TOPOLOGIA GENERALE

EQUIVALENZE

- (Condizione equivalente per essere una base) Dato X insieme e $\mathcal{B} \subseteq \mathcal{P}(X)$ esiste una topologia su X di cui \mathcal{B} è una base se e soltanto se sono soddisfatte le seguenti due condizioni: $X = \cap \{B \mid B \in \mathcal{B}\}$ e per ogni coppia $A, B \in \mathcal{B}$ e per ogni punto $x \in A \cap B$ esiste $C \in \mathcal{B}$ tale che $x \in C \subseteq A \cap B$.
- (Condizioni equivalenti alla continuità) f è continua \Leftrightarrow controimmagine di aperti è aperta $\Leftrightarrow \forall A \subseteq X \quad f(\bar{A}) \subseteq f(A) \Leftrightarrow \forall x \in X \quad \forall U \text{ t.c. } f(x) \in U \quad \exists V \text{ t.c. } x \in V \quad f(V) \subseteq U.$
- (Condizioni equivalenti ad essere un omeomorfismo) $f:X\to Y$ continua. Allora f è un omeomorfismo $\Leftrightarrow f$ è chiusa e biggettiva $\Leftrightarrow f$ è aperta e biggettiva.
- (Condizioni che implicano essere immersione) Sia $f: X \to Y$ continua. Allora se f è chiusa ed iniettiva, essa è un'immersione chiusa. Se invece f è aperta ed iniettiva, allora è un'immersione aperta.
- (Condizioni equivalenti alla sconnessione) X è sconnesso $\Leftrightarrow X$ è unione disgiunta di due aperti propri $\Leftrightarrow X$ è unione disgiunta di due chiusi propri.

CONNESSIONE

- (Multilemma sulla connessione) Sia Y connesso e $f: X \to Y$ una funzione *continua* (?) e surgettiva tale che $f^{-1}(y)$ è connesso $\forall y \in Y$. Se f è aperta oppure se f è chiusa, allora anche X è connesso.
- (Connessione della chiusura) Sia Y un sottospazio connesso di X, e sia $Y \subseteq W \subseteq \bar{Y}$. Allora anche W è connesso.
- (Chiusura delle componenti connesse) Le componenti connesse sono chiuse.
- (Estensione delle componenti connesse) Supponiamo di avere $\{Z_{\lambda}\}_{{\lambda}\in{\Lambda}}$ t.c. Z_i è connesso $\forall i$ e tali che $\forall i,j\in{\Lambda}$ $\exists i=k_1,k_2,\ldots,k_n=j\in{\Lambda}$ tali che $Z_{k_l}\cap Z_{k_{l+1}}\neq{\emptyset}$. Allora $\cup_{{\lambda}\in{\Lambda}}Z_{\lambda}$ è connesso.

COMPATTEZZA

- (Heine-Borel) Un sottospazio $K \subset \mathbb{R}^n$ è compatto se e solo se è chiuso e limitato.
- (Multilemma sulla compattezza) Sia Y compatto e $f: X \to Y$ una funzione chiusa. Se $f^{-1}(y)$ è compatto $\forall y \in Y$, allora anche X è compatto.
- (Catene discendenti di compatti) Siano K_i chiusi e compatti tali che ... $\subset K_2 \subset K_1$ una catena discendente numerabile di chiusi non vuoti e compatti di uno spazio topologico. Allora $\cap_i K_i \neq \emptyset$.
- (Lemma di Wallace) X,Y spazi topologici. $A\subseteq X,B\subseteq Y$ sottospazi compatti e $W\subset X\times Y$ un aperto tale che $A\times B\subseteq W$. Allora $\exists U\subseteq X,V\subseteq Y$, aperti tali che $A\subseteq U,B\subseteq V,U\times V\subseteq W$.
- (Compatti hanno proiezioni chiuse) Se X è compatto, la proiezione $p: X \times Y \to Y$ è un'applicazione chiusa.
- (Localmente compatto \implies ammette un ricoprimento fondamentale in compatti).

COMPATTIFICAZIONI

- (La compattificazione di Alexandroff è T_2) \hat{X} è di Hausdorff se e solo se X è di Hausdorff ed ogni punto di X possiede un intorno compatto.
- (Immersioni aperte si estendono ad Alexandroff) $f: X \to Y$ immersione aperta. Allora l'applicazione $g: Y \to \hat{X}$ definita da $g(y) := \left\{ \begin{array}{cc} x & \text{se } y = f(x) \\ \infty & \text{se } y \notin f(X) \end{array} \right.$ è continua. In particolare ogni spazio topologico compatto di Hausdorff Y coincide con la compattificazione di Alexandroff di $Y \setminus \{y\} \quad \forall y \in Y$

ALTRI LEMMI

- (Continuità e ricoprimenti fondamentali) Sia $\mathcal A$ un ricoprimento fondamentale di X. Un'applicazione $f:X\to Y$ è continua $\Leftrightarrow \forall A\in \mathcal A$ la restrizione $f\mid_A:A\to Y$ è continua.
- ([0,1] è connesso e compatto) L'intervallo [0,1] per la topologia euclidea è connesso, connesso per archi e compatto.
- (Ricoprimenti localmente finiti) I ricoprimenti aperti ed i ricoprimenti chiusi localmente finiti sono fondamentali.

TOPOLOGIE COMUNI

- (Topologia discreta) $\tau = \mathcal{P}(X)$ quindi ogni insieme è aperto. è indotta dalla distanza discreta: $d(x,y) = \left\{ \begin{array}{ll} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{array} \right.$
- (**Topologia indiscreta**) $\tau = \{\emptyset, X\}$, la meno fine tra tutte le topologie.
- (Topologia euclidea su \mathbb{R}) Un sottoinsieme $U \subseteq \mathbb{R}$ è aperto se e solo se è unione di intervalli aperti.
- (**Topologia della semicontinuità superiore di** \mathbb{R}) Gli aperti non vuoti sono tutti e soli i sottoinsiemi della forma $(-\infty, a)$, al variare di $a \in \mathbb{R} \cup \{+\infty\}$

CHE PROPRIETÀ PASSANO A COSA?

Vediamo alcune proprietà degli spazi					
Proprietà	Sottospazi	Prodotti	Quozienti	Funzioni \mathcal{C}^0	Implica
T_0					
T_1					T_0
T_2	✓	Finiti			T_1
Cpt	Chiusi	Arbitrari		\checkmark	$(+T_2)$ chiuso
Conn		Arbitrari		✓	
Path-Conn		Finiti		\checkmark	Conn