1 Logic & AI: Propositional Logic

Search Algorithms only evaluate states, but do not have an "understanding" of the environment. This does mean, that a goal might not even be able to exist logically, but the search algorithms will still search for it.

Propositional Logic aims to improve on that aspect.

1.1 Logic

Logic is the key behind any formal knowledge. It allows to filter necessary information from a set of information and to draw conclusions. In AI, any representation of knowledge is based on logic.

Knowledge Base (KB)

A knowledge base represents actual facts which exist in the real world. It is a central component of any knowledge-based agent. It is a collection of "sentences" in a formal language which describe the information related to the world.

Inference Engine

The inference engine is responsible for inferring new knowledge from the knowledge base. It is a central component of any knowledge-based agent.

Knowledge-Based Agents

A knowledge-based agent is a type of **intelligent agent** that uses a knowledge base and an inference engine to make decisions.

- Represent states, actions...
- Incorporate new percepts and update knowledge base
- Deduce properties of the world and make decisions / actions

1.2 Syntax

A sentence in propositional logic follows the Backus-Naur Form (BNF):

Symbol: P, Q, R,... Descriptor of a sentence

Sentence: True | False | Symbol | Logical implication of a sentence

 \neg (Sentence) |

 $(Sentence \land Sentence) \mid$ $(Sentence \lor Sentence) \mid$ $(Sentence \Rightarrow Sentence)$

1.3 Semantics

Interpretation specifies which symbols are true and which are false. Given a interpretation it should be possible to evaluate a sentence.

A truth table defines semantics of operators:

a	b	$\neg a$	$a \wedge b$	$a \lor b$	$a \Rightarrow b$
false	false	true	false	false	true
false	true	true	false	true	true
true	false	false	false	true	false
${\it true}$	true	false	${ m true}$	true	true

1.4 Tautology

A tautolgy is a sentence that is true for all possible interpretations.

P	Q	$P \lor Q$	$\neg P \land \neg Q$	$(\mathbf{P} \ \lor \mathbf{Q}) \ \lor (\neg \mathbf{P} \ \land \neg \mathbf{Q})$
false	false	false	true	true
false	true	true	false	true
true	false	true	false	true
true	true	true	false	${ m true}$

1.5 Logical Equivalence

Two sentences are logically equivalent if they have the same truth value for every setting of their propositional variables.

P	Q	$\mathbf{P} \lor \mathbf{Q}$	$\neg (\neg \mathbf{P} \land \neg \mathbf{Q})$
false	false	false	false
false	true	true	${ m true}$
true	false	true	${ m true}$
true	true	true	${ m true}$

Logical Law	Equivalence
Commutativity	$(a \lor b) \equiv (b \lor a)$
	$(a \wedge b) \equiv (b \wedge a)$
Associativity	$((a \land b) \land c) \equiv (a \land (b \land c))$
	$((a \lor b) \lor c) \equiv (a \lor (b \lor c))$
Double Negation Elimination	$\neg(\neg a) \equiv a$
Contraposition	$(a \Rightarrow b) \equiv (\neg b \Rightarrow \neg a)$
Implication Elimination	$(a \Rightarrow b) \equiv (\neg a \lor b)$
De Morgan's Laws	$\neg(a \land b) \equiv (\neg a \lor \neg b)$
	$\neg(a \lor b) \equiv (\neg a \land \neg b)$
Distributivity	$(a \land (b \lor c)) \equiv ((a \land b) \lor (a \land c))$
	$ (a \lor (b \land c)) \equiv ((a \lor b) \land (a \lor c)) $

1.6 Inference / Entailment

A sentence is **entailed** by the knowledge base if, for every setting of the propositional variables, for which knowledge base is true, the sentence is also true.

Assume 2 sentences, A and $A \Rightarrow B$:

A	В	Knowledge base
false	false	false
false	true	false
true	false	false
true	true	true

To find out whether a sentence A is entailed by knowledge base as simple algorithm can be used:

Basic Idea:

- 1. Go through all possible setting of the propositional variables
- 2. If knowledge base is true and A is false \Rightarrow return false
- 3. Else \Rightarrow return true

Problem: Not very efficient: The number of setting increases with $2^{\# \text{ propositional variables}}$

1.6.1 Principle of Non-Contradiction

"A cannot be \neg A"

Two contradictionary statements cannot be true at the same time, as that would mean that anything could be true.

Example:

 $PetIsABird \Rightarrow PetCanFly$

 $PetIsAPenguin \Rightarrow PetIsABird$

 $PetIsAPenguin \Rightarrow \neg (PetCanFly)$

PetIsAPenguin

This would imply that a penguin can both fly and not fly. If you would work with this contradictionary predicate it could imply anything like:

 $PetCanFly \lor MoonMadeOfCheese \equiv True$

1.7 Conjunctive Normal Form (CNF)

The CNF is a way to write any knowledge base as a single formula:

CNF Formula

$$(\cdots \lor \cdots \lor \ldots) \land (\cdots \lor \cdots \lor \ldots) \land \ldots$$

- Can be a symbol x or $\neg(x)$ (Literals)
- Multiple fats in knowledge base are "AND"ed together

Example: RoommateWet ⇒ (RoommateWetOfRain ∨ RoommateWetOfSprinklers)

becomes

 $(\neg (RoommateWet) \lor RoommateWetOfRain \lor RoommateWetOfSprinklers)$

1.8 Modus Ponens

Modus Ponens allows to form new sentences from existing ones:

Assume two sentences, A and $A \Rightarrow B$: From this we can conclude the new sentence B.

1.8.1 Unit Resolution

Assume the sentences $l_1 \vee l_2 \vee \cdots \vee l_k$ and $\neg(l_i)$.

From this we can conclude the new sentence: $l_1 \vee l_2 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k$

1.8.2 General Resolution

Assume two sentences $l_1 \vee l_2 \vee \cdots \vee l_k$ and $m_1 \vee m_2 \vee \cdots \vee m_n$ where for some $i, j \ l_i = \neg (m_j)$.

From this we can conclude the new sentence: $l_1 \vee l_2 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee m_2 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_n$

The same literal may appear multiple times; these need to be removed.

1.9 Resolution

Satisfiable

There exists a model that makes the modified knowledge base true, i.e., the modified knowledge base is consistent.

To see if a knowledge base is satisfiable, one can use a resolution algorithm.

1.9.1 Resolution Algorithm

Basic Idea: CNF formula for modified knowledge base is satisfiable if and only if sentence A is **not entailed**. So to see if a sentence A is entailed we can simply add $\neg A$ to the knowledge base and see if it becomes inconsistent.

- 1. Find two clauses with complementary literals
- 2. Apply resolution
- 3. Add resulting clause (if not already there)
- 4. Test, if it results in the empty clause \rightarrow formula is not satisfiable

Special Case: Horn Clauses

Horn Clauses

Horn clauses are implications with only positive (no negations) literals:

$$X_1 \wedge X_2 \wedge X_4 \Rightarrow X_3 \wedge X_6$$

True $\Rightarrow X_1$

To find out whether a literal X_j is entailed:

- 1. Start from known imlications as far as possible
- 2. If X_i is reachable it is entailed

To increase efficiency of this approach we can maintain a count of how many implications are already known to reduce the necessary computations.

1.10 Limitations of Propositional Logic

- No notion of objects or relations:
 - Identifiers are merely suggestive, it does not neccessarily mean that the implied objects and relations actually exist or are real.
 - To this end, every identifier might as well be a single letter $A, B \dots$