Метод головних компонент з точки зору методів оптимізації

Н. Фордуй, О. Галганов

Опис задачі

Задано набір $\{x_1,...,x_m\}$ із m точок в \mathbb{R}^n . Необхідно для заданого k < n знайти k-вимірну гіперплощину, яка буде найближчою до цих точок в сенсі евклідової норми: тобто, мінімальною має бути різниця між цими точками та їх проекціями на шукану площину.

Ця задача називається **методом головних компонент** (англ. principal component analysis, PCA) і широко застосовується в статистиці та машинному навчанні.

Постановка задачі

Розглянемо задані $\{x_1,...,x_m\}$ — m векторів з \mathbb{R}^n . Відомо, що k-вимірна гіперплощина H_k в \mathbb{R}^n задається k ортонормованими векторами $\{u_1,...,u_k\}$, які можна доповнити до базису (далі — ОНБ), та вектором зсуву відносно нуля b:

$$H_k = \{x = b + c_1u_1 + ... + c_ku_k : c_1, ..., c_k \in \mathbb{R}\}.$$
 Нехай $\{u_i\}_{i=1}^n$ — деякий ОНБ в \mathbb{R}^n . Тоді $\forall \ i=1,...,n: x_i=b+\sum_{j=1}^n c_{i,j}u_j$, де $c_{i,j}=(x_i,u_j)$ (це — розклад Фур'є в \mathbb{R}^n).

Покажемо, що після застосування деякого перетворення заданих векторів можна вважати b=0.

Допоміжна задача

Для заданих m точок $\{x_1,...,x_m\}$ в \mathbb{R}^n знайти точку, яка знаходиться найближче до них в сенсі евклідової норми.

Розв'язання допоміжної задачі

Задача має вигляд
$$F(x) = \sum_{k=1}^m \|x - x_k\|^2 \to \min, \ x \in \mathbb{R}^n.$$

$$F_x'(x^*) = 2\sum_{k=1}^m (x^* - x_k) = 0 \Rightarrow x^* = \frac{1}{m}\sum_{k=1}^m x_k$$
 — стаціонарна точка.

Оскільки
$$F(x)$$
 — опукла функція, то $x^* = \frac{1}{m} \sum_{k=1}^m x_k$ — розв'язок.

Постановка задачі

Таким чином, якщо замінити x_i на $y_i=x_i-\frac{1}{m}\sum_{i=1}^m x_i$, то можна вважати b=0, оскільки тепер найближчою точкою \mathbb{R}^n буде точка 0, тому й шукана гіперплощина теж має проходити через 0.

Отже, $\forall \ i=1,...,n: y_i=\sum\limits_{j=1}^n c_{i,j}u_j$, де $c_{i,j}=(y_i,u_j)$. Проекції на гіпер-

площину y_i будемо шукати у вигляді $\hat{y_i} = \sum\limits_{j=1}^k c_{i,j} u_j$, k < n. Введемо

вектори похибок $arepsilon_i = y_i - \hat{y_i} = \sum_{j=k+1}^n c_{i,j} u_j$, які зберемо у матрицю:

$$E = \left(\varepsilon_{1}, \varepsilon_{2}, ..., \varepsilon_{m}\right) = \left(u_{k+1}, u_{k+2}, ..., u_{n}\right) \cdot \begin{pmatrix} c_{1,k+1} & c_{2,k+1} & ... & c_{m,k+1} \\ c_{1,k+2} & c_{2,k+2} & ... & c_{m,k+2} \\ ... & ... & ... & ... \\ c_{1,n} & c_{2,n} & ... & c_{m,n} \end{pmatrix}$$

Коротко: E=UC, причому $U^TU=I$, бо ці вектори ортонормовані, а $C=Y^TU$.

Задача

Знайти такі ортонормовані вектори $\{u_i\}_{i=1}^n$, що $\|E\|^2 \to min$, де $\|E\| = \sqrt{\sum_{i,j=1}^n e_{ij}^2}$ — норма Фробеніуса матриці похибок E.

Введемо позначення
$$Y=(y_1,...,y_m)$$
, $F=YY^T$. $\|E\|^2={\rm Tr}\left(E^TE\right)={\rm Tr}\left(C^TU^TUC\right)={\rm Tr}\left(C^TC\right)={\rm Tr}\left(U^TYY^TU\right)=$ $={\rm Tr}\left(U^TFU\right)$. Оскільки $U=\sum\limits_{j=k+1}^n\left(0,....0,u_j,0...,0\right)=\sum\limits_{j=k+1}^nU_j$, за лінійністю ${\rm Tr}\left({\rm Cnid}$ матриці, сума діагональних елементів) маємо ${\rm Tr}\left(U^TFU\right)=\sum\limits_{j=k+1}^n{\rm Tr}\left(U_j^TFU_j\right)$. В кожній матриці U_j лише один

стовпець не рівний нулю, тому $\sum\limits_{j=k+1}^n {
m Tr}\left(U_j^T F U_j\right) = \sum\limits_{j=k+1}^n {(F u_j, u_j)}.$

Таким чином, отримуємо задачу умовної оптимізації

$$\begin{cases} F(u_{k+1},...,u_n) = \sum\limits_{j=k+1}^n (Fu_j,u_j) \to \min \\ \|u_j\|^2 = 1, \ j=k+1,...,n \\ \{u_{k+1},...,u_n\} - \text{лінійно незалежні} \end{cases}$$

Ця задача є регулярною, бо градієнти функцій, що задають обмеження, є лінійно незалежними за умовою.

Маємо функцію Лагранжа:

$$\begin{split} \mathcal{L}(u_{k+1},...,u_n,\lambda_{k+1},...,\lambda_n) &= \sum_{j=k+1}^n \left((Fu_j,u_j) + \lambda_j \left(\|u_j\|^2 - 1 \right) \right) \\ \begin{cases} \frac{\partial \mathcal{L}}{\partial u_j} &= 2Fu_j + 2\lambda_j u_j = 0 \\ (j=k+1,...,n) \\ \|u_j\|^2 &= 1, \ j=k+1,...,n \\ \{u_{k+1},...,u_n\} &= \text{лінійно незалежні} \end{cases} \end{split}$$

Оскільки $2Fu_i + 2\lambda_i u_i = 0 \Leftrightarrow Fu_i = -\lambda_i u_i$, то розв'язком системи будуть u_j — власні вектори F одиничної норми. Але з умови мінімізації цільової функції та лінійної незалежності $\{u_{k+1},...,u_n\}$ ці власні вектори мають відповідати найменшим власним числам $\mu_j = -\lambda_j$.

$$F^T=(YY^T)^T=YY^T$$
, $F\geq 0$, бо $\forall~x\in\mathbb{R}^n:(Fx,x)=(YY^Tx,x)=(Y^Tx,Y^Tx)\geq 0.$ Таким чином, всі $\mu_j=-\lambda_j\geq 0.$

Оскільки цільова функція є нескінченно зростаючою, то отримані u_j є розв'язками задачі. Зрозуміло, що інші складові ОНБ $\{u_i\}_{i=1}^n$ можна покласти рівними іншим власним векторам матриці F, розташувавши всі отримані у порядку спадання відповідних власних значень, причому векторам $u_1,...,u_k$ відповідатимуть k найбільших власних чисел (нагадаємо, що за цими векторами розкладалися наближення $\hat{y_i}$).

Залишилося згадати, що
$$y_i = x_i - \frac{1}{m} \sum\limits_{i=1}^m x_i.$$
 Позначимо $X = (x_1,...,x_m)$,

тоді
$$Y=X-\left(\frac{1}{m}\sum_{i=1}^m x_i\right)\cdot\underbrace{(1,1,...,1)}_m$$
. Тепер обчислимо матрицю YY^T .

 $XX^T - m \cdot \overline{x} \cdot \overline{x}^T$

Введемо позначення
$$\overline{x} = \frac{1}{m} \sum_{i=1}^m x_i$$
.
$$YY^T = (X - \overline{x} \cdot (1, 1, ..., 1)) \cdot (X^T - (1, 1, ..., 1)^T \cdot \overline{x}^T) = \\ = XX^T - \overline{x} \cdot (1, 1, ..., 1) \cdot X^T - X \cdot (1, 1, ..., 1)^T \cdot \overline{x}^T + \overline{x} \cdot (1, 1, ..., 1) \cdot (1, 1, ..., 1)^T \cdot \overline{x}^T = XX^T - m \cdot \overline{x} \cdot \overline{x}^T - m \cdot \overline{x} \cdot \overline{x}^T = \\ XX^T - m \cdot \overline{x} \cdot \overline{x}^T = \\ = XX^T - \frac{1}{m} \left(\sum_{i=1}^m x_i \right) \cdot \left(\sum_{i=1}^m x_i^T \right)$$

Таким чином, знайдені вектори u_i є власними векторами матриці

Відповідь

Шуканою k-вимірною гіперплощиною є $\overline{x} + L(u_1, ..., u_k)$.

Тут $\overline{x}=\frac{1}{m}\sum_{i=1}^m x_i$, а $L(u_1,...,u_k)$ — лінійна оболонка власних векторів матриці $XX^T-m\cdot \overline{x}\cdot \overline{x}^T$ ($X=(x_1,...,x_m)$), які відповідають k найбільшим власним числам. Зазначимо, що при цьому похибка (сума квадратів евклідових норм векторів ε_i) рівна $\sum_{j=k+1}^n \mu_j$ — сумі n-k

найменших власних чисел цієї матриці.

Для практичного застосування є корисною формула для обчислення проекцій $y_i=x_i-\overline{x}$ на $L(u_1,...,u_k)$: $\operatorname{pr}(y_i)=(u_1,...,u_k)^T\cdot y_i$, або в матричному вигляді: $\operatorname{pr}(Y)=(u_1,...,u_k)^T\cdot Y$

Додаток: диференціювання за векторним аргументом

У розв'язанні задачі було використано похідні скалярної функції з декількома векторними аргументами. Під частинною похідною за векторним аргументом вважається вектор з частинних похідних цієї функції за координатами вектора. Доречно навести виведення використаної формули для похідної від квадратичної форми.

F(x)=(Ax,x), $x\in\mathbb{R}^n$, A — дійсна симетрична n imes n матриця.

$$F(x+h) - F(x) = (Ax + Ah, x+h) - (Ax, x) = (Ax, x) + (Ax, h) + (Ah, x) + (Ah, h) - (Ax, x) = [A = A^T] = (2Ax, h) + (Ah, h)$$

Отже, лінійна частина приросту рівна 2Ax, звідки F'(x)=2Ax. Зокрема, похідна квадрата норми $\|x\|^2$ рівна 2x.