Sheet 13: Sequences

Definition 1 (Sequence) A sequence of real numbers is a function from \mathbb{N} to \mathbb{R} .

Definition 2 (Limit) We say that a sequence (a_n) converges to $a \in \mathbb{R}$ or

$$\lim_{n \to \infty} a_n = a$$

if for every region R containing a, there are only finitely many $n \in \mathbb{N}$ with $a_n \notin R$. We call a the limit of (a_n) .

Lemma 3 For a sequence (a_n) we have $\lim_{n\to\infty} a_n = a$ if and only if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N we have $|a_n - a| < \varepsilon$.

Proof. Let (a_n) be a sequence and suppose that $\lim_{n\to\infty}a_n=a$. Then for every region R containing a there exist finitely many $n\in\mathbb{N}$ with $a_n\notin R$. Let $\varepsilon>0$ and consider the region $(a-\varepsilon;a+\varepsilon)$. We know there are finitely many $n\in\mathbb{N}$ such that $a_n\notin (a-\varepsilon;a+\varepsilon)$. Since there are finitely many of these elements we know there exists a greatest $N\in\mathbb{N}$ such that $a_N\notin (a-\varepsilon;a+\varepsilon)$. Thus, for all $n\in\mathbb{N}$ such that n>N we have $a_n\in (a-\varepsilon;a+\varepsilon)$ and so $|a_n-a|<\varepsilon$.

Conversely, suppose that for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all n > N we have $|a_n - a| < \varepsilon$. Let R be a region and let $a \in R$. Let R = (a - p; a + q). Let $\varepsilon = \min(p, q)$ so that there exists some $N \in \mathbb{N}$ such that for all n > N we have $a_n \in (a - \varepsilon; a + \varepsilon)$. But then there exists only finitely many $n \in \mathbb{N}$ such that $a_n \notin (a - \varepsilon; a + \varepsilon)$ and therefore finitely many $a_n \notin R$.

Exercise 4 Are the following sequences convergent? If yes, what do they converge to?

- 1) $a_n = c \text{ for } c \in \mathbb{R};$
- 2) $a_n = (-1)^n$;
- 3) $a_n = 1/n;$
- 4) $a_n = (-1)^n/n$.
- 1) Convergent.

Proof. For all $n \in \mathbb{N}$ we have $a_n = c$ and so every region containing c will include every element of (a_n) . Thus, for every region R such that $c \in R$ we have a finite number of $n \in \mathbb{N}$ such that $a_n \notin R$.

2) Divergent.

Proof. For all $a \in \mathbb{R}$ there exists a region R with $a \in R$ such that $-1 \notin R$ or $1 \notin R$. Consider the case where $-1 \notin R$. Then for all $n \in \mathbb{N}$ such that n is odd we have $a_n \notin R$. But there are an infinite number of odd naturals. A similar case holds for $1 \notin R$ and even naturals.

3) Convergent.

Proof. We have for all $n \in \mathbb{N}$, $a_n \in (0;1]$. Let $\varepsilon > 0$. In the case where $\varepsilon > 1$ then for all $n \in \mathbb{N}$ we have $|a_n| < \varepsilon$. If $\varepsilon = 1$ then for all $n \in \mathbb{N}$ with n > 1 we have $|a_n| < \varepsilon$. In the case where $\varepsilon \le 1$ we have $1/\varepsilon \ge 1$ and by the Archimedean Property and the Well Ordering Principle there exists a least $k \in \mathbb{N}$ such that $k > 1/\varepsilon > k - 1$. Then $1/k < \varepsilon < 1/(k - 1)$ and so for all $n \in \mathbb{N}$ with n > k - 1 we have $|a_n| < \varepsilon$. Thus, $\lim_{n \to \infty} a_n = 0$.

4) Convergent.

Proof. We have for all $n \in \mathbb{N}$, $a_n \in [-1; 1]$. Thus for all $n \in \mathbb{N}$, $|a_n| \in (0; 1]$. From here we use a similar proof to 3) since we need to show that there exists some $N \in \mathbb{N}$ such that for all n > N we have $|a_n| < \varepsilon$. This is exactly what we did in 3). Thus, $\lim_{n \to \infty} a_n = 0$.

Theorem 5 The following hold. 1) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} a_n = a'$ then a = a'; 2) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ then $\lim_{n\to\infty} (a_n + b_n) = a + b$; 3) If $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ then $\lim_{n\to\infty} (a_n b_n) = ab$; 4) If $\lim_{n\to\infty} a_n = a$ and $c \in \mathbb{R}$ then $\lim_{n\to\infty} (ca_n) = ca$; 5) If $\lim_{n\to\infty} a_n = a \neq 0$ and $a_n \neq 0$ for all n then $\lim_{n\to\infty} (1/a_n) = 1/a$; 6) If $a_n \leq b_n$ for all n and both (a_n) and (b_n) are convergent then $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$. *Proof.* 1) Let $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} a_n = a'$ and suppose $a \neq a'$. Without loss of generality let a < a'. Consider 0 < (a' - a)/2. Then there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n > N_1$ we have $|a-a_n|<(a'-a)/2$ and for all $n>N_2$ we have $|a'-a_n|<(a'-a)/2$. Let $N=\max N_1,N_2$ so that for all n > N we have $a_n \in (a - (a' - a)/2; a + (a' - a)/2)$ and $a_n \in (a' - (a' - a)/2; a + (a' - a)/2)$. But these regions are disjoint so this is a contradiction and a = a'. *Proof.* 2) Let $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$ and consider $\varepsilon/2 > 0$. Then there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n > N_1$ we have $|a - a_n| < \varepsilon/2$ and for all $n > N_2$ we have $|b - b_n| < \varepsilon/2$. Let $N = \max(N_1, N_2)$ so that for all n > N we have $|a - a_n| < \varepsilon/2$ and $|b - b_n| < \varepsilon/2$. But by Lemma 11.8 this means we have $|(a+b)-(a_n+b_n)|<\varepsilon$ for all n>N. This implies that $\lim_{n\to\infty}(a_n+b_n)=a+b$. *Proof.* 3) Let (a_n) converge to a and (b_n) converge to b. Let $\varepsilon > 0$ and consider min $\left(1, \frac{\varepsilon}{2(|b|+1)}\right) > 0$. Then there exists an $N_1 \in \mathbb{N}$ such that for all $n > N_1$ we have $|a - a_n| < \min\left(1, \frac{\varepsilon}{2(|b|+1)}\right)$. Also, there exists $N_2 \in \mathbb{N}$ such that for all $n > N_2$ we have $|b - b_n| < \frac{\varepsilon}{2(|a|+1)}$. Let $N = \max(N_1, N_2)$ so that for all n > N we have $|a-a_n| < \min\left(1, \frac{\varepsilon}{2(|b|+1)}\right)$ and $|b-b_n| < \frac{\varepsilon}{2(|a|+1)}$. But then we know that for all n > N we have $|ab - a_n b_n| < \varepsilon$. Thus $\lim_{n \to \infty} (a_n b_n) = ab$. *Proof.* 4) Let (a_n) converge to a. From Exercise 4 we know that $\lim_{n\to\infty} c=c$ and so from 3) we have $\lim_{n\to\infty}(ca_n)=ca.$ *Proof.* 5) Let (a) converge to $a \neq 0$ such that $a_n \neq 0$ for all $n \in \mathbb{N}$. Let $\varepsilon > 0$ and consider $\min\left(\frac{|a|}{2}, \frac{\varepsilon|a|^2}{2}\right) > 0$. Then there exists $N \in \mathbb{N}$ such that for all n > N we have $|a - a_n| < \min\left(\frac{|a|}{2}, \frac{\varepsilon|a|^2}{2}\right)$. But then we have $\left|\frac{1}{a} - \frac{1}{a_n}\right| < \varepsilon$ for all n > N. Thus $\lim_{n \to \infty} (1/a_n) = 1/a$. *Proof.* Let (a) converge to a and (b_n) converge to b such that $a_n \leq b_n$ for all $n \in \mathbb{N}$. Suppose to the contrary that a > b. Let $\varepsilon = (a - b)/2 > 0$. Then there exist $N_1, N_2 \in \mathbb{N}$ such that for all $n > N_1$ we have $a_n \in (a-\varepsilon; a+\varepsilon)$ and for all $n>N_2$ we have $b_n \in (b-\varepsilon; b+\varepsilon)$. Let $N=\max(N_1,N_2)$ so that for all n > N we have $a_n \in (a - (a - b)/2; a + (a - b)/2) = ((a + b)/2; (3a - b)/2)$ and $b_n \in (b - (a - b)/2; b + (a - b)/2) = ((3b - a)/2; (a + b)/2)$. But then $b_n < (a + b)/2 < a_n$ for all n which is a contradiction therefore $a \leq b$.

Theorem 6 Let $A \subseteq \mathbb{R}$ be a subset. Then $a \in \overline{A}$ if and only if there exists a sequence $a_n \in A$ that converges to a.

Proof. Let $a \in \overline{A}$. Then we have $a \in A$ or a is a limit point of A. If $a \in A$ then we let $a_n = a$. This converges to a using a similar proof to 1) of Exercise 4. If a is a limit point of A and R is a region containing a then from Theorem 3 we have $R \cap A$ is infinite. Define (a_n) as follows. Choose $a_1 < a$ from $R \cap A$. Now let $a_2 \in (a - \frac{a-a_1}{2}; a + \frac{a-a_1}{2})$ such that $a_1 < a_2 < a$. Continue in this way so that $a_n \in (a - \frac{a-a_{n-1}}{2}; a + \frac{a-a_{n-1}}{2})$ and $a_{n-1} < a_n < a$. Now consider some region (p;q) such that $a \in (p;q)$. In the case where $p < a_1$ there are no elements of (a_n) outside of (p;q). If $a_1 < p$ then take the smallest $k \in \mathbb{N}$ such that $p < a_k$. Then $a_{k-1} \le p$. Since there are a finite number of naturals less than k and every other natural maps to something between a_{k-1} and a, there are a finite number of $n \in \mathbb{N}$ such that $a_n \notin (p;q)$. We see that in all cases $\lim_{n \to \infty} a_n = a$.

Conversely suppose there exists a sequence $a_n \in A$ that converges to a. If $a = a_k$ for some $k \in \mathbb{N}$ then we have $a \in A$ and we're done. If $a \neq a_k$ for $k \in \mathbb{N}$ then for a region R with $a \in R$ there exists a finite number of $n \in \mathbb{N}$ such that $a_n \notin R$. But then there are an infinite number of $n \in \mathbb{N}$ with $a_n \in R$ and since a is not equal to any of these a_n we have a is a limit point of A which means $a \in \overline{A}$.

Theorem 7 Let f be a real function. Then f is continuous at a if and only if for all sequences (a_n) with $\lim_{n\to\infty} a_n = a$ we have $\lim_{n\to\infty} f(a_n) = f(a)$.

Proof. Let f be continuous at a and consider some sequence (a_n) which converges to a. Then for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $a_n \in \mathbb{R}$ when $|a - a_n| < \delta$ we have $|f(a) - f(a_n)| < \varepsilon$. But also for $\delta > 0$ there exists some $N \in \mathbb{N}$ such that for all n > N we have $|a - a_n| < \delta$. But then for $\varepsilon > 0$ there exists some $N \in \mathbb{N}$ such that for all n > N we have $|f(a) - f(a_n)| < \varepsilon$.

To show the converse, we use the contrapositive. Assume that f is not continuous at a. Then there exists $\varepsilon>0$ such that for all $\delta>0$ there exists some $x\in\mathbb{R}$ so that when $|a-x|<\delta$ we have $|f(a)-f(x)|\geq\varepsilon$. For this ε there exists some $a_1\in(a-1;a+1)$ such that $|f(a)-f(a_1)|\geq\varepsilon>0$. Then let (a_n) be a sequence such that $a_n\in(a-1/n;a+1/n)$ such that $|f(a)-f(a_n)|\geq\varepsilon$. We know that a_i exists for all $i\in\mathbb{N}$ because for each $\delta>0$ there always exists an $x\in(a-\delta;a+\delta)$ such that $|f(a)-f(x)|\geq\varepsilon$. Let (p;q) be a region with $a\in(p;q)$. If $p\leq a-1$ and $q\geq a+1$ then for all n we have $a_n\in(p;q)$ and so there are finitely many n with $a_n\notin(p;q)$. Consider the case where $p\in(a-1;a)$. Using the Archimedean Property and the Well Ordering Principle there exists a least k such that $a-1/k\leq p< a$. Then there are finitely many $n\leq k$ such that $a_n\leq p$. We can make a similar argument about q so that there are finitely many n with $a_n\notin(p;q)$. Then (a_n) converges to a but this means there exists a sequence which converges to a, but $\lim_{n\to\infty} f(a_n)\neq f(a)$.

Definition 8 Let (a_n) be a sequence. A point $a \in \mathbb{R}$ is called an accumulation point of (a_n) if for every region R containing a there are infinitely many n with $a_n \in R$.

Lemma 9 For a sequence (a_n) , the set A of all its accumulation points is a closed set.

Proof. Let (a_n) be a sequence and let A be the set of its accumulation points. Let $x \in \mathbb{R} \setminus A$. Then x is not an accumulation point of (a_n) and so there exists some region R such that there are finitely many $n \in \mathbb{N}$ with $a_n \in R$. Note that none of the points in R are accumulation points because there are only finitely many $a_n \in R$. But this means that $R \subseteq \mathbb{R} \setminus A$ and since such a region exists for all $x \in \mathbb{R} \setminus A$ we know that this set is open. But then A is closed.

Theorem 10 Let (a_n) be a sequence which converges to a. Then a is the only accumulation point of (a_n) .

Proof. Let (a_n) be a sequence such that $\lim_{n\to\infty} a_n = a$ and suppose that (a_n) has an accumulation point a' such that $a' \neq a$. Let R and R' be disjoint regions containing a and a' respectively. Then there are finitely many $n \in \mathbb{N}$ with $a_n \notin R$ but also there are infinitely many $n \in \mathbb{N}$ with $a_n \in R'$. Since R and R' are disjoint this is a contradiction.

Definition 11 (Subsequence) Let (a_n) be a sequence. A subsequence of (a_n) is a sequence $(b_k = a_{n_k})$ (meaning that $b_1 = a_{n_1}$, $b_2 = a_{n_2}$, $b_3 = a_{n_3}$ and so on), where $n_1 < n_2 < n_3 < \dots$

Lemma 12 If (a_n) converges to a, then so do all of it's subsequences.

Proof. Let (a_n) be a sequence which converges to a and let $(b_k = a_{n_k})$ be a subsequence. Every element of $(b_k = a_{n_k})$ is an element of (a_n) and for every region R with $a \in R$ there are finitely many $n \in \mathbb{N}$ such that $a_n \notin R$. But then For every region R containing a, there must be finitely many $k \in \mathbb{N}$ such that $b_k \notin R$. Thus $(b_k = a_{n_k})$ converges to a.

Lemma 13 Let (a_n) be a sequence. Then a is an accumulation point of (a_n) if and only if there is a subsequence $(b_k = a_{n_k})$ which converges to a.

Proof. Let (a_n) be a sequence which has a subsequence $(b_k = a_{n_k})$ which converges to a. Then for all regions R with $a \in R$ there are finitely many $k \in \mathbb{N}$ with $b_k \notin R$. Then there are infinitely many k with $b_k \in R$. But for all $k \in \mathbb{N}$ we have $b_k = a_{n_k}$ which means there are infinitely many $n \in \mathbb{N}$ with $a_n \in R$. Thus, a is an accumulation point of (a_n) .

Conversely, let a be an accumulation point of (a_n) . Create a subsequence $(b_k = a_{n_k})$ where $b_k = a_{n_k}$ and $a_{n_k} \in (a-1/k; a+1/k)$. We know that b_k will exist because for each $k \in \mathbb{N}$ there are infinitely many n such that $a_n \in (a-1/k; a+1/k)$ because a is an accumulation point. Let (p;q) be a region containing a. Then if $p \le a-1$ and $q \ge a+1$ then we have $a_n \in (p;q)$ for all n and so there are a finite number of n such that $n \notin (p;q)$. In the case where $a-1 , using the Archimedean Property and the Well Ordering Principle we know there exists a least <math>k \in \mathbb{N}$ such that $a-1/k \le p < a$. But then there are a finite number of $n \le k$ such that $a_n \le p$. Using a similar argument for a < q < a+1 we have a finite number of n such that $a_n \notin (p;q)$. Then (b_k) converges to a.

Definition 14 (Bounded Sequence) A sequence (a_n) is bounded above if there exists $M \in \mathbb{R}$ such that $a_n \leq M$ for all $n \in \mathbb{N}$. It is bounded below if there exists $m \in \mathbb{R}$ such that $a_n \geq m$ for all $n \in \mathbb{N}$. We have (a_n) is bounded if it is bounded above and bounded below.

Lemma 15 Every convergent sequence is bounded.

Proof. Let (a_n) be a sequence which converges to a. Let (p;q) be a region with $a \in (p;q)$. In the case that for all $n \in \mathbb{N}$, $p < a_n$ or $a_n < q$ we have p or q are upper or lower bounds for (a_n) . Consider the case where there exists $n \in \mathbb{N}$ such that $a_n \leq p$. We have (a_n) converges to a so there are finitely many n with $a_n \notin (p;q)$. Thus, there exists $k \in \mathbb{N}$ such that $a_k \leq a_n$ for all $n \in \mathbb{N}$. Then this a_k is a lower bound for (a_n) . A similar proof holds to find and upper bound for (a_n) if there exists $n \in \mathbb{N}$ with $a_n \geq q$.

Theorem 16 (Bolzano-Weierstrass for Sequences) Any bounded sequence has a convergent subsequence.

Proof. Let (a_n) be a bounded sequence. Then there exists $l, u \in \mathbb{R}$ such that for all $n \in \mathbb{N}$ we have $l \leq a_n \leq u$. Now suppose that (a_n) has no accumulation points. Then for all points $a \in \mathbb{R}$ there exists a region R_a such that there are finitely many $n \in \mathbb{N}$ with $a_n \in R_a$. Let $\mathcal{A} = \{R_a \mid a \in [l; u]\}$. Then \mathcal{A} is an open cover for [l; u] and [l; u] is compact so let \mathcal{B} be a finite subcover for \mathcal{A} . Then \mathcal{B} covers [l; u] with a finite number of regions R which each have a finite number of $n \in \mathbb{N}$ with $a_n \in R$. But (a_n) is bounded between l and u so there are an infinite number of $n \in \mathbb{N}$ with $a_n \in [l; u]$. This is a contradiction and so (a_n) must have some accumulation point a. Then by Lemma 13 there must exist a convergent subsequence of (a_n) which converges to a.

Corollary 17 Let (a_n) be a bounded sequence. Then (a_n) is convergent if and only if it has only one accumulation point.

Proof. If (a_n) is convergent at a then by Lemma 10 a is the only accumulation point of (a_n) . Suppose now that (a_n) has only one accumulation point a. Note that (a_n) so there exist $l, u \in \mathbb{R}$ such that $a_n \in [l; u]$ for all $n \in \mathbb{N}$. Take an arbitrary region $(p;q) \subseteq [l;u]$ such that $a \in (p;q)$. Consider $[l;u] \setminus (p;q) = [l;p] \cup [q;u] = S$. Every element of S is not an accumulation point of (a_n) . Thus for all $x \in S$ there exists some region R_x such that there are finitely many $n \in \mathbb{N}$ with $a_n \in R_x$. Let $A = \{R_x \mid x \in S\}$ be an open cover for S. We have S is closed and bounded and so there exists a finite subcover \mathcal{B} for A. Then \mathcal{B} covers S with a finite number of regions, R, each of which have a finite number of n with $n \in \mathbb{R}$. Thus, there are finitely many $n \in \mathbb{N}$ with $n \notin (p;q)$. In the case where $n \notin (p;q)$ then we have every element of $n \in \mathbb{N}$ are so there are finitely many $n \in \mathbb{N}$. In all cases we see that $n \in \mathbb{N}$ must converge to $n \in \mathbb{N}$.

Theorem 18 (Increasing Bounded Sequences are Convergent) Let (a_n) be a bounded above sequence, such that $a_n \leq a_{n+1}$ for all n. Then (a_n) converges and

$$\lim_{n \to \infty} a_n = \sup\{a_n \mid n \in \mathbb{N}\}.$$

Proof. Let $s = \sup\{a_n \mid n \in \mathbb{N}\}$. Consider some region (p;q) with $s \in (p;q)$. In the case where $p < a_n$ for all $n \in \mathbb{N}$, we have a finite number of n with $a_n \notin (p;q)$. Suppose that $a_n \leq q$ for all n. Then there exists $c \in (q;s)$ such that $c > a_n$ for all n. But this is a contradiction because c < s and c is an upper bound for (a_n) . Thus there exists $i \in \mathbb{N}$ such that $a_i \leq p < a_{i+1}$. So now we have $q < a_n$ for all n > i and since there are a finite number of naturals less than i+1, there are a finite number of n with $a_n \notin (p;q)$. But this is true for every region R with $s \in R$. Thus $\lim_{n \to \infty} a_n = s$.

Theorem 19 Every sequence has an increasing or decreasing subsequence.

Proof. Let (a_n) be a sequence. Define n to be a peak point if for all m > n we have $a_m < a_n$. Suppose there are infinitely many peak points for (a_n) and let n_1 be the least peak point. We can do this because peak points are natural numbers. Define the next largest peak point to be n_2 and so on. Note that $a_{n_i} > a_{n_{i+1}}$ for all $i \in \mathbb{N}$. Thus, we have created a decreasing subsequence $(b_k = a_{n_k})$.

If there are no peak points then for all $n \in \mathbb{N}$, there exists m > n such that $a_n \leq a_m$. Then we can make an increasing subsequence by letting $b_1 = a_1$. Then there exists $m_2 > 1$ such that $a_1 \leq a_{m_2}$. Let $b_2 = a_{m_2}$. Now there exists $m_3 > m_2$ such that $a_{m_2} \leq a_{m_3}$. Let $b_3 = a_{m_3}$. Thus $(b_k = a_{m_k})$.

Now suppose that there are finitely many peak points for (a_n) and that there exists at least one peak point. Let $n \in \mathbb{N}$ be the largest peak point for (a_n) . Then for all m > n we have $a_m < a_n$, but also m is not a peak point and so there exists m' > m with $a_m \le a_{m'}$. Then create an increasing sequence as before by choosing an arbitrary $m_1 > n$ and letting $b_1 = a_{m_1}$. Then there exists $m_2 > m_1$ such that $a_{m_1} \le a_{m_2}$. Thus $(b_k = a_{m_k})$.