

Homework 11

Directions: Answer the following questions. You are encouraged to work together, join the discussion sessions, use discord, and ask me questions!

- 1. Let A be some subset of a space X with topology τ . We say that x is a **cluster point** or **limit point** of A if for every open set U containing $x, U \cap A \setminus \{x\} \neq \emptyset$. We denote the set of all cluster points of A by A'. We denote the closure of A to be $\overline{A} = A \cup A'$.
 - a) Show by example that A' need not be a subset of A.

Solution: Consider A = (0,1] with standard topology on \mathbb{R} Every open set containing 0 intersects A, so $0 \in A'$ but not in A.

b) Suppose $\{a_n\}$ is a sequence of points such that for all $n, a_n \in A$ and $\{a_n\}$ converges to x. Prove that $x \in \overline{A}$.

Hint: If $x \in A$, we're done. So suppose $x \notin A$, and show $x \in A'$.

Solution: If $x \in A$ we're done, so suppose $x \notin A$. Let U be some arbitrary open set containing x. Since $a_n \to x$, there is some N such that for all $n \ge N$, $a_n \in U$. Since $a_n \in A$ and $x \notin A$, $a_n \ne x$. Thus $a_n \in U \cap A \setminus \{x\}$. Since U was arbitrary, this shows that x is a cluster point of A.

c) Suppose we know that X is a metric space with τ a metric topology given by some metric d. Suppose $x \in \overline{A}$. Prove there exists a sequence of points in A that converges to x.

Hint: If $x \in A$ the constant sequence $a_n = x$ works. So suppose $x \in A' \setminus A$, and use the fact that we have a metric to construct a sequence of points in A converging to x.

Remark: If we have that X is metric space, parts (b) and (c) form an if and only if statement commonly referred to as **The Sequence Lemma**.

Solution: Again, suppose $x \in A' \setminus A$, as otherwise we're done by taking a constant sequence. Since every open set containing x must intersect A at some point other than x (since $x \in A'$), we can pick $a_n \in B_{1/n}(x) \cap A \setminus \{x\}$. But now given any U containing x, there is some $B_{\epsilon}(x) \subseteq U$, and picking $N > 1/\epsilon$, it follows that for all $n \geq N$, $a_n \in B_{\epsilon}(x) \subseteq U$, which means $a_n \to x$.

2. We say as topological space X is Hausdorff if given any $x, y \in X$ with $x \neq y$, there exists open sets U and V such that $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

a) Show by example that not every space is a Hausdorff space.

Solution: The indiscrete topology on \mathbb{R} is an easy example, as the only open set containing 1 and 2 is \mathbb{R} .

b) Prove every metric space is Hausdorff.

Solution: Given $x, y \in X$ with $x \neq y$, and a metric d, we know that d(x, y) > 0. We will let $\epsilon = d(x, y)/4$. Then $B_{\epsilon}(x) \cap B_{\epsilon}(y) = \emptyset$, and thus we found two disjoint open sets that contain x and y respectively.

To fully justify the intersection is empty, suppose not:, i.e., suppose there is some $z \in B_{\epsilon}(x) \cap B_{\epsilon}(y)$. But then by the triangle inequality, we have that

$$d(x,y) \le d(x,z) + d(z,y) < \epsilon + \epsilon = d(x,y)/2,$$

an obvious contradiction since d(x, y) > 0.

Remark: The reverse implication is not true, a Hausdorff space need not be a metric space. It's above the scope of our crash course, but \mathbb{R}_l can be shown to be Hausdorff and not metrizable (i.e., no metric can be defined on it).

c) Prove that limits are unique in Hausdorff spaces. That is, if X is a Hausdorff space, $\{x_n\}$ a sequence in X, $x_n \to y$ and $x_n \to z$, then y = z.

Hint: Suppose $y \neq z$, then using the definition of Hausdorff will lead to a contradiction.

Solution: If $y \neq z$, then we can find open sets U, V such that $y \in U$, $z \in V$, and $U \cap V = \emptyset$. Since $x_n \to y$, there is some N_1 such that for all $n \geq N_1$, $x_n \in U$. Since $x_n \to z$, there is some N_2 such that for all $n \geq N_2$, $x_n \in V$. Thus if $N = \max\{N_1, N_2\}$, for all $n \geq N$, $x_n \in U \cap V$, which is a contradiction since their intersection is empty. Thus it must be the case that y = z, thus the limit is unique.