Exercicis Tema 13

S'ha d'entregar un únic fitxer PDF que inclogui la solució que vosaltres proposeu als problemes plantejats. El fitxer PDF no te que ser necessàriament una solució feta per ordinador, pot ser una solució escrita a ma i digitalitzada. El PDF ha d'incloure una capçalera on s'indiqui el vostre nom i cognoms, i l'enunciat de cada pregunta abans de la vostra resposta.

Exercici 1

Donat el següent fragment de programa SISA, volem executar-lo en el processador SISC von Newmann.

MOVI R1, 0x96 ADDI R2, R1, -4 LDB R3, 6(R2) CMPLT R7, R3, R1 BNZ R7, -4

Ompliu el contingut de la taula per als 16 primers cicles de l'execució del codi anterior (la primera línia ja esta omplerta a tall d'exemple). Indica el node i la instrucció que s'executa en cada cicle, i el valor dels bits de la paraula de control que genera el bloc SISC CONTROL UNIT durant el cicle al que fa referencia. Poseu x sempre que el valor d'una senyal no sigui necessari per a l'execució de la seva tasca encara que poguéssim deduir-lo a partir del valor emmagatzemat al registre IR. Assumiu que tots els valor inicials dels registres són 0.

	Estat Sortida)	Paraula de Control															I				
Cicle	00	en l'IR (en assamblador)	@A	@B	Pc/Rx	Ry/N	OP	F	P/I/L/A	@D	WrD	Wr-Out	Rd-In	Wr-Mem	Ldlr	LdPc	Byte	Alu/R@	R@/Pc	N (hexa)	ADDR-IO (hexa)
1	F	ante curb map	xxx	xxx	1	0	00	100	xx	xxx	0	0	0	0	1	1	0	1	0	0002	XX
2	D	MOVI R1, 0x96	001	010	1	0	∞	100	XX	XXX	0	0	0	0	0	0	X	X	X	FF2C	XX
3	Movi	HOVI RY, 96	XXX	XXX	X	0	40	001	00	DO L	ム	0	0	0	X	0	X	X	X	FF96	XX
4	F		XXX	XX	1	0	00	100	XX	XXX	0	0	0	0	1	1	0	1	0	m?	XX
5	D	ADDI RZ,RJ-Y	001	040	ム	0	00	100	××	XXX	0	0	0	0	0	0	X	X	X	FF 78	XX
6	ADDI	ADDI RZRY-Y	XXX	XXX	0	0	00	100	∞	050	1	0	0	0	X	0	X	X	X	FFFC	XX
7	F		XXX	XXX	1	0	00	100	XX	XXX	0	0	0	0	1	1	0	1	0	0002	XX
8	D	LDB R3, G/R	OLO	041	1	0	00	100	XX	XXX	0	0	0	0	0	0	X	X	X	FF8C	XX
9	ADDR	LPB R3,6(R2)	XX	XXX	0	0	00	100	XΧ	XXX	0	0	0	0	0	Ŏ	X	X	X	0006	XX
10	LdB	LDB R3, 6/R2)	XXX	XX	X	X	XX	XXX	01	0出	1	0	0	0	X	0	1	X	9	XXXX	XX
11	F		XXX	XXX	1	3	00	100	KX	XXX	0	0	0	0	1	1	0	1	0	0002	XX
12	D	CMPLT R7,838	MO	001	1	0	00	400	ХX	XX	0	0	9	0	0	0	X	X	X	mfa	XX
13	CmP	CMPLT R7, R3, R4	011	001	0	1	01	000	∞	111	1	0	0	0	X	0	X	×	X	XXXX	XX
14	F		XXX	XX	1	0	00	100	XX	XXX	0	0	0	0	1	1	Ò	1	0	0002	XX
15	D	BNZ R7-4.	111	111	1	0	00	100	XX.	XXX	0	0	Ŏ	3	3	0	X	X	X	FFF8	XX
16	BNZ	BNZ R7-4	XXX	XXX	0	X	100	m	XX	XXX	O	0	0	0	X	0	X	0	X	XXXX	XX

Exercici 2

Indica **breument**, quines creus que són les característiques principals que fan que la arquitectura Von Neumann predomini en els processadors actuals sobre la arquitectura Harvard.

- Cada Cicle té una Pakaula de Control diferent - Reutilització del hardware - Podem afegir noves instruccions - I sola memoria

Exercicis Tema 13

S'ha d'entregar un únic fitxer PDF que incloqui la solució que vosaltres proposeu als problemes plantejats. El fitxer PDF no Le que ser necessàriament una solució feta per ordinador, pot ser una solució escrita a ma i digitalitzada: El PDF ha l'incloure una capcalera an s'indiqui el vostre nom I cognoms, i l'enunciat de cada pregunta abans de la vostra resposta.

Thissey's

Jonat el següent fragment de programa SISA, volem executar-lo en el processador SISC von Newmann.

MOVI RI, 0x96 ADDI R2, R1, -4 LDB R3, 6(R2) COMPLE R7, R3, R1

Omplie el contingut de la taula per als 16 primers cicles de l'execució del codi anterior (la primera línia ja esta omplerta a tail d'exempla), indica el node i la instrucció que s'executa en cada cicle, i el valor dels bits de la paraula de control que genera el bloc SISC CONTROL UNIT durant el cicle al que fa referencia. Poseu x sempre que el valor d'una senyal no sigui necessari per a l'execució de la seva tasca encara que poguéssim deduir-lo a partir del valor enmagatzemat al registre IR. Assumfu que tots els valor inicials dels contracción o

Exercici 2

ndica breument, quines craus que són les característiques principals que fan que la arquitectura Von Neumann predomini en els processadors actuals sobre la arquitectura Harvard.

- Coch Cicle te una fabanta de control diferent - Redhitzaccó del fardinale - Radena afrant parez instruccions