Homework 07

Due Date: 111/04/20

Instruction. Do not submit part B.

A Homework Problems

1. Let

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

- (a) Find the singular value decomposition of A.
- (b) Find the pseudoinverse of A.
- 2. Let A be a square matrix with polar decomposition A = WP.
 - (a) Prove that A is normal if and only if $WP^2 = P^2W$.
 - (b) Prove that A is normal if and only if WP = PW.
- 3. Let V and W be finite-dimensional inner product spaces, and let $T\colon V\to W$ be linear. Prove the following results.
 - (a) $TT^{\dagger}T = T$.
 - (b) $T^{\dagger}TT^{\dagger} = T^{\dagger}$.
 - (c) Both TT^{\dagger} and $T^{\dagger}T$ are self-adjoint.
- 4. Let \mathbb{F}_q be the field of $q = p^k$ elements.
 - (a) Let $\mathrm{GL}(n,\mathbb{F}_q)$ be the subset of invertible $n\times n$ matrices over \mathbb{F}_q , show that

$$|GL(n, \mathbb{F}_q)| = \prod_{i=1}^{n-1} (q^n - q^i) = (q^n - 1) (q^n - q) \cdots (q^n - q^{n-1}).$$

(*Hint*. Consider filling the matrix column by column, there are $q^n - 1$ choices for the first column since we cannot fill in the zero vector; there are $q^n - q$ choices for the second column after fixing the first column since there are exactly q column vectors that is a multiple of the first column; the rest follows similarly.)

(b) Let $SL(n, \mathbb{F}_q)$ be the subset of $n \times n$ matrices over \mathbb{F}_q with determinant 1, show that

1

$$|\mathrm{SL}(n,\mathbb{F}_q)| = \frac{|\mathrm{GL}(n,\mathbb{F}_q)|}{q-1}.$$

(*Hint*. Let S_a be the subset of $GL(n, \mathbb{F}_q)$ consisting matrices with determinant $a \neq 0$. Show that $|S_a| = |S_1| = |SL(n, \mathbb{F}_q)|$ for all $a \neq 0$ by considering the mapping

$$\begin{pmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{nn}
\end{pmatrix}
\mapsto
\begin{pmatrix}
a \cdot x_{11} & a \cdot x_{12} & \cdots & a \cdot x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{nn}
\end{pmatrix}$$

Show that $\varphi_{q,a}$ is well-defined and bijective for all $a \neq 0$. Recall that for any nonzero element a in a field, it must have a multiplicative inverse a^{-1} .)

Remark. $GL(n, \mathbb{F})$ is called the **general linear group** of degree n over \mathbb{F} and $SL(n, \mathbb{F})$ is called the **special linear group** of degree n over \mathbb{F} .

B Supplementary Problems

5. Let A be an $n \times n$ matrix whose characteristic polynomial splits. Recall that tr(A) equals the sum of its eigenvalues (count with multiplicity), $\sum_{i=1}^{n} \lambda_i$. Let $\sigma_1, \sigma_2, \ldots, \sigma_n$ be its singular values. Prove that

$$\operatorname{tr}(A^*A) = \sum_{i=1}^n \sigma_i^2 \ge \sum_{i=1}^n |\lambda_i|^2 \quad \text{and} \quad |\operatorname{tr}(A)| \le \sum_{i=1}^n \sigma_i.$$

Definition B.1 (Generalized Inverse). Let $A \in M_{m \times n}(\mathbb{C})$ be a $m \times n$ matrix. A **generalized** inverse of A is any $n \times m$ matrix G such that

$$AGA = A. (B.1)$$

- (i) If a generalized inverse G satisfies GAG = G, we say that G is a **reflexive generalized inverse** of A.
- (ii) If a generalized inverse G satisfies $(GA)^* = GA$, we say that G is a **minimum-norm generalized inverse** of A.
- (iii) If a generalized inverse G satisfies $(AG)^* = AG$, we say that G is a **least squares** generalized inverse of A.
- (iv) If a generalized inverse G satisfies (B.1), GAG = G, $(GA)^* = GA$ and $(AG)^* = AG$, we say that G is a **Moore-Penrose (generalized) inverse** of A.
- 6. (Characterization of Generalized Inverse) Suppose $A \in M_{m \times n}(\mathbb{C})$ has singular value decomposition

$$A = U\widetilde{\Sigma}V^* = U\begin{pmatrix} \Sigma & O_{r\times(n-r)} \\ O_{(m-r)\times r} & O_{(m-r)\times(n-r)} \end{pmatrix}V^*$$

where $U \in M_{m \times m}(\mathbb{C})$, $V \in M_{n \times n}(\mathbb{C})$ are unitary matrices, $r = \operatorname{rank} A$ and $\Sigma \in M_{r \times r}(\mathbb{C})$ is a diagonal matrix consisting of the singular values of A.

(a) Show that G is a generalized inverse of A if and only if

$$G = V \begin{pmatrix} \Sigma^{-1} & X \\ Y & Z \end{pmatrix} U^*$$
 (B.2)

for some $X \in M_{r \times (m-r)}(\mathbb{C}), Y \in M_{(n-r) \times r}(\mathbb{C}), Z \in M_{(n-r) \times (m-r)}(\mathbb{C})$

- (b) Show that G is a reflexive generalized inverse of A if and only if G is of the form (B.2) and $Z = Y \Sigma X$.
- (c) Show that G is a minimum-norm generalized inverse of A if and only if G is of the form (B.2) and $Y = O_{r \times (m-r)}$.
- (d) Show that G is a least squares generalized inverse of A if and only if G is of the form (B.2) and $X = O_{(n-r)\times r}$.
- (e) Show that the Moore-Penrose inverse (pseudoinverse) $G = A^{\dagger}$ of A is unique by showing that G is of the form (B.2) and $X = O_{(n-r)\times r}$, $Y = O_{r\times (m-r)}$ and $Z = O_{(n-r)\times (m-r)}$.
- 7. (**Reading comprehension.**) We compute the number of pairs of commuting matrices in $M_{2\times 2}(\mathbb{F}_q)$.

Lemma B.2. Let T be a linear operator on a finite-dimensional vector space V with rational form decomposition

$$V = \bigoplus_{i} K_{\phi_i} = \bigoplus_{i} \bigoplus_{j=1}^{k_i} C_{ij}$$

where ϕ_i are distinct irreducible factors of the characteristic polynomial of T, and C_{ij} are T-cyclic subspaces with minimal polynomial $\phi_i(x)^{p_j}$ for some p_j such that $p_1 \geq \cdots \geq p_{k_i}$. Then, we have

$$\dim \{S: V \to V \mid ST = TS\} = \sum_{i} \deg \phi_{i} \cdot \sum_{m,n=1}^{k_{i}} \min \{p_{m}, p_{n}\} \tag{\star}$$

Now, we try to write matrices in $M_{2\times 2}(\mathbb{F}_q)$ in their Jordan forms or rational forms.

Lemma B.3. Any matrix in $M_{2\times 2}(\mathbb{F}_q)$ is similar to a matrix belonging to exactly one of the following types:

- $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$ for some $\alpha \in \mathbb{F}_q$ and for each $\alpha \in \mathbb{F}_q$, there is only one matrix in $M_{2\times 2}\left(\mathbb{F}_q\right)$ similar to it.
- $\begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$ for some $\alpha \in \mathbb{F}_q$ and for each $\alpha \in \mathbb{F}_q$, there are $q^2 1$ matrices in $M_{2\times 2}\left(\mathbb{F}_q\right)$ similar to it.
- $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ for some distinct $\alpha, \beta \in \mathbb{F}_q$ and for each pair of distinct $\alpha, \beta \in \mathbb{F}_q$, there are q(q+1) matrices in $M_{2\times 2}\left(\mathbb{F}_q\right)$ similar to it.
- $\begin{pmatrix} 0 & \alpha \\ 1 & \beta \end{pmatrix}$ such that $x^2 \beta x \alpha$ is an irreducible polynomial in $\mathbb{F}_q[x]$ and for

each degree 2 irreducible polynomial in $\mathbb{F}_q[x]$, there are q(q-1) matrices in $M_{2\times 2}(\mathbb{F}_q)$ similar to it.

Also, there are exactly $\frac{q(q-1)}{2}$ monic irreducible polynomials of degree 2 in $\mathbb{F}_q[x]$. This classifies all q^4 matrices in $M_{2\times 2}(F)$ into four parts:

$$q^{4} = 1 \cdot q + (q^{2} - 1) \cdot q + q(q + 1) \cdot \frac{q(q - 1)}{2} + q(q - 1) \cdot \frac{q(q - 1)}{2}.$$

Using the information above, you are asked to compute the number of ordered pairs of commuting matrices in $M_{2\times 2}(\mathbb{F}_q)$. For each of the four types in Lemma B.3, compute the number of matrices commuting with it by applying the formula (*). Then derive the final answer and compare it to the one given in class.

8. Prove the two lemmas in Problem 7.