MA 205 Complex Analysis: Review

U. K. Anandavardhanan IIT Bombay

August 17, 2015

1. The function $u(x,y) = \sqrt{\sqrt{x^2 + y^2}} - x$ is the real part of

(a) \sqrt{z} (b) $-\sqrt{2z}$ (c) $\sqrt{2z}$ (d) $-i\sqrt{2z}$ (e) $i\sqrt{2z}$ where \sqrt{z} denotes the principal branch.

Justification:

In polar coordinates, $u(x,y) = \sqrt{2r} \sin \frac{\theta}{2}$ and $-i\sqrt{2z} = \sqrt{2r}(\sin\frac{\theta}{2} - i\cos\frac{\theta}{2}).$

OR

Assume answer is of the form $k\sqrt{z}$ and solve for k.

(a)
$$\sqrt{z}$$

(b)
$$-\sqrt{2z}$$
 (c) $\sqrt{2z}$

(c)
$$\sqrt{2z}$$

$$(\clubsuit) - i\sqrt{2z}$$
 (e) $i\sqrt{2z}$.

2. Which among the following functions is not the real part of a holomorphic function:

(b)
$$x^2 + y^2$$

(c)
$$\frac{x}{x^2 + y^2}$$

(a)
$$xy$$
 (b) $x^2 + y^2$ (c) $\frac{x}{x^2 + y^2}$ (d) $e^x \cos y$ (e) $e^x \sin y$.

(e)
$$e^{x} \sin y$$

Justification:

 $u(x, y) = x^2 + y^2$ is the only one in the above which is not harmonic. So it's not the real part of a holomorphic function in any domain.

OR

Check case by case to see that all others come as real part of some holomorphic function.

$$(4) x^2 +$$

(c)
$$\frac{x}{\sqrt{2} + \sqrt{2}}$$

(4)
$$x^2 + y^2$$
 (c) $\frac{x}{x^2 + y^2}$ (d) $e^x \cos y$ (e) $e^x \sin y$.

3. The radius of convergence of the power series $\sum_{n=0}^{\infty} (\cos in) z^n$ is

(a) 1

- (b) π
- (c) $\frac{1}{\pi}$
- $(d)^{n=0}$

(e) *e*

Justification:

The given series is clearly the sum of two power series with one having radius of convergence e and the other with radius of convergence $\frac{1}{e}$. So the answer is $\frac{1}{e}$.

OR

Compute the relevant limit in the formula for radius of convergence.

(a) 1

(b) π

(c) $\frac{1}{\pi}$

 $(\clubsuit) \frac{1}{e}$

(e) *e*.

4. Let γ be the closed curve consisting of upper parts of the circles |z| = 1 and |z| = 2 and parts of the x-axis, starting and ending at -2. Then, $\int_{\gamma} \frac{z}{z} dz$ is

(a) $\frac{4}{3}$ (b) 2 (c) $2(1-\frac{i}{3})$ (d) 2i

(e) $\frac{4i}{3}$.

Justification:

Direct calculation gives

$$\int_{-2}^{-1} dx + i \int_{\pi}^{0} e^{3i\theta} d\theta + \int_{1}^{2} dx + 2i \int_{0}^{\pi} e^{3i\theta} d\theta = \frac{4}{3}.$$

 $(\clubsuit)^{\frac{4}{2}}$

- (b) 2 (c) $2(1-\frac{i}{2})$ (d) 2i

(e) $\frac{4i}{2}$.

5. Let γ be the upper part of the ellipse $4x^2 - 4x + y^2 = 0$. oriented from 0 to 1. Then, $\int_{\gamma} \frac{dz}{1+z^2}$ is

(a) 0 (b) 1 (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$ (e) $\frac{2\pi i}{1+a}$.

Justification:

 $\int_{\gamma} \frac{dz}{1+z^2} = \int_{0}^{1} \frac{dx}{1+x^2}$ by Cauchy's theorem, and this is $\frac{\pi}{4}$.

(a) 0

(b) 1

 $(\clubsuit) \frac{\pi}{4}$

(d) $\frac{\pi}{2}$

(e) $\frac{2\pi i}{1+3}$.

6. Given that f is entire and $|f(z)| \le 10|z|^5$ for all |z| > 2. Then a candidate for f is f

(a)
$$z^{\frac{5}{2}}$$
 (b) $z^{\frac{2}{5}}$ (c) $z^5 + 11z^2 + 1$ (d) $z^{10} + 8z^2 + 1$ (e) $\sin z$.

Justification:

Let f be entire such that there exist constants M, K > 0 and a positive integer n such that $|f(z)| \le K|z|^n$ for all |z| > M. Apply Cauchy's estimate for $f^{(n+1)}(z)$ and take limit as $R \to \infty$ to conclude that $f^{(n+1)}(z) = 0$ for all z. Thus f is a polynomial of degree $\le n$.

(a)
$$z^{\frac{5}{2}}$$
 (b) $z^{\frac{2}{5}}$ (**4**) $z^{5} + 11z^{2} + 1$ (d) $z^{10} + 8z^{2} + 1$ (e) $\sin z$.

7. Branch points of $\sin^{-1} z$ are

(a)
$$\{0,\pm 1\}$$
 (b) $\{0,\infty\}$ (c) $\{\pm 1\}$ (d) $\{\pm 1,\infty\}$ (e) $\{0,\pm 1,\infty\}$.

Justification:

$$\sin^{-1} z = -i \log(\sqrt{1-z^2} + iz).$$

 $\{\pm 1\}$ are branch points of $\sqrt{1-z^2}$ and they continue to be branch points for $\sin^{-1}z$. By changing $z\mapsto \frac{1}{z}$, verify that 0 is a branch point for $\sin^{-1}\left(\frac{1}{z}\right)$.

(a)
$$\{0,\pm 1\}$$
 (b) $\{0,\infty\}$ (c) $\{\pm 1\}$ (\$\infty\$) $\{\pm 1,\infty\}$ (e) $\{0,\pm 1,\infty\}$

- 8. There exists $z_0 \in \mathbb{C}$ such that $e^{z_0} = z_0$.
 - (a) True

(b) False.

Justification:

If $f(z) = e^z - z$ misses 0, then it misses $2\pi i$ as well, contradicting little Picard.

(♣) True

(b) False.

9. The function²

$$f(x,y) = \begin{cases} \frac{x \cos x \sinh y - y \sin x \cosh y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

is harmonic everywhere in \mathbb{R}^2 .

(a) True

(b) False.

Justification:

Consider the entire function

$$h(z) = \begin{cases} \frac{\sin z}{z} & \text{if } z \neq 0\\ 1 & \text{if } z = 0. \end{cases}$$

The given function is the imaginary part of h(z), and therefore it is harmonic.

(♣) True

(b) False.

²Thanks to Reebhu for a correction here.

10. Let

$$f(z) = \begin{cases} \frac{z}{\sin z} & \text{if } z \neq 0\\ 1 & \text{if } z = 0. \end{cases}$$

Write $f^{(4)}(0) = \frac{p}{q}$, where $p, q \in \mathbb{N}$ with no common factors. Then, $p = _$, $q = _$.

Justification:

Expand f(z) as a power series. The coefficient of z^4 is $\frac{7}{360}$. Therefore, $f^{(4)}(0) = \frac{7}{360} \cdot 24 = \frac{7}{15}$.

$$p = 7$$
, $q = 15$.

11. For every $f:\mathbb{C}\to\mathbb{C}$ which is entire, and not of the form $f(z)=z+c,\ c\neq 0$, there exists $z_0\in\mathbb{C}$ such that $f(z_0)=z_0$. (a) True (b) False.

Justification:

Give a counter example. For instance, $f(z) = z + e^z$.

(a) True

(♣) False.

12. Let f,g be entire functions with g(z) being never equal to 0. Suppose $|f(z)| \le |g(z)|$ for all $z \in \mathbb{C}$. Show that f(z) = cg(z) for all $z \in \mathbb{C}$ for some constant c. This true because of (a) CR (b) FTA (c) Hol \Longrightarrow Analytic (d) Liouville.

Justification:

$$h = \frac{f}{g}$$

is entire and bounded.

(a) CR (b) FTA (c) Hol
$$\Longrightarrow$$
 Analytic (Liouville.

13.
$$\int_{|z-1-i|=5/4} \frac{\log z}{(z-1)^2} dz \text{ is}$$
(a) $\log 2\pi$ (b) $\log 2\pi i$ (c) $\frac{1}{2\pi i}$ (d) $2\pi i$ (e) $\frac{1}{2\pi}$.

Justification:

$$f^{(n)}(z_0) = \frac{n!}{2\pi \imath} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz.$$

(a)
$$\log 2\pi$$
 (b) $\log 2\pi i$ (c) $\frac{1}{2\pi i}$ (a) $2\pi i$

(e) $\frac{1}{2\pi}$.

14. Which among the following has infinitely many branch points:

(a) $\sin^{-1} z$ (b) $\log \sin^{-1} z$ (c) $\sin z$ (d) $\log \sin z$ (e) $\log \tan^{-1} z$.

Justification:

 $\sin z$ has infinitely many zeros.

(a) $\sin^{-1} z$ (b) $\log \sin^{-1} z$ (c) $\sin z$ (4) $\log \sin z$ (e) $\log \tan^{-1} z$.