מכון טכנולוגי לישראל הטכניון –

אזרחית וסביבתית הפקולטה להנדסה

המסלול להנדסת מיפוי וגיאו-אינפורמציה

אביב תשפ"ג **– 2022/23**

תרגיל 1 – סימולציה ופתרון של נתוני מודל פוטוגרמטרי

חלק ראשון – סימולציה

כתבו קוד פייתון אשר יוצר נתונים סינתטיים של צמד תצלומי אוויר. הקלט מוגדר על ידי הפרמטרים הבאים:

- אורך מוקד (במילימטרים)
- גודל פריים (במילימטרים)
 - גובה טיסה (במטרים)
 - אחוז חפיפה בין תמונות
- תבנית לפיזור נקודות הקשר 3 נקודות באמצע הפריים, 4 נקודות בפינות הפריים
 הערה: יש לסנן נקודות קשר שמופיעות בתמונה אחת בלבד
 - אופן פיזור הבקרה:
 - ס אקראית ברחבי כל אוזר החיפה (דרוש מספר נקודות בקרה לפיזור), ⊙
- ס אקראית ברחבי התמונה הראשונה בלבד (דרוש מספר נקודות בקרה לפיזור),
 - ארבע נקודות בפינות "הבלוק" ועוד אחת במרכזו 🔾
- סטיית התקן של גודל זוויות הסיבוב עבור כל תצלום (בשניות קשת) יש להגריל מספר

ניתן להניח קרקע מישורית בגובה אפס.

פלט הסימולציה יכלול:

- רשימת האוריינטציות של כל תצלום.
- רשימת קואורדינאטות קרקעיות של נקודות בקרה ונקודות קשר (ניתן לפצל לשתי רשימות במידה ונוח יותר).
 - רשימת דגימות של כל נקודה (בקרה וקשר) בכל תצלום בו היא נראית.
 - שרטוט של המודל שנוצר כאשר:
 - כל תצלום ישורטט לפי המיקום של ארבע פינותיו בקרקע ויצבע בצבע אקראי 🏻 🔾
 - נקודות קשר תסומנה כנקודות כחולות
 - ∘ נקודות בקרה תסומנה כמשולשים אדומים

<u>הערה</u>: קוד זה יורחב בהמשך הקורס לסימולציה של נתוני בלוק שלם. מומלץ לממש בצורה שתאפשר הרחבה בייחוד עבור החלקים שאחראים על פיזור נקודות הקשר והבקרה.

חלק שני – פתרון מודל פוטוגרמטרי

כתבו קוד פייתון שמקבל את תוצרי הסימולציה ומחשב את פרמטרי האוריינטציה החיצונית של כל אחד מהתצלומים וקואורדינאטות נקודות הקשר.

חשבו את המשוואות הנורמליות בשתי דרכים:

- חישוב על ידי בנייה של מטריצת הנגזרות החלקיות בצורתה המלאה.
 - חישוב על סמך בלוקים של הנגזרות החלקיות.

השוו בין שיטות החישוב מבחינת ערכים של המטריצה הנורמלית ומבחינת זמני ריצה.

פרמטרים נוספים שיש להגדיר לפני פתרון:

המסלול להנדסת מיפוי וגיאו-אינפורמציה

– מכון טכנולוגי לישראל הטכניון

אזרחית וסביבתית הפקולטה להנדסה

היבטים נומריים בפתרון – 016835 תצלומים

אביב תשפ"ג **– 2022/23**

- גודל הרעש האקראי שיש להוסיף לכל דגימה של כל הנקודות (במיקרונים)
 - גודל אקראי שיש להוסיף למיקומי התצלומים (במטרים)
 - גודל אקראי שיש להוסיף לערכי זוויות הסיבוב (בשניות קשת)
 - גודל אקראי שיש להוסיף למיקומי נקודות הקשר (במטרים)

<u>:הגשה</u>

מועד הגשה – 16/5/2023

ההגשה ביחידים או בזוגות בלבד.

בנוסף לקבצי הקוד ותוצאות ההרצה יש להגיש דוח אשר יכיל:

- תיאור דרך המימוש עבור שני החלקים. במידה ונעשה שימוש במימוש מבוסס אובייקטים יש לתאר את המבנה של כל מחלקה (איברים, מתודות וכו').
 - תוצאת הרצה עבור החלק הראשון (כל הפלטים של הסימולציה, בייחוד שרטוט המודל.
 - תוצאות הרצה עבור פתרון הבלוק.
- השוואה בין פתרון הבלוק בשיטה הרגילה לבין בנייה ישירה של המשוואות הנורמליות (כולל השוואה בין הערכים של המטריצה הנורמלית בשתי השיטות).