-			 	 _	 	 		 	
1		11							
Da	- TAT								
15.05	. NO	. 1	 				 		 197
	7								
	, , , ,								i

B.Tech DEGREE EXAMINATION, NOVEMBER 2023

Seventh Semester

18ECE205J - FPGA - BASED EMBEDDED SYSTEM DESIGN

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

Lim	e: 3 Hours		Max.	Marks	: 100
	Mar	Marks BL			
	Answer all Qu	estions			
1.	Which embedded design consider both the (A) Memory Design (C) Platform-based design	e hardware and software during its design?(B) Software/ hardware code sign(D) Peripheral design	1	1	1
2.	A is one in which failure coul of a fire alarm system, or a pacemaker. (A) Soft Real-Time System	d produce a catastrophic result, e.g. failure (B) Firm Real-Time System	1	1	1
	(C) Hard Real-Time System	(D) Continuous System			
3.	The maximum size of the External Data M (A) 84 Bytes (C) 80 Bytes	lemory space is bytes. (B) 64 Bytes (D) 81 Bytes	1	, and a second	1
4.	are devices that convert one or analog signals for processing and control at (A) Sensor (C) FIFO	more physical parameters into digital or applications (B) Polling (D) Looping	1	1	1
_		(D) Looping			^
5.	PSOC3 is a (A) True programmable embedded system-on-chip	(B) . Semi-programmable embedded system-on-chip	Manage	1	2
	(C) unprogrammable embedded system- on-chip	(D) programmable system-on-chip			
6.	The signal sent to the device from the processor to the device after receiving an interrupt is				2
	(A) Interrupt-acknowledge	(B) Return signal			
	(C) Service signal	(D) Permission signal			
7.	An interrupt that can be temporarily ignore	ed is	1	1	2
	(A) Vectored interrupt	(B) Non-maskable interrupt			
	(C) Maskable interrupt	(D) High priority interrupt			
8.	Which interrupt can make a change in the	1	1	2	
	(A) internal interrupt	(B) external interrupts			
	(C) exceptions	(D) software mode			
).	How many logic gates can be implemente logic devices (CPLDs)?	many logic gates can be implemented in the circuit by complex programmable devices (CPLDs)?		1	3
	(A) . 10	(B) 100			
	(C) 1000	(D) 10000			
10.	In JTAG programming, JTAG stands for		1	1	3
	(A) Joint Texture Analysis Group	(B) Joint Technique Aided Group			
	(C) Joint Testing Array Group	(D) Joint Test Action Group			

11.	programming is a combination of within a single chip providing a simple, severy cost-effective implementations	of non-volatility and re-programmability ecure, reliable and low-power solution for	News A	1	3	
	(A) anti-fuse(C) EEPROM / Flash	(B) SRAM (D) DRAM				
12.	programmable devices in FPGA	an old technique of producing one-time	1	Press	3	
	(A) anti-fuse (C) EEPROM / Flash	(B) SRAM (D) DRAM				
13.	SESE point Stands for (A) Single End and Single Exit (C) Single Element Single Exit	1	and .	4		
14.	A is a high-level language produces executable for another platform	1	1	4		
	(A) Cross – Development (C) Cross- assembler	(B) Cross – Compiler (D) Cross- Linker				
15.	A system program that combines separatel form suitable for execution is called	1	1	4		
	(A) Assembler (C) Cross compiler	(B) Linking Loader (D) Debugger				
16.	The collection of run-time information on a	1	1	5		
	(A) Processing (C) Partitioning	(B) Profiling (D) Planning				
17.	Iteration-level parallelism is also known as (A) Data level parallelism	(B) Bit level	1	1	5	
	(C) Instruction level	(D) Thread level			_	
18.	The go/done model is actually a (A) Multithreaded Model (C) Single thread model	(B) Network on-chip model (D) Co-processor Model	1	1	5	
19.	Which mechanism can be used when the amount of time a feature runs is unknown? (A) Spin-lock (B) Coupling (C) Blocking (D) Rolling				5	
20.	The co-processor model is also known as (A) Multithreaded Model (C) Network on-chip model	(B) client/server model (D) Single thread model	i	1	5	
	PART - B (5 × 4 = 20 Marks) Answer any 5 Questions					
21.	What is an embedded system? Explain its ex	4	2	1		
22.	List out the role of PLDs in embedded syste	4	1	I		
23.	Explain any three instructions of 8051	4	2	2		
24.	List out the different addressing modes of 8	4	2	2		
25.	Explain various slices used in Virtex 5	4	2	3		
26.	Define the concept of Partitioning and Profi	4	2	4		
27.	Differentiate SIMD and MIMD architecture	4	4	5		

	Mark	co		
28.	(a) Explain in detail, the various embedded systems performance criteria with examples (OR)	12	4	1
	(b) Estimate the cause of interrupt latency in embedded systems and its problems. Also, explain the measures to reduce it.			
29.	(a) Explain the functionality of PSoc3/5 architecture with 8051 implementations.	12	2	2
	(OR)			
	(b) Explain in detail about power management and clock distribution in PSoc3/5 architecture.			
30.	(a) Explain the concept of configurable logic blocks, slices, and block RAM used in Xilinx Virtex 5 with a neat diagram. (OR)	12	1	3
	(b) Analyze and identify the various configuration blocks required for FPGA programming with a neat diagram			
31.	(a) Discuss the platform FPGA components (FPGA-Field Programmable Gate Array).	12	4	4
	(OR)			
	(b) Explain the Platform FPGA Components.			
32.	(a) Explain in detail the concept of on-chip and off-chip memory. (OR)	12	2	5
	(b) Explain the different levels of parallelism.			