Fonaments/Complements de química (PA1-PA2)

- Termodinàmica i equilibri
- Equilibris en dissolució
- Gasos
- Redox
- Diagrames de potencials
- Cinètica química
- Simetria

3. SIMETRIA MOLECULAR

- 3.1, Introducció a la simetria
- 3 2. Operacions i elements de simetria
 - 3.2.1. Identitat (E)
 - 3.2.2. Eix de simetria (C_n)
 - 3.2.3. Pla de simetria (σ)
 - 3.2.4. Centre d'inversió (i)
 - 3.2.5. Eix de rotació impropi (S_n)
- 3.3. Introducció a la teoria de Grups
 - 3.3.1. Propietats bàsiques d'un grup
- 3.4. Classificació de les molècules: Grups puntuals de simetria
 - 3.4.1. Grups C_1 , C_i i C_s
 - 3.4.2. Grups C_n , C_{nv} i C_{nh}
 - 3.4.3. Grups D_n , D_{nh} i D_{nd}
 - 3.4.4. Grups S_n
 - 3.4.5. Grups cúbics
 - 3.4.6. Exemple- PCI₅
- 3.5. Algunes conseqüències immediates de la simetria
 - 3.5.1. Polaritat
 - 3.5.2. Quiralitat

Simetria molecular Introducció

Simetria

Invariància davant possibles transformacions

Què és el que no varia?

Quines són les possibles transformacions?

Objectes
Sistemes
Vectors
Equacions

Orientacions
Bescanvis

Translacions

Estètica: sensació imprecisa d'harmonia, proporcionalitat i equilibri

Física: concepte precís d'equilibri i autosimilitud

Simetria molecular Operacions i elements de simetria

Operació de simetria

Transformació que canvia l'orientació d'un sistema a una altra que no pot ser distingida de l'original

Rotació, reflexió, inversió, etc.

Element de simetria

Eix, pla, punt (centre), etc.

Correspon a no fer res
Totes les molècules tenen aquest element de simetria

Per defecte en sentit horari

n

□ Ordre de l'eix

Eix principal: el de major ordre

Operacions consecutives: C_n^m

Correspon a la reflexió sobre el pla

3 tipus Posició respecte al l'eix principal

Perpendicular a l'eix principal

Pla de simetria vertical (σ_v)

Conté l'eix principal

Molècules: conté els enllaços

 $\sigma_h + \sigma_v \implies C_2$ perpendicular al principal

Correspon a la reflexió sobre el pla

3 tipus Posició respecte al l'eix principal

Pla de simetria dièdric (σ_d)

Conté l'eix principal

Molècules: bisecta els enllaços (bisecta els plans verticals)

$$\sigma_h + \sigma_d \implies C_2$$
 perpendicular al principal

Nombre de plans que contenen un $C_n = n$

$$\sigma_v + \sigma_d$$

Correspon a la reflexió sobre el pla

3 tipus Posició respecte al l'eix principal

Operacions: σ_v $\sigma^2 = E$

Operacions: σ_d

Pla de simetria (σ)

Reflexió

Correspon a la reflexió sobre el pla

3 tipus

Posició respecte al l'eix principal

Molècula Plana

$$\sigma_h = E$$
 (tots dos existeixen)

Nombre de C_2 continguts al $\sigma_h = n$

Centre d'inversió o simetria (i) 📛 Inversió

Correspon a la inversió de la posició dels àtoms (x,y,z) ⇒ (-x,-y-z)

Centre d'inversió (i) 💳 🗀 Inversió

σ

Pot existir i però no C_2 i σ

Si existeixen C_2 i σ , també existeix i

Correspon a una rotació de 360/n graus seguit d'una reflexió en un pla de simetria perpendicular a l'eix de rotació

- Pot existir S₄ però no C₄ i σ_h
- Si existeixen C₄ i σ_h, també existeix S₄

•
$$S_1 = \sigma_h$$

•
$$S_2 = i$$

- Si n és parell
 - n operacions de simetria: S_n^1 , S_n^2 , ... $S_n^n = E$
 - Existirà C_{n/2}

- Si n és senar
 - 2n operacions de simetria: S_n^1 , S_n^2 , ... $S_n^n = \sigma_h$, ... $S_n^{2n} = E$
 - Existirà C_n i σ_h

Simetria molecular Operacions de simetria com a grup Introducció a la teoria de grups

Les operacions de simetria d'una molècula formen un grup

Col·lecció d'elements (en sentit matemàtic) finita o infinita que tenen certes propietats en comú que permeten manipular-los algebraicament

Propietats bàsiques d'un grup

1. Qualsevol combinació de dos o més elements del grup ha de ser equivalent a un altre element del mateix grup

Qualsevol successió d'operacions de simetria es pot expressar com una altra única operació de simetria

$$\hat{A}\hat{O} = \hat{U}$$

Propietats bàsiques d'un grup

La successió d'operacions de simetria pot no complir la propietat commutativa

$\sigma_{\rm d}C_3^{\ 1}=\sigma_{\rm d}$	$C_3^1 \sigma_d = \sigma_d$ "	$\sigma_{\rm d}$ ' $C_3^2 = \sigma_{\rm d}$	$C_3^2 \sigma_d' = \sigma_d''$	$\sigma_{\rm d}\sigma_{\rm d}' = C_3^{1}$	$\sigma_{\rm d}$ ' $\sigma_{\rm d} = C_3^2$
$\sigma_{\rm d}C_3^2 = \sigma_{\rm d}$ "	$C_3^2 \sigma_d = \sigma_d$	$\sigma_{\rm d}$ " $C_3^1 = \sigma_{\rm d}$	$C_3^1 \sigma_d$ " = σ_d '	$\sigma_{\rm d}\sigma_{\rm d}$ " = C_3^2	$\sigma_{\rm d}$ " $\sigma_{\rm d} = C_3^{1}$
$\sigma_{\rm d}$ ' $C_3^1 = \sigma_{\rm d}$ "	$C_3^1 \sigma_d' = \sigma_d$	$\sigma_{\rm d}$ " $C_3^2 = \sigma_{\rm d}$	$C_3^1 \sigma_d$ " = σ_d	$\sigma_{\rm d}$ ' $\sigma_{\rm d}$ " = C_3^1	$\sigma_{\rm d}$ " $\sigma_{\rm d}$ ' = C_3^2

Propietats bàsiques d'un grup

2. Al grup ha d'existir un element que en combinar-se amb els altres els deixa inalterats

L'operació identitat (E) correspon a no fer res

Propietats bàsiques d'un grup

3. Qualsevol combinació de tres o més elements del grup ha de complir la propietat associativa

La successió d'operacions de simetria ha de complir la propietat associativa

$$\hat{U}(\hat{A}\hat{O}) = (\hat{U}\hat{A})\hat{O}$$

$$\sigma_{d}'(C_{3}^{1}\sigma_{d}) = \sigma_{d}'\sigma_{d}'' = C_{3}^{1}$$
$$(\sigma_{d}'C_{3}^{1})\sigma_{d} = \sigma_{d}''\sigma_{d} = C_{3}^{1}$$

$$\sigma_{d}$$
' $(C_3^1 \sigma_{d}) = (\sigma_{d}$ ' $C_3^1) \sigma_{d}$

$\sigma_{\rm d}C_3^{\ 1}=\sigma_{\rm d}$	$C_3^1 \sigma_d = \sigma_d$ "	$\sigma_{\rm d}$ ' $C_3^2 = \sigma_{\rm d}$	$C_3^2 \sigma_d' = \sigma_d''$	$\sigma_{\rm d}\sigma_{\rm d}' = C_3^{1}$	$\sigma_{\rm d}$ ' $\sigma_{\rm d} = C_3^2$
$\sigma_{\rm d}C_3^2 = \sigma_{\rm d}$ "	$C_3^2 \sigma_d = \sigma_d$	$\sigma_{\rm d}$ " $C_3^1 = \sigma_{\rm d}$	$C_3^1 \sigma_d$ " = σ_d '	$\sigma_{\rm d}\sigma_{\rm d}$ " = C_3^2	$\sigma_{\rm d}$ " $\sigma_{\rm d} = C_3^{\ 1}$
$\sigma_{\rm d}$ ' $C_3^1 = \sigma_{\rm d}$ "	$C_3^1 \sigma_d' = \sigma_d$	$\sigma_{\rm d}$ " $C_3^2 = \sigma_{\rm d}$	$C_3{}^1\sigma_d$ " = σ_d	$\sigma_{\rm d}$ ' $\sigma_{\rm d}$ " = C_3^{1}	$\sigma_{\rm d}$ " $\sigma_{\rm d}$ " = C_3^2

Propietats bàsiques d'un grup

4. Qualsevol element del grup ha de tenir el seu propi invers

Qualsevol operació de simetria (Â) ha de tenir la seva inversa (Â-1)

$$\hat{A} \hat{A}^{-1} = E = \hat{A}^{-1} \hat{A}$$

De forma general:

$$E^{-1} = E$$

$$\sigma^{2} = E \Longrightarrow \sigma^{-1} = \sigma$$

$$i^{2} = E \Longrightarrow i^{-1} = i$$

$$(C_{n}^{m})^{-1} = C_{n}^{(n-m)}$$

$$(S_{n}^{m})^{-1} = S_{n}^{(n-m)} \iff \text{si n \'es parell}$$

$$(S_{n}^{m})^{-1} = S_{n}^{(2n-m)} \iff \text{si n \'es senar}$$

Propietats bàsiques d'un grup

Qualsevol operació de simetria (Â) ha de tenir la seva inversa (Â-1)

Simetria molecular Operacions de simetria com a grup Introducció a la teoria de grups

Les operacions de simetria d'una molècula formen un grup

Grup puntual

Les molècules es poden classificar

Grups puntuals

Operacions de simetria de la molècula

Classificació de les molècules. Grups puntuals de simetria

Conjunt d'elements de simetria de una molècula

Grup puntual de simetria

Nomenclatura

- Schoenflies
 - Per molècules individuals
 - Utilitzada a espectroscòpia
- Hermann-Mauguin
 - Per cristalls
 - Utilitzada a cristal·lografia

Schoenflies	HM symbol	3	4	5	6	7	8	9	10	11	12		∞
C_n	n	3	4	5	6	7	8	9	10	11	12		∞
-	n_{m}	3m		5m		7m		9m		11m			
C_{nv}	nmm		4mm		6mm		8mm		10mm		12mm		∞m
S_{2n}		3		5		7		9		11			
S_n	\bar{n}		4				8				12		~
$C_{\frac{n}{2}h}$					<u>6</u>				10				$\frac{\infty}{m}$
C_{nh}	$\frac{n}{m}$		$\frac{4}{m}$		$\frac{6}{m}$		$\frac{8}{m}$		$\frac{10}{m}$		12 m		
D	n2	n2 32		52		72		92		11 2			200
D_n	n22		422		622		822		1022		1222		∞2
D_{nd}	$\bar{n}\frac{2}{m}$	$\frac{\overline{3}}{m}$		$\frac{\overline{5}}{m}$		$\frac{7}{m}$		$\frac{\overline{9}2}{m}$		$\frac{1}{1}\frac{2}{m}$			
$D_{\frac{n}{2}d}$	$\bar{n}2m =$		42m				82m				12 2m		∞
$D_{\frac{n}{2}h}$	$= \bar{n}m2$				6m2				10m2			$\frac{1}{n}$	$\frac{\infty}{m}\eta$
D_{nh}	$\frac{n}{m}\frac{2}{m}\frac{2}{m}$		$\frac{4}{m}\frac{2}{m}\frac{2}{m}$		$\frac{6}{m}\frac{2}{m}\frac{2}{m}$		$\frac{8}{m}\frac{2}{m}\frac{2}{m}$		$\frac{10}{m} \frac{2}{m} \frac{2}{m}$		$\frac{12}{m} \frac{2}{m} \frac{2}{m}$		

Classificació de les molècules. Grups puntuals de simetria

Notació d'Schonflies molècules

Grup puntual: C_s

Notació de Hermann-Mauguin

Estructures cristalines

Grup puntual: m

Grup espacial: C_{mca}

Classificació de les molècules. Grups puntuals de simetria

Eina de per la classificació

Diagrama de flux

Classificació de les molècules. Grups puntuals de simetria

Grups C_1 , C_i i C_s

Grup	Elements
C_1	Е
C_{i}	E, i
Cs	E, σ_d

Classificació de les molècules. Grups puntuals de simetria

Classificació de les molècules. Grups puntuals de simetria

Classificació de les molècules. Grups puntuals de simetria

Grups D_n , D_{nh} i D_{nd}

Grup	Elements
D_n	$E, C_n, n \cdot C_2$
D_{nh}	E, C_n , $n \cdot C_2$, σ_h , S_n , $n \cdot \sigma_v$, (i)*
D_{nd}	E, C_n , $n \cdot C_2$, $n \cdot \sigma_d$, S_{2n} , $(i)^{\forall}$

 D_{2h}

Classificació de les molècules. Grups puntuals de simetria

Grups D_n , D_{nh} i D_{nd}

Grup	Elements
D_n	$E, C_n, n \cdot C_2$
D_{nh}	E, C_n , $n \cdot C_2$, σ_h , $n \cdot \sigma_v$, (i)*
D_{nd}	E, C_n , $n \cdot C_2$, $n \cdot \sigma_d$, S_{2n} , $(i)^{\forall}$

* Per n parell, * Per n senar

Classificació de les molècules. Grups puntuals de simetria

Grups S_n

Grup	Elements		
S_n (n parell)	$E, C_{n/2}, S_n, (i)^*$		

* Per n > 4

Classificació de les molècules. Grups puntuals de simetria

Grups Cúbics

Grups Tetraèdrics: T, T_d , T_h

Grup	Elements
T	E, 4·C ₃ , 3·C ₂
T_d	E, $4 \cdot C_3$, $3 \cdot C_2$, $6 \cdot \sigma_d$, $3 \cdot S_4$
T_h	E, $4 \cdot C_3$, $3 \cdot C_2$, $3 \cdot \sigma_h$, $4 \cdot S_6$, i

 T_d

Classificació de les molècules. Grups puntuals de simetria

Grups Cúbics

Grups Octaèdrics: O, O_h

Grup	Elements
0	E, 3-C ₄ , 4-C ₃ , 9-C ₂
O_h	E, $3 \cdot C_4$, $4 \cdot C_3$, $6 \cdot C_2$, $3 \cdot \sigma_h$, $6 \sigma_d$, $4 \cdot S_6$, $3 \cdot S_4$, i

Classificació de les molècules. Grups puntuals de simetria

Grups Cúbics

Grups Icosaèdrics: I, I_h

Grup	Elements
1	E, 6·C ₅ , 10·C ₃ , 15·C ₂
I_h	E, $6 \cdot C_5$, $10 \cdot C_3$, $15 \cdot C_2$, $15 \cdot \sigma$, $6 \cdot S_{10}$, $10 \cdot S_6$, i

Simetria molecular Consequències de la simetria Consequències immediates

Polaritat

Molècula polar

Moment dipolar elèctric permanent

Resultat de la suma vectorial dels moments dipolars de cada enllaç

Les operacions de simetria que relacionen els enllaços entre ells cancel·len la resultant de la seva suma vectorial

$$BF_{3} \xrightarrow{\text{VSEPR}} Plana \ trigonal \xrightarrow{\text{Simetria}} D_{3}h, \ \chi_{(F)} > \chi_{(B)}$$

$$F_{3} \xrightarrow{\mu_{1}} F_{1}$$

$$C_{3} \cdot \mu_{1} = \mu_{2}$$

$$C_{3}^{2} \cdot \mu_{1} = \mu_{3}$$

$$\mu_{t} = \mu_{1} + \mu_{2} + \mu_{3} = 0$$

Simetria molecular Consequències de la simetria Consequències immediates

Polaritat

Molècula polar

No ha de presentar: i, σ_h , o C_2 perpendiculars a l'eix principal

Ha de pertànyer a un grup puntual: C_1 , C_s , C_n o C_{nv}

Polar (μ sobre l'eix principal)

Polar (μ sobre l'eix principal)

Apolar

Consequències de la simetria Consequències immediates

Quiralitat

Molècula quiral

No es pot sobreposar a la seva imatge especular

Opticament actives

 C_1

 C_2

 D_{z}

Consequències de la simetria Consequències immediates

Quiralitat

Molècula quiral

No ha de presentar cap eix de rotació impropi, S_n

(incloent
$$S_1 = \sigma i S_2 = i$$
)

Ha de pertànyer a un grup puntual: C_1 , C_n , D_n , T, O, I

Consequències de la simetria Altres consequències

Vibracions moleculars

Absorció d'energia (IR) per canvi entre estats vibracionals

Simetria molecular (grup puntual)

Consequències de la simetria Altres consequències

Càlculs mecanoquantics

TEV

Integral de recobriment

Enllaços equivalents (relacionats per una operació de simetria)

Simetria molecular Consequències de la simetria Altres consequències

Càlculs mecanoquantics

TOM

 $\hat{\Gamma}$

Restriccions de simetria Molècules amb diversos àtoms

e.g. SF₆

