Linear Algebra

Vectors

- Every real number can be used to represent a point on a line which is a 1-Dimensional space (1D), R1
- A pair of real numbers can be used to represent a point in a plane, which is a 2D space, R2
- A triplet of real numbers can be used to represent a point in the 3D space, R3

Definition: a vector of dimension n is a **ordered** collection of elements, called *vector* components

Notation: Vectors are usually represented by letters. In a typewritten word letters are usually written in **boldface**. In handwriting, the right arrow written above sometimes used to represent vectors. **We will underline vectors**.

Let $\underline{\mathbf{u}} \in \mathbb{R}^n$, the i-th component of the vector will be written as $u_i, i=1,...,n$

Vector Representation

Let
$$\underline{u} \in \mathbb{R}^2$$
, $\underline{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

Representation 1: Two ordered numbers

Representation 2: an arrow starting from the origin point going 3 units right and 1 up

Representation 3: A vector can also be a point in \mathbb{R}^2 with the coordinates $x_1 = 3, x_2 = 1$, the end point of the arrow starting from the origin.

Definition: Two vectors are equal if and only if the corresponding components are equal. Let $u, v \in \mathbb{R}^n$ $u = v \iff u_i = v_i$, for any $i = 1, \ldots, n$

Vectorial Addition

Definition: Let \underline{u} and $\underline{v} \in \mathbb{R}^n$. The vector $\underline{w} \in \mathbb{R}^n$, is the sum of \underline{u} and \underline{v} .

$$\underline{\mathbf{w}} = \underline{\mathbf{u}} + \underline{\mathbf{v}}$$
, if $\underline{\mathbf{u}}_i + \underline{\mathbf{v}}_i$, $\forall i = 1, \dots, n$ ($\underline{\mathbf{u}}$ and $\underline{\mathbf{v}}$ must belong to the same space)

Definition: The product of a scalar $\alpha \in \mathbb{R}$ and a vector $\underline{\mathbf{u}} \in \mathbb{R}^n$ is defined as:

$$\alpha \underline{u} = \begin{pmatrix} \alpha u_1 \\ \alpha u_2 \end{pmatrix}$$

Definition: Let $\alpha, \beta \in \mathbb{R}$ and \underline{u} and $\underline{v} \in \mathbb{R}^n$. The sum of the $\alpha \underline{u}$ and $\beta \underline{v}$ is called a **linear combination** of \underline{u} and \underline{v} :

$$\alpha \underline{u} + \beta \underline{v} = \begin{pmatrix} \alpha u_1 + \beta v_1 \\ \alpha u_2 + \beta v_2 \end{pmatrix}$$

Definition: The vector $\underline{u} \in \mathbb{R}^n$ with all of its components = 0, is called the **zero** vector $\underline{0}$

Graphical Representation of Vectorial Operations

Vectorial Addition

- 1. Draw a vector A to scale;
- 2. Draw a vector \underline{B} to scale, starting at the end of \underline{A} ;
- 3. Draw a line from the beginning of <u>A</u> to the end of <u>B</u>. The Angele can be measured and the size of R determined by scaling

Vectorial Multiplication by a scalar (scaling)

- 4. Draw a vector A to scale;
- 5. Scale it by n times, where n is the scalar, if n is negative, the process is called *negating*;
- 6. Conserve the direction of the initial vector \underline{A} .

Consider u, $v \in \mathbb{R}^n$ are on the same line, if and only if there exists two scalars α and $\beta \in \mathbb{R}$ such that $\alpha \underline{u} + \beta \underline{v} = \underline{0}$ with $\alpha \neq 0$ or $\beta \neq 0$

Vectorial Dot Product

Definition: Let us consider the vectors u, v Dot or Scalar Product is defined as:

$$\langle \underline{u}, \underline{v} \rangle = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n = \sum_{i=1}^n u_i v_i$$

If the Dot Product of two vectors is zero it means they are ortogonal

Properties of the dot product

$$\underline{u},\underline{v} \in \mathbb{R}^n, \forall \alpha \in \mathbb{R}$$

$$< \alpha \underline{u}, \underline{v} > = \alpha < \underline{u}, \underline{v} >$$

Proof:

$$<\alpha \underline{u},\underline{v}>=(\alpha u_1)v_1+(\alpha u_2)v_2+\dots(\alpha u_n)v_n=$$

$$\alpha(u_1v_1+u_2v_2+\ldots+u_nv_n)=\alpha<\underline{u},\underline{v}>$$

Bilinearity:

Length of a Vector

Let us consider
$$\underline{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
, $\underline{v} = \underline{u}$, $\underline{u}, \underline{v} \in \mathbb{R}^2$

$$\langle \underline{u}, \underline{v} \rangle = u_1 \cdot v_1 + u_2 \cdot v_2 + \ldots + u_n \cdot v_n = 9 + 16 = 5^2$$

Definition: The length of a vector $\underline{u} \in \mathbb{R}^n$ (also called the Euclidean Norm) is defined as:

$$||\underline{u}|| = \sqrt{\langle \underline{u}, \underline{v} \rangle}$$

Definition: A unit vector is a vector where the length equals 1. Let us consider $\underline{u} \in \mathbb{R}^n$, $||\underline{u} \in \mathbb{R}^n$, $||\underline{u}|| = 1$

Notation: Sometimes unit vectors are represented using a "hat" on tops, \hat{u}

Question: How do we transform a vector $\underline{u} \in \mathbb{R}^n, \underline{u} \neq \underline{0}$, whose $||\underline{u}|| \neq 1$ and $\neq 0$ into a unit vector?

Answer: We divide it by its length:
$$\underline{\hat{u}} = \frac{\underline{u}}{||\underline{u}||} \implies \underline{u} = \hat{u} ||\underline{u}||$$

Question: if the end points of <u>all</u> unit vectors in a plane (\mathbb{R}^2 space, 2D). What do we get?

Answer: A circle of radius 1, which is called the Trigonometric Circle

Let us consider $\underline{u} \in \mathbb{R}^2$, $||\underline{u}|| = 1$

$$\cos\theta = \frac{u_1}{||\underline{u}||}$$

$$\sin \theta = \frac{u_2}{||u||} \implies \underline{u} = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$$||\underline{u}|| = 1$$

$$\langle \underline{u}, \underline{v} \rangle = \cos \theta \cos \gamma + \sin \theta \sin \gamma = \cos(\gamma - \theta) = \cos \Psi = \cos(\angle(\underline{u}, \underline{v}))$$

 $\implies \cos(\langle (u, v) \rangle) = \langle u, v \rangle$

We did this demonstration for 2D space, but it is valid for all he other spaces, \mathbb{R}^n i.e, $\langle \underline{u}, \underline{v} \rangle = \cos(\angle(\underline{u}, \underline{v}))$, for: $\forall \underline{u}, \underline{v} \in \mathbb{R}^n$, that have $||\underline{u}|| = ||\underline{v}|| = 1$

How do we calculate the angle between two arbitrary vectors $\underline{u}, \underline{v} \in \mathbb{R}^n$, the lengths are $\neq 1$?

Let us consider $\underline{u}, \underline{v} \in \mathbb{R}^n$, $||\underline{u}|| \neq 1$, $||\underline{v}|| \neq 1$, $\underline{u}, \underline{v} \neq \underline{0}$

Monday, 19 February 2018

$$< \underline{u}, \underline{v} > = \left\langle \frac{||\underline{u}||}{||\underline{u}||} \cdot \underline{u}, \frac{||\underline{v}||}{||\underline{v}||} \cdot \underline{v} \right\rangle = \left\langle ||\underline{u}|| \cdot \frac{1}{||\underline{u}||} \cdot \underline{u}, ||\underline{v}|| \cdot \frac{1}{||\underline{v}||} \cdot \underline{v} \right\rangle =$$

$$= \left\langle ||\underline{u}|| \cdot \underline{\hat{u}}, ||\underline{v}|| \cdot \underline{\hat{v}} \right\rangle = ||\underline{u}|| \cdot ||\underline{v}|| < \hat{u}, \hat{v} > = ||\underline{u}|| \cdot ||\underline{v}|| \cos(\angle(\underline{u}, \underline{v}))$$

Lemma:

Let us consider $\underline{u},\underline{v} \in \mathbb{R}^n$, two arbitrary vectors $\underline{u},\underline{v} \neq \underline{0}$, $||\underline{u}|| \neq 1$, $||\underline{v}|| \neq 1$

$$\cos(\angle(\underline{u},\underline{v})) = \frac{\langle \underline{u},\underline{v} \rangle}{||u||\cdot||v||}$$

Lemma (Cauchy Schwarz Inequality):

$$|\langle \underline{u}, \underline{v} \rangle \leq ||\underline{u}|| \cdot ||\underline{v}||$$