### Reinforcement Learning Lecture 4: Dynamic Programming

S. M. Ahsan Kazmi

#### Recap

- Last lecture: Formalise the problem with the full sequential structure
  - Markov Reward Processes
  - Markov Decision Processes

#### This lecture:

- Planning via DP
  - Policy Evaluation
  - Policy Iteration
  - Value Iteration
  - Extensions (Dynamic Programming)

#### Recap: Markov decision process (MDP)

- A Markov decision process (MDP) is a Markov reward process with decisions.
- It is an environment in which all states are Markov.

#### Definition

A Markov Decision Process is a tuple  $\langle S, A, P, R, \gamma \rangle$ 

- $\blacksquare$   $\mathcal{S}$  is a finite set of states
- $\blacksquare$  A is a finite set of actions
- lacksquare  $\mathcal P$  is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- lacksquare R is a reward function,  $\mathcal{R}_s^{a} = \mathbb{E}\left[R_{t+1} \mid S_t = s, A_t = a\right]$
- $ightharpoonup \gamma$  is a discount factor  $\gamma \in [0, 1]$ .

#### Recap: Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
  - · Value Iteration
  - Policy Iteration
  - Q-learning
  - Sarsa

Ref: Sutton & Barto 2018, Chapter 3

Dynamic Programming?

#### Dynamic Programming

- A method for solving complex problems by breaking them down into subproblems
  - Solve the subproblems
  - Combine solutions to subproblems
- Dynamic Programming is a very general solution method for problems that have two properties:
- Optimal substructure
  - The principle of optimality applies
  - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
  - Subproblems recur many times
  - · Solutions can be cached and reused
- Markov decision processes satisfy both properties
  - Bellman equation gives a recursive decomposition
  - Value function stores and reuses solutions

#### Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
  - It is used for planning in an MDP
- For prediction:

Input: MDP  $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$  and policy  $\pi$  or: MRP  $\langle \mathcal{S}, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$  Output: value function  $v_{\pi}$ 

• Or for control:

Input: MDP  $\langle S, A, P, R, \gamma \rangle$ Output: optimal value function  $v_*$ and: optimal policy  $\pi_*$ 

## Policy Evaluation

#### **Policy Evaluation**

- Problem: evaluate a given policy  $\pi$
- Solution: iterative application of Bellman expectation backup
- $V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_{\pi}$
- Using synchronous backups

#### Algorithm

- $\triangleright$  First, initialise  $v_0$ , e.g., to zero
- ► Then, iterate

$$\forall s: v_{k+1}(s) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid s, \pi\right]$$

**Stopping:** whenever  $v_{k+1}(s) = v_k(s)$ , for all s, we must have found  $v_{\pi}$ 

#### **Policy Evaluation**



$$egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left( \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') 
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k \end{aligned}$$

#### Example: Policy evaluation



|  |    | 1  | 2  | 3  |
|--|----|----|----|----|
|  | 4  | 5  | 6  | 7  |
|  | 8  | 9  | 10 | 11 |
|  | 12 | 13 | 14 |    |

 $R_t = -1 \\ \text{on all transitions}$ 

- Undiscounted episodic MDP
- Nonterminal states 1.....14
- One terminal state (shown twice as shaded squares)
- · Actions leading out of the grid leave state unchanged
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

#### Example: Policy evaluation



# Policy Iteration

#### How to Improve a Policy

- Given a policy  $\pi$ 
  - Evaluate the policy  $\pi$

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

• Improve the policy by acting greedily with respect to  $V_{\pi}$ 

$$\pi' = \operatorname{greedy}(v_{\pi})$$

- In Small Gridworld improved policy was optimal,  $\pi' = \pi^*$
- In general, need more iterations of improvement/evaluation
- But this process of policy iteration always converges to  $\pi*$

#### **Policy Iteration**

#### Algorithm

Iterate, using

$$\forall s: \pi_{\mathsf{new}}(s) = \operatorname*{argmax}_{a} q_{\pi}(s, a)$$

$$= \operatorname*{argmax}_{a} \mathbb{E} \left[ R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s, A_{t} = a \right]$$

Then, evaluate  $\pi_{\text{new}}$  and repeat

#### Policy Iteration



Policy evaluation Estimate  $v_\pi$  Iterative policy evaluation Policy improvement Generate  $\pi' \geq \pi$  Greedy policy improvement



#### Modified Policy Iteration

- Does policy evaluation need to converge to  $v_{\pi}$ ?
- Or should we introduce a stopping condition
  - e.g. ∈-convergence of the value function
- Or stop after *k* iterations of iterative policy evaluation?
  - For example, in the small grid-world, k = 3 was sufficient to achieve optimal policy
- Why not update the policy every iteration? i.e. stop after k = 1
  - This is equivalent to value iteration (next section)

#### Policy evaluation + Greedy Improvement



#### Policy evaluation + Greedy Improvement



- If we know the solution to subproblems  $v_*(s')$
- Then solution  $v_*(s)$  can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backward

• Take the Bellman optimality equation, and turn that into an update

$$\forall s: v_{k+1}(s) \leftarrow \max_{s} \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = s\right]$$

 Equivalent to policy iteration, with k = 1 step of policy evaluation between each two (greedy) policy improvement steps

#### Algorithm: Value Iteration

- ► Initialise v<sub>0</sub>
- ▶ Update: $v_{k+1}(s) \leftarrow \max_{a} \mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t = s\right]$
- **Stopping**: whenever  $v_{k+1}(s) = v_k(s)$ , for all s, we must have found  $v^*$

$$v_{k+1}(s) \leftrightarrow s$$

$$a$$

$$r$$

$$k(s') \leftrightarrow s'$$

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left( \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$\mathbf{v}_{k+1} = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k$$

#### Example: Shortest Path



### Synchronous Dynamic Programming Algorithms

| Problem    | Bellman Equation                                           | Algorithm         |
|------------|------------------------------------------------------------|-------------------|
| Prediction | Pollman Expectation Equation                               | Iterative         |
| Frediction | Bellman Expectation Equation                               | Policy Evaluation |
| Control    | Bellman Expectation Equation + (Greedy) Policy Improvement | Policy Iteration  |
| Control    | Bellman Optimality Equation                                | Value Iteration   |

### Extensions (Dynamic Programming)

#### Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
  - i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order
  - For each selected state, apply the appropriate backup
  - Can significantly reduce computation
  - Guaranteed to converge if all states continue to be selected
- Three simple ideas for asynchronous dynamic programming:
  - In-place dynamic programming
  - Prioritised sweeping
  - Real-time dynamic programming

#### Full-Width Backups

- DP uses full-width backups
- For each backup (sync or async)
  - Every successor state and action is considered
  - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers (Bellman's curse of dimensionality)
  - Number of states n grows exponentially with the number of state variables
- Even one backup can be too expensive



#### Sample Backups

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions  $\langle s, a, r, s' \rangle$ 
  - (Instead of reward function r and transition dynamics p)
- Advantages:
  - Model-free: no advance knowledge of MDP required
  - Breaks the curse of dimensionality through sampling
  - Cost of backup is constant, independent of states



### End of lecture