The relative number of gas molecules(氣體分子) in a container(容器) that travel at a velocity of v cm/\sec is $f(v) = cv^2 \exp(-\frac{mv^2}{2kT})$, where T is the temperature in 0K , m is the mass of a molecule and c, k are positive constants. Find the maximum value of f. (10 pts) \sqrt{z}

2 Find the derivatives of the following functions (a) $f(x) = (\sqrt{x})^{\sqrt{x}}$ (8 pts) $\sqrt{x} - \sqrt{x}$ (8 pts) $\sqrt{x} + \ln(\sqrt{x}) \cdot \frac{1}{2} \cdot (\sqrt{x})$ (b) $g(x) = \int_{\ln x}^{2^x} \sqrt{3 + \cos^2 t} dt$ (8 pts) (c) $h(x) = \ln |\log_2(\sec x + \tan x)|$ (8 pts)

3 Find the integrals of the following functions $\frac{1}{2} \left(\frac{\ln 1 - \ln 2}{\ln 2} \right) = \frac{1}{2} \ln 2$ (a) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x \sin x}{\cos^{2} x + 1} dx$ (8 pts) (b) $\int_{0}^{\pi} \tan 2x dx$ (8 pts) (c) $\int_{1}^{2} \frac{dx}{x - x \ln x}$ (8 pts)

4 $f(x) = e^x + \ln(x+1), x > -1$ (a) Show that f has inverse (5 pts) (b) Find $(f^{-1})'(1)$ (5 pts)

- 5 Find the area of the region between $y^2 = 4x$ and 4x 3y = 4 by integration with respect to y. (8 pts)
- 6 Find the volume of the solid generated by revolving the region bounded by the curve $y = x^3$, the y-axis and the line y = 1 about the y-axis (a) by disc method (8 pts) (b) by cylindrical shell method. (8 pts)
- 7 Let the base(底部) of a solid be the first quadrant(第一象限) plane region bounded by $y = \sqrt{x}$ and $y = x^2$ Suppose that the cross sections(截面) perpendicular(垂直) to the x-axis are squares(正方形). Find the volume of the solid. (10 pts)
- 8 Find the length of the curve $y = (4 \sqrt[3]{x^2})^{\frac{3}{2}}$ between x = 1 and x = 27. (10 pts)

Parind the area of the surface generated by revolving the curve $y = \frac{x^3}{3}, 1 \le x \le \sqrt{7}$ about the x-axis. (8 pts)