Scale Uncertainty in ALDEx2

Michelle Nixon

May 13, 2024

Overview

- ▶ These slides are by no means polished.
- ► Idea: Use a simulation, selex, and Vandputte to introduce SRI + SSRVs + modifications to ALDEx2
- My goals:
- Part 1: Introduce notation (W, Y, theta), apply this notation to the ALDEx2 model, show the source of unacknowledged bias in ALDEx2, connect to SRI/SSRVs
- Part 2: Discuss ALDEx2 as an SSRV and the modifications that we made to ALDEx2.
- ▶ Part 3: Real data examples

Recap: Sequencing depth can confound conclusions.

Observed data (Y)	Sample 1	Sample 2	Sample 3	Conclusion
Condition	Health	Health	Disease	
Entity 1	5	10	100	Increase
Entity 2	10	25	3	Decrease
Entity 3	0	1	8	Increase
Entity 4	0	0	19	Increase
Sampling Depth	15	36	130	

Recap: This can mislead analyses.

System data (W)	Sample 1	Sample 2	Sample 3	Conclusion
Condition	Health	Health	Disease	
Entity 1	227	351	154	Decrease
Entity 2	684	891	3	Decrease
Entity 3	48	32	15	Decrease
Entity 4	43	39	27	Decrease
Scale (W^{\perp})	1,002	1,313	200	

Recap: ... and lead to unacknowledged bias.

Observed Data as a Sample from the System

Differential Abundance/Expression Analysis

The Original ALDEx2 Model

Implied Assumptions about Scale

Scale Reliant Inference (Informal)

Scale Reliant Inference: The Basics

- \triangleright Y is a measurement of the underlying system W.
- ▶ Desired quantity depends on W (i.e., $\theta = f(W)$). However, W depends on both the composition (W_{dn}^{\parallel}) and system scale (W_{n}^{\perp}) :

$$W_{dn} = W_{dn}^{\parallel} W_n^{\perp}$$
 $W_n^{\perp} = \sum_{i=1}^{D} W_{dn}$

Scale Reliant Inference: The Basics

- ▶ What happens if θ depends on W^{\perp} ?
- Consider LFCs: how are taxa changing between two conditions?

$$\begin{split} \theta_d &= \mathsf{mean}_{\mathsf{case}}(\mathsf{log}(W_{dn})) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}(W_{dn})) \\ &= \mathsf{mean}_{\mathsf{case}}(\mathsf{log}(W_{dn}^\parallel W_n^\perp)) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}(W_{dn}^\parallel W_n^\perp)) \\ &= (\mathsf{mean}_{\mathsf{case}}(\mathsf{log}(W_{dn}^\parallel)) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}(W_{dn}^\parallel))) \\ &- (\mathsf{mean}_{\mathsf{case}}(\mathsf{log}(W_n^\perp)) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}(W_n^\perp))) \\ &= \theta^\parallel + \theta^\perp \end{split}$$

What if we have outside information on W^{\perp} ?

Scale Simulation Random Variables

Goal: Estimate $\theta = f(W^{\parallel}, W^{\perp})$.

- 1. Draw samples of W^{\parallel} from a measurement model (can depend on Y).
- 2. Draw samples of W^{\perp} from a scale model (can depend on W^{\parallel}).
- 3. Estimate samples of $\theta = f(W^{\parallel}, W^{\perp})$.

Scale Reliant Inference: Theory Intro

Consider the case of LFCs:

$$egin{aligned} heta_d &= \mathsf{mean}_\mathsf{case}(\mathsf{log}(W_{dn})) - \mathsf{mean}_\mathsf{control}(\mathsf{log}(W_{dn})) \ &= heta^{\parallel} + heta^{\perp} \end{aligned}$$

- ▶ What can we say about θ from θ alone?
- ▶ E.g. If $\theta^{\parallel} = 20$, what does that say about θ ?
- ▶ If there are no restrictions, nothing!
- Statistical perspective: θ is not identifiable without θ^{\perp} .
- Practical issues: unbiased estimators, calibrated confidence sets, and type-I error control NOT possible!

The Updated ALDEx2 Software

Moving Past Normalizations to Scale

ALDEx2 as an SSRV

Coding Changes to ALDEx2

Including scale

Option 1: Default Scale Model

Option 2: More Complex Scale Models

Sensitivity Analyses

Real Data Examples

Real Example: SELEX

Real Example: Vandputte