Redes de Computadores

Prof. Nelson Fonseca nfonseca@ic.unicamp.br www.ic.unicamp.br/~nfonseca/redes

Parte I: Introdução

Ler capítulo 1 do livro texto

Objetivos:

- □ Introduzir conceitos básicos em redes
- dar uma visão geral da matéria, maiores detalhes ao longo do curso
- Abordagem:
 - descritiva
 - Internet como exemplo

Conteúdo do capítulo:

- □ O que é a Internet
- □ O que é um protocolo?
- periferia da rede
- núcleo da rede
- rede de acesso, meios físicos
- backbones, NAPs, ISPs
- noções de desempenho
- hierarquia de protocolos, modelos de serviços
- □ história

Aparelhos Internet interessantes

Porta retratos IP http://www.ceiva.com/

O menor servidor Web do mundo http://www-ccs.cs.umass.edu/~shri/iPic.html

Tostadeira habilitada para a Web + Previsão do tempo http://dancing-man.com/robin/toasty/

O que é a Internet?

- Milhões de dispositivos interconectados: hosts, sistemas finais
 - Estações de trabalho, servidores
 - PDA's, fones, torradeiras
 executando aplicativos
- □ Enlaces de comunicação
 - fíbras óticas, cobre, rádio, satélite
- roteadores: encaminham pacotes (blocos) de dados ao longo da rede

O que é a Internet

- protocolos: controla o envio e recebimento de msgs
 - o e.g., TCP, IP, HTTP, FTP, PPP
- □ Internet: "rede de redes"
 - Fracamente hierarquizada
 - Internet pública versus intranet privativas
- Padrões Internet
 - RFC: Request for comments
 - IETF: Internet Engineering
 Task Force

Serviços da Internet

- □ Infraestrutura de comunicação permite aplicações distribuídas:
 - WWW, e-mail, jogos, comércio eletrônico, banco de dados., compartilhamento de arquivos (MP3)
- □ Serviços de comunicação:
 - o sem conexão
 - o orientado à conexão
- cyberspace [Gibson]:

"a consensual hallucination experienced daily by billions of operators, in every nation,"

O que é um protocolo?

Protocolos humanos:

- □ "Que horas são?"
- "Eu tenho uma pergunta"

- ... Msgs específicas enviadas
- ... Ações específicas tomadas frente ao recebimento das msgs

Protocolos de Redes:

- Máquinas ao invés de humanos
- □ Toda comunicação em redes é regida por protocolos

Protocolos definem o formato, a ordem de envio e recebimento de msgs entre entidades e ações realizadas

Protocolos

Exemplos de protocolos humanos e de computadores

Estrutura da Rede

- Periferia da rede: aplicações e hosts
- □ Núcleo da rede:
 - o roteadores
 - o redes de redes
- □ redes de acesso, meio físico: enlaces de comunicação

Periferia da Rede:

Sistemas finais (hosts):

- executam aplicativos
- WWW, email
- o "na periferia da rede"

modelo cliente/servidor

- host cliente envia requisição, servidor executa serviço
- e.g., cliente WWW(browser)/ servidor; email cliente/servidor

modelo ponto-a-ponto :

- Interação simétrica entre hosts;
- Mínimo (ou nenhum) uso de servidores dedicados;

Periferia da Rede: serviços orientados à conexão

- Objetivo: transferência de dados entre sistemas finais
- handshaking:
 estabelecimento de
 conexão preparação
 para transferência de
 dados
 - TCP Transmission Control Protocol
 - Serviço orientado à conexão da Internet

Serviços TCP [RFC 793]

- □ Confiável, em seqüência, (byte-stream)
 - Perdas: confirmações e retransmissões
- □ Controle de fluxo:
 - transmissor não sobrecarrega o receptor;
- □ Controle de congestionamento:
 - transmissor dimui taxa de transmissão quando a rede está congestionada

Serviços não orientados a conexão

- Objetivo: transferência de dados entre sistemas finais
- □ UDP User Datagram Protocol [RFC 768]: serviços sem conexão da Internet
 - transferência nãoconfiável
 - o sem controle de fluxo
 - sem controle de congestionamento

- <u>Aplicações típicas que</u> <u>usam TCP:</u>
- □ HTTP (WWW), FTP, Telnet, SMTP (e-mail)
- Aplicações típicas que usam UDP
- áudio sob medida, teleconferência, Telefonia Internet

O Núcleo da Rede

- Malha de roteadores interconectados
- Questão fundamental: Como os dados são transferidos na rede?
 - comutação de circuitos: circuitos dedicados - rede telefônica
 - comutação de pacotes: dados enviados pela rede em "blocos"

Comutação de Circuitos

Recursos reservados fim-a-fim para uma chamada ("call")

- banda passante do enlace, capacidade do comutador
- recursos dedicados: não há compartilhamento
- desempenho garantido
- Estabelecimento de circuito obrigatório

Comutação de Circuitos

- Banda passante dividida em "fatias"
- "fatias" de recursos alocados às chamadas
- desperdício: caso recurso não esteja sendo utilizado
- Divisão da banda passante
 - Divisão por frequência
 - Divisão por tempo

- Divisão da banda passante
 - Atribui diferentes frequências
 - Atribui banda em diferentes intervalos de tempo

FDMA

Comutação de Pacotes

Fluxo de dados fim-a-fim dividido em pacotes

- pacotes compartilham recursos da rede
- cada pacote usa totalmente a banda passante do enlace
- recursos usados qdo necessário

Contenção de recursos:

- a demanda por recursos pode ultrapassar o disponível
- congestionamento:
 enfileiramento para uso
 do enlace
- □ Armazena-e retransmite: pacotes
 trafegam um
 comutador de cada vez
 - trasmitem eesperam a vez

Comutação de Pacotes: multiplexação estatística

Comutação de pacotes versus comutação de circuitos: analogia com restaurantes

existem outras analogias humanas?

Comutação de pacotes versus comutação de circuitos

Comutação de pacotes permite um maior número de usuários na rede!

- □ Enlace de 1 Mbit
- cada usuário:
 - 100Kbps quando ativo
 - ativo 10% do tempo
- □ Comutação de circuito:
 - 10 usuários
- □ Comutação de Pacotes:
 - com 35 usuários, probabilidade > 10 ativos < .0004

Comutação de pacotes versus comutação de circuitos

- A comutação de pacotes ganha de lavagem?
- □ Ideal para tráfego em rajada
 - o compartilhamento de recursos
 - o não há o estabelecimento da chamada (call setup)
- □ Congestionamento excessivo: perda e retardo
 - protocolos necessário para transmissão confiável e controle de congestionamento
- Como prover serviços tipo circuito??
 - Garantia de banda passante para aplicações de vídeo e áudio
 - Ainda é um problema em aberto (cap 6)

Comutação de Pacotes: armazena-e-reenvia

- □ Leva L/R segundos para transmitir o pacote com L bits em um enlace de R bps;
- □ O pacote inteiro deve chegar ao comutador antes de ser transmitido no próximo enlace: armazena-e-reenvia
- ☐ Atraso = 3L/R

Exemplo:

- □ L = 7.5 Mbits
- □ R = 1.5 Mbps
- □ atraso = 15 sec

Comutação de Pacotes: segmentação de mensagens

Agora a mensagem é segmentada em 5000 pacotes

- □ Cada pacote com 1,500 bits
- □ 1 msec para transmitir o pacote em um enlace;
- pipelining: cada enlace trabalha em paralelo
- Atraso reduzido de 15 segundos para 5.002 segundos

Roteamento em Redes de Comutação de Pacotes

Objetivo: mover pacotes entre roteadores da origem ao destino

datagrama:

- o endereço de destino determina próximo roteador (hop)
- o rotas podem mudar durante sessão
- o analogia: dirigindo pedindo informação

circuitos virtuais:

- o cada pacote carrega um rótulo (virtual circuit ID), que determina o próximo roteador (hop)
- o rota é fixada no momento do estabelecimento da conexão (call setup time), permanece fixo durante toda a chamada
- o roteadores mantém informações por conexão

Taxonomia da Rede

- Uma rede datagrama não é orientada à conexão ou nãoorientada à conexão.
- · Internet provê a suas aplicações serviços orientados à conexão (TCP) e não orientados à conexão (UDP).

Redes de Acesso e Meios Físicos

- P: Como conectar os sistemas finais aos roteadores de borda?
- Redes de acesso residencial
- redes de acesso institucional (escolas, empresa)
- redes de acesso móvel

Considere:

- largura de banda (bits por segundo) da rede de acesso?
- compartilhada ou dedicada?

Rede de Acesso Residencial ponto-a-ponto

Discado (Dialup) via modem

- acesso direto ao roteador de até 56Kbps (teoricamente);
- Não pode falar ao telefone e "surfar na Internet ao mesmo tempo"; não pode estar sempre conectado

□ RDSI/ISDN:

- rede digital de serviços integrados: conexão digital de 128Kbps ao roteador.
- ADSL: asymmetric digital subscriber line
 - até 1 Mbps na direção da rede (upstream) (tipicamente < 256 kbps)
 - até 8 Mbps na direção do usuário (downstream) (tipicamente < 1 Mbps)
 - FDM:
 - 50 kHz 1MHz na direção do usuário
 - · 4kHz 50 kHz na direção da rede

Acesso residencial: cable modems

- ☐ HFC: hybrid fiber coax
 - assimétrico: até 10Mbps na direção da rede ,
 1 Mbps na direção do usuário;
- □ rede de cabos e fibra conectam as residências ao roteador do ISP
 - o acesso compartilhado ao roteador pelas residências
 - o questões: congestionamento, dimensionamento
- □ implantação: disponível através de empresas de TV a cabo, ex.: VIRTUA (Net)

Acesso residencial: cable modems

Arquitetura de Redes com cabo: visão geral

Tipicamente 500 a 5,000 casas

FDM:

Acesso Institucional: Redes Locais

rede local (LAN - Local Area Network) da empresa/univ. conecta sistemas finais ao roteador de borda

□ Ethernet:

- cabos compartilhados ou dedicados conectam o sistema final ao roteador
- 10 Mbs, 100Mbps, Gigabit
 Ethernet
- instalação: instituições,
 brevemente nas residências
- LANs: serão vistas depois.

Redes de Acesso sem Fio (wireless)

- rede de acesso compartilhado sem fio conecta o sistema final ao roteador
 - via estação base (ponto de acesso)
- □ LANs sem fio:
 - ondas de rádio substituem os fios
 - 802.11b (Wifi): 11 Mbps
- acesso sem fio com maior cobertura
 - CDPD: acesso sem fio ao roteador do ISP através da rede celular
 - Provido pela operadora de telecomunicações;
 - WAP/GRPS na Europa
 - 3*G* ~384 Kbps

Home networks

Componentes típicos de home networks:

- □ ADSL ou cable modem
- roteador/firewall
- Ethernet

Meio Físico

 enlace físico: bit de dados transmitido se propaga através do enlace

meios guiados:

 os sinais se propagam em meios sólidos: cobre, fibra

meios não guiados:

os sinais se propagam livremente, ex. rádio

Par Trançado

- dois fios
 - Categoria 3: telefonia tradicional, 10 Mbps Ethernet
 - Categoria 5 TP:100Mbps Ethernet

Cabo Coaxial e Fibra Ótica

Cabo coaxial:

- fio (transporta o sinal) dentro de outro fio (blindagem)
 - banda básica (baseband):
 canal único no cabo
 - banda larga (broadband):
 múltiplos canais num cabo
- bidirecional
- uso comum em Ethernet10Mbs

Cabo de fibra óptica:

- fibra de vidro transporta pulsos de luz, cada pul'so é um bit
- opera em alta velocidade:
 - Ethernet 100Mbps
 - transmissão ponto a ponto de alta velocidade (ex., 5 Gps)
- baixa taxa de erros: imune a ruídos eletromagnéticos

Meios físicos: rádio

- Sinal transportado em meio eletromagnético
- □ não existe "cabo"
- bidirecional
- □ efeitos de propagação:
 - o reflexão
 - o obstrução de objetos
 - o interferência

Tipos de enlaces de rádio:

- microondas
 - o ex.: canais de até 45 Mbps
- □ LAN (ex., waveLAN)
 - 2Mbps, 11Mbps
- longa distância (ex., celular)
 - o ex. CDPD, 10's Kbps
- satélite
 - canal de até 50Mbps (ou múltiplos canais menores)
 - atraso fim a fim de 270 mseg
 - geoestacionário versus LEOS

- Ligeiramente hierarquizado
- □ No centro: ISPs-nível-1 (ex: UUNet, BBN/Genuity, Sprint, AT&T), cobertura nacional/internacional
 - Tratamento igualitário entre os ISPs

- Ligeiramente hierarquizado
- □ No centro: ISPs-nível-1 (ex: UUNet, BBN/Genuity, Sprint, AT&T), cobertura nacional/internacional
 - Tratamento igualitário entre os ISPs

provedores nível-1 também se interconectam em pontos públicos de acesso (NAP - network access points)

ISP-nível-1: ex: Sprint

Backbone Sprint US

- □ ISPs nível-2: ISPs menores (geralmente regionais)
 - Conectado a um ou mais ISPs-nível-1, e possivelmente a vários ISPs-nível-2

- □ ISPs nível-2: ISPs menores (geralmente regionais)
 - Conectado a um ou mais ISPs-nível-1, e possivelmente a vários ISPs-nível-2

- □ ISPs nível-2: ISPs menores (geralmente regionais)
 - Conectado a um ou mais ISPs-nível-1, e possivelmente a vários ISPs-nível-2

- ISPs nível-2: ISPs menores (geralmente regionais)
 - Conectado a um ou mais ISPs-nível-1, e possivelmente a vários ISPs-nível-2

□ ISPs-nível-3 e ISPs locais

o última rede de acesso (próximo aos sistemas finais)

□ ISPs-nível-3 e ISPs locais

o última rede de acesso (próximo aos sistemas finais)

□ ISPs-nível-3 e ISPs locais

o última rede de acesso (próximo aos sistemas finais)

Um pacote passa por várias redes;

Um pacote passa por várias redes;

Provedor de Backbone Nacional

ex. Embratel

http://www.embratel.net.br/internet/backbone/intormacoes-backbone.html

Provedor de Backbone Nacional

RNP Macapá ex. RNP Belém Manaus São Luís Fortaleza Natal Teresina Campina Grande 06 06 Porto Velho Recife Rio Branco **Palmas** Mateio Aracaju 🔼 Salvador Cuiabá Brasília Acesso local 08 10 03 05 08 04 04 04 310 Mbps ATM 155 Mbps ATM Goiânia Belo Horizonte 34 Mbps ATM y Vitória

Campo Grande

Boa Vista

São Paulo Linhas internacionais Rio de Janeiro 155 Mbps Curitiba 45 Mbps 02 Mbps Florianópolis VPs (Virtual Paths) 26-30 Mbps Porto Alegre 21 - 25 Mbps 16-20 Mbps 11-15 Mbps 06-10 Mbps 01-05 Mbps

EUA

7 45 [Internet2]

Portugal

6–8 Mbps Frame Relay

2–4 Mbps Frame Relay

velocidade (Mbps)

Filas de pacotes nos buffers dos roteadores: a taxa de chegada de pacotes excede a capacidade de saída do enlace

Filas de pacotes nos buffers dos roteadores: a taxa de chegada de pacotes excede a capacidade de saída do enlace

Filas de pacotes nos buffers dos roteadores: a taxa de chegada de pacotes excede a capacidade de saída do enlace

Filas de pacotes nos buffers dos roteadores: a taxa de chegada de pacotes excede a capacidade de saída do enlace

Quatro fontes de atraso de pacotes

- □ 1. Processamento no nó: □ 2. Enfileiramento
 - o verificação de erros
 - determina o enlace de saída

- tempo de espera no enlace de saída para transmissão
- depende do nível de congestionamento do roteador

Atraso em redes comutadas por pacotes

- 3. Atraso de transmissão:
- R=capacidade do enlace (bps)
- □ L=tamanho do pacote (bits)
- tempo para enviar bits no enlace = L/R

- 4. Atraso de propagação:
- d = comprimento do enlace físico
- □ s = velocidade de propagação no meio (~2×10⁸ m/sec)
- □ atraso de propagação = d/s

Nota: s e R são quantidades bastante diferentes!

Analogia de uma caravana

- □ Carros viajam (propagam) a 100 km/h
- □ Cabine de pedágio leva 12 seg. para atender um carro (tempo de transmissão)
- carro~bit; caravana ~
 pacote
- Q: Quanto tempo leva até que a caranava atinja o 2º ponto de pedágio?

- Tempo para atender a caravana inteira na rodovia: 12*10 = 120 seg
- □ Tempo que leva para o último carro da caravana "propagar" do 1º para o 2º ponto de pedágio: 100km/(100km/h)= 1 hr
- □ A: 62 minutos

Analogia de uma caravana

- Carros agora propagam a 1000 km/h
- A cabine agora leva 1 min para atender um carro
- Q: Algum carro irá chegar ao 2º ponto de pedágio antes que todos os carros tenham sido atendidos no 1º ponto de pedágio?
- □ Sim! Depois de 7 min, o 1° carro atinge o 2° ponto de pedágio, enquanto ainda existem 3 carros no 1° ponto de pedágio
- □ Os primeiros pacotes de um pacote podem chegar no 2º roteador antes que o pacote seja completamente transmitido no 1º roteador!

Atraso nodal

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- \Box d_{proc} = tempo de processamento
 - Tipicamente alguns mircrosegundos ou menos
- □ d_{queue} = atraso de enfileiramento
 - Depende do congestionamento
- □ d_{trans} = atraso de transmissão
 - o = L/R, significante para enlaces de baixa-velocidade
- □ d_{prop} = atraso de propagação
 - Algumas centenas de milisegundos

Atraso de enfileiramento

- □ R=largura de banda do enlace (bps)
- L=compr. do pacote (bits)
- a=taxa média de chegada de pacotes

intensidade de tráfego = La/R

- □ La/R ~ 0: pequeno atraso de enfileiramento
- □ La/R -> 1: grande atraso
- □ La/R > 1: chega mais "trabalho" do que a capacidade de atendimento, atraso médio infinito!

- □ Como deve ser o atraso e perda real da Internet?
- Programa Traceroute: provê medidas de atraso fim-a-fim do caminho entre o nó de origem e o nó de destino. Para cada i:
 - envia três pacotes para o roteador i no caminho da origem até o destino;
 - roteador i retorna pacotes para o emissor;
 - o emissor calcula o intervalo de tempo entre o envio do pacote e o recebimento da sua resposta.

- □ Como deve ser o atraso e perda real da Internet?
- Programa Traceroute: provê medidas de atraso fim-a-fim do caminho entre o nó de origem e o nó de destino. Para cada i:
 - o envia três pacotes para o roteador i no caminho da origem até o destino;
 - roteador i retorna pacotes para o emissor;
 - o emissor calcula o intervalo de tempo entre o envio do pacote e o recebimento da sua resposta.

- □ Como deve ser o atraso e perda real da Internet?
- Programa Traceroute: provê medidas de atraso fim-a-fim do caminho entre o nó de origem e o nó de destino. Para cada i:
 - o envia três pacotes para o roteador i no caminho da origem até o destino;
 - roteador i retorna pacotes para o emissor;
 - o emissor calcula o intervalo de tempo entre o envio do pacote e o recebimento da sua resposta.

- □ Como deve ser o atraso e perda real da Internet?
- Programa Traceroute: provê medidas de atraso fim-a-fim do caminho entre o nó de origem e o nó de destino. Para cada i:
 - o envia três pacotes para o roteador i no caminho da origem até o destino;
 - roteador i retorna pacotes para o emissor;
 - o emissor calcula o intervalo de tempo entre o envio do pacote e o recebimento da sua resposta.

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
Três medidas de atraso de
                                          gaia.cs.umass.edu to cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 in1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms 4 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
                                                                       Fnlace
                                                                       trans-oceânico
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renatèr.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                       * Significa que nenhuma resposta foi recebida )
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Perda de pacotes

- A fila dos roteadores tem uma capacidade limitada;
- quando a fila está cheia, os pacotes que chegam são descartados;
- Pacotes perdidos são retransmitidos pelo nó de origem ou não são retransmitidos;

"Camadas" de Protocolos

As redes são complexas!

- muitos "pedaços":
 - hosts
 - o roteadores
 - enlaces de diversos meios
 - o aplicações
 - protocolos
 - hardware, software

Pergunta:

Há alguma esperança em organizar a estrutura da rede?

Ou pelo menos a nossa discussão sobre redes?

Organização de uma viagem aérea:

bilhete (compra) bilhete (reclamação)

bagagem (check in) bagagem (recup.)

portão (embarque) portão (desembarque)

decolagem aterrissagem

rota do vôo rota do vôo

Roteamento do avião

uma série de etapas

Viagem Aérea: uma visão diferente

bilhete (compra)	bilhete (reclamação)
bagagem (verificação)	bagagem (recup.)
portão (embarque)	portão (desembarque)
decolagem	aterrisagem
rota do vôo	rota do vôo
roteamento do avião	

Camadas: cada camada implementa um serviço

- o através de elementos da própria camada
- o depende dos serviços providos pela camada inferior

Viagem aérea em camadas: serviços

Transporte balcão a balcão de pessoas+bagagens

transporte de bagagens

transferência de pessoas: entre portões

transporte do avião de pista a pista

roteamento do avião da origem ao destino

Implementação distribuída da funcionalidade das camadas

aeroporto de saída

bilhete (compra)

bagagem (check in)

portão (embarque)

decolagem

rota de vôo

bilhete (reclamação)

bagagem (recup.)

portão (desembarque)

aterrissagem

rota de vôo

chegado de aeroporto

Aeroportos intermediários

rota de vôo

rota de vôo

rota de vôo

Por que camadas?

Lidar com sistemas complexos:

- estrutura explícita permite a identificação e relacionamento entre as partes do sistema complexo
 - o modelo de referência em camadas para discussão
- modularização facilita a manutenção e atualização do sistema
 - mudança na implementação do serviço da camada é transparente para o resto do sistema
 - o ex., mudança no procedimento no portão não afeta o resto do sistema
- divisão em camadas é considerada prejudicial?

Pilha de protocolos Internet

- aplicação: dá suporte a aplicações de rede
 - o ftp, smtp, http
- ☐ transporte: transferência de dados host-a-host
 - o tcp, udp
- rede: roteamento de datagramas da origem até o destino
 - o ip, protocolos de roteamento
- enlace: transferência de dados entre elementos de rede vizinhos
 - o ppp, ethernet
- □ física: bits "no fio"

aplicação

transporte

rede

enlace

física

Camadas: comunicação lógica

Cada camada:

- distribuída
- "entidades" implementam as funções em cada nó
- entidades
 executam
 ações, trocam
 mensagens com
 os pares

Camadas: comunicação lógica

Cada camada:

- distribuída
- "entidades"
 implementam
 as funções em
 cada nó
- entidades
 executam
 ações, trocam
 mensagens com
 os pares

Camadas: comunicação lógica

Ex.: camada de transporte

- recebe dados da aplicação
- adiciona endereço e verificação de erro para formar o "datagrama"
- envia o datagrama para a parceira
- espera que a parceira acuse o recebimento (ack)
- analogia: correio

Camadas: Comunicação Física

Camadas: Comunicação Física

Camadas de protocolos e dados

Cada camada recebe dados da camada superior

 adiciona informação no cabeçalho para criar uma nova unidade de dados

passa a nova unidade de dados para a camada

inferior

1961-1972: Primórdios dos Princípios de redes: comutação de pacotes

- □ 1961: Kleinrock teoria das filas demonstra eficiência da comutação por pacotes
- □ 1964: Baran comutação de pacotes em redes militares
- 1967: concepção da ARPAnet pela ARPA (Advanced Reearch Projects Agency)
- □ 1969: entra em operação o primeiro nó da ARPAnet

1972:

- Demosntração pública da ARPAnet
- NCP (Network Control Protocol) - primeiro protocolo host-host
- primeiro programa de email
- ARPAnet com 15 nós

1972-1980: Interconexão, novas redes privativas

- □ 1970: rede de satélite
 ALOHAnet no Havaí
- □ 1973: Metcalfe propõe a Ethernet em sua tese de doutorado
- □ 1974: Cerf e Kahn arquitetura para a interconexão de redes
- ☐ fim dos anos 70: arquiteturas proprietárias: DECnet, SNA, XNA
- ☐ fim dos anos 70: comutação de pacotes de comprimento fixo (precursor do ATM)
- □ 1979: ARPAnet tem 200 nós

Cerf and Kahn's princípios de interconexão:

- minimalismo, autonomia, não há necessidade de mudança interna para interconexão
- modelo de serviço melhor esforço (best effort)
- o roteadores sem estado
- controle descentralizado

define a arquitetura da Internet de hoje

1980-1990: novos protocolos, proliferação de redes

- ☐ 1983: implantação do TCP/IP
- □ 1982: definição do protocolo smtp para e-mail
- □ 1983: definição do DNS para tradução de nome para endereço IP
- 1985: definição do protocolo ftp
- 1988: controle de congestionamento do TCP

- Novos backbones nacionais: Csnet, BITnet, NSFnet, Minitel
- □ 100,000 hosts conectados numa conferederação de redes

1990's, 2000's: comércio, WWW, novas aplicações

- início dos anos 90: ARPAnet desativada
- □ 1991: NSF remove restrições ao uso comercial da NSFnet (desativada em 1995)
- □ início dos anos 90 : WWW
 - hypertexto [Bush 1945, Nelson 1960's]
 - HTML, http: Berners-Lee
 - 1994: Mosaic, posteriormente Netscape
 - fim dos anos 90:
 comercialização da Web

Final dos anos 90:

- est. 50 milhões de computadores na Internet
- est. mais de 100 milhões de usuários
- enlaces de backbone a Gbps
- 1996: criação do projeto INTERNET2
- Segurança: uma necessidade
- Novas aplicações (killer applications): napster

Internet/BR

- □ RNP teve início em 1989.
- Aberta para uso comercial em 1994
- □ Posição absoluta (Network Wizards, 1/00):
 - O Número de hosts: 446.444
 - 13° do Mundo
 - 3º das Américas
 - 1º da América do Sul
- □ 4.500.000 Internautas (2/00)

Número de Internautas

Resumo da Introdução

Material coberto

- Visão geral da Internet
- O que é um protocolo
- Periferia da rede, núcleo da rede, redes de acesso
 - Comutação de pacotes versus comutação de circuitos
- backbones, NAPs, ISPs
- Desempenho: perda e atraso
- Modelo de serviços em camada
- História

Conhecimento adquirido:

- contexto, visão geral, sentimento da rede
- mais detalhes ao longo do curso

Modelo OSI-ISO

□ ISO - International Organization for Standards

X

- OSI Open Systems Interconnection
- □ Modelo em 7 camadas:

OSI
Aplicação
Apresentação
Sessão
Transporte
Rede
Enlace

Física

TCP/IP

Aplicação

Transporte

Internet

Host-tonetwork

Princípio de projeto do Modelo OSI-ISO

- Uma camada deve ser criada se houver necessidade de abstração
- Camadas devem executar funções bem definidas
- A definição da camada deve levar em conta protocolos padronizados internacionalmente

Princípio de projeto do Modelo OSI-ISO

- Os limites de cada camada devem ser escolhidos a fim de reduzir o fluxo de informação transportada entre as interfaces;
- O número de camadas deve ser suficientemente grande para que funções distintas não precisem ser desnecessariamente colocadas na mesma camada e suficientemente pequeno para que o projeto não se torne difícil de controlar;

A Camada Física

□ Especificação das interfaces mecânicas, elétricas e procedurais

A Camada de Enlace de Dados

- Transformar um canal de transmissão bruta de dados em uma linha que pareça livre de erros - controle de erro
- Enquadramento de dados;
- Delimitação de quadros;
- Controle de fluxo acoplamento de velocidade de transmissão - transmisor / receptor

A Camada de Rede

- □ Controla a operação da sub-rede
- Roteamento
- □ Controle de congestionamento
- Contabilidade
- □ Interconexão de redes

A Camada de Transporte

- Aceitar dados da camada de sessão e dividi-los em unidades menores (pacotes);
- □ Gerenciamento de conexões:
 - o estabelecimento, encerramento e multiplexação;
- Primeira camada fim-a-fim;
- □ Controle de fluxo;

A Camada de Sessão

- □ Gerenciamento de sessões;
- □ Gerenciamento de tokens;
- □ Sincronização;

A Camada de Apresentação

- Sintaxe e semântica da informação a ser transferida
- Codificação dos dados
- □ Conversão de estruturas de dados

A Camada de Aplicação

- Contém uma série de protocolos comumente necessários;
- Protocolo de terminal virtual;
- □ Protocolo de transferência de arquivos;