$10_{60} (K10a_1)$

Ideals for irreducible components 2 of X_{par}

$$I_1^u = \langle u^{10} - u^9 + 3u^8 - 2u^7 + 3u^6 - 2u^5 - u^2 + b, \ u^{10} - u^9 + 4u^8 - 3u^7 + 6u^6 - 4u^5 + 3u^4 - 2u^3 - u^2 + a,$$

$$u^{12} - u^{11} + 4u^{10} - 3u^9 + 7u^8 - 5u^7 + 6u^6 - 4u^5 + 2u^4 - 2u^3 + u^2 + 1 \rangle$$

$$I_2^u = \langle -u^{33} + u^{32} + \dots + b + 1, \ -u^{32} + 2u^{31} + \dots + a - 2, \ u^{34} - 2u^{33} + \dots - 3u + 1 \rangle$$

$$I_3^u = \langle b + u, \ a, \ u^2 + u + 1 \rangle$$

$$I_4^u = \langle b + 1, \ a, \ u^2 + u + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 50 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{10} - u^9 + 3u^8 - 2u^7 + 3u^6 - 2u^5 - u^2 + b, \ u^{10} - u^9 + \dots - u^2 + a, \ u^{12} - u^{11} + \dots + u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{10} + u^{9} - 4u^{8} + 3u^{7} - 6u^{6} + 4u^{5} - 3u^{4} + 2u^{3} + u^{2} \\ -u^{10} + u^{9} - 3u^{8} + 2u^{7} - 3u^{6} + 2u^{5} + u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - u^{10} + 3u^{9} - 2u^{8} + 3u^{7} - 2u^{6} - 2u^{3} \\ -u^{9} + u^{8} - 3u^{7} + 2u^{6} - 3u^{5} + 2u^{4} - u^{3} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{10} + u^{9} - 4u^{8} + 3u^{7} - 6u^{6} + 4u^{5} - 4u^{4} + 2u^{3} \\ -u^{10} + u^{9} - 3u^{8} + 2u^{7} - 3u^{6} + 2u^{5} - u^{4} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{9} - u^{8} + 3u^{7} - 2u^{6} + 4u^{5} - 2u^{4} + 2u^{3} \\ u^{11} - u^{10} + 4u^{9} - 3u^{8} + 6u^{7} - 4u^{6} + 4u^{5} - 2u^{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$=4u^{11}-8u^{10}+18u^9-26u^8+34u^7-40u^6+34u^5-24u^4+16u^3-4u^2+6u-2$$

Crossings	u-Polynomials at each crossing	
c_1, c_3, c_6 c_8	$u^{12} + u^{11} + 4u^{10} + 3u^9 + 7u^8 + 5u^7 + 6u^6 + 4u^5 + 2u^4 + 2u^3 + u^2 + 3u^4 + 2u^4 + 2u^4 + 2u^3 + u^4 + 2u^4 + 2u$	⊦ 1
c_2, c_{10}	$u^{12} + 7u^{11} + \dots + 2u + 1$	
c_4, c_7	$u^{12} - u^{11} + \dots + 2u + 1$	
c_5, c_9	$u^{12} - 5u^{11} + \dots - 12u + 4$	

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_8	$y^{12} + 7y^{11} + \dots + 2y + 1$
c_2, c_{10}	$y^{12} - y^{11} + \dots + 6y + 1$
c_4, c_7	$y^{12} - 9y^{11} + \dots + 2y + 1$
c_{5}, c_{9}	$y^{12} + 5y^{11} + \dots - 16y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.178968 + 0.877941I		
a = -1.176440 - 0.426280I	-1.87720 - 1.89052I	-4.24850 + 3.95054I
b = -0.702552 + 0.572575I		
u = -0.178968 - 0.877941I		
a = -1.176440 + 0.426280I	-1.87720 + 1.89052I	-4.24850 - 3.95054I
b = -0.702552 - 0.572575I		
u = 0.780097 + 0.281995I		
a = 1.73075 + 0.13511I	-0.78013 - 3.73206I	3.21966 + 2.51013I
b = 1.057890 + 0.528101I		
u = 0.780097 - 0.281995I		
a = 1.73075 - 0.13511I	-0.78013 + 3.73206I	3.21966 - 2.51013I
b = 1.057890 - 0.528101I		
u = -0.496677 + 1.117040I		
a = -0.55633 + 2.12256I	-2.98532 - 7.52709I	-1.88445 + 6.81034I
b = 2.35694 + 1.72461I		
u = -0.496677 - 1.117040I		
a = -0.55633 - 2.12256I	-2.98532 + 7.52709I	-1.88445 - 6.81034I
b = 2.35694 - 1.72461I		
u = 0.335900 + 1.207600I		
a = -0.736004 - 0.940791I	-9.48086 + 3.21477I	-6.88179 - 3.24710I
b = 1.36295 - 1.08335I		
u = 0.335900 - 1.207600I		
a = -0.736004 + 0.940791I	-9.48086 - 3.21477I	-6.88179 + 3.24710I
b = 1.36295 + 1.08335I		
u = 0.577185 + 1.164540I		
a = 0.15978 - 1.92327I	-5.9276 + 13.9800I	-2.44387 - 9.26853I
b = 2.60480 - 1.08526I		
u = 0.577185 - 1.164540I		
a = 0.15978 + 1.92327I	-5.9276 - 13.9800I	-2.44387 + 9.26853I
b = 2.60480 + 1.08526I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.517537 + 0.434237I		
a = 1.57824 - 0.67661I	1.31194 - 0.92364I	6.23895 + 2.73595I
b = 0.319971 - 0.990159I		
u = -0.517537 - 0.434237I		
a = 1.57824 + 0.67661I	1.31194 + 0.92364I	6.23895 - 2.73595I
b = 0.319971 + 0.990159I		

$$I_2^u = \langle -u^{33} + u^{32} + \dots + b + 1, \ -u^{32} + 2u^{31} + \dots + a - 2, \ u^{34} - 2u^{33} + \dots - 3u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{32} - 2u^{31} + \dots - 3u + 2 \\ u^{33} - u^{32} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{12} + 3u^{10} + 5u^{8} - 2u^{7} + 4u^{6} - 4u^{5} + 2u^{4} - 4u^{3} + u^{2} + 1 \\ -u^{33} + u^{32} + \dots + 3u^{2} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 3u^{32} - 3u^{31} + \dots - 6u + 4 \\ 2u^{33} + 14u^{31} + \dots + 2u^{3} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{32} - 2u^{31} + \dots - 3u + 2 \\ u^{33} + u^{32} + \dots + u^{2} - u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-3u^{33} + 8u^{32} - 27u^{31} + 61u^{30} - 117u^{29} + 247u^{28} - 346u^{27} + 669u^{26} - 778u^{25} + 1328u^{24} - 1416u^{23} + 2034u^{22} - 2108u^{21} + 2492u^{20} - 2552u^{19} + 2536u^{18} - 2457u^{17} + 2183u^{16} - 1857u^{15} + 1579u^{14} - 1103u^{13} + 889u^{12} - 533u^{11} + 364u^{10} - 219u^9 + 98u^8 - 68u^7 + 38u^6 - 24u^5 + 20u^4 - 6u^3 + 14u^2 - 7u + 7$$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_8	$u^{34} + 2u^{33} + \dots + 3u + 1$
c_2, c_{10}	$u^{34} + 16u^{33} + \dots + u + 1$
c_4, c_7	$u^{34} - 2u^{33} + \dots - 183u + 73$
c_5, c_9	$(u^{17} + 2u^{16} + \dots - 5u - 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_8	$y^{34} + 16y^{33} + \dots + y + 1$
c_2, c_{10}	$y^{34} + 4y^{33} + \dots + 17y + 1$
c_4, c_7	$y^{34} - 8y^{33} + \dots - 12903y + 5329$
c_5, c_9	$(y^{17} + 10y^{16} + \dots - 23y - 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.723313 + 0.731528I		
a = 0.151866 + 0.654346I	-0.85292 - 6.04614I	-0.59802 + 7.72564I
b = 0.514055 - 0.693038I		
u = -0.723313 - 0.731528I		
a = 0.151866 - 0.654346I	-0.85292 + 6.04614I	-0.59802 - 7.72564I
b = 0.514055 + 0.693038I		
u = -0.624264 + 0.668207I	1 10001 1 00505	4 9 4 9 9 7 4 9 9 9 9 7 7
a = 0.475559 - 0.697137I	1.18281 - 1.86595I	4.34837 + 4.33037I
b = -0.299501 - 0.231577I $u = -0.624264 - 0.668207I$		
	1 10001 + 1 005057	4 9 4 9 9 7 4 9 9 9 9 7 1
a = 0.475559 + 0.697137I	1.18281 + 1.86595I	4.34837 - 4.33037I
b = -0.299501 + 0.231577I $u = -0.575012 + 0.946029I$		
a = 0.348012 + 0.3400231 $a = 0.488103 - 0.422358I$	0.36198 - 2.83643I	1.96538 + 0.68566I
b = 0.267905 - 0.921351I	0.50150 2.050451	1.30330 0.003001
$\frac{v = -0.575012 - 0.946029I}{u = -0.575012 - 0.946029I}$		
a = 0.488103 + 0.422358I	0.36198 + 2.83643I	1.96538 - 0.68566I
b = 0.267905 + 0.921351I		
u = 0.839419 + 0.294756I		
a = -2.21863 - 0.02513I	-3.32961 - 8.73955I	0.19211 + 5.92158I
b = -1.75177 - 0.94314I		
u = 0.839419 - 0.294756I		
a = -2.21863 + 0.02513I	-3.32961 + 8.73955I	0.19211 - 5.92158I
b = -1.75177 + 0.94314I		
u = -0.678441 + 0.881986I		
a = -0.269083 - 0.051645I	-1.29776 + 0.72905I	-2.79971 - 1.68011I
b = -1.117340 - 0.103610I		
u = -0.678441 - 0.881986I		
a = -0.269083 + 0.051645I	-1.29776 - 0.72905I	-2.79971 + 1.68011I
b = -1.117340 + 0.103610I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.441434 + 1.051180I		
a = -0.086124 - 0.253169I	-1.29776 + 0.72905I	-2.79971 - 1.68011I
b = -1.117340 - 0.103610I		
u = 0.441434 - 1.051180I		
a = -0.086124 + 0.253169I	-1.29776 - 0.72905I	-2.79971 + 1.68011I
b = -1.117340 + 0.103610I		
u = -0.484889 + 1.050780I		
a = 0.26211 - 1.43780I	-0.47242 - 3.20284I	2.38038 + 3.25895I
b = -1.36154 - 1.18102I		
u = -0.484889 - 1.050780I		
a = 0.26211 + 1.43780I	-0.47242 + 3.20284I	2.38038 - 3.25895I
b = -1.36154 + 1.18102I		
u = -0.387508 + 1.102150I		
a = 0.68089 + 1.93658I	-3.76357	-3.71974 + 0.I
b = 2.09444		
u = -0.387508 - 1.102150I		
a = 0.68089 - 1.93658I	-3.76357	-3.71974 + 0.I
b = 2.09444		
u = 0.805751 + 0.171048I		
a = -1.33086 + 0.63651I	-5.23887 - 0.57053I	-2.63434 - 0.09683I
b = -1.30277 + 0.63774I		
u = 0.805751 - 0.171048I		
a = -1.33086 - 0.63651I	-5.23887 + 0.57053I	-2.63434 + 0.09683I
b = -1.30277 - 0.63774I		
u = 0.492477 + 1.076420I		
a = 0.071402 + 0.579407I	-0.85292 + 6.04614I	-0.59802 - 7.72564I
b = 0.514055 + 0.693038I		
u = 0.492477 - 1.076420I		
a = 0.071402 - 0.579407I	-0.85292 - 6.04614I	-0.59802 + 7.72564I
b = 0.514055 - 0.693038I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.276836 + 1.167190I		
a = 0.004108 + 1.012990I	-5.23887 - 0.57053I	-2.63434 - 0.09683I
b = -1.30277 + 0.63774I		
u = 0.276836 - 1.167190I		
a = 0.004108 - 1.012990I	-5.23887 + 0.57053I	-2.63434 + 0.09683I
b = -1.30277 - 0.63774I		
u = 0.242359 + 1.211260I		
a = 0.12569 - 1.56340I	-8.21063 - 5.43973I	-5.49430 + 3.57628I
b = 1.50375 - 0.40483I		
u = 0.242359 - 1.211260I		
a = 0.12569 + 1.56340I	-8.21063 + 5.43973I	-5.49430 - 3.57628I
b = 1.50375 + 0.40483I		
u = 0.556877 + 1.148560I		
a = -0.15813 + 1.53835I	-3.32961 + 8.73955I	0.19211 - 5.92158I
b = -1.75177 + 0.94314I		
u = 0.556877 - 1.148560I		
a = -0.15813 - 1.53835I	-3.32961 - 8.73955I	0.19211 + 5.92158I
b = -1.75177 - 0.94314I		
u = 0.520828 + 1.178390I		
a = 0.76467 - 1.29488I	-8.21063 + 5.43973I	-5.49430 - 3.57628I
b = 1.50375 + 0.40483I		
u = 0.520828 - 1.178390I		
a = 0.76467 + 1.29488I	-8.21063 - 5.43973I	-5.49430 + 3.57628I
b = 1.50375 - 0.40483I		
u = 0.372098 + 0.537745I		
a = -0.782608 - 0.762639I	0.36198 + 2.83643I	1.96538 - 0.68566I
b = 0.267905 + 0.921351I		
u = 0.372098 - 0.537745I		
a = -0.782608 + 0.762639I	0.36198 - 2.83643I	1.96538 + 0.68566I
b = 0.267905 - 0.921351I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.521356 + 0.372677I		
a = 0.897739 + 0.802529I	1.18281 - 1.86595I	4.34837 + 4.33037I
b = -0.299501 - 0.231577I		
u = 0.521356 - 0.372677I		
a = 0.897739 - 0.802529I	1.18281 + 1.86595I	4.34837 - 4.33037I
b = -0.299501 + 0.231577I		
u = -0.596010 + 0.210045I		
a = -2.57670 + 0.72377I	-0.47242 + 3.20284I	2.38038 - 3.25895I
b = -1.36154 + 1.18102I		
u = -0.596010 - 0.210045I		
a = -2.57670 - 0.72377I	-0.47242 - 3.20284I	2.38038 + 3.25895I
b = -1.36154 - 1.18102I		

III.
$$I_3^u = \langle b+u,\ a,\ u^2+u+1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u + 4

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_4 \\ c_6, c_7, c_{10}$	$u^2 - u + 1$
c_3,c_8	$u^2 + u + 1$
c_5,c_9	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_{10}	$y^2 + y + 1$
c_5, c_9	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	-4.05977I	0. + 6.92820I
b = 0.500000 - 0.866025I		
u = -0.500000 - 0.866025I		
a = 0	4.05977I	0 6.92820I
b = 0.500000 + 0.866025I		

IV.
$$I_4^u = \langle b+1, \ a, \ u^2+u+1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 3

Crossings	u-Polynomials at each crossing	
$c_1, c_2, c_4 \\ c_6, c_7, c_{10}$	$u^2 - u + 1$	
c_{3}, c_{8}	$u^2 + u + 1$	
c_5, c_9	u^2	

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_{10}	$y^2 + y + 1$	
c_{5}, c_{9}	y^2	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0	0	3.00000
$\frac{b = -1.00000}{u = -0.500000 - 0.866025I}$		
a = 0	0	3.00000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_6	$(u^{2} - u + 1)^{2}$ $\cdot (u^{12} + u^{11} + 4u^{10} + 3u^{9} + 7u^{8} + 5u^{7} + 6u^{6} + 4u^{5} + 2u^{4} + 2u^{3} + u^{2}$ $\cdot (u^{34} + 2u^{33} + \dots + 3u + 1)$	$^{2}+1)$
c_2, c_{10}	$((u^{2} - u + 1)^{2})(u^{12} + 7u^{11} + \dots + 2u + 1)(u^{34} + 16u^{33} + \dots + u + 1)$	l)
c_3, c_8	$(u^{2} + u + 1)^{2}$ $\cdot (u^{12} + u^{11} + 4u^{10} + 3u^{9} + 7u^{8} + 5u^{7} + 6u^{6} + 4u^{5} + 2u^{4} + 2u^{3} + u^{2}$ $\cdot (u^{34} + 2u^{33} + \dots + 3u + 1)$	$^{2}+1)$
c_4, c_7	$((u^{2}-u+1)^{2})(u^{12}-u^{11}+\cdots+2u+1)(u^{34}-2u^{33}+\cdots-183u+$	73)
c_5,c_9	$u^{4}(u^{12} - 5u^{11} + \dots - 12u + 4)(u^{17} + 2u^{16} + \dots - 5u - 2)^{2}$	

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing	
c_1, c_3, c_6 c_8	$((y^2 + y + 1)^2)(y^{12} + 7y^{11} + \dots + 2y + 1)(y^{34} + 16y^{33} + \dots + y + 1)$	
c_2, c_{10}	$((y^2+y+1)^2)(y^{12}-y^{11}+\cdots+6y+1)(y^{34}+4y^{33}+\cdots+17y+1)$	
c_4, c_7	$((y^{2} + y + 1)^{2})(y^{12} - 9y^{11} + \dots + 2y + 1)$ $\cdot (y^{34} - 8y^{33} + \dots - 12903y + 5329)$	
c_5,c_9	$y^4(y^{12} + 5y^{11} + \dots - 16y + 16)(y^{17} + 10y^{16} + \dots - 23y - 4)^2$	