Part I

1. Evaluate $\int_1^\infty \frac{1}{1+x^2} dx$

$$\int_{1}^{\infty} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{1+x^{2}} dx$$

$$\lim_{a \to \infty} \int_{1}^{a} \frac{1}{1+x^{2}} dx = \lim_{a \to \infty} \left[\arctan(x) \right]_{1}^{a} = \lim_{a \to \infty} \arctan(a) - \arctan(1)$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \boxed{\frac{\pi}{4}}$$

2. Suppose:

$$x = 4 - \ln(t)$$

$$y = 1 + \ln(7t)$$

$$1 \le t \le e$$

Compute the arc length.

Arc length:
$$\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
$$\frac{dx}{dt} = -\frac{1}{t}$$
$$\frac{dy}{dt} = \frac{7}{7t} = \frac{dt}{t}$$
$$\int_{1}^{e} \sqrt{\left(-\frac{1}{t}\right)^{2} + \left(\frac{1}{t}\right)^{2}} dt = \int_{1}^{e} \sqrt{\frac{1}{t^{2}} + \frac{1}{t^{2}}} dt = \int_{1}^{e} \sqrt{\frac{2}{t^{2}}} dt = \sqrt{2} \int_{1}^{e} \frac{1}{t} dt$$
$$= \sqrt{2} \left[\ln(t)\right]_{1}^{e} = \sqrt{2} \left[\ln(e) - \ln(1)\right] = \boxed{\sqrt{2}}$$

3. Suppose:

$$x = \cos(3+t)$$

$$y = \sin(3+t)$$

What is the area of the region bounded by the graph and the positive x-axis and the positive y-axis?

To find where the curve strikes the axes: $x = \cos(3+t) = 0$; $3+t = \arccos(0)$ $3+t = \frac{\pi}{2}$, $t = \frac{\pi}{2} - 3$ when x = 0 $y = \sin(3+t) = 0$; $3+t = \arcsin(0)$ 3+t = 0, t = -3 when y = 0 $A = \int_{-3}^{\frac{\pi}{2} - 3} \sin(3+t)(-\sin(3+t))dt$ $= -\int_{-3}^{\frac{\pi}{2} - 3} \sin^2(3+t)dt$

$$-\int_{-3}^{\frac{\pi}{2}-3} \sin^2(3+t)dt = -\int_{-3}^{\frac{\pi}{2}-3} \frac{1-\cos(6+2t)}{2}dt$$

$$= -\left[\frac{1}{2}t - \frac{\sin(6+2t)}{4}\right]_{-3}^{\frac{\pi}{2}-3} = -\left[\left(\frac{\pi-12}{4} - \frac{\sin(6+\pi-3)}{4}\right) - \left(\frac{-3}{2} - \frac{\sin(6-6)}{2}\right)\right]$$

$$= -\left(\frac{\pi-6}{4} - \frac{\sin(3+\pi)}{4}\right) \approx \boxed{0.679}$$

4. Use the root test to tell if the series converges: $\sum \sqrt{\frac{1+n^2}{1+3^n}}$

$$\lim_{n \to \infty} \sqrt[n]{\left|\frac{1+n^2}{1+3^n}\right|} = \lim_{n \to \infty} \frac{\sqrt[n]{1+n^2}}{\sqrt[n]{1+3^n}}$$
Note that:
$$\lim_{n \to \infty} \sqrt[n]{n^2} \le \lim_{n \to \infty} \sqrt[n]{1+n^2} \le \lim_{n \to \infty} \sqrt[n]{2n^2}$$

$$\sqrt[n]{n^2} \le \sqrt[n]{n^2} \le \lim_{n \to \infty} \sqrt[n]{1+n^2} \le \lim_{n \to \infty} \sqrt[n]{1+n^2} = 1$$

$$1 \le \lim_{n \to \infty} \sqrt[n]{1+n^2} \le 1, \quad \therefore \lim_{n \to \infty} \sqrt[n]{1+n^2} = 1$$
Note that:
$$\lim_{n \to \infty} \sqrt[n]{3^n} \le \lim_{n \to \infty} \sqrt[n]{1+3^n} \le \lim_{n \to \infty} \sqrt[n]{2\cdot 3^n}$$

$$\sqrt[n]{2\cdot 3^n} = \sqrt[n]{2\cdot 3^n} =$$

Part II