

Machine Learning Prof. Dr. Stephan Doerfel

MADS-ML WiSe 2024/25

K-Nearest neighbors Exercises

Exercise 1.

- 1. Describe in your own words the learning and classification process of the kNN-algorithm.
- 2. Note and explain at least one distance measure for numeric values and for categorical values.

Exercise 2.

1. Given the following dataset.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

- a) From looking at the data, describe a classification task that suggests itself.
- b) Compute for k=4 the nearest neighbors for the data instance (Sunny, Mild, Normal, Weak) using Overlap as distance measure and classify it accordingly.
- c) Compute for k=4 the neighbors of the instance (Sunny, Cool, High, Strong). Which problem does occur? How can it be solved?

Exercise 3.

Create a Jupyter Notebook and

- 1. load the IRIS dataset
- 2. write a short documentation of the dataset
- 3. select only features 2 and 3 (counting from 0) as features, thus creating a 2-dimensional feature space
- 4. use the random seed 1 if you use random
- 5. create a classification experiment, preprocess the data, split into training (60%) and test data (40%), use random sampling
- 6. train differently configured instances of the kNN-algorithm and evaluate them on the test data (baseline comparison, comparison between different hyperparameters)
- 7. think about feature scaling (describe what happens when you use or omit scaling)
- 8. try splitting the dataset with and without stratification (and random sampling), explain the resulting difference
- 9. use a diagram to indicate the relationship between certain parameters and the classification quality in terms of accuracy
- 10. plot the decision regions of the best classifier (use the python module classification_viz for that purpose.