

# Documento de Posicionamiento de ASHRAE sobre Calidad del Aire Interior (CAI)

Aprobado por el Comité de Dirección (BOD) de ASHRAE 1 de julio del 2020

> Caduca el 1 de julio del 2023

# MIEMBROS DEL COMITÉ

El documento de posicionamiento de ASHRAE sobre Calidad de Aire Interior (CAI) fue desarrollado por el Comité de Documentación de Posicionamiento de ASHRAE Aire Interior constituido el 26 de enero del 2018 siendo Donald Weekes Jr. Presidente.

# **Donald Weekes Jr. (Chair)**

In Air Environmental Ltd.
Ottawa, ON Canada

#### John P Lapotaire

Indoor Air Quality Solutions LLC Winter Springs, FL, USA

#### **Andrew Persily**

NIST Gaithersburg, MD USA

# **Jeffrey Siegel**

University of Toronto Toronto, ON Canada

# **Brent Stephens**

Illinois Institute of Technology Chicago, IL USA

#### lain Walker

Lawrence Berkeley Laboratory Berkeley, CA USA

# **Pawel Wargocki**

Technical University of Denmark Kongens Lyngby, Denmark

#### **Bruce White**

SGS Forensic Laboratories Fountain Valley, CA USA

# "Cognizant Committee"

El Presidente del Comité de Salud Ambiental de ASHRAE también fue miembro exoficio:

#### Wade Conlan

Hanson Professional Services Maitland, FL, USA

# HISTORIA DE LAS FECHAS DE REVISION/CONFIRMACIÓN/REVOCACIÓN

Resumen de las fechas de revisión, confirmación y revocación:

1989 - El BOD aprueba el Documento de Posicionamiento titulado "Indoor Air Quality"

28/06/2001 – El BOD aprueba la reafirmación del Documento de Posicionamiento titulado "Indoor Air Quality"

10/02/2005 – BOD aprueba la reafirmación del Documento de Posicionamiento titulado "Indoor Air Quality"

21/07/2011 – BOD aprueba la revisión del Documento de Posicionamiento titulado "Indoor Air Quality"

02/07/2014 – El Comité Tecnológico reafirma el Documento de Posicionamiento titulado "Indoor Air Quality"

28/06/2017 – El Comité Tecnológico reafirma el Documento de Posicionamiento titulado "Indoor Air Quality"

01/07/2020 – El BOD aprueba la revision del Documento de Posicionamiento titulado Calidad del Aire Interior

**Nota:** El Comité Tecnológico y el "Cognizant Committee" recomiendan la revisión, confirmación y revocación cada 30 meses.

**Nota:** Los documentos de posicionamiento de ASHRAE están aprobados por el Comité de Dirección (BOD) de ASHRAE y expresan la visión de la Sociedad en cuestiones específicas. La intención de estos documentos no es otra que aportar antecedentes objetivos, autorizados e informativos a personas interesadas en cuestiones donde ASHRAE tiene conocimientos y experiencia, en particular en áreas donde dicha información sea útil en la redacción de una política pública. Otro objetivo es también poder ser utilizado como herramienta educacional clarificando la posición de ASHRAE a sus miembros y profesionales en general, con el fin de hacer progresar las artes y las ciencias en materia de climatización y refrigeración.

# RESUMEN

La posición de ASHRAE respecto a la calidad del aire interior (CAI) es que proporcionar una buena CAI es un servicio esencial del edificio. Todas las decisiones con respecto a los edificios y los sistemas de climatización (HVAC) deben considerarse por sus implicaciones con la CAI. Esta posición aplica a todos los tipos de edificios incluidos los sostenibles y resilientes, donde se han adoptado medidas para reducir sus impactos medioambientales y su consumo de energía.

ASHRAE aconseja más esfuerzos de investigación sobre el impacto de la calidad del aire interior (CAI) en la salud, confort, bienestar, productividad y en los resultados en materia de aprendizaje de las personas y sobre el continuo desarrollo de las tecnologías requeridas para abordar la CAI en todo tipo de edificios.

ASHRAE se compromete en mantener y actualizar los estándares y directrices sobre calidad del aire interior (CAI) así como a utilizar su posición de liderazgo para promover la investigación, formación y mejores prácticas en CAI.

El anexo de este documento facilita evidencias para apoyar estos posicionamientos, incluidos los efectos de la calidad del aire interior (CAI), en la salud, confort, bienestar, productividad y en los resultados en materia de aprendizaje y los beneficios económicos y personales asociados a una calidad mejorada del aire interior.

# **RESUMEN EJECUTIVO**

La calidad del aire interior (CAI) lleva siendo desde hace muchos años una cuestión fundamental para ASHRAE y sus miembros debido a su interrelación con la ventilación y con otros sistemas de climatización (HVAC) en edificios. Desde 1973, los Estándares 62.1 de ASHRAE (para edificios comerciales e institucionales) y 62.2 (para edificios residenciales) desarrollados para apoyar una calidad adecuada del aire interior, han sido una referencia para los miembros de ASHRAE y otros profesionales de la CAI (ingenierías, contratistas, higienistas industriales). A través de sus documentos de posicionamiento, de sus estándares y directrices, de sus conferencias y de otras actividades, ASHRAE ha estado siempre interesada y preocupada por todos los aspectos relacionados con la CAI

El posicionamiento de ASHRAE se resume en los siguientes puntos:

- La calidad del aire interior (CAI) tiene un impacto sobre la salud, confort, bienestar, productividad y sobre los resultados en materia de aprendizaje de las personas. La mejora de la CAI aporta sustanciales beneficios saludables y económicos tanto desde una perspectiva general de salud pública, como individual a los ocupantes, usuarios y propiedades de edificios.
- Proporcionar una adecuada CAI es un servicio esencial de los edificios y un tema central para los objetivos de ASHRAE.
- El objetivo de alcanzar y mantener una buena calidad del aire interior (CAI) debe tenerse muy en cuenta en la toma de todas las decisiones que afectan al diseño y funcionamiento de los edificios y de los sistemas de climatización (HVAC), incluyendo los esfuerzos para mejorar la eficiencia energética, la sostenibilidad y la resiliencia de los edificios.
- La importancia de una buena CAI y los fundamentos para alcanzarla a través del diseño y funcionamiento de edificios, debe abordarse en los programas de formación.
- Los estándares ASHRAE sobre CAI deben adoptarse en los códigos y normativas de edificación.

# 1. LA CUESTIÓN

El aire interior es la vía principal de exposición a contaminantes presentes en el aire dado que las personas pasan la mayoría de su tiempo en interiores y que el aire interior contiene habitualmente numerosos contaminantes producidos por fuentes interiores y exteriores. Muchos de estos contaminantes tienen un impacto sobre la salud, confort, bienestar, productividad y sobre los resultados en materia de aprendizaje. Es importante que la calidad de aire interior (CAI) se considere en el diseño, construcción y funcionamiento de los edificios y de los sistemas de climatización (HVAC). ASHRAE y sus aliados tecnológicos están trabajando desde hace mucho tiempo en la mejora de la CAI a través de una gran variedad y numerosas actividades.

# 2. ANTECEDENTES

Este documento contiene un análisis de alto nivel sobre la CAI dado que ASHRAE ha publicado otros muchos documentos informativos sobre calidad del aire interior (CAI) como el "Handbook-Fundamentals" (en particular los Capítulos del 9 al 12) y las dos guías sobre CAI: "Indoor Air Quality Guide – Best Practices for Design, Construction and Commissioning" y "Residential Indoor Air Quality Guide: Best Practices for acquisition, design, construction, maintenance and operation".

Además, hay otras muchas e importantes cuestiones sobre CAI que no se tratan aquí ya que están disponibles en otros Documentos de Posicionamiento que abordan temas específicos como son las enfermedades infecciosas transmitidas por vía aérea, el humo ambiental de tabaco, los dispositivos de combustión en recintos cerrados y la CAI, la filtración y purificación del aire y la limitación de humedades y crecimiento de moho en edificios. En su lugar, este documento se enfoca en la formulación de recomendaciones sobre amplios y diversos aspectos de la CAI que incluyen políticas, investigación y formación.

#### 2.1 Visión

El todavía creciente conjunto de publicaciones técnicas se resume en el anexo de este documento y demuestra que: (1) la CAI tiene un impacto sobre la salud, confort y bienestar, productividad y capacidad de aprendizaje de los ocupantes de los edificios y, por tanto, (2) la mejora de la CAI aporta beneficios a nivel individual y social.

La CAI se refiere a los tipos y concentraciones de contaminantes presentes en el aire y detectados en los edificios. Aunque no hay una definición universalmente aceptada de "buena "CAI existen tres enfoques ampliamente aceptados para la mejora de esta en edificios:

#### Control de fuente

- Utilizar materiales de construcción, mobiliario, aparatos y productos de consumo con baja emisión de contaminantes.
- Minimizar las fuentes interiores de contaminantes generados por las actividades de sus ocupantes.

- Eliminar contaminantes del aire exterior mediante su filtración y purificación antes de que entren en el edificio y
- Diseñar, gestionar y mantener la envolvente de los edificios, los sistemas de climatización (HVAC) y las instalaciones de fontanería para reducir la probabilidad de que aparezcan problemas de humedades y/o mitigarlos rápidamente cuando se produzcan.

#### Ventilación

 Asegurarse de que se suministra aire exterior limpio a los espacios ocupados con el fin de diluir de manera efectiva y eliminar los contaminantes emitidos por las fuentes interiores y de que el aire es extraído en la proximidad de las fuentes interiores localizadas

#### Purificación del Aire

 Utilizar tecnologías efectivas de purificación de aire para eliminar contaminantes del aire exterior de ventilación y del aire interior recirculado.

Los análisis coste-beneficio estiman que la salud y los beneficios económicos asociados a una mejor CAI son superiores a sus costes de implantación. Además, existen muchas estrategias y otras que continúan apareciendo con el fin de lograr una buena CAI con un impacto reducido en el consumo energético. Últimamente se requiere un enfoque integrado del diseño, que considere la CAI y el consumo de energía, así como otros aspectos clave del rendimiento de edificios, como son el impacto sobre el emplazamiento, el consumo de agua, además de otros medioambientales con el fin de lograr edificios de alto rendimiento eficientes energéticamente y con una buena CAI. Para más información respecto al diseño integrado en el contexto de la CAI se recomienda consultar la guía "ASHRAE IAQ Design Guide"

#### 2.2 Actividades de ASHRAE en apoyo a la CAI

ASHRAE aporta recursos técnicos, coordina y financia proyectos de investigación, organiza conferencias e imparte formación a profesionales sobre CAI. También ASHRAE ha desarrollado y contínua apoyando la elaboración de estándares, directrices y otros recursos relacionados con la mejora de la CAI. Como ejemplo, ASHRAE divulga los siguientes estándares que abordan específicamente la CAI:

- Estándar 62.1 de ANSI/ASHRAE Ventilación para una Calidad Adecuada de Aire Interior. Este Estándar fue publicado por primera vez en 1973 y establece la ventilación mínima y otros requisitos de CAI para edificios que no sean residenciales, o de atención sanitaria. Los requisitos de tasas de ventilación con aire exterior han sido adoptados por códigos tales como el "International Mechanical Code" y el "Uniform Mechanical Code" que son dos de los códigos de edificación más frecuentemente utilizados en Estados Unidos. Este estándar es una referencia en la mayoría de los programas de edificación verde, incluida la certificación LEED del USGBC.
- Estándar 62.2 de ANSI/ASHRAE, "Ventilation and Acceptable Indoor Air Quality in Residential Buildings". Este estándar fue publicado por primera vez en el 2003 y trata los edificios de uso residencial. Los requisitos mínimos de ventilación de este estándar han sido adoptados e incluidos en códigos tales como el

- "California's Title 24", el "LEED for Homes" y el "U.S. Environmental Protection Agency's (EPA) Indoor airPlus program".
- Estándar 170 de ANSI/ASHRAE/ASHE, "Ventilation of Health Care Facilities". Integra varios documentos aplicados en Estados Unidos en un único estándar. Es muy utilizado para requisitos de ventilación en códigos de edificación de hospitales y de otros centros de atención sanitaria.
- Estándar 189.1 de ANSI/ASHRAE/ICC/USGBC/IES, "Standard for the Design of High-Performance, Green Buildings Except Low-Rise Residential Buildings". Desarrollado en colaboración con el "U.S. Green Building Council, USGBC", el "International Code Council" y la "Illuminating Engineering Society (IES)", este estándar facilita los requisitos de CAI más allá de los aportados por el Estándar 62.1. Este estándar fue desarrollado para adoptarse como parte de los sistemas voluntarios de calificación sostenible/verde, de los programas de incentivos para edificación verde y de los códigos locales de edificación. La versión más reciente del estándar (2017) se utiliza como contenido técnico del "2018 International Green Construction Code".

Además, ASHRAE ha publicado un número de directrices y guías de diseño para asesorar a los profesionales en conseguir una buena CAI en edificios, entre otras:

- ASHRAE "Indoor Air Quality Guide Best Practices for Design, Construction, and Commissioning". Esta guía es el resultado de un esfuerzo colaborativo entre 6 organizaciones líderes en el sector de la edificación y presenta las mejores prácticas para el diseño, construcción y commissioning que han demostrado su éxito en proyectos de edificación. Facilita información y herramientas para arquitectos e ingenieros de diseño que pueden aplicarse con el fin de lograr edificios sensibles a la CAI, integrándola en los procesos de diseño y construcción junto con otros objetivos de diseño, de restricciones de presupuesto y de requisitos funcionales.
- ASHRAE "Residential Indoor Air Quality Guide: Best Practices for Acquisition, Design, Construction, Maintenance and Operation" aborda cuestiones de CAI en edificios residenciales.

Una lista más completa de estándares, directrices y otras publicaciones relevantes de ASHRAE se citan en el anexo de este documento.

# 3. RECOMENDACIONES

- ASHRAE sostiene los siguientes posicionamientos:
  - La calidad del aire interior, CAI, es esencial para la salud, confort, bienestar, productividad y para los resultados en materia de aprendizaje de las personas.
     La mejora de la CAI aporta sustanciales beneficios saludables y económicos tanto desde una perspectiva general de salud pública como individual a los ocupantes, usuarios y propiedades de edificios.

- Proporcionar una adecuada CAI es un servicio esencial de los edificios y un tema central para los objetivos de ASHRAE.
- El objetivo de alcanzar y mantener una buena calidad del aire interior (CAI) debe considerarse en la toma de todas las decisiones que afectan al diseño y funcionamiento de los edificios y de los sistemas de climatización (HVAC), incluyendo los esfuerzos para mejorar la eficiencia energética, la sostenibilidad y la resiliencia de los edificios.
- La importancia de la CAI y los fundamentos para alcanzar una buena CAI a través del diseño y funcionamiento de los edificios debe abordarse en los programas de formación
- Los estándares ASHRAE sobre CAI deben adoptarse en los códigos y normativas de edificación.
- ASHRAE recomienda tanto la investigación fundamental y aplicada en CAI, como el desarrollo de estándares en los siguientes temas:
  - Relación entre las tasas de ventilación y las concentraciones de contaminantes para la salud, confort, bienestar, productividad y capacidad de aprendizaje de los ocupantes.
  - Planteamientos para mejora de la CAI más allá de la ventilación por dilución, como por ejemplo la purificación del aire y el control de fuentes de contaminantes.
  - Desarrollo de herramientas para permitir la evaluación económica de los beneficios de la CAI para edificios individuales y conjuntos de edificios.
  - Desarrollo de dispositivos de monitorización y equipos de climatización para controlar la CAI por medición de los contaminantes.
  - o Desarrollo de herramientas de diagnóstico para el commissioning y mantenimiento de los sistemas de ventilación y otros relacionados con la CAI.
  - o Función de la CAI en la sostenibilidad y resiliencia de edificios.
  - Desarrollo de sistemas y soluciones de control de la CAI que contribuyan a otros objetivos del edificio, como la reducción del consumo de energía y de las emisiones de gases de efecto invernadero y el apoyo a la integración de redes.
  - Investigación de nuevos contaminantes que preocupan y desarrollo de tecnologías y planteamientos para abordarlos.

#### ASHRAE se compromete a:

- Mantener y actualizar los estándares, directrices, guías y manuales sobre CAI
- o Integrar los principios de la CAI en sus programas de formación de profesionales
- Fomentar la investigación sobre CAI, incluyendo el desarrollo de herramientas y aplicaciones
- Utilizar su posición de liderazgo en desarrollar colaboraciones con organizaciones internacionales para promocionar la investigación, formación y mejores prácticas

sobre CAI.

# 4. REFERENCIAS

- ASHRAE 2020a. Position Document on Infectious Aerosols
- ASHRAE 2020b. Position Document on Environmental Tobacco Smoke
- ASHRAE 2020c. Position Document on Unvented Combustion Devices and IAQ
- ASHRAE, 2019a. ANSI/ASHRAE Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality.
- ASHRAE, 2019b. ANSI/ASHRAE Standard 62.2-2019: Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings.
- ASHRAE (Ed.), 2018a. Residential indoor air quality guide: best practices for acquisition, design, construction, maintenance and operation, ASHRAE. ASHRAE, Atlanta, GA.
- ASHRAE, 2018b. ASHRAE Position Document on Filtration and Air Cleaning.
- ASHRAE, 2018c. ASHRAE Position Document on Limiting Indoor Mold and Dampness in Buildings
- ASHRAE, 2017a. Handbook-Fundamentals. Atlanta: ASHRAE.
- ASHRAE. 2017b. ANSI/ASHRAE Standard 170-2017, Ventilation of Health Care Facilities. Atlanta: ASHRAE.
- ASHRAE. 2017c. ANSI/ASHRAE/ICC/USGBC/IES Standard 189.1, Standard for the Design of High-Performance, Green Buildings Except Low-Rise Residencial Buildings
- ASHRAE (Ed.), 2009. Indoor air quality guide: best practices for design, construction, and commissioning. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.
- ICC, 2018. 2018 Interntional Green Construction Code (IgCC)

#### A. ANEXO

Este anexo resume la literatura más relevante en apoyo al Documento de Posicionamiento de ASHRAE sobre Calidad de Aire Interior (CAI) y aporta un contexto complementario para los posicionamientos y recomendaciones contenidas en este documento.

#### A.1 ¿Qué es la calidad del aire interior?

Para los objetivos de este documento, la calidad del aire interior (CAI) se refiere a los tipos y concentraciones de contaminantes conocidos del aire interior o se sospecha que pueden afectar al confort, bienestar, salud, productividad y a la capacidad de aprendizaje de las personas. Las clases principales de estos contaminantes incluyen materia particulada (tanto biológica, como patógenos potenciales y no biológica), gases orgánicos (por ejemplo, compuestos orgánicos volátiles o semivolátiles) y gases inorgánicos (por ejemplo, monóxido de carbono, ozono y óxidos de nitrógeno). Otros factores que contribuyen a la CAI incluyen vapor de agua y olores. Las concentraciones de contaminantes en el aire interior están influidos por las concentraciones de contaminantes en el aire exterior, por la ventilación e infiltración, por las emisiones interiores y por un número de fuentes de otros contaminantes específicos y mecanismos en sumideros (por ejemplo, sedimentación, reacciones químicas y purificación de aire).

La CAI impacta sobre las personas por su exposición a contaminantes por inhalación, ingestión o por vía cutánea. La exposición humana a contaminantes presentes en el aire en ambientes interiores es normalmente superior que en espacios al aire libre (por ejemplo, Meng et al., 2009; Morawska et al., 2013; Sexton et al., 2004; Wallace, 2000; Wallace et al., 1991, 1985) y la mayor parte de exposición humana a contaminantes del aire exterior se produce normalmente en espacios interiores (por ejemplo, Asikainen et al., 2016; Azimi and Stephens, 2018; Chen et al., 2012, 2012; Logue et al., 2012; Weschler, 2006). Estas exposiciones elevadas surgen por el gran tiempo que las personas pasan en espacios interiores (Klepeis et al., 2001) y por las concentraciones más altas de contaminantes en espacios interiores que al aire libre (por ejemplo, Abt et al., 2000; Adgate et al., 2004; Meng et al., 2005; Rodes et al., 2010; Wallace et al., 1991; Zhang et al., 1994).

Si bien este anexo no aborda las condiciones hidrotérmicas, las recomendaciones de este documento de posicionamiento reconoce los efectos de los niveles de temperatura y humedad sobre la CAI mediante los cambios en las tasas de emisión de contaminantes, el crecimiento de microorganismos en las superficies de los edificios, la supervivencia de patógenos infecciosos en el aire o en las superficies, la supervivencia de ácaros en el polvo doméstico (fuente de alérgenos), la percepción de las personas sobre la CAI y, últimamente los efectos de las humedades y de los problemas asociados a ella (por ejemplo, moho, hongos o ácaros) en la prevalencia de los síntomas asociados a edificios.

# A.2 ¿Cómo la CAI impacta sobre la salud, confort, bienestar, productividad y capacidad de aprendizaje?

La CAI tiene un impacto sobre la salud, confort, bienestar, productividad y capacidad de aprendizaje de los ocupantes (Jones, 1999; Spengler and Sexton, 1983; Sundell, 2004). Hay un pequeño pero creciente número de publicaciones epidemiológicas que ha sido especialmente vinculado a exposiciones a contaminantes en espacios interiores o a fuentes, con varias y adversas consecuencias, incluyendo pero no limitándose a aparatos de combustión (por ejemplo, estufas de gas) y enfermedades respiratorias en niños (por ejemplo, Garrett et al., 1998; Kile et al., 2014; Lanphear et al., 2001; Melia et al., 1977); compuestos orgánicos volátiles (COV's) y asma infantil (por ejemplo, Rumchev, 2004); productos químicos para el hogar y síntomas respiratorios en niños ( por ejemplo, Sherriff, 2005) y asma en adultos (e.g., Zock et al., 2007); ftalatos y síntomas de asma y alergia en niños (e.g., Bornehag et al., 2004; Jaakkola and Knight, 2008; Kolarik et al., 2008); alérgenos de animales y asma infantil (e.g., Lanphear et al., 2001); exposición al radón y cáncer de pulmón (Samet, 1989); enfermedades infecciosas trasmitidas por vía aérea tales como tuberculosis pulmonar (Burrell, 1991), síndromes respiratorios severos y agudos (SARS) (Li et al., 2007), y resfriados comunes (Myatt et al., 2004); e intoxicación por monóxido de carbono (CO) (Ernst and Zibrak, 1998); entre otros.

Se han hecho algunos intentos de cuantificar la carga de los efectos sobre la salud asociados a la exposición crónica (por ejemplo, a largo plazo) a contaminantes en el aire interior. Por ejemplo, Logue et al. (2011) y Logue et al. (2012) estimaron los impactos sobre la salud por exposición a largo plazo a contaminantes habitualmente detectados en viviendas en E.U. utilizando el "Disability Adjusted Life Years, DALYs" para establecer la jerarquía de los contaminantes motivo de preocupación. De manera similar, Asikainen et al. (2016) estimaron la carga anual de enfermedades causadas por exposición a contaminantes presentes en el aire en edificios residenciales de la Unión Europea en aproximadamente 2,1 millones de DALYs por año, debido principalmente a la exposición a material fino particulado (diámetro ≤ 2.5 μm; PM<sub>2.5</sub>) originado por fuentes exteriores seguidas por PM<sub>2.5</sub> procedente de fuentes interiores.

Además, las humedades excesivas en edificios están asociadas a una gran variedad de problemas, incluido el moho, los ácaros del polvo y bacterias. También la exposición a ambientes húmedos se asocia con problemas respiratorios incluido el asma (e.g., Heseltine et al., 2009; IOM, 2004; Kanchongkittiphon et al., 2014; Mendell et al., 2011). Los contaminantes en espacios interiores pueden actuar como sustancias irritantes de órganos respiratorios, como sustancias tóxicas y como adyuvantes o portadores de alérgenos (Bernstein et al., 2008) y pueden afectar negativamente a la productividad de las personas (Wargocki et al., 1999) y causar problemas de olor. Hay evidencias recientes que también sugieren que contaminantes en el aire interior pueden reducir la función cognitiva (Allen et al., 2016; Satish et al., 2012).

Una de las quejas más comunes es la recurrencia de síntomas relacionados con el edificio, incluyendo la irritación de garganta, nariz y ojos, la dificultad de concentrarse y pensar con claridad, dolores de cabeza, fatiga y letargo, síntomas de vías respiratorias altas e irritación de la piel y erupciones así como falta generalizada de bienestar (por ejemplo, Bluyssen et al., 1996; Mendell, 1993; Mendell and Smith, 1990; World Health Organization, 1983). El término "síndrome del edificio enfermo, (SEE)" ha sido utilizado para describir una recurrencia excesiva de estos síntomas, sin que se atribuya concretamente a patógenos específicos o enfermedades o características del edificio y es considerado más como un término informativo que como síntomas relacionados con el edificio (Redlich et al., 1997). El término "enfermedades relacionadas con el edificio" se refiere a enfermedades incluidas la neumonitis por hipersensibilidad y la legionelosis o enfermedad del legionario que se asocian a la exposición específica a patógenos u otros contaminantes presentes en el edificio (Bardana et al., 1988).

# A.3 ¿Cuáles son las vías más efectivas para mejorar la CAI?

El enfoque principal para mejorar la CAI es el control de fuentes tanto interiores como exteriores (Carrer et al., 2018; Nazaroff, 2013). La reducción o minimización de fuentes interiores de contaminantes puede lograrse mediante la selección de materiales de construcción, mobiliario y productos de mantenimiento que tengan tasas bajas de emisión, limitando el uso de perfumes o fragancias por parte de los ocupantes (Steinemann et al., 2011) y minimizando las emisiones por las actividades humanas, colocando felpudos, por ejemplo (Farfel et al., 2001; Layton and Beamer, 2009). Otra estrategia de control de fuentes consiste en la ventilación por extracción local que elimina contaminantes antes de que tengan la oportunidad de mezclarse en espacios ocupados, por ejemplo en equipos de cocinas/campanas (Delp and Singer, 2012; Lunden et al., 2015) y espacios con elevada humedad, como los cuartos de baño o de lavandería.

Otro elemento de control de fuentes es mantener los edificios secos, como por ejemplo minimizando las fuentes interiores de vapor de agua mediante el control de fuentes y de la humedad utilizando humidificadores y deshumidificadores así como diseñando y construyendo envolventes de edificio y sistemas de climatización (HVAC) para limitar los problemas de humedades (ASHRAE, 2018a, 2009; Heseltine et al., 2009). Los accidentes esporádicos relacionados con el agua que invariablemente suceden (por ejemplo, inundaciones, fugas, etc.) deben gestionarse rápida y efectivamente para prevenir daños por agua y por humedades persistentes.

Después de un control efectivo de fuentes, la ventilación se utiliza para diluir los contaminantes en espacios interiores mediante aire exterior limpio. La revisión de publicaciones especializadas muestra que el aumento de las tasas de ventilación mejora la salud (por ejemplo., Carrer et al., 2015; Sundell et al., 2011). La ventilación para mejorar la CAI debería también incluir la minimización de la entrada de contaminantes desde el exterior en medioambientes con contaminación atmosférica (por ejemplo, Liu and Nazaroff, 2001; Singer et al., 2016; Stephens et al., 2012; Stephens and Siegel, 2012; Walker and Sherman, 2013), (por reducción de fugas en la

envolvente o filtración efectiva del aire exterior suministrado).

La tercera estrategia después del control de fuentes y de la ventilación es purificar el aire interior por filtración de partículas y por eliminación de gases contaminantes. El Documento de Posicionamiento de ASHRAE "Filtration and Air Cleaning (ASHRAE, 2018b)" y la Guía "U.S. Environmental Protection Agency's Guide to Air Cleaners in the Home (US EPA, 2018)" abordan muchas cuestiones importantes relativas a la filtración y purificación del aire así como las revisiones recientes de publicaciones especializadas (e.g., Fisk, 2013; Zhang et al., 2011). Por ejemplo, se ha demostrado que los filtros de partículas reducen las concentraciones de partículas presentes en el aire interior y algunas evidencias empíricas muestran que su utilización tiene efectos positivos sobre la salud. Igualmente, algunos purificadores de aire con material absorbente son efectivos para reducir la concentración de gases contaminantes, aunque son mínimos los datos empíricos sobre su impacto en la salud.

La compleja relación entre la CAI y las condiciones externas ambientales, unida a los efectos del cambio climático, necesita un giro hacia diseños y funcionamiento de edificios que no sólo sean confortables y saludables para sus ocupantes, sino también sostenibles. Por lo general se cree que sólo se consigue una buena CAI incrementando el consumo energético. Sin embargo, muchas estrategias permiten conseguir una elevada CAI y una reducción del consumo energético, incluyendo una mayor estanquidad de la envolvente, una ventilación con recuperación de calor, una ventilación controlada por demanda y un mantenimiento mejorado de sistemas (Persily and Emmerich, 2012). Además, se han desarrollado estrategias más dinámicas de ventilación que permiten su programación y otras metodologías variables de ventilación como la ventilación inteligente (por ejemplo, Rackes and Waring, 2014; Sherman et al., 2012; Sherman and Walker, 2011).

# A.4 ¿Cuáles son los costes y beneficios asociados a la mejora de la CAI?

Los costes socioeconómicos de la contaminación del aire pueden ser sustanciales (Asikainen et al., 2016; Boulanger et al., 2017; Jantunen et al., 2011). Se estima que el suministro de una mejor CAI tiene importantes beneficios económicos (por ejemplo, Aldred et al., 2016a, 2016b; Bekö et al., 2008; Brown et al., 2014; Chan et al., 2016; Fisk et al., 2012, 2011; Fisk and Chan, 2017; MacIntosh et al., 2010; Montgomery et al., 2015; Rackes et al., 2018; Zhao et al., 2015). Los beneficios económicos se traducen en una mayor productividad laboral (por ejemplo, Allen et al., 2016; Wargocki and Wyon, 2017), en una mejora en la capacidad de aprendizaje (por ejemplo, Haverinen-Shaughnessy et al., 2011; Wargocki and Wyon, 2013), en un menor absentismo (por ejemplo, Milton et al., 2000) y en una reducción de los costes sanitarios. En los puestos de trabajo, medidas que se materializan en sólo pequeñas mejoras del rendimiento serán a menudo efectivas económicamente ya que en países desarrollados, los costes salariales (por ejemplo, salarios, prestaciones sanitarias) exceden con creces los costes de mantenimiento de una buena CAI (Wargocki et al., 2006; Woods, 1989). También son posibles otros beneficios económicos complementarios por reducción de

costes de mantenimiento y eliminación de investigaciones sobre la CAI y de medidas de corrección por un diseño, construcción y funcionamiento de edificios con el objetivo de reducir la probabilidad de que se produzcan problemas serios de CAI, tales como la propagación de humedades y crecimiento de moho.

Algunos estudios que han estimado los costes y beneficios de las mejoras en las estrategias de control de fuentes, ventilación y tecnologías de purificación de aire, se resumen a continuación:

Control de fuentes: Wargocki and Djukanovic (2005) estimaron los costes asociados a la mejora de la CAI por reducción de la carga de las fuentes de contaminación en un edificio hipotético. Las inversiones adicionales en energía, los costes iniciales de climatización y mantenimiento y los costes de construcción del edificio fueron mucho más racionales, con amortizaciones inferiores a dos años y retornos de la inversión de 4 a 7 veces superiores al tipo supuesto de interés del 3.2%. Sin embargo, ningún análisis específico ha sido llevado a cabo para estimar la proporción de estos efectos que podría atribuirse al control de fuentes y la proporción al incremento de las tasas de ventilación. Asikainen et al. (2016) estimaron que una reducción del 25 % de fuentes interiores PM<sub>2.5</sub>, una reducción del 50% de los COV's y de humedad en interiores y una reducción del 90% del radón, monóxido de carbono y humos de segunda mano en edificios residenciales de la Unión Europea podían reducir la carga de enfermedades asociadas a la exposición al aire interior residencial en aproximadamente un 44%.

Ventilación: Fisk et al. (2011) estimaron que el beneficio económico anual combinado y potencial por implantar una combinación de mejoras de la CAI en oficinas de E.U. (incluyendo un incremento de las tasas de ventilación, instalando economizadores de aire exterior, eliminando elevadas temperaturas ambientes en interiores durante el invierno y reduciendo los problemas de humedades y moho) es aproximadamente de 20.000 millones de dólares /año. Igualmente, Fisk et al. (2012) estimaron que los beneficios económicos por incrementar las tasas mínimas de ventilación en oficinas en E.U. excedían con creces los costes energéticos. Y que la instalación de economizadores permitía una mejora de la salud y de la productividad, una reducción del absentismo y ahorros de energía. Dorgan et al. (1998) estimaron los costes de mejorar la ventilación en un 40% en aquellos edificios de oficinas de E.U. considerados como no saludables (sin cumplir el Estándar 62.1); el tiempo de amortización de tal actividad se estimó por debajo de 1,4 años como consecuencia de los beneficios para la salud y del incremento resultante de la productividad. Rackes et al. (2018) introdujo un marco de trabajo de ventilación basado en resultados para evaluar los rendimientos, la salud y los impactos energéticos en la toma de decisiones sobre las tasas de ventilación en edificios de oficinas de E.U. y estimaron que los beneficios económicos de incrementar las tasas de ventilación en oficinas, son sistemáticamente mayores que los costes energéticos adicionales o los costes adversos sobre la salud asociados con la introducción de más contaminantes exteriores a través del incremento de ventilación.

**Filtración y Purificación de Aire:** Bekö et al. (2008) estimaron que los beneficios en la productividad y en la salud debidos a filtros de alta eficiencia excederían sus costes por encima de un factor 10 en el ejemplo de un edificio de oficinas. Montgomery et al.

(2015) estimaron los ratios beneficios/coste de hasta un 10% por mejora de la filtración en edificios de oficinas de varias ciudades. Fisk and Chan (2017) igualmente estimaron ratios beneficio/coste entre un 3 y un 133 por el montaje de filtros y/o purificadores de aire portátiles tanto en edificios residenciales como comerciales. En los estudios arriba mencionados todos los costes sanitarios evitados fueron los mayores beneficios de la purificación de aire. Estos y otros estudios de los costes y beneficios de la filtración y purificación del aire fueron revisados en Alavy and Siegel (2019).

Ciertos estudios sobre la base de entrevistas a responsables en la toma de decisiones en la industria de la construcción en los E.U. mostraron que tienden a subestimar los impactos positivos de la mejora de la ventilación y filtración a la vez que sobreestimaban los costes (Hamilton et al., 2016). Estas conclusiones sugieren la necesidad de actividades de formación para informar al sector sobre los costes y beneficios de lograr una buena CAI.

#### A.5 Resumen

Es evidente que la conclusión de los trabajos mencionados en este anexo sobre la calidad del aire interior es que la CAI en un edificio es un servicio esencial y de vital importancia para sus ocupantes, propiedades, equipos de diseño y, por tanto, para ASHRAE. Los impactos económicos y sobre la salud de la CAI son significativos y, resulta fundamental abordar la CAI en todas las fases de planificación, diseño y funcionamiento de los edificios. Los enfoques actuales del diseño y de las tecnologías incluyen el cumplimiento de requisitos mínimos (por ejemplo para ventilación, como proponen los Estándares 62.1 y 62.2 de ASHRAE) y subsiguientes guías para prestaciones más allá de los requisitos mínimos (por ejemplo, las guías CAI de diseño de ASHRAE).

# **ANEXO DE REFERENCIAS**

- Abt, E., Suh, H.H., Catalano, P., Koutrakis, P., 2000. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ. Sci. Technol. 34, 3579–3587. https://doi.org/10.1021/es990348y
- Adgate, J.L., Church, T.R., Ryan, A.D., Ramachandran, G., Fredrickson, A.L., Stock, T.H., Morandi, M.T., Sexton, K., 2004. Outdoor, indoor, and personal exposure to VOCs in children. Environ. Health Perspect. 112, 1386–1392.
- Alavy, M., Siegel, J.A., 2019. IAQ and energy implications of high efficiency filters in residential buildings: A review (RP-1649). Science and Technology for the Built Environment 25, 261–271. https://doi.org/10.1080/23744731.2018.1526012
- Aldred, J., Darling, E., Morrison, G., Siegel, J., Corsi, R., 2016a. Analysis of the cost effectiveness of combined particle and activated carbon filters for indoor ozone removal in buildings. Science and Technology for the Built Environment 22, 227–236. https://doi.org/10.1080/23744731.2016.1122500
- Aldred, J., Darling, E., Morrison, G., Siegel, J., Corsi, R., 2016b. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes. Indoor Air 26, 501–512. https://doi.org/10.1111/ina.12220
- Allen, J.G., MacNaughton, P., Satish, U., Santanam, S., Vallarino, J., Spengler, J.D., 2016. Associations of Cognitive Function Scores with Carbon Dioxide, Ventilation, and Volatile Organic Compound Exposures in Office Workers: A Controlled Exposure Study of Green and Conventional Office Environments. Environmental Health Perspectives 124, 805–812. https://doi.org/10.1289/ehp.1510037
- ASHRAE. 2020. Technical Guidance from the ASHRAE Epidemic Task Force, www.ashrae.org/covid19
- ASHRAE, 2019a. ANSI/ASHRAE Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality.
- ASHRAE, 2019b. ANSI/ASHRAE Standard 62.2-2019: Ventilation and Acceptable Indoor Air Quality in Low-Rise Residential Buildings.
- ASHRAE (Ed.), 2018a. Residential indoor air quality guide: best practices for acquisition, design, construction, maintenance and operation, ASHRAE. ASHRAE, Atlanta, GA.
- ASHRAE, 2018b. ASHRAE Position Document on Filtration and Air Cleaning.
- ASHRAE (Ed.), 2009. Indoor air quality guide: best practices for design, construction, and commissioning. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA.
- Asikainen, A., Carrer, P., Kephalopoulos, S., Fernandes, E. de O., Wargocki, P., Hänninen, O., 2016. Reducing burden of disease from residential indoor air exposures in Europe (HEALTHVENT project). Environ Health 15, S35. https://doi.org/10.1186/s12940-016-0101-8
- Azimi, P., Stephens, B., 2018. A framework for estimating the US mortality burden of fine particulate matter exposure attributable to indoor and outdoor microenvironments. Journal of Exposure Science & Environmental Epidemiology. https://doi.org/10.1038/s41370-018-0103-4
- Bardana, E.J., Montanaro, A., O'Hollaren, M.T., 1988. Building-related illness. A review of available scientific data. Clin Rev Allergy 6, 61–89.

- Bekö, G., Clausen, G., Weschler, C., 2008. Is the use of particle air filtration justified? Costs and benefits of filtration with regard to health effects, building cleaning and occupant productivity. Building and Environment 43, 1647–1657. https://doi.org/10.1016/j.buildenv.2007.10.006
- Bernstein, J.A., Alexis, N., Bacchus, H., Bernstein, I.L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A., Tarlo, S.M., 2008. The health effects of nonindustrial indoor air pollution. Journal of Allergy and Clinical Immunology 121, 585–591. https://doi.org/10.1016/j.jaci.2007.10.045
- Bluyssen, P.M., Oliveira Fernandes, E., Groes, L., Clausen, G., Fanger, P.O., Valbjorn, O., Bernhard, C.A., Roulet, C.A., 1996. European Indoor Air Quality Audit Project in 56 Office Buildings. Indoor Air 6, 221–238. https://doi.org/10.1111/j.1600-0668.1996.00002.x
- Bornehag, C.-G., Sundell, J., Weschler, C.J., Sigsgaard, T., Lundgren, B., Hasselgren, M., Hägerhed-Engman, L., 2004. The Association between Asthma and Allergic Symptoms in Children and Phthalates in House Dust: A Nested Case-Control Study. Environmental Health Perspectives 112, 1393–1397. https://doi.org/10.1289/ehp.7187
- Boulanger, G., Bayeux, T., Mandin, C., Kirchner, S., Vergriette, B., Pernelet-Joly, V., Kopp, P., 2017. Socio-economic costs of indoor air pollution: A tentative estimation for some pollutants of health interest in France. Environment International 104, 14–24. https://doi.org/10.1016/j.envint.2017.03.025
- Brown, K.W., Minegishi, T., Allen, J., McCarthy, J.F., Spengler, J.D., MacIntosh, D.L., 2014. Reducing Patients' Exposures to Asthma and Allergy Triggers in their Homes: An Evaluation of Effectiveness of Grades of Forced Air Ventilation Filters. Journal of Asthma 51, 585–94. https://doi.org/10.3109/02770903.2014.895011
- Burrell, R., 1991. Microbiological agents as health risks in indoor air. Environ. Health Perspect. 95, 29–34.
- Carrer, P., de Oliveira Fernandes, E., Santos, H., Hänninen, O., Kephalopoulos, S., Wargocki, P., 2018. On the Development of Health-Based Ventilation Guidelines: Principles and Framework. IJERPH 15, 1360. https://doi.org/10.3390/ijerph15071360
- Carrer, P., Wargocki, P., Fanetti, A., Bischof, W., De Oliveira Fernandes, E., Hartmann, T., Kephalopoulos, S., Palkonen, S., Seppänen, O., 2015. What does the scientific literature tell us about the ventilation—health relationship in public and residential buildings? Building and Environment 94, 273–286. https://doi.org/10.1016/j.buildenv.2015.08.011
- Chan, W.R., Parthasarathy, S., Fisk, W.J., McKone, T.E., 2016. Estimated effect of ventilation and filtration on chronic health risks in U.S. offices, schools, and retail stores. Indoor Air 26, 331–343. https://doi.org/10.1111/ina.12189
- Chen, C., Zhao, B., Weschler, C.J., 2012. Indoor exposure to "outdoor PM10." Epidemiology 23, 870–878. https://doi.org/10.1097/EDE.0b013e31826b800e
- Delp, W.W., Singer, B.C., 2012. Performance Assessment of U.S. Residential Cooking Exhaust Hoods. Environmental Science & Technology 46, 6167–6173. https://doi.org/10.1021/es3001079

- Dorgan, C. B., Dorgan, C. E., Kanarek, M. S., & Willman, A. J. (1998). Health and productivity benefits of improved indoor air quality. ASHRAE Transactions, 104, 658.
- Ernst, A., Zibrak, J.D., 1998. Carbon Monoxide Poisoning. New England Journal of Medicine 339, 1603–1608. https://doi.org/10.1056/NEJM199811263392206
- Farfel, M.R., Orlova, A.O., Lees, P.S.J., Bowen, C., Elias, R., Ashley, P.J., Chisolm, J.J., 2001. Comparison of Two Floor Mat Lead Dust Collection Methods and Their Application in Pre-1950 and New Urban Houses. Environmental Science & Technology 35, 2078–2083. https://doi.org/10.1021/es0013071
- Fisk, W.J., 2013. Health benefits of particle filtration. Indoor Air 23, 357–368. https://doi.org/10.1111/ina.12036
- Fisk, W.J., Black, D., Brunner, G., 2012. Changing ventilation rates in U.S. offices: Implications for health, work performance, energy, and associated economics. Building and Environment 47, 368–372. https://doi.org/10.1016/j.buildenv.2011.07.001
- Fisk, W.J., Black, D., Brunner, G., 2011. Benefits and costs of improved IEQ in U.S. offices: Benefits and costs of improved IEQ in U.S. offices. Indoor Air 21, 357–367. https://doi.org/10.1111/j.1600-0668.2011.00719.x
- Fisk, W.J., Chan, W.R., 2017. Effectiveness and cost of reducing particle-related mortality with particle filtration. Indoor Air. https://doi.org/10.1111/ina.12371
- Garrett, M.H., Hooper, M.A., Hooper, B.M., Abramson, M.J., 1998. Respiratory Symptoms in Children and Indoor Exposure to Nitrogen Dioxide and Gas Stoves. American Journal of Respiratory and Critical Care Medicine 158, 891–895.
- Hamilton, M., Rackes, A., Gurian, P.L., Waring, M.S., 2016. Perceptions in the U.S. building industry of the benefits and costs of improving indoor air quality. Indoor Air 26, 318–330. https://doi.org/10.1111/ina.12192
- Haverinen-Shaughnessy, U., Moschandreas, D.J., Shaughnessy, R.J., 2011.
  Association between substandard classroom ventilation rates and students' academic achievement: Substandard classroom ventilation rates and students' academic achievement. Indoor Air 21, 121–131. https://doi.org/10.1111/j.1600-0668.2010.00686.x
- Heseltine, E., Rosen, J., World Health Organization (Eds.), 2009. WHO guidelines for indoor air quality: dampness and mould. WHO, Copenhagen.
- IOM, 2004. Damp indoor spaces and health. National Academies Institute of Medicine, Washington, DC.
- Jaakkola, J.J.K., Knight, T.L., 2008. The Role of Exposure to Phthalates from Polyvinyl Chloride Products in the Development of Asthma and Allergies: A Systematic Review and Meta-analysis. Environmental Health Perspectives 116, 845–853. https://doi.org/10.1289/ehp.10846
- Jantunen, M., Oliveira Fernandes, E., Carrer, P., Kephalopoulos, S., European Commission, Directorate General for Health & Consumers, 2011. Promoting actions for healthy indoor air (IAIAQ). European Commission, Luxembourg.
- Jones, A., 1999. Indoor air quality and health. Atmospheric Environment 33, 4535–4564. https://doi.org/10.1016/S1352-2310(99)00272-1
- Kanchongkittiphon, W., Mendell, M.J., Gaffin, J.M., Wang, G., Phipatanakul, W., 2014. Indoor Environmental Exposures and Exacerbation of Asthma: An Update to the

- 2000 Review by the Institute of Medicine. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1307922
- Kile, M.L., Coker, E.S., Smit, E., Sudakin, D., Molitor, J., Harding, A.K., 2014. A cross-sectional study of the association between ventilation of gas stoves and chronic respiratory illness in U.S. children enrolled in NHANESIII. Environmental Health 13. https://doi.org/10.1186/1476-069X-13-71
- Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann, W.H., 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11, 231–252. https://doi.org/10.1038/sj.jea.7500165
- Kolarik, B., Naydenov, K., Larsson, M., Bornehag, C.-G., Sundell, J., 2008. The Association between Phthalates in Dust and Allergic Diseases among Bulgarian Children. Environmental Health Perspectives 116, 98–103. https://doi.org/10.1289/ehp.10498
- Lanphear, B.P., Aligne, C.A., Auinger, P., Weitzman, M., Byrd, R.S., 2001. Residential exposures associated with asthma in US children. Pediatrics 107, 505–511.
- Layton, D.W., Beamer, P.I., 2009. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust. Environmental Science & Technology 43, 8199–8205. https://doi.org/10.1021/es9003735
- Li, Y., Leung, G.M., Tang, J.W., Yang, X., Chao, C.Y.H., Lin, J.Z., Lu, J.W., Nielsen, P.V., Niu, J., Qian, H., Sleigh, A.C., Su, H.-J.J., Sundell, J., Wong, T.W., Yuen, P.L., 2007. Role of ventilation in airborne transmission of infectious agents in the built environment? a multidisciplinary systematic review. Indoor Air 17, 2–18. https://doi.org/10.1111/j.1600-0668.2006.00445.x
- Liu, D., Nazaroff, W.W., 2001. Modeling pollutant penetration across building envelopes. Atmos. Environ. 35, 4451–4462. https://doi.org/10.1016/S1352-2310(01)00218-7
- Logue, J.M., McKone, T.E., Sherman, M.H., Singer, B.C., 2011. Hazard assessment of chemical air contaminants measured in residences. Indoor Air 21, 92–109. https://doi.org/10.1111/j.1600-0668.2010.00683.x
- Logue, J.M., Price, P.N., Sherman, M.H., Singer, B.C., 2012. A method to estimate the chronic health impact of air pollutants in U.S. residences. Environmental Health Perspectives 120, 216–222. https://doi.org/10.1289/ehp.1104035
- Lunden, M.M., Delp, W.W., Singer, B.C., 2015. Capture efficiency of cooking-related fine and ultrafine particles by residential exhaust hoods. Indoor Air 25, 45–58. https://doi.org/10.1111/ina.12118
- MacIntosh, D.L., Minegishi, T., Kaufman, M., Baker, B.J., Allen, J.G., Levy, J.I., Myatt, T.A., 2010. The benefits of whole-house in-duct air cleaning in reducing exposures to fine particulate matter of outdoor origin: a modeling analysis. J Expo Sci Environ Epidemiol 20, 213–224. https://doi.org/10.1038/jes.2009.16
- Melia, R.J., Florey, C.D., Altman, D.G., Swan, A.V., 1977. Association between gas cooking and respiratory disease in children. BMJ 2, 149–152. https://doi.org/10.1136/bmj.2.6080.149
- Mendell, M.J., 1993. Non-Specific Symptoms in Office Workers: A Review and Summary of The Epidemiologic Literature. Indoor Air 3, 227–236.

- https://doi.org/10.1111/j.1600-0668.1993.00003.x
- Mendell, M.J., Mirer, A.G., Cheung, K., Tong, M., Douwes, J., 2011. Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environmental Health Perspectives 119, 748–756. https://doi.org/10.1289/ehp.1002410
- Mendell, M.J., Smith, A.H., 1990. Consistent pattern of elevated symptoms in air-conditioned office buildings: a reanalysis of epidemiologic studies. American Journal of Public Health 80, 1193–1199. https://doi.org/10.2105/AJPH.80.10.1193
- Meng, Q.Y., Spector, D., Colome, S., Turpin, B., 2009. Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study. Atmospheric Environment 43, 5750–5758. https://doi.org/10.1016/j.atmosenv.2009.07.066
- Meng, Q.Y., Turpin, B.J., Korn, L., Weisel, C.P., Morandi, M., Colome, S., Zhang, J.
  (Jim), Stock, T., Spektor, D., Winer, A., Zhang, L., Lee, J.H., Giovanetti, R., Cui, W., Kwon, J., Alimokhtari, S., Shendell, D., Jones, J., Farrar, C., Maberti, S., 2005. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data. J Expo Anal Environ Epidemiol 15, 17–28. https://doi.org/10.1038/sj.jea.7500378
- Milton, D.K., Glencross, P.M., Walters, M.D., 2000. Risk of Sick Leave Associated with Outdoor Air Supply Rate, Humidification, and Occupant Complaints. Indoor Air 10, 212–221. https://doi.org/10.1034/j.1600-0668.2000.010004212.x
- Montgomery, J.F., Reynolds, C.C.O., Rogak, S.N., Green, S.I., 2015. Financial implications of modifications to building filtration systems. Building and Environment 85, 17–28. https://doi.org/10.1016/j.buildenv.2014.11.005
- Morawska, L., Afshari, A., Bae, G.N., Buonanno, G., Chao, C.Y.H., Hänninen, O., Hofmann, W., Isaxon, C., Jayaratne, E.R., Pasanen, P., Salthammer, T., Waring, M., Wierzbicka, A., 2013. Indoor aerosols: from personal exposure to risk assessment. Indoor Air 23, 462–487. https://doi.org/10.1111/ina.12044
- Myatt, T.A., Johnston, S.L., Zuo, Z., Wand, M., Kebadze, T., Rudnick, S., Milton, D.K., 2004. Detection of Airborne Rhinovirus and Its Relation to Outdoor Air Supply in Office Environments. American Journal of Respiratory and Critical Care Medicine 169, 1187–1190. https://doi.org/10.1164/rccm.200306-760OC
- Nazaroff, W.W., 2013. Four principles for achieving good indoor air quality. Indoor Air 23, 353–356. https://doi.org/10.1111/ina.12062
- Persily, A.K., Emmerich, S.J., 2012. Indoor air quality in sustainable, energy efficient buildings. HVAC&R Research 18, 4–20. https://doi.org/10.1080/10789669.2011.592106
- Rackes, A., Ben-David, T., Waring, M.S., 2018. Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions. Indoor Air. https://doi.org/10.1111/ina.12466
- Rackes, A., Waring, M.S., 2014. Using multiobjective optimizations to discover dynamic building ventilation strategies that can improve indoor air quality and reduce energy use. Energy and Buildings 75, 272–280. https://doi.org/10.1016/j.enbuild.2014.02.024
- Redlich, C.A., Sparer, J., Cullen, M.R., 1997. Sick-building syndrome. The Lancet 349,

- 1013-1016. https://doi.org/10.1016/S0140-6736(96)07220-0
- Rodes, C.E., Lawless, P.A., Thornburg, J.W., Williams, R.W., Croghan, C.W., 2010. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmospheric Environment 44, 1386–1399. https://doi.org/10.1016/j.atmosenv.2010.02.002
- Rumchev, K., 2004. Association of domestic exposure to volatile organic compounds with asthma in young children. Thorax 59, 746–751. https://doi.org/10.1136/thx.2003.013680
- Samet, J.M., 1989. Radon and Lung Cancer. JNCI Journal of the National Cancer Institute 81, 745–758. https://doi.org/10.1093/jnci/81.10.745
- Satish, U., Mendell, M.J., Shekhar, K., Hotchi, T., Sullivan, D., Streufert, S., Fisk, W. (Bill) J., 2012. Is CO2 an Indoor Pollutant? Direct Effects of Low-to-Moderate CO2 Concentrations on Human Decision-Making Performance. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1104789
- Seppanen, O., Fisk, W., 2006. Some Quantitative Relations between Indoor Environmental Quality and Work Performance or Health. HVAC&R Research 12, 957–973. https://doi.org/10.1080/10789669.2006.10391446
- Seppanen, O., Fisk, W.J., 2005. A Model to Estimate the Cost Effectiveness of Indoor Environment Improvements in Office Work. ASHRAE Transactions 111, 663–669.
- Sexton, K., Adgate, J.L., Ramachandran, G., Pratt, G.C., Mongin, S.J., Stock, T.H., Morandi, M.T., 2004. Comparison of Personal, Indoor, and Outdoor Exposures to Hazardous Air Pollutants in Three Urban Communities. Environmental Science & Technology 38, 423–430. https://doi.org/10.1021/es030319u
- Sherman, M.H., Walker, I.S., 2011. Meeting residential ventilation standards through dynamic control of ventilation systems. Energy and Buildings 43, 1904–1912. https://doi.org/10.1016/j.enbuild.2011.03.037
- Sherman, M.H., Walker, I.S., Logue, J.M., 2012. Equivalence in ventilation and indoor air quality. HVAC&R Research 18, 760–773. https://doi.org/10.1080/10789669.2012.667038
- Sherriff, A., 2005. Frequent use of chemical household products is associated with persistent wheezing in pre-school age children. Thorax 60, 45–49. https://doi.org/10.1136/thx.2004.021154
- Singer, B.C., Delp, W.W., Black, D.R., Walker, I.S., 2016. Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house. Indoor Air. https://doi.org/10.1111/ina.12359
- Spengler, J., Sexton, K., 1983. Indoor air pollution: a public health perspective. Science 221, 9–17. https://doi.org/10.1126/science.6857273
- Steinemann, A.C., MacGregor, I.C., Gordon, S.M., Gallagher, L.G., Davis, A.L., Ribeiro, D.S., Wallace, L.A., 2011. Fragranced consumer products: Chemicals emitted, ingredients unlisted. Environmental Impact Assessment Review 31, 328–333. https://doi.org/10.1016/j.eiar.2010.08.002
- Stephens, B., Gall, E.T., Siegel, J.A., 2012. Measuring the penetration of ambient ozone into residential buildings. Environ. Sci. Technol. 46, 929–936. https://doi.org/10.1021/es2028795

- Stephens, B., Siegel, J.A., 2012. Penetration of ambient submicron particles into single-family residences and associations with building characteristics. Indoor Air 22, 501–513. https://doi.org/10.1111/j.1600-0668.2012.00779.x
- Sundell, J., 2004. On the history of indoor air quality and health. Indoor Air 14 Suppl 7, 51–58. https://doi.org/10.1111/j.1600-0668.2004.00273.x
- Sundell, J., Levin, H., Nazaroff, W.W., Cain, W.S., Fisk, W.J., Grimsrud, D.T., Gyntelberg, F., Li, Y., Persily, A.K., Pickering, A.C., Samet, J.M., Spengler, J.D., Taylor, S.T., Weschler, C.J., 2011. Ventilation rates and health: multidisciplinary review of the scientific literature: Ventilation rates and health. Indoor Air 21, 191–204. https://doi.org/10.1111/j.1600-0668.2010.00703.x
- US EPA, 2018. Residential Air Cleaners: A Technical Summary, 3rd edition.
- Walker, I.S., Sherman, M.H., 2013. Effect of ventilation strategies on residential ozone levels. Building and Environment 59, 456–465. https://doi.org/10.1016/j.buildenv.2012.09.013
- Wallace, L., 2000. Correlations of Personal Exposure to Particles with Outdoor Air Measurements: A Review of Recent Studies. Aerosol Science and Technology 32, 15–25. https://doi.org/10.1080/027868200303894
- Wallace, L., Nelson, W., Ziegenfus, R., Pellizzari, E., Michael, L., Whitmore, R., Zelon, H., Hartwell, T., Perritt, R., Westerdahl, D., 1991. The Los Angeles TEAM Study: personal exposures, indoor-outdoor air concentrations, and breath concentrations of 25 volatile organic compounds. J Expo Anal Environ Epidemiol 1, 157–192.
- Wallace, L.A., Pellizzari, E.D., D. Hartwell, T., Sparacino, C.M., Sheldon, L.S., Zelon, H., 1985. Personal exposures, indoor-outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey. Atmospheric Environment (1967) 19, 1651–1661. https://doi.org/10.1016/0004-6981(85)90217-3
- Wargocki, P., Djukanovic, R., 2005. Simulations of the Potential Revenue from Investment in Improved Indoor Air Quality in an Office Building. ASHRAE Transactions 111, 699–711.
- Wargocki, P., & Seppänen, O. (2006). REHVA Guide Book no. 6, Indoor Climate and Productivity in Offices, How to integrate productivity in life cycle cost analysis of building services. REHVA:(Finland). Wargocki, P., Wyon, D.P., 2017. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Building and Environment 112, 359–366. https://doi.org/10.1016/j.buildenv.2016.11.020
- Wargocki, P., Wyon, D.P., 2013. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Building and Environment 59, 581–589. https://doi.org/10.1016/j.buildenv.2012.10.007
- Wargocki, P., Wyon, D.P., Baik, Y.K., Clausen, G., Fanger, P.O., 1999. Perceived Air Quality, Sick Building Syndrome (SBS) Symptoms and Productivity in an Office with Two Different Pollution Loads. Indoor Air 9, 165–179. https://doi.org/10.1111/j.1600-0668.1999.t01-1-00003.x
- Weschler, C.J., 2006. Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ. Health Perspect. 114, 1489–1496. https://doi.org/10.1289/ehp.9256

- Woods, J.E., 1989. Cost avoidance and productivity in owning and operating buildings. Occup Med 4, 753–770.
- World Health Organization (Ed.), 1983. Indoor air pollutants: exposure and health effects: report on a WHO meeting, Nördlingen, 8-11 June 1982, EURO reports and studies. World Health Organization, Regional Office for Europe, Copenhagen.
- Zhang, J., Lioy, P.J., He, Q., 1994. Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ. Sci. Technol. 28, 146–152. https://doi.org/10.1021/es00050a020
- Zhang, Y., Mo, J., Li, Y., Sundell, J., Wargocki, P., Zhang, J., ... & Fang, L. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmospheric Environment, 45(26), 4329-4343.
- Zhao, D., Azimi, P., Stephens, B., 2015. Evaluating the long-term health and economic impacts of central residential air filtration for reducing premature mortality associated with indoor fine particulate matter (PM2.5) of outdoor origin. International Journal of Environmental Research and Public Health 12, 8448–8479.
- Zock, J.-P., Plana, E., Jarvis, D., Anto, J.M., Kromhout, H., Kennedy, S.M., Kunzli, N., Villani, S., Olivieri, M., Toren, K., Radon, K., Sunyer, J., Dahlman-Hoglund, A., Norback, D., Kogevinas, M., 2007. The Use of Household Cleaning Sprays and Adult Asthma: An International Longitudinal Study. American Journal of Respiratory and Critical Care Medicine 176, 735–741. https://doi.org/10.1164/rccm.200612-1793OC