

Praktikum Autonome Systeme

An Introduction to Autonomous Systems

Prof. Dr. Claudia Linnhoff-Popien Thomy Phan, Andreas Sedlmeier, Fabian Ritz http://www.mobile.ifi.lmu.de

→ Autonomous Systems

What is an Autonomous System?

Definition: A system, which can operate without human intervention.

(Possible) Real-World Applications

Smart Grids / Cities

Intelligent / Mobile Networks

Industry 4.0

Properties of Autonomous Systems

Self-CHOP

- Self-Configuration
- Self-Healing
- Self-Optimization
- Self-Protection

More Self-Properties

- Self-Learning
- Self-Organization
- Self-Regulation
- **—** ...

M. Salehie and L. Tahvildari, Autonomic Computing: Emergent Trends and Open Problems, ACM SIGSOFT Software Engineering Notes, 2005

Properties of Autonomous Systems

Self-CHOP

- Self-Configuration
- Self-Healing
- Self-Optimization
- Self-Protection

More Self-Properties

- Self-Learning
- Self-Organization
- Self-Regulation

— ...

M. Salehie and L. Tahvildari, Autonomic Computing: Emergent Trends and Open Problems, ACM SIGSOFT Software Engineering Notes, 2005

Challenges of Autonomous Systems

- Dynamic Environments
- High Complexity
- Many Constraints:
 - Perception
 - Computational and Memory Resources
 - Energy Consumption
 - Communication
- Safety and Risk
- Security
- Quality Management

→ Artificial Intelligence

Why Artificial Intelligence?

AlphaGo (Zero)

https://deepmind.com/research/case-studies/alphago-the-story-so-far

OpenAl Five

https://openai.com/blog/openai-five/

AlphaStar

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Walking Robot

https://bair.berkeley.edu/blog/2018/12/14/sac/

Machine Learning

- Goal: Create programs that learn how to solve complex problems
- Learn statistical models from experience / data

Why Machine Learning?

- Goal: Create programs that learn how to solve complex problems
- Many problems cannot be solved by engineering handcrafted solutions
 - Too many aspects to consider
 - Too many rules
 - Hard adaption to changes
 - Hard generalization
- Example:
 - How to classify a star?

Has yellow

color?

Types of Machine Learning

Unsupervised Learning

Supervised Learning

Reinforcement Learning

Challenges of Machine Learning

- Data Availability
- Data Complexity
- Efficiency
- Compactness
- Interpretability
- Robustness
- Adaptivity

Automated Planning

- Goal: Find (near-)optimal strategies to solve complex problems
- Use (heuristic) lookahead search on a given model of the problem

Why Automated Planning?

Goal: Find (near-)optimal strategies to solve complex problems

- Planning is necessary, if explicit reasoning is required:
 - Consideration of risks and uncertainties
 - Consideration of hard constraints
- Planning is flexible:
 - Use the same method for different problems by replacing the model
 - Search for multiple alternative strategies

Planning Approaches (Examples)

Tree Search

Evolutionary Computation

Dynamic Programming

Challenges of Automated Planning

- Model Availability
- Model Uncertainty
- Computational and Memory Efficiency
- Real-time Planning

Decision Making

Decision Making

- Goal: Autonomously select actions to solve a (complex) task
 - time could be important (but not necessarily)
 - maximize the expected reward for each state

- Consider a situation, where you have to make a choice
- **Example:** What are you going to do after this lecture?

- Consider a situation, where you have to make a choice
- **Example:** What are you going to do after this lecture?

- Consider a situation, where you have to make a choice
- **Example:** What are you going to do after this lecture?

- Consider a situation, where you have to make a choice
- **Example:** What are you going to do after this lecture?

Multi-Armed Bandits

- Multi-Armed Bandit: situation, where you have to <u>learn</u> how to make a good (long-term) <u>choice</u>
- Explore choices to gather information (= Exploration)
 - Example: random choice

 A good Multi-Armed Bandit solution should always balance between Exploration and Exploitation

Decision Making Challenges and Outlook

- Sequential Decision Making
- Problem Complexity
- Sparse/Delayed Feedback
- Sample Efficiency
- Uncertainty

Further Topics on Autonomous Systems

AAMAS 2020 was a virtual conference with free talks **this year**!

https://aamas2020.conference.auckland.ac.nz/

Thank you!