Practice for Quiz 13 Math 2580 Spring 2016

Sean Fitzpatrick

March 3rd, 2016

If you can answer the following problems, you should be well-prepared for Quiz 13:

1. Evaluate $\iint_D (x^2 + y^2)^{3/2} dA$, where D is the disc $x^2 + y^2 \le 4$, using polar coordinates.

In polar coordinates we have $(x^2 + y^2)^{3/2} = (r^2)^{3/2} = r^3$, and the disc is given by $0 \le r \le 2$, and $0 \le \theta \le 2\pi$. Therefore,

$$\iint_D (x^2 + y^2)^{3/2} dA = \int_0^{2\pi} \int_0^2 r^3 \cdot r \, dr \, d\theta = 2\pi \left(\frac{2^4}{4}\right) = 8\pi.$$

2. Evaluate $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sin(x^2+y^2) dy dx$ by converting to polar coordinates.

The bounds $-1 \le x \le 1$, $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$ describe the unit disc, so we have $0 \le r \le 1$ and $0 \le \theta \le 2\pi$, and thus

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sin(x^2 + y^2) \, dy \, dx = \int_{0}^{2\pi} \int_{0}^{1} \sin(r^2) r \, dr \, d\theta = \pi (1 - \cos(1)).$$

3. Evaluate $\iiint_W (x^2 + y^2 + z^2)^{5/2} dV$, where W is the ball $x^2 + y^2 + z^2 \le 1$.

This integral is most easily done in spherical coordinates: the unit ball is given by $0 \le \rho \le 1$, with $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$. Since $\rho^2 = x^2 + y^2 + z^2$, we have

$$\iiint_W (x^2 + y^2 + z^2)^{5/2} dV = \int_0^{2\pi} \int_0^{\pi} \int_0^1 \rho^5 \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 4\pi \left[\frac{\rho^8}{8} \right]_0^1 = \frac{\pi}{2}.$$

Note: the integral $\int_0^{2\pi} \int_0^{\pi} \sin \phi \, d\phi \, d\theta = 4\pi$ comes up often enough in spherical coordinates that you just end up remembering the value.

4. Evaluate $\iiint_W \frac{1}{(x^2+y^2+z^2)^{3/2}} dV$, where W is the solid bounded by the spheres $x^2+y^2+z^2=a^2$ and $x^2+y^2+z^2=b^2$, where a,b>0.

In spherical coordinates we have $a \le \rho \le b$, with $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$, so we get

$$\iiint_W \frac{1}{(x^2+y^2+z^2)^{3/2}} \, dV = \int_0^{2\pi} \int_0^\pi \int_a^b \frac{1}{\rho^3} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 4\pi \ln \left(\frac{b}{a}\right).$$

5. Find the volume of the region enclosed by the cones $z=\sqrt{x^2+y^2}$ and $z=1-2\sqrt{x^2+y^2}$.

This volume is most easily computed in cylindrical coordinates. The cones z=r and z=1-2r intersect when 3r=1, or $r=\frac{1}{3}$. We thus have $0 \le r \le \frac{1}{3}$ and $0 \le \theta \le 2\pi$, so the volume is given by

$$V = \int_0^{2\pi} \int_0^{1/3} [(1 - 2r) - r] r \, dr \, d\theta = \frac{\pi}{27}.$$

6. Find the average of $f(x,y) = e^{x+y}$ over the triangle D with vertices at (0,0), (0,1), and (1,0).

We treat the region D as a Type 1 region, with $0 \le y \le 1 - x$, and $0 \le x \le 1$. The area of the region is $A = \frac{1}{2}$, since it's a triangle with base 1 and height 1. The average of f is thus

$$f_{av} = \frac{1}{A} \iint_D e^{x+y} dA = 2 \int_0^1 \int_0^{1-x} e^x e^y dy dx = 2 \int_0^1 e^x (e^{1-x} - 1) dx = 2 \int_0^1 (e - e^{-x}) dx = 4e - 2.$$