Relations Binaires Relations d'ordre MPSI 2

1 Définition

Soit E un ensemble non vide. Soit \mathcal{R} une relation binaire sur E.

Définition 1.0.1

 ${\cal R}$ est une <u>relation d'ordre</u> sur E si:

- R est réflexive.
- \mathcal{R} est antisymétrique: $\forall (x,y) \in E^2$, $(x \mathcal{R} y \text{ et } y \mathcal{R} x) \Rightarrow (x=y)$
- \bullet \mathcal{R} est transitive.

Notations: $x \mathcal{R} y$, $x \leq y$ Se note aussi $x \leq y$

Définition 1.0.2

 $Soit \leq une \ relation \ d$ 'ordre $sur \ E$.

- On dit que l'ordre est <u>total</u> si deux éléments de E sont toujours en relation: $\forall (x,y) \in E^2$, $(x \leq y)$ ou $(y \leq x)$.
- Sinon, on dit que l'ordre est partiel.

Définition 1.0.3

Soit (E, \preceq) un ensemble ordonné.

- $m \in E$ est le plus petit élément de E si: $\forall x \in E, m \leq x$
- $M \in E$ est le plus grand élément de E si: $\forall x \in E, x \leq M$

Définition 1.0.4

Soit (E, \preceq) un ensemble ordonné.

- $m \in E$ est un <u>élément minimal</u> de E si: $\forall x \in E, (x \leq m) \Rightarrow (x = m)$
- $M \in E$ est un <u>élément maximal</u> de E si: $\forall x \in E, (M \leq x) \Rightarrow (x = M)$

Définition 1.0.5

Soit (E, \preceq) un ensemble ordonné.

Soit A un sous-ensemble de E

- $\alpha \in E$ est un <u>minorant de A dans E</u> si: $\forall x \in E, (x \in A) \Rightarrow (\alpha \leq x)$
- $\beta \in E$ est un majorant de A dans E si: $\forall x \in E, (x \in A) \Rightarrow (x \preccurlyeq \beta)$

2 Ordre naturel sur \mathbb{N}

Définition 2.0.6

$$\forall (x,y) \in \mathbb{N}, \ x \leqslant y \iff \exists n \in \mathbb{N}, y = x + n$$

C'est un ordre total de plus petit élément 0.

Propriété 2.0.1

Tout sous-ensemble de \mathbb{N} admet un plus petit élément.

Corollaire 2.0.1

Tout sous-ensemble non vide et majoré de $\mathbb N$ admet un plus grand élément.

Soit A un sous-ensemble non vide et majoré de \mathbb{N} .

On considère B l'ensemble des majorants de A.

$$B = \{x \in \mathbb{N}, \ \forall a \in A, x \geqslant a\}$$

A est majoré donc B est un sous-ensemble non vide de \mathbb{N} .

D'après la propriété caractéristique de $\mathbb N$ B admet un plus petit élément que l'on note α

On a:
$$\begin{cases} \alpha \in \mathbb{N} \\ \forall a \in A, \ a \leqslant \alpha \end{cases}$$

Montrer que $\alpha \in \mathbb{N}$

HA: $\alpha \notin A$

Alors $\forall x \in A, \ a < \alpha$

Ou encore, puisque α est entier: $\forall a \in A, \ a \leq \alpha - 1$

On a donc $\alpha - 1$ entier naturel et $\alpha - 1$ majorant de A.

Donc $\alpha \in B$ et $\alpha - 1 < \alpha$, ce qui contredit α plus petit lment de B.

Donc $\alpha \in A$

Conclusion: α est le plus grand lment de A.

Corollaire 2.0.2 Principe de reurrence

Soit P une proposition portant sue les entiers naturels. Soit P(n) le prdicat associ a n.

$$\exists n_{\scriptscriptstyle 0} \in \mathbb{N}, \ [P(n_{\scriptscriptstyle 0}) \ et \ (\forall n \in \mathbb{N}, \ P(n) \Rightarrow P(n+1))] \Rightarrow [\forall n \in \mathbb{N}, \ n \geqslant n_{\scriptscriptstyle 0} \Rightarrow P(n)]$$