LAB 04 Transport Layer

Jennessa Sierra & Andres Hung CMPS1192 Networking Fundamentals October 17, 2024

Step 1: Set a Static IP for your device

Step 2: Access the Web Interface

Setup Wireless	Services Security	Access Restrictions	NAT / QoS	Administr	ration	Status	
Basic Setup DDNS	MAC Address Clone	Advanced Routing	VLANs	Networking	Eol	(P Tunnel	
WAN Setup						Help	more
WAN Connection Type						Automatic Config	guration - DHCP:
Connection Type						This setting is most commonly used by Cable operators.	
STP	○ Enable	Disable				Host Name:	
Optional Settings						Enter the host nam ISP.	ne provided by your
Router Name	DD-WRT	9				Domain Name:	
Host Name Domain Name					Enter the domain r your ISP.	name provided by	
MTU	Auto 🗸	1500				Local IP Address	:
						This is the address	of the router.
Network Setup						Subnet Mask:	
Router IP						This is the subnet	mask of the router.
Local IP Address	192	168 . 1 . 1				DHCP Server:	
Subnet Mask	255 .	255. 255. 0	_			Allows the router to addresses.	o manage your IP
Gateway	0, 0, 0						
Local DNS 0, 0, 0, 0					Start IP Address The address you w with.	The species of	
Network Address Server S						Maximum DHCP	Ucorci
DHCP Type DHCP Server	DHCP Serv Enable	O Disable				You may limit the r addresses your rou	number of

Step 3: Set Operating Mode from Gateway to Router

Step 4: Set the VLANs of the Ports

Setup > VLANs

Setup > Networking

ort Setup	
WAN Port Assignment	vlan1 🗸
Network Configuration eth0	O Unbridged O Default
Network Configuration eth1	O Unbridged Default
Network Configuration etherip0	O Unbridged
Network Configuration vlan0	O Unbridged
Network Configuration vlan2	● Unbridged ○ Default
MTU	1500
Multicast forwarding	○ Enable ● Disable
IP Address	192 . 168 . 4 . 1
Subnet Mask	255 . 255 . 255 . 248

Step 5: Set the Static Routes

Setup > Advanced Routing

Step 6: Testing

Administration > Commands

HOSTS					
Host A	Jennessa	VLAN0	192.168.1.10		
Host B	Andres	VLAN2	192.168.4.2		
Host C	Tysha	VLAN2	192.168.4.3		

Router successfully pinged Host A

Step 6: Testing (Ping & Traceroute)

Host A Host C

```
PowerShell
0 10:25
tracert 192.168.4.3
Tracing route to LAPTOP-QQD03BG3 [192.168.4.3]
over a maximum of 30 hops:
             * 1 ms 192.168.1.1
 2 7 ms 2 ms LAPTOP-QQD03BG3 [192.168.4.3]
Trace complete.
ping 192.168.4.3
Pinging 192.168.4.3 with 32 bytes of data:
Reply from 192.168.4.3: bytes=32 time=2ms TTL=127
Reply from 192.168.4.3: bytes=32 time=6ms TTL=127
Reply from 192.168.4.3: bytes=32 time=2ms TTL=127
Reply from 192.168.4.3: bytes=32 time=4ms TTL=127
Ping statistics for 192.168.4.3:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 2ms, Maximum = 6ms, Average = 3ms
```

Step 6: Testing (Wireshark)

Network Traffic between Hosts

No.		Time	Delta	Source	Destination
	1361	155.381	0.947589	192.168.4.1	192.168.4.2
	1371	156.387	1.005160	192.168.4.1	192.168.4.2
	1374	157.389	1.002272	192.168.4.1	192.168.4.2
	1385	158.393	1.004494	192.168.4.1	192.168.4.2
	1395	159.396	1.002159	192.168.4.1	192.168.4.2
	1411	160.435	1.039920	192.168.4.1	192.168.4.2
	1419	161.437	1.001285	192.168.4.1	192.168.4.2
•	1420	162.048	0.611269	192.168.1.10	192.168.4.2
-	1421	162.048	0.000209	192.168.4.2	192.168.1.10
	1425	163.057	1.008504	192.168.1.10	192.168.4.2
	1426	163.057	0.000347	192.168.4.2	192.168.1.10
	1428	163.149	0.091501	192.168.4.1	192.168.4.2
	1435	163.435	0.286189	192.168.4.1	192.168.4.2
	1436	164.066	0.631692	192.168.1.10	192.168.4.2
	1437	164.067	0.000317	192.168.4.2	192.168.1.10
	1446	164.436,	0.368783	192, 168, 4, 1	192,168,4.2

```
Ethernet II, SIC. DetkInintern_44.Du.Zo (30.e1.00.44.Du.Zo), DSC. ASIAEtectron_DZ.40.ZS
  Destination: ASIXElectron_b2:4d:29 (f8:e4:3b:b2:4d:29)
                                                                                       0010
                                                                                       0020
       .... ..0. .... = LG bit: Globally unique address (factory default)
                                                                                       0030
       .... = IG bit: Individual address (unicast)
                                                                                       0040
  Source: BelkinIntern_44:b0:28 (58:ef:68:44:b0:28)
       .... .0. .... = LG bit: Globally unique address (factory default)
       .... = IG bit: Individual address (unicast)
    Type: IPv4 (0x0800)
    [Stream index: 0]
Internet Protocol Version 4, Src: 192.168.1.10 (192.168.1.10), Dst: 192.168.4.2 (192.168
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)
  Differentiated Services Field: 0x00 (DSCP: CS0. ECN: Not-ECT)
    Total Length: 60
    Identification: 0x2926 (10534)
    000. .... = Flags: 0x0
    ...0 0000 0000 0000 = Fragment Offset: 0
    Time to Live: 127
    Protocol: ICMP (1)
    Header Checksum: 0x8c3e [validation disabled]
    [Header checksum status: Unverified]
    Source Address: 192,168,1,10 (192,168,1,10)
    Destination Address: 192.168.4.2 (192.168.4.2)
    [Stream index: 0]
 Internet Control Message Protocol
       Destination Hardware Address (eth.dst), 6 bytes
```

How Routing Works (Layer 3 Review)

- Router maintains a Routing Table, mapping IP Addresses to interfaces.
- Network to network hops

3 Types

- Direct Connection
- Static Routing
- Dynamic Routing

Why the Transport Layer (Layer 4)

- IP is a connectionless protocol.
- Need a guarantee that data is not lost, cannot be duplicated, and assembled in right order.

- Transmission Control Protocol (TCP)
- User Datagram Protocol (UDP)

 Distinguishes network streams and uses Ports.

Transmission Control Protocol (TCP)

- Connection oriented (logical connection established first and stops when done).
- Reliable protocol (achieved through resending datagrams, window mechanisms, and three-way handshake.)

Examples

- HTTP (Port 80)
- HTTPS (Port 443)
- FTP (Ports 20/21)

TCP header (min. 20 bytes) acknowledge window checksource dest. sequence code urgent number point number bits port port sum

Three-way Handshake (TCP)

User Datagram Protocol (UDP)

- Connectionless
- Just a simple checksum
- Great where reliability is not important.
- E.g. streaming, videoconferencing, etc.

Examples

- NTP (Port 123)
- DHCP (Ports 67/68)
- TFTP (Ports 69)

UDP header (8 bytes)

source port destination port	lengte data	checksum
------------------------------	-------------	----------

UDP Visual

Layer 4 in action: Client Server Model

