the 1's complement

and 1's complex

CS 350 Midterm Exam, Mon Mar 7, 2011 (75 minutes, 100 points total)

Instructions

This exam is closed book, one 8.5"×11" page of notes (both sides). No sharing notes and no equipment (calculators, phones, music players, etc). The usual penalty for copying or sharing answers on a quiz or exam is a final grade of E for the course. If you have any questions, please ask during the quiz, not after.

Short Answer Questions [points as marked]

1. [8 pts] For each of the three schemes for representing negative numbers, (a) What decimal value does 1000 0000 represent? (b) Is 1000 0000 the most negative number

10000000

2. [8 pts] Let octal 111 represent a 7-bit 2's complement number. (a) What is the decimal value of this number? (b) Translate this number into 8-bit 2's complement have decimal. What is the result?

hexadecimal. What is the result?

a.) (70110110

5 type result?

6.) 255

1001001

4 (1x2') + (1x2')

[4 pts] Let hexadecimal B9 represent an 8-bit 2's complement number. What is the decimal value of the number? 9-1001 1011 1001 01000110 [8 pts] Translate 25.375₁₀ into binary. Give both the plain and the scientific notation representations. ("Plain" means "times 2°.") $\sqrt{2} = 0.5 \sqrt{4} = 0.75$ notcoment should be 1100100 [12 pts] What is the IEEE 32-bit representation of $-1.101_2 \times 2^{10}$? (Feel free to add extra spaces for readability.) 110.001 1,10001x2 exponent: 10+127

Midterm Exam

- Page 2 of 9 -

Illinois Institute of Technology

bm: X10001001

6. [6 pts] Draw a PLA-based logic gate implementation for output X from inputs A, B, and C as specified by the table to the right.

A0 0 1100

AC

\boldsymbol{A}	B	\boldsymbol{C}	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

1	0	1	U
1	1	0	1
1	1	1	0
1	i.		-0-

7. [14 pts] Take the truth table to the right, draw a Karnaugh map for output X from inputs A, B, C, and D, select implicants, and translate your implicants to a simplest boolean expression for X.

boolour expression for it.
a logical Long we have a short circuit or an open
10001110
AB OIL TO O
redundant
BD squaats Implicants
-2 ACV
ar or o
manipular ABOVABCV ACO
algion of ACV 30 V 5
Kmaps aville you didn't as square show as square
Expression: X = (AC+BO+BCO+AGO)

A	B	C	D	X
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

8. [8 pts] Inspect the transistor diagram to the right. Fill in the table below: For each combination of A and B, specify whether the result R is a logical 0, a logical 1, or if we have a short circuit or an open circuit.

A	В	R
0	0	a = 0 Definite to
0	1	open circuit
1	0	Short errouit
1	1	

9. [9 pts] The transistor diagram below specifies when the output R is supposed to have a value of 1, but the diagram is incomplete: (a) Add wires and transistors as necessary to connect R to ground when R is supposed to have a value of 0. (b) Give a boolean expression description of R using inputs A and B.

Rconn. to power iff C+AB

R conn. to gnd iff 7(C+AB)

Midterm Exam

-Page 6 of 9
iff (\(\tau \)

Illinois Institute of Technology

CS 350: Comp Org & Asm Pgm'g

Spring 2011

10. [8 pts] Complete the wire diagram below so that it describes your circuit from the previous problem when A = B = C = 1.

1 BNAND C

11. [6 pts] Translate the logic gate circuit below to a boolean expression for the output R using the inputs A, B, and C.

12. [7 pts] (a) Fill in the truth table below for the circuit to the right. (b) If this circuit starts up in random logical states for X and Y, does it settle down into a stable logical state? Explain briefly

a.)	X	Y	new Y
1/	0	0	solme value
V	0	1	1
0 (1 1 3	1	0	0
11009	1	1	0

) It stays in a stable logical state if x a y are both 0,
or if x = 0 and y = 1, x = 1 and
y=0 and both x4y are 1.