Exercices

1.1 Vector spaces

Exercice 1.1. Show that the set $\mathbb{R}_n[X]$ of polynomials of degree lower than $n \in \mathbb{N}$ is a vector space.

Exercise 1.2. Show that the set of functions y solution of

$$y''(x) + 5y'(x) + 3y(x) = 0 (1.1)$$

is a vector space.

Exercise 1.3. Let [M] be a $n \times n$ matrix. Show that the solution of

$$[\mathbf{M}]\mathbf{X} = \mathbf{0} \tag{1.2}$$

is a vector space.

Exercise 1.4. What is the dimension of the nullspace a of matrix

$$[\mathbf{M}] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}. \tag{1.3}$$

Exercice 1.5. Is the family of three vectors a basis of \mathbb{R}^3 ? If yes, is this basis

$$[\mathbf{\Phi}] = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
 (1.4)

Exercice 1.6. Let V be the subspace of \mathbb{R}^3 spanned by the two vectors $\mathbf{e}_1 = \begin{cases} \sqrt{1/2} \\ \sqrt{1/2} \end{cases}$

and
$$\mathbf{e}_2 = \begin{cases} 1 \\ 0 \\ 2 \end{cases}$$

Find an orthonormal basis of V including e_1

Exercice 1.7. Show that the following applications define inner products on the given vector space E.

•
$$E = \mathbb{R}^n, \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i.$$

•
$$E = \mathbb{R}^3 < \mathbf{x}, \mathbf{y} > = \mathbf{x}^t[\mathbf{A}]\mathbf{y}$$
 with

$$[\mathbf{A}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

•
$$E = \mathbb{R}^2 < \mathbf{x}, \mathbf{y} > = \mathbf{x}^t[\mathbf{A}]\mathbf{y}$$
 with

$$[\mathbf{A}] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Exercice 1.8. Show that the following applications define inner products on the given

•
$$E = \mathbb{R}^n, \langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i.$$

•
$$E = \mathbb{R}^3 < \mathbf{x}, \mathbf{y} > = \mathbf{x}^t[\mathbf{A}]\mathbf{y}$$
 with

$$[\mathbf{A}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

•
$$E = \mathbb{R}^2 < \mathbf{x}, \mathbf{y} >= \mathbf{x}^t[\mathbf{A}]\mathbf{y}$$
 with

$$[\mathbf{A}] = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

Exercice 1.9. Let $u = \{u_n\}_{n \in \mathbb{N}}$ be a numerical sequence on \mathbb{N} . u is said square

summable (or $u \in l^2(\mathbb{N})$) if:

$$u \in l^2(\mathbb{N}) \Leftrightarrow \sum_{n \in \mathbb{N}} u_n^2 < +\infty$$

- Show that $l^2(\mathbb{N})$ is a vector space.
- Show that $\langle u, v \rangle = \sum_{n \in \mathbb{N}} u_n v_n$ is an inner product on $l^2(\mathbb{N})$.
- Show that $\mathcal{N}(u) = \sqrt{\sum_{n \in \mathbb{N}} u_n^2}$ is a norm on $l^2(\mathbb{N})$.

$$\langle P, Q \rangle = \int_0^1 P(x)Q(x) dx$$

Show that this application is an inner product.

Let $\{P_0 = 1, P_1 = x, P_2 = x^2, P_3 = x^3\}$ be a basis of this space.

Is this basis orthonormal?