版本	日期	修订说明
V1. 0	2022. 04. 06	创建文档

目录

1.	概述	3
	1.1. 功能简介	3
2.	使用方法简介	3
	2.1. 麦克风初始检测	3
	2. 1. 1. 使用 Linux 软件 audacity 进行录音初体验	3
	2.1.2. 接收唤醒后返回的唤醒数据。	4
	2.1.3. 命令行查找设备和录音。	4
3.	开放平台应用及功能库的获取	5
	3.1. 讯飞开放平台应用创建与集成	5
	3.2. 离线命令词识别	7
	3.2.1. 添加离线命令词应用	7
	3.2.2. 集成方法	8
	3. 3. AIUI 集成	8
	3. 3. 1. 配置 AIUI 的功能	8
	3.3.2. 集成方法	9
4.	AIUI 平台库的配置和移植	.10
	4.1. 动态库的配置	. 10
	4.2. AIUI 平台交互	.11
5.	代码运行方法简介	. 11
6.	功能包介绍	.12
7.	离线命令词语法设置	. 15
8.	离线问答句及串口协议设置	.16
Q	盘	17

1. 概述

1.1. 功能简介

本文档是讯飞环形麦克风阵列语音识别案例。

- 1)本案例支持在线识别和离线识别,且离线识别优先。
- 2) 离线识别需要用户根据指引设置 bnf 语法以及问答库。
- 3)在线识别会返回识别结果和对应的回答,且回答会直接语音合成进行播报。ROS 程序支持以话题形式发布出去,见话题/question,/answer。
- 4) 离线识别会返回识别结果以及默认回答"好的"。离线的回答设置合成播报,并可以下发协议到用户设置的串口,需要保证有权限。
 - 5) 本案例支持说话人检测,支持全双工。
- 6) 当麦克风被唤醒时,会返回唤醒的角度,ROS 程序支持以话题的形式发布,见话题/angle.

2. 使用方法简介

使用 R1818 唤醒麦克风阵列套件之前,请首先阅读 R818 麦克风系列开发套件的《产品白皮书》、《产品规格书》、《使用手册》和《协议手册》四个文档来了解其使用方法,并按照接口要求将麦克风、串口和扬声器的线连接好,连接好以后阅读一下代码进行使用。

2.1. 麦克风初始检测

R818 麦克风内部集成了科大讯飞的语音算法,在使用时,将其串口和电源线插在电脑上便可使用,麦克风使用串口返回唤醒基本信息(唤醒人,唤醒角度等),使用连接到电脑上的 UAC 接口返回音频信息。

2.1.1. 使用 Linux 软件 audacity 进行录音初体验

连接好以后在 linux 平台系统设置 sound 的 input 下多了一个音频输入硬件 (XFM-DP-V0.0.18), 默认已经选中此麦克风可以进行操作。在看到已经连接

成功以后,可以安装 audacity 软件进行录音和播放进行测试安装命令如下:

\$ sudo apt-get install audacity

安装好软件以后,可以在该软件中完成录音和播发对该设备进行测试。

2.1.2. 接收唤醒后返回的唤醒数据。

在检测完成以后可以连接串口,下载 linux 下串口通信工具进行快速体验。

第一步: 将所有连线连接好, 在 linux 平台打开 cutecom 串口工具。安装命令为:

\$ sudo apt-get install cuteom.

第二步: 配置串口工具设置, 并打开串口。选择识别出来的 USB 转 TTL 串口号, 设置波特率: 115200; 数据位 8; 奇偶校验: 无; 停止位: 1 流; 控制: 无。

第三步: R818 降噪板 接通电源, 查看串口启动信息。接通电源后, 大概 1 分钟左右(1分钟为最长时间,实际小于该时常), 串口会收到启动信息。

第四步: 体验语言唤醒、声源定位、噪声抑制、回声消除。对着麦克风说"小飞小飞"这时电路板被唤醒,串口将输出唤醒信息,信息中包含使用的唤醒词信息、唤醒角度信息等。打开 PC 机录音软件开始录音,此时可以从刚才唤醒的方向对着麦克风说话,也可以从其他的角度对着麦克风说话。也可以在 PC 机上播放音乐,在进行从不同角度对着麦克风说话(注意喇叭不要离麦克风太近,以免喇叭声音过高造成失真严重)。结束录音,收听录音内容。输出的为单通道 16k 16bit pcm 音频。正常情况,可以听到唤醒方向的说话声音洪亮清晰,其他角度声音小且模糊。PC 机播放的音乐,基本听不到。

2.1.3. 命令行查找设备和录音。

1) 查询设备编号:

\$ arecord -1

可以看到终端罗列出了该电脑中的设备,只需要看到 card 2: XFM-DP-V0.0.18, 为该 R818 麦克风套装的编号

2) 命令行录音:

\$ record -D hw:2,0 -r 16000 -f s16 LE -t wav 1.wav

生成的录音为 1.wav,默认在 /home 目录下,其中 -D 为设备型号的选择 hw:2,0(card 2,device 0)表示设备型号为 card 2: [XFM-DP-V0.0.18],device 0:USB Audio[USB Audio], 查找到设备型号后要检查代码 Globle.h 文件中的 *pcm name 型号是否和查询到的型号一致。

3. 开放平台应用及功能库的获取

3.1. 讯飞开放平台应用创建与集成

首先到讯飞开放平台注册账户,然后点击右上角"控制台",进入自己的控制 平台。如果是首次使用讯飞 开发平台,则控制台中应用是空的,点击创建新应 用。

图 1 进入控制台

图 2 创建新应用

点击提交后,可看到用户的应用列表,选择刚刚创建的应用,则进行该应用配置界面,在左侧会有"语音识别","语音合成","语音扩展","人脸识别","图像识别"等菜单。

图 3 下载离线命令词识别 SDK

创建完成之后就可以下载 sdk 使用了, 共有两种方式可以选择,如下述所示:

1) 在开放平台主页,在菜单中选择 SDK 下载,然后选择应用名称,平台以及要使用的能力,此时下载的 SDK 会将所选的能力打包下载,其中的 1ib 下的

libmsc. so 动态库也可看做是打包在一起的, 其适用于你勾选的所有能力。

2) 选择单个能力,然后下载单个能力的 SDK 包,此时 SDK 里的动态库仅仅适用于 该能力,若下载多个能力,则会有多个 SDK 包,对应多个 libmsc. so 动态库。也可以在每个能力的右下角选择聚合 sdk 的生成,生成的 sdk 同方法一相同。

3.2. 离线命令词识别

3.2.1. 添加离线命令词应用

如图 3 所示,打开语音识别选择离线命令词识别,便可以选择所需平台的离线命令词识别的应用进行下载,linux 平台给出了 x86,x64 版本,如有其他版本的需求,可以联系商务部门进行定制。

图 4 离线命令词识别 SDK

如果需要离线命令词识别和其他功能共同使用可以点击右下角聚合 SDK 下载,该功能和 3.1 的方式一方法一致。

3.2.2. 集成方法

若在使用离线命令词识别时出现 10102 等错误时,需要替换为自己的 APPID 和离线识别引擎, APPID 我们在创建应用的时候就已得到, 离线识别引擎 common.jet 在 bin/msc 中, 找到 common.jet 后就可以进行 替换了。

1) 替换 sdk: 将用户自己的 common.jet 文件替换/speech_comand /config/AIUI/asr/路径下的 common.jet。将用户自己的 appid 替换 speech_command /include 中 Globle.h 文件中的"string offline appid"。然后再次编译。

3.3. AIUI 集成

3.3.1. 配置 AIUI 的功能

打开图 3 界面最后一个"其他"选项,选择 AIUI 的服务管理进入后配置方法如下:

其中情景模式默认为"main",可以结合用户场景需求根据使用说明来设置 其他情景模式。在这里用户需要将"语义理解","兜底设置","语音合成" 三个高级设置勾选,在语义理解中用户关注"语义技能",首先选择"商店技 能",然后"添加商店技能",你可以在弹出的技能商店中选择你需要的技能, 如"天气","星座"等,如图 5 所示。点击确定即可。添加完后要选择页面 右上角的"保存修改"才可生效。这个时候,就可以使用 你刚添加的技能进行 对话了。

图 5 选择所需要的 AIUI 功能

在"兜底测试"中将"图灵机器人","讯飞闲聊"等开启后,就可以避免在一些语料未开通时,机器人依然可以答复诸如"这些我还没学会"等等的兜底回复。除此,AIUI还提供了一些自定义的技能便于用户使用,选择"我的技能"菜单,系统会跳转到技能控制台,然后根据创建方法在该平台创建完技能并发布后,再回到图中 AIUI应用配置界面,在语音理解-语义技能中的自定义技能中添加刚创建的技能然后"保存修改"就可以了。 之后就可以根据自己创建的技能以及技能标识进行交互判断了。当然,关于 AIUI和其相关的技能应用还有很多,用户可根据官网的文档进行系统的学习,以充分使用科大讯飞开放平台的能力。完成"应用配置"后,用户就可以下载 AIUI的 SDK 了,选择"开发工具",可以看到如图6所示的界面

图 6 选择 AIUI 所需要的平台

图 6 选择所需要的 SDK 进行下载,linux 平台选择了提供了 x86、x64 版本,如果为其他平台,可联系商务部门进行定制和适配。

3.3.2. 集成方法

若在使用过程中在线人机交互案例时出现"11201"的错误,是因为 appid 选择的 AIUI 应用是免费的,每天交互次数受限,你可根据如下方法进行修改,来使用你创建的"aiui"应用,方法是在"AIUI 开放平台" 上找到"APPID"和"APPKEY",在进行替换的时候只用这两个参数就可以了,替换方法将这两

个参数分别替 换 AIUITester.cpp 文件中的 自定义文件 Globle.h 里面的字符串 APPID 以及 APIkey。

合并下载 SDK 进入讯飞开发平台主页,上部菜单栏里就可以看见此项功能,然后选择"SDK"下载 如图 7 上方所示,点击后进入如图 7 界面。

图 7 多种功能 SDK 下载的图示

选择此方式时,应该选择配置好相应功能的应用进行下载,下载好"SDK"以后按照第三章所示的方式进行移植使用。

4. AIUI 平台库的配置和移植

4.1. 动态库的配置

登陆讯飞开放平台(https://passport.xfyun.cn),在该网页注册选择进行登陆在主界面选择 SDK 下载,进入后,选择所需要的平台,在此,只讨论在 linux平台下的使用,选择所需要的 AI 能力,选择完成以后下载所需要的 SDK 进行移植,同时在下载的过程中,也可以点击阅读文档进行

获取所使用的 SDK,并按照要求进行下载和配置,下载后选择相应架构的 动态库进行使用。将所需要的库进行下载以后,放置在/speech_command/lib 分配的库中。

放置好后可以在/speech_command /下的 CMakeList.txt 中的相应位置使用

Tatget_link_librariles()链接所需要使用的库,并在第 133 行,选择自己所需要的平台中的库。

4.2. AIUI 平台交互

在完成初始功能的体验后,在使用 AIUI 交互平台时需要使用,麦克风返回的音频流,所以在这里使用 linux 下的 alsa 进行底层录音,在使用 Linux 底层获取音频流时,在使用的过程中,将获取的音频流传入到 AIUI 中,在使用 AIUI的过程中,首先配置/config/AIUI/aiui.cfg 中将文件路径改为自己所使用的文件路径。

路径修改完毕以后,可以修改/speech_command/include/globle.h 中的在线 AIUI 的 APPID 进行修改使用。

5. 代码运行方法简介

支持两种方式运行:

方式一: 在终端使用 roslaunch 指令执行:

٠,,

\$ roslaunch speech command speech-command.launch

. . .

方式二: 在终端使用 rosrun 指令执行:

٠.,

\$ roscore

\$ rosrun speech command speech command node

٠.,

系统检测到串口和麦克风阵列后,会自动开机并播报"AIUI 启动成功",然后等待用户唤醒,用户说出"小飞小飞"即可使用。唤醒后即进入交互状态,本案例默认提供的交互方式是 continues 方式,即一次唤醒多次交互的方式,用户在该方式下可以体验到中途打断的功能,在它回答问题中,可以接着说出下一个问题,这时会自动回答下一个问题。值得注意的是,服务端保存用户交互历史的时间最长为120s,即如果用户说"明天天气怎么样",接下来说"后天呢",会默认

回答后天天气状况,多轮对话最长时间为 120s,值得注意的是,AIUI 引擎在长时间无有效交互时会进入休眠模式,此时需要重新唤醒进行交互。此时间默认为 180s,可在 aiui.cfg 中进行修改。在正常交互过程中事件的状态包含三种:

1) "tts": 即文字到语音的转化

2) "asr": 离线语音识别

3) "nlp": 在线语义理解

当用户使用技能命令词"你去休息吧",事件的状态标识为"nlp",此时麦克风会进入休眠模式,不会进行交互。若要重新进入交互模式需要再次使用"小飞小飞"进行唤醒。

特别地,可以按"crtl+C"键来退出本程序。

6. 功能包介绍

	L—userwords.txt
\vdash	— include
	—— aiui
	—— AIUITester.h
	—— AudioPlayer.h
	—— AudioRecorder.h
	—— cJSON.h
	CJSON_Utils.h
	FileUtil.h
	—— formats.h
	—— Global.h
	—— hidapi.h
	json
	jsoncpp-master
	libusb.h
	linuxrec.h
	msp_cmn.h
	msp_errors.h
	— msp_types.h
	protocol_proc_unit.h
	— qise.h
	—qisr.h
	— qtts.h
	queue_internal.h
	queue_simple.h
	—— RingBuffer.h
	speech_recognizer.h
	TestListener.h
	WriteAudioThread.h
-	— launch

其中:

- 1) audio: 用于存放录制的音频文件,音频文件的命名是自定义的,文件中设置了自己的离线音频,该音频可由网站生成(https://www.iflyos.cn/tts-file),放置到此文件夹下进行使用。
- 2) bin: 用于存放可执行文件, call.bnf 为自定义的离线命令词识别语法,可根据自己实际场景进行更改,同时也放置了,offline_QA.txt 文档用于自定义离线语法和需要播报语音所存放的路径,离线语法要和 call.bnf 同步并且需要一致。

- 3) include: 包含麦克风阵列启动、给定案例中需要的头文件。其中 Global.h 为用户接口,可以根据需要进行修改。
- 4) lib: 包含麦克风阵列启动、给定案例中需要的动态库文件,为了兼容不同的平台,给定了 ARM64、x64 系统、x86 系统的动态库。
- 5) launch: 启动文件。
- 6) src: aiuiMain.cpp 为主节点,也是识别的外围,负责与外通信。

AIUITester.cpp 为语音识别的实际执行节点,里面获取麦克风阵列降噪音频送到引擎中,并返回识别结果。

6) tmp: 包含文件麦克风阵列板所需的资源文件,常态下可设为隐藏文件,用户可忽略。

7. 离线命令词语法设置

本例程中希望可以离线识别的命令词为"向前走"、"向后走"、"向左走"、"向右走"。基于此设置的离线语法文件见/config/call.bnf 所示:

#BNF+IAT 1.0 UTF-8;

!grammar call;

!slot <want>;

!slot <dialpre>;

!slot <dialsuf>;

!slot <contact>;

!start <callstart>;

<callstart>:<want>;

<want>:向前走|向后走|向左走|向右走;

,,,

此 bnf 比较简单,没有设置隐藏字段,在交互时用户说的话必须包括命令词才可以识别。若用户交互的话中仅仅包括"前走",则离线引擎是拒绝识别的。但当话语中包括"向前走",才可以被离线引擎识别。

假如想"前走"也可以识别,或想"前走"、"向前走"、"往前走"、"你往前走"、

```
"你往前移动"、"向前动动"等都被识别且表达一个意思,可丰富 bnf 语法如下所示:
""
#BNF+IAT 1.0 UTF-8;
!grammar call;
!slot <want>;
!slot <direction>;
!slot <do>;
!slot <what>;
!start <callstart>;
<callstart>:[<want>]<dowhat>;
<want>:向|往|你往|你向;
<dowhat>:<direction><do>;
<direction>:左!id(10001)|右!id(10001)|前!id(10001)|动动!id(10001);
<do>;走!id(10001)|移动!id(10001)|转!id(10001)|动动!id(10001);
...
```

该 bnf 语法包含命令词"【你】【往、向】【前、后、左、右】【走、转】",用户说出这四组关键字中任一组合均可识别,如"往前走"、"向后走"、"向左转"、"左转"等。可以发现通过修改该文件,说话时就不会太受限制。

7) 离线命令词识别语料需要根据用户的实际应用场景来设置,以上只是给出了简单的例子,故在使用的过程中,可以在讯飞开放平台 sdk 下载选择离线命令词识别中参考语法开发指南中的《BNF 语法开发指南》来进行深层次的学习完成所需语法的创建和使用。

8. 离线问答句及串口协议设置

在本例中,路径/config/offline_QA.txt 下存放的是离线引擎识别到的语句与串口协议的对应关系。如下:

٠,,

向左走|往左走|左走:AA0200FF:/audio/offline_left.mp3

向前走|往前走|前走:AA0100FF:/audio/offline_left.mp3 向右走|往右走|右走:AA0300FF:/audio/offline_left.mp3 向后走|往后走|后走:AA0400FF:/audio/offline_left.mp3

说明:

- 1) ":"用于分割识别到的语句、串口协议和需要播报语音的路径。
- 2) "|"用于分割多个识别到的语句,即"向前走"和"往前走"均对应同一个协议。
- 3) 本例中协议字头是"AA",尾部是"FF",中间字段来区分协议。协议格式可以根据需要任意修改。
- 4) 协议会被当做 string 下发到用户在 Global.h 中设置的串口中。
- 5)地址自定义可以任意放在 speech_command 路径下面的任意文件夹下,但是建议只修改后面的文件名字,默认文件夹为 audio 目录下,在这里采用文件中设置了自己的离线音频,该音频可由网站生成(https://www.iflyos.cn/tts-file),放置到此文件夹下进行使用。

9. 错误码

11201

٠,,

若在使用过程中,可能会出现不能交互,且报错代码为 11201 的情况,原因是本案例绑定的 appid 是个人的,单日的交互次数受限,用户可以替换为自己的 appid,用户可通过修改 Globle.h 文件中的自定义的字符串 appid 以及 key,分别对应 id 和密码. 然后开通常用的语料和技能进行使用,在后续使用中若再次遇到报错代码为 11201 的情况,用户可前往控制台检查对应 appid 次数是否超过限制次数,超过可在官网产品页面领取免费包或者购买套餐包,未超过可提交技术工单. 离线服务接口报错其他常见错误可见 https://www.xfyun.cn/document/error-code/.

٠,,

找不到麦克风设备,请重新插拔

٠,,

该现象表示系统未检测到麦克风。

•••

无法打开音频设备,请重新插拔

٠,,

该现象表示系统已经占用麦克风设备。

٠,,

"在启动后出现 libcjson.so.1 不存在"

٠,,

需要安装 cjson,且需要将/usr/local/lib 中的 libcjson.so.1 移动到/usr/lib 下。

٠,,

"23300"或 "bnf_recognise_error"

٠,,

- 1. 离线命令词识别时语法 bnf 有误,请检查标点符号,槽定义等是否有误,可参考 bnf 编写说明书。
- 2.配置文件 aiui.cfg 中配置的情景模式参数 scene 使用测试环境 xxx_box:如果在配置文件中使用测试环境 xxx_box,那么将受到如下报错,原因为离线语法构建不支持下划线.

• • • •

"10407"或"unfit_appid_and_lib_error"

٠,,

appid 与动态库 libmsc.so 不匹配,可参考 4.2.2 进行修改,在修改后一定要编译 后再运行.

• • • •

"10102"或"build_grammer_error"

٠,

语法资源文件 common.jet 路径错误。如果工程中配置 common.jet 路径错误或资源文件不存在,为避免出错,建议修改为绝对路径;

٠,,

"11212"或"low_confidence error or 11212_license_expired_error"

٠,,

离线命令词识别过程中, 离线授权体验期过期, 需重新购买, 也可重新注册讯飞 开放平台获取新 appid 及资源文件. ### "11210" appid 与离线资源即 common.jet 不匹配。 ### "11201" 在线业务超次数或离线资源装机量超限。如离线命令词识别中,一个试用版的 appid 和资源在超过 10 台机器上使用。 ### "文件无法打开…" 在执行案例中, 若在录音时出现文件无法打开的问题, 需确认音频文件是否有读 写写的权限, 可删除该录音文件后再运行, 或者使用超级用户权限。 ### "在启动例程时一直显示麦克风未启动" 请检查是否有开启录音后,未停止录音的操作。若有,则需要手动停止录音或者 断开与麦克风的连接来结束通信。

build grammar error, erroode = -1 或 error reasion is grammar content is null

离线语法 xxx.bnf 文件路径错误,如果工程中配置 xxx.bnf 路径错误或语法文件不存在

build grammar error, errcode = 10111 或 error reasion is build grammar fail

代码中构建语法前未初始化 MSC(调用 MSPLogin 接口)。如果没有在代码中初始 化 AIUI 前进行 msc sdk 初始化,那么在调用构面语法的时候将会受到下面的错误 信息

٠,,

build grammar error, errcode = -1 或 error reasion is ASR not start

٠.,

配置文件 aiui.cfg 中未修改交互模式 intent_engine_type 为 local 或 mixed:如果在交互模式 intent_engine_type=cloud 下进行语法构建。

٠,,

其他能力应用错误

٠,,

可参照 https://shimo.im/sheet/w3yUy39uNKs0J7DT 进行修改。

٠,,