

Pushdown Automata MCQ Quiz - Objective Question with Answer for Pushdown Automata - Download Free PDF

U Last updated on Jun 14, 2023

Latest Pushdown Automata MCQ Objective Questions

Pushdown Automata Question 1:

Consider the grammer $S \rightarrow SbS \mid a$.

Consider the following statements:

The string abababa has

- (A) two parse trees
- (B) two left most derivations
- (C) two right most derivations

Which of the following is correct?

- 1. All (A), (B) and (C) are true
- 2. Only (B) is true
- 3. Only (C) is true
- 4. Only (A) is true

Answer (Detailed Solution Below)

Option 1: All (A), (B) and (C) are true

India's Super Teachers for all

govt. exams Under One Roof

FREE Demo Classes Available*

Enroll For Free Now

Pushdown Automata Question 1 Detailed Solution

The given grammar is:

$$S \rightarrow SbS \mid a$$

The string abababa can be derived using the:

(A) two parse trees

(B) two left most derivative

First derivative

- $S \rightarrow \underline{S}bS$
- $S \rightarrow \underline{S}bSbS$
- $S \rightarrow \underline{S}bSbSbS$
- S → abSbSbS
- S → abab<u>S</u>bS
- S → ababab<u>S</u>
- S → abababa

Second derivative

- $S \rightarrow \underline{S}bS$
- $S \rightarrow ab\underline{S}$

- S → ababSbS S → ababab<u>S</u>
- S → ababab<u>a</u>
- (C) two right most derivative

First derivative

- $S \rightarrow Sb\underline{S}$
- $S \rightarrow SbSbS$
- S → SbSbSb<u>S</u>
- S → SbSbSba
- S → SbSbaba
- S → Sbababa
- S → abababa

Second derivative

- $S \rightarrow SbS$
- $S \rightarrow \underline{S}ba$
- S → SbSba
- $S \rightarrow \underline{S}baba$
- S → SbSbaba
- S → Sbababa
- S → ababab<u>a</u>

Hence, the correct answer is **options 1**.

Automata

India's #1 Learning Platform

Start Complete Exam Preparation

Trusted by **4.4 Crore+** Students

Home > Theory of Computation >

Context Free Languages and Pushdown Automata > Pushdown

Download Pushdown Autom...

Get Started for Free

Consider the following NPDA = $(\{q_0, q_1, q_f\}, \{a, b\}, \{1, z\}, \delta, q_0, z, \{q_f\})$

$$\delta(q_0, \lambda, z) = \{(q_f, z)\}$$

$$\delta(q_0, a, z) = \{(q_1, 11z)\}$$

$$\delta(q_1, a, 1) = \{(q_1, 111)\}$$

$$\delta(q_1, b, 1) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_f, z\}$$

Which of the following Language L is accepted by NPDA?

1.
$$L = \{a^{2n}b^n : n \ge 0\}$$

2.
$$L = \{a^n b^{2n} : n \ge 0\}$$

3.
$$L = \{a^{2n}b^n : n > 0\}$$

4.
$$L = \{a^nb^{2n} : n > 0\}$$

Answer (Detailed Solution Below)

Option 1 : L = $\{a^{2n}b^n : n \ge 0\}$

Pushdown Automata Question 2 Detailed Solution

Sign Up Now & Get Free Access to All

Daily Live Classes • 250+ Test series • Study Material & PDF Quizzes With Detailed Analytics + More Benefits

Get Free Access Now

it pushes two 1's on the stack ($\delta(q0, a, z) = \{(q1, 11z)\}$). Then, every time it reads another a, it pushes another 1 on the stack ($\delta(q1, a, 1) = \{(q1, 111)\}$). This way, the stack stores the number of a's that have been read so far.

- When the NPDA reads a b, it pops one 1 from the stack ($\delta(q1, b, 1) = \{(q1, \lambda)\}$). When the stack becomes empty (i.e., when all the a's have been paired with b's), the NPDA transitions to the final state qf ($\delta(q1, \lambda, z) = \{(qf, z)\}$).
- Therefore, the NPDA accepts the language $L = \{a^{2n}b^n : n \ge 0\}$, which consists of strings of a's followed by an equal number of b's. The other options are not accepted by the NPDA.

Start Complete Exam Preparation

Get Started for Free

Download App

Pushdown Automata Question 3:

The grammar

G: $S \rightarrow SS \mid a \mid b$ is ambiguous.

This indicates that at least some of the strings in its language have more than just the leftmost derivation. However, it's possible that certain language strings have just one source.

- i. bbbba (has x leftmost derivation).
- ii. aaaa (has y leftmost derivation).
- iii. aab (has z leftmost derivation).

What is the value of x+y+z?

Answer (Detailed Solution Below) 8

Pushdown Automata Question 3 Detailed Solution

The correct answer is 8.

Concept:

Given that the grammar G is ambiguous.

Now we need to find the string in the given options which has more than two leftmost derivations.

Option 1: bbbba

We can find more than two Leftmost derivatives for the string bbbba.

Option 2: aaaa

We can find more than two leftmost derivations for the string aaaa.

Option 3: aab

There are exactly two leftmost derivations for the string aab.

$$S \rightarrow SS$$
 $S \rightarrow SS$
 $\rightarrow SSS$ $\rightarrow aS$
 $\rightarrow aSS$ $\rightarrow aSS$
 $\rightarrow aaS$ $\rightarrow aaS$
 $\rightarrow aab$ $\rightarrow aab$

x has 3 leftmost derivations.

y has 3 leftmost derivations.

z has 2 leftmost derivations.

$$x+y+z=3+3+2$$

x+y+z=8 derivations

Hence the correct answer is 8.

India's #1 Learning Platform

Start Complete Exam Preparation

Pushdown Automata Question 4:

 $\{a^nb^n \mid n \ge 1, n \ne 100\}$

The above-given language is

- 1. DCFL but not regular
- 2. Regular
- 3. CFL but not DCFL
- 4. DCFL and CFL

Answer (Detailed Solution Below)

Option:

Pushdown Automata Question 4 Detailed Solution

The correct answer is option 1 and option 4.

Concept:

The given language is,

$$\{a^nb^n \mid n \ge 1, n \ne 100\}$$

It accepts the strings like= {ab, aabb, aaabbb, aaaabbbb,...}

The given language is Deterministic context-free language.

 $\{a^nb^n \mid n \ge 1, n \ne 100\}$ $a^nb^n \mid n \ge 1$ is CFL and in particular is a DCFL.

 $a^nb^n \mid n \ge 1 \ \& \ n \ne 100$ is also a DCFL Let's understand how to draw the PDA.

Pushdown Automata Question 5:

Which of the following statement is/are true?

- 1. Pushdown automata = Finite automata + 0 stack
- Pushdown automata = Finite automata + 1 stack
- Deterministic pushdown automata is a subset of nondeterministic pushdown automata.
- 4. Non deterministic Pushdown Automata and Deterministic Pushdown Automata are equivalent in power.

Answer (Detailed Solution Below)

Pushdown Automata Question 5 Detailed Solution

The correct answer is **option 2 and option 3.**

Concept:

Option 1: Pushdown automata = Finite automata + 0 stack

False, Pushdown Automata is a finite automaton with extra memory called stack which helps Pushdown automata to recognize Context-Free Languages.

Pushdown automata = Finite automata + stack (More than one stack)

Option 2: Pushdown automata = Finite automata + 1 stack

True, Pushdown Automata is a **finite automaton** with extra memory called **stack** which helps Pushdown automata to recognize Context-Free Languages.

Pushdown automata = Finite automata + stack (More than one stack)

Option 3: Deterministic pushdown automata is a subset of nondeterministic pushdown automata.

True, Pushdown automata with deterministic behavior are a subset of those with nondeterministic behavior. NPDA is more powerful than DPDA, it can support more languages than DPDA can, although not all languages can be supported by both groups.

Option 4:Non deterministic Pushdown Automata and Deterministic Pushdown Automata are equivalent in power.

False, There is no power equivalence between NPDAs (Non-Deterministic Pushdown Automata) and DPDAs (Deterministic Pushdown Automata). The NPDA is more effective than the DPDA, hence it exists for every language for which a DPDA exists. However, certain languages are accepted by the NPDA but not by the DPDA.

i.e DPDA < NPDA

Hence the correct answer is **option 2 and option 3.**

Which of the following is/are correct?

- I. A language is context free if and only if it is accepted by PDA
- II. PDA is a finite automata with push down stack
 - 1. Both I and II are true
 - 2. Both I and II are false
 - 3. Only II is true
 - 4. Only I is true

Answer (Detailed Solution Below)

Option 1 : Both I and II are true

Pushdown Automata Question 6 Detailed Solution

Download Solution PDF

Statement I. A language is context free if and only if it is accepted by PDA

Given statement is correct A language is context free if and only if it is accepted by a push down automata. For a context free grammar, there is an equivalent PDA which accepts that language. If language is not accepted by PDA it means language is not context free.

Statement II. PDA is a finite automata with push down stack

Given statement is correct. A push down automata is like a finite automata having memory (extra component) which is known as stack. Stack helps in recognizing the languages. Symbol are written on the stack for reading and writing purpose.

Download Solution PDF

Share on Whatsapp

India's #1 Learning Platform

Start Complete Exam Preparation

Bank

Practice Question

Trusted by 4.4 Crore+ Students

Pushdown Automata Question 7

Download Solution PDF

Let $\langle M \rangle$ denote an encoding of an automation M. Suppose that $\Sigma = \{0, 1\}$. Which of the following languages is/are NOT recursive?

- 1. $L = \{ \mid M \text{ is a PDA such that } L(M) = \sum^* \}$
- 2. $L = \{ \mid M \text{ is a DFA such that } L(M) = \Phi \}$
- 3. $L = \{ \mid M \text{ is a PDA such that } L(M) = \Phi \}$
- 4. $L = \{ | M \text{ is a DFA such that } L(M) = \Sigma^* \}$

Answer (Detailed Solution Below)

Option:

Pushdown Automata Question 7 Detailed Solution

Download Solution PDF

Answer: Option 1

Explanation:

Option 1:L = { $\langle M \rangle$ | M is a PDA such that L(M) = Σ^* }

This is <u>not Recursive</u>. As completeness Problem is Undecidable for CFL and Hence no algorithm exists to decide whether or not the Language of PDA is Σ^* .

Option 2: L = { $\langle M \rangle$ | M is a DFA such that L(M) = Φ }

This is **Recursive**. for DFA accept empty language Algorithm exists

Option 3: L = { $\langle M \rangle$ | M is a PDA such that L(M) = Φ }

This is also **Recursive**. for a CFL to checking for empty language problem is decidable. Hence there exists an algorithm to decide whether a PDA accepts empty language or not.

 $\underline{\mathbf{Option}\; \mathbf{4}} : \mathsf{L} = \{\; \big\langle M \big\rangle \; | \; \mathsf{M} \; \mathsf{is\; a\; DFA \; such \; that} \; \mathsf{L}(\mathsf{M}) = \Sigma^* \}$

This is also **Recursive.** Completeness problem for regular language is decidable.

Pushdown Automata Question 8

Download Solution PDF

Consider the NPDA $\langle Q = \{q_0, q_1, q_2\}, \Sigma = \{0,1\}, \Gamma = \{0,1,\bot\}, \delta, q_0, \bot, \Gamma = \{q_2\}\rangle$, where (as per usual convention) Q is set of states, Σ is the input alphabet, Γ is the stack alphabet, δ is the state transition function, q_0 is the initial state, \bot is the initial stack symbol, and Γ is the set of accepting states. The state transition is as follows:

Which one of the following sequences must follow the string 101100 so that the overall string is accepted by the automaton?

- 1. 10110
- 2. 10010
- 3. 01010
- 4. 01001

Answer (Detailed Solution Below)

Option 2: 10010

Pushdown Automata Question 8 Detailed Solution

Download Solution PDF

 $0/1/\epsilon,Z\rightarrow Z$ $\epsilon,\perp\rightarrow\epsilon$

In this Z represents the top of the stack.

1, $Z \rightarrow 1Z$ means, on input symbol 1, if stack top is Z then it changes to 1.

Here, in q_0 state, for a 1, a '1' is pushed into the stack and for a '0' a '0' is pushed into stack. In q_1 stack, for a '0' a '1' is popped and for a '1' a '0' is popped. It means when it finds a complement of input character on top of stack then it pop one element from top of stack.

Given string is 101100 having 6 letters, but in options we have to append 5 length string so one bit is ignored to transit between state.

Only option 2) matches with this PDA.

String will be like 10110010010

At state q_0 , input is 1, push 1 (remain at q_0 state)

At state q_0 , input is 0, push 0 (remain at q_0 state)

At state q_0 , input is 1, push 1 (remain at q_0 state)

At state q_0 , input is 1, push 1 (remain at q_0 state)

At state q_0 , input is 0, push 0 (remain at q_0 state)

At state q_0 , input is 0, ignore (move to q_1 state)

At state q_1 , input is 1, stack top 0, pop (remain at q_1 state)

At state q_1 , input is 0, stack top 1, pop (remain at q_1 state)

At state q_1 , input is 0, stack top 1, pop (remain at q_1 state)

At state q_1 , input is 1, stack top 0, pop (remain at q_1 state)

At state q_1 , input is 0, stack top 1, pop (remain at q_1 state)

At state q_1 , input is null, stack top null, accepted.

Download Solution PDF

Share on Whatsapp

India's #1 Learning Platform

Start Complete Exam Preparation

Pushdown Automata Question 9

Download Solution PDF

Consider the transition diagram of a PDA given below with input alphabet $\Sigma = \{a, b\}$ and stack alphabet $\Gamma = \{X, Z\}$. Z is the initial stack symbol. Let L denote the language accepted by the PDA.

Which one of the following is TRUE?

- 1. $L = \{a^n b^n | n \ge 0\}$ and is not accepted by any finite automata
- 2. $L = \{a^n \mid n \ge 0\} \cup \{a^n b^n \mid n \ge 0\}$ and is not accepted by any deterministic PDA
- 3. L is not accepted by any Turing machine that halts on every input
- 4. $L = \{a^n | n \ge 0\} \cup \{a^n b^n | n \ge 0\}$ and is deterministic context-free

Answer (Detailed Solution Below)

Option 4 : L = { $a^n | n \ge 0$ } \cup { $a^n b^n | n \ge 0$ } and is deterministic context-free

Pushdown Automata Question 9 Detailed Solution

Download Solution PDF

Concept:

Acceptance of given string by a push down automata in two ways either by

- Acceptance by final state: if machine at the end of the string enters to one of the final states then string is accepted.
- Acceptance by Empty state: if at the end of the string, stack is empty then string is accepted.

Explanation:

In this PDA, initial state is also the final state it means null string is accepted by the given push down automata (PDA). Consider the states as q_1 , q_2 and q_3 where q_1 is the final state.

Transition of given PDA are:

4)
$$(q_2, b, X) => (q_2, \epsilon)$$

5)
$$(q_2, \epsilon, Z) => (q_3, Z)$$

2. Only (B) is true

First two transition show that after giving input a at transition state remains same. With every input 'a' we push X into stack. It means a^n is always accepted for $n \ge 0$. Transition 3 and 4 shows that for every b input a X is popped out of the stack until stack symbol is Z and string becomes empty. It means 'b' occurred same number of times as 'a'. It represents language of the form $\{a^nb^n \text{ for } n \ge 0\}$. It is a DCFL.

Download Solution PDF Share on Whatsapp FREE Trusted by **4.4 Crore+** Students India's #1 Learning Platform Start Complete Exam Preparation Daily Live Practice Question Mock Tests & MasterClasses Bank Get Started for Free Download App **Pushdown Automata Question 10** Download Solution PDF Consider the grammer $S \rightarrow SbS \mid a$. Consider the following statements: The string abababa has (A) two parse trees (B) two left most derivations (C) two right most derivations Which of the following is correct? 1. All (A), (B) and (C) are true

4. Only (A) is true

Answer (Detailed Solution Below)

Option 1: All (A), (B) and (C) are true

Pushdown Automata Question 10 Detailed Solution

Download Solution PDF

The given grammar is:

$$S \rightarrow SbS \mid a$$

The string abababa can be derived using the:

(A) two parse trees

(B) two left most derivative

First derivative

- $S \rightarrow \underline{S}bS$
- $S \rightarrow \underline{S}bSbS$
- $S \rightarrow \underline{S}bSbSbS$
- S → abSbSbS
- $S \rightarrow abab\underline{S}bS$
- S → ababab<u>S</u>
- S → abababa

Second derivative

- $\mathsf{S} \to \underline{\mathsf{S}}\mathsf{b}\mathsf{S}$
- $S \rightarrow ab\underline{S}$
- $S \rightarrow ab\underline{S}bS$

S → ababab <u>S</u>						
S → ababab <u>a</u>						
(C) two right most derivative						
First derivative						
$S \to Sb\underline{S}$						
$S \rightarrow SbSb\underline{S}$						
$S \rightarrow SbSbSb\underline{S}$						
S → SbSb <u>S</u> ba						
S → Sb <u>S</u> baba						
S → <u>S</u> bababa						
S → abababa						
Second derivative						
$S \rightarrow Sb\underline{S}$						
S → <u>S</u> ba						
S → Sb <u>S</u> ba						
S → <u>S</u> baba						
S → Sb <u>S</u> baba						
S → <u>S</u> bababa						
S → ababab <u>a</u>						
Hence, the correct answer is options 1 .						
Download Solution PDF	Share on Whatsapp					
- CITIES CONTROL OF THE PROPERTY OF THE PROPER						

India's #1 Learning Platform

Start Complete Exam Preparation

Mock Tests &

Trusted by **4.4 Crore+** Students

Consider the following NPDA = $(\{q_0, q_1, q_f\}, \{a, b\}, \{1, z\}, \delta, q_0, z, \{q_f\})$

$$\delta(q_0, \lambda, z) = \{(q_f, z)\}$$

$$\delta(q_0, a, z) = \{(q_1, 11z)\}$$

$$\delta(q_1, a, 1) = \{(q_1, 111)\}$$

$$\delta(q_1, b, 1) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_f, z\}$$

Which of the following Language L is accepted by NPDA?

1.
$$L = \{a^{2n}b^n : n \ge 0\}$$

2.
$$L = \{a^n b^{2n} : n \ge 0\}$$

3.
$$L = \{a^{2n}b^n : n > 0\}$$

4.
$$L = \{a^nb^{2n} : n > 0\}$$

Answer (Detailed Solution Below)

Option 1 : L = $\{a^{2n}b^n : n \ge 0\}$

Pushdown Automata Question 11 Detailed Solution

Download Solution PDF

The language accepted by the NPDA is $L = \{a^{2n}b^n : n \ge 0\}$.

Explanation:

- The NPDA starts in the initial state q0 with the stack symbol z. When it reads the first symbol a, it pushes two 1's on the stack ($\delta(q0, a, z) = \{(q1, 11z)\}$). Then, every time it reads another a, it pushes another 1 on the stack ($\delta(q1, a, 1) = \{(q1, 111)\}$). This way, the stack stores the number of a's that have been read so far.
- When the NPDA reads a b, it pops one 1 from the stack ($\delta(q1, b, 1) = \{(q1, \lambda)\}$). When the stack becomes empty (i.e., when all the a's have been paired with b's), the NPDA transitions to the final state qf ($\delta(q1, \lambda, z) = \{(qf, z)\}$).
- Therefore, the NPDA accepts the language $L = \{a^{2n}b^n : n \ge 0\}$, which consists of strings of a's followed by an equal number of b's. The other options are not accepted by the NPDA.

Trusted by **4.4 Crore+** Students

India's #1 Learning Platform

Start Complete Exam Preparation

Daily Live MasterClasses

Practice Question

Mock Tests & Quizzes

Get Started for Free

Pushdown Automata Question 12

Download Solution PDF

What language is accepted by the pushdown automation

$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{a, b, z\}, \delta, q_0, z, \{q_2\})$$

with
$$\delta(q_0, a, a) = \{(q_0, aa)\}; \delta(q_0, b, a) = \{(q_0, ba)\}$$

$$\delta(q_0, a, b) = \{(q_0, ab)\}; \delta(q_0, b, b) = \{(q_0, bb)\}$$

$$\delta(q_0, a, z) = \{(q_0, az)\}; \delta(q_0, b, z) = \{(q_0, bz)\}$$

$$\delta(q_0, \lambda, b) = \{(q_1, b)\}; \delta(q_0, \lambda, a) = \{(q_1, a)\}$$

$$\delta(q_1, a, a) = \{(q_1, \lambda)\}; \delta(q_1, b, b) = \{(q_1, \lambda)\}$$

$$\delta(q_1, \lambda, z) = \{(q_2, z)\}?$$

1.
$$L = \{w \mid n_a(w) = n_b(w), w \in \{a, b\}^+\}\}$$

2.
$$L = \{w \mid n_a(w) \le n_b(w), w \in \{a, b\}^+\}$$

3.
$$L = \{w \mid n_b(w) \le n_a(w), w \in \{a, b\}^+\} \}$$

4.
$$L = \{ww^R \mid w \in \{a, b\}^+\}$$

Answer (Detailed Solution Below)

Option 4 :
$$L = \{ww^{R} \mid w \in \{a, b\}^{+}\}$$

The language accepted by the pushdown automation M is the set of all strings that can be generated by the transitions defined in the transition function δ , starting from the initial state q0, and eventually reaching the accepting state q2. The input alphabet for the language is {a, b}. The stack alphabet for the language is {a, b, z}.

The language accepted by the M is $L = \{ww^R \mid w \in \{a, b\}^+\}$ and the transition diagram is given below.

Download Solution PDF

Share on Whatsapp

Get Started for Free

Download App

Pushdown Automata Question 13

Download Solution PDF

In a pushdown automaton $P = (Q, \sum, \Gamma, \delta, q_0, F)$, a transition of the form,

$$p \xrightarrow{a, X \to Y} q$$

where p, q \in Q, a \in $\Sigma \cup \{\epsilon\}$, and X, Y $\in \Gamma \cup \{\epsilon\}$, represents (q, Y) $\in \delta$ (p, a, X).

The number of strings of length 100 accepted by the above pushdown automaton is _____

Answer (Detailed Solution Below) 50

Pushdown Automata Question 13 Detailed Solution

Download Solution PDF

Answer:50 to 50

Explanation:

According to given pushdown automata

the language accepted is $\{a^nb^m \mid n>m \text{ or } |a|>|b|\}$

Number of Strings of length 100 accepted=?

Let's take Assume small length = 10

Only 5 Strings of length 10 will be accepted

aaaaaaaaaa

aaaaaaaab

aaaaaaaabb

aaaaaaabbb

aaaaaabbbb

when length = 100

Strings accepted will be a^{100} to $a^{51}b^{49}$;

a's will be (51,52,53, ..., 100) Hence total 50 strings.

English V

Get Started

Pushdown Automata Question 14 Detailed Solution

Download Solution PDF

Concept:

A push down automata is like a finite state machine but with one auxiliary memory such as stack so that it can recognize the strings.

Explanation:

- A push down automata if contains more than one stack i.e. two or more stack or auxiliary memory than it is known as Turing machine.
- Push down automata can only access top of its stack, it cannot access an infinite tape whereas Turing machine can be used to access an infinite tape. Turing machine can move backward or

English V

Get Started

tinal state, reject state, transition function).

- A language is known as Turing recognizable if there is a Turing machine that accepts it.
- If Turing machine halts on every input of the language, then it is known as recursive.

Download Solution PDF

Share on Whatsapp

Trusted by **4.4 Crore+** Students

Get Started for Free

Pushdown Automata Question 15

Download Solution PDF

The best data structure to check whether an arithmetic expression has balanced parenthesis is a

- 1. Queue
- 2. Stack
- 3. Tree
- 4. List

Answer (Detailed Solution Below)

Option 2: Stack

Pushdown Automata Question 15 Detailed Solution

Download Solution PDF

It will require a push down automata which uses a stack. Also if there is only single type of parenthesis a counter can also be used.

Exam Preparation Simplified

Learn, practice, analyse and improve

Get Started for Free

Download App

Trusted by **4.4 Crore+** Students

Related MCQ

Context Free Grammars MCQ

Context Free Languages MCQ

Ambiguity MCQ

Exams

UGC NET	SBI Clerk	RRB JE	BPSC Exam
UPPCS	UGC CSIR NET	Delhi Police Constable	Indian Navy MR
AFCAT	UPSC NDA	JSSC CGL	JSSC JE
SSC GD Constable	SSC CPO	UP Police Constable	Bihar Police Constable
SSC JE	RBI Assistant	IBPS SO	Indian Navy SSR
IBPS PO	UPSC CSE	DDA JE	IDBI Executive
SBI PO	EPFO SSA	IBPS RRB PO	DSSSB TGT
UPSC EPFO	UPSC CDS	RRB ALP	Bihar Teacher

UPSC CSE Previous Year

SSC CGL Exam Previous

Papers

Year Papers

UGC NET Previous Year

Delhi Police Constable

Previous Year Papers

Papers

IGSIDOOK		Liigiisii		Get Started	
Bihar Police SI	Constable	EMRS TGT	Teac	her	
Indian Navy Chargeman	DFCCIL Executive	EMRS PGT	UTET		
Test Series					
CTET Mock Test	TCS Mock Test	CUET Maths Mock Test	CUET History Mock Test		
CUET Mock Test	CDS Mock Test	SSC GD Constable Mock	NABARD Development		
NEET Mock Test	MP GK Mock Test	Test	Assistant Mock Test		
JEE Main Mock Test	TCS NQT Mock Test	IBPS SC Mock Test	MAH MBS CST Mock Test		
SSC CHSL Mock Test	IBPS RRB PO Mock Test	ESIC SSO Mock Test	UGC NET English Mock		
NDA Mock Test	SSC Stenographer Mock	Infosys Mock Test	Test	Test	
IBPS PO Mock Test	Test	CUET Physics Mock Test	CUET Political Science		
IBPS Clerk Mock Test	WB TET Mock Test	Haryana CET Mock Test	Mock Test		
SBI PO Mock Test	RBI Assistant Mock Test	Indian Army GD Mock Test	FCI I	Manager Mock Test	
UGC NET Paper 1 Mock	REET Test Series	UPPCL Executive Assistant	CUE	T Chemistry Mock Tes	
Test	RRB NTPC Mock Test	Mock Test	IB Se	ecurity Assistant Mocl	
AFCAT Mock Test	LIC ADO Mock Test	ECGC PO Mock Test	Test		
RRB Group D Mock Test	UGC NET Commerce Mock	NIMCET Mock Test	CSIR	NET Life Science	
AMCAT Mock Test	Test	CUET Economics Mock	Mod	k Test	
LIC AAO Mock Test	CAT Exam Mock Test	Test	UTE	T Test Series	
SuperCoaching					
UPSC Coaching	AFCAT Coaching	EMRS TGT and PGT	RBI /	Assistant Coaching	
BPSC Coaching	Haryana CET Group D	Coaching	EPFC	O SSA Coaching	
SSC JE Electrical Coaching	Coaching	Bihar Police Constable	UP F	Police constable	
SSC JE Mechanical	DFCCIL Junior Executive	Coaching	Coad	ching	
Coaching	Coaching	SSC MTS Coaching	EMR	S Accountant	
SSC JE Civil Coaching	DFCCIL Operations & BD	SSC GD Coaching	Coad	ching	
UGC NET Coaching	Coaching	SSC CHSL Coaching	RPS	C Assistant Professor	
CSIR NET Coaching	DFCCIL Executive	Delhi Police Constable	Polit	ical Science Coaching	
CTET Coaching	Coaching	Coaching	IBPS	Clerk Coaching	
SSC Coaching	Bihar Primary Teacher	SSC IMD Coaching	MP I	Police Constable	
Railway Coaching	Coaching	SSC CGL Tier 2 Coaching	Coad	ching	
Bank Exams Coaching	Chandigarh Police	SSC Selection Post			
NDA Coaching	Constable Coaching	Coaching			
CDS Coaching	JSSC JE Coaching	UPSC CAPF AC Coaching			
Previous Year Papers					

RRB Office Assistant

Previous Year Papers

Papers

IBPS RRB PO Previous Year

Bihar Police Constable

SSC MTS Previous Year

Previous Year Papers

Papers

HTML MCQ

Javascript MCQ

MS Word MCQ

Papers UPSC NDA Previous Year Papers CDS Previous Year Papers AFCAT Previous Year Papers MP Police Constable Previous Year Papers Chandigarh Police Constable Previous Year Papers Latest Updates	GUARD Previous Year Papers UP Police Constable Previous Year Papers UPSC CSAT Question Paper Maharashtra Talathi Previous Year Papers CSIR NET Previous Year Papers	Papers Bihar Police SI Previous Year Papers SSC Havaldar Previous Year Papers UPSC CAPF AC Previous Year Papers Indian Airforce Agniveer Previous Year Papers OSSC CGL Previous Year Papers	Papers SSC JE Previous Year Papers SSC JE ME Previous Year Papers SSC JE EE Previous Year Papers SSSC JE CE Previous Year Papers
SSC CHSL Exam Analysis GATE Application Dates SBI PO NIACL AO Exam Analysis SSC CPO CG Apex Bank Office Assistant Rajasthan Police Constable UPSSSC PET IBPS SO CG Apex Bank Committee Manager UPSSSC Junior Assistant Previous Year Papers CG Apex Bank General Assistant	CG Apex Bank Assistant Manager RSCB Banking Assistant 69th BPSC Exam Date IBPS PO SEBI Grade A Phase 2 Admit Card Bihar Primary Teacher Previous Year Papers Bihar Senior Secondary Teacher Previous Year Papers MP Mahila Supervisor NTA CRENIT Exam Date SSC MTS Exam Analysis Kolkata Police SI Notification	Bihar Secondary Teacher Previous Year Papers CG Vyapam Handpump Technician SBI PO Exam Date HAL Management Trainee Diploma Civil Govt Jobs BCA Govt Jobs Government Physiotherapy Jobs EMRS Syllabus and Exam Pattern EMRS Last Date Extended EMRS TGT Last Date Extended EMRS PGT Last Date Extended	UPPSC Staff Nurse UPSC CMS Result GDS Gramin Dak Sevak EMRS Lab Attendant Last Date Extended EMRS Principal Last Date Extended EMRS Accountant Last Date Extended SSC JE EE SSC JE ME SSC JE CE UPSC IES Empolyment News PDF
Skill Academy Data Science with Python Course	Business Analyst Course Digital Marketing Course	Full Stack Development Course	
MCQ Questions JAVA MCQ Python MCQ	Research Methodology MCQ	Computer Fundamentals MCQ	Cost Accounting MCQ Project Management MCC

Computer Graphics MCQ

Constitution of India MCQ

Economy MCQ

Economics MCQ

Software Engineering

Software Testing MCQ

 MCQ

Project Management MCQ
Engineering Mechanics
MCQ
Determiners MCQ
Agriculture MCQ

Testbook Edu Solutions Pvt. Ltd.

1st & 2nd Floor, Zion Building, Plot No. 273, Sector 10, Kharghar, Navi Mumbai - 410210

support@testbook.com Toll Free:

1800 833 0800

Office Hours: 10 AM to 7 PM

(all 7 days)

Company

About us Careers We are hiring Teach Online on Testbook Partners Media Sitemap

Products

Test Series Testbook Pass Online Courses Online Videos Practice Blog Refer & Earn Books

Our Apps

Testbook App Download now

Current Affairs Download now

Follow us on

Copyright © 2014-2022 Testbook Edu Solutions Pvt. Ltd.: All rights reserved

User Policy

Terms

Privacy