lecture11_句法分析1 PPT22页 例子的chart parsing的计算过程,结合了老师的课程板书来写。

思路如下:

- (1) 从左往右扫描 X(i,j) 填入agenda
- (2) 将其视为CFG规则的右部填入边,结合点规则判断是活动边还是闭边。
- (3) 如果是活动边,边保留在active里,消除此次的agenda(就是加入了chart,可以连线了),继续向右扫描;如果是完成边,将CFG规则左部加入agenda,消除此次的agenda和上一步留下的活动边。对单词序列进行遍历,执行以上操作。

注意:边的括号注释表示当前扫描的位置。每一行表示每一次操作。

agenda	active	closed	act
Det(1,2)	NP->Det·N(1,2)		消除Det(1,2)
N(2,3)		NP->Det N· (1,3)	消除N(2,3)和NP活动边
NP(1,3)	S->NP·VP(1,3)		消除NP(1,3)
V(3,4)	VP->V·NP(3,4)		消除V(3,4)
Det(4,5)	NP->Det·N(4,5)		消除Det(4,5)
N(5,6)		NP->Det N·(4,6)	消除N(5,6)和NP活动边
NP(4,6)		VP->V NP·(3,6)	消除NP(4,6)和VP活动边
VP(3,6)	VP->VP·PP(3,6)		消除VP(3,6)
PREP(6,7)	PP- >PREP·NP(6,7)		消除PREP(6,7)
Det(7,8)	NP->Det·N(7,8)		消除Det(7,8)
N(8,9)		NP->Det N·(7,9)	消除N(8,9)和NP活动边
NP(7,9)		PP->PREP NP·(6,9)	消除NP(7,9)和PP活动边
PP(6,9)		VP->VP PP·(3,9)	消除PP(6,9)和VP活动边
VP(3,9)		S->NP VP·(1,9)	消除VP(3,9)和S活动边(也就是完成 了)

复现完整树结构,只需要对完成边进行回溯。

关于chart parsing的几个问题:

1.采用的CFG规则一定是位置连续的终结符/非终结符吗?

不一定,见下例Det 和N并不连续

2.chart parsing会出现歧义吗?

会的,是因为CFG规则。如果是PCFG,选择概率最大的一个。

3.chart parsing的算法复杂度

每处理一个单词需要最多执行的最多操作次数为:

$$C+1+Sn^2+1+Sn^2+Sn^2=2+C+3Sn^2$$

由于算法对于长度为n的输入句子要执行n次循环,因此,Chart 算法最大执行的操作次数为:

$$n \times (2 + C + 3Sn^2)$$

所以,Chart算法的时间复杂度为:

$$O(Kn^3)$$

(K 为一常数)