CLASS ASSIGNMENT

Introduction to Algorithm CSE-411

Submitted to:
Dr. Mohammad Sanaullah Chowdhury
Professor
Department of Computer Science and Engineering
University of Chittagong

Submitted by:
Kazi Omar Sharif
20701015
Department of Computer Science and Engineering
University of Chittagong

Wednesday 7th December, 2022

Quick sort applies divide & conquer paradigm.

Algorithm 1: QUICKSORT ALGORITHM:

```
QUICKSORT(A,p,r)

if p;rthen

q=PARTITION(A,p,r)

QUICKSORT(A,p,q-1)

QUICKSORT(A,q+1,r)

end if
```

Algorithm 2: Partition algorithm:

```
PARTITION(A,p,r)

x=A[r]
i=p-1

for j=p to r-1 do

if A[r] ≤ x then

i=i+1

end if

exchange A[i] with A[j]

end for

exchange A[i+1] with A[r]

return i+1
```

pen & paper description of quick sort

STEP	VALUES	TRUE/FALSE	AFTER THE OPERATION ARRAY WILL BE:	DISCUSSION
1.QUICKSORT(A,p,r)	p=1 r=6	2. p <r td="" true<=""><td>5 2 4 6 1 3</td><td></td></r>	5 2 4 6 1 3	
3.q=PARTITION(A,p,r)	p=1 r=6			
1. x=A[6]	x=3			
2. i=p-1	i=0			
	j=1:			
3.for(j=p to r-1)	$if(A[1] \le x)$ $if(5 \le 3)$	false		
	j=2: if(A[2]<=x) if(2<=3) i=i+1 i=1 swap(A[i],A[j]) swap(A[1],A[2])	true	254613	
	j=3: if(A[3]<=x) if(4<=3)	false		
	j=4: if(A[4]<=x) if(6<=3)	false		
swap(A[i+1] ,A[r])	j=5: if(A[5]<=x) if(1<=3) i=i+1 i=2 swap(A[2],A[5]) swap(A[3],A[6])	true	214653	
swap(A[IT1],A[1])	swap(A[J],A[U])		213034	

Table 1:

2 1 3 6 5 4

Table 2:

After the operations pivot 3 will its right position . before pivot element 3 all element are smaller than 3 & after pivot element all element are greater than 3 $\,$

Time Complexity: 1). **Best Case Complexity:** When the partitioning algorithm always chooses the middle element or near the middle element as the pivot, the best case scenario happens. Quicksorts best-case time complexity is O (n * logn). The following is the best-case recurrence.

$$T(n) = 2T(n/2) + O(n) \tag{1}$$

2). Average Case Complexity: This occurs when the array elements are in a disordered sequence that isn't increasing or decreasing properly. Quicksort's average case time complexity is O(n * logn). The following is the average-case recurrence.

$$O(n * log n) \tag{2}$$

3). Worst Case Complexity: The worst-case situation is when the partitioning algorithm picks the largest or smallest element as the pivot element every time. The worst-case time complexity of quicksort is O (n2). The following is the worst-case recurrence.

$$T(n) = T(0) + T(n-1) + O(n)$$
(3)