CHIẾN LƯỢC CHIA ĐỂ TRỊ

- Các đặc trưng cơ bản
- Các ví dụ minh họa

CÁC ĐẶC TRƯNG CƠ BẢN

 Là chiến lược thiết kế được áp dụng rất rộng rãi trong giải toán nói chung và thiết kế giải thuật nói riêng

CÁC ĐẶC TRƯNG CƠ BẢN

- Giải thuật giải một bài toán dựa trên chiến lược chia để trị được phát triển theo các bước:
 - Chia bài toán thành các bài toán con, thường là cùng kiểu
 - Giải các bài toán con (thường dùng kỹ thuật đệ qui)
 - Kết hợp lời giải các bài toán con để có lời giải bài toán ban đầu

CÁC ĐẶC TRƯNG CƠ BẢN

CÁC VÍ DỤ MINH HỌA

- Tìm kiếm nhị phân
- Giải thuật MergeSort
- Giải thuật QuickSort (đọc Levitin)
- Bài toán nhân các số nguyên lớn
- Bài toán tìm cặp điểm gần nhau nhất

 Cho một mảng A[0..n-1] các số được sắp theo thứ tự tăng và một số K, tìm trong mảng số có giá trị bằng K

- Giải thuật tìm kiếm dựa trên chiến lược chia để trị như sau
 - Chia mảng A[0..n-1] thành 2 phần (thường chọn điểm chia m ở giữa mảng)
 - Nếu A[m] =K thì kết thúc tìm kiếm
 - Nếu K<A[m] tìm K trong mảng con bên trái (giải bài toán con)
 - Nếu K>A[m] tìm K trong mảng con bên phải

```
K
A[0] \dots A[m-1] A[m] A[m+1] \dots A[n-1]
search here if
K < A[m]
K > A[m]
```

8

```
ALGORITHM BinarySearch(A[0..n - 1], K)

1 \ | \leftarrow 0; \ r \leftarrow n - 1

2 \ \text{while} \ | \leq r \ \text{do}

3 \ m \leftarrow \lfloor (l + r)/2 \rfloor

4 \ \text{if} \ K = A[m] \ \text{return} \ m

5 \ \text{else} \ \text{if} \ K < A[m] \ r \leftarrow m - 1

6 \ \text{else} \ | \leftarrow m + 1

7 \ \text{return} \ -1
```

- Tính độ phức tạp thời gian
 - Kích thước đầu vào là n
 - Thao tác cơ bản là so sánh trong lệnh 2 (giả sử thời gian là
 c)
 - Với kích thước đầu vào n, số phép so sánh phụ thuộc vào n và chính các phần tử của mảng vì vậy cần tính 3 trường hợp, tốt nhất, xấu nhất và trung bình

- Trường hợp tốt nhất
 - Khi A[m]=K, trong lần so sánh đầu tiên
 - $T(n) = c = \Theta(1)$ (hoặc O(1))

- Trường hợp xấu nhất
 - Gọi s là số lần so sánh nhiều nhất, thì suy ra n/2^s-¹ ≥1
 - Từ đó $n \ge 2^{s-1}$ hay $s \le (\log_2 n) + 1$
 - $T(n) = O(log_2 n)$

- Trường hợp trung bình
 - Số lần so sánh trung bình khi tìm thấy thành công là
 s≈ log₂n 1 và không tìm thấy là s≈ log₂n + 1
 - T(n)= O(log n)

- Giải thuật MergeSort sử dụng chiến lược chia để trị, sắp xếp một mảng tăng dần như sau
 - Chia mảng A[p..r] thành 2 mảng con A[p..[(p+r)/2]] và
 A[[(p+r)/2]+1..r]
 - Sắp xếp các mảng con
 - Kết hợp (bằng cách trộn) các phần tử của các mảng con thành mảng được sắp

```
MERGE-SORT(A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

```
MERGE(A, p, q, r)
      n_1 \leftarrow q - p + 1
  2 \quad n_2 \leftarrow r - q
  3 create arrays L[1..n_1 + 1] and R[1..n_2 + 1]
  4 for i \leftarrow 1 to n_1
  5
             do L[i] \leftarrow A[p+i-1]
     for j \leftarrow 1 to n_2
             do R[j] \leftarrow A[q+i]
 8 L[n_1+1] \leftarrow \infty
      R[n_2+1] \leftarrow \infty
10 \quad i \leftarrow 1
11 i \leftarrow 1
12
    for k \leftarrow p to r
13
            do if L[i] \leq R[j]
14
                    then A[k] \leftarrow L[i]
15
                          i \leftarrow i + 1
16
                    else A[k] \leftarrow R[j]
17
                           j \leftarrow j + 1
```

- Đặt n=r-p+1
- Dễ thấy thời gian chạy của Merge(A, p, q, r) là O(n)
- Gọi T(n) là thời gian chạy của giải thuật Mergesort(A, p, r)
 thì

$$T(n) = \begin{cases} O(1), n = 1 \\ 2T(n/2) + O(n), n > 1 \end{cases}$$

```
Giải sử n=2^k, coi O(1)=1 và O(n)=n, thì T(n) = 2T(n/2) + n = 2(2T(n/2^2) + n/2) + n = 2^2T(n/2^2) + 2n= 2^2(2T(n/2^3) + n/2^2) + 2n = 2^3T(n/2^3) + 3n= ...= 2^kT(n/2^k) + kn= n + (log_2n) n = O(nlog_2n)
```

Áp dụng định lý Master (hệ thức truy hồi chia để trị), ta cũng có

 $T(n) = O(nlog_2n)$

 Cho 2 số nguyên a và b, mỗi số có n chữ số, n lớn và chẵn hãy tính tích a*b

• Mỗi số nguyên a có n chữ số (n chẵn) có thể biểu diễn

$$a = r_{n-1} 10^{n-1} + r_{n-2} 10^{n-2} + ... + r_{n/2} 10^{n/2} + r_{n/2-1} 10^{n/2-1} + ... + r_1 10 + r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

$$= (r_{n-1} r_{n-2} ... r_{n/2}) 10^{n/2} + r_{n/2-1} ... r_1 r_0$$

• Viết b dưới dạng $b=b_110^{n/2}+b_0$ $c=a*b=(a_110^{n/2}+a_0)*(b_110^{n/2}+b_0)$ $=(a_1*b_1)10^n+(a_1*b_0+a_0*b_1)10^{n/2}+(a_0*b_0)$ $=c_210^n+c_110^{n/2}+c_0$

Trong đó

$$c_2 = a_1 * b_1$$

 $c_0 = a_0 * b_0$
 $c_1 = (a_1 + a_0) * (b_1 + b_0) - (c_2 + c_0)$

ALGORITHM Product(a, b, n)

```
1 a \leftarrow r_{n-1}r_{n-2}...r_{n/2}r_{n/2-1}...r_1r_0; b \leftarrow p_{n-1}p_{n-2}...p_{n/2}p_{n/2-1}...p_1p_0

2 if n=1 return r_0*p_0

3 else a_1 \leftarrow r_{n-1}r_{n-2}...r_{n/2}; a_0 \leftarrow r_{n/2-1}...r_1r_0

4 b_1 \leftarrow p_{n-1}p_{n-2}...p_{n/2}; b_0 \leftarrow p_{n/2-1}...p_1p_0

5 c_2 \leftarrow \text{Product}(a_1, b_1, n/2); c_0 \leftarrow \text{Product}(a_0, b_0, n/2)

6 A \leftarrow a_1+a_0; B \leftarrow b_1+b_0;

7 c_1 \leftarrow \text{Product}(A, B, n/2)-(c_2+c_0)

8 return c_210^n+c_110^{n/2}+c_0
```

Gọi T(n) là thời gian chạy của thuật giải Product(a, b, n)

$$T(n) = \begin{cases} O(1), n = 1\\ 3T(n/2) + O(n), n > 1 \end{cases}$$

 Sử dụng định lý Master (đánh giá hệ thức truy hồi chia để trị) ta có

a=3, b=2, d=1
Vì a=3>2¹=b^d, nên
$$T(n)=O(n^{logba})=O(n^{log23})\approx O(n^{1.6})$$

 Lưu ý: khi áp dụng chiến lược trực tiếp thì được giải thuật O(n²)

- Cho P là một tập n điểm trong mặt phẳng Oxy, tìm cặp điểm có khoảng cách nhỏ nhất
- Lưu ý: Áp dụng chiến lược trực tiếp sẽ có giải thuật O(n²)

- Áp dụng chiến lược chia để trị tìm cặp điểm gần nhau nhất như sau:
 - Chia tập điểm đã cho làm 2 tập
 - Tìm các cặp điểm gần nhau nhất trong mỗi tập
 - Tìm cặp điểm gần nhau nhất mà có các đỉnh (điểm) của nó tương ứng thuộc mỗi tập được chia
 - Tìm cặp nhỏ nhất trong 3 cặp trên

- Không mất tính tổng quát, giả sử P được sắp tăng theo hoành độ
- Gọi Q là tập điểm đã cho được sắp tăng theo tung độ y
- Một số điểm của P_I và P_r có thể nằm trên đường thẳng x=m

- Gọi d_I và d_r là các khoảng cách ngắn nhất của các cặp tương ứng trong P_I và P_r, tìm d=min(d_I,d_r)
- Tìm cặp điểm gần nhau nhất có 2 điểm tương ứng thuộc
 2 phần đối nhau theo đường thẳng x=m (các điểm này
 chỉ thuộc trong phần giữa 2 đường nét dứt), gọi khoảng
 các giữa chúng là d_c
- Lấy d_{min}=min(d, d_c)

- Tìm d_c như sau:
 - Xét tập S các điểm nằm giữa 2 đường nét đứt, các điểm này sắp theo thứ tự tăng của tung độ y
 - Khởi đầu d_{min}=d, gọi p là một điểm trong S, nếu có P' đi sau p mà hiệu các tung độ nhỏ hơn d_{min} thì xác định lại d_{min} là khoảng cách giữa p và p'

```
ALGORITHM EfficientClosestPair(P, Q, n)
1 if n \le 3
         return the minimal distance found by the brute-force algorithm
3 else
        copy the first \lceil n/2 \rceil points of P to array P_1
4
        copy the same \lceil n/2 \rceil points from Q to array Q_1
5
        copy the remaining \lfloor n/2 \rfloor points of P to array P_r
6
        copy the same \lfloor n/2 \rfloor points from Q to array Q_r
        d_{l} \leftarrow EfficientClosestPair(P_{l}, Q_{l}, \lceil n/2 \rceil)
8
        d_r \leftarrow EfficientClosestPair(P_r, Q_r, \lfloor n/2 \rfloor)
9
       d \leftarrow \min\{d_1, d_r\}
10
      m \leftarrow P[\lceil n/2 \rceil - 1].x
11
```

```
ALGORITHM EfficientClosestPair(P, Q, n) //tiếp theo
1 if n < 3
      return the minimal distance found by the brute-force algorithm
3 else
       copy all the points of Q for which |x - m| < d into array S[0..num - 1]
12
       dminsq \leftarrowd<sup>2</sup>
13
14
       for i \leftarrow0 to num − 2 do
15
          k←i + 1
16
          while k \le num - 1 and (S[k].y - S[i].y)^2 < dminsq
             dminsq \leftarrowmin((S[k].x - S[i].x)<sup>2</sup>+ (S[k].y - S[i].y)<sup>2</sup>, dminsq)
17
             k\leftarrow k+1
18
19 return sqrt(dminsq)
```

Gọi T(n) là độ phức tạp của thuật giải, thì

$$T(n) = \begin{cases} O(1), n = 1 \\ 2T(n/2) + O(n), n > 1 \end{cases}$$

trong đó O(n) là tổng chi phí của các lệnh copy và tìm d_{min} theo tập S của các dòng lệnh 14-18

Do a=2, b=2, d=1, a=b^d, nên
 T(n)=O(n^dlog₂ n)= O(nlog₂ n)

BÀI TẬP VỀ NHÀ

- Đọc chương 5 (Divide -and -conquer), sách Levitin
- Đọc bài toán nhân 2 ma trận, QuickSort
- Giải bài toán "tìm dãy con của một dãy có tổng lớn nhất" bằng trực tiếp và chia để trị
- Làm bài tập về nhà đã cho trong DS bài tập
- Bài thực Hành: MergeSort và tìm cặp điểm gần nhau nhất