Calculus 1 Notes

Nathan Warner

December 17, 2023

Chapter 2

Contents

- 2.1: The Tangent and Velocity Problems
- 2.2.1 The Limits of a Function
- 2.2.2 Infinite Limits
- 2.2.3 Finding Limits of a Trigonometric Function
- 2.3 Calculating Limits Using Limit Laws
- 2.5.1 Continuity
- 2.5.2 One-Sided Continuity
- 2.6 Limits at Infinity: Horizontal Asymptotes
- 2.7 Derivatives and Rates of Change
- 2.8.1 The Derivative of a Function
- 2.8.2 Finding The Derivatives Using The Limit Definition

2.1: The Tangent and Velocity Problems

The Tangent Problem:

Question 1

Can we find an equation of the tangent line to $y = x^2$ at the point P(1,1)?

Explanation: .

 $y = x^2$: Red parabola Tangent line: Blue line

Secent Line: Pink line with points q and p

We are asked to get the equation of the tangent line to $y = x^2$ at the point P(1,1), However to find the equation of this line we know we need **2 things**,

(2)

- Point
- Slope

Since we only have one point, we cannot find slope. Therefore, we must use another point as an approximation and create a secent line instead. This secent line is the pink line in the above graphic.

So, lets use the point Q(0,0) as our second point. Now we can find slope with P(1,1), and Q(0,0).

If Slope =
$$\frac{y^2-y^1}{x^2-x^1}$$
, Then M of PQ $\rightarrow \frac{1-0}{1-0} = 1$

Lets get a better approximation by using a point closer to the tangent line Lets use Q(0.9, 0.81)

So M of PQ
$$\rightarrow \frac{1-0.81}{1-0.9} = 1.9$$

Now, lets get an even closer approximation by using the point Q(0.99, 0.9801)

So, M of PQ
$$\rightarrow \frac{1-0.9801}{1-0.99} = 1.99$$

Notice, as the point Q gets closer to P, the slope of PQ is getting closer to 2

We write,

$$\underset{Q\rightarrow P}{\lim} \mathbf{M} \text{ of } \mathbf{P} \mathbf{Q} = \mathbf{m}$$

Where \mathbf{m} on the right of equation is slope of tangent line at \mathbf{P} , And \mathbf{M} of \mathbf{PQ} is slope of the secent line

Now,

We will use our approximation of $m \approx 2$ to write the equation of the tangent line, using the original point P(1,1).

$$y-1 = 2(x-1)$$
$$y-1 = 2x-2$$
$$y = 2x-1.$$

The Velocity Problem:

- Average Velocity: $\frac{distance\ traveled}{time\ elapsed}$, which is represented by the slope of the secent line.
- Instantaneous Velocity = Velocity at a given instant of time, which is represented by the slope of the tangent line

Example 0.0.1

If a rock is thrown upward on the planet Mars, with a Velocity of 10 m/s, It's height in meters t seconds later is given by $y = 10t - 1.86t^2$

Question 2

Find the average Velocity over the given time intervals:

(i) $[1,2] \rightarrow 1$ and 2 represent values of t

Substitute values into equation above

$$y(1) = 10(1) - 1.86(1)^{2}$$

= 8.14.

$$y(2) = 10(2) - 1.86(2)^{2}$$

= 12.56.

If Average Velocity = $\frac{distance\ traveled}{time\ elapsed}$ Or better yet $\frac{Change\ in\ height}{change\ in\ time}$

And we have the points (1,8.14) and (2,12.56)

Then,

$$Average\ Velocity = \frac{12.56 - 8.14}{2 - 1}$$
$$= 4.42m \backslash s.$$

(ii) [1,1.5]

Substitute values into equation above

$$y(1) = 10(1) - 1.86(1)^{2}$$

= 8.14.

$$y(1.5) = 10(1.5) - 1.86(1.5)^{2}$$

= 10.815.

After solving theses equations we have the points (1,8.14) and (1.5,10.815)

So,

$$Average\ Velocity = \frac{10.815 - 8.14}{1.5 - 1} \\ = 5.35m \diagdown s.$$