DEVOIR À LA MAISON Nº 10

Problème 1 —

Partie I – Etude de deux suites

Soient a et b deux réels positifs. On considère désormais les deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\begin{split} u_0 &= \min(a,b) \\ \forall n \in \mathbb{N}, \ u_{n+1} &= \sqrt{u_n \nu_n} \end{split} \qquad \forall n \in \mathbb{N}, \ \nu_{n+1} &= \frac{u_n + \nu_n}{2} \end{split}$$

Les suites (u_n) et (v_n) sont alors bien définies et positives, ce que l'on ne demande pas de prouver.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$.
- 2. Déterminer le sens de variation des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.
- **3.** Etablir que pour tout $n \in \mathbb{N}$,

$$\nu_{n+1} - u_{n+1} \leqslant \frac{\nu_n - u_n}{2}$$

4. En déduire que pour tout $n \in \mathbb{N}$

$$0 \leqslant \nu_n - u_n \leqslant \frac{|a - b|}{2^n}$$

5. En déduire que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers une limite commune que l'on notera $M(\mathfrak{a},\mathfrak{b})$.

Partie II – Propriétés de la moyenne arithmético-géométrique

Soient a et b deux réels positifs.

- 1. Montrer que M(a, b) = M(b, a).
- **2.** Soit $\lambda \in \mathbb{R}_+$. Montrer que $M(\lambda a, \lambda b) = \lambda M(a, b)$.
- **3.** Montrer que $\sqrt{ab} \leqslant M(a,b) \leqslant \frac{a+b}{2}$.
- **4.** Montrer que $M(a,b) = M\left(\sqrt{ab}, \frac{a+b}{2}\right)$.

Partie III - Etude d'une fonction

On pose F(x) = M(1, x) pour tout $x \in \mathbb{R}_+$.

- **1.** Calculer F(0) et F(1).
- **2.** Montrer que F est positive sur \mathbb{R}_+ .
- **3.** Montrer que f est croissante sur \mathbb{R}_+ .
- **4. a.** Montrer que pour tout $x \in \mathbb{R}_+$,

$$\sqrt{x} \leqslant F(x) \leqslant \frac{1+x}{2}$$

b. Montrer que F est dérivable en 1 et caluler F'(1).

5. a. Montrer que pour tout $x \in \mathbb{R}_+$,

$$F(x) = \frac{1}{2}(1+x)F\left(\frac{2\sqrt{x}}{1+x}\right)$$

- b. En déduire que F est continue en 0. F est-elle dérivable en 0?
- **6.** a. Préciser la limite de F en $+\infty$.
 - **b.** Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$F(x) = xF\left(\frac{1}{x}\right)$$

- c. En déduire que $F(x) \underset{x \to +\infty}{=} o(x)$.
- **d.** Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$F(x) = \sqrt{x}F\left(\frac{1+x}{2\sqrt{x}}\right)$$

- e. En déduire que $\sqrt{x} = o(F(x))$.
- 7. a. Ecrire une fonction en Python d'arguments $x \in \mathbb{R}_+$ et $\varepsilon \in \mathbb{R}_+^*$ donnant une valeur approchée de F(x) à ε près.
 - **b.** Représenter sur le même graphe, les courbes représentatives des fonctions F, $x \mapsto \sqrt{x}$ et $x \mapsto \frac{1+x}{2}$. On effectura si possible le tracé à l'aide du package matplotlib du langage Python ou, à défaut, à la main.