RadiareTerms

Timothy C. Burt

<2017-04-22 Sat> April 23, 2017

Contents

1 Terminology for Radiometry and its Kin

1

1 Terminology for Radiometry and its Kin

Common concepts

Concept	Symbol	Unit (description)	Dimension	Relation
energy	Q	energy	L^2MT^{-2}	\overline{Q}
energy density	u	energy per volume	$L^{-1}MT^{-2}$	$u = \frac{dQ}{dV}$
fluence	H	energy per area	MT^{-2}	$H = \frac{dQ}{dA}$
directance	D	energy per solid angle	L^2MT^{-2}	$D = \frac{dQ}{d\Omega}$
flux	Φ	energy per time	L^2MT^{-3}	$\Phi = \frac{dQ}{dt}$
exitance	M	energy per time per area	MT^{-3}	$M = \frac{d^2Q}{dtdA}$
arrivance	E	energy per time per area	MT^{-3}	$E = \frac{d^2Q}{dtdA}$
intensity	I	energy per time per solid angle	L^2MT^{-3}	$I = \frac{d^2 Q}{dt d\Omega \cos \theta}$
brightness	L	energy per time per area per solid angle	MT^{-3}	$L = \frac{d^3 Q}{dt dA d\Omega \cos \theta}$

From the $\mbox{http://physics.nist.gov/Pubs/SP330/sp330.pdf}$ Dimension symbols: LMT

• Talbot: https://en.wikipedia.org/wiki/Lumen_second

Radiometric terms

Concept	Symbol	Unit	Relation
		(SI)	
radiant energy	Q_{e}	J	$Q_{ m e}$
radiant energy density	$u_{\rm e}$	$ m Jm^{-3}$	$u_{\rm e} = \frac{dQ_{\rm e}}{dV}$
radiant fluence	$H_{ m e}$	$\mathrm{J}\mathrm{m}^{-2}$	$H_{\rm e} = \frac{dQ_{\rm e}}{dA}$
radiant directance	D_{e}	$\mathrm{J}\mathrm{sr}^{-1}$	$D_{\rm e} = \frac{dQ_{\rm e}}{d\Omega}$
radiant flux	$\Phi_{ m e}$	$ m Js^{-1}$	$\Phi_{ m e} = rac{dQ_{ m e}}{dt}$
radiant exitance	$M_{ m e}$	$\rm Js^{-1}m^{-2}$	$M_{ m e} = rac{ ilde{d}^2 Q_{ m e}}{dt dA}$
irradiance	E_{e}	${ m Js^{-1}m^{-2}}$	$E_{\rm e} = \frac{d^2 Q_{\rm e}}{dt dA}$
radiant intensity	$I_{ m e}$	$\rm Js^{-1}sr^{-1}$	$I_{\rm e} = \frac{d^2 Q_{\rm e}}{dt d\Omega \cos \theta}$
radiance	$L_{ m e}$	$ m Js^{-1}m^{-2}sr^{-1}$	$L_{\rm e} = \frac{d^3 Q_{\rm e}}{dt dA d\Omega \cos \theta}$

Photometric terms

Concept	Symbol	Unit	Unit	Unit	Relation
		(named)	(SI)	(Talbot-based)	
luminous energy	Q_{v}	lm s	$\operatorname{cd}\operatorname{rad}\operatorname{s}$	Τ	$Q_{\rm v}$
luminous energy density	$u_{\rm v}$	$ m lmsm^{-3}$	${\rm cdradsm^{-3}}$	${ m Tm^{-3}}$	$u_{\rm v} = \frac{dQ_{\rm v}}{dV}$
luminous fluence	$H_{ m v}$	lx s	$\rm cdradsm^{-2}$	${ m Tm^{-2}}$	$u_{\rm v} = \frac{dQ_{\rm v}}{dV}$ $H_{\rm v} = \frac{dQ_{\rm v}}{dA}$
luminous directance	$D_{ m v}$	$\operatorname{cd} s$	$\operatorname{cd} s$	$\mathrm{T}\mathrm{sr}^{-1}$	$D_{\rm v} = \frac{dQ_{\rm v}}{d\Omega}$
luminous flux	$\Phi_{ m v}$	lm	$\operatorname{cd}\operatorname{rad}$	$\mathrm{T}\mathrm{s}^{-1}$	$D_{ m v} = rac{dQ_{ m v}}{d\Omega} \ \Phi_{ m v} = rac{dQ_{ m v}}{dt}$
luminous exitance	$M_{ m v}$	lx	$\rm cdradm^{-2}$	${ m Ts^{-1}m^{-2}}$	$M_{\rm v} = \frac{d^2 Q_{\rm v}}{dt dA}$
illuminance	$E_{ m v}$	lx	$\rm cdradm^{-2}$	${ m Ts^{-1}m^{-2}}$	$E_{\rm v} = \frac{d^2 Q_{\rm v}}{dt dA}$
luminous intensity	$I_{ m v}$	cd	cd	${ m Ts^{-1}sr^{-1}}$	$E_{\rm v} = \frac{d^2 Q_{\rm v}}{dt dA}$ $I_{\rm v} = \frac{d^2 Q_{\rm v}}{dt d\Omega \cos \theta}$
luminance	$L_{ m v}$	$ m cdm^{-2}$	$ m cdm^{-2}$	${ m Ts^{-1}m^{-2}sr^{-1}}$	$L_{\rm v} = \frac{d^3 Q_{\rm v}}{dtdAd\Omega\cos\theta}$

