LTL_f to Symbolic DFA

Shufang Zhu

Post-doc of WhiteMech group

LTL_f and DFA

$$\varphi ::= \textit{true} \mid \textit{false} \mid \textit{p} \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \textit{X}\varphi \mid \varphi_1 \textit{U}\varphi_2$$

- \triangleright Every LTL_f formula has a corresponding DFA.
- LTL_f reasoning to DFA reasoning.
 - Computations on graph, intuitive and simpler.
- Explicit DFA: 2EXP number of states.
 - $|\varphi| = 10$, #states = $2^{2^{10}}$.
- Main obstacle of LTL_f reasoning: explicit DFA is too large.

Why Symbolic Techniques?

- ► Graph, network, nodes and edges.
- Planning, RL, Games on graph etc.
- Symbolic encoding: same information, less resource.
- Scalability? Go symbolic.

Outline

- Explicit DFA.
- From explicit to symbolic.
 - Monolithic encoding.
 - Partitioned encoding.
- Symbolic representation BDD.

Explicit DFA

Informations Contained in DFA

- $\triangleright \mathcal{D} = \{\mathcal{P}, \mathcal{S}, s_0, \delta, \mathcal{F}\}$
 - $ightharpoonup \mathcal{P}$ a set of propositions.
 - S a set of states.
 - ► s₀ initial state.
 - $\delta: \mathcal{S} \times 2^{\mathcal{P}} \to \mathcal{S}$ transition function.
 - $ightharpoonup \mathcal{F}$ a set of accepting states.

Explicit DFA Example

$$\triangleright \mathcal{P} = \{p, q\}.$$

- $\triangleright \ \mathcal{S} = \{s_0, s_1, s_2, s_3\}.$
- ▶ s₀ initial state.
- ▶ $\mathcal{F} = \{s_2, s_3\}.$

From Explicit DFA to Symbolic DFA

- $\triangleright \mathcal{D} = \{\mathcal{P}, \mathcal{S}, s_0, \delta, \mathcal{F}\}$
- ightharpoonup State space S.
- Answer queries:
 - Which state is the initial state?
 - ▶ Is s an accepting states?
 - **.**...
- Perform computations:
 - \triangleright Current state s, transition condition σ .
 - Return the successor state.

From Explicit DFA to Symbolic DFA

- ▶ Explicit DFA: $\mathcal{D} = \{\mathcal{P}, \mathcal{S}, s_0, \delta, \mathcal{F}\}$
- Symbolic DFA: Maintain the information as in the explicit DFA
 - ightharpoonup State space S.
 - Answer queries: initial state? accepting state?
 - ▶ Perform computations: get successor state.

State Space

$$\triangleright$$
 $S = \{s_0, s_1, s_2, s_3\}.$

▶ Binary state encoding $\mathcal{Z} = \{z_0, z_1\}$.

State	Binary Code.	
<i>s</i> ₀	00	
<i>s</i> ₁	01	
	10	
<i>s</i> ₃	11	

EXP less number of variables

Initial and Accepting States

- $ightharpoonup s_0 = \{s_0, s_1, s_2, s_3\}.$
- $ightharpoonup s_0(00)$ initial state.
- $F = \{s_2(10), s_3(11)\}.$
- $ightharpoonup \mathcal{F}$ is an explicit set, not succinct enough.

Symbolic Encoding of A Set of States

- Queries related to the set of accepting states.
 - \triangleright \mathcal{F} : Is s an accepting state? Answers: Yes, No.
 - Boolean Function f: Is assignment Z a model of f? Answers: True, False.
 - ▶ Encode \mathcal{F} as a Boolean function f, more succinct than an explicit set.

Symbolic Encoding of A Set of States

- ▶ Every state $s \in S$ as a conjunction on the values of each bit.
 - ► This conjunction refers only to the specific state.

State	Binary Code	Conjunction
	00	$\neg z_0 \wedge \neg z_1$
s_1	01	$\neg z_0 \wedge z_1$
<i>s</i> ₂	10	$z_0 \wedge \neg z_1$
s ₃	11	$z_0 \wedge z_1$

Symbolic Encoding of A Set of States

- A set of states is a disjunction on the conjunctions.
 - ► This disjunction refers only to the specific set of states.
- Initial state $I = \underbrace{\neg z_0 \land \neg z_1}_{s_0(00)}$.
- Accepting states $f = \underbrace{(\neg z_0 \land z_1)}_{s_1(01)} \lor \underbrace{(z_0 \land z_1)}_{s_3(11)}$.

Symbolic Transition Function

- ▶ State variables $\mathcal{Z} = \{z_0, z_1\}$.
- ► Transition function rewritten as $\underbrace{\eta = 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \rightarrow 2^{\mathcal{Z}}}_{\delta = \mathcal{S} \times 2^{\mathcal{P}} \rightarrow \mathcal{S}}$.
- ▶ Boolean function only returns *True* or *False*.
- How to use Boolean function to encode transition function?
 - ► Monolithic encoding.
 - Partitioned encoding.

- ▶ What does a transition function do?
 - Given: Current state Z, transition condition σ. Return: Successor state Z'.
- How about the following?
 - **Given:** Current state Z, transition condition σ , successor state Z'. **Return:** Is $(Z, \sigma) \to Z'$ a correct transition? Yes, No.

- ▶ **Given:** Current state Z, transition condition σ , successor state Z'. **Return:** Is $(Z, \sigma) \rightarrow Z'$ a correct transit? *Yes, No.*
- ▶ Introduce a so-called prime state variables $\mathcal{Z}' = \{z' \mid z \in \mathcal{Z}\}$
- ▶ Rewritten as $\eta = 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \times 2^{\mathcal{Z}'} \rightarrow \{0,1\}.$
 - ▶ Only returns *True* for correct transitions $(Z, \sigma) \rightarrow Z'$.

$$ightharpoonup \mathcal{Z} = \{z_0, z_1\}, \ \mathcal{Z}' = \{z_0', z_1'\}$$

- ► Transition as conjunction
- $\blacktriangleright (s_1, \neg q) \rightarrow s_3$
- $\sum_{s_1} \neg z_0 \wedge z_1 \wedge \neg q \wedge \underbrace{z'_0 \wedge z'_1}_{s_3}$

- For every transition, consider as a conjunction of $Z \wedge \sigma \wedge Z'$.
- *true* $\triangleright \eta$: disjunction of conjunctions.
 - $hline \eta = \bigvee (Z \wedge \sigma \wedge Z').$

Monolithic DFA Encoding

- $\blacktriangleright \mathcal{G} = \{\mathcal{P}, \mathcal{Z}, I, \eta, f\}.$
 - \triangleright \mathcal{P} : a set of propositions.
 - $ightharpoonup \mathcal{Z}$: a set of state variables, every model on \mathcal{Z} is a state.
 - ► I: a Boolean function denoting the initial state.
 - ▶ $\eta = 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \times 2^{\mathcal{Z}'} \to \{0,1\}$: a Boolean function encoding the transition function.
 - f: a Boolean function encoding the set of accepting state.

Partitioned Transition Function Encoding

- ▶ What does a transition function do?
 - ▶ **Given:** Current state Z, transition condition σ . **Return:** Successor state Z'.
- ▶ Every state Z, conjunction of a sequence of values of each $z \in \mathcal{Z}$.
 - ightharpoonup State s_1 , 01, $Z = \neg z_0 \wedge \neg z_1$.
- ▶ The value of each $z \in \mathcal{Z}$ is $\{0,1\}$.

Partitioned Transition Function Encoding

Partitioned Transition Function Encoding

- ightharpoonup Only \mathcal{Z} , no prime variables!
- η_{z_i} : disjunction on conjunctions $Z \wedge \sigma$.
 - ▶ Transition $(Z, \sigma) \rightarrow Z'$.
 - $ightharpoonup z_i$ is true in Z'

Partitioned DFA Encoding

- $\triangleright \mathcal{G} = \{\mathcal{P}, \mathcal{Z}, I, \eta, f\}.$
 - $ightharpoonup \mathcal{P}$: a set of propositions.
 - $ightharpoonup \mathcal{Z}$: a set of state variables, every model on \mathcal{Z} is a state.
 - ▶ 1: a Boolean function denoting the initial state.
 - ▶ $\eta = 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \to 2^{\mathcal{Z}}$: a sequence of Boolean functions encoding the transition function.
 - f: a Boolean function encoding the set of accepting state.

Monolithic and Partitioned Encoding

	Explicit	Monolithic	Partitioned
Props	\mathcal{P}	\mathcal{P}	\mathcal{P}
St. space	$ \mathcal{S} = n$	$ \mathcal{Z} = \log_n$	$ \mathcal{Z} = \log_n$
Init. state	<i>s</i> ₀	$I = \neg z_0 \wedge \neg z_1$	$I = \neg z_0 \wedge \neg z_1$
Acc. states	\mathcal{F}	$f = \bigvee \wedge$	$f = \bigvee \wedge$
Trans.	$\mathcal{S} imes 2^{\mathcal{P}} o \mathcal{S}$	$2^{\mathcal{Z}} \times 2^{\mathcal{P}} \times 2^{\mathcal{Z}'} \to \{0,1\}$	$2^{\mathcal{Z}} \times 2^{\mathcal{P}} o 2^{\mathcal{Z}}$

- ► Encoded as Boolean function.
- How to represent a Boolean function in a more compact way?
- ▶ Binary Decision Diagram (BDD).

Why BDD?

- ▶ They can be made canonical.
- They can be very compact for many applications.
- Many applications can be converted to sequences of Boolean operations on BDD.

Binary Decision Diagram: Example

- Directed graph representing Boolean functions.
- non-terminal node (circle), terminal node (square).

Binary Decision Diagram: Example

- \blacktriangleright non-terminal node (circle), marked with variables x, y, z.
- terminal node (square), marked with values 0, 1.

Binary Decision Diagram: Example

- ▶ solid line: high(v), variable assigned as *true*.
- ▶ dashed line: low(v), variable assigned as *false*.

Boolean Function As BDD

- $\blacktriangleright f = (x \land y \land z) \lor (\neg x \land \neg y).$
- ► **Given:** A model $\neg x, y, z$. **Return:** *False*(0).
- ► **Given:** A model *x*, *y*, *z*. **Return:** *True*(1).
- The BDD should do the same job.

- $\blacktriangleright f = (x \land y \land z) \lor (\neg x \land \neg y).$
- ▶ Model $\neg x, y, z$.

- $\blacktriangleright f = (x \land y \land z) \lor (\neg x \land \neg y).$
- ▶ Model $\neg x, y, z$.

- $\blacktriangleright f = (x \land y \land z) \lor (\neg x \land \neg y).$
- ▶ Model $\neg x, y, z$.

- $f = (x \wedge y \wedge z) \vee (\neg x \wedge \neg y).$
- ▶ Model $\neg x, y, z$.

- $\blacktriangleright f = (x \land y \land z) \lor (\neg x \land \neg y).$
- ▶ Model $\neg x, y, z$.

Boolean Function As BDD

- ▶ BDD is able to encode a Boolean function.
- BDD: Compact representation.
 - Elimination rule.
 - Isomorphism rule.

Elimination Rule

▶ Elimination rule: If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to node w.

Elimination Rule

▶ Elimination rule: If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to node w.

Elimination Rule

▶ Elimination rule: If low(v) = high(v) = w, eliminate v and redirect all incoming edges to v to node w.

Isomorphism Rule

Isomorphism rule:

- ▶ If $v \neq w$ are roots of isomorphic subtrees, remove v, and redirect all incoming edges to v to node w.
- ► Combine all 0/1-leaves, redirect all incoming edges.

Isomorphism Rule

Isomorphism rule:

- ▶ If $v \neq w$ are roots of isomorphic subtrees, remove v, and redirect all incoming edges to v to node w.
- ► Combine all 0/1-leaves, redirect all incoming edges.

Binary Decision Diagram: Reduced

Binary Decision Diagram: Variable Ordering

- BDD size: #nodes.
- BDD size highly depends on the variable ordering.
- $f = (x_1 \wedge x_2 \wedge y_1 \wedge y_2) \vee (\neg x_1 \wedge x_2 \wedge \neg y_1 \wedge y_2) \vee (x_1 \wedge \neg x_2 \wedge y_1 \wedge \neg y_2) \vee (\neg x_1 \wedge \neg x_2 \wedge \neg y_1 \wedge \neg y_2).$

Figure: Different variable ordering

Binary Decision Diagram: Canonicity

- ► Canonicity: variable ordering.
- ▶ BDDs are canonical with a fixed variable ordering.
- Canonicity checking takes constant time.
- Example:
 - **Given:** Boolean functions f and g.
 - ▶ **Answer:** Whether $f \equiv g$?
 - **How:** Construct B_f and B_g , $B_f \equiv B_g$, constant time.

BDD Libraries

- Buddy, CUDD, etc.
- ► Rich API functions for manipulating BDDs, elimination rules and isomorphism rules are applied automatically.
- Logic operations on BDDs, conjunction, disjunction, quantifier elimination etc.

Symbolic DFA Represented In BDDs

	Explicit	Monolithic	Partitioned
Props	\mathcal{P}	\mathcal{P}	\mathcal{P}
St. space	$ \mathcal{S} = n$	$ \mathcal{Z} = \log_n$	$ \mathcal{Z} = \log_n$
Init. state	<i>s</i> ₀	$B_I = \neg z_0 \wedge \neg z_1$	$B_I = \neg z_0 \wedge \neg z_1$
Acc. states	\mathcal{F}	$B_f = \bigvee \wedge$	$B_f = \bigvee \wedge$
Trans.	$\mathcal{S} imes 2^{\mathcal{P}} o \mathcal{S}$	$\begin{array}{c} BDD\; \mathcal{B} \\ 2^{\mathcal{Z}} \times 2^{\mathcal{P}} \times 2^{\mathcal{Z}'} \to \{0,1\} \end{array}$	$ \mathcal{Z} $ BDDs $B_1, B_2,$ $2^{\mathcal{Z}} \times 2^{\mathcal{P}} \rightarrow 2^{\mathcal{Z}}$

Questions to Answer

- Which encoding leads to better performance?
 - \triangleright Symbolic DFA of LTL_f.
 - Smaller BDDs.
 - ► Games on DFA, faster solving.