

RODRIGO HENRIKY DE ASSIS OLIVEIRA

MICROPROCESSADOR SAP 01

CUIABÁ

RODRIGO HENRIKY DE ASSIS OLIVEIRA

MICROPROCESSADOR SAP 01

Trabalho apresentado ao Instituto Federal de Mato Grosso como requisito para a conclusão do curso de Engenharia da Computação.

Professor: Ruy de Oliveira

CUIABÁ

2024

Sumário

1.	<u>Introdução</u>		
2.	Arquitetura	do	SAF
	2.1. Componentes Principais		
3.	Ciclo	de	Operação
	3.1.	Busca	(Fetch
	3.2.	Decodificação	(Decode
	3.3. Execução (Execute)		
4.	Conjunto de Instruções do SAP		
5.	Exemplo de Execução		
6.	Conclusão		

1. Introdução

O microprocessador SAP, acrônimo para *Simple As Possible*, é um modelo conceitual utilizado em ambientes acadêmicos para ensinar os fundamentos da arquitetura e do funcionamento de processadores. Diferentemente dos microprocessadores reais, ele adota uma abordagem simplificada, removendo complexidades desnecessárias para permitir que os aprendizes compreendam com clareza os processos internos.

Com uma estrutura acessível, o SAP exemplifica os passos básicos que um processador executa ao lidar com instruções, desde a busca na memória até a execução. Este relatório busca apresentar de forma abrangente como o SAP opera, explicando cada componente, suas funções e o ciclo operacional, culminando em um exemplo prático que demonstra sua aplicação.

2. Arquitetura do SAP

A arquitetura do SAP é composta por poucos elementos, mas todos têm papéis fundamentais para o funcionamento do sistema. Esses componentes trabalham de maneira integrada para processar instruções e manipular dados.

2.1. Componentes Principais

Unidade de Controle (UC):
 A Unidade de Controle é como o "cérebro" do SAP. Sua função é interpretar as instruções carregadas no processador e gerar sinais de controle para que os demais componentes executem as operações necessárias.

2. Memória (RAM):

A memória armazena os dados e as instruções do programa. Cada célula da memória tem um endereço único, usado para localizar e acessar seu conteúdo.

3. Registradores:

- Contador de Programa (PC): Mantém o endereço da próxima instrução a ser buscada.
- Registrador de Instrução (IR): Armazena a instrução atualmente em execução.
- Acumulador (AC): Usado como principal registrador para realizar operações aritméticas e lógicas.
- Registrador de Endereço de Memória (MAR): Especifica o endereço de memória que será acessado.
- Registrador de Dados de Memória (MDR): Temporariamente guarda dados transferidos entre a memória e outros componentes.
- 4. Unidade Lógica e Aritmética (ULA): Este é o componente responsável por realizar cálculos matemáticos (soma, subtração) e operações lógicas (AND, OR, NOT).
- 5. Barramentos:

- Barramento de Dados: Transporta valores numéricos ou informações entre os componentes.
- Barramento de Endereços: Carrega o endereço da memória que está sendo acessada.
- Barramento de Controle: Transporta os sinais de controle gerados pela UC.

6. Relógio (Clock):

O clock fornece pulsos que sincronizam as operações do processador, garantindo que todas as ações ocorram no momento correto.

3. Ciclo de Operação

O SAP executa suas instruções seguindo três etapas bem definidas:

3.1. Busca (Fetch)

- O PC envia o endereço da instrução para o MAR.
- A memória responde com o conteúdo do endereço solicitado, transferindo-o para o MDR.
- A instrução é carregada no IR.
- O PC é incrementado.

3.2. Decodificação (Decode)

- A Unidade de Controle analisa o opcode (código da operação) da instrução armazenada no IR.
- Sinais são gerados para que os componentes executem a operação especificada.

3.3. Execução (Execute)

- Operações de memória: O valor é carregado ou armazenado.
- Operações aritméticas e lógicas: A ULA realiza o cálculo ou comparação.
- Instruções de controle: Podem alterar o fluxo do programa.

Conjunto de Instruções do SAP

O conjunto de instruções do SAP é propositalmente reduzido:

- LOAD X: Carrega o valor armazenado no endereço X para o acumulador.
- STORE X: Salva o valor do acumulador no endereço X.
- ADD X: Soma o valor do endereco X ao acumulador.
- **SUB X:** Subtrai o valor do endereço X do acumulador.
- JUMP X: Redireciona a execução para o endereço X.
- HALT: Finaliza a execução do programa.

5. Exemplo de Execução

Problema: Somar dois números armazenados na memória e salvar o resultado.

Configuração da Memória:

0x00: LOAD 0x10
0x01: ADD 0x11
0x02: STORE 0x12

0x03: HALT0x10: 5

6. Conclusão

O microprocessador SAP ilustra de forma clara e didática os fundamentos do funcionamento de processadores. Ele evidencia a interação entre memória, registradores, barramentos, UC e ULA, fornecendo uma base sólida para o entendimento de sistemas mais complexos.

Apesar de sua simplicidade, o SAP permite explorar tópicos essenciais, como ciclos de instrução, fluxo de controle e manipulação de dados, sendo uma ferramenta valiosa tanto para iniciantes quanto para profissionais que desejam revisar conceitos fundamentais.

Por meio de sua abordagem simplificada, o SAP reforça a importância de compreender os fundamentos antes de avançar para arquiteturas modernas.