ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN THIẾT KẾ MÁY

BÁO CÁO ĐỒ ÁN HỆ THỐNG TRUYỀN ĐỘNG

GVHD: TS. PHAM MINH TUẤN

SINH VIÊN THỰC HIỆN:

Họ và tên	MSSV		
Dương Quang Duy	2210497		
Đoàn Nguyễn Minh Khoa	2211586		

Mục lục

1	Chọn	động cơ điện
	1.1	Xác định công suất bộ phận công tác
	1.2	Số vòng quay của bộ phận công tác
	1.3	Hiệu suất của các bộ truyền và các cặp ổ trong hệ thống dẫn động .
	1.4	Công suất động cơ cần thiết
	1.5	Dãy tỉ số truyền nên dùng cho các bộ truyền trong hệ thống
	1.6	Phân phối tỉ số truyền
	1.7	Tính toán công suất và momen trên các trục
	1.8	Bảng thông số hệ thống
2	Chọn	bộ truyền đai
	2.1	Chọn loại đai
	2.2	Tính đường kính bánh đai nhỏ
	2.3	Chọn hệ số trượt tương đối và tính đường kính bánh đai lớn
	2.4	Chọn khoảng cách trục a
	2.5	Tính toán vận tốc đai và số truyền đai
	2.6	Tính góc ôm đai bánh nhỏ
	2.7	Các hệ số sử dụng
	2.8	Lực trên dây đai
	2.9	Lực tác dụng lên trục
	2.10	Ứng suất lớn nhất trong dây đai
	2.11	Tuổi thọ dây đai
3	Tính	toán hộp giảm tốc bánh răng nghiêng 1 cấp
	3.1	Chọn vật liệu cho bánh dẫn và bánh bị dẫn
	3.2	Giới hạn mỏi tiếp xúc và giới hạn mỏi uốn
	3.3	Tính toán các hệ số tuổi thọ và hệ số an toàn
	3.4	Ứng suất cho phép
	3.5	Khoảng cách trục
	3.6	Môđun răng
	3.7	Số răng
	3.8	Các thông số hình học
	3.9	Kiểm nghiệm bánh răng theo độ bền tiếp xúc
	3.10	Kiểm nghiệm bánh răng theo độ bền uốn
4	Tính	bộ phận công tác
	4.1	Tính bước của trục vít tải
	4.2	Diện tích tiết diện ngang do vật liệu chiếm trong thành máy 14
	4.3	Vận tốc chuyển vật liệu dọc theo trục vít
	4.4	Xác định năng xuất máy

ĐỀ SỐ 4: THIẾT KẾ HỆ THỐNG TRUYỀN ĐỘNG MÁY ÉP BÙN PHƯƠNG ÁN 6

Hệ thống dẫn động gồm:

- 1: Động cơ điện
- 4: Nối trục đàn hồi
- 2: Bộ truyền đai thang
- 5: Thùng chứa liệu
- 3: Hộp giảm tốc bánh răng nghiêng 1 cấp
- 6: Trục vít xoắn ốc

Phương án	6
Lực vòng trên cánh vít F, (N)	2800
Vận tốc vòng cánh vít v, (m/s)	1,3
Dường kính cánh vít, D (mm)	225
Thời gian phục vụ L, (năm)	7
Số ca làm việc, (ca)	2
Thời gian làm việc mỗi ca, (giờ)	8
Số giờ làm việc mỗi năm, (giờ)	300

1 Chọn động cơ điện

1.1 Xác định công suất bộ phận công tác

$$P_{ct} = \frac{F.v}{1000} = \frac{2800 \cdot 1.4}{1000} = 3.92kW$$

1.2 Số vòng quay của bộ phận công tác

$$n_{ct} = \frac{60000.v}{\pi.D} = \frac{60000 \cdot 1.4}{\pi \cdot 225} = 118.84(v/ph)$$

- 1.3 Hiệu suất của các bộ truyền và các cặp ổ trong hệ thống dẫn động
 - Bộ truyền đai: $\eta_d = 0.96$
 - Bộ truyền bánh răng: $\eta_{br} = 0.98$
 - Nối trục: $\eta_{nt} = 0.99$
 - $\mathring{\mathcal{O}}$ lăn: $\eta_{ol}=0.995$

Hiệu suất hệ thống:

$$\eta_{ch} = \eta_d \eta_{br} \eta_{nt} (\eta_{ol})^3 = 0.96 \cdot 0.98 \cdot 0.99 \cdot 0.995 = 0.9175$$

1.4 Công suất động cơ cần thiết

$$P_{dc} = \frac{P_{ct}}{\eta_{ch}} = \frac{3.92}{0.9175} = 4.273kW$$

- 1.5 Dãy tỉ số truyền nên dùng cho các bộ truyền trong hệ thống
 - Bộ truyền đai thang: $u_d=2...3$
 - Bộ truyền bánh răng trụ răng nghiêng $u_{br}=3...5$

Như vậy số vòng quay của động cơ dao động trong khoảng từ 713 vòng/phút đến 2971 vòng/phút.

Chọn động cơ SGA132S có: $P_{dc} = 5.5kW$ và $n_{dc} = 1450vng/pht$.

Như vậy tỉ số truyền chung của hệ thống là:

$$u_{ch} = \frac{n_{dc}}{n_{ct}} = \frac{1450}{118.82} = 12.202$$

1.6 Phân phối tỉ số truyền

Tỷ số truyền của cả hệ được xác định theo công thức:

$$u_{ch} = u_d.u_{br}$$

Chọn tỉ số truyền của hộp giảm tốc:

$$u_{br} = 5$$

Như vậy:

$$u_d = \frac{u_{ch}}{u_{br}} = \frac{12.202}{5} = 2.44$$

1.7 Tính toán công suất và momen trên các trục

Tính toán công suất trên các trục

Công suất trên trục công tác

$$P_{ct} = \frac{F.v}{1000} = \frac{2800.1.4}{1000} = 3.92kW$$

Công suất trên trục II:

$$P_{II} = \frac{P_{ct}}{\eta_{ol}^2 \cdot \eta_{nt}} = \frac{3.92}{0.995^2 \cdot 0.99} = 4kW$$

Công suất trên trục I:

$$P_I = \frac{P_{II}}{\eta_{ol}.\eta_{br}} = \frac{4}{0.995 \cdot 0.98} = 4.102kW$$

Tính toán momen trên các trục

Momen trên trục công tác:

$$M_{lv} = 9.55 \cdot 10^6 \cdot \frac{P_{ct}}{n_{ct}} = 9.55 \cdot 10^6 \cdot \frac{3.92}{118.82} = 315053.5(N.mm)$$

Momen trên trục II:

$$M_{II} = 9.55 \cdot 10^6 \cdot \frac{P_{II}}{n_{II}} = 9.55 \cdot 10^6 \cdot \frac{4}{118.82} = 321442.24(N.mm)$$

Momen trên trục I:

$$M_I = 9.55 \cdot 10^6 \cdot \frac{P_I}{n_I} = 9.55 \cdot 10^6 \cdot \frac{4.102}{594.26} = 65914.97(N.mm)$$

Momen trên trục động cơ:

$$M_{dc} = 9.55 \cdot 10^6 \cdot \frac{P_{dc}}{n_{dc}} = 9.55 \cdot 10^6 \cdot \frac{4.275}{1450} = 28139.71(N.mm)$$

1.8 Bảng thông số hệ thống

Trục	Động cơ	I		II	Bộ phận công tác			
Thông số								
P, kW	4.275	4.10)2	4		3.92		
u	2.44		5			1		
n, rpm	1450	594.26		594.26		118.85		118.85
T, Nmm	28139.71	65914.47		321365.99		314978.76		

2 Chọn bộ truyền đai

2.1 Chon loai đai

Dựa vào công suất động cơ là $P_{dc}=4.275kW$ và số vòng quay $n_{dc}=1450$ vòng/phút \Rightarrow Chọn đai loại A

Ký hiệu đai	b_p	b_0	h	$y_0 \text{ (mm)}$	$A (mm^2)$	Chiều dài đai (m)	$d_{1min}(mm)$
В	11	13	8	2.8	81	$560 \div 4000$	90

2.2 Tính đường kính bánh đai nhỏ

Đường kính bánh đai nhỏ $d_1=1,2d_{min}$ với $d_{min}=90(mm)$. Vậy $d_1=90\cdot 1.2=108(mm)$. Chọn theo dãy giá trị tiêu chuẩn, ta chọn $d_1=112(mm)$. Vân tốc dài trên bánh đai nhỏ:

$$v_1 = \frac{\pi . d_1 . n_1}{60000} = \frac{\pi . 112.1450}{60000} = 8.503(m/s) < 25(m/s)$$

 \Rightarrow Thỏa điều kiện $< 25 \; (\mathrm{m/s})$

2.3 Chọn hệ số trượt tương đối và tính đường kính bánh đai lớn

Chọn hệ số trượt tương đối $\xi = 0.01$ Từ công thức tỉ số của bộ truyền đai:

$$u_d = \frac{d_2}{d_1(1-\xi)}$$

$$\Rightarrow d_2 = u_d.d_1(1-\xi) = 2.44 \cdot 112(1-0,01) = 270.55(mm)$$

Chọn theo dãy giá trị tiêu chuẩn, ta chọn $d_2 = 280(mm)$ Tính lại tỷ số truyền:

$$u_d = \frac{d_2}{d_1(1-\xi)} = \frac{280}{112 \cdot 0,99} = 2.52$$

Để sai số tỷ số truyền bằng 0, ta tính lại đường kính bánh đai nhỏ:

$$d_1 = \frac{d_2}{u_d \cdot (1 - \xi)} = \frac{280}{2.44 \cdot (1 - 0.01)} = 115.91(mm)$$

2.4 Chon khoảng cách truc a

Theo các thông số $u_d=2.44$ và $d_2=280mm \Rightarrow a=1, 2d_2=336(mm)$ Chiều dài đai:

$$L = 2a + \pi \frac{(d_1 + d_2)}{2} + \frac{(d_2 - d_1)^2}{4a} = 2.336 + \pi \frac{(115.91 + 280)}{2} + \frac{(280 - 115.91)^2}{4.336} = 1313.93(mm)$$

 \Rightarrow Chọn chiều dài đai L = 1400 mm theo dãy giá trị tiêu chuẩn. Tính lại khoảng cách trục:

$$k = L - \pi \frac{d_1 + d_2}{2} = 1400 - \pi \frac{115.91 + 280}{2} = 778.106(mm)$$

$$\Delta = \frac{d_2 - d_1}{2} = \frac{280 - 115.91}{2} = 82.045(mm)$$

$$a = \frac{k + \sqrt{k^2 - 8\Delta^2}}{4} = \frac{778.106 + \sqrt{778.106^2 - 8 \cdot 82.045^2}}{4} = 380.2(mm)$$

Kiểm tra a thỏa điều kiện nếu giá trị a vừa tính thỏa giá trị khoảng cách trục nhỏ nhất được xác định theo công thức :

$$2(d_1 + d_2) \ge a \ge 0, 7(d_1 + d_2)$$
$$2(115.91 + 280) \ge a \ge 0, 7(115.91 + 280)$$
$$791.82 \ge a \ge 277.173$$

 \Rightarrow a = 380.2 (mm) thỏa điều kiện.

2.5 Tính toán vận tốc đai và số truyền đai

Vận tốc dây đại:

$$v = \frac{\pi \cdot d_1 \cdot n_1}{60000} = \frac{\pi \cdot 115.91 \cdot 1450}{60000} = 8.8(m/s)$$

Số vòng chạy đai trong 1 giây:

$$i = \frac{v_1}{L} = \frac{8.8}{1400.10^{-3}} = 6.286s^{-1}$$

 \Rightarrow Thỏa điều kiện $i \leq [i] = 10 s^{-1}$

2.6 Tính góc ôm đai bánh nhỏ

$$\alpha_1 = 180 - 57 \frac{d_2 - d_1}{a} = 180 - 57 \frac{280 - 115.19}{380.2} = 155.29^{\circ}$$

2.7 Các hệ số sử dụng

Hệ số xét đến ảnh hưởng góc ôm đai:

$$C_{\alpha} = 1.24(1 - e^{\frac{-\alpha_1}{110}}) = 1.24(1 - e^{\frac{-155.29}{110}}) = 0.938$$

Hệ số xét đến ảnh hưởng vận tốc:

$$C_v = 1 - 0.05(0.01v^2 - 1) = 1 - 0.05(0.01.8.8^2 - 1) = 1.011$$

Hệ số xét đến ảnh hưởng tỷ số truyền u:

$$C_u = 1,14(v > 2.5m/s)$$

Hệ số xét đến ảnh hưởng của chiều dài đai L:

$$C_L = \sqrt[6]{\frac{L}{L_0}} = \sqrt[6]{\frac{1400}{1700}} = 0,968$$

Hệ số xét đến sự ảnh hưởng của sự phân bố không đều tải trọng giữa các dây đai:

Chọn sơ bộ $C_z = 0.95$

Hệ số xét đến ảnh hưởng của chế độ tải trọng:

Chọn sơ bộ $C_r = 0.9$

Chọn công suất có ích cho phép theo GOST 1284.3 - 96, ta có:

Dai loại A, $d_1 = 115.91mm$, $v_1 = 8.8m/s \Rightarrow \text{Chọn } [P_0] = 1,80$

Tính số dây đai theo công thức:

$$z \ge \frac{P_1}{[P_0].C_{\alpha}.C_u.C_L.C_z.C_r.C_v} = \frac{4.102}{1.8 \cdot 0.938 \cdot 1.14 \cdot 0.968 \cdot 0.95 \cdot 0.9 \cdot 1,011} = 2.55$$

 \Rightarrow Chọn z = 3 dây đai

Kiểm nghiệm lại C_z : vì z = 3 nên $C_z = 0.95$ như đã chọn sơ bộ.

2.8 Lực trên dây đai

Tổng lực căn đai ban đầu trên cả dây đai:

$$F_0 = z \cdot A \cdot [\sigma_0] = 3 \cdot 81 \cdot 1 = 243(N)$$

Trong đó: Đối với đai thang, $\sigma_0 \leq 1,5$ MPa nên ta chọn $\sigma_0 = 1$ MPa, z = 3, $A_0 = 81$ mm^2

Lực căng trên mỗi dây đai:

$$\frac{F_0}{z} = \frac{243}{3} = 81(N)$$

Tổng lực vòng có ích trên cả 3 đai:

$$F_t = \frac{1000P_1}{v_1} = \frac{1000 \cdot 4.102}{8.8} = 466.136(N)$$

Lực vòng có ích trên mỗi dây đai:

$$\frac{F_t}{z} = \frac{466.136}{3} = 155.379(N)$$

2.9 Lực tác dụng lên trục

$$F_r \approx 2F_0 \sin(\frac{\alpha_1}{2}) = 2 \cdot 243 \sin(\frac{155.29}{2}) = 474.744(N)$$

2.10 Úng suất lớn nhất trong dây đai

$$\sigma_{max} = \sigma_1 + \sigma_v + \sigma_{F1} = \sigma_0 + 0, 5\sigma_t + \sigma_v + \sigma_{F1}$$

$$= \frac{F_0}{A} + 0.5 \cdot \frac{F_t}{A} + \rho \cdot v^2 \cdot 10^{-6} + E \cdot \frac{2 \cdot y_0}{d_1}$$

$$= \frac{243}{3 \cdot 81} + 0.5 \cdot \frac{466.136}{3 \cdot 81} + 1000 \cdot 8.8^2 \cdot 10^{-6} + 60 \cdot \frac{2 \cdot 2.8}{115.19} = 4.88(MPa)$$

2.11 Tuổi thọ dây đai

$$L_h = \frac{\left(\frac{\sigma_r}{\sigma_{max}}\right)^m \cdot 10^7}{2 \cdot 3600 \cdot i} = \frac{\left(\frac{9}{6.9}\right)^8 \cdot 10^7}{2 \cdot 3600 \cdot 6.286} = 29571.59(h)$$

Trong đó:

 $\sigma_r = 9 \text{ (MPa)}$ - giới hạn mỏi của đai thang.

m = 8 - chỉ số mũ của đường cong mỏi đối với đai thang

i = 6.286 (s^{-1}) - số vòng chạy của đai trong một giây

3 Tính toán hộp giảm tốc bánh răng nghiêng 1 cấp

3.1 Chọn vật liệu cho bánh dẫn và bánh bị dẫn

Dựa vào bảng 6.1 [1], chọn vật liệu chế tạo cặp bánh răng là thép C45 tôi cải thiện với độ cứng bề mặt là $HB_1=260$ cho bánh dẫn và $HB_2=240$ cho bánh bị dẫn.

3.2 Giới hạn mỏi tiếp xúc và giới hạn mỏi uốn

$$\sigma_{OH_{lim}} = 2HB + 70$$

$$\Rightarrow \sigma_{OH_{lim1}} = 2.260 + 70 = 590MPa$$

$$\Rightarrow \sigma_{OH_{lim2}} = 2.240 + 70 = 550MPa$$

$$\sigma_{OF_{lim}} = 1.8HB$$

$$\Rightarrow \sigma_{OF_{lim1}} = 1.8.260 = 468MPa$$

$$\Rightarrow \sigma_{OF_{lim2}} = 1.8.240 = 432MPa$$

3.3 Tính toán các hệ số tuổi thọ và hệ số an toàn

Số chu kỳ thay đổi ứng suất tiếp xúc cơ sở

$$N_{HO_1}=30.HB_1^{2,4}=30.260^{2,4}=1,875.10^7~{
m chu}$$
 kỳ
$$N_{HO_2}=30.HB_2^{2,4}=30.240^{2,4}=1,547.10^7~{
m chu}$$
 kỳ

Số chu kỳ thay đổi ứng suất uốn cơ sở

$$N_{FO_1} = N_{FO_2} = 4 \cdot 10^6$$

Số chu kỳ thay đổi ứng suất tương đương

Do bộ truyền chịu tải trọng tĩnh nên:

$$N_{FE_1} = N_{HE_1} = 60 \cdot c \cdot n_1 \cdot L_h = 1198.03 \cdot 10^6$$

$$N_{FE_2} = N_{HE_2} = 60 \cdot c \cdot n_2 \cdot L_h = 2396.06 \cdot 10^6$$

Do $N_{HE_1} > N_{HO_1}, N_{HE_2} > N_{HO_2},$ ta có thể xem như $K_{HL} = 1$

Tương tự ta có $K_{FL} = 1$

Do bộ truyền quay 1 chiều nên $K_{FC}=1$

Với độ cứng bề mặt của vật liệu làm bánh răng, từ bảng 6.2 [1], chọn $s_F = 1.75, s_H = 1.1$

3.4 Úng suất cho phép

Ứng suất tiếp xúc cho phép của bánh dẫn và bánh bị dẫn

$$[\sigma_{H_1}] = \frac{K_{HL_1}\sigma_{OH_{lim1}}}{s_H} = 536.36MPa$$

 $[\sigma_{H_2}] = \frac{K_{HL_2}\sigma_{OH_{lim2}}}{s_H} = 500MPa$

Ứng suất uốn cho phép của bánh dẫn và bánh bị dẫn

$$[\sigma_{F_1}] = \frac{K_{FL_1}\sigma_{OF_{lim_1}}K_{FC}}{s_F} = 267.43MPa$$
$$[\sigma_{F_2}] = \frac{K_{FL_2}\sigma_{OF_{lim_2}}K_{FC}}{s_F} = 246.86MPa$$

Như vậy, ứng suất tiếp xúc cho phép của cả bộ truyền là:

$$[\sigma_H] = \frac{[\sigma_{H_1}] + [\sigma_{H_2}]}{2} = 518.18MPa$$

Ứng suất tiếp xúc cho phép khi quá tải:

$$[\sigma_H]_{max} = 2.8 \cdot \sigma_{ch} = 2.8 \cdot 650 = 1820 MPa$$

Ứng suất uốn cho phép khi quá tải:

$$[\sigma_F]_{max} = 0.8 \cdot \sigma_{ch} = 0.8 \cdot 650 = 520 MPa$$

3.5 Khoảng cách trục

Do bánh răng nằm đối xứng các ổ trục nên $\Psi_{ba} = 0.3 \div 0.5$, chọn $\Psi_{ba} = 0.4$ Khi đó $\Psi_{bd} = 0.53\Psi_{ba}(u+1) = 1.272$ Từ đó tra theo bảng 6.7 [?] ta chọn: $K_{HB} = 1.06$, $K_{FB} = 1.14$ Khoảng cách trục sơ bộ:

$$a_w = 43 \cdot (u+1) \cdot \sqrt{\frac{T_1 \cdot K_{H\beta}}{\Psi_{ba} \cdot [\sigma_H]^2 \cdot u}} = 130.73(mm)$$

Theo tiêu chuẩn ta chọn $a_w = 160mm$

3.6 Môđun răng

$$m_n = (0.01 \div 0.02) \cdot a_w = 1.6 \div 3.2$$

Theo tiêu chuẩn ta chọn $m_n = 3$

3.7 Số răng

Từ điều kiện $20^{\circ} \leq \beta \leq 8^{\circ}$

$$\Leftrightarrow \frac{2 \cdot a_w \cdot \cos 8^{\circ}}{m_n \cdot (u+1)} \le z_1 \le \frac{2 \cdot a_w \cdot \cos 20^{\circ}}{m_n \cdot (u+1)}$$

$$\Leftrightarrow \frac{2 \cdot 160 \cdot \cos 8^{\circ}}{3 \cdot (5+1)} \le z_1 \le \frac{2 \cdot 160 \cdot \cos 20^{\circ}}{3 \cdot (5+1)}$$

$$\Leftrightarrow 16.7 \le z_1 \le 17.6$$

$$\Rightarrow \text{Chon } z_1 = 17 \Rightarrow z_2 = u \cdot z_1 = 5.17 = 85$$

$$\Rightarrow \text{Chon } z_2 = 85$$

Góc nghiêng răng:

$$\beta = \arccos\left(\frac{m_n \cdot (z_1 + z_2)}{2 \cdot a_w}\right) = \arccos\left(\frac{3 \cdot (17 + 85)}{2 \cdot 160}\right) = 17.01^{\circ}$$

3.8 Các thông số hình học

Đường kính lăn của bánh dẫn:

$$d_{w1} = \frac{2a_w}{m_n + 1} = \frac{2 \cdot 160}{5 + 1} = 53.33mm$$

Chiều rộng vành răng:

$$b_w = \Psi_{ba} \cdot a_w = 0.4 \cdot 160 = 64mm$$

Tính lại khoảng cách trục:

$$a_w = \frac{m_n \cdot (z_1 + z_2)}{2 \cdot \cos \beta} = \frac{3 \cdot (17 + 85)}{2 \cdot \cos 17.01^{\circ}} = 160(mm)$$

 \Rightarrow Không cần dịch chỉnh răng, nên $d_{w1}=d_{w2}=d_2$

3.9 Kiểm nghiệm bánh răng theo độ bền tiếp xúc

Xác định các hệ số tải trọng

Vận tốc vòng của bánh dẫn:

$$v = \frac{\pi \cdot d_1 \cdot n_1}{60000} = \frac{\pi \cdot 53.33 \cdot 594.26}{60000} = 1.66(m/s)$$

Theo bảng 6.13 [?], ta chọn cặp chính xác bậc 6, như vậy hệ số sai lệch bước răng $g_0 = 38$ Theo bảng 6.15 [?], ta có $\delta_H = 0.002$, $\delta_F = 0.006$

Theo bảng 6.14 [?] ta có hệ số phân bố không đều tải trọng giữa các đôi răng:

$$K_{H\alpha} = 1.04, \quad K_{F\alpha} = 1.13$$

Vận tốc:

$$v_H = \delta_H \cdot g_0 \cdot v \sqrt{\frac{a_w}{u_{br}}} = 7.135(m/s)$$

Với:

Hệ số tải trọng động trong vùng ăn khớp:

$$K_{Hv} = 1 + \frac{v_H \cdot b_w \cdot d_{w1}}{2T_1 \cdot K_{H\beta} \cdot K_{H\alpha}} = 1.181$$

Như vậy hệ số tải trọng động tiếp xúc K_H :

$$K_H = K_{H\alpha} \cdot K_{H\beta} \cdot K_{H\nu} = 1.302$$

Xác định các hệ số xét đến hình dạng, vật liệu và trùng khớp

• $Z_M = 274 \text{ tra từ bảng } 6.5 \text{ [?]}$

•
$$Z_H = \sqrt{\frac{2\cos\beta_b}{\sin(2\cdot\alpha_{tw})}} = \sqrt{\frac{2\cdot\cos15.96}{\sin(2\cdot20.84)}} = 1.7$$

•
$$\alpha_{tw} = \arctan\left(\frac{tan\alpha_{nw}}{cos_{\beta}}\right) = \arctan\left(\frac{tan20}{cos_{1}7.01}\right) = 20.84^{\circ}$$

• $\beta_b = arctan(cos\alpha_t \cdot tan\beta) = 15.96^{\circ}$

•
$$Z_{\epsilon} = \sqrt{\frac{1}{\epsilon_{\alpha}}} = \frac{1}{1.581} = 0.795$$

•
$$\epsilon_{\alpha} = [1.88 - 3.2 \cdot (\frac{1}{z_1} + \frac{1}{z_2})].cos\beta = [1.88 - 3.2 \cdot (\frac{1}{17} + \frac{1}{85})] \cdot cos17.01 =$$

3.10 Kiểm nghiệm bánh răng theo độ bền uốn

Hệ số tải trọng động trong vùng ăn khớp

$$K_{Fv} = 1 + \frac{v_P \cdot b_w \cdot d_{w1}}{2 \cdot T_1 \cdot K_{FB} \cdot K_{Fa}} = 1.54$$

Trong đó:

$$v_P = \delta_F \cdot g_0 \cdot \sqrt{\frac{v_{br}}{u}} = 21.4(m/s)$$

Hệ số tải trọng uốn:

$$K_F = K_{Fa} \cdot K_{FB} \cdot K_{Fv} = 1.986$$

Hệ số trùng khớp răng

$$Y_{\epsilon} = \frac{1}{\epsilon_{\alpha}} = 0.632$$

Hệ số kể đến độ nghiêng răng

$$Y_{\beta} = 1 - \frac{\beta}{140} = 0.878$$

Hệ số số răng Y_{F1}, Y_{F2} tra theo số răng tương đương $z_{v1} = \frac{z_1}{\cos^3 \beta}$ từ bảng 6.18 [?]:

$$Y_{F1} = 4.08, \quad Y_{F2} = 3.6$$

Tính toán ứng suất uốn

Như vậy ứng suất uốn của bánh dẫn và bánh bị dẫn:

$$\sigma_{F1} = \frac{2T_1 K_F Y_{\epsilon} Y_{\beta} Y_{F1}}{b_w d_{w1} m_n} = 53.75 MPa < [\sigma_{F1}]$$

$$\sigma_{F2} = \frac{\sigma_{F1} Y_{F2}}{Y_{F1}} = 60.91 MPa < [\sigma_{F2}]$$

Vậy thông số hình học của bộ truyền thỏa điều kiện bền uốn.

4 Tính bộ phận công tác

4.1 Tính bước của trục vít tải

- Ta chọn vật liệu là Inox 304 vì nó có độ bền cao, khả năng chống ăn mòn tốt phù hợp với môi trường làm việc của máy ép bùn.
- Ta sử dụng vít tải quay chậm để vận chuyển vật liệu theo phương nằm ngang.
- Khi trực vít quay thì vật liệu được nâng lên và cả khối vật liệu bị nghiêng đi một góc φ như hình dưới, tại đó trọng lượng của vật liệu sẽ cân bằng với lực ma sát của vật liệu với thành máy.

• Bước của trục vít (hay khoảng cách giữa các cánh vít) đối với vật liệu dạng bột hoặc hạt nhỏ được xác định là:

$$S = (0.7 \div 1)D = 0.8 \cdot 225 = 180(mm)$$

4.2 Diện tích tiết diện ngang do vật liệu chiếm trong thành máy

$$F = \frac{\pi \cdot D^2}{4} \mu \cdot K = \frac{\pi \cdot 0.225^2}{4} \cdot 0.35 \cdot 1 = 0.0139(m^2)$$

Trong đó:

- \bullet D = 225 mm, là đường kính của vít tải
- μ là hệ số chứa vật liệu trong thành máy. Với vật liệu dạng bột ta chọn $\mu = 0.35$
- K là hệ số chỉ sự giảm tiết diện do góc nghiêng đặt vít tải. Với góc nghiêng bằng 0° ta chọn K=1

4.3 Vận tốc chuyển vật liệu dọc theo trục vít

$$v = \frac{S \cdot n_{ct}}{60} = \frac{0.18 \cdot 118.85}{60} = 0.356(m/s)$$

Trong đó:

- $\bullet \ S=180mm$: bước của vít tải
- $n_{ct} = 118.85$ vòng/phút: số vòng quay của trực vít tải

4.4 Xác định năng xuất máy

$$Q = 3600F \cdot v \cdot \rho = 3600 \cdot 0.0139 \cdot 0.356 \cdot 1000 = 17814.24(kg/h)$$

Trong đó:

- $\bullet~F=13916.27mm^2:$ diện tích ngang do vật liệu chiếm trong thành máy
- $\bullet \ v = 0.356 \ \mathrm{m/s}$: vận tốc chuyển vật liệu dọc theo trục vít
- $\rho = 1000 \text{ kg/m}^3$: khối lượng riêng của bùn