Transformacje współrzędnych

Informatyka Geodezyjna II sem. 5, ćwiczenia, rok akad. 2023-2024

Wydział Geodezji i Kartografii, Politechnika Warszawska Warszawa, 12 maja 2024

Spis treści

1	\mathbf{Wstep}	2
	1.1 Cel ćwiczenia	2
	1.2 Wykorzystane narzędzia	2
2	Etapy rozwiązywania	2
3	Podsumowanie, wnioski	2
	3.1 Link do repozytorium GitHub	2
	3.2 Umiejętności nabyte w trakcie rozwiązywania projektu	2
	3.3 Spostrzeżenia i trudności napotkane w trakcie ćwiczenia	3
4	Bibliografia	3

1 Wstęp

1.1 Cel ćwiczenia

Celem zadania jest utworzenie skryptu jako klasy, który będzie wykonywał transformacje:

- XYZ -> fi, lam, h
- fi, lam, h -> XYZ
- $XYZ \rightarrow NEU$
- fi, lam -> 2000
- fi, lam -> 1992

1.2 Wykorzystane narzędzia

Do napisania programu zostały wykorzystane:

- Python 3.11
- Spyder
- System operacyjny: Microsoft Windows 10

2 Etapy rozwiązywania

Krokiem rozpoczynającym nasze działania było zdefiniowanie klasy 'Transformacje'. Następnie do klasy dodaliśmy algorytmy, pozwalające wykonać transformacje podane w punkcie 1.1. Algorytmy te zostały oparte na funkcjach z ćwiczeń Geodezji Wyższej semestru 3.

Następnie przy pomocy def __init__():, tworzymy obiekty klasy Transformacje. Zawierają one informacje o parametrach elipsoidy: a- wielka półoś elipsoidy oraz e2 - mimośród elipsoidy.

Następnym krokiem było zaimplementowanie klauzuli $if\ name == main$, która wykorzystywała "sys.argv". Biblioteka ta umożliwia użytkownikowi przekazywanie argumentów przez wiersz poleceń. Nleży tam podać plik(z którego zostaną wyciągnięte dane), elipsoidę(jedną z opisanych elipsoid), transformacje(jedna z tych opisanych w klasie). Jeśli poda się nieistniejącą transformacje dostaniemy powiadomienie: "Transformation function not recognized."

3 Podsumowanie, wnioski

3.1 Link do repozytorium GitHub

https://github.com/Asiakras/projekt1

3.2 Umiejętności nabyte w trakcie rozwiązywania projektu

- Zapoznanie się z obsługą GitHub, gdzie możemy w grupie pracować na jednym pliku i zapisywać zmiany widoczne dla wszytkich
- Zapoznanie się ze zmienną sys.argv oraz jej zastosowaniem
- Tworzenie dokumentów w latex

3.3 Spostrzeżenia i trudności napotkane w trakcie ćwiczenia

Pierwszym problemem było skorzystanie z sys.argv, gdyż jest to nowa zmienna i musieliśmy się chwilę dłużej zastanowić jak ona działa i jak skutecznie jej użyć w tym konkretnym ćwiczeniu. Dłuższą chwilę zastanawialiśmy się czemu kod, który wydawał sie poprawny wyrzuca bład: "An exception has occurred, use %tb to see the full traceback.

SystemExit: 1"

Dopiero później zorientowaliśmy się, że w Spyderze nie będziemy mogli skorzystać z tego polecenia(przez sys.argv), ale w wierszu poleceń wszystko jest sprawne.

4 Bibliografia

Materiały zajęciowe z ćwiczeń Geodezja Wyższa sem.3 oraz materiały zajęciowe z ćwiczeń Informatyka sem. 4