Discrete Math — Homework 1 Solutions

Yuquan Sun, SID 10234900421

March 1, 2025

$\mathbf{Q}\mathbf{1}$

- (a) $\exists p(F(p) \land B(p)) \rightarrow \exists j L(j)$: If there exists a printer being out of service and busy, then then there exists a print job being lost.
- (b) $\forall pB(p) \rightarrow \exists jQ(j)$: If all printers are busy, then there must be a print job being queued.
- (c) $\exists j(Q(j) \land L(j)) \rightarrow \exists pF(p)$: If there exists a print job being lost and queued, then there exists a printer being out of service.
- (d) $(\forall pB(p) \land \forall jQ(j)) \rightarrow \exists jL(j)$: If all printers are busy and all print jobs are queued, then there exists a print job being lost.

$\mathbf{Q2}$

- (a) $\neg \forall x \exists y \forall z T(x, y, z) \iff \exists x \forall y \exists z (\neg T(x, y, z))$
- (b) $\neg(\forall x \forall y P(x,y) \lor \forall x \forall y Q(x,y)) \iff (\exists x \exists y \neg P(x,y)) \land (\exists x \exists y \neg Q(x,y))$
- (c) $\neg(\forall x \exists y (P(x,y) \land \exists z R(x,y,z))) \iff \exists x \forall y \neg(P(x,y) \land \exists z R(x,y,z))$ $\iff \exists x \forall y (\neg P(x,y) \lor \forall z \neg R(x,y,z))$

$\mathbf{Q3}$

P(x,y): 2x + y = 0 where $x, y \in \mathbb{R}$

- (a) $\forall x \exists y P(x, y)$ means for every x, there's a solution for y, which is a tautology. $\forall y \exists x P(x, y)$ means for every y, there's a solution for x, which is a tautology as well. Two tautologys has the same truth value all the time. Thus, they're logically equivalent.
- (b) $2x + y = 0 \implies y = -2x$, let x := 0.1, then $y = -0.2 \notin \mathbb{Z}$, so the LHS(left hand side) is not a tautology. $2x + y = 0 \implies x = -\frac{y}{2} \in \mathbb{R}$, so the RHS is always true. So, the statement is not true.
- (c) No. Let P(x,y) be $x^2 = y$, where $x, y \in \mathbb{R}$.

$\mathbf{Q4}$

Let L(x,y) be "x loves y", where the domain for both x and y consists of all people in the world.

- (a) Everybody loves Jerry: $\forall x L(x, \text{Jerry})$.
- (b) Everybody loves somebody: $\forall x \exists y L(x, y)$.
- (c) There is somebody whom everybody loves: $\exists y \forall x L(x, y)$.
- (d) There is somebody whom Lydia does not love: $\exists y \neg L(\text{Lydia}, y)$.
- (e) There is somebody whom no one loves: $\exists y \forall x \neg L(x, y)$.
- (f) There is someone who loves no one besides himself or herself: $\exists x(L(x,x) \land (\forall p(x \neq p \rightarrow \neg L(x,p))).$

 $\mathbf{Q5}$

Q6

Q7

Q8