MEE 4411/5411 Homework 1

Due: Thursday, September 14, 12:30pm

1. Consider the three coordinate frames A, B, and C in the figure below and let $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

We know that ${}^AR_B = R(\theta_1)$ and ${}^BR_C = R(\theta_2)$. Prove that ${}^AR_C = R(\theta_1 + \theta_2)$. (This is obvious from the diagram, the challenge here is to mathematically prove it. You must show your work.)

2. Consider the two coordinate frames A and B in the figure below.

- (a) Find the homogeneous transformation that represents the position and orientation of frame B with respect to frame A.
- (b) Find the homogeneous transformation that takes a point in frame B and puts it into frame A.
- (c) Consider the point ${}^{A}\mathbf{p} = [1, \sqrt{3}]^T$ in frame A. What is ${}^{B}\mathbf{p}$?
- 3. Let \mathbf{v} be a vector connecting two points on a rigid body and let $h(\mathbf{v})$ be that same vector after the rigid body has undergone transformation h, as in the diagram below.

1

In lecture you saw that rigid body transformations preserve both lengths and angles. Mathematically, we can state these constraints as $||h(\mathbf{u})|| = ||\mathbf{u}||$ for any vector \mathbf{u} and $h(\mathbf{u}) \times h(\mathbf{v}) = h(\mathbf{u} \times \mathbf{v})$ for any vectors \mathbf{u} , \mathbf{v} , respectively. Using these facts, prove that:

- (a) orthogonal vectors are mapped to orthogonal vectors, *i.e.*, for any vectors \mathbf{u}, \mathbf{v} such that $\mathbf{u} \perp \mathbf{v}$ then $h(\mathbf{u}) \perp h(\mathbf{v})$
- (b) (MEE 5411 only) rigid body transformation preserve inner products, i.e., $h(\mathbf{u}) \cdot h(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$ for any vectors \mathbf{u}, \mathbf{v} .
- 4. (MEE 5411 only) Rotation matrices have 4 elements but are completely determined by a single parameter θ . This is due to the fact that there are 3 constraints on the elements of a rotation matrix, which is an orthogonal matrix with determinant 1 (also called a Special Orthogonal matrix). Letting

$$R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix}$$

one set of three constraints is $r_{11}^2 + r_{21}^2 = 1$, $r_{12}^2 + r_{22}^2 = 1$, and $r_{11}r_{22} - r_{12}r_{21} = 1$, which ensure that each column is a unit vector and that the determinant is 1, respectively. Show that the *only* solution to these 3 equations is the standard rotation matrix (shown in problem 1). (Note: It is *not* sufficient to simply plug in the elements and show that they satisfy the constraints, this does not prove that no other solutions exist.) (Hint: Let r_{11} be the independent variable and try to solve for the other three elements as a function of r_{11} .)