1

Dept . Mathématiques, Faculté des Sciences Cours de Géométrie Différentielle, L3 Mathématiques par M. Benalili

N.B.

Les étudiants peuvent consulter le cours de Géométrie Différentielle de Erwann Aubry

Part I

Chapitre2

Part II

Sous-variétés de \mathbb{R}^n

On va donner une définition des sous-variétés de \mathbb{R}^n et puis on établit 3 autres caractérisations de ces dernières ayant chacune leurs avantages dans les différentes situations des problèmes.

2.1 Définition.

Definition 1 Une partie M de R^n est une sous-variété de dimension k et de classe C^p de R^n si et seulement si pour tout $x \in M$ il existe, il existe un voisinage U_x de x dans R^n et une application $f: U_x \to R^{n-k}$ de classe C^p tels que: pour $y_0 \in R^{n-k}$ fixé

- i) $U_x \cap M = f^{-1}(\{y_0\})$
- ii) $Df(x): \mathbb{R}^n \to \mathbb{R}^{n-k}$ soit surjective (i.e. f est une submersion en x).

f est dite équation locale régulière de M au voisinage de x.

Exemple1: Soit $S^n=\left\{x\in R^{n+1}: \sum_{i=1}^{n+1}x_i^2=1\right\}$ est une sous-variété de R^{n+1} de dimension n et de classe C^∞ .

En effet la fonction $f:R^{n+1}\to R$, définie par $f(x)=\sum_{i=1}^{n+1}x_i^2-1$ est de classe C^∞ et vérifie $S^n=f^{-1}(\{0\})$

et $Df(x) = 2(x_1, ..., x_{n+1}) \neq 0$ car $x = 0 \notin S^n$.

Exemple2: $C=\{(x,y)\in R^2: x^3-y^3=0\}$. L'application $f:(x,y)\in R^2\to x^3-y^3\in R$ est de classe C^∞

et vérifie $C = f^{-1}(\{0\})$. $Df(x,y) = 3(x^2 - y^2)$ n'est pas de rang 1 en (0,0) et donc l'équation f = 0 n'est pas régulière en (0,0) et pourtant C est une sous-variété de classe C^{∞} au voisinage de (0,0) il suffit de prendre l'èquation x - y = 0.

Exemple3. soit $f: \Omega \to R^m$, une application de classe C^p avec Ω un ouvert de R^n on note $G(f) = \{(x,y) \in \Omega \times R^m : y = f(x)\}$ le graphe de f c'est une sous-variété de R^{n+m} de classe C^p .

En effet $g:(x,y)\in\Omega\times R^m\to y-f(x)\in R^m$. Alors g est de classe C^p et vérifie $G(f)=g^{-1}(0)$ et Df(x,y)(u,v)=v-df(x)u qui est surjective.

2.2 Caractérisations des sous-variétés de \mathbb{R}^n

Theorem 2 M est une sous-variété de R^n de classe C^p et de dimension k ssi pour tout $x \in M$, il existe un voisinage ouvert $U \subset R^n$ de x, un voisinage ouvert V de 0 dans R^n et un difféomorphisme $\Phi: U \to V$ de classe C^p tels que $\Phi(U \cap M) = V \cap (R^k \times \{0_{n-k}\})$.

On dit que Φ est un redressement local de M au voisinage de x. Exemple4

Considérons le cercle unité $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.

On vient de voir dans les exemples précédents que S^1 est une sous-variété de R^2 de classe C^{∞} et de dimension1 (une courbe). D'après le théorème précédent au voisinage de chaque point $(x,y) \in S^1$ il existe un voisinage ouvert U de (x,y) dans R^2 un voisinage V de 0 dans R^2 et un difféomorphisme $\Phi: U \to V$ de classe C^{∞} tels que $\Phi(U \cap S^1) = V \cap (R^1 \times \{0\})$.

Nous allons expliciter ce difféomorphismes locaux.

On pose

$$\begin{split} U_1^+ &= \left\{ (x,y) \in R^2 : x > 0 \right\}, U_1^- &= \left\{ (x,y) \in R^2 : x < 0 \right\}, \\ U_2^+ &= \left\{ (x,y) \in R^2 : y > 0 \right\}, U_1^- &= \left\{ (x,y) \in R^2 : y < 0 \right\}. \\ V &= \left] -\frac{\pi}{2}, \frac{\pi}{2} \left[\times \left] -1, +\infty \right[. \\ \Phi_1^\pm : U_1^\pm \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \left[\times \left] -1, +\infty \right[. \end{split}$$

$$(x,y) \rightarrow \left(arctg\frac{y}{x}, x^2 + y^2 - 1\right)$$

$$\Phi_2^{\pm}: U_1^{\pm} \rightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\times \left] -1, +\infty \right[.$$

$$(x,y) \rightarrow \left(arctg\frac{x}{y}, x^2 + y^2 - 1\right)$$

Les applications Φ_i^{\pm} (i=1,2) sont des difféomophismes de classe C^{∞} et vérifient

$$\Phi_i^{\pm} \left(U_1^{\pm} \cap S^1 \right) = V \cap \left(R \times \{0\} \right).$$

Ces 4 difféomorphismes forment un redressement au voisinage de tout point de S^1 .

Theorem 3 M est une sous-variété de R^n de classe C^p et de dimension k ssi pour tout $x = (x_1, x_1) \in M$, il existe un voisinage ouvert U_1 de x_1 dans R^k , un voisinage ouvert de U_2 de x_2 dans R^{n-k} et une fonction $\varphi_x : U_1 \to U_2$ de classe C^p telle que

$$M \cap (U_1 \times U_2) = G(\varphi_x) = \{(y_1, y_2) \in U_1 \times U_2 : y_2 = \varphi_x(y_1)\}.$$

On dit que M est localement le graphe de φ_x au voisinage de x. Exemple5. Pour le cercle ${\bf S}^1,$ on pose

$$\varphi_1^{\pm}: x \in]-1, 1[\to \pm \sqrt{1-x^2}]$$

et

$$\varphi_2^{\pm}: y \in]-1, 1[\to \pm \sqrt{1-y^2}.$$

alors $S^1 \cap U_1^{\pm}$ est le graphe de φ_1^{\pm} et $S^1 \cap U_2^{\pm}$ est le graphe de φ_2^{\pm} .

Theorem 4 M est une sous-variété de classe C^p et de dimension k de R^n ssi pour tout $x \in M$, il existe un voisinage ouvert U ouvert de x dans R^n , un ouvert Ω de R^k et une application $g: \Omega \to R^n$ de classe C^p tels g soit un homéomorphisme de Ω sur $M \cap U$ et $Dg(g^{-1}(x)): R^k \to R^n$ soit injective.

On dit que est une paramétrisation locale régulière de M au voisinage de x.

Exercice1

Pour quelles valeurs de r>0, l'ensemble suivant est une courbe de R³?

$$\begin{cases} x^2 + 4y^2 + 9z^2 = 1\\ x^2 + y^2 = 1 \end{cases}$$

Exercice2

Montrer que les sous-variétés de \mathbb{R}^n de dimension n (resp. de dimension 0) de \mathbb{R}^n sont les ouverts (respectivement les parties isolées de \mathbb{R}^n). On rappelle que $M \subset \mathbb{R}^n$ est isolée ssi pour tout point $x \in M$ il existe U voisinage de x dans \mathbb{R}^n tel que $U \cap M = \{x\}$.

Exercice3

Montrer que pour tout

$$q \in]1, +\infty[, S_q = \left\{ x \in \mathbb{R}^n : \sum_i |x_i|^q = 1 \right\}$$

est une sous-variété de \mathbb{R}^n . Qu'en est-il pour $q=1, q=+\infty$.

Exercice4

Soit Q une forme quadratique non dégénérée sur R^n . On note $Q(R^n)$, où $Q_A(((x))) = Q(A(x))$. Montrer que $Q(R^n)$ est un espace vectoriel de dimension $\frac{n(n-1)}{2}$ et que F_Q est C^{∞} .

Exercice5

Soit γ une courbe de classe C^{∞} du demi-plan $U = \{(x,0,z) : x > 0\}$ de R^3 . Soit S l'ensemble engendré par révolution de γ autour de l'axe (Oz). Montrer que S est une surface de R^3 . Que se passe-t-il si S est maintenant le cerle de centre (a,0,0) et rayon r dans le plan (xoz)?

2 Espace tangent et fibré tangent

Soit M une sous-variété de R^n de dimension k et de classe C^p et $a \in M$.

On note
$$C_a M = \left\{ \gamma : I \to \mathbb{R}^n \text{ tel que } \left\{ \begin{array}{c} I = [0, \epsilon[\text{ où } \epsilon > 0 \\ \gamma(0) = a, \gamma(I) \subset M \\ \gamma \text{ admet une dérivée à droite en } 0. \end{array} \right\}.$$

Definition 5 Un vecteur $v \in R^n$ est tangent à M en a ssi il existe une courbe $\gamma \in C_aM$ telle que $\gamma'(0) = v$. On note $T_aM = \{\gamma'(0) : \gamma \in C_aM\}$ l'espace tangent de M en a. L'espace tangent affine sera alors $a + T_aM$.

Le théorème suivant caractérise l'espace tangent.

Theorem 6 Soit M une sous-variété de R^n de dimension k. L'ensemble T_aM des vecteurs tangents à M en a forme un sous-ensemble vectoriel de dimension k de R^n . De plus on a les caractérisations suivantes de T_aM .

1-S'il existe un voisinage ouvert U de a dans R^n et une application f: $U \to R^k$ de classe C^1 telle que $U \cap M = f^{-1}(\{y_0\})$ et Df(a) soit une submersion (surjective) alors

$$T_aM = KerDf(a).$$

 $2\text{-}Si\ \Phi: U \to V$ est un redressement local de M en a i.e. U voisinage ouvert de x dans R^n , V est un voisinage ouvert de 0 de R^n , Φ est un difféomorphisme de U sur V tel que $\Phi(a)=0$ et

$$\Phi\left(U\cap M\right) = V\cap \left(R^k \times (0_{n-k})\right)$$

alors

$$T_a M = (D\Phi(a))^{-1} (R^k \times (0_{n-k})).$$

3-Si $g:\Omega$ (ouvert contenant y_0) $\subset R^k \to R^n$ est de classe C^1 telle que $g(\Omega) \subset M$, $g(y_0) = a$ et $Dg(y_0)$ soit surjective, alors

$$T_a M = \operatorname{Im} Dg(y_o) = Dg(y_o)(R^k).$$

En conséquence, si (e_i) est une base de \mathbb{R}^k , alors $Dg(y_0)(e_i)$ forme une base de T_aM . On note

$$\frac{\partial}{\partial y_i}(x) = Dg(y_0)(e_i) = \frac{\partial g}{\partial y^i}(g^{-1}(x)).$$

 $\left(\frac{\partial}{\partial y_1}(x),...,\frac{\partial}{\partial y_k}(x)\right)$ est une base de T_xM en tout point de $g(\Omega)$.

Exemples

1)On a pour tout $a \in S^n$,

$$T_a S^n = a^{\perp}$$

$$T_{I_n}O_n = T_{I_n}SO_n = A_n(R)$$

qui est l'ensemble de matrices anti-symétriques d'ordre n.

3)Pour une application $g: \Omega \subset R^k \to R^l$ une application de classe C^p , alors pour tout $x \in \Omega$, on a

$$T_{(x,g(x))}Gr(g) = \left\{ \left(x, Dg(x)v \right) : v \in \mathbb{R}^k \right\} \right\}$$

qui est l'espace engendré par $\{(e_i, Dg(x)e_i)\}$ pour (e_i) une base de \mathbb{R}^k .

$$\gamma = \{(x, y) \in R^2 : x^2 - y^2 = 0\}$$

n'est pas une sous-variété de R² car $T_{(0,0)}\gamma=\gamma$ n'est pas un sous-espace vectoriel de R².

3 Fibré tangent

Definition 7 Soit M une sous-variété de dimension k de \mathbb{R}^n . On appelle fibré tangent de M l'ensemble

$$TM = \cup_{x \in M} \{x\} \times T_x M$$

$$=\{(x,v)\in R^n\times R^n:x\in M,v\in T_xM\}$$

Proposition 8 Si M est une sous-variété de classe de $C^p(p \ge 2)$ et de dimension k de R^n , alors TM est une sous-variété de classe C^{p-1} et de dimension 2k de $R^n \times R^n$.

Démonstration: Soit $(x_0, v) \in TM$. Il existe U un voisinage ouvert de x_0 dans \mathbb{R}^n et $f: U \to \mathbb{R}^{n-k}$ une submersion en x_0 de classe \mathbb{C}^p sur U telle que $M \cap U = f^{-1}(\{0\})$. $U \times \mathbb{R}^n$ est un voisinage de (x_0, v) dans $\mathbb{R}^n \times \mathbb{R}^n$ et on a

$$TM \cap (U \times R^n) = \{(x, v) \in R^n \times R^n : x \in U \cap M, v \in T_x M\}$$
$$= \{(x, v) \in R^n \times R^n : f(x) = 0 \text{ et } Df(x)v = 0\}$$
$$= \{(x, v) \in R^n \times R^n : F(x, v) = 0\} = F^{-1}(\{0\})$$

οù

$$F: U \times \mathbb{R}^n \to \mathbb{R}^{n-k} \times \mathbb{R}^k, F(x,v) = (f(x), Df(x)v)$$

est de classe C^{p-1} . Comme

$$DF(x,v) = \begin{pmatrix} Df(x) & 0 \\ * & Df(x) \end{pmatrix}$$

est de rang 2(n-k). F est une submersion en (x,v) telle que

$$F^{-1}(0) = TM \cap (U \times R^n).$$

Exercice1

Parmi les sous-ensembles suivants, lesquels sont des surfaces de \mathbb{R}^3 et derminer leur espace tangent en chaque point.

$$\{(x, y, z) \in R^3 : x^3 + y^3 + z^3 - 3xyz = 1\}$$

,

$$T^{2} = \left\{ (x, y, z) \in R^{3} : (\sqrt{x^{2} + y^{2}} - 2)^{2} + z^{2} = 1 \right\},$$

$$H_{c} = \left\{ (x, y, z) \in R^{3} : x^{2} + y^{2} - z^{2} = c \right\}.$$

Exercice2
Montrer que

$$SL_n(R) = \{ M \in M_n(R) : \det(M) = 1 \}$$

est une hypersurface de $M_n(R)$. Montrer que l'espace tangent à $SL_n(R)$ en A est

$$T_A SL_n(R) = \{ M \in M_n(R) : tr(A^{-1}M) = 0 \}.$$

4 Espace normal, Fibré normal.

Definition 9 Soit M une sous-variété de dimension k et de classe C^p de R^n . On appelle espace normal en x_0 à M le sous espace $N_{x_0}M = (T_{x_0}M)^{\perp}$ (espace orthogonal de $T_{x_0}M$ par rapport au produit scalaire usuel de R^n).

Proposition 10 $N_{x_0}M$ est un sous-espace de dimension n-k de R^n . De plus $si\ f=(f_1,...,f_{n-k}): U\subset R^n\to R^{n-k}$ est une équation régulière de M au voisinage de x_0 , alors on a:

$$N_{x_0}M = Vect(\nabla f_1(x_0), ..., \nabla f_{n-k}(x_0)).$$

Si $g:\Omega$ ouvert $\subset \mathbb{R}^k \to \mathbb{R}^n$ vérifie $g(\Omega) \subset M$, $g(y_0) = x_0$, $Dg(x_0)$ est injective, alors

$$N_{x_0}M = \left\{ v \in \mathbb{R}^n : \left\langle v, \frac{\partial g}{\partial x_i}(y_0) \right\rangle = 0, \text{ pour tout } i=1,...,k. \right\}$$

Démonstration.

Nous avons

$$T_{x_0}M = KerDf(x_0) = \bigcap_{i=1,\dots,k} KerDf_i(x_0).$$

Mais

$$Df_i(x_0).v = \langle \nabla f_i(x_0), v \rangle$$

et par suite $v \in T_{x_0}M$ ssi $\langle \nabla f_i(x_0), v \rangle = 0$ ssi $\nabla f_i(x_0) \in N_{x_0}M$, pour i = 1, ..., n - k i.e.

$$N_{x_0}M = Vect(\nabla f_1(x_0), ..., \nabla f_k(x_0)).$$

On a déjà vu que

$$T_{x_0}M = \operatorname{Im} Dg(y_0)$$

qui est engendré par les vecteurs $\frac{\partial g}{\partial x_i}(y_0)$ pour i=1,...,k. Ce qui prouve la deuxième caractérisation.

Exemple 6

Pour $x_0 \in S^n = f^{-1}(\{0\}) \subset R^{n+1}$, avec

$$f(x) = x_1^2 + \dots + x_{n+1} - 1$$

qui est une submersion, car on a

$$\nabla f(x) = 2(x_1, ..., x_{n+1}) = 2x \neq 0$$

et donc

$$Nx_0S^n = Vect(x_o) = Rx_0.$$

Definition 11 Soit M une sous-variété de R^n de classe C^p et de dimension k. On appelle fibré normal à M l''ensemble $NM = \bigcup_{x \in M} N_x M = \{(x, v) \in R^n \times R^n : x \in M, v \in N_x M\}$.

Proposition 12 Si M est une sous-variété de R^n de classe C^p et de dimension k, alors NM est une sous-variété de $R^n \times R^n$ de classe C^{p-1} et de dimension n.

Démonstration. Soit $(x_0, v) \in NM$, $f: U \to R^{n-k}$, une équation locale régulière de M au voisinage de x_0 et $g: \Omega \subset R^k \to R^n$, une paramétrisation locale de M au voisinage de x_0 . On pose alors $F: U \times R^n \to R^{n=k} \times R^k$ définie par :

$$F(x,v) = \left(f(x), \left\langle v, \frac{\partial}{\partial y_1}(y_0) \right\rangle, ..., \left\langle v, \frac{\partial}{\partial y_k}(y_0) \right\rangle \right),$$

F est de classe \mathbf{C}^{p-1} et

$$\frac{\partial}{\partial u_i} = I_{e_i} \circ Dg \circ g^{-1}.$$

5 Applications Différentiables

Soient M_1 et M_2 deux sous-variétés de R^{n_1} et R^{n_2} de dimension k_1 et k_2 respectivement et de classe C^p .

Definition 13 Soit Ω un ouvert de M_1 et $f:\Omega \to M_2$ une application. f est dite différentielle en un point $x_0 \in \Omega$ ssi il existe un voisinage ouvert U de x_0 dans R^{n_1} et une application $F:U \to R^{n_2}$ différentiable en x_0 telle que F(x)=f(x) pour tout $x \in \Omega \cap U$. f est différentiable sur Ω si f est différentiable en tout point de Ω .

Exemple

 $f: S^n \to R, f(x) = x_1...x_{n+1}$ est de classe C^∞ sur S^{n-1} .

En effet, on considérer l'application; $F: \mathbb{R}^{n+1} \to \mathbb{R}$, $F(x) = x_1...x_{n+1}$ qui est de classe C^{∞} et dont la restriction à S^n est égal à f.

Définition

Soit $f:M_1 \to M_2$ une application de classe \mathbb{C}^p en x_0 , on appelle différentielle de f en x_0 que l'on note $\mathrm{d}_{x_0}f$: l'application de $T_{x_0}M_1 \to T_{f(x_0)}M_2$ définie par

$$d_{x_0}f(v) = (fo\gamma)'(0),$$

où $\gamma \in C_{x_0}(M)$ avec $\gamma'(0) = v$.

Proposition

Si $f:\Omega\subset M_1\to M_2$ est différentiable en $x_0\in\Omega$, alors $d_{x_0}f$ est application linéaire bien définie entre les espaces $T_{x_0}M_1$ et $T_{x_0}M_2$. Si $F:U\to R^{n_1}$ est un prolongement local de f au voisinage de x_0 (i.e. si U est un voisinage de x_0 dans R^{n_1} et F(x)=f(x) pour tout $x\in U\cap\Omega$, alors $d_{x_0}f$ est la restriction de $Df(x_0)$ au sous espace $T_{x_0}M_1$.

Exemples

1-Si M est une sous-variété de classe C^p de \mathbb{R}^n , alors $\mathrm{id}_M:M\to M$ est de classe \mathbb{C}^p et on a $d_{x_0}I_M=I_{T_{x_0}M}$.

2- Si M est une sous-variéte de classe C^p de R^n alors l'injection canonique de M dans R^n (i(x) = x) est de classe C^p et $d_{x_0}i$ est linjection canonique de $T_{x_0}M$ dans R^n ($d_{x_0}i(v) = v$).

3-Si M est une sous-variété de classe C^p de \mathbb{R}^n , alors $\pi:TM\to M$, $\pi(x,v)=x$ est de classe C^{p-1} et $d\pi$ est la projection de $R^k\times R^k\to R^k$.

Théorème.

Soit $M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3$ des applications telles que f est différentiable en $x_0 \in M_1$ et g est différentiable en $g(x_0) \in M_2$. Alors gof est différentiable en x_0 et on a:

$$d_{x_0}(gof) = d_{f(x_0)}god_{x_0}f.$$

Démonstration

Si F est un prolongement llocal de f au voisinage de x_0 et G est un prolongement local de g au voisinage de $f(x_0)$ alors $G \circ F$ (qui est différentiable) est un prolongement local de $g \circ f$ au voisinage de x_0 d'où la régularité de $g \circ f$. Si $c \in C_{x_0} M_1$ vérifie c'(0) = v, alors $f \circ c \in C_{f(x_0)} M_2$ est telle que

$$(foc)'(0) = d_{x_0} f(v)$$

et

$$d_{x_0}(gof) = (go(foc))'(0)$$
$$= d_{f(x_0)}g(d_{x_0}fv)$$

i.e.

$$d_{x_0}(gof) = d_{f(x_0)}god_{x_0}f.$$

Difféomorphismes entre sous-variétés Définition $f:M_1 \to M_2$ est un C^p -difféomorphisme ssi f est un C^p -difféomorphisme sur M_1 , f est bijective et f^{-1} est un C^p -difféomorphisme sur M_2 .

f est un C^p -difféomorphisme local en x_0 ssi il existe un voisinage ouvert Ω de x_0 dans M_1 tel que $f(\Omega)$ soit un voisinage ouvert de $f(x_0)$ dans M_2 et $f: \Omega \to f(\Omega)$ soit un C^p -difféomorphisme.

 $f:M_1 \to M_2$ est un C^p -difféomorphisme local de M_1 sur son image ssi f est un C^p -difféomorphisme local en tout point de M_1 .

Proposition

 $Si\ f: M_1 \to M_2$ est un C^p -difféomorphisme local en x_0 alors $d_{x_0}f: T_{x_0}M_1 \to T_{f(x_0)}M_2$ est un isomorphisme linéaire (isomorphisme d'espaces vectoriels bicontinue) et on a

$$d_{f(x_0)}(f^{-1}) = (d_{x_0}f)^{-1}.$$

Démonstration

Nous avons

$$id_{T_{x_0}M_1} = d_{x_0}(f^{-1}of) = d_{f(x_0)}f^{-1}od_{x_0}f$$

et

$$id_{T_{f(x_0)}M_2} = d_{f(x_0)} (fof^{-1}) = d_{x_0} fod_{f(x_0)} f^{-1}.$$

Cartes locales

Définition

Soit M une sous-variété de R^n de dimension k et de classe C^p et $x_0 \in M$. Une carte local de M en x_o est un couple (U, φ) où U est un ouvert de M contenant x_0 et $\varphi: U \to \Omega \subset R^k$ un C^p -difféomorphisme où Ω ouvert. Si de plus $\varphi(x_0) = 0$, (U, φ) est dite carte locale centrée en x_0 .

Exemple: Le cercle

$$S^{1} = \{(x, y) \in R^{2} : x^{2} + y^{2} = 1\}$$
$$= \{z \in C : |z| = 1\}$$

Posons

$$U_1 = S^1 - \{(1,0)\}, \ U_2 = S^1 - \{(-1,0)\}$$

 U_1, U_2 sont des ouverts de S^1 .

On définit

$$\varphi_1: U_1 \to]0,1[; z = e^{i2\pi t} \to \varphi_1(z) = t$$

et

$$\varphi_2: U_2 \to [0,1[; z = e^{i2\pi (t + \frac{1}{2})} \to \varphi_2(z) = t.$$

 $(U_1, \varphi_1), (U_2, \varphi_2)$ forment alors 2 cartes locales sur S^1 .

Exercice

On appelle pôle nord (resp. pôle sud) de S^n le point N=(0,...,0,1) (resp. S=(0,...,0,-1). On considère les applications

$$\varphi_N: S^n - \{N\} \to R^n, \ (y_1, ..., y_{n+1}) \to \left(\frac{y_1}{1 - y_{n+1}}, ..., \frac{y_n}{1 - y_{n+1}}\right)$$

$$\varphi_S: S^n - \{S\} \to \mathbb{R}^n, \ (y_1, ..., y_{n+1}) \to \left(\frac{y_1}{1 + y_{n+1}}, ..., \frac{y_n}{1 + y_{n+1}}\right)$$

appelées respectivement projections stéréographiques de pôle nord et de pôle sud.

- 1) Montrer que $(\varphi_N(y), 0)$ (resp. $(\varphi_S(y), 0)$) est l'unique point d'intersection de $\mathbb{R}^n \times \{0\}$ avec la demi-droite $[N, (y_1, ..., y_{n+1})]$ ($[S, (y_1, ..., y_{n+1})]$).
- de $R^n \times \{0\}$ avec la demi-droite $]N, (y_1, ..., y_{n+1})[$ ($]S, (y_1, ..., y_{n+1})[$). 2) Montrer que $(S^n - \{N\}, \varphi_N), (S^n - \{S\}, \varphi_S)$, sont des cartes locales de la sphère S^n .