Operators

Propositional Operators

Symbol	Name	Word	Example
6	Negation	NOT	¬p means "not p"
^	Conjunction	AND	p ∧ q means "p and q"
V	Disjunction	OR	p v q means "p or q"
\longrightarrow	Implication	IF	$p \rightarrow q$ means "if p, then q"
$\boxed{\longleftrightarrow}$	Bi-Implication	IIF	$p \longleftrightarrow$ q means "p if and only if q"
\oplus	Exclusive OR	XOR	$p \oplus q$ means "either p or q , but not both"

- Operators must be applied according to precedence.
- When two operators conflict, the operator with the lower precedence value is applied first.
- Parenthesis are always applied before operators.

Operator	Precedence
-	1
٨	2
V	3
⇒	4
\Leftrightarrow	5
\oplus	6

Negation

р	¬р
Т	F
F	Т

```
p = "The weather is good"

Example expression:
¬p

i.e. "NOT p"

e.g. "The weather is not good."
```

Conjunction

р	q	p∧q
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

```
p = "The sky is clear"
q = "It is warm"

Example expression:
p \( \) q

i.e. "p AND q"

e.g. "The sky is clear and it is warm."
```

Disjunction

р	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

```
p = "The music is playing"
q = "The guests are talking"

Example expression:
p v q

i.e. "p OR q"

e.g. "The music is playing or the guests are talking"
```

Implication

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

```
p = "It is pouring"
r = "The old man is snoring"

Example expression:
p → r

i.e. "If p, then r."

e.g. "If it is pouring, then the old man is snoring."
```

Bi-Implication

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

```
p = "A triangle has three equal sides"
q = "The triangle is equilateral"

Example expression:
p ⇔ q

i.e. "p IFF q"

e.g. "A trinangle has three equal sides, if and only if the triangle is equilateral."
```

Exclusive OR

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Set Operators

Operation	Notation	Definition	Description
Intersection	A∩B	{ x : x ∈ A and x ∈ B }	The set of elements shared by A and B.

Operation	Notation	Definition	Description
Union	A∪B	$\{x:x\in A \text{ or } x\in B \text{ or both }\}$	Elements of A and B are joined with no duplicates.
Difference	A - B	{ x : x ∈ A and x ∉ B }	Every element shared with B is removed from A.
Symmetric difference	A ⊕ B	{ x : x ∈ A - B or x ∈ B - A }	Union of unshared elements between A and B.
Complement	Ā	{ x : x ∉ A }	Every element in the universal set not in A.

Set Assertions

Condition	Notation	Definition	Description
Subset	A ⊆ B	$\forall x (x \in A \rightarrow x \in B)$	Every element of A is in B.
Proper Subset	A ⊂ B	$\forall x (x \in A \rightarrow x \in B)$ $\land \exists x (x \in B \land x \notin A)$	Every element of A is in B, but B has more elements.
Not Subset	A ⊄ B	$\forall x (x \in B \rightarrow x \notin A)$	Every element of A is not in B.