Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Interpreting Streamflow Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the optcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

- 70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.
- 90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

- 30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value.
- 10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

Using the forecasts—an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Deeth between March 1 and July 31.

Ising the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter forecasts conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

			STREA	MFLOW	FORECAS	TS				
		<> FUTURE CONDITIONSWETTER>								
FORECAST POINT	FORECAST PERIOD	I 90%	70% 50 (1000AF) (10	% (Most P	robable)	30%	10%			
MARY'S RIVER nr Deeth	MAR-JUL	5.0	20.0	36	77	52	76	47		
	APR-JUL	8.0	17.0 I	31	74	45	67	42		
LAMOILLE CREEK nr Lamoille	MAR-JUL	6.0	16.0	24	79 i	32	43	31		
	APR-JUL	4.0	15.0	22	75	30	41	30		
NF HUMBOLDT RIVER at Devils Gate	MAR-IIII.	6.0	12.0	43	73	74	121	59		

For more information concerning streamflow forecasting ask your local SCS field office for a copy of "A Field Office Guide for Interpreting Steamflow Forecasts".

GENERAL OUTLOOK

- IDAHO -

SUMMARY

MAY 1, 1991
IN SPITE OF ABOVE NORMAL PRECIPITATION AND VERY
LITTLE SNOWMELT DURING APRIL, MOST BASINS IN CENTRAL
AND SOUTHERN IDAHO CONTINUE TO REPORT WELL BELOW
NORMAL SNOWPACKS. FORECASTS FOR MANY STREAMS CALL
FOR LESS THAN 60 PERCENT OF NORMAL RUNOFF. MANY
RESERVOIRS IN THE SOUTHERN HALF OF THE STATE CONTAIN
LESS THAN HALF OF THEIR NORMAL STORAGE. WHILE
NORTHERN IDAHO CAN EXPECT TO RECEIVE ADEQUATE WATER
SUPPLIES THIS YEAR, WATER USERS IN SOUTHERN AND
CENTRAL IDAHO SHOULD BE PREPARED FOR CRITICALLY SHORT
WATER SUPPLIES.

SNOWPACK

Although April continued the pattern of cool temperatures and frequent mountain snowfall established in March, most snowpacks in the southern half of the state are still well below normal. Snowpacks currently range from to 40 to 70% of average in the central mountains, 70 to 90% in eastern Idaho and the upper Snake River basin in Wyoming, and 80 to 120% in northern Idaho from the Clearwater basin northward. Cool temperatures during April have delayed snowmelt 3-4 weeks as compared to normal, especially in southern and central Idaho. Some basins along the southern edge of the state report near average snowpacks for May 1 as a result of the delayed snowmelt. The delayed runoff from the persisting snowpack should help extend limited water supplies a little later into the summer season.

PRECIPITATION

Cool temperatures and above average precipitation during April have improved soil moisture conditions in southern and central Idaho. Boise received 1.65 inches of rainfall during April, 134% of average for the month. Mountain SNOTEL stations reported above normal precipitation for the month as well, ranging from 130 to 170% of average across the state. driest areas were the Wood and Lost River basins, which received slightly below normal valley precipitation and slightly above normal mountain precipitation. Temperatures for the month were below normal in central and southern Idaho, with Boise reporting a 0.3 degree departure below average. National Weather Service 30 day outlook for May calls for above normal precipitation for northern Idaho and near normal precipitation for the southern part of the state, with near normal temperatures statewide.

RESERVOIRS

Reservoir levels across the state improved only slightly during April due to below normal runoff coupled with the onset of irrigation demand in many streams. Currently, reservoir storages are near to slightly above average in the northern part of the state and on the Snake River, above average in the Payette basin, and below to well below average elsewhere. The Payette basin reservoirs are not expected to fill totally, yet an adequate water supply is expected. The Snake system is not expected to fill either, although an adequate but tight supply is forecast. The Boise system is expected to achieve 50% refill, which will supply only 65% of the average irrigation demand. Extremely low storages continue to be reported in Magic (19% of average, 17% of capacity), Oakley (41% of average, 21% of capacity), and Salmon Falls Creek (36% of average, 16% of capacity). The combination of low carryover storage and low expected inflow paints a gloomy picture for water supply in these basins. Most reservoirs in the southern half of the state will be drawn down very low by the end of the summer. Water users should keep in touch with their local reservoir operators for more specific information.

STREAMFLOW

Most streams in the southern part of the state did not respond to snowmelt until late April, about 2-3 weeks later than normal. This delayed melt will shift the timing of runoff later into the summer season when it is needed the most. Streamflows during April were above average in northern Idaho, below average in southern and central Idaho, and near average in eastern Idaho and the upper Snake River basin. May-September forecasts are calling for near average runoff in northern Idaho, 25 to 65% in southern and central Idaho, and 60 to 80% of average in eastern Idaho and the upper Snake River basin. Water users in southern and central Idaho should be prepared for short water supplies and should keep in touch with their local irrigation districts for more specific information.

RECREATIONAL OUTLOOK

Continued mountain snowfall and cool temperatures during April are good news for those planning to float Idaho rivers this summer. Northern Idaho rivers should provide a long boating season, with plenty of big water thrills. In spite of the below normal snowpack in the central mountains, there will be adequate flows for the summer boating season in the Salmon River drainage. The Payette River basin will provide excellent recreational opportunities due to above average storage in Deadwood and Cascade Reservoirs. The Bruneau River in the southwest desert will have a short season with low flows. In summary, 1991 promises to provide a variety of water based recreation opportunities across the state.

Upper Columbia River Basin

May 1, 1991

WATER SUPPLY OUTLOOK

April precipitation was near normal in the Idaho panhandle, virtually assuring adequate water supplies for the coming spring and summer. Currently, snowpacks range from 75 to 125% of average in the basin. Reservoir storage is near average, and streamflow forecasts for the May-September period call for near to only slightly below normal flows for most streams. All these factors point to an adequate water supply for the Idaho panhandle in the 1991 season.

CT	DC	AMEL	OI.	CODE	CASTS

		(DRIER		FUTURE C	ONDITIONS		WETTER	> ;	
FORECAST POINT	FORECAST			- (CHANCE OF	EXCEEOING 4				
	PER100	90% (1000AF)		1	50% (M05T (1000AF)	PROBABLE) (Z AVG.)		30% (1000AF)	107 : (1000AF) :	25 YR. (1000AF)
				:	~ ~		:			
(OOTENAL at Leonia (1,2)	MAY-SEP	8410	9340	1	9760	127	1	10200	11100	7685
	MAY-JUL	7220	8010	;	8370	127	1	8730	9520	6585
CLARK FK at Whitehorse Rpds (1,2)	MAY-5EP	10500	11900	1 1	12500	106	i	13100	14500	11764
	MAY-JUL	9390	10600	1	11200	106	1	11800	13000	10538
PENO OREILLE LAKE inflow (1,2)	MAY-SEP	11800	13300	i	14000	108		14700	16200	12960
,	MAY-JUL	10600	12000	-	12600	108	1	13200	14600	11680
PRIEST or Priest River (1,2)	MAY-SEP	645	755	1	805	113	1	855	965	715
COEUR D'ALENE at Enaville (1)	MAY-SEP	330	490	1	560	103		630	790	543
	MAY-JUL	305	450	1	515	102	1	580	725	503
ST. JDE at Calder	MAY-SEP	905	980	1	1030	102	-	1080	1150	1008
	MAY-JUL	845	915	1	960	102		1010	1080	938
5POKANE nr Post Falls (1,2)	MAY-SEP	1360	1790	1	1980	101	1	2170	2600	1957
or entire the second second	MAY-JUL	1290	1700	1	1880	101	i	2060	2470	1859
				1			1			
				1			- 1			

	RESERVOIR STORAGE		(1000AF)		WATERSHEO SNOWPACK ANALYSIS					
RE5ERVOIR	USEABLE : CAPAC1TY:				HATERSHED	NO. COURSES				
		YEAR	YEAR	AVG.		AVG'D	LAST YR.	AVERAGE		
HUNGRY HORSE	3451.0	1648.0	2297.0	2040.0	Kootenai ab Bonners Ferry	52	147	122		
FLATHEAO LAKE	1791.0	1011.0	1206.0	929.0	Moyie River	3	168	133		
PENO OREILLE	1561.2	817.2	440.6	920.7	Pend Oreille River	119	151	105		
NOXON RAP105	335.0	308.9	317.0	186.3	Clark Fork River	83	153	93		
COEUR O'ALENE	291.2	277.2	392.2	317.2	Priest River	5	127	91		
PRIEST LAKE	97.7	75.0	89.0	74.4	Rathdrum Creek	1	0	0		
					Hayden Lake	0	0	0		
					Coeur d'Alene River	8	125	77		
					5t. Joe River	7	125	102		
					. Spokane River	15	125	91		
					Palouse River	0	0	0		

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

Clearwater River Basin

May 1, 1991

WATER SUPPLY OUTLOOK

April provided near normal precipitation over the Clearwater basin, virtually ensuring adequate water supplies for the coming season. Currently, snowpacks range from 85% of average in the Lochsa basin to 96% in the N.F. Clearwater basin. Consequently, May-September streamflow forecasts call for near to slightly below normal runoff, ranging from 79% of average for the Clearwater at Orofino to 87% for Dworshak Reservoir inflow. Reservoir storage is above normal in Dworshak Reservoir, which reports 127% of normal storage (84% of capacity). The whitewater boating season should be excellent on the Lochsa and Selway Rivers, which report 85 and 86% of normal snowpack, respectively.

				S	TREAMFLOW	FORECASTS					
		\ \	DRIER		FUTURE C	ONDITIONS	WE1	TER	>	1	
FORECAST POINT	FORECAST PERIOD	90%	70%	-	50% (MOST	EXCEEDING * PROBABLE) ; (% AVG.) ;	30%	1	0%		25 YR. (1000AF)
				:		;					
DWORSHAK RESERVOIR inflow (1)	MAY-SEP MAY-JUL	1630 1500	1920 1770		2050 1890	87 87	2180 2010		470 280		2366 2179
CLEARWATER at Orofino (1)	MAY-SEP MAY-JUL	2390 2260	3080 2910		3390 3200	79 79	3700 3490		390 140		4318 4045
CLEARWATER at Spalding (1,2)	MAY-SEP MAY-JUL	4070 3800	5000 4630		5430 5030	80 : 80 :	5860 5430		850 390		6787 6325
RESERVO	IR STORAGE		(1000AF)		 	WATER	SHED SNO	 √PACK AN	ALYSIS		
RESERVOIR	USEABLE :	** USE/				RSHFN		 √O. COURSES		YEAR	AS % OF
NEDERTOIN			YEAR			NOTICE		AAG.D	LAST	YR.	AVERAGE
DWORSHAK	3467.8	2900.1	3117.7	2276.0	Nort	h Fork Clearwa	ter	12	125		96
					Loch	sa River		4	146		86
					Selw	ay River		6	155		86
					Clea	rwater River		19	134		93

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Salmon River Basin

May 1, 1991

WATER SUPPLY OUTLOOK

Cool temperatures and much needed snowfall have continued to build the mountain snowpack in the Salmon River basin during April. Currently, snowpacks range from 70 to 92% of average in the basin. In spite of this improvement over last month, streamflow forecasts are still low, ranging from 60% of average for the Salmon at Salmon to 65% for the Salmon at Whitebird. While these forecasts should not significantly impact water-based recreation or other uses in the basin, all water users should be prepared for lower than normal water supplies and an earlier than normal return to low flow conditions.

				STI	REAMFLOW	FORECAST	S				
		<	- DRIER		FUTURE CO	ONDITIONS		WETTER	>	:	
FORECAST POINT	FORECAST PERIOD	90%	70% (1000AF)	: 50	0% (MOST	PROBABLE)	30%	10%		25 YR. (1000AF)
SALMON at Salmon (1)	MAY-SEP MAY-JUL	275 230	480 405		590 495	60 60	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	700 585	895 750		984 826
SALMON at White Bird (1)	MAY-SEP MAY-JUL	2990 2670	3730 3340		4120 3690	65 65		4510 4040	5220 4660		6363 5678
	RESERVOIR STORAGE	(1	 (000AF)		 ! !		WATERSHED	SNOWPACH	< ANALYSI	 [S	
DESCRIVATO	USEABLE :		BLE STORAGE	**		DOLLED		NO.		S YEA	R AS % O
RESERVOIR		THIS YEAR		AVG.		RSHED		COURS AVG 1		ST YR.	AVERAGI
					Salm	on River	ab Salmon	6	160)	70
					: Lemh	i River		7	167	'	92
					: Salm	on River	Total	24	175	5	74

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Weiser, Payette, and Boise River Basin May 1, 1991

WATER SUPPLY OUTLOOK

Near normal precipitation during April has improved the mountain snowpack somewhat over last month, but conditions are still well below normal. Currently, snowpacks range from 46% of average in the Weiser basin to 66% in the Boise basin. Reservoir storage is slowly increasing, with 117% of average storage in the Payette basin (70% of capacity) and 66% in the Boise basin (48% of capacity). May-September streamflow forecasts call for well below normal volumes, ranging from only 36 to 66% of average. While irrigation supply should be adequate in the Payette River basin, water users in the Boise system should expect only 65% of normal supply. All water users should keep in touch with their local irrigation district for more specific information.

STREAMELOW FORECASTS

	5TREAMFLOW FORECASTS										
		. (ORIER	FUTURE CO)ND1T10N5	WETTER	> ;				
FORECAST POINT	FORECAST PER100		70%	50% (MOST	PROBABLE) :	30% (1000AF)	10% : (1000AF) :	25 YR. (1000AF)			
WE15ER nr Weiser (1)	MAY-JUL	19.0	54	97	; 36 ;	141	235	272			
SF PAYETTE at Lowman	MAY-SEP MAY-JUL	200 170	225 191	240 205	52 .: 51 :	255 220	280 24 0	458 399			
OEAOWOOO RESERVOIR inflow (!)	MAY-JUL	48	60	69	53	78	90	129			
NF PAYETTE at Cascade (1,2)	MAY-SEP MAY-JUL	162 144	225 205	255	53 52	285 255	350 315	479 441			
NF PAYETTE nr 8anks (2)	MAY-SEP MAY-JUL	187 170	255 235	300 275	50 49	345 320	415 380	601 557			
PAYETTE nr Horseshoe 8end (1,2)	MAY-SEP MAY-JUL	450 410	670 610	; ; 775 ; 705	50 : 50 :	880 800	1100 1000	1551 1406			
8015E nr Twin Springs (1)	MAY-SEP MAY-JUL	325 275	375 325	1 400 350	66 ; 64 ;	425 375	475 425	602 544			
5F B015E at Anderson Rnch Om (1,2)	MAY-SEP MAY-JUL	138 121	215 193	250 225	49 : 48 :	285 255	365 330	507 466			
8015E nr 80ise (1,2)	MAY-SEP MAY-JUL	550 465	700 605	765 665	59 57	830 725	980 865	1295 1175			
	*****			i !							

	RESERVOIR STORAGE		(1000AF)		WATERSHEO 5NO	OWPACK AN	ALYSIS	
RE5ERV01R	USEABLE : CAPAC1TY:	** USE TH15 YEAR	A8LE STOR LAST YEAR	AGE ++	WATERSHEO	NO. COURSES AVG'D	THIS YEAR	R AS % OF
MANN CREEK	11.3	9.4	11.8	10.4	Mann Creek	1	1613	50
CASCAOE	703.2	503.6	607.5	411.7	Weiser River	4	836	46
DE ADWOOD	162.0	98.9	122.2	101.1	North Fork Payette	7	283	63
ANDERSON RANCH	464.2	173.4	309.6	327.2	South Fork Payette	7	178	63
ARROWROCK	286.6	33.2	94.9	214.9	Payette River Total	14	218	63
LUCKY PEAK	307.0	259.7	268.5	182.9	: Middle & North Fork Boise	7	142	66
LAKE LOWELL (DEER FLAT)	177.0	123.0	117.2	169.8	South Fork Boise River	6	138	66
					80ise River Total	14	165	66
					Canyon Creek	0	0	0

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Big Wood, Little Wood, Big Lost, and Little Lost River Basin

May 1, 1991

WATER SUPPLY OUTLOOK

"Too little too late" would best describe the March and April snowfall in the Wood and Lost River basins. Snowpacks have continued to improve during April but are still only 40 to 70% of average. May-September streamflow forecasts continue to reflect the low snowpack situation and call for only 25 to 70% of average flows. Extremely low storage in Magic reservoir (19% of average, 17% of capacity) further compounds the bleak outlook. All water users in the Wood and Lost River basins should be prepared for CRITICALLY SHORT WATER SUPPLIES, and should keep in touch with their local irrigation districts for more specific information.

STREAMFLOW FORECASTS

		1	OR1ER						> ;	
FORECAST POINT	FORECAST PER100	90% (1000AF)	70% (1000AF)	: 50%		PROBABLE)	1	30% (1000AF)	10% :	25 YR. (1000AF)
010 11000	050	0.1					1	•		
81G WOOO nr 8ellevue	MAY-SEP MAY-JUL	21 15.0	46 39		63 55	34 32		80 71	106 95	186 171
BIG WOOD bl Magic Oam (2)	MAY-SEP	10.0	40	i !	60	25	;	80 -	110	237
	MAY-JUL	6.0	34		53	24		72	100	221
LITTLE WOOD nr Carey	MAY-SEP MAY-JUL	29 25	38 33		44 39	55 55		50 45	59 53	80 71
81G LOST at Howell Ranch nr Chilly	MAY-SEP	107	124		135	65	-	146	163	208
	MAY-JUL	93	108	1	118	65	1	128	143	181
81G LOST bl Mackay Reservoir (2)	MAY-SEP MAY-JUL	82 63	97 77	1	107 87	59 59	-	117 97	132 111	182 148
LITTLE LOST by Wet Ck	MAY-SEP MAY-JUL	15.0 13.0	21 16.6		24 19.0	67 68	-	28 21	33 25	36 28
LITTLE LOST or Howe	MAY-SEP	22	25	1	27	71	-	29	33	38
	MAY-JUL	16.6	18.6	1	20	71		21	23	28

	RESERVOIR STORAGE		(1000AF)	;	WATERSH EO	SNOWPACK AND	ALYS1S	
RESERVO1R	USEABLE : CAPAC1TY:	** USE THIS YEAR	A8LE STOR LAST YEAR	AGE **	WATERSHEO	NO. COURSES AVG'O		EAR AS % DF
MAG1C	191.5	32.1	71.8	167.7	Big Wood ab Magic	9	187	62
LITTLE WOOD	30.0	19.3	27.5	24.6	Camas Creek	2	0	40
CAREY VALLEY		NO REPO	ORT		Big Wood Total	11	198	61
MACKAY	44.5	28.6	29.8	34.2	Little Wood River	3	0	55
					Fish Creek	0	0	0
					Big Lost River	5	241	63
					Little Lost River	3	280	73

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Willow Creek, Blackfoot, Upper Snake, and Portneuf River Basin

May 1, 1991

WATER SUPPLY OUTLOOK

Eastern Idaho and the upper Snake River basin in western Wyoming received slightly above normal precipitation during April. Cool temperatures have delayed snowmelt, and the mountain snowpack currently ranges from 58% of average in the Blackfoot basin to 104% in the Portneuf. The high snowpack figures are primarily the result of the lack of snowmelt as opposed to increased accumulation during April. Streamflow forecasts continue to call for below normal runoff, ranging from 73% for the Henrys Fork to 81% for the Teton above S. Leigh Creek. Reservoir storage is near normal (103% of average, 74% of capacity) for nine key reservoirs on the Snake mainstem. Water supplies should be adequate but tight for most water users on the Snake system this summer, but other basins may experience shortages. All water users should keep in touch with their local irrigation district for more specific information.

STREAMFLOW FORECA	AST5	
-------------------	------	--

		<	DRIER	FUTURE C	0N01T10NS	WETTER	> ;	
FORECAST POINT	FORECAST PER100	90% (1000AF)	70%	: 50% (MOST	PROBABLE) : (% AVG.) :	30%	10% (1000AF)	25 YR. (1000AF)
HENRYS FORK or Ashton (2)	MAY~SEP MAY-JUL	405 285	445 315	: 465 : 330	73 ¦ 73 ¦	485 345	515 365	639 449
HENRY5 FORK or Rexburg (2)	MAY-SEP MAY-JUL	795 610	925 705	1010	73 : 73 :	1100 835	1190 905	1 3 89 1055
FALLS nr Squirrel (1,2)	APR-JUL	245	285	300	80	320	355	373
TETON ab S Leigh Ck nr Driggs	MAY-SEP MAY-JUL	101 73	124 89	139	81 81	154 111	177 127	172 123
TETON nr St. Anthony	MAY-SEP MAY-JUL	300 235	325 255	345	79 : 79 :	365 285	390 305	434 342
SNAKE nr Moran (1,2)	APR-SEP	700	770	805	91	840	910	888
PALISAGES RESERVOIR inflow (1,2)	APR-SEP	2660	2950	3080	80	3210	3500	3852
SNAKE nr Heise (2)	MAY-SEP MAY-JUL	2270 1900	2760 2310	3030	80 80	3300 2770	3750 3140	3790 3173
SNAKE nr Blackfoot (1,2)	MAY-SEP MAY-JUL	3150 2490	3670 2920	3980	76 76	4290 3400	4820 3820	5243 4152
PORTNEUF at Topaz	MAY-5EP MAY-JUL	45 31	54 38	59	76 75	65 48	73 55	78 57
				1				

	RESERVOIR STORAGE		(1000AF)	1	WATERSHEO SNOWPACK ANALY515					
RESERVOIR		** USEABLE STORAGE ** TH15 LAST				NO. COURSES	TH15 YEAR AS % OF			
	1	_	YEAR	AVG.		AVG'0	LAST YR.	AVERAGE		
ISLAND PARK	127.6				Camas-Beaver Creeks	3	1096	69		
GRASSY LAKE	15.2	13.6	14.4	11.5	Henrys Fork River	11	207	83		
JACKSON LAKE	824.7	575.8	668.7	494.3	Teton River	9	187	92		
PAL15A0ES	1357.0	633.0	1301.8	871.8	Snake above Palisades	22	168	82		
AMERICAN FALLS	1700.0	1509.6	1447.0	1542.9	Snake above Jackson Lake	5	179	90		
BROWNLEE	975.3	970.1	953.0	515.9	Gros Ventre River	2	123	100		
8LACKF00T	348.7	121.8	190.8	274.6	Hoback River	5	123	78		
HENRYS LAKE	90.4	88.3	87.3	81.8	Greys River	4	111	70		
RIRIE	96.5	58.2	62.5	63.5	Salt River	5	2128	66		
					: Willow Creek	7	1729	67		
					: 	3	0	58		
					: : Portneuf River	2	0	104		
					; : Toponce Creek	0	0	0		

^{+ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Southside Snake River Basin May 1, 1991

WATER SUPPLY OUTLOOK

Cool temperatures have delayed snowmelt along the southern edge of the state 3-4 weeks later than normal. As a result, May 1 snow surveys show a potentially misleading "improvement" in snowpacks over last month, when expressed as percent of Currently, snowpacks range from 88% of average in Salmon Falls Creek basin to 106% above Oakley Reservoir. May-September streamflow forecasts, however, continue to call for well below normal volumes, ranging from 38% of average for Oakley Reservoir inflow to 65% for the Bruneau at Hot Springs. Very low reservoir storage in Salmon Falls and Oakley Reservoirs further compounds the bleak water supply outlook. All of these factors point to the possibility of critically short water supplies this summer. All water users should keep in touch with their local irrigation district for more specific information.

	STREAMFLOW FORECASTS									
		<	- DRIER -		FUTURE CO	NDITIONS	WETTER	>		
FORECAST POINT	FORECAST : PERIOD :	90%	70%	1 5	50% (MOST		30% (1000AF)	10%	;	25 YR. (1000AF
OAKLEY RESERVOIR inflow	MAY-SEP MAY-JUL	1.5 1.3	5.0 3.8		9.4 8.0		13.8 12.2	17.8 15.6		25 22
SALMON FALLS CK nr San Jacinto	MAY-SEP MAY-JUL	7.0 6.0	13.0 11.0	1	26 24	39 : 39 :	40 37	60 56		67 62
BRUNEAU nr Hot Spring	MAY-SEP MAY-JUL	71 68	102 96		122 115	65 ¦ 65 ¦	143 134	173 162		188 176
OWYHEE nr Gold Ck (2)	MAY-JUL	1.4	4.6		8.3	58	12.0	17.4		14.4
OWYHEE nr Owyhee (2)	MAY-JUL	8.0	24	i	34	59	45	60		58
OWYHEE nr Rome	MAY-JUL	20	48		88	39	128	188		223
OWYHEE RESERVOIR inflow (1,2)	MAY-SEP MAY-JUL	16.0 19.0	67 56	1	109 97	42 42	152 138	2 45 230		260 232
RESERVO:	IR STORAGE	(1	1000AF)			WATERSI	IED SNOWPAC	CK ANALYS	SIS	
DESERVATO	USEABLE :				NO.		THIS YEAR AS			
RESERVOIR -		THIS YEAR	LAST YEAR	AVG.	WATER	SHED	AVG '			AVERAGE
OAKLEY	77.4	16.0	19.1	39.2	Raft	River	1	50	7	95
SALMON FALLS	182.6	29.2	46.4	81.4	Goose	-Trapper Creeks	1	55	0	106
DWYHEE	715.0	280.5	524.5	619.0	: Salmo	n Falls Creek	8	44	4	88
					: Brune	au River	5	32	0	98
					l Owyhe	e River	2		0	102

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Great Basin May 1, 1991

WATER SUPPLY OUTLOOK

In spite of above normal precipitation during April, the mountain snowpack continues to be well below normal. Currently, snowpacks range from 52% of average in the Montpelier Creek basin to 82% in the Mink Creek basin. Streamflow forecasts for the coming season continue to reflect these below normal snowpack conditions and range from 57% of average for the Bear River to 65% for Montpelier Creek near Montpelier. Storage is well below normal in Bear Lake and Montpelier Creek Reservoirs. All these factors point to the possibility of critically short water supplies in the Great Basin this summer. All water users should keep in touch with their local irrigation district for more specific information.

				ST	REAMFLOW						
		\	- DRIER		FUTURE CONDITIONS			WETTER>			
FORECAST POINT	FORECAST :	90%	70%	1 5	0% (MOST	PROBABLE) ;	30)%	10% (1000AF)	25 YI	
BEAR nr Harer	APR-SEP	24	116	:	178	57	2	240	330	31	
MONTPELIER CK nr Montpelier	MAY-SEP	2.3	5.3		7.3	65	9	3.3	12.3	11.	
CUB nr Preston	MAY-SEP MAY-JUL	7.0 6.0	21 19.0		31 28	61 61		41 37	55 50	5 4	
RESER\	/OIR STORAGE	(1	000AF)		 ; ; ;	WATE	RSHED S	NOWPACK	ANALYSIS		
DECEDIOID.	USEABLE :		BLE STORAG						YEAR AS %		
RESERVOIR	CAPACITY:	THIS YEAR	LAST YEAR	AVG.			COURSE AVG'D		YR. AVERA		
BEAR LAKE	1421.0	530.3	758.7 1	059.0	Bear	River (above	Harer)	12	191	75	
MONTPELIER CREEK	4.0	1.4	1.4	2.3	i Montp	elier Creek		6	370	52	
					: Mink	Creek		1	1141	82	
					: Cub F	River		3	460	80	
					: : Malao	f River		1	0	19	
					1						

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

Basin Outlook Reports

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

USDA, Soil Conservation Service Snow Survey Data Collection Office 3244 Elder Street, Room 124 Boise, Idaho 83705 (208) 334-1614 FTS 554-1614

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

All programs and services of the USDA Soil Conservation Service are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

NATIONAL AGRICULTURAL LIBRARY USDA GIZS45678 SERIAL RECORDS ROOM OOZ SELTSVILLE MD 20705

> 3244 Elder Street Room 124 Boise, ID 83705 OFFICIAL BUSINESS

Basin Outlook Reports

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

William (Bill) Richards
Chief
Soil Conservation Service
U.S. Department of Agriculture

Prepared by

Peter L. Palmer, Data Collection Office Supervisor Philip S. Morrisey, Hydrologist Susan R. Ellis, Statistical Assistant D. Rick Eastlund, Electronics Technician Bill J. Patterson, Electronics Technician

Released by

Paul H. Calverley State Conservationist Soil Conservation Service Boise, Idaho

aTD224