1. A microcontroller system has a 12 bit AD converter, 10,000 bytes of available RAM, and samples stereo audio signal with sampling frequency of 20 KHz. How many seconds of audio signal can be stored in memory?

T = 10000 bytes / (2 channels * 2 bytes/sample * 20000 samples/s) = 0.125 s (125ms)

or optimized:

T = 10000 bytes / (2 channels * 1.5 bytes/sample * 20000 samples/s) = 0.166 s (166ms)

2. The output of a causal LTI system with the impulse response h(t) to a causal input x(t) is

$$y(t) = \int_0^t x(\tau)h(t-\tau)d\tau$$

3. Accelerometer (\pm 2g) with analog output and power supply of \pm 3V is used in smartphone to determine orientation of the smartphone according to the figure below. What are the values of X and Y components of the accelerometer for $\alpha = 45^{\circ}$.

Sensitivity of the accelerometer $1g \rightarrow s = 3V/4g = 0.75 [V/g]$

$$A_0$$
 (0 g) = 1.5V

$$A_X = A_0 + 1g * cos(\pi/4) = 2.03 V$$

$$A_Y = A_0 + -(1g * \sin(\pi/4)) = 0.97 \text{ V}$$

4. (20 points) A 2 kg weight is hung on the end of a vertically suspended spring, thereby stretching the spring L=20 cm. The weight is raised 5 cm above its equilibrium position and released from rest at time t=0. Dumping factor of the environment is d = 30, and initial speed is 0. Find the displacement x of the weight from its equilibrium position at time t. Use q=10m/s².

Since in equilibrium:

$$F = kL$$
, $k = \frac{F}{L} = \frac{mg}{L} = \frac{2[kg] \ 10\left[\frac{m}{s^2}\right]}{0.2[m]} = 100\left[\frac{kg}{s^2}\right]$

At any time, sum of all forces is equal to zero

$$m\ddot{x} + d\dot{x} + kx = 0$$

With initial conditions

$$x(0) = -0.05[m] \dot{x}(0) = 0$$

By using Laplace transform

$$\mathcal{L}(m\ddot{x} + d\dot{x} + kx) = ms^{2}X(s) - msx(0) - m\dot{x}(0) + dsX(s) - dx(0) + kX(s) = 0$$

$$2s^{2}X(s) - 2s(-0.05) - 0 + 30sX(s) - 30(-0.05) + 100X(s) = 0$$

$$(2s^{2} + 30s + 100)X(s) = -0.1s - 1.5$$

$$X(s) = \frac{-0.1s - 1.5}{2s^{2} + 30s + 100} = \frac{-0.1s - 1.5}{2(s + 10)(s + 5)} = \frac{A}{(s + 10)} + \frac{B}{(s + 5)}$$

$$A = X(s)(s + 10)|_{s = -10} = \frac{1 - 1.5}{2(-5)} = 0.05$$

$$B = X(s)(s + 5)|_{s = -5} = \frac{0.5 - 1.5}{2 \cdot 5} = -0.1$$

and

$$x(t) = \mathcal{L}^{-1}(X(s)) = 0.05e^{-10t} - 0.1e^{-5t}$$

If m=1kg and L=10 cm $\rightarrow k=100$.

Using Laplace transform

$$\mathcal{L}(m\ddot{x} + d\dot{x} + kx) = ms^{2}X(s) - msx(0) - m\dot{x}(0) + dsX(s) - dx(0) + kX(s) = 0$$

$$s^{2}X(s) - s(-0.05) - 0 + 30sX(s) - 30(-0.05) + 100X(s) = 0$$

$$(s^{2} + 30s + 100)X(s) = -0.05s - 1.5$$

$$X(s) = \frac{-0.05s - 1.5}{s^{2} + 30s + 100} = \frac{-0.05s - 1.5}{(s + 26.2)(s + 3.8)} = \frac{A}{(s + 26.2)} + \frac{B}{(s + 3.8)}$$

$$A = X(s)(s + 26.2)|_{s = -26.2} = \frac{0.05 * 26.2 - 1.5}{2(-26.2 + 3.8)} = 0.01$$

$$B = X(s)(s + 3.8)|_{s = -3.8} = \frac{0.05 * 3.8 - 1.5}{2 \cdot (-3.8 + 26.2)} = -0.06$$

and

$$x(t) = \mathcal{L}^{-1}(X(s)) = 0.01e^{-26.2t} - 0.06e^{-3.8t}$$

5. $x(t) = \frac{3}{4\pi} e^{-t} \cdot \sin(4\pi t) \cdot u(t)$

6. Consider the periodic signal $x(t) = \cos(0.4\pi \cdot t) + 3 \cdot \cos(2\pi \cdot t/7), -\infty < t < \infty$.

Is x(t) periodic? If it is, what is the period T_0 of x(t)?

$$T_0 = 35 \, \mathrm{s}$$

$$x(t) = x_1(t) + x_2(t)$$

$$T_1 = 2\pi / (0.2\pi) = 5 s$$

$$T_2 = 2\pi / (2\pi/7) = 7 s$$

 $T_0 = N^*T_1 = M^*T_2 \rightarrow$ The least common multiple of 5 and 7 is 35, therefore $7N = 5M \rightarrow$ $T_0 = 7^*5 = 35$ s

What is the average power of x(t)?

$$\int_{0}^{x} \cos^{2}(x) dx = \int_{0}^{x} \frac{1}{2} (1 + \cos(2x)) = \frac{1}{2} \int_{0}^{x} dx + \frac{1}{4} \int_{0}^{x} \cos(y) dy = \left(\frac{x}{2} + \frac{1}{4} \sin(2x)\right) \Big|_{0}^{x}$$

$$\int_{0}^{t} \cos^{2}(x) dx = \left(\frac{x}{2} + \frac{1}{4} \sin(2x)\right) \Big|_{0}^{t} = \frac{t}{2} + \frac{1}{4} \sin(2t) \Rightarrow for \ t = T \int_{0}^{T} \cos^{2}(x) dx = \frac{1}{2}$$

$$P_{x1} = \frac{1}{T_{1}} \int_{0}^{T_{1}} x_{1}^{2}(t) dt = \frac{1}{0.5} \left(\frac{x}{2} + \frac{1}{4} \sin(2x)\right) \Big|_{0}^{T_{1}} = \frac{1}{T_{1}} \left(\frac{T_{1}}{2} + \frac{1}{4} \sin(12\pi \cdot \frac{1}{6})\right) = 1 \cdot \frac{1}{2} = 0.5$$

$$P_{x2} = \frac{1}{T_{2}} \int_{0}^{T_{2}} x_{2}^{2}(t) dt = \frac{1}{T_{2}} \int_{0}^{T_{2}} (3\cos(16\pi t))^{2} dt = 9 \cdot \frac{1}{T_{2}} \int_{0}^{T_{2}} \cos^{2}(16\pi t) dt = 9 \cdot \frac{1}{2} = 4.5$$

$$P = P_{x1} + P_{x2} = 0.5 + 4.5 = 5$$

7. (4 points)

$$H(s) = \frac{Y(s)}{X(s)} = \frac{\frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{\frac{1}{RC}}{s + \frac{1}{RC}}$$
$$h(t) = \frac{1}{RC} \cdot e^{-\frac{t}{RC}}$$

b) (6 points) Step response:

$$\frac{1}{RC} = \frac{1}{5M\Omega \cdot 1\mu F} = 0.2$$

$$S(s) = \frac{1}{s}H(s) = \frac{1}{s}\frac{0.2}{s+0.2} = \frac{A}{s} + \frac{B}{s+0.2} = \frac{1}{s} - \frac{1}{s+0.2}$$

$$s(t) = (1 - e^{-0.2 \cdot t}) \cdot u(t)$$

8. (5 points) What is the transfer function H(s) of the system represented below?

$$Y(s) = F(s)*(X(s) - G(s)*Y(s)) = F(s)*X(s) - F(s)*G(s)*Y(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{F(s)}{1 + F(s) \cdot G(s)}$$

b) (10 points) Transfer function of the feedback block is

$$G(s) = \frac{Z_{R||C}}{Ls + Z_{R||C}}$$

$$Z_{R||C} = \frac{R \frac{1}{Cs}}{R + \frac{1}{Cs}} = \frac{R}{RCs + 1}$$

$$G(s) = \frac{R}{R + Ls(RCs + 1)} = \frac{\frac{1}{LC}}{s^2 + \frac{1}{RC}s + \frac{1}{LC}}$$

Transfer function of the system is:

$$H(s) = \frac{F(s)}{1 + F(s) \cdot G(s)}$$

$$F(s) = A \quad \text{and} \quad G(s) = \frac{\frac{1}{LC}}{s^2 + \frac{1}{RC}s + \frac{1}{LC}}$$

$$H(s) = \frac{A}{1 + A\left(\frac{\frac{1}{LC}}{s^2 + \frac{1}{RC}s + \frac{1}{LC}}\right)} for \ A \to \infty \ H(s) = LCs^2 + \frac{L}{R}s + 1$$

9.

