MODI DI PROPAGAZIONE IN CAVI COASSIALI

I cavi coassiali oltre al modo di propagazione TEM consentono la propagazione anche con modi tipici delle guide d'onda. Due distinti gruppi di modi sono distinguibili : TM (Transverse Magnetic) e TE (Transverse Electric) . Il primo gruppo è caratterizzato da correnti superficiali che sono *parallele* all'asse del cavo e,

a b

quindi, con campo magnetico sempre trasversale, mentre i modi TE sono caratterizzati dall'avere il campo elettrico sempre trasversale.

Il primo indice (n) indica il numero di cicli della distribuzione dei campi lungo la circonferenza (periodicità 2π), mentre il secondo indice (m) indica la periodicità radiale dei campi (periodicità π) .

Il modo TE_{11} è il *modo dominante* ; diviene possibile , cioè, a frequenze più basse di qualunque altro modo TE oppure TM.

La possibilità di un modo non ne implica l'esistenza : ciò dipende dal tipo di lanciatore e dalle discontinuità lungo la linea. Il solo modo principale TEM, infatti, non è in grado di soddisfare le condizioni al contorno imposte da discontinuità locali come la presenza di distanziatori localizzati, o spirali distanziatrici.

La trasmissione con modi multipli non è desiderabile in una linea coassiale perché arreca distorsioni (ogni modo ha , infatti, costanti di trasmissione proprie : velocità di fase, impedenza caratteristica , attenuazione). La figura seguente mostra le lunghezze d'onda di taglio λ (cutoff wavelengths) per alcuni modi di ordine superiore in cavi coassiali, nel caso di dielettrico aria (ϵ_r =1). In altri casi la lunghezza d'onda critica si ottiene moltiplicando il dato di tabella per la radice quadrata di ϵ_r .

Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ($e_r = 1$).

Bibliografia:

Campi E ed H in alcuni modi propagativi in cavi coassiali. I modi TM $_{0\ m}$, con m intero, sono caratterizzati da simmetria rotazionale .

Esempio: Un cavo coassiale a bassa perdita di grosse dimensioni (1-1/4") presenta impedenza caratteristica Zo=50 Ω , fattore di velocità v=0.6, costante dielettrica $\epsilon_r=2.3$.

Le dimensioni interne sono : b = 12.4 mm, a = 3.5 mm.

La lunghezza d'onda critica per il modo TE_{11} si ricava dalla figura precedente: con b/a = 3.35 si ha : $\lambda/b=4$. Siccome b = 12.4 si ottiene : $\lambda=4\cdot 12.4=49.6$ mm che , moltiplicata per la radice quadrata di ϵ_r , diviene: $\lambda=49.6\cdot 1.52=75.4$ mm circa .

La frequenza critica per il modo TE_{11} è : $f_c = 300 / 0.075 = 4$ GHz circa .

Un cavo di grosse dimensioni, sicuramente a bassa perdite per frequenze sino a 4 GHz , presenta un altro modo propagativo che ne rende sconsigliabile l'uso per frequenze superiori a f_c .

MODI IN GUIDE D'ONDA RETTANGOLARI

Distribuzione del campo trasversale dei primi modi TE e TM in guide d'onda rettangolari

CAVITY ATTENUATOR

Utilizzando una guida d'onda ad una lunghezza d'ondamolto più grande della lunghezza d'onda critica della guida, non si ha propagazione. E', però, presente un'onda evanescente che decresce esponenzialmente lungo la guida.

Accoppiandosi opportunamente alla guida (per esempio, con un link in ingre ed in uscita), questa può costituire un attenuatore.

Se la lunghezza d'onda di lavor \hat{a} è molto più grande della lunghezza d'onda critica λ_c della guida nel modo di eccitazione, l'attenuazione è pressochè indipendente dalla frequenza di lavoro.

L 'attenuazione, in dB, è:

$$A(L, \lambda) := 54.5 \cdot \left(\frac{L}{\lambda}\right) \cdot \sqrt{\left[1 - \left(\frac{\lambda}{\lambda}\right)^{2}\right]}$$

Esempio: attenuazione A , in dB, in funzione della lunghezza d'onda di lavoro per alcuni valori della lunghezza L della guida .

Lunghezza d'onda critica $\,\lambda_{c}=3\,\,cm$

40

20

0.5

Per $\lambda >> \lambda_c$ l'attenuazione è indipendente dalla lunghezza d'onda di lavoro , ma già per $\lambda > 3$ λ_c l'errore è minore del 5 % .

dove : L = lunghezza della quida (tra i due accoppiatori) $\lambda_{c} = \text{lunghezza d'onda critica della guida (è data dalle sue dimensioni fisiche e dal modo di propagazione)}$

λ = lunghezza d'onda alla frequenza di lavoro

Per $\lambda \gg \lambda_c$ vale :

15

dlambdac

2.5

La configurazione più comune dell' attenuatore cut-off impiega una guida d'onda circolare eccitata nel modo TE_{11} , con connessione di ingresso ed uscita effettuate per mezzo di loop . Per $\lambda >> \lambda_c$ il termine dipendente da λ si può trascurare e l'attenuazione diviene :

$$A(L) := 54.5 \cdot \left(\frac{L}{\lambda_c} \right)$$
 [dB]

Ma, nel modo TE₁₁ in una guida circolare, la lunghezza d'onda critica è :

$$\lambda_c := \frac{2 \cdot \pi \cdot r}{1.8412}$$
 dove r è il raggio della guida.

In questo caso, pertanto, l'attenuazione (espressa in dB/m) diviene :

$$A := \frac{16.0}{r}$$
 [dB / m]

Meno comune è l'impiego del modo TM_{01} con connessione di ingresso ed uscita effettuate per mezzo di dischetti circolari. In questo caso l'eventuale eccentricità od ellitticità dei dischetti porta ad eccitazione indesiderata anche di modi TE. Questi modi decadono più lentamente con la distanza del modo TM_{01} e possono causare errori specialmente a valori di attenuazione elevata.

Esempio: per applicazioni attorno alla frequenza di 1000 MHz ($\lambda = 30$ cm) si abbia a disposizione una guida cilindrica di diametro 20 mm per avere attenuazioni comprese tra 30 e 100 dB.

Quanto dovrà essere la lunghezza massima L?

Per il modo TE_{11} la lunghezza d'onda critica λ_c diviene :

$$\lambda_{c} := \frac{2 \cdot \pi \cdot r}{1.8412} \qquad \lambda_{c} = 0.034 \qquad m$$

Essendo $\lambda >> \lambda_c$ si può utilizzare la formula semplificata A = 16 / r

In questo caso : $A=1600\ dB/m$. Pertanto dovendo attenuare al massimo $100\ dB$ occorre una lunghezza della guida massima di $L=62.5\ mm$.

L' errore per avere trascurato la dipendenza da λ è minore dell' 1%.

ATTENUAZIONE TIPICA DI GUIDE D'ONDA

Le figure seguenti mostrano l'andamento caratteristico dell'attenuazione in due guide d'onda rettangolari e circolari , in rame, con buona lavorazione delle superfici. Esempio con dimensione a=2". Si nota che l'attenuazione è molto grande se si è prossimi alla frequenza critica ed a frequenze molto elevate con un minimo (abbastanza ampio, specialmente per il modo fondamentale) a frequenze intermedie.

GUIDE D'ONDA RETTANGOLARI

		Frequency	Dimension	ni interne	Frequenza	attenuazione	Potenza
UK	USA	range	larghezza	altezza	taglio TE ₁₀		Max.
		[GHz]	[mm]	[mm]	[GHz]	[dB/m]	[kW]
WG 00	WR 2300	$0.32 \div 0.49$	584.20	292.10	0.265	0.0008	150000
WG 0	WR 2100	$0.35 \div 0.53$	533.4	266.70	0.281	0.0009	140000
WG 1	WR 1800	$0.41 \div 0.61$	457.2	228.6	0.327	0.0011	115000
WG 2	WR 1500	$0.51 \div 0.75$	381.0	196.50	0.393	0.0015	85000
WG 3	WR 1150	$0.61 \div 0.96$	292.10	146.05	0.517	0.002	45000
WG 4	WR 975	$0.75 \div 1.12$	247.65	123.825	0.605	0.0027	33000
WG 5	WR 770	$0.96 \div 1.45$	195.58	97.79	0.765	0.004	21500
WG 6	WR 650	$1.12 \div 1.70$	165.10	82.55	0.908	0.0052	14800
WG 7	WR 510	$1.45 \div 2.20$	129.54	64.77	1.154	0.0075	9300
WG 8	WR 430	$1.70 \div 2.60$	109.22	54.61	1.375	0.0097	6500
WG 9A	WR 340	$2.20 \div 3.30$	86.36	43.18	1.737	0.014	4200
WG 10	WR 284	$2.60 \div 3.95$	72.16	34.03	2.080	0.019	2800
WG 11A	WR 229	$3.30 \div 4.90$	58.166	29.09	2.579	0.025	2000
WG 12	WR 187	$3.95 \div 5.85$	47.549	22.149	3.155	0.036	1200
WG 13	WR 159	$4.90 \div 7.05$	40.486	20.193	3.710	0.043	900
WG 14	WR 137	$5.85 \div 8.20$	34.849	15.80	4.285	0.058	620
WG 15	WR 112	$7.05 \div 10.0$	28.80	12.624	5.260	0.079	420
WG 16	WR 90	$8.20 \div 12.4$	22.86	10.16	6.56	0.11	250
WG 17	WR 75	$9.84 \div 15.0$	19.050	9.525	7.87	0.13	180
WG 18	WR 62	$11.9 \div 18.0$	15.80	7.90	9.49	0.18	120
WG 19	WR 51	$14.5 \div 22.0$	12.95	6.477	11.57	0.24	83
WG 20	WR 42	$17.6 \div 26.7$	10.668	4.32	14.08	0.37	48
WG 21	WR 34	$21.7 \div 33.0$	8.64	4.318	17.37	0.44	37
WG 22	WR 28	$26.4 \div 40.1$	7.112	3.556	21.10	0.58	25
WG 23	WR 22	$33.0 \div 50.1$	5.659	2.845	26.35	0.81	16
WG 24	WR 19	$39.3 \div 59.7$	4.775	2.388	31.4	1.1	10
WG 25	WR 15	$49.9 \div 75.8$	3.759	1.880	39.9	1.5	7
WG 26	WR 12	$60.5 \div 92.0$	3.098	1.550	48.4	2.0	5
WG 27	WR 10	$73.8 \div 112$	2.540	1.270	59.0	2.7	3
WG 28	WR 8	$92.3 \div 140$	2.032	1.016	73.8	3.8	2
WG 29	WR 7	$110 \div 170$	1.651	0.8255	90.9	5.2	1.5
WG 30	WR 5	$145 \div 220$	1.295	0.635	115.8	7.5	0.9
WG 31	WR 4	$172 \div 261$	1.092	0.546	137.5	9.7	0.6
WG 32	WR 3	$217 \div 330$	0.864	0.432	173.3	13.8	0.4

L'attenuazione per metro e la massima potenza utilizzabile sono state calcolate a $1.5~f_t$, in guida di rame e con buona lavorazione meccanica dell'interno della guida .

E' stato assunta una tensione di scarica di 30 kV/cm con un fattore di sicurezza 4 .

La lunghezza d'onda in guida rettangolare (di larghezza a) è data da :

$$\frac{1}{\lambda^2} := \frac{1}{\left(\lambda_0\right)^2} - \frac{1}{\left(\lambda_{co}\right)^2} \quad \text{dove}: \quad \lambda \quad \text{\`e la lunghezza d'onda nella guida} \\ \lambda_0 \quad \text{\`e la lunghezza d'onda nel vuoto} \\ \lambda_{co} \quad \text{\`e la lunghezza d'onda di taglio (cut off)}: \quad \lambda_{co} = 2 \text{ a}$$

MODI IN GUIDE D'ONDA CIRCOLARI

Distribuzione del campo trasversale dei primi modi TE e TM in guide d'onda circolari

STANDARD CIRCULAR WAVEGUIDES

E.I.A. type	inside diameter	nominal outside diameter	frequency range TE ₁₁ mode	frequency range TE ₀₁ mode	
	[mm]	[mm]	[GHz]	[GHz]	
WC 2551	647.9		0.32 - 0.42	0.69 - 0.94	
WC 2179	553.5		0.37 - 0.50	0.80 - 1.10	
WC 1862	472.8		0.43 - 0.58	0.94 - 1.29	
WC 1590	403.9		0.50 - 0.68	1.10 - 1.51	
WC 1359	345.1		0.58 - 0.80	1.28 - 1.77	
WC 1161	294.8		0.68 - 0.94	1.50 - 2.07	
WC 992	251.8		0.80 - 1.10	1.76 - 2.42	
WC 847	215.1	219.2	0.94 - 1.29	2.06 - 2.83	
WC 724	183.8	187.8	1.10 - 1.51	2.41 - 3.31	
WC 618	157.0	158.5	1.29 - 1.76	2.82 - 3.88	
WC 528	134.1	138.2	1.51 - 2.07	3.30 - 4.54	
WC 451	114.6	118.6	1.76 - 2.42	3.86 - 5.32	
WC 385	97.87	101.9	2.07 - 2.83	4.52 - 6.22	
WC 329	83.62	87.68	2.42 - 3.31	5.29 - 7.28	
WC 281	71.42	74.73	2.83 - 3.88	6.19 - 8.53	
WC 240	61.04	64.34	3.31 - 4.54	7.25 - 9.98	
WC 205	51.99	55.30	3.89 - 5.33	8.51 - 11.7	
WC 175	44.45	47.75	4.54 - 6.23	9.95 - 13.7	
WC 150	38.10	41.40	5.30 - 7.27	11.6 - 16.0	
WC 128	32.54	35.84	6.21 - 8.51	13.6 - 18.7	
WC 109	27.79	30.33	7.27 - 9.97	15.9 - 21.9	
WC 94	23.83	26.37	8.49 - 11.6	18.6 - 25.6	
WC 80	20.24	22.78	9.97 - 13.7	21.9 - 30.1	
WC 69	17.48	20.02	11.6 - 15.9	25.3 - 34.9	
WC 59	15.09	17.12	13.4 - 18.4	29.3 - 40.4	
WC 50	12.70	14.73	15.9 - 21.8	34.8 - 48.0	
WC 44	11.13	13.16	18.2 - 24.9	39.8 - 54.8	
WC 38	9.525	11.05	21.2 - 29.1	46.4 - 63.9	
WC 33	8.331	9.85	24.3 - 33.2	53.1 - 73.1	
WC 28	7.137	8.66	28.3 - 38.8	61.9 - 85.2	
WC 25	6.350	7.37	31.8 - 43.6	69.7 - 95.9	
WC 22	5.563	6.58	36.4 - 49.8	79.6 - 110	
WC 19	4.775	5.79	42.4 - 58.1	92.9 - 128	
WC 17	4.369	5.38	46.3 - 63.5	101 - 139	
WC 14	3.581	4.60	56.6 - 77.5	124 - 171	
WC 13	3.175	3.94	63.5 - 87.2	139 - 192	
WC 11	2.769	3.53	72.7 - 99.7	159 - 219	
WC 9	2.388	3.15	84.8 - 116	186 - 256	

GUIDA D'ONDA CIRCOLARE

La distribuzione dei campi elettrico e magnetico in una guida d'onda circolare e' descritta dalle soluzioni delle equazioni di Bessel del primo genere di ordine intero $J_l(x)$, con l = 0,1,2,3,...

Gli zeri di queste funzioni e delle loro derivate prime determinano, inoltre, le frequenze di taglio per i modi TM e TE in I primi m zeri delle prime 4 funzioni di Bessel sono riportati nella tabella seguente (valori guide d'onda circolari. della variabile x per i quali la funzione si annulla. Non e' indicata la soluzione "banale", x=0, quando questa esiste). Questi zeri sono indicati con x_{lm} . Gli zeri delle derivate prime sono indicati con x'_{lm} .

ZERI x_{lm} DELLE FUNZIONI DI BESSEL $J_l(x) = 0$					
	l = 0	<i>l</i> = 1	<i>l</i> = 2	1=3	
m = 1	2.4048	3.8317	5.1356	6,3802	
m = 2	5.5201	7.0156	8.4172	9,7610	
m=3	8,6537	10.1735	11.6198	13.0152	
m = 4	11.7915	13.3237	14.7960	16.2235	
m = 5	14,9309	16.4706	17,9598	19.4094	
m =			,		

Per i modi TM, la lunghezza d'onda critica diviene;

$$\lambda_{lm} = 2 \pi a / x_{lm}$$

[dove: λ_{bn} è la lunghezza d'onda critica (massima lunghezza d'onda (free space) che si può propagare nella guida con modo TMbm)

è il raggio della guida d'onda]

Si può notare che il modo TMo, è il modo dominante; la lunghezza d'onda critica è la più grande possibile (per la guida di raggio a) e si ha :

$$\lambda_{0l} = 2 \pi a / 2.4048 = 2.6128 a$$

La costante di propagazione β per il modo TM_{bn} è:

$$\beta_{lm} = [(2\pi/\lambda)^2 - (x_{lm}/a)^2]^{1/2}$$

[dove λ è la lunghezza d'onda nel vuoto]

Per i modi TE, la lunghezza d'onda critica diviene:

$$\lambda_{lm} = 2 \pi a / x'_{lm}$$

[dove: λ_{im} è la lunghezza d'onda critica (massima lunghezza d'onda (free space) che si può propagare nella guida con modo TE_{lm})

è il raggio della guida d'onda]

ZERI	x' _{lm} DEL	LE DERIVA	TE PRIME!	DELLE	
FUNZIONI DI BESSEL $J_l'(x) = 0$					
	1=0	<i>l</i> = 1	1 = 2	1 = 3	
m = 1	3,3817	1.8412	3.0542	4,2012	
m=2	7.0156	5.3314	6.7061	8.0152	
m=3	10,1735	8.5363	9,9695	11.3459	
m = 4	13.3237	11,7060	13.1704	14,5858	
m = 5	16.4706	14.8636	16.3475	17.7887	
m =				,,,	

Si può notare che il modo TE_{II} è il modo dominante ; la lunghezza d'onda critica è la max. possibile . Si ricava :

$$\lambda_{II} = 2 \pi a / 1.8412 = 3.4125 a$$

[dove a è il raggio della guida]

A questa lunghezza d'onda critica corrisponde una frequenza critica $f_{II} = c / \lambda_{II}$ e si ha :

$$f_{II} = 300 / \lambda_{II} = 87.912 / a$$

[frequenza in MHz] [raggio a in metri]

La costante di propagazione β per il generico modo TE_{bn} è:

$$\beta_{lm} = [(2\pi/\lambda)^2 - (x'_{lm}/a)^2]^{1/2}$$

[dove λ è la lunghezza d'onda nel vuoto]

Bibliografia: K.F.Sander - Microwave Components and Systems - Addison-Wesley Publishing Co.

La giunzione a T di tipo-E è così chiamata perché il braccio derivato si estende dalla guida nella stessa direzione del campo elettrico E all'interno della guida stessa.

Guida eccitata nel modo fondamentale TE_{10} . Per semplicità del disegno è riportato solo il campo elettrico.

E-Fields in an E-Type T junction

Esempi: a) Un segnale all'ingresso del braccio 2 si presenta alle due uscite 1 e 3 della guida con opposizione di fase. Infatti quando l'onda arriva ad incrociare la guida d'onda, per continuità del campo elettrico ai due spigoli, indurrà all'inizio dei due bracci 1 e 3 campi elettrici in opposizione di fase tra loro. I carichi alle uscite 1 e 3 sono visti "in serie".

- b) Se sono immessi due segnali di pari ampiezza e con stessa fase agli ingressi 1 e 3, non sarà presente alcun segnale all'uscita 2; i due segnali si sommano, invece, se agli ingressi 1 e 2 si presentano in opposizione di fase.
- c) Un'onda proveniente dall'ingresso 3, quando perviene alla giunzione, per continuità del campo elettrico E in vicinanza dello spigolo, indurrà un'onda nel braccio 2 con stessa fase dell'onda in arrivo; per continuità del campo elettrico E nel braccio 2 sullo spigolo opposto verrà indotta un'onda nel braccio 1 con fase opposta a quella in arrivo dal braccio 3.

La giunzione a T di tipo-H è così chiamata perché il braccio derivato dalla guida è parallelo al campo magnetico H presente nella guida stessa.

Giuda eccitata nel modo fondamentale TE_{10} . Per semplicità del disegno è riportato solo il campo elettrico E.

Esempi: a) Un segnale all'ingresso del braccio 2 si presenta alle uscite 1 e 3 con stessa fase . I carichi alle porte 1 e 3 sono visti "in parallelo" .

b) Se sono immessi due segnali di pari ampiezza e con stessa fase agli ingressi 1 e 3 , questi si sommano all'uscita 2 ; non sarà presente , invece, alcun segnale se le fasi agli ingressi 1 e 2 sono in opposizione.

c) Un'onda proveniente dall'ingresso 1 si suddivide tra le due uscite 2 e 3 sempre con campo elettrico E normale al lato largo della guida.

MAGIC-T JUNCTION

Il T-magico è una giunzione a 4 porte che ha la proprietà di dividere la potenza immessa nella porta 2 in parti uguali e con uguale fase nelle porte 1 e 3.

La stessa cosa accade se la potenza è immessa dalla porta 4, ma , in questo caso, le onde uscenti dalle porte 1 e 3 sono in antifase.

Se due segnali sono posti all'ingresso delle porte 1 e 3, si ritroverà la loro somma in uscita sulla porta 2 e la loro differenza sulla porta 4.

Molto spesso il T-magico viene usato come mixer ; il segnale entrante viene applicato alla porta 4, l'oscillatore locale alla porta 2 e due diodi rivelatori alle porte 1 e 3. Il segnale dalla porta 4 si suddivide nei bracci 1 e 3 del mixer con fase opposta, mentre l'oscillatore locale si suddivide , sempre nei due bracci 1 e 3, ma in fase. I diodi sui bracci 1 e 3 producono due segnali a frequenza intermedia con fase opposta: se questi vengono applicati ad un circuito push-pull, si ottiene il loro segnale somma e la cancellazione dell'oscillatore locale.