

Cálculo computacional II

Unidade 2: Plano tangente e regra da cadeia

Cristina Vaz

C2-aula 16/6/25

UFPA

Sumário

<u>∂f</u> ∂t

Funções diferenciáveis

Plano tangente

Regra da cadeia

- 1 Funções diferenciáveis
 - Consequências

- 2 Plano tangente
- 3 Regra da cadeia

Funções diferenciáveis

Plano tangente

Regra da cadeia

Definição

Sejam (x_0,y_0) e $f:D_f\mathbb{R}^2\to\mathbb{R}$. Dizemos que a função f é diferenciável em (x_0y_0) se, e somente se, existem os números reais a e b tais que

$$\lim_{(h,k)\to(0,0)}\frac{f(x_0+h,y_0+k)-f(x_0,y_0)-ah-bk}{\|(h,k)\|}=0$$

Note que:

$$\lim_{(h,k)\to(0,0)}\frac{f(x_0+h,y_0+k)-f(x_0,y_0)-L(h,k)}{\|(h,k)\|}=0$$

runçoes diferenciávei Consequências

Plano tangente

Regra da cadeia

Consequências da diferenciabilidade:

Teorema (1)

Sejam (x_0, y_0) e f : $D_f \subset \mathbb{R}^2 \to \mathbb{R}$. Se f é diferenciável em (x_0, y_0) então f é contínua em (x_0, y_0)

Funções diferenciáve Consequências

Plano tangente

Regra da cadeia

Consequências da diferenciabilidade:

Teorema (1)

Sejam (x_0, y_0) e $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$. Se f é diferenciável em (x_0, y_0) então f é contínua em (x_0, y_0)

Portanto, se f não é contínua em (x_0,y_0) então f não é diferenciável em (x_0,y_0)

nções erenciáveis

Consequências

Plano tangente

Regra da cadeia

Exemplo

A função

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^4 + y^4} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

é diferenciável em (0,0)?

Funções diferenciávei Consequências

Plano tangente

Regra da cadeia

Exemplo

A função

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^4 + y^4} & \text{se } (x,y) \neq (0,0) \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

é diferenciável em (0,0)?

Solução: A função f não é contínua em (0,0) (verifique!), logo não é diferenciável em (0,0).

Funções diferenciávei Consequências

Plano tangente

Regra da cadeia

Teorema (2)

Sejam (x_0, y_0) e $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$. Se f é diferenciável em (x_0, y_0) então f tem derivadas parciais em (x_0, y_0) e

$$a = \frac{\partial f}{\partial x}(x_0, y_0) \ e \ b = \frac{\partial f}{\partial y}(x_0, y_0)$$

ou

$$L(h,k) = \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k$$

Funções diferenciávei Consequências

Plano tangente

Regra da cadeia

Teorema (2)

Sejam (x_0,y_0) e $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$. Se f é diferenciável em (x_0,y_0) então f tem derivadas parciais em (x_0,y_0) e

$$a = \frac{\partial f}{\partial x}(x_0, y_0) \ e \ b = \frac{\partial f}{\partial y}(x_0, y_0)$$

ou

$$L(h,k) = \frac{\partial f}{\partial x}(x_0, y_0)h + \frac{\partial f}{\partial y}(x_0, y_0)k$$

Portanto, se as derivadas parciais de f não existem em (x_0,y_0) , então f não é diferenciável em (x_0,y_0)

nções erenciáveis

Consequências
Plano tangente

Regra da cadeia

Teorema (3)

Sejam (x_0,y_0) e $f:D_f\subset\mathbb{R}^2\to\mathbb{R}$. Se f tem derivadas parciais em (x_0,y_0) e $\frac{\partial f}{\partial x}(x_0,y_0)$ e $\frac{\partial f}{\partial y}(x_0,y_0)$ são contínuas em (x_0,y_0) então f é diferenciável em (x_0,y_0)

Funções diferenciáveis

Consequências

Plano tangente

Regra da cadeia

Exemplo

A função $f(x,y) = xe^{xy}$ é diferenciável em (1,0)?

nções erenciávei:

Consequências
Plano tangente

Regra da cadeia

Solução:
$$\frac{\partial f}{\partial x}(x,y) = e^{xy} + xye^{xy} \Rightarrow \frac{\partial f}{\partial x}(x,y)$$
 contínua em (1,0)

$$\frac{\partial f}{\partial y}(x,y) = x^2 e^{xy} \Rightarrow \frac{\partial f}{\partial y}(x,y)$$
 contínua em (1,0).

Logo, f é é diferenciável em (1,0)

Funções diferenciáveis Consequências

Plano tangente

Regra da cadeia

Definição

Seja f é diferenciável em (x_0, y_0) . Chamamos de **plano** tangente ao gráfico de f no ponto $(x_0, y_0, f(x_0, y_0))$ o plano dado pela seguinte equação:

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Funções diferenciávei: Consequências

Plano tangente

Regra da cadeia

Observe que:

- só definimos plano tangente em $(x_0, y_0, f(x_0, y_0))$ quando f é diferenciável em (x_0, y_0) .
- Se f não for diferenciável em (x_0, y_0) , mas tem derivadas parciais neste ponto, então existirá um plano, mas não será o plano tangente.
- f é diferenciável em (x_0, y_0) , o plano conterá todas as retas tangentes ao gráfico de f no ponto $(x_0, y_0, f(x_0, y_0))$.

Funções diferenciávei: Consequências

Plano tangente

Regra da cadeia

Exemplo

Determine o plano tangente ao paraboloide elíptico $z = 2x^2 + y^2$ no ponto (1,1,3).

Solução:
$$(x_0, y_0) = (1, 1)$$
; $f(1, 1) = 3$;

$$f_x = 4x \implies f_x(1,1) = 4;$$

$$f_v = 2y \Rightarrow f_v(1,1) = 2$$

$$z - f(1,1) = f_x(1,1)(x-1) + f_y(1,1)(y-1) \Rightarrow$$

$$z-3 = 4(x-1) + 2(y-1) \Rightarrow 4x + 2y - 3 = 0$$

<u>∂f</u> ∂t

Funções diferenciáveis

Plano tangente

Regra da cadeia

Plano tangente

Regra da cadeia

Cálculo 1:
$$y = f(x)$$
 e $x = g(t) \Rightarrow y = f(g(t))$

$$\frac{df}{dt} = \frac{df}{dx} \frac{dg}{dt}$$

ou

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

<u>∂f</u> ∂t

Funções diferenciáveis

Plano tangente

Regra da cadeia

Cálculo 2:
$$z = f(x,y)$$
, $x = g(t)$ e $y = h(t) \Rightarrow z = f(g(t), h(t))$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt}$$

ou

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Funções diferenciáveis Consequências

Plano tangente

Regra da cadeia

Teorema (Caso 1)

Sejam $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ uma diferenciável em D_f e as funções $g: D_g \subset \mathbb{R} \to \mathbb{R}$ e $h: D_h \subset \mathbb{R} \to \mathbb{R}$ são deriváveis em \mathbb{R} tal que $(g(t),h(t)) \in D_f$. Então z(t) = f(g(t),h(t)) é uma função derivável em \mathbb{R} e

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Funções diferenciáveis

Plano tangente

Regra da cadeia

Calcule
$$\frac{dz}{dt}$$
 para $z = x^2y + 3y^4$, $x = sen(2t)$ e $y = cos(t)$

<u>∂f</u> ∂t

diferenciáve Consequências

Plano tangente

Regra da cadeia

Exemplo

Calcule $\frac{dz}{dt}$ para $z = x^2y + 3y^4$, x = sen(2t) e $y = \cos(t)$

Solução: Aplicar a regra da cadeia.

$$f_x = 2xy e f_y = x^2 + 12y^3$$

$$x' = 2\cos(2t) e y' = -\operatorname{sen}(t)$$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = (2xy)(2\cos(2t)) + (x^2 + 12y^3)(-\sin(t)) \Rightarrow$$

$$\frac{dz}{dt} = 4xy\cos(2t) - (x^2 + 12y^3)\sin(t)$$

OBRIGADA