Multivariate Analysis for the Behavioral Sciences, Second Edition (Chapman and Hall/CRC, 2019)

Examples of Chapter 10: Analysis of Longitudinal Data III: Non-Normal Responses

Kimmo Vehkalahti and Brian S. Everitt 22 November 2018

Contents

Examples	2
Beat the Blues Revisited	2
Table 10.3	4
Table 10.4	
Table 10.1: Respiratory Disorder Data	6
Figure 10.2	8
Table 10.5	
Table 10.6	1.
Table 10.7	12
Table 10.10	14
Table 10.2: Data from a Clinical Trial of Patients Suffering from Epilepsy	16
Figure 10.3	18
Table 10.8	
Table 10.9	
Table 10.11	
Table 10.19	24

Examples

Beat the Blues Revisited

Using the Beat the Blues data introduced in **Chapter 9**:

```
library("tidyr"); library("dplyr")
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
BtB <- read.table("data/BtB.txt", header = TRUE, sep = '\t')</pre>
# to make sure that the factor levels are logical (esp. Treatment):
BtB <- within(BtB, {</pre>
       Drug <- factor(Drug, levels=c("No", "Yes")) # default</pre>
     Length <- factor(Length, levels=c("<6m", ">6m")) # default
  Treatment <- factor(Treatment, levels=c("TAU", "BtheB")) # NOT default!</pre>
})
glimpse(BtB); head(BtB); tail(BtB)
## Observations: 100
## Variables: 9
## $ Subject
               <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1...
## $ Drug
               <fct> No, Yes, Yes, No, Yes, Yes, Yes, No, Yes, Yes, No, Y...
## $ Length
               ## $ Treatment <fct> TAU, BtheB, TAU, BtheB, BtheB, BtheB, TAU, TAU, Bthe...
## $ BDIpre
               <int> 29, 32, 25, 21, 26, 7, 17, 20, 18, 20, 30, 49, 26, 3...
               <int> 2, 16, 20, 17, 23, 0, 7, 20, 13, 5, 32, 35, 27, 26, ...
## $ BDI2m
## $ BDI4m
               <int> 2, 24, NA, 16, NA, 0, 7, 21, 14, 5, 24, NA, 23, 36, ...
               <int> NA, 17, NA, 10, NA, 0, 3, 19, 20, 8, 12, NA, NA, 27,...
## $ BDI6m
## $ BDI8m
               <int> NA, 20, NA, 9, NA, 0, 7, 13, 11, 12, 2, NA, NA, 22, ...
     Subject Drug Length Treatment BDIpre BDI2m BDI4m BDI6m BDI8m
## 1
           1
                     >6m
                                       29
                                              2
                                                     2
               No
                               TAU
                                                          NA
                                                                NA
           2
## 2
              Yes
                     >6m
                             BtheB
                                       32
                                              16
                                                    24
                                                          17
                                                                20
                                       25
## 3
           3
              Yes
                     <6m
                               TAU
                                              20
                                                    NA
                                                          NA
                                                                NA
## 4
           4
               No
                     >6m
                             BtheB
                                       21
                                              17
                                                    16
                                                          10
                                                                 9
## 5
           5
                     >6m
                                              23
                                                    NA
                                                          NA
                                                                NA
              Yes
                             BtheB
                                       26
## 6
           6 Yes
                     <6m
                             BtheB
                                        7
                                              0
                                                     0
                                                                 0
       Subject Drug Length Treatment BDIpre BDI2m BDI4m BDI6m BDI8m
##
## 95
            95
                 No
                       >6m
                               BtheB
                                         16
                                                11
                                                       4
                                                             2
                                                                   3
## 96
            96
               Yes
                       >6m
                               BtheB
                                         16
                                                16
                                                      10
                                                            10
                                                                   8
                                 TAU
                                         28
## 97
            97
               Yes
                       <6m
                                               NA
                                                      NA
                                                            NA
                                                                  NA
## 98
            98
                 No
                       >6m
                               BtheB
                                         11
                                                22
                                                       9
                                                            11
                                                                  11
## 99
            99
                                 TAU
                                         13
                                                5
                                                      5
                                                             Ω
                                                                   6
                 No
                       <6m
```

```
## 100
          100 Yes
                      <6m
                                TAU
                                        43
                                              NA
                                                    NA
# Convert data to long form for the analyses, adding Time:
BtBL <- gather(BtB, key = Visit, value = BDI, BDI2m, BDI4m, BDI6m, BDI8m) %>%
 mutate(Time = as.integer(substr(Visit, 4, 4)))
glimpse(BtBL); head(BtBL); tail(BtBL)
## Observations: 400
## Variables: 8
              <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1...
## $ Subject
## $ Drug
              <fct> No, Yes, Yes, No, Yes, Yes, Yes, No, Yes, Yes, No, Y...
              ## $ Length
## $ Treatment <fct> TAU, BtheB, TAU, BtheB, BtheB, BtheB, TAU, TAU, Bthe...
              <int> 29, 32, 25, 21, 26, 7, 17, 20, 18, 20, 30, 49, 26, 3...
## $ BDIpre
              <chr> "BDI2m", "BDI2m", "BDI2m", "BDI2m", "BDI2m", "BDI2m"...
## $ Visit
## $ BDI
              <int> 2, 16, 20, 17, 23, 0, 7, 20, 13, 5, 32, 35, 27, 26, ...
## $ Time
              Subject Drug Length Treatment BDIpre Visit BDI Time
## 1
          1
              No
                    >6m
                              TAU
                                      29 BDI2m
                                                 2
## 2
             Yes
                    >6m
                            BtheB
                                      32 BDI2m
                                                16
## 3
          3
                                      25 BDI2m
                                                      2
             Yes
                    <6m
                              TAU
                                                20
## 4
          4
                                      21 BDI2m
                                                      2
              No
                    >6m
                            BtheB
                                                17
## 5
                                      26 BDI2m
          5
            Yes
                    >6m
                            BtheB
                                                23
                                                      2
                                       7 BDI2m
## 6
          6 Yes
                    <6m
                            BtheB
                                                      2
##
      Subject Drug Length Treatment BDIpre Visit BDI Time
## 395
           95
                No
                      >6m
                              BtheB
                                        16 BDI8m
## 396
           96
               Yes
                      >6m
                              BtheB
                                        16 BDI8m
                                                        8
## 397
           97
                      <6m
                                TAU
                                        28 BDI8m
                                                        8
               Yes
                                                  NA
## 398
           98
                      >6m
                                        11 BDI8m
                No
                              BtheB
                                                  11
                                                        8
## 399
           99
                No
                      <6m
                                TAU
                                        13 BDI8m
                                                   6
                                                        8
## 400
          100
              Yes
                      <6m
                                TAU
                                        43 BDI8m
                                                  NA
                                                        8
# important to order the data with respect to the subjects:
BtBLSORT <- BtBL %>%
 arrange(Subject)
head(BtBLSORT); tail(BtBLSORT)
##
    Subject Drug Length Treatment BDIpre Visit BDI Time
## 1
          1
              No
                    >6m
                              TAU
                                      29 BDI2m
                                                 2
## 2
          1
                    >6m
                              TAU
                                      29 BDI4m
                                                 2
                                                      4
              No
## 3
           1
              No
                    >6m
                              TAU
                                      29 BDI6m
                                                NA
## 4
           1
                    >6m
                              TAU
                                      29 BDI8m
                                                NA
                                                      8
              No
## 5
          2
             Yes
                    >6m
                            BtheB
                                      32 BDI2m
                                                      2
                                                16
## 6
          2
             Yes
                    >6m
                            BtheB
                                      32 BDI4m
                                                24
##
      Subject Drug Length Treatment BDIpre Visit BDI Time
## 395
           99
                No
                      <6m
                                TAU
                                        13 BDI6m
                                                   0
## 396
           99
                No
                      <6m
                                TAU
                                        13 BDI8m
                                                        8
                                                   6
## 397
                                                        2
           100
              Yes
                      <6m
                                TAU
                                        43 BDI2m
          100
## 398
               Yes
                      <6m
                                TAU
                                        43 BDI4m
                                                  NA
                                                        4
## 399
          100
               Yes
                      <6m
                                TAU
                                        43 BDI6m
                                                        6
                                        43 BDI8m NA
## 400
          100
                      <6m
                                TAU
                                                        8
               Yes
```

```
# install.packages("gee")
library("gee")
BtB_gee1 <- gee(BDI ~ BDIpre + Time + Treatment + Drug + Length, id = Subject,</pre>
                data = BtBLSORT, family = gaussian, corstr = "independence")
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
##
      (Intercept)
                          BDIpre
                                           Time TreatmentBtheB
                                                                       DrugYes
        7.8830747
                                     -0.9608077
                                                                    -3.5460058
##
                       0.5723729
                                                    -3.3539662
##
       Length>6m
##
        1.7530800
summary(BtB_gee1)
##
   GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
##
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
##
## Model:
## Link:
                               Identity
## Variance to Mean Relation: Gaussian
## Correlation Structure:
                               Independent
##
## Call:
  gee(formula = BDI ~ BDIpre + Time + Treatment + Drug + Length,
       id = Subject, data = BtBLSORT, family = gaussian, corstr = "independence")
##
##
## Summary of Residuals:
            Min
                          1Q
                                   Median
                                                     30
## -24.20158432 -5.31202378
                               0.01101526
                                            5.29503741 27.77789553
##
##
## Coefficients:
                                          Naive z Robust S.E. Robust z
##
                    Estimate Naive S.E.
## (Intercept)
                   7.8830747 1.78048908 4.427477 2.19973944 3.583640
## BDIpre
                   0.5723729 0.05486079 10.433188 0.08853253 6.465114
                  -0.9608077 0.23263437 -4.130119 0.17688635 -5.431780
## TreatmentBtheB -3.3539662 1.09831939 -3.053726 1.71390982 -1.956909
## DrugYes
                  -3.5460058 1.14469086 -3.097785 1.73069664 -2.048889
## Length>6m
                   1.7530800 1.10849861 1.581490 1.41954159 1.234962
##
## Estimated Scale Parameter: 74.8854
## Number of Iterations: 1
##
## Working Correlation
        [,1] [,2] [,3] [,4]
## [1,]
                     0
           1
                0
## [2,]
           0
                     0
                          0
                          0
## [3,]
           0
                0
                     1
## [4,]
           0
                0
                     0
                          1
```

```
BtB_gee2 <- gee(BDI ~ BDIpre + Time + Treatment + Drug + Length, id = Subject,</pre>
                data = BtBLSORT, family = gaussian, corstr = "exchangeable")
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
      (Intercept)
##
                          BDIpre
                                           Time TreatmentBtheB
                                                                       DrugYes
##
        7.8830747
                       0.5723729
                                     -0.9608077
                                                    -3.3539662
                                                                    -3.5460058
##
       Length>6m
        1.7530800
summary(BtB_gee2)
##
   GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
##
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
## Model:
## Link:
                               Identity
## Variance to Mean Relation: Gaussian
## Correlation Structure:
                               Exchangeable
## Call:
## gee(formula = BDI ~ BDIpre + Time + Treatment + Drug + Length,
       id = Subject, data = BtBLSORT, family = gaussian, corstr = "exchangeable")
##
##
## Summary of Residuals:
           Min
                                Median
                                                30
                        10
                                                           Max
## -25.4478843 -6.3276726 -0.8152833
                                         4.3622258
                                                    25.4078115
##
##
## Coefficients:
##
                    Estimate Naive S.E.
                                           Naive z Robust S.E.
                   5.8855129 2.32380381 2.5327065 2.10712166 2.7931529
## (Intercept)
## BDIpre
                   0.6399964 0.08033495 7.9665999 0.07931263 8.0692874
## Time
                  -0.7078407 0.14254124 -4.9658660 0.15394156 -4.5981134
## TreatmentBtheB -2.3360241 1.72621751 -1.3532617 1.66217026 -1.4054060
## DrugYes
                  -2.7742506 1.78397557 -1.5550945 1.64824318 -1.6831561
## Length>6m
                  0.2084783 1.69179766 0.1232288 1.48052530 0.1408137
##
## Estimated Scale Parameter: 77.14393
## Number of Iterations: 5
## Working Correlation
             [,1]
                       [,2]
                                 [,3]
## [1,] 1.0000000 0.6915241 0.6915241 0.6915241
## [2,] 0.6915241 1.0000000 0.6915241 0.6915241
## [3,] 0.6915241 0.6915241 1.0000000 0.6915241
## [4,] 0.6915241 0.6915241 0.6915241 1.0000000
```

Table 10.1: Respiratory Disorder Data

```
library("tidyr"); library("dplyr")
# install.packages("HSAUR3")
library("HSAUR3")
## Loading required package: tools
data("respiratory", package = "HSAUR3")
RESPL <- respiratory # (data are readily given in long form)
glimpse(RESPL); head(RESPL, n = 5)
## Observations: 555
## Variables: 7
## $ centre
                             ## $ treatment <fct> placebo, placebo, placebo, placebo, placebo, placebo...
## $ gender
                             <fct> female, female, female, female, female, female, female...
## $ age
                             <dbl> 46, 46, 46, 46, 46, 28, 28, 28, 28, 28, 23, 23, ...
## $ status
                             <fct> poor, poor, poor, poor, poor, poor, poor, poor, poor...
## $ month
                             <ord> 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2...
                             <fct> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4...
## $ subject
##
             centre treatment gender age status month subject
                       1 placebo female 46
## 1
                                                                         poor
## 112
                              placebo female 46
                       1
                                                                         poor
                                                                                          1
                                                                                                          1
## 223
                       1
                              placebo female 46
                                                                        poor
                                                                                          2
                                                                                                          1
                               placebo female 46
                                                                                          3
## 334
                                                                         poor
                                                                                                          1
## 445
                       1
                              placebo female 46
                                                                        poor
RESPL <- within (RESPL, {
         levels(gender) <- c("male", "female") # see the original article by Davis (1991)
         status <- as.numeric(status) - 1 # for converting to wide form below
})
head(RESPL, n = 5)
##
             centre treatment gender age status month subject
## 1
                       1 placebo
                                                male 46
                                                                              0
                                                                                          0
## 112
                       1 placebo
                                                  male 46
                                                                                          1
## 223
                       1
                            placebo
                                                  male 46
                                                                              0
                                                                                          2
                                                                                                          1
## 334
                               placebo
                                                  male 46
                                                                              0
                                                                                          3
                                                                                                          1
## 445
                       1
                              placebo
                                                  male 46
                                                                              0
                                                                                          4
                                                                                                          1
# convert data to WIDE form:
# (sep: set valid names month0:month4 here; otherwise just 0:4)
RESP <- RESPL %>%
   spread(key = month, value = status, sep = "") %>%
   arrange(subject)
glimpse(RESP); head(RESP, n = 5)
## Observations: 111
## Variables: 10
                             ## $ treatment <fct> placebo, placebo, treatment, placebo, placebo, treat...
## $ gender
                             <fct> male, 
## $ age
                             <dbl> 46, 28, 23, 44, 13, 34, 43, 28, 31, 37, 30, 14, 23, ...
```

```
## $ subject
               <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1...
## $ month0
               <dbl> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0...
               <dbl> 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0...
## $ month1
## $ month2
               <dbl> 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1...
## $ month3
               <dbl> 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1...
## $ month4
               <dbl> 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1...
     centre treatment gender age subject month0 month1 month2 month3 month4
## 1
          1
             placebo
                       male 46
                                      1
## 2
                                      2
                                             0
                                                    0
                                                           0
                                                                  0
                                                                         0
          1
             placebo
                       male
                             28
## 3
          1 treatment
                       male
                             23
                                      3
                                             1
                                                    1
                                                           1
                                                                  1
                                                                         1
## 4
                                      4
          1
             placebo
                       male
                             44
                                                                         0
                                             1
                                                    1
                                                           1
                                                                  1
## 5
          1
             placebo female 13
                                      5
                                             1
                                                                  1
                                                                         1
# back to long form; leave month0 for baseline:
RESPL <- gather(RESP, key = months, value = status, month1:month4) %>%
  mutate(month = as.integer(substr(months, 6, 6))) %>%
  rename(baseline = month0) %>%
  arrange(subject)
glimpse(RESPL); head(RESPL, n = 5)
## Observations: 444
## Variables: 9
## $ centre
               ## $ treatment <fct> placebo, placebo, placebo, placebo, placebo, placebo...
## $ gender
               <fct> male, male, male, male, male, male, male, male, male...
## $ age
               <dbl> 46, 46, 46, 46, 28, 28, 28, 28, 23, 23, 23, 23, 44, ...
## $ subject
               <fct> 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5...
## $ baseline
              <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1...
               <chr> "month1", "month2", "month3", "month4", "month1", "m...
## $ months
## $ status
               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1...
## $ month
               <int> 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2...
     centre treatment gender age subject baseline months status month
##
## 1
         1
             placebo
                       male
                             46
                                      1
                                               0 month1
## 2
             placebo
                                                             0
                                                                   2
          1
                       male
                             46
                                      1
                                               0 month2
## 3
          1
             placebo
                       male
                             46
                                      1
                                               0 month3
                                                             0
                                                                   3
             placebo
                                               0 month4
                                                                   4
## 4
          1
                       male
                             46
                                      1
                                                             0
## 5
             placebo
                                      2
                                               0 month1
                                                                   1
                       male 28
```

Figure 10.2

```
n = dim(RESP)[1]
RP <- RESP %>%
  group_by(treatment) %>%
  summarise(m0 = 100*sum(month0)/n,
            m1 = 100*sum(month1)/n
            m2 = 100*sum(month2)/n,
            m3 = 100*sum(month3)/n,
            m4 = 100*sum(month4)/n ) %>%
  select(-treatment) %>%
  ungroup()
RP2 <- cbind(RP[1, ], RP[2, ])</pre>
month \leftarrow rep(1:5, times = 2)
treatment \leftarrow rep(0:1, each = 5)
RPos <- as.data.frame(cbind(treatment, month, t(RP2)))</pre>
row.names(RPos) <- 1:10</pre>
names(RPos) <- c("treatment", "month", "positive")</pre>
RPos$treatment <- factor(RPos$treatment, labels = c("placebo", "treatment"))</pre>
library("ggplot2")
p1 <- ggplot(RPos, aes(x = month, y = positive, fill = treatment))
p2 <- p1 + geom_bar(position = "dodge", stat = "identity")</pre>
p3 <- p2 + scale_x_continuous(name = "", breaks = 1:5,
                labels = c("Baseline", "Month 1", "Month 2", "Month 3", "Month 4"))
p4 <- p3 + theme_bw() + theme(panel.grid.major = element_blank(),
                               panel.grid.minor = element_blank())
p5 <- p4 + scale_y_continuous(name = "Positive responses (%)")
p6 <- p5 + scale_fill_grey(start = 0.5, end = 0)
```


[4,]

0

1

```
resp_gee1 <- gee(status ~ age, data = RESPL, family = binomial, id = subject,
                 corstr = "independence", scale.fix = TRUE, scale.value = 1)
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
## (Intercept)
## 0.64576265 -0.01201525
summary(resp_gee1)
##
## GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
## Model:
## Link:
                               Logit
## Variance to Mean Relation: Binomial
## Correlation Structure:
                               Independent
##
## Call:
## gee(formula = status ~ age, id = subject, data = RESPL, family = binomial,
      corstr = "independence", scale.fix = TRUE, scale.value = 1)
##
## Summary of Residuals:
         Min
                      1Q
                            Median
                                            3Q
## -0.6256488 -0.5508736 0.3828310 0.4320996 0.5427142
##
##
## Coefficients:
                  Estimate Naive S.E.
                                        Naive z Robust S.E. Robust z
## (Intercept) 0.64576265 0.255300707 2.529420 0.39567302 1.632061
## age
              -0.01201525 0.007061029 -1.701628 0.01173464 -1.023912
##
## Estimated Scale Parameter: 1
## Number of Iterations: 1
## Working Correlation
        [,1] [,2] [,3] [,4]
## [1,]
          1
               0
                    0
## [2,]
          0
               1
                     0
## [3,]
          0
                0
                     1
                         0
```

```
resp_gee2 <- gee(status ~ age, data = RESPL, family = binomial, id = subject,
                 corstr = "exchangeable", scale.fix = TRUE, scale.value = 1)
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
## (Intercept)
## 0.64576265 -0.01201525
summary(resp_gee2)
##
## GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
## Model:
## Link:
                               Logit
## Variance to Mean Relation: Binomial
## Correlation Structure:
                              Exchangeable
##
## Call:
## gee(formula = status ~ age, id = subject, data = RESPL, family = binomial,
       corstr = "exchangeable", scale.fix = TRUE, scale.value = 1)
##
##
## Summary of Residuals:
##
         Min
                      1Q
                             Median
                                            3Q
## -0.6256488 -0.5508736 0.3828310 0.4320996 0.5427142
##
##
## Coefficients:
                  Estimate Naive S.E.
                                       Naive z Robust S.E.
## (Intercept) 0.64576265 0.41037540 1.573590 0.39567302 1.632061
              -0.01201525 0.01135004 -1.058609 0.01173464 -1.023912
## age
##
## Estimated Scale Parameter: 1
## Number of Iterations: 1
## Working Correlation
                       [,2]
                                 [,3]
             [,1]
## [1,] 1.0000000 0.5279328 0.5279328 0.5279328
## [2,] 0.5279328 1.0000000 0.5279328 0.5279328
## [3,] 0.5279328 0.5279328 1.0000000 0.5279328
```

[4,] 0.5279328 0.5279328 0.5279328 1.0000000

```
formula3 <- status ~ age + month + baseline + centre + treatment + gender
resp_gee3 <- gee(formula3, data = RESPL, family = binomial, id = subject,
                 corstr = "exchangeable", scale.fix = TRUE, scale.value = 1)
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
##
          (Intercept)
                                     age
                                                      month
##
          -0.74049186
                             -0.01818538
                                                -0.06425079
##
             baseline
                                 centre2 treatmenttreatment
##
           1.88406115
                              0.67230658
                                                 1.30055737
##
         genderfemale
           0.11936743
summary(resp_gee3)
   GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
##
##
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
## Model:
## Link:
                               Logit
   Variance to Mean Relation: Binomial
## Correlation Structure:
                               Exchangeable
##
## Call:
  gee(formula = formula3, id = subject, data = RESPL, family = binomial,
##
       corstr = "exchangeable", scale.fix = TRUE, scale.value = 1)
##
## Summary of Residuals:
##
           Min
                        1Q
                                Median
                                                30
                                                           Max
## -0.93336064 -0.29731249 0.08709546 0.32904495 0.85591042
##
##
## Coefficients:
                         Estimate Naive S.E.
                                                Naive z Robust S.E.
## (Intercept)
                      -0.73323775 0.51777213 -1.4161399 0.51901959
## age
                      -0.01841147 0.01256999 -1.4647157 0.01301183
                      -0.06419992 0.08100426 -0.7925499 0.08150945
## month
## baseline
                       1.87781449 0.34189674 5.4923439 0.35009816
                       0.68091583 0.33960534 2.0050210
## centre2
                                                         0.35676012
## treatmenttreatment 1.29222142 0.33562959 3.8501415 0.35053559
## genderfemale
                       0.13076523 0.41791342 0.3129003 0.44409802
##
                        Robust z
## (Intercept)
                      -1.4127362
                      -1.4149795
## age
## month
                      -0.7876377
## baseline
                       5.3636799
## centre2
                       1.9086097
## treatmenttreatment 3.6864200
## genderfemale
                       0.2944513
##
```

```
## Estimated Scale Parameter: 1
## Number of Iterations: 2
##
## Working Correlation
## [,1] [,2] [,3] [,4]
## [1,] 1.000000 0.336918 0.336918 0.336918
## [2,] 0.336918 1.000000 0.336918 0.336918
## [3,] 0.336918 0.336918 1.000000 0.336918
## [4,] 0.336918 0.336918 0.336918 1.000000
```

```
# install.packages("lme4")
library("lme4")
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following object is masked from 'package:tidyr':
##
##
       expand
formula4 <- status ~ age + month + baseline + centre + treatment + gender + (1 | subject)
resp_glmer <- glmer(formula4, data = RESPL, family = binomial)</pre>
summary(resp_glmer)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
  Family: binomial (logit)
## Formula: status ~ age + month + baseline + centre + treatment + gender +
##
       (1 | subject)
     Data: RESPL
##
##
##
       AIC
                BIC
                     logLik deviance df.resid
##
      444.3
               477.1
                      -214.2
                                428.3
                                            436
##
## Scaled residuals:
      Min
               1Q Median
##
                                3Q
                                       Max
## -2.8574 -0.3590 0.1427 0.3693 2.2393
##
## Random effects:
## Groups Name
                       Variance Std.Dev.
## subject (Intercept) 3.89
## Number of obs: 444, groups: subject, 111
##
## Fixed effects:
                     Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                     -1.39580 0.83828 -1.665 0.095895
                     -0.02546
                                 0.02014 -1.264 0.206131
## age
## month
                     -0.10133
                                 0.12518 -0.810 0.418221
                                          5.107 3.26e-07 ***
## baseline
                      3.07833
                                 0.60271
                                 0.54784
## centre2
                      1.04669
                                           1.911 0.056059 .
                                           3.888 0.000101 ***
## treatment 2.16324
                                 0.55643
## genderfemale
                      0.20250
                                 0.67270
                                           0.301 0.763394
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
              (Intr) age
                            month baseln centr2 trtmnt
## age
              -0.670
## month
              -0.356 0.009
## baseline
              -0.349 0.015 -0.041
## centre2
              -0.078 -0.223 -0.015 -0.150
```

Table 10.2: Data from a Clinical Trial of Patients Suffering from Epilepsy

```
library("HSAUR3")
EPIL <- epilepsy # (data are readily given in long form)
glimpse(EPIL); head(EPIL)
## Observations: 236
## Variables: 6
                  <fct> placebo, placebo, placebo, placebo, placebo, plac...
## $ treatment
## $ base
                  <int> 11, 11, 11, 11, 11, 11, 11, 11, 6, 6, 6, 6, 8, 8,...
## $ age
                  <int> 31, 31, 31, 31, 30, 30, 30, 25, 25, 25, 25, 3...
## $ seizure.rate <int> 5, 3, 3, 3, 5, 3, 3, 2, 4, 0, 5, 4, 4, 1, 4, 7...
## $ period
                  <ord> 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1...
## $ subject
                  <fct> 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5...
##
       treatment base age seizure.rate period subject
## 1
         placebo
                   11 31
                                     5
## 110
         placebo
                   11 31
                                     3
                                            2
                                                    1
                                     3
                                            3
## 112
        placebo
                   11 31
                                                    1
                                     3
## 114
        placebo
                   11 31
                                                    1
## 2
                   11 30
                                     3
                                            1
                                                    2
         placebo
                                            2
## 210
        placebo
                   11 30
                                     5
                                                    2
# convert data to WIDE form:
# (sep: set valid names month0:month4 here! otherwise just 0:4)
EPI <- EPIL %>%
  spread(key = period, value = seizure.rate, sep = "") %>%
  arrange(subject)
glimpse(EPI); head(EPI)
## Observations: 59
## Variables: 8
## $ treatment <fct> placebo, placebo, placebo, placebo, placebo, placebo...
## $ base
               <int> 11, 11, 6, 8, 66, 27, 12, 52, 23, 10, 52, 33, 18, 42...
## $ age
               <int> 31, 30, 25, 36, 22, 29, 31, 42, 37, 28, 36, 24, 23, ...
## $ subject
               <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1...
## $ period1
               <int> 5, 3, 2, 4, 7, 5, 6, 40, 5, 14, 26, 12, 4, 7, 16, 11...
## $ period2
               <int> 3, 5, 4, 4, 18, 2, 4, 20, 6, 13, 12, 6, 4, 9, 24, 0,...
## $ period3
               <int> 3, 3, 0, 1, 9, 8, 0, 23, 6, 6, 6, 8, 6, 12, 10, 0, 3...
## $ period4
               <int> 3, 3, 5, 4, 21, 7, 2, 12, 5, 0, 22, 4, 2, 14, 9, 5, ...
     treatment base age subject period1 period2 period3 period4
## 1
      placebo
                11 31
                              1
                                      5
                                              3
                                                      3
                                                              3
## 2
      placebo
                 11 30
                              2
                                      3
                                              5
                                                      3
                                                              3
                  6 25
                              3
                                      2
                                              4
                                                      0
                                                              5
## 3
      placebo
## 4
      placebo
                  8
                     36
                              4
                                      4
                                              4
                                                      1
                                                              4
## 5
      placebo
                 66
                     22
                              5
                                      7
                                             18
                                                      9
                                                             21
      placebo
                 27 29
                              6
# correct the baseline when converting to long form:
EPIL <- gather(EPI, key = periods, value = seizure.rate, period1:period4) %>%
```

```
mutate( base2 = base/4, week = as.integer(substr(periods, 7, 7)) ) %>%
  arrange(subject)
glimpse(EPIL); head(EPIL)
## Observations: 236
## Variables: 8
## $ treatment
                  <fct> placebo, placebo, placebo, placebo, placebo, plac...
## $ base
                 <int> 11, 11, 11, 11, 11, 11, 11, 11, 6, 6, 6, 6, 8, 8,...
                  <int> 31, 31, 31, 31, 30, 30, 30, 25, 25, 25, 25, 3...
## $ age
## $ subject
                  <fct> 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5...
## $ periods
                  <chr> "period1", "period2", "period3", "period4", "peri...
## $ seizure.rate <int> 5, 3, 3, 3, 5, 3, 3, 2, 4, 0, 5, 4, 4, 1, 4, 7...
                  <dbl> 2.75, 2.75, 2.75, 2.75, 2.75, 2.75, 2.75, 2.75, 1...
## $ base2
## $ week
                  <int> 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1...
     treatment base age subject periods seizure.rate base2 week
       placebo
                              1 period1
                                                  5 2.75
## 1
                 11 31
                                                  3 2.75
## 2
       placebo
                 11 31
                              1 period2
                                                             2
                                                  3 2.75
## 3
       placebo
                11 31
                              1 period3
                                                             3
                              1 period4
## 4
      placebo
                11 31
                                                  3 2.75
                                                             4
                                                  3 2.75
## 5
      placebo
                              2 period1
                 11 30
                                                             1
## 6
      placebo
                 11 30
                              2 period2
                                                  5 2.75
                                                             2
```

Figure 10.3

```
# Convert data to long form, including the baseline;
# correct the baseline first:
EPIO <- EPI %>%
  mutate(base2 = base/4)
EPILO <- gather(EPIO, key = periods, value = seizure.rate, base2, period1:period4) %>%
  arrange(subject)
glimpse(EPIL0); head(EPIL0)
## Observations: 295
## Variables: 6
## $ treatment
                 <fct> placebo, placebo, placebo, placebo, placebo, plac...
## $ base
                 ## $ age
                 <int> 31, 31, 31, 31, 30, 30, 30, 30, 30, 25, 25, 2...
                 <fct> 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4...
## $ subject
## $ periods
                 <chr> "base2", "period1", "period2", "period3", "period...
## $ seizure.rate <db1> 2.75, 5.00, 3.00, 3.00, 3.00, 2.75, 3.00, 5.00, 3...
    treatment base age subject periods seizure.rate
      placebo
                             1 base2
## 1
                11 31
                                               2.75
## 2
      placebo
               11 31
                             1 period1
                                               5.00
## 3
                                               3.00
      placebo
               11 31
                             1 period2
## 4
      placebo
                11 31
                             1 period3
                                               3.00
## 5
                11 31
                                               3.00
      placebo
                             1 period4
      placebo
                11 30
                                base2
                                               2.75
# Mark some of the outliers:
# https://stackoverflow.com/questions/33524669/labeling-outliers-of-boxplots-in-r
is outlier <- function(x) {</pre>
  \# changed the upper coeff from 1.5 to 3.5 (only more extreme observations highlighted)
 return(x < quantile(x, 0.25) - 1.5 * IQR(x) | x > quantile(x, 0.75) + 3.5 * IQR(x))
}
# use subject id (not seizure.rate itself!) for identification:
EPILO <- EPILO %>%
 mutate(outlier = ifelse(is_outlier(seizure.rate), subject, as.numeric(NA)))
p1 <- ggplot(EPILO, aes(x = factor(periods), y = seizure.rate, fill = treatment))
p2 <- p1 + geom_boxplot() + geom_text(aes(label = outlier), na.rm = TRUE, hjust = -0.6)
p3 <- p2 + facet_grid(treatment ~ ., labeller = label_parsed)</pre>
p4 <- p3 + theme_bw() + theme(panel.grid.major = element_blank(),
                             panel.grid.minor = element_blank())
p5 <- p4 + theme(legend.position = "none")
p6 <- p5 + scale x discrete(name = "",
                           labels = c("Baseline", "Time 1", "Time 2", "Time 3", "Time 4"))
p7 <- p6 + scale_y_continuous(name = "Seizure rate (count)")
p8 <- p7 + scale_fill_grey(start = 1, end = 1) # BEW for the book
p7; p8
```



```
t1 <- tapply(EPILO$seizure.rate, EPILO$period, mean)
t2 <- tapply(EPILO$seizure.rate, EPILO$period, var)
t1 <- as.data.frame(t1)
t2 <- as.data.frame(t2)

tab108 <- cbind(t1, t2)
names(tab108) = c("mean", "variance")
tab108

## mean variance
## base2 7.805085 45.14885
## period1 8.949153 220.08358
## period2 8.355932 103.78492
## period3 8.440678 200.18177
## period4 7.305085 93.11222
```

```
formula5 <- seizure.rate ~ week + age + log(base2) + treatment
epil_gee1 <- gee(formula5, data = EPIL, family = "poisson", id = subject,
                 corstr = "exchangeable", scale.fix = FALSE)
## Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
## running glm to get initial regression estimate
##
          (Intercept)
                                    week
                                                         age
##
          -0.84405973
                             -0.05872397
                                                  0.01932016
##
           log(base2) treatmentProgabide
##
           1.22082626
                             -0.03005351
summary(epil_gee1)
##
##
   GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
   gee S-function, version 4.13 modified 98/01/27 (1998)
##
##
## Model:
## Link:
                               Logarithm
## Variance to Mean Relation: Poisson
## Correlation Structure:
                               Exchangeable
##
## Call:
## gee(formula = formula5, id = subject, data = EPIL, family = "poisson",
##
       corstr = "exchangeable", scale.fix = FALSE)
##
## Summary of Residuals:
           Min
                        1Q
                                Median
                                                 3Q
                                                            Max
## -15.5346018 -3.2421580 -0.3594229
                                        1.4768610 60.2253586
##
##
## Coefficients:
                         Estimate Naive S.E.
                                                Naive z Robust S.E.
##
## (Intercept)
                      -0.87530135 0.52946461 -1.6531820 0.473365597
                      -0.05872335 0.03459127 -1.6976352 0.034997602
## week
                       0.01999638 0.01250451 1.5991331 0.009792718
## age
## log(base2)
                       1.22469907 0.10554688 11.6033662 0.155673659
## treatmentProgabide -0.02421150 0.15532727 -0.1558741 0.191087900
                        Robust z
## (Intercept)
                      -1.8491022
## week
                      -1.6779251
## age
                       2.0419638
## log(base2)
                       7.8670925
## treatmentProgabide -0.1267035
##
## Estimated Scale Parameter: 4.822177
## Number of Iterations: 2
##
## Working Correlation
                       [,2]
                                 [,3]
             [,1]
## [1,] 1.0000000 0.3986404 0.3986404 0.3986404
```

```
## [2,] 0.3986404 1.0000000 0.3986404 0.3986404
```

^{## [3,] 0.3986404 0.3986404 1.0000000 0.3986404}

^{## [4,] 0.3986404 0.3986404 0.3986404 1.0000000}

```
formula6 <- seizure.rate ~ week + age + log(base2) + treatment + (1 | subject)
epil_glmm <- glmer(formula6, data = EPIL, family = "poisson")</pre>
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00241629 (tol =
## 0.001, component 1)
summary(epil_glmm)
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: poisson (log)
## Formula:
## seizure.rate ~ week + age + log(base2) + treatment + (1 | subject)
##
     Data: EPIL
##
##
        AIC
                BIC
                      logLik deviance df.resid
                      -667.1
##
     1346.2
              1367.0
                               1334.2
                                            230
##
## Scaled residuals:
##
      Min
               1Q Median
                               3Q
## -3.2981 -0.8756 -0.0889 0.6043 7.2421
##
## Random effects:
## Groups Name
                       Variance Std.Dev.
## subject (Intercept) 0.268
                                0.5177
## Number of obs: 236, groups: subject, 59
## Fixed effects:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -0.17533
                                 0.43865 -0.400 0.68937
## week
                      -0.05872
                                 0.02018 -2.910 0.00362 **
## age
                      0.01073
                                 0.01217
                                           0.882 0.37800
## log(base2)
                      1.02527
                                 0.10115 10.136 < 2e-16 ***
## treatmentProgabide -0.31998
                                 0.15060 -2.125 0.03362 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
               (Intr) week
                                   lg(b2)
                            age
## week
              -0.112
## age
              -0.872 0.000
## log(base2) -0.545 0.000 0.161
## trtmntPrgbd -0.243 0.000 0.110 -0.043
## convergence code: 0
## Model failed to converge with max|grad| = 0.00241629 (tol = 0.001, component 1)
```

```
formula7 <- seizure.rate ~ week + age + log(base2) + treatment + (1 + week | subject)
epil glmm2 <- glmer(formula7, data = EPIL, family = "poisson")
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0012166 (tol =
## 0.001, component 1)
summary(epil_glmm2)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##
     Approximation) [glmerMod]
  Family: poisson (log)
## Formula: seizure.rate ~ week + age + log(base2) + treatment + (1 + week |
##
       subject)
##
      Data: EPIL
##
##
        AIC
                BIC
                       logLik deviance df.resid
##
     1330.4
             1358.1
                       -657.2
                               1314.4
                                            228
##
## Scaled residuals:
##
      Min
               1Q Median
                               3Q
                                       Max
## -2.9840 -0.7807 -0.1003 0.5385 6.3781
##
## Random effects:
                       Variance Std.Dev. Corr
## Groups Name
##
   subject (Intercept) 0.4134
                                0.6429
##
                       0.0213
                                0.1459
                                         -0.60
           week
## Number of obs: 236, groups: subject, 59
## Fixed effects:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      -0.18761
                                  0.44351 -0.423
                                                    0.6723
## week
                      -0.05135
                                  0.03264 - 1.573
                                                    0.1157
                                           0.812
## age
                       0.01001
                                  0.01233
                                                    0.4166
## log(base2)
                       1.02520
                                  0.10085 10.165
                                                    <2e-16 ***
## treatmentProgabide -0.31674
                                  0.15018 -2.109
                                                    0.0349 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
               (Intr) week
                            age
                                    lg(b2)
## week
              -0.136
## age
              -0.864 -0.051
## log(base2) -0.537 -0.019 0.162
## trtmntPrgbd -0.243 -0.004 0.113 -0.042
## convergence code: 0
## Model failed to converge with max|grad| = 0.0012166 (tol = 0.001, component 1)
```