Do Practice HW Problems!

Algorithm Analysis

- Be able to look at code and determine if it's O(1), O(log(n)), O(n), etc.
- Given N₁, T₁, O(N) predict T₂ from N₂ (and vice versa)
 - o In other words, given the time it takes to process Nemens, be able to determine the time it would take to process N₂ items, or determine the number of items that can be processed in a different amount of time.

For each of the Data Structures covered so far (see below), know:

- All relevant Operations
 - O(???) for each
 - Worst case, Best case Average case
 - Theoretical (non-Python) Algorithms for each (including recursive ones), and including drawing pictures of linked-lists and arrays.
 - Be able to Read/Write/debug Python code for each operation
- Data structures:
 - Stack
 - Queue
 - Circular Queue
 - Link-based list
 - Array-based list

Data Structures covered so far:

Stack

- Both Array and Linked List implementations, as implemented in Lab 2
- Operations:
 - o push
 - opop
 - o size
 - o is empty
 - o is_full

Circular Queue, as implemented in Lab 3

- Both Array and Linked List implementations
- Operations:
 - o enqueue
 - odequeue

List

- Both Array based and Link based
- Operations:
 - o add (beginning, end, middle)
 - o remove (beginning, end, middle)
 - find/get/contains (beginning, end, middle)
 - o set (beginning, end, middle)

Binary Trees

Traversals - inorder, postorder, preorder, level odrer

Binary Search Tree

- Understand what a BST is
- Operations:
 - o Insert/Replace
 - Search/Find
 - Find min/max
 - Height
 - o Delete

Code Reading/Writing

- Be able to read/write Python code for operations of the covered data structures, especially for the operations implemented in labs/projects.
- Be able to read/write recursive functions such as those implemented in Lab 1 and Project 1
- Be able to read/write code that evaluates postfix expressions, and be able to evaluate them by hand.
- BST operations insert/replace, search/find, find min/max, height no delete