

Departamento de Ciência da Computação - DCC

Prof. Ricardo Martins

Site: https://ricardofm.com

Email: ricardo.martins@udesc.br

Ramal: 348<u>1-7823</u>

Sala: Bloco $F - 2^{\circ}$ piso (sala 8)

LINGUAGENS FORMAIS E AUTÔMATOS

<u>LFA0001</u>: Ciência da Computação 3ª fase

Aula: 04 Versão: 201

Não-Determinismo

- generalização dos modelos de máquinas
- de fundamental importância
 - * teoria da computação
 - * linguagens formais
- nem sempre aumenta o poder computacional
 - * de uma classe de autômatos
- em particular
 - * qq AF não-determinístico
 - * pode ser simulado por um AFD

Ideia básica

- o processamento de uma entrada
 - * resulta em um conjunto de novos estados

Visto como uma máquina

- fita + unidade de controle + função programa
- assume um conjunto de estados **alternativos**
 - * "multiplicação" da unidade de controle
 - * uma para <u>cada</u> **alternativa**
- processamento de um caminho
 - * não influi nos demais <u>caminhos alternativos</u>
 - * estado, símbolo lido e posição da cabeça (caminhos "independentes")

Definição

- Simplesmente... AFN
- 5-upla $M = (\Sigma, Q, \delta, q_0, F)$
- Σ: alfabeto (símbolos de entrada)
- Q : conjunto de estados (finito)
- δ: função programa (ou função de transição)
 - * $\delta: \mathbb{Q} \times \Sigma \to 2^{\mathbb{Q}}$
 - * função parcial
- q_0 : estado inicial do AFN, tal que $q_0 \in Q$
- F: conjunto de estados finais, tal que $F \subseteq Q$

Função programa

• Pode ser interpretada como um grafo finito direto

Processamento

- união dos resultados da função programa, aplicada a cada estado alternativo
- definição formal do comportamento
 - * é necessário estender a função programa
 - * argumento: <u>um conjunto</u> finito de <u>estados</u> e <u>uma palavra</u>

Função Programa Estendida

- Seja M = $(\Sigma, Q, \delta, q_0, F)$ um AFN
- $\underline{\delta}$: $\mathbf{2}^{\mathsf{Q}} \times \Sigma^* \to \mathbf{2}^{\mathsf{Q}}$ é indutivamente definida
 - * $\delta(P, \varepsilon) = P$
 - * $\underline{\delta}(P, aw) = \underline{\delta}(\bigcup_{q \in P} \delta(q, a), w)$
- portanto: $\underline{\delta}(\{q_1, q_2, ..., q_n\}, a) = \delta(q_1, a) \cup \delta(q_2, a) \cup ... \cup \delta(q_n, a)$

- Linguagem Aceita / Rejeitada
 - w ∈ ACEITA(M)
 - * pelo menos UM caminho alternativo aceita W
 - w ∈ REJEITA(M)
 - * todas as alternativas rejeitam W

• Exemplo: $L_5 = \{w \mid w \text{ possui } aa \text{ ou } bb \text{ como sub-palavra} \}$

•	$M_5 =$	({a,	b},	$\{q_0,$	q_1 ,	q_2	q_3	δ_{5}	q_0	$\{q_3\}$)
	ວ	10 /	, , , , , , , , , , , , , , , , , , ,	L IU		12,	ر دور	37	IU,	L IOI	,

δ_5	а	b		
q_0	$\{q_0,q_1\}$	$\{q_0,q_2\}$		
q_1	{q₃}	-		
q_2	-	{q ₃ }		
q_3	{q₃}	{q ₃ }		

- Exemplo: $L_6 = \{w \mid w \text{ possui aaa como sufixo}\}$
 - $M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \delta_6, q_0, \{q_3\})$

δ_{6}	а	b		
q_0	$\{q_0,q_1\}$	{q _o }		
q_1	$\{q_{2}\}$	ı		
q_2	{q₃}	-		
q ₃	-	-		

Determinismo x Não-Determinismo

- não-determinismo
 - * aparentemente, um significativo acréscimo ao poder computacional de um AF
 - * na verdade, não aumenta o poder computacional
- para cada AFN
 - * é possível construir um AFD equivalente
 - * que realiza o mesmo processamento
 - * (o contrário também é verdadeiro)

- Teorema: a classe dos AFD é equivalente à classe dos AFN
 - uma linguagem é regular sse é aceita por um AFN
 - A capacidade de reconhecimento dos AFN é a mesma dos AFD

Prova

- mostrar que
 - * a partir de um AFN M qualquer
 - * é possível construir um AFD M'
 - * que realiza o mesmo processamento
 - * (ou seja, M' simula M)

- Teorema: a classe dos AFD é equivalente à classe dos AFN
 - uma linguagem é regular sse é aceita por um AFN
 - A capacidade de reconhecimento dos AFN é a mesma dos AFD

Prova

- $AFN \rightarrow AFD$
 - * estados de M' que simulam as diversas combinações de estados alternativos de M
 - * demonstração de que M' simula M: indução no tamanho da palavra
- AFD \rightarrow AFN
 - * decorre trivialmente das definições...

- ◆ Prova AFN → AFD
 - seja $M = (\Sigma, Q, \delta, q_0, F)$ um AFN qualquer...
 - AFD M' = $(\Sigma, Q', \delta', \langle q_0 \rangle, F')$
 - Q'
 - * todas as combinações de estados de Q
 - * denotadas por $<q_1q_2...q_n>$
 - * a ordem dos elementos <u>não</u> identifica mais combinações... $\langle q_u q_v \rangle = \langle q_v q_u \rangle$
 - δ'
 - * $\delta'(\langle q_1...q_n \rangle, a) = \langle p_1...p_m \rangle \operatorname{sse} \delta(\{q_1,...,q_n\}, a) = \{p_1,..., p_m\}$
 - <q₀>
 - * estado inicial
 - F'
 - * conjunto $\langle q_1 q_2 ... q_n \rangle \in Q$ ' tal que alguma componente $q_i \in F$

- AFD M' simula AFN M?
 - indução no tamanho da palavra
 - deve-se mostrar que: $\delta'(\langle q_0 \rangle, w) = \langle q_1...q_u \rangle$ sse $\delta(\{q_0\}, w) = \{q_1,..., q_u\}$
 - Base de indução: | w | = 0
 - * $\delta'(\langle q_0 \rangle, \epsilon) = \langle q_0 \rangle \text{ sse } \delta(\{q_0\}, \epsilon) = \{q_0\}$
 - ✓ VERDADEIRO (por definição... função programa estendida)
 - Hipótese de indução: | w | = n, n ≥ 1
 - * suponha que $\delta'(<q_0>, w) = <q_1...q_u> sse \delta(\{q_0\}, w) = \{q_1,..., q_u\}$
 - Passo de indução: | wa | = n + 1, n ≥ 1
 - * $\delta'(\langle q_0 \rangle, wa) = \langle p_1...p_v \rangle \operatorname{sse} \delta(\{q_0\}, wa) = \{p_1,..., p_v\}$
 - > o que equivale, pro hipótese de indução...
 - $\delta'(\langle q_1...q_u \rangle, a) = \langle p_1...p_v \rangle \operatorname{sse} \delta(\{q_1,...,q_u\}, a) = \{p_1,..., p_v\}$
 - ✓ Logo, M' simula M para qq w

• Exemplo: $M_6 = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \delta_6, q_0, \{q_3\})$

 p_0

 p_1

 p_2

 p_3

δ_6 '	а	b		
<q<sub>0></q<sub>	<q<sub>0q₁></q<sub>	<q<sub>0></q<sub>		
<q<sub>0q₁></q<sub>	<q<sub>0q₁q₂></q<sub>	<q<sub>0></q<sub>		
<q<sub>0q₁q₂></q<sub>	<q<sub>0q₁q₂q₃></q<sub>	<q<sub>0></q<sub>		
<q<sub>0q₁q₂q₃></q<sub>	$< q_0 q_1 q_2 q_3 >$	<q<sub>0></q<sub>		

AFN