Teorema de Green

1.1 Imágenes y método de Green

El método de las imágenes es un procedimiento gráfico de encontrar problemas equivalentes simulando con cargas extras (cargas imagen) las condiciones de contorno.

Figura 1.1

Los problemas que ilustra la figura satisfacen iguales condiciones de contorno en el recinto punteado, entonces sus soluciones internas son la misma: $\phi_1=\phi_2$ por unicidad.

1.1.1 El Método de Green

El concepto tras el método de Green es evaluar el ϕ de una carga puntual ante cierta configuración de contornos conductores. Es una excitación

elemental.

Restando entre sí

$$\nabla \cdot (\phi \nabla \psi) = \phi \nabla^2 \psi + \nabla \phi \cdot \nabla \psi$$

У

$$\nabla \cdot (\psi \nabla \phi) = \psi \nabla^2 \phi + \nabla \psi \cdot \nabla \phi$$

e integrando ambos miembros y utilizando el teorema de la divergencia, se llega a

$$\int_{V} \left[\phi \nabla^2 \psi - \psi \nabla^2 \phi \right] dV = \int_{S} \left[\phi \boldsymbol{\nabla} \psi - \psi \boldsymbol{\nabla} \phi \right] dS,$$

que es la segunda identidad de Green.

Consideremos lo que llamaremos caso A, según vemos en figura, caracterizado según

$$\rho_{int} \quad \mathbf{x}' \in R, \mathbf{x} \in R$$

Figura 1.2

$$\psi = \frac{1}{|\mathbf{x} - \mathbf{x}'|} \qquad \nabla^2 \psi = -4\pi \delta(\mathbf{x} - \mathbf{x}')$$
$$-\phi(\mathbf{x})4\pi + \int_V 4\pi \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV' = \int_S \left(\phi \frac{\partial \psi}{\partial n} - \frac{1}{|\mathbf{x} - \mathbf{x}'|} \frac{\partial \phi}{\partial n}\right) dS$$

donde estamos usando la abreviatura $\nabla \phi \cdot \mathbf{n} = \partial \phi / \partial n$ que es la derivada normal en la superficie. Despejando

$$\phi(\mathbf{x}) = \int_{V} \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV' + \frac{1}{4\pi} \int_{S} \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} \left[\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right] \right) dS,$$

donde la primer integral es debido a las cargas internas y la segunda al efecto de las cargas fuera del reciento R.

Recordemos que las condiciones tipo Dirichlet corresponden a $\phi|_S$ y las tipo Neumann a $\partial \phi/\partial \hat{n}|_S$.

El caso B, según figura, corresponde a

$$\rho_{int} \quad \mathbf{x}' \notin R, \mathbf{x} \in R$$

у

$$\int_{V} \frac{\rho(\mathbf{x'})}{|\mathbf{x} - \mathbf{x'}|} \; dV' = \frac{1}{4\pi} \int_{S} \left(\phi \frac{\partial}{\partial n} \left[\frac{1}{|\mathbf{x} - \mathbf{x'}|} \right] - \frac{1}{|\mathbf{x} - \mathbf{x'}|} \frac{\partial \phi}{\partial n} \right) \; dS,$$

la integral de superficie proviene de las cargas fuera de R que producen campo en el interior R.

Figura 1.3

Hemos tomado $\psi = 1/|\mathbf{x} - \mathbf{x}'|$ que verifica [1]; interpretándose ψ como el potencial de una carga puntual unitaria.

$$\nabla^2 \frac{1}{|\mathbf{x} - \mathbf{x'}|} = -4\pi \delta(|\mathbf{x} - \mathbf{x'}|)$$

podemos tomar

$$G \equiv \frac{1}{|\mathbf{x} - \mathbf{x'}|} + f(\mathbf{x}, \mathbf{x'})$$

donde G es la función de Green.

$$\nabla^2 G = -4\pi\delta(\mathbf{x}, \mathbf{x}') + \nabla^2 f$$

donde F satisface Laplace (si el reciento no incluye a \mathbf{x}'). Con $\nabla^2 f(\mathbf{x}, \mathbf{x}')$.

Entonces $f(\mathbf{x}, \mathbf{x}')$ representan la o las imágenes necesarias para que G cumpla el contorno necesario $G_D|_S=0$.

1.2 Funciones de Green

$$\phi(\mathbf{x}) = \int_{V'} G(\mathbf{x}, \mathbf{x}') \rho(\mathbf{x}') \, dV' + \frac{1}{4\pi} \int_{S'} \left(G(\mathbf{x}, \mathbf{x}') \frac{\partial \phi}{\partial n} - \phi \frac{\partial}{\partial n} G(\mathbf{x}, \mathbf{x}') \right) \, dS', \tag{2.1}$$

Pero para poder utilizar (2.1) necesito tener un solo tipo de condiciones de contorno, de manera que según sean

donde la condición de contorno de G equivale, en el contexto físico del electromagnetismo, a reemplazar el contorno por un conductor metálico puesto a tierra. Entonces G es el potencial de la configuración de conductores con el contorno puesto a tierra frente a una carga puntual con magnitud unitaria.

La función de Green da la geometría del problema.

$$\frac{\partial \phi_1}{\partial n}|_S - \frac{\partial \phi_2}{\partial n}|_S = -4\pi\sigma \qquad \qquad \phi_2|_S = \phi_1|_S$$

1.2.1 Green para el problema externo de una esfera

En este problema las condiciones adecuadas son las de Dirichlet, ver Figura y podemos escribir la función de Green como

Figura 2.4

$$G = \frac{1}{|\mathbf{r} - D\hat{r}'|} - \frac{a/D}{|\mathbf{r} - a^2/D\hat{r}'|} \qquad G|_{r=a}$$

sujeta a que

$$q' = -qa/D$$
 $d = a^2/D$

Figura 2.5 G_D es el potencial de la configuración (a) y se evalúa teniendo en cuenta la otra (b) que se resuelve casualmente por imágenes. La (c) se resuelve alterando las condiciones.

El caso (c) de la Figura se resuelve con

$$\begin{split} -\frac{V}{4\pi} \int_{S} \frac{\partial G}{\partial n} dS &= -\frac{V}{4\pi} \int_{S} \boldsymbol{\nabla} G \cdot d\mathbf{S} = -\frac{V}{4\pi} \int_{V} \nabla^{2} G \, dV \\ &= -\frac{V}{4\pi} (-4\pi) \int_{V} \delta(\mathbf{x} - \mathbf{x'}) \, dV = V \end{split}$$

1.3 Algunos campos

En distribuciones infinitas de carga la integral de Poisson diverge pero ello se debe a que en realidad no existen distribuciones infinitas de carga.

1.4 Notas método de Green

Función de Green libre (sin contornos) lleva directo a la integral de Poisson

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

Figura 3.6

entonces

$$\phi(\mathbf{x}) = \int_{V} \rho G dV = \int_{V'} \frac{\rho(\mathbf{x})}{|\mathbf{x} - \mathbf{x}'|} dV'$$

$$\nabla^{2} \left(\frac{1}{|\mathbf{x} - \mathbf{x}'|} \right) = 4\pi \delta(\mathbf{x} - \mathbf{x}')$$

$$G(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|} + f(\mathbf{x}, \mathbf{x}') \quad \text{con} \quad \nabla^{2} f(\mathbf{x}, \mathbf{x}') = 0 \quad \text{si} \quad \mathbf{x} \neq \mathbf{x}'$$

Para condiciones de Neumann se toma:

$$\nabla G_N|_S = -\frac{4\pi}{S} = \frac{\partial G}{\partial n}\Big|_S$$

la integral

$$-\frac{1}{4\pi} \int_{S} \phi|_{S} \left. \frac{\partial G}{\partial n} \right|_{S} dS$$

no se puede anular con

$$\left. \frac{\partial G}{\partial n} \right|_S = 0$$

salvo que el volumen de integración no contenga a $\mathbf{x} = \mathbf{x}'$ en cuyo caso: se excluye $\mathbf{x} = \mathbf{x}'$ de la integración.

$$-\frac{1}{4\pi} \int_{S} \phi|_{S} \left. \frac{\partial G}{\partial n} \right|_{S} dS = \frac{1}{S} \int_{S} \phi|_{S} dS = <\phi>|_{S}$$

que es el valor promedio de ϕ en la superficie S.

Se suele tomar la superficie $S \to \infty$ de modo que resulte nulo $<\phi>|_S$. Se toma el volumen V rodeado por dos superficies una cerrada y finita y la otra en infinito entonces

$$<\phi>|_{S}=0$$
 $\frac{\partial G}{\partial n}|_{S}=0$

esto es el llamado problema exterior.

1.5 Condiciones de contorno

La ley de Gauss nos dice

$$\int \mathbf{E} \cdot d\mathbf{S} = 4\pi Q_n$$

para el cilindrito de la figura

$$\begin{split} (\mathbf{E}_2 - \mathbf{E}_1) \cdot \hat{n} \Delta S &= 4\pi\sigma \Delta S \\ (\mathbf{E}_2 - \mathbf{E}_1) \cdot \hat{n} &= 4\pi\sigma \\ \mathbf{\nabla} \times E &= 0 \Rightarrow \int_{\Gamma} \mathbf{E} \cdot d\ell = 0 = (\mathbf{E}_2 - \mathbf{E}_1) \cdot d\ell = (\mathbf{E}_1 + \mathbf{E}_2) \cdot \hat{n} \times \hat{\eta} d\ell \end{split}$$

donde esto vale en electrostática (nula la integral de línea del campo ${\bf E})$ y además

$$\hat{n} \times \hat{\eta} = \frac{d\ell}{d\ell}$$

Figura 5.7

y puesto que vale la permutación

$$0 = (-\mathbf{E}_2 + \mathbf{E}_1) \cdot (\hat{n} \times \hat{\eta}) \longrightarrow 0 = \hat{\eta} \cdot ((-\mathbf{E}_2 + \mathbf{E}_1) \times \hat{n})$$

de modo que la componente tangencial es continua y entonces

$$\hat{n}\times(\mathbf{E_2}-\mathbf{E_1})=0$$

$$\begin{split} E_{2\hat{n}} - E_{1\hat{n}} &= 4\pi\sigma \qquad \qquad E_{2\hat{t}} - E_{1\hat{t}} = 0 \\ - \nabla \phi_2 \cdot \hat{n} + \nabla \phi_1 \cdot \hat{n} &= 4\pi\sigma \\ \frac{\nabla (\phi_2 - \phi_1) \cdot \hat{n}}{4\pi} &= \sigma \\ \sigma &= \frac{1}{4\pi} \frac{\partial (\phi_1 - \phi_2)}{\partial n} \end{split}$$

esta es la densidad de carga inducida sobre la frontera entre medios. Para los medios magnéticos

$$\begin{split} \boldsymbol{\nabla} \times \boldsymbol{H} &= \frac{4\pi}{c} \mathbf{J}_l \\ \int_{S} (\boldsymbol{\nabla} \times \boldsymbol{H}) \cdot d\mathbf{S} &= \int_{S} \frac{4\pi}{c} \mathbf{J}_l \cdot d\mathbf{S} = \frac{4\pi}{C} \mathbf{g}_l \cdot \hat{\boldsymbol{s}} d\ell \end{split}$$

donde hicimos la transformación

$$\int \mathbf{H} \cdot d\ell = (\mathbf{H}_2 - \mathbf{H}_1) \cdot d\ell$$

y donde recordemos que la altura de Γ tiene a cero.

$$\begin{split} &\frac{4\pi}{c}\mathbf{g}_{l}\cdot\mathbf{s}=\left(-\mathbf{H}_{2}+\mathbf{H}_{1}\right)\cdot(\hat{n}\times\hat{s})d\ell\\ &\frac{4\pi}{c}\mathbf{g}_{l}\cdot\mathbf{s}\,d\ell=\left(\mathbf{H}_{1}-\mathbf{H}_{2}\times\hat{n}\right)\cdot\hat{s}d\ell \end{split}$$

Figura 5.8

de manera que

$$\begin{split} \frac{4\pi}{c}\mathbf{g}_l &= \hat{n} \times (\mathbf{H}_2 - \mathbf{H}_1) \\ \hat{n} \times \hat{s} &= \frac{d\ell}{d\ell} \\ B_{2\hat{n}} - B_{1\hat{n}} &= 0 \\ \int_{S} \mathbf{B} \cdot d\mathbf{S} &= 0 \Rightarrow (\mathbf{B}_2 - \mathbf{B}_1) \cdot \hat{n} = 0 \end{split}$$

1.6 Desarrollo multipolar

$$\phi(\mathbf{x}) = \int_{V'} \frac{\rho(x)}{|\mathbf{x} - \mathbf{x'}|} \, dV'$$

Cuando la expresión es muy complicada podemos desarrollarla en una serie de potencias

$$\phi(\mathbf{x}) = \frac{Q}{|\mathbf{x}|} + \frac{\mathbf{x} \cdot \mathbf{p}}{|\mathbf{x}|^3} + \sum_{i,j}^3 \frac{1}{2|\mathbf{x}|^5} x_i Q_{ij} x_j$$

donde está centrado en el origen de coordenadas.