Real estate analysis

Hatim Hussaini

2024-11-22

Exploring Real Estate Data

Understanding Relationships Between Variables

pairs(real_estate, main = "Scatter Plot Matrix of Real Estate Data", panel = panel.smooth)

Scatter Plot Matrix of Real Estate Data

In sights:

- Price vs. size has the strongest positive correlation, as bigger properties tend to be more expensive.
- Slight positive correlations exist between price and both bedrooms and age, suggesting newer homes or homes with more bedrooms are valued higher.

cor(real_estate)

```
## price size bedrooms age
## price 1.0000000 0.77994644 0.05560245 -0.12347514
## size 0.77994644 1.0000000 -0.07285563 -0.16695401
## bedrooms 0.05560245 -0.07285563 1.00000000 0.02850195
## age -0.12347514 -0.16695401 0.02850195 1.00000000
```

In sights:

- Strong correlation between price and size (0.7799), indicating size is a key factor influencing price.
- Correlations with other predictors, like bedrooms and age, are minimal.

Building a Full Regression Model to Predict Property Price

```
model <- lm(price ~ size + bedrooms + age, data = real_estate)
summary(model)</pre>
```

Estimating the Impact of Property Size on Price

```
##
## Call:
## lm(formula = price ~ size + bedrooms + age, data = real_estate)
## Residuals:
                1Q Median
                                3Q
                                       Max
## -748.08 -318.57 -54.74 366.46 784.33
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 449.2955
                         133.7219
                                     3.360 0.00094 ***
## size
                 4.9371
                           0.2819 17.514 < 2e-16 ***
                                     2.542 0.01182 *
## bedrooms
                53.6872
                           21.1222
                0.4821
                            4.3038
                                    0.112 0.91092
## age
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 398.7 on 193 degrees of freedom
## Multiple R-squared: 0.621, Adjusted R-squared: 0.6152
## F-statistic: 105.4 on 3 and 193 DF, p-value: < 2.2e-16
summary_model <- summary(model)</pre>
```

$$\hat{\beta}_{size} \pm t_{n-p,1-\alpha/2} \cdot s.e.(\hat{\beta}_{size})$$

$$= \hat{\beta}_{size} \pm t_{193,0.975} \cdot s.e.(\hat{\beta}_{size})$$

$$= 4.9371 \pm 1.97 \times 0.2819$$
$$= (4.38, 5.49)$$

We are 95% confident that for every unit increase in size, the price of the property will increase by between 4.38 and 5.49 thousand dollars on average.

Testing the Overall Significance of the Model

Conducting an F-Test Theoretical Model:

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon_i, \quad i = 1, 2, \dots, n$$

- Y_i is the response variable (price).
- β_0 is the intercept.
- $\beta_1, \beta_2, \beta_3$ are coefficients for the predictors X_1 (size), X_2 (bedrooms), and X_3 (age).
- $\epsilon_i \sim N(0, \sigma^2)$ represents random variation.

Null Hypothesis: $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ (no relationship between predictors and price).

anova(model)

```
## Analysis of Variance Table
## Response: price
                   Sum Sq Mean Sq F value Pr(>F)
##
## size
              1 49256631 49256631 309.8153 < 2e-16 ***
## bedrooms
                 1028915
                          1028915
                                    6.4717 0.01174 *
              1
                                    0.0125 0.91092
              1
                     1995
                             1995
## Residuals 193 30684511
                           158987
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

- Regression SS = 50287541.
- Regression MS = 16762514.
- F-statistic: 105.43323.
- p-value: 1.9e-40 < 0.05.

Conclusion: - There is significant evidence to reject H_0 . - At least one predictor (size, bedrooms, age) significantly impacts price.

Validating the Regression Model

```
par(mfrow=c(1,2))
plot(model, which=1:2)
```



```
plot(resid(model) ~ real_estate$size, xlab = 'Size', ylab = 'Residuals')
abline(h=0, col="red")
plot(resid(model) ~ real_estate$bedrooms, xlab = 'Bedroom', ylab = 'Residuals')
abline(h=0, col="red")
```



```
plot(resid(model) ~real_estate$age, xlab = 'Age', ylab = 'Residuals')
abline(h=0, col="red")
```


In sights:

- Residual vs. fitted plots show mostly random scatter with some imbalance in homoscedasticity.
- Q-Q plot shows deviations from normality.
- Residuals vs. predictors indicate linearity.

Overall, the model meets assumptions for linear regression with minor deviations.

Evaluating Model Fit (R²)

$$R^2 = 1 - \frac{SS_{Res}}{SS_{Total}} = 1 - \frac{30684511}{50287541} = 0.39$$

An \mathbb{R}^2 of 0.39 suggests the model explains 39% of the variability in property prices, indicating potential missing predictors like location.

Refining the Model with Feature Selection

```
summary_model <- summary(model)
summary_model</pre>
```

##

Call:

```
## lm(formula = price ~ size + bedrooms + age, data = real_estate)
##
## Residuals:
##
                1Q Median
                                3Q
      Min
                                       Max
## -748.08 -318.57 -54.74 366.46 784.33
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 449.2955
                        133.7219
                                    3.360 0.00094 ***
## size
                4.9371
                           0.2819 17.514 < 2e-16 ***
## bedrooms
                53.6872
                           21.1222
                                     2.542 0.01182 *
                            4.3038
                                     0.112 0.91092
## age
                0.4821
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 398.7 on 193 degrees of freedom
## Multiple R-squared: 0.621, Adjusted R-squared: 0.6152
## F-statistic: 105.4 on 3 and 193 DF, p-value: < 2.2e-16
Removing the least significant predictor (age):
model2 <- update(model, . ~ . - age)</pre>
summary_m2 <- summary(model2)</pre>
summary_m2
##
## Call:
## lm(formula = price ~ size + bedrooms, data = real_estate)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -744.25 -321.86 -59.73 362.39 783.79
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           94.4581
                                     4.869 2.33e-06 ***
## (Intercept) 459.8715
## size
                 4.9318
                            0.2773 17.785 < 2e-16 ***
## bedrooms
                53.7265
                           21.0655
                                     2.550
                                             0.0115 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 397.7 on 194 degrees of freedom
## Multiple R-squared: 0.621, Adjusted R-squared: 0.6171
                 159 on 2 and 194 DF, p-value: < 2.2e-16
## F-statistic:
Final Model Equation:
```

Comparing \mathbb{R}^2 and Adjusted \mathbb{R}^2

 $\hat{Y} = 459.8715 + 53.7265$ Bedrooms + 4.9318Size

```
print(summary_model$r.squared)
## [1] 0.6210481
print(summary_m2$r.squared)
## [1] 0.6210235
print(summary_model$adj.r.squared)
## [1] 0.6151577
print(summary_m2$adj.r.squared)
```

- ## [1] 0.6171165

 - R^2 decreases slightly, showing reduced overall accuracy. Adjusted R^2 increases, indicating the model is now more efficient.