PROJECT WORK: IE 406 - MACHINE LEARNING

MACHINE LEARNING ALGORITHMS FOR

MOVIE GENRE PREDICTION

GROUP: 26

Assigned By: Prof. Manjunath V. Joshi

Group Members:

- o Abhishek Sutariya 201701012
- o Purva Singhvi 201701039
- o Karpit Patel 201701174
- o Dharmin Solanki 201701198

Problem Statement

Given a movie poster, the big picture is to predict the genre of the movie. The model should be able to learn and classify various features based on colors and contrasts as well as structural cues and perform feature extraction. The movie poster would be a color image and the output would be the genre.

Animation, Adventure

Previous Work Done

Block Diagram

Workflow using an example

Code Snippets


```
model = Sequential()
model.add(Conv2D(16, (3, 3), activation='relu', input_shape=X_train[0].shape))
model.add(BatchNormalization())
model.add(MaxPool2D(2, 2))
model.add(Dropout(0.2))
model.add(Conv2D(32, (3, 3), (activation = 'relu')))
model.add(BatchNormalization())
model.add(MaxPool2D(2, 2))
model.add(Dropout(0.3))
model.add(Conv2D(64, (3, 3), (activation = 'relu')))
model.add(BatchNormalization())
model.add(MaxPool2D(2, 2))
model.add(Dropout(0.4))
model.add(Conv2D(128, (3, 3), (activation = 'relu')))
model.add(BatchNormalization())
model.add(MaxPool2D(2, 2))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(128, (activation = 'relu')))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(128, (activation = 'relu')))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(25, (activation = 'sigmoid')))
```

```
Testing
n_{\text{test}} = 100
X_test = X[n:n + n_test]
y_test = y[n:n + n_test]
pred = model.predict(np.array(X_test))
pred.shape
(100, 25)
```

```
• • •
                       Accuracy
def accuracy_score(y_test, pred):
   value = 0
   for i in range(0, len(pred)):
       first3_index = np.argsort(pred[i])[-3:]
      correct = np.where(y_test[i] == 1)[0]
       flag=1
       for j in first3_index:
          if j in correct:
             if flag==1:
                 value += 1
                 flag=0
   acc = value/len(pred)
   return acc*100
print("Accuracy =", accuracy_score(yTest, pred))
Accuracy = 81.0 %
```


References

Data Links

- https://www.kaggle.com/rounakbanik/the-movies-dataset/kernels
- https://www.kaggle.com/neha1703/movie-genre-from-its-poster
- https://www.imdb.com/
- https://github.com/laxmimerit/Movies-Poster_Dataset

Reference Links

- http://cs229.stanford.edu/proj2019spr/report/9.pdf
- http://cs229.stanford.edu/proj2019spr/poster/9.pdf
- https://medium.com/@14prakash/understanding-and-implementing-architectures-of-resnet-and-resnext-for-state-of-the-art-image-cf51669e1624
- https://towardsdatascience.com/journey-to-the-center-of-multi-label-classification-384c40229bff
- https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn
- https://towardsdatascience.com/an-introduction-to-the-naive-bayes-algorithm-be3bd692273e
- https://youtu.be/4HKqjENq9OU
- https://towardsdatascience.com/introduction-to-resnets-coa830a288a4