S/N 10/697,970

Amendments to the Specification

Please replace the paragraph beginning at page 1, line 5 with the following rewritten paragraph:

--The present invention relates to tri-block copolymers of molecular weight ranging between 2,000 Daltons to 2,00,000 Daltons having formula (1), having extraordinarily high binding strength,

Formula (1)

whereir.,

R₁ is H. CH₃, C₂H₅, or C₆H₅; R₂ is H, CH₃, C₂H₅, or C₆H₅, here, R₂ at aforementioned two positions can be either identical or different; X is an ester or amide linkage; m is ranging from 3 to 500; n is ranging from 2 to 50; L is OH, NH₂,OCH₃, or NHCH(CH₃)₂; Y is N-Acetyl Glucosamine, mannose, galactose, sialic acid, fructose, ribulose, erythrolose, xylulose, psicose, sorbose, tagatose, glucopyranose, fructofuranose, deoxyribose, galactosamine, sucrose, lactose, isomaltose, maltose, cellobiose, cellulose, or amylose, a simple and effective process for the preparation of the tri-block copolymers of formula (1), and a method of preventing and/or treating microbial infections, wherein the said method comprises steps of exposing the microbe to the tri-block copolymer of formula 1, and thereafter, binding of the polymer to the microbe inhibits the microbial infection.—

Please replace the paragraph beginning at page 8, line 2 with the following rewritten paragraph:

--The present invention relates to tri-block copolymers of molecular weight ranging between 2,000 Daltons to 2,00,000 Daltons having formula (1), having extraordinarily high binding strength,

S/N 10/697,970

Formula (1)

wherein,

R₁ is H, CH₃, C₂H₅, or C₆H₅, R₂ is H, CH₃, C₂H₅, or C₆H₅, here, R₂ at aforementioned two positions can be either identical or different; X is an ester or amide linkage; m is ranging from 3 to 500; 1 is ranging from 2 to 50; L is OH, NH₂,OCH₃, or NHCH(CH₃)₂; Y is N-Acetyl Glucosamine, mannose, galactose, sialic acid, fructose, ribulose, erythrolose, xylulose, psicose, sorbose, tagatose, glucopyranose, fructofuranose, deoxyribose, galactosamine, sucrose, lactose, isomaltose, maltose, cellobiose, cellulose, or amylose, a simple and effective process for the preparation of the tri-block copolymers of formula (1), and a method of preventing and/or treating microbial infections, wherein the said method comprises steps of exposing the microbe to the tri-block copolymer of formula 1, and thereafter, binding of the polymer to the microbe inhibits the microbial infection.--

Please replace the paragraph beginning at page 8, line 20, with the following rewritten paragraph:

--Accordingly, the present invention relates to tri-block copolymers of molecular weight ranging between 2,000 Daltons to 2,00,000 Daltons having formula (1), having extraordinarily high binding strength,

Formula (1)

S/N 10/697,970

wherein.

R₁ is H, CH₃, C₂H₅, or C₆H₅, R₂ is H, CH₃, C₂H₅, or C₆H₅ here, R₂ at aforementioned two positions can be either identical or different, X is an ester or amide linkage; m is ranging from 3 to 500; n is ranging from 2 to 50; L is OH, NH₂,OCH₃, or NHCH(CH₃)₂; Y is N-Acetyl Glucosamine, mannose, galactose, sialic acid, fructose, ribulose, erythrolose, xylulose, psicose, sorbose, tagatose, glucopyranose, fructofuranose, deoxyribose, galactosamine, sucrose, lactose, isomaltose, maltose, cellobiose, cellulose, or amylose, a simple and effective process for the preparation of the tri-block copolymers of formula (1), and a method of preventing and/or treating microbial infections, wherein the said method comprises steps of exposing the microbe to the tri-block copolymer of formula 1, and thereafter, binding of the polymer to the microbe inhibits the microbial infection.--

Please replace the paragraph beginning at page 9, line 13 with the following rewritten paragraph:

-In an embodiment of the present invention, wherein tri-block copolymers of molecular weight "anging between 2,000 Daltons to 2,00,000 Daltons having formula (1), having extraordinarily high binding strength,

$$+CH_{2} \xrightarrow{C} \xrightarrow{\uparrow}_{n} S CH_{2}CH_{2}X + CH_{2} \xrightarrow{C} \xrightarrow{\uparrow}_{m} X CH_{2}CH_{2}S + CH_{2} \xrightarrow{F_{2}} \xrightarrow{\uparrow}_{n} C \xrightarrow{C} \xrightarrow{\downarrow}_{n} C \xrightarrow{C} C \xrightarrow{\downarrow}_{n} C \xrightarrow{C} C \xrightarrow{\downarrow}_{n} C \xrightarrow{\downarrow}$$

Formula (1)

wherein,

R₁ is H, CH₃, C₂H₅, or C₆H₅; R₂ is H, CH₃, C₂H₅, or C₆H₅, here, R₂ at aforementioned two positions can be either identical or different; X is an ester or amide linkage; m is ranging from 3 to 500; n is ranging from 2 to 50; L is OH, NH₂,OCH₃, or NHCH(CH₃)₂; Y is N-Acetyl Glucosamine, mannose, galactose, sialic acid, fructose, ribulose, erythrolose, xylulose, psicose, sorbose, tagatose, glucopyranose, fructofuranose, deoxyribose, galactosamine, sucrose, lactose, isomaltose, maltose, cellobiose, cellulose, or amylose.--

S/N 10/597,970

Please replace the paragraph beginning at page 11, line 20 with the following rewritten paragraph:

-This invention relates to tri-block copolymers containing N-Acetyl Glucosamine (NAG) of molecular weight ranging from 2,000 Daltons to 2,00,000 Daltons having formula (1)

Formula (1)

wherein,

R₁ is H, CH₃, C₂H₅, C₆H₅, R₂ is H, CH₃, C₂H₅, C₆H₅, here, R₂ at aforementioned two positions can be either identical or different, X is an ester or amide linkage, m is from 3 to 500, n is from 2 to 50, L is OH, NH₂ and NHCH(CH₃)₂. Y may be N-Acetyl Glucosamine, mannose, galactose, sialic acid, fructose, ribulose, erythrolose, xylulose, psicose, sorbose, tagatose, glucopyranose, fructofuranose, deoxyribose, galactosamine, sucrose, lactose, isomaltose, maltose, cellobiose, cellulose and amylose.--