

TEMA 2. CRIPTOGRAFÍA T 2.3 CRIPTOSISTEMAS SIMÉTRICOS. CIFRADORES DE BLOQUE Y FLUJO (parte 1)

Criptografía y seguridad informática Seguridad en las tecnologías de la información @ COSEC

Curso 2016-2017

CONTENIDOS

- Métodos de cifra moderna
- Criptosistemas simétricos
 - Cifradores de bloque
 - Introducción
 - Esquema de Feistel
 - Modos de operación
 - Cifradores de bloque: Ventajas y desventajas
 - DES
 - AES
 - Cifradores de flujo

Parte 1 de las transparencias

Parte 2

Parte 3

Clasificación

- Tipo de operaciones realizadas
 - En general, substituciones y transposiciones. No puede perderse información. Los más comunes usan el producto de varias ops.
- Número de claves usadas
 - Simétricos o con una clave (también conocido como algoritmos de clave secreta)
 - Asimétricos o con dos claves (también conocido como algoritmos de clave pública)
- Tipo de procesamiento del texto en claro
 - Por bloques (algoritmos de cifrado en bloque)
 - Flujo)

 Como un flujo continuo de bytes o de bits (algoritmos de cifrado en flujo)

 Le en qued verser Versen

Modelo de criptosistema de clave simétrica

Modelo de criptosistema de clave asimétrica

CONTENIDOS

- Métodos de cifra moderna
- Criptosistemas simétricos
 - Cifradores de bloque
 - Introducción
 - Esquema de Feistel
 - Modos de operación
 - Cifradores de bloque: Ventajas y desventajas
 - DES
 - AES
 - Cifradores de flujo

Introducción

Descomponemos el mensaje en bloques de símbeles de ignor largitud

Descomponen M en bloques de símbolos de igual longitud:

HOY HAY CLA SE

$$M_1, M_2, ... M_n$$

Cifran cada bloque con la misma clave

$$C = E_k (M) = E_k (M_1) E_k (M_2) ... E_k (M_n)$$

- Tamaño de bloques típicos 64, 128 o 256 bits
- Mapeo reversible entre bloques de M y C

Introducción

- Sustituciones de "caracteres" extremadamente largos
 - ▶ 64 bits o más
- Cifrador de bloque ideal
 - n: tamaño de bloque. Ej: 64
 - Se puede definir como una tabla de sustitución (mapeo) de 2ⁿ bits de texto-claro a 2ⁿ bits de texto-cifrado
- Existen 2ⁿ! asignaciones arbitrarias de texto-claro—texto-cifrado == $2^{n}!$ (transformaciones) == $2^{n}!$ claves posibles
- No es práctico
 - La propia tabla de sustitución es la clave, con longitud = $n \cdot 2^n$ bits
 - ▶ Para n = 64 \rightarrow longitud de la clave es aproximadamente 10^{21} bits

Introducción

Cifradores de Bloque más conocidos

Algoritmo	Bloque (bits)	Clave (bits)	Rondas
Lucifer	128	128	16
DES	64	56	16
Twofish	128	variable	variable
RC2	64	variable	18
RC5	variable	variable	variable
SAFER	64	64	8
IDEA	64	128	8
Skipjack	64	80	32
RIJNDAEL	128	128 o más	flexible

CONTENIDOS

- Métodos de cifra moderna
- Criptosistemas simétricos
 - Cifradores de bloque
 - Introducción
 - Esquema de Feistel
 - Modos de operación
 - Cifradores de bloque: Ventajas y desventajas
 - DES
 - AES
 - Cifradores de flujo

- Cifrador de bloque (Feistel 1975)
 - Usar un subconjunto de las 2ⁿ! posibles claves
 - Tamaño del bloque de texto = n bits

 - Número de posibles claves = 2^k
 - Aplicación práctica de los conceptos (Shannon 1949)
 - Cifrado producto Dentro de las claver renace medianto aperaciones de Sustitución (S-box)
 - ☐ Permutación (P-box)
 - Se obtiene una alta difusión y una alta confusión

- Métodos para frustrar criptoanálisis
 - Difusión
 - disipar la estructura estadística de M en C
 - p que cada bit de C dependa de muchos de M
 - se logra aplicando una permutación sobre My una función sobre el resultado de dicha permutación

 Antes de cifror Permutación cifror Permutación cifror Permutación
 - Confusión
 - busca complicar la relación estadística entre C y k
 - se logra mediante sustituciones complejas

Dividir bloque en dos mitades iguales

La parle Right no hace node

La parle Left & hace non contambilion king Right

- Sustitución en la mitad izquierda
 - > XOR de dicha mitad con el resultado de aplicar una función de ronda F no lineal a la parte derecha
 - F depende de la subclave de ronda
- Permutación de las dos mitades resultantes

LR - RL Per so war en ander preso of process de xon can el deceley machine. LR-RL-LR

Proceso repetido n rondas ~ Para nagra reguidad se reditas

- Misma circuitería para cifrar y descifrar
 - Sólo cambiar el orden de las subclaves
 - Se precisa de una <u>última permutación</u> de las dos mitades en la <u>última ronda</u> (en la figura de la trasparencia 14:)
 - $ightharpoonup L_{n+1} = R_n$
 - $ightharpoonup R_{n+1} = L_n$
 - Demostración
- Reduce el problema de diseño, prácticamente, a:
 - Hallar un buen algoritmo de expansión de clave
 - Hallar una buena función de ronda F
- La mayoría siguen este esquema pero no todos

- Tamaño de bloque
 - Mayor tamaño, mayor seguridad, menor velocidad
 - 64 o más
- Tamaño de clave
 - Mayor tamaño, mayor seguridad, menor velocidad
 - 128 o más
- Número de rondas
 - Mayor número, mayor seguridad, menor velocidad
 - Valor típico 16
- Función de ronda y algoritmo de expansión de clave
 - Mayor complejidad, mayor resistencia a criptoanálisis

CONTENIDOS

- Métodos de cifra moderna
- Criptosistemas simétricos
 - Cifradores de bloque
 - Introducción
 - Esquema de Feistel
 - Modos de operación
 - Cifradores de bloque: Ventajas y desventajas
 - DES
 - AES
 - Cifradores de flujo

Modos de Operación

- Técnica para mejorar el efecto de un algoritmo criptográfico o para su adaptación a una aplicación
- Se pueden aplicar a cualquier cifrador de bloque
- Cinco modos estandarizados por el NIST

```
ECB
CBC
CFB
OFB
CTR
```


Modo Electronic CodeBook (ECB)

Mismo bloque de entrada genera mismo bloque a la salida

Electronic Codebook (ECB) mode decryption

Modo Electronic CodeBook (ECB)

Mismo bloque de entrada genera mismo bloque a la salida

Imagen original

Imagen cifrada a usando modo ECB Imagen cifrada usando cualquier otro modo de operación

Modo Electronic CodeBook (ECB)

Ventajas:

- Cifrado y descifrado se puede paralelizar
- Transmisión segura de un bloque (e.g. clave simétrica)
- Los errores de transmisión no se propagan entre bloques

Desventajas:

- Bloques repetidos dan como resultado criptogramas repetidos
- Es posible alterar el orden de los bloques, modificar su contenido, repetirlos o eliminarlos
- Necesita relleno (padding) del último bloque a 64 bits (8 bytes)
 - ▶ Ej: PKCS5 padding especifica completar con bytes cuyo valor sea el número de bytes a completar;
 - Ej; rellenar con ceros todos los bytes a completar excepto el último, cuyo valor será el número de bytes a completar;
 - si el tamaño del mensaje sí es múltiplo del tamaño de bloque, se añade un bloque entero de padding por convención

Modo Cipher Block Chaining (CBC)

- IV confidencial entre interlocutores por integridad
 - Usar ECB para su transmisión

Modo Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) mode decryption

$$P_i = D_K(C_i) \oplus C_{i-1}, C_0 = IV$$

$$Assigned colors X = X = X = C_i + C_i = IV$$

- Un error en Ci afecta a dos Mi
- Requiere padding
- Existen algunos ataques sobre TLS por cómo se utiliza CBC

Modo Cipher FeedBack Mode (CFB)

- Usa un registro de desplazamiento
- Dera sobre segmentos menores que el bloque
- Un error en Ci afecta a dos Mi
- Permite conversión de un c. de bloque en uno de flujo
 - La serie cifrante depende del texto en claro

Modo Cipher FeedBack Mode (CFB)

Cifro d'rentaje y cojo 8 bits del que vey ha have xor comme dane Pértamaño 3, y ese es el texto cifrado, que

Miron

Liva

 C_{N-1}

Modo Output FeedBack Mode (OFB)

Output Feedback (OFB) mode encryption

Modo Output FeedBack Mode (OFB)

- V ha de ser un nonce
- Ventaja: un error en Ci afecta a un solo Mi (en un bit)
- Se descartan los bits sobrantes para el último bloque
- Permite conversión de un c. de bloque en uno de flujo
 - La serie cifrante no depende del texto en claro
 - Opera sobre bloques no sobre segmentos

Modo Counter (CTR)

- Utiliza un contador del tamaño de bloque (n)
- Se inicializa con un nonce y se le suma 1 mod 2ⁿ en bloques consecutivos
- Se descartan los bits sobrantes para el último bloque
- Permite conversión de un c. de bloque en uno de flujo
 - La serie cifrante no depende del texto en claro
 - Opera sobre bloques no sobre segmentos

Modo Counter (CTR)

Lo que lovale posede.

El modo counter se ha impuesto por su simplicidad y por permitir el acceso aleatorio (paralelización)

El conte der se inicidità con un nouce volor abentro neutilità de antes, y se ven cifrando el contrador con el blur cifrador

Counter (CTR) mode encryption

Y el contador cifradose se hace un XOR con el bloque de tente l'impie, y genera el texts cifrado. contador ca nonce + ()

Universidad
Carlos III de Madrid
COSEC LAB. Dpto. Informática

contorcifodo

contorcifodo

bilo

bilo

Modo Counter (CTR)

Counter (CTR) mode decryption

Un error en Ci afecta a un solo Mi (en un bit)

CONTENIDOS

- Métodos de cifra moderna
- Criptosistemas simétricos
 - Cifradores de bloque
 - Introducción
 - Esquema de Feistel
 - Modos de operación
 - ▶ Cifradores de bloque: Ventajas y desventajas
 - **DES**
 - AES
 - Cifradores de flujo

Cifradores de bloque. Ventajas y desventajas

- Uso general: Confidencialidad
- Ventajas:
 - Alta difusión y confusión en el criptograma
 - Fácil implementación
 - Simetría
 - Cifrado y descifrado prácticamente idénticos
 - La misma circuitería permite cifrar y descifrar (no siempre, e.g. AES)
 - Eficiencia
 - Velocidad de cifra muy alta, (aunque menor que la obtenida por cifradores de flujo)

Cifradores de bloque. Ventajas y desventajas

Desventajas:

- Exigen un canal seguro (distribución de claves)
- Gestión de un gran número de claves
- Eficiencia
 - Menor tasa de cifrado que los de flujo al tener que leer antes el bloque completo
 - Longitud total de M debe ser un múltiplo del tamaño del bloque: la longitud del texto resultante mayor
- Seguridad y robustez
 - Un error en un bit en C se propaga a todo el bloque
 - Vulnerable a ataques si se repiten bloques
- ▶ Texto se alarga por relleno de bloques + símbolos de relleno proporcionan pistas a los criptoanalistas

