Technical Notes for Logistic Regression

Instructor: Jiayu Zhou April 4, 2017

1 Logistic Regression

We limit our discussion on two class case, C_+ and C_- . The materials can be extended to multi-variate logistic regression.

- Probabilistic discriminative model
 - Given a data point \mathbf{x} , it directly models class conditional probability $\Pr(\mathcal{C}_+|\mathbf{x})$ and $\Pr(\mathcal{C}_-|\mathbf{x})$. Once we figure out the relationship between the two we can generate predictions. Recall that in generative model we model $\Pr(\mathcal{D})$ instead.
 - Therefore we directly use a parameterized (general linear) function to model $\Pr(\mathcal{C}_+|\mathbf{x}) = f(\mathbf{x};\theta)$, where θ is the parameter to be determined. In the two class case, this is enough because $\Pr(\mathcal{C}_-|\mathbf{x}) = 1 \Pr(\mathcal{C}_+|\mathbf{x})$.
- The sigmoid function
 - In logistic regression, we use the sigmoid function $\sigma(t) = \frac{1}{1 + \exp(-t)}$, i.e.,

$$\Pr(\mathcal{C}_+|\mathbf{x}) = f(\mathbf{x}; \theta = \mathbf{w}) = \sigma(\mathbf{x}^T \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{x}^T \mathbf{w})}$$

- Range: $\sigma(0) = 0.5$, $\sigma(\infty) = \frac{1}{1 + \exp(-\infty)} = 1$, and $\sigma(-\infty) = \frac{1}{1 + \exp(\infty)} = 0$.
- Differential $\frac{\partial \sigma(t)}{\partial t} = \sigma(t)(1 \sigma(t))$:

$$\begin{split} \frac{\partial \sigma(t)}{\partial t} &= \frac{\partial \sigma(t)}{1 + \exp(-t)} \cdot \frac{\partial (1 + \exp(-t))}{\partial \exp(-t)} \cdot \frac{\partial \exp(-t)}{\partial t} \\ &= \frac{1}{1 + \exp(-t)} \cdot \frac{\exp(-t)}{1 + \exp(-t)} \\ &= \sigma(t)(1 - \sigma(t)) \end{split}$$

- Property $1 - \sigma(t) = \sigma(-t)$:

$$1 - \sigma(t) = \frac{1 + \exp(-t)}{1 + \exp(-t)} - \frac{1}{1 + \exp(-t)} = \frac{\exp(-t)}{1 + \exp(-t)} = \frac{1}{1 + \exp(t)} = \sigma(-t)$$

- The sigmoid function is a special case of the logistic function $f(t; L, k, t_0) = \frac{L}{1 + \exp(-k(t t_0))}$, where L is the magnitude, k decides how steep is the curve, and t_0 is the midpoint. In sigmoid, $L = 1, k = 1, t_0 = 0$.
- The sigmoid function is the inverse of logit function.
- Linear model with an intercept
 - Usually we need an intercept term in the linear model to offset the bias, i.e., $\mathbf{x}_i^T \mathbf{w} + c$ instead of $\mathbf{x}_i^T \mathbf{w}$.

- Typically this can be achieved by adding one dummy variable to the data and use the same algorithm. That is, $\hat{\mathbf{x}}_i = [\mathbf{x}_i; 1]$ and then we add a corresponding extra parameter c in the model so that $\hat{\mathbf{w}} = [\mathbf{w}; c]$. Therefore this gives $\hat{\mathbf{x}}_i^T \hat{\mathbf{w}} = \mathbf{x}_i^T \mathbf{w} + c$.
- Alternatively, we can treat c independently and perform a separate gradient descent. In this case, refer to the *block coordinate descent* technique, where c and \mathbf{w} are considered two blocks. This is useful when there are structured regularization applied on c and \mathbf{w} separately. For example, ℓ_1 regularized logistic regression only applies ℓ_1 penalty on \mathbf{w} but not c.

2 Label Encoding and Logistic Loss

Given different label encoding scheme, we can derive different formulations for logistic regression, leading to different algorithms (because the gradients are different).

- Encoding labels as $C_+ = +1$ and $C_- = 0$
 - If we encode this way we can use Bernelle distribution. If random variable X is a random variable with Bernelle distribution, then $\Pr(X=1) = 1 \Pr(X-0) = p$, and probability mass function of the distribution can be written as $\Pr^k(1-\Pr)^{1-k}$.
 - Likelihood. According to the Bernelle distribution, then we can write

$$\Pr(\mathbf{y}|\mathbf{X}; \mathbf{w}) = \prod_{i} \Pr(y_i|\mathbf{x}_i; \mathbf{w}) = \prod_{i} \Pr(y_i|\mathbf{x}_i; \mathbf{w})^{y_i} (1 - \Pr(y_i|\mathbf{x}_i; \mathbf{w}))^{1-y_i}$$
$$= \prod_{i} \sigma(y_i \mathbf{x}_i^T \mathbf{w})^{y_i} (1 - \sigma(y_i \mathbf{x}_i^T \mathbf{w}))^{1-y_i}$$

- Loss. Minimize the following:

$$\mathcal{L}_{1,0} = -\frac{1}{N} \ln \Pr(\mathbf{y}|\mathbf{X}; \mathbf{w}) = -\frac{1}{N} \sum \left(y_i \ln \sigma(\mathbf{x}_i^T \mathbf{w}) + (1 - y_i)(1 - \ln \sigma(\mathbf{x}_i^T \mathbf{w})) \right)$$
(1)

The loss has the form of cross-entropy.

- Gradient

$$\nabla_{\mathbf{w}} \mathcal{L}_{1,0} = -\frac{1}{N} \sum_{i} \left(y_{i} \frac{\sigma(\mathbf{x}_{i}^{T} \mathbf{w})(1 - \sigma(\mathbf{x}_{i}^{T} \mathbf{w}))}{\sigma(\mathbf{x}_{i}^{T} \mathbf{w})} \mathbf{x}_{i} + (1 - y_{i}) \frac{-\sigma(\mathbf{x}_{i}^{T} \mathbf{w})(1 - \sigma(\mathbf{x}_{i}^{T} \mathbf{w}))}{1 - \sigma(\mathbf{x}_{i}^{T} \mathbf{w})} \mathbf{x}_{i} \right)$$

$$= -\frac{1}{N} \sum_{i} \left(y_{i} (1 - \sigma(\mathbf{x}_{i}^{T} \mathbf{w})) \mathbf{x}_{i} + (y_{i} - 1) \sigma(\mathbf{x}_{i}^{T} \mathbf{w}) \mathbf{x}_{i} \right)$$

$$= -\frac{1}{N} \sum_{i} (y_{i} - \sigma(\mathbf{x}_{i}^{T} \mathbf{w})) \mathbf{x}_{i}$$
(2)

- Encoding labels as $C_+ = +1$ and $C_- = -1$
 - Since $\Pr(\mathcal{C}_{+}|\mathbf{x}) = \sigma(\mathbf{x}^T\mathbf{w})$, we have $\Pr(\mathcal{C}_{-}|\mathbf{x}) = 1 \sigma(\mathbf{x}^T\mathbf{w}) = \sigma(-\mathbf{x}^T\mathbf{w})$. Given the encoding, we have that $\Pr(y|\mathbf{x}) = \sigma(y\mathbf{x}^T\mathbf{w})$.
 - Likelihood:

$$\Pr(\mathbf{y}|\mathbf{X};\mathbf{w}) = \prod_{i} \Pr(y_i|\mathbf{x}_i;\mathbf{w}) = \prod_{i} \sigma(y\mathbf{x}^T\mathbf{w})$$

- Loss. Minimize the following:

$$\mathcal{L}_{1,-1} = -\frac{1}{N} \ln \Pr(\mathbf{y}|\mathbf{X}; \mathbf{w}) = -\frac{1}{N} \sum_{i} \ln \sigma(y_i \mathbf{x}_i^T \mathbf{w})$$

$$= -\frac{1}{N} \sum_{i} \ln \frac{1}{1 + \exp(-y_i \mathbf{x}_i^T \mathbf{w})} = \frac{1}{N} \sum_{i} \ln \left(1 + \exp(-y_i \mathbf{x}_i^T \mathbf{w})\right)$$
(3)

- Gradient:

$$\nabla_{\mathbf{w}} \mathcal{L}_{1,-1} = -\frac{1}{N} \sum_{i} \frac{\partial \ln \sigma(y_{i} \mathbf{x}_{i}^{T} \mathbf{w})}{\partial \sigma(y_{i} \mathbf{x}_{i}^{T} \mathbf{w})} \cdot \frac{\partial \sigma(y_{i} \mathbf{x}_{i}^{T} \mathbf{w})}{\partial y_{i} \mathbf{x}_{i}^{T} \mathbf{w}} \cdot \frac{\partial y_{i} \mathbf{x}_{i}^{T} \mathbf{w}}{\partial \mathbf{w}}$$

$$= -\frac{1}{N} \sum_{i} \frac{1}{\sigma(y_{i} \mathbf{x}_{i}^{T} \mathbf{w})} \cdot \sigma(y_{i} \mathbf{x}_{i}^{T} \mathbf{w}) (1 - \sigma(y_{i} \mathbf{x}_{i}^{T} \mathbf{w})) \cdot y_{i} \mathbf{x}_{i}$$

$$= -\frac{1}{N} \sum_{i} y_{i} \sigma(-y_{i} \mathbf{x}_{i}^{T} \mathbf{w}) \mathbf{x}_{i}$$

$$(4)$$

3 Prediction

• In either encoding scheme, given a data point \mathbf{x} , the linear function $f(\mathbf{w}; \theta) = \mathbf{x}^T \mathbf{w} \geq 0$ simply implies $\Pr(\mathcal{C}_+|\mathbf{x}) \geq \Pr(\mathcal{C}_-|\mathbf{x})$, and is enough to generate the prediction of \mathbf{x} (i.e., \mathcal{C}_+), and vice versa.

$$\Pr(\mathcal{C}_{+}|\mathbf{x}) \ge \Pr(\mathcal{C}_{-}|\mathbf{x}) \Rightarrow \frac{1}{1 + \exp(-\mathbf{x}^{T}\mathbf{w})} \ge \frac{1}{1 + \exp(\mathbf{x}^{T}\mathbf{w})} \Rightarrow \exp(\mathbf{x}^{T}\mathbf{w}) \ge \exp(-\mathbf{x}^{T}\mathbf{w})$$
$$\Rightarrow \mathbf{x}^{T}\mathbf{w} \ge -\mathbf{x}^{T}\mathbf{w} \Rightarrow \mathbf{x}^{T}\mathbf{w} \ge 0$$

• Therefore after the logistic regression model \mathbf{w} is learned on training data, simple linear function sign($\mathbf{x}^T\mathbf{w}$) gives prediction results, no matter how y is encoded.

4 Implementation Issues

- Vectorization
 - Many BLAS implementations will significantly accelerate the code if variables are properly vectorized.
 - For +1/-1 encoding, the gradient is given by Eq (4). A careful rewriting gives more insights on the vectorized computation:

$$\nabla_{\mathbf{w}} \mathcal{L}_{1,-1} = -\frac{1}{N} \left(\sum_{i} \left(y_i \sigma(-y_i \mathbf{x}_i^T \mathbf{w}) \right) \mathbf{x}_i \right) = -\frac{1}{N} \mathbf{X}^T \mathbf{a}$$

where $\mathbf{a} \in \mathbb{R}^N$ and $a_i = y_i \sigma(-y_i \mathbf{x}_i^T \mathbf{w})$.

- * Since many BLAS supports vectorized exp computation, a straightforward implementation of the sigmoid function should be able to take vectorized inputs.
- * The input of sigmoid can be vectorized via $-\mathbf{y} \odot \mathbf{X} \mathbf{w}$
- * **a** can thus computed by $\mathbf{a} = \mathbf{y} \odot \sigma(-\mathbf{y} \odot \mathbf{X} \mathbf{w})$

- * The final gradient is given by $\mathbf{X}^T (\mathbf{y} \odot \sigma(-\mathbf{y} \odot \mathbf{X}\mathbf{w})) / (-N)$
- * Python code:

- For +1/0 encoding, the gradient in Eq (2) is also given by a linear comination of feature vectors:

$$\nabla_{\mathbf{w}} \mathcal{L}_{1,0} = \frac{1}{N} \sum_{i} \left(\sigma(\mathbf{x}_{i}^{T} \mathbf{w}) - y_{i} \right) \mathbf{x}_{i} = \frac{1}{N} \mathbf{X}^{T} \mathbf{b}$$

where $b_i = \sigma(\mathbf{x}_i^T \mathbf{w}) - y_i$ can be computed similarity as above.

• Loss function overflow

- The computation of the loss functions in Eqs. 3 and 1 involves the computation of log of sigmoid function, which involves $\exp(\mathbf{x}^T\mathbf{w})$ or $\exp(-y\mathbf{x}^T\mathbf{w})$.
- Double-precision floating point numbers (i.e., 64-bit IEEE) supports an approximate domain of $a \in (-750, 750)$ when computing $\exp(a)$ before underflowing to 0 or overflow to $+\infty$.
- Technically the inner product $\mathbf{x}^T \mathbf{w}$ is not bounded, and thus it is very possible that $\exp(-\mathbf{x}^T \mathbf{w})$ will underflow or overflow. While underflow causes less trouble, overflow can lead to serious numerical problems: although $\exp(-\mathbf{x}^T \mathbf{w})$ overflows, $\log\left(\frac{1}{1+\exp(-\mathbf{x}^T \mathbf{w})}\right)$ can still be a meaningful and useful value!
- Remedy: use $-\log\left(\frac{1}{1+\exp(a)}\right) = \log(\exp(-b) + \exp(a-b)) + b$, where $b = \max(a,0)$. Therefore the maximum value inside exp is 0. To see this, we have for **any** b:

$$-\log\left(\frac{1}{1 + \exp(a)}\right) = \log(1 + \exp(a)) = \log(\exp(-b + b) + \exp(a - b + b))$$

$$= \log(\exp(-b) \exp(b) + \exp(a - b) \exp(b))$$

$$= \log((\exp(-b) + \exp(a - b)) \exp(b))$$

$$= \log(\exp(-b) + \exp(a - b)) + \log\exp(b)$$

$$= \log(\exp(-b) + \exp(a - b)) + b$$

- For example, to compute Eq. (3), we first compute vector $\mathbf{m} \in \mathbb{R}^n$, where $m_i = -y_i \mathbf{x}_i^T \mathbf{w}$. We then compute the maximum $k = \max_i \{m_i\}$. The loss function is computed by

$$\mathcal{L}_{1,-1} = -\frac{1}{N} \sum_{i} \ln \sigma(y_i \mathbf{x}_i^T \mathbf{w}) = \frac{1}{N} \left(\log(\exp(-k) + \exp(\mathbf{m} - k)) + k \right)$$