COMPSCI 130 Design and Analysis of Algorithms

2 – Asymptotic Analysis

Big O

- Defined:
 - f(n) = O(g(n)) means $f(n) \le c g(n)$ for some c, all n
- The *asymptotic complexity* of f is upper bounded by g

Asymptotic Dominance

- At large scales, constant scaling of O(n²) curves is unchanged
- O(n) curves vanish in comparison

Upper and Lower Bounds

- Formally, O(g) defines an upper bound on complexity
- Other notation exists for
 - lower boundedness (big Ω);

 $f = \Omega(g)$ $\Rightarrow g = O(f)$ $\Rightarrow \exists c: f \ge cg$

– lower/upper boundedness (big Θ)

 $f = \Omega(g)$ $\Rightarrow f = O(g), f = \Omega(g)$ $\Rightarrow \exists c,d: dg \le f \le cg$

Common Usage

- Informally, we often use O to mean O, Ω , or Θ
 - Depends on context
 - Generically implies either O or Θ
- In literature, meaning is usually made explicit:
 - f is upper bounded by g
 - f has worst-case complexity of O(g)
 - f has best-case complexity of O(g) (i.e. $f = \Omega(g)$)
 - note: f possibly unknown!

Notation Propagation

- Even more notation has been devised to designate whether or not a bound is tight
 - bound is tight \Leftrightarrow f = O(g) and g = O(f)
 - little o, ω versus big O, Ω
- Nobody uses this outside textbooks
- Instead, tightness is made explicit

Simplifying

- Use the simplest expression
- E.g., lower order polynomials can be ignored because they are completely dominated by higher order polynomials
 - O(n) not O(n + c)
 - $O(n^2)$ not $O(n^2 + n + c)$

Growth of Various Functions

n	1	10	100	1000	10 ⁶
log(n)	0	1	2	3	6
√n	1	3.16	10	31.62	1000
n log(n)	1	10	200	3000	6 x 10 ⁶
n ²	1	100	10 ⁴	10 ⁶	1012
2 ⁿ	2	1024	~10³0	~10300	Forget it!

Rules of Thumb

- Drop constant factors
- Drop lower order polynomials
- Any polynomials dominate any logarithms
- Exponential functions (xⁿ) dominate polynomials
- xⁿ dominates yⁿ for x>y

A Word About Logarithms

- Conventionally, log means log₁₀
 - For this course, log usually means log₂
 - The distinction is unimportant in big 0 because $log_2(x) = log_k(x)/log_k(2)$
- log(n) is
 - the power to which you raise 2 to get n
 - the number of times you divide n by 2 to get to 1
 - max height of a binary tree with n nodes
 - number of bits required to represent n

Some Useful Identities

 $\begin{array}{ll} \log 2^{n} = n & 2^{\log n} = n \\ \log x^{y} = y \log x & (2^{x})^{y} = 2^{(xy)} \\ \log xy = \log x + \log y & 2^{x}2^{y} = 2^{(x+y)} \end{array}$

Example

 $g = n^{2}$ Divide f / g $= 1 + 2/n + 20/n^{2}$ < 23 for all n $f < 23 \text{ g} \Rightarrow f = O(g)$

 $f = n^2 + 2n + 20$

By inspection, we also have g = O(f)

Example

```
2<sup>n</sup> vs 3<sup>n</sup>

Claim: 2<sup>n</sup> = O(3<sup>n</sup>), but not the reverse.

Proof:
By inspection, 2<sup>n</sup> < c 3<sup>n</sup> is true for all n when c = 1 so 2<sup>n</sup> = O(3<sup>n</sup>).

Now, suppose 2<sup>n</sup> = O(3<sup>n</sup>). This implies 3<sup>n</sup> < c 2<sup>n</sup> for some c and all n.

Then
3<sup>n</sup>/2<sup>n</sup> < c for all n

but it is easy to see that
\lim_{n \to \infty} 3^n/2^n = \infty,
so we can always choose an n that contradicts our assumption. □
```

Example

Claim: $\log n$ is $O(\sqrt[4]{n})$ for all k, but not the reverse

Proof:

To start, raise both sides to the power of k.

We want c such that: $\log^n n \le c^k n$ $\log^n n \le c^k n$ $\log^n n / n \le c^k$ $\ln^k n / n \le (c \ln 2)^k$ Let 's find the maxima of the left hand side. Taking the derivative and setting to zero: $k \ln^{k+1} n / n^2 - \ln^k n / n^2 = 0$ $k \ln^{k+1} n = \ln^k n$ $k = \ln n$ $e^k = n$ A second derivative test will verify that this is a maximum and not a minimum.

Example (con't)

 $\begin{aligned} & \ln^k n/n & \leq (c \ln 2)^k \\ & \text{and we found that the LHS is maximized at } n = e^k. \end{aligned}$

[Rather than doing all of this again in reverse, note that we can easily show that the LHS has no minimum; this implies that we cannot find a constant c such that the inequality is reversed.]

The existence of a maximum completes the proof; plugging back in, we can also find the correct constant, c: $\begin{array}{ll} \ln^k e^k/e^k &= (c \ln 2)^k \\ k^k/e^k &= (c \ln 2)^k \\ k/(e \ln 2) &= c \end{array}$

When Constants Matter

- If crossover point is at a point with high enough costs, it may pay to mix algorithms e.g., use a simple n² sort inside recursive n log n sort when n gets very small
- If two algorithms have the same asymptotic costs, the one with the lower constants wins

Other Useful Formulas

 $n! \approx \sqrt{2\pi n} (n/e)^n$ (Stirling's approximation)

1 + 2 + ... + n = n(n+1)/2 (Gauss' formula)

 $1 + x + x^2 + x^3 + ... + x^n = (x^{n+1} - 1)/(x-1)$

 $1 + 1/2 + 1/3 + 1/4 + ... + 1/n = \ln n + O(1)$

Big O in Recurrence

- Be careful to not simplify O's in recurrence it does not reduce (constants matter!)
- Example

T(n) = T(n-1) + O(1)T(n) = O(1) + O(2) + ... += O(1) + O(1) + ...

= O(1) wrong!

A better notation might be T(n) = O(1 + 2 + ... + n)