MATH 5B - Single Variable Calculus II

Spring 2019

§11.3 The Integral Test and Estimating Sums

In-class Activity 11.3

Dr. Jorge Basilio

gbasilio@pasadena.edu

Activity 1:

Use the integral test to determine whether $\sum_{n=1}^{\infty}\frac{1}{1+n^2}$ converges or diverges.

Activity 2:

Use the integral test to determine whether $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}$ converges or diverges.

Activity 3:

Use the integral test to determine whether $\sum_{n=1}^{\infty} ne^{-n}$ converges or diverges.

Activity 4:

Use the integral test to determine whether the series converges or diverges.

- (a) $\sum_{n=1}^{\infty} \frac{1}{n^5}$
- (b) $\sum_{n=1}^{\infty} \frac{1}{n^{1/4}}$

Activity 5:

- (a) Approximate $\sum_{n=1}^{\infty} \frac{1}{n^4}$ by finding the sum of the first 10 terms (use Sage). Estimate the error involved in this.
- (b) How many terms are needed to ensure the partial sum is accurate to within 0.000005.

Activity 6:

Give an upper and lower bound for Euler's series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ with n=100.