Notes on 'Simplicial and Dendroidal Homotopy Theory'

Bailey Arm

June 2, 2025

Contents

Ι	Simplicial and Dendroidal Homotopy Theory	3
1	Operads 1.1 Operads	3 4 H H H H H
2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 6 6 8
3	Dendroidal Sets	8
4	Tensor Products of Dendroidal Sets	8
5	Kan Conditions for Simplicial Sets	8
6	Kan Conditions for Dendroidal Sets	8
7	Model Categories	8
8	Model Structures on the Category of Simplicial Sets	8
9	Three Model Structures on the Category of Dendroidal Sets	8
10	Reedy Categories and Diagrams of Spaces	8
11	Mapping Spaces and Bousfield Localisations	8
12	Properties and ∞ -Operads	8
13	Left Fibrations and the Covariant Model Structure	8
14	Simplical Operads and ∞ -Operads	8

15 Some Research	8
15.1 Danoidal Sets	. 8
15.2 Kanoidal Sets	. 8
15.3 Hokoidal Sets	. 8
15.4 Kukanal Set	. 8
15.5 General Sentoidal Sets	

Part I

Simplicial and Dendroidal Homotopy Theory

1 Operads

1.1 Operads

Definition 1 Operad: An operad P consists of a set of colours C and for each $n \ge 0$ and sequence $c_1, ..., c_n, c$ of colours in C, a set $P(c_1, ..., c_n; c)$ of operations, thought of as taking n inputs of colours $c_1, ..., c_n$ and with output of colour c. Moreover there are the structure maps

- $\forall c \in C, \exists 1_c \in P(c; c),$
- For $\sigma \in \Sigma_n$ a map

$$\sigma^*: P(c_1, ..., c_n; c) \to P(c_{\sigma(1)}, ..., c_{\sigma(n)}; c)$$

denoted $\sigma^* \circ p = p \circ \sigma$

• For any sequence $c_1, ..., c_n$ and n-tuple of sequences $d_1^i, ..., d_{k_i}^i$, a composition

 $\gamma: P(c_1, ..., c_n; c) \times \prod_{i=1}^n P(d_1^i, ..., d_{k_i}^i; c_i) \to P(d_1^1, ..., d_{k_n}^n; c)$

which is written as $\gamma(p, q_1, ..., 1_n) \to p \circ (q_1, ..., q_n)$

and there are further requirements on the structure maps:

- $\forall p \in P(c_1, ..., c_n; c), \gamma(1_c, p) = p,$
- $\forall p \in P(c_1, ..., c_n; c), \gamma(p, 1_{c_1}, ..., 1_{c_n}) = p$

There are some classical notation we must be weary of and state here. Let P be an operad with a singleton colour set, i.e. $C = \{*\}$. Then we can write $P(c_1, ..., c_n; c) = P(c, ..., c; c) =: P(n)$. There is an obvious formulation for the compostion in this case:

$$P(n) \times \prod_{i=1}^{n} P(k_i) \to P(k_1 + \dots + k_n)$$

In this case we say P is uncoloured. If $C \notin \{\phi, \{*\}\}$ then we say P is a coloured operad. We can then clearly see that

$$\begin{array}{ccc} \text{Monoids} & \longleftarrow & \text{Categories} \\ & & & \downarrow \\ \text{Uncoloured Operads} & \longleftarrow & \text{Operads} \end{array}$$

The definition of an operad allows for n = 0 in $P(c_1, ..., c_n; c)$, which we define as P(-; c). The elements of P(-; c) are called the constants of colour c, and an operad with $P(-; c) = \{*_c\}$ is called unital. An operad P is open if there are no constants for any colour, i.e. its interior P^o (the set of constants) is empty.

The most fundamental examples of operads are Com and Ass:

- **Com** is the commutative operad with $Com(n) = \{*\},$
- Ass is the associative operad with $Ass(n) = \Sigma_n$
- Tree^{pl} is the planar tree operad. The n-ary operations here are the set of planar rooted trees with n numbered leaves.

$$\mathbf{Tree}^{pl}(7)\ni \tilde{T}=\ \ \overset{T_2}{\diagdown}\ \ \overset{T_1}{\diagdown}$$

Then in fact $\gamma(T, T_1, T_2) = \tilde{T}$. The operation of composition on the operad \mathbf{Tree}^{pl} is computed as $\gamma(T \in \mathbf{Tree}^{pl}(n), T_1 \in \mathbf{Tree}^{pl}(k_1), ..., T_n \in \mathbf{Tree}^{pl}(k_n)) = \hat{T}$ where $\hat{T} \in \mathbf{Tree}^{pl}(k_1 + ... + k_n)$ is the original T but with the subtree T_i grafted onto the leaf i for all choices of i.

Definition 2 Topological Operad: A topological operad is an operad P where each set of operations $P(c_1,...,c_n;c)$ is equipped with some topology and all the structure maps are continuous with respect to this topology.

The most basic form of a topological operad is the little d-cubs operad \mathbf{E}_d . The space $\mathbf{E}_d(n)$ is the space of n numbered d-dimensional cubes inside the d-dimensional unit cube $[0,1]^d$. The operadic composition between $p \in \mathbf{E}_d(n)$ with operations $q_1, ..., q_n$ is given by substituting the rescaled q_i into the ith cube of p. Note that this is really just a topological analogue to the planar tree operad \mathbf{Tree}^{pl} , where instead of grafting trees onto leaves we are scaling and embedding cubes in some smooth way.

More specifically, a point in $\mathbf{E}_d(n)$ is an *n*-tuple of embeddings $f_1, ..., f_n : [0, 1]^d \to [0, 1]^d$ satisfying:

- Each f_i is the composition of d affine embeddings,
- The interiors of the cubes embedded by f_i are mutually disjoint

We can now observe that operads form a category in a very natural fashion. Given two operads P, Q, a morphism $\varphi : P \to Q$ is a function $f : C_p \to C_Q$ on operadic colours and for each sequence $c_1, ..., c_n$; c of C_P , we have

$$\varphi_{(c_1,...,c_n;c)}: P(c_1,...,c_n;c) \to Q(f(c_1),...,f(c_n);f(c))$$

that is compatible in the natural way with Σ_n actions

1.2 Algebras for Operads

Definition 3 Operadic Algebras: Let P be an operad. A P-algebra A is a family of sets $\{A_c\}_{c \in C_P}$ together with maps

$$P(c_1,...,c_n;c)\times A_{c_1}\times...\times A_{c_n}\to A_c$$

written $(p, a_1, ..., a_n) \to A(p)(a_1, ..., a_n)$. These maps also satisfy:

- $1_c(a) = a \quad \forall a \in A_c$
- $\sigma \in \Sigma_n, a_i \in A_{c_i}, \sigma^* p(a_{\sigma(1)}, ..., a_{\sigma(n)}) = p(a_1, ..., a_n)$

Definition 4 Morphisms of Operadic Algebras: Let A, B be two P-algebras. A morphism $f: A \to B$ is a family of maps

$$f_c: A_c \to B_c$$

which are compatible:

$$f_c(A(p)(a_1,...,a_n)) = B(p)(f_{c_1}(a_1),...,f_{c_n}(a_n))$$

Definition 5 Category of P-Algebras: Let P be an operad. Then we have a category of P-algebras Alg_P with:

- $ObAlg_P = \{P algebras \ A\}$
- $Hom_{Alg_P}(A, B) = \{f : A \to B : f \text{ is a morphism of algebras}\}$

We can now see some examples of operadic algebras. A **Com** algebra is a set A together with a map $\mu_n: A^{\times n} \to A$ for each $n \geq 0$. We can then verify that the category of algebras over the commutative operad, $\operatorname{Alg}_{\mathbf{Com}}$ is the category of commutative monoids. In a similar way $\operatorname{Alg}_{\mathbf{Ass}}$ is the category of associative monoids.

Consider the little-d cubes operad \mathbf{E}_d . Let X be a topological space with basepoint x_0 . Then the loop space of X is ΩX , the space of basepoint preserving maps $S^1 \to X$, or in otherwords $\{\omega : [0,1] \to X, \omega(\partial[0,1]) = x_0\}$. One can then inductively construct the d-fold loop space $\Omega^d X = \Omega(\Omega^{d-1}X)$. $\Omega^d X$ is very naturally a \mathbf{E}_d algebra.

- 1.3 Trees
- 1.4 Alternative Definitions for Operads
- 1.5 Free Operads
- 1.6 The Tensor Product of Operads
- 1.7 The Boardman-Vogt Resolution of an Operad
- 1.8 Configuration Spaces and the Fulton-MacPherson Operad
- 1.9 Configuration Spaces and the Operad of Little Cubes
- 2 Simplicial Sets
- 2.1 The Simplex Category Δ

Definition 6 The Simplex Category Δ : Δ is the category with:

- $Ob\Delta = \mathbb{N}$,
- $Hom_{\Delta}([n],[m]) = \{order\ preserving\ maps\ [n] \to [m]\}$

There are special maps in Δ - the elementary faces $\delta^i:[m-1]\to[m]$ and elementary degeneracies $\sigma^i:[m]\to[m-1]\ 0\le i\le m-1$:

$$\delta^{i}(j) = \begin{cases} j & j < i \\ j+1 & j \ge i \end{cases}, \quad \sigma^{i}(j) = \begin{cases} j & j \le i \\ j-1 & j > i \end{cases}$$

These have some nice relations, called the cosimplicial identities:

- $\sigma_i \sigma_j = \sigma_{j-1} \sigma_i$, i < j
- $\delta_i \delta_i = \delta_i \delta_{i-1}$

2.1.1 Limits and Colimits of The Simplicial Category

$$k \xrightarrow{f} n$$

$$\downarrow g \qquad \downarrow$$

$$m \to m + n$$

is a pushout, where f(i) = i, g(i) = m - k + i

2.2 Simplicial Sets and the Geometric Realisation

Let \mathcal{C} be a category. A simplicial object in \mathcal{C} is a functor $X : \Delta^{op} \to \mathcal{C}$. The morphisms between two simplicial objects over \mathcal{C} are the natural transformations of functors.

From this we obtain a category of simplicial objects on C, which has two notations:

$$\mathcal{C}^{\Delta^{op}}, s\mathcal{C}$$

where we use the left notation when we want to be reminded that elements are functors (and thus we treat the category in the standard way one treats a functor category) and the right when we want to be reminded of the underlying structure.

When C = Set then there is really nice structure here. First off, in this case we say $X \in sSet$ is a simplicial set. We get back to this case soon but we expand on the definition of a simplicial object further

A simplicial object X in \mathcal{C} is given by a sequence of objects $X_n = X([n])$ in \mathcal{C} together with maps $\alpha^* : X_n \to X_m$ where $\alpha \in \operatorname{Hom}_{\Delta}(m,n)$. These maps should be functorial, i.e.

$$id^* = id : X_n \to X_n$$

$$(\alpha \circ \beta)^* = \beta^* \alpha^* \quad \alpha : [m] \to [n], \beta : [k] \to [m]$$

and a morphism between two simplicial objects is a morphism on objects $f_n: X_n \to Y_n$ such that it is functorially compatible $f_m \alpha^* = \alpha f_n$.

Back to the case of simplicial sets. In this case we refer to X_n as the set of n-simplices of X. We have some special maps

$$d_i = (\delta_i)^* : X_n \to X_{n-1}$$

$$s_i = \sigma_i^* : X_{n-1} \to X_n$$

called the face maps and face degeneracies of the simplicial object X.

For now let's consider the common topological n-simplex:

$$\Delta^{n} = \{(t_0, ..., t_n) \in \mathbb{R}^{n+1} : \sum_{i} t_i = 1, t_i \ge 0\}$$

These can be thought of as generalisations of triangles in higher dimensions. Δ^1 is just the line y = -x + 1, Δ^2 is the set $\{(x, y, 1 - (x + y) : 0 \le x, y, x + y \le 1)\}$ and so on. A function $f: \{0, ..., m\} \to \{0, ..., n\}$ defines an affine map $f_*: \Delta^m \to \Delta^n, v_i \to v_{f(i)}$ where v_i is the *i*th vertex of the simplex Δ^m .

This construction makes the family of standard simplicies into a functor $\Delta^{\bullet}: \Delta \to \mathbf{Top}$.

$$\Delta^{\alpha}(t_0, ..., t_m) = (s_0, ..., s_n), s_j = \sum_{i \in \alpha^{-1}(j)} t_i$$

for $\alpha \in \operatorname{Hom}_{\Delta}([m], [n])$. Specifically the elementary face map $\delta_i : [n-1] \to [n]$ is lifted to

$$\Delta^{\delta_i}:\Delta^{n-1}\to\Delta^n$$

and embeds Δ^{n-1} as the face opposite the vertex i

Let's see this in low dimension. Let n=1 and i=0. We must keep track of what's going on. We have just claimed that Δ^{δ_0} embeds Δ^0 as the face opposite the vertex v_0 in Δ^1 .

Recall that $\Delta^0 = \{1 \in \mathbb{R}^1\}$ is a point and Δ^1 corresponds to the line y = 1 - x. Let's call the point $(0,1) = v_0$ the first vertex. We have $\Delta^{\delta_0}(t) = (\sum_{i \in \delta_0^{-1}(0)} t_i, \sum_{i \in \delta_0^{-1}(1)} t_i)$ but $\delta_0^{-1}(1) = \{j \in [1] = \{0,1\} : j+1=1 \text{ and } j \geq 0\} = 0$. Thus we get that $\Delta^{\delta_0}(1) = (1,0)$. So now we have gained the intuition for the following proposition

Proposition 1 For maps $\delta_i : [n-1] \to [n]$, the map $(\delta_i)_* = \Delta^{\delta_i} : \Delta^{n-1} \to \Delta^n$ embeds Δ^{n-1} as the face opposite the vertex labelled i

Proof

There is also a nice geometric interpretation for Δ^{σ_j} for $\sigma_j : [n] \to [n-1]$. This is the collapsing of Δ^n onto Δ^{n-1} by a projection parallel to the line connecting v_j and v_{j+1} .

We start with a large and rather unintuitive space and try to quotient out by these relations in order to get a nice geometric space. Let $\hat{X} = \bigsqcup_{n\geq 0} (X_n \times \Delta^n)$. Let $(x,t) \in \hat{X}$, that is $x \in X_n, t \in \Delta^n$. We have the relation $(x, \Delta^{\alpha}t) \sim (\alpha^*x, t)$.

Definition 7 The Geometric Realisation of a Simplicial Set: Let $X : \Delta^{op} \to Set$ be a simplicial set. The geometric realisation of X is

$$|X| := (\bigsqcup_{n \ge 0} (X_n \times \Delta^n)) / \sim$$

where we denote $x \otimes t$ the equivalence class of (x,t) in |X|.

A map $f: X \to Y$ between simplicial sets induces a continuous map

$$|f|:|X|\to |Y|,x\otimes t\to f(x)\otimes t$$

Whence it is clear we have a functor $|.|: \mathbf{sSet} \to \mathbf{Top}$

If $C^{\bullet}: \Delta \to \mathcal{C}$ is a functor, each object $c \in \mathcal{C}$ defines a simplicial set $\mathbf{Sing}_{C^{\bullet}}(c) = \mathrm{Hom}_{\mathcal{C}}(C^{n}, c)$

- 2.3 The Geometric Realisation as a Cell Complex
- 2.4 Simplicial Sets as a Category of Presheaves
- 3 Dendroidal Sets
- 4 Tensor Products of Dendroidal Sets
- 5 Kan Conditions for Simplicial Sets
- 6 Kan Conditions for Dendroidal Sets
- 7 Model Categories
- 8 Model Structures on the Category of Simplicial Sets
- 9 Three Model Structures on the Category of Dendroidal Sets
- 10 Reedy Categories and Diagrams of Spaces
- 11 Mapping Spaces and Bousfield Localisations
- 12 Dendroidal Spaces and ∞ -Operads
- 13 Left Fibrations and the Covariant Model Structure
- 14 Simplical Operads and ∞ -Operads
- 15 Some Research
- 15.1 Danoidal Sets

Over groups

15.2 Kanoidal Sets

Over rings

15.3 Hokoidal Sets

Over vector spaces

15.4 Kukanal Set

Over topological spaces

15.5 General Sentoidal Sets

Over the category of cones over a category