

Oddziaływanie Promieniowania Jonizującego z Materią

Tomasz Szumlak, A.Obłąkowska-Mucha

Intro (II)

- Mechanizm oddziaływania promieniowania z materią zależy w pierwszym rzędzie od jego typu, możemy wprowadzić poniższy ogólny podział:
- ☐ Strumienie cząstek naładowanych (jakie źródła?)
 - Ciężkie cząstki naładowane
 - Szybkie elektrony
- ☐ Strumienie cząstek obojętnych (źródła?)
 - Neutrony
 - Fotony promieniowanie X i γ

Intro (I)

- □ Detekcja dowolnego typu promieniowania opiera się na fakcie, że promieniowanie to deponuje (traci) energię w materiale czynnym detektora.
- Energia zdeponowana w obszarze aktywnym może prowadzić do produkcji **nośników ładunku** (np. par elektron-jon lub elektron-dziura).
- Nośniki ładunku są źródłem sygnału w elektronice odczytu.
- Działanie dowolnego układu detekcyjnego opiera się więc na tym w jaki sposób promieniowanie oddziałuje z jego częścią aktywną (np. sensory krzemowe w detektorach śladowych).
- ☐ Inaczej zrozumienie odpowiedzi danego typu detektora związane jest z fundamentalnymi mechanizmami oddziaływania cząstek promieniowania z materią.
- □ Pamiętajmy bez względu na naturę oddziaływania, które prowadzi do strat energii cząstek promieniowania nasza wiedza o tym co zaszło oparta jest o sygnały elektryczne mierzone przez elektronikę odczytu!

- Cząstki naładowane oddziałują z dowolnym medium (materiałem) elektromagnetycznie
- Najbardziej istotna składowa pochodzi od oddziaływań z elektronami atomów materiału (oddziaływania z jądrami atomowymi znacznie mnie prawdopodobne)
- ☐ Główny efekt to jonizacyjna strata energii
 - Wyrażamy go jako jonizacyjną stratę energii na jednostkę długości drogi przebytej w danym medium $\frac{dE}{dx}$
 - □ Dla danego typu materiału, szybkość strat jonizacyjnych zależy praktycznie tylko od prędkości cząstki naładowanej
 - Detektory stosowane w HEP optymalizowane są dla jak najlepszej detekcji cząstek relatywistycznych, dla których możemy przyjąć w przybliżeniu, że strata energii jest **stała** (wzrost logarytmiczny)
- ☐ Ciekawym faktem jest słaba zależności strat jonizacyjnych od gęstości materiału detektora tłumaczymy ją tym, że dla wszystkich pierwiastków jądra atomowe składają się w przybliżeniu z tej samej liczby neutronów oraz protonów

- Cząstki naładowane mogą podlegać również innym typom oddziaływania prowadzących do strat energii, nie mniej jednak straty jonizacyjne zachodzą zawsze!
- Różne procesy konkurencyjne zależą zwykle od typu cząstek oraz ich energii
 - Dla mionów, straty jonizacyjne dominują wyraźnie do energii
 około 100 GeV
 - □ Dlatego miony jako jedyne cząstki stabilne posiadają znaczne możliwości penetracyjne (dziesiątki metrów żelaza)
 - Można to wykorzystać w szybkiej i niezawodniej identyfikacji mionów – niezwykle ważne dla systemów wyzwalania

$$\vec{p} = \vec{\beta} \gamma m_0 c$$

$$p = \frac{\sqrt{E_k \left(E_k + 2m_0 c^2\right)}}{c}$$

zadanie!

- W przypadku cząstek naładowanych mogą one oddziaływać elektromagnetycznie (**E.M.**):
 - z elektronami atomów materiału czynnego aparatury detekcyjnej (oddziaływania z jądrami można zaniedbać) – strata energii
 - z jądrami atomowymi straty energii pomijalnie małe, ale duży wpływ na zmianę kierunku
- Cząstki obojętne muszę najpierw ulec pewnemu procesowi, na skutek którego nastąpi częściowe lub całkowite przekazanie ich energii elektronom, jądrom atomowym lub fragmentom jąder.
 - □ Inaczej powiemy, że detekcja cząstek obojętnych opiera się o ich zdolność do produkcji naładowanych cząstek wtórnych!

Straty ciężkich cząstek

Starta energii protonu w zderzeniu z elektronem

Proton Kinetic Energy, E [MeV]	Qmax [MeV]	Maximum % Energy Transfer 100Qmax/E
0.1	0.00022	0.22
1	0.0022	0.22
100	0.0219	0.22
100	0.229	0.23
1000	3.33	0.33
10000	136	1.4
100000	1060	10.6
1000000	53800	53.8
10000000	921000	92.1

minimalne ΔE wymagane do jonizacji lub wzbudzenia elektronu

Procesy oddziaływania

- Cząstki przechodząc przez materiał oddziałują z wieloma atomami jednocześnie:
 - każdy atom ma wiele elektronów,
 - każdy elektron zajmuje różne poziomy energetyczne i ma różne energie jonizacji i wzbudzenia,
 - każde zderzenie ma inne prawdopodobieństwo przekazania konkretnej porcji energii

$$E = E_0 - \sum_{i} \Delta E_i = E_0 - \sum_{i} \left(\frac{\Delta E_i}{\Delta x}\right)_i = E_0 - \int \frac{dE}{dx} dx$$

- ☐ Nie jest możliwe wyznaczenie strat energii licząc straty indywidualnych zdarzeń.
- ☐ Można za to policzyć średnie straty energii na jednostkę drogi przebytej przez cząstkę w materiale.

CZĘŚĆ I. Cząstki naładowane

Cząstki naładowane, "ciężkie" (I)

- ☐ Ciężkie cząstki przechodząc przez materię tracą energię poprzez jonizację i oddziaływania silne z jądrami atomowymi
- ☐ Naładowana cząstka przechodząc przez materię pozostawia za sobą:
 - Wzbudzone atomy,
 - Pary elektron-jon (gazy),
 - Pary elektron-dziura (ciała stałe)

- Ciągłę oddziaływanie E.M. z chmurami elektronowymi atomów materiału czynnego detektora
 - Oddziaływania z jądrami (rozpraszanie typu Rutherford'a) możliwe, ale w praktyce zupełnie zaniedbywalne
 - Odpowiedź detektorów cząstek naładowanych, mierzona przez elektronikę odczytu, opiera się na ich oddziaływaniu z elektronami
 - ☐ Każda z naładowanych cząstek penetrujących materiał detektora "czuje" w każdym momencie wiele elektronów

Cząstki naładowane, "ciężkie" (II)

- W zależności od odległości (cząstka elektron) możliwe jest
 - Przeniesienie elektronu na wyższą powłokę wzbudzenie atomu materiału absorbującego.
 - fotony emitowane przez wzbudzone atomy mogą być rejestrowane przez detektory fotonów.
 - Usunięcie elektronu z atomu jonizacja
 - Jeżeli w detektorze będzie pole elektryczne, elektrony i jony z jonizacji mogą być zbierane przez elektrody i przetwarzane przez układy elektroniczne.
- Zarówno wzbudzenie jak i jonizacja zachodzą **kosztem energii** cząstki naładowanej, co skutkuje również **zmniejszeniem jej prędkości**.

Można pokazać, że **maksymalna energia** przekazana elektronowi w jednym akcie rozpraszania to:

Przykład

Jeżeli promieniowanie penetrujące składa się z cząstek α , wówczas mamy:

$$\Delta E_{MAX}^{\alpha} = 4E_{I}^{\alpha} \frac{m_{e^{-}}}{M_{\alpha}} = 4E_{I}^{\alpha} \frac{0.5 \ [MeV]}{4000 \ [MeV]}$$

$$\frac{\Delta E_{MAX}^{\alpha}}{E_{I}^{\alpha}} = \frac{1}{2000}$$

Ciężka naładowana cząstka traci niewiele energii w pojedynczym zderzeniu i nie zmienia znacząco kierunku. Wyjaśnia to podstawowe fakty dotyczące oddziaływania ciężkich cząstek naładowanych z materią:

- ☐ Trajektorie cząstek są praktycznie liniowe
- ☐ Zmniejszanie prędkości (energii) odbywa się w sposób ciągły, aż do całkowitego zatrzymania
- ☐ Zasięg cząstek naładowanych jest praktycznie stały i zależy od materiału oraz energii początkowej

Detekcja cząstek α

Poniżej – ślady wysokoenergetycznych cząstek α emitowanych przez izotop toru, obserwowane w komorze mgłowej

zasięg protonów w powietrzu

Cząstki naładowane, "ciężkie" (IV)

- Dość często zdarza się, że wybity elektron posiada wystarczająco wysoką energię i sam jest zdolny do jonizacji materiału detektora.
- Elektrony takie nazywamy "**elektronami delta**" (delta rays) stanowią one **pośredni** sposób przekazywania energii pomiędzy cząstkami promieniowania oraz medium pochłaniającym.
- □ Zasięg elektronów delta jest zawsze dużo mniejszy niż pierwotnej cząstki, oznacza to, że efekty jonizacyjne związane z nimi zachodzą blisko trajektorii cząstki pierwotnej.
- W typowych warunkach **większość energii traconej** przez cząstki naładowane związana jest właśnie z emisją elektronów delta.

Większość procesów umożliwiających wykrycie cząstki są to procesy elektromagnetyczne

Oddz. z **elektronami atomowymi**. Wchodząca cząstka traci energię, pozostawiając atomy **wzbudzone lub zjonizowane**

Oddz. z **jądrami atomowymi**.

Cząstki są **odchylone** w wyniku wielokrotnych "miękkich" rozpraszań oraz (rzadko) z jądrem Zmiana kierunku jest źródłem **promieniowania hamowania** (bremsstrahlung)

"Stopping power" (I)

Strata energii, **S**, cząstki naładowanej przechodzącej przez materiał detektora może być wyrażona w formie różniczkowej:

$$S = -\frac{dE}{dx}$$

elementarna strata energii cząstki pierwotnej w danym medium

"minus" reprezentuje stratę energii

Element długości trajektorii cząstki pierwotnej w medium absorpcyjnym

Przybliżone równanie opisujące "szybkość" utraty energii przez cząstkę naładowaną przechodzącą przez ośrodek z prędkością v= βc w procesach wzbudzeń i jonizacji ośrodka nazywamy formułą Bethe'go:

ładunek cząstki jonizującej - *zę* prędkość cząstki pierwotnej

$$-\frac{dE}{dx} = NZ \frac{4\pi e^{4}z^{2}}{m_{e}v^{2}} \left[ln \left(\frac{2v^{2}m_{e}}{I} \right) - ln(1 - \beta^{2}) - \beta^{2} \right]$$

koncentracja atomów absorbera $N = \frac{liczba \ atomów}{absorbera}$

średnia energia wzbudzenia/jonizacji

liczba atomowa materiału absorbującego

"Stopping power" (II)

$$-\frac{dE}{dx} = NZ \frac{4\pi e^4 z^2}{v^2 m_e} \left[ln \left(\frac{2v^2 m_e}{I} \right) - ln(1 - \beta^2) - \beta^2 \right]$$

- Oddziaływanie jest zdominowane przez elastyczne zderzenia z elektronami.
- Dla cząstek nierelatywistycznych tylko pierwszy czynnik przed nawiasem kwadratowym jest znaczący (zaniedbujemy β)

■ Nawias kwadratowy zmienia się bardzo wolno wraz ze zmianą energii – oznacza to, że ogólne własności tej formuły wynikają z zachowania się czynnika przed nawiasem

"Stopping power" (IIa)

$$-\frac{dE}{dx} = NZ \frac{4\pi e^4 z^2}{v^2 m_e} \left[ln \left(\frac{2v^2 m_e}{I} \right) - ln(1 - \beta^2) - \beta^2 \right]$$

- Poprawki:
- nie wszystkie elektrony (zwłaszcza z wewnętrznych poziomów) biorą udział w oddziaływaniu,
 - atomy bliskie trajektorii ekranują dalsze (density effect)

$$-\frac{dE}{dx} = NZ \frac{4\pi e^4 z^2}{v^2 m_{e^-}} \left[ln \left(\frac{2v^2 m_{e^-}}{I} \right) - ln(1 - \beta^2) - \beta^2 \right]$$

- \square Strata energii zmienia się proporcjonalnie do $\frac{1}{v^2}$
- Wolniejsza cząstka "spędza" **więcej czasu** w pobliżu danego elektronu zwiększa to przekaz (stratę) energii
- Dla cząstek o tej **samej prędkości** strata energii zależy wyłącznie od **ładunku** cząstki pierwotnej (jonizacja dla cząstek $\alpha \gg$ niż dla p)
- ☐ Straty energii zależą również od rodzaju medium, które absorbuje promieniowanie
 - własności danego materiału dane są przez iloczyn NZ, który reprezentuje efektywnie jego gęstość elektronową
 - S rośnie dla materiałów o dużej liczbie atomowej i gęstości

"Stopping power" (IV)

mass stopping power [MeV cm²/g]

Straty energii cząstek naładowanych w funkcji ich energii (pomiar)

□ Dla energii powyżej ~ **1000** *MeV* wartości $\frac{dE}{dx}$ praktycznie **stałe** – minimalnie jonizujące cząstki (MIP)

"Stopping power" (V)

W zastosowaniach HEP powszechnie używa się zmodyfikowanej formuły Bethe'go, zwaną równaniem Bethe'go-Bloch'a:

$$\left\langle -\frac{dE}{dx} \right\rangle = \kappa z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 T_{MAX}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right]$$
[1] PDG

$$\kappa = 4\pi N_A r_e^2 m_e c^2 = 0.3071 \, MeV \, cm^2/g$$

Nowości to:

- Çzynnik Lorentza y
- Poprawka "gęstościowa" na straty jonizacyjne, istotna dla cząstek ultrarelatywistycznych
- lacktriangledown maksymalna energia kinetyczna przekazana elektronowi
- lacktriangle Jednostki w jakich mierzymy straty energii $\left[\frac{MeV \cdot cm^2}{g}\right]$

Powyższy zapis używany jest, aby podkreślić, że straty energii cząstek naładowanych (o tym samym ładunku) są jedynie funkcją β (dla cząstek o najwyższych energiach formuła powyższa zaczyna również zależeć od masy cząstki jonizującej – dE/dx umożliwia identyfikację cząstek!)

"Stopping power" (VI)

$$\left\langle -\frac{dE}{dx} \right\rangle = \kappa z^2 \frac{Z}{A\beta^2} \left[\frac{1}{2} ln \left(\frac{2m_e c^2 \beta^2 \gamma^2 T_{MAX}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right]$$
[1] PDG

$$\left(-\frac{dE}{dx} \propto \frac{Z^2}{\beta^2} \ln(\alpha \beta^2 \gamma^2)\right)$$

- □ Formuła opisuje "mass stopping power" [MeVg⁻¹cm²].
- ☐ Szybki spadek przy niskich energiach $\propto \frac{1}{\beta^2}$
- □ Szerokie minimum w zakresie $3 \le \beta \gamma \le 4$,
- ☐ MIP cząstka z dE/dx w pobliżu minimum (dlaczego mion?)
- MIP we wszystkich ośrodkach (z wyjątkiem wodoru) traci tyle samo energii: 1-2 MeV/(/cm²)

$$-\frac{dE}{dx}min \approx 1 - 2 \frac{MeV}{g/cm^2}$$

 Straty energii rosną dla γ>4 (wzrost logarytmiczny)

"Stopping power"

PDG

- Uśredniona strata energii $\langle -dE/dx \rangle$ dodatnio naładowanych mionów w szerokim zakresie pędów (9 rzędów wielkości), straty jonizacyjne dominują dla mionów o pędach poniżej $\sim 100~GeV$
- Minimum jonizacji (uniwersalna wartość dla różnych cząstek i absorberów) występuje dla $\beta\gamma\approx3$.
- Dla najwyższych energii dominuje strata przez promieniowanie.25

p nomentum of the promotive promotiv

"Stopping power" (VIII)

□ Poza przypadkiem ciekłego wodoru, cząstki o podobnych prędkościach charakteryzują się podobnymi stratami energii bez względu na absorber!