Question 1 [12 marks]:

Consider the instance of a discrete knapsack problem with the knapsack capacity 10 and the item information as follows:

ltem	Weight	Value	Value per 1 weight
1	4	\$120	\$120 / 4 = \$30
2	3	\$600	\$600 / 3 = \$200
3	3	\$510	\$510 / 3 = \$170
4	5	\$540	\$540 / 5 = \$108

Find the most valuable subset of the items that fit into the knapsack.

We will be using the highest value per weight method

Current total weight = 0

Current value = 0

 1^{st} round taking the highest value/weight item, we will take item 2

Current total weight = 3

Current value = \$600

 2^{nd} round taking the 2^{nd} highest value/weight item, we will take item 3

Current total weight = 6

Current value = \$1110

3rd round as we only have 4 capacities left, we can only take item 1

Current total weight = 10

Current value = \$1230

So for this method, the current items would be item [2, 3, 1] with a total value of \$1230

If we did not consider value/weight it would be

Current total weight = 0

Current value = 0

 $\mathbf{1}^{\text{st}}$ round we will take the highest value which is item $\mathbf{2}$

Current total weight = 3

Current value = \$600

 2^{nd} round we will take the 2^{nd} highest value which is item 4

Current total weight = 8

Current value = \$1140

As the current total weight is 8, we are unable to add another item to it So for this method, the highest value is only \$1140 using item [2, 4]