Álgebra

Nicolás Margenat

2Q 2020

Secciones

1	Cor	ijuntos 4
	1.1	Subconjuntos
	1.2	Operaciones entre conjuntos
	1.3	Producto Cartesiano
	1.4	Familia de Subconjuntos
		1.4.1 Operaciones con Familias 6
2	Rel	aciones 6
	2.1	Dominio e Imagen
	2.2	Relación Inversa
	2.3	Propiedades de una relación de un conjunto en sí mismo
	2.4	Relaciones de equivalencia
		2.4.1 Propiedades de las relaciones de equivalencia 8
3	Fun	ciones 8
	3.1	Inyectividad, Sobreyectividad y Biyectividad 9
4	Cor	nbinatoria 10
	4.1	Principios de conteo
	4.2	Variación vs. Combinación
5	Ent	eros 12
	5.1	Definiciones previas
	5.2	Divisibilidad en un anillo
		5.2.1 Algoritmo de división
	5.3	Congruencias
	5.4	Maximo común divisor (MCD)
		5.4.1 Combinación Entera
	5.5	Números Coprimos
		5.5.1 Primos vs. Compuestos
	5.6	Números Primos
		$5.6.1 V_p \dots 16$
	5.7	Mínimo Común Múltiplo (MCM)

	5.8	Ecuaciones diofánticas	7		
	5.9	Ecuaciones de congruencia lineal $\dots \dots \dots$	7		
6	Polinomios 19				
	6.1	Operaciones en $\mathbb{K}_{[x]}$	9		
	6.2	Divisibilidad			
	6.3	Máximo común divisor	0		
	6.4	Algoritmo de Euclides			
	6.5	Polinomios Coprimos			
	6.6	Evaluación			
	6.7	Raíz			
	6.8	Lema de Gauss			
	6.9				
		1 0 0			
	6.10	Multiplicidad de una raíz	J		
7	Sum	as - Recurrencias 2	5		
	7.1	Sumas Famosas	5		
	7.2	Sumas Múltiples	6		
	7.3	Sucesiones	6		
	7.4	Relaciones de Recurrencia Lineal de Orden K	6		
		7.4.1 Relaciones de Orden 1	7		
		7.4.2 Relaciones de Orden 2	7		
	7.5	Relaciones de Recurrencia Lineal NO Homógeneas 2			
	7.6	Relaciones de Recurrencia Lineales de Mayor Orden 2			
8	Sistemas de Ecuaciones Lineales 30				
O	8.1	Operaciones Válidas			
	8.2	Matrices equivalenetes			
	8.3	Métodos de Eliminación			
	8.4				
	8.5	Clasificación de los Sistemas Lineales	2		
9	Mat	rices 3	3		
	9.1	Operaciones entre matrices	3		
	9.2	Otros tipos de matrices	4		
	9.3	Inversas	4		
	9.4	Cheatsheet de producto de matrices	5		
10	Esn:	acios Vectoriales 3	7		
10		Subespacios Vectoriales			
		Combinación Lineal			
	-	Espacio generado por un conjunto de vectores			
		Conjunto generador de un subespacio			
		• •			
		Independecia/Dependencia Lineal			
		DASE 1			

Resumen de todas las propiedades

1 Conjuntos

<u>Definición</u>: Colección de objetos llamados *elementos* que tienen la propiedad que dado un objeto cualquiera se puede decidir si el elemento está o no en el conjunto.

- No importa el orden de los elementos
- No se tienen en cuenta las repeticiones

Hay dos maneras de definir un conjunto:

- Extensión: $A = \{a,e,i,o,u\}$
- Comprensión: $A = \{x / x \text{ es vocal}\}$

1.1 Subconjuntos

<u>Definición</u>: Sea A un conjunto. Se dice que un conjunto B está contenido ó incluido en A si todo elemento de B está incluido en A.

$$B \subseteq A \Leftrightarrow \forall x, x \in B \Rightarrow x \in A$$

$$B \not\subseteq A \Leftrightarrow \exists x/x \in B \land x \notin A$$

Igualdad de conjuntos

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Conjunto de Partes

A conjunto.
$$\mathcal{P}_{(A)} = \{B \ conjunto/B \subseteq A\}$$

1.2 Operaciones entre conjuntos

Para trabajar con conjuntos se toma un conjunto llamado conjunto universal o conjuntos de referencia

1. Unión

$$A \cup B = \{ x \in \mathcal{U} / x \in A \ \lor \ x \in B \}$$

2. Intersección

$$A \cap B = \{ x \in \mathcal{U} / x \in A \land x \in B \}$$

3. Diferencia/Resta

$$A - B = \{ x \in \mathcal{U} / x \in A \land x \notin B \}$$

4. Complemento

$$\overline{A} = A^c = \{x \in \mathcal{U} / x \notin A\}$$

5. Diferencia Simétrica

$$A \triangle B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B)$$

Propiedades

1. Leyes de De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

2. Leyes Distributivas

$$A\cap B(B\cup C)\ =\ (A\cap B)\cup (A\cap C)$$

$$A \cup B(B \cap C) = (A \cup B) \cap (A \cup C)$$

3. Ley Conmutativa

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

 $4.\ Ley\ Asociativa$

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

5. Otras

$$A\cup\varnothing\ =\ A$$

$$A \cap \varnothing = \varnothing$$

$$A \cup \mathcal{U} = \mathcal{U}$$

$$A \cap \mathcal{U} = A$$

$$\overline{\varnothing} = \mathcal{U}$$

$$\overline{\mathcal{U}} = \emptyset$$

1.3 Producto Cartesiano

<u>Definición</u>: Sean $A, B \subseteq \mathcal{U}$. Entonces,

$$A \times B = \{(a, b) / a \in A, b \in B\}$$

Propiedades

- 1. $A \times \emptyset = \emptyset$
- 2. $\varnothing \times A = \varnothing$
- 3. NO es Asociativa
- 4. NO es Conmutativa

1.4 Familia de Subconjuntos

<u>Definición</u>: Dado un conjunto A, una familia de subconjuntos de A es un subconjunto de $\mathcal{P}_{(A)}$.

$$\mathcal{F} \subseteq \mathcal{P}_{(A)}$$

1.4.1 Operaciones con Familias

Sea $\mathcal{F} \subseteq \mathcal{P}_{(A)}$, entonces:

1. Unión

$$\cup \mathcal{F} = \cup B = \{ x \in A / x \in B \text{ para algún } B \in \mathcal{F} \}$$

2. Intersección

$$\cap \mathcal{F} = \cap B = \{ x \in A / x \in B \text{ para todo } B \in \mathcal{F} \}$$

2 Relaciones

<u>Definición</u>: Sean A y B conjuntos no vacíos, una relación de A en B es un subconjunto de $A \times B$.

Notación: $R \subseteq A \times B$ ó $R \in \mathcal{P}_{(A \times B)}$

Por otro lado, sea A un conjunto. Se dice que R es una relación en A si $R \subseteq A \times A("R \text{ en }A").$

2.1 Dominio e Imagen

Sea $R \subseteq A \times B$:

$$Dom(R): \{x \in A/\exists y \in B \text{ tal que } x\mathcal{R}y\}$$

$$Im(R): \{y \in B / \exists x \in A \text{ tal que } x \mathcal{R} y\}$$

2.2 Relación Inversa

<u>Definición</u>: Dada R en $A \times B$, se define $R^{-1} \subseteq B \times A$ tal que:

$$R^{-1} = \{(x,y)/(y,x) \in R\}$$

Además:

$$Dom(R) = Im(R^{-1})$$

$$Im(R) = Dom(R^{-1})$$

2.3 Propiedades de una relación de un conjunto en sí mismo

• Reflexividad

R es reflexiva si:

$$a\mathcal{R}a \ \forall a \in A$$

R no es reflexiva si:

$$\exists a \in A / a \mathcal{R} a$$

• Simetría

R es simétrica si:

$$a\mathcal{R}b \Rightarrow b\mathcal{R}a \ \forall a,b \in A$$

R no es simétrica si:

$$\exists a, b \in A / a \mathcal{R} b \wedge b \mathcal{R} a$$

• Antisimetría

R es antisimétrica si(cualquiera de las dos sucede, pues son expresiones equivalentes):

$$a\mathcal{R}b \wedge b\mathcal{R}a \Rightarrow a = b$$

$$a\mathcal{R}b \wedge a \neq b \Rightarrow b\mathcal{R}a$$

R no es antisimétrica si:

$$\exists a, b \in A/a \neq b \land a\mathcal{R}b \land b\mathcal{R}a$$

• Transitividad

R es transitiva si:

$$a\mathcal{R}b \wedge b\mathcal{R}c \Rightarrow a\mathcal{R}c \, \forall a,b,c \in A$$

R no es transitiva si:

$$\exists a, b, c \in A/a\mathcal{R}b \wedge b\mathcal{R}c \wedge a\mathcal{R}c$$

De esta manera, podemos decir que:

- R es de equivalencia si es: reflexiva, simétrica y transitiva.
- R es de orden si es: reflexiva, antisimétrica y transitiva.
- R es de **orden total** si es: de orden y $\forall a, b \in A : a\mathcal{R}b \vee b\mathcal{R}a$

2.4 Relaciones de equivalencia

2.4.1 Propiedades de las relaciones de equivalencia

R en A, R es de equivalencia. Entonces:

$$A_1 \cup A_2 \cup ... \cup A_n = A$$

 $A_i \wedge A_j = \emptyset \text{ si } i \neq j$

Clases de equivalencia

R en A. R de equivalencia. $a \in A$. Entonces, definimos la clase de a como:

$$[a] = \overline{a} = \{b \in A/b\mathcal{R}a\}$$

El conjunto cociente es el conjunto de clases de R, y se nota:

$$A/\mathcal{R} = \{\overline{a}\}$$

Particiones

A conjunto. A $\neq \emptyset$. $\mathcal{F} \subseteq \mathcal{P}_{(A)}$. \mathcal{F} es una partición de A si:

- 1. $B \neq \varnothing, \forall B \in \mathcal{F}$
- 2. $B_1, B_2 \in \mathcal{F}, B_1 \neq B_2 \Rightarrow B_1 \wedge B_2 = \emptyset$
- $3. \cup \mathcal{F} = \cup B = A$

Teorema 2.A

R en A, R de equivalencia. R induce una partición en A.

Teorema 2.B

Dado un conjunto A $\neq \emptyset$. Sea \mathcal{F} una partición de A. Entonces \mathcal{F} induce una relación de equivalencia R en A.

3 Funciones

Definición: Sea $R \subseteq A \times B$ una relación. Decimos que R es una función si:

- 1. $\forall a \in A, \exists b \in B / (a, b) \in R$
- $2. (a,b) \in R \land (a,c) \in R \Rightarrow b = c$

otra manera de decirlo es: R es función si,

$$\forall a \in A, \exists! b \in B / (a, b) \in R$$

Notación: $f: A \to B/f_{(a)} = b$ si $(a,b) \in R$. Donde, A = Dom(f)B = Codom(f) $Im(f) = \{y \in B/\exists x \in A \text{ tal que } f(x) = y\}$ Preimagen = $f^{-1}(y) = \{x \in A/f(x) = y\}$

3.1 Inyectividad, Sobreyectividad y Biyectividad

• Inyectiva

Decimos que f es inyectiva si:

$$f(a) = f(b) \Rightarrow a = b$$

o lo que es lo mismo:

$$a \neq b \Rightarrow f(a) \neq f(b)$$

• Sobreyectiva

Decimos que f es sobreyectiva si:

$$\forall b \in B, \exists a \in A/f(a) = b$$

o lo que es lo mismo: Im(f) = B

• Biyectiva

Decimos que f es biyectiva si:

f es inyectiva $\wedge f$ es sobreyectiva

Función Inversible

<u>Definición</u>: Sea $f: A \to B$. Decimos que f es inversible si:

$$\exists g: A \to B/g \circ f = id_A \land f \circ g = id_B$$

Notación: $g = f^{-1} (g \text{ es la inversa de } f)$

4 Combinatoria

 $\underline{\text{Definición}} :$ Dado un conjunto A finito, el $\mathit{cardinal}\ de\ A$ es la cantidad de elementos de A.

Notación: #A = |A|

4.1 Principios de conteo

Primer principio de conteo

"Si una tarea puede efectuarse en k etapas, y la etapa j se puede desarrollar de n_j formas distintas, entonces la tarea se puede desarrollar de $n_1 * n_2 * ... * n_k = n^k$ formas distintas."

Segundo principio de conteo

"Cuando hay casos que son disjuntos, se suman las posibilidades de cada caso"

$$A = \bigcup_{j=1}^{k} A_{j} = A_{1} \cup A_{2} \cup \dots \cup A_{k}$$

$$A_{i} \cap A_{j} = \emptyset \text{ si } i \neq j$$

$$\#A = \sum_{j=1}^{k} \#A_{j} = \#A_{1} + \#A_{2} + \dots + \#A_{k}$$

4.2 Variación vs. Combinación

Variación

<u>Definición</u>: Una variación de k elementos de X es una *cadena ordenada* de k elementos de X.

$$V_{(n,k)} = \frac{n!}{(n-k)!} = \binom{n}{k} k$$

De esta forma podemos deducir que la cantidad de formas de ordenar n elementos es:

$$V_{(n,n)} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$$

Una manera practica de verlo es: "Agarro k elementos de un conjunto con n elementos y me importa el orden en que los agarro"

Combinación

 $\underline{\text{Definición}} :$ Una combinación de k elementos de X es un subconjunto de k elementos de X.

$$C_{(n,k)} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$

Una manera práctica de verlo es: "Agarro k elementos de un conjunto de n elementos sin importar el orden en que los agarro"

Propiedades de los números combinatorios

1.
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \ 1 \le k \le n$$

$$\binom{n}{k} = \binom{n}{n-k}$$

3.
$$\sum_{k=0}^n \binom{n}{k} = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n$$

Además, $\#\mathcal{P}_{(X)} = 2^{\#X}$

Orden con repetición

Sirve para resolver ejercicios del tipo: "¿Cuántas palabras de n letras puedo formar si hay j letras que se repiten?"

$$\frac{n!}{n_1!n_2!...n_j!}$$

donde $n_1, n_2...n_j$ es la cantidad de veces que se repite cada letra.

Distribución de bolitas indistinguibles en cajas distintas

Sirve para reolver ejercicios del tipo: "Tengo n bolitas en k cajas indistinguibles. ¿De cuántas formas se pueden distribuir?"

$$\binom{n+k-1}{n} = \binom{n+k-1}{k-1}$$

5 Enteros

5.1 Definiciones previas

Estructura algebraica: Es una n-tupla formada por:

$$(\underbrace{A_1,...,A_k}_{\text{Conjuntos} \neq \varnothing} ; \underbrace{op_1,...,op_t}_{\text{Conjuntos sobre los conjuntos anteriores}}) \ k+t=n$$

Grupo: Es una estructura algebraica

$$(G,\otimes)$$

$$\otimes: G \times G \to G$$

que cumple las siguientes propiedades:

• Asociativa

$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$

• Existencia de Elemento Neutro

$$\exists e \in G / a \otimes e = a, e \otimes a = a$$

• Inverso

$$\forall a \in G, \exists \overline{a} \in G / \ a \otimes \overline{a} = e \ \land \ \overline{a} \otimes a = e$$

• Conmutativo

$$a \otimes b = b \otimes a$$

Anillo Conmutativo: $(A, +, \otimes)$ es un anillo conmutativo si:

- 1. (A, +) es un grupo conmutativo.
- 2. ⊗ es: asociativo, conmutativo, distributivo y tiene elemento neutro.

Cuerpo: $(K, +, \otimes)$ es un cuerpo si:

- 1. $(K, +, \otimes)$ es un anillo conmutativo.
- 2. $\forall a \in K, a \neq 0, \exists a^{-1}/a \otimes a^{-1} = 1$ (existe inverso)

<u>Unidades de un anillo</u>: A es un anillo, $a \in A$ es una unidad de un anillo si:

$$\exists b \in A / a \otimes b = 1 \land b \otimes a = 1$$

y se nota: $\mathcal{U}_{(A)}$ ("conjunto de unidades de A")

5.2Divisibilidad en un anillo

<u>Definición</u>: A es un anillo, $a, b \in A$, $b \neq 0$. Decimos que "a es divisible por b", "a es múltiplo de b", "b es divisor de a" si:

$$\exists c \in A/a = bc$$

Notación: b|a

 $Div(a) = \{b \in A/b|a\}$ ("conjunto de divisores de a")

Propiedades

Sean $a, b, c \in \mathbb{Z}$

- 1. $a < b \Rightarrow a + c < b + c$
- $2. \ a \leq b \land c \geq 0 \Rightarrow ac \leq bc$
- $3. \ ab = ac \land a \neq 0 \Rightarrow b = c$
- 4. $ab = 0 \implies a = 0 \lor b = 0$
- 5. $a|b \Leftrightarrow |a| |b|$
- 6. $a|b \wedge b \neq 0 \Rightarrow |a| \leq |b|$
- 7. $a|b \wedge b|a \Rightarrow |a| = |b|$
- 8. $a|b \wedge a|c \Rightarrow a|b \pm c$
- 9. $a|b \wedge a|b \pm c \Rightarrow a|c$
- 10. $a|b \Rightarrow a|bc$
- 11. $a|b \Rightarrow a^n|b^n \text{ con } n \in \mathbb{N}$
- 12. $a|b \wedge a|c \Rightarrow a|\alpha b + \beta c \operatorname{con} \alpha, \beta \in \mathbb{Z}$

5.2.1 Algoritmo de división

<u>Definición</u>: Sea $a \in \mathbb{Z}$, $d \in \mathbb{Z} - \{0\}$. Entonces,

$$\exists ! q, r \in \mathbb{Z}/a = d * q + r$$

Donde q =

 $\underbrace{q_d(a)}_{\text{cociente de dividir a por d}} \text{y } r = \underbrace{r_d(a)}_{\text{resto de dividir a por d}} 0 \leq r \lneq |d|$

De esta manera podemos deducir que:

- 1. $d|a \Leftrightarrow r_d(a) = 0$
- $2. \ 0 \le a \le |d| \Rightarrow r_d(a) = a$

5.3 Congruencias

<u>Definición</u>: Decimos que

$$a \equiv b \pmod{m}$$

si m|a-b

"a es congruente a b módulo m"

Teorema 5.A

R en \mathbb{Z} tal que aRb si $a \equiv b(m)$. R es de equivalencia.

Teorema 5.B

Sea $d \in \mathbb{N}$. Entonces:

1.
$$a \equiv r_d(a) \pmod{d}$$

2.
$$a \equiv b \pmod{d} \Leftrightarrow r_d(a) = r_d(b)$$

Propiedades

1.
$$a_1 \equiv b_1(m) \land a_2 \equiv b_2(m) \Rightarrow a_1 \pm a_2 \equiv b_1 \pm b_2(m)$$

 $a_1 \equiv b_1(m) \land a_2 \equiv b_2(m) \Rightarrow a_1 * a_2 \equiv b_1 * b_2(m)$

2.
$$a_1 \equiv b_1(m) \land \dots \land a_k \equiv b_k(m) \Rightarrow a_1 \pm \dots \pm a_k \equiv b_1 \pm \dots \pm b_k(m)$$

 $a_1 \equiv b_1(m) \land \dots \land a_k \equiv b_k(m) \Rightarrow a_1 * \dots * a_k \equiv b_1 * \dots * b_k(m)$

3.
$$a \equiv b(m) \Rightarrow a^n \equiv b^n(m) \ \forall n \in \mathbb{N}$$

4.
$$a \equiv b(m) \Rightarrow ac \equiv bc(m)$$

5.4 Maximo común divisor (MCD)

<u>Definición</u>: Sean $a,b\in\mathbb{Z}$ no ambos nulos, entonces $d\in\mathbb{Z}$ es el MCD de a y b si:

- 1. $d \ge 0$
- 2. $d|a \wedge d|b$
- 3. $c|a \wedge c|b \Rightarrow c|d$

Notación: d = MCD(a, b) = (a : b) Propiedad: $a, b \in \mathbb{Z}$, no ambos nulos, $c \in \mathbb{Z} - \{0\}$. Entonces,

$$(ca:cb) = |c|(a:b)$$

5.4.1 Combinación Entera

Definición: Una combinacion entera de a y b es un número de la forma ra+sb, con $r,\,s\in\mathbb{Z}$

Teorema 5.C

Sean $a, b \in \mathbb{Z}$, no ambos nulos. Entonces:

$$\exists ! d \in \mathbb{Z}/d = (a:b)$$

y además es la menor combinación entera positiva de a y b.

Lema

Sean $a, b \in \mathbb{Z}$, no ambos nulos. Entonces:

$$(a:b) = (b:a-kb) \ \forall k \in \mathbb{Z}$$

En particular, si $b \neq 0$

$$k = q_b a \Rightarrow (a:b) = (b:r_b a)$$

5.5 Números Coprimos

<u>Definición</u>: Se dice que a y b son coprimos si (a:b) = 1.

Notación: $a \perp b$

Propiedades

- 1. $a \perp b \wedge a | bc \Rightarrow a | c$
- 2. $a \perp b \wedge a \perp c \Rightarrow a \perp bc$
- 3. $a|c \wedge b|c \wedge a \perp c \Rightarrow ab|c$
- 4. $d = (a:b) \Rightarrow \frac{a}{d} \perp \frac{b}{d}$
- 5. $a \perp b \Rightarrow a^n \perp b^k \text{ con } n, k \in \mathbb{N}$
- 6. $a \perp c \Rightarrow (a:cb) = (a:b)$

5.5.1 Primos vs. Compuestos

<u>Primo</u>: Un número $p \in \mathbb{Z}$ si tiene exactamente 4 divisores.

Es decir, $div(p) = \{\pm 1; \pm p\}$ siendo $|p| \ge 1$

Compuesto: Un número $a \in \mathbb{Z}$ es compuesto si no es primo y $a \notin \{1, -1\}$

Propiedades

- 1. a es compuesto $\Rightarrow \exists a_1, a_2/a = a_1 * a_2 \land 2 \leq |a_i| \leq |a| 1$
- 2. $(a:p) = 1 \text{ si } p \not| a$

5.6 Números Primos

p primo y
$$p|ab \Rightarrow p|a \lor p|b$$

Generalización:

$$p \ primo \land p|a_1 * a_2 * \dots * a_k \Rightarrow \exists i/p|a_i \ \text{con } 1 \le i \le k$$

$\frac{\text{Teorema 5.E}}{\text{Existen infinitos números primos}}$

5.6.1 V_p

Sea p primo. Entonces:

$$V_p: \mathbb{Z} - \{0\} \to \mathbb{N}_0 / V_p(a) \text{ es } \begin{cases} 0 & \text{si } p \mid a \\ k & \text{si } p^k \mid a \land p^{k+1} \mid a \end{cases}$$

Propiedades

1.
$$V_p(a*b) = V_p(a) + V_p(b)$$

$$2. V_p(a^n) = nV_p(a)$$

3.
$$d|a \Rightarrow V_p(d) \leq V_p(a)$$

4.
$$V_p \ge 0$$

Sea
$$a \in \mathbb{Z} - \frac{\text{Teorema Fundamental de la Aritmética (TFA)}}{\{-1,0,1\}} \Rightarrow a = sg(a)p_1*p_2*...*p_k \text{ siendo } p_j \text{ primo y } 1 \leq j \leq k$$

Además, la factorización es única en estos casos.

$$\frac{\text{Corolario TFA}}{\text{Si } a \in \mathbb{Z} - \{-1, 0, 1\} \Rightarrow \exists p \ primo, \ p \geq 0/p | a}$$

5.7 Mínimo Común Múltiplo (MCM)

Definición: Sean $a,b\in\mathbb{Z}$ no ambos nulos, el MCM entre a y b es un número $m\in\mathbb{Z}/$

- $m \ge 0$
- $a|m \wedge b|m$
- $a|c \wedge b|c \Rightarrow m|c$

Notación: m = [a:b]

Sean
$$a, b \in \mathbb{Z}, a \neq 0, b \neq 0 \Rightarrow |a * b| = (a : b)[a : b]$$

5.8 Ecuaciones diofánticas

<u>Definición</u>: Una ecuación diofántica es una ecuación que se puede escribir de la siguiente forma:

$$ax + by = c \operatorname{con} a, b \in \mathbb{Z}, a \neq 0, b \neq 0$$

Teorema 5.G

Sean ax+by=c con $a, b \in \mathbb{Z}$, $a \neq 0$, $b \neq 0$. Entonces:

- 1. La ecuación tiene solución en $\mathbb{Z} \Leftrightarrow d|c$
- 2. Si $(x_0, y_0) \in \mathbb{Z}^2$ es una solución de la ecuación

$$\Rightarrow \operatorname{Sol} = \{(x,y) \in \mathbb{Z} / (x,y) = \underbrace{(x_0,y_0)}_{\operatorname{Sol. particular}} + \underbrace{k(\frac{b}{d}, -\frac{a}{d})}_{\operatorname{Sol. homogénea}} \operatorname{con} k \in \mathbb{Z}\}$$

5.9 Ecuaciones de congruencia lineal

Definición: Una ecuación de congruencia lineal es una ecuación de la forma:

$$ax \equiv c(b) \text{ con } a, c \in \mathbb{Z}, a \neq 0, b \in \mathbb{N}$$

Teorema 5.H

Sea $ax \equiv c(b)$ con $a, c \in \mathbb{Z}, a \neq 0, b \in \mathbb{N}$. Entonces:

- 1. La ecuación tiene solución $\Leftrightarrow (a:b)|c$
- 2. Si x_0 es una solución de la ecuación

$$\Rightarrow \operatorname{Sol}=\{x \in \mathbb{Z}/x \equiv x_0(\frac{b}{(a:b)})\}$$

Inverso multiplicativo modular

<u>Definición</u>: $a^* \in \mathbb{Z}$ es el inverso multiplicativo de $a \in \mathbb{Z}$ módulo m si $a.a^* \equiv 1(m)$.

Notemos que si m es primo, entonces:

Si $a \not\equiv 0(m) \Rightarrow$ a tiene inverso multiplicativo

Propiedad cancelativa

$$a \perp m \land a.c' \equiv a.c'(m) \Leftrightarrow c \equiv c'(m)$$

Teorema de Fermat

Sea p primo. Entonces:

- 1. $a^p \equiv a(p)$
- 2. $a^{p-1} \equiv 1(p) \text{ si } p | a$

Teorema Chino del Resto (TChR)

$$\begin{cases} x \equiv a_1(m_1) \\ x \equiv a_2(m_2) \\ \vdots \\ x \equiv a_k(m_k) \end{cases}$$
 $m_i \perp m_j \text{ si } i \neq j$

Entonces,

$$\exists !\, x_0/\, 0 \leq x_0 \leq \prod_{j=1}^k m_j$$
tal que x_0 es sol. del sistema

6 Polinomios

<u>Definición</u>: Dado un cuerpo $\mathbb{K}(\mathbb{Q}, \mathbb{R}, \mathbb{C})$, f es un polinomio con coeficientes en \mathbb{K} si se puede escribir como:

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 = \sum_{k=0}^{n} a_k x^k$$

Notación: $\mathbb{K}_{[x]}$ es el conjunto de polinomios con coeficientes en \mathbb{K} .

Definiciones importantes

<u>Igualdad de polinomios</u>: Dados $f=\sum_{j=0}^n a_j x^j$ y $g=\sum_{j=0}^m b_j x^j$ en $\mathbb{K}_{[x]}$ decimos que:

$$f = g \Leftrightarrow n = m \land a_j = b_j \text{ con } 0 \le j \le n$$

Polinomio nulo: f es el polinomio nulo si f = 0.

Si f no es el polinomio nulo, entonces:

$$\exists N \in \mathbb{N}_0 / f = \sum_{j=0}^N a_j x^j \land a_N \neq 0$$

6.1 Operaciones en $\mathbb{K}_{[x]}$

Sean $f = \sum_{j=0}^{n} a_j x^j$ y $g = \sum_{j=0}^{n} b_j x^j$. Entonces:

1.
$$f + g = \sum_{j=0}^{n} (a_j + b_j) x^j$$

2.
$$f * g = \sum_{j=0}^{2n} c_j x^j, c_j = \sum_{i+k} a_i b_k$$

Unas observaciones. Sea $\mathbb K$ cuerpo, $f,g\in\mathbb K_{[x]}$ no nulos. Entonces:

1. Si
$$f + g \neq 0 \Rightarrow gr(f + g) \leq max\{gr(f), gr(g)\}$$

2. Si
$$f * g \neq 0 \Rightarrow gr(f+g) = gr(f) + gr(g)$$

Teorema 6.A

 $(\mathbb{K}_{[x]}, +, *)$ es un anillo conmutativo, siendo \mathbb{K} cuerpo. Además, si $f * g = 0 \Rightarrow f = 0 \lor g = 0$

Corolario T6.A

 \mathbb{K} cuerpo, $f \in \mathbb{K}_{[x]}$. Entonces:

f tiene inverso multiplicativo $\Leftrightarrow f \neq 0 \land gr(f) = 0$

6.2 Divisibilidad

<u>Definición</u>: Sean $f,g\in\mathbb{K}_{[x]},\mathbb{K}$ cuerpo $,g\neq0.$ Se dice que si g divide a f, entonces:

$$\exists q \in \mathbb{K}_{[x]}/f = g * q$$

Notación: g|f

Propiedades

- 1. $g \neq 0, g|0$
- 2. $g|f \Leftrightarrow cg|f \text{ con } c \in \mathbb{K} \{0\} = \mathbb{K}^*$
- 3. $g|f \Leftrightarrow \frac{g}{cp(g)}|\frac{f}{cp(f)} \text{ con } f \neq 0$
- 4. $g|f \Leftrightarrow g|cf \text{ con } c \in \mathbb{K}^*$
- 5. f, g no nulos, $g|f \land gr(g) = gr(f) \Rightarrow \exists c \in \mathbb{K}^* / f = cg$
- 6. $f|g \wedge g|f \Rightarrow f = cg \operatorname{con} c \in \mathbb{K}^*$
- 7. $f \notin \mathbb{K}$, $c|f \wedge cf|f$ si $c \in \mathbb{K}^*$. Es decir, f tiene como divisores cualquier constante y múltiplos de él mismo.

Polinomios reducibles e irreducibles

<u>Irreducible</u>: Decimos que $f \in \mathbb{K}_{[x]}$ es irreducible en $\mathbb{K}_{[x]}$ cuando $f \notin \mathbb{K}$ y los únicos divisores son g = c ó g = cf con $c \in \mathbb{K}^*$, y los divisores mónicos de f son 1 y $\frac{f}{cp(f)}$.

Reducible: Decimos que $f \in \mathbb{K}_{[x]}$ es reducible en $\mathbb{K}_{[x]}$ cuando $f \notin \mathbb{K}$ y

$$\exists g \in \mathbb{K}_{[x]}/g|f \land g \neq c \land g \neq cf \text{ siendo } c \in \mathbb{K}^*.$$

Es decir, f tiene un divisor $g/0 \leq gr(g) \leq gr(f)$

Teorema 6.B

Dado $f, g \in \mathbb{K}_{[x]}$ no nulos, entonces:

$$\exists !\, q,\, r \in \mathbb{K}_{[x]}/\,f \,=\, g*q+r \text{ con } r=0 \,\vee\, gr(r) \lneq gr(g)$$

siendo q el cociente y r el resto de dividir f por g.

6.3 Máximo común divisor

<u>Definición</u>: Sean $f, g \in \mathbb{K}_{[x]}$ no ambos nulos. El Máximo Común Divisor entre f y g es el polinomio mónico de mayor grado que divide tanto a f como a g, y es único.

Notación: (f:g)

Propiedades

1.
$$(f:0) = \frac{f}{cp(f)} \forall f \in \mathbb{K}_{[x]}$$

2.
$$(f:g) \,=\, (g:r_g(f)) \, \forall g \in \mathbb{K}_{[x]}, \, g$$
no nulo.

$\frac{\text{Corolario MCD polinomios}}{\text{Sean } f,g \in \mathbb{K}_{[x]},\,g \neq 0. \text{ Entonces}},$

1.
$$c \in \mathbb{K}^*, (c:f) = 1$$

2.
$$g|f \Rightarrow (f:g) = \frac{g}{cp(g)}$$

6.4 Algoritmo de Euclides

<u>Definción</u>: $f,g \in \mathbb{K}_{[x]}$. Entonces (f:g) es el último resto no nulo divididdo su coeficiente principal que aparece en las siguientes divisiones:

$$(f:g) = (g:r_1) = (r_1:r_2) = \dots = (r_{k-1}:r_k) = (r_k:0) = \frac{r_k}{cp(r_k)}$$

Además, existen $s, t \in \mathbb{K}_{[x]}/(f:g) = s.f + t.g$

Corolario Algoritmo de Euclides

Sean $f,g\in\mathbb{K}_{[x]}$ no nulos. Entonces, $h=(f:g)\in\mathbb{K}_{[x]}$ es el único polinomio no nulo tal que:

- 1. h mónico
- 2. $h|f \wedge h|g$
- 3. $q|f \wedge q|g \Rightarrow q|h$

6.5 Polinomios Coprimos

<u>Definición</u>: Sean $f, g \in \mathbb{K}_{[x]}$ no ambos nulos. Se dice que (f : g) = 1 ó $f \perp g \Leftrightarrow \exists s, t \in \mathbb{K}_{[x]} / sf + tg = 1$.

Propiedades

Sean $f, g \in \mathbb{K}_{[x]}$. Entonces,

1.
$$g \perp h$$
, $g|f \wedge h|f \Leftrightarrow gh|f$

2.
$$g \perp h$$
, $g|hf \Leftrightarrow g|f$

Observaciones

Sea f irreducible en $\mathbb{K}_{[x]}$. Entonces,

- 1. $\forall g \in \mathbb{K}_{[x]}, (f:g)$
- 2. $\forall g, h \in \mathbb{K}_{[x]}, f|gh \Rightarrow f|g \vee f|h$

Teorema Fundamental de la Aritmética para polinomios

Sea \mathbb{K} cuerpo, $f \in \mathbb{K}_{[x]}$ un polinomio no constante, entonces existen únicos polinomio mónicos distintos $g_1, g_2, ..., g_r$ en $\mathbb{K}_{[x]}$ tales que:

$$f = c * g_1^{m_1} * g_2^{m_2} * \ldots * g_r^{m_r}$$
donde $c \in \mathbb{K}^*$

(c es el coeficiente principal de f). Además, la unicidad de los factores es cierta salvo el orden.

6.6 Evaluación

<u>Definición</u>: Dado $f = a_n x^n + ... + a_1 x^1 + a_0 \in \mathbb{K}_{[x]}$ se define de forma natural una función:

$$f: \mathbb{K} \to \mathbb{K}/f(x) = a_n x^n + ... + a_1 x^1 + a_0$$

y denominamos a esta función f como función evaluación.

Propiedades

Sean $f, g \in \mathbb{K}_{[x]}$. Entonces,

1.
$$(f+g)_{(x)} = f_{(x)} + g_{(x)}$$

2.
$$(f * g)_{(x)} = f_{(x)} * g_{(x)}$$

6.7 Raíz

<u>Definición</u>: Dado $f \in \mathbb{K}_{[x]}, a \in \mathbb{K}$. Decimos que a es raíz de f si:

$$f(a) = 0 \ \Leftrightarrow \ x - a | f \ \Leftrightarrow \ f = (x - a)q$$
para algún $q \in \mathbb{K}_{[x]}$

$$\frac{\text{Teorema del Resto}}{f \in \mathbb{K}_{[x]}, \ a \in \mathbb{K}. \ \text{Entonces} \ r_{x-a}(f) = f(a)}$$

Observaciones del Teorema del Resto

1. $f, g \in \mathbb{K}_{[x]}, g \neq 0/g|f$ en $\mathbb{K}_{[x]}, a \in \mathbb{K}$. Entonces:

Si
$$g(a) = 0 \Rightarrow f(a) = 0$$

2. $f, g \in \mathbb{K}_{[x]}$ no ambos nulos, $a \in \mathbb{K}$. Entonces:

$$f(a) = 0 \land g(a) = 0 \Leftrightarrow (g:f)_{(a)} = 0$$

6.8 Lema de Gauss

Sea $p = a_n x^n + ... + a_1 x^1 + a_0 \in \mathbb{Z}_{[x]}, \ a_n \neq 0 \ \land \ a_0 \neq 0$. Entonces:

Si
$$r, s \in \mathbb{Z} - \{0\}$$
 con $r \perp s \land p(\frac{r}{s}) = 0 \Rightarrow r|a_0 \land s|a_n$

6.9 Polinomio Interpolador de Lagrange

<u>Definición</u>: Sean $a_0, a_1, ...a_n; b_0, b_1, ..., b_n \in \mathbb{C}, n \geq 1, a_i \neq a_j$ si $i \neq j$. Entonces:

$$f = \sum_{k=0}^{n} b_k \underbrace{(\prod_{0 \le j \le n} \frac{x - a_j}{a_k - a_j})}_{L_k} = \sum_{k=0}^{n} b_k * L_k \text{ con } j \ne k$$

es el único polinomio
 $\mathbb{C}_{[x]}$ nulo o de grado $\leq n$ que satisface:

$$f(a_k) = b_k, 0 \le k \le n$$

Nota: Este polinomio sirve para encontrar polinomios de grado mínimo que pasen por más de un punto.

6.10 Multiplicidad de una raíz

<u>Definición</u>: Sea $f \in \mathbb{K}_{[x]}$ no nulo. Entonces, sea $m \in \mathbb{N}_0$, se dice que $a \in \mathbb{K}$ es raíz de multiplicidad m de f si:

$$(x-a)^m | f \wedge (x-a)^{m-1} / f$$

o equivalentemente:

$$\exists q \in \mathbb{K}_{[x]}/f = (x-a)^m * q, q(a) \neq 0$$

De esta manera, decimos que

1. a es raíz simple de f si:

$$(x-a)|f \wedge (x-a)^2|f$$

2. a es raíz múltiple de f si:

$$(x-a)^2|f$$

Notación: mult(a, f) = m ("la multiplicidad de a en f es m")

Propiedades

Sea $f \in \mathbb{K}_{[x]}$, $a \in \mathbb{K}$. Entonces:

- 1. a es raíz múltiple de $f \Leftrightarrow f(a) = 0 \land f'(a) = 0$
- 2. a es raíz simple de $f \Leftrightarrow f(a) = 0 \land f'(a) \neq 0$

Teorema 6.C

 $f \in \mathbb{K}_{[x]}, a \in \mathbb{K}$. Entonces:

$$mult(a, f) = m \iff f(a) = f'(a) = \dots = f^{m-1}(a) = 0 \land f^{m}(a) \neq 0$$

Teorema Fundamental del Álgebra

$$f \in \mathbb{C}_{[x]}$$
 no constante $\Rightarrow \exists a \in \mathbb{C}/f(a) = 0$

Equivalentemente, todo polinomio no constante de grado n en $\mathbb{C}_{[x]}$ tiene n raíces contando su multiplicidad.

$\underline{\rm Observaciones}$

1.
$$f \in \mathbb{R}_{[x]}, z \in \mathbb{C} - \mathbb{R} \implies f(z) = 0 \iff f(\overline{z}) = 0$$

2.
$$f \in \mathbb{Q}_{[x]}, a, b, c \in \mathbb{Z} \Rightarrow f(a + b\sqrt{c}) = 0 \Leftrightarrow f(a - b\sqrt{c}) = 0$$

7 Sumas - Recurrencias

Definición:

$$\sum_{k=i}^{n} a_k = \sum_{i \le k \le n} a_k = a_i + a_{i+1} + a_{i+2} + \dots + a_n$$

Propiedades

1. Ley distributiva

$$\sum_{k=i}^{n} c.a_k = c \sum_{k=i}^{n} a_k$$

2. Ley Asociativa

$$\sum_{k=i}^{n} (a_k + b_k) = \sum_{k=i}^{n} a_k + \sum_{k=i}^{n} b_k$$

3. Ley Conmutativa

$$\sum_{k=i}^{n} a_k = \sum_{k=i}^{n} a_{p(k)}$$

siendo $p:I\to I$ una función biyectiva, I=i,i+1,...,n

4. Cambio de Índice

$$\sum_{k \in I} a_k = \sum_{j \in J} a_{g(j)}$$

siendo $g:J\to I$ " una función biyectiva, y J,I conjuntos finitos. Esta propiedad nos permite elegir si priorizamos la fórmula o el conjunto de índices.

7.1 Sumas Famosas

El objetivo es lograr que las sumas se parezcan a estas y luego usar la fórmula cerrada (la de la derecha).

1. Suma de Gauss

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

2. Suma Geométrica

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \text{ con } x \neq 1$$

7.2 Sumas Múltiples

Definición:

1. Índices Independientes

$$\sum_{1 \le j, i \le n} a_{ij} = \sum_{i=1}^n \sum_{j=1}^n a_{ij}$$

2. Índices Dependientes

$$\sum_{1 \le i \le j \le n}^{a_{ij}} = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} a_{ij}$$

 $\underline{\text{Nota}}$: En sumas de 3 índices dependientes, la letra que está en el medio SIEMPRE se queda en el medio.

7.3 Sucesiones

 $\underline{\text{Definición}} \colon \text{Una sucesión de elementos de A es una función } f \colon \mathbb{N} \to A/\underbrace{f(1)}_{a_1}, \underbrace{f(2)}_{a_2}, \underbrace{f(3)}_{a_3}, \dots$

Notación: a_n , con $n \in \mathbb{N}$

Además, pueden definirse de dos maneras:

1. Definida Explícitamente

$$a_n = f(n)$$

2. Definida Implícitamente

$$\begin{cases} a_0 = 3 & \text{("Valor Inicial")} \\ a_n = 3a_{n-1} \text{ con } n \in \mathbb{N} & \text{("Relación de Recurrencia")} \end{cases}$$

En este caso el objetivo es llegar a la fórmula explícita.

7.4 Relaciones de Recurrencia Lineal de Orden K

Definición: Las relaciones de recurrencia lineal son ecuaciones de la forma:

$$\alpha_0(n)a_n + \alpha_1(n)a_{n-1} + \dots + \alpha_k(n)a_{n-k} = f(n) \text{ con } \alpha_0 \neq 0 \text{ y } \alpha_k \neq 0$$

Además,

- 1. Si las funciones $\alpha_j : \mathbb{N} \to \mathbb{C}$ son constantes, entonces se dice que la relación de recurrencia tiene *coeficientes constantes*.
- 2. Si f es la función nula se dice que la relación de recurrencia lineal es homog'enea, sino se dice que es $no\ homog\'enea$.

- 3. $\alpha_0(n)a_n + \alpha_1(n)a_{n-1} + ... + \alpha_k(n)a_{n-k} = 0$ es la relación homogénea asociada a (11).
- 4. El *orden* de la relación es la diferencia entre el n más grande y el n más chico.

7.4.1 Relaciones de Orden 1

Relaciones de Recurrencia Lineal de Orden 1 con Coeficientes Constantes Homogéneas

Definición: Hay dos maneras de definir este tipo de relaciones:

- 1. Recursiva: $X_n + \alpha X_{n-1} = 0$ con $\alpha \in \mathbb{C} \{0\}, n \ge 1$
- 2. Explícita: $X_n = Kr^n$ (El objetivo es llegar de la forma recursiva a la explícita)

Relaciones de Recurrencia Lineal de Orden 1 con Coeficientes Constantes NO Homogéneas

Definición: Hay dos maneras de definir este tipo de relaciones:

1. Recursiva:

$$\begin{cases} X_n + \alpha X_{n-1} = T & \text{con } \alpha, T \in \mathbb{C} - \{0\}, \ n \ge 1 \\ X_0 \end{cases}$$

2. Explícita:

$$\begin{cases} X_n = (-1)^n \alpha^n X_0 + T(\frac{(-\alpha)^n - 1}{-\alpha - 1}) & \text{si } \alpha \neq -1 \\ X_n = X_0 + nT & \text{si } \alpha = -1 \end{cases}$$

7.4.2 Relaciones de Orden 2

Relaciones de Recurrencia Lineal con Coeficientes Constantes de Orden ${\bf 2}$

Definición:

$$\begin{cases} X_n + \alpha_1 X_{n-1} + \alpha_2 X_{n-2} = f(n) & \text{con } \alpha_1 \in \mathbb{C}, \alpha_2 \in \mathbb{C} - \{0\}, n \ge 2 \\ X_0, X_1 & \end{cases}$$

Teorema 7.A

Si Y_n y Z_n son soluciones de la relación de recurrencia y además

$$Y_0 = Z_0 \wedge Y_1 = Z_1 \Rightarrow Y_n = Z_n \forall n \ge 0$$

Propiedades

Sea $X_n + \alpha_1 X_{n-1} + \alpha_2 X_{n-2} = 0$ con $\alpha_1 \in \mathbb{C}, \alpha_2 \in \mathbb{C} - \{0\}, n \ge 2$. Entonces,

- 1. $X_n = r^n$ es solución de la ecuación $\Leftrightarrow \underbrace{r^2 + \alpha_1 r + \alpha_2}_{\text{"Polinomio característico}} = 0$
- 2. Si Y_n y Z_n son soluciones de la relación de recurrencia $\Rightarrow aY_n + bZ_n$ es solución $\forall a,b \in \mathbb{C}$
- 3. Si $r^2 + \alpha_1 r + \alpha_2$ tiene 2 raíces distintas r_1 y r_2 \Rightarrow la solución general de la relación es $X_n = Ar_1^n + br_2^n$ con $A, B \in \mathbb{C}$
- 4. Si $r^2 + \alpha_1 r + \alpha_2$ tiene una raíz doble r_1 \Rightarrow la solución general de la relación $X_n = Ar_1^n + Bnr_1^n$ con $A, B \in \mathbb{C}$

7.5 Relaciones de Recurrencia Lineal NO Homógeneas

Teorema 7.B

Sea Y_n la solución general de $X_n+\alpha_1X_{n-1}+\ldots+\alpha_kX_{n-k}=f(n)$ y sea Y_n^p una solución particular de la misma relación de recurrencia

 $\Rightarrow Y_n-Y_n^p$ es solución de la relación de recurrencia homogénea asociada \therefore La solución general es $Y_n=Y_n^p+Y_n^H$

Método para hallar una solución particular (Orden 1 ó 2)

Hay dos casos posibles:

1. $X_n + \alpha X_{n-1} + \beta X_{n-2} = p(n)\lambda^n$ donde p(n) es un polinomio de grado k y $\lambda \in \mathbb{R} - \{0\}$, vamos a proponer como solución particular:

$$X_n^p = q(n)\lambda^n n^s$$

donde q(n) es un polinomio de grado k, y s es la multiplicidad de λ como raíz del polinomio característico asociado a la ecuación.

2. $X_n + \alpha X_{n-1} + \beta X_{n-2} = f(n)$ donde $f(n) = p(n)\lambda^n cos(\alpha n)$ ó $f(n) = p(n)\lambda^n sen(\alpha n)$ siendo p(n) un polinomio de grado k, $\lambda \in \mathbb{R} - \{0\}$, $\alpha \in \mathbb{R} - \{0\}$. Proponemos:

$$X_n = \lambda^n n^s(q_1(n)cos(\alpha n) + q_2(n)sen(\alpha n))$$

 $q_1(n)$ y $q_2(n)$ son polinomios de grado k, y s es la multiplicidad de $z = cos(\alpha n) + isen(\alpha n)$ como raíz del polinomio característico.

Solución en Complejos

$$X_n + \alpha_1 X_{n-1} + \beta X_{n-2} = 0 \text{ con } \alpha \in \mathbb{R}, \beta \in \mathbb{R} - \{0\}$$

El polinomio característico asociado tiene raíces a + bi y a - bi con $a, b \in \mathbb{R}$. Entonces, la solución general es:

$$X_n = A(a+bi)^n + B(a-bi)^n$$

La solución de arriba está bien pero hay que escribirla de esta manera:

$$X_n = |z|^n \left(Ccos(n\theta) + Dsen(n\theta) \right)$$

Principio de superposición

Si Y_n es una solución particular de $X_n + \alpha X_{n-1} + \beta X_{n-2} = f(n)$ y Z_n es una solución particular de $X_n + \alpha X_{n-1} + \beta X_{n-2} = g(n)$

 $\Rightarrow Y_n + Z_n$ es solución particular de $X_n + \alpha X_{n-1} + \beta X_{n-2} = f(n) + g(n)$

7.6 Relaciones de Recurrencia Lineales de Mayor Orden

$$X_n + \alpha_1 X_{n-1} + \dots + \alpha_k X_{n-k} = F(n)$$

La solución general es: $X_n = X_n^H + X_n^p$ La solución particular es: Análogo a lo visto en 7.5

La solución homogénea es:

Propongo $X_n = r^n \Rightarrow r^n + \alpha_1 r^{n-1} + ... + \alpha_k = 0$

- 1. Cada raíz proporciona tantas soluciones como su multiplicidad
- 2. Si la raíz $r_i \in \mathbb{R}$ tiene multiplicidad k $\Rightarrow r_i^n, nr_i^n, ..., n^{k-1}r_i^n$ son soluciones.
- 3. Si la raíz $z = r(\cos(\alpha) + i \operatorname{sen}(\alpha))$ tiene multiplicidad k $\Rightarrow r^n cos(n\alpha), r^n sen(n\alpha), nr^n cos(n\alpha), nr^n sen(n\alpha), ..., n^{k-1} r^n cos(n\alpha), n^{k-1} r^n sen(n\alpha)$ son soluciones.

8 Sistemas de Ecuaciones Lineales

Definición:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1k}x_k &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2k}x_k &= b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nk}x_k &= b_n \end{cases}$$

Es un sistema lineal con k incógnitas $x_1, x_2, ..., x_k$ con n ecuaciones. Donde b_j son los términos independientes y $a_{ik} \in \mathbb{K}$ son los coeficientes del sistema.

Matrices Asociadas al Sistema

$$\mathbf{A} = \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & & & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}}_{\text{Matriz de coeficientes}} \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
Vector de términos independientes

Si
$$b=0 \Rightarrow \underbrace{Sistema\ homog\acute{e}neo}_{\text{Siempre tienen solución}}$$

Notación:

$$Matriz \ ampliada \ del \ Sistema : [A|b]$$
 (1)

Sistema escrito matricialmente:
$$Ax = b$$
 (2)

8.1 Operaciones Válidas

Si en un sistema de ecuaciones lineales se realizan las siguientes operaciones se obtiene un sistema equivalente (i.e. con el mismo conjunto solución)

- 1. Intercambiar ecuaciones.
- 2. Multiplicar una ecuación por un número $\lambda \in \mathbb{K}^*$.
- 3. Sumar a una ecuación un múltiplo de otra.

En términos de la matriz ampliada del sistema estas operaciones se traducen a lo que llamamos *operaciones elementales*:

1.
$$F_i \leftrightarrow F_i$$

2.
$$F_i = \lambda F_i, \lambda \neq 0$$

3.
$$F_i = F_i + \alpha F_j$$

8.2 Matrices equivalenetes

Equivalencia por filas

<u>Definción</u>: Sean A y B matrices de $n \times k$. Decimos que A es equivalente por filas a B si aplicando finitas operaciones elementales a A se obtiene B.

Notación: $A \sim B$

Observaciones

1. A, B de $n \times k$. Entonces,

ARB si $A \sim B$, R es de equivalencia

2. Si $[A|b] \sim [A'|b'] \Rightarrow Ax = b \wedge A'x = b'$ son equivalentes

Teorema 8.A

Dada una matriz A de $n \times k$, existe una única matriz E en FER/ $A \sim E$

Forma Escalonada (FE)

<u>Definición</u>: Una matriz A de $n \times k$ está en FE si:

- 1. En cada fila no nula, el primer numero es un 1 ("uno principal").
- 2. Cada uno principal de una fila está mas a la derecha que el uno principal de la fila que está arriba.
- 3. Si hay filas nulas tienen que estar abajo.

Forma Escalonada Reducida (FER)

<u>Definición</u>: Una matriz A de $n \times k$ está en FER si:

- 1. Está en FE.
- 2. En la columna donde está el uno principal todos los demas números son 0.

8.3 Métodos de Eliminación

Método de Eliminiación Gaussiana (MEG)

<u>Definción</u>: Dada la matriz [A|b] ampliada de un sistema lineal, aplicar el MEG es obtener E escalonado/ $[A|b] \sim E$.

Método de Eliminación de Gauss-Jordan (MEGJ)

<u>Definción</u>: Dada la matriz [A|b] ampliada de un sistema lineal, aplicar MEGJ es obtener E escalonado reducido/ $[A|b] \sim E$.

8.4 Rango de una matriz

<u>Definición</u>: Dada A de $n \times k$, el rango de A es la cantidad de unos principales de la matriz escalonada reducida asociada a A.

Notación: R(A) = rango(A) = Rg(A)

Observaciones

- 1. $Rg(A) \leq min\{\underbrace{n}_{\text{filas}}, \underbrace{k}_{\text{columnas}}\}$
- 2. E', E escalonadas/ $E \sim A \land E' \sim A$ \Rightarrow la cant. de 1s principales de E' = la cant. de 1s principales de E'

Corolario de la definción

El Rg(A) es la cantidad de 1s principales de cualquier matriz E escalonada/ $E \sim A$

8.5 Clasificación de los Sistemas Lineales

Sea [A|b] la matriz ampliada de un sistema. Entonces:

- 1. $Rg(A) = Rg[A|b] \Rightarrow$ "Sistema Compatible" (SC)(i.e. tiene solución)
 - (a) Rg(A) = cant. variables/columnas \Rightarrow "Sistema Compatible Determinado" (SCD)(i.e. tiene solución única)
 - (b) $Rg(A) \neq \text{cant. variables/columnas}$ \Rightarrow "Sistema Compatible Indeterminado" (SCI)(i.e. tiene infinitas soluciones)
- 2. $Rg(A) \neq Rg[A|b] \Rightarrow$ "Sistema Incompatible" (SI)(i.e. no tiene solución)

Corolarios

- 1. Si el sistema es homogéne
o \Rightarrow el sistema es compatible
- 2. La compatibilidad o incompatibilidad depende de A y de b. Puede pasar que $Ax = b_1$ sea compatible y que $Ax = b_2$ sea incompatible.
- 3. Si $Ax = b_1$ es compatible $\land Ax = b_2$ es compatible \Rightarrow ambos son SCD \lor ambos son SCI

Nota: cant. de variables libres = cant. variables - Rg(A)

9 Matrices

<u>Definición</u>: $\mathbb{K}^{n \times m} = \{A/A \text{ es un conjunto con n filas y m columnas con coeficientes en } \mathbb{K} \}$

$$\mathbf{Matriz\ Identidad}\colon I_n \in \mathbb{R}^{n \times m} / \left(I_n\right)_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

Matriz Nula: $0_{ij} = 0$

9.1 Operaciones entre matrices

1. Producto por escalar

Si $A \in \mathbb{K}^{n \times m}$, $\alpha \in \mathbb{K}$. Entonces,

$$B = \alpha A \in \mathbb{K}^{n \times m} \Leftrightarrow B_{ij} = \alpha A_{ij}$$

2. Suma

 $A, B \in \mathbb{K}^{n \times m}$. Entonces,

$$C = A + B \in \mathbb{K}^{n \times m} \Leftrightarrow C_{ij} = A_{ij} + B_{ij}$$

3. Producto

 $A \in \mathbb{K}^{n \times m} \land B \in \mathbb{K}^m \times r$ (es decir, el nro de columnas de A TIENE que coincidir con el de filas de B, o viceversa). Entonces,

$$C = A * B \Leftrightarrow C_{ij} = \sum_{k=1}^{m} A_{ik} * B_{kj}$$

Osea se multiplica la Fila de A con la Columna de B.

Propiedades

Sean A, B, C matrices, $\alpha, \beta \in \mathbb{K}$. Entonces,

$$1. A + B = B + A$$

2. El producto entre matrices NO siempre es conmutativo.

3.
$$A + (B + C) = (A + B) + C$$

4.
$$A + 0 = A$$

5. Para cada
$$A \in \mathbb{K}^{n \times m}$$
, $\exists (-A) \in \mathbb{K}^{n \times m} / A + (-A) = 0$

6.
$$A * (B * C) = (A * B) * C$$

7.
$$A * I = A, I * A = A$$

8.
$$A * 0 = 0$$
, $0 * A = 0$

9.
$$A*(B+C) = A*B + A*C \lor (B+C)*A = B*A + B*C$$

10.
$$\alpha * (A + B) = \alpha * A + \alpha * B$$

11.
$$\alpha * (A * B) = (\alpha * A) * B$$

12.
$$(\alpha + \beta) * A = \alpha * A + \beta * A$$

13.
$$\alpha * A = A * \alpha$$

14.
$$(-1)*A = -A$$

15.
$$(\alpha * A)^t = \alpha * A^t$$

16.
$$(A+B)^t = A^t + B^t$$

17.
$$(A * B)^t = B^t * A^t$$

18.
$$(A^k)^t = (A^t)^k \ \forall k \in \mathbb{N}$$

9.2 Otros tipos de matrices

1. Matriz Diagonal

 $A \in \mathbb{K}^{n \times m}$ es diagonal si $A_{ij} = 0$ si $i \neq j$

2. Matriz Triangular Superior

 $A \in \mathbb{K}^{n \times m}$ es triangular superior si $A_i j = 0$ cuando $i \geq j$

3. Matriz Triangular Inferior

 $A \in \mathbb{K}^{n \times m}$ es triangular inferior si $A_i j = 0$ cuando $i \leq j$

4. Matriz Traspuesta

 $A \in \mathbb{K}^{n \times m}$ se define $A^t \in \mathbb{K}^{n \times m} / (A^t)_{ij} = A_{ji}$

5. Matriz Simétrica

 $A \in \mathbb{K}^{n \times n}$ es simétrica si $A^t = A$

6. Matriz Antisimétrica

 $A \in \mathbb{K}^{n \times n}$ es antisimétrica si $A^t = -A$. Además, en la diagonal tiene que haber solo 0s.

9.3 Inversas

<u>Definición</u>: Sea $A \in \mathbb{K}^{n \times n}$, decimos que $B \in \mathbb{K}^{n \times n}$ es inversa de A si:

$$A * B = Id \wedge B * A = Id$$

Además, decimos que $A \in \mathbb{K}^{n \times n}$ es inversible si tiene inversa.

Notación: A^{-1} es la inversa de A, y viceversa.

Teorema 9.A

A inversible $\Rightarrow A$ tiene una única inversa

Teorema 9.B

Sea $A \in \mathbb{K}^{n \times n}$ inversible. Entonces,

$$Ax = b$$
 es SCD y Sol= $\{A^{-1} * b\}$

Corolario

Sea $A \in \mathbb{K}^{n \times n}$, $Rg(A) \leq n \Rightarrow A$ no es inversible

$\underline{\text{Teorema 9.C}}$

Sea $A \in \mathbb{K}^{n \times n} \wedge Rg(A) = n \Rightarrow A$ es inversible

Teorema 9.D

 $A, B \in \mathbb{K}^{n \times n}$ inversibles. Entonces,

A * B es inversible y $(A * B)^{-1} = B^{-1} * A^{-1}$

Teorema 9.E

 $A, B \in \mathbb{K}^{n \times n}$ inversible $\xrightarrow{} A * B$ inversible $\Rightarrow \exists A^{-1}, B - 1$

Resumen del resumen

Sea $A \in \mathbb{K}^{n \times n}$ (A matriz cuadrada). Son equivalentes:

- 1. Rg(A) = n
- 2. A es inversible
- 3. Ax = b es SCD
- 4. Ax = 0 es SCD
- 5. $A \sim Id$

9.4 Cheatsheet de producto de matrices

Esto es útil para encontrar contraejemplos.

1.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix} \quad F_1 \leftrightarrow F_2$$

2.

$$\begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha a & \alpha b \\ c & d \end{bmatrix} \quad F_1 = \alpha F_1$$

3.
$$\begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ \alpha a + c & \alpha b + d \end{bmatrix} \quad F_2 = \alpha F_1 + F_2$$

4.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \alpha a & b \\ \alpha c & d \end{bmatrix} \quad C_1 = \alpha C_1$$

5.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \alpha & 1 \end{bmatrix} = \begin{bmatrix} a + \alpha b & b \\ c + \alpha d & d \end{bmatrix} \quad C_1 = \alpha C_2 + C_1$$

10 Espacios Vectoriales

<u>Definción</u>: Un espacio vectorial es una estrucutura algebraica que consta de dos conjuntos y dos operaciones $(V, \mathbb{K}, \oplus, \otimes)$.

- Los elementos de V se llaman vectores.
- Los elementos de \mathbb{K} se llaman *escalares*. (\mathbb{K} es un cuerpo / $\mathbb{K} = \mathbb{R}$ ó \mathbb{C})

Las operaciones deben cumplir que:

$$\oplus: V \times V \to V$$

$$\otimes : \mathbb{K} \times V \to V$$

Para que una estructura se considere espacio vectorial tiene que cumplir 8 propiedades:

- 1. $u \oplus v = v \oplus u$
- 2. $u \oplus (v \oplus w) = (u \oplus v) \oplus w$
- 3. $\exists 0 \in V/V \oplus 0 = V$ (0 denota el elemento neutro de la suma)
- 4. Dado $v \in V$, $\exists (-v) \in V/v \oplus (-v) = 0$
- 5. $1 \otimes V = V,\, 1 \in \mathbb{K}$ (1 denota el neutro de la multiplicación)
- 6. $\alpha \otimes (v \oplus w) = \alpha \otimes v \oplus \alpha \otimes w$
- 7. $(\alpha + \beta) \otimes v = \alpha \otimes v \oplus \beta \otimes v$
- 8. $(\alpha * \beta) \otimes v = \alpha \otimes (\beta \otimes v)$

Notación: V es un K-ev ("V es un K espacio vectorial")

Propiedades de los espacios vectoriales

- 1. El neutro para la suma es único.
- 2. $0 * v = 0_v \text{ con } 0, 0_v \in \mathbb{K}$
- 3. $\alpha * 0_v = 0_v$
- 4. $\alpha * v = 0 \Rightarrow \alpha = 0 \lor v = 0_v$
- 5. El opuesto de un vector es único.
- 6. $(-1) * v = -v \operatorname{con} (-1) \in \mathbb{K}, v, -v \in V$
- 7. $\alpha * \sum_{i=1}^{r} v_i = \sum_{i=1}^{r} \alpha * v_i \text{ con } \alpha \in \mathbb{K}, v_i \in V$

10.1 Subespacios Vectoriales

<u>Definción</u>: Sea V un \mathbb{K} -ev con operaciones \otimes , \oplus . Decimos que S es un subespacio $de\ V$ si:

- 1. $(S, \mathbb{K}, \oplus, \otimes)$ es un espacio vectorial.
- $2. S \subseteq V$

Teorema 10.A

Sea V un K-ev. S es un subespacio de V si:

- 1. $S \subseteq V$
- 2. $0_v \in S$
- 3. $v, w \in S \implies v + w \in S$
- 4. $\alpha \in \mathbb{K}, v \in S \Rightarrow \alpha * v \in S$

10.2 Combinación Lineal

<u>Definción</u>: Dado V un K-ev. Sean $v_1, v_2, ..., v_n \in V, w \in V$. Decimos que w es combinación lineal de $v_1, ..., v_n$ si existen $\alpha_1, ...\alpha_n \in \mathbb{K}$ tal que:

$$w = \alpha_1 * v_1 + \alpha_2 * v_2 + \dots + \alpha_n * v_n = \sum_{i=1}^n \alpha_i * v_i$$

10.3 Espacio generado por un conjunto de vectores

<u>Definición</u>: Sea V un K-ev. Sea $G = \{v_1, ..., v_n\} \subseteq V$. Entonces,

$$gen(G) = gen\{v_1,...,v_n\} = \{v \in V | v \text{ es combinación lineal de los elementos de G} \} =$$

$$= \{v \in V | \exists \alpha_1,...,\alpha_n \in \mathbb{K} \text{ tal que } v = \sum_{i=1}^n \alpha_i v_i\}$$

V es un K-ev. Sea $G = \{v_1, ..., v_r\} \subseteq V$. Entonces S = gen(G) es un subespacio de V.

10.4 Conjunto generador de un subespacio

<u>Definción</u>: V un K-ev. El conjunto $G=\{v_1,...,v_r\}$ es un conjunto generador del subespacio $S\subseteq V$ si $S=gen\{v_1,...v_r\}$

$\underline{\text{Teorema } 10.C}$ V es un \mathbb{K} -ev.

$$gen\{v_1, ..., v_r\} = gen\{v_1, v_r, v_{r+1}\} \Leftrightarrow v_{r+1} \in gen\{v_1, ..., v_3\}$$

10.5Independecia/Dependencia Lineal

Definciones:

• El conjunto $\{v_1, v_2, ..., v_r\}$ es linealmente independendiente (li) si:

$$\alpha_1*v_1+\alpha_2*v_2+\ldots+\alpha_rv_r=0_v \ \Rightarrow \ \alpha_i=0 \ \text{con} \ 1\leq i\leq r$$

$$v_j\in V, \ \alpha_j\in \mathbb{K} \ \text{con} \ 1\leq j\leq r$$

• El conjunto $\{v_1, v_2, ..., v_r\}$ es linealmente dependiente (ld) si no es li.

Teorema 10.D
Sea
$$\{v_1, ..., v_r\} \subseteq V \text{ con } r \geq 2$$
. Entonces:

- 1. $\{v_1, ..., v_r\}$ es ld $\Leftrightarrow \exists v_i \text{ con } 1 \leq i \leq r/v_i$ es combinación lineal del resto
- 2. $\{v_1, ..., v_r\}$ es li \Leftrightarrow ningún v_i es combinación lineal del resto

Corolario

Sea
$$G = \{v_1, ..., v_r\}$$
 con $r \ge 2$. Entonces:
Existe $G_1 \subsetneq G$ tal que $gen(G) = gen(G_1) \Leftrightarrow G$ es ld

Observaciones

- 1. $\{v_1, ..., v_r\}$ es ld si algún $v_i = 0$
- 2. $\{v\}$ es li $\Leftrightarrow v \neq 0$
- 3. $Rg(A) = n \Rightarrow SCD \Rightarrow es li$

10.6 \mathbf{Base}

<u>Defnición</u>: V un \mathbb{K} -ev. $\{v_1, ...v_n\} \subseteq V$. Decimos que B es base de V si:

- 1. V = gen(B)
- 2. B es li

Teorema 10.E

Sea $G = \{v_1, ..., v_r\}$ un conjunto generador de $S \neq \{0\}$. Entonces, existe $B \subseteq G/B$ es base de S.

Teorema 10.F

V un K-ev. Sea $B = \{v_1, ..., v_r\}$ base de V. Entonces,

$$\forall v \in V, \exists ! \alpha_1, ..., \alpha_r \in \mathbb{K}/v = \alpha_1 * v_1 + ... + \alpha_r * v_r$$

Teorema 10.G

V un K-ev. Sea $B = \{v_1, ..., v_r\}$ base de V. Entonces,

Si
$$\{w_1, ..., w_n\} \subseteq V \land n \geq r \Rightarrow \{w_1, ..., w_n\}$$
 es ld

Teorema 10.H

V un K-ev.

$$B = \{v_1, ..., v_r\}$$
 y $B' = \{v'_1, ..., v'_n\}$ bases de V $\Rightarrow r = n$

<u>Observación</u>: Puede haber infinitas bases para un conjunto pero esas infinitas bases tienen la misma cantidad de elementos.

Dimensión de una base

<u>Definición</u>: V un \mathbb{K} -ev. Sea $B=\{v_1,\,...,\,v_r\}$ base de V. Se define la dimensión de V igual a n. Notación: dim(V)=n

Teorema 10.I

V un \mathbb{K} -ev. dim(V) = n.

Son equivalentes:

1.
$$gen\{v_1, ..., v_n\} = V$$

2.
$$\{v_1, ..., v_n\} \subseteq V$$

3.
$$\{v_1, ..., v_n\}$$
 es li

 $\underline{\text{Nota}}.$ Esto sirve para probar que un conjunto determinado es base de otro sin tener que buscar generadores.

Resumen de todas las propiedades

1 Conjuntos

1. Leyes de De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $2.\ Leyes\ Distributivas$

$$A \cap B(B \cup C) \ = \ (A \cap B) \cup (A \cap C)$$

$$A \cup B(B \cap C) = (A \cup B) \cap (A \cup C)$$

3. Ley Conmutativa

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

4. Ley Asociativa

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

5. Otras

$$A \cup \varnothing = A$$

$$A \cap \varnothing = \varnothing$$

$$A \cup \mathcal{U} = \mathcal{U}$$

$$A \cap \mathcal{U} = A$$

$$\overline{\varnothing} = \mathcal{U}$$

$$\overline{\mathcal{U}} = \emptyset$$

5 Enteros

5.2 Divisibilidad en un anillo

1.
$$a \le b \implies a + c \le b + c$$

2.
$$a \le b \land c \ge 0 \Rightarrow ac \le bc$$

3.
$$ab = ac \wedge a \neq 0 \Rightarrow b = c$$

4.
$$ab = 0 \Rightarrow a = 0 \lor b = 0$$

5.
$$a|b \Leftrightarrow |a| |b|$$

6.
$$a|b \wedge b \neq 0 \Rightarrow |a| \leq |b|$$

7.
$$a|b \wedge b|a \Rightarrow |a| = |b|$$

8.
$$a|b \wedge a|c \Rightarrow a|b \pm c$$

9.
$$a|b \wedge a|b \pm c \Rightarrow a|c$$

10.
$$a|b \Rightarrow a|bc$$

11.
$$a|b \Rightarrow a^n|b^n \text{ con } n \in \mathbb{N}$$

12.
$$a|b \wedge a|c \Rightarrow a|\alpha b + \beta c \operatorname{con} \alpha, \beta \in \mathbb{Z}$$

5.3 Congruencias

1.
$$a_1 \equiv b_1(m) \land a_2 \equiv b_2(m) \Rightarrow a_1 \pm a_2 \equiv b_1 \pm b_2(m)$$

 $a_1 \equiv b_1(m) \land a_2 \equiv b_2(m) \Rightarrow a_1 * a_2 \equiv b_1 * b_2(m)$

2.
$$a_1 \equiv b_1(m) \land \dots \land a_k \equiv b_k(m) \Rightarrow a_1 \pm \dots \pm a_k \equiv b_1 \pm \dots \pm b_k(m)$$

 $a_1 \equiv b_1(m) \land \dots \land a_k \equiv b_k(m) \Rightarrow a_1 * \dots * a_k \equiv b_1 * \dots * b_k(m)$

3.
$$a \equiv b(m) \Rightarrow a^n \equiv b^n(m) \ \forall n \in \mathbb{N}$$

4.
$$a \equiv b(m) \Rightarrow ac \equiv bc(m)$$

5.5 Números Coprimos

1.
$$a \perp b \wedge a | bc \Rightarrow a | c$$

$$2. \ a \bot b \ \land \ a \bot c \ \Rightarrow \ a \bot bc$$

3.
$$a|c \wedge b|c \wedge a \perp c \Rightarrow ab|c$$

4.
$$d = (a:b) \Rightarrow \frac{a}{d} \perp \frac{b}{d}$$

5.
$$a \perp b \Rightarrow a^n \perp b^k \text{ con } n, k \in \mathbb{N}$$

6.
$$a \perp c \Rightarrow (a:cb) = (a:b)$$

5.6.1 V_p

1.
$$V_p(a*b) = V_p(a) + V_p(b)$$

$$2. V_p(a^n) = nV_p(a)$$

3.
$$d|a \Rightarrow V_p(d) \leq V_p(a)$$

4.
$$V_p \ge 0$$

6 Polinomios

6.2 Divisivibilidad

- 1. $g \neq 0, g|0$
- 2. $g|f \Leftrightarrow cg|f \text{ con } c \in \mathbb{K} \{0\} = \mathbb{K}^*$
- 3. $g|f \Leftrightarrow \frac{g}{cp(g)}|\frac{f}{cp(f)} \text{ con } f \neq 0$
- 4. $g|f \Leftrightarrow g|cf \text{ con } c \in \mathbb{K}^*$
- 5. f, g no nulos, $g|f \wedge gr(g) = gr(f) \Rightarrow \exists c \in \mathbb{K}^*/f = cg$
- 6. $f|g \wedge g|f \Rightarrow f = cg \operatorname{con} c \in \mathbb{K}^*$
- 7. $f \notin \mathbb{K}$, $c|f \wedge cf|f$ si $c \in \mathbb{K}^*$. Es decir, f tiene como divisores cualquier constante y múltiplos de él mismo.

6.3 MCD

- 1. $(f:0) = \frac{f}{cp(f)} \forall f \in \mathbb{K}_{[x]}$
- 2. $(f:g) = (g:r_g(f)) \, \forall g \in \mathbb{K}_{[x]}, g$ no nulo.

6.5 Polinomios Coprimos

- 1. $g \perp h$, $g|f \wedge h|f \Leftrightarrow gh|f$
- 2. $g \perp h$, $g|hf \Leftrightarrow g|f$

6.6 Evaluación

- 1. $(f+g)_{(x)} = f_{(x)} + g_{(x)}$
- 2. $(f * g)_{(x)} = f_{(x)} * g_{(x)}$

6.10 Multiplicidad de una raíz

- 1. a es raíz múltiple de $f \Leftrightarrow f(a) = 0 \wedge f'(a) = 0$
- 2. a es raíz simple de $f \Leftrightarrow f(a) = 0 \land f'(a) \neq 0$

7 Sumas - Recurrencias

1. Ley distributiva

$$\sum_{k=i}^{n} c.a_k = c \sum_{k=i}^{n} a_k$$

2. Ley Asociativa

$$\sum_{k=i}^{n} (a_k + b_k) = \sum_{k=i}^{n} a_k + \sum_{k=i}^{n} b_k$$

3. Ley Conmutativa

$$\sum_{k=i}^{n} a_k = \sum_{k=i}^{n} a_{p(k)}$$

siendo $p:I\to I$ una función biyectiva, I=i,i+1,...,n

4. Cambio de Índice

$$\sum_{k \in I} a_k = \sum_{j \in J} a_{g(j)}$$

siendo $g:J\to I$ " una función biyectiva, y J,I conjuntos finitos. Esta propiedad nos permite elegir si priorizamos la fórmula o el conjunto de índices.

7.4.2 Relaciones de Orden 2

Sea $X_n + \alpha_1 X_{n-1} + \alpha_2 X_{n-2} = 0$ con $\alpha_1 \in \mathbb{C}, \alpha_2 \in \mathbb{C} - \{0\}, n \geq 2$. Entonces,

- 1. $X_n = r^n$ es solución de la ecuación $\Leftrightarrow \underbrace{r^2 + \alpha_1 r + \alpha_2}_{\text{"Polinomio característico}} = 0$
- 2. Si Y_n y Z_n son soluciones de la relación de recurrencia $\Rightarrow aY_n + bZ_n$ es solución $\forall a,b \in \mathbb{C}$
- 3. Si $r^2+\alpha_1r+\alpha_2$ tiene 2 raíces distintas r_1 y r_2 \Rightarrow la solución general de la relación es $X_n=Ar_1^n+br_2^n$ con $A,B\in\mathbb{C}$
- 4. Si $r^2 + \alpha_1 r + \alpha_2$ tiene una raíz doble r_1 \Rightarrow la solución general de la relación $X_n = Ar_1^n + Bnr_1^n$ con $A, B \in \mathbb{C}$

9.1 Operaciones entre matrices

Sean A, B, C matrices, $\alpha, \beta \in \mathbb{K}$. Entonces,

- 1. A + B = B + A
- 2. El producto entre matrices NO siempre es conmutativo.
- 3. A + (B + C) = (A + B) + C
- 4. A + 0 = A
- 5. Para cada $A \in \mathbb{K}^{n \times m}$, $\exists (-A) \in \mathbb{K}^{n \times m} / A + (-A) = 0$

6.
$$A * (B * C) = (A * B) * C$$

7.
$$A * I = A, I * A = A$$

8.
$$A * 0 = 0$$
, $0 * A = 0$

9.
$$A*(B+C) = A*B + A*C y (B+C)*A = B*A + B*C$$

10.
$$\alpha * (A + B) = \alpha * A + \alpha * B$$

11.
$$\alpha * (A * B) = (\alpha * A) * B$$

12.
$$(\alpha + \beta) * A = \alpha * A + \beta * A$$

13.
$$\alpha * A = A * \alpha$$

14.
$$(-1) * A = -A$$

15.
$$(\alpha * A)^t = \alpha * A^t$$

16.
$$(A+B)^t = A^t + B^t$$

17.
$$(A * B)^t = B^t * A^t$$

18.
$$(A^k)^t = (A^t)^k \ \forall k \in \mathbb{N}$$

10 Espacios Vectoriales

Propiedades de los espacios vectoriales

1. El neutro para la suma es único.

2.
$$0 * v = 0_v \text{ con } 0, 0_v \in \mathbb{K}$$

3.
$$\alpha * 0_v = 0_v$$

4.
$$\alpha * v = 0 \Rightarrow \alpha = 0 \lor v = 0_v$$

5. El opuesto de un vector es único.

6.
$$(-1) * v = -v \text{ con } (-1) \in \mathbb{K}, v, -v \in V$$

7.
$$\alpha * \sum_{i=1}^{r} v_i = \sum_{i=1}^{r} \alpha * v_i \text{ con } \alpha \in \mathbb{K}, v_i \in V$$