Proving ATM is Undecidable (via contradiction/paradox)
Sipser pp. 207-208.
Theorem: ATM = 3 < M, w> M is a TM that accepts w? is undecidable.
Strategy: Assume Arm is decidable and use decider as a subroutine in a "paradox machine" (find a contradiction.) Proof. Assume Arm is decidable, and let H decides Arm.
So: H((M,w)) accepts if and only if M(w) accepts.
(*1) $H(\langle M, \langle M \rangle)$ accepts if and only if $M(\langle M \rangle)$ accepts.
Define a new decider P that works as follows:
P = "On input < M">, where M is a TM,(*2) run H(< M,< M>)) and output the opposite of H
Now-consider running P(<p>).</p>
P will simulate H(<p,<p>). (*2) (C) H(CD(P)) (*1) (CP) rejects.</p,<p>

If H(P(P)) accepts, P(P) rejects.

If H(P,P) rejects, P(P) accepts.

Contradiction! Thus Am is not decidable.