Corrigendum for: R. Kamalapurkar, H. T. Dinh, S. Bhasin, and W. E. Dixon, "Approximate optimal trajectory tracking for continuous-time nonlinear systems," *Automatica*, vol. 51, pp. 40–48, 2015. DOI: 10.1016/j.automatica.2014.10.103

Rushikesh Kamalapurkar

June 29, 2019

Correction: In the sentence after Equation (5), it is claimed that F(0) = 0 for the class of desired trajectories that satisfy Assumption 2. This is incorrect. For this claim to be true, the class of desired trajectories needs to be further restricted to those that satisfy $h_d(0) = 0$.

Further explanation: The property F(0) = 0 is only used to establish the bound $||F(\zeta)|| \le L_F ||\zeta||$, which is further simplified as $||F(\zeta)|| \le L_F ||e|| + L_F ||x_d||$, and eventually, $||F(\zeta)|| \le L_F ||e|| + L_F \overline{d}$. Since a similar bound of the form $||F(\zeta)|| \le a ||e|| + b\overline{d}$ can be arrived at using local Lipschitz continuity of F and continuity of f and the property f and f are not needed to derive the main results of the paper.

¹To arrive at the claimed bound, express F as F_1+F_2 where F_1 is made of the first n rows of F and n zeros, and F_2 is made of n zeros and the last n rows of F. Since x_d is bounded and h_d is continuous, F_2 is bounded. The function F_1 is locally Lipschitz continuous and Assumption 2 leads to F_1 (0) = 0. As a result, $||F_1|(\zeta)|| \le L_{F1} ||\zeta||$ and from there, $||F_1|(\zeta)|| \le L_{F1} (||e|| + ||x_d||)$ and the claimed bound follows.