Note

A Bound for the Number of Matroids*

DOMINIC J. A. WELSH

Merton College, Oxford, England, and the University of Michigan Ann Arbor, Michigan 48104

Communicated by R. Fulkerson

Received August 13, 1968

In this note I give a simple proof of the result of Crapo [1] that there exist at least 2^n non-isomorphic matroids on a set of n elements. In fact I prove the stronger results:

THEOREM 1. On a set of n elements there exist at least 2^n non-isomorphic transversal matroids.

This can clearly be proved from

THEOREM 2. On a set of n elements there exist at least $\binom{n}{r}$ non-isomorphic transversal matroids of rank r.

An easy consequence of the method of proof of Theorem 1 is

COROLLARY. There exist at least 2^{n-1} non-isomorphic, loop-free, transversal matroids on a set of n elements.

A matroid (S, \mathcal{M}) is a finite set S together with a family \mathcal{M} of independent subsets of S, such that

- (1) $\phi \in \mathcal{M}$.
- (2) If $A \in M$ and $B \subset A$ then $B \in \mathcal{M}$.
- (3) If X is any subset of S then all maximal independent subsets of X have the same cardinality.

We will denote the matroid (S, \mathcal{M}) by \mathcal{M} where there is no possibility of confusion. A base of M is any maximal independent subset of S. Two matroids \mathcal{M}_1 , \mathcal{M}_2 on S are said to be isomorphic (written $M_1 \simeq M_2$), if

^{*} Research supported in part by a grant from the Office of Naval Research.

314 WELSH

there is a 1-1 map f on S onto itself such that $A \in \mathcal{M}_1$ if and only if $f(A) \in \mathcal{M}_2$. A set X is dependent if it is not independent, and a circuit of a matroid is a minimal dependent set. An element x is called a loop of \mathcal{M} if the singleton subset $\{x\}$ is not a member of \mathcal{M} . Whitney [2] shows that a matroid is determined up to isomorphism by its bases or by its circuits. For a fuller discussion of matroids we refer to [2] or Tutte [3].

If $A = (A_1, ..., A_m)$ is any collection of subsets of S, a subset $S = (e_1, ..., e_p)$ of distinct elements of S is a partial transversal of \mathcal{A} if there exists a bijection σ on (1, ..., p) into (1, ..., m) such that

$$e_i \in A_{\sigma(i)}$$
 $(i = 1,..., p).$

Edmonds and Fulkerson [4] and Mirsky and Perfect [5] prove the following important result:

If \mathscr{A} is a finite collection of subsets of the finite set S then the family $\mathscr{F}(A)$ of partial transversals of \mathscr{A} form the independent sets of a matroid on S. We call $\mathscr{F}(A)$ the transversal matroid of the family \mathscr{A} .

More generally an arbitrary matroid (S, \mathcal{M}) is called a *transversal* matroid if and only if there exists some family \mathcal{A} of subsets of S such that \mathcal{M} is exactly the set of partial transversals of \mathcal{A} . For a fuller discussion of transversal matroids we refer to [4] and [5].

PROOF OF THEOREM 1: Let S be the set of the n elements (1, 2, ..., n). If $(i_1, i_2, ..., i_n)$ is any n-tuple of binary digits define $\mathcal{A}(i_1, i_2, ..., i_n)$ to be the family of sets $A_{i_1}, ..., A_{i_n}$ where

$$A_{i_k} = (1, 2, ..., k),$$
 where $i_k = 1$,
= ϕ , otherwise.

Let $\mathcal{M}(i_1, i_2, ..., i_n)$ denote the transversal matroid of the family $\mathcal{A}(i_1, ..., i_n)$. We assert

LEMMA. If the sequence $(i_1,...,i_n)$ is distinct from the sequence $(j_1,...,j_n)$ then the transversal matroids $\mathcal{M}(i_1,...,i_n)$ and $\mathcal{M}(j_1,...,j_n)$ are not isomorphic.

PROOF: The lemma clearly holds for n = 1. Assume it is true for n < N. Let

$$(i_1,...,i_N) \neq (j_1,...,j_N),$$

but suppose

$$\mathcal{M} = \mathcal{M}(i_1, i_2, ..., i_m) \approx \mathcal{M}' = \mathcal{M}(j_1, j_2, ..., j_n).$$

Suppose first that $i_N = j_N = 0$, so that

$$B \equiv (A_{i_1},...,A_{i_{N-1}}) \neq \mathcal{B}' \equiv (A_{j_1},...,A_{j_{N-1}}).$$

Let \mathcal{Q} , \mathcal{Q}' be the transversal matroids of \mathcal{B} and \mathcal{B}' , respectively, then

$$2 \simeq \mathcal{M} \simeq \mathcal{M}' \simeq 2'$$

which contradicts the induction hypothesis.

Suppose now that $i_N = 1$, $j_N = 0$. Then clearly N is a loop in \mathcal{M}' . However $N \in A_{i_N}$ and therefore is independent in \mathcal{M} . Hence since $\mathcal{M} \simeq \mathcal{M}'$ there must exist some i such that i is independent in \mathcal{M}' but is a loop in \mathcal{M} . But since $A_{i_N} = \{1, 2, ..., N\}$, i is independent in \mathcal{M} for all i. Thus we have a contradiction.

Finally let $i_N = j_N = 1$. Let k be the maximum integer for which $i_k \neq j_k$. Take $i_k = 1$, $j_k = 0$. Consider the sets A_{i_k} , $A_{i_{k-1}}$,..., A_{i_N} . For notational reasons suppose that the non-null members of this collection are

$$(1, 2, ..., k), (1, 2, ..., k_1), ..., (1, 2, ..., k_p = N),$$

where $k < k_1 < k_2 < \dots < k_p = N$.

Clearly a set (x, y) of two elements is dependent in \mathcal{M} if and only if

$$k_{p-1} < x, y \leqslant k_p$$
.

Similarly a set of three elements (x, y, z) is dependent in \mathcal{M} if and only if

$$k_{p-2} < x, \ y, z \leqslant k_p \,,$$

and so on. Hence the matroids \mathcal{M} and \mathcal{M}' have exactly the same number of dependent sets of cardinality n for $1 \le n \le p-1$. Hence the circuits of \mathcal{M} which have cardinality exactly p are those p-subsets of k+1, k+2,...,n which properly contain no circuit of \mathcal{M} . But since $j_k=0$, the set of circuits of \mathcal{M}' of cardinality p contains all p-subsets of (k,k+1,...,n) which properly contain no circuit of \mathcal{M} . Since \mathcal{M} and \mathcal{M}' have the same number of circuits of cardinality strictly less than p we see that \mathcal{M} has fewer circuits of cardinality p than does \mathcal{M}' . Hence \mathcal{M} and \mathcal{M}' cannot be isomorphic. This completes the proof of the lemma.

Since the number of distinct n-tuples of binary digits is 2^n the theorem follows.

PROOF OF THEOREM 2: Let $(i_1, ..., i_n)$ be any *n*-tuple of zeros and ones containing exactly r non-zero entries. It is easy to see therefore that if J is any subset of the non-zero entries in $(i_1, ..., i_n)$ then

$$(1, 2, ..., J) \subset \bigcup_{k \in J} A_k$$
,

316 WELSH

which, by Hall's theorem [6], implies that the non-null members of the family $\mathscr{A} \equiv (A_{i_1}, ..., A_{i_n})$ has a partial transversal of length r or, equivalently, the non-null members of \mathscr{A} have a transversal. Thus all n-tuples with exactly r non-zero entries give rise to transversal matroids of rank r. By the previous lemma these are all non-isomorphic.

The proof of the corollary is very easy. Consider any *n*-tuple- $(i_1, ..., i_n)$. Then an element j, $(1 \le j \le n)$, can only be a loop if none of the family $A_{i_1}, ..., A_{i_n}$ contains j. Thus the *n*-tuple gives rise to a matroid with no loops if and only if $A_{i_n} = \phi$.

I close this note with the following conjectures. Let f(n) denote the number of non-isomorphic matroids on a set of n elements. It can be verified that the following holds, for small n.

I conjecture that

- (1) $f(m+n) \geqslant f(m) f(n)$,
- (2) $\lim_{n\to\infty} n^{-1}\log f(n) = \theta < \infty.$

By a fundamental theorem for subadditive functions, (2) will follow from (1) if it can be shown that $f(n) \leq k^n$ for some $k < \infty$.

REFERENCES

- H. H. CRAPO, Single-Element Extensions of Matroids, J. Res. Nat. Bur. Standards Sect. B 69 (1965), 55-65.
- H. WHITNEY, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), 509-533.
- 3. W. T. Turte, Lectures on Matroids, J. Res. Nat. Bur. Standards Sect. B 69 (1965), 1-48.
- J. EDMONDS AND D. R. FULKERSON, Transversals and Matroid Partitions, J. Res. Nat. Bur. Standards Sect. B 69 (1965), 147-153.
- L. MIRSKY AND H. PERFECT, Applications of the Notion of Independence to Problems of Combinatorial Analysis, J. Combinatorial Theory 2 (1967), 327-357.
- 6. P. Hall, On Representatives of Subsets, J. London Math. Soc. 10 (1935), 26-30.