

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC LTE REPORT

FCC Certification

Applicant Name:

Franklin Technology Inc.

Date of Issue:

November 26, 2015

Location:

HCT CO., LTD.,

906(Gasan-Dong, JEI Platz), 186, Gasan digital 1-ro,

Geumcheon-gu, Seoul, Korea(08502)

74, Seoicheon-ro 578beon-gil, Majang-myeon,

Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-R-1511-F020

HCT FRN: 0005866421

MODEL:

Address:

XHG-R850

APPLICANT:

Franklin Technology Inc.

FCC Model(s):

R850

EUT Type:

LTE Mobile Router

FCC Classification:

PCS Licensed Transmitter (PCB)

FCC Rule Part(s):

§22, §24, §2

Maria	T -			EIRP			
Mode (MHz)	Tx Frequency (MHz) Emission Designator 1850.7 - 1909.3 1M10G7D 1M10W7D 2M70G7D 2M70W7D 4M50G7D 4M50W7D 9M00G7D 8M96W7D	Modulation	Max. Power (W)	Max. Power (dBm)			
LTC - Daniel (4.4)	1050 7 1000 3	1M10G7D	QPSK	0.081	19.07		
LTE - Band2 (1.4)	1850.7 - 1909.3	1M10W7D	16QAM	0.064	18.06		
LTE - Band2 (3)	1051 5 1000 F	2M70G7D	QPSK	0.077	18.88		
	1001.0 - 1900.0	2M70W7D	16QAM	0.067	18.28		
LTE DondO(E)	1050 F 1007 F	4M50G7D	QPSK	0.077	18.88		
LTE – Band2 (5)	1852.5 - 1907.5	4M50W7D	16QAM	0.066	18.20		
LTE D10 (40)	4055.0. 4005.0	9M00G7D	QPSK	0.077	18.88		
LTE – Band2 (10)	1855.0 - 1905.0	8M96W7D	16QAM	0.069	18.40		
LTE D (45)	4057.5 4000.5	13M5G7D	QPSK	0.081	19.09		
LTE – Band2 (15)	1857.5 - 1902.5	13M5W7D	16QAM	0.069	18.39		
LTE D10 (00)	4000 0 4000 0	18M0G7D	QPSK	0.079	18.99		
LTE – Band2 (20)	1860.0 - 1900.0	18M0W7D	16QAM	0.068	18.35		

Mode (MHz) TE – Band5 (1.4)	Т. Г.	Fasississ		ERP			
	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W)	Max. Power (dBm)		
LTE D15 (4.4)	0047 0400	1M10G7D	QPSK	0.118	20.73		
LTE - Band5 (1.4)	824.7 – 848.3	1M10W7D	16QAM	0.105	20.20		
LTE D. 15 (0)	005.5 047.5	2M71G7D	QPSK	0.127	21.03		
TE – Band5 (1.4)	825.5 – 847.5	2M71W7D	16QAM	0.109	20.37		
LTE D15 (5)	0005 0405	4M52G7D	QPSK	0.116	20.66		
LIE - Band5 (5)	826.5 – 846.5	4M51W7D	16QAM	0.097	19.87		
LTE D 15 (40)	200.0 044.0	9M00G7D	QPSK	0.081	19.11		
LTE – Band5 (10)	829.0 – 844.0	8M98W7D	16QAM	0.072	18.57		

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Ki Hyun Kim

Test engineer of RF Team

Approved by : Sang Jun Lee Manager of RF Team

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report Revision

TEST REPORT NO.	DATE	DESCRIPTION
HCT-R-1511-F020	November 26, 2015	- First Approval Report

Table of Contents

1. GENERAL INFORMATION	6
2. INTRODUCTION	8
2.1. EUT DESCRIPTION	8
2.2. MEASURING INSTRUMENT CALIBRATION	8
2.3. TEST FACILITY	8
3. DESCRIPTION OF TESTS	9
3.1 ERP/ EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	9
3.2 FREQUENCY RANGE	10
3.3 PEAK-AVERAGE RATIO	11
3.4 OCCUPIED BANDWIDTH.	13
3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	14
3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	15
4. LIST OF TEST EQUIPMENT	16
5. SUMMARY OF TEST RESULTS	17
6. SAMPLE CALCULATION	18
7. TEST DATA	19
7.1 EQUIVALENT ISOTROPIC RADIATED POWER (Band 2)	19
7.2 EFFECTIVE RADIATED POWER (Band 5)	23
7.3 RADIATED SPURIOUS EMISSIONS	25
7.3.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 2 LTE)	25
7.3.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 2 LTE)	26
7.3.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 2 LTE)	27
7.3.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 2 LTE)	28
7.3.5 RADIATED SPURIOUS EMISSIONS (15 MHz Band 2 LTE)	29
7.3.6 RADIATED SPURIOUS EMISSIONS (20 MHz Band 2 LTE)	30
7.3.7 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 5 LTE)	31
7.3.8 RADIATED SPURIOUS EMISSIONS (3 MHz Band 5 LTE)	32
7.3.9 RADIATED SPURIOUS EMISSIONS (5 MHz Band 5 LTE)	33
7.3.10 RADIATED SPURIOUS EMISSIONS (10 MHz Band 5 LTE)	34
7.4 PEAK-TO-AVERAGE RATIO	35
7.5 OCCUPIED BANDWIDTH	36
7.6 CONDUCTED SPURIOUS EMISSIONS	37
7.6.1 BAND EDGE	38
7.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	39
7.7.1 FREQUENCY STABILITY (1.4 MHz Band 2 LTE)	39

7.7.2 FREQUENCY STABILITY (3 MHz Band 2 LTE)	40
7.7.3 FREQUENCY STABILITY (5 MHz Band 2 LTE)	41
7.7.4 FREQUENCY STABILITY (10 MHz Band 2 LTE)	42
7.7.5 FREQUENCY STABILITY (15 MHz Band 2 LTE)	43
7.7.6 FREQUENCY STABILITY (20 MHz Band 2 LTE)	44
7.7.7 FREQUENCY STABILITY (1.4 MHz Band 5 LTE)	45
7.7.8 FREQUENCY STABILITY (3 MHz Band 5 LTE)	46
7.7.9 FREQUENCY STABILITY (5 MHz Band 5 LTE)	47
7.7.10 FREQUENCY STABILITY (10 MHz Band 5 LTE)	48
8. TEST PLOTS	49

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name: Franklin Technology Inc.

Address: 906(Gasan-Dong, JEI Platz), 186, Gasan digital 1-ro, Geumcheon-gu, Seoul, Korea(08502)

FCC ID: XHG-R850

Application Type: Certification

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part(s): §22, §24, §2

EUT Type: LTE Mobile Router

FCC Model(s): R850

Tx Frequency: 1850.7 MHz – 1909.3 MHz (LTE – Band2 (1.4 MHz))

1851.5 MHz – 1908.5 MHz (LTE – Band2 (3 MHz)) 1852.5 MHz – 1907.5 MHz (LTE – Band2 (5 MHz)) 1855.0 MHz – 1905.0 MHz (LTE – Band2 (10 MHz)) 1857.5 MHz – 1902.5 MHz (LTE – Band2 (15 MHz)) 1860.0 MHz – 1900.0 MHz (LTE – Band2 (20 MHz))

824.7 MHz – 848.3 MHz (LTE – Band 5 (1.4 MHz)) 825.5 MHz – 847.5 MHz (LTE – Band 5 (3 MHz)) 826.5 MHz – 846.5 MHz (LTE – Band 5 (5 MHz)) 829.0 MHz – 844.0 MHz (LTE – Band 5 (10 MHz))

Max. RF Output Power: Band 2 (1.4 MHz): 0.081 W (QPSK) (19.07 dBm)

0.064 W (16-QAM) (18.06 dBm)

Band 2 (3 MHz): 0.077 W (QPSK) (18.88 dBm)

0.067 W (16-QAM) (18.28 dBm)

Band 2 (5 MHz): 0.077 W (QPSK) (18.88 dBm)

0.066 W (16-QAM) (18.20 dBm)

Band 2 (10 MHz): 0.077 W (QPSK) (18.88 dBm)

0.069 W (16-QAM) (18.40 dBm)

Band 2 (15 MHz): 0.081 W (QPSK) (19.09 dBm)

0.069 W (16-QAM) (18.39 dBm)

Band 2 (20 MHz): 0.079 W (QPSK) (18.99 dBm)

0.068 W (16-QAM) (18.35 dBm)

Band 5 (1.4 MHz): 0.118 W (QPSK) (20.73 dBm)

0.105 W (16-QAM) (20.20 dBm)

Band 5 (3 MHz): 0.127 W (QPSK) (21.03 dBm)

0.109 W (16-QAM) (20.37 dBm)

Band 5 (5 MHz): 0.116 W (QPSK) (20.66 dBm)

0.097 W (16-QAM) (19.87 dBm)

Band 5 (10 MHz): 0.081 W (QPSK) (19.11 dBm)

0.072 W (16-QAM) (18.57 dBm)

F-TP22-03 (Rev.00) FCC ID: XHG-R850 **HCT CO.,LTD.**

Emission Designator(s): Band 2 (1.4 MHz): 1M10G7D (QPSK) / 1M10W7D (16-QAM)

 Band 2 (3 MHz)
 2M70G7D (QPSK) / 2M70W7D (16-QAM)

 Band 2 (5 MHz) :
 4M50G7D (QPSK) / 4M50W7D (16-QAM)

 Band 2 (10 MHz)
 9M00G7D (QPSK) / 8M96W7D (16-QAM)

 Band 2 (15 MHz) :
 13M5G7D (QPSK) / 13M5W7D (16-QAM)

 Band 2 (20 MHz)
 18M0G7D (QPSK) / 18M0W7D (16-QAM)

Band 5 (1.4 MHz): 1M10G7D (QPSK) / 1M10W7D (16-QAM)
Band 5 (3 MHz): 2M71G7D (QPSK) / 2M71W7D (16-QAM)
Band 5 (5 MHz): 4M52G7D (QPSK) / 4M51W7D (16-QAM)
Band 5 (10 MHz): 9M00G7D (QPSK) / 8M98W7D (16-QAM)

Date(s) of Tests: October 20, 2015 ~ November 25, 2015

Antenna Specification Manufacturer: Hutec

Antenna type: Internal Antenna
Peak Gain: Band 2 : 2.24 dBi
Peak Gain: Band 5 : 0.88 dBi

F-TP22-03 (Rev.00) **7 / 125 HCT CO.,LTD.**

2. INTRODUCTION

2.1. EUT DESCRIPTION

The Franklin Technology Inc. R850 LTE Mobile Router consists of LTE 2 and 5.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **17383**, **Rep. of KOREA**.

3. DESCRIPTION OF TESTS

3.1 ERP/ EIRP RADIATED POWER AND RADIATED SPURIOUS EMISSIONS

Note: ERP(Effective Radiated Power), EIRP(Effective Isotropic Radiated Power)

Test Procedure

Radiated emission measurements are performed in the Fully-anechoic chamber. The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-D-2010 Clause 2.2.17. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission. The level and position of the maximized emission is recorded with the spectrum analyzer using a RMS detector.

A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

The maximum EIRP is calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration

Radiated spurious emissions

: Frequency Range: 30 MHz ~ 10th Harmonics of highest channel fundamental frequency.

3.2 FREQUENCY RANGE

§ 24.229: PCS - Mobile Frequency Blocks

§22.917(a): Cellular – Mobile Frequency Blocks

BLOCK 1: 824 – 835 MHz (A* Low + A) BLOCK 2: 835 – 845 MHz (B) BLOCK 3: 845 – 846.5 MHz (A* High) BLOCK 4: 846.5 – 849 MHz (B*)

3.3 PEAK-AVERAGE RATIO.

Test Procedure

Peak to Average Power Ratio is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 5.7.

- Section 5.7.1 CCDF Procedure

- a) Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b) Set the number of counts to a value that stabilizes the measured CCDF curve;
- c) Set the measurement interval as follows:
 - 1) for continuous transmissions, set to 1 ms.
 - 2) for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- d) Record the maximum PAPR level associated with a probability of 0.1%.

- Section 5.7.2 Alternate Procedure

Use one of the procedures presented in 5.1 to measure the total peak power and record as P_{Pk} . Use one of the applicable procedures presented 5.2 to measure the total average power and record as P_{Avg} . Determine the P.A.R. from: P.A.R_(dB) = $P_{Pk (dBm)} - P_{Avg (dBm)}$ (P_{Avg} = Average Power + Duty cycle Factor)

5.1.1 Peak power measurements with a spectrum/signal analyzer or EMI receiver

The following procedure can be used to determine the total peak output power.

- a) Set the RBW ≥ OBW.
- b) Set VBW ≥ 3 × RBW.
- c) Set span ≥ 2 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Ensure that the number of measurement points ≥ span/RBW.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the peak amplitude level.

5.2.2 Procedures for use with a spectrum/signal analyzer when EUT cannot be configured to transmit continuously and sweep triggering/signal gating cannot be properly implemented

If the EUT cannot be configured to transmit continuously (burst duty cycle < 98%), then one of the following procedures can be used. The selection of the applicable procedure will depend on the characteristics of the measured burst duty cycle.

Measure the burst duty cycle with a spectrum/signal analyzer or EMC receiver can be used in zero-span mode if the response time and spacing between bins on the sweep are sufficient to permit accurate measurement of the burst on/off time of the transmitted signal.

5.2.2.2 Constant burst duty cycle

If the measured burst duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then:

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq 3 x RBW.
- d) Number of points in sweep ≥ 2 × span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (power averaging).
- g) Set sweep trigger to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- j) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission).
 - For example, add 10 $\log (1/0.25) = 6$ dB if the duty cycle is a constant 25%.

3.4 OCCUPIED BANDWIDTH.

Test set-up

(Configuration of conducted Emission measurement)

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

Test Procedure

OBW is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 4.2.

The EUT makes a call to the communication simulator. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels(low, middle and high operational range.)

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

3.5 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL.

Test Procedure

Spurious and harmonic emissions at antenna terminal is tested in accordance with KDB971168 D01 Power Meas License Digital Systems v02r02, October 17, 2014, Section 6.0.

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer.

The EUT was setup to maximum output power at its lowest channel. The Resolution BW of the analyzer is set to 1 % of the emission bandwidth to show compliance with the -13 dBm limit, in the 1 MHz bands immediately outside and adjacent to the edge of the frequency block. The 1 MHz RBW was used to scan from 30 MHz to 10th Harmonics. A display line was placed at -13 dBm to show compliance. The high, lowest and a middle channel were tested for out of band measurements.

- Band Edge Requirement: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13 dBm.

NOTES: The analyzer plot offsets were determined by below conditions.

- For LTE Band 2, total offset 26.5 dBm = 20 dBm attenuator + 6 dBm Divider + 0.5 dBm RF cables.
- For LTE Band 5, total offset 26.4 dB = 20 dB attenuator + 6 dB Divider + 0.4 dB RF cables.

3.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test Set-up

Test Procedure

Frequency stability is tested in accordance with ANSI/TIA-603-D-2010 section 2.2.2

The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from 30 °C to + 50 °C using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from the end point to 100 % of the voltage normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification — the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block(LTE Band2). The frequency stability of the transmitter shall be maintained within \pm 0.000 25 %(\pm 2.5 ppm) of the center frequency. (LTE Band5).

Time Period and Procedure:

The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

- 1. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 2. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

NOTE: The EUT is tested down to the battery endpoint.

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Interval	Calibration Due
Agilent	N1921A/ Power Sensor	MY45241059	Annual	07/09/2016
Agilent	N1911A/ Power Meter	MY45100523	Annual	07/09/2016
CERNEX	CBLU1183540B-01/POWER AMP	25540	Annual	05/21/2016
Wainwright	WHKX 10-900-1000-15000-40SS/H.P.F	5	Annual	08/11/2016
Wainwright	WHKX10-2700-3000-18000-40SS/H.P.F	3	Annual	08/05/2016
Hewlett Packard	11667B / Power Splitter	10545	Annual	02/16/2016
Hewlett Packard	11667B / Power Splitter	11275	Annual	04/29/2016
ITECH	IT6720/ Power Supply	0100215626700119	Annual	11/02/2016
Schwarzbeck	UHAP/ Dipole Antenna	557	Biennial	03/23/2017
Schwarzbeck	UHAP/ Dipole Antenna	558	Biennial	03/23/2017
EXP	EX-TH400/ Chamber	None	Annual	05/29/2016
Schwarzbeck	BBHA 9120D/ Horn Antenna	9210D-1298	Biennial	10/16/2016
Schwarzbeck	BBHA 9120D/ Horn Antenna	9210D-1299	Biennial	10/16/2016
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170342	Biennial	04/30/2017
Schwarzbeck	BBHA 9170/ Horn Antenna(15~35GHz)	BBHA9170124	Biennial	04/30/2017
Agilent	N9020A/Signal Analyzer	MY51110063	Annual	04/29/2016
Hewlett Packard	8493C/ATTENUATOR	17280	Annual	06/29/2016
REOHDE&SCHWARZ	FSV40-N/Signal Analyzer	101068-SZ	Annual	09/23/2016
REOHDE&SCHWARZ	FSV40/Spectrum Analyzer	1307.9002K40-100931-NK	Annual	06/04/2016
Agilent	8960 (E5515C)/ Base Station	MY48360800	Annual	10/30/2016
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6200863156	Annual	03/24/2016

5. SUMMARY OF TEST RESULTS

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	
2.1049	Occupied Bandwidth	N/A		PASS	
2.1051, 22.917(a), 24.238(a)	Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	< 43 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions		PASS	
2.1046	*Conducted Output Power	N/A		PASS	
24.232(d)	Peak- to- Average Ratio	< 13 dB	CONDUCTED	PASS	
2.1055, 22.355	Frequency stability / variation of	< 2.5 ppm (Part22)		PASS	
24.235	ambient temperature	Emission must remain in band (Part24)		PASS	
22.913(a)(2)	Effective Radiated Power (Band 5)	< 7 Watts max. ERP		PASS	
24.232(c)	Equivalent Isotropic Radiated Power (Band 2)	< 2 Watts max. EIRP	RADIATED	PASS	
2.1053, 22.917(a), 24.238(a)	Radiated Spurious and Harmonic Emissions	The Edge / Spurious and Harmonic Edge and for all out-of-band emissions *Conducted Output Power *Conducted Output Power Peak- to- Average Ratio *Conducted Output Power (Part22) Emission must remain in band (Part24) Effective Radiated Power (Band 5) *Conducted Output Power *Conducted Out		PASS	

^{*}See SAR Report

6. SAMPLE CALCULATION

A. ERP Sample Calculation

Mode	Ch./ Freq.		Measured	Substitude	Ant. Gain	CI	Pol	EF	RP
Wode	channel	Freq.(MHz)	Level(dBm)	LEVEL(dBm)	(dBd)	C.L	Pol.	w	dBm
LTE Band5	20525	836.60	-6.73	40.89	-10.54	0.96	V	0.869	29.39

ERP = SubstitudeLEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a wooden tripod is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated and the antenna height is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power (ERP).

B. Emission Designator

QPSK Modulation

5MHz Bandwidth 10MHz Bandwidth

Emission Designator = 4M48G7D Emission Designator = 8M95G7D

LTE BW = 4.48 MHz

G = Phase Modulation

LTE BW = 8.95 MHz

G = Phase Modulation

7 = Quantized/Digital Info 7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand D = Data transmission; telemetry; telecommand

16QAM Modulation

5MHz Bandwidth 10MHz Bandwidth

Emission Designator = 4M48W7D Emission Designator = 8M95W7D

LTE BW = 4.48 MHz LTE BW = 8.95 MHz

W = main carrier modulated in a combination of two W = main carrier modulated in a combination of two

or more of the following modes; or more of the following modes;

amplitude, angle, pulse amplitude, angle, pulse

7 = Quantized/Digital Info 7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev.00) FCC ID: XHG-R850 **18 / 125 HCT CO.,LTD.**

7. TEST DATA

7.1 EQUIVALENT ISOTROPIC RADIATED POWER (Band 2)

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	EIRP	
(MHz)			Level (dBm)	Level (dBm)	Gain(dBi)			W	dBm
1850.7		QPSK	-21.11	10.47	9.82	1.47	V	0.076	18.82
1000.7		16-QAM	-21.87	9.71	9.82	1.47	٧	0.064	18.06
1880.0	1.4 MHz	QPSK	-21.66	10.09	9.91	1.47	٧	0.071	18.53
1000.0	1.4 MHZ	16-QAM	-22.13	9.62	9.91	1.47	V	0.064	18.06
1909.3		QPSK	-21.37	10.56	10.00	1.49	٧	0.081	19.07
		16-QAM	-22.41	9.52	10.00	1.49	٧	0.063	18.03

Equivalent Isotropic Radiated Power Data (1.4 MHz Band 2 LTE)

Note: All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	EIRP	
(MHz)			Level (dBm)	Level (dBm)	Gain(dBi)			W	dBm
1851.5		QPSK	-21.05	10.53	9.82	1.47	>	0.077	18.88
1001.0		16-QAM	-21.65	9.93	9.82	1.47	٧	0.067	18.28
1880.0	2 M⊔-	QPSK	-21.91	9.84	9.91	1.47	٧	0.067	18.28
1000.0	3 MHz	16-QAM	-22.91	8.84	9.91	1.47	V	0.053	17.28
4000.5		QPSK	-22.83	9.10	10.00	1.49	V	0.058	17.61
1908.5		16-QAM	-23.62	8.31	10.00	1.49	٧	0.048	16.82

Equivalent Isotropic Radiated Power Data (3 MHz Band 2 LTE)

Note: All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

Freq (MHz)	Bandwidth	Modulation	Measured	Substitude	C.L	Pol	EIRP		
			Level (dBm)	Level (dBm)				W	dBm
1852.5		QPSK	-21.05	10.53	9.82	1.47	V	0.077	18.88
1002.0		16-QAM	-21.73	9.85	9.82	1.47	V	0.066	18.20
1000 0	E MILI-	QPSK	-23.12	8.63	9.91	1.47	V	0.051	17.07
1880.0	5 MHz	16-QAM	-23.77	7.98	9.91	1.47	V	0.044	16.42
1907.5		QPSK	-24.81	7.13	10.00	1.49	V	0.037	15.64
		16-QAM	-25.49	6.45	10.00	1.49	V	0.031	14.96

Equivalent Isotropic Radiated Power Data (5 MHz Band 2 LTE)

Note: All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	C.	C.L	Pol	EIRP	
(MHz)			Level (dBm)	Level (dBm)				W	dBm
1855.0		QPSK	-21.10	10.51	9.84	1.47	>	0.077	18.88
1000.0		16-QAM	-21.58	10.03	9.84	1.47	٧	0.069	18.40
1880.0	10 M⊔ -	QPSK	-25.32	6.43	9.91	1.47	٧	0.031	14.87
1000.0	10 MHz	16-QAM	-25.90	5.85	9.91	1.47	٧	0.027	14.29
1005.0		QPSK	-25.72	6.17	9.99	1.49	V	0.029	14.66
1905.0		16-QAM	-26.64	5.25	9.99	1.49	٧	0.024	13.74

Equivalent Isotropic Radiated Power Data (10 MHz Band 2 LTE)

Note: All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	EIF	RP
(MHz)			Level (dBm)	Level (dBm)	Gain(dBi)			W	dBm
1057 5	1857.5 1880.0 15 MHz	QPSK	-20.93	10.71	9.85	1.47	٧	0.081	19.09
1007.5		16-QAM	-21.63	10.01	9.85	1.47	٧	0.069	18.39
1000.0		QPSK	-26.37	5.38	9.91	1.47	V	0.024	13.82
1000.0		16-QAM	-27.02	4.73	9.91	1.47	V	0.021	13.17
1902.5		QPSK	-24.28	7.54	9.97	1.48	٧	0.040	16.03
		16-QAM	-24.90	6.92	9.97	1.48	V	0.035	15.41

Equivalent Isotropic Radiated Power Data (15 MHz Band 2 LTE)

Note: All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	EIF	₹P
(MHz)			Level (dBm)	Level (dBm)	Gain(dBi)			W	dBm
1860.0		QPSK	-21.03	10.64	9.82	1.47	>	0.079	18.99
1000.0	20 MHz	16-QAM	-21.67	10.00	9.82	1.47	>	0.068	18.35
1880.0		QPSK	-27.13	4.62	9.91	1.47	٧	0.020	13.06
1000.0		16-QAM	-27.86	3.89	9.91	1.47	٧	0.017	12.33
1900.0		QPSK	-22.16	9.66	9.97	1.48	V	0.065	18.15
		16-QAM	-22.84	8.98	9.97	1.48	٧	0.056	17.47

Equivalent Isotropic Radiated Power Data (20 MHz Band 2 LTE)

Note: All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. Turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For LTE signals, RBW = 1-5% of the OBW, not to exceed 1MHz, VBW \geq 3 x RBW, Detector = RMS. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is

taken into consideration and the EIRP is recorded.

Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is z plane in LTE mode. Also worst case of detecting Antenna is vertical polarization in LTE mode.

7.2 EFFECTIVE RADIATED POWER (Band 5)

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	ER	RP.
(MHz)			Level (dBm)	Level (dBm)	Gain(dBd)			W	dBm
924.7	824.7 836.5 1.4 MHz 848.3	QPSK	-33.17	28.51	-10.23	0.88	Н	0.055	17.40
024.7		16-QAM	-33.84	27.84	-10.23	0.88	Н	0.047	16.73
926 5		QPSK	-29.61	31.82	-10.20	0.89	Н	0.118	20.73
030.5		16-QAM	-30.14	31.29	-10.20	0.89	Н	0.105	20.20
040.2		QPSK	-31.32	29.93	-10.17	0.89	Н	0.077	18.87
848.3		16-QAM	-31.80	29.45	-10.17	0.89	Н	0.069	18.39

Effective Radiated Power Data (1.4 MHz Band 5 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	EF	RP
(MHz)			Level (dBm)	Level (dBm)	Gain(dBd)			W	dBm
825.5		QPSK	-33.22	28.47	-10.22	0.88	Н	0.055	17.37
625.5		16-QAM	-33.89	27.80	-10.22	0.88	Н	0.047	16.70
836.5	3 MHz	QPSK	-29.31	32.12	-10.20	0.89	Н	0.127	21.03
630.5	3 IVITZ	16-QAM	-29.97	31.46	-10.20	0.89	Н	0.109	20.37
847.5		QPSK	-31.14	30.07	-10.17	0.89	Н	0.080	19.01
847.5		16-QAM	-31.65	29.56	-10.17	0.89	Н	0.071	18.50

Effective Radiated Power Data (3 MHz Band 5 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	ER	RP.
(MHz)			Level (dBm)	Level (dBm)	Gain(dBd)			W	dBm
926 5	826.5 836.5 5 MHz 846.5	QPSK	-33.49	28.19	-10.22	0.88	Н	0.051	17.09
620.5		16-QAM	-34.37	27.31	-10.22	0.88	Н	0.042	16.21
926 F		QPSK	-29.68	31.75	-10.20	0.89	Н	0.116	20.66
630.5		16-QAM	-30.47	30.96	-10.20	0.89	Н	0.097	19.87
846.5		QPSK	-33.19	28.02	-10.18	0.89	Н	0.050	16.95
		16-QAM	-34.08	27.13	-10.18	0.89	Н	0.040	16.06

Effective Radiated Power Data (5 MHz Band 5 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

Freq	Bandwidth	Modulation	Measured	Substitude	Ant.	C.L	Pol	EF	RP
(MHz)			Level (dBm)	Level (dBm)	Gain(dBd)			W	dBm
829.0		QPSK	-33.21	28.44	-10.21	0.88	Н	0.054	17.35
029.0		16-QAM	-34.13	27.52	-10.21	0.88	Н	0.044	16.43
836.5	10 MH=	QPSK	-31.23	30.20	-10.20	0.89	Н	0.081	19.11
0.00.0	10 MHz	16-QAM	-31.77	29.66	-10.20	0.89	Н	0.072	18.57
844.0		QPSK	-32.74	28.52	-10.18	0.89	Н	0.056	17.45
		16-QAM	-33.41	27.85	-10.18	0.89	Н	0.048	16.78

Effective Radiated Power Data (10 MHz Band 5 LTE)

Note: All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

The EUT was placed on a non-conductive styrofoam resin table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For LTE signals, RBW = 1-5% of the OBW, not to exceed 1MHz, VBW \geq 3 x RBW, Detector = RMS. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

Also, we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna. The worst case of the EUT is x plane in LTE mode. Also worst case of detecting Antenna is horizontal polarization in LTE mode.

7.3 RADIATED SPURIOUS EMISSIONS

7.3.1 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 2 LTE)

■ OPERATING FREQUENTY: 1909.30 MHz

■ MEASURED OUTPUT POWER: 19.07 dBm = 0.081 W

■ MODULATION SIGNAL: <u>1.4 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 32.07 \text{ dBc}$

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitude Level (dBm)	C.L	Pol	EIRP (dBm)	dBc
	3,701.40	-51.73	12.52	-57.14	2.10	Н	-46.72	65.79
18607 (1850.7)	5,552.10	-35.91	13.29	-36.56	2.54	Н	-25.81	44.88
(1000.7)	7,402.80	-45.59	11.72	-38.66	2.89	Н	-29.83	48.90
	3,760.00	-51.15	12.56	-56.47	2.09	Н	-46.00	65.07
18900 (1880.0)	5,640.00	-40.10	13.30	-40.96	2.58	Н	-30.24	49.31
(1000.0)	7,520.00	-43.24	11.70	-36.38	2.98	Н	-27.66	46.73
	3,818.60	-50.86	12.60	-55.79	2.09	Н	-45.28	64.35
19193 (1909.3)	5,727.90	-39.12	13.31	-39.50	2.67	Н	-28.86	47.93
(1909.3)	7,637.20	-45.49	11.61	-38.86	3.00	Н	-30.25	49.32

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3

 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded

 (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.2 RADIATED SPURIOUS EMISSIONS (3 MHz Band 2 LTE)

■ OPERATING FREQUENTY: <u>1851.50 MHz</u>

■ MEASURED OUTPUT POWER: 18.88 dBm = 0.077 W

■ MODULATION SIGNAL: <u>3 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 31.88 \text{ dBc}$

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitude Level (dBm)	C.L	Pol	EIRP (dBm)	dBc
	3,703.00	-53.82	12.52	-59.23	2.10	Н	-48.81	67.69
18615 (1851.5)	5,554.50	-37.93	13.29	-38.65	2.55	Н	-27.91	46.79
(1001.0)	7,406.00	-44.83	11.72	-37.90	2.89	Н	-29.07	47.95
	3,760.00	-52.47	12.56	-57.79	2.09	Н	-47.32	66.20
18900 (1880.0)	5,640.00	-42.05	13.30	-42.91	2.58	Н	-32.19	51.07
(1000.0)	7,520.00	-44.19	11.70	-37.33	2.98	Н	-28.61	47.49
	3,817.00	-40.92	12.60	-45.85	2.09	Н	-35.34	54.22
19185 (1908.5)	5,725.50	-43.27	13.31	-43.56	2.63	Н	-32.88	51.76
(1906.5)	7,634.00	-54.94	11.62	-48.19	2.99	Н	-39.56	58.44

NOTES: 1. Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA/EIA-603-D-2010 June 24, 2010:

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case

HCT CO.,LTD.

5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.3 RADIATED SPURIOUS EMISSIONS (5 MHz Band 2 LTE)

■ OPERATING FREQUENTY: <u>1852.50 MHz</u>

■ MEASURED OUTPUT POWER: 18.88 dBm = 0.077 W

■ MODULATION SIGNAL: <u>5 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 31.88 \text{ dBc}$

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitude Level (dBm)	C.L	Pol	EIRP (dBm)	dBc
	3,705.00	-52.99	12.52	-58.38	2.10	Н	-47.96	66.84
18625 (1852.5)	5,557.50	-37.76	13.29	-38.53	2.57	Н	-27.81	46.69
(1002.0)	7,410.00	-45.92	11.72	-39.00	2.89	Н	-30.17	49.05
	3,760.00	-50.92	12.56	-56.24	2.09	Н	-45.77	64.65
18900 (1880.0)	5,640.00	-39.99	13.30	-40.85	2.58	Н	-30.13	49.01
(1000.0)	7,520.00	-44.74	11.70	-37.88	2.98	Н	-29.16	48.04
	3,815.00	-50.34	12.60	-55.32	2.12	Н	-44.84	63.72
19175 (1907.5)	5,722.50	-41.56	13.31	-41.76	2.59	Н	-31.04	49.92
(1907.5)	7,630.00	-46.94	11.62	-40.05	2.99	V	-31.42	50.30

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.4 RADIATED SPURIOUS EMISSIONS (10 MHz Band 2 LTE)

■ OPERATING FREQUENTY: <u>1855.00 MHz</u>

■ MEASURED OUTPUT POWER: 18.88 dBm = 0.077 W

■ MODULATION SIGNAL: <u>10 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 31.88 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitude Level (dBm)	C.L	Pol	EIRP (dBm)	dBc
	3,710.00	-52.74	12.52	-58.13	2.09	Н	-47.70	66.58
18650 (1855.0)	5,565.00	-38.28	13.29	-38.94	2.56	Н	-28.21	47.09
(1033.0)	7,420.00	-46.47	11.72	-39.40	2.90	Н	-30.58	49.46
	3,760.00	-50.22	12.56	-55.54	2.09	Н	-45.07	63.95
18900 (1880.0)	5,640.00	-40.59	13.30	-41.45	2.58	Н	-30.73	49.61
(1000.0)	7,520.00	-44.74	11.70	-37.88	2.98	Н	-29.16	48.04
	3,810.00	-52.30	12.60	-57.33	2.15	Н	-46.88	65.76
19150 (1905.0)	5,715.00	-40.69	13.31	-40.79	2.60	Н	-30.08	48.96
(1905.0)	7,620.00	-48.58	11.62	-41.82	3.01	V	-33.21	52.09

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.5 RADIATED SPURIOUS EMISSIONS (15 MHz Band 2 LTE)

■ OPERATING FREQUENTY: <u>1857.50 MHz</u>

■ MEASURED OUTPUT POWER: 19.09 dBm = 0.081 W

■ MODULATION SIGNAL: <u>15 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 32.09 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitude Level (dBm)	C.L	Pol	EIRP (dBm)	dBc
	3,715.00	-53.49	12.53	-58.86	2.08	Н	-48.41	67.50
18675 (1857.5)	5,572.50	-38.66	13.29	-39.21	2.54	V	-28.46	47.55
(1007.0)	7,430.00	-45.87	11.72	-38.92	2.92	V	-30.12	49.21
	3,760.00	-51.65	12.56	-56.97	2.09	Н	-46.50	65.59
18900 (1880.0)	5,640.00	-40.13	13.30	-40.99	2.58	Н	-30.27	49.36
(1000.0)	7,520.00	-46.69	11.70	-39.83	2.98	Н	-31.11	50.20
	3,805.00	-52.54	12.60	-57.60	2.15	Н	-47.15	66.24
19125 (1902.5)	5,707.50	-43.34	13.31	-43.34	2.61	Н	-32.64	51.73
(1902.5)	7,610.00	-46.89	11.63	-40.51	2.99	Н	-31.87	50.96

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.6 RADIATED SPURIOUS EMISSIONS (20 MHz Band 2 LTE)

■ OPERATING FREQUENTY: <u>1860.00 MHz</u>

■ MEASURED OUTPUT POWER: 18.99 dBm = 0.079 W

■ MODULATION SIGNAL: <u>20 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 31.99 \text{ dBc}$

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitude Level (dBm)	C.L	Pol	EIRP (dBm)	dBc
	3,720.00	-52.96	12.53	-58.29	2.07	Н	-47.83	66.82
18700 (1860.0)	5,580.00	-37.60	13.29	-38.20	2.53	Н	-27.44	46.43
(1000.0)	7,440.00	-46.63	11.72	-39.82	2.93	Н	-31.03	50.02
	3,760.00	-51.79	12.56	-57.11	2.09	V	-46.64	65.63
18900 (1880.0)	5,640.00	-41.26	13.30	-42.12	2.58	V	-31.40	50.39
(1000.0)	7,520.00	-46.25	11.70	-39.39	2.98	Н	-30.67	49.66
	3,800.00	-53.15	12.59	-58.24	2.14	Н	-47.79	66.78
19100 (1900.0)	5,700.00	-38.70	13.31	-39.02	2.57	Н	-28.28	47.27
(1900.0)	7,600.00	-46.50	11.64	-40.04	2.94	Н	-31.34	50.33

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and EIRP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.7 RADIATED SPURIOUS EMISSIONS (1.4 MHz Band 5 LTE)

■ OPERATING FREQUENTY: 836.50 MHz

■ MEASURED OUTPUT POWER: <u>20.73 dBm = 0.118 W</u>

■ MODULATION SIGNAL: <u>1.4 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 33.73 \text{ dBc}$

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitude Level (dBm)	C.L	Pol	ERP (dBm)	dBc
	1,649.40	-40.57	9.16	-52.79	1.38	V	-45.01	65.74
20407 (824.7)	2,474.10	-45.77	10.92	-54.68	1.69	Н	-45.45	66.18
(02 1.7)	3,298.80	-51.27	11.94	-58.52	1.98	V	-48.56	69.29
	1,673.00	-46.22	9.23	-59.05	1.39	V	-51.21	71.94
20525 (836.5)	2,509.50	-43.71	10.96	-52.87	1.69	V	-43.60	64.33
(000.0)	3,346.00	-52.10	12.04	-60.01	1.95	Н	-49.92	70.65
	1,696.60	-45.54	9.34	-58.33	1.41	Н	-50.40	71.13
20643 (848.3)	2,544.90	-45.62	10.99	-54.61	1.72	Н	-45.34	66.07
(0.0.0)	3,393.20	-52.44	12.13	-59.74	1.99	Н	-49.60	70.33

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.8 RADIATED SPURIOUS EMISSIONS (3 MHz Band 5 LTE)

■ OPERATING FREQUENTY: 836.50 MHz

■ MEASURED OUTPUT POWER: 21.03 dBm = 0.127 W

■ MODULATION SIGNAL: <u>3 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: $43 + 10 \log_{10}(W) = 34.03 \text{ dBc}$

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitude Level (dBm)	C.L	Pol	ERP (dBm)	dBc
	1,651.00	-40.63	9.16	-52.86	1.38	V	-45.08	66.11
20415 (825.5)	2,476.50	-47.01	10.92	-55.92	1.69	V	-46.69	67.72
(020.0)	3,302.00	-50.58	11.72	-56.86	1.91	Н	-47.05	68.08
	1,673.00	-48.10	9.23	-60.93	1.39	Н	-53.09	74.12
20525 (836.5)	2,509.50	-41.96	10.96	-51.12	1.69	Н	-41.85	62.88
(000.0)	3,346.00	-53.13	12.04	-61.04	1.95	V	-50.95	71.98
	1,695.00	-46.43	9.32	-59.05	1.40	V	-51.13	72.16
20635 (847.5)	2,542.50	-40.16	10.98	-49.24	1.72	V	-39.98	61.01
(5 17.0)	3,390.00	-47.35	12.13	-54.65	1.99	Н	-44.51	65.54

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.9 RADIATED SPURIOUS EMISSIONS (5 MHz Band 5 LTE)

■ OPERATING FREQUENTY: 836.50 MHz

■ MEASURED OUTPUT POWER: 20.66 dBm = 0.116 W

■ MODULATION SIGNAL: 5 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 33.66 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitude Level (dBm)	C.L	Pol	ERP (dBm)	dBc
	1,653.00	-41.23	9.16	-53.45	1.38	Н	-45.67	66.33
20425 (826.5)	2,479.50	-46.76	10.93	-55.85	1.69	V	-46.61	67.27
(020.0)	3,306.00	-53.31	11.95	-60.74	1.99	V	-50.78	71.44
	1,673.00	-47.40	9.23	-60.23	1.39	Н	-52.39	73.05
20525 (836.5)	2,509.50	-40.03	10.96	-49.19	1.69	Н	-39.92	60.58
(000.0)	3,346.00	-51.93	12.04	-59.84	1.95	Н	-49.75	70.41
	1,693.00	-44.03	9.34	-56.50	1.41	V	-48.57	69.23
20625 (846.5)	2,539.50	-39.67	10.98	-48.75	1.72	V	-39.49	60.15
(0.10.0)	3,386.00	-53.67	12.12	-61.07	1.99	Н	-50.94	71.60

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.3.10 RADIATED SPURIOUS EMISSIONS (10 MHz Band 5 LTE)

■ OPERATING FREQUENTY: 836.50 MHz

■ MEASURED OUTPUT POWER: 19.11 dBm = 0.081 W

■ MODULATION SIGNAL: <u>10 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: 43 + 10 log10 (W) = 32.11 dBc

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitude Level (dBm)	C.L	Pol	ERP (dBm)	dBc
	1,658.00	-40.47	9.20	-52.90	1.39	V	-45.09	64.20
20450 (829.0)	2,487.00	-46.75	10.94	-55.49	1.69	V	-46.24	65.35
(020.0)	3,316.00	-52.60	11.98	-60.38	2.03	Н	-50.43	69.54
	1,673.00	-44.97	9.23	-57.80	1.39	Н	-49.96	69.07
20525 (836.5)	2,509.50	-41.05	10.96	-50.21	1.69	V	-40.94	60.05
(000.0)	3,346.00	-52.08	12.04	-59.99	1.95	V	-49.91	69.02
	1,688.00	-41.53	9.30	-53.97	1.40	Н	-46.07	65.18
20600 (844.0)	2,532.00	-48.10	10.98	-56.54	1.71	V	-47.27	66.38
(011.0)	3,376.00	-52.48	12.10	-60.05	1.97	V	-49.92	69.03

- 2. We are performed all frequency to 10th harmonics from 30 MHz. Measurements above show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. we have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. All of RB size has been tested for emissions and ERP, with the 1RB configuration observed as the worst case
- 5. We are performed 16QAM and QPSK modulations. The worst case data are reported in the table above.

7.4 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
	1.4 MHz		QPSK	6	0	5.13
	1.4 IVI⊓Z		16-QAM	6	0	5.93
	3 MHz		QPSK	15	0	5.36
	3 WITZ		16-QAM	15	0	6.18
	5 MH-		QPSK	25	0	5.28
Band 2	5 MHz	4000.0	16-QAM	25	0	6.02
Band 2	10 MHz	1880.0	QPSK	50	0	5.44
			16-QAM	50	0	6.10
	45 MH-		QPSK	75	0	5.33
	15 MHz		16-QAM	75	0	6.13
	20 MHz		QPSK	100	0	5.46
	20 MHz		16-QAM	100	0	6.22

⁻ Plots of the EUT's Peak- to- Average Ratio are shown Page 60 $\sim 65\,$

7.5 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
	1.4 MHz		QPSK	6	0	1.0958
	1.4 IVI⊓2		16-QAM	6	0	1.0979
	3 MHz	1880.0	QPSK	15	0	2.7026
	3 IVITZ		16-QAM	15	0	2.6964
	5 MHz		QPSK	25	0	4.4965
Band 2			16-QAM	25	0	4.5039
Band 2	10 MHz		QPSK	50	0	9.0044
			16-QAM	50	0	8.9637
	45 MH=		QPSK	75	0	13.477
	15 MHz		16-QAM	75	0	13.486
	20 MH=		QPSK	100	0	18.009
	20 MHz		16-QAM	100	0	18.007

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
	1.4 MHz		QPSK	6	0	1.0976
	1.4 IVITIZ	IVITZ	16-QAM	6	0	1.0968
	0.1411	- 836.5	QPSK	15	0	2.7093
Dand 5	3 MHz		16-QAM	15	0	2.7063
Band 5	5 MHz		QPSK	25	0	4.5179
-			16-QAM	25	0	4.5051
	40 MH=		QPSK	50	0	9.0006
	10 MHz		16-QAM	50	0	8.9825

⁻ Plots of the EUT's Occupied Bandwidth are shown Page 50 \sim 59.

7.6 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Frequency of Maximum Harmonic (GHz)	Maximum Data [dBm]
		1850.7				16.3640	-25.49
	1.4	1880.0				16.3905	-25.18
		1909.3				19.0370	-25.51
		1851.5				16.3700	-27.92
	3 1880.0 1908.5			19.1210	-28.30		
		1908.5		1	0	19.4515	-28.07
		1852.5				19.0215	-28.77
	5	1880.0				19.5220	-28.34
Dand O		1907.5	ODCK			15.8530	-28.07
Band 2		1855.0	QPSK			19.9775	-25.03
	10	1880.0				19.3905	-25.26
		1905.0				19.0345	-25.03
		1857.5				19.4220	-25.13
	15	1880.0				19.0405	-25.17
		1902.5				19.4725	-25.60
		1860.0				19.5020	-25.23
	20	0 1880.0			19.5230	-25.74	
		1900.0				19.5140	-25.10

Band	Band Width (MHz)	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Frequency of Maximum Harmonic (GHz)	Maximum Data [dBm]
		824.7				3.180980	-32.57
	1.4	836.5				9.300500	-32.69
		848.3				2.431504	-32.22
		825.5			2.795805	-31.86	
	3	836.5		1		2.441444	-31.95
Band 5		847.5				3.057724	-32.23
Banu 5		826.5	QPSK		0	2.835068	-32.14
	5	836.5				9.443000	-31.85
		846.5				9.930500	-32.86
		829.0				3.034365	-31.98
	10	836.5				9.897000	-32.73
		844.0				3.065676	-31.21

- Plots of the EUT's Conducted Spurious Emissions are shown Page 96 \sim 125.

7.6.1 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 66 \sim 95.

7.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE 7.7.1 FREQUENCY STABILITY (1.4 MHz Band 2 LTE)

■ OPERATING FREQUENCY: <u>1880,000,000 Hz</u>

■ CHANNEL: <u>18900 (1.4 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	1879 999 989	0.0	0.000 000	0.000
100%		-30	1879 999 998	8.6	0.000 000	0.005
100%		-20	1880 000 016	26.7	0.000 001	0.014
100%		-10	1879 999 976	-13.5	-0.000 001	-0.007
100%	4.00	0	1879 999 974	-15.3	-0.000 001	-0.008
100%		+10	1879 999 998	8.7	0.000 000	0.005
100%		+30	1879 999 980	-9.1	0.000 000	-0.005
100%		+40	1879 999 998	8.8	0.000 000	0.005
100%		+50	1880 000 007	17.2	0.000 001	0.009
Batt. Endpoint	3.75	+20	1879 999 951	-38.2	-0.000 002	-0.020

7.7.2 FREQUENCY STABILITY (3 MHz Band 2 LTE)

■ OPERATING FREQUENCY: <u>1880,000,000 Hz</u>

■ CHANNEL: <u>18900 (3 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	1879 999 985	0.0	0.000 000	0.000
100%		-30	1880 000 003	17.9	0.000 001	0.010
100%		-20	1879 999 998	12.3	0.000 001	0.007
100%		-10	1879 999 971	-14.5	-0.000 001	-0.008
100%	4.00	0	1880 000 006	21.1	0.000 001	0.011
100%		+10	1880 000 003	17.7	0.000 001	0.009
100%		+30	1880 000 000	15.1	0.000 001	0.008
100%		+40	1880 000 006	20.4	0.000 001	0.011
100%		+50	1880 000 000	14.5	0.000 001	0.008
Batt. Endpoint	3.75	+20	1879 999 998	12.9	0.000 001	0.007

7.7.3 FREQUENCY STABILITY (5 MHz Band 2 LTE)

■ OPERATING FREQUENCY: 1880,000,000 Hz

■ CHANNEL: <u>18900 (5 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	1880 000 011	0.0	0.000 000	0.000
100%		-30	1880 000 029	17.6	0.000 001	0.009
100%		-20	1880 000 031	19.6	0.000 001	0.010
100%		-10	1880 000 032	20.9	0.000 001	0.011
100%	4.00	0	1880 000 032	20.9	0.000 001	0.011
100%		+10	1880 000 004	-6.8	0.000 000	-0.004
100%		+30	1880 000 031	19.9	0.000 001	0.011
100%		+40	1880 000 003	-7.9	0.000 000	-0.004
100%		+50	1880 000 004	-7.7	0.000 000	-0.004
Batt. Endpoint	3.75	+20	1880 000 023	11.8	0.000 001	0.006

7.7.4 FREQUENCY STABILITY (10 MHz Band 2 LTE)

■ OPERATING FREQUENCY: 1880,000,000 Hz

■ CHANNEL: <u>18900 (10 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	1879 999 988	0.0	0.000 000	0.000
100%		-30	1879 999 998	10.2	0.000 001	0.005
100%		-20	1879 999 983	-4.4	0.000 000	-0.002
100%		-10	1879 999 997	8.8	0.000 000	0.005
100%	4.00	0	1879 999 979	-8.4	0.000 000	-0.004
100%		+10	1879 999 998	10.5	0.000 001	0.006
100%		+30	1879 999 973	-14.3	-0.000 001	-0.008
100%		+40	1879 999 993	5.6	0.000 000	0.003
100%		+50	1880 000 005	17.6	0.000 001	0.009
Batt. Endpoint	3.75	+20	1880 000 000	12.7	0.000 001	0.007

7.7.5 FREQUENCY STABILITY (15 MHz Band 2 LTE)

■ OPERATING FREQUENCY: <u>1880,000,000 Hz</u>

■ CHANNEL: <u>18900 (15 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	1880 000 007	0.0	0.000 000	0.000
100%		-30	1880 000 002	-5.5	0.000 000	-0.003
100%		-20	1880 000 000	-7.2	0.000 000	-0.004
100%		-10	1880 000 016	9.2	0.000 000	0.005
100%	4.00	0	1880 000 000	-7.4	0.000 000	-0.004
100%		+10	1880 000 015	7.6	0.000 000	0.004
100%		+30	1879 999 996	-10.8	-0.000 001	-0.006
100%		+40	1880 000 015	8.2	0.000 000	0.004
100%		+50	1879 999 998	-8.7	0.000 000	-0.005
Batt. Endpoint	3.75	+20	1880 000 013	5.8	0.000 000	0.003

7.7.6 FREQUENCY STABILITY (20 MHz Band 2 LTE)

■ OPERATING FREQUENCY: <u>1880,000,000 Hz</u>

■ CHANNEL: <u>18900 (20 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	1880 000 004	0.0	0.000 000	0.000
100%		-30	1880 000 009	5.5	0.000 000	0.003
100%		-20	1879 999 997	-7.3	0.000 000	-0.004
100%		-10	1879 999 998	-6.3	0.000 000	-0.003
100%	4.00	0	1879 999 996	-7.4	0.000 000	-0.004
100%		+10	1880 000 010	6.3	0.000 000	0.003
100%		+30	1880 000 012	8.2	0.000 000	0.004
100%		+40	1879 999 992	-11.7	-0.000 001	-0.006
100%		+50	1880 000 013	9.6	0.000 001	0.005
Batt. Endpoint	3.75	+20	1879 999 995	-8.4	0.000 000	-0.004

7.7.7 FREQUENCY STABILITY (1.4 MHz Band 5 LTE)

■ OPERATING FREQUENCY: 836,500,000 Hz

■ CHANNEL: <u>20525 (1.4 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	836 500 007	0.0	0.000 000	0.000
100%		-30	836 500 039	31.3	0.000 004	0.037
100%		-20	836 500 029	22.1	0.000 003	0.026
100%		-10	836 500 000	-7.0	-0.000 001	-0.008
100%	4.00	0	836 500 020	12.3	0.000 001	0.015
100%		+10	836 499 998	-9.3	-0.000 001	-0.011
100%		+30	836 500 030	22.6	0.000 003	0.027
100%		+40	836 499 999	-8.2	-0.000 001	-0.010
100%		+50	836 499 992	-15.2	-0.000 002	-0.018
Batt. Endpoint	3.75	+20	836 499 979	-27.8	-0.000 003	-0.033

7.7.8 FREQUENCY STABILITY (3 MHz Band 5 LTE)

■ OPERATING FREQUENCY: 836,500,000 Hz

■ CHANNEL: <u>20525 (3 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	836 500 008	0.0	0.000 000	0.000
100%		-30	836 499 995	-12.9	-0.000 002	-0.015
100%		-20	836 500 002	-6.0	-0.000 001	-0.007
100%		-10	836 500 022	13.6	0.000 002	0.016
100%	4.00	0	836 500 018	10.0	0.000 001	0.012
100%		+10	836 500 020	12.1	0.000 001	0.014
100%		+30	836 500 014	6.3	0.000 001	0.008
100%		+40	836 500 030	21.7	0.000 003	0.026
100%		+50	836 500 027	19.3	0.000 002	0.023
Batt. Endpoint	3.75	+20	836 500 019	11.5	0.000 001	0.014

7.7.9 FREQUENCY STABILITY (5 MHz Band 5 LTE)

■ OPERATING FREQUENCY: 836,500,000 Hz

■ CHANNEL: <u>20525 (5 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	836 499 982	0.0	0.000 000	0.000
100%		-30	836 499 987	4.7	0.000 001	0.006
100%		-20	836 499 986	3.5	0.000 000	0.004
100%		-10	836 499 998	16.0	0.000 002	0.019
100%	4.00	0	836 499 978	-3.6	0.000 000	-0.004
100%		+10	836 499 974	-7.8	-0.000 001	-0.009
100%		+30	836 499 970	-12.0	-0.000 001	-0.014
100%		+40	836 499 972	-10.3	-0.000 001	-0.012
100%		+50	836 499 973	-8.6	-0.000 001	-0.010
Batt. Endpoint	3.75	+20	836 499 974	-7.8	-0.000 001	-0.009

7.7.10 FREQUENCY STABILITY (10 MHz Band 5 LTE)

■ OPERATING FREQUENCY: 836,500,000 Hz

■ CHANNEL: <u>20525 (10 MHz)</u>

■ REFERENCE VOLTAGE: 4.00 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(°C)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	836 500 015	0.0	0.000 000	0.000
100%		-30	836 500 009	-5.3	-0.000 001	-0.006
100%		-20	836 500 002	-12.7	-0.000 002	-0.015
100%		-10	836 500 004	-11.0	-0.000 001	-0.013
100%	4.00	0	836 500 021	6.3	0.000 001	0.008
100%		+10	836 500 033	18.6	0.000 002	0.022
100%		+30	836 500 006	-8.7	-0.000 001	-0.010
100%		+40	836 500 003	-11.8	-0.000 001	-0.014
100%		+50	836 500 020	5.1	0.000 001	0.006
Batt. Endpoint	3.75	+20	836 499 995	-19.8	-0.000 002	-0.024

8. TEST PLOTS

BAND 2. Occupied Bandwidth Plot (1.4M BW Ch.18900 QPSK RB 6_0)

BAND 2. Occupied Bandwidth Plot (1.4M BW Ch.18900 16QAM RB 6_0)

BAND 2. Occupied Bandwidth Plot (3M BW Ch.18900 QPSK RB 15_0)

BAND 2. Occupied Bandwidth Plot (3M BW Ch.18900 16QAM RB 15_0)

BAND 2. Occupied Bandwidth Plot (5M BW Ch.18900 QPSK RB 25_0)

BAND 2. Occupied Bandwidth Plot (5M BW Ch.18900 16QAM RB 25_0)

BAND 2. Occupied Bandwidth Plot (10M BW Ch.18900 QPSK RB 50_0)

BAND 2. Occupied Bandwidth Plot (10M BW Ch.18900 16QAM RB 50_0)

BAND 2. Occupied Bandwidth Plot (15M BW Ch.18900 QPSK RB 75_0)

BAND 2. Occupied Bandwidth Plot (15M BW Ch.18900 16QAM RB 75_0)

BAND 2. Occupied Bandwidth Plot (20M BW Ch.18900 QPSK RB 100_0)

BAND 2. Occupied Bandwidth Plot (20M BW Ch.18900 16QAM RB 100_0)

BAND 5. Occupied Bandwidth Plot (1.4M BW Ch.20525 QPSK_RB6_0)

BAND 5. Occupied Bandwidth Plot (1.4M BW Ch.20525 16QAM_RB6_0)

BAND 5. Occupied Bandwidth Plot (3M BW Ch.20525 QPSK_RB15_0)

BAND 5. Occupied Bandwidth Plot (3M BW Ch.20525 16QAM_RB15_0)

BAND 5. Occupied Bandwidth Plot (5M BW Ch.20525 QPSK_RB25_0)

BAND 5. Occupied Bandwidth Plot (5M BW Ch.20525 16QAM_RB25_0)

BAND 5. Occupied Bandwidth Plot (10M BW Ch.20525 QPSK_RB50_0)

BAND 5. Occupied Bandwidth Plot (10M BW Ch.20525 16QAM_RB50_0)

BAND 2. PAR Plot (1.4M BW Ch.18900 QPSK RB 6_0)

BAND 2. PAR Plot (1.4M BW Ch.18900 16QAM RB 6_0)

BAND 2. PAR Plot (3M BW Ch.18900 QPSK RB 15_0)

BAND 2. PAR Plot (3M BW Ch.18900 16QAM RB 15_0)

BAND 2. PAR Plot (5M BW Ch.18900 QPSK RB 25_0)

BAND 2. PAR Plot (5M BW Ch.18900 16QAM RB 25_0)

BAND 2. PAR Plot (10M BW Ch.18900 QPSK RB 50_0)

BAND 2. PAR Plot (10M BW Ch.18900 16QAM RB 50 0)

BAND 2. PAR Plot (15M BW Ch.18900 QPSK RB 75_0)

BAND 2. PAR Plot (15M BW Ch.18900 16QAM RB 75_0)

BAND 2. PAR Plot (20M BW Ch.18900 QPSK RB 100_0)

BAND 2. PAR Plot (20M BW Ch.18900 16QAM RB 100_0)

BAND 2. Lower Band Edge Plot (1.4M BW Ch.18607 QPSK_RB1_Offset 0) -1

BAND 2. Lower Band Edge Plot (1.4M BW Ch.18607 QPSK_RB6_Offset 0) -2

BAND 2. Lower Extended Band Edge Plot (1.4M BW Ch.18607 QPSK_RB6_0) -3

BAND 2. Lower Band Edge Plot (3M BW Ch.18615 QPSK_RB1_Offset 0) -1

BAND 2. Lower Band Edge Plot (3M BW Ch.18615 QPSK_RB15_Offset 0) -2

BAND 2. Lower Extended Band Edge Plot (3M BW Ch.18615 QPSK_RB15_0) -3

BAND 2. Lower Band Edge Plot (5M BW Ch.18625 QPSK_RB1_Offset 0) -1

BAND 2. Lower Band Edge Plot (5M BW Ch.18625 QPSK_RB25_Offset 0) -2

BAND 2. Lower Extended Band Edge Plot (5M BW Ch.18625 QPSK_RB25_0) -3

