

Data Science Mini-Project Final Presentation

Group M9 EMATM0050-2024

Presented By:

Aryan Lodha Yitang Yuan Somesh Raju Puhan Wang

Data Source

- All data files include both original and additional data, totaling 1,976,040 entries of 9-dimensional data.
- A worksheet file includes Age
- Environmental data from Cenogrid that contains the levels of Sigma 13 and Sigma 18 for each year.

Is there a change in the shape of size distribution through time, not just its skewness, providing more insights into changes in the community structure?

Data & Attributes *

• 377 .csv morphometric files and Geological age assigned via 925 Mastersheet

Methodology :

1. Data Integration and Cleaning

- Merged 377 .csv morphometric datasets with the Site 925 Mastersheet to assign accurate geological ages (Ma).
- Standardized column names and resolved missing values for statistical continuity.

2. Temporal Binning

- The time series was segmented into 5, 10, and 20 age bins to assess resolution sensitivity.
- The 10-bin scheme was chosen for final analyses based on the best balance between interpretability and granularity.

3. Shape Distribution Analysis

- Computed Skewness, Kurtosis, and Shannon Entropy for each bin to quantify distribution asymmetry, peakness, and complexity.
- These metrics revealed evolutionary transitions and diversity shifts in community structure.

Results & Analysis

1. Foraminiferal size distributions show clear, non-random changes over time, reflecting ecological responses to climate variability.

2. KDE ridge plots reveal:

- Flatter curves during warm periods → indicative of ecological generalism.
- Sharper peaks during cold periods → suggest morphotype dominance.
- Shifts reflect changes in kurtosis, entropy, and multimodality, not just mean or skewness.

3. PCA-based morphospace analysis uncovers:

- Temporal clustering and divergence in size and shape traits.
- Emergence of **distinct morphological regimes**, indicating ecological restructuring.
- **4. Change point detection (PELT)** identifies major shifts at:
 - ~3.2 Ma and ~1.6 Ma, aligning with key glacial onsets.
 - Signals abrupt ecological reorganizations linked to environmental forcing.

Overall, findings highlight a **strong connection between climate change and community structural transformations** in foraminifera over geologic time.

Would a more sophisticated analysis allow determining changes in number of species through time?

Data & Attribute 🗱

- The Ceara Rise region & the 925 supplementary dataset(1,976,040 data in total)
- Mean diameter, maximum diameter, elongation, sphericity, area, grayscale intensity

Methodology :

Gaussian mixture model

 Applied Gaussian Mixture Model (GMM) to determine the optimal number of clusters for each file.

BIC Criterion

• Evaluated models using the Bayesian Information Criterion (BIC), iterating through 2–30 clusters and selecting the number with the minimum BIC value.

Period	Time(Ma)	Mean	Std	Points	T-test
Late Pliocene	5.0-2.58	19.19	2.69	170	-4.39 (0.00)
Early Pleistocene	2.58-1.2	21.54	4.69	319	5.49 (0.00)
Middle Pleistocene	1.2-0.8	20.41	4.80	103	0.67 (0.50)
Late Pleistocene	0.8-0.01	19.41	4.46	176	-2.04 (0.04)

Result & Analysis 💽

Early Pleistocene (2.58–1.2 Ma)

- Significant species increase (mean = 21.5).
- Likely driven by accelerated ecological niche differentiation during early glacial-interglacial transitions.

Middle Pleistocene (1.2–0.8 Ma)

- Species decline (mean = 20.4).
- Potential link to extreme climate fluctuations during the Mid-Pleistocene Transition (MPT), causing local extinctions.

Species Distribution Patterns

- High diversity (≥28 species): Concentrated in 1.5–2.5 Ma (Early Pleistocene), aligned with pre-glacial warm phases favoring diversification.
- Low diversity (≤12 species): Scattered in 0.1–0.5 Ma (Late Pleistocene), possibly tied to regional extinctions from extreme cold events (e.g., Last Glacial Maximum, Heinrich events).

Period	Time(Ma)	Mean	Std	Points	T-test
Late Pliocene	5.0-2.58	19.19	2.69	170	-4.39 (0.00)
Early Pleistocene	2.58-1.2	21.54	4.69	319	5.49 (0.00)
Middle Pleistocene	1.2-0.8	20.41	4.80	103	0.67 (0.50)
Late Pleistocene	0.8-0.01	19.41	4.46	176	-2.04 (0.04)

Are the patterns of changes through time different for size than for other parameters indicating different selection pressure?

Data & Attribute

- The Ceara Rise dataset includes morphological measurements of fossilized foraminifera from deep-sea sediment cores, recorded across geological time.
- Key features extracted from dataset include Mean Diameter, Elongation, Sphericity, Shape Factor, Gray Intensity, Area, Perimeter, and δ^{18} O (paleotemperature proxy), all linked to specific ages.
- Data preprocessing involved removing missing values, sorting by geological age, and applying z-score normalization for consistent comparison across traits.

Methodology

- Time-series plots were created for all traits, with time reversed (older to newer) to match geological conventions.
- Size was tracked using Mean and Max Diameter; shape with Elongation,
 Sphericity, Shape Factor; and intensity via Gray Intensity.
- These plots showed whether traits changed together (shared drivers) or followed different paths (separate pressures).
- A Pearson correlation matrix assessed links between size, shape, and intensity traits.
- Weak correlations suggest size and shape evolved independently, shaped by different forces.
- Comparing Mean Diameter and δ^{18} O showed partial climatic influence on size, but not on shape.

Morphological Parameters	Correlation
Shape Factor	0.6671
Sphericity	0.6653
Elongation	0.6570
Mean (Diameter) (μm)	-0.0773
Mean (Gray Intensity Value)	-0.1310
Perimeter (μm)	-0.1455

Result & Analysis

- Size traits (Mean/Max Diameter) show weak, irregular changes over time with little correlation to age (ρ ≈ -0.04), highlighting their fluctuating and environmentally sensitive nature.
- Shape traits (Elongation, Sphericity, Shape Factor)
 undergo abrupt, synchronized shifts around 3
 million years ago, indicating structurally stable yet
 episodically shifting features under different
 evolutionary control.
- δ^{18} O values correlate more strongly with size ($\rho \approx -0.71$), suggesting that size responds more directly to long-term climatic trends, while shape appears decoupled from these environmental signals.
- Indeed, the patterns of change over time are different: "size fluctuates irregularly with little correlation to time (ρ = -0.04)", whereas "shape parameters (elongation, sphericity, and complexity) show abrupt and synchronized shifts around 3 Ma", indicating "distinct selective pressures" acting separately on size and shape traits.

Is there are periodicity in the data and is this different for different parameters?

1 Data & Attribute

The attributes include metrics such as:

- **Size measurements**: Minimum, maximum, and mean diameters (μm)
- Shape descriptors: Elongation, sphericity, shape factor
- Optical properties: Mean gray intensity
- Geometric properties: Area (μm²) and perimeter (μm)

These parameters reflect physical and compositional characteristics of particles across geological time, allowing for potential detection of periodic trends linked to environmental or sedimentary cycles.

2 Methodology

The Fourier and Wavelet transforms are used when dealing with simpler and

Mid-term revisions and the problems faced

Fourier transform is not suitable for processing complex data and cannot handle data very well

Whether the data is periodic and whether the periodicity is the same?

Data Name	IMF 1~3	IMF 4~6/7	IMF 7/8/9
Area	No	Weak/Quasi-periodic	No
Perimeter	No	Weak/Quasi-periodic	No
d13C_VPDB	No	Weak/Quasi-periodic	No
d18O_VPDB	No	Weak/Quasi-periodic	No
Min Diameter	No	Weak/Quasi-periodic	No
Max Diameter	No	Weak/Quasi-periodic	No
Mean Diameter	No	Weak/Quasi-periodic	No
Elongation	No	No periodicity	No
Sphericity	No	No periodicity	No
Mean (Gray Intensity)	No	Weak/Quasi-periodic	No
Shape Factor	No	Weak/Quasi-periodic	No

Result & Analysis

Through our analysis of the images, we found that there are three groups of data with the same periodicity, namely: Min Diameter, Max Diameter, and Mean Diameter are the first group; The Shape Factor and Mean (Gray Intensity) are the second group, δ 13C and δ 18O are the third group, while the other data either have no periodicity or have different periodicity and are relatively independent.

Would a more sophisticated analysis allow determining changes in number of species through time?

Data & Attribute

Mean value of each age(769 data in total)

Methodology

- Mixed-effects model
- Calculate the correlation with a lag, compute the maximum correlation from 10 periods ahead to 10 periods behind.

Ind.	Lag (Periods)	Coef. r
Shape Factor vs δ 13C	2	+0.19
Shape Factor vs δ 180	3	-0.36
Max Diameter vs δ 13C	8	-0.11
Max Diameter vs δ 180	8	+0.11
Mean Diameter vs δ 13C	8	-0.09
Mean Diameter vs δ 180	8	+0.05
Elongation vs δ 13C	5	-0.24
Elongation vs δ 180	5	+0.51
Sphericity vs δ 13C	4	+0.24
Sphericity vs δ 180	5	-0.49

Morphological Indicator	δ 13C (coef)	р	δ 18O (coef)	р
Shape Factor	-0.115	0.008	-0.416	<0.001
Max Diameter	-0.057	0.223	+0.013	0.779
Mean Diameter	-0.080	0.087	-0.058	0.208
Elongation	+0.167	<0.001	+0.537	<0.001
Sphericity	-0.171	<0.001	-0.498	<0.001

Result & Analysis

Key Findings

- Significant Correlations
 - Shape Factor: Strong negative correlations with δ^{13} C (coef = -0.115, p = 0.008) and δ^{18} O (coef = -0.416, p < 0.001).
 - **Elongation**: Strong positive correlations with both isotopes (δ^{13} C: +0.167, p < 0.001; δ^{18} O: +0.537, p < 0.001).
 - **Sphericity**: Negative correlations (δ^{13} C: -0.171; δ^{18} O: -0.498, p < 0.001).
 - Size Metrics (Max/Mean Diameter): No significant associations (p > 0.05).
- Environmental Drivers
 - **Shape plasticity** (flattening, elongation, reduced sphericity) is driven by environmental shifts, not size changes.
 - δ^{13} C (paleoproductivity/carbon cycling) and δ^{18} O (paleotemperature/ice volume) alter water chemistry/physics, triggering adaptive morphological adjustments.

Lagged Responses & Environmental Dynamics

- Cross-Correlation Analysis
 - Morphological responses peak after 2-8 periods (≈10,000-40,000 years), indicating delayed adaptation.
 - Strongest lags:
 - Shape Factor vs. δ^{13} C: **2 periods** (r = +0.19); vs. δ^{18} O: **3 periods** (r = -0.36).
 - Elongation vs. δ^{18} O: **5 periods** (r = +0.51).
 - Sphericity vs. δ^{18} O: **5 periods** (r = -0.49).
- Isotopic Influence Hierarchy
 - δ^{18} O (temperature/ice volume) has a **stronger impact** on morphology ($|r| \approx 0.5$) than δ^{13} C.

Morphologic al Indicator	δ 13C (coef)	р	δ 180 (coef)	р
Shape Factor	-0.115	0.008	-0.416	<0.001
Max Diameter	-0.057	0.223	+0.013	0.779
Mean Diameter	-0.080	0.087	-0.058	0.208
Elongation	+0.167	<0.001	+0.537	<0.001
Sphericity	-0.171	<0.001	-0.498	<0.001

Ind.	Lag (Periods)	Coef. r
Shape Factor vs δ 13C	2	+0.19
Shape Factor vs δ 180	3	-0.36
Max Diameter vs δ 13C	8	-0.11
Max Diameter vs δ 180	8	+0.11
Mean Diameter vs δ 13C	8	-0.09
Mean Diameter vs δ 180	8	+0.05
Elongation vs δ 13C	5	-0.24
Elongation vs δ 180	5	+0.51
Sphericity vs δ 13C	4	+0.24
Sphericity vs δ 180	5	-0.49

Thank You