Upute za rješavanje domaće zadaće

Domaca zadaca se predaje preko Teams platforme. Rok predaje je 14. prosinca 2022.u 11:59. Za predaju teorijskih zadatak možete skenirati rješenja ili ih natipkati uLATEX-u i sve ih zajedno predati u jednoj pdf datoteci. Programerski zadaci se pre-daju kao .cpp datoteke. tprusina@mathos.hr.

Zadatak 1 (20 bodova). Ivica je na ljetnim praznicima na moru i ostaje n dana u hotelu. Svaki dan u hotelu mu za ručak nude jedno od tri jela. i-ti dan u ponudi ima, jelo koje košta A[i] kn, jelo koje košta B[i] kn i jelo koje košta C[i] kn. Ako je Ivica na i-ti dan uzeo jelo A[i] onda ne smije uzeti jelo A[i+1]. Isto tako ako je uzeo B[i] onda ne smije jesti B[i+1]. Jednako vrijedi i ako je uzeo C[i] ne smije izabrati C[i+1]. Koliko najmanje kn mora Ivica imati ako će svaki dan uzeti točno jedno jelo od tri ponuđena za taj dan uzimajući u obzir da dva dana zaredom neće jesti isto jelo. Svoje rješenje implementirajte kao funkciju

```
int vacation(const vector<int> &A,
    const vector<int> &B,
    const vector<int> &C);
```

koja u vremenu $\Theta(n)$ vraća najmanji broj kn koje Ivica mora imati da ruča svaki dan. Vektori A, B i C će uvijek biti jednake duljine i ne duži od 10^5 .

Primjeri

Input	Output
$A = \{10, 20, 30\}$	
$B = \{40, 50, 60\}$	90
$C = \{70,80,90\}$	
$A = \{2, 6, 3\}$	
$B = \{1, 3, 1\}$	7
$C = \{3, 6, 2\}$	
$A = \{6, 8, 2, 7, 4, 2, 7\}$	
$B = \{7, 8, 5, 8, 6, 3, 5\}$	25
$C = \{8, 3, 2, 6, 8, 4, 1\}$	

Zadatak 2 (10 bodova). Binomni koeficijent $\binom{n}{k}$ je broj na koliko načina možemo izabrati podskup s k elemenata od skupa koji ima n elemenata i dan je formulom

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1},$$
$$\binom{n}{0} = \binom{n}{n} = 1.$$

Implementirajte funkciju

koja u vremenu $\Theta(nk)$ računa

$$\binom{n}{k}$$
 mod 8647,

tj. ostatak pri dijeljenu $\binom{n}{k}$ sa 8647. Pretpostavite da vrijedi $0 \le k \le n \le 1000$.

Primjeri

Input	Output
n = 8, k = 5	56
n = 1000, k = 500	1310
n = 300, k = 56	8280
n = 120, k = 120	1
n = 12, k = 10	66

Zadatak 3 (30 bodova). Implementirajte funkciju

koja u vremenu $O(n^2)$ računa

$$B_0 = 1,$$

$$B_n = \left(\sum_{i=0}^{n-1} \binom{n-1}{i} B_i\right) \mod 8647,$$

gdje je $\binom{n-1}{i}$ binomni koeficijent.

Primjeri

Input	Output
n = 0	1
n = 1	1
n = 2	2
n = 3	5
n = 4	15
n = 5	52
n = 10	3564
n = 100	6522
n = 1000	7752