1 Exercices de niveau 1

907.1

Mines-Télécom

(a) Soit $\alpha > 0$. Utiliser une intégration par parties pour montrer la convergence de l'intégrale :

$$\int_{1}^{+\infty} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t$$

(b) Justifier que $|\sin t| \ge \sin^2 t$.

(c) Montrer que $f_{\alpha}: t \mapsto \frac{\sin t}{t^{\alpha}}$ est intégrable sur $[1, +\infty[$ si et seulement si $\alpha > 1$.

907.2

Mines-Télécom

Pour $n \in \mathbb{N}^*$, on pose :

$$I_n = \int_0^{+\infty} \frac{1}{(1+x^2)^n} \,\mathrm{d}x$$

(a) Justifier l'existence de I_n .

(b) Déterminer une relation de récurrence satisfaite par I_n .

(c) En déduire une expression de I_n faisant intervenir des factorielles.

907.3

Mines-Télécom

On définit, pour $x \in \mathbb{R}$: $\varphi(x) = \frac{e^{-x^2/2}}{\int_x^{+\infty} e^{-t^2/2} dt}$

(a) Montrer que φ est bien définie.

(b) Montrer que φ est de classe \mathcal{C}^{∞} et que : $\varphi'(x) = \varphi(x) \Big(\varphi(x) - x \Big)$

(c) Montrer une égalité « compliquée » qui s'obtient immédiatement (j'ai oublié l'expression mais c'était polynomia).

907.4

cc-INP

On note, pour $n, p \in \mathbb{N}^*$: $I_{n,p} = \int_0^1 \ln(x)^n x^p dx$ et $f(x) = \frac{1}{x^x}$ pour $x \in D_f$.

(a) Montrer que $I_{n,p}$ existe.

(b) Montrer que, pour n > 1 et p > 0 : $I_{n,p} = -\frac{n}{p+1}I_{n-1,p}$

(c) Montrer que f est intégrable sur]0,1].

(d) Montrer que : $\int_0^1 f(x) dx = \sum_{n=1}^{+\infty} \frac{1}{n^n}$

907.5

cc-INP

On pose $\forall n \in \mathbb{N}^*, \ u_n = \int_0^{\pi/2} \cos^n(t) dt.$

2024-2025 http://mpi.lamartin.fr 1/4

- (a) Pour tout $t \in [0, \pi/2]$, déterminer $\lim_{n \to +\infty} \cos^n(t)$.
- (b) b1. Montrer que (u_n) converge vers 0.
 - b2. Via une intégration par parties, montrer que $\forall n, u_{n+2} = \frac{n+1}{n+2}u_n$.
 - b3. Montrer que $\forall n, \ u_{2n+1} \neq 0$ et trouver le rayon de convergence de $\sum u_{2n+1}x^{2n+1}$.

On pose
$$g(x) = \sum_{n=0}^{+\infty} u_{2n+1} x^{2n+1}$$
 lorsque ça existe.

- (c) Montrer que g est solution d'une équation différentielle.
- (d) Donner l'expression de g(x).

2 Exercices de niveau 2

907.6

Centrale

Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note $\operatorname{Sp}(A)$ son spectre et $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$ son rayon spectral.

On admet que, pour toute norme $\|\cdot\|$ sur $\mathcal{M}_n(\mathbb{C})$:

$$\rho(A) = \lim_{p \to +\infty} ||A^p||^{1/p}$$

Pour tout réel $r > \rho(A)$ et $k \in \mathbb{Z}$, on pose :

$$J(r,k) = \frac{1}{2\pi} \int_0^{2\pi} r^{k+1} e^{i(k+1)\theta} (re^{i\theta} I_n - A)^{-1} d\theta$$

- (a) Pour $M \in GL_n(\mathbb{C})$, rappeler et justifier l'expression de M^{-1} à l'aide de Com(M).
- (b) Justifier l'existence de J(r, k).
- (c) Calculer J(r,k) pour tout $r > \rho(A)$ et $k \in \mathbb{Z}$.
- (d) En déduire, toujours pour $r > \rho(A)$:

$$\chi_A(A) = \frac{1}{2\pi} \int_0^{2\pi} r e^{i\theta} \left(\operatorname{Com}(r e^{i\theta} I_n - A) \right)^{\top} d\theta$$

(e) Déduire de ce qui précède une démonstration du théorème de Cayley-Hamilton.

907.7

Centrale

Pour $s \in]1, +\infty[$, on pose :

$$\zeta(s) = \sum_{p=1}^{+\infty} \frac{1}{p^s}$$

(a) Montrer que ζ est bien défini, et de classe \mathcal{C}^1 sur $]1, +\infty[$.

Pour $n \in \mathbb{N}^*$, on pose :

$$u_n = \int_0^1 \frac{x^n}{1 + x + \dots + x^{n-1}} \, \mathrm{d}x$$

(b) Étudier la convergence et déterminer la limite éventuelle de $(u_n)_n$.

2/4 http://mpi.lamartin.fr 2024-2025

(c) Montrer que, pour tout $n \in \mathbb{N}^*$:

$$u_n = \sum_{p=1}^{+\infty} \frac{1}{(np+1)(np+2)}$$

(d) Démontrer l'existence d'une suite de rationnels $(r_k)_{k\in\mathbb{N}^*}$ telle que :

$$\forall n \geqslant 3, \ u_n = \sum_{k=1}^{+\infty} \frac{r_k \zeta(k+1)}{n^{k+1}}$$

907.8

Mines-Ponts

Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle strictement positive de limite nulle, et $f:\mathbb{R}_+\to\mathbb{R}$ une fonction continue bornée. On définit :

$$I_n(f) = \int_0^{+\infty} \frac{a_n}{a_n^2 + x^2} f(x) \, \mathrm{d}x$$

Montrer la convergence de cette suite, et déterminer la valeur de sa limite.

907.9

Centrale

(a) Montrer l'existence d'une constante γ telle que :

$$\sum_{p=1}^{n} \frac{1}{p} - \ln(n) \xrightarrow[n \to +\infty]{} \gamma$$

- (b) Démontrer que la fonction $x \mapsto \ln(x)e^{-x}$ est intégrable sur $[0, +\infty[$.
- (c) Démontrer la relation :

$$\int_0^{+\infty} \ln(x) e^{-x} dx = \lim_{n \to +\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n \ln(x) dx$$

(d) Conclure que:

$$\int_0^{+\infty} \ln(x) e^{-x} dx = -\gamma$$

907.10

Mines-Ponts

On définit
$$f: [-1, +\infty[\to \mathbb{R}]$$

 $x \mapsto \int_0^{\frac{\pi}{2}} \ln (1 + x \cos^2(t)) dt$

- (a) Justifier le domaine de définition.
- (b) Montrer que f est de classe C^1 sur $]-1, +\infty[$.
- (c) Montrer que f est continue en -1.
- (d) Calculer f'(x) en posant $u = \tan(t)$.
- (e) En déduire $\int_{0}^{\frac{\pi}{2}} \ln(\sin(t)) dt$.
- (f) f est-elle dérivable en -1?

Exercice très calculatoire, pendant la préparation j'avais les bonnes pistes mais je ne pensais pas qu'elles aboutissaient vus les calculs. Mais c'était pourtant cela,

907.11

Mines-Ponts

- (a) Soit φ une fonction \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$. Montrer que : $\int_0^{\frac{\pi}{2}} \varphi(t) \sin\left((2n+1)t\right) dt \xrightarrow[n \to +\infty]{} 0$
- (b) Pour $n \in \mathbb{N}$, on note :

$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin(t)} dt, \quad J_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{t} dt \text{ et } I = \int_0^{+\infty} \frac{\sin t}{t} dt$$

Montrer l'existence de ces intégrales.

- (c) Calculer $I_n I_{n-1}$. En déduire la valeur de I_n .
- (d) En déduire que $I=\frac{\pi}{2}.$ (Le « en déduire » fait très mal!)

Jétais le dernier à passer, et ça se sentait. Examinateur calme et discret, qui donne quelques indications lorsque je bloquais mais qui ressemblaient plus à des pistes qu'à des éléments de solution.

907.12

Mines-Ponts

Pour x > 0, on note $\varphi(x) = \int_x^{+\infty} \frac{\sin(t)}{t^2} dt$.

- (a) Montrer que φ est bien définie.
- (b) Montrer que φ est de classe \mathcal{C}^1 .
- (c) Montrer qu'au voisinage de 0, $\varphi(x) = O(\ln(x))$.
- (d) Montrer que φ est intégrable sur $]0, +\infty[$.
- (e) Calculer $\int_0^{+\infty} \varphi(x) dx$.

Remarque On donne $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.

Examinateur sympa qui valide souvent ce qu'on écrit.

3 Exercices de la banque CC-INP

25 à 18, 49