Naive Bayes

Epoch IIT Hyderabad

Himani Agrawal MA22BTECH11008

Contents

- Introduction
- Assumptions
- Bayes theorem
- Naive assumption
- Gaussian Naive Bayes classifier

Introduction

Naive Bayes classifiers are a collection of classification algorithms based on Bayes' Theorem. It is not a single algorithm but a family of algorithms where all of them share a common principle, i.e. every pair of features being classified is independent of each other. Its methods are a set of supervised learning algorithms based on applying Bayes' theorem with the "naive" assumption of conditional independence between every pair of features given the value of the class variable.

Assumption

The fundamental Naive Bayes assumption is that each feature makes an:

- independent
- Equal

Bayes' Theorem

Bayes' Theorem finds the probability of an event occurring given the probability of another event that has already occurred. Bayes' theorem is stated mathematically as the following equation:

P(A|B)=(P(B|A)P(A))/P(B)

Where A and B are events and $P(B) \neq 0$.

Naive assumption

Naive assumption states the independence among the features. So now, we split evidence into the independent parts.

Now, if any two events A and B are independent, then, we have:

$$P(A,B) = P(A)P(B)$$

Gaussian Naive Bayes classifier

In Gaussian Naive Bayes, continuous values associated with each feature are assumed to be distributed according to a Gaussian distribution. A Gaussian distribution is also called Normal distribution. When plotted, it gives a bell shaped curve which is symmetric about the mean of the feature values as shown below:

The likelihood of the features is assumed to be Gaussian, hence, conditional probability is given by:

$$P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$