Министерство образования и науки РФ ФГБОУ ВПО Рыбинский государственный авиационнотехнический университет имени П.А. Соловьева

Факультет радиоэлектроники и информатики
Кафедра математического и программного обеспечения
электронных вычислительных средств

Специальность «Програмное обеспечение вычислительной техники и автоматизированных систем»

Лабораторная работа №1

по дисциплине

«Основы теории управления» «Моделирование линейных звеньев 1-го порядка» вариант №5

Студент гр. ИВП-09	Кулаевский Д.Ю.
Преподаватель	Павлов Р.В.

1 Цель работы

Ознакомиться с методикой моделирования звеньев с дробно-рациональными передаточными функциями 1-го порядка с помощью пакета СТЕМ.

2 Задание по лабораторной работе

Звено описывается дифференциальным уравнением

$$y' + ay = bq$$

Для заданных значений а и b найти теоретически выходной сигнал блока y(t), если входной сигнал имеет вид:

- 1) g(t) = 1(t),
- $2) \ g(t) = \delta(t),$
- 3) $q(t) = \sin \omega t$.

Построить таблицы и графики выходного сигнала y(t) для всех случаев. Получить логариф-мические характеристики блока. Вычисления можно выполнять с использованием пакета MATHCAD.

3 Дифференциальное уравнение и передаточная функция заданого блока

$$y' = 0.5y + x$$
$$W(p) = \frac{1}{p + 0.5}$$

4 Расчет выходных сигналов

4.1 Единичная ступень

Изображение по Лапласу для данного входного сигнала равно $G(p)=\frac{1}{p}.$ Известно, что изображение по Лапласу выходного сигнала равно Y(p)=W(p)G(p), значит

$$Y(p) = \frac{1}{p+0.5} * \frac{1}{p} = \frac{1}{p(p+0.5)}$$
$$y(t) = 2 - 2e^{-0.5t}$$

В таблице 1 указаны значения функции, график функции h(t) изображен на рисунке 1.

Таблица 1 — Таблица значений функции h(t)

t	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6
y(t)	0	0,4423	0,7869	1,0552	1,2642	1,4269	1,5537	1,6524	1,7293	1,7892	1,8358	1,8721	1,9004

Рисунок 1 – График переходной характеристики h(t)

4.2 Импульс Дирака

Изображение по Лапласу для импульса Дирака:G(p) = 1.

Известно, что изображение по Лапласу выходного сигнала равно Y(p) = W(p)G(p), значит

$$Y(p) = \frac{1}{p+0.5} * 1 = \frac{1}{p+0.5}$$
$$y(t) = e^{-0.5t}$$

В таблице 2 указаны значения функции, график функции $\omega(t)$ изображен на рисунке 2.

Таблица 2 – Таблица значений функции для синусоидального выходного сигнала

t	0	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6
y(t)	1	0,7788	0,6065	0,4723	0,3678	0,2865	0,2231	0,1737	0,1353	0,1053	0,0820	0,0639	0,0497

Рисунок 2 – График весовой функции $\omega(t)$

4.3 Синусоидальный сигнал

Изображение по Лапласу для синусоидального сигнала: $G(p) = \frac{\omega}{p^2 + \omega^2}$. Известно, что изображение по Лапласу выходного сигнала равно Y(p) = W(p)G(p), тиран

$$Y(p) = \frac{1}{p+0.5} * \frac{\omega}{p^2 + \omega^2}$$
$$y(t) = \frac{e^{-0.5t}\omega}{\omega^2 + 0.25} - \frac{\omega\cos(\omega t)}{\omega^2 + 0.25} + \frac{\sin(\omega t)}{2\omega^2 + 0.5}$$

В таблице 3 указаны значения функции, график функции $\sin(\omega t)$ для $\omega=0.5$ изображен на рисунке 3.

Таблица 3 – Таблица значений функции для синусоидального входного сигнала

t	0	2	4	6	8	10	12	14	16	18	20	22	24
y(t)	0	0,4917	1,2902	1,6798	1,3521	0,4153	-0,7069	-1,4931	-1,5757	-0,9167	0,1735	1,1823	1,6350

Рисунок 3 – График синусоидального выходного сигнала

Частотные характеристики могут быть получены из соотношений:

$$\begin{split} Wj\omega &= u(\omega) + jv(\omega) = \\ &= \frac{1}{j\omega + 0.5} = \frac{0.5}{0.25 + \omega^2} - j\frac{\omega}{0.25 + \omega^2} = \\ &= \frac{2}{4\omega^2 + 1} - j\frac{4\omega}{4\omega^2 + 1} \\ A(\omega) &= \sqrt{\left(\frac{0.5}{0.25 + \omega^2}\right)^2 + \left(\frac{\omega}{0.25 + \omega^2}\right)^2} \\ L(\omega) &= 20 \lg 2 - 20 \lg(\sqrt{1 + 4\omega^2}) \\ \phi(\omega) &= -\arctan 2\omega \end{split}$$

5 Графики функций, полученные экспериментальным путем

Рисунок 4 – График реакции звена на δ -импульс

Рисунок 5 – График реакции звена на единичное воздействие

Рисунок 6 — Амплитудно-частотные характеристики звена для сигнала $\sin \omega t$

6 Соотношение вход/выход для сигнала $\sin \omega t$ на разных частотах

Здесь входящий всегда имеет еденичную амплитуду.

Рисунок 7 — График сравнения при низкой частоте входного сигнала $\omega=0.1$

Рисунок 8 — График сравнения при средней частоте входного сигнала $\omega=0.35$

Рисунок 9 — График сравнения при высокой частоте входного сигнала $\omega=1$

7 Вывод

В данной лабораторной работе было смоделированно апереодическое звено 1-го порядка. Инерционными звеньями первого порядка являются конструктивные элементы, которые могут накапливать энергию или вещество, и обладающие свойством без изменения внешних воздействий приходить в установившееся состояние (самовыравниванием). При скачке воздействия выходная величина не может измениться скачком, а изменяется плавно по экспоненте, т.е. звено обладает инерцией. Отсюда происходит название звена – инерционное. Переходная функция возрастает монотонно, без колебаний. Отсюда происходит название звена – апериодическое (т.е. не имеющее периода, неколебательное). Такое звено увеличивает амплитуду низких частот синусоидального сигнала и уменьшает амплитуду высоких.