	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	24.3193	1.2915	18.83	0.0000
$family_income$	-0.0431	0.0108	-3.98	0.0002

Table 7.15: Summary of least squares fit for the Elmhurst data. Compare the parameter estimates in the first column to the results of Example 7.16.

Example 7.17 Examine the second, third, and fourth columns in Table 7.15. Can you guess what they represent?

We'll describe the meaning of the columns using the second row, which corresponds to β_1 . The first column provides the point estimate for β_1 , as we calculated in an earlier example: -0.0431. The second column is a standard error for this point estimate: 0.0108. The third column is a t test statistic for the null hypothesis that $\beta_1 = 0$: T = -3.98. The last column is the p-value for the t test statistic for the null hypothesis $\beta_1 = 0$ and a two-sided alternative hypothesis: 0.0002. We will get into more of these details in Section 7.4.

Example 7.18 Suppose a high school senior is considering Elmhurst College. Can she simply use the linear equation that we have estimated to calculate her financial aid from the university?

She may use it as an estimate, though some qualifiers on this approach are important. First, the data all come from one freshman class, and the way aid is determined by the university may change from year to year. Second, the equation will provide an imperfect estimate. While the linear equation is good at capturing the trend in the data, no individual student's aid will be perfectly predicted.

7.2.4 Interpreting regression line parameter estimates

Interpreting parameters in a regression model is often one of the most important steps in the analysis.

Example 7.19 The slope and intercept estimates for the Elmhurst data are -0.0431 and 24.3. What do these numbers really mean?

Interpreting the slope parameter is helpful in almost any application. For each additional \$1,000 of family income, we would expect a student to receive a net difference of $\$1,000 \times (-0.0431) = -\43.10 in aid on average, i.e. \$43.10 less. Note that a higher family income corresponds to less aid because the coefficient of family income is negative in the model. We must be cautious in this interpretation: while there is a real association, we cannot interpret a causal connection between the variables because these data are observational. That is, increasing a student's family income may not cause the student's aid to drop. (It would be reasonable to contact the college and ask if the relationship is causal, i.e. if Elmhurst College's aid decisions are partially based on students' family income.)

The estimated intercept $b_0 = 24.3$ (in \$1000s) describes the average aid if a student's family had no income. The meaning of the intercept is relevant to this application since the family income for some students at Elmhurst is \$0. In other applications, the intercept may have little or no practical value if there are no observations where x is near zero.

Interpreting parameters estimated by least squares

The slope describes the estimated difference in the y variable if the explanatory variable x for a case happened to be one unit larger. The intercept describes the average outcome of y if x = 0 and the linear model is valid all the way to x = 0, which in many applications is not the case.

7.2.5 Extrapolation is treacherous

When those blizzards hit the East Coast this winter, it proved to my satisfaction that global warming was a fraud. That snow was freezing cold. But in an alarming trend, temperatures this spring have risen. Consider this: On February 6th it was 10 degrees. Today it hit almost 80. At this rate, by August it will be 220 degrees. So clearly folks the climate debate rages on.

Stephen Colbert April 6th, 2010^{-11}

Linear models can be used to approximate the relationship between two variables. However, these models have real limitations. Linear regression is simply a modeling framework. The truth is almost always much more complex than our simple line. For example, we do not know how the data outside of our limited window will behave.

Example 7.20 Use the model $\widehat{aid} = 24.3 - 0.0431 \times family_income$ to estimate the aid of another freshman student whose family had income of \$1 million.

Recall that the units of family income are in \$1000s, so we want to calculate the aid for $family_income = 1000$:

$$24.3 - 0.0431 \times family_income = 24.3 - 0.0431 \times 1000 = -18.8$$

The model predicts this student will have -\$18,800 in aid (!). Elmhurst College cannot (or at least does not) require any students to pay extra on top of tuition to attend.

Applying a model estimate to values outside of the realm of the original data is called **extrapolation**. Generally, a linear model is only an approximation of the real relationship between two variables. If we extrapolate, we are making an unreliable bet that the approximate linear relationship will be valid in places where it has not been analyzed.

7.2.6 Using R^2 to describe the strength of a fit

We evaluated the strength of the linear relationship between two variables earlier using the correlation, R. However, it is more common to explain the strength of a linear fit using R^2 , called **R-squared**. If provided with a linear model, we might like to describe how closely the data cluster around the linear fit.

The R^2 of a linear model describes the amount of variation in the response that is explained by the least squares line. For example, consider the Elmhurst data, shown in Figure 7.16. The variance of the response variable, aid received, is $s_{aid}^2 = 29.8$. However, if we apply our least squares line, then this model reduces our uncertainty in predicting

¹¹http://www.colbertnation.com/the-colbert-report-videos/269929/

Figure 7.16: Gift aid and family income for a random sample of 50 freshman students from Elmhurst College, shown with the least squares regression line.

aid using a student's family income. The variability in the residuals describes how much variation remains after using the model: $s_{RES}^2 = 22.4$. In short, there was a reduction of

$$\frac{s_{aid}^2 - s_{RES}^2}{s_{aid}^2} = \frac{29.8 - 22.4}{29.8} = \frac{7.5}{29.8} = 0.25$$

or about 25% in the data's variation by using information about family income for predicting aid using a linear model. This corresponds exactly to the R-squared value:

$$R = -0.499$$
 $R^2 = 0.25$

• Exercise 7.21 If a linear model has a very strong negative relationship with a correlation of -0.97, how much of the variation in the response is explained by the explanatory variable?¹²

7.2.7 Categorical predictors with two levels

Categorical variables are also useful in predicting outcomes. Here we consider a categorical predictor with two levels (recall that a *level* is the same as a *category*). We'll consider Ebay auctions for a video game, *Mario Kart* for the Nintendo Wii, where both the total price of the auction and the condition of the game were recorded. Here we want to predict total price based on game condition, which takes values used and new. A plot of the auction data is shown in Figure 7.17.

To incorporate the game condition variable into a regression equation, we must convert the categories into a numerical form. We will do so using an **indicator variable** called **cond_new**, which takes value 1 when the game is new and 0 when the game is used. Using this indicator variable, the linear model may be written as

$$\widehat{price} = \beta_0 + \beta_1 \times \texttt{cond_new}$$

¹²About $R^2 = (-0.97)^2 = 0.94$ or 94% of the variation is explained by the linear model.

¹³These data were collected in Fall 2009 and may be found at openintro.org.