Estimación Lineal

Cecilia Galarza

Procesos Estocásticos Facultad de Ingeniería, Universidad de Buenos Aires

Estimación de Menor Error Cuadrático Medio

Sean $\mathbf{X} \in \mathbb{C}^n$ e $\mathbf{Y} \in \mathbb{C}^m$ dos vectores aleatorios, cuya estadística conjunta es conocida. Se desea estimar \mathbf{X} a partir de la observación de una realización \mathbf{y} , es decir, se busca una función

$$g(\mathbf{y}): \mathbb{C}^m \to \mathbb{C}^n$$
 tal que $\hat{\mathbf{x}} = g(\mathbf{y})$ esté cercano a \mathbf{X}

Si $\hat{\mathbf{x}} = g(\mathbf{y})$ es visto como la transformación del VeA \mathbf{Y} , entonces $\hat{\mathbf{X}}$ es un VeA. Un posible criterio de *cercanía* es el *Error Cuadrático Medio* (MSE, *Mean Square Error*)

$$\textit{MSE}(\hat{\boldsymbol{X}}) = \mathbb{E}\left[\|\boldsymbol{X} - \hat{\boldsymbol{X}}\|^2\right]$$

Estimador MMSE

Definición (Estimador MMSE)

El estimador MMSE (Minimun Mean Square Error) es el que minimiza $MSE(\hat{\mathbf{X}})$,

$$\hat{\mathbf{X}}_{mmse} = \arg\min_{\hat{\mathbf{X}} = q(\mathbf{Y})} \mathbb{E}\left[\|\mathbf{X} - \hat{\mathbf{X}}\|^2\right]$$

Teorema

El estimador MMSE es la esperanza condicional

$$\hat{\mathbf{X}}_{\textit{mmse}} = \mathbb{E}\left[\mathbf{X}|\mathbf{Y}\right]$$

Para simplificar notación, llamamos:

$$\mu(\mathbf{Y}) = \mathbb{E}[\mathbf{X}|\mathbf{Y}]$$
 y $\Delta(\mathbf{Y}) = \mu(\mathbf{Y}) - \hat{\mathbf{X}}(\mathbf{Y}).$

Luego,

$$\mathbf{X} - \hat{\mathbf{X}}(\mathbf{Y}) = \mathbf{X} - \mu(\mathbf{Y}) + \mu(\mathbf{Y}) - \hat{\mathbf{X}}(\mathbf{Y}) = \mathbf{X} - \mu(\mathbf{Y}) + \Delta(\mathbf{Y}).$$

Retomando el MSE

$$MSE = \mathbb{E}[\|\mathbf{X} - \hat{\mathbf{X}}\|^{2}] = \mathbb{E}[(\mathbf{X} - \hat{\mathbf{X}}(\mathbf{Y}))^{*}(\mathbf{X} - \hat{\mathbf{X}}(\mathbf{Y}))]$$

$$= \mathbb{E}[(\mathbf{X} - \mu(\mathbf{Y}) + \Delta(\mathbf{Y}))^{*}(\mathbf{X} - \mu(\mathbf{Y}) + \Delta(\mathbf{Y}))]$$

$$= \mathbb{E}[\|\mathbf{X} - \mu(\mathbf{Y})\|^{2}]$$

$$+ \mathbb{E}[(\mathbf{X} - \mu(\mathbf{Y}))^{*}\Delta(\mathbf{Y})] + \mathbb{E}[\Delta(\mathbf{Y})^{*}(\mathbf{X} - \mu(\mathbf{Y}))] \qquad (2)$$

 $+\mathbb{E}[\Delta(\mathbf{Y})^*\Delta(\mathbf{Y})]$

(3)

No depende de $\hat{\mathbf{X}}$, no lo considero para la minimización

$$= \mathbb{E}\left[(\mathbf{X} - \mu(\mathbf{Y}))^* \underbrace{\left(\mu(\mathbf{Y}) - \hat{\mathbf{X}}(\mathbf{Y})\right)}_{\Delta(\mathbf{Y})} \right] + \mathbb{E}\left[\underbrace{\left(\mu(\mathbf{Y}) - \hat{\mathbf{X}}(\mathbf{Y})\right)^*}_{\Delta(\mathbf{Y})^*} (\mathbf{X} - \mu(\mathbf{Y})) \right]$$

Recordemos que \forall X, Y, $\mathbb{E}[X] = \mathbb{E}_{X}[\mathbb{E}_{X|Y}[X|Y]].$

$$\begin{split} \mathbb{E}[(\mathbf{X} - \mu(\mathbf{Y}))^* \Delta(\mathbf{Y})] &= \mathbb{E}\Big[\mathbb{E}[(\mathbf{X} - \mu(\mathbf{Y}))^* \Delta(\mathbf{Y}) | \mathbf{Y}]\Big] \\ &= \mathbb{E}\Big[\mathbb{E}[\mathbf{X}^* \Delta(\mathbf{Y}) - \mu(\mathbf{Y})^* \Delta(\mathbf{Y}) | \mathbf{Y}]\Big] \\ &= \mathbb{E}\Big[\underbrace{\mathbb{E}[\mathbf{X}^* | \mathbf{Y}]}_{\mu(\mathbf{Y})^*} \Delta(\mathbf{Y}) - \mu(\mathbf{Y})^* \Delta(\mathbf{Y})\Big] = 0 \end{split}$$

$$\mathfrak{J} = \mathbb{E}[\|\Delta(\mathbf{Y})\|^2] = \mathbb{E}\left[\left\|\mu(\mathbf{Y}) - \hat{\mathbf{X}}\right\|^2\right] = \mathbb{E}\left[\left\|\mathbb{E}[\mathbf{X}|\mathbf{Y}] - \hat{\mathbf{X}}\right\|^2\right]$$

Recapitulando

- (1), no depende de X
- ② es nulo

$$ullet$$
 $\begin{cases} ullet$ $\begin{case$

Minimizar MSE con respecto a $\hat{\mathbf{X}}(\mathbf{Y})$ equivale a minimizar 3. Luego,

$$\hat{\boldsymbol{X}}_{\textit{mmse}} = \mathbb{E}[\boldsymbol{X}|\boldsymbol{Y}].$$

Principio de ortogonalidad

Recordemos que \mathbf{X} y \mathbf{Y} son ortogonales sii $\mathbb{E}[\mathbf{X}^*\mathbf{Y}] = 0$.

$$\begin{split} \mathbb{E}\left[\hat{\boldsymbol{X}}_{\textit{mmse}}^*(\boldsymbol{Y})\left(\boldsymbol{X}-\hat{\boldsymbol{X}}_{\textit{mmse}}(\boldsymbol{Y})\right)\right] &= \mathbb{E}\Big[\mathbb{E}\big[\hat{\boldsymbol{X}}_{\textit{mmse}}^*\boldsymbol{X}-\hat{\boldsymbol{X}}_{\textit{mmse}}^*\hat{\boldsymbol{X}}_{\textit{mmse}}|\boldsymbol{Y}\big]\Big] \\ &= \mathbb{E}\Big[\hat{\boldsymbol{X}}_{\textit{mmse}}^*\mathbb{E}[\boldsymbol{X}|\boldsymbol{Y}]-\hat{\boldsymbol{X}}_{\textit{mmse}}^*\hat{\boldsymbol{X}}_{\textit{mmse}}\Big] = 0 \end{split}$$

Los vectores $\hat{\mathbf{X}}_{mmse}$ y $(\mathbf{X} - \hat{\mathbf{X}}_{mmse})$ son ortogonales entre sí

Ejemplo

Sea la VA Y = X + W donde $X \sim \text{Ber}(p)$ y $W \sim \mathcal{N}(0,1)$, X y W independientes. Halle el estimador MMSE de X al observar Y.

Sabemos que

$$\hat{X}_{mmse} = \mathbb{E}[X|Y].$$

Planteamos

$$\varphi(y) = \mathbb{E}[X|Y = y].$$

Esta función se conoce como función de regresión.

Ejemplo (cont.)

Como $X \sim \text{Ber}(p)$,

$$\varphi(y) = 0 \mathbb{P}(X = 0 | Y = y) + 1 \mathbb{P}(X = 1 | Y = y) = \mathbb{P}(X = 1 | Y = y).$$

Usando la definición de probabilidad condicional y Bayes:

$$\mathbb{P}(X = 1 | Y = y) = \frac{f_{Y|X=1}(y)\mathbb{P}(X = 1)}{f_{Y}(y)}.$$

Por definición Y es una mezcla de gaussianas:

$$f_Y(y) = (1-p)\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}} + p\frac{1}{\sqrt{2\pi}}e^{-\frac{(y-1)^2}{2}}.$$

Por otro lado,

$$f_{Y|X=1}(y) = f_W(y-1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(y-1)^2}{2}}.$$

Ejemplo (cont.)

Combinando todo se tiene:

$$\varphi(y) = \frac{pe^{-\frac{(y-1)^2}{2}}}{(1-p)e^{-\frac{y^2}{2}} + pe^{-\frac{(y-1)^2}{2}}} = \frac{p}{(1-p)e^{-\frac{1}{2}[y^2 - (y-1)^2]} + p}$$
$$= \frac{p}{p + (1-p)e^{\frac{1}{2}-y}}.$$

$$\longrightarrow \hat{X}_{mmse} = rac{p}{p + (1-p)e^{rac{1}{2}}e^{-Y}}.$$

Observaciones:

- $X \in \{0, 1\}$, pero $\hat{X}_{mmse} \in [0, 1]$.
- $\phi(y) = \frac{p}{p+(1-p)e^{\frac{1}{2}}e^{-y}}$ función no-lineal en y.

Notación

$$\mu_{\mathbf{X}} = \mathbb{E}[\mathbf{X}] \quad , \quad \mathbf{C}_{\mathbf{X}} = \mathbb{E}\left[(\mathbf{X} - \mu_{\mathbf{X}}) (\mathbf{X} - \mu_{\mathbf{X}})^* \right]$$

$$\mu_{\mathbf{Y}} = \mathbb{E}[\mathbf{Y}] \quad , \quad \mathbf{C}_{\mathbf{Y}} = \mathbb{E}\left[(\mathbf{Y} - \mu_{\mathbf{Y}}) (\mathbf{Y} - \mu_{\mathbf{Y}})^* \right] \quad , \quad \mathbf{R}_{\mathbf{Y}} = \mathbb{E}[\mathbf{Y}\mathbf{Y}^*]$$

$$\mathbf{R}_{\mathbf{XY}} = \mathbb{E}[\mathbf{XY}^*] \quad , \quad \mathbf{C}_{\mathbf{XY}} = \mathbb{E}\left[(\mathbf{X} - \mu_{\mathbf{X}}) (\mathbf{Y} - \mu_{\mathbf{Y}})^* \right]$$

Estimador Lineal de Menor Error Cuadrático Medio (LMMSE)

Es interesante limitar la búsqueda de $\hat{\mathbf{X}} = g(\mathbf{Y})$ a estimadores del tipo,

$$g(\mathbf{Y}) = \mathbf{AY} + \mathbf{b}.$$

donde $\mathbf{A} \in \mathbb{C}^{n \times m}$ y $\mathbf{b} \in \mathbb{C}^n$ son constantes. Para minimizar el MSE planteamos el principio de ortogonalidad, es decir

$$\mathbb{E}\left[\underbrace{(\mathbf{AY}+\mathbf{b})^*}_{\hat{\mathbf{X}}^*}\underbrace{(\mathbf{X}-\mathbf{AY}-\mathbf{b})}_{\mathbf{X}-\hat{\mathbf{X}}}\right]=0$$
 (1)

Por el principio de ortogonalidad, tenemos

$$\mathbb{E}\left[\underbrace{(\boldsymbol{A}\boldsymbol{Y}+\boldsymbol{b})^*}_{\hat{\boldsymbol{X}}^*}\underbrace{(\boldsymbol{X}-\boldsymbol{A}\boldsymbol{Y}-\boldsymbol{b})}_{\boldsymbol{X}-\hat{\boldsymbol{X}}}\right]=0.$$

$$\mathsf{Como}\; \hat{\mathbf{X}}^*(\mathbf{X}-\hat{\mathbf{X}}) \in \mathbb{C} \Longrightarrow \hat{\mathbf{X}}^*(\mathbf{X}-\hat{\mathbf{X}}) = \mathsf{tr}\left[\hat{\mathbf{X}}^*(\mathbf{X}-\hat{\mathbf{X}})\right].$$

Entonces, buscamos A y b tal que

$$\mathbb{E}\big\{\operatorname{\mathsf{tr}}\left[\left(\boldsymbol{\mathsf{AY}}+\boldsymbol{\mathsf{b}}\right)^*\left(\boldsymbol{\mathsf{X}}-\boldsymbol{\mathsf{AY}}-\boldsymbol{\mathsf{b}}\right)\right]\big\}=0$$

Desarrollando,

$$\begin{split} \mathbf{0} &= \mathbb{E} \big\{ \operatorname{tr} \big[(\mathbf{A}\mathbf{Y} + \mathbf{b})^* \, (\mathbf{X} - \mathbf{A}\mathbf{Y} - \mathbf{b}) \big] \big\} \\ &= \mathbb{E} \big\{ \operatorname{tr} \big[\mathbf{Y}^* \mathbf{A}^* \mathbf{X} + \mathbf{b}^* \mathbf{X} - \mathbf{Y}^* \mathbf{A}^* \mathbf{A} \mathbf{Y} - \mathbf{b}^* \mathbf{A} \mathbf{Y} - \mathbf{Y}^* \mathbf{A}^* \mathbf{b} - \mathbf{b}^* \mathbf{b} \big] \big\} \\ &= \mathbb{E} \big\{ \operatorname{tr} \big[\mathbf{Y}^* \mathbf{A}^* \mathbf{X} \big] \big\} + \mathbb{E} \big[\mathbf{b}^* \mathbf{X} \big] - \mathbb{E} \big\{ \operatorname{tr} \big[\mathbf{Y}^* \mathbf{A}^* \mathbf{A} \mathbf{Y} \big] \big\} - \mathbb{E} \big[\mathbf{b}^* \mathbf{A} \mathbf{Y} \big] \\ &- \mathbb{E} \big[\mathbf{Y}^* \mathbf{A}^* \mathbf{b} \big] - \mathbf{b}^* \mathbf{b} \\ &= \mathbb{E} \big\{ \operatorname{tr} \big[\mathbf{A}^* \mathbf{X} \mathbf{Y}^* \big] \big\} + \mathbf{b}^* \mu_{\mathbf{X}} - \mathbb{E} \big\{ \operatorname{tr} \big[\mathbf{A}^* \mathbf{A} \mathbf{Y} \mathbf{Y}^* \big] \big\} - \mathbf{b}^* \mathbf{A} \mu_{\mathbf{Y}} - \mu_{\mathbf{Y}}^* \mathbf{A}^* \mathbf{b} - \mathbf{b}^* \mathbf{b} \\ &= \operatorname{tr} \big\{ \mathbb{E} \big[\mathbf{A}^* \mathbf{X} \mathbf{Y}^* \big] \big\} + \mathbf{b}^* \mu_{\mathbf{X}} - \operatorname{tr} \big\{ \mathbb{E} \big[\mathbf{A}^* \mathbf{A} \mathbf{Y} \mathbf{Y}^* \big] \big\} - \mathbf{b}^* \mathbf{A} \mu_{\mathbf{Y}} - \mu_{\mathbf{Y}}^* \mathbf{A}^* \mathbf{b} - \mathbf{b}^* \mathbf{b} \\ &= \operatorname{tr} \big\{ \mathbf{A}^* \mathbb{E} \big[\mathbf{X} \mathbf{Y}^* \big] \big\} + \mathbf{b}^* \mu_{\mathbf{X}} - \operatorname{tr} \big\{ \mathbf{A}^* \mathbf{A} \mathbb{E} \big[\mathbf{Y} \mathbf{Y}^* \big] \big\} - \mathbf{b}^* \mathbf{A} \mu_{\mathbf{Y}} - \mu_{\mathbf{Y}}^* \mathbf{A}^* \mathbf{b} - \mathbf{b}^* \mathbf{b} \\ &= \operatorname{tr} \big[\mathbf{A}^* \big(\mathbf{R}_{\mathbf{X} \mathbf{Y}} - \mathbf{A} \mathbf{R}_{\mathbf{Y}} - \mathbf{b} \mu_{\mathbf{Y}}^* \big) \big] + \mathbf{b}^* \big[\mu_{\mathbf{X}} - \mathbf{A} \mu_{\mathbf{Y}} - \mathbf{b} \big] \, . \end{split}$$

La matriz \mathbf{A}_{lmmse} y el vector \mathbf{b}_{lmmse} que corresponden al estimador LMMSE deben cumplir el siguiente sistema de ecuaciones:

$$\left\{ \begin{array}{l} \mathbf{A}_{\textit{Immse}} \mathbf{R}_{\mathbf{Y}} + \mathbf{b}_{\textit{Immse}} \mu_{\mathbf{Y}}^* = \mathbf{R}_{\mathbf{XY}} \\ \mathbf{A}_{\textit{Immse}} \mu_{\mathbf{Y}} + \mathbf{b}_{\textit{Immse}} = \mu_{\mathbf{X}} \end{array} \right.$$

cuya solución es

$$\begin{aligned} \mathbf{A}_{\textit{Immse}} &= \left[\mathbf{R}_{\mathbf{XY}} - \mu_{\mathbf{X}} \mu_{\mathbf{Y}}^*\right] \left[\mathbf{R}_{\mathbf{Y}} - \mu_{\mathbf{Y}} \mu_{\mathbf{Y}}^*\right]^{-1} = \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \\ \mathbf{b}_{\textit{Immse}} &= \mu_{\mathbf{X}} - \left[\mathbf{R}_{\mathbf{XY}} - \mu_{\mathbf{X}} \mu_{\mathbf{Y}}^*\right] \left[\mathbf{R}_{\mathbf{Y}} - \mu_{\mathbf{Y}} \mu_{\mathbf{Y}}^*\right]^{-1} \mu_{\mathbf{Y}} = \mu_{\mathbf{X}} - \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \mu_{\mathbf{Y}} \end{aligned}$$

Estimador Lineal de Menor Error Cuadrático Medio (LMMSE)

$$\hat{\mathbf{X}}_{lmmse} = \mu_{\mathbf{X}} + \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \left(\mathbf{Y} - \mu_{\mathbf{Y}} \right). \tag{2}$$

Cuando X e Y son dos vectores conjuntamente gaussianos,

$$\hat{\boldsymbol{X}}_{\textit{Immse}} = \hat{\boldsymbol{X}}_{\textit{mmse}}$$

LMMSE: Propiedades

• $\hat{\mathbf{X}}_{lmmse}$ es un estimador *insesgado*. Se lo conoce también como el estimador BLU (Best Linear Unbiased).

$$\mathbb{E}[\hat{\mathbf{X}}_{lmmse}] = \mathbb{E}[\mu_{\mathbf{X}} + \mathbf{C}_{\mathbf{XY}}\mathbf{C}_{\mathbf{Y}}^{-1}(\mathbf{Y} - \mu_{\mathbf{Y}})] = \mu_{\mathbf{X}}$$

LMMSE: Propiedades

El error de estimación es:

$$\mathbf{E}_{\textit{Immse}} = \mathbf{X} - \hat{\mathbf{X}}_{\textit{Immse}} = \underbrace{(\mathbf{X} - \mu_{\mathbf{X}})}_{\delta_{\mathbf{X}}} - \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \underbrace{(\mathbf{Y} - \mu_{\mathbf{Y}})}_{\delta_{\mathbf{Y}}}.$$

Su covarianza,

$$\begin{split} \textbf{Cov}[\textbf{E}_{\textit{Immse}}] &= \textbf{Cov}[\textbf{X} - \hat{\textbf{X}}_{\textit{Immse}}] = \mathbb{E}[\textbf{E}_{\textit{Immse}}\textbf{E}^*_{\textit{Immse}}] \\ &= \mathbb{E}\left[\left(\delta_{\textbf{X}} - \textbf{C}_{\textbf{XY}}\textbf{C}^{-1}_{\textbf{Y}}\delta_{\textbf{Y}}\right)\left(\delta_{\textbf{X}} - \textbf{C}_{\textbf{XY}}\textbf{C}^{-1}_{\textbf{Y}}\delta_{\textbf{Y}}\right)^*\right] \\ &= \mathbb{E}\left[\delta_{\textbf{X}}\delta_{\textbf{X}}^*\right] - \mathbb{E}\left[\delta_{\textbf{X}}\delta_{\textbf{Y}}^*\right]\textbf{C}^{-1}_{\textbf{Y}}\textbf{C}^*_{\textbf{XY}} - \textbf{C}_{\textbf{XY}}\textbf{C}^{-1}_{\textbf{Y}}\mathbb{E}\left[\delta_{\textbf{Y}}\delta_{\textbf{X}}^*\right] \\ &\quad + \textbf{C}_{\textbf{XY}}\textbf{C}^{-1}_{\textbf{Y}}\mathbb{E}\left[\delta_{\textbf{Y}}\delta_{\textbf{Y}}^*\right]\textbf{C}^{-1}_{\textbf{Y}}\textbf{C}^*_{\textbf{XY}} \\ &= \textbf{C}_{\textbf{X}} - \textbf{C}_{\textbf{XY}}\textbf{C}^{-1}_{\textbf{Y}}\textbf{C}_{\textbf{YX}} \end{split}$$

LMMSE: Propiedades

Finalmente, el error cuadrático medio es

$$\begin{split} \textit{MMSE} &= \mathbb{E}\left[\|\mathbf{E}_{\textit{Immse}}\|^2\right] = \mathbb{E}\left[\mathbf{E}_{\textit{Immse}}^*\mathbf{E}_{\textit{Immse}}\right] \\ &= \mathbb{E}\left[\mathsf{tr}(\mathbf{E}_{\textit{Immse}}^*\mathbf{E}_{\textit{Immse}})\right] = \mathbb{E}\left[\mathsf{tr}(\mathbf{E}_{\textit{Immse}}\mathbf{E}_{\textit{Immse}}^*)\right] \\ &= \mathsf{tr}\left\{\mathbb{E}\left[\mathbf{E}_{\textit{Immse}}\mathbf{E}_{\textit{Immse}}^*\right]\right\} \\ &= \mathsf{tr}\left\{\mathbf{Cov}[\mathbf{E}_{\textit{Immse}}]\right\} \end{split}$$

LMMSE: resumen

$$\begin{split} \hat{\mathbf{X}}_{\textit{Immse}} &= \mu_{\mathbf{X}} + \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \left(\mathbf{Y} - \mu_{\mathbf{Y}} \right). \\ &\mathbb{E}[\hat{\mathbf{X}}_{\textit{Immse}}] = \mu_{\mathbf{X}}. \\ \mathbf{Cov}[\mathbf{E}_{\textit{Immse}}] &= \mathbf{C}_{\mathbf{X}} - \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \mathbf{C}_{\mathbf{YX}}. \\ \\ \textit{MMSE} &= \operatorname{tr} \left\{ \mathbf{C}_{\mathbf{X}} - \mathbf{C}_{\mathbf{XY}} \mathbf{C}_{\mathbf{Y}}^{-1} \mathbf{C}_{\mathbf{YX}} \right\}. \end{split}$$

Estimación lineal de procesos aleatorios

Sean X(n) e Y(n) dos procesos aleatorios.

Problema

A partir de muestras de una realización y(m), recolectadas en el intervalo $m_{init} \le m \le m_{fin}$, hallar el estimador

$$\hat{x}(n) = \sum_{m=m_{init}}^{m_{fin}} k_{nm} y(m)$$

que minimice el error cuadrático medio

$$\mathbb{E}\left[\left\|X - \hat{X}_{lmmse}\right\|^{2}\right] = \mathbb{E}\left[\sum_{n}\left|X(n) - \hat{X}_{lmmse}(n)\right|^{2}\right]$$

El problema de estimación es entonces obtener los coeficientes k_{nm} .

Dos posibles esquemas de estimación

① Suavizado (smoothing) $m_{init} = m_0$, $m_{fin} = m_0 + M$. Dado $\{y(m), m_0 \le m \le m_0 + M\}$ obtener $\{\hat{x}(n), n_1 \le n \le n_2\}$ donde $m_0 \le n_1 \le n_2 \le m_0 + M$.

Estimador no causal ya que utiliza observaciones futuras.

2 Filtrado $m_{init} = n - M$, $m_{fin} = n$. $Dado \{y(m), n - M \le m \le n\}$ obtener $\hat{x}(n)$.

Estimador *causal* que utiliza pasado y presente.

Análisis del problema

 Vamos a trabajar con observaciones en una ventana de duración finita es decir que todas las observaciones se pueden agrupar en un vector

$$\mathbf{Y} = \begin{bmatrix} Y(m_{init}) \\ \vdots \\ Y(m_{fin}) \end{bmatrix}$$

- Para cada valor de n, se puede considerar un problema de estimación de una VA, $X_n = X(n)$ a partir de un VeA, Y.
- La solución LMMSE a este problema la conocemos

$$\hat{X}_{lmmse}(n) = \mu_{X_n} + \mathbf{C}_{X_n \mathbf{Y}} \mathbf{C}_{\mathbf{Y}}^{-1} \left(\mathbf{Y} - \mu_{\mathbf{Y}} \right).$$

 El problema es entonces poder implementar esta solución en forma eficiente para cada instante de tiempo n.

Hipótesis

Asumimos lo siguiente:

- X(n) e Y(n) son conjuntamente ESA
- Las correlaciones siguientes son conocidas:

$$R_{XY}(k) = \mathbb{E}[X(n)Y(n+k)^*]$$
 y $R_Y(k) = \mathbb{E}[Y(n)Y(n+k)^*].$

Como el estimador LMMSE es insesgado, sin falta de generalidad

$$\mathbb{E}[X(n)] = \mathbb{E}[Y(n)] = 0.$$

Entonces,

$$\hat{X}_{lmmse}(n) = \mathbf{R}_{X_n \mathbf{Y}} \mathbf{R}_{\mathbf{Y}}^{-1} \mathbf{Y}.$$

Problema de suavizado en una ventana fija

Como los procesos son CESA, sin falta de generalidad $m_0 = 0$.

$$\hat{X}_{lmmse}(n) = \hat{X}(n) = \mathbf{R}_{X_n \mathbf{Y}} \mathbf{R}_{\mathbf{Y}}^{-1} \mathbf{Y}.$$

Problema de suavizado en una ventana fija (cont)

• Matriz de autocorrelación : $\mathbf{R}_{\mathbf{Y}} \in \mathbb{C}^{(M+1) \times (M+1)}$

$$\begin{aligned} \mathbf{R}_{\mathbf{Y}} &= \mathbb{E}\left[\mathbf{Y}\mathbf{Y}^*\right] = \mathbb{E}\left\{ \begin{bmatrix} Y(0) \\ \vdots \\ Y(M) \end{bmatrix} \begin{bmatrix} Y(0)^* & \cdots & Y(M)^* \end{bmatrix} \right\} \\ &= \begin{bmatrix} R_Y(0) & \cdots & R_Y(M) \\ & \ddots & \\ R_Y^*(M) & \cdots & R_Y(0) \end{bmatrix} \end{aligned}$$

- Matriz Toeplitz simétrica.
- Se forma a partir de $R_Y(k)$, función de autocorrelación de Y(n).
- Si Y(n) es ESA, $\mathbf{R}_{\mathbf{Y}}$ no depende de n.

Problema de suavizado en una ventana fija (cont)

• Vector de correlación cruzada : $\mathbf{R}_{X_n\mathbf{Y}} \in \mathbb{C}^{1\times (M+1)}$,

$$\mathbf{R}_{X_n \mathbf{Y}} = \mathbb{E}[X(n)\mathbf{Y}^*]
= \mathbb{E}\{X(n)[Y(0)^*, Y(1)^*, \cdots, Y(n)^*, \cdots, Y(M)^*]\}
= [R_{XY}(-n), R_{XY}(-n+1) \cdots, R_{XY}(0), \cdots, R_{XY}(M-n)]$$

 $R_{XY}(k)$: correlación cruzada entre los procesos X(n) e Y(n).

• Pese a que X(n) e Y(n) son CESA, el vector $\mathbf{R}_{X_n\mathbf{Y}}$ depende de n.

Suavizado en una ventana fija

Luego, en cada instante,

$$\hat{X}(n) = \mathbf{k}_n \mathbf{Y} \text{ con } \mathbf{k}_n = \mathbf{R}_{X_n \mathbf{Y}} \mathbf{R}_{\mathbf{Y}}^{-1}.$$

 El procesamiento para resolver el problema de suavizado es no-causal y variante en el tiempo

Suavizado en una ventana fija: error de estimación

Sea $E(n) = X(n) - \hat{X}(n)$, el error de estimación.

A priori, antes de realizar observación alguna, $\mathbb{V}[X(n)] = \sigma_X^2$ es una indicación de la incertidumbre que se tiene sobre el proceso X(n). Luego de obtener $\hat{X}(n)$, la incertidumbre en X(n) está dada por $\mathbb{V}[E(n)] = \sigma_E^2(n)$.

Suavizado en una ventana fija: error de estimación

A partir del resultado del estimador LMMSE tenemos para cada valor de *n*:

- $\mathbb{E}[E(n)] = 0$ por ser un estimador insesgado.
- $\mathbb{V}[E(n)] = \mathbb{E}[|E(n)|^2] = \sigma_X^2 \mathbf{R}_{X_n \mathbf{Y}} \mathbf{R}_{\mathbf{Y}}^{-1} \mathbf{R}_{X_n \mathbf{Y}}^*$
- Como $\mathbf{R}_{\mathbf{Y}} > 0$, tenemos que

$$\mathbf{R}_{X_n\mathbf{Y}}\mathbf{R}_{\mathbf{Y}}^{-1}\mathbf{R}_{X_n\mathbf{Y}}^*>0 \quad \forall n.$$

Luego, $\mathbb{V}[E(n)] < \sigma_X^2$ para todo n. Es decir, la estimación reduce la incertidumbre sobre X(n).

Pregunta: El proceso E(n) es ESA?

¹Recordemos que en el caso general, $MMSE = \operatorname{tr} \left\{ \mathbf{C_X} - \mathbf{C_{XY}} \mathbf{C_{Y}^{-1}} \mathbf{C_{YX}} \right\}$

Filtrado en una ventana fija

El filtrado tiene una solución *causal* que sólo utiliza observaciones pasadas y presentes.

Filtrado en una ventana fija: solución LMMSE

Para cada valor de n, queremos estimar $\hat{X}(n)$ a partir de la realización

$$y(n-M), y(n-M+1), \cdots y(n).$$

A diferencia del problema de suavizado, la ventana de observación del filtrado se desplaza con n.

Filtrado en una ventana fija: solución LMMSE

Armamos el vector **Y** que contiene las observaciones y calculamos la matriz de correlación

$$\mathbf{R}_{\mathbf{Y}} = \mathbb{E}\left[\mathbf{Y}\mathbf{Y}^*\right] = \mathbb{E}\left\{\begin{bmatrix} Y(n-M) \\ \vdots \\ Y(n) \end{bmatrix} \begin{bmatrix} Y(n-M)^* & \cdots & Y(n)^* \end{bmatrix}\right\}$$

$$= \begin{bmatrix} R_{Y}(0) & \cdots & R_{Y}(M) \\ & \ddots & \\ R_{Y}^*(M) & \cdots & R_{Y}(0) \end{bmatrix}$$

Filtrado en una ventana fija: solución LMMSE

Como en el caso del suavizado, también armamos el vector de correlación cruzada a partir de $R_{XY}(k)$, la función de correlación cruzada entre los procesos X(n) e Y(n):

$$\mathbf{R}_{X_{n}Y} = \mathbb{E}[X(n)Y^{*}]
= \mathbb{E}\{X(n)[Y(n-M)^{*}, \cdots Y(n-1)^{*}, Y(n)^{*}]\}
= [R_{XY}(M), \cdots R_{XY}(1), R_{XY}(0)] = \mathbf{R}_{XY}.$$

En este caso, el vector $\mathbf{R}_{X_0\mathbf{Y}} = \mathbf{R}_{X\mathbf{Y}}$ no depende de n.

Filtrado en una ventana fija

Finalmente,

$$\hat{X}(n) = \underbrace{\mathbf{R}_{X\mathbf{Y}}\mathbf{R}_{\mathbf{Y}}^{-1}}_{\mathbf{w}^*}\mathbf{Y}$$

donde

$$\mathbf{w} = \mathbf{R}_{\mathbf{Y}}^{-1} \mathbf{R}_{X\mathbf{Y}}^* = \begin{bmatrix} w(M) \\ w(M-1) \\ \vdots \\ w(0) \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} y(n-M) \\ y(n-M+1) \\ \vdots \\ y(n) \end{bmatrix}$$

Filtrado en una ventana fija

Luego,

$$\hat{X}(n) = \sum_{m=n-M}^{n} w(n-m)y(m) = \sum_{s=0}^{M} w(s)y(n-s).$$

Asociamos los coeficientes w(s) a la respuesta impulsiva de un filtro FIR de longitud M+1 que realiza el filtrado causal. Este filtro se lo conoce como *Filtro de Wiener*.

Filtro de Wiener

 $\hat{X}_{lmmse}(n)$ resulta al filtrar linealmente las observaciones Y(n).

 La respuesta impulsiva FIR del filtro W se obtiene como los componentes del vector

$$\mathbf{w} = \mathbf{R}_{\mathbf{Y}}^{-1} \mathbf{R}_{X\mathbf{Y}}^*$$

donde $\mathbf{R}_{\mathbf{Y}}$ y $\mathbf{R}_{X\mathbf{Y}}$ depende del largo del filtro M pero no del instante de filtrado n.

El costo de Wiener es igual a

$$J_{Wiener} = \mathbb{E}[|E(n)|^2] = \sigma_X^2 - \mathbf{R}_{XY}\mathbf{R}_Y^{-1}\mathbf{R}_{XY}^*$$

Notación

En cierta bibliografía del tema, se plantea el problema de filtrado con la siguiente nomenclatura, donde W es un filtro FIR de longitud M+1

Este problema es equivalente al ya visto si se considera que:

- Las observaciones y(n) son las *entradas* del filtro u(n).
- El proceso x(n) es la señal deseada d(n).

Notación

Principio de ortogonalidad:

$$\mathbb{E}\left[U^*(n)E(n)\right]=0$$

Planteando las ecuaciones normales:

$$\begin{bmatrix} w(M) \\ \vdots \\ w(0) \end{bmatrix} = \begin{bmatrix} R_u(0) & \cdots & R_u(M) \\ & \ddots & \\ R_u(-M) & \cdots & R_u(0) \end{bmatrix}^{-1} \begin{bmatrix} R_{du}(M) \\ \vdots \\ R_{du}(0) \end{bmatrix}$$

Retomamos el diseño de W

Hipótesis:

- ① X(n) e Y(n) son conjuntamente ESA,

Qué sucede si

- Los procesos no son estacionarios?
 - Ejemplo 1: X(n) tiene una deriva en el tiempo y $\mathbb{E}[X(n)] = \mu_X(n)$.
 - Ejemplo 2: X(n) es una constante, pero la fuente del ruido que afecta la observación varía con el tiempo.
- No se conoce la estadística de X(n) o de Y(n)?
 - Por ejemplo, se sabe que Y(n) = X(n) + V(n), pero no se tienen observaciones previas que permitan estimar R_Y y/o R_{XY} .

Encaramos estos problemas estimando X(n) a medida que observamos Y(n), es decir, *adaptando* el diseño del filtro.

Volvamos al planteo del LMMSE

Vimos que el filtro de Wiener es un filtro FIR causal que obtiene el estimador LMMSE. Sea w(I) la respuesta impulsiva del filtro,

$$\hat{X}(n) = \sum_{l=0}^{M} w(l)Y(n-l) = \underbrace{\begin{bmatrix} w(M) & \cdots & w(0) \end{bmatrix}}_{\mathbf{w}^*} \underbrace{\begin{bmatrix} Y(n-M) \\ \vdots \\ Y(n) \end{bmatrix}}_{\mathbf{y}}$$

Volvamos al planteo del LMMSE

Para cada instante *n*, podemos calcular el error cuadrático medio,

$$\mathbb{E}\left[|X(n) - \mathbf{w}^*\mathbf{Y}|^2\right] = \mathbb{E}[|X(n)|^2] - \mathbb{E}\left[X(n)\mathbf{Y}^*\mathbf{w}\right]$$
$$- \mathbb{E}\left[\mathbf{w}^*\mathbf{Y}X^*(n)\right] + \mathbb{E}\left[\mathbf{w}^*\mathbf{Y}\mathbf{Y}^*\mathbf{w}\right]$$
$$= \sigma_X^2 - \mathbf{R}_{X\mathbf{Y}}\mathbf{w} - \mathbf{w}^*\mathbf{R}_{\mathbf{Y}X} + \mathbf{w}^*\mathbf{R}_{\mathbf{Y}}\mathbf{w}$$

Ésta es una función de \mathbf{w} que llamamos $J(\mathbf{w})$. Esta función se la conoce como función costo. Claramente, la solución LMMSE minimiza $J(\mathbf{w})$, es decir,

$$\mathbf{w}_{lmmse} = arg min J(\mathbf{w})$$

Volvamos al planteo del LMMSE

Para minimizar $J(\mathbf{w})$ calculamos el gradiente.

Sea $w(I) = w_R(I) + j w_I(I)$. Luego,

$$\nabla J = \begin{bmatrix} \frac{\partial J}{\partial w_{R}(M)} + j \frac{\partial J}{\partial w_{I}(M)} \\ \vdots \\ \frac{\partial J}{\partial w_{R}(0)} + j \frac{\partial J}{\partial w_{I}(0)} \end{bmatrix} = 2 (\mathbf{R}_{Y} \mathbf{w} - \mathbf{R}_{XY}^{*}).$$

Claramente, \mathbf{w}_{lmmse} coincide con la solución de $\nabla J = 0$.

Pregunta: Es posible calcular w en forma recursiva?

Algoritmo *steepest descent* para optimización de funciones multivariables

- Sea $f: \mathbb{C}^L \to \mathbb{R}$ y \bar{w} un mínimo local de f. Suponemos que f(.) es diferenciable en todo punto de $B(\bar{w}) \subset \mathbb{C}^L$, un vecindario de \bar{w} .
- Para hallar \bar{w} de forma numérica armamos una trayectoria que luego de n pasos resulta

$$w_{n+1} = w_n + p$$

donde p es la dirección de actualización².

²La referencia clásica para este tema es *Numerical Methods for Unconstrained Optimization and Nonlinear Equations*, ,J. E. Dennis, Jr. and Robert B. Schnabel, Society for Industrial and Applied Mathematics, donde se desarrolla este tema en el contexto general de optimización de funciones.

Algoritmo *steepest descent* para optimización de funciones multivariables

- Si $\nabla f^* \rho < 0$, y δ pequeño, $f(w_n + \delta \rho) < f(w_n)$
- La dirección de descenso más rápido es

$$p = -\frac{\nabla f}{\|\nabla f\|}$$

Algoritmo de descenso por la mayor pendiente o steepest descent

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \mu \nabla \mathbf{f}$$

donde $\mu > 0$ es un parámetro que define el tamaño del paso.

Algoritmo *steepest descent* para optimización de funciones multivariables

Si \bar{w} es un mínimo global, el algoritmo iterativo converge, es decir

Volvamos al filtro de Wiener

Vimos que el filtro de Wiener se obtiene minimizando la función costo

$$J(\mathbf{w}) = \sigma_X^2 - \mathbf{R}_{XY}\mathbf{w} - \mathbf{w}^*\mathbf{R}_{YX} + \mathbf{w}^*\mathbf{R}_{Y}\mathbf{w} \qquad \mathbf{w} \in \mathbb{C}^{M+1}.$$

Más aún, vimos que

$$abla J \propto (\mathbf{R_Y w} - \mathbf{R}_{XY}^*)$$
.

Planteamos el esquema de steepest descent para minimizar $J(\mathbf{w})$.

Planteo iterativo del filtro de Wiener

Filtrado de Wiener utilizando Steepest-descent

A partir de \mathbf{w}_n , la siguiente actualización es

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \mu \underbrace{(\mathbf{R}_{\mathbf{Y}}\mathbf{w}_n - \mathbf{R}_{XY}^*)}_{\nabla J}$$
 $n = 0, 2, \cdots$

En cada iteración, se obtienen las M + 1 componentes del vector

$$\mathbf{w}_n = \begin{bmatrix} w_n(M) \\ \vdots \\ w_n(0) \end{bmatrix}$$

El parámetro $\mu > 0$ controla la velocidad de convergencia. Como $J(\mathbf{w})$ es convexa, \mathbf{w}_{lmmse} es mínimo global y

$$\mathbf{w}_n \rightarrow \mathbf{w}_{lmmse}$$
.

Steepest descent para obtener el filtro de Wiener

El término de correción luego del paso n es $\mathbf{R}_{\mathbf{Y}}\mathbf{w}_{n} - \mathbf{R}_{X(n)\mathbf{Y}}^{*}$.

$$\mathbf{R}_{\mathbf{Y}}\mathbf{w}_{n} - \mathbf{R}_{X(n)\mathbf{Y}}^{*} = \mathbb{E}\left[\mathbf{Y}\mathbf{Y}^{*}\right]\mathbf{w}_{n} - \mathbb{E}\left[\mathbf{Y}X^{*}(n)\right]$$

$$= \mathbb{E}\left[\mathbf{Y}\underbrace{\left(\mathbf{w}_{n}^{*}\mathbf{Y} - X(n)\right)^{*}}_{\mathbf{E}^{*}(n)}\right]$$

$$= \mathbb{E}\left[\mathbf{Y}\mathbf{E}(n)^{*}\right].$$

La correción en el paso n es igual al producto entre el error de estimación $E(n) = \mathbf{w}_n^* \mathbf{Y} - X(n)$ y el vector de observaciones \mathbf{Y} .

Algoritmo LMS

Para implementar el algoritmo de *steepest descent* se requiere conocer la estadística conjunta de X(n) e Y(n). Esto no siempre es posible, o puede resultar muy complejo. Una alternativa es el algoritmo iterativo conocido como LMS (*Least-Mean-Square*).

Como referencia para este tema, sugiero leer el artículo donde Bernard Widrow cuenta cómo llego a la formulación del algoritmo, "Thinking about thinking: the discovery of the LMS algorithm," B. Widrow, en IEEE Signal Processing Magazine, vol. 22, no. 1, pp. 100-106, Enero 2005

Algoritmo LMS

La idea del algoritmo LMS es aproximar el operador $\mathbb{E}[.]$ por el resultado de una realización del proceso, es decir

$$\mathbb{E}\left[\mathbf{Y}E(n)^*\right]$$
 pasa a ser $\mathbf{y}(n)e(n)^*$,

$$y(n) = \begin{bmatrix} y(n-M) \\ \vdots \\ y(n) \end{bmatrix}$$
 $y(k)$ es la realización del proceso observado.

 $e(n) = x(n) - \hat{x}(n)$ la realización del error de estimación

Para hacer énfasis en el aspecto adaptativo, incluimos el tiempo n en el vector de observaciones $\mathbf{y}(n)$.

Adaptación de acuerdo al algoritmo Least-Mean-Square

Algoritmo LMS

Sea \mathbf{w}_n el vector de coeficientes del filtro luego del *n*-ésimo paso de adaptación. En cada paso, tenemos:

$$\hat{x}(n) = \mathbf{w}_n^* \mathbf{y}(n)$$

y la adaptación

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \mu \left(\mathbf{y}(n) \mathbf{e}(n)^* \right)$$

Adaptación de acuerdo al algoritmo Least-Mean-Square

Algunas observaciones preliminares

- La dirección de descenso del LMS no es determinística. Este algoritmo pertenece a la clase de algoritmos de gradiente estocástico.
- La convergencia del algoritmo no está asegurada, si bien su performance es muy buena bajo ciertas condiciones
- La enorme ventaja (y razón de su popularidad) del algoritmo LMS es su simplicidad.

Implementación del algoritmo

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \mu \left(\mathbf{y}(n) \mathbf{e}(n)^* \right)$$

Convergencia del Algoritmo Least-Mean-Square

Vamos a analizar si \mathbf{w}_n converge al filtro de Wiener a medida que aumenta n. Sea el vector de diferencias $\varepsilon_n = \mathbf{w}_n - \mathbf{w}_{lmmse}$.

- Como el límite de $\varepsilon_n \neq 0$, entonces \mathbf{w}_n no converge a \mathbf{w}_{lmmse} .
- El valor del costo $J_{LMS}(\mathbf{w}_n)$ es superior al costo de Wiener, $J_{Wiener} = \sigma_x^2 \mathbf{R}_{XY} \mathbf{R}_{\mathbf{v}}^{-1} \mathbf{R}_{XY}^*$.
- $J(\mathbf{w}_n) = J_{Wiener} + J_{ex}(n)$ donde

$$\lambda_{min} \leq \frac{J_{ex}(n)}{\mathbb{E}[\|\varepsilon(n)\|^2]} \leq \lambda_{max} \qquad \forall n$$

Convergencia del Algoritmo

- En general, la convergencia del algoritmo LMS es *ruidosa*, ya que depende de una aproximación ruidosa de ∇J .
- El algoritmo converge a un valor mayor al costo de Wiener Jopt

Convergencia del Algoritmo

Para convergencia, necesitamos

$$0<\mu<rac{2}{ ext{tr}(\mathbf{R_Y})}.$$

Cuando no se conoce $\mathbf{R}_{\mathbf{Y}}$ o sus autovalores, es difícil verificar que se cumpla. Observemos que

$$\operatorname{tr}(\mathbf{R}_{\mathbf{Y}}) = (M+1)R_{Y}(0) = (M+1)\mathbb{E}[|Y(n)|^{2}] \simeq \sum_{l=0}^{M} |y(n-l)|^{2}$$

donde $\sum_{l=0}^{M} |y(n-l)|^2$ es la energía contenida en la señal observada durante la ventana de duración M+1. Luego, una indicación para elegir μ puede ser

$$0 < \mu < \frac{2}{\sum_{l=0}^{M} |y(n-l)|^2}$$