$\rm HP35s$ / $\rm HP12c$ Programs

Daniel J Boulet

June 26, 2021

Revision History

Revision	Description
Date	
May 25, 2016	Revised Modular Exponentiation program by using DSE function instead of
	direct variable count.

Contents

Ι	HP	35s																				1
	0.1	modexp																				2
		atan2																				
	0.3	avswr							 													Ē

Part I

HP35s

0.1 modexp

Description

This program calculates the modulus of a number raised to a large power. The formula looks like this:

$$modexp = n^p \mod m$$

Usage

GTO A001 n R/S p R/S m R	R/S
--------------------------------	-----

Program Listing

LBL A	start of program
STO N	store number to the raised to the power P
STOP	wait for user R/S
STO P	store exponent
STOP	wait for user R/S
STO M	store modulus
1	initialize product
STO R	and save in memory
RCL N	recall base
RCL R	recall product
×	and multiply the two
RCL M	recall the modulus
RMDR	and apply it
STO R	save the new product
DSE P	decrement exponent
GTO A009	and loop back if not finished.
RCL R	pull the product from memory
RTN	we are done!
	STO N STOP STO P STOP STO M 1 STO R RCL N RCL R X RCL M RMDR STO R DSE P GTO A009 RCL R

Example

In the following example we calculate $5^{101} \mod 31$ using the following steps:

GTO A001	0.00000	go to start of program
5 R/S	5.00000	the "base"
101 R/S	101.00000	the "exponent"
31 R/S	25.00000	the "modulus" and result

Comments

The HP35s is not known for it's lightning speed. The above example will take about 12 seconds to run.

0.2 atan2

Description

This program calculates at an2($\frac{y}{x}$). Result is in the range -180° to $+180^{\circ}.$

Usage

```
GTO Z001 x R/S y R/S
```

Program Listing

Z001	LBL Z	Start of program.
Z002	STO X	Store x in X .
Z003	STOP	Wait for user R/S.
Z004	STO Y	Store y in Y.
Z005	RCL Y	Recall Y. Note: this is also the entry point for subroutine.
Z006	RCL X	Recall X.
Z007	÷	Take ratio of rise over run $(\frac{y}{x})$.
Z008	ATAN	Calculate $\arctan(\frac{y}{x})$.
Z009	STO R	Save as an interim result in R.
Z010	RCL X	Test sign of X.
Z011	x > 0?	Is x positive?
Z012	GTO Z027	If so then go to end of program.
Z013	RCL Y	Recall Y
Z014	SGN	Calculate its sign
Z015	45	
Z016	×	then multiply it by 45°.
Z017	RCL X	Get X value.
Z018	x = 0?	Is it equal to zero?
Z019	RTN	If so then return the value of the stack $(\pm 45^{\circ})$
Z020	180	Setup offset depending on sign of y .
Z021	STO -R	Initially subtract 180°— we do this at a minimum.
Z022	RCL Y	Get Y value.
Z023	x < 0?	Is it negative?
Z024	GTO Z027	If yes, then we are done since we already subtracted 180°.
Z025	360	If y is positive then we have to add 360°
Z026	STO +R	for a total addition of 180° .
2020		
Z027	RCL R	Get the angle.

Example

In the following example we calculate $atan2(\frac{+1.5}{-1.0})$ using the following steps:

GTO Z001	0.00000	Go to start of program.
1.5	1.5	Your value for x .
R/S	1.50000	
-1.0	-1.0	Your value for y .
R/S	-33.69007	The resulting angle.

Comments

Users have to be careful about a couple of things:

- 1. Angles are calculated in degrees. Confirm calculator setting before using this function.
- 2. User is responsible for ensuring that x and y are **never** both zero.

0.3 avswr

Description

This program calculates actual VSWR given measured VSWR and cable loss to antenna.

Usage

GTO V001 M R/S L R/S

Program Listing

V001 V002 V003 V004 V005 V006 V007	LBL V STO M STOP $+/-$ 10 \div 10^x	Start of program. Store measured VSWR in M. Pause for entry of cable loss (in dB) Negate cable loss and convert to ratio
V008	STO L	Save as cable loss
V009	RCL M	Get measured VSWR and calculate reflected power ratio
V010	1	
V011	_	
V012	RCL M	
V013	1	
V014 V015	+ ÷	
V015	$\frac{\overline{\cdot}}{x^2}$	
V010	STO R	Save reflected power ratio
	RCL L	Calculate actual VSWR at load
	\sqrt{x}	042041400 4004441 15 17 17 40 1044
	RCL R	
V021	RCL L	
V022	÷	
V023	\sqrt{x}	
V024	+	
	RCL L	
	\sqrt{x}	
	RCL R	
V028	RCL L	
	÷	
V030	\sqrt{x}	
V031 V032	- ÷	
V032	. RTN	Return to calling function.
V U J J	T/TIM	Toolarii to canning function.

Example

Calculate the actual VSWR of an antenna where the measured VSWR is 1:1.13 and cable loss is 4.7dB:

GTO V001	0.00000	Go to start of program.
1.13	1.13	Your value for M (measured VSWR).
R/S	1.13000	
4.7	4.7	Your value for cable loss L .
R/S	1.4394	Actual VSWR at antenna is 1:1.4394

How this program works

VSWR is the ratio of the sum and difference of forward and reflected voltages:

$$VSWR = \frac{V_f + V_r}{V_f - V_r} \tag{1}$$

Since power is proportional to the square of the voltage, (1) can be expressed in terms of power

$$VSWR = \frac{\sqrt{P_f} + \sqrt{P_r}}{\sqrt{P_f} - \sqrt{P_r}} \tag{2}$$

By setting P_f equal to 1 and rearranging (2) allows us to solve for P_r

$$\left(\frac{VSWR - 1}{VSWR + 1}\right)^2 = P_r \tag{3}$$

Cable loss can be expressed as a ratio of power arriving at the antenna to the power delivered to the antenna.

$$L = \frac{P_a}{P_d} \tag{4}$$

Normally, this is expressed in decibels but for our purposes we can simply express it as a factor of less than 1. Taking into account the cable loss the VSWR at the antenna is

$$VSWR = \frac{\sqrt{P_f \times L} + \sqrt{P_r \div L}}{\sqrt{P_f \times L} - \sqrt{P_r \div L}}$$
 (5)

Again we set P_f to 1 so a simplied version of (5) becomes the actual VSWR at the antenna

$$VSWR = \frac{\sqrt{L} + \sqrt{P_r \div L}}{\sqrt{L} - \sqrt{P_r \div L}}$$
(6)