Tópicos Especiais em Segurança da Informação

TP3 - Reconhecimento do ponto de vista de um insider (Wireshark)

Arthur do Prado Labaki

24-05, 2022

GBC 235

Informações adicionais

Todas as imagens integradas nesse relatório, quanto códigos, planilhas ou gifs de demonstração estão em meu repositório no github abaixo.

Link do meu GitHub

Parte 1:

Resolução do item 1)

Um analisador de pacotes ou farejador de pacotes (packet analyzer) é um software ou hardware que consegue rastrear, interceptar e registrar o tráfego que passa pela rede. Conforme os fluxos de dados fluem pela rede, o analisador captura cada pacote e, se necessário, decodifica os dados brutos do pacote, mostrando os valores de vários campos no pacote e analisa seu conteúdo de acordo com a RFC apropriada ou outras especificações (Nakamura e Geus, 2007). Um analisador de pacotes mostra o status completo de todas as atividades de rede, fornecendo uma imagem completa da largura de banda e da utilização de recursos.

Resolução do item 2)

Wireshark 3.2.3 instalado na máquina virtual.

Resolução do item 3)

A interface gráfica do Wireshark é dividida em três painéis diferentes para inspecionar dados de pacotes.

O primeiro painel mostra uma lista com todos os pacotes da captura na rede selecionada. Nessa tela é mostrado a posição numérica do pacote capturado, o tempo que levou do início da captura até a captura do pacote, o endereço IP do remetente e destinatário, o protocolo, o tamanho em bytes e algumas informações extras.

-	No.	*	Time		Source	Destination	Protocol	Length	Info							
	1	.07	2022-05-30	20:3	185.125.190.29	10.0.2.6	HTTP	60	HTTP/1.	0 400	Bad	request (text/	html)		
	1	.08	2022-05-30	20:3	10.0.2.6	185.125.190.29	TCP	54	49928 -	→ 80 [RST]	Seq=315373	37864	Win=0	Len=0	
	L 1	.09	2022-05-30	20:3	10.0.2.6	185.125.190.29	TCP	54	49928 -	→ 80 [RST]	Seq=315373	37864	Win=0 ∣	Len=0	
	1	10	2022-05-30	20:3	10.0.2.6	200.19.145.55	TLSv1.2	389	Applica	ation	Data					
	1	11	2022-05-30	20:3	10.0.2.6	200.19.145.55	TCP	74	43642 -	443	[SYN]	Seq=42389	915223	Win=6	4240	L
- 1	1	12	2022-05-30	20:3	10.0.2.6	200.19.145.55	TCP	74	43644 -	443	[SYN]	Seq=19594	191719	Win=6	4240	Le
	1	13	2022-05-30	20:3	10.0.2.6	200.19.145.55	TCP	74	43646 -	443	[SYN]	Seq=18251	L40553	Win=6	4240	L
	1	14	2022-05-30	20:3	10.0.2.6	200.19.145.55	TCP	74	43648 -	443	[SYN]	Seq=33476	555667	Win=6	4240	L
- 1	1	15	2022-05-30	20:3	10.0.2.6	200.19.145.55	TCP	74	43650 -	443	[SYN]	Seq=15221	L75011	Win=6	4240	Le
	1	16	2022-05-30	20:3	200.19.145.55	10.0.2.6	TLSv1.2	2974	Applica	ation	Data					
	1	17	2022-05-30	20:3	200.19.145.55	10.0.2.6	TCP	2974	443 → 4	13638	[ACK]	Sea=11134	12 Ack	=17956	25591	1

Figura 1: Exemplo de Packet List

O segundo painel exibe o máximo possível de informações legíveis sobre o pacote selecionado na na primeira tela. Essa informação depende do tipo do pacote selecionado, além de poder expandir a aba de informações, mostrando outras relacionadas.

Figura 2: Exemplo de Packet Details

O terceiro e último painel exibe o pacote exatamente como ele foi capturado em hexadecimal e em ASCII Dump.

Figura 3: Exemplo de Packet Bytes

Resolução do item 4)

Não consegui utilizar a url www.ufu.br pois estava no https, então utilizei o www.hipertec.com.br.

IP origem: 10.0.2.6

IP destino: 177.12.171.167

Porta origem: 48982 Porta destino: 80

Outras informações estão no repositório.

Resolução do item 5)

Protocolos encontrados:

- TCP: É o principal protocolo de comunicação responsável tanto pelos formatos quanto pelas regras de troca de dados e mensagens entre computadores de uma ou várias redes conectadas à internet.
- HTTP: É um protocolo que especifica como será a comunicação entre um navegador e um servidor web, como o WWW.
- DNS: É um sistema que contém uma lista de nomes de domínio e permite que usuários encontrem uma página por meio desses nomes.
- TLS: É um protocolo de segurança projetado para fornecer segurança nas comunicações sobre uma rede de computadores. A diferença entre o 1.2 e o 1.3 é que o último tem velocidades mais rápidas e maior segurança.

Resolução do item 6)

O tempo de demora entre a solicitação feita pelo navegador até a resposta do servidor foi cerca de 0.33387 segundos.

No.	Time	Source	Destination	Protoco ▼ Le	ength	Info
1103	2022/150 22:19:52.224664557	10.0.2.6	177.12.171.167	HTTP	539	GET / HTTP/1.1
1110	2022/150 22:19:52.273573179	177.12.171.167		HTTP	288	HTTP/1.1 304 Not Modified
1114	2022/150 22:19:52.426434228	10.0.2.6	177.12.171.167	HTTP	479	GET /css/bootstrap.min.css HTTP/1.1
1119	2022/150 22:19:52.434589568	10.0.2.6	177.12.171.167	HTTP	484	GET /css/bootstrap-theme.min.css HTTP/1.1
1120	2022/150 22:19:52.434753994	10.0.2.6	177.12.171.167	HTTP	481	GET /css/font-awesome.min.css HTTP/1.1
1123	2022/150 22:19:52.461595955	10.0.2.6	177.12.171.167	HTTP	481	GET /css/bootstrap-social.css HTTP/1.1
1124	2022/150 22:19:52.466572505	10.0.2.6	177.12.171.167	HTTP	473	GET /css/mystyles.css HTTP/1.1
1125	2022/150 22:19:52.467326606	177.12.171.167	10.0.2.6	HTTP	318	HTTP/1.1 304 Not Modified
1127	2022/150 22:19:52.469331075	10.0.2.6	177.12.171.167	HTTP	374	GET /js/bootstrap.min.js HTTP/1.1
1131	2022/150 22:19:52.484647078	177.12.171.167		HTTP	317	HTTP/1.1 304 Not Modified
1133	2022/150 22:19:52.488597224	177.12.171.167	10.0.2.6	HTTP	317	HTTP/1.1 304 Not Modified
1136	2022/150 22:19:52.504837279	177.12.171.167		HTTP	317	HTTP/1.1 304 Not Modified
1147	2022/150 22:19:52.513005553	177.12.171.167	10.0.2.6	HTTP	317	HTTP/1.1 304 Not Modified
1151	2022/150 22:19:52.528533507	10.0.2.6	177.12.171.167	HTTP	387	GET /imagens/Hipertec3.png HTTP/1.1
1167	2022/150 22:19:52.558542909	177.12.171.167	10.0.2.6	HTTP	1136	HTTP/1.1 200 OK (application/javascript)

Figura 4: Tempo entre pacotes

Resolução do item 7)

IP origem: 10.0.2.6

IP destino: 31.13.74.35 Porta origem: 48982

Porta destino: 80

Outras informações estão no repositório.

É possível verificar que existe, comparando com o hipertec e o facebook, semelhanças entre as aplicações, pois ambas se tratam de servidores web. Mas ainda sim é possível observar diferenças entre elas, em que o facebook criptografa alguns dos seus pacotes, melhorando sua segurança.

Parte 2:

IP do coletador: 10.14.94.229

MAC do coletador: 80:56:f2:f4:31:2d

www.msftconnecttest.com

www.msftconnecttest.com/connecttest.txt

v6ncsi.msedge.net

DESKTOP-SPI3STE (Workstation/Redirector)

WORKGROUP

Dropbox Lan

_companion-link._tcp.local

living-room.local

_raop._tcp.local

_airplay._tcp.local

 $hap._tcp.local$

 $_homekit._tcp.local$

F53C6D9F - 38A6 - 5404 - B1C7 - 1CA00D471438._homekit._tcp.local

 $LivingRoom._mediaremotetv._tcp.local$

 $_sleep - proxy._udp.local$

 $pc-mac._companion-link._tcp.local$

Microsoft-IIS/7.5

Microsoft NCSI

 $HonHaiPr_f4{:}31{:}2d$

HewlettP_db:0c:90

Apple_ca:3d:f2

 $IntelCor_45:37:2e$

IPv6mcast_ff:db:0c:90

VMware_9d:67:10

 $IPv4mcast_7f:ff:fa$

Protocolos: ARP, DB-LSP-DISC, DHCP, DNS, HTTP, ICMP, MDNS, NBNS, TCP.

Referências

Nakamura E. T. e Geus P. L. de (2007). Segurança de redes em ambientes cooperativos. Novatec Editora.