UTS I: TAKE HOME

Penambangan Data dalam Sains

Mohammad Rizka Fadhli - 20921004

02 April 2022

SOAL

Anda diberikan klasifikasi Iris-Setosa dalam file csv. Gunakan materi yang telah diberikan dalam kuliah dan praktikum untuk membuat model pembelajaran dengan metode pilih salah satu: Naive Bayes, KNN, decision tree dan neural network!

JAWAB

Catatan

Pada UTS *take home* ini, saya akan menggunakan metode *decision tree*. Untuk melakukannya, saya menggunakan **R** dengan library(caret).

Decision Tree

Pengertian

Proses pada decision tree adalah mengubah bentuk data berupa tabel menjadi bentuk tree yang berisi rules yang lebih sederhana. Ada berbagai macam algoritma yang bisa digunakan untuk membuatnya, seperti: CART, ID3, C4.5, CHAID, dan sebagainya.

Algoritma C4.5

Berikut adalah algoritma C4.5 yang bisa digunakan untuk membuat decision tree:

- 1. Memilih atribut sebagai akar.
- 2. Membuat cabang dari setiap nilai yang muncul.

- 3. Membagi kasus per cabang.
- 4. Proses di atas diulang hingga semua cabang selesai.

Perhitungan entropy adalah sebagai berikut:

$$entropy = \sum_{i=1}^{n} -P_i log_2 P_i$$

di mana:

S: himpunan kasus n: jumlah partisi S P_i : proporsi dari S_i terhadapS

Perhitungan gain untuk masing-masing atribut:

$$gain(S, A) = entropy(S) - \sum_{i=1}^{n} \frac{|S_i|}{S} entropy(S_i)$$

di mana:

S: himpunan kasus A: atribut n: jumlah partisi S $|S_i|$: jumlah kasus pada partisi ke i S_i : jumlah kasus dalamS

Jawaban

Berikut adalah proses yang dilakukan untuk membuat decision tree.

Import Data

Langkah pertama yang harus dilakukan adalah *import* data iris.csv. Berikut adalah *sample* 10 data dari iris.csv:

```
data = read.csv("iris.csv")
data %>% head(10) %>% knitr::kable(caption = "Sample 10 Data Teratas")
```

Table 1: Sample 10 Data Teratas

sepallength	sepalwidth	petallength	petalwidth	class
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3.0	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5.0	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5.0	3.4	1.5	0.2	Iris-setosa
4.4	2.9	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa

Berikut adalah struktur data yang ada:

```
data %>% str()
```

```
## 'data.frame': 150 obs. of 5 variables:
## $ sepallength: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ sepalwidth : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ petallength: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ petalwidth : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ class : chr "Iris-setosa" "Iris-setosa" "Iris-setosa" "Iris-setosa" ...
```

Dari informasi di atas, kita temukan ada 4 atribut numerik yakni:

- 1. sepallength
- 2. sepalwidth
- 3. petallength
- 4. petalwidth

yang akan digunakan untuk memprediksi (klasifikasi) atribut class.

Analisa Deskriptif Data Iris

Sebelum kita membuat model decision tree, mari kita lihat terlebih dahulu analisa deskriptif dari data yang ada:

```
data %>% summary()
```

```
petallength
     sepallength
##
                       sepalwidth
                                                         petalwidth
##
    Min.
           :4.300
                     Min.
                            :2.000
                                      Min.
                                              :1.000
                                                       Min.
                                                               :0.100
##
    1st Qu.:5.100
                     1st Qu.:2.800
                                      1st Qu.:1.600
                                                       1st Qu.:0.300
    Median :5.800
                     Median :3.000
                                      Median :4.350
##
                                                       Median :1.300
##
    Mean
           :5.843
                     Mean
                            :3.054
                                      Mean
                                             :3.759
                                                       Mean
                                                              :1.199
    3rd Qu.:6.400
                     3rd Qu.:3.300
                                      3rd Qu.:5.100
                                                       3rd Qu.:1.800
##
           :7.900
                            :4.400
                                             :6.900
                                                              :2.500
##
    Max.
                     Max.
                                      Max.
                                                       Max.
##
       class
    Length: 150
##
##
    Class : character
##
    Mode
          :character
##
##
##
```

Ada 150 baris data.

Berikut adalah proporsi dari class

Table 2: Proporsi dari class

class	n
Iris-setosa	50
Iris-versicolor	50
Iris-virginica	50

Dapat dilihat bahwa semua class tersebar proporsional.

Sebaran Data

Berikut adalah sebaran data dari masing-masing atribut numerik terhadap class:

Figure 1: Sebaran Data sepallength Pada Setiap class

Figure 2: Sebaran Data sepalwidth Pada Setiap class

Figure 3: Sebaran Data petallength Pada Setiap class

Figure 4: Sebaran Data petalwidth Pada Setiap class

1.5

petalwidth

2.0

2.50.0

0.5

Pre-Processing

0.5

1.0

1.5

2.0

2.50.0

0.5

1.0

0.0

Pre-processing yang akan dilakukan adalah memecah data menjadi dua datasets, yakni:

- 1. Train dataset
- 2. Test dataset

dengan proporsi 80-20. Pembagian ini akan dilakukan secara acak:

```
set.seed(20921)
# random id train
id_train = sample(150,120,replace = F)
# membuat train dataset
train_df = data[id_train,]
# membuat test dataset
test_df = data[-id_train,]
```

Berikut adalah proporsi class pada train dan test dataset.

Table 3: Proporsi dari class pada Train Dataset

class	n
Iris-setosa	39

class	n
Iris-versicolor Iris-virginica	41 40

Table 4: Proporsi dari class pada Test Dataset

class	n
Iris-setosa	11
Iris-versicolor	9
Iris-virginica	10

Klasifikasi Decision Tree

Berikut adalah proses pembuatan decision tree:

```
model_dt = caret::train(factor(class) ~ ., data = train_df, method="J48")
model_dt$finalModel
```

```
## J48 pruned tree
## -----
##
## petalwidth <= 0.6: Iris-setosa (39.0)
## petalwidth > 0.6
## | petallength <= 4.7: Iris-versicolor (38.0/1.0)
## | petallength > 4.7: Iris-virginica (43.0/4.0)
##
## Number of Leaves : 3
##
## Size of the tree : 5
```

Berikut adalah *plot* dari modelnya:

Confusion Matrix

Selanjutnya kita akan cek confusion matrix menggunakan test dataset:

```
# melakukan prediksi dari test dataset
pred = predict(model_dt,newdata = test_df) %>% as.character()
# membuat confusion matrix
table(test_df$class,pred)
```

##]	pred		
##		Iris-setosa	${\tt Iris-versicolor}$	Iris-virginica
##	Iris-setosa	11	0	0
##	Iris-versicolor	0	7	2
##	Iris-virginica	0	0	10

Kesimpulan

Terlihat bahwa hanya ada kesalahan misklasifikasi sebanyak 2 kasus saja dari total 30 baris data pada *test dataset*. Sehingga bisa dihitung akurasi dari model *decision tree* ini adalah sebesar:

mean(test_df\$class == pred)

[1] 0.9333333