Q 输入搜索文本...

如何安装 MegEngine

用户迁移指南

常见问题汇总

模型开发 (基础篇)

深入理解 Tensor 数据结构

Rank, Axes 与 Shape 属性 Tensor 元素索引

Tensor 数据类型

Tensor 所在设备

Tensor 具象化举例

Tensor 内存布局

使用 Functional 操作与计算

使用 Data 构建输入 Pipeline

使用 Module 定义模型结构

Autodiff 基本原理与使用

使用 Optimizer 优化参数

保存与加载模型 (S&L)

使用 Hub 发布和加载预训练模型

模型开发 (进阶篇)

通过重计算节省显存(Recomputation)分布式训练(Distributed Training)
量化(Quantization)
自动混合精度(AMP)
模型性能数据生成与分析(Profiler)
使用 TracedModule 发版
即时编译(JIT)

推理部署篇

模型部署总览与流程建议
使用 MegEngine Lite 部署模型
MegEngine Lite 使用接口
使用 MegEngine Lite 部署模型进阶
使用 Load and run 测试与验证模型

工具与插件篇

参数和计算量统计与可视化
MegEngine模型可视化
RuntimeOpr使用说明
自定义算子(Custom Op)

Tensor 数据类型

🚹 参见

在计算机科学中,数据类型负责告诉编译器或解释器程序员打算如何使用数据。参考 Data type WIKI.

MegEngine 中借助 <u>numpy.dtype</u> 来表示基础数据类型,参考如下:

- NumPy 中有着专门实现的 numpy.dtype, 参考其对 Data type objects 的解释;
- NumPy 官方 Data types 文档中对数组类型和转换规则进行了解释。

根据 MEP 3 – Tensor API 设计规范 ,MegEngine 将参考《数组 API 标准》中对 数据类型 的规格定义。

上面提到的数据类型(Data type, <u>dtype</u>)是 Tensor 的一种基础属性, 单个 Tensor 内的元素的数据类型完全一致,每个元素占据的内存空间也完全相同。 Tensor 数据类型可以在创建时指定,也可以从已经存在的 Tensor 中指定进行转化,此时 <u>dtype 作为参数使用</u> 。 float32 是 MegEngine 中最经常用到的 Tensor 数据类型。

```
>>> a = megengine.functional.ones(5)
>>> a.dtype
numpy.float32
```

数据类型支持情况

在 MegEngine 中尚未支持《数组 API 标准》中需求的所有数据类型,目前状态如下:

数据类型	numpy.dtype	等效字符串	数值区间	支持情况
布尔型	<pre>numpy.bool8 / numpy.bool_</pre>	bool	True 或者 False	✓
有符号 8 位整型	numpy.int8	int8	$[-2^7\!,2^7\!-1]$	✓
有符号 16 位整型	numpy.int16	int16	$[-2^{15}, 2^{15} - 1]$	✓
有符号 32 位整型	numpy.int32	int32	$[-2^{31}, 2^{31} - 1]$	✓
有符号 64 位整型	numpy.int64	int64	$[-2^{64}\!,2^{64}\!-1]$	*
无符号 8 位整型	numpy.uint8	uint8	$[0, 2^8 - 1]$	✓
无符号 16 位整型	numpy.uint16	uint16	$[0, 2^{16} - 1]$	✓
无符号 32 位整型	numpy.uint32	uint32	$[0, 2^{32} - 1]$	*
无符号 64 位整型	numpy.uint64	uint64	$[0, 2^{64} - 1]$	*
半精度浮点	<pre>numpy.float16 / numpy.half</pre>	float16	IEEE 754 [1]	✓
单精度浮点	<pre>numpy.float32 / numpy.single</pre>	float32	IEEE 754 [1]	✓
双精度浮点	<pre>numpy.float64 / numpy.double</pre>	float64	IEEE 754 [1]	×

[1](1,2,3) IEEE. leee standard for floating-point arithmetic. *IEEE Std 754-2019 (Revision of IEEE 754-2008)*, pages 1–84, 2019. doi:10.1109/IEEESTD.2019.8766229.

① 1.7 新版功能 新增对 uint16 类型的支持。

▲ 警告

并不是所有的已有算子都支持上述 MegEngine 数据类型之间的计算(仅保证 float32 类型全部可用)。 这可能对一些实验或测试性的样例代码造成了不便,例如 matmul 运算不支持输入均为 int32 类型, 用户如果希望两个 int32 类型的矩阵能够进行矩阵乘法,则需要手动地对它们进行显式类型转换:

```
a = Tensor([[1, 2, 3], [4, 5, 6]]) # shape: (3, 2)
b = Tensor([[1, 2], [3, 4], [5, 6]]) # shape: (2, 3)
c = F.matmul(a, b) # unsupported MatMul(Int32, Int32) -> invalid
c = F.matmul(a.astype("float32"), b.astype("float32")) # OK
```

类似的情况可能会让人产生疑惑,已有算子为什么不支持所有的数据类型?理想情况下应当如此。但对各种数据类型的适配和优化会造成代码体积的膨胀,因此一般只对最常见的数据类型进行支持。继续以 int32 的矩阵乘法为例,在实际的矩阵乘情景中其实很少使用到 int32 类型,原因包括计算结果容易溢出等等,目前最常见的是 float32 类型,也是算子支持最广泛的类型。

注意:上述类型转换将会导致精度丢失,使用者需要考虑到其影响。

① 注解

我们会在megengine.quantization模块中提到对量化数据类型的支持。

默认数据类型

MegEngine 中对 Tensor 默认数据类型的定义如下:

- 默认浮点数据类型为 float32;
- 默认整型数据类型为 int32;
- 默认索引数据类型为 int32.

dtype 作为参数使用

Tensor 初始化时以及调用 创建 Tensor 函数时可接受 dtype 参数,用来指定数据类型:

```
>>> megengine.Tensor([1, 2, 3], dtype="float32")
Tensor([1. 2. 3.], device=xpux:0)

>>> megengine.functional.arange(5, dtype="float32")
Tensor([0. 1. 2. 3. 4.], device=xpux:0)
```

如果使用已经存在的数据来创建 Tensor 而不指定 dtype,则 Tensor 的数据类型将根据 默认数据类型 推导:

```
>>> megengine.Tensor([1, 2, 3]).dtype
int32
```

▲ 警告

如果使用不支持类型的 NumPy 数组作为输入创建 MegEngine Tensor, 可能会出现非预期行为。 因此最好在做类似转换时每次都指定 dtype 参数,或先转换 NumPy 数组为支持的数据类型。

另外还可以使用 <u>astype</u> 方法得到转换数据类型后的 Tensor(原 Tensor 不变):

```
>>> megengine.Tensor([1, 2, 3]).astype("float32")

Tensor([1. 2. 3.], device=xpux:0)
```

类型提升规则

1 注解

根据 MEP 3 - Tensor API 设计规范, 类型提升规则应当参考《数组 API 标准》 中的 相关规定:

多个不同数据类型的 Tensor 或 Python 标量作为操作数参与运算时, 所返回的结果类型由上图展示的关系决定—— 沿着箭头 方向提升,汇合至最近的数据类型,将其作为返回类型。

- 决定类型提升的关键是参与运算的数据的类型,而不是它们的值;
- 图中的虚线表示 Python 标量的行为在溢出时未定义;
- 布尔型、整数型和浮点型 dtypes 之间未连接,表明混合类型提升未定义。

在 MegEngine 中,由于尚未支持《标准》中的所有类型,当前提升规则如下图所示:

- 遵循 类型优先 的原则,存在 bool -> int -> float 的混合类型提升规则;
- 当 Python 标量类型与 Tensor 进行混合运算时,转换成 Tensor 数据类型;
- 布尔型 dtype 与其它类型之间未连接,表明相关混合类型提升未定义。

① 注解

这里讨论的类型提升规则主要适用于 元素级别运算 (Element-wise) 的情况。

举例如下, uint8 和 int8 类型 Tensor 运算会返回 int16 类型 Tensor:

```
>>> a = megengine.Tensor([1], dtype="int8") # int8 -> int16
>>> b = megengine.Tensor([1], dtype="uint8") # uint8 -> int16
>>> (a + b).dtype
numpy.int16
```

int16 和 float32 类型 Tensor 运算会返回 float32 类型 Tensor:

```
>>> a = megengine.Tensor([1], dtype="int16") # int16 -> int32 -> float16 -> float32
>>> b = megengine.Tensor([1], dtype="float32")
>>> (a + b).dtype
numpy.float32
```

Python 标量和 Tensor 混合运算时,在种类一致时,会将 Python 标量转为相应的 Tensor 数据类型:

```
>>> a = megengine.Tensor([1], dtype="int16")
>>> b = 1  # int -> a.dtype: int16
>>> (a + b).dtype
numpy.int16
```

注意,如果此时 Python 标量是 float 类型,而 Tensor 为 int,则按照类型优先原则提升:

```
>>> a = megengine.Tensor([1], dtype="int16")
>>> b = 1.0 # Python float -> float32
>>> (a + b).dtype
numpy.float32
```

此时 Python 标量通过使用 默认数据类型 转为了 float32 Tensor.