CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516
Office hours T, Th 11:15-11:45 or by appointment
Zoom link

Recap

•	To estimate perceptron parameters we define a l function that m the d between our e labels and the t labels.		
•	The gradient descent procedure will c to a g m because		
•	We can also use s gradient descent. This is different from regular GD because		
•	SGD is useful if the function has multiple l o It can also be used during o l		
•	The function cannot be learned with a perceptron.		
•	In a general neural network, there are layers of h units between input and output.		
•	Every Boolean function can be represented by a network with hidden layer.		
•	Every continuous function can be represented by a network with hidden layers.		
•	However, the tradeoffs are (1) (2) (3).		
•	The activation functions in an ANN must be n l for learning.		
•	The sigmoid function outputs $h(u)=1/(A + exp(B))$.		
•	Backpropagation performs Iw gradient descent. First, information flows f through the network to compute the o Then, the I flows backward to compute the gradients.		

Today

Artificial Neural Networks (Ch 4, Mitchell)

Backpropagation

Backpropagation (SGD)

- Let x_{ii} be the i^{th} input to unit j
- Let w_{ii} be the parameter associated with x_{ii}
- Let $n_j = \sum w_{ji} x_{ji}$ be the "net input" to unit j

• Observe that
$$\frac{\partial L}{\partial w_{ji}} = \frac{\partial L}{\partial n_j} \frac{\partial n_j}{\partial w_{ji}} = \frac{\partial L}{\partial n_j} x_{ji}$$

Output Layer

Derivation (output layer)

$$h(u) = \frac{1}{(1+e^{-u})}; 1-h(u) = \frac{e^{-u}}{(1+e^{-u})}$$

$$\frac{dh}{du} = \frac{e^{-u}}{(1+e^{-u})^2} = h(u)(1-h(u))$$

$$L(w_{ji}) = \frac{1}{2}(y_j - h(n_j))^2$$

$$\frac{\partial L}{\partial n_j} = (h(n_j) - y_j) \frac{\partial h(n_j)}{\partial n_j}$$

$$\frac{\partial h(n_j)}{\partial n_j} = h(n_j)(1-h(n_j))$$
(Using Derivative of Sigmoid)

Derivation (output layer)

$$\frac{\partial L}{\partial n_j} = (h(n_j) - y_j) \frac{\partial h(n_j)}{\partial n_j}$$
$$\frac{\partial h(n_j)}{\partial n_j} = h(n_j)(1 - h(n_j))$$

$$\frac{\partial L}{\partial w_{ji}} = (h(n_j) - y_j)h(n_j)(1 - h(n_j))x_{ji}$$

Hidden Layer

Derivation (Hidden Layer)

Since j affects the output only through

Downstream(j), Already calculated, $\frac{\partial L}{\partial n_{j}} = \sum_{k \in Downstream(j)} \frac{\partial L}{\partial n_{k}} \frac{\partial n_{k}}{\partial n_{j}}$ next layer $n_{k} = \sum_{l} w_{kl} h(n_{l}); \frac{\partial n_{k}}{\partial n_{i}} = \frac{\partial \left(w_{kj} h(n_{j})\right)}{\partial n_{i}}$

$$= w_{kj} \frac{\partial h(n_j)}{\partial n_j} = w_{kj} h(n_j) (1 - h(n_j))$$

$$\frac{\partial L}{\partial n_{j}} = h(n_{j})(1 - h(n_{j})) \sum_{k \in Downstream(j)} \frac{\partial L}{\partial n_{k}} w_{kj}$$

Derivation (Hidden Layer)

$$\frac{\partial L}{\partial w_{ji}} = \frac{\partial L}{\partial n_j} x_{ji}$$

$$= h(n_j)(1 - h(n_j))x_{ji} \sum_{k \in Downstream(j)} \frac{\partial L}{\partial n_k} w_{kj}$$

$$= h(n_j)(1 - h(n_j))x_{ji} \sum_{k \in Downstream(j)} \frac{\partial L}{\partial w_{kj}} \frac{w_{kj}}{x_{kj}}$$

Review

Consider a neural network with 2 input units, 2
hidden units and 1 output unit and all weights
initialized to 1, with the bias set to zero. Using
squared loss, show the weights after the first
backprop update with these examples.

x_1	x_2	f
0	0	0
0	1	1

Updates

$$\frac{\partial L}{\partial w_{oh}} = h(n_o)(1 - h(n_o))x_{oh}(h(n_o) - y_o)$$

$$\frac{\partial L}{\partial w_{hi}} = h(n_h)(1 - h(n_h))x_{hi} \sum_{k \in Downstream(h)} \frac{\partial L}{\partial w_{kh}} \frac{w_{kh}}{x_{kh}}$$

Example notes

- Zeros as inputs
- SGD effects
- Vanishing gradients