UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea	1	

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică A I

VARIANTA **E**

- 1. Fie șirul cu termenul general $a_n = \sum_{k=1}^n kC_n^k$, $n \ge 1$. Să se calculeze a_{2009} . (5 pct.)
 - a) $2009 \cdot 2^{2008}$; b) $\frac{1}{2009}$; c) $2007 \cdot 2^{2009}$; d) 2008!; e) $2008 \cdot 2^{2009}$; f) 2009! + 1.
- 2. Să se calculeze aria mulțimii plane mărginite de graficul funcției $f:(0,\infty)\to\mathbb{R}$, $f(x)=x\ln x$, axa Ox și dreptele verticale x=1, x=e. (5 pct.)
 - a) $\frac{e-1}{4}$; b) $\frac{e^2+1}{4}$; c) 0; d) 1; e) e+2; f) e.
- 3. Să se calculeze $\sqrt{\pi}$ cu o zecimală exactă. (5 pct.)
 - a) 2,2; b) 1,7; c) 1,9; d) 1,6; e) 1,5; f) 2,1.
- 4. Pe \mathbb{Z} se definește legea de compoziție x * y = xy 2x 2y + 6. Să se determine elementul neutru. (5 pct.)
 - a) -1; b) -3; c) Nu există; d) 3; e) 7; f) 1.
- 5. Fie funcția $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{\sqrt{x^2 + 1}}{x 1}$. Asimptotele funcției f sunt: (5 pct.)

a)
$$x = 0, y = -1$$
; b) $y = x + 1$; c) $x = 1, y = x$; d) $x = -1, y = 2x + 3$; e) $x = 1, y = 1$; f) $x = 1, y = 1, y = -1$.

- 6. Știind că polinomul $aX^4 + bX^3 + cX^2 + (a-1)X 1$ are rădăcina triplă 1, să se calculeze a+b+c. (5 pct.)
 - a) 2; b) 1; c) $\frac{1}{2}$; d) -1; e) 0; f) -2.
- 7. Să se calculeze $(1+i)^2$. (5 pct.)
 - a) i; b) -2 + i; c) 0; d) 1; e) 4i; f) 2i.
- 8. Valoarea determinantului $\begin{vmatrix} 2 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{vmatrix}$ este: (5 pct.)
 - a) 5; b) -6; c) -2; d) 2; e) 4; f) 0.

- 9. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f(x) = \begin{cases} x + 2m, & x \le 0 \\ m^2x + 4, & x > 0 \end{cases}$ să fie continuă pe \mathbb{R} . (5 pct.)
 - a) $m \in \mathbb{R}$; b) m = 2; c) m = -2; d) m = -3; e) m = 1; f) m = 0.
- 10. Soluția ecuației $2^{x+1} = 16$ este: (5 pct.)
 - a) -2; b) 1; c) -1; d) 0; e) 3; f) 2.
- 11. Soluția ecuației $\sqrt[3]{x-1} = -1$ este: (5 pct.)
 - a) 3; b) Ecuația nu are soluții; c) 0; d) -1; e) -3; f) 1.
- 12. Valoarea integralei $\int_{0}^{1} (6x^2 + 2x) dx$ este: (5 pct.)
 - a) 3; b) 4; c) -2; d) $\frac{1}{2}$; e) 0; f) $\frac{1}{3}$.
- 13. Să se determine valoarea parametrului real m pentru care x = 2 este soluție a ecuației $x^3 + mx^2 2 = 0$. (5 pct.)
 - a) $\frac{3}{4}$; b) 1; c) $\frac{5}{2}$; d) $-\frac{3}{2}$; e) $\frac{1}{2}$; f) 3.
- 14. Să se rezolve inecuația x+2<4-x. (5 pct.)
 - a) \emptyset ; b) $x \in (1,\infty)$; c) $x \in (0,1) \cup (1,\infty)$; d) $x \in (0,\infty)$; e) $x \in (-\infty,1)$; f) $x \in (-1,1)$.
- 15. Multimea soluțiilor ecuației $x^2 5x + 4 = 0$ este: (5 pct.)
 - a) $\{1,4\}$; b) $\{0,3\}$; c) $\{0,-3\}$; d) $\{-1,4\}$; e) $\{-1,1\}$; f) \emptyset .
- 16. Fie funcția $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{x-1}{x}$. Să se calculeze f'(2). (5 pct.)
 - a) 0; b) $-\frac{1}{2}$; c) $\frac{1}{4}$; d) $\frac{1}{8}$; e) $\frac{2}{3}$; f) 2.
- 17. Fie ecuația $x^2 mx + 1 = 0$, $m \in \mathbb{R}$. Să se determine valorile lui m pentru care ecuația are două soluții reale și distincte. (5 pct.)
 - a) $(-\infty, -2) \cup (2, \infty)$; b) \emptyset ; c) $(0, \infty)$; d) \mathbb{R} ; e) $(-\infty, -1) \cup (2, \infty)$; f) $(-\infty, 0)$.
- 18. Să se determine funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax + b$ astfel încât f(0) = 1, f(1) = 0. (5 pct.)
 - a) $x^2 2x + 1$; b) $x^2 3x$; c) $x^2 + 4x + 5$; d) $x^2 1$; e) $x^2 + x + 1$; f) $x^2 + 1$.