

1.0 - Introduction to VLSI Design

ENGR-E 399/599: VLSI Design

Prof. Daniel Loveless, <u>dlovele@iu.edu</u>, 812-856-0703

INDIANA UNIVERSITY – Reliable Electronics and Systems Center for Reliable and Trusted Electronics (CREATE)

Course Learning Objectives

At the end of this course, you should be able to:

- Design a custom digital integrated circuit using commercial CAD tools
- Interpret, analyze, and design cells and components at the schematic and layout levels
- Analyze delay and power consumption analytically and through simulation
- Select appropriate structures for combinational and sequential circuits, and datapath and memory components
- Describe considerations for reliability and testability

Tentative Course Schedule

Week	Lecture 1	Lecture 2	Lab/HW	
1	1: Intro & Course Overview Getting started with Cadence	2: VLSI Flow Circuits & Layout	Pre-lab reflection Lab 0	
2	3: CMOS Transistor Theory SPICE Simulation	4: Non-Ideal Transistor Theory, Scaling	HW 1	
3	5: DC & Transient Response	6: Logical Effort & Power	Lab 1: Leaf Cell Design	
4	7: Combinational Circuits	8: Sequential Circuits	HW 2	
5	9: Adders, Datapaths, Simple Processor	10: Memory	Midterm reflection Lab 2: Datapath Design	
6	11: Intro to projects	12: Projects part 2	HW 3, Midterm	
7	13: Clocking	14: Challenges & Pitfalls	Lab 3: Synthesis, P&R	
8	15: Design for Test	16: Packaging, I/O, & Power Distribution	HW 4	
9	17: Full custom design part 1	18: Full custom design part 2	Lab 4: Chip assembly	
10-14	Project discussions	Project discussions	Final reflection PDR, CDR, TRR	

This Lecture's Learning Objectives

At the end of this lecture, you should be able to:

- Describe the properties of nMOS and pMOS transistors which enables them to be used as digital switches.
- Draw schematic of simple logic gates using a combination of nMOS and pMOS transistors.
- Sketch the cross-sections of a CMOS inverter.
- List the fabrication steps of a CMOS inverter.

Reading material:

- Chapter 1.1-1.2 (Intro to CMOS)
- Chapter 2.1-2.3 (The Well)
- Chapter 3 (Metal Layers)
- Chapter 4 (Active and Poly Layers)
- Chapter 7 (CMOS Fabrication)

- Integrated circuits: many transistors on one chip.
- Very Large-Scale Integration (VLSI): bucketloads!
- Complementary Metal Oxide Semiconductor
- Fast, cheap, low power transistors
- Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- Rest of the course: How to build a good CMOS chip

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

I Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

p-type n-type

anode cathode

- Four terminals: gate, source, drain, body
- Symbol shows gate, source, drain
 - Usually omits body
 - Source and drain are logically indistinguishable

nMOS Transistor

- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - Body is lightly doped p-type
 - Gate is a metal or polycrystalline silicon (polysilicon)
 - SiO₂ (oxide) is an excellent insulator
 - Called metal oxide semiconductor (MOS) capacitor
- Source and drain are heavily doped (n+) silicon

- Body is usually tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - · No current flows, transistor is OFF

nMOS Operation Cont.

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- GND = 0 V
- In 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, 0.8, 0.7, ...$
 - Gradually scaling down as transistors shrink

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

Α	В	Υ				
0	0					
0	1					
1	0					
1	1					

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors
 - So pMOS p-type source/drain doesn't short to p-type substrate

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly doped semiconductor forms poor connection called Schottky Diode
- Use heavily doped well and substrate contacts/taps

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

- Chips are built in huge factories called fabs
- Contain clean rooms as large as football fields, costing billions of dollars

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

p substrate

- Grow SiO₂ on top of Si wafer
 - 900 1200 °C with H₂O or O₂ in oxidation furnace

				SiO
				0.0
	p substrate			

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

	Di1
	Photoresist
	SiO
p substrate	

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone, nasty stuff!!!
- Only attacks oxide where resist has been exposed

	Photoresist SiO ₂
	2
p substrate	

- Strip off remaining photoresist
 - Use a mixture of acids called piranha etch
- Resist doesn't melt in the next step

						SiO ₂
	p sub	ostrate				

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implantation
 - Blast wafer with a beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

n well

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

Use the same lithography process to pattern polysilicon

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion cont.

Strip off oxide to complete patterning step

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metallization

- Sputter on aluminum over whole wafer
- Pattern to remove excess metal, leaving wires

U Layout

- Chips are specified with a set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size *f* = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g., λ = 0.3 μ m in 0.6 μ m process

Simplified Design Rules

Conservative rules to get you started

- Transistor dimensions specified as Width/Length
 - Minimum size is 4 $\lambda/2$ λ , sometimes called 1 unit
 - In f = 0.6 μ m process, this is 1.2 μ m wide, 0.6 μ m long

- MOS transistors are stacks of gate, oxide, silicon
- Act as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!

