Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

12 de maio de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
- 4 Máquina de Turing
 - Outros exemplos de MT
- Variantes de uma MT
 - MT Multifita
 - MT Não-Determinística

Sumário

- Pensamento
- 2 Avisos
- Revisão
- Máquina de Turing
 - Outros exemplos de MT
- Variantes de uma MT
 - MT Multifita
 - MT Não-Determinística

Pensamento

Pensamento

Frase

Viver não dói. O que dói é a vida que não se vive.

Quem?

Emílio Moura (1902-1971) Professor e poeta modernista mineiro.

Sumário

- Pensamento
- 2 Avisos
- Revisão
- Máquina de Turing
 - Outros exemplos de MT
- 5 Variantes de uma MT
 - MT Multifita
 - MT Não-Determinística

Avisos

Questão Avaliada 02 no Canvas

Avaliar até dia 14 de maio!!!

Notícias do Santa Cruz

Sumário

- Pensamento
- 2 Avisos
- Revisão
- Máquina de Turing
 - Outros exemplos de MT
- 5 Variantes de uma MT
 - MT Multifita
 - MT Não-Determinística

Máquinas de Turing (MT)

Descrição de M₁

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.

Máquinas de Turing (MT)

```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
  <sup>†</sup> 1 0 0 0 # 0 1 1 0 0 0 u ...
x 1 1 0 0 0 # x 1 1 0 0 0 u
  1 1 0 0 0 # x 1 1 0 0 0 u ...
х x 1 0 0 0 # x 1 1 0 0 0 u ...
x x x x x x # x x x x x
                           accept
```


Máquinas de Turing (MT)

Uma **máquina de Turing** é uma 7-upla ($Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita}$), de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- \bigcirc Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- lacktriangle Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- \bullet $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{0}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma forma especial de representar...

uqv em que

- u e v são cadeias sobre Γ;
- uv é o conteúdo atual da fita;
- q é o estado atual; e
- a posição atual da cabeça está sobre o primeiro símbolo de v.

- Salaminh salah-mês... tranforme as figuras para português!

FIGURA 3.4

Uma máquina de Turing com configuração $1011q_701111$

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- \bullet a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j ,
- ullet as configurações uaq_i by e uq_j acv.

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j,
- as configurações uaq_i by euq_i acv.

Digamos que

 uaq_i bv origina uq_i acv

se na função de transição $\delta(q_i, b) = (q_i, c, E)$.

Mais formalmente...

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_j,c,E)$. Ou

 uaq_i bv origina $uacq_j$ v

se na função de transição $\delta(q_i,b)=(q_j,c,D)$.

Termos importantes:

- configuração inicial;
- configuração de aceitação;
- configuração de rejeição;
- configuração de parada.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de M

É a coleção de cadeias que M aceita. Também chamada de linguagem reconhecida por M e denotada por L(M).

Sumário

- Pensamento
- Avisos
- Revisão
- Máquina de Turing
 - Outros exemplos de MT
- 5 Variantes de uma MT
 - MT Multifita
 - MT Não-Determinística

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Corolário

Toda linguagem Turing-decidível é Turing-reconhecível.

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

 M_2 = "Sobre a cadeia de entrada w:

- Faça uma varredura da esquerda para a direita na fita, marcando um 0 não e outro sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, *rejeite*.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Descrição Formal de M_2

 $M_2 = (Q, \Sigma, \Gamma, \delta, q_1 q_{aceita}, q_{rejeita})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0\}$,
- $\Gamma = \{0, x, \sqcup\},\$
- ullet Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

Diagrama de estados para a máquina de Turing M_2

$L(M_1)$

Uma máquina de Turing M_1 que decide $B=\{\omega\#\omega\mid\omega\in\{0,1\}^*\}$

Descrição Formal de M_1

 $M_3 = (Q, \Sigma, \Gamma, \delta, q_1 q_{aceita}, q_{rejeita})$:

- $Q = \{q_1, \ldots, q_{14}, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0, 1, \#\},\$
- $\Gamma = \{0, 1, \#, x, \sqcup\},\$
- ullet Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

FIGURA 3.10

$L(M_3)$

Uma máquina de Turing M_3 que decide

$$C = \{a^i b^j c^k \mid i \times j = k \text{ e } i, j, k \ge 1\}$$

 M_3 = "Sobre a cadeia de entrada w:

- Faça uma varredura na entrada da esquerda para a direita para determinar se ela é um membro de a*b*c* e rejeite se ela não o é.
- 2. Retorne a cabeça para a extremidade esquerda da fita.
- 3. Marque um a e faça uma varredura para a direita até que um b ocorra. Vá e volte entre os b's e os c's, marcando um de cada até que todos os b's tenham terminado. Se todos os c's tiverem sido marcados e alguns b's permanecem, rejeite.
- 4. Restaure os b's marcados e repita o estágio 3 se existe um outro a para marcar. Se todos os a's tiverem sido marcados, determine se todos os c's também foram marcados. Se sim, aceite; caso contrário, rejeite."

$L(M_4)$

Uma máquina de Turing M_3 que reconhece $E=\{\#x_1\#x_2\#\ldots\#x_l\mid \mathsf{cada}\ x_i\in\{0,1\}^*\ \mathsf{e}\ x_i\neq x_j\ \mathsf{para}\ \mathsf{cada}\ i\neq j\}$

 M_4 = "Sobre a entrada w:

- Coloque uma marca em cima do símbolo de fita mais à esquerda. Se esse símbolo era um branco, aceite. Se esse símbolo era um #, continue com o próximo estágio. Caso contrário, rejeite.
- Faça uma varredura procurando o próximo # e coloque uma segunda marca em cima dele. Se nenhum # for encontrado antes de um símbolo em branco, somente x1 estava presente, portanto aceite.

- Fazendo um zigue-zague, compare as duas cadeias à direita dos #s marcados. Se elas forem iguais, rejeite.
- 4. Mova a marca mais à direita das duas para o próximo símbolo # à direita. Se nenhum símbolo # for encontrado antes de um símbolo em branco, mova a marca mais à esquerda para o próximo # à sua direita e a marca mais à direita para o # depois desse. Dessa vez, se nenum # estiver disponível para a marca mais à direita, todas as cadeias foram comparadas, portanto aceite.
- 5. Vá para o estágio 3."

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 Máquina de Turing
 - Outros exemplos de MT
- 5 Variantes de uma MT
 - MT Multifita
 - MT Não-Determinística

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

- cada fita tem sua própria cabeça de leitura e escrita;
- a configuração consiste da cadeia de entrada aparecer sobre a fita 1, e as outras iniciar em branco;
- a função de transição permite ler, escrever e mover as cabeças em algumas ou em todas as fitas simultaneamente

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D, P\}^k$$

em que k é o número de fitas.

Definição

Uma **máquina de Turing multifita** é como uma máquina de Turing comum com várias fitas:

- cada fita tem sua própria cabeça de leitura e escrita;
- a configuração consiste da cadeia de entrada aparecer sobre a fita 1, e as outras iniciar em branco;
- a função de transição permite ler, escrever e mover as cabeças em algumas ou em todas as fitas simultaneamente

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{E, D, P\}^k$$

em que k é o número de fitas.

Exemplo

$$\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, E, D, \ldots, E)$$

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

FIGURA 3.14

Representando três fitas com apenas uma

S = "Sobre a entrada $w = w_1 \cdot \cdot \cdot \cdot w_n$:

 Primeiro S ponha sua fita no formato que representa todas as k fitas de M. A fita formatada contém

$$\# \overset{\bullet}{w_1} w_2 \ \cdots \ w_n \ \# \overset{\bullet}{\sqcup} \# \overset{\bullet}{\sqcup} \# \ \cdots \ \#$$

2. Para simular um único movimento, S faz uma varredura na sua fita desde o primeiro #, que marca a extremidade esquerda, até o (k+1)-ésimo #, que marca a extremidade direita, de modo a determinar os símbolos sob as cabeças virtuais. Então S faz uma segunda passagem para atualizar as fitas conforme a maneira pela qual a função de transição de M estabelece.

3. Se em algum ponto S move uma das cabeças virtuais sobre um #, essa ação significa que M moveu a cabeça correspondente para a parte previamente não-lida em branco daquela fita. Portanto, S escreve um símbolo em branco nessa célula da fita e desloca o conteúdo da fita, a partir dessa célula até o # mais à direita, uma posição para a direita. Então ela continua a simulação tal qual anteriormente."

Teorema

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing multifita a reconhece.

PROVA Uma linguagem Turing-reconhecível é reconhecida por uma máquina de Turing comum (com uma única fita), o que é um caso especial de uma máquina de Turing multifita. Isso prova uma direção desse corolário. A outra direção segue do Teorema 3.13.

Definição

Uma **máquina de Turing não-determinística** é como uma máquina de Turing comum. Porém, a sua função de transição se comporta como se segue

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{E, D\}).$$

Definicão

Uma **máquina de Turing não-determinística** é como uma máquina de Turing comum. Porém, a sua função de transição se comporta como se segue

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{E, D\}).$$

Exemplo

$$\delta(q_i, a) = \{(q_j, b_1, E); (q_k, b_2, D); (q_l, b_3, E)\}$$

Teorema

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

FIGURA 3.17

A MT determinística D simulando a MT não-determinística N

Descrição de *D*:

- 1. Inicialmente a fita 1 contém a entrada w, e as fitas 2 e 3 estão vazias.
- 2. Copie a fita 1 para a fita 2.
- 3. Use a fita 2 para simular N com a entrada w sobre um ramo de sua computação não-determinística. Antes de cada passo de N consulte o próximo símbolo na fita 3 para determinar qual escolha fazer entre aquelas permitidas pela função de transição de N. Se não restam mais símbolos na fita 3 ou se essa escolha não-determinística for inválida, aborte esse ramo indo para o estágio 4. Também vá para o estágio 4 se uma configuração de rejeição for encontrada. Se uma configuração de aceitação for encontrada, aceite a entrada.
- **4.** Substitua a cadeia na fita 3 pela próxima cadeia na ordem lexicográfica. Simule o próximo ramo da computação de *N* indo para o estágio 2.

Teorema

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing não-determinística a reconhece.

PROVA Qualquer MT determinística é automaticamente uma MT nãodeterminística, e portanto uma direção desse teorema segue imediatamente. A outra direção segue do Teorema 3.16.

Teorema

Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Corolário

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing não-determinística a reconhece.

Corolário

Uma linguagem é decidível se e somente se alguma máquina de Turing não-determinística a reconhece a decide.

Lista de Exercícios 03

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 3.1;
- 3.2 (a, c, e);
- 3.9:
- 3.15.

Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

12 de maio de 2014

