A SHORT PROOF OF ROTH'S THEOREM

NEIL LYALL ÁKOS MAGYAR

Roth's Theorem. Let $\delta > 0$ and $N \ge \exp\exp(C\delta^{-1})$ for some absolute constant C. Then any $A \subset [1, N]$ of size $|A| = \delta N$ necessarily contains a (non-trivial) arithmetic progression of length three.

With the aid of the Fourier transform (on **Z**) we can count the number of 3AP in A, that is the number of solutions to the equation $m_1 + m_2 = 2m_3$ with $m_1, m_2, m_3 \in A$, namely

$$\mathcal{N} = \sum_{m_1 \in A} \sum_{m_2 \in A} \sum_{m_3 \in A} \int_0^1 e^{2\pi i (m_1 + m_2 - 2m_3)\alpha} d\alpha = \int_0^1 \widehat{1_A}(\alpha)^2 \widehat{1_A}(-2\alpha) d\alpha.$$

Definition 1. We say that A is (ε, L) regular if every progression P, with $|P| \geq L$, satisfies

$$|A \cap P| \le (\delta + \varepsilon)|P|.$$

Definition 2. We define the balanced function of A to be

$$f_A(m) = 1_A(m) - \delta 1_{[1,N]}(m).$$

We note that $\sum f_A(m) = 0$ and now $\underline{\text{fix}} \ \varepsilon = \delta^2/10$ and $L = \varepsilon N^{1/2}$.

Proposition. If A is (ε, L) regular, then $|\widehat{f_A}(\alpha)| \leq 8\varepsilon N$ uniformly in α .

Corollary. If A is (ε, L) regular, then A contains at least $\delta^3 N^2/10$ non-trivial 3AP.

Proof of Corollary. Writing $1_A = \delta 1_{[1,N]} + f_A$ we obtain

$$\mathcal{N} = \delta \int_0^1 \widehat{1_A(\alpha)^2} \widehat{1_{[1,N]}} (-2\alpha) \, d\alpha + \int_0^1 \widehat{1_A(\alpha)^2} \widehat{f_A} (-2\alpha) \, d\alpha = \text{Main} + \text{Error.}$$

Now it is easy to see that

$$\mathrm{Main} = \delta \sum_{m_1 \in A} \sum_{m_2 \in A} \sum_{m_3 \in [1,N]} \int_0^1 e^{2\pi i (m_1 + m_2 - 2m_3)\alpha} d\alpha = \delta |A|^2 = \delta^3 N^2,$$

while

$$|\text{Error}| \le \sup_{\alpha} |\widehat{f_A}(\alpha)| \int_0^1 |\widehat{1_A}(\alpha)|^2 d\alpha \le 8\varepsilon \delta N^2.$$

This completes the proof of the corollary as there are only δN trivial 3AP in A.

Proof of Proposition. Let $\alpha \in [0,1]$. By Dirichlet, there exists $q \leq 2L$ such that $\langle q\alpha \rangle \leq 1/2L$. Defining

$$P_0 = \{ \ell q : |\ell| \le L/2 \}$$

it then follows that

$$\widehat{1_{P_0}}(\alpha) = \sum_{|\ell| \le L/2} e^{2\pi i \ell q \alpha} \ge L/2$$

and hence that

$$\sum_{m} |f_A * 1_{P_0}(m)| \ge |\widehat{f_A}(\alpha)| |\widehat{1_{P_0}}(\alpha)| \ge \frac{L}{2} |\widehat{f_A}(\alpha)|.$$

But,

$$f_A * 1_{P_0}(m) = \sum_{|\ell| \le L/2} f_A(m - \ell q) = |A \cap P_m| - \delta |P_m \cap [1, N]| \le \varepsilon L$$

where $P_m = m + P_0 \subseteq [1, N]$. Thus, after accounting for the "tails", we can conclude that

$$\sum_{m} (f_A * 1_{P_0})_+(m) \le \varepsilon LN + 2L^3 \le 2\varepsilon LN$$

and consequently, since $\sum_{m} f_A * 1_{P_0}(m) = 0$ and $|g| = 2g_+ - g$, that

$$\sum_{m} |f_A * 1_{P_0}(m)| \le 4\varepsilon LN.$$