Internship Program Report

By

MANNE SAI LAKSHMAN-18481A0261

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	
4 th May2021: Engineering documentation for EPC projects	
5 th May2021: Engineering documentation for commands and formulae	
7 th May2021: Engineering documentation for Electrical system design	
10 th May2021: Engineering documentation for Typical diagrams	
11 th May 2021: Classification of Transformers and Generators	
12 th May2021: Classification of Switchgare construction and powerfactor improvement10	
17 th May2021: Detailing about UPS system and Busducts	
18 th May2021: Detailing about Motor Starters and Sizing of motors12	
19 th May2021: Discribing about Earthing system and Lighting Protection	
20 th May2021: Lighting or illumination systems and calculations	
21 th May2021: Lighting or illumination systems using DIALUX software15	
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	
28 th May2021: Load calculations and Transformersizing calculations18	
29th May2021: DG set calculations	
2nd june 2021: Caluculations of Earthing and Lighting protection20	
5 th june 2021: Cable sizing and cable tray sizing calculations	
Conclusion2	2
- 11 1	_

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
Engineering		Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info exchange
		Deliverables types	Different types of deliverables

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

A AUTOCAD BASIC KEYS							
STAND	ARD	DRA	W	MOL	IFY	FORM	AT
NEW	Ctrl+N	LINE	l	ERASE	E	PROPERTIES	MO
OPEN	Ctrl+0	RAY	RAY	COPY	CO	SELECT COLOR	COL
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN. STYLE	D
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX		
		POINT	PO	BRAKE	BR		
		HATCH	Н	CHAMFER	CHA		
		GRADIENT	GD	FILLET	F		
		REGION	REG	EXPLODE	Х		
		BOUNDARY	ВО				
		DONUT	DO				

	EX	TRA		DRAFTING		PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctri+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	A	OBJECT SNAP	OB	OTRACK	F11	A0=841*1189
PAN	P	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz

1C. DETAILED ENGINEERING

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May 2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

Roll.No:18481A0261

$11^{th}\,May 2021: Classification of \,Transformers \,and \,Generators$

ſ	6	Classification of		
		Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

$12^{\text{th}}\,May 2021$: Classification of Switchgare construction and power factor improvement

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May 2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May 2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May 2021: Discribing about Earthing system and Lighting Protection.

system and Lighting Protection.

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

Roll.No:18481A0261

20th May 2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May 2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX	Lighting or illumination systems	Operation software	of	dialux
	software				

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May 2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types	of	cabling
	Claculations		materials		

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May 2021: Cabling calculations and Cable gland selection.

14	Cabling claculations and cable gland selection	Cabling calculations	Cable gland selection
----	---	----------------------	-----------------------

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		ead Bedding Cable Armour Range		r Range	Across Flats "D"	Across Corners "D"	Protrusion	
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	8.0	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.5	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8
758	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	0.08	90.4	3.15	4.0	114.3	125.7	66.6

28 th May 2021: Load calculations and Transformer sizing calculations

15	Load calc	culations		
	and	TR	Load calculations	TR calculations
	calculation	ons		

Topic details:

List of electrical load calculations.

Assignment - 1
ELECTRICAL LOAD CALCULATIONS LV MCC

il. io.	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Efficiency at Load Factor [C]	Power Factor at Load Factor [C]	KW = [A] / [D] Continuous		Consumed Load KVAR = KW x tar Intermittent Stand-by		ctan φ	Remar	
			A			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kvar	kW	kVAR	
	PU2315						33.15	37.00	0.90		0.78							
	PU2315 PU 2314-A	Silica filter feed pump				-	33.15 9.63	37.00 11.00	0.90	0.91	0.78	36.43 11.3						
	PU 2314-A	Absorbesnt/Neutral oil pump (W)					9.63 8.29	9.20	0.88	0.85	0.73	11.3	10.6			9.8	9.1	
	PU2305	Absorbesnt/Neutral oil pump (S) Feed Pump (Seperator)					33.48	37.00	0.90	0.85	0.78	36.8	29.5			9.0	9.1	
	MX2305	MIXER (W)				-	33.46	37.00	0.90	0.91	0.78	37.1	29.7					
	MX 2308	MIXER (W)					33.74		0.91	0.91	0.78		29.7			37.1	29.7	
	BW2313	Blower					14.49		0.97	0.91	0.78	17.0	16.0			37.1	29.7	
	Rotary valve	TK 23138 (I)				-	1.41	15.00	0.94	0.85	0.73	17.0	10.0	1.7	1.6			
	SC2314	Screw conveyor (I)					3.25		0.94	0.85	0.73			3.82				
	AG 2324A	Citric acid tan agitator (W)					2.44	3.70	0.88	0.85	0.73	2.87	2.65		3.56			
	AG 2324B	Citric acid tank agitator (S)					2.44		0.81	0.85	0.73	2.07	2.01			2.9	2.7	
	AG 2305	Citric oil rection vessol agitator			**********		8.89	9.20	0.81	0.85	0.73	10.46	9.79			2.9	6.7	*******
	AG 2309	Lye oil reaction vessel agitator					3.23	3.70	0.97	0.85	0.73	3.80	3.56					
	AG 2310	Lye of reaction vessel agitator Lye of reaction vessel agitator					3.23	3.70	0.87	0.85	0.73	3.80	3.56					
	AG 2314	Soap Adsorbant Tank Agitator					5.65	7.50	0.87	0.85		6.65						
_																		
	Maximum of norn (Est. x%E + y%F	mal running plant load : 167.9 kW		142.4	kVAR		sqrt	(kW° +kVAR°) =	220.2	kVA	TOTAL	166.25	140.87	7 5.48	5,13	49.70	41.56	
	Peak Load : (Est. x%E + y%F	172.9 kW		146.6	kVAR		sqrt	(kW ^p +kVAR ^p) =	226.6	kVA	kVA	217.9	ı	7.5	1	64.79		
	Assumptions 1) Load factor, Ef	ficiency and Power factor. Load Rating (kW) <== 20		iency 85		Power fact	tor											
		≥ 20 - <= 45	0			0.78												
		>45 - < 150	0			0.82												
		>= 150		94		0.91												
	2) Coincidence fa	actors x= 1.0, y= 0.3, and z=0.1 considered for contnious, inte	mittent and standby lo	ad.														

T/F calculation:

Roll.No:18481A0261

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections

	Assignment - 3		
	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.74	Avg
	Efficiency	0.87	Avg
	Total operating load on DG set in kVA at 0.74 power factor	272.0	
	Largest motor to start in the sequence - load in KW	37	кw
	Running kVA of last motor (CosØ= 0.91)	57	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter
	Starting KVA of the largest motor	345	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	215	KVA
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	215	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	559	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' =(Xd"+Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd" x (1-Transient Voltage (Transient	285	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	559	KVA
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)	100 /0	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K)	373	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	215	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	285	KVA
	Overload capacity P3	373	KVA
	Considering the last value amongst P1, P2 and P3	373	KVA
	Hence, Existing Generator 373 KVA is adequate to cater the loads as per re-scheduled loads		
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

${\bf 2nd\ june 2021: Caluculations\ of\ Earthing\ and\ Lighting\ protection.}$

17	Calculation of		
	Earthing and	Earthing calculations	Lighting protection
	Lighting	_	calculation
	protection		
	calculations		

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculation

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and cable tray sizing calculations	Cable sizing calculations	Cable tray calculation
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

																	skonment - 6																
																- 5	Cable Skring																_
S.NO.	Equipment	Description	Load KW	Ration	Volt	age No.	Load	Motor	Load P.F.	SIN O	Motor P.	Staring	Type	No. of Runs	No. of Cores	Saze (mm2)	Rating	Derating	Derating	Derating	Derating	Overall Decation	Derated	Length	Cable Resistance	Cable Reactance	Voltage	Voltage	Voltage	Voltage	Cable	Cable	casn
1	PU2315	Silica litter feed pump	33.15	37.0	00 41	5 3	57.6	345.90	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.892	107.6	95	0.9300	0.0816	7.52	1,81	44.67	10.76	OK	22	20
2	PU 2314-A	Absorbesnt/Neutral oil pump (W)	9.63	11.0	00 41	5 3	16.7	100,48	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	95	3,9400	0.0902	8.83	2.13	52.86	12,74	OK	18	20s
	PU 2314-B	Absorbesnt/Neutral oil pump (S)	8.29	9.2	20 41		14,4	86.50	0.8	0.6	8.0	0.5	2	1	4.0	6	51	0.98	0.9	113	1	0.892	45.0	60	3.9400	0.0902	4,90	1.16	28,74	6.93	OK	18	20s
4	PU2305	Feed Pump (Seperator)	33.48	37.0	00 41	5 3	58.2	349,34	0.8	0.6	8.0	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	6.80	1,64	40.36	9.73	OK	22	20s
5	MX2305	MIXER (W)	33.74	37.0	00 41	5 3	58.7	3 52.05	0.8	0.6	8.0	0.5	2	1	4.0	16	85	0.98	0.9	110	1	0.882	75.0	75	1,4700	0.0815	9.34	2,25	55.64	13.41	OK	21	20s
6	MX 2308	MIXER (S)	33.74	37.0	00 41	5 3	58.7	3 52.05	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	8.46	2.04	50.25	12,11	OK	22	20s
7	BW2313	Blower	14,49	15.0	00 41	5 3	25.2	151.19	0.8	0.6	0.8	0.5	2	- 1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	100	2.3400	0.0852	8,39	2.02	50.14	12.08	OK	18	20s
8	Rotary valve	TK 23138 (6)	1,41	1.5	50 41	5 3	2.5	1471	8.0	0.6	0.8	0.5	2	1	4.0	1,5	22	0.98	0.9	1	1	0.882	19,4	100	15,5000	0.1080	5,29	1,28	31.74	7.65	OK	15	20s
9	9C2314	Screw conveyor (f)	3,25	3.7	41	5 3	5.7	33,91	8.0	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	75	15,5000	0.1080	9.15	2.21	54,86	13.22	OK	15	20
10	AG 2324A	Ottic acid tan agliator (W)	2,44	3.0	00 41	5 3	4.2	25.46	8.0	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.892	19.4	110	15.5000	0.1080	10.08	2,43	60.41	14.56	OK	15	20s
11	AG 2324B	Citric acid tank agliator (S)	2,44	3.0	00 41	5 3	4.2	25.46	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	75	15.5000	0.1080	6.87	1.66	41.19	9.92	OK	15	20
	AG 2305	Offic oil rection vessal agitator	8,89	9.2	80 41	5 3	15.5	92.76	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	9.01	2.17	53.93	13.00	OK	18	20
13	AG 2309	Lye oil reaction vessel agitator	3.23	3.7	41	5 3	5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	11	1	0.882	19.4	85	15.5000	0.1080	10.31	2.48	61.79	14,89	OK	15	32
14	AG 2310	Lye oil reaction vessel agitator	3.23	3.7	41	5 3	5.6	33,70	0.8	0.6	8.0	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9,4800	0.1007	7.07	1.70	42.34	10.20	OK	16	20s
15	AG 2314	Soap Adsorbant Tank Agitator	5.65	7.5	50 41	5 3	9.8	58.95	8.0	0.6	8.0	0.5	2	- 1	4.0	2.5	28	0.98	0.9	-1	-1	0.882	24.7	65	9.4800	0.1007	8,46	2.04	50.67	12.21	OK	16	20s
			-		+	-	-	+	_	-	-	+	_	-	_	_	-	_		_	_	_	-	_			-	-	-	_		\rightarrow	-
-	_			-	+	_	-	+	-	-	_	-	-	-	_	_	_	_	_	_	_	_	-	_	_	_	_	-	-	-		-	-
_					_	_	_	_		_	_	_				_	1					_	_	_		_	_	-			_	$\overline{}$	

1881:

Orall density factor is 11 a 12 x 13 x 16.

Children factor for sensition in all ground temperature

Children factor for each of large

Children factor for density of large

Children factor for sensition in all ground temperature

Children factor for sensition in the manifestation of the soal

Children factor for sensition in the manifestation of the soal

Children factor for sensition in the manifestation of the soal

Children factor for sensition in the manifestation of the soal

TYPE 1:20 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor, IEEE treadment, Amounted, Port Coder streams

TYPE 2:00 Conductor,

			Cable T	ray Sizing				
ABLES								
	LT-4		TO	L	T-5			
Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
PU2315	2	25	1	22	22	1.4	1.4	
PU 2314-A	2	6	1	18	18	0.7	0.7	
PU 2314 -B	2	6	1	18	18	0.7	0.7	
PU2305	2	25	1	22	22	1.4	1.4	
MX2305	2	16	1	21	21	1	1	
MX 2308	2	25	1	22	22	1.4	1.4	
BW2313	2	10	- 1	18	18	0.9	0.9	
Rotary valve	2	1.5	1	15	15	0.4	0.4	
SC2314	2	1.5	1	15	15	0.4	0.4	
AG 2324A	2	1.5	1	15	15	0.4	0.4	
AG 2324B	2	1.5	1	15	15	0.4	0.4	
AG 2305	2	6	1	18	18	0.7	0.7	
AG 2309	2	1.5	1	15	15	0.4	0.4	
AG 2310	2	2.5	1	16	16	0.5	0.5	
AG 2314	2	2.5	1	16	16	0.5	0.5	
Total			15		266	11.2	11.2	
num Cable Diameter: der Spare Capacity of Cable Tray: cee between each Cable: lated Width of Cable Tray: lated Area of Cable Tray: Layer of Cables in Cable Tray: ded No of Cable Tray: ded No of Cable Tray: ded No of Cable Tray:	30% 0 346 7608 1 1 600	mm mm Sq.mm Nos. mm		Selected Cable Tra Selected Cable Tra Selectrd Cable Tra Selected Cable Tra Required Cable Tra Required Nos of Ca Required Cable Tra	ay Depth: ny Weight: ny Size: ny Size: nble Tray: ny Weight:	0.K 0.K 0.K 0.K 600 x 100 1 90.00 Ladder	Including Spare Capacity Including Spare Capacity mm No Kg/Meter/Tray	
	PU2315 PU 2314-A PU 2314-B PU2305 MX2305 MX2305 MX 2308 BW2313 Rotary valve SC2314 AG 2324A AG 2324A AG 2324B AG 2305 AG 2310 AG 2310 AG 2314 Total ulation num Cable Diameter: der Sparc Capacity of Cable Tray: tec between each Cable: tated Width of Cable Tray: tated Area of Cable Tray: Layer of Cables in Cable Tray: ted Cable Tray: ted Cable Tray: ted Cable Tray:	Cable Route (From-To) Type & Cable Size	Cable Route (From-To) Type & Cable Size Cable (mmz)	ABLES ETRAY: FROM Cable Route (From-To) Type & Cable Size Size of Cable (mmz) PU2315 PU 2314-A PU 2314-B PU2305 MX 2305 MX 2308 PU2313 Rotary valve 2 10 1 Rotary valve 2 1.5 1 SC2314 AG 2324A AG 2324A AG 2324B AG 2305 AG 2310 AG 2310 AG 2314 Total Ulation num Cable Diameter: der Spare Capacity of Cable Tray: to between each Cable: stated Width of Cable Tray: to between each Cable Tray: to between each Cable Tray: to be Nor Cable Tray: to Cable From Tool Type & Cable Size Size of Cable Size Size of Cable Size Size of Cable Size Size of Cable In Tay: to a cable Size Size of Cable In Tay: to a cable Size Size of Cable In Tay: to a cable Size Size of Cable Size 1 No of Cable No of Cable Tray: to a cable Size To a cable Tay: to be deven each Cable Tray: to be deven each Cable Tray: to be deven each Cable Tray: to be down and to a cable Tray: to be down and to a cable Tray: 1 No s. to cable Tay Size of Cable Tray: 1 No s. to cable Tay Size of Cable Tray: 1 No s. to cable Tay Size of Cable Tray: 1 No s. to cable Tay Size of Cable Tray: 1 No s. to cable Tay Size of Cable Tray: 1 No s. to cable Tay Size of Cable Tay: to cable	Cable Route (From-To) Type & Cable Size Size of Cable (mm2) No. of Cable (mm2) PU2315 2 25 1 22 25 1 18 22 25 1 25 25	Cable Route (From-To) Type & Cable Size Size of cable (mmz) No.	ABLES ETRAY: FROM Cable Route (From-To) Type & Cable Size Cable (mm2) Type & Cable Size Cable (mm2) Cable Route (From-To) Type & Cable Size Cable (mm2) Type & Cable Size Cable (mm2) Cable (able (mm2) Cable (mm2) Cable (mm2) Cable (able (mm2) Cable (mm2) Cable (mm2) Cable (mm2) Cable (mm2) Cable (mm2) Cable (mm3) Self Keith of Cable Tray: Cable (Table (T	ABLES ETRAY: FROM Cable Route (From-To) Type & Cable Size Size of Cable (mmz) PU2315 2 25 1 22 22 1.4 1.4 PU 2314-A 2 6 1 18 18 0.7 0.7 PU 2314-B 2 6 1 18 18 0.7 0.7 PU 2305 2 25 1 22 22 1.4 1.4 MX2305 2 16 1 21 21 1 1 1 MX 2308 2 25 1 22 22 1.4 1.4 BW2313 2 10 1 18 18 0.7 0.7 AG 2324A 2 1.5 1 15 15 0.4 0.4 AG 2324A 2 1.5 1 15 15 0.4 AG 2324B AG 2324B AG 2309 2 1.5 1 15 15 0.4 AG 2310 2 2.5 1 18 18 0.7 0.7 AG 2309 2 1.5 1 15 15 0.4 AG 2314 2 2 2.5 1 15 15 0.4 AG 2314 2 2 2.5 1 15 20 Cable Route (From-To) Total Weight of Cable Tay: Cable Overall Diameter: Cable Overall Diameter: Cable Overall Diameter: Cable Overall Diameter: Size of Cable (mmx) No. of Cable Overall Diameter: Cable Overall Diameter: Size of Cable (mmx) No. of Cable Overall Diameter: Double Overall Diameter: Cable Diameter: Cable Overall Diameter: Cable Overall Diameter: Cable Diameter:

Roll.No:18481A0261

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment - 1 ELECTRICAL LOAD CALCULATIONS LV MCC

											kW = [A] / [D]		Consumed Lo	ad	kvar = kw	x tan φ	
SI. Equipment	Equipment Description	Breaker	Breaker	Breaker	ELCB	Absorbe d	Motor / Load	Load	Efficiency	Power							Remark
No. No.		Rating	Туре	No. of	Rating	Load	Rating	Factor	at Load	Factor at	Continuous		Intermittent		Stand-by		
				Poles				[A] / [B]	Factor [C]	Load							
										Factor [C]							
						[A]	[B]	[C]	[D]								
		A			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
1 PU2315	Silica filter feed pump				_	33.15	37.00					29.23					
2 PU 2314-A	Absorbesnt/Neutral oil pump (W)				_	9.63		0.88	0.85			10.6				0 0 4	
3 PU 2314 -B	Absorbesnt/Neutral oil pump (S)				-	8.29						29.5			9.	8 9.1	
4 PU2305 5 MX2305	Feed Pump (Seperator) MIXER (W)				-	33.48 33.74	37.00 37.00					29.5					
C 11V 0000	MIXER (V)					33.74	37.00 37.00					29.7			37.	1 29.7	
7 BW2313	Blower				-	14.49	15.00		0.85			16.0			37.	25.7	
8 Rotary valve	TK 2313B (I)					1.41	1.50				17.0	10.0	1.7	1.6			
9 SC2314	Screw conveyor (I)				 	3.25					l.		3.82				
10 AG 2324A	Citric acid tan agitator (W)				=	2.44	3.00					2.69					
11 AG 2324B	Citric acid tank agitator (S)				=	2.44	3.00								2.	9 2.7	
12 AG 2305	Citric oil rection vessol agitator				=	8.89	• • • • • • • • • • • • • • • • • • • •	0.97	0.85			9.79					
13 AG 2309	Lye oil reaction vessel agitator					3.23	3.70			0.73		3.56					
14 AG 2310	Lye oil reaction vessel agitator					3.23						3.56					
15 AG 2314	Soap Adsorbant Tank Agitator					5.65	7.50	0.75	0.85	0.73	6.65	6.22					
										"							
					-					-							
					-					·							
																	
	<u> </u>																
Maximum of norma	I running plant load : 167.	9 kW	142.4	kVAR		sqrt	$(kW^2 + kVAR^2) =$	220.2	kVA	TOTAL	166.25	140.87	5.48	5.13	49.7	0 41.56	
(Est. x%E + y%F)																	
														_		_	
Peak Load :		9 kW	146.6	kVAR		sqrt	$(kW^2 + kVAR^2) =$	226.6	kVA	kVA	217.91		7.51	l	64.7	9	
(Est. x%E + y%F +	F 2%G)																:
<u>Assumptions</u>																	
1) Load factor, Effic	ciency and Power factor.																
	Load Rating (kW)	Effici	ency		Power fact	or											

Load Rating (kW)	Efficiency	Power facto
<= 20	0.85	0.73
> 20 - <= 45	0.91	0.78
> 45 - < 150	0.93	0.82
>= 150	0.94	0.91

2) Coincidence factors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermittent and standby load.


```
Absorbed load ( kW )
                                     PBHP
                                                                      Load efficiency
Load Power Factor
Consumed Active Power (kW)
                                     Cos q
PP

    Consumed Reactive Power (kVar)
    Consumed Apperant Power (kVAr)
    Base load (kVA)
                                     PQ
                                     P
PB
                                   PB = Base load (kVA)

Cos qB = Power Factor of base load

PM = Rated output of largest motor (kW)

PS = Starting capecity of largest motor

Cos qS = Starting power factor of largest motor

C = Reduced current ratio of motor starting current )
                                  PS Cos qS = K = =
                                   resucce current ratio of motor starting current

(1 for DOL start, 0.33 for Y-D start, tap p.u. For reactor or auto transforme

%R = Percent resistance for transformer

%K = Percent reactance for transformer

PCP = Active Power of combined load (kWar)

PCQ = Reactive Power of combined load (kWar)

Cas qC = Power Factor of combined load (kWAr)
                                                          = Transformer rated capacity ( kVA )
= Voltage Regulation of transformer
is as follows
```

Percent R, X and Z based on Transformer KVA

Transformer Rating KVA	X/R	R %	*	z %
150	3.24	1.23	4:0	/ 4.19 -
225	3.35	1,19	- 4.0	4.17
300	3.50	1.14	4.0	4.16
500	3.85	1.04	4.0	4.12
750	5.45	0.94	5.1	5.19
1000 ,	5.70	0.89	5.1	5.19
1500	6.15	0.83	5.1-	5.18
2000 -	6.63	0.77	5.1	5.17
150	1.5	1.111	1.665	2.0
225	1.5	1.111	1.665	2.0
300	1.5	1.111	1.665	2.0
500	1.5	1.111	1.665	2.0

Note 1: These values are for three phase, liquid filled, self-cooled transformers.

Note 2: Due to the trend soward lower impedance transformers for better voltage regulation, the actual transformer impedances may deviate from the NEMA Standard given at left. Therefore, for actual values, obtain anneplate impedance from owner or manufacturer. The percent X and percent R values are desirable for calculation.

Absorbed Load (PBHP)
Motor: For medium / large machines , "Load BHP" column of "Motor / Load requirement s be reffered .

For small machines , the values may generally be estimated as follows:

Rated output (kW) x Demand Factor (standard value 0.85)

Other Loads: For instrumentation , computer , communication , air conditioning , lighting , etc. estimated as follows:

Rated kVA x Power Factor x Demand Factor

Consumed Load

```
Active Power PP = S_PBHP
                                        ( kW )
 Reactive Pow PQ = S \underline{PBHP} \times \tan \theta ( kVAr )
Apparent pow P = Ö( PP2 + PQ2 ( kVA )
oltage Regulation e PC x ( %R . Cos \theta C + \%X . Sin \theta C )
                                                                                  in (%)
where PC = Ö PCP2 + PCQ2 (kVA)
PCP = PB . Cos θB + PS .Co (kW)
PCQ = PB . Sin θB + PS . Sin (kVar)
          PS = K . C . <u>PM</u>
                            Cos θ.η
         Cos OCCP / PC
Sin OC CQ / PC
```

			nment - 3		•		

	Assignment - 3		
	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.74	Avg
	Efficiency	0.87	Avg
	Total operating load on DG set in kVA at 0.74 power factor	272.0	
	Largest motor to start in the sequence - load in KW	37	ĸw
	Running kVA of last motor (CosØ= 0.91)	57	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter
	Starting KVA of the largest motor	345	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last molor)	215	KVA
Α	Continous operation under load -P1		
	Capacity of DGsetbased on continuous operation under load P1	215	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	559	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd*)	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' =(Xd"+Xd)/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dp during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd** x (1-Transient Voltage (Transient	285	KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	559	KVA
	overcurrent capacity of DG (K) (Ref: IS/IEC 600341, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA overcurrent capacity of DG (K)	373	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	215	KVA
	Transient Voltage din during Seft states engling of Least mater DO	285	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2 Overload capacity P3	373	KVA
	Considering the last value amongst P1, P2 and P3	373	KVA
	Hence, Existing Generator 373 KVA is adequate to caler the loads as per re-scheduled loads		
	NOTE:VOLTAGE DIP CONSIDERED-15%		

Assignment - 4 Earthing calculations

	2	
Maximum line-to-ground fault in kA for 1 sec	12	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	3.5	
Soil resistivity Ω -meter	13	
Ambient temperature in deg C	45	
Plot dimensions (earth grid) L x B in meters	60	120

Earth electrode sizing:

Number of earth rods in nos.

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	45
II-g - RMS fault current in kA = 50 KA	12
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
12 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	98
Earth rod dia in mm	11
Earth rod dia (including 25% corrosion allowance) in mm	14

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	45
II-g - RMS fault current in kA = 50 KA	12
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
12 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	98
Earth flat area in mm	11
Earth flat area (including 25% corrosion allowance) in mm	14
Selected flat size W * Thk in sq mm	20

 ${\it Rg}$ - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_g \rho \frac{1}{L} = \frac{1}{\sqrt{20 \times A}} 1 = \frac{1}{1 + h \sqrt{20 / A}}$$

ρ - Soil resistivity in Ω-meter=	13
L - Total buried length of ground conductor in meter	360
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	7200
·	

Rg - Grid resistance 0.104

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_r = \frac{\rho}{2 \ x \ \pi \ x \ n_r \ x \ L_r} - l_n = \frac{4 \ x \ L_r}{b} = 1 - \frac{2 \ x \ k_1 \ x \ L_r}{\sqrt{A}} - \sqrt{n_r} - 1^2$$

ρ - Soil resistivity in Ω -meter, 16.96	13
n - No of earth electrodes	6
Lr- Length of earth electrode in meter	3.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	7200

Rr - Earth Electrode resistance 5.604718

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2}}{R_{g} - R_{2}} = \frac{R_{m}^{2}}{2R_{m}}$$

Rm - Mutual ground resistance between the group of ground conductors, Rg and group of electrodes, Rr in Ω . Neglected Rm, since this is for homogenous soil

0.102 Ohms

Rs - Total earthing system resistance

The calculated resistance grounding system is less than the allowable 1 Ω value.

IEEE Std 80-2000 IEEE GUIDE FOR SAFETY

Table 1-Material constants

Description	Material conductivity (%)	α, factor at 20 °C (1/°C)	K _o at 0 °C (0 °C)	Fusing ^a temperature T _m (°C)	ρ , 20 °C (μ Ω·cm)	TCAP thermal capacity [J/(cm ³ .°C)]
Copper, annealed soft-drawn	100.0	0.003 93	234	1083	1.72	3.42
Copper, commercial hard-drawn	97.0	0.003 81	242	1084	1.78	3.42
Copper-clad steel wire	40.0	0.00378	245	1084	4.40	3.85
Copper-clad steel wire	30.0	0.003 78	245	1084	5.86	3.85
Copper-clad steel rod ^b	20.0	0.00378	245	1084	8.62	3.85
Aluminum, EC grade	61.0	0.00403	228	657	2.86	2.56
Aluminum, 5005 alloy	53.5	0.003 53	263	652	3.22	2.60
Aluminum, 6201 alloy	52.5	0.003 47	268	654	3.28	2.60
Aluminum-clad steel wire	20.3	0.003 60	258	657	8.48	3.58
Steel, 1020	10.8	0.00160	605	1510	15.90	3.28
Stainless-clad steel rod ^c	9.8	0.00160	605	1400	17.50	4.44
Zinc-coated steel rod	8.6	0.003 20	293	419	20.10	3.93
Stainless steel, 304	2.4	0.001 30	749	1400	72.00	4.03

^aFrom ASTM standards.

^bCopper-clad steel rods based on 0.254 mm (0.010 in) copper thickness.

^cStainless-clad steel rod based on 0.508 mm (0.020 in) No. 304 stainless steel thickness over No. 1020 steel core.

Assignment - 5

Lightning Calculations

Location surat

Building Concrete, Industrial Type of Building Flat Roofs (a) 14 Building Length (L) Building breadth (W)

Building Height (H) 5

Risk Factor Calculation

1 Collection Area (Ac)

= (L*W) + (2*L*H) + (2*W*H) + (3.14*H*H)Ac

2 Probability of Being Struck (P)

= Ac * Ng * 10-6 0.000082

3 Ov

3 Overall weighing factor				
a) Use of structure (A)		=	1.0	
b) Type of construction (B)		=	0.4	
c) Contents or consequential effects (C)		=	0.8	
d) Degree of isolation (D)		=	1.0	
e) Type of country (E)		=	0.3	
Wo - Overall weighing factor		=	A * B * C * D * E	
		=	0.096	
4 Overall Risk Factor	Ро	=	P * Wo	
	Po	=	0.000008	
	Pa		10 ⁻⁵	

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10-5 Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building	=	2(L+W)
	=	44 Mts.

6 Down Conductors

Perimeter of building	=	44	Mts.
No. of down conductors based on perimeter	=	2	Nos.

Hence 2 nos. of Down conductors have been selected.

= 20 X 2.5 mm Galvanized Steel Strip Size of Down conductor

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Assignment - 6

																(Cable Sizing																
S.NO.	Equipment No.	Description	Consumed Load KW	Load Rating	Voltage (V)	No. of	Full Load	Motor Starting	Load P.F. Running	SIN Ф Running	Motor P.F Staring	SIN Φ Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating	Derating factor	Derating factor	Derating factor	Derating factor	Overall Derating	Derated Current	Cable Length	Cable Resistance	Cable Reactance	Voltage drop	Voltage drop	Voltage drop	Voltage drop	Cable size	OD of Cable	Gland size
1 F	U2315	Silica filter feed pump	33.15	37.00	415	3	57.6	345.90	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	7.52	1.81	44.67	10.76	OK	22	20
2 F	U 2314-A	Absorbesnt/Neutral oil pump (W)	9.63	11.00	415	3	16.7	100.48	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	95	3.9400	0.0902	8.83	2.13	52.86	12.74	OK	18	20s
3 P	U 2314-B	Absorbesnt/Neutral oil pump (S)	8.29	9.20	415	3	14.4	86.50	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	60	3.9400	0.0902	4.80	1.16	28.74	6.93	OK	18	20s
4 F	U2305	Feed Pump (Seperator)	33.48	37.00	415	3	58.2	349.34	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	6.80	1.64	40.36	9.73	OK	22	20s
5 N	IX2305	MIXER (W)	33.74	37.00	415	3	58.7	352.05	0.8	0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	75	1.4700	0.0815	9.34	2.25	55.64	13.41	OK	21	20s
6 N	IX 2308	MIXER (S)	33.74	37.00	415	3	58.7	352.05	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	105	0.9300	0.0816	8.46	2.04	50.25	12.11	OK	22	20s
7 E	W2313	Blower	14.49	15.00	415	3	25.2	151.19	0.8	0.6	8.0	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	100	2.3400	0.0852	8.39	2.02	50.14	12.08	OK	18	20s
8 R	otary valve	TK 2313B (I)	1.41	1.50	415	3	2.5	14.71	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	100	15.5000	0.1080	5.29	1.28	31.74	7.65	OK	15	20s
9 8	C2314	Screw conveyor (I)	3.25	3.70	415	3	5.7	33.91	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	75	15.5000	0.1080	9.15	2.21	54.86	13.22	OK	15	20
10 A	G 2324A	Citric acid tan agitator (W)	2.44	3.00	415	3	4.2	25.46	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	110	15.5000	0.1080	10.08	2.43	60.41	14.56	OK	15	20s
11 A	G 2324B	Citric acid tank agitator (S)	2.44	3.00	415	3	4.2	25.46	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	75	15.5000	0.1080	6.87	1.66	41.19	9.92	OK	15	20
12 A	G 2305	Citric oil rection vessol agitator	8.89	9.20	415	3	15.5	92.76	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	9.01	2.17	53.93	13.00	OK	18	20
13 A	G 2309	Lye oil reaction vessel agitator	3.23	3.70	415	3	5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	1.5	22	0.98	0.9	1	1	0.882	19.4	85	15.5000	0.1080	10.31	2.48	61.79	14.89	OK	15	32
14	G 2310	Lye oil reaction vessel agitator	3.23	3.70	415	3	5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	7.07	1.70	42.34	10.20	OK	16	20s
15 A	G 2314	Soap Adsorbant Tank Agitator	5.65	7.50	415	3	9.8	58.95	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	8.46	2.04	50.67	12.21	OK	16	20s
																															,		

Basis:

1. Overall derating factor $k = k1 \times k2 \times k3 \times k4$

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors : Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed

TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

Cable Tray Sizing

17		Λ	D			7
L	ı	А	D	ᆫ	ᆮ	J

CABL	TRAY: FROM	LT-4		ТО	L	.T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	2	25	1	22	22	1.4	1.4	
2	PU 2314-A	2	6	1	18	18	0.7	0.7	
3	PU 2314-B	2	6	1	18	18	0.7	0.7	
4	PU2305	2	25	1	22	22	1.4	1.4	
5	MX2305	2	16	1	21	21	1	1	
6	MX 2308	2	25	1	22	22	1.4	1.4	
7	BW2313	2	10	1	18	18	0.9	0.9	
8	Rotary valve	2	1.5	1	15	15	0.4	0.4	
9	SC2314	2	1.5	1	15	15	0.4	0.4	
10	AG 2324A	2	1.5	1	15	15	0.4	0.4	
11	AG 2324B	2	1.5	1	15	15	0.4	0.4	
12	AG 2305	2	6	1	18	18	0.7	0.7	
13	AG 2309	2	1.5	1	15	15	0.4	0.4	
14	AG 2310	2	2.5	1	16	16	0.5	0.5	
15	AG 2314	2	2.5	1	16	16	0.5	0.5	
	Total			15		266	11.2	11.2	
Calc	ulation		I		I	Result			
/laxim	um Cable Diameter:		22	mm		Selected Cable Tr	-	O.K	
	ler Spare Capacity of Cable Tray:		30%			Selected Cable Tr		O.K	
	ce between each Cable:		0	mm		Selectrd Cable Tra		O.K	Including Spare Capacity
	ated Width of Cable Tray:		346	mm		Selected Cable Tr	ay Size:	O.K	Including Spare Capacity
	ated Area of Cable Tray:		7608	Sq.mm					
	Layer of Cables in Cable Tray:		1			Required Cable Ti	•	600 x 100	mm
	ed No of Cable Tray:		1	Nos.		Required Nos of C	•	1	No
	ed Cable Tray Width:		600	mm		Required Cable To	-	90.00	Kg/Meter/Tray
	ed Cable Tray Depth:		100	mm		Type of Cable Tra	y:	Ladder	
	ed Cable Tray Weight Capacity:		90	Kg/Meter				400	
	of Cable Tray:		Ladder			Cable Tray Width		42%	
otal /	Area of Cable Tray:		60000	Sq.mm		Cable Tray Area R	Remaning:	87%	