NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 1, Lecture 1

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Algorithms, programming

- * Algorithm: how to systematically perform a task
- * Write down as a sequence of steps
 - * "Recipe", or program
- * Programming language describes the steps
 - * What is a step? Degrees of detail
 - * "Arrange the chairs" vs "Make 8 rows with 10 chairs in each row"

Our focus

- * Algorithms that manipulate information
 - * Compute numerical functions $f(x,y) = x^y$
 - * Reorganize data arrange in ascending order
 - * Optimization find the shortest route
 - * And more ...
 - * Solve Sudoku, play chess, correct spelling ...

Greatest common divisor

- * gcd(m,n)
 - * Largest k such that k divides m and k divides n
 - *gcd(8,12) = 4
 - *gcd(18,25) = 1
- * 1 divides every number
- * At least one common divisor for every m, n

Computing gcd(m,n)

- * List out factors of m
- * List out factors of n
- * Report the largest number that appears on both lists
- * Is this a valid algorithm?
 - * Finite presentation of the "recipe"
 - * Terminates after a finite number of steps

Computing gcd(m,n)

- * Factors of m must be between 1 and m
 - * Test each number in this range
 - * If it divides m without a remainder, add it to list of factors
- * Example: gcd(14,63)
- * Factors of 14

1 2 3 4 5 6 2 8 194 10 11 12 13 14

Computing gcd(14,63)

* Factors of 14

1 2 7 14

* Factors of 63

 1
 2
 3
 .9.
 271
 6.3
 9
 ...
 21
 ...
 63

* Construct list of common factors

* For each factor of 14, check if it is a factor of 63

1 7

* Return largest factor in this list:

An algorithm for gcd(m,n)

- * Use fm, fn for list of factors of m, n, respectively
- * For each i from 1 to m, add i to fm if i divides m
- * For each j from 1 to n, add j to fn if j divides n
- * Use cf for list of common factors
- * For each f in fm, add f to cf if f also appears in fn
- * Return largest (rightmost) value in cf

Our first Python program

```
def gcd(m,n):
  fm = []
  for i in range(1,m+1):
    if (m\%i) == 0:
      fm.append(i)
  fn = []
  for j in range(1,n+1):
    if (n\%j) == 0:
      fn.append(j)
  cf = []
  for f in fm:
    if f in fn:
      cf.append(f)
  return(cf[-1])
```

Some points to note

- * Use names to remember intermediate values
 - * m, n, fm, fn, cf, i, j, f
- * Values can be single items or collections
 - * m, n, i, j, f are single numbers
 - * fm, fn, cf are lists of numbers
- * Assign values to names
 - * Explicitly, fn = [], and implicitly, for f in cf:
- * Update them, fn.append(i)

Some points to note ...

- * Program is a sequence of steps
- * Some steps are repeated
 - * Do the same thing for each item in a list
- * Some steps are executed conditionally
 - * Do something if a value meets some requirement

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 1, Lecture 2

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

An algorithm for gcd(m,n)

- * Use fm, fn for list of factors of m, n, respectively
- * For each i from 1 to m, add i to fm if i divides m
- * For each j from 1 to n, add j to fn if j divides n
- * Use cf for list of common factors
- * For each f in fm, add f to cf if f also appears in fn
- * Return largest (rightmost) value in cf

Can we do better?

- We scan from 1 to m to compute fm and again from 1 to n to compute fn
- * Why not a single scan from 1 to max(m,n)?
 - * For each i in 1 to max(m,n), add i to fm if i divides m and add i to fn if i divides n

Even better?

- * Why compute two lists and then compare them to compute common factors cf? Do it in one shot.
 - * For each i in 1 to max(m,n), if i divides m and i also divides n, then add i to cf
- * Actually, any common factor must be less than min(m,n)
 - * For each i in 1 to min(m,n), if i divides m and i also divides n, then add i to cf

A shorter Python program

```
def gcd(m,n):
    cf = []
    for i in range(1,min(m,n)+1):
        if (m%i) == 0 and (n%i) == 0:
            cf.append(i)
    return(cf[-1])
```

Do we need lists at all?

- * We only need the largest common factor
- * 1 will always be a common factor
- * Each time we find a larger common factor, discard the previous one
- * Remember the largest common factor seen so far and return it
 - * mrcf most recent common factor

No lists!

```
def gcd(m,n):
    for i in range(1,min(m,n)+1):
        if (m%i) == 0 and (n%i) == 0:
        mrcf = i
    return(mrcf)
```

Scan backwards?

- * To find the largest common factor, start at the end and work backwards
- * Let i run from min(m,n) to 1
- * First common factor that we find will be gcd!

No lists!

```
def gcd(m,n):
  i = min(m,n)
  while i > 0:
    if (m\%i) == 0 and (n\%i) == 0:
      return(i)
    else:
     i = i-1
```

A new kind of repetition

```
while condition:
   step 1
   step 2
   ...
   step k
```

- * Don't know in advance how many times we will repeat the steps
- * Should be careful to ensure the loop terminates— eventually the condition should become false!

Summary

- * With a little thought, we have dramatically simplified our naive algorithm
- * Though the newer versions are simpler, they still take time proportional to the values m and n
- * A much more efficient approach is possible

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 1, Lecture 3

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Algorithm for gcd(m,n)

- * To find the largest common factor, start at the end and work backwards
- * Let i run from min(m,n) to 1
- * First common factor that we find will be gcd!

- * Suppose d divides both m and n, and m > n
- * Then m = ad, n = bd
- * So m-n = ad bd = (a-b)d
- * d divides m-n as well!
- * So gcd(m,n) = gcd(n,m-n)

- * Consider gcd(m,n) with m > n
- * If n divides m, return n
- * Otherwise, compute gcd(n,m-n) and return that value

```
def gcd(m,n):
   \# Assume m >= n
   if m < n:
     (m,n) = (n,m)
   if (m\%n) == 0:
     return(n)
   else:
     diff = m-n
     # diff > n? Possible!
     return(gcd(max(n,diff),min(n,diff))
```

Euclid's algorithm, again

```
def gcd(m,n):
  if m < n: # Assume m >= n
    (m,n) = (n,m)
  while (m%n) != 0:
    diff = m-n
    # diff > n? Possible!
    (m,n) = (max(n,diff),min(n,diff))
  return(n)
```

Even better

- * Suppose n does not divide m
- * Then m = qn + r, where q is the quotient, r is the remainder when we divide m by n
- * Assume d divides both m and n
- * Then m = ad, n = bd
- * So ad = q(bd) + r
- * It follows that r = cd, so d divides r as well

- * Consider gcd(m,n) with m > n
- * If n divides m, return n
- * Otherwise, let r = m%n
- * Return gcd(n,r)

```
def gcd(m,n):
    if m < n: # Assume m >= n
        (m,n) = (n,m)

    if (m%n) == 0:
        return(n)
    else:
        return(gcd(n,m%n)) # m%n < n, always!</pre>
```

Euclid's algorithm, revisited

```
def gcd(m,n):
    if m < n: # Assume m >= n
        (m,n) = (n,m)

while (m%n) != 0:
        (m,n) = (n,m%n) # m%n < n, always!
    return(n)</pre>
```

Efficiency

- * Can show that the second version of Euclid's algorithm takes time proportional to the number of digits in m
- * If m is 1 billion (10⁹), the naive algorithm takes billions of steps, but this algorithm takes tens of steps

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 1, Lecture 4

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Installing Python

- * Python is available on all platforms: Linux, MacOS and Windows
- * Two main flavours of Python
 - * Python 2.7
 - * Python 3+ (currently 3.5.x)
- * We will work with Python 3+

Python 2.7 vs Python 3

- * Python 2.7 is a "static" older version
 - * Many libraries for scientific and statistical computing are still in Python 2.7, hence still "alive"
- * Python 3 is mostly identical to Python 2.7
 - * Designed to better incorporate new features
 - * Will highlight some differences as we go along

Downloading Python 3.5

- * Any Python 3 version should be fine, but the latest is 3.5.x
- * On Linux, it should normally be installed by default, else use the package manager
- * For MacOS and Windows, download and install from https://www.python.org/downloads/release/python-350/
- * If you have problems installing Python, search online or ask someone!

Interpreters vs compilers

- * Programming languages are "high level", for humans to understand
- * Computers need "lower level" instructions
- * Compiler: Translates high level programming language to machine level instructions, generates "executable" code
- * Interpreter: Itself a program that runs and directly "understands" high level programming language

Python interpreter

- * Python is basically an interpreted language
 - * Load the Python interpreter
 - * Send Python commands to the interpreter to be executed
 - * Easy to interactively explore language features
 - * Can load complex programs from files
 - * >>> from filename import *

Practical demo

Some resources

- * The online Python tutorial is a good place to start: https://docs.python.org/3/tutorial/index.html
- * Here are some books, again available online:
 - * Dive into Python 3, Mark Pilgrim http://www.diveintopython3.net/
 - * Think Python, 2nd Edition, Allen B. Downey http://greenteapress.com/wp/think-python-2e/

Learning programming

- * Programming cannot be learnt theoretically
- * Must write and execute your code to fully appreciate the subject
- * Python syntax is light and is relatively easy to learn
- * Go for it!