PD-91880

SMPS MOSFET

IRFP460A

HEXFET® Power MOSFET

Applications

- Switch Mode Power Supply (SMPS)
- Uninterruptable Power Supply
- High speed power switching

V _{DSS}	Rds(on) max	I _D
500V	0.27Ω	20A

Benefits

- Low Gate Charge Qg results in Simple Drive Requirement
- Improved Gate, Avalanche and dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche Voltage and Current
- Effective Coss specified (See AN1001)

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	20	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	13	A
I _{DM}	Pulsed Drain Current ①	80	
P _D @T _C = 25°C	Power Dissipation	280	W
	Linear Derating Factor	2.2	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	3.8	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Typical SMPS Topologies:

- Full Bridge
- PFC Boost

Notes ① through ⑤ are on page 8 www.irf.com

International TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.61			V/°C Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.27	Ω	$V_{GS} = 10V, I_D = 12A$ ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 500V, V_{GS} = 0V$
				250	μ/	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100	1 11/4	$V_{GS} = -30V$

Dynamic @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	11			S	$V_{DS} = 50V, I_{D} = 12A$
Qg	Total Gate Charge			105		I _D = 20A
Q _{gs}	Gate-to-Source Charge			26	nC	$V_{DS} = 400V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			42		V_{GS} = 10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		18			V _{DD} = 250V
t _r	Rise Time		55		ns	$I_D = 20A$
t _{d(off)}	Turn-Off Delay Time		45			$R_G = 4.3\Omega$
t _f	Fall Time		39			$R_D = 13\Omega$, See Fig. 10 ④
C _{iss}	Input Capacitance		3100			$V_{GS} = 0V$
Coss	Output Capacitance		480			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		18		pF	f = 1.0MHz, See Fig. 5
Coss	Output Capacitance		4430			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		130			$V_{GS} = 0V, V_{DS} = 400V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		140			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		960	mJ
I _{AR}	Avalanche Current①		20	Α
E _{AR}	Repetitive Avalanche Energy①		28	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions						
Is	Continuous Source Current	20		20	20 A	MOSFET symbol						
	(Body Diode)		2			showing the						
I _{SM}	Pulsed Source Current			80	00	00	00	00	00	00		integral reverse
	(Body Diode) ①					p-n junction diode.						
V_{SD}	Diode Forward Voltage			1.8	V	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ④						
t _{rr}	Reverse Recovery Time		480	710	ns	$T_J = 25^{\circ}C, I_F = 20A$						
Q _{rr}	Reverse RecoveryCharge		5.0	7.5	μC	di/dt = 100A/µs ④						
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)										

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFP460A International Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFETS

International TOR Rectifier

Package Outline

TO-247AC Outline

Dimensions are shown in millimeters (inches)

Part Marking Information TO-247AC

EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY

WITH ASSEMBLY LOT CODE 3A1Q

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline \& Starting $T_J=25^\circ$C, $L=4.3mH$\\ $R_G=25\Omega, I_{AS}=20A.$ (See Figure 12) \\ \hline \end{tabular}$
- $\label{eq:loss} \begin{array}{l} \text{ } \exists \ \ I_{SD} \leq 20A, \ di/dt \leq 125A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 150^{\circ}C \end{array}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $^{\circ}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 6/99