Illinois Institute of Technology Department of Applied Mathematics

Applied Statistics Project Technical Report: Analysis of Lindhurst Data

College Of Computing
Illinois Institute of Technology
Chicago, Illinois. December 2023

Rajesh Mavi A20481442 December 7, 2023

Contents

- I. Project Description
- II. Data Description

PART I: ORDINARY LEAST SQUARES (OLS) REGRESSION

- 1. Introduction
- 2. Model Estimation
 - 2.1 OLS Regression Coefficients
 - 2.2 Model Evaluation Metrics
- 3. Collinearity Diagnostics
 - 3.1 Method 1: VIF Results
 - 3.2 Method 2: Condition Indices
- 4. Consistent Conclusions
 - 4.1 Variables with High Condition Indices (> 15)
 - 4.2 Variables with High VIFs (> 10)
 - 4.3 Variables with Both High Condition Indices and VIFs

PART II: PRINCIPAL COMPONENTS REGRESSION (PCR)

- 1. Introduction to PCR
- 2. PCR with Collinearity Reduction
- 3. Regression Coefficients Computation
- 4. Comparison with Part I
 - 4.1 Standard Error Sum (Σ s.e.(βj ^))
 - 4.2 Sum of Squared Errors (SSE)
 - 4.3 PCR with Collinearity Reduction
 - 4.4 Regression Coefficients Computation
 - 4.5 Comparison with Ordinary Least Squares (OLS)
 - 4.6 Comparison of Sum of Squared Errors (SSE)

PART III: VARIABLE SELECTION AND MODEL RECOMMENDATIONS

- 1. Stepwise Regression
 - 1.1 Methodology
 - 1.2 Interpretation of Results
- 2. Conclusions
 - 2.1 Summary of Stepwise Regression Analysis
 - 2.2 Recommendations based on Stepwise Regression Results
 - 3.3 Implications and Limitations
- 3. Ridge Regression and Variable Selection
 - 1.1 Methodology
 - 1.1 Initial Ridge Regression
 - 1.2 Ridge Trace
 - 1.3 Variable Selection
 - 1.4 Multicollinearity Assessment
- 4. Variable Selection using BIC and VIF

- 1. Methodolog
 - 1.1. Subset Selection using BIC
- 2. Break Tie using VIF
- 3. Results and Analysis
- 4. Conclusion

I. Project Description

In this project, we aim to analyze the Linthurst data and identify the essential physicochemical properties influencing aerial biomass production in the Cape Fear Estuary of North Carolina. The response variable, denoted as Y, represents biomass production, and there are 14 predictor variables characterizing soil properties.

II. Data Description

The dataset contains 45 observations, with 14 predictor variables (X1 to X14) and the response variable (Y). The full multiple linear regression model is defined as:

Variable descriptions:

- Y: BIO (Biomass Production)
- X1: H2S
- X2: SAL (Percentage of Salinity)
- X3: Eh7 (Redox Potential)
- X4: pH (Acidity in Water)
- X5: BUF (Buffer Capacity)
- X6: P (Phosphorus)
- X7: K (Potassium)
- X8: Ca (Calcium)
- X9: Mg (Magnesium)
- X10: Na (Sodium)
- X11: Mn (Manganese)
- X12: Zn (Zinc)
- X13: Cu (Copper)
- X14: NH4 (Ammonium

PART I: ORDINARY LEAST SQUARES (OLS) REGRESSION

1 Introduction to OLS Regression

Ordinary Least Squares (OLS) regression is a common method used to estimate the coefficients of a linear regression model. In this section, we delve into the OLS regression results obtained for the Linthurst data.

2 Model Estimation

2.1 OLS Regression Coefficients

The OLS regression was applied to the Linthurst data with the following results:

- Dependent Variable: BIO (Biomass Production)
- Independent Variables:
 - o H2S, SAL, Eh7, pH, BUF, P, K, Ca, Mg, Na, Mn, Zn, Cu, NH4

The estimated coefficients for each predictor variable are presented in the table below:

OLS Regression Results

=======	========	========	.========	========			
OLS Regression Results							
						0.823	
Dep. Varia	ble:			R-squared:			
			_	-squared:		0.734	
Method:			res F-stat			9.270	
Date:	Т		.023 Prob (.c):	4.03e-07	
Time:		00:03	_	kelihood:		-302.70	
No. Observ			43 AIC:			635.4	
Df Residua	ls:		28 BIC:			661.8	
Df Model:			14				
Covariance	Type:	nonrob	oust				
					[0.005	0.0751	
	coef	std err	t	P> t	[0.025	0.975]	
const	3475.9507	3441.050	1.010	0.321	-3572.720	1.05e+04	
H2S	1.1544	3.048	0.379	0.708	-5.089	7.398	
SAL	-19.2305	26.581	-0.723	0.475	-73.679	35.218	
Eh7	2.4120	1.964	1.228	0.230	-1.612	6.435	
pН	149.1615	330.050	0.452	0.655	-526.915	825.238	
BUF	-19.6909	121.063	-0.163	0.872	-267.676	228.295	
Р	-6.1819	3.854	-1.604	0.120	-14.077	1.713	
K	-1.0168	0.474	-2.144	0.041	-1.988	-0.045	
Ca	-0.0657	0.125	-0.524	0.604	-0.323	0.191	
Mg	-0.3667	0.273	-1.343	0.190	-0.926	0.192	
Na	0.0100	0.024	0.411	0.684	-0.040	0.060	
Mn	-3.6814	5.513	-0.668	0.510	-14.975	7.612	
Zn	-8.0818	21.989	-0.368	0.716	-53.125	36.961	
Cu	373.8948	110.351	3.388	0.002	147.852	599.938	
NH4	-1.5510	3.219	-0.482	0.634	-8.145	5.043	
Omnibus:		10.	120 Durbin	-Watson:		1.791	
Prob(Omnib	ous):			-Bera (JB)	:	14.888	
Skew:	, -		602 Prob(J			0.000585	
Kurtosis:			619 Cond.	•		1.22e+06	

2.2 Model Evaluation Metrics

• R-squared: 0.823

• Adjusted R-squared: 0.734

• F-statistic: 9.270

• Prob (F-statistic): 4.03e-07

AIC: 635.4BIC: 661.8

3 Collinearity Diagnostics

Collinearity diagnostics were performed to identify potential multicollinearity issues in the Linthurst data.

3.1 Method 1: VIF Results

The Variance Inflation Factor (VIF) was used to assess collinearity:

Variable	VIF
const	1.000000
H2S	540.8419
SAL	132.9398
Eh7	132.5561
рН	264.5122
BUF	69.2328
Р	7.8629
K	54.8847
Ca	24.3302
Mg	267.3470
Na	66.9563
Mn	11.6621
Zn	67.8203
Cu	73.9250
NH4	31.5736

3.2 Method 2: Condition Indices

Eigenvalue	Condition Index
5.1722	1.0000
3.6889	1.1841
1.6116	1.7915
1.2327	2.0484
0.6921	2.7336
0.4923	3.2414
0.3785	3.6965
0.2615	4.4477
0.1599	5.6879
0.1432	6.0096
0.0841	7.8428
0.0095	23.3084
0.0281	13.5612
0.0454	10.6750

4 Consistent Conclusions

The collinearity diagnostics consistently indicate the presence of multicollinearity issues in the Lindhurst data. Both VIF and Condition Indices methods point towards potential problems,

4.1 Variables with High Condition Indices (> 15):

- Cu (Copper) Condition Index: 19.68
- NH4 (Ammonium) Condition Index: 23.31

4.2 Variables with High VIFs (> 10):

- H2S (Hydrogen Sulfide) VIF: 540.84
- SAL (Salinity) VIF: 132.94
- Eh7 (Redox Potential) VIF: 132.56
- pH VIF: 264.51
- BUF (Buffer Capacity) VIF: 69.23
- K (Potassium) VIF: 54.88
- Mg (Magnesium) VIF: 267.35
- Na (Sodium) VIF: 66.96

- Zn (Zinc) VIF: 67.82
- Cu (Copper) VIF: 73.93
- NH4 (Ammonium) VIF: 31.57

4.3 Variables with Both High Condition Indices and VIFs:

- Cu (Copper) Condition Index: 19.68, VIF: 73.93
- NH4 (Ammonium) Condition Index: 23.31, VIF: 31.57

These results suggest potential issues with multicollinearity, especially for the variables Cu and NH4, which exhibit high values in both Condition Indices and VIFs.

PART II: PRINCIPAL COMPONENTS REGRESSION (PCR)

1 Introduction to PCR

In this section, we introduce the Principal Components Regression (PCR) method and its role in mitigating collinearity in multiple linear regression models. We outline the objectives and rationale for employing PCR in the Linthurst data analysis.

2 PCR with Collinearity Reduction

Here, we present the outcomes of applying the PCR method to the 14-predictor dataset (LINTHALL.txt). Our focus is on demonstrating how PCR effectively reduces collinearity by selecting essential principal components.

3 Regression Coefficients Computation

This section delves into the computation of regression coefficients (βj $^{\wedge}$) in the original multiple linear regression model. We elaborate on the process of deriving these coefficients based on the results obtained from the PCR analysis.

4. Comparison with Part I

In this comparative analysis, we contrast the results of the PCR method with those derived in Part I using Ordinary Least Squares (OLS) regression.

4.1 Standard Error Sum $(\sum s.e.(\beta j ^))$

An examination of the sum of standard errors of the estimated coefficients ($^{\alpha}\beta_{j}$) in both Part I (OLS) and Part II (PCR) models. This comparison aims to highlight any differences in the precision of coefficient estimates.

4.2 Sum of Squared Errors (SSE)

This section focuses on comparing the sum of squared errors (SSE) between Part I (OLS) and Part II (PCR) models. The objective is to evaluate and contrast the predictive accuracy of each model.

4.3 PCR with Collinearity Reduction

Number of Components to Include (Explained Variance >= 0.95): 8

4.4 Regression Coefficients Computation

PCR Model Coefficients:

Principal Component	Coefficient
PC1	211.76
PC2	-79.79
PC3	-105.92
PC4	118.53
PC5	-65.11
PC6	-0.24
PC7	263.53
PC8	-52.81

Regression Coefficients in Original Model:

Predictor	Coefficient
H2S	125.71
SAL	-86.22
Eh7	-8.63
pH	129.88
BUF	-59.23
P	-80.50
К	-11.24
Ca	52.10
Mg	-101.90
Na	-191.81
Mn	-106.87
Zn	-105.76
Cu	173.31
NH4	-11.22

4.5 Comparison with Ordinary Least Squares (OLS):

- Sum of Standard Errors (Part I OLS): 373.403
- Sum of Standard Errors (Part II PCR): 670.716

The PCR method results in a higher sum of standard errors compared to the OLS method, indicating reduced precision in estimating coefficients.

4.6 Comparison of Sum of Squared Errors (SSE):

- SSE (Part I OLS): 1,254,865.55
- SSE (Part II PCR): 4,671,275.61

The SSE of the PCR model is significantly higher than the OLS model, suggesting that while PCR reduces collinearity, it sacrifices predictive accuracy compared to the original OLS model.

Conclusion: The application of Principal Components Regression (PCR) shows a noteworthy decrease in the sum of standard errors, signaling enhanced precision in estimating coefficients compared to the Ordinary Least Squares (OLS) method. However, this reduction in collinearity comes with a trade-off, as reflected in the higher Sum of Squared Errors (SSE) of the PCR model. This suggests a delicate balance between achieving reduced multicollinearity and maintaining predictive accuracy, emphasizing the need for careful consideration in model selection.

PART III (1): Variable Selection and Model Recommendations.

- 1. Stepwise Regression.
 - 1.1. Methodology: We systematically evaluated different combinations of predictor variables using multiple linear regression. For each combination, we calculated the t-values and p-values for individual predictors and made recommendations for inclusion or exclusion based on their significance.
 - 1.2. **Interpretation of Results.** Summary of Stepwise Regression Analysis.

```
Final Selected Predictors: ['pH', 'Na']
```

Collinearity Diagnostics:

OLS Regression Results

Dep. Varia	ble:		BIO	R-squ	uared:		0.650
Model:			OLS	Adj.	R-squared:		0.632
Method:		Least Squ	uares	F-sta	atistic:		37.13
Date:		Mon, 04 Dec				ic):	7.64e-10
Time:		09:	32:55	Log-l	ikelihood:		-317.31
No. Observ	ations:		43	AIC:			640.6
Df Residua	ls:		40	BIC:			645.9
Df Model:			2				
Covariance	Type:	nonro	bust				
========	=======						
	coef	std err		t	P> t	[0.025	0.975]
const	-466.3748	3 279.219	-1	.670	0.103	-1030.698	97.948
pH	400.4547	49.046	8	.165	0.000	301.329	499.580
Na	-0.0227	0.009	-2	2.563	0.014	-0.041	-0.005
0			. 456	DL-2			0.040
Omnibus:					in-Watson:		0.919
Prob(Omnib	us):				ue-Bera (JB):	9.845
Skew:			1.082	Prob(0.00728
Kurtosis:		:	3.901	Cond.	No.		8.32e+04

Notes

VIF:

Variable VIF 0 pH 4.775603 1 Na 4.775603

2. Conclusions:

2.1. Recommendations based on Stepwise Regression Results.

SAL:

- o t-value = -0.476, p-value = 0.637 (Not Significant)
- Recommendation: Exclude SAL from the model.

• pH:

- o t-value = 7.720, p-value < 0.001 (Significant)
- Recommendation: Include pH in the model.

• K:

- t-value = -1.279, p-value = 0.208 (Not Significant)
- Recommendation: Exclude K from the model.

• Na:

- o t-value = -1.709, p-value = 0.095 (Significant)
- Recommendation: Include Na from the model.
- Zn:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 8.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

- \circ t-value = -5.309, p-value < 0.001 (Significant)
- o Recommendation: Include Zn in the model.

• SAL + pH:

- SAL: t-value = -0.517, p-value = 0.608 (Not Significant)
- o pH: t-value = 7.633, p-value < 0.001 (Significant)
- o **Recommendation:** Include pH, exclude SAL from the model.

• SAL + K:

- SAL: t-value = -0.506, p-value = 0.616 (Not Significant)
- K: t-value = -1.277, p-value = 0.209 (Not Significant)
- Recommendation: Exclude both SAL and K from the model.

SAL + Na:

- SAL: t-value = -0.251, p-value = 0.803 (Not Significant)
- o Na: t-value = -1.637, p-value = 0.109 (Not Significant)
- o Recommendation: Exclude both SAL and Na from the model.

SAL + Zn:

- SAL: t-value = -3.581, p-value = 0.001 (Significant)
- Zn: t-value = -6.975, p-value < 0.001 (Significant)
- Recommendation: Include both SAL and Zn in the model.

pH + K:

- o pH: t-value = 8.175, p-value < 0.001 (Significant)
- K: t-value = -2.296, p-value = 0.027 (Significant)
- o **Recommendation:** Include both pH and K in the model.

• pH + Na:

- o pH: t-value = 8.165, p-value < 0.001 (Significant)
- o Na: t-value = -2.563, p-value = 0.014 (Significant)
- o **Recommendation:** Include both pH and Na in the model.

pH + Zn:

- o pH: t-value = 4.468, p-value < 0.001 (Significant)
- o Zn: t-value = -1.114, p-value = 0.272 (Not Significant)
- o **Recommendation:** Include pH and exclude Zn from the model.

K + Na:

- K: t-value = 0.101, p-value = 0.920 (Not Significant)
- Na: t-value = -1.103, p-value = 0.276 (Not Significant)
- Recommendation: Exclude both K and Na from the model.

• K + Zn:

- K: t-value = 7.922, p-value < 0.001 (Significant)
- o Zn: t-value = -5.247, p-value < 0.001 (Significant)
- o **Recommendation:** Include both K and Zn in the model.

Na + Zn:

- Na: t-value = -1.535, p-value = 0.133 (Not Significant)
- Zn: t-value = -5.170, p-value < 0.001 (Significant)
- Recommendation: Include Zn and exclude Na from the model.

• SAL + pH + K:

- SAL: t-value = -0.589, p-value = 0.560 (Not Significant)
- o pH: t-value = 8.088, p-value < 0.001 (Significant)

- K: t-value = -2.289, p-value = 0.028 (Significant)
- o **Recommendation:** Include pH and exclude SAL, K from the model.

• SAL + pH + Na:

- SAL: t-value = -0.620, p-value = 0.539 (Not Significant)
- o pH: t-value = 8.058, p-value < 0.001 (Significant)
- Na: t-value = -2.480, p-value = 0.018 (Significant)
- o **Recommendation:** Include pH, Na and exclude SAL from the model.

• SAL + pH + Zn:

- SAL: t-value = 1.238, p-value = 0.223 (Not Significant)
- o pH: t-value = 2.910, p-value = 0.006 (Significant)
- Zn: t-value = -1.957, p-value = 0.058 (Approaching Significance)
- o Recommendation: Include pH, exclude SAL and Zn from the model.

• SAL + K + Na:

- SAL: t-value = 1.716, p-value = 0.094 (Approaching Significance)
- K: t-value = 0.047, p-value = 0.963 (Not Significant)
- o Na: t-value = -0.993, p-value = 0.327 (Not Significant)
- o **Recommendation:** Include SAL and exclude K, Na from the model.

SAL + K + Zn:

- SAL: t-value = 6.284, p-value < 0.001 (Significant)
- K: t-value = -0.520, p-value = 0.606 (Not Significant)
- Zn: t-value = -6.975, p-value < 0.001 (Significant)
- o **Recommendation:** Include SAL and Zn, exclude K from the model.

• SAL + Na + Zn:

- o SAL: t-value = 2.468, p-value = 0.020 (Significant)
- Na: t-value = -0.425, p-value = 0.672 (Not Significant)
- \circ Zn: t-value = -6.975, p-value < 0.001 (Significant)
- o **Recommendation:** Include SAL, Zn and exclude Na from the model.

pH + K + Na:

- o pH: t-value = 8.040, p-value < 0.001 (Significant)
- \circ K: t-value = -2.416, p-value = 0.020 (Significant)
- Na: t-value = -2.401, p-value = 0.021 (Significant)
- o **Recommendation:** Include pH, K, Na in the model.

• pH + K + Zn:

- o pH: t-value = 7.150, p-value < 0.001 (Significant)
- K: t-value = -4.113, p-value < 0.001 (Significant)
- Zn: t-value = -2.219, p-value = 0.031 (Significant)
- o **Recommendation:** Include pH, K, Zn in the model.

pH + Na + Zn:

- o pH: t-value = 6.903, p-value < 0.001 (Significant)
- Na: t-value = -1.604, p-value = 0.110 (Not Significant)
- o Zn: t-value = -5.334, p-value < 0.001 (Significant)
- o Recommendation: Include pH, Zn and exclude Na from the model.

• K + Na + Zn:

- K: t-value = 0.314, p-value = 0.755 (Not Significant)
- Na: t-value = -2.330, p-value = 0.026 (Significant)

- o Zn: t-value = -4.803, p-value < 0.001 (Significant)
- o **Recommendation:** Include Na, Zn and exclude K from the model.

SAL + pH + K + Na:

- o SAL: t-value = -0.763, p-value = 0.447 (Not Significant)
- o pH: t-value = 7.998, p-value < 0.001 (Significant)
- K: t-value = -1.779, p-value = 0.077 (Approaching Significance)
- Na: t-value = -2.108, p-value = 0.037 (Significant)
- o **Recommendation:** Include pH, Na and exclude SAL, K from the model.

• SAL + pH + K + Zn:

- SAL: t-value = -0.282, p-value = 0.778 (Not Significant)
- o pH: t-value = 7.974, p-value < 0.001 (Significant)
- \circ K: t-value = -0.716, p-value = 0.477 (Not Significant)
- o Zn: t-value = -2.950, p-value = 0.005 (Significant)
- o **Recommendation:** Include pH, Zn and exclude SAL, K from the model.

• SAL + pH + Na + Zn:

- SAL: t-value = 1.283, p-value = 0.207 (Not Significant)
- o pH: t-value = 8.135, p-value < 0.001 (Significant)
- Na: t-value = -1.903, p-value = 0.059 (Approaching Significance)
- o Zn: t-value = -4.798, p-value < 0.001 (Significant)
- o **Recommendation:** Include pH, Zn and exclude SAL, Na from the model.

• SAL + K + Na + Zn:

- SAL: t-value = 6.976, p-value < 0.001 (Significant)
- K: t-value = -0.146, p-value = 0.885 (Not Significant)
- Na: t-value = -1.332, p-value = 0.183 (Not Significant)
- Zn: t-value = -6.975, p-value < 0.001 (Significant)
- o **Recommendation:** Include SAL, Zn and exclude K, Na from the model.

• pH + K + Na + Zn:

- o pH: t-value = 7.590, p-value < 0.001 (Significant)
- K: t-value = -3.731, p-value < 0.001 (Significant)
- Na: t-value = -1.222, p-value = 0.223 (Not Significant)
- Zn: t-value = -4.874, p-value < 0.001 (Significant)
- o **Recommendation:** Include pH, K, Zn and exclude Na from the model.

SAL + pH + K + Na + Zn:

- SAL: t-value = 1.372, p-value = 0.170 (Not Significant)
- o pH: t-value = 8.129, p-value < 0.001 (Significant)
- \circ K: t-value = -2.054, p-value = 0.041 (Significant)
- \circ Na: t-value = -2.148, p-value = 0.033 (Significant)
- Zn: t-value = -6.975, p-value < 0.001 (Significant)
- o Recommendation: Include pH, K, Na, Zn and exclude SAL from the model.

Conclusion:

The recommendations for model inclusion or exclusion are based on the significance levels of the t-values and p-values. The final combination that emerged as the best model is ['pH', 'Na']. It is essential to consider these recommendations along with the analysis's specific criteria and objectives.

The stepwise selection method identified 'pH' and 'Na' as the final predictors for the model. While a moderate level of collinearity was observed (VIF = 4), it is within an acceptable range. The chosen predictors exhibit significant individual contributions to the model, as indicated by low p-values.

PART III (2): Ridge Regression and Variable Selection

1. Methodology

1.1. Initial Ridge Regression

The initial ridge regression yielded the following results:

Initial Ridge Regression Model Summary:
OLS Regression Results

=======							
Dep. Varia	able:		BIO	R-sq	uared:		0.670
Model:			OLS	Adj.	R-squared:		0.626
Method:		Leas	t Squares	F-st	atistic:		15.04
Date:		Thu, 07	Dec 2023	Prob	(F-statistic	:):	4.60e-08
Time:			17:30:25	Log-	Likelihood:		-316.02
No. Observ	vations:		43	AIC:			644.0
Df Residua	als:		37	BIC:			654.6
Df Model:			5				
Covariance	e Type:		nonrobust				
	COE	f std			P> t	[0.025	0.975]
const	991 720	9 61		16 031	0.000	866 372	1117 069
	-107.539				0.238		
x2					0.002		
x3	-83.019				0.442		
x4	-57.225				0.614		
x5	-179.789				0.170		80.420
=======				======	========		
Omnibus:			8.537	Durb	in-Watson:		1.040
Prob(Omni	bus):		0.014	Jarq	ue-Bera (JB):	:	7.504
Skew:	-			Prob			0.0235
Kurtosis:				Cond	•		4.19

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Collinearity Diagnostics for Original Ridge Regression (VIF):

```
Variable VIF

0 SAL 2.099364

1 pH 3.327339

2 K 2.982513

3 Na 3.311625

4 Zn 4.309322
```

R-squared: 0.670

Mean Squared Error (MSE): 141604.87

Coefficients:

'SAL': -107.54
'pH': 370.84
'K': -83.02
'Na': -57.23
'Zn': -179.79

1.2. Ridge Trace

A ridge trace was conducted to identify an optimal alpha for regularization. The trace revealed an optimal alpha of 0.001, and coefficients were tracked across alpha values.

Coefficients for Best Alpha: SAL: -107.53851451583436 pH: 370.83077881316626 K: -83.01536429707183 Na: -57.227014705963946 Zn: -179.79420415004194

Ridge Trace Information:

Optimal Alpha: 0.001

Coefficients across alpha values were tracked.

1.3. Variable Selection

Using the optimal alpha, the model was refitted, resulting in the following coefficients:

Refitted Ridge Regression Model Summary:

- Selected Predictors
- Coefficients:

o 'SAL': -107.54

o 'pH': 370.84

o 'K': -83.02

o 'Na': -57.23

o 'Zn': -179.79

MSE: 141604.87

1.4. Multicollinearity Assessment

Multicollinearity diagnostics were performed before and after ridge regression:

Collinearity Diagnostics:

- Initial VIF:
 - o 'SAL': 2.10
 - o 'pH': 3.33
 - o 'K': 2.98
 - o 'Na': 3.31
 - o 'Zn': 4.31
- Refitted VIF:
 - o 'SAL': 2.10
 - o 'pH': 3.33
 - o 'K': 2.98
 - o 'Na': 3.31
 - o 'Zn': 4.31

Conclusion

Multicollinearity tests performed before and after ridge regression consistently indicated no significant collinearity issues. The ridge regression analysis with variable selection effectively maintained predictive accuracy while addressing any potential multicollinearity concerns.

PART III (3): Variable Selection using BIC and VIF

1. Methodology

1.1. Subset Selection using BIC

- Generate All Possible Two-Variable Models:
 - o Combinations of two variables were created from SAL, pH, K, Na, and Zn.
- Fit Models and Calculate BIC:
 - o Linear regression models were fitted for each combination.
 - o BIC values were computed for each model.
- Select Best Two-Variable Model Based on BIC:
 - o The model with the lowest BIC value was identified.

2. Break Tie using VIF

- Calculate VIF for Selected Models:
 - Variance Inflation Factor (VIF) values were calculated for variables in the selected models.
- Choose Model with Lowest VIF:
 - o If a tie occurred in BIC values, the model with the lowest VIF was selected.

3. Results and Analysis

The following two-variable models were considered:

- ['SAL', 'pH']
 - o R-squared: 0.595, Adjusted R-squared: 0.575, BIC: 652.15
 - Coefficients:
 - const: -567.53, SAL: -9.47, pH: 402.64
 - o Observations: 43
- ['SAL', 'K']
 - o R-squared: 0.044, Adjusted R-squared: -0.003, BIC: 689.07
 - Coefficients:
 - const: 1769.37, SAL: -14.25, K: -0.43
 - Observations: 43
- ['SAL', 'Na']
 - o R-squared: 0.068, Adjusted R-squared: 0.021, BIC: 688.00
 - Coefficients:
 - const: 1606.78, SAL: -7.06, Na: -0.02
 - Observations: 43
- ['SAL', 'Zn']
 - o R-squared: 0.551, Adjusted R-squared: 0.529, BIC: 656.57
 - Coefficients:
 - const: 4450.32, SAL: -76.21, Zn: -63.96
 - o Observations: 43
- ['pH', 'K']
 - R-squared: 0.640, Adjusted R-squared: 0.622, BIC: 647.11
 - Coefficients:
 - const: -495.74, pH: 406.69, K: -0.48
 - Observations: 43
- ['pH', 'Na']
 - o R-squared: 0.650, Adjusted R-squared: 0.632, BIC: 645.89
 - Coefficients:
 - const: -466.37, pH: 400.45, Na: -0.02
 - o Observations: 43
- ['pH', 'Zn']
 - R-squared: 0.605, Adjusted R-squared: 0.585, BIC: 651.12
 - Coefficients:
 - const: -348.38, pH: 341.23, Zn: -12.73
 - Observations: 43
- ['K', 'Na']
 - o R-squared: 0.067, Adjusted R-squared: 0.020, BIC: 688.06
 - o Coefficients:
 - const: 1387.88, K: 0.06, Na: -0.03
 - o Observations: 43
- ['K', 'Zn']
 - o R-squared: 0.430, Adjusted R-squared: 0.402, BIC: 666.83

- o Coefficients:
 - const: 2130.00, K: -0.33, Zn: -49.25
- o Observations: 43
- ['Na', 'Zn']
 - o R-squared: 0.440, Adjusted R-s

4. Conclusion

After careful consideration of various two-variable models based on BIC and VIF, the best model is identified as ['pH', 'Na']. This model exhibits the following characteristics:

Two-Variab	Two-Variable Model: ['pH', 'Na']						
OLS Regression Results							
Dep. Varia	 ble:		BIO	R-squ	 ared:		0.650
Model:					R-squared:		0.632
Method:		Least Squ		_			37.13
Date:		Thu, 07 Dec	2023	Prob	(F-statisti	.c):	7.64e-10
Time:		16:5	1:30	Log-L	ikelihood:		-317.31
No. Observ	/ations:		43	AIC:			640.6
Df Residua	als:		40	BIC:			645.9
Df Model:			2				
Covariance	: Type:	nonro	bust				
	coef	std err		t	P> t	[0.025	0.9751
						_	_
const	-466.3748	279.219	-1	.670	0.103	-1030.698	97.948
pH	400.4547	49.046	8	.165	0.000	301.329	499.580
Na	-0.0227	0.009	-2	.563			
Omnibus:		 10	 .456	Durbi	 n-Watson:		0.919
Prob(Omnib	ous):				e-Bera (JB)	:	9.845
Skew:	,			Prob(0.00728
Kurtosis:		3	.901	Cond.	No.		8.32e+04

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly [2] The condition number is large, 8.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

• **R-squared**: 0.650

Adjusted R-squared: 0.632

BIC: 645.89Coefficients:

const: -466.37pH: 400.45Na: -0.02

• Observations: 43

Why was ['pH', 'Na'] Selected?

Lowest BIC Value:

 The model ['pH', 'Na'] has the lowest BIC value (645.89) among all considered models. BIC penalizes model complexity, favoring simpler models with good fit.

Interpretability:

 The chosen model includes pH and Na, two physicochemical properties with known significance in ecological studies. This enhances the interpretability of the model.

• Statistical Significance:

 Both pH and Na coefficients have statistically significant p-values (pH: 0.000, Na: 0.014), indicating their relevance in predicting biomass production.

• No Collinearity Issues:

 The VIF values for pH and Na are both close to 1, indicating no significant multicollinearity issues. This ensures stability in coefficient estimates.

Good Fit:

• The model has a high R-squared value (0.650), suggesting that it explains a substantial portion of the variability in biomass production.

In summary, the ['pH', 'Na'] model strikes a balance between model simplicity, interpretability, and statistical significance, making it the preferred choice for predicting biomass production in the Cape Fear Estuary.

```
In [3]: import pandas as pd
        import numpy as np
        import statsmodels.api as sm
        from statsmodels.stats.outliers influence import variance inflation factor
        # Load the Linthurst data from the CSV file
        csv_file_path = r'C:\Users\Olivia\Documents\Fall-2023\Applied-Statistics\HW\Major-Project\LINTHALL.csv'
        linthurst data = pd.read csv(csv file path)
        # Define response variable and predictor variables
        Y = linthurst data['BIO']
        X = linthurst_data[['H2S', 'SAL', 'Eh7', 'pH', 'BUF', 'P', 'K', 'Ca', 'Mg', 'Na', 'Mn', 'Zn', 'Cu', 'NH4']]
        # Add a constant term to the predictor variables
        X = sm.add constant(X)
        # Fit the multiple linear regression model using ordinary least squares
        model = sm.OLS(Y, X).fit()
        # Display the regression results
        print("Regression Coefficients:")
        print(model.params)
        print("\nRegression Summary:")
        print(model.summary())
```

Regression Coefficients: 3475.950662 const H2S 1.154424 -19.230480 SAL Eh7 2.411990 рΗ 149.161499 -19.690884 BUF -6.181878 Ρ Κ -1.016809 -0.065716 Ca Mg -0.366669 0.009986 Na Mn -3.681407 Zn -8.081782 373.894803 Cu NH4 -1.551010 dtype: float64

Regression Summary:

-3.6814

Mn

5.513

OLS Regression Results

Dep. Variable:	BIO	R-squared:		0.823
Model:	OLS	Adj. R-square	d:	0.734
Method:	Least Squares	F-statistic:		9.270
Date:	Thu, 07 Dec 2023	Prob (F-stati	stic):	4.03e-07
Time:	21:55:12	Log-Likelihoo	d:	-302.70
No. Observations:	43	AIC:		635.4
Df Residuals:	28	BIC:		661.8
Df Model:	14			
Covariance Type:	nonrobust			
=======================================			=========	=======
coe	f std err	t P> t	[0.025	0.975]
	7 3444 050	4 040 0 33	4 2572 720	4 05 .04
const 3475.950		1.010 0.32		1.05e+04
H2S 1.154		0.379 0.70		7.398
SAL -19.230	5 26.581	0.723 0.47	5 -73.679	35.218
Eh7 2.412	0 1.964	1.228 0.23	0 -1.612	6.435
pH 149.161	5 330.050	0.452 0.65	5 -526.915	825.238
BUF -19.690	9 121.063	0.163 0.87	2 -267.676	228.295
P -6.181	9 3.854	1.604 0.12	0 -14.077	1.713
K -1.016	8 0.474	2.144 0.04	1 -1.988	-0.045
Ca -0.065	7 0.125	0.524 0.60	4 -0.323	0.191
Mg -0.366	7 0.273	1.343 0.19	0 -0.926	0.192
Na 0.010	0.024	0.411 0.68	4 -0.040	0.060

-0.668

0.510

-14.975

7.612

Zn	-8.0818	21.989	-0.368	0.716	-53.125	36.961
Cu	373.8948	110.351	3.388	0.002	147.852	599.938
NH4	-1.5510	3.219	-0.482	0.634	-8.145	5.043
=======	========	=======	========		========	=======
Omnibus:		10	.120 Durb	in-Watson:		1.791
Prob(Omnib	ous):	0	.006 Jaro	ие-Вега (ЈВ	;):	14.888
Skew:		0	.602 Prob)(JB):		0.000585
Kurtosis:		5	.619 Cond	l. No.		1.22e+06
========		=======	========		========	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.22e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [18]: import numpy as np
         import pandas as pd
         from statsmodels.stats.outliers influence import variance inflation factor
         # Exclude the constant term from the design matrix
         X without constant = X.iloc[:, 1:]
         # Calculate the correlation matrix
         correlation matrix = X without constant.corr()
         # Display the correlation matrix
         print("Correlation Matrix:")
         #print(correlation matrix)
         # Calculate the eigenvalues of the correlation matrix
         eigenvalues, _ = np.linalg.eigh(correlation_matrix.values)
         # Display the eigenvalues
         print("\nEigenvalues:")
         #print(eigenvalues)
         # Calculate the condition indices
         condition indices = np.sqrt(eigenvalues / np.min(eigenvalues))
         # Create a DataFrame for the condition indices results
         condition indices data = pd.DataFrame()
         condition indices data["Variable"] = X without constant.columns
         condition indices data["Condition Index"] = condition indices
         # Display the condition indices results
```

```
print("\nCondition Indices:")
print(condition_indices_data)

# Create a DataFrame for the VIF results
vif_data = pd.DataFrame()

# Assign the variable names to the DataFrame
vif_data["Variable"] = X_without_constant.columns

# Calculate the VIF for each variable (excluding the constant term)
vif_data["VIF"] = [variance_inflation_factor(X_without_constant.values, i) for i in range(X_without_constant.shape[1])]

# Display the VIF results
print("\nVariance Inflation Factor (VIF):")
print(vif_data)
```

Correlation Matrix:

Eigenvalues:

```
Condition Indices:
   Variable Condition Index
       H2S
                   1.000000
0
1
       SAL
                   1.718758
2
       Eh7
                   2.183462
3
                   2.971940
        рΗ
4
       BUF
                   3.878506
5
         Ρ
                   4.097888
6
         Κ
                   5.240527
7
                   6.305562
         Ca
8
        Mg
                   7.190825
9
         Na
                   8.526557
10
                  11.378751
        Mn
11
         Zn
                  13.010699
12
         Cu
                  19.684432
13
        NH4
                  23.308398
Variance Inflation Factor (VIF):
   Variable
                   VIF
0
        H2S 540.841903
1
        SAL 132.939848
       Eh7 132.556078
2
        pH 264.512175
3
       BUF 69.232763
4
5
             7.862896
6
             54.884722
7
         Ca 24.330203
        Mg 267.346959
8
9
            66.956290
        Na
10
        Mn 11.662141
            67.820281
11
         Zn
12
        Cu
            73.925004
13
        NH4
             31.573602
```

```
In [13]: # Calculate the standard errors of coefficient estimates
    standard_errors = np.sqrt(np.diagonal(model.cov_params()))

# Calculate the sum of squared errors
    predicted_values = model.predict(X)
    sse = np.sum((Y - predicted_values)**2)
```

```
# Display the results
print("\nStandard Errors of Coefficient Estimates:")
print(standard_errors)

print("\nSum of Squared Errors (SSE):", sse)

# Calculate the sum of standard errors
sum_standard_errors = np.sum(standard_errors)

# Display the sum of standard errors
print("\nSum of Standard Errors of Coefficient Estimates:")
print(sum_standard_errors)

Standard Errors of Coefficient Estimates:
[3.44104953e+03 3.04809283e+00 2.65807170e+01 1.96420812e+00
3.30049906e+02 1.21062550e+02 3.85426750e+00 4.74291191e-01
1.25426110e-01 2.72958304e-01 2.42987465e-02 5.51338303e+00
2.19893953e+01 1.10350608e+02 3.21890149e+00]
```

Sum of Squared Errors (SSE): 3276740.280390066

4069.578532686799

Sum of Standard Errors of Coefficient Estimates:

```
In [68]: import pandas as pd
         import numpy as np
         from sklearn.decomposition import PCA
          from sklearn.preprocessing import StandardScaler
         from sklearn.linear model import LinearRegression
         csv file path = r'C:\Users\Olivia\Documents\Fall-2023\Applied-Statistics\HW\Major-Project\LINTHALL.csv'
         linthurst data = pd.read csv(csv file path)
         # Step 2: Preprocess the Data
         # Exclude unused columns
         linthurst data = linthurst data.iloc[:, 3:] # Assuming columns 0, 1, and 2 are not used
         Y = linthurst data['BIO']
         X = linthurst data.drop('BIO', axis=1)
         # Display the first few rows of the data
          #print("Preprocessed Data:")
          #print(linthurst data.head())
         # Continue to the next step once you're ready!
         # Step 3: Standardize the Data
         scaler = StandardScaler()
         X standardized = scaler.fit transform(X)
         # Display the standardized data
         #print("\nStandardized Data:")
          #print(pd.DataFrame(X standardized, columns=X.columns))
         # Continue to the next step once you're ready!
         # Import the required library
         import matplotlib.pyplot as plt
         # Perform Principal Component Analysis (PCA)
         pca = PCA()
         X pca = pca.fit transform(X standardized)
         # Display the explained variance ratio
         explained variance ratio = pca.explained variance ratio
         cumulative explained variance = np.cumsum(explained variance ratio)
         #print("\nExplained Variance Ratio:")
```

```
#print(pd.Series(explained variance ratio, name='Explained Variance'))
#print("\nCumulative Explained Variance:")
#print(pd.Series(cumulative explained variance, name='Cumulative Explained Variance'))
# Set the threshold for cumulative explained variance
threshold = 0.95 # You can adjust this threshold based on your preference
# Find the number of components to include
selected components = np.argmax(cumulative explained variance >= threshold) + 1
print(f"\nNumber of Components to Include (Explained Variance >= {threshold}): {selected components}")
# Display the selected principal components
selected pcs = X pca[:, :selected components]
selected pcs df = pd.DataFrame(selected pcs, columns=[f'PC{i}' for i in range(1, selected components + 1)])
#print("\nSelected Principal Components:")
#print(selected pcs df.head())
# Get the loadings of each principal component
loadings = pca.components [:selected components, :]
# Create a DataFrame to display the loadings
loadings df = pd.DataFrame(loadings.T, index=X.columns, columns=[f'PC{i}' for i in range(1, selected components + 1)])
#print("\nLoadings of Principal Components:")
#print(loadings df)
# Assuming target variable is stored in 'target variable'
target variable = linthurst data['BIO']
# Perform Principal Components Regression (PCR)
pca regression = LinearRegression()
pca regression.fit(selected pcs, target variable)
# Print the PCR model coefficients
print("\nPCR Model Coefficients:")
print(pd.Series(pca regression.coef , index=selected pcs df.columns, name='Coefficient'))
# Print the intercept of the PCR model
print("\nPCR Model Intercept:")
print(pca regression.intercept )
```

```
# Create a Series to display the original coefficients
original coefficients series = pd.Series(original coefficients, index=X.columns, name='Coefficient in Original Model')
print("\nRegression Coefficients in Original Model:")
print(original coefficients series)
# Predicted values from the PCR model
Y pcr pred = np.dot(selected pcs, pca regression.coef) + pca regression.intercept
# Compute residuals
residuals pcr = target variable - Y pcr pred
# Degrees of freedom
df pcr = len(target variable) - (selected components + 1)
# Residual standard error (RSE)
rse pcr = np.sqrt(np.sum(residuals pcr**2) / df pcr)
# Compute standard errors of PCR coefficients
std errors = rse pcr * np.sqrt(np.linalg.inv(np.dot(selected pcs.T, selected pcs)).diagonal())
# Loadings from PCA
loadings = pca.components [:selected components, :]
# Compute standard errors of original coefficients
se_original_coefficients = np.sqrt(np.sum((loadings ** 2) * (std_errors.reshape(-1, 1) ** 2), axis=0))
# Compute sum of standard errors
se sum = np.sum(se original coefficients)
# Sum of squared errors (SSE)
sse pcr = np.sum(residuals pcr**2)
# Display results
print("\nStandard Errors of Original Coefficients:")
print(pd.Series(se original coefficients, index=X.columns, name='SE(Original Coefficient)'))
print("\nSum of Standard Errors:")
print(se sum)
print("\nResidual Standard Error (RSE) of PCR Model:", rse pcr)
print("Sum of Squared Errors (SSE) of PCR Model:", sse pcr)
```

```
Number of Components to Include (Explained Variance >= 0.95): 8
PCR Model Coefficients:
PC1
       211.756090
       -79.789789
PC2
PC3
      -105.921327
PC4
       118.530564
PC5
       -65.106255
PC6
       -0.242776
PC7
       263.530008
PC8
       -52.807876
Name: Coefficient, dtype: float64
PCR Model Intercept:
991.7209302325582
Regression Coefficients in Original Model:
H2S
       125.706682
SAL
       -86.218624
Eh7
       -8.630284
рΗ
       129.884883
BUF
       -59.228780
Ρ
       -80.500788
Κ
       -11.243962
Ca
       52.100358
Mg
      -101.898511
Na
      -191.806475
Mn
      -106.873693
Zn
      -105.755671
Cu
      173.310659
       -11.222608
NH4
Name: Coefficient in Original Model, dtype: float64
Standard Errors of Original Coefficients:
H2S
       56.234249
      57.826071
SAL
Eh7
       70.534603
рΗ
       24.668499
BUF
       27.677141
Ρ
       82.856938
K
       16.121733
Ca
       46.374783
Mg
       23.632293
Na
       52.097194
Mn
       67.206851
```

```
Cu
                61.267619
         NH4
                59.513899
         Name: SE(Original Coefficient), dtype: float64
         Sum of Standard Errors:
         670.7091881009761
         Residual Standard Error (RSE) of PCR Model: 370.66219021119485
         Sum of Squared Errors (SSE) of PCR Model: 4671275.6145734405
In [60]: import pandas as pd
         import numpy as np
         from sklearn.model selection import train test split
         from sklearn.linear model import LinearRegression
         from sklearn.metrics import mean squared error
         # Load the Linthurst data
         csv file path = r'C:\Users\Olivia\Documents\Fall-2023\Applied-Statistics\HW\Major-Project\LINTHALL.csv'
         linthurst data = pd.read csv(csv file path)
         # Preprocess the data (exclude unused columns)
         linthurst data = linthurst data.iloc[:, 3:]
         Y = linthurst data['BIO']
         X = linthurst_data.drop('BIO', axis=1)
         # Split the data into training and testing sets
         X train, X test, Y train, Y test = train test split(X, Y, test size=0.2, random state=42)
         # Build the Ordinary Least Squares (OLS) model
         ols model = LinearRegression()
         ols model.fit(X train, Y train)
         # Predict on the test set
         Y ols pred = ols model.predict(X test)
         # Compute the Standard Error
         ols standard error = np.sqrt(mean squared error(Y test, Y ols pred))
         # Compute the Sum of Squared Errors (SSE)
         ols_sse = np.sum((Y_test - Y_ols_pred)**2)
         # Display the results
         print("OLS Model Coefficients:")
         print(pd.Series(ols_model.coef_, index=X.columns, name='Coefficient'))
```

24.697316

Zn

```
print("\nOLS Model Intercept:")
print(ols_model.intercept_)
print("\nStandard Error (OLS):", ols_standard_error)
print("Sum of Squared Errors (SSE) - OLS:", ols_sse)
OLS Model Coefficients:
H2S
         1.467394
        9.245495
SAL
Eh7
        2.993204
рΗ
       338.543187
BUF
       -34.611064
Ρ
        -6.445069
Κ
        -1.395271
       -0.153173
Ca
       -0.383653
Mg
Na
        0.027833
       -4.689579
Mn
       10.264915
Zn
      333.135937
Cu
NH4
        -0.209293
Name: Coefficient, dtype: float64
```

OLS Model Intercept: 2206.1450630147638

Standard Error (OLS): 373.4026047772123

Sum of Squared Errors (SSE) - OLS: 1254865.5472896628

```
In [4]: import pandas as pd
        import statsmodels.api as sm
        from statsmodels.stats.outliers influence import variance inflation factor
        def calculate vif(data):
            vif data = pd.DataFrame()
            vif_data["Variable"] = data.columns
            vif data["VIF"] = [variance inflation factor(data.values, i) for i in range(data.shape[1])]
            return vif data
        def stepwise selection(data, response, predictors, method='forward', alpha entry=0.10, alpha removal=0.10):
            selected predictors = []
            while True:
                 remaining predictors = [p for p in predictors if p not in selected predictors]
                 if method == 'forward':
                     current predictors = selected predictors.copy()
                     pvalues = []
                     for predictor in remaining predictors:
                         model = sm.OLS(data[response], sm.add constant(data[current predictors + [predictor]])).fit()
                         print(model.summary())
                         pvalues.append((predictor, model.pvalues[predictor], model))
                     best predictor, best pvalue, best model = min(pvalues, key=lambda x: x[1], default=(None, None, None))
                     if best pvalue is not None and best pvalue < alpha entry:</pre>
                         selected predictors.append(best predictor)
                         print(f'{method.capitalize()} Selection: Added {best predictor} to the model. P-value: {best pvalue}')
                         print(f'Current Model: {selected predictors}')
                         # Print regression result
                         print(best model.summary())
                     else:
                         break
                 elif method == 'backward':
                     if not selected predictors:
                         break
                     current predictors = selected predictors.copy()
```

```
pvalues backward = []
            for predictor in current predictors:
                model backward = sm.OLS(data[response], sm.add constant(data[current predictors].drop(predictor, axis=1
                pvalues backward.append((predictor, model backward.pvalues[predictor], model backward))
            variable to remove, pvalue backward, model backward = max(pvalues backward, key=lambda x: x[1], default=(No)
            if pvalue_backward is not None and pvalue_backward > alpha removal:
                selected predictors.remove(variable to remove)
                print(f'{method.capitalize()} Selection: Removed {variable to remove} from the model. P-value: {pvalue |
                print(f'Current Model: {selected predictors}')
                # Print regression result
                print(model backward.summary())
            else:
                break
    print(f'Final Selected Predictors: {selected predictors}')
    if not selected predictors:
        print("No predictors selected. Collinearity diagnostics cannot be performed.")
    else:
        # Run collinearity diagnostics after the final selection
        final model = sm.OLS(data[response], sm.add constant(data[selected predictors])).fit()
        print("\nCollinearity Diagnostics:")
        print(final model.summary())
        vif data = calculate vif(data[selected predictors])
        print("\nVIF:")
        print(vif data)
    return selected predictors
csv file path = r'C:\Users\Olivia\Documents\Fall-2023\Applied-Statistics\HW\Major-Project\LINTH-5.csv'
data = pd.read csv(csv file path)
response variable = 'BIO'
predictor columns = ['SAL', 'pH', 'K', 'Na', 'Zn']
# Run forward and backward stepwise regression
selected predictors forward = stepwise selection(data, response=response variable, predictors=predictor columns, method
selected predictors backward = stepwise selection(data, response=response variable, predictors=predictor columns, method
```

OLS Regression Results

					.=======	
Dep. Variable: BIO) R-saua	R-squared:		
Nodel:				R-squared:		0.005 -0.019
Method:		Least Squares				0.2267
Date:		Mon, 04 Dec 2023			lc):	0.637
ime:				kelihood:		-339.75
lo. Obser	rvations:		AIC:			683.5
Of Residu	uals:	41	BIC:			687.0
Of Model:	:	1	•			
		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
		 5 870.731				
AL	-13.5038	28.363	-0.476	0.637	-70.783	43.776
====== nnibus:	========	5.444		 n-Watson:		 0.705
rob(Omni	ibus):	0.066	Jarque	e-Bera (JB)):	4.290
kew:		0.655	5 Prob(JB):			0.117
urtosis:	•	2.177	Cond.	No.		262.
				: matrix or	the errors	is correct
ep. Vari odel:	iable:	OLS Regre BIO OLS Least Squares	ession Res R-squa Adj. F	sults ======== ared: R-squared:		
ep. Vari odel: ethod: ate:	iable:	BIO OLS Least Squares Mon, 04 Dec 2023	ession Res R-squa Adj. F F-stat	sults ======== ared: <-squared: =istic: F-statisti		 0.592 0.583 59.60 1.62e-09
ep. Vari odel: ethod: ate: ime:	iable:	BIO OLS Least Squares Mon, 04 Dec 2023	ession Res R-squa Adj. F F-stat Prob (Log-Li	sults ======== nred: R-squared: sistic:		0.592 0.583 59.60 1.62e-09
ep. Vari odel: ethod: ate: ime: o. Obser	iable: rvations:	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55	ssion Res R-squa Adj. F F-stat Prob (Log-Li AIC:	sults ======== ared: <-squared: =istic: F-statisti		 0.592 0.583 59.60 1.62e-09 -320.57 645.1
ep. Vari lodel: lethod: late: ime: lo. Obser	iable: ^vations: uals:	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43	Resion Resident Resid	sults ======== ared: <-squared: =istic: F-statisti		0.592 0.583 59.60 1.62e-09
ep. Vari odel: ethod: ate: ime: o. Obser F Residu f Model:	rvations: uals:	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41	Resion Resident Resid	sults ======== ared: <-squared: =istic: F-statisti		 0.592 0.583 59.60 1.62e-09 -320.57 645.1
ep. Vari odel: ethod: ate: ime: o. Obser f Residu f Model: ovariance	rvations: uals: ce Type:	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41 1	Resion Resident Resid	sults ======== ared: R-squared: istic: F-statisti kelihood:	.e):	 0.592 0.583 59.60 1.62e-09 -320.57 645.1 648.7
ep. Vari odel: ethod: ate: ime: o. Obser f Residu f Model: ovariance	rvations: uals: ce Type:	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41 1 nonrobust	Resion Resident Resid	sults ======== ared: R-squared: istic: F-statisti kelihood:	.e):	 0.592 0.583 59.60 1.62e-09 -320.57 645.1 648.7
ep. Vari odel: ethod: ate: ime: o. Obser f Residu f Model: ovarianc	rvations: uals: ce Type:	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41 1 nonrobust	Resion Resident Resid	sults ====================================	.c):	0.592 0.583 59.60 1.62e-09 -320.57 645.1 648.7
ep. Variodel: ethod: ate: ime: b. Obser f Residu f Model: bvariand	rvations: uals: ce Type: coef	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41 1 nonrobust	Resion Resident Resid	sults ====================================	[0.025	0.592 0.583 59.60 1.62e-09 -320.57 645.1 648.7
ep. Variodel: ethod: ate: lme: b. Obser Residu Model: bvariand monst	rvations: uals: ce Type: coef	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41 nonrobust std err L 248.570 B 52.256	Resion Resion Resion Resion Resion Resion Resident Reside	sults ====================================	[0.025 -1361.807	0.592 0.583 59.60 1.62e-09 -320.57 645.1 648.7
ep. Variodel: ethod: ate: ime: b. Obser f Residu f Model: bvarianc	rvations: uals: ce Type: coef -859.8091 403.4243	BIO OLS Least Squares Mon, 04 Dec 2023 09:32:55 43 41 1 nonrobust	R-squa R-	sults ====================================	[0.025 -1361.807 297.891	0.592 0.583 59.60 1.62e-09 -320.57 645.1 648.7

0.750 Prob(JB):

0.133

Skew:

Kurtosis:	2.997 Cond. No.	18.8

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

			Ü				
Dep. Var	======== iable:	========	BIO	R-sa	========= uared:	:=======	0.038
Model:	idoic.		OLS		R-squared:		0.015
Method:		Least Squares					1.635
Date:		Mon, 04 Dec 2023		Prob (F-statistic):			0.208
Time:		09:	32:55	Log-	Likelihood:		-339.03
No. Obse	rvations:		43	AIC:			682.1
Df Resid	uals:		41	BIC:			685.6
Df Model	:		1				
Covarian	ce Type:	nonr	obust				
======	========	========	======	=====	========	=======	=======
	coe	f std err	•	t	P> t	[0.025	0.975]
const	1332.222	2 284.609) 4	4.681	0.000	757.443	1907.002
K	-0.427	9 0.335	5 -:	1.279	0.208	-1.104	0.248
	========	========					
Omnibus:			4.206		in-Watson:		0.645
Prob(Omn	ibus):		0.122 Jarque-Bera (JB):				2.859
Skew:			0.460	Prob	(JB):		0.239

Notes:

Kurtosis:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.41e+03. This might indicate that there are strong multicollinearity or other numerical problems.

2.134 Cond. No.

OLS Regression Results

Dep. Variable:	BIO	R-squared:	0.067			
Model:	OLS	Adj. R-squared:	0.044			
Method:	Least Squares	F-statistic:	2.921			
Date:	Mon, 04 Dec 2023	Prob (F-statistic):	0.0950			
Time:	09:32:55	Log-Likelihood:	-338.39			
No. Observations:	43	AIC:	680.8			
Df Residuals:	41	BIC:	684.3			
Df Model:	1					
Covariance Type:	nonrobust					
===========	===========		=======================================			
СО	ef std err	t P> t	[0.025 0.975]			

const Na	1400.1101 -0.0244	258.605 0.014	5.414 -1.709	0.000 0.095	877.846 -0.053	1922.374 0.004
Omnibus: Prob(Omnibus) Skew: Kurtosis:	ous):	3.9 0.1 0.3 2.1	41 Jarque 75 Prob(,	:	0.701 2.433 0.296 4.73e+04
=======		========	=======			========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.73e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variab	le:		BIO	R-squ	uared:		0.407
Model:			OLS	Adj.	R-squared:		0.393
Method:		Least Sq	uares	F-sta	atistic:		28.19
Date:		Mon, 04 Dec	2023	Prob	(F-statisti	.c):	4.13e-06
Time:		09:	32:55	Log-I	Likelihood:	•	-328.62
No. Observa	tions:		43	AIC:			661.2
Df Residual	s:		41	BIC:			664.8
Df Model:			1				
Covariance	Type:	nonre	bust				
========	=======	-=======		=====		========	========
	coe-	f std err				[0.025	0.975]
const	1880.6136			 0 . 164		1506.938	2254.290
Zn	-50.0842	9.433	-	5.309	0.000	-69.135	-31.033
	=======	========	=====	======		:=======	
Omnibus:			3.083		in-Watson:		0.775
Prob(Omnibu	s):	(ð.214	Jarqı	ue-Bera (JB)	:	2.600
Skew:		(0.601	Prob	(JB):		0.273
Kurtosis:		;	2.919	Cond	. No.		46.2
========	=======	-=======		=====	========	:=======	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Forward Selection: Added pH to the model. P-value: 1.6167124495127452e-09 Current Model: ['pH']

OLS Regression Results

			=====
Dep. Variable:	BIO	R-squared:	0.592
Model:	OLS	Adj. R-squared:	0.583

Method:	L	east Squar	es	F-stat	istic:		59.60
Date:	Mon,	04 Dec 20	23	Prob (F-statisti	c):	1.62e-09
Time:		09:32:	55	Log-Li	kelihood:		-320.57
No. Observations:		4	43	AIC:			645.1
Df Residuals:		4	41	BIC:			648.7
Df Model:			1				
Covariance Type:		nonrobu	st				
===========	coef	std err	====	t	P> t	[0.025	0.975]
const -859.	8091	248.570	-3	.459	0.001	-1361.807	-357.811
pH 403.	4243	52.256	7	.720	0.000	297.891	508.958
Omnibus:	======	 4.6:	==== 16	===== Durbin	======== -Watson:	========	0.811
Prob(Omnibus):		0.09	99	Jarque	e-Bera (JB)	•	4.029
Skew:		0.7	50	Prob(J	, ,		0.133
Kurtosis:		2.99	97	Cond.	No.		18.8
=============	======	=======	====	======	=======	=======	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable:	BIO	R-squared:	0.595
Model:	OLS	Adj. R-squared:	0.575
Method:	Least Squares	F-statistic:	29.40
Date:	Mon, 04 Dec 2023	<pre>Prob (F-statistic):</pre>	1.40e-08
Time:	09:32:55	Log-Likelihood:	-320.43
No. Observations:	43	AIC:	646.9
Df Residuals:	40	BIC:	652.1
Df Model:	2		

Covariance Type: nonrobust

========		========	========			========
	coef	std err	t	P> t	[0.025	0.975]
const pH SAL	-567.5336 402.6382 -9.4681	618.903 52.752 18.329	-0.917 7.633 -0.517	0.365 0.000 0.608	-1818.383 296.023 -46.512	683.316 509.253 27.576
========		========	========			========
Omnibus:		5	.326 Durt	oin-Watson:		0.838
Prob(Omnib	ous):	0	.070 Jaro	que-Bera (JE	3):	4.616
Skew:	•	0	.801 Prob) (JB):	,	0.0995
Kurtosis:		3	.110 Cond	d. No.		292.
========		========	========			========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS	Regression	Results
-----	------------	---------

Dep. Variable:	BIO	R-squared:	0.640
Model:	OLS	Adj. R-squared:	0.622
Method:	Least Squares	F-statistic:	35.54
Date:	Mon, 04 Dec 2023	<pre>Prob (F-statistic):</pre>	1.34e-09
Time:	09:32:55	Log-Likelihood:	-317.91
No. Observations:	43	AIC:	641.8
Df Residuals:	40	BIC:	647.1
Df Model:	2		
Covariance Type:	nonrobust		

Covariance Type: nonrobust

========		========	========			========
	coef	std err	t	P> t	[0.025	0.975]
const pH K	-495.7423 406.6875 -0.4763	284.763 49.749 0.207	-1.741 8.175 -2.296	0.089 0.000 0.027	-1071.270 306.141 -0.896	79.785 507.234 -0.057
=======		=======	:=======	:=======		========
Omnibus: Prob(Omnib	nus):	_		oin-Watson: que-Bera (JE	3):	0.841 7.464
Skew:	,,,,			o(JB):		0.0240
		_		` '		
Kurtosis:		3	3.497 Cond	d. No.		3.93e+03
========		========	========			========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.93e+03. This might indicate that there are strong multicollinearity or other numerical problems.

========	======		======	======	=====			
Dep. Variab	le:			BIO	R-squ	uared:		0.650
Model:				OLS	Adj.	R-squared:		0.632
Method:		L	east Sq	uares	F-sta	atistic:		37.13
Date:		Mon,	04 Dec	2023	Prob	(F-statisti	ic):	7.64e-10
Time:			09:	32:55	Log-l	ikelihood:		-317.31
No. Observat	tions:			43	AIC:			640.6
Df Residuals	s:			40	BIC:			645.9
Df Model:				2				
Covariance ⁻	Гуре:		nonr	obust				
	CO6	=== = ef 	std err		t	P> t	[0.025	0.975]
const	-466.374	18	279.219	-1	.670	0.103	-1030.698	97.948

рН	400.4547	49.046	8.165	0.000	301.329	499.580
Na	-0.0227	0.009	-2.563	0.014	-0.041	-0.005
=======						=======
Omnibus:		10.4	456 Durbi	n-Watson:		0.919
Prob(Omnib	ous):	0.0	005 Jarqu	e-Bera (JB):	:	9.845
Skew:		1.0	082 Prob(JB):		0.00728
Kurtosis:		3.9	901 Cond.	No.		8.32e+04
========						=======

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

=======	=======		=====	=====		========	========
Dep. Varia	ble:		BIO	R-sq	uared:		0.605
Model:			OLS	Adj.	R-squared:		0.585
Method:		Least Sq	uares	F-sta	atistic:		30.60
Date:		Mon, 04 Dec	2023	Prob	(F-statist	ic):	8.68e-09
Time:		09:	32:55	Log-l	Likelihood:	•	-319.92
No. Observ	ations:		43	AIC:			645.8
Df Residua	ls:		40	BIC:			651.1
Df Model:			2				
Covariance	Type:	nonr	obust				
========	=======:		=====	=====	========	=======	========
	coe-	f std err		t	P> t	[0.025	0.975]
const	-348.379	521.805		0.668	0.508	-1402.987	706.227
рН	341.234	76.371		4.468	0.000	186.882	495.587
Zn	-12.734	11.433	-	1.114	0.272	-35.842	10.374
=======	=======		=====	=====	========		========
Omnibus:			3.622	Durb:	in-Watson:		0.810
Prob(Omnib	us):		0.163	Jarqı	ue-Bera (JB):	2.955
Skew:			0.642	Prob	(JB):		0.228
Kurtosis:			3.045	Cond	. No.		162.
=======	=======		=====	======		========	========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Forward Selection: Added Na to the model. P-value: 0.01424575810902225 Current Model: ['pH', 'Na']

=======================================	=======		==========
Dep. Variable:	BIO	R-squared:	0.650
Model:	OLS	Adj. R-squared:	0.632

Method:		Least Squa	ares	F-stat	istic:		37.13
Date:		Mon, 04 Dec 2	2023	Prob (F-statisti	c):	7.64e-10
Time:		09:32	2:55	Log-Li	kelihood:		-317.31
No. Observ	ations:		43	AIC:			640.6
Df Residua	ls:		40	BIC:			645.9
Df Model:			2				
Covariance	Type:	nonrol	oust				
=======	coe-	f std err	=====	====== t	P> t	[0.025	0.975]
const	-466.3748	8 279.219	-1	.670	0.103	-1030.698	97.948
рН	400.4547	7 49.046	8	.165	0.000	301.329	499.580
Na	-0.0227	7 0.009	-2	.563	0.014	-0.041	-0.005
========	=======		=====	======		========	=======
Omnibus:			.456		ı-Watson:		0.919
Prob(Omnib	us):	0	.005	Jarque	e-Bera (JB)	:	9.845
Skew:		1.	.082	Prob(J	IB):		0.00728
Kurtosis:		3.	.901	Cond.	No.		8.32e+04
========	=======		=====	======	=======	========	=======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 8.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results _____

Dep. Vari	able:		BIO	R-squ	ared:		0.650
Model:			OLS	Adj.	R-squared:		0.623
Method:		Least Squa	ares	F-sta	tistic:		24.17
Date:		Mon, 04 Dec 2	2023	Prob	(F-statisti	c):	5.25e-09
Time:		09:32	2:55	Log-L	ikelihood:		-317.28
No. Obser	vations:		43	AIC:			642.6
Df Residu	als:		39	BIC:			649.6
Df Model:			3				
Covarianc	e Type:	nonrob	oust				
=======	========	:=======		=====	========	=======	=======
	coef	std err		t	P> t	[0.025	0.975]
const	-364.5401	588.269	 9-	.620	0.539	-1554.427	825.347
рH	400.2018	49.662	8	3.058	0.000	299.750	500.654
Na	-0.0225	0.009	- 2	2.480	0.018	-0.041	-0.004
SAL	-3.4389	17.423	-6	.197	0.845	-38.679	31.802
=======	========	:=======		=====	========	=======	=======
Omnibus:		10.	322	Durbi	n-Watson:		0.927
Prob(Omni	bus):	0.	.006	Jarqu	e-Bera (JB)	:	9.681

Kurtosis:	3.879	Cond. No.	1.72e+05
Skew:	1.076	Prob(JB):	0.00790

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.72e+05. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

			, .=====					_
								_
Dep. Varia	apre:			-squared:			0.652	
Model:		C)LS A	dj. R-squa	ared:		0.62	5
Method:		Least Squar	es F	-statistic	:		24.35	5
Date:		Mon, 04 Dec 20)23 P	rob (F-sta	atistic)	:	4.80e-09	Э
Time:		09:32:		og-Likelih	•		-317.18	2
No. Observ	ations:			IC:	1004.		642.4	
			_					
Df Residua	ars:		_	IC:			649.4	ł
Df Model:			3					
Covariance	Type:	nonrobu	ıst					
========		=========	=====	=======		=======	=======	=
	coef	std err		t P	> t	[0.025	0.975]
								-
const	-439.6711	287.648	-1.5	29 0.	.134 -	1021.494	142.152	2
рН	402.2804	49.683	8.0	97 0.	.000	301.787	502.773	3
Na	-0.0172	0.015	-1.1	59 0.	.254	-0.047	0.013	3
K	-0.1606	0.342	-0.4	70 0.	.641	-0.852	0.532	L
========		=========		=======		=======	=======	=
Omnibus:		10.5	609 D	urbin-Wats	son:		0.887	7
Prob(Omnib	ous):	0.0	905 J	arque-Bera	a (JB):		9.918	3
Skew:		1.0	88 P	rob(JB):			0.00702	2
Kurtosis:		3.8	893 C	ond. No.			8.49e+04	1
========	.=======		.=====					_

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.49e+04. This might indicate that there are strong multicollinearity or other numerical problems.

============			===========
Dep. Variable:	BIO	R-squared:	0.656
Model:	OLS	Adj. R-squared:	0.629
Method:	Least Squares	F-statistic:	24.74
Date:	Mon, 04 Dec 2023	<pre>Prob (F-statistic):</pre>	3.92e-09
Time:	09:32:55	Log-Likelihood:	-316.96
No. Observations:	43	AIC:	641.9

Df Residu Df Model:			39 BIC:			649.0
Covariance Type:		nonrobu	ust 			
	coef	std err	t	P> t	[0.025	0.975]
const	-135.3154	501.231	-0.270	0.789	-1149.152	878.521
рН	358.0263	72.538	4.936	0.000	211.304	504.749
Na	-0.0216	0.009	-2.399	0.021	-0.040	-0.003
Zn	-8.7171	10.938	-0.797	0.430	-30.841	13.407
=======	=========	========		=======		=======
Omnibus:		10.4	491 Durbin	-Watson:		0.928
Prob(Omni	bus):	0.0	005 Jarque	-Bera (JB)):	9.862
Skew:		1.6	956 Prob(J	B):		0.00722

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.49e+05

[2] The condition number is large, 1.49e+05. This might indicate that there are strong multicollinearity or other numerical problems.

4.021 Cond. No.

Final Selected Predictors: ['pH', 'Na']

Collinearity Diagnostics:

Dep. Varia	ble:		BIO	R-sq	uared:		0.650
Model:			OLS	Adj.	R-squared:		0.632
Method:		Least Squ	ares	F-st	atistic:		37.13
Date:		Mon, 04 Dec	2023	Prob	(F-statisti	.c):	7.64e-10
Time:		09:3	2:55	Log-	Likelihood:		-317.31
No. Observ	ations:		43	AIC:			640.6
Df Residua	ls:		40	BIC:			645.9
Df Model:			2				
Covariance	Type:	nonro	bust				
=======	========	========	=====	=====	========	========	========
	coe-	f std err		t	P> t	[0.025	0.975]
const	-466.3748	3 279.219	 -1	.670	0.103	-1030.698	97.948
рН	400.4547	49.046	8	.165	0.000	301.329	499.580
Na	-0.022	0.009	-2	.563	0.014	-0.041	-0.005
=======	========	========	=====	=====	========	========	========
Omnibus:		10	.456	Durb	in-Watson:		0.919
Prob(Omnib	us):	0	.005	Jarq	ue-Bera (JB)	:	9.845
Skew:		1	.082	Prob	(JB):		0.00728

Kurtosis: 3.901 Cond. No. 8.32e+04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

VIF:

Variable VIF 0 pH 4.775603 1 Na 4.775603

Final Selected Predictors: []

No predictors selected. Collinearity diagnostics cannot be performed.

```
In [5]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.linear model import Ridge
        from sklearn.preprocessing import StandardScaler
        from statsmodels.stats.outliers influence import variance inflation factor
        import statsmodels.api as sm
        # Load the data
        csv file path = r'C:\Users\Olivia\Documents\Fall-2023\Applied-Statistics\HW\Major-Project\LINTH-5.csv'
        data = pd.read csv(csv file path)
        # Define predictors and response
        X = data[['SAL', 'pH', 'K', 'Na', 'Zn']]
        y = data['BIO']
        # Standardize the predictors
        scaler = StandardScaler()
        X scaled = scaler.fit transform(X)
        # Calculate VIFs for the original ridge regression
        vif data initial = pd.DataFrame()
        vif data initial["Variable"] = X.columns
        vif data initial["VIF"] = [variance_inflation_factor(X_scaled, i) for i in range(X_scaled.shape[1])]
        # Fit the initial ridge regression model
        alpha = 0.001
        ridge initial = Ridge(alpha=alpha)
        ridge initial.fit(X scaled, y)
        # Print the summary of the initial ridge regression model
        X scaled with intercept = sm.add constant(X scaled) # Adding constant for statsmodels
        model initial = sm.OLS(y, X scaled with intercept).fit()
        print("\nInitial Ridge Regression Model Summary:")
        print(model initial.summary())
        # Print VIFs for the original ridge regression
        print("\nCollinearity Diagnostics for Original Ridge Regression (VIF):")
        print(vif data initial)
        # Ridge trace
        alphas = np.logspace(-3, 3, 100)
        coefs = []
```

```
mse values = []
for alpha in alphas:
    ridge = Ridge(alpha=alpha)
    ridge.fit(X scaled, y)
    coefs.append(ridge.coef )
    # Evaluate performance using mean squared error
    y pred = ridge.predict(X scaled)
    mse = mean squared error(y, y pred)
    mse values.append(mse)
# Convert to numpy array for easier manipulation
coefs = np.array(coefs)
mse values = np.array(mse values)
# Variable selection (Choose alpha based on the ridge trace)
best alpha index = np.argmin(mse values)
best alpha = alphas[best alpha index]
# Refit the model with the best alpha
ridge refit = Ridge(alpha=best alpha)
ridge refit.fit(X scaled, y)
# Print the summary of the refitted ridge regression model
model refit = sm.OLS(y, X scaled with intercept).fit()
print("\nRefitted Ridge Regression Model Summary:")
print(model refit.summary())
# Calculate VIFs for the refitted ridge regression
vif data refit = pd.DataFrame()
vif data refit["Variable"] = X.columns
vif data refit["VIF"] = [variance inflation factor(X scaled, i) for i in range(X scaled.shape[1])]
# Print VIFs for the refitted ridge regression
print("\nCollinearity Diagnostics for Refitted Ridge Regression (VIF):")
print(vif_data_refit)
# Plot the ridge trace
plt.figure(figsize=(10, 6))
for i in range(coefs.shape[1]):
    plt.plot(alphas, coefs[:, i], label=X.columns[i])
plt.xscale('log')
plt.title('Ridge Trace')
```

```
plt.xlabel('Alpha (log scale)')
plt.ylabel('Coefficient Value')
plt.legend()
plt.show()

# Print the coefficients for the best alpha
print('\nCoefficients for Best Alpha:')
for feature, coef in zip(X.columns, ridge_refit.coef_):
    print(f'{feature}: {coef}')
```

Initial Ridge Regression Model Summary:

OLS Regression Results							
Dep. Varia Model: Method: Date: Time: No. Observ	Th vations:		OLS Adj. Pes F-st O23 Prob		c):	0.670 0.626 15.04 4.60e-08 -316.02 644.0 654.6	
Df Model: Covariance	========	nonrobu std err		P> t	======================================	 0.975]	
const x1 x2 x3 x4 x5	991.7209 -107.5391 370.8427 -83.0192 -57.2255 -179.7898	61.864 89.636 112.846 106.839 112.579 128.423	16.031 -1.200 3.286 -0.777 -0.508 -1.400	0.000 0.238 0.002 0.442 0.614 0.170	142.195 -299.495	74.081 599.491	
Omnibus: Prob(Omnib	ous):			in-Watson: ue-Bera (JB)	:	1.040 7.504	

0.944 Prob(JB):

3.789 Cond. No.

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.0235

Collinearity Diagnostics for Original Ridge Regression (VIF):

	Variable	VIF
0	SAL	2.099364
1	рН	3.327339
2	K	2.982513
3	Na	3.311625
4	Zn	4.309322

Refitted Ridge Regression Model Summary:

Dep. Variable:	BIO	R-squared:	0.670
Model:	0LS	Adj. R-squared:	0.626
Method:	Least Squares	F-statistic:	15.04

Date: Time: No. Observ Df Residua		Thu, 07 Dec 2 17:30		(F-statisti ikelihood:	c):	4.60e-08 -316.02 644.0 654.6
Df Model:			5			
Covariance	e Type:	nonrob	oust			
=======	coef	std err	t		[0.025	0.975]
const	991.7209	61.864	16.031	0.000	866.372	1117.069
x1	-107.5391	89.636	-1.200	0.238	-289.159	74.081
x2	370.8427	112.846	3.286	0.002	142.195	599.491
x3	-83.0192	106.839	-0.777	0.442	-299.495	133.457
x4	-57.2255	112.579	-0.508	0.614	-285.333	170.882
x5	-179.7898	128.423	-1.400	0.170	-439.999	80.420
=======	========	=========	========	=======	========	
Omnibus:		8.	537 Durbi	n-Watson:		1.040
Prob(Omnil	bus):	0.	014 Jarqu	e-Bera (JB)	:	7.504
Skew:		0.	944 Prob(JB):		0.0235
Kurtosis:		3.	789 Cond.	No.		4.19

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Collinearity Diagnostics for Refitted Ridge Regression (VIF):

Variable VIF
0 SAL 2.099364
1 pH 3.327339
2 K 2.982513
3 Na 3.311625
4 Zn 4.309322

Coefficients for Best Alpha: SAL: -107.53851451583436 pH: 370.83077881316626 K: -83.01536429707183 Na: -57.227014705963946 Zn: -179.79420415004194

```
In [10]: import pandas as pd
         from itertools import combinations
         from statsmodels.stats.outliers influence import variance inflation factor
         from statsmodels.regression.linear_model import OLS
         import statsmodels.api as sm
         # Load the data
         csv file path = r'C:\Users\Olivia\Documents\Fall-2023\Applied-Statistics\HW\Major-Project\LINTH-5.csv'
         data = pd.read_csv(csv_file_path)
         # Define predictors and response
         X = data[['SAL', 'pH', 'K', 'Na', 'Zn']]
         y = data['BIO']
         # Generate all possible combinations of two variables
         predictor combinations = list(combinations(X.columns, 2))
         # Initialize variables to store best model information
         best bic = float('inf')
         best model = None
         # Iterate through all two-variable combinations
         for combo in predictor combinations:
             # Select the two variables
             current predictors = list(combo)
             # Fit the linear regression model
             X current = X[current predictors]
             X_current = sm.add_constant(X_current) # Add constant term for intercept
             model = OLS(y, X current).fit()
             print("\nTwo-Variable Model:", current_predictors)
             print(model.summary())
             # Calculate BIC
             bic = model.bic
             # Check if the current model has the lowest BIC
             if bic < best bic:</pre>
                 best bic = bic
                 best_model = current_predictors
```

Display the best two-variable model
print("\nBest Two-Variable Model:", best_model)

Two-Variable Model: ['SAL', 'pH']

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations:		Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:	0.595 0.575 29.40 1.40e-08 -320.43 646.9				
Df Residuals: Df Model:	40	BIC:	652.1				
Covariance Type:	nonrobust						
=======================================	coef std err	t P> t [0.025	0.975]				
const -567. SAL -9. pH 402.	4681 18.329	-0.917 0.365 -1818.383 -0.517 0.608 -46.512 7.633 0.000 296.023	683.316 27.576 509.253				
Omnibus: Prob(Omnibus): Skew: Kurtosis:	5.326 0.070 0.801 3.110	Jarque-Bera (JB): Prob(JB):	0.838 4.616 0.0995 292.				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Two-Variable Model: ['SAL', 'K']

Dep. Vari	iable:	E	3IO R-squ	ared:		0.044
Model:		(DLS Adj.	R-squared:		-0.003
Method:		Least Squar	res F-sta	tistic:		0.9305
Date:		Thu, 07 Dec 20	Prob	(F-statisti	c):	0.403
Time:		16:51	:30 Log-L	ikelihood:		-338.89
No. Obser	rvations:		43 AIC:			683.8
Df Residu	uals:		40 BIC:			689.1
Df Model:	:		2			
Covariand	ce Type:	nonrobu	ıst			
=======		========		=======	========	=======
	coef	std err	t	P> t	[0.025	0.975]
const	1769.3738	910.385	1.944	0.059	-70.583	3609.330
SAL	-14.2462	28.153	-0.506	0.616	-71.145	42.653

K	-0.4314	0.338	-1.277	0.209	-1.114	0.251			
========	========		=======	========		=======			
Omnibus:		4.21	.4 Durbi	n-Watson:		0.659			
Prob(Omnibu	s):	0.12	2 Jarqu	e-Bera (JB):		2.744			
Skew:		0.43	3 Prob(JB):		0.254			
Kurtosis:		2.11	.6 Cond.	No.		7.65e+03			

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.65e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Two-Variable Model: ['SAL', 'Na']

OLS Regression Results

Dep. Varia	ble:		BIO	R-squ	ared:		0.068
Model:			OLS	Adj.	R-squared:		0.021
Method:		Least Squ	ares	F-sta	tistic:		1.459
Date:		Thu, 07 Dec	2023	Prob	(F-statistic	:):	0.245
Time:		16:5	1:30	Log-L	ikelihood:		-338.36
No. Observ	ations:		43	AIC:			682.7
Df Residua	ls:		40	BIC:			688.0
Df Model:			2				
Covariance	Type:	nonro	bust				
=======	=======		=====	======	========		========
	coef	std err		t	P> t	[0.025	0.975]
const	1606.7805	862.396		1.863	0.070	-136.186	3349.747
SAL	-7.0609	28.075	-	0.251	0.803	-63.803	49.682
Na	-0.0239	0.015	-	1.637	0.109	-0.053	0.006
Omnibus:	=======		.165	===== Durbi	n-Watson:	=======	0.707
Prob(Omnib	us):		.125		e-Bera (JB):		2.469
Skew:	•	e	.367		` '		0.291
Kurtosis:		2	.084	Cond.	•		1.56e+05
========	========		=====	======	========		========

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.56e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Two-Variable Model: ['SAL', 'Zn']

========	========	=======		======			
Dep. Varia	ble:		BIO	R-sq	uared:		0.551
Model:			OLS	Adj.	R-squared:		0.529
Method:		Least	Squares	F-st	atistic:		24.57
Date:		Thu, 07	Dec 2023	Prob	(F-statistic	:):	1.09e-07
Time:			16:51:30	Log-	Likelihood:		-322.64
No. Observ	ations:		43	AIC:			651.3
Df Residua	ls:		40	BIC:			656.6
Df Model:			2				
Covariance	Type:	n	onrobust				
=======	========	======	======	======			========
	coef	std	err 	t	P> t	[0.025	0.975]
const	4450.3222	735.	825	6.048	0.000	2963.165	5937.480
SAL	-76.2098	21.	280 -	-3.581	0.001	-119.219	-33.201
Zn	-63.9559	9.	169 -	-6.975	0.000	-82.487	-45.425
	=======				========= •	=======	
Omnibus:			1.044		in-Watson:		1.524
Prob(Omnib	us):		0.593		ue-Bera (JB):		1.085
Skew:			0.315	Prob	(JB):		0.581
Kurtosis:			2.543	Cond	. No.		377.
=======	=======	======	======	======	========	=======	========

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Two-Variable Model: ['pH', 'K']
OLS Regression Results

			6			
=======	========	========	======	=======		
Dep. Vari	able:		BIO R-	squared:		0.640
Model:		1	OLS Ad	j. R-squared	d:	0.622
Method:		Least Squa	res F-	statistic:		35.54
Date:	Т	hu, 07 Dec 2	023 Pr	ob (F-statis	stic):	1.34e-09
Time:		16:51	:30 Lo	g-Likelihood	d:	-317.91
No. Obser	vations:		43 AI	C:		641.8
Df Residu	als:		40 BI	C:		647.1
Df Model:			2			
Covarianc	e Type:	nonrob	ust			
=======	========	========	======	========		
	coef	std err		t P> t	[0.025	0.975]
const	-495.7423	284.763	-1.74	1 0.089	-1071.270	79.785
рН	406.6875	49.749	8.17	5 0.000	306.141	507.234
K	-0.4763	0.207	-2.29	6 0.027	-0.896	-0.057

Omnibus:	8.283	Durbin-Watson:	0.841
Prob(Omnibus):	0.016	Jarque-Bera (JB):	7.464
Skew:	0.990	Prob(JB):	0.0240
Kurtosis:	3.497	Cond. No.	3.93e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.93e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Two-Variable Model: ['pH', 'Na']

OLS Regression Results

Dep. Varia	able:		BIO	R-sq	uared:		0.650
Model:			OLS	Adj.	R-squared:		0.632
Method:		Least	Squares	F-st	atistic:		37.13
Date:		Thu, 07 [Dec 2023	Prob	(F-statisti	c):	7.64e-10
Time:		:	16:51:30	Log-	Likelihood:		-317.31
No. Observ	/ations:		43	AIC:			640.6
Df Residua	als:		40	BIC:			645.9
Df Model:			2				
Covariance	e Type:	no	onrobust				
========			======	======	========	=======	========
	coef				P> t	[0.025	0.975]
					0.103	-1030.698	97.948
рН	400.4547	7 49.0	946	8.165	0.000	301.329	499.580
Na	-0.0227	0.0	30 9	-2.563	0.014		
Omnibus:			10.456	===== Durb	======== in-Watson:	========	0.919
Prob(Omnib	ous):		0.005	Jarq	ue-Bera (JB)	•	9.845
Skew:	•		1.082	Prob	(JB):		0.00728
Kurtosis:			3.901	Cond	. No.		8.32e+04
========		=======	======:	======	========	========	========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.32e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Model:		01	LS Adj. F	R-squared:		0.585
Method:		Least Square	es F-stat	istic:		30.60
Date:	٦	Thu, 07 Dec 20	23 Prob ([F-statisti	.c):	8.68e-09
Time:		16:51:	30 Log-Li	kelihood:		-319.92
No. Obser	rvations:	4	43 AIC:			645.8
Df Residu	uals:	4	40 BIC:			651.1
Df Model:	:		2			
Covariand	ce Type:	nonrobu	st			
=======	coef	std err	t	P> t	[0.025	0.975]
const	-348.3798	521.805	-0.668	0.508	-1402.987	706.227
рН	341.2342	76.371	4.468	0.000	186.882	495.587
Zn	-12.7342	11.433	-1.114	0.272	-35.842	10.374
Omnibus:			======= 22 Durbir	======= n-Watson:	=======	0.810
Prob(Omni	ibus):	0.10		e-Bera (JB)	:	2.955
Skew:	,	0.64	• .	, ,		0.228
Kurtosis	:	3.04	•	•		162.
=======			========		========	:=======

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Two-Variable Model: ['K', 'Na']

Dep. Varial Model: Method: Date:	ble:	BI OL Least Square Thu, 07 Dec 202	S Adj. R s F-stat 3 Prob (-squared: istic: F-statistic	<u>:</u>):	0.067 0.020 1.430 0.251
Time:		16:51:3	•	kelihood:		-338.39
No. Observa	ations:	4	3 AIC:			682.8
Df Residua	ls:	4	0 BIC:			688.1
Df Model:			2			
Covariance	Type:	nonrobus	it			
========	=======	:========	=======	========		=======
	coef	std err	t	P> t	[0.025	0.975]
const	1387.8770	288.304	4.814	0.000	805.192	1970.562
K	0.0558	0.551	0.101	0.920	-1.058	1.169
Na	-0.0264	0.024	-1.103	0.276	-0.075	0.022
========	=======	==========	:=======	=======	========	=======
Omnibus:		4.04		-Watson:		0.712
Prob(Omnib	us):	0.13	32 Jarque	-Bera (JB)	:	2.490

Kurtosis:	2.101	Cond. No.	5.21e+04
Skew:	0.382	Prob(JB):	0.288

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.21e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Two-Variable Model: ['K', 'Zn']

OLS Regression Results

=======================================			=======	=======
Dep. Variable:	BIO	R-squared:		0.430
Model:	OLS	Adj. R-squared:		0.402
Method:	Least Squares	F-statistic:		15.11
Date:	Thu, 07 Dec 2023	Prob (F-statistic):	1.29e-05
Time:	16:51:30	Log-Likelihood:		-327.77
No. Observations:	43	AIC:		661.5
Df Residuals:	40	BIC:		666.8
Df Model:	2			
Covariance Type:	nonrobust			
			=======	
coet	f std err	t P> t	[0.025	0.975]
const 2130.0023	3 268.882	7.922 0.000	1586.572	2673.433
K -0.3326	0.261	-1.270 0.211	-0.860	0.196
Zn -49.2507	9.387	-5.247 0.000	-68.222	-30.280
		Dunkin Untrops	=======	0.715
Omnibus:	6.307			0.715
Prob(Omnibus):	0.043	1 ,		5.316
Skew:	0.841	` /		0.0701
Kurtosis:	3.373	Cond. No.		2.93e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.93e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Two-Variable Model: ['Na', 'Zn']

=======================================			==========
Dep. Variable:	BIO	R-squared:	0.440
Model:	OLS	Adj. R-squared:	0.412
Method:	Least Squares	F-statistic:	15.74

Date:	Thu, 07 Dec 2	2023 Prob	o (F-statistio	:):	9.07e-06
Time:	16:51	.:30 Log-	·Likelihood:		-327.39
No. Observations:		43 AIC:			660.8
Df Residuals:		40 BIC:			666.1
Df Model:		2			
Covariance Type:	nonrob	oust			
	=========	=======			========
coe	f std err	t	P> t	[0.025	0.975]
const 2139.299	8 248.072	8.624	0.000	1637.927	2640.673
Na -0.017	3 0.011	-1.535	0.133	-0.040	0.005
Zn -48.337	7 9.351	-5.170	0.000	-67.236	-29.440
============	========				========
Omnibus:	5.	749 Durb	oin-Watson:		0.844
Prob(Omnibus):	0.	056 Jaro	que-Bera (JB):		4.759
Skew:	0.	798 Prob)(JB):		0.0926
Kurtosis:	3.	331 Cond	d. No.		5.79e+04
============	========				========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.79e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Best Two-Variable Model: ['pH', 'Na']