Київський національний університет ім.Т.Г.Шевченка 03680, Київ, проспект Академіка Глушкова, 4 тел/факс 044 526 4567

ЗВІТ ПО ЛАБОРАТОРНІЙ РОБОТІ №4 З курсу «Основи електроніки»

ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З НЕГАТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ

Виконала

студентка 5Б гр.

Ямбулатова А.А.

Київ

Зміст

1 Bc	туп	3
	Мета роботи	
	Иетод вимірювання	
	Терелік скорочень, умовних познак, одиниць і термінів	
3 Г	Трактична частина	5
3.1	Підготовка	5
3.2	Інвертувальний підсилювач	5
	Неінветувальний підсилювач	
	Інтегратор на базі інвертувального	
4 E	Висновки	12
5 E	Використана література	13

,

1 Вступ

1.1 Мета роботи

. — ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

1.2 Метод вимірювання

— це метод *співставлення*: одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

2 Перелік скорочень, умовних познак, одиниць і термінів

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = 1800$), то зворотний зв'язок називають негативним (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0.0$), то такий зворотний зв'язок називають позитивним (П33).

3 Практична частина

3.1Підготовка

Поставлена задача полягає у спостереження вхідного та вихідного сигналів підсилювачів на підсилювачах. Роботу будемо виконувати за допомогою пакету Work Bench 5.12

У вищезгаданій програмі змоделювали та запустили робочі схеми відповідно для декілкох видів підсилювачів.

3.2 Інвертувальний підсилювач

Рис.1 Схема інвертувального підсилювача

Function (Generator	X
~~	~~	7
Frequency	1	kHz 🛊
Duty cycle	50 🖨	%
Amplitude	100	m∨ 🖨
Offset	0	
<u>-</u>	Common	+

Рис.2 Покази генератора

Рис.3 Осцилограф для інвертувального

3.3 Неінветувальний підсилювач

Рис.4 Схема неінвертувального підсилювача

Рис.5 Покази генератора

Рис. 6 Осцилограф для неінвертувального

3.4Інтегратор на базі інвертувального

Рис.7 Схема неінвертувального підсилювача

Рис.8 Покази генератора

Рис. 9 Осцилограф для неінвертувального (тип сигналу - меандр)

Рис.10 Вихідний сигнал для вузлів

4 Висновки

Виконали цю лабораторну роботу присвячену вивченню операційних підсилювачів з негативним зворотним зв'язком. Навчились будувати відповідні схеми, використовувати інструменти для досліду напруги у вузлах, моделювати сигнали двохканального осцилографа.

5 Використана література

- 1. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання":
- Методичне видання. K.: 2006.- c.
- 2. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.