LIMITI E FORME INDETERMINATE

LIMITE DELLA SOMMA

In generale il limite della somma di due funzioni è uguale alla somma dei loro limiti, quando questi esistono e sono finiti.

$$\lim_{x \to \alpha} [f(x) + g(x)] = \lim_{x \to \alpha} f(x) + \lim_{x \to \alpha} g(x)$$

I casi che si possono presentare sono riassunti nella tabella seguente:

$ \lim_{x\to\alpha}f(x) $	$\lim_{x\to\alpha} g(x)$	$\lim_{x\to\alpha}[f(x)+g(x)]$
l	m	l+m
l	+∞	+∞
l	-∞	-∞
+∞	+∞	+∞
-∞	-∞	-∞
+∞	–∞	

$$+\infty - \infty$$
 è una **FORMA INDETERMINATA**

LIMITE DEL PRODOTTO

In generale il limite del prodotto di due funzioni è uguale al prodotto dei loro limiti, quando questi esistono e sono finiti.

$$\lim_{x \to \alpha} [k \cdot f(x)] = k \cdot \lim_{x \to \alpha} f(x)$$

$$\lim_{x \to \alpha} [f(x) \cdot g(x)] = \lim_{x \to \alpha} f(x) \cdot \lim_{x \to \alpha} g(x)$$

$$\lim_{x \to \alpha} [f(x)]^n = \left[\lim_{x \to \alpha} f(x)\right]^n$$

I casi che si possono presentare sono riassunti nella tabella seguente:

$\lim_{x\to\alpha}f(x)$	$\lim_{x\to\alpha} g(x)$	$\lim_{x\to\alpha}[f(x)\cdot g(x)]$
l	m	$l\cdot m$
l > 0	+∞	+∞
l < 0	+∞	-∞
l > 0	-∞	-∞
l < 0	-∞	+∞
+∞	+∞	+∞
+∞	-∞	-∞
-∞	-∞	+∞
0	l	0
0	<u>+</u> ∞	

$\boxed{\mathbf{0} \cdot \infty}$ è una **FORMA INDETERMINATA**

LIMITE DEL PRODOTTO

In generale il limite del quoziente di due funzioni è uguale alla quoziente dei loro limiti, quando questi esistono e sono finiti e non nulli.

$$\lim_{x \to \alpha} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to \alpha} \frac{f(x)}{\lim_{x \to \alpha} g(x)}$$

I casi che si possono presentare sono riassunti nella tabella seguente:

$\lim_{x\to\alpha}f(x)$	$\lim_{x\to\alpha} g(x)$	$\lim_{x\to\alpha}\left[\frac{f(x)}{g(x)}\right]$
l	m	$l/_m$
l	+∞	0
l	-∞	0
+∞	$m \ge 0$	+∞
+∞	$m \leq 0$	-∞
-∞	$m \ge 0$	-∞
-∞	$m \leq 0$	+∞
±∞	<u>+</u> ∞	
l > 0	0+	+∞
l > 0	0-	-∞
l < 0	0+	-∞
l < 0	0-	+∞
0	0	

LIMITE DI FUNZIONI CON AD ESPONENTE ALTRE FUNZIONI

In queste rientrano tutti i casi di potenze in cui sia la base che l'esponente sono variabili.

$$\lim_{x \to \alpha} [f(x)]^{g(x)} = \left[\lim_{x \to \alpha} f(x)\right]^{\lim_{x \to \alpha} g(x)}$$

I casi che si possono presentare sono riassunti nella tabella seguente:

$ \lim_{x\to\alpha}f(x) $	$\lim_{x\to\alpha}g(x)$	$\lim_{x\to\alpha}[f(x)]^{g(x)}$
l	m	l^m
0	0	
l	0	11
∞	0	
$0 \le l < 1$	+∞	0+
$0 \le l < 1$	-∞	+∞
l > 1	+∞	+∞
l > 1	+∞	0+
1	∞	

 $\boxed{\mathbf{0^0}; \ \infty^0 \ e \ \mathbf{1^{\infty}}}$ sono **FORME INDETERMINATE**

LIMITE DELLE FUNZIONI COMPOSTE

In generale:

$$\lim_{x \to \alpha} [f(g(x))] = f(\lim_{x \to \alpha} g(x))$$