

NOSC TD 340

AD A 089443

4/Nº -/T/-

7 Technical Document, 340

IMPLEMENTATION AND EVALUATION OF THE DISTURBANCE AMPLIFICATION IN BOUNDARY LAYERS (DABL)

COMPUTER PROGRAM:
A USER'S MANUAL

T. S/Mautner

NOSC TD 340

March-1980

Prepared for Naval Sea Systems Command

Approved for public release; distribution unlimited

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CALIFORNIA 92152

A

36

80 9 24 019

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

SL GUILLE, CAPT, USN

HL BLOOD

Commander

Technical Director

ADMINISTRATIVE INFORMATION

The work reported herein was performed as a portion of the research conducted at NOSC within the Torpedo Hydrodynamics and Hydroacoustics Program funded by the Naval Sea Systems Command (NAVSEA 63R31), Dr. T. E. Peirce, Program Manager. The work was performed in the Fluid Mechanics Branch (Code 6342), Hydromechanics Division of the Fleet Engineering Department.

Released by J. H. Green, Head Hydromechanics Division Under authority of R. H. Hearn, Head Fleet Engineering Department SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM			
· ·		3. RECIPIENT'S CATALOG NUMBER		
	AD-4089443			
4. TITLE (and Subtitle) IMPLEMENTATION AND EVALUATION OF TI AMPLIFICATION IN BOUNDARY LAYERS (DA		5. TYPE OF REPORT & PERIOD COVERED Research		
PROGRAM: A USER'S MANUAL		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(e)		8. CONTRACT OR GRANT NUMBER(s)		
T. S. Mautner				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Naval Ocean Systems Center San Diego, CA 92152				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE March 1980		
		13. NUMBER OF PAGES 50		
14. MONITORING AGENCY NAME & ADDRESS(It different	from Controlling Office)	15. SECURITY CLASS. (of this report)		
		Unclassified		
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distribution unlimite	eđ			
17. DISTRIBUTION STATEMENT (of the abetract entered in	n Block 20, if different from	n Report)		
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)			
DABL TAPS				
Disturbance amplification				
20. ABSTRACT (Continue on reverse elde if necessary and	identify by black number)			
This report describes the implementation a (Disturbance Amplification in Boundary Layers) to boundary layers.	and evaluation of the Foundation calculates the gro	ortran IV computer program DABL with of small disturbances in laminar		
÷.				

UNCLASSIFIED	
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
	1
	i
	'
	ļ
	1
	i
	İ
	1
	'
	İ
	į
•	
	ļ
	ļ
	.

CONTENTS

DEFINITION OF TERMS page 3
INTRODUCTION5
TWO-DIMENSIONAL GEOMETRY 6
AXISYMMETRIC GEOMETRY 12
COMPUTER PROGRAM USAGE 23
Definition of the Input Variables 23 Method of Inputting Data Tables 25 Program Input Scheme 26
COMPUTER PRINTOUT 29
Included Items29 Printout Definitions29
SUMMARY32
REFERENCES33
APPENDIX A: Computer Listing - Heated Flat Plate 34
APPENDIX B: Computer Listing — Heated 9:1 Ellipsoid 42

Accession For	
NTIS GRANT	
DDC 14B	į
Justiniestion	1
	_
Py	4
Distribution/	4
August by the sames	
(AVRT CHIC), OU	I
Dict. Special	1
	I
#	I
	J

ILLUSTRATIONS

- 1. Comparison of the neutral stability curves of a flat plate... page 7
- 2. Comparison of the disturbance amplification ratios of a flat plate . . . 9
- 3. Comparison of the neutral stability points of a flat plate with 2.78°C surface overheat...11
- 4. Potential flow velocity distribution of a 9:1 ellipsoid . . . 13
- 5. Skin friction coefficient of a 9:1 ellipsoid $-R_{\rm L} \cong 4.5 \times 10^6/{\rm ft...13}$
- 6. Boundary layer shape factor of a 9:1 ellipsoid $-R_{I} \cong 4.5 \times 10^{6}/\text{ft} \dots 14$
- 7. Displacement thickness Reynolds number of a 9:1 ellipsoid $-R_L \cong 4.5 \times 10^6/\text{ft} \dots 14$
- 8. Computed growth rates of a 9:1 ellipsoid for $\omega_f = 0.486 \times 10^{-4} R_I \approx 4.5 \times 10^6/\text{ft}...15$
- 9. Computed growth rates of a 9:1 ellipsoid for $\omega_f = 0.32 \times 10^{-4} R_I \approx 4.5 \times 10^6/\text{ft} \dots 16$
- 10. Comparison of the computed amplification ratios of a 9:1 ellipsoid for $\omega_f = 0.486 \times 10^{-4}$ and $\omega_f = 0.32 \times 10^{-4} R_L \approx 4.5 \times 10^6/ft \dots 17$
- 11. Surface temperature distribution of a 9:1 ellipsoid $-R_L \approx 4.49 \times 10^6/\text{ft} \dots 18$
- 12. Skin friction coefficient of a heated 9:1 ellipsoid $-R_L \approx 4.49 \times 10^6/\text{ft} \dots 18$
- 13. Boundary layer shape factor of a heated 9:1 ellipsoid $-R_1 \cong 4.49 \times 10^6/\text{ft} \dots 18$
- 14. Displacement thickness Reynolds number of a heated 9:1 ellipsoid $R_L \approx 4.49 \times 10^6/\text{ft} \dots 19$
- 15. Computed growth rates of a heated 9:1 ellipsoid for $\omega_f = 0.32 \times 10^{-4} R_I \approx 4.49 \times 10^6/\text{ft} \dots 20$
- 16. Computed growth rates of a heated 9:1 ellipsoid for $\omega_f = 0.18 \times 10^{-4} R_I \cong 4.49 \times 10^6/\text{ft} \dots 21$
- 17. Comparison of the computed amplification ratios of a heated 9:1 ellipsoid $R_L \approx 4.49 \times 10^6/\text{ft} \dots 22$
- 18. Input direction for the axisymmetric body coordinates . . . 27
- 19. Input direction for the two-dimensional body coordinates . . . 28

TABLES

- 1. Summary of the computed values for the neutral curve of an unheated flat plate . . . 8
- 2. Summary of the computed values for the neutral curve of a heated flat plate ($\Delta T = 2.78^{\circ}C$)...10

DEFINITION OF TERMS

A/A _o	Disturbance Amplification Ratio
$\mathbf{c_f}$	Skin Friction Coefficient
e^{N}	The Amplification Ratio (= A/A_0) according to linear stability theory
f	Disturbance Frequency – Hz
Н	Boundary Layer Shape Factor
L	Reference Length
R_{L}	Reynolds Number = $U_{\infty} L/\nu_{\infty}$
${\sf R}_{\delta}{}^*$	Displacement Thickness Reynolds Number = $U_{\infty}\delta^*/\nu_{\infty}$
T	Temperature
U_{∞}	Free Stream Velocity
$-\alpha_{i}^{*}$	Local Relative Growth Rate of a Disturbance
δ*	Displacement Thickness
ν_{∞}	Free Stream Kinematic Viscosity
ω_{f}	Nondimensional Disturbance Frequency = $2\pi f \nu_{\infty}/U_{\infty}^2$

INTRODUCTION

This report describes the implementation and evaluation of the Fortran IV computer program DABL (Disturbance Amplification in Boundary Layers — developed at the David Taylor Naval Ship Research and Development Center (DTNSRDC) by vonKerczek and Groves, 1978) which calculates the growth of small disturbances in laminar boundary layers. DABL calculates the amplification ratios, A/A_0 , for heated or unheated, two-dimensional or axisymmetric, incompressible laminar boundary layers. The boundary layer is assumed to be steady and has constant density with the fluid viscosity varying with temperature. The DABL code requires only the body coordinates, surface temperature distribution and body Reynolds number to compute the spatial amplification ratios as a function of arc length and nondimensional disturbance frequency using parallel, viscous flow, linear stability theory. The resulting amplification ratio distribution can be used to locate boundary layer transition via the e^N method.

This report makes no attempt to discuss or evaluate the theoretical and numerical methods used by DABL in computing the boundary layer properties and in performing the boundary layer stability analysis. vonKerczek and Groves (1978) discussed these topics in detail. However, this report does present several examples used to evaluate DABL as modified by the author and adapted to the NOSC UNIVAC 1110 Computer.

Upon receipt of the DABL Program from DTNSRDC, the computer code was altered (to be compatible with UNIVAC 1110) and compiled in ASCII Fortran utilizing a segmented execution mode to conform to the 65K storage limit of the NOSC system. Prior to any further changes, DABL was checked for proper execution using the examples of vonKerczek and Groves (1978).

After the DABL code was operating properly, the following additions/changes were incorporated into the code:

- 1. The program output was expanded to include both the original and normalized body coordinates and, in the case of heated bodies, the surface temperature distribution.
- 2. The option to read and write the boundary layer data to mass storage was added.
- 3. The fluid property definitions were expanded to include air, as well as water, boundary layers.
- 4. Options were included to allow the stability calculations to proceed regardless of the calculated amplification ratio value and to begin the stability automatic start routine at a prescribed body location.
- 5. The step function surface temperature distribution was changed to allow the distribution to end prior to the end of the body.

The remainder of the report is divided into several sections. First, DABL was used to compute the neutral stability points for an unheated and heated flat plate and the amplification ratios at several disturbance frequencies for the unheated plate. These results are compared with theory and experiment. Next, a comparison is made between the values of skin friction, shape factor, growth rates and amplification ratios computed by DABL and TAPS (Transition Analysis Program System) for both a heated and unheated 9:1 ellipsoid. Thirdly, a complete description of the input/output variables and program input scheme of DABL is presented. Finally, abbreviated listings of the computer output for the heated flat plate and the heated 9:1 ellipsoid are included as examples.

Although many of the descriptions found in the original DABL report (vonKerczek and Groves, 1978) are repeated here, the input format for the NOSC version of DABL has been changed completely. Anyone desiring to use this program should contact the author and a listing, card deck or tape and check solutions will be provided.

TWO-DIMENSIONAL GEOMETRY

To evaluate the two-dimensional option of the DABL code, a flat plate geometry was chosen. The test plate is 0.25 inches thick and has a sharp leading edge with a 1.8 degree half angle. There is good agreement with the potential flow velocities computed by DABL and the Douglas Two-Dimensional Cascade Potential Flow Program (Giesing, 1964). The plate has a nearly zero pressure gradient at a zero angle of attack. Overall plate lengths of one and 12 feet were used in the analysis. The coordinates of the one-foot plate and the potential flow velocities are given in Appendix A.

The neutral stability curves for both an unheated plate and a heated plate with a constant surface overheat of 2.78° C were calculated using the automatic starting option of DABL. For each plate length and Reynolds number, R_L/ft , the neutral stability points (where $-\alpha^* = 0$) were located and the corresponding displacement thickness Reynolds number and nondimensional frequency were tabulated and plotted.

Figure 1 compares the neutral stability points computed by DABL (also found in Table 1) with the experimental results of Schubauer and Skramstad (1948) and the theoretical results presented by Ross et al (1970). As the R_L/ft was increased, DABL's automatic starting method calculated nondimensional frequencies ω_f which resulted in neutral points falling within the neutral curve of Ross et al. However, if for a particular R_L/ft , the starting ω_f is decreased, the DABL calculated neutral points fall closer to theoretical and experimental values.

In Figure 2, a comparison is made between the amplification ratios A/A_0 computed by DABL and the theoretical curves of Jordinson (1970) and the experimental data presented by Ross et al (1970). Agreement is good within the common regions of comparison. The additional amplification ratios for $R_L/ft = 2.0 \times 10^6$ and 5.0×10^6 have been included as further demonstration of DABL's results; however, no comparisons are made.

Finally, the neutral stability points for a heated plate (constant $\Delta T = 2.78C$) were calculated using DABL (also found in Table 2) and are compared to the experimental results of Strazisar (1976) in Figure 3. As in the unheated case, DABL's automatic starting mode computes frequencies ω_f which result in neutral points falling within the neutral zone defined by Strazisar. In general, DABL produces conservative estimates for the onset of disturbance amplification.

Figure 1. Comparison of the neutral stability curves of a flat plate.

Plate Length, ft	$R_L \times 10^{-6}/ft$	ω _f × 10 ⁶	R ₈	R _δ *		
1.00	0.40	189.56	558	730	Water	
		157.34	596) '		
		130.59	645			
		108.39	704	İ		
	0.50	185.54	570	740		
		154.00	605	i		
		127.82	655			
		106.09	712			
		88.06	782			
•	1.00	143.57	662		I	
		119.16	700			
	•	98.90	753		l	
		82.09	824		,	
		68.13	902			
	2.00	122.42	755	1045		
		101.60	794		i	
		84.33	880			
		70.00	935			
		58.10	1005			
	5.00	113.96	970	1030		
		94.59	962	1245		
l		78.51	970	1385		
		65.16	1015	l .		
		54.08	1150			
	10.00	41.00	1360			
		34.00	1420			
		28.00	1640]		
		23.50	1730			
12.0	2.00	56.54	1410			
•		46.93	1430	l		
		38.95	1465			
	5.00	30.87	2015			
		25.63	2045			
		21.27	2215	1	1	
		17.65	2285			
	10.00	21.36	2780	1		
		20.09	2770	4025	ĺ	
		17.73	2800			
		16.68	2820	4220		
		13.84	2870	5085	1	

Table 1. Summary of the computed values for the neutral curve of an unheated flat plate.

Figure 2. Comparison of the disturbance amplification ratios of a flat plate.

Plate Length,	$R_L \times 10^{-6}/ft$	ω _f × 10 ⁶		R_{δ}^*	Fluid
1.00	0.25	173.43	595		Water
	0.50	163.72	615		1
		135.89	655		
	1.00	139.30	675	900	
		115.62	724		
		95.96	780)	
		79.65	845		
		66.11	930		
	2.00	118.62	762	785	
		118.62	855	1020	
		98.46	864	1195	
		81.72	890		
ļ		67.83	948		
		56.30	1028		
į	5.00	93.70	945	1042	
		93.70	1137	1208	
ĺ		77.77	965	1310	
		64.55	1100	1642	
		53.57	1137		
ļ	5.00	114.85	800	830	Air
		114.85	980	1040	
ļ		95.33	960	1245	
		79.12	980		
Ì		65.67	1022		
		54.51	1026	I .	

Table 2. Summary of the computed values for the neutral curve of a heated flat plate ($\Delta T = 2.78$ °C).

Figure 3. Comparison of the neutral stability points of a flat plate with 2.78°C surface overheat.

AXISYMMETRIC GEOMETRY

A 9:1 ellipsoid was selected to provide a comparison between the results of DABL and TAPS for both a heated and unheated axisymmetric body. The coordinates, potential flow velocities and surface temperature distribution of the ellipsoid are given in Appendix B while a comparison of the potential flow velocities computed by DABL and TAPS is shown in Figure 4.

First, for the unheated case, Figures 5, 6 and 7 compare the skin friction coefficient, boundary layer shape factor and displacement thickness Reynolds number as a function of arc length computed by DABL and TAPS at $R_L \cong 4.5 \times 10^6/\mathrm{ft}$. In all cases there is good agreement between DABL and TAPS with slight differences occurring near the ellipsoid nose. Figures 8 and 9 compare the computed values of the disturbance growth rates for nondimensional frequencies $\omega_f = 0.32 \times 10^{-4}$ and $\omega_f = 0.486 \times 10^{-4}$, respectively. The corresponding amplification ratios are shown in Figure 10. Both the growth rates and amplification ratios of DABL and TAPS are in close agreement. It should be noted that the higher amplification ratios calculated by DABL are consistent with the results given by vonKerczek and Groves (1978).

For the heated case, the surface temperature distribution shown in Figure 11 was used by both DABL and TAPS for the ellipsoid at $R_L \cong 4.49 \times 10^6/\mathrm{ft}$. Figures 12, 13 and 14 compare the skin friction coefficient, shape factor and displacement thickness Reynolds number computed by DABL and TAPS. The computed disturbance growth rates and amplification ratios for frequencies $\omega_f = 0.32 \times 10^{-4}$ and $\omega_f = 0.18 \times 10^{-4}$ are shown in Figures 15, 16 and 17. In all cases DABL produces larger growth rates and amplification ratios than TAPS. As stated by vonKerczek and Groves, linear stability theory is sensitive to the boundary layer shape factor and Figure 13 shows that DABL yields a slightly larger shape factor than TAPS which could account for the larger growth rates and amplification ratios. Figure 17 also compares the amplification ratios at $\omega_f = 0.22 \times 10^{-4}$ between DABL and TAPS and DABL's amplification ratios for a constant surface temperature difference. $\Delta T = 6.0C$. It can be concluded that DABL produces more conservative results as compared to TAPS.

Figure 4. Potential flow velocity distribution of a 9:1 ellipsoid.

Figure 5. Skin friction coefficient of a 9:1 ellipsoid $-R_L$ = 4.5345455 \times 10⁶/ft.

Figure 6. Boundary layer shape factor of a 9:1 ellipsoid $-R_L = 4.5345455 \times 10^6/\mathrm{ft}$

Figure 7. Displacement thickness Reynolds number of a 9:1 ellipsoid – $R_L = 4.5345455 \times 10^6/\text{ft}$.

Figure 8. Computed growth rates of a 9:1 ellipsoid for $\omega_f=0.486\times 10^{-4}-R_L=4.5345455\times 10^6/ft.$

Figure 9. Computed growth rates of a 9:1 ellipsoid for ω_f = 0.32 \times 10⁻⁴ - R_L = 4.5345455 \times 10⁶/ft.

Figure 10. Comparison of the computed amplification ratios of a 9:1 ellipsoid for $\omega_{\rm f}$ = 0.486 × 10⁻⁴ and $\omega_{\rm f}$ = 0.32 × 10⁻⁴ – R_L = 4.5345455 × 10⁶/ft.

Figure 11. Surface temperature distribution of a 9:1 ellipsoid $-R_L = 4.4901734 \times 10^6/\text{ft}$.

Figure 12. Skin friction coefficient of a heated 9:1 ellipsoid $-R_L = 4.4901734 \times 106/ft$.

Figure 13. Boundary layer shape factor of a heated 9:1 ellipsoid $-R_L = 4.4901734 \times 106/ft$.

Figure 14. Displacement thickness Reynolds number of a heated 9:1 ellipsoid – $R_L = 4.4901734 \times 10^6/\text{ft}$.

Figure 15. Computed growth rates of a heated 9:1 ellipsoid for ω_f = 0.32 \times 10⁻⁴ - R_L = 4.4901134 \times 10⁶/ft.

Figure 16. Computed growth rates of a heated 9:1 ellipsoid for $\omega_{\rm f}$ = 0.18 \times 10⁻⁴ - R_L = 4 4901734 \times 10⁶/ft.

Figure 17. Comparison of the computed amplification ratios for a heated 9:1 ellipsoid – $R_L = 4.4901734 \times 10^6/ft$.

COMPUTER PROGRAM USAGE

DEFINITION OF THE INPUT VARIABLES

VARIABLE	DESCRIPTION
IBL	If IBL = 0, calculate the boundary layer properties and perform the stability analysis
	If IBL = 1, calculate the boundary layer properties to separation or the end of the body
IBLTP	If IBLTP = 0, do not read or write boundary layer data to unit 8
•	If IBLTP = 1, write boundary layer data to unit 8
	If IBLTP = 2, read boundary layer data from Unit 8
IHEAT	If IHEAT = 0, unheated boundary layer
	If IHEAT = 1, heated boundary layer
IPOT	If IPOT = 0, calculate potential flow
	If IPOT = 1, calculate potential flow and punch cards
	If IPOT = 2, input potential flow according to Data Table 4
ISTART	If ISTART = 0, automatic start of the stability analysis
	If ISTART = 1, the user provides information – Data Table 2 – for starting/restarting the stability calculations
ITWOD	If ITWOD = 0, axisymmetric body
ı	If ITWOD = 1, 2-D body's lower surface
	If ITWOD = 2, 2-D body's upper surface
IFIT	IFIT controls the amount of boundary layer velocity and temperature profile data used in the stability analysis at each station
	If IFIT = 1, use every point – normal option
	If IFIT = 2, use every second point, etc.
IKFZ	If IKFZ = 0, stability analysis stops when the disturbances no longer experience amplification
	If IKFZ = 1, stability analysis proceeds regardless of amplification
IVISC	If IVISC = 1, water boundary layer
1	If IVISC = 2, air boundary layer
NP	Number of body offsets
	NP ≤ 160 axisymmetric body NP ≤ 101 2-D body
IBEG	If IBEG = 0, stability analysis autostart begins at station 1
'	If IBEG \neq 0, stability analysis autostart begins at station X(IBEG)

VARIABLE	DESCRIPTION
KF	The number of nondimensional frequencies for which the amplification ratio is computed
	If ISTART = 0, $3 \le KF \le 10$ If ISTART = 1, $1 \le KF \le 10$
	$\omega_{\rm f}$) _{i+1} = 0.83 $\omega_{\rm f}$) _i
BEPS	The convergence criteria in the iteration for the stagnation point in the boundary layer code
	BEPS = 0.0001 is the recommended value
BLDELS	Arc length increment to be used in the boundary layer calculation
DELS	The estimated arc length spacing at which the instability growth rates are to be computed. The program varies DELS as needed.
TOL	The accuracy to be maintained in the integration of the stability equation
	TOL = 0.001 is the recommended value
EPS	The convergence criteria for the eigenvalue integration
	EPS = 0.001 is the recommended value
X	Input abscissa
Y	Input ordinate
OMU	Nondimensional frequency ω_f for which the amplification ratios are to be computed
so	Arc length starting values for the stability calculations corresponding to OMU
RL	Reynolds number = $U_{\infty}L/\nu_{\infty}$
	Where U_{∞} is the free stream velocity (ft/sec); ν_{∞} is the kinematic viscosity (ft ² /sec); L is a reference length
ANORM	A normalization factor; the X, Y input offsets are divided by ANORM
R1	Displacement thickness Reynolds number at the last completed station; it is input only when restarting the stability calculations $-$ ISTART = 1
	If $ISTART = 0$; $R1 = 0$
U1	Potential flow surface velocity at the last completed station; it is input only when restarting the stability calculations $-$ ISTART = 1
	If $ISTART = 0$, $U1 = 0$
JMAX	The number of points across the boundary layer at which the velocity profiles are computed
	$JMAX \leqslant 201$
	JMAX = 201 is the recommended value
ETA	The scaled edge of the boundary layer
	ETA = 6.0 is the normal input
ALFRU	The starting estimate or the value at the last completed station SO for the wave number (α_r^*) ; it cannot be zero and is usually less than 0.5 for a starting estimate

VARIABLE	DESCRIPTION
ALFIU	The starting estimate or the value at the last completed station SO for the disturbance growth rate (α_i^*) ; a value of zero will usually suffice as a starting estimate
AMP	The value of the amplification ratio at the last completed station SO or zero for a starting estimate
ITT	A control for the type of temperature distribution
	If ITT = 0, no heating
	If ITT = 1, a step function temperature distribution
	If ITT = 2, a linear temperature distribution
	If ITT = 3, temperature is given at each input x offset
ITEMP1	The station number corresponding to the offset at which the surface temperature variation is to begin
	If $ITT = 3$, $ITEMP1 = 0$
ITEMP 2	The station number corresponding to the offset at which the surface temperature variation is to end
	If $ITT = 3$, $ITEMP2 = 0$
TEMPI	The free stream temperature in degrees Celsius
DTEMP	The difference in temperature ΔT in Celsius between the free stream temperature and the maximum body temperature
	If $ITT = 3$, $DTEMP = 0$
T	The body temperature corresponding to the x input offsets
UB	The potential flow surface velocities
XC	The scaled abscissa corresponding to the maximum 2-D body diameter
YC	The scaled ordinate corresponding to the midpoint of the maximum diameter
ANGO	The angle of attack in radians

METHOD OF INPUTTING DATA TABLES

The input data tables of body coordinates, temperature distribution and potential flow are input as shown below.

Body Coordinates

Card	F Format					
Columns	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 ~ 60
	x_1	x ₂	x ₃			
	•••	• • • •		X _{NP}		
	Y ₁	Y ₂	Y ₃			• • •
	• • •	• • •	• • • •	Y _{NP}		

Temperature Distribution

Card	F Format					
Columns	1-10	11 - 20	21 - 30	31 – 40	41 - 50	51 - 60
	T ₁	T ₂	Т3	• • •	• • • •	
	•••		•••	T _{NP}		

Potential Flow Surface Velocities

Card	F Format					
Columns	1 – 10	11 - 20	21 - 30	31 – 40	41 - 50	51 - 60
	UB ₁	UB ₂	UB ₃			• • •
	• • •		• • •	UB _{NP-1}		

PROGRAM INPUT SCHEME

Label Card

Card Columns	Format	
1 - 60	A	TITLE

Flag Card

Card Columns	Format	Variable
1	ī	IBL
3	Ţ	IBLTP
5	1	IHEAT
7	1	IPOT
9	1	ISTART
11	1	ITWOD
13	1	IFIT
15	1	IKFZ
17	I	IVISC
19 - 21	I	NP
23 - 25	I	IBEG
27 - 29	I	KF

Constant Card 1

Card Columns	Format	Variable
1 - 20	F	RL
21 - 30	F	ANORM
31 - 40	F	R1
41 - 50	F	Ul

Constant Card 2

Card Columns	Format	Variable
1 - 3	I	JMAX
11 - 20	F	ETA
21 - 30	F	BEPS
31 - 40	F	BLDELS
41 - 50	F	DELS
51 - 60	F	TOL
61 - 70	F	EPS

Data Table 1: Body Coordinates Y = f(x)

The maximum number of entries this table may contain is:

- a) NP = 160 for an axisymmetric body
- b) NP = 101 for a two-dimensional body

Figure 18 illustrates the method used to input the coordinates for an axisymmetric body while Figure 19 should be used for two-dimensional bodies.

Figure 18. Input direction for the axisymmetric body coordinates.

Figure 19. Input direction for the two-dimensional body coordinates.

Data Table 2: Start/Restart Information for the Stability Calculations

If ISTART = 0, do not input this table. The number of entries is $1 \le KF \le 10$.

Card Columns	Format	Variable
1 - 10	E	OMU(1)*
11 - 20	F	SO(I)
21 - 30	F	ALFRU(I)
31 – 40	F	ALFIU(I)
41 - 50	F	AMP (I)

*Note: Repeat this card for each value of OMU (I = 1, KF).

Constant Card 3

If IHEAT = 0, do not input this card.

Card Columns	Format	Variable
1	I	ITT
3 - 5	1	ITEMPI
7 – 9	I	ITEMP2
11 - 20	F	TEMPI
21 - 30	F	DTEMP

Data Table 3: Body Surface Temperature Distribution T = f(x)

If IHEAT = 0 or ITT \neq 3, do not input this table.

The number of entries in this table is NP.

Each input temperature corresponds to each input x offset - Data Table 1.

For two-dimensional bodies, the surface temperature distribution follows the input scheme of Figure 19.

Data Table 4: Potential Flow Surface Velocities UB = f(x)

The number of entries in this table is NP-1.

The potential flow velocities are at the midpoints of the input x offsets – Data Table 1. For two-dimensional bodies, the potential flow velocities follow the input scheme of Figure 19.

Constant Card 4

If IPOT = 2 and ITWOD = 0, do not input this card.

Card Columns	Format	Variable
1 - 10	F	XC
11 - 20	F	YC
21 - 30	F	ANGO

COMPUTER PRINTOUT

INCLUDED ITEMS

All input quantities are printed out to allow for rapid checking for errors. The following section contains the definitions of those output variables not previously defined. Below is a list of the items included in the program output.

- 1. Control parameters
- 2. Input body coordinates
- 3. Start/Restart variables for the stability calculations (ISTART = 1)
- 4. Temperature control variables
- 5. Input temperature distribution (IHEAT = 1, ITT = 3)
- 6. Normalized body coordinates and temperature distribution (IHEAT = 1)
- 7. Boundary layer parameters
- 8. Stability autostart variables (ISTART = 0)
- 9. Stability calculations (IBL = 0)

PRINTOUT DEFINITIONS

Boundary Layer Parameters

VARIABLE	DEFINITION
S	The computed arc length values at which the boundary layer calculations are made
UEF	Potential flow surface velocity
DUE	Derivatives of the potential flow surface velocity with respect to arc length
RADIUS	Body radius

VARIABLE	DEFINITION
BETA	The Hartree parameter
GAMMA	A boundary layer scale factor
DELTN	Nondimensional boundary layer thickness times $\sqrt{R_L}$
DI	Nondimensional displacement thickness times $\sqrt{R_L}$
Н	The boundary layer shape factor
CT	The wall skin friction coefficient times $\sqrt{R_L}$
CQ	Nondimensional local heat transfer coefficient divided by $\sqrt{R_L}$
VISCR	The ratio of fluid viscosity at the wall to that of the ambient fluid

Note: To obtain the actual value of the nondimensional boundary layer thickness, displacement thickness, skin friction coefficient and heat transfer coefficient, divide DELTN, DI and CT by $\sqrt{R_L}$ and multiply CQ by $\sqrt{R_L}$.

Stability Automatic Start

VARIABLE	DEFINITION
S	The arc length
RC	The critical displacement thickness Reynolds number
RD	The displacement thickness Reynolds number
ALPHAC	The critical value α_c of α
OMEGAC	The critical frequency associated with the critical displacement thickness Reynolds number

Stability Calculations

VARIABLE	DEFINITIONS
S	The arc length
U	The potential flow surface velocity
Н	The boundary shape factor
DI	The nondimensional displacement thickness times $\sqrt{R_L}$
CT	The wall skin friction coefficient times $\sqrt{R_L}$
R	The displacement thickness Reynolds number
XI	A boundary layer scale factor
RADIUS	The body radius
OMU	The nondimensional frequency $-\omega_{\mathbf{f}}$
ALFRU	The real part of the complex wave number $-\alpha^*$

VARIABLE	DEFINITIONS
ALFIU	The relative growth rate of the disturbance – imaginary part of α^*
AMP	The amplification ratio A/A _O
ITER	The number of times the eigenvalue problem is solved
NSTEP	The number of integration steps of the Orr-Sommerfeld integration

Note: The DABL code solves the adjoint Orr-Sommerfeld problem where the complex conjugate of α is the eigenvalue. Therefore the output yields

ALFRIU = Im
$$(\alpha^*)$$
 < 0 Damped
= 0 Neutral
> 0 Amplified Disturbance

SUMMARY

Several examples illustrating the use of DABL for heated and unheated, two-dimensional and axisymmetric bodies have been presented. For both a heated and unheated flat plate, DABL's automatic starting mode calculated nondimensional frequencies which resulted in neutral stability points falling within the previously defined neutral curves. In general, DABL produces unconservative neutral point estimates for the unheated plate and conservative estimates for the heated plate. However, for the unheated plate, when the Reynolds number and disturbance frequencies are reduced, the results fall closer to the neutral curve. Also, the amplification ratios calculated by DABL, for the unheated plate, compare favorably with published results.

The boundary layer properties, growth rates and amplification ratios computed by DABL for an unheated 9:1 ellipsoid compare favorably with the results of TAPS. However, for the heated 9:1 ellipsoid, DABL consistently calculated larger growth rates and amplification ratios than TAPS even though there is close agreement in the calculated boundary layer properties. From these results it can be concluded that DABL produces conservative results for heated axisymmetric bodies.

The DABL computer code can be considered an effective tool in performing parametric design studies for both heated and unheated bodies. For unheated bodies, DABL can be used for predicting the location of boundary layer transition by the e^N method. With its straight forward input scheme, DABL is easy to use and requires a minimum of user interaction.

REFERENCES

- 1. C. Basset, Private communication TAPS computations.
- 2. J. P. Giesing, Extension of the Douglas Neuman Program to Problems of Lifting, Infinite Cascades, Douglas Aircraft Report LB31653 (1964).
- 3. R. Jordinson, The Flat Plate Boundary Layer. Part 1. Numerical Integration of the Orr-Sommerfeld Equation, Journal of Fluid Mechanics, Vol. 43, Part 4, pp. 801 811 (1970).
- 4. J. A. Ross, R. H. Barnes, J. G. Burns and M. A. S. Ross, The Flat Plate Boundary Layer. Part 3. Comparison of Theory with Experiment, Journal of Fluid Mechanics, Vol. 43, Part 4, pp. 819-832 (1970).
- 5. G. B. Schubauer and H. K. Skramstad, Laminar Boundary Layer Oscillations and Transition on a Flat Plate, NACA Report 909 (1948).
- 6. A. J. Strazisar, Experimental Study of the Stability of Heated Laminar Boundary Layers in Water, PhD thesis, Case Western Reserve University (1976).
- 7. C. vonKerczek and N. C. Groves, Disturbance Amplification in Boundary Layers, DTNSRDC Report 78/004 (1978).

APPENDIX A

This appendix contains an abbreviated computer printout of the automatic start — stability analysis of a heated flat plate.

DABL - 9:1 ELLIPSOID - HEATED

• 00,000	• 00,000
.79813-001	.19147-001
•41647-001	.27167-001
. A 2500-001	-33n29-001
·#3333-001	.37m57-UOI
+19417+00g	42008-001
+12500+000	45447-001
·14583+000	.98044-001
·16647+900	-51712-001
•1875g+00g	-54421-001
•20833 •00 0	.57107-001
• 72917+00ŋ	-59402-001
•2500n+00n	-61523-001
• 27083+00g	.63489-001
+29147+000	.65314-001
+31250+990	. 47007-001
•33333+00p	.68585-001
+35417+00g	• 70049-001
• 37500+000	•71497 - 001
•39543+000	•72466-UOI
•41667+900	•73A32-001
•43750+000	190-8051.
•45833+09n	.75m9m-00l
•47917+COn	.76006-001
•54000+000	.77434-001
+52093+000	.79384-091
•54147+70n	.77nk1-UO1
•	•
•	•
•	•

×

THIS PAGE IS BEST QUALITY PRACTICABLE

```
RESTART OF THE STABILITY CALCULATIONS
```

71= 1980.000 Ul= 1.020

1= 1 040(1)= .321mgn=004 50= .50mgg ALFRU(1)= .19211 ALFTU= .007mg AMP(1)= 1.871m 1= 2 040(1)= .270mgg=004 50= .50mgg ALFRU(1)= .20000 ALFTU= .00000 AMP(1)= .00000

HONY ROUNDARY LAYER + HEATED

ITT# 3 TEMPI# 30+100ng DTEMP# 7+37000 TTEMPI# 1 TTEMP2# 84

THPUT TEMPERATURE DISTRIBUTION

TEMP .30040+002 •00000 •20833-001 •41647-001 .30040+002 .30500+002 .31nnn+002 .62500-001 .8333-001 .10417-000 .314ng+002 . 11740+002 \$1990+002 \$00+0005 ·12500+000 .14583+000 -16447+000 -18750+000 .32400+002 .32700+002 .33160+00Z .33250+002 .20813+000 .77917+00n .75000+000 .33500+002 .770A3+000 .33700+002 .770*3*000 .29167+900 .31250+000 .33333+090 .35417+090 ,33850+002 ,34070+002 ,34250+002 .34330+002 .34450+002 .14400+002 .37500+000 .37583+000 .41667+000 .43750+000 .34700+002 .34439.002 .34700.002 .45833+000 .47917+000 .35n50+002

COTENTIAL FLOW SOLUTION AND TEMPERATURE DISTRIBUTION $x\!=\!x_{\text{A}}\!+\!\alpha_{\text{FM}}$

4	Y	5	U	т
• Ռոդըո	• 00000			.30040+002
.20833-ng1	•14344-ÚQ1	.14216-001	.79461+Onp	.30040+002
.41667-001	•27167-001	•39559*001	.97418+OCC	.30270+002
.62500~001	.33027-001	+61506-001	.9890Z+Nnn	.30750+002
.83333-no1	.37857-001	.83019-001	•99927+Ong	•31200+002
.10417+000	•4200#-001	•10433+000	•10p55+nn1	.31570+002
.12500+000	• 45667-001	•12553+000	•10096+00i	.31800+002
.145#3+000	.40944-001	-14665+000	.10124+001	.31930+002
.16667+000	•51912-001	.16772*000	.10145+Oni	.32200+002
•18750÷000	•54621-gg1	• AA75+000	.10161+001	.32550+002
		.20974+000	•10173+0nj	
.2naj3+000	•57109-001	+23071+000	10184+001	.32930+002
.22917+000	.59402-001	· 25166+0n0	. 10192+00i	•33205+002
.25000+000	.41523-001	.27259+000	.10199+On1	.33375+002
.27083+000	•63489- <u>0</u> 01	-29351+000	.10206+0n1	.33600+002
.791674000	.65314-001	•31442+0n0	.10211+001	+33775+002
.31250+000	100 7- 001	.33532+000	.10215+nnj	.33960+002
. 11333+000	•68585 - 001	.35621+000	•10219+ngj	.34160+002
.35417+009	•7004A-001	.37709+000	.10222+0n1	.34290+002
.17590+000	.71407-001	.39796+000	•10225+0 <u>01</u>	.34390+002
.39583+000	•72666-00I	•41883+000	•10228+00i	.34525+002
.41667+800	.73R37-nn1	.43970+000	•10230+0n1	.34650+002
.43750+000	•74908-ng1	•45776.000	•10732+nn1	.34745+002
		• AMING AM - ONLY	• 107.24 • 111.]	

FROM COFY FUNCTIONED TO BDC

.45833+000	.75898 - 001		10.24	.34865+002
.47917+000	•74804=nn1	·48141+000	.10234+001	.34975+002
.50000+000	•77634- <u>00</u> 1	•50226+000	.10235+0n1	.35100+007
.52083+000	·78385-001	•52311+000	•10237+0n1	.35200+002
.54167+DCO	.79061-001	•54395+000	.10238+0ni	.35300+002
.56250+00 0	.79664-ngj	·56480+000	•10239+onj	.35400+002
.5#333+ng0	. 80196-001	•58564+0 ₀₀	.10239+oni	.35475+002
.40417+000	• 80458-nn I	0,00088000	.10240+0gi	+35575+002
.67500+000	•81051-no1	.62732+000	.10241+001	•35700*0p2
•64583+000	•81376-no1	•64815+000	.10241+001	.35785+002
.64467+000	•31635=no1	• 66899+000	.10291+001	
		•689A2+0g0	.10241+on1	.35860+002
.68750+000	.91827-001	•71066+000	.10241+001	.35925+002
.70833+000	.81954-001	.73149+000	.10241+0n1	• 36000 • 002
.72917+000	•82015-nat	.75232+000	.10241+ani	*36085+002
.75000+000	. #2010-ng1	.77316+000	.10241+nn1	.36160+002
•77083+000	* V 1 641 - ÚU 1	•79399+000	.10240+0nj	.36235+002
.79167+000	.81 A05-001	·#14#2+000	•10239+0ni	.36310+002
.91250+000	• 81 V O 4 = Ú O I	•83566+000	•10239+0ni	.36385+002
.83333+noo	.81337-001	·85647+000	•10239+0ni	.36450+002
.85417+000	•81002-n01	•87733+0n0	.10236+0ni	.36490+002
.87500+000	• #0600-001	•89817+000	•10235+0ni	.36550+002
•895#3+000	100-62108*	• 91701 • 000	•10234+001	.36650+002
.91667+000	.79587-001			.36725+002
•73750+000	.78775-001	•93985+000	.10232+0r1	.36775+002
.95833+000	.78289-001	• 96049+000	.10230+nnj	.36850+002
.77917+000	.77527-001	•98154+000	•10227+0nj	.36930+002
.10000+001	•76687~nn	+10024+001	•10224+0n1	.369A0+002
.10208+001	•75770-001	+10232+0n1	.10721+0n1	.37045+002
.19417+901	•74769-nn1	.10441+001	.1071#+0c;	.37165+007

10425+001	•736A]-ppj	10650+001	•10213+001	
+10833+001	•72503-001	·10#58*001	+t0208+pn1	+37225+002
•11n42+001	•71231-00j	-11067+001	•10207+0nj	•37300+002
•11250+001	•69A59-001	+11276+00i	+10196+001	.37410+002
•1145A+001		•11484+001	·10188+001	.37470+002
•11667+gg1	·68381-001	+11693+001	•10170+pgj	•37470+002
	*46790-001	•11902+001	•10167+00i	•37470+002
-11875+001	•65077-nu1	•12111+961	•10153+ppj	.37470+002
.12083+001	.63234-001	+12321+001	•	+37470+002
•12292+001	.41249-001		+10137+nnj	.37470+002
•12500+pp)	•59106-0n1	+1253g+0g1	•10119+pnj	•37470+002
•1270A+ppj	.5478#+OOI	•12740+901	+10105+onj	+37470+002
.12917+nn1	.54272-gal	•12749+001	+10170+00‡	•37470+002
.12959+001	.53375-001	-13076+001	•98470+gng	
-13126+ng1	•51017-ng1	+13182+001	•97726+0ng	+37470+002
.13297+001	• 48458-001	+13350+001	+97141+000	.37470*002
.13459+091	•46300-nn1	·13519+001	•95796+nnn	.37470+002
13626+001	•43942-001	-13487+001	.93382+nnn	•37470+00 <i>2</i>
.13793+001	•41467-pg;	-13455+001	+20411+0uú	•37470+002
.14167+001	•	100+65111.	•92730+000	•37470+0 0 2
.14583+091	•41667-ng)	·14522+001	+97101+000	•37470+002
•15000+0a1	•41667-001	•14938+001	•98399+00 0	+37470+002
•	•41667-nnj	15355+001	•99044+000	.37470+002
•15417+001	•41667-001	•15772+001	-	.37470+002
.15833+001	·41667-001	100+e8141+	•99478+0 ₀	.37470+002
.14250+001	•41667-001		•99797+nnn	+37470+002
.14667+001	•41667-nnj	•16405+001	.10007+0ni	•37470+0n2
·17083+001	•41467-001	•17022+001	·10035+001	•37470+0n2
.17500+051	.41667+ng;	•1743R+70:	•10047+001	•37470+0n2
.17917+0g1	·41567-001	·17855+001	*10110+nnj	
		+1R272+001	·10176+001	•37470+007

THIS PAGE IS BASE QUALITY PRACTICABLE FROM COPY FORMAL MIND AND COC

V SCR	.1001+001 .1001+001 .1001+001 .1000+001 .9943+000 .9945+000 .9940+000 .9940+000 .9917+000 .9917+000	9114-000 9104-000 9103-000 9092-000 9082-000 9082-000 9082-000 9082-000 9082-000 9085-000 9085-000 9085-000 9085-000 9085-000
8	7173*001 .7525-002 1135-002 .845.602 1235-002 .5987-002 1292-002 .5987-003 7505-001 .1566-001 4141-001 .2172-001 4141-001 .2172-001 4188-001 .4557-001 4868-001 .6538-001 4548-001 .6538-001	1446.001 - 1169.000 1416.001 - 1165.000 1416.001 - 1165.000 1366.001 - 1169.000 1376.001 - 1169.000 1376.001 - 1189.000 1386.001 - 1189.000 1386.001 - 1189.000 1386.001 - 1189.000 1386.001 - 1189.000 1386.001 - 1189.000 1386.001 - 1139.000 1386.001 - 1139.000 1386.001 - 1139.000 1288.001 - 1139.000 1288.001 - 1139.000
5	71735001 .7525-002 1214002 .645,-002 1292002 .5521-002 7505-001 .1566-001 7505-001 .2172-001 4141-001 .2172-001 4186-001 .5473-001 4658-001 .5473-001 4658-001 .5473-001 4659-001 .5473-001 4549-001 .5473-001	1446.001 - 11 1416.001 - 11 1405.001 - 11 1405.001 - 11 1365.001 - 11 1365.001 - 11 1365.001 - 11 1366.001 - 11 1366.001 - 11 1317.001 - 11 1310.001 - 11 1267.001 - 11
2	.2199-001 .2305-001 .2382-001 .2486-001 .2569-001 .2709-001 .2679-001 .2579-001 .2579-001	25488000 25488000 25488000 2547000 2547700 2547700 2547700 2547700 2547700 2547700 2547700 2547700 2547700 2547700
.37470+002 .37470+002 .37470+002 .37470+002	. 6851 . 7443 . 8334 . 8334 . 8334 . 000 . 000 . 1266 . 1266 . 1266 . 1266 . 1266 . 1266 . 130 . 130	1173.00 1173.00 1173.00 1173.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00 1172.00
.37470+002 .37470+002 .37470+002 .37470+002	. 28 28 4 00 0 1	36600000000000000000000000000000000000
.10489-001 .10489-001 .10747-001	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1525-001 1501-4-001 1501-4-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001 1462-001
6+001 5+001 7+001 6+001 5	.3565-002 .9660+000 .654-002 .9583+000 .1327-001 .270-000 .1349-001 .9875-001 .230-001 .9875-001 .230-001 .1246.000 .2349-001 .1053+000 .2529-001 .1053+000 .270-001 .1030+000 .2970-001 .1030+000	5255-002 5156-002 5254-002 52717-002 52717-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002 4851-002
.41667-701 .41667-701 .19105-001 .41667-701 .41667-701 .41667-701 .41667-701 .41667-701 .41667-701 .41667-701 .41667-701	.3565-002 .6754-002 .1018-001 .1520-001 .1848-001 .2730-001 .2529-001 .2549-001 .2756-001 .2756-001	7246-001 7313-001 7313-001 7359-001 7389-001 7319-001 7518-001 7518-001 7518-001 7518-001 7518-001 7518-001 7518-001 7518-001 7518-001 7577-001 7677-001
.41667-901 .41667-901 .41667-901 .41667-901	00 .6416.002 00 .3429.002 00 .3429.003 00 .3429.003 01 .5589.001 01 .5589.001 00 .4906.003 00 .4916.003 00 .2004.001 00 .2004.003	1184-001 1184-001 1185-001 1185-001 1185-001 1185-001 1185-001 1185-001 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002 1185-002
ى بى ئى	. 1699-000 . 6416-002 . 6416-000 . 1455-002 . 9527-000 . 1745-002 . 9504-000 . 1745-002 . 1027-021 . 5589-001 . 1014-001 1934-001 . 9751-000 4916-000 . 9551-000 4916-000 . 9551-000 4916-000 . 9551-000 2195-001 . 9542-000 . 2004-001 . 9949-000 . 1125-001	1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001 1023-001
.143334001 .14750+001 .19763+001 .20000+091 \$TART BAUMAATY	. 1690-001 . 1690-001 . 2690-001 . 3590-001 . 4690-001 . 4690-001 . 4690-001 . 4690-001	#109-900 #215-9000 #250-900 #350-900 #350-900 #450-900 #450-900 #450-900 #450-900 #450-900 #450-900 #450-900 #450-900 #450-900 #450-900 #450-900

| 10235-001 Hs .25464+001 D1= -32100-004 .19722-000 -32100-004 .19722-000 -32100-004 .19724+000 -32100-004 .19724+000 -32100-004 .19724+000 -32100-004 .19724+000 -32100-004 .19724+000 -32100-004 .19724+000 -32100-004 .19724-000 -32100-004 .19734-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19731-002 -32100-004 .19746-002 -32100-004 .19731-002 -32100-004 .1973 | .11655+nn1 Cf14043+nn1 R18818+nd4 XIF .17269-nd2 RADIUS77130-no1 | ALFIU AMP 17ER NSTFP .70543-002 .18881-001 3 62 .12010-002 .14665-002 8 50 | . 655-nn CT# , 14026+001 R# , 1884 +004 Xf# , 17330-002 PADIUS# , 77170-001 ALFIU AHP ITER NSTEP ,70777-02 , 19054+001 3 67 ,12490-007 , 44564-002 3 50 | .!!655+0,0 CT# . 3992+0,0 R# . 8887+0,0 XT# . 7452-0,0 ANP 17ER NSTEP ATT ANP 17ER NSTEP ATT |--|--|--|--|--|
| | 1 11= .25464+001 | • • | 11x . 2546' |
H= ,75463 |

APPENDIX B

This appendix contains an abbreviated computer printout of the restart mode for the stability analysis of the heated 9:1 ellipsoid.

DABL - FLAT PLATE UPPER SURFACE - HEATED

THEUT MODY COORDINATES

•00000 .00noo . 20810-001 -.65100-003 -.13020-002 -.17530-002 ·41670-001 ·62500-001 .03330-001 .10417+000 -.26n40-002 -.12550-002 +12500+000 -.39100-002 ·14593+000 -.45570-002 •14667+00n •14750+000 --52080-002 -.58400-002 -20833+000 -.65100-002 .22717+000 -.71610-002 -25000+000 -27040+000 -.78125-002 -.94440-002 -.91150-002 -29167-000 -31250+000 -. 97440-002 •33333+000 -.10417-001 -35000+00n --10417-001 •40000+000 •50000+000 --10417-001 ·15090+000 -.19417-001 .100+001 -.19417-001 -.10417-001 +15000+901 +20000+001 -- 10417-001 +25700+001 +30700+701 -.10417-001 -- 10417-001 · 35000+001

THIS PAGE IS BARE QUELLER FARCE CONCLE

```
-.10417-001
-.10417-001
.45000+001
+50000+00j
-55000+001
                   -.10417-001
+60000+001
                  -.10417-001
+45000+001
                  -.10417-001
                  -- 10417-001
1000-001
•/5000+001
                  -.10417-001
*80000+001
                   -.10417-001
.A5000.001
                  -.10417-001
• 90000+001
                  -.10417-001
+95000+001
                  -.10417-001
+10000+002
                  -.10417-001
-10500+002
                   -.10417-001
+11000+002
                  -.10417-001
+11500+002
+11750+002
                  -.10417-001
-.10417-001
-11850+002
                   -.10417-001
+11900+002
                  --10417-001
                  --10417-001
+11950+002
.12000+002
                   .00000
.11950+002
                    .10417-001
+11900+002
                    .10417-001
                   .10417-001
+11850+002
-11750+002
+11500+002
+11000+002
                    .10417-001
                    .10417-001
19500+002
                    .10417-001
                    .10417-001
•10000+002
                    .10417-001
.75000+001
.90000+001
                    .10417-001
.45000+001
                    .10417-001
*80000+001
                    .10417-001
                    .10417-001
.75000+00t
                    -10417-CO1
.70000+001
                    .10417-001
·65000+001
                   .10417-001
.10417-001
.10417-001
+40000+001
•55000+001
•50000+001
.45000.001
                    .10417-001
.400000+001
                    .10417-001
                   .10417-001
.10417-001
•35000+001
+30000+001
.25000+001
                    .10417-001
                   .10417-001
.10417-001
+20000+001
.15000+001
                    .10417-001
.19990-001
•750UD+00n
                   .10417-001
•5n000+000
                    .10417-001
•40000+000
                   .10417-001
.10417-001
•35000+00n
.33333-700
                    .10417-001
+31250+000
                    .77460-007
                   .71150-002
.81440-002
.29147+00n
·27080+000
.75000+000
                    .78175-002
·22917+000
                    .71A10-U02
```

.40000+201

-.10417-001

MODY BOUNDARY LAYER - HEATED

117= 1 TEMP1= 23-89000 DTCHP= 2-78000 1TFMP1= 1 1TEMP2= 95

COTENTIAL FLOW SOLUTION AND TEMPERATURE DISTRIBUTION V=Y/ANORM, Y=Y/ANORM

¥	Y	5	U	1
•00000	•00000			.26670+002
.17358-992	•54250-ne4	•86834°003	.47480+0n0	.26670+002
.34725=ng2	•10850-003	• 26054-002	.97240+0n0	
		+43425-002	099999900	.26670*002
.52083-002	•14275-no3	·60792-002	.98395+000	.26670+002
. 67447-002	·21700-003	•78162-002	•98754+00a	.26670+002
\$00-60PAR.	+27125-g03		·	.26670+002
.10417-001	.32583-003	• 95533-002	.99071+000	.26670+002
.12157-001	.37975-003	• 290-00	.99337+0nm	.26670*002
		-13027-001	•99566+000	
1 DC-9ARF 1.	.43400-003	-14764-001	.79A05+Ang	.26670+002
.15425-001	.48833-003	•16501+001	.10n01+nnj	.26670+002
.17361-001	•\$4250=n03			.26670+002
. 13038-001	.59675-003	· 18238~001	10076+001	.26670+002
.20833-001	.45104-ng3	•19775-001	.1004#+001	. 26670+002
.22567-001	.70537-003	-21711-001	•10071+001	
trian ngi	***************************************	+2344A+001	•10092+nn1	424670+0g2

THE PARTY PROPERTY OF SHEET PARTY TO SEE A SECOND OF SHEET SEC

• 24306-001	•75958-003			• 26670+00 <i>2</i>
. 26942-001	.81383-003	· 25 (85 - 00)	•10g87+gg1	• 26670+002
.77777-001	.8680R-003	+26723-001	• 44030+000	•26670+002
·29167-001	.86808-003	· 28486-001	.98659+000	•26670+002
+33333-001	.8480A-003	•31764-001	+10057+nnj	• 26670 • 00 <i>2</i>
- 11667-001	•A4808-DD3	• 37514-001	.10092+0ni	
• 42500-001	.84809-003	•52097-001	+10154+ani	• 26670+002
.93333-001	.86808-003	•72730-001	•1003A+001	•26670 • 0ŋ2
·12500+000	.84808-003	0,00+81401	.10n55+ani	•26670+0n2
-14667+000	. 86808-003	14585*000	•10027+00i	•26670+002
.20833+000	.86808-003	·18751+000	•10g17+gni	• 26670+002
•25000+000	•86808 - 003	·22918+000	.10014+oni	•26670+0gZ
+29167+000	•86808~no3	•27085+000	•10013+00i	•26670+002
•33333+000	•86808~pp3	+31751+000	•10012+00i	+26470+002
+37500+000	•86808-nn3	·35418+000	•10g11+nn1	.26670+002
•41667+000	•86808~no3	•39595+000	·10011+001	+26670+002
.45833+000	•84808~003	+43751+000	+10011+0n1	·26670+0 ₀ 2
•50000+000	·86908~003	47718+707	.10011+001	•26670+002
+54167+000	•86A08~no3	+52085+000	.10011+001	.26670+002
•5#333+000	•84808~003	•56251+000	.10011+001	.26670+002
+67500+000	• F 6 F 0 8 - n 0 3	+60418+000	•10012+00j	• 26670 • 002
• 66667 • 000	• A 4 8 0 8 ~ 0 0 3	+64585+000	+10012+0nj	.26670+002
•70A33+000		+68751+000	•10013+nni	.26670+002
•75000+000	•A6A0A+003	•72916•000	•10015+nn1	.26670+002
•79167+900	• A 6 A 0 A ~ (10)	•77085+000	•10g14•nni	· 26670+002
•#3333+0gg	• MAMOS-003	+91251*900	•10p19+gg1	.26670+002
•#7500+000	+P6408-003	+85414+730	•10g24+gnj	+26670+00Z
• *1447+000	•86808-003	• 99595 • 077	•10g37+gg1	•26670+002
	• P 6 R 0 R - n n 3	+93751+Ngg	•10090+nn1	·26670+0n2
•75833+990	**640.4~603			.26470+002

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COFY FOREISHED TO DDC

	700.07007	24670+092	.24670+002	.26670+002	.26670+002
+10142+0n1	10078-001.		10036401.	10791+001	.11369+001
.76476.000	.98135+000		. 48460+030	040+91866.	. 99797+80
	. 44404-003	. 86804-003	. 46808-403	.96808-003	00000.
	006+11611.	.94750+303	000-14100.	000+643+60.	100+00011

START BOUNDARY LAYFRISTABILITY ANALYSIS

VISCR	9421-000 9421-000 9421-000 9421-000 9421-000 9421-000 9421-000 9421-000 9421-000 9421-000 9421-000 9421-000
•	6512+0052819+000 8174+0014285+000 7764+0013746+000 6662+0013569+000 6662+0013569+000 5562+0012684+000 5563+0012682+000 5563+0012682+000 5560+0012682+000 672+0012682+000 5560+0012682+000 672+0012682+000 672+0012682+000 672+0012682+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+0012681+000 672+000 672+000 672
t	
I	25 9 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10	3529001 1135001 3529001 1135001 3605001 1139001 3612001 1149001 3612001 1149001 3612001 1140001 3612001 1140001 3607001 1140001 3607001 1120001 3431001 10230001 3479001 1023001 3479001 1023001 3479001 1023001 3479001 1023001 3479001 1023001
DELTN	
GAMAR	57 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DETA	28.72 - 008 28.47 - 002 15.72 - 001 27.67 - 001 28.67 - 001 28.67 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 28.68 - 001 38.68
RADIUS	
DOF	4547 000 130 400 130 400 130 400 130 400 130 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400 141 400
UFF	ADDRIVED TO THE STREET OF THE
v	. ADDA - DO

STABILITY AUTO START SEARCH FOR RC

BLU.	159.790	225,907	280.620	373,145	361.609	394,175	125,753	455,124	479.594	267.505
₽D.	#0#	80°	#0#	RD.	#0#	F.).	R0.	80.		80 m
891.162	401.878	744.042	5A6.080	673.22R	686.923	707.456	764.325	747.713	443.556	24315.432
₽Ç.	RC.	₽Ç.	RC.	RC:	RC.	#C=	RC.	#C*	₽C.	RC.
100900	.00800	60610.	.01290	00110	00910-	00810.	00000	.02200	. 92400	.02400
S	2.	\$	2 *	8		\$.	5.	.	•	

THIS PAGE IS BEST QUALITY PRACTICABLE

	VISCR	94421 94
	9	1735.000 1667.000 1577.000 1535.000 1485.000 1481.000 1491.000 1401.000 1378.000 1378.000 1378.000 1378.000 1378.000
	5	3990.001 - 1735.000 3963.001 - 1667.000 3744001 - 1667.000 3571.001 - 1557.000 3356.001 - 1535.000 3356.001 - 1535.000 3351.001 - 144.000 3351.001 - 144.000 3351.001 - 144.000 3351.001 - 147.000 3272.001 - 1353.000 3288.001 - 1374.000 2786.001 - 1274.000 2786.001 - 1274.000 2786.001 - 1274.000
	r	2476001 2476001 2476001 2466001 2510001 2512001 2512001 2465001 2465001 2465001 2465001 2469001 2469001 2469001 2469001 2469001
·	10	106 9 001 106 9 001 107 1 001 108 1 001 109 1 001 109 2 001 109 2 001 107 2 001 107 2 001 107 3 001 107 9 001 107 9 001 107 9 001 107 9 001 107 9 001 107 9 001 107 9 001 107 1 001 107 1 001
	DELTN	3493.00 3492.00 3502.00 3513.00 3513.00 3512.00 3512.00 3500.00 3492.00 349
	GAMAA	34865-001 3142-001 3142-001 3142-001 3274-001 3284-001 2286-001 2286-001 2284-001 2284-001 2284-001 2284-001 2284-001 2284-001
500 - 00 - 00 - 00 - 00 - 00 - 00 - 00	BETA	9235-001 9235-001 2465-001 9755-001 9755-001 9739-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001 1160-001
186-1 RD 8 RD 8 RD 8 RD 8 RD 8 RD 8 RD 8 RD	RADIUS	10000000000000000000000000000000000000
3709.964 3378.383 0954.585 1761.385 1077.185 1172.981 1172.982 784.674	PUr	1122-001 1122-001 1122-001 2631-001 2631-001 2016-001 2016-001 7971-000
	UFF	1014-001 1011-001 1014-001 1016-001 1016-001 1017-001 1017-001 1004-001 1004-001 1001-001 1001-001 1000-001
000000000000000000000000000000000000000	ď	\$5000-001 \$5000-001 \$5000-001 \$5000-001 \$5000-001 \$5000-001 \$500-001 \$500-001 \$500-001 \$700-001 \$700-001 \$700-001 \$700-001

STANILITY AUTO START SFARCH FOR RC

454	H72	931	254	379	126	128	.77677
675,459	689	705	724	746.	768	787	ALPHAC.
90	*0	# C	ë.	. 0	R0.	RD.	787-128
247.695	1138.453	1212.506	1167.452	162.586	846.312	773.979	·
							773.979 RD#
٥		E C	Ů,	Ů	<u>.</u>	*	3.97
.04600	.04800	.05000	.05200	00450	.05400	.05800	
		•	<u>.</u>		\$	2.	PC. OHFGAC.

r= .5Annn-Oni u= .18159.901 H= .25124-n01 bl= .1n898-nni CT= .35421-nni R= .7p713+003 XI= .52248-nni R481US= .1n808-0i NSTEP 1768 F A AIFTU 1140

PRIT TO SOME PROMISE AND SOME

	.53263-001 RADIUS* .10000+0n1	,54481-noi Radiuse ,100no+0 _{n1}	RADIUS10000.001	RAD1US10000.001
V # # # # # # # # # # # # # # # # # # #			XI= .55942-001 F NSTEP 44 40 40 37 34	.57692-001
ા નિવાના	.79410+003 1768 4 4 4 4	**************************************	.80781-003	** FER N3 1 4 8 3 3 4 8 3 3 4 8 3 3 4 8 8 8 8 8 8 8
00000	.35627+001 R* AMP .00000 .00000 .00000	.35689+001 R. AMP .00000 .00000 .00000 .00000 .00000 .00000	AHP .00000 .00000 .00000 .00000	.35585+001 R* .00000 .00000 .00000
-,13637-002 -,3763-002 -,6728-002 -,9828-002 -,12600-001	10881+nn1 CT= ALF1U -13789-002 55035-002 55035-002 5571-002 17398-001	.10858-ng1 CT= ALF1U 16815-ng2 64833-002 94875-002 17259-001	ALFIU -23344-002 -40028-002 -66679-002 -85704-003 -12278-001	A1F10 -32698-002 -45902-002 -70449-002 -94179-002
. 2721-000 . 20735-000 . 17406-000 . 15342-000	**************************************	ALFRII 24530-000 220530-000 16009-000 15503-000 15371-000	ALFR! 24733000 21142-000 11142-000 115603-000 15603-000	ALFRU 24977-000 - 24977-000 - 24136-000 - 15287-000 - 1538-000 - 15572-000
4 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0HU 0HU • 11284-003 • 93693-004 • 7776-004 • 64545-004 • 53573-004	. = 40700-001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5. 61368-001 U* .10121-001 Hs .2 0HU -11288-003 -357755-004 -61545-004 -615777-004