Final Report (Implementation)

2023713107 장병우

1. What: Data Abstraction

Brief description

MovieLens 1M Dataset, 2000년까지 집계된 영화 평점 데이터이며 table 형태로 제공되어 있음.

user 정보, item 정보, rating 정보 3가지 파일로 구성되어 있으며, 각각 6,040개, 3,706개, 1,000,209개의 row 존재함

Abstraction

Number of users	6,040				
Number of items	3,706				
Number of ratings	1,000,209				
Sparsity	95.5316%				
User contents	Gender	Age	Occupation	Zip code	
User contents dtype	attribute	attribute	attribute	attribute	
User contents range	M, F	1, 18, 25, 35,	0~20	02460, 55117,	
		45, 50, 56		, 70072	
User contents mean	Male, Female	1: 1~17세	숫자=직업 종류	3,402개	
		18: 18~24세		우편번호	
Item contents	Genre		Title		
Item contents dtype	attribute		attribute		
Item contents range	Action, Adeventure, , War		Toy Story, , Jumanji		
Item contents mean	어떤 장르에 해당하는가		3,706개의 영화 제목		
Rating contents	Rating				
Rating contents dtype	integer				
Rating contents range	1, 2, 3, 4, 5				
Rating contents mean	유저가 영화에 매긴 1점과 5점 사이의 평점				

2. Who: Creating Personas

	Emily	John	
Occupation	Data Scientist	Marketing Manager	
Age	29	35	
Location	Boston	San Francisco	
Needs	Emily는 영화 추천시스템을 연구하는데,	John은 다양한 연령대의 인기 장르를	
	인구통계적 데이터와 유저의 평점 간의	기반으로 한 마케팅 캠페인을 목표로	
	상세한 correlation을 확인할 수 있는	하고 있는데, 이때 장르의 인기와 사용자	
	시스템이 필요함	참여에 대한 insight가 필요함.	
Pain Points	분류되지 않은 대량의 데이터 때문에,	현재 시장 트렌드와 부합하는 실시간	
	추세를 파악하기 어려움	데이터를 확인하기 어려움	
Expertise	Data Science, Machine Learning	Science, Machine Learning Data Analysis	

3. Why: Task Abstraction

	Task	Action+Target	Why	Outcome
Emily	연령별, 성별에 따른 사용자	Discover Correlation	인구 통계학적 특성에 따라	개인 맞춤형 추천
	평점을 분석		추천알고리즘을 개선	사항이 강화
	인구 통계학적으로 top-rated 장르를 식별	Search Outliers	인구 통계학적 선호도를 이해	인구 통계별 콘텐츠 큐레이션의 정확도 향상
	시간에 따른 영화 등급의 변화를 추적	Discover Trends	영화 인기의 변화하는 트렌드를 감지	추천 시스템의 동적 적응
John	다양한 시기에 걸친 장르의 인기를 시각화	Discover Trends	마케팅 캠페인을 최신 트렌드와 일치	타깃 광고의 효과 향상

4. How: Vis Idiom Design

1. Multi-line graph

y축은 년도별 평균 평점,

x축을 영화의 attribute으로 변경할 수 있음 (감독, 장르, 배우),

zoom하면 년도가 아닌 월 > 주 > 일 단위로 점차 scale이 세밀해짐

2. Heatmap

y축은 user의 profile (직업, 나이, 성별 등),

x축은 영화의 profile (장르, 감독, 배우 등)으로 변경할 수 있음.

tooltip하면 해당 칸의 유저 정보와 영화 정보가 display됨.

3. Bar graph

y축은 영화의 profile이며 (장르, 감독, 배우 등)로 변경할 수 있음, x축은 전체 평균.

y축의 영화 profile을 변경하며 볼 수 있음.

5. Sketch

6. Implementation using Vega or D3.js

- 이름: Interactive Movie Trend Viualization tool
- 링크: https://bw-99.github.io/InfoViz2024/
- 스크린샷:

7. Case Study

- 1. John (Marketing Manager): 임팩트 있는 마케팅을 위한 차년도 인기 급상할 영화 예측
 - 올해 어떤 영화 장르가 가장 인기 있었는지를 3) Bar Chart를 통해 확인 -> Film-Noir
 - 1) Multi line graph를 통해 Film-Noir의 인기 추세를 확인 -> 올해 급격히 증가한 것을 확인
 - 내년 마케팅 캠패인 영화 대상을 Film-Noir 위주로 고려
- 2. John (Marketing Manager): 임팩트 있는 마케팅을 위한 차년도 인기 급감할 영화 예측
 - ◆ 전체 기간 (2000 ~ 2003) 동안 가장 인기 있었던 영화 장르를 2) Heatmap을 통해 확인 → Short가 전반적으로 인기 많았음
 - 1) Multi line graph에서 short 검색하여 트랜드 확인 -> 급감한 것을 확인
 - ◆ 내년 마케팅 캠패인 영화 대상에서 Short는 배제
- 3. John (Marketing Manager): 전속 계약을 위한 배우 검색
 - 2) Heatmap을 통해 18세 이하의 사람들이 어떤 배우를 선호하는지 확인 -> Keiju Kobayashi
- 4. John (Marketing Manager): 전속 계약을 위한 감독 검색
 - 2) Heatmap을 통해 18세 이하의 사람들이 어떤 감독을 선호하는지 확인 -> Satyajit Ray
 - 1) Multi line graph에서 추세를 확인 -> 2001년을 기점으로 감소 중 -> 전속 계약 감독 후보에서 배제