causal_python_pycon2021

April 26, 2021

1 Causal Python - PyCon2021 IL

2 Dr. Hanan Shteingart

2.1 Sex Bias in Graduate Admissions: Data From Berkeley

Simpson's Paradox (Confounder Bias) Effect Estimation in 4 Ways: 1. Naive 2. Standarization 3. Regression 4. IPTW

Inspired by a Science paper: P.J. Bickel, E.A. Hammel and J.W. O'Connell (1975). "Sex Bias in Graduate Admissions: Data From Berkeley" (PDF). Science. 187 (4175): 398–404. doi:10.1126/science.187.4175.398. PMID 17835295.

```
[253]: import pandas as pd import numpy as np from io import StringIO
```

[190]:	Department	Male-Admitted	Male-Denied	Female-Admitted	Female-Denied
	O A	512	313	89	19
	1 B	313	207	17	8
	2 C	101	205	202	391
	3 D	138	279	131	244
	4 E	40	138	94	299
	5 F	22	351	24	317

```
[195]: def melt_and_duplicate(df):
    """convert the summary stats to raw data where every row is a student"""
    df_melt = df.melt(id_vars='Department',var_name='group', value_name='count')
    df_melt['male'] = df_melt['group'].str.contains('Male')
    df_melt['admitted'] = df_melt['group'].str.contains('Admitted')
    df_list = []
    for i in range(len(df_melt)):
        df_list.append(pd.concat([df_melt.iloc[[i]]] * df_melt.
        df_list.append(pd.concat([df_melt.iloc[[i]]] * df_melt.
        df_raw = pd.concat(df_list, axis=0)
        df_raw = df_raw.drop(['group', 'count'], axis=1)
        return df_raw
    df_raw = melt_and_duplicate(df)
    df_raw
```

```
[195]:
         Department
                       male admitted
                       True
                                 True
       0
       0
                       True
                                 True
                       True
                                 True
       0
       0
                       True
                                 True
                                 True
       0
                   Α
                      True
       23
                  F False
                                False
                                False
       23
                   F False
       23
                   F False
                                False
                                False
       23
                   F False
                   F False
                                False
       23
```

[4454 rows x 3 columns]

2.2 Native Approach

```
[249]: naive_est = df_raw.groupby('male')['admitted'].mean()
    naive_est.plot(kind='bar', legend=True)
    naive_ate = naive_effect.diff()[1]
    print(naive_ate)
```

0.1263928553964791

2.3 Wrong conclusion: Bias in admission to favour males over females

2.4 Stantarization

```
[152]: p_x = df_raw.Department.value_counts(normalize=True)
       p_x.to_frame()
[152]:
          Department
       Α
            0.209475
       С
            0.201841
       D
            0.177818
       F
            0.160305
       Ε
            0.128199
       В
            0.122362
[153]: p_y_x = df_raw.groupby(['Department', 'male'])['admitted'].mean()
       p_y_x = p_y_x.reset_index(level=1)
       p_y_x
[153]:
                    male admitted
       Department
       Α
                   False 0.824074
                    True 0.620606
       Α
       В
                   False 0.680000
```

```
В
                  True 0.601923
      С
                 False 0.340641
      C
                  True 0.330065
      D
                 False 0.349333
      D
                  True 0.330935
      F.
                 False 0.239186
      F.
                  True 0.224719
      F
                 False 0.070381
      F
                  True 0.058981
[157]: p_y_x['weighted'] = p_y_x['admitted'] * p_x
[247]: stratified_ate = p_y_x.groupby('male').weighted.sum().diff()[1]
      print(stratified_ate)
      -0.06126318937738062
[165]: stratified_effect.diff()
[165]: male
      False
                   NaN
      True
              -0.061263
      Name: weighted, dtype: float64
     2.5
          Regression Adjustment
[171]: from statsmodels.regression.linear_model import OLS
[198]: import statsmodels.formula.api as smf
[243]: df raw['v'] = df raw.admitted.astype('float')
      reg_model = smf.ols(formula = 'y ~ male + C(Department)', data=df_raw.
       →reset_index()).fit()
      reg_ate = reg_model.params['male[T.True]']
      reg_model.summary()
[243]: <class 'statsmodels.iolib.summary.Summary'>
                                 OLS Regression Results
      ______
      Dep. Variable:
                                            R-squared:
                                                                           0.172
                                        У
      Model:
                                      OLS Adj. R-squared:
                                                                           0.171
      Method:
                             Least Squares F-statistic:
                                                                           153.9
      Date:
                          Mon, 26 Apr 2021 Prob (F-statistic):
                                                                       4.25e-178
      Time:
                                  18:38:11
                                            Log-Likelihood:
                                                                         -2675.4
      No. Observations:
                                     4454 AIC:
                                                                           5365.
      Df Residuals:
                                     4447
                                            BTC:
                                                                           5410.
```

Df Model: Covariance Type:	6 nonrobust				
0.975]	coef	std err	t	P> t	[0.025
 Intercept 0.716	0.6775	0.020	34.086	0.000	0.639
male[T.True] -0.007	-0.0377	0.015	-2.442	0.015	-0.068
C(Department)[T.B]	-0.0360	0.024	-1.512	0.131	-0.083
C(Department)[T.C]	-0.3276	0.022	-14.707	0.000	-0.371
C(Department)[T.D]	-0.3180	0.022	-14.431	0.000	-0.361
C(Department)[T.E]	-0.4310	0.025	-17.195	0.000	-0.480
C(Department)[T.F] -0.549	-0.5934	0.023	-26.193	0.000	-0.638
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.000 J 0.328 P 1.838 C	======================================	JB):	0.007 330.503 1.71e-72 8.00

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\footnote{``}$

2.6 IPTW

[244]: iptw_ate = (df_raw['admitted']*(df_raw['male'] -p)/(p*(1-p))).mean()

2.7 Summary

