BESIII Oxford Group Meeting

Martin Tat

Oxford LHCb

12th January 2022

Double tag fit of $K\pi$

(a) Before bug fix

(b) After bug fix

Efficiency corrections

- Study bin migration
- Obtain resolution by comparing true and reconstructed momentum in signal MC
- Take a random event from signal MC, smear daughter momenta and determine "Dalitz coordinate"

$$\epsilon_{ij} = rac{N_{ij}^{ ext{reconstructed}}}{N_{j}^{ ext{generated}}}$$

Efficiency corrections

Efficiency corrections

DCS corrections

$$f_i = \frac{K_i}{K_i + K_{-i} - 2r_D R(c_i \cos(\delta_D) - s_i \sin(\delta_D))}$$

Bin	$K\pi$	$K\pi\pi^0$	$K\pi\pi\pi$
R	1.0	$\boldsymbol{0.79 \pm 0.04}$	$\textbf{0.44} \pm \textbf{0.10}$
$\delta_D(^\circ)$	190.0 ± 4.2	196 ± 11	161 ± 28
-4	1.0091 ± 0.0017	1.0039 ± 0.0028	1.0079 ± 0.0049
-3	0.9538 ± 0.0007	0.9716 ± 0.0017	0.9845 ± 0.0042
-2	0.9669 ± 0.0014	0.9815 ± 0.0028	0.9833 ± 0.0041
-1	1.0166 ± 0.0016	1.0111 ± 0.0024	1.0016 ± 0.0050
+1	1.0599 ± 0.0228	1.0174 ± 0.0332	1.0595 ± 0.0640
+2	0.7833 ± 0.0027	0.8574 ± 0.0075	0.9089 ± 0.0193
+3	0.8263 ± 0.0060	0.8959 ± 0.0132	0.9021 ± 0.0197
+4	1.1850 ± 0.0229	1.1198 ± 0.0313	0.9913 ± 0.0528

K_i results for $KK\pi\pi$ vs $K\pi$

K_i from KKππ vs Kπ, Kππ⁰, Kπππ tags

Measurement of F_+

Cannot apply cut to $m_{\rm BC}^{\rm tag}$ because the sideband is removed Sideband subtraction for correctly reconstructed signal side?

Measurement of F_+

Do the $K_L\pi^0$ plot look suspicious? How do I account for QC in K_SKK backgrounds?

Measurement of F_+

 $D^0 \rightarrow KK\pi\pi$ BF asymmetry

Some challenges with selection currently...

- Very low tag efficiency for 4-body modes with kaons
 - Tracking efficiency is poor at low momentum
 - Softer kaon momentum in $KK\pi\pi$
 - How to loosen IP cuts?
 - $V_{\rm xy} < 1.0 \, {\rm cm}$
 - $\bullet \ V_{\rm z} < 10.0\,{\rm cm}$
- ② Kalman kinematic fit in $K_L h^+ h^-$ gives very strange results
 - $K_L K^+ K^-$ looks like it's working
 - $K_L \pi^+ \pi^-$ fit doesn't change pion momenta
 - χ^2 is too small (10⁻⁶)

Conclusion and next steps

- K_i looks encouraging, can probably start some toy studies of binned CP double tags
- Bin migration seems large, but probably a result of binning scheme
- \bullet F_{+} measurement looks possible with the current dataset
- Some issues with selection that requires more thinking...