Virtual Reality Summative

Bradley Mackey

for 15th March 2019

Question Remarks

- 1. get_sanitized_imu_data() returns the corrected data readings from the csv file, returning a 2D array of data rows. reading_to_qtrn(reading,prev_sample_time) computes a quaternion (a,b,c,d) from a given input gyroscope reading and previous sample time, such that the delta rotation is calculated correctly. euler_to_qtrn(axis, angle) takes an axis of rotation (x,y,z) and angle θ in radians, returning a quaternion (a,b,c,d). qtrn_to_euler(qtrn) takes a quaternion (a,b,c,d) and returns a tuple of the rotation axis and angle rotation this quaternion represents $((x,y,z),\theta)$. qtrn_conj(qtrn) takes a quaternion (a,b,c,d) and returns its conjugate, (a,-b,-c,-d). qtrn_mult(qtrn_1, qtrn_2) computes the product of 2 quaternions.
- 3. Try a few different alpha values (e.g., 0.01, 0.1, ...), investigate and comment on their effect on drift compensation in your report (7 marks)
- 4. Try a few different alpha values (e.g., 0.01, 0.1, ...), investigate and comment on their effect on drift compensation in your report (5 marks).

Visualisations

Figure 1: Raw sensor readings from the IMU.