ECOLE NATIONALE DES SCIENCES APPLIQUEES D'AGADIR

Devoir surveillé: Transferts thermiques (Durée 1h 30 min)

Exercice 1 (12 points)

La paroi plane d'un four est composée de 3 couches successives de briques :

Couche	Matériau	Epaisseur (cm)	$\lambda(W m^{-1} K^{-1})$
intérieure	briques réfractaires	20	1,17
médiane	briques isolantes	10	0,256
extérieure	briques de	15	0,691
	construction		

La température de la face intérieure du four est de 871°C et la température de la face extérieure du four est maintenue à 52°C par circulation d'air.

1°) Calculer le flux perdu par unité de surface du four.

(3 points)

2°) Déterminer les températures aux interfaces des couches.

(6 points)

3°) Calculer le flux perdu par unité de surface du four en supposant qu'il existe une mince lame d'air X de 6mm d'épaisseur entre la couche de briques réfractaires et celle de briques isolantes. On supposera que les températures des faces internes et externes sont inchangées par rapport à la question 1). Dans ces conditions la conductivité thermique moyenne de l'air (3 points) $\lambda_a = 0.064 \ W \ m^{-1} \ K^{-1}$.

Exercice 2 (8 points)

Un four cylindrique est représenté sur la figure ci-dessous. Les dimensions sont d = 0.4m et h=2d. Il est ouvert vers l'extérieur sur sa face supérieure et l'air ambiant est à la température $\det T_a = 300 \, K$. Les parois du four se comportent comme des corps noirs. Les températures de parois sont maintenues à température constante par effet Joule (une résistance électrique est bobinée autour du four). La température de la base est $T_2 = 1900 \, K$ et celle de la paroi latérale est $T_1 = 1500 K$.

1°) Trouvez les facteurs de forme F_{23} , F_{21} , F_{12} et F_{13} .

(2 points)

2°) Calculer le flux net échangé entre la surface 1 et la surface 3

(1,5 points)

3°) Calculer le flux net échangé entre la surface 1 et la surface 2

(1,5 points)

4°) Calculer le flux net échangé entre la surface 2 et la surface 3

(1,5 points)

5°) Calculer la puissance électrique à fournir pour maintenir ces niveaux de température dans le four

ECOLE NATIONALE DES SCIENCES APPLIQUEES D'AGADIR

Année 2013-2014

Devoir surveillé du Transferts thermique par rayonnement (Durée 1h 30 min)

Exercice 1 (12 points)

La transmissivité monochromatique du pare-brise d'une voiture est :

$$\begin{cases} \tau_{\lambda} = 0 & \text{pour } \lambda < 0.3 \,\mu\text{m} \\ \tau_{\lambda} = 0.92 & \text{pour } 0.3 \,\mu\text{m} \le \lambda \le 3 \,\mu\text{m} \\ \tau_{\lambda} = 0 & \text{pour } \lambda > 3 \,\mu\text{m} \end{cases}$$

Supposons que le soleil se comporte comme un corps noir dont la température à la surface est $T_S = 5800\,K$. Supposons aussi que l'intérieur de la voiture (tableau de bord, siège, etc.) se comporte aussi comme un corps noir dont la température est environ $T_i = 400\,K$.

Le flux solaire sur le pare-brise est $1100 W/m^2$.

1°) Calculer la transmissivité du pare-brise au solaire. (3 points)

2°) Calculer la transmissivité du pare-brise au rayonnement provenant de l'intérieur de la voiture. (3 points)

3°) Estimez la densité du flux de chaleur radiatif provenant du soleil qui pénètre dans la voiture.

(3 points)

4°) Estimez la densité du flux de chaleur radiatif qui provient de l'intérieur de la voiture et qui ressort.

(3 points)

Exercice 2 (8 points)

Un cylindre creux d'épaisseur négligeable et de diamètre $d_2 = 6\,cm$ rayonne avec un facteur d'émission $\varepsilon_2 = 0.2$ et une température $T_2 = 1000\,K$ vers deux cylindres concentriques au précédent, l'un intérieur de diamètre $d_1 = 2\,cm$ et l'autre extérieur de diamètre $d_3 = 10\,cm$. Ces deux derniers cylindres sont maintenus à la température $T_1 = T_3 = 300\,K$ et leur facteur d'émission est $\varepsilon_1 = \varepsilon_3 = 0.8$.

1°) Calculer le flux de chaleur échangé entre le cylindre intermédiaire et le cylindre intérieure pour une longueur de 1m. (2,5 points)

2°) Calculer le flux de chaleur échangé entre le cylindre intermédiaire et le cylindre extérieur pour une longueur de 1 m. (2,5 points)

3°) Calculer le flux de chaleur total rayonné par le cylindre intermédiaire. (3 points)

Devoir surveillé de Transfert de chaleur (Durée 2h)

Exercice 1 (8 points)

Le tube illustré sur la figure ci dessus est de longueur L, de rayons interne r_1 et externe r_2 . On suppose que la variation de température dans la direction z est négligeable. Les surfaces interne et externe du tube échangent par convection avec des fluides respectivement à Tf_1 et Tf_2 et avec des coefficients h_1 et h_2 . Les faces du tube à $\theta = 0$ et $\theta = \pi$ sont respectivement à T_1 et T_2 .

1°) Donner les conditions aux limites.

(3 points)

2°) En supposant que $r_2 - r_1 << r_1$ et que toutes les propriétés sont constantes. Déterminer en régime permanent :

a- la distribution de température $T(\theta)$.

(2 points)

b- l'expression du flux de chaleur.

(3 points)

Données

L'équation de la chaleur en coordonnée cylindrique est :

$$\frac{1}{r}\frac{\partial}{\partial r}\left[\lambda r \frac{\partial T}{\partial r}\right] + \frac{1}{r^2}\frac{\partial}{\partial \varphi}\left[\lambda \frac{\partial T}{\partial \varphi}\right] + \frac{\partial}{\partial z}\left[\lambda \frac{\partial T}{\partial z}\right] + \mathcal{D} = \rho C_p \frac{\partial T}{\partial t}$$

Exercice 2 (12 points)

La paroi plane d'un four est composée de 3 couches successives de briques :

- une couche de 15 cm de briques réfractaires d'alumine
- une couche de briques isolantes de kaolin
- une couche de 22,5 cm d'épaisseur de briques ordinaires de construction

La température des briques refractaires des faces intérieures du four est de 982°C. La température de la surface de contact des couches de briques réfractaires et isolantes est de 938°C. La température de l'interface des couches de briques isolantes et de construction est de 138°C. Dans les conditions de fonctionnement du four, les conductivités thermiques moyennes des couches de la paroi sont:

Couche	$\lambda (W m^{-1} \circ C^{-1})$	
briques réfractaires d'alumine	$\lambda_1 = 1,62$	
briques isolantes de kaolin	$\lambda_2 = 0.23$	
briques ordinaires de construction	$\lambda_3 = 1,39$	

1°) Calculer les pertes de chaleur par m² de surface de mur.

(4 points)

2°) Calculer l'épaisseur e_2 de la couche de briques isolantes de kaolin

(4 points)

3°) Calculer la température de la surface extérieure du four T_{ext} .

(4 points)

Travaux dirigés de transfert de chaleur : Rayonnement

Exercice 1

On considère une petite surface $S_1 = 0{,}001 \, m^2$ à émission isotrope. La luminance totale de flux émis dans la direction normale à S_1 est $L_n = 7000 \, W \, / (m^2 \, sr)$. Le rayonnement émis est reçu par deux petites surfaces $S_2 = S_3 = 0{,}001 \, m^2$ qui sont à distance $R = 0{,}5 \, m$ (voir figure).

- 1°) quelle est la luminance associé à l'émission dans chacune des deux directions.
- $\sqrt{2^{\circ}}$) Calculer les angles solides sous lesquels S_2 et S_3 sont vus à partir de S_1 .
- $\sqrt{3}$ °) Déterminer le flux reçus par S_2 et S_3 .

J 4°) En déduire les éclairements totaux de ces deux surfaces.

Exercice 2

L'émittance monochromatique d'une surface diffuse peut être approximée comme montré sur la figure.

1°) Calculer l'émittance totale de la surface.

√2°) En déduire la luminance du rayonnement émis dans une direction donnée.

Exercice 3

Un four ayant une ouverture de diamètre D=20 mm et d'émittance totale $M=3.72.10^5 \text{ W/m}^2$ est utilisé pour calibrer un instrument de mesure de surface détectrice $A=1,6.10^{-5} \text{ m}^2$. L'instrument sert à mesurer le flux de chaleur.

✓ 1°) A quelle distance dans la direction normale à l'ouverture le détecteur doit être placé pour qu'il reçoit $1000 W/m^2$.

2°) quelle serait l'éclairement de la source détectrice si elle est inclinée de 20° par rapport à la normale de l'ouverture

Exercice 4

L'émission d'une surface S est identique à celle d'un corps noir à $T=1500\,K$. Déterminer la densité du flux émis par rayonnement dans le cône d'angle au sommet 60° et dans l'intervalle de longueur d'onde $2\,\mu m < \lambda < 4\,\mu m$.

Exercice 5

Un four ayant une petite ouverture fonctionne à la température $T = 1000 \, \text{K}$.

- 1°) Calculer l'émittance du rayonnement quittant l'ouverture.
- ✓2°) Déterminer la luminance monochromatique à $\lambda = 2 \mu m$ du flux émis.
- \checkmark 3°) Donner la fraction de l'émittance dans la bande spectrale $\lambda = 2 \mu m$ à $\lambda = 6 \mu m$

Exercice 6

Une surface opaque S à $T = 500 \, K$ est exposée au rayonnement émis par du charbon en combustion de température $T = 2000 \, K$. La surface est à émission et réflexion diffuses. L'émissivité monochromatique de S est donnée sur la figure ci-dessous.

- \downarrow 1°) Calculer l'émissivité totale hémisphérique de S.
- $\sqrt{2}$ °) Donner la distribution spectrale de l'émittance $M_{\lambda}(\lambda)$ de S.
- $\sqrt{3}^{\circ}$) En déduire l'émittance totale de S.
- 4°) Déterminer l'absorptivité monochromatique et totale de S.
- X5°) La surface S est elle grise.

Exercice 7

Une surface opaque S est à émission et réflexion diffuses est isolée sur une de ces deux faces. L'autre face, a une reflectivité et un éclairement monochromatique qui varient comme montrées sur la figure. La surface S est maintenue à la température $T = 750 \, K$.

- 1°) Calculer l'absorptivité et l'émissivité totales de S
- 2°) Déterminer le flux radiatif perdu par S.

Exercice 8

Une conduite très longue a la forme d'un triangle équilatéral de coté W = 1m. Toutes les surfaces sont à émission et réflexion diffuses. Les données du problème sont indiquées sur la figure. La surface S_R est adiabatique.

- 1°) En utilisant l'analogie électrique, déterminer les expressions des flux qu'ils faut fournir aux surfaces S_1 et S_2 pour les maintenir isothermes.
- 2°) Quelle est l'effet de ε_R sur les résultats.
 3°) Calculer la température de S_R .
- 4°) Etablir le système d'équations qui permet d'obtenir les radiosités de toutes les surfaces.