arxiv-topics: Explore and Discover Research using Data-Driven Themes Ashish Gupta Stefan Jansen Anmol Kapoor Akash Mohapatra

MOTIVATION

arxiv-topics is an interactive text data visualization tool that offers readers of academic papers on arxiv.org new insights into content published in their domain, and facilitates the more productive discovery of relevant documents.

arxiv-topics leverages unsupervised machine learning to identify hidden topics or themes present in a body of academic papers.

A topic represents an important aspect of a paper's content because it is associated with a list of words that are more likely to appear in a document that discusses the theme. Using the most likely words, a topic can often be interpreted in a meaningful way [5, 15].

Furthermore, each article reflects a different mix of a small number of topics and the relevance of each topic to an article can be expressed numerically. In sum, the quantifiable mix of meaningful topics has the potential to enable a data-driven organization and summary of a corpus of documents.

The application creates the process depicted in Fig. 1: using regularly updated content and trained models, a user can visually explore different options to

Figure 2: arxiv-topics lets a user explore topic semantics by displaying the prevalence and relationships among topics and ranking the most relevant key words for each. The user can select a topic representation to view and explore content organized accordingly.

represent content of interest using topics. Based on the meaning of topics and the relationship between topics, she selects the configuration that yields the most compelling and intuitively appealing content summary.

The platform then uses the mix of topics associated with each paper to organize the content accordingly and enable topic-based search, discovery and recommendations. As a result, the user can view articles that are most closely aligned with one or more of the chosen topics, or find an article that reflects a similar topic mix as a given article.

Figure 1: arxiv-topics organizes content based on periodically updated, user-selected topic models

THE PROBLEM

Today, arxiv search is limited to keywords targeting different document attributes and does not permit the user to explore the content of papers from a topic perspective, or suggest related material.

The arxiv sanity project enables the discovery of similar papers using a vector representation of the documents. These vectors have one entry for each term in the corpus' vocabulary that measures how often the term is used in a paper, weighted by the inverse of the term's frequency across all documents [term-frequency/inverse-document-frequency, TFIDF, 16, 17]. It then trains a Support Vector Machine on this numerical representation of the documents to make content-based recommendations to the user.

However, TFIDF vectors reflect the size of the corpus vocabulary, and are thus sparse and of high dimensionality, rendering similarity measures noisy and potentially inaccurate due to the curse of dimensionality. They don't offer much insight into a document's structure, and ignore the context, not capturing synonymous word usage or polysemy [3].

INNOVATION & RELATED WORK

arxiv-topics innovates by

 using unsupervised machine learning to identify latent topics that provide new insights into the content published on arxiv.org,

- offer intuitive visualization tools to explore the hidden semantic structure revealed by the topics, and
- 3. base similarity search on the association of papers with these topics inspired by [2, 9, 10, 12].

Our approach integrates research in topic modeling, evaluation, and visualization. In the following we provide more detail on our approach and describe related work in these areas.

TOPIC MODELING

We compared Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) with respect to their ability to summarize the content and reveal semantic insights.

LSA uses Singular Value Decomposition to reduce the dimensionality of the document-term matrix containing TFIDF vectors and associates documents and terms with the new dimensions that can be interpreted as concepts or topics [7]. However, the weights that link terms to these concepts can be positive or negative, making interpretation more difficult and less well suited for our purpose.

LDA develops a Bayesian generative probabilistic model that assumes topics are distributions over words, and documents are distributions over topics [3]. More specifically, the model assumes that topics follow a sparse Dirichlet distribution, which implies that documents cover only a small set of

Figure 3: Topics are multinomial distributions over words designed to concentrate probability on few words. Documents, in turn, are a mix of topics drawn from a similar distributions to that each document reflects just a few topics. Source: [1].

topics, and topics use only a small set of words frequently (Figure 3).

Hence, the model assumes that authors add an article to a body of documents by randomly mixing a small subset of shared topics, each represented by a list of words with different probabilities to be selected. The article content then depends on the weights of each topics, and of the terms that make up each topic.

LDA solves the Bayesian inference problem of recovering these distributions from the body of documents and the words they contain by reverse-engineering the assumed content generation process. The original paper uses variational Bayes (VB) to approximate the posterior distribution [3]; alternatives include Gibbs sampling and expectation propagation. We use the implementation of an online (as opposed

to batch) VB implementation provided by the *gensim* library [9]. The inference results in a description of the word-topicdocument relationships as illustrated in Figure 3.

Very active research summarized in [9] has produced applications that further developed LDA, e.g., by including information like author data [1]. User experiments have shown that topics produced by LDA align with human intuition [5, 15], and better capture document similarity than TFIDF vectors [8, 20].

TOPIC EVALUATION

Unsupervised topic models do not provide a guarantee that the result will be meaningful or interpretable, and there is no objective metric to assess the result as in supervised learning. Human topic

Figure 4: Filtering the vocabulary by changing the min/max document frequency thresholds affect how many unique tokens describe a document (left panel) and the document frequency distribution of the remains tokens (right panel). The interactive visualization shows the impact of min/max settings of 0.5/90%, respectively, reducing the vocabulary to 8,496 or 13.3% of the total.

evaluation is considered the 'gold standard' [22] but is potentially expensive and not readily available at scale.

To evaluate our results, we used, in addition to our own judgment, the model perplexity on unseen documents and topic coherence metrics that aim to evaluate the semantic quality of the uncovered patterns.

Perplexity, when applied to LDA, measures of how well the topic-word probability distribution recovered by the model predicts a sample, e.g. unseen text documents. It is based on the entropy H(p) of this distribution p and computed with respect to the set of tokens x:

$$2^{H(p)} = 2^{-\sum_{x} p(x)\log_2 p(x)}$$

Measures closer to zero imply the distribution is better at predicting the sample.

Topic Coherence measure the semantic consistency of the topic model results, i.e., whether humans would perceive the words and their probabilities associated with topics as meaningful.

To this end, it scores each topic by measuring the degree of semantic similarity between the words most relevant to the topic. More specifically, coherence measures are based on the probability of observing the set of words W that define a topic together.

We use two measures of coherence that have been designed for LDA and shown to align with human judgements of topic quality, namely the UMass measure [24] and the UCI measure [25].

The UCI metric defines a word pair's score to be the sum of the pointwise mutual information (PMI) between two

Figure 5: When the user selects a topic model, arxiv-topics (1) displays the key training parameters, (2) visualizes the relative size and positioning of topics, (3) shows the key terms for a selected topic, and (4) allows the user to explore different rankings by adjusting the weights of saliency and relevance [18].

distinct pairs of (top) topic words $w_i, w_i \in W$ and a smoothing factor ϵ :

$$\mathbf{coherence_{UCI}} = \sum_{(w_i, w_j) \in W} \log \frac{p(w_i, w_j) + \epsilon}{p(w_i) p(w_j)}$$

The probabilities are computed from word co-occurrence frequencies in a sliding window over an external corpus like Wikipedia so that this metric can be thought of as an external comparison to a semantic ground truth.

In contrast, the UMass metric uses the co-occurrences in a number of documents D from the training corpus to compute a coherence score:

$$\mathbf{coherence_{UMass}} = \sum_{(w_i, w_j) \in W} \log \frac{D(w_i, w_j) + \epsilon}{D(w_j)}$$

Rather than a comparison to an extrinsic ground truth, this measure reflects intrinsic coherence. Both measures have been evaluated to align well with human judgement. [19, 22].

In both cases, values closer to zero imply that a topic is more coherent.

TOPIC VISUALIZATION

At the core of *arxiv-topics* is a web-based interactive visualization tool to explore topics estimated using LDA. It builds on LDAvis, originally written in a combination

of R and D3, and subsequently ported to python.

This tool displays the global relationships among topics while also facilitating their semantic evaluation by inspecting the terms most closely associated with each individual topic and, inversely, the topics associated with each term [18].

The tool also addresses the challenge that terms that are frequent in a corpus also dominate the multinomial distribution over words that define a topic. LDAVis introduces the relevance r of term w to topic t to produce a flexible ranking of key terms using a weight parameter λ ; $0 \le \lambda \le 1$.

With ϕ_{wt} as the model's probability estimate of observing the term w for topic t, and p_w as the marginal probability of w in the corpus:

$$r(w, k \mid \lambda) = \lambda \log(\phi_{kw}) + (1 - \lambda)\log \frac{\phi_{kw}}{p_w}$$

The first term measures the degree of association of term t with topic w, and the second term measures the lift or saliency, i.e., how much more likely the term is for the topic than in the corpus.

The tool allows the user to interactively change λ to adjust the relevance, which

updates the ranking of terms. User studies have found that $\lambda=0.6$ produces the most satisfactory results; we adjust the tool to use this value as default.

TARGET AUDIENCE

The target audience are *arxiv* users that <u>currently download 15-20m</u> and <u>submit ~10-12,000</u> papers per month. Our proof-of-concept solution would aim at a subset of the areas covered by arxiv.org. However, the solution could be used by other publishers beyond the academic domain as illustrated by the <u>NYTimes</u>.

THE DATA

The topic models for the arxiv-topics prototype are trained on a sample of 26,717 papers (53.8 GB). We obtain the metadata by querying the arxiv API for CS categories related to machine learning (CV, AI, LG, CL, NE and ML), download the pdf source and convert to plain text. Figure 6 shows a breakdown of papers by category, top authors and year of publication.

We lemmatize tokens and keep a vocabulary of 63,735 tokens that contain more than two characters and do not

Papers by category:		Top authors:	Publications frequency:		
Category	Papers	Author	Publications	Year	Publications
cs.CV	12345	Yoshua Bengio	113	2018	11908
cs.LG	6765	Luc Van Gool	75	2017	11434
cs.CL	4983	Sergey Levine	59	2016	9693
stat.ML	4318	Lawrence Carin	49	2015	5845
cs.Al	3188	Pieter Abbeel	48	2014	827

Figure 6: Publication summary

Figure 7: UMass Intrinsic coherence scores for models with 3-100 topics. The arxiv corpus supports up to \sim 30 topics before the coherence begins to deteriorate or the number of tokens related to topics drops to zero.

appear on a list of ~450K english words after manually reviewing the 1,000 most frequent tokens to keep important technical terms.

EXPERIMENTS & EVALUATION

The quality of the results depend on additional text preprocessing, the choice and parametrization of the topic modeling algorithm, and the implementation of the interfaces for topic visualization, content search and discovery.

PREPROCESSING

The LDA model works with text data in bag-of-words (BoW) format. The BoW model treats individual documents as

token vectors where entries correspond to token counts.

Important preprocessing choices concern restrictions on the minimum and maximum document frequencies, and the total number of features to constrain the vocabulary size, as well as the representation of features through binary and absolute counts.

We experimented with actual and binary counts, and achieved better results using the latter.

We ran experiments to compare topic quality for minimum document frequencies of 0.1%, 0.5%, and 1.0% while limiting the total number of tokens to values from 5,000-75,000 (Figure 8). Each average UMass coherence score is based on topic models for 2-10, 15 and 20 topics.

While the topic coherence scores do not consistently favor one configuration over any other, the results are qualitatively different. To offer choices to the user, we

Figure 9: 20-topic model

decided to work with document-term matrices that include terms with a minimum document frequency of 0.1%, i.e. a token appears in at least three papers. At the same time, we offer models to the user with medium and large vocabulary sizes by limiting the vocabulary to 10,000 and 25,000 tokens.

TOPIC MODEL RESULTS & VISUALIZATION

We trained and evaluated LDA topic models to uncover 2-100 topics. Figure 7 shows the UMass topic coherence scores for a broad range of these models. We focused on UMass for topic model evaluation because it better aligns with human judgment than perplexity, and

does not require an external corpus like UCI.

The sample used supports around 30 topics before the quality begins to deteriorate or the number of tokens with a significant relation (above 1% likelihood) to the topic drops to zero. The 'last' topic of the model with 30 topics has the top 5 terms 'musical', 'piano', 'timbre', 'chord' and 'midi', each of which appears over 100 times in conjunction with the topic.

Users are able to explore topic models with various numbers of topics for small, medium and large vocabulary each. Figure 5 illustrates how the pyLDAvisbased interactive visualization projects the topics into two-dimensional space

Figure 10: Topic samples from 20-topic model with medium vocabulary

using t-distributed stochastic neighbor embedding (t-SNE) and lets the user inspect the key terms for each topic, ranked by a user-defined mix of topic probability and saliency as defined above.

Figure 9 shows the pyLDAvis visualization of the 20 topic learned by an LDA model with medium sized corpus. The highlighted topic 15 has a strong relationship with the training and tuning of convolutional networks suggested by the most relevant terms (using λ =0.6) that include 'relu', 'activation', 'convolution', 'pooling' and 'dropoout'. Figure 10 shows another seven topics

learned by this model that clearly capture different concepts as indicated by suggestive headings for each.

Hence, topics clearly differentiate between key AI/ML domains like NLP, computer vision or reinforcement learning, and these differences become more granular as the number of topics increases.

DOCUMENT SEARCH AND DISCOVERY

The users can select one model and then view the content sorted by topic association. Figure 11 shows that sorting by a topic most closely associated with

Name	Topic o	Topic 2	Topic o	Topic o	Topic o	Topic 6	Topic o	Topic 6	Topic o	Topic 10
f-GAN_Training Generative Neural Samplers using Variational Divergence Minimization	0	0.98137	0	0	0	0	0	0	0	0.01820
AdaGAN., Boosting Generative Models	0	0.94330	0	0.00558	0	0	0.05090	0	0	0
GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution	0.14612	0.83654	0	0	0	0.00554	0	0	0	0.01119
Relaxed Wasserstein with Applications to GANs	0	0.82720	0.11750	0	0	0.00600	0.04873	0	0	0
Many Paths to Equilibrium_ GANs Do Not Need to Decrease a Divergence At Every Step	0	0.82070	0	0	0	0.17903	0	0	0	0
TripletGAN, Training Generative Model with Triplet Loss	0	0.76938	0	0.20706	0	0.02317	0	0	0	0
Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization	0.01128	0.72727	0	0.09713	0	0.00609	0	0.15809	0	0
Personalized Donor-Recipient Matching for Organ Transplantation	0	0.53079	0	0.00532	0.01180	0.00200	0	0.44981	0	0
Semi-supervised Conditional GANs	0	0.43670	0	0.14801	0	0.40820	0	0	0	0.00681
A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks	0	0.41536	0	0.00361	0	0.34407	0	0.19538	0.04051	0

Figure 11: Papers are annotated and sortable by topic scores (10-topic model, medium vocabulary, result of 'GAN' keyword search)

#		Title	Similarity Score
1		Philosophy in the Face of Artificial Intelligence	0.05815772621465594
2		Exploring Implicit Human Responses to Robot Mistakes in a Learning from Demonstration Task	0.06174780709115867
3		The CARESSES EU-Japan project_ making assistive robots culturally competent	0.06607849827676873
4		Turing's Red Flag	0.06804555248790063
5		Blue Sky Ideas in Artificial Intelligence Education from the EAAI 2017 New and Future AI Educator Program	0.06977102977840949
6		How Intelligent is your Intelligent Robot_	0.07635952441846561
7		An affective computational model for machine consciousness	0.08075466926440229
8		Laying Down the Yellow Brick Road_ Development of a Wizard-of-Oz Interface for Collecting Human-Robot Dialogue	0.08089089661162571
9		Living Together_ Mind and Machine Intelligence	0.08480337853473292
10	0	Logics and practices of transparency and opacity in real-world applications of public sector machine learning	0.09303769319814671

Figure 12: Similarity search for 'The Dark Side of Ethical Robots', top paper for topic 9 in medium 20-topic model

Generative Adversarial Networks displays clearly related results.

In addition, clicking on a paper displays the paper metadata, and the 10 papers that are most similar based on their topic distribution as measured by Euclidean distance.

Figure 12 shows the 10 most similar papers for 'Dark Side of Ethical Robots', which is most representative of topic 9 of the 20-topic model. The results are clearly related in interesting ways beyond shared keywords.

LESSONS LEARNED

Topic modeling produces impressive results in terms of text summarization and organization, yet is challenging to evaluate objectively.

27,000 documents is a substantial amount of text data that yields a vocabulary - before cleaning - of over 400,000 unique tokens. More data, in particular expanding beyond a small number of CS categories may yield very interesting cross-disciplinary insights and produce higher quality topics.

DISTRIBUTION OF WORK

All team members have contributed a similar amount of effort.

REFERENCES

- [1] D. M. Blei, "Probabilistic Topic Models," *Communications of the ACM*, vol. 55, no. 4, p. 77, Apr. 2012.
- D. M. Blei and J. D. Lafferty, "A correlated topic model of Science," *Ann. Appl. Stat.*, vol. 1, no. 1, pp. 17–35, Jun. 2007.
- [3] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation," *Journal of Machine Learning Research*, vol. 3, no. Jan, pp. 993–1022, 2003.
- [4] A. J.-B. Chaney and D. M. Blei, "Visualizing Topic Models," in ICWSM, 2012.
- J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei, "Reading Tea Leaves: How Humans Interpret Topic Models," in *Advances in Neural Information Processing Systems 22*, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009, pp. 288–296.
- [6] R. Das, M. Zaheer, and C. Dyer, "Gaussian LDA for Topic Models with Word Embeddings," in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, 2015, pp. 795–804.
- [7] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman, "Indexing by Latent Semantic Analysis," *JASIS*, vol. 41, pp. 391–407, 1990.
- [8] K. Dinakar *et al.*, "You Too?! Mixed-Initiative LDA Story Matching to Help Teens in Distress," in *ICWSM*, 2012.
- [9] H. Jelodar, Y. Wang, C. Yuan, and X. Feng, "Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a survey," *arXiv:1711.04305* [cs], Nov. 2017.
- [10] R. Krestel, P. Fankhauser, and W. Nejdl, "Latent Dirichlet allocation for tag recommendation," in *RecSys'09 Proceedings of the 3rd ACM Conference on Recommender Systems*, 2009, pp. 61–68.
- [11] Q. Liang, X. Zheng, M. Wang, H. Chen, and P. Lu, "Optimize Recommendation System with Topic Modeling and Clustering," in 2017 IEEE 14th International Conference on e-Business Engineering (ICEBE), 2017, pp. 15–22.
- [12] G. H. Martın, S. Schockaert, and C. Cornelis, "Finding similar research papers using language models," p. 8.
- [13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed Representations of Words and Phrases and their Compositionality," in *Advances in Neural Information Processing Systems 26*, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119.
- [14] C. E. Moody, "Mixing Dirichlet Topic Models and Word Embeddings to Make Ida2vec," arXiv:1605.02019 [cs], May 2016.
- [15] R. Nakazawa, T. Itoh, and T. Saito, "A Visualization of Research Papers Based on the Topics and Citation Network," in 2015 19th International Conference on Information Visualisation, 2015, pp. 283–289.
- [16] G. Salton, A. Wong, and C. S. Yang, "A Vector Space Model for Automatic Indexing," Commun. ACM, vol. 18, no. 11, pp. 613–620, Nov. 1975.

- [17] G. Salton and C. Buckley, "Term-weighting approaches in automatic text retrieval," *Information Processing & Management*, vol. 24, no. 5, pp. 513–523, Jan. 1988.
- [18] C. Sievert, "LDAvis: A method for visualizing and interpreting topics," 2014.
- [19] K. Stevens, P. Kegelmeyer, D. Andrzejewski, and D. Buttler, "Exploring Topic Coherence over many models and many topics," 2012.
- [20] W. B. Towne, C. P. Rosé, and J. D. Herbsleb, "Measuring Similarity Similarly: LDA and Human Perception," *ACM Trans. Intell. Syst. Technol.*, vol. 8, no. 1, pp. 7:1–7:28, Sep. 2016.
- [21] C. Wang and D. M. Blei, "Collaborative Topic Modeling for Recommending Scientific Articles," in *Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, New York, NY, USA, 2011, pp. 448–456.
- [22] Roeder, M. et al, "Exploring the Space of Topic Coherence Measures", WSDM 2015
- [23] Hoffman, M. et al, "Online Learning for Latent Dirichlet Allocation", NIPS 2010
- [24] David Mimno, Hanna Wallach, Edmund Talley, Miriam Leenders, and Andrew McCallum. 2011. Optimizing semantic coherence in topic models. In Proceedings of the 2011 Conference on Emperical Methods in Natural Language Processing, pages 262–272, Edinburgh, Scotland, UK. Association of Computational Linguistics.
- [25] David Newman, Youn Noh, Edmund Talley, Sarvnaz Karimi, and Timothy Baldwin. 2010. Evaluating topic models for digital libraries. In Proceedings of the 10th annual joint conference on Digital libraries, JCDL '10, pages 215–224, New York, NY, USA. ACM.