Algorithmic Graph Theory

Module III

Chapter 5 : Networks

June 29, 2023

Networks

Network, N

- 1. Digraph D with two special vertices source and sink, s&t.
- 2. Capacity Function $c: E(D) \to \mathbb{Z}^+$.

Applications

- 1. Logistics Transportation Problem
- 2. Flow Management Oil Pipelines

Networks - Graph Theory

Out-neighbourhood is the set of all out-neighbours.

$$N^+(x) = \{ y \in V(D) : (x, y) \in E(D) \}$$

In-neighbourhood is the set of all in-neighbours.

$$N^{-}(x) = \{ y \in V(D) : (y, x) \in E(D) \}$$

Indegree $id x = |N^-(x)|$.

Outdegree od $x = |N^+(x)|$.

Flow in a Network

Flow is a function $f: E(D) \to \mathbb{Z}$ satisfying

1. Capacity Constraints

$$0 \le f(a) \le c(a), \ \forall a \in E(D)$$

2. Conservation of Flow

$$\sum_{y \in N^{+}(x)} f(x, y) = \sum_{y \in N^{-}(x)} f(y, x), \ \forall x \in V(D) - \{s, t\}$$

Network with a Flow

- c(s,x) = 5 and f(s,x) = 3.
- f(s,u) + f(y,u) = f(u,v).

- Flow in a Network, f(N) is the flow out of source s.
- ightharpoonup f(N) = 0.

- Flow in a Network, f(N) is the flow out of source s.
- ightharpoonup f(N) = 3.

- ▶ Flow in a Network, f(N) is the flow out of source s.
- ightharpoonup f(N) = 7.

- Flow in a Network, f(N) is the flow out of source s.
- ightharpoonup f(N) = 7 is the maximum flow.

Flow and Capacity between two Partitions

▶ Let $X, Y \subset V(D)$ such that $X \cap Y = \phi$ and $X \neq \phi$, $Y \neq \phi$.

$$f(X,Y) = \sum_{(x,y)\in(X,Y)} f(x,y)$$

$$c(X,Y) = \sum_{(x,y)\in(X,Y)} c(x,y)$$

For $X = \{s, y, w\}$, f(X, Y) = 9 and c(X, Y) = 16.

Theorem: Flow is restricted by the minimum cut

Cut (P, \bar{P}) is a partition of V(D) such that $s \in P$ and $t \in \bar{P}$.

Theorem

Let N be a network with flow f(N) and (P, \bar{P}) be a cut in N. Then,

$$f(N) = f(P, \bar{P}) - f(\bar{P}, P)$$

Corollary

Let N be a network with flow f(N). Then,

$$f(N) \leq \min c(P, \bar{P})$$

Corollary

Let N be a network with flow f(N). Then,

$$f(N) = \sum_{x \in N^{-}(t)} f(x, t) - \sum_{x \in N^{+}(t)} f(t, x)$$

Max Flow Min Cut Theorem

- ▶ A semipath is *f*-unsaturated if all forward arcs have more capacity than flow and all reverse arcs have positive flow.
- An s-t semipath is f-augmenting if it is f-unsaturated.

Theorem (f-augmenting semipath)

A flow in a network f(N) is maximum if and only if there is no f-augmenting semipath in D.

Theorem (Max Flow Min Cut)

Let N be a network with maximum flow f(N). Then f(N) is equal to the capacity of the minimum cut (P, \bar{P}) .

Proof : f-augmenting semipath

If there is an f-augmenting semipath Q in N then flow f(N) can be further augmented. Thus, flow f(N) is not maximum.

- ightharpoonup Compute Δ , maximum value that can be augmented along Q.
- f^* with augmentation is a flow in network N.
 - ► Case $0: x \notin Q$.
 - Case 1 & 2 : Both arcs enters/leaves x.
 - Case 3 : One arc enters x and Other leaves x

Suppose f(N) has no f-augmenting path. And f^* is maximum flow.

- ▶ $P = \{x \in V(D) : \text{ there exists an } f\text{-augmenting path } s x \}.$
- $ightharpoonup t \in \bar{P}$.
- \triangleright (P, \bar{P}) is a cut in network N.
- $f(N) = f(P, \bar{P}) f(\bar{P}, P) = f(P, \bar{P}) = c(P, \bar{P})$
- ▶ If f^* is maximum flow and (X, \bar{X}) is minimum cut. Then $f(N) \leq f^*(N) \leq c(X, \bar{X}) \leq C(P, \bar{P})$.

Thank You