

Analytical Finance I

Delta Hedging of a Call

Romann IVANOFF Rémi LIEBIG Vincent NAZZARENO

December 17, 2024

MDU

Course Code: MMA707

GitHub: github.com/MMA707

Dashboard: Hedging Dashboard Backtest.

Summary of Delta Hedging Strategy

- 1. Introduction and Objective
- 2. Black-Scholes Framework
- 3. Implementation and Methodology
- 4. Results and Analysis
- 5. Conclusion

1. Introduction and Objective

Definition : Delta Hedging is making the price of an asset held to be neutral for some small change in price.

Objective:

- Study of delta hedging for a vanilla call option.
- Include advanced volatility modeling (GARCH, VIX proxies).
- Simulate performance under realistic transaction cost scenarios.

Black-Scholes Framework

2. Black-Scholes Framework

Black-Scholes Model: A mathematical model for pricing European options.

Black-Scholes Formula for Call Option:

$$C = S \cdot N(d_1) - K \cdot e^{-rT} \cdot N(d_2)$$
 $d_1 = \frac{\ln(S/K) + (r + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T}$

Delta (Δ): The sensitivity of the option price to changes in the underlying asset price.

$$\Delta = N(d_1)$$

Gamma (Γ): The sensitivity of Δ for a change in the underlying asset price.

$$\Gamma = \frac{N'(d_1)}{S\sigma\sqrt{\Delta t}}$$

Methodology

3. Methodology: Summary

1. Data Acquisition:

- Choose Stock Ticker.
- Source: Yahoo Finance via yfinance library.

2. Volatility Estimation:

- GARCH(1,1) model for estimating daily conditional volatility.
- Annualized volatility: $\sigma_{annual} = \sigma_{daily} \times \sqrt{252}$.
- Implied Volatility Proxy for SPY: VIX

3. **Delta Hedging Strategy:**

- At intialization: Buy a call option of parameters:
 - Strike Price $(K) = 1.1 \times \text{Initial Stock Price } (S)$
 - Time to Maturity (T) = 6 months
 - ullet Short quantity of Δ underylying
- During the life of the option:
 - Rebalance the underlying asset: $n_{day,stock}$.
 - Let option expire to maturity
 - **OR** Rolling the option: $n_{day,option}$

3. Methodology: Data Acquisition, Volatility Estimation

Stock Data:

- SPY daily closing prices.
- Period: Last 6 months.
- Calculated log returns for volatility estimation.

Volatility Estimation:

- Applied GARCH(1,1) model to log returns.
- Smoothed volatility using a rolling window.
- Annualized the conditional volatility estimates.

3. Methodology: Delta Hedging Strategy

Steps Overview

- Initial Setup (t = 0): Create hedge.
- Daily $(t \in]0; T[):$ Rebalance and/or roll.
- End (t = T): Close all.

t=0: Initialization

- Buy 1 call option.
- Compute Δ via Black-Scholes.
- Short −∆ shares for hedge.

$t \in]0; T[:$ Adjustments

- $\begin{tabular}{ll} \bullet & Rebalance \\ hedge: adjust \\ short shares \\ from new \\ computed Δ . \end{tabular}$
- OPTIONAL:
 Roll option
 every
 n_days_option,
 no exercise.

t=T: Final Steps

- Option expires to maturity with payoff $(S_T - K)^+$
- Settle stock and calculate PnL, restart for a new period period T.

Transaction Costs during the life of the Option:

Step	Costs
t = 0	Option premium, initial hedging fees
t ∈]0; T[Rebalancing fees (shares and/or rolls)
t = T	Final settlement fees

3. Methodology: Implementation

Python Implementation Overview

1. Libraries Used:

- yfinance for data acquisition.
- numpy, pandas for data handling.
- scipy.stats for Normal Cumulative Density Function.
- arch for GARCH modeling.
- streamlit for building the web app tool.
- plotly for plotting.

2. **Key Functions:**

- black_scholes: Computes option price and Δ .
- build_initial_positions: Create the portfolio.
- simulate_trades: Simulates the strategy over time.

3. Parameters:

 Stock ticker, dates, rebalancing frequencies (stock, option), fees, K_multiplier, option maturity.

Results

4. Results: Parameters Used

Parameters used for the simulation:

- Backtest Period: 15 Years
- Option Maturity: 6 months
- Volatility Proxy: GARCH(1,1)
- Risk free proxy: FVX
- Rebalancing Underlying: 1 day
- Rolling Option Position: Never
- Fee Rate: 1%

4. Results: Portfolio Performance

Portfolio Performance:

• Initial Portfolio Value: + $\Delta S - N_c C = 31$ \$

• Final Portfolio Value: -\$543

• Total Fees Paid: \$193

• Cumulative Delta Drift: \$0

4. Results: Stock Price and Strike Price

Stock and Strike Price Over Time

4. Results: Total Fees

Cumulative Fees and Delta Drift

4. Results: Option Price, Option Delta

Delta Over Time of Option

Live Demonstration of the tool

Conclusion

5. Conclusion

Analysis:

- Gradual decline in portfolio value over time.
- Losses were primarily due to transaction costs, time decay (theta), and gamma risk.
- Results fits the theoretical expectations of buying a Call Option under non-constant volatility.

Limitations:

- Simplified transaction cost model.
- Supposed each option existed (of $K = 1.1 \times S$).
- Use of Black-Scholes model (Heston, SABR are better for local volatility).

Appendix

Parameters Sweep: GARCH

Portfolio values based on different rebalancing days

Parameters Sweep: VIX

Portfolio values based on different rebalancing days

Varying K multiplier and Rebalancing Days for Stock

Portfolio Sensibility: Option Maturity — K

Varying K multiplier and Option Maturity

Portfolio Sensibility: Option Maturity — Rebalancing Day

Varying Rebalancing Days for stock and Option Maturity

Appendix: Technical Implementation

User Interface & Interaction

Sidebar Navigation

- Pages: Simulation, Volatility Visualization, Hedging Computations, Positions Overview
- Parameter inputs: Stock ticker, history period, rebalancing frequency, fees, etc.

Visualization

- Interactive plots for portfolio value, volatility, option metrics
- Detailed tables for simulation results and portfolio positions

Performance Optimization

- Caching of data and computations to enhance responsiveness
- Efficient handling of large datasets and complex calculations

Appendix: Function Interaction Diagram

Appendix: Technical Implementation

Technologies & Libraries

- Programming Language: Python
- Framework: Streamlit for interactive web app
- Data Handling: Pandas, NumPy
- Data Sources: Yahoo Finance (yfinance)
- Statistical Modeling: scipy.stats, arch for GARCH models
- Visualization: Plotly (plotly.graph_objects, plotly.subplots)
- Caching: Streamlit's @st.cache_data for optimized performance

Appendix: Technical Implementation

Core Functionalities

- Data Fetching & Preprocessing
 - Retrieves stock, risk-free rate, and volatility proxy data
 - Calculates log returns and handles missing data

Volatility Estimation

- Supports multiple proxies: GARCH, VIX, VXN, Realized Volatility, EWMA, ATR
- Implements rolling and exponential weighted calculations

Option Pricing & Hedging

- Black-Scholes model for option pricing and delta calculation
- Delta hedging strategy with dynamic rebalancing

• Trade Simulation

- Simulates portfolio over time with configurable parameters
- Accounts for transaction fees and option maturities