Desktriptive Statistik

For more help with python visit:

http://www.scipy-lectures.org or take a course on https://www.datacamp.com/home.

This summary was written with typora.

Ziele der deskriptiven Statistik

- Daten zusammenfassen durch nummerische Kennwerte
- Graphische Darstellung der Daten

Beispiel aus der deskriptiven Statistik

- **Bekannt**: n beobachtete Datenpunkte (Messungen) x_1, x_2, \ldots, x_n
- Wir berechnen die Lage- und Streuungsparameter und stellen diese graphisch dar (z.B. mit einem Boxplot)
- Lageparameter:
 - o Arithmetisches Mittel (Durchschnitt / Schwerpunkt der Daten $ar{x}_n)
 ightarrow series Data Set.mean ()$
 - Median
 - Quantile
- Streuungsparameter:
 - Empirische Varianz / Standardabweichung
 - Quartilsdifferenz

Streuung

- Streuung nimmt Verteilung der Daten um den Mittelwert in Betracht
- Arithmetisches Mittel vernachlässigt diese Verteilung
- Beispiel Schulnoten einer Klasse (Arithmetisches Mittel)
 - Fall 1: Noten \rightarrow 2, 6, 3, 5; Mittelwert \rightarrow 4
 - \circ Fall 2: Noten \rightarrow 4, 4, 4, 4; Mittelwert \rightarrow 4

Ansätze um die Streuung zu berechnen

- Es gibt drei verschiedene Ansätze um die Streuung zu berechnen. Wir verwenden den 3.
- Ansatz 1: Durchschnitt der Unterschiede zum Mittelwert

 - $\begin{tabular}{ll} \circ & \mbox{Fall 1: } \frac{(2-4)+(6-4)+(3-4)+(5-4)}{4} = 0 \\ \circ & \mbox{Fall 2: } \frac{(4-4)+(4-4)+(4-4)+(4-4)}{4} = 0 \\ \end{tabular}$
 - Problem: Unterschiede können negativ sein und sich gegenseitig auflösen
- Ansatz 2: Unterschiede durch Absolutwerte ersetzen (mittlere absolute Abweichung)
 - $\begin{array}{ll} \circ & \text{Fall 1: } \frac{|(2-4)|+|(6-4)|+|(3-4)|+|(5-4)|}{4} = 1.5 \rightarrow \text{Noten weichen 1.5 vom Mittelwert} \\ \circ & \text{Fall 2: } \frac{|(4-4)|+|(4-4)|+|(4-4)|+|(4-4)|}{4} = 0 \end{array}$

 - Problem: Theoretische Nachteile
- ullet Ansatz 3: Empirische Varianz o Var(x) und empirische Standardabweichung $o s_x$
 - "Für das Mass der Variabilität oder Streuung der Messwerte verwendet"
 - o Fall 1:

$$Var(x) = exttt{SeriesDataSetA.var()} = 3.3 \, s_x = exttt{SeriesDataSetA.std()} = 1.8257$$

 \circ Fall 2: $Var(x) = exttt{seriesDataSetB.var()} = 0 \, s_x = exttt{seriesDataSetB.std()} = 0$

Empirische Varianz

- Kennzahl, um die Streuung eines Datensatzes zu beschreiben → seriesDataSet.var()
- ullet Wenn empirische Varianz gross o Streuung um das arithmetische Mittel gross
- Hat keine physikalische Bedeutung

Abweichungen $x_i - \bar{x}$ wird quadriert damit sich Abweichungen nicht gegenseitig aufheben können. Nenner n-1 anstelle von n

Empirische Standardabweichung

- ullet Kennzahl, um die Streuung eines Datensatzes **in derselben Einheit** zu beschreiben ulletseriesDataSet.std()
- Beispiel:
 - \circ Anzahl Messungen n=13
 - \circ Arithmetisches Mittel $ar{x_n}=80.02cal/g$
 - \circ Empirische Varianz Var(x) = 0.000574
 - $\circ~$ Standardabweichung $s_n = \sqrt{Var(x)} = 0.024cal/g$
 - o "mittlere" Abweichung vom Mittelwert 80.02 cal/g ist 0.024 cal/g

Median

- Lagemass für die "Mitte" \rightarrow seriesDataSet.median()
- "Wert, bei dem die Hälfte der Messwerte unter diesem Wert liegen"
- Berechnung:
 - 1. Datensatz der Grösse nach sortieren
 - 2. Der **Median** ist nun der Wert mittleren Beobachtung (Messung) \rightarrow aus 5 Beobachtungen ist der Median also die 3. Beobachtung
 - 3. Bei ungerader Anzahl Beobachtungen die mittlere Beobachtung nehmen
 - 4. Bei gerader Anzahl Beobachtungen den Durchschnitt der mittleren beiden Beobachtungen nehmen

Median vs. Arithmetisches Mittel

- Kommt auf die Problemstellung darauf an welches besser ist
- Am besten: beide Masse gleichzeitig verwenden
- Eigenschaften des Medians:
 - o robuster, also
 - o lässt sich weniger stark durch extreme Beobachtungen beeinflussen
 - o (noch robuster wäre die Quartilsdifferenz (weiter unten))

Quartile

- Wert, wo [Prozentsatz] aller Beobachtungen [kleiner oder gleich] und [1 Prozentsatz] [grösser oder gleich] sind wie dieser Wert
- Meistens existiert die [Prozentsatz] -igste Beobachtung nicht, dann müssen wir:
 - o [Prozentsatz] der Anzahl Beobachtungen berechnen
 - Die erhaltene Zahl aufrunden und diese Beobachtung wählen (Zahl = 3.25, dann 4. Beobachtung wählen)
 - Falls die erhaltene Zahl gerade ist (z.B. 2), dann Durchschnitt von dieser Beobachtung und der nächsten Beobachtung als Quartil nehmen (2. und 3. Beobachtung)
- Python kennt nur Befehle für **Quantile**, aber nicht für **Quartile**
- Um **Quartile** zu berechnen geben wir die folgende Option in die seriesDataSet.quantile() Funktion ein:
 - Unteres Quartil: seriesDataSet.quantile(q=.25, interpolation="midpoint")
 - Oberes Quartil: seriesDataSet.quantile(q=.75, interpolation="midpoint")

Unteres Quartil

• Wert, wo 25 % aller Beobachtungen kleiner oder gleich und 75 % grösser oder gleich sind wie dieser Wert

Oberes Quartil

• Wert, wo 75 % aller Beobachtungen kleiner oder gleich und 25 % grösser oder gleich sind wie dieser Wert

Quartilsdifferenz

- Kennzahl für die Streuung (Streuungsmass) der Daten
- oberes Quartil unteres Quartil
- misst die Länge des Intervalls, das ca. die Hälfte der "mittleren" Beobachtungen enthält
- Je kleiner die Quartilsdifferenz, **umso näher liegt die Hälfte aller Werte um den Median**, also
- Kleinere Differenz, kleinere Streuung
- Dieses Streuungsmass ist robust