Overlap matrix

1. Let $\{x_i\}$ (i = 1,...N) be a set of vectors belonging to any vector space of any dimension with scalar product (\cdot,\cdot) . We can construct a matrix S (referred to as overlap matrix) with the following matrix elements:

$$S_{ij} = (\mathbf{x}_i, \mathbf{x}_j)$$

2. From the properties of the scalar product it follows that the overlap matrix is *Hermitian*:

$$S_{ii} = (\mathbf{x}_i, \mathbf{x}_i) = \overline{(\mathbf{x}_i, \mathbf{x}_i)} = \overline{S_{ii}} \implies \mathbf{S} = \mathbf{S}^{\dagger}$$

- **3.** The overlap matrix is *non-singular* if and only if the vector set $\{\mathbf{x}_i\}$ is linearly independent. The proof should be done in two parts:
 - (a) Let us prove that if $\{x_i\}$ is linearly dependent, the matrix S is singular.

The linear dependence means that there exists a set of coefficients $\alpha_1, \alpha_2, \dots \alpha_N$ such that at least one of them is not zero and:

$$\sum_{i=1}^{N} \alpha_i \mathbf{x}_i = \mathbf{0}$$

Multiplying (in the sense of scalar product) by \mathbf{x}_k we obtain:

$$\sum_{i=1}^{N} \alpha_i(\mathbf{x}_k, \mathbf{x}_i) = \mathbf{0} \Rightarrow \sum_{i=1}^{N} S_{ki} \alpha_i = \mathbf{0}$$

Since this is true for any k, this means (in matrix-vector notations) that $\mathbf{S}\alpha = \mathbf{0}$. This, there exists a non-zero vector α that is turned by matrix S to zero. Thus, S is singular by definition.

(b) Now we prove that if S is singular, then $\{x_i\}$ is linearly dependent. This is done essentially by inverting the previous proof. Since S is singular, there exists a non-zero vector α that is turned by matrix S to zero: $S\alpha = 0$. Thus,

$$\sum_{i=1}^{N} S_{ki} \alpha_i = \mathbf{0} \Rightarrow \sum_{i=1}^{N} (\mathbf{x}_k, \mathbf{x}_i) \alpha_i = \mathbf{0} \Rightarrow \sum_{i=1}^{N} \alpha_i (\mathbf{x}_k, \mathbf{x}_i) = 0 \Rightarrow (\mathbf{x}_k, \sum_{i=1}^{N} \alpha_i \mathbf{x}_i) = 0 \text{ This is true for }$$

any k. Multiplying the latter expression by α_k and summing over all k, we obtain:

$$\sum_{k=1}^{N} \alpha_k(\mathbf{x}_k, \sum_{i=1}^{N} \alpha_i \mathbf{x}_i) = \sum_{k=1}^{N} (\alpha_k \mathbf{x}_k, \sum_{i=1}^{N} \alpha_i \mathbf{x}_i) = (\sum_{k=1}^{N} \alpha_k \mathbf{x}_k, \sum_{i=1}^{N} \alpha_i \mathbf{x}_i) = 0$$

Note that the latter expression is a scalar square:
$$(\sum_{k} \alpha_{k} \mathbf{x}_{k}, \sum_{i} \alpha_{i} \mathbf{x}_{i}) = (\sum_{i} \alpha_{i} \mathbf{x}_{i}, \sum_{i} \alpha_{i} \mathbf{x}_{i}) = (\mathbf{v}, \mathbf{v})$$

where the vector $\mathbf{v} = \sum_{i} \alpha_{i} \mathbf{x}_{i}$. Since $(\mathbf{v}, \mathbf{v}) = 0$ if and only if $\mathbf{v} = 0$, it follows that

 $\sum_{i} \alpha_{i} \mathbf{x}_{i} = \mathbf{0}$. Since not all α_{i} 's are zeros, this means that $\{\mathbf{x}_{i}\}$ is a linearly dependent set. **QED**

4. If the vector set $\{\mathbf{x}_i\}$ is linearly independent, the overlap matrix **S** is positive definite. We will essentially prove that the corresponding quadratic form (Sy,y) is positive definite, i.e., that it is positive for any non-zero vector y: $\forall y \neq 0 \ (Sy, y) > 0$:

$$(\mathbf{S}\mathbf{y},\mathbf{y}) = \sum_{i} \sum_{j} S_{ij} \overline{y_i} y_j = \sum_{i} \sum_{j} (\mathbf{x}_i, \mathbf{x}_j) \overline{y_i} y_j = \sum_{i} \sum_{j} (\overline{y_i} \mathbf{x}_i, \overline{y_j} \mathbf{x}_j)$$
$$= (\sum_{i} \overline{y_i} \mathbf{x}_i, \sum_{j} \overline{y_j} \mathbf{x}_j)$$

The latter expression is a scalar square which is can be only *positive* or *zero*. If it is positive \Rightarrow **QED**. If it is zero, it means that $\sum_{i} \overline{y_i} \mathbf{x}_i = 0$. Since $\mathbf{y} \neq 0$, it follows that $\{\mathbf{x}_i\}$ is linearly dependent, which is not true. Thus, the only possibility for a linearly independent set $\{\mathbf{x}_i\}$ is that $(\mathbf{S}\mathbf{y},\mathbf{y}) > 0$ for any non-zero vector \mathbf{y} . Thus, \mathbf{S} is positive definite and all its eigenvalues will be positive (note that they are all real due to hermiticity of \mathbf{S}). **QED**

5. If we drop the linear independence condition from the previous statement, we will see that $\forall \mathbf{y} \ (\mathbf{S}\mathbf{y}, \mathbf{y}) \ge 0$. Thus, in this case **S** is *positive-semidefinite* (sometimes called *nonnegative-definite*). In terms of the eigenvalues, it means that all the eigenvalues are non-negative (positive or zero). The proof is essentially given in the previous section.