Układ sekwencyjny – wartości wyjść są funkcją aktualnego stanu, sekwencji poprzednich stanów oraz wejść układu cyfrowego

- Autonomiczne włączanie lampek choinkowych
- Sterowanie w zaplanowanej kolejności "pokazem fontann"
- Światła kierujące ruchem ulicznym
- Reklamy świetlne...
- Sekwencyjna wymiany danych

Układ sekwencyjny...

Asynchroniczny – zmiany stanów następują bezpośrednio po zmianie wartości sygnałów wejściowych (układ rzadko stosowany)

Synchroniczny – zmiany stanów następują na podstawie wartości sygnałów wejściowych w chwilach określanych przez zewnętrzny sygnał taktujący, zazwyczaj okresowy stąd zwany zegarowym autonomiczny – układ synchroniczny bez wejść sterujących, tylko zegar

Sposoby wyzwalania układu synchronicznego sygnałem zegarowym

Zbocze narastające (zmiana $0 \rightarrow 1$)

Zbocze opadające (zmiana $1 \rightarrow 0$)

Model matematyczny układu sekwencyjnego nazywany jest AUTOMATEM

Rozróżniamy dwa modele automatów:

- automat Mealy'ego (1955 r.) sygnały wyjściowe zależą od stanu w jakim układ się znajduje oraz od sygnałów wejściowych (rzadko stosowany)
- automat Moore'a (1956 r.) sygnały wyjściowe zależą tylko od stanu w jakim układ się znajduje

Schemat blokowy automatu Mealy'ego

$$\mathbf{Q} = \delta(\mathbf{Q}, \mathbf{X})$$

$$Q = \delta(Q, X)$$
 $Y = \lambda(Q, X)$

UP – układ pamięciowy

Schemat blokowy automatu Moore'a

$$\mathbf{Q} = \delta(\mathbf{Q}, \mathbf{X})$$

$$Y = \lambda(Q)$$

Sposoby opisu układu sekwencyjnego

Graf stanów

Sposoby opisu układu sekwencyjnego

Tablica przejść i wyjść

Stan – stan aktualny, Stan₊ – stan następny

ELEMENTY PAMIĘCIOWE => przerzutniki

Ze względu na sposób przełączenia:

- przerzutniki asynchroniczne tylko wyjściowe sygnały wyzwalające zmianę stanu wyjścia; zatrzask, latch
- przerzutniki synchroniczne wyjściowe sygnały wyzwalające zmianę stanu wyjścia oraz sygnał taktujący (zegar)

Ze względu na działanie:

- SR (Set Reset)
- D (Data, Delay)
- JK (ulepszona wersja SR)
- T (Toggle ang. przełączenie)

ASYNCHRONICZNY PRZERZUTNIK SR

Zasada działania

$$S - Set \rightarrow dla S=1 ustaw Q=1$$

$$R - Reset \rightarrow dla R=1 ustaw Q=0$$

Т	Tablica przejść			
	S R	Q.		
	0 0 0 1 1 0 1 1	Q 0 1		

Przykładowe przebiegi sygnałów

Asynchroniczny przerzutnik SR – sposoby opisu działania

Graf przejść

Siatka Karnaugh

Tablica przejść

SR	Q†
0 0 0 1 1 0 1 1	Q 0 1

Tablica wzbudzeń

Q→Q ⁺	SR
0→0	0 -
0→1	1 0
1→0	0 1
1→1	- 0

Asynchroniczny przerzutnik SR – realizacja układowa

 \overline{R} , \overline{S} – znak negacji oznacza reakcję tych wejść na stan 0

Przerzutnik SR – z zezwoleniem... (bramkowany zatrzask)

$$\overline{SC} = \begin{cases} 1 & \text{dla } C = 0 \\ \overline{S} & \text{dla } C = 1 \end{cases}$$

$$\overline{m{RC}} = egin{cases} 1 & \mathsf{dla} & m{C} = m{0} \ \overline{m{R}} & \mathsf{dla} & m{C} = m{1} \end{cases}$$

Stany wejść S i R są przenoszone przez bramki NAND tylko przy sygnale zezwalającym C = 1.

Przykładowe przebiegi sygnałów

Przerzutnik typu Master-Slave

Jest to najprostsze rozwiązanie eliminujące "przeźroczystość", stanowiące szeregowe połączenie dwóch bramkowanych zatrzasków wyzwalanych w przeciwnych fazach impulsem sygnału zegarowego.

Przerzutnik SR MS

"ASYNCHRONICZNY" PRZERZUTNIK D

Zasada działania

dla D=1 ustaw Q=1

dla D=0 ustaw Q=0

Tal	Tablica przejść		
	D	Q.	
	0	0	

Przykładowe przebiegi sygnałów

"super-przeźroczysty..."

???

Przerzutnik D – sposoby opisu działania

Siatka Karnaugh

Tablica przejść

Tablica wzbudzeń

Q→Q ⁺	D
0→0	0
0→1	1
1→0	0
1→1	1

Przerzutnik D – z zezwoleniem... (bramkowany, zatrzask)

Powstał z zatrzasku SR w wyniku połączenia wejścia S przez inwerter do wejścia R =>

Przykładowe przebiegi sygnałów

"prawie nieprzeźroczysty..."

SYNCHRONICZNY PRZERZUTNIK D

- wyzwalany zboczem sygnału zegara

Przykładowe przebiegi sygnałów

"całkowicie nieprzeźroczysty..."

Wyjście Q przyjmuje stan wejścia D tylko w momentach zmiany na C z 0 na 1

Synchroniczny przerzutnik D – realizacja układowa

SYNCHRONICZNY PRZERZUTNIK **JK**

J – John

K – Kilby

Ulepszona wersja przerzutnika SR – brak stanu zabronionego !

Zasada działania

Dla J = 1 i K = 1 wyjście Q przyjmuje stan przeciwny!

Synchroniczny przerzutnik JK – przykładowe przebiegi sygnałów

Tablica	Tablica przejść			
JK	Q.			
00	Q o			
1 0 1 1	1 Q			

Synchroniczny przerzutnik JK – sposoby opisu działania

Graf przejść

Siatka Karnaugh

\ Jk	(
Q\	00	01	11	10	
0	0	0	1	1	
1	1	0	0	1	
'					Q

Tablica przejść

Tablica wzbudzeń

$$\begin{array}{c|ccc} Q \to Q^+ & JK \\ \hline 0 \to 0 & 0 - \\ 0 \to 1 & 1 - \\ 1 \to 0 & -1 \\ 1 \to 1 & -0 \\ \end{array}$$

Synchroniczny przerzutnik JK – realizacja układowa

SYNCHRONICZNY PRZERZUTNIK T

T – toggle – przełączać...

Zasada działania

- → dla T=1 ustaw na Q stan przeciwny, czyli not Q
- → dla T=0 nie zmieniaj stanu wyjścia Q

Synchroniczny przerzutnik T

przykładowe przebiegi sygnałów

Tablica przejść $\begin{array}{c|c}
T & Q_{+} \\
\hline
0 & Q \\
1 & \overline{Q}
\end{array}$

Synchroniczny przerzutnik T – sposoby opisu działania

Graf przejść

Siatka Karnaugh

Tablica przejść

$$\begin{array}{c|c}
T & Q^{+} \\
\hline
0 & Q \\
1 & \overline{Q}
\end{array}$$

Tablica wzbudzeń

Q→Q⁺	Т
0→0 0→1 1→0 1→1	0 1 1 0

Synchroniczny przerzutnik T – realizacje układowe

Tablica wzbudzeń

Q→Q⁺	T
0→0 0→1	0
1→0 1→1	1 0

Projektowanie układów sekwencyjnych

ETAPY:

- 1. Opis słowny działania układu
- 2. Utworzenie grafu automatu
- 3. Utworzenie pierwotnej tablicy przejść i wyjść
- 4. Minimalizacja liczby stanów automatu
- 5. Kodowanie stanów
- 6. Wybór elementów pamięciowych
- 7. Utworzenie funkcji wzbudzeń przerzutników
- 8. Utworzenie funkcji wyjść
- 9. Schemat układu (bramki, przerzutniki)

Przykład – opis słowny działania układu

Zaprojektować synchroniczny układ sekwencyjny generujący sekwencję sygnałów sterujących 10, 01, 00, 11 dla sygnału wejściowego x=0 oraz sekwencję 01, 10 dla x=1. Przy zmianie sygnału x układ generuje nową sekwencję tak, aby należał do niej ostatni wyraz poprzedniej sekwencji.

Przykład – graf automatu

 $x=0 \rightarrow 10, 01, 00, 11$ oraz $x=1 \rightarrow 10, 01$ (brak 00 i 11!)

Przykład – pierwotna tablica przejść i wyjść

	x=0	x=1	y_1y_0
1	2	6	1 0
2	3	5	0 1
3	4	6	0 0
4	1	6	11
5	2	6	1 0
6	3	5	0 1

Przykład – minimalizacja liczby stanów

Dwa stany są równoważne, jeżeli dla każdej kombinacji wejść dają taką samą wartość wyjścia oraz przenoszą automat do tego samego stanu lub stanów równoważnych.

Stany równoważne sklejamy w jeden stan.

Zredukowana liczba stanów

Przykład – minimalizacja liczby stanów

$$\begin{array}{c} (1,5) \rightarrow \mathsf{A} \\ (2,6) \rightarrow \mathsf{B} \\ 3 \rightarrow \mathsf{C} \\ 4 \rightarrow \mathsf{D} \end{array}$$

Minimalny graf automatu

Minimalna tablica przej. i wyj.

Przykład – kodowanie stanów

Kody stanów: $A \le 00$ (Q_1Q_0) $B \le 01$ $C \le 10$ $D \le 11$

<u>Przykład</u> – zakodowana minimalna tablica przejść i wyjść w postaci siatek Karnaugh

Moore

Przykład – funkcje wzbudzeń

Przykład – funkcje wzbudzeń dla przerzutników JK

Przykład – funkcje wzbudzeń dla przerzutników JK

Przykład – funkcje wyjść y₁ i y₀

Przykład – schemat logiczny automatu

