

DBMS Unit 4- QB - abcdefghijklmnopqrstuvwxyz

Database Management Systems (SRM Institute of Science and Technology)

Scan to open on Studocu

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai - 600089

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-IV QUESTIONBANK

Degree & Branch	: B.TECH- CSE
Semester	: III/VI
Sub Code & Subject Name	: 18CSC303J- Database Management Systems
Regulation	: 2018
Academic Year	: 2021-2022

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

Ramapuram Campus, Bharathi Salai, Ramapuram, Chennai-600089 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

<u>UNIT-4</u> OUESTION BANK

Subject Code/Subject Name: 18CSC303J- Database Management Systems

SEM/YEAR: VI/III

Course Outcome:

CO5: Apply the knowledge to improve database design using various normalization criteria and optimize queries

Relational Algebra – Fundamental Operators and syntax, relational algebra queries, Tuple relational calculus, Pitfalls in Relational database, Decomposing bad schema Functional Dependency – definition, trivial and non-trivial FD, closure of FD set, closure of attributes irreducible set of FD, Normalization – 1NF, 2NF, 3NF, Decomposition using FD- dependency Preservation, BCNF, Multi-valued dependency, 4NF, Join dependency and 5NF

Q.No.	Questions	Course Outcome	Competence BT Level
1	Aexpression forms a new relation after applying a number of algebraic operators to an existing set of relations A. relational expression B. relational algebra C. relational calculus D. relational query	CO5	BT1
2	is used to change the values of some attributes in existing tuples. A. Update B. Drop C. Truncate D. Select	CO5	BT1

3	Which can be violated if a key value in the new tuple t already exists in another tuple in the relation r(R). A. Domain constraints B. Key constraints C. Integrity constraints D. Rule constraints	CO5	BT1
4	The relational algebra is a Query language. A. Structured B. Logical C. Procedural D. Relational	CO5	BT1
5	A. a nonprocedural language B. a procedural language C. a structured language D. a unstructured language	CO5	BT1
6	Which of the following can be violated by delete operation. A. primary key B. referential integrity C. alternate key D. super key	CO5	BT1
7	A. two tables only B. one table only C. two or more tables D. none of the above	CO5	BT1
8	The value of the atom which evaluates either condition is TRUE or FALSE for particular combination of tuples is classified as A. Intersection Value B. Union Value C. Deny Value D. Truth Value	CO5	BT1

	can be violated if the value of any foreign key in t		
	refers to a tuple that does not exist in the referenced relation.		
9	A. Super Key	COF	BT1
1	B. Referential integrity	CO5	DII
	C. Primary Key		
	D. Candidate Key		
	The relational calculus is important for two reasons. Which of the following is true?		
	A. It has a firm basis in mathematical logic and the SQL for RDBMSs has some of its foundations in the tuple relational		
10	calculus.	CO5	BT1
	B. It is in relational algebra and the values of some attributes are		
	in existing tuples. C. It is a tuple relational calculus expression and It satisfy		
	Functional dependency.		
	D. None of the above		
,	A functional dependency $X \rightarrow Y$ is if removal of	CO5	
	any attribute A from X means that the dependency does not hold		
	any more.		
11	A. a partial functional dependency		BT2
11	B. a multivalued functional dependency		D12
	C. a full functional dependency		
	D. a transitive dependency		
	can be violated if an attribute value is given that	CO5	
	does not appear in the corresponding domain.		
12	A. Domain constraints		BT1
12	B. Referential integrity constraints		DII
	C. Key constraints		
	D. Check constraints		
	A tuple relational calculus expression may generate a/an	CO5	
	A. Finite Relation		
13	B. Infinite Relation		BT1
	C. Invalid Relation		
	D. Composite Relation		

	Which of the following statements about normal forms is FALSE?	CO5	
14	 A. BCNF is stricter than 3NF B. Lossless,dependency-preserving decomposition into 3NF is always possible. C. Lossless,dependemcy-preserving decomposition into BNF is always possible. D. Any relation with two attributes is in BCNF. 		BT1
15	A. transitive dependency B. partial dependency C. multivalued dependency D. full functional dependency	CO5	BT1
16	The only attribute values permitted by 1NF are values. A. Divisible B. Single atomic C. Multiple D. Numeric	CO5	BT1
17	A relational query language L is considered relationally complete if we can express in L any query that can be expressed in A. Relational Algebra B. Structured Language C. Relational calculus D. Logical Language		BT1
18	Anomalies are avoided by splitting the offending relation into multiple relations, is also known as A. Accupressure B. Decomposition C. Precomposition D. Both decomposition & precomposition E.	CO5	BT1

	1		i
19	Consider the relation(ABCDEF) FDs: A FC C D B E Find the 3NF relations: A. ACDF,BE,AB B. ACDF,BE,AB,CD C. CD,ACF,BE,AB D. ACF,CDF,AB,BE	CO5	BT3
20	The tuple relational calculus is based on specifying a number of A. String Variables B. Column Variables. C. Relation Variables D. Tuple Variables.	CO5	BT1
21	Consider the relation (ABCDEF) A FC C D B E Find the 2NF relations A. ACDF,AE B. ACDF,BE,AB C. BE,AB D. ACD,BE,AB	CO5	ВТ3
22	The relation X(ABCDEF) with functional dependency set F={AB CD,C CA,B E,D B,E F}. The number of candidate keys of a relation R is A. 3 B. 4 C. 2 D. 5	CO5	ВТ3
23	A. indivisible values B. divisible values C. single atomic values D. multivalued attributes	CO5	BT1

24	In a functional dependency X> Y, if Y is functionally dependent on X, but not on X's proper subsets, then we would call the functional dependency as A. Full Functional Dependency B. Partial Functional Dependency C. Multivalued Functional Dependency D. None of the above	CO5	BT2
25	A functional dependency X → Y is aif some attribute A ε X can be removed from X and the dependency still holds. A. Partial Dependency B. Multivalued Dependency C. Transitive Dependency D. Full Functional Dependency.	CO5	BT2
26	An Multi Valued Dependency X → Y in R is called a if (a) Y is a subset of X, or (b) X ∪ Y = R. A. Total Multi Valued Dependency B. Trivial Multi Valued Dependency C. Non-trivial Multi Valued Dependency D. Partial Multi Valued Dependency	CO5	BT2
27	Consider a Relation R(ABCDE) with Functional Dependency A BCDE,BC ADE,D E The Decomposition of R in 3NF will be A. R1(ABCE) and R2(DE) B. R1(ADE) and R2(BC) C. R1(ABDE) and R2(BDE) D. R1(ABCD) and R2(DE)	CO5	BT3
28	A large number of commercial applications running against relational databases is called as A. Data Control Language B. Structured Query Language C. Online Transaction Processing D. MongoDataBase	CO5	BT1
29	A simple tuple relational calculus query is of the form: A. {p COND(t)} B. {t COND(t)} C. {p COND(p)} D. {p P(t)}	CO5	BT1

			ı
30	 Which of the following is the result of bad database design? A. Repetition of Information B. Inability to represent some information C. Inconsistent database state due to some transaction D. All of the above 	CO5	BT1
31	A. Partial Dependency B. Multivalued Dependency C. Transitive Dependency D. Join Dependency	CO5	BT1
32	A. Partial Dependency B. Multivalued Dependency C. Transitive Dependency D. Full Functional Dependency.	CO5	BT1
33	An attribute is called,if it is not a member of any candidate key. A. Prime B. Non-prime C. Composite D. Derived	CO5	BT1
34	Consider F1 and F2 as two sets of functional dependencies. If every functional dependency in F2 can be inferred from the functional dependencies of F1 using inference rules, then F1 is of F2. A. Cover Set B. Closure Set C. Minimal Set D. None of the above	CO5	BT2
35	Two special symbols called quantifiers can appear in formulas; they are : A. universal quantifier (\forall) and the existential quantifier (\exists) . B. universal quantifier (A) and the existential quantifier (E) . C. conditional quantifier (\forall_A) and the generalized quantifier (\exists_A) . D. None of the above.	CO5	BT2

	denoted by JD(R1, R2,, Rn), specified on		
36	A. Partial Dependency B. Join Dependency C. Join Decomposition D. Join Database	CO5	BT2
37	The normalization process, as first proposed by A. Edgar F. Codd B. Peter Landin C. Mark Edward D. Sandford	CO5	BT1
38	Assume a relation R(A, B, C, D) with set of functional dependencies F={C→D,C→A,B→C}. Use this setup to answer the following questions; Which of the following is the candidate keys of R? A. C B. BC C. B D. Both (b) and (c)	CO5	BT3
39	An attribute of relation schema R is called of R if it is a member of some candidate key of R. A. a non-prime attribute B. a prime attribute C. Composite attribute D. Derived attribute	CO5	BT2
40	Consider the relation schema R={E,F,G,H,I,J,K,L,M,N} and the set of functional dependencies EF G,F IJ,EH KL,K M,L N ON r. What is the key for R? A. {E,F} B. {E,F,H} C. {E,F,H,K,L} D. {E}	CO5	ВТ3
1	If X> Y is a functional dependency and X and Y are sets of attributes, what is the relationship between X and Y? A. One-to-Many B. Many-to-One C. One-to-One D. Many-to-Many This document is available free of charge on	CO5	BT1

42	A of a relation schema $R = \{A1, A2,, An\}$ is a set of attributes $S \subseteq R$ with the property that no two tuples t_1 and t_2 in any legal relation state r of R will have $t_1[S] = t_2[S]$. A. super key B. foreign key C. candidate key D. alternate key	CO5	BT1
43	For a functional dependency X> Y, it is said to be if Y is the subset or equal to X. E. Total functional dependency F. Trivial functional dependency G. Non-trivial functional dependency H. Partial functional dependency	CO5	BT1
44	A functional dependency set F={A B,BC E,ED A,EF G,E F} Find out the closure of (AC) A. {A,B,C,D,E,F,G} B. {A,B,D,E,F} C. {A,B,C,E} D. {A,B,C,E,F,G}	CO5	ВТ3
45	Let R(A,B,C,D) be a relation schema and F{A BC,AB D,B C} Be the set of functional dependencies define over R. Which of the following represents the closure of the attribute set{B}? A. {A,C,D} B. {B,C} C. {A,B,C} D. {B}	CO5	ВТ3
46	 A table is in 2NF if it is in 1NF and if: A. no column that is not a part of the primary key is dependent on only a portion of the alternate key. B. no column that is not a part of the primary key is dependent on only a portion of the primary key. C. no column that is not a part of the primary key is dependent on only a portion of the foreign key. D. none of these 	CO5	BT2

47	is the process of storing the join of higher normal form relations as a base relation, which is in a lower normal form. A. Denormalization B. Normalization C. Dependency D. Relational Algebra	CO5	BT1		
48	R(A,B,C,D) is a relation, which of the following does not have a lossless join dependency preserving BCNF decomposition. A. A. B,B. CD B. A. B,B. C,C. D C. AB. C,C. AD D. A. BCD	CO5	BT3		
49	Which normal form is considered adequate for relational database design? A. 2NF B. 3NF C. 4 NF D. BCNF	CO5	BT1		
50	A functional dependency of the form $x \longrightarrow y$ is trival if A. $y \subseteq x$ B. $y \subset x$ C. $x \subset y$ D. $x \subset y$ and $y \subset x$	CO5	BT2		
	PART B (4 Marks)				

	Explain select and project operation in relational algebra.		
1	Ans: Select operation It displays the records that satisfy a condition. It is denoted by sigma (σ) and is a horizontal subset of the original relation. Syntax: σ _{condition} (table name) Projection operation It displays the specific column of a table. It is denoted by pie (Π). It is a vertical subset of the original relation. It eliminates duplicate tuples. Syntax: Π _{condition} (table name)	CO5	BT1
2	Consider the following schema: Suppliers(sid: integer, sname: string, address: string) Parts(pid: integer, pname: string, color: string) Catalog(sid: integer, pid: integer, cost: real) The key fields are underlined, and the domain of each field is listed after the field name. Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form the key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write the following queries in relational algebra. a) Find the names of suppliers who supply some red part b) Find the sids of suppliers who supply some red or green part. c) Find the sids of suppliers who supply some red part or are at 221 Packer Ave d) Find the sids of suppliers who supply some red part and some green part Ans: $\pi_{sname}(\pi_{sid}((\pi_{pid}\sigma_{color="red"}Parts) \bowtie Catalog) \bowtie Suppliers)$ $\pi_{sid}((\pi_{pid}\sigma_{color="red"}Parts) \bowtie Catalog) \cup \pi_{sid}(\sigma_{address="221ParkerAve."}Supplier)$ $\pi_{sid}((\pi_{pid}\sigma_{color="red"}Parts) \cap (\pi_{pid}\sigma_{color="green"}Parts)) \bowtie Catalog)$ $\pi_{sid}((\pi_{pid}\sigma_{color="red"}Parts) \cap (\pi_{pid}\sigma_{color="green"}Parts)) \bowtie Catalog)$		BT2

	What are the Pitfalls in Relational database design?		
	Ans:		
	Relational database design requires that we find a "good"		
	collection of relational schemas. A bad design may lead to		
	Repetition of information		
	Inability to represent certain information		
	Design Goals for Relational Database:		
	1. Avoid redundant data		
	2. Ensure that relationships among attributes are represented.		
	3. Facilitate the checking of updates for violation of database integrity constraints		
3	Example:		BT1
	Consider the relational schema Lending-schema = (branch-name,	CO5	DII
	branch-city, assets, customer-name, loan- number, amount)		
	Redundancy:		
	Data for branch name, branch city, assets are repeated for each		
	loan that a branch makes.		
	Wastes space and complicates updating.		
	Null Values:		
	• cannot store information about a branch if no loan exists.		
	• can use null values, but they are difficult to handle.		
	In the given example the database design is faulty which makes the		
	above pitfalls in database. So, in relational database design if the		
	design is not good then there will be faults in databases.		
	Write short note on normalization.		
	Ans:		
	Database Normalization is a design technique. Using this we can		
	design or re-design schemas in the database to reduce redundant data		
	and the dependency of data by breaking the data into smaller and more		
١,	relevant tables.		DT1
4	lote vant audies.	CO5	BT1
	The primary purpose of the normalization is to reduce the data		
	redundancy i.e. the data should only be stored once. This is to avoid		
	any data anomalies that could arise when we attempt to store the same		
	data in two different tables, but changes are applied only to one and		
	not to the other.		

	1				1				
	-	with suitable	e example.						
	Ans:								
	First Normal Form (1NF):								
	o A rela	ation will be 1	NF if it contain	ns an atomic v	alue.				
	o It stat	es that an attr	ibute of a table	e cannot hold	multiple values.				
			ngle-valued at		r				
		•	· ·		alued attribute,				
		osite attribute,	aruca attribute,						
	1								
	Example:								
5					f multi-valued	COF	BT1		
		D_PHONE. I	ts decompositi	ion into 1NF l	nas been shown	CO5			
	in table 2.								
	STUD_NO	STUD_NAME RAM	9716271721.	STUD_STATE HARYANA	STUD_COUNTRY INDIA				
	1	RANI	9871717178	HARIANA	INDIA				
	3	RAM SURESH	9898297281	PUNJAB PUNJAB	INDIA				
	[3			FORMA	INDIA				
		Table 1	Conversion to first no	ormal form					
		↓	conversion to mot n	ormal rorm					
	STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNTRY				
	1	RAM	9716271721	HARYANA					
	2	RAM	9871717178 9898297281	PUNJAB	INDIA				
	3	SURESH	20 C C C C C C C C C C C C C C C C C C C	PUNJAB	INDIA				
	Evaloin Ingo	ut Anomalias	with avample	2	(+)				
	I -	ert Anomanes	with example	€.					
	Ans:								
	Insertion ano	•							
	If a tuple is	inserted in re	ferencing relat	tion and refer	encing attribute				
	value is not present in referenced attribute, it will not allow inserting								
	in referencing relation. For Example, If we try to insert a record in								
	STUDENT COURSE with STUD NO =7, it will not allow.								
	STUD NO ST	UD_NAME STUD	PHONE STUD_ST	ATE STUD_COU	NT STUD_AG	D.T.2			
6			ACUSTONIA TOTAL	RY	E	CO5	BT2		
		AM 97162 AM 98982		India India	20 19				
	3 St	JJIT 78982		India	18				
	4 St	JRESH	Punjab	India	21				
			Table 1						
	STUDENT_COURSE								
	STUD NO COURSE NO COURSE NAME								
	1		22	DBMS Computer Net	works				
	2		22	Computer Net					
			Table 2	201					
	1								

Ans: Functional relation of System (D) of data in t	one attribute to BMS). Functio he database.	(FD) is a another attrinal Dependents	constraint that ribute in a Databa ency helps to main by an arrow ""	ise Management ntain the quality		BT2
Employee number	Employee Na	me Salary	City			
1	Dana	50000	San Francisco		CO5	
2	Francis	38000	London			
3	Andrew	25000	Tokyo			
obtain Em	ployee Name, c oyee Name, and	city, salary, e	of Employee nur tc. By this, we ca functionally depe	n say that the		

	Demonstrate transit	ive dependency? Give a	n example?			BT2
	Ans: A functional dependency is said to be transitive if it is indirectly formed by two functional dependencies. For Eg: X -> Z is a transitive dependency if the following three functional dependencies hold true: X->Y Y does not ->X Y->Z Example:					
	Book	Author	Author_age			
	Game of Thrones	George R. R. Martin	66			
8	Harry Potter	J. K. Rowling	49			
	Dying of the Light	George R. R. Martin	66			
	{Book} ->{Author} (if we know the book, we knows the author name) {Author} does not ->{Book} {Author} -> {Author_age} Therefore as per the rule of transitive dependency: {Book} -> {Author_age} should hold, that makes sense because if we know the book name we can know the author's age.					

	Define Armstrong axioms for FD's?		
9	Define Armstrong axioms for FD's? Ans: 1. Reflexive Rule (IR ₁) In the reflexive rule, if Y is a subset of X, then X determines Y. If X \supseteq Y then X \rightarrow Y 2. Augmentation Rule (IR ₂) The augmentation is also called as a partial dependency. In augmentation, if X determines Y, then XZ determines YZ for any Z. 3. Transitive Rule (IR ₃) In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z. If X \rightarrow Y and Y \rightarrow Z then X \rightarrow Z 4. Union Rule (IR ₄) Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z. If X \rightarrow Y and X \rightarrow Z then X \rightarrow YZ 5. Decomposition Rule (IR ₅) Decomposition rule is also known as project rule. It is the reverse of union rule. This Rule says, if X determines Y and Z, then X determines Y and X determines Z separately. If X \rightarrow YZ then X \rightarrow Y and X \rightarrow Z 6. Pseudo transitive Rule (IR ₆) In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W. 7. Composition (IR ₇) If A \rightarrow B and X \rightarrow Y then AX \rightarrow BY	CO5	BT2
10	 Explain about BCNF? Ans: BCNF is the advance version of 3NF. It is stricter than 3NF. A table is in BCNF if every functional dependency X → Y, X is the super key of the table. For BCNF, the table should be in 3NF, and for every FD, LHS is super key. BCNF decomposition does not always satisfy dependency preserving property. After BCNF decomposition if dependency is not preserved then we have to decide whether we want to remain in BCNF or rollback to 3NF. This process of rollback is called denormalization. 	CO5	BT2

11	Let F = {A → B, AB → E, BG → E, CD → I, E → C}. Find the closures, A ⁺ , (AE) ⁺ and (ADE) ⁺ . Ans: To find A [±] : result := A If you know A, then you would know AB from the functional dependency (FD) A → B. result := AB If you know AB, then you would know ABE from the FD AB → E. result := ABE If you know ABE, then you would know ABEC from the FD E → C. result := ABCE We have included all the LHS of given functional dependencies. No FDs of left hand that has ABCE in it. Hence, our algorithm stops at this point. And the closure is ABCE. To find (AE) [±] : result := ABE result := ABE from the FD A → B result := ABCE from the FD E → C. We cannot move further. Hence, the closure is ABCE. To find (ADE)+: result := ADE result := ABCDE from the FD A → B result := ABCDE from the FD CD → I We cannot move further. Hence, the closure is ABCDEI. The closures are;	CO5	BT3
	A+ = ABCE (AE)+ = ABCE (ADE)+ = ABCEDI		
12	What is Denormalization? Give it's advantages and disadvantages. Denormalization is a database optimization technique where we add redundant data in the database to get rid of the complex join operations. This is done to speed up database access speed. Denormalization is done after normalization for improving the performance of the database. The data from one table is included in another table to reduce the number of joins in the query and hence helps in speeding up the performance. Advantages of Denormalization: Query execution is fast since we have to join fewer tables. Disadvantages of Denormalization: • As data redundancy is there, update and insert operations are more expensive and take more time. Since we are not performing normalization, so this will result in redundant data. • Data Integrity is not maintained in denormalization. As there is redundancy so data can be inconsistent.	CO5	BT2

PART C (12 Marks)					
1	Define Functional Dependencies. Discuss about different functional dependencies	CO5	BT2		
2	What are the problems caused by Redundancy? Explain about Normalization and need for normalization.	CO5	BT1		
3	Define Normalization. Explain about 1NF, 2NF with relevant examples.	CO5	BT2		
4	Explain about 3NF and BCNF with relevant table structure.	CO5	BT2		
5	Explain about Multi-valued dependencies and Fifth Normal Form with suitable examples.	CO5	BT2		