PARALLEL PROCESSING

Mohammed Alabdulkareem

kareem@ksu.edu.sa

Office 2247

- Data decomposition is used with problems that operate in large amounts of data, in systems where memory architecture plays a performance role.
- Data decomposition may be based on input data or output data.

- Steps for decomposing data:
 - 1. Identify the data used and/or produced in the computations (input, output, both).
 - 2. Divide this data across tasks (linear/geometric or recursive decomposition).
 - 3. Obtain a computational partitioning that corresponds to the data partitioning.
 - 4. In distributed memory architectures, add the necessary data allocation and movement actions.

- General guidelines when decomposing data:
 - Generate comparable amounts of work (for load balancing).
 - Maximize data locality (or minimize the need of task interactions); i.e., minimize volume of data involved in task interactions, minimize frequency of iterations, minimize contention and hot spots.
 - Overlap computation with interactions to hide interaction effect.

- Minimize interaction overhead (1):
 - Minimize the volume of data exchange considering the cost associated with each word that is communicated.
 - Minimize the frequency of interactions considering the startup cost associated with each interaction (try to merge multiple interactions into one, when possible).
 - Overlap computations with interactions by using non-blocking communications i.e., non-blocking operations (MPI_Isend and MPI_Irecv).

- Minimize interaction overhead(2):
 - Use collective communications instead of point-to-point primitives (this also provides programming simplicity).
 - Minimize contention and hot-spots by using decentralized techniques or by replicating data whenever it is necessary.
 - Replicate communications

- Interaction patterns:
 - Point to Point (one to one).
 - Scatter and broadcast (one to all).
 - Gather and Reduce (all to one).
 - All to All (each processor sends its data to all others)

Domain decomposition:

Domain decomposition:

A and C partitioned by rows on 4 processors B is replicated.

- Recursive Decomposition
 - Generally suited to problems that are solved using the divide-and-conquer strategy.
 - A given problem is decomposed into a set of sub-problems.
 - The sub-problems are recursively decomposed further until a desired granularity is reached.

• A classic example of a divide-and-conquer algorithm is **Quicksort**.

• What part do I need?

a11	a12	a13		b11	b12	b13		C11	C12	C13
a21	a22	a23	Х	b21	b22	b23	\rightarrow			C23
a31	a32	a33		b31	b32	b33		C31	C32	c33

Row from A and whole B

• What part do I need?

a11	a12	a13		b11	b12	b13		C11	C13
a21	a22	a23	Х	b21	b22	b23	\rightarrow	C21	C23
a31	a32	a33		b31	b32	b33		C31	c33

Whole A and column from B

• What part do I need?

a11	a12	a13		b11	b12	b13				C13
a21	a22	a23	Х	b21	b22	b23	\rightarrow		C22	C23
a31	a32	a33		b31	b32	b33		C31	C32	c33

Whole A whole B

• What part do I need?

a11	a12	a13		b11	b12	b13				C13
a21	a22	a23	Х	b21	b22	b23	\rightarrow		C22	C23
a31	a32	a33		b31	b32	b33		C31	C32	c33

Yellow need a1*,a2* and b*1,b*2