S.A.B.E.R. Encryptor (ASCON)

Product Guide

Murilo MULLER

2025-08-21

Overview

encryptor_system is a self-contained, single-clock hardware pipeline that encrypts a byte stream using **ASCON-128** and outputs a **1792-bit** framed packet suitable for downstream transmission (e.g., Wi-Fi). The frame contains: 23 ciphertext blocks $(23 \times 64 \, b)$, TAG $(128 \, b)$, Associated Data AD $(64 \, b)$, and NONCE $(128 \, b)$.

Internally, the design integrates: a byte \rightarrow 64 b packer (data_reg), control FSMs (fsm_SABER and drive_ascon), the ascon core, static ad_reg/key_reg, a nonce_gen+nonce_reg path, and a 1792-bit frame packer (cipher_reg).

Key Features

- ASCON-128 authenticated encryption flow (init, AD absorption, plaintext encryption, finalisation, tag).
- Fixed payload: 23 plaintext blocks (64 b each) per frame.
- Framed output: 56 words × 32 b (total 1792 b) + 1-cycle data_valid_o pulse.
- Single clock domain, active-high asynchronous reset.
- Embedded constants: KEY_CONST (128 b) and AD_CONST (64 b).
- Internally generated 128-bit NONCE for each frame.

Ports

Name	Dir	Width	Description
data_i	in	8	Incoming ECG byte stream (sampled internally).
$go_{-}i$	in	1	Start trigger for the system controller.
$reset_{-}i$	in	1	Asynchronous reset, active-high.
clock_i	in	1	System clock (see "Clock/Reset").
data_o	out	1792	Flattened frame $(56 \times 32 \mathrm{b})$, layout below.
data_valid_o	out	1	1-cycle pulse when data_o is valid/complete.
send_data_o	out	1	Strobe to request downstream send (from fsm_SABER).

Clock / Reset

- Clock: single clock on clock_i. Typical configuration: FREQ_HZ = 100 MHz.¹
- **Reset:** reset_i is asynchronous, active-high.

¹The IP metadata sets ASSOCIATED_RESET=reset_i and ASSOCIATED_BUSIF=frame_if for packaging.

Operation Sequence (Simplified)

- 1. Assert reset_i to clear internal state; deassert to start idle.
- 2. Pulse or assert go_i. The controller (fsm_SABER) begins one frame cycle:
 - Generates NONCE, loads AD/KEY/NONCE regs.
 - Feeds AD then plaintext blocks into the ASCON core via drive_ascon.
- 3. When the frame is complete, data_valid_o pulses for 1 cycle; data_o holds the 1792-bit packet.
- 4. send_data_o strobes for external transmission logic. The packer keeps the frame stable until internally cleared for the next cycle.

Frame Layout (1792b)

data_o is arranged as 56 little-endian 32-bit words (word 0 is data_o[31:0]). Mapping:

- Ciphertext blocks $(23 \times 64 \,\mathrm{b})$: words $\mathbf{0..45}$, two words per block: LSW first then MSW.
- TAG (128 b): words **46..49**.
- AD (64 b): words **50..51**.
- NONCE (128 b): words **52..55**.

Note: data_o remains stable after data_valid_o until the internal clear for the next frame.

Plaintext Byte Intake

- data_reg collects incoming bytes on data_i and emits 64-bit words every 8 bytes.
- After 181 bytes, it emits a final 64-bit word formed by the last 5 bytes plus padding 0x80_00_00.

Parameters & Constants

- KEY_CONST (128b): device key embedded at top level.
- AD_CONST (64 b): associated data embedded at top level (keep the trailing padding 0x8000 if modified).
- Total plaintext blocks per frame: 23.

Interfaces (IP Packaging Hints)

For IP Packager compliance:

- Mark clock_i as xilinx.com:signal:clock:1.0 with FREQ_HZ and ASSOCIATED_RESET=reset_i.
- Optionally associate data_o to a simple data interface, e.g., xilinx.com:signal:data:1.0 named frame_if, and set ASSOCIATED_BUSIF=frame_if.

Versioning & License

- Module: encryptor_system, Version: v1.1.
- License: **MIT**. This work was produced for the AMD Open Hardware University Design Competition 2025.

Contact

Author: Murilo MULLER.

Email: murimattosmuller@gmail.com

Linkedin: www.linkedin.com/in/murilomuller7

Project: S.A.B.E.R. — Secure AI-Based Encrypted ECG Rhythm-Monitoring.