KOSHA GUIDE

M - 9 - 2023

금속 가공용 수동 둥근톱 사용 시 안전에 관한 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임

안전보건기술지침의 개요

ㅇ 작성자 : 한성대학교 최기흥 교수

개정자 : 안전보건공단 안전연구실 안전보건공단 전문기술실 김명관

- o 제·개정경과
 - 2009년 6월 기계안전분야 기준제정위원회 심의(제정)
 - 2012년 4월 기계안전분야 기준제정위원회 심의(개정)
 - 2023년 7월 기계안전분야 표준제정위원회 심의(개정)
- ㅇ 관련규격 및 자료
 - HSE EIS-12 : Safety at manually-fed pivoting-head metal-cutting circular saws
 - HSG EIS-27: Control of noise at metal-cutting saws
- o 관련 법규·규칙·고시 등
 - 산업안전보건기준에 관한 규칙 제101조 (원형톱기계의 톱날접촉예방장치)
 - 산업안전보건기준에 관한 규칙 제3편 제4장 (소음 및 진동에 의한 건강 장해의 예방)
- ㅇ 안전보건기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

<u>목 차</u>

1.	목적1
2.	적용범위1
3.	정의2
4.	위험요인2
5.	안전조치3
5.1	수동 둥근톱의 안전조치3
5.2	방호조치3
5.3	소음4
5.3	.1 저소음형 기기 구매5
5.3	.2 공학적 제어5
5.3	.3 실용적인 소음 감소 방법의 적용5
5.3	.4 톱날의 소음감쇠6
5.4	절삭유/윤활유6
6.	교육 및 유지보수7

금속 가공용 수동 둥근톱 사용 시 안전에 관한 기술지침

1. 목 적

이 지침은 금속 가공용 수동 둥근톱 사용 시 안전에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 <그림 1>의 금속가공용 수동 둥근톱을 사용하는 작업에 적용한다. 다만, 여기 기술된 일반 원칙의 일부는 다른 유형의 톱에도 적용가능하다.

<그림 1> 금속가공용 둥근톱

3. 정 의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "유해·위험요인"이라 함은 유해·위험을 일으킬 잠재적 가능성이 있는 것의 고유한 특징이나 속성을 말한다.
 - (나) "위험성"이라 함은 유해·위험요인이 사망, 부상 또는 질병으로 이어질 수 있는 가능성과 중대성 등을 고려한 위험의 정도를 말한다.
 - (다) "방호(Safeguarding)"라 함은 가드, 관련장치 또는 안전작업절차 등을 이용하여 작업자를 보호하기 위한 제반조치를 말한다.
 - (라) "가드(Guard)"라 함은 기계의 일부로서 방호기능을 수행하는 물리적 방 벽으로서 구조에 따라 케이싱, 덮개, 스크린, 문, 울타리(방호울)등으로 지 칭되는 것을 말한다.
 - (마) "유지보수(Maintenance)"란 정기 또는 비정기적 장비의 양호한 작동 상태를 유지하기 위한 행위를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행 규칙,「산업안전보건기준에 관한 규칙」및 고용노동부 고시에서 정하는 바에 따른다.

4. 위험요인

- (1) 금속가공용 둥근톱을 사용하는 작업자들이 당면한 주요 위험은 움직이는 톱날과의 접촉, 소음에 대한 노출 및 절삭유와의 접촉 등이다.
- (2) 톱날과의 접촉으로 인한 부상의 가장 큰 위험성은 공작물의 투입, 조절 및 회수 시 발생한다. 그 외의기기를 작동시킨 상태에서 금속 가공 칩을 제거 중에 주로 발생한다.

- (3) 금속가공용 둥근톱에서 발생하는 사고의 상당수는 작업자의 손 및 팔 절단 과 같은 매우 심각한 부상을 초래한다.
- (4) 사고의 대다수는 방호의 표준이 허술한 것과 관련이 있으며, 작업자의 옷이 말려 들어가거나, 작업 및 유지보수 시스템이 부실한 것과 같은 문제들이 주요 원인이다.
- (5) 소음 및 금속 가공유와 관련한 위험성도 상당하며, 이들 기기를 사용할 때 항상 고려되어야 한다. 금속 가공용 둥근 톱은 알루미늄과 같은 비철 금속을 가공할 때 사용하며 특히 고속 작업에서 높은 수준의 소음을 발생시키고, 일반적으로 이런 소음 수준은 100 dB(A) 이상 된다.

5. 안전조치

5.1 수동 둥근톱의 안전조치

- (1) 장치의 복귀는 스프링을 이용한 장치나 카운터 밸런스(Counter balance) 장치를 통해 복귀될 수 있다.
- (2) 카운터 밸런스와 같은 복귀 장치는 톱이 정지 위치에서 다시 작업하기 위해 앞으로 나오는 과정에서 발생할 수 있는 위험성을 예방할 수 있다.
- (3) 복귀 장치가 사용되는 경우에 작업자를 향해 갑자기 튀어 나오는 위험을 방지하기 위해 충격흡수제와 같은 형태의 장치가 필요하다.

5.2 방호조치

- (1) 금속가공용 둥근톱은 다양한 방식으로 효과적으로 방호될 수 있다.
- (2) 가드의 목적은 <그림 1>과 같이 톱 헤드가 받침대에 놓여있거나, 위로 들어올려진 포지션일 때 톱날과의 접촉을방지하며, 절단 작업 시 노출되는 날의 면적을 최소화 하는 것이다. 이것은 적절하게 기계적으로 연결된 자동조정식 가드를 사용함으로써 해결될 수 있을 것이다.
- (3) 중력을 이용한 (Gravity operation) 조절만이 가능한 톱 날 가드는 충분히

효과적이지 못하다.

- (4) 기계적으로 연결된 가드를 설치하는 것이 가능하지 않은 상황에서는 (설계 상 제약 등으로 인해), 기존 가드 (예를 들어, 고정 및 중력을 이용한 보조 가드) 를 이용하되, 작동 핸들에 가동유지(Hold-to-run) 버튼 또는 작동 스위치를 추가해야 한다.
- (5) 버튼 또는 스위치는 작동 핸들이 해제될 때 톱 날 스핀들로 가는 동력이 차단되도록 해야 한다. 또한 톱이 특정 작업만 하도록 되어 있고, 재설정이 제한적일 경우에는, 기기 테이블에 고정 방호장치를 부착하는 것도 현실적 인 대안이 될 수 있다.
- (6) 고정 가드의 경우, 공작물의 투입구 및 회수구의 크기로 인해 톱날에 손가락이 접촉하는 일이 발생해서는 안 된다.
- (7) 터널 가드(Tunnel guard)의 사용은 투입구 및 회수 구에서 톱날에 손가락이 닿는 것을 방지하는 효과적인 방식이다.
- (8) 모든 가드는 예상되는 작업 조건의 응력을 견딜 수 있도록 견고하게 구축되어야 한다.
- (9) 이송정지 또는 길이 게이지는 절단 작업 시 톱 및 공작물을 직접 확인하는 필요성을 최소화하기 때문에 이들 기기의 사용은 권장할 만하다.
- (10) 톱 및 공작물에 대한 시야 확보가 필요한 경우, 고정 가드에 투명하거나 메 쉬(Mesh)형 재료를 사용할 수 있다.
- (11) 고정 가드를 사용할 때 부스러기가 쌓여서 문제가 발생할 우려가 있는 경 우 탈 부착이 가능한 받침대(Trav)를 사용하여 해결할 수 있다.

5.3 소음

개인별 소음 수준이 90 dB(A)을 초과한다면, 귀마개 사용 이외의 다른 수단을 사용하여 위험을 줄여야 한다. 즉, 금속 가공용 톱을 사용하는 업체는 이 지침에 제시된 공학적 제어 조치 또는 기타 적절한 조치를 실행해야 한다.

5.3.1 저소음형 기기 구매

(1) 구매자는 제조업체의 소음 데이터를 바탕으로 처음부터 소음발생이 적은 기기를 선택해야 한다. 또한 제조업체로부터 설치 및 운영 시 적용될 수 있는 추가적인 소음 제어 조치들에 대한 조언을 구하는 것도 도움이 된다.

5.3.2 공학적 제어

- (1) 기존 톱의 경우 소음원에서부터 소음을 줄이는 조치가 취해져야 한다.
- (2) 적재, 공회전(Idling), 절단 등 가공 사이클의 각 단계 별로 소음 수준을 면 밀하게 측정하여, 가장 소음 발생의 규모가 큰 원인을 파악한다. 이 정보를 바탕으로 소음을 줄이기에 가장 적합한 조치를 선택한다.

5.3.3 실용적인 소음 감소 방법의 적용

- (1) 원래 의도한 작업에 적합한 톱날을 선택한다.
- (2) 톱날을 날카롭게 유지하여 최적의 성능을 유지하도록 한다.
- (3) 가공물의 클램핑을 제대로 유지하여 소음이 퍼지는 것을 줄인다. 토글 클램 프 등을 사용하여 추가적인 클램핑을 한다. 클램프에 패드를 장착하여 진동 전달을 줄이며, 표면 손상을 방지한다.
- (4) 마모된 베어링, 톱날의 불균형, 불충분한 유지보수, 또는 과도한 사용주기 등으로 인한 반지름방향 및 축방향 불균형을 줄인다.
- (5) 소음을 줄인 감쇠 톱날을 사용한다. (제조업체의 조언을 구한다.)
- (6) 투입 작업대 표면에 소음 및 진동 흡수 자재를 사용한다.
- (7) 소음 감쇠형 컴파운드를 사용하여 기기의 서브프레임 또는 패널의 소음을 감소시킨다.
- (8) 적절한 소음 흡수 자재를 사용하여 가공 구역의 전체 또는 부분을 에워싼다.

- (9) 작업중 일정시간에 필요하지 않을 때는 톱의 스위치를 정지시킨다.
- (10) 톱을 별도의 룸에 설치하여 다른 작업자들이 소음에 노출되는 정도를 줄이다.

5.3.4 톱날의 소음감쇠

- (1) 소음감쇠형 톱날은 특히 작업을 하지 않을 때 울림현상을 보이는 톱날의 경우 소음을 확실히 줄일 수 있다
- (2) 여러 감쇠방식이 있으며, 결과는 다양하다. 적충(Laminated) 톱날, 감쇠판 또는 판을 사용하는 경우도 있으며, 톱날에 레이저로 가공된 슬롯을 만들 고 수지(Resin)를 채워 넣는 등의 방식을 포함한다.
- (3) 예를 들면, 횡가공 (Pendulum cross-cut) 톱의 경우, 기존의 가드에 적절한 발포제(Foam)를 넣어서 소음을 흡수하는 동시에 톱날에 감쇠효과를 가질수 있다.
- (4) 각각의 경우에 달성한 소음 감소의 효과는 예상하기 쉽지 않지만, 일부 통 상적인 작업의 경우 소음이 최대 6 dB(A) 줄어든다. 감쇠처리는 신규 톱날 및 수리가 필요한 중고 톱날에도 행해질 수 있다.

5.4 절삭유/윤활유

- (1) 톱작업 (Sawing)과 같은 엔지니어링 프로세스에서 절삭유를 사용하는 것은 작업자의 건강과 관련하여 다수의 위험을 발생시킬 수 있다.
- (2) 절삭유에 노출되면 자극 또는 알레르기로 인해, 또는 둘 모두의 요인으로 피부염 (피부에 대한 염증)이 발생할 수 있다. 또한 금속 부스러기로 인한 피부 긁힘으로 더욱 악화될 수 있다.
- (3) 작업자가 숨 쉬는 공간에서 기름이 분무되거나 연무(Aerosol)가 있는 경우, 특히 절삭유가 박테리아로 오염됨으로 인해 작업자가 호흡 시 자극 및 곤란을 느낄 수 있다. 한국산업안전보건공단의 관련 기술지침에 기술된 적절한 예방 조치가 실행되어야 한다.

- (4) 적절한 조치의 실행은 건강 관련 위험성을 줄일 뿐만 아니라 작업 환경을 개선하며, 제품 품질 유지 및 예를 들어 공구 마모(Tool wear)와 관련한 비용을 줄이는 데 도움이 된다.
- (5) 적절한 기구를 이용하여 왁스 및 유사한 윤활유를 안전하게 사용하는 것이 가능해야 한다.

6. 교육 및 유지보수

- (1) 작업자는 기기, 기기의 사용, 안전장치 및 기타 관련 위험(예를 들면, 공작물의 운반 등)을 충분히 이해하고 숙지하도록 포괄적인 교육과 훈련을 받아야 한다.
- (2) 안전장치 및 기기의 주요 안전 위치(예를 들면, 카운터 밸런스 스프링 및 고정 위치)에 대한 정기적인 검사 및 유지보수가 필수적이다. 이 문제에 대한 세부적인 지침은 제조업체의 교육 매뉴얼에 포함되어 있어야 한다.
- (3) 기기의 청소는 스위치를 끄고 격리된 상태에서 실시하여야 한다.

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 김명관

○ 개정사유 : 유사 주제 및 내용중복 기술지침 통폐합

- (M-19-2012) 「금속 가공용 톱의 소음제어에 관한 기술지침」 폐지

○ 주요 개정내용

- "5.3. 소음" 항목을 저소음형 기기 구매, 공학적 제어, 실용적인 소음 감소 방법의 적용, 톱날의 소음감쇠 등으로 구분하여 기술적 대책 기술