O Princípio de Torricelli no Cálculo

©⊕© 2017 Vinicius Cifú Lopes

Alguns exercícios clássicos pedem para determinar em quanto tempo um recipiente de água esvazia, tendo um orifício ou ralo em seu fundo. Isso requer conhecer a velocidade do jato de água que escoa em função da altura da coluna líquida acima do orifício. Essa velocidade é expressa pelo Princípio de Torricelli, que apresentamos nesta cartilha e cuja dedução também exemplifica o Cálculo.

Enunciado. Se um recipiente com água (ou outro líquido) tem um orifício em seu ponto mais baixo, a água escoa em um jato, cuja velocidade V depende da pressão da coluna líquida acima do orifício, ou seja, da altura h do nível da água acima do orifício.

O Princípio de Torricelli afirma que V é a mesma velocidade que um pingo d'água em queda livre atingiria após cair da altura h porque, na coluna líquida, é somente a água escoando que sustenta a massa sobre ela, ou seja, toda a coluna está em queda livre. Desse modo, sendo m a massa do pingo e g a aceleração gravitacional, toda sua energia potencial mgh seria convertida em energia cinética $mV^2/2$, donde se obtém $V = \sqrt{2gh}$.

Dedução da velocidade. Trabalharemos com um líquido ideal (sem compressão, viscosidade, fricção, turbulência, ou atração intermolecular) submetido a uma pressão P nas proximidades do orifício de saída. Essa pressão é a mesma em qualquer direção, mesmo na horizontal, e, sobre a área A do orifício, corresponde a uma força F = PA (de fato, a definição de P é F/A). Seja ainda ρ a densidade do líquido.

Estudaremos o orifício como um "túnel" de comprimento L, que é a espessura da parede do recipiente, e seção transversal com área A. Também identificaremos a pressão ao longo desse "túnel" como uma função P_x em termos da posição $x \in [0, L]$. Desse modo, $P_0 = P$ e $P_L = 0$, porque não há mais pressão atuante sobre a água que deixa o orifício.

Portanto, sobre a pequena fatia cilíndrica líquida compreendida entre as posições x e $x + \varepsilon$, de largura ε e área A, a força resultante é $(P_x - P_{x+\varepsilon})A$. Porque sua massa é $A\varepsilon\rho$, obtemos como sua aceleração a expressão $a_x = -(P_{x+\varepsilon} - P_x)/\varepsilon\rho$, que é $-P_x'/\rho$ no limite $\varepsilon \to 0$.

Ao longo do "túnel", o trabalho realizado por essa força, por unidade de massa, é

$$\int_0^L a_x \, dx = \int_0^L (-P_x'/\rho) \, dx = -(P_L - P_0)/\rho = P/\rho.$$

Por outro lado, essa amostra do líquido parte do repouso na entrada do orifício e atinge a velocidade V na saída, ou seja, adquire energia cinética $V^2/2$ por unidade de massa. Igualando as expressões, obtemos $V = \sqrt{2P/\rho}$.

No caso da pressão de Torricelli, esta é exercida pelo peso da coluna de água com altura h acima de uma área horizontal de interesse, digamos S. A massa de água correspondente é $Sh\rho$, então exercendo a força-peso $Sh\rho g$ sobre a área S. Concluímos que a pressão exercida pelo próprio peso da coluna líquida é $h\rho g$ e, substituindo na fórmula anterior, obtemos a velocidade de ejeção $V = \sqrt{2gh}$.

Uso em exercícios. A fórmula de Torricelli é utilizada para determinar-se em quanto tempo esvaziará um recipiente de formato variado. São necessários também a área A do orifício, a altura inicial H e uma expressão da quantidade Q(h) contida no recipiente em função do nível h.

Nesses termos, durante um breve intervalo de tempo dt, o volume escoado é cilíndrico, com a área do orifício multiplicada pela distância Vdt percorrida pelo fluxo. Como o volume escoado corresponde à diminuição -dQ, obtemos $\dot{Q}=-AV$. Pela Regra da Cadeia, $\dot{Q}=Q'(h)\cdot\dot{h}$ e, substituindo-se, obtém-se a equação autônoma

$$\dot{h} = -A \frac{\sqrt{2gh}}{Q'(h)},$$

que deve ser resolvida em h(t) com o problema de valor inicial h(0) = H. Finalmente, o tempo de esvaziamento é a raiz da equação h(t) = 0.

Em vários casos, a área da seção horizontal do recipiente pode ser facilmente determinada como uma função S(h). Nesse caso, $Q(h) = \int_0^h S(x) dx$, donde Q'(h) = S(h).

Sugestões são bem-vindas. Mande-as para vinicius @ufabc.edu.br. Queremos manter essa cartilha o mais simples possível.