Informal proofs

Author: Kristoffer Højelse

May 28, 2020

1 Notes

1.1 Proof the sum of two even numbers is even.

Let $n, m \in \mathbb{Z}$, such that n is even and m is even.

By definition there exists $k, l \in \mathbb{Z}$ such that $n = 2 \cdot k$ and $m = 2 \cdot l$.

Therefore, $n + m = 2 \cdot k + 2 \cdot l$

$$n + m = 2(k + l)$$

Hence, by definition n + m is even.

1.2 Proof the sum of two Rational numbers is even.

Let $r, q \in \mathbb{R}$, such that r and q is rational.

By definition there are $a, b, c, d \in \mathbb{Z}$ such that $b \neq 0, d \neq 0$ and $r = \frac{a}{b}, q = \frac{c}{d}$.

Then,
$$r + q = \frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

Hence, r + q is rational.

1.3 Proof if the square of an integer is even, then the integer itself is even.

if n is not even, then n is odd.

 $\neg Even(n) \rightarrow Odd(n) \equiv Even(n) \lor Odd(n)$

Let $n, \in \mathbb{Z}$, such that n is not even.

By the Parity Theorem, n is odd.

By definition there exists $k \in \mathbb{Z}$ such that n = 2k + n.

$$n^{2} = (2k+n)^{2} = (4k)^{2} + 2 \cdot 2k \cdot n + n^{2}$$

$$2 \cdot 2k^2 + 2 \cdot 2k + n$$

$$2(2k^2 + 2k) + n$$

By definition x^2 is odd.

Hence, by the Parity Theorem, n^2 is not even.

1.4

Propostion:

The negative of any irrational number is rational For all real numbers r, if r is irrational then $\neg r$ is irrational, or

$$\forall r \in \mathbb{R}. r \notin \mathbb{Q} \to \neg r \notin \mathbb{Q}$$

Contraposition

$$\forall r \in \mathbb{R}. \neg (\neg r \notin \mathbb{Q}) \rightarrow \neg (r \notin Q)$$

$$\equiv \forall r \in \mathbb{R}. \neg r \in \mathbb{Q} \to r \in \mathbb{Q}$$

Let $r \in \mathbb{R}$ such that $-r \in \mathbb{Q}$ By def. there are $a, b \in \mathbb{Z}$ such that $b \neq 0$ and $-r = \frac{a}{b}$

$$(-r)(-1) = \frac{a}{b}(-1)$$
$$r = \frac{\neg a}{b}$$

Hence by def. r is rational.

1.5 Proof by contradiction

Proposition:

There is no greatest integer.

 $N \ge n$

 $\neg\exists N\in\mathbb{Z}.\forall n\in\mathbb{N}.N\geq n$

Assume $\exists N \in \mathbb{Z}. \forall n \in \mathbb{N}. N \geq n$

Let $N \in \mathbb{Z}$ such that $\forall n \in \mathbb{Z}.N \geq n$

substitute n with N+1

In particular, this means $N \ge N + 1$

Contradiction. Therefore $\neg \exists N \in \mathbb{Z}. \forall n \in \mathbb{Z}. N \geq n$

1.6 Proof by cases

Propostion

For any integer n, $n^2 - n + 3$ is odd.

Let $n \in \mathbb{Z}$, By the Parity Theorem,

n is even or n is odd. We proceed by cases

1. n is even

By def. there is some $k \in \mathbb{Z}$ such that n = 2k.

Hence,

$$n^2 - n + 3 = (2k)^2 - 2k + 3$$
 udled
= $2 \cdot (2k^2 - k + 1) + 1$
Hence, $n^2 - n + 3$ odd.
2. n is odd
 $\exists k$ such that $n = 2k + 1$
 $n^2 - n + 3 = 2 \cdot 2k^2 + 2 \cdot 2k + 1 - (2k + 1)$
= $2(2k^2 + 2k + 1 - k) + 1$

1.7 Proof by exhaustion

1.8 Disproving a Universal Statement

Disproving Universal \rightarrow find counterexample

1.9 Disproving a Existential Statement

Disproving Existential \rightarrow proof all