### Lagrangian Dynamics Project

Rigid-Body Spring Pendulum

November 27, 2018

By:

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene

Submitted to:
Dr. Mark Sensmeier
In Partial Fulfillment of the Requirements of
ES204 Dynamics – Fall 2018



College of Engineering Embry-Riddle Aeronautical University Prescott, AZ

## Contents

| 1 | Conceptualize the Problem         |
|---|-----------------------------------|
|   | 1.1 Constants and Assumptions     |
| 2 | Free Body Diagram                 |
| 3 | Coordinate Frame                  |
| 4 | Sum of Forces                     |
| 5 | Constraints                       |
| 6 | Solve for the Equations of Motion |
| 7 | Solve the Equations of Motion     |
| 8 | Does it Make Sense?               |
|   | 8.1 Units                         |
|   | 8.2 Magnitude                     |
| 9 | Appendix                          |
|   | 9.1 Attributions                  |
|   | 9.2 Analytical Solution           |
|   | 9.3 Numerical Solution            |

# List of Figures

#### 1 Conceptualize the Problem



The pendulum system consists of a rigid bar pinned to the free end of a linear spring, which rotates about its opposite end at a fixed point.

#### 1.1 Constants and Assumptions

Constants: Assumptions:

Bar Mass: m=1 kgNo Losses

Bar Length: L = 1 mReleased from Rest

 $g = 9.81^{m/s^2}$ Gravity: Slender Bar

Linear Spring: Planar

Spring Coefficient:  $k = 25 \ ^{N/m}$ Rigid-Body Dynamics

Unstretched Length: L = 0.5 m

We are asked to determine the following:

- 1. The Equations of Motion for the system via the Lagrangian method.
- 2. Integrate the Equations of Motion using various initial conditions and plot the behavior of the system for 10 seconds.

  - (a)  $\theta_o = 0 \ rad$ ,  $\phi_o = 0 \ rad$ (b)  $\theta_o = \pi/18 \ rad$ ,  $\phi_o = \pi/9 \ rad$
  - (c)  $\theta_o = \pi/6 \ rad$ ,  $\phi_o = \pi/3 \ rad$
- 3. Plot the total energy versus time for all 3 cases.
- 4. Repeat 2. and 3. using a 'RelTol' of 1e-6 and 'AbsTol' 1e-9 for the ode45 integration tolerances.

1

- 2 Free Body Diagram
  - 3 Coordinate Frame
    - 4 Sum of Forces
      - 5 Constraints
- 6 Solve for the Equations of Motion

## 7 Solve the Equations of Motion

#### 8 Does it Make Sense?

#### 8.1 Units

Checking with the MATLAB symbolic units tool (from Section 9.3):

- 8.2 Magnitude
- 9 Appendix
- 9.1 Attributions

Jeffrey Chen Thorne Wolfenbarger Trey Dufrene Joint Effort

## 9.2 Analytical Solution

#### 9.3 Numerical Solution