```
import pandas as pd
        import plotly.express as px
        import plotly.graph_objects as go
        from folium.features import Choropleth
        import folium
        from folium.features import Tooltip
        import seaborn as sns
        /opt/conda/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.1
        6.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.5
          warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>
In [3]:
        df = pd.read_csv("/kaggle/input/covid-world-vaccination-progress/country_vaccinations_by_manufacture
        r.csv")
In [4]:
        df.head(10)
Out[4]:
```

In [2]:

## Out[4]:

|   | location  | date       | vaccine            | total_vaccinations |
|---|-----------|------------|--------------------|--------------------|
| 0 | Argentina | 2020-12-29 | Moderna            | 2                  |
| 1 | Argentina | 2020-12-29 | Oxford/AstraZeneca | 3                  |
| 2 | Argentina | 2020-12-29 | Sinopharm/Beijing  | 1                  |
| 3 | Argentina | 2020-12-29 | Sputnik V          | 20481              |
| 4 | Argentina | 2020-12-30 | Moderna            | 2                  |
| 5 | Argentina | 2020-12-30 | Oxford/AstraZeneca | 3                  |
| 6 | Argentina | 2020-12-30 | Sinopharm/Beijing  | 1                  |
| 7 | Argentina | 2020-12-30 | Sputnik V          | 40583              |
| 8 | Argentina | 2020-12-31 | Moderna            | 2                  |
| 9 | Argentina | 2020-12-31 | Oxford/AstraZeneca | 3                  |

```
In [5]: df["location"].nunique()

Out[5]: 43

In [6]: df.isnull().sum()

Out[6]: location 0 date 0
```

```
location 0
date 0
vaccine 0
total_vaccinations 0
dtype: int64
```

```
In [7]:
    df.dtypes
Out[7]:
```

location object date object

vaccine object total\_vaccinations int64

dtype: object

It would be better to convert the Date column to the datetime type.

```
In [8]:
    df['date'] = pd.to_datetime(df['date'])
```

In our dataset, the Total Vaccinations represent the cumulative sum of vaccinations up to that date. To express the usage of

```
In [9]:
    data=pd.DataFrame(columns=['Country', 'Vaccine', 'Total_vaccine'])
    for country in df["location"].unique():
        for vaccine in df["vaccine"].unique():
            filtered_data = df[(df['location'] == country) & (df['vaccine'] == vaccine)]
            total_count = filtered_data['total_vaccinations'].max()
            data = pd.concat([data, pd.DataFrame({'Country': [country], 'Vaccine': [vaccine], 'Total_vaccine': [total_count]})], ignore_index=True)
```

```
In [10]: data.head(10)
```

## Out[10]:

|   | Country   | Vaccine            | Total_vaccine |
|---|-----------|--------------------|---------------|
| 0 | Argentina | Moderna            | 6507561       |
| 1 | Argentina | Oxford/AstraZeneca | 25977231      |
| 2 | Argentina | Sinopharm/Beijing  | 28322602      |
| 3 | Argentina | Sputnik V          | 20405678      |
| 4 | Argentina | CanSino            | 610540        |
| 5 | Argentina | Pfizer/BioNTech    | 14681054      |
| 6 | Argentina | Johnson&Johnson    | NaN           |
| 7 | Argentina | Novavax            | NaN           |
| 8 | Argentina | Sinovac            | NaN           |
| 9 | Argentina | Covaxin            | NaN           |

In [11]: data.dropna(axis=0,inplace=True)

In [12]:

data.head(20)

Out[12]:

|    | Country   | Vaccine            | Total_vaccine |
|----|-----------|--------------------|---------------|
| 0  | Argentina | Moderna            | 6507561       |
| 1  | Argentina | Oxford/AstraZeneca | 25977231      |
| 2  | Argentina | Sinopharm/Beijing  | 28322602      |
| 3  | Argentina | Sputnik V          | 20405678      |
| 4  | Argentina | CanSino            | 610540        |
| 5  | Argentina | Pfizer/BioNTech    | 14681054      |
| 10 | Austria   | Moderna            | 1585063       |
| 11 | Austria   | Oxford/AstraZeneca | 1588222       |
| 15 | Austria   | Pfizer/BioNTech    | 14584985      |
| 16 | Austria   | Johnson&Johnson    | 363548        |
| 17 | Austria   | Novavax            | 3682          |
| 20 | Belgium   | Moderna            | 4267394       |
| 21 | Belgium   | Oxford/AstraZeneca | 2846716       |
| 25 | Belgium   | Pfizer/BioNTech    | 17451842      |
| 26 | Belgium   | Johnson&Johnson    | 425639        |
| 27 | Belgium   | Novavax            | 36            |
| 30 | Bulgaria  | Moderna            | 491663        |
| 31 | Bulgaria  | Oxford/AstraZeneca | 478541        |

```
In [13]:
      data_2=pd.DataFrame(columns=['Country', 'Vaccine'])
      data["Total_vaccine"] = pd.to_numeric(data["Total_vaccine"], errors="coerce")
      for country in data["Country"].unique():
         new_data = data[data["Country"] == country]
         max_vaccine = new_data.loc[new_data["Total_vaccine"].idxmax(), "Vaccine"]
         ore_index=True)
In [14]:
```

data\_2.head()

Out[14]:

|   | Country   | Vaccine           |
|---|-----------|-------------------|
| 0 | Argentina | Sinopharm/Beijing |
| 1 | Austria   | Pfizer/BioNTech   |
| 2 | Belgium   | Pfizer/BioNTech   |
| 3 | Bulgaria  | Pfizer/BioNTech   |
| 4 | Chile     | Sinovac           |

<Axes: >



```
In [16]:
         number_of_days = (df["date"].max() -df["date"].min() ).days
In [17]:
         dtfrm=data[data["Vaccine"]=="Pfizer/BioNTech"]
         dtfrm = dtfrm.drop(dtfrm[dtfrm['Country'] == 'European Union'].index)
In [18]:
         dtfrm.head(10)
Out[18]:
            Country
                    Vaccine
                                   Total_vaccine
        5
            Argentina Pfizer/BioNTech 14681054
        15 Austria
                      Pfizer/BioNTech 14584985
                     Pfizer/BioNTech 17451842
        25
            Belgium
```

35 Bulgaria

65 Cyprus75 Czechia

85 Denmark95 Ecuador

Croatia

45 Chile

55

Pfizer/BioNTech 2852218

Pfizer/BioNTech 7910264

Pfizer/BioNTech 3921503 Pfizer/BioNTech 1188656

Pfizer/BioNTech 14604323 Pfizer/BioNTech 10259219

Pfizer/BioNTech 8552679

```
In [19]:
    dtfrm["average_vaccination_count"] = dtfrm["Total_vaccine"] / number_of_days
    dtfrm["average_vaccination_count"] = dtfrm["average_vaccination_count"].astype(int)
```

In [20]: dtfrm.head(15)

Out[20]:

|     | Country   | Vaccine         | Total_vaccine | average_vaccination_count |
|-----|-----------|-----------------|---------------|---------------------------|
| 5   | Argentina | Pfizer/BioNTech | 14681054      | 30521                     |
| 15  | Austria   | Pfizer/BioNTech | 14584985      | 30322                     |
| 25  | Belgium   | Pfizer/BioNTech | 17451842      | 36282                     |
| 35  | Bulgaria  | Pfizer/BioNTech | 2852218       | 5929                      |
| 45  | Chile     | Pfizer/BioNTech | 7910264       | 16445                     |
| 55  | Croatia   | Pfizer/BioNTech | 3921503       | 8152                      |
| 65  | Cyprus    | Pfizer/BioNTech | 1188656       | 2471                      |
| 75  | Czechia   | Pfizer/BioNTech | 14604323      | 30362                     |
| 85  | Denmark   | Pfizer/BioNTech | 10259219      | 21328                     |
| 95  | Ecuador   | Pfizer/BioNTech | 8552679       | 17781                     |
| 105 | Estonia   | Pfizer/BioNTech | 1488804       | 3095                      |
| 115 | Finland   | Pfizer/BioNTech | 9235420       | 19200                     |
| 125 | France    | Pfizer/BioNTech | 109187212     | 227000                    |
| 135 | Germany   | Pfizer/BioNTech | 126041243     | 262040                    |
| 145 | Hong Kong | Pfizer/BioNTech | 8879482       | 18460                     |

```
color=["Lightblue", "Purple", "Green", "Orange", "darkgoldenrod", "tan", "Gray", "Blue", "Pink", "Lightgree
n"]
dtfrm["average_vaccination_count"].sort_values(ascending=False).head(10).plot(kind="bar",color=color)
```



```
In [23]:
    number_of_vaccines = data.groupby('Vaccine')['Country'].nunique()

In [24]:
    number_of_vaccines.sort_values(ascending=False).plot(kind="bar",color="r")

Out[24]:
```



<Axes: xlabel='Vaccine'>

## **Preprocessing data**

```
In [1]: # import libraries
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          import plotly.express as px
          plt.rc('font', size=10)
          %matplotlib inline
In [2]: # import dataset from CSV
          vac = '../input/covid-world-vaccination-progress/country_vaccinations.csv'
          manu = '../input/covid-world-vaccination-progress/country_vaccinations_by_manufacturer.csv'
          df_vac = pd.read_csv(vac, parse_dates= ['date'])
          df_manu = pd.read_csv(manu, parse_dates = [])
          df_manu.info()
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 35623 entries, 0 to 35622
       Data columns (total 4 columns):
       # Column Non-Null Count Dtype

O location 35623 non-null object

date 35623 non-null object

vaccine 35623 non-null object
        3 total_vaccinations 35623 non-null int64
       dtypes: int64(1), object(3)
       memory usage: 1.1+ MB
In [3]: df_vac.tail(5)
```

| Out[3]: |       | country  | iso_code | date           | total_vaccinations | people_vaccinated | people_fully_vaccinated | daily_vaccinations_raw | daily_vaccinatio |
|---------|-------|----------|----------|----------------|--------------------|-------------------|-------------------------|------------------------|------------------|
|         | 86507 | Zimbabwe | ZWE      | 2022-<br>03-25 | 8691642.0          | 4814582.0         | 3473523.0               | 139213.0               | 69579            |
|         | 86508 | Zimbabwe | ZWE      | 2022-<br>03-26 | 8791728.0          | 4886242.0         | 3487962.0               | 100086.0               | 83429            |
|         | 86509 | Zimbabwe | ZWE      | 2022-<br>03-27 | 8845039.0          | 4918147.0         | 3493763.0               | 53311.0                | 90629            |
|         | 86510 | Zimbabwe | ZWE      | 2022-<br>03-28 | 8934360.0          | 4975433.0         | 3501493.0               | 89321.0                | 100614           |
|         | 86511 | Zimbabwe | ZWE      | 2022-<br>03-29 | 9039729.0          | 5053114.0         | 3510256.0               | 105369.0               | 103751           |
|         | 4     |          |          |                |                    |                   |                         |                        | •                |

In [4]: df\_manu.head()

Out[4]:

|   | location  | date       | vaccine            | total_vaccinations |
|---|-----------|------------|--------------------|--------------------|
| 0 | Argentina | 2020-12-29 | Moderna            | 2                  |
| 1 | Argentina | 2020-12-29 | Oxford/AstraZeneca | 3                  |
| 2 | Argentina | 2020-12-29 | Sinopharm/Beijing  | 1                  |
| 3 | Argentina | 2020-12-29 | Sputnik V          | 20481              |

```
1 Argentina 2020-12-29 Oxford/AstraZeneca 3

2 Argentina 2020-12-29 Sinopharm/Beijing 1

3 Argentina 2020-12-29 Sputnik V 20481

4 Argentina 2020-12-30 Moderna 2

Close

In [5]: # Check how many SEA countries in dataset sea = ['Brunei', 'cambodia', 'India', 'Indonesia', 'Laos', 'Malaysia', 'Myanmar', 'Philippines', 'Singapore', 'Thailand', 'V df_vac[df_vac['country'].isin(sea)]['country'].unique() # 10 countries

Out[5]: array(['Brunei', 'India', 'Indonesia', 'Laos', 'Malaysia', 'Myanmar', 'Philippines', 'Singapore', 'Thailand', 'Vietnam'], dtype=object)
```