Anéis - Ideais

José Antônio O. Freitas

MAT-UnB

Um anel comutativo $(A, +, \cdot)$

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade**

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$,

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A$$

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A$$
 ou $y = 0_A$.

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A \text{ ou } y = 0_A.$$

Um anel de integridade também é chamado de **domínio de integridade**

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A \text{ ou } y = 0_A.$$

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A \text{ ou } y = 0_A.$$

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A \text{ ou } y = 0_A.$$

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A \text{ ou } y = 0_A.$$

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A tais que $xy = 0_A$,

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A$$
 ou $y = 0_A$.

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A tais que $xy=0_A$, então x e y são chamados de

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A$$
 ou $y = 0_A$.

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A tais que $xy = 0_A$, então x e y são chamados de **divisores próprios de zero**.

Um anel comutativo $(A, +, \cdot)$ é dito ser um **anel de integridade** quando para todos $x, y \in A$, se

$$xy = 0_A$$

então

$$x = 0_A$$
 ou $y = 0_A$.

Um anel de integridade também é chamado de **domínio de integridade** ou simplesmente de **domínio**.

Observação:

Se x e y são elementos não nulos de um anel A tais que $xy = 0_A$, então x e y são chamados de **divisores próprios de zero**.

1) Os anéis \mathbb{Z} ,

1) Os anéis \mathbb{Z} , \mathbb{Q} ,

1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} ,

1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C}

1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade,

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 ,

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 , $\overline{2} \neq \overline{0}$,

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 , $\overline{2}\neq \overline{0}$, no entanto

$$\overline{2}\otimes\overline{2}$$

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 , $\overline{2} \neq \overline{0}$, no entanto

$$\overline{2}\otimes\overline{2}=\overline{4}$$

- 1) Os anéis \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} são anéis de integridade.
- 2) Em geral \mathbb{Z}_m não é anel de integridade, por exemplo, em \mathbb{Z}_4 , $\overline{2}\neq \overline{0}$, no entanto

$$\overline{2}\otimes \overline{2}=\overline{4}=\overline{0}.$$

3) $M_n(\mathbb{R})$

3) $M_n(\mathbb{R})$ não é um anel de integridade,

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m = nk,

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m = nk, m > n > 1

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m = nk, m > n > 1 e m > k > 1.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m ,

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq \overline{0}$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1\ e\ m>k>1.\ Logo,\ em\ \mathbb{Z}_m,\ \overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk, \ m>n>1 \ e \ m>k>1. \ Logo, \ em \ \mathbb{Z}_m, \ \overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk, \ m>n>1 \ e \ m>k>1. \ Logo, \ em \ \mathbb{Z}_m, \ \overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo,

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam \overline{x} ,

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam \overline{x} , $\overline{y}\in \mathbb{Z}_m$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x}, \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq \overline{0}$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x}, \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$,

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1\ e\ m>k>1.$ Logo, em $\mathbb{Z}_m,\ \overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}.$ Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\ (\text{mod }p)$.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em $\mathbb{Z}_m,\ \overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\,\overline{y}\in\mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$. Assim, \mathbb{Z}_m é anel de integridade

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que m=nk, m>n>1 e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x}, \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$. Assim, \mathbb{Z}_m é anel de integridade se, e somente se,

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$. Assim, \mathbb{Z}_m é anel de integridade se, e somente se, m é primo.

3) $M_n(\mathbb{R})$ não é um anel de integridade, por exemplo, em $M_2(\mathbb{R})$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

4) Suponha que $m=nk,\ m>n>1$ e m>k>1. Logo, em \mathbb{Z}_m , $\overline{n}\neq 0$ e $\overline{k}\neq \overline{0}$ e no entanto $\overline{n}\otimes \overline{k}=\overline{m}=\overline{0}$. Logo, se m não é primo, então \mathbb{Z}_m não é um anel de integridade. Agora, suponha que m=p primo. Sejam $\overline{x},\ \overline{y}\in \mathbb{Z}_m$ tais que $\overline{x}\otimes \overline{y}=\overline{0}$, ou seja, $xy\equiv 0\pmod{p}$. Daí $p\mid xy$. Logo $p\mid x$ ou $p\mid y$. Portanto, $\overline{x}=\overline{0}$ ou $\overline{y}=\overline{0}$. Assim, \mathbb{Z}_m é anel de integridade se, e somente se, m é primo.

Seja $(A,+,\cdot)$ um anel comutativo.

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio

Seja $(A,+,\cdot)$ um anel comutativo. Um subconjunto não-vazio $I\subseteq A$

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

i) para todos $x, y \in I$,

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

i) para todos $x, y \in I$, temos $x - y \in I$.

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$,

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Observação:

Quando I = A

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Observação:

Quando I = A ou $I = \{0_A\}$,

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Observação:

Quando I = A ou $I = \{0_A\}$, dizemos que I

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Observação:

Quando I = A ou $I = \{0_A\}$, dizemos que I é um **ideal trivial**.

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

- i) para todos $x, y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Observação:

Quando I = A ou $I = \{0_A\}$, dizemos que I é um **ideal trivial**.

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação.

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

 $I = m\mathbb{Z}$

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I=m\mathbb{Z}=\{mk\mid k\in\mathbb{Z}\},$$

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I=m\mathbb{Z}=\{mk\mid k\in\mathbb{Z}\},$$

com m > 1.

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I=m\mathbb{Z}=\{mk\mid k\in\mathbb{Z}\},$$

com m > 1. Então I é um ideal de \mathbb{Z} .

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I=m\mathbb{Z}=\{mk\mid k\in\mathbb{Z}\},$$

com m > 1. Então I é um ideal de \mathbb{Z} .

2) No anel \mathbb{Z}_p ,

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I = m\mathbb{Z} = \{ mk \mid k \in \mathbb{Z} \},\$$

- com m > 1. Então I é um ideal de \mathbb{Z} .
- 2) No anel \mathbb{Z}_p , onde p é um número primo,

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I = m\mathbb{Z} = \{ mk \mid k \in \mathbb{Z} \},$$

- com m > 1. Então I é um ideal de \mathbb{Z} .
- 2) No anel \mathbb{Z}_p , onde p é um número primo, os únicos ideais são os triviais: $\{\overline{0}\}$

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I = m\mathbb{Z} = \{ mk \mid k \in \mathbb{Z} \},$$

com m > 1. Então I é um ideal de \mathbb{Z} .

2) No anel \mathbb{Z}_p , onde p é um número primo, os únicos ideais são os triviais: $\{\overline{0}\}$ e \mathbb{Z}_p .

1) Considere no anel $\mathbb Z$ as operações usuais de soma e multiplicação. Seja

$$I = m\mathbb{Z} = \{ mk \mid k \in \mathbb{Z} \},$$

com m > 1. Então I é um ideal de \mathbb{Z} .

2) No anel \mathbb{Z}_p , onde p é um número primo, os únicos ideais são os triviais: $\{\overline{0}\}$ e \mathbb{Z}_p .

Seja A um anel comutativo

i)
$$0_A \in I$$
.

- i) $0_A \in I$.
- ii) $-x \in I$

- i) $0_A \in I$.
- ii) $-x \in I$ para todo $x \in I$.

- i) $0_A \in I$.
- ii) $-x \in I$ para todo $x \in I$.
- iii) Se $1_A \in I$,

- i) $0_A \in I$.
- ii) $-x \in I$ para todo $x \in I$.
- iii) Se $1_A \in I$, então I = A.

Seja A um anel comutativo e I um ideal de A. Então:

- i) $0_A \in I$.
- ii) $-x \in I$ para todo $x \in I$.
- iii) Se $1_A \in I$, então I = A.

Prova:

i) Os únicos ideais não triviais de

i) Os únicos ideais não triviais de $\mathbb{Z}_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ são:

i) Os únicos ideais não triviais de $\mathbb{Z}_8=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7}\}$ são: $I_1=\{\overline{0},\overline{2},\overline{4},\overline{6}\}$

i) Os únicos ideais não triviais de $\mathbb{Z}_8=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7}\}$ são:

$$I_1 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$$
$$I_2 = \{\overline{0}, \overline{4}\}$$

i) Os únicos ideais não triviais de $\mathbb{Z}_8=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7}\}$ são:

$$I_1 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$$
$$I_2 = \{\overline{0}, \overline{4}\}$$

Seja I um ideal

Seja I um ideal de um anel comutativo $(A, +, \cdot)$.

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x \acute{e} congruente a y

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x \acute{e} congruente a y módulo I

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x **é** congruente a y módulo I quando $x - y \in I$.

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x **é** congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x **é** congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

Proposição

A congruência módulo I

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x **é** congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

Proposição

A congruência módulo I é uma relação de equivalência em $A \times A$,

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x \acute{e} congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

Proposição

A congruência módulo I é uma relação de equivalência em $A \times A$, onde é um A anel comutativo unitário.

Definição

Seja I um ideal de um anel comutativo $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que x \acute{e} congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

Proposição

A congruência módulo I é uma relação de equivalência em $A \times A$, onde é um A anel comutativo unitário.

Prova:

Seja $y \in A$.

$$C(y) = \{x \in A$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\}$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x \equiv y \pmod{l}\}$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

Agora, $x - y \in I$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

Agora, $x - y \in I$ significa que existe $t \in I$,

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

Agora, $x - y \in I$ significa que existe $t \in I$, tal que x - y = t.

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

Agora, $x - y \in I$ significa que existe $t \in I$, tal que x - y = t. Logo, x = y + t,

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) =$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{y + t$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{y + t \mid t \in I\}$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{I}\} = \{x \in A \mid x - y \in I\}.$$

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y + I

$$C(y) = \{x \in A \mid x \equiv y \pmod{I}\} = \{x \in A \mid x - y \in I\}.$$

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y + I (ou I + y)

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y + I (ou I + y) a classe de equivalência de $y \in A$

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência de $y\in A$ módulo I.

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

Agora, $x-y\in I$ significa que existe $t\in I$, tal que x-y=t. Logo, x=y+t, onde $t\in I$. Assim,

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência de $y\in A$ módulo I. Denotamos por

$$C(y) = \{x \in A \mid x \equiv y \pmod{I}\} = \{x \in A \mid x - y \in I\}.$$

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência de $y\in A$ módulo I. Denotamos por

 $\frac{A}{I}$

$$C(y) = \{x \in A \mid x \equiv y \pmod{I}\} = \{x \in A \mid x - y \in I\}.$$

Agora, $x-y \in I$ significa que existe $t \in I$, tal que x-y=t. Logo, x=y+t, onde $t \in I$. Assim.

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência de $y\in A$ módulo I. Denotamos por

 $\frac{A}{I}$

o conjunto de todas as classes de equivalência,

$$C(y) = \{x \in A \mid x \equiv y \pmod{I}\} = \{x \in A \mid x - y \in I\}.$$

Agora, $x-y \in I$ significa que existe $t \in I$, tal que x-y=t. Logo, x=y+t, onde $t \in I$. Assim,

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência de $y\in A$ módulo I. Denotamos por

 $\frac{A}{I}$

o conjunto de todas as classes de equivalência, tal conjunto é chamado de **quociente do anel** A **pelo ideal** I.

$$C(y) = \{x \in A \mid x \equiv y \pmod{I}\} = \{x \in A \mid x - y \in I\}.$$

Agora, $x-y \in I$ significa que existe $t \in I$, tal que x-y=t. Logo, x=y+t, onde $t \in I$. Assim,

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência de $y\in A$ módulo I. Denotamos por

 $\frac{A}{I}$

o conjunto de todas as classes de equivalência, tal conjunto é chamado de **quociente do anel** A **pelo ideal** I.

1) Seja A um anel comutativo com unidade

1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$

1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais.

1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - *i)* Dado $x \in A$:

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - *i)* Dado $x \in A$:

$$C(x) =$$

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x)=x+I_1$$

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} =$$

- 1) Seja A um anel comutativo com unidade e $l_1 = \{0\}$ e $l_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim

$$\frac{A}{I_1}$$

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim

$$\frac{A}{I_1} = \{x + I$$

- 1) Seja A um anel comutativo com unidade e $l_1 = \{0\}$ e $l_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim

$$\frac{A}{I_1} = \{x + I \mid x \in A\},\$$

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim

$$\frac{A}{I_1} = \{ x + I \mid x \in A \},$$

logo existem tantas classes de equivalência

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim

$$\frac{A}{I_1} = \{ x + I \mid x \in A \},$$

logo existem tantas classes de equivalência quantos forem os elementos de A.

- 1) Seja A um anel comutativo com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim

$$\frac{A}{I_1} = \{ x + I \mid x \in A \},$$

logo existem tantas classes de equivalência quantos forem os elementos de A.

ii) Para
$$I_2 = A$$

ii) Para $I_2 = A$ temos:

$$C(0_A) =$$

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I =$$

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2 = A$,

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2 = A$, para todo $x \in A$

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2 = A$, para todo $x \in A$ temos $x \in C(0_A)$

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2 = A$, para todo $x \in A$ temos $x \in C(0_A)$ logo existe uma única

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2=A$, para todo $x\in A$ temos $x\in C(0_A)$ logo existe uma única classe de equivalência

Exemplos '

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2=A$, para todo $x\in A$ temos $x\in C(0_A)$ logo existe uma única classe de equivalênciae

$$\frac{A}{I_2}=\{0_A+I\}.$$

Exemplos '

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2=A$, para todo $x\in A$ temos $x\in C(0_A)$ logo existe uma única classe de equivalênciae

$$\frac{A}{I_2}=\{0_A+I\}.$$

2) Seja $A = \mathbb{Z}$.

2) Seja $A = \mathbb{Z}$. Os ideais de \mathbb{Z}

2) Seja $A = \mathbb{Z}$. Os ideais de \mathbb{Z} são da forma $m\mathbb{Z}$,

2) Seja $A = \mathbb{Z}$. Os ideais de \mathbb{Z} são da forma $m\mathbb{Z}$, m > 1.

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m >1. Seja $I=m\mathbb{Z}$

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} .

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

Mais isso ocorre

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

Mais isso ocorre se, e somente se,

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

Mais isso ocorre se, e somente se, x - y = mk,

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

Mais isso ocorre se, e somente se, x-y=mk, para algum $k\in\mathbb{Z}$.

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

Mais isso ocorre se, e somente se, x-y=mk, para algum $k \in \mathbb{Z}$. Logo $x \equiv y \pmod{l}$

2) Seja $A=\mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m>1. Seja $I=m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x-y\in I$$
.

Mais isso ocorre se, e somente se, x-y=mk, para algum $k \in \mathbb{Z}$. Logo $x \equiv y \pmod{l}$ se, e só se,

2) Seja $A = \mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m > 1. Seja $I = m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x - y \in I$$
.

Mais isso ocorre se, e somente se, x-y=mk, para algum $k \in \mathbb{Z}$. Logo $x \equiv y \pmod{l}$ se, e só se, $m \mid (x-y)$.

2) Seja $A = \mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m > 1. Seja $I = m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x - y \in I$$
.

Mais isso ocorre se, e somente se, x-y=mk, para algum $k \in \mathbb{Z}$. Logo $x \equiv y \pmod{l}$ se, e só se, $m \mid (x-y)$. Portanto,

$$\frac{\mathbb{Z}}{I}=\mathbb{Z}_m.$$

2) Seja $A = \mathbb{Z}$. Os ideais de \mathbb{Z} são da forma m \mathbb{Z} , m > 1. Seja $I = m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim

$$x \equiv y \pmod{l}$$

se, e só se,

$$x - y \in I$$
.

Mais isso ocorre se, e somente se, x-y=mk, para algum $k \in \mathbb{Z}$. Logo $x \equiv y \pmod{l}$ se, e só se, $m \mid (x-y)$. Portanto,

$$\frac{\mathbb{Z}}{I}=\mathbb{Z}_m.$$

Agora seja I ideal

$$\frac{A}{I} =$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde
$$y + I = \{y + t \mid t \in I\}$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde
$$y + I = \{y + t \mid t \in I\}$$
 e $y \in A$.

Vamos definir uma soma ⊕

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde
$$y + I = \{y + t \mid t \in I\}$$
 e $y \in A$.

Vamos definir uma soma ⊕ e um produto ⊗

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$(x+I) \oplus (y+I) =$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$(x+I)\oplus(y+I)=(x+y)+I$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$(x+I) \oplus (y+I) = (x+y) + I$$
$$(x+I) \otimes (y+I) =$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$(x+I) \oplus (y+I) = (x+y) + I$$
$$(x+I) \otimes (y+I) = (xy) + I$$

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

Vamos definir uma soma \oplus e um produto \otimes em $\frac{A}{I}$ por

$$(x+I) \oplus (y+I) = (x+y) + I$$
$$(x+I) \otimes (y+I) = (xy) + I$$

para x + I,

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$(x+I) \oplus (y+I) = (x+y)+I$$
$$(x+I) \otimes (y+I) = (xy)+I$$

para
$$x + I$$
, $y + I \in \frac{A}{I}$.

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

$$(x+I) \oplus (y+I) = (x+y)+I$$
$$(x+I) \otimes (y+I) = (xy)+I$$

para
$$x + I$$
, $y + I \in \frac{A}{I}$.

Verifiquemos que a soma

Verifiquemos que a soma e o produto

Verifiquemos que a soma e o produto em $\frac{A}{I}$

Para isso, sejam $x_1 + I$,

Para isso, sejam $x_1 + I$, $x_2 + I$,

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$,

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

Para isso, sejam x_1+I , x_2+I , y_1+I , $y_2+I\in \frac{A}{I}$ tais que x_1+I

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

Para isso, sejam x_1+I , x_2+I , y_1+I , $y_2+I\in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$
$$y_1 + I$$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

$$(x_1+I)\oplus (y_1+I)$$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

$$(x_1 + I) \oplus (y_1 + I) = (x_1 + y_1) + I$$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

$$(x_1 + l) \oplus (y_1 + l) = (x_1 + y_1) + l$$

 $(x_2 + l) \oplus (y_2 + l)$

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

$$(x_1 + I) \oplus (y_1 + I) = (x_1 + y_1) + I$$

 $(x_2 + I) \oplus (y_2 + I) = (x_2 + y_2) + I$

Verifiquemos que a soma e o produto em $\frac{A}{I}$ não dependem do representante da classe de equivalência.

Para isso, sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

Então

$$(x_1 + I) \oplus (y_1 + I) = (x_1 + y_1) + I$$

 $(x_2 + I) \oplus (y_2 + I) = (x_2 + y_2) + I$

Como
$$x_1 + I = x_2 + I$$
,

Como
$$x_1 + I = x_2 + I$$
, então $x_1 - x_2 \in I$

Como
$$x_1 + I = x_2 + I$$
, então $x_1 - x_2 \in I$ e como $y_1 + I = y_2 + I$,

Como $x_1+I=x_2+I$, então $x_1-x_2\in I$ e como $y_1+I=y_2+I$, então $y_1=y_2\in I$.

Como $x_1+I=x_2+I$, então $x_1-x_2\in I$ e como $y_1+I=y_2+I$, então $y_1=y_2\in I$. Mas I é ideal,

Como $x_1+I=x_2+I$, então $x_1-x_2\in I$ e como $y_1+I=y_2+I$, então $y_1=y_2\in I$. Mas I é ideal, logo $(x_1-x_2)+(y_1-y_2)=(x_1+y_1)-(x_2+y_2)\in I$,

Como $x_1+I=x_2+I$, então $x_1-x_2\in I$ e como $y_1+I=y_2+I$, então $y_1=y_2\in I$. Mas I é ideal, logo $(x_1-x_2)+(y_1-y_2)=(x_1+y_1)-(x_2+y_2)\in I$, ou seja

Como
$$x_1+I=x_2+I$$
, então $x_1-x_2\in I$ e como $y_1+I=y_2+I$, então $y_1=y_2\in I$. Mas I é ideal, logo $(x_1-x_2)+(y_1-y_2)=(x_1+y_1)-(x_2+y_2)\in I$, ou seja $(x_1+I)\oplus (y_1+I)$

Como
$$x_1 + I = x_2 + I$$
, então $x_1 - x_2 \in I$ e como $y_1 + I = y_2 + I$, então $y_1 = y_2 \in I$. Mas I é ideal, logo $(x_1 - x_2) + (y_1 - y_2) = (x_1 + y_1) - (x_2 + y_2) \in I$, ou seja $(x_1 + I) \oplus (y_1 + I) = (x_2 + I) \oplus (y_2 + I)$.

Como
$$x_1 + I = x_2 + I$$
, então $x_1 - x_2 \in I$ e como $y_1 + I = y_2 + I$, então $y_1 = y_2 \in I$. Mas I é ideal, logo $(x_1 - x_2) + (y_1 - y_2) = (x_1 + y_1) - (x_2 + y_2) \in I$, ou seja $(x_1 + I) \oplus (y_1 + I) = (x_2 + I) \oplus (y_2 + I)$.

$$(x_1+I)\otimes (y_1+I)$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I)$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como
$$(x_1 - x_2)y_1 \in I$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como
$$(x_1 - x_2)y_1 \in I$$
 e $(y_1 - y_2)x_2 \in I$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1-x_2)y_1\in I$ e $(y_1-y_2)x_2\in I$ então

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

 $(x_1-x_2)y_1+(y_1-y_2)x_2 \in I$

Como
$$(x_1-x_2)y_1\in I$$
 e $(y_1-y_2)x_2\in I$ então

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como
$$(x_1 - x_2)y_1 \in I$$
 e $(y_1 - y_2)x_2 \in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como
$$(x_1 - x_2)y_1 \in I$$
 e $(y_1 - y_2)x_2 \in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I.$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1-x_2)y_1\in I$ e $(y_1-y_2)x_2\in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

ou seja,

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1 - x_2)y_1 \in I$ e $(y_1 - y_2)x_2 \in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

ou seja, $xy + I = x_2y_2 + I$.

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1-x_2)y_1 \in I$ e $(y_1-y_2)x_2 \in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1-x_2)y_1 \in I$ e $(y_1-y_2)x_2 \in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

$$(x_1 + I) \otimes (y + I)$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1-x_2)y_1\in I$ e $(y_1-y_2)x_2\in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

$$(x_1+I)\otimes (y+I)=(x_2+I)\otimes (y_2+I).$$

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1-x_2)y_1\in I$ e $(y_1-y_2)x_2\in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

$$(x_1+I)\otimes (y+I)=(x_2+I)\otimes (y_2+I).$$

Seja $(A, +, \cdot)$ um anel comutativo

Seja $(A, +, \cdot)$ um anel comutativo e com unidade.

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A,

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I},\oplus,\otimes\right)$$

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I}, \oplus, \otimes\right)$$

é um anel comutativo

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I}, \oplus, \otimes\right)$$

é um anel comutativo e com unidade.

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I},\oplus,\otimes\right)$$

é um anel comutativo e com unidade. O elemento neutro da soma

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I}, \oplus, \otimes\right)$$

é um anel comutativo e com unidade. O elemento neutro da soma é a classe $\mathbf{0}_A + \mathbf{I}$

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I},\oplus,\otimes\right)$$

é um anel comutativo e com unidade. O elemento neutro da soma é a classe $0_A + I$ e a unidade do produto

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I}, \oplus, \otimes\right)$$

é um anel comutativo e com unidade. O elemento neutro da soma é a classe $0_A + I$ e a unidade do produto é a classe $1_A + I$.

Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Se I é um ideal de A, então

$$\left(\frac{A}{I}, \oplus, \otimes\right)$$

é um anel comutativo e com unidade. O elemento neutro da soma é a classe $0_A + I$ e a unidade do produto é a classe $1_A + I$.