# Greedeeptector: Greedy Contract Detection using Lightweight Deep Learning implemented through eXplainable AI

https://youtu.be/5sphHV1-m40





Introduction

**Related Works** 

Model implementation

**Instruction Analysis** 

### Introduction

- 스마트 컨트랙트 : 블록체인 기반의 디지털 계약으로 제 3자의 개입 없이 계약 가능
- **탐욕 컨트랙트** : 이더를 인출할 수 없도록 이더를 **무기한 잠금**을 거는 컨트랙트 → 탐욕 컨트랙트를 실행시킬 경우 막대한 피해 발생

# 가상화폐 지갑 '패리티', 이더리움 2억8000만달러 묶여

발행일: 2017-11-09 07:00

패리티 테크놀로지스(Parity Technologies) 의 가상화폐 지갑에서 2억8000만 달러(약 3100억원) 규모 이더리움(Ethereum) 거래가 동결됐다.

## Introduction

#### • 기존 해결방안

- 악성 노드 탐지
- 악성 스마트 컨트랙트 탐지
  - → 파이썬 도구를 통한 탐지 (MAIAN tool)
  - → **딥러닝을 통한 탐지** (스마트 컨트랙트의 특징을 학습)

#### • 한계점

- 블록체인은 확장성이 매우 중요함
  - → IoT 블록체인에서 기존 딥러닝 탐지 모델은 연산 및 메모리 오버헤드를 유발할 수 있음

## Contribution

#### 1. XAI를 통한 탐욕 컨트랙트 명령어 심층 분석

- Integrated Gradient와 Gradient SHAP을 통해 모델의 예측에 영향을 끼치는 명령어들을 분석
- 어떤 명령어가 탐욕 컨트랙트에서 큰 특징을 가지며 자주 사용되는지 분석

#### 2. 중요한 명령어를 기반으로 경량화된 딥러닝 모델 구현

- XAI를 통해 추출된 중요한 명령어들은 더 적은 데이터 차원
- 이 명령어들을 통해 모델을 학습시킴으로써 경량화된 모델을 구현
  - → 경량화된 모델은 Base 모델 대비 약 50% 경량화

#### 3. 컨트랙트 실행 시 탐지를 통한 블록체인 네트워크의 안정성 향상

- 이전 연구와 다르게, 스마트 컨트랙트 실행 시 탐지를 수행
- 새로 배포되는 스마트 컨트랙트 뿐만 아니라 이미 배포된 스마트 컨트랙트에 대해서도 탐지를 가능
  - → 블록체인 네트워크의 안정성을 향상

## Related Works

- Explainable Artificial Intelligence (XAI)
  - 기존 인공지능은 블랙박스 모델
  - 인공지능은 복잡한 관계와 특징을 학습
    - → 예측에 대한 이유와 근거가 불명확
  - Local: 모델이 특정한 입력 데이터를 받았을 때, 각 변수가 예측 결과에 미치는 영향력을 계산하는 방법
  - Global : 모델 전체에 대해서 인사이트를 제공하며, 입력 전체의 배열에 대해 설명을 제공하는 방법



## **Related Works**

#### Gradient SHAP

- 각 특성이 예측에 얼마나 기여했는지를 나타낸 값
- local 및 global한 해석 O
  - → feature 분석에 용이
- feature의 개수가 늘어남에 따라 계산량이 기하급수적으로 증가
  - → 기울기를 통해 근사값을 계산

#### Integrated Gradients (IG)

- 입력과 베이스라인 간의 차와 기울기 정보를 누적한 것의 곱
- IG는 각 feature의 중요도를 local적으로 계산하므로, global한 해석 기능 X

Integrated 
$$Grads_i(x) ::= (x_i - x_i') \cdot \int_{\alpha=0}^1 \frac{\partial F(x' + \alpha \cdot (x - x'))}{\partial x_i} \cdot d\alpha$$

#### **Detection Process**

- 스마트 계약을 실행하기 전에 탐지 모델 Greedeeptector를 통해 탐지 수행
  - → 정상일 경우 실행 O
  - → 탐욕일 경우 실행 X



#### Algorithm 1 Greedeeptector mechanism

else Execute the smart contract

10:

 Require: Bytecode of smart contract ( $B_{SC}$ ), Extracted opcodes of smart contract ( $OP_{sc}$ ), Frequency of opcodes ( $F_{OP}$ ), Deep learning model for greedy contract detection (Greedeeptector)

 1:  $Opcodes = \{00:STOP, ..., FF:SELFDESTRUCT\}$  ▷ Set up dictionary mapping opcodes to bytecodes

 2: for op in  $B_{SC}$  do

 3: if op in Opcodes then  $OP_{sc}$ .append(op)
 ▷ Bytecode to opcode  $^1$  

 4: Initialize  $F_{OP}$  to zero

 5: for op in  $OP_{sc}$  do

 6:  $F_{OP}[op] \leftarrow F_{OP}[op] + 1$  ▷ Calculate frequency of opcode

 7: end for

 8:  $isGreedy \leftarrow Greedeeptector(F_{OP})$  ▷ Greedy contract detection

 9: if is Greedy = = True then Stop the smart contract

## **Base Model**

- Pre-processing
  - Bytecode로부터 opcode 추출
  - Frequency of opcodes를 계산하여 빈도수 배열 생성
    - → 모델을 생성하기 위한 데이터셋으로 사용



| OPCODE      | NAME       | MINIMUM<br>GAS | STACK INPUT | STACK OUPUT   | DESCRIPTION Expand                               |
|-------------|------------|----------------|-------------|---------------|--------------------------------------------------|
| <b>ග</b> 00 | STOP       | 0              |             |               | Halts execution                                  |
| <b>ு</b> 01 | ADD        | 3              | a b         | a + b         | Addition operation                               |
| <b>o</b> 02 | MUL        | 5              | a b         | a * b         | Multiplication operation                         |
| <b>ு</b> 03 | SUB        | 3              | a b         | a - b         | Subtraction operation                            |
| <b>o</b> 04 | DIV        | 5              | a b         | a // b        | Integer division operation                       |
| <u>o</u> 05 | SDIV       | 5              | ab          | a // b        | Signed integer division operation (truncated)    |
| <b>ு</b> 06 | MOD        | 5              | a b         | a % b         | Modulo remainder operation                       |
| <b>o</b> 07 | SMOD       | 5              | ab          | a % b         | Signed modulo remainder operation                |
| <b>ு</b> 08 | ADDMOD     | 8              | a b N       | (a + b) % N   | Modulo addition operation                        |
| <b>o</b> 09 | MULMOD     | 8              | abN         | (a * b) % N   | Modulo multiplication operation                  |
| <b>⊙</b> 0Α | EXP        | 10 ②           | a exponent  | a ** exponent | Exponential operation                            |
| <b>∮</b> 0В | SIGNEXTEND | 5              | b x         | у             | Extend length of two's complement signed integer |

## **Base Model**

- 빈도수 각 배열의 요소는 입력 레이어의 하나의 뉴런에 할당
- 과적합 방지를 위해 dropout
- binary cross-entropy

**Table 1.** Hyperparameters of the base model.

| Hyperparameters          | Descriptions |  |  |
|--------------------------|--------------|--|--|
| Epoch                    | 200          |  |  |
| Batch size               | 256          |  |  |
| Units of the input layer | 140          |  |  |
| Dropout                  | 0.4          |  |  |
| Optimizer(learning rate) | Adam(0.0001) |  |  |



# Lightweight Model

- 1. opcodes의 frequency 추출
- 2. Base 모델 구현
- 3. XAI를 통한 feature 분석
- 4. 중요한 opcodes 추출
  - → 정확도를 저하 X
  - → 모델을 경량화
- 5. lightweight 모델 구현
- 6. 탐지



# Lightweight Model

- 이상치 제거를 위해 IQR 방식 사용
- 이상치 제거 후의 평균 IG와 SHAP에서 상위 n개의 명령어만을 학습
  - → 정확도를 손상시키지 않고 모델의 파라미터 수를 줄일 수 있음 (경량화)



# Lightweight Model

- IG와 SHAP의 절대값이 큰 opcode 50개 추출
  - → 정확도를 하락 시키지 않으면서 모델을 최대한 경량화 하기 위함
  - → 140개의 opcode에서 개수를 조금씩 줄이면서 얻은 최적의 opcode 개수
  - → 데이터에 따라 조금씩 달라지므로 10번 반복하여 추출함으로써 안정성 높임
- 10번의 시도 중 n번 이상 추출된 명령어들을 경량 모델의 학습 데이터로 사용 (n = 5, 7, 10)



**Table 4.** Comparison of performance according to the number of opcodes used (Case1, Case2, Case3 (n = 5,7,10, respectively)).

|                          | Case1 | Case2 | Case3 |
|--------------------------|-------|-------|-------|
| The number of opcodes    | 58    | 51    | 37    |
| Training F1-score        | 0.93  | 0.92  | 0.90  |
| Validation F1-score      | 0.92  | 0.92  | 0.90  |
| Test F1-score            | 0.92  | 0.91  | 0.90  |
| The number of parameters | 5,855 | 4,861 | 3,167 |

Figure 6. An example of outlier removal using the IQR; Before (left), After (Right).

# Lightweight Model Performance

- Base model 대비 모델 크기 41.5% 감소
- 모델 파라미터의 개수 61.8% 감소
- 속도 0.002 ms 향상
- 정확도 0.3% 손실
- 속도와 메모리 효율성 증가함에 따라 블록체인 확장성 증가
  - → IoT 블록체인에 적합

**Table 6.** Comparison between base and lightweight model.

| Model       | Model size | Parameters | Speed    | F1-score |
|-------------|------------|------------|----------|----------|
| Base        | 0.89 MB    | 15,297     | 0.015 ms | 92.6%    |
| Lightweight | 0.53 MB    | 5,855      | 0.013 ms | 92.3%    |

# **Instruction Analysis**

• JUMP : 무조건 분기

• JUMPI : 조건 분기

→ 조건 분기가 많을 수록 탐욕컨트랙트로 분류될 확률 증가

• JUMPDEST : 분기 대상 주소

**Table 7.** Top 8 important opcodes in the benign contract.

| Algorithm | Sorted by values of IG and SHAP |      |      |          |       |       |        |     |  |
|-----------|---------------------------------|------|------|----------|-------|-------|--------|-----|--|
| Aigoriumi | 1                               | 2    | 3    | 4        | 5     | 6     | 7      | 8   |  |
| IG        | JUMPDEST                        | DUP1 | SUB  | JUMP     | EQ    | PUSH4 | REVERT | SLT |  |
| SHAP      | DUP1                            | SUB  | JUMP | JUMPDEST | PUSH4 | EQ    | MLOAD  | LT  |  |

**Table 8.** Top 8 important opcodes in the greedy contract.

| Algorithm | Sorted by values of IG and SHAP |           |           |       |      |              |       |              |  |
|-----------|---------------------------------|-----------|-----------|-------|------|--------------|-------|--------------|--|
|           | 1                               | 2         | 3         | 4     | 5    | 6            | 7     | 8            |  |
| IG        | JUMPI                           | CALLVALUE | SWAP1     | SWAP2 | STOP | CALLDATASIZE | AND   | ADDRESS      |  |
| SHAP      | JUMPI                           | PUSH2     | CALLVALUE | SWAP2 | POP  | STOP         | SWAP1 | CALLDATASIZE |  |

# Q&A