Übung 5 zur Vorlesung Analysis für Informatiker, WS 2018/2019

Abgabe bis Mittwoch, 14.11.2018, 12 Uhr

Präsenzaufgaben

Die folgenden Aufgaben werden in der Globalübung am 08.11.2018 bearbeitet und besprochen.

Präsenzaufgabe 3

Der Goldene Schnitt ist die Zahl $g=\frac{1+\sqrt{5}}{2}$. Er erfüllt die Gleichung $g=1+\frac{1}{g}$. Betrachten Sie die rekursiv definierte Folge $(a_n)_{n\in\mathbb{N}_0}$ mit

$$a_0=1$$
 , $a_n=1+rac{1}{a_{n-1}}$ für $n\in\mathbb{N}.$

(a) Zeigen Sie, dass $a_n \geqslant 1$ für alle $n \in \mathbb{N}$ gilt. Beweisen Sie weiter, dass für alle $n \in \mathbb{N}_0$ die Ungleichung

$$|a_{n+1} - g| < \frac{|a_n - g|}{g}$$

erfüllt ist.

(b) Verwenden Sie Teil (a) um zu zeigen, dass $(a_n)_{n \in \mathbb{N}_0}$ gegen g konvergiert.

Lösung

(a) Wir zeigen zunächst induktiv, dass $a_n > 1$ ist für alle $n \ge 1$. Induktionsanfang: Für n = 1 ist $a_1 = 1 + 1/a_0 = 1 + 1 = 2 > 1$. Induktionsschluss: Angenommen $a_n > 1$, dann ist insbesondere $a_n > 0$ und somit $1/a_n > 0$. Also folgt

$$a_{n+1} = 1 + \frac{1}{a_n} > 1.$$

Also ist $a_n > 1$ für alle $n \ge 1$.

Wir betrachten nun die Differenz der Folgenglieder zum goldenen Schnitt g und setzen die definierende Gleichung für g ein:

$$|a_{n+1} - g| = \left| \left(1 + \frac{1}{a_n} \right) - \left(1 + \frac{1}{g} \right) \right|$$

$$= \left| \frac{1}{a_n} - \frac{1}{g} \right|$$

$$= \frac{|a_n - g|}{|a_n g|}$$

$$= \frac{|a_n - g|}{a_n g}.$$

Die Betragsstriche im Nenner können weggelassen werden, da ja $a_n > 1 > 0$, sowie g > 0 ist. Wegen der oben induktiv gezeigten Ungleichung folgt nun $1/a_n < 1$ und somit

$$|a_{n+1} - g| = \frac{|a_n - g|}{a_n g} < \frac{|a_n - g|}{g}$$

für alle $n \ge 1$. Wegen $2 = \sqrt{4} < \sqrt{5} < \sqrt{9} = 3$ folgt weiterhin

$$\frac{1}{g} = \frac{2}{1+\sqrt{5}} < \frac{2}{1+2} = \frac{2}{3}.$$

(b) Wir erhalten aus Teil (a)

$$|a_{n+1}-g|<\frac{2}{3}|a_n-g|.$$

Daraus folgt wiederum induktiv

$$|a_n - g| < \left(\frac{2}{3}\right)^n |a_0 - g| = \left(\frac{2}{3}\right)^n |1 - (1 + 1/g)| = \frac{2}{1 + \sqrt{5}} \left(\frac{2}{3}\right)^n.$$

Sei nun $\epsilon > 0$ beliebig. Die Folge

$$b_n := \frac{2}{1 + \sqrt{5}} \left(\frac{2}{3}\right)^n$$

ist strikt monoton fallend mit Grenzwert $\lim_{n\to\infty}b_n=0$. Es gibt also ein n_0 , so dass für alle $n>n_0$ gilt

$$b_n = \frac{2}{1+\sqrt{5}} \left(\frac{2}{3}\right)^n < \epsilon.$$

Daraus folgt, dass ebenfalls für alle $n > n_0$ gilt

$$|a_n - g| < b_n < \epsilon$$
.

Also konvergiert die Folge $a_{n,n\geqslant 0}$ gegen g.