

w/C = Y (10,5) = (10,5,1)(10, 5, 3) = (10, 5, 3, 1)(2),5) (2),5) (45,1.5) Translate by rector [0.5] $(0,0) \xrightarrow{(1,0)} A$ [0 0 ' '] + [0.5] $= \begin{bmatrix} 0.5 & 0.5 & 1.5 \\ 0.5 & 1.5 & 1.5 & 0 \end{bmatrix}$ with homogenes. Transformations matrices

T: transtate (dn, dy) [1 0 dn]

T: reflect (Y-awis) [-100] / T: Scale (a, b) [a o o o] 7-1: Scale (1/a, 1/b) [1/a 0 0]

1/2

1/2 T: Shown (C,d) [3 (0) $= \left| \begin{array}{c|c} x & 2D \\ \hline 3 & 1 \end{array} \right|$ Determinant of a matrix Lo hou an area or volume is asserted gre to mand for worken 20- wea 3D - Volume D = 2 osea = 10

ren ouer = $2 \times 10 = 20$ mit D = -2nus mes = -2 × 10 = @20

in orentalie

To combine multiple hours formations together we need $T(\vec{o}) = A\vec{v}$ Apply composite Scans from in A = Rotalian A1 = Reflection $\frac{|\overline{T},(\overline{U})| = |\overline{A},\overline{U}|}{|\overline{T},(\overline{T},(\overline{U}))| = |\overline{A},(\overline{U},\overline{U})|}$ $T_{2}\left(T_{1}\left(T_{0}\left(\vec{v}\right)\right)\right)=A_{2}\left(A_{1}\left(A_{0}\left(\vec{v}\right)\right)\right)$ = A2. A1. A0 (U) $(V + (\hat{G}) = (\hat{D}) = (\hat{D}) + V)$ First translate from scale For ex. (10, 15) -> (10, 15,1) Scale 8 Kanslate (3,1) (2,2) $\begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ T (5) = As. AT V $T(\vec{v}) = \begin{bmatrix} 2007 \\ 020 \\ 001 \end{bmatrix}$ = \[2 0 3 \] \[\] \[\]

Exemoniss of

Matrix multiplication is NOT Commutative

ORDER OF TRANS. IS IMPORTANT

$$T.S = \begin{bmatrix} 1 & 0 & 3 & 7 & 2 & 0 & 0 \\ 0 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 1 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$S.T = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 6 & 1 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

R, R2 R3 2D This is commitative Dan Coumagajing

Two franslations, are commitative

Comprishen of provappion of hopping.

