Определение 1. Группой (G,\cdot) называется множество G с заданной на нем бинарной операцией \cdot , то есть отображением $G \times G \to G$, значение которого на элементах a и b из G обозначается $a \cdot b$ или ab, со следующими свойствами

$$a(bc) = (ab)c \ \forall a, b, c \in G$$
 (1)

$$\exists e \in G : \forall a \in G \ ea = ae = a \tag{2}$$

$$\forall a \in G \ \exists \ a^{-1} \in G : \ aa^{-1} = a^{-1}a = e \tag{3}$$

Иными словами, существует нейтральный элемент (иногда он называется просто единицей группы и обозначается цифрой 1), и для каждого элемента существует обратный к нему. Свойство (1) называют ассоциативностью.

Замечание 1. Когда операция в группе (G,\cdot) оговорена заранее, то такую группу обозначают просто G

Задача 1. Проверить, являются ли группами следующие множества с указанными операциями: а) $(\mathbb{Z},+)$; б) $(\mathbb{Z}\backslash\{0\},\cdot)$; в) (\mathbb{R},\cdot) ; г) $(\mathbb{R}\backslash\{0\},\cdot)$; д) $(\mathbb{Z}_m,+)$; е) $(\mathbb{Z}_m\backslash\{0\},\cdot)$; ж) S_n с операцией композиции;

з)* Множество $\{a,b,c,d\}$ с операцией \times и таблицей умножения

\times	a	b	c	d
a	a	b	c	d
b	b	a	d	С
С	С	d	a	b
d	d	С	b	a

Задача 2. а) Докажите, что в уравнениях в группе можно сокращать, то есть если ac = bc или ca = cb, то a = b.

Задача 3°. а) Докажите, что нейтральный элемент в группе единственный. 6) Докажите, что для каждого элемента группы обратный элемент единственный. в) Докажите, что в группе уравнения ax = b и xa = b имеют единственные решения и найдите их. г) Найдите обратный к элементу ab.

Задача 4*. Докажите, что если в определении группы заменить свойства (2) и (3), на «существует элемент e такой, что для любого $a \in G$ ae = a (правая единица) и для любого элемента a существует такой элемент a^{-1} , что $aa^{-1} = e$ (правый обратный)», то определенный объект останется группой.

Группы преобразований

Определение 2. Группой преобразований множества M называется любой непустой набор G биекций этого множества на себя со следующими условиями:

$$g,h\in G\Longrightarrow g\circ h\in G$$

$$g \in G \Longrightarrow g^{-1} \in G$$

То есть множество биекций G замкнуто относительно композиции и взятия обратного отображения.

Задача 5. Покажите, что группа преобразований G произвольного множества M является группой (относительно какой операции?), укажите в явном виде единицу этой группы.

Определение 3. Группой диэдра D_n называется совокупность преобразований правильного n-угольника, являющихся движениями (движение сохраняет расстояние между точками).

Определение 4. Группа G называется абелевой или коммутативной, если $\forall a, b \in G \ ab = ba$.

Задача 6. Покажите, что группа диэдра действительно является группой.

Задача 7. Какие из групп задачи 1 абелевы? Верно ли, что группа диэдра абелева?

Задача 8. а) Перечислите все элементы группы D_3 **б)** Перечислите все элементы группы D_4 **в)** Перечислите все элементы группы D_n

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	<u>1</u> б	1 В	1 Г	1 д	1 e	1 ж	1 3	2 a	3 a	3 6	3 B	3 Г	4	5	6	7	8 a	8 6	8 B

Подгруппы, обыкновенные

Определение 5. Подгруппой H группы G называется такое непустое подмножество элементов группы G, что оно само является группой относительно операции в группе G.

Задача 9. Опишите все подгруппы группы D_3

Задача 10. Рассмотрим элемент g группы G и множество всех его степеней – $\{\ldots g^{-2}, g^{-1}, g^0 = e, g, \ldots\}$. Докажите, что это множество является подгруппой в G.

Определение 6. Циклической группой называется такая группа G, что существует элемент g такой, что любой элемент группы G является некоторой степенью элемента g. Обозначение $G = \langle g \rangle$

Задача 11. Какие из этих групп являются циклическими? **a)** $(\mathbb{Z}, +)$; **б)** D_4 ; **в)** $(\mathbb{Q} \setminus \{0\}, \cdot)$; **г)** $(\mathbb{Z}_m, +)$; **д)*** $(\mathbb{Z}_p \setminus \{0\}, \cdot)$, где p – простое число.

Смежные классы по подгруппе

Определение 7. Пусть задана группа G и ее подгруппа H, $g \in G$. Тогда назовем левым смежным классом элемента g по подгруппе H множество элементов вида gh, где $h \in H$. Обозначение gH. Аналогично определяем правый смежный класс элемента g (Hg).

Задача 12. Рассмотрим группу S_3 и ее подгруппу $\{(1,2),id\}$. Выпишите все левые и правые смежные классы по этой подгруппе и покажите, что левые и правые смежные классы совпадают не у всех элементов.

Задача 13. Пусть есть два левых смежных класса gH и g_1H . Докажите, что тогда они либо не пересекаются, либо совпадают.

Задача 14. Сопоставим элементам $gh_1, gh_2...$ смежного класса gH элементы $g_1h_1, g_1h_2...$ смежного класса gH, не пересекающегося с gH. Докажите, что это отображение смежных классов как множеств биективно.

Определение 8. Порядком конечной группы G называется число ее элементов. Обозначение ord G или |G|.

Определение 9. Порядком элемента g конечной группы G называется $\min\{k \in \mathbb{N} : g^k = e\}$. Обозначение ord g.

Задача 15. Докажите, что $g^k = e \iff \operatorname{ord} g|k$.

Задача 16. а) Докажите, что множество элементов группы G есть дизъюнктное объединение различных левых смежных классов по данной подгруппе H. б) ($Teopema\ Лагранжа$) Пусть группа G конечна. Докажите, что порядок группы G делится на порядок любой ее подгруппы H. в) В условиях предыдущего пункта докажите, что порядок G делится на порядок любого своего элемента.

Задача 17. Докажите, что конечная группа является циклической тогда и только тогда, когда существует элемент, порядок которого совпадает с порядком группы.

Задача 18. Пусть циклическая группа $\langle g \rangle$ имеет порядок k. Рассмотрим циклическую подгруппу этой группы, порожденную m-й степенью g, то есть $\langle g^m \rangle$. В каких случаях эта подгруппа будет совпадать со всей группой?

Задача 19. Докажите, что любая группа порядка p, где p – простое число, циклическая.

Задача 20. Объясните решение задачи 13[32] на языке теории групп.

Задача 21. Докажите теорему Эйлера: $a^{\varphi(m)} \equiv 1 \pmod m$, где $\varphi(m)$ – количество чисел, не превосходящих m и взаимнопростых с m с помощью теории групп.

9	10	11 a	11 б	11 B	11 Г	11 Д	12	13	14	15	16 a	16 б	16 B	17	18	19	20	21

```
<?xml version='1.0'?>
   listok number = 'GR-1' description='Введение в теорию групп — основные понятия' type='1'
date='01.2017'>
    cproblem group='1' type='0'>1a</problem>
    cproblem group='1' type='0'>16</problem>
    cproblem group='1' type='0'>1B</problem>
    problem group='1' type='0'>1r</problem>
    cproblem group='1' type='0'>1д</problem>
    cproblem group='1' type='0'>1e</problem>
    problem group='1' type='0'>1ж</problem>
    cproblem group='1' type='1'>13</problem>
    cproblem group='2' type='0'>2a</problem>
    cproblem group='3' type='3'>3a</problem>
    problem group='3' type='3'>36</problem>
    problem group='3' type='3'>3B</problem>
    problem group='3' type='3'>3r</problem>
    cproblem group='4' type='1'>4</problem>
    cproblem group='5' type='0'>5</problem>
    cproblem group='6' type='0'>6</problem>
    cproblem group='7' type='0'>7</problem>
    cproblem group='8' type='0'>8a</problem>
    problem group='8' type='0'>86</problem>
    cproblem group='8' type='0'>8B</problem>
    cproblem group='9' type='0'>9</problem>
    cproblem group='10' type='0'>10</problem>
    cproblem group='11' type='0'>11a</problem>
    problem group='11' type='0'>116</problem>
    cproblem group='11' type='0'>11B</problem>
    problem group='11' type='0'>11r</problem>
    problem group='11' type='1'>11д</problem>
    cproblem group='12' type='0'>12</problem>
    cproblem group='13' type='0'>13</problem>
    cproblem group='14' type='0'>14</problem>
    cproblem group='15' type='0'>15</problem>
    cproblem group='16' type='0'>16a</problem>
    problem group='16' type='0'>166</problem>
    problem group='16' type='0'>16B</problem>
    cproblem group='17' type='0'>17</problem>
```

</listok>