

ORLian:

A novel method to help predict survival from HPV-induced oral cancer, by training mutli-modal interpretable convolutional network based on siamese similarity pretraining model with anonymised patient pathology data and other histological data

Methods

Histological sections from biopsies were used to train the El-nAl-ny model, based on a pre-trained Res-Net*, then visualized using GRAD-CAM **

Training was done using data stored on Dataiku and generated images were compared back against image stack analyses

Introduction

While people still are worrying about waves of Covid-19 cases, tsunamis of cancer cases globally are worrying.

Total incidence 2020 est Total mortality Incidence and mortality maps from https://gco.iarc.fr/

Ear Nose and Throat (ENT) cancers caused by Human Papilloma virus (HPV) spread as a sexually transmitted disease, and we need better tools to prevent mortality in patients & database access for open science.

Artificial intelligence may help.

Evaluation Methods

Model evaluation was done using two methods:

- Using XGBoost and SHAP to determine feature importance from the tabular
- 2) Bringing in medical expertise to identify what the model was looking at

Model architecture

Future Prospects

Model optimization and explainability

More clinical data

Model deployment

Clinical trials also in

light of possibilities for

Results

Current Score on Macro: 5.766

Model outperforms many publicly available models such as ResNet-18

Can capture cellular structure in images better than original baselines

GRAD-CAM visualisation

Overlayed heatmaps over TIFF layers

Feature importance from the tabular

Acknowledgements

vaccination now

JOGL Epidemium 3 ORL/IA challenge @Nicolas Hegerle of JEDHA

ORLIAN CORE TEAM

Vikramaditya Chhapwale Omar Osman Rachel Aronoff

Feature and Layer Importance:

Through manual evaluation using a medical jury, we find that in terms of layer importance:

3 > 2 & 6 > 5 & 4 > 1

Feature importance from the tabular can be ranked as

- 1. Whether the person has died
- 2. How old they were
- 3. Age of diagnosis
- 4. Severity of condition
- 5. Gender:
- * Ciga, O., Xu, T. and Martel, A.L., 2022. Self supervised contrastive learning for digital histopathology. Machine Learning with Applications, 7, p.100198.
- ** Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D., 2017. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).