Transformation∫ intégrale∫

VI – Fourier et filtres

G. Chênevert

23 octobre 2023

Au menu aujourd'hui

Reconstruction

Transformée discrète

Filtres

Problème de reconstruction

Nous avons expliqué la dernière fois ce qui se passe spectralement lorsque l'on échantillonne un signal x(t) :

$$x_{\operatorname{\acute{e}ch}}(t) = \bigsqcup_{T_e}(t) \cdot x(t) = \left(\sum_{n=-\infty}^{+\infty} \delta(t-nT_e)\right) \cdot x(t) = \sum_{n=-\infty}^{+\infty} \underbrace{x(nT_e)}_{x_n} \delta(t-nT_e)$$

$$\implies \widehat{x_{\operatorname{\acute{e}ch}}}(f) = \widehat{\bigsqcup}_{T_e}(f) * \widehat{x}(f) = \frac{1}{T_e} \underline{\bigsqcup}_{f_e}(f) * \widehat{x}(f) = \frac{1}{T_e} \sum_{n = -\infty}^{+\infty} \widehat{x}(f - nf_e)$$

la f_e -périodisation du spectre de x (divisée par T_e)

Crénelage

$$\widehat{x_{\mathsf{\acute{e}ch}}}(f) = \frac{1}{T_{\mathsf{e}}} \sum_{n=-\infty}^{+\infty} \widehat{x}(f - nf_{\mathsf{e}})$$

Il y a superposition spectrale entre les fréquences présentes dans le signal initial différant de multiples de $f_{\rm e}$

⇒ phénomène de crénelage (aliasing)

Phénomène qui ne se produira pas si f_e est supérieure à la largeur de bande de x i.e. si $\widehat{x}(f)$ est nul hors de $[-f_{\text{max}}, f_{\text{max}}]$ et

$$f_e > 2f_{\sf max}$$
.

dans lequel on peut observer le repliement du spectre

Problème de reconstruction

Nous avons vu en TP qu'il n'était pas judicieux de reconstruire le signal x à partir de

$$x_{\mathsf{\acute{e}ch}}(t) = \sum_{n=-\infty}^{+\infty} x_n \, \delta(t-nT_{\mathsf{e}})$$

en utilisant des portes :

$$x_{\text{rec}}(t) := \sum_{n=-\infty}^{+\infty} x_n \, \Pi_{T_e}(t - nT_e)$$

et nous pouvons maintenant expliquer pourquoi :

$$x_{\text{rec}}(t) = \Pi_{T_e}(t) * x_{\text{\'ech}}(t) \implies \widehat{x_{\text{rec}}}(f) = T_e \operatorname{sinc}(\pi T_e f) \cdot \widehat{x_{\text{\'ech}}}(f)$$

introduction de hautes fréquences qui n'étaient pas présentes dans le signal initial

Formule de reconstruction de Whittaker

Nous avons eu de meilleurs résultats en prenant

$$x_{\mathsf{Whit}}(t) := \sum_{n=-\infty}^{+\infty} x_n \operatorname{sinc}(\pi f_e(t - nT_e))$$

et c'est normal:

$$x_{\mathsf{Whit}}(t) = \mathsf{sinc}(\pi f_{\mathsf{e}} t) * x_{\mathsf{\acute{e}ch}}(t)$$

$$\implies \widehat{x_{\mathsf{Whit}}}(f) = T_e \Pi_{f_e}(f) \cdot \widehat{x_{\mathsf{\acute{e}ch}}}(f)$$

on coupe les hautes fréquences présentes dans le signal échantillonné

- (

Reconstruction parfaite

$$\widehat{x_{\mathsf{ech}}}(f) = \frac{1}{T_{\mathsf{e}}} \bigsqcup_{f_{\mathsf{e}}} (f) * \widehat{x}(f), \qquad \widehat{x_{\mathsf{Whit}}}(f) = T_{\mathsf{e}} \Pi_{f_{\mathsf{e}}}(f) \cdot \widehat{x_{\mathsf{ech}}}(f)$$

Nous avons essentiellement démontré le résultat suivant :

Théorème (Shannon)

Un signal x(t) à bande limitée $(\widehat{x}(f) \text{ supporté sur } [-f_{max}, f_{max}])$ peut être reconstruit sans perte à partir d'échantillons espacés de T_e à condition que

$$f_e > 2f_{max}$$
 (fréquence de Nyquist).

Au menu aujourd'hui

Reconstruction

Transformée discrète

Filtres

Symétrie entre les domaines

On se rappelle :

signal à décroissance rapide \iff spectre à décroissance rapide

signal périodique \implies spectre discret

signal discret \implies spectre périodique

donc:

signal périodique et discret \iff spectre discret et périodique

En équations

Signal discret:

$$x(t) = \sum_{n=-\infty}^{+\infty} x_n \, \delta(t - nT_e)$$

Périodique : supposons x(t) = x(t+T) avec $T = NT_e$, i.e.

$$x_n = x_{n+kN}, \qquad k \in \mathbb{Z}.$$

Le signal x(t) est donc déterminé par les N valeurs

$$x_0, x_1, \ldots, x_{N-1}.$$

Du côté spectral

$$x(t) = \left(x_0 \, \delta(t) + \dots + x_{N-1} \, \delta(t - (N-1)T_e)\right) * \coprod_T (t)$$

$$\implies \widehat{x}(f) = \left(x_0 + \dots + x_{N-1} \, e^{-2\pi i(N-1)T_e f}\right) \cdot \frac{1}{T} \coprod_{f_s} (f)$$

$$= \frac{1}{T} \sum_{n = -\infty}^{+\infty} y_n \, \delta(f - nf_s)$$

avec

$$y_n = \sum_{k=0}^{N-1} x_k e^{-\frac{2\pi i k n}{N}}.$$

Transformée de Fourier discrète

$$x(t)$$
 discret périodique \longleftrightarrow $(x_0, x_1, \dots, x_{N-1})$

$$\widehat{x}(f) \longleftrightarrow (y_0, y_1, \dots, y_{N-1}) \text{ avec } y_n = \sum_{k=0}^{N-1} x_k e^{-\frac{2\pi i k n}{N}}.$$

Par calcul direct, on obtiendrait y_0, \ldots, y_{N-1} en $\mathcal{O}(N^2)$ opérations, mais :

Théorème (Gauss 1805, Cooley-Tukey 1965)

Il existe un algorithme de calcul de la transformée de Fourier discrète en $\mathcal{O}(N \log N)$ opérations : la transformée de Fourier rapide (**FFT**).

Au menu aujourd'hui

Reconstruction

Transformée discrète

Filtres

Filtres

Un filtre est un opérateur $S: x \mapsto S(x)$ sur l'espace des signaux.

Ceux qui nous intéressent le plus en pratique sont

- linéaires : $S(a \cdot x + b \cdot y) = a \cdot S(x) + b \cdot S(y)$
- continus : $\mathcal{S}(\lim_{n\to\infty}x_n)=\lim_{n\to\infty}\mathcal{S}(x_n)$
- invariants : $S(x(t-t_0)) = S(x)(t-t_0)$

On parle aussi de système linéaire continu invariant.

Considérons l'opérateur $\mathcal P$ qui associe à un signal x sa primitive s'annulant en $-\infty$.

$$\mathcal{P}(x)(t) = \operatorname{prim}(x)(t) = \int_{-\infty}^{t} x(s) \, ds.$$

On peut vérifier que c'est bien un filtre.

Remarque : $\mathcal{P}(x) = x * u$; il s'agit d'un opérateur de convolution

Considérons l'opérateur \mathcal{M}_T qui associe à un signal x sa moyenne glissante sur un intervalle de largeur T.

$$\mathcal{M}_T(x)(t) = \frac{1}{T} \int_{t-T}^t x(s) \, \mathrm{d}s.$$

On peut vérifier que c'est bien un filtre.

Remarque : $\mathcal{M}_T(x) = x * \frac{1}{T} \Pi_T(t - \frac{T}{2})$; il s'agit d'un opérateur de convolution

Considérons l'opérateur \mathcal{R}_{t_0} qui associe à un signal x sa version retardée de t_0 .

$$\mathcal{R}_{t_0}(x)(t)=x(t-t_0).$$

On peut vérifier que c'est bien un filtre.

Remarque : il s'agit encore d'un opérateur de convolution ! $\mathcal{R}_{t_0}(x) = x * \delta(t-t_0)$

Considérons l'opérateur SF_N qui associe à un signal x sur [0, T] la N^e somme partielle de sa série de Fourier.

$$\mathcal{SF}_N(x)(t) = \sum_{n=-N}^N c_n \, e^{rac{2\pi i n t}{T}}$$

On peut vérifier qu'il s'agit également d'un filtre.

Remarque : encore une fois il s'agit d'un opérateur de convolution

$$SF_N(x) = x * D_N$$
 où D_N est le **noyau de Dirichlet**

Noyau de Dirichlet

L'ubiquité de la convolution

Ça commence à faire beaucoup de filtres qui sont des opérateurs de convolution . . .

Exemple (général)

Pour r un signal donné, on peut vérifier que l'opérateur

$$S_r(x) := x * r$$

est un filtre.

Résultat fondamental

Théorème

Tout opérateur linéaire continu invariant S est de la forme $S_r : S(x) = x * r$.

Démonstration.

1. Par linéarité, continuité et invariance, on a pour tous signaux x et y:

$$S(x*y) = S\left(\int_{-\infty}^{+\infty} x(s) y(t-s) ds\right) = \int_{-\infty}^{+\infty} x(s) S(y)(t-s) ds = x*S(y)$$

2. En posant $r := S(\delta)$ la **réponse impulsionnelle** de S, on a donc

$$S(x) = S(x * \delta) = x * S(\delta) = x * r.$$

All is convolution!

Théorème

Tout opérateur linéaire continu invariant S est de la forme S(x) = x * r.

La sortie y = S(x) du filtre est obtenue par convolution avec la réponse impulsionnelle :

$$v = x * r$$
.

D'où l'importance des transformées transformant * en \cdot (comme \mathcal{L} et \mathcal{F})!

Côté fréquentiel, on observe une multiplication par la fonction de transfert du filtre :

$$\widehat{y} = \widehat{x} \cdot \widehat{r}$$
.

À ce propos

Supposons que ${\mathcal T}$ est une transformation sur les signaux avec la propriété que

$$\mathcal{T}(x * y) = \mathcal{T}(x) \cdot \mathcal{T}(y).$$

Les exponentielles jouent un rôle particulier pour la convolution :

$$(x * e^{\lambda t})(t) = \int_{-\infty}^{+\infty} x(u) e^{\lambda(t-u)} du = \left(\int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du \right) e^{\lambda t}$$

$$\implies \mathcal{T}(x * e^{\lambda t}) = \left(\int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du \right) \mathcal{T}(e^{\lambda t})$$

Ce qui ne laisse pas beaucoup d'autres choix que de prendre

$$\mathcal{T}(x) = \int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du \qquad \text{pour certaines valeurs de } \lambda !$$

Transformée de Fourier-Laplace

$$\mathcal{T}(x) = \int_{-\infty}^{+\infty} x(u) e^{-\lambda u} du$$

- pour x causal, $\lambda = p$ on a la transformée de Laplace classique
- x d'énergie finie, $\lambda=2\pi\mathrm{i} f$ on a la transformée de Fourier classique
- x limite de signaux d'énergie finie, $\lambda = 2\pi i f$, la TF des signaux
- $x = \coprod_T \cdot m$ périodique, $\lambda = \frac{2\pi i n}{T}$ on retrouve les coefficients de Fourier

...mais est-ce bien la fin?...