Group Theory

Lecture 8, Sunday November 27, 2022 Ari Feiglin

Recall that in our discrete course, we proved the Cantor-Schroder-Bernstein theorem: if there exists injections $f \colon A \longrightarrow B$ and $g \colon B \longrightarrow C$ then there exists a bijection between A and B. Does this result have a parallel in groups? That is, if there exists $f \colon A \longrightarrow B$ and $g \colon B \longrightarrow A$, are A and B isomorphic? The answer is no. Take for instance \mathbb{F}_2 and \mathbb{F}_3 . $\mathbb{F}_2 \longrightarrow \mathbb{F}_3$ trivially and $\mathbb{F}_3 \longrightarrow \mathbb{F}_2$, but \mathbb{F}_2 and \mathbb{F}_3 are not isomorphic (prove this!).

Returning to chains, recall that the following are exact chains if and only if (we use 1 for the trivial group):

- (1) $A \xrightarrow{f} B \longrightarrow 1$; Im f = Ker g = B which is if and only if f is surjective (epimorphism).
- (2) $1 \longrightarrow A \stackrel{f}{\longrightarrow} B$; f is injective (monomorphism).
- (3) $1 \longrightarrow A \xrightarrow{f} B \longrightarrow 1$; f is an isomorphism.
- (4) $1 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 1$; $C \cong {}^B/_K$ and $K \cong A$, that is $C = {}^nB/_A$.

Definition 8.0.1:

A diagram commutes if every possible path gives you the same output. That is if you have two paths $G \to \varphi_1, \ldots, \varphi_n \to H$ and $G \to \psi_1, \ldots, \psi_m \to H$ then

$$\varphi_n \circ \cdots \circ \varphi_1 = \psi_m \circ \cdots \circ \psi_1$$

(since composition is from right to left.)

So for example the following commutes

$$\begin{array}{ccc} G & \stackrel{f}{\longrightarrow} & G \\ \downarrow h & & \downarrow g \\ G & \stackrel{}{\longrightarrow} & G \end{array}$$

if and only if $g \circ f = k \circ h$.

Example:

We define the projective linear group to be $\operatorname{PGL}_n(\mathbb{F}) = \operatorname{GL}_n(\mathbb{F})/\{\alpha I\}$. We further define the projective special linear group to be $\operatorname{PSL}_n(\mathbb{F}) = \operatorname{SL}_n(\mathbb{F})/\{\alpha I\}$. And one last definition, $\mu_n(\mathbb{F}) = \{a \in \mathbb{F} \mid a^n = 1\}$. Let us look at

This diagram commutes.

8.1 Group actions

Definition 8.1.1:

Suppose X is any set, a group action of a group G on X is a function $\Phi: G \times X \longrightarrow X$. Which satisfies:

- (1) $\Phi(g, \Phi(h, x)) = \Phi(gh, x).$
- (2) $\Phi(1, x) = x$.

Theorem 8.1.2:

An equivalent definition of a group action on X by G is a homomorphism $\varphi \colon G \longrightarrow S_X$.

Proof:

Suppose we have a homomorphism $\varphi \colon G \longrightarrow S_X$. We define Φ by

$$\Phi(g, x) = (\varphi(g))(x)$$

We claim this is a group action:

$$\Phi(g,\Phi(h,x)) = \Phi(g,(\varphi(h)(x))) = \varphi(g)(\varphi(h)(x)) = (\varphi(g) \circ \varphi(h))(x) = \varphi(gh)(x) = \Phi(gh,x)$$

which proves the first axiom, and

$$\Phi(1, x) = \varphi(1)(x) = \mathrm{id}(x) = x$$

which proves Φ is indeed a group action.

Now suppose Φ is a group action, we must find a homomorphism φ . Given $g \in G$ we define $\sigma = \varphi(g)$ by $\sigma(x) = \Phi(g, x)$. This is just a longer way of saying φ is defined by:

$$(\varphi(g))(x) = \Phi(g, x)$$

It is not immediately clear why φ is well defined (as a function), but we will first show that it has the homomorphism property.

$$\varphi(gh)(x) = \Phi(gh, x) = \Phi(g, \Phi(h, x)) = \Phi(g, \varphi(h)(x)) = \varphi(g)(\varphi(h)(x)) = \varphi(g) \circ \varphi(h)(x)$$

And therefore $\varphi(gh) = \varphi(g) \circ \varphi(h)$ as required.

Now we will show that $\varphi(g)$ is indeed a permutation. Notice that since φ has the homomorphism property:

$$\varphi(g) \circ \varphi(g^{-1}) = \varphi(gg^{-1}) = \varphi(1)$$

And $\varphi(1) = \mathrm{id}$, so $\varphi(g)$ has an inverse, namely $\varphi(g^{-1})$ so it is a bijection as required.

Notice that this theorem gives us a simple proof that if G acts on X and $H \leq G$, then H acts on X (in the same way). This is because we can take the same homomorphism from G to S_X an restrict it to H.

We use a compact notation for group actions: instead of writing $\Phi(g,x)$ we instead write gx. This means that it must satisfy

- (1) g(hx) = (gh)x. (Note that on the right side gh is not a group action rather it is the group's action, its operation).
- (2) ex = x.

Example:

- (1) S_n acts on $\{1, \ldots, n\}$ by $\Phi(\sigma, k) = \sigma(k)$ or with the compact notation: $\sigma k = \sigma(k)$. This is a group action since $\sigma \cdot (\tau \cdot x) = \sigma(\tau(x)) = (\sigma \tau)(x) = (\sigma \tau)x$.
- (2) If G is a graph, Aut(G) acts on V.
- (3) GL[n] \mathbb{F} acts on \mathbb{F}^n by $\Phi(A, v) = Av$ (matrix multiplication).

Definition 8.1.3:

A group action of G on X is faithful if the homomorphism $\varphi \colon G \longrightarrow S_X$ is injective.

Proposition 8.1.4:

A group action is faithful if and only if for every $e \neq g \in G$, there is a $x \in X$ such that $gx \neq x$.

Proof:

Suppose a group action is faithful, then if gx = x for every x, $\varphi(g)(x) = x$ for every x, so $\varphi(g) = \mathrm{id}$ and therefore g = e. To show the converse, suppose $\varphi(g) = \mathrm{id}$ then $gx = \varphi(g)(x) = x$ for every $x \in X$, so g = e and therefore φ is injective.

Theorem 8.1.5 (Cayley's Theorem):

If G is a group $G \longrightarrow S_G$. Specifically G is isomorphic to a subgroup of S_G .

Proof:

We will show this by showing that there is a faithful group action of G on G. We define this group action by $\Phi(g,h)=gh$. We claim this is a group action:

- (1) $\Phi(g, \Phi(h, k)) = g(hk) = (gh)k = \Phi(gh, k).$
- (2) $\Phi(e,g) = eg = g.$

And we know claim it is faithful: if gh = h then g = e, so if $\Phi(g,h) = h$ then g = e. (Notice that this is a stronger claim than the group action being faithful, for any $g \neq e$ than $gh \neq h$ for any $h \in G$, such an action is called *free*). Since the action is faithful, its induced homomorphism is injective.

Note that the monomorphism $G \hookrightarrow S_G$ is given by $(\varphi(g))(h) = gh$. Thus if $G \subseteq \{1, \ldots, n\}$ then if $\varphi(k) = \sigma_k$, $\sigma_k(j) = k \circ j$. So if $G = \mathbb{Z}_n$ then $\sigma_k(j) = k + j$, etc.

Example:

We will define a monomorphism Euler(9) $\longrightarrow S_9$ by:

$$1 \mapsto id$$

$$2 \mapsto (1 \quad 2 \quad 4 \quad 8 \quad 7 \quad 5)$$

$$4 \mapsto (1 \quad 4 \quad 7)(2 \quad 8 \quad 5)$$

$$5 \mapsto (1 \quad 5 \quad 7 \quad 8 \quad 4 \quad 2)$$

$$6 \mapsto (1 \quad 5 \quad 7 \quad 8 \quad 4 \quad 2)$$

$$7 \mapsto (1 \quad 7 \quad 4)(2 \quad 5 \quad 8)$$

$$8 \mapsto (1 \quad 8)(2 \quad 7)(4 \quad 5)$$

Definition 8.1.6:

Suppose G acts on X, then the orbit of $x_0 \in X$ is:

$$G \cdot x_0 = \{ gx_0 \mid g \in G \}$$

The stabilizer of x_0 is:

$$G_{x_0} = \{ g \in G \mid g \cdot x_0 = x_0 \} \le G$$

This is a subgroup since if gx_0 and $hx_0 = x_0$ then $gh(x_0) = g(x_0) = x_0$ so $gh \in G_{x_0}$, and if $g \in G_{x_0}$ then $(g^{-1}g)x_0 = ex_0 = x_0$, but $(gg^{-1})x_0 = g^{-1}(gx_0) = g^{-1}x_0 = x_0$.

Proposition 8.1.7:

The set of orbits partition X.

Proof:

Suppose $y \in G \cdot x$ then y = gx so if $g'y \in Gy$ then $g'y = g'gx \in Gx$, so $Gy \subseteq Gx$, and by symmetry Gx = Gy. And since $x \in Gx$, the orbits partition X.

Proposition 8.1.8:

The stabilizer of an element $x \in X$ is a subgroup of G.

Proof:

Firstly, by definition $e \in G_x$. If $g, h \in G_x$ then $(gh) \cdot x = g \cdot (h \cdot x) = g \cdot x = x$ and so $gh \in G_x$. And finally if $g \in G_x$, then $g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = x$ so $g^{-1} \in G_x$ and so G_x is a subgroup of G.

Proposition 8.1.9:

$$|G \cdot x_0| = [G : G_{x_0}]$$

Proof:

We will map $g \cdot G_{x_0}$ to $g \cdot x_0$. This is well defined: if $g \cdot G_{x_0} = g' \cdot G_{x_0}$ then $g^{-1}g' \in G_{x_0}$ so $g^{-1}g'x_0 = x_0$ so $g'x_0 = gx_0$. This is surjective since every point in the orbit is of the form $g \cdot x_0$ and the image of $g \cdot G_{x_0}$ is gx_0 . This is injective since if $g \cdot x_0 = g' \cdot x_0$ then $g^{-1}g' \in G_{x_0}$ so $g' \in g \cdot G_{x_0}$ and therefore since cosets partition $G, g' \cdot G_{x_0} = g \cdot G_{x_0}$ as required.