CAPE Laboratory

Assignment - 5

1. Stiff ODE

Solve the following system of Ordinary Differential Equations (van der Pol ODE) using both ode45 and ode15s.

 $\frac{dy_1/dt}{dy_2/dt} = \frac{y_2}{1000(1-y_1^2)} = \frac{y_1(0)}{y_2(0)} = 0$ $\frac{dy_2/dt}{dy_2/dt} = \frac{y_2(0)}{1000(1-y_1^2)} = \frac{y_2(0)}{1000} =$

- (a) Comment on the efficiency of ode 45 and ode 15s in solving this system.
- (b) Plot y_1 and y_2 as a function of time.

2. Modelling and Simulation of a Binary Distillation Column

Consider the binary distillation column as shown in the figure. Liquid hold-up at each tray is constant and assume constant molar overflow in the column. The following data are given.

Nomenclature: Consider Condenser as Tray-1, Reboiler as Tray-10

Number of trays = 10, Relative volatility (α) is constant

 $F = 50 \text{ mol/s}, D = 25 \text{ mol/s}, z_f = 0.5, V = 60 \text{ mol/s}$

Hold-up: For tray, M = 400 mol, Condenser, $M_C = 4000$ mol, Reboiler, $M_R = 4000$ mol

Initial condition: Compositions in all trays, $x_f = 0.5$

- (a) Solve the dynamic equations to find steady state compositions when feed enters at Tray-4, Tray-5, and Tray-6. Assume $\alpha = 2.5$
- (b) Consider feed enters at Tray-5. Find the steady state compositions at each tray for $\alpha = 1.5$, 3, and 4. Explain the effect of magnitude of relative volatility on separation.

Rectifying
Section

F, Zf

F, Zf

Feed Tray

Stripping

Section

B, XB

3) Dynamic Simulation of stirred tank heater

There are three stirred tanks with internal heating arrangement connected in series. Each tank is initially filled with 100kg of oil at 50°C. Saturated steam at 250°C condenses inside heating coil immersed in each tank. The oil fed into first tank at the rate of 1 OOkg/min and overflows into 2nd and 3rd tank at same flow rate. The temperature of oil fed to first tank is 20 °c. The CP of the oil is 2KJ/kg⁰c. For each tank, rate of heat transfer may be assumed as UA= 10 K.J/min°c.

- a. Develop the dynamic model equations.
- b. Determine the steady state temperature in all 3 tanks.
- c. What time interval will be required for T3 to reach 99% of steady state value during start up?
- d. Show the "step response" of all the temperature till the new steady state, if the T_0 is suddenly increased by 50% from its original value.