

Lecture Outline

- Basic memory elements
- Gated latches
- Master-Slave flip-flops
- Edge triggered flip-flops

Storage element design

Gated SR Latch

Problems with SR latch design

- Problem of transition from
 (S = R = 1) to (S = R = 0)
 uncertain output |
 oscillations | meta-stability
- Problem of change in S, R
 while C = 1
 output change not timed with clock

Solutions

- Don't connect S, R directly
 - $S = D, R = \overline{D}$
 - Gate R input with S or vice versa
- Edge triggering, not level triggering
 - Master-slave flip-flop (8 gates)
 - Edge triggered flip-flop (6 gates)

D Latch

S overrides R

Abstraction

Master-Slave D Flip-Flop

