Отчет о выполнении лабораторной работы 1.3.3 Измерение вязкости воздуха по течению в тонких трубках

Комкин Михаил, группа Б01-303 14 мая 2024 г. **Цель работы:** экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер

1 Теоретический материал

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа вызывается перепадом внешнего давления на концах ΔP трубы, чему в свою очередь препятствуют силы вязкого (внутреннего) трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси х, а скорость течения $v_x(y)$ зависит от координаты y в каждом слое возникает направленное по x касательное напряжение.

Величину η называют коэффициентом динамической вязкости (или просто вязкостью) среды.

Объёмным расходом (или просто расходом) Q называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина Q зависит от перепада давления ΔP , а также от свойств газа (плотности ρ и вязкости η) и от геометрических размеров (радиуса трубы R и её длины L). Основная задача данной работы — исследовать эту зависимость экспериментально.

Характер течения в трубе может быть ламинарным либо турбулентным.

Характер течения определяется безразмерным параметром задачи — числом Рейнольд-

$$Re = \frac{\rho ua}{\eta}$$

, где

 ρ - плотность жидкости, u - скорость движения потока, a - характерный размер потока. Выпишем некоторые теоретические зависимости:

$$P(x) = P_0 - \frac{\Delta P}{l}x$$

$$u = \frac{Q}{\pi R^2} = \frac{U_{max}}{2}$$

$$Q = \frac{\pi R^4 \Delta P}{8\eta l}$$

$$l_{\text{VCT}} \approx 0, 2R \cdot Re$$

2 Экспериментальная установка

Рис. 1: Схема экспериментальной установки

3 Выполнение работы

Перед началом выполнения работы, занесем в таблицы (1,2) информацию об экспериментальной установке:

Участки второй трубки	l, см	σ , mm
0 - 1	11	1
1 - 2	30	1
2 - 3	40	1
3 - 4	50	1

Таблица 1: Длины участков второй трубки между различными точками подключения.

	d, mm	σ , MM
Первая трубка	5,25	0,05
Вторая трубка	3,90	0,05

Таблица 2: Внутренние диаметры трубок установки

Проведем измерение зависимости перепадов давления от расхода воздуха. Для этого будем отмерять либо 5, либо 7,5 литров воздуха, проходящих через газовый счетчик, засекая время начала и время окончания замера. Результаты занесем в таблицы (3, 4).

Используя полученные данные, строим графики зависимости перепада давления от расхода воздуха для второй трубки и точек 2 - 3, 3 - 4 соответственно. Графики изображены на рисунке (2)

Воспользуемся МНК и определим погрешности всех косвенных измерений. Для этого занесем все результаты в таблицу (5).

№ измерения	Δh , дел	ΔV , л	δV , л	t_1 , c	t_2 , c	t_3 , c	t_4, c
1	34	5	0,05	102,8	103,1	102,95	102,9
2	58	5	0,05	74,5	74,8	74,3	74,4
3	65	5	0,05	57,5	57,54	57,63	57,89
4	86	5	0,05	50,36	50,76	51,17	51,34
5	125	5	0,05	45,02	45,2	45,11	45,33
6	166	5	0,05	39,69	39,08	39,5	39,44
7	212	5	0,05	34,75	34,28	34,92	34,65
8	257	7,5	0,05	46,8	46,89	48,91	46,95

Таблица 3: Результаты измерения зависимости перепада давления от расхода воздуха между точками 2 - 3 второй трубки

№ измерения	Δh , дел	ΔV , л	δV , л	t_1 , c	t_2 , c	t_3 , c	t_4 , c
1	25	5	0,2	171,31	171,98	170,64	171,57
2	55	5	0,2	80,95	81,34	81,12	80,76
3	95	5	0,2	54,96	55,01	55,23	54,81
4	120	5	0,2	$49,\!82$	49,48	49,33	49,23
5	150	5	0,2	$45,\!04$	44,64	45,01	44,95
6	180	5	0,2	41,79	41,57	41,83	42,38
7	210	5	0,2	39,08	38,59	38,63	38,65
8	240	5	0,2	$36,\!57$	36,1	36,16	36,42

Таблица 4: Результаты измерения зависимости перепада давления от расхода воздуха между точками 3 - 4 второй трубки

Рис. 2: графики зависимости перепада давления от расхода воздуха для второй трубки и точек 2 - 3, 3 - 4

ΔP , Πa	$\sigma_{\Delta P}$, Π a	$Q \cdot 10^5$ $\frac{\text{M}^3}{\text{c}}$	$\sigma_Q \cdot 10^5 \frac{\text{M}^3}{\text{c}}$	ΔP , Πa	$\sigma_{\Delta P}$, Πa	$Q \cdot 10^5$ $\frac{\text{M}^3}{\text{c}}$	$\sigma_Q \cdot 10^5 \frac{\text{M}^3}{\text{c}}$
66	2	4,857	0,005	49	22	2,92	0,01
113	4	6,711	0,007	107	10	6,17	0,02
127	4	8,675	0,009	185	7	9,09	0,04
168	9	9,822	0,010	234	10	10,11	0,04
244	3	11,071	0,011	293	7	11,13	0,04
324	5	12,682	0,013	351	14	11,94	0,05
414	5	14,430	0,014	410	9	12,91	0,05
502	20	15,827	0,011	469	9	13,77	0,06
				547	8	14,95	0,00

Таблица 5: Результаты измерения перепадов давления, расхода, а также погрешности данных измерений

Исходя из полученных данных, выбирая наиболее линейные участки на графиках, получим с помощью МНК значение вязкости воздуха, определенное по формуле Пуазейля:

$$\eta = 1, 9 \cdot 10^{-6}; \quad \sigma_{\eta} = 6 \cdot 10^{-7},$$

$$\eta = (1, 9 \pm 0, 6) \cdot 10^{-6} \Pi a \cdot c$$

Построим графики зависимости падения давления от длины трубки (3).

Рис. 3: графики зависимости перепада давления от расстояния до начала трубки

4 Заключение

- 1. При выполнении данной работы были исследованы различные режимы течения газа по трубкам. На практике получена экспериментальная зависимость разницы давления в различных точках трубки в зависимости от расхода воздуха, идущего через трубку.
- 2. Исследовались условия перехода течения из одного режима (ламинарного) в другой (турбулентный).
- 3. Полученные зависимости разницы давлений от расхода воздуха согласуются с существующей теорией, описывающей движение газов и жидкостей в различных режимах.
- 4. Определено значение вязкости воздуха : $\eta_{\text{эксп}} = (1, 9 \pm 0, 6) \cdot 10^{-6} \, \text{Па·с}$, при табличном значении $\eta_{\text{табл}} = (1, 3 \pm 0, 2) \cdot 10^{-6} \, \, \text{Па·с}$. Полученные значения равны в пределах погрешности.
- 5. Основной вклад в погрешность итогового значения вязкости внесла погрешность измерения времени, а так же погрешности измерения давлений. Погрешности, связанные с установкой (погрешность линейных размеров установки, диаметра трубок) внесли меньший вклад в итоговое значение погрешности.
- 6. Частично подтверждена теоретическая линейная зависимость падания давления с изменением расстояния от края трубки.
- 7. Подтверждена формула Пуазейля для расхода газа при прохождении через трубку.