Дисперсионный анализ, часть 2

Математические методы в зоологии с использованием R

Марина Варфоломеева

- 1 Модель многофакторного дисперсионного анализа
- Взаимодействие факторов
- 3 Несбалансированные данные, типы сумм квадратов
- Многофакторный дисперсионный анализ в R
- Фиксированные и случайные факторы

Многофакторный дисперсионный анализ

Вы сможете

- Проводить многофакторный дисперсионный анализ и интерпретироватм его результаты с учетом взаимодействия факторов
- Отличать фиксированные и случайные факторы и выбирать подходящую модель дисперсионного анализа

Модель многофакторного дисперсионного анализа

Линейные модели для факторных дисперсионных анализов

• Два фактора А и В, двухфакторное взаимодействие

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$

 Три фактора А, В и С, двухфакторные взаимодействия, трехфакторное взаимодействия

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

Взаимодействие факторов

Взаимодействие факторов

Взаимодействие факторов

Взаимодействие факторов — когда эффект фактора В разный в зависимости от уровней фактора А и наоборот

На каких рисунках есть взаимодействие факторов?

Взаимодействие факторов

Взаимодействие факторов — когда эффект фактора В разный в зависимости от уровней фактора А и наоборот

На каких рисунках есть взаимодействие факторов?

- b, c нет взаимодействия (эффект фактора В одинаковый для групп по фактору А, линии для разных групп по фактору В на графиках расположены параллельно)
- а, d есть взаимодействие (эффект фактора В разный для групп по фактору А, на графиках линии для разных групп по фактору В расположены под наклоном).

Взаимодействие факторов может маскировать главные эффекты

Задаем модель со взаимодействием в R

Взаимодействие обозначается : - двоеточием

Если есть факторы А и В, то их взаимодействие А:В

Для такой модели
$$\mathbf{y}_{\mathit{ijk}} = \mu + \alpha_{\mathit{i}} + \beta_{\mathit{j}} + (\alpha\beta)_{\mathit{ij}} + \epsilon_{\mathit{ijk}}$$

Формула модели со взаимодействием:

$$Y \sim A + B + A:B$$

Сокращенная запись такой же модели обозначает, что модель включает все главные эффекты и их взаимодействия:

$$Y \sim A*B$$

Несбалансированные данные, типы сумм квадратов

Проблемы несбалансированных дизайнов

- Оценки средних в разных группах с разным уровнем точности (Underwood 1997)
- ANOVA менее устойчив к отклонениям от условий применимости (особенно от гомогенности дисперсий) при разных размерах групп (Quinn Keough 2002, section 8.3)
- ullet Проблемы с рассчетом мощности. Если $\sigma_{\epsilon}^2>0$ и размеры выборок разные, то $rac{\mathit{MS_{groups}}}{\mathit{MS_{residuals}}}$ не следует F-распределению (Searle et al. 1992).

Проблемы несбалансированных дизайнов

- Оценки средних в разных группах с разным уровнем точности (Underwood 1997)
- ANOVA менее устойчив к отклонениям от условий применимости (особенно от гомогенности дисперсий) при разных размерах групп (Quinn Keough 2002, section 8.3)
- Проблемы с рассчетом мощности. Если $\sigma_{\epsilon}^2>0$ и размеры выборок разные, то $\frac{MS_{groups}}{MS_{rociduals}}$ не следует F-распределению (Searle et al. 1992).

- Старайтесь планировать группы равной численности!
- Но если не получилось не страшно:
 - Для фикс. эффектов неравные размеры проблема только если значения доверительной вероятности p близки к выбранному критическому уровню значимости α

Если несбалансированные данные, выберите правильный тип сумм квадратов

- SSe и SSab также как в сбалансированных
- SSa, SSb три способа расчета
- Для сбалансированных дизайнов результаты одинаковы
- Для несбалансированных дизайнов рекомендуют суммы квадратов III типа если есть взаимодействие факторов (Maxwell & Delaney 1990, Milliken, Johnson 1984, Searle 1993, Yandell 1997). (Правда, этот способ не самый правильный с точки зрения статистики, т.к. основные эффекты факторов тестируются так, как если бы взаимодействие было включено в модель).

Типы сумм квадратов в дисперсионном анализе

"Типы сумм квадратов"	I тип	II тип	III тип
Название	Последовательная	Без учета взаимодействий высоких порядков	Иерархическая
SS	SS(A) SS(B A) SS(AB B, A)	SS(A B) SS(B A) SS(AB B, A)	SS(A B, AB) SS(B A, AB) SS(AB B, A)
Величина эффекта зависит от выборки в группе	Да	Да	Нет
Результат зависит от порядка включения факторов в модель	Да	Нет	Нет
Команда R	aov()	Anova() (пакет car)	Anova() (пакет car)

Многофакторный дисперсионный анализ в R

Многофакторный дисперсионный анализ в R

Пример: Возраст и память

Почему пожилые не так хорошо запоминают? Может быть не так тщательно перерабатывают информацию? (Eysenck, 1974)

Факторы:

- Age Возраст:
 - Younger 50 молодых
 - Older 50 пожилых (55-65 лет)
- Process тип активности:
 - Counting посчитать число букв
 - Rhyming придумать рифму к слову
 - Adjective придумать прилагательное
 - Imagery представить образ
 - Intentional запомнить слово

Зависимая переменная - Words - сколько вспомнили слов

Открываем данные

```
memory <- read.delim(file = "data/eysenck.csv")
head(memory, 10)</pre>
```

```
# Age Process Words
# 1 Younger Counting 8
# 2 Younger Counting 6
# 3 Younger Counting 4
# 4 Younger Counting 7
# 5 Younger Counting 7
# 6 Younger Counting 6
# 7 Younger Counting 5
# 8 Younger Counting 7
# 9 Younger Counting 9
# 10 Younger Counting 7
```

Посмотрим на боксплот

```
library(ggplot2)
theme_set(theme_bw(base_size = 16) + theme(legend.key = element_blank()))
ggplot(data = memory, aes(x = Age, y = Words)) +
  geom_boxplot(aes(fill = Process))
```


Некрасивый порядок уровней memory\$Process

Боксплот с правильным порядком уровней

переставляем в порядке следования средних значений memory\$Words
memory\$Process <- reorder(memory\$Process, memory\$Words, FUN = mean)

```
ggplot(data = memory, aes(x = Age, y = Words)) +
  geom_boxplot(aes(fill = Process))
```


Подбираем линейную модель

```
Внимание: при использовании III типа сумм квадратов, нужно при подборе линейной модели обязательно указывать тип контрастов для факторов. В данном случае — contrasts = list(Age = contr.sum, Process = contr.sum)
```

```
memory_fit <- lm(formula = Words ~ Age * Process, data = memory,
contrasts = list(Age = contr.sum, Process = contr.sum))</pre>
```

Задание

Проверьте условия применимости дисперсионного анализа

- Есть ли гомогенность дисперсий?
- Не видно ли паттернов в остатках?
- Нормальное ли у остатков распределение?

Решение: 1. Проверяем условия применимости

- Есть ли гомогенность дисперсий?
- Не видно ли трендов в остатках?

```
memory_diag <- fortify(memory_fit)
ggplot(memory_diag, aes(x = .fitted, y = .stdresid)) +
   geom_point(aes(size = .cooksd), position = position_jitter(width = .2)) +
   geom hline(yintercept = 0)</pre>
```


Решение: 2. Проверяем условия применимости

• Нормальное ли у остатков распределение?

```
ggplot(memory_diag) +
  geom_point(stat = "qq", aes(sample = .stdresid)) +
  geom abline(aes(intercept = 0, slope = sd(memory diag$.stdresid)))
```


Результаты дисперсионного анализа

```
library(car)
Anova(memory fit, type = 3)
# Anova Table (Type III tests)
#
# Response: Words
             Sum Sq Df F value Pr(>F)
# (Intercept) 13479.2 1 1679.5361 < 2.2e-16 ***
      240.3 1 29.9356 0.0000003981 ***
# Age
# Process 1514.9 4 47.1911 < 2.2e-16 ***
# Age:Process 190.3 4 5.9279 0.0002793 ***
# Residuals 722.3 90
# ---
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Результаты дисперсионного анализа

```
library(car)
Anova(memory fit, type = 3)
# Anova Table (Type III tests)
#
# Response: Words
             Sum Sq Df F value Pr(>F)
# (Intercept) 13479.2 1 1679.5361 < 2.2e-16 ***
      240.3 1 29.9356 0.0000003981 ***
# Age
# Process 1514.9 4 47.1911 < 2.2e-16 ***
# Age:Process 190.3 4 5.9279 0.0002793 ***
# Residuals 722.3 90
```

- Взаимодействие достоверно, факторы отдельно можно не тестировать, тк.
 взаимодействие может все равно изменять их эффект до неузнаваемости.
- Нужно делать пост хок тест по взаимодействию факторов.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Пост хок тест по взаимодействию факторов

Пост хок тест для взаимодействия факторов делается легче всего "обходным путем"

- Оздаем переменную-взаимодействие
- Подбираем модель без свободного члена
- Делаем пост хок тест для этой модели

```
memory$AgeProc <- interaction(memory$Age, memory$Process)
cell_means <- lm(Words ~ AgeProc - 1, data = memory)
library(multcomp)
memory_tukey <- glht(cell_means, linfct = mcp(AgeProc = "Tukey"))
summary(memory_tukey)</pre>
```

Смотрим на результаты пост хок теста

В виде таблицы результаты нечитаемы. Лучше построить график.

```
#
     Simultaneous Tests for General Linear Hypotheses
 Multiple Comparisons of Means: Tukey Contrasts
# Fit: lm(formula = Words ~ AgeProc - 1, data = memory)
#
# Linear Hypotheses:
                                               Estimate Std. Error t value Pr(>|t|)
# Younger.Counting - Older.Counting == 0
                                                  -0.500
                                                             1.267
                                                                     -0.395
# Older.Rhyming - Older.Counting == 0
                                                  -0.100
                                                             1.267
                                                                     -0.079
# Younger.Rhyming - Older.Counting == 0
                                                             1.267
                                                                   0.474
                                                  0.600
```

1.0000 # Older.Adjective - Older.Counting == 0 3.157 0.0630 4.000 1.267 # Younger.Adjective - Older.Counting == 0 7.800 1.267 6.157 <0.01 # Older.Imagery - Older.Counting == 0 6.400 1.267 5.052 <0.01 # Younger.Imagery - Older.Counting == 0 10.600 1.267 8.367 <0.01

Older.Intentional - Older.Counting == 0 5.000 3.947 <0.01 1.267 # Younger.Intentional - Older.Counting == 0 12,300 1.267 9.709 <0.01

Older.Rhyming - Younger.Counting == 0 0.400 0.316 1.0000 1.267 # Younger.Rhyming - Younger.Counting == 0 1.100 1.267 0.868 0.9970 # Older.Adjective - Younger.Counting == 0 4.500 1.267 3.552 0.0208

6.551

1.0000

1.0000

Данные для графиков

Графики для результатов: Столбчатый график

Графики для результатов: Точки

Какой график лучше выбрать?

Какой график лучше выбрать?

Максимум данных в минимуме чернил (Tufte, 1983)

Приводим понравившийся график в приличный вид

```
gg final <- gg pointp +
  labs(y = "Число слов") +
   scale_colour_brewer(name = "Bospacτ", palette = "Dark2",
                       labels = c("Пожилые", "Молодые")) +
  scale shape discrete(name = "Bospact",
                       labels = \mathbf{c}("Пожилые", "Молодые")) +
  scale x discrete(name = "Процесс", palette = "Dark2",
                       labels = c("Cyet", "Pu\phima",
                                  "Прилагательное", "Образ", "Запоминание"))
```

gg final

Пожилые

Молодые

Фиксированные и случайные факторы

Фиксированные и случайные факторы

Фиксированные и случайные факторы

Свойства	Фиксированные факторы	Случайные факторы
Уровни фактора	фиксированные, заранее определенные и потенциально воспроизводимые уровни	случайная выборка из всех возможных уровней
Используются для тестирования гипотез	о средних значениях отклика между уровнями фактора $H_0: \mu_1 = \mu_2 = \ldots = \mu_i = \mu$	о дисперсии отклика между уровнями фактора $H_0:\sigma_{\mathit{rand.fact.}}^2=0$
Выводы можно экстраполировать	только на уровни из анализа	на все возможные уровни
Число уровней фактора	Осторожно! Если уровней фактора слишком много, то нужно подбирать слишком много коэффициентов — должно быть много данных	Важно! Для точной оценки σ нужно нужно много уровней фактора — не менее 5

Задание: Примеры фиксированных и случайных факторов

Опишите ситуации, когда эти факторы будут фиксированными, а когда случайными

- Несколько произвольно выбранных градаций плотности моллюсков в полевом эксперименте, где плотностью манипулировали.
- Фактор размер червяка (маленький, средний, большой) в выборке червей.
- Деление губы Чупа на зоны с разной степенью распреснения.

Задание: Примеры фиксированных и случайных факторов

Опишите ситуации, когда эти факторы будут фиксированными, а когда случайными

- Несколько произвольно выбранных градаций плотности моллюсков в полевом эксперименте, где плотностью манипулировали.
- Фактор размер червяка (маленький, средний, большой) в выборке червей.
- Деление губы Чупа на зоны с разной степенью распреснения.
- Приведите другие примеры того, как тип фактора будет зависеть от проверяемых гипотез

Внимание: сегодня говорили только про фиксированные факторы.

Если есть случайные факторы - смешанные модели. О них в магистратуре.

Пакеты nlme и lme4 Книги:

- Pinheiro, J., Bates, D., 2000. Mixed-Effects Models in S and S-PLUS. Springer.
- Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology With R. Springer.

Take home messages

- Многофакторный дисперсионный анализ позволяет оценить взаимодействие факторов. Если оно значимо, то лучше воздержаться от интерпретации их индивидуальных эффектов
- Если численности групп равны получаются одинаковые результаты с использованием I, II, III типы сумм квадратов
- В случае, если численности групп неравны (несбалансированные данные) по разному тестируется значимость факторов (I, II, III типы сумм квадратов)
- В зависимости от типа факторов (фиксированные или случайные) по разному формулируются гипотезы и рассчитывается F-критерий.

Дополнительные ресурсы

- Quinn, Keough, 2002, pp. 221-250
- Logan, 2010, pp. 313-359
- Sokal, Rohlf, 1995, pp. 321-362
- Zar, 2010, pp. 246-266