Data Structures and Longitudinal Analysis

Andrew S. Zieffler

Wide Format

- Response variable occupies multiple columns
 - Single row for each subject (subjects-byvariables)
- Format used for RM-ANOVA and RM-MANOVA

Each subjects' data contained in a single row

_	subid	read.5	read.6	read.7	read.8	risk	gen	eth	ell	sped	att
σ	1	172	185	179	194	HHM	F	Afr	8	H	8.94
2	2	288	218	289	-99	HHM	F	Afr	. 8	H	0.91
3	- 3	191	199	283	215	HHM	H	Afr		N	8.97
4	- 4	288	195	194	-99	HHM	F	Afr		N	88.9
5	5	287	213	212	213	HHM	F	Afr		N	8.85
6	6	191	189	286	195	HHK	H	Afr		N	8.98
7	7	199	288	213	218	POV	H	Afr	1	N	8.97
8	8	191	194	194	-99	POV	F	His	1		8.97
g	9	149	154	174	177	POV	Ė				8.97
18	18	288	212	213	-99	POV	F	Afr			8.96
11	11	218	231	233	239	POV	F				0.98
12		228	232	248	246	POV	Ė	Mhi			8.96
13		228	236	228	239	ADV	Ē				8.99
14		199	218	225	235	ADV	H		i		8.99
15		218	223	236	-99	ADV	F				1.00
16		228	226	234	227	ADV			ě		0.97
17	17	281	218	288	219	ADV	Ĥ				8.98
18		218	228	217	221	ADV	Ä		ě		1.00
19		215	216	221	-99	ADV	ï		ě		8.96
28		284	215	219	214	ADV	· E	Afr			0.95
21		237	241	243	-99	ADV	Ņ				0.98
22	22	219	233	236	-99	ADV	. F	Afr			0.96

Response Measure

```
        subid
        read.6 read.7 read.8
        risk gen eth ell sped att

        1
        1
        172
        185
        179
        194
        HHM
        F Afr
        8
        N 9.94

        2
        2
        280
        218
        289
        -99
        HHM
        F Afr
        8
        N 9.94

        3
        3
        191
        199
        283
        215
        HHM
        M Afr
        8
        N 9.97

        4
        4
        280
        195
        194
        -99
        HHM
        F Afr
        8
        N 9.98

        5
        5
        287
        213
        212
        213
        HHM
        F Afr
        8
        N 9.88

        6
        6
        191
        189
        206
        195
        HHM
        H Afr
        8
        N 9.85

        7
        7
        199
        208
        213
        218
        POV
        H MAfr
        8
        N 9.96

        7
        7
        199
        208
        212
        213
        299
        POV
        F Afr
        8
        N 9.97

        18
        <t
```

Static Predictor(s) subid read.5 read.6 read.7 read.8 risk gen eth ell sped att 289 283 194 288 191 194 HHM 199 -99 215 -99 191 199 286 213 195 189 288 149 154 174 213 -99 177 -99 F His F Afr 248 246 228 N 0.98 225 236 234 288 217 221 16 16 228 226 -99 227 19 216 -99 19 215 21 22 237 243 236 -99 -99 H Nhi F Afr 233

Long Format

- Response variable occupies single column
 - Multiple rows for each subject
- Static predictors are constant among rows
- Dynamic predictors vary among rows
- Format used for mixed-effects models

Each subjects' data contained in a multiple rows

1	ubid 1								
		HEM	F	Afr	8		8.94	grade 5	read 172
2	1	HHM	F	Afr	8	N	8.94	6	185
3	1	HHM	F	Afr		N	8.94	7	179
4	_ 1	HEM	F	Afr	8	N	8.94	8	194
5	2	HHM	F	Afr	8	N	8.91	5	200
6	2	HHM	F	Afr		N	8.91	6	218
7	2	HEM	F	Afr	8	N	8.91	7	289
8	2	HHM	F	Afr			8.91	8	-99
9	3	HHM	H	Afr		N	8.97	5	191
10	3	HHM	H	Afr	8	N	8.97	- 6	199
11	3	HHM	H	Afr	8	N	0.97	7	283
12	3	HHM	H	Afr		N	8.97		215
13	4	HHM	F	Afr	8	N	88.8	5	288
14	- 4	HHM	F	Afr		N	88.8	- 6	195
15	- 4	HEM	F	Afr	8	N	88.8	7	194
16	4	HHM	F	Afr	8	N	88.8	8	-99
17	5	HHM	F	Afr	8	N	0.85	5	287
18	5	HEM	F	Afr	8	N	0.85	- 6	213
19	- 5	HEN	F	Afr	8	N	8.85	7	212
20	5	HHM	F	Afr		N	8.85	8	213
21	6	HHM	H	Afr		N	8.98	5	191
22	6	HHM	H	Afr	8	N	8.98	6	189

Response Measure

	subid	risk	gen	eth	ell	sped	att	grade	read
1	1	HHM	F	Afr		N	8.94	- 5	172
2	1	HHM	F	Afr		N	8.94	- 6	185
3	1	HHM	F	Afr		N	8.94	7	179
4	- 1	HHM	F	Afr		N	8.94	- 8	194
5	2	HHM	F	Afr	8	N	0.91	5	200
6	2	HHM	F	Afr		N	0.91	- 6	218
7	2	HHM	F	Afr	8	N	0.91	7	289
8	2	HHM	F	Afr		N	8.91	8	-99
9	3	HHM	H	Afr		N	8.97	5	191
18	3	HHM	H	Afr		N	0.97	- 6	199
11	3	HHM	H	Afr		N	8.97	7	283
12	3	HHM	H	Afr	. 8	N	8.97	8	215
13	4	HHM	F	Afr		N	88.8	5	288
14	4	HHM	F	Afr		N	88.8	- 6	195
15	4	HHM	F	Afr	8	N	88.8	7	194
16	4	HHM	F	Afr		N	0.88	8	-99
17	5	HHM	F	Afr		N	0.85	5	207
18	5	HHM	F	Afr	8	N	0.85	- 6	213
19	5	HHM	F	Afr		N	8.85	7	212
28	5	HHM	F	Afr		N	8.85	. 8	213
21	6	HHM	H	Afr		N	8.98	5	191
22		HHM		Afr		N	8.98	6	189

Dynamic Predictor

	subid	elek			-11	-	-44	grade	read
٠									
1	. !	HEM		Afr			8.94	5	172
2	. !	HEM		Afr			0.94	6	185
3	- 1	HHM		Afr			8.94	7	179
4	- 1	HEM	F	Afr	- 8	N	0.94	18	194
5	2	HHM	F	Afr		N	0.91	5	200
6	2	HHM	F	Afr		N	8.91	6	218
7	2	HHM	F	Afr		N	0.91	7	289
8	2	HHM	F	Afr		N	8.91	8	-99
9	3	HHM		Afr			8.97	5	191
10	3	HHM		Afr			8.97	- 6	199
11	3	HEM		Afr			8.97	7	283
12	3	HHM		Afr			8.97		215
13	4	HHM		Afr			88.8	5	288
14	4	HHM		Afr			8.88	- 6	195
15	4	HHM		Afr			8.88	7	194
16	4	HHM		Afr	8		88.8	8	-99
17	5	HHM		Afr			0.85	5	287
18	5	HHM		Afr			8.85	6	213
19	5	HHM		Afr	ě		8.85	7	212
20	5	HHM		Afr			8.85	8	213
21	6	HHM		Afr	ě		8.98	5	191
22	6	HHM		Afr	ě		8.98	6	189

Static Predictor(s)

	subid	risk	gen eth	an.	sned	att	grade	read
1	1	HEM	F Afr	8		8.94	5	172
2	- 1	HEM	F Afr		N	8.94	6	185
3	- 1	HHM	F Afr		N	8.94	7	179
4	- 1	HEM	F Afr	- 8	N	8.94	8	194
5	2	HEM	F Afr	8	N	0.91	5	200
6	2	HHM	F Afr		N	0.91	- 6	218
7	2	HEM	F Afr	8	N	0.91	7	289
8	2	HEM	F Afr	8	N	8.91	8	-99
9	3	HHM	H Afr		N	0.97	5	191
18	3	HHM	M Afr		N	0.97	- 6	199
11	3	HEM	M Afr	8	N	0.97	7	283
12	3	HHM	H Afr		N	8.97		215
13	4	HHM	F Afr	8	N	88.8	5	288
14	4	HEM	F Afr	8	N	8.88	- 6	195
15	4	HEM	F Afr	8	N	8.88	7	194
16	4	HHM	F Afr	8	N	0.88	. 8	-99
17	5	HEM	F Afr	8	N	0.85	- 5	287
18	5	HEM	F Afr	8	N	0.85	- 6	213
19	- 5	HHM	F Afr		N	8.85	7	212
20	5	HHM	F Afr		N	8.85	8	213
21	6	HHM	H Afr		N	8.98	5	191
22	6	HHM	H Afr	8	N	8.98	6	189

Using RStudio to Read in Data

Click Import
 Dataset
 (workspace)


```
> head(mpls)
> str(mpls)
> summary(mpls)
```

Missing Data

- summary() suggests problems
- Codebook indicates –99 is missing
- R treats –99 as a value
- −99 needs to be replaced with NA

Means and Variances

- mean() for mean
- sd() for standard deviation
- If there are NAs, then the argument na.rm=TRUE needs to be added

```
> apply( mpls[ , 2:5], 2, mean, na.rm = TRUE )
read.5 read.6 read.7 read.8
205.1364 211.4545 215.6818 218.8000
```

means increase over time...

but, difference between first two means is greater than difference between last two means...

indicating deceleration in growth

```
> apply( mpls[ , 2:5], 2, sd, na.rm = TRUE )
  read.5   read.6   read.7   read.8
19.99356 20.06116 19.44562 19.37881
```

standard deviations show very slight decrease over time

Correlations

- cor() for correlation
- If there are NAs, then the argument use="complete.obs" needs to be added (listwise deletion)

Conditioning on Static Predictors

• tapply() for conditioning

```
> tapply( mpls[ , 2], mpls[ , 6], mean, na.rm = TRUE )

ADV HHM POV
216.7 193.5 197.5
> tapply( mpls[ , 2], mpls[ , 11], mean, na.rm = TRUE )

too many conditioning values for descriptive work...
```

Splitting Variables

- Only for descriptive work...not inference
- Can use ifelse() function for dichotomies
- Use recode() from the car package for polychotomies
- Use cut() from the car package for splitting quantitative variables

Reshaping Data

- Wide format to long format
- Use the reshape() function

```
idvar = "subid" subject ID (character string)

varying = 2:5 columns with response measures

v.names = "read" new name for response

times = 5:8 columns with time predictors

timevar = "grade" new name for time predictor

direction = "long" direction for new data frame
```

```
> mpls.l <- reshape( data = mpls, idvar = "subid", varying = 2:5,
    v.names = "read", times = 5:8, timevar = "grade",
    direction = "long" )
> head( mpls.l, n = 10 )
     subid risk gen eth ell sped att att2 grade read
1.5
               F Afr
                              N 0.94
                                             5 172
2.5
                                                288
3.5
                 H Afr
                              N 0.97
                                                191
4.5
                 F Afr
                              N 0.88
                                             5 200
5.5
                                             5 207
                 F Afr
                              N 0.85
6.5
        6 HHM
                                             5 191
                 N Afr
                              N 8.98
7.5
        7 POV
                 H Afr
                              N 0.97
                                             5 199
8.5
        8 POV
                 F His
                              Y 0.97
                                             5 191
9.5
                 F Afr
                              Y 0.97
                                             5 149
10.5
                F Afr
```

Sort by Subject ID

 Use the arrange() function from the plyr library

```
> library( plyr )
> arrange( mpls.l, subid )
> mpls.l <- arrange( mpls.l, subid )
> head( mpls.l, n = 10 )
   subid risk gen eth ell sped att att2 grade read
               F Afr
                            N 0.94
                                               172
                            N 0.94
                                               185
                                               179
                            N 0.94
                                               194
                F Afr
                            N 0.94
                                               200
                F Afr
                            N 0.91
                                            6 210
                F Afr
                            N 0.91
                                               209
                            N 0.91
                F Afr
                            N 0.91
                                                NA
                                               191
                            N 0.97
                            N 0.97
```

Missing Data in LMER

- Missing data will be ignored
- Any row in long format having NA will be omitted

Subject with no missing data All rows included

Subject with missing response

Some rows included

	subid	risk	gen	eth	ell	sped	att	att2	grade	read
5	2	HHM	F	Afr	0	N	0.91	1	- 5	200
6	2	HHM	F	Afr	. 8	N	0.91	- 1	6	218
7	2	HHM	F	Afr	8	N	0.91	- 1	7	209
9	,	ным	- 5	Afr	ā		0 01	- 1		MA

Subject with missing covariate No rows included

Not a problem if gender is not included in analysis

Missing Data in LMER

- Time will be unbalanced (not every subject has same number of rows)
- If subjects are missing data on covariates number of subjects will vary across different analyses
- Having a different sample sizes makes comparisons difficult (maybe even invalid)
- Use na.omit() to remove rows with NAs

```
> mpls.l <- na.omit( mpls.l )
> head( mpls.l, n = 10 )
   subid risk gen eth ell sped att att2 grade read
                                               172
                            N 0.94
                            N 0.94
                                               179
                            N 0.94
                                            5 200
                            N 0.91
                                            6 210
                            N 0.91
                            N 0.91
                                               209
                            N 0.97
                                               191
               M Afr 8
                            N 0.97
                                               199
```

Missing Data Mechanism

- Justification to omit rows with NA is based on assumptions about missing data mechanism (process responsible for missing data)
- Three processes considered
 - Missing completely at random (MCAR)
 - Missing at random (MAR)
 - Not missing at random (NMAR)

Complete (Unobserved) Data (each NA replaced by value that would have occurred if the observation could have been observed) Missing Data Mechanism Unknown to researcher

Incomplete (Observed) Data (has NAs)

MCAR

- Incomplete observed data is a random sample of the complete unobserved data
- NA values are randomly assigned
- Missingness due to sickness can be considered random

MAR

- Incomplete observed data is a conditional random sample of the complete unobserved data
- NA values are randomly assigned conditional on some attribute
- Missingness due to sickness is higher for families with higher levels of poverty. However, within levels of poverty, illness can be considered random

NMAR

- Incomplete observed data is not a random sample of the complete unobserved data
- NA values are not random in any way
- Missingness due to students not tested because students skipped (self-selection)

Results on LMER

- Results when missing data is MCAR are valid (generally).
- Results when missing data is MAR are valid (generally) when the attribute that missingness is conditioned on is included in the analysis.
- Results when missing data is NMAR are not valid (generally). The results will be biased to an unknown extent.