Section 31. Nonlinear Effects Statistics for Data Science

Victor M. Preciado, PhD MIT EECS Dept of Electrical & Systems Engineering University of Pennsylvania preciado@seas.upenn.edu

Nonlinear effects

- ► Consider a collection of 392 vehicles. For each vehicle, we know the horsepower (input) and measure the miles per gallon (MPG), i.e., $\mathcal{D} = \{\mathsf{MPG}_i, \mathsf{HP}_i\}_{i=1}^{392}$
 - ▶ The relationship between MPG and HP is closer to polynomial than linear

Nonlinear effects: Polynomial fit

▶ To predict MPG from HP, we can use a polynomial degree k:

$$\mathsf{MPG} = \beta_0 + \beta_1 \times \mathsf{HP} + \beta_2 \times \mathsf{HP}^2 + \ldots + \beta_k \times \mathsf{HP}^k + \varepsilon$$

- ▶ We find the values of the coefficients using a simple *linear* fit with k input variables. In particular, we define the variables $HP_r = HP^r$ and perform a linear fitting using the output variable $y_i = MPG_i$ and $\mathbf{x}_i = [HP_1, HP_2, \dots, HP_k]^T$
- ▶ The data suggest that a good fit occurs when k = 2 (quadratic fit)

[Credit: James et al, ISL book]	Coefficient	Std. Error	t-statistic
Intercept	56.9001	1.8004	31.6
horsepower	-0.4662	0.0311	-15.0
${\tt horsepower}^2$	0.0012	0.0001	10.1

Copyright 2020 University of Pennsylvania No reproduction or distribution without permission.