ÁLGEBRA Y GEOMETRÍA ANALÍTICA 1- DIIT SEGUNDO CUATRIMESTRE 2020

Jefa de cátedra: Lic. Gabriela Ocampo

MÓDULO 3: TRABAJO PRÁCTICO GEOMETRÍA ANALÍTICA

RECTAS EN EL PLANO

- 1) Hallar la ecuación vectorial, paramétricas, simétricas y explícita, si existe de la recta que cumple las condiciones pedidas en cada caso:
- a) contiene al punto A=(3;1) y es paralela al vector \vec{v} = (1;-2)
- b) pasa por A=(3;2) y B=(1;-1)
- 2) Hallar la ecuación vectorial de la recta en cada caso:
- a) Pasa por Q= (1; -2) y es paralela a la recta de ecuaciones paramétricas $\begin{cases} x = 1 3.\alpha \\ y = 4 \alpha \end{cases}$
- b) Pasa por H = (-4; -5) y es paralela al eje y.
- c) Es ortogonal a la recta $\begin{cases} x = 3.\alpha + 1 \\ y = -\alpha + 1 \end{cases}$ y tiene raíz en x = -3.
- 3) Encontrar la ecuación vectorial de la recta r que contiene al punto P = (4;-6) y es perpendicular a la recta r' que pasa por (8;2) y es paralela al vector (3;7)
- 4) Hallar el valor del parámetro "a" para que se cumpla la condición indicada en cada caso:
- a) las rectas 14 x + 12 y 6 = 0 y 7 x + a y + 12 = 0 sean paralelas
- b) las rectas de ecuaciones 3x-4y+9=0 , y, -8x+4y+10=0 sean perpendiculares
- 5) Dados el punto P=(3,-2) y el segmento de recta determinado por los puntos Q(-1,2) y R(2,4), determinar las diversas ecuaciones correspondientes a la recta determinada por los puntos P y M, siendo M el punto medio del segmento \overline{QR} , graficar.
- **6)** Dados los puntos A=(3;-1), B=(-1;5) y P=(-2;0)
- a) Escribir la ecuación vectorial de la recta r₁ que pasa por A y B. ¿Es única la expresión de esa recta? Justificar.
- b) Hallar QER²/el vector \overrightarrow{PQ} sea equivalente al vector \overrightarrow{BA} . Representarlos gráficamente.

- c) ¿Es cierto que la recta r_2 que pasa por P y está orientada por el vector (2; -3) es paralela a r_1 ? Justificar.
- d) Escribir la ecuación de una recta r₃ que sea perpendicular a r₁
- 7) La recta s se encuentra graficada a continuación:

- a) Indicar dos vectores directores para s, uno de norma 1 y otro de tamaño 2; y de sentidos contrarios.
- b) Indicar la ecuación vectorial de una recta que sea perpendicular a s; y corte al eje x en el mismo punto que lo hace la recta s.

RECTAS EN EL ESPACIO

- 8) Construir los distintos tipos de ecuaciones de la recta r que pasa por el punto Q de coordenadas (-2;5;0) y es paralela al vector \overrightarrow{v} = (-2;5;1).
- 9) Para cada una de las siguientes rectas, indicar un vector director y tres puntos que pertenecen a ellas. Graficarlas.

a)
$$r: \frac{x-5}{2} = \frac{y+7}{6} = z+3$$
 b) $r: \begin{cases} x = -1+2\lambda \\ y = 2-\frac{1}{3}\lambda \end{cases} \quad \forall \lambda \in \mathbb{R}$ c) $r: \begin{cases} x = \frac{1}{3}z+2 \\ y = 2z-3 \end{cases}$

- 10) Hallar las ecuaciones vectoriales, paramétricas, simétricas y reducidas de la recta que:
- a) contiene a los puntos H(2;1;3) y L(1,2;-3).
- b) Es paralela al vector v = 2i j + k y pasa por el punto (2;2;1)

c) Es paralela a
$$r: \frac{x-2}{3} = \frac{y+1}{6} = \frac{4z-10}{8}$$
 y pasa por T(4;1;-6)

- d) Es paralela al eje x y pasa por el punto medio del segmento cuyos extremos son (2;5;-3) y (4;-3:2)
- e) pasa por el punto (2,1,-1) y es perpendicular a las rectas :

$$r_1: (x, y, z) = (11, -11, 2) + \gamma.(3, -4, 1);$$
 $r_2: \frac{x-7}{-5} = \frac{y-2}{-1} = \frac{z+3}{2}$

11) Encontrar la ecuación de la recta que pasa por el punto A (3;-1; -4) y por el punto de

intersección de las rectas
$$r_1: \begin{cases} x = 1 + 2.\gamma \\ y = 4 + 2.\gamma \end{cases} \quad \text{y} \quad r_2: x - 3 = \frac{y - 8}{3} = \frac{z}{-4}$$
$$z = \frac{7}{2} + \gamma$$

12) Indicar la posición relativa de los siguientes pares de rectas. Si son secantes, calcular las coordenadas del punto de intersección.

a)
$$r_1: \begin{cases} x=2-\gamma \\ y=1+\gamma \\ z=-2\gamma \end{cases}$$
 $y = 1+\lambda \\ y=-2\lambda \\ z=3+2\lambda \end{cases}$

b) r: recta que pasa por P = (1; 1; 1) y Q = (-1; 2; -1); $y s: (x; y; z) = \beta$. (1; 2; 1) + (0; 3; 2).

c)
$$r_1: \begin{cases} x = \gamma + 1 \\ y = 2\gamma - 3 \\ z = 3\gamma - 3 \end{cases}$$
 $y \qquad r_2: \frac{x - 3}{3} = \frac{y - 1}{6} = \frac{z - 8}{9}$

d)
$$r_a: x + 1 = \frac{y}{2} = \frac{z}{3}$$
 y $r_b: \beta. (-1; 1; 1) + (0; -2; 1).$

13) Sea la recta
$$r$$
: $\frac{x-1}{2} = -y + 4 = z$

- a) Hallar la ecuación de una recta r_a que sea paralela a r tal que $(1;1,1)\epsilon r_a$. ϵr_a son la misma recta?
- b) Indicar la ecuación de una recta r_b perpendicular a r tal que $(0;7;-4)\epsilon\ r_b$.
- 14) Sean las rectas:

$$r: (x, y, z) = \lambda \cdot (k-2, k, 1) + (0, 7, 6)$$
 $y r': (x, y, z) = \beta \cdot (k, 2, -4) + (k, 3, -1)$

- a) Determine *todos* los valores reales de k para que ambas rectas resulten paralelas.
- b) ¿Existe algún valor de k para que el punto (0; 7; 6) pertenezca a ambas rectas?
- 15) Dadas las rectas

$$r_1: \frac{x}{2} = \frac{y}{-3} = \frac{z}{a}$$
 y $r_2: \frac{x+1}{3} = \frac{y+5}{2} = z$

Calcular el valor de a para que las dos rectas sean secantes y encontrar el punto de intersección

16) Determinar para que valores de k reales las rectas r y s son alabeadas, siendo:

$$r:\begin{cases} x-y+z=0\\ 2x-y+z=2 \end{cases}$$
 y s: determinada por los puntos (3;2;4) y (k;0;k)

17) Encontrar las ecuaciones de una recta r que es perpendicular al eje de ordenadas en el punto

$$P_0 = (0,3,0)$$
 e interseca a la recta $r_2 : \begin{cases} x = -\lambda \\ y = 2 + 3.\lambda \\ z = -1 + 2.\lambda \end{cases}$

- **18)** Sean las rectas \mathbf{r} : $(x, y; z) = \beta \cdot (0; 1; -1) + (2; -3; 0)$ y $\mathbf{r_1}$: $\frac{x+5}{-2} = y 2 = z + 1$.
- a) Determinar las ecuaciones vectorial, paramétricas y simétricas de una recta $\mathbf{r_2}$ ortogonal a ambas rectas y que pase por el punto (3; 1; -2).
- b) Verificar que efectivamente la recta dada es perpendicular a \mathbf{r} y \mathbf{r}_1 y encontrar el punto de intersección entre \mathbf{r}_1 y \mathbf{r}_2 .
- **19**)a) Determinar la posición relativa de las rectas r y r', siendo r la recta que pasa por A = (0; 7; 6) y B = (-2; 7; 7); y $r': \frac{y-3}{2} = \frac{z+1}{-4}$, x = 0. En el caso de que exista la intersección, calcularla.
- b) Hallar todos los puntos P de la recta r de manera que \overrightarrow{OP} sea perpendicular a $\vec{v}=(-1;0;4)$.

PLANOS

- **20)** Dado el plano de ecuación x 5y + 7z 3 = 0 escribir las componentes de un vector normal al plano y las coordenadas de tres puntos que pertenecen a él. Indicar las ecuaciones vectoriales paramétricas del plano.
- 21) a) Encontrar la ecuación general del plano π que contiene a los puntos P = (1, 1, -1), Q = (3, 3, 2) and P = (3, 1, 2). In this projection are the projection of the plane of

2) y
$$R = (3, -1, -2)$$
. Indicar , justificando, cuáles de los siguientes puntos pertenecen a π .

- b) Determinar la ecuación del plano que contiene a la recta r:(0;3;2)+t(1;-1;0) y el punto H (2;-4;-2).
- 22) Encuentre la ecuación del plano que contiene a las rectas dadas en cada caso:

a)
$$r_1: \frac{x+1}{2} = \frac{y-2}{3} = z-1$$
 $r_2: x+1 = \frac{y-2}{-1} = \frac{z-1}{2}$

b)
$$r_1: \frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{-5}$$
 $r_2: \frac{x+1}{2} = \frac{y}{3} = \frac{z+2}{-5}$

- 23) Sea Π : $(x, y, z) = \mu$. $(1, 1, -1) + \beta$. (3, 0, 1) + (-2, 0, 0). indicar la ecuación implícita del plano y señalar el punto Q = (k + 1, 2, 2k) que pertenece al mismo.
- **24)** Indicar en cada caso si los siguientes pares de planos son paralelos (coincidentes o no) o tienen una recta en común, en este último caso escribir la ecuación de la recta intersección.
- a) $\pi_1: x y + z = 3$ y $\pi_2: -3.x + 3.y 3.z 5 = 0$
- b) $\pi_1: 3x-2.y+7z=4$ y $\pi_2: -2.x+4.y+2.z=16$
- c) $\pi_1: x-y+z-2=0$ y $\pi_2: 2.x-3.y+4.z=7$
- **25**) Determinar las ecuaciones paramétrica vectorial, paramétrica cartesiana e implícita del plano π que incluye a los puntos A=(-2,0,0) B=(1,1,3) y C=(2,3,-1). ¿Cuál es la intersección de dicho plano con la recta \mathbf{r} : $(x,y,z)=(0,1,2)+\beta$. (1,1,-1)? ¿Es razonable lo obtenido?
- **26)a)** Encontrar la ecuación del plano π que contiene a la recta \mathbf{r} : $(x,y,z) = \alpha(2,1,1) + (1,2,-4)$ y al punto A = (-2,1,-2).
- **b**) Determinar la posición relativa entre la recta $\mathbf{r}: \frac{x-2}{3} = \frac{y+1}{-2} = z+4$ y el plano π . Si se cortan, indicar el punto de intersección.
- **27**) Hallar, si es posible la intersección de las siguientes rectas y determinar la ecuación del plano que las contiene: $L_1: z=1,\ 2-x=y$, $L_2:$ recta perpendicular a los vectores $\vec{w}=-2\vec{i}+2\vec{j}+2\vec{k}$ $\vec{v}=\vec{i}+3\vec{j}+\vec{k}$ que pasa por el punto (0,2,-1)
- **28)** Indicar la posición de la recta $\frac{x-2}{7} = \frac{y-1}{-1} = \frac{z}{-3}$ con respecto al plano que pasa por los puntos P=(3;1;1), Q=(1;0;1) y T=(0;1;2)
- **29**) Dadas la recta \mathbf{r} : (x, y, z) = t.(-1, 2, 0) + (0, 0, 1) y el punto A = (-1, -1, -1),
- a) Determinar el plano Π que los contiene.
- b) ¿Quién es el plano Π ' que incluye a ${\bf r}$ y es perpendicular a Π ?
- **30)** Sean el plano Π : ax 2by + z = 2 + b y la rectaL: x = -y + 1 = 2z 3. Determinar a y $b \in R$ tales que:

 a) $L//\Pi$ b) $L \perp \Pi$ c) $L \subset \Pi$
- **31)** Sea π_1 el plano que contiene al eje x y pasa por (1,3,2). Hallar el plano π_2 que pasa por (1,0,-1) y tal que $\pi_1 \cap \pi_2$ es la recta generada por el vector $\left(\frac{1}{2},1,\frac{2}{3}\right)$ que pasa por el origen.
- 32) Sean el plano $\pi: x-y+2z=5$, el punto A=(3,2,1), la recta L_1 que pasa por los puntos (1,-1,2) y (1,2,-1) y la recta $L_2:(x,y,z)=\lambda(1,2,3)+(0,-1,-2)$. Indicar las coordenadas de

los puntos $B \in L_1$ y $C \in L_2$ tales que el plano que pasa por los puntos A,B,C sea paralelo al plano Π

- 33) Dados el plano π : 2x+3y-z=2 y la recta L: (x,y,z)=t(0,1,2)+(0,0,1) Hallar la recta L' que sea perpendicular a π y que pasa por el punto de intersección de π con L.
- **34)** Dado el plano $\pi: x+3.y-5.z+6=0$ y la recta $r_1:(x,y,z)=(0,0,-1)+\lambda.(k,3,2) \ \forall \lambda \in \mathbb{R}$
- a) Determinar si existe $k \in R/r_1$ sea paralela a π
- b) Determinar si existe $k \in \mathbb{R} / r_1 \subset \pi$.
- c) Determinar si existe $k \in \mathbb{R} / r_1 \cap \pi = \{I\} = \{(2, -1, 1)\}$
- d) Determinar si la recta $r_2: x-2=\frac{y+1}{3}=\frac{z-1}{2}$ está contenida en el plano π .
- **35)** Determinar todos los valores reales de k para que los tres planos sean mutuamente ortogonales: π : x 3y + 2k.z = 1-k, π ': $-x + y + (k-1)z = 3 \land \pi$ ": $(k^2+3).x + 5y + 2z = -2$ Verificar la respuesta.

DISTANCIAS

- **36)** a) Encontrar la distancia entre el punto P= (-2; 1) y la recta de ecuación 3x+5y=1.
- b) Determinar todos los puntos P cuya distancia a la recta r de ecuación x-2y-7=0 sea 4. Interpretar geométricamente
- c) Hallar la distancia entre las rectas L_1 : y=2 x + 4 L_2 : $\vec{x}=(-2;-4)\alpha + (3;5)$
- **37**) Dadas las rectas r: $(x; y) = \alpha \cdot (5; -2) + (5; 6) y <math>r$ ': $(x; y) = \beta \cdot (6; 1) + (2; 14)$
- a) Encontrar los puntos donde r corta a los ejes coordenados.
- b) Obtener todos los puntos P de r que satisfacen que la distancia de P a B = (-12; 10) es 5.
- d) Determinar r''/r que incluya al punto C = (1; -3).
- e) Calcular la distancia de M = (-4; 6) a la recta r'.
- f) ¿Cuánto vale el ángulo entre r y r'.
- g) Graficar las tres rectas en un único sistema de coordenadas.
- **38)** Si r: $(x, y) = \lambda (1, -1) + (3, -4) y$ r': x + y = 5.
- a) Comprobar que r y r' son paralelas no coincidentes.
- b) Hallar la distancia entre ambas.
- **39**) Hallar la distancia existente entre el punto P=(2;2;-2) y el plano de ecuación: -x+2y-3z+4=0
- **40**) El punto K = (2; -3; -1) es el más cercano del plano \prod con respecto al punto Q = (-4; 5; -5).
- a) Determine la ecuación de \prod .
- **b**) Obtenga la distancia de A=(1;-2;-1) al plano.

- c) ¿Quiénes son los puntos $P \in \mathbb{R}^3$ que distan de \prod un valor de $\frac{7}{\sqrt{29}}$? ¿Qué representan geométricamente?
- **41**) Hallar los puntos del eje de ordenadas que equidistan de los planos $\alpha: \frac{x}{2} + y + \frac{z}{2} = 1$ y $\beta: x 2.y + 4.z = 0$
- **42**) Sea Π : x + 4y 2z = 7.
- a) ¿Cuáles son los puntos de R^3 que distan de Π un valor $3.\sqrt{21}$?
- b) ¿Cuáles son los puntos de R³ que equidistan de Π y de Π ': 4x 2y z = -3? ¿Cómo se interpreta geométricamente?
- **43**) Dada la recta L: $\frac{x+1}{2} = 1 y = 3 + z$
- a) Obtener el punto donde L corta al plano coordenado XZ y calcular la distancia entre dicho punto y el plano $\pi: x-3y+z=0$
- b) Indicar, justificando, la posición relativa de la recta L con respecto al plano π
- **44)** Obtenga el punto Q de la recta \mathbf{r} : (x, y, z) = t. (2, -3, -1) + (-1, 1, 0) que se encuentra más cerca de P = (0, -8, 1). ¿Cuánto vale la distancia de $P = \mathbf{r}$?
- **45**) Calcular la distancia del punto P a la recta r (dist(P,r)), siendo:
- a) P = (1, -2, -3) y la recta $r: (x, y, z) = (2, 1, -1) + \gamma \cdot (2, 1, -2)$
- b) P = (1; 0; 0) y la recta $r: \frac{x+1}{2} = y 3 = \frac{2z-4}{4}$
- **46**) Dados las rectas L_1 : $(x, y, z) = \lambda(-1, 2, 0) + (1, 1, 1)$ y L_2 : recta que contiene a (3,-5,0) y (1,-1,0)
- a) Hallar, si existe, un plano que contenga a ambas rectas.
- b) Calcular la distancia entre el punto (1,1,1) y la recta L_2 .
- 47) Calcular la distancia entre las rectas dadas, en cada caso

a)
$$r_1: \frac{x+2}{3} = \frac{y-7}{-4} = \frac{z-2}{4}$$
 y $r_2: \frac{x+1}{3} = \frac{y+2}{4} = z+1$

b)
$$r_1: \begin{cases} x = \gamma \\ y = -1 \end{cases}$$
 $y \qquad r_2: \begin{cases} x = 1 + \gamma \\ y = 2 \end{cases}$ $z = 2\gamma$

c)
$$r_1: \frac{x-2}{2} = \frac{y+1}{-1} = \frac{z}{3}$$
 y $r_2: \frac{x+1}{2} = \frac{y}{-1} = \frac{z+2}{3}$

48) Determinar si existe la intersección entre las rectas L_1 y L_2 . En caso contrario establecer si son paralelas o alabeadas y calcular la distancia que las separa. Siendo:

$$L_1 = \beta(1,0,-1) + (2,0,1)$$
 y $L_2 : \begin{cases} x = \lambda + 2 \\ y = \lambda + 1 \\ z = 2\lambda + 3 \end{cases}$

- **49**) Sea **r** la recta que pasa por A= (3;-4;-1) y B= (1;0;7) y **r**³ la recta: $\frac{-x-1}{3} = y+k = z-4$.
- a) ¿Cuál es el valor de k real para que ambas rectas sean secantes en un punto P? Señalar P.
- b) ¿Qué puntos Q de **r** distan del punto $S = (-6; 10; -3) \sqrt{281}$ unidades?
- **50)** Obtener la distancia de la recta $r : \begin{cases} x + y 2z = 6 \\ 3y z = 3 \end{cases}$ al plano $\Pi : (x, y, z) = \alpha \cdot (1, -1, 0) + \beta \cdot (0, 2, 1) + (0, 1, 1)$
- **51)** a) Encontrar la distancia del punto P(2;-1;-1) al plano π , siendo π el plano que incluye a la recta $r: \frac{x}{2} = \frac{y-1}{-1} = \frac{z+1}{3}$ y es perpendicular al plano x + 3y 3z = 3
- b) Indicar la posición de la recta $\frac{x-2}{-1} = y-5 = \frac{z+4}{-2}$ con respecto al plano π .
- **52**) Sean las rectas $r: \frac{x-2}{2} = 1 y; z = 1 \text{ y } r': \vec{x} = \theta(2; -1; 0) + (0; 1; 0)$
- a) Calcular la distancia entre ambas rectas.
- b) Hallar la distancia entre el punto P = (2; 1; 1) y la recta r
- c) Dar la ecuación de un plano π que contenga a r y r'.
- d) Determinar todos los puntos $P \in \mathbb{R}^3$ que verifiquen que $dist(P,\pi) = 1$. Interpretar geométricamente.
- **53**) Hallar todos los valores reales de k para que el punto A=(3,-1,k) se encuentre a 2 unidades del plano π : x-2y-2z=5. Señalar los puntos A.
- **54)** Se tienen los planos Π_1 : 3x y + 2z = -2 Λ Π_2 : $\vec{X} = \beta \cdot (-2; 1; 0) + \alpha \cdot (1; 1; -1) + (0; 0; -1)$.
- a) Determinar $C = \{P \in \mathbb{R}^3 / \operatorname{dist}(P; \Pi_1) = \operatorname{dist}(P; \Pi_2)\}$. Interpretar geométricamente la situación.
- b) Hallar un plano Π ortogonal a Π_1 y Π_2 que incluya al punto (0; 2; -2).
- **55)** Determinar si existe algún valor de k real tal que los planos Π y Π ' no sean paralelos si: $\Pi = \{(x, y, z) \in \mathbb{R}^3 / x 2y + z = -1\}$ y $\Pi' = \{X = (x, y, z) \in \mathbb{R}^3 / X = a.(k, 2, 0) + b.(0, 1, 2) + (-3, 0, 0);$ a y b reales $\}$ Expresar la ecuación que cumplen los puntos de Π' .
- b) Encontrar todos los valores de α real / la distancia de Q a Π sea $\frac{8}{\sqrt{6}}$ si Q= (3, 2α 3, 2–α).
- 56) Sea el plano **Π**: x 2y + 2z = 3 y la recta **r**: β .(2; 1; 0) + (**k**, 1, −2), con **k**∈**R**.
- a) Encuentre la ecuación del plano Π ' que contiene a P=(2;0;1), es perpendicular a Π y paralelo a \mathbf{r} .

b) ¿Cuáles son todos los valores de **k** para que dist(Π ', **r**)= $\frac{3}{\sqrt{45}}$?

EJERCITACIÓN INTEGRADORA

- **57)** Dadas las rectas $\mathbf{r_1}$: $(x, y, z) = \beta \cdot (1, -1, 2) + (k, 1, k+1)y$ $\mathbf{r_2}$: x=1; $\frac{y}{2} = z \alpha$ se pide:
- a) Determinar k y α para que ambas rectas sean secantes en el punto (1; -4; 7).
- b) Obtener una recta \mathbf{r}_3 perpendicular a las anteriores y que corte al eje z.
- c) Sean $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ y $\overrightarrow{v_3}$ respectivos vectores directores de las rectas $\mathbf{r_1}$, $\mathbf{r_2}$ y $\mathbf{r_3}$. ¿Cuál es el volumen del paralelepípedo que determinan?
- **58**) Sean los planos Π : $\mathbf{x} \mathbf{k}^2 \mathbf{y} + \mathbf{z} = \mathbf{k} \Lambda \Pi$ ': $\mathbf{k} \mathbf{x} + \mathbf{y} \mathbf{k} \mathbf{z} = \mathbf{1} \mathbf{y}$ el punto $\mathbf{P} = (\mathbf{k}, -1, -1)$, con $\mathbf{k} \in \mathbb{R}$.
- a) Obtener los valores de k de manera que $P \in (\Pi \cap \Pi')$.
- **b**) Para el valor de k hallado encuentre la ecuación del plano Π " que contiene a P y es perpendicular a Π y Π ".
- c) ¿A qué distancia se encuentra A=(2;0;4) de $(\Pi \cap \Pi')$?
- **59**) a) Determinar la posición de los planos en el espacio y calcular la distancia entre ellos, siendo: π_1 : 2x y 2z + 5 = 0 y π_2 : 4x 2y 4z + 15 = 0
- b) Siendo $\frac{x-1}{2} = \frac{y-2}{-1} = z$, decir en qué posición se encuentra con respecto al plano π_1 , y en caso de ser secantes calcular el punto de intersección.
- **60**)a) Determinar el plano Π que contiene a los puntos (3, 0, 0), (0, -2, 0) y (1, 0, 1).
- b) Si Π ': (2-k).x + (k-1).y + 2z = 1, ¿cuánto vale k para que ambos planos sean perpendiculares? Señalar Π '.
- c) ¿Cuál es la recta ${\bf r}$ incluida en Π , que es paralela a Π ', y contiene al punto P de la forma $P=(\mu, \mu, \mu)$? Mostrar P.
- d) ¿Cuál es la distancia de **r** a Π'?
- **61)** Dadas las rectas $r_1 : \begin{cases} 3.x 2.z + 2 = 0 \\ y + z 1 = 0 \end{cases} \land r_2 : \begin{cases} x = -2.\lambda \\ y = 3 + \lambda \\ z = z_0 \end{cases}$
- a) Para $z_0 = -1$ determinar si las rectas $r_1 \wedge r_2$ son paralelas, se intersecan en un punto o son alabeadas. Si se intersecan en un punto, hallar las coordenadas del punto y el valor del ángulo que forman, si fueran alabeadas hallar la distancia entre ambas.
- b) Determinar, si existe, el valor de z_0 para que ambas rectas se corten en un punto, hallarlo y también el ángulo que formarían.
- **62**) Dados: $\vec{u} = (3; 4; -2), \vec{v} = (k; 2; 1)$ y $\vec{w} = (5+2k; 5; -1)$ y la recta $\mathbf{r} : \frac{x-2}{2} = y + 1 = \frac{z+1}{-1}$
- a) Hallar todos los valores reales de k para que el volumen del paralelepípedo determinado $\vec{u}, \vec{v} \ y \ \vec{w}$ sea 1.
- b) Utilizando el valor de k entero obtenido en ítem anterior, encontrar $proy\ vect_{\overrightarrow{w}}\overrightarrow{v}$

- c) Si k = 0, halle la ecuación vectorial de una recta \mathbf{r} 'que sea perpendicular simultáneamente a \vec{u} y \vec{v} y que pase por el punto (1;0;-1). Indicar su posición relativa respecto de \mathbf{r} .
- **63)** Determinar los valores de k reales y las ecuaciones de todas las rectas \mathbf{r} que cumplan simultáneamente con lo siguiente:
- $\mathbf{r} \perp \mathbf{r}' \cos \mathbf{r}' : X = \lambda \cdot (-3, 3, 1) + (1, 1, 0);$ el punto A = (k, 2k, 0) pertenece a \mathbf{r} ;
- $\mathbf{r} // \mathbf{\Pi}$ y la distancia de \mathbf{r} a $\mathbf{\Pi}$ es $\frac{11}{5}$ siendo el plano $\mathbf{\Pi}$: 4x 3z = 5
- **64)** Se tienen las rectas $\mathbf{r} : \mathbf{X} = \alpha$. (-3; 1; -2) + (k+1; 1; 2k+4) y \mathbf{r}' : \mathbf{r}' : $\frac{y-2}{-2} = \frac{-z-4}{-4}$, x = -2
- a) Hallar kER para que (-8; 3; -6) Er y luego determinar la posición relativa de r y r'.
- b) Escribir la ecuación vectorial de una recta r" que sea perpendicular a \mathbf{r} y \mathbf{r} , y que contenga al punto (-2,3,6).
- c) ¿Qué volumen tendrá el paralelepípedo engendrado por V_d , V'_d y V''_d , vectores directores de \mathbf{r} , \mathbf{r}' y \mathbf{r}'' respectivamente?
- **65**) Dado el plano π : $(x; y; z) = \alpha(1; 0; -1) + \beta(0; 1; 2) + (0; 0; 2)$ y la recta \mathbb{L} : $(x; y; z) = \alpha(2; 1; 0) + (2; 1; 2)$.
- a) Escribir la ecuación implícita del plano π
- b) Verificar que $\mathbb{L} \subset \pi$.
- c) Hallar, si es posible, dos rectas r_1 , r_2 incluidas en el plano π tales que pase r_1 por el punto Q=(4;2;2) y r_2 pase por el (1;0;-1)
- d) Hallar todos los puntos $P \in \mathbb{R}^3$ que verifiquen que $dist(P,\pi) = \frac{4}{\sqrt{6}}$. Interpretar geométricamente.
- 66) a) Sea el plano Π : -x + y + 5z = 4; determinar los valores de k∈R tales que dist(\mathbf{r} ; Π) sea constante e igual a $\frac{6}{\sqrt{27}}$ siendo \mathbf{r} : $\vec{X} = \beta . (4 + k; 1 k^2; 1) + (k; 1; -1)$.
- b) Si k=0 obtenga un plano Π ' que incluya a r y sea perpendicular a Π .
- 67)
a) Determinar si existe la intersección de los planos $\,\pi_1 y\,\,\,\pi_2$, siendo:

 π_1 el plano que contiene a las rectas $L_1: \frac{x-2}{2} = \frac{y}{-1} = \frac{z-2}{3}$ y $L_2: \lambda (0,1,-1) + (1,1,0)$

- $\pi_2: 5x + 2y 2 = 0$
- b) Calcular la distancia del punto P (1,0,2) al plano π_2
- **68)** Dado el plano Π : $-3x + 5y + k^2 \cdot z = 6$ y la recta L: $(x; y, z) = \alpha \cdot (3; 2; -1) + (0; -k; 1)$ se pide:
- a) Obtener todos los valores reales de k para que se cumpla que $L \subseteq \Pi$.
- **b)** Utilizando el k hallado verificar que **todo** punto P perteneciente a L cumple que su distancia a Π es cero.
- **69**) Se tienen las rectas r: $\begin{cases} x = -2 + 3k \\ y = 1 k \\ z = 2k \end{cases}$ y r': pasa por A= (5; 2; 4) y B= (6; 5; 4).

- a) Verificar que r y r' son perpendiculares y secantes en Q; dar las coordenadas de Q
- b) ¿Cuáles son todos los puntos Per que se encuentran a distancia $\sqrt{14}$ de Q?
- c) Para algún P hallado en b), halle el área del triángulo AQP y explique, sin hacer cuentas, cuánto debe valer $proy_{\overrightarrow{AO}}\overrightarrow{PQ}$.

ALGUNAS RESPUESTAS

Los ejercicios que tienen una R están resueltos en los archivos de Miel.

1)R a)
$$(x;y) = (3;1)+\lambda (1;-2)$$
 b) $(x;y) = (3;2)+\lambda (2;3)$

2)R a)
$$(x;y) = (1;-2)+\lambda(-3;-1)$$
 b) $(x;y) = (-4;-5)+\lambda(0;1)$ c) $(x;y) = (-3;0)+\lambda(1;3)$

3) r:
$$(x;y) = (-7;3) \lambda + (4;-6)$$

4) Ra)
$$a = -6$$
 b) $a = -6$

5)R
$$r:\begin{cases} x = 3 - \frac{5}{2}.\lambda \\ y = -2 + 5.\lambda \end{cases}$$
 $r:\frac{x-3}{-\frac{5}{2}} = \frac{y - (-2)}{5}$

- 6) Ra) $r_{1:}(x;y) = (3;-1) + t.(-2;3)$ no es única b) Q = (2;-6) c) si
- d) Por ejemplo (x; y) = (-2; -5) + 1.(3; 2)

7)Ra)
$$\left(\frac{2}{\sqrt{29}}; \frac{5}{\sqrt{29}}\right) \left(-\frac{4}{\sqrt{29}}; -\frac{10}{\sqrt{29}}\right)$$
 b) $r:(x;y) = \alpha(-5;2) + \left(\frac{9}{5};0\right)$

10) d)
$$r:(x; y; z) = \alpha.(1, 0, 0) + (3; 1; -\frac{1}{2}) e) r:(x; y; z) = \beta.(7, 11, 23) + (2; 1; -1)$$

11)
$$r: (x; y; z) = \alpha. (1, -6, -8) + (3, -1, -4) (r_1 \cap r_2 = \{(2,5,4)\})$$

- 12) R b) alabeadas c) paralelas d) alabeadas
- 13)R r_a : $(x; y; z) = \alpha$. (2; -1; 1) + (1; 1; 1) No es la misma recta. b) r_b : $(x; y; z) = \beta$. (1; 2; 0) + (0; 7; -4) entre otras.
- 14) a) b) $\nexists k$

15) a= 1
$$r_1 \cap r_2 = \{(2, -3, 1)\}$$

16)
$$k \in R - \{\frac{10}{3}\}$$

17)
$$\mathbb{R} r: (x, y, z) = (0, 3, 0) + \alpha.(1, 0, 1)$$

18)
$$r:(x,y,z) = (3,1,-2) + t.(1,1,1)$$

- 19) R a) las rectas son alabeadas. b) P=(8,7,2)
- 21) a) x+2y-2z-5=0 b) 4x+4y-5z=2
- 22) a) π : $(x, y, z) = \alpha(2,3,1) + \beta(1,-1,2) + (-1,2,1)$
- b) -x+19y+11=-21
- 23) Π : -x+4y+3z-2=0 , k= -1, Q = (0;2;-2)
- 24) a) paralelos no coincidentes. b) $r:(x, y, z) = \alpha(-4, -\frac{5}{2}, 1) + (6,7,0)$
- c) $r: (x, y, z) = \beta(1,2,1) + (-1,-3,0)$
- 25) π : -2x+3y+z-4=0 $\mathbf{r} \cap \pi = \{\}$ es razonable porque el director de la recta es perpendicular al normal al plano
- 26) R π : -3x+7y-z-15=0 **r** $\cap \pi = \{(-1;1;-5)\}$
- 27) las rectas son alabeadas, no existe plano que contenga a ambas.

28)
$$\Pi$$
: -x+2y-3z+4=0, $r \parallel \pi$

29)
$$\Pi$$
: $4x+2y-3z+3=0$ Π ': $6x+3y+10z-10=0$

30) R a)
$$a = -2b-1/2$$
 b) $a = 2$ b= 1 c) $a = -1/6$ b= $-1/6$

31)
$$\pi_2$$
: -6x+7y-6z=0

$$32)R - x + y - 2z = -3$$

33)
$$\pi \cap L = \{(0,3,7)\}\ L': (x, y, z) = \alpha(2,3,-1) + (0,3,7)$$

34) R a) k=1 b)
$$\not\equiv k$$
 c) $\not\equiv k$ d) $r \subset \pi$

35)
$$k = 2$$

36) a)
$$\frac{\sqrt{34}}{17}$$
 b) $-x + 2y = -7 + 4\sqrt{5}$ o $-x + 2y = -7 - 4\sqrt{5}$ son 2 rectas paralelas a r c) $\sqrt{5}$

37) a) (0,8), (20,0) b)
$$P_1$$
=(-15,14) P_2 =(-205/29, 314/29) e) $\frac{42}{37}\sqrt{37}$ f) $\hat{\alpha} \cong 32^\circ$

38)R b) dist
$$(r_1, r_2) = \frac{6}{\sqrt{2}}$$

39)
$$dist(P,\pi) = \frac{12}{\sqrt{14}}$$

40)R
$$3x - 4y + 2z = 16$$
 $d(A; \Pi) = \frac{7}{\sqrt{29}}$ $c)$ $\begin{cases} 3x - 4y + 2z = 23 \\ 3x - 4y + 2z = 9 \end{cases}$

$$41) a = \frac{7 \pm \sqrt{21}}{4}$$

42)Ra)
$$x+4y-2z=70$$
, δ , $x+4y-2z=-56$

b)
$$-3x+6y-z=10$$
 $\delta 5x+2y-3z=4$

43) a) P=(1,0,-2)
$$d(P,\pi) = \frac{1}{\sqrt{11}}$$

b) L es secante al plano
$$L \cap \pi = \{(\frac{4}{3}, -\frac{1}{6}, -\frac{11}{6})\}$$

44)RQ =
$$(3; -5, -2)$$
 d= $3\sqrt{3}$

45) a)
$$d(P,r) = \frac{5\sqrt{5}}{3}$$
 b) $d(P,r) = 4$

46) a)
$$2x+y-2z=1$$
 b) d($(1,1,1), L_2) = \frac{3}{\sqrt{5}}$

47) b) son alabeadas d= 3 c) Son paralelas d =
$$\frac{3}{14}\sqrt{42}$$

48) las rectas son alabeadas
$$d(L_1, L_2) = \frac{1}{\sqrt{11}}$$

49) a) k=1 P=(2, -2, 3) b)
$$Q_1$$
=(3,-4,-1) Q_2 = $\left(\frac{5}{21}, -\frac{32}{21}, \frac{211}{21}\right)$

50)
$$r \parallel \pi \Rightarrow d(r,\pi) = d(P\epsilon r,\pi) = \frac{7}{\sqrt{6}}$$

51)Ra)
$$dist_{P,\Pi} = \frac{15}{83}\sqrt{166}$$

52) a)
$$d(r,r') = d(P \epsilon r,r') = \frac{3}{\sqrt{5}}$$
 b) $d(P,r)=0$

c)
$$x+2y-2z=2$$
 d) $P \in C = \{X \in \mathbb{R}^3 / x+2y-2z=5, x+2y-2z=-1\}$

53)
$$k=3$$
 o $k=-3$ A=(3;-1;3) o A=(3;-1;-3)

54) a)
$$C = \{X \in \mathbb{R}^3, 2x - 3y - z = 1 \land 4x + y + 5z = -5\}$$
 b) $x+y-z=4$

55) a)
$$k \in R - \{4\} \pi' : 4x - 2ky + kz = -12$$
 b) $Q_1 = (3, -\frac{7}{5}, \frac{6}{5})$ $Q_2 = (3, 5, -2)$

56)
$$\Pi'$$
: -2x+4y+5z-1=0 b) k= -5 o k= -2

57) R
$$\alpha = 9$$
 y k = -4, Por ejemplo: $(x; y; z) = \mu$. $(-5; -1; 2) + (0; 0; 0)$. $V = 30$

58) R k=1,
$$\Pi$$
": y + z = -2, d(A; r) = 3

59) a) Los dos planos son paralelos.
$$d(\pi_1, \pi_2) = \frac{\left|\frac{15}{2} - 5\right|}{\sqrt{2^2 + (-1)^2 + (-2)^2}} = \frac{5}{6}$$

b) Las rectas son secantes, y se cortan en el punto
$$P = \left(\frac{-7}{3}; \frac{11}{3}; \frac{-5}{3}\right)$$

60)R a)
$$\Pi: 2x-3y+4z-6=0$$
, b) $k=3$, $\Pi': -x+2y+2z-1=0$

c)
$$(x;y;z) = (-14; -8;1) \lambda + (2;2;2) P = (2;2;2) d) d(r;\Pi') = 5/3$$

61)R a) Son alabeadas
$$dist(r_1, r_2) = \frac{10\sqrt{61}}{61}$$
 b) $z_0 = -\frac{7}{2}, \hat{\varphi} = 131^{\circ}52'6''$

62)
$$k = -1.8$$
 o $k = -2$ b) $\left(\frac{7}{27}; \frac{35}{27}; \frac{-7}{27}\right)$ c) $(x; y; z) = \beta.(8; -3; 4) + (1; 0; -1)$

63)
$$k= 4$$
 r: $X = a(9,5,12) + (4,8,0)$
 $K = -3/2$ r: $X = b(9,5,12) + (-3/2, -3, 0)$

64) a) k= -3 son secantes en (-2,1,-2) b)
$$\mathbf{r}^{"}$$
: $\mathbf{X}=\alpha$. (0; 2; 1) + (-2; 3; 6) c) 30

d)
$$P \in C = \{X \in \mathbb{R}^3, x - 2y + z = 6, x - 2y + z = -2\}$$

66) a)
$$k=-2$$
 b) $4x-21y+5z=-26$

67) a)
$$\pi_1$$
: $-x + y + z = 0$ $\pi_1 \cap \pi_1 = \{(x, y, z) = a (2, -5, 7) + (0, 1, -1)\}$
b) $d(P, \pi_2) = \frac{3}{\sqrt{29}}$

68) a)
$$k = 6 k = -1$$

69)R a) Q=(4,-1,4) b) P₁=(7,-2,6) P₂=(1,0,2) c) área AQP=
$$\frac{\sqrt{140}}{2}$$
 proy $_{AQ}$ PQ = (0,0,0)