

WIRELESS COMMUNICATIONS SEMINAR

SUNGWEON HONG
INFORMATION AND INTELLIGENT SYSTEMS LAB
HANYANG UNIVERSITY

CONTENTS

Communication System models

Propagation Characteristics

Channel / Path Loss Models

Outage Probability & Cell-Coverage

COMMUNICATIONS

- Wireless Channel
 - Probabilistic modeling (e.g., AWGN, Fading, etc)

PROPAGATION CHARACTERISTICS

• Path Loss

Shadowing

Multipath Fading

PROPAGATION CHARACTERISTICS

- Path Loss
- Also Known as "Large Scale Fading"
- A Function of Distance : $P_r(d)$

Propagation Characteristics

- Shadow Fading
- Objects in signal path causes random variation
- Affected by a Propagation environment
- Function of Distance

PROPACATION CHARACTERISTICS

- Multipath
- Mathematically model the received power
- Function of transmit power and distance?

PATH LOSS MODELS

- Free-space Path loss model
 - Simplest model / wisely used for system engineers
- Ray Tracing Model
 - Performance comparison in Standardization
 - Channel dependent technology
- Empirical Path-Loss Model

FREE-SPACE PATH LOSS MODEL

- Simple and good for satellite communications
- Ratio of received and transmitted power is

Empirical measurements!

$$P_r(d) = P_t \left(\frac{\sqrt{G_i}\lambda}{4\pi d}\right)^2 \Rightarrow P_t K \left(\frac{d_0}{d}\right)^{\gamma}$$
 Simplified (commonly) used for design

• In dB scale

$$P_r(d)dB = P_t dB + 10\log_{10} G_i + 20\log_{10} \lambda - 20\log_{10} d - 20\log_{10} (4\pi)$$

 G_i : antenna gain

 $\lambda = c/f_c$: signal wave-length

FREE-SPACE PATH LOSS

- We can easily compute the received power using the formula given
 - Carrier Frequency
 - Distance between receiver and transmitter

 Or we can calculate the Minimum power at access point in a certain wireless cell given

- Carrier Frequency
- Cell Radius
- Required minimum power

We can simply show the impact of the carrier frequency (f_c) and the channel loss by substituting different frequencies Ex) 20MHz, 500MHz, 2.4GHz, 50GHz

SHADOWING

- Log-normal shadowing:
 - $\varphi = \frac{P_t}{P_r}$ is assumed to be a random variable following a log-normal distribution

$$p(\varphi) = \frac{\zeta}{\sqrt{2\pi}\sigma_{\varphi_{dB}}\varphi} \exp\left[-\frac{\left(10\log_{10}\varphi - \mu_{\varphi_{dB}}\right)^2}{2\sigma_{\varphi_{dB}}^2}\right], \qquad \varphi > 0$$

Where
$$\mu_{\varphi_{dB}} = \mathbb{E}[10\log_{10}\varphi]$$

$$\sigma_{\varphi_{dB}}^2 = \mathbb{E}\left[\left(10\log_{10}\varphi - \mu_{\varphi_{dB}}\right)^2\right]$$

$$\zeta = \frac{10}{\ln(10)}$$

- Let $\varphi_{dB} = 10 \log_{10} \varphi$
- We can show that

$$p(\varphi_{dB}) = \frac{1}{\sqrt{2\pi}\sigma_{\varphi_{dB}}} \exp\left[-\frac{(\varphi_{dB} - \mu_{\varphi_{dB}})^2}{2\sigma_{\varphi_{dB}}^2}\right]$$

• In other words, φ_{dB} follows a normal distribution

From the equation above from pathloss and the shadowing

$$P_r(d)dB = P_t dB + 10 \log_{10} K - 10\gamma \log_{10} \frac{d}{d_0} - \varphi_{dB}$$

OUTAGE PROBABILITY

- In wireless systems, there exists a minimum received power P_{min}
- With shadowing, the received power is a random variable

• To ensure that the received power is larger than P_{min} with probability 1, the transmit power should be extremely large, due to shadowing

- Define an outage probability p_{out}
 - Implies that the received power is larger than P_{min} with probability $1-p_{out}$

OUTAGE PROBABILITY

Formally

$$p_{out}(P_{min}, d) = \Pr[P_r(d) < P_{min}]$$

• Since $P_r(d)$ is a Gaussian random variable, we can compute the above probability with Q-function:

$$p_{out}(P_{min}, d) = \Pr[P_r(d) < P_{min}] = 1 - \Pr[P_r(d) \ge P_{min}]$$

$$p_{out}(P_{min}, d) = 1 - Q\left(\frac{P_{min} - \mu}{\sigma_{\varphi_{dB}}}\right)$$

CELL PLANNING — CHOOSING CELL SIZE

• Fixed maximum transmit power P_t

- System Requirements:
 - Minimum Received power P_{min}
 - Outage Probability p_{out}

- Compute $P(P_r(d) < P_{min}) = f(d)$
- Find the largest distance that $f(d) < p_{out}$, which is the largest cell coverage

CELL PLANNING

- Consider given all the parameters and Transmitted power,
 - Transmit Power: 100 dBm
 - Path-loss model: $P_r(d)dBm = P_t dBm 40 \log_{10} d \varphi_{dB}$, $\varphi_{dB} \sim N(0,8)$
 - Required received power: 10dBm

The Cell Coverage distance with outage probability of approximately 0.01 can be figured out by the following plot (which is a curve by the outage probability formula)

CELL PLANNING

SMALL SCALE FADING

- Due to Constructive and destructive multipath
- Time domain or frequency domain

Mobility

Multipath

SMALL SCALE FADING

- The Channel can be classified in to
 - Frequency Flat or Frequency Selective Channel
 - Time invariant or Time Fading Channel

- And can be formulated as
 - Frequency Flat / Slow Fading Channel (at time domain)

$$y[n] = hs[n] + v[n]$$

Frequency Flat / Fast Fading Channel (at time domain)

$$y[n] = h[n]s[n] + v[n]$$

Frequency Selective / Slow Fading Channel

$$y[n] = \sum_{l=0}^{L} h[l]s[n-l] + v[n]$$

Frequency Selective / Fast Fading Channel

$$y[n] = \sum_{l=1}^{(L)} h[n, l]s[n-l] + v[n]$$

REFERENCE

- ECE 432 Mobile Communications_Lecture2_Ajou_university lecture notes by S.N. Hong
- Goldsmith, Andrea. Wireless communications. Cambridge university press, 2005.

QnA

Thank You