Training compute-Optimal Large Language Models

CPSC 670

Chenxi Huang

01/31/2023

Background

• Scaling law proposed in Kaplan et al. 2020

Given a 10x increase in compute budget:

5.5x model size N

1.8x training tokens D

Background

• Scaling law proposed in Kaplan et al. 2020

Given a 10x increase in compute budget:

5.5x model size N

1.8x training tokens D

Increasingly-large models

Model	Size (# Parameters)	Training Tokens
LaMDA (Thoppilan et al., 2022)	137 Billion	168 Billion
GPT-3 (Brown et al., 2020)	175 Billion	300 Billion
Jurassic (Lieber et al., 2021)	178 Billion	300 Billion
Gopher (Rae et al., 2021)	280 Billion	300 Billion
MT-NLG 530B (Smith et al., 2022)	530 Billion	270 Billion

Introduction

• Re-approach the question:

Given a compute budget, what is the optimal model size (N) and no.training tokens (D) for achieving minimum loss?

Introduction

• Re-approach the question:

Given a compute budget, what is the optimal model size (N) and no.training tokens (D) for achieving minimum loss?

• Overall approach: empirically estimate N_{opt} and D_{opt} based on the losses of models with diff sizes and no.training tokens

Introduction

Re-approach the question:

Given a compute budget, what is the optimal model size (N) and no.training tokens (D) for achieving minimum loss?

- Overall approach: empirically estimate N_{opt} and D_{opt} based on the losses of models with diff sizes and no.training tokens
- Difference from Kaplan et al. 2020
 - Kaplan et al. used a fixed no.steps and learning rate schedule
 - Kaplan et al. included smaller models

- 3 different approaches
- Training dataset: MassiveText

	Disk Size	Documents	Sampling proportion	Epochs in 1.4T tokens
MassiveWeb	1.9 TB	604M	45% (48%)	1.24
Books	2.1 TB	4M	30% (27%)	0.75
C4	0.75 TB	361M	10% (10%)	0.77
News	2.7 TB	1.1B	10% (10%)	0.21
GitHub	3.1 TB	142M	4% (3%)	0.13
Wikipedia	0.001 TB	6M	1% (2%)	3.40

• Cosine schedule, learning rate drops 10x, length match target training steps.

- Approach 1
 - Fix model size and vary number of training tokens

- Approach 1
 - Fix model sizes and vary number of training tokens

- Approach 1
 - Fix model sizes and vary number of training tokens

$$N_{opt} \propto C^a$$
 and $D_{opt} \propto C^b$

Approach	Coeff. a where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)

- Approach 2
 - Fix training compute and vary model size

- Approach 2
 - Fix training compute and vary model size

- Approach 2
 - Fix training compute and vary model size

- Approach 2
 - Fix training compute and vary model size

$$N_{opt} \propto C^a$$
 and $D_{opt} \propto C^b$

Approach	Coeff. a where $N_{opt} \propto C^a$	Coeff. <i>b</i> where $D_{opt} \propto C^b$
 Minimum over training curves IsoFLOP profiles 	0.50 (0.488, 0.502) 0.49 (0.462, 0.534)	0.50 (0.501, 0.512) 0.51 (0.483, 0.529)

- Approach 3
 - Fit a parametric loss function
 - Take all final losses from Approach 1 and 2

- Approach 3
 - Fit a parametric loss function
 - Take all final losses from Approach 1 and 2

$$\hat{L}(N,D) \triangleq E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}.$$

$$\min_{A,B,E,\alpha,\beta} \quad \sum_{\text{Runs } i} \text{Huber}_{\delta} \Big(\log \hat{L}(N_i, D_i) - \log L_i \Big)$$

- Approach 3
 - Fit a parametric loss function

- Approach 3
 - Fit a parametric loss function

$$\hat{L}(N,D) \triangleq E + \frac{A}{N^{\alpha}} + \frac{B}{D^{\beta}}.$$

• Minimize $\hat{L}(N, D)$ under the constraint $FLOPs(N, D) \approx 6ND$

$$N_{opt}(C) = G\left(\frac{C}{6}\right)^a$$
, $D_{opt}(C) = G^{-1}\left(\frac{C}{6}\right)^b$, where $G = \left(\frac{\alpha A}{\beta B}\right)^{\frac{1}{\alpha+\beta}}$, $a = \frac{\beta}{\alpha+\beta}$, and $b = \frac{\alpha}{\alpha+\beta}$.

- Approach 3
 - Fit a parametric loss function

Approach	Coeff. a where $N_{opt} \propto C^a$	Coeff. b where $D_{opt} \propto C^b$
1. Minimum over training curves	0.50 (0.488, 0.502)	0.50 (0.501, 0.512)
2. IsoFLOP profiles	0.49 (0.462, 0.534)	0.51 (0.483, 0.529)
3. Parametric modelling of the loss	0.46 (0.454, 0.455)	$0.54\ (0.542, 0.543)$
Kaplan et al. (2020)	0.73	0.27

• Summary

- Chinchilla
 - Same compute budget as Gopher
 - N=70B, D=1.4T
 - Same architecture and training setup as Gopher with some difference
 - Evaluation:

	# Tasks	Examples
Language Modelling	20	WikiText-103, The Pile: PG-19, arXiv, FreeLaw,
Reading Comprehension	3	RACE-m, RACE-h, LAMBADA
Question Answering	3	Natural Questions, TriviaQA, TruthfulQA
Common Sense	5	HellaSwag, Winogrande, PIQA, SIQA, BoolQ
MMLU	57	High School Chemistry, Astronomy, Clinical Knowledge,
BIG-bench	62	Causal Judgement, Epistemic Reasoning, Temporal Sequences,

- Chinchilla
 - Results

Implications

- Establish an optimal training paradigm for auto-regressive language models on a given compute budget
- Current large models are undertrained and underperforming
- Chinchilla
 - is smaller and performs better
 - has smaller memory footprint and less computation for fine-tuning and inference
- Increased focus on data instead of model size

• ...