$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Μάθημα 1.6: Περισσότερα για τον υπολογισμό αθροισμάτων

Δημήτρης Ψούνης

ΠΕΡΙΕΧΟΜΕΝΑ

- Α. Σκοπός του Μαθήματος
- Β. Μεθοδολογία Ασκήσεων
 - 1. Υπολογισμός Φραγμάτων Αθροισμάτων
 - 1. Υπολογισμός Άνω Φράγματος
 - 2. Υπολογισμός Κάτω Φράγματος
 - 2. Υπολογισμός Κλειστού Τύπου Αθροίσματος

Γ.Ασκήσεις

www.psounis.gr

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

> (-)

Επίπεδο Β

> (-)

Επίπεδο Γ

- > Υπολογισμός Φραγμάτων Αθροισμάτων
- > Υπολογισμός Κλειστών Τύπων Αθροισμάτων

1. Υπολογισμός Φραγμάτων Αθροισμάτων

Ασχολούμαστε με τον υπολογισμό περίπλοκων αθροισμάτων:

- Σε κάποιες ασκήσεις είναι ανέφικτο να υπολογίσουμε το άθροισμα απ' ευθείας με κάποιον από τους γνωστούς τύπους.
- Στις περίπτωση αυτή υπολογίζουμε φράγματα για να εκτιμήσουμε την πολυπλοκότητα της συνάρτησης.
 - Θα υπολογίσουμε ένα άνω φράγμα, αντικαθιστώντας τον όρο του αθροίσματος με «κάτι» μεγαλύτερο που είναι δυνατόν να υπολογιστεί.
 - Θα υπολογίσουμε ένα κάτω φράγμα, αντικαθιστώντας τον όρο του αθροίσματος με «κάτι» μικρότερο που είναι δυνατόν να υπολογιστει.
- Αν τύχει τα άνω και κάτω φράγματα που υπολογίσαμε να είναι ίσα τότε έχουμε εξάγει ασυμπτωτική εκτίμηση της πολυπλοκότητας του αθροίσματος.
 - \triangleright Αφού αν f=O(g) και f=Ω(g) τότε f=Θ(g).
- Αν τα φράγματα δεν είναι ίσα τότε έχουμε μια εκτίμηση για την πολυπλοκότητα του αλγορίθμου.

1. Υπολογισμός Φραγμάτων Αθροισμάτων

- 1. Υπολογισμός Άνω Φράγματος
 - Ο υπολογισμός του άνω φράγματος γίνεται κάνοντας αντικατάσταση του όρου του αθροίσματος με «κάτι» μεγαλύτερο.
 - Όσο πιο κοντά στον όρο είναι το «κάτι», τόσο καλύτερη θα είναι και η προσέγγιση που θα πάρουμε.

ΠΑΡΑΔΕΙΓΜΑ:

Εκτιμήστε ασυμπτωτικά την πολυπλοκότητα: $T(n) = \sum_{i=1}^{n} i \log i$

1η Λύση: Προφανώς ισχύει: $i \log i \le i^2$

Συνεπώς: $T(n) = \sum_{i=1}^{n} i \log i \le \sum_{i=1}^{n} i^2 = \Theta(n^3)$ άρα έπεται: $T(n) = O(n^3)$

2^η **Λύση:** Προφανώς ισχύει: $i \log i \le i \log n$

Συνεπώς: $T(n) = \sum_{i=1}^n i \log i \le \sum_{i=1}^n i \log n = \log n \sum_{i=1}^n i = \log n \cdot \Theta(n^2) = \Theta(n^2 \log n)$

άρα έπεται: $T(n) = O(n^2 \log n)$

1. Υπολογισμός Φραγμάτων Αθροισμάτων

2. Υπολογισμός Κάτω Φράγματος

- Ο υπολογισμός του κάτω φράγματος γίνεται κάνοντας αντικατάσταση του όρου του αθροίσματος με «κάτι» μικρότερο.
 - Όσο πιο κοντά στον όρο είναι το «κάτι», τόσο καλύτερη θα είναι και η προσέγγιση που θα πάρουμε.

ΠΑΡΑΔΕΙΓΜΑ:

Εκτιμήστε ασυμπτωτικά την πολυπλοκότητα: $T(n) = \sum_{i=1}^{n} i \log i$

Λύση: Προφανώς ισχύει: $i \log i ≥ i$

Συνεπώς: $T(n) = \sum_{i=1}^n i \log i \ge \sum_{i=1}^n i = \Theta(n^2)$ άρα έπεται: $T(n) = \Omega(n^2)$

Σεν μπορέσαμε να υπολογίσουμε ασυμπτωτική εκτίμηση για το άθροισμα αλλά εκτιμήσαμε ότι είναι $T(n) = \Omega(n^2)$ και $T(n) = O(n^2 \log n)$

2. Υπολογισμός Κλειστού Τύπου Αθροίσματος

- Κλειστός τύπος ενός αθροίσματος ονομάζεται μια πολυωνυμική παράσταση που προσεγγίζει το ακριβές αποτέλεσμα ενός αθροίσματος.
- Η κατασκευή του κλειστού τύπου γίνεται αν μπορέσουμε να υπολογίσουμε άνω και κάτω φράγματα που είναι ίσα μεταξύ τους.
- Εφόσον τα καταφέρουμε προσεγίζουμε μέσω ενός πολυωνύμου το αποτέλεσμα του αθροίσματος.

ΠΑΡΑΔΕΙΓΜΑ:

Να εξάγετε κλειστό τύπο για το άθροισμα : $T(n) = \sum_{i=n/2}^{n} i^2$

Λύση:

Για το άνω φράγμα έχουμε:
$$T(n) = \sum_{i=n/2}^{n} i^2 \le \sum_{i=1}^{n} i^2 = \Theta(n^3)$$
 συνεπώς: $T(n) = O(n^3)$

Για το κάτω φράγμα έχουμε:
$$T(n) = \sum_{i=n/2}^n i^2 \ge \sum_{i=n/2}^n \left(\frac{n}{2}\right)^2 = \left(\frac{n}{2}\right)^2 \sum_{i=n/2}^n 1 = \frac{n}{2}$$

$$= \frac{n^2}{4}(n - \frac{n}{2} + 1) = \frac{n^2}{4}(\frac{n}{2} + 1) = \frac{n^3}{8} + \frac{n^2}{4} = \Theta(n^3)$$

συνεπώς
$$T(n) = \Omega(n^3)$$

2. Υπολογισμός Κλειστού Τύπου Αθροίσματος

(....συνέχεια....)

Άρα αφού $T(n) = \Omega(n^3)$ και $T(n) = O(n^3)$ έπεται ότι: $T(n) = \Theta(n^3)$

Άρα μπορούμε με ασφάλεια να ισχυριστούμε ότι το άθροισμα $\mathrm{T}(n) = \sum_{i=n/2}^n i^2$ είναι ένα πολυώνυμο τρίτου βαθμού, άρα γράφεται $T(n) = an^3 + bn^2 + cn + d$

Για να υπολογίσουμε τους συντελεστές κάνουμε αντικατάσταση στην σχέση:

$$an^{3} + bn^{2} + cn + d = \sum_{i=n/2}^{n} i^{2}$$

θέτουμε διαδοχικά n=1,n=2,n=3,n=4 οπότε προκύπτει το εξής σύστημα 4 εξισώσεων με 4 αγνώστους:

$$a+b+c+d=1$$

$$8a + 4b + 2c + d = 5$$

$$27a + 9b + 3c + d = 14$$

$$64a + 16b + 4c + d = 29$$

Το σύστημα έχει λύση a = 0.33, b = 0.5, c = 0.16, d = 0

Άρα τελικά υπολογίσαμε τον κλειστό τύπο για το άθροισμα: $T(n) = 0.33n^3 + 0.5n^2 + 0.16n$

Γ. Ασκήσεις Εφαρμογή 1

 $ightharpoonup Υπολογίστε μία ασυμπτωτική εκτίμηση για την συνάρτηση πολυπλοκότητας: <math display="block">T(n) = \log(n!)$

www.psounis.gr

Γ. Ασκήσεις Εφαρμογή 2

> Υπολογίστε κλειστό τύπο για το άθροισμα

$$T(n) = \sum_{i=n/3}^{n} i$$