

Georeferencing

Lab_04: Georeferencing a Historical Map

A quick recap

Lab_01

Coordinate Reference System (CRS)

Name Units

EPSG:32630 - WGS 84 / UTM zone 30N

meters

Type Method Projected Universal Transverse Mercator (UTM)

Celestial Body Earth

Accuracy

Based on World Geodetic System 1984 ensemble (EPSG:6326), which ha

Dynamic (relies on a datum which is not plate-fixed) Reference

Lab_03

Information

Coordinate Reference System (CRS)

Name

EPSG:31287 - MGI / Austria Lambert

Units

meters Projected

Type Method

Lambert Conformal Conic

Celestial Body

Earth

Reference

Static (relies on a datum which is plate-fixed)

Lab 02

Information

Coordinate Reference System (CRS)

Name

EPSG:3857 - WGS 84 / Pseudo-Mercator

Units

meters

Type Method Projected Mercator

Celestial Body

Earth

Accuracy Reference

Based on World Geodetic System 1984 ensemble (EPSG:6326), which has a limited accuracy of at best 2 meters.

Dynamic (relies on a datum which is not plate-fixed)

Valdesera Christina Lydia christina.valdesera@uni-graz.at

UNI

402.467 / Applied GIS Fundamentals

A quick recap

Map projections

https://geoawesome.com/5-tools-will-let-master-map-projections/

A quick recap

Valdesera Christina Lydia christina.valdesera@uni-graz.at

UNI

On the fly reprojection

- All layers visualised in a GIS application need to be in the same projection
- Instead of reprojecting all layers to the same projection, GIS applications use 'on the fly reprojection'

Hans van der Kwast. (2019, March 6). Map projections in GIS (theory) [Video]. YouTube. https://www.youtube.com/watch?v=jVn1uCuhO_4

https://docs.qgis.org/3.40/en/docs/training_manual/vector_analysis/reproject_transform.html

Universal Transverse Mercator (UTM)

Georeferencing

- ~To georeference means to associate something (e.g., images, maps) with locations to the physical space
- ~Georeferencing is the process of associating a physical map or raster image of a map with spatial locations

Georeferencing raster images

- ~Register a map with the correct real world coordinates
- ~If the maps are not georeferenced, no other information can be displayed over or positioned under the map coverage
- ~Depending on the source materials & specifications of the project, maps can be registered to either a coordinate system or to another basemap such a digital ortho photo

https://community.opendronemap.org/t/processing-historical-aerial-photos-revisited/19273

UNI GRAZ

Entering GCPs

Ground Control Points are the foundation for accurately georeferencing a raster image

They are known locations on the Earth's surface and are identified by their own latitude & longitude

Use multiple GCPs across an area & distribute them evenly for better accuracy

GCP	Pixel X	Pixel Y	Longitude	Latitude
1	4203.7	2347.0	4.2946	52.0825
2	3830.5	1673.9	4.2744	52.0888
3	5122.7	1611.8	4.3054	52.1025
4	5522.5	2981.5	4.3371	52.0862
5	3593.9	2691.5	4.2849	52.0710
6	6560.4	4341.7	4.3844	52.0761
7	4432.0	4929.8	4.3406	52.0464
8	486.8	2458.7	4.2042	52.0447
9	1171.9	4210.5	4.2483	52.0252
10	6704.4	907.2	4.3332	52.1289
11	1880.0	1993.3	4.2314	52.0650

402.467 / Applied GIS Fundamentals

https://kokoalberti.com/articles/georeferencing-and-digitizing-old-maps-

Transformation

types

mathematical equation for aligning raster data to real-world coordinates

Most common method: affine transformations (first-order polynomial = linear), allows

•Translation (shifting)

Scaling (resizing)

Rotation (turning)

Shearing (skewing)

Second-Order

Polynomial

Original Data

Third-Order Polynomial

Resampling method

- ⊗ Bilinear

- ~Choosing the correct resampling method determines how new pixel values are calculated for the output image
- ~Each method has different effects on the output image's appearance, accuracy and processing time

RM SE

W hat is the Root M ean Square Error (RM SE)?

 It is a statistical measure of the difference between the GCPs & their true more accurate coordinates

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}}$$

A lower RM SE indicates a better fit / more accurate georeferencing. A high RM SE suggests poor GCP selection, an inappropriate transformation model, or inherent distortions in the source raster

https://github.com/qgis/QGIS/issues/47122

Examples

Smapshot: The participative time machine

Managas Managas Andrews Andrew

Map Wraper

https://mapwarper.net/maps/geosearch?show_warped=1

https://smapshot.heig-vd.ch/

402.467 / Applied GIS Fundamentals

Georeferencing vs Geocoding

Geocoding: Matching addresses to geographic coordinates (latitude & longitude)

Georeferencing: Matching geographic images to coordinates

