

Iñaki Garrido and Pedro Montealegre and Miguel Serrano

2021

0.1 Hoja 1

Ejercicio 1 Sea $u \in A$ una unidad $y x \in A$ un elemento nilpotente. Demostrar que u + x es una unidad.

Comenzamos probando que si $x \in \mathfrak{N}_A$, entonces $1 + x \in \mathcal{U}(A)$. Existe n > 0 tal que $x^n = 0$, y entonces observamos que $(1 + x)x^{n-1} = x^{n-1}$. Así:

$$(1+x^{n-1})(1+x) = 1 + 2x^{n-1} = 1 + 2x^{n-1}(1+x)$$

$$= (1+x^{n-1})(1+x) - 2x^{n-1}(1+x) = 1$$

$$= (1+x^{n-1} - 2x^{n-1})(1+x) = 1$$

$$= 1 - x^{n-1})(1+x) = 1 \quad (1)$$

Por otra parte, si $u \in \mathcal{U}(A)$, existe $v \in A$ tal que uv = 1. Además, por ser \mathfrak{N}_A un ideal, $vx \in \mathfrak{N}_A$ con mismo índice de nilpotencia, y podemos aplicar lo anterior

$$(1 - (vx)^{n-1})(1 + vx) = 1$$

Ahora podemos escribir 1 + vx = v(u + x) y por tanto la anterior identidad queda escrita como

$$[v(1 - (vx)^{n-1})](u+x) = 1$$

Ejercicio 2 Sea A, A_1, A_2 anillos y supongamos que $A \cong A_1 \times A_2$.

- (i) Sea $\mathfrak{a} \subset A$ un ideal. Demostrar que $\mathfrak{a} \cong \mathfrak{a}' \times \mathfrak{a}''$ para ciertos ideales $\mathfrak{a}' \subset A_1$ y $\mathfrak{a}'' \subset A_2$.
- (ii) Sea $\mathfrak{p} \subset A$ un ideal primo. Demostrar que $\mathfrak{p} \cong \mathfrak{p}' \times A_2$ o bien $\mathfrak{p} \cong A_1\mathfrak{p}''$ para ciertos ideales primos $\mathfrak{p}' \subset A_1$ y $\mathfrak{p}'' \subset A_2$.
- (i) En general, si $\phi:A\to B$ es un isomorfismo, y $\mathfrak{a}\subset A$ un ideal, entonces $\phi(\mathfrak{a})$ es un ideal de B:
- Para todo $\phi(x), \phi(y) \in \phi(\mathfrak{a})$ tenemos que $\phi(x) + \phi(y) = \phi(x+y) \in \phi(\mathfrak{a})$.
- Para todo $\phi(x) \in \phi(\mathfrak{a}), z \in B$ existe $w \in A$ tal que $\phi(w) = z$, y entonces $z\phi(x) = \phi(\underset{\epsilon}{w}{x}) \in \phi(\mathfrak{a})$.

Y todo ideal del producto $\mathfrak{b} \subset A_1 \times A_2$, es un producto de ideales $\mathfrak{b}_1 \times \mathfrak{b}_2$. Efectivamente, sea

$$\mathfrak{b}_1 = \{ x \in A_1 : \exists y \in A_2 / / (x, y) \in \mathfrak{b} \}$$

y veamos que es un ideal:

- Para todo $x, x' \in \mathfrak{b}_1$ existen $y, y' \in A_2$ tales que $(x, y), (x', y') \in \mathfrak{b}$ y por ser un ideal tenemos $\mathfrak{b} \ni (x, y) + (x', y') = (x + x', y + y')$ y por tanto $x + x' \in \mathfrak{b}_1$. - Para todo $x \in \mathfrak{b}_1$ y todo $z \in A_1$ existe $y \in A_2$ tal que $(x, y) \in \mathfrak{b}$, y además $(z, 0) \in A_1 \times A_2$, y por ser un ideal se tiene $\mathfrak{b} \ni (x, y)(z, 0) = (xz, 0)$ con lo que $xz \in \mathfrak{b}_1$.

Con esto queda probado que todo $\mathfrak{a} \subset A$ es isomorfo a un producto de ideales.

- (ii) En general, si $\phi: A \to B$ es un isomorfismo, y $\mathfrak{p} \subset A$ un ideal primo, entonces $\phi(\mathfrak{p})$ es un ideal primo de B:
- Sean $x', y' \in B$ tales que $x' = \phi(x), y' = \phi(y) \in \phi(\mathfrak{p})$, entonces $\phi(\mathfrak{p}) \ni x'y' = \phi(x)\phi(y) = \phi(xy)$ por tanto $xy \in \mathfrak{p}$ y como es un ideal primo, $x \in \mathfrak{p}$ o $y \in \mathfrak{p} \iff x' \in \phi(\mathfrak{p})$ o $y' \in \phi(\mathfrak{p})$.
- Si $\mathfrak{p} \subset A_1 \times A_2$ es un ideal primo, entonces sabemos de a) que $\mathfrak{p} = \mathfrak{a}_1 \times \mathfrak{a}_2$ producto de ideales. Veamos que o bien $\mathfrak{p} = \mathfrak{p}_1 \times A_2$ con \mathfrak{p}_1 primo, o bien $\mathfrak{p} = A_1 \times \mathfrak{p}_2$ con \mathfrak{p}_2 primo. Supongamos $\mathfrak{p}_1 \neq A_1$:
- Para todo $x, y \in A_1$ tales que $xy \in \mathfrak{p}_1$ existe $z \in A_2$ tal que $(xy, z) \in \mathfrak{p}$. Entonces se tiene $\mathfrak{p} \ni (xy, z) = (x, z)(y, 1)$ y por lo tanto $(x, z) \in \mathfrak{p}$ o bien $(y, 1) \in \mathfrak{p}$ lo que implica que $x \in \mathfrak{p}_1$ o $y \in \mathfrak{p}_1$. Por tanto \mathfrak{p}_1 es un ideal primo. Más aún, dado $x \in \mathfrak{p}_1$, obviamente se cumple $1 \cdot x \in \mathfrak{p}_1$. Siguiendo lo de arriba, $(1, z)(x, 1) \in \mathfrak{p}$, y como $\mathfrak{p}_1 \neq A_1$ no puede ser que $(1, z) \in \mathfrak{p}$, luego necesariamente $(x, 1) \in \mathfrak{p}$ y por lo tanto $1 \in \mathfrak{p}_2$ y así $\mathfrak{p}_2 = A_2$.

Ejercicio 3 Sea $\mathfrak{a} \subset A$ un ideal. Demostrar que:

$$\sqrt{\mathfrak{a}} = \bigcap_{\substack{\mathfrak{p} \in \operatorname{Spec}(A) \\ \mathfrak{a} \subset \mathfrak{p}}} \mathfrak{p}$$

Utilizando la caracterización que conocemos del nilradical de un anillo aplicado al cociente, y teniendo en cuenta que la biyección del teorema de la correspondencia conserva la primalidad, tenemos que:

$$x \in \sqrt{\mathfrak{a}} \iff x + \mathfrak{a} \in \mathfrak{N}_{A/\mathfrak{a}} = \bigcap_{\bar{\mathfrak{p}} \in \operatorname{Spec}(A/\mathfrak{a})} \bar{\mathfrak{p}} \iff \\ \forall \bar{\mathfrak{p}} \in \operatorname{Spec}(A/\mathfrak{a}), \ x + \mathfrak{a} \in \bar{\mathfrak{p}} \iff \\ \forall \mathfrak{p} \in \operatorname{Spec}(A), \ x \in \mathfrak{p} \quad (2)$$

Ejercicio 4 Sea A un anillo y $f = a_n X^n + \ldots + a_1 X + a_0 \in A[X]$. Demostrar que f es una unidad en A[X] si y solo si a_0 es unidad y todos los a_i son nilpotentes.

Ejercicio 5 Sea A un DIP. Si a es un ideal propio, demostrar que son equivalentes

- a) a es un ideal primo,
- b) a es un ideal maximal,
- c) existe $f \in A$ irreducible tal que $\mathfrak{a} = \langle f \rangle$.

Si $a, b \in A \setminus \{0\}$ no son unidades, $y \ d, m \in A \ tales \ que \ \langle a \rangle + \langle b \rangle = \langle d \rangle$, $\langle a \rangle \cap \langle b \rangle = \langle m \rangle$, demostrar que $d = \gcd(a, b) \ y \ m = \operatorname{lcm}(a, b)$.

- $a) \iff b$) La implicación \iff se tiene siempre. Sea $\mathfrak{a} = aA$ un ideal primo, y supongamos que existe $\mathfrak{b} = bA$ tal que $\mathfrak{a} \subsetneq \mathfrak{b}$. Existe $x \in A$ tal que $bx = a \in \mathfrak{a}$ primo, luego $b \in \mathfrak{a}$ o $x \in \mathfrak{a}$. No puede ser que $b \in \mathfrak{a}$ porque en tal caso existiría un $z \in A$ tal que az = b y entonces para todo $t \in A$ se tendría que $bt = a(zt) \in aA = \mathfrak{a}$ y por tanto $\mathfrak{b} \subseteq \mathfrak{a}$, en contra de nuestra hipótesis. Por tanto $x \in \mathfrak{a}$, y existe $x \in A$ tal que x = ax, entonces $x \in \mathfrak{a}$ y por tanto $x \in \mathfrak{a}$, con lo que $x \in A$ tal que
- b) \iff c) Sea $\mathfrak{a} = aA$ un ideal, y supongamos que a se puede expresar como a = uv con $u, v \notin \mathcal{U}(A)$. Entonces $\mathfrak{a} \subseteq uA$ y, además, $uA \neq A$ porque u no es unidad. Veamos que $uA \not\subseteq \mathfrak{a}$, o equivalentemente, $u \notin \mathfrak{a}$. Si $u \in \mathfrak{a}$ existe un w tal que u = aw = u(vw) y por tanto u(1 vw) = 0 luego 1 = vw, ya que $u \neq 0$ pues si no $\mathfrak{a} = 0$ que no es maximal. Esto va en contra de la suposición de que $v \notin \mathcal{U}(A)$. Así que $\mathfrak{a} \subsetneq uA \subsetneq A$ y por tanto no es un ideal maximal.

Supongamos ahora que a es irreducible, y existe $\mathfrak{b} = bA \supset \mathfrak{a}$. Existe $w \in A$ tal que a = bw, y como a es irreducible entonces $b \in \mathcal{U}(A)$ o $w \in \mathcal{U}(A)$, en cualquier caso $\mathfrak{b} = A$, y por tanto \mathfrak{a} es maximal.

Ejercicio 6

(i) Sea A un anillo, demostrar que existe una biyección entre las descomposiciones $\Phi: A \to A_1 \times \ldots \times A_n$ via un isomorfismo de anillos y los conjuntos de idempotentes ortogonales de A, ie. $\{e_1, \ldots, e_n\} \subset A$ tales que $\sum_{i=1}^n e_i = 1_A$ y $e_i e_j = \delta_{ij} e_i$.

0.1. HOJA 1 5

(ii) Demostrar que dada una descomposición, los A_i se identifican con ideales de A, no con subanillos. ¿Qué descomposición corresponde al conjunto de idempotentes $\{0_A, 1_A\}$.

- (i) Veamos este apartado de dos formas: una donde los idempotentes son endomorfismos y otra donde son elementos de A.
- 1. Si tenemos $A = A_1 \times \cdots \times A_n = \bigoplus_{i=1}^n A_i$, entonces podemos tomar la proyección $A \to A_i$ compuesta con la inclusión $A_i \to A$ que resulta en un endomorfismo de A que denotamos e_i . Este endomorfismo es idempotente. Efectivamente, si tomamos $x = (x_1, \dots, x_n) \in A = \bigoplus_{i=1}^n A_i$ entonces $e_i \circ e_i(x) = e_i(0, \dots, 0, x_i, 0, \dots, 0) = (0, \dots, 0, x_i, 0, \dots, 0)$. Son ortogonales porque $e_j(0, \dots, 0, x_i, 0, \dots, 0) = (0, \dots, 0)$. Y también tenemos que suman la identidad porque para cualquier $x \in A$:

$$e_1(x) + \ldots + e_i(x) + e_j(x) + \ldots + e_n(x) =$$

$$= (x_1, 0, \ldots, 0) + \cdots + (0, \ldots, x_i, 0, \ldots, 0) + (0, \ldots, 0, x_j, \ldots, 0) + (0, \ldots, 0, x_n) =$$

$$= (x_1, \ldots, x_i, x_j, \ldots, x_n) = x \quad (3)$$

Por otra parte, si tenemos un subconjunto $\{e_i\}_{i=1}^r$ tal que $\sum_{i=1}^r e_i = 1$ y $e_i e_j = \delta_{ij} e_i$ podemos definir una descomposición de A tomando A_i las imágenes de los e_i .

2. Dado el isomorfismo $\Phi: \bigoplus A_i \to A$, este determina un conjunto de idempotentes según a donde envíe a los elementos siguientes:

$$\Phi: A_1 \times \ldots \times A_n \to A$$

$$(1, 0, \ldots, 0) \mapsto e_1$$

$$(0, 1, \ldots, 0) \mapsto e_2$$

$$\vdots$$

$$(0, 0, \ldots, 1) \mapsto e_n$$

Efectivamente, por ser homomorfismo ha de cumplirse que

$$1_A = \Phi(1, 1, \dots, 1) = \Phi(1, 0, \dots, 0) + \dots + \Phi(0, 0, \dots, 1) = e_1 + e_2 + \dots e_n$$
(4)

$$0_A = \Phi(0, 0, \dots, 0) = \Phi((0, \dots, 0, \dots, 0) \cdot (0, \dots, 0, \dots, 0)) \quad i \neq j$$
 (5)

$$e_i = \Phi((0, \dots, \overset{i}{1}, \dots, 0) \cdot (0, \dots, \overset{i}{1}, \dots, 0)) = e_i e_i$$
 (6)

Recíprocamente, dados $\{e_i\}_{i=1}^r$ tomemos los ideales $\mathfrak{a}_i = e_i A$ de A. Estos tienen estructura de anillo conmutativo unitario con las operaciones heredadas y tomando $1_{\mathfrak{a}_i} = e_i$. En efecto, todo el resto de propiedades se cumple automáticamente y comprobamos que esa es la unidad: para todo $x \in \mathfrak{a}_i$ existe $a \in A$ tal que $x = e_i a$ y entonces $x e_i = e_i x = e_i e_i a = e_i a = x$.

Ahora consideramos $\phi_i: A \to \mathfrak{a}_i$ dado por $x \mapsto \phi_i(x) = xe_i$ que es un homomorfismo suprayectivo (esto segundo es obvio porque $\mathfrak{a}_i = e_i A$):

$$\phi_i(x+y) = (x+y)e_i = xe_i + ye_i = \phi_i(x) + \phi_i(y)$$
 (7)

$$\phi_i(xy) = xye_i = xye_i = (xe_i)(ye_i) = \phi_i(x)\phi_i(y)$$
(8)

Finalmente podemos coger $\Phi: A \to \bigoplus \mathfrak{a}_i$ como $\Phi = \bigoplus_i \phi_i$ que es homomorfismo suprayectivo por serlo cada una de las coordendas, y además es inyectivo porque si $x \in A$ es tal que $0 = \Phi(x) = (xe_1, \dots, xe_n)$ entonces $0 = \sum_i xe_i = x \sum_i e_i = x$. Por lo tanto Φ es el isomorfismo que buscabamos.

(ii) Claramente $A_i \cong 0 \times \ldots \times A_i \times \ldots \times 0$ y este es un ideal de $A_1 \times \ldots \times A_n \cong A$ lo que demuestra la identificación. Efectivamente dados $a, b \in A_i$, y $(x_1, \ldots, x_n) \in A_1 \times \ldots \times A_n$ tenemos

$$(0, \dots, \stackrel{i)}{a}, \dots, 0) - (0, \dots, \stackrel{i)}{b}, \dots, 0) = (0, \dots, \stackrel{i)}{a} - b, \dots, 0) \in 0 \times \dots \times A_i \times \dots \times 0$$
(9)

$$(x_1, \dots, x_n) \cdot (0, \dots, a^i, \dots, 0) = (0, \dots, x_i^i, \dots, 0) \in 0 \times \dots \times A_i \times \dots \times 0$$
 (10)

No es un subanillo porque carece del elemento unidad de $A_1 \times \ldots \times A_n$ que es la tupla con todo unos.

Finalmente, si tomamos el conjunto de idempotentes $0_A, 1_A$ obtenemos la descomposición trivial $A = \{0_A\} \times A$. Si seguimos la forma 2. de proceder, el

isomorfismo $\Phi: A_1 \times A_2 \to A$ debería asignar $(1,0) \mapsto 0_A$ y $(0,1) \mapsto 1_A$. Está bien definido porque se cumple que $1_A = 0_A + 1_A = \Phi(1,0) + \Phi(0,1) = \Phi(1,1)$ como debe ser.

Ejercicio 7 Encontrar un sistema de idempotentes ortogonales no trivial y una descomposición asociada para

- (i) \mathbb{Z}_{nm} con gcd(n,m) = 1.
- (ii) $\mathbb{Q}[X]/\langle x^2(x-1)\rangle$.
- (iii) $K[X]/\langle fg \rangle$ con gcd(f,g) = 1.
- (i) Sabemos que si m, n son coprimos entonces $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$. Esta es nuestra descomposición. Para sacar los idempotentes ortogonales nos valemos de la identidad de Bezout: por ser coprimos existen μ, ν tales que $\mu m + \nu n = 1_{\mathbb{Z}}$. Además tenemos que

$$[\mu m] + [\nu n] = [1_{\mathbb{Z}}] = 1_{\mathbb{Z}_{mn}} \tag{11}$$

$$[\mu m][\nu n] = [\mu \nu][nm] = [0] \tag{12}$$

$$[\mu m][\mu m] = [\mu m][1 - \nu n] = [\mu m] \tag{13}$$

Por tanto, $e_1 = [\mu m]$ y $e_2 = [\nu n]$ son los elementos que buscamos. La descomposición viene dada por los ideales $[\mu m]\mathbb{Z}_{mn}$ y $[\nu n]\mathbb{Z}_{mn}$. Veamos que son precisamente \mathbb{Z}_n y \mathbb{Z}_m respectivamente. Los elementos del ideal $[\mu m]\mathbb{Z}_{mn}$ son los restos de la división $\frac{\mu mx}{mn} = \frac{\mu x}{n}$, es decir, son restos que determina una clase en \mathbb{Z}_n , por tanto $[\mu m]\mathbb{Z}_{mn} \subset \mathbb{Z}_n$. Pero además, si $[x], [y] \in \mathbb{Z}_{mn}$ son tales que $[\mu mx] = [\mu my]$ en \mathbb{Z}_{mn} , entonces $\mu m(x-y) \in mn\mathbb{Z}$ por lo tanto $x-y \in n\mathbb{Z}$. Es decir, que hay exactamente n clases en nuestro ideal, por tanto $[\mu m]\mathbb{Z}_{mn} = \mathbb{Z}_n$.

- (ii) $A = \mathbb{Q}[x]/\langle x^2(x-1)\rangle$. Este ejemplo es el mismo que el anterior pero en un anillo de polinomios. En ambos casos tenemos un dominio euclídeo y por tanto una identidad de Bezout para el máximo común divisor. En concreto, $\gcd(x^2,x-1)=1$ que sale en la primera división $x^2=x(x-1)+1$ o equivalentemente $x^2+x(1-x)=1$, y podemos tomar como conjunto de idempotentes ortogonales $\{x^2,x(1-x)\}$ que cumplirán, análogamente a lo dicho en a), que $A=\mathbb{Q}[x]/\langle x^2\rangle\times\mathbb{Q}[x]/\langle x(1-x)\rangle$.
- (iii) Literalmente lo mismo que el (ii) pero ahora genérico. Se cumple exactamente lo mismo.

Ejercicio 8 (a) Dado que $\langle x-1,y\rangle\supset\langle x^2+y^2-1\rangle$ los Teoremas de Isomorfía nos dan

$$\mathbb{R}[x,y]/\langle x^2+y^2-1\rangle/\langle x-1,y\rangle/\langle x^2+y^2-1\rangle \simeq \mathbb{R}[x,y]/\langle x-1,y\rangle \simeq \mathbb{R};$$

es decir, \mathfrak{a} es maximal en A.

Por otra parte, sea $p \in \mathbb{R}[x,y]$ de grado positivo y supongamos que $\{x,y\} \subset \langle p \rangle$. Se sigue de esto que existen $h,g \in \mathbb{R}[x,y]$ tales que

$$ph = x$$
 y $pg = y$.

De ser así, los grado de p respecto de x y de y deben ser ambos menores o iguales que 1, es decir, p = ax + by + c para ciertos $a, b, c \in \mathbb{R}$. Si a = 0 y $b \neq 0$, necesariamente el grado de q respecto de y debe ser 0, lo que supone

$$pg = (by + c) \left(\sum_{i \in F} \lambda_i x^{r_i} \right) = \sum_{i \in F} b \lambda_i x^{r_i} y + \sum_{i \in F} c \lambda_i x^{r_i} = y,$$

pero esto es absurdo. Si $c \neq 0$, entonces g=0. Por otro lado, si c=0, entonces podemos considerar p=y y el grado de ph respecto de y es mayor que 0. El caso $a \neq 0$ y b=0 es análogo.

Ahora, si \mathfrak{a} fuera principal, se podría expresar como $\langle [p] \rangle$ para cierto $[p] \in A$. Sin embargo, por el mismo argumento dado al principio del apartado, se tendría que $\langle p \rangle$ es maximal en $\mathbb{R}[x,y]$, pero por lo que acabamos de ver $x \notin \langle p \rangle$ o $y \notin \langle p \rangle$. Suponiendo $x \notin \langle p \rangle$, $\langle p \rangle \subset \langle x \rangle + \langle p \rangle \subsetneq \mathbb{R}[x,y]$

(b) Comprobemos ahora que $\langle [x-(1+iy)] \rangle = \mathfrak{b}$. En primer lugar, teniendo en cuenta

$$\left(\left[\frac{-1}{2i} \right] [x + (1+iy)] \right) [x - (1+iy)] = \left[\frac{-1}{2i} \right] [x^2 - (1+iy)^2] =
= \left[\frac{-1}{2i} \right] [x^2 - 1 - 2iy + y^2] =
= \left[\frac{-1}{2i} \right] [-2iy] = [y] \in \langle [x - (1+iy)] \rangle,$$

tenemos que

$$[-x - iy][x - 1 - iy] = [x - x^2 - y^2 + iy] = [x - 1] \in \langle [x - (1 + iy)] \rangle.$$

Por otra parte, como

$$[x-1-iy] = [x-1] - i[y]$$

podemos concluir $\langle [x - (1+iy)] \rangle = \mathfrak{b}.$

Ejercicio 9 Sea A un anillo y $\mathfrak{a} \subset A$ un ideal. Denotamos

$$\mathfrak{a}[X] = \{ f \in A[X] | f \text{ tiene sus coeficientes en } \mathfrak{a} \}$$

Demostrar que $\mathfrak{a}[X]$ es el extendido de \mathfrak{a} via la inclusión. Si \mathfrak{p} es ideal primo de A, ¿es $\mathfrak{p}[X]$ un ideal primo de A[X]?

Estamos considerando la extensión de \mathfrak{a} por la inclusión $i:A\hookrightarrow A[X]$, entonces

$$\mathfrak{a}^e = \langle \mathfrak{i}(a) \rangle \equiv \langle \mathfrak{a} \rangle_{A[X]} = \left\{ \sum_{i=0}^n a_i g_i \middle| a_i \in \mathfrak{a}, g_i \in A[X], n \in \mathbb{N} \right\}$$

Ahora bien, $\sum_{i=0}^n a_i g_i = \sum_{i=0}^n a_i \sum_{j=0}^m b_j^i X^j = \sum_{i,j} (a_i b_j^i) X^j$ y se cumple $a_i b_j^i \in \mathfrak{a}$ para todo i, j por ser un ideal.

Ejercicio 11 Sea A un anillo, \mathfrak{a} un ideal, $y \mathfrak{p}_1, \ldots, \mathfrak{p}_n$ ideales primos. Si $\mathfrak{a} \subset \bigcup_{i=1}^n \mathfrak{p}_i$, entonces $\mathfrak{a} \subset \mathfrak{p}_i$ para algún $i \in \{1, \ldots, n\}$.

Probamos el contrarrecíproco por inducción sobre n. El caso n=1 es obvio. Supongamos que si tenemos n ideales primos y $\mathfrak{a} \not\subset \mathfrak{p}_i$ para ningún i, entonces $\mathfrak{a} \not\subset \bigcup_{i=1}^n \mathfrak{p}_i$, y estudiamos el caso n+1. Vamos a encontrar un elemento de \mathfrak{a} que no pertenece a ningún \mathfrak{p}_i .

Para cada j consideramos un $z_j \in \mathfrak{a} \setminus \bigcup_{i \neq j} \mathfrak{p}_i \neq \emptyset$. La diferencia conjuntista es efectivamente no vacía por hipótesis de inducción, pues hay n ideales primos en esa unión. Además, podemos suponer que $z_j \in \mathfrak{p}_j$ para cada j, pues en caso contrario existe algún z_j que no pertenece a ninguno de los ideales primos y hemos terminado. Afirmamos que el elemento $z = z_1 \cdot \ldots \cdot z_n + z_{n+1} \in \mathfrak{a}$ no pertenece a la unión.

Si perteneciese, a algún \mathfrak{p}_j para $j \leq n$, entonces $z_{n+1} = z_j - z_1 \cdot \ldots \cdot z_n \in \mathfrak{p}_j$, en contra de la construcción. Por otro lado, si $z \in \mathfrak{p}_{n+1}$, entonces $z_1 \cdot \ldots \cdot z_n = z - z_{n+1} \in \mathfrak{p}_{m+1}$ y por ser este un ideal primo alguno de los z_i , con $1 \leq i \leq n$, pertenece a \mathfrak{p}_{n+1} , de nuevo en contra de la construcción de z.

Ejercicio 13 Sea A un anillo e $I \subset A[X_1, \ldots, X_n]$ un ideal. Demostrar que $A[X_1, \ldots, X_n]/I \cong A$ y que si A es un cuerpo, I es maximal.

La última afirmación es evidente, porque un ideal es maximal si y solo si el cociente es un cuerpo. Para ver el isomorfismo solo hace falta coger el homomorfismo suprayectivo $\operatorname{eval}_{a_1,\dots,a_n}:A[X_1,\dots,X_n]\to A$ cuyo núcleo son los polinomios de la forma $\sum_i(x_i-a_i)f$, pues todos sus términos deben anularse, y entonces $\operatorname{Ker}\operatorname{eval}_{a_1,\dots,a_n}=I$ y hemos terminado.

Ejercicio 15 Se trata de repetir las demostraciones sobre extensiones finitas de cuerpos y la algebricidad de los generadores.

- \Rightarrow) Si A es un K-espacio vectorial de dimensión finita m, entonces para cada i las potencias $1, x_i, \ldots, x_i^m$ son m+1 vectores del espacio y por tanto son linealmente dependientes. Esto implica que existen $\lambda_0^i, \ldots, \lambda_m^i \in K$ tales que $\lambda_0^i + \lambda_1^i x_i + \ldots + \lambda_m^i x_i^m = 0$, es decir, que el polinomio no nulo $f_i(T) = \lambda_0^i + \lambda_1^i T + \ldots + \lambda_m^i T^m \in K[T]$ tiene a x_i por raíz.
- \Leftarrow) Lo probamos por inducción. Escribimos solo el caso base $A=K[x_1]$. Consideramos el homomorfismo evaluación $\operatorname{eval}_{x_1}:K[T]\to A$. El núcleo $\ker\operatorname{eval}_{x_1}$ es un ideal primo de K[T]. Efectivamente, si $f,g\in K[T]$ son tales que $0=fg(x_1)=f(x_1)g(x_1)$ entonces por ser A un $\operatorname{DI},\ f(x_1)=0$ ó $g(x_1)=0$, como queríamos probar. Por ser K un cuerpo, K[T] es un DIP (es dominio euclídeo) y así $\ker\operatorname{eval}_{x_1}$ es un ideal maximal, está generado por un elemento irreducible f, y entonces por la caracterización de maximales $K[T]/\langle f\rangle\cong\operatorname{Im}\operatorname{eval}_{x_1}$ es un cuerpo. Dado que la imagen es un cuerpo que contiene a K y a x_1 y está contenida en A, debe coincidir con A.

Tomamos f el único polinomio mónico irreducible que genera el núcleo. Resulta que el grado n de f es la dimensión de $K[x_1]$. Efectivamente, $1 + \langle f \rangle, \ldots, T^{n-1} + \langle f \rangle$ es una base de $K[T]/\langle f \rangle$ (demostración en el libro de Gamboa). Además el isomorfismo $g + \langle f \rangle \mapsto g(x_1)$ entre $K[T]/\langle f \rangle$ e Im eval_{x1} es un isomorfismo de K-espacios vectoriales porque deja fijos todos los elementos de K. Entonces $1, x_1, \ldots, x_1^{n-1}$ es una base de $A = K[x_1]$.

Ejercicio 17 Sea A un anillo y $f, g \in A[T]$ dos polinomios primitivos. Probar que fg es un polinomio primitivo.

Supongamos que fg no es primitivo. Entonces el ideal \mathfrak{a} que generan sus coeficientes no es el total. Sea \mathfrak{m} un ideal maximal que contiene a \mathfrak{a} .

Consideramos $A[x]/\mathfrak{m}[T] \cong (A/\mathfrak{m})[T]$. Esto es cierto, podemos definir el homomorfismo suprayectivo $A[T] \to (A/\mathfrak{m})[T]$ dado por $f = \sum a_i T^i \mapsto \sum (a_i + \mathfrak{m})T^i$, cuyo núcleo es $\mathfrak{m}[T]$. Por ser (A/\mathfrak{m}) un cuerpo, tanto $(A/\mathfrak{m})[x]$ como $A[x]/\mathfrak{m}[x]$) son dominios de integridad.

Ahora bien, por un lado [fg] = [0] por tenerse la inclusión $\operatorname{cf}(fg) \subset \mathfrak{m}$. Sin embargo, por otro, como f y g son primitivos sus coeficientes generan A y, si [f] = [0] o [g] = [0], se tendría $A = \mathfrak{m}$. Llegamos así al absurdo de que [f] y [g] sean divisores de [0] en A[x]/[x]

Ejercicio 18 Sea A un anillo y M un A-módulo. Definimos en $A \times M$ la multiplicación (a, m)(b, n) = (ab, an + bm) con la suma natural y el producto de A-módulo. Probar que $A \times M$ es una A-álgebra con la suma natural y ese producto. ¿Es el homomorfismo $a \mapsto (a, 0_M)$ inyectivo?

Para ver que es A-álgebra solo hay que demostrar que $A \times M$ es un anillo (conmutativo unitario). Como (A, +) y (M, +) son grupos abelianos, $(A \times M, +)$. donde la suma es por coordenadas, también es un grupo abeliano.

El producto es conmutativo (b, n)(a, m) = (ba, bm + an) = (ab, an + bm) = (a, m)(b, n) y distributivo:

$$(a,m)[(b,m) + (c,k)] = (a,m)(b+c,m+k) =$$

$$= (a(b+c), a(n+k) + (b+c)m) = (ab+ac, an+ak+bm+cm) =$$

$$= (ab, an+bm) + (ac, ak+cm) = (a,m)(b,n) + (a,m)(c,k)$$
(14)

y tiene unidad $(a, m)(1_A, 0) = (a1_A, a0 + 1_A m) = (a, m)$.

Obviamente la inclusión de un factor en un producto cartesiano es siempre inyectiva.

Ejercicio 19

Ejercicio 17 del Atiyah Comprobamos las dos condiciones para ser base, a saber:

- 1) $\bigcup_{f \in A} X_f = \operatorname{Spec} A y$
- 2) para cualesquiera X_f y X_g , existe $h \in A$ tal que $X_h \subset X_f \cap X_g$.

En primer lugar $\bigcup_{f\in A} X_f = \bigcup_{f\in A} \operatorname{Spec} A \setminus V(f) = \operatorname{Spec} A \setminus \bigcap_{f\in A} V(f) = \operatorname{Spec} A$. Esto último es porque $V(f) \cap V(g) = V(\{f,g\})$ para cualesquiera $f,g\in A$, luego $\bigcap_{f\in A} V(f) = V(A) = V(\langle 1\rangle) = \varnothing$. En segundo lugar, sean $f,g\in A$ y $\mathfrak{p}\in X_f\cap X_g = \operatorname{Spec} A\setminus (V(f)\cup V(g))$. Entonces $f,g\not\in \mathfrak{p}$, y por ser primo $fg\not\in \mathfrak{p}$, luego $\mathfrak{p}\in X_{fg}$. Más aún, si $\mathfrak{q}\in X_{fg}$, entonces $fg\not\in \mathfrak{q}$, lo que implica que $f\not\in \mathfrak{q}$ y $g\not\in \mathfrak{q}$, i.e., $X_{fg}\subset X_f\cap X_g$. Esto termina la demostración de que ese conjunto es base de la topología; además, tenemos los dos contenidos que prueban (i) $X_f\cap X_g=X_{fg}$.

(ii)
$$\emptyset = \operatorname{Spec} A \setminus V(f) \iff V(f) = \operatorname{Spec} A \iff f \in \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} \mathfrak{p} = \mathfrak{N}_A.$$

(iii) Sabemos que, si $f \notin \mathcal{U}(A)$, entonces existe un ideal maximal que lo contiene que es a su vez primo. Por ser esto así, $V(f) \neq \emptyset$ y $X_f \neq \operatorname{Spec} A$.

Por otra parte, si f es unidad, no puede estar contenido en ningún ideal propio de A; en concreto, no puede estar contenido en ningún ideal primo.

- (iv) $X_f = X_g \iff V(f) = V(g)$, y $\langle f \rangle$ es el menor radical que contiene a f, luego $\forall \mathfrak{p} \in V(f)$ se tiene $\langle f \rangle \subset \mathfrak{p}$ y que $\sqrt{\langle f \rangle} = \bigcap_{\mathfrak{p} \in V(f)} \mathfrak{p} = \bigcap_{\mathfrak{p} \in V(g)} \mathfrak{p} = \sqrt{\langle g \rangle}$. Recíprocamente, si $\bigcap_{\mathfrak{p} \in V(f)} \mathfrak{p} = \bigcap_{\mathfrak{q} \in V(g)} \mathfrak{q}$, dado $\mathfrak{p} \in V(f)$, $\bigcap_{\mathfrak{q} \in V(g)} \mathfrak{q} \subset \mathfrak{p}$ y por ende $g \in \mathfrak{p}$, luego $\mathfrak{p} \in V(g)$; el otro contenido es análogo. Luego V(f) = V(g) y por tanto $X_f = X_g$.
- (v) Basta comprobarlo para un recubrimiento por abiertos de la base. Sea $\{X_{f_i}\}_{i\in I}$ recubrimiento de Spec A, y comprobemos que $\langle \{f_i\}_{i\in I}\rangle = \langle 1\rangle$. Efectivamente, como Spec $A=\bigcup_{i\in I}X_{f_i}$, entonces

$$\emptyset = \bigcap_{i \in I} V(f_i) = V(\{f_i\}_{i \in I}) = V(\langle \{f_i\}_{i \in I}\rangle), \tag{15}$$

lo que quiere decir que no hay ningún primo que contenga a $\langle \{f_i\}_{i\in I}\rangle$, en particular no hay ningún maximal que lo contenga, es decir, que $\langle \{f_i\}_{i\in I}\rangle = \langle 1\rangle$. Por ser así, existe $J\subset I$ finito y existen $\{\lambda_j\}_{j\in J}$ tales que $1=\sum_{j\in J}\lambda_j f_j$. Por tanto $\langle \{f_j\}_{j\in J}\rangle = \langle 1\rangle$ y así $V(\langle \{f_j\}_{j\in J}\rangle) = \emptyset$ lo que implica $\bigcup_{j\in J}X_{f_j} = \operatorname{Spec} A$. Con lo que $\{X_{f_j}\}_{j\in J}$ es subrecubrimiento finito de $\{X_{f_i}\}_{i\in I}$.

(vi) Consideramos $(X_{g_i})_{i\in I}$ recubrimiento de X_f . Podemos suponer spg. que $X_f = \bigcup_{i\in I} X_{f_i}$ por ser abierto. Entonces, tenemos $V(f) = V(\langle f_i \rangle_{i\in I})$ y por tanto $f \in \sqrt{\langle f_i \rangle_{i\in I}}$ de forma que existe un n > 0 tal que $f^n \in \langle f_i \rangle_{i\in I}$. Por tanto, existe $J \subset I$ finito y $\{a_j\}_{j\in J}$ tales que $f^n = \sum_{j\in J} a_j f_j$.

Esto implica que para todo $\mathfrak{p} \in V(\langle f_j \rangle_{j \in J})$ se cumple $\langle f \rangle \subset \mathfrak{p}$, y a su vez $f \in \mathfrak{p}$, de manera que $V(\langle f_j \rangle_{j \in J}) \subset V(f)$. Los complementarios cumplen la inclusión contraria:

$$X_f = \operatorname{Spec} A \setminus V(f) \subset \operatorname{Spec} A \setminus V(\langle f_j \rangle_{j \in J}) = \bigcup_{j \in J} X_{f_j}$$

y, así, $\{X_{f_j}\}_{j\in J}$ es un subrecubrimiento finito.

- (vii) \Rightarrow) Supongamos que A es abierto y compacto. Por ser abierto es unión de abiertos de la base, $A = \bigcup_{i \in I} X_{f_i}$, estos forman un recubrimiento y por ser compacto podemos quedarnos con un subrecubrimiento finito: $A = \bigcup_{i=1}^n X_{f_i}$.
- \Leftarrow) Si $A = \bigcup_{i=1}^n X_{f_i}$, entonces es abierto por ser unión de abiertos. Sea $(X_{g_j})_{j\in J}$ un recubrimiento de A, en particular recubren cada X_{f_i} . Para cada

0.2. HOJA 2

 $i=1,\ldots,n$ por ser compacto existe $F_i\subset J$ finito tal que $X_{f_i}\subset\bigcup_{j\in F_i}X_{g_j}$. Por tanto $A\subset\bigcup_{i=1}^n\bigcup_{j\in F_i}X_{g_j}$.

Ejercicio 20 Sea A un anillo y \mathfrak{a}_i con i = 1, ..., n ideales tales que si $i \neq j$, entonces $\mathfrak{a}_i + \mathfrak{a}_j = A$.

- (i) Sea $\mathfrak{b}_i = \bigcap_{i \neq i} \mathfrak{a}_j$, probar que $\mathfrak{b}_i + \mathfrak{a}_i = A$.
- (ii) Demostrar que la aplicación $A \to \prod_{i=1}^n A/\mathfrak{a}_i$ es supreyectiva y su núcleo es $\bigcap_{j=1}^n \mathfrak{a}_j$.
- (iii) Encontrar el conjunto de idempotentes ortogonales que describe la descomposición anterior.
- (i) Por inducción sobre n. Si n=2, es trivial. Supongamos cierto para $1, \ldots, n$ y consideremos n+1 ideales cumpliendo las hipótesis del enunciado. Cualquier subconjunto suyo cumple las hipótesis también.

Fijamos i, j y construirmos $\mathfrak{b}_{ij} = \bigcap_{k \neq i, j} \mathfrak{a}_k$. Si pensamos en $\{\mathfrak{a}_k\}_{k \neq i}$, este es un conjunto de n ideales y \mathfrak{b}_{ij} es intersección de todos menos 1, entonces por hipótesis de inducción tenemos que $\mathfrak{b}_{ij} + \mathfrak{a}_i = A$. Análogamente para $\{\mathfrak{a}_k\}_{k \neq j}$ y por eso $\mathfrak{b}_{ij} + \mathfrak{a}_j = A$. Además, por la hipótesis original, $\mathfrak{a}_i + \mathfrak{a}_j = A$.

Entonces tenemos tres ideales \mathfrak{b}_{ij} , \mathfrak{a}_i , \mathfrak{a}_j que cumplen las hipótesis del enunciado. Por tanto, por hipótesis de inducción, $\mathfrak{b}_i = \mathfrak{b}_{ij} \cap \mathfrak{a}_j = (\bigcap_{k \neq i,j} \mathfrak{a}_k) \cap \mathfrak{a}_j = \bigcap_{k \neq i} \mathfrak{a}_k$ cumple $\mathfrak{b}_i + \mathfrak{a}_i = A$.

(ii) Para cada i, la proyección canónica $\pi_i: A \to A/\mathfrak{a}_i$ es un homomorfismo sobreyectivo. Realmente, $\prod_{i=1}^n A/\mathfrak{a}_i = \bigoplus_{i=1}^n A/\mathfrak{a}_i$. Sabemos que en tal caso, $\pi = \bigoplus_{i=1}^n \pi_i$ es también homomorfismo, y como tiene todas sus compontentes sobreyectivas, es sobreyectivo. Finalmente, si $0 = \pi(a)$, entonces $0 = \pi_i(a) = a + \mathfrak{a}_i$ o equivalente $a \in \mathfrak{a}_i$ para todo $i = 1, \ldots, n$, y por tanto $a \in \bigcap_{i=1}^n \mathfrak{a}_i$. (iii)

0.2

Hoja 2

Ejercicio 1 Sea A un anillo, \mathfrak{a} un ideal de A, y M un A-módulo. Probar que $A/\mathfrak{a} \otimes M \cong M/\mathfrak{a}M$.

Consideramos la cadena exacta $0 \longrightarrow \mathfrak{a} \longrightarrow A \longrightarrow A/\mathfrak{a} \longrightarrow 0$ y la tensorizamos por M tal que

$$\mathfrak{a} \otimes M \longrightarrow A \otimes M \longrightarrow A/\mathfrak{a} \otimes M \longrightarrow 0$$

que sabemos que es exacta. Por tanto, $\pi \otimes 1_M : A \otimes M \to A/\mathfrak{a} \otimes M$ es sobreyectiva, y aplicando el primer teorema de isomorfía $A \otimes M/\operatorname{Ker}(\pi \otimes 1_M) \cong A/\mathfrak{a} \otimes M$. Por ser exacta, el núcleo coincide con la imagen de $i \otimes 1_M$, que es $\mathfrak{a} \otimes M$. Además, $A \otimes M \cong M$ vía el isomorfismo $a \otimes m \to am$, y la imagen de $\mathfrak{a} \otimes M \subset A \otimes M$ por esta aplicación es $\mathfrak{a} M$, lo que concluye la demostración.

Ejercicio 2 Sean $M, N \in \text{Mod}_A \ y \ \phi : M \to N \ y \ \psi : N \to M \ homomorfismos tales que <math>\phi = \phi \circ \psi \circ \psi \ y \ \psi = \psi \circ \phi \circ \psi$. Demostrar que:

- 1. $\operatorname{Im}(\phi) = \operatorname{Im}(\phi \circ \psi)$ y $\operatorname{Ker}(\phi) = \operatorname{Ker}(\psi \circ \phi)$.
- 2. $M = \text{Ker}(\phi) \oplus \text{Im}(\psi)$.

Definimos las aplicaciones: $f_1: M \to \operatorname{Ker} \phi$ dada por $f_2: x \mapsto x - \psi \circ \phi(x)$ y $M \to \operatorname{Im} \psi$ dada por $x \mapsto \psi \circ \phi(x)$. La segunda es claro que está bien definida, y la primera se comprueba que $\phi(x - \psi \circ \phi(x)) = \phi(x) - \phi \circ \psi \circ \phi(x) = \phi(x) - \phi(x) = 0$.

Tomamos $F = (f_1, f_2)$ y vemos que es nuestro isomorfismo. Es inyectiva porque si $(0,0) = (x - \psi \circ \phi(x), \psi \circ \phi(x))$ entonces $\psi \circ \phi(x) = 0$ y por tanto la primera coordenada dice x = 0. Por otra parte, dado $(x,y) \in \text{Ker } \phi \oplus \text{Im } \psi$ definimos $m = x + y \in M$ y observamos que como $y \in \text{Im } \psi$ existe $z \in N$ con $y = \psi(z)$, y entonces: $f_2(m) = \psi \circ \phi(y) = \psi \circ \phi \circ \psi(z) = \psi(z) = y$, y por tanto $f_1(m) = m - f_2(m) = (x + y) - y = x$.

Ejercicio 3 Sea $M \in \text{Mod}_A$, $M^* = \text{Hom}_A(M, A)$. Demostrar que la aplicación $\Phi : M \to M^{**}$ dada por $m \to \text{eval}_m$ es un homomorfismo de A-módulos. Poner un ejemplo en que no es isomorfismo. Demostrar que, si M es finitamente generado y proyectivo, entonces sí es isomorfismo.

Se cumple que para cualesquiera $m, n \in M, a, b \in A, f \in M*$

$$\Phi(am+bn)(f) = f(am+bn) = af(m) + bf(n) = a\Phi(m)(f) + b\Phi(n)(f) \quad (16)$$
usando la A-linealidad de f.

0.2. HOJA 2

Observamos que si M es finitamente generado, entonces M^* es finitamente generado y, por recurrencia, M^{**} también es finitamente generado. Efectivamente, si $\{m_j\}_{j=1}^n$ es el conjunto de generadores de M, entonces las funciones $\varphi_i: M \to A$ dadas por $\varphi_i(m_j) = 1_A \delta_{ij}$ son generadores de M^* , ya que para toda $f: M \to A$ y para todo $x = \sum_{j=1}^n \lambda_j m_j \in M$ tenemos que, si $\mu_i = f(m_j)$, entonces

$$f(x) = \sum_{j=1}^{n} \lambda_j f(m_j) = \sum_{j=1}^{n} \varphi_j(x) \mu_j$$

es decir, $f = \sum_{j=1}^{n} \mu_j \varphi_j$.

Ejercicio 7 Sea $m, n \in \mathbb{Z}^+$. Demostrar que $\mathbb{Z}/\langle n \rangle \otimes \mathbb{Z}/\langle m \rangle \cong \mathbb{Z}/\langle d \rangle$ donde $d = \gcd(m, n)$.

Se puede hacer escribiendo una aplicación bilineal del producto cartesiano en $\mathbb{Z}/\langle d \rangle$, tensorizando, y después encontrando la inversa.

Usamos el ejercicio 1 con $A = \mathbb{Z}, \mathfrak{a} = \langle n \rangle, M = \mathbb{Z}/\langle m \rangle$. Entonces

$$\mathbb{Z}/\langle n \rangle \otimes \mathbb{Z}/\langle m \rangle \cong \frac{\mathbb{Z}/\langle m \rangle}{\langle n \rangle \mathbb{Z}/\langle m \rangle}$$
 (17)

Demostramos la igualdad de Z-módulos

$$\langle n \rangle (\mathbb{Z}/\langle m \rangle) = \langle \bar{n} \rangle = (n + \langle m \rangle)(\mathbb{Z}/\langle m \rangle)$$
 (18)

Un elemento de $\langle n \rangle (\mathbb{Z}/\langle m \rangle)$ es de la forma suma finita

$$\sum_{i} (a_{i}n)(x_{i} + \langle m \rangle = n(\sum_{i} a_{i}x_{i}) + \langle m \rangle = (n + \langle m \rangle)(\sum_{i} a_{i}x_{i} + \langle m \rangle) \in \langle \overline{n} \rangle$$
 (19)

y el otro contenido es automático.

Queremos aplicar el teorema de la correspondencia. Buscamos escribir el ideal $\langle \overline{n} \rangle$ del anillo $\mathbb{Z}/\langle m \rangle$ con un numerador que sea un ideal de \mathbb{Z} que contiene al ideal del denominador. Este es $\langle n, m \rangle / \langle m \rangle$ y sabemos que $\langle n, m \rangle = \langle d \rangle$ donde $d = \gcd(n, m)$. Por tanto

$$\mathbb{Z}/\langle n \rangle \otimes \mathbb{Z}/\langle m \rangle \cong \frac{\mathbb{Z}/\langle m \rangle}{\langle d \rangle/\langle m \rangle} \cong \mathbb{Z}/\langle d \rangle$$
 (20)