Performance in the absence of the ground truth

DIVE INTO NANNYML

Key Concepts of machine learning in production

- Model Decay
 - Data Drift
 - Concept Drift

Estimating performance in the absence of the ground truth

- CBEP estimator
- Data Drift Plots
- Alerts

From the tutorial to the reality

- Hacking the docs
- Unpopulated Chunks

WORK FROM HOME ? ONO Binary Model

Model Decay

Model Decay Detected a posteriori

Model Decay Detected a posteriori

Silent

Model Decay Detected a posteriori

Silent

Can take bad decisions

Why do Machine learning models fail? Data Drift

Why do Machine learning models fail? Data Drift

A/B testing

Why do Machine learning models fail? Concept Drift

The main difference in between data drift and concept drift is that data drift is associated with the change in the statistical properties of the inputs or independent variables associated with features, while concept drift is a change in the pattern in between the inputs and the outputs associated with the classifier or when is a major change in the statistical properties of the dependent variable

RECAP

Model Decay

Data Drift

Concept Drift

Performance in the absence of the ground truth

Generally, Model decay is normally detected a posteriori, when we do have the opportunity to compare the true label -y or actuals—with the predictions of the model -y_hat-' ... So How do we measure performance estimation in the absence of the ground truth?

CBEP estimator

CBEP estimator

Partitions

Predicted Proba

CBEP estimator

Partitions

Predicted Proba

Reference

- Data that shows good model performance
- True label (y)
- Predicted probabilities

Analysis

- Absence of the ground truth
- NO True label (y)
- Predicted probabilities

Metadata

```
occurred.metadata = nml.extract_metadata(reference)
metadata.target_column_name = 'work_home_actual'
```

Estimator

cbpe = nml.CBPE(model_metadata=metadata, chunk_period="D")
cbpe.fit(reference_data=reference)

CBPE - Estimated ROC AUC

Performance threshold Degraded performance

Data Drift Plots

Distribution over time for wfh_prev_workday

Distribution over time for distance_from_office

INTEACTIVE RECIPIES

CHE TUTORIALS

PURCHASE RECIPI STORING ALBUM

user_id	days_since_trial_start	n_sessions	os_name	country	locale	device_type	source	level	•••	time_chef	time_album
23326879	5	1	1	16	3	2	3	0		0.000000	0.0
23251961	2	1	1	36	3	2	3	1		1.000000	0.0
23412815	6	3	1	43	4	2	3	1		0.142857	0.0
23464377	5	1	1	39	17	2	3	1		0.055556	0.0
23482370	1	1	0	43	3	63	3	1		1.000000	0.0
					•••	***					
23534685	1	2	1	36	3	2	0	2		0.000000	0.0
23416575	6	3	1	43	3	2	3	1		0.250000	0.0
23549766	0	1	1	16	3	2	3	1		1.000000	0.0
23538438	1	2	1	16	3	2	3	1		0.000000	0.0
23525662	0	1	1	16	3	2	3	2		0.250000	0.0

Metadata

```
metadata = nml.extract_metadata(reference)
metadata.target_column_name = 'customer'
```

```
Model problem binary_classification

Identifier column uid
Timestamp column date
Partition column partition
Prediction column y_pred
Predicted probability column y_pred_proba
Target column customer
```

Estimator

```
cbpe = nml.CBPE(model_metadata=metadata)
cbpe.fit(reference_data=reference)
est_perf = cbpe.estimate(pd.concat([reference, analysis], ignore_index=True))
est_perf.data.head()
fig = est_perf.plot(kind='performance')
fig.show()
```

CBPE - Estimated ROC AUC


```
cbpe = nml.CBPE(model_metadata=metadata)
cbpe.fit(reference_data=reference)
est_perf = cbpe.estimate(pd.concat [analysis], ignore_index=True))
est_perf.data.head()
fig = est_perf.plot(kind='performance')
fig.show()
                                         The estimation sometimes is performed on
                                         reference only (it works for imbalance classes : Ej :
     CBPE - Estimated ROC AUC
                                         FRAUD)
     0.88
     0.86
 Estimated ROC AUC
     0.84
     0.82
                                                                                                  0.81
      0.8
         Dec 23
                     Dec 24
                                Dec 25
                                            Dec 26
                                                        Dec 27
                                                                    Dec 28
                                                                                Dec 29
                                                                                           Dec 30
         2020
                                                     Time
```

---- Analysis period Confidence band — Performance threshold Degraded performance

```
est_perf = cbpe.estimate(pd.concat([reference, analysis], ignore_index=True))
```

Confidence based performance estimation is ALWAYS done in ANALYSIS PARTITION , we concatenate them for visual completeness .

Time-based chuncks

```
cbpe = nml.CBPE(model_metadata=metadata, chunk_period="D")
cbpe.fit(reference_data=reference)
est_perf = cbpe.estimate(pd.concat([reference, analysis], ignore_index=True))
fig = est_perf.plot(kind='performance')
fig.show()|
```


Time-based chuncks

CBPE - Estimated ROC AUC

Time-based chuncks

CBPE - Estimated ROC AUC

The resulting list of chunks contains 12 underpopulated chunks. They contain too few records to be statistically r obust and might negatively influence the quality of calculations. Please consider splitting your data in a differe nt way or continue at your own risk.

Size based chunks based on Time-based intervals

Size-based Knowledge Time-based

CONCLUSIONS

Model Decay

CBPE Estimator
Chunks

https://github.com/NannyML/nannyml/

A STAR!

