Best Available Copy

Appl. No. 09/987,193 Doc. Ref.: **AM15**

(9) 日本国特許庁 (JP)

① 特許出願公開

⑩ 公開特許公報 (A)

昭58—7903

\$plnt. Cl.3 H 03 C 1/02 1/62 識別記号

庁内整理番号 7402-5 J 7402-5 J **3**公開 昭和58年(1983)1月17日

発明の数 1 審査請求 有

(全 8 頁)

製スイッチト・キャパシタ変調装置

願 8236 102176

②特②出

願 昭56(1981)6月30日

郊発 明 者

ジョン・エイ・シー・ビンガム アメリカ合衆国カリフオルニヤ 州94301パロ・アルト・ウエブ スター・アベニユー2353

砂出 願 人 レイカル・バーデイツク・イン

コーポレーテツド

アメリカ合衆国カリフオルニヤ

州94086サニーベール・カスピ

アン・ドライブ222

每代 理 人 弁理士 湯浅恭三

外1名

明 細

1. (発明の名称)

スイッチト・キャパシタ変調装置

- 2. 〔特許請求の範囲〕
- (1) 変調信号でキャリヤ信号を変調して変調された信号を形成するスイッチト・キャパシタ変調 集幅において、

変調信号が印加される第1入力と、複数の切換信号が印加される第2入力と、サンプルした変調信号を与える出力と、第1と第2の離極を有する主キャパシティブ手段と、切換信号に応答して前記第1と第2電極を前記入力と出力に接続する複数の2進スイッチを含むスイッチング手段、

キャリヤ信号およびこのキャリヤ信号の少な くとも4倍の周波数を有するクロック信号に応答して前記切換信号を発生する論理手段、および

前記サンブルした変調信号に応答して変調された信号を与える機分手段と、

から成ることを特徴とするスイッチト・キャバ シタ変調装罐。

- (2) 特許請求の範囲第1項の変調装置において、前記複数の2進スイッチは少なくとも第1、第2、第3および第4のスイッチを含み、前記第1電極は第1スイッチを介して前記第1入力に接続され、第2スイッチを介して共通グランドに接続され、前記第2種極は第3スイッチを介して前記出力に接続され、第4スイッチを介して共通グランドに接続されていること。
- (3) 特許請求の範囲第2項の変調装置において、 前記論理手段はキャリヤ信号の第1の半サイク ルにおいて、

クロック信号の一方の半周期では前記第1と第4スイッチを閉とし前記第2と第3スイッチを閉とし前記第2と第3スイッチを開とするの換信号を発生することにより前記主キャパンティブ手段が変調信号で充電されるようにするとともに、クロック信号の残りの半周期では前記第1と第4スイッチを開とし前記第2と第3スイッチを閉とする切換信号を発生

することにより前記主キャパシティブ手段が放 電されるようにしたこと。

- (4) 特許請求の範囲第3項の変調装置において、前記論理手段はキャリャ信号の第2の半サイクルにおいて、クロック信号の一方の半周期では前記第1と第3スイッチを閉とし前記第2とまり前記主キャパシティブ手段が変調信号を発生することにより前記主キャパシティア手段が放電されるようにしたこと。
- (5) 特許請求の範囲第4項の変調装置において、 人力と出力を有する演算増幅器第5スイッチ、 および器様キャパンティブ手段から成る遅延手 段を設け、演算増幅器の入力は第5スイッチを 介して前記第1入力に接続し、演算増幅器の出 力は前記第1スイッチに接続し、審積キャパン ティブ手段は演算増幅器の入力と共通グランド

(3)

号 S / に応答して前記出力を前記第1 電極に接続する第5 スイッチを含み、前記論理手段はキャリヤ信号の前記第1の半サイクルにおけれてもの第5 スイッチを開にする前理手段は1 記録をはずること、さらに前記論理手段は1 記録を引きない。2 とりが、2 とりが、2 とりが、4 とりが、4 とりが、4 とりが、4 とりが、5 とりが、5 とりが、6 とりが、

(8) 特許請求の範囲第5項、第6項または第7項 の変調装備において、前記スイッチング手段は さらに複数の補助キャパシィティブ手段および 補助切換借号に応答する複数の補助スイッチか ら成る整形手段を含み、各補助キャパシィティ ブ手段は対応する補助スイッチを介して前記主 間に挿入し、第5スイッチを餌イスイッチと同一の切換信号により制御するようにしたこと。

- (6) 特許請求の範囲第3項の変調装置において、 前肥スイッチング手段は前述した以外の切換信 母Sに応答して前記銭1入力を前記第2関極に 接続する第5スイッチを含み、前記論理手段は キャリヤ信号の前記第1の半サイクルにおいて この第5スイッチを開にする前記切換信号Sを 発生すること、さらに前記論理手段はキャリヤ 信号の前記第2の半サイクルにおいて、前記第 2 スイッチを閉とし前記第1と第4スイッチを 開としておきクロック信号の第1の半周期では 第5スイッチを閉とし第3スイッチを開にして 前記キャパシィティブ手段を変調信号で充置さ せるがクロック信号の第2の半周期では與5ス . イッチを開とし第3スイッチを閉にして前記キ ャパシィティブ手段を放電させる切換信号を発 生すること。
- (7) 特許請求の範囲第3項の変調装置において、 前記スイッチング手段は前述した以外の切換信

(4)

キャパシィティブ手段の両端に接続されており、 前記論理手段はキャリヤ信号の整数倍の周波数 で前記補助スイッチを動作する前記補助切換信 号を発生すること。

3. 〔発明の詳細な説明〕

本発明はある周波数帯の信号を経ば正弦波ないしは力形波の第2周波数帯の信号と掛け合わせることにより信号を変調する技術に関する。

過去、変調器は種々の非線形デバイス、例えば真空管、ダイオード、トランジスタやスイッチ等を、トランスまたは増幅器と組合せることによって構成された。例えば、米国特許第3.937.882 (Bingham・1976年2月10日付与)に示す変調器はその代表例といえよう。設計上の要求事項として変調器の全てのスプリアス出力に対してこれらの値をごく低く抑える必要がある場合には回路バラメータを個々に調整することが一般に必要とされた。

電子回路の伝達関数を LSI 回路に実装できる部品のみで実現することがしばしばのぞまれる。

このような部品によるひとつの榕放例はスイッチ、キャパンタおよび演算増幅器からなるものである。これらの脳品を使用する技術はスイッチト・キャパンタ技術と呼ばれており、Hosticka らの IEEE Journal of Solid State Circuits (1977年12月 P.600)等に記述されている。

スイッチト・キャパシタ回路の伝達関数はキャパシタの各電極と共通グランド(通常は基板)間の寄生容量に対して感度を有することが示される。基板側の電便と基板(グランド)間の寄生容量の方が大きい。しかしこの大きい方の寄生容量についてはキャパシタの基板側電管を基板に接地することで通常影響を除去することが可能である。しかし、このようにしてもキャパシタの上方の電極と基板間に寄生する小さい方の寄生容量に対する感度は依存として残る。

上記両寄生容量のいずれに対しても全く感度 を持たないスイッチト・キャパンタの 2 つの構成 例が Martin と Sedra により、 Electronics Letters (1979年6月21日、P365)に記載され

(7)

される。 積分器とスイッチト・キャパンタ回路で 使用する回路部品は全て LSI に実装可能である。

本発明の特徴は帰避キャパシタ付のひとつの 演算増幅器(積分器)および入来信号と横分器間 においてスイッチング動作するひとつあるいはそ れ以上の入力キャパンタで、入力信号をそのまま あるいは逆相で積分器に導入するキャパシタとか ら成る変調装置にある。 積分器の出力信号は入来 信号で変調されたキャリヤ信号と等価である。

以下、本発明のいくつかの実施例を示し、上述した目的その他の目的、特徴、利点等について 図面を参照した以下の詳細な説明を通して明らか にする。

第1図には論理回路 8、スイッチト・キャパンタ回路 1 0 および積分器 1 2 から成る変調装置をフロック図で示してある。論理回路 8 の入力14には変調信号のサンプリングの基本となるクロック信号が与えられる。変調信号はスイッチト・キャパンタ回路 1 0 の入力 1 6 に与えられる。キャリャ信号は論理回路 8 の入力 1 8 に与えられ、こ

ている。これには程々のフィルタ・セクション用の回路構成とともに反転積分器と非反転積分器の 対が蹴せられている。

したがつて、本発明の主な目的は個別部品が不要な、完全に集積化された変調装置を提供することである。

その他の目的はそのような変調装置をスイッチ、キャパシタおよび演算増幅器を使用して実現することである。

さらに他の目的はキャリヤ信号の制御の下で 交互に反転モードと非反転モードで競作するよう 横分器に変調信号を与える変調装置を提供するこ とである。

さらに他の目的はキャパシタの寄生容量に対 する感度を持たない変調装置を提供することであ る。

本発明によればキャリヤ信号の制御の下で反転モードと非反転モード間を切り換る積分器が使用される。入来信号、すなわち変調信号がスイッチト・キャベンタ回路を通してこの積分器に入力

(8)

の信号の状態によつてサンブルした変調信号があるいは反転した形で加えられるかが決まる。 積分器12は交調信号により変調されたキャリャ信号を発生する。 論理回路 B は切換に変調に号を発生する。 論理回路 B は切りに与えてもが積分器12に上述した形で印加図のみでよば、ままでののみでは、できる。スイッチは通常 MOSFETの通常でよく、これらののよいできる。のよりははないののよいできる。 なく 年積 間 と に 集積 することができる。

第2 a 図には第1 図のスイッチト・キャパシタ回路の基本的構成例を示してある。キャリャ信号の一方の半波期間(半サイクル)では、スイッチ20と22が同相で閉じてキャパシタ24を充電する。ついでスイッチ20と22は開になり、

スイッチ26と28が閉じてキャパシタ24を放催して積分器12に送る。この動作モードではサンブルした変調信号は反転した形で積分器に送られる。したがつて積分器12を帰還キャパシタ付の反転増幅器で構成した場合には、変調装置全体としては非反転モードで動作することになる。

キャリヤ信号の他方の半被期間においては、スイッチ20と28が同相で閉じキャパシタ24を充電し、サンプルした変調信号をそのままの形で検分器12に印加させる。しかる後、スイッチ20と28は開となり、これに代つてスイッチ22と26が閉じてキャパシタ24をグランドに放電する。したがつて、械分器が上述の構成の場合、変調装置全体としての動作は反転モード切換により変調が実行される。

(11)

に与えられる変調信号はクロック信号の半周期分だけ遅れる。これに対し、反転モードでは時間遅れなしで変調信号が積分器に与えられる。このフンパランスは出力信号にスプリアス成分を発生させる。

このアンバランスは第3a図に示すように基本例のスイッチト・キャパンタ回路にもうひとつスイッチを加えることで除かれる。

キャリヤ信号の第1の半周期ではスイッチ30は開いたままとし、スイッチト・キャパシタ回路の残りの部分は第2a図の回路の非反転動作と同様に動作させる。

しかし、キャリャ信号の第2の半周期ではスイッチ20と22を聞いたままにし、スイッチ26は閉じたままにする。そして、クロック信号の第1の半周期においてスイッチ30を閉じ、スイッチ20を通してキャパッタ24を充電する。クロック信号の第2の半周期ではスイッチ30を開、スイッチ28を閉として積分器14の方へキャパンタ24を放電する。こうして反転モード(キャ

SZO = CLOCK CXR

Sag = CLOCK

S26 = CLOCK CXR

s₂₈ = clock

ここに、CLOCK と CXRはそれぞれ、クロック信号とキャリャ信号の論理レベルを示す。

クロック信号とキャリヤ信号との間の位相関係に制限はない。ただし、クロック信号の周波数がキャリヤ信号の周波数の8倍より低い場合には 舷動作をもたらす重大な盃みが生じる。

本発明の好適実施例ではプロック信号の開設 数は2のx乗で、xの値は少なくとも4である。 第2b図にキャリャ信号とクロック信号および上述した切換信号間の好ましい関係の一例を示して ある。

上記変調装置が非反転モードで動作している場合には、クロック信号の最初の半周期においてキャバシタ24が充電され、次の半周期において積分器12に放電される。したがつて積分器12

(12)

リャ信号の第2の半周期での動作モード)でも、 上述した時間遅れが生じることになり、上記アン バランスがなくなる。

第2a図で説明したクロック信号とキャリャ信号の関係はこの場合も当てはまるが、個々の切換信号については変つてくる。

論理回路83はスイッチト・キャパシタ回路 10³ のスイッチの動作を制御する切換信号を発生する。切換信号 Sn(ここにnは第3a図の各スイッチ番号を示す)の好ましい切換の論理式は次の通り。

 $S_{20} = S_{22} = \overline{CLOCK \cdot CXR}$

S₂₆ = CLOCK CXR

 $s_{28} = CLOCK$

 $s_{30} = \overline{CLOCK \cdot CXR}$

ここに、CLOCKと CXR は上述した通りである。 第 3 h 図に第 3 a 図におけるキャリャ信号、 クロック信号および切換信号間の好ましい関係の 一例を示す。 第4 a 図は第3 図の変調装置の相補形であり したがつて動作モードの詳しい説明は省略する。 スイッチ 3 2 が第3 a 図のスイッチ 3 0 と相相関 係にあるスイッチである。第4 a 図の装置の動作 が充分理解できるように第4 b 図にキャリャ信号、 クロック信号および切換信号の間の所置の関係の

一例を示す。

第3 a 図(または第4 a 図)の回路を集積化した場合には、キャパシタ24の電板(第3 a 図ではスイッチ22、28、30、第4 a 図では20、26、32につながつている方の電極)と基板間の寄生容量のため反転モードでは積分器12の利得が増加するが、当該寄生容量は非反転モードにおける積分器12の利得には影響を与えない。このアンバランスのために積分器12の出力に小さなスプリアス成分が生じる。

新生容量の影響は寄生容量に対する感度を有しない第2。図の個路を使用し、かつ反転モードにおいて変調信号をクロック信号ないし切換信号の半周期分遅らせてから積分器に導入する遅延方

(15)

信号の各周期においてキャパシヌ50の電荷の一部を逃がすことにより増幅器のDC 色和を防止する機能を持つている。

第2a図で説明した切換信号とキャリア信号との間波数関係は第5a図にも同様に適用される。ただし、論理回路85は適当な修正をした切換信号を発生する。切換信号Sn(ここにnは第5a図の各スイッチの番号を示す)の好ましい論理式は次の通り。

S₂₀ = CLOCK CXR

 $S_{22} = S_{42} = S_{54} = CLOCK$

S₂₆ = CLOCK (+) CXR

 $S_{28} = S_{52} = CLOCK$

ここにCLOCK と CXR は前述の定義通り。

第5b図に第5a図のキャリャ信号、クロック信号および切換信号の間の好ましい関係の一例を示す。

前述した切換関数は互に重なり合わないよう にして実現するのが望ましい。間にすべきスイッ 式を採用することにより除くことができる。

第5 a 図に第2 a 図のスイッチト・キャパシタ同路 10² に上記遅延を与える遅延回路 3 8 を付加したものを示す。本例では変調値号は入力 40 に与えられる。スイッチ 4 2 はスイッチ 2 2 と同相で動作する。キャリャ信号の第1の半周期ではスイッチ 4 2 はスイッチ 2 0 に対しても同相であり、したがつて変調信号に遅れば与えられない。しかし、キャリャ信号の第2の半周期ではスイッチ 4 2 はスイッチ 2 0 と逆相で動作し、スイッチ 4 2 はスイッチ 2 0 と逆相で動作し、スイッチ 4 2 はスイッチ 2 0 と逆相で動作し、スイッチ 4 2 、キャパンタ 4 6 および単位利得増留 4 4 によりつくられるサンプル・ホールド回路により 変調信号はクロック信号の 半周期分遅延が与えられる。こうして第2 a 図に関して説明したアンパランスが取り除かれる。

第5 a 図に示す積分器には増幅器 4 8 と積分キャパンタ 5 0 から成る。積分器 1 2 と並列にスイッチ 5 2、スイッチ 5 4 およびキャパンタ 5 6 から成る回路 5 1 が接続される。このスイッチーコンデンサースイッチ組合せ回路 5 1 はクロック

(16)

チの動作をすでに閉になつているスイッチが開くまでまたせる。重なり合わない関係を得るのに適した方法は、上述した切換信号を発生させ、各切換信号を対応する AND ゲートに送ることである。そして各 AND ゲートの第2入力に前述したクロック信号の2倍の周波数のクロックパルスを与える。ついで AND ゲートの出力信号を切換信号として対応するスイッチに与える。このようにすればクロック信号の暑期別しか各スイッチは閉じないので重なり合わない切換関係が得られる。

上述した実施例ではキャリヤ信号として方形 被を使用したが、正弦波キャリヤへの近似が必要 な場合には、整形手段により横分器 1 2 の利得を 段階的に増減して変調が正弦放の階状近似で行な われるようにする。すなわち積分器 1 2 の利得は キャパシタ 2 4 の容量に直接比例するから、この キャパシタと並列になるようないくつかのキャパシタを順次切り換で導入することにより利得を制 御する。整形手段で使用されるキャパシタの数により正弦波への近似の程度が決まる。

第6 a 図にキャパシタ24と並列にキャパシタとスイッチを接続する場合の一例を示す。この並列回路は上述したスイッチト・キャパシタ回路のいずれにも付加することができる。スイッチ56、58、60が開の場合、横分帯12の利得はスイッチト・キャパシタ回路10⁶のキャパシタ24のみで定められる。まずスイッチ56を入れてキャパシタ62を導入し、以下、スイッチ58と60を順次閉にしてキャパシタ64と66を回路に加える。次に逆の順序でスイッチを開にしてキャパシタを順次、回路から切り維す。キャパンタ24、62、64、66を容量比を1.000:1.848:1.414:0.765にすればキャリヤ信号の第3、5、7、9、11および13高調波成分およびその側波帯を低域することができる。

第 6 b 図に第 6 a 図のスイッチ 5 6 、 5 8 、 6 0 用の切換信号 S_{56} 、 S_{58} 、 S_{60} のタイミングチャートを示す。論理回路 8^6 でつくられるこれらの切換信号の好ましい論理関係を装 I の真理値表で示す。この表において、 F_1 は キャリヤ信

(19)

4. 〔図面の簡単な説明〕

第1図は変調装置のプロック図、第2a図は 第1図のスイッチト・キャパシタ回路の基本構成 例を示す回路図、第2b図は第2a図のスイッチ の制御論理のタイミングチャート、第3a図は第 2a図のスイッチト・キャパシタ回路のもうひと つの構成例を示す回路図、第3b図は第3a図の スイッチの制御論理のタイミングチャート、第4 a凶は第1図のスイッチト・キャパシタ回路のも うひとつの構成例を示す回路図、第4b図は第4 a図のスイッチの制御論理のタイミングチャート、 第 5 a 図は第 1 図のスイッチト・キャパシタ回路 のさらに別の構成例を示す回路図、第5b図は第 5 a 図のスイッチの制御論理のタイミングチャー ト、第6a図は第1図のスイッチト・キャパシタ 回路のさらに別の構成例を示す回路図、第6 b 図 は第6 a 図のスイッチの制御論理のタイミング・ チャートである。

8、82、83、84、85、86 : 論理回路

12: 積分器

号の論理レベル、F₂、F₄、F₈はそれぞれキャリャ信号の 2 倍、 4 倍、 8 倍周皮の信号の論理レベルを示す。

 $F_1 F_2$ S 60 S 58 0 0 Ω O O 0 0 0 0 a n 0 O o 1 1 0 1 1

(20)

10,102,103,104,105,106: スイッチト・キャパシタ回路

24: 主キャパシタ

1

1

20、22、26、28、30、32: スイッチ

62、64、66: 補助キャパシタ

1

56、58、60: 補助スイッチ

特許出願人 レイカルーバーディック・インコーポレーテッド

代理人 弁理士 湯 浅 恭 三時期

(外1名)

n

16 20 24 28 36 62 28 56 578 5(4) Fig.6a

手 続 補 正 書

昭和 56年 9月,0日

特許庁長官 島 山 春 樹運

1. 事件の表示 昭和 58 年特許顯第 102176 号

2. 発明の名称
 スイッチト・キャバシタ支調装置

3. 補正をする者

事件との関係 特許出願人

住所

名 統一 レイカル・バーディック・インコーホービュテット!

4.代 理 人

住 所 東京都千代田区大手町二丁目2番1号 新大手町ビル206号室(電話 270-6641)

氏名 (2770) 弁理士 傷 茂 恭 三時間

 補 正の 対象 出類人の代表者名を記載した顕書 委任状及訳文 図 面

特 作 序 56. 9. 11 3 面 第

る補正の内容

別紙の頭りょうが 国面の内をには変更すし)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.