Corrupt Bandits for Preserving Local Privacy

Pratik Gajane ¹ Tanguy Urvoy ² Emilie Kaufmann ³ 7th April 2018
Presentation at the 29th International Conf. on Algorithmic Learning Theory

¹Montanuniversität Leoben

²Orange labs

³CNRS & Univ. Lille & Inria-SequeL

Motivation and Formalization

Lower Bound on Regret

Proposed Algorithms

Experiments

Final Remarks

Motivation and Formalization

Classical Stochastic Bandits

- K arms/actions
- Unknown reward distributions with mean μ_a for arm a
- Learner pulls arm a
 - receives reward \sim distribution for a
 - feedback = received reward (Absolute feedback)
- Regret = best possible reward reward of pulled arm
- Learner's goal = minimize cumulative regret

Motivation for Corrupt Bandits: Privacy

Motivation for Corrupt Bandits: Privacy

"If you're doing something that you don't want other people to know, maybe you shouldn't be doing it in first place"

"Privacy is no longer a social norm!"

Local Differential Privacy

Figure 1: Ad system using bandits

- · Ad application as bandit problem.
- · Feedback from users on ads (arms).

Local Differential Privacy

Figure 1: Ad system using bandits

- · Ad application as bandit problem.
- · Feedback from users on ads (arms).
- · Local differential privacy (DP), by Duchi et al.(2014) [2].
- · Classical bandits unable to deal with noisy feedback.

Questions???

- Bandit setting to deal with Corrupted/Noisy Feedback?
- · Regret Lower Bound for such Bandit setting?
- · Algorithms to solve this Bandit setting?

Corrupt Bandits: Formalization

- · Formally characterized by
 - K arms
 - · unknown **reward** distribution with mean μ_a for each a
 - · unknown feedback distribution with mean λ_a for each a
 - · known mean corruption function g_a for each a
- $\cdot g_a(\mu_a) = \lambda_a$
- · Learner's goal: minimize cumulative regret

Lower Bound on Regret

Lower Bound

Theorem (Thm. 1, PG, Urvoy & Kaufmann(2018) [4])

Any consistent algorithm for a Bernoulli corrupt bandit problem satisfies,

$$\liminf_{T \to \infty} \frac{\mathsf{Regret}_{T}}{\log(T)} \ge \sum_{a=2}^{K} \frac{\Delta_{a}}{d(\lambda_{a}, g_{a}(\mu_{1}))}.$$
where $d(x, y) := \mathrm{KL}(\mathcal{B}(x), \mathcal{B}(y))$

- Δ_a = optimal mean reward mean reward of a (μ_a)
- 1 is assumed to be the optimal arm w.l.o.g.
- $\lambda_a = g_a(\mu_a)$. Behaviour of g_a on μ_a and μ_1 affects lower bound.

7

Proposed Algorithms

Proposed algorithm: kl-UCB-CF

Algorithm: kl-UCB-CF

Pull at time t an arm maximizing

$$\operatorname{Index}_a(t) := \max\{q : N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \le f(t)\}$$

- · Similar to kl-UCB by Cappé et al. (2013) [1] for classical bandits.
- Index_a(t) = UCB on μ_a from confidence interval on λ_a and using exploration function f
- $\hat{\lambda}_a(t) = \text{emp. mean of feedback of } a \text{ until time } t$
- · UCB1 (Auer et al. (2002)) can be updated to UCB-CF.

Upper Bound for kl-UCB-CF

Theorem (Thm. 2, PG, Urvoy & Kaufmann(2018) [4])

Regret of kl-UCB-CF
$$\leq \sum_{a=2}^{K} \frac{\Delta_a \log(T)}{d(\lambda_a, g_a(\mu_1))} + O(\sqrt{\log(T)})$$

- Recall that 1 is assumed to be the optimal arm.
- · More explicit bound can be provided.
- · Optimal as upper bound matches lower bound.

• Index_a(t) := max $\{q: N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \leq f(t)\}$ or Lower bound $\ell_a(t)$ on $g_a(\mu_a)$ if g_a is decreasing Upper bound $u_a(t)$ on $g_a(\mu_a)$ if g_a is increasing

- Index_a(t) := max $\{q: N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \leq f(t)\}$ or Lower bound $\ell_a(t)$ on $g_a(\mu_a)$ if g_a is decreasing Upper bound $u_a(t)$ on $g_a(\mu_a)$ if g_a is increasing
- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.

- Index_a(t) := max $\{q: N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \leq f(t)\}$ or Lower bound $\ell_a(t)$ on $g_a(\mu_a)$ if g_a is decreasing Upper bound $u_a(t)$ on $g_a(\mu_a)$ if g_a is increasing
- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $q_1(\mu_1) < \ell_1(t)$ or $q_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.
- Probability of unlikely event = o(log T).

- Index_a(t) := max $\{q: N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \leq f(t)\}$ or Lower bound $\ell_a(t)$ on $g_a(\mu_a)$ if g_a is decreasing Upper bound $u_a(t)$ on $g_a(\mu_a)$ if g_a is increasing
- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.
- Probability of unlikely event = o(log T).
- Probability of **likely event** = $\frac{\log T}{d(\lambda_a, g_a(\mu_1))} + \cdots$

- Index_a(t) := max $\{q: N_a(t) \cdot d(\hat{\lambda}_a(t), g_a(q)) \leq f(t)\}$ or Lower bound $\ell_a(t)$ on $g_a(\mu_a)$ if g_a is decreasing Upper bound $u_a(t)$ on $g_a(\mu_a)$ if g_a is increasing
- a is pulled at time t + 1 by kl-UCB-CF \Longrightarrow
 - $g_1(\mu_1) < \ell_1(t)$ or $g_1(\mu_1) > u_1(t)$. Unlikely event.
 - $g_1(\mu_1)$ is inside its confidence interval. Likely event.
- Probability of unlikely event = o(log T).
- Probability of **likely event** = $\frac{\log T}{d(\lambda_a, g_a(\mu_1))} + \cdots$
- Above leads to upper bound on $\mathbb{E}[N_a(T)]$ and $\text{Regret}_{T} = \sum_{a=2}^{K} \Delta_a \cdot \mathbb{E}[N_a(T)].$

Proposed Algorithm: TS-CF

Algorithm: TS-CF

- 1. Sample $\theta_a(t)$ from Beta posterior distribution on mean feedback of arm a.
- 2. Pull arm $\hat{a}_{t+1} = \arg\max_{a} g_a^{-1}(\theta_a(t))$.
 - Similar to Thompson sampling by Thompson (1933) [5] for classical bandits.
 - Probability (a is played) = posterior probability (a is optimal).

Upper Bound for TS-CF

Theorem (Thm. 3, PG, Urvoy & Kaufmann(2018) [4])

Regret of TS-CF
$$\leq \sum_{a=2}^{K} \frac{2\Delta_a \log(T)}{d(\lambda_a, g_a(\mu_1))} + O(\sqrt{\log(T)})$$

- Recall that 1 is assumed the be the optimal arm.
- · A tighter bound can be provided.
- · Optimal as upper bound matches lower bound.

$$\lambda_a < {\color{red} u_a} < {\color{red} w_a} < {\color{gath} g_a}(\mu_1)$$
 if ${\color{gath} g_a}$ is increasing and, $\lambda_a > {\color{gath} u_a} > {\color{gath} w_a} > {\color{gath} g_a}(\mu_1)$ if ${\color{gath} g_a}$ is decreasing.

• Two thresholds u_a and w_a $\lambda_a < u_a < w_a < g_a(\mu_1)$ if g_a is increasing and, $\lambda_a > u_a > w_a > g_a(\mu_1)$ if g_a is decreasing.

• Event
$$E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}\$$

Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}\$

- Two thresholds u_a and w_a $\lambda_a < u_a < w_a < g_a(\mu_1)$ if g_a is increasing and, $\lambda_a > u_a > w_a > g_a(\mu_1)$ if g_a is decreasing.
- Event $E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}\$ Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}\$

$$\begin{array}{ll} \cdot \ \mathbb{E}[N_a(T)] & \leq \ \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \frac{E_a^{\lambda}(t)}{I_a(t)}, \overline{E_a^{\theta}(t)}) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \frac{E_a^{\lambda}(t)}{I_a(t)}, E_a^{\theta}(t)) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{E_a^{\lambda}(t)}). \end{array}$$

$$\lambda_a < {\color{red} u_a} < {\color{red} w_a} < {\color{gray} g_a}(\mu_1)$$
 if g_a is increasing and, $\lambda_a > {\color{red} u_a} > {\color{red} w_a} > g_a(\mu_1)$ if g_a is decreasing.

- Event $E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \leq g_a^{-1}(u_a)\}\$ Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \leq g_a^{-1}(w_a)\}\$
- $\begin{array}{ll} \cdot \ \mathbb{E}[N_a(T)] & \leq \ \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \frac{E_a^{\lambda}(t)}{I_a(t)}, \overline{E_a^{\theta}(t)}) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \frac{E_a^{\lambda}(t)}{I_a(t)}, E_a^{\theta}(t)) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{E_a^{\lambda}(t)}). \end{array}$
- Last two terms are $o(\log(T))$.

$$\lambda_a < {\color{red} u_a} < {\color{red} w_a} < {\color{gathered} g_a(\mu_1)} \qquad \text{if g_a is increasing and,} \ \lambda_a > {\color{red} u_a} > {\color{red} w_a} > {\color{gathered} g_a(\mu_1)} \qquad \text{if g_a is decreasing.}$$

- Event $E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}\$ Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}\$
- $\begin{array}{ll} \cdot \ \mathbb{E}[N_a(T)] & \leq \ \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \boldsymbol{E}_a^{\lambda}(t), \overline{\boldsymbol{E}_a^{\theta}(t)}) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \underline{\boldsymbol{E}_a^{\lambda}(t)}, \boldsymbol{E}_a^{\theta}(t)) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{\boldsymbol{E}_a^{\lambda}(t)}). \end{array}$
- Last two terms are $o(\log(T))$.
- First term is $\leq \frac{\log(T)}{d(u'_a, w_a)} + 1$ for large T and suitable u'_a .

$$\lambda_a < {\color{red} u_a} < {\color{red} w_a} < {\color{gate} g_a(\mu_1)} \qquad \text{if g_a is increasing and,} \ \lambda_a > {\color{red} u_a} > {\color{red} w_a} > {\color{gate} g_a(\mu_1)} \qquad \text{if g_a is decreasing.}$$

- Event $E_a^{\lambda}(t) = \{g_a^{-1}(\hat{\lambda}_a(t)) \le g_a^{-1}(u_a)\}$ Event $E_a^{\theta}(t) = \{g_a^{-1}(\theta_a(t)) \le g_a^{-1}(w_a)\}$
- $\begin{array}{ll} \cdot \ \mathbb{E}[N_a(T)] & \leq \ \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \boldsymbol{E}_a^{\lambda}(t), \overline{\boldsymbol{E}_a^{\theta}(t)}) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \underline{\boldsymbol{E}_a^{\lambda}(t)}, \boldsymbol{E}_a^{\theta}(t)) \\ & + \sum_{t=0}^{T-1} \mathbb{P}(\hat{a}_{t+1} = a, \overline{\boldsymbol{E}_a^{\lambda}(t)}). \end{array}$
- Last two terms are $o(\log(T))$.
- First term is $\leq \frac{\log(T)}{d(u'_a, w_a)} + 1$ for large T and suitable u'_a .
- Binding above leads to upper bound on $\mathbb{E}[N_a(T)]$ and $\mathsf{Regret}_T = \sum_{a=2}^K \Delta_a \cdot \mathbb{E}[N_a(T)].$

Experiments

Experiments with varying time

- Bernoulli corrupt bandit: $\mu_1 = 0.9$ $\mu_2 = \cdots = \mu_{10} = 0.6$
- · Comparison over a period of time for fixed corruption

Figure 2: Regret plots with varying T up to 10^5

Experiments with varying Local DP

- Bernoulli corrupt bandit: $\mu_1 = 0.9$ $\mu_2 = \cdots = \mu_{10} = 0.6$
- Comparison with varying level of Local DP; ϵ from $\{1/8, 1/4, 1/2, 1, 2, 4, 8\}$

Figure 3: Regret with varying level of Local DP

Covered in this talk:

- · Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Covered in this talk:

- · Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

· Provided optimal mechanism for achieving local DP.

Covered in this talk:

- · Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

- · Provided optimal mechanism for achieving local DP.
- Proved regret guarantees for achieving required level of local DP (Trade-off between utility and privacy).

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

- · Provided optimal mechanism for achieving local DP.
- Proved regret guarantees for achieving required level of local DP (Trade-off between utility and privacy).

Future work:

· Contextual corruption?

Covered in this talk:

- Introduced Corrupt Bandits to provide privacy.
- Proved the lower bound. Provided optimal algorithms matching the lower bound.

Not covered in this talk:

- · Provided optimal mechanism for achieving local DP.
- Proved regret guarantees for achieving required level of local DP (Trade-off between utility and privacy).

Future work:

- · Contextual corruption?
- Corrupted feedback in RL? (a recent publication by Everitt et al. (2017) [3]).

Thank you all.

References i

References

- [1] Olivier Cappé, Aurélien Garivier, Odalric-Ambrym Maillard, Rémi Munos, and Gilles Stoltz. Kullback-Leibler upper confidence bounds for optimal sequential allocation. *Annals of Statistics*, 41(3):1516–1541, 2013.
- [2] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Privacy aware learning. *J. ACM*, 61(6):38:1–38:57, December 2014.
- [3] Tom Everitt, Victoria Krakovna, Laurent Orseau, and Shane Legg. Reinforcement learning with a corrupted reward channel. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages 4705–4713, 2017.

References ii

- [4] Pratik Gajane, Tanguy Urvoy, and Emilie Kaufmann. Corrupt bandits for preserving local privacy. In *Proceedings of the 29th International Conference on Algorithmic Learning Theory (ALT)*, 2018.
- [5] W.R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Bulletin of the AMS*, 25:285–294, 1933.

Interpretation of Lower Bound for Corrupt Bandits

• Divergence between λ_a and $g_a(\mu_1)$ plays a crucial role in distinguishing arm a from the optimal arm.

Figure 4: On the left, g_a is such that $\lambda_a = g_a(\mu_1)$. On the right, a steep monotonic g_a leads $\Delta_a = \mu_1 - \mu_a$ into a clear gap between λ_a and $g_a(\mu_1)$.

- If the g_a function is non-monotonic, it might be impossible to distinguish between arm a and the optimal arm.
- · Assumption: Corruption functions strictly monotonic.

Optimal mechanism for local DP and regret

Corruption matrix

$$\mathbb{M}_{a} = \begin{bmatrix} 0 & 1 \\ \frac{e^{\epsilon}}{1+e^{\epsilon}} & \frac{1}{1+e^{\epsilon}} \\ \frac{1}{1+e^{\epsilon}} & \frac{e^{\epsilon}}{1+e^{\epsilon}} \end{bmatrix}.$$

Corollary

The regret of k1-UCB-CF or TS-CF at time T with ϵ -locally differentially private bandit feedback corruption scheme is

$$\mathsf{Regret}_{T} \leq \sum_{a=2}^{K} \frac{2\log(T)}{\Delta_{a} \left(\frac{e^{\epsilon}-1}{e^{\epsilon}+1}\right)^{2}} + O(\sqrt{\log(T)}).$$

Local DP vs global DP

- For low values of ϵ , $\left(\frac{e^{\epsilon}-1}{e^{\epsilon}+1}\right) \approx \epsilon/2$.
- In-line with global DP algorithms with a multiplicative factor of $O(\epsilon^{-1})$ or $O(\epsilon^{-2})$.
- One global DP algorithm with additive factor of O(ϵ^{-1}). Our lower bound shows that's not possible for local DP.

