MoNDE: Mixture of Near-Data Experts for Large-Scale Sparse Models

Taehyun Kim^{1,2}, Kwanseok Choi¹, Youngmock Cho^{1,2}, Jaehoon Cho¹, Hyuk-Jae Lee^{1,2}, Jaewoong Sim¹ ¹Seoul National University ²Inter-University Semiconductor Research Center

1 Introduction

- Large-scale Mixture-of-Experts (MoE) models offer fixed-complexity computation but has massive memory capacity requirements that are out of reach for commodity GPU settings
- Existing solutions are highly bottlenecked by communication over PCIe We present a near-data processing solution designed on emerging CXL
- memory devices to resolve communication overhead in MoE inference

Figure 1. MoE Overview (left) and large language model scaling trend (right)

(2) Background & Motivation

- Memory Cost Analysis (Single FFN layer)
 - Linear scaling to E
 - Quadratic scaling to d_m (: e.g., $d_{ff} = 4 \cdot d_m$)

MoE
$k \cdot d_m \cdot d_{ff} \cdot T (k \times)$
$\cdot k \cdot d_m \cdot d_{ff} (k \times)$
·E·d _m ·d _{ff} (E ×)

 \times Input tokens **T**, experts **E**, embd. dims $d_m \& d_{ff}$, top-**k** routing

Figure 2. Cost formulation (left) and scaling trend comparison of a single expert and input token (right)

Existing Solutions

- Expert parallelism (resource-inefficient)
- Expert offloading (PCIe bottleneck)

Figure 3. PCIe bottleneck in expert offloading (left) and latency comparison of computation and PCIe transfer of a single expert (right)

Expert Skew

- Unbalanced token distribution to experts of an MoE layer
- A compute-to-memory ratio gap exist between the popular (hot) experts and the remaining (cold) experts

Figure 4. Histogram of NLLB-MoE expert routing for ranges of token counts (left) and roofline model wrt routed tokens (right)

Key insights

- Emerging CXL memory device technology offer large add-in memory capacity (and bandwidth)
- **Token data are much smaller** and easier to move across devices Cold experts can run with comparable performance on weaker **compute** with sufficiently large mem bandwidth (mem-bound)

(3) Mixture of Near-Data Experts

- \square Near-data processor (NDP) on CXL memory device : PMove \rightarrow AMove ☐ GPU-MoNDE Load-balancing : Run GPU & MoNDE in parallel
 - ☐ Run the hottest *H* experts on the GPU
 - \Box Find H such that expert movement latencies for <u>MoNDE \rightarrow GPU (a)</u> and MoNDE memory→NDP Core (b) are equalized

Parameter Movement (PMove)

Figure 5. Parameter and Activation Movement (PMove & AMove)

Device Memory 4

High capacity & bandwidth memory enabled by die bonding and stacking

Figure 6. MoNDE device architecture overview

Figure 7. MoNDE execution flow

(4) Evaluation and Conclusion

			_			
System	NVIDIA A100	MoNDE		Model	Switch Transformers	NLLB-MoE
BF16 Compute	312 TOPS	2 TOPS			(Top-1 gating)	(Top-2 gating)
Br 10 Compute	312 1073	2 1013			128 × 24 layers	128 × 12 layers
Memory	80 GB	512 GB	<u> </u>	Experts	(each 8.4 MB)	(each 33.6 MB)
	2 TB/s	512 GB/s		Model Size		
PCle	PCIe gen4 32 GB/s			(Dense/MoE)	1.1 GB / 51.5 GB	5.7 GB / 103.1 GB

Figure 8. MoNDE throughput evaluation settings (top) and results (bottom)

- \square Achieves 4.9× and 1.5× speedup for the encoder and decoder ops
- ☐ Resolves both capacity shortage and communication overhead for MoE LLM inference

Slides Author Bio.