- (a) When the input size is doubled, the algorithms get slower by
- (i) a factor of 4.
- (ii) a factor of 8.
- (iii) a factor of 4.
- (iv) a factor of 2, plus an additive 2n.
- (v) the square of the previous running time.
 - (b) When the input size is increased by an additive one, the algorithms get slower by
- (i) an additive 2n + 1.
- (ii) an additive $3n^2 + 3n + 1$.
- (iii) an additive 200n + 100.
- (iv) an additive $\log(n+1) + n[\log(n+1) \log n]$.
- (v) a factor of 2.

 $^{^{1}}$ ex561.359.766

- (i) 6,000,000.
- (ii) 33015.
- (iii) 600,000.
- (iv) About 9×10^{11} .
- (v) 45.
- (vi) 5.

 $^{^{1}}$ ex695.516.801

We know from the text that polynomials (i.e. a sum of terms where n is raised to fixed powers, even if they are not integers) grow slower than exponentials. Thus, we will consider f_1, f_2, f_3, f_6 as a group, and then put f_4 and f_5 after them.

For polynomials f_i and f_j , we know that f_i and f_j can be ordered by comparing the highest exponent on any term in f_i to the highest exponent on any term in f_j . Thus, we can put f_2 before f_3 before f_1 . Now, where to insert f_6 ? It grows faster than n^2 , and from the text we know that logarithms grow slower than polynomials, so f_6 grows slower than n^c for any c > 2. Thus we can insert f_6 in this order between f_3 and f_1 .

Finally come f_4 and f_5 . We know that exponentials can be ordered by their bases, so we put f_4 before f_5 .

 $^{^{1}}$ ex831.202.488

We order the functions as follows.

- g_1 comes before g_5 . This is like the solved exercise in which we saw $2^{\sqrt{\log n}}$. If we take logarithms, we are comparing $\sqrt{\log n}$ to $\log n + \log(\log n) \ge \log n$; changing variables via $z = \log n$, this is $\sqrt{z} = z^{1/2}$ versus $z + \log z \ge z$.
- g_5 comes before g_3 , since $(\log n)^3$ grows faster than $\log n$. (They're both polynomials in $\log n$, but $(\log n)^3$ has the larger degree.)
- g_3 comes before g_4 : Dividing both by n, we are comparing $(\log n)^3$ with $n^{1/3}$, or (taking cube roots), $\log n$ with $n^{1/9}$. Now we use the fact that logarithms grow slower than exponentials.
- g_4 comes before g_2 , since polynomials grow slower than exponentials.
- g_2 comes before g_7 : Taking logarithms, we are comparing n to n^2 , and n^2 is the polynomial of larger degree.
- g_7 comes before g_6 : Taking logarithms, we are comparing n^2 to 2^n , and polynomials grow slower than exponentials.

 $^{^{1}}$ ex413.866.86

- (i) This is false in general, since it could be that g(n) = 1 for all n, f(n) = 2 for all n, and then $\log_2 g(n) = 0$, whence we cannot write $\log_2 f(n) \le c \log_2 g(n)$.

 On the other hand, if we simply require $g(n) \ge 2$ for all n beyond some n_1 , then the statement holds. Since $f(n) \le cg(n)$ for all $n \ge n_0$, we have $\log_2 f(n) \le \log_2 g(n) + \log_2 c \le (\log_2 c)(\log_2 g(n))$ once $n \ge \max(n_0, n_1)$.
- (ii) This is false: take f(n) = 2n and g(n) = n. Then $2^{f(n)} = 4^n$, while $2^{g(n)} = 2^n$.
- (iii) This is true. Since $f(n) \le cg(n)$ for all $n \ge n_0$, we have $(f(n))^2 \le c^2(g(n))^2$ for all $n \ge n_0$.

 $^{^{1}}$ ex66.350.972

- (a) We prove this for $f(n) = n^3$. The outer loop of the given algorithm runs for exactly n iterations, and the inner loop of the algorithm runs for at most n iterations every time it is executed. Therefore, the line of code that adds up array entries A[i] through A[j] (for various i's and j's) is executed at most n^2 times. Adding up array entries A[i] through A[j] takes O(j-i+1) operations, which is always at most O(n). Storing the result in B[i,j] requires only constant time. Therefore, the running time of the entire algorithm is at most $n^2 \cdot O(n)$, and so the algorithm runs in time $O(n^3)$.
- (b) Consider the times during the execution of the algorithm when $i \leq n/4$ and $j \geq 3n/4$. In these cases, $j-i+1 \geq 3n/4-n/4+1>n/2$. Therefore, adding up the array entries A[i] through A[j] would require at least n/2 operations, since there are more than n/2 terms to add up. How many times during the execution of the given algorithm do we encounter such cases? There are $(n/4)^2$ pairs (i,j) with $i \leq n/4$ and $j \geq 3n/4$. The given algorithm enumerates over all of them, and as shown above, it must perform at least n/2 operations for each such pair. Therefore, the algorithm must perform at least $n/2 \cdot (n/4)^2 = n^3/32$ operations. This is $\Omega(n^3)$, as desired.
 - (c) Consider the following algorithm.

```
For i=1,2,\ldots n

Set B[i,i+1] to A[i]+A[i+1]

For k=2,3,\ldots,n-1

For i=1,2,\ldots,n-k

Set j=i+k

Set B[i,j] to be B[i,j-1]+A[j]
```

This algorithm works since the values B[i, j-1] were already computed in the previous iteration of the outer for loop, when k was j-1-i, since j-1-i < j-i. It first computes B[i, i+1] for all i by summing A[i] with A[i+1]. This requires O(n) operations. For each k, it then computes all B[i, j] for j-i=k by setting B[i, j] = B[i, j-1] + A[j]. For each k, this algorithm performs O(n) operations since there are at most n B[i, j]'s such that j-i=k. There are less than n values of k to iterate over, so this algorithm has running time $O(n^2)$.

 $^{^{1}}$ ex474.221.961

Suppose that to obtain n words, we need L lines (most of which will get repeated many times, as described above). We write the script as follows

```
line 1 = <text of line 1 here> line 2 = <text of line 2 here> ... line L = <text of line L here> For i=1,2,\ldots,L For j=1,2,\ldots,i Sing lines j through 1 Endfor Endfor
```

Now, the nested For loops have length bounded by a constant c_1 , so the real space in the script is consumed by the text of the lines. Each of these lines in the script has length at most c_2 (where c_2 is the maximum line length c_2 plus the space to write the variable assignment). So in total, the space required by the script is $S = c_1 + c_2 L$.

Recall that n denotes the number of words this produces when sung. n is at least $1+2+\cdots+L=\frac{1}{2}L(L-1)$; hence, $\frac{1}{2}(L-1)^2\leq n$, and so $L\leq 1+\sqrt{2n}$. Plugging this into our bound on the length of the script, we have $f(n)=S\leq c_1+c_2\sqrt{2n}=O(\sqrt{n})$.

 $^{^{1}}$ ex434.486.949

(a) Suppose for simplicity that n is a perfect square. We drop the first jar from heights that are multiples of \sqrt{n} (i.e. from $\sqrt{n}, 2\sqrt{n}, 3\sqrt{n}, \ldots$) until it breaks.

If we drop it from the top rung and it survives, then we're also done. Otherwise, suppose it breaks from height $j\sqrt{n}$. Then we know the highest safe rung is between $(j-1)\sqrt{n}$ and $j\sqrt{n}$, so we drop the second jar from rung $1+(j-1)\sqrt{n}$ on upward, going up by one each time.

In this way, we drop each of the two jars at most \sqrt{n} times, for a total of at most $2\sqrt{n}$. If n is not a perfect square, then we drop the first jar from heights that are multiples of $\lfloor \sqrt{n} \rfloor$, and then apply the above rule for the second jar. In this way, we drop the first jar at most $2\sqrt{n}$ times (quite an overestimate if n is reasonably large) and the second jar at most \sqrt{n} times, still obtaining a bound of $O(\sqrt{n})$.

(b) We claim by induction that $f_k(n) \leq 2kn^{1/k}$. We begin by dropping the first jar from heights that are multiples of $\lfloor n^{(k-1)/k} \rfloor$. In this way, we drop the first jar at most $2n/n^{(k-1)/k} = 2n^{1/k}$ times, and thus narrow the set of possible rungs down to an interval of length at most $n^{(k-1)/k}$.

We then apply the strategy for k-1 jars recursively. By induction it uses at most $2(k-1)(n^{(k-1)/k})^{1/(k-1)} = 2(k-1)n^{1/k}$ drops. Adding in the $\leq 2n^{1/k}$ drops made using the first jar, we get a bound of $2kn^{1/k}$, completing the induction step.

 $^{^{1}}$ ex291.532.145