Network Level

Lenuta Alboaie adria@info.uaic.ro

Content

- Network Level
 - IPv4 Problem
 - Context
 - Characteristics
 - Subnets
 - Private Networks
 - ICMP
 - Address Resolution
 - IPv6 overview
 - Details -> Future Course

Context

Initial Situation

Before the Internet, only nodes from the same network could communicate with each other

Figure: Individual Network

Considerations

Problem

— How to carry packages in a heterogeneous environment?

Heterogeneity

- At lower levels: how to make the interconnection of a large number of independent networks?
- At higher levels: how to provide support for a wide variety of applications?

• **Scaling:** how could we handle a large number of nodes and applications in such a system of interconnected networks?

Solution

• IP - Internet Protocol

Network Level

• IP protocol is used for autonomous systems (AS - Autonomous Systems) in order to interconnect

Figure: Internet
- collection of
interconnected
networks

[Computer Networks, 2003 Andrew S. Tanenbaum]

Network Level

- Role: offers connectionless services to transport datagrams from source to destination; source and destination can be in different networks
- Each datagram is independent from the others
- This level does not guarantee the right transmission (loss, multiplier,...)
- +...Future Course

IPv4 Datagram

[Computer Networks, 2003 Andrew S. Tanenbaum]

IPv4 Datagram

• Common values for Version field are:

4 – IP Protocol (RFC 791)

(6 for IPv6 protocol (RFC 1883))

Specify the datagram header length

IPv4 Datagram

BIT

Type of service the
field allows the host
to communicate to
the subnet (e.g.
routers) what type of
service is desired

IPv4 Datagram

 Identification field allows the host to identify if the received segment is part of one datagram

Flags:

- DF (Don't Fragment) rooters can't fragment the indicated datagram
- MF (More Fragments) signals that the packet is a fragment, followed by others; last fragment has this bit 0
- Fragment offset field represents the fragment placed in a datagram

IP Datagram

- Datagram's Fragmentation:
 - Each fragment has the same structure as the IP datagram
 - Reassembly of datagrams is performed by the receiver
 - If a fragment of a datagram is lost, the datagram is destroyed (an ICMP - Internet Control Message Protocol message is sent to the sender)
 - Fragmentation mechanism has been used for some attacks

 firewall piercing (a "special" fragment is considered as
 part of a connection already established, so that it can pass
 through a firewall)

IP Datagram

- Datagram Filtering:
 - It is accomplished by a *firewall*: it allows access from the outside in the internal network, according to some policy, certain types of packets ((used by certain protocols / services)
 - Forestall a series of attacks regarding security
 - The firewall can be software or hardware
 - The firewall can function as a proxy or a gateway

Proxy- role and architecture:

- Indirect access to other networks (Internet) to hosts on the local network (via proxy)
- The proxy allows an Internet connection sharing
- The proxy can be software or hardware
- May play roles such us: firewall or cache server
- Used to improve the performance (e.g., caching, flow control), filtering messages, ensuring anonymity

IPv4 Datagram

 TTL (Time to Live) field specifies the lifetime of the package;

the number is

decremented by every
router through which
the packet passes

Figure: IPv4 Datagram

IPv4 Datagram

 Protocol field specifies the protocol (from the superior level) intended to process the datagram

- 1 ICMP (Internet Control Message Protocol)
- 2 IGMP (Internet Group Message Protocol)
- 6 TCP (Transmission Control Protocol)
- 17 UDP (User Datagram Protocol)
- ... etc.(RFC 1700)

IPv4 Datagram

 Header checksum field used for detection; if an error occurs the datagram is destroyed

IPv4 Datagram

Options Field

·	
Options	Details
Security	Mention if the datagram is a "secret" one
Strict source routing	Show full path to go
Loose source routing	Indicates a list of routers that should not be skipped
Record route	Each rooter adds its own IP
Timestamp	Each rooter adds its own IP and a timestamp

IPv4 Datagram

 Source address and Destination address fields indicate the source address and the destination address

Figure: IPv4 Datagram

- Each IP address includes a network identifier(NetID) and a host identifier (HostID)
- Each network interface has a single IPv4 address
- An IPv4 address has a length of 32 bits
- Initially (RFC 791) there was a division into network classes: A,B,C,D,E

IPv4 Addresses

[Computer Networks, 2003 Andrew S. Tanenbaum]

- Class A: 128 possible networks, 2²⁴ hosts/network
- Class B: 2¹⁴ possible networks, 2¹⁶ hosts/network
- Class C: over 2 million networks, 255 hosts/network
- Network Identifier(NetID) is assigned by a central authority (NIC – Network Information Center)
- Host Identifier(HostID) is assigned locally by a network administrator
- Example: 85.122.23.145 Class A (in decimal notation convention)
 - 0101 0101 0111 1010 0001 0111 1001 0001
- For IPv6, hexadecimal representation is recommended

- An interface network has assigned a unique IP address
- A host can have multiple NICs, therefore it has multiple IP addresses
- The hosts of the same network have the same network identifier (the same NetID)
- Broadcast addresses have HostID's bites equaled to 1
- The IP address in which all HostID's bites are 0 is called a network address – refers to the hole network
 - Example: 85.122.23.0 (network address for a host such us 85.122.23.145 and 85.122.23.1)
- 127.0.0.1 loopback address (localhost)

- From the address space, some addresses are reserved: (RFC 1918):
 - 0.0.0.0 0.255.255.255
 - 10.0.0.0 10.255.255.255 (private addresses)
 - 127.0.0.0 127.255.255.255 (*loopback* addresses)
 - 172.16.0.0 172.31.255.255 (private addresses)
 - 192.168.0.0 192.168.255.255 (private addresses)
- Private addresses: addresses that are not accessible to the outside (the "real"Internet), but only in the organization's intranet

Private Networks

Aspects:

- The exponential growth of the hosts number
- Not all hosts offer resources available on the Internet Solution: NAT (Network Address Translation) – RFC 3022, 4008
- The private addresses can be reused (RFC 1918)
- It is based on replacing the private IP address with a public IP address (IP masquerading)

Private Networks

Functionality:

Figure: NAT mechanism

- Routers normally ignore datagrams containing private addresses => private
 IP addresses can be used in the organization's intranet
- Access to the outside (the "real" Internet) is achieved via a gate (mediating gateway) that rewrites the source IP addresses / destination

[Computer Networks, 2003 Andrew S. Tanenbaum]

Subnets using network masks

- It appeared as a solution to the problem of IP address space's exhaustion
- Simplify Routing
- Subnets cannot be detected externally

Figure: A campus network

Subnets using network masks

- Division into subnetworks will be made via the network mask(netmask): NetID bits are 1, HostID bits are 0
- Subnet identifier (SubnetID) is generally used to group computers based on physical topology

Example. One way to create a subnet in a B network

- Subnets using network masks
 - Example:
 - Let's consider the IP address: 160.0.6.7
 - 10100000 00000000 00000110 00000111
 - Network mask: 255.255.252.0
 - 11111111 11111111 111111100 00000000

- Network address: 160.0.4.0

10100000 00000000 00000100 00000000

Network address = network mask AND IP address

- Default subnet masks:
 - 255.0.0.0 Class A
 - 255.255.0.0 Class B
 - 255.255.255.0 Class C

- Convention mark: x.x.x.x/m means that we apply an m bits mask to the IP specified x.x.x.x address
- Example:
 - 10.0.0.0/12 it applies a 12-bits mask to 10.0.0.0 address, we select possible values for the last 20 bits (=32-12)
 - 85.122.16.0/20 it applies a 20-bit mask to 85.122.16.0 address

Network Level

- Protocols
 - ICMP (RFC 792)
 - ARP (RFC 826)
 - RARP (RFC 903)
 - BOOTP (RFC 951,1048,1084)
 - DHCP
- From IPv4 to IPv6

ICMP – Internet Control Message Protocol

- Used to exchange control messages
- Use IP
- ICMP messages are processed by the IP software, not by the user processes
- Messages types

Message Type	Description
8 Echo Request	Ask if a host is active
0 Echo Replay	"Yes, I'm active"
3 Destination Unreachable	The package can't be delivered (e.g. DF is set)
5 Redirect	The message is not correctly routed
11 Time Exceeded	Time elapsed (TTL=0) <- (e.g. loop, congestions, low values for time)
etc (RFC 792)	http://www.iana.org/assignments/icmp-parameters

Protocolul ICMP

Used by:

- ping command (Packet Internet Gropher)
- traceroute command
 - A package with TTL=1 (1 hop) is sent
 - The first router ignores the packet and sends back an ICMP message "time-to-live exceeded"
 - A package with TTL=2 is sent (2 hops)
 - The second router ignores the packet and sends back an ICMP message "time-to-live exceeded"
 - Repeat until it has received a response from the destination or has reached the maximum number of hops

Address resolution

IP addresses <-> hardware addresses (physical)

- The process of finding the hardware address of a host, knowing its IP address is called address resolution(address resolution) – ARP protocol (RFC 826)
 - ARP –broadcast protocol (each host receives a request for a physical address, and the answer is given by the one in question)
- The process of finding the IP address based on the hardware address is called reverse address resolution –RARP Protocol (RFC 903)
 - Used to boot workstations without disks
 - BOOTP (RFC 951,1048,1084)
 - DHCP (Dynamic Host Configuration Protocol) RFC 2131,2132

- Context:
 - Issues in IPv4 addresses world:
 - The exponential growth of the hosts` number
 - Very large routing tables
 - Complex configurations, more and more users (and increasing)
 - Failure to ensure QoS
 - Pressure from mobile operators

- Objectives for a new protocol:
 - Support for billions of hosts
 - Reducing routing tables
 - Simplifying Protocol
 - Support for mobile hosts
 - Compatibility with the old IP
 - Support for future developments of the Internet
 - RFC 2460, 2553

• 6 June 2012

Aspects:

- IPv6 addresses are 16 bytes in length 2¹²⁸ addresses
- Note: 16 hexadecimal numbers, 2 digits each, separated by ":"
 - Example: 2001:0db8:0000:0000:0000:0000:1428:57ab
 - If one or more groups of 4 digits is 0000, the zeros may be omitted and replaced (once) with "::"
 - Example: 2001:0db8::1428:57ab
- To maintain compatibility, public IP addresses are considered a subset of IPv6 address space
- IPv4 addresses in IPv6 can be written as: 10.0.0.1 -> ::10.0.0.1or 0:0:0:0:0:0:0:1

ICMPv6

- ICMP provides functions (reporting data transmission, errors, etc.) plus:
 - Neighbor Discovery(Neighbor Discovery Protocol NDP) - Replaces the ARP
 - Multicast listener discovery(Multicast Listener Discovery) – replaces IGMP (Internet Group Management Protocol)
- Details in RFC 4443

... More -> Optional Course

Summary

- Network Level
 - IPv4 Problem
 - Context
 - Characteristics
 - Subnets
 - Private Networks
 - ICMP
 - Address Resolution
 - IPv6 overview
 - Details -> Future Course

Questions?