Edge made of 183 ! 4,

١,	G	1	d(n1)	d(n2)	Edge of 42 Joining d(ni) and a(nz)	β(e)	Edge of G2 Joining d (n1) and a(n2) = P(e)? (Angwer with Yes/No)
nl	е	nZ					
XI	01	22	44	42	63	63	Yes
X2		х3	42	41	bl	61	Yes
XZ	03	X4	42	43	62	Ь2	Yes
XI	44	75	44	45	65	65	Yes
X4	0.5	X5	43	45	66	p6 1	Yes
23	06	X5	ul	1 45	64	64	Yes

b. For each of 11 teams to play 5 games against different opponents in the group, The sum of degree (total playing teams) is 5×11=55 and by Euler's theorem, the number of edges (total number of games) is 5½ is not a natural number, so It is not possible,

0

4. (i) B | When there's only 1 vertex, there's D edge.

(ii) suppose that if there are k vertices making or tree it has K-1 edges, when a vertex is added, the new vertex yets connected with only one vertex, that makes one more edge, so there will be say that new k+1 vertices and k edges.

It's general to k+1 vertices and k edges.

It is added by ind, hyp. The statement is true,

yertex is added below the existing tree, then it's connected with only the higher one vertex

5. (i) when p=0, $z^p=1=$ \Rightarrow sum (L) = sum ($\alpha 1$) = $\alpha 1$ (ii) for $0 \le i \le p-1$, $i \ne (\alpha_1, \alpha_2; \cdots, \alpha_{2^i})$ ove the elements of L_{α}

if $Sum(L) = a_1 + a_2 + \cdots + a_2i$ is true, For $P > a_1, \cdots, a_2P$ are the elements of L, $Sum(L) = Sum(a_1, a_2, \cdots, a_2P)$ $= Sum(a_1, \cdots, a_2P+) + Sum(a_2P+1), \cdots, a_2P)$ $= (a_1 + \cdots + a_2P+) + (a_2P+1) + \cdots + a_2P)$

6, a ald e

e de

b $G = \frac{1}{4} + \frac{1}{4}$

8,0

6 %

when i=0, there is 0 internal node and 1 terminal vertices,

suppose that when i=k, T has k internal vertices

and k+1 terminal vertices. > 2k+1 in to tal

Think about adding one more internal vertex to T,

(i) because all internal vertices have each Z terminal

vertices and overy experient elected has no more

vertices and every terminal vertex has no more vertices connected below them, adding 2 vertices to an existing terminal vertex makes that terminal vertex into an internal vertex and

makes 2 extra terminal vertices, (adding just one vertex is not possible because it makes an internal vertex with only one termial vertex connexted to it.)

then new T has K+1 internal vertices and

(K+1)-1+2 = K+2 terminal vertices ⇒ 2(x+1)+1 total

(ii) we can odd an internal vertex on the top of T,

and to make it sull an terminal vertex to it.

then new T has K+1 internal vertices

and K+1+1=K+2+erminal vertices. ⇒ 2(K+1)+1 total

by ind, hyp. if T has i internal vertices,
T has not in terminal and Zitl in total.