Анализ на постоянно-токов режим на биполярен транзистор

1 Области на работа на биполярен транзистор в схема общ емитер

1.1 Активна област

$$U_{BE} = 0.7V$$

$$I_C = \beta I_B \quad I_C = \alpha I_E \quad I_E = (\beta + 1)I_B$$

$$U_{CB} > 0 \quad U_{CE} > 0.7V$$

$$I_B > 0 \quad I_C > 0 \quad I_E > 0$$

1.2 Област на насищане

$$U_{BE} = 0.7V$$

$$U_{CB} = -0.5V \quad U_{CE} = 0.2V$$

$$I_{C} < \beta I_{B}$$

$$I_{B} > 0 \quad I_{C} > 0 \quad I_{E} > 0$$

1.3 Област на отсечка

$$I_B = 0 \quad I_C = 0 \quad I_E = 0$$

$$U_{BE} < 0.7V$$

$$U_{CB} > 0$$

Фигура 1: NPN транзистор в схема с общ емитер.

2 Анализ

На фигура 1 е показана схема на усилвател с биполярен NPN транзистор свързан в общ емитер. Целта на анализа е да се определят U_{BE} , U_{CE} , I_B и I_C .

• Стъпка 1 Приемаме, че транзисторът работи в активната област. Това означава, че следните равенства са изпълнени:

$$U_{BE} = 0.7V$$
$$I_C = \beta I_B$$

ullet Стъпка 2 Изчисляваме $U_{CE},\ I_{B}$ и $I_{C}.$

Според законът на Кирхоф за напреженията:

$$U_{BB} - I_B R_B - U_{BE} = 0$$
$$I_B = \frac{U_{BB} - U_{BE}}{R_B}$$

От I_B можем да определим I_C

$$I_C = \beta I_B$$

И накрая изчисляваме U_{CE}

$$U_{CC} - I_C R_C - U_{CE} = 0$$
$$U_{CE} = U_{CC} - I_C R_C$$

• Стъпка 3 Проверяваме дали са изпълнени неравенствата за активната област

$$U_{C\rm E} > 0.7 V$$

$$I_B > 0 \quad I_C > 0 \quad I_E > 0$$

Ако някое от тях не е изпълнено, значи предположението, че работната точка на транзистора е в активната област е погрешно. В такъв случай избираме една от останалите област (отсечка или насищане) и повтаряме стъпки 2 и 3.

3 Пример 1

Определете работната точка на транзистора в схемата от фигура 1. Транзисторът има коефициен на усилване по ток $\beta=300.$ $R_B=10k\Omega,$ $R_C=100\Omega,$ $U_{CC}=9V$ и $U_{BB}=3V$.

3.1 Решение

• Стъпка 1 Приемаме, че транзисторът работи в активната област. Това означава, че следните равенства са изпълнени:

$$U_{BE} = 0.7V$$

$$I_C = \beta I_B$$

• Стъпка 2 Изчисляваме U_{CE}, I_{B} и $I_{C}.$

Според законът на Кирхоф за напреженията:

$$U_{BB} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{3V - 0.7V}{10k\Omega} = 0.23mA$$

От I_B можем да определим I_C

$$I_C = \beta I_B = 300 \cdot 0.23 mA = 69 mA$$

И накрая изчисляваме U_{CE}

$$U_{CE} = U_{CC} - I_{CR} = 9V - 69mA \cdot 100\Omega = 9 - 6.9 = 2.1V$$

• Стъпка 3 Проверяваме дали са изпълнени неравенствата за активната област

$$U_{C{
m E}} > 0.7V \quad 2.1V > 0.7V \quad$$
изпълнено

$$I_B > 0 \quad 0.23 mA > 0 \quad$$
изпълнено

Неравенствата са изпълнени, транзисторът е в активната област и работната му точка е

$$U_{BE} = 0.7V$$
 $I_{B} = 0.23mA$ $U_{CE} = 2.1V$ $I_{C} = 69mA$

4 Пример 2

Определете работната точка на транзистора в схемата от фигура 1. Транзисторът има коефициен на усилване по ток $\beta=500.$ $R_B=10k\Omega,$ $R_C=100\Omega,$ $U_{CC}=9V$ и $U_{BB}=3V$.

4.1 Решение

• Стъпка 1 Приемаме, че транзисторът работи в активната област. Това означава, че следните равенства са изпълнени:

$$U_{BE} = 0.7V$$

$$I_C = \beta I_B$$

• Стъпка 2 Изчисляваме U_{CE} , I_B и I_C .

Прилагаме законът на Кирхоф за напреженията към веригата на базата:

$$U_{BB} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{3V - 0.7V}{10k\Omega} = 0.23mA$$

От базовия ток получаваме колекторният:

$$I_C = \beta I_B = 500 \cdot 0.23 mA = 115 mA$$

И накрая изчисляваме U_{CE}

$$U_{CE} = U_{CC} - I_{CR} = 9V - 115mA \cdot 100\Omega = 9 - 11.5 = -2.5V$$

• Стъпка 3 Проверяваме дали са изпълнени неравенствата за активната област

$$U_{C\mathrm{E}} = -2.5V < 0.7V$$
 не е изпълнено

Неравенството за U_{CE} не е изпълнено, следователно работната точка на транзисторът не е в активната област. Приемаме, че транзисторът е в областта на насищане и повтаряме стъпки 1, 2 и 3.

• **Стъпка 1** Приемаме, че транзисторът работи в областта на насищане. Това означава, че следните равенства са изпълнени:

$$U_{BE} = 0.7V$$

$$U_{CB} = -0.5V \quad U_{CE} = 0.2V$$

 \bullet Стъпка 2 Изчисляваме I_B и I_C .

Прилагаме законът на Кирхоф за напреженията към веригата на базата:

$$I_{BB} - I_{B}R_{B} - U_{BE} = 0$$

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{3V - 0.7V}{10k\Omega} = 0.23mA$$

Прилагаме законът на Кирхоф за напреженията към веригата на колектора:

$$U_{CC} - I_{C}R_{C} - U_{CE} = 0$$

$$I_{C} = \frac{U_{CC} - U_{CE}}{R_{C}} = \frac{9V - 0.2V}{100\Omega} = 0.088A = 88mA$$

• Стъпка 3 Проверяваме дали са изпълнени неравенствата за областта на насищане

$$I_C < eta I_B \quad 88m{
m A} < 500 \cdot 0.23m{
m A} = 115m{
m A}$$
 изпълнено $I_B > 0 \quad 0.23m{
m A} > 0$ изпълнено

Неравенствата са изпълнени, транзисторът е в областта на насищане и работната му точка е

$$U_{BE} = 0.7V$$
 $I_{B} = 0.23mA$ $U_{CE} = 0.2V$ $I_{C} = 88mA$

5 Пример 3

Определете работната точка на транзистора в схемата от фигура 1. Транзисторът има коефициен на усилване по ток $\beta=100.$ $R_B=10k\Omega,$ $R_C=100\Omega,$ $U_{CC}=9V$ и $U_{BB}=-3V$.

5.1 Решение

• Стъпка 1 Приемаме, че транзисторът работи в активната област. Това означава, че следните равенства са изпълнени:

$$U_{BE} = 0.7V$$

$$I_C = \beta I_B$$

• Стъпка 2 Изчисляваме U_{CE}, I_B и I_C .

Според законът на Кирхоф за напреженията:

$$U_{BB} - I_B R_B - U_{BE} = 0$$

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{-3V - 0.7V}{10k\Omega} = -0.37mA$$

Вижда се, че неравенството $I_B>0$ не е изпълнено, затова сменяме предположението за областта на работа.

• Стъпка 1 Приемаме, че транзисторът работи в областта на отсечка. Това означава, че следните равенства са изпълнени:

$$I_B = 0$$
 $I_C = 0$ $I_E = 0$

• Стъпка 2 Изчисляваме $U_{BE},\,U_{CE}$ и $U_{CB}.$

Прилагаме законът на Кирхоф за напреженията към веригата на базата:

$$U_{BB} - I_B R_B - U_{BE} = 0$$

$$U_{BE} = U_{BB} - I_B R_B = -3V - 0 \cdot 10k\Omega = -3V$$

Прилагаме законът на Кирхоф за напреженията към веригата на колектора:

$$U_{CC} - I_C R_C - U_{CE} = 0$$

$$U_{CE} = U_{CC} - I_C R_C = 9V - 0 \cdot 100 = 9V$$

Пак според законът на Кирхоф за напреженията:

$$U_{CE} + U_{CB} + U_{BE} = 0$$

 $U_{CB} = -U_{CE} - U_{CE} = -9V - (-3V) = -6V$

• **Стъпка 3** Проверяваме дали са изпълнени неравенствата за областта на отсечка

$$U_{BE} < 0.7V$$
 $-3V < 0.7V$ изпълнено $U_{CB} > 0$ $6V > 0$ изпълнено

Неравенствата са изпълнени, транзисторът е в областта на насищане и работната му точка е

$$U_{BE} = -3V$$
 $I_B = 0$ $U_{CE} = 9V$ $I_C = 0$