# Prediction and analysis of the residential buildings permits Schnieder project

Justine Mao, Nikita Gusarov, Tom Vieillescazes
Under direction of Beatrice Roussillon and Mathias Verdiere

Université Grenoble Alpes

10 january 2020





## Introduction





# Objectives

- Analyse the factors influencing construction permits number.
- ► Elaborate a predictive model for the construction permits to be issued.





## Presentation plan

- Litterature study presentation
- Database construction
- Data presentation
- Data analysis
- Modelisation
  - Simple OLS models
  - ► Time series models
  - Alternative models





#### Litterature





## Sources

Nous avons commencé notre étude de la littérature par la recherche des articles méthodologiques et théoriques en lien avec le sujet traité.

Les moteurs de recherche scientifique les plus utilisés ont été :

- Science Direct
- Google Scholar
- Elsevier
- SAGE journals





## Variables of interest

| Number of building permits postponed by one quarter (French Building Federation, 2017) | +      |
|----------------------------------------------------------------------------------------|--------|
| 10-year OAT rate lagged by two quarters (French Building Federation, 2017)             | -      |
| Unemployment rate lagged by two quarters (French Building Federation, 2017)            | -      |
| Deadline for housing outstandings in quarter sales shifted by one                      | -      |
| quarter (French Building Federation, 2017)                                             |        |
| Political measure (French Building Federation, 2017)                                   | + or - |
| Age of the population (Lindh et al, 2008)                                              |        |
| - Individus moins de 20 ans                                                            | ++     |
| - Individuals between 20 and 59 years old (National Institute for                      | +      |
| Demographic Studies, 2019)                                                             |        |
| - Individuals over the age of 75                                                       | -      |
| Real estate prices (Essay et al, 2015)                                                 | -      |
| GDP (Lindh et al, 2002)                                                                | +      |
|                                                                                        |        |

Table 1: Variables of interest





## Database





#### Data sources

We construct our database using macroeconomical variables figuring in different french and international databases :

- Eurostat
- ► Sit@del2
- ► INSEE
- OCDE





# Data already studied

The variables that we have already presented are :

- ► Number of the building permits,
- Surface authorised for construction (not used in analysis anymore),
- ► GDP,
- Long term interest rate,
- Households spendings,
- Households investments.





## Changes and advances

We have extracted as well the following variables :

- Population part by age group :
  - less than 20 years old,
  - from 20 to 59 years old,
  - from 60 years and more.
- Proxy variables serving to capture policies changes :
  - elective cycles dummy variables,
  - political party appartainance.
- Real estate housing prices,
- Household confidence index.





## Data





## Descriptive statistics

| Statistic             | Mean        | St. Dev.   | Min       | Max       |
|-----------------------|-------------|------------|-----------|-----------|
| Year                  | 2,006.000   | 7.360      | 1,994     | 2,018     |
| GDP                   | 1,956.328   | 219.289    | 1,545.800 | 2,285.900 |
| Interest rate         | 3.903       | 1.867      | 0.468     | 7.535     |
| Household spendings   | 1,018.228   | 122.541    | 801.300   | 1,186.200 |
| Household investments | 111.336     | 12.820     | 87.300    | 134.800   |
| Number of permits     | 381,173.600 | 70,800.620 | 275,711   | 526,592   |
| Population < 20 y.o.  | 25.007      | 0.686      | 24.003    | 26.370    |
| Population 20-59 y.o. | 52.887      | 1.389      | 49.991    | 54.176    |
| Population > 60 y.o.  | 22.105      | 1.964      | 19.882    | 26.006    |

Table 2: Descriptivve statistics for annual data





#### Data transformation

In our work we prefer to operate over indiced variables.

| Statistic             | Mean   | St. Dev. |
|-----------------------|--------|----------|
| Year                  | 12.000 | 7.360    |
| GDP                   | 1.017  | 0.014    |
| Interest rate         | 0.936  | 0.238    |
| Household spendings   | 1.017  | 0.011    |
| Household investments | 1.014  | 0.041    |
| Number of permits     | 1.022  | 0.148    |
| Population < 20 y.o.  | 0.996  | 0.002    |
| Population 20-59 y.o. | 0.997  | 0.004    |
| Population > 60 y.o.  | 1.011  | 0.007    |

Table 3: Descriptive statistics for transformed data





## Graphical representation







10 january 2020

# Political changes





## Different housing types







# Transformed data for different housing types







# Data analysis





# **Analysis**

We are going to procede in this section as follows:

- Cross-corelation study,
- Autocorrelation study,
- Partial autocorrelation study.

This analysis will be effectuated over the integrity of variables.





# Cross-correlation study

In order to verify stationarity we use the following tests :

- augmented Dickey-Fuller test (ADF), which makes it possible to test the hypothesis of the non-stationarity of a time series;
- Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) to check stationarity on trend (KPSS-T) or level (KPSS-L).

These two tests allow us to verify the hypothesis of the stationarity of the series studied and, if necessary, correct it by applying a transformation on the series in question.





# Stationarity tests

|                       | ADF  | KPSS.T | KPSS.L |
|-----------------------|------|--------|--------|
| GDP                   | 0.31 | 0.10   | 0.10   |
| Interest rate         | 0.17 | 0.10   | 0.10   |
| Household spendings   | 0.02 | 0.10   | 0.06   |
| Household investments | 0.42 | 0.10   | 0.10   |
| Number of permits     | 0.01 | 0.10   | 0.10   |
| Population < 20 y.o.  | 0.52 | 0.10   | 0.06   |
| Population 20-59 y.o. | 0.67 | 0.10   | 0.01   |
| Population > 60 y.o.  | 0.57 | 0.10   | 0.03   |

Table 4: Stationarity tests, p-values





#### Differenced data







10 january 2020

# Stationarity reverification

|                       | ADF  | KPSS.T | KPSS.L |
|-----------------------|------|--------|--------|
| GDP                   | 0.03 | 0.10   | 0.10   |
| Interest rate         | 0.29 | 0.10   | 0.10   |
| Household spendings   | 0.04 | 0.10   | 0.10   |
| Household investments | 0.06 | 0.10   | 0.10   |
| Number of permits     | 0.01 | 0.10   | 0.10   |
| Population < 20 y.o.  | 0.27 | 0.10   | 0.10   |
| Population 20-59 y.o. | 0.57 | 0.10   | 0.10   |
| Population > 60 y.o.  | 0.55 | 0.08   | 0.10   |

Table 5: Stationarity tests, p-values





troduction Litterature Database Data Data analysis Modelisation Linear models Time series Vector models Alterna

## Cross-correlation study





troduction Litterature Database Data Data analysis Modelisation Linear models Time series Vector models Alterna

## Autocorrelation





troduction Litterature Database Data Data analysis Modelisation Linear models Time series Vector models Alterna

#### Partial autocorrelation





#### Modelisation





### Different models

- Simple linear models (OLS),
- ► Time series models (ARIMA),
- Adcanced time series vector models (VAR),
- Alternative linear models, accounting for causality effects.





# Model comparison

| Model             | Advantages                                                                                  | Disadvantages                                                                         |
|-------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| OLS               | Simple to implement                                                                         | Unable to predict future values without acces to exogenous variables values in future |
| ARIMA             | Relatively simple Allows to predict future values for several periods                       | Does not take into account supplimentary inform. Requires stationary time series data |
| VAR               | Even longer prediction horizon                                                              | Multiple restriction on data structure : - Stationarity, - No cointegration.          |
| OLS and causality | Gives predictions for short intervals (1 or 2 p<br>No limiting restrictions on the data use | eriods)<br>Only short-term predictions are possible                                   |

Table 6: Different models' specification





## Linear models





#### **OLS** estimations

In this part we explore direct links between varibales without wausality imlications.

|                       |          | NA 110  | M 110   |         |         |
|-----------------------|----------|---------|---------|---------|---------|
|                       | Model 1  | Model 2 | Model 3 | Model 4 | Model 5 |
| GDP                   | 4.38*    | 5.40*   | 1.10    | 2.00    | 2.98    |
|                       | (2.10)   | (2.22)  | (4.89)  | (4.94)  | (4.93)  |
| Interest rate         |          | -0.17   |         | -0.18   | -0.18   |
|                       |          | (0.13)  |         | (0.14)  | (0.14)  |
| Household spendings   |          |         | 3.13    | 1.77    | 3.38    |
|                       |          |         | (3.86)  | (4.02)  | (4.17)  |
| Household investments |          |         | 0.56    | 0.92    | 0.68    |
|                       |          |         | (1.47)  | (1.49)  | (1.48)  |
| Time                  |          |         |         |         | 0.01    |
|                       |          |         |         |         | (0.01)  |
| R <sup>2</sup>        | 0.17     | 0.24    | 0.20    | 0.26    | 0.32    |
| Adj. R <sup>2</sup>   | 0.13     | 0.16    | 0.08    | 0.10    | 0.12    |
| Num. obs.             | 24       | 23      | 24      | 23      | 23      |
| RMSE                  | 0.14     | 0.14    | 0.14    | 0.14    | 0.14    |
| *** 0 001 ** -        | - 0 01 * | O OE    |         |         |         |





Table 7: OLS models comparison



### Time series





## Time series presentation













### ARMA modelisation

|                | ARMA(1,0) | ARMA(0,1) | ARMA(1,1) | ARMA(1,2) | ARMA(2,2) |
|----------------|-----------|-----------|-----------|-----------|-----------|
| AR(1)          | -0.38     |           | 0.04      | -0.96     | -0.81     |
|                | (0.19)    |           | (0.22)    | (0.15)    | (0.28)    |
| AR(2)          | 0.00      | -0.00     | -0.00     | -0.00     | -0.00     |
|                | (0.03)    | (0.00)    | (0.00)    | (0.00)    | (0.00)    |
| Intercept      |           | -1.00     | -1.00     | -0.09     | -0.12     |
|                |           | (0.12)    | (0.12)    | (0.24)    | (0.23)    |
| MA(1)          |           |           |           | -0.91     | -0.88     |
|                |           |           |           | (0.24)    | (0.22)    |
| MA(2)          |           |           |           |           | 0.13      |
|                |           |           |           |           | (0.22)    |
| AIC            | -4.98     | -13.34    | -11.38    | -9.76     | -8.11     |
| Log Likelihood | 5.49      | 9.67      | 9.69      | 9.88      | 10.06     |

Table 8: Comparaison des modèles ARMA





## Vector models





0

#### VAR modelisation





#### **Alternatives**





## Review of cross-correlations, part 1





## Review of cross-correlations, part 2



Population > 60







#### Conclusion





- Separate study of different permits types,
- Alternative linear regression implementation (that is similar to ARDL),
- Study of trimestrial data,
- Rapport finalisation,
- Delivrables preparation :
  - Excel automated model,
  - Final rapport,
  - R code organisation,
  - Database documentation.



