ISA 414 – Managing Big Data

Lecture 14 – Text Mining (Part I)

Dr. Arthur Carvalho arthur.carvalho@miamioh.edu

Copyright © 2021 Arthur Carvalho

Lecture Objectives

- Learn how to prepare textual data for analysis
 - Bag of words approach
 - Key concepts
 - Term Frequency (TF)
 - Inverse Document Frequency (IDF)
 - Term Frequency Inverse Document Frequency (TFIDF)
 - Text cleaning
 - Stemming
 - Stop words

Lecture Instructions

- Download the notebook "Lecture 14.ipynb" available on Canvas
 - Open the above file with VS Code

Data Analysis

- Previous lectures
 - Data analytics problem: classification and regression
 - Modeling: decision trees, random forests
- Assumption in our analysis
 - Data are in tabular format
- ➤ What if the data are unstructured (e.g., textual)?
 - Can we still build models to make predictions?

Data Analysis

- Text is different
 - No predefined, uniformly applicable format
 - E.g., contrast a tweet against an article on the NY Times
 - Context dependent
 - *E.g.*, 'ring' can be a verb or a noun; 'incredible' can have positive or negative qualification; kkk = laughing in Portuguese
 - Spelling mistakes and grammatical errors may contaminate texts
 - Homonyms and synonyms increase the complexity of an analysis

Data Analysis

- > Text mining (analytics): deriving information from textual data
 - Many different tasks
 - Text categorization (e.g., spam filter next lecture)
 - Sentiment analysis (next lecture)
 - Text clustering (e.g., plagiarism checker)
 - Automatic summarization (e.g., "consensus" of several reviews)
 - Topic modeling (future classes)
 - Involves extensive preprocessing
 - Oftentimes, a tabular structure is imposed
 - Topic of this lecture
 - Let's build intuition first

Human Classifier: SPAM or NOT SPAM?

Greetings to you my friend,

I know this will come to you as a surprise because you do not know me.

I am John Alison and I work at Central Bank of Nigeria, packaging and courier department.

I got your contact among others from a search on the internet and I was inspired to seek your co-operation. I want you to help me clear this consignment that is already in Europe which I shipped through our CBN accredited courier agent. The content of the package is \$20,000,000 all in \$100 bills, but the courier company does not know that the consignment contains money.

All I want you to do for me now is to give me your mailing address, your private phone number, and credit card information so that I can deposit some money to cover your upfront costs.

Please, let me know your response as soon as possible. WE CANNOT WASTE THIS OPPORTUNITY.

With Love, john_alison444@yahoo.com

Human Classifier: SPAM or NOT SPAM?

Hi Professor Carvalho,

I first wanted to thank you for all the kind feedback we received on our project. We spent a lot of time on it, as I'm sure you did grading them, and I really appreciate your comments.

My grade is currently lingering around a B+ due to the difficulties I had in the first exam. I was wondering if the 90% cut off for an A- is a hard cut off, or if I receive say an 89.9, would that be an A-? I understand every professor has their own grading policies, but I just wanted to know for sure what I needed to score on the final to get an A or an A-.

Thanks again for a great semester, I really appreciate all the time you spend grading our assignments and working with us individually.

- How do you know that the first email is SPAM, but the second is not?
 - 1. Context
 - Requires deep understanding of the language
 - 2. Presence of certain keywords
 - \$20,000,000, credit, card, love
 - Other common keywords
 - Viagra, sex, chat, money, currency, bitcoin, ...
 - Bottom line: simply checking for the presence/absence of certain words can help with the classification task

- Based on the previous observation, we have one way of imposing a tabular structure
 - Rows = observations (textual documents)
 - Columns = individual words
 - Cells = some sort frequency measure (counting)
 - Example:

	Doc	the	hotel	has	one	bad	room	of	bathroom	is	other	good
	1	1	1	1	1	1	1	0	0	0	0	0
	2	1	1	0	0	1	1	1	0	1	0	0
0	3	1	0	0	1	1	0	0	1	1	1	1

- Terminology taken from the Information Retrieval (IR) domain
 - A piece of text is referred to as a document
 - Documents consist of items called terms, tokens or, plainly, words
 - Documents that belong together form a corpus
 - In document-oriented databases, like MongoDB, this is called a collection

Corpus -Document term, term, term, term, . . . Document term, term, term, term, . . .

- Our approach in this course
 - Raw documents form the basis of the analysis
 - Preprocessing is done to transform the raw texts into a tabular format
 - The constructed data sets are used in different analyses (next lecture)
 - Descriptive
 - Sentiment analysis
 - Word association
 - Statistical modeling
 - Classification/regression problems

Raw text (documents)

Variables

Analysis

- There are different ways of representing a document
- A well-known representation format is the "bag of words"
 - Each term, token, or word in a document is considered individually
 - Only counts of individual words matter
 - The syntax of the language is ignored
 - That is, grammar, word order, sentence structure
 - Simplistic, but still powerful approach

Bag of Words

- Counts of individual words will lead to the familiar tabular format
 - Document-Term Matrix (DTM)
 - Different ways of counting words
 - Within documents: term frequency (TF)
 - Across documents: inverse document frequency (IDF)
 - Within and across documents: term frequency + inverse document frequency (TFIDF)

Term Frequency (TF)

- Term frequency (TF) refers to the occurrence of words in a document
 - Binary TF
 - Frequency-based TF
 - Absolute
 - Normalized

- Binary term frequencies: indicates whether a term is present
 - All the occurrences of a word in a document count as one
 - Ideal for short documents like tweets
 - Example
 - Doc 1: the hotel has one bad room
 - Doc 2: the room of the hotel is bad
 - Doc 3: one bathroom is bad, the other bathroom is good

Doc	the	hotel	has	one	bad	room	of	bathroom	is	other	good
1	1	1	1	1	1	1	0	0	0	0	0
2	1	1	0	0	1	1	1	0	1	0	0
3	1	0	0	1	1	0	0	1	1	1	1

- Frequency-based term frequencies
 - Ideal for long documents like product reviews
 - Can be either absolute or normalized
 - Absolute: counts the number of occurrences of a word in a document
 - Normalized: counts the number of occurrences of a word in a document divided by the number of words in the document
 - Deals with documents of varying length

- Absolute term frequency
 - Example
 - Doc 1: jazz music has a swing rhythm
 - Doc 2: swing is hard to explain
 - Doc 3: swing rhythm is a natural rhythm

Doc	а	explain	hard	has	is	jazz	music	natural	rhythm	swing	to
1	1	0	0	1	0	1	1	0	1	1	0
2	0	1	1	0	1	0	0	0	0	1	1
3	1	0	0	0	1	0	0	1	2	1	0

- Normalized text frequency
 - Example
 - Doc 1 (length 6): jazz music has a swing rhythm
 - Doc 2 (length 5): swing is hard to explain
 - Doc 3 (length 6): swing rhythm is a natural rhythm

Doc	а	explain	hard	has	is	jazz	music	natural	rhythm	swing	to
1	0.166	0	0	0.166	0	0.166	0.166	0	0.166	0.166	0
2	0	0.2	0.2	0	0.2	0	0	0	0	0.2	0.2
3	0.166	0	0	0	0.166	0	0	0.166	0.332	0.166	0

Inverse Document Frequency (IDF)

- Term frequencies measure how popular words are inside documents
 - But not across documents
 - Incomplete metric
 - Example: the word "the" is likely to occur many times in many documents
 - Can you classify an email as SPAM based on the presence/absence of the word "the"?
 - Example: the word "Viagra" is likely to occur a few times in only a few documents
 - Is it an important term when classifying emails?

- The inverse document frequency (IDF) measures how rare words are in a corpus
 - A term is likely to represent a single document well if the term is rare in the corpus
- $\succ \text{Let } p(word) = \frac{\text{Number of documents containing the term "word"}}{\text{total number of documents}}$
 - Fraction of documents that contains the term 'word'
- $ightharpoonup IDF(word) = \log_2 \frac{1}{p(word)}$

- One can interpret IDF as a boost a term gets for being rare
 - Plot
 - Left region: a word receives high IDF score when it is very rare
 - Right region: IDF of very common words (less discriminatory)

Example

- Doc 1: jazz music has a swing rhythm
- Doc 2: swing is hard to explain
- Doc 3: swing rhythm is a natural rhythm

Doc	а	explain	hard	has	is	jazz	music	natural	rhythm	swing	to
# of docs	2	1	1	1	2	1	1	1	2	3	1
P(t)	0.66	0.33	0.33	0.33	0.66	0.33	0.33	0.33	0.66	1	0.33
IDF	0.58	1.58	1.58	1.58	0.58	1.58	1.58	1.58	0.58	0	1.58

Term Frequency Inverse Document Frequency (TFIDF)

TF measures the frequency of word occurrences in a document without reference to the corpus

> IDF indicates how rare words are in the corpus

- What about combining these two metrics?
 - TFIDF

- TFIDF(word; document) = TF(word, doc)*IDF(word)
 - IDF reduces the weight of common terms and inflates the weight of rare terms
 - Example: Absolute TFIDF
 - Doc 1: jazz music has a swing rhythm
 - Doc 2: swing is hard to explain
 - Doc 3: swing rhythm is a natural rhythm

	Doc	а	explain	hard	has	is	jazz	music	natural	rhythm	swing	to
	1	1	0	0	1	0	1	1	0	1	1	0
TF	2	0	1	1	0	1	0	0	0	0	1	1
	3	1	0	0	0	1	0	0	1	2	1	0
IE	F	0.58	1.58	1.58	1.58	0.58	1.58	1.58	1.58	0.58	0	1.58

- TFIDF(word; document) = TF(word, doc)*IDF(word)
 - IDF reduces the weight of common terms and inflates the weight of rare terms
 - Example: Absolute TFIDF
 - Doc 1: jazz music has a swing rhythm
 - Doc 2: swing is hard to explain
 - Doc 3: swing rhythm is a natural rhythm

	Doc	а	explain	hard	has	is	jazz	music	natural	rhythm	swing	to
	1	0.58	0	0	1.58	0	1.58	1.58	0	0.58	0	0
TFIDF	2	0	1.58	1.58	0	0.58	0	0	0	0	0	1.58
	3	0.58	0	0	0	0.58	0	0	1.58	1.16	0	0

- Which counting (frequency metric) should one use?
 - Hard to say without a context
 - TFIDF is one of the most popular metrics
 - Short documents: Binary TF
 - Documents with similar lengths: Absolute TF
 - Documents with drastically different lengths: Normalized TF
 - One can always try all metrics when making predictions!
 - Build one predictive model for each different DTM
 - Evaluate each model
 - Pick the most accurate one

TFIDF in Python

We shall use the (sub)module feature_extraction inside sklearn

```
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = [
    'jazz music has a swing rhythm',
    'swing is hard to explain',
    'swing rhythm is a natural rhythm',
]
vectorizer = TfidfVectorizer()
tfidf_result = vectorizer.fit_transform(corpus)
```


- Important technical points
 - The IDF formula used by sklearn is not the "textbook version"
 - They use smoothing techniques to avoid division by 0
 - The resulting TFIDF values are normalized
 - Technical details available at https://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
 - The data structure that stores the TFIDF values is called "sparse matrix"
 - It is a concise way of storing data since most TFIDF values are equal to 0 in practice
 - Look at today's notebook for a sample code on how to convert a sparse matrix to a data frame

- Note that not every single word in your corpus will be part of the DTM
 - By default, sklearn removes words of length one and punctuation marks
 - E.g., "a", "[!@#\$%^&*()]{}:;<>,.?/~`"
 - Moreover, all words are automatically converted to lowercase
 - One can further remove words that are not informative (too common)
 - These are called stop words
 - sklearn already comes with a stop-word list; use the argument stop_words = "english" in the function TfidfVectorizer (see today's notebook)
- > The above steps help decreasing the number of variables
 - Otherwise, a simple corpus can result in thousands of variables

- It is also commonplace to perform stemming
 - Stemming: reduce words to their roots
 - E.g., playing -> play
 - Not covered in this course (search for CountVectorizer)
- The 'bag of words' disregards word combinations, like 'bed and breakfast' or 'New York'
 - "BUS" = vehicle; "420" = code for drugs; "BUS 420" = FSB course
 - N-grams consider combinations of n words
 - Uni-grams, bi-grams, tri-grams, ...
 - Advantage: more information is brought to the analysis
 - Disadvantage: number of variables may become very large
 - Look at today's notebook for a sample code

- How can we use document-term matrices for predictive analytics?
 - From unstructured to structured data

Doc 1: you won \$1000000 dollars

(target: SPAM)

Doc 2: I love ISA 414

(target: NOT SPAM)

Doc 3: improve your life now: buy Viagra (target: SPAM)

Doc	1000000	414	buy	dollars	i	improve	isa	life	love	now	viagra	won	you	your	Target
1	0.4	0	0	0.4	0	0	0	0	0	0	0	0.4	0.4	0	SPAM
2	0	0.4	0	0	0.4	0	0.4	0	0.4	0	0	0	0	0	NOT SPAM
3	0	0	0.26	0	0	0.26	0	0.26	0	0.26	0.26	0	0	0.26	SPAM

Summary

- We learned techniques to preprocess textual data
 - Bag of words (tabular structure)
 - There are other ways of imposing a well-defined structure that take grammar into account
 - Word2Vec, FastText, ...
 - Beyond the scope of this course
- Next lecture: text mining (part II)

Copyright 2021 Arthur Carvalho. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed without explicit written consent.

