

GATK Best Practices for Variant Discovery

Callset Evaluation

Comparing statistics between your callset and external resources

Best Practices for Germline SNP & INDEL Discovery

What do callset evaluation methods aim to determine?

Your variant calls perfectly match the underlying biological truth

You found many real variants and called few false positives

You didn't find any real variants and only called artifacts!

Where are you on this spectrum?

(not veracity of individual variant calls)

How do I figure out how good/bad my callset is?

Compare key statistics from callset and truth set stats

Guiding principle: divergence is indicative of error

Key assumption: truth set is representative / comparable

- Important to match dataset properties!
 - Population ethnicity (European, African, etc.)
 - Sequencing / exp. design (WGS vs. WES)
 - Cohort size

Not easy! You might need to use sub-cohorts (of both sets) to match all three.

http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html

Commonly used truth sets

dbSNP

All previously reported variation (lots of junk!)

ExAC and GnomAD

Extensive catalog of human variation built by aggregating results from many studies

HapMap

Highly validated common human variants

OMNI

Common variation validated by array

NIST's Genomes in a Bottle, or Illumina's Platinum Genomes
 high confidence callsets from a handful of common benchmarking samples

Ethnicity affects many variant call metrics

Older populations tend to display more heterogeneity

Recommended metrics for callset evaluation

Number of Indels & SNPs

TiTv Ratio

Indel Ratio

Genotype Concordance

Number of Indels & SNPs

Sequencing Type	# of Variants (in 1 sample)
WGS	~4.4 M
WES	~21 k

- Variants = Indels + SNPs
- Useful for order-ofmagnitude sanity check
- Vary by size and diversity of cohort

Indel Ratio

Variant prevalence	Indel Ratio
Common	~1
Rare	0.2-0.5

- Ratio of insertions to deletions
- Varies by allele frequency: common ("known") vs. rare ("novel")

TiTv Ratio (Transitions/Transversions)

Sequencing Type	TiTv Ratio
WGS	2.0-2.1
WES	3.0-3.3

- Used for SNPs only
- If variation were random:
 expect ratio of 0.5 as there
 are twice as many possible
 transversions vs transitions!
- Low TiTv ratio indicates high rate of false positives

Genotype Concordance

- Most appropriate truth set is genotyping chip for same sample
- % Genotype calls in callset that match calls in truth set
- Unmatched variants considered false positives

For evaluating concordance, it is best to use truth sets generated with orthogonal methods

SEQUENCING

- Sanger sequencing
- Other HTS technologies

PROBE/ARRAY-BASED

- GeneChip
- Microarrays

Cheat sheet of concordance metrics

GT CONCORDANCE

$$\frac{\sum \text{matches}}{\text{TP}} = \frac{4}{7} = 57\%$$

So how do I get these metrics?

- Genotype level evaluation tools equivalent these tools will be merged in GATK4
- Variant level
 evaluation
 tools are
 different

Which variant-level evaluator should I use?

GATK VariantEval

- More detailed analysis
- More options for stratification
- Ability to compare to multiple truth sets

Picard CVCM

- Best performance on very large callsets
- Ability to interpret no-call as confident reference in a "confidence region"
- Few options beyond the metrics discussed here

Best Practices for Germline SNP & INDEL Discovery

