A Modulation Strategy for Active – Power Decoupled Wide Battery Voltage Range 1-phase 1-stage EV Charger

Ph.D. Registration Seminar 26.09.2024

Delivered by Soumya Ghorai

Roll No: 22EE91R08

Supervisor Dr. Souvik Chattopadhyay

CONTENT

- Introduction & Prior Art Research Objectives
- Proposed Topology & Modulation for Wide Range Operation
- Control Architecture and Operating Modes
- Converter Specs and Measured Waveforms
- Proposed Active-power Decoupling (APD) Control
- Measured Waveforms for APD
- Effect on the Loss Profile
- Conclusions

Li-ion battery pack charging profile

Nominal Voltage of Battery Pack inside most selling

Requirements of modern On-board EV charger

- Bidirectional power flow capability for V2G application.
- Unity power factor operation with line current THD < 8% [IEEE 519-2022].
- High-frequency isolation instead of line-frequency transformer isolation.
- Converter efficiency > 95%

Li-ion battery pack charging profile

Nominal Voltage of Battery Pack inside most selling

Requirements of modern On-board EV charger

- Bidirectional power flow capability for V2G application.
- Unity power factor operation with line current THD < 8% [IEEE 519-2022].
- High-frequency isolation instead of line-frequency transformer isolation.
- Converter efficiency > 95%
- Wide range battery voltage operation.
- Low-frequency ripple-free charging current. [1]

•

1-phase 1-stage Topologies (Prior Arts)

Advantages

- Reduction in device counts and thermal footprint.
- Rectified sine AC bus: Charge storage less design.

Disadvantages

- Sinusoidal charging.
- Efficiency dropping when V_{BAT} varies.

- → APD cell. Extra Circuitry!
- Wide variation of switching frequency!

280-480 V variation. 20-120kHz @ 3.3kW

F. Jauch and J. Biela, "Combined Phase-Shift and Frequency Modulation of a Dual-Active-Bridge AC–DC Converter With PFC," in IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8387-8397, Dec. 2016

Wide Voltage Variation (Prior Arts)

250-500 V variation. DC-DC LLC topology. Full load efficiency: 96.5-98.5% @6kW

N. Zanatta, T. Caldognetto, D. Biadene, G. Spiazzi and P. Mattavelli, "A Two-Stage DC-DC Isolated Converter for Battery-Charging Applications," in IEEE Open Journal of Power Electronics, vol. 4, pp. 343-356, 2023

150-750 V variation. 1-stage AC-DC DAB topology. Full load efficiency: 91-94.5% @ 2kW

T. -T. LE, R. M. Hakim and S. Choi, "A High-Efficiency Bidirectional Single-Stage AC-DC Converter Under Wide Voltage Range for Fast Chargers," in IEEE Transactions on Power Electronics, vol. 38, no. 4, pp. 4945-4956

150-950 V variation. CLLC DC-DC topology. Full load efficiency: 97-98.5% @ 6.6 kW

S. Mukherjee, J. M. Ruiz and P. Barbosa, "A High Power Density Wide Range DC–DC Converter for Universal Electric Vehicle Charging," in IEEE Transactions on Power Electronics, vol. 38, no. 2, pp. 1998-2012, Feb. 2023

Proposed Topology & Modulation for Wide Range Operation	

The proposed topology

• Three-leg structure at the AC side

➤ Leg-x : PFC

➤ Leg-b : PFC+ DAB

➤ Leg-a: DAB

In every switching cycle, $v_{ab_{RMS}} = nv_{cd_{RMS}}$

- Equal pulse width by carrier-shift technique
- Equal Magnitude by selecting proper n

$$P_S = \frac{|V_{ab}||V_{cd}|}{X} \sin \varphi \qquad Q_S = |V_{ab}| \cdot \frac{(|V_{ab}| - |V_{cd}| \cos \varphi)}{X}$$

$$\vec{I} = \frac{|V_{ab}| \sin \varphi}{X} - j \frac{(|V_{ab}| - |V_{cd}| \cos \varphi)}{X}$$

Sinusoidal carrier shift at the DC bridge

- The sinusoidal carrier shifting function is coming from the modulation signal.
- DC bus is regulated @ $V_{BUS} = nV_{BAT}$

The Control Architecture

$$m_{ac} = m_g \sin(w_g t)$$

 $\delta(t) = m_{ac} = m_g \sin(\omega_g t)$
 $V_{BUS} = nV_{BAT}$

Different Modes of Operation

Switching cycle average power transfer Mode-2: $P_{dab}|_{T_S} = \frac{V_{BUS}^2 T_S}{4L_{dab}} (1 - |m_{ac}| - \frac{p}{2})$ where, $p = \frac{\phi}{T_S/4}$

Converter Specs and Measured Waveforms	

Prototype Specs and Measured Efficiency

	100								
_			CP (2	2kW)		CV (2	00V)		
%	98	•···•					****		
Efficiency (%)	96			•	••				
icie	94								
Efj	92								
	90								
	40	00	300	200	15	00 10	00 50	00	0
			V_{BAT}	V)		Power	(W)		

Specifications	
Power Rating	2kW
AC input voltage	220V (rms), 50Hz
Battery voltage	200-500 V
Switches	NTHLO40N120SC1, 1.2kV, $40 \text{m}\Omega$
Switching frequency	100kHz
Transformer turns ratio	1.8 : 1 (AC side: DC side)
Dab inductance	40μΗ
DC bus capacitance	260 μF, 4 qty of C4AQCBW5750A3NJ
Filter Inductor	1mH
Controller	XE6SLX9 FPGA

The measured efficiency for constant power(2kW) battery voltage 200V-400V (yellow area) and 200V constant voltage charging down to 200W (10% of rated power) (green area)

Active power control via phase-shift modulation

$$|V_{ab}| - |V_{cd}| \cos \varphi = 0$$

$$P_S = Const. \ if \ \sin \varphi \propto \frac{1}{|V_{ab}||V_{cd}|}$$

$$i_{DAB} = \frac{|V_{ab}| \sin \varphi}{\omega L_{dab}}$$

$$V_{ab} \angle \varphi \qquad jX \qquad V_{cd} \angle 0$$

$$P_{s} \longrightarrow Q_{s} \longrightarrow V_{cd} \angle 0$$

$$P_{s} \longrightarrow Q_{s} \longrightarrow V_{cd} \angle 0$$

$$P_{s} = \frac{|V_{ab}||V_{cd}|}{X} \sin \varphi \qquad Q_{s} = |V_{ab}| \cdot \frac{(|V_{ab}| - |V_{cd}| \cos \varphi)}{X}$$

$$\vec{I} = \frac{|V_{ab}| \sin \varphi}{X} - j \frac{(|V_{ab}| - |V_{cd}| \cos \varphi)}{X}$$

Digital control by sensing only inputs and outputs

Switching cycle average power transfer Mode-2:

cycle average power transfer Mode-2:
$$P_{dab}|_{T_S} = \frac{V_{BUS}^2 T_S}{4L_{dab}} (1-|m_{ac}|-\frac{p}{2}) \quad \text{where,} \\ p = \frac{\phi}{T_S/4}$$

No high-frequency current sensing. Overall sampling frequency @ 100 kHz. Phase shift is modulated for each switching cycle using a ramp function of the switching frequency @100kHz and adjustable delay block.

Measured Waveforms

- (a) 600 W result for scheme-1 with FFT of charging current
- (b) 600 W result for scheme-2 with FFT of charging current

Conduction Loss Reduction

• 60% reduction in conduction loss compared to square-wave excitation.

DAB current follows the least RMS path resulting in the minimum conduction loss.

•

Turn-off Loss Reduction

- 60% reduction in turn-off loss
- Always ZVS turn-on for $Q_7 Q_{10}$
- Enhanced ZVS for *PFC switch*: $Q_3 \& Q_4 : 65\%$

Overall Loss Profile Comparision

A 1-phase 1-stage on-board charger topology is shown with wide range operation and active power decoupling.
The proposed combined pulse-width and phase-shift modulation strategy achieves active power decoupling without extra circuitry, eliminating the double line-frequency AC ripple in the battery charging current.
The proposed modulation achieves the least RMS DAB current trajectory throughout the line cycle while facilitating Zero Voltage Switching (ZVS) for enhanced efficiency.
Efficiency is predicted to exceed 98% and preliminary testing results support the prediction.
More analytical details and results with rated power will be provided in the subsequent publications.

References

- 1. M. J. Brand, M. H. Hofmann, S. S. Schuster, P. Keil and A. Jossen, "The Influence of Current Ripples on the Lifetime of Lithium-Ion Batteries," in *IEEE Transactions on Vehicular Technology*, vol. 67, no. 11, pp. 10438-10445, Nov. 2018, doi: 10.1109/TVT.2018.2869982
- 2. B. Whitaker *et al.*, "A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices," in *IEEE Transactions on Power Electronics*, vol. 29, no. 5, pp. 2606-2617, May 2014, doi: 10.1109/TPEL.2013.2279950
- 3. L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, "Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle With Charging Current Containing Low Frequency Ripple," in *IEEE Transactions on Power Electronics*, vol. 30, no. 12, pp. 7299-7307, Dec. 2015, doi: 10.1109/TPEL.2015.2413815.
- 4. B. Li, Q. Li, F. C. Lee, Z. Liu and Y. Yang, "A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1627-1636, Sept. 2018, doi: 10.1109/JESTPE.2018.2845846.
- 5. A. K. Bhattacharjee and I. Batarseh, "Sinusoidally Modulated AC-Link Microinverter Based on Dual-Active-Bridge Topology," in *IEEE Transactions on Industry Applications*, vol. 56, no. 1, pp. 422-435, Jan.-Feb. 2020, doi: 10.1109/TIA.2019.2943119.
- 6. N. D. Weise, G. Castelino, K. Basu and N. Mohan, "A Single-Stage Dual-Active-Bridge-Based Soft Switched AC–DC Converter With Open-Loop Power Factor Correction and Other Advanced Features," in *IEEE Transactions on Power Electronics*, vol. 29, no. 8, pp. 4007-4016, Aug. 2014, doi: 10.1109/TPEL.2013.2293112.
- 7. J. Everts, F. Krismer, J. Van den Keybus, J. Driesen and J. W. Kolar, "Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters," in *IEEE Transactions on Power Electronics*, vol. 29, no. 8, pp. 3954-3970, Aug. 2014, doi: 10.1109/TPEL.2013.2292026.
- 8. H. Belkamel, H. Kim and S. Choi, "Interleaved Totem-Pole ZVS Converter Operating in CCM for Single-Stage Bidirectional AC–DC Conversion With High-Frequency Isolation," in *IEEE Transactions on Power Electronics*, vol. 36, no. 3, pp. 3486-3495, March 2021, doi: 10.1109/TPEL.2020.3016684.
- 9. K. Itoh, M. Ishigaki, N. Kikuchi, T. Harada and T. Sugiyama, "A Single-Stage Rectifier with Interleaved Totem-pole PFC and Dual Active Bridge (DAB) Converter for PHEV/BEV On-board Charger," 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 2020, pp. 1936-1941, doi: 10.1109/APEC39645.2020.9124083.

Thank You.
Any Questions?