Real analysis exercises week 1

September 5, 2022

Exercise 3.1

Show that $d(x,y) = \left|\frac{1}{x} - \frac{1}{y}\right|$ defines a metric on $(0,\infty)$.

Clearly, $\forall x, y \in \mathbb{R} : d(x, y) = 0 \iff x = y \text{ and } d(x, y), \text{ and }$

 $\forall x, y \in \mathbb{R} : d(x, y) \ge 0$, and

 $\forall x, y \in \mathbb{R} : d(x, y) = d(y, x).$

For the triangle inequality we use $|a+b| \le |a| + |b|$. Taking $a = \frac{1}{x} - \frac{1}{z}$ and $b = \frac{1}{z} - \frac{1}{y}$ immediately yields the desired result.

Exercise 3.3

Show that $\forall x, y \in \mathbb{R} : d(x, y) = 0 \iff x = y$ and the triangle inequality are sufficient to denote a metric.

Say there exist $x,y\in M$ such that $d(x,y)\neq d(y,x)$. This implies there are $x,y\in M$ such that d(x,y)>d(y,x). Take z=x. Then d(x,y)>d(x,x)+d(x,y), which is a contradiction. Hence $\forall x,y\in M,\ d(x,y)=d(y,x)$.

Say there exist $x, z \in M$ such that d(x, z) < 0. Then taking y = x and plugging it into the triangle inequality yields d(x, x) > d(x, z) + d(z, x), which is a contradiction. Hence $\forall x, y \in M$, we have $d(x, y) \ge 0$.

Exercise 3.6

If d is any metric on M, show that $\rho(x,y)=\sqrt{d(x,y)},\,\sigma(x,y)=\frac{d(x,y)}{d(x,y)+1},$ and $\tau(x,y)=\min\{d(x,y),1\}$ are also metrics on M.