МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по дисциплине «Безопасность жизнедеятельности»

Лабораторная работа №6 Производственное освещение

Выполнили студенты группы ИВТ-32	/Рзаев А. Э./
	/Дехтерев К. Е./
	/Малых P. E./
	/Куцын Д. В./
Проверил преподаватель	/Митенев Ю.Н./

Цель работы

- 1. Ознакомиться с методикой контроля и нормирования освещенности на рабочих местах.
- 2. Изучить и сравнить технические показатели люминисцентных газоразрядных ламп (ЛЛ), ламп накаливания (ЛН) и дуговых ртутновольфрамных ламп (ДРВ).
- 3. Ознакомиться с порядком расчета искусственного освещения.

Ход выполнения работы

1. Измерение освещенности в учебной аудитории

Рисунок 1 – Схема размещения точек измерения

Таблица 1 – Результаты измерений

Номер	Естественное	Совмещенное	Характер	E_{H}
точки	освещение Е, лк	освещение Е, лк	измерительных	СНиП
			работ	23-05-95
1	29	370		
2	30	250	D	
3	70	320	Высокой	300
4	24	260	точности	
5	18	320		

Вывод: в ходе выполнения задания было обнаружено, что в точках 1, 3 и 5 освещенность соответствует норме, а в точках 2 и 4 нет, причем в точке 2 наименьшая освещенность при совмещенном освещении, в точке 5 — при естественном.

2. Измерение световой отдачи источников света

Коэффициент световой отдачи K_1 определяется по формуле:

$$K_1 = \frac{E}{P},$$

где E — освещенность от лампы, лк; P — электрическая мощность лампы, Bт.

Таблица 2 – Результаты измерений

Параметры	ЛН	ЛЛ	ДРВ
Мощность лампы Р, Вт	40	18	160
Освещенность Е, лк	1073	2100	6020
Коэффициент K_1 , лк/Вт	$K_1 = \frac{1073}{40} = 26.8$	$K_1 = \frac{2100}{18} = 116.7$	$K_1 = \frac{6020}{160}$ = 37.6

Вывод: максимальным коэффициентом отдачи обладает люминисцентная газоразрядная лампа, затем дуговая ртутно-вольфрамная лампа и наименьший коэффициент имеет лампа накаливания.

3. Определение влияний колебаний напряжения сети на освещенность

Коэффициент чувствительности освещенности от напряжения сети ${\rm K}_2$ определяется по формуле:

$$K_2 = \frac{E}{II}$$

где E — освещенность от лампы, лк; U — напряжение сети, B.

Таблица 3 – Результаты измерений

Вид					
источника	Параметры	180 B	200 B	220 B	240 B
света					
	Е, лк	515	720	1020	1440
ЛН	K ₂ , лк/В	$K_2 = \frac{515}{180}$	$K_2 = \frac{720}{200}$	$K_2 = \frac{1020}{220}$	$K_2 = \frac{1440}{240}$
		= 2.9	= 3.6	= 4.6	= 6
	Е, лк	1680	1800	1930	2120
ЛЛ	K_2 , лк/ B	$K_2 = \frac{1680}{180}$	$K_2 = \frac{1800}{200}$	$K_2 = \frac{1930}{220}$	$K_2 = \frac{2120}{240}$
		= 9.3	= 9	= 8.8	= 8.8
	Е, лк	2830	4470	5770	8040
ДРВ	K ₂ , лк/В	$K_2 = \frac{2830}{180} = 15.7$	$K_2 = \frac{4470}{200} $ = 22.4	$K_2 = \frac{5770}{220} = 26.2$	$K_2 = \frac{8040}{240}$ = 33.5

Рисунок 2 — График зависимости коэффициента K_2 от напряжения сети U

Вывод: наиболее интенсивное увеличение освещенности при увеличении напряжения наблюдается у ламп ДРВ. Следует отметить, что у ламп ЛЛ и ЛН освещенность изменяется незначительно.

4. Расчет искусственного освещения помещения лаборатории

Вид светильника: ПВЛМ

Таблица 4 – Исходные данные

L, м	В, м	Н, м	ρ_{Π}	$ ho_{ m cT}$	$ ho_{ m p\pi}$
7	5	4	70	50	10

Площадь помещения S вычисляется по формуле:

$$S = L * B,$$

где L — длина помещения, м; B — ширина помещения, м.

Индекс помещения i определяется по формуле:

$$i = \frac{L * B}{H * (L + B)'}$$

где Н – высота помещения над рабочей поверхностью.

Таблица 5 – Расчетные данные

S, m ²	i	η
35	0,73	0,36

Световой поток лампы F определяется по формуле:

$$F = \frac{E_{H} * S * k * z}{n * \eta},$$

где k – коэффициент запаса; z – коэффициент неравномерности освещенности; n – число ламп.

Расчет светового потока:

$$F = \frac{E_{H} * S * k * z}{n * \eta} = \frac{300 * 35 * 1.1 * 1.8}{32 * 0.36} = 1804.7$$

Выбор типа стандартной лампы:

Мощность осветительной установки P_{ycr} определяется по формуле:

$$P_{vct} = P * n$$

Расчет мощности осветительной установки:

$$P_{vct} = P * n = 40 * 32 = 1280 BT$$

Вывод: в ходе расчетов общего освещения для помещения учебной лаборатории была определена мощность ее осветительной установки.