

차 례

소개 · · · · · · · · · · · · · · · · · · ·	. 3
Hot Issue 원자력 R&D 분야별 전략과제	٠ 4
관련 통계 · · · · · · · · · · · · · · · · · ·	. 7
한걸음 더 · · · · · · · · · · · · · · · · · · 	- 8

R&D KIOSK는 과학기술정보통신부에서 무료로 배포합니다. 상업적인 용도나 목적을 제외하고 누구나 이용 가능합니다. R&D KIOSK에 사용된 이미지를 상업적인 용도나 목적으로 재가공하실 수 없습니다.

기획ㆍ발행: 과학기술정보통신부

자료조사ㆍ편집ㆍ디자인: (주) 어플라이

TEL. 02-6956-0801

www.aply.biz contactus@aply.biz

소개

그동안 중요한 에너지원으로 각광받았던 원자력은 안전 및 환경 문제를 포함한 정책, 시장, 사회의 전방위적 변화에 직면하고 있습니다. R&D는 이에 대응하기 위한 효율적인 정책 수단인 만큼 이러한 변화의 흐름을 주도하여 미래시장을 선점하기 위한 방안이 될 수 있습니다. R&D KIOSK에서는 '제6차 원자력연구개발 5개년 계획'의 주요 내용을 살펴 보고, 최근 예비타당성조사를 통과한 '혁신형 소형모듈원자로' 연구개발에 대해서 한걸음 더 알아보겠습니다.

제6차 원자력연구개발 5개년 계획(2022~2026년)

비전 미래세대의 성장과 발전에 기여하는 새로운 원자력기술

▶ 기본 방향

- R&D 투자 확대를 통해 사회 현안에 대한 기술적 해법 제시
- 원자력 시장 체제 개편에 대비한 연구개발 본격 추진
- 기술 융합·원자력 기술 응용 등 개방적 혁신을 통해 미래 신시장 창출
- 미래세대를 위한 첨단기술 발굴 및 원자력 기술 기반 확보

• 국민이 안심할 수 있는 수준의 안전혁신기술 확보

분 분야별 전략과제

- 첨단기술 융합을 통해 사용후핵연료 및 방사성폐기물 안전관리 역량 강화
- 방사선 방사선 이용 산업 활성화를 위한 융복합 신기술 개발
- SMR 미래시장 선점 및 수출경쟁력 강화를 위한 SMR 핵심기술 개발
- 미래혁신 다음세대를 준비하는 원자력 기술기반 확보

종합계획 기본방향

- 안전강화, 환경부담 저감
- 해체, SMR 신시장 개척
- 융합기술을 활용하여 혁신성과 창출
- 국민소통

R&D 주요성과 및 방향

- 세계수준의 기술수준 확보
- 기술실증을 통한 우수성 입증
- 원자력 이용의 환경변화 대비

환경분석

- 원자력의 역할 확대전망
- 원자력시장 체재 개편
- 원자력기반유지 중요
- 원자력기술 개방혁신 필요

5개년 계획 수립방향

- 원자력 당면현안 해결
- 시장변화 대비
- 기술융합을 통한 혁신
- 미래기술발굴. 기반유지

- 기존 경수형 대형원전(1,000MW) 대비 용량을 줄여(300MW 이하) 안전성을 높이면서도 일체화된 모듈 형태로 제작하여 경제성을 높인 소형원자로
- 장점: ① 육상운송 및 모듈 공장 제작으로 현장작업 최소화 ② 건설공기 단축과 건설비용 절감 가능 ③ 소형이므로 도시나 해안에서 멀리 떨어진 내륙의 깊숙하고 외진 지역 등 다양한 지역에서 다양한 목적으로 활용 가능

자료: 관계부처 합동(2022), "제6차 원자력연구개발 5개년 계획 2022-2026." 과학기술정보통신부 보도자료(2022. 6. 1), "혁신형 소형모듈원자로 연구개발, 원전해체 경쟁력강화 연구개발 예타 통과."

2022년 8월

Hot Issue

원자력 R&D 분야별 전략과제

정부는 2022년 2월 '제6차 원자력연구개발 5개년 계획'을 통해 국내외 정책환경 변화와 원자력 이용 및 개발 현안에 적극 대응하기 위한 전략과제 및 중점 프로그램을 도출하였습니다. '제6차 원자력연구개발 5개년 계획'에서 발표한 안전, 환경, 방사선, 소형모듈형원자로, 미래혁신 등 분야별 전략과제의 내용을 살펴보겠습니다.

안전

국민이 안심할 수 있는 수준의 안전혁신기술 확보

국내외 R&D 동향

- 원전 보유국들은 첨단기술(Data, Network, AI)을 적용한 원자력안전 강화 기술개발 투자에 적극적
- 국내 첨단기술과의 융합을 통해 중대사고·극한환경 안전성 강화 기술 개발 중
- 국외 원전 선진국들은 4차 산업혁명 기술과의 접목, 미래형 원자로 안전성 향상 관련 연구에 집중적 투자

원자력 안전은 국민의 안위 확보와 직결된 사안으로

첨단 기술과의 융합을 통해 안전성을 강화하기 위한 지속적인 기술 개발에 대한 투자가 필요함

추진 내용

구간 네ō	대표 성과목표	
• 원전 고장·사고 최소화를 위한 예측기술 개발	• 2029년까지 기	·동원전의 노심손상빈도를 현재대비 1/5로 저감
• 사고확대 예방을 위한 혁신 안전기술 개발	• 2029년까지 기	농용원전의 노심손상빈도를 현재대비 1/6로 저감
• 사고 완화 및 피해 최소화를 위한 대응기술 개발	• 2029년까지 원	전 중대사고 시 방사성물질 누출확률을 1/2로 저감
• 미래 원자력 기술수요 기반 혁신 원자력 안전연구	• 방호체계 고도 (현재 70% 수원	화, 탄력운전이 가능한 수준의 실증기술 확보 준 → 100%)

환경

첨단기술 융합을 통해 사용후핵연료 및 방사성폐기물 안전관리 역량 강화

국내외 R&D 동향

- 원자력의 지속가능성과 환경부담 저감을 위해 사용후핵연료 관리를 위한 기술적 해법을 모색 중
- 국내 사용후핵연료의 안전한 저장·처분기술, 처분 전 부피·독성 저감기술 연구개발 추진 중
- 국외 영구처분시설 또는 중간저장시설의 구축, 관련 연구개발에 집중

미래세대의 환경부담을 저감하고 지속적으로 사용후핵연료를 안전하게 관리할 수 있는 역량과 기반 구축이 필요함

대표 성과목표

추진 내용

(C), C • 지하연구시설 실증을 위한 사용후핵연료 저장·처분 핵심기술 • 사용후핵연료 저장·처분 핵심기술 개발 및 관리기반 구축 40건 확보 • 실증 가능한 수준의 사용후핵연료 처리기술 확보 • 사용후핵연료 안전관리를 위한 핵연료주기 핵심기술 확보 • 처분 환경부담 저감이 가능한 고준위폐기물 안전관리 솔루션 제공 • AloT(사물지능융합기술) 기반의 중저준위 방사성 폐기물 관리 • 중·저준위 방사성폐기물 처분안전성·효율성 강화기술 개발 시스템 및 스마트신기술 개발·적용 완료 • 30년까지 국내원전을 독자기술로 해체할 수 있는 핵심기술 확보 • 원전해체 경쟁력 강화기술 개발

방사선

방사선 이용 산업 활성화를 위한 융복합 신기술 개발

국내외 R&D 동향

- 환경오염, 안전·보안 등 사회현안 대응에 방사선 등 과학기술 적극 이용
- 방사선 기술은 화학적 오염원 추적, 노후시설 진단 등 환경 및 안전 분야의 핵심기술로 관심이 증대
- 암, 치매, 관절염 등에 효과적인 진단·치료 수요 증가로 방사선 기술을 활용한 연구개발 추진 중

사회적 난제 및 현안 해결에 기여할 수 있도록 방사선 기술 특성에 초점을 맞춘 전략적 기술개발 추진이 필요함

• 해외시장 진출 가능한 수준의 원천기술 보유

추진 내용

대표 성과목표

• 방사선 상용화 기술지원 확대 및 동위원소 자급/생산 기반 마련	 2026년까지 수출용기장연구로 등과 연계한 RI(방사성 동위 원소) 양산기술 고도화 2030년까지 세계 시장을 선도할 수 있는 RI 제품 개발
• 의료현장 수요기반 방사선 의·생명 선도기술 확보	• 희귀·난치암 정밀표적 방사성의약품 신약 3종 이상 개발
• 산업 이용 방사선 융합기술의 전략적 개발 지원	 방사선을 이용한 소재분야 핵심원천기술 15개 확보 新산업 창출이 가능한 혁신기술 10개 개발
• 사회현안 대응 기술 연구 확대	• 방사선 기술을 통해 해결 가능한 사회문제 발굴 및 기술적 해법 제시

SMR

4

미래시장 선점 및 수출경쟁력 강화를 위한 SMR(소형모듈원자로) 핵심기술 개발

국내외 R&D 동향

- 글로벌 SMR 시장 선도를 위한 각국의 기술패권 다툼 심화
- 국내 2030년대 글로벌 시장진출 목표 혁신형 SMR 개발 추진 중
- 국외 미국 등 전세계 원전 선진국들은 차세대 SMR 시장을 선도하기 위한 적극적인 연구개발 사업 추진

글로벌 원전 신시장 선점을 위한 국내 독자개발 SMR 기술역량 강화와 관련한 지속적인 지원이 필요함

추진 내용

대표 성과목표

- 혁신형 SMR 표준설계 및 기술검증을 통한 핵심기술 확보
- 2028년까지 안전성·경제성·유연성을 갖춘 혁신형 SMR 표준 설계·기술검증 완료

• 미래성장동력 발굴을 위한 SMR 원천기술 개발

- 글로벌 SMR 시장에서 경쟁가능한 국가대표 노형 발굴 및 핵심 기술 확보
- 원자력 활용성/유연성 확대를 위한 에너지효율 혁신기술 개발
- 원자력의 유연성·효율성을 향상하는 핵심기술 3건 이상 실증

미래혁신

5

다음세대를 준비하는 원자력 기술기반 확보

국내외 R&D 동향

- 원자력 기술의 적용 확대, 융복합 기술연구 등 원자력 기술의 역할 다변화 요구에 대응하기 위한 전략 추진 중
- 국지·우주 등 극한 환경에서 원자력을 활용하기 위한 창의·혁신적 원자력기술 개발에 매진
- 대형인프라 고성능 대형 과학기술 시설 및 장비의 효율성을 높이기 위한 사업 추진
- 국제협력·인력양성 민감기술을 다루는 원자력 분야의 특성을 고려하여 국가간 협력 및 IAEA 등 국제기구와의 협력을 비롯한 다자간 협력을 통한 기술개발 및 인력양성에 전세계가 적극 참여 중

원자력 기술의 역할 다변화에 대응하고 원자력 선진국으로서의 위상을 강화하기 위한 글로벌 협력 사업 추진이 필요함

추진 내용

대표 성과목표

- 우주 등 극한 환경에 활용가능한 원자력기술역량 강화
- 원자력기술의 우주분야 적용을 위한 가능성 탐색 및 기초역량 강화
- 과학기술 경쟁력 제고를 위한 원자력연구 인프라 활용 극대화
- 혁신원자력 연구개발 조성사업 1단계 완료(2025년)
- 하나로(연구용 원자로) 현대화 완료(2026년)
- 수출형 신형연구로 완공(2027년)
- 미래수요에 대비한 신진 원자력 인력양성 및 국제협력 강화
- 지속가능한 원자력이용을 위한 인력양성 및 국제협력 지원

자료: 관계부처 합동(2022. 2), "제6차 원자력연구개발 5개년 계획 2022~2026."

관련 통계

2022년도 원자력 R&D 분야별 예산

- 2022년도 예산은 2,471억 원으로 2021년 대비 122억 원 감소
- 원자력 기술 및 방사선 기술은 일몰, 대형시설 구축 일정으로 2021년 실적 대비 239억 원 감소
- 기초·기반 기술은 지원 강화로 117억 원 증가

2022년도 원자력 기술 R&D 세부사업별 예산

- 원자력 안전 및 해체 관련 기술을 확보하고 원자력 외 기술분야와 융복합을 통한 새로운 분야 개척을 중점적으로 추진할 예정
- 2022년 신규 사업인 가동원전 안전성 향상 핵심기술 개발사업에 가장 큰 예산인 345억 6,900만 원 투자 예정

자료: 과학기술정보통신부(2021. 12), "2022년도 원자력연구개발사업 시행계획."

제96호 2022년 8월

한걸음 더

혁신형 소형모듈원자로 (i-SMR)

원전강국 건설을 위한 대형 연구개발이 본격 추진되는 가운데 2022년 6월 '혁신형 소형모듈원자로(i-SMR) 기술개발사업'이 예비타당성조사를 통과하였 습니다. 이 사업을 통해 2023년부터 2028년까지 총 3,992억 원을 기술개발에 투자하여 세계 소형모듈원자로 시장 진출을 위한 차세대 SMR 개발을 추진할 예정이라고 합니다. 이에 대형 원전의 단점을 대체할 수 있는 방안으로 부상하고 있는 SMR의 한국형 모델인 혁신형 소형모듈원자로(i-SMR) 개발 계획을 살펴보겠습니다.

1-SMR91 787435

ध्य पड़ राय नार्डे । हिं?

- 원자로의 안전 계통은 안전 기능을 작동시키는 데 전력이 필요한지에 따라 능동 안전 계통과 피동 안전 계통으로 구분
- 피동 안전 계통은 기계적 움직임 없이 중력, 축적된 가스 압력, 자연대류 등의 자연법칙에 의해 안전기능을 수행하는 방식
- 피동 안전 계통으로 설계된 원자로는 후쿠시마 사고처럼 모든 전원이 상실되는 상황이 발생하여도 원천적으로 대처 가능

안전성

- 고유 안전 특성과 단순화된 설계로 중대사고 ZERO화
- 완전 피동 안전 계통 설계 적용
- 엄격한 내진설계 등의 안전 설계를 통해 자연재해(지진, 해일 등) 대처 능력 극대화
- 장주기 운전(2년 이상)을 통한 사용후 핵연료 발생 최소화
- 고내압 철제 격납용기를 통한 방사능 방출 가능성 최소화로 환경 영향 최소화
- 사고 발생 시 주민대피 불필요

경제성

- 건설단가 \$4,000~5,000/kW 이하(미국 N사, 소형 원전) → \$3,500/kW 이하
- 건설공기 56개월(한국, 대형 원전) → 24개월(콘크리트 타설~핵연료 장전)
- 모듈 형태 공장제작 및 내륙 수송 가능
- 신재생에너지 연계·운전에 의한 상호 장·단점 보완으로 시너지효과 기대
- 복수 원자로 모듈 배치 및 설비 공용화 설계로 발전 효율 제고
- 자율 운전, 스마트 기기 등 4차 산업혁명 기술을 적용한 통합 제어실 최적화를 통해 운영 인력 최소화 및 운영 비용 절감

유연성

• 우수한 유연성으로 신재생에너지의 간헐성 보완 : 분산형 전원, 수소 생산, 해수 담수화

T-SMR 11 7HE

T-SMR 11 TITHE IT

- 2030년대 세계시장에서 경쟁우위를 가져갈 수 있는 한국형 SMR 모델 도출
- 국가 원자력 기술수준을 한 단계 도약시키고, 원자력 산업의 수출 다각화 및 산업 활성화에 기여

사업 목적

• 안전성·경제성·유연성을 갖춘 차세대 소형모듈원자로(i-SMR)를 개발하여 세계 소형 원전시장 선점

핵심 개발목표

- **발전용량** 모듈당 170MWe급
- 안전성 설계 단순화, 일체형(모듈) 구성, 지하수조 격납 등을 통해 중대사고 완전 배제 등 기존 대형 원전 대비 향상된 안전성 달성
- 경제성 공장에서 모듈 형태로 제작, 이송 및 건설이 가능하도록 설계하고, 건설 발전단가를 낮춰 경쟁 노형 대비 우수한 경제성 확보
- 유연성 모듈화 설계로 맞춤형 출력규모 구현이 가능하고, 발전원 외 공정열 공급, 담수 생산 등 다양한 산업적 활용 가능

1-SMR 11-17 377

2023년 과제착수

2023~2025년 혁신기술 개발 및 표준설계

2026년 표준설계 인가 신청 2026~2028년 검증 및

인허가 대응

2028년 표준설계 인가 획득

원자로 냉각재 펌프 제어봉 구동 장치 증기 발생기 원자로 용기

원자로 노심

이미지 자료: 동아일보(2021. 5. 4), "한수원, '소형 모듈 원자로'로 세계시장 진출 목표.

T-SMR 3771 7HE

- 일체형 원자로 대형 냉각재 상실 사고 배제
- 밀봉형 일체 펌프 열손실 감소로 열출력
- 나선형 증기 발생기 원자로 용기 소형화
- 무붕산 노심 유연한 운전과 계통 단순화
- 내장형 제어봉 구동장치 제어봉 이탈 사고 배제
- 모듈형으로 제작·설치
- 내륙 운송 가능

자료: 한국원자력연구원 웹사이트. 창원시(2021. 10. 20), "소형모듈원자로(SMR) 개발 현황과 산업연계 및 육성 세미나", 2021 추계학술발표회 세미나 발표자료집

제96호 2022년 8월

