

An Introduction to Querying Solr and Use of the IMPC Solr APIs

Marina Kan Data Engineer at EMBL-EBI <u>marinak@ebi.ac.uk</u>

20 May 2024

Before We Start...

- We will have both theoretical and practical sections.
- Practical part includes 7 exercises divided into 4 blocks.
- We will use Jupyter notebook to do exercises.
- We created an individual workspace for everyone. To access it:
 - Open the link: https://www.ebi.ac.uk/mi/impc/jupyter/
 - Use your email to log in.
 - Password was sent to you via email.
- If you have any problems, let us know in the chat.

What is Apache Solr?

- Solr is an open-source search platform.
 Some of the key features include:
 - Full-text search, that allow to perform complex queries.
 - Faceted search: users can filter search results based on different criteria or attributes.
- We use Solr to access IMPC data for several reasons:
 - It quickly finds what we're looking for in large amounts of data.
 - It provides precise search results, even in complex datasets.

Solr Cores

- Different Solr cores provide access to the IMPC data.
- Solr core is a specific collection of data. Each core has its own data structure and set of fields. Available Solr cores:

 We are going to work with genotype-phenotype and phenodigm cores during exercises.

IMPC Solr cores documentation: https://www.ebi.ac.uk/mi/impc/solrdoc/

How to Make Simplest Request in Browser?

Meaning: select all fields and first three docs from the statistical-result core.

 There are different Solr commands, but select is the only available command for the IMPC data.

How to Make Simplest Request in Browser?

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=*:*&rows=3

```
"responseHeader":{
 "status":0,
 "QTime":0,
 "params":{
    "q":"*:*",
   "rows":"3"}},
"response": {"numFound": 4841785, "start": 0, "docs": [
     "doc_id": "e6a2aa38e246824a75ed33ba5c783315",
     "allele_accession_id":"MGI:5707439",
     "allele_name": "targeted mutation 1.1, Velocigene",
     "allele_symbol": "Gprc6a<tm1.1(KOMP)Vlcg>",
     "classification_tag":"Not significant [level = 1e-04, pvalue = 1] ",
     "colony_id":"ET10010",
     "data_type":"categorical",
     "effect_size":6.30914826498463E-4,
     "female_control_count":799,
     "female_ko_effect_p_value":1.0,
     "female_ko_parameter_estimate":0.0,
     "female_mutant_count":4,
     "male_control_count":786,
     "male ko_effect_p_value":1.0,
     "male_ko_parameter_estimate":0.0,
     "male mutant count":2,
      "marker_accession_id":"MGI:2429498",
     "marker_symbol": "Gprc6a",
     "metadata":["Experimenter ID = 43|Location of test = Open bench|Number
       "Experimenter ID = 43|Location of test = Open bench|Number of animals
       "Experimenter ID = 43 Location of test = Open bench Number of animals
     "metadata_group":"a654d8c674f11e31045504723d61bff8",
     "p value":1.0,
      "parameter_name": "Forepaw - size",
      "parameter stable id": "IMPC CSD 040 002",
      "phenotype sex":["male",
       "female"],
      "phenotyping_center":"UC Davis",
     "pipeline_name":"UCD Pipeline",
      "pipeline stable id":"UCD 001",
      "procedure_name": "Combined SHIRPA and Dysmorphology",
      "procedure_stable_id":["IMPC_CSD_003"],
      "procedure stable key":[801],
      "statistical method": "Fisher Exact Test framework",
```

- Let's paste the request above to the browser...
- The output is JSON structured like this:
 - responseHeader = metadata:
 - Request status
 - Query type
 - Parameters used
 - response = data:
 - Total number of documents matched
 - Start of output relative to all documents
 - List of documents contents

"parameter_name": "Forepaw - size", "parameter_stable_id":"IMPC_CSD_040_002",

"phenotype sex": ["male",

"female"],

How to Make Simplest Request in Browser?

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=*:*&rows=3

```
"responseHeader":{
  "status":0,
                                                                  allele_accession_id
                                                                                                                             allele_symbol
                                                                                            allele_name
                                                                                                                                                     colony_id
                                                                                                                                                                       data_type
  "QTime":0,
  "params":{
    "q":"*:*",
                                                                                                 targeted
   "rows":"3"}},
"response": {"numFound": 4841785, "start": 0, "docs": [
                                                                                             mutation 1b.
                                                                          MGI:5609345
                                                                                               Helmholtz Lypla1<tm1b(EUCOMM)Hmgu>
                                                                                                                                                          LYPAB
                                                                                                                                                                      categorical
      "doc_id":"e6a2aa38e246824a75ed33ba5c783315",
     "allele_accession_id":"MGI:5707439",-
                                                                                                 Zentrum
      "allele_name":"targeted mutation 1.1, Velocigene",
                                                                                                Muench.
     "allele_symbol":"Gprc6a<tm1.1(KOMP)Vlcg>",
     "classification_tag":"Not significant [level = 1e-04, pva
                                                                                          endonuclease-
     "colony_id":"ET10010",
      "data_type":"categorical"
                                                                                                                                                                     adult-gross-
                                                                                                mediated
                                                                          MGI:6399913
                                                                                                                   Osbpl8<em1(IMPC)Tcp> TCPR1519_AEKV
      "effect_size":6.30914826498463E-4,
                                                                                              mutation 1,
                                                                                                                                                                              path
     "female_control_count":799,
     "female ko effect p value":1.0,
                                                                                           The Centre f...
     "female ko parameter estimate":0.0,
      "female mutant count":4,
                                                                                                 targeted
     "male control_count":786,
     "male_ko_effect_p_value":1.0,
                                                                                             mutation 1b,
     "male_ko_parameter_estimate":0.0,
                                                                                                Wellcome
                                                                                                              Raph1<tm1b(EUCOMM)Wtsi>
                                                                                                                                                                  unidimensional
                                                               2
                                                                          MGI:5637089
     "male_mutant_count":2,
                                                                                            Trust Sanger
      "marker_accession_id":"MGI:2429498",
     "marker_symbol": "Gprc6a",
                                                                                                      ln...
     "metadata":["Experimenter ID = 43|Location of test = Open
       "Experimenter ID = 43|Location of test = Open bench|Num
       "Experimenter ID = 43 Location of test = Open bench Num
      "metadata group": "a654d8c674f11e31045504723d61bff8",
      "p value":1.0,
```


Python Helper Function for Exercises

- In Jupyter notebooks which we will use for exercises, there is a helper Python function called solr_request.
- It takes two parameters: core name and dictionary of params.
- It will:
 - Output the generated URL
 - Report total number of results
 - Display results in an easy to read format. Note that large tables are scrollable horizontally.

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': '*:*', # Request all records.
        'rows': 3 # Request the first three rows
    }
)
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=%2A%3A%2A&rows=3

data_type	colony_id	allele_symbol	allele_name	allele_accession_id	
categorical	LYPAB	Lypla1 <tm1b(eucomm)hmgu></tm1b(eucomm)hmgu>	targeted mutation 1b, Helmholtz Zentrum Muench	MGI:5609345	0
adult-gross- path	TCPR1519_AEKV	Osbpl8 <em1(impc)tcp></em1(impc)tcp>	endonuclease- mediated mutation 1, The Centre f	MGI:6399913	1
unidimensional	MUFZ	Raph1 <tm1b(eucomm)wtsi></tm1b(eucomm)wtsi>	targeted mutation 1b, Wellcome Trust Sanger In	MGI:5637089	2

Requesting Specific Fields

- Some Solr cores have many dozens of fields.
- To save time and bandwidth, it makes sense to only request the fields you need.
- The f1 (field list) parameter controls which fields are returned.
- Warning: if you misspell field name, no error will be generated and this field will be silently omitted from the final result.

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': '*:*', # Request all records.
        'fl': 'marker_symbol,top_level_mp_term_name,effect_size,p_value',
        'rows': 3 # Request the first three rows
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=%2A%3A%2A&fl=marker_symbol%2Ctop_level_mp_term_name%2Ceffect_size%2Cp_value&rows=3

	marker_symbol	top_level_mp_term_name	effect_size	p_value
0	Lypla1	[skeleton phenotype]	NaN	NaN
1	Osbpl8	NaN	0.000000	1.000000
2	Raph1	[hearing/vestibular/ear phenotype]	0.154034	0.066499

Exercises Block A

Querying Specific Fields

- Data can be filtered by specifying field:value in the q (query) parameter.
- For example, to get the gene with the symbol Gprc6a, using the marker_symbol field, we can add
 marker_symbol:Gprc6a.

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': 'marker_symbol:Gprc6a', # Request Gprc6a records.
        'fl': 'marker_symbol,top_level_mp_term_name,effect_size,p_value',
        'rows': 3 # Request the first three rows
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=marker_symb
ol%3AGprc6a&fl=marker_symbol%2Ctop_level_mp_term_name%2Ceffect_size%2Cp_va
lue&rows=3

top_level_mp_term_name	marker_symbol	
[behavior/neurological phenotype]	Gprc6a	0
NaN	Gprc6a	1
[homeostasis/metabolism phenotype]	2 Gprc6a	2

Range Search

 An asterisk * may be used for either or both endpoints to specify an open-ended range query.

field:[* TO 100]	finds all field values less than or equal to 100.
field:[100 TO *]	finds all field values greater than or equal to 100.
field:[* TO *]	finds any document with a value between the effective values of -Infinity and +Infinity for that field type.

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': 'p_value:[0 T0 1e-4]', # Request p-value from 0 to 1e-4.
        'fl': 'marker_symbol,top_level_mp_term_name,effect_size,p_value',
        'rows': 3 # Request the first three rows
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=p_value%3A%5B0+TO+1e-4%5D&fl=marker_symbol%2Ctop_level_mp_term_name%2Ceffect_size%2Cp_value &rows=3

	effect_size	marker_symbol	p_value	top_level_mp_term_name
0	2.715391	Tbx22	7.228019e-08	[behavior/neurological phenotype]
1	-0.973679	Avpr1a	2.229254e-06	[behavior/neurological phenotype]
2	1.962857	Trarg1	1.889197e-09	[behavior/neurological phenotype]

Boolean Operators: AND/OR

- Search parameters can be combined using logical operators.
 - To match both conditions, you specify filter1 AND filter2
 - To match any one of the conditions, use specify filter1 OR filter2
- For example, to find documents with marker symbol Gprc6a and p-value less than 1e-4, you can use: marker_symbol:Gprc6a

 AND p_value:[0 T0 1e-4]

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': 'marker_symbol:Gprc6a AND p_value:[0 T0 1e-4]',
        'fl': 'marker_symbol,top_level_mp_term_name,effect_size,p_value',
        'rows': 3 # Request the first three rows
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=marker_symbol% 3AGprc6a+AND+p_value%3A%5B0+T0+1e-4%5D&fl=marker_symbol%2Ctop_level_mp_term_n ame%2Ceffect_size%2Cp_value&rows=3

top_level_mp_term_name	p_value	marker_symbol	effect_size	
[cardiovascular system phenotype, growth/size/	0.000000	Gprc6a	1.000000	0
[immune system phenotype, endocrine/exocrine g	0.000024	Gprc6a	2.307854	1
[hematopoietic system phenotype]	0.000088	Gprc6a	1.253108	2

Exercises Block B

How to Exclude Data

- Logical filters can be inverted by using the NOT operator, for example NOT marker_symbol:Gprc6a
- Tip: when you are combining multiple filters, it's best to use parentheses to make sure the operators are apply as you intend to.
- For example: (field1:valueA OR field1:valueB)AND (NOT field2:value)

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': 'NOT marker_symbol:Gprc6a', # Request Gprc6a records.
        'fl': 'marker_symbol,top_level_mp_term_name,effect_size,p_value',
        'rows': 3 # Request the first three rows
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=NOT+marker symbol%3AGprc6a&fl=marker_symbol%2Ctop_level_mp_term_name%2Ceffect_size%2C p_value&rows=3

	marker_symbol	top_level_mp_term_name	effect_size	p_value
0	Lypla1	[skeleton phenotype]	NaN	NaN
1	Osbpl8	NaN	0.000000	1.000000
2	Raph1	[hearing/vestibular/ear phenotype]	0.154034	0.066499

How to Deal with Null Values

- For different fields it is possible encounter **null** values
 - When working in Python (NumPy/Pandas), they are represented as NaN in tables.
- A null value means that there is no data in this field for a given document, or that for this document this field is not defined / not used.
- You can filter out null values by applying this range filter that we have seen before: field:[* TO *]

```
num_found, df = solr_request(
    core='statistical-result',
    params={
        'q': 'p_value:[* T0 *]', # Request p-value from 0 to 1e-4.
        'fl': 'marker_symbol,top_level_mp_term_name,effect_size,p_value',
        'rows': 3 # Request the first three rows
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=p_value%3A% 5B%2A+T0+%2A%5D&fl=marker_symbol%2Ctop_level_mp_term_name%2Ceffect_size%2C p_value&rows=3

top_level_mp_term_name	p_value	marker_symbol	effect_size	
NaN	1.000000	Osbpl8	0.000000	0
[hearing/vestibular/ear phenotype]	0.066499	Raph1	0.154034	1
[behavior/neurological phenotype]	1.000000	Ccdc50	0.000929	2

Query Responsibly!

- Do not request all the data, if you don't need everything.
- Optimize query performance by requesting only the necessary data to minimize data transfer and processing overhead:
 - Use filters.
 - Combine different filters together.
 - Include only relevant fields.
- During the query construction, first request small data (3-5 documents)
 to make sure it works correctly, and only then request all data that you need.
- Use pagination to avoid overwhelming the system with large data requests.

Pagination and Downloading

- If you want to request all the data from one core, do NOT execute solr_request function. It will return just a set number of documents (by default: 10), instead of returning everything.
- Use batch_request function to download the data. It retrieves results in several chunks.
- batch_size parameter is a size of chunk, that will be used for getting the data.

```
selr_request(
    core="statistical-result",
    params={
        "q": "*:*",
    }
)
```

```
batch_request(
    core="statistical-result",
    params={
        "q": "*:*",
    },
    batch_size=1000
)
```


How to Download the Data?

- To download the data, execute the batch_request function. And then choose format of your preferences.
- You can download data in different formats: JSON, CSV.
- To save dataframe as JSON use this:

```
df.to_json("example_df.json", orient="records")
```

 We can save as CSV, but note that fine structure such as lists and nested data will be lost. To save dataframe:

```
df.to_csv("example_df.csv", index=False)
```



```
batch_request(
    core="statistical-result",
    params={
        "q": "*:*",
    },
    batch_size=1000
)
```


Exercises Block C

Faceting

- In Solr, faceting is a feature that allows to categorize search results into different groups based on specified criteria.
- To make a faceting query, execute facet_request function to estimate counts types of the categories.
- Required parameters:
 - o 'rows': '0'
 - 'facet': 'on'
 - 'facet.field':'field name'
 - facet.limit specifies the maximum number of facets for a field that should be returned.
 - facet.mincount specifies the minimum counts required for a facet field to be included in the response.

```
num_found, df = facet_request(
    core='statistical-result',
    params={
        'q': '*:*',
        'rows': 0,
        'facet': 'on',
        'facet.field': 'zygosity',
        'facet.limit': 15,
        'facet.mincount': 1
}
```

Your request:

https://www.ebi.ac.uk/mi/impc/solr/statistical-result/select?q=*:*&
rows=0&facet=on&facet.field=zygosity&facet.limit=15&facet.mincount=
1

Number of found documents: 4070676

zygosity count_per_category

	_,,	_poiout
0	homozygote	2520286
1	heterozygote	1435388
2	hemizygote	101488
3	wildtype	13514

Exercises Block D

Conclusion

- Solr is an API for accessing IMPC data.
 - It consists of multiple cores, which contain different data types.
 - You can request specific fields and filter results according to a combination of conditions.
- You can make requests directly in browser when exploring,
 but wrapper functions make the querying process easier use them!
- Query responsibly: only request what you need and use pagination.

