

Anticipate & Act: Integrating LLMs and Classical Planning for Efficient Task Execution in Household Environments

Raghav Arora^{1*}, Shivam Singh^{1*}, Karthik Swaminathan¹, Ahana Datta¹, Snehasis Banerjee^{1,2}, Brojeshwar Bhowmick², Krishna Murthy Jatavallabhula³, Mohan Sridharan⁴, Madhava Krishna¹

¹Robotics Research Center, IIIT Hyderabad, India ²TCS Research, Tata Consultancy Services, India ³CSAIL, Massachusetts Institute of Technology, USA ⁴IPAB, University of Edinburgh, UK

Introduction

- Assistive agents performing household tasks often compute and execute actions that accomplish one task at a time.
- Efficiency can be improved by <u>anticipating upcoming tasks</u> and computing an action sequence that jointly achieves these tasks.
- > We use:
 - world knowledge of LLMs for <u>high-level task</u> anticipation
 - classical planning system to compute a sequence of finer granularity actions
 - realistic scenarios in the *VirtualHome* environment for task execution and grounding.

Framework

Routine: $\mathcal{R} = \{\tau_1, \tau_2, ..., \tau_n\}$ $\forall \tau_j \in \mathcal{T} \text{ (known tasks)}$

LLM objective: predicting tasks au_i for a routine $\mathcal R$

Each task τ_j requires a sequence $\{a_1^j, a_2^j, \dots, a_k^j\}$ to be executed Every action a_k^j has a cost c_k^j

Plan : $\pi=(a_1,\ldots,a_K)$ Planner objective : $\pi^*=(argmin)_{\pi^j}\mathcal{C}(\pi^j)$, where $\mathcal{C}(\pi^j)=\sum_{k=0}^K c_k^j$

Cost c_k^j represents the time taken by the agent for execution.

Results

LLMs	Without context			With Context		
LLIVIS	Miss Ratio (Miss.) ↓	Partial Ordering Count	KRCC	Miss Ratio (Miss.) ↓	Partial Ordering Count	KRCC
		(POC) ↑	1		(POC) ↑	1
PaLM	0.361	0.974	0.993	0.034	0.994	0.996
GPT-3.5-turbo	0.282	0.676	0.906	0.0698	0.806	0.976
GPT-4	0.037	0.960	0.995	0.0006	1.0	1.0

1.00 - Plan Length Execution time 0.95 - 0.90 - 0.85 - 0.75 - 0.70 - 0.

Mean execution cost ratio and plan length ratio WRT Myopic Agent

Number of tasks Anticipated

Discussion

We describe a framework: **Anticipate&Act**, for task anticipation and action execution by an agent in complex household environments. We use Planning Domain Definition Language (PDDL) as the action language to create a household domain and use the <u>Fast Downward</u> solver to compute plans for any goal state.

We present a 31% reduction in execution time and a 12% reduction in plan length compared to a system that does not anticipate upcoming tasks

References

- 1. Dhakal, R., Hossain Talukder, M. R., & Stein, G. J. (2023). Anticipatory Planning: Improving Long-Lived Planning by Estimating Expected Cost of Future Tasks. In 2023 IEEE International Conference on Robotics and Automation (ICRA), 11538–11545.
- 2. Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S., & Kambhampati, S. (2023). PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change. In Advances in Neural Information Processing Systems (Vol. 36, pp. 38975–38987).
- 3. McDermott, Drew, et al. "PDDL-the planning domain definition language." (1998).

Qualitative evaluation in VirtualHome simulation (Pickup of multiple items for anticipated tasks)