Undergraduate Complexity Theory Lecture 26: Beyond Worst-Case Analysis

Marcythm

July 29, 2022

1 Lecture Notes

Assume $P \neq NP$ for the rest lectures.

So $3SAT \notin P$. Possibilities:

- 1. Allow more than poly(n) time to solve all instances.
- 2. Relax correctness: "Approx Algos", maybe \exists poly-time A s.t. $\forall \phi \in \mathsf{3SAT}, A(\phi)$ outputs an assignment satisfying 90% of clauses.
- 3. Look for poly-time algo that correct on "most" inputs, may be $\geq 99\%$ of all 3CNFs.

Dream: Show hardness for 1, 2, 3, just assuming $P \neq NP$.

Backup Dream: Make one new basic assumption, try to derive many consequences.

For point 1:

E.T.H.: $\exists \delta_0 > 0$: 3SAT \notin TIME $(2^{\delta_0 n})$, active field of research right now, conseqs of this in next lec. If ETH is true, then no algo solve LCS in $O(n^2)$ time.

 $\tilde{E}TH \implies BPP = P \text{ (mentioned in lec 22)}.$

For point 2: partially realized.

PCP Theorem ('93): $P \neq NP \implies$ not exists poly-time A s.t. $\forall \phi \in 3SAT$, $A(\phi)$ outputs assignment satisfying $\geq 99.999...\%$ of clauses.

Håstad'99 get this fraction down to $7/8 + \epsilon$. (optimal hardness result, since actually exists an algo that always output assignment satisfying 7/8 of clauses.)

Fact 1.1. \exists efficient randomize algo A s.t. $\mathbf{E}[\# \text{ clauses satisfied by } A(\phi)] \geq 7m/8.$

Lemma 1.2. Let $\phi(x)$ be a E3CNF, let $a \in \{0,1\}^n$ be a uniformly random assignment, then

$$\mathbf{E}[\# \ clauses \ sat'd \ by \ a] = \frac{7}{8}m$$

Proof. Let $I_j = \begin{cases} 1, & \text{if } a \text{ sats the } j \text{th clause of } \phi, j = 1 \dots, m. \end{cases}$ Then

$$\mathbf{E}[\#] = \mathbf{E}[I_1] + \mathbf{E}[I_2] + \dots + \mathbf{E}[I_n] = \sum_{i=1}^m \mathbf{Pr}[i\text{th clause is sat'd by } x = a]$$

For each clause, it's in the form $x_i \vee x_j \vee \overline{x_k}$, so the probability it's sat'd is 7/8. Thus

$$\mathbf{E}[\#] = \frac{7}{8}m$$

Min-Bisection: Given G, find $S \subseteq V$, |S| = n/2 s.t. # edges between S and \overline{S} is minimized. NP-hard in '70s, and in 2017: no known poly-time algo that achieves $\leq C \times \min$ (but can achieve $\leq \log^2 n \times \min$). Assume $P \neq NP$, we can't rule out poly-time algo getting factor $1 + \epsilon$.

Remark 1.3. The reductions between (NP-complete) problems only preserve exact satisfiability, but not preserve approximation quality.

Worst-Case Hardness: \forall poly-time SAT solvers, \exists poly-time formula generator s.t. Solve(Gen(n)) fails (for sufficiently large n).

Average-Case Hardness: \exists poly-time formula generator, \forall poly-time SAT solvers Solve(Gen(n)) fails (with high probability) (for sufficiently large n). Here the generation algo always allowed to be randomized, since otherwise the solver can hard-code the solution.

Average-Case Hardness is always desirable, for cryptography.

Definition 1.4 (Uniformly Random E3SAT Instances). $n = \# \text{ vars}, \Delta = \text{"clause density"}, m := \Delta n.$

 ϕ = Choose m random clauses independently, each clause is uniformly chosen from all $2^3 \binom{n}{3}$ possibilities

Q0: Is ϕ likely to be sat or unsat? Depends on Δ .

Exercise 1.5. If $\Delta > 5.2$, then ϕ is exponentially unlikely to be sat.

Theorem 1.6. If $\Delta \leq 0.16$, then ϕ is exponentially unlikely to be unsat.

Conjecture 1.7. \exists "phase transition" at $\Delta \approx 4.2667$, i.e. a sharp decrease of probability.

Exercise 1.8 (Chernoff bound). If $\Delta \geq 10$ ish, w.h.p. ϕ is unsat, and every assignment $a \in \{0,1\}^n$ sats $\leq 7/8 + \epsilon$ fraction of constraints.

Algo hardness: if $\Delta < 4.2667\cdots$: solver should find a sat assignment. 2017: poly-time algo that provably works when $\Delta \leq 3.52$. Algos that seem to work in poly-time for $\Delta \leq 4.266\cdots$. If $\Delta > 4.2667\cdots$: solver should give a proof that ϕ is unsat.

Definition 1.9. A Δ -3SAT-Refuter is a poly-time algo that: given any ϕ , either outputs "unsat" or "no comment"; is never wrong. Given random ϕ with param Δ , $\Pr[A(\phi) = \text{unsat}] \geq 99\%$.

In 2017: do Δ -3SAT-Refuters exist for $\Delta = C$? Unknown. But for $\Delta = \sqrt{n}$, it exists.

Hypothesis 1.10 (Feige's Hypothesis). \forall constant Δ , Δ -3SAT-Refuter don't exist.

This hypothesis directly implies that $P \neq NP$ (or there will exist poly-time algo for 3SAT, thus such refuter exists), Håstad's result (left as exercise), and no poly-time approx for Min-Bisection problem achieving $\leq 4/3$.