Section 1.4: Octal and Hexadecimal

Key Concepts

- Octal (base-8) and hexadecimal (base-16) systems are widely used in digital systems because they provide a compact representation of binary numbers
- Each octal digit corresponds to **3 binary digits**, and each hexadecimal digit corresponds to **4 binary digits**.
- Conversion between binary, octal, and hexadecimal is straightforward due to the direct relationship between their bases.

Binary to Octal Conversion

- Partition the binary number into groups of **3 digits** (starting from the binary point).
- Convert each group to its corresponding octal digit.
- Example:

```
(10\,110\,001\,101\,011.\,111\,100\,000\,110)_2 = (26153.7406)_8
```

Binary to Hexadecimal Conversion

- Partition the binary number into groups of 4 digits (starting from the binary point).
- Convert each group to its corresponding hexadecimal digit.
- Example:

```
(10\,1100\,0110\,1011.\,1111\,0010)_2 = (2C6B.F2)_{16}
```

Octal/Hexadecimal to Binary Conversion

- Convert each octal digit to its **3-digit binary equivalent**.
- Convert each hexadecimal digit to its 4-digit binary equivalent.
- Examples:

- Octal to Binary:

$$(673.124)_8 = (110111011.001010100)_2$$

- Hexadecimal to Binary:

$$(306.D)_{16} = (0011\,0000\,0110.\,1101)_2$$

Advantages of Octal and Hexadecimal

- Binary numbers are long and difficult to work with, but octal and hexadecimal provide a compact representation.
- Example: The binary number 11111111111 (12 digits) can be represented as:
 - Octal: 7777 (4 digits)
 - Hexadecimal: FFF (3 digits)
- \bullet Hexadecimal is particularly useful for representing bytes (8 bits) with just 2 digits.

Table of Numbers with Different Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	\mathbf{A}
11	1011	13	В
12	1100	14	\mathbf{C}
13	1101	15	D
14	1110	16	${f E}$
15	1111	17	F

Table 1: Numbers with Different Bases