

Problem Statement

1

Current weather prediction models often fail to provide high accuracy and generalization for diverse and dynamic weather conditions.

Problem Statement

1

Current weather prediction models often fail to provide high accuracy and generalization for diverse and dynamic weather conditions.

2

Existing methods struggle to adapt to complex, real-time weather data, resulting in suboptimal predictions.

Objective

1

Classification of weather types using KNN, SVC, Logistic Regression, and Decision Trees

2

Regression for wind speed prediction using SVR, Linear Regression, and Ensemble techniques.

0000

Proposed Methodology

Data Collection and Preprocessing

*

Data Sources:

 Collect historical weather data, including:Temperature, Humidity, Atmospheric Pressure, Wind Speed, and Weather Type

preprocessing Steps:

- Feature Normalization: Normalize continuous variables (e.g., temperature, pressure).
- Categorical Encoding: Encode categorical variables such as Wind Type using label encoding.
- Create new features:
 - e.g., Weather_Index, Humidity_Temperature, Log_Humidity to improve model performance.

Feature Engineering

Weather Classification Features:

 Use features such as Temp, UV Index, Precipitation, Visibility ,Cloud Cover

Wind Speed Prediction Features:

 Use features such as Previous Wind Speed, Temperature, Pressure, and Humidity for wind speed prediction.

Model Selection and Implementation

Classification Models:

- K-Nearest Neighbors (KNN)
- Support Vector Classifier (SVC)
- Logistic Regression
- Decision Trees

Regression Models:

- Support Vector Regression (SVR)
- Linear Regression
- Ensemble Methods (e.g.Voting)

Model Evaluation

Classification Evaluation:

- Evaluate models using accuracy, precision, recall.
- Use confusion matrices to visualize performance and understand misclassifications.

Regression Evaluation:

- Evaluate models using Mean Absolute Error (MAE),
 Mean Squared Error (MSE), and R-squared.
- Compare predicted vs. actual wind speeds to assess model performance.

Classification Model Results (Weather Type Prediction)

ſ		Accuracy	Precision	Recall	F1-Score
Č	Logistic Regression	87.2%	0.87	0.90	0.89
	KNN	90.8%	0.91	0.91	0.91
	SVC	91.0%	0.91	0.91	0.91
	Decision Tree	91.1%	0.91	0.91	0.91

Regression Model Results (Wind Speed Prediction)

	MSE	RMSE	MAE
Linear Regression	0.0031	0.0556	0.0446
SVR	0.0045	0.0668	0.0606

Related Work

- Weather Classification:
- Many studies use KNN, SVC, and Decision Trees for weather classification based on factors like temperature, humidity, etc.
 - Example: <u>SVC for weather classification</u>
 - Example: KNN in weather prediction
- Wind Speed Prediction:
- Linear Regression and SVR are commonly used, with SVR showing better performance in non-linear cases.
 - Example: SVR for wind speed prediction
 - Example: <u>Linear Regression for weather prediction</u>

• Summary:

 Machine learning models successfully classify weather types and predict wind speed with high accuracy.

• Impact:

 Improved weather prediction contributes to better planning in agriculture, renewable energy, and disaster management.

Future Work:

- Incorporate deep learning models for further accuracy.
- Explore real-time weather data integration for dynamic predictions.

MEMBER OF GROUP

