FA470 - Dinâmica de Corpos Rígidos

R.C. HIBBELER, DINÂMICA. MECÂNICA PARA ENGENHARIA, PEARSON; EDIÇÃO: 12ª, 2010

https://github.com/renanSGuedes/FA470-1s2020

Professor: William Martins Vicente PAD: Renan da Silva Guedes

Capítulo 17

CINEMÁTICA DO MOVIMENTO PLANO DE UM CORPO RÍGIDO: FORÇA E ACELERAÇÃO

1. O tronco de cone é formado girando-se a área sombreada em torno do eixo x. Determine o momento de inércia I, e expresse o resultado em termos da massa total m do tronco. O tronco tem uma densidade constante ρ .

Resposta
$$\Rightarrow I_x = \frac{93 m_b^2}{70}$$

2. Determine o momento de massa de inércia I_y do sólido formado girando-se a área sombreada em torno do eixo y. A densidade do material é ρ . Expresse o resultado em termos da massa m do sólido.

Resposta
$$\Rightarrow I_y = \frac{5 m}{18}$$

3. O pêndulo consiste de uma placa tendo uma massa de 6 kg e uma barra fina tendo uma massa de 2 kg. Determine o raio de giração do pêndulo em relação a um eixo perpendicular à página e passando pelo ponto O.

Resposta $\Rightarrow r = 0.944 \,\mathrm{m}$

4. Determine o momento de inércia de massa do pêndulo em relação a um eixo perpendicular à página e passando pelo ponto O. A barra fina tem uma massa de $10\,\mathrm{kg}$ e a esfera tem uma massa de $15\,\mathrm{kg}$

 $\mathbf{Resposta} \Rightarrow I_O = 5.27 \,\mathrm{kg} \,\mathrm{m}^2$

5. A empilhadeira manual tem uma massa de $70 \,\mathrm{kg}$ e centro de massa em G. Se ela levanta a bobina de $120 \,\mathrm{kg}$ com uma aceleração de $3 \,\mathrm{m/s^2}$, determine as reações em cada uma das quatro rodas. A carga é simétrica. Despreze a massa do braço móvel CD.

Resposta $\begin{cases} N_A = 568 \,\mathrm{N} \\ N_B = 544 \,\mathrm{N} \end{cases}$

6. O dragster tem uma massa de 1500 kg e um centro de massa em G. Se não ocorre nenhum deslizamento, determine a força de atrito F_B que tem de ser desenvolvida em cada uma das rodas motrizes traseiras B a fim de criar uma aceleração $a = 6 \,\mathrm{m/s^2}$. Quais são as reações normais de cada roda sobre o solo? Despreze a massa das rodas e suponha que as rodas dianteiras estão livres para rodar.

7. O carrinho de mão tem uma massa de $200\,\mathrm{kg}$ e centro de massa em G. Determine as reações normais em cada uma das duas rodas em A e em B se uma força de $P=50\,\mathrm{N}$ for aplicada à alça. Despreze a massa das rodas.

8. O pêndulo consiste de uma esfera de 15 kg e uma barra fina de 5 kg. Calcule a reação no pino O logo aopós a corda AB ser cortada.

 $Resposta \Rightarrow F_O = 30.12 \, \mathrm{N}$

9. A barra uniforme de $50 \,\mathrm{kg}$ está em repouso em uma posição vertical quando a corda fixada a ela em B é submetida a uma força $P = 250 \,\mathrm{N}$. Determine a aceleração angular inicial da barra e a intensidade da força reativa que o pino A exerce sobre a roda. Despreze a dimensão do pino liso em C.

Resposta
$$\begin{cases} \alpha = 3.33 \,\text{rad/s}^2 \\ F_A = 344.2 \,\text{N} \end{cases}$$

10. No instante mostrado, duas forças atuam sobre a barra fina de $15\,\mathrm{kg}$ que está presa com pino em O. Determine a intensidade da força F e a aceleração angular inicial da barra, de maneira que a reação horizontal que o pino exerce sobre a barra seja $25\,\mathrm{N}$ direcionada para a direita.

Resposta
$$\begin{cases} \alpha = 12.5 \,\text{rad/s}^2 \\ F_A = 150 \,\text{N} \end{cases}$$

11. A tábua de 25 kg está suspensa pelas cordas em C e D. Se essas cordas estão submetidas a forças constantes de 150 N e 225 N, respectivamente, determine a aceleração inicial do centro da tábua e sua aceleração angular. Suponha que a tábua seja uma placa fina. Despreze a massa das polias em E e F.

Resposta
$$\begin{cases} a_G = 5.19 \,\mathrm{m/s^2} \\ \alpha = 6 \,\mathrm{rad/s^2} \end{cases}$$

12. Uma barra uniforme tendo uma massa de $5 \,\mathrm{kg}$ é suportada por um pino em A de um rolete que corre sobre um trilho horizontal. Se a barra está originalmente em repouso, e uma força horizontal $F = 75 \,\mathrm{N}$ é aplicada ao rolete, determine a aceleração do rolete. Despreze a massa do rolete e sua dimensão d nos cálculos.

Resposta $\Rightarrow a_A = 60 \,\mathrm{m/s^2}$

13. Resolva o Problema 12 supondo que o rolete em A é substituído por um bloco deslizante tendo uma massa desprezível. O coeficiente de atrito cinético entre o bloco e o trilho é $\mu_k = 0.2$. Despreze a dimensão d e a dimensão do bloco nos cálculos.

Resposta $\Rightarrow a = 52.15 \,\mathrm{m/s^2}$

14. Se o caminhão acelera a uma razão constante de $6\,\mathrm{m/s^2}$, partindo do repouso, determine a aceleração angular inicial da escada de $20\,\mathrm{kg}$. A escada pode ser considerada como uma barra fina uniforme. O apoio em B é liso.

Resposta $\Rightarrow \alpha = 0.109 \, \text{rad/s}^2$

15. A bobina tem uma massa de 100 kg e um raio de giração $k_G=0.3\,\mathrm{m}$. Se os coeficientes de atrito cinético e estático em A são $\mu_s=0.2$ e $\mu_k=0.15$, respectivamente, determine a aceleração angular da bobina se $P=600\,\mathrm{N}$

Resposta $\Rightarrow \alpha = 15.6 \, \text{rad/s}^2$

