Valuation Survey Analysis

Data Cleaning

First we'll load up the raw survey data from Google Forms.

Raw Data

How.much.would.we.need.to.pay.you.to.arrive.20.minutes.late...

Timestamp	In.USD.	X40.minutes.late.	X1.hour.late.	X1.hour.and.20.minutes.late.
7/7/2016 14:52:12	\$50.00	\$200.00	\$200.00	\$200.00
7/7/2016 16:51:01	\$5.00	\$20.00	\$20.00	\$20.00
7/8/2016 11:17:50	\$20.00	\$40.00	\$60.00	I wouldn't accept.
7/11/2016 13:26:12	\$30.00	\$50.00	\$50.00	\$50.00
7/11/2016 15:06:24	\$20.00	\$50.00	\$80.00	\$120.00

Next, lets's use more intuitive column names, add an id number so we can keep track of which responses come from the same individuals, and split the data into separate dataframes for each scenario.

Brunch with Friends

brunch.20	brunch.40	brunch.60	brunch.80	brunch.100	brunch.120	id
\$50.00	\$200.00	\$200.00	\$200.00	\$200.00	\$100.00	1
\$5.00	\$20.00	\$20.00	\$20.00	\$30.00	\$30.00	2
\$20.00	\$40.00	\$60.00	I wouldn't accept.	I wouldn't accept.	\$200.00	3

Waiting on a Sunny Day

sunny.20	sunny.40	sunny.60	sunny.80	sunny.100	sunny.120	id
\$10.00	\$40.00	\$100.00	\$200.00	\$250.00	\$300.00	1
\$10.00	\$20.00	\$30.00	\$50.00	\$75.00	\$100.00	2
\$15.00	\$25.00	\$40.00	\$50.00	\$75.00	\$100.00	3

Waiting in the Rain

rainy.20	rainy.40	rainy.60	rainy.80	rainy.100	rainy.120	id
\$30.00	\$100.00	\$300.00	\$500.00	\$1,000.00	\$2,000.00	1
\$15.00	\$30.00	\$50.00	\$75.00	\$100.00	\$150.00	2
\$5.00	\$20.00	\$30.00	\$50.00	\$75.00	\$100.00	3

Now let's convert the the string responses to the correct datatypes, and restructure the dataframes so that each row contains three columns: the responder's id, the number of minutes waited, and the responder's valuation.

Brunch with Friends

cost	minutes		IG
max <u>c</u> ofsit	voisute§	minutes	íd
C20301	minut 4 8		itd
200	60		1

Waiting on a Sunny Day

id	minutes	cost
1	20	10
1	40	40
1	60	100

Waiting in the Rain

id	minutes	cost
1	20	30
1	40	100
1	60	300

Beverage Valuations

id	cost
1	5
2	20
3	10

Finally, let's normalize the data by respondant.

```
## Warning in left_join_impl(x, y, by$x, by$y, suffix$x, suffix$y): joining
## factors with different levels, coercing to character vector
```

Brunch with Friends

id	minutes	cost	max_val
1	20	0.1	500

íd	minutes	cost cost	max_ S val
1	60	0.4	500

Waiting on a Sunny Day

id	minutes	cost	max_val
1	20	0.02	500
1	40	0.08	500
1	60	0.20	500

Waiting in the Rain

id	minutes	cost	max_val
1	20	0.06	500
1	40	0.20	500
1	60	0.60	500

Beverage Valuations

id	cost	max_val
1	0.0100000	500
2	0.1333333	150
3	0.0500000	200

Models

Now let's create a linear model for each scenario.

Brunch


```
##
## Call:
## lm(formula = cost ~ 0 + minutes, data = brunch)
##
## Coefficients:
## minutes
## 0.7601
```

Sunny


```
##
## Call:
## lm(formula = cost ~ 0 + minutes, data = sunny)
##
## Coefficients:
## minutes
## 1.362
```

Rainy


```
##
## Call:
## lm(formula = cost ~ 0 + minutes, data = rainy)
##
## Coefficients:
## minutes
## 1.685
```

Beverage

For the beverage question we just have a single data-point for each respondant ("How much would we need to pay you to forgo your morning beverage"). So we will take the mean as our coefficient.

```
kable(beverage[1:3,])

avg_beverage_value <- mean(beverage$cost)
avg_beverage_value

## [1] 9.7</pre>
```

Results

Let's see how much (on average) people value thier time in each scenario.

(For Brunch, Sunny, and Rainy: the cost is the value of one minute spent at the bus stop. For Beverage the cost is the valuation of one beverage.)

scenario	cost
brunch	0.760101
sunny	1.361648
rainy	1.684725
beverage	9.700000

We want to use integers in the experiment (we aren't dealing in fractions of coins), so let's convert these coefficients to whole numbers.

beverage

 scenario
 wait_pentaly
 delay_reward
 destination_reward

 scenario
 cost

 brunch
 760

 sunny
 1362

 rainy
 1685

It looks like we could have a problem here... The valuation of time at brunch seems lower than the valuation of time waited at the bus stop (which doesn't seem correct). Also, we don't have values for different "destinations".

Mapping onto Experiment Scenarios

Now let's take the values we've obained and figure out what the values for each scenario should be.

- wait_penalty = penalty per minute at the bus stop
- **delay_reward** = reward per minute spent BEFORE going to the bus stop
- **destination_reward** = reward per minute spent at the destination

```
experiment brunch <- data.frame(
  wait_pentaly = results$cost[2], # We'll use the sunny value rather than rainy
  delay reward = results$cost[2], # since we don't specify the weather in the
                                   # scenario.
  destination reward = results$cost[1]
)
experiment_sunny <- data.frame(</pre>
  wait_pentaly = results$cost[2], # Sunny Value
  delay_reward = results$cost[2], # Sunny Value
  destination reward = results$cost[1]
)
experiment rainy <- data.frame(
  wait pentaly = results$cost[3], # Rainy value
  delay reward = results$cost[3], # Rainy value
  destination reward = results$cost[1]
experiment_beverage <- data.frame(</pre>
  wait_pentaly = results$cost[3], # Rainy value
  delay_reward = results$cost[3], # Rainy value
  destination_reward = results$cost[1],
  beverage_bonus = results$cost[4] # Beverage value.
)
```

Brunch

destination_reward	delay_reward	wait_pentaly
76	136	136

Sunny

wait_pentaly	delay_reward	destination_reward
136	136	76

Rainy

wait pentaly	delay reward	destination reward
wait_pentaly	delay_reward	destination

9700

	wait_penta lg ait_pental§	delay_reward	delay_rewaବିଷ destination_reward	de stive ting <u>e</u> rbonand
Beverage				
	wait_pentaly	delay_reward	destination_reward	beverage_bonus
	168	168	76	970