#### MA0505 - Análisis I

Lección IX: Conexidad

Pedro Méndez<sup>1</sup>

<sup>1</sup>Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021



## Agenda

- La Definición de Conexidad
  - ullet Conexidad en  $\mathbb R$
  - Conexidad y Funciones Continuas

### Conjuntos Disconexos

#### Definición

Un espacio (X, d) es disconexo si existen A, B abiertos no vacíos tales que

$$X = A \cup B$$
,  $(A \cap B = \emptyset)$ .

Diremos que un espacio es conexo si no es disconexo.

Si X es conexo y  $X = A \cup B$ , con A, B abiertos, es necesario que A = X ó B = X.

### Subespacios y Conexidad

Dado  $E \subseteq X$  podemos definir

$$d_E: E \times E \to \mathbb{R}, (x, y) \mapsto d(x, y).$$

#### Ejercicio

 $(E, d_E)$  es un espacio métrico. Pruebe que  $D \subseteq E$  es abierto en  $(E, d_E)$  si y sólo si existe  $O \subseteq X$  abierto en (X, d) tal que  $D = E \cap O$ .

#### Definición

 $E \subseteq X$  es disconexo si existen A, B abiertos en (X, d) tales que

$$E = (A \cap E) \cup (B \cap E), A \cap E \neq \emptyset \neq B \cap E.$$



# Un Ejemplo

Sea  $I = ]a, b \subseteq \mathbb{R}$ . Vamos a probar que I es conexo.

 Asumamos que I es disconexo, entonces existen A, B abiertos tales que

$$I = (I \cap A) \cup (I \cap B), \ I \cap A, \ I \cap B \neq \emptyset.$$

• Sean  $s \in I \cap A$ ,  $t \in I \cap B$  con s < t. Así  $[s, t] \subseteq I$ .

# Continuamos con el Ejemplo

• Como  $s \in A$ , entonces existe  $\delta_1$  tal que

$$]s - \delta_1, s + \delta_1[\subseteq A.$$

• Como  $[s, s + \delta_1] \subseteq [s, t]$  entonces

$$[s, s + \delta_1] \subseteq [s, t] \cap A$$
.

- Llamemos  $u = \sup\{x \in [s, t] \cap A\}$ .
- De esta manera  $s < u \leqslant t$ .

# Continuamos con el Ejemplo

• Si fuese que  $u \in B$ , entonces existe  $\delta_2 > 0$  tal que

$$]u - \delta_2, u + \delta_2[\subseteq B.$$

• De manera análoga  $]u - \delta_2, u[\subseteq [s, t]$  y por tanto

$$]u - \delta_2, u \subseteq B \cap [s, t].$$

• Sin embargo, por propiedades del sup, existe  $w \in [s, t] \cap A$  tal que

$$u - \delta_2 < w \leqslant u$$
.

Esto es una contradicción.



# Terminamos el Ejemplo

De forma similar se prueba que si  $u \in A$ , entonces existe un  $\delta_3$  tal que

$$[u, u + \delta_3] \subseteq [s, t] \cap A$$
.

#### Funciones Continuas Preservan Conexidad

#### Resumen

- La definción 1 de espacios conexos.
- La definción 2 de subconjuntos disconexos.

### **Ejercicios**

- Lista 9
  - El ejercicio 1 sobre abiertos dentro de subespacios.

#### Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.