Lösung - Serie 6

Aufgabe Quantenteleportation

Wir betrachten das Register (x710)16> mit (x) im Eustaud (14) = x10>+ B11> und (ab) = $\frac{1}{52}$ (100>+111>).

Dieses befindet sich zu Beginn im Zustand

$$=\frac{25}{3}(1000)+1011)+\frac{5}{5}(100)+1111)$$

$$=\frac{25}{3}(1000)+1011)+\frac{5}{5}(100)+1111)$$

Alice wendet in esten Schritt Chot: 1x>1a> -> 1x>1a@x> an und es ergibt sich

$$= \frac{25}{8} (1000) + 1011) + \frac{5}{8} (1770) + 1401)$$

$$+ \frac{5}{8} (17)1001 > 100 + 11 > 1707 > 110$$

$$+ \frac{5}{8} (10)1000 > 100 + 100 > 110 > 110$$

In zweiten Schritt wird die Hadapard-Transformation auf IX> augusendet:

$$|\phi_{2}\rangle = \frac{1}{52} \left(\frac{1000}{1000} + \frac{1100}{1000} + \frac{1110}{1000} \right) + \frac{1}{52} \left(\frac{1000}{1000} + \frac{1110}{1000} \right) + \frac{1}{52} \left(\frac{1000}{1000} + \frac{1110}{1000} \right) + \frac{1}{52} \left(\frac{1000}{1000} + \frac{1010}{1000} \right) + \frac{1}{52} \left(\frac{10000}{1000} + \frac{10100}{1000} \right) + \frac{1}{52} \left(\frac{10000}{1000} + \frac{10000}{1000} \right) + \frac{1}{52} \left(\frac{10000}{1000} + \frac{1000$$

Da im nächsten Schritt gemessen werden soll, stellen wir noch bigl. der ersten beiden Bubits IX71a> (Alice' Bubits) um:

$$|\phi_2\rangle = \frac{1}{2} \left(100 \right) (x10) + \beta 11) + 101 \right) (\beta 10) + x11) + 110 \right) (x10) - \beta 11) - 111 \right) (\beta 10) - x11)$$

Alice misst im dritten Schritt und jeweils mit Wahrscheinlichkeit $(\frac{1}{2})^2 = \frac{1}{4}$ ergibt sich 1007, 1017, 1107 oder 1117.

Das dritte Bubit 16> (von Bob) geht dabei in einen an Alice' Eggebnis gekappelten Zustard über. Wir beobachten

Alice Ergebnis	Rustack van Babs Qubit
1007	X107+B117
1017	B107+ x117
1107	x(0)-B(1)
111>	-B107 + x11)

Ziel des Oerfahrens ist es, 121> = x187+ B11> von Alice an Bob zu übertragen. Im vierten Schritt wooden vier Fälle unterschieden:

1. Tall: Alice übermittelt 100). Dann ist Babs Qubit bereits im Zustavol ×10)+ \$11) und er muss nichts mehr machen

2. Fall: Alice übermittelt
$$101$$
) = $1 \times 21a$, d.h. $a = 1$.
Dann we note t Bob X an und exhibit
 $X(x|1) + \beta(0) = x(0) + \beta(1)$

3. Fall Alice übernittelt $|10\rangle = |x\rangle|a\rangle$, d.h. x = 1. Bob wevelet nun z an: $z(x|0\rangle - \beta|1\rangle) = x|0\rangle + \beta|1\rangle$

4. Fall Alice übermittett 1117, d.h. x = a = 1.

Bab wondet quest X an:

X (x11>-B10>) = x10>-B11>

Auschließerd werdet Bob Zan:

Z(x10) - B(1) = x10) + B(1)

Aufgabe 1

Bestimme U: (x) 8 (x) -> (x) 8 (x), x ∈ 80,13

Bedoachtug: U soll auf dem ersten Bubit die Identität sein und auf dem zweiten Bubit die Negation.

Doch Soie 1, Aufgabe 2 wissen wir

$$X117 - 107 = 1\overline{1}$$
, für $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Also folgt

$$U = I_2 \otimes X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

U ist eine Permutationsmatrix, also unitar.

Ein Degleich nit Chat: 18>@1x> -> 18>@18@x>
für B=1 zeigt 11>@1x> (hot) 11>@1x&1>=11>@1x>

Autoplo 2
Betrachte Chotz:
$$|x_1y\rangle \mapsto |x_0y_1y\rangle$$

zu (i) Es gilt

(10710) $\mapsto |0710\rangle$

(10717) $\mapsto |14710\rangle$

(10717) $\mapsto |14710\rangle$

(1011) $\mapsto |14710\rangle$

(1012) $\mapsto |0011\rangle$

(1013) $\mapsto |0011\rangle$

(1013) $\mapsto |0011\rangle$

(1014) $\mapsto |0011\rangle$

(1015) $\mapsto |0011\rangle$

(1015) $\mapsto |0011\rangle$

(1016) $\mapsto |0011\rangle$

(1017) $\mapsto |0011\rangle$

(1018) $\mapsto |0011\rangle$

(1019) $\mapsto |0011\rangle$

(1010) $\mapsto |0011\rangle$

(1011) $\mapsto |0011\rangle$

(1012) $\mapsto |0011\rangle$

(1011) $\mapsto |0011\rangle$

(1012) $\mapsto |0011\rangle$

$$R = |q_2q_3q_3\rangle$$
 mit $|q_2\rangle = |1\rangle$ well $|q_1q_3\rangle = \frac{1}{52}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle$

Entoprechend der Schaltung ist (H& Across) 1929,90> =

$$= \frac{1}{52}(100) - 11) \otimes \left(\frac{1}{52}(100) + \frac{1}{2}(111) + \frac{1}{2}(110)\right)$$

$$= \frac{1}{2} |000\rangle + \frac{1}{25} |011\rangle + \frac{1}{25} |010\rangle$$