444 Lecture 6.3 - Probability Trees

Brian Weatherson

 This lecture walks through a worked example of how to use probability trees to calculate a probability.

Associated Reading

Odds and Ends, section 1.2.

Soccer Tournament

There is a big soccer tournament this weekend. The teams competing are

- · Fireflies
- Penguins
- Huskies
- Bluebirds

Tournament Structure

There will be three games.

- 1. Fireflies vs Penguins
- 2. Huskies vs Bluebirds
- 3. Winner of Game 1 vs Winner of Game 2

Each game will have a winner one way or the other (maybe via penalty kicks or extra time).

Team Strength

The teams are not all equally good. They each have a 'strength'. Here is their respective strengths

Team	Strength
Fireflies	5
Penguins	4
Huskies	3
Bluebirds	1

Win Probabilities

If a team with strength x plays a team with strength y, the team with strength x will win with probability

$$\frac{x}{x+y}$$

And the team with strength y will win with probability

$$\frac{y}{x + y}$$

What is the probability that each team will win the tournament?

• We will answer this by doing a tree.

Now we have to add the probabilities to it.

The first game is strength 5 vs strength 4, so the win probability for the stronger team is 5/5+4, i.e., 5/9.

The second game is strength 3 vs strength 1, so the win probability for the stronger team is 3/3+1, i.e., 3/4. And it doesn't matter how the first game went - that's the probability for the second game.

And now for each possible match up in game 3, we apply the formula to get the win probability for each team.

- The probability of each completed branch is the product of each of the smaller branches.
- So the one I've marked is $4/9 \times 3/4 \times 3/7 = 1/7$.

I've included all the others - they usually don't cancel as nicely as that one.

Tournament Table

It might be easier to see the results in a table

Winner	Runner-Up	Probability	Approx
Fireflies	Huskies	25/96	0.260
Huskies	Fireflies	5/32	0.156
Fireflies Bluebirds		25/216	0.116
Bluebirds	Bluebirds Fireflies		0.023
Penguins	enguins Huskies		0.190
Huskies Penguins		1/7	0.143
Penguins	Penguins Bluebirds		0.089
Bluebirds	Bluebirds Penguins		0.022

Tournament Table

And we can rearrange that so the rows where each team wins are adjacent.

Winner	Runner-Up	Probability	Approx
Fireflies	Huskies	25/96	0.260
Fireflies	Bluebirds	25/216	0.116
Huskies	Fireflies	5/32	0.156
Huskies	Penguins	1/7	0.143
Penguins Huskies		4/21	0.190
Penguins Bluebirds		4/45	0.089
Bluebirds	Fireflies	5/216	0.023
Bluebirds Penguins		1/45	0.022

Tournament Table

And then just adding up the probabilities for the two ways each team can win, we get the actual probabilities of each win. (I'm just doing the decimals now.)

Winner	Approx Probability
Fireflies	0.376
Huskies	0.299
Penguins	0.279
Bluebirds	0.045

(Those numbers don't sum to 1 precisely because of rounding.)

For Next Time

 We will introduce an important new concept: conditional probability.