WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

23

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 97/23479
C07D 401/14	A1	(43) International Publication Date:	3 July 1997 (03.07.97)
(21) International Application Number: PCT/US (22) International Filing Date: 20 December 1996 ((30) Priority Data: 60/009.098 22 December 1995 (22.12.9) (71) Applicant (for all designated States except US): SMIT BEECHAM CORPORATION [US/US]; Corporate tual Property, UW2220, 709 Swedeland Road, 1539, King of Prussia, PA 19406-0939 (US). (72) Inventor; and (75) Inventor/Applicant (for US only): SISKO, Joseph 180 Logan Drive, Hatfield, PA 19440 (US). (74) Agents: DINNER, Dara, L. et al.; SmithKline Corporation, Corporate Intellectual Property, UW2 Swedeland Road, P.O. Box 1539, King of Prus 19406-0939 (US).	20.12.9 THKLING Inteller P.O. Bellin (US/US) Beechage 2220, 76	EE, GE, HU, IL, IS, JP, KG, K MD, MG, MK, MN, MX, NO, TR, TT, UA, US, UZ, VN, AR SD, SZ, UG), Eurasian patent (A RU, TI, TM), European patent (G FI, FR, GB, GR, IE, IT, LU, MC, (BF, BJ, CF, CG, CI, CM, GA, C) TG). Published With international search report.	P, KR, LK, LR, LT, LV, NZ, PL, RO, SG, SI, SK, IPO patent (KE, LS, MW, M, AZ, BY, KG, KZ, MD, AT, BE, CH, DE, DK, ES, NL, PT, SE), OAPI patent GN, ML, MR, NE, SN, TD

(54) Title: NOVEL SYNTHESIS

(57) Abstract

The present invention relates to a novel method for synthesizing imidazole derivatives having 4-aryl, 5-pyrimidine heterocyclic rings using a novel cycloaddition reaction.

Atty. Docket No. 3015/6/US Serial No. 10/021,780 Anantanarayan et al. Reference 23 of 77

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	
BB	Barbados	GR	Greece	NE NL	Niger Netherlands
BE	Belgium	HU	Hungary		
BF	Burkina Feso	IR.	Ireland	NO	Norway
BG	Bulgaria	ίτ	Italy	NZ	New Zealand
BJ	Benin	JР		PL	Poland
BR	Brazil	KE	Japan	PT	Portugal
BY	Belanus	KG	Kenya	RO	Romania
CA	Canada		Kyrgystan	RU	Russian Federation
CF		KP	Democratic People's Republic	SD	Sudan
CC	Central African Republic Congo	Tem.	of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	8G	Singapore
CI	Côte d'Ivoire	KZ.	Kazakhsian	SI	Slovenia
CM		u	Licchenstein	SK	Slovakia
	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Lacvia	TJ	Tafikistan
DK	Denmark	MC	Монасо	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Vict Nam

Novel Synthesis

5 Field of the Invention:

The present invention relates to a novel method for synthesizing imidazole derivatives having 4-aryl, 5-pyrimidine heterocyclic rings.

Background of the Invention:

The present invention describes a novel, and general method to prepare 5-pyrimidinyl substituted imidazoles. Previous syntheses of this class of molecules utilized the van Leusen reaction (van Leusen, A.M., et. al. *J. Org. Chem.* 1977, 42, 1153), which involves the cycloaddition of an imine and a tosylisonitrile. Difficulties in preparing the aldehyde precursors to the desired imines limited the scope of this approach. In Adams et al., WO 95/02591 an improvement on the cycloaddition reaction is shown for similar compounds. However addition of a pyrimidine ring in an environmentally favourable and commercially feasible manner is still needed. The present invention employs a novel method of cycloaddition of a tosylisonitrile with an α-ketoaldimine to produce a 5-keto imidazole derivative. The 5-keto group serves as an excellent precursor for addition of the optionally substituted pyrimidine ring.

Summary of the Invention:

The present invention is to a process of making compounds of Formula (I),

$$\begin{array}{c}
R_2 \\
R_1 \\
N \\
N \\
N
\end{array}$$

$$\begin{array}{c}
R_4 \\
N
\end{array}$$

$$\begin{array}{c}
R_2 \\
N
\end{array}$$

$$\begin{array}{c}
R_1 \\
N
\end{array}$$

$$\begin{array}{c}
R_2 \\
N
\end{array}$$

$$\begin{array}{c}
R_3 \\
N
\end{array}$$

25 wherein

R₁ is an optionally substituted pyrimidin-4-yl ring;

R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring; m is 0, or the integer 1 or 2;

m' is an integer having a value of 1 or 2,

R2 is -(CR10R20)n' OR9, heterocyclyl, heterocyclylC1-10 alkyl, C1-10alkyl, halosubstituted C1-10 alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl, C3-7cycloalkylC1-10 alkyl, C5-7 cycloalkenyl, C5-7cycloalkenyl-C1-10-alkyl, aryl, arylC1-10 alkyl, heteroaryl, heteroaryl-C1-10-alkyl, (CR10R20)nOR11,

 $(CR_{10}R_{20})_{n}S(O)_{m}R_{18}, (CR_{10}R_{20})_{n}NHS(O)_{2}R_{18}, (CR_{10}R_{20})_{n}NR_{13}R_{14}, \\ (CR_{10}R_{20})_{n}NO_{2}, (CR_{10}R_{20})_{n}CN, (CR_{10}R_{20})_{n}SO_{2}R_{18}, \\ (CR_{10}R_{20})_{n}S(O)_{m'}NR_{13}R_{14}, (CR_{10}R_{20})_{n}C(Z)R_{11}, (CR_{10}R_{20})_{n}OC(Z)R_{11}, \\ (CR_{10}R_{20})_{n}C(Z)OR_{11}, (CR_{10}R_{20})_{n}C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_{n}C(Z)NR_{11}OR_{9}, \\ (CR_{10}R_{20})_{n}NR_{10}C(Z)R_{11}, (CR_{10}R_{20})_{n}NR_{10}C(Z)NR_{13}R_{14}, \\ (CR_{10}R_{20})_{n}N(OR_{6})C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_{n}N(OR_{6})C(Z)R_{11}, \\ (CR_{10}R_{20})_{n}C(=NOR_{6})R_{11}, (CR_{10}R_{20})_{n}NR_{10}C(=NR_{19})NR_{13}R_{14}, \\ (CR_{10}R_{20})_{n}OC(Z)NR_{13}R_{14}, (CR_{10}R_{20})_{n}NR_{10}C(Z)NR_{13}R_{14}, \\ (CR_{10}R_{20})_{n}NR_{10}C(Z)OR_{10}, 5-(R_{18})-1,2,4-oxadizaol-3-yl or \\ \\ (CR_{10}R_{20})_{n}NR_{10}C(Z)OR_{10}, 5-(R_{18})_{n}NR_{10}C(Z)OR_{10}, 5-(R_{18})_{n}NR_{10}C(Z)OR_{10}, 5-($

4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadiazol-3-yl; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be optionally substituted;

n is an integer having a value of 1 to 10; n' is 0, or an integer having a value of 1 to 10;

15 Z is oxygen or sulfur;

5

20

25

R3 is heterocyclyl, heterocyclylC1-10 alkyl or R8;

R6 is hydrogen, a pharmaceutically acceptable cation, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylalkyl, heterocyclyl, aroyl, or C₁₋₁₀ alkanoyl;

R8 is C1-10 alkyl, halo-substituted C1-10 alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl, C5-7 cycloalkenyl, aryl, arylC1-10 alkyl, heteroaryl, heteroarylC1-10 alkyl, (CR10R20)nOR11, (CR10R20)nS(O)mR18, (CR10R20)nNHS(O)2R18, (CR10R20)nNR13R14; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl may be optionally substituted:

R9 is hydrogen, -C(Z)R11 or optionally substituted C1-10 alkyl, S(O)2R18, optionally substituted aryl or optionally substituted aryl-C1-4 alkyl;

R₁₀ and R₂₀ is each independently selected from hydrogen or C₁₋₄ alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀ alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl or heteroarylC₁₋₁₀ alkyl;

R₁₂ is hydrogen or R₁₆;

- 30 R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄ alkyl, optionally substituted aryl or optionally substituted aryl-C₁₋₄ alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR₉;
- 35 R₁₆ is C₁₋₄ alkyl, halo-substituted-C₁₋₄ alkyl, or C₃₋₇ cycloalkyl;

R₁₈ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl, heterocyclyl-C₁₋₁₀alkyl, heteroaryl or heteroarylalkyl; and R₁₉ is hydrogen, cyano, C₁₋₄ alkyl, C₃₋₇ cycloalkyl or aryl; which process comprises:

a) reacting a compound of formula (II), as defined below

wherein R is the optional substituent on the pyrimidinyl (R_1) moiety in Formula (I), or is hydrogen, an optionally substituted alkyl or an optionally substituted aryl, with a compound of the Formula R2NH2 (III), wherein R2 is as defined for Formula (I), to yield a compound of Formula (IV)

wherein R and R2 are as defined above; and

b) reacting a compound of Formula (IV) with a compound of Formula (V) and a suitable base,

15

5

10

wherein Ar is an optionally substituted aryl; and R4 is as defined for Formula (I); to yield a compound of Formula (VI)

wherein R, R2 and R4 are as defined above; and

20 c) reacting a compound of Formula (VI) with a compound of Formula VII

$$(R_b)_2 N \longrightarrow_{OR_a}^{OR_a} (VII)$$

wherein R_a is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclicalkyl group all of which may be optionally substituted; and R_b

is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocylic, or heterocyclicalkyl group all of which may be optionally substituted; to yield a compound of Formula (VIII)

$$(R_b)_2N \xrightarrow{Q} \begin{array}{c} Q \\ R_1 \\ R_4 \end{array} \qquad (VIII)$$

wherein R_b is as defined above for Formula (VII), R is as defined above, and R₂ and R₄ are defined as for Formula (I);

d) reacting a compound of Formula (VIII) with a compound of Formula (IX)

10 wherein

25

Z is $N(R^d)_2$, SR^c , OR^c , or R^d .

R^d is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclicalkyl;

Re is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl,

15 heterocylic, or heterocyclicalkyl; and

Y is O, S, or NH;

to yield a compound of Formula (I), or a pharmaceutically acceptable salt thereof.

Another aspect of the present invention are the novel compounds of Formula 20 (VI), and (VIII) as defined herein.

Detailed Description of the Invention:

The present invention relates to a novel synthesis of a group of imidazole compounds, whose general structure is shown above in Formula (I) above, and further as described in Adams et al., WO 95/02591; Adams et al., WO 96/21452, published 18 July 1996; Adams et al., WO 96/21654, published 18 July 1996; and Adams et al., Attorney Docket No. P50347-2, USSN 08/659,102 filed 3 June 1996; whose disclosures are all incorporated herein by reference.

Preferred compounds of Formula (I) have the structure:

$$R_1$$
 R_2
 N
 R_4
 N

wherein

5

R₁ is pyrimidin-4-yl which ring is optionally substituted with one or two substituents each of which is independently selected from optionally substituted C₁₋₁₀ alkyl, optionally substituted aryl, halogen, hydroxyl, thiol, C₁₋₁₀ alkoxy, C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfinyl, CH₂OR₁₂, amino, mono or di-C₁₋₁₀ alkyl substituted amino, NHR₂₁, N(R₁₀)C(O)R_a or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR₁₅;

R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring;

m is 0, or the integer 1 or 2;

m' is an integer having a value of 1 or 2.

m" is 0, or an integer having a value of 1 to 5;

R2 is -(CR₁₀R₂₀)_n' OR9, heterocyclyl, heterocyclylC₁₋₁₀ alkyl, C₁₋₁₀alkyl, halosubstituted C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl, C₃₋₇ cycloalkyl,

C3-7cycloalkylC1-10 alkyl, C5-7 cycloalkenyl, C5-7cycloalkenyl-C1-10-alkyl, aryl, arylC1-10 alkyl, heteroaryl, heteroaryl-C1-10-alkyl, (CR10R20)nOR11, (CR10R20)nS(O)mR18, (CR10R20)nNHS(O)2R18, (CR10R20)nNR13R14, (CR10R20)nNO2, (CR10R20)nCN, (CR10R20)n'SO2R18, (CR10R20)nS(O)m'NR13R14, (CR10R20)nC(Z)R11, (CR10R20)nOC(Z)R11,

20 (CR₁₀R₂₀)_nC(Z)OR₁₁, (CR₁₀R₂₀)_nC(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nC(Z)NR₁₁OR₉, (CR₁₀R₂₀)_nNR₁₀C(Z)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nN(OR₆)C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nN(OR₆)C(Z)R₁₁, (CR₁₀R₂₀)_nC(=NOR₆)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(=NR₁₉)NR₁₃R₁₄, (CR₁₀R₂₀)_nOC(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄,

25 (CR₁₀R₂₀)_nNR₁₀C(Z)OR₁₀, 5-(R₁₈)-1,2,4-oxadizaol-3-yl or 4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadiazol-3-yl; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be optionally substituted;

n is an integer having a value of 1 to 10;

30 n' is 0, or an integer having a value of 1 to 10;

Z is oxygen or sulfur;

Ra is hydrogen, C₁₋₆ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylC₁₋₄ alkyl, heterocyclyl, or heterocyclylC₁₋₄ alkyl;

R3 is heterocyclyl, heterocyclylC1-10 alkyl or R8;

R6 is hydrogen, a pharmaceutically acceptable cation, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylalkyl, heterocyclyl, aroyl, or C₁₋₁₀ alkanoyl;

R8 is C₁₋₁₀ alkyl, halo-substituted C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl, C₃₋₇ cycloalkyl, C₅₋₇ cycloalkenyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl, heteroarylC₁₋₁₀ alkyl, (CR₁₀R₂₀)_nOR₁₁, (CR₁₀R₂₀)_nS(O)_mR₁₈, (CR₁₀R₂₀)_nNHS(O)₂R₁₈, (CR₁₀R₂₀)_nNR₁₃R₁₄; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl may be optionally substituted;

R9 is hydrogen, -C(Z)R11 or optionally substituted C1-10 alkyl, S(O)2R18, optionally substituted aryl or optionally substituted aryl-C1-4 alkyl;

R₁₀ and R₂₀ is each independently selected from hydrogen or C₁₋₄ alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl or heteroarylC₁₋₁₀ alkyl;

R₁₂ is hydrogen or R₁₆;

5

10

15 R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄ alkyl, optionally substituted aryl or optionally substituted aryl-C₁₋₄ alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9;

20 R₁₅ is R₁₀ or C(Z)-C₁₋₄ alkyl;

R16 is C1-4 alkyl, halo-substituted-C1-4 alkyl, or C3-7 cycloalkyl;

R₁₈ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl, heterocyclyl-C₁₋₁₀alkyl, heteroaryl or heteroarylalkyl;

R₁9 is hydrogen, cyano, C₁₋₄ alkyl, C₃₋₇ cycloalkyl or aryl; and

25 R₂₁ is alkyl, aryl, arylC₁-6alkyl, heterocyclic, heterocyclylC₁-6 alkyl, heteroaryl, heteroarylC₁-6alkyl, wherein each of these moieties may be optionally substituted; or a pharmaceutically acceptable salt thereof.

Preferably, for compounds wherein R4 is phenyl, naphth-1-yl or naphth-2-yl, or a heteroaryl, the rings ares optionally substituted by one or two substituents, each of which is independently selected, and which, for a 4-phenyl, 4-naphth-1-yl, 5-naphth-2-yl or 6-naphth-2-yl substituent, is halogen, cyano, nitro, -C(Z)NR7R17, -C(Z)OR16, -(CR10R20)vCOR12, -SR5, -SOR5, -OR12, halo-substituted-C1-4 alkyl, C1-4 alkyl, -ZC(Z)R12, -NR10C(Z)R16, or -(CR10R20)vNR10R20 and which, for other positions of substitution, is halogen, cyano, -C(Z)NR13R14, -C(Z)OR3, -(CR10R20)m"COR3,

· (4			
	,		

 $-S(O)_{m}R_{3}, -OR_{3}, \text{ halo-substituted-C}_{1-4} \text{ alkyl}, -C_{1-4} \text{ alkyl}, -(CR_{10}R_{20})_{m}"NR_{10}C(Z)R_{3}, -NR_{10}S(O)_{m'}R_{8}, -NR_{10}S(O)_{m'}NR_{7}R_{17}, -ZC(Z)R_{3} \text{ or } -(CR_{10}R_{20})_{m''}NR_{13}R_{14}.$

Suitably, wherein R5 is hydrogen, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl or NR7R17, excluding the moieties -SR5 being -SNR7R17 and -SOR5 being -SOH.; v is 0, or an integer having a value of 1 or 2; and m" is 0, or an integer having a value of 1 to 5.

Suitably, wherein R7 and R₁₇ are each independently selected from hydrogen or C₁₋₄ alkyl or R7 and R₁₇ together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR₁₅.

Suitably, R_{15} is R_{10} or C(Z)- C_{1-4} alkyl, and R_{10} and Z are as defined for Formula (I).

The compounds of Formula (I) may be used in association with the treatment of cytokine mediated diseases in a mammal, or for the veterinary treatment of mammals who are in need of inhibition of cytokine production.

Another embodiment of the present invention are the novel compounds of the Formula (VI) having the structure:

20

25

10

wherein

R is optionally substituted C₁₋₁₀ alkyl, optionally substituted aryl, halogen, hydroxyl, thiol, C₁₋₁₀ alkoxy, C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfinyl, CH₂OR₁₂, amino, mono or di-C₁₋₆ alkyl substituted amino, NHR₂₁, N(R₁₀)C(O)R_a or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR₁₅;

Ra is hydrogen, C₁₋₆ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylC₁₋₄ alkyl, heterocyclyl, or heterocyclylC₁₋₄ alkyl;

R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring;
R2 is -(CR10R20)n' OR9, heterocyclyl, heterocyclylC1-10 alkyl, C1-10alkyl, halosubstituted C1-10 alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl,
C3-7cycloalkylC1-10 alkyl, C5-7 cycloalkenyl, C5-7cycloalkenyl-C1-10-alkyl, aryl,

$$\label{eq:control_control_control} \begin{split} & \text{arylC}_{1\text{--}10} \text{ alkyl, heteroaryl, heteroaryl-C}_{1\text{--}10\text{--alkyl, (CR}_{10}R_{20})_n} OR_{11}, \\ & (CR_{10}R_{20})_n S(O)_m R_{18}, (CR_{10}R_{20})_n NHS(O)_2 R_{18}, (CR_{10}R_{20})_n NR_{13}R_{14}, \\ & (CR_{10}R_{20})_n NO_2, (CR_{10}R_{20})_n CN, (CR_{10}R_{20})_n SO_2 R_{18}, \end{split}$$

 $(CR_{10}R_{20})_nS(O)_mNR_{13}R_{14}, (CR_{10}R_{20})_nC(Z)R_{11}, (CR_{10}R_{20})_nOC(Z)R_{11},$

- 5 (CR₁₀R₂₀)_nC(Z)OR₁₁, (CR₁₀R₂₀)_nC(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nC(Z)NR₁₁OR₉, (CR₁₀R₂₀)_nNR₁₀C(Z)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nN(OR₆)C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nN(OR₆)C(Z)R₁₁, (CR₁₀R₂₀)_nC(=NOR₆)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(=NR₁₉)NR₁₃R₁₄, (CR₁₀R₂₀)_nOC(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄,
- (CR₁₀R₂₀)_nNR₁₀C(Z)OR₁₀, 5-(R₁₈)-1,2,4-oxadizaol-3-yl or 4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadiazol-3-yl; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be optionally substituted;

n is an integer having a value of 1 to 10

15 n' is 0, or an integer having a value of 1 to 10;

m' is an integer having a value of 1 or 2,

Z is oxygen or sulfur;

R9 is hydrogen, -C(Z)R₁₁ or optionally substituted C₁₋₁₀ alkyl, S(O)₂R₁₈, optionally substituted aryl-C₁₋₄ alkyl;

20 R₁₀ and R₂₀ is each independently selected from hydrogen or C₁₋₄ alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl or heteroarylC₁₋₁₀ alkyl;

R₁₂ is hydrogen or R₁₆;

R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄ alkyl, optionally substituted aryl or optionally substituted aryl-C₁₋₄ alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR₉;

R₁₅ is R₁₀ or C(Z)-C₁₋₄ alkyl;

30 R₁₆ is C₁₋₄ alkyl, halo-substituted-C₁₋₄ alkyl, or C₃₋₇ cycloalkyl;

R₁₈ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl, heterocyclyl-C₁₋₁₀alkyl, heteroaryl or heteroarylalkyl;

R₁₉ is hydrogen, cyano, C₁₋₄ alkyl, C₃₋₇ cycloalkyl or aryl; and

R₂₁ is alkyl, aryl, arylC₁-6alkyl, heterocyclic, heterocyclylC₁₋₆ alkyl, heteroaryl,

35 heteroarylC₁-6alkyl, wherein each of these moieties may be optionally substituted.

Yet another embodiment of the present invention are the novel compounds of Formula (VIII) having the structure:

$$(R_b)_2N \xrightarrow{Q} \begin{array}{c} Q & R_2 \\ N & N \end{array}$$
 (VIII)

5 wherein

10

Rh is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl,

heterocylic, or heterocyclicalkyl, all of which may be optionally substituted;

R is optionally substituted alkyl, optionally substituted aryl, 1-4 alkyl, halogen, hydroxyl, thiol, C1-4 alkoxy, C1-4 alkylthio, C1-4 alkylsulfinyl, CH2OR12, amino, mono or di-C1-6 alkyl substituted amino, NHR21, N(R10)C(O)Ra or an N-heterocyclyl ring

which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR15;

Ra is hydrogen, C₁₋₆ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylC₁₋₄ alkyl, heterocyclyl, or heterocyclylC₁₋₄ alkyl;

15 R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring;

R2 is -(CR10R20)n' OR9, heterocyclyl, heterocyclylC1-10 alkyl, C1-10alkyl, halosubstituted C1-10 alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl, C3-7cycloalkylC1-10 alkyl, C5-7 cycloalkenyl, C5-7cycloalkenyl-C1-10-alkyl, aryl, arylC1-10 alkyl, heteroaryl, heteroaryl-C1-10-alkyl, (CR10R20)nOR11,

20 $(CR_{10}R_{20})_nS(O)_mR_{18}$, $(CR_{10}R_{20})_nNHS(O)_2R_{18}$, $(CR_{10}R_{20})_nNR_{13}R_{14}$,

 $(CR_{10}R_{20})_{n}NO_{2}$, $(CR_{10}R_{20})_{n}CN$, $(CR_{10}R_{20})_{n}SO_{2}R_{18}$,

 $(CR_{10}R_{20})_nS(O)_mNR_{13}R_{14}, (CR_{10}R_{20})_nC(Z)R_{11}, (CR_{10}R_{20})_nOC(Z)R_{11},$

 $(CR_{10}R_{20})_nC(Z)OR_{11}, (CR_{10}R_{20})_nC(Z)NR_{13}R_{14}, (CR_{10}R_{20})_nC(Z)NR_{11}OR_{9},$

(CR10R20)nNR10C(Z)R11, (CR10R20)nNR10C(Z)NR13R14,

25 $(CR_{10}R_{20})_nN(OR_6)C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_nN(OR_6)C(Z)R_{11}.$

 $(CR_{10}R_{20})_nC(=NOR_6)R_{11}, (CR_{10}R_{20})_nNR_{10}C(=NR_{19})NR_{13}R_{14},$

 $(CR_{10}R_{20})_nOC(Z)NR_{13}R_{14}$, $(CR_{10}R_{20})_nNR_{10}C(Z)NR_{13}R_{14}$,

 $(CR_{10}R_{20})_nNR_{10}C(Z)OR_{10}$, 5- (R_{18}) -1,2,4-oxadizaol-3-yi or

4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadiazol-3-yl; wherein the aryl, arylalkyl,

heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be optionally substituted;

n is an integer having a value of 1 to 10 n' is 0, or an integer having a value of 1 to 10;

m' is an integer having a value of 1 or 2,

Z is oxygen or sulfur;

R9 is hydrogen, $-C(Z)R_{11}$ or optionally substituted C_{1-10} alkyl, $S(O)_2R_{18}$, optionally substituted aryl- C_{1-4} alkyl;

5 R₁₀ and R₂₀ is each independently selected from hydrogen or C₁₋₄ alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl or heteroarylC₁₋₁₀ alkyl;

R₁₂ is hydrogen or R₁₆:

R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄
alkyl, optionally substituted aryl or optionally substituted aryl-C₁₋₄ alkyl, or together
with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7
members which ring optionally contains an additional heteroatom selected from
oxygen, sulfur or NR₉;

R₁₅ is R₁₀ or C(Z)-C₁₋₄ alkyl;

₹

15 R₁₆ is C₁₋₄ alkyl, halo-substituted-C₁₋₄ alkyl, or C₃₋₇ cycloalkyl;

R₁₈ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl, heterocyclyl-C₁₋₁₀alkyl, heteroaryl or heteroarylalkyl;

R₁₉ is hydrogen, cyano, C₁₋₄ alkyl, C₃₋₇ cycloalkyl or aryl;

 $R_{21} \ \text{is C}_{1\text{-}6} \ \text{alkyl, aryl, arylC}_{1\text{-}6} \ \text{alkyl, heterocyclic, heterocyclylC}_{1\text{-}6} \ \text{alkyl, heteroaryl, arylC}_{1\text{-}6} \ \text{alkyl, heteroaryl, heterocyclylC}_{1\text{-}6} \ \text{alkyl, heterocyclylC}$

20 heteroarylC₁₋₆alkyl, wherein each of these moieties may be optionally.

Unles otherwise defined in any of the references incorporated herein, the term "optionally substituted" as used herein shall mean such groups as halogen, such as fluorine, chlorine, bromine or iodine; hydroxy; hydroxy substituted C1-10alkyl; C1-10 25 alkoxy, such as methoxy or ethoxy; S(O)m alkyl, wherein m is 0, 1 or 2, such as methyl thio, methylsulfinyl or methyl sulfonyl; amino, mono & di-substituted amino, such as in the NR7R17 group; or where the R7R17 may together with the nitrogen to which they are attached cyclize to form a 5 to 7 membered ring which optionally includes an additional heteroatom selected from O/N/S; C1-10 alkyl, cycloalkyl, or cycloalkyl alkyl 30 group, such as methyl, ethyl, propyl, isopropyl, t-butyl, etc. or cyclopropyl methyl; halosubstituted C1-10 alkyl, such CF2CF2H, or CF3; an optionally substituted aryl, such as phenyl, or an optionally substituted arylalkyl, such as benzyl or phenethyl, wherein these aryl moieties may also be substituted one to two times by halogen; hydroxy; hydroxy substituted alkyl; C1-10 alkoxy; S(O)m alkyl; amino, mono & di-substituted 35 amino, such as in the NR7R17 group; alkyl, or CF3.

A general method of synthesis for compounds of Formula (I) is shown below Scheme 1.

The synthesis provided for in these Schemes is applicable for the producing compounds of Formula (I) having a variety of different R₁, R₂, and R₄ groups which are reacted, employing optional substituents which are suitably protected, to achieve compatibility with the reactions outlined herein. Subsequent deprotection, in those cases, then affords compounds of the nature generally disclosed. Once the imidazole nucleus has been established, further compounds of Formula (I) may be prepared by applying standard techniques for functional group interconversion, well known in the art. For instance, on the pyrimidine ring, halogen from OH, by reacting with POX₃ or PX₃, wherein X is halogen; C₁₋₄ alkylsulfinyl from C₁₋₄ alkylthio by oxidation of the sulfur with an appropriate oxidant; N(R₁₀)C(O)R_a from NH(R₁₀) by acylation on nitrogen with

Scheme 1

5

10

an appropriate acylating agent; YC(O)Ra where Y is any leaving group. For other alternative groups on the R2 or R4 moiety, such as -C(O)NR13R14 from -CO2CH3 by heating with or without catalytic metal cyanide, e.g. NaCN, and HNR13R14 in CH3OH; -OC(O)R3 from -OH with e.g., ClC(O)R3 in pyridine; -NR10-C(S)NR13R14 from -NHR10 with an alkylisothiocyante or thiocyanic acid; NR6C(O)OR6 from -NHR6 with 5 the alkyl chloroformate; -NR10C(O)NR13R14 from -NHR10 by treatment with an isocvanate, e.g. HN=C=O or R10N=C=O; -NR10-C(O)R8 from -NHR10 by treatment with Cl-C(O)R3 in pyridine; -C(=NR10)NR13R14 from -C(NR13R14)SR3 with H3NR3+OAc- by heating in alcohol; -C(NR13R14)SR3 from -C(S)NR13R14 with R6-I in an inert solvent, e.g. acetone; -C(S)NR13R14 (where R13 or R14 is not hydrogen) 10 from -C(S)NH2 with HNR13R14-C(=NCN)-NR13R14 from -C(=NR13R14)-SR3 with NH2CN by heating in anhydrous alcohol, alternatively from -C(=NH)-NR13R14 by treatment with BrCN and NaOEt in EtOH; -NR10-C(=NCN)SR8 from -NHR10 by treatment with (R₈S)₂C=NCN; -NR₁₀SO₂R₃ from -NHR₁₀ by treatment with ClSO₂R₃ by heating in pyridine; -NR10C(S)R3 from -NR10C(O)R8 by treatment with Lawesson's 15 reagent [2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide]; -NR₁₀SO₂CF₃ from -NHR₆ with triflic anhydride and base wherein R₃, R₆, R₁₀, R₁₃ and R14 are as defined in Formula (I) herein.

Precursors of the groups R_1 , R_2 and R_4 can be other R_1 , R_2 and R_4 groups which can be interconverted by applying standard techniques for functional group interconversion. For example a compound of the formula (I) wherein R_2 is halo-substituted C_{1-10} alkyl can be converted to the corresponding C_{1-10} alkyl N_3 derivative by reacting with a suitable azide salt, and thereafter if desired can be reduced to the corresponding C_{1-10} alkyl N_1 2 compound, which in turn can be reacted with R_1 8 S_1 0)2 X_1 1 wherein X_1 2 is halo (e.g., chloro) to yield the corresponding C_{1-10} alkyl N_1 1 is halo (e.g., chloro) to yield the corresponding C_{1-10} alkyl N_1 1 is halo (e.g., chloro) to yield the corresponding C_{1-10} alkyl N_1 1 is halo (e.g., chloro) to yield the corresponding C_{1-10} 1 alkyl N_1 1 is halo (e.g., chloro) to yield the corresponding C_{1-10} 1 alkyl N_1 2 is halo (e.g., chloro) to yield the corresponding C_{1-10} 2 alkyl N_1 3 is halo (e.g., chloro) to yield the corresponding C_{1-10} 3 alkyl N_1 3 is halo (e.g., chloro) to yield the corresponding C_{1-10} 3 alkyl N_1 3 is halo (e.g., chloro) to yield the corresponding C_{1-10} 3 alkyl N_1 3 is halo (e.g., chloro) to yield the corresponding C_{1-10} 3 and C_{1-10} 4 alkyl C_{1-10} 4 alkyl C_{1-10} 4 alkyl C_{1-10} 4 alkyl C_{1-10} 5 alkyl C_{1-10} 4 alkyl C_{1-10} 6 al

20

25

30

35

Alternatively a compound of the formula (I) wherein R_2 is halo-substituted C_{1-10} -alkyl can be reacted with an amine $R_{13}R_{14}NH$ to yield the corresponding C_{1-10} -alkylNR₁₃R₁₄ compound, or can be reacted with an alkali metal salt of R₁₈SH to yield the corresponding C_{1-10} -alkylSR₁₈ compound.

In Scheme I the compounds of Formula (I) are suitably prepared by reacting a compound of the Formula (II) with a compound of the Formula (III) wherein R is any suitable group, such as H, alkyl, substituted alkyl, aryl, aryl alkyl, heterocyclic, heterocyclic alkyl, heteroaryl, heteroarylalkyl, cycloalkyl, or amino, and R_2 is as defined herein, for Formula (I), or is a precursor of the group R_2 , and thereafter if necessary converting a precursor of R_2 to the desired R_2 group. Suitable precursor groups of R_2 include

various well known protecting groups, particularly when R₂ is a nitrogen containing heterocyclic ring, such as piperidine. Suitable protecting groups are described in many references, for instance, Protecting Groups in Organic Synthesis, Greene T W, Wiley-Interscience, New York, 1981. When R₂ is an optionally substituted cycloalkyl, such as a 4-hydroxy-cyclohexyl, the precursor cyclohexanone could be used, and then reduced to the alcohol.

The compounds of Formula (IV) which are formed are either isolated, or more suitably reacted in situ with compounds of the Formula (V) and a suitable base, where Ar is an optionally substituted phenyl group and R₄ is defined herein, for compounds of Formula (I), to produce compounds of the Formula (VI). Heating compounds of the Formula (VI) with an enaminating reagent such as a compound of Formula (VII), or derivatives thereof, such as reagents of similar structure and reactivity to DMFDMA which include tris(dimethylamino)methane or tert-butoxybis(dimethylamino)-methane, or any other reactive species known to behave as enaminating agents; which produces compounds of the Formula (VIII), which can be isolated, or more preferably reacted in situ with reagents of Formula (IX), where Y and Z are defined for Formula (IX) above to produce the compounds of Formula (I).

10

15

20

25

An alternative to using reagents of Formula (VII) to produce an enamine of Formula (VIII) is to react compounds of Formula (VI) with formylating agents, such as formate esters, or formamides, to produce 1,3-dicarbonyl compounds which, when in their tautomeric form, are similar to compounds of the Formula (VIII), where $(R_b)_2N = OR$, wherein R is alkyl, alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclic, heterocyclicalkyl, or silyl. Compounds of the Formula (VIII), where $(R_b)_2N = OR$ can be reacted directly with reagents of the Formula (IX) to produce compounds of the Formula (I).

The process is exemplified, in Scheme I, by reaction of pyruvaldehyde (Formula II, R = H), which is typically obtained as an aqueous solution, with a primary amine (Formula III) in a solvent to produce imines of the Formula (IV), employing a modification of the method of van Koten (see van der Poel and van Koten, Synth. Commun. 1978, 8, 305 whose disclosure is incorporated by reference herein in its entirety). Suitable solvents for this process include, but are not limited to, ethereal solvents, such as tetrahydrofuran (THF), t-butyl methyl ether (TBME), diethyl ether, acetonitrile (MeCN), ethyl acetate (EtOAc), N,N,-dimethylformamide (DMF), and dimethylsulfoxide (DMSO). The reaction

requires times of ~1 min to about 24 h, with the preferred times being from about 10-20 min. The reaction is suitably conducted at temperatures ranging from about 0 °C to room temperature, or may be performed at elevated temperatures, of at least 100 °C, if so desired.

5

10

15

20

25

Imines of Formula (IV) can be dissolved in a solvent and reacted with compounds of Formula (V), with or without added base, to produce compounds of Formula (VI). A suitable base for this reaction is potassium carbonate, or those noted below and suitable solvents include DMF and DMSO as noted below. The reaction can be conducted at 0 °C, room temperature or as high as about 65°C.

A further embodiment of the present invention involves the preparation of the imines of the Formula (IV) in situ, followed by reaction with isonitriles of the Formula (V) to produce imidazoles of the Formula (VI). In this process, aldehydes of Formula (II) are combined with primary amines of Formula (III) in a suitable solvent, and after the prescribed amount of time the imine formation is considered complete and isonitriles of the Formula (V) and a suitable base are added. Suitable solvents include, but are not limited to, acetonitrile, THF, MeCN, toluene, EtOAc, DMF, and DMSO and mixtures thereof. The imine formation requires times of ~5 min to about 6 hours, with the preferred times being about 10-20 min and can be conducted at temperatures ranging from about 0 °C to 60 °C. After addition of the isonitrile, the reaction typically requires an additional 2 to 24 hours at temperatures of 0 °C to 65 °C to go to completion. The reaction proceeds without bases or in the presence of suitable bases, including but not limited to including inorganic and organic amine bases, such as potassium carbonate, sodium carbonate, K₃PO₄, K₂HPO₄, Na₂HPO₄, including inorganic and organic amine bases, such as secondary amines, e.g. morpholine, pyrrolidine, piperidine, and tertiary amines, such as DBU or DBM, as well as tetramethyl guanidine.

Imidazoles of the Formula (VI) can be converted to compounds of the

Formula (VIII) by the action of agents of the Formula (VII), or agents of similar structure and reactivity. The process involves heating compounds of Formula (VI) with N,N-dimethylformamide dimethyl acetal (DMFDMA) with no solvent, or a suitable solvent, at temperatures higher than about 70 °C. Suitable solvents include, but are not limited to toluene, ethanol, 1-propanol, 2-propanol, DMF, and DMSO.

Reagents of similar structure and reactivity to DMFDMA include tris(dimethylamino)methane or tert-butoxybis(dimethylamino)methane, or other

reactive species know to behave as enaminating agents. With some of the more reactive enaminating reagents, the temperature for this process can be lower than the 70 °C mentioned above.

Compounds of the Formula (VIII) can be isolated, or prepared in situ, and reacted further as shown in Scheme 1. In either case, the reaction involves reacting compounds of Formula (VIII) with compounds of Formula (IX) in a suitable solvent, and a suitable base, if necessary. Suitable solvents include, but are not limited to, alcohols, such as methanol, ethanol, 1-propanol and 2-propanol, toluene, alone or in combination with an alcohol, DMF, DMSO, or combinations of the above. Reagents of the Formula (IX), when Y is NH, are typically obtained as an acid salt, and as such, require the action of a base to react with compounds of the Formula (VIII). When Y is O or S, the reaction may require either acid or base catalysis. Suitable bases include, but are not limited to, NaOMe, NaOEt, potassium carbonate, and KOH. Temperatures of about 25 to about 110 °C have been found to be useful for this conversion, with temperatures > 65 °C being preferred.

A further embodiment of the present invention involves the preparation of imidazoles of the Formula (I) as shown in Scheme 1 in a single pot. The reaction conditions mentioned above are generally suitable for conducting the synthesis in one pot, with one modification. The conversion of compounds of the Formula (VI) to compounds of the Formula (VIII) requires anhydrous conditions. Water is introduced into the reaction when using pyruvaldehyde (II, R = H) as it is sold as a solution in water, which must be removed before proceeding. Following complete conversion of (IV) and (V) to form (VI), suitable methods of dehydration include, but are not limited to the following: using excess DMFDMA (~ 10 equivalents) to both react with water and then with ketones (VI); azeotropically removing water with cosolvents such as toluene, or alcohols; adding other drying agents such as MgSO4; or triethyl orthoformate.

30 SYNTHETIC EXAMPLES

5

10

15

20

25

35

The invention will now be described by reference to the following examples which are merely illustrative and are not to be construed as a limitation of the scope of the present invention. All temperatures are given in degrees centigrade, all solvents are highest available purity and all reactions run under anhydrous conditions in an argon atmosphere unless otherwise indicated.

In the Examples, all temperatures are in degrees Centigrade (°C). Mass spectra were performed upon a VG Zab mass spectrometer using fast atom

bombardment, unless otherwise indicated. ¹H-NMR (hereinafter "NMR") spectra were recorded at 300 MHz using a Bruker AM 300 spectrometer. Multiplicities indicated are: s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet and br indicates a broad signal. Sat. indicates a saturated solution, eq indicates the proportion of a molar equivalent of reagent relative to the principal reactant. Flash chromatography is generally run over Merck Silica gel 60 (230 - 400 mesh).

Example 1

Ethyl 4-(2-oxopropylidene)amino-1-piperidinecarboxylate

10

15

20

5

To a solution of pyruvaldehyde (40% w/w solution in water, 2.67 mL, 3.15 g, 17.5 mmol) in 50 mL of Et₂O at room temperature was added dropwise ethyl 4-amino-piperidinecarboxylate (3.0 mL, 3.01 g, 17.5 mmol). After 20 min, the solution was diluted with 50 mL of Et₂O and washed with 3 X 30 mL of water. The solution was concentrated in vacuo to yield 2.3 g (58%) of the imine product which was used as such in the subsequent step: 1 H NMR (CDCl₃) δ 7.58 (1H, s), 4.07 (2H, q, J = 7.1 Hz)), 4.04 (2H, m), 3.39 (1H, m), 3.02 (2H, m), 2.31 (3H, s), 1.65 (4H, m), 1.19 (3H, t, J = 7.1 Hz).

Example (Ia): Alternative conditions utilized in above noted synthesis include MeCN as solvent and mixing the reagents at 0 °C.

Example 2

1-(1-Ethoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5-acetylimidazole:

To a solution of the imine described in Example 1 above (1.12 g, 4.95 mmol) in 9 mL of DMF at room temperature was added α-(p-toluenesulfonyl)-4fluorobenzylisonitrile (1.30 g, 4.50 mmol) and K₂CO₃ (0.68 g, 4.95 mmol). After 22 h, the solution was diluted with 75 mL of EtOAc and washed with 2 X 60 mL of 3 N HCl. The aqueous layers were combined and basified with excess solid K₂CO₃ until the bubbling ceased. The aqueous layer was transferred to a separatory funnel and extracted 2 x 75 mL of EtOAc. The combined organics were washed with 3 X 50 mL of water and concentrated in vacuo. The residue was recrystallized from CHCl₂/Hexane to yield the imidazole product (1.05 g, 65%) which was used in subsequent steps: mp = 118-19 °C; IR (KBr) 1691, 1681, 1640 cm⁻¹; ¹H NMR (CDCl₃) δ 7.74 (1H, s), 7.44 (2H, m), 7.14 (2H, t, J = 8.6 Hz), 5.00 (1H, tt, J = 3.7, 12.1 Hz), 4.35 (2H, m), 4.17 (2H, q, J = 7.1)Hz), 2.93 (2H, m), 2.18 (2H, br d, J = 12.9 Hz), 2.12 (3H, s), 1.80 (2H, dq, J = 4.2, 12.4 Hz), 1.28 (3H, t, J = 7.1 Hz); ¹³C NMR (CDCL₃) d 191.00, 164.74, 161.45, 155.31, 149.77, 137.39, 131.46, 131.35, 126.99, 115.63, 115.34, 61.59, 54.85, 43.29, 33.40, 30.45, 14.63; ¹³C NMR (CDCL) δ 191.00, 164.75, 161.45, 155.31, 149.77, 137.39, 131.46, 131.35, 126.99, 115.63, 115.35, 61.59, 54.85, 43.29, 33.40, 30.45, 14.63; Anal. Calcd for C₁₀H₁,N₂O₂F: C, 63.5; H, 6.2; N, 11.7. Found C, 63.1; H, 6.1; N, 11.5.

In an alternative procedure to that listed above, the title compound was prepared in the following manner: To a solution of pyruvaldehyde (40% w/w solution in water, 3.97 mL, 4.68 g, 25.94 mmol) in 34 mL of DMSO at room temperature was added dropwise ethyl 4-amino-piperidinecarboxylate (4.45 mL, 4.47 g, 25.94 mmol). After 10 min α-(p-toluenesulfonyl)-4-fluoro-benzylisonitrile (5.0 g, 17.3 mmol) and K₂CO₃ (2.39 g, 17.3 mmol) were added. After 15 h, the solution was diluted with 100 mL of EtOAc and washed with 2 X 100 mL of 3 N HCl. The aqueous layers were combined and basified with excess solid K₂CO₃ until the bubbling ceased. The aqueous layer was transferred to a separatory funnel and extracted 2 x 150 mL of EtOAc. The combined organics were washed with 3 X 75 mL of water and concentrated in vacuo to yield the imidazole product (4.65 g, 75%) which was used as is in subsequent steps.

30

10

15

Alternative conditions for this synthesis include the Examples shown below::

		TIONS INCIDUO CIC I	zvambica amount c	Clow
Solvent	Base / eq	Temp for imine	Temp for	Imine
		formation	cycloaddition	formation time
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	15 min
DMF	K ₂ CO ₃ / 1.1	room temp.	room temp.	15 min
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	20 min
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	17 min.
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	80 min
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	75 min
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	6 h
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	2 h
DMF	K ₂ CO ₃ / 1.1	room temp.	room temp.	85 min
DMF	K ₂ CO ₃ / 1.2	room temp.	room temp.	12 min
DMF	K ₂ CO ₃ / 1.2	45 °C	45 °C	12 min
DMF	K ₂ CO ₃ / 1.2	60 °C	60 °C	14 min
DMF/ MgSO ₄	K ₂ CO ₃ / 1.2	room temp.	room temp.	12 min
DMF	K ₂ CO ₃ / 1.2	rm temp. to 40	room temp.	12 min
		°C, distill		
DMF	K ₂ CO ₃ / 1.1	40 °C	40 °C	10 min.
DMF	K ₂ CO ₃ / 1.25	0 °C ·	room temp.	4 h
DMF	K ₂ CO ₃ / 1.2	0 °C	0 °C	2.33 h
DMF	NaHCO ₃ / 1.3	room temp.	room temp.	75 min.
MeCN	K ₂ CO ₃ / 1.25	room temp.	room temp.	25 min.
MeCN	K ₂ CO ₃ / 1.2	room temp.	room temp.	5 min.
MeCN	K ₂ CO ₃ / 1.2	room temp.	room temp.	10 min.
MeCN	K ₂ CO ₃ / 1.25	0 ℃	room temp.	15 min.
MeCN	K ₂ CO ₃ / 1.2	0 ℃	0°C	145 min.
DMSO	K ₂ CO ₃ / 1.25	room temp.	room temp.	15 min.
THF	morpholine / 3	room temp.	room temp.	1 h
THF	K ₂ CO ₃ / 1.2	0 ℃	0 °C	145 min.
Toluene	K ₂ CO ₃ / 1.25	room temp.	room temp.	15 min.
EtOAc	K ₂ CO ₃ / 1.0	room temp.	room temp.	11 min.

Example 3

1-(1-Ethoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5-(3-N,N-dimethylaminotrans-1-propenone)imidazole

5

10

15

The ketoimidazole prepared in Example 2 above (0.4 g, 1.11 mmol) was dissolved in 4 mL of DMSO and N,N-dimethylformamide dimethyl acetal (0.18 mL, 0.16 g, 1.33 mmol) and was heated at 90 °C for 5.5 h. The solution was cooled to room temperature and the solvents were removed under vacuum by Kugel-Rohr distillation. The residue was purified by preparative TLC using hexanes/ethyl acetate (1:1) and eluting twice to give 0.3 g (65%) of the title compound as a brown solid: 1 H NMR (CDCl₃) δ 7.65 (1H, s), 7.55 (2H, m), 7.48 (1H, m), 7.02 (2H, t, J = 8.7 Hz), 5.02 (1H, d, J = 12.6 Hz), 4.91 (1H, m), 4.30 (2H, m), 4.13 (2H, q, J = 7.1 Hz), 2.99 (3H, br s), 2.89 (2H, m), 2.51 (3H, br s), 2.18 (2H, d, J = 12.1 Hz), 1.78 (2H, dq, J = 4.3, 12.3 Hz), 1.26 (3H, t, J = 7.1 Hz).

Example 4

1-(1-Ethoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5-{2-(methylamino)-4-pyrimidinyl)imidazole:

20

To a solution of the ketoimidazole prepared in Example 2 above (2.1 g,5.85 mmol) in 10.5 mL of 1-propanol was added N,N-dimethylformamide dimethyl acetal (1.32 mL, 1.18 g, 9.94 mmol) and the solution was heated at 100 °C for 6 h. At this time, TLC indicated no starting material and N-methylguanidine•HCl (0.96 g, 8.77 5 mmol) and NaOEt (21% w/w solution, 3.50 mL, 3.05 g, 9.35 mmol) were added. After 18 hours, the solution was cooled to room temperature, diluted with 40 mL of water, 50 mL of 3N HCl and 50 mL of EtOAC. The layers were separated and the organic layer wash washed again with 20 mL of 3N HCl. The combined aqueous layers were basified with solid K,CO, until bubbling ceased. The aqueous layer was extracted with EtOAc (2 X 50 mL). The combined organics were washed with 3 X 100 mL of water, concentrated 10 and the residue was recrystallized from EtOAc to give 1.24 g (50%) of the title compound: mp = 205-206 °C; IR (KBr) 3242, 3110, 1695, 1588, 1568, 1532, 1507 cm ¹; ¹H NMR (CDCl₃) δ 8.15 (1H, d, J = 5.0 Hz), 7.71 (1H, s), 7.44 (2H, m), 6.97 (2H, t, J = 8.7 Hz), 6.40 (1H, d, J = 5.0 Hz), 5.18 (1H, m), 4.83 (1H, m), 4.34 (2H, m),4.15 (2H, q, J = 7.1 Hz), 3.02 (3H, d, J = 5.0 Hz), 2.81 (2H, m), 2.19 (2H, m), 1.87 (2H, dq, J = 1.0 Hz) 15 4.4, 12.5 Hz), 1.27 (3H, t, J = 7.1 Hz); 13 C NMR (CDCl₄) δ 164.00, 163.03, 160.73, 158.51, 158.32, 155.31, 141.96, 135.57, 130.52, 130.07, 129.97, 125.01, 115.39, 115.11. 111.73, 61.61, 53.80, 43.42, 33.43, 28.43, 14.63; Anal. Cald for C,,H,,N,O,F; C, 62.2; H, 5.9; N, 19.8; Found C, 61.9, H, 6.0; N, 19.4.

20

Examples 4 (a) and (b) include the alternative conditions:

Solvent	DMFDMA temp	Base	Pyrimidine temp.
EtOH	85 °C	NaOMe	85 °C
DMF	100 °C	NaOMe	65 °C

		4 4	
		•	
		•	
. •			
	150		

Example 5

1-(1-Ethoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5-(2-(amino)-4-pyrimidinyl)imidazole:

WO 97/23479

5

10

15

20

25

To a solution of the ketoimidazole prepared in Example 2 above (2.6 g, 7.24 mmol) in 15 mL of DMF was added N,N-dimethylformamide dimethyl acetal (1.92 mL, 1.72 g, 14.5 mmol) and the solution was heated at 120 °C for 2 h. At this time, TLC and HPLC indicated no starting material and the solution was cooled to 95 °C and ethanol (30 mL), guanidine•HCl (2.77 g, 28.95 mmol) and K₂CO₃ (4.0 g, 28.9 mmol) were added. After 16 hours, HPLC indicated that the reaction was complete and the solution was cooled to room temperature. The solution was diluted with 100 mL of EtOAc and washed with 2 X 150 mL of 3 N HCl. The aqueous layers were combined and basified with excess solid K₂CO₃ until the bubbling ceased. The aqueous layer was transferred to a separatory funnel and extracted 2 x 150 mL of EtOAc. The combined organics were dried over Na₂SO₄ and activated charcoal, filtered through Celite, and concentrated in vacuo. The residue was recrystallized from EtOAc/MeOH/Hexanes to yield the imidazole product (0.9 g, 30%) as a beige solid: mp = 228-230 °C; IR (KBr) 3321, 3157, 1712, 1658, 1568, 1507, 1470, 1437 cm⁻¹; ¹H NMR (CDCl₃) δ 8.17 (1H, d, J = 5.3 Hz), 7.71 (1H, s), 7.43 (2H, m), 7.00 (2H, t, J = 8.7 Hz), 6.50 (1H, d, J = 5.3 Hz), 5.16 (2H, br s), 4.74 (1H, tt, J = 5.3 Hz)= 3.7, 12.0 Hz), 4.35 (2H, m), 4.15 (2H, q, J = 7.1 Hz), 2.82 (2H, t, J = 12.5 Hz), 2.15 (2H, d, J = 12.5 Hz), 1.85 (2H, m), 1.28 (3H, t, J = 7.1 Hz); ¹³C NMR (DMSO-d₂) δ 163.61, 162.76, 159.54, 158.66, 158.01, 154.35, 138.88, 136.25, 131.00, 129.16, 129.05, 124.98, 115.08, 114.80, 110.84, 60.64, 53.06, 42.70, 32.48, 14.43; Anal. Calcd for C₂,H₂₃N₆O₂F; C, 61.4; H, 5.7; N, 20.5; Found C, 61.0, H, 5.5; N. 20.3.

Examples 5 (a) to (d) include the alternative conditions:

Solvent	DMFDMA temp	Base	Pyrimidine temp.
EtOH	90 °C	NaOMe	80 °C
EtOH	90 °C	NaOMe	85 °C
DMF	120 °C	K ₂ CO ₃ /EtOH	95 ℃
Toluene	115 °C	K2CO3/EtOH/IPA	80-90 °C

Example 6

1-(4-piperidinyl)-4-(4-fluorophenyl)-5-{2-(amino)-4-pyrimidinyl)imidazole

5

10

15

20

To a solution of the ketoimidazole prepared in Example 2 above (1.4 g, 3.89 mmol) in 5 mL of toluene was added N,N-dimethylformamide dimethyl acetal (1.04 mL, 0.93 g, 7.80 mmol) and the solution was heated at 115 °C for 4 h. At this time, TLC and HPLC indicated no starting material and the solution was cooled to 80 °C and 2-propanol (25 mL), guanidine•HCl (1.49 g, 15.6 mmol) and K₂CO₃ (2.15 g, 15.6 mmol) were added. After 16.5 hours, HPLC indicated that the reaction was 60% complete. Ethanol (20 mL) was added and heating was continued at 90 °C for 24h, at which point HPLC showed none of the aminoenone remaining. AT this point, KOH (2.19 g, 38.9 mmol) and water (10 mL) were added and heating was continued at 95 °C for 8 h. An additional poriton of KOH (2.2 g, 38.9 mmol) was added. After 15 h of heating an additional 4.4 g of KOH was added and heated for 48 h. The solution was cooled to room temperature, diluted with 20 mL of water and the solid which formed was filtered, washed with water (50 mL) and Et₂O (50 mL), and dried to yield 0.44 g (34%) of the title compound as a beige solid: mp = 199-200 °C; IR (KBr) 3471, 3395, 3314, 3167, 1635, 1576, 1566, 1507, 1460 cm⁻¹; ¹H NMR (DMSO-d₆) δ 8.20 (1H, d, J = 5.0 Hz), 7.98 (1H, s), 7.43 (2H, m), 7.12 (2H, t, J = 8.9 Hz), 6.81 (2H, br s), 6.41 (1H, d, J = 5.0 Hz), 4.31 (1H, m), 2.97 (2H, d, J = 12.4 Hz), 2.45 (2H, m), 1.86 (2H, m), 1.74 (2H, dq, J = 3.7, 11.8 Hz); ¹³C NMR (DMSO-d_s) δ 163.67, 162.70, 159.47,

158.68, 158.33, 138.64, 135.79, 130.98, 128.98, 128.88, 125.05, 115.05, 114.77, 110.96, 53.84, 45.39, 34.08; Anal. Calcd for C₁₅H₁₉N₆F•0.5 H₂O: C, 62.2; H, 5.8; N, 24.2. Found C, 61.9; H, 5.7; N, 23.9.

In an alternative procedure, the substrate was dissolved in 1-PrOH and heated at about 95 °C with DMFDMA, then heated with guanidine•HCl and K₂CO₃ at 95 °C and when the pyrimidine formation was completed, the reaction was heated with excess KOH until product formation was complete.

Example 7

5

10

15

20

2,2,6,6-Tetramethyl-4-(2-oxopropylidene)aminopiperidine

To a solution of pyruvaldehyde (40% w/w solution in water, 2.68 mL, 3.16 g, 17.5 mmol) in 30 mL of TBME at room temperature was added dropwise 2,2,6,6-tetramethyl-4-amino-piperidine (2.0 mL, 2.19 g, 14.0 mmol). After 30 min, the solution was diluted with 50 mL of TBME and washed with 3 X 25 mL of water and 25 mL of brine. The solution was concentrated in vacuo to yield 2.1 g (71%) of the imine product which was used as such in the subsequent step: 1 H NMR (CDCl₃) δ 7.64 (1H, s), 3.70 (1H, tt, J = 3.9, 11.6 Hz), 2.34 (3H, s), 1.61 (2H, dd, J = 3.9, 13.0 Hz), 1.32 (2H, t, J = 12.2 Hz), 1.21 (6H, s), 1.14 (6H, s).

Example 8

1-(2,2,6,6-tetramethyl-4-piperidinyl)-4-(4-fluorophenyl)-5-acetylimidazole:

:To a solution of pyruvaldehyde (40% w/w solution in water, 7.56 mL, 8.91 g, 49.5 mmol) in 90 mL of DMSO at room temperature was added dropwise 2,2,6,6-5 tetramethyl-4-amino-piperidine (9.24 mL, 8.43 g, 65.4 mmol). After 10 min α -(ptoluenesulfonyl)-4-fluorobenzylisonitrile (13.0 g, 44.95 mmol) and K₂CO₃ (7.46 g, 53.95 mmol) were added. After 23 h, the solution was diluted with 250 mL of EtOAc and washed with 2 X 200 mL of 3 N HCl. The aqueous layers were combined and basified 10 with excess solid K₂CO₃ until the bubbling ceased. The aqueous layer was transferred to a separatory funnel and extracted 2 x 250 mL of EtOAc. The combined organics were washed with 3 X 100 mL of water and concentrated in vacuo to yield the title compound (11.6 g, 75%) as a brown oil, which could be recrystallized from CHCl₂/hexanes: mp = 134-36 °C; IR (KBR) 3430, 3144, 1659, 1653, 1219 cm⁻¹; ¹H NMR (CDCl₃) δ 7.76 (1H, s), 7.43 (2H, m), 7.12 (2H, t, J = 8.7 Hz), 5.39 (1H, tt, J = 3.1, 12.5 Hz), 2.11 (3H, tt, J = 3.1, 12.5 Hz)15 s), 2.10 (2H, m), 1.50 (2H, t, J = 12.2 Hz), 1.37 (6H, s), 1.22 (6H, s); ¹¹C NMR (CDCL) δ 190.77, 164.69, 161.41, 149.79, 137.42, 131.47, 131.36, 127.03, 115.57, 115.29, 52.02, 50.57, 46.20, 34.61, 30.45, 28.06.

Alternative reaction conditions for this synthesis included:

Alternative react	ion community for c	ms symmesis mer	ided.	
Solvent	Base / eq.	Imine	Cycloaddition	Imine
		formation	temp.	formation time
		temp		
DMF	K,CO, / 1.25	room temp.	room temp.	15 min.
DMF/toluene	K,CO, / 1.15	room temp to	room temp.	80 min.
		65 °C (-H,O)		
DMF	none	room temp.	room temp.	15 min.
DMF/EtOAc	K,CO, / 1.2	room temp.	room temp.	15 min.
DMSO	K,CO, / 1.25	room temp.	room temp.	20 min.
DMSO/toluene	K,CO, / 1.15	room temp to	room temp.	35 min.
		55 °C (-H,O)		
DMSO/	K,CO, / 1.2	room temp to	room temp.	40 min.
(MeO),CH		55 °C (-H,O)		
DMSO	morpholine/1.3	room temp.	room temp.	15 min.
DMSO	pyrrolidine/1.3	room temp.	room temp.	15 min.
DMSO	K,PO./1.5	room temp.	room temp.	15 min.
DMSO	K,HPO/1.5	room temp.	room temp.	15 min.
DMSO	DBU/1.1	room temp.	room temp.	15 min.
DMSO	Na,CO, / 1.2	room temp	room temp.	15 min.
DMSO	Na,HPO/1.5	room temp.	room temp.	15 min.
DMSO	K,HPO/3.0	room temp.	room temp.	15 min.
DMSO	morpholine/1.05	room temp.	room temp.	18 min.
DMSO	morpholine/1.0	room temp.	room temp.	10 min.
EtOAc	morpholine/1.0	room temp.	room temp.	10 min.
EtOAc	K,CO, / 1.0	room temp	room temp.	12 min.
EtOAc	K,CO, / 1.0	room temp	50 °C	13 min.
EtOAc	K,CO, / 1.0	room temp	35 °C	15 min.
EtOAc	K,CO, / 1.0	room temp	40 °C	15 min.

Example 9

1-(2,2,6,6-tetramethyl-4-piperidinyl)-4-(4-fluorophenyl)-5-(3-N,N-dimethylaminotrans-1-propenone)imidazole

The ketoimidazole prepared in Example 8 above (0.75 g, 2.18 mmol) was dissolved in 10 mL of toluene and N,N-dimethylformamide dimethyl acetal (0.43 mL, 0.39 g, 3.28 mmol) and was heated at 115 °C for 20 h. The solution was cooled to room temperature and the solvents were removed under vacuum. The residue was passed through a short plug of silica gel and eluted with EtOAc/MeOH (1:1), and concentrated to give the title compound (0.65 g 76%) of the title compound as a brown solid: 1H NMR (CDCl₃) δ 7.65 (1H, s), 7.56 (2H, m), 7.46 (1H, d, J = 12.2 . Hz), 7.01 (2H, t, J = 8.8 Hz), 5.32 (1H, m), 5.01 (1H, d, J = 12.6 Hz), 2.96 (3H, br s), 2.48 (3H, br s), 2.09 (2H, dd, J = 3.1, 12.0 Hz), 1.44 (2H, t, J = 12.3 Hz), 1.31 (6H, s), 1.17 (6H, s).

15

5

10

Example 10

1-(2,2,6,6-tetramethyl-4-piperidinyl)-4-(4-fluorophenyl)-5-{2-(methylamino)-4-pyrimidinyl)imidazole

To a solution of the ketoimidazole prepared in Example 8 above (8.0 g,23.3 mmol) in 100 mL of DMSO was added N,N-dimethylformamide dimethyl acetal (6.19 mL, 5.55 g, 46.6 mmol) and the solution was heated at 100 °C for 16 h. At this time, HPLC indicated no starting material and guanidine HCl (4.45 g, 46.6 mmol) and K2CO3 (6.44 g, 46.6 mmol) were added and heating was continued at 100 °C. After 9 hours, the solution was cooled to room temperature, diluted with 100 mL of water, DMSO and MeOH, and filtered. The filtrate was diluted with 200 mL of EtOAc and 400 mL of water. The layers were separated and the aqueous layer was extracted 3 X 200 mL of EtOAc. The organic layers were combined and washed with 3 X 100 mL of water. The organics were washed with 50 mL of brine, dried over Na₂SO₄ and activated charcoal, concentrated and the residue was recrystallized from EtOAc /hexanes to give 3.3 g (36%) of the title compound: mp = 221-22 °C; IR (KBr) 3345, 3319, 3155,1645, 1562 cm⁻¹; ¹H NMR (CDCl₃) δ 8.17 (1H, d, J = 5.1 Hz), 7.72 (1H, s), 7.45 (2H, m), 7.00 (2H, t, J = 8.7 Hz), 6.49 (1H, d, J = 5.2 Hz), 5.30 (1H, tt, J = 3.2, 12.6 Hz), 5.12 (2H, br)s), 2.04 (2H, dd, J = 3.2, 12.4 Hz), 1.48 (2H, t, J = 12.3 Hz), 1.24 (6H, s), 1.17 (6H, s); ¹³C NMR (DMSO-d_c) δ 163.67, 162.72, 159.49, 158.77, 158.49, 138.68, 135.43, 130.92, 128.93, 128.82, 125.14, 115.09, 114.81, 111.00, 50.81, 48.67, 44.74, 34.06, 28.11. Anal. Calcd for C₂₂H₂₇N₆F: C, 66.98; H, 6.90; N, 21.30. Found C, 67.37; H, 6.88; N, 21.39.

20

25

10

15

Alternative conditions employed include:

Solvent	DMFDMA temp	Base	Pyrimidine temp.
DMF	100 °C	K_2CO_3	120 °C
DMSO	100 °C	K_2CO_3	100 °C
DMSO	100 °C	KOH	100 °C
1-PrOH	100 °C	KOH/H ₂ O	100 °C
EtOH	85 °C	NaOMe	85 °C
2-PrOH	85 °C	NaOMe	85 °C

In yet another alternative procedure to those listed above, the title compound was prepared in the following manner: To a solution of pyruvaldehyde (40% w/w solution in water, 5.82 mL, 6.85 g, 38.04 mmol) in 70 mL of DMSO at room temperature was added 2,2,6,6-tetramethyl-4-aminopiperidine (6.52 mL, 5.94 g, 38.04 mmol). After 15-20 min, α -(p-toluenesulfonyl)-4-fluorobenzylisonitrile (10 g, 34.6 mmol) and K_2CO_3 (5.02 g, 36.3 mmol) were added. After 19 h, an HPLC solution assay indicated that 6.79 g (57%) of the ketoimidazole (title compound of

Example 8) had formed and that reaction was complete. To the solution was added 30 mL of toluene, and the solution was heated at 65 °C while the toluene was removed under vacuum. The toluene addition/distillation was repeated two times more. N,N-dimethylformamide dimethyl acetal (DMFDMA) (9.2 mL, 8.24 g, 69.2 mmol) was added and the solution was heated at 100 °C. After 2 h, HPLC indicated no reaction, so an additional 9.2 mL of DMFDMA were added, and after 15 h an additional 5 mL of DMFDMA were added and heated for 1 h. Guanidine HCl (6.61 g, 69.2 mmol) and K₂CO₃ (9.56 g, 69.2 mmol) were added and heated at 100 °C for 6.75 h, at which point HPLC indicated that the reaction was complete. After cooling to room temperature, the solution was filtered through a pad of Celite, diluted with 250 mL of EtOAc and washed with 4 X 200 mL of 3 N HCl. The aqueous layers were combined and basified with solid KOH to pH = 14. The aqueous layer was transferred to a separatory funnel and extracted 3 x 200 mL of EtOAc. The combined organics were washed with 3 X 100 mL of 3N KOH solution and 50 mL of brine, dried over Na₂SO₄ and activated charcoal, filtered through Celite and concentrated in vacuo. The residue was dissolved in 50 mL of MeOH and the crystals which formed were filtered and washed with 100 mL of EtOAc to yield the title compound (4.89 g, 36%) as a tan solid.

20

25

15

10

Example 11

1-(1-t-Butoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5-acetylimidazole ÇO₂t-Bu

To a solution of t-butyl 4-amino-piperidinecarboxylate (0.95 g, 4.75 mmol) in 40 mL of Et₂O was added pyruvaldehyde (40% w/w solution in water, 0.94 mL, 1.11 g, 6.17 mmol) at room temperature. After 1.75 h, the solution was poured into a separatory funnel, diluted with 30 mL of Et₂O and 10 mL of EtOAc, and washed with 2 X 10 mL of water. The organics were concnetrated in vacuo and the residue was diluted in 10 mL of DMF and α -(p-toluenesulfonyl)-4-fluoro-benzylisonitrile (1.37 g,

4.75 mmol) and K₂CO₃ (0.72 g, 5.23 mmol) were added. After 16 h, the solution was diluted with 100 mL of water and extracted with 2 X 40 mL of EtOAc. The combined organics were washed with 3 X 40 mL of 10% HCl. The aqueous layers were combined and neutralized with excess solid NaHCO₃, then basified with 20 mL of 10% KOH. The aqueous layer was transferred to a separatory funnel and extracted 3 x 30 mL of EtOAc. The combined organics concentrated in vacuo to yield the imidazole product (0.5 g, 27%): ¹H NMR (CDCl₃) δ 7.74, 7.44 (2H, m), 7.13 (2H, t, J = 8.6 Hz), 4.97 (1H, tt, J = 3.7, 12.0 Hz), 4.29 (2H, m), 2.88 (2H, m), 2.15 (2H, m), 2.11 (3H, s), 1.78 (2H, dq, 4.2, 12.2 Hz), 1.48 (9H, s).

10

15

20

Example 12

1-Benzyl-4-(2-oxopropylidene)aminopiperidine

To a solution of pyruvaldehyde (40% w/w solution in water, 0.49 mL, 0.57 g, 3.19 mmol) in 10 mL of Et₂O at room temperature was added dropwise 4-amino-1-benzylpiperidine (0.5 mL, 0.46 g, 2.45 mmol). After 20 min, the solution was diluted with 40 mL of Et₂O and washed with 2 X 5 mL of water. The solution was concentrated in vacuo to yield the imine product which was used as such in the subsequent step: ¹H NMR (CDCl₃) δ 7.62 (1H, s), 7.29 (5H, m), 3.53 (2H, s), 3.28 (1H, m), 2.91 (2H, m), 2.38 (3H, s), 2.15 (2H, m), 1.84 (2H, m), 1.69 (2H, m).

Example 13

1-(1-Benzyl-4-piperidinyl)-4-(4-fluorophenyl)-5-acetylimidazole

To a solution of the imine described in Example 12 above (assumed 100% yield for Example 12, 0.64 g, 2.44 mmol) in 5 mL of DMF at 0 °C was added α-(p-toluenesulfonyl)-4-fluorobenzylisonitrile (0.85 g, 2.93 mmol) and K₂CO₃ (0.40 g, 2.93 mmol). The solution was stirred at 0 °C for 2 h, then gradually warmed to room temperature over 15 h. The solution was diluted with 70 mL of EtOAc and washed with 100 and 50 mL of water. The organic layer was acidified with 2 X 55 mL of 3N HCl. The aqueous layers were combined and neutalized with solid NaHCO₃ then basified with 30 mL of 10% KOH. The aqueous layer was transferred to a separotary funnel, extracted with 2 x 50 mL of EtOAc and concentrated in vacuo to yield the title compound (0.38 g, 41%) which was used in subsequent steps: ¹H NMR (CDCl₃) δ 7.78 (1H, s), 7.43 (2H, m), 7.27 (5H, m), 7.11 (2H, t, J = 8.6 Hz), 4.80 (1H, tt, J = 3.9, 11.8 Hz), 3.55 (2H, s), 3.02 (2H, d, J = 11.9 Hz), 2.16 (2H, m), 2.10 (3H, s), 1.94 (2H, m).

Example 14

15 1-(1-Benzyl-4-piperidinyl)-4-(4-fluorophenyl)-5-{2-(amino)-4-pyrimidinyl)imidazole

20

25

To a solution of the ketoimidazole prepared in Example 13 above (0.38 g, 1.01 mmol) in 5 mL of EtOH was added N,N-dimethylformamide dimethyl acetal (0.4 mL, 0.36 g, 3.02 mmol) and the solution was heated at 90 °C for 3 h. After 3 h, an additional 1 mL of DMFDMA was added and heated for 3 h. At this time, TLC indicated no starting material and the solution was cooled to 70 °C and guanidine•HCl (0.19 g, 2.02 mmol) and NaOMe (25% w/w solution, 0.46 mL, 0.44 g, 2.02 mmol) were added. After 15 hours, additional N-methylguanidine•HCl (0.19 g, 2.02 mmol) and NaOMe (25% w/w solution, 0.46 mL, 0.44 g, 2.02 mmol) were added and heated at 75 °C for 24 h. The solution was cooled to room temperature, diluted with 50 mL of water and extracted 2 X 50 mL of EtOAC. The combined organics were concentrated and the residue was recrystallized from

EtOAc to give 0.2 g (47%) of the title compound: ^{1}H NMR (CDCl₃) δ 8.19 (1H, d, J = 5.2 Hz), 7.76 (1H, s), 7.44 (2H, m), 7.33 (5H, m), 7.01 (2H, t, J = 8.6 Hz), 6.50 (1H, d, J = 5.2 Hz), 5.17 (2H, br s), 4.54 (1H, m), 3.53 (2H, s), 3.02 (2H, m), 2.09 (6H, m).

5

15

Additional compounds produced using the analagous methods to those indicated above include:

- Example 15: 5-(2-Phenylamino-4-pyrimidinyl)-4-(4-fluorophenyl)-1-(4-piperidinyl)imidazole
- 10 Example 16: 1-[1-Carboethoxy)piperidin-4-yl]-4-(4-fluorophenyl)-5-[[2-[3-benzyloxy)phenylamino]pyrimdin-4-yl]imidazole
 - Example 17: 1-[1-Carboethoxy)piperidin-4-yl]-4-(4-fluorophenyl)-5-[[2-[4-benzyloxy)phenylamino]pyrimdin-4-yl]imidazole
 - Example 18: 1-(Piperdin-4-yl)-4-(4-fluorophenyl)-5-[2-(3-trifluoromethylphenyl)-amino]pyrimidin-4-yl)imidazole
 - Example 19: 1-(Piperdin-4-yl)-4-(4-fluorophenyl)-5-[2-(3-4,difluorophenyl)-amino]pyrimidin-4-yl)imidazole

The above description fully discloses the invention including preferred
20 embodiments thereof. Modifications and improvements of the embodiments specifically disclosed herein are within the scope of the following claims. Without further elaboration, it is believed that one skilled in the are can, using the preceding description, utilize the present invention to its fullest extent. Therefore the Examples herein are to be construed as merely illustrative and not a limitation of the scope of the present invention in any way. The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows.

What is Claimed Is:

Claim 1. A process of making compounds of Formula (I)

$$\begin{array}{c|c}
R_2 \\
R_1 \\
N \\
N \\
N
\end{array}$$
(I)

5 wherein

R₁ is an optionally substituted pyrimidin-4-yl ring;

R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring; m is 0, or the integer 1 or 2;

m' is an integer having a value of 1 or 2,

R2 is -(CR₁₀R₂₀)_n' OR₉, heterocyclyl, heterocyclylC₁₋₁₀ alkyl, C₁₋₁₀alkyl, halosubstituted C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkylC₁₋₁₀ alkyl, C₅₋₇ cycloalkenyl, C₅₋₇ cycloalkenyl-C₁₋₁₀-alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl, heteroaryl-C₁₋₁₀-alkyl, (CR₁₀R₂₀)_nOR₁₁, (CR₁₀R₂₀)_nS(O)_mR₁₈, (CR₁₀R₂₀)_nNHS(O)₂R₁₈, (CR₁₀R₂₀)_nNR₁₃R₁₄,

 $\begin{array}{lll} & (CR_{10}R_{20})_{n}NO_{2}, (CR_{10}R_{20})_{n}CN, (CR_{10}R_{20})_{n}'SO_{2}R_{18}, \\ & (CR_{10}R_{20})_{n}S(O)_{m'}NR_{13}R_{14}, (CR_{10}R_{20})_{n}C(Z)R_{11}, (CR_{10}R_{20})_{n}OC(Z)R_{11}, \\ & (CR_{10}R_{20})_{n}C(Z)OR_{11}, (CR_{10}R_{20})_{n}C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_{n}C(Z)NR_{11}OR_{9}, \\ & (CR_{10}R_{20})_{n}NR_{10}C(Z)R_{11}, (CR_{10}R_{20})_{n}NR_{10}C(Z)NR_{13}R_{14}, \\ & (CR_{10}R_{20})_{n}N(OR_{6})C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_{n}N(OR_{6})C(Z)R_{11}, \end{array}$

(CR₁₀R₂₀)_nC(=NOR₆)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(=NR₁₉)NR₁₃R₁₄, (CR₁₀R₂₀)_nOC(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nNR₁₀C(Z)OR₁₀, 5-(R₁₈)-1,2,4-oxadizaol-3-yl or 4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadizaol-3-yl; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be optionally substituted;

n is an integer having a value of 1 to 10;

n' is 0, or an integer having a value of 1 to 10;

Z is oxygen or sulfur;

R3 is heterocyclyl, heterocyclylC1-10 alkyl or R8;

R6 is hydrogen, a pharmaceutically acceptable cation, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylalkyl, heterocyclyl, aroyl, or C₁₋₁₀ alkanoyl;
 R8 is C₁₋₁₀ alkyl, halo-substituted C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl, C₃₋₇ cycloalkyl, C₅₋₇ cycloalkenyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl, heteroarylC₁₋₁₀ alkyl,

 $(CR_{10}R_{20})_nOR_{11}$, $(CR_{10}R_{20})_nS(O)_mR_{18}$, $(CR_{10}R_{20})_nNHS(O)_2R_{18}$, $(CR_{10}R_{20})_nNR_{13}R_{14}$; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl may be optionally substituted;

R9 is hydrogen, -C(Z)R₁₁ or optionally substituted C₁₋₁₀ alkyl, S(O)₂R₁₈, optionally substituted aryl-C₁₋₄ alkyl;

R₁₀ and R₂₀ is each independently selected from hydrogen or C₁₋₄ alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀ alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl or heteroarylC₁₋₁₀ alkyl;

R₁₂ is hydrogen or R₁₆;

5

- 10 R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄ alkyl, optionally substituted aryl or optionally substituted aryl-C₁₋₄ alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9;
- R16 is C1-4 alkyl, halo-substituted-C1-4 alkyl, or C3-7 cycloalkyl;
 R18 is C1-10 alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl-C1-10alkyl, heteroaryl or heteroarylalkyl; and
 R19 is hydrogen, cyano, C1-4 alkyl, C3-7 cycloalkyl or aryl;
 which process comprises:
- a) reacting a compound of the formula

$$(H_b)_2N \xrightarrow{R} H_A$$

$$(VIII)$$

wherein

25

Rb is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl,

heterocyclic, or heterocyclicalkyl, all of which may be optionally substituted; R is a substituent group on the R₁ moiety as defined for Formula (I), or is an optionally

substituted alkyl or aryl group; and

R2 and R4 are defined as for Formula (I);

with a compound of the formula

30 wherein Z is N(R^d)₂, SR^e, OR^e, or R^d,

R^d is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclicalkyl, all of which may be optionally substituted;

R^e is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclicalkyl, all of which may be optionally substituted; and

to yield a compound of Formula (I), or pharmaceutically acceptable salt thereof.

- 2. The process according to Claim 1 wherein the reaction is at a temperature of about 25°C to about 110°C.
 - 3. The process according to Claim 1 wherein the reaction uses a solvent which is an alcohol, toluene, DMF, DMSO or mixtures thereof.
- 15 4. The process according to Claim 1 wherein the Y is Formula (IX) is NH.
 - 5. The process according to Claim 1 wherein the reaction uses a bases which is NaOMe, NaOEt, potassium carbonate, or potassium hydroxide.
- 20 6. A compound of the formula:

$$(R_b)_2N \xrightarrow{Q} \begin{array}{c} Q & R_2 \\ N & N \end{array}$$
 (VIII)

wherein

5

Y is O, S, or NH;

Rb is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl,

25 heterocylic, or heterocyclicalkyl, all of which may be optionally substituted;
R is optionally substituted alkyl, optionally substituted aryl, halogen, hydroxyl, thiol, C110 4 alkoxy, C1-10 alkylthio, C1-10 alkylsulfinyl, CH2OR12, amino, mono or diC1-10 alkyl substituted amino, NHR21, N(R10)C(O)Ra or an N-heterocyclyl ring
which ring has from 5 to 7 members and optionally contains an additional heteroatom
selected from oxygen, sulfur or NR15;

Ra is hydrogen, C₁₋₆ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl, heteroarylC₁₋₄ alkyl, heterocyclyl, or heterocyclylC₁₋₄ alkyl;

R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring;

PCT/US96/20599 WO 97/23479

R2 is -(CR10R20)n' OR9, heterocyclyl, heterocyclylC1-10 alkyl, C1-10alkyl, halosubstituted C1-10 alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl, C3-7cycloalkylC1-10 alkyl, C5-7 cycloalkenyl, C5-7cycloalkenyl-C1-10-alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl, heteroaryl-C₁₋₁₀-alkyl, (CR₁₀R₂₀)_nOR₁₁, 5 $(CR_{10}R_{20})_nS(O)_mR_{18}, (CR_{10}R_{20})_nNHS(O)_2R_{18}, (CR_{10}R_{20})_nNR_{13}R_{14},$ (CR₁₀R₂₀)_nNO₂, (CR₁₀R₂₀)_nCN, (CR₁₀R₂₀)_n'SO₂R₁₈, $(CR_{10}R_{20})_nS(O)_mNR_{13}R_{14}, (CR_{10}R_{20})_nC(Z)R_{11}, (CR_{10}R_{20})_nOC(Z)R_{11},$ $(CR_{10}R_{20})_{n}C(Z)OR_{11}, (CR_{10}R_{20})_{n}C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_{n}C(Z)NR_{11}OR_{9},$ $(CR_{10}R_{20})_nNR_{10}C(Z)R_{11}, (CR_{10}R_{20})_nNR_{10}C(Z)NR_{13}R_{14},$ 10 $(CR_{10}R_{20})_nN(OR_6)C(Z)NR_{13}R_{14}, (CR_{10}R_{20})_nN(OR_6)C(Z)R_{11}.$ $(CR_{10}R_{20})_nC(=NOR_6)R_{11}, (CR_{10}R_{20})_nNR_{10}C(=NR_{19})NR_{13}R_{14}.$ $(CR_{10}R_{20})_nOC(Z)NR_{13}R_{14}, (CR_{10}R_{20})_nNR_{10}C(Z)NR_{13}R_{14},$ $(CR_{10}R_{20})_nNR_{10}C(Z)OR_{10}$, 5- (R_{18}) -1,2,4-oxadizaol-3-yl or 4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadiazol-3-yl; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be 15 optionally substituted; n is an integer having a value of 1 to 10 n' is 0, or an integer having a value of 1 to 10; m' is an integer having a value of 1 or 2, Z is oxygen or sulfur; R9 is hydrogen, -C(Z)R11 or optionally substituted C1-10 alkyl, S(O)2R18, optionally

20

25

30

substituted arvl or optionally substituted arvl-C₁₋₄ alkyl:

R₁₀ and R₂₀ is each independently selected from hydrogen or C₁₋₄ alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀alkyl, aryl, arylC1-10 alkyl, heteroaryl or heteroarylC1-10 alkyl;

R₁₂ is hydrogen or R₁₆:

R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄ alkyl, optionally substituted aryl or optionally substituted aryl-C1-4 alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR9;

R₁₅ is R₁₀ or C(Z)-C₁₋₄ alkyl;

R₁₆ is C₁₋₄ alkyl, halo-substituted-C₁₋₄ alkyl, or C₃₋₇ cycloalkyl;

R18 is C1-10 alkyl, C3-7 cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl,

35 heterocyclyl-C₁₋₁₀alkyl, heteroaryl or heteroarylalkyl;

R₁₉ is hydrogen, cyano, C₁₋₄ alkyl, C₃₋₇ cycloalkyl or arvl:

R₂₁ is alkyl, aryl, arylC₁-6alkyl, heterocyclic, heterocyclylC₁-6 alkyl, heteroaryl, heteroarylC₁-6alkyl, wherein each of these moieties may be optionally substituted.

- 7. The compound according to Claim 6 wherein R₄ is 4-fluorophenyl, and R₂ is an optionally substituted heterocyclic, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, or C₃₋₇ cycloalkyl C₁₋₁₀ alkyl.
 - 8. The compound according to Claim 7 wherein R is C_{1-4} alkoxy, C_{1-4} alkyl thio, or amino.

9. The process according to Claim 1 wherein a compound of Formula (VIII) is produced by reacting a compound of the formula

wherein R, R2 and R4 are defined above;

15 with a compound the formula

10

20

$$(R_b)_2 N \longrightarrow OR_a$$
 (VII)

wherein R_a is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclic, or heterocyclicalkyl, all of which may be optionally substituted; and R_b is alkyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, arylalkyl, heteroarylalkyl, heterocyclic, or heterocyclicalkyl, all of which maybe optionally substituted; to yield a compound of Formula (VIII).

- The process according to Claim 9 wherein the compounds are heated with
 dimethylformamide dimethyl, tri(dimethylamino)methane, tert-butoxybis-dimethylamino)methane, or any suitable enaminating agent, optionally in the presence of a solvent.
- 11. The process according to Claim 10 wherein the optional solvents are toluene 30 ethanol, 1-propanol, 2-propanol, DMF or DMSO, or mixtures thereof.
 - 12. A compound of the formula

wherein

5

R is optionally substituted C₁₋₁₀ alkyl, optionally substituted aryl, halogen, hydroxyl, thiol, C₁₋₁₀ alkoxy, C₁₋₁₀ alkylthio, C₁₋₁₀ alkylsulfinyl, CH₂OR₁₂, amino, mono or di-C₁₋₁₀ alkyl substituted amino, NHR₂₁, N(R₁₀)C(O)R_a or an N-heterocyclyl ring which ring has from 5 to 7 members and optionally contains an additional heteroatom selected from oxygen, sulfur or NR₁₅;

Ra is hydrogen, C₁₋₆ alkyl, C₃₋₇ cycloalkyl, aryl, arylC₁₋₄ alkyl, heteroaryl,

heteroarylC₁_4alkyl, heterocyclyl, or heterocyclylC₁_4 alkyl;

R4 is an optionally substituted phenyl, naphth-1-yl or naphth-2-yl, or heteroaryl ring;

R2 is -(CR10R20)n' OR9, heterocyclyl, heterocyclylC1-10 alkyl, C1-10alkyl, halosubstituted C1-10 alkyl, C2-10 alkenyl, C2-10 alkynyl, C3-7 cycloalkyl, C3-7cycloalkylC1-10 alkyl, C5-7 cycloalkenyl, C5-7cycloalkenyl-C1-10-alkyl, aryl,

15 arylC₁₋₁₀ alkyl, heteroaryl, heteroaryl-C₁₋₁₀-alkyl, (CR₁₀R₂₀)_nOR₁₁, (CR₁₀R₂₀)_nS(O)_mR₁₈, (CR₁₀R₂₀)_nNHS(O)₂R₁₈, (CR₁₀R₂₀)_nNR₁₃R₁₄, (CR₁₀R₂₀)_nNO₂, (CR₁₀R₂₀)_nCN, (CR₁₀R₂₀)_n'SO₂R₁₈,

 $(CR_{10}R_{20})_nS(O)_mNR_{13}R_{14}, (CR_{10}R_{20})_nC(Z)R_{11}, (CR_{10}R_{20})_nOC(Z)R_{11}, (CR_{10}R_{20})_nC(Z)OR_{11}, (CR_{10}R_{20})_nC(Z)NR_{13}R_{14}, (CR_{10}R_{20})_nC(Z)NR_{11}OR_{9},$

20 (CR₁₀R₂₀)_nNR₁₀C(Z)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nN(OR₆)C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nN(OR₆)C(Z)R₁₁, (CR₁₀R₂₀)_nC(=NOR₆)R₁₁, (CR₁₀R₂₀)_nNR₁₀C(=NR₁₉)NR₁₃R₁₄, (CR₁₀R₂₀)_nOC(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nNR₁₀C(Z)NR₁₃R₁₄, (CR₁₀R₂₀)_nNR₁₀C(Z)OR₁₀, 5-(R₁₈)-1,2,4-oxadizaol-3-yl or

4-(R₁₂)-5-(R₁₈R₁₉)-4,5-dihydro-1,2,4-oxadiazol-3-yl; wherein the aryl, arylalkyl, heteroaryl, heteroaryl alkyl, heterocyclic and heterocyclic alkyl groups may be optionally substituted;

n is an integer having a value of 1 to 10 n' is 0, or an integer having a value of 1 to 10;

30 m' is an integer having a value of 1 or 2,

Z is oxygen or sulfur;

R9 is hydrogen, -C(Z)R₁₁ or optionally substituted C₁₋₁₀ alkyl, S(O)₂R₁₈, optionally substituted aryl-C₁₋₄ alkyl;

R10 and R20 is each independently selected from hydrogen or C1-4 alkyl;

R₁₁ is hydrogen, C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, heterocyclyl C₁₋₁₀ alkyl, aryl, arylC₁₋₁₀ alkyl, heteroaryl or heteroarylC₁₋₁₀ alkyl;

R₁₂ is hydrogen or R₁₆;

- R₁₃ and R₁₄ is each independently selected from hydrogen or optionally substituted C₁₋₄ alkyl, optionally substituted aryl or optionally substituted aryl-C₁₋₄ alkyl, or together with the nitrogen to which they are attached form a heterocyclic ring of 5 to 7 members which ring optionally contains an additional heteroatom selected from oxygen, sulfur or NR₉;
- 10 R₁₅ is R₁₀ or C(Z)-C₁₋₄ alkyl;

R₁₆ is C₁₋₄ alkyl, halo-substituted-C₁₋₄ alkyl, or C₃₋₇ cycloalkyl;

R₁₈ is C₁₋₁₀ alkyl, C₃₋₇ cycloalkyl, heterocyclyl, aryl, arylalkyl, heterocyclyl, heterocyclyl-C₁₋₁₀alkyl, heteroaryl or heteroarylalkyl;

R19 is hydrogen, cyano, C1-4 alkyl, C3-7 cycloalkyl or aryl; and

- 15 R₂₁ is alkyl, aryl, arylC₁-6alkyl, heterocyclic, heterocyclylC₁-6 alkyl, heteroaryl, heteroarylC₁-6alkyl, wherein each of these moieties may be optionally substituted.
 - 13. The compound according to Claim 12 wherein R_4 is 4-fluorophenyl, and R_2 is an optionally substituted heterocyclic, C_{1-10} alkyl, C_{3-7} cycloalkyl, or C_{3-7} cycloalkyl C_{1-10} alkyl.
 - 14. The compound according to Claim 13 wherein R is C_{1-4} alkoxy, C_{1-4} alkyl thio, or amino.
- 25 15. A process according to Claim 9 wherein a compound of Formula VI is prepared by reacting a compound of the formula

wherein R and R₂ are as defined in Formula (I),

with a compound of Formula (V) and a suitable base,

30

20

wherein Ar is an optionally substituted aryl; and R4 is as defined for Formula (I); to yield a compound of Formula (VI).

- 16. The process according to Claim 15 wherein the imine of Formula (IV) is prepared in situ, followed by reaction with a compound of Formula (V).
 - 17. The process according to Claim 16 wherein the imine is formed by reacting a compound of formula (II), as defined below

- wherein R is as defined for according to Claim 1, with a compound of formula (III)

 R2NH2 (III)

 wherein R2 is defined as for Formula (I).
- 18. The process according to Claim 16 wherein the imine formation uses a solvent of THF, MeCN, toluene, EtOAc, DMF, DMSO or mixtures thereof.
 - 19. The process according to Claim 16 wherein the imine formation utilizes a temperature from about 0°C to about 65°C.
- 20. The process according to Claim 16 wherein the reaction may optionally include a base which is potassium carbonate, sodium carbonate, K₃PO₄, K₂HPO₄, Na₂HPO₄, secondary and tertiary amine bases, or tetramethyl guanidine.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/20599

	A		
IPC(6) :	SSIFICATION OF SUBJECT MATTER CO7D 401/14		
US CL ::	544/331 International Patent Classification (IPC) or to both n	ational classification and IPC	
	DS SEARCHED		
	cumentation searched (classification system followed	by classification symbols)	
U.S. : 5	·	,,	
Documentati	on searched other than minimum documentation to the	extent that such documents are included	in the fields searched
Electronic de CAS ONL	ata base consulted during the international search (nam LINE	ne of data base and, where practicable	, search terms used)
c. doc	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
Α	US 2,748,119 A (EVANSTON, III) 2 see entire document, especially co	•	1-20 (parts)
Α	US 3,557,114 A (BICKING) 19 January 1971 (19.01.71), 1-20 (parts) see entire document, especially column 1.		
* Sp	ner documents are listed in the continuation of Box C. social categories of cital documents: commend defining the general state of the art which is not considered be of particular relevance riser document published on or after the international filing date	"T" later document published after the indete and not in conflict with the appliprinciple or theory underlying the in"X" document of particular relevance:	cation but cited to understand the vention the claimed invention cannot be
·L· do	riier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	considered novel or cannot be considered when the document is taken alone	lered to involve an inventive step
.O. 90	ecial remon (as specified) comment referring to an oral disclosure, use, exhibition or other come	"Y" document of particular relevance; to considered to involve as inventi combined with one or more other se being obvious to a person skilled in	e step when the document is the documents, such combination
***	comment published prior to the international filing date but later than e priority date claimed	"&" document member of the suns pate	nt family
	actual completion of the international search UARY 1997	Date of mailing of the international at 1 3 MAR	40.00
Commission Box PCT	mailing address of the ISA/US oner of Patents and Trademarks	Authorized officer R.W. RAMSUER aco	Shr
Washingto Facsimile N	n, D.C. 20231	Tolephone No. (703) 308-1235	•

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/20599

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
· ·
Claims Nos.: 1-20, parts because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Please See Extra Sheet.
*
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all scarchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/20599

BOX I. OBSERVATIONS WHERE CLAIMS WERE FOUND UNSEARCHABLE 2. Where no meaningful search could be carried out, specifically:

The multitude of variables and their permutations and combinations (e.g. R1, R2, R3, R4, R6, Rb, R, Ar, Y, Z, etc.) and the many processes) result in claimed subject matter that is so broad in scope that it is rendered virtually incomprehensible and thus no meaningful search can be given. Note also that the claimed subject matter lacks a significant structural element qualifying as the special technical feature that clearly defines a contribution over the art. The subject matter claimed contains an imidazole ring which does not define a contribution over the prior art. Therefore, the first discernable invention as found in Example 4 (i.e. the reaction of 1-(1-Ethoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5(3-N, N dimethylamino-trans-1-propenone) imidazole with N-methylguonidine. HCl to prepare 1-(1-Ethoxycarbonyl-4-piperidinyl)-4-(4-fluorophenyl)-5-(2-(methylamino)-4-pyrimidinyl) imidazole, has been searched.