

Huffman Coding

J.-S. Roger Jang (張智星) MIR Lab, CSIE Dept. National Taiwan University

jang@mirlab.org, http://mirlab.org/jang

2019/5/28

Optimal Merge Pattern

Optimal merge pattern

- Goal: An optimal way of merge n sorted lists, where the merge cost is proportional to the length of the lists to be merged.
- Fact: greedy algorithm works
- Application: Huffman coding

How to Merge Two Sorted Lists?

- A and B are two sorted lists:
 - A: 1 3 7 9 12 25
 - B: 2 5 10 11 13 15 17 27 39
- To merge A and B into C:
 - Use two pointer to point to the first elements
 - Output the small one and advance the pointer
- Complex of merge: O(|A|+|B|)=O(m+n)

How to Merge n Sorted Lists?

- N=3
 - Lists: A, B, C
 - Sizes: 1, 5, 2
- N=4
 - Lists: A, B, C, D
 - Sizes: 2, 5, 3, 8
- Greedy algorithm works!
 - Objection function = $\sum_{i=1}^{n} s_i d_i$

Example of Optimal Merge Pattern

Optimal merge pattern

• Lists: A, B, C, D, E

• Sizes: 2, 5, 4, 3, 8

Quiz!

Huffman Coding

- Goal: To encode a message to be sent or stored with the least no. of bits → lossless data compression
- Example
 - Message: bccabbddaeccbbaeddcc
 - Simple encoding: To encode each character as a ASCII code

$$\circ$$
 c \rightarrow 99 = 01100011

o d
$$\rightarrow$$
 100 = 01100100

Message Encoding by ASCII

Example

- Message: bccabbddaeccbbaeddcc
- Simple coding by ASCII
 - Simple encoding: To encode each character as a ASCII code
 - o a → 97 = 01100001
 - o b → 98 = 01100010
 - o c → 99 = 01100011
 - o d → 100 = 01100100
 - o e → 101 = 01100110
 - Total bits = 8*20 = 160 bits

Message Encoding by Custom Table

- Example
 - Message: bccabbddaeccbbaeddcc
- Fixed-length coding by a custom table
 - Encoding via a custom table, with 3 bits for each character
 - o a → 000
 - o b → 001
 - o c → 010
 - o d → 011
 - o e → 100
 - Total bits = 3*20 + 8*5 + 3*5 = 115 bits
 - Message: 3*20 bits
 - Characters: 8*5 bits
 - o Codes: 3*5 bits

Huffman Encoding

Example

Message: bccabbddaeccbbaeddcc

Quiz!

- Variable-length coding proposed by Huffman in 1951
 - Encoding via a custom table, with 3 bits for each character
 - a: count=3, code=001 \rightarrow 3*3 = 9 bits
 - b: count=5, code= $10 \rightarrow 2*5 = 10$ bits
 - o c: count=6, code= $11 \rightarrow 2*6 = 12$ bits
 - o d: count=4, code= $01 \rightarrow 2*4 = 8$ bits
 - e: count=2, code=000 \rightarrow 3*2 = 6 bits
 - Total bits = 45 + 8*5 + 12 = 97 bits
 - Message: 45 bits
 - Characters: 8*5 bits
 - o Codes: 3+2+2+2+3 = 12 bits

2

3

4 d 5 h 6

Decoding

- Original message: bccabbddaeccbbaeddcc
- Encoded: 10111100110100101001...
- Follow the tree to do decoding (just like tries)

b

Exercise

- Use Huffman coding to encode "catch the cat".
 - What is the count for each character (including space)?
 - Draw the Huffman tree. What is the code for each character?
 - What is the total no. of bits for this coding scheme?

Youtube Tutorials

- Optimal merge pattern
- Huffman coding