Homework - 9

$$g(x, y) = 3xy - x^2y^2$$

$$\frac{dg}{dx} = 3y - 2xy^2$$

$$\frac{dg}{dy} = 3\alpha - 2\alpha^2 y$$

iii)
$$h(x, y, 3) = x^3 + 2xyy - y^2 y^3$$

$$\frac{dh}{dx} = 3x^2 + 2yy^3$$

$$\frac{dh}{dy} = 2xy - 2yy^3$$

$$\frac{dh}{dy} = 2xy - 3y^2y^2$$

initial scape -1
$$\#$$
 iterations - 3 initial intercept -0 tearning rate - 0-01 $CL - SSE = \left(\underbrace{S} \left(\underbrace{Y}_{-} \text{ pred} \right)^{2} \right)$

$$f(x) = (y - pred)^2 = (mx+b-y)^2$$

$$df = 2(mx+b-y) \times x + 0 - 0$$

$$\frac{dt}{dm} = 2(m\alpha + b - \gamma) \alpha$$

$$\frac{dL}{db} = 2 \left(m\alpha + b - \gamma \right) \times 0 + 1 - 0$$

$$\frac{dt}{db} = \lambda \left(m x + b - Y \right)$$

Heration 1

$$m = 1$$
 $b = 0$
 $y = pred = mx + b$ y
 0.5 0.5 1.4
 2.3 2.9 3.2

SSE, =
$$\mathcal{E}(Y - \text{pred} - Y)^2$$

= $(0.5 - 1.4)^2 + (2.3 - 1.9)^2 + (2.9 - 3.2)^2$
= $(0.5 - 1.4)^2 + (2.3 - 1.9)^2$

$$\frac{df}{dm} = \sum_{i=1}^{n} 2\left(1 = pred - Y\right) x$$

$$= 2\left(0.5 - 1.4\right) \times 0.5 + 2\left(2.3 - 1.9\right) \times 2.3$$

$$+ 2\left(2.9 - 3.2\right) \times 2.9$$

$$= -0.8$$

$$m_1 = m_0 - d \times \frac{d}{dm}$$

= 1-0.01 (-0.8)
=1.008

$$\frac{df}{db} = 22(Y-Pred-Y)$$

$$= 2(0.5-1.4) + 2(2.3-1.9) + 2(2.9-3.2)$$

$$= -1.6$$

$$b_1 = b_0 - A \times \frac{d1}{db}$$

= 0-0.01 \times (-1.6)
= 0.016

Iteration 2

$$m = 1.008$$
 $b = 0.016$
 χ γ pred γ
 0.5 0.52 1.4
 2.3 2.3344 1.9
 2.9392 3.2

$$SSE_{\lambda} = \mathcal{E} \left(Y_{-} \text{ pred } - Y \right)^{2}$$

$$= \left(0.5\lambda - 1.4 \right)^{2} + \left(\lambda.33 - 1.9 \right)^{2} + \left(\lambda.93 - 3.2 \right)^{2}$$

$$= 1.03$$

$$= 2 (0.52 - 1.4) 0.5 + 2 (2.3344 - 1.9) 2.3 + 2 (2.9392 - 3.2) 2.9 = -6.3944$$

$$m_1 = m_0 - d \times \frac{dd}{dm}$$

= 1.008 - 0.01 (-0.39 44)
= 1.011944

$$\frac{df}{db} = \mathcal{E}(Y - \text{pred} - Y) = \lambda(0.52 - 1.4) + \lambda(\lambda.3344 - 1.9) + \lambda(\lambda.932 - 3.2) = -1.4188$$

$$b_1 = b_0 - 0.01 \times \frac{df}{db}$$

= 0.016 - 0.01 (-1.4128)
= 0.030128

Iteration 3

m = 1.011966

b=0.630128

$$SSE_2 = \mathcal{E}(Y-pred-Y)^2$$

= $(0.536 - 1.4)^2 + (2.358 - 1.9)^2$
+ $(2.965 - 3.2)^2$
= 1.011485

 $SSE_{1} = 1.06$ $SSE_{2} = 1.03$ $SSE_{3} = 1.01$

SSE is decreasing by every iteration