POST-OLYMPIAD PROBLEMS

MARK SELLKE

- (1) Evaluate $\int_0^{2\pi} \cos^{2k}(x) dx$ using combinatorics.
- (2) (Putnam) Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable, and that for all $q \in \mathbb{Q}$ we have f'(q) = f(q). Need $f(x) = ce^x$ for some c?
- (3) Show that the random sum $\pm 1 \pm \frac{1}{2} \pm \frac{1}{3}$... defines a conditionally convergent series with probability 1.
- (4) (Jacob Tsimerman) Does there exist a smooth function $f: \mathbb{R}^2 \to \mathbb{R}$ with a unique critical point at 0, such that 0 is a local minimum but not a global minimum?
- (5) Prove that if $f \in C^{\infty}([0,1])$ and for each $x \in [0,1]$ there is n = n(x) with $f^{(n)} = 0$, then f is a polynomial.
- (6) (Stanford Math Qual 2018) Prove that the operator $\chi_{[a_0,b_0]}\mathcal{F}\chi_{[a_1,b_1]}$ from $L^2 \to L^2$ is always compact. Here if S is a set, χ_S is multiplication by the indicator function 1_S . And \mathcal{F} is the Fourier transform.
- (7) Let $n \ge 4$ be a positive integer. Show there are no non-trivial solutions in entire functions to $f(z)^n + g(z)^n = h(z)^n$.
- (8) Let $x \in S^n$ be a random point on the unit *n*-sphere for large *n*. Give first-order asymptotics for the largest coordinate of x.
- (9) Show that almost sure convergence is not equivalent to convergence in any topology on random variables.
- (10) (Noam Elkies on MO) Show that $\sum_{n=0}^{\infty} \frac{x^n}{(n!)^{\alpha}}$ is positive for any $\alpha \in (0,1)$ and any real x.
- (11) Prove that the Galois group of the truncated exponential $T_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$ is A_n when 4|n and S_n otherwise.
- (12) Find the asymptotics of $a_n = \sum_{k=0}^n \frac{n^k}{k!}$.

2

- (13) (Miklos Schweitzer) Let K be a convex body in \mathbb{R}^n . Show that any two distinct translates of K have different centroids under a standard Gaussian distribution; in fact show this gives a homeomorphism.
- (14) (Miklos Schweitzer) For $[0,1] \subset E \subset [0,+\infty)$ where E is composed of a finite number of closed intervals, we start a two dimensional Brownian motion from the point x < 0 terminating when we first hit E. Let p(x) be the probability of the finishing point being in [0,1]. Prove that p(x) is strictly increasing on [-1,0).
- (15) (Bjorn Poonen) Show that \mathbb{R}^2 cannot be packed with uncountably many topological 8 shapes. What about T shapes?
- (16) Given an infinite subset S of \mathbb{R} , can you find $s \in S$ splitting it into equal cardinality left and right halves?
- (17) Alice and Bob each have a countably infinite collection of boxes labelled by \mathbb{Z}^+ . For some unknown sequence (a_k) of real numbers, Alice and Bob's kth box each contains the number a_k . Each of them will open some boxes, then predict the value of another box. Prove that they can collaborate so that at least one of them is correct.