Data Sheet, Doc. No. 5SYA 1454-03 May 20

5SNG 1000X170300 LinPak phase leg IGBT module

 $V_{CE} = 1700 \text{ V}$ $I_{C} = 2 \text{ x } 1000 \text{ A}$

Ultra low inductance phase-leg module Compact design with very high current density Paralleling without derating AlSiC base-plate for high power cycling capability AlN substrate for low thermal resistance Low-loss, fast and rugged SPT++ chip-set

Maximum rated values 1)

Parameter	Symbol	Conditions	min	max	Unit
Collector-emitter voltage	V _{CES}	V _{GE} = 0 V, T _{vj} ≥ 25 °C		1700	V
DC collector current	Ic	T _C = 100 °C, T _{vj} = 175 °C		1000	А
Peak collector current	I _{CM}	t _p = 1 ms		2000	А
Gate-emitter voltage	V_{GES}		-20	20	V
Total power dissipation	P _{tot}	T _C = 25 °C, T _{vj} = 175 °C		5500	W
DC forward current	I _F			1000	А
Peak forward current	I _{FRM}	t _p = 1 ms		2000	А
Surge current	IFSM	V_R = 0 V, T_{vj} = 175 °C, t_p = 10 ms, half-sinewave		5400	А
IGBT short circuit SOA	t _{psc}	$V_{CC} = 1300 \text{ V}, \ V_{CEM CHIP} \le 1700 \text{ V}$ $V_{GE} \le 15 \text{ V}, \ T_{vj \text{ start}} \le 150 \text{ °C}$		10	μs
Isolation voltage	V _{isol}	1 min, f = 50 Hz		4000	V
Junction temperature	T_{vj}		-40	175	°C
Junction operating temperature	T _{vj(op)}		-40	175	°C
Case temperature	T _C		-40	150	°C
Storage temperature	T_{stg}		-40	125	°C
	M_S	Base-heatsink, M6 screws	4	6	
Mounting torques 2)	M _{t1}	Main terminals, M8 screws	8	10	Nm
	M _{t2}	Auxiliary terminals, M3 screws	0.9	1.1	

¹⁾ Maximum rated values indicate limits beyond which damage to the device may occur per IEC 60747

²⁾ For detailed mounting instructions refer to ABB Document No. 5SYA 2039

IGBT characteristic values 3)

Parameter	Symbol	Conditions		min	typ	max	Unit
Collector (-emitter) breakdown voltage	V _{(BR)CES}	V_{GE} = 0 V, I_C = 10 mA, $T_{\nu j}$ = 25 °C		1700			V
			T _{vj} = 25 °C		2.25	2.5	V
Collector-emitter ⁴⁾ saturation voltage	V _{CE} sat	Ic = 1000 A, V _{GE} = 15 V	T _{vj} = 125 °C		2.55	2.8	V
outuration voltage			T _{vj} = 175 °C		2.75		V
			T _{vj} = 25 °C		0.003		mA
Collector cut-off current	Ices	V _{CE} = 1700 V, V _{GE} = 0 V	T _{vj} = 125 °C		2.55		mA
			T _{vj} = 175 °C		55		mA
Gate leakage current	I _{GES}	V _{CE} = 0 V, V _{GE} = ± 20 V, T _{vj} = 12	25 °C	-500		500	nA
Gate-emitter threshold voltage	V _{GE(TO)}	Ic = 40 mA, Vce = Vge, T _{vj} = 25 °	°C		5.9		V
Gate charge	Qge	Ic = 1000 A, Vce = 900 V, Vge =	-15 V15 V		6.4		μC
Input capacitance	Cies				62		nF
Output capacitance	Coes	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$ $T_{VI} = 25 \text{ °C}$	<u>?</u> ,		5.3		nF
Reverse transfer capacitance	C _{res}	TVJ = 25 0			3.8		nF
Internal gate resistance	Rgint	per switch			0.75		Ω
		V _{CC} = 900 V, I _C = 1000 A, R _G = 0.39 Ω, C _{GE} = 0 nF,	T _{vj} = 25 °C		270		ns
Turn-on delay time	t _{d(on)}		T _{vj} = 125 °C		290		ns
			T _{vj} = 175 °C		300		ns
	tr	V _{GE} = ±15 V,	T _{vj} = 25 °C		80		ns
Rise time		L_{σ} = 20 nH, inductive load	T _{vj} = 125 °C		90		ns
			T _{vj} = 175 °C		100		ns
			T _{vj} = 25 °C		570		ns
Turn-off delay time	t _{d(off)}	V 000 V 1 4000 A	T _{vj} = 125 °C		680		ns
		$V_{CC} = 900 \text{ V}, I_{C} = 1000 \text{ A},$ $R_{G} = 0.56 \Omega, C_{GE} = 0 \text{ nF},$	T _{vj} = 175 °C		730		ns
		$V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25 °C		90		ns
Fall time	t _f	L_{σ} = 20 nH, inductive load	T _{vj} = 125 °C		120		ns
			T _{vj} = 175 °C		140		ns
		Vcc = 900 V, Ic = 1000 A,	T _{vj} = 25 °C		250		mJ
Turn-on switching energy	Eon	$R_G = 0.39 \ \Omega, \ C_{GE} = 0 \ nF,$ $V_{GE} = \pm 15 \ V,$	T _{vj} = 125 °C		410		mJ
		$L_{\sigma} = 20 \text{ nH}$, inductive load	T _{vj} = 175 °C		500		mJ
		Vcc = 900 V, Ic = 1000 A,	T _{vj} = 25 °C		190		mJ
Turn-off switching energy	E _{off}	$R_G = 0.56 \ \Omega, \ C_{GE} = 0 \ nF,$ $V_{GE} = \pm 15 \ V,$	T _{vj} = 125 °C		280		mJ
		$L_{\sigma} = 20 \text{ nH}$, inductive load	T _{vj} = 175 °C		350		mJ
Short circuit current	Isc	Vcc = 1300 V, VgE = 15 V	T _{vj start} = 150 °C		3000		А

³⁾ Characteristic values according to IEC 60747 - 9
⁴⁾ Collector-emitter saturation voltage is given at chip level

Diode characteristic values 5)

Parameter	Symbol	Conditions		min	typ	max	Unit
			T _{vj} = 25 °C		1.6	1.9	V
Forward voltage ⁶⁾	V _F	I _F = 1000 A	T _{vj} = 125 °C		1.75	2.05	V
			T _{vj} = 175 °C		1.7		V
			T _{vj} = 25 °C		1130		А
Peak reverse recovery current	I _{RM}		T _{vj} = 125 °C		1160		А
		$V_{CC}=900~V, \\ I_F=1000~A, \\ V_{GE}=\pm15~V, \\ R_G=0.39~\Omega, C_{GE}=0~nF, \\ L_\sigma=20~nH, inductive~load$	T _{vj} = 175 °C		1230		А
	Qrr		T _{vj} = 25 °C		290		μC
Recovered charge			T _{vj} = 125 °C		460		μC
			T _{vj} = 175 °C		630		μC
			T _{vj} = 25 °C		520		ns
Reverse recovery time	t _{rr}		T _{vj} = 125 °C		830		ns
			T _{vj} = 175 °C		1040		ns
	Erec		T _{vj} = 25 °C		170		mJ
Reverse recovery energy			T _{vj} = 125 °C		260		mJ
			T _{vj} = 175 °C		370		mJ

 $^{^{5)}}$ Characteristic values according to IEC 60747 - 2 $^{6)}$ Forward voltage is given at chip level

NTC Thermistor

Parameter	Symbol	Conditions	min	typ	max	Unit
Rated resistor	R ₂₅			4.7		kΩ
B-value	B _{25/85}	R2 = R25 exp [B25/85(1/T2 - 1/(298.15K))]		3371		K
	B _{25/100}	R2 = R25 exp [B25/100(1/T2 - 1/(298.15K))]		3435		K

Package properties 7)

Parameter	Symbol	Conditions	min	typ	max	Unit
IGBT thermal resistance junction to case	R _{th(j-c)} IGBT				27	K/kW
Diode thermal resistance junction to case	R _{th(j-c)} diode				45	K/kW
IGBT thermal resistance ²⁾ case to heatsink	R _{th(c-s)} IGBT	IGBT per switch, λ grease = 1W/m x K		27		K/kW
Diode thermal resistance ²⁾ case to heatsink	R _{th(c-s)} diode	Diode per switch, λ grease = 1W/m x K		33		K/kW
Comparative tracking index	CTI		600			
Module stray inductance	Lo ce	total C1-E2		10		nH
		Tc = 25 °C		0.25 / 0.34		
	RC1E1 IGBT / Diode	T _C = 125 °C		0.35 / 0.47		
Resistance, terminal-chip		T _C = 175 °C		0.40 / 0.54		0
		T _C = 25 °C		0.35 / 0.45		mΩ
	RC2E2 IGBT / Diode	T _C = 125 °C		0.49 / 0.62		
		T _C = 175 °C		0.56 / 0.71		

 $^{^{2)}}$ For detailed mounting instructions refer to ABB Document No. 5SYA 2039

Mechanical properties 7)

Parameter	Symbol	Conditions		min	typ	max	Unit
Dimensions	LxWxH	Typical 140 x 100 x 38		38	mm		
Clearance distance in air	۵	according to IEC 60664-1 and EN 50124-1	Term. to base:	20			
	Q _a		Term. to term:	8			mm
Surface creepage distance	-1	according to IEC 60664-1	Term. to base:	30			
	ds	and EN 50124-1	Term. to term:	30			mm
Mass	m				820		g

 $^{^{7)}}$ Package and mechanical properties according to IEC 60747 - 15 $\,$

Electrical configuration

Outline drawing

Note: all dimensions are shown in millimeters

This is an electrostatic sensitive device, please observe the international standard IEC 60747-1, chap. VIII. This product has been designed and qualified for Industrial Level.

Fig. 1 Typical on-state characteristics, chip level

Fig. 3 Typical output characteristics, chip level

Fig. 2 Typical transfer characteristics, chip level

Fig. 4 Typical output characteristics, chip level

Fig. 5 Typical switching energies per pulse vs. collector current

Fig. 6 Typical switching energies per pulse vs. gate resistor

Fig. 7 Typical switching times vs. collector current

Fig. 8 Typical switching times vs. gate resistor

Fig. 9 Typical capacitances vs. collector-emitter voltage

Fig. 11 Turn-off safe operating area (RBSOA)

Fig. 10 Typical gate charge characteristics

Fig. 12 Typical reverse recovery characteristics vs. forward current

Fig. 13 Typical reverse recovery characteristics vs. di/dt

Fig. 14 Typical diode forward characteristics chip level

Fig. 15 Safe operating area diode (SOA)

Fig. 16 Thermal impedance vs. time

Analytical function for transient thermal impedance:

$$Z_{\text{th (j-c)}}(t) = \sum_{i=1}^{n} R_{i} (1 - e^{-t/\tau_{i}})$$

	i	1	2	3	4	5
IGBT	Ri(K/kW)	15.0	6.48	5.58		
9I	τi(ms)	62.9	1280	2.55		
DIODE	Ri(K/kW)	26.3	10.0	8.96		
DIC	τi(ms)	57.6	3.42	929		

Related documents:

5SYA 2042 Failure rates of IGBT modules due to cosmic rays

5SYA 2043 Load - cycle capability of HiPaks

5SYA 2045 Thermal runaway during blocking

5SYA 2053 Applying IGBT

5SYA 2057 IGBT diode safe operating area (SOA)

5SYA 2058 Surge currents for IGBT diodes

5SYA 2093 Thermal design of IGBT modules

5SYA 2098 Paralleling of IGBT modules

5SYA 2107 Mounting instructions for LinPak modules

5SZK 9111 Specification of environmental class for HiPak Storage

5SZK 9112 Specification of environmental class for HiPak Transportation

5SZK 9113 Specification of environmental class for HiPak Operation (Industry)

5SZK 9120 Specification of environmental class for HiPak

ABB Switzerland Ltd.

Semiconductors

Fabrikstrasse 3 CH-5600 Lenzburg Switzerland

Phone: +41 58 586 1419 Fax: +41 58 586 1306 E-Mail: abbsem@ch.abb.com

Internet: www.abb.com/semiconductors

We reserve the right to make technical changes or to modify the contents of this document without prior notice.

We reserve all rights in this document and the information contained therein. Any reproduction or utilization of this document or parts thereof for commercial purposes without our prior written consent is forbidden.

Any liability for use of our products contrary to the instructions in this document is excluded.

