PLP - 22 TOPIC 22—SUBSETS AND POWER SETS

Demirbaş & Rechnitzer

SUBSETS

DOING MORE WITH SETS

Is the set A contained in the set B?

DEFINITION: SUBSET.

Let A, B be sets

- ullet We say that A is a <code>subset</code> of B when every element of A is also an element of B.
- We denote this $A\subseteq B$ and also call B a superset of A. We can also write $B\supseteq A$.
- A is a proper subset of B when $A\subseteq B$, but B contains at least one element that is not in A.
- ullet Finally, two A and B are equal when they are subsets of each other. That is

$$A = B \iff ((A \subseteq B) \land (B \subseteq A))$$

NOTES AND EXAMPLES

Note that

- ullet For all sets A , $arnothing\subseteq A$ and $A\subseteq A$
- $ullet A\subseteq B \quad \equiv \quad orall a\in A, a\in B \quad \equiv \quad (a\in A) \implies (a\in B)$
- $ullet A \not\subseteq B \equiv \exists a \in A \ s.t. \ a
 otin B$

Some examples

- ullet $\{1,2,7\} \nsubseteq \{1,2,3,4,5\}$
- ullet $\{2n \ : \ n \in \mathbb{Z}\} \subseteq \mathbb{Z}$
- The subsets of $\{0,1\}$ are $\varnothing,\{0\}\,,\{1\}\,,\{0,1\}$

THE SET OF ALL SUBSETS

DEFINITION:

Let A be a set. The power set of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

$$egin{aligned} \mathcal{P}(arnothing) &= \{arnothing\} \ \mathcal{P}(\{1\}) &= \{arnothing, \{1\}\} \ \mathcal{P}(\{0,1\}) &= \{arnothing, \{0\}, \{1\}, \{0,1\}\} \ \mathcal{P}(\{0,1,2\}) &= \{arnothing, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\} \} \end{aligned}$$

Not hard to prove that if |A|=n then $|\mathcal{P}\left(A\right)|=2^{n}$.

Near end of course we'll prove a *very interesting* result for infinite sets A and their power sets.