

What's the problem?

- Anomaly Detection in time series (ADTS) of events
- · AD is ill-posed due to its unsupervised nature
- The literature neglects the trustfulness of the identified outliers = uncertainty
- End-to-end and data-driven uncertainty estimation is difficult due to the open-setness of anomalous events

2 How the literature approached ADTS

- Distance-based, density-based, prediction-based, and reconstruction-based detectors are baselines
- MAD-GAN [1] combines the discriminator output and reconstruction error
- BeatGAN [2] uses an encoder-decoder generator with a modified time-warping-based data augmentation
- TadGAN [3] uses a cycle-consistent GAN with a generator that computes reconstruction errors combined with the critic outputs

[1] Li et al. Mad-gan: Multivariate anomaly detection for time series data with generative adversarial net-works. In ICANN, 201
[2] Zhou et al. Beatgan: Anomalous rhythm detection using adversarially generated time series. In IJCAl'19
[3] Geiger et al. Tadgan: Time series anomaly detection using generative adversarialnetworks. In BigData 2020

Are we certain it's anomalous?

Alessandro Flaborea¹, Bardh Prenkaj¹, Bharti Munjal¹, Marco Aurelio Sterpa¹, Dario Aragona¹, Luca Podo¹, Fabio Galasso¹

Proposed Approach

- HypAD is a reconstruction-based model that minimises the rec loss, given by a hyperbolic distance between the input and its reconstruction
- · We use the Poincaré ball as the hyperbolic space

$$\exp_{oldsymbol{0}}(x) = anh(||x||) \, rac{x}{||x||}$$

- + HypAD predicts either a matched reconstruction or an unmatched reconstruction towards the origin $U(x)=1-||\tilde{h}||^2$
- \cdot Integrate U(x) into the anomaly score

$$s_u(x) = Z_{RE}(x) \cdot Z_{D_x} \cdot (1 - U(x))$$

.

Take-away lessons

Novel key idea of detectable anomaly

"A detectable anomaly is one where the model is certain, but it predicts wrongly"

 HypAD outperforms SoA in univariate and multivariate time series

		ΑE	LstmAE	ConvAE	TadGAN	HypAD
	MSL	0.199	0.317	0.300	0.500	0.565
	SMAP	0.270	0.318	0.292	0.580	0.643
	Al	0.283	0.310	0.301	0.620	0.610
	A2	0.008	0.023	0.000	0.865	0.670
	A3	0.100	0.097	0.103	0.750	0.670
	Α4	0.073	0.089	0.073	0.576	0.470
	Art	0.283	0.261	0.289	0.420	0.777
	AdEx	0.100	0.130	0.129	0.550	0.663
	AWS	0.239	0.223	0.254	0.670	0.630
	Traf	0.088	0.136	0.082	0.480	0.570
	Tweets	0.296	0.299	0.301	0.590	0.670

	ΑE	LstmAE	ConvAE	TadGAN	HypAD
F	0.127	0.014	0.014	0.267	0.333
W	0.027	0.108	0.150	0.555	0.610
Ν	0.103	0.000	0.119	0.000	0.333
SW	0.000	0.049	0.048	0.570	0.364
MT	0.049	0.035	0.035	0.222	0.500

Table 2: F1 scores on multivariate dataset

Table 1: F1 scores on univariate datasets

 Euclidean model (TadGAN) has a lot of FP; using hyperbolic + uncertainty (HypAD) recovers the detection of difficult anomalies

