Contents

- Open Data File that contains analysis report from CHN instrument
- Assign variable names to data columns
- Indexing
- Instrument signals for each element
- Run calibration curves
- Carbon -- Amount of C in mg for K1 (acetanilide) runs
- Plot Carbon Calibration curve
- C regression statistics
- Nitrogen -- Amount of C in mg for K1 runs
- Linear regression of std_N as a f(x) of NR signal
- N regression statistics
- C and N (in mg) in filter samples and filter blanks
- Blank corrections
- Nitrogen
- Analysis Report with filter blank-corrected results for C & N
- QA/QC

```
%
%Script to read and process runs from the Perkin Elmer CHN 2400
% element analyzer. The code calculates C & N content on sample
% filter replicates
clear
close all
% Data info
cruise = 'I6SP'; %enter here cruise or campaign code
airs=5; % Number of air blanks run at the begining of run prep
```

Open Data File that contains analysis report from CHN instrument

Assign variable names to data columns

```
names = C_text{1};
           = C_data{1};
id
seq
           = C data{2};
weight
           = C data{3};
time
          = C data{4};
         = C data{5};
carbon
hydrogen
         = C_data{6};
nitrogen = C_data{7};
           = C data{8};
           = C data{9};
cr
           = C data{10};
hr
nr
           = C data{11};
```

Indexing

```
%Find index for each type of run (i.e., K factors, blanks,...
       ref material, filter blanks, sample, etc
       = find((strcmp(id,'K1')==1));
K1s
                                      %index of K factors calibration ...
                                         %runs (i.e., acetanilide cal runs)
f_blks = find((strcmp(id, 'TEST')==1)); %index of filter, "method blanks"
    = find((strcmp(id, 'BUFF') == 1)); %index of Buffalo River sediment runs
ace
     = find((strcmp(id,'ACE')==1));
                                    %index of acetanilide check standards
cals = [K1s; blanks];
                                      %index of cal runs
    = [buff; ace];
                                      %index of standard & check runs
stds
   length_run = size(id,1);
            = 1:length run;
             = setdiff(run, [cals; stds; f blks]); %index of sample runs
samples
non cal
             = setdiff(run, cals);
```

Instrument signals for each element

```
%Carbon
% Carbon signal [i.e., C read (cr)-N read (nr)]
%Blanks
CBs=cr(blanks)-nr(blanks); % C blanks

CB=mean(CBs(1:end-airs)); % Mean C blanks, except air blanks
% (run report runs chron. bottom to top)

CS = (cr - nr)-CB; % Carbon signals (i.e. C read - N read)
%Nitrogen
%Blanks
NBs=nr(blanks)-zr(blanks); % N blanks
```

```
NB=mean(NBs(1:end-airs)); % Mean N blanks, except air blanks
NS = (nr - zr)-NB; % Nitrogen signals (i.e. N read - zero read)
```

Run calibration curves

Carbon -- Amount of C in mg for K1 (acetanilide) runs

```
K1_C = (71.09/100).*weight(Kls); %mg C per K1 run

% Linear regression of K1_C as a f(x) of C signal, CS.

x = CS(Kls);
y = K1_C;

xx = union(0,x);

C_model = polyfit(x,y,1); %Ace std C vs C signal linear fit
z = polyval(C_model,xx);
```

Plot Carbon Calibration curve

```
f = figure('Position',[2000 1000 550 550]);
subplot(2,1,1);
plot(x,K1_C,'o')
    grid on
   hold on
   title([cruise ' cruise, CHN Run Calibration Curves'], 'FontSize', 17);
plot(x,y,'o', xx,z ,'-')
    ylabel('mg C sample^{-1}','FontSize',16)
    xlabel('CHN C signal', 'FontSize', 16)
    aa=get(gca,'xlim');
    bb=get(gca,'ylim');
    vline([max(CS(samples)), min(CS(samples))], 'r') %vert red lines
                                                     %enclose sample
                                                     %range
    text(max(CS(samples)),bb(2)*.75,'\leftarrow range of samples',...
        'color', 'r', 'FontSize', 16)
```


C regression statistics

```
X =[ones(size(x,1),1) x];
[b,bint,r,rint,stats] = regress(y,X);
% Display R^2 & regression eq on cal curve plot
text(aa(2)*.5,bb(2)*.3,['R^{2}=' num2str(stats(1),4)],'fontsize',16)
text(aa(2)*.5,bb(2)*.2,['y=' num2str(b(2),2) 'x+' num2str(b(1),2)],'fontsize',16)
hold off
```


Nitrogen -- Amount of C in mg for K1 runs

```
K1_N = (10.36/100).*weight(Kls); %mg N per K1 run
% Linear regression of K1_N as a f(x) of N signal, NS.
x = NS(Kls);
y = K1_N;
```

Linear regression of std_N as a f(x) of NR signal

```
nx = NS(K1s);
ny = K1_N;

nxx = union(0,nx);

N_model = polyfit(nx,ny,1);
nz = polyval(N_model,nxx);
```



```
NX =[ones(size(x,1),1) nx];
[n_b,n_bint,n_r,n_rint,n_stats] = regress(ny,NX);

% Display R^2 & regression eq on cal curve plot
text(aa(2)*.5,bb(2)*.3,['R^{2}=' num2str(n_stats(1),4)],'fontsize',16)
text(aa(2)*.5,bb(2)*.2,['y=' num2str(n_b(2),2) 'x+' num2str(n_b(1),2)],'fontsize',16)
hold off
```


C and N (in mg) in filter samples and filter blanks

Blank corrections

```
% if blank < 0, left uncorrected
corr_C = mgC-mean(mgC_b); disp('C filter blanks > 0, correction applied')
else
corr_C = mgC; disp('C filter blanks < 0, no correction applied')
end</pre>
```

C filter blanks > 0, correction applied

Nitrogen

N filter blanks > 0, correction applied

Analysis Report with filter blank-corrected results for C & N

```
rep = [str2double(id(samples)),corr_C, corr_N];

f = figure('Position',[1370 85 320 450]);
  cnames = {'Sample_ID','C, mg','N, mg'};
  t = uitable;
  set(t,'Data',rep,'ColumnName',cnames,'Position',[10 0 300 450])

dlmwrite([cruise '_CHN_run_report_V2'], rep) % Writes report file with sample ID...
  % mg C and mg N for each
  % sample run
```

	Sample_ID	C, mg	N, mg
1	2	0.0937	0.0092
2	5	0.1293	0.0124
3	32	0.1182	0.0150
4	8	0.1106	0.0099
5	29	0.1563	0.0224
6	24	0.1870	0.0280
7	44	0.1454	0.0210
8	12	0.1212	0.0152
9	33	0.1338	0.0169
10	23	0.1876	0.0264
11	16	0.1590	0.0232
12	25	0.1273	0.0160
13	17	0.1713	0.0249
14	6	0.1273	0.0126
15	42	0.1327	0.0183
16	45	0.1583	0.0212
17	27	0.1570	0.0220
18	26	0.1215	0.0163
19	4	0.1946	0.0186
20	39	0.1509	0.0213
21	7	0.1053	0.0101
22	10	0.1306	0.0129
23	38	0.1956	0.0283
24	40	0.2423	0.0206
25	34	0.1326	0.0163

QA/QC

```
% Carbon percent error based on Buffallo River runs
   %NIST certified C % content in Buff R. sed. is 3.51%
%Buffalo River Sediment Ref stds
mgC buff=polyval(C model,CS(buff)); % measured C in Buff stds
mgC_buff_t=.0351*weight(buff);
                                   % expected C in Buff stds
%ACE check stds
mgC ace t=.7109*weight(ace);
                           % expected C in ACE chk stds
figure('Position',[2000 100 350 650]);
subplot(2,1,1)
plot(mgC_buff_t,mgC_buff,'o')
   grid on
   hold on
  a=max(get(gca,'xlim'));
  set(gca,'xlim',[0 a]);
```

```
set(gca,'ylim',[0 a]);
    line([0 a],[0 a],'color','r')
   xlabel('Buff R. sed. exp. Carbon, mg', 'fontsize', 15)
    ylabel('Buff R. sed. meas. Carbon, mg', 'fontsize',15)
    error=errperf(mgC buff t,mgC buff,'rmspe');
    text(a*.5,a*.2,['RMSE%=' num2str(error,2)],'fontsize',17)
    title(['NIST Buffalo River Sediment Stds., ' cruise ' cruise'],...
        'fontsize',15)
subplot(2,1,2)
plot(mgC_ace_t,mgC_ace,'o')
   grid on
   hold on
   a=max(get(gca,'xlim'));
    set(gca,'xlim',[0 a]);
    set(gca,'ylim',[0 a]);
   line([0 a],[0 a],'color','r')
   xlabel('Acetanilide Chk Stds.,exp. Carbon, mg','fontsize',15)
    ylabel('Acetanilide Chk Stds., meas. Carbon, mg','fontsize',15)
    error=errperf(mgC_ace_t,mgC_ace,'rmspe');
    text(a*.5,a*.2,['RMSE%=' num2str(error,2)],'fontsize',17)
    title(['Acetanilide Chk Stds., ' cruise ' cruise'],...
        'fontsize',15)
    hold off
```


.....