[머신러닝 기반 데이터 분석] 02. 데이터 세트 분할하기

- 01. 머신러닝 수행방법 계획하기
- 02. 데이터 세트 분할하기
- 03. 지도학습 모델 적용하기
 - 3-1 분류 목적의 머신러닝 기법 적용(Knn, Logistic)
- 04. 자율학습 모델 적용하기
- 05. 모델성능 평가하기
- 06. 학습결과 적용하기

학습 목표

- 가. 지도학습과 비지도학습의 차이를 이해해 본다.
- 나. KNN에 대해 이해해 본다.

목차

- 3-1 분류 목적의 머신러닝 기법 적용
- (가) 데이터에 맞는 적합한 머신러닝 알고리즘 기법 선정

▶ 대표적인 지도학습(supervised learning)

(가) 회귀(예측) - Regression

(나) 분류(Classification)

공통점 : 입력 및 목표 변수의 값을 이용하여

주어진 **입력변수에 대한 목표변수의 값을 예측**하는

모형을 개발한다.

▶ 대표적인 지도학습(supervised learning)

(가) 회귀(예측) - Regression

(나) 분류(Classification)

▶ 차이점 :

A. 목표 변수의 형태가 회귀의 경우 연속형이다.

B. 분류의 경우는 범주형이다.

> 비지도학습

주어진 데이터에서 분류항목 표시나 **목적변수(혹은 반응변수)가 없고** 목적 값 예측을 시도하는 것이 아닐 경우, 자율학습 혹은 **비지도 학습** (Unsupervised Learning) 기법 적용

(나) 분류 목적 머신러닝 주요 기법 핵심 개념 및 특징 1. K-최근접 이웃(K-Nearest Neighbor) 기법

1-5 KNN k=1k=3

K-최근접 이웃 기법은 목표변수의 범주를 알지 못하는 데이터 세트의 분류를 위해 해당 데이터 세트와 가장 유사한 주변 데이터 세트의 범주로 지정하는 방식으로 분류 예측을 한다.

주변 데이터 세트를 몇 개로 기준으로 판단할 것인가에 대한 기준 필요(K개)

[그림 3-1] K-최근접 이웃 기법에서의 K 값 변화에 따른 목표변수 범주 변화

(NCS 모듈 교재)

K=1로 설정

'☆'와 가장 가까운 데이터 점은'○'이므로'☆'의 목표변수는 **'○'로 분류**

K=3으로 설정

'☆'와 가장 가까운 3개의 점을 고려하게 되므로 '□'가 2개,'○'가 1개이므로 이때는'**☆'점은'□'로 분류**

K=5로 설정

'☆'와 가장 가까운 3개의 점을 고려하게 되므로'□'가 2개,'○'가 1개이므로 이때는 '☆'점은'□'로 분류

K-최근접 이웃(K-Nearest Neighbor) 기법 장단점

장 점	단 점
 알고리즘 이해하기 쉽고 직관적 빠른 훈련(학습)시간 데이터 세트의 확률분포 등에 대한 가정이 필요없다. 	 많은 메모리 소요(대용량 데이터 불리) 느린 분류(예측) 소요시간
	새로운 데이터가 주어질 때마다 모든 데이터와의 유사성 계산을 해야 한다. 게으른 학습(Lazy Learning)으로 불린다.
	• 모델(모형)이 없으므로 <mark>변수들간의 관계</mark> 등 가설검증이나 구조 등에 대한 분석을 통해 통찰력을 얻기 어렵다.
	(주어진 데이터 통해 범주의 분류 결과 판단)

K-최근접 이웃(K-Nearest Neighbor) 활용 분야

온라인 및 모바일 서비스 추천 시스템에서 K-최근접 이웃 기법에 근거한 상품 및 서비스 추천 등이 대표적인 분야라고 할 수 있다.

2. 로지스틱 함수(Logistic function) 기법

• 예측하고자 하는 것이 목표변수(Y)가 아닌, 목표변수 Y가 특정 범주(i)가 될 확률-P(Y=i)이다.

만약 목표변수 Y의 범주가 0.1 두 가지만 있다고 가정한다.

목표변수 P(Y=1) = P(Y)로 표기하면, 이를 회귀식으로 다음과 같이 표현한다.

$$\frac{P(Y)}{1 - P(Y)} = \exp(\beta_0 + \beta_1 X)$$

여기서 **좌편은 오즈(Odds**)라고 한다.

좌편은 확률들의 비율이고, 우변은 지수함수의 형태이다. 따라는 이는 **값의 범위는 (0. ∞)**의 범위를 갖는다.

양쪽 좌변, 우변의 같은 값의 범위를 가지게 하기 위해 양변에 Log 함수를 취한다.

$$\log\left(\frac{P(Y)}{1 - P(Y)}\right) = \beta_0 + \beta_1 X$$

log로 인해 우변은 선형모델이 되어 범위가 $(-\infty,\infty)$ 가 되고, 좌변도 동일하다.

좌변의 log(P(Y)/(1-P(Y)) 를 우리는 **로짓(logit)함수**라 한다.

위의 식을 exp를 취하고 다시 P(Y=1)로 정리하면

$$P(Y=1) = \frac{e^{(\beta_0 + \beta_1 X)}}{1 + e^{(\beta_0 + \beta_1 X)}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

다음과 같이 식이 만들어진다.

로지스틱 회귀분석은 주어진 훈련 데이터에서 목표변수가 Y가 범주값 1을 가질 확률 P(Y=1)를

위의 식의 로지스틱 함수를 이용하여 모델을 만들고 모수 $oldsymbol{eta}^{0}$, $oldsymbol{eta}^{1}$ 들을 추정하는 알고리즘이다.

β 0, **β** 1 추정에는 일반적으로 **최대우도추정법(Maximum Likelihood Estimation)을 사용**한다.

[그림 3-2] 로지스틱 회귀 곡선 그래프

(NCS 교재 참조)

<표 3-4> 로지스틱 회귀분석의 장단점

장 점

단 점

- 선형통계모형의 이론에 기반한 정교하고 체계적인 모수 추정이 가능하다.
- 확률모형이므로, 목표변수의 범주 확률값을 추정할 수 있다.
- 추정된 모형의 계수에 대한 해석이 가능하며. 독립변수들의 유의성 및 영향력 등 결과 분석 시 유용한 해석이 가능하다.
- 데이터 세트의 차원이 매우 많을 때 모형의 추정 정확도가 다른 머신러닝 기법에 비해 좋지 않다.
- 추정 방법상 x값이 매우 커지거나 작아지면 확률값 이 1(혹은 0)에 매우 가까워져서 수치계산 정확도가 떨어지게 되며, 반복 계산 시 오버 피팅이 빈번하게 발생한다.
- 복잡한 비선형적 분류가 필요한 경우에는 분류 정확도가 좋지 않다.

(history) 2019.01.01 logistic 추가