Geração de Terrenos Usando Conjectura de Collatz

Richard Fernando Heise Ferreira

18 de julho de 2025

Resumo

Este trabalho apresenta uma aplicação alternativa da Conjectura de Collatz na geração procedural de terrenos. Apesar de sua simplicidade, a conjectura exibe comportamento pseudo-aleatório complexo e rastreável, o que a torna promissora para fins computacionais. A proposta consiste em utilizar sequências de Collatz arredondadas, com granularidade ajustável, como base para gerar perfis de altura ao longo de um eixo. A implementação foi feita em C++, com suporte a visualização via Python. Além de explorar o potencial visual da sequência, o projeto demonstra como funções matemáticas simples podem ser utilizadas na síntese de dados com aparência orgânica e variabilidade controlada, características desejáveis em aplicações como jogos e simulações.

1 Introdução

A Conjectura de Collatz é um problema clássico da teoria dos números, proposto por Lothar Collatz em 1937, e permanece sem solução até hoje. Ela define uma sequência a partir de um número natural inicial n, seguindo a regra:

- Se n é par, o próximo número é n/2;
- Se n é impar, o próximo número é 3n + 1.

Repetindo esse processo, a conjectura afirma que, independentemente do valor inicial, a sequência eventualmente alcançará o número 1 e, portanto, o loop de 4, 2 e 1.

Apesar de sua simplicidade, a conjectura nunca foi provada ou refutada para todos os números naturais, e é conhecida por produzir padrões complexos e imprevisíveis. Esse comportamento a torna interessante para experimentações computacionais e explorações visuais.

Apesar de sua formulação extremamente simples, a Conjectura de Collatz tem se mostrado, ao longo das décadas, surpreendentemente resistente à resolução. Diversos matemáticos renomados dedicaram anos de estudo à sua análise — muitas vezes apenas para chegar à mesma conclusão de Paul Erdős: "A matemática ainda não está madura o suficiente para lidar com esse problema."

Apesar de indecifrada, a conjectura possui comportamento pseudo-aleatórios, o que abre espaço para aplicações práticas. Uma dessas aplicações é a geração procedural de terrenos, frequentemente usada em jogos e simulações, onde padrões imprevisíveis mas rastreáveis são desejáveis.

A função é facilmente calculável, dispensando pré-processamento — embora otimizações possam ser empregadas conforme a aplicação. A partir de um único número inicial, é possível gerar uma sequência determinística e única, o que a torna promissora até mesmo para técnicas de compressão e geração de dados pseudoaleatórios.

Este trabalho apresenta uma implementação básica que explora esse potencial, implementando um gerador de terrenos íngremes, que pode ser apelidado de "gerador de cordilheiras" em C++ e que tem suas saídas printadas em python.

2 Geração de Terreno com a Conjectura de Collatz

Este projeto consiste de um gerador de dados inspirado na Conjectura de Collatz, com o objetivo de produzir sequências inteiras para fins de visualização e possíveis aplicações em geração procedural de terrenos.

2.1 Estrutura do Projeto

O módulo responsável por essa geração está estruturado da seguinte forma:

- collatz.cpp Programa principal que gera os dados da sequência com base nos parâmetros fornecidos.
- Makefile Automatiza o processo de compilação.
- ploter.py Script em Python que permite visualizar graficamente os dados gerados.

2.2 Descrição Geral

O programa em C++ recebe como entrada um valor inicial (seed) e simula os passos da Conjectura de Collatz por um número determinado de iterações. A cada iteração, o valor é transformado conforme a regra clássica:

- Se par: divide por 2.
- Se ímpar: multiplica por 3 e soma 1.

Durante esse processo, os valores são arredondados com base em uma **granularidade** e um **piso mínimo**, de forma a suavizar e discretizar a sequência. A saída consiste em pares <valor, passo>, impressos apenas quando o valor arredondado muda.

2.3 Parâmetros de Execução

Após a compilação (via make), o programa pode ser executado com:

```
./collatz <seed> <steps> [granularity] [floor]
```

- seed: valor inicial da sequência de Collatz.
- steps: número máximo de passos a serem simulados.
- granularity (opcional): intervalo de arredondamento (padrão: 5).
- floor (opcional): valor mínimo permitido após arredondamento (padrão: 4).

2.4 Exemplo de Uso

./collatz 27 100

Este comando simula a sequência de Collatz iniciando em 27 por até 100 passos, aplicando o arredondamento padrão (granularidade 5, piso 4).

2.5 Visualização dos Dados

O script ploter.py pode ser utilizado para ler os pares gerados pelo programa e produzir gráficos ou representações visuais da sequência. Isso permite observar padrões visuais ou explorar propriedades estruturais da sequência gerada.

2.6 Possíveis Aplicações

Embora o projeto tenha fins experimentais e educacionais, a abordagem utilizada permite aplicações criativas, como:

- Geração procedural de terrenos ou alturas com base em padrões numéricos.
- Exploração de representações visuais de sequências matemáticas.
- Estudos de compressão ou segmentação de sequências inteiras discretizadas.