Near-consistent robust estimations of moments for unimodal distributions

Tuban Leea,1

10

11

12

13

14

15

18

19

21

22

23

26

27

28

29

31

33

35

^aInstitute of Biomathematics, Macau SAR 999078, China

This manuscript was compiled on March 19, 2023

Descriptive statistics for parametric models currently heavily rely on the accuracy of distributional assumptions. Here, based on the invariant structures of unimodal distributions, a series of sophisticated yet efficient estimators, robust to both gross errors and departures from parametric assumptions, are proposed for estimating mean and central moments with insignificant asymptotic biases for common unimodal distributions. This article also illuminates the understanding of the common nature of probability distributions and the measures of them.

orderliness | invariant | unimodal | adaptive estimation | U-statistics

he asymptotic inconsistencies between sample mean (\bar{x}) and nonparametric robust location estimators in asymmetric distributions on the real line have been noticed for more than two centuries (1), yet remain unsolved. Strictly speaking, it is unsolvable as by trimming, some information about the original distribution is removed, making it impossible to estimate the values of the removed parts without distributional assumptions. Newcomb (1886, 1912) provided the first modern approach to robust parametric estimation by developing a class of estimators that gives "less weight to the more discordant observations" (2, 3). In 1964, Huber (4) used the minimax procedure to obtain M-estimator for the contaminated normal distribution, which has played a pre-eminent role in the later development of robust statistics. However, as previously demonstrated, under growing asymmetric departures from normality, the bias of the Huber M-estimator increases rapidly. This is a common issue in parameter estimations. For example, He and Fung (1999) constructed (5) a robust M-estimator for the two-parameter Weibull distribution, from which all moments can be calculated. Nonetheless, it is inadequate for the gamma, Perato, lognormal, and the generalized Gaussian distributions (SI Dataset S1). Another old and interesting approach is arithmetically computing the parameters using one or more L-statistics as inputs, such as percentile estimators. Examples of percentile estimators for the Weibull distribution, the reader is referred to Menon (1963) (6), Dubey (1967) (7), Hassanein (1971) (8), Marks (2005) (9), and Boudt, Caliskan, and Croux (2011) (10)'s works. At the outset of the study of percentile estimators, it was known that they arithmetically utilizes the invariant structures of probability distributions (6, 11, 12). Maybe such estimators can be named as I-statistics. Formally, an estimator is classified as an *I*-statistic if it asymptotically satisfies $I(LE_1, \dots, LE_l) = (\theta_1, \dots, \theta_q)$ for the distribution it is consistent, where LEs are calculated with the use of L-statistics, I is defined using arithmetic operations and constants, but it may also incorporate other functions, and θ s are the population parameters it estimates. A subclass of I-statistics, arithmetic I-statistics, is defined as LEs are L-statistics, I is solely defined using arithmetic operations and constants.

Since some percentile estimators use the logarithmic function to transform all random variables before computing the L-statistics, a percentile estimator might not always be an arithmetic I-statistic (7). In this article, two subclasses of *I*-statistics are introduced, arithmetic *I*-statistics and quantile I-statistics. Examples of quantile I-statistics will be discussed later. Based on L-statistics, I-statistics are naturally robust. Compared to probability density functions (pdfs) and cumulative distribution functions (cdfs), the quantile functions of many parametric distributions are more elegant. Since the expectation of an L-statistic can be expressed as an integral of the quantile function, I-statistics are often analytically obtainable. However, the performance of the aforementioned examples is often worse than that of the robust M-statistics when the distributional assumption is violated (SI Dataset S1). Even when distributions such as the Weibull and gamma belong to the same larger family, the generalized gamma distribution, a misassumption can still result in substantial biases, rendering the approach ill-suited.

41

42

43

47

48

49

50

51

52

53

54

55

56

57

58

In previous research on semiparametric robust mean estimation, the binomial mean (BM_{ϵ}) is still inconsistent for any skewed distribution, despite having much smaller asymptotic biases than other weighted averages. All robust location estimators commonly used are symmetric due to the universality of the symmetric distributions. One can construct an asymmetric weighted average that is consistent for a semiparametric class of skewed distributions. This approach has been investigated previously, but its lack of symmetry makes it suitable only for certain applications (13). Shifting from semiparametrics to parametrics, an ideal robust location estimator would have a non-sample-dependent breakdown point (defined in Subsection ??) and be consistent for any symmetric distribution and a skewed distribution with finite second moments. This is called an invariant mean. Based on the mean-symmetric weighted

Significance Statement

Bias, variance, and contamination are the three main errors in statistics. Consistent robust estimation is unattainable without parametric assumptions. Here, based on a paradigm shift inspired by mean-median-mode inequality, Bickel-Lehmann spread, and adaptive estimation, invariant moments are proposed as a means of achieving near-consistent and robust estimations of moments, even in scenarios where moderate violations of distributional assumptions occur, while the variances are sometimes smaller than those of the sample moments.

T.L. designed research, performed research, analyzed data, and wrote the paper. The author declares no competing interest.

¹ To whom correspondence should be addressed. E-mail: tl@biomathematics.org

average-median inequality, the recombined mean is defined as

$$rm_{d,\epsilon,n} := \lim_{c \to \infty} \left(\frac{(SWA_{\epsilon,n} + c)^{d+1}}{\left(median + c\right)^d} - c \right),$$

where d is the key factor for bias correction, SWA_{ϵ ,n} is BM_{ϵ ,n} in the first three Subsections, but other symmetric weighted averages can also be used in practice as long as the inequalities hold. The following theorem shows the significance of this arithmetic I-statistic.

Theorem .1. If the second moments are finite, $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ is a consistent mean estimator for the exponential and any symmetric distributions and the Pareto distribution with quantile function $Q(p)=x_m(1-p)^{-\frac{1}{\alpha}},\,x_m>0,\,$ when $\alpha\to\infty$.

Proof. Finding d and ϵ that make $rm_{d,\epsilon}$ a consistent mean estimator is equivalent to finding the solution of $E[rm_{d,\epsilon}] = E[X]$. Rearranging the definition, $rm_{d,\epsilon} = \lim_{c\to\infty} \left(\frac{(\mathrm{BM}_{\epsilon}+c)^{d+1}}{(median+c)^d} - c\right) = (d+1)\,\mathrm{BM}_{\epsilon} - d\mathrm{median} = \mu$. So, $d = \frac{\mu - \mathrm{BM}_{\epsilon}}{\mathrm{BM}_{\epsilon} - median}$. The quantile function of the exponential distribution is $Q(p) = \ln\left(\frac{1}{1-p}\right)\lambda$. $E[x] = \lambda$. E[median] = $Q\left(\frac{1}{2}\right) = \ln 2\lambda$. For the exponential distribution, the expectation of $\mathrm{BM}_{\frac{1}{8}}$ is $E\left[\mathrm{BM}_{\frac{1}{8}}\right]=\lambda\left(1+\ln\left(\frac{46656}{8575\sqrt{35}}\right)\right)$. Obviously, the scale parameter λ can be canceled out, $d\approx0.375$. The proof of the second assertion follows directly from the coincidence property. For any symmetric distribution with a finite second moment, $E[BM_{\epsilon}] = E[median] = E[X]$. Then $E\left[rm_{d,\epsilon}\right] = \lim_{c \to \infty} \left(\frac{(E[X]+c)^{d+1}}{(E[X]+c)^d} - c\right) = E\left[X\right]$. The proof for the Pareto distribution is more general. The mean of the Pareto distribution is given by $\frac{\alpha x_m}{\alpha-1}$. The d value with two unknown percentiles p_1 and p_2 for the Pareto distribution is $d_{Perato} = \frac{\frac{\alpha x_m}{\alpha - 1} - x_m (1 - p_1)^{-\frac{1}{\alpha}}}{x_m (1 - p_1)^{-\frac{1}{\alpha}} - x_m (1 - p_2)^{-\frac{1}{\alpha}}}.$ Since any weighted aver-age can be expressed as an integral of the quantile function, $\lim_{\alpha\to\infty}\frac{\frac{\alpha}{\alpha-1}-(1-p_1)^{-1/\alpha}}{(1-p_1)^{-1/\alpha}-(1-p_2)^{-1/\alpha}}=-\frac{\ln(1-p_1)+1}{\ln(1-p_1)-\ln(1-p_2)}, \text{ the } d$ value for the Pareto distribution approaches that of the ex-ponential distribution as $\alpha \to \infty$, regardless of the type of weighted average used. This completes the demonstration. \Box

Theorem .1 implies that for the Weibull, gamma, Pareto, lognormal and generalized Gaussian distribution, $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ is consistent for at least one particular case of these two-parameter distributions. The biases of $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ for distributions with skewness between those of the exponential and symmetric distributions are tiny (SI Dataset S1). $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ exhibits excellent performance for all these common unimodal distributions (SI Dataset S1).

Besides introducing the concept of invariant mean, the purpose of this paper is to demonstrate that, in light of previous works, the estimation of central moments can be transformed into a location estimation problem by using U-statistics, the central moment kernel distributions possess desirable properties, and a series of sophisticated yet efficient robust estimators can be constructed whose biases are typically smaller than the variances (as seen in Table $\ref{Table 1}$ for n=5400) for unimodal distributions.

Background and Main Results

A. Invariant mean. It has long been known that a theoretical model can be adjusted to fit the first two moments of the observed data. A continuous distribution belonging to a location–scale family takes the form $F(x) = F_0\left(\frac{x-\mu}{\lambda}\right)$, where F_0 is a "standard" distribution. Therefore, $F(x) = Q^{-1}(x) \to x = Q(p) = \lambda Q_0(p) + \mu$. Thus, any weighted average can be expressed as $\lambda \mathrm{WA}_0(\epsilon) + \mu$, where $\mathrm{WA}_0(\epsilon)$ is an integral of $Q_0(p)$ according to the definition of the weighted average. The sumultaneous cancellation of μ and λ in $\frac{(\lambda \mu_0 + \mu) - (\lambda \mathrm{BM}_0(\epsilon) + \mu)}{(\lambda \mathrm{BM}_0(\epsilon)) + \mu - (\lambda \mathrm{BM}_0(\epsilon) + \mu)}$ assures that d is a constant. Consequently, the roles of BM_ϵ and median in $rm_{d,\epsilon}$ can be replaced by any weighted averages, although only symmetric weighted averages are considered in defining the invariant mean.

The performance in heavy-tailed distributions can be further improved by constructing the quantile mean as

$$qm_{d,\epsilon,n} \coloneqq \hat{Q}_n\left(\left(\hat{F}_n\left(\mathrm{SWA}_{\epsilon,n}\right) - \frac{1}{2}\right)d + \hat{F}_n\left(\mathrm{SWA}_{\epsilon,n}\right)\right),$$

provided that $\hat{F}_n\left(\mathrm{SWA}_{\epsilon,n}\right) \geq \frac{1}{2}$, where $\hat{F}_n\left(x\right)$ is the empirical cumulative distribution function of the sample, \hat{Q}_n is the sample quantile function. The most popular method for computing the sample quantile function was proposed by Hyndman and Fan in 1996 (14). To minimize the finite sample bias, here, $\hat{F}_n\left(x\right) \coloneqq \frac{1}{n}\left(\frac{x-X_{sp}}{X_{sp+1}-X_{sp}}+sp\right)$, where $sp=\sum_{i=1}^n \mathbf{1}_{X_i\leq x}, \mathbf{1}_A$ is the indicator of event A. The solution of $\hat{F}_n\left(\mathrm{SWA}_{\epsilon,n}\right) < \frac{1}{2}$ is reversing the percentile by $1-\hat{F}_n\left(\mathrm{SWA}_{\epsilon,n}\right)$, the obtained percentile is also reversed. Without loss of generality, in the following discussion, only the case where $\hat{F}_n\left(\mathrm{SWA}_{\epsilon,n}\right) \geq \frac{1}{2}$ is considered. Moreover, in extreme heavy-tailed distributions, the calculated percentile can exceed the breakdown point of SWA_{ϵ} , so the percentile will be modified to $1-\epsilon$ if this occurs. The quantile mean uses the location-scale invariant in a different way as shown in the following proof.

Theorem A.1. $qm_{d\approx 0.321,\epsilon=\frac{1}{8}}$ is a consistent mean estimator for the exponential, Pareto $(\alpha\to\infty)$ and any symmetric distributions provided that the second moments are finite.

Proof. Similarly, rearranging the definition, $d=\frac{F(\mu)-F(\mathrm{BM}_\epsilon)}{F(\mathrm{BM}_\epsilon)-\frac{1}{2}}$. The cdf of the exponential distribution is $F(x)=1-e^{-\lambda^{-1}x}$, $\lambda\geq 0,\ x\geq 0$, the expectation of BM_ϵ can be expressed as $\lambda\mathrm{BM}_0(\epsilon)$, so $F(\mathrm{BM}_\epsilon)$ is free of λ . When $\epsilon=\frac{1}{8},\ d=\frac{-e^{-1}+e^{-\left(1+\ln\left(\frac{46656}{8575\sqrt{35}}\right)\right)}}{\frac{1}{2}-e^{-\left(1+\ln\left(\frac{46656}{8575\sqrt{35}}\right)\right)}}\approx 0.321$. The proof of the symmetric case is similar. Since for any symmetric distribution with a finite second moment, $F\left(E\left[\mathrm{BM}_\epsilon\right]\right)=F\left(\mu\right)=\frac{1}{2}$.

with a finite second moment, $F(E[BM_{\epsilon}]) = F(\mu) = \frac{1}{2}$. Then, the expectation of the quantile mean is $qm_{d,\epsilon} = F^{-1}((F(\mu) - \frac{1}{2})d + F(\mu)) = F^{-1}(0 + F(\mu)) = \mu$.

For the assertion related to the Pareto distribution, the cdf of it is $1 - \left(\frac{x_m}{x}\right)^{\alpha}$. So, the d value with two unknown percentile p_1 and p_2 is

$$d_{Pareto} = \frac{1 - \left(\frac{x_m}{\alpha x_m}\right)^{\alpha} - \left(1 - \left(\frac{x_m}{x_m(1-p_1)^{-\frac{1}{\alpha}}}\right)^{\alpha}\right)}{\left(1 - \left(\frac{x_m}{x_m(1-p_1)^{-\frac{1}{\alpha}}}\right)^{\alpha}\right) - \left(1 - \left(\frac{x_m}{x_m(1-p_2)^{-\frac{1}{\alpha}}}\right)^{\alpha}\right)} = 152$$

 $\frac{1-\left(\frac{\alpha-1}{\alpha}\right)^{\alpha}-p_1}{p_1-p_2}$. When $\alpha \to \infty$, $\left(\frac{\alpha-1}{\alpha}\right)^{\alpha}=\frac{1}{e}$. The d value for the exponential distribution is identical, since $d_{exp}=$

2 |

$$\frac{\left(1-e^{-1}\right)-\left(1-e^{-\ln\left(\frac{1}{1-p_1}\right)}\right)}{\left(1-e^{-\ln\left(\frac{1}{1-p_1}\right)}\right)-\left(1-e^{-\ln\left(\frac{1}{1-p_2}\right)}\right)}=\frac{1-\frac{1}{e}-p_1}{p_1-p_2}. \text{ All results}$$
156 are now proven.

157

158

159

160

161

162

163

164

165

166

167

169

170

172

173

174

175

177

178

180

181

182

183

184

185

186

187

188

189

191

192

193

195

196

197

198

199

200

201

204

205

206

207

210

The definitions of location and scale parameters are such that they must satisfy $F(x; \lambda, \mu) = F(\frac{x-\mu}{\lambda}; 1, 0)$. By recalling $x = \lambda Q_0(p) + \mu$, it follows that the percentile of any weighted average is free of λ and μ , which guarantees the validity of the quantile mean. The quantile mean is a quantile I-statistic. Specifically, an estimator is classified as a quantile I-statistic if LEs are percentiles of a distribution obtained by plugging L-statistics into a cumulative distribution function and I is defined with arithmetic operations, constants and quantile functions. $qm_{d\approx 0.321,\epsilon=\frac{1}{2}}$ works better in the fat-tail scenarios (SI Dataset S1). Theorem .1 and A.1 show that $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ and $qm_{d\approx 0.321,\epsilon=\frac{1}{2}}$ are both consistent mean estimators for any symmetric distribution and a skewed distribution with finite second moments. It's obvious that the breakdown points of $rm_{d\approx 0.375,\epsilon=\frac{1}{8}}$ and $qm_{d\approx 0.321,\epsilon=\frac{1}{9}}$ are both $\frac{1}{8}$. Therefore they are all invariant means.

To study the impact of the choice of SWAs in rm and qm, it is constructive to recall that a symmetric weighted average is a linear combination of symmetric quantile averages. While using a less-biased symmetric weighted average can generally enhance performance (SI Dataset S1), there is a greater risk of violation in the semiparametric framework. However, the mean-SWA-median inequality is robust to slight fluctuations of the SQA function of the underlying distribution. Suppose the SQA function is generally decreasing in [0, u], but increasing in $[u, \frac{1}{2}]$, since $1-2\epsilon$ of the symmetric quantile averages will be included in the computation of SWA_{ϵ}, as long as $\frac{1}{2} - u \ll 1 - 2\epsilon$, and other portions of the SQA function satisfy the inequality constraints that define the ν th orderliness on which the SWA $_{\epsilon}$ is based, the mean-SWA_{ϵ}-median inequality will still hold. This is due to the violation being bounded (15) and therefore cannot be extreme for unimodal distributions. For instance, the SQA function is non-monotonic when the shape parameter of the Weibull distribution $\alpha>\frac{1}{1-\ln(2)}\approx 3.259$ as shown in the previous article, the violation of the third orderliness starts near this parameter as well, yet the mean-BM $_{\frac{1}{a}}\text{-median}$ inequality is still valid when $\alpha \leq 3.322$. Another key factor in determining the risk of violation is the skewness of the distribution. Previously, it was demonstrated that in a family of distributions differing by a skewness-increasing transformation in van Zwet's sense, the violation of orderliness, if it happens, often only occurs when the distribution is nearly symmetrical (16). The over-corrections in rm and qm are dependent on the SWA_{ϵ} -median difference, which can be a reasonable measure of skewness (17, 18), implying that the over-correction is often tiny with a moderate d. This qualitative analysis provides another perspective, in addition to the bias bounds (15), that rm and qm based on the mean-SWA_{ϵ}-median inequality are generally safe.

B. Robust estimations of the central moments. In 1979, Bickel and Lehmann, in their final paper of the landmark series *Descriptive Statistics for Nonparametric Models* (19), generalized a class of estimators called "measures of spread," which "does not require the assumption of symmetry." From that, a popular

efficient scale estimator, the Rousseeuw-Croux scale estimator (20), was derived in 1993, but the importance of tackling the symmetry assumption has been greatly underestimated. While they had already considered one version of the trimmed standard deviation in the third paper of that series (21), in the final section of that paper (19), they explored another two possible versions, which were modified here for comparison,

$$\left[n\left(\frac{1}{2} - \epsilon\right)\right]^{-\frac{1}{2}} \left[\sum_{i=\frac{n}{2}}^{n(1-\epsilon)} \left[X_i - X_{n-i+1}\right]^2\right]^{\frac{1}{2}}, \quad [1] \quad {}_{218}$$

211

212

213

214

217

221

222

223

224

225

226

227

229

230

231

232

233

234

236

237

238

239

240

241

242

244

245

246

247

248

249

251

253

254

255

256

257

258

and 219

$$\left[\binom{n}{2} \left(1 - \epsilon - \gamma \epsilon \right) \right]^{-\frac{1}{2}} \left[\sum_{i=\binom{n}{2}\gamma\epsilon}^{\binom{n}{2}(1-\epsilon)} \left(X - X' \right)_i^2 \right]^{\frac{1}{2}}, \quad [2] \quad {}_{220}$$

where $(X - X')_1 \leq \ldots \leq (X - X')_{\binom{n}{2}}$ are the order statistics of the "pseudo-sample", $X_i - X_j$, i < j. The paper ended with, "We do not know a fortiori which of the measures [1] or [2] is preferable and leave these interesting questions open."

Observe that the kernel of the unbiased estimation of the second central moment by using U-statistic is $\psi_2(x_1, x_2) = \frac{1}{2}(x_1 - x_2)^2$. If adding the $\frac{1}{2}$ term in [2], as $\epsilon \to 0$, the result is equivalent to the standard deviation estimated by using U-statistic (also noted by Janssen, Serfling, and Veraverbeke in 1987) (22). In fact, they also showed that, when ϵ is 0, [2] is $\sqrt{2}$ times the standard deviation.

To address their open question, the nomenclature used in this paper is introduced as follows:

Nomenclature. Given a robust estimator $\hat{\theta}$ with an adjustable breakdown point which can be infinitesimal. The name of $\hat{\theta}$ is composed of two parts: the first part denotes the type of estimator, and the second part is the name of the population parameter θ that the estimator is consistent with as $\epsilon \to 0$. The abbreviation of the estimator is formed by combining the initial letter(s) of the first part with the common abbreviation of the consistent estimator that measures the population parameter. If the estimator is symmetric, ϵ is indicated in the subscript of the abbreviation of the estimator, except the median. For asymmetric estimators based on quantile average, the corresponding γ is also indicated after ϵ . Note that ϵ is the right breakdown point (defined in Subsection ??), while the left breakdown point should be further calculated.

In the previous article on semiparametric robust mean estimation, it was shown that the bias of a robust estimator with an adjustable breakdown point is often monotonic with respect to the breakdown point in a semiparametric distribution. Naturally, the estimator's name should correspond to the population parameter with which it is consistent as $\epsilon \to 0$. The trimmed standard deviation following this nomenclature

is $\operatorname{Tsd}_{\epsilon=1-\sqrt{1-\epsilon_0},\gamma,n}:=\left[\operatorname{TM}_{\epsilon_0,\gamma}\left((\psi_2\left(X_{N_1},X_{N_2}\right))_{N=1}^{\binom{n}{2}}\right)\right]^{-\frac{1}{2}},$ where $\operatorname{TM}_{\epsilon_0,\gamma}(Y)$ denotes the ϵ_0,γ -trimmed mean with the sequence $(\psi_2\left(X_{N_1},X_{N_2}\right))_{N=1}^{\binom{n}{2}}$ as an input, the proof of the breakdown point is given in Subsection ??. Removing the square root yields the trimmed variance $(\operatorname{T}\!\mathit{var}_{\epsilon,\gamma,n})$. It is now very clear that this definition, essentially the same as [2], should be preferable. Not only because it is essentially a

trimmed U-statistic for the standard deviation but also because the γ -orderliness of the second central moment kernel distribution is ensured by the next exciting theorem.

Theorem B.1. The second central moment kernel distribution generated from any unimodal distribution is γ -ordered, if $\gamma \leq 1$.

Proof. The monotonic increasing of the pairwise difference distribution was first implied in its unimodality proof done by Hodges and Lehmann in 1954 (23). Whereas they used induction to get the result, Dharmadhikari and Jogdeo in 1982 (24) provided a modern proof of the unimodality using Khintchine's representation (25). Assuming absolute continuity, Purkayastha (26) introduced a much simpler proof in 1998. Transforming the pairwise difference distribution by squaring and multiplying by $\frac{1}{2}$ does not change the monotonicity, making the pdf become monotonically decreasing with mode at zero. In the previous article, it was proven that a right skewed distribution with a monotonic decreasing pdf is always γ -ordered, if $\gamma \leq 1$, which gives the desired result.

Previously, it was shown that any symmetric distribution with a finite second moment is ν th ordered, indicating that orderliness does not require unimodality, e.g., a symmetric bimodal distribution is also ordered. An analysis of the Weibull distribution showed that unimodality does not guarantee orderliness. Theorem B.1 reveals another profound relationship between unimodality and orderliness, which is sufficient for trimming inequality.

In 1928, Fisher constructed k-statistics as unbiased estimators of cumulants (27). Halmos (1946) proved that the functional θ admits an unbiased estimator if and only if it is a regular statistical functional of degree k and showed a relation of symmetry, unbiasness and minimum variance (28). In 1948, Hoeffding generalized U-statistics (29) which enable the derivation of a minimum-variance unbiased estimator from each unbiased estimator of an estimable parameter. Heffernan (1997) (30) obtained an unbiased estimator of the kth central moment by using U-statistics and demonstrated that it is the minimum variance unbiased estimator for distributions with finite moments (31, 32). In 1976, Saleh generalized the Hodges-Lehmenn (H-L) estimator (33) to the trimmed H-L mean (which he named "Wilcoxon one-sample statistic") (34). In 1984, Serfling pointed out the speciality of Hodges-Lehmann estimator, which is neither a simple L-statistic nor a U-statistic, and considered the generalized L-statistics and Ustatistic structure (35). Also in 1984, Janssen and Serfling and Veraverbeke (36) showed that the Bickel-Lehmann spread also belongs to the same class. It gradually became clear that the Hodges-Lehmenn estimator, trimmed H-L mean and trimmed standard deviation are all trimmed U-statistics (37–39).

Extending the trimmed U-statistic to weighted U-statistic, i.e., replacing the trimmed mean with weighted average. The weighted kth central moment ($k \le n$) is defined as,

$$Wkm_{\epsilon=1-(1-\epsilon_0)^{\frac{1}{k}},\gamma,n} := WA_{\epsilon_0,\gamma,n} \left(\left(\psi_k \left(X_{N_1}, \cdots, X_{N_k} \right) \right)_{N=1}^{\binom{n}{k}} \right),$$

where X_{N_1}, \dots, X_{N_k} are the n choose k elements from X, $\psi_k(x_1, \dots, x_k) = \sum_{j=0}^{k-2} (-1)^j \left(\frac{1}{k-j}\right) \sum \left(x_{i_1}^{k-j} \dots x_{i_{(j+1)}}\right) + (-1)^{k-1} (k-1) x_1 \dots x_k$, the second summation is over $i_1, \dots, i_{j+1} = 1$ to k with $i_1 < \dots < i_{j+1}$ (30). Despite the complexity, the structure of the kth central moment kernel distributions can be elucidated by decomposing.

Theorem B.2. For each pair $(Q(p_i), Q(p_j))$ of the original distribution such that $Q(p_i) < Q(p_j)$, let $x_1 = Q(p_i)$ and $x_k = Q(p_j)$, $\Delta = Q(p_i) - Q(p_j)$, the kth central moment kernel distribution, k > 2, can be seen as a mixture distribution and each of the components has the support $\left(-\left(\frac{k}{3+(-1)^k}\right)^{-1}(-\Delta)^k, \frac{1}{k}(-\Delta)^k\right)$.

Proof. Without loss of generality, generating the distribution of the k-tuple $(Q(p_{i_1}),\ldots,Q(p_{i_k}))$ under continuity, $k>2,\ i_1<\ldots< i_k,\ p_{i_1}<\ldots< p_{i_k},$ the corresponding probability density is $f_{X,\ldots,X}(Q(p_{i_1}),\ldots,Q(p_{i_k}))=k!f(Q(p_{i_1}))\ldots f(Q(p_{i_k}))$. Transforming the distribution of the k-tuple by the function $\psi_k\left(x_1,\ldots,x_k\right)$, denoting $\bar{\Delta}=\psi_k\left(Q(p_{i_1}),\ldots,Q(p_{i_k})\right)$. The probability $f_{\Xi_k}(\bar{\Delta})=\sum_{\bar{\Delta}=\psi_k\left(Q(p_{i_1}),\ldots,Q(p_{i_k})\right)}f_{X,\ldots,X}(Q(p_{i_1}),\ldots,Q(p_{i_k}))$ is the summation of the probabilities of all k-tuples such that $\bar{\Delta}$ is equal to $\psi_k\left(Q(p_{i_1}),\ldots,Q(p_{i_k})\right)$. The following Ξ_k is equivalent.

 Ξ_k : Every pair with a difference equal to $\Delta = Q(p_{i_1}) - Q(p_{i_k})$ can generate a pseudodistribution (but the integral is not equal to 1, so "pseudo") such that x_2, \ldots, x_{k-1} exhaust all combinations under the inequality constraints, i.e., $Q(p_{i_1}) = x_1 < x_2 < \ldots < x_{k-1} < x_k = Q(p_{i_k})$. The combination of all the pseudodistributions with the same Δ is ξ_{Δ} . The combination of ξ_{Δ} , i.e., from $\Delta = 0$ to Q(0) - Q(1), is Ξ_k .

The support of ξ_{Δ} is the extrema of ψ_k subject to the inequality constraints. Using the Lagrange multi-plier, one can easily determine the only critical point at $x_1 = \ldots = x_k = 0$, where $\psi_k = 0$. Other candidates are within the boundaries, i.e., ψ_k $(x_1 = x_1, x_2 = x_k, \dots, x_k = x_k)$, $\psi_k (x_1 = x_1, \dots, x_i = x_1, x_{i+1} = x_k, \dots, x_k = x_k),$ $\psi_k (x_1 = x_1, \dots, x_{k-1} = x_1, x_k = x_k).$ $\psi_k (x_1 = x_1, \dots, x_i = x_1, x_{i+1} = x_k, \dots, x_k = x_k)$ can be divided into k groups. If $\frac{k+1-i}{2} \le j \le \frac{k-1}{2}$, from j+1st to k-jth group, the gth group has $i \binom{i-1}{g-j-1} \binom{k-i}{j}$ terms having the form ing the form $(-1)^{g+1} \frac{1}{k-g+1} x_1^{k-j} x_k^j$. If $j < \frac{k+1-i}{2}$, from j+1st to i+jth group, the gth group has $i \binom{i-1}{g-j-1} \binom{k-i}{j}$ terms having the form $(-1)^{g+1} \frac{1}{k-g+1} x_1^{k-j} x_k^j$. If $j \ge \frac{k}{2}$, from k-j+1st to jth group, the gth group has $(k-i) \binom{k-i-1}{j-k+g-1} \binom{i}{k-j}$ terms having the form $(-1)^{g+1} \frac{1}{k-g+1} x_1^{k-j} x_k^j$, from j+1th to j+ith group, i+j < k, the gth group has $i \binom{i-1}{g-j-1} \binom{k-i}{j} + (k-i) \binom{k-i-1}{j-k+g-1} \binom{i}{k-j}$ terms having the form $(-1)^{g+1} \frac{1}{k-g+1} x_1^{k-j} x_k^j$. The final kth group has $i \binom{i-1}{g-j-1} \binom{k-i}{j} + (k-i) \binom{k-i-1}{j-k+g-1} \binom{i}{k-j}$ terms having the form $(-1)^{g+1} \frac{1}{k-g+1} x_1^{k-j} x_k^j$. So, if i+j=k, $j \ge \frac{k}{2}$, $i \le \frac{k}{2}$, the summed coefficient of $x_1^i x_k^{k-i}$ is $(-1)^{k-1} (k-1) + \sum_{g=i+1}^{k-1} (-1)^{g+1} \frac{1}{k-g+1} i \binom{i-1}{g-k+i-1} = (-1)^{k-1} (k-1) + (-1)^{k+1} + (k-i)(-1)^k + (-1)^k (i-1) = (-1)^{k+1}$. The summation identities are $\sum_{g=i+1}^{k-1} (-1)^{g+1} \frac{1}{k-g+1} (k-i) \binom{k-i-1}{g-i-1} + (k-i) \binom{j}{0} \sum_{g=i+1}^{k-1} (-1)^{g+1} \frac{1}{k-g+1} (k-i) \binom{k-i-1}{g-i-1} = (k-i) \int_0^1 (-1)^i (t-1)^{k-i-1} - (-1)^{k+1} + (k-i)(-1)^k$ and $\sum_{g=k-i+1}^{k-1} (-1)^{g+1} \frac{1}{k-g+1} i \binom{i-1}{g-k+i-1} = (-1)^{k+1} + (k-i)(-1)^k$

 $\int_{0}^{1} \sum_{g=k-i+1}^{k-1} (-1)^{g+1} i \binom{i-1}{g-k+i-1} t^{k-g} dt = \int_{0}^{1} \left(i (-1)^{k-i} (t-1)^{i-1} - i (-1)^{k+1} \right) dt = (-1)^{k} (i-1).$ If $j < \frac{k+1-i}{2}, i > k-1$, if i = k, $\psi_{k} = 0$, if $\frac{k+1-i}{2} \le j \le \frac{k-1}{2}$, $\frac{k+1}{2} \le i \le k-1$, the summed coefficient of $x_{1}^{i} x_{k}^{k-i}$ is $(-1)^{k-1} (k-1) + \sum_{g=k-i+1}^{k-1} (-1)^{g+1} \frac{1}{k-g+1} i \binom{i-1}{g-k+i-1} + \sum_{g=i+1}^{k-1} (-1)^{g+1} \frac{1}{k-g+1} (k-i) \binom{k-i-1}{g-i-1}$, the same as above. If $\sum_{g=i+1} (-1)^{g-i} \frac{k-g+1}{k-g+1} (k-i) \binom{g-i-1}{g-i-1}, \text{ the same as above. In } i+j < k, \text{ since } \binom{i}{k-j} = 0, \text{ the related terms can be ignored, so, using the binomial theorem and beta function, the summed coefficient of } x_1^{k-j} x_k^j \text{ is } \sum_{g=j+1}^{i+j} (-1)^{g+1} \frac{1}{k-g+1} i \binom{i-1}{g-j-1} \binom{k-i}{j} = i \binom{k-i}{j} \int_0^1 \sum_{g=j+1}^{i+j} (-1)^{g+1} \binom{i-1}{g-j-1} t^{k-g} dt = \binom{k-i}{j} i \int_0^1 \binom{(-1)^j t^{k-j-1}} \binom{t}{(-1)^j t^{k-j-1}} \binom{t}{(k-j)!} dt = \binom{k-i}{j} i \frac{(-1)^{j+i+1} \Gamma(i)\Gamma(k-j-i+1)}{\Gamma(k-j+1)} = \frac{(-1)^{j+i+1} i! (k-j-i)! (k-i)!}{(k-j)! j! (k-j-i)!} = \binom{k-1}{j!} \binom$ The coefficient of $x_1^i x_k^{k-i}$ in $\binom{k}{i}^{-1} (-1)^{1+i} (x_1 - x_k)^k$ is $\binom{k}{i}^{-1} (-1)^{1+i} \binom{k}{i} (-1)^{k-i} = (-1)^{k+1}$, same as the summed coefficient if i+j=k. If i+j< k, the coefficient of $x_1^{k-j} x_k^j$ is $\binom{k}{i}^{-1} (-1)^{1+i} \binom{k}{j} (-1)^j$, same as the corresponding summed coefficient. Therefore, $\binom{k}{i} (-1)^{k-1} (-1)^$ fore, $\psi_k (x_1 = x_1, \dots, x_i = x_1, x_{i+1} = x_k, \dots, x_k = x_k)$ $\binom{k}{i}^{-1} (-1)^{1+i} (x_1 - x_k)^k$, the maximum and minimum of ψ_k follow directly from the properties of the binomial coeffi-cient.

 ξ_{Δ} is closely related to $f_{\Xi}(\Delta)$, which is the pairwise difference distribution, since the probability density of ξ_{Δ} can be expressed as $f_{\Xi_k}(\bar{\Delta}|\Delta)$ and $\sum_{\bar{\Delta}=-\left(\frac{k}{3+(\bar{\Delta})^k}\right)^{-1}(-\Delta)^k}^{\frac{k}{\bar{\Delta}}}f_{\Xi_k}(\bar{\Delta}|\Delta)=$

 $f_{\Xi}(\Delta)$. Recall that $f_{\Xi}(\Delta)$ is monotonic increasing with a mode at the origin if the original distribution is unimodal. Thus, in general, ignoring the shape of ξ_{Δ} , Ξ_k is monotonic left and right around zero. In fact, the median of Ξ_k also exhibits a strong tendency to be close to zero, as it can be cast as a weighted mean of the medians of ξ_{Δ} . When Δ is small, all values of ξ_{Δ} are close to zero, resulting in the median of ξ_{Δ} being close to zero as well. When Δ is large, the median of ξ_{Δ} depends on its skewness, but the corresponding weight is much smaller, so even if ξ_{Δ} is highly skewed, the median of Ξ_k will only be slightly shifted from zero. Denote the median of Ξ_k as m_{Ξ_k} , for the five parametric distributions here, $|m_{\Xi_k}|$ s are all $\leq 0.1\sigma$ for Ξ_3 and Ξ_4 (SI Dataset S1). Assuming $m_{\Xi_k}=0$, for the even ordinal central moment kernel distribution, the average probability density on the left side of zero is greater than that on the right side, since $\frac{\frac{1}{2}}{\binom{k}{2}^{-1}(Q(0)-Q(1))^k} > \frac{\frac{1}{2}}{\frac{1}{k}(Q(0)-Q(1))^k}$. This means that, on average, the inequality $f(Q(\epsilon)) > f(Q(1-\epsilon))$ holds. For the odd ordinal distribution, the discussion is more challenging since it is generally symmetric. Just consider Ξ_3 , let $x_1 = Q(p_i)$ and $x_3 = Q(p_i)$, changing the value of x_2 from $Q(p_i)$ to $Q(p_j)$ will monotonically change the value of $\psi_3(x_1, x_2, x_3)$, since $\frac{\partial \psi_3(x_1, x_2, x_3)}{\partial x_2} = -\frac{x_1^2}{2} - x_1 x_2 + 2x_1 x_3 + x_2^2 - x_2 x_3 - \frac{x_3^2}{2},$ $-\frac{3}{4} (x_1 - x_3)^2 \le \frac{\partial \psi_3(x_1, x_2, x_3)}{\partial x_2} \le -\frac{1}{2} (x_1 - x_3)^2 \le 0. \text{ If the original distribution is right-skewed,}$ so, for Ξ_3 , the average probability density of the right side of zero will be greater than that of the left side, which means, on average, the inequality $f(Q(\epsilon)) \leq f(Q(1-\epsilon))$ holds (the same result can be inferred from the definition of central moments, where the positivity of the odd order central moment is directly related to the left-skewness of the corresponding kernel distribution). In all, the monotonicity of the pairwise difference distribution guides the general shape of the kth central moment kernel distribution, k>2, forcing it to be unimodal-like with the mode and median close to zero, then, the inequality $f(Q(\epsilon)) \leq f(Q(1-\epsilon))$ or $f(Q(\epsilon)) \geq f(Q(1-\epsilon))$ holds in general. If a distribution is ordered and all of its central moment kernel distributions are also ordered, it is called completely ordered. Although strict complete orderliness is difficult to prove, even if the inequality may be violated in a small range, as discussed in Subsection A, the mean-SWA-median inequality remains valid, in most cases, for the central moment kernel distribution.

Another crucial property of the central moment kernel distribution, location invariant, is introduced in the next theorem. The proof is provided in the SI Text.

Theorem B.3.
$$\psi_k (x_1 = \lambda x_1 + \mu, \dots, x_k = \lambda x_k + \mu) = \lambda^k \psi_k (x_1, \dots, x_k).$$

Consider two continuous distributions belonging to the same location—scale family, their corresponding kth central moment kernel distributions only differ in scaling. So d is invariant, as shown in Subsection A. The recombined kth central moment, based on rm, is defined by,

$$rkm_{d,\epsilon=1-(1-\epsilon_0)^{\frac{1}{k}},n} := (d+1) \operatorname{SW} km_{\epsilon,n} - dmkm_n,$$

where $\mathrm{SW}km_{\epsilon,n}$ is using the binomial kth central moment $(\mathrm{B}km_{\epsilon_0,n})$ here, mkm_n is the median kth central moment. Since $\mathrm{SW}km_{\epsilon,n}$ is an L-statistic, the resulting $rkm_{d,\epsilon,n}$ is an arithmetic I-statistic. Similarly, the quantile will not change after scaling. The quantile kth central moment is thus defined as

$$qkm_{d,\epsilon,n} := \hat{Q}_n\left(\left(pSWkm_{\epsilon,n} - \frac{1}{2}\right)d + pSWkm_{\epsilon,n}\right),$$

where $pSWkm_{\epsilon,n} = \hat{F}_{\psi,n} (SWkm_{\epsilon,n})$, $\hat{F}_{\psi,n}$ is the empirical cumulative distribution function of the corresponding central moment kernel distribution. $qkm_{d,\epsilon,n}$ is a quantile *I*-statistic.

Finally, for standardized moments, quantile skewness and quantile kurtosis are defined to be $qskew_{d,\epsilon,n} := \frac{qtm_{d,\epsilon,n}}{qsd_{d,\epsilon,n}^3}$ and $qkurt_{d,\epsilon,n} := \frac{qfm_{d,\epsilon,n}}{qsd_{d,\epsilon,n}^3}$. Quantile standard deviation $(qsd_{d,\epsilon,n})$, recombined standard deviation $(rsd_{d,\epsilon,n})$, quantile third central moment $(qtm_{d,\epsilon,n})$, quantile fourth central moment $(qfm_{d,\epsilon,n})$, recombined third central moment $(rtm_{d,\epsilon,n})$, recombined fourth central moment $(rfm_{d,\epsilon,n})$, recombined skewness $(rskew_{d,\epsilon,n})$, and recombined kurtosis $(rkurt_{d,\epsilon,n})$ are all defined similarly as above and not repeated here. The transformation to a location problem can also empower related statistical tests. From the better performance of the quantile mean in heavy-tailed distributions, quantile central moments are generally better than recombined central moments regard-

To avoid confusion, it should be noted that the robust location estimations of the kernel distributions discussed in this paper differ from the approach taken by Joly and Lugosi (2016) (40), which is computing the median of all U-statistics from different disjoint blocks. Compared to bootstrap median U-statistics, this approach can produce two additional kinds of finite sample bias, one arises from the limited numbers of

ing asymptotic bias.

blocks, another is due to the size of the *U*-statistics. Laforgue, Clemencon, and Bertail (2019)'s median of randomized *U*-statistics (41) is more sophisticated and can overcome the limitation of the number of blocks, but the second kind of bias remains unsolved, which only can be avoided when the kernel is the Hodges-Lehmann kernel.

468

469

470

471

474

475

478

479

480

481

482

483

484

487

488

489

490

491

492

494

495

496

497

498

501

502

503

504

505

506

509

510

511

512

513

514

515

516

517

519

520

C. Congruent distribution. In the realm of nonparametric statistics, the precise values of robust estimators are of secondary importance. What is of primary importance is their relative differences or orders. Based on this principle, in the absence of contamination, as the parameters of the distribution vary, all reasonable nonparametric location estimates should asymptotically change in the same direction. Otherwise if the results obtained based on the trimmed mean are completely different from those based on the median, a contradiction arises. However, such contradictions are possible, as in the case of the Weibull distribution, $E[m] = \lambda \sqrt[\alpha]{\ln(2)}$, $E[\mu] = \lambda \Gamma \left(1 + \frac{1}{\alpha}\right)$, then, when $\alpha = 1$, $E[m] = \lambda \ln(2) \approx 0.693\lambda$, $E[\mu] = \lambda$, but when $\alpha = \frac{1}{2}$, $E[m] = \lambda \ln^2(2) \approx 0.480\lambda$, $E[\mu] = 2\lambda$, the mean increases, but the median decreases. To study the conditions that avoid such scenarios, let the quantile average function of a parametric distribution be denoted as QA $(\epsilon, \gamma, \alpha_1, \dots, \alpha_i, \dots, \alpha_k)$, where α_i represent the parameters of the distribution, then, a distribution is γ -congruent if and only if the sign of $\frac{\partial QA}{\partial \alpha_i}$ remains the same for all $0 \le \epsilon \le \frac{1}{1+\gamma}$. If this partial derivative is equal to zero or undefined, it can be considered both positive and negative, and thus does not impact the analysis. Asymptotically, any weighted average can be expressed as an integral of the quantile average function. Since the sign does not change after integration, the sign of $\frac{\partial \mathrm{QA}}{\partial \alpha_i}$ remains the same for all $0 \leq \epsilon \leq \frac{1}{1+\gamma}$ implies that all γ -weighted averages change in the same direction as the parameters change, as long as they are not undefined. A distribution is completely γ -congruent if and only if it is γ -congruent and all its central moment kernel distributions are also γ -congruent. Setting $\gamma = 1$ constitutes the definitions of congruence and complete congruence. Chebyshev's inequality implies that, for any probability distribution with finite moments, even if some weighted averages change in a direction different from that of the sample mean, the deviations are bounded. Furthermore, distributions with infinite moments can be γ -congruent, since the definition is based on the quantile average, not the sample mean.

The following theorems show the conditions that a distribution is congruent or γ -congruent.

Theorem C.1. A symmetric distribution with a finite second moment is always congruent.

Proof. For any symmetric distribution with a finite second moment, all symmetric quantile averages coincide. The conclusion follows immediately.

Theorem C.2. A positive define location-scale distribution with a finite second moment is always γ -congruent.

Proof. As shown in discussions in Subsection A, for a locationscale distribution, any weighted average can be expressed as $\lambda WA_0(\epsilon) + \mu$, where $WA_0(\epsilon)$ is an integral of $Q_0(p)$ according to the definition of the weighted average. Therefore, the derivatives with respect to the parameters λ or μ are always positive. By application of the definition, the desired outcome is obtained. $\hfill\Box$

526

527

530

531

532

533

535

540

541

543

546

549

550

551

552

553

556

557

558

559

562

563

564

565

569

570

571

572

573

574

575

576

577

Theorem C.3. The second central moment kernal distribution derived from a continuous location-scale unimodal distribution with a finite second moment is always γ -congruent.

Proof. Theorem B.3 shows that the corresponding central moment kernel distribution is also a location-scale family distribution. Theorem B.1 shows that it is positively defined. Implementing Theorem C.2 yields the desired result. \Box

For the Pareto distribution, $\frac{\partial Q(p,\alpha)}{\partial \alpha} = \frac{x_m(1-p)^{-1/\alpha} \ln(1-p)}{\alpha^2}$. Since $\ln(1-p) < 0$ for all $0 , <math>(1-p)^{-1/\alpha} > 0$ for all $0 and <math>\alpha > 0$, so $\frac{\partial Q(p,\alpha)}{\partial \alpha} < 0$, and therefore $\frac{\partial QA(\epsilon,\gamma,\alpha)}{\partial \alpha} < 0$, the Pareto distribution is γ -congruent. The derivative for the lognormal distribution is $\frac{\partial \mathrm{SQA}(\epsilon,\sigma)}{\partial \sigma}$ $-\operatorname{erfc}^{-1}(2\epsilon)e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2\epsilon)} - \operatorname{erfc}^{-1}(2-2\epsilon)e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2-2\epsilon)}$ the inverse complementary error function is positive when the input is smaller than 1, and negative when the input is larger than 1, $\operatorname{erfc}^{-1}(2\epsilon) = -\operatorname{erfc}^{-1}(2-2\epsilon)$, $e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2-2\epsilon)} > e^{\mu-\sqrt{2}\sigma\operatorname{erfc}^{-1}(2\epsilon)}$, $\frac{\partial\operatorname{SQA}(\epsilon,\sigma)}{\partial\sigma} > 0$, the lognormal distribution is congruent. Theorem C.1 implies that the generalized Gaussian distribution is congruent. For the Weibull distribution, when α changes from 1 to $\frac{1}{2}$, the average probability density on the left side of the median increases, since $\frac{\frac{1}{2}}{\lambda \ln(2)} < \frac{\frac{1}{2}}{\lambda \ln^2(2)}$, but the mean increases, indicating that the distribution is more heavy-tailed, the probability density of large values will also increase. The main reason for non-congruence of a right-skewed smooth partial bounded probability distribution lies in the simultaneous increase of probability densities on two opposite sides: one approaching the bound and the other approaching infinity. Note that the gamma distribution does not have this issue, it looks to be congruent.

Although some common parametric distributions are not congruent. Theorem C.2 establishes that γ -congruence always holds for a positive define location-scale family distribution and thus for the second central moment kernel distribution generated from a continuous location-scale unimodal distribution as shown in Theorem C.3. Theorem B.2 demonstrates that all their central moment kernel distributions are unimodal-like with mode and median close to zero, as long as they are unimodal distributions. Assuming finite moments and constant Q(0) - Q(1), increasing the mean of the kernel distribution will result in a more heavy-tailed distribution, i.e., the probability density of the values close to $\frac{1}{k}(-\Delta)^k$ increases. While the total probability density on either side of zero remains unchanged as the median is generally close to zero and much less impacted by increasing the mean, the probability density of the values close to zero decreases. This transformation will increase nearly all symmetric weighted averages, in the general sense. Therefore, except for the median, which is assumed to be zero, nearly all symmetric weighted averages for all central moment kernel distributions derived from unimodal distributions should change in the same direction when the parameters change.

Data Availability. Data for Table ?? are given in SI Dataset S1. All codes have been deposited in GitHub.

6 | Lee

ACKNOWLEDGMENTS. I gratefully acknowledge the construc-580 tive comments made by the editor which substantially improved the clarity and quality of this paper. 582

581

583

584 585

586

587

588

589

590

591

592

593

594

595

596 597

598 599

606

607

615

- 1. CF Gauss, Theoria combinationis observationum erroribus minimis obnoxiae. (Henricus Dieterich), (1823).
- 2. S Newcomb, A generalized theory of the combination of observations so as to obtain the best result. Am. journal Math. 8, 343-366 (1886).
- 3. S Newcomb, Researches on the motion of the moon. part ii, the mean motion of the moon and other astronomical elements derived from observations of eclipses and occultations extending from the period of the babylonians until ad 1908. United States. Naut. Alm. Off. Astron. paper; v. 99, 1 (1912).
- 4. PJ Huber, Robust estimation of a location parameter. Ann. Math. Stat. 35, 73-101 (1964).
- 5. X He, WK Fung, Method of medians for lifetime data with weibull models. Stat. medicine 18, 1993-2009 (1999).
- 6. M Menon, Estimation of the shape and scale parameters of the weibull distribution. Technometrics 5, 175-182 (1963).
- 7. SD Dubey, Some percentile estimators for weibull parameters. *Technometrics* **9**, 119–129
- 8. KM Hassanein, Percentile estimators for the parameters of the weibull distribution, Biometrika 58, 673-676 (1971).
- 9. NB Marks. Estimation of weibull parameters from common percentiles. J. applied Stat. 32. 600 601 17-24 (2005)
- 10. K Boudt, D Caliskan, C Croux, Robust explicit estimators of weibull parameters. Metrika 73, 602 603 187-209 (2011).
- 11. SD Dubey, Contributions to statistical theory of life testing and reliability. (Michigan State 604 605
 - University of Agriculture and Applied Science. Department of statistics), (1960) 12. LJ Bain, CE Antle, Estimation of parameters in the weibdl distribution. Technometrics 9. 621-627 (1967).
- 608 13. RV Hogg, Adaptive robust procedures: A partial review and some suggestions for future 609
- applications and theory. J. Am. Stat. Assoc. 69, 909-923 (1974). 610 14. RJ Hyndman, Y Fan, Sample quantiles in statistical packages. The Am. Stat. 50, 361-365 (1996)
- 611 15. C Bernard, R Kazzi, S Vanduffel, Range value-at-risk bounds for unimodal distributions under 612 613
- partial information. Insur. Math. Econ. 94, 9-24 (2020). 614 16. WR van Zwet, Convex Transformations of Random Variables: Nebst Stellingen. (1964).
 - 17. AL Bowley, Elements of statistics. (King) No. 8, (1926).
- 616 18. RA Groeneveld, G Meeden, Measuring skewness and kurtosis. J. Royal Stat. Soc. Ser. D 617 (The Stat. 33, 391-399 (1984).
- PJ Bickel, EL Lehmann, Descriptive statistics for nonparametric models iv. spread in Selected 618 Works of EL Lehmann. (Springer), pp. 519-526 (2012). 619
- 20. PJ Rousseeuw, C Croux, Alternatives to the median absolute deviation. J. Am. Stat. associa-620 tion 88, 1273-1283 (1993).
- 21. PJ Bickel, EL Lehmann, Descriptive statistics for nonparametric models. iii. dispersion in 622 Selected works of EL Lehmann. (Springer), pp. 499-518 (2012). 624
- 22. P Janssen, R Serfling, N Veraverbeke, Asymptotic normality of u-statistics based on trimmed 625 samples. J. statistical planning inference 16, 63-74 (1987).
- 626 23. J Hodges, E Lehmann, Matching in paired comparisons. The Annals Math. Stat. 25, 787-791 627
- 24. S Dharmadhikari, K Jogdeo, Unimodal laws and related in A Festschrift For Erich L. Lehmann. 628 (CRC Press), p. 131 (1982). 629
- AY Khintchine, On unimodal distributions. Izv. Nauchno-Isled. Inst. Mat. Mech. 2, 1-7 (1938). 630 631 26. S Purkayastha, Simple proofs of two results on convolutions of unimodal distributions. Stat. &
- 632 probability letters 39, 97-100 (1998).
- 633 27. RA Fisher, Moments and product moments of sampling distributions. Proc. Lond. Math. Soc. 2, 199-238 (1930) 634 635
 - 28. PR Halmos. The theory of unbiased estimation. The Annals Math. Stat. 17, 34-43 (1946).
- 29. W Hoeffding, A class of statistics with asymptotically normal distribution. The Annals Math. 636 Stat. 19, 293-325 (1948). 637
- 30. PM Heffernan, Unbiased estimation of central moments by using u-statistics. J. Royal Stat. 638 Soc. Ser. B (Statistical Methodol. 59, 861-863 (1997). 639
- 31. D Fraser, Completeness of order statistics. Can. J. Math. 6, 42-45 (1954). 640
- 32. AJ Lee, U-statistics: Theory and Practice. (Routledge), (2019). 641
- 33. J Hodges Jr, E Lehmann, Estimates of location based on rank tests. The Annals Math. Stat. 642 34, 598-611 (1963). 643
- 34. A Ehsanes Saleh, Hodges-lehmann estimate of the location parameter in censored samples. 644 Annals Inst. Stat. Math. 28, 235-247 (1976). 645
- 35. RJ Serfling, Generalized I-, m-, and r-statistics. The Annals Stat. 12, 76-86 (1984). 646
- 36. P Janssen, R Serfling, N Veraverbeke, Asymptotic normality for a general class of statistical 647 648 functions and applications to measures of spread. The Annals Stat. 12, 1369-1379 (1984).
- 37. MG Akritas, Empirical processes associated with v-statistics and a class of estimators under 649 random censoring. The Annals Stat. 14, 619-637 (1986). 650
- 38. I Gijbels, P Janssen, N Veraverbeke, Weak and strong representations for trimmed u-statistics. 651 Probab. theory related fields 77, 179-194 (1988). 652
 - 39. J Choudhury, R Serfling, Generalized order statistics, bahadur representations, and sequential nonparametric fixed-width confidence intervals. J. Stat. Plan. Inference 19, 269-282 (1988).
- 40. E Joly, G Lugosi, Robust estimation of u-statistics. Stoch. Process. their Appl. 126. 3760-3773 655 656 (2016).
- 657 41. P Laforque, S Clémencon, P Bertail, On medians of (randomized) pairwise means in Interna-658 tional Conference on Machine Learning. (PMLR), pp. 1272-1281 (2019).

653

654