External

Registers

MDSCR_EL1, Monitor Debug System Control Register

The MDSCR EL1 characteristics are:

Purpose

Main control register for the debug implementation.

Configuration

AArch64 System register MDSCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register <u>DBGDSCRext[31:0]</u>.

AArch64 System register MDSCR_EL1 bit [15] is architecturally mapped to AArch32 System register <u>DBGDSCRint[15]</u>.

AArch64 System register MDSCR_EL1 bit [12] is architecturally mapped to AArch32 System register <u>DBGDSCRint[12]</u>.

AArch64 System register MDSCR_EL1 bits [5:2] are architecturally mapped to AArch32 System register <u>DBGDSCRint[5:2]</u>.

AArch64 System register MDSCR_EL1 bit [40] is architecturally mapped to External register EDSCR2[8] when FEAT Debugv8p9 is implemented.

Attributes

MDSCR EL1 is a 64-bit register.

Field descriptions

Bits [63:35]

EnSPM, bit [34] When FEAT SPMU is implemented:

Enable access to System PMU registers. When disabled, accesses to System PMU registers generate a trap to EL1.

EnSPM	Meaning		
0b0	Accesses of the specified		
	System PMU registers at EL0		
	are trapped to EL1, unless the		
	instruction generates a higher		
	priority exception.		
0b1	Accesses of the specified		
	System PMU registers are not		
	trapped by this mechanism.		

In AArch64 state, the instructions affected by this control are: MRS and MSR accesses to SPMCNTENSET_EL0, SPMCNTENSET_EL0, SPMC

Unless the instruction generates a higher priority exception:

- If EL2 is implemented and enabled in the current Security state, and HCR_EL2. TGE is 1, then trapped instructions generate an exception to EL2.
- Otherwise, trapped instructions generate an exception to EL1.

Trapped instructions are reported using EC syndrome value 0x18.

The reset behavior of this field is:

 On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TTA, bit [33] When FEAT TRBE EXT is implemented or FEAT ETEv1p3 is implemented:

Trap Trace Accesses. Used for save/restore of EDSCR2.TTA.

When <u>OSLSR_EL1</u>.OSLK is 0, software must treat this field as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK is 1, this field holds the value of <u>EDSCR2</u>.TTA. Reads and writes of this field are indirect accesses to <u>EDSCR2</u>.TTA.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 0, access to this field is **RO**.
- Otherwise, access to this field is **RW**.

Otherwise:

Reserved, res0.

EBWE, bit [32] When FEAT Debugv8p9 is implemented:

Extended Breakpoint and Watchpoint Enable. Enables use of additional breakpoints or watchpoints.

EBWE	Meaning			
0b0	Each Breakpoint <n> and</n>			
	watchpoint <n>, where n is</n>			
	greater than or equal to 16, is			
	disabled, and the Effective value			
	of MDSELR_EL1.BANK is zero.			
0b1	Breakpoints and watchpoints			
	are not affected by this			
	mechanism.			

It is implementation defined whether this field is implemented or is res0 when 16 or fewer breakpoints are implemented, 16 or fewer watchpoints are implemented, and MDSELR_EL1 is implemented as RAZ/WI.

This field is ignored by the PE and treated as zero when all of the following are true:

- Any of the following are true:
 - EL3 is implemented and MDCR EL3.EBWE is 0.
 - EL2 is implemented and enabled in the current Security state, and MDCR EL2.EBWE is 0.
- HaltOnBreakpointOrWatchpoint() is FALSE.

The reset behavior of this field is:

• On a Cold reset, this field resets to 0.

Otherwise:

TFO, bit [31]

When FEAT TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.TFO. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.TFO.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

Otherwise:

Reserved, res0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.RXfull. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.RXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.TXfull. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

Bit [28]

Reserved, res0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.RXO. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.RXO.

When <u>OSLSR_EL1</u>.OSLK == 1, if bits [27,6] of the value written to MDSCR_EL1 are {1,0}, that is, the RXO bit is 1 and the ERR bit is 0, the PE sets <u>EDSCR</u>.{RXO,ERR} to unknown values.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When $OSLSR_EL1.OSLK == 0$, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.TXU. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.TXU.

When <u>OSLSR_EL1</u>.OSLK == 1, if bits [26,6] of the value written to MDSCR_EL1 are {1,0}, that is, the TXU bit is 1 and the ERR bit is 0, the PE sets <u>EDSCR</u>.{TXU,ERR} to unknown values.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

Bits [25:24]

Reserved, res0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When $\underline{OSLSR_EL1}$.OSLK == 0, and software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this field holds the value of <u>EDSCR</u>.INTdis. Reads and writes of this field are indirect accesses to <u>EDSCR</u>.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.TDA. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

Bit [20]

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.SC2. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.SC2.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

Otherwise:

Reserved, res0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDE	Meaning		
0d0	Breakpoint, Watchpoint, and		
	Vector Catch exceptions disabled.		
0b1	Breakpoint, Watchpoint, and		
	Vector Catch exceptions enabled.		

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.HDE. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

KDE, bit [13]

Local (kernel) debug enable. If EL_{D} is using AArch64, enable debug exceptions within EL_{D} . Permitted values are:

KDE	Meaning		
0d0	Debug exceptions, other than Breakpoint Instruction exceptions, disabled within EL_{D} .		
0b1	All debug exceptions enabled within $\mathrm{EL}_{\mathrm{D}}.$		

res0 if EL_D is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, as follows:

- In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped, reported using EC syndrome value 0x18:
 - MDCCSR ELO.
 - If not in Debug state, <u>DBGDTR_EL0</u>, <u>DBGDTRTX_EL0</u>, and DBGDTRRX_EL0.
- In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported using EC syndrome value 0x05.
 - DBGDSCRint, DBGDIDR, DBGDSAR, DBGDRAR.
 - If not in Debug state, DBGDTRRXint, and DBGDTRTXint.

- In AArch32 state, LDC access to <u>DBGDTRRXint</u> and STC access to <u>DBGDTRTXint</u> are trapped, reported using EC syndrome value 0x06.
- In AArch32 state, MRRC accesses to <u>DBGDSAR</u> and <u>DBGDRAR</u> are trapped, reported using EC syndrome value 0x0c.

TDCC	Meaning		
0b0	This control does not cause any		
	instructions to be trapped.		
0b1	EL0 using AArch64: EL0		
	accesses to the AArch64 DCC		
	registers are trapped.		
	EL0 using AArch32: EL0		
	accesses to the AArch32 DCC		
	registers are trapped.		

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [11:7]

Reserved, res0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When <u>OSLSR_EL1</u>.OSLK == 0, software must treat this bit as UNK/SBZP.

When <u>OSLSR_EL1</u>.OSLK == 1, this bit holds the value of <u>EDSCR</u>.ERR. Reads and writes of this bit are indirect accesses to <u>EDSCR</u>.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

- When OSLSR EL1.OSLK == 1, access to this field is **RW**.
- When OSLSR EL1.OSLK == 0, access to this field is **RO**.

Bits [5:1]

SS, bit [0]

Software step control bit. If EL_D is using AArch64, enable Software step. Permitted values are:

SS	Meaning			
0b0	Software step disabled			
0b1 Software step enabled				

res0 if EL_D is using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing MDSCR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDSCR EL1

op0	op1	CRn	CRm	op2
0b10	0b000	0b0000	0b0010	0b010

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
   if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.MDSCR_EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE, TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        X[t, 64] = NVMem[0x158];
    else
```

MSR MDSCR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b000	0b0000	0b0010	0b010

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.MDSCR_EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE, TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        NVMem[0x158] = X[t, 64];
    else
        MDSCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.