Stat 134: Section 14

Adam Lucas

March 12, 2018

Problem 1

Suppose calls are arriving at a telephone exchange at an average rate of one per second, according to a Poisson arrival process. Find:

- a. the probability that the fourth call after time t=0 arrives within 2 seconds of the third call;
- b. the probability that the fourth call arrives by time t = 5 seconds;
- c. the expected time at which the fourth call arrives.

Ex 4.2.5 in Pitman's Probability

Problem 2

Local calls are coming into a telephone exchange according to a Poisson process with rate λ_{loc} calls per minute. Independently of this, long-distance calls are coming in at a rate of λ_{dis} calls per minute. Write down expressions for probabilities of the following events:

- a. exactly 5 local calls and 3 long-distance calls come in a given minute;
- b. exactly 50 calls (counting both local and long distance) come in a given three- minute period;
- c. starting from a fixed time, the first ten calls to arrive are local.

Ex 4.rev.13 in Pitman's Probability

Problem 3: Gammas, Exponentials, and Moments

Consider the gamma function $\Gamma(r) = \int_0^\infty x^{r-1} e^{-x} dx$, r > 0.

- a. Use integration by parts to show that $\Gamma(r+1) = r\Gamma(r)$.
- b. Deduce from (a) that for any positive integer n, $\Gamma(n) = (n-1)!$
- c. Show that if $T \sim \text{Exp}(1)$, then $\mathbb{E}(T^n) = n!$.
- d. Show that if $S = T/\lambda$, then $S \sim \text{Exp}(\lambda)$. (Note: from this, we can easily show that $\mathbb{E}(S^n) = n!/\lambda^n$).

Hint: Consider the expression P(S > s), then substitute for S appropriately.

Ex 4.2.9 in Pitman's Probability