Zusammenfassung Heft 1 LINAG

Ida Hönigmann

6. November 2020

1 Algebraische Grundlagen

1.1 Gruppen

Definition 1.1. $X...Menge, *: X^2 \rightarrow X$ $Sei \ e \in X.$

- 1. $e \ hei\beta t \ linksneutral \ (bzgl. *) \Leftrightarrow \forall x \in X : e*x = x$
- 2. e heißt rechtsneutral (bzgl. *) $\Leftrightarrow \forall x \in X : x*e = x$
- 3. e heißt neutral, wenn e links- und rechtsneutral ist.

Bemerkung. Alle Strukturen dieser Art haben genau ein neutrales Element. e ist eindeutig!

Definition 1.2 (Gruppe). $X...Menge, *: X^2 \to X$ (X,*) heißt $Gruppe \Leftrightarrow$

- $\forall x, y, z \in X : x * (y * z) = (x * y) * z$
- $\exists e \in X : e \ neutral$
- $\bullet \ \forall x \in X : \exists y \in X : (x * y) = (y * x) = e$

Schreibweise. Wenn * assoziativ ist x * y * z := (x * y) * z = x * (y * z)

Bemerkung. In einer Gruppe ist das inverse Element jeweils eindeutig.

$$\forall x \forall y, y' : (y, y' \text{ invers } zu \ x) \implies y = y'$$

Definition 1.3. (X,*)...Gruppe

X heißt kommutativ oder abelsch $\Leftrightarrow \forall x \in X \forall y \in X : x * y = y * x$

Schreibweise. $(K,*)...Gruppe, x \in X$ $x^{-1}... inverses Element von x$ Bemerkung. In einer Gruppe ist das neutrale Element eindeutig.

Lemma 1.1. Sei (X,*) eine Gruppe.

- $\forall x \in X \forall y \in X \forall y' \in X : (x * y = x * y') \Leftrightarrow y = y'$
- $\forall x, y, y' : y * x = y' * x \Leftrightarrow y = y'$
- $\forall u, v \in X \exists ! x \in X \exists ! y \in X : u * x = v \land y * u = v$

Definition 1.4 (Untergruppe). (X, *)...Gruppe $U \leq X$ ist eine Untergruppe von $(X, *) \Leftrightarrow$

- U ≠ ∅
- U ist abgeschlossen $bzql. * : \forall x, y \in U : x * y \in U$
- U ist abgeschlossen bzql. $x^{-1}: \forall x \in U: x^{-1} \in U$

Bemerkung. Wenn (X,*) eine Gruppe ist heißen $(\{e\},*)$ und (X,*) triviale Untergruppen.

1.2 Körper

Definition 1.5 (Körper). (K, +, *) heißt Körper \Leftrightarrow $K...Menge, +: K^2 \to K, *: K^2 \to K$ und $\exists 0, 1 \in K: 0 \neq 1$, sodass

- (K, +) ist eine kommutative Gruppe mit neutralem Element 0.
- (K \ {0}, *) ist eine kommutative Gruppe mit neutralem Element 1.
- $\forall x, y, z \in K : x(y+z) = xy + xz \land (y+z)x = yx + zx$

Schreibweise. $K^x := K \setminus \{0\}$

Bemerkung. Körper sind Nullteiler frei.

Lemma 1.2. (K, +, *)... Körper

- $\forall x \in K : (x * 0) = (0 * x) = 0$
- 1*0 = 0*1 = 0 also 1 ist neutral bzgl. (K,*)
- $\forall x, y \in K : -(xy) = (-x)y \land -(xy) = x(-y)$
- (-1)(-1) = 1
- $\forall x, y \in K : x * y = 0 \implies x = 0 \lor y = 0$

Definition 1.6. $(K, +, *)...K\"{o}rper$ $U \leq K$ heißt Unterk\"{o}rper von (K, +, *), wenn

- $0 \in U \land 1 \in U$
- ullet U abgeschlossen unter +, additiv Inversen, * und multiplikativ Inversen

Definition 1.7. $(K, +, *)...K\ddot{o}rper$ $charK := minimalen \in \mathbb{N}^+ : 1 + 1 + ... + 1 = 0,$ falls so ein n existiert und 0 sonst.

1.3 Gruppenhomomorphismen

Definition 1.8. Seien (G, *) und (G', *) Gruppen. $h: G \to G'$ heißt Homomorphismus $\Leftrightarrow \forall x, y \in G:$ h(x * y) = h(x) * h(y)

Allgemein gilt das bei jeder Algebra.

Wenn h bijektiv nennt man h auch Isomorphismus. Wenn zusätzlich (G,*) = (G',*) heißt h Automorphismus.

(G,*) und (G',*) heißen isomorph, wenn $\exists h: G \rightarrow G'$ mit h Isomorphismus.

Bemerkung. (G,*) und (G',*)... Gruppen, $h:G \to G'$ Homomorphismus

- $h(e_G = e_{G'})$
- $\forall x \in G : h(x^{-1}) = h(x)^{-1}$

Definition 1.9. (G,*) und (G',*) ... Gruppen, $h:G\to G'$ Homomorphismus

Bild von $h := h[G] := \{h(x) : x \in G\}$

h[G] ist Untergruppe von (G',*).

Kern von $h := kerh := h^{-1}[\{e_G\}] = \{x \in G : h(x) = e_G\}$

Lemma 1.3. (G,*) und (G',*)... Gruppen, $h: G \rightarrow G'$... Homomorphismus

- $kerh \leq (G, *)$
- $\forall a, b \in G : h(a) = h(b) \Leftrightarrow a^{-1}b \in kerh$
- $\forall a, b \in G : h(a) = h(b) \Leftrightarrow ab^{-1} \in kerh$
- $\forall a, b \in G : h(a) = h(b) \Leftrightarrow b^{-1}a \in kerh$
- $\forall a, b \in G : h(a) = h(b) \Leftrightarrow ba^{-1} \in kerh$
- h injektiv $\Leftrightarrow kerh = \{e_G\}$

Definition 1.10. (G,*)... Gruppe, U... Untergruppe von G, $a \in G$

 $a*U \coloneqq \{a*u : u \in U\}$ heißt Linksnebenklasse von U.

 $U*a \coloneqq \{u*a: u \in U\}$ heißt Rechtsnebenklasse von U.

Bemerkung. (G,*)... Gruppe, U... Untergruppe von G, $a,b \in G$

 $b \in aU \Leftrightarrow aU = bU \Leftrightarrow a \in bU$ Wenn $u \in U \implies uU = U$

Bemerkung. Linksnebenklassen bilden Partition von (G, *).

Definition 1.11. (G,*)... Gruppe, U... Untergruppe von G

U heißt Normalteiler der Gruppe, wenn $\forall a \in G: aU \subset Ua.$

Dabei stimmt immer auch a $U \supseteq Ua$ und somit aU = Ua.

Wenn (G,*) kommutativ ist, ist jede Untergruppe Normalteiler.

 $Mit\ G/U$ bezeichnet man die Menge aller Linksnebenlassen, also $G/U := \{aU : a \in G\}$

Lemma 1.4. (G,*)... Gruppe, U... Untergruppe, G/U... Menge aller Linksnebenklassen

 $\forall aU, bU \in G/U : (aU) * (bU) := (ab)U$

Lemma 1.5. (G,*)... Gruppe, $U \leq (G,*)$... Normalteiler

 $*: G/U \to G/U$ definiert durch aU * bU := (ab)U (G/U, *) bildet eine Gruppe.

Bemerkung. (G,*) und (G',*)... Gruppen, $h:G\to G'$ Homomorphismus

Dann ist kerh Normalteiler von (G, *).

Lemma 1.6. (G,*)... Gruppe, $U \leq (G,*)$... Normalteiler

Dann existiert ein $h: G \to G/U$ definiert durch $a \mapsto aU$. h ist Homomorphismus von (G,*) nach (G/U,*) und kerh = U.

Bemerkung. Jeder Normalteiler ist Kern eines Homomorphismus.

Theorem 1.7 (Homomorphiesatz für Gruppen). (G,*) und (G',*)... Gruppen, $h:G\to G'$... Homomorphismus

 $\tilde{h}: G/_{kerh} \to G' \ mit \ a * kerh \mapsto h(a) \implies \tilde{h}$ Homomorphismus, injektiv und $ker\tilde{h} = \{kerh\}$

1.4 Vektorräume

Definition 1.12. M... Menge

Ein n-tupel wird definiert als $M^n := \{f : f \text{ ist } Funktion von \{1, 2, ..., n\} \text{ nach } M\}.$

Definition 1.13. (K, +, *)... Körper

Ein Vektorraum über (K,+,*) ist definiert als $(V,+,(\phi_c)_{c\in K})$ wobei V eine Menge ist, $+:V^2\to V$ und $\forall c\in K:\phi_c:V\to V$ definiert durch $x\mapsto \phi_c(x)=:c*x$. Weiters muss folgendes gelten:

- (V, +) ist eine Gruppe.
- $\forall c \in K \forall x, y \in V : c * (x + y) = cx + cy$
- $\forall c, d \in K \forall x \in V : (c+d) * x = cx + dx$
- $\forall c, x \in K \forall x \in V : (c * d) * x = c * (d * x)$
- $\bullet \ \forall x \in V : 1 * x = x$

Bemerkung. $(K^n, +, *)$ ist kein Körper, sondern ein Vektorraum. Dabei ist $(0, 0, ..., 0)^T$ das neutrale Element bzgl. $+, (-a_1, ..., -a_n)$ ist das inverse Element und + ist assoziativ.

Bemerkung. (V, +)... Vektorraum über (K, +, *)

• (V, +) ist kommutativ

- $\bullet \ \forall a \in V : 0 * a = 0$
- $\forall a \in V : (-1) * a = -a$
- $\bullet \ \forall c \in K : c * 0 = 0$

Definition 1.14. (V, +)... Vektorraum über (K, +, *)

 $U \le V$ heißt Unterraum von $V \Leftrightarrow$

- $U \neq \emptyset$
- \bullet U abgeschlossen unter +
- \bullet U abgeschlossen unter *

Bemerkung. $x \in U \implies -x \in U, \ da - x = (-1) * x \in U$

 $\begin{array}{c} \textit{Statt } U \neq \emptyset \ \textit{kann man auch } 0 \in U \ \textit{verwenden}. \\ \textit{Ein Unterraum ist selbst wieder ein Vektorraum}. \\ \{0\} \ \textit{und V nennt man auch triviale Unterräume} \\ \textit{von } V. \end{array}$