計算機結構 Exercise 01

B03902062 資工三 董文捷

1.5

a. Instructions per $second = \frac{Clock\ Rate}{CPI}$ $\mathbf{P1} \quad \frac{3\times10^9}{1.5} = 2\times10^9\ (instructions\ per\ second)$ $\mathbf{P2} \quad \frac{2.5\times10^9}{1.0} = 2.5\times10^9\ (instructions\ per\ second)$ $\mathbf{P3} \quad \frac{4.0\times10^9}{2.2} = 1.82\times10^9\ (instructions\ per\ second)$

Therefore, **P2** has the highest performance expressed in instructions per second.

b. $number\ of\ cycles = Clock\ Rate \times CPU\ Time$ $number\ of\ instructions = \frac{Clock\ Rate \times CPU\ Time}{CPI}$

P1

- number of cycles = $(3 \times 10^9) \times 10 = 3 \times 10^{10}$
- number of instructions = $\frac{(3\times10^9)\times10}{1.5}$ = 2 × 10¹⁰

P2

- number of cycles = $(2.5 \times 10^9) \times 10 = 2.5 \times 10^{10}$
- number of instructions = $\frac{(2.5 \times 10^9) \times 10}{1.0}$ = 2.5 × 10¹⁰

P3

- number of cycles = $(4.0 \times 10^9) \times 10 = 4.0 \times 10^{10}$
- number of instructions = $\frac{(4.0 \times 10^9) \times 10}{2.2}$ = 1.82×10^{10}

c. $CPU\ Time = \frac{Instruction\ Count \times CPI}{Clock\ Rate}$ When instruction count is fixed, $CPU\ Time \propto \frac{CPI}{Clock\ Rate}$ If CPI increases by 20%, and we want CPU time to reduce by 30%, clock rate should become $\frac{1.2}{0.7} = 1.714$ times. That is to say, clock rate should increase by 71.4%.

1.8.1 Dynamic Power Consumption = Capacitive load×Voltage²×Frequency

Prescott Capacitive load = $\frac{90}{1.25^2 \times (\frac{1}{2} \times 3.6 \times 10^9)} = 3.2 \times 10^{-8} (F)$ Ivy Bridge Capacitive load = $\frac{40}{0.9^2 \times (\frac{1}{2} \times 3.4 \times 10^9)} = 2.905 \times 10^{-8} (F)$

1.8.2 Prescott

- $Percentage \frac{10}{10+90} \times 100\% = 10\%$
- $Ratio \frac{10}{90} = 0.1111$

Ivy Bridge

-
$$Percentage \frac{30}{30+40} \times 100\% = 42.86\%$$

$$- Ratio \frac{30}{40} = 0.75$$

1.8.3 Static Power Consumption = $V \times I_{leakage}$

Prescott

$$I_{leakage} = \frac{10}{1.25} = 8$$

To maintain the same leakage current and reduce the total dissipated power by 10%, the new equation becomes

$$(10+90) \times 90\% = V \times 8 + 3.2 \times 10^{-8} \times V^2 \times (\frac{1}{2} \times 3.6 \times 10^9)$$

Solve the equation to get V = 1.1825, -1.3214. Therefore, the voltage should be reduced to 1.1825V.

Ivy Bridge
$$I_{leakage} = \frac{30}{0.9} = 33.33$$

To maintain the same leakage current and reduce the total dissipated power by 10%, the new equation becomes

$$(30+40) \times 90\% = V \times 33.33 + 2.905 \times 10^{-8} \times V^2 \times (\frac{1}{2} \times 3.4 \times 10^9)$$

Solve the equation to get V = 0.8413, -1.5163. Therefore, the voltage should be reduced to 0.8413V.

1.12.1 CPU Time = $\frac{Instruction\ Count \times CPI}{Clock\ Rate}$ P1 $\frac{(5.0 \times 10^9) \times 0.9}{4 \times 10^9} = 1.125\ (s)$ P2 $\frac{(1.0 \times 10^9) \times 0.75}{3 \times 10^9} = 0.25\ (s)$

P1
$$\frac{(5.0 \times 10^9) \times 0.9}{4 \times 10^9} = 1.125 (s$$

$$\mathbf{P2} \quad \frac{(1.0 \times 10^9) \times 0.75}{3 \times 10^9} = 0.25 \ (s)$$

P1 has a larger clock rate, but its performance is worse than P2.

1.12.2
$$\frac{(1.0 \times 10^9) \times 0.9}{4 \times 10^9} = \frac{Instruction\ Count \times 0.75}{3 \times 10^9}$$
, $Instruction\ Count = 0.9 \times 10^9$

P2 can execute 0.9×10^9 instructions in the same time that P1 needs to execute 1.0×10^9 instructions.

1.12.3
$$MIPS = \frac{Clock\ Rate}{CPI \times 10^6}$$

P1 $\frac{4 \times 10^9}{0.9 \times 10^6} = 4444.44\ (MIPS)$
P2 $\frac{3 \times 10^9}{0.75 \times 10^6} = 4000\ (MIPS)$

P2
$$\frac{3\times10^9}{0.75\times10^6} = 4000 \; (MIPS)$$

P1 has a larger MIPS, but its performance is worse than P2.

1.12.4
$$MFLOPS = \frac{No.FP \ operations}{execution \ time \times 10^{6}}$$

P1 $\frac{5.0 \times 10^{9} \times 40\%}{1.125 \times 10^{6}} = 1777.78 \ (MFLOPS)$
P2 $\frac{1.0 \times 10^{9} \times 40\%}{0.25 \times 10^{6}} = 1600 \ (MFLOPS)$

P2
$$\frac{1.0 \times 10^9 \times 40\%}{0.25 \times 10^6} = 1600 \ (MFLOPS)$$

1.15 per processor execution time =
$$\frac{100}{processor \ num} + 4$$

 $speedup = \frac{100}{\frac{100}{processor \ num} + 4}$
 $ideal \ speedup = \frac{100}{\frac{100}{processor \ num}} = processor \ num$

2 processors

- per processor execution time =
$$\frac{100}{2} + 4 = 54$$

$$- speedup = \frac{100}{54} = 1.85$$

$$- ratio = \frac{1.85}{2} = 0.9260$$

4 processors

- per processor execution time =
$$\frac{100}{4} + 4 = 29$$

$$- speedup = \frac{100}{29} = 3.45$$

$$- ratio = \frac{3.45}{4} = 0.8621$$

8 processors

- per processor execution time =
$$\frac{100}{8} + 4 = 16.5$$

$$- speedup = \frac{100}{16.5} = 6.06$$

$$- ratio = \frac{6.06}{8} = 0.7576$$

16 processors

- per processor execution time =
$$\frac{100}{16} + 4 = 10.25$$

$$- speedup = \frac{100}{10.25} = 9.76$$

$$- ratio = \frac{9.76}{16} = 0.6098$$

32 processors

- per processor execution time =
$$\frac{100}{32} + 4 = 7.13$$

$$- speedup = \frac{100}{7.13} = 14.04$$

$$- \ ratio = \frac{14.04}{32} = 0.4386$$

64 processors

$$-$$
 per processor execution time = $\frac{100}{64} + 4 = 5.56$

$$- speedup = \frac{100}{5.56} = 17.98$$

$$- \ ratio = \frac{17.98}{64} = 0.2809$$

128 processors

$$-$$
 per processor execution time = $\frac{100}{128} + 4 = 4.78$

$$- speedup = \frac{100}{4.78} = 20.92$$

$$- ratio = \frac{20.92}{128} = 0.1634$$