Ruslan Shaydulin

E-mail: rshaydu@g.clemson.edu GitHub: https://github.com/rsln-s

Web: shaydul.in Google Scholar: https://scholar.google.com/citations?user=PxOuGGcAAAAJ

Profile

PhD candidate in computer science, expecting to graduate in May 2020. My research focusses around the intersection between (hyper)graph problems, optimization, machine learning, quantum and high-performance computing. I have extensive experience designing and implementing hybrid quantum-classical algorithms, with particular interest in variational and decomposition-based approaches (including multilevel).

Peer-reviewed Publications

Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash. Learning to Optimize Variational Quantum Circuits to Solve Combinatorial Problems. In *Proceedings of Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) (to appear)*, 2020. Acceptance rate: 20.6%

Sami Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash. Reinforcement-Learning-Based Variational Quantum Circuits Optimization for Combinatorial Problems. In *Proceedings of the Machine Learning and the Physical Sciences workshop at Conference on Neural Information Processing Systems (NeurIPS 2019) (to appear)*, 2019. Preprint: arXiv:1911.04574

Ruslan Shaydulin, Yuri Alexeev. Evaluating Quantum Approximate Optimization Algorithm: A Case Study. In Proceedings of the 2nd International Workshop on Quantum Computing for Sustainable Computing (QCSC 2019) (in conjunction with 10th International Green and Sustainable Computing Conference (IGSC 2019)), 2019

Preprint: arXiv:1910.04881

Sami Khairy, **Ruslan Shaydulin**, Lukasz Cincio, Yuri Alexeev, Prasanna Balaprakash. Reinforcement Learning for Quantum Approximate Optimization. *Research Poster, Supercomputing '19,* 2019 (<u>available in Proceedings</u>)

Ruslan Shaydulin, Ilya Safro, and Jeffrey Larson. Multistart Methods for Quantum Approximate Optimization. In *Proceedings of 2019 IEEE High Performance Extreme Computing Conference (HPEC)*, 2019

Best Student Paper (of ~50 student papers). Preprint: arXiv:1905.08768

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Christian F.A. Negre, Ilya Safro, Susan M Mniszewski, and Yuri Alexeev. A Hybrid Approach for Solving Optimization Problems on Small Quantum Computers. *Computer*, 52(6):18-26, 2019. Cover Feature. DOI: 10.1109/MC.2019.2908942

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev. Network Community Detection on Small Quantum Computers. *Advanced Quantum Technologies*, 2(9):1900029, 2019. DOI: 10.1002/gute.201900029

Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev. Community Detection Across Emerging Quantum Architectures. In *Proceedings of the 3rd International Workshop on Post Moore's Era Supercomputing (in conjunction with Supercomputing '18)*, 12-14, 2018. Preprint arXiv:1810.07765

Ruslan Shaydulin and Ilya Safro. Aggregative Coarsening for Multilevel Hypergraph Partitioning. *In Proceedings of 17th International Symposium on Experimental Algorithms (SEA 2018)*, 103:2:1–2:15, 2018.

DOI: <u>10.4230/LIPIcs.SEA.2018.2</u>

Ruslan Shaydulin shaydul.in

Ruslan Shaydulin, Jie Chen, and Ilya Safro. Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning. *Multiscale Modeling & Simulation*, 17(1):482-506, 2019. DOI: <u>10.1137/17M1152735</u>

Online Preprints and In-Submission Works

Hayato Ushijima-Mwesigwa, **Ruslan Shaydulin**, Christian F. A. Negre, Susan Mniszewski, Yuri Alexeev, Ilya Safro. Multilevel Combinatorial Optimization Across Quantum Architectures. *In submission*. Preprint: <u>arXiv:1910.09985</u>

Zirou Qiu, **Ruslan Shaydulin**, Xiaoyuan Liu, Yuri Alexeev, Christopher S. Henry, Ilya Safro. Network Alignment by Propagating Reliable Similarities. *In submission*. Preprint: <u>arXiv:1911.05486</u>

Justin Sybrandt, Ruslan Shaydulin, Ilya Safro. Hypergraph Partitioning With Embeddings. In submission.

Preprint: <u>arXiv:1909.04016</u>

Ruslan Shaydulin, Caleb Thomas, Paige Rodeghero. Making Quantum Computing Open: Lessons from Open-Source Projects. Preprint: <u>arXiv:1902.00991</u>

Ruslan Shaydulin, Justin Sybrandt. To Agile, or not to Agile: A Comparison of Software Development Methodologies.

Preprint: arXiv:1704.07469

Education

Clemson University, SC

Spring 2020 (expected)

PhD candidate in Computer Science, advisor: Ilya Safro

Research in algorithms, high performance computing, big data analysis and quantum computing

Relevant coursework: Design & Analysis of Algorithms, Data Mining, Distributed & Cluster Computing, Parallel

Architecture, Network Science

Moscow Institute of Physics and Technology

Summer 2016

Department of Control and Applied Math,

Bachelor of Science in Applied Mathematics and Physics

Minor: Computer Science and Data Analysis

Work Experience

Research Aide, Argonne National Laboratory

Summer 2018, 2019

- Developed quantum-accelerated frameworks for network community detection and graph partitioning under the supervision of Yuri Alexeev
- Co-authored 6 papers on quantum optimization and machine learning (5 first author)
- Contributed to multiple proposals

Research Intern, Parallels LABs

Winter 2014 - Summer 2016

- Improved stability and security of SmartMail macOS email client by isolating potentially unstable parts as separate services
- Added features to UI of iQuickMark iOS app

Ruslan Shaydulin	shaydul.in
Contributed Talks and Posters	
Information Science and Technology Institute Seminar Los Alamos National Laboratory Gave talk "Practical Optimization on Near-term Quantum Computers"	Nov 26, 2019
Supercomputing '19 Denver, CO Gave talk "Hybrid Quantum-Classical Algorithms for Graph Problems: Forging a Path to Near-Terr the Clemson booth and at the SC Theater	Nov 17-22, 2019 m Applications" at
Quantum Computing Seminar Oak Ridge National Laboratory Gave talk "Practical Optimization on Near-term Quantum Computers"	Nov 4, 2019
International Green and Sustainable Computing Conference (IGSC 2019) Alexandria, VA Presented poster "Reinforcement Learning for Quantum Approximate Optimization"	Oct 22, 2019
Chicago Quantum Exchange Meeting University of Chicago Presented poster "Practical Quantum Approximate Optimization"	June 12, 2019
SIAM Conference on Computational Science and Engineering (CSE19) Spokane, WA Presented poster "Quantum Local Search for Graph Community Detection"	Feb 25-28, 2019
Quantum Computing Tutorial Argonne National Laboratory Gave talk "QAOA Algorithm Introduction"	Dec 10-11, 2018
Supercomputing '18 Dallas, TX Gave talk "Community Detection Across Emerging Quantum Architectures" at Clemson booth	Jul 25-27, 2018
Quantum Computing Workshop Argonne National Laboratory Presented preliminary results on "Machine Learning on Near-Term Quantum Computers"	Jul 25-27, 2018
32nd Clemson Mini-Conference on Discrete Mathematics and Algorithms <i>Clemson University</i> Presented poster "Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning"	Nov 4, 2017
58th Scientific Conference <i>Moscow Institute of Physics and Technology</i> Gave talk "IPC (Inter-Process Communication) in OS X"	Nov 23-28, 2015
Leadership and Service	
Supercomputing '19 Denver, CO Student volunteer, run tutorials, technical program session and Birds-of-Feather	Nov 17-22, 2019
SIAM Conference on Parallel Processing for Scientific Computing (PP20) Seattle, WA Led and co-organized a minitutorial "Combinatorial Optimization on Quantum Computers"	Feb 12-15, 2020
SIAM Conference on Parallel Processing for Scientific Computing (PP20) Seattle, WA Co-organized a minisymposium "Recent Advances and Trends in Hybrid Quantum-Classical Algo	Feb 12-15, 2020 orithms"

Quantum Computing Tutorial Argonne National Laboratory

Led and co-organized a hands-on tutorial for Qiskit, a framework for quantum computing

May 14, 2019

Ruslan Shaydulin shaydul.in

Mathematics Teacher, Summer School Kostroma, Russia

Summer 2014

School administrator, organized extracurricular activities.

Teaching

Network Science CPSC 8480 Clemson University

Fall 2018, 2019

Teaching Assistant responsible for grading and answering students' questions during office hours

Design and Analysis of Algorithms CPSC 8400 Clemson University

Spring 2019

Teaching Assistant responsible for grading and answering students' questions during office hours

Algorithms and Data Structures CPSC 2120 Clemson University

Spring 2019

Teaching Assistant responsible for running the lab section, grading and answering students' questions during office hours

Mathematics Teacher, Summer School Kostroma, Russia

Summer 2014

Created and taught a course on basics of graph theory, combinatorics and number theory to middle and high school students.

Languages and Technologies

C, Python

Prior experience: C++, MATLAB, Objective-C, Swift, Bash, IBM QISKit, Rigetti PyQuil

Limited prior experience: R, SQL, yacc, bison, AWS, Google Cloud Engine

Technologies and tools: Git, Xcode for iOS/OSX UI/Backend, TCP/IP, UNIX/Linux, MPI

Honors and Awards

- International Green and Sustainable Computing Conference (IGSC 2019) student travel award, recipient
- Best Student Paper at IEEE HPEC 2019 (of ~50 student papers), recipient
- Upsilon Pi Epsilon CS Honor Society, member
- Supercomputing '19 Student Volunteer Travel award, recipient
- SIAM CSE '19 Broader Engagement Travel award, recipient
- Clemson CCIT Supercomputing '17, '18 and '19 travel award, recipient
- Clemson Graduate Travel Grant, Spring '19, recipient
- Moscow Institute of Physics and technology Abramov scholarship Top 300 students in the university, based on high academic achievement, *recipient*