機械学習を用いた ARマーカの位置姿勢推定

機械知能研究室 ER17076 安井理

研究背景

- •2次元コードはロボット認識などの広い分野で利用されている
 - ・2次元コードの大きさを定義することで3次元位置・姿勢の推定を行える
 - •特殊なパターンによりどの角度からでも検出可能

2次元コードの問題

- 変形が生じた時に認識機能が著しく低下
- ・機械学習により変形したマーカを検出する方法は提案されているが姿勢推定までは至ってない

認識可能なマーカ

歪みにより認識不可

2次元コードの問題

- 。変形が生じた時に認識機能が著しく低下する
- 機械学習により変形したマーカを検出する方法は提案されているが姿勢推定までは至ってない

認識可能なマーカ

機械学習により検出可能

研究目的

・変形の加わったARマーカを含むカラー画像から 「検出・平面状ARマーカへの復元・姿勢推定」を行う

アプローチ

- SSD(Single ShotMultiBox Detector)によってARマーカを検出し ID・座標を検出
- ・変化の加わったARマーカをAAE (Augumented Autoencoder) での平面化を行い、取得した潜在変数より姿勢の推定を行う

W. Liu et al "SSD:
Single Shot MultiBox Detector", Proc. of ECCV, 2016

アプローチ

- SSD (Single ShotMultiBox Detector)によってARマーカを検出しID・座標を検出
- ・変化の加わったARマーカをAAE(Augumented Autoencoder) で平面化を行い、取得した潜在変数より姿勢を推定

Martin Sundermeyer et al

アプローチ

- SSD (Single ShotMultiBox Detector)によってARマーカを検出しID・座標を検出
- 。変形の加わったARマーカをAAE (Augumented Autoencoder)を用いて平面化と姿勢の推定を行う
- · AAEを用いた復元・姿勢推定の提案

Augumented Autoencoder (AAE)

- ・変化の加わったARマーカを平面状ARマーカへ復元
 - ・背景画像や光, 遮蔽物など環境ノイズを加え学習を行い ノイズによらない本質的な潜在表現を取得できるよう学習
 - ・エンコーダーにより圧縮されたマーカの姿勢情報を 1次元特徴量(潜在変数z)として取得

Augumented Autoencoder

- ・変化の加わったARマーカを平面状ARマーカへ復元
 - ・背景画像や光, 遮蔽物など環境ノイズを加え学習を行い ノイズによらない本質的な潜在表現を取得できるよう学習
 - ・エンコーダーにより128次元まで圧縮されたマーカの姿勢情報を 潜在変数zとして取得

Augumented Autoencoder

- 入力(b): 教師データ(a)と姿勢が対応する背景付きの変形ARマーカ画像
- ・出力(c): 教師データ(a)との損失関数が小さくなるように学習
- ∘ 学習により歪みのないARマーカが復元可能

姿勢推定

- ・学習済みのエンコーダーによって得られる潜在変数 えを使用し 類似度計算を行い姿勢を推定
- ・推定対象画像とデータベース(DB)画像の2つを使用

DB画像

データベースの作成

- ∘ 各姿勢の変形ARマーカの画像をあらかじめAAEに入力
 - ·各姿勢画像(n枚)それぞれの潜在変数(zn)をDBとして保存

各姿勢の画像(n枚)

姿勢推定

- ・推定対象画像をエンコーダーに入力し潜在変数を取得
- ・取得した潜在変数とDBの類似度を計算
 - ・最も近いDBの姿勢を推定姿勢として決定
 - ・推定姿勢[roll,pitch,yaw]は度数法で標記

使用するARマーカ

• ROSで利用されているar_track_alvarパッケージのID0~9番を使用

学習に使用するモデル

- 。ARマーカのサイズは縦横50mm
- ∘ 半径20, 30, 40mmの円柱に貼り付けたモデルを使用
- ・学習モデルの種類「変形ARマーカモデル・平面状ARマーカモデル」2種類それぞれ ID0~9×半径3種類の合計60種類のモデルを使用

使用モデルの例(ID=0, 半径=20)

学習用画像の作成

- センサシミュレーションにより学習用画像を作成
 - ・変形ARマーカの背景にはテクスチャを付け現実環境を仮定
 - ∘ 学習画像は1種類あたり1500枚用意
 - ∘訓練データ, 教師データの60種類, 合計90,000枚用意

評価実験

- ∘平均絶対誤差(MAE)を用いて推定精度を評価
 - 推定姿勢[roll, pitch, yaw]の誤差を算出
- ・評価データ
 - 画像:各半径100枚
 - ∘モデル姿勢: ARマーカが半分以上見える範囲内からランダム

評価データ

評価データの平面画像

評価実験

- ・姿勢推定で使用するDB
 - 。モデル姿勢範囲: roll:0~360° pitch:-35~35° yaw:-15~15°
 - 。分解能3度となるよう36,000枚の姿勢画像をDBに使用

評価実験

- ・AAEによる評価データの復元画像
 - 変化を取り除き平面化できていることを確認

評価データ

正解画像

復元画像

評価結果

提案手法における姿勢推定精度 MAE

円柱半径[mm]	roll	pitch	yaw	姿勢平均
20	5.30	3.64	3.42	4.12
30	5.78	4.49	3.71	4.66
40	6.52	4.51	3.73	4.91

評価結果

- ∘姿勢推定のMAEは、4~5前後となりズレはあるが姿勢推定は可能
- 半径が小さいモデルほど推定精度が高い

提案手法における姿勢推定精度 MAE

円柱半径[mm]	roll	pitch	yaw	姿勢平均
20	5.30	3.64	3.42	4.12
30	5.78	4.49	3.71	4.66
40	6.52	4.51	3.73	4.91

評価結果

- 。姿勢推定のMAEは、4前後となりズレはあるが姿勢推定は可能
- 半径が小さいモデルほど推定精度が高い
 - ⇒半径が小さいモデルほど姿勢ごとの画像特徴が明確になる為

提案手法における姿勢推定精度 MAE

円柱半径[mm]	roll	pitch	yaw	姿勢平均
20	5.30	3.64	3.42	4.12
30	5.78	4.49	3.71	4.66
40	6.52	4.51	3.73	4.91

まとめ

- •機械学習による姿勢推定を提案
 - ・AAEを用いて姿勢推定が行えることを確認した
- ・今後の課題
 - ・推定精度を上げるためDBの分解能を1度で用意
 - ・学習データのバリエーションを増やし潜在変数を明確に表現する事で、推定精度の向上
 - ・実環境下での姿勢推定