Hochschule für
Technik und Wirtschaft
des Saarlandes
University of
Applied Sciences

Fakultät für Ingenieurwissenschaften School of Engineering ingenieur wissenschaften htw saar

Implementierung eines Prototypen für ein an SAFE angelehntes Anonymisierungsverfahren mit Hilfe von Clusteringalgorithmen

Boris Wiegand SS 2015 – 26.06.2015 Seminar Anonymisierung von Mikrodaten Prof. Dr. rer. nat. habil. Rainer Lenz Dipl.-Vw. Emanuel Weiß

Inhalt

- SAFE
 - Idee
 - Mathematisches Modell
- Entwickeltes Verfahren
 - Konzept
 - Verwendete Clusteringalgorithmen
 - Bewertung
 - Ausblick
- Livedemo nach der Präsentation

→ SAFE

htw saar

SAFE-Grundidee (1)

Höhne, Jörg. "Methoden und Potenziale des Zensus 2011." (2012). Vortrag auf den Statistik-Tagen Bamberg 2012. Folien verfügbar unter https://www.statistik.bayern.de/medien/wichtigethemen/st_vortrag_hoehne_27072012.pdf (letzter Aufruf am 17.06.15)

SAFE-Grundidee (2)

Merkmal 1	Merkmal 2	
Α	10	
В	12	
Α	12	
Α	15	SAFE _
В	12	
Α	11	
С	10	
Α	25	
Α	2	

Merkmal 1	Merkmal 2
Α	11
А	11
Α	11
В	12
В	12
В	12

SAFE – Mathematisches Modell (1)

Matrix metrischer Werte

Alter	Gehalt	Ort	Geschl
51	1500	A-Stadt	m
21	550	B-Dorf	W
32	3500	C-Weiler	m

$$X = \begin{pmatrix} 51 & 1500 \\ 21 & 550 \\ 32 & 3500 \end{pmatrix}$$

SAFE – Mathematisches Modell (2)

Zuordnungsmatrizen

Alter	Gehalt	Ort	Gesc hl
51	1500	A-Stadt	m
21	550	B-Dorf	W
32	3500	C-Weiler	m

$$Z_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$m{Z}_2 = egin{pmatrix} m{1} & m{0} \ m{0} & m{1} \ m{1} & m{0} \end{pmatrix}$$

SAFE – Mathematisches Modell (3)

Kombination von Zuordnungsmatrizen

$$Z_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad Z_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{split} Z_{1,2} = & \begin{pmatrix} Z_{1_{Zeile\ 1}} \otimes Z_{2_{Zeile\ 1}} \\ Z_{1_{Zeile\ 2}} \otimes Z_{2_{Zeile\ 2}} \\ Z_{1_{Zeile\ 3}} \otimes Z_{2_{Zeile\ 3}} \end{pmatrix} = & \begin{pmatrix} 1 \cdot (1\ 0) & 0 \cdot (1\ 0) & 0 \cdot (1\ 0) \\ 0 \cdot (1\ 0) & 1 \cdot (1\ 0) & 0 \cdot (0\ 1) \\ 0 \cdot (1\ 0) & 0 \cdot (1\ 0) & 1 \cdot (1\ 0) \end{pmatrix} \\ = & \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \end{split}$$

htw saar

SAFE - Mathematisches Modell (4)

Auswertung kategoriale Merkmale

$$A_{j} := Z_{j}^{T} \cdot Z_{j}$$

$$A_{2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

htw saar

SAFE – Mathematisches Modell (5)

 Auswertung kategoriale und metrische Merkmale

$$T_{j} := Z_{j}^{T} \cdot X$$

$$T_{2} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 51 & 1500 \\ 21 & 550 \\ 32 & 3500 \end{pmatrix} = \begin{pmatrix} 83 & 5000 \\ 21 & 550 \end{pmatrix}$$

SAFE – Mathematisches Modell (6)

• Minimierungsproblem:

Gegeben: X^0 , Z_1^0 bis Z_k^0

Gesucht: X^a , Z_1^a bis Z_k^a , sodass

Differenz aller A_j^a und A_j^0 minimal und

Differenz aller T_i^a und T_i^0 minimal

Entwickeltes Verfahren - Konzept

M1	M2
А	10
В	12
Α	12
Α	15
В	12
Α	11
С	10
Α	25
Α	2

Clustering

M1	M2
Α	10
В	12
Α	12
Α	15
В	12
Α	11
С	10
Α	25
Α	2

Vereinheitlichung ► SAFE!

k-means++

- Verbesserter k-means Algorithmus (bessere Auswahl der Startpunkte)
- Idee von k-means:
 - Minimiere φ mit
 - X Menge aller Punkte
 - C Menge aller Clusterzentren, |C| = k
 - NP => Näherungslösung

$$\varphi = \sum_{x \in X} \min_{c \in C} \|x - c\|^2$$

Arthur, David, and Sergei Vassilvitskii. "k-means++: The advantages of careful seeding." Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2007.

DBSCAN

- Idee: Punkte in Cluster liegen dicht beieinander
- A ist von B erreichbar, wenn d(A,B) < ε
- A ist Kernpunkt, wenn A minPts erreichbare Nachbarn besitzt
- A ist Dichte-erreichbar, wenn A von einem Kernpunkt erreichbar ist, selbst aber kein Kernpunkt ist
- Ansonsten ist A Rauschpunkt (Noise)
- Kernpunkte und Dichte-erreichbare Punkte bilden einen Cluster

Ester, Martin, et al. "A density-based algorithm for discovering clusters in large spatial databases with noise." Kdd. Vol. 96. No. 34. 1996.

htw saar

Bewertung (1)

- umfassendere Analyse notwendig
- bisher eine Auswertung für k-means++ mit folgenden Parametern:
 - k = 50
 - minimale Gruppengröße 3
 - metrische Merkmale werden mit arithmetischem Mittelwert vereinheitlicht
 - kategoriale Merkmale werden durch Ersetzung mit häufigstem Merkmal innerhalb einer Gruppe vereinheitlicht

Bewertung (2)

Kategoriale Merkmale

	West	Ost
Original	19118	4720
Anonymisiert	18655	4256
Abweichung	463	464

	Erwerbs- tätig	Erwerbs -los	Arbeit- suchend	Sonstige (z.B.<15)
Original	11101	806	130	11337
Anonymisiert	11806	586	52	10930
Abweichung	705	220	78	407

Bewertung (3)

• Metrische Merkmale

Alter	Mittel- wert	Varianz	Stand Abw.	Min	Max	Summe
Original	43,95	523,82	22,89	0	95	1027218
Anonymisiert	43,45	359,64	18,96	14	80	1015685
Abweichung	0,49	164,18	3,92	14	15	11533

Anzahl Personen im Haushalt	Mittel- wert	Varianz	Stand Abw.	Min	Max	Summe
Original	2,78	5,02	2,24	1	40	64982
Anonymisiert	2,35	0,85	0,92	1	40	54989
Abweichung	0,43	4,17	1,32	0	0	9993

Ausblick

- Weitere Clusterverfahren (z.B. Single-Linkage)
- Behandlung von Missings
- Speichereffizienz (Zuordnungsmatrizen!)
- Beste Parameter f
 ür Clusterverfahren
- Laufzeit (Analyse, evtl. Parallelisierung)
- Weitere Auswertungen

http://winfwiki.wi-fom.de/images/f/fd/Ausblick.jpg - letzter Aufruf am 19.06.2015

ingenieur wissenschaften htw saar

