

Boosting to Bulid a Large-scale Cross-lingual Ontology

Zhigang Wang, Liangming Pan, Juanzi Li Knowledge Engineering Group Department of Computer Science & Technology Tsinghua University

Motivation

Problem Definition

Methods

Experiments and Analysis

Motivation

Motivation 1. The scarcity of non-English knowledge

■ The imbalanced sizes of different Wikipedia language versions lead to the highly imbalanced knowledge distribution in different languages.

Motivation

Motivation 2. The noise in the multi-lingual ontology schema relations

Table 1. Examples of Semantic Relations

Entity 1	Relation	Entity 2	Right or Wrong
European Microstates	instanceOf	Microstates	Right
European Microstates	instanceOf	Europe	Wrong
教育人物(Educational Person)	subClassOf	人物(Person)	Right
教育人物(Educational Person)	subClassOf	教育(Education)	Wrong

Motivation 3. The limited coverage of cross-lingual links

- The amount of integrated multilingual knowledge totally depends on these existing cross-lingual links
- There are less existing CLs or none at all between different wikis.

Motivation

■ Summary

Current status of famous multi-lingual ontologies

- the scarcity of non-English knowledge
- the noise in the multi-lingual ontology schema relations
- the limited coverage of cross-lingual equivalent relations
- Possible solutions
 - Build an ontology using the large-scale non-English resources
 - Predict the correct semantic relations between two entities
 - Iteratively mine more cross-lingual links

Motivation

Problem Definition

Methods

Experiments and Analysis

Problem Formalization

Input

- □ Given two cross-lingual online encyclopedias,
 - $G_1 = (V, E)$ (In English), $G_2 = (V', E')$ (In Chinese)
 - $v \in V$
 - *v* denotes an *entity*
 - Each entity has an corresponding document
 - $E = V \times V$
 - $e_{ij} = 1$ represents that v_i **subCategoryOf** or **articleOf** v_j
- and an input alignment
 - $A = \{a_i\}_{i=1}^m$
 - $a_i = (v, v')$

Problem Formalization

Output

- □ Our target is to build a cross-lingual ontology, which contains
 - $O_1 = (X, Y), O_2 = (X', Y'), A' = \{a_i'\}_{i=1}^n$
- □ where,
 - $X \subseteq V, X' \subseteq V', Y = Y' = \{0,1\}$
 - $x \in X \Leftrightarrow x \leftrightarrow concept \text{ or } x \leftrightarrow instance$
 - $y_{ij} = 1 \Leftrightarrow x_i \ subClassOf \ x_j, \ x_i x_j \leftrightarrow concept$ Or $x_i \ instanceOf \ x_i, \ x_i \leftrightarrow instance, \ x_j \leftrightarrow concept$
 - $a_i' = (x, x')$
 - $n \gg m$

Motivation

Problem Definition

Methods

Experiments and Analysis

Method: Framework

- We attempt to learn two kinds of functions,
 - $f: V \times V' \rightarrow [0,1]$ (ontology matching)
 - $w \in [0,1]$ represents the confidence to be equivalent between v and v'
 - $g: V \times V \rightarrow [0,1]$ (*ontology building*)
 - $w \in [0,1]$ represents the confidence to be subClassOf or InstanceOf between v and v'

Method: Framework

Learning f

Boosting of f, g

Learning g

Method: Mono-lingual Ontology Building

■ We define several useful features and apply the Logistic Regression model to learn the classifier.

ID	Feature	Range
1	Is the head word of super-category plural?	{0,1}
2	Is the head word of sub-category plural?	$\{0,1\}$
3	Word length of super-category	Integer
4	Word length of sub-category	Integer
5	Word length of head words of super-category	Integer
6	Word length of head words of sub-category	Integer
7	Relation between the head words of	$\{\equiv,\subseteq,\supseteq,\bot,\Delta\}$
	super-category and sub-category	
8	Does the non-head words of sub-category	$\{0,1\}$
	contain the head words of super-category?	
9	Does the non-head words of super-category	{0,1}
	contain the head words of sub-category?	
10	Score of sub-category	Numeric
11	Score of super-category	Numeric

 $[\]equiv$ equivalent, \subseteq smaller, \supseteq larger, \bot disjoint, \triangle otherwise.

Method: Cross-lingual Instance Matching

■ We first define the Set Similarity between entity a and b as follows.

$$s(a,b) = \frac{2 \cdot |\phi_{1 \to 2}(S_a \cap S_b)|}{|\phi_{1 \to 2}(S(a))| + |S(b)|}$$

- $lue{S}_a$ and S_b are the related sets of entities a and b
- where $\phi_{1\to 2}(\cdot)$ maps the set of entities in G_1 (or O_1) to their equivalent entities in G_2 (or O_2) if the alignment exists.

Method: Cross-lingual Instance Matching

- □ Similar as Ontology Building, we also define some features and apply the Logistic Regression model to learn the classifier.
- Both the *lexical similarities* and *link-based structural* similarities are defined.

Table 3. Feature Definition for f

	Table 3. Feature Delinition for f										
Type	ID	Feature	Description								
Lexical	1	Edit-distance of titles	Return 0 if there are no common								
			characters.								
	2	Difference in word length	English_Word_Length -								
			$Chinese_Character_Length .$								
Structural	3	Set Similarity of categories	Calculated between G_1 and G_2								
	4	Set Similarity of outlinks	Calculated between \mathcal{G}_1 and \mathcal{G}_2								
	5	Set Similarity of inlinks	Calculated between \mathcal{G}_1 and \mathcal{G}_2								
	6	Set Similarity of concepts	Calculated between O_1 and O_2								

Method: Boosting to Build a Large-scale Ontology

□ To boost a large-scale cross-lingual ontology, we iteratively learn the *ontology building functions* and the *instance matching function*.

For each iteration $t = 1 \sim N$,

Method: Boosting to Build a Large-scale Ontology

- □ Update O'_1 and O'_2
 - Train $g_1^{(t)}$ and $g_2^{(t)}$ based on current training set
 - If $f^{(t)}(x_1, x_1') > \theta^{(t)}$ and $f^{(t)}(x_2, x_2') > \theta^{(t)}$ then $\begin{cases} g_1^{(t)}(x_1, x_2) = g_2^{(t)}(x_1', x_2') = 1 & \text{If } g_1^{(t)}(x_1, x_2) + g_2^{(t)}(x_1', x_2') > (\tau_1^{(t)} + \tau_2^{(t)}) \\ g_1^{(t)}(x_1, x_2) = g_2^{(t)}(x_1', x_2') = 0 & \text{OtherWise} \end{cases}$
 - Expand the training set
- \Box Update A'
 - Train $f^{(t)}$ using current alignments
 - If $f^{(t)}(x_1, x_1') > \theta^{(t)}$ then $f^{(t)}(x_1, x_1') = 1$
 - Expand the alignment set

Motivation

Problem Definition

Methods

Experiments and Analysis

Experiments

□ DataSets

- English Wikipedia dump
 - Archived in August 2012
- Hudong Baike dump
 - Crawled from Huong Baike's website in May 2012

Table 4. Statistics of Cleaned Data Sets

Online Wiki	#Categories	#Articles	#Links	#Links/#Articles
English Wikipedia	561,819	3,711,928	63,504,926	17.1
Hudong Baike	28,933	980,411	23,294,390	23.8

- 126,221 alignments between English Wikipedia and Hudong Baike
- Labeled data for Ontology Building

Table 5. Labeled Data for Mono-lingual Ontology Building.

Examples	subClassOf en	subClassOf zh	instanceOf en	$instanceOf\ zh$
Positive	2,123	780	2,097	638
Negative	787	263	381	518

en: English, zh: Chinese.

Experiments

■ Experimental Results

Results of Mono-lingual Ontology Building

Table 6. Results of Mono-lingual Ontology Building. (%)

	I .	subClassOf en subClass							1			
Methods												
			72.8				•					
	I .	II .	83.6	L	l .			_		<u>I</u>		
LR	80.6	87.1	83.7	84.0	97.7	90.3	87.4	98.4	92.6	56.5	80.1	66.3

P: precision, R: recall, F1: F1-measure, en: English, zh: Chinese.

Results of Cross-lingual Instance Matching

Table 7. Results of Cross-lingual Instance Matching. (%)

Table 1. Results of Cross Higgs Historice Matering. (70)									
#Alignments		Sefore		After HP					
	Precision	Recall	F1-measure	Precision	Recall	F1-measure			
0.03 Mil.	81.5	5.6	10.5	91.4	5.6	10.6			
0.06 Mil.	86.4	6.0	11.3	91.9	6.0	11.3			
0.09 Mil.	89.7	6.5	12.0	93.9	6.5	12.2			
0.12 Mil.	86.5	6.8	12.6	88.9	6.8	12.6			

Experiments

□ Experimental Results

Results of building subClassOf relation

No. of	English $subClassOf$			Chinese $subClassOf$				
Iteration	Precision	Recall	F1	-measure	Precision	Recall	F1-	measure
Iteration 1.	80.82%	88.24%		84.36%	81.99%	100.00%		90.10%
Iteration 2.	87.28%	91.77%		89.46%	91.77%	98.64%		95.08%
Iteration 3.	87.70%	93.38%		90.45%	94.81%	99.26%		96.98%

Results of building instanceOf relation

No. of		$\sinh inst$		•	${\bf Chinese}instance Of$			
Iteration	Precision	Recall	F1	-measure	Precision	Recall	F1-measure	
Iteration 1.	87.37%	97.14%		92.00%	65.04%			
Iteration 2.	93.33%	98.44%		95.81%				
Iteration 3.	97.25%	99.61%		98.42%	96.72%	97.04%	96.88%	

Results of built ontology

	Number of	Number of	Number of	Number of
	Concepts	Instances	subClassOf	instance Of
English	479,040	3,520,765	751,154	11,339,698
Chinese	24,243	803,278	29,655	2,144,000

Motivation

Problem Definition

Methods

Experiments and Analysis

Conclusion

 g_1

 g_2

parameters

building

matching

building

Boosting Process

Approach

- Learn two kinds of functions
 - Ontology building function

-
$$g_1: V \times V \rightarrow [0,1]$$
 and $g_2: V' \times V' \rightarrow [0,1]$

• Instance matching function

$$-f: X \times X' \to [0,1]$$

• Heuristics-based cross-lingual validation

Thanks!

Liangming Pan
KEG, THU
peterpan10211020@163.com

