

Dinamika industrijskih sustava I. međuispit

20.04.2017.

- 1. (5 bodova) Napisati izraze matematickog modela sinkronog motera a unutarnjim permanantnim magnetima u de koordinatnom sustavu u relativnim jedinienim (per unit sustavu) sa olsk trične veličine ($\frac{d_0}{d_0}$). Basne vrijednosti su: $U_b = \sqrt{2}U_{fn}$: $I_b = \sqrt{2}I_{fn}$) oka si dek (U_{fn}) označava efektivnu vrijednost faznog napona. I_{fn} označava efektivnu vrijednost faznog napona. I_{fn} označava efektivnu vrijednost električne brsine vrtuje).
- 2. (5 boda) Sinkroni stroj s permanentnim magnetima ima sljedeće parametre:
 - p = 2, broj pari polova,
 - $L_d = 7 \cdot 10^{-3} H$, induktivitet u d osi,
 - $L_q = 7 \cdot 10^{-3} H$, induktivitet u q osi,
 - $R_s = 2.98 \Omega$, otpor statora,
 - $\phi_{mg} = 0.125$ Wb, magnetski tok permanentnih magneta,
 - $J_m = 0.47 \cdot 10^{-4} \text{ kgm}^2$, moment inercije i
- D = 1.1 · 10⁻⁴ Nms, faktor prigušenja.

Odrediti pojačanje regulatora struje i_{ψ} ako stacionarno pojačanje zatvorenog kruga iznosl

- (a) $\alpha = 0.4$, odnosno
- (b) $\alpha = 0.9$.

Regulator je P tipa.

- 3. (6 boda) Odrediti izraze za parametre PID tipa regulatora pozicije $(K_c, \tau_I \mid \tau_D)$ sinkre motora s vanjskim permanentnim magnetima. Prijenosna funkcija PID tipa regulator $C(s) = K_c \left(1 + \frac{1}{\tau_I s} + s \tau_D\right)$. Regulator struje i_q je P tipa (kao u zadatku 2).
- (4 boda) Sinkroni motor s permanentnim magnetima (čiji parametri su zadani u zadat radi u regulaciji momenta. Regulator struje i_q je P tipa s pojačanjem $K_c^q = 10R_s$. Od statičku pogrešku (odstupanje stvarne vrijednosti od željene u stacionarnom stanju) st na skokovitu promjenu postavne veličine momenta M_{em}^* s 0 na 1 Nm.
- 3 boda) Navesti osnovne razlike između modulacije u šest koraka (six-step), sinusr≡orske širinsko impulsne modulacije kod pretvarača napona i frekvencije za dobivanje uplitude i frekvencije napona na stezaljkama stroja.

Dinamika industrijskih sustava 1. međuispit

20.04.2017.

- (5 bodova) Napisati izraze matematičkog modela sinkronog motora s umitarnjim permanentnim magnetima u dq koordinatnom sustavu u relativnim jedinicama (per unit sustavu) za električne veličine (^{dig}/_{dt} i ^{dig}/_{dt}). Bazne vrijednosti su: U_b = √2U_{fn}, I_b = √2I_{fn} i ω_b = ω_{cb} = 2π f_n (U_{fn} označava efektivnu vrijednost faznog napona. I_{fn} označava efektivnu vrijednost fazne struje, a ω_{cb} nazivnu vrijednost električne brzine vrtnje).
- 2. (5 boda) Sinkroni stroj s permanentnim magnetima ima sljedeće parametre:
 - p = 2, broj pari polova,
 - $L_d = 7 \cdot 10^{-3}$ H, induktivitet u d osi,
 - $L_q = 7 \cdot 10^{-3}$ H, induktivitet u q osi,
 - $R_8 = 2.98 \Omega$, otpor statora,
 - $\phi_{mg} = 0.125$ Wb, magnetski tok permanentnih magneta,
 - $J_m = 0.47 \cdot 10^{-4} \text{ kgm}^2$, moment inercije i
 - $D = 1.1 \cdot 10^{-4}$ Nms, faktor prigušenja.

Odrediti pojačanje regulatora struje i_q ako stacionarno pojačanje zatvorenog kruga iznosi:

- (a) $\alpha = 0.4$, odnosno
- (b) $\alpha = 0.9$.

Regulator je P tipa.

- 3. (6 boda) Odrediti izraze za parametre PID tipa regulatora pozicije $(K_c, \tau_I \text{ i } \tau_D)$ sinkronog motora s vanjskim permanentnim magnetima. Prijenosna funkcija PID tipa regulatora je $C(s) = K_c \left(1 + \frac{1}{\tau_I s} + s \tau_D\right)$. Regulator struje i_q je P tipa (kao u zadatku 2).
- 4. (4 boda) Sinkroni motor s permanentnim magnetima (čiji parametri su zadani u zadatku 2) radi u regulaciji momenta. Regulator struje i_q je P tipa s pojačanjem $K_c^q = 10R_s$. Odrediti statičku pogrešku (odstupanje stvarne vrijednosti od željene u stacionarnom stanju) struje i_q na skokovitu promjenu postavne veličine momenta M_{em}^* s 0 na 1 Nm.
- 5. (3 boda) Navesti osnovne razlike između modulacije u šest koraka (six-step), sinusne i vektorske širinsko impulsne modulacije kod pretvarača napona i frekvencije za dobivanje željene amplitude i frekvencije napona na stezaljkama stroja.

6. (3 boda) Odrediti ukupno statorsko protjecanje $F\left(t\right)^{\theta}$ za položaj $\theta=90^{\circ}$ u trenutku t=1s ako je:

$$i_n(t) = 5\cos(314t) \tag{1}$$

$$i_b(t) = 5\cos\left(314t - \frac{2\pi}{3}\right) \tag{2}$$

$$i_b(t) = 5\cos(314t)$$
 $i_b(t) = 5\cos\left(314t - \frac{2\pi}{3}\right)$
 $i_c(t) = 5\cos\left(314t - \frac{4\pi}{3}\right)$
(3)

Broj zavoja po pojedinoj fazi je jednak i iznosi $N_1=N_2=N_3=N_s=100$.

7. (4 boda) Za sustav upravljanja brzinom vrtuje sinkronog motora s unutarnjim permanentnim magnetima napisati izvodanja brzinom vrtuje sinkronog motora s unutarnjim permanentnim magnetima napisati izraze za upravljačke signale u_d i u_q (u vremenskoj domeni) iz regulatora struja i_d i i_q (napomena: uzeti u obzir rasprezanje). Za dobivene izraze za u_d i u_q nacrtati blokovsku shemu. Odak struja vezanje). blokovsku shemu. Odabrati tip regulatora struje i_d , odnosno i_q takav da je statička pogreška (odstupanje stvarne vrijednosti od šelimen. (odstupanje stvarne vrijednosti od željene u stacionarnom stanju) brzine vrtnje stroja jednaka nuli. nuli.