

附录 · 常见的重要分布

2020年2月12日

暨南大学数学系 ■ 吕荐瑞

第一节 离散型分布

第二节 连续型分布

第一节	离散型分布
А	两点分布
В	二项分布
С	泊松分布

两点分布

若随机变量 X 只能取 0 或 1,其概率分布为:

$$P\{X=1\} = p, P\{X=0\} = 1-p \quad (0$$

则称 X 服从参数为 p 的两点分布或 0-1 分布,记为 $X \sim B(1,p)$.

对应分布表为 X = 0 = 1 P = 1 - p = p

两点分布

两点分布的数字特征:若 $X \sim B(1, p)$,

EX = p, Var(X) = p(1-p).

离散型分布 两点分布 二项分布 泊松分布

二项分布

如果随机变量 X 服从以下分布律

$$P\{X = k\} = b(k; n, p) = C_n^k p^k (1 - p)^{n - k},$$

其中 $p \in (0,1)$, $0 \le k \le n$, 则称 X 服从参数为 n,p的二项分布. 简记为

$$X \sim B(n,p)$$
.

注记 当 k = [np + p] 时概率最大.

二项分布

设在某试验中事件 A 的概率为 p, 将该试验独立地进行 n 次. 记 X 为 n 次试验中事件 A 发生的总次数, X_i 为第 i 次试验中事件 A 发生的次数,则

$$X \sim B(n, p), X_i \sim B(1, p), i = 1, 2, \dots, n$$

 X_1, X_2, \cdots, X_n 相互独立,且

$$X = X_1 + X_2 + \dots + X_n$$

二项分布

二项分布的数字特征:若
$$X \sim B(n,p)$$
,

则

$$EX = np$$
, $Var(X) = np(1-p)$.

第一节	离散型分布
А	两点分布
В	二项分布
С	泊松分布

如果随机变量 X 服从以下分布律

$$P\{X=m\} = \frac{\lambda^m}{m!} e^{-\lambda}, \quad m = 0, 1, \cdots$$

其中 $\lambda > 0$,则称 X 服从参数为 λ 的泊松分布,简记 为

 $X \sim P(\lambda)$.

注记 当 $k = [\lambda]$ 时概率最大.

二项分布与泊松分布

二项分布与泊松分布

泊松分布的数字特征:如果

$$X \sim P(\lambda)$$
,

则

$$EX = \lambda$$
, $Var(X) = \lambda$.

第一节 离散型分布

第二节 连续型分布

第二节连续型分布A均匀分布B指数分布C正态分布

均匀分布

若随机变量 X 有概率密度

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{otherwise} \end{cases}, \quad (a < b)$$

则称 X 服从区间 [a,b] 上的均匀分布,记为 $X \sim U[a,b]$.

均匀分布

上述均匀分布的分布函数为

$$F(x) = \begin{cases} 0, & x \leq a \\ \frac{x-a}{b-a}, & x \in [a,b] \\ 1, & x \geqslant b \end{cases}.$$

若 $X \sim U[a,b]$,则对 $[c,d] \subset [a,b]$,有 $P\{c \leq X \leq d\} = \frac{d-c}{b-a}.$

均匀分布

均匀分布的数字特征:如果

$$X \sim U[a,b],$$

则

$$EX = \frac{a+b}{2}, \quad Var(X) = \frac{(b-a)^2}{12}.$$

二维均匀分布

设 D 是平面上的有界区域,其面积为 d,若二维随机向量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \frac{1}{d} & (x,y) \in D \\ 0 & \text{else} \end{cases}$$

则称 (X,Y) 服从 D 上的均匀分布.

二维均匀分布

若 (X,Y) 服从 D 上的均匀分布,则 (X,Y) 落在某一区域 A 内的概率

$$P\{(X,Y) \in A\} = \iint_{A} f(x,y) \, dx \, dy$$
$$= \iint_{A \cap D} \frac{1}{d} \, dx \, dy$$
$$= \frac{S}{d}$$

其中 S 为 $A \cap D$ 的面积.

第二节连续型分布A均匀分布B指数分布C正态分布

指数分布

如果随机变量 X 有以下概率密度

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

其中 $\lambda > 0$,则称 X 服从参数为 λ 的指数分布,记为 $X \sim EP(\lambda).$

其分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0 \\ 0, & x < 0 \end{cases}.$$

指数分布的密度函数

指数分布的分布函数

指数分布

指数分布的数字特征:设随机变量 X 服从参数为 λ 的指数分布,则

$$EX = \frac{1}{\lambda}, \quad Var X = \frac{1}{\lambda^2}.$$

第二节	连续型分布
А	均匀分布
В	指数分布
С	正态分布

如果随机变量 X 有以下概率密度

$$\varphi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

其中 μ , σ 为常数且 $\sigma > 0$,则称 X 服从正态分布. 简记为

$$X \sim N(\mu, \sigma^2)$$
.

称 N(0,1) 为标准正态分布,并简写 $\varphi_{0,1}(x)$ 为 $\varphi(x)$.

正态分布的数字特征

设随机变量
$$X \sim N(\mu, \sigma^2)$$
,则
$$EX = \mu, \qquad \text{Var}(X) = \sigma^2.$$

正态分布的密度函数

正态分布的分布函数

正态分布的分布函数为

$$\Phi_{\mu,\sigma^2}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi \cdot \sigma}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt,$$

 $\int_{-\infty} \sqrt{2\pi} \cdot \sigma$ 该函数不是初等函数.

正态分布的分布函数为

$$\Phi_{\mu,\sigma^2}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi \cdot \sigma}} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt,$$

标准正态分布的分布函数简记为 $\Phi(x)$.

标准正态分布的分布函数的性质

$$\Phi(-x) = 1 - \Phi(x)$$
.

2 若
$$X \sim N(0.1)$$
,则对任意 $x \ge 0$,有 $P\{|X| \le x\} = 2\Phi(x) - 1$.

若 X 服从正态分布,则其线性函数 $aX + b(a \neq 0)$ 仍然服从正态分布. 且若 $X \sim N(\mu, \sigma^2)$,则有 $aX + b \sim N(a\mu + b, a^2\sigma^2)$.

若 X 服从正态分布,则其线性函数 $aX + b(a \neq 0)$ 仍然服从正态分布. 且若 $X \sim N(\mu, \sigma^2)$,则有 $aX + b \sim N(a\mu + b, a^2\sigma^2).$

服从正态分布随机变量的标准化: 若 $X \sim N(\mu, \sigma^2)$,则有

 $\frac{X-\mu}{\sigma} \sim N(0,1).$

定理 若
$$X_1, X_2, \cdots, X_n$$
 相互独立,且

$$X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2, \dots, n$$

则对不全为零的数 a_1, a_2, \cdots, a_n ,

$$a_1X_1 + \cdots + a_nX_n \sim N\left(\sum_{i=1}^n a_i\mu_i, \sum_{i=1}^n a_i^2\sigma_i^2\right).$$

常用连续型随机变量

设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha \in (0,1)$, 称满足条件

$$P\{X>Z_{\alpha}\}=\alpha$$

的点 Z_{α} 为标准正态分布的上 α 分位点.

常用连续型随机变量

设随机变量 $X \sim N(0,1)$, 对给定的 $\alpha \in (0,1)$, 称满足条件

$$P\{X > Z_{\alpha}\} = \alpha$$

的点 Z_{α} 为标准正态分布的上 α 分位点.

由性质
$$\Phi(-x) = 1 - \Phi(x)$$
 可得 $Z_{1-\alpha} = -Z_{\alpha}$.

定义 以下面函数为密度的分布称为二元正态分布, 简记为 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$:

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

 $\cdot \exp \left\{ -\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)(y-\mu_2)}{\sigma_1 \sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right\}$

其中 μ_1, μ_2 为实数, $\sigma_1, \sigma_2 > 0$, $|\rho| < 1$.

二元正态分布的边缘分布:若 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho),$

 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$

二元正态分布的独立性: 若
$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho),$$

则 X 与 Y 相互独立的充要条件为相关系数 $\rho = 0$.