Encyclopaedia of Mathematics and Physics

Robin Adams

Contents

1	Relations	5
2	Order Theory	7
3	Field Theory 3.1 Ordered Fields	9 11
4	Real Analysis4.1 Construction of the Real Numbers4.2 Properties of the Real Numbers4.3 The Extended Real Number System	13 13 19 24
5	Complex Analysis	27
Ι	Linear Algebra	31
6	Vector Spaces	33
7	Real Inner Product Spaces	35
8	Complex Inner Product Spaces 8.1 Hilbert Spaces	37 38
9	Lie Algebras 9.1 Lie Algebar Homomorphisms	39 40
II	More Algebra	41
10	Lie Groups	43

4 CONTENTS

Relations

Definition 1.1 (Antisymmetric). A relation R on a set A is antisymmetric iff, whenever xRy and yRx, then x = y.

Definition 1.2 (Transitive). A relation R on a type A is *transitive* iff, whenever xRy and yRz, then xRz.

Order Theory

Definition 2.1 (Linear Order). A *linear order* on a set A is a binary relation \leq on A that is transitive, antisymmetric and:

$$\forall x, y \in A.x \le y \lor y \le x$$
.

A linearly ordered set is a pair (A, \leq) where A is a set and \leq is a binary relation on A.

We write x < y for $x \le y$ and $x \ne y$.

Definition 2.2 (Upper Bound). Let S be a linearly ordered set, $u \in S$ and $E \subseteq S$. Then u is an *upper bound* in E iff $\forall x \in E.x \leq u$. We say E is *bounded above* iff it has an upper bound.

The *up-set* of E, denoted $E \uparrow$, is the set of upper bounds of E.

Definition 2.3 (Lower Bound). Let S be a linearly ordered set, $l \in S$ and $E \subseteq S$. Then u is an lower bound in E iff $\forall x \in E.l \leq x$. We say E is bounded below iff it has a lower bound.

The down-set of E, denoted $E \downarrow$, is the set of lower bounds of E.

Definition 2.4 (Supremum). Let S be a linearly ordered set, $u \in S$ and $E \subseteq S$. Then u is the *least upper bound* or *supremum* of E iff u is an upper bound for E and, for any upper bound u' for E, we have $u \le u'$.

Definition 2.5 (Infimum). Let S be a linearly ordered set, $l \in S$ and $E \subseteq S$. Then l is the *greatest lower bound* or *infimum* of E iff l is a lower bound for E and, for any lower bound l' for E, we have $l' \leq l$.

Definition 2.6 (Least Upper Bound Property). A linearly ordered set S has the *least upper bound property* iff every nonempty subset of S that is bounded above has a least upper bound.

Proposition 2.7. Let S be a linearly ordered set and $E \subseteq S$.

1. If $E \downarrow has$ a supremum l, then l is the infimum of E.

2. If $E \uparrow has$ an infimum u, then U is the supremum of E.

PROOF

- $\langle 1 \rangle 1$. If $E \downarrow$ has a supremum l, then l is the infimum of E.
 - $\langle 2 \rangle 1$. l is a lower bound for E.
 - $\langle 3 \rangle 1$. Let: $x \in E$
 - $\langle 3 \rangle 2$. x is an upper bound for $E \downarrow$.

PROOF: For all $y \in E \downarrow$ we have $y \leq x$.

- $\langle 3 \rangle 3. \ l \leq x$
- $\langle 2 \rangle 2$. For any lower bound l' for E, we have $l' \leq l$.

PROOF: Since l is an upper bound for $E \downarrow$.

 $\langle 1 \rangle 2$. If $E \uparrow$ has an infimum u, then u is the supremum of E.

PROOF: Dual. \sqcap

Corollary 2.7.1. A linearly ordered set has the least upper bound property if and only if every nonempty set bounded below has an infimum.

Definition 2.8 (Closed Downwards). Let S be a linearly ordered set and $E \subseteq S$. Then E is closed downwards iff, whenever $x \in E$ and y < x, then $y \in E$.

Definition 2.9 (Closed Upwards). Let S be a linearly ordered set and $E \subseteq S$. Then E is *closed upwards* iff, whenever $x \in E$ and x < y, then $y \in E$.

Definition 2.10 (Greatest). Let S be a linearly ordered set and $u \in S$. Then u is greatest in S iff $\forall x \in S.x \leq u$.

Definition 2.11 (Least). Let S be a linearly ordered set and $l \in S$. Then l is least in S iff $\forall x \in S.l \leq x$.

Proposition 2.12. Let \leq be a linear order on a set S and $E \subseteq S$. Then $\leq \cap E^2$ is a linear order on E.

Proof: Easy. \square

Given a linearly ordered set (S, \leq) and $E \subseteq S$, we write just E for the linearly ordered set $(E, \leq \cap E^2)$.

Field Theory

Definition 3.1 (Field). A *field* F consists of a set F, two operations $+, \cdot : F^2 \to F$ and an element $0 \in F$ such that:

- \bullet + is commutative.
- \bullet + is associative.
- $\bullet \ \forall x \in F.x + 0 = x$
- $\forall x \in F. \exists y \in F. x + y = 0$
- \bullet · is commutative.
- \bullet · is associative.
- There exists $1 \in F$ such that $1 \neq 0$ and $\forall x \in F.x1 = x$ and $\forall x \in F.x \neq 0 \Rightarrow \exists y \in F.xy = 1$
- Distributive Law $\forall x, y, z \in F.x(y+z) = xy + xz$

Proposition 3.2. In any field F, the element 0 is the unique element such that $\forall x \in F.x + 0 = x$.

PROOF: If 0 and 0' both have this property then 0 = 0 + 0' = 0'. \square

Proposition 3.3. In any field F, given $x \in F$, there is a unique $y \in F$ such that x + y = 0.

PROOF: If
$$x + y = x + y' = 0$$
 then
$$y = y + 0$$
$$= y + x + y'$$
$$= 0 + y'$$
$$= y'$$

Definition 3.4. Let F be a field. Let $x \in F$. We denote by -x the unique element of F such that x + (-x) = 0.

Given $x, y \in F$, we write x - y for x + (-y).

Proposition 3.5. In any field F, if x + y = x + z then y = z.

PROOF: If x+y=x+z we have -x+x+y=-x+x+z $\therefore 0+y=0+z$ $\therefore y=z$

Proposition 3.6. In any field F, we have -(-x) = x.

PROOF: Since x + (-x) = 0. \square

Proposition 3.7. In any field F, the element 1 such that $\forall x \in F.x1 = x$ is unique.

PROOF: If 1 and 1' both have this property then $1 = 1 \cdot 1' = 1'$. \square

Proposition 3.8. In any field F, given $x \in F$ with $x \neq 0$, the element y such that xy = 1 is unique.

PROOF: If y and y' both have this property then we have

$$y = y1$$

$$= yxy'$$

$$= 1y'$$

$$= y'$$

Definition 3.9. In any field F, if $x \neq 0$, we write x^{-1} for the unique element such that $xx^{-1} = 1$.

We write x/y for xy^{-1} .

Proposition 3.10. In any field F, if xy = xz and $x \neq 0$ then y = z.

Proof:

$$y = 1y$$

$$= x^{-1}xy$$

$$= x^{-1}xz$$

$$= 1z$$

$$= z$$

Proposition 3.11. In any field F, if $x \neq 0$ then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

PROOF: Since $xx^{-1} = 1$. \square

Proposition 3.12. In any field F, we have x0 = 0.

11

Proof:

$$x0 + 0 = x0$$

$$= x(0 + 0)$$

$$= x0 + x0$$

$$\therefore 0 = x0$$

Proposition 3.13. In any field F, if xy = 0 then x = 0 or y = 0.

PROOF: If xy = 0 and $x \neq 0$ then we have $y = x^{-1}xy = x^{-1}0 = 0$. \square

Proposition 3.14. In any field F, we have (-x)y = -(xy).

Proof:

$$xy + (-x)y = (x + (-x))y$$

$$= 0y$$

$$= 0 (Proposition 3.12) \Box$$

Corollary 3.14.1. In any field F, we have (-x)(-y) = xy.

Proof:

$$(-x)(-y) = -(x(-y))$$

$$= -(-(xy))$$

$$= xy (Proposition 3.6) \Box$$

3.1 Ordered Fields

Definition 3.15 (Ordered Field). An *ordered field* F consists of a field F and a linear order \leq on F such that:

- For all $x, y, z \in F$, if y < z then x + y < x + z
- For all $x, y \in F$, if x > 0 and y > 0 then xy > 0.

We call x positive iff x > 0 and negative iff x < 0.

Example 3.16. \mathbb{Q} is an ordered field.

Proposition 3.17. In any ordered field, if x is positive then -x is negative.

PROOF: If x > 0 then 0 = x + (-x) > 0 = (-x) = -x.

Proposition 3.18. In any ordered field, if y < z and x is positive then xy < xz.

PROOF: If y < z then we have

$$0 < z - y$$

$$0 < x(z - y)$$

$$= xz - xy$$

$$xy < xz$$

Proposition 3.19. In any ordered field, if y < z and x is negative then xy > xz.

Proof:

- $\langle 1 \rangle 1$. -x is positive.
- $\langle 1 \rangle 2$. (-x)y < (-x)z
- $\langle 1 \rangle 3. -(xy) < -(xz)$
- $\langle 1 \rangle 4$. xz < xy

Proposition 3.20. In any ordered field, if $x \neq 0$ then $x^2 > 0$.

Proof:

 $\langle 1 \rangle 1$. If x > 0 then $x^2 > 0$.

PROOF: Proposition 3.18.

 $\langle 1 \rangle 2$. If x < 0 then $x^2 > 0$.

PROOF: Proposition 3.19.

Corollary 3.20.1. In any ordered field, we have 1 > 0.

Proposition 3.21. In any ordered field, if x is positive then x^{-1} is positive.

PROOF: If $x^{-1} < 0$ then we would have $1 = xx^{-1} < x0 = 0$ contradicting Corollary 3.20.1. \square

Proposition 3.22. In any ordered field, if 0 < x < y then $y^{-1} < x^{-1}$.

Proof:

- $\langle 1 \rangle 1$. Assume: 0 < x < y
- $\langle 1 \rangle 2$. x^{-1} and y^{-1} are positive.

Proof: Proposition 3.21.

- $\langle 1 \rangle 3. \ xy^{-1} < yy^{-1} = 1$ $\langle 1 \rangle 4. \ y^{-1} = x^{-1}xy^{-1} < x^{-1}1 = x^{-1}$

Lemma 3.23. Let K be an ordered field. Let $b \in K$ with b > 1. Let n be a positive integer. Then

$$b^n - 1 \ge n(b - 1)$$

Proof:

$$b^{n} - 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1)$$

$$\geq (b-1)(1+1+\dots + 1)$$

$$= n(b-1)$$

Real Analysis

4.1 Construction of the Real Numbers

Definition 4.1 (Cut). A *cut* is a subset α of \mathbb{Q} such that:

- $\emptyset \neq \alpha \neq \mathbb{Q}$
- α is closed downwards.
- α has no greatest element.

In this section, we write R for the set of all cuts.

Proposition 4.2. R is linearly ordered by \subseteq .

```
PROOF: The only difficult part is to prove that, for any cuts \alpha and \beta, either \alpha \subseteq \beta or \beta \subseteq \alpha.
```

```
\langle 1 \rangle 1. Assume: \alpha \nsubseteq \beta Prove: \beta \subseteq \alpha
```

 $\langle 1 \rangle 2$. PICK $q \in \alpha$ such that $q \notin \beta$

 $\langle 1 \rangle 3$. Let: $r \in \beta$

 $\langle 1 \rangle 4$. $q \not< r$

 $\langle 1 \rangle 5$. r < q

 $\langle 1 \rangle 6. \ r \in \alpha$

Proposition 4.3. R has the least upper bound property.

Proof:

 $\langle 1 \rangle 1$. Let: $E \subseteq R$ be nonempty and bounded above.

 $\langle 1 \rangle 2$. Let: $s = \bigcup E$

PROVE: s is a cut.

/1\3 Ø ≠ e

PROOF: Since E is nonempty and every element of E is nonempty.

 $\langle 1 \rangle 4. \ s \neq \mathbb{Q}$

- $\langle 2 \rangle 1$. PICK an upper bound u for E.
- $\langle 2 \rangle 2$. Pick $q \notin u$ Prove: $q \notin s$
- $\langle 2 \rangle 3. \ \forall \alpha \in E.\alpha \subseteq u$
- $\langle 2 \rangle 4. \ s \subseteq u$
- $\langle 2 \rangle 5. \ q \notin s$
- $\langle 1 \rangle 5$. s is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in s$ and r < q.
 - $\langle 2 \rangle 2$. Pick $\alpha \in E$ such that $q \in \alpha$.
 - $\langle 2 \rangle 3. \ r \in \alpha$
 - $\langle 2 \rangle 4. \ r \in s$
- $\langle 1 \rangle 6$. s has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in s$
 - $\langle 2 \rangle 2$. PICK $\alpha \in E$ such that $q \in \alpha$.
 - $\langle 2 \rangle 3$. Pick $r \in \alpha$ such that q < r.
- $\langle 2 \rangle 4. \ r \in s$

Definition 4.4 (Addition). Given cuts α and β , we define

$$\alpha + \beta = \{q + r : q \in \alpha, r \in \beta\} .$$

Proposition 4.5. Given cuts α and β , we have $\alpha + \beta$ is a cut.

Proof:

 $\langle 1 \rangle 1$. $\alpha + \beta$ is nonempty.

PROOF: Since α and β are nonempty.

- $\langle 1 \rangle 2. \ \alpha + \beta \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $q \in \mathbb{Q} \alpha$ and $r \in \mathbb{Q} \beta$. Prove: $q + r \notin \alpha + \beta$
 - $\langle 2 \rangle 2$. Assume: for a contradiction $q + r \in \alpha + \beta$.
 - $\langle 2 \rangle 3$. Pick $x \in \alpha$ and $y \in \beta$ such that q + r = x + y
 - $\langle 2 \rangle 4$. x < q
 - $\langle 2 \rangle 5$. y < r
 - $\langle 2 \rangle 6$. x + y < q + r
 - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 3$. $\alpha + \beta$ is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in \alpha$, $r \in \beta$ and x < q + r
 - $\langle 2 \rangle 2$. x q < r
 - $\langle 2 \rangle 3. \ x q \in \beta$
 - $\langle 2 \rangle 4. \ x \in \alpha + \beta$
- $\langle 1 \rangle 4$. $\alpha + \beta$ has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in \alpha$ and $r \in \beta$.

PROVE: q + r is not greatest in $\alpha + \beta$.

- $\langle 2 \rangle 2$. Pick $q' \in \alpha$ with q < q' and $r' \in \beta$ with r < r'.
- $\langle 2 \rangle 3. \ q + r < q' + r' \in \alpha + \beta$

П

Proposition 4.6. Addition is commutative and associative on R.

PROOF: Immediate from definitions and the fact that addition is commutative and associative on \mathbb{Q} . \square

Definition 4.7. For any $q \in \mathbb{Q}$, let $q^* = \{r \in \mathbb{Q} : r < q\}$.

Proposition 4.8. For any $q \in \mathbb{Q}$, we have q^* is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. \ q^* \neq \emptyset
```

PROOF: Since $q - 1 \in q^*$.

 $\langle 1 \rangle 2. \ q^* \neq \mathbb{Q}$

PROOF: Since $q \notin q^*$.

 $\langle 1 \rangle 3$. q^* is closed downwards.

PROOF: Immediate from definition.

 $\langle 1 \rangle 4$. q^* has no greatest element.

PROOF: For all $r \in q^*$ we have $r < (q+r)/2 \in q^*$.

Proposition 4.9. For any cut α we have $\alpha + 0^* = \alpha$.

Proof:

 $\langle 1 \rangle 1. \ \alpha + 0^* \subseteq \alpha$

$$\langle 2 \rangle$$
1. Let: $q \in \alpha$ and $r \in 0^*$
Prove: $q + r \in \alpha$
 $\langle 2 \rangle$ 2. $r < 0$
 $\langle 2 \rangle$ 3. $q + r < q$
 $\langle 2 \rangle$ 4. $q + r \in \alpha$
 $\langle 1 \rangle$ 2. $\alpha \subseteq \alpha + 0^*$

 $\langle 2 \rangle 1$. Let: $q \in \alpha$

 $\langle 2 \rangle 2$. Pick $r \in \alpha$ such that q < r

 $\langle 2 \rangle 3. \ \ q = r + (q - r) \in \alpha + 0^*$

Proposition 4.10. For any cut α , there exists a cut β such that $\alpha + \beta = 0$.

$$\langle 1 \rangle 1. \ \text{Let:} \ \beta = \{ p \in \mathbb{Q} : \exists r > 0. - p - r \notin \alpha \}$$

 $\langle 1 \rangle 2$. β is a cut.

 $\langle 2 \rangle 1. \ \beta \neq \emptyset$

 $\langle 3 \rangle 1$. Pick $q \notin \alpha$

 $\langle 3 \rangle 2$. $-q - 1 \in \beta$

 $\langle 2 \rangle 2. \ \beta \neq \mathbb{Q}$

 $\langle 3 \rangle 1$. Pick $q \in \alpha$

Prove: $-q \notin \beta$

 $\langle 3 \rangle 2$. Assume: for a contradiction $-q \in \beta$

```
\langle 3 \rangle 3. Pick r > 0 such that q - r \notin \alpha
         \langle 3 \rangle 4. \ q - r < q
         \langle 3 \rangle 5. Q.E.D.
            PROOF: This contradicts the fact that \alpha is closed downwards.
    \langle 2 \rangle 3. \beta is closed downwards.
         \langle 3 \rangle 1. Let: p \in \beta and q < p.
         \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
         \langle 3 \rangle 3. -p-r < -q-r
         \langle 3 \rangle 4. -q - r \notin \alpha
         \langle 3 \rangle 5. \ q \in \beta
    \langle 2 \rangle 4. \beta has no greatest element.
         \langle 3 \rangle 1. Let: p \in \beta
         \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
         \langle 3 \rangle 3. \ -(p+r/2) - r/2 \notin \alpha
         \langle 3 \rangle 4. \ p + r/2 \in \beta
\langle 1 \rangle 3. \ \alpha + \beta \subseteq 0^*
    \langle 2 \rangle 1. Let: p \in \alpha and q \in \beta.
    \langle 2 \rangle 2. Pick r > 0 such that -q - r \notin \alpha.
    \langle 2 \rangle 3. p < -q - r
    \langle 2 \rangle 4. p+q < -r
    \langle 2 \rangle 5. p+q < 0
    \langle 2 \rangle 6. \ p+q \in 0^*
\langle 1 \rangle 4. \ 0^* \subseteq \alpha + \beta
    \langle 2 \rangle 1. Let: v \in 0^*
    \langle 2 \rangle 2. Let: w = -v/2
    \langle 2 \rangle 3. \ w > 0
    \langle 2 \rangle 4. PICK an integer n such that nw \in \alpha and (n+1)w \notin \alpha.
    \langle 2 \rangle5. Let: p = -(n+2)w
    \langle 2 \rangle 6. \ p \in \beta
    \langle 2 \rangle 7. \ v = nw + p
    \langle 2 \rangle 8. \ v \in \alpha + \beta
```

Proposition 4.11. Given $\alpha, \beta, \gamma \in R$, if $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

```
PROOF:  \begin{array}{l} \langle 1 \rangle 1. \ \alpha + \beta \subseteq \alpha + \gamma \\ \text{PROOF: Immediate from definitions.} \\ \langle 1 \rangle 2. \ \alpha + \beta \neq \alpha + \gamma \\ \text{PROOF: If } \alpha + \beta = \alpha + \gamma \text{ then } \beta = \gamma \text{ by cancellation.} \\ \end{array}
```

Definition 4.12. Given cuts α and β , define $\alpha\beta$ by:

$$\alpha\beta = \begin{cases} \{p \in \mathbb{Q} : \exists r \in \alpha. \exists s \in \beta (p \le rs \land r > 0 \land s > 0\} & \text{if } \alpha > 0^* \text{ and } \beta > 0^* \\ (-\alpha)(-\beta) & \text{if } \alpha < 0^* \text{ and } \beta < 0^* \\ -((-\alpha)\beta) & \text{if } \alpha < 0^* \text{ and } \beta < 0^* \\ -(\alpha(-\beta)) & \text{if } \alpha > 0^* \text{ and } \beta < 0^* \\ 0^* & \text{if } \alpha > 0^* \text{ and } \beta < 0^* \end{cases}$$

Proposition 4.13. For any cuts α and β , we have $\alpha\beta$ is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. If \alpha > 0^* and \beta > 0^* then \alpha \beta is a cut.
```

- $\langle 2 \rangle 1. \ \alpha \beta \neq \emptyset$
 - $\langle 3 \rangle 1$. Pick $q \in \alpha$ and $r \in \beta$ such that $q, r \notin 0^*$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. 0 < q and 0 < r.

PROOF: Since α and β have no greatest element.

- $\langle 3 \rangle 3. \ qr \in \alpha \beta$
- $\langle 2 \rangle 2$. $\alpha \beta \neq \mathbb{Q}$
 - $\langle 3 \rangle 1$. PICK $r \notin \alpha$ and $s \notin \beta$ PROVE: $rs \notin \alpha \beta$
 - $\langle 3 \rangle 2$. Assume: for a contradiction $rs \in \alpha \beta$.
 - $\langle 3 \rangle 3$. Pick $r' \in \alpha$ and $s' \in \beta$ such that $rs \leq r's'$ and r' > 0 and s' > 0.
 - $\langle 3 \rangle 4$. r' < r and s' < s
 - $\langle 3 \rangle 5$. r's' < rs
 - $\langle 3 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 2 \rangle 3$. $\alpha \beta$ is closed downwards.
 - $\langle 3 \rangle 1$. Let: $p \in \alpha \beta$ and p' < p
 - $\langle 3 \rangle 2$. Pick $r \in \alpha$ and $s \in \beta$ such that $p \leq rs$, r > 0 and s > 0
 - $\langle 3 \rangle 3. \ p' \leq rs$
 - $\langle 3 \rangle 4. \ p' \in \alpha \beta$

П

- $\langle 2 \rangle 4$. $\alpha \beta$ has no greatest element.
 - $\langle 3 \rangle 1$. Let: $p \in \alpha \beta$
 - $\langle 3 \rangle 2$. Pick $r \in \alpha$ and $s \in \beta$ such that $p \leq rs$, r > 0 and s > 0.
 - $\langle 3 \rangle 3$. Pick $r' \in \alpha$ and $s' \in \beta$ with r < r' and s < s'.
 - $\langle 3 \rangle 4. \ p < r's' \in \alpha \beta$
- $\langle 1 \rangle 2$. For any cuts α and β , we have $\alpha \beta$ is a cut.

PROOF: Since if α is a cut then $-\alpha$ is a cut.

Proposition 4.14. For any cuts α and β we have $\alpha\beta = \beta\alpha$.

PROOF: Easy from the definitions. \square

Proposition 4.15. For any cuts α , β and γ we have

$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$
.

 $\langle 1 \rangle 1$. Case: α , β and γ are all positive.

PROOF: In this case $\alpha(\beta\gamma) = (\alpha\beta)\gamma = \{p \in \mathbb{Q} : \exists r \in \alpha. \exists s \in \beta. \exists t \in \gamma. (p \leq rst \land r > 0 \land s > 0 \land t > 0)\}.$

 $\langle 1 \rangle 2$. Case: One of α , β or γ is 0^* .

PROOF: Then $\alpha(\beta\gamma) = (\alpha\beta)\gamma = 0^*$.

 $\langle 1 \rangle 3.$ Case: α and β are positive, γ is negative. Proof:

$$\alpha(\beta\gamma) = \alpha(-(\beta(-\gamma)))$$

$$= -(\alpha(\beta(-\gamma)))$$

$$= -((\alpha\beta)(-\gamma))$$

$$= (\alpha\beta)\gamma$$
(\langle 1\rangle 1)

 $\langle 1 \rangle 4.$ Case: α is positive, β is negative, γ is positive. Proof:

$$\alpha(\beta\gamma) = \alpha(-((-\beta)\gamma))$$

$$= -(\alpha((-\beta)\gamma))$$

$$= -((\alpha(-\beta))\gamma)$$

$$= (-(\alpha(-\beta)))\gamma$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1\rangle 1)$$

 $\langle 1 \rangle 5.$ Case: α is positive, β and γ are negative. Proof:

$$\alpha(\beta\gamma) = \alpha((-\beta)(-\gamma))$$

$$= (\alpha(-\beta))(-\gamma)$$

$$= (-(\alpha\beta))(-\gamma)$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

 $\langle 1 \rangle$ 6. Case: α is negative, β and γ are positive. Proof: Similar to $\langle 1 \rangle$ 3.

 $\langle 1 \rangle 7.$ Case: α is negative, β is positive, γ is negative. Proof:

$$\alpha(\beta\gamma) = \alpha(-(\beta(-\gamma)))$$

$$= (-\alpha)(\beta(-\gamma))$$

$$= ((-\alpha)\beta)(-\gamma)$$

$$= (-(\alpha\beta))(-\gamma)$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

 $\langle 1 \rangle 8$. Case: α and β are negative, γ is positive. Proof: Similar to $\langle 1 \rangle 5$.

 $\langle 1 \rangle 9$. Case: α , β and γ are all negative.

$$\alpha(\beta\gamma) = \alpha(-(-\beta)(-\gamma))$$

$$= -((-\alpha)((-\beta)(-\gamma)))$$

$$= -(((-\alpha)(-\beta))(-\gamma))$$

$$= -((\alpha\beta)(-\gamma))$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

Proposition 4.16. For any cut α we have $\alpha 1^* = \alpha$.

Proof:

```
\langle 1 \rangle 1. Case: \alpha is positive. \langle 2 \rangle 1. \alpha 1^* \subseteq \alpha \langle 2 \rangle 2. \alpha \subseteq \alpha 1^* \langle 1 \rangle 2. Case: \alpha = 0^* \langle 1 \rangle 3. Case: \alpha is negative.
```

Theorem 4.17. There exists an ordered field with the least upper bound property.

Proposition 4.18. There is no rational p such that $p^2 = 2$.

PROOF:

```
\langle 1 \rangle 1. Assume: for a contradiction p^2=2. \langle 1 \rangle 2. Pick integers m,\,n not both even such that p=m/n. \langle 1 \rangle 3. m^2=2n^2 \langle 1 \rangle 4. m is even. \langle 1 \rangle 5. Pick an integer k such that m=2k. \langle 1 \rangle 6. 4k^2=2n^2 \langle 1 \rangle 7. 2k^2=n^2 \langle 1 \rangle 8. n is even. \langle 1 \rangle 9. Q.E.D. Proof: \langle 1 \rangle 2,\,\langle 1 \rangle 4 and \langle 1 \rangle 8 form a contradiction.
```

П

Theorem 4.19. Any two complete ordered fields are isomorphic.

Definition 4.20. Let \mathbb{R} be the complete ordered field. We call its elements *real numbers*.

4.2 Properties of the Real Numbers

Theorem 4.21. \mathbb{Q} is a subfield of \mathbb{R} .

Theorem 4.22 (Archimedean Property). Let $x, y \in \mathbb{R}$ with x > 0. There exists a positive integer n such that nx > y.

- $\langle 1 \rangle 1$. Let: $A = \{ nx : n \in \mathbb{Z}^+ \}$
- $\langle 1 \rangle 2$. Assume: for a contradiction there is no positive integer n such that nx > y.
- $\langle 1 \rangle 3$. y is an upper bound for A.
- $\langle 1 \rangle 4$. Let: $\alpha = \sup A$
- $\langle 1 \rangle 5$. αx is not an upper bound for A.
- $\langle 1 \rangle 6$. Pick a positive integer m such that $\alpha x < mx$
- $\langle 1 \rangle 7$. $\alpha < (m+1)x \in A$
- $\langle 1 \rangle 8$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 4$.

П

Theorem 4.23. \mathbb{Q} is dense in \mathbb{R} .

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \mathbb{R}$ with x < y
- $\langle 1 \rangle 2$. Pick a positive integer n such that

$$n(y-x) > 1 .$$

PROOF: Archimedean property.

 $\langle 1 \rangle 3$. PICK a positive integer m_1 such that $m_1 > nx$

Proof: Archimedean property.

- $\langle 1 \rangle 4$. PICK a positive integer m_2 such that $m_2 > -nx$ PROOF: Archimedean property.
- $\langle 1 \rangle 5$. $-m_2 < nx < m_1$
- $\langle 1 \rangle 6$. Let: m be the integer such that

$$m-1 \le nx < m$$
.

- $\langle 1 \rangle 7$. $nx < m \le 1 + nx < ny$
- $\langle 1 \rangle 8. \ x < m/n < y$

Theorem 4.24. For every real number x > 0 and positive integer n, there exists a unique positive real number y such that $y^n = x$.

Proof:

- $\langle 1 \rangle 1$. There exists a real y > 0 such that $y^n = x$.
 - $\langle 2 \rangle 1$. Let: $E = \{ t \in \mathbb{R}^+ : t^n < x \}$
 - $\langle 2 \rangle 2$. Let: $y = \sup E$
 - $\langle 3 \rangle 1. \ E \neq \emptyset$
 - $\langle 4 \rangle 1$. Let: t = x/(x+1)
 - $\langle 4 \rangle 2. \ 0 < t < 1$
 - $\langle 4 \rangle 3. \ t^n < t < x$
 - $\langle 4 \rangle 4. \ t \in E$
 - $\langle 3 \rangle 2$. x + 1 is an upper bound for E.
 - $\langle 4 \rangle 1$. Let: t > x + 1
 - $\langle 4 \rangle 2$. $t^n > t > x$
 - $\langle 4 \rangle 3. \ t \notin E$

$$\langle 2 \rangle 3. \ y^n = x$$

 $\langle 3 \rangle 1. \ y^n \not< x$

 $\langle 4 \rangle 1$. Assume: for a contradiction $y^n < x$.

 $\langle 4 \rangle 2$. Pick h such that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}$$
.

$$\langle 4 \rangle 3. \ (y+h)^n - y^n < x - y^n$$

Proof:

$$(y+h)^n - y^n = ((y+h) - y) \sum_{i=0}^{n-1} (y+h)^{n-1-i} y^i$$

$$= h \sum_{i=0}^{n-1} (y+h)^{n-1-i} y^i$$

$$\leq hn(y+h)^{n-1}$$

$$\leq hn(y+1)^{n-1}$$

$$< x - y^n$$

$$\langle 4 \rangle 4$$
. $(y+h)^n < x$

$$\langle 4 \rangle 5. \ y + h \in E$$

 $\langle 4 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that y is an upper bound for E.

 $\langle 3 \rangle 2. \ y^n \not> x$

 $\langle 4 \rangle 1$. Assume: for a contradiction $y^n > x$

 $\langle 4 \rangle 2$. Let:

$$k = \frac{y^n - x}{ny^{n-1}}$$

 $\langle 4 \rangle 3$. 0 < k < y

 $\langle 4 \rangle 4$. y - k is an upper bound for E.

$$\langle 5 \rangle 1$$
. Let: $t \geq y - k$

$$\langle 5 \rangle 2. \ y^n - t^n \le y^n - x$$

Proof:

$$\begin{split} y^n - t^n &\leq y^n - (y - k)^n \\ &= (y - (y - k)) \sum_{i=0}^{n-1} y^{n-i} (y - k)^i \\ &= k \sum_{i=0}^{n-1} y^{n-i} (y - k)^i \\ &\leq k n y^{n-1} \\ &= y^n - x \end{split}$$

$$\langle 5 \rangle 3. \ t^n \ge x$$

$$\langle 5 \rangle 4. \ t \notin E$$

 $\langle 4 \rangle 5$. Q.E.D.

PROOF: This contradicts the fact that y is the least upper bound of E. $\langle 1 \rangle 2$. If y and y' are positive reals with $y^n = y'^n$ then y = y'.

Proof: Since the function that sends y to y^n is strictly monotone. \square

Definition 4.25 (*n*th Root). Given any real number x > 0 and positive integer n, the nth root of x, denoted $x^{1/n}$, is the unique positive real such that

$$(x^{1/n})^n = x .$$

We write \sqrt{x} for $x^{1/2}$.

Proposition 4.26. Let a and b be positive real numbers and n a positive integer. Then

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$
.

PROOF: Since $(a^{1/n}b^{1/n})^n = ab$. \square

Lemma 4.27. Let b be a real number with b > 1. Let n be a positive integer. Then

$$b-1 \ge n(b^{1/n}-1)$$
.

PROOF: From Lemma 3.23. \square

Lemma 4.28. Let b and t be real numbers with b > 1 and t > 1. For any positive integer n, if $n > \frac{b-1}{t-1}$ then $b^{1/n} < t$.

Proof:

$$b-1 \ge n(b^{1/n}-1)$$

$$\therefore \frac{b-1}{n} \ge b^{1/n}-1$$

$$\therefore t-1 > b^{1/n}-1$$

$$\therefore t > b^{1/n}$$

Lemma 4.29. Let b be a real number with b > 0. Let m, n, p, q be integers with n > 0 and q > 0. Assume m/n = p/q. Then

$$(b^m)^{1/n} = (b^p)^{1/q}$$
.

Proof:

$$\langle 1 \rangle 1. \ (b^m)^{1/n} = (b^{1/n})^m$$

Proof:

$$((b^{1/n})^m)^n = ((b^{1/n})^n)^m$$

= b^m

$$\langle 1 \rangle 2$$
. $((b^m)^{1/n})^q = b^p$
PROOF:

$$((b^m)^{1/n})^q = (b^{1/n})^{mq}$$
$$= (b^{1/n})^{np}$$
$$= b^p$$

Definition 4.30. For a positive real and q a rational number, we may therefore define a^q by

$$a^{m/n} = (a^m)^{1/n}$$

for m and n integers with n > 0.

Proposition 4.31. Let a be a positive real and r, s rational numbers. Then

$$a^{r+s} = a^r a^s$$
.

Proof:

$$a^{m/n+p/q} = a^{(mq+np)/nq}$$

$$= (a^{mq+np})^{1/nq}$$

$$= (a^{mq})^{1/nq} (a^{np})^{1/nq}$$

$$= a^{m/n} a^{p/q}$$

Proposition 4.32. Let b > 1 be a real number and q a rational number. Then

$$b^q = \sup\{b^t : t \in \mathbb{Q}, t \le q\}$$

PROOF: It is the greatest element of this set. \square

Definition 4.33. Let b > 1 be a real number and x a real number. Then

$$b^x = \sup\{b^t : t \in \mathbb{Q}, t \le x\}$$
.

Proposition 4.34. For b and x real numbers with b > 1 we have

$$b^x = \sup\{b^t : t \in \mathbb{Q}, t < x\} .$$

Proof:

 $\langle 1 \rangle 1$. b^x is an upper bound for $\{b^t : t \in \mathbb{Q}, t < x\}$

 $\langle 1 \rangle 2$. Let: u be any upper bound for $\{b^t : t \in \mathbb{Q}, t < x\}$ Prove: $b^x \le u$

 $\langle 1 \rangle 3$. Let: q be a rational number with $q \leq x$. Prove: $b^q < u$

Lemma 4.35. Let A be a set of positive real numbers with supremum a > 0 and B a set of positive real numbers with supremum b > 0. Then ab is the supremum of $\{xy : x \in A, y \in B\}$.

Proof:

 $\langle 1 \rangle 1$. For all $x \in A$ and $y \in B$ we have $xy \leq ab$.

 $\langle 1 \rangle 2$. If u is any upper bound for $\{xy : x \in A, y \in B\}$ then $ab \leq u$.

 $\langle 2 \rangle 1$. Let: u be an upper bound for $\{xy : x \in A, y \in B\}$.

 $\langle 2 \rangle 2$. For all $x \in A$ we have u/x is an upper bound for B.

 $\langle 2 \rangle 3$. For all $x \in A$ we have $b \leq u/x$

 $\langle 2 \rangle 4$. For all $x \in A$ we have $x \leq u/b$

 $\langle 2 \rangle 5$. $a \leq u/b$

$$\langle 2 \rangle 6. \ ab \leq u$$

Proposition 4.36. Let $b, x, y \in \mathbb{R}$ with b > 1. Then

$$b^{x+y} = b^x b^y .$$

Proof:

$$\begin{split} b^x b^y &= \sup\{b^q b^r: q, r \in \mathbb{Q}, q \leq x, r \leq y\} \\ &= \sup\{b^{q+r}: q, r \in \mathbb{Q}, q \leq x, r \leq y\} \\ &= \sup\{b^q: q \in \mathbb{Q}, q \leq x + y\} \\ &= b^{x+y} \end{split}$$

4.3 The Extended Real Number System

Definition 4.37 (Extended Real Number System). The *extended real number* system is the set $\mathbb{R} \cup \{+\infty, -\infty\}$.

We extend the ordering \leq to the extended reals by defining

$$-\infty < x < +\infty$$

for every $x \in \mathbb{R}$.

We extend +, \cdot and / to partial operations on the extended real by defining:

$$x + (+\infty) = +\infty \qquad (x \in \mathbb{R})$$

$$x + (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) + x = +\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) + (+\infty) \text{ is undefined}$$

$$(+\infty) + (-\infty) \text{ is undefined}$$

$$(-\infty) + x = -\infty \qquad (x \in \mathbb{R})$$

$$(-\infty) + (+\infty) \text{ is undefined}$$

$$x \cdot (+\infty) = +\infty \qquad (x \in \mathbb{R})$$

$$x \cdot (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) \cdot x = +\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) \cdot (+\infty) \text{ is undefined}$$

$$(+\infty) \cdot (-\infty) \text{ is undefined}$$

$$(-\infty) \cdot x = -\infty \qquad (x \in \mathbb{R})$$

$$(-\infty) \cdot (+\infty) \text{ is undefined}$$

$$(-\infty) \cdot (+\infty) \text{ is undefined}$$

$$(-\infty) \cdot (-\infty) \text{ is undefined}$$

$$x/(+\infty) = 0 \qquad (x \in \mathbb{R})$$

$$(+\infty)/x \text{ is undefined}$$

$$(+\infty)/(+\infty) \text{ is undefined}$$

$$(+\infty)/(+\infty) \text{ is undefined}$$

$$(+\infty)/(+\infty) \text{ is undefined}$$

$$(-\infty)/x \text{ is undefined}$$

$$(-\infty)/x \text{ is undefined}$$

$$(-\infty)/(+\infty) \text{ is undefined}$$

$$(-\infty)/(+\infty) \text{ is undefined}$$

 $(-\infty)/(-\infty)$ is undefined

Complex Analysis

Definition 5.1 (Complex Numbers). A *complex number* is a pair of real numbers. We write \mathbb{C} for the set of complex numbers.

Define + and \cdot on \mathbb{C} by:

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac-bd,ad+bc)$

Theorem 5.2. The complex numbers form a field.

Theorem 5.3. The function that maps a to (a,0) is an embedding of \mathbb{R} in \mathbb{C} .

Definition 5.4.

$$i = (0, 1)$$

Lemma 5.5.

$$(a,b) = a + ib$$

PROOF: Since (a, 0) + (0, 1)(b, 0) = (a, b).

Lemma 5.6.

$$i^2 = -1$$

Proof: Immediate from definitions. \square

Definition 5.7 (Complex Conjugate). For any complex number z, the *complex conjugate* \overline{z} is defined by

$$\overline{a+ib} = a - ib \qquad (a, b \in \mathbb{R}) .$$

Definition 5.8 (Real Part). For any complex number z, the *real part* of z, denoted $\mathrm{Re}(z)$, is defined by

$$\operatorname{Re}(a+ib) = a \qquad (a, b \in \mathbb{R}) .$$

Definition 5.9 (Imaginary Part). For any complex number z, the *imaginar* part of z, denoted Im(z), is defined by

$$\operatorname{Im}(a+ib) = b \qquad (a, b \in \mathbb{R}) .$$

Theorem 5.10. For all $z, w \in \mathbb{C}$ we have

$$\overline{z+w} = \overline{z} + \overline{w} .$$

Proof:

$$\overline{(a+ib)+(c+id)} = \overline{(a+c)+i(b+d)}$$

$$= (a+c)-i(b+d)$$

$$= (a-ib)+(c-id)$$

$$= \overline{a+ib}+\overline{c+id}$$

Theorem 5.11. For all $z, w \in \mathbb{C}$ we have

$$\overline{zw} = \overline{z} \cdot \overline{w} \ .$$

Proof:

$$\overline{(a+ib)(c+id)} = \overline{(ac-bd) + i(ad+bc)}$$

$$= (ac-bd) - i(ad+bc)$$

$$= (a-ib)(c-id)$$

$$= \overline{a+ib} \cdot \overline{c+id}$$

Theorem 5.12. For all $z \in \mathbb{C}$ we have

$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
.

Proof:

$$(a+ib) + \overline{a+ib} = (a+ib) + (a-ib)$$

$$= 2a$$

$$= 2\operatorname{Re}(a+ib)$$

Theorem 5.13. For all $z \in \mathbb{C}$ we have

$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}) .$$

Proof:

$$(a+ib) - \overline{a+ib} = (a+ib) - (a-ib)$$

$$= 2ib$$

$$= 2i \operatorname{Im}(a+ib)$$

Theorem 5.14. For all $z \in \mathbb{C}$ we have $z\overline{z}$ is a non-negative real.

$$(a+ib)(\overline{a+ib}) = (a+ib)(a-ib)$$
$$= a^2 + b^2$$

Theorem 5.15. For any $z \in \mathbb{C}$, if $z\overline{z} = 0$ then z = 0.

PROOF: Let z = a + ib. Then $z\overline{z} = a^2 + b^2 = 0$ iff a = b = 0. \square

Definition 5.16 (Absolute Value). For $z \in \mathbb{C}$, the absolute value of z is

$$|z|=(z\overline{z})^{1/2}$$
.

Proposition 5.17. For x a non-negative real we have |x| = x.

PROOF: Since $|x| = \sqrt{x^2} = x$. \square

Proposition 5.18. For x a negative real we have |x| = -x.

Proof: Since $|x| = \sqrt{x^2} = -x$. \square

Theorem 5.19. For any complex number z we have $|z| \ge 0$.

PROOF: Immediate from definition. \Box

Theorem 5.20. For any complex number z, if |z| = 0 then z = 0.

PROOF: From Theorem 5.15. \square

Theorem 5.21. For any complex number z we have

$$|\overline{z}| = |z|$$
.

PROOF: Immediate from definitions. \square

Theorem 5.22. For any complex numbers z and w we have

$$|zw| = |z||w|$$
.

Proof:

$$|zw| = \sqrt{zw\overline{z}w}$$

$$= \sqrt{z\overline{z}}\sqrt{w\overline{w}}$$
 (Proposition 4.26)
$$= |z||w|$$

Theorem 5.23. For any complex number z we have

$$|\operatorname{Re} z| \le |z|$$

PROOF: Let z = a + ib. Then

$$|\operatorname{Re} z| = \sqrt{a^2} \le \sqrt{a^2 + b^2}$$
.

Theorem 5.24. For any complex numbers z and w we have

$$|z+w| \le |z| + |w| .$$

$$|z+w|^2 = (z+w)(\overline{z}+\overline{w})$$

$$= z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w}$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2 \qquad \text{(Theorem 5.12)}$$

$$\leq |z|^2 + 2|z\overline{w}| + |w|^2 \qquad \text{(Theorem 5.23)}$$

$$= |z|^2 + 2|z||w| + |w|^2 \qquad \text{(Theorem 5.22)}$$

$$= (|z| + |w|)^2 \qquad \Box$$

Theorem 5.25 (Schwarz Inequality). Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be complex numbers. Then

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2.$$

\(\lambda\)\lambda 1. Let: $A = \sum_{j=1}^{n} |a_j|^2$ \(\lambda\)\(\lambda\) 2. Let: $B = \sum_{j=1}^{n} |b_j|^2$ \(\lambda\)\(\lambda\) 3. Let: $C = \sum_{j=1}^{n} a_j \overline{b_j}$ \(\lambda\)\(\lambda\) 4. Assume: w.l.o.g. B > 0

PROOF: If B = 0 then $b_1 = \cdots = b_n = 0$ and both sides of the inequality are

0.
$$\langle 1 \rangle 5. \sum_{j=1}^{n} |Ba_j - Cb_j|^2 = B(AB - |C|^2)$$
 Proof:

$$\sum_{j=1}^{n} |Ba_{j} - Cb_{j}|^{2} = \sum_{j=1}^{n} (Ba_{j} - Cb_{j})(B\overline{a_{j}} - \overline{Cb_{j}})$$

$$= B^{2} \sum_{j=1}^{n} |a_{j}|^{2} - B\overline{C} \sum_{j=1}^{n} a_{j}\overline{b_{j}} - BC \sum_{j=1}^{n} \overline{a_{j}}b_{j} + |C|^{2} \sum_{j=1}^{n} |b_{j}|^{2}$$

$$= B^{2}A - 2B|C|^{2} + B|C|^{2}$$

$$= B(AB - |C|^{2})$$

$$= B$$

$$\langle 1 \rangle 6. \ B(AB - |C|^2) \ge 0$$

$$\langle 1 \rangle 7. \ AB \ge |C|^2$$

$$\langle 1 \rangle 7$$
. $AB \ge |C|^2$

Part I Linear Algebra

Vector Spaces

Real Inner Product Spaces

Definition 7.1 (Inner Product). Given $\vec{x}, \vec{y} \in \mathbb{R}^k$, define the inner product $\vec{x} \cdot \vec{y}$ by

$$(x_1, \ldots, x_k) \cdot (y_1, \ldots, y_k) = x_1 y_1 + \cdots + x_k y_k$$
.

Definition 7.2 (Norm). Define the *norm* of a vector $\vec{x} \in \mathbb{R}^k$ by

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$$
.

Proposition 7.3.

$$\|\vec{x}\| \ge 0$$

PROOF: Immediate from the definition. \Box

Proposition 7.4. *If* $||\vec{x}|| = 0$ *then* $\vec{x} = \vec{0}$.

PROOF: If $\|\vec{x}\| = 0$ then $x_1^2 + \cdots + x_n^2 = 0$ so $x_1 = \cdots = x_n = 0$. \square

Proposition 7.5. For $\alpha \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^k$,

$$\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\| .$$

Proof: Easy. \square

Proposition 7.6. For $\vec{x}, \vec{y} \in \mathbb{R}^k$, we have

$$||\vec{x} \cdot \vec{y}|| \le ||\vec{x}|| ||\vec{y}||$$
.

PROOF: By the Schwarz inequality. \square

Proposition 7.7. For $\vec{x}, \vec{y} \in \mathbb{R}^k$ we have

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$
.

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 &= (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) \\ &= \vec{x} \cdot \vec{x} + 2\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y} \\ &\leq \|\vec{x}\|^2 + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^2 \\ &= (\|\vec{x}\| + \|\vec{y}\|)^2 \end{aligned}$$
 (Proposition 7.6)

Corollary 7.7.1. For $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^k$ we have

$$\|\vec{x} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$
.

Complex Inner Product Spaces

Definition 8.1 (Inner Product). Let V be a complex vector space. An *inner product* on V is a function $\langle \ , \ \rangle : V^2 \to \mathbb{C}$ such that, for all $x,y,z \in V$ and $\alpha \in \mathbb{C}$:

- $\langle y, x \rangle = \overline{\langle x, y \rangle}$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\bullet \ \langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$
- $\langle x, x \rangle \ge 0$
- If $\langle x, x \rangle = 0$ then x = 0.

An inner product space consists of a complex vector space V and an inner product on V.

Definition 8.2 (Norm). Let V be an inner product space and $x \in V$. The norm of x is

$$||x|| = \sqrt{\langle x, x \rangle}$$
.

Proposition 8.3. An inner product space is a metric space under

$$d(x,y) = ||x - y||.$$

Definition 8.4 (Bounded). Let V_1 and V_2 be inner product spaces and $T:V_1 \to V_2$ a linear transformation. Then T is bounded iff $\{\|T(x)\|: \|x\|=1\}$ is bounded above.

Proposition 8.5. Every linear transformation between finite dimensional inner product spaces is bounded.

Definition 8.6 (Outer Product). Let V be an inner product space and $|\psi\rangle$, $|\phi\rangle \in V$. The *outer product* of $|\psi\rangle$ and $|\phi\rangle$ is

$$|\psi\rangle\langle\phi|:V\to V$$
.

Hilbert Spaces 8.1

Definition 8.7 (Hilbert Space). A Hilbert space is a complete inner product space.

Theorem 8.8 (Completeness Relation). Let \mathcal{H} be a Hilbert space. Let $\{|e_n\rangle\}_{n\in\mathbb{N}}$ be a countable orthonormal basis for H. Then

$$\sum_{n=0}^{\infty} |e_n\rangle \langle e_n| = I .$$

Proof:

 $\begin{array}{l} \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(2)} & \text{(2)$

$$\sum_{n=0}^{\infty} \langle e_n | \phi \rangle | e_n \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \alpha_m \langle e_n | e_m \rangle | e_n \rangle$$
$$= \sum_{n=0}^{\infty} \alpha_n | e_n \rangle$$
$$= | \psi \rangle$$

Definition 8.9 (Separable). A Hilbert space is *separable* iff it has a countable dense orthonormal basis.

Lie Algebras

Definition 9.1 (Lie Algebra). Let K be a field. A *Lie algebra* \mathcal{L} over K consists of a vector space \mathcal{L} over K and an operation

$$[\ ,\]:\mathcal{L}^2 \to \mathcal{L}\ ,$$

the *Lie bracket* or *commutator*, such that, for all $x, y, z \in \mathcal{L}$ and $\alpha \in K$:

$$[x+y,z] = [x,z] + [y,z]$$

$$[x,y+z] = [x,y] + [x,z]$$

$$[\alpha x,y] = \alpha [x,y]$$

$$[x,x] = 0$$

$$[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$$
 (Jacobi identity)

Lemma 9.2. If K has characteristic 0 then the condition [x, x] = 0 can be replaced with [x, y] = -[y, x].

Proposition 9.3. The commutator is determind by its values on any basis for \mathcal{L} .

Example 9.4. \mathbb{R}^3 with the cross product is a real Lie algebra.

Example 9.5. For any $n \geq 0$, we have GL(n, K) is a Lie algebra over K under

$$[A, B] = AB - BA .$$

Definition 9.6 (Linear Lie Algebra). A *linear Lie algebra* over K is a Lie algebra over K that is a subalgebra of GL(n, K) for some n.

Example 9.7 (Special Linear Algebra). The special Linear algebra $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : \text{tr} = 0\}$ is a real linear Lie algebra.

Example 9.8 (Orthogonal Lie Algebra). The *orthogonal Lie algebra* $SO(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : A \text{ is skew-symmetric} \}$ is a real linear Lie algebra.

Example 9.9. Let u(n) be the set of all skew-Hermitian $n \times n$ -matrices as a real Lie algebra.

Let
$$su(n) = u(n) \cap SL(n, \mathbb{R})$$
.

Proposition 9.10. SU(2) is spanned by the Pauli matrices

$$\sigma_x = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \qquad \sigma_y = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_z = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

which satisfy

$$[\sigma_x, \sigma_y] = \sigma_z$$
$$[\sigma_y, \sigma_z] = \sigma_x$$
$$[\sigma_z, \sigma_x] = \sigma_y$$

9.1 Lie Algebar Homomorphisms

Definition 9.11 (Homomorphism). Let L_1 and L_2 be Lie algebras over the same field. A *Lie algebra homomorphism* $\phi: L_1 \to L_2$ is a linear transformation such that

$$\phi([x,y]) = [\phi(x), \phi(y)]$$

for all $x, y \in L_1$.

Lemma 9.12. Every bijective Lie algebra homomorphism is an isomorphism.

Definition 9.13 (Representation). Let L be a real (complex) Lie algebra. A representation of L is a Lie algebra homomorphism $L \to GL(n, \mathbb{R})$ ($GL(n, \mathbb{C})$) for some n.

Example 9.14. The linear transformation $\mathbb{R}^3 \to su(2)$ defined by

$$i \mapsto \sigma_x, j \mapsto \sigma_y, k \mapsto \sigma_z$$

is a representation of \mathbb{R}^3 .

Part II More Algebra

Lie Groups

Definition 10.1 (Lie Group). A *Lie group* G is a group G that is also an analytic differentiable manifold such that the group operation and inverse operation are analytic.

A $homomorphism\ of\ Lie\ groups$ is a group homomorphism that is an analytic function.

Lemma 10.2. Every bijective Lie group homomorphism is an isomorphism.

Definition 10.3 (Unitary Group). The *unitary group* U(n) is the Lie group of all $n \times n$ unitary matrices.

Definition 10.4 (Special Unitary Group). The *special unitary group* SU(n) is the Lie group of all $n \times n$ unitary matrices with determinant 1.

Definition 10.5 (Lie Subgroup). Let G be a Lie group. A Lie subgroup of G is a subgroup that is also an analytic submanifold of G.

Example 10.6. U(n) and SU(n) are Lie subgroups of $GL(n, \mathbb{C})$.