# DIGITAL CIRCUITS

Week-7, Lecture-3 Revision

Sneh Saurabh 13<sup>th</sup> September, 2018



## Digital Circuits: Announcements/Revision



## Principles of Logic Optimization: Example

#### **Problem:**

Simplify the function:  $F(w, x, y, z) = \Sigma m(1,3,7,11,15)$  which has don't care conditions as:  $d(w, x, y, z) = \Sigma m(0,2,5)$ 

#### Problem:

For the function specified in the previous slide, find the minimized expression for F'(w, x, y, z). Thereafter, find the minimized F(w, x, y, z) in POS form.



$$F'(w, x, y, z) = z' + wy'$$

$$F(w, x, y, z) = z(w' + y)$$

- Without use of don't care:F(w, x, y, z) = yz + w'x'z
- With including X in first row:  $F_1(w, x, y, z) = yz + w'x'$
- With including X in  $m_5$ :  $F_2(w, x, y, z) = yz + w'z$

### 7-segment display: Description

#### 7-segment display:

- Digit-oriented display
- Seven signals that are used to drive the segments in the display
- Each segment is a small light-emitting diode (LED), which glows when driven by an electrical signal
- The segments are labeled from 'a' to 'g' in the figure



# 7-segment display: Driver



| $w_3$ | $w_2$ | $w_1$ | $w_0$ | a | b | c | d | e | f | 8 |
|-------|-------|-------|-------|---|---|---|---|---|---|---|
| 0     | 0     | 0     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0     | 0     | 0     | 1     | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0     | 0     | 1     | 0     | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0     | 0     | 1     | 1     | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0     | 1     | 0     | 0     | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0     | 1     | 0     | 1     | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0     | 1     | 1     | 0     | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0     | 1     | 1     | 1     | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1     | 0     | 0     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1     | 0     | 0     | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
|       |       |       |       |   |   |   |   |   |   |   |

### 7-segment display: Driver Design

#### Problem:

Derive minimal sum-of-products expressions for the output a, b, c of the 7-segment display

| $\sqrt{W_3W_2}$ |    |    |    |    |  |  |  |  |
|-----------------|----|----|----|----|--|--|--|--|
| $W_1W_0$        | 00 | 01 | 11 | 10 |  |  |  |  |
| 00              | 1  | 0  | 1  | 1  |  |  |  |  |
| 01              | 0  | 1  | 1  | 1  |  |  |  |  |
| 11              | Χ  | Х  | Χ  | Х  |  |  |  |  |
| 10              | 1  | 1  | Χ  | Х  |  |  |  |  |

$$a = w_1 + w_3 + w_0 w_2 + w_0' w_2'$$

| $w_3$ | $w_2$ | $w_1$ | $w_0$ | а | b | c | d | e | f | g |
|-------|-------|-------|-------|---|---|---|---|---|---|---|
| 0     | 0     | 0     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0     | 0     | 0     | 1     | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0     | 0     | 1     | 0     | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0     | 0     | 1     | 1     | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0     | 1     | 0     | 0     | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 0     | 1     | 0     | 1     | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0     | 1     | 1     | 0     | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0     | 1     | 1     | 1     | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 1     | 0     | 0     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1     | 0     | 0     | 1     | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
|       |       |       |       | l |   |   |   |   |   |   |

### **Practice yourself:**

$$b = w_0'w_1' + w_0w_1 + w_2'$$

$$c = w_2 + {w_1}' + w_0$$

### Base of a number system: Problem

#### **Problem:**

The first expedition to Mars found only the ruins of a civilization. From the artifacts and pictures, the explorers deduced that the creatures who produced this civilization were four-legged beings with a tentacle that branched out at the end with a number of grasping "fingers". After much study, the explorers were able to translate Martian mathematics. They found the following equation:

$$5x^2 - 50x + 125 = 0$$

with the indicated solutions x = 5 and x = 8.

The value x = 5 seemed legitimate enough, but x = 8 required some explanation.

Then the explorers reflected on the way in which Earth's number system developed, and found evidence that the Martian system had a similar history. How many fingers would you say the Martians had?

(From *The Bent of Tau Beta Pi*, Feb 1956)

## Base of a number system: Solution

#### **Solution:**

Let the base be N.

Therefore, 
$$(50)_N = (5N + 0)_{10}$$
 and  $(125)_N = (1 * N * N + 2N + 5)_{10}$ 

Given equation is in base N:  $5x^2 - 50x + 125 = 0$ 

Converting this equation to base 10:

$$5x^2 - 5Nx + N^2 + 2N + 5 = 0$$

This equation should hold true for both x = 5 and x = 8

For 
$$x = 5$$
  

$$125 - 25N + N^{2} + 2N + 5 = 0$$

$$N^{2} - 23N + 130 = 0$$

$$(N - 13)(N - 10) = 0$$

$$N = 13$$

Checking 
$$x = 8$$

$$5 * 64 - 5 * 13 * 8 + 169 + 2 * 13 + 5$$
  
=  $320 - 520 + 200 = 0$