

Energy transfer

1. direct dipolar coupling —through-space < 5 Å NOESY

d_{HH} ~ 100 kHz, responsible for relaxation

2. indirect dipolar coupling —through-bond ≤ 3 bonds COSY, TOCSY

 $J_{HH} \sim 10$ Hz, responsible for spin-spin splitting

Jyväskylä Frans Mulder 2017

AARHUS UNIVERSITY

Scalar coupling = J-coupling

without *J*-coupling:

$E_{\beta} \frac{\Lambda}{\Lambda} m = -1/2$ $v_{\alpha\beta} = E_{\beta} - E_{\alpha}$ $v_{\alpha\beta} = v_{0,1}$ $v_{\alpha\beta} = v_{0,1}$

Fig. 2.4 The transition between the two energy levels of a spin-half is allowed, and results in a single line at the Larmor frequency of the spin.

with *J*-coupling:

Fig. 2.7 On the left, the energy levels of a two-spin system; the arrows show the allowed transitions: solid lines for transitions in which spin 1 flips and dotted for those in which spin 2 flips. On the right, the corresponding spectrum; it is assumed that the Larmor frequency of spin 2 is greater in magnitude than that of spin 1 and that the coupling J₁₂ is positive.

Jyväskylä Frans Mulder 201

3D protein NMR and beyond

Resonance Assignments: Homonuclear Methods

253

Table 13.1. Molecular weight limitations for chemical shift assignments.

Mol. Weight	Technique	Observed Spins	Dimensionality
<10 kDa	Homonuclear	$^{1}\mathrm{H}$	2D
10-15 kDa	¹⁵ N-homonuclear [†]	¹ H, ¹⁵ N	3D, 4D
15-30 kDa	Triple Resonance [‡]	¹ H, ¹⁵ N, ¹³ C	3D, 4D
30-60 kDa	Triple Resonance/deuterated	¹ H, ¹⁵ N, ¹³ C	3D, 4D
60-100 kDa	Triple Resonance/deuterated/TROSY	¹ H, ¹⁵ N, ¹³ C	3D, 4D

[†]Requires uniform labeling of protein with ¹⁵N.

Jyväskyl

201

 $^{^\}ddagger \text{Requires uniform labeling with }^{15}\text{N}$ and $^{13}\text{C}.$

Requires uniform labeling with ¹⁵N, ¹³C and replacement of CH groups with CD.

Slow motions (μ s – s) $k_{ex} = k_1 + k_{-1}$ Symmetric two-site $\text{exchange: } \delta \omega = \omega_B - \omega_A$ $\text{Slow exchange: } k_{ex} \ll \delta \omega$ $\text{Intermediate exchange: } k_{ex} \ll \delta \omega$ $\text{Intermediate exchange: } k_{ex} \gg \delta \omega$ $\text{Fast exchange: } k_{ex} \gg \delta \omega$ Line shape analysis $\text{software provides } k_{ex} \text{ and } \delta \omega$ $Fig. 5.13. The spectrum of the lone proton of <math>d_1$ -cyclohexane (90% vol./vol. in CSs) as a function of temperature (*C) observed at 60 MHz with deutrium irradiation at 9.4 MHz.} Jyvaskyla Jyvaskyla

