METODY ALGEBRAICZNE W INFORMATYCE

Lista 1

Zadanie 1.1. Obliczyć:

- (a) 134 div 26 oraz $134 \mod 26$.
- $134 \operatorname{div} (-26)$ oraz $134 \mod (-26)$.
- (c) (-134) div 26 oraz $(-134) \mod 26$.
- (d) (-134) div (-26) oraz (-134) mod (-26).
- 168 div 35 oraz 168 mod 35.
- $168 \operatorname{div} (-35)$ oraz $168 \mod (-35)$.
- (-168) div 35(g) oraz $(-168) \mod 35$.
- $(-168) \operatorname{div} (-35)$ $(-168) \mod (-35)$. oraz

Zadanie 1.2. Znaleźć wszystkie liczby całkowite a spełniające warunki:

(a)
$$\begin{cases} 25000 < a < 30000 \\ a \mod 131 = 125 \\ a \mod 1965 = 125 \end{cases}$$
 (b)
$$\begin{cases} 10000 < a < 15000 \\ a \mod 393 = 210 \\ a \mod 655 = 210 \end{cases}$$

Zadanie 1.3. Znaleźć wszystkie liczby całkowite b oraz r spełniające warunki:

(a)
$$\begin{cases} 534 \mod b = r \\ 534 \text{ div } b = 26 \end{cases}$$
(b)
$$\begin{cases} 741 \mod b = r \\ 741 \text{ div } b = -14 \end{cases}$$
(c)
$$\begin{cases} (-945) \mod b = r \\ (-945) \text{ div } b = -16 \end{cases}$$
(d)
$$\begin{cases} (-234) \mod b = r \\ (-234) \text{ div } b = 7 \end{cases}$$

(c)
$$\begin{cases} (-945) \mod b = r \\ (-945) \operatorname{div} b = -16 \end{cases}$$
 (d)
$$\begin{cases} (-234) \mod b = r \\ (-234) \operatorname{div} b = 7 \end{cases}$$

Zadanie 1.4. Znaleźć wszystkie liczby całkowite b oraz q spełniające warunki:

(a)
$$\begin{cases} 100 \mod b = 6 \\ 100 \text{ div } b = q \end{cases}$$
 (b)
$$\begin{cases} 340 \mod b = 17 \\ 340 \text{ div } b = q \end{cases}$$

Zadanie 1.5.

- (a) Mamy 5 kartek papieru. Niektóre z nich dzielimy na 5 części. Następnie niektóre z otrzymanych znów dzielimy na 5 części itd. Powtarzając to postępowanie kilka razy otrzymujemy pewną liczbę kartek. Czy tą liczbą może być 1991?
- (b) Mamy 7 kartek papieru. Niektóre z nich dzielimy na 7 części. Następnie niektóre z otrzymanych znów dzielimy na 7 części itd. Powtarzając to postępowanie kilka razy otrzymujemy pewną liczbę kartek. Czy tą liczbą może być 1991?

Zadanie 1.6. Znaleźć podstawę b taką, że w systemie pozycyjnym o podstawie b prawdziwe sa równości:

- (a) $(35)_b + (40)_b = (115)_b$,
- (b) $(425)_b (342)_b = (63)_b$,
- (c) $(216)_b \cdot (3)_b = (654)_b$,
- (d) $(736)_b : (6)_b = (121)_b$,
- (e) $(656)_b:(5)_b=(124)_b$,
- (f) $(1520): (12)_b = (123)_b$.

Zadanie 1.7. Znaleźć x takie, że

- (a) $(203)_x = 53$,
- (b) $(236)_x = (1240)_5$,
- (c) $(106)_x = (153)_7$,
- (d) $(324)_x = (10022)_3$,
- (e) $(541)_x = (2014)_8$,
- (f) $(364)_x = (3001)_4$.

Zadanie 1.8. Zapisać liczbę

- (a) 275, 4375,
- (b) 291,9375

w systemie o podstawie 8.

Zadanie 1.9. Zapisać liczbę

- (a) 2324, 05,
- (b) 762, 5

w systemie heksadecymalnym.

Zadanie 1.10. Obliczyć

(a)
$$(7306)_8 + (25645)_8 - (6774)_8 =$$

(b)
$$(425)_6 \cdot (54)_6 - (531)_6 \cdot (43)_6 =$$

(c)
$$(352)_6 \cdot (245)_6 =$$

(d)
$$(20671)_8 : (131)_8 =$$

(e)
$$(23213)_5: (32)_5 + (113)_5 \cdot (3)_5 =$$

(f)
$$(232011)_5: (104)_5 + (1234)_5 \cdot (322)_5 =$$

(g)
$$[(76)_8 \cdot (64)_8 - (55)_8 \cdot (37)_8] \cdot (44)_8 =$$

(h)
$$[(563)_8 + (217)_8] \cdot (15)_8 + [(2365)_8 - (636)_8] : (17)_8 =$$

(i)
$$(120111)_3: (102)_3 + (201)_3 \cdot (12)_3 =$$

(j)
$$(6325)_7 - (456)_7 - (150335)_7 : (23)_7 =$$

(k)
$$(3215)_7 \cdot (24)_7 - (11461)_7 : (25)_7 + (1532)_7 =$$

(l)
$$[(215)_8 + (532)_8] \cdot (16)_8 - [(11031)_8 - (527)_8] : (32)_8 =$$

(m)
$$[(351)_6 \cdot (14)_6 - (1153)_6 : (31)_6 - (150)_6] : (205)_6 =$$