

Data Sheet December 1992 FN3193

CMOS Hex Buffer/Converter

The CD4050BMS is an non-inverting hex buffer and features logic level conversion using only one supply voltage (VCC). The input signal high level (VIH) can exceed the VCC supply voltage when this device is used for logic level conversions. This device is intended for use as CMOS to DTL/TTL converters and can drive directly two DTL/TTL loads. (VCC = 5V, VOL \leq 0.4V, and IOL \geq 3.3mA.

The CD4050BMS is designated as replacement for CD4010B. Because the CD4050BMS requires only one power supply, it is preferred over the CD4010B and should be used in place of the CD4010B in all inverter, current driver, or logic level conversion applications. In these applications the CD4050BMS is pin compatible with the CD4010B, and can be substituted for this device in existing as well as in new designs. Terminal No. 16 is not connected internally on the CD4050BMS, therefore, connection to this terminal is of no consequence to circuit operation. For applications not requiring high sink current or voltage conversion, the CD4069UB Hex Inverter is recommended.

The CD4050BMS is supplied in these 16 lead outline packages:

Braze Seal DIP H4T
Frit Seal DIP H1E
Ceramic Flatpack H3X

Features

- High Voltage Type (20V Rating)
- Non-Inverting Type
- . High Sink Current for Driving 2 TTL Loads
- High-to-Low Level Logic Conversion
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- 5V, 10V and 15V Parametric Ratings

Applications

- CMOS to DTL/TTL Hex Converter
- . CMOS Current "Sink" or "Source" Driver
- CMOS High-to-Low Logic Level Converter

Pinout

CD4050BMS TOP VIEW VCC 16 NC L = F14 F H = B13 NC K = E11 Ε I = C10 J = DС 9 D VSS 8

Functional Diagram

Schematic Diagram

FIGURE 1. SCHEMATIC DIAGRAM, 1 OF 6 IDENTICAL UNITS

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD)0.5V to +20V (Voltage Referenced to VSS Terminals)
Input Voltage Range, All Inputs0.5V to VDD +0.5V
, ,
DC Input Current, Any One Input±10mA
Operating Temperature Range55°C to +125°C
Package Types D, F, K, H
Storage Temperature Range (TSTG)65°C to +150°C
Lead Temperature (During Soldering) +265°C
At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for
10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	θ_{ic}
Ceramic DIP and FRIT Package	θ _{ja} 80 ^o C/W	θ _{jc} 20 ^o C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PI	O) at +125 ⁰ 0	2
For TA = -55°C to +100°C (Package Ty	pe D, F, K)	500mW
For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package	Гуре D, F, K	() Derate
Linear	ity at 12mW	^{//0} C to 200mW
Device Dissipation per Output Transistor		100mW
For TA = Full Package Temperature Ra	nge (All Pac	kage Types)
Junction Temperature		+175 ⁰ C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND		1	+25°C	-	2	μΑ
				2	+125 ^o C	-	200	μΑ
		VDD = 18V, VIN = VDI	or GND	3	-55 ⁰ C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND VDD = 20		1	+25°C	-100	-	nA
				2	+125 ^o C	-1000	-	nA
			VDD = 18V	3	-55 ⁰ C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25 ^o C	-	100	nA
				2	+125 ^o C	-	1000	nA
			VDD = 18V	3	-55 ⁰ C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (I	Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL4	VDD = 4.5V, VOUT = 0).4V	1	+25 ^o C	2.6	-	mA
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	١٧	1	+25°C	3.2	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	.5V	1	+25°C	8.0	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25 ^o C	24	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6	SV	1	+25 ^o C	-	-0.8	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25°C	-	-3.2	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25 ^o C	-	-6.0	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μ	ιΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA		1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25 ^o C	VOH >	VOL <	V
		VDD = 20V, VIN = VDI	or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	or GND	8A	+125 ⁰ C			
		VDD = 3V, VIN = VDD	or GND	8B	-55 ⁰ C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5\	VDD = 5V, VOH > 4.5V, VOL < 0.5V		+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5\	VDD = 5V, VOH > 4.5V, VOL < 0.5V		+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13. VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13. VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being im- 3. For accuracy, voltage is measured differentially to VDD. Limit is

^{0.050}V max.

^{2.} Go/No Go test with limits applied to inputs.

CD4050BMS

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	110	ns
			10, 11	+125°C, -55°C	-	149	ns
Propagation Delay	TPLH	VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	140	ns
			10, 11	+125 ^o C, -55 ^o C	-	189	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	60	ns
			10, 11	+125 ^o C, -55 ^o C	-	81	ns
Transition Time	TTLH	VDD = 5V, VIN = VDD or GND	9	+25 ^o C	-	160	ns
			10, 11	+125°C, -55°C	-	216	ns

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and $+125^{\circ}\text{C}$ limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	MITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ
				+125°C	1	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	1	2	μΑ
				+125°C	-	120	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V
Output Current (Sink)	IOL4	VDD = 4.5V, VOUT = 0.4V	1, 2	+125°C	1.8	-	mA
				-55 ⁰ C	3.3	-	mA
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	2.4	-	mA
				-55 ⁰ C	4.0	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125 ^o C	5.6	-	mA
				-55 ^o C	10	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125 ^o C	18	-	mA
				-55 ⁰ C	26	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125 ^o C	-	-0.48	mA
				-55 ⁰ C	-	-0.81	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125 ^o C	-	-1.55	mA
				-55 ⁰ C	-	-2.6	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-1.18	mA
				-55 ⁰ C	-	-2.0	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-3.1	mA
				-55 ⁰ C	-	-5.2	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

						LIMITS		LIMITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS		
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V		
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	+7	-	V		
Propagation Delay	TPHL	VIN = 10V, VDD = 5V	1, 2, 3	+25°C	-	100	ns		
		VIN = 10V, VDD = 10V	1, 2, 3	+25 ^o C	-	55	ns		
Propagation Delay	TPLH	VIN = 10V, VDD = 5V	1, 2, 3	+25 ^o C	-	90	ns		
		VIN = 10V, VDD = 10V	1, 2, 3	+25°C	-	80	ns		
Propagation Delay	TPHL	VIN = 15V, VDD = 5V	1, 2, 3	+25 ^o C	-	100	ns		
		VIN = 15V, VDD = 15V	1, 2, 3	+25 ^o C	-	30	ns		
Propagation Delay	TPLH	VIN = 15V, VDD = 5V	1, 2, 3	+25°C	-	80	ns		
		VIN = 15V, VDD = 15V	1, 2, 3	+25 ^o C	-	60	ns		
Transition Time	TTHL	VDD = 10V, VIN = VDD OR GND	1, 2, 3	+25°C	-	40	ns		
		VDD = 15V, VIN = VDD OR GND	1, 2, 3	+25°C	-	30	ns		
Transition Time	TTLH	VDD = 10V, VIN = VDD OR GND	1, 2, 3	+25°C	-	80	ns		
		VDD = 15V, VIN = VDD OR GND	1, 2, 3	+25°C	-	60	ns		
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF		

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

			LIMITS		LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25 ^o C	-	1.35 x +25 ^o C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25^OC

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	± 0.2μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

CD4050BMS

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parametric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND RECORD		
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD	
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4	

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	2, 4, 6, 10, 12, 13, 15	3, 5, 7-9, 11-14	1, 16			
Static Burn-In 2 (Note 1)	2, 4, 6, 10, 12, 13, 15	8	1, 3, 5, 7, 9, 11, 14, 16			
Dynamic Burn-In (Note 3)	13	8	1, 16	2, 4, 6, 10, 12, 15	3, 5, 7, 9, 11, 14	
Irradiation (Note 2)	2, 4, 6, 10, 12, 13, 15, 16	8	1, 3, 5, 7, 9, 11, 14			

NOTES:

- 1. Each pin except pin 1, pin 16, and GND will have a series resistor of $10K \pm 5\%$, VDD = $18V \pm 0.5V$
- 2. Each pin except pin 1, pin 16, and GND will have a series resistor of $47K \pm 5\%$; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$
- 3. Each pin except pin 1, pin 16, and GND will have a series resistor of $4.75K \pm 5\%$, VDD = $10V \pm 0.5V$

Typical Performance Characteristics

FIGURE 2. MINIMUM AND MAXIMUM VOLTAGE TRANSFER CHARACTERISTICS

FIGURE 3. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 4. MINIMUM OUTPUT LOW (SINK) CURRENT DRAIN CHARACTERISTICS

FIGURE 6. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 8. TYPICAL POWER DISSIPATION VS FREQUENCY CHARACTERISTICS

FIGURE 5. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL VOLTAGE TRANSFER CHARACTERISTICS AS A FUNCTION OF TEMPERATURE

FIGURE 9. TYPICAL POWER DISSIPATION VS INPUT RISE AND FALL TIMES PER INVERTER

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ - 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN DIE THICKNESS: 0.0198 inches - 0.0218 inches

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com