

Committee: Prof. Nguyễn Hữu Tri Advisor: Prof. Đỗ Như Tài

Prof. Lư Hồng Phúc

Prof. Lê Thanh Phát

Prof. Đỗ Duy Quý

September 29st, 2025



# Agenda

| 1. | Introduction               |
|----|----------------------------|
| 2. | Related Works              |
| 3. | Data and Method            |
| 4. | EDA                        |
| 5. | Experiments and Discussion |
| 6. | Conclusion                 |
|    | 2.<br>3.<br>4.             |



## 1. INTRODUCTION

- Problem: Diabetes Mellitus
  - Reason: Lack of insulin
  - Consequence:
    - Cardiovascular
    - Kidney failure
    - Blindness
    - Nerve damage
    - •











## 1. INTRODUCTION

#### Early detection and accurate prediction of disease risk

- Input: Pima Indians Diabetes dataset
- Output:
  - Deeply analysis about the dataset
    - Tell a 'data story'

To lay the foundation for building a ML model

|                      | Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin |  |  |  |
|----------------------|-------------|---------|---------------|---------------|---------|--|--|--|
| 0                    | 6           | 148     | 72            | 35            | 0       |  |  |  |
| 1                    | 1           | 85      | 66            | 29            | 0       |  |  |  |
| 2                    | 8           | 183     | 64            | 0             | 0       |  |  |  |
| 3                    | 1           | 89      | 66            | 23            | 94      |  |  |  |
| 4                    | 0           | 137     | 40            | 35            | 168     |  |  |  |
|                      |             |         |               |               |         |  |  |  |
| 763                  | 10          | 101     | 76            | 48            | 180     |  |  |  |
| 764                  | 2           | 122     | 70            | 27            | 0       |  |  |  |
| 765                  | 5           | 121     | 72            | 23            | 112     |  |  |  |
| 766                  | 1           | 126     | 60            | 0             | 0       |  |  |  |
| 767                  | 1           | 93      | 70            | 31            | 0       |  |  |  |
| 768 rows × 9 columns |             |         |               |               |         |  |  |  |





## 2. RELATED WORKS

## 1. Type of diabetes mellitus:

Type 1

Type 2

**Gestational Diabetes** 

#### Diabetes mellitus







## 2. RELATED WORKS

#### 2. Pima Indian Community:

a population with an unusually high incidence of type 2 diabetes



#### 3. Pima Indians Diabetes:

- Sample size: 768 female patients.
- **Subjects:** Women aged 21 years and older of the Pima ethnic group.
- Number of attributes: 8 input features and 1 target variable (Outcome).
- Target variable: Outcome is a binary variable, with 1 being diabetic and 0 being non-diabetic



## 2. RELATED WORKS

#### 4. Meaning of features in dataset:

- 1. **Pregnancies** (Number of pregnancies)
- 2. Glucose (2-hour plasma glucose concentration in the oral glucose tolerance test -OGTT)
- 3. **Blood Pressure** (Diastolic blood pressure mm Hg)
- 4. **Skin Thickness** (Triceps skin fold thickness mm)
- 5. **Insulin** (2-hour serum insulin concentration mu U/ml)
- 6. **BMI** (Body mass index kg/m<sup>2</sup>)
- 7. **DiabetesPedigreeFunction** (Genetic risk index)
- 8. Age (Patient's age years)



#### 3. DATA AND METHODS

#### Data and preprocessing issue:

- Unreasonable Values: Glucose, BloodPressure, SkinThickness, Insulin, và BMI have values 0.
- Class Imbalance: The number of class 1 is almost double the number of class 2
- Outliers: Insulin features have higher values than others







## 3. DATA AND METHODS

#### Method for EDA:

- Descriptive statistics: centrality and dispersion
- Univariate analysis: distribution of each variable using histograms and density plots
- Bivariate analysis: differences of 2 features using boxplots and violin plots.
- Multivariate analysis: correlation between variables using heatmaps.

#### Environment and tools:

Python and some library: Pandas, Matplotlib và Seaborn



Descriptive statistics:

features

| dí    | •              |         |               |               |         | M    |                          |     |         |
|-------|----------------|---------|---------------|---------------|---------|------|--------------------------|-----|---------|
| (     | Pregnancies    | Glucose | BloodPressure | SkinThickness | Insulin | вмі  | DiabetesPedigreeFunction | Age | Outcome |
| 0     | Ó              | 148     | 72            | 35            | Û       | 33.6 | 0.627                    | 5û  | 1       |
| 1     | 1              | 85      | 66            | 29            | 0       | 26.6 | 0.351                    | 31  | 0       |
| 2     | 8              | 183     | 64            | 0             | 0       | 23.3 | 0.672                    | 32  | 1       |
| 3     | 1              | 89      | 66            | 23            | 94      | 28.1 | 0.167                    | 21  | 0       |
| 4     | 0              | 137     | 40            | 35            | 168     | 43.1 | 2.288                    | 33  | 1       |
|       |                |         |               |               |         |      |                          |     |         |
| 763   | 10             | 101     | 76            | 48            | 180     | 32.9 | 0.171                    | 63  | 0       |
| 764   | 2              | 122     | 70            | 27            | 0       | 36.8 | 0.340                    | 27  | 0       |
| 765   | 5              | 121     | 72            | 23            | 112     | 26.2 | 0.245                    | 30  | 0       |
| 766   | 1              | 126     | 60            | 0             | 0       | 30.1 | 0.349                    | 47  | 1       |
| 767   | 1              | 93      | 70            | 31            | 0       | 30.4 | 0.315                    | 23  | 0       |
| 68 гс | ows × 9 columi | ns      |               |               |         |      |                          |     |         |

Shape:(768, 9)



Descriptive statistics:

description of each columns

| des   | cription |          |          |          |          |          |          |          |          |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|       | ргед     | plas     | pres     | skin     | test     | mass     | pedi     | age      | class    |
| count | 768.0000 | 768.0000 | 768.0000 | 768.0000 | 768.0000 | 768.0000 | 768.0000 | 768.0000 | 768.0000 |
| mean  | 3.8451   | 120.8945 | 69.1055  | 20.5365  | 79.7995  | 31.9926  | 0.4719   | 33.2409  | 0.3490   |
| std   | 3.3696   | 31.9726  | 19.3558  | 15.9522  | 115.2440 | 7.8842   | 0.3313   | 11.7602  | 0.4770   |
| min ( | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0000   | 0.0780   | 21.0000  | 0.0000   |
| 25%   | 1.0000   | 99.0000  | 62.0000  | 0.0000   | 0.0000   | 27.3000  | 0.2437   | 24.0000  | 0.0000   |
| 50%   | 3.0000   | 117.0000 | 72.0000  | 23.0000  | 30.5000  | 32.0000  | 0.3725   | 29.0000  | 0.0000   |
| 75%   | 6.0000   | 140.2500 | 80.0000  | 32.0000  | 127.2500 | 36.6000  | 0.6262   | 41.0000  | 1.0000   |
| max   | 17.0000  | 199.0000 | 122.0000 | 99.0000  | 846.0000 | 67.1000  | 2.4200   | 81.0000  | 1.0000   |
|       |          |          |          |          |          |          |          |          |          |

Data quality problem: presence of a minimum (min) value of 0 in some columns



#### Missing values



no missing values

#### **Unreasonable values**



a lot of unreasonable values: 0



Univariate (Non-Grapical):

correlation between 'mass' and plas

```
data corr = data.corr(method='pearson')
  data corr
✓ 0.0s
                               skin
                                                       pedi
                plas
                                       test
                                              mass
                                                                      class
                       pres
        preg
                                                               age
                    0.1413 -0.0817
                                    -0.0735 0.0177
                                                    -0.0335
      1.0000
             0.1295
                                                           0.5443
                                                                    0.2219
preg
plas
      0.1295
             1.0000
                    0.1526
                             0.0573
                                     0.3314
                                            0.2211
                                                     0.1373 0.2635 0.4666
      0.1413
             0.1526 1.0000
                             0.2074
                                     0.0889 0.2818
                                                    0.0413
                                                             0.2395 0.0651
pres
                                     0.4368 0.3926
skin -0.0817 0.0573 0.2074
                             1.0000
                                                     0.1839 -0.1140 0.0748
                                     1.0000 0.1979
     -0.0735
             0.3314 0.0889
                             0.4368
                                                     0.1851 -0.0422 0.1305
             0.2211
                                     0.1979 1.0000
                                                     0.1406 0.0362 0.2927
      0.0177
                    0.2818
                             0.3926
mass
     -0.0335 0.1373 0.0413
                             0.1839
                                     0.1851
                                            0.1406
                                                     1.0000
                                                             0.0336 0.1738
pedi
             0.2635 0.2395 -0.1140
                                    -0.0422
                                            0.0362
                                                     0.0336
                                                           1.0000 0.2384
      0.5443
 age
      0.2219 0.4666 0.0651
                                     0.1305
                                            0.2927
                                                     0.1738
class
                             0.0748
                                                             0.2384 1.0000
```



Univariate(Grapical): Histogram



*preg* has a *long tail to the right*, confirming the presence of very high values.



Univariate(Grapical): Boxplot







'plas' and 'class' (target): strong correlation



Multivariate (Grapical): Scatter plot





## 4. EXPERIMENTS AND ISCUSSION

#### Medical Implications

- Glucose is a key predictor
- Role of **Obesity** and **Age**: BMI and Age are the next two most highly correlated factors.
- Influence of **Genetics** and Pregnancy: diabetesPedigreeFunction and Pregnancies also showed significant associations. This highlights the importance of genetics and metabolic changes during pregnancy (gestational diabetes)

#### Practical Implications

- Foundation for early screening tools
- Guidance for public health strategies
- Support for clinical decision making



#### 5. CONCLUSIONS

The main results identified *glucose levels, BMI, and age* as the three most important predictors of type 2 diabetes. In addition, the study also found serious data quality issues, including a high rate of hidden missing values and a clear class imbalance in the target variable.

#### Data Limitations

- Only 8 features and 768 samples of dataset, it's to small.
- Including the unrepresentativeness of the study population (only Pima women)
- Unreasonable zero values
- The lack of important lifestyle variables

#### Research and Application Directions

- Building binary classification models

#### Final Conclusion

This report has successfully illustrated the power of Exploratory Data Analytics in unraveling complex relationships in medical data. By connecting statistical findings with medical knowledge, we not only gain a deeper understanding of diabetes risk factors. This is an important step in the effort to apply data science to solve public health challenges.



# THANK YOU FOR LISTENING