

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ

ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА

СИСТЕМЫ ОБРАБОТКИ ИНФОРМАЦИИ И УПРАВЛЕНИЯ (ИУ5)

ОТЧЕТ

по лабораторной работе

по дис	циплине:	<u>Технологии</u>	машинного	обучения	[
на тему	: <u>Линейн</u>	ые модели, S	SVM и деревья	я решений	<u>i.</u>	
						_
						_
						_
						_
						_
						_
						_
						_
Студент	<u>ИУ5-62Б</u> (Группа)		(Г	Іодпись, дата)	<u>Карягин</u> (И.О.Фам	
Руководи	тель					<u>Ю.Е.</u> Гапанюк
					(Подпись, дата) (И.О.Фамилия)	

Лабораторная работа №5

Линейные модели, SVM и деревья решений

Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train test split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие
 - *модели: одну из линейных
 - •моделей; SVM;
 - •дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Дополнительные задания

- •Проведите эксперименты с важностью признаков в дереве решений.
- •Визуализируйте дерево решений.

Ход выполнения лабораторной работы

```
In [205]:
```

```
import pandas as
pd import seaborn
as sns import
numpy as np
from typing import Tuple, Dict
import matplotlib.pyplot as
plt from operator import
from sklearn.model_selection import
train test split from sklearn.linear model import
LinearRegression from sklearn.preprocessing
import StandardScaler
from sklearn.metrics import fl_score, r2_score, mean_squared_error, mean_absolute_error,
accur acy score, precision score
from sklearn.svm import LinearSVR, SVR
from sklearn.tree import DecisionTreeRegressor, plot tree
%matplotlib
sns.set(style="ticks"
```

In [206]: col_list = ['Pelvic_incidence',

```
'Pelvic_tilt',
         "Lumbar_lordosis_angle
          ', 'Sacral_slope',
         'Pelvic_radius',
         'Degree spondylolisthe
         sis', 'Pelvic_slope',
         'Direct_tilt',
         "Thoracic_slo
         pe',
         'Cervical_tilt',
         'Sacrum_angl
         e'.
         'Scoliosis_slo
         pe',
         'Class_att',
         "To_drop"
data = pd.read_csv('data/Dataset_spine.csv', names=col_list, header=1,
sep=",") data.drop('To_drop', axis=1, inplace=True)
```

In [207]:

data.head()

Out[207]:

	Pelvic_incidence	Pelvic_tilt	Lumbar_lordosis_angle	Sacral_slope	Pelvic_radius	Degree_spondy
0	39.056951	10.060991	25.015378	28.995960	114.405425	
1	68.832021	22.218482	50.092194	46.613539	105.985135	
2	69.297008	24.652878	44.311238	44.644130	101.868495	
3	49.712859	9.652075	28.317406	40.060784	108.168725	
4	40.250200	13.921907	25.124950	26.328293	130.327871	

In [208]:

data.isnull().sum()

Out [208]: Pelvic_incidence 0 Pelvic_tilt Lumbar_lordosis_angle 0 Sacral_slope Pelvic_radius Degree spondylolisthesis Pelvic_slope 0 0 Direct_tilt Thoracic_slope 0 Cervical_tilt Sacrum_angle 0 Scoliosis_slope 0 Class att 0 dtype: int64

Пропуски данных отсутствуют.

```
In [209]: data['Class_att'] = data['Class_att'].map({'Abnormal': 1, 'Normal': 0})
```

Разделим выборку на обучающую и тестовую:

```
In [210]:
```

```
# Разделим данные на целевой столбец и признаки
X = data.drop("Class_att",
axis=1) Y = data["Class_att"]
```

```
In [211]: #С использованием метода train_test_split разделим выборку на обучающую и 
тестовую X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, 
random_state=1) X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
```

```
Out[211]: ((231, 12), (78, 12), (231,), (78,))
```

Линейная модель

```
In [212]:
                   #Построим корреляционную матрицу
                   sns.set(style="white")
                   corr = data.corr(method='pearson')
                   mask = np.zeros_like(corr,
                   dtype=np.bool)
                   mask[np.triu_indices_from(mask)] =
                   True f, ax = plt.subplots(figsize=(11,
                   cmap = sns.diverging_palette(220, 10, as_cmap=True)
                   g=sns.heatmap(corr, mask=mask, cmap=cmap, center=0, annot=True,
                           fmt='.3f', square=True, linewidths=.5, cbar_kws={"shrink": .5})
                       Pelvic_incidence
                            Pelvic_tilt
                                            0.434
                  Lumbar_lordosis_angle
                                                                                                                          1.0
                                            0.063
                          Sacral_slope
                                                                                                                         - 0.8
                                      -0.248 0.035 -0.084 -0.344
                          Pelvic radius
                                                                                                                         - 0.6
                                            0.399
                                                             -0.030
                Degree_spondylolisthesis
                                                                                                                         -0.4
                          Pelvic_slope 0.043 0.007 0.032 0.050 0.020 0.088
                                                                                                                         -0.2
                                     -0.078 -0.071 -0.115 -0.048 0.059 -0.066 0.016
                                                                                                                         -0.0
                                     -0.090 -0.064 -0.063 -0.068 0.063 -0.056 -0.013 0.011
                        Thoracic_slope
                                                                                                                         -0.2
                                     0.016 0.027 0.067 0.001 -0.035 0.059 0.085 0.077 0.051
                           Cervical tilt
                                     0.020 0.035 0.055 -0.001 0.024 0.020 0.065 -0.042 0.013 0.062
                        Sacrum_angle
                        0.353 0.325 0.314 0.211 -0.308 0.446 0.054 -0.037 -0.050 0.098 0.030 -0.074
                            Class_att
                                                                     Degree_spondylolisthesis
                                       Pelvic incidence
                                                               Pelvic_radius
```

```
In [213]: fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x='Pelvic_incidence', y='Sacral_slope', data=data)
```

Out [213]: <matplotlib.axes._subplots.AxesSubplot at 0x5d88a30>


```
x_array =
In [214]:
                  data['Pelvic_incidence'].values
                  y_array = data['Sacral_slope'].values
In [215]:
                  # Аналитическое вычисление коэффициентов регрессии
                  def analytic_regr_coef(x_array : np.ndarray,
                                y_array : np.ndarray) -> Tuple[float, float]:
                    x mean = np.mean(x array)
                    y mean = np.mean(y array)
                    var1 = np.sum([(x-x_mean)**2 for x in x_array])
                    cov1 = np.sum([(x-x_mean)*(y-x_mean) for x, y in zip(x_array,
                    y_array)]) b1 = cov1 / var1
                    b0 = y \text{ mean - } b1*x \text{ mean}
                    return b0, b1
In [216]:
                  b0, b1 = analytic_regr_coef(x_array,
                  y_array) b0, b1
Out [216]: (4.565546113493063, 0.6347707526286969)
In [217]:
                  # Вычисление значений у на основе х для регрессии
                  def y_regr(x_array : np.ndarray, b0: float, b1: float) ->
                    np.ndarray: res = [b1*x+b0 \text{ for } x \text{ in } x \text{ array}]
                    return res
In [218]:
                  y_array_regr = y_regr(x_array, b0, b1)
                  #Простейшая реализация градиентного спуска
In [219]:
                  def gradient_descent(x_array:
                              np.ndarray, y_array :
                               np.ndarray,
                              b0 0
                               float,
                              b1 0
                               float.
                              epochs:
                              learning_rate : float = 0.001
                             ) -> Tuple[float, float]:
                    # Значения для коэффициентов по умолчанию
                    b0, b1 = b0 \ 0, b1 \ 0
```

k = float(len(x_array))
for i in range(epochs):

```
#Вычисление новых предсказанных значений

# используется векторизованное умножение и сложение для вектора и константы
у_pred = b1 * x_array + b0

# Расчет градиентов

# пр.тиltiply - поэлементное умножение векторов

dL_db1 = (-2/k) * пр.sum(пр.multiply(x_array, (y_array -
y_pred))) dL_db0 = (-2/k) * пр.sum(y_array - y_pred)

# Изменение значений коэффициентов:

b1 = b1 - learning_rate *

dL_db1 b0 = b0 -
learning_rate * dL_db0

# Результирующие

значения y_pred = b1 *
x_array + b0 return b0,
b1, y_pred
```

In [220]:

```
def show_gradient_descent(epochs, b0_0, b1_0):
grad_b0, grad_b1, grad_y_pred = gradient_descent(x_array, y_array, b0_0, b1_0, epochs) print('b0 = {} · (теоретический), {} · (градиентный спуск)'.format(b0, grad_b0)) print('b1 = {} · (теоретический), {} · (градиентный спуск)'.format(b1, grad_b1)) print('MSE = {}'.format(mean_squared_error(y_array_regr, grad_y_pred))) plt.plot(x_array, y_array, 'g.')
plt.plot(x_array, y_array_regr, 'b', linewidth=2.0) plt.plot(x_array, grad_y_pred,
'r', linewidth=2.0) plt.show()
```

In [221]:

```
#Примеры использования градиентного спуска show_gradient_descent(0, 1, 1)
```

b0 = 4.565546113493063 - (теоретический), 1 - (градиентный спуск) b1 = 0.6347707526286969 - (теоретический), 1 - (градиентный спуск) MSE = 382.8630387134672

In [222]:

```
show_gradient_descent(0, 1, 0.7)
```

```
b0 = 4.565546113493063 - (теоретический), 1 - (градиентный спуск)
b1 = 0.6347707526286969 - (теоретический), 0.7 - (градиентный спуск)
MSE = 1.4084724961222816
```



```
In [223]: #Обучим линейную регрессию и сравним коэффициенты с рассчитанными ранее reg1 = LinearRegression().fit(x_array.reshape(-1, 1), y_array.reshape(-1, 1)) (b1, reg1.coef_), (b0, reg1.intercept_)
```

Out[223]: ((0.6347707526286969, array([[0.63477075]])), (4.565546113493063, array([4.56554611])))

SVM

```
In [224]: fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x=x_array,
y=y_array)
```

Out [224]: <matplotlib.axes._subplots.AxesSubplot at 0xf20d730>


```
In [225]: def plot_regr(clf):
    title = clf.__repr
    clf.fit(x_array.reshape(-1, 1), y_array)
    y_pred = clf.predict(x_array.reshape(-1,
        1)) fig, ax = plt.subplots(figsize=(5,5))
    ax.set_title(title)
    ax.plot(x_array, y_array,
    'b.')    ax.plot(x_array,
    y_pred, 'ro') plt.show()
```

In [226]:

plot_regr(LinearSVR(C=1.0, max_iter=100000))

<bound method BaseEstimator._</p> _repr_ of LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, intercept scaling=1.0, loss='epsilon insensitive', max iter=100000,

In [227]:

plot_regr(SVR(kernel='rbf', gamma=0.2, C=1.0))

bound method BaseEstimator._ of SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.2, kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)>

Дерево решений

```
In [228]:
```

Обучим дерево на всех признаках tree = DecisionTreeRegressor(random_state=1)

tree.fit(X train, Y train)

Out [228]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None, max features=None, max leaf nodes=None, min impurity decrease=0.0, min impurity split=None, min samples leaf=1, min samples split=2, min weight fraction leaf=0.0, presort='deprecated', random state=1, splitter='best')

```
In [229]:
```

Важность признаков

list(zip(X train.columns.values, tree.feature importances))

```
Out [229]: [('Pelvic incidence', 0.03881985535831688),
              ('Pelvic tilt', 0.0648640652612829),
              ('Lumbar lordosis angle', 0.06149200087661627),
              ('Sacral slope', 0.08263904265020883),
              ('Pelvic radius', 0.181238439623055),
              ('Degree spondylolisthesis', 0.41411903317709764),
              ('Pelvic slope', 0.023065828402366866),
              ('Direct tilt', 0.01842735042735041),
              ('Thoracic slope', 0.07000532439464523),
              ('Cervical tilt', 0.007145299145299295),
              ('Sacrum_angle', 0.038183760683760684),
              ('Scoliosis_slope', 0.0)]
In [230]:
                 # Важность признаков в сумме дает единицу
                 sum(tree.feature_importances_)
Out[230]: 1.0
In [231]:
                 def draw feature importances(tree model, X dataset, figsize=(10,5)):
                    Вывод важности признаков в виде графика
                    # Сортировка значений важности признаков по убыванию
                   list_to_sort = list(zip(X_dataset.columns.values,
                   tree_model.feature_importances_)) sorted_list = sorted(list_to_sort,
                   key=itemgetter(1), reverse = True)
                    # Названия признаков
                   labels = [x for x,_in sorted_list]
                    #Важности признаков
                   data = [x for _,x in sorted_list]
                    # Вывод графика
                    fig, ax =
                    plt.subplots(figsize=figsize) ind =
                   np.arange(len(labels)) plt.bar(ind,
                    data)
                    plt.xticks(ind, labels, rotation='vertical')
                    #Вывод значений
                    for a,b in zip(ind, data):
                      plt.text(a-0.05, b+0.01,
                    str(round(b,3))) plt.show()
                    return labels, data
```

tree_fl, tree_fd = draw_feature_importances(tree, X_train)

In [232]:

In [233]: #Список признаков, отсортированный на основе важности, и значения важности tree_fl, tree_fd

Out [233]: (['Degree_spondylolisthesis',

'Pelvic_radius',

'Sacral_slope',

'Thoracic_slope',

'Pelvic_tilt',

'Lumbar_lordosis_angle',

'Pelvic_incidence',

'Sacrum_angle',

'Pelvic_slope',

'Direct_tilt',

'Cervical_tilt',

'Scoliosis_slope'],

[0.41411903317709764,

0.181238439623055,

0.08263904265020883,

0.07000532439464523,

0.0648640652612829,

0.06149200087661627,

0.03881985535831688,

0.038183760683760684,

0.023065828402366866,

0.01842735042735041,

0.007145299145299295,

([0.0])

In [234]:

X train.head()

Out[234]:

Pelvic_incidence Pelvic_tilt Lumbar_lordosis_angle Sacral_slope Pelvic_radius Degree_spon

291 34.756738 2.631740 29.504381 32.124998 127.139850

17	38.697912 13.444749	31.000000 25.253163	123.159251
110	84.998956 29.610098	83.352194 55.388858	126.912990
228	43.436451 10.095743	36.032224 33.340707	137.439694
125	70.676898 21.704402	59.181161 48.972496	103.008355

In [235]:

Пересортируем признаки на основе важности X_train_sorted = X_train[tree_fl] X_train_sorted.head()

Out[235]:

	Degree_spondylolisthesis	Pelvic_radius	Sacral_slope	Thoracic_slope	Pelvic_tilt	Lumbar_lor
291	-0.460894	127.139850	32.124998	11.2762	2.631740	
17	1.429186	123.159251	25.253163	17.9575	13.444749	
110	71.321175	126.912990	55.388858	9.0119	29.610098	
228	-3.114451	137.439694	33.340707	11.0132	10.095743	
125	27.810148	103.008355	48.972496	14.8568	21.704402	

In [236]: Y test predict = tree.predict(X test)

In [237]: mean absolute error(Y test, Y test predict)

Out[237]: 0.11538461538461539

In [238]:

Обучим дерево и предскажем результаты на пяти лучиих признаках tree_2 = DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:5]], Y_train) Y_test_predict_2 = tree_2.predict(X_test[tree_fl[0:5]])

In [239]: mean absolute error(Y test, Y test predict 2)

Out[239]: 0.1666666666666666

In [240]:

Исследуем, как изменяется ошибка при добавлении признаков в порядке значимости $X_{\text{range}} = \text{list}(\text{range}(1, \text{len}(X_{\text{train.columns}})+1)) X_{\text{range}}$

Out[240]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

In [241]:

mae_list = []

for i in X_range:

Обучим дерево и предскажем результаты на заданном количестве признаков tree_3 =

DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:i]], Y_train)

Y_test_predict_3 = tree_3.predict(X_test[tree_fl[0:i]])

temp_mae = mean_absolute_error(Y_test,__

Y_test_predict_3) mae_list.append(temp_mae)

In [242]:

plt.subplots(figsize=(10 ,5)) plt.plot(X_range, mae_list) for a,b in zip(X_range, mae_list): plt.text(a, b, str(round(b,3))) plt.show()

Оценка качества моделей

Дерево решений

```
In [243]: print("r2_score:", r2_score(Y_test, tree.predict(X_test)))
print("mean_squared_error:", mean_squared_error(Y_test,
tree.predict(X_test)))
```

r2_score: 0.4701886792452832

mean_squared_error: 0.11538461538461539

Линейная регрессия

```
In [244]: 

pred = reg1.predict(x_array.reshape(-1,
1)) print("r2_score:", r2_score(y_array,
pred))

print("mean_squared_error", mean_squared_error(y_array, pred))

r2_score: 0.664423352506976
mean_squared_error 60.45739674813066
```

Метод опорных векторов

mean squared error 0.08725724224573822

```
In [245]:

SVR(kernel="rbf")

svr.fit(X_train,
Y_train)

print("r2_score:", r2_score(Y_test, svr.predict(X_test)))

print("mean_squared_error", mean_squared_error(Y_test,
svr.predict(X_test)))

r2_score: 0.5993410854165501
```

Последние две модели являются приемлемыми, т.к. коэффициент детерминации для всех трех моделей больше 50%.

Если учитывать показатели обеих метрик, наилучший результат показал метод опорных векторов.