

جمعكنندهها

طراحی واحد منطق و حساب Arithmetic logic unit (ALU) design

© تمامی اطلاعات موجود در این سند متعلق به دانشگاه صنعتی امیرکبیر بوده و حقوق قانونی آن محفوظ است.

جمع كننده اعداد بىعلامت

عمل محاسباتی: جمع

نوع نمایش: بیعلامت

d: gate delay	
g: gate cost (\$)	

x	y	s=x+y (جمع ریاضی)	X 	y
0	0	0		
О	1	1	QA	
1	0	1		
1	1	0		. .
			s=x⊕	J У
	dela	y(sum) = d		
	Cos	t = 1 g		

x	у	یاضی)	(جمع ر	x y
		сатту	sum	
o	0	o	o	НА
o	1	0	1	
1	o	o	1	
1	1	1	0	carry=x.y
	d	lelay (sun lelay (carı Cost = 2 g		sum=x⊕y

(جمع دو عدد بیعلامت تک بیتی) n=1

(Quarter adder) ربع جمع کننده (

نیم جمع کننده (Half adder)

o تمام حمع کننده (Full adder)

عمل محاسباتی: جمع

نوع نمایش: بیعلامت

n=1 (جمع دو عدد بیعلامت تک بیتی) n=1 (Full adder) تمام جمع کننده (Full adder)

X	y	z	(جمع ریاضی)		
			carry	sum	
o	o	0	0	0	
0	o	1	o	1	
o	1	0	O	1	
o	1	1	1	o	
1	o	o	0	1	
1	o	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

$$\triangle$$
 = FA delay = 2d

جمع کننده آبشاری (Ripple adder)

جمع کننده آبشاری (Ripple adder)


```
delay (sum) = (2n-1)d
delay (carry) = 2nd
cost = 5n g
```


(Carry Look-ahead adder) جمع کننده پیشبینی کننده رقم نقلی

جمع کننده پیشبینی کننده رقم نقلی (Carry look-ahead adder)

$$\begin{split} C_0 &= A_0 B_0 + C_{in} (A_0 + B_0) = G_0 + C_{in} P_0 \\ C_1 &= A_1 B_1 + C_0 (A_1 + B_1) = G_1 + (G_0 + C_{in} P_0) P_1 = G_1 + G_0 P_1 + C_{in} P_0 P_1 \\ C_2 &= A_2 B_2 + C_1 (A_2 + B_2) = G_2 + (G_1 + G_0 P_1 + C_{in} P_0 P_1) P_2 \\ &= G_2 + G_1 P_2 + G_0 P_1 P_2 + C_{in} P_0 P_1 P_2 \end{split}$$

•••

$$C_{n-1} = A_{n-1}B_{n-1} + C_{n-2}(A_{n-1} + B_{n-1}) = G_{n-1} + G_{n-2}P_{n-1} + G_{n-3}P_{n-2}P_{n-1} + ... + C_{in}P_0P_1P_2...P_{n-1}$$

 $G_i = A_i B_i$ (Carry Generate) $P_i = A_i + B_i$ (Carry Propagate)

جمع کننده پیشبینی کننده رقم نقلی (Carry look-ahead adder)

استفاده از CLA های k-بیتی

جمع کننده انتخابگر نقلی (Carry Select Adder)

MUX $2 \rightarrow 1$

delay = 3d

cost = 4 gate

MUX $2(k) \rightarrow 1(k)$

delay = 3d

cost = 4k gate

2(k)->1(k) می توان چنین فرض کرد که یک تسهیم گر k از k عدد تسهیم گر k بدست آمده است.

جمع کننده انتخابگر نقلی (n-bit Carry Select Adder)

n-bit Carry Select Adder

(n-bit Carry Select Adder) جمع کننده انتخابگر نقلی

```
delay (sum) = ?
delay (carry) = ?
```

cost = ?

≺سوال ۱:

- الف) مطلوبست محاسبه هزینه و تاخیر محاسبات؟
- ب) در مقایسه با جمع کننده آبشاری از منظر هزینه و تاخیر بررسی کنید.

جمع کننده انتخابگر نقلی Adder (1-bit Carry Select) Adder

Ripple (1-bit Carry Select) Adder

جمع کننده انتخابگر نقلی Ripple (1-bit Carry Select) Adder

```
delay (sum) = ?
delay (carry) = ?
cost = ?
```

```
≺سوال ۲:
```

- الف) مطلوبست محاسبه هزینه و تاخیر محاسبات؟
- ب) در مقایسه با جمع کننده آبشاری از منظر هزینه و تاخیر بررسی کنید.

k-bit Uniform Carry Select Adder جمع کننده انتخابگر نقلی

k-bit Uniform Carry Select Adder جمع کننده انتخابگر نقلی

```
cost = ?
```

delay (sum) = ? delay (carry) = ? **←سوال ۳:** در مدار قبلی، مطلوبست محاسبه هزینه و تاخیر نتیجه؟

k-bit Uniform Carry Select Adder جمع کننده انتخابگر نقلی

≺سوال ۴:

 الف) به ازای چه مقادیری از k مدار جمع کننده انتخابگر نقلی یکنواخت از منظر هزینه یا تاخیر بهتر از جمع کننده آبشاری خواهد بود؟ (برای سادگی فرض کنید اعداد ۱۶ بیتی هستند)

○ ب) کدام مقدار k بهترین است؟

 ج) آیا میتوان بخشهای خاکستری را حذف کرد (بدون آنکه درستی مدار از بین برود یا تاخیر مدار افزایش یابد)؟

4-bit Uniform Carry Select Adder جمع کننده انتخابگر نقلی

cost = ?

delay (sum) = ?
delay (carry) = ?

Adders MUX5 . ima C, lm 1 la, s1 die

Delay = $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{1}{k}$

بازنگری جمع کننده انتخابگر نقلی یکنواخت

پس هر طبقه که عبور میکنیم، ۱.۵ (یک و نیم) FA قابل اضافه کردن است. چون FA باید کامل باشد، یک طبقه یک FA، طبقه بعدی دو FA اضافه میشود و به همین ترتیب تا کل بیتهای اعداد تکمیل شود. (حداقل تعداد بیت طبقه اول باید ۲ بیتی باشد. چرا؟)

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)

جمع كننده انتخابگر نقلى غير يكنواخت

جمع کننده انتخابگر نقلی غیر یکنواخت non-Uniform Carry Select Adder

cost = ?

delay (sum) = ? delay (carry) = ? ◄ سوال ۵:
 ٥ الف) برای اعداد ۱۶ بیتی، مطلوبست محاسبه هزینه و تاخیر نتیجه؟

○ برای اعداد n بیتی، مجدد محاسبه کنید.

حميدرضا زرندى

جمع m عدد n بیتی

چطور می توان m عدد n بیتی را جمع کرد؟

۱◄ بصورت جمع پي در پي (جمع سريال)

- نیاز به m-1 جمع کننده است. جمع کننده های آتی امکان افزایش بیتها وجود دارد.
 آباری بیتها و جود دارد.
 - آیا بهترین هزینه و تاخیر را دارد؟

۲◄ بصورت جمع درختی (دو به دو با هم)

نیاز به ترسیم درخت دودویی است (اگر m توانی از ۲ باشد، حدود n جمع کننده نیاز است و گرنه به تعداد اولین توان ۲ که بزرگتر از m باشد، جمع کننده نیاز است).

○ آیا بهترین هزینه و تاخیر را دارد؟

◄٣- جمع بصورت ذخيره گر نقلي

○ به مثال توجه کنید:

مثال: جمع ۵ عدد ۴ رقمی در مبنای ۱۰

در روش جمع بصورت دودویی:

۱ - سعی میشود از FA و HA استفاده شود که با قطعات کم هزینه ساخته شود و قابل قیاس با روشهای مشابه باشد. ۲ - آیا این درست است که یک FA، جمع کننده ۳ عدد تک رقمی است؟ و نتیجه را بصورت جمع و رقم نقلی ارایه میدهد؟ ۳ - سعی میشود در هر مرحله، ۳ رقم هم ارزش مکانی، توسط یک FA جمع زده شود و نتیجه به مرحله بعد منتقل شود.

مثال دودویی: جمع ۴ عدد ۸ بیتی (قابل تعمیم به m عدد n بیتی)

cost = ?

delay (sum) = ? delay (carry) = ?

جمع کننده ذخیره گر نقلی (Carry save adder)

محاسبه هزینه و تاخیر؟

Delay:
$$= {}^{m} \times + {}^{k} \times + {$$

سوال؟

MUX $2(k) \rightarrow 1(k)$

delay = 3d

cost = (3k+1) gate

حميدرضا زرندى