Array Lists

The Array List ADT

- The Vector or Array List
 ADT extends the notion of array by storing a sequence of objects
- An element can be accessed, inserted or removed by specifying its index (number of elements preceding it)
- An exception is thrown if an incorrect index is given (e.g., a negative index)

Main methods:

- at (integer i): returns the element at index i without removing it
- set(integer i, object o): replace the element at index i with o
- insert(integer i, object o): insert a new element o to have index i
- erase(integer i): removes element at index i
- Additional methods:
 - size()
 - empty()

Applications of Array Lists

- Direct applications
 - Sorted collection of objects (elementary database)
- Indirect applications
 - Auxiliary data structure for algorithms
 - Component of other data structures

Array-based Implementation

- Use an array A of size N
- A variable n keeps track of the size of the array list (number of elements stored)
- □ Operation at(i) is implemented in O(1) time by returning A[i]
- □ Operation set(i,o) is implemented in O(1) time by performing A[i] = o

Insertion

- □ In operation insert(i, o), we need to make room for the new element by shifting forward the n i elements A[i], ..., A[n-1]
- □ In the worst case (i = 0), this takes O(n) time

Element Removal

- □ In operation erase(i), we need to fill the hole left by the removed element by shifting backward the n i 1 elements A[i+1], ..., A[n-1]
- □ In the worst case (i = 0), this takes O(n) time

Performance

- In the array based implementation of an array list:
 - The space used by the data structure is O(n)
 - size, empty, at and set run in O(1) time
 - insert and erase run in O(n) time in worst case
- If we use the array in a circular fashion, operations insert(0, x) and erase(0, x) run in O(1) time
- In an insert operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one

Growable Array-based Array List

- In an insert(o) operation (without an index), we always insert at the end
- When the array is full, we replace the array with a larger one
- How large should the new array be?
 - Incremental strategy: increase the size by a constant c
 - Doubling strategy: double the size

```
Algorithm insert(o)
if t = S.length - 1 then
A \leftarrow new \ array \ of
size ...
for i \leftarrow 0 to n-1 do
A[i] \leftarrow S[i]
S \leftarrow A
n \leftarrow n+1
S[n-1] \leftarrow o
```

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of n insert(o) operations
- We assume that we start with an empty stack represented by an array of size 1
- □ We call amortized time of an insert operation the average time taken by an insert over the series of operations, i.e., T(n)/n

Incremental Strategy Analysis

- \Box We replace the array k = n/c times
- \Box The total time T(n) of a series of n insert operations is proportional to

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- □ Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- $lue{0}$ The amortized time of an insert operation is O(n)

Doubling Strategy Analysis

- We replace the array $k = \log_2 n$ times
- $lue{}$ The total time T(n) of a series of n insert operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^{k} = n + 2^{k+1} - 1 = 3n - 1$$

- \Box T(n) is O(n)
- □ The amortized time of an insert operation is O(1)

geometric series

