Wyznaczanie czasu globalnego		
Lamporta	 Zdarzenie wewnętrzne - inkrementacja zegara. Wysłanie wiadomości - inkrementacja zegara. Odebranie wiadomości - inkrementacja max(zegar odebrany, własny zegar) 	
Matterna	 Działa analogicznie do Lamporta, zegary mają postać wektorową. Przy dowolnym zdarzeniu inkrementujemy swoją pozycję. Przy odbiorze sprawdzamy pozycje wszystkich procesów i bierzemy max wartość z wiadomości/ własną. 	

Kanaly

Müllendera - FIFO

Send

• Numer sekwencyjny wiadomości do danego procesu (segno[j]) - inkrementowany przed wysłaniem

Receive

- Pakiet porównuje otrzymany w wiadomości numer segno z odpowiednia pozycją własnej tablicy delivno (liczba (numer) wiadomości dostarczonych od danego procesu):
 - o jeśli warunek pcktIn.segNo == delivNo,[i] + 1 jest spełniony:
 - Wiadomość jest dostarczana,
 - Wartość delivno[j] jest inkrementowana,
 - zmienna delivered ustawiana na true
 - Wpp. wiadomość wrzucana do bufora, delivered ustawiana na false
- Dopóki delivered == true, próbujemy dostarczyć wiadomości oczekujące w buforze

chandy, La

Kearnsa, Campa, Ahuia - Flush Channels

Trytodeliver

- Jeżeli wiadomość jest typu OF lub BF (mogą wyprzedzać):
 - o Jeżeli wiadomość nie czeka na żadną wiadomość, lub wiadomość, na którą czeka znajduje się w odebranych, odbieramy ją i wrzucamy do zbioru odebranych.
- Wpp. (jeżeli wiadomość typu FF lub TF):
 - o Jeżeli wszystkie wiadomości, na które czeka wiadomość zostały już dostarczone, może ona zostać odebrana i dodana do zbioru odebranych.

Send OF:

• Do waitforno (wiadomość, na którą czekam) przypisujemy backFP (ostatnią wiadomość typu BF lub TF, która znajduje się w kanale).

Send FF

• Do waitforno przypisujemy nr wiadomości -1 (czekamy na poprzednią wiadomość, nikogo nie wyprzedzamy).

Send BF

- Do waitforno przypisujemy backFP (ostatnią wiadomość typu BF lub TF, która znajduje się w kanale).
- Po wysłaniu wiadomości, jej segno przypisujemy do backFP (nie można nas wyprzedzić).

Send TF

- Do waitforno przypisujemy nr wiadomości -1
- Po wysłaniu wiadomości, jej segno przypisujemy do backFP.

Receive:

- Try to deliver
- Jeśli udało się dostarczyć, próba dostarczenia oczekujących wiadomości

Środowisko zachowujące uporządkowanie przyczynowe

Alg. Brimana, Schipera, Stephensona

Założenia: a-la zegar wektorowy

Send:

Broadcast do wszystkich poza sobą

Receive:

- Czekamy do momentu, aż:
 - o nasz zegar na pozycji nadawcy będzie równy zegarowi z wiadomości na pozycji nadawcy -1 (czy mamy wiadomość poprzednią od tego nadawcy)
 - i na każdej pozostałej pozycji nasz zegar będzie większy równy zegarowi z wiadomości.
- Wtedy jeżeli wiadomość jest do nas, dostarczamy ją.
- Następnie aktualizujemy poprzez maxa swój zegar wektorowy na wszystkich pozycjach.

Alg. Schipera, Egli, Sandoza

Struktura - zbiór:

- Pid
- Zegar wektorowy moment wysłania poprzedniej wiadomości do procesu o id Pid

Send:

- Wiadomość wysyłana z zegarem Matterna i strukturą.
- Struktura aktualizowana dopiero po wysłaniu.

TryToDeliver (z perspektywy odbiorcy):

- Jeżeli w strukturze znajduje się wiadomość do mnie i mój zegar jest za młody (zegar ze struktury jest nie mniejszy od mojego), to wiadomość idzie do bufora.
- Wpp. wiadomość jest dostarczana, a zmienna delivered, ustawiana na true
- Jeżeli delivered, == true, to dla wszystkich elementów ze struktury, które nie dotyczą mnie,
 - o szukam tych, które dotyczą procesów, o których nie mam informacji w swojej strukturze i dodaje do niej,
 - Jeśli mam informacje, to aktualizuję ją (max po zegarach).
- Zegar obsługiwany wg Matterna.

Receive

- delivered, ustawiane na false
- TryToDeliver
- Dopóki delivered == true:
 - Ustawiamy delivered na false,
 - o Próbujemy dostarczyć wiadomości z bufora.

Stan spójny

Alg. Chandy-Lamport

Założenia:

- Niezawodne kanały FIFO
- Stan reprezentowany jest w postaci złożenia lokalnych stanów procesó w i stanów kanałów
- Pełen asynchronizm komunikacji i przetwarzania
- Brak zegara globalnego

Złożoność czasowa: d - średnica grafu zorientowanego odpowiadającego topologii przetwarzania rozproszonego,

m - liczba krawędzi tego grafu, wówczas pomijając fazę przesyłania wiadomości o stanie procesów i kanałów złożoność czasowa algorytmu Chandy-Lamporta wynosi *d*+1, a Złożoność komunikacyjna, w sensie liczby przesyłanych znaczników, wynosi *m*.

Idea:

Płukanie kanałów

- Inicjator zapamiętuje stan lokalny i wysyła wiadomość kontrolną do wszystkich incydentnych monitorów.
- Jeżeli odebrany znacznik jest pierwszym w danym procesie detekcji:
 - Monitor zapamiętuje stan procesu uznaje stan kanału C_{4,1} za pusty, i propaguje znacznik przez wszystkie swoje kanały wyjściowe.
- Jeżeli stan procesu został już wcześniej zapamiętany:
 - o Monitor uznaje za stan kanału C4, 4 zbiór tych wszystkich wiadomości, które dotarły tym kanałem po zapamiętaniu stanu a przed otrzymaniem znacznika.
- Po odebraniu znaczników ze wszystkich kanałów wejściowych, monitor przesyła zapamiętany stan lokalny oraz stan kanałów do monitora inicjatora.

Alg. Lai-Yang

Złożoność czasowa: 1 Złożoność komunik: n-1

Założenia: Reprezentacja stanów lokalnych obejmują historię komunikacji,

Kolor pakietu:

- White pakiet bez znacznika
- Red dołączenie znacznika do wiadomości

Kolor procesora (monitora):

- White proces nie zapamiętał jeszcze stanu
- Red stan procesu został już zapamiętany

Idea:

- Procesy inicjowane jako White.
- Monitor zmienia kolor procesu na Red po zapamiętaniu stanu.
- Każdej wiadomości wysłanej przez proces koloru White przypisany jest kolor White, a każdej wysłanej przez proces Red kolor Red.
- Stan procesu koloru White można zapamiętać w dowolnej chwili, lecz koniecznie przed odebraniem wiadomości koloru Red.

Inicjalizacja:

- Monitor inicjatora zapisuje stan skojarzonego ze sobą procesu aplikacyjnego.
- Zmienia kolor procesu na Red.
- Wysyła pusty znacznik dummyOut (w celu inicjalizacji) o kolorze Red do wszystkich procesów.
- Następnie rozsyła również swój stan.

Wiadomość aplikacyjna:

Wysyłając jakakolwiek wiadomość aplikacyjną, monitor zapamiętuje ją w zmiennej outlog, , oraz oznacza ją kolorem procesu.

Otrzymanie wiadomości:

- Otrzymując pakiet o kolorze Red:
 - o monitor procesu aplikacyjnego o kolorze White zmienia jego kolor na Red
 - o i rozsyła jego stan.
- Przed dostarczeniem wiadomości do procesu Pi monitor zapamiętuje ją w zmiennej inLog.

Alg. Matterna

- Zał: zegary wektorowe
- Wysyłamy broadcastem w wiadomości czas z przyszłości (swój +1), by na ten moment skrzyknać zczytywanie stanu spójnego.
- Odbiorcy wysyłają potwierdzenie.
- Gdy inicjator dostanie wszystkie potwierdzenia, wysyła wiadomość rozpoczynającą zczytywanie.
- Stan kanału Jeżeli monitor zapisywał już stan aplikacyjny, a etykieta odebranego pakietu jest wcześniejsza od momentu wyznaczenia stanu zapisanego w vRecordClock, monitor wysyła informację o otrzymaniu tego pakietu do inicjatora konstrukcji spójnego obrazu stanu globalnego.

Alg. Z kolorowaniem procesów i wiadomości

Założenia: Inicjator nie inicjuje współbieżnie wielu detekcji, dlatego wprowadzenie większej liczby kolorów (wartości elementu czasu wektorowego) nie jest konieczne.

Idea:

- Uproszczenie algorytmu Matterna
- W kontekście detekcji stanu globalnego znaczenie ma tylko zmiana stanu na pozycji n+1, stąd dwa stany tej pozycji są wystarczające dla rozróżnienia kolejnych faz wyznaczania obrazu globalnego:
 - White przed zapamiętaniem stanu lokalnego procesu
 - o Red po zapamiętaniu stanu lokalnego.
- Kolory pakietów:
 - o White pakietu został wysłany przed zapamietaniem stanu lokalnego procesu.
 - o Red pakietu został wysłany po zapamiętaniu stanu lokalnego procesu.
- Monitory procesów White wysyłają tylko pakiety White, a monitory procesów Red tylko pakiety koloru Red.
- Każdy proces pierwotnie ma kolor White, a staje się Red po zapamiętaniu swojego stanu lokalnego a przed przekazaniem mu pierwszej wiadomości z pakietem koloru Red.
- Iniciator detekcji stanu globalnego zapamiętuje stan lokalny procesu, staje się Red i wysyła pusty pakiet dummyOut koloru Red do wszystkich monitorów.
- Algorytm praktycznie identyczny jak algorytm Lai-Yang:
 - różnica jest prostsza reprezentacja stanu lokalnego
 - nie ma potrzeby pamiętania historii komunikacji,
 - Pociąga to za sobą konieczność wprowadzenia dodatkowego mechanizmu wyznaczania stanów kanałów komunikacyjnych:
 - Wiadomości w kanałach, to wiadomości w pakietach koloru White odebrane przez monitor koloru Red.
 - Za każdym razem, gdy monitor otrzymuje tego typu pakiet, przesyła zawartą w nim wiadomość do inicjatora.

Inicjalizacja:

- Iniciator rozpoczyna konstrukcję obrazu spójnego:
 - Zapamiętuje stan,
 - o Zmienia kolor procesu na Red,
 - Wysyła pusty pakiet aplikacyjny o kolorze Red do pozostałych procesów.

Wysłanie wiadomości aplikacyjnej:

Każda wysyłana wiadomość zawiera znacznik określający kolor nadawcy tej wiadomości.

Odebranie wiadomości aplikacyjnej:

- Jeżeli proces skojarzony z monitorem odbiorcy posiada kolor Red, to otrzymanie pakietu aplikacyjnego w kolorze White powoduje przesłanie informacji o tym do monitora inicjatora.
- Z kolei otrzymania pakietu o kolorze Red, gdy proces skojarzony z monitorem odbiorcy posiada kolor White powoduje zmianę koloru procesu, oraz zapamiętanie i przesłanie informacji o jego stanie do monitora inicjatora.

Alg. Chandy-Lamporta (kanaly FC)

Idea:

Różnica od implementacji dla FIFO polega na zastąpieniu typu MARKER typem TMARKER będącego komunikatem typu *TF*.

Inicjalizacja:

- Monitor inicjatora zapamiętuje spontanicznie stan skojarzonego z nim procesu aplikacyjnego i wysyła wiadomość kontrolną (znacznik) typu TMARKER do wszystkich incydentnych monitorów.
- W odróżnieniu od wersji algorytmu dla kanałów FIFO, nie jest wysyłany stan za pomocą procedury SENDSTATE.

Odebranie znacznika:

- Monitory po odebraniu znacznika z kanału $C_{i,i}$ sprawdzają, czy stan lokalny został już wcześniej zapamiętany.
 - Jeśli jest to pierwszy znacznik, to:
 - stan lokalny jest zapamiętany przed dopuszczeniem do wysłania kolejnej wiadomości aplikacyjnej,
 - Znacznik wysyłany jest poprzez wszystkie kanały wyjściowe.
 - Stan kanału *C*_{ii} przyjmuje się przy tym jako zbiór pusty.
 - Jeżeli odebrano już znaczniki TMARKER z wszystkich kanałów wejściowych:
 - rozsyłany stan jest stan procesu i kanałów do wszystkich pozostałych monitorów.

Odebranie wiadomości aplikacyjnej:

- Sprawdzenie, czy stan lokalny był już zapamiętany.
- Jeżeli tak, to wszystkie wiadomości odebrane między momentem zapamiętania stanu a momentem otrzymania znacznika są włączane do zbioru określającego stan kanału wejściowego C_+ ,.

Alg. Ze znacznikami FF/BF (kanały FC)

Idea:

- Rozwiniecie algorytmu Chandy-Lamporta dla kanałów FC
- Stany lokalne zapamiętane w wyniku odebrania znaczników typu BF (BMARKER)
- Znacznik typu FF (FMARKER), wysłany kanałem zaraz po zapamiętaniu stanu lokalnego wyznaczenie stanu kanału.
- Aby wyróżnić interesujące nas wiadomości tworzące stan kanału $C_{j,\perp}$ w obrazie spójnym, wystarczy dołączyć do wszystkich wiadomości aplikacyjnych oraz znaczników FMARKER, etykietę określającą numer sekwencyjny ostatnio wysłanego komunikatu.

Inicjalizacja:

- Monitor inicjatora spontanicznie zapisuje stan za pomocą procedury RECORDSTATE, która:
 - o Zapamiętuje stan lokalny procesu,
 - o Inicjuje wszystkie elementy tablicy pcktBuf; na Ø
 - o Zaznacza, że proces wziął już udział w przetwarzaniu,
 - o wysyła dwa znaczniki: bMarkOut i fMarkOut.

Odebranie BMARKERA:

Monitor odbiorcy, który jeszcze nie zapisał swojego stanu, wywołuje funkcję RECORDSTATE.

Odebranie wiadomości aplikacyjnej:

• Monitor odbiorcy, który już zapisał swój stan (zmienna involved;==True) od monitora, od którego nie otrzymano dotąd znacznika FMARKER, dopisuje otrzymany pakiet do zbioru na odpowiedniej pozycji tablicy poktBuf;.

Odebranie FMARKERA:

- Zapisanie tego faktu w tablicy recvMark, poprzez nadanie j-temu elementowi wartości True.
- Opróżnienie odpowiedniej j-tej pozycji tablicy chanState, i dodanie do niej wszystkich pakietów z j-tego wpisu tablicy poktBuf, których numer sekwencyjny jest nie większy niż numer sekwencyjny z pola seqNoPred nadesłanego znacznika.
- Jeżeli FMARKER otrzymano już wszystkimi kanałami wejściowymi, rozsyłany jest stan procesu.

Detekcja zakończenia

Alg. Dijkstra, Feijen, van Gasteren

- Model synchroniczny (problem zakończenia sprowadza się do sprawdzenia czy wszystkie procesy są jednocześnie pasywne)y
- Ciąg cykli detekcyjnych

- Monitorom (procesom) przypisany jest kolor White albo Black.
- Monitory przesyłają wzdłuż pierścienia TOKEN, który również może mieć kolor White albo Black.
- Początkowo monitory mają kolor White.
- Monitory zmieniają kolor na Black, gdy odpowiadający im proces aplikacyjny wyśle wiadomości do procesu o indeksie większym.
- Monitor czeka aż obserwowany przez niego proces stanie się pasywny i wówczas
 - Jeżeli monitor odbierze token Black, wysyła token Black.
 - Wpp. wysyła token White.
- Po wysłaniu znacznika monitorowi przypisywany jest kolor White.
- Jeżeli inicjator odbierze token:
 - o kolor procesu jak i znacznika jest White wykrycie zakończenia.
 - o kolor procesu, albo kolor znacznika równy jest Black, inicjator rozpoczyna kolejną rundę algorytmu.

Alg. Dijkstry-Scholtena

- Model przetwarzania dyfuzyjnego
- Kanały niezawodne
- Procesy nie ulegają awarii
- Inicjatorem przetwarzania dyfuzyjnego korzeń drzewa
- Procesy odsyłają specjalne wiadomości, poczynając od liści drzewa.
- Każdy proces węzeł drzewa przesyła wiadomość do swojego procesu angażującego, jeśli zebrał już wiadomości od wszystkich procesów potomnych.
- W momencie, w którym inicjator zbierze wszystkie wiadomości od swoich procesów potomnych, może uznać, że zostało wykryte zakończenie.

Twierdzenie

Jeżeli przetwarzanie dyfuzyjne uległo zakończeniu, fakt ten ulega wykryciu przez algorytm Dijkstry-Scholtena.

Bezpieczeństwo - liczniki

Postęp

Liczniki wiadomości

- Model atomowy (problem detekcji zakończenia można sprowadzić do wyznaczania stanów kanałów)
- $sc_i(\tau)$ liczba wiadomości wysłanych do chwili τ przez P_i .
- $rc_{i}(\tau)$ liczba wiadomości odebranych do chwili τ przez P_{i} .
- SC (τ) sumaryczna liczba wiadomości wysłanych przez wszystkie procesy do chwili τ .
- RC (τ) sumaryczna liczba wiadomości odebranych przez wszystkie procesy do chwili τ .
- W modelu atomowym równość SC (τ) =RC(τ) oznacza, że każda wiadomość wysłana została odebrana. Tym samym wszystkie kanały są w chwili puste, a więc osiągnięty został stan zakończenia.
- Wiadomość kontrolna wysłana przez inicjatora przesyłana jest między monitorami, a po dotarciu do wszystkich monitorów wraca do inicjatora.
- Celem wysłania wiadomości kontrolnej jest wyznaczenie sumarycznej liczby wiadomości wysłanych i odebranych przez wszystkie procesy aplikacyjne
- Każdy z monitorów dodaje do znacznika stany liczników sc_i i rc_i odpowiadające bieżącej chwili τ_i. Ponieważ kanały wprowadzają opóźnienia, zebrane liczniki odpowiadają różnym momentom τ_i: 1 ≤ i ≤ n.
- Oznaczmy przez SC* i RC* sumy zebranych przez znacznik liczników: SC* = $\sum_{i=1}^{n} sc_{i}(\tau_{i})$,

$$RC^* = \sum_{i=1}^{n} rc_{i}(\tau_{i}),$$

pamiętając, że:

SC
$$(\tau)$$
 = $\sum_{i=1}^{n} \operatorname{sc}_{i}(\tau)$,

RC (τ) = $\sum_{i=1}^{n} \operatorname{rc}_{i}(\tau)$,

- W algorytmie detekcji zakończenia rozważane są dwie fazy detekcji:
 - Pierwsza rozpoczyna się o chwili τ_h^1 i kończy w chwili τ_e^1 ,
 - druga odpowiednio w chwilach τ_b^2 i τ_e^2
 - o ponadto, że: $\tau_b^{-1} < \tau_e^{-1} < \tau_b^{-2} < \tau_e^{-2}$.
- SC* i RC* liczniki wyznaczone w pierwszej fazie.
- SC** i RC** liczniki wyznaczone w drugiej fazie.
- Jeżeli RC* = SC* = RC** = SC**, to monitorowane przetwarzanie aplikacyjne osiągnęło stan zakończenia przed zakończeniem procesu detekcji.

Twierdzenie

Jeżeli RC* = SC* = RC** = SC**, to monitorowane przetwarzanie aplikacyjne osiągnęło stan zakończenia przed zakończeniem procesu detekcji.

Dowód

Alg. Jednofazowy

- Model atomowy
- Monitory połączone są w logiczny pierścień

Wiadomość TOKEN zawiera:

- initId identyfikator inicjatora
- detectNo numer sekwencyjny cyklu detekcji,
- SRAccu suma liczników SRBalance, monitorów odwiedzonych już przez znacznik
- invalid flaga niepoprawności procesu detekcji przyjmuje ostatecznie wartość True, jeżeli którykolwiek proces aplikacyjny otrzymał między kolejnymi cyklami detekcji wiadomość, która narusza warunek konieczny poprawności detekcji: maxDetectNo, \geq tokenIn.detectNo,

Zmienne:

- detectNo, pole zawierające numer sekwencyjny cyklu detekcji.
- SRBalance, lokalne liczniki o wartości sc.,-rc., (początkowo 0).
- maxDetectNo_i zmienna określającą numer sekwencyjny cyklu detekcji skojarzony z wiadomością wysłaną najpóźniej, spośród wszystkich wiadomości odebranych przez Q_i.
- ullet terminationDetected $_{
 m i}$ zmienna zostaje ustawiona na True jeżeli wykryte zostało zakończenie.

Inicjalizacja:

• Inicjator inkrementuje licznik cyklu detekcji detectNoa oraz wysyła znacznik do swojego następnika w pierścieniu.

Wysłanie wiadomości aplikacyjnej:

- Monitor inkrementuje zmienną SRBalance,
- przypisuje jej numer cyklu detekcji zakończenia.

Otrzymanie wiadomości aplikacyjnej:

- Monitor dekrementuje licznik SRBalance,.
- Jeżeli wartość numer cyklu detekcji przesłana w otrzymanej wiadomości aplikacyjnej jest większa niż bieżąca wartość maxDetectNo_i, to zmiennej maxDetectNo_i przypisana zostaje właśnie ta wartość.

Otrzymanie tokenu:

- Uaktualnienie numeru sekwencyjnego bieżącego cyklu detekcji.
- Jeżeli token dotrze do inicjatora:
 - o jeżeli wartość pola SRAccu==0 i flaga invalid==False wykrycie zakończenia.
 - Wpp. rozpoczęcie nowego cyklu detekcyjnego.
- Jeżeli token dotrze do innego monitora (Q, ≠Qn):
 - o Do SRAccu dodawana jest aktualna wartość zmiennej SRBalance.
 - o fladze invalid przypisywana jest suma logiczna bieżącej wartości tej flagi oraz wartości relacji maxDetectNo. ≥tokenIn. detectNo:
 - zachodzi, jeżeli do monitora dotarł już pewien pakiet pckt z etykietą pckt.detectNo o wartości większej lub równej niż numer sekwencyjny bieżącego cyklu detekcji (tokenOut.detectNo)
 - Oznacza to, że pakiet ten został wysłany po wizycie bieżącego tokenu.

M jest dostarczona nieskończona liczbe razy do Pi.

jakiś inny proces Pi. Innymi słowy, kanał nie tworzy samorzutnie wiadomości.

- Zdarzenie odbioru pakietu pckt będzie uwzględnione w końcowej wartości licznika SRAccu, a nie będzie uwzględnione zdarzenie nadania tego pakietu.
- Konkluzja dotycząca zakończenia przetwarzania byłaby formułowana na podstawie niespójnego obrazu przetwarzania, a więc nie byłaby poprawna.
- Wynik bieżącego cyklu detekcji niepoprawny.
- Konieczny kolejny cykl detekcji.

Kanał wytrwały:

Detekcji zakończenia statycznego	Złożoność czasowa: Graf w pełni połączony: 3 × 2,Pierścień: 3n Złożoność komunik: 3 × 2n = 6n (bo potrzeba 2 cykli + zakończenie bieżącego) Inicjator Topologia każdy z każdym - pytamy "skończyłeś?" i odpowiedź Continously passive notAcki - służy do weryfikowania in transit Potrzebne dwie tury rozgłaszania	
Detekcji zakończenia dynamicznego	Estymacja IT - vsendno, vrecvno (wektory - ile wiadomości wysłanych/odebranych przez dany proces i do/od kogo) Dwa cykle Na koniec wiemy, że AIT[k]=IT[k+1]	
Kanały		
Implementacja kanałów rzetelnych	Rzetelne dostarczanie (ang. fair loss delivery): Jeżeli wiadomość M wysyłana jest nieskończoną liczbę razy przez proces Pi do procesu Pj i oba te procesy są poprawne, to wiadomość M jest dostarczona nieskończoną liczbę razy do Pj Ograniczone powielanie (ang. finite duplication): Jeżeli wiadomość M wysyłana jest skończoną liczbę razy przez proces Pi do procesu Pj, to wiadomość ta nie może być dostarczona nieskończoną liczbę razy do procesu Pj Brak samogeneracji (ang. no creation): Jeżeli wiadomość została dostarczona do procesu Pj, to została ona wcześniej wysłana do procesu Pj przez jakiś inny proces Pi	
Implementacja kanałów wytrwałych	 Zał: dostępność mechanizmu kanałów rzetelnych Po stronie nadawcy implementacja mechanizmu kanałów wytrwałych sprowadza się do wysyłania wiadomości nieskończoną liczbę razy. Po stronie odbiorcy wiadomości, każde odebrana wiadomość jest po prostu przekazywana procesowi aplikacyjnemu – adresatowi. 	

• Własność wytrwałego dostarczania - jeżeli wiadomość M wysyłana jest przez proces Pi do procesu Pj i oba te procesy są poprawne, to wiadomość

Własność braku samogeneracji - jeżeli wiadomość została dostarczona do procesu Pi, to została ona wcześniej wysłana do tego procesu przez

Implementacja kanałów niezawodnych	 Zał: dostępność mechanizmu kanałów wytrwałych Różnica między kanałami wytrwałymi i niezawodnymi polega tylko na sposobie dostarczania wiadomości. Wiadomość jest dostarczana przez monitor procesowi aplikacyjnemu tylko wtedy, gdy nie zawiera się on w zbiorze <i>delivered</i>_i. Po dostarczeniu procesowi wiadomość jest dodawana do zbioru <i>delivered</i>_i. Innymi słowy, wiadomość jest dostarczana tylko wtedy, gdy już wcześniej nie była dostarczona. Kanał niezawodny: Własność <i>niezawodnego dostarczania</i> - jeżeli wiadomość <i>M</i> wysyłana jest przez proces <i>P</i>_i do procesu <i>P</i>_j i oba te procesy są poprawne, to wiadomość <i>M</i> jest ostatecznie dostarczona do <i>P</i>_j. Własność <i>braku powielania</i> - żadna wiadomość wysłana do <i>P</i>_j nie może być dostarczona do procesu <i>P</i>_j więcej niż raz. Własność <i>braku samogeneracji</i> - jeżeli wiadomość została dostarczona do procesu <i>P</i>_j, to została ona wcześniej wysłana do procesu <i>P</i>_j przez jakiś inny proces <i>P</i>_i. Innymi słowy, kanał nie tworzy samorzutnie wiadomości.
	Detektory
Heartbeat - idea	 Proces monitorowany co pewien zdefiniowany czas T_j^P wysyła wiadomość typu "I'm alive". Odebranie tego typu wiadomości po drugiej stronie łącza komunikacyjnego przez detektor FD w czasie T_i^{to} od ostatnio odebranej wiadomości pozwala uznać proces P_j za poprawny. Wpp. detektor FD zaczyna podejrzewać proces P_j. Aktywność leży po stronie procesu monitorowanego, który musi okresowo wysyłać wiadomości.
Mechanizm odpytywania - idea	 Modyfikacją heartbeat Proces monitorujący co pewien zdefiniowany okres czasu T^ρ_i wysyła pytanie o status typu "Are you alive?". Proces monitorowany po odebraniu tego typu komunikatu odpowiada na niego wysyłając wiadomość typu "I am alive". Jeśli odpowiedź nie dotrze do procesu monitorującego (detektora awarii FD) przez zadany czas T^{to}_i, to detektor zacznie podejrzewać P_j o awarię. Ten schemat monitorowania umożliwia lepszą kontrolę procesu monitorowania, gdyż aktywność leży w tym rozwiązaniu po stronie detektora awarii.
Heartbeat, detektor P	Zał: Niezawodne kanały komunikacyjne Synchroniczny model systemu Czasy przetwarzania lokalnego i przesunięcia zegarów lokalnych pomijalnie małe w stosunku do maksymalnego czasu transmisji komunikatu
	Cykliczne zdarzenie upływu czasu wysłania pulsu:
	Rozesłanie wiadomości typu HEARTBEAT do wszystkich pozostałych procesów. Cuttierna zdawanie wskawa zgodywanie na odrzywanie na otrzywanie nyleky.
	 Cykliczne zdarzenie upływu czasu maksymalnego oczekiwania na otrzymanie pulsu: Jeżeli nie otrzymano w ostatnim czasie wiadomości typu HEARTBEAT od danego procesu (nie znajduje się on w zbiorze correct;) i nie jest on jeszcze podejrzewany, to dołączany on jest do zbioru podejrzewanych procesów. Otrzymanie pulsu: Otrzymanie takiej wiadomości powoduje dodanie procesu do zbioru correct.
	 Otrzymanie takiej wladomości powoduje dodanie procesu do zbioru correct. Długość T_i^{to} jest tak dobrana, by wszystkie wysłane wiadomości mogły dotrzeć do detektora.
Heartbeat, detektor ◊P	Zał: Niezawodne kanały komunikacyjne Częściowo synchroniczny model systemu

	 Czasy przetwarzania lokalnego i przesunięcia zegarów lokalnych są pomijalnie małe w stosunku do maksymalnego czasu transmisji komunikatu Cykliczne zdarzenie upływu czasu wysłania pulsu: Rozesłanie wiadomości typu HEARTBEAT do wszystkich pozostałych procesów. Cykliczne zdarzenie upływu czasu maksymalnego oczekiwania na otrzymanie pulsu: Co pewien czas: Ti to detektor dołącza wszystkie procesy, które nie należą do zbioru correcti czyli takie, od których nie otrzymano ostatnio wiadomości typu HEARTBEAT do zbioru suspectedi. Jeśli natomiast proces należy zarówno do zbioru correcti jak i do zbioru suspectedi to oznacza to, że detektor popełnił pomyłkę, która powinna być skorygowana. W takim przypadku proces przestaje być podejrzewany (usunięcie ze zbioru suspectedi) oraz zwiększany jest czas, po którym procesy zostają uznane za podejrzane, jeśli nie nadejdzie od niech żadna wiadomość typu HEARTBEAT.
	 Zbiorowi correct przypisana jest wartość zbioru pustego. Co pewien czas proces wysyła też wiadomości typu HEARTBEAT do wszystkich pozostałych procesów. Otrzymanie pulsu:
	Proces będący nadawcą jest dołączany do zbioru procesów uznanych za poprawne correct _i .
	Rozgłaszanie
Podstawowe rozgłaszanie niezawodne	Założenia: • niezawodne kanały komunikacyjne • procesy działają deterministycznie i poprawnie do ewentualnego załamania • model przetwarzania z ukrytymi awariami Złożoność czasowa: 1 Złożoność komunik: n • Odpowiedzialność za niezawodność ciąży na nadawcy. • Nie zapewnia przy tym dostarczenia wiadomości do wszystkich procesów, jeżeli nadawca ulegnie awarii. Własności: • Własność ważności - jeżeli procesy P_i oraz P_j są poprawne, to każda wiadomość rozgłaszana przez P_i jest ostatecznie dostarczona do P_j . • Własność braku powielania - jeżeli wiadomość jest dostarczona, to jest dostarczona co najwyżej raz. • Własność braku samogeneracji - jeżeli jakaś wiadomość jest dostarczona do procesu P_j , to została wcześniej rozgłoszona przez jakiś proces P_i . Innymi słowy, własność ta gwarantuje, że kanały nie generują samorzutnie wiadomości.
Pasywne zgodne rozgłaszanie niezawodne	 Doskonały detektor awarii u nadawcy. Jeżeli poprawne procesy odebrały wiadomość, rozpropagują ją. ■ Best-effort broadcast Wykrycie awarii u nadawcy. Jeżeli poprawne procesy odebrały wiadomość, rozpropagują ją. □ 1 (□) n (□) n (□) pokładność detektora nie jest konieczna - będą zbędne wiadomości, ale filtrowane. Silna kompletność jest niezbędna.

Jeżeli poprawny proces odebrał, to od razu wysyła do wszystkich.

Best-effort broadcast

Podstawowe rozgłaszanie niezawodne

Założenia

♀ 1 **♀** n

 \bigcirc O(n^2) \bigcirc n^2

Brak konieczności użycia doskonałego detektora

kosztem złożoności.

Aktywne zgodne rozgłaszanie

niezawodne

rozgłaszanie

Jednolite

niezawodne z potwierdzeniami od wszystkich	 Niezawodne kanały komunikacyjne Doskonały detektor awarii Złożoność czasowa: best: 2, worst: n+1 Złożoność komunik: best: O(n^2), worst: n^2 Wysyłanie: Wysyłając wiadomość monitor umieszcza ją w pakiecie, który jest dodany do zbioru oczekujących, po czym pakiet zostaje rozgłoszony. Dostarczenie do monitora: Odbierane pakiety monitor dodaje do zbioru acki razem z identyfikatorem nadawcy. Jeżeli dostarczony pakiet nie zawiera się jeszcze w zbiorze pendingi to jest do niego dodawany a następnie rozgłoszony. 	
	 Odebranie przez proces: Wiadomość jest dostarczana do procesu aplikacyjnego dopiero wtedy, kiedy monitor Q₁ otrzyma tę wiadomość w wyniku retransmisji od wszystkich poprawnych procesów. Czy jest potrzebny doskonały detektor awarii? Implozja potwierdzeń ← struktura drzewiasta ← problem w przypadku awarii 	
Jednolite rozgłaszanie niezawodne z potwierdzeniami od większości	Złożoność czasowa: (best: 2, worst: n+1) Złożoność komunikacyjna: (best: O(n^2), worst: n^2) Założenia Podstawowe rozgłaszanie niezawodne Większość procesów jest poprawna Pozbycie się detektora awariii, ale kosztem założenia, że większość procesów jest poprawna. Implozja potwierdzeń	
Aktywne probabilistyczne rozgłaszanie niezawodne	Wiadomość wysyłana do podzbioru sąsiadów.	
Konsensus		
Rozgłoszeniowy Algorytm konsensusu podstawowego	Złożoność czasowa: (best: 1, worst: n) Złożoność komunikacyjna: (best: n^2, worst: n^3) Założenia:	
Hierarchiczny algorytm konsensusu	Złożoność czasowa: (best: 1, worst: n) Złożoność komunikacyjna: (best: n, worst: n^2)	

podstawowego

Założenia:

- Podstawowe rozgłaszanie niezawodne
- Doskonały detektor awarii

Każdy po kolei staje się liderem. Lider rundy rozgłasza swoją decyzję, która jest przejmowana przez pozostałe procesy, po czym zaczyna się kolejna runda z nowym liderem. Jeżeli lider ulegnie awarii, jego rolę przejmuje kolejny proces i tak dalej.

- Jeżeli
 - o monitor Q_i stwierdza, że zostaje liderem bieżącej, k-tej rundy (co dzieje się wtedy, gdy jego identyfikator jest równy identyfikatorowi zapisanemu w k-tym elemencie tablicy liderSet_i)
 - o oraz jeżeli zmienna proposal, nie jest pusta,
 - o a także Q, jeszcze nie podejmował decyzji,

to Q;:

- o decyduje się na wartość zapisaną w proposal.,
- o zapamietuje ten fakt i powiadamia o tym pozostałe monitory.
- Z własności ważności podstawowego rozgłaszania niezawodnego wynika, że każdy proces poprawny otrzyma rozgłoszoną wiadomość, o ile rozgłaszający proces również jest poprawny. - Jeżeli więc monitor podejmuje decyzję i jest poprawny, to wszystkie inne poprawne monitory otrzymają wiadomość o podjętej przez niego decyzji.
- Jeżeli monitor Q, podejrzewa lidera bieżącej rundy lub już otrzymał od niego wiadomość, zwiększa numer rundy.
- Jeżeli monitor Q, otrzymuje powiadomienie o decyzji, to ignoruje ją, gdy:
 - o pochodzi ona od monitora skojarzonego z procesem znajdującym się niżej w hierarchii procesów niż P.,
 - o lub numer rundy nadesłanej wiadomości jest mniejszy niż największy numer rundy, w której monitor Q₁ otrzymał decyzję może to oznaczać, że wiadomość ta została wysłana przez niepoprawny monitor tuż przed jego awarią.
- Wpp. monitor Q_i zapisuje otrzymaną propozycję decyzji do zmiennej proposal_i oraz zapamiętuje, że w rundzie, zapisanej w polu roundNo odebranego komunikatu, otrzymał decyzję lidera.