

6.2.4 波函数的图形描述

天津大学 邱海霞

波函数的图形描述

波函数ψ数学表达式复杂

$$\Psi(r,\theta,\varphi) = R(r) \cdot Y(\theta,\varphi)$$
 径向部分 角度部分

 $Y(\theta,\varphi)$ 对 θ,φ 做图

波函数(原子轨道)的角度分布图

影响化学键的形成

s轨道的角度分布图

H原子的1s轨道

$$\psi(r,\theta,\varphi) = \sqrt{\frac{1}{\pi a_0^3}} e^{-r/a_0}$$

a₀:玻尔半径

角度部分:

$$Y(\theta,\varphi) = \sqrt{\frac{1}{4\pi}}$$

球形对称分布

p轨道的角度分布图

p轨道: l=1, m=+1, 0, -1

H原子的 $2p_z(m=0)$

$$\psi_{2p_z} = \frac{1}{4} \sqrt{\frac{1}{2\pi a_0^3}} (\frac{r}{a_0}) e^{-r/2a_0} \cos \theta$$

角度部分

$$Y(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} \cos \theta = A \cos \theta$$

p轨道的角度分布图

$$Y(\theta, \phi) = \sqrt{\frac{3}{4\pi}} \cos \theta = A \cos \theta$$

θ	0_{0}	30°	60°	90°	120°	180°
$\cos\! heta$	1	0.866	0.5	0	-0.5	-1
$Y_{2\mathrm{p}_z}$	A	0.866A	0.5A	0	-0.5A	-A

p轨道的角度分布图

正负号代表原子轨道角度部分取值的正负

在z轴上出现极大值, 称为pz轨道

d轨道的角度分布图

(分别在xy,yz,xz平面夹角为45度处伸展)

原子轨道的角度分布图

原子轨道的角度分布图

不是电子运动的具体轨迹

反映波函数在空间不同方向上的变化情况

正负号 极大值方向

在能否形成化学键以及成键方向上有重要意义