Lab 9

Robot Sensors

CMPE-110
Intro to Computer Engineering

Dead Reckoning

Without using landmarks to guide you, the variability of the actual location of where you increases.

Dead Reckoning

Using landmarks along the way (e.g. looking for walls or counting wheel revolutions), keeps the error to a minimum.

Bump Sensors

Our robot is equipped with six bump sensors

- Six bump sensors three on each side
- Used to detect obstacles obstructing the robot's path
- Individually accessible
- State is low when pressed, high when released

Infrared (IR) Sensors

Use light wavelengths 780nm to 1300nm which is invisible to the human eye, but is detectable by some digital cameras/cell phones.

- Paired emitter/receiver.
- Can provide distance measurements from sensor to nearest object.
- Output is non-linear, but can easily be handled with a simple lookup table.
- They output an Analog voltage.
- In general, IR Sensors:
 - Are low cost, (<=\$30)
 - Use little power,
 - Easy to integrate,
 - Work over short distances

Reflective Object Sensor

- Our robot uses Fairchild QRE1113.
- It has a infrared (IR) LED and an IR sensitive photo transistor.
- The LED emits a beam of IR light, and the transistor detects the amount of IR light reflected back.
- The more IR light that is sensed, the lower the analog output voltage.
- White surfaces reflect more IR light than black.

https://www.pololu.com/product/961

Analog to Digital Converters

- The MSP432 microcontroller only understands digital (i.e. 1' and 0's) which is discrete in nature, so need a way to convert the sensor's voltage into something the Arduino will understand.
- An Analog to Digital converter (A2D) is a device that can do this for us.
- Although special purpose chips can do this for us, the MSP432 microcontroller has enough converters onboard for each light sensor

Analog to Digital Convertors

- The job of the A2D is to convert the analog input voltage, which in our case ranges from 0V to 5V, to some digital value from 0 to a MaxCount.
- The bit depth of the A2D determines the MaxCount.
 - For example a 2-bit A2D means the range is split into two values (0 and 1), so 0V to 2.5V would a 0 and a 2.51V to 5V would be a 1.
- The greater the bit depth, the more counts over the range, and the less quantization error from the A2D.

Our **MSP432** has 16-bit A2D's