Quadratic Formula victais form. ax2+bx+C=0 (15 roofs Parabola vertex rs = (m-d)(m+d)= 5-m+Jm2-5 $M^2 - \frac{C}{a} = d$ $X=m\pm \int_{m^2-a}^{\infty}$, $m=-\frac{b}{2a}$

$$x^{2}-4x+7=0$$
 $x=-b\pm \sqrt{b^{2}}4ac$
 $x=-b\pm \sqrt{b$

$$x^{2} - 3x + 10 = 0$$
 $x = 3 \pm \sqrt{9 - 40} = 3 \pm \sqrt{31}$
 $x = 2 \pm \sqrt{2}$
 $x = 2 \pm \sqrt{2}$
 $x = 2 \pm \sqrt{2}$
 $x = 2 \pm \sqrt{2}$

$$\frac{a \times ^{2} + b \times + C}{2a} = \frac{a \cdot b \cdot C}{2a} = \frac{rca}{2a} = \frac{numbers}{2a}$$

$$\frac{b^{2} - 4aC}{2a} = \frac{-b}{2a} = \frac{1}{2a}$$

$$\frac{1}{2a} = \frac{1}{2a}$$

$$\frac{1}{2a} = \frac{1}{2a}$$

$$\frac{1}{2a} = \frac{1}{2a}$$

(omplex Conjugates Theorem:
rould of ax2+bx+c, a,b,c real, are complex
conjugates

m+n; (m-n;

 $7-53 + 2+03 = \frac{-b}{1} = \frac{1}{1-b} = \frac{1}{1-c}$ $(2-53)(2+\sqrt{3}) = \frac{1}{1-c} = \frac{1}{1-c}$