| ${\mathcal T}_{1^{\bar{-}}}^{\#1}{}_{\alpha}$ | 0                                        | 0                                         | 0                                        | 0                             | 0                              | 0                             | 0                                  | 0                                  | 0                                    | 0                                                |
|-----------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------|--------------------------------|-------------------------------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------------------|
| $\Delta_{1^{\bar{-}}\alpha}^{\#6}$            | 0                                        | 0                                         | 0                                        | 0                             | 0                              | $-\frac{1}{6a_0}$             | $-\frac{\sqrt{5}}{6a_0}$           | $-\frac{7}{3\sqrt{2}a_0}$          | $\frac{5}{3a_0}$                     | 0                                                |
| $\Delta_{1}^{\#5}{}_{\alpha}$                 | 0                                        | 0                                         | 0                                        | 0                             | 0                              | $-\frac{1}{6\sqrt{2}a_0}$     | $-\frac{\sqrt{\frac{5}{2}}}{6a_0}$ | $\frac{17}{6a_0}$                  | $-\frac{7}{3\sqrt{2}a_0}$            | 0                                                |
| $\Delta_{1^{^{-}}\alpha}^{\#4}$               | 0                                        | 0                                         | 0                                        | 0                             | 0                              | $\frac{5\sqrt{5}}{12a_0}$     | $\frac{1}{12a_0}$                  | $-\frac{\sqrt{\frac{5}{2}}}{6a_0}$ | $-\frac{\sqrt{5}}{6a_0}$             | 0                                                |
| $\Delta_{1^{-}\alpha}^{\#3}$                  | 0                                        | 0                                         | 0                                        | 0                             | 0                              | $-\frac{19}{12a_0}$           | $\frac{5\sqrt{5}}{12a_0}$          | $-\frac{1}{6\sqrt{2}a_0}$          | $-\frac{1}{6a_0}$                    | 0                                                |
| $\Delta_{1^{-}\alpha}^{\#2}$                  | 0                                        | 0                                         | 0                                        | $\frac{2\sqrt{2}}{a_0}$       | $\frac{2}{a_0}$                | 0                             | 0                                  | 0                                  | 0                                    | 0                                                |
| $\Delta_{1}^{\#1}{}_{\alpha}$                 | 0                                        | 0                                         | 0                                        | 0                             | $\frac{2\sqrt{2}}{a_0}$        | 0                             | 0                                  | 0                                  | 0                                    | 0                                                |
| $\Delta_{1}^{\#3}_{\alpha\beta}$              | 0                                        | 0                                         | 4<br>a <sub>0</sub>                      | 0                             | 0                              | 0                             | 0                                  | 0                                  | 0                                    | 0                                                |
| $\Delta_{1}^{\#2}_{\alpha\beta}$              | $-\frac{2\sqrt{2}}{a_0}$                 | $\frac{2}{40}$                            | 0                                        | 0                             | 0                              | 0                             | 0                                  | 0                                  | 0                                    | 0                                                |
| $\Delta_{1}^{\#1}{}_{\alpha\beta}$            | 0                                        | $-\frac{2\sqrt{2}}{a_0}$                  | 0                                        | 0                             | 0                              | 0                             | 0                                  | 0                                  | 0                                    | 0                                                |
| ,                                             | $\Delta_{1}^{\#1} \dagger^{\alpha\beta}$ | $\Delta_1^{\#_2^2} \dagger^{\alpha\beta}$ | $\Delta_{1}^{\#3} \dagger^{\alpha\beta}$ | $\Delta_{1}^{\#1} +^{\alpha}$ | $\Delta_{1}^{\#2} + ^{\alpha}$ | $\Delta_{1}^{\#3} +^{\alpha}$ | $\Delta_{1}^{\#4} +^{\alpha}$      | $\Delta_{1}^{\#5} +^{lpha}$        | $\Delta_{1}^{\#6}  \dagger^{\alpha}$ | ${\mathcal T}_{1^{	ext{-}}}^{\#1}\dagger^{lpha}$ |

| $^{\prime\prime}1^{-}$ $^{\alpha}$ | 0                        | 0                        | 0                       | 0                       | 0                       | 0                        | 0                                   | 0                                   | 0                         | 0               |
|------------------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------|
| $^{1}$ $^{1}$                      | 0                        | 0                        | 0                       | 0                       | 0                       | $\frac{9}{0}$            | $-\frac{\sqrt{5} a_0}{6}$           | $\frac{a_0}{6\sqrt{2}}$             | $\frac{5a_0}{12}$         | 0               |
| 1-α                                | 0                        | 0                        | 0                       | 0                       | 0                       | $-\frac{a_0}{6\sqrt{2}}$ | $-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$ | 3<br>3                              | $\frac{a_0}{6\sqrt{2}}$   | 0               |
| $^{1}$ $^{1}$                      | 0                        | 0                        | 0                       | 0                       | 0                       | $\frac{\sqrt{5} a_0}{6}$ | <u>a0</u><br>3                      | $-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$ | $-\frac{\sqrt{5} a_0}{6}$ | 0               |
| $^{-1}$                            | 0                        | 0                        | 0                       | 0                       | 0                       | - <del>a</del> 0         | $\frac{\sqrt{5} a_0}{6}$            | $-\frac{a_0}{6\sqrt{2}}$            | $\frac{9}{0p}$            | 0               |
| $^{1}$ $^{1}$                      | 0                        | 0                        | 0                       | $\frac{a_0}{2\sqrt{2}}$ | 0                       | 0                        | 0                                   | 0                                   | 0                         | 0               |
| $1^-\alpha$                        | 0                        | 0                        | 0                       | - <u>a0</u> 4           | $\frac{a_0}{2\sqrt{2}}$ | 0                        | 0                                   | 0                                   | 0                         | 0               |
| $1^{\top}\alpha\beta$              | 0                        | 0                        | <u>a</u> 0<br>4         | 0                       | 0                       | 0                        | 0                                   | 0                                   | 0                         | 0               |
| $1^{+}\alpha\beta$                 | $-\frac{a_0}{2\sqrt{2}}$ | 0                        | 0                       | 0                       | 0                       | 0                        | 0                                   | 0                                   | 0                         | 0               |
| $^{1}$                             | - <u>a0</u>              | $-\frac{a_0}{2\sqrt{2}}$ | 0                       | 0                       | 0                       | 0                        | 0                                   | 0                                   | 0                         | 0               |
|                                    | $\dagger^{\alpha \beta}$ | $\dagger^{\alpha\beta}$  | $\dagger^{\alpha\beta}$ | 1 +α                    | 2 +α                    | 3 +α                     | .4 +α                               | 2 + <sub>α</sub>                    | e ±α                      | $1 + \alpha$    |
|                                    | $\Gamma_{1}^{#1}$        | Γ#2 †                    | Γ#3 †                   | $\Gamma_1^{\#1}$ 1      | $\Gamma_{1}^{\#2}$      | $\Gamma_{1}^{\#3}$       | $\Gamma_1^{\#4}$                    | $\Gamma_1^{\#5}$ -                  | $\Gamma_1^{\#6}$          | $h_{1}^{\#1}$ 1 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_0 h^{\chi}$ $\partial_{\beta} \Gamma^{\alpha}_{\alpha} \beta$ .                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{1}{8} a_0 \partial_{\beta} h_{\chi}^{\chi} \partial^{\beta} h_{\alpha}^{\alpha}$ $1_0 h^{\alpha \beta} \partial_{\chi} \partial_{\beta} h_{\alpha}^{\chi}.$ | 8<br>8 -                                                                                                                          |                               | $\Delta_{3^{-}}^{#1} +^{\alpha \beta \chi}$ |                           | $\Gamma^{#1} + \alpha \beta X$ | <u>_</u>                  |                           |                                 |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|---------------------------|--------------------------------|---------------------------|---------------------------|---------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\alpha\beta\chi}{\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $h_{\beta}^{X} - a$                                                                                                                                                | $\begin{array}{ccc} \alpha & \partial_{x} \partial^{x} \mathcal{H}^{\beta} \\ & \partial^{x} \Gamma^{\alpha} & \beta \end{array}$ | $\Delta_{0^{\text{-}}}^{\#1}$ | 0                                           | 0                         | 0                              | 0                         | 0                         | 0                               | $-\frac{2}{a_0}$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $_{\alpha\beta}^{\beta}+\Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $^{3}\partial_{\beta}\partial_{\alpha}$                                                                                                                            |                                                                                                                                   | ${\mathcal T}_{0}^{\#2}$      | 0                                           | 0                         | 0                              | 0                         | 0                         | 0                               | 0                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $^{\alpha\beta}$ $\mathcal{T}_{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $a_0 h^{\alpha \beta}$ $a_0 \partial^{\beta} b$                                                                                                                    | $\frac{1}{4}a_0 h$                                                                                                                | ${\mathcal T}_0^{\#1}$        | 0                                           | 0                         | 0                              | 0                         | $\frac{4}{a_0 k^2}$       | 0                               | 0                           |
| Lagrangian density $ \begin{array}{c} -\frac{1}{2}  a_0  \Gamma^{\alpha\beta\chi}  \Gamma_{\beta\chi\alpha} + \frac{1}{2}  a_0  \Gamma^{\alpha}_{\ \alpha}  \beta  \Gamma^{\chi}_{\ \chi} + h^{\alpha\beta}  \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi}  \Delta_{\alpha\beta\chi} - \\ \frac{1}{2}  a_0  \Gamma^{\alpha\beta\chi}  \partial_\beta h_{\alpha\chi} - \frac{1}{4}  a_0  \Gamma^{\alpha}_{\ \alpha}  \partial_\beta h^{\chi}_{\ \chi} + \frac{1}{4}  a_0  \Gamma^{\alpha\beta}_{\ \alpha}  \partial_\beta h^{\chi}_{\ \chi} - \frac{1}{4}  a_0  h^{\chi}_{\ \chi}  \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} \\ \frac{1}{4}  a_0  h^{\chi}_{\ \chi}  \partial_\beta \Gamma^{\alpha\beta}_{\ \alpha} - \frac{1}{2}  a_0  h^{\alpha\beta}  \partial_\beta \Gamma^{\alpha\beta}_{\ \chi} + \frac{1}{2}  a_0  h^{\alpha\beta}  \partial_\beta \partial_\alpha h^{\chi}_{\ \chi} - \frac{1}{2}  a_0  \partial_\beta h^{\chi}_{\ \chi}  \partial^\beta h^{\alpha}_{\ \chi} \\ \frac{1}{2}  a_0  \Gamma^{\alpha}_{\ \alpha}  \beta_\lambda h^{\chi}_{\ \chi} - \frac{1}{2}  a_0  \partial_\alpha h^{\alpha\beta}  \partial_\chi h^{\chi}_{\ \chi} + \frac{1}{2}  a_0  \partial^\beta h^{\alpha}_{\ \alpha}  \partial_\chi h^{\chi}_{\ \chi} - a_0  h^{\alpha\beta}  \partial_\chi \partial_\beta h^{\chi}_{\ \chi} \\ \frac{1}{2}  a_0  \Gamma^{\alpha}_{\ \alpha}  \beta_\lambda h^{\chi}_{\ \lambda} - \frac{1}{2}  a_0  \partial_\alpha h^{\alpha\beta}  \partial_\chi h^{\chi}_{\ \lambda} + \frac{1}{2}  a_0  \partial^\beta h^{\alpha}_{\ \alpha}  \partial_\chi h^{\chi}_{\ \lambda} - a_0  h^{\alpha\beta}  \partial_\chi \partial_\beta h^{\chi}_{\ \lambda} \\ \frac{1}{2}  a_0  \Gamma^{\alpha}_{\ \alpha}  \beta_\lambda h^{\chi}_{\ \lambda} - \frac{1}{2}  a_0  \partial^\beta h^{\alpha}_{\ \alpha}  \partial_\chi h^{\chi}_{\ \lambda} - a_0  h^{\alpha\beta}  \partial_\chi \partial_\beta h^{\chi}_{\ \lambda} \\ \frac{1}{2}  a_0  \Gamma^{\alpha}_{\ \alpha}  \partial_\chi h^{\chi}_{\ \beta} - \frac{1}{2}  a_0  \partial^\beta h^{\alpha}_{\ \alpha} + \frac{1}{2} $ | $\partial_{\chi}\partial^{\chi}h_{\alpha\beta}^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta_{0}^{\#4}$                                                                                                                                                 | 0                                                                                                                                 | $-\frac{1}{2\sqrt{2}a_0}$     | $-\frac{1}{2\sqrt{2}a_0}$                   | $\frac{1}{2a_0}$          | 0                              | 0                         | 0                         |                                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{1}{4}a_0 h^{\alpha}_{\alpha} \partial_{\lambda} \partial_{\beta} h^{\beta \chi} + \frac{1}{2}a_0 h^{\alpha\beta} \partial_{\lambda} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4}a_0 h^{\alpha}_{\alpha} \partial_{\lambda} \partial^{\chi} h^{\beta}$ $\frac{1}{4}a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{3}{8}a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} + \frac{1}{2}a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}$ | $\Delta_{0}^{\#3}$                                                                                                                                                 | 0                                                                                                                                 | 4 a 0                         | - 3<br>4 a 0                                | $-\frac{1}{2\sqrt{2}a_0}$ | 0                              | 0                         | 0                         |                                 |                             |
| Lagrangian density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}$ $\beta_{\beta}h_{\alpha\chi} - \frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}$                                                                                                                                                                                                                                                                                                                                                          | $_{3}\Gamma^{\alpha\beta} - \frac{1}{2}c$ $_{3}\chi^{\mu} \times \frac{1}{2}c$                                                                                     | $\partial^{x}h^{\alpha\beta} + \frac{3}{8}$                                                                                       | $\Delta_{0}^{\#2}$            | 0                                           | - 3<br>4 a 0              | 5<br>4 a 0                     | $-\frac{1}{2\sqrt{2}}a_0$ | 0                         | 0                               | 0                           |
| angia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Gamma^{\alpha\beta\chi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $h^{X}_{X} \partial_{\mu}$                                                                                                                                         | $h^{\alpha}_{\alpha} \partial_{\beta}$                                                                                            | $\Delta_{0}^{\#1}^{}$         | $-\frac{2}{a_0}$                            | 0                         | 0                              | 0                         | 0                         | 0                               | 0                           |
| Lagra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-rac{1}{2}a_0 \Gamma^{lphaeta\chi}$ $rac{1}{2}a_0 \Gamma^{lphaeta\chi}$ $\partial_{\mu}$                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{4} a_0 h_X^X \partial_{\beta} \Gamma^{\alpha\beta}_{c}$ $\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha} \beta_{\alpha} \lambda_{\beta}^X$                      | $\begin{bmatrix} 1 & a_0 \\ 4 & a_0 \end{bmatrix}$                                                                                |                               | $\Delta_0^{\#1} \uparrow$                   | $\Delta_0^{#2} +$         | $\Delta_0^{#3}$ †              | $\Delta_{0}^{#4}$ †       | $\mathcal{T}_{0}^{\#1}$ † | $\mathcal{T}_{0}^{\#2} \dagger$ | $\Delta_{0}^{\#1}  \dagger$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                                                                                   |                               |                                             |                           |                                |                           |                           |                                 |                             |



| Source constraints                                                                                                                                                          |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| SO(3) irreps                                                                                                                                                                | # |
| $\mathcal{T}_{0^{+}}^{\#2} == 0$                                                                                                                                            | 1 |
| $\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$                                                                                               | 1 |
| $\mathcal{T}_{1}^{\#1\alpha} == 0$                                                                                                                                          | 3 |
| $\frac{2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0}{2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#3\alpha} == 0}$ | 3 |
| Total #:                                                                                                                                                                    | 8 |

| $\Gamma_{2^{-}}^{\#2} \alpha \beta \chi$          | 0                                 | 0                              | 0                              | 0                         | 0                                      | $\frac{a_0}{4}$                      |  |
|---------------------------------------------------|-----------------------------------|--------------------------------|--------------------------------|---------------------------|----------------------------------------|--------------------------------------|--|
| $\alpha \beta \Gamma_{2}^{\#1} \alpha \beta \chi$ | 0                                 | 0                              | 0                              | 0                         | <u>4</u>                               | 0                                    |  |
| $\alpha\beta h_{2}^{\#1}\alpha\beta$              | 0                                 | 0                              | 0                              | $-\frac{a_0 k^2}{8}$      | 0                                      | 0                                    |  |
| Γ <sub>2</sub> <sup>#3</sup>                      | 0                                 | 0                              | <u>a0</u><br>4                 | 0                         | 0                                      | 0                                    |  |
| $\alpha_{\beta} \Gamma_{2}^{#2}$                  | 0                                 | $-\frac{a_0}{2}$               | 0                              | 0                         | 0                                      | 0                                    |  |
| $\Gamma_{2}^{\#1}{}_{\alpha\beta}$                | $\frac{a_0}{4}$                   | 0                              | 0                              | 0                         | 0                                      | 0                                    |  |
|                                                   | $\Gamma_2^{\#_1} +^{\alpha\beta}$ | $\Gamma_2^{#2} + \alpha \beta$ | $\Gamma_2^{#3} + \alpha \beta$ | $h_2^{#1} + \alpha \beta$ | $\Gamma_{2}^{\#1} + \alpha \beta \chi$ | $\Gamma_2^{\#2} + \alpha \beta \chi$ |  |

|                                | Γ <sub>0</sub> <sup>#1</sup> | Γ <sub>0</sub> <sup>#2</sup> | Γ <sub>0</sub> <sup>#3</sup> | Γ <sub>0</sub> <sup>#4</sup> | $h_{0}^{\#1}$       | $h_0^{\#2}$ | Γ <sub>0</sub> -1 |
|--------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------|-------------|-------------------|
| $\Gamma_{0}^{\#1}$ †           | <u>- <sup>a</sup>0</u> 2     | 0                            | 0                            | 0                            | 0                   | 0           | 0                 |
| $\Gamma_{0}^{\#2}$ †           | 0                            | 0                            | <u>a<sub>0</sub></u><br>2    | $-\frac{a_0}{2\sqrt{2}}$     | 0                   | 0           | 0                 |
| Γ <sub>0</sub> <sup>#3</sup> † | 0                            | <u>a<sub>0</sub></u><br>2    | 0                            | $-\frac{a_0}{2\sqrt{2}}$     | 0                   | 0           | 0                 |
| Γ <sub>0</sub> <sup>#4</sup> † | 0                            | $-\frac{a_0}{2\sqrt{2}}$     | $-\frac{a_0}{2\sqrt{2}}$     | <u>a<sub>0</sub></u><br>2    | 0                   | 0           | 0                 |
| $h_{0}^{#1}$ †                 | 0                            | 0                            | 0                            | 0                            | $\frac{a_0 k^2}{4}$ | 0           | 0                 |
| $h_0^{\#2}$ †                  | 0                            | 0                            | 0                            | 0                            | 0                   | 0           | 0                 |
| Γ <sub>0</sub> -1 †            | 0                            | 0                            | 0                            | 0                            | 0                   | 0           | $-\frac{a_0}{2}$  |



Unitarity conditions

 $a_0 < 0$ 

(No massive particles)