### PROVA SCRITTA DI ELETTRONICA 1 14 GENNAIO 2016

1) Nel circuito in figura, i transistori possono essere descritti da un modello "a soglia", con  $V_{\gamma}$ =0.75 V e  $V_{CE,sat}$ =0.2 V. Si determini la caratteristica statica di trasferimento  $V_u(V_i)$ , per 0< $V_i$ < $V_{cc}$ .



 $V_{cc} = 5 \text{ V}, \ \beta_F = 100, \ R_1 = 25 \text{ k}\Omega, \ R_2 = 100 \ \Omega, \ R_3 = 1 \text{ k}\Omega.$ 

- 2) Nel circuito in figura, i transistori MOS sono caratterizzati dalle tensioni di soglia  $V_{Tn}=|V_{Tp}|=V_{T}$  e dai coefficienti  $\beta_1$  e  $\beta_2$ . Si determinino i valori di  $\beta_1$ ,  $\beta_2$  e R in maniera che:
  - l'escursione  $\Delta V_u$  del segnale di uscita sia pari a 3.15V;
  - la potenza statica media dissipata  $\widetilde{P}_s$  (in condizioni di ingresso periodico, con *duty cycle* pari a 0.5) sia pari a 3 mW;
  - la tensione di soglia logica V<sub>T</sub> sia pari a 1.6 V.

 $V_{dd} = 3.3 \text{ V}, V_T = 0.25 \text{ V}.$ 



- Indicare su ciascun foglio nome, cognome, data e numero di matricola
- Non usare penne o matite rosse

## Compito del 14-01-2016 - Esercizio #1

# Osservazioni preliminari:

1) T1 quando ON è in AD (collettore connesso a Vcc).

## **Regione 1**: vi< v $_{\gamma}$ : T1 OFF, T2 OFF, vu=vcc.

# **Regione 2**: $vi > v_{\gamma}$ : T1 OFF, T2 in AD.

| <b>Regione 2</b> . VI = VY. 11 O11, 12 in 71D. |                                             |  |
|------------------------------------------------|---------------------------------------------|--|
| ir3=(vcc-vu)/r3                                | Risolvendo si trova che:                    |  |
| $ie2=(vi-v_{\gamma})/r2$                       | Vu=12.426 -9.901 vi                         |  |
| Ma                                             |                                             |  |
| $ir3=\beta f/(\beta f+1)*ie2$                  | Si rimane in questa regione fintantoché oT1 |  |
|                                                | va on, o T2 va sat                          |  |
| T1 va ON per                                   | T2 va SAT per                               |  |
| vcc-vu=v <sub>γ</sub>                          | $vu-(vi-v_{\gamma})=vcesat$ , ma            |  |
| ma vu=12.426 -9.901 vi                         | vu=12.426 -9.901 vi                         |  |
| quindi per vi>0.826 V                          | quindi per vi> 1.1903V                      |  |
| Regione 2: per 0 < vi <0.826 V                 |                                             |  |

### Regione 3: T1 in AD, T2 AD.

| Regione 3. 11 m 71D, 12 71D.          |                                              |
|---------------------------------------|----------------------------------------------|
| ir3=(vcc-vu)/r3                       | vu sta calando quindi T2 potrebbe entrare in |
| $ie2=(vi-v_{\gamma})/r2$              | regione di saturazione.                      |
| $ie1=(vcc-(vu+v_{\gamma}))/r1*(bf+1)$ |                                              |
|                                       | T2 va sat sse:                               |
| Ma ie1+ir3= $\beta f/(\beta f+1)*ie2$ | $vu-(vi-v_{\gamma})=vcesat$                  |
| Risolvendo si trova che:              | ma vu=5.872 -1.964 vi                        |
| vu=5.872 -1.964 vi                    | sse vi>2.167 V                               |
|                                       |                                              |
| Regione 3: per 0.826 V < vi < 2.167 V |                                              |

### **Regione 4**: T1 in AD, T2 SAT.

|                             | 17 1                              |
|-----------------------------|-----------------------------------|
| $vu-(vi-v_{\gamma})=vcesat$ |                                   |
| sse vu=vi-0.55              |                                   |
|                             | Regione 4: per 2.167 V < vi < vcc |

Di seguito si riporta la caratteristica statica di trasferimento.



#### 14/1/2016 - Esercizio 2

Il circuito è un invertitore costituito dal transistore di pull-down  $M_1$ e dal transistore di pull-up  $M_2$  in parallelo al resistore R. Ipotizziamo (\*) che il valore di ingresso basso  $V_L$  (ancora incognito) sia minore di  $V_T$ . Per  $V_i = V_L < V_T$  si ha quindi:

$$M_1 \text{ off} \to I_{D1} = 0 \xrightarrow{I_{D1} = I_{D2} + I_R} I_{D2} + I_R = 0 \xrightarrow{\bullet} I_{D2} = I_R = 0$$

La condizione ( $\blacksquare$ ) discende dalla impossibilità che  $I_{D2}$  e  $I_R$  possano essere non nulle e quindi uguali ed opposte; si avrebbe, infatti:

$$I_{D2} > 0 \rightarrow \begin{cases} \frac{I_{D2} + I_R = 0}{P} I_R < 0 \xrightarrow{I_R = \frac{V_{SD2}}{R}} V_{SD2} < 0 \\ \xrightarrow{HP: M_2 \text{ on,LIN (**)}} V_{SD2} > 0 \end{cases}$$

che conduce a una condizione assurda.

Si ha quindi:

$$V_i = V_L \to I_R = 0 \to \frac{V_{DD} - V_u}{R} = 0 \to V_u = V_{DD} = V_H$$

che soddisfa le ipotesi formulate. Si ha infatti:

$$\Delta V_u = V_H - V_L \rightarrow V_L = V_H - \Delta V_u = V_{DD} - 3.15V = 0.15 V$$

e quindi

$$V_L < V_T (*)$$
 
$$V_{SG2} = V_{DD} - V_L = 3.15V > V_{SD2} + V_T = V_{DD} - V_{DD} + V_T = 0.25V \rightarrow M_2 \text{ on, LIN (**)}$$

In questa condizione, la potenza statica dissipata è nulla.

Se invece l'ingresso è al valore alto:

$$V_{i} = V_{H} = V_{DD} \rightarrow \begin{cases} V_{GS1} = V_{DD} > V_{T} \\ V_{u} = V_{DS1} = V_{L} \end{cases} \rightarrow M_{1} \text{ on, LIN} \\ V_{SG2} = V_{DD} - V_{DD} = 0 < V_{T} \rightarrow M_{2} \text{ off} \end{cases} \xrightarrow{I_{D1} = I_{D2} + I_{R}} I_{D1} = I_{R} > 0$$

che implica la dissipazione di potenza statica. Si ha guindi:

$$\widetilde{P}_{s} = \frac{1}{T} \int_{0}^{T} P_{s} dt = \frac{1}{T} \left( \int_{0}^{T/2} P_{s}(V_{i} = V_{H}) dt + \int_{T/2}^{T} P_{s}(V_{i} = V_{L}) dt \right) = \frac{P_{s}(V_{i} = V_{H})}{2} = \frac{V_{DD} I_{R}}{2}$$

da cui:

$$I_R = \frac{2\widetilde{P_S}}{V_{DD}} = 1.81 \ mA \xrightarrow{I_R = \frac{V_{DD} - V_L}{R}} R = 1732.5 \ \Omega$$

e

$$I_{D1} = \beta_1 \left( (V_{DD} - V_T) V_L - \frac{{V_L}^2}{2} \right) = 1.81 \, mA \rightarrow \beta_1 = 4.074 \, \frac{mA}{V^2}$$

Infine, la condizione di soglia logica ( $V_i = V_u = V_{TL}$ ) implica necessariamente il funzionamento di entrambi i transistori in regime di saturazione. Infatti:

$$V_{GS1} = V_i = V_u = V_{DS1} \rightarrow V_{GS1} < V_{DS1} + V_T$$
  
$$V_{SG2} = V_{DD} - V_i = V_{DD} - V_u = V_{SD2} \rightarrow V_{SG2} < V_{SD2} + V_T$$

Uguagliando le correnti si trova quindi :

$$I_{D1,SAT} = \beta_1 \frac{(V_{TL} - V_T)^2}{2}$$

$$I_{D2,SAT} = \beta_2 \frac{(V_{dd} - V_{TL} - V_T)^2}{2}$$

$$I_R = \frac{V_{DD} - V_{TL}}{R}$$