Taj Dyson

Personal Website | tdyson@stanford.edu | github.com/1sadtrombone

_			
E_{D}	TIO.	ΛTT	\cap NI
1717	UU	~ I I	UIN.

Stanford University PhD, Physics	Sep. 2021 – Jun. 2026
McGill University Bachelor of Science, Honours Physics	Aug. 2018 – May 2021
Dawson College DCS, First Choice Sciences, Honours List	Aug. 2016 – May 2018
Awards	
NSERC Undergraduate Summer Research Award (USRA)	2020
FRQNT Supplement to the USRA	2020
BLUE Fellowship at McGill's Building 21	2020
McGill Physics Hackathon Winner – Arts & Science	2019
Dawson College ScienceFest Best Poster Winner	2018
Dawson College ScienceFest Hackathon Winner	2018
Governor General's Academic Medal Bronze Level	2016
Publications	

(Click to view)

- T. Dyson et al., "Radio-Frequency Interference at the McGill Arctic Research Station," Journal of Astronomical Instrumentation, Submitted 15 Dec. 2020, Published 12 May 2021.
- H. C. Chiang, T. Dyson et al., "The Array of Long Baseline Antennas for Taking Radio Observations from the Sub-Antarctic," Journal of Astronomical Instrumentation, Submitted 27 Aug. 2020, Published 21 Dec. 2020.

Presentations and Outreach

(Click to view)

Radio Frequency Interference at the McGill Arctic Research Station Soup and Science Public Talks, McGill University	Sep. 2020
Emergent Computation Project Presentation, Building 21	Aug. 2020
Interviewed in "ALBATROS radio astronomy Product Showcase" Article, The MagPi Magazine	Sep. 2019

Research Experience

Graduate Research Assistant – Axion Haloscope

Sep. 2021 – Present

Stanford University, supervised by Prof. Chao-Lin Kuo

- Characterized the resonances of a novel prototype haloscope for axion dark matter detection.
- Developed a script for automatically aligning the haloscope based on measurements possible at cryogenic temperatures.
- Verified the alignment by mapping electric field intensity.
- Trained in modern high-precision metrology techniques for construction of the next haloscope model.

Graduate Research Assistant – Novel Cryogenic Detectors

May 2022 – Present

Stanford University, supervised by Prof. Chao-Lin Kuo

• Took cryogenic measurements of the noise performance of a novel detector type, thermal kinetic inductance detectors (TKIDs).

- Collaborating with Bryan Steinbach, Lorenzo Minutolo, and Albert Wandui at Caltech to deploy a test tile of detectors to the south pole with BICEP.
- Helped design the cryogenic radio-frequency readout chain for a receiver in the BICEP array.

Graduate Research Assistant – Qubit-Based Sensors

Mar. 2022 – Jun. 2022

SLAC and Stanford University, supervised by Dr. Noah Kurinsky

- Characterized a cutting-edge superconducting travelling wave parametric amplifier (TWPA), finding optimal operating parameters and its noise temperature.
- Took measurements of a qubit at cryogenic temperatures, verifying its transition between states under an excitation, and the AC Stark shift of the transition frequency.
- Measured the critical temperature of superconducting samples for use in transition edge sensors.
- Learned firsthand to operate a dilution refrigerator.

Graduate Research Assistant – Atom Interferometry with MAGIS

Jan. 2022 - Mar. 2022

Stanford University, supervised by Prof. Jason Hogan

- Designed, built, & tested an optical assembly critical to the MAGIS experiment.
- Set up a magneto-optical trap for manipulating atoms in a vacuum using lasers.
- Locked may lasers' frequencies using PID feedback with a known frequency comb.
- Built & aligned a 922 nm (infrared) laser.

Undergraduate Research Assistant – Radio Cosmology Field Work

Sep. 2018 – Jul. 2021

McGill University, supervised by Prof. Cynthia Chiang

- Developed and deployed solar and wind power solutions for radio interferometer stations in remote locations such as Uapishka Station and the McGill Arctic Research Station.
- Designed & built electronic devices and wrote C++ Arduino firmware for power control & logging.
- Flagged radio-frequency interference in radio astronomy data using Python.

Undergraduate Research Assistant – Radio Interferometry Analysis

Sep. 2020 – May. 2021

McGill University, supervised by Prof. Jonathan Sievers

- Synchronized independent interferometer antenna clocks using the time delay of a known signal between them.
- Used the Niagara cluster of Compute Canada to run Python.
- Gave a summary talk to peers and faculty.

BLUE Fellow – Emergence and Complexity

May 2020 – Jul. 2020

Building 21

- Independently researched emergence and its relation to the computational capacity of a system.
- Led group discussions about several research topics.
- Wrote computer simulations of cellular automata using Python.

TEACHING EXPERIENCE

Teaching Assistant

Jan. 2022 – Mar. 2022

 $Stanford\ University$

 $Introductory\ Undergraduate\ -\ Mechanics$

- Taught in an active learning classroom.
- Organized and led study sessions and office hours.
- Graded assignments and exams.

TEAM Undergraduate TA

Jan. 2021 – May 2021

McGill University

Advanced Undergraduate - Data Science and Observational Astrophysics

• Mentored students through coding labs in an online active learning environment.

Instructor

Feb. 2017 – Sep. 2017

Kids Code Jeunesse

• Taught coding to kids of all ages in several workshops and events, including Scratch, HTML, and Python.

TECHNICAL SKILLS

Languages: Python, C, C++ (Arduino), Rust, Java, Lua

CAD: SOLIDWORKS

Manufacturing: machine shop, 3D printing, Hexagon metrology

GRADUATE-LEVEL COURSES

Quantum Field Theory I $Stanford\ University$ Cosmology $Stanford\ University$ Physics of Energy $Stanford\ University$ Quantum Theory $McGill\ University$ Electromagnetic Theory $McGill\ University$ General Relativity $McGill\ University$ Particle Physics $McGill\ University$ Advanced Statistical Mechanics $McGill\ University$ Biophysics $McGill\ University$