FORM ONE COMPUTER STUDIES UPDATED NOTES

FORM ONE COMPUTER STUDIES UPDATED NOTES

Prefer Calling Amobi Group of Examiners @

0743 333 000 or 0706 851 439

For FI-F4 All Subjects Notes

CALL AMOBI GROUP OF EXAMINERS @ 0743 333 000 OR 0706 851 439 TO ACQUIRE:

CHAPTER 1 INTRODUCTION TO COMPUTERS

This chapter introduces the student to what a computer is, classifies computers into different categories, compares the different classes of computers and also introduces the keyboard as a basic input device.

- a) Definition of a computer
- b) Classification of computers
- c) Physical size
- d) The way they process data
- e) By purpose
- f) By use
- g) Acquisition of Keyboard skills
- h) Layout of keyboard
- i) Summary
- j) Questions

• **DEFINITION OF A COMPUTER**

Before we attempt to define a Computer, there are a number of associated terminologies that the learner needs to know beforehand. These are: Data, Information, and Programs.

Data is the name given to facts. For example, in a school, the number of students in a class, the number of teachers, names of students, the name of customers in a business.

Information is result from processed data. For example adding some numerical values like the numbers 14 and 17 into the computer will give you the result of 31. The later is information you required. Information can be defined as data computed into a more useful form than raw form.

Program is a series of instructions written in the language of the computer for them to obey and perform specific tasks as outlined by the instructions.

A Computer can therefore be defined as "an electronic machine that takes in data (facts) in the raw form, processes the data to give out in another form called information".

When a computer is fed with data, it passes through four basic steps before the data can be displaced;

- **Input Process** the user will type the data from say the keyboard (to be introduced later in the chapter) and the computer will accept the dame and store within it.
- **Storage Process** the data that is fed into the computer at the same time is held, even during the time of processing and after processing; it can further be stored for further reference. These data are held in computer memory.
- **Processing** the computer will manipulate the data held within it to a more useful form results (information).
- **Output Process** the user is given the information he desired.

The four basic processes can be summarized in the following way by looking at the same terms of information processing cycle.

Organizing data for processing – to get quality results (information) you must have quality data to start with. Unreliable original data generates unreliable results. If you give a computer garbage, you get garbage in return. Its called GIGO – Garbage In – Garbage Out.

Information Processing Cycle - Information Processing Cycle includes a series of steps for transforming data into meaningful information for people.

A cycle is defined as a sequence of activities performed in an order that it produces expected and meaningful results.

A Processing Cycle is repeated, it means, if the same resources are used in the same way, the same outcome will result. The standard cycle followed to process data and deliver information comprises of 4 major functions:

- **Input Function** the input function gathers and collects stored data items and enter them into the system for processing. Input can come from many sources, for example from files kept in the office, banking institutions and accounts.
- **Storage Function** this function allows the user to store data being processed in the memory of the computer as well as to store the information for future use.
- **Processing Function** the desired operation by the user is carried out on the data keyed in and stored in the memory so as to turn it into meaningful information.
- **Output Function** the data stored is processed and then output into files, printed as hard copies or displayed on the screen for the user.

Note: For any information processing system to run smoothly on a day-to-day basis, the processing activities must be organized. A system has little work if it provides helpful information on one day and useless information the next day. Output should be useful the first time and every time for the system.

CLASSIFICATION OF COMPUTERS

There are four basic ways by which computers can be classified:

- a) Physical size i.e how large the computer is.
- b) By the way they process data
- c) By purpose
- d) By use

Physical Size

The following computer systems are categorized by how large they are:

a. Monster Computer

Sometimes it is referred to as Super computers or Maxi computers. These are computer of enormous power and are very large in size. Its installation requires special floors to carry its weights and it also needs special plumbing to carry a fluid known as fluorocarbon needed to cool it.

One unique feature of maxi computers is that when you purchase it, the purchase price will include the services of 2 permanent engineers to maintain it forever. They are typically used for scientific research and military applications, petroleum engineering, nuclear physics and meteorology.

Examples of monster computers include CYBER and CRAY computers. For example, the whole globe needs only one monster computer to forecast weather at once.

b. Mainframe Computers

Mainframe computers are second in size to monster computers. These computers perform more data processing work than any other type of computers. For this reason they form a large portion of installation in most organization.

As does the monster computers, mainframe computers also have some special requirements, for the reason, they are housed in special rooms brought about by the special power that they posses together with environmental control requirements.

Mainframe computers can be used by more than one person at a time since they can support a large network of other computers organizations that employ mainframe computers alongside other computers are banks, government agencies, commercial and industrial agencies.

c. Minicomputer

Also called Medium sized computers. These computers compared to mainframe are smaller, slower and less expensive.

A minicomputer has an advantage over the previous two in the sense that it does not have any special power or environmental control requirements. For this reason, the medium sized computer can always be located anywhere within the organization.

Minicomputers can do the work that the mainframe does but on a small scale.

d. Microcomputers

Of the types of computers, microcomputers are the slowest. However, they counteract this disadvantage because they are easy to use and the cost of purchase is also low.

A microcomputer gets its name from the fact that its main computing component, the microprocessor (to be introduced later) is located in one integrated circuit (IC) or what we call a Chip. Microcomputers fit nicely on desktops, for that reason they are sometimes known as Desktop Computers. They are also referred to as Personal Computers since many individuals purchase them for personal use.

Type of data processed

Classification of computers by the way they process data falls into 2 main types with the third being a combination of the two:

- (i) Analog and
- (ii) Digital Computers
- (iii) Hybrid

i) Analog Computers

These computers process data that vary continuously, for example variations in temperature, amount of current flowing through an electrical conductor and so on. The flow of such data is in the form of wave like movement i.e. not predictable. Such computers are used for a wide variety of industrial and scientific applications that require the processing of data that are measured continuously. In conclusion, we say that analog computers measure things.

ii) Digital Computers

As opposed to analog computers, these type count things. Data passed to a digital computer is usually operated on in steps i.e. form of discrete numbers, 0, 1, 2, 3, (a discrete operation). It is like counting on one's fingers (1, 2, 3, 4...). Most computers in use today are digital. This is because there are more counting applications than there are applications than there are applications that require continuous measurements.

iii) Hybrid Computers

These computers possess features of both digital and analog computers meaning both counting and measurement operations in one computer.

By Purpose

Classification by purpose falls into 2 categories:

• Special Purpose Computers

These are computers that are single task oriented. In other words, they are designed to solve only a particular type of problem. Examples include embedded computers in our common digital watches.

• General Purpose Computers

These are computers that can perform a vast number of operations or solve problems of different varieties. Most of the computers in use today are general purpose. However, it is wise to note that general-purpose computers can always be adapted with special programs to do a job specified hence becoming special purpose computer.

• Embedded Computers

These are computers attached to other computers that help in operating them. E.g. computers embedded in lifts, petrol pumps, digital watches and so on.

By Use

It is worthy noting that we categorize these computers according to what it is used for and when it is used. Under this category, the list is endless. For this reason we will limit ourselves to only five main types.

i) Personal Computers or Desktop Computers

These are also known as Microcomputers. They get their name from the fact that they fit nicely on the desktop. They can also be used on the desk in the office environment or for personal use at home.

ii) Home based Computers

These computers are those designed to be used at home. An individual may install only games program in it or a word processor to enable them write letters, still some would install accounting packages to enable them budget and control their finances at home.

iii) Lap top Computers

These computers get their name from the fact that you can place them on your laps while using. They are very small computers that have the structure of a briefcase i.e. you open and close the same way. These have a keyboard attached to them and a flat screen together with a mouse ball and chargeable batteries. This means that you can use them in the rural areas where the is no electricity.

Laptop computers also have ports (small slots) through which you can attach an external keyboard, mouse or external drive like drive A:.

ACQUISITION OF KEYBOARD SKILLS

There are many ways to enter data into the computer. However, keyboard still remains the predominant input device for the many users.

A computers keyboard is used much like a typewriter keyboard. A keyboard has alphabetic, numeric, and special characters found on a typewriter. The only difference is that data keyed in, is recorded in the computer systems' data coding scheme and is stored in the memory. The traditional format of a computer or terminal keyboard follows the organization prescribed by the typewriter keyboard. This is known as QWENTY keyboard because of the sequence of the six letters on the upper left corner of the alphabet position of the typewriter keyboard.

Layout of Keyboard and Functions of Keys

A typical keyboard takes the form of a normal typewriter keyboard. A keyboard usually has standard keys; that is letters of the alphabet plus special characters e.g. ?, ', @ e.t.c.

In addition to the standard keys, one finds a numeric keypad which is essential for applications that require entry of large amounts of numerical information.

Function Keys are identified as F1 through F12, they can be programmed to ease the work of frequently used operations. Cursor control keys of direction keys the ones with arrows, move the cursor on the CRT (screen).

Other special keys include: Delete keys and backspace keys which deletes characters. Delete key deletes a character that is in front of the cursor whereas backspace key delete characters before the cursor. Insert key will insert characters from text. Others e.g home key will take you to the top of the document and end key to the end of the document.

Computer keyboard employ one or more control keys. Control works just like the shift key on a keyboard in that they cause other keys to perform functions different from their normal operations. Example, if you hold shift key down and press the letter "e", you get a different character "E". Holding down the control key while you press any of the other keys causes still another character to be sent to memory.

Like the control keys, the escape key is used to cause other keys to perform special functions. Unlike the control keys, however, it is not held down while pressing another key. Once sending a signal to the computer system, for that purpose. If you press another key following Escape, it will cause the computer to execute a function established by the program in use.

Fig. 1.3.1 Layout of the Keyboard

SUMMARY

- A computer is a device that takes data in one form and processes it to give out in another form called information.
- Data is the name given to facts.
- Information is processed data.
- Program is a set of instructions written in the language of the computer indicating what the computer is to perform.
- 4 basic functions of a computer: Input, Storage, Processing and Output.

- Computers can be classified by: Size, The way they process data, By Purpose and by use.
- Typical keyboard is the same as a typewriter keyboard, has: standard keys, Numeric Keypad, Function keys, Cursor Control keys or Direction keys, Control Keys, Alternate keys, Escape keys e.t.c.

• QUESTIONS:

- i.Define a Computer.
- ii.Differentiate between Data and Information.
- iii. What is a Computer Program.
- iv. What are the 4 basic functions a Computer will perform on data.
- v.Discuss in detail how computers can be classified.
- vi.Discuss the layout of a typical keyboard and functions of the different keys

CHAPTER 2 COMPUTER COMPONENTS

This chapter introduces the student to the computer hardware system. At the end of the chapter, the student should be able to: differentiate between hardware and software, identify the elements of a computer systems' hardware, explain the functional organization of the elements of a computer system, describe the central processing unit, describer the types of input and output devices, describe the types of secondary storage devices and media and finally be able to distinguish between system software and application software.

- a. Diagrammatic Representation of Divisions of a Computer System.
- ODistinction between Hardware and Software.
- o The Complete Computer System.
- o Elements of a Computer Hardware System.
- Functional Organization of the Elements of a Computer System.
- o Description of Central Processing Unit.
- o Description of types of Input Devices.
- ODescription of types of Output Devices.
- Description of types of Secondary Storage Devices and Media.
- Distinction between System Software and Application Software.
- Summary.
- Questions.

• DIAGRAMMATIC REPRESENTATION OF DIVISIONS OF A COMPUTER

The following diagram shows the basic physical computer breakdown that will serve as a reference throughout the chapter.

Fig. 2.1

KEY:

C.P.U - Central Processing Unit
A.L.U - Arithmetic Logic Unit
DOS - Disk Operating System
ROM - Read Only Memory

RAM - Random Access Memory

DBMS- Data Base Management System

DISTINCTION BETWEEN HARDWARE AND SOFTWARE

A Computer hardware from the simplest point of view is the physical or tangible parts of a computer whereas software are the intangible parts that help the computer to do its task. From a technical stand point, the following are the valid definitions and hence the distinction between the two terms.

A hardware is a name that describes all the electronic, electrical and mechanical components of a computer together with its peripheral devices.

A software is the name that describes all the programs that are used to run the computer or do a specific task together with its documentation.

Explanation of the terms

Peripheral devices referred to above are: input devices e.g keyboard, mouse or output devices e.g monitor, printer. These are devices that are used at the periphery or at the side or alongside the computer.

Documentation refers to, in its simplest form, the manual that helps the user to know how the different parts of the software work, how to install it, uninstall, trouble shoot or as a reference book. The definition of software is not complete until documentation is included.

INCOMPLETE NOTES

This Forms a Sample From The Original Notes

Prefer Calling Amobi Group of Examiners @ 0743 333 000 or 0706 851 439
For FI-F4 All Subjects Complete Notes

CHAPTER 3 SAFE USE AND CARE OF COMPUTERS

This chapter lets the student to be aware of the computer, its safety rules and how to apply them. The safety rules to be observed regard personnel, materials and equipment in the computer laboratory. The student is also expected to state correctly safety precautions required in the lab and be able to identify possible causes of loss of data and their precautions.

- Behaviour in the Computer Lab.
- Handling of Materials and Equipment.
- Fire and Accidents.
- Chemicals and Combustible Materials.
- Ventilation in the Computer Lab.
- Safety Precautions and Practices.
- Possible Cause of Loss of Programs and Data.
- Precautions.
- Summary
- i. Questions

• BEHAVIOUR IN THE COMPUTER LAB

Computer lab forms a very important section of an organization or school and therefore strict rules in terms of behaviour of personnel/students working/studying in the lab needs to be put in place and adhered to.

One factor to be taken into consideration is the cost involved in setting up the lab including the cost of equipment. This should not be taken for granted and computers and other peripherals damaged in the short run could result in great losses to the organization.

Cleanliness is a factor that stands out in the lab. The personnel need to be clean while in the lab. Dust in the hands, oil on fingers is not allowed among personnel/students. Foodstuffs to the lab is not allowed as the broken pieces from such will ultimately find their way into the peripherals e.g keyboards, disk drive and so on.

Depending on what material cover is on the floor, certain shoes tend to cause a lot of distraction by making noise to the rest of the seated personnel. This slows down the work process as attention will definitely be shifted. External disks into the lab are not recommended as this may result in virus infection to the system in the lab from outside sources.

Internal disks should not be allowed to leave the room. Some stringent procedures should be laid down to check the personnel who ignore the rule. If this is not observed, it may lead to data from the organization being exposed to rivals or would be "hackers" – those who gain access to the system without authority.

Any mechanical or technical faults noted should always be reported to the technical personnel immediately for attention. Non-technical personnel should never attempt to deal with such a fault!

It is important also that every personnel make routine backup copies of every work done in the lab as this will save the organization from any data loss in the event of disaster.

Shutting down and booting of computers is very important. Strict procedures depending on the operating system specification should be adhered to, otherwise damages to the disk in the long run and fragmentation of files and storage in the storage location will happen. This will cause delays in reading and writing to the same. All equipment should not be moved around the lab rather they should always be used where they are installed!

Changing of peripherals from one machine to another is not an encouraged practice. Let a mouse meant for machine A remain the machine; if it does not work, please ask a technical personnel to attend to it, but do not interchange it with another!

• HANDLING OF MATERIALS AND EQUIPMENT

Handling of some materials and equipments in the lab should be a privilege. In other words, some disks and special machines like a server (in the case of a network) should not be for everyone, only those authorized should be allowed for example to keep installation disks and so on.

Generally the computers and peripherals in the laboratory should always be handled with care since all of them have soldered electronic parts within them that when poorly handled and perhaps dropped then such parts will always either break or be dislocated. This will mean the equipment is damaged. It is recommended that every movement to machines in the lab be done using a trolley. No equipment should ever leave the lab unless with direct authority from the right person.

Computer cables should, if detached, be properly returned each to the right machine. Technical operations in the lab should be left for only technical personnel. If every Tom, Dick and Harry in the lab assume to repair every damaged equipment, then more will be worse off than they were.

Disks should be kept from natural hazards like excessive temperatures, water and dust places and a way from magnets if data integrity is to be maintained.

• FIRE AND ACCIDENTS

Fire and other accidents in the lab are possibilities. Such accidents would include electrocution of an employee/student, slipping and falling on a slippery floor.

Fire is a big threat to data loss and equipment. Every lab should always offer training of how to handle fir in thee event of such calamity and of course fir-fighting equipment like fire extinguishers for example hand held CO₂ and BCF extinguishers should always be available.

Data should also always be kept in fireproof safes to avoid loss of data loss in such event. Insuring of equipment and software in the organization with insurance firms will help since after such an accident, the firm is paid.

• CHEMICALS AND COMBUSTIBLE MATERIAL

Chemicals and combustible materials should always be located on special places. False floors and ceilings should always be available for chemicals like fluorocarbon fluid used as a cooling agent for mainframe. Such pipes and ducts should pass either up on false ceilings or below false floors.

Combustible materials like fire extinguishers should be located in places visible to everyone but with strict instructions to be touched only in the event of a fire break out. Other materials that could be harmful to the environment should be transmitted through properly located ducts.

• VENTILATION IN THE COMPUTER LAB/WORKING AREA

Windows provide adequate ventilation in labs. Such windows must not be very wide as such will always be vulnerable to entry by intruders. Any ventilation apart from the window should always be higher up and very small in size. Every ventilation again, mostly windows, should have a well-dropped curtain so as to keep private the operations in the lab.

• <u>SAFETY PRECAUTIONS AND PRACTICES</u>

i.Cabling

Cables in the lab should be properly located either on false floor or ceiling or along the walls so as to avoid interference for example with communication coolers in the lab. Cables put haphazardly may result in possible power disconnection if stepped on or pushed around.

INCOMPLETE NOTES

This Forms a Sample From The Original Notes

Prefer Calling Amobi Group of Examiners @ 0743 333 000 or 0706 851 439
For FI-F4 All Subjects Complete Notes

CHAPTER 4 OPERATING SYSTEMS

This chapter will introduce the student to what operating terms are, the functions and types. It will also serve to explain how disk Operating System (DOS) organizes information. The student is expected to use some DOS commands for file and disk management and be able to list external and internal DOS commands at the end of the chapter.

- a. Definition of the term Operating System.
- b. Functions of Operating System.
- c. Types of Operating Systems.
- d. How DOS organizes information.
- e. List of DOS commands.
- f. File Management Commands.
- g. Disk Management Commands.
- h. Summary.
- i. Questions.

a. <u>DEFINITION OF THE TERM:</u> 'OPERATING SYSTEM'

Operating System as defined earlier, is a set of programs available within the system software that standardizes the way a computer's resources are made available to the user and to applications software.

b. FUNCTIONS OF AN OPERATING SYSTEM

The following functions are identified as common to all Operating Systems:

i.Memory Management

An Operating System allocates memory to itself and to its resident system programs, sets aside areas of application programs and user partitions, arranges the input and output buffers (areas on RAM where input data and output data are temporarily stored) and reserves storage for specialized purposes.

ii.Input/Output (I/O) Management

The Operating System controls reading of data coming in from the various input devices into the memory and writing of data to output devices such as printers.

The Operating System will ensure that each time the user types in commands those inputs are accepted into the memory, and if the latter is busy the it holds the same temporarily on buffers until the memory is free and also does the same to output data awaiting to be displayed on the monitor or to be sent to the printer if the same are busy.

iii.Resource Allocation

Operating System load programs into the computer memory and starts them running after receiving instructions from the user, at the same time, operating systems must have ability to divide resources available to different users, memory and of course the peripherals to different processors going on at the same time so that none of the users gets "stuck" or "deadlocked" during the operation for lack of a computer resource.

iv.Error Handling

Any Operating System must have the ability to handle errors in the computer system be it hardware or software faults and be able to provide routines to correct these errors.

v.Provision for User Interface

Any Operating System should have the ability to receive commands from the user and respond to them accordingly.

vi.Interrupt Handling

An interruption could be caused by software errors, mechanical faults of a machine or by the operator by pressing the Break key for example which halts the system. The operating system should always be able to handle such interrupts without causing any malfunctions as a result.

c. TYPES OF OPERATING SYSTEMS

There are majorly two types of Operating Systems that we will discuss in this section.

vii.Single User System

In this type of Operating System, only one user can use the machine at a time, load one program at a time in the main memory and process only that one program. Most of the small microcomputers employ single user systems. Examples are Ms-DOS, Pc-DOS and Windows.

viii.Multi User System

This system as the name suggests is for multi user, as opposed to the single user system. This system is employed by larger microcomputers and minicomputers. More than one program can be loaded into the main memory by different users and processed at the same time in an interactive manner. Examples of such an operating system are UNIX and Windows NT.

d. FILE MANAGEMENT

Medium of storage employed by most microcomputers is often disk. Data that is stored on disks are often held in a file. The latter is often referred to as a group of related records. The records may hold

data about customers, employees of the organization and names of students in a school and the like depending on the organizations.

Therefore, the file as a group of program instructions is actually a computer program. When files are stored on such storage media, then the term "file" refers to anything stored on the medium, be it a program or data file.

ix.File and Directories

The work of the Operating System is to keep or maintain a directory of the address of the files on disk. Each file on the storage media is assigned a name called filename (one word). The directory is a list of filenames and the disk addresses at which the file may be found. When the user refers to a particular filename, it causes the operating system to consult its directory of filenames, locate the address of the required file and make it ready for use.

Let us have a look at a directory listing of files of a system disk using Ms DOS. All of the files in this directory are programs. A system disk is so called because it contains the directory system. We shall list directory for system drive A:

Volume in drive A: has no label.

Directory of A:

COMMAND COM 18107 13-12-97 13.00PM

SYS COM 7407 13-12-97 13.00PM

DIRECTORY COM 1307 13-12-97 13.00PM

FIND EXE 1278 13-12-97 13.00PM

4 FILE(S) 142890 BYTES FREE

What the list shows:

- a) the name of the file e.g. COMMAND
- b) Filename extension e.g. COM
- c) The number of bytes contained in this file
- d) Date and time on which it was printed into the directory.
- e) The total figure at the bottom of this directory listing show the number of bytes remaining for storing other files.

MS-DOS has certain rules for formation of filenames for example;

A filename must not exceed 8 characters in length and in some cases requires filename extensions, which is 3- character in addition to the filename. In the above example, COM and EXE are extensions. Although not visible, there is usually a full stop between the filename and the extension e.g. Diskcopy.COM is the complete name for the above file.

The user has to type in the computer name of the file including the period in order to effectively use some file maintenance utilities like copying or deleting. Filename extensions usually indicate the type of file for example "COM" and "EXE" above will refer to program files.

x.Directory Hierarchy

Files stored on a disk can always be organized into subdirectories. Directory hierarchy refers to a "tree" like structure formed by directory – subdirectories – files. For example, we could have a directory called KENYA with subdirectories of towns NAIROBI, MOMBASA, NAKURU and files of Estates within each town, e.g. Hurlinghum, Nyali and Milimani. The figure below shows the directory hierarchy.

To be able to specify which file to open, the user has to specify to the operating system the data path or path to that file. For example, to open a filename Milimani, the following path must be specified: Kenya\Nakuru\Milimani.

A path is often defined as a logical, sequential list of directories and subdirectories leading to a filename. The names of directories and subdirectories are separated from each other by determinates which could be a backslash(\) or a hyphen (-) or a slash (/) depending on the Ms-Dos version in use.

The directory names have extension DIR wheras the files have TXT. The directory named Kenya under which the subdirectories Nakuru, Mombasa and Nairobi are stored is called root directory.

xi. Volume Lables and Directories

A labels is a name given to a disk to enable you identify the contents from those of other disks when it's off-line in that if it's not mounted on a drive.

Since the use could have multiple disk drives on-line (mounted) at one time, the operating system must have a way of determining when disks are actually mounted on the driver. To do this, we use volume labels or volume directory, which simply a name assigned to each disk used in the computer installation. The difference between volume labels identifies a storage medium as physical unit while the latter two identify data stored on disk. Suppose we gave a volume label country to the hierarchy above, the complete name for reaching Milimani file will be:

COUNTRY\KENYA\NAKURU\MILIMANI

The operating system will ensure that disk on a volume label Country is located first if it is the one mounted, before it searches for the actual file in the specific directories.

xii.Tab Control

Computers and their operating systems can perform a great number of different tasks, not just one job as say a stand-alone word processor or a calculator. Therefore, the user of the system must be prepared to tell the operating system what particular task to perform at the moment.

When the computer system is complete, usually the application program is what the user communicates with the program when a particular task is desired. When the application program finishes, it is no longer a part of the system.

The user therefore must communicate with the operating systems to tell it what to do next. He or she does this through the use of what we call OS's Tab Control Language or TCL. TCL consists of a number of operating system commands also called system commands that control the operating system.

How does one know that the application program has finished its work and it is no longer loaded by the operating system? The operating system will display that by displaying its prompt; it could be a character or two that will signal the user it awaits further system commands.

The MS-DOS Operating System, uses the prompt C:\> or C>. The "C" in the prompt indicates the disk drive in which the operating system will look for any files referred to by the next TCL instructions. The disk drive attached to the system are usually identified by letters of the alphabet through a system with four drives could have drive identifiers A: through D. Any reference to a drive must include the colon in the drive identifier. The drive identifier displayed by the dos prompt is known as a logged drive, the default drive or the active drive.

e. MS-DOS COMMANDS

Using system commands is quite easy. It is a matter of knowing the right commands key, key it in and press enter key for the command to be accepted. System commands help us to manage our files and directories for example; we can copy a file from one disk to another, delete files or change names. We can also manage our disks for example to format a disk, label a disk or copy disks.

The Syntax of a Dos Command

A Dos command usually has a command name (i.e the system command the user intends to use) and an argument which is information required by the command. An argument used with a Dos command will indicate the disk drive on the file to be used by the command

Example: COPY ANN 1 TO ANN 2

The command has a <u>command name COPY</u>. The arguments are <u>ANN 1</u> and <u>ANN 2</u>. This command copies a file known as ANN 1. The new copy is named ANN 2.

N/B: ANN 1 and ANN 2 are arguments and are separated from each other by a blank space. They are also separated from the command name by a blank space.

xiii.Running a Program

It is important to note that a Dos Command represents a program. A command name is just like a file name of any other program. To be able to run a program using Dos, first the operating has to be loaded. Loading the operating system is simply switching on the computer, it will open a program loaded in ROM to check if the operating system is loaded in drive A or any other and load, other wise it will load from the hard disk.

To run a program with filename extension COM, BAT, TXT, simply enter its filename without the extension for example to a Basic Program simply enter BASIC. Its filename is BASIC.COM.

When you want to execute a program that is not stored on a disk in the logged drive, the first thing would be to change the logged drive to the disk containing the program. For example, suppose you wanted to run a program with the filename MILO.EXE which is on the disk in drive B:, and the logged drive is A:, to specify the drive on which Dos should look for the program, proceed with the filename with the drive identified with no blank in between the colon and the filename.

B:MILO

INCOMPLETE NOTES

This Forms a Sample From The Original Notes

Prefer Calling Amobi Group of Examiners @ 0743 333 000 or 0706 851 439
For FI-F4 All Subjects Complete Notes

CALL AMOBI GROUP OF EXAMINERS @ 0743 333 000 OR 0706 851 439 TO ACQUIRE:

