Zusammenfassung - BWL: Prduktion, Logistik und Wirtschaftsinformatik

Julian Shen

31. März 2023

1 Einführung in die Logistik und SCM

Logistik:

• Definition:

- Planung, Implementierung und Kontrolle
- von effizienten, effektiven Vor- und Rückflüssen
- sowie der Lagerung von Gütern, Dienstleistungen und Informationen
- zwischen Ursprungs- und Verbrauchsort
- mit dem Ziel, die Kundenanforderungen zu erfüllen

• Aufgabe der Logistik ist es,

- den Kunden mit dem richtigen Produkt, am richtigen Ort, zur richtigen Zeit,
- unter gleichzeitiger Optimierung eines vorgegebenen Leistungskriteriums (z. B. Minimierung der Gesamtkosten),
- und unter Berücksichtigung gegebener Anforderungen (z. B. Servicegrad) und Beschränkungen (z. B. Budget) zu versorgen

• 7 R's der Logistik:

- Richtiges Produkt
- Richtige Zeit
- Richtiger Ort
- Richtige Menge
- Richtige Qualität
- Richtige Kosten
- Richtige Information

• Auf was bezieht sich Logistik heute?

 Alle arbeitsteiligen Wirtschaftssysteme, in denen es auf zeit-, kosten- und mengenabhängige Verteilung von Gütern und Dienstleistungen ankommt

Supply Chain:

- Komplexes, unternehmensübergreifendes, interlogistisches System, das die Vorgänge und Funktionen der Beschaffung, Produktion, Verarbeitung, Lagerung und Distribution von Objekten umfasst
- Keine einfache Kette, sondern ein komplexes Netzwerk mit sich verzweigenden und zusammenführenden Informations- und Materialflüssen

Supply Chain Management (SCM):

- Koordination und Kollaboration von Stakeholdern entlang der gesamten Supply Chain, d.h. auch über die eigene Organisation hinaus, insbesondere mit Zulieferern, Zwischenhändlern, Service-Dienstleistern und Kunden
- Umfasst alle Aktivitäten des Logistik Management sowie Produktionsaktivitäten, Vertrieb, Produktdesign, Finanzen und IT

Supply Chain Network:

- Quellen, Lieferanten, Auslieferer stellen Objekte zur Verfügung, z.B. Rohstofflager, Produktionsanlagen, Fabriken, Vorratslager, Importlager, Logistikzentren
- Senken oder Anlieferstellen haben Nachfragen nach Objekten, z.B. Einzelhändler, Märkte, Filialen, Konsumenten, Müllverbrennungsanlagen
- Warenquellen können selbst Empfänger von Gütern aus anderen Quellen sein
- Handel und Konsumenten sind wiederum Quellen von Leergut, Restoffen und Verpackungsabfall, die entsorgt werden müssen \to Reverse Logistics

Planungsebenen des Supply Chain Managements:

- Strategisch Supply Chain Configuration:
 - Entscheidungen mit langfristigem Effekt und hohem Kapitalaufwand
 - Planungszeitraum: mehrere Jahre
 - Daten: aggregiert, basieren auf Vorhersagen, oft unvollständig oder ungenau
 - Beispiele: Anzahl, Standorte und Kapazitäten von Einrichtungen, Investitionen in Produktions- und Lageranlagen, Layout von Einrichtungen

• Taktisch – Supply Chain Planning:

- Entscheidungen, die die effektive Allokation von Produktions- und Distributionsressourcen betreffen
- Planungszeitraum: 3 Monate bis 1 Jahr
- Daten: detailliert, basieren auf Vorhersagen
- Beispiele: Beschaffungs- und Produktionsentscheidungen, Wahl von Transportund Versandstrategien, Lagerbestandsplanung

• Operativ – Supply Chain Execution:

- Erstellt zeit- und mengengenaue unmittelbar umsetzbare Vorgaben für die Ausführung der Prozesse
- Planungszeitraum: täglich, wöchentlich
- Daten: sehr konkret, detailliert, bis auf unvorhergesehene Störungen vollständig aus ERP System bekannt
- Beispiele: Scheduling (Produktion), Zuweisung von Aufträgen zu Maschinen, Auftragsverarbeitung, Fahrzeug-Routing, LKW-Beladung

Aggregationsebene: Wie detailliert sind die Daten

Logistik vs. SCM:

- Logistik: Betrachtung der Material- und Erzeugnisflüsse unter Berücksichtigung von Informations- und Wertströmen innerhalb der eigenen Organisation
- SCM: Gesamtes logistisches Wertschöpfungsnetz mit Lieferanten, Produzenten, Händlern, Konsumenten

Koordination und Kollaboration von Stakeholdern entlang der gesamten Supply Chain, auch über die eigene Organisation hinaus

Operations Research:

- Analysiert praxisnahe, komplexe Problemstellungen, um möglichst gute Entscheidungen zu treffen
- Probleme werden mithilfe mathematischer Modelle formuliert und mit mathematischen Lösungsmethoden gelöst
- Anwendbar auf verschiedenste Probleme in Logistik und SCM

Vorgehen beim Lösen von Problemen mit OR:

- Überführe realwirtschaftliches Logistikproblem in abstraktes, logistisches Modell
- Wandle logistisches Modell in OR-Modell (LP/MILP/MIP) um und löse mit bekannten Werkzeugen
- Interpretation der OR-Modell-Lösung und Schlussfolgerung für das reale Problem

- Beispiel siehe Logistik VL 1, F27-34
- Rechenbeispiele siehe Logistik Tutblatt 1

Wichtige Software für die Logistik:

- Enterprise Resource Planning Systeme (ERP) erfassen Daten aller wesentlichen Geschäftsfunktionen (z.B. Buchhaltung, Personalwesen) konsistent und upto-date und machen diese unternehmensweit verfügbar (z.B. SAP, Oracle)
- Erweiterung zu Advanced Planning Systems (APS) helfen, komplexe Planungsaufgaben im SCM zu erfüllen und rationale Entscheidungen zu unterstützen
- APS nehmen die im ERP-System erhobenen Daten in Modelle entgegen und lösen die so entstandenen Probleme mittels OR-Algorithmen

2 Scheduling

Was ist Scheduling?

• Zuordnung von Aufträgen (**Jobs**) zu Arbeitsträgern, z.B. Maschinen, unter Beachtung von Nebenbedingungen zum Optimieren einer oder mehrerer Zielgrößen

Scheduling Notation:

- \bullet n **Jobs** müssen auf m **Maschinen** bearbeitet werden
- Job j hat auf Maschine i eine **Prozesszeit** p_{ij}
- Job j kann ein **Gewicht** w_j haben \to Repräsentiert die Wichtigkeit des Jobs
- Job j kann einen **Liefertermin** d_j haben
- Notation eines **Scheduling-Problems**: $\alpha \mid \beta \mid \gamma$
 - $-\alpha$: Maschinenumgebung
 - $-\beta$: Auftragscharakteristik und Beschränkungen
 - $-\gamma$: Zielgröße

Performanz-Kenngrößen:

- Fertigstellungszeitpunkt (Completion Time) C_j :
 - Zeitpunkt, zu welchem Job j fertiggestellt ist
 - Bei mehreren Maschinen C_{ij} (Fertigstellung von Job j auf Maschine i) gilt: $C_j = \max_{i \in I} \{C_{ij}\}$
- Unpünktlichkeit (Lateness) $L_j = C_j d_j$ beschreibt die Abweichung vom Fertigstellungszeitpunkt zum Liefertermin. Negativ, wenn Produkt zu früh fertig
- Verspätung (Tardiness) $T_j = \max\{C_j d_j, 0\}$ wie Lateness, aber erlaubt keine negativen Werte
- Einheits-Strafe (Unit penalty) $U_j = \begin{cases} 1, & \text{wenn } C_j > d_j \\ 0, & \text{sonst} \end{cases}$

erhebt eine Einheitsstrafe, wenn Fertigstellungszeitpunkt zu spät

Maschinenumgebung (α):

- Einzel Maschine (1)
- Parallele Maschinen (Pm, Qm, Rm):
 - Mehrere Maschinen, die gleichzeitig Jobs abarbeiten
 - Pm: m identische Maschinen (gleiche Geschwindigkeit)
 - Qm: m Maschinen mit unterschiedl., job-unspezifischen Geschwindigkeiten
 - Rm: m Maschinen mit unterschiedl., job-spezifischen Geschwindigkeiten
- Flow-Shop (Fm): m Maschinen in Serie, alle Jobs müssen diese durchlaufen (selbe Maschinen-Reihenfolge)

• Job-Shop (Jm): m Maschinen, alle Jobs müssen diese durchlaufen, haben jedoch unterschiedliche Maschinen-Reihenfolge

Auftragscharakteristik (β):

- Freigabezeiten (Release dates) (r_j) : Auftrag kann nicht vor diesem Zeitpunkt gestartet werden
- Unterbrechungen (Preemptions) (*prmp*): Bearbeitung eines Auftrags kann unterbrochen und später fortgesetzt werden
- **Permutation** (*prmu*): Job-Reihenfolge auf der ersten Maschine muss beibehalten werden
- Rüstzeiten (Setup times) (s_{jk}, s_{jk}^i) :
 - Bevor mit Auftrag k begonnen werden kann, ist Maschine i durch Umrüstung blockiert
 - $-\ s_{jk}$: Rüstzeit ist nur von den aufeinanderfolgenden Jobsj und kabhängig
 - $-s_{ik}^i$: Rüstzeit ist zusätzlich von Maschine i abhängig

Zielfunktion (γ) :

- Makespan (C_{max}) : Entspricht Gesamtproduktionszeit, also der Zeit, wenn der letzte Job fertiggestellt ist: $C_{max} = \max_{i \in J} \{C_i\}$
- Gesamtfertigstellungszeiten (Total completion time) ($\sum C_j$): Summe der Fertigstellungszeiten der Jobs
- Gewichtete Gesamtfertigstellungszeiten (Total weighted completion time) ($\sum w_i C_i$): Summe der gewichteten Fertigstellungszeiten der Jobs
- \bullet Gesamtverspätung (Total tardiness) ($\sum T_j)$: Summe der Verspätungszeiten
- ullet Anzahl verspäteter Jobs (Number of tardy Jobs) ($\sum U_j$): Summe der Einheitsstrafen

Gantt-Charts:

- Visualisierungsmöglichkeit von Scheduling-Lösungen
- Block für die Bearbeitung von Job j auf Maschine i ist auf Höhe von i und Länge des Blocks entspricht Prozesszeit p_{ij}
- Innerhalb des Blocks steht die Job-Nummer oder Prozesszeit (problemabhängig)

2.1 Ein-Maschinen-Probleme

- \bullet **Problemstellung**: n Jobs sollen auf einer Maschine in Reihenfolge gebracht werden
- Jeder Schedule kann als Permutation der Jobs $1, \ldots, n$ angesehen werden $\rightarrow n!$ verschiedene Schedules

Minimierung der Fertigstellungszeiten:

- Problem 1 || C_{max} ist trivial, da $C_{max} = \sum_{j=1}^{n} p_j$ für jeden Schedule
- Problem 1 $||\sum_{j=1}^{n} C_j|$ lässt sich mit **SPT-Regel** (Shortest Processing Time first) optimal lösen \to Individuelle Fertigstellungszeitpunkte so gering wie möglich halten

	1-1-	4	2				Job	2	4	1	3	<u>n</u>
ł		0			4		p_{j}	3	4	6	9	$\sum C_j = 45$
	p_{j}	б	3	9	4	· '	C_{j}	3	7	13	22	j=1

Minimierung gewichteter Fertigstellungszeiten:

• Problem 1 || $\sum_{j=1}^{n} w_j C_j$ lässt sich mit WSPT-Regel (Weighted shortest processing time) optimal lösen

Job	1	2	3	4	5	6	7	8
p_{j}	8	6	5	9	4	5	4	7
w_j	2	3	1	3	0,5	5	2	1
p_j/w_j	4	2	5	3	8	1	2	7

• Es ergibt sich
$$S = \{6, 2, 7, 4, 1, 3, 8, 5\}$$
 mit $\sum_{j=1}^{n} w_j C_j(S) = 329$

Minimierung der Anzahl verspäteter Jobs:

• Problem 1 || $\sum_{j=1}^{n} U_j$ lässt sich mit Moore's Algorithmus optimal lösen