ПРАКТИЧЕСКАЯ РАБОТА № 2 (1) © 2/11/18

РЕШЕНИЕ ЗАДАЧИ КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

ПЕРВОГО ПОРЯДКА ИЛИ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

Цель работы

освоить методы Рунге-Кутта второго и четвертого порядка точности, применяемые для численного решения задачи Коши для дифференциального уравнения (или системы дифференциальных уравнений) первого порядка.

Подвариант № 1

Постановка задачи

Рассматривается обыкновенное дифференциальное уравнение первого порядка, разрешенное относительно производной и имеющее вид:

$$\frac{dy}{dx} = f(x, y), \ x_0 < x,\tag{1}$$

с дополнительным начальным условием, заданным в точке $x = x_0$:

$$y(x_0) = y_0. ag{2}$$

Предполагается, что правая часть уравнения (1) функция f = f(x, y) такова, что гарантирует существование и единственность решения задачи Коши (1)-(2).

В том случае, если рассматривается не одно дифференциальное уравнение вида (1), а система обыкновенных дифференциальных уравнений первого порядка, разрешенных относительно производных неизвестных функций, то соответствующая задача Коши имеет вид (на примере двух дифференциальных уравнений):

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2), & x > x_0. \end{cases}$$
 (3)

Дополнительные (начальные) условия задаются в точке $x = x_0$:

$$y_1(x_0) = y_1^{(0)}, \ y_2(x_0) = y_2^{(0)}.$$
 (4)

Также предполагается, что правые части уравнений из (3) заданы так, что это гарантирует существование и единственность решения задачи Коши (3)-(4), но уже для системы обыкновенных дифференциальных уравнений первого порядка в форме, разрешенной относительно производных неизвестных функций.

Заметим, что к подобным задачам сводятся многие важные задачи, возникающие в механике (уравнения движения материальной точки), небесной механике, химической кинетике, гидродинамике и т.п.

Цели и задачи практической работы

- Решить задачу Коши (1)-(2) (или (3)-(4)) наиболее известными и широко используемыми на практике методами Рунге-Кутта второго и четвертого порядка точности, аппроксимировав дифференциальную задачу соответствующей разностной схемой (на равномерной сетке); полученное конечно-разностное уравнение (или уравнения в случае системы), представляющее фактически некоторую рекуррентную формулу, просчитать численно;
- 2) Найти численное решение задачи и построить его график;
- 3) Найденное сравнить решением численное решение точным (подобрать тесты, где дифференциального уравнения специальные аналитические решения находятся в классе элементарных функций, при on-line использовать ресурсы онжом http://www.wolframalpha.com или пакета Maple и т.п.).

Отчет по практической работе

Отчет должен содержать

- титульный лист (образец прилагается);
- описание постановки задачи и ее целей;
- описание метода (алгоритма) решения;
- описание программы и ее оригинальный текст с комментариями;
- тесты, доказывающие корректность работы программы (не менее 3-5 тестов, проверенных непосредственно вручную или с помощью специализированного программного обеспечения.

Варианты заданий

 Таблица 1.

 Варианты задания правой части уравнения (1) и начального условия (2)

в случае одного дифференциального уравнения

Вариант	f(x,y)	(x_0, y_0)	Точное решение $y = y(x)$
1	3-y-x	(0,0)	$4-x-4e^{-x}$
2	sin(x)-y	(0,10)	$-0.5\cos(x) + 0.5\sin(x) + \frac{21}{2}e^{-x}$
3	-y-x ²	(0,10)	$-x^{2}+2x-2+12e^{-x}$
4	у - ух	(0,5)	5e ⁻¹ / ₂ x(-2+x)
5	(y - y ²)x	(0,3)	$\frac{1}{1 - \frac{2}{3}e^{\frac{1}{2}x^2}}$
6	$(x-x^2)y$	(0,1)	e - 1/6 x2 (-3+2x)

Таблица 2.

Варианты задания правых частей системы (3) и начального условия (4) в случае системы двух обыкновенных дифференциальных уравнений

Вариант	$f_1(x,u,v)$	$f_2(x,u,v)$	<i>x</i> ₀	$y_1^{(0)}$	$y_2^{(0)}$
1	$\frac{u-v}{x}$	$\frac{u+v}{x}$	1	1	1
2	$x \cdot u + v$	u-v	0	0	1
3	$x+v^2$	$x \cdot u$	0	1	-1
4	$\sqrt{x^2 + 1.1 \cdot u^2} + v$	$\cos(2.1 \cdot v) + u$	0	0.5	1
5	$\cos(u+1.1\cdot v)+2.1$	$\frac{1.1}{x+2.1\cdot u^2} + x + 1$	0	1	0.05
6	$\sin(1.1 \cdot u^2) + x + v$	$x+u-2.1\cdot v^2+1$	0	1	0.5

7	$\sin(x+u)+1.1\cdot v$	$2.1 \cdot u - (x+v)^2$	0	0.5	1
8	$\cos(x+1.1\cdot v)+u$	$-v^2 + 2.1 \cdot u + 1.1$	0	0.25	1
9	$2.1 \cdot v - u^2$	$e^{-u} + x + 2.1 \cdot v$	0	1	0.23
10	$v - \cos(x)$	$u + \sin(x)$	0	0	0
11	$\sin(2\cdot u^2) + x + v$	$x+u-2\cdot v^2+1$	0	1	0.5
12	$-2 \cdot x \cdot u^2 + v^2 - x - 1$	$\frac{1}{v^2} - u - \frac{x}{u}$	0	1	1
13	$\ln(2\cdot x + \sqrt{4\cdot x^2 + v^2})$	$\sqrt{4\cdot x^2 + u^2}$	0	0.5	1
14	$e^{-(u^2+v^2)}+2\cdot x$	$2 \cdot u^2 + v$	0	0.5	1
15	$\sqrt{x^2 + 1.2 \cdot u^2} - v$	$\cos(2.2 \cdot v) + u$	0	0.5	1
16	$\cos(u+1.3 \cdot v) - 2.1$	$\frac{1.3}{x + 2.3 \cdot u^2} + x + 1$	0	1	0.0:
17	$\sin(1.4 \cdot u^2) - x + v$	$x+u-2.2\cdot v^2+1$	0	1	0.5
18	$\cos(x+1.5\cdot v)-u$	$-v^2 + 2.3 \cdot u - 1.2$	0	0.25	1
19	$\sin(x+u)-1.1\cdot v$	$2.5 \cdot u - (x+v)^2$	0	0.5	1
20	$x+u-v^2+2$	$\sin(x-u) + 2.1 \cdot v$	0	1.5	0
21	2.4·v-u	$e^{-u}-x+2.2\cdot v$	0	1	0.2

ПРАКТИЧЕСКАЯ РАБОТА № 2 (2)

Подвариант № 2

РЕШЕНИЕ КРАЕВОЙ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА, РАЗРЕШЕННОГО ОТНОСИТЕЛЬНО СТАРШЕЙ ПРОИЗВОДНОЙ

Цель работы

освоить метод прогонки решения краевой задачи для дифференциального уравнения второго порядка.

Постановка задачи

Рассматривается линейное дифференциальное уравнение второго порядка вида

$$y'' + p(x) \cdot y' + q(x) \cdot y = -f(x), \ 1 < x < 0, \tag{1}$$

с дополнительными условиями в граничных точках

$$\begin{cases} \sigma_1 y(0) + \gamma_1 y'(0) = \delta_1, \\ \sigma_2 y(1) + \gamma_2 y'(1) = \delta_2. \end{cases}$$
 (2)

Цели и задачи практической работы

- Решить краевую задачу (1)-(2) методом конечных разностей, аппроксимировав ее разностной схемой второго порядка точности (на равномерной сетке); полученную систему конечно-разностных уравнений решить методом прогонки;
- 2) Найти разностное решение задачи и построить его график;
- сравнить точным решением разностное решение 3) Найденное уравнения (подобрать специальные тесты, дифференциального аналитические решения находятся в классе элементарных функций, при использовать ресурсы on-line системы можно проверке http://www.wolframalpha.com или пакета Maple и т.п.).

Отчет по практической работе

Отчет должен содержать

- титульный лист (образец прилагается);
- описание постановки задачи и ее целей;
- описание метода (алгоритма) решения;
- описание программы и ее оригинальный текст с комментариями;

 тесты, доказывающие корректность работы программы (не менее 3-5 тестов, проверенных непосредственно вручную или с помощью специализированного программного обеспечения.

Варианты заданий

15. $y'' - 3 \times y' + 2 y = 1.5$; y'(0.7) = 1.3;

$$\begin{aligned} 1. \ y'' + \frac{y'}{x} + 2 \ y = x \ ; & y(0.7) = 0.5 \ ; & 2 \ y(1) + 3 \ y'(1) = 1.2 \ . \end{aligned} \\ 2. \ y'' - x \ y' + 2 \ y = x - 1 \ ; & y(0.9) - 0.5 \ y'(0.9) = 2 \ ; & y(1.2) = 1 \ . \end{aligned} \\ 3. \ y'' + x \ y' + y = x + 1 \ ; & y(0.5) + 2 \ y'(0.5) = 1 \ ; & y'(0.8) = 1.2 \ . \end{aligned} \\ 4. \ y'' + 2 \ y' - \frac{y}{x} = 3 \ ; & y(0.2) = 2 \ ; & 0.5 \ y(0.5) - y'(0.5) = 1 \ . \end{aligned} \\ 5. \ y'' + 2 \ y' - x \ y = x^2 \ ; & y'(0.6) = 0.7 \ ; & y(0.9) - 0.5 \ y'(0.9) = 1 \ . \end{aligned} \\ 6. \ y'' - y' + \frac{2y}{x} = x + 0.4 \ ; & y(1.1) - 0.5 \ y'(1.1) = 2 \ ; & y'(1.4) = 4 \ . \end{aligned} \\ 7. \ y'' - 3 \ y' - \frac{1}{x} = 1 \ ; & y(0.4) = 2 \ ; & y(0.7) - 2 \ y'(0.7) = 0.7 \ . \end{aligned} \\ 8. \ y'' + 3 \ y' - \frac{y}{x} = x + 1 \ ; & y'(1.2) = 1 \ ; & 2 \ y(1.5) - y'(1.5) = 0.5 \ . \end{aligned} \\ 9. \ y'' - \frac{y'}{2} \ 3 \ y = 2 \ x^2 \ ; & y(1) - 2 \ y'(1) = 0.6 \ ; & y(1.3) = 1 \ . \end{aligned} \\ 10. \ y'' + 1.5 \ y' - x \ y = 0.5 \ ; & 2 \ y(1.3) - y'(1.3) = 1 \ ; & y(1.6) = 3 \ . \end{aligned} \\ 11. \ y'' + 2 \ x \ y' - y = 0.4 \ ; & 2 \ y(0.3) + y'(0.3) = 1 \ ; & y'(0.6) = 2 \ . \end{aligned} \\ 12. \ y'' - 0.5 \ x \ y' + y = 2 \ ; & y(0.4) = 1.2 \ ; & y(0.7) + 2 \ y'(0.7) = 1.4 \ 13. \ y'' + \frac{2y'}{x} - 3 \ y = 2; & y'(0.8) = 1.5 \ ; & 2 \ y(1.1) - y'(1.1) = 3 \ . \end{aligned}$$

0.5 y(1) + y'(1) = 2.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

имени М.В.Ломоносова

Факультет вычислительной математики и кибернетики

Компьютерный практикум по учебному курсу «ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ»

ЗАДАНИЕ № 2.

Численные методы решения дифференциальных уравнений

ОТЧЕТ

о выполненном задании

студента	учебной группы факу	льтета ВМК МГУ
-	(фамилия, имя, отчество)	

гор. Москва

2018/19 yv. roa

ВВЕДЕНИЕ В ЧИСЛЕННЫЕ МЕТОДЫ

Практическое задание Nt 2. Численные методы решения дифференциальных уравнений.

Группа 203

n/n	ФИО студента	Вариант Задания № 2
1	БАРАНОВ ДАНИИЛ АЛЕКСАНДРОВИЧ	Подвариант 1 (задача Коши): табл 1 - 5, табл 2 - 4; Подвариант 2 (красвая задача): 15
2	ГАЛИКЕЕВА АННА ВАДИМОВНА	Подварнант 1 (задача Коши): табл 1 - 2, табл 2 - 10; Подварнант 2 (красвая задача): 8
3	КАЛЕНДАРОВ АНДРЕЙ ЭМИЛЕВИЧ	Подварнант 1 (задача Коши): табл 1 - 4 табл 2 - 13; Подварнант 3 (краевая задача): 9
4	КАРПИКОВА ПОЛИНА ВЛАДИМИРОВНА	Подварнант 1 (задача Коши): табл 1 - 6, табл 2 - 17; Подварнант 2 (красвая задача): 9
5	КЛЕЩЕНОК ВИКТОР СЕРГЕЕВИЧ	Подварнант 1 (задача Коши): табл 1 - 6, табл 2 - 14; Подвариант 2 (краевая задача): 10
6	КОРНЕЕВА АЛЕКСАНДРА МИХАЙЛОВНА	Подвариант 1 (задача Ковин): табл 1 - 3, табл 2 - 12; Подвариант 2 (красвая задача): 9
7	КОШОВЕЦ ФЕДОР ИГОРЕВИЧ	Подвариант 1 (задача Коши): табл 1 - 6, табл 2 - 18; Подваровит 2 (красвая задача): 5
8	КУКУШКИН ДЕНИС ИГОРЕВИЧ	Подварнант 1 (задача Коши): табл 1 - 3, табл 2 - 19; Подвармант 2 (красвая задача): 2
9	МАЛАФЕЕВ МИХАИЛ ВЛАДИСЛАВОВИЧ	Подвариант 1 (задача Коши): табл 1 - 2 табл 2 - 13; Подвариант 2 (краевая задача): 2
10	НЕМЕШАЕВА АЛИСА АЛЕКСЕЕВНА	Подвариант 1 (задача Коши): табл 1 - 3, табл 2 - 4; Подвариант 2 (краевая задача): 15
11	НИКИФОРОВ НИКИТА ИГОРЕВИЧ	Подвариант 1 (задача Коши): табл 1 - 2, табл 2 - 8; Подварнант 2 (краевая задача): 14
12	ПЕТРУСОВА ЕКАТЕРИНА ДМИТРИЕВНА	Подварнант I (задача Коши): табл 1 - 1, табл 2 - 11; Подвариант 2 (краевая задача): 12
13	РЯБИНИН МИХАИЛ АНДРЕЕВИЧ	Подвариант 1 (задача Коши): табл 1 - 5, табл 2 - 20; Подвариант 2 (красвая задача): 15
14	САБИРЬЯНОВ АРТУР РАМИЛЕВИЧ	Подвариант I (задача Коши): тибл I - 5, тибл 2 - 21; Подвариант 2 (краевая задача): 6
15	СЕРЕБРЯКОВА СОФЬЯ АНДРЕЕВНА	Подвариант I (задача Коши): табл 1 - 6, табл 2 - 21; Подвариант 2 (красвая задача): 9
16	СОТНИКОВ ДМИТРИЙ МИХАЙЛОВИЧ	Подвариант I (задача Коши): табл I - 3, табл 2 - 17; Подвариант 2 (краевая задача): 5
17	СУШКО НИКИТА СЕРГЕЕВИЧ	Подвариант 1 (задача Коши): табл 1 - 6, табл 2 - 12; Подвариант 2 (краевая задача): 5
18	ТРАВНИКОВА АРИНА СЕРГЕЕВНА	Подварнант 1 (задача Коши): табл 1 - 2, табл 2 - 12; Подварнант 2 (краевая задача): 4
19	УДОВИЧЕНКО ИГОРЬ РОМАНОВИЧ	Подварнает 1 (задача Коши): табл 1 - 6, табл 2 - 5; Подварнает 2 (красвая задача): 4
20	ФЕДОРОВ ИЛЬЯ СЕРГЕЕВИЧ	Подвариант I (задача Кошм): табл I - I, табл 2 - 9; Подвариант 2 (краевая задача): 15
21	ХАЙБУЛАЕВ ГЛЕБ СЕРГЕЕВИЧ	Подвариант I (задача Кошн): табл I - 4 табл 2 - 13; Подвариант 2 (красвая задача): 9
22	ЧИБИСОВ ДМИТРИЙ АЛЕКСАНДРОВИЧ	Подвариант I (задача Коши): табл I - 3, табл 2 - 17; Подвариант 2 (краевая задача): 8
23	ШАПОВАЛОВ РОМАН НИКОЛАЕВИЧ	Подвариант I (задача Коши): табл 1 - 3, табл 2 - 19; Подвариант 2 (краевая задача): 2
24	ШАРКОВ ЛЕОНИД НИКОЛАЕВИЧ	Подварнант 1 (задача Коши): табл 1 - 4, табл 2 - 14; Подварнант 2 (красвая задача): 6