Balanced Trees (**Red-Black** Trees)

Warren Kim

Quick Definition

Definition

A **red-black** tree is a type of **self-balancing** binary search tree that guarantees $\mathcal{O}(\log n)$ performance.

Applications

Red-Black Trees have a variety of applications. Some include:

- → Linux CPU scheduler (Completely Fair Scheduler)
- → Linux Virtual Memory Areas (VMA)
- → STL Data Structures (e.g. C++'s std::map, Java's HashMap)
- \rightarrow Graph algorithm optimizations (for AI/ML)[e.g. K-mean clustering]
- → Priority Queues (e.g. Range Queries)

Motivation

Why do we want balanced binary trees?

 \rightarrow Raw binary search tree performance is highly dependant on input order.

 \rightarrow We want to ensure $\mathcal{O}(\log n)$ performance.

Intuition

How do we balance binary trees?

We can dynamically balance the tree!

- \rightarrow We can add metadata¹ to our Node struct.
- \rightarrow We can define a set of conditions that enforce balance.

¹Metadata: Additional member variables

Definition

A red-black tree is a type of self-balancing binary search tree that guarantees $\mathcal{O}(\log n)$ search, insertion, and deletion operations with the following properties:

(i) Color: Every node is either **red** or **black**

```
enum Color { RED, BLACK };

struct Node {
    Color color;
    Node *left;
    Node *right;
    Node *parent;

    int data;
};
```

Definition

A red-black tree is a type of self-balancing binary search tree that guarantees $\mathcal{O}(\log n)$ search, insertion, and deletion operations with the following properties:

- (i) Color: Every node is either **red** of **black**
- (ii) Internal: A **red** node does not have a **red** child

Valid

Definition

- (i) Color: Every node is either **red** or **black**
- (ii) Internal: A red node does not have a red child
- (iii) External: All nil nodes are black

Definition

- (i) Color: Every node is either **red** or **black**
- (ii) Internal: A red node does not have a red child
- (iii) External: All nil nodes are black
- (iv) Root: The root node is always **black**

Definition

- (i) Color: Every node is either **red** or **black**
- (ii) Internal: A red node does not have a red child
- (iii) External: All nil nodes are black
- (iv) Root: The root node is always black
- (v) Depth: Every path from the root to any nil node passes through the same number of **black** nodes

Depth Property

(v) Depth: Every path from the root to any nil node passes through the same number of **black** nodes

Valid

Depth Property

(v) Depth: Every path from the root to any nil node passes through the same number of **black** nodes

Invalid

Depth Property

Valid

(v) Depth: Every path from the root to any nil node passes through the same number of **black** nodes

Definition

- (i) Color: Every node is either **red** or **black**
- (ii) Internal: A **red** node does not have a **red** child
- (iii) External: All nil nodes are **black**
- (iv) Root: The root node is always **black**
- (v) Depth: Every path from the root to any nil node passes through the same number of **black** nodes

Suppose we have a node z to insert into our red-black tree. Then,

Suppose we have a node z to insert into our red-black tree. Then, (i) Like a BST, insert z.

Suppose we have a node z to insert into our red-black tree. Then,

(i) Like a BST, insert z.

(ii) Color $z \, red$.

Suppose we have a node z to insert into our ${\it red-black}$ tree. Then,

(i) Like a BST, insert z.

(ii) Color z red.

(iii) Fix double red violations, if any.

Suppose we have a node z to insert into our red-black tree. Then,

- (i) Like a BST, insert z.
- (ii) Color $z \, red$.
- (iii) Fix double **red** violations, if any.
- (iv) Recursively fix violations upward.

Double Red Violations

Recall Property (ii): A red node does not have a red child.

When we insert our node z (red by definition), its parent may be red. Below are examples of such cases.

Terminology

With respect to inserted node z,

- \rightarrow Parent (p): z's direct parent
- $\rightarrow Uncle (u)$: p's sibling
- \rightarrow Grandparent (g): p's parent

Terminology

With respect to inserted node z,

- \rightarrow Parent (p): z's direct parent
- $\rightarrow Uncle (u)$: p's sibling
- \rightarrow Grandparent (g): p's parent

There are two cases:

Terminology

With respect to inserted node z,

- \rightarrow Parent (p): z's direct parent
- $\rightarrow Uncle (u)$: p's sibling
- \rightarrow Grandparent (g): p's parent

There are two cases:

(i) **Recolor:** If both the parent and uncle are **red**, perform a recolor.

Terminology

With respect to inserted node z,

- \rightarrow Parent (p): z's direct parent
- $\rightarrow Uncle (u)$: p's sibling
- \rightarrow Grandparent (g): p's parent

There are two cases:

- (i) **Recolor:** If both the parent and uncle are **red**, perform a recolor.
- (ii) **Restructure:** If the parent is **red** but the uncle is **black**, perform a tri-node restructure.

Recolor

Recolor

Recolor

Recolor (Recursive)

Recolor (Recursive)

Recolor (Recursive)

Recolor (Recursive)

Recolor (Recursive)

Tri-Node Restructure

There are four cases:

(i) Left-Left

(ii) Right-Right

(iii) Left-Right

(iv) Right-Left

Case: Left-Left (Simple)

Case: Left-Left (Simple)

Case: Left-Left (Simple)

Case: Left-Left (General)

Case: Left-Left (General)

Case: Right-Right (Simple)

Case: Right-Right (General)

Case: Left-Right (General)

Step 1

Case: Left-Right (General)

Step 2

Case: Left-Right (General)

Step 3

Case: Right-Left (Simple)

Case: Right-Left (General)

Here, \triangle represents a subtree and \cdots represents the rest of the tree.

Time and Space Complexities

```
\rightarrow Insertion: \mathcal{O}(\log n)
```

$$\rightarrow$$
 Deletion: $\mathcal{O}(\log n)$

$$\rightarrow$$
 Search: $\mathcal{O}(\log n)$

$$\rightarrow$$
 Space: $\mathcal{O}(n)$

End

Thank you!

Below are slides that didn't make the cut.

Corollaries

Proposition

If a node z has exactly one child, c, then (a) c is **red**, (b) z is **black**, and (c) c has no children.

Proof. Suppose we have a valid red-black tree. Consider a node z with exactly one child. Without loss of generality, choose z's left node to be the child and call it c.

- (a) z passes through no **black** nodes on the right side by assumption. If c were **black**, then z would pass through 1 **black** node, a contradiction since this violates the depth property.
- (b) By (a), z's child is **red** and by the *internal property*, z is **black**.
- (c) Since z passes through no **black** nodes on the right side by assumption, z cannot pass through any **black** nodes on the left side by the **the depth** property. Then, since c is **red** by (a), c has only nil nodes

Height of a Red-Black Tree

Theorem

A **red-black** tree with n nodes has a height h that is $\mathcal{O}(\log n)$.

Proof. Suppose we have a red-black tree with n nodes and height h. Let b be the number of black nodes on the shortest path from root to any leaf. In the worst case, the longest path alternates between red and black nodes and thus has a height of 2b. Then, h is bounded above by 2b; that is, $h \leq 2b$. There are $2^b - 1 \leq n$ nodes in this tree. Solving for b, we get $b \leq \log(n+1)$. Substituting b, we get $b \leq \log(n+1) \leq h \leq 2b \leq 2\log(n+1)$ so b is bounded below by $\log(n+1)$ and above by $2\log(n+1)$; that is, $\log(n+1) \leq h \leq 2\log(n+1)$. So, b is $\mathcal{O}(\log n)$. \square

 $Case:\ Right\text{-}Right$

 $Case:\ Right\text{-}Right$

 $Case:\ Right\text{-}Right$

 $Case:\ Recolor$

 $Case:\ Recolor$

 $Case:\ Right\text{-}Right$

 $Case:\ Right\text{-}Right$

 $Case:\ Right\text{-}Right$

 $Case:\ Recolor$

 $Case:\ Recolor$

Case: Recolor

