METHODS WITH PRECONDITIONING WITH WEIGHT DECAY REGULARIZATION

A PREPRINT

Kreinin M.
Department of Intelligent Systems
MIPT
Moscow, Russia
kreinin.mv@phystech.edu

Beznosikov A.

Department of Data Science
MIPT
Dolgoprudny, Russia
beznosikov.an@phystech.edu

ABSTRACT

This paper examines the convergence rate of adaptive gradient methods when a regularization function is added to the target function. This is an area of research, since many machine learning problems use the heuristic, heuristic regularization, and we investigate the theoretical and practical convergence of adaptive gradient methods.

Keywords Adam · OASIS · Regularization · ADAHessian · Weight Decay

1 Introduction

In machine learning we consider unconstrained optimization problem

$$\min_{w \in \mathbb{R}^d} f(w) \tag{1}$$

Problems of the form (1) cover a plethora of applications, including empirical risk minimization, deep learning [LeCun et al., 2015], and supervised learning [Cunningham et al., 2008] tasks such as regularized least squares [Rifkin and Lippert, 2007] or logistic regression [Shalev-Shwartz and Ben-David, 2014]. This minimization problem can be difficult to solve, particularly when the number of training samples n, or problem dimension d, is large, or if the problem is nonconvex.

Second order preconditioners methods are methods when instead of calculate true hessian of our function for newton method [Dennis and Moré, 1977], some heuristics is used to calculate pseudo-hessian. There are second order preconditioners methods for solving this problem, such as Adam [Kingma and Ba, 2014], OASIS [Goldberg et al., 2011], AdaHessian [Yao et al., 2021].

Throughout this work we assume that each $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable and also L-smooth. This is formalized in the following assumption.

Assumption 1 (Convex). The function f is convex, i.e. $\forall w, w' \in \mathbb{R}^d$

$$f(w) \ge f(w') + \langle \nabla F(w'), w - w' \rangle \tag{2}$$

Assumption 2 (L-smoothness). The gradients of F are L-Lipschitz continuous $\forall w \in \mathbb{R}^d$, i.e. there exists a constant L > 0 such that $\forall w, w' \in \mathbb{R}^d$,

$$f(w) \le f(w') + \langle \nabla f(w'), w - w' \rangle + \frac{L}{2} ||w - w'||^2$$

Assumption 3 (Twice differentiable). The function f is twice continuously differentiable.

Assumption 4 (μ - strongly convex). The function f is μ -strongly convex, i.e., there exists a constant $\mu > 0$ such that $\forall w, w' \in \mathbb{R}^d$

$$f(w) \ge f(w') + \langle f(w'), w - w' \rangle + \frac{\mu}{2} ||w - w'||^2$$

2 Problem statement

We want to investigate the convergence speed of the AdamW method and the newly proposed MyAdamW method in machine learning problems, and we also plan to prove the convergence of these methods and investigate the obtained solution.

We consider the unconstrained optimization problem

$$\min_{w \in \mathbb{R}^d} f(w)$$

But we can add regulirazation r(w) – regularization, and solve the unconstrained optimization problem.

$$\min_{w \in \mathbb{R}^d} F(w) = f(w) + r(w)$$

In the convergence algorithm that we study, we will investigate algorithms of the following two kinds. In the first one, the regularization function is taken out separately in the recalculation of model weights, and in the second one, the function is dominated by the inverse "hessian".

Algorithm 1 Based algorithm

```
\begin{array}{l} w_0, D_0, \eta_0 \\ \text{ for } k=1,2, \dots \text{ do } \\ D_k \text{ - update by using information of } f(w) \\ \eta_k \text{ - update } \\ \text{Set } w_{k+1} = w_k - \eta_k D_k^{-1} \nabla f(w_k) - \eta \nabla r(w) \\ \text{ or like that } \\ \text{Set } w_{k+1} = w_k - \eta_k D_k^{-1} (\nabla f(w_k) + \nabla r(w)) \\ \text{ end for } \end{array}
```

3 Experiment

We will conduct an experiment in which we compare Adam with added L2 regularization with AdamW, at different learning rate and decoupled weight, also we will compare it with the modified AdamW algorithm where the regularizer is put under the hessian, also we will compare it under the condition that now the minimal eigenvalue of hessian is not epsilon, but decoupled weight hyperparameter. We will conduct the same experiments with SGD and L2 regularization and SGD with decoupled weight at the same parameters. All experiments will be performed on batches of size 128, on a ResNet18 grid of 200 epochs. All this will be implemented using the PyTorch library on dataset CIFAR10.

4 Theory

To proof this algorighm we use simplified form of AdamW algorithm

Algorithm 2 AdamW

```
\begin{aligned} & \textbf{Require:} & \ r, \varepsilon, f \\ & \textbf{while} \ w \ \text{not converged do} \\ & t = t+1 \\ & D_t = \operatorname{diag}(|\nabla f(w_t)|_i) \\ & w_t = w_{t-1} - \eta \cdot \nabla f(w_t) D_t^{-1} - \lambda \nabla r(w_t) \\ & \textbf{end while} \end{aligned}
```

Theorem 1. Suppose the Assumption 1, 2, 5 and let $\varepsilon > 0$ and let the step-size satisfy

$$\eta < \frac{2\alpha}{L + l \cdot \alpha}$$

Then, the number of iterations performed by AdamW algorithm, starting from an initial point $w_0 \in \mathbb{R}^d$ with $\Delta_0 = \tilde{F}(w_0) - \tilde{F}^*$, required to obtain and ε -approximate solution of the convex problem (link here to problem 1) can be bounded by

$$T = \mathcal{O}\left(\frac{2\Delta_0 \Gamma \alpha}{(2\alpha - \tilde{L}\eta)\eta\varepsilon}\right)$$

Proof. Let's write first assumption for step t and t + 1:

$$f(w_{t+1}) \le f(w_t) + \langle \nabla f(w_t), w_{t+1} - w_t \rangle + \frac{L}{2} ||w_{t+1} - w_t||^2$$

Okay, by definition for our algorithm we have:

$$w_{t+1} - w_t = -\eta D_t^{-1} \nabla f(w_t) - \eta \nabla r(w_t)$$

and

$$\nabla f(w_t) = \frac{1}{\eta} D^t(w_t - w_{t+1}) - D^t \nabla r(w_t)$$

Okay, now let's replace $\nabla f(w_t)$ and $I \leq \frac{D_t}{\alpha}$

$$f(w_{t+1}) \le f(w_t) + \langle \frac{1}{\eta} D_t(w_t - w_{t+1}) - D_t \nabla r(w_t), w_{t+1} - w_t \rangle + \frac{L}{2\alpha} ||w_{t+1} - w_t||_{D_t}^2$$

$$f(w_{t+1}) \le f(w_t) + \left(\frac{L}{2\alpha} - \frac{1}{\eta}\right) ||w_{t+1} - w_t||_{D_t}^2 - \langle D_t \nabla r(w_t), w_{t+1} - w_t \rangle$$

Lets define new variable $\tilde{r}: \nabla \tilde{r} = D_t \nabla r(w_t)$. Then rewrite step using the variable and 5-th assumption.

$$\tilde{r}(w_{t+1}) \le \tilde{r}(w_t) + \langle \tilde{r}(w_t), w_{t+1} - w_t \rangle + \frac{l}{2} (w_{t+1} - w_t)^T D_t (w_{t+1} - w_t)$$

$$f(w_{t+1}) \le f(w_t) + \left(\frac{L}{2\alpha} - \frac{1}{\eta}\right) ||w_{t+1} - w_t||_{D_t}^2 + \tilde{r}(w_t) - \tilde{r}(w_{t+1}) + \frac{l}{2} ||w_{t+1} - w_t||_{D_t}^2$$

 $\tilde{F}(w)=f(w)+\tilde{r}(w),$ F(w)=f(w)+r(w), $(\tilde{L}=L+l\alpha),$ we get:

$$\tilde{F}(w_{t+1}) \le \tilde{F}(w_t) + \left(\frac{\tilde{L}}{2\alpha} - \frac{1}{\eta}\right) ||w_{t+1} - w_t||_{D_t}^2$$

$$\left(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha}\right) ||w_{t+1} - w_t||_{D_t}^2 \le \tilde{F}(w_t) - \tilde{F}(w_{t+1})$$

$$\frac{\eta^2(T+1)}{\Gamma} \left(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha} \right) \cdot \min_{k=0,T} ||\nabla f(w_t) + \nabla \tilde{r}(w_t)||^2 \le \frac{\eta^2}{\Gamma} \left(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha} \right) \cdot \sum_{t=0}^T ||\nabla f(w_t) + \nabla \tilde{r}(w_t)||^2 \le \tilde{F}(w_0) - \tilde{F}(w_*)$$

$$\min_{t=0,T} ||\nabla f(w_t) + \nabla \tilde{r}(w_t)||^2 \le \frac{(\tilde{F}(w_0) - \tilde{F}(w_*))\Gamma}{(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})\eta^2(T+1)} = \varepsilon$$

$$T+1 \ge \frac{\Delta_0 \Gamma}{(\frac{1}{n} - \frac{\tilde{L}}{2\alpha})\eta^2 \varepsilon}$$

Then:

$$T = \mathcal{O}\left(\frac{2\Delta_0 \Gamma \alpha}{(2\alpha - \tilde{L}\eta)\eta\varepsilon}\right)$$

Theorem 2. Suppose the Assumption 1, 2, 4, 5 and let $\varepsilon > 0$ and let the step-size satisfy

$$\eta \leq \frac{2\alpha}{\tilde{L}}$$

Then, the number of iterations performed by AdamW algorithm, starting from an initial point $w_0 \in \mathbb{R}^d$ with $\Delta_0 = \tilde{F}(w_0) - \tilde{F}^*$, required to obtain and ε -approximate solution of the convex problem (link here to problem 1) can be bounded by

$$T = \mathcal{O}\left(\frac{\ln\frac{\Delta_0}{\epsilon}}{2\mu\eta^2(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})}\right)$$

Proof. Assume

$$\nabla \tilde{F} = \nabla f + \nabla \tilde{r} \tag{3}$$

$$L + ||D_t||l = \tilde{L} \tag{4}$$

$$w_{t+1} - w_t = -\eta D_t^{-1} \nabla r(w_t) - \eta \nabla r(w_t) = -\eta D_t^{-1} (\nabla f + \nabla \tilde{r})(w_t) = -\eta D_t^{-1} \nabla \tilde{F}(w_t)$$

Then we write \tilde{L} -smoothness for \tilde{F}

$$\begin{split} \tilde{F}(w_{t+1}) - \tilde{F}(w_t) &\leq \langle \nabla \tilde{F}(w_t), w_{t+1} - w_t \rangle + \frac{\tilde{L}}{2} ||w_{t+1} - w_t||^2 \\ \tilde{F}(w_{t+1}) - \tilde{F}(w_t) &\leq -\langle \frac{1}{\eta} D_t(w_{t+1} - w_t), w_{t+1} - w_t \rangle + \frac{\tilde{L}}{2} ||w_{t+1} - w_t||^2 = (\frac{\tilde{L}}{2\alpha} - \frac{1}{\eta}) ||w_{t+1} - w_t||^2_{D_t} \\ &= (\frac{\tilde{L}}{2\alpha} - \frac{1}{\eta}) ||w_{t+1} - w_t||^2_{D_t} = (\frac{\tilde{L}}{2\alpha} - \frac{1}{\eta}) || - \eta D_t^{-1} \nabla \tilde{F}(w_t) ||^2_{D_t} \leq (\frac{\tilde{L}}{2\alpha} - \frac{1}{\eta}) \eta^2 ||\nabla \tilde{F}(w_t) ||^2_{D_t^{-1}} \end{split}$$

Then we use PL-condition for the function \tilde{F} :

$$||\nabla \tilde{F}(w_t)||_{D_{\star}^{-1}}^2 \ge 2\mu(\tilde{F}(w_t) - \tilde{F}^*)$$

$$\begin{split} \tilde{F}(w_t) - F^* &\geq \tilde{F}(w_{t+1}) - \tilde{F}^* + (\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})\eta^2 2\mu(\tilde{F}(w_t) - \tilde{F}^*) = \left(1 + 2\mu\eta^2(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})\right)(\tilde{F}(w_{t+1}) - \tilde{F}^*) \\ &\epsilon \geq \Delta_0 \left(1 + 2\mu\eta^2(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})\right)^{-T} \geq (\tilde{F}(w_T) - \tilde{F}^*) \\ &T = \frac{\ln\frac{\Delta_0}{\epsilon}}{\ln(1 + 2\mu\eta^2(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha}))} \approx \frac{\ln\frac{\Delta_0}{\epsilon}}{2\mu\eta^2(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})} \end{split}$$
 en:

Then:

$$T = \mathcal{O}\left(\frac{\ln\frac{\Delta_0}{\epsilon}}{2\mu\eta^2(\frac{1}{\eta} - \frac{\tilde{L}}{2\alpha})}\right)$$

References

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444, 2015.

Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. Supervised learning. *Machine learning techniques for multimedia: case studies on organization and retrieval*, pages 21–49, 2008.

Ryan M Rifkin and Ross A Lippert. Notes on regularized least squares. 2007.

Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.

4

- John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and theory. *SIAM review*, 19(1):46–89, 1977. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
- Andrew Goldberg, Xiaojin Zhu, Alex Furger, and Jun-Ming Xu. Oasis: Online active semi-supervised learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 25, pages 362–367, 2011.
- Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney. Adahessian: An adaptive second order optimizer for machine learning. In *proceedings of the AAAI conference on artificial intelligence*, volume 35, pages 10665–10673, 2021.