Course material at:

https://github.com/lyeskhalil/mlbootcamp2022/

Advanced Topics

Friday

FASE ML Bootcamp

Based on material from various sources:

Data augmentation, Hyperparameter tuning, CNN understanding, Attention, GANs:

http://cs231n.stanford.edu/schedule.html

Uncertainty in Deep Learning: https://www.gatsby.ucl.ac.uk/~balaji/balaji-uncertainty-talk-cifar-dlrl.pdf

Graph Neural Networks: http://tkipf.github.io/misc/SlidesCambridge.pdf

Reinforcement Learning: https://www.davidsilver.uk/wp-

content/uploads/2020/03/deep rl tutorial small compressed.pdf

Tutorial: Deep Reinforcement Learning

David Silver, Google DeepMind

Reinforcement Learning in a nutshell

RL is a general-purpose framework for decision-making

- RL is for an agent with the capacity to act
- ► Each action influences the agent's future state
- Success is measured by a scalar reward signal
- ► Goal: select actions to maximise future reward

Deep Learning in a nutshell

DL is a general-purpose framework for representation learning

- ► Given an objective
- Learn representation that is required to achieve objective
- Directly from raw inputs
- Using minimal domain knowledge

Deep Reinforcement Learning: AI = RL + DL

We seek a single agent which can solve any human-level task

- ▶ RL defines the objective
- ▶ DL gives the mechanism
- ► RL + DL = general intelligence

Examples of Deep RL @DeepMind

- ▶ Play games: Atari, poker, Go, ...
- Explore worlds: 3D worlds, Labyrinth, ...
- Control physical systems: manipulate, walk, swim, ...
- ▶ Interact with users: recommend, optimise, personalise, ...

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Deep Representations

► A deep representation is a composition of many functions

▶ Its gradient can be backpropagated by the chain rule

$$\frac{\partial I}{\partial x} \stackrel{\partial h_1}{\longleftarrow} \frac{\partial I}{\partial h_1} \stackrel{\partial h_2}{\longleftarrow} \dots \stackrel{\partial h_2}{\longleftarrow} \frac{\partial h_n}{\partial h_{n-1}} \frac{\partial I}{\partial h_n} \stackrel{\partial y}{\longleftarrow} \frac{\partial I}{\partial h_n} \stackrel{\partial y}{\longleftarrow} \frac{\partial I}{\partial y}$$

$$\frac{\partial h_1}{\partial w_1} \qquad \frac{\partial h_n}{\partial w_n} \downarrow$$

$$\frac{\partial I}{\partial w_n} \qquad \dots \qquad \frac{\partial I}{\partial w_n}$$

Deep Neural Network

A deep neural network is typically composed of:

Linear transformations

$$h_{k+1} = Wh_k$$

Non-linear activation functions

$$h_{k+2} = f(h_{k+1})$$

- A loss function on the output, e.g.
 - Mean-squared error $I = ||y^* y||^2$
 - ▶ Log likelihood $I = \log \mathbb{P}[y^*]$

Training Neural Networks by Stochastic Gradient Descent

▶ Sample gradient of expected loss $L(\mathbf{w}) = \mathbb{E}[I]$

$$\frac{\partial I}{\partial \mathbf{w}} \sim \mathbb{E}\left[\frac{\partial I}{\partial \mathbf{w}}\right] = \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$$

► Adjust **w** down the sampled gradient

$$\Delta w \propto \frac{\partial I}{\partial \mathbf{w}}$$

Weight Sharing

Recurrent neural network shares weights between time-steps

Convolutional neural network shares weights between local regions

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Many Faces of Reinforcement Learning

Agent and Environment

- ▶ At each step t the agent:
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
- ► The environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - ▶ Emits scalar reward r_{t+1}

State

Experience is a sequence of observations, actions, rewards

$$o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t$$

► The state is a summary of experience

$$s_t = f(o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t)$$

In a fully observed environment

$$s_t = f(o_t)$$

Major Components of an RL Agent

- ▶ An RL agent may include one or more of these components:
 - Policy: agent's behaviour function
 - ▶ Value function: how good is each state and/or action
 - ▶ Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- It is a map from state to action:
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[a|s]$

Value Function

- A value function is a prediction of future reward
 - ▶ "How much reward will I get from action a in state s?"
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Value Function

- A value function is a prediction of future reward
 - ▶ "How much reward will I get from action a in state s?"
- Q-value function gives expected total reward
 - from state s and action a
 - under policy π
 - with discount factor γ

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Value functions decompose into a Bellman equation

$$Q^{\pi}(s, a) = \mathbb{E}_{s', a'} \left[r + \gamma Q^{\pi}(s', a') \mid s, a \right]$$

▶ An optimal value function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

An optimal value function is the maximum achievable value

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

ightharpoonup Once we have Q^* we can act optimally,

$$\pi^*(s) = \operatorname*{argmax}_{a} Q^*(s, a)$$

An optimal value function is the maximum achievable value

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

Once we have Q* we can act optimally,

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \ Q^*(s, a)$$

Optimal value maximises over all decisions. Informally:

$$Q^*(s,a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

▶ An optimal value function is the maximum achievable value

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

Once we have Q* we can act optimally,

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

Optimal value maximises over all decisions. Informally:

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$

= $r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$

Formally, optimal values decompose into a Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]$$

Value Function Demo

Model

Model

- ▶ Model is learnt from experience
- ► Acts as proxy for environment
- ▶ Planner interacts with model
- ▶ e.g. using lookahead search

Approaches To Reinforcement Learning

Value-based RL

- ▶ Estimate the optimal value function $Q^*(s, a)$
- ▶ This is the maximum value achievable under any policy

Policy-based RL

- Search directly for the optimal policy π^*
- This is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- ▶ Plan (e.g. by lookahead) using model

Deep Reinforcement Learning

- Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- Optimise loss function by stochastic gradient descent

Outline

Introduction to Deep Learning

Introduction to Reinforcement Learning

Value-Based Deep RL

Policy-Based Deep RL

Model-Based Deep RL

Q-Networks

Represent value function by Q-network with weights w

$$Q(s, a, \mathbf{w}) \approx Q^*(s, a)$$

Q-Learning

Optimal Q-values should obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$$

- ► Treat right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimise MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

Q-Learning

Optimal Q-values should obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$$

- ► Treat right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimise MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

ightharpoonup Converges to Q^* using table lookup representation

Q-Learning

Optimal Q-values should obey Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$$

- ► Treat right-hand side $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimise MSE loss by stochastic gradient descent

$$I = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w})\right)^{2}$$

- ightharpoonup Converges to Q^* using table lookup representation
- But diverges using neural networks due to:
 - Correlations between samples
 - Non-stationary targets

Deep Reinforcement Learning in Atari

DQN in Atari

- ▶ End-to-end learning of values Q(s, a) from pixels s
- ▶ Input state *s* is stack of raw pixels from last 4 frames
- ▶ Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games

DQN Results in Atari

DQN Atari Demo

DQN paper

www.nature.com/articles/nature14236

DQN source code:

sites.google.com/a/deepmind.com/dqn/

Conclusion

- General, stable and scalable RL is now possible
- Using deep networks to represent value, policy, model
- Successful in Atari, Labyrinth, Physics, Poker, Go
- Using a variety of deep RL paradigms