# Corso di Laurea in Informatica - A.A. 2022-2023

(Prof. Paolo Camarri – Prof. Vincenzo Caracciolo)

| Cognome:   |  |  |  |
|------------|--|--|--|
| Nome:      |  |  |  |
| Matricola: |  |  |  |

## Primo appello invernale del corso di Fisica del 30.01.2024

#### Problema n. 1

Si consideri una cassa avente massa  $m=15~{\rm kg}$  posta su un piano inclinato che forma un angolo  $\theta=30^{\circ}$  con il piano orizzontale.

- a) Si osserva che la cassa, se lasciata da ferma sul piano inclinato, si mantiene ferma in equilibrio. Si calcoli il valore minimo  $\mu_{s,min}$  che deve avere il coefficiente di attrito statico tra la cassa e il piano inclinato.
- b) Sapendo che il coefficiente di attrito dinamico tra la cassa e il piano inclinato è  $\mu_d=\frac{9}{10}\mu_{s,min}$ , si calcoli il modulo F della forza con cui occorre spingere la cassa affinché si muova in salita, lungo il piano inclinato, con accelerazione costante di modulo uguale ad  $a=1~{\rm m~s^{-2}}$ .
- c) Una volta che la cassa, risalendo lungo il piano inclinato, raggiunge la velocità  $v=2\ m\ s^{-1}$ , il modulo della forza applicata viene modificato in modo da mantenere costante il modulo della velocità della cassa. Si calcoli, in questa fase del moto, la potenza P esercitata dalla forza applicata.

#### Problema n. 2

Una palla per il gioco delle bocce, schematizzata come una sfera rigida omogenea avente raggio  $R=4~\rm cm$  e massa  $M=50~\rm g$ , viene lanciata su una superficie orizzontale liscia, senza imprimere rotazione alla palla. Il modulo della velocità iniziale del centro di massa della palla in moto sul piano orizzontale è  $V_0=2~\rm m~s^{-1}$ .

- a) A un certo istante dopo il lancio, la palla incontra, lungo la sua traiettoria, un terreno scabro (cioè con attrito), tale che il coefficiente di attrito dinamico tra la palla e il terreno è  $\mu_d=0,1$ . Si ricavi l'andamento temporale  $V_{CM}(t)$  della velocità istantanea del centro di massa della palla a partire dall'istante in cui essa incontra il terreno scabro.
- b) Si scriva la legge  $\omega(t)$  che descrive l'andamento temporale della velocità angolare di rotazione della palla attorno all'asse orizzontale passante per il suo centro di massa, a partire dall'istante in cui la palla incontra il terreno scabro, e si determini l'istante  $t^*$  a partire dal quale la palla rotola senza strisciare sul terreno.
- c) Si dica se, trascurando l'attrito dell'aria, a partire dall'istante  $t^*$  calcolato al punto b) il moto del centro di massa della palla è accelerato oppure no, e perché.

### Problema n. 3

Si consideri il circuito elettrico schematizzato nella figura:



I parametri del circuito hanno i seguenti valori:

$$\mathcal{E}=12\,\mathrm{V}$$
 ,  $R_1=10\,\Omega$  ,  $R_2=100\,\Omega$  ,  $C=1\,\mu\mathrm{F}$ 

Inizialmente il condensatore è scarico, e all'istante t=0 viene applicata la tensione  $\mathcal E$  al circuito considerato.

- a) Si calcolino la corrente  $I^*$  che scorre nel circuito dopo che è stata raggiunta la condizione di regime, e la differenza di potenziale  $\Delta V_2$  ai capi della resistenza  $R_2$  a regime.
- b) Si calcoli la carica elettrica  $Q^*$  accumulata sull'armatura positiva del condensatore dopo che è stata raggiunta la condizione di regime.
- c) Si esprimano le correnti nei tre rami del circuito in termini dei parametri del circuito e del potenziale  $V_P$  del nodo P del circuito, e usando l'opportuna legge di Kirchhoff si scriva l'equazione differenziale alla quale obbedisce il potenziale  $V_P(t)$  prima che sia raggiunta la condizione di regime.
- d) (facoltativo) Si determini il tempo caratteristico di carica  $\tau$  del condensatore nel circuito considerato.

L'esonero scritto prevede la risoluzione in TRE ore, a partire dall'ora comunicata dal docente all'inizio dello svolgimento della prova, dei tre esercizi sopra riportati, potendo consultare solo un formulario personale composto al massimo da 4 facciate di foglio protocollo. I fogli su cui svolgere i calcoli per la risoluzione dei problemi sono forniti dal docente.

Si richiede in ogni caso la consegna di tutti i fogli manoscritti su cui sono stati svolti i calcoli.

Un libro di testo è a disposizione sulla cattedra, portato dal docente.

Lo studente, oltre al foglio di carta, alla penna e a eventuali strumenti per disegno (matite, riga, squadra, compasso), può tenere sul tavolo solo una calcolatrice tascabile non programmabile.