머신러닝 지도학습 기법

Machine Learning Supervisor learning

2024.11

강환수 교수

Al Experts Who Lead The Future

01 ---지도학습의 분류 알고리즘

분류 (Classification) 문제를 해결하기 위한 기법

인공지능 활용 Python language

- ① k-최근접 이웃 (k-Nearest Neighbors, k-NN)
- ② 결정 트리 (Decision Tree)
- ③ 랜덤 포레스트 (Random Forest)
- ④ 서포트 벡터 머신 (Support Vector Machine, SVM)
- ⑤ 앙상블 학습 (Ensemble Learning)

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (1/10) 인공지능 활용 Python language

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (2/10) 인공지능 활용 Python language

- ① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (2/10)
 - 시험 데이터가 주어졌을 때, 시험 데이터로부터 거리가 가장 가까운 k개의 학습 데이터의 Labels을 참조하여 시험 데이터가 어떤 Label에 속하는지 분류하는 알고리즘
 - 예를 들어.
 - k = 1일 때, 시험 데이터는 lacktriangle 빨간색 원으로 분류됨
 - k=4일 때, 시험 데이터는 \blacktriangle 초록색 삼각형으로 분류됨
 - k = 7일 때, 시험 데이터는 \blacksquare 파란색 사각형으로 분류됨

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (3/10) 인공지능 활용

- ① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (3/10)
 - 어떤 값이 최적의 k인지 불분명하기 때문에 데이터의 특성에 맞게 k 값을 임의로 선정해야 하는 단점이 있음
 - 일반적으로 이진 분류(Binary Classification) 문제에서는 k 값을 홀수로 선정함

이진 분류 문제에서 k 값이 짝수인 경우, \star 을 분류할 수 없다

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (4/10) 인공지는 활용 Python language

데이터 사이의 거리를 계산하기 위해서, 유클리드 거리 (Euclidean Distance)가 주로 사용됨

> Dimension of Feature Vector = 2

$$A(p_1, p_2)$$

$$d = \overline{AB} = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

$$B(q_1, q_2)$$

➤ Dimension of Feature Vector = 3

$$A(p_1,p_2,p_3) \\ B(q_1,q_2,q_3) \\ d = \overline{AB} = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + (p_3-q_3)^2}$$

> Dimension of Feature Vector = n

$$d = \overline{AB} = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_i - q_i)^2 + \dots + (p_n - q_n)^2}$$

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (5/10) 인공지능 활용 Python language

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (5/10)

학습 데이터셋 (Training Dataset)

		Class	특성 1 (length)	특성 2 (weight)
갈치		0	25.4	3.7
		0	23.5	3.3
		0	24.7	3.5
		• • •	•••	•••
고등어		1	10.9	2.4
		1	9.7	2.1
		1	10.2	2.3
		•••	•••	•••

시험 데이터 (Test Data)

(특성 1, 특성 2) = (24.3, 3.4)

Class 0 (갈치)에 속할까?

아니면

Class 1 (고등어)에 속할까?

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (1/10) 인공지능 활용 Python language

학습 데이터셋 (Training Dataset)

	Class	특성 1 (length)	특성 2 (weight)	거리 (d)
갈치	0	25.4	3.7	1.14
	0	23.5	3.3	0.81
	0	24.7	3.5	0.41
	• • •	•••	• • •	•••
고등어	1	10.9	2.4	13.44
	1	9.7	2.1	14.66
	1	10.2	2.3	14.14
	•••	•••	•••	•••

시험 데이터 (Test Data)

(특성 1, 특성 2) = (24.3, 3.4)

Step 1) 학습 데이터셋에 있는 각 데이터들과 거리를 계산

$$d = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

$$d = \sqrt{(24.3 - 25.4)^2 + (3.4 - 3.7)^2}$$
$$= 1.14$$

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (7/10) 인공지능 활용 Python language

학습 데이터셋 (Training Dataset)

특성 1 특성 2 거리 (d) Class (length) (weight) 25.4 3.7 1.14 0 23.5 3.3 0.81 0 갈치 24.7 3.5 0 0.41 13,44 10.9 2.4 9.7 2.1 14.66 10.2 14.14 2.3

Step 2) k = 3 이라고 하면, 가장 작은 d 값 3개의 Class 확인

Class	거리 (d)
0	1.14
0	0.81
0	0.41

선별된 3개의 Class 중에서 다수를 차지하고 있는 Class를 시험 데이터의 Class로 결정

시험 데이터 (Test Data)

(특성 1, 특성 2) = (24.3, 3.4)

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (8/10) 인공지능 활용

(주의 사항) 특성들 사이에 스케일 (Scale)을 맞춰야 한다

k = 5라고 가정해 보자!

생선 ▲의 Label은 무엇일까?

●랑 더 가까운 것 같은데...

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (9/10)

(주의 사항) 특성들 사이에 스케일(Scale)을 맞춰야 한다

k = 5라고 가정해 보자!

▲랑 가까운 5개의 데이터를 표시해 보면?!

■ (빙어) 4개, ● (도미) 1개로 ▲는 빙어로 분류된다?!

왜 그럴까?!

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (10/10) 보로지는 활용 Python language

(주의 사항) 특성들 사이에 스케일(Scale)을 맞춰야 한다

특성 1 (length)와 특성 2 (weight)의 Scale이 다르다!

쉽게 말해서, 두 특성이 갖는 값의 범위가 다르다!

Scale이 서로 다른 상태에서 유클리드 거리를 계산하면 k-NN 알고리즘이 올바르게 분류 작업을 할 수 없다!

Scale을 맞춰주는 작업:
$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- 의사결정 규칙을 나무 형태로 분류하는 분석 방법
- 다음 그림과 같이 상위 노드에서 시작하여 분류 기준값에 따라 하위 노드로 확장하는 방식이 "나무"를 닮았다고 하여 "의사 결정 나무"라고도 불림

C Hanbit Academy Inc.

인공지능 활용 Python language

- **Root Node**
- **Intermediate Node**
- **Terminal Node (Leaf Node)**

② 결정 트리(Decision Tree) (3/8)

② 결정 트리(Decision Tree) (4/8)

② 결정 트리(Decision Tree) (5/8)

② 결정 트리 (Decision Tree) (5/8)

② 결정 트리(Decision Tree) (6/8)

② 결정 트리(Decision Tree) (7/8)

- ② 결정 트리 (Decision Tree) (7/8)
 - 모든 끝 마디 (Terminal Node or Leaf Node)가 순수 마디 (Pure Node)가 될 때 까지, 가지 분할을 계속하게 되면 결정 트리 모델이 복잡해지고 훈련 데이터 (Training Data)에 과대적합 (Overfitting)하게 됨
 - 해결 책으로 크게 2가지가 있음
 - 최대 깊이 (Depth)를 사전에 정하고 결정 트리 모델을 생성 (사전 가지치기, Pre-pruning)
 - 결정 트리 모델을 만들고 나서, 데이터 수가 적은 마디 (Node)를 제거 (사후 가지치기, Postpruning)

② 결정 트리(Decision Tree) (8/8)

- ② 결정 트리 (Decision Tree) (8/8)
 - 결정 트리는 분석 과정이 직관적이고 이해하기 쉬움
 - 인공신경망의 경우 분석 결과에 대한 설명이 어려운 블랙박스 모델인 반면, 결정 트리는 분석 과정을 눈으로도 관측할 수 있음
 - 그래서 결과에 대한 명확한 설명이 필요할 때 많이 사용함
 - -k-NN 모델과 다르게 결정 트리 모델은 데이터의 Scale에 대한 전처리 (Pre-processing) 과정이 불필요

③ 랜덤 포레스트 (Random Forest) (1/3)

인공지능 활용 Python language

- ③ 랜덤 포레스트 (Random Forest) (1/3)
 - 앙상블 (Ensemble) 학습 방법의 일종으로, 훈련 (Training) 과정에서 구성한 다수의 결정 트리 (Decision Tree)로부터 출력된 분류 결과로부터 다수결의 원칙에 따라 최종 분류 결과를 결정하는 방식으로 동작

나무 (Tree)가 모여서 숲 (Forest)을 이룬다

③ 랜덤 포레스트 (Random Forest) (2/3)

인공지능 활용 Python language

- 앙상블 (Ensemble) 학습 방법의 일종으로,
 - 훈련 (Training) 과정에서 구성한 다수의 결정 트리 (Decision Tree)로부터 출력된 분류 결과로부터
 - 다수결의 원칙에 따라 최종 분류 결과를 결정하는 방식으로 동작

③ 랜덤 포레스트 (Random Forest) (3/3)

인공지능 활용 Python language

- 결정 트리 (Decision Tree)마다 서로 다른 가중치 (Weight)를 부여하여,
 - 가중치가 큰 결정 트리로부터의 출력 분류 결과가 최종 분류 결과에 영향력을 더 많이 가할 수 있게 할 수도 있다

Al Experts Who Lead The Future

02 ---지도학습의 회귀 알고리즘

회귀와 분류

- 분류 (Classification)
 - 어떤 입력 데이터가 들어오더라도 학습에 사용한 레이블 (Label)중 하나로 결과값을 결정
 - 레이블 (Label)이 이산적인 (Discrete) 경우 (즉, [0, 1, 2, 3, ···]와 같이 유한한 경우)
- 회귀 (Regression)
 - 입력 데이터에 대한 결과값으로 학습에 사용한 레이블 이외의 값이 나올 수 있음
 - 레이블 (Label)이 실수인 경우
 - 키 (Height) 정보가 주어졌을 때, 몸무게를 예측
 - 공부한 시간 정보가 주어졌을 때, 시험 성적 예측
 - 커피를 몇 잔 마셨는지에 대한 정보가 주어졌을 때, 수면 시간 예측

회귀 개요

회귀 (Regression)

- 19세기, 통계학자이자 인류학자인 프랜시스 골턴 (Francis Galton)이 처음 사용

[사진출처] https://en.wikipedia.org/wiki/Francis_Galton

프랜시스 골턴 -

- 아버지와 자식의 키를 분석함
- 사람의 키 (Height)는 세대를 거듭할 수록 평균에 가까워지는 경향이 있다는 것을 발견
- 키가 큰 아버지의 자식은 아버지보다 키가 작고, 키가 작은 아버지의 자식은 아버지보다 키가 크다
- 즉, 세대를 거듭할 수록 큰 키는 작아지고, 작은 키는 커지고 평균에 수렴한다
- 이를 프랜시스 골턴은 "평균으로 돌아간다 (=회귀)"라고 표현함

변수 사이의 관계를 분석하는 방법을 역사적인 이유 때문에 "회귀 (Regression)" 라고 부르 게 되었다!

회귀 (Regression) 문제를 해결하기 위한 기법

인공지능 활용 Python language

- ① k-최근접 이웃 (k-Nearest Neighbors, k-NN)
- ② 결정 트리 (Decision Tree)
- ③ 선형 회귀 (Linear Regression)
- ④ 다항 회귀 (Polynomial Regression)

① k-최근접 이웃 (k-Nearest Neighbors, k-NN) (1/2)

- 시험 데이터가 주어졌을 때, 시험 데이터로부터 거리가 가장 가까운 k개의 학습 데이터의 Labels의 평균 값을 시험 데이터의 Label 값으로 결정하는 알고리즘
- 예를 들어,
 - k = 3일 때, 시험 데이터 ★에 대한 결과 값은 가장 가까운 3개의 학습 데이터의 평균 값 120으로 결정

- 가중 회귀 (Weighted Regression)
 - 시험 데이터가 주어졌을 때, 시험 데이터로부터 거리가 가장 가까운 k개의 학습 데이터를 찾음
 - 단순히 학습데이터의 Labels의 평균 값을 계산하는 것이 아니라,
 - 시험 데이터와 학습 데이터 사이의 거리를 고려하여 가중합으로 Label 값으로 결정
- 예를 들어,
 - k = 3일 때, 시험 데이터 ★에 대한 가중 회귀 결과값은 115.4로 결정

학습 데이터일수록 영향력을 줄이겠다! 100 120

시험 데이터와 멀리 떨어져 있는

② 결정 트리 (Decision Tree) (1/2)

학습 데이터로부터 결정 트리를 생성하고, 각 끝 마디 (Terminal Node or Leaf Node)에서 해당 영역의 평균 값을 계산

Y: 해당 영역의 평균 값

[사진출처] https://riverzayden.tistory.com/6

② 결정 트리 (Decision Tree) (2/2)

시험 데이터 (Test Data)가 주어졌을 때, 시험 데이터가 속한 영역의 평균 값으로 회귀 결과값을 결정하는 알고리즘

Y: 해당 영역의 평균 값

[사진출처] https://riverzayden.tistory.com/6

시험 데이터 ★의 회귀 결과값: 0.7

③ 선형 회귀 (Linear Regression) (1/4)

- 학습 데이터 (Training Data)로부터
 - 종속 변수 y와 한 개 이상의 독립 변수 x와의 선형 상관 관계를 모델링하는 방법
 - 쉽게 이해하면, 학습 데이터를 잘 표현하는 직선 하나를 찾아내겠다는 의미

빨간색 점들이 학습 데이터이고,

이 데이터들을 잘 표현하는 파란색 직선을

찾아내는 것이 "선형 회귀"가 하는 역할임

③ 선형 회귀 (Linear Regression) (2/4)

인공지능 활용 Python language

- 독립 변수 x의 개수에 따라 선형 회귀는 아래와 같이 분류됨
 - 단순 선형 회귀 (Simple Linear Regression): 독립 변수 x의 개수가 1개
 - 다중 선형 회귀 (Multiple Linear Regression): 독립 변수 x의 개수가 2개 이상

$$y = \beta_0 + \beta_1 \times x_1$$

왼쪽 예제는 독립 변수의 개수가 1개인 경우임

$$y = \beta_0 + \beta_1 \times x_1$$

위 직선에서 기울기 $(=\beta_1)$ 값과 y절편 $(=\beta_0)$ 값을 찾는 것이 선형 회귀 알고리즘에서 수행하는 동작

③ 선형 회귀 (Linear Regression) (3/4)

- 독립 변수 x의 개수에 따라 선형 회귀는 아래와 같이 분류됨
 - 단순 선형 회귀 (Simple Linear Regression): 독립 변수 x의 개수가 1개
 - 다중 선형 회귀 (Multiple Linear Regression): 독립 변수 x의 개수가 2개 이상

[사진출처] https://p829911.github.io/2020/01/16/3.2.1/

왼쪽 예제는 독립 변수의 개수가 2개 (x_1, x_2) 인 경우임

$$y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2$$

선형 회귀 알고리즘 수행을 통해서,

학습 데이터를 가장 잘 표현 하는 β_0 , β_1 , β_2 값을 찾아냄

③ 선형 회귀 (Linear Regression) (4/4)

인공지능 활용 Python language

- 독립 변수 χ 의 개수에 따라 선형 회귀는 아래와 같이 분류됨
 - 단순 선형 회귀 (Simple Linear Regression): 독립 변수 x의 개수가 1개
 - 다중 선형 회귀 (Multiple Linear Regression): 독립 변수 x의 개수가 2개 이상

독립 변수의 개수가 3개를 넘어가게 되면, 시각적으로 표현하기가 어려워 짐

$$y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_2 + \dots + \beta_i \times x_i + \dots + \beta_n \times x_n$$
$$= \beta_0 + \sum_{i=1}^n (\beta_i \times x_i)$$

이 경우에도 선형 회귀 알고리즘 수행을 통해서,

학습 데이터를 가장 잘 표현 하는 $\beta_0, \beta_1, \cdots, \beta_n$ 값을 찾아냄

④ 다항 회귀 (Polynomial Regression) (1/2)

- 선형 회귀의 단점
 - 학습 데이터 내, 종속 변수 y와 독립 변수 x 사이의 상관 관계가 선형이 아닐 수 있다

학습 데이터 ●가 선형 회귀 모형 (점선)으로 잘 표현되지 않고 있다 (오차가 크다)

오히려 주황색 실선이 학습 데이터 ●를 잘 표현하고 있다 (오차가 작다)

④ 다항 회귀 (Polynomial Regression) (2/2)

인공지능 활용 Python language

각 독립 변수 x에 대한 고차원의 다항식을 이용하여 종속 변수 y의 관계를 비선형적 (Non-linear)으로 모델링하는 방법

왼쪽 예제는 독립 변수의 개수가 1개인 경우임

$$y = \beta_0 + \beta_1 \times x_1 + \beta_2 \times x_1^2 + \dots + \beta_n \times x_1^n$$

다항 회귀 알고리즘 수행을 통해서, 학습 데이터를 가장 잘 표현 하는 $\beta_0, \beta_1, \cdots, \beta_n$ 값을 찾아냄

Al Experts Who Lead The Future

03 ---붓꽃 분류 문제 체험

인공지능 라이브러리 패키지

- Tensorflow(구글) vs Pytorch(메타)
 - 딥러닝 관련 API 제공

특징	TensorFlow	PyTorch	
개발자	구글 브레인 팀	페이스북의 인공지능 연구소	
발표일	2015년 11월 9일	2016년 9월	
프로그래밍 언어	파이썬, C++, CUDA	파이썬, CUDA	
플랫폼	리눅스, macOS, 마이크로소프트 윈도우, 안드로이드, 자바스크립트	리눅스, macOS, 윈도우	
종류	기계 학습 라이브러리	딥러닝 프레임워크	
라이선스	아파치 2.0 오픈 소스 라이선스	BSD-3-Clause 라이선스	
장점	유연하고 확장성이 뛰어나며, 대규모 데이터셋과 복잡한 모델을 처리하는 데 적합	사용자 친화적이고 직관적이며, 연구 및 프로토타이핑에 용이	
단점	초보자에게는 다소 복잡하고 사용하기 어려울 수 있음	텐서플로에 비해 사용자층이 얕고, 예제 및 자료가 적을 수 있음	

- Scikit-learn
 - 데이터 분석 및 머신 러닝 모델 개발에 널리 사용
 - 다양한 알고리즘 제공
 - 선형 회귀, 로지스틱 회귀, 의사결정나무, SVM, KNN 등 다양한 머신 러닝 알고리즘을 제공
 - 데이터 전처리 기능
 - 데이터 정규화, 결측치 처리, 데이터 분할 등 데이터 전처리에 필요한 기능을 제공
 - 모델 평가 기능
 - 모델의 성능을 평가할 수 있는 다양한 지표(정확도, 정밀도, 재현율, F1 스코어 등)를 제공
 - 사용하기 쉬움
 - 직관적인 API를 제공하여 초보자도 쉽게 사용 가능
 - 오픈 소스
 - 무료로 사용할 수 있는 오픈 소스 라이브러리
 - 다양한 데이터 형식 지원
 - CSV, Excel, SQL 등 다양한 데이터 형식을 지원
 - 다양한 플랫폼 지원
 - Windows, Linux, macOS 등 다양한 운영체제에서 사용
 - 커뮤니티 지원
 - 활발한 커뮤니티 지원을 통해 문제 해결에 도움을 받을 수 있음

- 라이브러리 데이터셋
 - 빌트인(built-in) 데이터 셋들이 존재
 - 튜토리얼 진행을 위한 수준이므로, 규모가 크지 않음
 - Toy Dataset
- Sklearn 데이터 셋 종류
 - load_boston: 보스톤 집값 데이터
 - load_iris: 아이리스 붓꽃 데이터
 - load_diabetes: 당뇨병 환자 데이터
 - load_digits: 손글씨 데이터
 - load_linnerud: multi-output regression 용 데이터
 - load wine: 와인 데이터
 - load_breast_cancer: 위스콘신 유방암 환자 데이터

빌트인 데이터셋은 sklearn.utils.Bunch 라는 자료구조를 활용

- key-value 형식으로 구성
- 사전(dict)형 타입과 유사한 구조

공통 key

- data: 샘플 데이터, Numpy 배열로 구성
- target: Label 데이터, Numpy 배열로 구성
- feature_names: Feature 데이터의 이름
- target_names: Label 데이터의 이름
- DESCR: 데이터 셋의 설명
- filename: 데이터 셋의 파일 저장 위치 (csv)

사자, 코끼리, 기린 3가지의 분류

- 특징: 키, 길이, 몸무게, 코길이

- 분류: 사자, 코끼리, 기린

- 분류(classification)

동물 분류

• # of classes = 3

인공지능 활용 Python language

다음 붓꽃의 품종을 알 수 있을까요?

- 붓꽃의 품종 판별
 - 분류(classification)
 - # of classes = 3
 - Setosa, versicolor, virginica

그림 3-2 iris의 세 가지 품종(왼쪽부터 Setosa, Versicolor, Virginica)

- 꽃잎과 꽃받침의 너비와 길이
 - 4
 - 꽃잎
 - **Petal**

sepal.length sepal.width petal.length petal.width

- 꽃받침
 - Sepal
- 레이블
 - 3개의 붓꽃 중 하나

붓꽃 데이터

- 3 종류의 꽃잎과 꽃받침, 너비와 길이
 - Iris.csv

sepal.length	sepal.width	petal.length	petal.width	variety
5.1	3.5	1.4	0.2	Setosa
4.9	3	1.4	0.2	Setosa
4.7	3.2	1.3	0.2	Setosa
4.6	3.1	1.5	0.2	Setosa
5	3.6	1.4	0.2	Setosa
5.4	3.9	1.7	0.4	Setosa
4.6	3.4	1.4	0.3	Setosa
5	3.4	1.5	0.2	Setosa
4.4	2.9	1.4	0.2	Setosa

Scikit-learn

- 홈페이지
 - https://scikit-learn.org
- 클래스 Bunch
 - 키로 속성을 참조하는 컨테이너 객체.
 - bunch["value_key"]
 - bunch.value_key.

sklearn.utils.Bunch sklearn.utils.Bunch(**kwarqs) [source]

Container object exposing keys as attributes.

Bunch objects are sometimes used as an output for functions and methods. They extend dictionaries by enabling values to be accessed by key, bunch["value_key"], or by an attribute, bunch.value_key.

Examples

```
>>> from sklearn.utils import Bunch
>>> b = Bunch(a=1, b=2)
>>> b['b']
2
>>> b.b
>>> b.a = 3
>>> b['a']
>>> b.c = 6
>>> b['c']
```


datasets.load_iris()

- 자료형 sklearn.utils.Bunch
 - 파이썬의 사전과 유사

```
# skleran 데이터셋에서 iris 데이터셋 로딩
     from sklearn import datasets
     iris = datasets.load_iris()
     iris
     {'DESCR': '.. _iris_dataset:\n\nlris plants dataset\n-----
      'data': array([[5.1, 3.5, 1.4, 0.2],
             [4.9, 3., 1.4, 0.2],
             [4.7, 3.2, 1.3, 0.2],
             [4.6. 3.1. 1.5. 0.2].
             [5. , 3.6, 1.4, 0.2],
[3] type(iris)
   sklearn.utils.Bunch
[] # iris 데이터셋은 딕셔너리 형태이므로, key 값을 확인
   iris.keys()
   dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
[] iris['filename']
```

키 DESCR

iris['DESCR']

```
Iris plants dataset
**Data Set Characteristics:** / 150개의 샘플
  :Number of Instances: 150 (50 in each of three classes)
  :Number of Attributes: 4 numeric, predictive attributes and the class
  :Attribute Information:
                              네 개의 특징(feature)
     - sepal length in cm
     - sepal width in cm
     - petal length in cm
     - petal width in cm
                                  세 개의 부류
     - class:
           - Iris-Setosa
           - Iris-Versicolour
           - Iris-Virginica
  :Summary Statistics:
                Min Max Mean SD Class Correlation
  sepal length: 4.3 7.9 5.84 0.83 0.7826
  sepal width: 2.0 4.4 3.05 0.43 -0.4194
  petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
                                      0.9565 (high!)
  petal width:
                0.1 2.5 1.20 0.76
:Missing Attribute Values: None
  :Class Distribution: 33.3% for each of 3 classes.
  :Creator: R.A. Fisher
  :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
  :Date: July, 1988
```

붓꽃 분류 문제

인공지능 실습 체험

https://github.com/ai7dnn/2024-AI/blob/main/my_iris_classification.ipynb

자신의 구글 드라이브에 소스 파일 저장

메뉴 파일 | Drive에 사본 저장

연결 클릭

순차적으로 셀 실행

셀 화살표 클릭

- shift + enter

