Lecture 0

Course Overview

Prof. Dahua Lin dhlin@ie.cuhk.edu.hk

1 / 15

Lec0 - Overview

What is **Machine Learning**?

Lec0 - Overview

Machine Learning is to make predictions by learning from the past.

Lec0 - Overview 3 / 15

Logistics

- Time
 - Tue, 1:30pm 2:15pm
 - Fri, 3:30pm 5:15pm
- Venue
 - ERB 1009
- Piazza
 - URL:

https://piazza.com/cuhk.edu.hk/fall2018/ierg5130/home

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Lec0 - Overview 4 / 15

Course Structure

- Topic-driven
 - Composed of several topics
- Each topic
 - Takes 3 4 weeks
 - Three phases
 - Teaching
 - Assignment (exercises & paper reading)
 - In class presentation & discussion

Lec0 - Overview 5 / 15

Assessment

Lec0 - Overview 6 / 15

Approaches to Machine Learning

- Exemplar-based approach
- Functional approach
- Probabilistic approach

Lec0 - Overview 7 / 15

Exemplar-based Approach

K Nearest Neighbor (KNN)

Lec0 - Overview 8 / 15

Exemplar-based Approach

K Nearest Neighbor (KNN)

• Are there any assumptions?

Lec0 - Overview 8 / 15

Exemplar-based Approach

K Nearest Neighbor (KNN)

- Are there any assumptions?
- Are there any issues/limitations?

Lec0 - Overview 8 / 15

Functional Approach

$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Learning Objective:

$$L(\mathbf{w}, b) = \sum_{i=1}^{n} loss(f(\mathbf{x}_i; \mathbf{w}, b), y_i) + \frac{\lambda}{2} ||\mathbf{w}||^2.$$

Lec0 - Overview 9 / 15

Probabilistic Approach

Generative: Naive Bayes

$$\mathbf{x} = (x^{(1)}, \dots, x^{(m)})$$
$$x^{(j)} \mid c \sim \mathcal{N}(\mu_c^{(j)}, \sigma_c^{(j)})$$

Discriminative: Logistic Model

$$p(c|\mathbf{x}) = \sigma \left(c \cdot (\mathbf{w}^T \mathbf{x} + b) \right)$$
$$c \in \{-1, 1\}$$

Lec0 - Overview 10 / 15

Functional vs. Probabilistic

Functional	Loss + Regularization	
Probabilistic	Likelihood + Prior	

Generally, there are no clear boundaries between them.

Lec0 - Overview 11 / 15

Probabilistic Modeling

- Elements formalized as random variables.
- Joint distributions capture relations, while allowing uncertainties.

		5 (5 1)	= 11 (B 0)
Hard-working	Good-sleep	Pass (P=1)	Fail (P=0)
0	0	0.05	0.15
0	1	0.30	0.10
1	0	0.15	0.15
1	1	0.10	0.00

Lec0 - Overview 12 / 15

Probabilistic Learning

Lec0 - Overview 13 / 15

Topics

Models

- Basic concepts
- Conditional independence
- Exponential families & conjugacy
- Model formulation in practice

Inference

- Sum-product & belief propagation
- Mean field methods
- Gibbs samplingMCMC

Estimation

- Variational Bayes
- Contrastive divergence
- Discriminative training

Advanced

- Graphical models with deep learning
- Gaussian processes
- Bayesian nonparametrics (brief)

Thank You!