CUSTO COMPUTACIONAL

Como o programa baseia-se na geração de uma matriz e nos passos dados até chegar à posição n;n, pode-se dizer que o custo computacional é o custo da geração da matriz e inicialização das variáveis da struct, somado ao custo da caminhada realizada na matriz.

CUSTO PARA A GERAÇÃO DA MATRIZ E INICIALIZAÇÃO DA STRUCT

O custo para a geração da matriz é $n^2 + 5$ com n (dimensão da matriz) variando de 2 a 10.

CUSTO PARA ANDAR UMA CASA

```
c->cont_steps++;
c->vet_pos[c->cont_steps]=c->vet_pos[c->cont_steps-1]+1;
c->soma=c->soma+valor_d;

void ander(int matriz[MAX][MAX],contador *c)
{
   int valor_atual,valor_e,valor_d,valor_b;
   valor_btual=matriz[c->vet_pos[c->cont_steps]/le][c->vet_pos[c->cont_steps]ke];
   valor_d.matriz[(c->vet_pos[c->cont_steps]/le)][(c->vet_pos[c->cont_steps]ke)];
   valor_b-matriz[(c->vet_pos[c->cont_steps]/le)][(c->vet_pos[c->cont_steps]ke)];
   if(((c->vet_pos[c->cont_steps]/le)+1)[(c->vet_pos[c->cont_steps]kle)];
   if(((c->vet_pos[c->cont_steps]/le)+1)[(c->vet_pos[c->cont_steps]kle)];
   delse
   {
}
```

Como o programa pode percorrer toda a matriz para chegar ao final e a matriz tem que ter no mínimo 2 de dimensão e no máximo 10, o custo é $7 \cdot n$ de forma que $2 \le n \le 91$.

Concluindo o custo do programa é $n^2 + 5 + 7n_1$ sendo que n m é a dimensão da matriz e n_1 é o número de passos dados e depende de n. Caso a dimensão da matriz pudesse tender ao infinito o custo poderia ser definido por n^2 .

HÁ OUTRA FORMA DE RESOLVER ESSE PROBLEMA?

Existe sim outras formas de resolver esse problema através de programas que verificam instruções.

HÁ ALGUM ALGORITMO FAMOSO EM LITERATURA QUE RESOLVA ISSO?

Esse problema pode ser resolvido pelos algoritmos míopes que buscam o melhor resultado local visando a melhor escolhe para a solução global