RL for Operations Day 1: MDP Basics, VI+PI, Deep RL

Sean Sinclair, Sid Banerjee, Christina Yu Cornell University

Plan for Today

MDP Basics

- Basic framework for Markov Decision Processes
- Tabular RL Algorithms with policy iteration + value iteration
- DeepRL algorithms (and their "tabular" counterparts)

Simulation Implementation

 Develop simulator for problem using OpenAl Gym API

Simulation Packages

- OpenAl Framework for simulation design
- Existing packages and code-bases for RL algorithm development

Tabular RL Algorithms

 Implement basic tabular RL algorithms to understand key algorithmic design aspects of value estimates + value iteration, policy iteration

Plan for Today

MDP Basics

- Basic framework for Markov Decision Processes
- Tabular RL Algorithms with policy iteration + value iteration
- DeepRL algorithms (and their "tabular" counterparts)

Simulation Implementation

 Develop simulator for problem using OpenAl Gym API

Simulation Packages

- OpenAl Framework for simulation design
- Existing packages and code-bases for RL algorithm development

Tabular RL Algorithms

 Implement basic tabular RL algorithms to understand key algorithmic design aspects of value estimates + value iteration, policy iteration

Custom Simulator

Sean Sinclair, Cornell University

Markov Decision Process (MDP)

Environment: Determine reward and new state

Policy: Determine action based on state

Finite Horizon

An MDP is defined by: $\mathcal{M} = \{S, A, r, T, s_0, \gamma\}$

 \mathcal{S}

State space

 \mathcal{A}

Action space

 $r_h: \mathcal{S} \times \mathcal{A} \to [0, 1]$

Reward

 $T_h: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$

Transitions

H

Time horizon

 $\pi_h: \mathcal{S} \to \Delta(\mathcal{A})$

Policy

This Code Demo

Develop simulator for problem using OpenAI Gym API

 "Register" the environment with OpenAI Gym, check the environment for bugs via the stable baselines environment checker

References

https://github.com/seanrsinclair/RLinOperations

Step-By-Step

- 1. Open Anaconda Prompt via search toolbar
- 2. git clone https://github.com/seanrsinclair/RLinOperations

(Note: If git is not installed then can download from: https://github.com/git-guides/install-git)

- 3. cd RLinOperations
- 4. code.

This will open the visual studio code window. There will be five folders, one for the slides, and one for each of the code demos.

- 5. cd custom_simulator\ORSuite (or custom_simulator/ORSuite depending on platform)
- 6. conda env create --name custom_simulator --file environment.yml
- 7. conda activate custom_simulator
- 8. pip install -e .
- conda install jupyter
- 10. jupyter notebook

Can now navigate to examples folder and open the demo.