Let J(V, W) be any functional on $V \times W$ with V and W be two finite dimensional spaces. Say we have some assumptions on J, V and W to ensure the required minimums can be reached. Then we have

$$\min_{v \in V} \min_{w \in W} J(v, w) = \min_{(v, w) \in V \times W} J(v, w).$$

Proof. Let (v_0, w_0) and (v_1, w_1) be two points in $V \times W$ such that

$$J(v_1, w_1) = \min_{v \in V} \min_{w \in W} J(v, w), \quad J(v_0, w_0) = \min_{(v, w) \in V \times W} J(v, w).$$

Then obviously, $J(v_0, w_0) \leq J(v_1, w_1)$. We now prove that $J(v_1, w_1) \leq J(v_0, w_0)$. Let $F(v) = \min_{w \in W} J(v, w)$, then

$$J(v_1, w_1) = \min_{v \in V} F(v) = F(v_1) \le F(v_0) = \min_{w \in W} J(v_0, w) \le J(v_0, w_0),$$

that is the required result.

First note: please replace $\gamma_{\partial F}$ in the definition of the wirebasket coarse interpolant by $\gamma_{h,\partial F}$. All the proofs are still valid by Lemma 4.20.

To solve (8.9), we first express any $w_0 \in V_0(\Gamma)$ into

$$w_0 = \sum_F \gamma_{h,\partial F}(w_0) \phi_F + \sum_E \sum_{x_j \in E} w_0(x_j) \phi_j + \sum_k w_0(x_{v_k}) \phi_k,$$

where $\phi_F = I_F^0 1$ and ϕ_j for $x_j \in \mathcal{W}_i$ are natural nodal basis functions on \mathcal{W}_i . We see

$$\langle g_0, w_0 \rangle = \sum_F \gamma_{h,\partial F}(w_0) \langle g_0, \phi_F \rangle + \sum_E \sum_{x_i \in E} w_0(x_j) \langle g_0, \phi_j \rangle + \sum_k w_0(x_{v_k}) \langle g_0, \phi_k \rangle,$$

using $\gamma_{h,\partial F}(w_0) = \frac{1}{n(\partial F)} \sum_{x_j \in \partial F} w_0(x_j)$, $n(\partial F)$ is the number of nodes on ∂F , we can write

$$\langle g_0, w_0 \rangle = x^{\mathsf{T}} b$$

with x a vector consisting of all wirebasket nodal values $w_0(x_j)$. Let x_i be a vector with all components of x corresponding to W_i , and e_i a vector with the same dimension as x_i but with all components 1. Then using the definition of $\|\cdot\|_{h,W_i}$, (8.9) can be rewritten as follows

$$\min_{x} \frac{1}{2} \sum_{i} \rho_{i} h \min_{\lambda_{i} \in R^{1}} (x_{i} - \lambda_{i} e_{i})^{\mathsf{T}} (x_{i} - \lambda_{i} e_{i}) - x^{\mathsf{T}} b,$$

which is equivalent to the following linear systems obtained by taking the derivatives with respect to x and λ_i :

(1)
$$\sum_{i} \rho_{i} h(x_{i} - \lambda_{i} e_{i}) = b,$$

(2)
$$e_i^{\mathsf{T}} \rho_i h(x_i - \lambda_i e_i) = 0, \quad i = 1, \dots, p.$$

Let B be the matrix such that $Bx = \sum_{i} \rho_{i} hx_{i}$, then eliminating x from the equation (1), we derive the equation with respect to λ_{i} :

$$(e_i^{\mathsf{T}} e_i) \lambda_i - e_i^{\mathsf{T}} B^{-1} \sum_j (\rho_j h e_j) \lambda_j = e_i^{\mathsf{T}} B^{-1} b, \quad i = 1, \dots, p.$$

Once we get λ_i from the above equation, we can then solve (1) to get x.