ELECTRÓNICA DE POTENCIA - PARCIAL 1

FACULTAD DE ING. ELÉCTRICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

Cédula: 9-742-1018 Fecha: 10-9-2015

I- RESPONDA LAS SIGUIENTES PREGUNTAS (6 puntos cada una)

- 1. Para el dispositivo de la figura 1, cuál sería el espesor de la región n- si se quiere obtener el mayor valor de voltaje de colector-emisor apagado (V_{CES}).
- 2. Para el dispositivo de la figura 1, cuál sería el espesor de la base que proporciona la mayor ganancia?
- 3. Cuál es el valor mínimo del voltaje que debe aplicarse a la compuerta del transistor de la figura 2 para asegurar que fluya una corriente de 80A si la temperatura de juntura es 150°C.
- 4. Dibuje el diagrama de un transistor Darlington de tres etapas, considerando que se necesitan imponer corrientes para encendido y apagado.
- 5. A qué se debe que un diodo de 1000V presente mayores pérdidas de operación cuando remplaza a un diodo de 400V, si ambos llevan la misma corriente?

II. RESUELVA LOS SIGUIENTES PROBLEMAS

- 1. Se quiere utilizar un IGBT IRG4PF50W para conmutar una carga inductiva de 20A y 580V. La frecuencia de operación puede ser 2kHz o 8kHz y el ciclo de trabajo puede variar entre 0.2 y 0.85. La temperatura ambiente varía entre 20 y 35°C. Por cuestión de costos el disipador debe ser lo menor posible.
 - Calcule la resistencia térmica máxima del disipador de calor.
 - b. Calcule los snubber de bloqueo y disparo considerando que Cs=Cs1 y que $\Delta Vce=0.35Vd$ y $\Delta Vce_{MAX}=0.1Vd$.
 - c. Vuelva a calcular el valor de la resistencia térmica del disipador de calor.

20 ptos

BUENA SUERTE

FORMULAS:

$$P_{ON} = DI_O^2 R_{DS(ON)} = DI_O V_{CE} \qquad P_S = V_d I_O f_S (t_r + t_f) \qquad P_{TOT} = P_S + P_{ON}$$

$$P_S = V_d I_O f_S (t_r + t_f)$$

$$P_{TOT} = P_S + P_{ON}$$

$$T_{J \max} = T_A + P_{TOT} \left(R_{\phi JC} + R_{\phi CS} + R_{\phi SA} \right)$$

Snubber

Bloqueo
$$C_{S1} =$$

Bloqueo
$$C_{S1} = \frac{I_O t_B}{2V_d}$$
, $\frac{V_d}{R_S} = 0.2I_O$ $P_{RS} = \frac{C_S V_d^2}{2} f_S$

Disaparo $\Delta V_{CE} = \frac{L_S I_O}{t_B}$ $\Delta V_{CE,max} = R_{LS} I_O$ $P_{RLS} = \frac{L_S I_O^2}{2} f_S$

$$P_{RS} = \frac{C_S V_d^2}{2} f_S$$

$$P_{RS} = \frac{L_S I_O^2}{2} f_S$$

Disaparo
$$\Delta V_{CE} = \frac{L_S I_O}{t_n}$$

$$\Delta V_{CE, max} = R_{LS} I_{CE}$$

$$P_{RLS} = \frac{L_S I_O^2}{2} f_S$$

Perdidas de bloqueo con snubber
$$P_Q = \frac{I_O^2 t_f^2 f_S}{24C_S}$$
 $P_Q = \frac{V_{CE} I_O t_r}{2} f_S$

$$P_{Q} = \frac{I_{O}^{2} t_{f}^{2} f_{S}}{24C_{S}}$$

$$P_Q = \frac{V_{CE}I_Ot_r}{2} f$$

DATA DE FABRICANTE IRG4PF50W

Features

- Optimized for use in Welding and Switch-Mode Power Supply applications
- Industry benchmark switching losses improve efficiency of all power supply topologies
- · 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability

Thermal Resistance

	Parameter	Тур.	Max.	Units
Rivic	Junction-to-Case		0.64	
R _{+CS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
RISIA	Junction-to-Ambient, typical socket mount		40	
Wt	Weight	6 (0.21)		g (0z)

Absolute Maximum Ratings

	Parameter	Max.	Units
Vces	Collector-to-Emitter Breakdown Voltage	900	V
c @ Tc = 25 ℃	Continuous Collector Current	51	
C To = 100°C Continuous Collector Current		28	A
	Pulsed Collector Current ®	204	
M	Clamped Inductive Load Current @	204	
M GE	Gate-to-Emitter Voltage	± 20	V
ARV	Reverse Voltage Avalanche Energy	186	mJ
O TG = 25 C	Maximum Power Dissipation	200	W
@ To = 100°C		78	
	Operating Junction and Storage Temperature Range	-55 to + 150	c
31G	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm from case)	

tation	Turn-On Delay Time	 28	-		$T_J = 150$ °C, $I_C = 28A$, $V_{CC} = 720V$ $V_{GE} = 15V$, $R_G = 5.0\Omega$ Energy losses include "tail"
t _t	Rise Time	 26			
ta(ott)	Turn-Off Delay Time	280	_		
tı.	Fall Time	 90	-		
Ets	Total Switching Loss	 3.45	-	mJ	See Fig. 13, 14

Padopuo = To (\$ 15 = (202 (900) (900) (800) (200