Remarks:

• Exam time: 5:00PM – 6:20PM

• Please write your name at the top-right corner of each page of your exam papers.

• One page of cheat sheet is allowed (back and forth).

• You are allowed to leave early. But, please drop your exam papers. You don't need to drop your cheat sheet.

• GOOD LUCK!

Problem #	1	2	3	4	5
Total points	12	12	10	10	16
Student scores					

Problem 1. Consider binary variables A, B, and C.

(1) Consider F(A, B, C) = A'B + C. What is the value of F when A = 1, B = 1, and C = 0?

(2) What is the dual expression of (A' + B) (A + C')?

(3) Is the following equation true?

$$(A + B) (B' + C) (C + A) = (A + B) (B' + C)$$

Solution:

(1) F = 0

(2) A'B + AC'

(3) Yes, it is true.

Problem 2. Perform the following operations involving 7-bit 2's complement numbers and indicate whether arithmetic overflow occurs in each of the operation.

Solution: $\begin{array}{c}
01011111 \\
-1001011 \\
\hline
0101111 \\
-1001011 \\
\hline
0101111 \\
+0101100 \\
\hline
0100000 \\
\hline
0101111 \\
+0110101 \\
\hline
1100100
\end{array}$ Overflow does not occur.

Overflow occurs.

Problem 3. The Karnaugh map for the function F (A, B, C, D) is given below. Please find the simplest POS expression of the output F.

BE)				
AC		00	01	11	10
	00	1	0	0	1
	01	0	0	0	0
	11	1	1	1	1
	10	1	0	1	1

Solution:

BE					
AC		00	01	11	10
	00	1		0	1
	01	0	0	0	0
	11	1	1	1	1
	10	1	0	1	1

$$F = (A + C')(A + D')(B + C + D')$$

Problem 4. The Karnaugh map for the incompletely specified function F (A, B, C, D) is given below. Please find the simplest SOP expression of the output F.

\(\cdot\)	,				
AB		00	01	11	10
	00	Х	0	0	1
	01	Х	0	0	1
	11	1	0	1	1
	10	1	0	0	Х

Solution:

F = D' + ABC

Student name:

Problem 5. Complete a combinational circuit design using the given Multiplexer and logic gates if needed that fulfills the function G $(x_1, x_2, x_3) = M_0 M_2 M_5 M_7$. Complete the truth table. Show all your work.

\mathbf{x}_1	x ₂	x ₃	G
0	0 x ₂	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Solution:

x ₃	G
0	0
1	1

Thus, $G = x_3$

When $x_1 = 0$ and $x_2 = 1$, we have When $x_1 = 1$ and $x_2 = 1$, we have

\mathbf{x}_3	G
0	0
1	1

Thus, $G = x_{3}$.

When $x_1 = 0$ and $x_2 = 0$, we have When $x_1 = 1$ and $x_2 = 0$, we have

X ₃	G
0	1
1	0

Thus,
$$G = x_3'$$

X ₃	G
0	1
1	0

Thus,
$$G = x_3'$$

\mathbf{x}_1	\mathbf{x}_2	X ₃	G
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

