# Combinar R y Python en Oncología

Amalia Martínez Segura

## ¿Qué hace un bioinformático en la industria farmacéutica?



 Los bioinformáticos podemos participar en todos los estadios de desarrollo de un medicamento

## Dogma fundamental de la biología

#### ADN

- Libro de instrucciones
- Todas las células tienen la misma información

#### ARN

- Copias del ADN
- Solo se transcriben los trozos que se van a usar

#### Proteína

- Maquinaria cellular
- Formadas por aminoácidos

## Dogma fundamental de la biología

#### ADN

- Libro de instrucciones
- Todas las células tienen la misma información

#### ARN

- Copias del ADN
- Solo se transcriben los trozos que se van a usar

#### Proteína

- Maquinaria celular
- Hacen todo lo que ocurre en la célula

#### Datos de secuenciación masiva

1 Secuenciación



2

Datos sin procesar

3

**Matriz numérica** Células



4

Metadata

Clustering y visualización



Genes

#### Pasos básicos del análisis

- 1. QC de los datos del secuenciador
- 2. Transformar los datos del secuenciador en una matriz numérica
- 3. QC de las células
- 4. Reducción de dimensionalidad
- 5. Análisis posteriores

#### Pasos básicos del análisis

## Command line

- 1. QC de los datos del secuenciador
- 2. Transformar los datos del secuenciador en una matriz numérica
- 3. QC de las células
- 4. Reducción de dimensionalidad y visualización
- 5. Análisis posteriores

R o Python





#### Orquestrando workflows con Snakemake

O "Tool to create reproducible and scalable data analyses. Workflows are described via a human readable, Python based language."

```
rule select_by_country:
input: "data/worldcitiespop.csv"
output: "by-country/{country}.csv"
shell: "xsv search -s Country '{wildcards.country}' {input} > {output}"
```

```
Snakemake –c 1 by-country/<mark>Spain.</mark>csv
wildcard = 'Spain'
```

#### Orquestrando workflows con Snakemake

O "Tool to create reproducible and scalable data analyses. Workflows are described via a human readable, Python based language."

```
rule select_by_country:
input: "data/worldcitiespop.csv"
output: "by-country/{country}.csv"
shell: "xsv search -s Country '{wildcards.country}' {input} > {output}"
```

```
Snakemake -c 1 by-country/Spain.csv by-country/UnitedKingdom.csv wildcard = ['Spain','UnitedKingdom']
```

#### Un workflow básico en snakemake

```
b
а
                                                          Legend
        configfile: "config.yaml"
                                                          domain knowledge
                                                          technical knowledge
        rule all:
                                                          Snakemake knowledge
            input:
                                                          trivial
                expand(
                    "results/plots/{country}.hist.pdf",
                    country=config["countries"]
        rule download data:
  12 🛑
                "data/worldcitiespop.csv"
  13
                "logs/download.log"
                "envs/curl.yaml"
            shell:
  17
                "curl -L https://burntsushi.net/stuff/worldcitiespop.csv > {output} 2> {log}"
  18
        rule select_by_country:
  22
                "data/worldcitiespop.csv"
                                                                    sys.stderr = open(snakemake.log[0], "w")
  23
            output:
                "results/by-country/{country}.csv"
                                                                    import matplotlib.pyplot as plt
                "logs/select-by-country/{country}.log"
                                                                    import pandas as pd
            conda:
                                                                    cities = pd.read_csv(snakemake.input[0])
                "envs/xsv.yaml"
                "xsv search -s Country '{wildcards.country}' "
                                                                    plt.hist(cities["Population"], bins=50)
  31
                " {input} > {output} 2> {log}"
  32
                                                                    plt.savefig(snakemake.output[0])
```

```
rule plot_histogram:
          input:
              "results/by-country/{country}.csv"
35
              "results/plots/{country}.hist.svg"
          container:
              "docker://faizanbashir/python-datascience:3.6"
          log:
              "logs/plot-hist/{country}.log"
42
          script:
43
              "scripts/plot-hist.py"
44
      rule convert_to_pdf:
46
          input:
              "{prefix}.svg"
47
48
          output:
49
              "{prefix}.pdf"
          log:
              "logs/convert-to-pdf/{prefix}.log"
51
52
          wrapper:
              "0.47.0/utils/cairosvg"
53
```

## Anotación de tipos celulares

- Anotación manual
  - Usando marcadores conocidos en la literatura
  - Sesgada



- Anotación automática
- CellTypist

- Menos sesgos
- Puede que no haya referencia para los tipos celulares en tu muestra

Habla con tu biológo de confianza!



## Otras aplicaciones

- O ¿Hay algún cambio en los tipos celulares presents en la muestra?
  - Uso de herramientas de anotación automática basadas en datasets de referencia anotados manualmente
  - O Pseudotiempo
- O ¿Hay cambios en la expresión génica el tratamiento vs el control?
  - O Análisis de expresión diferencial
- O Buscar correlatos con variables de importancia clínica por ejemplo, si el numero de linfocitos T en una muestra correlaciona con la supervivencia de un paciente de cáncer

## ¿Preguntas?