System and Network Engineering - Lecture 2

\$ Linux Main Components

OS Boot Process

Starts first process PID = I

OS Boot Process: UEFI - Ubuntu OS loader - Kernel services

Memory Management

Virtual Memory - OS shows the process that it owns all memory on the computer **Resident Memory** - part of the real, physical memory that consumed by the process **Kernel I/O buffers and cache** - memory used for I/O data storage/caching **Swap** - on-disk additional memory emulation (optional)

Process - Kernel

Process interacts with hardware only through the kernel

System calls:

- malloc ()
- open(), read(), write(), close()
- Lots of them

System calls are interrupting process execution via Software interrupts

Software interrupt is triggered by process and considered one of the ways to communicate with kernel or to trigger system calls, especially during error or exception handling.

Storage - Block devices

Most storage devices (HDDs, SSDs, flash drives, CD/DVD, etc) write and read data in blocks

Storage - Block devices - S.M.A.R.T.

S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) is an internal monitoring and reporting technology built into most modern hard drives. Its main purpose is to detect anomalies and predict failure.

Storage - Block devices - S.M.A.R.T.

- Some attributes could be used for an analysis:
 - #Power-On Hours: this could help establish for how long a hard drive was used
 - #Power Cycle Count: this could help establish how many times the drive was power cycled
- Acquiring attributes could be done by smartmoontools
- Each time disk will be connected and run, S.M.A.R.T. attributes will be changed even if write protection is enabled

ID	Current	Worst	Threshold	Data	Status
(01) Raw Read Error Rate	114	99	6	81696809	ok
(03) Spin Up Time	97	97	0	0	ok
(04) Start/Stop Count	100	100	20	116	ok
(05) Reallocated Sector Count	100	100	36	0	ok
(07) Seek Error Rate	85	60	30	377203607	ok
(09) Power On Hours Count	65	65	0	31269	ok
(0A) Spin Retry Count	100	100	97	0	ok
(0C) Power Cycle Count	100	100	20	58	ok
(B7) SATA Downshift Count	100	100	0	0	ok
(B8) End To End Error Detection	100	100	99	0	ok
(BB) Uncorrectable Error Count	100	100	0	0	ok
(BC) Command Timeout	100	100	0	0	ok
(BD) Unknown Attribute	100	100	0	0	ok
(BE) Airflow Temperature	72	61	45	572194844	ok
(C2) Temperature	28	40	0	81604378652	ok
(C3) Hardware ECC Recovered	48	39	0	81696809	ok

Storage - Partitions and data layout

Partitions - a way to divide a storage device into several virtual devices

Partitions are sequentially allocated

Partitions can be extended and in some cases shrinked

Storage - Partitions and data layout - slack space

Slack Space – is a space on HDD which is not accessible by typical OS means. There might be unused space on the disk or space that cannot be used due to different reasons

Storage - Partitions and data layout - New Design: GUID Partition Table

Main Features:

- Logical Block Addresses (LBAs) are 512 bytes long
- Supports up to 128 primary partitions per disk
- Provides both a primary and backup partition table for redundancy
- Uses CRC32 fields for improved data integrity
- Defines a GUID for uniquely identifying each partition

Storage - Partitions and data layout - New Design: GUID Partition Table

Slack Space in GPT?

- Reserved by the system areas (for example between GPT Primary Partition Table and the First Partition)
- ((2048* 512 bytes) (1 {Safety Table} + 1 {GPT Header} + 32 {Partition Table}) * 512 bytes) = 1031168 bytes = 1Mb

```
root@linuxPC:~# mmls /dev/sda
GUID Partition Table (EFI)
Offset Sector: 0
Units are in 512-byte sectors
      Slot
                                          Length
                                                        Description
                Start
                             End
      Meta
                                                        Safety Table
000:
                0000000000
                             0000000000
                                          0000000001
001:
                                                        Unallocated
                0000000000
                             0000002047
                                          0000002048
002:
                0000000001
                                                        GPT Header
     Meta
                             0000000001
                                          0000000001
003:
     Meta
                0000000002
                             0000000033
                                          0000000032
                                                        Partition Table
004:
      000
                0000002048
                             0001050623
                                          0001048576
                                                        EFI System Partition
005:
      001
                0001050624
                             0042037247
                                          0040986624
                                                        Unallocated
006:
                0042037248
                             0042038335
                                          0000001088
```

Storage - Partitions and data layout - New Design: GUID Partition Table

Partition type GUID vs UUID vs Partition UUID

- matters when working with multiple disks and different types of partitions
- e.g. usage in fstab

EFI System partition

C12A7328-F81F-11D2-BA4B-00A0C93EC93B

```
root@linuxPC:~# blkid /dev/sda1
/dev/sda1: UUID="B5C8-785B" BLOCK_SIZE="512" TYPE="vfat" PARTLABEL="EFI System Partition
" PARTUUID="a25ba309-874e-4739-b458-8889ec820220"
```

```
root@linuxPC:~# sudo lsblk -f | grep -v loop
NAME FSTYPE FSVER LABEL UUID FSAVAIL FSUSE% MOUNTPOINTS
sda
—sda1 vfat FAT32 B5C8-785B 505.7M 1% /boot/efi
sda2 ext4 1.0 1b401010-230c-4042-a9db-fb6febda3a0c 7.5G 55% /
```

Partition entries (LBA 2-33) [edit]

GUID partition entry format

Offset	Length	Contents
0 (0x00)	16 bytes	Partition type GUID (mixed endian ^[7])
16 (0x10)	16 bytes	Unique partition GUID (mixed endian)
32 (0x20)	8 bytes	First LBA (little endian)
40 (0x28)	8 bytes	Last LBA (inclusive, usually odd)
48 (0x30)	8 bytes	Attribute flags (e.g. bit 60 denotes read-only)
56 (0x38) 72 bytes Par		Partition name (36 UTF-16LE code units)

src: wiki

Filesystems (FAT 32, NTFS, EXT4, etc)

File - data object that is stored and operated by the system

FS metadata - store all information about files (but does not store the files content)

Hard link ("normal file") - points to the actual data

Symbolic link - points to another file object

Directory - no data, but can be "parent" for others

Path - string contain the full address of a filesystem object

Filesystems are mounted to certain directories in the OS paths hierarchy

Filesystems (FAT)

File Allocation Table (FAT)

- ☐ Unused (0x0000)
- \Box Cluster in use by a file (0x)
- End of file (0xFFFF)
- Bad cluster (0xFFF7)

Filesystems (NTFS)

NTFS

- All important data are allocated to files ("everything is a file")
 - including file system administrative data that can be located anywhere in the volume
 - no specific layout
- First sectors contain the boot sector and boot code
- Any sector beyond those can be allocated to a file
- ☐ Master file table (MFT) contains info about all files and directories

Filesystems (NTFS)

MFT entry and basics 3 file attributes

Filesystems (EXT4)

Inode - file data structure that stores information about any Linux file except its name and data.

Information contained in an inode:

- ☐ File size
- Device on which the file is stored
- User and group IDs associated with the file
- Permissions needed to access the file
- Creation, read, and write timestamps
- Location of the data (though not the file path)

Indirect pointer - when file exceeds the size of your inode, your original inode will have to point to another inode in order to fully encompass the file's metadata.

Filesystems (EXT4)

What can go wrong with inodes?

Once inodes are 100% used, you'll begin to notice:

- Data loss
- Applications crashing
- OS restarting
- Processes don't restart
- Periodic tasks not working

```
root@linuxPC:/tmp# df -i
Filesystem
               Inodes IUsed
                              IFree IUse% Mounted on
tmpfs
               500607
                        940 499667
                                       1% /run
/dev/sda2
              1281120 215772 1065348
                                      17% /
tmpfs
                                       1% /dev/shm
               500607
                      1 500606
tmpfs
               500607
                          4 500603
                                       1% /run/lock
/dev/sda1
                                        - /boot/efi
tmpfs
                                       1% /run/user/1000
               100121
                        151
                              99970
root@linuxPC:/tmp# ls -i /bin/bash
914049 /bin/bash
```

Use *df* to control inode capacity.

Virtual file systems

- named pipes
- unix socket files

Virtual file systems are used to represent object hierarchies using virtual files. Examples:

- /proc/self/fd/0 standard input
- /dev/stdin standard input

Main Principle - "Everything is a file"

- □ Sysfs(/sys) kernel parameters (sysctl)
- □ Procfs(/proc) processes and process management related parameters
- ☐ Devfs(/dev) devices as files
- Named pipes and sockets

Network storage

Remote/Network block devices

- Virtual disk that can be used through the network
- Operates with raw devices and blocks (read block, write block, erase block)
- Can have filesystem, but its not mandatory
- Examples:
 - ☐ iSCSI, DRBD, GlusterFS block model, Ceph RBD

Network file systems

- ☐ Virtual file system that is operated through the network
- Uses filesystem operations (open file, read/write to file, close file, list directory content)
- Usually emulates local FS.Apps should not see the difference
- Examples:
 - NFS, SMB, GlusterFS, Ceph FS

