Homework 2

Due 09/16/19

September 9, 2019

1. Use the formal definition of Big-Ok to prove that if (fa) and gin) are nonnegative functions such that f(n) = O(g(n)), f(n) + g(n) = O(g(n)). For all $n \ge n$ or $f(n) + g(n) \le (g(n)) + g(n)$ for all $n \ge n$ or $f(n) + g(n) \le (g(n)) + g(n)$ for all $n \ge n$ or $f(n) + g(n) \le (g(n)) + g(n)$ for all $n \ge n$ or $f(n) + g(n) \le (g(n)) + g(n) = (g(n))$.

2. Use the formal definition of Big-Ok to prove that if (fa) and g(n) are nonnegative functions such that f(n) + g(n) = (g(n)) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) = (g(n)) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$ or f(n) + g(n) = (g(n)) + f(n) for all $n \ge n$.