A Method for Atomic Layer Deposition of Complex Oxide Thin Films

Brian R. Beatty

M.S. Thesis in Materials Science and Engineering

Drexel University, Philadelphia, PA

11th December, 2012

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- Results
- Conclusions

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- **Nesults**
- Conclusions

- Develop method for identifying best candidate precursors for depositing complex oxide films
- Determine optimal deposition parameters to obtain desired film stoichiometry
- Characterization of various film properties, for use in further optimizing subsequent depositions
- Successful deposition of desired material: Perovskite Lead Titanate (PbTiO₃)

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- **Nesults**
- Conclusions

What is ALD?

- Chemical deposition method, similar to CVD
- Separation of deposition reaction into metal chemisorption and subsequent oxidation
- Restricts reactions to surface-vapor interactions, no vapor-vapor reactions possible

Advantages

- Ultra-high film thickness resolution (Å-level)
- High film conformality (3D structure coating)
- Lower deposition temperatures
- Potentially lower environmental/economic impact

Disadvantages

- Slow deposition rates
- Precursor chemistry is often difficult and complex (organometallic compounds)
- Many material systems lack developed ALD processes

Where is ALD used?

- Integrated Circuits: Transistor Gate Oxides (high-k)
- Alternative Energy: Low tolerances for layer thickness, high film uniformity across surface
- Biomedical: Uniform coating of highly porous structures

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- **Nesults**
- Conclusions

Titanium Precursor

Titanium(IV) tetraisopropoxide: Ti-o-*i* -Pr

Oxidizer

- H₂O and O₂/O₃ mixtures commonly used in literature
- O₂/O₃ was chosen for higher compatibility with Pb precursors

Lead Precursors

- Bis(2,2,6,6-tetramethyl -3,5-heptanedionato) Lead(II): Pb(TMHD)₂
- Lead(II) hexafluoroacetylacetonate: Pb(HFAc)₂

Thin Film Growth: Substrates

4

- 200 nm SiO₂/Si(100)
 - ▶ 200 nm of thermally grown silica on crystalline silica.
 - Amorphous top layer
- 15 nm Pt(111)/200 nm SiO₂/Si(100)
 - ▶ 15 nm of ALD-grown platinum on the SiO₂/Si(100) substrate
 - Metallic (crystalline) top layer
- SrTiO₃(100)
 - Single crystalline oriented strontium titanate wafer.

J |

Thin Film Growth: Deposition Parameters

- Growth Temperature
- Precursor Dosage
- Purge Time
- Precursor Exposure
- Post-Deposition Annealing

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- **Nesults**
- Conclusions

Characterization Methods: Thermal Analysis

Thermogravimetric Analysis

- Method for analyzing mass loss rates as function of temperature
- Useful for determining optimal evaporation temperatures
- Can indicate multi-step evaporation/chemical conversion

Differential Calorimetry

- Allows insight into energetic transformations as a function of temperature
- Indicates phase changes, evaporation energies, and structural changes
- Useful for analyzing the stability of precursors at desired temperatures

X-Ray Fluorescence Spectroscopy (XRF)

- Similar to EDXS but uses X-rays in place of energetic electrons
- Much lower noise floor (no Bremsstrahlung radiation)
- Capable of quantitative compositional analysis of ultra-thin films

Characterization Methods: Composition Analysis

Ellipsometry

- Non-destructive optical film analysis method
- Capable of determining numerous optical/electronic parameters of film
- Primarily used to determine post-deposition film thicknesses and thus growth rates

Characterization Methods: Film Growth Rates

X-Ray Diffractometry (XRD)

- Standard technique used to identify materials and phases/orientations
- Analysis produces information about presence of particular lattice spacings
- Identifying lattice spacings (via databases or previous studies in literature) can indicate presence and orientation of specific materials and phases

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- Results
- Conclusions

DSC Cycles of Pb(HFAc)₂ and Pb(TMHD)₂

<u>\</u>

High-Temp. DSC Cycle of Pb(TMHD)₂

TGA Traces for Pb(HFAc)₂

TGA Traces for Pb(TMHD)₂

Constant Temperature Studies of Pb(HFAc)₂ and Pb(TMHD)₂

Results: Deposition and Processing Parameters

					Annealing	
Temp. $(^{\circ}C)$	Run #	Pb:Ti Ratio	Cycles	Subs. Type	Temp.	Time (min)
225	20	3:1	200	Si	N/A	N/A
				Pt-Si	650	90
				STO	650	90
	21	3:1	150	Si	N/A	N/A
				Pt-Si	650	90
				STO	650	90
	22	3:1	150	Si	N/A	N/A
				Pt-Si	650	90
	28	3:1	120	STO	650	90

Results: Film Growth Rates

Run #	Subs. Type	Thickness (nm)	Growth Rate (Å/cycle)
20	Si	71.8	3.59
	Pt-Si	64.4	3.22
	STO	73.6	3.68
21	Si	53.2	3.54
	Pt-Si	45.8	3.05
	STO	52.9	3.53
22	Si	53.3	3.55
	Pt-Si	46.5	3.10
28	STO	41.0	3.42

Compositions of Selected Sample Films

		Composition (%)			
Run #	Substrate	Lead	Titanium	Ti:Pb Ratio	
20	SiO ₂	56.6	43.4	0.769	
	Pt-Si	51.5	48.5	0.944	
21	SiO_2	69.6	30.4	0.437	
	Pt-Si	56.1	43.9	0.783	
22	SiO_2	67.7	32.3	0.478	
	Pt-Si	56.1	43.9	0.784	
24	SiO ₂	69.0	31.0	0.450	
	Pt-Ši	62.2	37.8	0.609	

XRD of 20 on Pt-Si

XRD of 23 on Pt-Si

7

XRD of 28 on STO(100)

- Objectives
- Atomic Layer Deposition
- Thin Film Growth
- Characterization Methods
- **Nesults**
- Conclusions

- A procedure for identifying best precursor compounds for ALD deposition of oxides was created
- A method for designing and implementing an ALD process for a novel material has been developed
- Successfully deposited thin films containing the target material: perovskite PbTiO₂
- Films contain significant amounts of impurity phases

Refine process to maximize phase purity and film epitaxy

- Characterize ferroelectric character of crystallized films
- Investigate doping of thin films (e.g. PbZr_xTi_{1-x}O₃)
- Apply process to other oxide families (e.g. BaSrTiO₃)

Questions?

Cauchy Model as used by WVASE32

$$n(\lambda) = A_n + \frac{B_n}{\lambda^2} + \frac{C_n}{\lambda^4} + \cdots$$
 (1a)

$$\kappa\left(\lambda\right) = A_{\kappa} e^{B_{\kappa}\left(\frac{hc}{\lambda}\right) - C_{\kappa}} \tag{1b}$$

<u>\</u>

Tauc-Lorentz Model as used by WVASE32

$$\epsilon_1 = \frac{2}{\pi} P \int_{E_g}^{\infty} \frac{\xi \epsilon_2(\xi)}{\xi^2 - E^2} \,\mathrm{d}\xi \tag{2a}$$

$$\begin{cases} \epsilon_{2}(E) = \frac{AE_{0}C(E - E_{g})^{2}}{(E^{2} - E_{0}^{2})^{2} + C^{2}E^{2}} \cdot \frac{1}{E} & E > E_{g} \\ \epsilon_{2}(E) = 0 & E \leq E_{g} \end{cases}$$
 (2b)

- 1. High- λ Cauchy Model
- 2. Direct Calculation of n and κ
- 3. Conversion to Oscillator Model
- 4. Refinement of Oscillator Layer Parameters

- High- λ Cauchy Model
 - Used to determine layer thickness
 - ► Cauchy model applied to transparent region of film (>600nm)

- Direct Calculation of n and κ
 - Numeric calculation of n and κ from Fresnel equations
 - Used to provide a starting point to base Tauc-Lorentz oscillator model upon
 - Calculated values are non-physical

- Conversion to Oscillator Model
 - ▶ Data set of n and κ are used to approximate initial guesses for T-L oscillator parameters

- Refinement of Oscillator Layer Parameters
 - Software optimization of model parameters

Model Parameters for 20-Pt/Si

Layer	Variable	Thickness (nm)	Value
3. T-L Osc.		75.6	
	ϵ_1 offset		3.62
	Amp		36.54
	E_{n}		4.51
	C		1.30
	E_{g}		2.07
2. Pt		15.1	
1. SiO ₂		1.1	
0. Si		Substrate	

Ellipsometry Data from 20 - Pt/Si

Model Parameters for 20-Pt/Si

Layer	Variable	Thickness (nm)	Value
1. T-L Osc. (2)		49.2	
	ϵ_1 offset		1.42
	Amp_1		64.71
	$E_{\mathrm{n}1}$		3.69
	C_1		4.44
	$E_{\mathrm{g}1}$		1.55
	Amp_2		1.55
	$E_{\mathrm{n}2}$		2.12
	C_2		0.76
	$E_{\mathrm{g}2}$		0.001
0. STO		Substrate	

Ellipsometry Data from 28 - STO

Model Parameters for 28-STO

Layer	Variable	Thickness (nm)	Value
1. T-L Osc. (2)		49.2	
	ϵ_1 offset		1.42
	Amp_1		64.71
	$E_{\mathrm{n}1}$		3.69
	C_1		4.44
	$E_{\mathrm{g}1}$		1.55
	Amp_2		1.55
	$E_{\mathrm{n}2}$		2.12
	C_2		0.76
	$E_{\mathrm{g}2}$		0.001
0. STO		Substrate	