RobotStudio Tutorial

Requires:

- RobotStudio version: 6.x or later.
- RobotWare option: Externally Guided Motion (EGM) [689-1].

Notes:

- EGM is only fully supported for 6-axis robots.
- EGM has a partial support for IRB14000 (aka YuMi) and that is EGM's joint mode.
 - For a real robot controller: Contact your local ABB Robotics sales organization for more information about getting an EGM license for IRB14000.
- This tutorial assumes that the accompanying RAPID modules are used. E.g.:
 - <your path>/rapid modules/TRobMain.sys
 - o <your path>/rapid_modules/TRobEGM.sys
 - o These modules only handle EGM's joint and pose modes. Not the path correction mode.
- This tutorial is exemplified with a simulated IRB1600 robot in RobotStudio. It is strongly recommended to do initial tests with simulations.
- The process is similar when working with a real controller:
 - Exclude step 1 and replace it with:
 - Under the Controller tab → Add Controller → Add Controller... → Follow the instructions. Then continue with step 2.

Step 1 – Create a Robot System

Figure 1: Under the File tab \Rightarrow New \Rightarrow Solution with Empty Station \Rightarrow Choose a Solution Name and Location \Rightarrow Press Create.

Figure 2: Under the **Home** tab \rightarrow Press **ABB Library** \rightarrow Choose the **desired robot** (here IRB1600).

Figure 3: Choose the **desired robot version** (here IRB1600 – 6 / 1.45) \rightarrow Press **OK**.

Figure 4: Under the **Home** tab → Press **Robot System** → Choose **From Layout...**

Figure 5: Choose a Name and RobotWare version (here RobotWare 6.04) → Press Next >.

Figure 6: Press Next >.

Figure 7: Press Options...

Figure 8: Under System Options → Engineering Tools → Choose 689-1 Externally Guided Motion (EGM) → Press Ok.

Figure 9: Verify that the **desired Options** has been chosen \rightarrow Press **Finish**.

Step 2 – Configure the Robot Controller

Communication

Figure 10: Under the **Controller** tab → **Configuration** → **Communication** → Right-click **Transmission Protocol** → Choose **New Transmission Protocol**...

Figure 11: Set the values (see below) and press OK. Also, don't restart the robot controller until later on.

Note: Create a **Transmission Protocol** for each robot in your system:

- Name: This tutorial assumes that the name is ROB_X. Where X is the robot number or, in the case of IRB14000, L or R for left respective right arm.
- Type: Choose UDPUC
- Remote Address: Specify your remote address (important to set)
- Remote port number: This tutorial assumes that the port number is 6511 for ROB_1, 6512 for ROB 2, etc. For IRB14000 it should be 6511 for ROB L and 6512 for ROB R.

I/O System

Figure 12: Under the Controller tab \rightarrow Configuration \rightarrow I/O System \rightarrow Right-click Signal \rightarrow Choose New Signal...

Figure 13: Set the values (see below) and press OK. Also, don't restart the robot controller until later on.

Note: Create a Signal for each name below:

- Name: This tutorial assumes that these signals are defined:
 - EGM_START_JOINT, EGM_START_POSE, EGM_STOP and GO_TO_HOME_POSITION.
 - o Extra signals for IRB14000: RUN_CAMERA_COMMAND and RUN_SG_COMMAND.
 - SG = Smart Gripper
- Type of Signal: Choose Digital Input
- Access Level: Set to All
- These signals are used by a Robot Web Services (RWS) client.

Motion

Figure 14: Under the Controller tab → Configuration → Motion → Right-click External Motion Interface Data → Choose New External Motion Interface Data...

Figure 15: Set the values (see below) and press OK. Also, don't restart the robot controller until later on.

Note: Create an **External Motion Interface** for each robot in your system:

- Name: This tutorial assumes that the name is ROB_X. Where X is the robot number or, in the case of IRB14000, L or R for left respective right arm.
- **Level:** Choose **Filtering** or **Raw**. Path is not supported by this tutorial (see the notes on the first page.
- The remaining values are arbitrary.

Restart the Controller

Note: If using IRB14000, then an additional optional task can be created as well:

- Under the Controller tab → Configuration → Controller → Right-click Task → Choose New
 Task...
 - o Name: T_CAMERA.
 - Task in Foreground: T_ROB_L or T_ROB_R.
 - o Type: Normal for easy debugging, otherwise Semistatic or Static.
 - Use the default values for the remaining values.

Figure 16: Under the Controller tab \rightarrow Restart \rightarrow Choose Restart (Warmstart) to apply the modified configurations.

Step 3 – Load RAPID Modules

Figure 17: Under the RAPID tab \Rightarrow RAPID \Rightarrow Choose task T_ROBX (where X is 1 – 4 or, in the case of IRB14000 L or R) \Rightarrow Choose Load Module...

Figure 18: Find the RAPID modules in the provided folder. Mark the required files (see below) and press Open (see next figure).

Note: Load the same **RAPID modules** (.mod or .sys) into **every task** matching the file prefix. E.g. "**TRob**" with "T_ROB".

- For a single robot it is only necessary to load TRobEGM.sys and TRobMain.mod into the T_ROB1 task.
- If using multiple 6-axis robots, then it might be useful to also load:
 - <your path>/extra/TRobSynchronization.sys.
- If using IRB14000 then load:
 - For the tasks T_ROB_L and T_ROB_R:
 - <your path>/extra/TRobSynchronization.sys
 - <your path>/extra/irb14000/TRobSG.sys (optional, for using Smart Gripper(s))
 - For the optional task T_CAMERA:
 - <your path>/extra/irb14000/TCameraMain.mod

Important: It is recommended to at least skim through the RAPID modules to get a partial understanding of the implementation.

Figure 19: It is optional to synchronize the robot controller data to the robot station (RobotStudio's representation of the robot system). Press **OK**.

Figure 20: Under the **Simulation** tab → Press **Play** to start a simulation. If everything is properly setup, then the robot controller is now waiting for **Robot Web Services (RWS)** messages to trigger **IO signals** for starting/stopping listening for **Externally Guided Motion (EGM)** references.

Note: If the RWS client isn't on the same local machine as the RobotStudio simulation, then it might be required to set up a HTTP proxy server for transferring the RWS client's HTTP messages to the robot controller's RWS HTTP server. This can for example easily be implemented with C#.