

Name: Ashok Kumar Reddy K

Batch: 2

ID: cometfwc016

Date: 27th March 2025

GATE Question Paper 2010, IN Question Number 42

Question 42 Analysis

Question:

The logic gate circuit shown in the figure realizes the function

(A) XOR (B) XNOR (C) Half adder (D) Full adder

Step-by-step Analysis of the Circuit

Let the inputs be:

• X and Y (two binary inputs)

Now examine the circuit:

- 1. **Top-left gate (AND):** Input: X, Y Output = $X \cdot Y$
- 2. Bottom-left gate (NOR): Input: X, YOutput = $\overline{X + Y}$
- 3. Middle gate (NAND): Input: X, Y Output = $\overline{X \cdot Y}$
- 4. Final gate (OR): Input: outputs from NOR and NAND gates Output = $\overline{X+Y} + \overline{X\cdot Y}$

Truth Table

X	Y	$\overline{X+Y}$	$\overline{X \cdot Y}$	$Z = \overline{X + Y} + \overline{X \cdot Y}$
0	0	1	1	1
0	1	0	1	1
1	0	0	1	1
1	1	0	0	0

This is the truth table for XOR.

Final Answer

(A) XOR

Brief Discussion

The circuit implements:

$$Z = \overline{X + Y} + \overline{X \cdot Y}$$

This matches the behavior of the XOR gate, which outputs 1 only when exactly one of the inputs is 1. Therefore, the circuit realizes the XOR logic function.