NOIP2018YHN膜你赛

题目名称	小盆友的游戏	花	表格
题目类型	传统型	传统型	传统型
可执行文件名	game	flower	excel
输入文件名	game.in	flower.in	excel.in
输出文件名	game.out	flower.out	excel.out
匈个测试点时限	1s	1s	8s
内存限制	512MB	512MB	512MB
测试点数目	10	10	20
匈个测试点分值	10	10	5

提交源程序文件名

对于C++ 语言	game. cpp	flower.cpp	excel.cpp
对于C 语言	game. c	flower.c	excel.c
对于Pascal 语言	???.???	???.???	???.???

编译选项

对于C++ 语言	-lm	-lm	-lm
对于C 语言	-lm	-lm	-lm
对于Pascal 语言	-tan0	-tan0	-tan0

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3. C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 4. 评测在NOI Linux虚拟机下进行。
- 5. 编译时不打开任何优化选项。

小盆友的游戏(game)

【问题描述】

春田花花幼儿园的小盆友在做游戏:一个小盆友与另一个小盆友互相猜拳,输的一方跟在赢的一方后面,作为"跟班"。如果某个人输了,那么他所有的"跟班"都会获得自由。当只有一个人没当跟班的时候,那个人就获胜了。当然,"跟班"是不能参与猜拳的。

现在,我们假设每次猜拳都会持续到分出胜负为止。并且每次猜拳都随机发生在某两个自由的小盆友之间。

其中一个小盆友,花花,刚刚学习了概率与期望的知识。所以对于某个给定的状态(即有些人已经沦为某些人的跟班,有些人还是自由身),她想知道从现在开始,最终决出获胜者所需要的期望总猜拳次数。这个数字可能很大,也可能不是整数,因此只需要输出答案在模10⁹7下的值。

【输入格式】

从文件 game.in 中读入数据。

第一行一个整数N,表示小盆友的个数。

第二行N个整数Ai,如果Ai=-1表示i目前是自由身,否则i是Ai的跟班

【输出格式】

输出到文件game.out 中。

一个整数X,表示在模10⁹+7的情况下,期望总猜拳次数。

【样例输入1】

2

-1 -1

【样例输出1】

1

【样例解释】

无论谁输谁赢,一次猜拳后,一个人就成为另外一个人的跟班,那另外一个人则胜出,游戏结束。

【样例输入2】

3

-1 -1 -1

【样例输出2】

3

【样例输入3】

4

-1 -1 -1 -1

【样例输出3】

7

【样例输入4】

5

$$-1$$
 -1 -1 -1

【样例输出4】

15

【样例输入5】

3

$$-1$$
 -1 2

【样例输出5】

2

【样例输入6】

4

【样例输出6】

4

【数据范围】

分值	N	特殊规定
10	1	无
40	≤1000	Ai=-1
50	≤100000	无

花(flower)

【问题描述】

某乔为了解花的生长习性,采集了很多春花来研究。

但其中混杂了一些普通的花,为了区别它们,某乔研究出春花的一些特征:春花有S种形态,每天都会展现出某种形态。在N天中,如果有且仅有一次:连续3天都是某种形态,那么它就是一朵春花。

例如:假设每天的形态分别为: AABBBC, 那么这就是一朵春花。

但例如: AAABCDDDEEF, AABBBBC, YHNDSB就不是春花。

第一个因为A和D各有1次连续三天是同一种形态。

第二个在[3,6]天中,形态B存在2次连续三天是相同的。

第三个因为辱骂出题人没有出现连续三天是同一形态。

现在,某乔想知道,给出N,S,一共存在多少种春花可能表现的形态? 答案可能很大,对 10^9+7 取模

【输入格式】

一个整数T,表示测试数据组数。 每组测试数据占一行,两个整数,分别表示L和S。

【输出格式】

对每组数据,输出一个整数表示答案。

【样例1输入】

3 7

【样例1输出】

7

【样例1解释】

一共有7种形态,每种形态能构成1个方案。

【样例2输入】

4 2

10 11

【样例2输出】

4

410199993

【样例2解释】

AAAB

ABBB

BAAA

BBBA

【数据范围】

对于60%的数据, L≤30, S≤26

对于80%的数据, L≤10000, S≤26

对于100%的数据, L≤100000, S≤100000

表格(excel)

【问题描述】

蒟蒻的YHN在用表格(excel)整理题目。它的任务是把所有的题目按照难度, 涂上不同的颜色。红色代表恶心题,黄色代表中档题,绿色代表YHN出的水题。

终于,这枯燥乏味的工作把YHN逼疯了。它疯狂地选中表格中的一些矩形,并同时给它们涂上某种颜色······当它恢复理智时,表格页面已经变得混乱不堪。

当YHN不停地按Ctr1+Z时,突然想知道,屏幕上能看到多少种颜色?

方便起见,认为所有矩形的颜色互不相同。且整个表格大小为无限大。空位置 为白色(与所有矩形颜色均不同)

【输入格式】

一个数N,表示矩形的个数。

接下来N行,每行四个整数Xa, Ya, Xb, Yb。分别表示每个矩形左下角和右上角的坐标。 保证(Xa<Xb, Ya<Yb)

【输出格式】

一行,表示能看到的颜色数量。

【样例输入】

3

0 - 1 1 1

2 1 3 5

-4 0 5 4

【样例输出】

4

【样例解释】

包括最外面的白色,一共能看到4种颜色

【数据范围】

对于10%的数据,保证N≤100, |Xa, Xb, Ya, Yb|≤100 对于50%的数据,保证N≤100000, |Xa, Xb, Ya, Yb|≤1000 对于80%的数据,保证N≤100000, |Xa, Xb, Ya, Yb|≤100000 对于100%的数据,保证N≤100000, |Xa, Xb, Ya, Yb|≤10^9