The search for $\tau \rightarrow l \gamma$ at Belle and Belle II

Braden Moore

Under the supervision of Dr. Phillip Urquijo

Introduction: $\tau \rightarrow l \gamma$

- $\tau \rightarrow l \gamma$ is a prohibited decay in the SM for massless neutrinos
- extending the SM to include neutrino masses allows flavour mixing between generations → LFV can occur
- even so, LFV in the SM + massive neutrinos is suppressed and is unobservably small

$$B(\tau \to \mu \gamma)_{SM} < 10^{-40}$$

Figure 1: $\tau \rightarrow \mu \gamma$ via neutrino mixing

Introduction: $\tau \rightarrow l \gamma$

- unobservably small branching fraction for LFV processes allows New Physics (NP) to be probed without SM contamination
- these LFV modes are highly calculable!
- of the tau processes, $\tau \rightarrow l \gamma$ decays most sensitive
- why taus not muons? muons are easier to produce!
 - expected limit on branching fraction $\,\sim\!10^{5\text{--}6}$ greater than $\mu\to e\,\gamma$ due to tau mass
 - if this NP is Higgs-like, then would be seen more strongly in tausector (taus couple more strongly than muons to the Higgs)

Other LFV

LFV Process	Present Bound	Future Sensitivity
$\mu \rightarrow e \gamma$	5.7×10^{-13} [1]	$\approx 6 \times 10^{-14} [2]$
$\mu \rightarrow 3e$	1.0×10^{-12} [3]	$\approx 10^{-16} [4]$
μ^{-} Au $\rightarrow e^{-}$ Au	7.0×10^{-13} [5]	?
μ^{-} Ti $\rightarrow e^{-}$ Ti	4.3×10^{-12} [6]	?
μ^{-} Al $\rightarrow e^{-}$ Al	_	$\approx 10^{-16} [7, 8]$
$ au ightarrow e \gamma$	3.3×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$
$ au ightarrow \mu \gamma$	4.4×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$
$\tau \rightarrow 3e$	2.7×10^{-8} [11]	$\sim 10^{-9} - 10^{-10} [10]$
$ au ightarrow 3\mu$	2.1×10^{-8} [11]	$\sim 10^{-9} - 10^{-10} [10]$

Table 1: Present and future experimental sensitivities for LFV processes (Paradisi, 2015)

Neutrino mixing

- lepton sector not fully understood (see: neutrino masses)
- many mechanisms which explain neutrino mixing introduce LFV!

Figure 2: New particles introduced via seesaw models

 seesaw models, for example, can introduce new scalars which could couple with leptons to produce LFV

Figure 3: LFV in Type-II seesaw

$h \rightarrow \tau \mu \text{ excess}$

• CMS (2015) found 2.4 σ excess in $h \rightarrow \tau \mu$ branching fraction

$$B(h \rightarrow \tau \mu) = (0.84^{+0.39}_{-0.37})\%$$

ATLAS (2015) found 1.2σ excess

$$B(h \rightarrow \tau \mu) = (0.77 \pm 0.62)\%$$

LFV can occur naturally in models with more than one Higgs doublet,
 e.g. Type-II 2HDM

Figure 4: Diagrams contributing to $\tau \to \mu \gamma$ decay, mediated by a Higgs boson with flavour violating Yukawa couplings (*Harnick et al., 2012*)

$h \rightarrow \tau \mu \text{ excess}$

horizontal lines are CMS 1 σ bands on B(h \rightarrow τ μ) (at 90% CL)

vertical lines are (right) current upper limit B($\tau \rightarrow \mu \gamma$) and (left) Belle II expected sensitivity

under this model we would expect to find a signature in Belle II (!!)

Figure 5: B(h $\rightarrow \tau \mu$) against B($\tau \rightarrow \mu \gamma$), with various ranges predicted by NP models (*Dorsner et al.*, 2015)

Models predicting $\tau \rightarrow l \gamma$

model	$Br(au o \mu\gamma)$
mSUGRA + seesaw SUSY + SO(10) SM + seesaw Non-Universal Z' SUSY + Higgs	$ \begin{array}{c} 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-9} \\ 10^{-10} \end{array} $

Table 2: Upper limits of branching fractions of $\tau \to \mu \gamma$, predicted by models of new physics beyond the SM (various sources)

 present and future bounds on LFV processes can reduce available phase space; determining branching fractions can rule out certain models

LFV Process	Present Bound	Future Sensitivity
$ au o e\gamma$	3.3×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$
$ au ightarrow \mu \gamma$	4.4×10^{-8} [9]	$\sim 10^{-8} - 10^{-9} [10]$

Key backgrounds

Figure 6: $\tau \rightarrow \mu \nu \nu$ diagram

$$\mathcal{B}(\tau \to \pi \nu) = 10.83\%$$

$$\tau^{-}$$

$$\bar{u}$$

$$d$$

$$\pi^{-}$$

Figure 7: $\tau \rightarrow \pi \nu$ diagram

Figure 8: $e \rightarrow \mu \mu \gamma diagram$

Belle & Belle II

$$\sigma(e^+e^- \to \tau^+\tau^-) = 0.919 \,\text{nb}$$

Belle – 1000 fb⁻¹ of data (full run data)

•
$$e^+ e^- \rightarrow \tau^+ \tau^- \sim 900 \times 10^6$$
 tau-pairs

•
$$\tau \rightarrow \mu \nu \nu \sim 150 \times 10^6 \text{ events}$$

•
$$\tau \rightarrow \pi \nu$$
 ~ 100 × 10⁶ events

• e e $\rightarrow \mu \mu \gamma \sim 250 \times 10^6$ events

 $\mathcal{L} = N\sigma$

× 50 more expectedtotal luminosity atBelle II compared to Belle

Belle II – 50 ab⁻¹ (predicted luminosity)

•
$$e^+ e^- \rightarrow \tau^+ \tau^- \sim 450 \times 10^8 \text{ tau-pairs}$$

•
$$\tau \rightarrow \mu \nu \nu \sim 75 \times 10^8 \text{ events}$$

•
$$\tau \rightarrow \pi \nu$$
 ~ 50 × 10⁸ events

• e e $\rightarrow \mu \mu \gamma \sim 125 \times 10^8$ events

Current searches

Belle (2007), 535 fb⁻¹:

$$B(\tau \rightarrow \mu \gamma) < 4.5 \times 10^{-8}$$

$$B(\tau \rightarrow e\gamma) < 1.2 \times 10^{-7}$$

Babar (2010), 515.5 fb⁻¹:

$$B(\tau \rightarrow \mu \gamma) < 4.4 \times 10^{-8}$$

$$B(\tau \rightarrow e\gamma) < 3.3 \times 10^{-8}$$

Figure 9: M_{inv} - ΔE distribution in the search for $\tau \rightarrow \mu \gamma$ at Belle (*Hayasaka*, 2008)

Figure 10: M_{bc} - ΔE distribution in the search for $\tau \rightarrow \mu \gamma$ at Babar (*Babar Collaboration*, 2010)

11

Future searches

Figure 11: Current and future sensitivities on tau LFV branching fractions (*Urquijo*, 2016)

My search

- approx 1.5 million signal (τ → μ γ) MC events produced
- approx 3,500 million generic (tau-pair) MC events produced by the Belle II Collaboration
- 24 selection criteria added (based on previous Belle search)
- cuts made to suppress various backgrounds
- production and analysis being performed in basf2
 - currently optimising selection criteria for Belle II MC
 - analysis should be ready for Belle II first data
 - plan to optimise selection criteria for Belle MC also, to run over complete Belle dataset

My search

Figure 12: M_{inv} - ΔE distribution for signal MC ($\tau \rightarrow \mu \gamma$) after selection cuts (59,265 events out of 1,632,596)

Efficiency: ~ 3.6%

Figure 13: M_{inv} - ΔE distribution for background MC after selection cuts (6 events out of 5,938,869)

Efficiency: $\sim 10^{-4}$ %

Belle & Belle II

$$\sigma(e^+e^- \to \tau^+\tau^-) = 0.919 \,\text{nb}$$

- Belle 1000 fb⁻¹ of data (full run data)
 - $e^+ e^- \rightarrow \tau^+ \tau^- \sim 900 \times 10^6$ tau-pairs
 - $\tau \rightarrow \mu \nu \nu \sim 150 \times 10^6 \text{ events}$
 - $\tau \rightarrow \pi \nu$ ~ 100 × 10⁶ events
 - e e $\rightarrow \mu \mu \gamma \sim 250 \times 10^6$ events

- $\mathcal{L} = N\sigma$
- × 50 more expected total luminosity at Belle II compared to Belle
- Belle II 50 ab⁻¹ (predicted luminosity)
 - $e^+ e^- \rightarrow \tau^+ \tau^- \sim 450 \times 10^8 \text{ tau-pairs}$
 - $\tau \rightarrow \mu \nu \nu \sim 75 \times 10^8 \text{ events}$
 - $\tau \rightarrow \pi \nu$ ~ 50×10^8 events
 - e e $\rightarrow \mu \mu \gamma \sim 125 \times 10^8$ events

at my current BG efficiency (10^{-4} %): $\sim 10,000$ background events

e e $\rightarrow \mu \mu \gamma$ background not yet studied in my analysis

Conclusion

- LFV is an exciting place to search for new physics
- lepton sector is not fully understood
- negligible SM background means an observation would be an unambiguous signature of NP
- analysis framework is being set up for Belle II data analyses (can be run over Belle and Belle II data)

Backup