Trabajo Práctico 9

Multiplicador de 4 bits

- 1. Componer un Multiplicador para dos números binarios sin signo de 4 bits. Abajo a la izquierda se encuentra una figura con el multiplicador a modelar y a la derecha la máquina de estados que la controla. Deben utilizar los diseños de los ejercicios de los Trabajos Prácticos 2 a 8 (sin modificaciones).
- 2. Desarrollar un testbench que pruebe el funcionamiento correcto del Multiplicador utilizando para ello como datos a multiplicar el <u>dígito de mayor valor</u> (llamado **A**) de su número de legajo y el <u>dígito de menor valor</u> (distinto de '0') (llamado **B**).
- 3. ¿Qué tiempo demora el circuito en realizar la multiplicación cuando se usa un reloj de XX MHz? ¿Los tiempos de cálculo de A x B y de B x A son iguales? ¿Cuáles son esos valores de tiempo?

<u>Cálculo de XX</u>: si su número de legajo es mayor a 3000, multiplicar los **2 dígitos mas significativos** por **2**; si es mayor a 2000 pero menor de 3000 multiplicarlos por **3** y si es menor a 2000 multiplicarlos por **4**.

Se debe entregar por la mensajería de IDEAS, un informe (en Word) que responda a los puntos 2 y 3 y contenga imágenes de las simulaciones realizadas del Multiplicador y su testbench dónde se verifican las respuestas brindadas. Además, deben enviarse <u>los archivos .VHD</u> de la entidad Multiplicador y del testbench implementado (ambos para posibilitar su compilación/simulación).

Modeling-A Simple Multiplier

Adder SRB SNB SNA CLR SHIFT STOP LSB STB CLK ACC LR ADD DONE Result Done

Modeling a Finite-State Machine-A Controller

<u>State</u>	Action	Next State
End:	if STB	-> Init:
Init:	load SRA, SRB clear ACC	-> Check:
Check:	if Stop if not Stop and LSB = 0 if LSB = 1	-> End: -> Shift: -> Add:
Add:	load ACC	-> Shift:
Shift:	shift SRA, SRB	-> Check:

Fecha de entrega por mensajería de IDEAS: **VIERNES 01 de Noviembre de 2024 hasta las 10:59:59 hs** (horario de comienzo de la clase con explicación de P10).

Taller 2024