CS7643: Deep Learning Fall 2019 HW3 Solutions

James Hahn

October 18, 2019

1 Recurrent Neural Network

1. The answer can be found below:

2. The answer can be found below:

3. We want to show at a given step i of the beam search, if $best_{\leq i}$ exists, then all other beam scores B_i at iteration i will be worse than $best_{\leq i}$, so it is not worth exploring the search.

First, we know for a given B_i list of length i, its probably $p(y_i|x,y_{< i}) = s$. Second, we know $\sum_x p(y_{i+1}|x,y_{< i+1}) = 1$. As such, for a given x, $p(y_{i+1}|x,y_{< i+1}) = p(x)p(y_{i+1}|y_{< i+1})$. This means if $p(x) \in [0,1]$, then the current score s at B_i will have the value $s_{i+1} = p(x) \cdot s \leq s$ for the list B_{i+1} . As such, if B_i has probability s that's lower than $best_{\leq i}$, then B_{i+1} will have score s_{i+1} that is at best as high as s, so it is useless exploring that set of prefixes. To conclude, $best_{\leq i}$ will still be the optimal solution for all iterations i and beyond.

 $\therefore best_{\leq i}$ is the overall highest-probability completed hypothesis and future steps will be no better than it

4. We want to show in a vanilla RNN, with a basic recurrence relation (i.e. $h_t = W^T h_{t-1}$), there exists both the vanishing and exploding gradient problem.

First, we notice
$$h_t = W^T h_{t-1} = (W^T)^2 h_{t-2} = \dots = (W^T)^t h_0$$
.

So, $\frac{dh_t}{dh_0} = (W^T)^t$. Let W be size $n \times n$. We know W can be decomposed into its eigenvalues and eigenvectors such that $W = Q\Lambda Q^{-1}$, where Q is a square $n \times n$ matrix holding the eigenvectors in its columns and Λ is a diagonal matrix where each element along the diagonal corresponds to its respective eigenvector in Q.

Now, we get
$$\frac{dh_t}{dh_0} = (W^T)^t$$

 $= ([Q\Lambda Q^{-1}]^T)^t$
 $= ([Q^{-1}]^T\Lambda^TQ^T)^t$ (NOTE: $(ABC)^T = C^TB^TA^T$)
 $= ([Q^{-1}]^T\Lambda Q^T)^t$ (NOTE: If A is diagonal, then $A = A^T$)
 $= [Q^{-1}]^T\Lambda^tQ^T$

So, we see the gradient we are trying to calculate heavily relies on the eigenvalues in Λ . We are given that $\rho(W) = \max\{|\lambda_1|, \cdots, |\lambda_n|\}$. Assume t itself is relatively large (i.e. we are doing deep learning, otherwise the whole vanishing/exploding gradients thing isn't a concern in the first place). If $\rho(W)$ is greater than 1, then at least one value of Λ^t will exponentially grow toward $\pm \infty$, and the gradient itself will eventually be multiplied by this $\pm \infty$ value, hence the term "exploding gradients". On the other hand, if $\rho(W)$ is less than 1, then all eigenvalues will be somewhat close to 0, and the elements of Λ^t will converge to 0 (due to repeated multiplications), leading to the gradient becoming almost completely 0, hence the term "vanishing gradient".

 \therefore We have shown in a vanilla RNN, with a simple recurrence relation, the vanishing/exploding gradient problem exists purely due to the eigenvalues of W