Jutorium 4

27. November 2020

Johannes Lehmann johannes. lehmann @rnth-aachen. de

Tutoriumsaufgabe 1 (Abschlusseigenschaften)

Seien X und Y Sprachen über dem Alphabet $\{0,1\}$. Beweisen oder widerlegen Sie:

(a) Wenn $X \cap Y$ entscheidbar ist und X entscheidbar und unendlich ist, dann ist auch Y entscheidbar.

Falsch. Sei X = \{ w \in \{0,13\times \} \w \edot a \ta 0 \} \understand Y = \text{HE.}

Dam is \(\text{ Y eatsch. } \understand \understand \text{Ved.} \understand \text{Vn Y = \phi \text{endsch.} } \understand \text{Vn Y = \phi \text{endsch.} } \understand \understand \text{Vn Y = \phi \text{endsch.} } \understand \understand

Tutoriumsaufgabe 1 (Abschlusseigenschaften)

Seien X und Y Sprachen über dem Alphabet $\{0,1\}$. Beweisen oder widerlegen Sie:

(b) Wenn X endlich ist und Y rekursiv aufzählbar ist, dann ist auch $X \setminus Y$ rekursiv aufzählbar.

Tutoriumsaufgabe 1 (Abschlusseigenschaften)

Seien X und Y Sprachen über dem Alphabet $\{0,1\}$. Beweisen oder widerlegen Sie:

(c) Wenn X entscheidbar ist und Y rekursiv aufzählbar ist, dann ist $X \setminus Y$ rekursiv aufzählbar.

Falsch. Sei X=90,13x y das Halde proble.

Oam ist X / y das Komplent von Halpproble.

X / Y ist with ret. afzählbar, da so-A das

Uniter oblen end sih. märe.

Reduktionen

Definition

Es seien L_1 und L_2 Sprachen über einem Alphabet Σ . Dann heißt L_1 auf L_2 reduzierbar, Notation $L_1 \leq L_2$, wenn es eine berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ gibt, so dass für alle $x \in \Sigma^*$ gilt

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$
.

Tutoriumsaufgabe 2 (Transitivität)

Seien L_1, L_2, L_3 drei Sprachen über dem Alphabet $\{0, 1\}$.

a) Zeigen Sie, dass das Reduktionskonzept " \leq " transitiv ist. Zeigen Sie also: Aus $L_1 \leq L_2$ und $L_2 \leq L_3$ folgt $L_1 \leq L_3$.

Tutoriumsaufgabe 2 (Transitivität)

Seien L_1, L_2, L_3 drei Sprachen über dem Alphabet $\{0, 1\}$.

b) Zeigen Sie die Aussage: $(L_1 \leq L_2 \Rightarrow \overline{L_1} \leq \overline{L_2})$.

Du
$$l_1 \in l_2$$
 ex. ber. f mid $\chi \in l_1 \notin f(\chi) \in l_2$.

Dum Silt $\chi \in \overline{l_1} \notin f(\chi) \notin l_2 \notin f(\chi) \notin l_2 \notin f(\chi) \notin l_2$.

Du $\chi \in \overline{l_1} \notin f(\chi) \notin \overline{l_2}$, Silt $\overline{l_1} \subseteq \overline{l_2}$.

Tutoriumsaufgabe 3 (Selbstreduktion H)

Zeigen Sie, dass weder $\overline{H} \leq H$ noch $H \leq \overline{H}$ gilt.

($H = \{ \langle M \rangle w \mid M \text{ hill a.f. } w \}$)

Falls H<H getter minde, dans wing H rele. afzählban und somit H entscheidlont. Acso sild H<H wichd.

Falls $H \leq \overline{H}$ gette, dann wisde ann $\overline{H} \leq \overline{H}$ gette. (nant Tudoratione 26) und $\overline{H} = H$, also winde dann ann $\overline{H} \leq H$ getten Die, widers print der Ansange aus den 1. Teil.