CLAIMS

- 1. An interference pigment having a mass tone, which comprises a flake-form substrate with successive coatings of:
 - (A) a colorless coating having a refractive index of n > 1.8 in a layer thickness of 20 250 nm,
 - (B) a colorless coating having a refractive index of $n \le 1.8$ in a layer thickness of 10-100 nm,
 - (C) a colorless coating having a refractive index of n > 1.8 in a layer thickness of 20-250 nm,
- (D) an absorbent layer having a layer thickness of 1-100 nm, and, optionally,
 - (E) an outer protective layer.
- 2. An interference pigment according to claim 1, wherein the flake-form substrate is natural or synthetic mica, glass flake, Al₂O₃ flake, SiO₂ flake or TiO₂ flake, or a mixture thereof.
- 3. An interference pigment according to claim 1, wherein coating (A) consists of TiO₂, ZrO₂, ZnO or BiOCl.
- 4. An interference pigment according to claim 2, wherein coating (A) consists of TiO₂, ZrO₂, ZnO or BiOCl.

- 5. An interference pigment according to claim 1, wherein coating (B) consists of SiO₂, MgF₂, B₂O₃, AlO(OH), MgSiO₃ or Al₂O₃, or mixtures thereof.
- 6. An interference pigment according to claim 2, wherein coating (B) consists of SiO₂, MgF₂, B₂O₃, AlO(OH), MgSiO₃ or Al₂O₃, or mixtures thereof.
- 7. An interference pigment according to claim 3, wherein coating (B) consists of SiO₂, MgF₂, B₂O₃, AlO(OH), MgSiO₃ or Al₂O₃, or mixtures thereof.
- 8. An interference pigment according to claim 1, wherein the absorbent layer (D) is selected from metal oxides, sulfides, tellurides, selenides, lanthanides, phosphates, actinides and mixtures thereof.
- 9. An interference pigment according to claim 1, wherein the absorbent layer (D) consists of Fe₂O₃, Fe₃O₄, Cr₂O₃, Ce₂O₃, Cr₂O₃, a molybdenum oxide, CoO, Co₃O₄, VO₂, V₂O₃, NiO, V₂O₅, CuO, Cu₂O, Ag₂O, CeO₂, MnO₂, Mn₂O₃, Mn₂O₅, MoS₂, WS₂, a titanium oxynitride, titanium nitride or any combination of the above.
- 10. An interference pigment according to claim 2, wherein the absorbent layer (D) consists of Fe₂O₃, Fe₃O₄, Cr₂O₃, Ce₂O₃, Cr₂O₃, a molybdenum oxide, CoO, Co₃O₄, VO₂, V₂O₃, NiO, V₂O₅, CuO, Cu₂O, Ag₂O, CeO₂, MnO₂, Mn₂O₃, Mn₂O₅, MoS₂, WS₂, a titanium oxynitride, titanium nitride or any combination of the above.

- 11. An interference pigment according to claim 3, wherein the absorbent layer (D) consists of Fe₂O₃, Fe₃O₄, Cr₂O₃, Ce₂O₃, Cr₂O₃, a molybdenum oxide, CoO, Co₃O₄, VO₂, V₂O₃, NiO, V₂O₅, CuO, Cu₂O, Ag₂O, CeO₂, MnO₂, Mn₂O₃, Mn₂O₅, MoS₂, WS₂, a titanium oxynitride, titanium nitride or any combination of the above.
- 12. An interference pigment according to claim 5, wherein the absorbent layer (D) consists of Fe₂O₃, Fe₃O₄, Cr₂O₃, Ce₂O₃, Cr₂O₃, a molybdenum oxide, CoO, Co₃O₄, VO₂, V₂O₃, NiO, V₂O₅, CuO, Cu₂O, Ag₂O, CeO₂, MnO₂, Mn₂O₃, Mn₂O₅, MoS₂, WS₂, a titanium oxynitride, titanium nitride or any combination of the above.
- 13. An interference pigment according to claim 1, wherein coating (A) and coating (C) have the same composition.
- 14. An interference pigment according to claim 3, wherein coating (A) and coating (C) have the same composition.
- 15. An interference pigment according to claim 13, wherein coating (A) and coating (C) consist of TiO₂.
- 16. A process for producing an interference pigment according to claim 1, which comprises coating the flake-form substrate by a wet-chemical method of hydrolytic decomposition of metal salts in aqueous medium or by a CVD or PVD process.

- 17. A paint, coating, printing ink, plastic, ceramic, glass, cosmetic, or laser markable composition comprising a pigment of claim 1.
- 18. A pigment composition comprising one or more binders, optionally one or more additives, and one or more interference pigments according to claim 1.
 - 19. A dry preparation comprising an interference pigment according to claim 1.
 - 20. A dry preparation of claim 19, in the form of pellets, granules, chips or briquettes.