Files: The accompanying file for this assignments is assignment4.html.

Delivery: upload the modified HTML file and any other necessary files to the Racó. All explanations and/or answers to the problems should be included in the HTML file.

Problem 1. Write a program to draw a cubic Hermite polynomial that interpolates two points P_0 , P_1 , allowing the user to see and control the two points and the two tangent vectors at P_0 and P_1 .

Problem 2. Consider the particular case $P_0 = (0,0)$, $P_1 = (2,1)$, and tangent vectors $\vec{v_0} = (1,1)$ and $\vec{v_1} = (1,0)$.

- (a) Compute the position of the curve at t = 1/2. How should the tangent vectors be modified in order to: keep the same directions at P_0 and P_1 , and at the same time go through (1,1) at t = 1/2? Solve the problem first, and then illustrate your result.
- (b) What happens as you enlarge the tangent vectors?
- (c) What happens if you invert the direction of the tangent vectors.

Problem 3. (a) With the help of your program, describe what happens in the following special cases:

- 1. The two points coincide (i.e., $P_0 = P_1$).
- 2. The two points coincide and the two tangent vectors are (0,0).
- 3. The two tangent vectors are equal to the vector $P_1 P_0$.
- (b) Explain each phenomenon in terms of the formulas defining the Hermite curve.