

Napredni algoritmi i strukture podataka

Što je linearni program (LP)?

• Dosta generalna klasa problema koja se može rješavati efikasno

- Brojne primjene u industriji
 - Lanci nabave
 - Raspoređivanje
 - Optimizacije u električnim mrežama
- Spada u kategoriju konveksnih optimizacijskih problema
 - LP je prva podkategorija koja je efikasno riješena (cca 1940tih)
 - Ostale kategorije su slijedile kasnije, otvoreno područje istraživanja

Što je linearni program (LP)?

- Rješavanje linearnih programa je dignuto na razinu industrijske pouzdanosti
 - Pouzdani i brzi alati
 - Gurobi trenutno najbrži rješavač
 - Python scipy.optimize.linprog
 - Čak integrirani u Excel

- Bitni i za dizajn i analizu algoritama, npr.
 - Algoritmi nad grafovima
 - Približni algoritmi

Linearni program (LP)?! Generalno...

```
minimizirati \mathbf{c}^\mathsf{T}\mathbf{x}
uz uvjet \mathbf{A}\mathbf{x} \leq \mathbf{b}
\mathbf{D}\mathbf{x} = \mathbf{e}
pri čemu je: \mathbf{x} \in \mathbb{R}^n, \mathbf{c} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m, \mathbf{e} \in \mathbb{R}^k, matrica \mathbf{A} \in \mathbb{R}^{mxn}, matrica \mathbf{D} \in \mathbb{R}^{kxn}
```

- Ciljna funkcija f (objective function, cost function)
- Varijable odluke x (control, structural, decision variables)
- Ograničenja sa parametrima A,b,D,e (constraints)

Primjer I – humanitarni transportni problem

Pfizer proizvodi cjepiva za COVID-19 te ima proizvodne pogone u tri mjesta T1...3 s raspoloživim kapacitetima zadanima u tablici. Naručitelji su iz četiri mjesta O1...4 sa potrebama zadanima u zadnjem retku tablice. Jedinični transportni troškovi za sve kombinacije proizvodnih pogona i naručitelja su navedeni u tablici.

 Kako na najefikasniji način zadovoljiti potrebe naručitelja?

	O1	O2	O3	O4	Kap.
T1	10	9	14	8	432
T2	7	11	9	11	138
T3	8	12	12	9	35
Nar.	500	200	115	100	

Primjer I – humanitarni transportni problem

 x_{ij} - količina isporučenu iz i-te tvornice j-tom naručitelju

 c_{ij} - trošak transporta po jedinici između i i j

$$\min\left(\sum_{i,j} x_{ij} c_{ij}\right)$$

uz uvjete
$$\sum_{j} x_{ij} \le s_i \quad ; \quad i = 1, 2, 3$$

 $x_{ij} \ge 0$

$$\sum_{i} x_{ij} = d_j \quad ; \quad j = 1, 2, 3, 4$$

Primjer II – optimalno uparivanje u online dating<u>u</u>

Na dating siteu u hetero rubrici postoji M muškaraca i F žena. Na temelju popunjenih upitnika raznim modelima su izračunate kompatibilnosti za sve potencijalne parove. Site želi upariti

sve u parove da bi ukupna suma normaliziranih kompatibilnosti bila što veća (utilitarizam).

KOIII	panon	поѕи	
M1	M2	M3	M4

	1711	1712	1013	1714
F1	9	1	8	7
F2	1	2	1	7
F3	8	2	4	8
F4	2	4	6	4

1zammatihilmaati

Kombinatorni problem

Naivno rješenje: ispitati sve kombinacije F-M. Treba ispitati F! kombinacija (ako je F=M) eharmony

Primjer II – optimalno uparivanje u online datingu

 x_{ij} - 1 ako je **i** uparen sa **j**, 0 inače

 k_{ij} – kompatibilnost za uparivanje (i,j)

$$\max\left(\sum_{i,j} x_{ij} k_{ij}\right)$$

uz uvjete
$$\sum_{j} x_{ij} = 1, \forall i = 1, \dots, F$$

 $x_{ij} \geq 0$

$$\sum_{i} x_{ij} = 1, \forall j = 1, \dots, M$$

Primjer III – bežične raspodijeljene mreže

Centralna postaja treba ostvariti pouzdanu bežičnu komunikaciju s N raspodijeljenih senzora za praćenje klimatskih promjena.

Senzori se napajaju Sunčevom energijom i važno je smanjiti njihovu potrošnju. Signal i-tog senzora do centralne postaje stiže **prigušen.** Ako i-ta senzor emitira snagom p_i , centralna postaja prima signal snage $\lambda_i \cdot p_i$ ($\lambda < 1$). Tijekom komunikacije s i-tim senzorom, signali svih drugih senzora koji dolaze u centralnu postaju predstavljaju smetnju i komunikacija je moguća samo ako je omjer signal/šum najmanje p_i .

Kolike trebaju biti emitivne snage p_i senzora kako bi se ostvarila pouzdana komunikacija uz najmanju moguću potrošnju energije?

Primjer III – bežične raspodijeljene mreže

Ukupna potrošnja je proporcionalna ukupnoj snazi pa ćemo to

minimizirati:

$$\min\left(\sum_{i=1}^{N} p_i\right)$$

uz uvjete

$$\frac{\lambda_{i} p_{i}}{\sum_{j \neq i} \lambda_{j} p_{j}} \ge \rho_{i} \quad ; \quad i, j = 1, \dots, N$$

$$p_k \ge 0$$

$$p_k \ge 0$$
 ; $k = 1, ..., N$.

Budući da uvjetne (ne)jednadžbe moraju biti linearne po p_k , prevodimo ih u oblik

$$\lambda_i p_i - \rho_i \sum_{j \neq i} \lambda_j p_j \ge 0$$

LP formulacije

Općenita formulacija je "neuredna"

- Dvije formulacije kojima težimo radi lakšeg rješavanja i pisanja algoritama
 - Kanonska forma LP idealna za geometrijsku perspektivu
 - Standardna forma LP idealna za algebarsku perspektivu
- Svi ostali LP se mogu prevesti u obje forme*

*pročitajte o transformacijama u skripti

Kanonska forma LP

minimizirati $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ uz uvjet $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

pri čemu je: $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, matrica $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Standardna forma LP

minimizirati $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ uz uvjet $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

pri čemu je: $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ i $\mathbf{b} \ge 0$, matrica $\mathbf{A} \in \mathbb{R}^{m \times n}$

Nije dio definicije, ali pretpostavljat ćemo u sklopu predavanja da je $rang(\mathbf{A}) = m$ i m < n. Ako je rang manji, linearnozavisna ograničenja se mogu ukloniti.

Grafička metoda - primjer

max
$$x_1 + 5 \cdot x_2$$
 uz uvjete
$$\begin{bmatrix} 5 & 6 \\ 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 30 \\ 12 \end{bmatrix}$$

$$x \ge 0$$

GeoGebra – interaktivna geometrija

Grafička metoda - primjer

max
$$x_1 + 5 \cdot x_2$$
 uz uvjete $\begin{bmatrix} 5 & 6 \\ 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 30 \\ 12 \end{bmatrix}$ $\mathbf{x} \ge \mathbf{0}$

Rješenje je sjecište pravca $x_1 + 5 \cdot x_2 = f$ s prostorom svih mogućih rješenja (sivi poligon na slici) za koje je f najveća.

Rješenje

$$x=[0, 5]^T$$
 $f_{max} = 25$

Definicija. *Konveksni politop* u n-dimenzionalnom prostoru jest skup vektora (točaka):

$$\{x \in \mathbb{R}^n \mid Ax \le b\}$$

Ograničenja linearnih programa!

Tijela opisana ograničenjima u LP su konveksni politopi P

$$P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$

Tijela opisana ograničenjima u LP su konveksni politopi P

$$P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$

Definicija. Aktivno ograničenje u nekoj točki x je svako ograničenje koje je ispunjeno sa jednakosti u toj točki x.

Definicija. U *n*-dimenzionalnom prostoru, **vrh politopa** je definiran kao presjecište barem *n* aktivnih linearno nezavisnih ograničenja pri čemu su ostala ograničenja zadovoljena.

Tijela opisana ograničenjima u LP su konveksni politopi P

$$P = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$

Definicija. U *n*-dimenzionalnom prostoru, **vrh politopa** je definiran kao presjecište barem *n* aktivnih linearno nezavisnih ograničenja pri čemu su ostala ograničenja zadovoljena.

Oprez! Nije svako presjecište n aktivnih ograničenja **vrh!** Neaktivna ograničenja moraju biti ispoštovana da bismo bili u vrhu.

19/58

• **Definicija.** Skup Θ je **konveksni skup** ako sadrži sve točke ravne spojnice između bilo kog para točaka iz skupa Θ .

 $\forall x,y \in \Theta, \ \forall \alpha \in (0,1): \alpha x + (1-\alpha)y \in \Theta$

 Definicija. Ekstrem konveksnog skupa Θ je svaka točka x ∈ Θ koja nije na ravnoj spojnici ikojih drugih dviju točaka skupa Θ.

$$(\nexists x_1, x_2 \in \Theta \setminus \{x\}) \big(\nexists \alpha \in (0,1) \big)$$
$$x = \alpha x_1 + (1 - \alpha) x_2$$

Ekstremi u politopu su **vrhovi** – geometrijski koncept

Simplex - ideja

Simplex – ulazni problem

Za simpleks koristimo **LP u standardnoj formi**

minimizirati $\mathbf{c}^{\mathsf{T}}\mathbf{x}$

uz uvjet $\mathbf{A}\mathbf{x} = \mathbf{b}$

 $x \ge 0$

pri čemu je: $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ i $\mathbf{b} \ge 0$, matrica $\mathbf{A} \in \mathbb{R}^{m \times n}$, $rang(\mathbf{A}) = m$ i m < n

Imamo **m** ograničenja jednakosti, **n** ograničenja nejednakosti (x ≥ 0) Nalazimo se u **n**-dimenzionalnom prostoru (n≥m)

Vrhovi određeni sa n aktivnih ograničenja (oprez!)

Simplex – jezgra metode

- Nalazimo se u n-dimenzionalnom prostoru (n≥m)
 - Vrhovi određeni sa n aktivnih ograničenja
 - m aktivnih ograničenja je već fiksirano
 - "Proizvoljnih" (n-m) biramo među nejednakostima
 - One fiksiraju vrijednosti (n-m) varijabli na 0
 - Te varijable ćemo nazivati nebazičnima
 - Kad ih uvrstimo u m ograničenja, dobijemo sustav m jednadžbi sa m nepoznanica! (znamo riješiti iz linearne algebre) – varijable koje rješavamo nazivamo bazične
- Particionira se skup svih varijabli na bazične i nebazične

Simplex – definicije

Definicija. Bazično rješenje sustava $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$ je vektor $\mathbf{x} = [\mathbf{x}_B^T \mathbf{0}],$ gdje je $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b},$ a $\mathbf{B} \in \mathbb{R}^{m \times m}$ odabrana baza (stupci u matrici \mathbf{A}) u sustavu od m jednadžbi s n nepoznanica, pri čemu je m < n i det(\mathbf{B}) $\neq 0$.

Teorem (osnovni teorem linearnog programiranja):

Promatrajmo linearni problem u standardnoj formi. Vrijedi sljedeće:

- 1. Ako postoji bilo kakvo rješenje, postoji i izvedivo bazično rješenje.
- Ako postoji optimalno rješenje, postoji i bazično optimalno rješenje.

Tabličenje

Hajdemo staviti sve parametre u tablicu:

- m+1 redaka
- n+1 stupaca

c^T	0
A	b

Tabličenje

• Particioniranje A po stupcima na bazične B i nebazične N stupac-vektore

c_B^{T}	c_N^{T}	0
В	N	b

Simplex tableau

Iterativno implicitno izračunavanje inverza B^{-1}

• Efikasnije izvođenje jer se susjedni vrhovi razlikuju samo u **jednom aktivnom ograničenju** (koje postavlja neku drugu varijablu na 0)

	faktori redukcije po bridovima	-fja cilja
0^T	$c_{N}^{T} - c_{B}^{T} B^{-1} N$	$-c_B{}^TB^{-1}$ b
I	$B^{-1}N$	B-1b
	bridovi do susjednih baz.rješ	Vrijednosti baz.var.

Simplex – pseudokod

- 1. Početak iz izvedivog bazičnog rješenja u simpleks tablici
- 2. Optimalno? Ako su svi faktori redukcije nenegativni, STOP
- 3. Tranzicija u boljeg susjeda:
 - a) Odabir ulazne nebazične varijable koja odgovara stupcu q
 - b) Odabir izlazne bazične varijable koja odgovara retku **p**. Ako ne postoji problem je neograničen, **STOP**
 - c) Gauss-Jordan eliminacija za pivot (p,q)
- 4. Povratak na korak 2

Simplex – pseudokod

- Odabir ulazne nebazične varijable koja odgovara stupcu q
 - Odabere se neka koja ima NEGATIVNI faktor redukcije

• Odabir izlazne bazične varijable $\mathbf{x}_{[p]}$ koja odgovara retku \mathbf{p}

• p = argmin_{i∈{1,...,m}}{
$$x_{[i]}/B^{-1}A_{iq} | B^{-1}A_{iq} > 0$$
}

^{*[}p] označava odabir varijable preko reference retkom

max
$$7x_1 + 6x_2$$

uz $2x_1 + x_2 \le 3$
 $x_1 + 4x_2 \le 4$
 $x_1, x_2 \ge 0$

Uvođenjem dviju *slack* varijabli x₃ i x₄ prevodimo LP u standardnu formu

min
$$-7x_1 - 6x_2 + 0x_3 + 0x_4$$

uz $2x_1 + x_2 + x_3 = 3$
 $x_1 + 4x_2 + x_4 = 4$
 $x_1, x_2, x_3, x_4 \ge 0$

Tablični zapis je

$$a_1$$
 a_2 a_3 a_4 $b = RHS$
 c^T -7 -6 0 0 0 $= r^T$
 2 1 1 0 3
 1 4 0 1 4

- Tablica već valjana, vrijedi $r_i = c_i$
- najlakše je odabrati početnu bazu $\mathbf{B}_0 = [\mathbf{a}_3 \ \mathbf{a}_4] = \mathbf{I}_2$
 - bazično rješenje $\mathbf{x}_{(0)} = [0\ 0\ 3\ 4]^T$, $f(\mathbf{x}_{(0)}) = 0$
- Nulti redak sadrži faktore redukcije
 - ima negativnih pa nije optimum

Tablični zapis je

```
a_1 a_2 a_3 a_4 RHS
c^T -7 -6 0 0 0 = r^T
1 4 0 1 4
```

Nulti redak ima negativne faktore redukcije pa nije optimum!

```
Odabiremo q=1 (prvi stupčani vektor, a_1, ulazi u bazu)
Odabiremo redak p koji odgovara izlaznom vektoru
p = \operatorname{argmin}_{i \in \{1,2\}} \{x_{[i]} / B^{-1}A_{i1} ; B^{-1}A_{i1} > 0\} = \operatorname{argmin}\{3/2, 4/1\} = 1
Pivot (1,1): u bazu ulazi a_1, a izlazi a_3
```

Gauss-Jordanova eliminacija tako da $a_1 = [0,1,0]^T$

Tablični zapis je

$$\mathbf{c}^{\mathsf{T}}$$
 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 \mathbf{a}_4 RHS
 \mathbf{c}^{T} -7 -6 0 0 0 $= \mathbf{r}^{\mathsf{T}}$
 2 1 1 0 3
 1 4 0 1 4

Pivot (1,1): u bazu ulazi a₁, a izlazi a₃

	a_1	a_2	a 3	a_4	RHS
\mathbf{r}^{T}	0	-5/2	7/2	0	21/2
	1	1/2	1/2	0	3/2
	0	7/2	-1/2	1	5/2

Nova baza $B_1 = [a_1 \ a_4] = I_2$

• rješenje $\mathbf{x}_{(1)} = [3/2 \ 0 \ 0 \ 5/2]^T$, $f(\mathbf{x}_{(1)}) = -21/2$

	a_1	a_2	a 3	a 4	RHS
\mathbf{r}^{T}	0	-5/2	7/2	0	21/2
	1	1/2	1/2	0	3/2
	0	7/2	-1/2	1	5/2

- Negativan faktor redukcije r₂ nije optimum!
- Odabir stupca q=2
- Odabir retka
 - $p = \operatorname{argmin}_{i \in \{1,2\}} \{x_{[i]} / B^{-1}A_{i2} ; B^{-1}A_{i2} > 0\} = \operatorname{argmin} \{3, 5/7\} = 2$
- Pivot (2,2)

	\boldsymbol{a}_1	\boldsymbol{a}_2	a 3	a 4	RHS
\mathbf{r}^{T}	0	-5/2	7/2	0	21/2
	1	1/2	1/2	0	3/2
	0	7/2	-1/2	1	5/2

• Pivot (2,2): u bazu ulazi a₂, a izlazi a₄

	\boldsymbol{a}_1	a_2	a 3	a 4	RHS
\mathbf{r}^{T}	0	0	22/7	5/7	86/7
	1	0	4/7	-1/7	8/7
	0	1	-1/7	2/7	5/7

	\boldsymbol{a}_1	a_2	a 3	a_4	RHS
\mathbf{r}^{T}	0	0	22/7	5/7	86/7
	1	0	4/7	-1/7	8/7
	0	1	-1/7	2/7	5/7

- nema negativnih faktora redukcije
 - Optimum!
- Baza $\mathbf{B}_2 = [a_1 \ a_2] = \mathbf{I}_2$
 - Rješenje $\mathbf{x}^* = [8/7 \ 5/7 \ 0 \ 0]^T$, $f(\mathbf{x}^*) = -86/7$
- Rješenje polaznog problema
 - $x_1 = 8/7 i x_2 = 5/7$
 - $f_{max} = 86/7$

Simplex – problem početne baze!

- Nekad se nakon pretvorbe u standardni oblik ne vidi odmah bazično rješenje!
- Dvofazni simpleks rješavaju se 2 LPa u nizu

- 1. FAZA pomoćni umjetni korak za naći početno bazično rješenje
 - Uvijek ima svoju trivijalnu početnu bazu (tako je konstruiran)
- 2. FAZA zapravo riješava LP od interesa

Dvofazni simpleks – umjetni problem

Pretp. da imamo problem u standardnoj formi

minimizirati $\mathbf{c}^{\mathsf{T}}\mathbf{x}$

uz uvjet Ax = b

 $x \ge 0$

pri čemu imamo m ograničenja jednakosti. Dodajemo *m* umjetnih varijabli da bismo stvorili jediničnu podmatricu

NOVI PROBLEM LP':

minimizirati $\mathbf{1}^{\mathsf{T}}\mathbf{x}_{\mathsf{n+1:n+m}}$

uz uvjet $[A|I_m][x_{1:n}|x_{n+1:n+m}] = b$

 $\mathbf{x}_{1:n+m} \geq \mathbf{0}$

Dvofazni simpleks – 1. FAZA

- Riješimo novi problem već definiranim postupkom
- Tri moguća ishoda:
- 1. Optimum f_{LP}^* , $\neq 0 \Rightarrow originalni LP neizvediv! KRAJ!$
- 2. Optimum $f_{LP}^{*} = 0$
 - a) Sve umjetne varijable su nebazične. Adaptacija za 2. FAZU
 - b) Neke umjetne varijable su bazične. Izvodi iteracije simpleksa dok ne izađu sve umjetne varijable iz baze. Adaptacija za 2. FAZU

Dvofazni simpleks – 2. FAZA

- Adaptacija tablice od LP' (sadrži bazu za originalni LP)
- 1. Pobrisati kolone umjetnih varijabli
- 2. Zamijeniti fju cilja originalnom
- 3. Dovesti prvi red u faktore redukcije

Riješiti LP od te točke nadalje

min
$$2x_1 + 3x_2$$

uz $4x_1 + 2x_2 \ge 12$
 $x_1 + 4x_2 \ge 6$
 $x_1, x_2 \ge 0$

standardna forma:

min
$$2x_1 + 3x_2$$

uz $4x_1 + 2x_2 - x_3 = 12$
 $x_1 + 4x_2 - x_4 = 6$
 $x_1, x_2, x_3, x_4 \ge 0$

Dodajemo dvije nove varijable i novu fju cilja

$$a_1$$
 a_2 a_3 a_4 a_5 a_6 $b = RHS$
 c^T 0 0 0 0 1 1 0
4 2 -1 0 1 0 12
1 4 0 -1 0 1 6

Nakon nekoliko iteracija...

baza $\mathbf{B}_2 = [\mathbf{a}_1 \ \mathbf{a}_2] = \mathbf{I}_2$ faktori redukcije su nenegativni -> **OPTIMUM** umjetnog problema umjetne varijable su =0 i umjetna ciljna funkcija =0 gotova 1. FAZA

2. faza – iz prethodne tablice se izbace stupci umjetnih varijabli i zamijeni se ciljna fja

Ispravak 0-tog retka - eliminacijom iznad baznih stupaca

	a_1	a_2	a_3	a 4	RHS
r ^T	0	0	5/14	4/7	-54/7
	1	0	-2/7	1/7	18/7
	0	1	1/14	-2/7	6/7

- nema negativnih faktora redukcije
 - OPTIMUM
 - Rješenje proširenog izvornog problema je $\mathbf{x} = [18/7 \ 6/7 \ 0 \ 0]^T$
 - rješenje izvornog problema $\mathbf{x} = [18/7 6/7]^T$, $f(\mathbf{x}) = 54/7$

Dualnost

 Teorija nastala poopćenjem metode Lagrangeovih množitelja

 Svaki LP (kojeg ćemo zvati "primal") ima svoj povezani LP kojeg zovemo "dual"

Dualnost – kanonska forma

minimizirati $\mathbf{c}^{\mathsf{T}}\mathbf{x}$

uz uvjet

 $Ax \leq b$

 $x \ge 0$

• Dual:

maksimizirati **b**^T**y**

uz uvjet

 $A^{T}y \ge c$

y ≥ **0**

47/58

Dual - izvođenje

primal	dual		
broj ograničenja	broj varijabli		
broj varijabli	broj ograničenja		
rhs	funkcija cilja		
funkcija cilja	rhs		
A matrica koeficijenata	\mathbf{A}^{T}		
jednakost	urs varijabla		
urs varijabla	jednakost		
<= ograničenje	>= varijabla		
>= ograničenje	<= varijabla		
>= varijabla	>= ograničenje		
<= varijabla	<= ograničenje		

Veze duala i primala - teoremi

• "Dual duala je primal"

Slaba dualnost

Jaka dualnost

Komplementarnost

Veze duala i primala - teoremi

- Slaba dualnost
 - Ako je x izvedivo primalno rješenje i y je izvedivo dualno rješenje, tada je $y^Tb \leq c^Tx$

- Jaka dualnost
 - Ako linearni program ima optimalno rješenje, onda ga ima i dual i njihove vrijednosti su jednake.

Veze duala i primala - teoremi

Komplementarnost

 Ako su x i y izvediva rješenja primala i duala, onda su optimalna ako i samo ako vrijedi:

$$x_{j}(c_{j} - y^{T}A_{:,j}) = 0, \forall j$$
Faktor
redukcije
varijable x_j

$$y_i(A_{i,:}x - b_i) = 0, \forall i$$

Dopunjenje
i-tog
ograničenja
primala

Dualnost - korisnost

- Ekonomska interpretacija cijene nad ograničenim resursima
- Minimax teorem u teoriji igara
- Analiza osjetljivosti
- Dualna simpleksna metoda

Simplex – problem!

- Klee-Minty 1972. konstrukcija perturbirane jedinične hiperkocke za popularna pravila biranja pivota
- Simplex u najgorem slučaju ima eksponencijalnu složenost
- LP je unutar klase problema P

Metoda unutarnjih točaka - ideja

Metoda unutarnjih točaka – ideja 1/3

 $min c^{T}x$

uz uvjet Ax = b

 $x \ge 0$

max b^Ty uz uvjet $A^Ty + s = c$

s ≥ **0**

Metoda unutarnjih točaka – ideja 2/3

min uz uvjet

$$c^Tx - \mu 1^T log(x)$$

$$Ax = b$$

Barijerni problemi!

Logaritamska barijera

max uz uvjet

$$b^Ty + \mu 1^Tlog(s)$$

$$A^{T}y + s = c$$

Metoda unutarnjih točaka – ideja 3/3

KKT uvjeti za μ-barijerne probleme

$$Ax(μ) = b$$
 $x(μ) \ge 0$
 $ATy (μ) + s (μ) = c$
 $s(μ) \ge 0$
 $X(μ)S(μ)1=1μ$
pri čemu $X(μ)=diag(x(μ))$, $S(μ)=diag(s(μ))$

Primalni algoritam praćenja putanje

Barijerni problem "pretežak" iz KKT

 Taylorov raspis barijerne fje cilja do kvadratnog člana

 Optimizacija Taylorove aproksimacije metodom Lagrangeovih množitelja za pronalazak minimizirajućeg smjera iz trenutne točke

