Test seminar grupa 334, 24 aprilie 2018

Indicatorul lui Euler

Arătați (folosind definiția lui φ), că $\varphi(p^5) = p^4 \cdot (p-1)$ oricare ar fi un număr prim p. (1 punct)

Securitate CPA

Se consideră cifrul (Enc, Dec), unde spațiul mesajelor M și cel al textelor cifrate C sunt $\{0,1\}^l$, iar spațiul cheilor K este mulțimea permutărilor mulțimii $\{0,1,\ldots,l-1\}$. Pentru $k \in K$ și $m \in M$, $Enc_k(m) = m[k[0]]\ldots m[k[l-1]]$, adică funcția de cripare permută biții lui m in funcție de permutarea k.

- Scrieți funcția de decriptare. (2 puncte)
- Construiți un adversar care atinge avantaj 1 într-un atac cu text clar ales. (3 puncte)

Generatoare de numere pseudoaleatoare

1.

Fie un generator de numere pseudoaleatoare $G: \{0,1\}^l \to \{0,1\}^{2l}$ astfel încât ultimii 3 biţi ai lui G(s) sunt mereu 0 oricare ar fi $s \in \{0,1\}^l$.

- Arătați că G nu este sigur. (3 puncte)
- Dați exemplu de un test statistic de verificare a aleatorismului care va fi trecut de G (dacă l este suficient de mare), deși G nu este sigur din punct de vedere matematic. Argumentați. (1 punct)

2.

Fie A o matrice publică de dimensiune $m \times n$ cu elemente din $\{0,1\}$ și m > n. Se consideră generatorul de numere pseudoaleatoare $G: \{0,1\}^n \to \{0,1\}^m$ astfel încât $G(s) = A \cdot s \mod 2$. Arătați că G nu este sigur oricare ar fi matricea A. (4 puncte)

RSA

Se consideră sistemul RSA cu modulul de criptare $n=p\cdot q$ unde p și q sunt două numere prime impare astfel încât $|p-q|< n^{1/4}$. Notăm cu $A=\frac{p+q}{2}$ media aritmetică a numerelor p și q și cu $G=\sqrt{p\cdot q}$ media lor geometrică.

- Arătați că $A \ge G$ și A este număr natural. (1 punct)
- Arătați că A G < 1. (3 puncte)
- Argumentați de ce alegerea numerelor prime p și q conduce la un sistem RSA vulnerabil. (2 puncte)