Semana 6 (15/10/2020)

Problemas (Tema 3) – Examen Final 2017/18

1. Un motor cohete de propulsante sólido de combustión lateral interior-exterior como se indica en la figura es ensayado en un banco de pruebas con presión ambiente de 101325 Pa consiguiendo un empuje de 1 kN (suponiendo que no hay desprendimiento del flujo en la tobera) durante un tiempo de combustión de 20 segundos. El área de salida es de 80 cm² y el área de garganta es de 4 cm². La masa de propulsante sólido es de 10 kg, y las propiedades conocidas de este propulsante son las siguientes:

n = 0.7	a = 1.20E-7	$\gamma = 1.22$

Calcular para este motor:

- a. El empuje nominal en vacío (E_{vac}) (1 punto)
- b. La relación de presiones (P_s/P_c) (1 punto)
- c. El coeficiente de empuje en vacío ($C_{E,vac}$) y a nivel del mar ($C_{E,SL}$) (2 puntos)
- d. El impulso específico en vacío (*Isp*,vac) (*1 punto*)
- e. El radio de la cámara (R) donde se encuentra el propulsante sólido (1 punto)

Se quiere modificar el diseño del motor reduciendo el área de garganta un 25% $(A_{g2}/A_{g1} = 0.75)$, manteniendo el resto de dimensiones geométricas (A_s, L, R) iguales al diseño inicial y con el mismo propulsante. Para este nuevo diseño, se pide calcular:

- f. El empuje nominal en vacío ($E_{\text{vac,2}}$) (3 puntos)
- g. El tiempo de combustión ($t_{b,2}$) (1 punto)