Smart Causal Inference

발표자: 이명석

성향점수 정의

특정 개체가 통제집단이 아닌 처치집단에 배치될 확률

$$e(X) = P(T|X),$$

where $X = (X_1, ..., X_p)$ is the collection of p covariates

Propensity Score Analysis Workflow

성향점수의 균형 특성

성향점수 e(X)는 처치군 사이 모든 X 분산의 균형을 유지합니다. $T \perp X \mid e(X)$

E[T|X]를 추정하는 균형점수 b(x)는 다음과 같은 공변량의 함수입니다. $T \perp X \mid b(X)$

그래서 성향점수는 균형점수라고 부른다고 합니다. (?)

Rosenbaum와 Rubin(1983)은 성향점수 e(x)가 가장 coarsest한 균형 점수라고 합니다.

성향점수 추정: 로지스틱 회귀

하지만 실제 성향점수는 알 수 없는 이상적인 값이므로 추정값으로 대체해야 합니다.

```
ps_model = smf.logit """intervention ~
tenure + last_engagement_score + department_score
+ C(n_of_reports) + C(gender) + C(role)""", data=df).fit(disp=0)

data_ps = df.assign(
    propensity_score = ps_model.predict(df),
)
data_ps[["intervention", "engagement_score", "propensity_score"]].head()
```

	intervention	engagement_score	propensity_score
0	1	0.277359	0.596106
1	1	-0.449646	0.391138
2	1	0.769703	0.602578
3	1	-0.121763	0.580990
4	1	1.526147	0.619976

성향점수와 직교화

OLS 또한 성향점수 추정과 유사하게 처지 배정 매커니즘을 모델링합니다.

0.26331267490277066

성향점수 매칭

관찰 연구나 준실험에서 처리된 단위와 처리되지 않은 단위의 효과를 비교하여 처리의 효과를 평가

회귀에 비해 그룹 간 균형을 쉽게 평가할 수 있지만 성향 점수 추정에 민감하다는 한계 존재

성향점수 매칭 (KNN)

```
from sklearn.neighbors import KNeighborsRegressor
T = "intervention"
X = "propensity_score"
Y = "engagement_score"
treated = data_ps.query(f"{T}==1")
untreated = data_ps.query(f"{T}==0")
mtO = KNeighborsRegressor(n_neighbors=1).fit(untreated[[X]],
                                             untreated[Y])
mt1 = KNeighborsRegressor(n_neighbors=1).fit(treated[[X]], treated[[Y])
predicted = pd.concat([
    # find matches for the treated looking at the untreated knn model
    treated.assign(match=mtO.predict(treated[[X]])),
    # find matches for the untreated looking at the treated knn model
   untreated.assign(match=mt1.predict(untreated[[X]]))
predicted.head()
```

- 1. 성향 점수 계산
- 2. 이웃의 수 선택 (k=1)
- 3. 최근접 이웃 매칭
- 4. 실험군/대조군 짝 찾기

$$\widehat{ATE} = \frac{1}{N} \sum \{ (Y_i - Y_{jm}(i))T_i + (Y_{jm}(i) - Y_i)(1 - T_i) \}$$

역확률 가중치

표본에 1/P(T=t | X) 가중치를 부여하여 모든 실험 대상이 처치 t를 받았을 경우와 같이 유사 모집단을 생성

$$E[Y_i] = E\left[\frac{1(T=t)Y}{P(T=t|X)}\right]$$

$$= E\left[Y\frac{T - e(x)}{e(x)(1 - e(x))}\right]$$

역확률 가중치의 분산

역확률 가중치의 표준오차를 계산하기 어려우므로 데이터를 반복 복원 추출하는 부트스트랩을 사용

```
from <u>sklearn.linear_model</u> import LogisticRegression * 패키지 변경으로 시간 절약
from patsy import dmatrix
# define function that computes the IPW estimator
def est_ate_with_ps(df, ps_formula, T, Y):
   X = dmatrix(ps_formula, df)
   ps_model = LogisticRegression(penalty="none",
                                max_iter=1000).fit(X, df[T])
   ps = ps_model.predict_proba(X)[:, 1]
   # compute the ATE
   return np.mean((df[T]-ps) / (ps*(1-ps)) * df[Y])
formula = """tenure + last_engagement_score + department_score
+ C(n_of_reports) + C(gender) + C(role)"""
T = "intervention"
Y = "engagement_score"
est_ate_with_ps(df, formula, T, Y)
```

0.2659755621752663

역확률 가중치의 분산

```
from joblib import Parallel, delayed # for parallel processing
  def bootstrap(data, est_fn, rounds=200, seed=123, pcts=[2.5, 97.5]): 추정값의 2.5번째와 97.5번째 백분위수를 계산하여 95% 신뢰구간 획득
     np.random.seed(seed)
                         4개의 병렬처리
     stats = Parallel(n_jobs=4)(
         delayed(est_fn)(data.sample(frac=1, replace=True)) 부트스트랩 표본 획득
         for _ in range(rounds)
      return np.percentile(stats, pcts)
  from toolz import partial
                                                                           def est_ate_with_ps(df, ps_formula, T, Y):
  print(f"ATE: {est_ate_with_ps(df, formula, T, Y)}")
                                                                              X = dmatrix(ps_formula, df)
  est_fn = partial(est_ate_with_ps, ps_formula=formula, T=T, Y=Y)
                                                                              ps_model = LogisticRegression(penalty="none",
  print(f"95% C.I.: ", bootstrap(df, est_fn))
                                                                                                           \max_{i} ter=1000).fit(X, df[T])
                                                                               ps = ps_model.predict_proba(X)[:, 1]
ATE: 0.2659755621752663
95% C.I.: [0.22654315 0.30072595]
                                                                               # compute the ATE
                                                                               return np.mean((df[T]-ps) / (ps*(1-ps)) * df[Y])
```

안정된 성향점수 가중치

ATE: 0.26597870880761176

실험군과 대조군의 가중치 합을 원래 표본 크기와 비교하여 역확률 가중치 과정이 유사 모집단을 생성하는지 검증

```
print("Original Sample Size", data_ps.shape[0])
  print("Treated Pseudo-Population Sample Size", sum(weight_t))
  print("Untreated Pseudo-Population Sample Size", sum(weight_nt))
Original Sample Size 10391
Treated Pseudo-Population Sample Size 10435.089079197916
Untreated Pseudo-Population Sample Size 10354,298899788304
  p_of_t = data_ps["intervention"].mean()
  t1 = data_ps.query("intervention==1")
  t0 = data_ps.query("intervention==0")
  weight_t_stable = p_of_t/t1["propensity_score"]
  weight_nt_stable = (1-p_of_t)/(1-t0["propensity_score"])
  print("Treat size:", len(t1))
  print("\ treat", sum(weight_t_stable))
  print("Control size:", len(t0))
  print("\ treat", sum(weight_nt_stable))
Treat size: 5611
₩ treat 5634.807508745978
Control size: 4780
W treat 4763.116999421415
  nt = len(t1)
  nc = len(t0)
  y1 = sum(t1["engagement_score"]*weight_t_stable)/nt
  y0 = sum(t0["engagement_score"]*weight_nt_stable)/nc
  print("ATE: ", y1 - y0)
```

Ç

유사 모집단

선택편향

역확률 가중치는 선택편향 보정에도 활용

- 고객 만족도 설문: 1~5점
- 무응답자로 인한 분석 결과 편향 (맘에 안들어서 응답 안함)
- 역확률 가중치 방법과 같이 응답자에게 $1/\hat{P}(R=1)$ 만큼의 가중치 부여 (응답률 R)
- 그 결과 모두가 설문에 응답한 것과 같은 유사 모집단 생성

$$W = \frac{\widehat{P}(T=t)}{\widehat{P}(R=1 \mid X)\widehat{P}(T=t \mid X)}$$

편향-분산 트레이드오프

T가 매우 정확한 경우:

• $\hat{e}(x)$ 가 낮은 실험군이 없음 $(Y_1 | T = 0)$ 을 추정할 수 없게 됨)

반대의 경우:

• $\hat{e}(x)$ 가 높은 대조군이 없음 ($Y_0 \mid T = 1$)을 추정할 수 없게 됨)

편향-분산 트레이드오프

Inverse propensity weighting (IPW)의 편향-분산 균형은 추정자의 편향과 분산 사이의 균형을 나타내는 통계학 및 기계 학습의 기본적인 개념입니다. 이 균형은 편향을 줄이는 것이 분산을 증가시키는 경향이 있고 그 반대도 마찬가지입니다.

인과 추론에서 역 경향 가중치 (IPW)의 맥락에서 편향-분산 균형은 다음과 같은 방법으로 나타납니다:

1. 편향: 편향은 추정자의 기대값과 추정하려는 모수의 실제 값 간의 차이를 나타냅니다. IPW에서 편향은 경향 점수가 잘못 지정된 경우나 경향 점수를 모델링하는 데 사용된 기능 형태가 공변량과 처리 할당 간의 실제 관계를 충분히 포착하지 못하는 경우에 발생할 수 있습니다. 편향된 추정치는 처리 효과를 추정할 때 시스템적 오류를 초래할 수 있습니다.

2. 분산: 분산은 동일한 모집단에서 다른 샘플들 사이에서 추정자의 변동성을 측정합니다. IPW에서 분산은 극단적인 경향 점수가 존재하거나 샘플 크기가 작은 경우에 증가할 수 있습니다. 극단적인 경향 점수는 불안정한 가중치를 야기하여 서로 다른 샘플에서 추정된 처리 효과의 높은 변동성을 초래할 수 있습니다.

편향과 분산 사이의 적절한 균형을 맞추는 것은 IPW에서 정확하고 신뢰할 수 있는 인과 효과의 추정치를 얻기 위해 중요합니다. 다음은 IPW에서 편향-분산 균형이 어떻게 작용하는지에 대한 설명입니다:

- ▶ 모델의 복잡성이나 유연성을 증가시키는 것(예: 경향 점수를 모델링하는 더 복잡한 기능 형태 사용)은 편향을 줄일 수 있지만 과적합으로 인해 분산이 증가할 수 있습니다.
- ▶ 반대로 모델을 단순화하는 것(예: 더 복잡한 모델 대신 선형 모델 사용)은 분산을 줄일 수 있지만 모델이 공변량과 처리 할당 간의 실제 관계를 포착하지 못하면 편향을 도입할 수 있습니다.

편향과 분산 사이의 적절한 균형을 찾는 것은 선택된 모델이 기본적인 관계를 충분히 포착하면서 과적합을 피하기 위해 조심스럽게 모델을 선택하고 정규화 기법(변수 선택이나 정규화 매개 변수와 같은) 및 검증 방법(교차 검증이나 부트스트래핑과 같은)을 사용하는 것을 의미합니다.

요약하면, 역 경향 가중치 (IPW)에서의 편향-분산 균형은 관측 연구에서 실제 처리 할당 메커니즘을 포착하는 것 (낮은 편향)과 안정적이고 신뢰할 수 있는 추정치 (낮은 분산)를 얻기 위한 필요성을 강조합니다.

결론:

편향을 통제할 수 있을 정도로만 정밀하게!

End of Documentation