# Lab 5: Rejection Sampling

Rebecca C. Steorts

August 24, 2020

## Agenda

We can often end up with posterior distributions that we only know up to a normalizing constant. For example, in practice, we may derive

$$p(\theta \mid x) \propto p(x \mid \theta)p(\theta)$$

and find that the normalizing constant p(x) is very difficult to evaluate. Such examples occur when we start building non-conjugate models in Bayesian statistics.

Given such a posterior, how can we appropriate it's density? One way is using rejection sampling. As an example, let's suppose our resulting posterior distribution is

$$f(x) \propto \sin^2(\pi x), x \in [0, 1].$$

In order to understand how to approximate the density (normalized) of f, we will investigate the following tasks:

- 1. Plot the densities of f(x) and the Unif(0,1) on the same plot. According to the rejection sampling approach sample from f(x) using the Unif(0,1) pdf as an enveloping function.
- 2. Plot a histogram of the points that fall in the acceptance region. Do this for a simulation size of  $10^2$  and  $10^5$  and report your acceptance ratio. Compare the ratios and histograms.
- 3. Repeat Tasks 1 3 for Beta(2,2) as an enveloping function.
- 4. Provide the four histograms from Tasks 2 and 3 using the Uniform(0,1) and the Beta(2,2) enveloping proposals. Provide the acceptance ratios. Provide commentary.
- 5. Do you recommend the Uniform or the Beta(2,2) as a better enveloping function (or are they about the same)? If you were to try and find an enveloping function that had a high acceptance ratio, which one would you try and why?

#### Task 1

Plot the densities of f(x) and the Unif(0,1) on the same plot.

Let's first create a sequence of points from 0 to 1, so that we can have a grid of points for plotting both of the proposed functions.



Figure 1: Comparision of the target function and the Unif(0,1) and the Beta(2,2) densities on the same plot.

### Tasks 2-4

According to the rejection sampling approach sample from f(x) using the Unif(0,1) pdf as an enveloping function. In order to do this, we write a general rejection sampling function that also allows us to plot the historians for any simulation size. Finally, our function also allows us to look at task 4 quite easily.



Figure 2: Comparision of the output of the rejection sampling for 100 versus 100,000 simulations with uniform and beta distributions as envelope functions.

## Remaining tasks

Be sure to finish any remaining tasks for homework.