80560 אלמנטרית, אלמנטרית דיפרנציאלית אלמנטרית, פתרון מטלה – 1

2025 באוקטובר 23

. מישור סינתטית מישור אפיני מישור (\mathcal{P},\mathcal{L}) יהי

'סעיף א

נוכיח כי במישור האפיני יש לפחות שלושה ישרים שונים.

יחד $m=\langle P,R\rangle$ ו ו $l=\langle P,Q\rangle$ את שנחון ושמצאנו שקיימות. מצאנו ב־P,Q,R,S את אה הנקודות הלא קולינאריות שנתון ושמצאנו שקיימות. מצאנו ב־ $m=\langle P,R\rangle$ את הנקודות הלא קולינאריות שנתון ושמצאנו שקיימות. עם $R=\langle P,R\rangle$ את הם ישרים שונים.

סעיף ב׳

נוכיח שלא קיים ישר ללא נקודות.

אז ידוע $m=\langle P,Q\rangle, n=\langle P,R\rangle$ נקודות לא קולינאריות, וכן נסמן $m=\langle P,Q\rangle, n=\langle P,R\rangle$. נניח בשלילה שקיים ישר כזה $l \mid l$. נניח גם ש־ $l \mid l$ וגם $l \mid l$ ו

'סעיף ג

נוכיח כי לכל ישר לפחות שתי נקודות שונות.

התינאריות לא קולינאריות לא פקודות שב" שר שוב ש"ר, $P,Q,R\in\mathcal{P}$ נקודה כלשהי שידוע שקיימת מהסעיף הקודם. נניח שוב ש"ר, $P,Q,R\in\mathcal{P}$ נקודה כלשהי שידוע לא הקודם. נניח שוב ש"ר, $P,Q,R\in\mathcal{P}$ נקודות לא קולינאריות ונגדיר את $P,Q,R\in\mathcal{P}$ נקודה כלשהי שידוע שקיימת מהסעיף הקודם. נניח שוב ש"ר, $P,Q,R\in\mathcal{P}$ נקודה כלשהי שידוע ביי

בהכרח בהכרח אז m' אז m' אז סיימנו, שכן $l \not \parallel m'$ או $l \not \parallel n$. נגדיר את המשיק $m \not \parallel n$ אז סיימנו, שכן $Q \in l$ או $Q \in l$ אז $m \neg \parallel l$ אז $m \neg \parallel l$ אם $m \neg \parallel l$ בהכרח ולכן יש להם נקודת חיתוך.

'סעיף ד

נראה כי לכל שני ישרים כמות זהה של נקודות.

 $P_0 \in l_0, P_1 \in l_1$ ישרים מקבילים, ונניח ש־ $l_0, l_1 \in \mathcal{L}$ ישרים נניח הוכחה.

אם שונות. המרכיבות המחכיבות הנקודות כלומר $l_0 \neq l_1$, כלומר שינות אותם אז סיימנו, לכן נניח ש $l_0 = l_1$

נגדיר את הישר $Q\in n \parallel m$ מתקיים $M \parallel l_0$ ולכן יש להם נקודת הישר , תהי נגדיר את הישר , תהי נקודה $m \parallel l_0$, תהי נקודה $m \parallel l_0$, ולכן יש להם נקודת היתוך $Q'\in l_1$.

'סעיף ה

נראה שלכל שני ישרים נחתכים יש אותה כמות של נקודות.

 $P_0 \in l_0, P_1 \in l_1$ ער כך שר $P_0, P_1 \in \mathcal{P}$ אז קיימות נפעל באופן אז קיימות אם לו $l_0 \cap l_1 = \{O\}$ כך שר $l_0, l_1 \in \mathcal{L}$ אם לוכחה. מכאן ההוכחה זהה תוך שימוש ב־ $m = \langle P_0, P_1 \rangle$ שימוש ב־ $m = \langle P_0, P_1 \rangle$

טעיף ו׳

נסיק שלכל הישרים במישור האפיני יש אותה כמות של נקודות.

. אפיני מרחב (E,V,t) יהי שדה שדה יהי

 $.E_P$ כסמן הסמן, P שראשיתו העל מעל מרחב וקטורי ($E,+_P,\cdot_P$) וו $P\in E$ תהי תהי וקטוריים. ער איזומורפיזם של מרחבים וקטוריים. נוכיח שההעתקה

, אז מתקיים, אז תחילה ש- $Q,R\in E_P$ שכן היכח ש- $\alpha,\beta\in\mathbb{F}$ ש לינארית. לינארית היכחה נוכיח הוכחה. נוכיח העתקה לינארית.

$$\begin{aligned} v_P(\alpha Q +_P \beta R) &= v(P, \alpha Q +_P \beta R) \\ &= \alpha Q +_P \beta R - P \\ &= \alpha \cdot_P + Q\beta \cdot_P R - 2P \\ &= \alpha (Q - P) + P + \beta (R - P) + P - 2P \\ &= \alpha v_P(Q) + \beta v_P(R) \end{aligned}$$

תוך שימוש בהגדרות המופיעות בסיכום.

. היים וקטוריים של מרחביז איזומורפיזה הפיכה הפיכה העתקה איז ער היים ולכן היא העתקה הפיכה העתקה איזו ער היים ולכן היים ו

'סעיף א

יהיות כי מתקיים, נראה ישירות בראה וישרות. בראה אפיניים אפיניים אפיניים על, $W,W' \leq V$

$$P + W = Q + W' \iff W = W' \land Q - P \in W$$

 $P+W=Q+W\iff Q-P\in W$ הוכחה. נראה תחילה ש

,נניח ש־P+W=Q+W, אז,

$$P + W - Q = Q + W - Q = \{w + Q - Q \mid w \in W\} = \{w \mid w \in W\} = W$$

 $P+Q\in W$ ולכן בפרט

(נניח ש־ $Q-P\in W$ אז מתקיים,

$$P + W = P - Q + Q + W = Q + W$$

ונסיק את הטענה הראשונה.

עתה נראה שאם $w' \in W'$ אז $w' \in W$ אז יהי $w' \in W$ אז יהי $w' \in W$ אז יהי $w' \in W$ אז אז יהי $w' \in W$ אז יהי $w' \in W'$ אז בהתאם מתקיים $w'' \in W'$ ולכן $w'' \in W'$ אז בהתאם מתקיים $w'' \in W'$ אז בהתאם מתקיים יש

,מתקיים, P+W=Q+W' מתקיים, מענת טענת להוכחת נעבור להוכחת מענת מיים,

$$P+W=Q+W' \iff P-Q+W=Q-Q+W' \iff P-P+W=Q-P+W'$$

 $P-Q\in W$ ומטענת העזר הראשונה וובע שגם W=W'ולכן נובע

. נעבור לכיוון השני ונניח ש־W=W' וכן ש־ $P-Q\in W$. אז הטענה נובעת ישירות מטענת העזר הראשונה.

סעיף ב׳

 $.W \leq V$ ו רי אבור עבור תת־יריעה $F = P + W \leq E$ תהי תהי

F=Q+W מתקיים $Q\in F$ נראה שלכל

Q+W=P+W= נבחין מסעיף הקודם נובע ע פור בהתאם מהתאם בהתאם עבור ע בהתאם עבור Q+W=P+W=Q+W=Q+W=Q+W=Q+W בהתאם עבור ע בהתאם בהתאם בהתאם עבור עבור עבור עבור בהתאם ב

. תר־יריעות שתי (F_2,W_2) ו ו
- (F_1,W_1) יהיי יהיו **0.1 הגדרה 1.**

 $F_1 \parallel F_2$ ונסמן ונסמן אם אם אם נאמר אם נאמר אמר נאמר נאמר

Fה מקבילה יחידה תת־יריעה תת-יריעה את קיימת קיימת את היימת תת-יריעה את תת-יריעה את תת-יריעה את תת-יריעה את תריריעה את תריריעה את היימת את תריריעה את תריריעה את משפט אוקלידס:

 $W \leq V$ ו $Q \in E$ עבור F = Q + Wו הוכחה. נניח שמתקיים

.Fלה ליקה היא הגדרתה של של תת־יריעה על היא היא $F^\prime=P+W$ בהתאם בהתאם

נותר אם כן להוכיח יחידות, נניח שגם $E'' \leq E$ תת־יריעה מקבילה ל-F', ונסיק ש- $F'' \leq P + W = F'$ מהשאלה הקודמת.

 $F_1, F_2 \leq E$ תהיינה תת־יריעות

 $F+v=F+w\iff v-w\in W$ מתקיים $v,w\in V$ אז לכל $F\leq E$ שאם וכן וכן שאם וכן אז $F_1\parallel F_2\iff \exists v\in V,\ F_1+v=F_2$ נראה כי

 $F_1 = P_1 + W_1, F_2 = P_2 + W_2$ הוכחה. נסמן

 $.F_1 \parallel F_2$ נניח ש $.F_1 + W_1 = W_2$ עבור $.F_1 + W_1 + v = P_2 + W_2$ אז מתקיים אז מתקיים $.V_1 + W_1 + v = P_1 + W_2$ נניח ש $.V_1 + W_1 + v = P_1 + P_2 - P_1 + W_1 = P_2 + W_2$ נניח ש $.V_1 + W_1 + v = P_1 + P_2 - P_1 + W_1 = P_2 + W_2$ נניח ש $.V_1 + W_1 + v = P_1 + P_2 - P_1 + W_1 = P_2 + W_2$ נניח ש $.V_1 + W_1 + v = P_2 + W_1$ נניח ש $.V_1 + W_2 + W_1 + v = P_2 + W_2$ נניח ש $.V_1 + W_2 + W_1 + v = P_2 + W_2$ נניח ש $.V_1 + W_2 + W_1 + v = P_2 + W_2$ נניח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 + W_1 + v = P_2 + W_2$ נייח ש $.V_2 +$

F=P+Wנניח עתה ש־ $F\leq E$ ויהיו ויהיו הייו עתה ערה ערה נניח נניח ויהיו

 $P-v-v-(P-w)\in W$ ולכן P+v+W=P+w+W אז אF+v=F+w אם

.F+v=F+w בכיוון מקבילות תת־היריעות אז ער אי ער ש־ש הפפוך נניח נניח נניח אז תר- $w\in W$

,תהי $S\subseteq E$ ונגדיר

$$\langle S \rangle = \bigcap_{S \subseteq F \le E} F$$

 $.\langle S \rangle$ היריעה תת-היריעה ש־S יוצרת כלומר כלומר כלומר יוצרת א

.Sאת המכילות המכילות לתת־היריעות ביחס מינימלית מינימלית שהיא וכן ל $\langle S \rangle \leq E$ יכי נוכיח נוכיח

לכל $P\in F$ מתקיים מתקיים לכן נניח ש־ $0\neq S$ ותהי אם לכן נניח מינימלית ביחס ההכלה, מתקיים אז היא מינימלית ביחס ההכלה, לכן נניח ש־ $0\neq S$ ולכן אם כן להסיק שמתקיים, $0\leq S$ ולכן אם כן להסיק שמתקיים, נוכל אם כן להסיק שמתקיים,

$$\langle S \rangle = P + \bigcap_{S-P \subseteq W \le V} W$$

 $S=P+W'\leq E$ נסמן $W'=\langle S-P \rangle$ נסמן S-P נסמן על־ידי קטורי הנוצר וקטורי הוא תת־מרחב אוא ($S-P \rangle$ הוא תת־מרחב על־ידי אונסין כלומר אונסין ביחס להכלה של תת־מרחב וקטורי נוצר. ביחס ההכלה, אך טענה זו נובעת ישירות ממינימליות ביחס להכלה של תת־מרחב וקטורי נוצר.