr)$

▶ Größenfunktion:

$$\lambda(f, s, xs).|xs|.$$

▶ Laufzeitfunktion:

$$\lambda n.n+1.$$

Elementtest für Listen

```
member: \mathbb{Z} \times \mathcal{L}(\mathbb{Z}) \to \mathbb{B}
member(x, nil) = 0
member(x, y::yr) = \text{if } x = y \text{ then } 1 \text{ else } member(x, yr)
```

- ▶ Größenfunktion: $\lambda(x, xs).|xs|$.
- Laufzeit kann für eine Argument der Größe n jeden Wert zwischen 1 und n+1 annehmen.
- Wir sagen, dass die Laufzeit einer Prozedur uniform ist, wenn für jede Größe gilt, dass die Prozedur für alle Argumente dieser Größe die gleiche Laufzeit hat.
- Wenn die Laufzeit einer Prozedur nicht uniform ist, liegt der Laufzeitfunktion eine worst-case Annahme zu Grunde: r n ist die maximale Laufzeit für Argumente der Größe n.
- ▶ Laufzeitfunktion: $\lambda n.n+1$.

Die Laufzeit der Prozedur fac gemäß der Größenfunktion $\lambda n \in \mathbb{N}$. n ist...

```
fac: \mathbb{N} \to \mathbb{N}

fac: n = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot fac(n-1)
```


Fakultät

```
fac: \mathbb{N} \to \mathbb{N}

fac: n = \text{if } n = 0 \text{ then } 1 \text{ else } n \cdot fac(n-1)
```

- ▶ Größenfunktion: $\lambda n.n$
- ▶ Laufzeitfunktion: $\lambda n.n+1$ (uniform)

Rekursive Darstellung der Laufzeitfunktion:

$$r: \mathbb{N} \to \mathbb{N}_+$$

$$r0 = 1$$

$$rn = 1 + r(n-1) \quad \text{für } n > 0$$

Balancierte Binärbäume

```
ntree: \mathbb{N} \to \mathcal{T}
ntree \ 0 = nil
ntree \ n = [ntree(n-1), ntree(n-1)] für n > 0
```

- ▶ Größenfunktion: $\lambda n.n$
- ▶ Laufzeitfunktion: $\lambda n \in \mathbb{N}.2^{n+1} 1$ (uniform)

Rekursive Darstellung der Laufzeitfunktion:

```
r: \mathbb{N} \to \mathbb{N}_+
r0 = 1
rn = 1 + r(n-1) + r(n-1) \quad \text{für } n > 0
```

Laufzeit konkret

Anzahl Prozeduraufrufe (PA)	Ausführungszeit bei 10 ⁹ PA pro Sekunde	
	in Sekunden	etwa
10^4	10^{-5}	10 Mikrosekunden
10^6	10^{-3}	1 Millisekunde
10^9	10^0	1 Sekunde
10^{11}	10^2	2 Minuten
10^{13}	10^4	3 Stunden
10^{14}	10^5	1 Tag
10^{15}	10^6	2 Wochen
10^{16}	10^7	4 Monate
10^{17}	10 ⁸	3 Jahre
10^{19}	10^{10}	3 Jahrhunderte
10^{20}	10^{11}	3 Jahrtausende
10^{21}	10^{12}	ewig

Laufzeit konkret

Größe	Laufzeitfunktion					
n	linear <i>n</i>	quadratisch n^2	kubisch n ³	exponentiell 2 ⁿ		
	Ausführungszeit bei 10 ⁹ Prozeduraufrufen pro Sekunde					
10^3	10 ⁻⁶ Sekunden	10 ⁻³ Sekunden	1 Sekunde	ewig		
10^4	10 ⁻⁵ Sekunden	10 ⁻¹ Sekunden	20 Minuten	ewig		
10^5	10 ⁻⁴ Sekunden	10 Sekunden	10 Tage	ewig		
10^6	10 ⁻³ Sekunden	20 Minuten	30 Jahre	ewig		
10^7	10 ⁻² Sekunden	1 Tag	ewig	ewig		

Laufzeiten und Komplexitäten

Um die Laufzeit einer Prozedur beurteilen zu können, genügt es, die Komplexität ihrer Laufzeitfunktion zu kennen:

 $\lambda n.n$ lineare Komplexität

 $\lambda n. n^2$ quadratische Komplexität

 $\lambda n. n^3$ kubische Komplexität

 $\lambda n.2^n$ exponentielle Komplexität

Prozedur	Größenfunktion	Laufzeitfunktion	Komplexität
<u>@</u>	$\lambda(xs,ys). xs $	$\lambda n.n+1$	O(n)
foldl	$\lambda(f,s,xs). xs $	$\lambda n.n+1$	O(n)
member	$\lambda(x,xs). xs $	$\lambda n.n+1$	O(n)
ntree	$\lambda n.n$	$\lambda n.2^{n+1}-1$	$O(2^n)$

Komplexitätsklassen

Laufzeit ist nur von der Größenordnung her interessant.

Wichtige Komplexitätsklassen

O(log n) logarithmische Komplexität

O(n) lineare Komplexität

 $O(n \cdot \log n)$ linear-logarithmische Komplexität

 $O(n^2)$ quadratische Komplexität

 $O(n^3)$ kubische Komplexität

 $O(b^n)$ exponentielle Komplexität (b > 1)

O-Notation

O-Funktionen sind Funktionen des Typs N → R
 die fast überall (= überall bis auf endlich viele Ausnahmen)
 nicht negativ sind.

$$OF := \{ f \in \mathbb{N} \to \mathbb{R} \mid \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \colon \ f n \ge 0 \}$$

Welche der folgenden Funktionen sind O-Funktionen?

O-Notation

▶ Eine O-Funktion f wird dominiert von einer O-Funktion g, wenn es einen Faktor c gibt, so dass fast überall f $n \le c$ (g n) gilt.

$$\exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{N} \ \forall n \geq n_0 \colon \ fn \leq c(gn)$$

Beispiele: $\lambda n \in \mathbb{N}.270 \leq \lambda n \in \mathbb{N}.1$ $\lambda n \in \mathbb{N}.11n + 273 \leq \lambda n \in \mathbb{N}.n$

Dominiert die O-Funktion $\lambda n \in \mathbb{N}$. n^3 die O-Funktion $\lambda n \in \mathbb{N}$. $n^3 + n^2$?

Eigenschaften der Dominanz

Proposition 11.1 Für alle $f, g, h \in OF$ gilt:

- 1. $f \leq f$ (Reflexivität von \leq)
- 2. $f \leq g \land g \leq h \implies f \leq h$ (Transitivität von \leq)
- ▶ Beweis zu 1: Wähle n_0 =0 und c=1.

▶ Beweis zu 2:

- ▶ Sei $n_{0,1}$ und c_1 so dass \forall $n \ge n_{0,1}$ f $n \le c_1$ (g n).
- ▶ Sei $n_{0,2}$ und c_2 so dass \forall $n \ge n_{0,2}$ g $n \le c_2$ (h n).
- Wähle $n_0=\max\{n_{0,1},n_{0,2}\}$ und $c=c_1\cdot c_2$.
- ▶ Für alle $n \ge n_0$ gilt: $f n \le c_1 (g n) \le c_1 (c_2 (h n)) = c_1 \cdot c_2 (h n) = c (h n)$.

$$f \leq g \quad :\iff \quad \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{N} \ \forall n \geq n_0 \colon \ fn \leq c(gn)$$

Eigenschaften der Dominanz

- ▶ Antisymmetrie nicht zwingend!
- Dominanzrelation kann von unnötigen Details abstrahieren.
- Beispiel:

$$\lambda n \in \mathbb{N}. n^3 \le \lambda n \in \mathbb{N}.33n^3 + 22n^2 + 11 \le \lambda n \in \mathbb{N}. n^3$$

$$f \leq g \quad :\iff \quad \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{N} \ \forall n \geq n_0 \colon \ f n \leq c(gn)$$

Komplexität einer O-Funktion

▶ **Die Komplexität einer O-Funktion** *f* ist die Menge aller O-Funktionen, die höchstens so komplex wie *f* sind.

$$O(f) := \{ g \in OF \mid g \leq f \}$$

 Aufgrund der Inklusionsordnung liefert dies eine Ordnung für Komplexitäten.

$$O(\lambda n.1) = O(\lambda n.133) \subset O(\lambda n.n) = O(\lambda n.7n - 26) \subset O(\lambda n.n^2)$$

▶ Konvention: Lambda-Präfix wird typischerweise weggelassen.

$$O(\lambda n \in \mathbb{N}. fn) \longrightarrow O(fn)$$

 $O(\lambda n \in \mathbb{N}. n^2) \longrightarrow O(n^2)$

Komplexitätshierarchie

```
O(n) \neq O(n^2)
```

Beweis:

▶ λ *n*. $n \leq \lambda$ *n*. n^2 (einfach)

Widerspruch.

▶ $\lambda n. n \not\ge \lambda n. n^2$ Beweis durch Widerspruch: Annahme: $\lambda n. n^2 \le \lambda n. n$, also $\exists n_0 \in \mathbb{N} \exists c \in \mathbb{N}$ so dass $\forall n \ge n_0 : n^2 \le c n$ Dies impliziert dass $\exists n_0 \in \mathbb{N} \exists c \in \mathbb{N} \forall n \ge n_0 : n \le c$.

 $f \leq g \quad : \iff \quad \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{N} \ \forall n \geq n_0 \colon \ f n \leq c(gn)$

Komplexitätshierarchie (Proposition 11.3)

 $\log n := \text{if } n = 0 \text{ then } 0 \text{ else } \log_2 n$

www.prog1.saarland