MTH20014 Mathematics 3B. Tutorial 9

1. Evaluate the following integrals by transforming them to polar form:

(a)
$$\int_0^1 \int_0^{\sqrt{1-x^2}} (3x+2y^2) \, dy \, dx$$
, (b) $\int_{-2}^2 \int_0^{\sqrt{4-x^2}} (x^2+y^2) \, dy \, dx$,

(b)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (x^2 + y^2) \, dy \, dx$$
,

(c)
$$\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (2x+3y) \, dy \, dx$$

(c)
$$\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} (2x+3y) \, dy \, dx$$
, (d) $\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{2x-x^2}} (x^2-y^2) \, dy \, dx$,

(e)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (x^2+3y) \, dy \, dx$$

(e)
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (x^2 + 3y) \, dy \, dx$$
, (f) $\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} (2x^2 - y^2) \, dy \, dx$.

2. C is the triangular path consisting of the straight line segments running from (0,0)to (1,0) to (1,1) and back to (0,0). Evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ (i) as a line integral and (ii) using Stokes' theorem if

(a)
$$\mathbf{F} = (y, x^2),$$

(b)
$$\mathbf{F} = (y^3 - y, 3xy^2 - x).$$

(a)
$$\mathbf{F} = (y, x^2),$$
 (b) $\mathbf{F} = (y^3 - y, 3xy^2 - x),$ (c) $\mathbf{F} = (3x^2y - y^2, x^3 - 2xy),$ (d) $\mathbf{F} = (x^2y + y^2, x^3 + 4xy).$

(d)
$$\mathbf{F} = (x^2y + y^2, x^3 + 4xy)$$

- 3. Evaluate the flux integral $\iint_S \mathbf{G} \cdot \mathbf{n} \, dA$, where $\mathbf{G} = (2y, -z, 2y 1)$ and S is the parabolic bowl $z = x^2 + y^2$ for $0 \le z \le 4$ (take the normal to S to point away from the z axis).
- 4. Using the Divergence theorem, find $\iint_S \mathbf{F} \cdot \mathbf{n} \, dA$, where the region of integration T is the rectangular parallelepiped $0 \le x \le 1$, $0 \le y \le 3$, $0 \le z \le 2$ and $\mathbf{F} = (x^2, z, y)$.

Answers

1. (a)
$$1 + \frac{\pi}{8}$$
, (b) 4π , (c) $\frac{32}{3}$, (d) $\frac{\pi}{2}$, (e) $2(8+\pi)$, (f) $\frac{81\pi}{4}$.

2. (a)
$$\frac{1}{6}$$
, (b) 0, (c) 0, (d) $\frac{5}{6}$.

- 3. 4π .
- 4. $\nabla \cdot \mathbf{F} = 2x$ and we need to evaluate the integral

$$\int_0^1 \int_0^3 \int_0^2 2x \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x = 6.$$