PCT -

国際事務局 特許協力条約に基づいて公開された国際出願

世界知的所有権機関

(51)	国際特許分類6
	C02D 6/12

(11) 国際公開番号

WO98/37445

(43) 国際公開日

1998年8月27日(27.08.98)

(21) 国際出願番号

PCT/JP97/00446

A1

(22) 国際出願日

1997年2月19日(19.02.97)

(71) 出願人(米国を除くすべての指定国について)

株式会社 日立製作所(HITACHI, LTD.)[JP/JP]

〒101 東京都千代田区神田駿河台四丁目6番地 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

井戸立身(IDO, Tatemi)[JP/JP]

〒192 東京都八王子市子安町2丁目32番D-201号 Tokyo, (JP)

鷹野秀明(TAKANO, Hideaki)[JP/JP]

〒185 東京都国分寺市西恋ケ窪3丁目8番1号

日立恋ケ窪寮 Tokyo, (JP)

小泉真里(KOIZUMI, Mari)[JP/JP]

〒352 埼玉県新座市畑中2丁目16番46号 Saitama, (JP)

(74) 代理人

弁理士 小川勝男(OGAWA, Katsuo)

〒100 東京都千代田区丸の内一丁目5番1号

株式会社 日立製作所内 Tokyo, (JP)

(81) 指定国 CN, JP, KR, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54)Title: POLYMER OPTICAL WAVEGUIDE, OPTICAL INTEGRATED CIRCUIT, OPTICAL MODULE AND OPTICAL COMMUNICATION APPARATUS

(54)発明の名称 ポリマー光導波路、光集積回路、光モジュールおよび光通信装置

(57) Abstract

An optical waveguide formed out of a polymer, an optical integrated circuit, an optical module, and an optical communication system (optical communication apparatus) using these. A polymer optical waveguide is formed on a base having an inorganic material at least on a part of the surface thereof, and provided with a core layer, a clad layer positioned closer to the base than the core layer and a buffer layer. The core and clad layers are made of a polymer. The buffer layer is made of a polymer different from that of the clad layer and provided between the clad layer and base plate.

1: 基板

2: 下部クラッド層

3: コア層

4: 上部クラッド層

5: バッファ層

1 ... base

2 ... lower clad layer

3 ... core layer

4 ... upper clad layer

5 ... buffer layer

(57) 要約

ポリマーから構成される光導波路、光集積回路、光モジュール、及びこれらを用いた 光通信システム (光通信装置) が開示されている。表面の少なくとも一部に無機材料を 有する基板上に作製され、且つ、コア層及び該コア層より基板側に位置するクラッド層 がポリマーから成るポリマー光導波路において、該クラッド層と該基板の間に該クラッ ド層とは異なるポリマーから成るバッファー層を有することを特徴とするポリマー光 導波路が開示されている。

WO 98/37445 PCT/JP97/00446

明細書

ポリマー光導波路、光集積回路、光モジュールおよび光通信装置

本発明はポリマーから構成される光導波路、光集積回路、光モジュール、及びこれら を用いた光通信システム (光通信装置) に関する。

背景技術

技術分野

近年、光部品の小型化・低コスト化・多機能化を目指して、光導波路及びそれを用いた光集積回路の研究が活発化している。光導波路の内で特に、基板上にポリマー材料を塗布して作製するポリマー光導波路は量産性に優れ、低コスト化も期待できることから近年注目されている。

従来のポリマー光導波路の一例である埋込型光導波路を第10図に示す。本光導波路 は、シリコンやガラスなどの基板1上に、下部クラッド層2を構成するポリマー(屈折 率 n 1) 、コア層 3 を構成するポリマー (屈折率 n 2) を順次塗布し、コア層の不要部 をエッチングにより除去した後、再度上部クラッド層4を構成するポリマー (屈折率 n 3)を塗布することによって作製される。光導波路として作用するためにn2はn1、 n3より大きく設定される。また、光ファイバとの接続を容易にすると同時にシングル モード光導波路を実現するために、コア層3は6×6~9×9μm程度、コア層3とクラ ッド層2、4との屈折率差は0.3~0.7%程度になるように各層のポリマー材料が選択 される。更に、上記ポリマー光導波路において導波路の伝搬損失を小さくするためには、 下部クラッド層2、コア層3、上部クラッド層4に光吸収の少ないポリマーを使用する 必要がある。光ファイバ通信の応用では波長 1.3~1.5 μm 帯の赤外光に対して光導波 路を低損失にする必要がある。しかし、通常のポリマーは構造中に CH (炭素-水素) 結 合を有し、この CH 結合の振動の吸収のために赤外光に対して強い吸収を有するため赤 外用の導波路材料として不適である。赤外用の光導波路材料としては、CH 結合の水素 (H) をフッ素 (F) や重水素 (D) で置換したポリマーが使用される。特にフッ素置 換を行ったフッ素系ポリマーは、波長 1.5 μ m帯の光に対しても低損失であり、またフ ッ素の持つ撥水性により高湿下で使用しても損失が増大しないなど優れた性質を持つ。 光学用フッ素系ポリマーとしては、フッ素化ポリイミド樹脂、フッ素化アクリル樹脂な どが挙げられる。フッ素化ポリイミド樹脂及びそれを用いて作製したポリマー光導波路

については、例えば特開平 4-9807 号や Electronics Letters, vol. 29, pp. 2107-3109 (1993) などに記載されている。

ポリマー光導波路を用いた光集積化回路としては、例えば熱光学効果を利用した光スイッチが挙げられる。これについては、IEEE Photonics Technology Letters, vol. 5, pp. 782-784 (1993) や第21回ヨーロッパ光通信国際会議(21-st Eurpean Conference on Optical Communication (ECOC'95) 予稿集 pp. 1059-1062 (1995) などに記載されている。

しかしながら、一般にフッ素を含有する光学用ポリマーは、フッ素の有する撥水性のために、シリコンやガラス等の無機材料との密着性が悪く、このため光導波路の作製途中または作製後に基板1と下部クラッド層2との間で剥離が生じるという問題がある。このためにフッ素を含有する光学特性が優れたポリマーを用いて光導波路を作製することは難しく、また作製された光導波路や光集積回路の長期信頼性が得られないという問題がある。フッ素を含むポリマーと無機基板との密着性を向上する手法としては、無機基板上に有機ジルコニウムキレートを塗布・ベークすることにより有機ジルコニウム化合物を形成し、その後フッ素系ポリマーを塗布する方法が特開平7-174930に記載されている。しかしながら、該有機ジルコニウムキレートを用いて得られる接着強度は必ずしも実用上十分なものではなく、例えば、同手法により作製した光導波路を作製後高温高湿下に放置すると、同様に基板と下部クラッド層間で剥離が生じてしまうという問題がある。

本発明の目的は、無機基板上に光学ポリマーを塗布して作製するポリマー光導波路に おいて、下部クラッド層と基板の密着性を向上した信頼性の高いポリマー光導波路・光 集積回路を提供し、さらにそれらを用いて長期信頼性の優れた光モジュール、光通信シ ステムを提供することにある。

上記目的は、シリコン基板、ガラス基板、表面の少なくとも一部に酸化膜を設けたシリコン基板、表面の少なくとも一部に金属電極を有する基板のいずれかの基板上に作製され、且つ、コア層及びコア層より基板側に位置するクラッド層がポリマーからなるポリマー光導波路において、コア層より基板側に位置するクラッド層と基板との間にポリマーからなるバッファー層を設け、該バッファ層に基板と強い密着性を有するポリマーを使用する。特に、該バッファ層としてフッ素を含まないポリマーを使用する。あるい

は、特に該バッファ層としてシリコンを含むポリマーを使用する。あるいは、特に該クラッド層にフッ素化ポリイミド樹脂を用いた場合には該バッファ層にポリイミドシリコーン樹脂を用いる。バッファ層を有する該ポリマー光導波路を用いて光集積回路、光スイッチ、光モジュールを構成する。更に、それらを用いて光通信システムを構成することによって解決できる。

発明の開示

上記目的は、シリコン基板、ガラス基板、表面の少なくとも一部に酸化膜を設けたシリコン基板、表面の少なくとも一部に金属電極を有する基板のいずれかの基板上に作製され、且つ、コア層及びコア層より基板側に位置するクラッド層がポリマーからなるポリマー光導波路において、コア層より基板側に位置するクラッド層と基板との間にポリマーからなるバッファー層を設け、該バッファ層に基板と強い密着性を有するポリマーを使用する。特に、該バッファ層としてフッ素を含まないポリマーを使用する。あるいは、特に該バッファ層としてシリコンを含むポリマーを使用する。あるいは、特に該クラッド層にフッ素化ポリイミド樹脂を用いた場合には該バッファ層にポリイミドシリコーン樹脂を用いる。バッファ層を有する該ポリマー光導波路を用いて光集積回路、光スイッチ、光モジュールを構成する。更に、それらを用いて光通信システムを構成することによって解決できる。

図面の簡単な説明

第1図は、本発明の実施例に係る埋込型ポリマー光導波路の構造図である。

第2図は、本発明の実施例に係るポリマー光導波路における基板に垂直方向の光強度 分布を示す図である。

第3図は、本発明の実施例に係るリッジ型ポリマー光導波路の構造図である。

第4図は、感光性ポリマーをその光導波路の一部に用いて作製した本発明の実施例に 係るポリマー光導波路の構造図である。

第5図は、本発明の実施例に係る1×4分岐型光スイッチの平面図および断面図である。

第6図は、本発明の実施例に係る1×4分岐型光スイッチを組み合わせて作製した4×4光スイッチを示す図である。

第7図は、本発明の実施例に係る光スイッチを用いた光ファイバ通信システムを示す

図である。

第8図は、本発明の実施例に係る光モジュールの内部構造を示す図である。

第9図は、本発明の実施例に係る光モジュールを使用した光通信装置を示す図である。 第10図は、従来のポリマー光導波路を示す図である。

発明を実施するための最良の形態

第1図に本発明の実施例に係る埋込型のポリマー光導波路を示す。まずこれを用いて本発明の作用を説明する。本発明の光導波路は、基板1と下部クラッド層2の間に基板と強い密着性を持つポリマーから構成されるバッファ層5を有している。第2図に示すように本構造では、下部クラッド層2の厚さを十分厚くして、導波光がバッファ層5にほとんど掛からないようにしている。従って、バッファ層5に吸収損失の大きなポリマーを使用しても導波路の損失は増加しない。また、同様に下部クラッド層2の厚さを十分厚く設定しているために、バッファ層のポリマーの屈折率はいかなる値であっても、光は導波路を伝搬することができる。すなわち、本構造ではバッファ層5を構成するポリマーの光学的性質は導波路の光学的特性に影響を与えないため、バッファ層5には光学特性を無視して基板と密着性の高い任意のポリマーを使用することができる。また、一般にポリマー同士の密着性は高く、バッファ層5として基板と同時に下部クラッド層2とも密着性が高い材料を設定することは容易である。したがって、本発明によって、従来より密着性が強く信頼性の優れたポリマー光導波路を提供できる。

例えば下部クラッド層 2 にフッ素化ポリイミド樹脂を用いた場合には、バッファ層 5 にはフッ素を含まない通常のボリイミドを用いれば基板との密着性が向上し、また下部クラッド層、バッファ層間でも強い密着性を実現できる。更に基板との密着性を向上したければ、分子構造中に Si 原子を有してシリコンや SiO2 と強い自己接着性を持つポリイミドシリコーン樹脂をバッファ層 5 に用いれば良い。また、下部クラッド層がフッ素化されたアクリル系樹脂から成り立つ場合には、バッファー層としてフッ素を含有しないアクリル系樹脂を、下部クラッド層がフッ素化されたポリカーボネート系樹脂から成り立つ場合には、バッファー層としてフッ素を含有しないポリカーボネート系樹脂を用いれば良い。

次に、第1図を用いて本発明の具体的な実施方法について説明する。まず、シリコン 基板1上にポリイミドシリコーン樹脂の前駆体であるポリアミド酸の N,N-ジメチルア セトアミド溶液をスピンナーにより塗布・ベークしてポリイミドシリコーン樹脂からなるバッファ層 5 (厚さ $1.5~\mu$ m) を形成する。ポリイミドシリコン樹脂として、ここでは構造式

【化学式 I】

で示されるベンゾフェノンテトラカルボン酸二無水物 (BTDA) とメチレンジアニリン (MDA) 及びビス-γアミノプロピルテトラメチルジシロキサン (GAPD) との重合生成物を使用した。

更に 2 種類のフッ素化ポリイミド樹脂 A, B の前駆体であるポリアミド酸の N, N-ジメチルアセトアミド溶液をそれぞれ塗布・ベークして、フッ素化ポリイミド樹脂 A からなる下部クラッド層 2 (厚さ $10~\mu$ m) とフッ素化ポリイミド B からなるコア層 3 (厚さ $10~\mu$ m) を形成する。フッ素化ポリイミド A は構造式

【化学式 II】

で表される 2, 2'-ビス (トリフルオロメチル)-4, 4'-ジアミノビフェニル (TFDB) と 2, 2-ビス (3, 4-ジカルボキシフェニル) ヘキサフルオロプロパン 2 無水物 (6FDA) との重合生成物である。また、フッ素化ポリイミド樹脂 B は構造式

【化学式 III】

$$= \begin{bmatrix} 0 & F3C & CF3 & 0 & CF3 & 0 & CF3 & 0 & CF3 & 0 & CF3 & CF3$$

で表される TFDB と 6FDA 及びピロメット酸二無水物 (PMDA) との重合生成物であり、コ ア層3の屈折率が下部クラッド層2の屈折率より約0.3%大きくなるように 6FDA と PMDA の割合(すなわち m と n の割合)を 4:1 とした。次に、酸素の反応性イオンエ ッチングによってコア層3の一部を除去して導波路パターンを形成し、フッ素化ポリイ ミド樹脂 A の前駆体であるポリアミド酸の N,N-ジメチルアセトアミド溶液を塗布・ベ ークして更に上部クラッド層4 (厚さ 10 μm) を設けた。作製した光導波路の伝搬損 失は、波長 1.3 μmにおいて、0.3 dB/cmであった。これは、同じフッ素化ポリイミド 樹脂を用いて作製したバッファ層を有しない従来の光導波路(第10図)と同等の小さ な値である。作製した光導波路の熱サイクル試験を行ったところ、バッファ層を有しな い従来の素子では下部クラッド層2と基板1の間で剥離を生じたのに対して、バッファ 層を用いた素子では剥離が見られず、密着性の向上及び長期信頼性の向上が確認できた。 上記説明は、特に埋込型の光導波路をエッチングを用いて作製する場合について説明し たが、本発明は上部クラッド層の無いリッジ型の光導波路についても第3図に示すよう に同様に実施することができる。また、コア層に感光性のポリマーを用いてその一部に 光を照射して屈折率を小さくすることを用いて作製する埋込型の光導波路についても 第4図に示すように同様に実施できる。更に、基板及び基板の表面の材質は Si02、石 英、SiNx 等の他のいかなる無機材料であっても同様の効果が期待できる。

本発明の実施例に係るポリマー光集積回路の一例である光スイッチを第5図に示す。本 1×4 光スイッチは、導波路上に薄膜ヒータ電極1 0 を有し、該ヒータにより導波路を加熱して屈折率を変化させることによって光路の切り替えを行う。本光スイッチは以下のプロセスで作製した。まず、前実施例と同様にシリコン基板 1 上にポリイミドシリコーン樹脂前駆体のポリアミド酸の N,N-ジメチルアセトアミド溶液、及び、フッ素化ポリイミド樹脂 N,N-ジメチルアセトアミド溶液をそれぞれ順次塗布・ベークすることによりポリイミドシリコーン樹脂からなるバッファ層 N,N-ジメチルアセトアミド溶液をそれぞれ順次塗布・ベークすることによりポリイミドシリコーン樹脂からなるバッファ層 N,N-ジメチルアセトアミド溶液をそれぞれ順次塗布・ベークすることによりポリイミド樹脂 N0 からなる下部クラッド層 N,N0 (厚さ N,N1 の)、フッ素化ポリイミド樹脂 N1 からなる下部クラッド層 N,N2 の反応性イオンエッチングを用いてコア層の一部を除去して、導波路パターン(分岐構造を含む)を形成する。次に、フッ素化ポリイミド樹脂 N,N3 の前駆体であるアミド酸溶液を塗布・ベークしてフッ素化ポリイミド樹脂 N,N3 からなる上部クラッド層 N,N4 を形成し、

Cr 薄膜ヒータ1 0を設ける。最後に素子端面に光を入出力するための光ファイバ1 1 (計5本)を接着した。作製した光スイッチの挿入損失は約4 dBであり、各ヒータに約40 mWの電力を与えることにより、消光比20 dB以上でスイッチングした。また、ヒータ電流の ON・OFF を1万回以上繰り返しても、ポリマーが基板から剥がれることは無かった。これに対して、バッファ層を有しない従来の素子ではヒータ電流の ON・OFF により、ポリマー導波路が基板から剥離した。作製した1×4光スイッチを組み合わせて4×4光スイッチ(第6図)を構成し、この4×4光スイッチ各局に設置して光通信装置を構成した(第7図)。本光通信装置は、通常、 局Aと局B、局Bと局C、局Cと局Aがそれぞれ最短距離の光ファイバ1本を用いて通信を行っている。しかし、例えば 局Aと局Bの間で光ファイバが断線した場合には、各局の光スイッチを切り替えることにより局Aと局Bの間の通信を、局Aと局Cの間のファイバ、局Cの光スイッチ、局Cと局Bの間のファイバを介して行うことができる。本光通信装置は長期に渡って正常に動作した。

第8図に、本発明の実施例に係るポリマー光導波路を用いたレーザダイオードとフォ トダイオードモジュールの内部構造を示す。本モジュールは以下の手順で作製した。ま ず、Si02 膜40を有するシリコン基板1上に Cr/Au 電極41を設ける。前実施例と同 様にシリコン基板1上にポリイミドシリコーン樹脂前駆体のポリアミド酸の N, N-ジメ チルアセトアミド溶液、及び、フッ素化ポリイミド樹脂 A,B の前駆体ポリアミド酸の N, N-ジメチルアセトアミド溶液をそれぞれ順次塗布・ベークすることによりボリイミド シリコーン樹脂からなるバッファ層 5 (厚さ 1.5 μ m)、フッ素化ポリイミド樹脂 A からなる下部クラッド層 2 (厚さ 10 μm)、フッ素化ポリイミド樹脂 B からなるコア 層3 (厚さ7 μm)を積層する。次に酸素の反応性イオンエッチングによりコア層の一 部をエッチングして導波路パターン (Y分岐構造を含む)を形成し、上部クラッド層 4 を塗布する。次に酸素の反応性イオンエッチングを用いて基板上の一部のポリマー層を 完全に除去して、素子搭載部及び電極引出し部を露出する。搭載部にレーザダイオード 42及び導波路型フォトダイオード43を搭載した。また、基板端面に光ファイバ11 を接着した。更に、この基板を金属パッケージに入れて気密封止をを行い光モジュール を完成した。次に作製した光モジュールを2つ用いて第9図に示す双方向光通信装置を 作製した。該双方向光通信装置は長期に渡って安定に動作した。

本発明の実施例により、基板との密着性が高く信頼性が高いポリマー光導波路、光集積回路、光モジュールを提供できる。また、それらを用いて光通信装置を構成することにより信頼性の高い光通信装置を提供できる。

産業上の利用可能性

本発明の実施例では、基板との密着性が高く信頼性が高いポリマー光導波路、光集積 回路、光モジュールを提供できる。また、それらを用いて光通信装置を構成することに より信頼性の高い光通信装置を提供できるので、産業上の利用可能性はきわめて大きい。

請求の範囲

- 1. 表面の少なくとも一部に無機材料を有する基板上に作製され、且つ、コア層及び該コア層より基板側に位置するクラッド層がポリマーから成るポリマー光導波路において、該クラッド層と該基板の間に該クラッド層とは異なるポリマーから成るバッファー層を有することを特徴とするポリマー光導波路。
- 2. 該バッファ層を構成するポリマーが、該クラッド層を構成するポリマーよりも該基板と強い密着性を有することを特徴とする請求項1記載のポリマー光導波路。
- 3. 該クラッド層がフッ素を含有するポリマーからなり、該バッファ層がフッ素を含有しないポリマーからなることを特徴とする請求項1または2記載のポリマー光導波路。 4. 該バッファ層がシリコンを含有するポリマーからなることを特徴とする請求項1または2記載のポリマー光導波路。
- 5. 該クラッド層がフッ素化ポリイミド樹脂から成り、該バッファ層がポリイミドシリコーン樹脂から成ることを特徴とする請求項1または2記載のポリマー光導波路。
- 6.シリコン基板、ガラス基板、表面の少なくとも一部に酸化膜を設けたシリコン基板、 表面の少なくとも一部に金属電極を有する基板のいずれかを使用したことを特徴とす る請求項1ないし5のいずれか一つに記載のポリマー光導波路。
- 7.請求項1ないし6のいずれか一つに記載のポリマー光導波路を有することを特徴とする光集積回路。
- 8.光導波路の少なくとも一部の表面に薄膜ヒータを用いたことを特徴とする請求項7に記載の光集積回路。
- 9. 前記光集積回路は光スイッチであることを特徴とする請求項7または8に記載の光集積回路。
- 10. 請求項9記載の光スイッチを使用したことを特徴とする光通信装置。
- 11.請求項1ないし6のいずれか一つに記載のポリマー光導波路を有する基板の上に、半導体レーザまたはフォトダイオードを実装したことを特徴とする光モジュール。
- 12. 請求項11記載の光モジュールを使用したことを特徴とする光通信装置。

第1図

1: 基板 2: 下部クラッド層 3: コア層

4: 上部クラッド層 5: バッファ層

第3図

第4図

7: 感光性コア層

10: ヒータ電極 11: 光ファイバ

第6図

第7図

20: 光伝送装置

第8図

40: SiO2膜

41: 電極 42: レーザダイオード 43: 導波路型フォトダイオード

第9図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00446

A. CLASSIFICATION OF SUBJECT MATTER Int. C1 ⁶ G02B6/12					
According to International Patent Classification (IPC) or to both national classification and IPC					
	cumentation searched (classification system followed by	classification symbols)			
Int. Cl ⁶ G02B6/12					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1940 - 1996 Kokai Jitsuyo Shinan Koho 1971 - 1996					
Electronic da	ta base consulted during the international search (name o	f data base and, where practicable, search to	erms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	Relevant to claim No.			
х	JP, 4-281406, A (Nippon Tel Corp.), October 7, 1992 (07. 10. 92 Page 2, right column, lines left column, line 31 to rig (Family: none)	1, 2, 6, 7			
Y	JP, 7-20331, A (Oki Electri and others), January 24, 1995 (24. 01. 9 Page 3, right column, lines & GB, 2279152, A1 & FR, 270	8 - 10			
Y	JP, 6-162550, A (Hiroshi Ni June 10, 1994 (10. 06. 94), Page 3, left column, lines (Family: none)	11			
Formath	are decuments are listed in the continuation of Roy C	See patent family annex.			
"A" document defining the general state of the art which is not considered "A" document defining the general state of the art which is not considered the principle of theory underlying the invention					
to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other					
special	special reason (as specified) "O" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination				
"P" document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art "&" document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
April 9, 1997 (09. 04. 97) April 22, 1997 (22. 04. 97)					
Name and mailing address of the ISA/ Author		Authorized officer			
Japanese Patent Office			1		
Facsimile No.		Telephone No.			

国際出願番号 PCT/JP97/00446 国際調査報告 発明の属する分野の分類(国際特許分類(IPC)) Int. CI G02B6/12 調査を行った分野 調査を行った最小限資料(国際特許分類(【PC)) Int. Cl G02B6/12 最小限資料以外の資料で調査を行った分野に含まれるもの 1940-1996 日本国実用新案公報 1971-1996 日本国公開実用新案公報 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) 関連すると認められる文献 関連する 引用文献の 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 カテゴリー* JP, 4-281406, A (日本電信電話株式会社), 7. 10月. 1992 (0 1, 2, 6, 7 X 7. 10. 92), 第2頁, 右欄, 第21-29行, 第3頁, 左欄, 第31行-右欄 . 第19行(ファミリーなし) 8 - 10JP, 7-20331, A (沖電気工業株式会社 他), 24. 1月. 1995 (2 Y 4. 01. 95), 第3頁, 右欄, 第5-35行&GB, 2279152, A1&F R, 2706631, A1 JP, 6-162550, A (西原浩 他), 10. 6月. 1994 (10. 06. 1 1 Y 94), 第3頁, 左欄, 第8-22行(ファミリーなし) □ パテントファミリーに関する別紙を参照。 □ C欄の続きにも文献が列挙されている。 の日の後に公表された文献 * 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す て出願と矛盾するものではなく、発明の原理又は理 もの 「E」先行文献ではあるが、国際出願日以後に公表されたも 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 「L」優先権主張に疑義を提起する文献又は他の文献の発行 の新規性又は進歩性がないと考えられるもの 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに 文献(理由を付す) よって進歩性がないと考えられるもの 「〇」口頭による開示、使用、展示等に言及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

国際調査報告の発送日

離本 十良三

特許庁審査官(権限のある職員)

電話番号 03-3581-1101 内線 3254

22.04.97

7709

2 K

09.04.97

日本国特許庁(ISA/JP) 郵便番号100

東京都千代田区霞が関三丁目4番8号

国際調査を完了した日

国際調査機関の名称及びあて先