J. Jaringan Portal Dimensi

Batas Waktu: 2s

Batas Memori: 256MB

Deskripsi

Di dunia paralel Konoha, terdapat n kota yang terhubung oleh m portal dimensi. Setiap portal menghubungkan dua kota dan memiliki tingkat kestabilan sebesar w (semakin kecil, semakin stabil).

Pemimpin desa *Konoha* ingin membuat **satu jaringan portal utama** yang memungkinkan semua kota bisa saling terhubung secara tidak langsung, namun dengan **dua syarat penting**:

- Jaringan hanya boleh membentuk pohon (artinya tidak boleh ada siklus, dan semua kota harus terhubung).
- 2. Jaringan tersebut harus tetap stabil secara *paralel*: apabila satu portal di jaringan utama rusak, **masih ada cara lain** untuk menghubungkan seluruh kota (artinya: jika satu edge dihapus, masih tetap *terhubung secara keseluruhan*)

Namun tentu hal ini terdengar mustahil. Maka pemimpin desa Konoha memutuskan aturan berikut:

Pilih sekumpulan edge sebanyak mungkin sehingga:

- Setiap kota dapat dijangkau (graf terhubung)
- Node tidak boleh lebih dari jumlah edge

• Total berat (jumlah tingkat kestabilan) sekecil mungkin.

Bantulah pemimpin desa konoha untuk memilih kumpulan portal terbaik dengan aturan di atas

Batasan dan Format Masukan

Baris pertama terdiri dari dua bilangan bulat n dan m ($2 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$) — dimana n adalah jumlah kota dan m adalah jumlah portal.

Selanjutnya terdapat m baris, masing-masing berisi tiga bilangan bulat u, v, dan w $(1 \le u, v \le n, u \ne v, 1 \le w \le 10^9)$ — menyatakan portal dari kota u ke kota v dengan tingkat kestabilan w.

Format Keluaran

- 1. Jika tidak mungkin membentuk jaringan dengan aturan di atas, cetak satu baris dengan -1.
- 2. Jika mungkin, cetak satu bilangan bulat total kestabilan minimum dari jaringan yang dipilih.

Contoh Masukkan dan Keluaran

contoh Masukkan 1:
7
2 2
3 3
4 4
51
6 2
13
5 10
contoh Keluaran 1:

Penjelasan:

Pada contoh masukan 1:

- Terhubung: Semua simpul dari 1 hingga 6 tersambung langsung/tidak langsung
- 2. Tidak ada siklus:

Total Berat:

$$1 + 2 + 2 + 3 + 3 = 11$$

Maka jalur yang digunakan ini adalah solusi optimal dan valid secara aturan.

Contoh masukan dan keluaran 2

Contoh Masukkan 2:

42

231

311

Contoh Keluaran 2:

-1

Penjelasan

pada contoh masukan 2 jumlah node (4) melebihi jumlah edge yang tersedia yaitu (2) sehingga didapatkan output yaitu -1