2025 전력사용량 예측 AI

경진대회

목차 Dacon Contents

01p 평가 지표 및 핵심 전략 데이터 03p 대회 데이터 및 데이터셋 구성 EDA 데이터 전처리 피쳐 엔지니어링 모델링 11p Xgboost Lightgbm Catboost Comparison Staking 최종 제출물 21p Ensemble

건물의 전력사용량 예측 A/모델 개발

안정적·효율적인 에너지 공급을 위해 전력 사용량 예측 중요성 확대

기후 변화 및 에너지 전환 정책에 따른 수요 예측 기반 관리 역량 필요

2025 전력사용량 예측 AI 경진대회 개최 (2021·2023 이어 세 번째)

산업 현장에 활용 가능한 전력 수요 예측 알고리즘 발굴 및 에너지 분야 AI 기술 적용 가능성 모색

2025 전력사용량 예측 AI 경진대회

알고리즘 | 정형 | 시계열 | 에너지 | SMAPE

₩ 상금 : 2,000 만원

() 2025.07.14 ~ 2025.08.25 09:59

+ Google Calendar

ぷ 1,526명 📋 마감

평가지표 및 핵심 전략

Evaluation Metrics & Key Strategies

평가지표

SMAPE (Symmetric Mean Absolute Percentage Error)

$$SMAPE = \frac{100}{n} \sum_{t=1}^{n} \frac{|F_t - A_t|}{(|A_t| + |F_t|)/2}$$

핵심 전략

Feature Engineering : 기상학적, 공학적, 시계열 피쳐 생성

Modeling: xgboost, catboost, lgbm

Ensemble : 시드, fold ensemble, 모델별 최종 파일 Ensemble

건물별 개별 모델링 (100개 건물)

유형별 개별 모델

대회 데이터 및 데이터셋 구성

About Data

입력데이터

건물 특성: 건물 유형, 연면적, 냉방면적, 태양광, ESS저장용량, PCS용량

기상 정보: 기온, 강수량, 풍속, 습도, 일조, 일사량

출력 데이터

전력 사용량 예측 : 특정 시점의 건물별 전력 사용량(kWh)

예측 기간 : 2024.08.25 ~ 08.31 (7일간)

파일명	내용
train.csv	2024.06.01~08.24 100개 건물의 기상 데이터, 실제 전력사용량
building_info.csv	건물 번호, 건물 유형별 연면적, 냉방면적, 태양광 ESS, PCS 용량
test.csv	2024.08.25 ~ 08.31 100개 건물의 기상 데이터
sample_submission.csv	제출 양식(ID: 건물번호 + 시간 / answer: 예측값)

데이터

Trian Dataset

Train Dataset

num_date_time 건물번호 일시 기온(°C) 강수량(mm) 풍속(m/s) 습도(%) 일조(hr) 일사(MJ/m2) 전력소비량(kWh) 1_2024060100 2024060100 18.3 2.6 0 0 0 5794.8 1_2024060101 2024060101 18.3 5591.85 0 2.7 82 0 0 1_2024060102 2024060102 18.1 0 2.6 80 0 0 5338,17 1_2024060103 2024060103 18 0 2.6 81 0 0 4554.42 1_2024060104 2024060104 17.8 1.3 0 81 0 0 3602,25 1_2024060105 2024060105 17.7 0 2.2 83 0 0 3367.59 1_2024060106 2024060106 17.6 0 1.7 85 0 0.02 3089,4 1_2024060107 2024060107 17.7 0 0 1.2 81 0.22 3977.67 1_2024060108 2024060108 18.2 0 1.8 78 0 0.56 4380,45 2024060109 19.4 1_2024060109 0 2.4 0.4 1.27 70 4359.78 1_2024060110 2024060110 20.5 2.7 65 0.7 2.36 0 4494,72 1_2024060111 2024060111 21.7 0 4566.75 3.4 60 8.0 3.02 1_2024060112 2024060112 22.7 0 0.9 4591.29 3.1 53 3.4 1_2024060113 2024060113 23.1 3.5 8.0 3.29 4596,6 0 48

Building_info Dataset

	건물유형	연면적(m2)	냉방면적(m2)	태양광용량(kW)	ESS저장용량(kWh)	PCS용량(kW)
1	호텔	82912.71	77586	-	-	-
2	상용	40658.9	30392.82	-	-	-
3	병원	560431	418992	278.58	-	-
4	호텔	41813.29	23715.71	_	_	-
5	학교	403749.39	248507	1983.05	1025	250
6	상용	157835	157835	-	-	-
7	건물기타	118346	78237.38	389.76	_	-
8	학교	167751	82112	217.92	-	-
9	호텔	136757	109024	_	_	-
10	호텔	435993.5	341983	-	-	-
11	아파트	271233	233263	_	-	-
12	학교	581897	311452	1349.03	-	-
13	연구소	97372.12	44536	276	-	-
14	학교	504332	339131	849.78	101.5	101

데이터

Test Dataset

num_date_time	건물번호	일시	기온(°C)	강수량(mm)	풍속(m/s)	습도(%)
1_2024082500	1	2024082500	26.5	0	0.7	80
1_2024082501	1	2024082501	26.1	0	0	80
1_2024082502	1	2024082502	25.9	0	0.3	83
1_2024082503	1	2024082503	25.7	0	1.1	83
1_2024082504	1	2024082504	25.5	0	1	86
1_2024082505	1	2024082505	25.2	0	1.4	88
1_2024082506	1	2024082506	25	0	1.7	90
1_2024082507	1	2024082507	25.1	0	1.6	90
1_2024082508	1	2024082508	26.1	0	1.5	89
1_2024082509	1	2024082509	27.4	0	1.5	84
1_2024082510	1	2024082510	28.5	0	1.2	77
1_2024082511	1	2024082511	29.4	0	0.7	74
1_2024082512	1	2024082512	30.7	0	1.5	69
1_2024082513	1	2024082513	31.5	0	1.5	64

추가 피쳐엔지니어링

예측

제출 답안

num_date_time	answer
1_2024082500	0
1_2024082501	0
1_2024082502	0
1_2024082503	0
1_2024082504	0
1_2024082505	0
1_2024082506	0
1_2024082507	0
1_2024082508	0
1_2024082509	0
1_2024082510	0
1_2024082511	0
1_2024082512	0
1_2024082513	0

EDA

Exploratory Data Analysis

건물 유형	건물수	평균 소비량 (kWh)
호텔	101	3175.02
상용	101	2513.70
병원	91#	4454.06
학교	10개	3462.68
건물기타	10개	2285.97
아파트	911	1106.31
연구소	911	2111.67
백화점	16개	2729.74
IDC(전화국)	91	10316.94
공공	81#	1625.92
합계	100ገዘ	-

이거 우상향 그래프 원래

유형별 전력 소비량(Target)의 패턴 존재 여름철 냉방 수요로 인한 전반적인 우상향 그래프 소비 패턴의 차이로 인한 유형별, 건물별 모델링 전략 수립

EDAExploratory Data Analysis

이상치 존재 건물:

건물별 패턴 분석 결과 일부 건물들의 경우 전체적인 추세와 다른 이상치 존재 향후 처리 전략 수립

불규칙 패턴 존재 건물:

전체적인 패턴이 존재안에서 불규칙하게 나타나는 패턴 예측 기간의 데이터에서 이러한 패턴도 예측해야한다고 판단 (유지)

데이터 전처리

Data Preprocessing

데이터 전처리 및 보간

향상된 스플라인 보간 (Enhanced Spline Interpolation)

공식 : $S(w) = a_i + b_i(w - w_i) + c_i(w - w_i)^2 + d_i(w - w_i)^3$

0값 보간: 전력소비량이 0인 값들을 패턴 기반으로 보간

이상치 보간: 특정 건물별 이상치 패턴을 정의하여 보간

방법: CubicSpline을 사용한 주차 단위 패턴 매칭

패턴 매칭: 같은 시간대, 같은 요일, 같은 휴일 여부를 고려

피쳐 엔지니어링

Feature Engineering

피처명	카테고리	의미/설명	
sin_hour	시간 순환 시간 사인 인코딩		
cos_hour	시간 순환 시간 코사인 인코딩		
sin_date	시간 순환	월-일 사인 인코딩	
cos_date	시간 순환	월-일 코사인 인코딩	
sin_month	시간 순환	월 사인 인코딩	
cos_month	시간 순환	월 코사인 인코딩	
sin_dayofweek	시간 순환	요일 사인 인코딩	
cos_dayofweek	시간 순환	요일 코사인 인코딩	
holiday	특별 패턴	건물별 휴무 여부	
weather	특별 패턴	날씨 영향(강수 전후)	
summer_cos	계절 패턴	여름철 코사인 패턴	
summer_sin	계절 패턴	여름철 사인 패턴	
week_of_month	특별 패턴	월내 격주 일요일 패턴	

피처명	카테고리	의미/설명
enhanced_avg_temp	온도통계	3시간 간격 일평균 온도
day_mean_temperature	온도통계	일평균 온도
day_temperature_range	온도 통계	일교차
CDH	복합 지수	냉방도(12시간 누적)
ТНІ	복합지수 온도-습도지수	
wct	복합지수	체감온도
day_hour_mean	전력 통계	요일-시간별과거 평균
day_hour_std	전력 통계	요일-시간별 과거 표준편차
holiday_hour_mean	전력 통계	휴일-시간별 과거 평균
holiday_hour_std	전력 통계	휴일-시간별 과거 표준편차
hour_mean	전력 통계	시간별 과거 평균
hour_std	전력 통계	시간별 과거 표준편차
hot_humid_condition	환경조건	고온다습 조건

피쳐 엔지니어링

Feature Engineering

백화점 건물별 특별 휴무 패턴

피처명	휴무 패턴	
building_18	매주 일요일 휴무	
building_19	특정 날짜 휴무	
building_27	격주 일요일 휴무	
building_32	매월 10일 + 특정 일요일 휴무	
building_34	격주 월요일 휴무	
building_40	격주 일요일 휴무 (building_27과 동일)	
building_45	특정 날짜 휴무 (building_19와 동일)	
building_54	격주 일요일 휴무 (building_27과 동일)	
building_59	격주 일요일 휴무 (building_27과 동일)	
building_63	격주 일요일 휴무 (building_27과 동일)	
building_73	연중무휴	
building_74	복합 휴무 (격주 일요일 + 추가 월요일	
building_79	특정 날짜 휴무 (building_54와 동일)	
building_88	연중무휴	
building_95	특정 날짜 휴무	
기타 건물들	주말 + 공휴일 휴무 (일반 패턴)	

모델_Xgboost

단일 모델

모델: XGBoost Regressor (그래디언트 부스팅)

모델 파라미터

learning_rate: 0.1,

n_estimators: 1000,

max_depth: 5

subsample: 0.9,

colsample_bytree: 0.8

min_child_weight: 6,

reg_alpha: 1,

reg_lambda: 1

단계별 가중치 개선

Weighted MSE: 언더예측에 100배 가중치

요일별 성능 분석: 월~일요일별 SMAPE 측정

2단계 앙상블 전략

1단계: 각 폴드별 시드 앙상블

•5개시드 [2025, 42, 123, 777, 999]

•폴드당 시드별 예측 평균

2단계: 폴드 앙상블

•12-Fold 교차검증 (7일 단위 역순)

•validation 앞뒤 1일 drop으로 데이터 리키지 방지

성능 결과

검증 방식: 시계열 12-Fold 교차검증

최종 앙상블: 시드×폴드 = 60개 모델 평균

건물별/유형별 분할 전략

건물별 모델: LB Score 5.4208

유형별 모델: LB Score 5.7983

모델_Xgboost

Model_XGboost

트리기반모델/과소추정으로 예측

모델_LightGBM

Model_Lightgbm

단일 모델

모델: LightGBM Regressor (그래디언트 부스팅)

모델 파라미터

learning_rate: 0.05,

n_estimators: 2000,

max_depth: 5

num_leaves: 50,

subsample: 0.9,

colsample_bytree: 0.8

min_child_samples: 15,

reg_alpha: 1,

reg_lambda: 1

단계별 가중치 개선

1단계: 초기 모델로 과소추정 패턴 탐지

2단계: 가중치 적용 모델 (alpha=1)

2단계 앙상블 전략

폴드 앙상블

•12-Fold 교차검증 (7일 단위 역순)

•validation 앞뒤 1일 drop으로 데이터 리키지 방지

•최종 폴드별 예측 평균

성능 결과

검증 방식: 시계열 12-Fold 교차검증

최종 앙상블: 폴드 = 12개 모델 평균

건물별 개별: 100개 건물 각각 모델링

최종 생성 모델

건물별 모델: LB Score 5.3909

유형별 모델: LB Score 5.8168

모델_LightGBM

단일 모델 성능은 높지 않으나, 추후 앙상블의 일반화 성능 향상 가능성

Model_Lightgbm

모델_Catboost

Model_Catboost

단일 모델

모델: CatBoost Regressor (트리 기반)

모델 파라미터

learning_rate: 0.1,

iterations: 1000,

depth: 5

subsample: 0.9,

colsample_bylevel: 0.8

로그 변환: log(y + le-6), 음수 방지 적용

단계별 가중치 개선

1단계: 초기 모델로 과소추정 패턴 탐지

2단계: 가중치 적용 모델 (alpha=1)

2단계 앙상블 전략

1단계: 각 폴드별 시드 앙상블

•5개시드 [2025, 42, 123, 777, 999]

•폴드당 시드별 예측 평균

2단계: 폴드 앙상블

•12-Fold 교차검증 (7일 단위 역순)

•validation 앞뒤 1일 drop으로 데이터 리키지 방지

성능 결과

검증 방식: 시계열 12-Fold 교차검증

최종 앙상블: 시드×폴드 = 60개 모델 평균

건물별/유형별 분할 전략

건물별 모델: LB Score 5,4208

유형별 모델: LB Score 5.7983

모델_Catboost

Model_Catboost

단일 모델로는 최고 성능/ 추가 보정없이 과대추정

모델_Comparison

Model_Comparison

건물별 최고 성능 모델 선택

모델: Xgboost, LightGBM, Catboost

모델 파라미터

앞서 진행한 단일 모델의 최고 성능 파라미터 사용

로그 변환: log(y + le-6), 음수 방지 적용

건물별 최고 성능 모델 선택

각 건물별 3개의 모델을 학습 및 예측 진행

각 모델별 SMAPE가 가장 낮게 나온 모델을 해당 건물의 모델로 선택

building_number	best_model	Xgboost_smape	Lightgbm_smape	Catboost_smape			
1	Catboost	10.66259	10.6841	10.10088			
2	Lightgbm	5.772093	4.995961	5.666383			
3 Catboost		2.984743	4.259478	2.844345			
98	Xgboost	9.265551	10.21471	12.00052			
99	Xgboost	3.136065	3.868694	3.759933			
100	Catboost	15.03311	14.80285	13.23687			

Xgboost LightGBM Catboost 각 건물별 SMAPE 비교 SMAPE가 가장 좋은 모델의

예측값 선택

LB Score: 5.22

모델_Stacking Model_Stacking

Xgboost LightGBM Catboost

Base Models

최종 예측값

Ale Meta Model

Meta Model LB Score: 5.2633

Base Models

• XGBRegressor (28개 피처)

파라미터: learning_rate=0.1, max_depth=5, subsample=0.9, colsample_bytree=0.8

2단계 학습: 트리 최적화 → sample_weight 적용

• LGBMRegressor (27개 피처)

파라미터: learning_rate=0.05, max_depth=5, num_leaves=50, subsample=0.9 2단계 학습: 트리 최적화→ 가중치 적용

• CatBoostRegressor (32개 피처)

파라미터: learning_rate=0.1, depth=5, subsample=0.9, colsample_bylevel=0.8 2단계 학습: 트리 최적화→ 가중치 적용

최종 모델(메타 모델)

· Ridge Regression

Base Model들의 예측을 선형 결합하면서 정규화를 통해 안정성을 확보하기 위함

모델_Ensemble

Model_Ensemble

리더보드 기준으로 앙상블 후보를 선정 후 가중평균 앙상블을 통해 최종 제출물을 생성

앙상불 목록	LB Score
Catboost 단일 모델	5.29539
lightgbm 단일 모델	5.39090
xgboost 단일 모델	5.39160
catboost 유형별 모델	5.78100
lightgbm 유형별 모델	5.81680
xgboost 유형별 모델	5.7983
comparison	5.56768
comparison2	5.22
Catboost 알파값 앙상블	5.3765
Staking	5.2633

14	필_	温 ko	5.75511	76
15	민규정		5.76176	18
16	블랙		5.7712	3
17	헝긜	헐	5.77963	6
18	마약근절		5.82404	127
19	전기적 참견 시점	sh sc tr	5.8266	46
20	tghwang	tg	5.83877	67
21	rlawhdqls	1	5.86276	61

감사합니다.

