Robótica Móvil un enfoque probabilístico

Sensores de proximidad

Ignacio Mas

Sensores de robots móviles

Percepción del entorno

Sensores Táctiles

Mide el contacto con objetos

Sensor de contacto

Sensor de paragolpe (bumper)

Sensores de ultrasonido

Emiten una señal de ultrasonido

Esperan hasta recibir eco

Miden el tiempo de vuelo

Sensores de Tiempo de Vuelo

$$d = v \times t / 2$$

- v: velocidad de la señal
- t: tiempo transcurrido entre la transmisión y la recepción del eco

Propiedades de Ultrasonidos

Perfil de la señal [Polar]

Fuentes de Error

- Angulo de apertura
- Crosstalk
- Reflexión especular

Medición Típica de ultrasonido

Operación Paralela

- Dado un ángulo de apertura de 15 grados, se necesitan 24 sensores para cubrir los 360 grados alrededor del robot.
- Supongamos que estamos interesados en una distancia máxima (max range) de 10m.
- El tiempo de vuelo es 2*10m dividido por la velocidad del sonido (330m/sec), o sea 0.06 segundos
- Un escaneo completo requiere 24*0.06=1.45 seg.
- Para tener una tasa alta de medición (necesario para alta velocidad de operación) los sensores deben activarse en paralelo.

Mayor riesgo de crosstalk!

Escáner Laser (lidar, laser range finder)

Propiedades del Lidar

- Alta precisión
- Amplio field-of-view (FOV)
- 2D / 3D

 Algunos Lidars están aprobados para detenciones de emergencia (detección de

colisiones)

Lectura de un Lidar

 Los datos de Lidar son un array de lecturas de distancias

Ejemplo: [1; 1.2; 1.5; 0.1; 81.9; ...]

- Asumiendo un field-of-view de 180 grados
- El primer haz empieza a -½ del fov
- Distancia máxima (max. Range): ~80m (SICK LMS); ~6m (Hokuyo)

Lectura de un Lidar

- Problemas a resolver:
 - Dónde están el comienzo y final relativo a la posición del robot
 - Dónde están el comienzo y final relativo a un sistema de coordenadas externo

Robots Equipados con Escáners Laser

Mediciones típicas

Sensor de distancia RGBd (Kinect)

Sensor de distancia RGBd (Kinect)

