Question Number	Scheme	Marks
	$V = \frac{1}{3}\pi h r^2 = \frac{1}{3}\pi h \times (h \tan 30)^2 \left(= \frac{1}{3}\pi h^3 \times \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{9}\pi h^3 \right)$	B1
	V = 0.4t	B1
	$V = 0.4t$ $0.4t = \frac{2}{5}t = \frac{1}{9}\pi h^3$	M1
	$h^3 = \frac{18t}{5\pi} *$	A1cso (4)
(b)	Area of top = $\pi (h \tan 30)^2 = \frac{1}{3} \pi h^2$	B1
	$\frac{\mathrm{d}A}{\mathrm{d}h} = \frac{2}{3}\pi h$	M1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t}$	M1
	$h^3 = \frac{18t}{5\pi}$	
	$3h^2 = \frac{18}{5\pi} \frac{\mathrm{d}t}{\mathrm{d}h}$	M1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{6}{5\pi h^2}$	A1
	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{2}{3}\pi h \times \frac{6}{5\pi h^2} = \frac{4}{5h} *$	A1cao (6)
(c)	$t = 10$ $h = \sqrt[3]{\frac{180}{5\pi}}$ $\frac{dA}{dt} = \frac{4}{5h} = 0.355$ cm ² /s	M1A1cao (2) [12]

10(a)B1	$V = \frac{1}{3}\pi h \times (h \tan 30)^2$	$\left(\text{or } V = \frac{1}{9}\pi h^3\right)$	(ie replace <i>r</i>)
R1	V = 0.4t		

M1 Equating their 2 expressions for V to obtain an equation without r

A1cso Re-arrange to $h^3 = \frac{18t}{5\pi}$ with no errors seen

(b) Area of top = $\frac{1}{3}\pi h^2$

M1 Differentiate their expression for the area of the top wrt h

M1 Chain rule connecting $\frac{dA}{dt}$, $\frac{dA}{dh}$ and $\frac{dh}{dt}$, any equivalent form or a useful chain rule with

more derivatives eg $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dh} \times \frac{dh}{dt}$ see alt solution below

M1 Differentiate the **given** expression from (a) wrt h or t

A1 $\frac{dh}{dt} = \frac{6}{5\pi h^2}$ or $\frac{dt}{dh} = \frac{5\pi h^2}{6}$ or any equivalent expression in terms of t.

A1cao Substitute for $\frac{dA}{dh}$ and $\frac{dh}{dt}$ in the chain rule to obtain the **given** expression for $\frac{dA}{dt}$ No errors

ALTs:

Using
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dh} \times \frac{dh}{dt}$$

B1 $\frac{dA}{dr} = 2\pi r$ M1 Find $\frac{dr}{dh} = \frac{1}{\sqrt{3}}$ M1 Chain rule $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dh} \times \frac{dh}{dt}$

M1A1A1 As main scheme

2 Using
$$\frac{dA}{dt} = \frac{dA}{dh} \times \frac{dh}{dV} \times \frac{dV}{dt}$$

B1M1 As main scheme M1 Chain rule $\frac{dA}{dt} = \frac{dA}{dh} \times \frac{dh}{dV} \times \frac{dV}{dt}$

M1 Attempt $\frac{dV}{dh}$ using their expression for V in terms of h found in (a)

A1 $\frac{dV}{dt}$ = 0.4 A1 Complete to required result.

3 Using
$$\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$$

B1
$$\frac{dA}{dr} = 2\pi r$$
 M1 $t = \frac{5}{6}\pi r^2 h$ (Obtained from $0.4t = \frac{1}{3}\pi r^2 h$ (in (a))

M1
$$\frac{dt}{dr} = \frac{5\sqrt{3}}{2}\pi r^2$$
 M1 $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt} \left(= 2\pi r \times \frac{2}{5\sqrt{3}\pi r} = \frac{4}{5\sqrt{3}r} \right)$

A1 Use $h = \sqrt{3}r$ in their $\frac{dA}{dt}$ A1 Correct final result, no errors seen

(c)	
M1	Use $t = 10$ to obtain the corresponding value of h $h = \left(\sqrt[3]{\frac{180}{5\pi}}\right)$ or 2.2545 and substitute
	their value of h in the expression from (b) to obtain $\frac{dA}{dt} =$
A1cao	$\frac{\mathrm{d}A}{\mathrm{d}t} = 0.355 (\mathrm{cm}^2/\mathrm{s}) \mathbf{Must} \text{ be 3sf.}$