

Table of Contents

	P	age
1.	GENERAL DESCRIPTION	2
2.	FEATURES	2
3.	BLOCK DIAGRAM	3
4.	PIN DESCRIPTION)\ \
4.1. 4.2. 4.3. 4.4.	EK9716 put down and EK7330 put left side for 800RGBx480 of dual-gate mode EK9716 put down and EK7330 put right side for 800RGBx480 of dual-gate mode	11/12/13
5.	3-WIRE SERIAL PORT INTERFACE	15
5.1. 5.2. 5.3.	3-Wire Command Format	15 16
6.	FUNCTION DESCRIPTION	18
6.1. 6.2. 6.3. 6.4. 6.5.	Input Data VS Output Channels Input Data VS Output Voltage Input Data Input Format	18 19 21 22
7.	ELECTRICAL SPECIFICATION	25
7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	Absolute Maximum Ratings Recommended Operating Range DC Characteristics AC Characteristics Timing Table	25 25 26 27
8.	RAD QUILINE DIMENSION	32
8.1. 8.2. 8.3.	Rad Information	33
9.	DEFINITIONS	48
9.1. 9.2.		_
10.	REVISION HISTORY	48
APPE	NDIX A : BIST PATTERN	49

fitipower

1200CH TFT LCD Source Driver with TCON

1. GENERAL DESCRIPTION

EK9716 is a highly integrated 1200 channel source driver with TTL interface Timing Controller for color TFT-LCD panels. EK9716 integrated source driver, timing controller and pin control interface.

EK9716 input timing support TTL digital 24bit parallel RGB data format, and source output support 8 bit resolution 256 gray scales with dithering features. Operating parameters can be set via pin control features. Special circuit architecture is designed for lower power dissipation.

EK9716 support two chip cascade operation mode to reduce the FPC amount and save the cost. Configure able Master and Slave configuration increase the flexibility for different panel design. With wide range of supply voltages and small output deviations make this chip more suitable for various applications.

2. FEATURES

- Special design for small-sized color TFT LCD source drivers with timing controller
- Integrated 1200 channel source driver
- Support display resolutions: 800(RGB)x600 > 800(RGB)x480 > 400(RGB)x480 > 400(RGB)x240
- 8-bit resolution 256 gray scale with 2-bits dithering (6bits DAC + 2bits HFRC)
- Support TTL 24-bit parallel (RGB) input timing
- Support cascade function with bidirectional shift control (CMOS signal)
- Support single or dual-gate operation mode
- Support Delta or Stripe color filter confiduration
- Support stand-by mode for low power consumption
- Support dot inversion driving scheme (Cascade mode)
- Support 2 dot one inversion driving scheme (Dual Gate mode)
- V1 ~ V14 for adjusting Gamma correction
- Output dynamic ande 0 1 V (DDA 0.1V (Dual Gate mode)
- Power for source driver voltage VDDA: 6.5V ~ 13.5V
- Power for digital interface circuit VDD: 1.8~ 3.6V
- Max. operating frequency. 50 MHz
- Built-in CABC function
- Built-in AUTO pattern
- COG package
- Chip Size: \$2572um X 938um, Output Pad Pitch: 17um

2013/11/18 2 Rev. 1.0

Rev. 1.0 2013/11/18 3

Figure 2. Application Block Diagram – 2 Chip Cascade

2013/11/18

Figure 4. Pad Sequence (Bump Side)
6

Rev. 1.0

Table 1. Pin Description

Pin Name	Pin Type	Description
1 III IVallie	1 III Type	Parallel data Input. For TTL 24-bit parallel RGB image data input.
DR[07:00] DG[07:00] DB[07:00]	Input	DR[07:00]=R[7:0] data; DG[07:00]=G[7:0] data; DB[07:00]=B[7:0] data. For 18bit RGB interface, connect two LSB bits of all the R/G/B data buses to VSS.
CLKIN	Input	Clock for Input Data. Data latched at rising/falling edge of this signal. Default falling edge.
HSD	Input	Horizontal Sync input. Negative polarity.
VSD	Input	Vertical Sync input. Negative polarity.
DEN	Input	Data Input Enable. Active High to enable the data input bus under DE Mode". Normally pull low.
MODE	Input	DE / SYNC mode select. Normally pull high H: DE mode.(Default) L: HSD/VSD mode.
RES[1:0]	Input	Display resolution selection. RES[1:0] = "00", for 800(RGB)*480 display resolution (Default) RES[1:0] = "01", for 800(RGB)*600 display resolution RES[1:0] = "10", for 400(RGB)*480 display resolution RES[1:0] = "11", for 400(RGB)*240 display resolution
DITHB	Input	Dithering function enable control. Normally bull high DITHB = "1", Disable internal dithering function (Default) DITHB = "0", Enable internal dithering function
CLKPOL	Input	Input clock edge selection. Normally pull low CLKPOL = "1" Latch data at CLKIN rising edge. CLKPOL = "0" Latch data at CLKIN talling edge. (Default)
DIMO	Output	Backlight dimmer signal for CABC application DIMO + "0", Turn off external backlight controller DIMO + "1", Logical control signal to turn on external backlight controller Note, Refer to the Power On Off Sequence for the detail information
CABC_EN[1:0]	niput	CABC HW enable bid. Normally pull low When CABC EN = '00', CABC OFF.(Default mode) When CABC EN = "01", User interface Image When CABC EN = "10", Still Picture When CABC EN = "11", Moving Image
CFSEC	Model	Color Fitter type selection. Normally pull high CFSEL = "1", Stripe mode. (Default) CFSEL = "0", Delta mode
DBGATE	haput	Dual Gate function enables control. Normally pull low DBGATE = "1", Enable Dual Gate Function. DBGATE = "0", Disable Dual Gate Function (Default) Note: Cascade function will be disabled under "dual gate" mode
GMAV1 ~ GMAV14	Input/Output	Gamma correction reference voltage. These input voltage must be offered by user. VSSA+0.1 <v14<v12<v11<v10<v8;v7<v5<v4<v3<v1< (cascade="" (dual="" are="" disabled.<="" gate)="" mode)="" pads="" td="" v13="" v2,="" v6,="" v9,="" vdda-0.1="" vdda-1="" vssa+1<v14<v12<v11<v10<v8;v7<v5<v4<v3<v1<=""></v14<v12<v11<v10<v8;v7<v5<v4<v3<v1<>
RSTB	Input	Global reset pin. Active Low to enter Reset State. Suggest to connecting with an RC reset circuit for stability. Normally pull high.

fitipower

Preliminary EK9716

		Trommary EROTTO
Pin Name	Pin Type	Description
		Standby mode, Normally pull high.
OTDVD	lanu4	STBYB = "1", normal operation(Default)
STBYB	Input	STBYB = "0", timing controller, source driver will turn off, all output are
		High-Z
		Master and Slave Mode selection. Normally pull high.
MACI	loout	MASL = "H", for Master mode. (Default Mode)
MASL	Input	MASL = "L", for Slave mode.
		Only the Master chip will issue the Gate and Cascade control signal.
		Master location definition pin. Normally pull low.
MASLOC	Input	MASLOC = "L", Master locate on right side (Panel top view). (Default
WASLOC	iliput	Mode)
		MASLOC = "H", Master locate on left side (Panel top view).
CSB	Input	Serial communication chip select. Normally pull high
SDA	Input/Output	Serial communication data input. Normally pull low 1
SCL	Input	Serial communication clock input. Normally pull low
		Source Right or Left sequence control. Normally bull high.
SHLR	Input	SHLR = "L", shift left: last data = S1←S2←S3.\S1200 \ first data.
		SHLR = "H", shift right: first data = S1→S2→S3→S1200 = last data
		Gate Up or Down scan control. Normally pull low
		UPDN = "L", STV2 output vertical start pulse and UD pin output logical
UPDN	Input	"0" to Gate driver.(Default)
		UPDN = "H", STV1 output vertical start pulse and UD bin output logical
		"1" to Gate driver.
DIOT		Normal Operation/BIST pattern select. Normally pull low
BIST	Input	BIST = H : BIST DCLK input is not needed)
		BIST = L.: Normal Operation
CAC	loout	Cascade function select Normally pull high.
CAS	Input	CAS = "H", Enable cascade function (Default) CAS = "H", Disable cascade function.
	_	Controls whether the data of D00~D27 are inverted or not, normally
		pulled low.
REV	Input \\	When 'REX'=\ these data will be inverted. EX. "00" → " 3F", "07"→
		(" 38") "15" * 2A" and so on.
DATD(47.01		Multi tanction // Opin.
DATR[17:0]	Input/Output	Refer to the Cascade DAT pin mapping table for the detail.
DCLKR	Volput/Output	Master and Slave cascade control signal.
DIOR \\\	hydry Cyrodel	Master and Slave cascade control signal
PQLR\\\	InputXQutqut	Master and Slave cascade control signal.
/// ADK	Input/Output	Master and Slave cascade control signal.
\SYNCR \\	Input/Qutput	Master and Slave cascade control signal.
DATLITAO	Input/Output	Multi function I/O pin.
		Refer to the Cascade DAT pin mapping table for the detail.
DCLKL \	Input/Output	Master and Slave cascade control signal.
DIOL\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Input/Output	Master and Slave cascade control signal.
POLL V	Input/Output	Master and Slave cascade control signal.
LDL	Input/Output	Master and Slave cascade control signal.
SYNCL	Input/Output	Master and Slave cascade control signal.
VDDA	Power Input	Power supply for analog circuits
VSSA	Power Input	Ground pins for analog circuits
VDD	Power Input	Power supply for digital circuits
VSS	Power Input	Ground pins for digital circuits
SO1~SO1200	Output	Source Driver Output Signals.
301~301200	Output	All outputs will be of unknown values under stand-by mode.
ALIGN	Mark	For assembly alignment.

Pin Name	Pin Type	Description
COM_PASSR COM_PASSL	Shorted line	Internal link together between input side and output side.
COM1_T COM2_T	Shorted line	Internal link together between input side and output side.
TP17~0	Testing	Float these pins for normal operation.
SHIELDING	Shielding	IC Shielding pads. Those pins are internally connected to the VSSA. DO NOT connect to any WOA on the panel.
DASHD	Shielding	Data Bus Shielding pad. Those pins are internally connected to the VSS. RECOMMAND to add shielding lines on the FPC to reduce EM

 Table 2. EK9716 Pass Line Description:

Pass Line No:	Pad Na	me
1	COM_PASSR	COM1_T
2	COM_PASSL	COM2_T

4.1. Chip Driver configuration examples of the EK9716

Two pieces of EK9716 driver are cascaded application for 800RGB x480

2013/11/18 10 **Rev. 1.0**

4.2. EK9716 put down and EK7330 put left side for 800RGBx480 of dual-gate mode

When DBGATE=1, MASL=1, MASLOC=X and CAS=0, application of the EK9716 will be illustrated as figure.

2013/11/18 11 Rev. 1.0

4.3. EK9716 put down and EK7330 put right side for 800RGBx480 of dual-gate mode

When DBGATE=1, MASL=1, MASLOC=X and CAS=0, application of the EK9716 will be illustrated as figure.

2013/11/18 12 **Rev. 1.0**

4.4. Value of wiring resistance to each pin

The recommended wiring resistance values are shown below. The wiring resistance values affect the current capacity of the power supply, so be sure to design using values that do not exceed those recommended.

Table 3. wiring resistance

Pin Name	Wiring resistance value(Ω)	Pin Name	Wiring resistance value (Ω)
VDD	<25	BIST	<1K
VDDA	<5	CAS	<1K
VSS	<25	CABC_EN[1:0]	<1K
VSSA	<5	CSB/SCL/SDA	<200
GMAV1~GMAV14	<10	DATR[17:0]	<200 & 20 of
DR[07:00]	<200	DCLKR	<200-& 20 pf
DG[07:00]	<200	DIOR	<200 & 20 of
DB[07:00]	<200	POLR	/// <200 & 20 pt/// //
DEN	<200	LDR	///// <200 & 20 pt
MODE	<1K	SYNCR	\$200\& 20 pf
RES[1:0]	<1K	DATL(170)	200 & 20 pf
DITHB	<1K	/ poliki	<200 & 20 pf
CLKPOL	<1K	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<200 & 20 pf
DIMO	<1K	NROLL N	<200 & 20 pf
CFSEL	CAN IIIII	1111 195	<200 & 20 pf
DBGATE	4K //	CASCADE GMAV1~GMAV14	<30
RSTB	///// // /////////////////////////////	CLKIN	<50
MASL	While Sand	HSD	<200
MASLOC III		VSD	<200
SHILK	// // // // // // // // // // // // //		
UPON	<1K		

<u>fitipower</u>

Preliminary **EK9716**

Table 4. DA	TR[17:0] / DATL	[17:0] pin mappi	ing Table:			
	DBGATE = "0"	DBGATE = "0"	DBGATE = "0"	DBGATE = "0"	DBGATE = "1"	DBGATE = "0"
DATR[17:0]	MASL = "1"	MASL = "1"	MASL = "0"	MASL = "0"	MASL = "1"	MASL = "1"
	MASLOC = "0"	MASLOC = "1"	MASLOC = "0"	MASLOC = "1"	MASLOC = "X"	MASLOC = "X"
	CAS = "1"	CAS = "1"	CAS = "1"	CAS = "1"	CAS = "0"	RES[1:0]="1X"
						CAS = "0"
	Master for	Master for	Slave for	Slave for	Dual Gate	Single Source
Description	cascade.	cascade.	cascade.	cascade.	Mode	Mode
	Master locate	Master locate	Master locate	Master locate		
	on panel right	on panel left	on panel right	on panel left		
	side	side	side	side		
DATR0	Х	DAT0	DAT0	Х	Х	\sim
DATR1	X	DAT1	DAT1	X	X	11/2/11
DATR2	OEV	DAT2	DAT2	X	OEV C	1 10EVIIV
DATR3	X	DAT2	DAT3	X	X	
DATR3	UD	DAT4	DAT4	X	ÚD (
					4 11 1	11 100/11/11
DATR5	X	DAT5	DAT5	X		
DATR6	CKV	DAT6	DAT6	X	CKK// //	// CK/K/ ///
DATR7	X	DAT7	DAT7	X	11 (1) TX . 11	1 110x 1110
DATR8	STV1	DAT8	DAT8	X	\\\\\$T\\1	// \$7\v1\
DATR9	X	DAT9	DAT9	X	11111X	
DATR10	STV2	DAT10	DAT10	$/N\kappa_0$	\\\\$TV2\\\	\\\ \ \$T\\2
DATR11	X	DAT11	DAT11	11 11 11		<i>J</i> //√x
DATR12	STV1	DAT12	DAT12	1	11/8W/2///	STV1
DATR13	Х	DAT13	DAT13			Х
DATR14	Х	DAT14	DAT14	HIIII X II II	(// // //)	Х
DATR15	X	DAT15	DATAS	111 1 × 1 111	MX X	X
DATR16	STBN	DAT16	/ af yad	// //////////////////////////////////	STBN	STBN
DATR17	X	DAT10 DAT17	DATAZ	111111111111111111111111111111111111111	X	X
DCLKR	X	DCLK AN	DCLK	 	X	X
		///	<u> </u>	1 1/1/1/11		
DIOR	X	DIO	/// /a/a/////	#1 11 1111	X	X
LDR	X	11/1 92	111 161	A XIII	X	X
SYNCR	Х	(SXVX)	\\\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	// // X	X	Х
_					<u> </u>	
DATL0	DAT0			DAT0	Χ	X
DATL1	DATA\		///// X///	DAT1	X	X
DATL2	DAT2	// /QEV// //	/////X	DAT2	OEV	OEV
DATL3	1 DAT3	110 K 1	/// 2X	DAT3	Х	Х
DATL4	DANA!	1/ // UD// //	X	DAT4	UD	UD
DATL5	////8X.KQ////	11/1/X /C/	X	DAT5	X	Х
DATE6	\\\\ DAT6\\\\\	CKK	Х	DAT6	CKV	CKV
DATLY	// ///\DAT\		X	DAT7	X	X
DAYL8	DAT8	8TV1	X	DAT8	STV1	STV1
DATL	DATA	X	X	DAT9	X	X
DATL10	DAT10	STV2	X	DAT9	STV2	STV2
	-11 11 11					
DATE 11	DAY11	X	X	DAT11	X	X
DATL 12	DATT2	STV1	X	DAT12	STV1	STV1
DATL13	DAT13	X	X	DAT13	X	X
DATL14	DAT14	X	X	DAT14	X	X
DATL15	DAT15	X	X	DAT15	X	X
DATL16	DAT16	STBN	X	DAT16	STBN	STBN
DATL17	DAT17	X	Х	DAT17	X	X
DCLKL	DCLK	Х	X	DCLK	Х	Х
DIOL	DIO	Х	Х	DIO	X	Х
LDL	LD	Х	Х	LD	X	Х
SYNCL	SYNC	X	X	SYNC	X	X

5. 3-WIRE SERIAL PORT INTERFACE

5.1. 3-Wire Command Format

EK9716 use the 3-wire serial port as communication interface for all the function and parameter setting.

3-Wire communication can be bi-directional controlled by the "R/W" bit in address field. EK9716 3-Wire engine act as a "slave mode" for all the time, and will not issue any command to the 3-Wire bus itself.

Under read mode, 3-Wire engine will return the data during "Data phase". The returned data should be latched at the rising edge of SCL by external controller. Data in the "Hi-Z phase" will be ignored by 3-Wire engine during write operation, and should be ignored during read operation also. During read operation, external controller should float SDA pin under "Hi-Z phase" and "Data phase".

Each Read/Write operation should be exactly 16 bit. To prevent from incorrect setting of the internal register, any write operation with more or less than 16 bit data during a CSB Low period will be ignored by 3-Wire engine.

For prevent from incorrect setting of the internal register. Please refer to the section of "3-Wire Timing Diagram" for the detail timing.

Table 5. 3-Wire Command Format

Bit	Description
Q15\\D\x0\\\	Register Address [5:0].
\\ D9\\ \\	W/R control bit. "0" for Write; "1" for Read
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	HAZ bit during read mode. Any data within this bits will be ignored during write mode
D7 – Q0	Data for the W/R operation to the address indicated by Address phase

Table 6. 3-Wire Writer Format

MSB															LSB
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Register Address [5:0]						0	Χ		DAT	A (Issu	e by e	xternal	contr	oller)	

Table 7. 3-Wire Read Format

MSB															LSB
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Register Address [5:0]							Hi-Z		DA	TA (Is	sue by	3-Wire	engir	าe)	

2013/11/18 15 **Rev. 1.0**

5.2. 3-Wire Control Registers

Following table list all the 3-Wire control registers and bit name definition for EK9716. Refer to the next section for detail register function description, please.

Setting of all the 3-Wire registers will take effect at the coming falling edge of VSD except GRB and STB bit.

5.3. 3-Wire Control Register List

NO.			Add	ress			R/W	D8	MSB			Initial	value		\wedge	LSB											
NO.	D15	D14	D13	D12	D11	D10	D9	D0	D7	D6	D5	D4	D3	D2	_b ₁ /	D0											
R0	0	0	0	0	0	0	R/W(0)	v	RES[1]	RES[0]	SHLR	UPDN	STBYB	GRB	BCFK b	MODE											
RU	0	U	U	U	U	ı	ı		U		U				K/VV(U)	F(VV(U)	K/W(0)	1000(0)	^	0	0	1	0	1 (M,	11/6/	$\sqrt{1}$
R1	0	0	0	0	0	1	R/W(0)	Х	NBWB	CFSEL	SCI_ON	CABC_ E N[1]	CABC_ EN[0]	HFRE	DITHE	BIST											
							(-)		1	1	0	9	10/	M	1/4 //												

Note:

1. The register except upper list was for testing use, to write test register was not allowed

Table 8. R0: System Control Register

Designation		
Designation	Address	Description / //////////////////////////////////
MODE	R0[0]	DE / SYNC mode select. MODE="0", HSD/VSD mode. MODE="1", DE mode. (Default)
DCLKPOL	R0[1]	DCLK polarity control bit DCLKPOL="0": Data sampling at DCLK falling edge. (Default) DCLKPOL="1": Data sampling at DCLK raing edge.
GRB	R0[2]	Global reset bit: GRB="0" The controller is in reset state. GRB="1" Normal operation (Detault)
STBYB	R0[3]	Standby mode selection bit. \$TBYB="0", Timing control and driver are off. All outputs are High-Z. \$TBYB="1", Normal operation. (Default)
UPDN	[4]08	G Gate Up or Down scan control. UPDN = "0", STV2 output vertical start pulse and UD pin output logical "0" to Gate driver. (Default) UPDN = "1", STV1 output vertical start pulse and UD pin output logical "1" to Gate driver.
SHLR	ROJSJ	Right/Left sequence control of source driver. SHLR="0", Shift left: Last data=S1<-S2<-S3 <-S1200=First data. SHLR="1", Shift right: First data=S1->S2->S3>S1200=Last data. (Default)
RES[1:0]	R0[7:6]	Display resolution selection. RES[1:0] = "00", for 800(RGB)*480 display resolution.(Default) RES[1:0] = "01", for 800(RGB)*600 display resolution. RES[1:0] = "10", for 400(RGB)*480 display resolution. RES[1:0] = "11", for 400(RGB)*240 display resolution.

Preliminary **EK9716**

Table 9.	R1: S	vstem	Control	Register
----------	-------	-------	---------	----------

Designation	Address	Description
BIST	R1[0]	Normal Operation/BIST pattern select. BIST = "0" : Normal Operation (Default) BIST = "1" : BIST(DCLK input is not needed)
DITHB	R1[1]	Dithering function enable control. Normally pull high DITHB = "0", Enable internal dithering function. DITHB = "1", Disable internal dithering function.(Default)
HFRC	R1[2]	H-FRC selection. HFRC = "0" : FRC enable. (Default) HFRC = "1" : HiFRC enable. If DITHER = "0" , disable dithering function(HiFRC and FRC disable)
CABC_EN[1:0]	R1[4:3]	CABC H/W enable pin. Normally pull low. When CABC_EN="00", CABC OFF. (Default mode) When CABC_EN="01", User interface Image. When CABC_EN="10", Still Picture. When CABC_EN="11", Moving Image.
SCI_ON	R1[5]	Enable 3-wire control function. Normally pull low SCI_ON = "0" : Base on pin control function. Default SCI_ON = "1" : Base on 3-wire register.
CFSEL	R1[6]	Color Filter type selection. Normally pull high CFSEL = "0", Delta mode (CFSEL = "1", Stripe prode (Default)
NBWB	R1[7]	Normally black or normally white setting NBWB = "0" : Normally black NBWB = "1" Wormally white (Default)

6. FUNCTION DESCRIPTION

6.1. Power On/Off Sequence

In order to prevent IC from power on reset fail, the rising time (T_{POR}) of the digital power supply VDD should be maintained within the given specifications. Refer to "AC Characteristics" for more detail on timing.

2013/11/18 18 **Rev. 1.0**

6.2. Input Data VS Output Channels

6.2.1. DBGATE="0", CFSEL="1", Stripe Mode

Table 10. SHLR="1", right shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		First data		\rightarrow		Last data	
Odd Line	DR[07:00]	DG[07:00]	DB[07:00]		DR[07:00]	DG[07:00]	DB[07:00]
Even Line	DR[07:00]	DG[07:00]	DB[07:00]		DR[07:00]	DG[07:00]	DB[07:Q0]

Table 11. SHLR="0", left shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		Last data		←		First data	
Odd Line	DR[07:00]	DG[07:00]	DB[07:00]		DR[07:00]	DG[07.00]	\DB\Q7:\QQ\
Even Line	DR[07:00]	DG[07:00]	DB[07:00]		DR[07:00]	PG[07:00]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

6.2.2. DBGATE="0", CFSEL="0", Delta Mode

Table 12. SHLR="1", right shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		First data		\rightarrow		Last data	J •
Odd Line	DR[07:00]	DG[07:00]	DB[07:00]	/	100//SKN01/	BC/04:001	DB[07:00]
Even Line	DG[07:00]	DB[07:00]	DR[07:00]\	1111	D <i>\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	// DB(0)7:00]	DR[07:00]

Table 13. SHLR="0", left shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		Last data		# 1		First data	
Odd Line	DR[07:00]	DG/02:00}/	DB(07:00)	11	X [07:00]	DG[07:00]	DB[07:00]
Even Line	DG[07:00]	DB[0X;00]	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	DG[07:00]	DB[07:00]	DR[07:00]

6.2.3. DBGATE="1", CASEL="1", Stripe Mode

Table 14. SHLR="1", right shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		First data		\rightarrow		Last data	
Odd Line/Gn	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	QB[07:00]	DG[07:00]		DR[07:00]	DB[07:00]	DG[07:00]
Odd LinexGn+1	/ <i>p/p/p/x/.g/</i> 61	\DR\\07:00]	DB[07:00]		DG[07:00]	DR[07:00]	DB[07:00]
Ever Line/Gn\\\	DRY07/001/~	B [07:00]	DG[07:00]		DR[07:00]	DB[07:00]	DG[07:00]
Even Line/Gn+1	/DG/M/V/	DR[07:00]	DB[07:00]		DG[07:00]	DR[07:00]	DB[07:00]

Table 15. SHIR = 0 left shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order \\		Last data		←		First data	
Odd Line/Gn	DR[07:00]	DB[07:00]	DG[07:00]		DR[07:00]	DB[07:00]	DG[07:00]
Odd Line/Gn+1	DG[07:00]	DR[07:00]	DB[07:00]		DG[07:00]	DR[07:00]	DB[07:00]
Even Line/Gn	DR[07:00]	DB[07:00]	DG[07:00]		DR[07:00]	DB[07:00]	DG[07:00]
Even Line/Gn+1	DG[07:00]	DR[07:00]	DB[07:00]		DG[07:00]	DR[07:00]	DB[07:00]

2013/11/18 19 **Rev. 1.0**

Table 16. SHLR="1", right shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		First data		\rightarrow		Last data	
Odd Line/Gn	DR[07:00]	DB[07:00]	DG[07:00]		DR[07:00]	DB[07:00]	DG[07:00]
Odd Line/Gn+1	DG[07:00]	DR[07:00]	DB[07:00]		DG[07:00]	DR[07:00]	DB[07:00]
Even Line/Gn	DG[07:00]	DR[07:00]	DB[07:00]		DG[07:00]	DR[07:00]	DB[07:00]
Even Line/Gn+1	DB[07:00]	DG[07:00]	DR[07:00]		DB[07:00]	DG[07:00]	DR[07:00]

Table 17. SHLR="0", left shift

Output	SO1	SO2	SO3		SO1198	SO1199	SO1200
Order		Last data		←		First data	
Odd Line/Gn	DR[07:00]	DB[07:00]	DG[07:00]		DR[07:00]	DB[07\00]\\	DQ(0X00)
Odd Line/Gn+1	DG[07:00]	DR[07:00]	DB[07:00]		DG[07:00]	DF(07:00]	/\DB[0\7:0\0]/\
Even Line/Gn	DG[07:00]	DR[07:00]	DB[07:00]		DG[07:00]	/60:XQXAQ	/DB(6X/00)//
Even Line/Gn+1	DB[07:00]	DG[07:00]	DR[07:00]		DB[07:08]\	DQ[07:00]	DR(Q7:00)

6.3. Input Data VS Output Voltage

The figure below shows the relationship between the input data and the output voltage. Refer to the following pages for the relative resistor values and voltage calculation method.

Remark:

6.5. Timing Characteristic

6.5.1. For 800 × 480 panel

Table 18. Horizontal input timing

Parameter	Symbol		Value		Unit	Note
Horizontal display area	thd		800		DCLK	
DCLK frequency	fclk	Min.	Тур.	Max		
DCLK frequency	ICIK	20	33.3	50	MHz	
1 Horizontal Line	th	908	928	1088		thb+thpw€88
HSD pulse width	thpw	1	48	87	DCLK	DOKKYS/
HSD Back Porch (Blanking)	thb	87	40	1	(//fixed
HSD Front Porch	thfp	20	40	200		11 11 116 5

Table 19. Vertical input timing

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Vertical display area	tvd		480		A	
VSD period time	tv	517	525	712		1
VSD pulse width	tvpw	1	1	1 / /	/// /// ///	tvpw+tvb=32H
VSD Back Porch (Blanking)	tvb	31	31	////29//	/ M//) Jo lixed
VSD Front Porch	tvfp	5	11/1/33	11/200		

6.5.2. For 800 × 600 panel

Table 20. Horizontal input timing

Parameter	Symbol		Value		Unit	Note
Horizontal display area	Myd //		///808/		DCLK	
DCLK frequency	Sterk	///M/h//	\\ Typ.	Max		
DCLK frequency		///\$0///	40	50	MHz	
1 Horizontal Line	XX XX	908	1000	1088		thb+thpw=88
HSD pulse width	thpw	1	48	87	DCLK	DCLK is
HSD Back Porch (Blanking)	11 844	87	40	1	202.1	fixed.
HSD Front Porch	/ toll	20	112	200		

Table 21. Vertical input timing

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Vertical display area	tvd		600		Н	
VSD period time	tv	644	660	839	Н	h
VSD pulse width	tvpw	1	1	3	Н	tvpw+tvb=39H Is fixed
VSD Back Rorch (Blanking)	tvb	38	38	36	Н	13 lixeu
VSD Front Porch	tvfp	5	21	200	Н	

2013/11/18 23 **Rev. 1.0**

6.5.3. For 400 × 480 panel

Table 22. Horizontal input timing

Parameter	Symbol	Value			Unit	
Horizontal display area	thd		400			
DCLK frequency	fclk	Min.	Тур.	Max		
	ICIK	1	16.4	50	MHz	
1 Horizontal Line	th	508	520	688		thb+thpw=88
HSD pulse width	thpw	1	48	87	DCLK	DCLK is
HSD Back Porch (Blanking)	thb	87 40 1		1	DOLK	fixed.
HSD Front Porch	thfp	20	32	200		

Table 23. Vertical input timing

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Vertical display area	tvd		480		CH)	
VSD period time	tv	517	525	712	///4///	
VSD pulse width	tvpw	1	1	3	// VA/	tvpw+tvb=32H Is\fixed
VSD Back Porch (Blanking)	tvb	31	31	29		
VSD Front Porch	tvfp	5	13	200		

6.5.4. For 400 × 240 panel

Table 24. Horizontal input timing

Parameter	Symbol	Value	Unit	
Horizontal display area	thd	11 4QQ	DCLK	
DCLK frequency	fclk	Mia. Typ. Max		
DOLK frequency	~ 11/cm ////	1/8.5 50	MHz	
1 Horizontal Line	// ////	520 688		thb+thpw=88
HSD pulse width	Mach	1 48 47	DCLK	DCLK is
HSD Back Porch (Blanking)	1111/644 11	40 1	DOLK	fixed.
HSD Front Porch	\\ thtp\\	20 32 200		

Table 25. Vertical input timing

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Vertical display area	tvd		240		Н	
VSD period time	tv	262	270	457	Н	1
VSQ pulse width	tvpw	1	1	3	Н	tvpw+tvb=17H Is fixed
VSD Back Porch (Blanking)	tvb	16	16	14	Н	10 lixed
VSD Front Porch	tvfp	5	13	200	Н	

2013/11/18 24 **Rev. 1.0**

7. ELECTRICAL SPECIFICATION

7.1. Absolute Maximum Ratings

Table 26. VOLTAGE (TA = 25°C, VSS = VSSA = 0V)

	Min.	Max.	Unit
Digital Supply Voltage, VDD	-0.5	+5.0	V
Analog Supply Voltage, VDDA, V1~V14	-0.5	+15.0	V

Table 27. TEMPERATURE

	Min.	Max.	Unit
Operating temperature	-20	+85	// //sk ///
Storage temperature	-55	+125	11/1 8/1

Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposed to absolute maximum rating conditions for extended periods may affect device reliability.

7.2. Recommended Operating Range

Table 28. Recommended Operating Range (TA \ -20\ 85°C, V\$S = V\$SA \ 0V)

			<u> </u>		
Parameter	Symbol	Min.	Тур.	Max.	Unit
Digital supply voltage	VDD //	1 1/47/1	11/1/8/11/2	3.6	V
Analog supply voltage	YRDA //			13.5	V
Digital input voltage		///////	-	VDD	V

2013/11/18 25 **Rev. 1.0**

Table 29. DC Characteristics

 $(TA = -20 \text{ to } 85^{\circ}\text{C}, VDD = 1.71 \text{ to } 3.6\text{V}, VDDA = 6.5 \text{ to } 13.5\text{V}, VSS = VSSA = 0\text{V})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Low level input voltage	Vil	For the digital circuit	0	-	0.3×VDD	V
High level input voltage	Vih	For the digital circuit	0.7×VDD	-	VDD	V
Input leakage current	li	For the digital circuit	-	-	±1	pΑ
High level output voltage	Voh	loh= -400 μA	VDD-0.4	-	- 1	
Low level output voltage	Vol	Iol= +400 μA	-	-	V65+0.4	
Pull low/high resistor	Ri	For the digital input pin @ VDD=3.3V	200K	250K	300K	ohm
Digital Operation current	ldd	Fclk=50 MHz, FLD=48KHz, VDD=3.3V	-	(A)	18	App.
Digital Stand-by current	lst1	Clock and all functions are stopped	-	1/1/20	750)pA
Analog Operating Current	ldda	No load, Fclk=50MHz, FLD=48KHz @ VDDA=10V,V1=8V, V14=0.4V			12	mA
Analog Stand-by current	lst2	No load, Clock and all functions are stopped			50	μΑ
Input level of V1 ~ V7	Vref1	Gamma-correction voltage input (Cascade Mode)	0:4*VDDA	-	VDDA-1	V
Input level of V8 ~ V14	Vref2	Gamma correction voltage (input (Cascade Mode)	V\$SA+1	-	0.6*VDDA	V
Input level of V1 ~ V7	Vref3	Gamma correction voltage input(Dual Gate Mode)	0.4*VDDA	-	VDDA-0.1	V
Input level of V8 ~ V14	Vref4	Gamma conjection voltage input(Qual Cate Mode)	VSSA+0.1	-	0.6*VDDA	V
Output Voltage deviation	Nod1	Vo = V\$\$A+0,1V ~ VS\$A+0,5V and Vo = VDDA-0.5V ~ VDDA-0.1V	-	±20	±35	mV
Output Voltage deviation	1002	Vo = VSSA+0.5V ~ VDDA-0.5V	-	±15	±20	mV
Output Voltage Offset between Chips	Moc	Vo = VSSA+0.5V ~ VDDA-0.5V	-	-	±20	mV
Dynamic Range of Output	Vdr	SO1 ~ SO1200	0.1	-	VDDA-0.1	V
Sinking Current of Outputs	lOLy	SO1 ~ SO1200; Vo=0.1V v.s 1.0V , VDDA=13.5V	80	-	-	uA
Driving Current of Outputs	ЮНу	SO1 ~ SO1200; Vo=13.4V v.s 12.5V , VDDA=13.5V	80	-	-	uA
Resistance of Gamma Table	Rg	Rn: Internal gamma resistor	0.7*Rn	1.0*Rn	1.3*Rn	ohm

Table 30. AC Characteristics

 $(TA = -20 \text{ to } 85^{\circ}C, VDD = 1.71 \text{ to } 3.6V, VDDA = 6.5 \text{ to } 13.5V, VSS = VSSA = 0V)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
VDD Power On Slew rate	T _{POR}	From 0V to 90% VDD	-	-	20	ms
RSTB pulse width	T _{RST}	CLKIN = 50MHz	50	-	-	us
CLKIN cycle time	Tcph	-	20	-	-	ns
CLKIN pulse duty	Tcwh	-	40	50	60	%
VSD setup time	Tvst	-	8	-	111	N3
VSD hold time	Tvhd	-	8	- (7/4//	\\n s \\
HSD setup time	Thst	-	8	6	p	Me.
HSD hold time	Thhd	-	8	11-11		//ns///
Data set-up time	Tdsu	DR[7:0], DG[7:0], DB[7:0] to CLKIN	1/8	DH 1		1/2/2
Data hold time	Tdhd	DR[7:0], DG[7:0], DB[7:0] to CLKIN	1/8/1	1 - 1	11- 11	109
DEN setup time	Tesu	-	18/		11-11	ns
DEN hold time	Tehd	- 21/1/1	18			ns
Output stable time	Tsst	10% to 90% target voltage. CL=120pF, R=10K onto			6	us

7.5. Timing Table

Table 31. Parallel 24-bit RGB Mode

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
CLKIN Frequency	Folk	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>	40	50	MHz
CLKIN Cycle Time	\\\\\\\\\\\		20	25	-	ns
CLKIN Pulse Duty	Towar	Tçik	40	50	60	%
Time from HSD to Source Output	\\Xxsq\\		-	46	-	CLKIN
Time from HSD to LD	// this		-	46	-	CLKIN
Time from HSD to STW	Thaty	70	-	2	-	CLKIN
Time from HSD to CKV	Thoky	-	-	20	-	CLKIN
Time from HSD to OEV	Thoev	-	-	4	-	CLKIN
LD Pułse W. idth	Twld			10		CLKIN
CKV/Polse Width	Twckv	-	-	66	-	CLKIN
OEV Pulse Width	Twoev	-	-	74	-	CLKIN

fitipower 7.6. Timing Waveform CLKIN Tdsu Tdhd, Data First data 2 nd data Last data 30% 70% Tesu DEN CLKIN VSD 30% Thhd HDS 30% Figure 10. Input Clock and Data Timing Diagram HSD _30% Thso Figure 11. Source Output Timing Diagram(Cascade) Output ≒ 60P

Figure 12. Output load condition

Figure 14. Vertical Timing Diagram DE (Cascade)

Figure 16. Vertical Timing Diagram HV (Dual Gate)

2013/11/18 30 Rev. 1.0

Figure 19. Pad Outline Dimension (Bump Side)

2013/11/18 32 Rev. 1.0

8.1. Alignment Mark

Figure 20. Alignment Mark

8.2. Pad Information

Symbol	Dimension(um)	Symbol	Dimension(um)
A	17	D	11 38 11
A1	34	D	1 40
A2	110	Q 2	100
A3	30	D3	30
В	30	/ KH	70
B1	50	1 23111	34
B2	4	D6	168.5
В3	50	E1	22572 (max) *
B4	191.5	E2	938 (max) *
	(F) (F3)	E3	324
C1	85	E4	57 (max)
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	110	E5	57 (max)

*Note: Chip dimension includes scribe line

Preliminary **EK9716**

No	Name	CX	CY	
1	TP14	-10922.5	-357	
2	SHIELDING[1]	-10837.5	-357	
3	TP15	-10752.5	-357	
4	COM_PASSR	-10667.5	-357	
5	COM_PASSR	-10582.5	-357	
6	VSSA	-10497.5	-357	
7	VSSA	-10412.5	-357	
8	VSSA	-10327.5	-357	
9	VSSA	-10242.5	-357	
10	TP4	-10157.5	-357	
11	SHIELDING[2]	-10072.5	-357	
12	GMAVR[1]	-9987.5	-357	
13	GMAVR[1]	-9902.5	-357	
14	SHIELDING[3]	-9817.5	-357	
15	GMAVR[2]	-9732.5	-357	
16	GMAVR[2]	-9647.5	-357	
17	SHIELDING[4]	-9562.5	-357	
18	GMAVR[3]	-9477.5	-357	
19	GMAVR[3]	-9392.5	-357	/
20	SHIELDING[5]	-9307.5	-35X	
21	GMAVR[4]	-9222.5	-35X	7
22	GMAVR[4]	P9127.5	-357	
23	SHIELDING	190525	357	
24	GMAVR[5]	1896X.4	-357	
25	OMAYR[5]	-8882,5	357	//<
26	CHIEF DIMO[4]	\879X.5	-357	
27	GMANR[6]	-8712.5	-357	
28	GMAVR[6]	-8627.5	-357	
29	SHIELDING[8]	-8542.5	-357	
30	GMAVR[7]	-8457.5	-357	
31	GMAVR[7]	-8372.5	-357	
32	SHIELDING[9]	-8287.5	-357	
33	GMAVR[8]	-8202.5	-357	
34	GMAVR[8]	-8117.5	-357	
35	SHIELDING[10]	-8032.5	-357	

	36	GMAVR[9]	-7947.5	-357
	37	GMAVR[9]	-7862.5	-357
	38	SHIELDING[11]	-7777.5	-357
	39	GMAVR[10]	-7692.5	-357
	40	GMAVR[10]	-7607.5	-357
	41	SHIELDING[12]	-7522.5	-357
	42	GMAVR[11]	-7437.5	-357
	43	GMAVR[11]	-7352.5	-357
	44	SHIELDING[13]	-7267.5	-357
	45	GMAVR[12]	-7182.5	-357
	46	GMAVR[12]	-7097.5	-357
	47	SHIELDING[14]	-7012.5	-357
	48	GMAVR[13]	-6927.5	₋₃₅₇
	49	GMAVR[13]	-6842.5	-357
	50	SHIELDING[15]	46 75 7 ,5	-367
	51	GMAVR[14]	1-66 X2.5	-357
	52	GMAVRITAL	\ -658 7.\$	1-357
	53	TP16	-6502.5	₇ 357
0	54	Tra 1	-6417.5	357
	55	SHIELDING[16]	-63325	357
///	166	SHIELDING[17]	6247.5	-357
	24//	SHIELDING[18]	-6162.5	-357
1	\ 58	SHIELDING[19]	-6077.5	-357
	198	REV	-5992.5	-357
`	60	BIST	-5907.5	-357
//	61	BIST	-5822.5	-357
	62	TP17	-5737.5	-357
	63	VDDA	-5652.5	-357
	64	VDDA	-5567.5	-357
	65	VDDA	-5482.5	-357
	66	VDDA	-5397.5	-357
	67	SHIELDING[20]	-5312.5	-357
	68	VSSA	-5227.5	-357
		VSSA	-5142.5	-357
	69	VSSA	-5142.5	
	69 70	VSSA	-5057.5	-357

73 VSS -4802.5 -357 74 VSS -4717.5 -357 75 VSS -4632.5 -357 76 VSS -4547.5 -357 77 TP6 -4462.5 357 78 DIMO -4292.5 387 80 TP -4207.5 -357 81 VDD -4292.5 387 81 VDD -4937.5 -357 81 VDD -3952.5 -357 84 VDD -3952.5 -357 85 TP -3782.5 -357 86 DBGATE -3697.5 -357 87 DBGATE -3612.5 -357 87 DBGATE -3612.5 -357 87 DBGATE -3697.5 -357 88 CSB -3527.5 -357 90 MASL -342.5 -357 91 SCL -3272.5 -357	72	TP5	-4887.5	-357		
75	73	VSS	-4802.5	-357		
76 VSS -4547.5 -357 77 TP6 -4462.5 -357 78 DIMO -4282.5 -387 79 DIMO -4282.5 -387 80 TP -4207.5 -357 81 VDD -4037.5 -357 82 VDD -3982.5 -357 84 VDD -3487.5 -357 84 VDD -3782.5 -357 84 VDD -3782.5 -357 85 TP1 -3782.5 -357 86 DBGATE -3697.5 -357 87 DBGATE -3697.5 -357 89 MASL -3422.5 -357 90 MASL -3422.5 -357 91 SCL -3272.5 -357 91 SCL -3272.5 -357 94 SDA -3017.5 -357 95 RES[0] -2847.5 -357	74	VSS	-4717.5	-357		
77 TP6 -4462.5 -357 78 DIMO -4377.5 -357 79 DIMO -4282.5 -357 80 TP7 -4207.5 -357 81 VDD -4037.5 -357 82 VDD -4037.5 -357 83 VDD -3952.5 -357 84 VDD -3867.5 -357 85 TP1 -3782.5 -357 86 DBGATE -3612.5 -357 87 DBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2932.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	75	VSS	-4632.5	-357		
78 DIMO 4377-5 357 79 DIMO 4282-5 357 80 TP7 4207.5 357 81 VDD 4722-5 357 82 VDD -4037.5 357 83 VDD 3952-5 -357 84 VDD -3867.5 -357 85 TP1 -3782.5 -357 86 DBSATE -3612.5 -357 87 DBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2592.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	76	VSS	-4547.5	-357	l	
79 DIMO 4282.5 357 80 TP 4207.5 -357 81 VDD 4722.5 357 82 VDD 3952.5 -357 84 VDD 3952.5 -357 85 VDD 3952.5 -357 86 DBGATE -3612.5 -357 87 DBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357	77	TP6	-4462,5	-357		
80 TP7 4207.5 -357 81 VDD 47225 357 82 VDD -4037.5 357 83 VDD 3952.5 -357 84 VDD 3867.5 -357 86 DBGATE -3612.5 -357 87 DBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 100 RES[1] -2592.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 106 DASHD[2] -1997.5 -357	78	DIMO	4377.5	-357		
81 VDD 4722.5 357 82 VDD 3952.5 -357 83 VDD 3952.5 -357 84 VDD 3867.5 -357 85 TP1 -3782.5 -357 86 DBGATE -3612.5 -357 87 DBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 106 DASHD[2] -1997.5 -357	79	DIMO	-4292\5	367		
82	80	TPZ	4207.5	-357	1	
83 VDD 3952.5 -357 84 VDD -3867.5 -357 85 TP1 -3782.5 -357 86 DBGATE -3697.5 -357 87 DBGATE -3612.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 100 RES[1] -2592.5 -357 101 CFSEL -2337.5 -357 102 CFSEL -2337.5	81 (//VDb/	4122.5	1357	1	
84 VOD -3867.5 -357 85 TP -3782.5 -357 86 DBGATE -3697.5 -357 87 DBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2337.5 -357 102 CFSEL -2337.5 <td>82</td> <td>// WAPP //</td> <td>-4037.5</td> <td>35</td> <td>1</td>	82	// WAPP //	-4037.5	35	1	
85 TP	83/	VDD	3952,5	357	l	
86 DESATE -3697.5 -357 87 OBGATE -3612.5 -357 88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2337.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2	84	JOHR III	-3867.5	-357		
87 QBGATE -3612.5 -357 88 CSB -3527.5 -357 90 MASL -3442.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2592.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] <td< td=""><td>85</td><td>MAD!</td><td>-3782.5</td><td>-357</td><td></td></td<>	85	MAD!	-3782.5	-357		
88 CSB -3527.5 -357 89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2592.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -	86	DBGATE	-3697.5	-357		
89 MASL -3442.5 -357 90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	87	DBGATE	-3612.5	-357		
90 MASL -3357.5 -357 91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 100 RES[1] -2592.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	88	CSB	-3527.5	-357	l	
91 SCL -3272.5 -357 92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	89	MASL	-3442.5	-357		
92 MASLOC -3187.5 -357 93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	90	MASL	-3357.5	-357		
93 MASLOC -3102.5 -357 94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	91	SCL	-3272.5	-357		
94 SDA -3017.5 -357 95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	92	MASLOC	-3187.5	-357		
95 RES[0] -2932.5 -357 96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	93	MASLOC	-3102.5	-357		
96 RES[0] -2847.5 -357 97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	94	SDA	-3017.5	-357		
97 CABC_EN[0] -2762.5 -357 98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	95	RES[0]	-2932.5	-357		
98 CABC_EN[1] -2677.5 -357 99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	96	RES[0]	-2847.5	-357		
99 RES[1] -2592.5 -357 100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	97	CABC_EN[0]	-2762.5	-357		
100 RES[1] -2507.5 -357 101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	98	CABC_EN[1]	-2677.5	-357		
101 CFSEL -2422.5 -357 102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	99	RES[1]	-2592.5	-357	Ì	
102 CFSEL -2337.5 -357 103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	100	RES[1]	-2507.5	-357	Ì	
103 DASHD[1] -2252.5 -357 104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	101	CFSEL	-2422.5	-357	Ì	
104 VSD -2167.5 -357 105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	102	CFSEL	-2337.5	-357	Ì	
105 VSD -2082.5 -357 106 DASHD[2] -1997.5 -357	103	DASHD[1]	-2252.5	-357	Ì	
106 DASHD[2] -1997.5 -357	104	VSD	-2167.5	-357	Ì	
	105	VSD	-2082.5	-357	Ì	
107 HSD -1912.5 -357	106	DASHD[2]	-1997.5	-357	Ì	
	107	HSD	-1912.5	-357		

<u>fitipower</u>

Preliminary **EK9716**

									•		· • · · · · · · · · · · · · · · · · · ·		<u> </u>	
108	HSD	-1827.5	-357		147	DG[3]	1487.5	-357		186	SHLR	4802.5	-357	1
109	DASHD[3]	-1742.5	-357		148	DG[2]	1572.5	-357		187	SHIELDING[21]	4887.5	-357	
110	DEN	-1657.5	-357		149	DG[2]	1657.5	-357		188	UPDN	4972.5	-357	
111	DEN	-1572.5	-357		150	DASHD[12]	1742.5	-357		189	UPDN	5057.5	-357	
112	DASHD[4]	-1487.5	-357		151	DG[1]	1827.5	-357		190	TP10	5142.5	-357	
113	CLKIN	-1402.5	-357		152	DG[1]	1912.5	-357		191	STBYB	5227.5	-357	
114	CLKIN	-1317.5	-357		153	DG[0]	1997.5	-357		192	STBYB	5312.5	~ 357	
115	DASHD[5]	-1232.5	-357		154	DG[0]	2082.5	-357		193	TP11	5397.5	357	
116	DB[7]	-1147.5	-357		155	DASHD[13]	2167.5	-357		194	RSTB	54825	-357	ľ
117	DB[7]	-1062.5	-357		156	DR[7]	2252.5	-357		195	RSTB	\$ 56 7.5	357	X
118	DB[6]	-977.5	-357		157	DR[7]	2337.5	-357		196	TP12	\$652.5	-367	
119	DB[6]	-892.5	-357		158	DR[6]	2422.5	-357		197	1 1 ppp //	5737.5	1357	1
120	DASHD[6]	-807.5	-357		159	DR[6]	2507.5	-357		198	VDD /	5822.5	-357	7
121	DB[5]	-722.5	-357		160	DASHD[14]	2592.5	-357		199	1 1990 N	5907.5	-357	
122	DB[5]	-637.5	-357		161	DR[5]	2677.5	(-35X)		200	///vpd///	5992.5	-357	
123	DB[4]	-552.5	-357		162	DR[5]	2762.5	-35		201	CAS	6077.5	-357	
124	DB[4]	-467.5	-357		163	DR[4]	28475	-357		202	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6162.5	-357	
125	DASHD[7]	-382.5	-357		164	DRAI	29325	\-35\\\		203	vss	6247.5	-357	
126	DB[3]	-297.5	-357		165	DASHD[19]	301\7.5	357		204	VSS	6332.5	-357	
127	DB[3]	-212.5	-357		186	DR(3)	3102.5	-357		205	VSS	6417.5	-357	
128	DB[2]	-127.5	-357	2	167	DR[3]	3187.5	-357)	206	TP2	6502.5	-357	
129	DB[2]	-42.5	-357	10	168	DR(2)	3272	357		207	GMAVL[14]	6587.5	-357	
130	DASHD[8]	42.5	-357	11/1	169		3357.5	-357		208	GMAVL[14]	6672.5	-357	
131	DB[1]	127.5	-357		770	DASHD[16]	3442.5	-357		209	SHIELDING[22]	6757.5	-357	
132	DB[1]	1242.5	-357		184	DR[7]	3527.5	-357		210	GMAVL[13]	6842.5	-357	
133	DB[0]	2975	-357		172	DR[1]	3612.5	-357		211	GMAVL[13]	6927.5	-357	
134	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3825	1/3/57		173	DR[0]	3697.5	-357		212	SHIELDING[23]	7012.5	-357	
135	DASHD[9]	467.5	-347		174	DR[0]	3782.5	-357		213	GMAVL[12]	7097.5	-357	
136	DQ[7]	5525	-357		175	DASHD[17]	3867.5	-357		214	GMAVL[12]	7182.5	-357	
137	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	637.5	J ₋₃₅₇		176	TP13	3952.5	-357		215	SHIELDING[24]	7267.5	-357	
138	QG[6]	X22.5	-357		177	MODE	4037.5	-357		216	GMAVL[11]	7352.5	-357	
139	DG[6]	807.5	-357		178	MODE	4122.5	-357		217	GMAVL[11]	7437.5	-357	
140	DASHD[10]	892.5	-357		179	CLKPOL	4207.5	-357		218	SHIELDING[25]	7522.5	-357	
141	DG[5]	977.5	-357		180	CLKPOL	4292.5	-357		219	GMAVL[10]	7607.5	-357	
142	DG[5]	1062.5	-357		181	TP8	4377.5	-357		220	GMAVL[10]	7692.5	-357	
143	DG[4]	1147.5	-357		182	DITHB	4462.5	-357		221	SHIELDING[26]	7777.5	-357	
144	DG[4]	1232.5	-357		183	DITHB	4547.5	-357		222	GMAVL[9]	7862.5	-357	
145	DASHD[11]	1317.5	-357		184	TP9	4632.5	-357		223	GMAVL[9]	7947.5	-357	
146	DG[3]	1402.5	-357		185	SHLR	4717.5	-357		224	SHIELDING[27]	8032.5	-357	
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·								•

fitipower Preliminary EK9716

225 226	GMAVL[8]	8117.5	-357										
226		0117.0	-357		263	DATL[15]	11049	-203		301	SO[17]	10348.5	217
	GMAVL[8]	8202.5	-357		264	DATL[14]	11179	-163		302	SO[18]	10331.5	357
227	SHIELDING[28]	8287.5	-357		265	DATL[13]	11049	-123		303	SO[19]	10314.5	77
228	GMAVL[7]	8372.5	-357		266	DATL[12]	11179	-83		304	SO[20]	10297.5	217
229	GMAVL[7]	8457.5	-357		267	DATL[11]	11049	-43		305	SO[21]	10280.5	357
230	SHIELDING[29]	8542.5	-357		268	DATL[10]	11179	-3		306	SO[22]	10263.5	77
231	GMAVL[6]	8627.5	-357		269	DATL[9]	11049	37		307	SO[23]	10246.5	217
232	GMAVL[6]	8712.5	-357		270	DATL[8]	11179	77		308	SO[24]	10229.5	357
233	SHIELDING[30]	8797.5	-357		271	DATL[7]	11049	117		309	SO[25]	10242.5	1
234	GMAVL[5]	8882.5	-357		272	DATL[6]	11179	157		310	SO[26]	10195.5	217
235	GMAVL[5]	8967.5	-357		273	DATL[5]	11049	197		311	\$0[27]	10178.5	357
236	SHIELDING[31]	9052.5	-357		274	DATL[4]	11179	237		312	(\$0128]	10161.5	
237	GMAVL[4]	9137.5	-357		275	DATL[3]	11049	277		318	\$0[29]	10144.5	317
238	GMAVL[4]	9222.5	-357		276	DATL[2]	11179	317		314	201301 7	10127.5	357
239	SHIELDING[32]	9307.5	-357		277	DATL[1]	11049	357		315	///e013 <i>}</i> //	10110.5	77
240	GMAVL[3]	9392.5	-357		278	DATL[0]	11179	39 7		316	\$0,32	10093.5	217
241	GMAVL[3]	9477.5	-357		279	POLL	10914	377		317	80[B3]	10076.5	357
242	SHIELDING[33]	9562.5	-357		280	LPA	10864	344		318	SO[34]	10059.5	77
243	GMAVL[2]	9647.5	-357		281	SYNCI/	10814	377		3/19/	SO[35]	10042.5	217
244	GMAVL[2]	9732.5	-357		282	COMZT	10764	344	111	320	SO[36]	10025.5	357
245	SHIELDING[34]	9817.5	-357	1	283	COM2_T	10714	13/77	\	321	SO[37]	10008.5	77
246	GMAVL[1]	9902.5	-357	1	284	SHUET DANC [38]	10664	377		322	SO[38]	9991.5	217
247	GMAVL[1]	9987.5	-357	1//	286	 \$ 0[1]	10620.5	77		323	SO[39]	9974.5	357
248	SHIELDING[35]	10072.5	-357		886		10603.5	217		324	SO[40]	9957.5	77
249	VDDA	101675	-357		287	80[3]	10586.5	357		325	SO[41]	9940.5	217
250	VDDA	10242.5	-357		288	SO[4]	10569.5	77		326	SO[42]	9923.5	357
251	/\VDDA\\\	10327.5	357		289	SO[5]	10552.5	217		327	SO[43]	9906.5	77
252	//vdb#	104125	-3\$7		290	SO[6]	10535.5	357		328	SO[44]	9889.5	217
253	TR3	10497.5	-357		291	SO[7]	10518.5	77		329	SO[45]	9872.5	357
254	COM_PASSL	10582.5) ₋₃₅₇		292	SO[8]	10501.5	217		330	SO[46]	9855.5	77
255	COM_PASSL	10667.5	-357		293	SO[9]	10484.5	357		331	SO[47]	9838.5	217
256	SHIELDING[36]	10752.5	-357		294	SO[10]	10467.5	77		332	SO[48]	9821.5	357
257	SHIELDING[37]	10837.5	-357		295	SO[11]	10450.5	217		333	SO[49]	9804.5	77
258	SHIELDING[38]	10922.5	-357		296	SO[12]	10433.5	357		334	SO[50]	9787.5	217
259	DCLKL	11049	-363		297	SO[13]	10416.5	77		335	SO[51]	9770.5	357
260	DIOL	11179	-323		298	SO[14]	10399.5	217		336	SO[52]	9753.5	77
261	DATL[17]	11049	-283		299	SO[15]	10382.5	357		337	SO[53]	9736.5	217
262	DATL[16]	11179	-243		300	SO[16]	10365.5	77		338	SO[54]	9719.5	357

Preliminary E k	(9	71	6
------------------------	------------	----	---

	<u> </u>										· • · · · · · · · · · · · · · · · · · ·		<u></u>	
339	SO[55]	9702.5	77		377	SO[93]	9056.5	357		415	SO[131]	8410.5	217	
340	SO[56]	9685.5	217		378	SO[94]	9039.5	77		416	SO[132]	8393.5	357	
341	SO[57]	9668.5	357		379	SO[95]	9022.5	217		417	SO[133]	8376.5	77	
342	SO[58]	9651.5	77		380	SO[96]	9005.5	357		418	SO[134]	8359.5	217	
343	SO[59]	9634.5	217		381	SO[97]	8988.5	77		419	SO[135]	8342.5	357	
344	SO[60]	9617.5	357		382	SO[98]	8971.5	217		420	SO[136]	8325.5	77	
345	SO[61]	9600.5	77		383	SO[99]	8954.5	357		421	SO[137]	8308.5	217	
346	SO[62]	9583.5	217		384	SO[100]	8937.5	77		422	SO[138]	8291.5	357	
347	SO[63]	9566.5	357		385	SO[101]	8920.5	217		423	SO[139]	8274.5	1	ŀ
348	SO[64]	9549.5	77		386	SO[102]	8903.5	357		424	SO[140]	8 25 7.5	217	K
349	SO[65]	9532.5	217		387	SO[103]	8886.5	77		425	\$0[141]	8240,5	357	
350	SO[66]	9515.5	357		388	SO[104]	8869.5	217		426	SQ[142]	8223.5		1
351	SO[67]	9498.5	77		389	SO[105]	8852.5	357		427	SQ[143]	8206.5	217	7
352	SO[68]	9481.5	217		390	SO[106]	8835.5	77		428	SOFTAHI 7	8189.5	357	
353	SO[69]	9464.5	357		391	SO[107]	8818.5	(217)		429	\$0[145]	8172.5	77	
354	SO[70]	9447.5	77		392	SO[108]	8801.5	35 X		430	SOMAGE	8155.5	217	
355	SO[71]	9430.5	217		393	SO[109]	8784.5	77		431	\$0[147]	8138.5	357	
356	SO[72]	9413.5	357		394	so[no]	876X.5	1/2/1/		432	SO[148]	8121.5	77	
357	SO[73]	9396.5	77		395	SO(111)	8750,5	357	\mathbb{A}_{\sim}	433	SO[149]	8104.5	217	
358	SO[74]	9379.5	217		396	SOMIZI	8733.5			434	SO[150]	8087.5	357	
359	SO[75]	9362.5	357	2	364	\$0(113)	8716.5	247	\	435	SO[151]	8070.5	77	
360	SO[76]	9345.5	77		398	SONN	8699.5	357		436	SO[152]	8053.5	217	
361	SO[77]	9328.5	217		399	SO[115]	8682.5	77		437	SO[153]	8036.5	357	
362	SO[78]	9311.5	3 5 7		400	\so _[116]	8665.5	217		438	SO[154]	8019.5	77	
363	SO[79]	9294.5	JZ)		401	SQ [177]	8648.5	357		439	SO[155]	8002.5	217	
364	SO[80]	92175	217		402	SO[118]	8631.5	77		440	SO[156]	7985.5	357	
365	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9260 5	35X		403	SO[119]	8614.5	217		441	SO[157]	7968.5	77	
366	(\$0 82)	9243.5			404	SO[120]	8597.5	357		442	SO[158]	7951.5	217	
367	\SO[83]\\ <i>\</i>	9226.5	247		405	SO[121]	8580.5	77		443	SO[159]	7934.5	357	
368	SO[84]	9209.5	357		406	SO[122]	8563.5	217		444	SO[160]	7917.5	77	
369	S O[85]	9192.5	77		407	SO[123]	8546.5	357		445	SO[161]	7900.5	217	
370	SO[86]	9175.5	217		408	SO[124]	8529.5	77		446	SO[162]	7883.5	357	
371	SO[87]	9158.5	357		409	SO[125]	8512.5	217		447	SO[163]	7866.5	77	
372	SO[88]	9141.5	77		410	SO[126]	8495.5	357		448	SO[164]	7849.5	217	
373	SO[89]	9124.5	217		411	SO[127]	8478.5	77		449	SO[165]	7832.5	357	
374	SO[90]	9107.5	357		412	SO[128]	8461.5	217		450	SO[166]	7815.5	77	
375	SO[91]	9090.5	77		413	SO[129]	8444.5	357		451	SO[167]	7798.5	217	
376	SO[92]	9073.5	217		414	SO[130]	8427.5	77		452	SO[168]	7781.5	357	
				-					-					•

77

217

357

77

217

357

77

217

357

77

217

357

77

217

357

77

217

357

77

217

357

77 217

35X

XV)

217

35X

XX

247

J₃₅₇

77

217

357

77

217

357

77

217

7764.5

7747.5

7730.5

7713.5

7696.5

7679.5

7662.5

7645.5

7628.5

7611.5

7594.5

7577.5

7560.5

7543.5

7526.5

7509.5

7492.5

7475.5

7458.5

7441.5

7424.5

7407.5

7390.5 7373.5

X356.5

7339.5

7322,5

X305.5

7288.5

7271.5

7254.5

7237.5

7220.5

7203.5

7186.5

7169.5

7152.5

7135.5

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

489

490

SO[169]

SO[170]

SO[171]

SO[172]

SO[173]

SO[174]

SO[175]

SO[176]

SO[177]

SO[178]

SO[179]

SO[180]

SO[181]

SO[182]

SO[183]

SO[184]

SO[185]

SO[186]

SO[187]

SO[188]

SO[189]

SO[190]

SO[191]

SO[192]

SO[193]

SO[194]

\$0(195)

\$0[466]

/fte/f/0*2*/

30(198)

SQ[199]

SO[200]

SO[201]

SO[202]

SO[203]

SO[204]

SO[205]

SO[206]

			1 1	CIII	11111		131	<u> </u>
491	SO[207]	7118.5	357		529	SO[245]	6472.5	217
492	SO[208]	7101.5	77		530	SO[246]	6455.5	357
493	SO[209]	7084.5	217		531	SO[247]	6438.5	77
494	SO[210]	7067.5	357		532	SO[248]	6421.5	217
495	SO[211]	7050.5	77		533	SO[249]	6404.5	357
496	SO[212]	7033.5	217		534	SO[250]	6387.5	77
497	SO[213]	7016.5	357		535	SO[251]	6370.5	217
498	SO[214]	6999.5	77		536	SO[252]	6353.5	357
499	SO[215]	6982.5	217		537	SO[253]	(63 36.5)	
500	SO[216]	6965.5	357		538	SO[254]	6319.5	217
501	SO[217]	6948.5	77		539	\$0[255]	6302.5	35X
502	SO[218]	6931.5	217		540	SØ(256]	6285.5	
503	SO[219]	6914.5	357		54Y	\$0[257]	6268.5	217
504	SO[220]	6897.5	77	//	542	SO(258) 7	6251.5	357
505	SO[221]	6880.5	(217)		543	SO[259]	6234.5	77
506	SO[222]	6863.5	35 X		544	3012607	6217.5	217
507	SO[223]	6846.5	77		545	\$0[261]	6200.5	357
508	SO[284]	6829.5	124		546	SO[262]	6183.5	77
509	SQ[225]	6812,5	357		\$47	SO[263]	6166.5	217
510	(50 226]	6795.5	14		548	SO[264]	6149.5	357
34X	SQ(227)	67 7 8. \$	247	٥	549	SO[265]	6132.5	77
2/2	3012281	67615	357		550	SO[266]	6115.5	217
543	SO[229]	6744.5	77		551	SO[267]	6098.5	357
514	SO[230]	6727.5	217		552	SO[268]	6081.5	77
575	SQ[231]	6710.5	357		553	SO[269]	6064.5	217
576	SO[232]	6693.5	77		554	SO[270]	6047.5	357
§ 17	SO[233]	6676.5	217		555	SO[271]	6030.5	77
518	SO[234]	6659.5	357		556	SO[272]	6013.5	217
519	SO[235]	6642.5	77		557	SO[273]	5996.5	357
520	SO[236]	6625.5	217		558	SO[274]	5979.5	77
521	SO[237]	6608.5	357		559	SO[275]	5962.5	217
522	SO[238]	6591.5	77		560	SO[276]	5945.5	357
523	SO[239]	6574.5	217		561	SO[277]	5928.5	77
524	SO[240]	6557.5	357		562	SO[278]	5911.5	217
525	SO[241]	6540.5	77		563	SO[279]	5894.5	357
526	SO[242]	6523.5	217		564	SO[280]	5877.5	77
527	SO[243]	6506.5	357		565	SO[281]	5860.5	217
528	SO[244]	6489.5	77		566	SO[282]	5843.5	357
				- '				

								<u> </u>	<u> </u>	1111	idiy — i	101	<u> </u>
567	SO[283]	5826.5	77		605	SO[321]	5180.5	357		643	SO[359]	4534.5	217
568	SO[284]	5809.5	217		606	SO[322]	5163.5	77		644	SO[360]	4517.5	357
569	SO[285]	5792.5	357		607	SO[323]	5146.5	217		645	SO[361]	4500.5	77
570	SO[286]	5775.5	77		608	SO[324]	5129.5	357		646	SO[362]	4483.5	217
571	SO[287]	5758.5	217		609	SO[325]	5112.5	77		647	SO[363]	4466.5	357
572	SO[288]	5741.5	357		610	SO[326]	5095.5	217		648	SO[364]	4449.5	77
573	SO[289]	5724.5	77		611	SO[327]	5078.5	357		649	SO[365]	4432.5	217
574	SO[290]	5707.5	217		612	SO[328]	5061.5	77		650	SO[366]	4415.5	357
575	SO[291]	5690.5	357		613	SO[329]	5044.5	217		651	SO[367]	4398.5	JH.
576	SO[292]	5673.5	77		614	SO[330]	5027.5	357		652	SO[368]	4384.5	217
577	SO[293]	5656.5	217		615	SO[331]	5010.5	77		653	\$0[369]	4364.5	357
578	SO[294]	5639.5	357		616	SO[332]	4993.5	217		654	(SØ(3\0)	4347.5	
579	SO[295]	5622.5	77		617	SO[333]	4976.5	357		655	\$0[371]	4330.5	217
580	SO[296]	5605.5	217		618	SO[334]	4959.5	77	//	656	SO(372) 7	4313.5	357
581	SO[297]	5588.5	357		619	SO[335]	4942.5	(217)		657	\$0[37 3]	4296.5	77
582	SO[298]	5571.5	77		620	SO[336]	4925.5	35 X		658	3013747	4279.5	217
583	SO[299]	5554.5	217		621	SO[337]	4908.5	77		659	\$0[375]	4262.5	357
584	SO[300]	5537.5	357		622	SO[338]	4897.5	124		860	SO[376]	4245.5	77
585	SO[301]	5520.5	77		623	SO(339)	4874.5	\$57	\mathbb{A}_{\sim}	661	SO[377]	4228.5	217
586	SO[302]	5503.5	217		624	SO 340]	4857.5\			662	SO[378]	4211.5	357
587	SO[303]	5486.5	357	1	625	\$0(341)	4840.5	217	٥	663	SO[379]	4194.5	77
588	SO[304]	5469.5	77		62 6	SO[342]	4823.5	357		664	SO[380]	4177.5	217
589	SO[305]	5452.5	217		627	\$ Q [34 3]	4806.5	77		665	SO[381]	4160.5	357
590	SO[306]	5435.5	3 5 7		628	(\$0[344]	4789.5	217		666	SO[382]	4143.5	77
591	SO[307]	54 18.5	AS)		629	SQ[345]	4772.5	357		667	SO[383]	4126.5	217
592	SO[308]	5407.5	217		630	SO[346]	4755.5	77		668	SO[384]	4109.5	357
593	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5384 5	35X		631	SO[347]	4738.5	217		669	SO[385]	4092.5	77
594	/201310J	\$367.5			632	SO[348]	4721.5	357		670	SO[386]	4075.5	217
595	SO[311]	5350.5	247		633	SO[349]	4704.5	77		671	SO[387]	4058.5	357
596	30(312)	5333.5	357		634	SO[350]	4687.5	217		672	SO[388]	4041.5	77
597	\$0[313]	53×16.5	77		635	SO[351]	4670.5	357		673	SO[389]	4024.5	217
598	SO[314]	5299.5	217		636	SO[352]	4653.5	77		674	SO[390]	4007.5	357
599	SO[315]	5282.5	357		637	SO[353]	4636.5	217		675	SO[391]	3990.5	77
600	SO[316]	5265.5	77		638	SO[354]	4619.5	357		676	SO[392]	3973.5	217
601	SO[317]	5248.5	217		639	SO[355]	4602.5	77		677	SO[393]	3956.5	357
602	SO[318]	5231.5	357		640	SO[356]	4585.5	217		678	SO[394]	3939.5	77
603	SO[319]	5214.5	77		641	SO[357]	4568.5	357		679	SO[395]	3922.5	217
604	SO[320]	5197.5	217		642	SO[358]	4551.5	77		680	SO[396]	3905.5	357

Preliminary I	EK971	6
---------------	-------	---

	<u> </u>										· • · · · · ·		<u> </u>
681	SO[397]	3888.5	77		719	SO[435]	3242.5	357		757	SO[473]	2596.5	217
682	SO[398]	3871.5	217		720	SO[436]	3225.5	77		758	SO[474]	2579.5	357
683	SO[399]	3854.5	357		721	SO[437]	3208.5	217		759	SO[475]	2562.5	77
684	SO[400]	3837.5	77		722	SO[438]	3191.5	357		760	SO[476]	2545.5	217
685	SO[401]	3820.5	217		723	SO[439]	3174.5	77		761	SO[477]	2528.5	357
686	SO[402]	3803.5	357		724	SO[440]	3157.5	217		762	SO[478]	2511.5	77
687	SO[403]	3786.5	77		725	SO[441]	3140.5	357		763	SO[479]	2494.5	217
688	SO[404]	3769.5	217		726	SO[442]	3123.5	77		764	SO[480]	2477.5	357
689	SO[405]	3752.5	357		727	SO[443]	3106.5	217		765	SO[481]	2460.5	1
690	SO[406]	3735.5	77		728	SO[444]	3089.5	357		766	SO[482]	2443.5	217
691	SO[407]	3718.5	217		729	SO[445]	3072.5	77		767	\$0[483]	2426.5	357
692	SO[408]	3701.5	357		730	SO[446]	3055.5	217		768	SQ[484]	2409.5	<u> </u>
693	SO[409]	3684.5	77		731	SO[447]	3038.5	357		769	\$0[485]	2392.5	217
694	SO[410]	3667.5	217		732	SO[448]	3021.5	77	7/	770	SO[486] 7	2375.5	357
695	SO[411]	3650.5	357		733	SO[449]	3004.5	(217)		72	\$O[48X]	2358.5	77
696	SO[412]	3633.5	77		734	SO[450]	2987.5	35 X		745	3014887	2341.5	217
697	SO[413]	3616.5	217		735	SO[451]	2970.5	77		773	\$0[489]	2324.5	357
698	SO[414]	3599.5	357		736	SO[4 5 2]	2953.5	217		X 4	SO[490]	2307.5	77
699	SO[415]	3582.5	77		737	SQ(453)	2936,5	357	\mathbb{A}_{\sim}	75	SO[491]	2290.5	217
700	SO[416]	3565.5	217		738	SO[454]	2919.5			776	SO[492]	2273.5	357
701	SO[417]	3548.5	357	1	X39	\$0(455)	2902.5	217	٥	777	SO[493]	2256.5	77
702	SO[418]	3531.5	77	10	1440	SO[456]	2885.5	357		778	SO[494]	2239.5	217
703	SO[419]	3514.5	217	$/\!/\!/$	741	\\\$\\[457\\	2868.5	77		779	SO[495]	2222.5	357
704	SO[420]	3497.5	3 5 7		742	\\\\$ O [4 5 8]	2851.5	217		780	SO[496]	2205.5	77
705	SO[421]	3480.5	JZ /		743	SQ[459]	2834.5	357		781	SO[497]	2188.5	217
706	SO[422]	34635	217		744	SO[460]	2817.5	77		782	SO[498]	2171.5	357
707	\\$\O(\\\423\\\\	3446,5	35 		745	SO[461]	2800.5	217		783	SO[499]	2154.5	77
708	EO[454]	3429.5			746	SO[462]	2783.5	357		784	SO[500]	2137.5	217
709	SO[425]	3412.5	247		747	SO[463]	2766.5	77		785	SO[501]	2120.5	357
710	30(426)	3395.5	357		748	SO[464]	2749.5	217		786	SO[502]	2103.5	77
711	SQ[42X]	3378.5	77		749	SO[465]	2732.5	357		787	SO[503]	2086.5	217
712	SO[428]	3361.5	217		750	SO[466]	2715.5	77		788	SO[504]	2069.5	357
713	SO[429]	3344.5	357		751	SO[467]	2698.5	217		789	SO[505]	2052.5	77
714	SO[430]	3327.5	77		752	SO[468]	2681.5	357		790	SO[506]	2035.5	217
715	SO[431]	3310.5	217		753	SO[469]	2664.5	77		791	SO[507]	2018.5	357
716	SO[432]	3293.5	357		754	SO[470]	2647.5	217		792	SO[508]	2001.5	77
717	SO[433]	3276.5	77		755	SO[471]	2630.5	357		793	SO[509]	1984.5	217
718	SO[434]	3259.5	217		756	SO[472]	2613.5	77		794	SO[510]	1967.5	357
				-					-				

Pr۵	lim	inarv	EK9716
LIE	!	III Iai y	EN3/ 10

P96 SO[512] 1933.5 217 834 SO[560] 1287.5 77 872 SO[588] 6 6 6 6 6 6 6 6 6		.ipu	<u> </u>						1 1	CII	11111	nary 🗀	NJI
T97 SO[513] 1916.5 357 836 SO[552] 1270.5 217 873 SO[589] 6 6 6 6 6 6 6 6 6	795	SO[511]	1950.5	77		833	SO[549]	1304.5	357		871	SO[587]	658.5
798 SO[514] 1899.5 77 836 SO[52] 1253.5 357 874 SO[50] 6 6 6 6 6 6 6 6 6	796	SO[512]	1933.5	217		834	SO[550]	1287.5	77		872	SO[588]	641.5
799 SO[515] 1882.5 217 837 SO[553] 1236.5 77 876 SO[591] 5 800 SO[516] 1865.5 357 838 SO[554] 1219.5 217 876 SO[592] 5 801 SO[517] 1848.5 77 839 SO[555] 1202.5 357 877 SO[593] 5 802 SO[518] 1831.5 217 840 SO[566] 1185.5 77 878 SO[594] 5 803 SO[519] 1814.5 357 841 SO[557] 1168.5 217 879 SO[595] 5 804 SO[520] 1797.5 77 842 SO[558] 1151.5 357 880 SO[526] 5 805 SO[521] 1780.5 217 843 SO[599] 1134.5 77 881 SO[597] 805 SO[522] 1763.5 357 844 SO[560] 1117.5 217 882 SO[588] 4 SO[523] 1746.5 77 846 SO[561] 1100.5 357 882 SO[599] 808 SO[524] 1729.5 217 846 SO[562] 1083.5 77 883 SO[599] 884 SO[502] 1083.5 77 884 SO[562] 1083.5 77 884 SO[563] 1066.5 217 884 SO[562] 1083.5 77 884 SO[563] 1066.5 217 884 SO[563] 1066.5 217 884 SO[563] 1066.5 217 884 SO[502] 1083.5 77 884 SO[564] 1049.8 357 885 SHIELDING[43] 386 SHIELDING[44] 286 SO[527] 1678.5 217 885 SO[507] 887 SO[507] 888 SHIELDING[43] 388 SHIELDING[44] 288 SO[574] 879.5 77 893 SHIELDING[44] 288 SO[574] 879.5 77 894 SHIELDING[43] 388 SHIELDING[44] 388 SHIELDING[44] 388 SO[574] 879.5 77 896 SHIELDING[45] 388 SO[576] 845.5 357 896 SHIELDING[47] 388 SO[576] 845.5 357 896 SHIELDING[47] 388 SO[577] 825 SO[577] 825 SO[577] 825 SO[577] 825 SO[504] 448.5 77 886 SO[506] 488.5 SO[577] 390 SO[604] 488 SO[605]	797	SO[513]	1916.5	357		835	SO[551]	1270.5	217		873	SO[589]	624.5
800 SO[516] 1865.5 357 838 SO[554] 1219.5 217 876 SO[592] 5 801 SO[517] 1848.5 77 839 SO[555] 1202.5 357 877 SO[593] 5 802 SO[518] 1831.5 217 840 SO[556] 1185.5 77 878 SO[594] 5 803 SO[519] 1814.5 357 841 SO[557] 1168.5 217 879 SO[595] 5 804 SO[502] 1797.5 77 842 SO[558] 1151.5 357 880 SO[529] 5 805 SO[521] 1780.5 217 843 SO[559] 1134.5 77 881 SO[527] 806 SO[522] 1763.5 357 844 SO[560] 1117.5 217 882 SO[588] 4 4 SO[50] 1117.5 217 882 SO[588] 4 4 SO[560] 1117.5 217 882 SO[588] 4 SO[589] 1 100.5 357 883 SO[599] 1 100.5 357 884 SO[569] 1 100.5 357 884 SO[560] 1 100.5 357 885 SO[526] 1 100.5 357 885 SO[560] 1 100.5 357 886 SO[526] 1 100.5 357 886 SO[526] 1 100.5 357 887 SO[560] 1 100.5 357 888 SO[50] 1 1	798	SO[514]	1899.5	77		836	SO[552]	1253.5	357		874	SO[590]	607.5
801 SO[517] 1848.5 77 839 SO[565] 1202.5 357 877 SO[593] 5	799	SO[515]	1882.5	217		837	SO[553]	1236.5	77		875	SO[591]	590.5
802 SO[518] 1831.5 217 840 SO[566] 1185.5 77 878 SO[594] 5 803 SO[519] 1814.5 357 841 SO[57] 1168.5 217 879 SO[595] 8 8 SO[520] 1797.5 77 8 42 SO[58] 1151.5 357 8 8 SO[526] 8 8 SO[527] 8 8 SO[526] 8 8 SO[526] 8 8 SO[526] 8 8 SO[527] 8 8 SO[527] 8 8 SO[527] 8 8 SO[527] 8 8 SO[528] SO[52	800	SO[516]	1865.5	357		838	SO[554]	1219.5	217		876	SO[592]	573.5
803 SO[519] 1814.5 357 841 SO[557] 1168.5 217 879 SO[595] 380 SO[526] 880 SO[526]	801	SO[517]	1848.5	77		839	SO[555]	1202.5	357		877	SO[593]	556.5
804 SO[520] 1797.5 77 842 SO[558] 1151.5 357 880 SO[596] 8 805 SO[521] 1780.5 217 843 SO[559] 1134.5 77 881 SO[559] 8 806 SO[522] 1763.5 357 844 SO[560] 1117.5 217 882 SO[558] 4 807 SO[523] 1746.5 77 845 SO[561] 1100.5 357 883 SO[599] 8 808 SO[524] 1729.5 217 846 SO[562] 1083.5 77 884 SO[562] 8 809 SO[525] 1712.5 357 848 SO[563] 1066.5 247 883 SO[599] 8 810 SO[526] 1695.5 77 848 SO[564] 1049.5 357 884 SO[564] 1049.5 357 885 SO[565] 1052.5 17 885 SO[565]	802	SO[518]	1831.5	217		840	SO[556]	1185.5	77		878	SO[594]	539.5
805 SO[521] 1780.5 217 843 SO[559] 1134.5 77 881 SO[591] 486 SO[522] 1763.5 357 844 SO[560] 1117.5 217 882 SO[588] 487 SO[562] 1746.5 77 845 SO[561] 1100.5 357 883 SO[599] 488 SO[524] 1729.5 217 846 SO[562] 1083.5 77 844 SO[560] 488 SO[562] 488 SO[563] 488 S	803	SO[519]	1814.5	357		841	SO[557]	1168.5	217		879	SO[595]	\$22.5
806 SO[522] 1763.5 357 807 SO[523] 1746.5 77 808 SO[524] 1729.5 217 809 SO[525] 1712.5 357 809 SO[525] 1712.5 357 809 SO[526] 1695.5 77 809 SO[526] 1695.5 77 809 SO[527] 1678.5 217 809 SO[528] 1681.5 357 809 SO[528] 1685.5 77 809 SO[528] 1685.5 77 809 SO[528] 1685.5 77 809 SO[528] 16861.5 357 809 SO[528] 16861.5 357 809 SO[528] 1681.5 357 809 SO[529] 1644.5 77 809 SO[529] 1642.5 217 809 SO[529] 1472.5 217 809 SO[600] 1658 809 SO[529] 1775.5 217 809 SO[600] 1658 809 S	804	SO[520]	1797.5	77		842	SO[558]	1151.5	357		880	SO[596]	505/5
807 SO[523] 1746.5 77 845 SO[561] 1100.5 357 883 SO[599] 1808 SO[524] 1729.5 217 846 SO[562] 1083.5 77 884 SO[500] 1408.5 1712.5 357 847 SO[563] 1066.5 217 888 SHEDING 148 367 367 368 SHEDING 148 367 368 SHEDING 148 368 SHEDING 14	805	SO[521]	1780.5	217		843	SO[559]	1134.5	77		881	SØ[597]	488.5
808 SO[524] 1729.5 217 846 SO[562] 1083.5 77 864 SO[500] 1489.5 1712.5 357 848 SO[564] 1049.5 357 888 SHEDINGHOL 1888 SHEDIN	806	SO[522]	1763.5	357		844	SO[560]	1117.5	217		882	\$0 598	471.5
809 SO[525] 1712.5 357 810 SO[526] 1695.5 77 848 SO[564] 1049.5 357 849 SO[565] 1049.5 357 812 SO[528] 1661.5 357 813 SO[529] 1644.5 77 814 SO[530] 1627.5 217 815 SO[531] 1610.5 357 816 SO[532] 1593.5 77 817 SO[533] 1576.5 217 818 SO[534] 1529.5 387 819 SO[535] 1542.5 77 820 SO[536] 1528.5 77 821 SO[536] 1529.5 77 822 SO[528] 1644.5 77 823 SO[529] 1644.5 77 824 SO[571] 930.6 77 825 SO[571] 930.6 77 827 SO[531] 1610.5 357 828 SO[566] 1016.6 217 829 SO[532] 1593.5 77 820 SO[533] 1576.5 217 821 SO[533] 1529.5 217 822 SO[534] 1529.5 217 823 SO[574] 879.5 77 824 SO[577] 825 SO[576] 845.5 357 825 SO[538] 1474.5 217 826 SO[577] 828.5 77 827 SO[637] 1406.5 357 828 SO[577] 828.5 77 829 SO[602] 44 824 SO[534] 1423.5 217 825 SO[578] 811.5 217 826 SO[577] 828.5 77 827 SO[603] 1474.5 217 828 SO[577] 828.5 77 829 SO[603] 44 824 SO[534] 1423.5 217 825 SO[541] 1440.5 77 826 SO[582] 794.5 357 827 SO[543] 1406.5 357 828 SO[544] 1389.5 77 829 SO[583] 1406.5 357 820 SO[544] 1389.5 77 827 SO[584] 1423.5 217 828 SO[544] 1389.5 77 829 SO[585] 744.5 357 820 SO[544] 1389.5 77 827 SO[584] 1423.5 217 828 SO[544] 1389.5 77 829 SO[585] 743.5 357 820 SO[545] 1372.5 217 820 SO[583] 726.5 77 821 SO[583] 726.5 77 822 SO[606] -5	807	SO[523]	1746.5	77		845	SO[561]	1100.5	357	<	883	80[599]	454.5
810 SO[526] 1695.5 77	808	SO[524]	1729.5	217		846	SO[562]	1083.5	77	2	884	Soleopi 4	437.5
811 SO[527] 1678.5 217 849 SO[565] 1032.1 77 887 9HIELDING[42] 3 812 SO[528] 1661.5 357 850 SO[568] 1015.5 217 888 SHIELDING[43] 3 813 SO[529] 1644.5 77 852 SO[568] 357 889 SHIELDING[44] 2 814 SO[530] 1627.5 217 852 SO[568] 361.5 74 890 SHIELDING[43] 2 815 SO[531] 1610.5 357 852 SO[569] 964.5 217 890 SHIELDING[45] 2 816 SO[532] 1593.5 77 863 SO[571] 930.8 77 893 SHIELDING[45] 2 817 SO[534] 1569.5 357 856 SO[571] 930.8 77 893 SHIELDING[47] -2 819 SO[535] 1532.5 77 856 SO[577] 896.5	809	SO[525]	1712.5	357		847	SO[563]	1066.5	217	$/\!/$	885	SHIELDINGHOU	J403.5
812 SO[528] 1661.5 357 850 SO[568] 1015 6 217 888 SHIELDING[43] 3 813 SO[529] 1644.5 77 851 SO[567] 998.5 357 898 SHIELDING[44] 2 814 SO[530] 1627.5 217 852 SO[568] 1815 77 890 SHIELDING[45] 2 815 SO[531] 1610.5 357 883 90[669] 964.6 217 890 SHIELDING[46] -2 816 SO[532] 1593.5 77 864 SO[570] 947.5 357 892 SHIELDING[46] -2 817 SO[533] 1576.5 217 858 SO[571] 930.6 77 893 SHIELDING[48] -3 818 SO[534] 1559.5 337 856 SO[573] 896.5 357 894 SHIELDING[48] -3 820 SO[534] 1569.5 357 858 SO[573]	810	SO[526]	1695.5	77		848	SO[564]	1049.5	357		886	SHIELDING[#1]	369.5
813 SO[529] 1644.5 77 814 SO[530] 1627.5 217 815 SO[531] 1610.5 357 816 SO[532] 1593.5 77 817 SO[533] 1576.5 217 818 SO[534] 1595.5 357 819 SO[535] 1596.5 217 819 SO[535] 1596.5 217 810 SO[537] 1508.5 217 820 SO[536] 1528.5 217 821 SO[537] 1508.5 217 822 SO[538] 1471.5 217 823 SO[577] 828.5 77 824 SO[577] 828.5 77 825 SO[577] 828.5 77 826 SO[577] 828.5 77 827 SO[542] 1423.5 217 828 SO[582] 773.5 357 829 SO[544] 1389.5 77 820 SO[544] 1406.5 357 821 SO[537] 1406.5 357 822 SO[544] 1423.5 217 823 SO[582] 1423.5 217 824 SO[582] 1423.5 217 825 SO[582] 1423.5 217 826 SO[544] 1389.5 77 827 SO[544] 1389.5 77 828 SO[582] 774.5 357 829 SO[544] 1389.5 77 829 SO[582] 743.5 357 820 SO[544] 1389.5 77 821 SO[582] 742.5 77 822 SO[544] 1389.5 77 823 SO[582] 774.5 357 824 SO[544] 1389.5 77 825 SO[582] 774.5 357 826 SO[544] 1389.5 77 827 SO[544] 1389.5 77 828 SO[582] 743.5 357 829 SO[544] 1389.5 77 829 SO[582] 743.5 357 829 SO[582] 743.5 357 829 SO[582] 743.5 357 829 SO[582] -58	811	SO[527]	1678.5	217		849	SO[565]	1032.5	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		887	SHIELDING[42]	335.5
814 SO[530] 1627.5 217 852 SO[568] 981.5 71 890 SHIELDING[45] 2 815 SO[531] 1610.5 357 853 SO[669] 964.5 217 891 SHIELDING[46] -2 816 SO[532] 1593.5 77 853 SO[671] 930.6 77 893 SHIELDING[47] -2 817 SO[534] 1569.5 357 856 SO[571] 930.6 77 893 SHIELDING[48] -3 818 SO[534] 1569.5 357 856 SO[573] 896.5 357 894 SHIELDING[49] -3 820 SO[536] 1529.5 21 858 SO[577] 879.5 77 896 SHIELDING[49] -3 821 SO[536] 1529.5 21 858 SO[574] 879.5 77 896 SHIELDING[50] -3 822 SO[538] 149.5 71 860 SO[576]	812	SO[528]	1661.5	357		850	SO[566]	1015.5	<u> </u>		888	SHIELDING[43]	301.5
815 SO[531] 1610.5 357 853 SO[569] 964.5 217 891 SHIELDING[46] -2 816 SO[532] 1593.5 77 854 SO[570] 947.5 357 892 SHIELDING[47] -2 817 SO[533] 1576.5 217 858 SO[571] 930.6 77 893 SHIELDING[48] -3 818 SO[534] 1569.5 357 856 SO[572] 913.5 217 894 SHIELDING[49] -3 819 SO[535] 1642.5 77 858 SO[574] 879.5 77 896 SHIELDING[50] -3 820 SO[535] 1642.5 77 858 SO[574] 879.5 77 896 SHIELDING[51] -4 821 SO[537] 1908.5 357 860 SO[576] 845.5 357 898 SO[602] -4 822 SO[538] 1491.5 77 861 SO[577] 828.5 77 899 SO[603] -4 824 SO[539] 1472.5 217 862 SO[579] 794.5 357 900 SO[604] -4 825 SO[541] 1440.5 77 863 SO[579] 794.5 357 901 SO[605] -5 826 SO[542] 1423.5 217 864 SO[580] 777.5 77 902 SO[606] -5 827 SO[543] 1406.5 357 866 SO[582] 743.5 357 904 SO[608] -5 828 SO[544] 1389.5 77 866 SO[582] 743.5 357 904 SO[608] -5 829 SO[545] 1372.5 217 867 SO[583] 726.5 77 905 SO[609] -5	813	SO[529]	1644.5	77		851	SO[567]	998.5	357		888	SHIELDING[44]	267.5
816 SO[532] 1593.5 77 854 SO[570] 947.5 357 892 SHIELDING[47] -2 817 SO[533] 1576.5 217 853 SO[571] 930.8 77 893 SHIELDING[48] -3 818 SO[534] 1569.5 357 856 SO[572] 913.5 217 894 SHIELDING[49] -3 819 SO[535] 542.5 77 858 SO[573] 896.5 357 895 SHIELDING[50] -3 820 SO[536] 1538 217 858 SO[574] 879.5 77 896 SHIELDING[51] -4 821 SO[538] 1491.5 71 860 SO[576] 845.5 357 896 SHIELDING[51] -4 822 SO[538] 1491.5 71 860 SO[576] 845.5 357 898 SO[602] -4 824 SO[549] 1475.5 357 862 SO[578] <	814	SO[530]	1627.5	217		852	\$0[568]	1881/2	/ z#//		890	SHIELDING[45]	233.5
817 SO[533] 1576.5 217 858 SO[571] 930.6 77 893 SHIELDING[48] -3 818 SO[534] 1569.5 387 856 SO[572] 913.5 217 894 SHIELDING[49] -3 819 SO[535] 1542.5 77 858 SO[574] 879.5 77 896 SHIELDING[50] -3 820 SO[538] 1525.5 217 858 SO[574] 879.5 77 896 SHIELDING[51] -4 821 SO[538] 1491.5 71 860 SO[575] 862.5 217 897 SO[601] -4 823 SO[539] 1474.5 213 861 SO[576] 845.5 357 898 SO[602] -4 824 SO[539] 1474.5 213 862 SO[578] 811.5 217 900 SO[603] -4 825 SO[541] 1423.5 217 863 SO[579] 794.5	815	SO[531]	1610.5	357	<	853	30[569]	964.5	217	7/1	891	SHIELDING[46]	-233.5
818 SO[534] 1569.5 357 856 SO[572] 913.5 217 894 SHIELDING[49] -3 819 SO[535] 1542.5 77 858 SO[574] 879.5 77 896 SHIELDING[50] -3 820 SO[537] 1508.5 357 858 SO[574] 879.5 77 896 SHIELDING[51] -4 821 SO[537] 1508.5 357 869 SO[575] 862.5 217 897 SO[601] -4 822 SO[538] 1491.5 77 860 SO[576] 845.5 357 898 SO[602] -4 824 SO[539] 1474.5 217 861 SO[577] 828.5 77 899 SO[603] -4 825 SO[541] 1440.5 77 863 SO[578] 811.5 217 900 SO[604] -4 826 SO[542] 1423.5 217 864 SO[580] 777.5	816	SO[532]	1593.5	77	1/	854	//soiszoi	947.5	357		892	SHIELDING[47]	-267.5
819 SO[535] 1542.5 77 857 SO[573] 896.5 357 895 SHIELDING[50] -3 820 SO[536] 1528.3 217 858 SO[574] 879.5 77 896 SHIELDING[51] -4 821 SO[537] 1508.3 157 859 SO[575] 862.5 217 897 SO[601] -4 822 SO[538] 1491.5 77 860 SO[576] 845.5 357 898 SO[602] -4 823 SO[539] 1474.5 21X 861 SO[577] 828.5 77 898 SO[602] -4 824 SO[540] 1457.5 357 862 SO[578] 811.5 217 900 SO[603] -4 825 SO[541] 1440.5 77 863 SO[579] 794.5 357 901 SO[605] -5 826 SO[542] 1423.5 217 864 SO[580] 777.5	817	SO[533]	1576.5	217	1111	85\$	\$0[571]	930.5	77		893	SHIELDING[48]	-301.5
820 SQ[536] \$525.5 217 858 SQ[574] 879.5 77 896 SHIELDING[51] -4 821 SQ[537] 1908.5 357 859 SQ[575] 862.5 217 897 SQ[601] -4 822 SQ[538] 1491.5 77 860 SQ[576] 845.5 357 898 SQ[602] -4 824 SQ[540] 1457.5 357 862 SQ[578] 811.5 217 900 SQ[603] -4 825 SQ[541] 1440.5 77 863 SQ[579] 794.5 357 901 SQ[605] -5 826 SQ[542] 1423.5 217 864 SQ[580] 777.5 77 902 SQ[606] -5 827 SQ[543] 1406.5 357 865 SQ[581] 760.5 217 903 SQ[607] -5 828 SQ[544] 1389.5 77 866 SQ[582] 743.5	818	SO[534]	1559.5	357		856	///80/34\$I	913.5	217		894	SHIELDING[49]	-335.5
821 \$Q(\$537) 1908.\$ 357 859 \$O(\$575] 862.5 217 897 \$O(\$601] -4 822 \$O(\$538) 449.\$ 77 860 \$O(\$576] 845.5 357 898 \$O(\$602] -4 823 \$O(\$539) 1474.5 217 861 \$O(\$577] 828.5 77 899 \$O(\$603] -4 824 \$O(\$540] 1457.5 357 862 \$O(\$578] 811.5 217 900 \$O(\$604] -4 825 \$O(\$541] 1440.5 77 863 \$O(\$579] 794.5 357 901 \$O(\$605] -5 826 \$O(\$542] 1423.5 217 864 \$O(\$580] 777.5 77 902 \$O(\$606] -5 827 \$O(\$543] 1406.5 357 865 \$O(\$581] 760.5 217 903 \$O(\$607] -5 828 \$O(\$544] 1389.5 77 866 \$O(\$582] 743.5 357 <	819	SO[535]	1542.5	*	1 //	85X	80[573]	896.5	357		895	SHIELDING[50]	-369.5
822 SO[538] [491.5] 77 860 SO[576] 845.5 357 898 SO[602] -4 829 SO[539] 1474.5 217 861 SO[577] 828.5 77 899 SO[603] -4 824 SO[540] 1457.5 357 862 SO[578] 811.5 217 900 SO[604] -4 825 SO[541] 1440.5 77 863 SO[579] 794.5 357 901 SO[605] -5 826 SO[542] 1423.5 217 864 SO[580] 777.5 77 902 SO[606] -5 827 SO[543] 1406.5 357 865 SO[581] 760.5 217 903 SO[607] -5 828 SO[544] 1389.5 77 866 SO[582] 743.5 357 904 SO[608] -5 829 SO[545] 1372.5 217 867 SO[583] 726.5 77 <td>820</td> <td>SO[536]</td> <td>1525.5</td> <td>217</td> <td></td> <td>858</td> <td>SO[574]</td> <td>879.5</td> <td>77</td> <td></td> <td>896</td> <td>SHIELDING[51]</td> <td>-403.5</td>	820	SO[536]	1525.5	217		858	SO[574]	879.5	77		896	SHIELDING[51]	-403.5
829 SO[539] 1474.5 218 824 SO[540] 1457.5 357 825 SO[541] 1440.5 77 826 SO[542] 1423.5 217 827 SO[543] 1406.5 357 828 SO[544] 1389.5 77 866 SO[582] 77.5 77 827 SO[544] 1389.5 77 828 SO[544] 1389.5 77 866 SO[582] 743.5 357 829 SO[545] 1372.5 217	821	\\$\O(\\$3\\\\	1908.9	1354		859	SO[575]	862.5	217		897	SO[601]	-437.5
824 30[540] 1457.5 357 825 30[541] 1440.5 77 826 S0[542] 1423.5 217 827 S0[543] 1406.5 357 828 S0[544] 1389.5 77 829 S0[545] 1372.5 217 867 S0[583] 726.5 77 900 S0[604] -4 901 S0[605] -5 902 S0[606] -5 903 S0[607] -5 904 S0[608] -5 905 S0[609] -5	822	/\$0[238]	1491.5			860	SO[576]	845.5	357		898	SO[602]	-454.5
825 SQ[541] 1440.5 77 826 SQ[542] 1423.5 217 827 SQ[543] 1406.5 357 828 SQ[544] 1389.5 77 829 SQ[545] 1372.5 217 867 SQ[583] 726.5 77 901 SQ[605] -5 902 SQ[606] -5 903 SQ[607] -5 866 SQ[582] 743.5 357 904 SQ[608] -5 905 SQ[609] -5	823	SO[233]	1474.5	217	0	861	SO[577]	828.5	77		899	SO[603]	-471.5
826 SO[542] 1423.5 217 864 SO[580] 777.5 77 902 SO[606] -5 827 SO[543] 1406.5 357 865 SO[581] 760.5 217 903 SO[607] -5 828 SO[544] 1389.5 77 866 SO[582] 743.5 357 904 SO[608] -5 829 SO[545] 1372.5 217 867 SO[583] 726.5 77 905 SO[609] -5	824	\$0(540)	1457.5	357		862	SO[578]	811.5	217		900	SO[604]	-488.5
827 SO[543] 1406.5 357 828 SO[544] 1389.5 77 829 SO[545] 1372.5 217 866 SO[582] 743.5 357 903 SO[607] -5 904 SO[608] -5 905 SO[609] -5	825	SQ[541)	1440.5	77		863	SO[579]	794.5	357		901	SO[605]	-505.5
828 SO[544] 1389.5 77 829 SO[545] 1372.5 217 866 SO[582] 743.5 357 904 SO[608] -5 905 SO[609] -5	826	SO[542]	1423.5	217		864	SO[580]	777.5	77		902	SO[606]	-522.5
829 SO[545] 1372.5 217 867 SO[583] 726.5 77 905 SO[609] -5	827	SO[543]	1406.5	357		865	SO[581]	760.5	217		903	SO[607]	-539.5
	828	SO[544]	1389.5	77		866	SO[582]	743.5	357		904	SO[608]	-556.5
000 000000 0000000 00000000000000000000	829	SO[545]	1372.5	217		867	SO[583]	726.5	77		905	SO[609]	-573.5
830 50[546] 1355.5 357 868 50[584] 709.5 217 906 50[610] -5	830	SO[546]	1355.5	357		868	SO[584]	709.5	217		906	SO[610]	-590.5
831 SO[547] 1338.5 77 869 SO[585] 692.5 357 907 SO[611] -6	831	SO[547]	1338.5	77		869	SO[585]	692.5	357		907	SO[611]	-607.5
832 SO[548] 1321.5 217 870 SO[586] 675.5 77 908 SO[612] -6	832	SO[548]	1321.5	217		870	SO[586]	675.5	77		908	SO[612]	-624.5

Preliminary E	EK971	6
---------------	--------------	---

		<u> </u>						<u> </u>	<u> </u>	1 1111	idi y L i	101	<u> </u>
909	SO[613]	-641.5	357		947	SO[651]	-1287.5	77		985	SO[689]	-1933.5	217
910	SO[614]	-658.5	217		948	SO[652]	-1304.5	357		986	SO[690]	-1950.5	77
911	SO[615]	-675.5	77		949	SO[653]	-1321.5	217		987	SO[691]	-1967.5	357
912	SO[616]	-692.5	357		950	SO[654]	-1338.5	77		988	SO[692]	-1984.5	217
913	SO[617]	-709.5	217		951	SO[655]	-1355.5	357		989	SO[693]	-2001.5	77
914	SO[618]	-726.5	77		952	SO[656]	-1372.5	217		990	SO[694]	-2018.5	357
915	SO[619]	-743.5	357		953	SO[657]	-1389.5	77		991	SO[695]	-2035.5	217
916	SO[620]	-760.5	217		954	SO[658]	-1406.5	357		992	SO[696]	-2052.5	77
917	SO[621]	-777.5	77		955	SO[659]	-1423.5	217		993	SO[697]	f20 69 2	364
918	SO[622]	-794.5	357		956	SO[660]	-1440.5	77		994	SO[698]	-2086.5	217
919	SO[623]	-811.5	217		957	SO[661]	-1457.5	357		995	\$0[699]	2103.5	1
920	SO[624]	-828.5	77		958	SO[662]	-1474.5	217		996	(SOLY 100]	-2120.5	357
921	SO[625]	-845.5	357		959	SO[663]	-1491.5	77		997/	\$0[701]	-2137.5	217
922	SO[626]	-862.5	217		960	SO[664]	-1508.5	357	7,	998	SO(702) 7	2154.5	77
923	SO[627]	-879.5	77		961	SO[665]	-1525.5	(217)		999	\$O[703]	-2171.5	357
924	SO[628]	-896.5	357		962	SO[666]	-1542.5	77		1000	3017041	-2188.5	217
925	SO[629]	-913.5	217		963	SO[667]	-\55 9\5	357		1001	\$0[705]	-2205.5	77
926	SO[630]	-930.5	77		964	SO[668]	1576,5	1844	//	1002	SO[706]	-2222.5	357
927	SO[631]	-947.5	357		965	SQ(669)	1593.5	77	\mathbb{A}	1803	SO[707]	-2239.5	217
928	SO[632]	-964.5	217		966	SOJETOJ	+7670.5	357		1004	SO[708]	-2256.5	77
929	SO[633]	-981.5	77	2	96X	\$0(671)	-1627.5	247)	1005	SO[709]	-2273.5	357
930	SO[634]	-998.5	357		968	SO(672)	1644.5	77		1006	SO[710]	-2290.5	217
931	SO[635]	-1015.5	217	11/1	969	 \$0 [67 3]	-1661.5	357		1007	SO[711]	-2307.5	77
932	SO[636]	-1032.5	X		970	\ SO[674]	-1678.5	217		1008	SO[712]	-2324.5	357
933	SO[637]	10495	357		971	SQ[675]	-1695.5	77		1009	SO[713]	-2341.5	217
934	SO[638]	1066.5	217		972	SO[676]	-1712.5	357		1010	SO[714]	-2358.5	77
935	/\$0(639)	-1083.5			973	SO[677]	-1729.5	217		1011	SO[715]	-2375.5	357
936	SO[640]	11005	3 5 \$		974	SO[678]	-1746.5	77		1012	SO[716]	-2392.5	217
93	\$0[641]	-11 1 7.5	247		975	SO[679]	-1763.5	357		1013	SO[717]	-2409.5	77
938	30(642)	-1134.5	77		976	SO[680]	-1780.5	217		1014	SO[718]	-2426.5	357
939	SQ[643]	-1151.5	357		977	SO[681]	-1797.5	77		1015	SO[719]	-2443.5	217
940	SO[644]	-1168.5	217		978	SO[682]	-1814.5	357		1016	SO[720]	-2460.5	77
941	SO[645]	-1185.5	77		979	SO[683]	-1831.5	217		1017	SO[721]	-2477.5	357
942	SO[646]	-1202.5	357		980	SO[684]	-1848.5	77		1018	SO[722]	-2494.5	217
943	SO[647]	-1219.5	217		981	SO[685]	-1865.5	357		1019	SO[723]	-2511.5	77
944	SO[648]	-1236.5	77		982	SO[686]	-1882.5	217		1020	SO[724]	-2528.5	357
945	SO[649]	-1253.5	357		983	SO[687]	-1899.5	77		1021	SO[725]	-2545.5	217
946	SO[650]	-1270.5	217		984	SO[688]	-1916.5	357		1022	SO[726]	-2562.5	77
				-					-				

											<u> </u>		<u></u>
1023	SO[727]	-2579.5	357		1061	SO[765]	-3225.5	77		1099	SO[803]	-3871.5	217
1024	SO[728]	-2596.5	217		1062	SO[766]	-3242.5	357		1100	SO[804]	-3888.5	77
1025	SO[729]	-2613.5	77		1063	SO[767]	-3259.5	217		1101	SO[805]	-3905.5	357
1026	SO[730]	-2630.5	357		1064	SO[768]	-3276.5	77		1102	SO[806]	-3922.5	217
1027	SO[731]	-2647.5	217		1065	SO[769]	-3293.5	357		1103	SO[807]	-3939.5	77
1028	SO[732]	-2664.5	77		1066	SO[770]	-3310.5	217		1104	SO[808]	-3956.5	357
1029	SO[733]	-2681.5	357		1067	SO[771]	-3327.5	77		1105	SO[809]	-3973.5	217
1030	SO[734]	-2698.5	217		1068	SO[772]	-3344.5	357		1106	SO[810]	-3990.5	77
1031	SO[735]	-2715.5	77		1069	SO[773]	-3361.5	217		1107	SO[811]	\$400x	364
1032	SO[736]	-2732.5	357		1070	SO[774]	-3378.5	77		1108	SO[812]	-4024.5	217
1033	SO[737]	-2749.5	217		1071	SO[775]	-3395.5	357		1109	\$0[813]	-4041.5	1
1034	SO[738]	-2766.5	77		1072	SO[776]	-3412.5	217		110	SQ[8][4]	-4058.5	357
1035	SO[739]	-2783.5	357		1073	SO[777]	-3429.5	77		1/1/1/	\$0[815]	-4075.5	217
1036	SO[740]	-2800.5	217		1074	SO[778]	-3446.5	357		1112	SO(8)6] 7	4092.5	77
1037	SO[741]	-2817.5	77		1075	SO[779]	-3463.5	(217)		1113	\$O[81X]	4109.5	357
1038	SO[742]	-2834.5	357		1076	SO[780]	-3480.5	77		1114	SO[8]8 7	-4126.5	217
1039	SO[743]	-2851.5	217		1077	SO[781]	-3497 5	357		1115	\$0[819]	-4143.5	77
1040	SO[744]	-2868.5	77		1078	SO[782]	35145	1/2/1/		4116	SO[820]	-4160.5	357
1041	SO[745]	-2885.5	357		1079	SO(783)	3537.5	77	\mathbb{A}_{\sim}	1/1/2	SO[821]	-4177.5	217
1042	SO[746]	-2902.5	217		1080	SO[784]	3548.5	357		1118	SO[822]	-4194.5	77
1043	SO[747]	-2919.5	77	2	1081	\$0(785)	-3565.5	247	\	1119	SO[823]	-4211.5	357
1044	SO[748]	-2936.5	357		1082	SO[786]	3582.5	77		1120	SO[824]	-4228.5	217
1045	SO[749]	-2953.5	217		1083	\$ 0 [78 7]	-3599.5	357		1121	SO[825]	-4245.5	77
1046	SO[750]	-2970.5	(X)		1084	\ S O [7 8 8]	-3616.5	217		1122	SO[826]	-4262.5	357
1047	SO[751]	29875	357		1085	SQ[789]	-3633.5	77		1123	SO[827]	-4279.5	217
1048	SO[752]	-3004.5	217		1086	SO[790]	-3650.5	357		1124	SO[828]	-4296.5	77
1049	\$0(753)	-3027.5			1087	SO[791]	-3667.5	217		1125	SO[829]	-4313.5	357
1050	/ 80 464/	3038/5	13 3 k		1088	SO[792]	-3684.5	77		1126	SO[830]	-4330.5	217
1051	SO[X55]	-30 5 5.5	247		1089	SO[793]	-3701.5	357		1127	SO[831]	-4347.5	77
1052	SO(756)	-3072.5	77		1090	SO[794]	-3718.5	217		1128	SO[832]	-4364.5	357
1053	SQ[75X]	-3089.5	357		1091	SO[795]	-3735.5	77		1129	SO[833]	-4381.5	217
1054	SO[X58]	-3106.5	217		1092	SO[796]	-3752.5	357		1130	SO[834]	-4398.5	77
1055	SO[759]	-3123.5	77		1093	SO[797]	-3769.5	217		1131	SO[835]	-4415.5	357
1056	SO[760]	-3140.5	357		1094	SO[798]	-3786.5	77		1132	SO[836]	-4432.5	217
1057	SO[761]	-3157.5	217		1095	SO[799]	-3803.5	357		1133	SO[837]	-4449.5	77
1058	SO[762]	-3174.5	77		1096	SO[800]	-3820.5	217		1134	SO[838]	-4466.5	357
1059	SO[763]	-3191.5	357		1097	SO[801]	-3837.5	77		1135	SO[839]	-4483.5	217
1060	SO[764]	-3208.5	217		1098	SO[802]	-3854.5	357		1136	SO[840]	-4500.5	77
				•		•			•				-

Preliminary	EK9716
--------------------	---------------

									•		· • · · · · · · · · · · · · · · · · · ·		<u>. </u>
1137	SO[841]	-4517.5	357		1175	SO[879]	-5163.5	77		1213	SO[917]	-5809.5	217
1138	SO[842]	-4534.5	217		1176	SO[880]	-5180.5	357		1214	SO[918]	-5826.5	77
1139	SO[843]	-4551.5	77		1177	SO[881]	-5197.5	217		1215	SO[919]	-5843.5	357
1140	SO[844]	-4568.5	357		1178	SO[882]	-5214.5	77		1216	SO[920]	-5860.5	217
1141	SO[845]	-4585.5	217		1179	SO[883]	-5231.5	357		1217	SO[921]	-5877.5	77
1142	SO[846]	-4602.5	77		1180	SO[884]	-5248.5	217		1218	SO[922]	-5894.5	357
1143	SO[847]	-4619.5	357		1181	SO[885]	-5265.5	77		1219	SO[923]	-5911.5	217
1144	SO[848]	-4636.5	217		1182	SO[886]	-5282.5	357		1220	SO[924]	-5928.5	77
1145	SO[849]	-4653.5	77		1183	SO[887]	-5299.5	217		1221	SO[925]	\$5945.5	364
1146	SO[850]	-4670.5	357		1184	SO[888]	-5316.5	77		1222	SO[926]	-5962.5	217
1147	SO[851]	-4687.5	217		1185	SO[889]	-5333.5	357		1223	\$0[927]	-5979.5	14
1148	SO[852]	-4704.5	77		1186	SO[890]	-5350.5	217		1224	SQ[928]	-5996.5	357
1149	SO[853]	-4721.5	357		1187	SO[891]	-5367.5	77		1225	\$0[929]	-6013.5	217
1150	SO[854]	-4738.5	217		1188	SO[892]	-5384.5	357	7/	1226	SO(930) 7	6038.5	77
1151	SO[855]	-4755.5	77		1189	SO[893]	-5401.5	(217)		1227	20183.M	-6047.5	357
1152	SO[856]	-4772.5	357		1190	SO[894]	-5418.5	77		1228	3019327	-6064.5	217
1153	SO[857]	-4789.5	217		1191	SO[895]	5435 5	357		1229	\$0[933]	-6081.5	77
1154	SO[858]	-4806.5	77		1192	SO[896]	54525	1244		1238	SO[934]	-6098.5	357
1155	SO[859]	-4823.5	357		1193	SQ[897]	5469.5	77		1831	SO[935]	-6115.5	217
1156	SO[860]	-4840.5	217		1,194	SO[898]	\5486.5 \	357		1232	SO[936]	-6132.5	77
1157	SO[861]	-4857.5	77	1	1195	/s@1899/	-5503.5	217	\	1233	SO[937]	-6149.5	357
1158	SO[862]	-4874.5	357	10	1496	Soleopi /	\$520.5	77		1234	SO[938]	-6166.5	217
1159	SO[863]	-4891.5	217	$/\!\!/\!\!/$	1197	//\$Ø[90 <i>]</i> //	-5537.5	357		1235	SO[939]	-6183.5	77
1160	SO[864]	-4008.5	(XX)		198	\s \ \9 0 2]	-5554.5	217		1236	SO[940]	-6200.5	357
1161	SO[865]	49255	357		1199	SQ[903]	-5571.5	77		1237	SO[941]	-6217.5	217
1162	SO[866]	4942.5	217		1200	SO[904]	-5588.5	357		1238	SO[942]	-6234.5	77
1163	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-4959.5	<i> </i>		1201	SO[905]	-5605.5	217		1239	SO[943]	-6251.5	357
1164	_ \\$0\\\\	4976,5	3 5 7		1202	SO[906]	-5622.5	77		1240	SO[944]	-6268.5	217
1165	SO[869]	-4993.5	247		1203	SO[907]	-5639.5	357		1241	SO[945]	-6285.5	77
1166	30(870)	-\$010.5	77		1204	SO[908]	-5656.5	217		1242	SO[946]	-6302.5	357
1167	\$0[87]	-5027.5	357		1205	SO[909]	-5673.5	77		1243	SO[947]	-6319.5	217
1168	SO[872]	-5044.5	217		1206	SO[910]	-5690.5	357		1244	SO[948]	-6336.5	77
1169	SO[873]	-5061.5	77		1207	SO[911]	-5707.5	217		1245	SO[949]	-6353.5	357
1170	SO[874]	-5078.5	357		1208	SO[912]	-5724.5	77		1246	SO[950]	-6370.5	217
1171	SO[875]	-5095.5	217		1209	SO[913]	-5741.5	357		1247	SO[951]	-6387.5	77
1172	SO[876]	-5112.5	77		1210	SO[914]	-5758.5	217		1248	SO[952]	-6404.5	357
1173	SO[877]	-5129.5	357		1211	SO[915]	-5775.5	77		1249	SO[953]	-6421.5	217
1174	SO[878]	-5146.5	217		1212	SO[916]	-5792.5	357		1250	SO[954]	-6438.5	77
				•					•				

Preliminary E l	K9	71	6
------------------------	----	----	---

	<u> </u>	<u> </u>						1 1	CIII	11111		131	<u> </u>
1251	SO[955]	-6455.5	357		1289	SO[993]	-7101.5	77		1327	SO[1031]	-7747.5	217
1252	SO[956]	-6472.5	217		1290	SO[994]	-7118.5	357		1328	SO[1032]	-7764.5	77
1253	SO[957]	-6489.5	77		1291	SO[995]	-7135.5	217		1329	SO[1033]	-7781.5	357
1254	SO[958]	-6506.5	357		1292	SO[996]	-7152.5	77		1330	SO[1034]	-7798.5	217
1255	SO[959]	-6523.5	217		1293	SO[997]	-7169.5	357		1331	SO[1035]	-7815.5	77
1256	SO[960]	-6540.5	77		1294	SO[998]	-7186.5	217		1332	SO[1036]	-7832.5	357
1257	SO[961]	-6557.5	357		1295	SO[999]	-7203.5	77		1333	SO[1037]	-7849.5	217
1258	SO[962]	-6574.5	217		1296	SO[1000]	-7220.5	357		1334	SO[1038]	-7866.5	77
1259	SO[963]	-6591.5	77		1297	SO[1001]	-7237.5	217		1335	SO[1039]	\$ 7887	364
1260	SO[964]	-6608.5	357		1298	SO[1002]	-7254.5	77		1336	SO[1046]	-2900.5	217
1261	SO[965]	-6625.5	217		1299	SO[1003]	-7271.5	357		1337	SQ[104]]	- 291 Z.5	14
1262	SO[966]	-6642.5	77		1300	SO[1004]	-7288.5	217		1388	60[Y042]	-7934.5	357
1263	SO[967]	-6659.5	357		1301	SO[1005]	-7305.5	77		1339	60[1043]	-7951.5	217
1264	SO[968]	-6676.5	217		1302	SO[1006]	-7322.5	357	7/	1340	SO[4044] 7	7968.5	77
1265	SO[969]	-6693.5	77		1303	SO[1007]	-7339.5	(217)		1341	\SQ[1045]	-7985.5	357
1266	SO[970]	-6710.5	357		1304	SO[1008]	-7356.5	77		1342	/ spripaer	-8002.5	217
1267	SO[971]	-6727.5	217		1305	SO[1009]	1373/2	357		1343	SO[1047]	-8019.5	77
1268	SO[972]	-6744.5	77		1306	SO[1 0 10]	X390,5	1844		134 4	SO[1048]	-8036.5	357
1269	SO[973]	-6761.5	357		1307	\$0K1011X	740X.5	77		1345	SO[1049]	-8053.5	217
1270	SO[974]	-6778.5	217		1308	(\$0\t\0\2]	 x 424.5	357		1346	SO[1050]	-8070.5	77
1271	SO[975]	-6795.5	77	2	1309	\$6/1013/	-7441.5	247)	1347	SO[1051]	-8087.5	357
1272	SO[976]	-6812.5	357	1	1810	\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7458.5	77		1348	SO[1052]	-8104.5	217
1273	SO[977]	-6829.5	217	$/\!\!/$	1311	SO[1015]	-7475.5	357		1349	SO[1053]	-8121.5	77
1274	SO[978]	-6846.5	(X)		312	 SO [4046]	-7492.5	217		1350	SO[1054]	-8138.5	357
1275	SO[979]	-6863/5	357		1373	\$0(1017]	-7509.5	77		1351	SO[1055]	-8155.5	217
1276	SO(586)	6880.5	217		1314	SO[1018]	-7526.5	357		1352	SO[1056]	-8172.5	77
1277	\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-6897.5			1315	SO[1019]	-7543.5	217		1353	SO[1057]	-8189.5	357
1278	\\$0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6914,6	3 5 17		1316	SO[1020]	-7560.5	77		1354	SO[1058]	-8206.5	217
1279	SO(883)	-6931.5	247		1317	SO[1021]	-7577.5	357		1355	SO[1059]	-8223.5	77
1280	\$0,984	-6948.5	77		1318	SO[1022]	-7594.5	217		1356	SO[1060]	-8240.5	357
1281	SO[98 5]	-6965.5	357		1319	SO[1023]	-7611.5	77		1357	SO[1061]	-8257.5	217
1282	SO[986]	-6982.5	217		1320	SO[1024]	-7628.5	357		1358	SO[1062]	-8274.5	77
1283	SO[987]	-6999.5	77		1321	SO[1025]	-7645.5	217		1359	SO[1063]	-8291.5	357
1284	SO[988]	-7016.5	357		1322	SO[1026]	-7662.5	77		1360	SO[1064]	-8308.5	217
1285	SO[989]	-7033.5	217		1323	SO[1027]	-7679.5	357		1361	SO[1065]	-8325.5	77
1286	SO[990]	-7050.5	77		1324	SO[1028]	-7696.5	217		1362	SO[1066]	-8342.5	357
1287	SO[991]	-7067.5	357		1325	SO[1029]	-7713.5	77		1363	SO[1067]	-8359.5	217
1288	SO[992]	-7084.5	217		1326	SO[1030]	-7730.5	357		1364	SO[1068]	-8376.5	77
_				-					=		_		

Preliminary E l	K9	71	6
------------------------	----	----	---

	<u>.1604</u>	I G I						<u> </u>		1 1111		(31 I	<u> </u>
1365	SO[1069]	-8393.5	357		1403	SO[1107]	-9039.5	77		1441	SO[1145]	-9685.5	217
1366	SO[1070]	-8410.5	217		1404	SO[1108]	-9056.5	357		1442	SO[1146]	-9702.5	77
1367	SO[1071]	-8427.5	77		1405	SO[1109]	-9073.5	217		1443	SO[1147]	-9719.5	357
1368	SO[1072]	-8444.5	357		1406	SO[1110]	-9090.5	77		1444	SO[1148]	-9736.5	217
1369	SO[1073]	-8461.5	217		1407	SO[1111]	-9107.5	357		1445	SO[1149]	-9753.5	77
1370	SO[1074]	-8478.5	77		1408	SO[1112]	-9124.5	217		1446	SO[1150]	-9770.5	357
1371	SO[1075]	-8495.5	357		1409	SO[1113]	-9141.5	77		1447	SO[1151]	-9787.5	217
1372	SO[1076]	-8512.5	217		1410	SO[1114]	-9158.5	357		1448	SO[1152]	-9804.5	77
1373	SO[1077]	-8529.5	77		1411	SO[1115]	-9175.5	217		1449	SO[1153]	1-9821/5	\$57
1374	SO[1078]	-8546.5	357		1412	SO[1116]	-9192.5	77		1450	SO[1 1 54]	9838.5	217
1375	SO[1079]	-8563.5	217		1413	SO[1117]	-9209.5	357		1451	50[1155]	-9855.5	
1376	SO[1080]	-8580.5	77		1414	SO[1118]	-9226.5	217		1452	60[4/66]	-9872.5	35₹
1377	SO[1081]	-8597.5	357		1415	SO[1119]	-9243.5	77		1453	60[1157]	9889.5	217
1378	SO[1082]	-8614.5	217		1416	SO[1120]	-9260.5	357	//	1454	SOM 158] 7	-9906.5	77
1379	SO[1083]	-8631.5	77		1417	SO[1121]	-9277.5	(217)		1455	\\$ Q[1158]	-9923.5	357
1380	SO[1084]	-8648.5	357		1418	SO[1122]	-9294.5	77		1456	SOLLIEOI	-9940.5	217
1381	SO[1085]	-8665.5	217		1419	SO[1123]	J931 1 5	357		1457	SO[1161]	-9957.5	77
1382	SO[1086]	-8682.5	77		1420	SO[1424]	9328,5	124		4458	SO[1162]	-9974.5	357
1383	SO[1087]	-8699.5	357		1421	SO[(125)]	9345.5	77		1459	SO[1163]	-9991.5	217
1384	SO[1088]	-8716.5	217		1422	SO[1126]	19362.5	357		1460	SO[1164]	-10008.5	77
1385	SO[1089]	-8733.5	77	1	1423	SON 127	-9 3 79.5	217	٥	1461	SO[1165]	-10025.5	357
1386	SO[1090]	-8750.5	357		1424	\\SQ[1\12\8]	9396.5	77		1462	SO[1166]	-10042.5	217
1387	SO[1091]	-8767.5	217		1425	SO [112 9]	-9413.5	357		1463	SO[1167]	-10059.5	77
1388	SO[1092]	-8784.5	T		1426	[[\$0[Y\\$0]	-9430.5	217		1464	SO[1168]	-10076.5	357
1389	SO[1093]	-8801/5	357		1427	\$0[1131]	-9447.5	77		1465	SO[1169]	-10093.5	217
1390	SO[1094]	+8848.5	217		1428	S O[1132]	-9464.5	357		1466	SO[1170]	-10110.5	77
1391	\\$\0\1\09\$\\	-8835.5	#		1429	SO[1133]	-9481.5	217		1467	SO[1171]	-10127.5	357
1392	\$0[1096]	88525	3 5 7		1430	SO[1134]	-9498.5	77		1468	SO[1172]	-10144.5	217
1393	\$O[469X]	-8869.5	247		1431	SO[1135]	-9515.5	357		1469	SO[1173]	-10161.5	77
1394	\$60K08	-8886.5	77		1432	SO[1136]	-9532.5	217		1470	SO[1174]	-10178.5	357
1395	SQ[109e]	-8903.5	357		1433	SO[1137]	-9549.5	77		1471	SO[1175]	-10195.5	217
1396	SO[1000]	-8920.5	217		1434	SO[1138]	-9566.5	357		1472	SO[1176]	-10212.5	77
1397	SO[1101]	-8937.5	77		1435	SO[1139]	-9583.5	217		1473	SO[1177]	-10229.5	357
1398	SO[1102]	-8954.5	357		1436	SO[1140]	-9600.5	77		1474	SO[1178]	-10246.5	217
1399	SO[1103]	-8971.5	217		1437	SO[1141]	-9617.5	357		1475	SO[1179]	-10263.5	77
1400	SO[1104]	-8988.5	77		1438	SO[1142]	-9634.5	217		1476	SO[1180]	-10280.5	357
1401	SO[1105]	-9005.5	357		1439	SO[1143]	-9651.5	77		1477	SO[1181]	-10297.5	217
1402	SO[1106]	-9022.5	217		1440	SO[1144]	-9668.5	357		1478	SO[1182]	-10314.5	77
-				=					- "				

<u> </u>	<u>.1001</u>			
1479	SO[1183]	-10331.5	357	
1480	SO[1184]	-10348.5	217	
1481	SO[1185]	-10365.5	77	
1482	SO[1186]	-10382.5	357	
1483	SO[1187]	-10399.5	217	
1484	SO[1188]	-10416.5	77	
1485	SO[1189]	-10433.5	357	
1486	SO[1190]	-10450.5	217	
1487	SO[1191]	-10467.5	77	
1488	SO[1192]	-10484.5	357	
1489	SO[1193]	-10501.5	217	
1490	SO[1194]	-10518.5	77	
1491	SO[1195]	-10535.5	357	
1492	SO[1196]	-10552.5	217	
1493	SO[1197]	-10569.5	77	
1494	SO[1198]	-10586.5	357	
1495	SO[1199]	-10603.5	217	
1496	SO[1200]	-10620.5	77	
1497	SHIELDING[52]	-10664	377	
1498	COM1_T	-10714	377	
1499	COM1_T	-10764	377	
1500	SYNCR	-10814	377	
1501	LDR	-10864	377	
1502	POLR	-10914	377	/
1503	DATR[0]	14x 1x3	3364	\
1504	/ DATRIW	144049	357	/
1506	(DATRIZI	-11179	1/2/7	\ /
1506	DATR[3]	-11049	277	
1507	DATRIA	11179	237	
1508	DATRISI	1 1049	197	
1509	DATR[6]	-11179	157	
1510	DATR[7]	-11049	117	
1511	DATR[8]	-11179	77	
1512	DATR[9]	-11049	37	
1513	DATR[10]	-11179	-3	
1514	DATR[11]	-11049	-43	
1515	DATR[12]	-11179	-83	
1516	DATR[13]	-11049	-123	

1517	DATR[14]	-11179	-163
1518	DATR[15]	-11049	-203
1519	DATR[16]	-11179	-243
1520	DATR[17]	-11049	-283
1521	DIOR	-11179	-323
1522	DCLKR	-11049	-363

-	ALIGN_L	-10773	93
-	ALIGN_R	10773	93

9. DEFINITIONS

9.1. Data Sheet Status

Preliminary Data Sheet	This data sheet contains preliminary data; supplementary data may be published later.
Data Sheet	This data sheet contains final product specifications.

Contents in the document are subject to change without notice.

9.2. Life Support Application

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury fittpower customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify fitipower for any damages resulting from such improper use of sale.

10. REVISION HISTORY

Revision	Content	Page	Date
0.1	New Issue.		2011/02/11
0.2	Modify HFRC function default value		2012/01/31
0.3	Modify gamma correction resistor	22.23.24	2012/05/21
0.4	Modify Time from HSD to Source Output Modify Time from HSD to LO	30	2012/07/31
1.0	Modify VDD operating ratege	25	2013/11/18

2013/11/18 48 **Rev. 1.0**

 $R {\rightarrow} G {\rightarrow} B {\rightarrow} Black {\rightarrow} White {\rightarrow} Color \ Bar {\rightarrow} Horizontal \ 256 \ gray \ scale {\rightarrow} Vertical \ 256 \ gray \ scale {\rightarrow} Crosstalk$ pattern→Chess board (L255/L0)→Flicker pattern→Black background with white out frame

