UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

LAUREA TRIENNALE IN INFORMATICA MUSICALE

ANALISI DEL COMPORTAMENTO DELLA DOPPIA INCISIONE DI CHITARRE E VOCI IN UNA PRODUZIONE MUSICALE

Laureando

Relatore

Correlatore Interno

Correlatore Esterno

Mirko Albanese

Goffredo Haus

Giorgio Presti

Disi Melotti

AMBIENTI DI LAVORO

- Maggior resa e profondità stereofonica.
- Ripartizione stereofonica di singole incisioni contenente la stessa parte musicale.
- Utilizzata con chitarre e voci.
- Effetto percepito: chorus stereofonico

TECNICA DELLA DOPPIA INCISIONE

- Estrazione features:
 - Dinamica
 - Frequenza
 - Timbro
 - Tempo Attacco delle note
- Stima delle singole variazioni.

OBIETTIVI E FINALITÀ

DINAMICA

Variazione del segnale nel tempo

• **RMS**:

 Valore di picco: Massimo valore di ampiezza

Crest Factor:

Variazione potenza sonora

Misura range dinamico

FREQUENZA

Tracciamento delle componenti armoniche di entrambi i segnali.

Due modelli implementati:

- Interpolazione parabolica;
- Differenza di fase;

FREQUENZA — Interpolazione parabolica

Interpolazione tra il valore massimo nello spettro e i valori adiacenti mediante il calcolo del vertice di una parabola.

Test:

• Tono puro a 880 Hz

Risultato: 879,87 Hz

FREQUENZA – Differenza di fase

Lo scostamento di fase indica la deviazione della frequenza da quella di riferimento.

FREQUENZA – Differenza di fase

Test:

• Tono puro a 880 Hz

Risultato: 879,9991 Hz

TIMBRO

- Timbro: Carattere distintivo di un suono.
- Caratterizzato dalla morfologia dello strumento.
- Formanti: Frequenze di risonanza dove un suono spettralmente ricco ha una notevole concentrazione di energia.
- Estrazione delle formanti mediante Linear Predictive Coding (LPC)

TIMBRO

TEMPO – Attacco delle note

- Inizio di un suono
- Dispersione di energia a banda larga

TEMPO - Attacco delle note

Percussive Feature Detection

Estrazione locazione temporale riferita ad un attacco.

Risoluzione dipendente dalla dimensione della finestra di analisi.

TEST & RISULTATI OTTENUTI

Dataset di: 10 Riff, 10 Accordi, 10 Arpeggi, 10 fraseggi vocali.

	RMS (dB_{spl})	Harm (cent)	Onset (ms)	Formanti (cent)
RIFF	4,23	6,47	14,63	138,51
ACCORDI	1,53	8,15	12,47	100,03
ARPEGGI	2,55	2,87	14,15	96,48
VOCE	2,84	5,65	19,08	115,53

SVILUPPI FUTURI

In fase di completamento.

Pubblicazione su GitHub

GRAZIE PER L'ATTENZIONE

Fonti:

- Julius O. Smith III, Xavier Sierra, PARSHL: An Analysis/Synthesis Program fon Non-Harmonic Sounds Based on a Sinusoidal Representation, Stanford University, California, 1987.
- J. L. Flanagan \& M. Golden, "Phase Vocoder", Bell System Technical Journal, 1966.
- Karin Dressler, Sinusoidal Extraction using an Efficient Implementation of a Multi-Resolution FFT, Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany, 2006.
- De La Cuadra, Patricio, Aaron Master & Craig Sapp.
 Efficient pitch detection techniques for interactive music.

 Proceedings of the 2001 International Computer Music Conference, 2001.
- Dan Berry, Derry Fitzgerald, Eugene Coyle, Bob Lawlor, Drum Source Separation using Percussive Feature Detection and Spectral Modulation, ISSC, Dublin, 2005.