Homework 2

Haoyu Zhen

March 14, 2022

1 Optimal Coupling

Assume $\Omega = \{1, 2, \dots, n\}$. Our goal is to fill the $n \times n$ probabilty table, which means we need to determine every value of $P_{i,j}$ such that

$$\sum_{i} P(i,j) = \nu(j) \text{ and } \sum_{j} P_{i,j} = \mu(i)$$
 (1)

Constructe \boldsymbol{P} as follows:

- 1. Let $\Pr_{(X,Y)\sim\omega}(X=Y=i) = \min[\mu(i), \nu(i)].$
- 2. Then

If
$$i \neq j$$
, $P_{i,j} = \frac{(\mu(i) - P_{i,i})(\nu(j) - P_{j,j})}{1 - \sum_{k} P_{k,k}}$.

Reference: Markov Chains and Coupling, Duke University. And the proof is not mentioned in this lecture notes.

Now we want to prove that the construction satisfies the EQ. 1. If $\nu(i) = P_{i,i}$:

$$\begin{split} P_{i,i} + \sum_{j \neq i} \frac{(\mu(i) - P_{i,i})(\nu(j) - P_{j,j})}{1 - \sum_k P_{k,k}} \\ = & P_{i,i} + (\mu(i) - P_{i,i}) \frac{\sum_{j \neq i} (\nu(j) - P_{j,j})}{1 - \sum_k P_{k,k}} \\ = & P_{i,i} + (\mu(i) - P_{i,i}) \frac{\sum_j (\nu(j) - P_{j,j})}{1 - \sum_k P_{k,k}} \\ = & P_{i,i} + (\mu(i) - P_{i,i}) \frac{1 - \sum_j P_{j,j}}{1 - \sum_k P_{k,k}} \\ = & \mu(i) \end{split}.$$

If $\mu(i) = P_{i,i}$, obviously $\sum_j P_{i,j} = P_{i,i} = \mu(i)$. Similarly, $\sum_i P_{i,j} = \nu(j)$. And the EQ.1 holds. Thus

$$\Pr_{(X,Y) \sim \omega}[X \neq Y] = 1 - \sum_{i} \min(\mu(i), \nu(i)) = \sum_{i} \left[\mu(i) - \min(\mu(i), \nu(i)) \right] = \max_{A \subset \Omega} |\mu(A) - \nu(A)| = D_{TV}(\mu, \nu).$$

2 Stochastic Dominance

Problem 1

"\improx": $\Pr[X=n] \ge \Pr[Y=n]$, which means that $p^n \ge q^n$. Thus $p \ge q$.

" $\Leftarrow=$ ", if $p \geq q$:

For simplicity, $\Pr[X \ge k] - \Pr[Y \ge k] \triangleq A_k$. $A_0 = 0$ and $A_n = p^n - q^n$. Then

$$A_{k+1} - A_k = q^k (1-q)^{n-k} - p^k (1-p)^{n-k}.$$

Let
$$k_0 = \frac{n \log(1 - q/1 - p)}{\log[p(1 - q)/q(1 - p)]}$$

If $k \leq k_0$, then $A_{k+1} - A_k \geq 0$. And if $k_0 \leq k \leq n$, then $A_{k+1} - A_k \leq 0$.

Thus $0 = A_0 \nearrow A_{k_0} \searrow A_n = p^n - q^n > 0$ for some k_0 , which means that $A_k > 0$.

Finally

$$\Pr[X \ge k] - \Pr[Y \ge k] \ge 0.$$

Problem 2

Assume $\Omega = \{1, 2, \cdots, n\}.$

"\(:: $P_{i,j}$ denote $\omega(i,j)$. $P_{i,j} = 0$ if j > i.

$$\Pr[X \ge k] = \sum_{i=k}^{n} \sum_{j=0}^{i} P_{i,j} \le \sum_{i=k}^{n} \sum_{j=k}^{i} P_{i,j} = \sum_{j=k}^{i} \sum_{i=k}^{n} P_{i,j} = \sum_{j=k}^{n} \sum_{i=0}^{j} P_{i,j} = \Pr[Y \ge k].$$

"⇒":

Design the coupling by the following steps:

- 1. $\forall i, j, P_{i,j} = 0$.
- 2. Let (i,j) traverse: $(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),\cdots,(n,n)$ and update $P_{i,j}$:

$$P_{i,j} = \min \left\{ \left[\mu(i) - \sum_{k=1}^{i} P_{i,k} \right], \left[\nu(j) - \sum_{k=i}^{j} P_{k,j} \right] \right\}.$$

For any i:

If $\exists j, P_{i,j} = \mu(i) - \sum_{k=1}^{i} P_{i,k}$, then $\sum_{j} P_{i,j} = \mu(i)$.

If not, then $\forall j, P_{i,j} = \nu(j) - \sum_{k=i}^{j} P_{k,j}$, which means $\sum_{k=i+1}^{n} \mu(k) = \sum_{k=i+1}^{n} \nu(k)$. Thus

$$\sum_{j=1}^{n} P_{i,j} = \sum_{j=1}^{i} P_{i,j} = \sum_{j=1}^{i} \left[\nu(j) - \sum_{k=i}^{j} P_{k,j} \right]$$

$$= \sum_{k=1}^{i} \nu(j) - \sum_{k=1}^{i-1} \mu(k) = \sum_{k=1}^{i} \mu(j) - \sum_{k=1}^{i-1} \mu(k)$$

$$= \mu(i)$$

Problem 3

I refer to the lecture notes last year.

	Not Connected	Connected	G
Not Connected	P_{11}	P_{12}	Pr[G is not connected]
Connected	P_{21}	P_{22}	Pr[G is connected]
\overline{H}	Pr[H is not connected]	Pr[H is connected]	

We generate $G \sim \mathcal{G}(n,p)$ and $H \sim \mathcal{G}(n,q)$ simultaneously. Let $r \sim \mathrm{U}(0,1)$. For every edge (u,v):

$$\begin{cases} (u,v) \text{exisits in } G \text{ and } H & \text{if } r \in [0,q] \\ (u,v) \text{exisits only in } G & \text{if } r \in (q,p] \\ (u,v) \text{does not exisit} & \text{if } r \in (p,1] \end{cases}$$

Then for all H, H is the subgraph of G, which means that $P_{12} = 0$. By 2 we have

$$\Pr_{G \sim \mathcal{G}(n,p)} \left[\text{G is connected} \right] \geq \Pr_{H \sim \mathcal{G}(n,q)} \left[\text{H is connected} \right].$$

3 Total Variation Distance is Non-Increasing

By coupling lemma, for every $X^t \sim \mu^t$ and $Y^t \sim \pi$, we have a coupling such that $\Delta(t) = \Pr(X^t \neq Y^t)$. Then we construct X^{t+1} and Y^{t+1} by following rules:

$$\begin{cases} X^{t+1} = X^t \text{ and } Y^{t+1} = Y^t & \text{, if } X^t = Y^t \\ X^t \to X^{t+1} \text{ and } Y^t \to Y^{t+1} \text{ independently} & \text{, otherwise} \end{cases}.$$

Thus

$$\Delta(t+1) \le \Pr\left(X^{t+1} \neq y^{t+1}\right) \le \Pr\left(X^t \neq Y^t\right) = \Delta(t).$$

Reference: Markov Chains and Coupling, Duke University.