

(An Autonomous Institution)

Regulations: **A20**

Code No: 8FC05 Date: 14-Aug-2023 (F N)

B.Tech II-Year II- Semester External Examination, Aug - 2023 (Regular & Supplementary) **DESIGN AND ANALYSIS OF ALGORITHMS (CSE, IT, AIML and DS)**

Time: 3 Hours Max.Marks:70

Note: a) No additional answer sheets will be provided.

- b) All sub-parts of a question must be answered at one place only, otherwise it will not be valued.
- c) Missing data can be assumed suitably.

Bloom's Cognitive Levels of Learning (BCLL)

Remember	L1	Apply	L3	Evaluate	L5
Understand	L2	Analyze	L4	Create	L6

Part - A	IVIAX.IVIAFKS:20
ANSWER ALL QUESTIONS	
	mail aa ()

1	List the properties of an algorithm.	BCLL L1	co(s)	Marks [2M]
2	Which sorting technique do you recommend for sorting google search	L5	CO2	[2M]
_	results. Why?		CO2	[O. 4]
3	What is the control abstraction of Greedy Method?	L2	CO3	[2M]
4	Discuss about reliability design.	L2	CO4	[2M]
5	What is a graph coloring problem?	L2	CO5	[2M]
6	Write about halting problem.	L1	CO6	[2M]
7	Using step count find the time complexity of sum of 'n' natural numbers.	L3	CO1	[2M]
8	List any four applications of minimum cost spanning trees.	L1	CO3	[2M]
9	What are the implicit and explicit constraints in backtracking?	L2	CO5	[2M]
10	What are the advantages of Dynamic programming method?	L2	CO4	[2M]

Part - B Max.Marks:50 ANSWER ANY FIVE QUESTIONS. EACH QUESTION CARRIES 10 MARKS.

11.	a)	Explain the role of instance characteristics in finding the time and space complexities with an example.	L4	CO1	[5M]
	b)	Compare Bigoh and Omega notation with examples.	L5	CO1	[5M]
12.	a)	Explain Strassen's Matrix multiplication. Analyze its time complexity.	L4	CO2	[5M]
	b)	Discuss about Binary Search with example.	L2	CO2	[5M]
13.	a)	Find the greedy solution for following job sequencing with deadlines problem $n = 7$, $(p1,p2,p3,p4,p5,p6,p7) = (3,5,20,18,1,6,30)$,	L3	CO3	[5M]
		(d1,d2,d3,d4,d5,d6,d7) = (1,3,4,3,2,1,2)			
	b)	Find the minimum spanning tree of the following graph using Prim's	L3	CO3	[5M]
		algorithm.			

BCLL CO(s)

Marks

14.		Construct the OBST for the following: The identifier set $(a1,a2,a3,a4)=(end, goto, print, stop)$ with $p(1:4) = (3,3,1,1), q(0:4)=(2,3,1,1,1).$	L6	CO4	[10M _]
15.	a)	Explain the Graph – coloring problem? Draw the state space tree for m= 3colors and n=4 vertices graph. Discuss the time and space complexity.	L6	CO5	[5M]
	b)	Write about Hamilton cycle problem. State the solution using Backtracking		CO5	[5M]
16.		Discuss in detail about the class P, NP, NP-hard and NP-complete problems. Give examples for each class.	L2	CO6	[10M]
17.	a)	Write an algorithm for Binary search and analyze its time complexity.	L4	CO1	[4M]
	b)	State and Discuss the Single Source Shortest path problem? Give its applications?	L2	CO2	[3M]
	c)	Sort the following sequence of numbers using Merge sort 30, 20, 50, 70, 80, 10, 15, 25.	L5	CO3	[3M]
18.	a)	Solve the following 0/1 Knapsack problem using dynamic programming: n=3,M=6, (p1,p2,p3)=(1,2,5), (w1,w2,w3)=(2,3,4).	L4	CO4	[4M]
	b)	Discuss the 4 – Queen's problem. Generate the portion of the state space tree using backtracking algorithm.	L6	CO5	[3M]
	c)	Write about different types in Branch and Bound method	1.3	CO6	[3M]