MODULE - II

SYNTAX ANALYSIS

Review of Context-Free Grammars – Derivation trees and Parse Trees, Ambiguity.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

AMAL JYOTHI COLLEGE OF ENGINEERING
KANJIRAPPALLY

SYNTAX ANALYSIS

Syntax analysis or parsing is the second phase of a compiler.

A lexical analyzer can identify tokens with the help of regular expressions and pattern rules.

But a lexical analyzer cannot check the syntax of a given sentence due to the limitation s of the regular expressions.

Regular expressions cannot check balancing tokens, such as parenthesis

10101000101

SYNTAX ANALYSIS

- Syntax analysis is done by the parser.
 - Detects whether the program is written following the grammar rules and reports syntax errors.
 - Produces a parse tree from which intermediate code can be generate
 d.

SYNTAX ERROR HANDLING

55

- Good compiler helps in identifying and locating errors
- Errors maybe:
 - Lexical: misspelling of identifiers, keywords
 - Syntactic: expression with unbalanced parenthesis
 - Semantic: Operator applied to incompatible operands
 - Logical: Infinitely recursive calls
- Much of the error detection & recovery is centered around syntax analysis phase
- Its because, stream of tokens from LA disobeys grammatical rules defining programming language

Use of Grammars

- Syntax of Programming language constructs can be described by CFG
 - Grammar Advantages
 - Precise and easy to understand syntactic specification
 - Automatic construction of efficient parsers
 - Imparts a structure to the programming language
 - Language evolution is easier.

- SS +
- Parser obtains a string of tokens from the lexical analyzer
- Verifies that the string can be generated by the grammar of source language
- Reports Syntax errors / recovers from common errors

Panic mode

- Discards input symbols until tokens in the synchronizing set are encountered
- Synchronizing set (delimiters) must be chosen carefully(; or end)
- Skips input
- Simple-no infinite loop
- Adequate when multiple errors in same statement is rare.

Phrase level

- Local correction, replaces prefix
- Should not lead to infinite loops
- First used with top down parsing
- Difficult when actual error occurred before detection

Error productions

- Augment grammar with productions that generate erroneous constructs
- If error production is used by the parser, can generate error diagnostics

Global correction

- Given x-incorrect input string and grammar G
- Algorithm will find a parse tree for related string y by identifying minimal sequence of changes needed to transform x to y
- Costly-time and space

1010001010100010101

Context Free Grammars: Concepts & Terminology

Definition:

A Context Free Grammar, CFG, is described by T, NT, S, PR,

- T: Terminals / tokens of the language
- NT: Non-terminals to denote sets of strings generated by the grammar in the language
- S: Start symbol, $S \in NT$, which defines all strings of the language
- PR: Production rules to indicate how T and NT are combined to generate valid strings of the language.

CFG

 A context-free grammar consists of terminals, non-terminals, a start symbol, and productions.

Eg : stmt → if expr then stmt else stmt

- 1. Terminals are the basic symbols from which strings are formed. The term "token name" is a synonym for "terminal" if, then, else are **keywords** in the above example.
- 2. Non-terminals are syntactic variables that denote sets of strings.

The non-terminals define sets of strings that help to define the language generated by the grammar

stmt and expr are **non-terminals**

- In a grammar, one nonterminal is distinguished as the start symbol and the set of strings it denotes is the language generated by the grammar.
- 4. The productions of a grammar specify the manner in which the terminals and nonterminals can be combined to form strings. Each production consists of:
 - a. A nonterminal called the head or left side of the production; this production defines some of the strings denoted by the head.
 - b. The symbol \rightarrow sometimes : : = has been used in place of the arrow.
 - c. A body or right side consisting of zero or more terminals and non terminals.

Notational Conventions

- To avoid always having to state that "these are the terminals," "these a re the non-terminals," and so on, the following notational conventions for grammars will be used.
- These symbols are terminals:
 - a. Lowercase letters early in the alphabet, such as a, b, c.
 - b. Operator symbols such as +, *, and so on.
 - c. Punctuation symbols such as parentheses, comma, and so on.
 - d. The digits $0, 1, \ldots, 9$.
 - e. Boldface strings such as id or if, each of which represents a single terminal symbol.

Notational Conventions - Non-Terminals Uppercase letters early in the alphabet, such as *A*, *B*, *C*.

- The letter *S*, which, when it appears, is usually the start symbol.
- Lowercase, italic names such as *expr* or *stmt*.
- When discussing programming constructs, uppercase letters may be used to represent non-terminals for the constructs.

often represented by E, T, and F, respectively.

• For example, non-terminals for expressions, terms, and factors are

• Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols; that is, either non-terminals or terminals.

Notational Conventions

- Lowercase letters late in the alphabet, chiefly u,v,..., z, represent (possibly empty) strings of terminal.
- Lowercase Greek letters, a, 0, 7 for example, represent (possibly empty) strings of grammar symbols.
- Thus, a generic production can be written as where A is the head and a the body.
- A set of productions head.

 A → a1 A → a2 ..., A → ak vith a common head.
- A (call them A-productions), may be written A→ a1 | a2 |ak
- Unless stated otherwise, the head of the first production is the start symbol

Grammar for simple Arithmetic Expressions

expression -> expression + term expression -> expression - term expression -> term term * factor term

term / factor term factor -> term

factor (expression) -> factor id->

- In this grammar,
- The terminal symbols are id + * /
- The non-terminal symbols are expression, term and factor, and expression is the start symbol

17

Using these conventions, the grammar can be rewritten concisely as

$$\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T} \mid \mathbf{E} - \mathbf{T} \mid \mathbf{T}$$
 expression -> term term term -> term * factor term term -> term * factor term term -> term / factor term -> factor factor -> (expression) factor -> id

The notational conventions tell us that E, T, and F are non-terminals,

with E the start symbol. The remaining symbols are terminals.

expression -> expression + term

10101000101010001010

Derivations

- The construction of a **parse tree** can be made precise by taking a derivational view, in which productions are treated as rewriting rules.
- Beginning with the start symbol, each rewriting step replaces a nonterminal by the body of one of its productions.
- This derivational view corresponds to the top-down construction of a parse tree.

Derivations

- Production is treated as rewriting rule in which the NT on left is replaced by string on the right side of production
- EXAMPLE: E ⇒ -E (the ⇒ means "derives" in one step) using the production rule: E → -E
- EXAMPLE: $E \Rightarrow E \land E \Rightarrow E * E \Rightarrow E * (E)$
- **DEFINITION:** ⇒ derives in one step
 - $\stackrel{+}{\Rightarrow}$ derives in one or more steps
 - $\stackrel{*}{\Rightarrow}$ derives in zero or more steps

EXAMPLE

S S A A STANSFORM ENGINEERING ENGINEERING

- $\alpha A \beta \Rightarrow \alpha \gamma \beta$ if $A \rightarrow \gamma$ is a production rule
- $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n$, $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_n$; $\alpha \stackrel{*}{\Rightarrow} \alpha$ for all α

• If $\alpha \stackrel{*}{\Rightarrow} \beta$ and $\beta \Rightarrow \gamma$ then $\alpha \stackrel{*}{\Rightarrow} \gamma$

EXAMPLE

Consider the following grammar, with a single non-terminal E, which adds a production to the grammar of **Arithmetic Expressions**.

$$E \longrightarrow E+E \mid E^* E \mid (E) \mid -E \mid id$$

- The production $E \rightarrow -E$ signifies that if E denotes an expression, then -E must also denote an expression.
- placement of a single E by E will be described by writing E => -E which is read, "E derives E."
- We can take a single E and repeatedly apply productions in any order to get a sequence of replacements.
- For example, E => -(E) => -(id)

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathbf{id}+E) \Rightarrow -(\mathbf{id}+\mathbf{id})$$

- grammar.

 At each step in a derivation, there are two chaines to be made
- At each step in a derivation, there are two choices to be made.
- We need to choose which nonterminal to replace, and having made this choice, we must pick a production with that nonterminal as head.

• The strings E, -E, -(E),..., - (id + id) are all sentential forms of this

• For example, the following alternative derivation of - (i d + id).

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

1010001010 **10001010** 23 Grammar list → list + digit | list – digit | digit

list \rightarrow 9 – 5 + digit

list \rightarrow 9 – 5 + 2

Derive the string 9-5+2 from the grammar

 $list \rightarrow list - digit + digit$ $list \rightarrow \underline{digit} - digit + digit$

Leftmost And Rightmost Derivation of a String

- Leftmost derivation A leftmost derivation is obtained by applying production to the leftmost variable in each step.
- Rightmost derivation A rightmost derivation is obtained by applying production to the rightmost variable in each step.

Example

Let any set of production rules in a CFG be

$$X \rightarrow X+X \mid X^*X \mid X \mid a$$

over an alphabet {a}.

The **leftmost derivation** for the string "a+a*a"

$$X \rightarrow X+X \rightarrow a+X \rightarrow a+X^*X \rightarrow a+a^*X \rightarrow a+a^*a$$

The rightmost derivation for the above string "a+a*a"

$$X \to X^*X \to X^*a \to X + X^*a \to X + a^*a \to a + a^*a$$

²⁶ The stepwise derivation of the above string "a+a*a (***)

$$X \rightarrow X+X \mid X^*X \mid X \mid a$$

The **leftmost derivation** for the string "

a+a*a"

$$X \rightarrow X+X$$

$$\rightarrow$$
 a+X

$$\rightarrow$$
 a + X*X

1010001010100010 30010101000101

²⁷ The stepwise derivation of the above string "a+a*a [65]

The **rightmost derivation** for the above

string "a+a*a"

PARSE TREE

- Parse tree is a hierarchical structure which represents the derivation of the grammar to yield input strings.
- Simply it is the graphical representation of derivations.
- Root node of parse tree has the start symbol of the given grammar from where the derivation proceeds.
- Leaves of parse tree are labeled by non-terminals or terminals.
- Each interior node is labeled by some non terminals.

101000101

101000101010001010

• If A \rightarrow xyz is a production, then the parse tree will have A as interior node whose children are x, y and z from its left to right.

Yield of Parse Tree

• The leaves of the parse tree are labeled by non-terminals or terminals and read from left to right, they constitute a sentential form, called the yield or frontier of the tree.

 $E \Rightarrow E \wedge E$

Derivations & Parse Tree

 \mathbf{E}

Parse tree

Parse Trees and Derivations

TO SHEETING EARLING EARLING

- Consider the expression grammar:
 - $E \rightarrow E+E \mid E*E \mid (E) \mid -E \mid id$
- Leftmost derivations of id + id * id

Parse Tree & Derivations – cont....

Draw a parse tree for –(id + id) Grammar: $E \rightarrow E + E \mid E * E \mid (E) \mid -E \mid id$ Parse tree for -(id + id)

34 Ambiguous Grammar

select for a sentence.

- An ambiguous grammar is one that produces **more than one leftmost** or more than one rightmost derivation for the same sentence.
- For most parsers, it is desirable that the **grammar be made unambig uous**, for if it is not, we cannot uniquely determine which parse tree to

• In other cases, it is convenient to use carefully chosen ambiguous grammars, together with disambiguating rules that "throw away" undesirable parse trees, leaving only one tree for each sentence.

Alternative Parse Trees

- Consider the sentence id + id * id
- It has two leftmos

 \Rightarrow E + E * E

 \Rightarrow id + E * E

 \Rightarrow id + id * E

 \Rightarrow id + id * id

Derivation 1

 $E \Rightarrow E * E$

t derivations	
---------------	--

Derivation 2

 $E \Rightarrow E + E$

 \Rightarrow id + E

 \Rightarrow id + E * E

 \Rightarrow id + id * E

 \Rightarrow id + id * id

Resolving Problems: Ambiguous Grammars

Consider the following grammar segment:

$$stmt \rightarrow if \ expr \ then \ stmt$$

if expr then stmt else stmt

other (any other statement)

Matching then and else

Eg: if E1 then S1 else if E2 then S2 else S3

.0101000101010001010

Eg: if E1 then S1 else if E2 then S2 else S3

Parse Trees for Example

Form 1:

Form 2:

Eg: if E1 then S1 else if E2 then S2 else S3

100010101010001010 1000101010001010

if arm than start al

if expr then stmt else stmt

other (any other statement)

Rule: Match each else with the closest previous unmatched then.

Revise to remove ambiguity: Statement between then and else must be matched

Removing Ambiguity

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt / other

 $unmatched_stmt \rightarrow if \ expr \ then \ stmt$

if expr then matched_stmt else unmatched_stmt

Eg: if E1 then S1 else if E2 then S2 else S3

Check whether the given grammar is ambiguous or not-

 $S \rightarrow AB \mid aaB$ $A \rightarrow a \mid Aa$

 $\mathbf{B} \to \mathbf{b}$

Let us consider a string w generated by the given grammar $\mathbf{w} = \mathbf{aab}$

Now, let us draw parse trees for this string w.

Since two different parse trees exist for string w, therefore the given grammar is ambiguous.

Solve

Consider the grammar-

 $S \rightarrow A1B$

 $A \rightarrow 0A / \in$

 $B \rightarrow 0B / 1B / \in$

For the string w = 00101, find-

- ✓ Leftmost derivation
- ✓ Rightmost derivation
- ✓ Parse Tree

And check whether the grammar is ambiguous or not

FOR MORE PROBLEMS VISIT:

https://www.gatevidyalay.com/grammar-ambiguity-ambiguous-grammar/

 \rightarrow A101B

 \rightarrow A101

 $\rightarrow 0A101$

 $\rightarrow 00A101$

 $\rightarrow 00101$

(Using $B \rightarrow 1B$)

(Using $B \rightarrow \in$)

(Using $A \rightarrow 0A$)

(Using $A \rightarrow 0A$)

(Using $A \rightarrow \in$)

(Using $A \rightarrow 0A$)

(Using $A \rightarrow \in$)

(Using $B \rightarrow 0B$)

(Using $B \rightarrow 1B$)

(Using $B \rightarrow \in$)

 $\rightarrow 00A1B$

 $\rightarrow 001B$

 $\rightarrow 0010B$

 $\rightarrow 00101B$

 $\rightarrow 00101$

Whether we consider the leftmost derivation or rightmost derivation, we get the above parse tree.

Thus the given grammar is unambiguous.

Left Recursion

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

AMAL JYOTHI COLLEGE OF ENGINEERING

Left Recursion

- A grammar is said to be left –recursive if it has a non-terminal A such that there is a derivation $A \rightarrow A\alpha$, for some string α .
- The generation is **left-recursive** if the *leftmost symbol on the right side is equivalent to the nonterminal on the left side*.

Ex: $\exp \rightarrow \exp + term$.

- A grammar that contains a production having left recursion is called as a
 Left-Recursive Grammar.
- Similarly, if the rightmost symbol on the right side is equal to left side is called Right -Recursion.

Direct Left Recursion:

TO THE SCHOOL OF THE PARTY OF T

- If we write it as a function, $A \rightarrow A\alpha \mid \beta$

LR: $A \rightarrow A\alpha \mid \beta$

A() is going to call A(), it will result in recursion.

Why Eliminate Left Recursion? Consider an example: $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{T} \mid \mathbf{T}$

50

- The above example will go in an infinite loop because the **function** E keeps calling itself which causes a problem for a parser to go in an
 - infinite loop which is a never-ending process
- Eg: $S \rightarrow Sa / \in$ - Left Recursive Grammar
- Left recursion is considered to be a problematic situation for Top down parsers.
- Therefore, left recursion has to be eliminated from the grammar.

Elimination of Left Recursion

- Left recursion is eliminated by <u>converting</u> the grammar into a <u>right recursive</u> grammar.
- If we have the left-recursive pair of productions-

$$\mathbf{A} \rightarrow \mathbf{A} \boldsymbol{\alpha} \mid \boldsymbol{\beta}$$
 (Left Recursive Grammar)

where β does not begin with an A.

Then, we can eliminate left recursion by replacing the pair of productions with- $A \rightarrow \beta A'$

$$A' \rightarrow \alpha A' \mid \epsilon$$
 (Right Recursive Grammar)

This right recursive grammar functions same as left recursive grammar.

Left recursive grammar:

 $A \rightarrow A\alpha \mid \beta$

Replace with following productions:

 $A \to \beta A'$ $A' \to \alpha A' \mid \in$

Consider an example: E -> E+T | T

In the grammar, E can be replaced with A, +T can be replaced with α and T with β

Thus after removing LR,

0101000 **10100010**

For example:

$$E \rightarrow E + T \mid T \longrightarrow \begin{cases} E \rightarrow TE' \\ E' \rightarrow + TE' \mid \in \end{cases}$$

$$T \rightarrow T * F \mid F \longrightarrow F \rightarrow (E) \mid id \longrightarrow F$$

LR:
$$A \rightarrow A\alpha \mid \beta$$

$$A \rightarrow \beta A'$$

 $A' \rightarrow \alpha A' \mid \in$

EXAMPLE

S A

Consider the following grammar and eliminate left recursion-

$$A \rightarrow ABd \mid Aa \mid a$$

 $B \rightarrow Be \mid b$

LR: $A \rightarrow A\alpha \mid \beta$

Solution-

$$A' \rightarrow \alpha A' \mid \in$$

The grammar after eliminating left recursion is-

$$A \rightarrow aA'$$

$$A' \rightarrow BdA' / aA' / \in B \rightarrow bB'$$

 $B \rightarrow bB'$ $B' \rightarrow eB' / \in$

0101000101010001 10100010101000101 010100010101000101 1010100010101000101

EXAMPLE

Consider the following grammar and eliminate left recursion

$$S \to (L) \mid a$$

$$L \to L, S \mid S$$

LR: $A \rightarrow A\alpha \mid \beta$ $A \rightarrow \beta A'$ $A' \rightarrow \alpha A' \mid \in$

Solution-

The grammar after eliminating left recursion

$$S \rightarrow (L) \mid a$$
 $L \rightarrow SL'$
 $L' \rightarrow SL' \mid \epsilon$

Eliminating Immediate Left Recursion

Immediate left recursion occurs, if there is a Production of the form:

$$A \rightarrow A\alpha_1 |A\alpha_2| \dots |A\alpha_m| \beta_1 |\beta_2| \dots |\beta_n|$$

Where no β_i begins with A.

Replace it with

$$A \rightarrow \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$$

$$A' \rightarrow \alpha_1 A' | \alpha_2 A' | \dots | \alpha_m A' | \in$$

57 Consider the following grammar and eliminate left recursion.

$$S \rightarrow Sab \mid Scd \mid Sef \mid g \mid h$$

$$\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \beta_1 \quad \beta_2$$

Apply the rule:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \in$$

 $A \rightarrow A\alpha_1 |A\alpha_2| \dots |A\alpha_m| \beta_1 |\beta_2| \dots |\beta_n|$

$$S \rightarrow g S ' | h S '$$

 $S ' \rightarrow abS ' | cdS ' | efS '$

Indirect Left Recursion:

A grammar is said to have **indirect left recursion** if, starting from any symbol of the grammar, it is possible to derive a string whose head is that symbol.

For example, $A \rightarrow Br$

 $B \longrightarrow Cd$

 $C \longrightarrow At$

Where A, B, C are non-terminals and r, d, t are terminals.

B to A.

Here, starting with A, we can derive A again on substituting C to B and

101000101010001 01010001010100010 0100010101000101

Algorithm to remove Indirect Recursion 59

A1 --> A2 A3Consider an example: A2 --> A3 A1 | b

Where A1, A2, A3 are non terminals and a, b are terminals.

A3 --> A1 A1 | a

Step 1: Identify the productions which can cause indirect left recursion.

A3 --> A1 A1 | a

Step 2: Substitute this production at the place the terminal is present in any other production.

 $A3 \rightarrow A2 A3 A1.$ substitute $A1 \rightarrow A2 A3$ in production of A3.

Now in this production substitute $A2 \rightarrow A3 A1 / b$ and then replace this by,

Now the new production is converted in form of direct left recursion (3)

, solve this by direct left recursion method.

A3 --> A3 A1 A3 A1 | b A3 A1 | a

 $A \rightarrow \beta A'$

 $A' \rightarrow \alpha A' \mid \in$

Eliminating direct left recursion in the above,
$$LR: A \rightarrow A\alpha \mid \beta$$

A3 --> a | b A3 A1 | aA' | b A3 A1A' A' --> A1 A3 A1 | A1 A3 A1A'

The resulting grammar is then:

A1 --> A2 A3 A2 --> A3 A1 | b A3 --> a | b A3 A1 | aA' | b A3 A1A' A' --> A1 A3 A1 | A1 A3 A1A' Consider the following grammar and eliminate left recursion- $X \rightarrow XSb / Sa / b$

$$S \rightarrow Sb / Xa / a$$

Solution-

This is a case of indirect left recursion.

Step-01:

First let us eliminate left recursion from $X \rightarrow XSb / Sa / b$

Eliminating left recursion from here, we get-

$$X \rightarrow SaX' / bX'$$
 $X' \rightarrow SbX' / \in$

 $X \rightarrow SaX' / bX'$ $X' \rightarrow SbX' / \in$ $S \rightarrow Sb / Xa / a$

Step-02:

Substituting the productions of X in $S \to Xa$, we get the following grammar $X \to SaX'/bX'$

Sten-03

Now, eliminating left recursion from the productions of S, we get the

following grammar

 $X \rightarrow SaX' / bX'$ $X' \rightarrow SbX' / \in$ $S \rightarrow bX'aS' / aS'$ $S' \rightarrow bS' / aX'aS' / \in$

 $X' \rightarrow SbX' / \in$

 $S \rightarrow Sb / SaX'a / bX'a / a$

Step-01:

First let us eliminate left recursion from $S \rightarrow Aa \mid b$

This is already free from left recursion.

Step-02:

Substituting the productions of S in $A \rightarrow Sd$, we get the following

grammar-
$$S \rightarrow Aa \mid b$$

$$A \rightarrow Ac \mid Aad \mid bd \mid \in$$

the followin | **bd** | € Now, $A \rightarrow Ac \mid Aad \mid bd \mid \in is in Immediate Left Recursion.$

Step-03:

After eliminating left recursion from the productions of A, we get:

$$S \rightarrow Aa \mid b$$

$$A \rightarrow bdA' \mid A'$$

$$A' \rightarrow cA' \mid adA' \mid \in$$

Thank you