

What's the focus of our analysis?

- Popularity analysis of disciplines.
- Analysis of the athletes for each country to discover the most influent ones.
- Analysis of the reasons behind the popularity of the candidates.
- Comparison between candidates' mentions and followers.
- Temporal analysis of candidates' achievements.

Datasets

Athletes who participated in the Olympic Games of 2012, 2016 and 2020.

Medals won by athletes during each edition.

Received mentions and followers of the athletes during each edition.

Integrated data source's ER diagram

Conceptual design - DFM

- Two dimensions: temporal and geographical.
- Two types of measures: performance and popularity.

Logical design: multiple independent star schemas

Results_per_State_FT
total_mentions
total_followers
total_medals
year
state

 Highest level of performance obtained by separating primary and secondary events.

Physical design: join index

p_row	r_row
1	1
2	2
3	3
4	4

• Optimization of the only one join we have to do.

Some queries

select distinct state, sum(total_mentions) as total_mentions, sum(total_medals) as total_medals
from results_per_state_ft
group by state
order by total_medals desc;

select state, discipline, sum(total_mentions)
from participants_dt join results_ft on participants_dt.participant_id=results_ft.participant_id
where year=2020
group by rollup(state, discipline)
order by state, discipline;

select name, year, avg(total_mentions) over (partition by name order by year) as cumulative_mentions
from participants_dt join results_ft on participants_dt.participant_id=results_ft.participant_id;

Extra - SparkSQL Spark SQL

- For analyzing the datasets in a large scale environment.
- Use of PySpark and advanced DF concepts.
- Two steps.

Step 1: schema creation and data loading.

```
results schema = StructType().add("total mentions", IntegerType())\
                             .add("total followers", IntegerType())\
                             .add("total medals", IntegerType())\
                             .add("year", IntegerType())\
                             .add("state", StringType())
#DF LOAD
r df = spark session.read.schema(results schema)\
```

Step 2: window definition (optional) and query execution.

```
= Window.partitionBy("state") \
         .orderBy("year")\
         .rowsBetween(-1, Window.currentRow)
df.select("state", "year", f.avg("total mentions").over(w).alias("mobile mentio$
     .orderBy("state", "year") \
```

Most relevant outcomes

Medals won by the most mentioned athletes

Received mentions of the best performing athletes

Received mentions of the most followed athletes

Comparison between mentions and medals per discipline

Comparison between mentions and medals per state

Most discussed disciplines per year

Total mentions per year and state

Total medals per state and year

Overall effort

- Almost 3 hours a day for more than 12 days:
 - About 7 hours for operational data sources inspection.
 - About 4 hours for conceptual design.
 - About 15 hours for logical design whose almost 13 for data cleaning and integration.
 - About 5 hours for OLAP queries.
 - About 3 hours for SparkSQL.
 - About 1 hour for Tableau.

Teamwork

- Pair programming for step (1)-(4).
- Giacomo focused on step (6) and made the powerpoint presentation.
- Manuel focused on step (5) and discussed the presentation.

Conclusions

- We should invest in disciplines that are always popular across the years, then
 we have to choose a set of candidate testimonials
- For a short-term campaign, it's better to sign the most popular athletes of the last edition, even if they didn't win medals.
- For a long-term campaign, it's better to sign the best performing athletes (in particular those who got significant results in the last two editions)

THANK YOU FOR THE PARTICIPATION!

