ГУАП

КАФЕДРА № 43

ОТЧЕТ			
ЗАЩИЩЕН С ОЦЕНК	ЮЙ		
ПРЕПОДАВАТЕЛЬ			
Профессор			С.И. Колесникова
должность, уч. степень,	ввание	подпись, дата	инициалы, фамилия
ОТЧ	ЕТ О ПАБО	ОРАТОРНОЙ РАІ	SOTE No1
		мирование. Вариационнь	
Пели	неиное програм	мирование. Бариационнь	іи принцип.
по дисі	циплине: К	омпьютерное мод	елирование
		_	_
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ ГР.	4134к		Столяров Н.С.
		подпись, дата	 инициалы, фамилия

Цель работы.

Цель настоящей работы — освоить средства моделирования задач линейного программирования. Решение простейшей вариационной задачи

Постановка задачи

Вариант 17

При откорме животных каждое животное ежедневно должно получить не менее 60 ед. питательного вещества A, не менее 50 ед. вещества B и не менее 12 ед. вещества C. Указанные питательные вещества содержат три вида корма. Содержание единиц питательных веществ в 1 кг каждого из видов корма приведено в следующей таблице:

Питательные	Количество единиц питательных веществ на 1 кг корма вида							
вещества	Ι	II	III					
A	1	3	4					
В	2	4	2					
C	1	4	3					

Составить дневной рацион, обеспечивающий получение необходимого количества питательных веществ при минимальных денежных затратах, если цена 1 кг корма I вида составляет 9 коп., корма II вида — 12 коп. и корма III вида — 10 коп.

Формализованная постановка задачи

Обозначим переменные (xi) как количество килограммов корма iii-го вида, которое необходимо использовать в дневном рационе.

- 1. х1: количество килограммов корма І вида.
- 2. х2: количество килограммов корма II вида.
- 3. х3: количество килограммов корма III вида.

Целевая функция

Цель — минимизировать общую стоимость кормов, которая выражается как:

Minimize Z=9x1+12x2+10x3

где

- 9 цена 1 кг корма I вида,
- 12 цена 1 кг корма II вида,
- 10 цена 1 кг корма III вида.

Ограничения

Рацион должен удовлетворять минимальным требованиям к количеству питательных веществ А,В,СА, В, СА,В,С:

1. Ограничение по веществу А: х1+3х2+4х3≥60

2. Ограничение по веществу В: 2х1+4х2+2х3≥50

3. Ограничение по веществу C: $x1+4x2+3x3\ge12$

4. Ограничения на неотрицательность: $x1 \ge 0, x2 \ge 0, x3 \ge 0$

Итоговая формулировка задачи

Мы должны **минимизировать** функцию стоимости: Z=9x1+12x2+10x3 при выполнении ограничений:

- x1+3x2+4x3>60.
- $2x1+4x2+2x3 \ge 50$.
- $1x1+4x2+3x3\ge12$.
- $x1 \ge 0, x2 \ge 0, x3 \ge 0.$

Скриншоты решения Excell

Я использовал LibreOffice Calc так как писал работу из под дистрибутива на linux

4	Α	В	С	D	E	F	G	Н	1	J	К
		Цена					Суммарная		Питательные	Расчетное	
1	Корм	(руб)	Α	В	C	Количество	стоимость		вещества	значение	Минимум
2	I .	9	1	. 2	1	0	0		Α	60	60
3	П	12	3	4	4	8	96		В	50	50
4	Ш	10	4	. 2	3	9	90		С	59	12
5	Итого						186				
-	1										

Рисунок 1 – Результаты решения

Скриншоты работы программы на python

```
Problem MODEL has 3 rows, 3 columns and 9 elements
Coin0008I MODEL read with 0 errors
Option for timeMode changed from cpu to elapsed
Presolve 3 (0) rows, 3 (0) columns and 9 (0) elements 0 Obj 0 Primal inf 30.5 (3)
2 Obj 186
Optimal - objective value 186
Optimal objective 186 - 2 iterations time 0.002
Option for printingOptions changed from normal to all
Total time (CPU seconds):
                                 0.01 (Wallclock seconds):
                                                                     0.01
Статус: Optimal
Количество корма I вида: 0.0
Количество корма II вида: 8.0
Количество корма III вида: 9.0
Минимальные затраты: 186.0
```

```
from pulp import LpProblem, LpMinimize, LpVariable, lpSum, LpStatus, value
# Содержание питательных веществ в 1 кг каждого вида корма
feed nutrients = {
  "I": [1, 2, 1], # [A, B, C]
  "II": [3, 4, 4],
  "III": [4, 2, 3]
}
# Цены на 1 кг каждого вида корма
feed_prices = {
  "I": 9,
  "II": 12,
  "III": 10
}
# Минимальные требования к питательным веществам
min requirements = {
  "A": 60,
  "B": 50,
```

```
"C": 12
}
# Создание задачи
problem = LpProblem("Animal_Feed_Optimization", LpMinimize)
# Переменные
x1 = LpVariable("Feed_Type_I", lowBound=0)
x2 = LpVariable("Feed_Type_II", lowBound=0)
x3 = LpVariable("Feed_Type_III", lowBound=0)
# Целевая функция
problem += feed_prices["I"] * x1 + feed_prices["II"] * x2 + feed_prices["III"] * x3
# Ограничения
problem += feed_nutrients["I"][0] * x1 + feed_nutrients["II"][0] * x2 + feed_nutrients["III"][0] * x3 >=
min_requirements["A"] # A
problem += feed_nutrients["I"][1] * x1 + feed_nutrients["II"][1] * x2 + feed_nutrients["III"][1] * x3 >=
min_requirements["B"] # B
problem += feed_nutrients["I"][2] * x1 + feed_nutrients["II"][2] * x2 + feed_nutrients["III"][2] * x3 >=
min_requirements["C"] # C
# Решение задачи
problem.solve()
# Результаты
print("CTaTyc:", LpStatus[problem.status])
print("Количество корма I вида:", value(x1))
print("Количество корма II вида:", value(x2))
print("Количество корма III вида:", value(x3))
print("Минимальные затраты:", value(problem.objective))
```

Скриншоты работы программы на matlab

```
>> main2
Статус: Успешно
Количество корма I вида: 0.00
Количество корма II вида: 8.00
Количество корма III вида: 9.00
Минимальные затраты: 186.00
>>
```

```
% Содержание питательных веществ в 1 кг каждого вида корма
feed_nutrients = [
1, 3, 4; % A
2, 4, 2; % B
1, 4, 3 % C
% Цены на 1 кг каждого вида корма
feed_prices = [9; 12; 10];
% Минимальные требования к питательным веществам
min_requirements = [60; 50; 12];
% Определение коэффициентов целевой функции
f = feed prices;
% Определение матрицы ограничений
A = -feed_nutrients; % Умножаем на -1 для преобразования в стандартный вид
b = -min requirements;
% Ограничения на неотрицательность
lb = [0; 0; 0]; % Нижние границы для переменных
% Решение задачи линейного программирования
options = optimoptions('linprog', 'Display', 'off');
[x, fval, exitflag] = linprog(f, A, b, [], [], lb, [], options);
% Проверка статуса решения
if exitflag == 1
fprintf('Статус: Успешно\n');
fprintf('Количество корма I вида: %.2f\n', x(1));
fprintf('Количество корма II вида: %.2f\n', x(2));
fprintf('Количество корма III вида: %.2f\n', x(3));
fprintf('Минимальные затраты: %.2f\n', fval);
else
fprintf('Статус: Не удалось найти решение\n');
end
```

Часть 2 – решение вариационной задачи

Вариант 17

17
$$V[y(x)] = \int_{1}^{4} \left(\sqrt{x} y'^{2}(x) + \frac{y^{2}(x)}{2x\sqrt{x}} \right) dx, \quad y(1) = 2, \quad y(4) = 4\frac{1}{2};$$

Скриншот решения на python

```
G:\PROJECTS\GUAP\Programming-GUAP\KoмпMoд\1>python main6.py
Уравнение Эйлера-Лагранжа:
Eq((-2*x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x))/x**(3/2), 0)
Решение:
Eq(y(x), C1/sqrt(x) + C2*x)
G:\PROJECTS\GUAP\Programming-GUAP\KoмпMoд\1>
```

```
from sympy import symbols, Function, sqrt, diff, Eq, simplify, dsolve, solve

# Определение переменных

x = symbols('x')

y = Function('y')(x)

# Первая производная у по х

dy = diff(y, x)

# Определение лагранжиана

F = sqrt(x) * dy**2 + (y**2) / (2 * x * sqrt(x))

# Частные производные
```

```
dFdy = diff(F, y) # Производная по у
dFd1y = diff(F, dy) # Производная по y'
# Производная по x от dF/dy'
d_dFd1y_dx = diff(dFd1y, x)
# Уравнение Эйлера-Лагранжа
L = dFdy - d_dFd1y_dx # Левое выражение уравнения Эйлера-Лагранжа
# Приведение уравнения к стандартному виду
eqn = Eq(simplify(L), 0)
print("Уравнение Эйлера-Лагранжа:")
print(eqn)
# Решение уравнения
sol = dsolve(eqn)
print("Решение:")
print(sol)
eq1 = sol.subs({x:2, y:1})
eq2 = sol.subs({x:4 * (1/2), y:4})
coeffs = solve([eq1, eq2])
res = sol.subs(coeffs)
res.doit()
```

Скриншот решения на matlab

```
Уравнение Эйлера-Лагранжа:
diff(y(x), x)/x^(1/2) + 2*x^(1/2)*diff(y(x), x, x) == y(x)/x^(3/2)
symbolic function inputs: x

Решение:
C1*x - (2*C2)/(3*x^(1/2) + x)

>>
```

```
% Очистка рабочей области и консоли
clear all
clc
% Объявляем переменные
syms x y(x)
% Первая производная у по х
dy = diff(y, x);
% Определение лагранжиана
F = sqrt(x) * dy^2 + (y^2) / (2 * x * sqrt(x));
% Частные производные
dFdy = diff(F, y); % Производная по у
dFd1y = diff(F, dy); % Производная по у'
% Производная по x от dF/dy'
d_dFd1y_dx = diff(dFd1y, x);
% Уравнение Эйлера-Лагранжа
L = dFdy - d_dFd1y_dx; % Левое выражение уравнения Эйлера-Лагранжа
% Приведение уравнения к стандартному виду
eqn = simplify(L == 0);
disp('Уравнение Эйлера-Лагранжа:');
disp(eqn);
% Решение уравнения
% sol = dsolve(eqn, y);
% disp('Решение:');
% disp(sol);
% Определяем переменные
syms y(x)
% Уравнение
eqn = diff(y, x) / sqrt(x) + 2 * sqrt(x) * diff(y, x, x) == y / x^{(3/2)};
% disp('Уравнение Эйлера-Лагранжа:');
% disp(eqn);
% Решение уравнения
sol = dsolve(eqn);
disp('Решение:');
disp(sol);
```