```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

df=pd.read_csv("diabetes.csv")
df
```

C→ Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedig 0 6 148 72 35 0 33.6 1 1 85 66 29 0 26.6 2 8 183 64 0 0 23.3 89 66 23 94 28.1 3 1 0 40 35 137 168 43.1 763 10 101 76 48 180 32.9 764 2 122 70 27 0 36.8 121 23 112 26.2 765 5 72 766 126 60 0 0 30.1 767 70 31 0 30.4 1 93 768 rows × 9 columns

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
# Column
                              Non-Null Count Dtype
                              768 non-null
     Pregnancies
     Glucose
                              768 non-null
                                              int64
 1
     BloodPressure
                              768 non-null
                                              int64
     SkinThickness
                              768 non-null
                                              int64
 3
                              768 non-null
 4
    Insulin
                                              int64
                              768 non-null
                                              float64
 5
    BMT
    DiabetesPedigreeFunction 768 non-null
                                              float64
                              768 non-null
                                              int64
 8
    Outcome
                              768 non-null
                                              int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

df['Pregnancies'].unique()

```
array([ 6, 1, 8, 0, 5, 3, 10, 2, 4, 7, 9, 11, 13, 15, 17, 12, 14])
```

df['Glucose'].unique()

```
array([148, 85, 183, 89, 137, 116, 78, 115, 197, 125, 110, 168, 139, 189, 166, 100, 118, 107, 103, 126, 99, 196, 119, 143, 147, 97, 145, 117, 109, 158, 88, 92, 122, 138, 102, 90, 111, 180, 133, 106, 171, 159, 146, 71, 105, 101, 176, 150, 73, 187, 84, 44, 141, 114, 95, 129, 79, 0, 62, 131, 112, 113, 74, 83, 136, 80, 123, 81, 134, 142, 144, 93, 163, 151, 96, 155, 76, 160, 124, 162, 132, 120, 173, 170, 128, 108, 154, 57, 156, 153, 188, 152, 104, 87, 75, 179, 130, 194, 181, 135, 184, 140, 177, 164, 91, 165, 86, 193, 191, 161, 167, 77, 182, 157, 178, 61, 98, 127, 82, 72, 172, 94, 175, 195, 68, 186, 198, 121, 67, 174, 199, 56, 169, 149, 65, 190])
```

df['BloodPressure'].unique()

```
array([ 72, 66, 64, 40, 74, 50, 0, 70, 96, 92, 80, 60, 84, 30, 88, 90, 94, 76, 82, 75, 58, 78, 68, 110, 56, 62, 85, 86, 48, 44, 65, 108, 55, 122, 54, 52, 98, 104, 95, 46, 102, 100, 61, 24, 38, 106, 114])
```

df['SkinThickness'].unique()

```
array([35, 29, 0, 23, 32, 45, 19, 47, 38, 30, 41, 33, 26, 15, 36, 11, 31,
              37, 42, 25, 18, 24, 39, 27, 21, 34, 10, 60, 13, 20, 22, 28, 54, 40,
              51, 56, 14, 17, 50, 44, 12, 46, 16, 7, 52, 43, 48, 8, 49, 63, 99])
df['Insulin'].unique()
     array([ 0, 94, 168, 88, 543, 846, 175, 230, 83, 96, 235, 146, 115, 140, 110, 245, 54, 192, 207, 70, 240, 82, 36, 23, 300, 342,
              304, 142, 128, 38, 100, 90, 270, 71, 125, 176, 48, 64, 228,
               76, 220, 40, 152, 18, 135, 495,
                                                       37, 51, 99, 145, 225, 49,
               50, 92, 325, 63, 284, 119, 204, 155, 485, 53, 114, 105, 285,
              156, 78, 130, 55, 58, 160, 210, 318, 44, 190, 280, 87, 271, 129, 120, 478, 56, 32, 744, 370, 45, 194, 680, 402, 258, 375,
              150, 67, 57, 116, 278, 122, 545, 75, 74, 182, 360, 215, 184,
               42, 132, 148, 180, 205, 85, 231, 29, 68, 52, 255, 171, 73,
              108, 43, 167, 249, 293, 66, 465, 89, 158, 84, 72, 59, 81,
              196, 415, 275, 165, 579, 310, 61, 474, 170, 277, 60, 14, 95,
              237, 191, 328, 250, 480, 265, 193, 79, 86, 326, 188, 106, 65, 166, 274, 77, 126, 330, 600, 185, 25, 41, 272, 321, 144, 15,
              183, 91, 46, 440, 159, 540, 200, 335, 387, 22, 291, 392, 178,
              127, 510, 16, 112])
df['BMI'].unique()
      array([33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31. , 35.3, 30.5, 0. , 37.6,
              38. , 27.1, 30.1, 25.8, 30. , 45.8, 29.6, 43.3, 34.6, 39.3, 35.4,
              39.8, 29. , 36.6, 31.1, 39.4, 23.2, 22.2, 34.1, 36. , 31.6, 24.8,
              19.9, 27.6, 24. , 33.2, 32.9, 38.2, 37.1, 34. , 40.2, 22.7, 45.4,
              27.4, 42., 29.7, 28., 39.1, 19.4, 24.2, 24.4, 33.7, 34.7, 23., 37.7, 46.8, 40.5, 41.5, 25., 25.4, 32.8, 32.5, 42.7, 19.6, 28.9,
              28.6, 43.4, 35.1, 32. , 24.7, 32.6, 43.2, 22.4, 29.3, 24.6, 48.8,
              32.4, 38.5, 26.5, 19.1, 46.7, 23.8, 33.9, 20.4, 28.7, 49.7, 39. ,
              26.1, 22.5, 39.6, 29.5, 34.3, 37.4, 33.3, 31.2, 28.2, 53.2, 34.2,
              26.8, 55. , 42.9, 34.5, 27.9, 38.3, 21.1, 33.8, 30.8, 36.9, 39.5,
              27.3, 21.9, 40.6, 47.9, 50. , 25.2, 40.9, 37.2, 44.2, 29.9, 31.9, 28.4, 43.5, 32.7, 67.1, 45. , 34.9, 27.7, 35.9, 22.6, 33.1, 30.4,
              52.3, 24.3, 22.9, 34.8, 30.9, 40.1, 23.9, 37.5, 35.5, 42.8, 42.6,
              41.8, 35.8, 37.8, 28.8, 23.6, 35.7, 36.7, 45.2, 44., 46.2, 35.,
              43.6, 44.1, 18.4, 29.2, 25.9, 32.1, 36.3, 40. , 25.1, 27.5, 45.6,
              27.8, 24.9, 25.3, 37.9, 27. , 26. , 38.7, 20.8, 36.1, 30.7, 32.3,
              52.9, 21., 39.7, 25.5, 26.2, 19.3, 38.1, 23.5, 45.5, 23.1, 39.9,
              36.8, 21.8, 41., 42.2, 34.4, 27.2, 36.5, 29.8, 39.2, 38.4, 36.2, 48.3, 20., 22.3, 45.7, 23.7, 22.1, 42.1, 42.4, 18.2, 26.4, 45.3,
              37. , 24.5, 32.2, 59.4, 21.2, 26.7, 30.2, 46.1, 41.3, 38.8, 35.2,
              42.3, 40.7, 46.5, 33.5, 37.3, 30.3, 26.3, 21.7, 36.4, 28.5, 26.9,
              38.6, 31.3, 19.5, 20.1, 40.8, 23.4, 28.3, 38.9, 57.3, 35.6, 49.6, 44.6, 24.1, 44.5, 41.2, 49.3, 46.3])
df['DiabetesPedigreeFunction'].unique()
      array([0.627, 0.351, 0.672, 0.167, 2.288, 0.201, 0.248, 0.134, 0.158,
              0.232, 0.191, 0.537, 1.441, 0.398, 0.587, 0.484, 0.551, 0.254,
              0.183, 0.529, 0.704, 0.388, 0.451, 0.263, 0.205, 0.257, 0.487,
              0.245, 0.337, 0.546, 0.851, 0.267, 0.188, 0.512, 0.966, 0.42,
              0.665, 0.503, 1.39, 0.271, 0.696, 0.235, 0.721, 0.294, 1.893,
              0.564, 0.586, 0.344, 0.305, 0.491, 0.526, 0.342, 0.467, 0.718,
              0.962,\; 1.781,\; 0.173,\; 0.304,\; 0.27\;\;,\; 0.699,\; 0.258,\; 0.203,\; 0.855,\\
              0.845, 0.334, 0.189, 0.867, 0.411, 0.583, 0.231, 0.396, 0.14,
              0.391, 0.37, 0.307, 0.102, 0.767, 0.237, 0.227, 0.698, 0.178,
              0.324, 0.153, 0.165, 0.443, 0.261, 0.277, 0.761, 0.255, 0.13 ,
              0.323, 0.356, 0.325, 1.222, 0.179, 0.262, 0.283, 0.93, 0.801,
              0.207, 0.287, 0.336, 0.247, 0.199, 0.543, 0.192, 0.588, 0.539,
              0.22, 0.654, 0.223, 0.759, 0.26, 0.404, 0.186, 0.278, 0.496, 0.452, 0.403, 0.741, 0.361, 1.114, 0.457, 0.647, 0.088, 0.597,
              0.532, 0.703, 0.159, 0.268, 0.286, 0.318, 0.272, 0.572, 0.096,
              1.4 , 0.218, 0.085, 0.399, 0.432, 1.189, 0.687, 0.137, 0.637,
              0.833, 0.229, 0.817, 0.204, 0.368, 0.743, 0.722, 0.256, 0.709,
              0.471,\; 0.495,\; 0.18 \;\;,\; 0.542,\; 0.773,\; 0.678,\; 0.719,\; 0.382,\; 0.319,\\
              0.19 \ , \ 0.956, \ 0.084, \ 0.725, \ 0.299, \ 0.244, \ 0.745, \ 0.615, \ 1.321,
              0.64 , 0.142, 0.374, 0.383, 0.578, 0.136, 0.395, 0.187, 0.905,
              0.15 \ , \ 0.874, \ 0.236, \ 0.787, \ 0.407, \ 0.605, \ 0.151, \ 0.289, \ 0.355,
              0.29 , 0.375, 0.164, 0.431, 0.742, 0.514, 0.464, 1.224, 1.072,
              0.805, 0.209, 0.666, 0.101, 0.198, 0.652, 2.329, 0.089, 0.645,
              0.238, 0.394, 0.293, 0.479, 0.686, 0.831, 0.582, 0.446, 0.402,
              1.318, 0.329, 1.213, 0.427, 0.282, 0.143, 0.38, 0.284, 0.249,
             0.926, 0.557, 0.092, 0.655, 1.353, 0.612, 0.2 , 0.226, 0.997, 0.933, 1.101, 0.078, 0.24 , 1.136, 0.128, 0.422, 0.251, 0.677,
             0.296, 0.454, 0.744, 0.881, 0.28, 0.259, 0.619, 0.808, 0.34, 0.434, 0.757, 0.613, 0.692, 0.52, 0.412, 0.84, 0.839, 0.156,
              0.215,\; 0.326,\; 1.391,\; 0.875,\; 0.313,\; 0.433,\; 0.626,\; 1.127,\; 0.315,\\
              0.345, 0.129, 0.527, 0.197, 0.731, 0.148, 0.123, 0.127, 0.122,
              1.476, 0.166, 0.932, 0.343, 0.893, 0.331, 0.472, 0.673, 0.389,
              0.485, 0.349, 0.279, 0.346, 0.252, 0.243, 0.58, 0.559, 0.302,
              0.569, 0.378, 0.385, 0.499, 0.306, 0.234, 2.137, 1.731, 0.545,
              0.225, 0.816, 0.528, 0.509, 1.021, 0.821, 0.947, 1.268, 0.221,
              0.66, 0.239, 0.949, 0.444, 0.463, 0.803, 1.6, 0.944, 0.196,
```

```
0.241, 0.161, 0.135, 0.376, 1.191, 0.702, 0.674, 1.076, 0.534,
1.095, 0.554, 0.624, 0.219, 0.507, 0.561, 0.421, 0.516, 0.264,
0.328, 0.233, 0.108, 1.138, 0.147, 0.727, 0.435, 0.497, 0.23,
0.955,\; 2.42 \;\; ,\; 0.658,\; 0.33 \;\; ,\; 0.51 \;\; ,\; 0.285,\; 0.415,\; 0.381,\; 0.832,
0.498, 0.212, 0.364, 1.001, 0.46 , 0.733, 0.416, 0.705, 1.022,
 0.269, \; 0.6 \quad , \; 0.571, \; 0.607, \; 0.17 \; , \; 0.21 \; , \; 0.126, \; 0.711, \; 0.466, \\
0.162, 0.419, 0.63, 0.365, 0.536, 1.159, 0.629, 0.292, 0.145, 1.144, 0.174, 0.547, 0.163, 0.738, 0.314, 0.968, 0.409, 0.297,
0.525,\; 0.154,\; 0.771,\; 0.107,\; 0.493,\; 0.717,\; 0.917,\; 0.501,\; 1.251,\\
0.735,\; 0.804,\; 0.661,\; 0.549,\; 0.825,\; 0.423,\; 1.034,\; 0.16\;\;,\; 0.341,\;
0.68 \ , \ 0.591, \ 0.3 \ \ , \ 0.121, \ 0.502, \ 0.401, \ 0.601, \ 0.748, \ 0.338,
0.43, 0.892, 0.813, 0.693, 0.575, 0.371, 0.206, 0.417, 1.154,
0.925, 0.175, 1.699, 0.682, 0.194, 0.4 , 0.1 , 1.258, 0.482,
0.138, 0.593, 0.878, 0.157, 1.282, 0.141, 0.246, 1.698, 1.461,
0.347, 0.362, 0.393, 0.144, 0.732, 0.115, 0.465, 0.649, 0.871,
0.149, 0.695, 0.303, 0.61 , 0.73 , 0.447, 0.455, 0.133, 0.155, 1.162, 1.292, 0.182, 1.394, 0.217, 0.631, 0.88 , 0.614, 0.332,
0.366, 0.181, 0.828, 0.335, 0.856, 0.886, 0.439, 0.253, 0.598,
0.904,\; 0.483,\; 0.565,\; 0.118,\; 0.177,\; 0.176,\; 0.295,\; 0.441,\; 0.352,
0.826,\; 0.97 \;\; , \; 0.595,\; 0.317,\; 0.265,\; 0.646,\; 0.426,\; 0.56 \;\; , \; 0.515,\\
0.453, 0.785, 0.734, 1.174, 0.488, 0.358, 1.096, 0.408, 1.182,
```

df['Age'].unique()

```
array([50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 34, 57, 59, 51, 27, 41, 43, 22, 38, 60, 28, 45, 35, 46, 56, 37, 48, 40, 25, 24, 58, 42, 44, 39, 36, 23, 61, 69, 62, 55, 65, 47, 52, 66, 49, 63, 67, 72, 81, 64, 70, 68])
```

there are 5 ('Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI') columns contain 0 values which are invalid so replace 0 with r

df[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']]=df[['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']].replace(@

df.isnull().sum()

Pregnancies	0
Glucose	5
BloodPressure	35
SkinThickness	227
Insulin	374
BMI	11
DiabetesPedigreeFunction	0
Age	0
Outcome	0
dtype: int64	

sns.distplot(df['Outcome'])

<AxesSubplot:xlabel='Outcome', ylabel='Density'>

df.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BM
count	768.000000	763.000000	733.000000	541.000000	394.000000	757.00000
mean	3.845052	121.686763	72.405184	29.153420	155.548223	32.45746
std	3.369578	30.535641	12.382158	10.476982	118.775855	6.92498
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.20000
25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.50000
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.30000
75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.60000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.10000
1						,

```
df['Glucose']=df['Glucose'].fillna(df['Glucose'].mean())
df['BloodPressure']=df['BloodPressure'].fillna(df['BloodPressure'].mean())
df['SkinThickness']=df['SkinThickness'].fillna(df['SkinThickness'].median())
df['Insulin']=df['Insulin'].fillna(df['Insulin'].median())
df['BMI']=df['BMI'].fillna(df['BMI'].median())
df.isnull().sum()
                                0
     Pregnancies
     Glucose
     BloodPressure
                                0
     SkinThickness
                                a
     Insulin
     BMI
     DiabetesPedigreeFunction
                                0
     Outcome
     dtype: int64
x=df.iloc[:,:-1].values
     array([[ 6.
                   , 148.
                           , 72.
                                    , ..., 33.6 ,
                                                       0.627, 50.
                   , 85.
                               66.
                                             26.6
                                                       0.351, 31.
                                     , ...,
                           ,
            Ī
              8.
                                             23.3
                                                       0.672,
                                     , ...,
                   , 121.
                                             26.2 ,
                               72.
                                                       0.245, 30.
              5.
                   , 126.
                                             30.1 ,
                               60.
                                                       0.349, 47.
              1.
                                     , ...,
                                                                     ],
                   , 93.
                            , 70.
              1.
                                     , ..., 30.4 ,
                                                       0.315, 23.
                                                                     ]])
y=df['Outcome'].values
     array([1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
            1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,
            1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
                                                                 1,
            1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
            1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0,
            1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
            1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,
                                                                 0, 0,
            0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1,
            1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
            1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
            1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
            0,\ 1,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,
            1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0,
            0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
            0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,
            0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,
            0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
              0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
            0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
            1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
                                                                 0,
              0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
            0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1,
              0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
            1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
            0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1,
              1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0,
            0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
            0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,
            1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0])
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest=train\_test\_split(x, y, test\_size=0.30, random\_state=12)
```

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
xtrain=sc.fit_transform(xtrain)
xtest=sc.transform(xtest)

import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from sklearn.metrics import classification_report

ann=Sequential()

ann.add(Dense(units=30,activation='relu'))
ann.add(Dense(units=1,activation="sigmoid"))

ann.compile(optimizer="adam",loss="binary_crossentropy",metrics=["accuracy"])

ann.fit(xtrain,ytrain,batch_size=40,epochs=100)
```

```
Epoch 1/100
14/14 [============== ] - 0s 2ms/step - loss: 0.2998 - accuracy: 0.8659
Epoch 2/100
14/14 [============= ] - 0s 2ms/step - loss: 0.3013 - accuracy: 0.8659
Epoch 3/100
14/14 [=====
         Epoch 4/100
Epoch 5/100
14/14 [============== ] - 0s 3ms/step - loss: 0.2994 - accuracy: 0.8678
Epoch 6/100
Epoch 7/100
14/14 [=====
           ==========] - 0s 2ms/step - loss: 0.2990 - accuracy: 0.8678
Epoch 8/100
Epoch 9/100
14/14 [============ ] - 0s 2ms/step - loss: 0.2970 - accuracy: 0.8678
Epoch 10/100
Epoch 11/100
14/14 [============== ] - 0s 2ms/step - loss: 0.2949 - accuracy: 0.8734
Epoch 12/100
14/14 [======
        Epoch 13/100
Epoch 14/100
14/14 [======
           Epoch 15/100
14/14 [=======
           ========] - 0s 2ms/step - loss: 0.2931 - accuracy: 0.8696
Epoch 16/100
14/14 [=======
           ========] - 0s 2ms/step - loss: 0.2932 - accuracy: 0.8771
Epoch 17/100
14/14 [======
           Epoch 18/100
14/14 [=====
           ========== ] - 0s 3ms/step - loss: 0.2912 - accuracy: 0.8696
Epoch 19/100
14/14 [============= ] - 0s 2ms/step - loss: 0.2903 - accuracy: 0.8715
Epoch 20/100
Epoch 21/100
14/14 [=========== ] - 0s 3ms/step - loss: 0.2891 - accuracy: 0.8696
Epoch 22/100
14/14 [======
          ==========] - 0s 3ms/step - loss: 0.2895 - accuracy: 0.8752
Epoch 23/100
Epoch 24/100
14/14 [============= ] - 0s 2ms/step - loss: 0.2891 - accuracy: 0.8734
Epoch 25/100
14/14 [======
           Epoch 26/100
14/14 [============= ] - 0s 2ms/step - loss: 0.2859 - accuracy: 0.8715
Epoch 27/100
14/14 [======
           =========] - 0s 2ms/step - loss: 0.2860 - accuracy: 0.8734
Epoch 28/100
14/14 [=============] - 0s 2ms/step - loss: 0.2853 - accuracy: 0.8734
Epoch 29/100
```

ypred=np.where(ypred<0.5,0,1)
ypred</pre>

```
array([[0],
          [0],
[0],
         [0],
[0],
          [0],
          [0],
         [0],
         [0],
         [0],
         [0],
[0],
          [0],
          [0],
         [0],
[0],
         [0],
[0],
         [0],
         [0],
[0],
         [0],
[0],
          [0],
         [0],
         [0],
[0],
         [0],
[0],
         [0],
          [0],
          [0],
          [0],
[0],
          [0],
          [0],
         [0],
[0],
         [0],
[0],
         [0],
          [0],
         [0],
[0],
          [0],
          [0],
          [0],
         [0],
[0],
         [0],
         [0],
         [0],
          [0],
          [0],
          [0],
         [0],
          [0],
```

print(classification_report(ypred,ytest))

[0],

	precision	recall	f1-score	support
0	1.00	0.64	0.78	231
1	0.00	0.00	0.00	0
accuracy			0.64	231
macro avg	0.50	0.32	0.39	231
weighted avg	1.00	0.64	0.78	231

• ×