Lecture 1 - Introduction

- Goal of the course
 - Identify security, privacy and trust issues in various aspect of computing, such as
 - programs
 - Operating Systems
 - Networks
 - Distributed systems
 - Internet applications
 - The ability to critically read and digest the key elements of research papers in the field
 - The awareness of how security, privacy and trust can be achieved in practice
- Who is We?
 - Ordinary Citizen
 - Whistle blower
 - Corporate worker
 - Dissident activist
 - Secret agent
- What is Security?
 - The main general properties are:
 - Confidentiality
 - Information access to only authorized(authenticity) entities
 - Integrity
 - The data is untampered and uncorrupted

- Availability
 - Both the data and the system that provides access to it are there when you need them
- What is Privacy?
 - Concerns individuals and their expectations on how their data, behaviour and interactions are recorded, utilized and spread.
 - A useful definition: "Information self-determination"
 - A person gets control information about themselves.
 - Controls can include:
 - Who gets to see it
 - Who gets to use it
 - What they can use it for
 - Who they can give it to
- What is Trust?
 - We trust when we have:
 - Assurance
 - The means to know that the system is secure
 - Reliability/Resilience
 - To operate intact in the face of natural disasters and human-launched attacks
 - Accountability
 - The means to verify that the system is operating as designed (i.e. securely)
 - NB: There is a difference between trustworthy and trusted
- Who are Adversaries?
 - All systems are vulnerable to all matter of threats

- Adversary types:
 - Nature
 - Script Kiddies
 - Crackers/Hackers
 - Organised Crime
 - Governments
 - Terrorists
- Thread Modeling
 - Who is the adversary (the system may protect against many types)?
 - What are they allowed to do? Or, what can't we prevent them from doing?
 - The adversary need not be malicious, he/she could be merely curious
 - What do we want to prevent the adversary from doing or learning?
 - What is the adversary's aim? Or, what does he/she win?
 - The set of threats we want to protect against given this(set of) adversaries
 - What do we win?
 - What does the adversary win?
 - Terminology
 - Assets: Things we want to protect, like:
 - Hardware
 - Software
 - Information
 - Vulnerabilities: Weaknesses in a system that may be exploited

 Example: Public facing email server without spam protection

• Threats:

- Loss or damage to the system, its users or operators
 - E.g. Proprietary source code being stolen and sold
- The six major categories of threats:
 - Interception
 - Interruption
 - Modification
 - Fabrication
 - Repudiation
 - Epistemic
- Attack: An action that exploits a vulnerability to carry out a threat
 - E.g. Hacking the company public facing email server to read emails to steal company trade-secrets
- Controls:
 - Mitigating or removing a vulnerability
 - The control mitigates a vulnerability to prevent an attack and that defends against a threat
 - No system is perfect: Control vulnerabilities when discovered

• Security Principles

- Economy of mechanism: easy to understand, verify and maintain
- Fail-safe defaults: conservative permission and functionality
- Complete mediation: every access should be checked (again)
- Open design: no security by obscurity

- Separation of privilege: cooperation required to act, no single point of failure
- Least privilege: programs and users on bare minimum of access
- Least common mechanism: minimize shared means of access to resources
- Psychological acceptability: well designed UI that are intuitive and clear
- Work factor: compare effort for the value of the resource
- Compromise recording: record failures and breaches
- Common defence methods
 - There are 5 common defence patterns:
 - Prevent
 - Deter
 - Deflect
 - Detect
 - Recover
 - NB: Not all attacks can be prevented!
 - Best practice to employ some form of all to get "defence in depth"
- Trade-offs
 - Can we have secure, privacy-friendly and trustworthy (SecPrivTru) systems? NO!
 - Privacy means potentially hiding information; The system can not assure to be safe when it does not know all the data?
 - SecPrivTru vs. Cost
 - There is a cost to operate more secure systems
 - Are the assets worth the effort?
 - Non-technical solutions (e.g. insurance)

- SecPrivTru vs. Performance
 - There is an overhead to gain SecPrivTru properties
 - How much performance degradation can we tolerate?
 - What properties do we really need?
- How secure, private, trusted should it be?
 - Weakest link
 - An adversary will attack the most vulnerable part of the system, not the one that is the easiest for you to defend
 - Requires thinking like an attacker
 - Attack trees and threat modeling can be useful tools
 - Cost-benefit analysis
 - Economic incentives
 - Do not spend more on protecting an asset than it is worth
 - What about users privacy?
- Defence tools of the trade
 - Protect assets that can be
 - Hardware, software, data (PII, social graph, confidential information, etc.)
 - Many form of control
 - Cryptography
 - Protects the data, making it unreadable by anyone without keys
 - Authenticating users with digital signatures
 - Authenticating transactions with cryptographic protocols
 - Ensures the integrity of data against unauthorized modification
 - Software controls
 - Passwords

- Sandboxes
- Virus scanners
- Source code versioning systems
- Software Firewalls
- Privacy enhancing technologies (PETs)

Hardware controls

- Fingerprint readers
- Smart tokens
- Firewalls
- Intrusion detection systems

Physical controls

- Protecting against unauthorized physical access to hardware
- Locks
- Guards
- Off-site backups
- Not placing critical systems in natural disaster zones

Policies and procedures

- Non-technical means to protect against some type of attacks
- Disallow personal hotspot within work place
- Password rules
- Security training against social engineering attacks

Recap

- What is our goal in this course?
 - Identify security and privacy issues

- Design systems that are more protective of security and privacy
- What is Security?
 - Confidentiality, Integrity, Availability, Authenticity
- What is Privacy?
 - Informational self-determination
- What is Trust?
 - Assurance, Reliability/Resilience, Accountability
- Who are the adversaries?
 - Threat modeling
 - Learn to think like an attacker
- Trade-offs
 - Security, Privacy, Performance, Cost
- Assets, vulnerabilities, threats, attacks and controls
 - You control a vulnerability to prevent an attack and block a threat
- Methods of defence
 - Cryptography, software controls, hardware controls, physical controls, policies and procedures
- Lecture 2 Network security: Networking Principles
 - Network Communication
 - Communication in modern networks is characterised by the following fundamental principles
 - Packet switching
 - Data splits into packets
 - Each packet is
 - Transported independently through network
 - Handled on a best efforts basis by each device

- Packets may
 - Follow different routes between the same endpoints
 - Be dropped by an intermediate device and never delivered

Stack of layers

- Network communication models use a stack of layers
 - Higher layers use services of lower layers
 - Physical channel at the bottommost layer
- A network device implements several layers
- A communication channel between two devices is established for each layer
 - Actual channel at the bottom layer
 - Virtual channel at the higher layers
- Internet Stack (simplified)

The OSI model

- The OSI (Open System Interconnect) ReferenceModel is a network model consisting of seven layers
- Created in 1983, OSI is promoted by theInternational StandardOrganization (ISO)
- TCP/IP Model Mapped onto OSI

Encapsulation

- A packet typically consists of
 - Control information: header and footer
 - Data: payload

 A protocol P uses the services of another protocol Q through encapsulation

- A packet p of P is encapsulated into a packet q of Q
- The payload of q is p
- The control information of q is derived from that of p
- Internet Packet Encapsulation

- Application Layer >> Transport Layer >> Network Layer >> Link Layer
- Network Interfaces
 - device connecting a device to a network
 - Ethernet card
 - Wifi adapter
 - DSL modem
 - A computer may have multiple network interfaces
 - Packets transmitted between network interfaces

- Most local area networks, (including Ethernet and WiFi) broadcast frames
- Media Access Control (MAC) Addresses
 - Most network interfaces come with a predefined MAC address
 - A MAC address is a 48-bit number usually represented in hex
 - E.g., 00-1A-92-D4-BF-86
 - The first three octets of any MAC address are IEEEassigned Organizationally Unique Identifiers
 - The next three can be assigned by organizations as they please, with uniqueness being the only constraint
- Switch
 - A switch perform routing in a local area network
 - Operates at the link layer
 - Has multiple interfaces, each connected to a computer/segment
 - Operation of a switch

- Learn the MAC address of each computer connected to it
- Forward frames only to the destination computer
- Hub
 - Forward frames to all computer
- Combining Switches
 - Switches can be arranged into a tree
 - Each forwards frames for the MAC addresses of the machines in the segments (subtrees) connected to it\
 - Frames to unknown MAC addresses are broadcast
 - Frames to MAC addresses in the same segment as the sender are ignored
- The internet

• Internet Protocols(IP) Functions

- Addressing:
 - In order to delivery data, IP needs to be aware of where to deliver data to, and hence includes addressing systems

- Routing:
 - IP might be required to communicate across networks, and communicate with networks not directly connected to the current network
- Fragmentation and Reassembly:
 - IP packets are carried across networks which may have different maximum packet length
- IP Addresses and Packets
 - IP Addresses
 - IPV4: 32bit 4 * 8
 - IPV6: 128bit 8 * 16
 - Address subdivided into network, subnet, and host
 - E.g., 128.148.32.110
 - Broadcast addresses
 - E.g., 128.148.32.255
 - Private networks
 - not routed outside of a LAN
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
 - IP header includes

- Source address
- Destination address

- Packet length (up to 64KB)
- Time to live (up to 255)
- IP protocol version
- Fragmentation information
- Transport layer protocol information (e.g., TCP)

IP Routing

- A router bridges two or more networks
 - Operates at the network layer
 - Maintains tables to forward packets to the appropriate network
 - Forwarding decisions based solely on the destination address
- Routing table
 - Maps ranges of addresses to LANs or other gateway routers
- Routing Example

- Exploring Internet Routes
 - Internet Control Message Protocol (ICMP)
 - Used for network testing and debugging
 - Simple messages encapsulated in single IP packets
 - Considered a network layer protocol
 - Tools based on ICMP

- Ping: sends series of echo request messages and provides statistics on roundtrip times and packet loss
- Traceroute: sends series ICMP packets with increasing
 TTL value to discover routes

Network Attack

Wireshark

- Packet sniffer and protocol analyzer
- Captures and displays network packets for analysis
- Supports plugins
- Usually requires administrator privileges because of security risks associated with the program
- When run in promiscuous mode, captures traffic across the network

What we have learned

- Networking principles
 - Packet switching
 - Stack of layers
 - Encapsulation

- Network interfaces, MAC Addresses and Switches
- Internet Protocol (IP) Routing, autonomous systems
- Types of network attacks
- Traceroute and Wireshark tool

以上内容整理于 幕布文档