Physics 106a — Classical Mechanics

Michael Cross

California Institute of Technology

Fall Term, 2013

Lecture 12

Action Angle Variables & Hamilton-Jacobi Theory

Design your Hamiltonian, and find a canonical transformation to gives this

■ Action-angle variables (for periodic motion)

$$\{q_k\}, \{p_k\} \Rightarrow \{\psi_k\}, \{I_k\}$$
 such that $H = H(\{I_k\})$

$$\{\psi_k\}$$
 are ignorable, so $\dot{I}_k = 0$ and then $\dot{\psi}_k = \partial H/\partial I_k = \Omega_k$

■ Hamilton-Jacobi theory

$$\{q_k\}, \{p_k\} \Rightarrow \{\beta_k\}, \{\alpha_k\}$$
 such that $\bar{H} = 0$

New coordinates and momenta are constants $\dot{\alpha}_k = \dot{\beta}_k = 0$

It is only for very special cases that this can be done!

Action-Angle Variables

For periodic motion

$$\{q_k\}, \{p_k\} \Rightarrow \{\psi_k\}, \{I_k\}$$
 such that $H = H(\{I_k\})$

Then $\{\psi_k\}$ are ignorable, so $\dot{I}_k = 0$ and then $\dot{\psi}_k = \partial H/\partial I_k = \Omega_k$

- frequency without calculation of full orbit q(t), p(t)
- orbit without solving for time evolution
- action variable is adiabatic invariant
- simple description of periodic orbit for start of perturbation theory

Adiabatic Invariant

 $H(q, p, \alpha)$ with α a slowly varying function of time

For fixed α use $F_1(q, \psi; \alpha)$ to give action-angle variables $I, \psi \Rightarrow H(I(\alpha), \alpha)$

Now include time dependence $H \to \bar{H} = H(I(\alpha), \alpha) + \dot{\alpha}(\partial F_1/\partial \alpha)$

The action becomes time dependent

$$\dot{I} = -\frac{\partial \bar{H}}{\partial \psi} = -\frac{\partial^2 F_1}{\partial \psi \, \partial \alpha} \dot{\alpha}$$

Average over one period T of ψ approximating $\dot{\alpha}$ as constant over this time

$$\langle \dot{I} \rangle \simeq -\frac{\dot{\alpha}}{2\pi} \left[\frac{\partial F_1}{\partial \alpha} (q, \psi + 2\pi, \alpha(T)) - \frac{\partial F_1}{\partial \alpha} (q, \psi, \alpha(0)) \right] \simeq -\frac{\dot{\alpha}^2 T}{2\pi} \frac{\partial^2 F_1}{\partial \alpha^2}$$

This gives

$$\langle \dot{I} \rangle \propto \dot{\alpha}^2$$
 whereas $\dot{E} \propto \dot{\alpha}$

Hamilton-Jacobi theory

■ Time dependent canonical transformation to make new Hamiltonian zero!

$$\bar{H}(\{Q_k\}, \{P_k\}, t) = 0$$

- $\mathbf{Q}_k = 0, \, \dot{P}_k = 0 \text{ (so write } P_k \to \alpha_k, \, Q_k \to \beta_k)$
- Type-2 generating function $S(\lbrace q_k \rbrace, \lbrace P_k \rbrace, t)$: then $p_k = \frac{\partial S}{\partial q_k}$ and

$$H\left(\{q_k\}, \left\{\frac{\partial S}{\partial q_k}\right\}, t\right) + \frac{\partial S}{\partial t} = 0$$

the *Hamilton-Jacobi* equation for *Hamilton's principal function* $S(\{q_k\}, \{\alpha_k\}, t)$

- The mechanics problem is "reduced" to solving a nonlinear PDE!
- S is the action as a function of the endpoints $\{q_k\}$, t, given by integrating the Lagrangian along the actual dynamical path

Method works for separable problems

$$S(\lbrace q_k \rbrace, t) = W_1(q_1) + W_2(q_2) + \dots + W_N(q_N) + W_0(t)$$

- May choose the new (constant) momenta $\{\alpha_k\}$ to be N separation constants (or independent combinations of them) $\Rightarrow S(\{q_k\}, \{\alpha_k\}, t)$
- The constant $\{\alpha_k\}$ are fixed by initial conditions $p_k(0) = (\partial S/\partial q_k)_{t=0}$
- New (constant) coordinates $\{\beta_k\}$ are given by $\beta_k = \partial S/\partial \alpha_k$
- Constants $\{\beta_k\}$ are fixed by initial conditions $\{q_k(0)\}$: $\beta_k = (\partial S/\partial \alpha_k)_{t=0}$
- At general time $\partial S/\partial \alpha_k = \beta_k \Rightarrow \{q_k(t)\}$

Hamilton's characteristic function

For a time independent Hamiltonian

$$S(\{q_k\}, \{\alpha_k\}, t) = W(\{q_k\}, \{\alpha_k\}) - Et$$

with E the constant value of H.

The function $W(\lbrace q_k \rbrace, \lbrace \alpha_k \rbrace)$ is called *Hamilton's characteristic function*

Can alternatively perform a *time independent* canonical transformation with a generating function $W(\lbrace q_k \rbrace, \lbrace \alpha_k \rbrace)$ to make the Hamiltonian constant rather than zero

$$\bar{H} = H\left(\{q_k\}, \left\{\frac{\partial W}{\partial q_k}\right\}\right) = E$$

Can choose E as one of the new constant momenta (other choices possible too)

Hamiltonian
$$H = \frac{1}{2}(p_x^2 + p_z^2) + z$$

Hamilton-Jacobi equation for Hamilton's principal function S(x, z, t)]

$$\frac{1}{2} \left(\frac{\partial S}{\partial x} \right)^2 + \left[\frac{1}{2} \left(\frac{\partial S}{\partial z} \right)^2 + z \right] + \left[\frac{\partial S}{\partial t} \right] = 0$$

Separability:
$$S(x, z, t) = W_1(x) + W_3(z) - Et$$

$$\frac{1}{2} \left(\frac{dW_1}{dx} \right)^2 = \alpha_1 \quad \Rightarrow \quad W_1 = \pm \sqrt{2\alpha_1} x$$

$$\frac{1}{2} \left(\frac{dW_3}{dz} \right)^2 + z = \alpha_3 \quad \Rightarrow \quad W_3 = \pm \sqrt{\frac{8}{9}} (\alpha_3 - z)^{3/2}$$

$$\alpha_1 + \alpha_3 = E$$

$$S = \pm \sqrt{2\alpha_1}x \pm \sqrt{\frac{8}{9}}(\alpha_3 - z)^{3/2} - (\alpha_1 + \alpha_3)t$$

Choose α_1, α_3 as the new constant momenta \rightarrow new coordinates:

$$\beta_1 = \frac{\partial S}{\partial \alpha_1} = \pm \frac{1}{\sqrt{2\alpha_1}} x - t$$
$$\beta_3 = \frac{\partial S}{\partial \alpha_3} = \pm \sqrt{2(\alpha_3 - z)} - t$$

Original momenta:

$$p_x = \frac{\partial S}{\partial x} = \frac{dW_1}{dx} = \pm \sqrt{2\alpha_1}$$
$$p_z = \frac{\partial S}{\partial z} = \frac{dW_3}{dz} = \mp \sqrt{2(\alpha_3 - z)}$$

Fix constants from the initial conditions: e.g. shoot from x = z = 0 at t = 0 at t

$$p_x = \pm \sqrt{2\alpha_1}$$
 \Rightarrow $\alpha_1 = 1$, use top sign $p_z = \mp \sqrt{2(\alpha_3 - z)}$ \Rightarrow $\alpha_3 = 1$, use bottom sign $\beta_1 = \pm \frac{1}{\sqrt{2\alpha_1}} x - t$ \Rightarrow $\beta_1 = 0$ $\beta_3 = \pm \sqrt{2(\alpha_3 - z)} - t$ \Rightarrow $\beta_3 = -\sqrt{2}$

Read off the solutions

$$p_x(t) = \sqrt{2}, \quad p_z(t) = \sqrt{2(1-z)}$$

and from the β equations

$$x(t) = \sqrt{2}t, \quad z(t) = \sqrt{2}t - \frac{1}{2}t^2$$

Wave description of particle motion

$$S = W(x, z) - Et = \sqrt{2}x - \frac{8}{9}(1 - z)^{3/2} - 2t$$

- Particle trajectory is along normal to lines of constant *S*
- Lines of constant S propagate with speed $E/|\nabla W|$

If we interpret *S* as the phase of a wave:

- Frequency of wave is $\Omega = E$
- Wave vector of wave is $\vec{k} = \vec{\nabla} S = \vec{\nabla} W = \vec{p}$
- Phase speed of wave is $\Omega/k = E/p$
- Group speed of wave is $d\Omega/dk = dE/dp$ = speed of particle

Alternative way of manipulating the constants

Instead use α_1 and $\alpha_0 = -E$ as the new constant momenta and write

$$S = W(x, z, \alpha_1, E) - Et$$

with

$$W = \pm \sqrt{2\alpha_1}x \pm \sqrt{\frac{8}{9}}(E - \alpha_1 - z)^{3/2}$$

so that

$$\beta_1 = \frac{\partial W}{\partial \alpha_1} = \pm \frac{1}{\sqrt{2\alpha_1}} x \mp \sqrt{2} (E - \alpha_1 - z)^{1/2}$$

$$p_x = \frac{\partial W}{\partial x} = \pm \sqrt{2\alpha_1}$$

$$p_z = \frac{\partial W}{\partial z} = \mp \sqrt{2(E - \alpha_1 - z)}$$

The initial conditions give $\alpha_1 = 1$, E = 2, $\beta_1 = \sqrt{2}$ and sign choices such that

$$W = \sqrt{2}x - \frac{8}{9}(1-z)^{3/2}$$
 and $z = x - \frac{1}{4}x^2$

Less trivial problems I *

Starred items are for interest only

Particle in gravity-like potential

$$V(r,z) = -\frac{k}{r} + gz$$

Hamilton-Jacobi equation separable in parabolic coordinates (Hand and Finch pp. 226-228)

Less trivial problems II *

Kepler problem in spherical polar coordinates (GPS §10.5,§10.8)

$$H = \frac{1}{2m} \left(p_r^2 + \frac{1}{r^2} p_\theta^2 + \frac{1}{r^2 \sin^2 \theta} p_\phi^2 \right) - \frac{k}{r}$$

$$\frac{1}{2m} \left[\left(\frac{\partial S}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial S}{\partial \theta} \right)^2 + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial S}{\partial \phi} \right)^2 \right] - \frac{k}{r} + \frac{\partial S}{\partial t} = 0$$

$$S = W_r(r) + W_\theta(\theta) + W_\phi(\phi) - Et$$

$$\left(\frac{dW_{\phi}}{d\phi}\right)^{2} = \alpha_{\phi}^{2} \qquad \Rightarrow \qquad I_{\phi} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{dW_{\phi}}{d\phi} d\phi = \alpha_{\phi}$$

$$\left(\frac{dW_{\theta}}{d\theta}\right)^{2} + \frac{\alpha_{\phi}^{2}}{\sin^{2}\theta} = \alpha_{\theta}^{2} \qquad \Rightarrow \qquad I_{\theta} = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{dW_{\theta}}{d\theta} d\theta = \alpha_{\theta} - \alpha_{\phi}$$

$$\frac{1}{2m} \left[\left(\frac{dW_{r}}{dr}\right)^{2} + \frac{\alpha_{\theta}^{2}}{r^{2}} \right] - \frac{k}{r} = E \qquad \Rightarrow \qquad E = -\frac{\frac{1}{2}mk^{2}}{(I_{r} + I_{\theta} + I_{\phi})^{2}}$$

Connection with quantum mechanics *

Schrödinger's equation for a particle with Hamiltonian $H = p^2/2m + V(\vec{r}, t)$

$$i\hbar \frac{\partial \Psi}{\partial t} = H\Psi = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V(\vec{r}, t)\Psi$$
 (*)

The semiclassical limit is given by considering \hbar small and looking for a solution in the WKB form

$$\Psi = \sqrt{\rho(\vec{r}, t)}e^{iS(\vec{r}, t)/\hbar}$$
 cf. plane wave $\Psi = \sqrt{\rho}e^{i\vec{p}\cdot\vec{r}/\hbar}$

where we assume gradients and time dependence of ρ , S are O(1).

Substitute into (*) and collect the leading order terms, those in \hbar^0

$$\frac{1}{2m}(\vec{\nabla}S)^2 + V(\vec{r},t) + \frac{\partial S}{\partial t} = 0$$

This is exactly the Hamilton-Jacobi equation for the Hamiltonian H with Hamilton's principal function $S(\vec{r}, t)$ equal to \hbar times the quantum phase.