

Agenda

Introduktion

Bilineær *z*-transformation

Definition
Warping og prewarping
Koefficienter af 1. ordens systemer
Koefficienter af 2. ordens systemer
Eksempel

Opsummering

Datakonvertering og digital signalbehandling herunder:¹

- ▶ ideel og praktisk sampling og rekonstruktion
- aliasing
- kvantisering og dynamikområde
- ► konverteringsprincipper (A/D og D/A)
- ► implementationsprincipper (Sample & Hold, A/D, D/A)
- multirate sampling
- diskret-tid signaler og systemer i tids- og frekvensdomænet
- ► Z-transformationen
- overføringsfunktion for lineære tidsinvariante systemer
- systemanalyse
- frekvensanalyse
- lineær fase systemer
- realisationsstrukturer for diskret-tid systemer
- ► hovedanvendelse af digital signalbehandling herunder digitale IIR-filtre og transformation af analoge filtre samt digitale FIR-filtre og vindues-funktioner

Baseret på https://odin.sdu.dk/sitecore/index.php?a=fagbesk&id=65003&listid=9093&lang=da

Introduktion Course Overview

- ► **Lektion 1**: Filterfunktioner
- ► Lektion 2: Sampling og rekonstruktion
- ► **Lektion 3**: Fast Fourier transformation (I)
- ► **Lektion 4**: Fast Fourier transformation (II)
- ► **Lektion 5**: Introduktion til *z*-transformation
- ► **Lektion 6**: Systemanalyse i *z*-domæne
- ► **Lektion 7**: Digitale realisationsstrukturer
- ► Lektion 8: Introduktion til IIR-filtre
- ► Lektion 9: Design af IIR-filtre
- ► **Lektion 10**: Introduktion til FIR-filtre
- ► Lektion 11: Design af FIR-filtre
- Lektion 12: Anvendelse af digital signalbehandling

Digitale filtre opdeles i to kategorier, i henhold til deres impulsrespons

- ► Infinite Impulse Response filters (IIR-filtre)
 - ► Har altid poler
- ► Finite Impulse Response filters (FIR-filtre)
 - ► Har kun nulpunkter
 - ► Kan implementeres med lineær fasekarakteristik

Et IIR-filter designes ved at følge proceduren

- 1. Filtrets specifikationer opstilles
- 2. Filtrets z-domæne overføringsfunktion opstilles ved brug af
 - ► Matched *z*-transformation
 - ► Impuls invariant *z*-transformation
 - ► Bilineær *z*-transformation
- 3. Der vælges optimal realisationsstruktur
- 4. Der fremstilles program til signalprocessor eller tegnes diagram for hardwareløsning

Introduktion

Bilineær *z*-transformation

Definition Warping og prewarping Koefficienter af 1. ordens systemer Koefficienter af 2. ordens systemer Eksempel

Opsummering

Definition

Introduktion

Bilineær z-transformation
Definition
Warping og prewarping

Koefficienter af 1. ordens systemer Koefficienter af 2. ordens systemer Eksempel

Opsummering

Bilineær z-transformation Introduktion

Formålet med bilineær z-transformation er at *eliminere aliaseringsfejlen* som opstår ved både matched z-transformation og impuls invariant z-transformation.

Formålet med bilineær *z*-transformation er at *eliminere aliaseringsfejlen* som opstår ved både matched *z*-transformation og impuls invariant *z*-transformation.

Ved bilineær z-transformation substitueres s i H(s) med en funktion af z (s=f(z)) dvs.

$$H(z) = H(s)|_{s=f(z)}$$

Formålet med bilineær *z*-transformation er at *eliminere aliaseringsfejlen* som opstår ved både matched *z*-transformation og impuls invariant *z*-transformation.

Ved bilineær z-transformation substitueres s i H(s) med en funktion af z (s=f(z)) dvs.

$$H(z) = H(s)|_{s=f(z)}$$

Relationen mellem s og z er $z=e^{sT}$, hvilket medfører at

$$s = \frac{1}{T}\ln(z)$$

Formålet med bilineær *z*-transformation er at *eliminere aliaseringsfejlen* som opstår ved både matched *z*-transformation og impuls invariant *z*-transformation.

Ved bilineær z-transformation substitueres s i H(s) med en funktion af z (s = f(z)) dvs.

$$H(z) = H(s)|_{s=f(z)}$$

Relationen mellem s og z er $z = e^{sT}$, hvilket medfører at

$$s = \frac{1}{T}\ln(z)$$

Det ønskes at indsætte denne relation i stedet for s i overføringsfunktionen, men dette leder ikke til en rationel funktion i z. Derfor approksimeres $\ln(z)$.

Bilineær z-transformation Approksimation af logaritme

Den naturlige logaritme er defineret som en undelig sum

$$\ln z = 2\left[\frac{z-1}{z+1} + \frac{1}{3}\left(\frac{z-1}{z+1}\right)^3 + \frac{1}{5}\left(\frac{z-1}{z+1}\right)^5 + \cdots\right]$$

Bilineær z-transformation Approksimation af logaritme

Den naturlige logaritme er defineret som en undelig sum

$$\ln z = 2 \left[\frac{z-1}{z+1} + \frac{1}{3} \left(\frac{z-1}{z+1} \right)^3 + \frac{1}{5} \left(\frac{z-1}{z+1} \right)^5 + \dots \right]$$

Indsættelse af deffinitionen direkte i overføringsfunktionen vil give en overføringsfunktion med uendelig orden. Derfor approksimeres logaritmen som

$$\ln z \approx 2 \frac{z-1}{z+1}$$

En diskret overføringsfunktion fås dermed ved bilineær *z*-transformation som

$$H(z) = H(s)|_{s=\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}}$$

En diskret overføringsfunktion fås dermed ved bilineær *z*-transformation som

$$H(z) = H(s)|_{s=\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}}$$

Betragtes en første ordens overføringsfunktion

$$H(s) = \frac{1}{\tau s + 1}$$

fås

$$H(z) = \frac{1}{\tau \frac{1}{T} \frac{1-z^{-1}}{1+z^{-1}} + 1} = \frac{1+z^{-1}}{\frac{2\tau}{T} + 1 + (1 - \frac{2\tau}{T})z^{-1}}$$

Relationen

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

kan omskrives til

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s}$$

Relationen

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

kan omskrives til

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s}$$

Lad $s = \sigma + j\Omega$ så gælder det at

$$|z| = \frac{\sqrt{\left(\frac{2}{T} + \sigma\right)^2 + \Omega^2}}{\sqrt{\left(\frac{2}{T} - \sigma\right)^2 + \Omega^2}}$$

Relation mellem s- og z-plan (amplitude)

Relationen

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

kan omskrives til

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s}$$

Lad $s = \sigma + j\Omega$ så gælder det at

$$|z| = \frac{\sqrt{\left(\frac{2}{T} + \sigma\right)^2 + \Omega^2}}{\sqrt{\left(\frac{2}{T} - \sigma\right)^2 + \Omega^2}}$$

11

Relationen

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

kan omskrives til

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s}$$

Lad $s = \sigma + j\Omega$ så gælder det at

$$|z| = \frac{\sqrt{\left(\frac{2}{T} + \sigma\right)^2 + \Omega^2}}{\sqrt{\left(\frac{2}{T} - \sigma\right)^2 + \Omega^2}}$$

Imaginæraksen for s-planen ($\sigma=0$) mappes til enhedscirklen |z|=1.

Relation mellem s- og z-plan (amplitude)

Relationen

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

kan omskrives til

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s}$$

Lad $s = \sigma + i\Omega$ så gælder det at

$$|z| = \frac{\sqrt{\left(\frac{2}{T} + \sigma\right)^2 + \Omega^2}}{\sqrt{\left(\frac{2}{T} - \sigma\right)^2 + \Omega^2}}$$

Imaginæraksen for s-planen ($\sigma = 0$) mappes til enhedscirklen |z|=1.

Venstre halvplan af s-planen ($\sigma < 0$) mappes til det indre af enhedscirklen |z| < 1.

Relation mellem s- og z-plan (amplitude)

Relationen

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

kan omskrives til

$$z = \frac{\frac{2}{T} + s}{\frac{2}{T} - s}$$

Lad $s = \sigma + j\Omega$ så gælder det at

$$|z| = \frac{\sqrt{\left(\frac{2}{T} + \sigma\right)^2 + \Omega^2}}{\sqrt{\left(\frac{2}{T} - \sigma\right)^2 + \Omega^2}}$$

Imaginæraksen for s-planen ($\sigma = 0$) mappes til enhedscirklen |z| = 1.

Venstre halvplan af s-planen ($\sigma < 0$) mappes til det indre af enhedscirklen |z| < 1.

Højre halvplan af s-planen ($\sigma > 0$) mappes til z-planen foruden enhedscirklen og dens indre |z| > 1.

Fra

$$z = \frac{\frac{2}{T} + \sigma + j\Omega}{\frac{2}{T} - \sigma - j\Omega}$$

Fra

$$z = \frac{\frac{2}{T} + \sigma + j\Omega}{\frac{2}{T} - \sigma - j\Omega}$$

ses det at argumentet af z for $\sigma = 0$ er

$$\angle z = \tan^{-1} \frac{\Omega T}{2} + \tan^{-1} \frac{\Omega T}{2} = 2 \tan^{-1} \frac{\Omega T}{2}$$

Fra

$$z = \frac{\frac{2}{T} + \sigma + j\Omega}{\frac{2}{T} - \sigma - j\Omega}$$

ses det at argumentet af z for $\sigma = 0$ er

$$\angle z = \tan^{-1} \frac{\Omega T}{2} + \tan^{-1} \frac{\Omega T}{2} = 2 \tan^{-1} \frac{\Omega T}{2}$$

Fra

$$z = \frac{\frac{2}{T} + \sigma + j\Omega}{\frac{2}{T} - \sigma - j\Omega}$$

ses det at argumentet af z for $\sigma = 0$ er

$$\angle z = \tan^{-1} \frac{\Omega T}{2} + \tan^{-1} \frac{\Omega T}{2} = 2 \tan^{-1} \frac{\Omega T}{2}$$

Origo for s-planen mappes til $z=1\angle 0^{\circ}$.

Fra

$$z = \frac{\frac{2}{T} + \sigma + j\Omega}{\frac{2}{T} - \sigma - j\Omega}$$

ses det at argumentet af z for $\sigma = 0$ er

$$\angle z = \tan^{-1} \frac{\Omega T}{2} + \tan^{-1} \frac{\Omega T}{2} = 2 \tan^{-1} \frac{\Omega T}{2}$$

Origo for s-planen mappes til $z=1\angle 0^\circ.$ For Ω gående imod $\pm \infty$ går argumentet for z imod $\pm 180^\circ.$

Fra

$$z = \frac{\frac{2}{T} + \sigma + j\Omega}{\frac{2}{T} - \sigma - j\Omega}$$

ses det at argumentet af z for $\sigma = 0$ er

$$\angle z = \tan^{-1} \frac{\Omega T}{2} + \tan^{-1} \frac{\Omega T}{2} = 2 \tan^{-1} \frac{\Omega T}{2}$$

Frekvensområdet $0 < f < \infty$ for det analoge filter transformeres til frekvensområdet $0 < f < f_o$ for det digitale filter.

Origo for s-planen mappes til $z=1\angle 0^\circ.$ For Ω gående imod $\pm\infty$ går argumentet for z imod $\pm180^\circ.$

Warping og prewarping

Introduktion

Bilineær *z*-transformation

Manaja a a a sasasana

Warping og prewarping

Koefficienter af 1. ordens systemer Koefficienter af 2. ordens systemer Eksempel

Opsummering

Da frekvensområdet $0 < f < \infty$ for det analoge filter transformeres til frekvensområdet $0 < f < f_o$ for det digitale filter, bliver frekvensaksen deformeret. Dette påvirker afskæringsfrekvensen ω_a og stopbåndsfrekvensen ω_s for det digitale filter.

Bilineær z-transformation Frekvens warping (II)

Relationen mellem Ω og ω findes ved at indsætte $z=e^{j\omega T}$ i

$$s = \sigma + j\Omega = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

Bilineær z-transformation Frekvens warping (II)

Relationen mellem Ω og ω findes ved at indsætte $z=e^{j\omega T}$ i

$$s = \sigma + j\Omega = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

Dette giver

$$s = \frac{2}{T} \frac{1 - e^{-j\omega T}}{1 + e^{-j\omega T}} = \frac{2}{T} \frac{e^{j\omega T/2} - e^{-j\omega T/2}}{e^{j\omega T/2} + e^{-j\omega T/2}}$$
$$= \frac{2}{T} \frac{j \sin(\omega T/2)}{\cos(\omega T/2)} = \frac{2}{T} j \tan(\omega T/2)$$

Bilineær z-transformation Frekvens warping (II)

Relationen mellem Ω og ω findes ved at indsætte $z=e^{j\omega T}$ i

$$s = \sigma + j\Omega = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}$$

Dette giver

$$s = \frac{2}{T} \frac{1 - e^{-j\omega T}}{1 + e^{-j\omega T}} = \frac{2}{T} \frac{e^{j\omega T/2} - e^{-j\omega T/2}}{e^{j\omega T/2} + e^{-j\omega T/2}}$$
$$= \frac{2}{T} \frac{j\sin(\omega T/2)}{\cos(\omega T/2)} = \frac{2}{T} j\tan(\omega T/2)$$

Konsekvensen af frekvens warping kan ses af følgende båndpasfilter.

Bilineær z-transformation Eksempel (I)

Et analogt 5. ordens Butterworth lavpasfilter H(s) har -3 dB afskæringsfrekvens $f_3=3$ kHz og -30 dB stopbåndsfrekvens $f_{30}=6$ kHz. Filtret digitaliseres ved bilineær z-transformation med samplefrekvens 16 kHz.

Bilineær z-transformation Eksempel (I)

Et analogt 5. ordens Butterworth lavpasfilter H(s) har -3 dB afskæringsfrekvens $f_3=3$ kHz og -30 dB stopbåndsfrekvens $f_{30}=6$ kHz. Filtret digitaliseres ved bilineær z-transformation med samplefrekvens 16 kHz.

Ved brug af ligningen

$$\omega = \frac{2}{T} \tan^{-1} \left(\frac{\Omega T}{2} \right)$$
 [rad/s]

findes -3 dB afskæringsfrekvensen og -30 dB stopbåndsfrekvens for det digitale filter

$$\omega_3=17,03$$
k rad/s og $\omega_{30}=27,74$ k rad/s

hvilket svarer til 2,7 kHz og 4,4 kHz.

Konsekvensen af frekvens warping for lavpasfiltret ses af følgende amplitude-karakteristik.

Bilineær z-transformation

Ideen ved prewarping er at for-forvrænge det analoge filters afskæringsfrekvens Ω_a og stopbåndsfrekvens Ω_s således at det digitale filters afskæringsfrekvens ω_a og stopbåndsfrekvens ω_s kommer til at ligge ved ønskede frekvenser.

De prewarpede frekvenser findes ud fra

$$\Omega = \frac{2}{T} \tan(\omega T/2)$$
 [rad/s

For at designe et digitalt filter med -3 dB afskæringsfrekvens på 3 kHz og -30 dB stopbåndsfrekvens ≤ 6 kHz, så skal de tilsvarende (Prewarpede) frekvenser findes for et analogt filter ved brug af

$$\Omega = \frac{2}{T} \tan \left(\frac{\omega T}{2} \right)$$
 [rad/s]

For at designe et digitalt filter med -3 dB afskæringsfrekvens på 3 kHz og -30 dB stopbåndsfrekvens ≤ 6 kHz, så skal de tilsvarende (Prewarpede) frekvenser findes for et analogt filter ved brug af

$$\Omega = \frac{2}{T} \tan \left(\frac{\omega T}{2} \right)$$
 [rad/s]

Når samplefrekvensen er 16 kHz bliver disse frekvenser

$$\Omega_3 = 21,38 \text{k rad/s} \qquad \text{og} \qquad \Omega_{30} = 77,25 \text{k rad/s}$$

hvilket svarer til 3,4 kHz og 12,3 kHz.

For at designe et digitalt filter med -3 dB afskæringsfrekvens på 3 kHz og -30 dB stopbåndsfrekvens ≤ 6 kHz, så skal de tilsvarende (Prewarpede) frekvenser findes for et analogt filter ved brug af

$$\Omega = \frac{2}{T} \tan \left(\frac{\omega T}{2} \right)$$
 [rad/s]

Når samplefrekvensen er 16 kHz bliver disse frekvenser

$$\Omega_3=21,38$$
k rad/s og $\Omega_{30}=77,25$ k rad/s

hvilket svarer til 3,4 kHz og 12,3 kHz.

Nu kan et frekvensnormeret lavpasfilter designes med stopbåndsfrekvens

$$\frac{f_{30}}{f_3} = \frac{12,3k}{3,4k} = 3,6$$

For det specifikke filter er det nødvendige ordenstal 3.

Proceduren for at finde det digitale filter ud fra det frekvensnormerede prototype filter er

- 1. Denormer prototypefiltret til den prewarpede afskæringsfrekvens Ω_a
- 2. Find det digitale filter ved bilineær *z*-transformation

For det specifikke filter er det nødvendige ordenstal 3.

Proceduren for at finde det digitale filter ud fra det frekvensnormerede prototype filter er

- 1. Denormer prototypefiltret til den prewarpede afskæringsfrekvens Ω_a
- 2. Find det digitale filter ved bilineær *z*-transformation

Det er dog muligt at finde det digitale filter direkte ud fra prototypefiltret ved brug af

$$H(z) = H(s)|_{s=C\frac{1-z^{-1}}{1+z^{-1}}}$$

hvor C er prewarpingkonstanten, der benyttes i stedet for $\frac{2}{T}$, for at skalere frekvensen.

Prewarpingkonstanten bestemmes ud fra relationen

$$\Omega_a = C \tan \left(\frac{\omega_a T}{2} \right)$$
 [rad/s]

hvor Ω_a er afskæringsfrekvensen for det frekvensnormerede analoge filter (som altid er 1 rad/s) og ω_a er den ønskede afskæringsfrekvens for det digitale filter.

Prewarpingkonstanten bestemmes ud fra relationen

$$\Omega_a = C \tan \left(\frac{\omega_a T}{2} \right)$$
 [rad/s]

hvor Ω_a er afskæringsfrekvensen for det frekvensnormerede analoge filter (som altid er 1 rad/s) og ω_a er den ønskede afskæringsfrekvens for det digitale filter. Derfor bliver prewarpingkonstanten

$$C = \frac{1}{\tan\left(\frac{\omega_a T}{2}\right)} = \cot\left(\frac{\omega_a T}{2}\right)$$

Koefficienter af 1. ordens systemer

Introduktion

Bilineær *z*-transformation

Definition
Warping og prewarping
Koefficienter af 1. ordens systemer
Koefficienter af 2. ordens systemer
Eksempel

Opsummering

Bilineær z-transformation Koefficienter af 1. ordens systemer

Et første ordens system har formen

$$H(s) = \frac{A_1 s + A_0}{B_1 s + B_0}$$

og ved bilineær z-transformation fås

$$\begin{split} H(z) &= H(s)|_{s = C\frac{1-z^{-1}}{1+z^{-1}}} = \frac{A_1C\frac{1-z^{-1}}{1+z^{-1}} + A_0}{B_1C\frac{1-z^{-1}}{1+z^{-1}} + B_0} = \frac{A_1C(1-z^{-1}) + A_0(1+z^{-1})}{B_1C(1-z^{-1}) + B_0(1+z^{-1})} \\ &= \frac{\frac{A_0 + A_1C}{B_0 + B_1C} + \frac{A_0 - A_1C}{B_0 + B_1C}z^{-1}}{1 + \frac{B_0 - B_1C}{B_0 + B_1C}z^{-1}} \end{split}$$

Bilineær z-transformation Koefficienter af 1. ordens systemer

Et første ordens system har formen

$$H(s) = \frac{A_1 s + A_0}{B_1 s + B_0}$$

og ved bilineær z-transformation fås

$$\begin{split} H(z) &= H(s)|_{s = C\frac{1-z^{-1}}{1+z^{-1}}} = \frac{A_1C\frac{1-z^{-1}}{1+z^{-1}} + A_0}{B_1C\frac{1-z^{-1}}{1+z^{-1}} + B_0} = \frac{A_1C(1-z^{-1}) + A_0(1+z^{-1})}{B_1C(1-z^{-1}) + B_0(1+z^{-1})} \\ &= \frac{\frac{A_0 + A_1C}{B_0 + B_1C} + \frac{A_0 - A_1C}{B_0 + B_1C}z^{-1}}{1 + \frac{B_0 - B_1C}{B_0 + B_1C}z^{-1}} \end{split}$$

Dermed bliver det digitale filter

$$H(z) = \frac{a_0 + a_1 z^{-1}}{1 + b_1 z^{-1}}$$

hvor

$$a_0 = \frac{A_0 + A_1 C}{B_0 + B_1 C}, \qquad a_1 = \frac{A_0 - A_1 C}{B_0 + B_1 C}, \qquad b_1 = \frac{B_0 - B_1 C}{B_0 + B_1 C}$$

Betragt det frekvensnormerede 1. ordens lavpasfilter

$$H(s) = \frac{1}{s+1}$$

hvilket svarer til

$$A_0 = 1$$
 $A_1 = 0$ $B_0 = 1$ $B_1 = 1$

Et digitalt filter med afskæringsfrekvens 300 Hz ønskes designet med en samplingfrekvens på 16 kHz.

Betragt det frekvensnormerede 1. ordens lavpasfilter

$$H(s) = \frac{1}{s+1}$$

hvilket svarer til

$$A_0 = 1$$
 $A_1 = 0$ $B_0 = 1$ $B_1 = 1$

Et digitalt filter med afskæringsfrekvens 300 Hz ønskes designet med en samplingfrekvens på 16 kHz.

For at finde det digitale filters koefficienter udregnes prewarpingkonstanten

$$C = \cot\left(\frac{\omega_a T}{2}\right) = 16,957$$

Betragt det frekvensnormerede 1. ordens lavpasfilter

$$H(s) = \frac{1}{s+1}$$

hvilket svarer til

$$A_0 = 1 \qquad A_1 = 0 \qquad B_0 = 1 \qquad B_1 = 1$$

Et digitalt filter med afskæringsfrekvens 300 Hz ønskes designet med en samplingfrekvens på 16 kHz.

For at finde det digitale filters koefficienter udregnes prewarpingkonstanten

$$C = \cot\left(\frac{\omega_a T}{2}\right) = 16,957$$

Ved brug af formlerne for a_0 , a_1 , b_1 findes

$$H(z) = \frac{0,056 + 0,056z^{-1}}{1 - 0,889z^{-1}}$$

Filtret har et nulpunkt i z=-1 og en pol i z=0,889 og har følgende realisationsstruktur.

Det ses af amplitudekarakteristikken for filtret at aliaseringsfejlen er elimineret ved bilineær z-transformation.

Koefficienter af 2. ordens systemer

Introduktion

Bilineær *z*-transformation

Definition
Warping og prewarping
Koefficienter af 1. ordens systemer
Koefficienter af 2. ordens systemer
Eksempel

Opsummering

Et 2. ordens system har formen

$$H(s) = \frac{A_2s^2 + A_1s + A_0}{B_2s^2 + B_1s + B_0}$$

og ved bilineær *z*-transformation fås

$$\begin{split} H(z) &= H(s)|_{s=C\frac{1-z^{-1}}{1+z^{-1}}} = \frac{A_2 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + A_1 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right) + A_0}{B_2 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + B_1 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right) + B_0} \\ &= \frac{\frac{A_0 + A_1 C + A_2 C^2}{B_0 + B_1 C + B_2 C^2} + \frac{2(A_0 - A_2 C^2)}{B_0 + B_1 C + B_2 C^2} z^{-1} + \frac{A_0 - A_1 C + A_2 C^2}{B_0 + B_1 C + B_2 C^2} z^{-2}}{1 + \frac{2(B_0 - B_2 C^2)}{B_0 + B_1 C + B_2 C^2} z^{-1} + \frac{B_0 - B_1 C + B_2 C^2}{B_0 + B_1 C + B_2 C^2} z^{-2}} \end{split}$$

Bilineær z-transformation Koefficienter af 2. ordens systemer

Et 2. ordens system har formen

$$H(s) = \frac{A_2s^2 + A_1s + A_0}{B_2s^2 + B_1s + B_0}$$

og ved bilineær z-transformation fås

$$\begin{split} H(z) &= H(s)|_{s=C\frac{1-z^{-1}}{1+z^{-1}}} = \frac{A_2 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + A_1 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right) + A_0}{B_2 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + B_1 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right) + B_0} \\ &= \frac{\frac{A_0 + A_1 C + A_2 C^2}{B_0 + B_1 C + B_2 C^2} + \frac{2(A_0 - A_2 C^2)}{B_0 + B_1 C + B_2 C^2} z^{-1} + \frac{A_0 - A_1 C + A_2 C^2}{B_0 + B_1 C + B_2 C^2} z^{-2}}{1 + \frac{2(B_0 - B_2 C^2)}{B_0 + B_1 C + B_2 C^2} z^{-1} + \frac{B_0 - B_1 C + B_2 C^2}{B_0 + B_1 C + B_2 C^2} z^{-2}} \end{split}$$

Dermed bliver det digitale filter

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}}$$

Bilineær z-transformation Koefficienter af 2. ordens systemer

$$\begin{split} H(z) &= H(s)|_{s = C\frac{1-z^{-1}}{1+z^{-1}}} = \frac{A_2 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + A_1 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right) + A_0}{B_2 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + B_1 \left(C\frac{1-z^{-1}}{1+z^{-1}}\right) + B_0} \\ &= \frac{\frac{A_0 + A_1 C + A_2 C^2}{B_0 + B_1 C + B_2 C^2} + \frac{2(A_0 - A_2 C^2)}{B_0 + B_1 C + B_2 C^2} z^{-1} + \frac{A_0 - A_1 C + A_2 C^2}{B_0 + B_1 C + B_2 C^2} z^{-2}}{1 + \frac{2(B_0 - B_2 C^2)}{B_0 + B_1 C + B_2 C^2} z^{-1} + \frac{B_0 - B_1 C + B_2 C^2}{B_0 + B_1 C + B_2 C^2} z^{-2}} \end{split}$$

Dermed bliver det digitale filter

$$H(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2}}{1 + b_1 z^{-1} + b_2 z^{-2}}$$

hvor

$$a_0 = \frac{A_0 + A_1C + A_2C^2}{B_0 + B_1C + B_2C^2}, \qquad a_1 = \frac{2(A_0 - A_2C^2)}{B_0 + B_1C + B_2C^2}, \qquad a_2 = \frac{A_0 - A_1C + A_2C^2}{B_0 + B_1C + B_2C^2}$$

Betragt følgende frekvensnormerede 2. ordens Butterworth lavpasfilter

$$H(s) = \frac{1}{s^2 + 1,414s + 1}$$

Betragt følgende frekvensnormerede 2. ordens Butterworth lavpasfilter

$$H(s) = \frac{1}{s^2 + 1,414s + 1}$$

Design et digitalt 2. ordens Butterworth lavpasfilter med afskæringsfrekvens 800 Hz og samplefrekvens 8 kHz.

Betragt følgende frekvensnormerede 2. ordens Butterworth lavpasfilter

$$H(s) = \frac{1}{s^2 + 1,414s + 1}$$

Design et digitalt 2. ordens Butterworth lavpasfilter med afskæringsfrekvens 800 Hz og samplefrekvens 8 kHz.

Det digitale filter designes ved at finde prewarpingkonstanten

$$C = \cot\left(\frac{\omega_a T}{2}\right) = 3,078$$

hvorefter filterkoefficienterne kan beregnes til

$$a_0 = 0,07$$
 $a_1 = 0,13$ $a_2 = 0,07$ $b_1 = -1,14$ $b_2 = 0,41$

Betragt følgende frekvensnormerede 2. ordens Butterworth lavpasfilter

$$H(s) = \frac{1}{s^2 + 1,414s + 1}$$

Design et digitalt 2. ordens Butterworth lavpasfilter med afskæringsfrekvens 800 Hz og samplefrekvens 8 kHz.

Det digitale filter designes ved at finde prewarpingkonstanten

$$C = \cot\left(\frac{\omega_a T}{2}\right) = 3,078$$

hvorefter filterkoefficienterne kan beregnes til

$$a_0 = 0.07$$
 $a_1 = 0.13$ $a_2 = 0.07$ $b_1 = -1.14$ $b_2 = 0.41$

Slutteligt bliver filtrets overføringsfunktion

$$H(z) = \frac{0.07 + 0.13z^{-1} + 0.07z^{-2}}{1 - 1.14z^{-1} + 0.41z^{-2}}$$

Det digitale filter har to nulpunkter i z=-1 og poler i $z=0,57\pm j0,29$. Realisationsstrukturen for filtret er vist herunder.

Eksempel

Introduktion

Bilineær z-transformation

Definition
Warping og prewarping
Koefficienter af 1. ordens systemer
Koefficienter af 2. ordens systemer
Eksempel

Opsummering

Følgende er proceduren for design af digitale filtre ved brug af bilineær z-transformation

1. Prewarping konstanten bestemmes som

$$C = \cot \frac{\omega_i T}{2}$$

hvor i=a ved lavpasfilterdesign og i=c ved design af båndpas- og båndstopfiltre.

- Ordenstallet for filtret bestemmes på baggrund af den prewarpede stopbåndsfrekvens.
- 3. Den frekvensnormerede og faktoriserede analoge overføringsfunktion H(s) opstilles.
- 4. Den digitale overføringsfunktions koefficienter beregnes.
- 5. Filtret implementeres som en kaskadekoblet realisationsstruktur.

Design et 0,5 dB Chebyshev højpasfilter med specifikationer som vist i figuren.

Bilineær z-transformation Design af højpasfilter (I)

Design et 0,5 dB Chebyshev højpasfilter med specifikationer som vist i figuren.

Bestem prewarping konstanten ud fra afskæringsfrekvensen $f_{0,5}$

$$C = \cot \frac{2\pi f_{0,5}T}{2} = 5,027$$

Bilineær z-transformation Design af højpasfilter (I)

Design et 0,5 dB Chebyshev højpasfilter med specifikationer som vist i figuren.

Bestem prewarping konstanten ud fra afskæringsfrekvensen $f_{0,5}$

$$C = \cot \frac{2\pi f_{0,5}T}{2} = 5,027$$

Bestem ordenstallet på baggrund af den prewarpede stopbåndsfrekvens

$$\Omega_{60} = C \tan \frac{2\pi f_{60}T}{2} = 0,1975$$

Bilineær z-transformation Design af højpasfilter (II)

Ordenstallet findes fra et 0,5 dB Chebyshev lavpasfilter med normeret stopbåndsfrekvens

$$\frac{\Omega_{0,5}}{\Omega_{60}} = \frac{1}{0,1975} = 5,063$$

Ordenstallet aflæses til ${\cal N}=4.$

Bilineær z-transformation Design af højpasfilter (II)

Ordenstallet findes fra et 0,5 dB Chebyshev lavpasfilter med normeret stopbåndsfrekvens

$$\frac{\Omega_{0,5}}{\Omega_{60}} = \frac{1}{0,1975} = 5,063$$

Ordenstallet aflæses til N=4.

Fra tabelopslag har 0,5 dB Chebyshev lavpasfiltret overføringsfunktion

$$H_{\mathsf{lp}}(s) = \frac{0,35641}{s^2 + 0,84668s + 0,35641} \frac{1,06352}{s^2 + 0,35071s + 1,06352}$$

Bilineær z-transformation Design af højpasfilter (II)

Ordenstallet findes fra et 0,5 dB Chebyshev lavpasfilter med normeret stopbåndsfrekvens

$$\frac{\Omega_{0,5}}{\Omega_{60}} = \frac{1}{0,1975} = 5,063$$

Ordenstallet aflæses til N=4.

Fra tabelopslag har 0,5 dB Chebyshev lavpasfiltret overføringsfunktion

$$H_{\mathsf{lp}}(s) = \frac{0,35641}{s^2 + 0,84668s + 0,35641} \frac{1,06352}{s^2 + 0,35071s + 1,06352}$$

Et høspasfilter opnås ved at erstatte s med 1/s

$$H_{\mathsf{hp}}(s) = \frac{s^2}{s^2 + 2,376s + 2,806} \frac{s^2}{s^2 + 0,3298s + 0,9403}$$

Bilineær z-transformation Design af højpasfilter (III)

Den digitale overføringsfunktion fås ved bilineær z-transformation til

$$H(z) = \frac{0,6315 - 1,2629z^{-1} + 0,6315z^{-2}}{1 - 1,1227z^{-1} + 0,4031z^{-2}} \cdot \frac{0,9068 - 1,814z^{-1} + 0,9068z^{-2}}{1 - 1,7461z^{-1} + 0,8810z^{-2}}$$

Bilineær z-transformation Design af højpasfilter (III)

Den digitale overføringsfunktion fås ved bilineær z-transformation til

$$H(z) = \frac{0,6315 - 1,2629z^{-1} + 0,6315z^{-2}}{1 - 1,1227z^{-1} + 0,4031z^{-2}} \cdot \frac{0,9068 - 1,814z^{-1} + 0,9068z^{-2}}{1 - 1,7461z^{-1} + 0,8810z^{-2}}$$

Opsummering

Introduktion

Bilineær z-transformation
Definition
Warping og prewarping
Koefficienter af 1. ordens systemer
Koefficienter af 2. ordens systemer
Eksempel

Opsummering

Et IIR-filter designes ved at følge proceduren

- 1. Filtrets specifikationer opstilles
- 2. Filtrets z-domæne overføringsfunktion opstilles ved brug af
 - ► Matched *z*-transformation
 - ► Impuls invariant *z*-transformation
 - ► Bilineær z-transformation
- 3. Der vælges optimal realisationsstruktur
- 4. Der fremstilles program til signalprocessor eller tegnes diagram for hardwareløsning

En diskret overføringsfunktion fås ved bilineær z-transformation som

$$H(z) = H(s)|_{s=\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}}$$

Da frekvensområdet $0 < f < \infty$ for det analoge filter transformeres til frekvensområdet $0 < f < f_o$ for det digitale filter, bliver frekvensaksen deformeret. Dette kaldes *frekvens warping*, og er årsagen til at udføre *prewarping*.

Følgende er proceduren for design af digitale filtre ved brug af bilineær z-transformation

1. Prewarping konstanten bestemmes som

$$C = \cot \frac{\omega_i T}{2}$$

hvor i=a ved lavpasfilterdesign og i=c ved design af båndpas- og båndstopfiltre.

- 2. Ordenstallet for filtret bestemmes på baggrund af den prewarpede stopbåndsfrekvens.
- 3. Den frekvensnormerede og faktoriserede analoge overføringsfunktion H(s) opstilles.
- 4. Den digitale overføringsfunktions koefficienter beregnes.
- 5. Filtret implementeres som en kaskadekoblet realisationsstruktur.