

Inteligencia Artificial II

Tema 3:

Aprendizaje Supervisado: Modelos Lineales

Objetivos del tema

- Ubicación
 - Bloque II: COMPUTACION NEURONAL
 - Tema 2: Aprendizaje no supervisado: Aprendizaje competitivo
 - Tema 3: Aprendizaje supervisado: Modelos lineales
- Objetivos
 - Comprender que es predecir y las características de los predictores neuronales
 - Definir el aprendizaje supervisado
 - Entender el concepto de aprendizaje y sus asociados: entrenamiento, función de aprendizaje, error
 - Entender la Regla Delta: derivación y aplicación
 - Distinguir los modelos perceptrón y adaline y sus aplicaciones

Contenido

- 1. Introducción
- 2. El problema de la predicción
 - 1. La predicción
 - 2. Técnicas estadísticas
 - 3. Técnicas neuronales
- 3. Redes a las que hay que enseñar
- 4. Perceptrón
 - 1. Historia
 - 2. Arquitectura
 - Procesamiento
 - 4. Aprendizaje
- Adaline
 - 1. Aprendizaje
 - 2. Diferencias con el perceptrón

1. Introducción

- 2. El problema de la predicción
 - 1. La predicción
 - 2. Técnicas estadísticas
 - 3. Técnicas neuronales
- 3. Redes a las que hay que enseñar
- 4. Perceptrón
 - 1. Historia
 - 2. Arquitectura
 - 3. Procesamiento
 - 4. Aprendizaje
- 5. Adaline
 - 1. Aprendizaje
 - 2. Diferencias con el perceptrón

1. Introducción

- Algoritmos de aprendizaje supervisado:
 - Aprender a reproducir comportamientos y razonamientos mediante estímulos
 - Basados en reglas de naturaleza global (los cambios producidos por el mecanismo de aprendizaje afectan a toda la matriz de pesos)
 - Los datos determinan la relación entrada-salida a la que la red debe de aproximarse)
 - Más amplio campo de aplicación:
 - Control
 - Predicción
 - Reconocimiento
- Solo son de interés los modelos no-lineales
- Modelos feedback y feedforward

- 1. Introducción
- 2. El problema de la predicción
 - 1. La predicción
 - Técnicas estadísticas
 - 3. Técnicas neuronales
- 3. Redes a las que hay que enseñar
- 4. Perceptrón
 - 1. Historia
 - 2. Arquitectura
 - 3. Procesamiento
 - 4. Aprendizaje
- 5. Adaline
 - 1. Aprendizaje
 - 2. Diferencias con el perceptrón

- Proporcionar valores futuros de una variable con una cierta antelación (horizonte), en función de los valores históricos (serie temporal) que ha tenido dicha variable en el pasado
 - Necesario en problemas de planificación o control.
 - Instrumento fundamental en la toma de decisiones
- Concepto de Serie Temporal

Sucesión de medidas realizadas a intervalos regulares de tiempo Resultado de un proceso estocástico

- En el tratamiento de Series Temporales se busca
 - Estadísticos descriptivos (media, dispersión...)
 - Representaciones gráficas para analizar los datos
 - Construir un modelo de la serie que permita describirla y predecir el siguiente valor

Definiciones

- Proceso estocástico: conjunto de variables aleatorias (sometidas al azar) X_t cuya distribución (evolución) varía de acuerdo al tiempo t
 - t toma valores enteros o reales no negativos.
 - X_t toman valores en un conjunto que se denomina espacio de estados

Un proceso estocástico es NO determinista

- <u>Proceso de Markov</u>: El valor de la serie a tiempo t+1 sólo depende del valor a tiempo t y no de los anteriores.
- Proceso estacionario: Un proceso es estacionario en sentido amplio (o débilmente estacionario) cuando la media, varianza y covarianzas
 - 1. Existen,
 - 2. Son estables e independientes del tiempo

- Elementos de una serie temporal
 - <u>Tendencia</u>: movimiento que se mantiene durante el período de observación
 - Creciente o decreciente
 - Ajustarse a una función (lineal, cuadrática, exponencial, etc..)
 - <u>Variación estacional</u>: oscilaciones periódicas que dependen del período mínimo al cabo del cual aparecen patrones repetitivos en la serie temporal (ritmo anual, mensual, semanal e incluso diario)
 - <u>Movimientos cíclicos</u>: oscilaciones sobre la tendencia basadas en algún tipo de funciones trigonométricas (sinusoidales, etc...)
 - Proceso aleatorio: oscilaciones aleatorias que se superponen a los demás componentes resultado de las fluctuaciones estocásticas del sistema real. Extremadamente difíciles de predecir e incluso de modelizar
 - Ejemplo: la serie temporal de manchas solares

- Técnicas de predicción:
 - Cuantitativas: Estimaciones numéricas a partir de valores o propiedades que se conocen de la variable a predecir
 - Deterministas
 - > Ajuste de la tendencia mediante extrapolación (técnicas de alisado)
 - > Implica conocer las ecuaciones que rigen el problema (muy difícil)
 - Aunque se conozcan, la resolución puede ser muy compleja
 - Estadísticas/Estocásticas
 - > Interpreta la secuencia de valores anteriores como una serie temporal
 - > Intenta construir un modelo que se ajuste al problema
 - Neuronales
 - Cualitativas: Estimación subjetiva a partir de opiniones de expertos. Carecen de bases teóricas. Sirven para aglutinar opiniones
 - Metodologías Delphi

Métodos Tradicionales

Sencillez de cálculo, bajo coste, utilidad práctica. Casos particulares de modelos más complejos

- Métodos de regresión
 - Predicción = f(tiempo) + término de error
 - Lineal simple
 - Lineal general (regresión múltiple)
 - Se emplean como aproximación inicial
- Suavizado Exponencial y Medias Móviles
 - Minimizan el MSE
 - Media Móvil Simple: el siguiente valor es la media de los N valores anteriores
 - → mejora: Suavizado Exponencial Simple
 - Media Móvil Lineal: segunda media móvil calculada sobre la anterior
 - → mejora: Suavizado Exponencial Lineal

Métodos de Descomposición

Identifican las componentes deterministas de la serie (**t**endencia, **e**stacionalidad, **p**eriodicidad) descartando la componente aleatoria que se engloba en un término de error

$$X_t = f(T_t, E_t, P_t, Error)$$

Proceso:

- Calcular media móvil de longitud N = estacionalidad (se elimina Estacionalidad y Error)
- 2. Sustraer la media móvil obtenida a la serie original. Se obtiene la Tendencia y la Periodicidad
- 3. Asilar la estacionalidad calculando la media de cada período estacional para ajustar E_t
- 4. Identificar Tendencia (lineal, exponencial...) y calcular su valor T_t
- 5. Separar T de la serie obtenida en (2) para obtener P_t
- 6. Separar todos los componentes para obtener el Error

Modelos Box-Jenkins (1976)

- Análisis univariante de series temporales
 - Utiliza como información la propia historia de la serie
 - Hipótesis básica: el comportamiento pasado se mantendrá en el futuro
 - Modelos probabilísticos lineales
- Complejas de utilizar e imponen restricciones a las series
 - Las series deben de ser débilmente estacionarias y ergódicas
 - Si no lo son, se deben transformar mediante complejas operaciones matemáticas

Modelos

- AR(p) Auto Regressive (Auto Regresión) de orden p (números de términos del pasado)
 - > Y_t es explicada por las observaciones de Y en períodos anteriores (combinaciones lineales en le mejor caso), más un término de error.
 - > Orden: números de términos del pasado

- MA(q) Moving Average (Media Móvil) de orden q
 - > Y_t es explicada en función de un término independiente y una sucesión de errores correspondientes a períodos precedentes
- ARMA(p,q) Auto Regressive Moving Average
 - combinación de los dos anteriores
- ARIMA(p,q,d) Modelos Autorregresivos Integrados de Medias Móviles
- SARIMA(p,q,d) Modelos Estacionarios Autorregresivos Integrados de Medias Móviles

- Limitaciones de las técnicas estadísticas
 - Necesidad de conocer a priori
 - La serie temporal en si misma
 - Las relaciones funcionales entre las variables del problema
 Obliga a establecer un modelo estadístico de comportamiento de la serie y del proceso del mundo real que representa
 - Falta de precisión en las predicciones
 - Inestabilidad numérica de los modelos ante factores externos no considerados
 - Necesidad de suponer estacionariedad en la serie temporal
 - Si la serie no es estacionaria, hay que realizar ciertas modificaciones que distorsionan el modelo
 - No existe metodología comúnmente aceptada como la mejor (continuo desarrollo de nuevos modelos)

- Los métodos más usados son ARMA y ARIMA
 - Ampliamente probados en el caso de problemas univariantes, pero no en multivariantes
 - A medida que se predicen situaciones más complejas las predicciones comienzan a desviarse de la realidad,
 - bien por el tipo de relación entre las variables explicativas
 - bien por la complejidad del dominio en sí
 - Precisión medida en base al Error Cuadrático Medio (Mean Square Error o MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (o_i - x_i)^2$$

2.3 Técnicas neuronales

- Primeros trabajos -> Lapedes y Farber (1987 en Los Alamos National Laboratory)
 - Arquitectura PMC
 - Aprendizaje por algoritmo de backpropagation
 - Fiunción de activación sigmoide
 - Entradas:
 - n observaciones anteriores de la serie x(t), x(t-d), ..., x(t-nd)
 - Predicción:
 - valor de la serie en x(t+p) (p es el horizonte de predicción)
 - Esquema de trabajo: ventana deslizante
 - Válido para series temporales multivariantes y no lineales

2.3 Técnicas neuronales

- Otra posibilidad: predicción mediante redes neuronales recurrentes tipo RNN (Feedback)
 - Comportamiento interesante de reconocimiento de patrones temporales (igual que SOM reconoce patrones espaciales)
 - Mejoradas con las redes LSTM.
 - En los últimos años, gran desarrollo de modelos especializados en tratamiento de series temporales.
- Ventajas
 - Mejores niveles de precisión alcanzados
 - Mayores horizontes de predicción, con costes de desarrollo menores

2.3 Técnicas neuronales

- Características diferenciales frente a las estadísticas
 - No es necesario conocer la estructura del modelo. Solo disponer de suficientes datos históricos
 - No requieren de expertos altamente especializados.
 - Su desarrollo puede ser incremental,
 - Facilidad para reconfigurar el modelo (añadiendo nuevas neuronas en la capa de entrada)
 - Mejora continuada de las aplicaciones a fin de adaptarlas a condiciones cambiantes reentrenando la red con datos más recientes.
 - Se obtienen buenas predicciones incluso aunque no todas las variables explicativas hayan sido consideradas por la red
 - Uso indistinto de variables correladas o incorreladas: la red descarta las innecesarias
 - Modelo no lineal: dominios no lineales
 - Válidas para series temporales multivariantes

- 1. Introducción
- 2. El problema de la predicción
 - 1. La predicción
 - 2. Técnicas estadísticas
 - 3. Técnicas neuronales
- Redes a las que hay que enseñar
- 4. Perceptrón
 - 1. Historia
 - 2. Arquitectura
 - 3. Procesamiento
 - 4. Aprendizaje
- 5. Adaline
 - 1. Aprendizaje
 - 2. Diferencias con el perceptrón

Validas para la predicción y para otras tareas

- Modelos FeedBack
 - Redes construidas
 - Memorias Asociativas Bidireccionales (BAM)
 - Redes entrenadas
 - Redes recurrentes (RNN)
- Modelos FeedForward
 - Modelos lineales
 - Perceptrón
 - Adaline
 - Modelos no lineales
 - Perceptrón Multicapa (PMC)
 - Modelo no lineal basado en el Perceptron de Rosenblatt
 - Madaline
 - Modelo no lineal desarrollado a partir de la arquitectura ADALINE

¿Por qué es necesario el aprendizaje?

- La eficiencia de una red neuronal supervisada depende del valor de los parámetros (matriz de pesos) que determinan el ajuste entre las entradas y las salidas
- Es difícil determinar con precisión tantos parámetros
- Proceso para encontrar la mejor matriz de pesos
 - En una red que ajusta entradas/salidas sobre casos de un problema real se calcula el error producido en ese ajuste
 - Se busca la matriz de pesos que minimiza el error que la red comete en el proceso
 - Esa búsqueda en el espacio de pesos puede ser
 - Búsqueda exhaustiva
 - Búsqueda aleatoria
 - Búsqueda dirigida → <u>Método de Aprendizaje</u> :
- Método de mínimos cuadrados
- Descenso de gradiente
- Algoritmos genéticos

Aprendizaje:

Proceso dirigido de obtención de la mejor matriz de pesos en una red neuronal

- Para redes neuronales feedforward, el aprendizaje supervisado se define como:
 - Dado un conjunto de entrenamiento

$$C = \{ (\overrightarrow{X^p}, \overrightarrow{Y^p}) | \overrightarrow{X^p} \in R^N, \overrightarrow{Y^p} \in R^M, p = 1, 2, ..., c \}$$

 Y una red neuronal de la que sólo conocemos su estructura (capas y número de unidades en cada capa) y que implementa una función de R^N en R^M

$$R^N \xrightarrow{f} R^M$$

 Encontrar un conjunto de pesos {W_{ij}} tal que la función de R^N en R^M se ajuste lo mejor posible a los ejemplos del conjunto de entrenamiento

Entrenamiento

Proceso iterativo que busca minimizar el error en el conjunto de entrenamiento

- Precisa un conjunto de entrenamiento
 - del que se conozca la salida esperada
 - suficientemente amplio para que cubra el espacio muestral
- En cada paso del entrenamiento
 - Se calcula el error
 - Se modifica consecuentemente la matriz de pesos
- El entrenamiento acaba cuando se cumple la condición de terminación
 - Cuando una pasada completa del conjunto de entrenamiento ocurre sin error
 - Cuando el error alcanza un valor predeterminado

Ley de aprendizaje

Formulación matemática que ajuste la matriz de pesos en función de los pares entrada/salida con que se entrena la red

- Reglas para modelos lineales:
 - Ley de aprendizaje de Rosemblatt basada en la Ley de Hebb (Perceptrón)
 - Ley de aprendizaje Widrow-Hoff o Regla Delta basada en el Descenso de Gradiente (Adaline)
- La más importante: algoritmo de retropropagación del error (backpropagation) o Regla Delta Generalizada
 - Perceptrón Multicapa: Redes multicapas no lineales
- El aprendizaje correcto permite que la red generalice
 - Una entrada nueva (nunca vista) genera una salida correcta

Aprendizaje = Entrenamiento - Ley de Aprendizaje

- 1. Se inicializa la matriz de pesos al azar \overrightarrow{W}_t
- 2. Se presenta un patrón (entrada y salida deseada)
- 3. Se computa la salida obtenida por la red.
- 4. Se calcula el error cometido para dicho patrón.
- 5. Se determina la variación de los pesos: descenso por la pendiente más pronunciada de la función de error.
- Se modifican los pesos para movernos un poco más abajo en la superficie mediante la Regla Delta correspondiente.

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \Delta \overrightarrow{W}_t$$

- 7. Se repiten los pasos del 2 al 6 para todos los patrones de entrenamiento.
- 8. Si el error es un valor reducido aceptable, termina el proceso. Si no, se vuelve al paso 2.

- 1. Introducción
- 2. El problema de la predicción
 - 1. La predicción
 - 2. Técnicas estadísticas
 - 3. Técnicas neuronales
- 3. Redes a las que hay que enseñar
- 4. Perceptrón
 - Historia
 - Arquitectura
 - Procesamiento
 - 4. Aprendizaje
- 5. Adaline
 - 1. Aprendizaje
 - 2. Diferencias con el perceptrón

4. Perceptrón

4.1 Historia

- [1959] Frank Rosenblatt: Perceptrón (modeliza la retina)
 - Usa una neurona formal binaria tipo McCulloch y Pitts (0,1)
 - Pesos sinápticos ajustables
 - Aprendizaje: Ley de Hebb para entrenar el Perceptrón.
 - Función de activación umbral
 - El aprendizaje intenta minimizar el número de casos mal resueltos

- Sistema constituido por
 - Unidades Sensoriales (S) (Input layer) que constituyen el modelo de retina. Meros fotorreceptores.
 - Unidades de Asociación (A), conectadas con unidades S, consigo mismas. No son neuronas.
 - Unidades de Respuesta (R), neuronas con umbral interconectadas entre si.

4.1 Historia

Importante

No son tres capas, isino 1!

- Las conexiones iniciales son al azar
- El objetivo es activar la neurona correspondiente a cada patron de entrada.
- Las neuronas compiten entre sí para clasificar las entradas.

4.2 Arquitectura

 La estructura de la neurona tipo perceptrón (con dos entradas) es:

4.2 Arquitectura

- Donde
 - X₁ y X₂ son las entradas
 - Y es la salida
 - w₁ y w₂ son los pesos de las entradas 1 y 2 respectivamente
 - El Combinador Lineal es la suma ponderada de las entradas:

$$S = \sum_{i=1}^{n} w_i x_i$$

La Función de Activación

$$Y = F(S, \theta) = f\left(\sum_{i=1}^{n} w_i x_i - \theta\right)$$

es un *HardLimiter* (función escalón) cuyos valores son:

$$F(S,\theta) = \begin{cases} +1 & \text{si } S \ge \theta \\ 0 & \text{si } S < \theta \end{cases}$$

 θ es el umbral que equivale a un peso ficticio no conectado a ninguna entrada y que se resta del valor de entrada a la neurona

4.3 Procesamiento

- Podemos obtener una expresión general del comportamiento de la neurona
 - Haciendo que el índice i comience en 0
 - Definiendo $w_o = \theta$ y $x_0 = -1$ (valor constante) Con lo que obtenemos

$$Y = F(S, \theta) = f\left(\sum_{i=0}^{n} w_i x_i\right)$$

Cuyos valores son

$$F(S,\theta) = \begin{cases} +1 & si \sum_{i=0}^{n} w_i x_i \ge 0 \\ 0 & si \sum_{i=0}^{n} w_i x_i < 0 \end{cases} \rightarrow \sum_{i=1}^{n} w_i x_i - \theta \ge 0$$

- El Perceptrón funciona como un CLASIFICADOR
 - Clasifica las entradas x_1, x_2, \ldots, x_n , linealmente separables, en dos clases A_1, A_2
 - La separación es un hiperplano cuya ecuación se obtiene para el valor 0 de la Función de Activación

$$\sum_{i=1}^{n} w_i x_i - \theta = 0$$

Para un perceptrón de dos entradas la ecuación general es

$$w_1 x_1 + w_2 x_2 - \theta = 0$$

La forma principal de esta ecuación es

$$x_2 = -\frac{w_1}{w_2} x_1 + \frac{\theta}{w_2}$$

 los valores de w₁ y w₂ se encuentran por aprendizaje a partir de los datos de entrenamiento

Perceptrón de 3 entradas

- Si los patrones de entrenamiento no son linealmente separables, entonces
 - No es posible encontrar un perceptrón que de la salida esperada para todos los elementos del conjunto de entrenamiento
 - El perceptrón no es capaz de aprender

Teorema de convergencia del perceptrón:

Si los patrones de entrenamiento son linealmente separables, el aprendizaje converge en un número finito de pasos encontrando un conjunto de pesos que clasificará las entradas correctamente (Minsky y Papert, MIT Press, 1969)

 Condición de separabilidad lineal (demostración formal del teorema de convergencia):

Para una red de (n) de entradas, el límite entre las dos regiones en que clasifica un perceptrón es un hiperplano de dimensión (n-1) en un espacio vectorial de dimensión

Patrones linealmente separables: FUNCION LOGICA OR

• **Clasificador**. Define la ecuación de una recta que divide el espacio en dos regiones

X1	X2	Υ
0	0	0
0	1	1
1	0	1
1	1	1

- Patrones linealmente NO separables: FUNCION LOGICA XOR
 - Comparador. Con un solo nivel de conexiones no se simulan estas funciones

X1	X2	Υ
0	0	0
0	1	1
1	0	1
1	1	0

 Ley de Aprendizaje muy simple, reajustando los pesos si la salida es incorrecta buscando la ecuación del hiperplano

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \eta (\overrightarrow{d}_t - \overrightarrow{Y}_t) \overrightarrow{X}_t$$

- Donde
 - η es el Coeficiente de Aprendizaje (Learning Rate): especifica la magnitud de cambio de la red
 - $\overrightarrow{d_t}$ es la salida deseada en el instante t
 - \overrightarrow{Y}_t es la salida obtenida en el instante t
 - \overrightarrow{X}_t es la entrada aplicada al perceptrón
 - \overrightarrow{W}_t es el valor de los pesos (matriz) en el instante t
- Regla de aprendizaje por refuerzo (Hebbiana) potenciando las salidas correctas y no se considerando las incorrectas

- Proceso de entrenamiento
 - 1. Pesos \vec{W} generados aleatoriamente
 - 2. Introducción de una entrada
 - 3. Se calcula el error
 - 4. Error = 0: volver al paso 2 con una nueva entrada
 - 5. Se inicializa $\Delta W_i = 0$
 - 6. Se aplica la Ley de Hebb
 - 7. Se actualizan los pesos
 - 8. Volver al paso 2 con una nueva entrada

Ejemplo: resolución del problema AND

X1	X2	Υ
0	0	0
0	1	0
1	0	0
1	1	1

- Ecuaciones a utilizar
 - Cálculo de la entrada a la neurona (S)

$$S = w_1 x_1 + w_2 x_2$$

Cálculo de la salida de la neurona (Y real)

$$Y = \begin{cases} +1 & si \ S \ge \theta \\ 0 & si \ S < \theta \end{cases}$$

Error

$$e = d_t - y_t$$

Actualización de los pesos (Ley de Hebb)

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \eta e \overrightarrow{X}_t$$

Epoch	Inp	outs	Desired output		itial ights	Actual output	Error	I	nal ghts
1	<i>x</i> ₁	x_2	Y_d	w ₁	w_2	$\overset{1}{Y}$	e	w_1	w_2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Threshold: $\theta = 0.2$; learning rate: $\alpha = 0.1$

- 1. Introducción
- 2. El problema de la predicción
 - 1. La predicción
 - 2. Técnicas estadísticas
 - 3. Técnicas neuronales
- 3. Redes a las que hay que enseñar
- 4. Perceptrón
 - 1. Historia
 - 2. Arquitectura
 - 3. Procesamiento
 - 4. Aprendizaje
- 5. Adaline
 - 1. Aprendizaje
 - 2. Diferencias con el perceptrón

5. Adaline

5. Adaline

ADAptive **LI**near **NE**uron

- [1960] Bernad Widrow y Hoff lo proponen
 - Dispositivo de umbral con salidas (-1,+1) (en lugar de [0,1] del perceptrón)
 - Elementos de procesamiento lineales (continuos y derivables)
 - Unidad externa (bias) con un peso fijo de valor 1
 - A diferencia del perceptrón, al aprender no intenta minimizar el número de casos mal resueltos, sino la diferencia entre la salida esperada y la obtenida.
 - Esa diferencia se mide con el error cuadrático medio (MSE) del conjunto de entrenamiento

5. Adaline

- La Ley de Aprendizaje es la Regla Delta, Regla LMS (Least Mean Square) o Regla Widrow-Hoff basada en el Descenso de Gradiente
 - Gradiente de una función de coste $C(\vec{x})$ en el punto $\vec{x}^{\vec{p}}$ es el vector de las derivadas parciales de C en $\vec{x}^{\vec{p}}$ (vector gradiente)

$$\nabla C(\overrightarrow{x^p}) = \frac{\partial C}{\partial \overrightarrow{x^p}} = \left[\frac{\partial C}{\partial x_1^p}, \frac{\partial C}{\partial x_2^p}, \dots, \frac{\partial C}{\partial x_n^p} \right]$$

- Mide la sensibilidad al cambio del valor de la función con respecto a un cambio en su argumento/parámetro.
- El <u>descenso de gradiente</u> es cuánto y en qué dirección debe cambiar cada parámetro x_i para minimizar C.
- En nuestro caso,
 - La función de coste (C) es el error.
 - Los parámetros x_i son los pesos de la red w_i .

- Para aplicar el Descenso de Gradiente, es necesario que la Función de Activación F sea derivable (p.e.: sigmoide, lineal) →
 - Variación sobre el perceptrón
 - Adaline usa la función lineal de activación
- Adaline no busca la clasificación correcta de cada patrón sino minimizar el Error Cuadrático
- Error:

$$E(\overrightarrow{W_t}) = \frac{1}{2}(d_t - Y_t)^2$$

- Donde
 - d_t es la salida deseada en el instante t
 - Y_tes la salida obtenida en el instante t
 - \overrightarrow{W}_t es el valor de los pesos (matriz) en el instante t
 - ½ es para simplificar el cálculo posterior de la derivada

- Buscamos un mínimo de E.
 - *E* es función de \vec{W} .
 - Queremos minimizar E
 - Hay que encontrar un \overrightarrow{W} que minimice E
- ¿Cómo buscar el mínimo?

 En una superficie diferenciable la dirección de máximo crecimiento viene dada por el vector gradiente ∇E(W)

 El negativo del gradiente proporciona la dirección de máximo descenso hacia el mínimo de la superficie.

 Comenzamos con un \overrightarrow{W} aleatorio modificado sucesivamente en pequeños desplazamientos en dirección opuesta al gradiente

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \Delta \overrightarrow{W}_t$$

Y llamaremos

$$\Delta \overrightarrow{W}_t = -\eta \nabla E(\overrightarrow{W_t})$$

- Donde
 - η es el factor de aprendizaje que determina el tamaño del desplazamiento
 - $\nabla E(\overrightarrow{W})$ es el gradiente o vector de las derivadas parciales de E respecto de cada W_i

$$\nabla E(\overrightarrow{W_t}) = \frac{\partial E}{\partial \overrightarrow{W_t}} = \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_n}\right]$$

• E depende de \overrightarrow{W} a través del producto escalar $S = \sum_{i=1}^{n} w_i x_i$ y S depende de \overrightarrow{W} . Aplicamos la regla de la cadena

$$\frac{\partial E}{\partial \overrightarrow{W_t}} = \frac{\partial E}{\partial S} \frac{\partial S}{\partial \overrightarrow{W_t}}$$

Donde

$$\frac{\partial S}{\partial \overrightarrow{W_t}} = \frac{\partial}{\partial \overrightarrow{W_t}} \overrightarrow{W_t} \overrightarrow{X_t} = \overrightarrow{X_t}$$

$$\frac{\partial E}{\partial S} = \frac{\partial}{\partial S} \frac{1}{2} (d_t - Y_t)^2 = -(d_t - Y_t)Y'$$
siendo $y' = \frac{\partial Factivacion}{\partial S}$

El gradiente es, por lo tanto,

$$\nabla E(\vec{w}) = \frac{\partial E}{\partial \vec{W}} = -(d_t - Y_t)Y'\vec{X}_t$$

De donde se deduce que

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \eta (d_t - Y_t) Y' \overrightarrow{X}_t$$

 Es una ecuación que se parece a la de Rosenblatt para el perceptrón bipolar solo si la función de transferencia F es lineal, en cuyo caso

$$y' = \frac{\partial Factivación}{\partial S} = \frac{\partial S}{\partial S} = 1$$

Por lo tanto la Ley de Widrow-Hoff queda

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \eta (d_t - Y_t) \overrightarrow{X}_t$$

 En el caso de aprendizaje por lotes, tomaremos como función de error el error cuadrático medio (MSE)

$$\overline{E(\overrightarrow{W_t})} = \frac{1}{2c} \sum_{p=1}^{c} (d_t^p - y_t^p)^2$$

Con lo que la Ley de Widrow-Hoff quedaría

$$\overrightarrow{W}_{t+1} = \overrightarrow{W}_t + \eta \frac{1}{c} \sum_{p=1}^{c} (d_t^p - y_t^p) \vec{X}_t$$

5.2 Diferencias con el perceptrón

La Regla Delta

- Es un algoritmo de búsqueda local
- Converge asintóticamente hacia mínimos locales del error
- Se obtiene el mejor hiperplano posible (no necesariamente uno válido)

Perceptrón	Adaline
Función de activación umbral	Función de activación lineal
Salida binaria	Salida continua $\in \mathcal{R}$
Diferencia entrada/salida es 0/1 (misma/distinta categoría)	Hay medida del error $E \in \mathcal{R}$
Clasifica	Regresión
Converge: En nº finito de pasos si los datos son linealmente separables	Converge: Siempre asintóticamente hacia un mínimo local del ECM
Separación: Hiperplano que separa completamente los datos	Separación: Regresión hacia el mejor hiperplano posible