3. Gradient Calculation

Suppose \mathbf{x} and y are known, $\mathbf{w} \in \mathbb{R}^d$ is a column vector. Consider the following functions that have been broadly used in machine learning.

- Sigmoid: $F(\mathbf{w}) = \frac{1}{1+e^{-\mathbf{x}\cdot\mathbf{w}}}$
- Hinge Loss: $F(\mathbf{w}) = max(0, 1 y\mathbf{x} \cdot \mathbf{w})$
- ℓ_1 -norm: $F(\mathbf{w}) = ||\mathbf{w}||_1$
- 1. Use python to plot their curves for the case d = 1. You can set x = y = 1.

- 2. Derive their gradient or subgradients for a general d>0. To get the gradient, we differentiate the loss with respect to the i^{th} component of w.
 - Sigmoid

$$\frac{\partial F}{\partial \mathbf{w}} = \frac{\mathbf{x}e^{-\mathbf{x} \cdot \mathbf{w}}}{(1 + e^{-\mathbf{x} \cdot \mathbf{w}})^2}$$

Hinge

$$\bullet \frac{\partial F}{\partial \mathbf{w}} = \begin{cases} -y \ \mathbf{x} & \text{if } y \ \mathbf{x} \cdot \mathbf{w} < 1 \\ 0 & \text{if } y \ \mathbf{x} \cdot \mathbf{w} > 1 \end{cases}$$

 \circ ℓ_1 -norm

$$\mathbf{w} \quad \frac{\partial F}{\partial \mathbf{w}} = \frac{\mathbf{w}}{|\mathbf{w}|}$$

3.1 Implementation

Gradient descent is typically used to solve a general optimization problem

$$min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}).$$
 (6.4)

It starts from an arbitrary point \mathbf{w}^0 and gradually refines the solution as

$$\mathbf{w}^t \leftarrow \mathbf{w}^{t-1} - \eta \cdot \nabla F(\mathbf{w}^{t-1}).$$

Fix d = 1, i.e., the variable w is scalar. Further fix $w^0=1$.

1. Consider $F(w)=\frac{1}{2}w^2$. For each learning rate $\eta\in\{10^{-4},10^{-3},0.01,0.1,0.5,1,2,5,10,100\}$, calculate the sequence $\{w^t\}_{t=1}^{1000}$ generated by GD and plot the curve " $|w^t|$ v.s. t".

2. Consider $F(w)=\frac{1}{4}w^2$. For each learning rate $\eta\in\{10^{-4},10^{-3},0.01,0.1,0.5,1,2,5,10,100\}$, calculate the sequence $\{w^t\}_{t=1}^{1000}$ generated by GD and plot the curve " $|w^t|$ v.s. t".

4 Linear Regression

Suppose we are given a data set $\{\mathbf{x}_i,y_i\}_{i=1}^n$ where each $\mathbf{x}_i\in\mathbb{R}^d\times\mathbb{R}$ is a row vector. We hope to learn a mapping f such that each y_i is approximated by $f(\mathbf{x}_i)$. Then a popular approach is to fit the data with *linear regression* - it assumes there exists $\mathbf{w}\in\mathbb{R}^d$ such that $y_i\approx\mathbf{w}\cdot\mathbf{x}_i$. In order to learn \mathbf{w} from the data, it typically boils down to solving the following *least-squares* program:

$$min_{\mathbf{w} \in \mathbb{R}^d} F(\mathbf{w}) := \frac{1}{2} ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2,$$
 (4.1)

where \mathbf{X} is the data matrix with the i^{th} row being \mathbf{x}_i , and $\mathbf{y}=(y_1,y_2,\ldots,y_n)^{\top}$.

1. Compute the gradient and the Hessian matrix of $F(\mathbf{w})$, and show that (6.4) is a convex program.

$$\circ \quad \frac{\partial F}{\partial \mathbf{w}} = -\mathbf{X}^{\top}||\mathbf{y} - \mathbf{X}\mathbf{w}||, \text{ or } \\ \begin{bmatrix} \sum_{i=1}^n x_{i1}(y_i - \sum_{j=1}^d w_j x_{ij}) \\ \vdots \\ \sum_{i=1}^n x_{id}(y_i - \sum_{j=1}^d w_j x_{ij}) \end{bmatrix}$$

$$ullet$$
 $abla^2 F = rac{\partial^2 F}{\partial \mathbf{w}^2} = \mathbf{X}^ op \mathbf{X}$, or $d imes n imes d$

$$\circ \ F(\mathbf{w})$$
 is convex $\iff
abla^2 F(x) \geq 0, orall x \in D$

lacktriangledown Represent a (assumedly linearly independent) ${f X}$ as ${f X}=[{f v_1} \quad {f v_2} \quad \dots \quad {f v_d}]$ $k_1{f v_1}+\dots+k_d{f v_d}={f 0} \iff k_1=\dots=k_d=0$ Now let ${f k}$ be an eigenvector of $abla^2 F$,

$$\mathbf{k} \neq \mathbf{0} \implies (k_1 \mathbf{v_1} + \dots + k_d \mathbf{v_d})^2 > 0$$

$$\mathbf{k} \neq \mathbf{0} \longrightarrow (k_1 \mathbf{v}_1 + \dots + k_d \mathbf{v}_d) > 0$$

$$= [k_1 \dots k_d] \begin{bmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_d \end{bmatrix} [\mathbf{v}_1 \dots \mathbf{v}_d] \begin{bmatrix} k_1 \\ \vdots \\ k_d \end{bmatrix} = \mathbf{k}^\top \nabla^2 F \mathbf{k} = \lambda \mathbf{k}^\top \mathbf{k} > 0$$

$$\mathbf{\lambda} \mathbf{k}^\top \mathbf{k} > 0 \rightarrow \mathbf{k}^\top \mathbf{k} = \sum_{i=1}^d k_i^2 > 0 \implies \lambda > 0$$

- $\lambda \mathbf{k}^{\top} \mathbf{k} > 0 \to \mathbf{k}^{\top} \mathbf{k} = \sum_{i=1}^{u} k_i^2 > 0 \implies \lambda > 0$ Since k is arbitrary, all eigenvalues must be positive, and thus $\nabla^2 F$ is positive definite, which means it is also positive semi-definite.
- Therefore, $F(\mathbf{w})$ is convex.
- 2. Note that (6.4) is equivalent to the following:

$$min_{\mathbf{w} \in \mathbb{R}^d} ||\mathbf{y} - \mathbf{X}\mathbf{w}||^{100},$$

in the sense that any minimizer of (6.4) is also an optimum of the above, and vice versa. State why we stick with the least-squares formulation.

- \circ We stick with the least squares regression rather than least n^{100} regression because least squares has the lowest sampling variance while maintaining the minimum variance among all linear unbiased estimators.
- 3. State when the objective function is strongly-convex and when it is not.
 - A Function is strongly convex if, for any w_1, w_2 , $||\nabla F(w_2) \nabla F(w_1)||_2 \ge \alpha ||w_2 w_1||_2$, where α is the min eigenvalue of $\nabla^2 F(w)$. OLS is strongly convex if X is linearly independent.
- 4. Fix n=1000 and increase d from 20 to 500, with a step size 20. For each problem size (n,d), generate the data matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and the response $y \in \mathbb{R}^n$, for example, using the python API numpy random random. Then calculate the exact solution $w^* = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ of (6.4) and record the computation time. Plot the curve of "time v.s. d" and summarize your observation.

5. Consider n=100 and d=40. Again, generate ${\bf X}$ and y, and calculate the optimal solution. Use python API to calculate the minimum and maximum eigenvalue of the Hessian matrix, and derive the upper bound on the learning rate η in gradient descent (see the slides for the bound). Let us denote this theoretical bound by η_0 . Run GD on the data set with 6 choices of learning rate: $\eta \in \{0.01\eta_0, 0.1\eta_0, \eta_0, 2\eta_0, 20\eta_0, 100\eta_0\}$. Plot the curve of " $||w^t - w^*||$ v.s. t" for $1 \le t \le 100$ and summarize your observation. Note that you can start GD with ${\bf w}^0 = {\bf 0}$.

0