Linear Regression Analysis: House Price Prediction Author: Daniel Muthama **Program:** Machine Learning Regression Course: DA1-2025 **Date:** July 1, 2025 1. Introduction This report presents a linear regression analysis to predict house prices based on property features. The project covers: Exploratory Data Analysis (EDA) Simple & Multiple Linear Regression Model Evaluation & Visualization Price Predictions for New Data The goal is to determine how effectively house prices can be predicted using area, bedrooms, and age. 2. Data Exploration **Dataset Overview Source:** homeprices.csv (primary dataset)

Features:

area (sq ft)

price (USD)

Records: 5

Key Statistics

Metric	Area (sq ft)	Price (USD)
Mean	3,280	626,000
Std Dev	540	74,950
Min	2,600	550,000
Max	4,000	725,000

✓ No missing values detected.

Visualization

(Positive correlation between area and price)

3. Model Implementation

Simple Linear Regression (Area → Price)

Regression Equation:

Price=135.79×Area+180,616.44

Interpretation:

Base price (0 sq ft): \$180,616

Cost per sq ft: \$135.79

Model Evaluation

Metric Value

R² Score 0.958

Mean Absolute Error (MAE) \$11,247

RMSE \$13,668

Strong predictive power ($R^2 > 0.95$).

Visualization

(Close fit between predictions and actual prices)

4. Predictions on New Data

Using areas.csv (13 new properties):

Area (sq ft)	Predicted Price (USD)	
1,000	\$316,404	
1,500	\$384,298	
9,000	\$1,402,705	

(Full table in Appendix)

5. Multiple Regression (Bonus)

Dataset: homeprices-m.csv
Features:
area, bedrooms, age
Handling Missing Data:
Filled missing bedrooms with median value.
Regression Equation:
Price=112.06×Area+23,388.88×Bedrooms-3,231.72×Age+221,323
Performance:
R² Score: 0.955
Interpretation:
Bedrooms add \$23,388 to the price.
Each year of age reduces price by \$3,232.
6. Conclusion
Key Findings

- ✓ Area alone explains 95.8% of price variation ($R^2 = 0.958$).
- ✓ Multiple regression improves slightly ($R^2 = 0.955$).
- ✓ MAE of \$11,247 is reasonable for real estate.

Recommendations

For better accuracy:

Collect more data (current dataset has only 5 records).

Include location-based features (neighborhood, school district).

Test polynomial regression for non-linear relationships.

For business use:

The model is production-ready for initial price estimates.

Refine with more features for higher precision.

7. Project Artifacts

S Code: GitHub | Colab

Datasets: homeprices.csv, homeprices-m.csv, areas.csv

(Full code implementation in Appendix.)

Submitted by: Daniel Muthama

Date: July 1, 2025