Лабораторная работа №3.4.1 Диа- и парамагнетики Джокер Бэтмен, Б02-000, 12.09.2021

Введение

Цель работы: измерение магнитной восприимчивости диа- и парамагнитных образцов.

В работе используются: электромагнит, аналитические весы, милливеберметр, регулируемый источник постоянного тока, образцы.

Теоретическая справка

Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. Одним из классических методов таких измерений является т.н. метод Гюи. В нём используется длинный тонкий стержень, один из концов которого помещают в зазор электромагнита (обычно в область однородного поля), а другой конец — вне зазора, где величиной магнитного поля можно пренебречь. В этом случае закон изменения поля — от максимального до нулевого — будет несущественен.

Найдём выражение для силы, действующей со стороны магнитного поля на помещённый в зазор электромагнита цилиндрический стержень. Пусть площадь его сечения равна S, его магнитная проницаемость — μ , поле в зазоре — B_0 , а глубина, на которую стержень помещён в зазор, — x. Так как ток I через электромагнит остаётся постоянным, то сила, действующая на стержень со стороны магнитного поля, равна производной магнитной энергии системы по координате, взятой с противоположным знаком:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_I,$$

где $W_M(x)$ — магнитная энергия системы при $I={\rm const}$ (то есть при $B_0={\rm const}$) в зависимости от глубины погружения стержня x.

Объёмную плотность магнитной энергии можно найти по формуле:

$$W_M = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV,$$

где интеграл берётся по всему пространству.

Найдём теперь распределение магнитного поля в цилиндре. Рассмотрим сначала бесконечный стержень с проницаемостью μ , помещённый в перпендикулярное ему однородное поле $B_0 = \mu_0 H_0$, и найдём поле $B_{\rm cr}$ внутри него. В силу малости магнитной восприимчивости исследуемых образцов можно воспользоваться непрерывностью касательной компоненты H и считать, что внутри стержня $H_{\rm cr} = H_0$, потому $B_{\rm cr} = \mu B_0$. Тогда систему из стержня в зазоре электромагнита можно условно разбить на три части – вне электромагнита (I), в погружённой части стержня (II) и в электромагните вдали от стержня (III). В области I поле мало $(B_1 \approx 0)$, поэтому его вкладом в энергию можно пренебречь. В области II поле приближённо равно $B_2 \approx \mu B_0$, а в области III — $B_3 \approx B_0$.

При смещении цилиндра вглубь электромагнита на $\mathrm{d}x$ область II увеличивается в объёме на $\mathrm{d}V_2 = S\mathrm{d}x$, а область III уменьшается на $\mathrm{d}V_3 = -S\mathrm{d}x$. Распределение поля в пограничных участках между областями при этом почти не меняется. Тогда изменение магнитной энергии при таком смещении равно:

$$dW_M(dx) \approx \frac{B_2^2}{2\mu\mu_0} S dx - \frac{B_2^2}{2\mu_0} S dx = (\mu - 1) \frac{B_0^2}{2\mu_0} S dx.$$

Следовательно, искомая сила равна:

$$F_M = \left(\frac{\partial W_M}{\partial x}\right)_{B_0} \approx \chi \frac{B_0^2}{2\mu_0} S.$$

Знак силы зависит от знака восприимчивости $\chi = \mu - 1$: парамагнетики $(\chi > 0)$ *втягиваются* в зазор электромагнита, а диамагнетики $(\chi < 0)$ *выталкиваются* из него. Таким образом, измерив силу, действующую на образец в магнитном поле B_0 , можно рассчитать его магнитную восприимчивость.

Экспериментальная установка

Схема установки показана на рисунке 1. Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр его полюсов существенно превосходит ширину зазора, поэтому поле в его средней части достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного тока.

Градуировка электромагнита (связь между индукцией магнитного поля B в зазоре и силой тока I в обмотках) производится при помощи

Рис. 1 — Схема экспериментальной установки

милливеберметра. При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца оказывается в зазоре электромагнита, а другой – вне его, где индукцией магнитного поля можно пренебречь. При помощи аналитических весов определяется перегрузка $\Delta P = F$ – сила, действущая на образец со стороны магнитного поля.

Погрешности приборов: милливеберметра — половина цены деления шкалы, т.е. $\Delta\Phi=0.05$ мВб, электрических приборов — амперметра и весов — 0,5%+2 ед. мл. разряда.

Ход работы

Убедимся, что цепь питания электромагнита работает исправно. Ток I, протекающий через него, меняется в диапазоне от нуля до $I_{max} = 3,08$ А (минимальное используемое в работе значение силы тока $I_{min} = 0,30$ А).

Приступим к калибровке электромагнита. С помощью милливеберметра снимем зависимость магниного потока Ф, пронизывающего проб-

ную катушку, находящуюся в зазоре, от тока I ($\Phi=BSN$, где значение $SN=72~{\rm cm}^2=7,2\cdot 10^{-3}~{\rm m}^2$ – произведение площади сечения пробной катушки на число витков в ней – указано на установке (погрешностью его пренебрежём)). Для измерения магнитного потока необходимо сначала поместить пробную катушку в зазор электромагнита и записать показания милливеберметра Φ_1 при этом. Затем её нужно очень быстро убрать из зазора и записать показания милливеберметра Φ_2 . Разность $\Phi_1-\Phi_2$ и будет определять величину магнитного потока Φ через пробную катушку, откуда с лёгкостью можно найти соответствующую величину магнитного поля B. Проведём измерения при 8 различных значениях тока I. Все полученные данные занесём в таблицу 1. В дальнейшем будем учитывать также погрешность милливеберметра. При измерении $\Phi=\Phi_1-\Phi_2$ погрешность равна $\sigma_\Phi=\sqrt{\sigma_{\Phi_1}^2+\sigma_{\Phi_2}^2}=\sqrt{2}\Delta\Phi$, откуда погрешность определения индукции магнитного поля равна $\sigma_B=\frac{\sigma_\Phi}{SN}=\frac{\sqrt{2}\Delta\Phi}{SN}\approx 0,01~{\rm Tn}$. Погрешность измерения тока будет равна $\sigma_I=0,005I+0,02~{\rm A}$, также внесём её в таблицу.

Таблица 1 – Зависимость индукции магнитного поля B в зазоре электромагнита от тока I через обмотки

I, A	0,30	0,70	1,10	1,50	1,90	2,30	2,70	3,08
σ_I , A	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,04
Φ_1 , мВб	5,5	6,2	7,0	7,8	8,4	9,1	9,6	8,3
Φ_2 , мВб	4,8	4,5	4,3	4,2	3,9	3,7	3,5	1,6
Ф, мВб	0,7	1,7	2,7	3,6	4,5	5,4	6,1	6,7
В, Тл	0,10	0,24	0,38	0,50	0,63	0,75	0,85	0,93

В работе используются три образца, выполненных из меди (Cu), алюминия (Al) и графита (C). При рассчёте магнитной восприимчивости материалов χ потребуется диаметр образцов, который указан ниже в таблице 2 (погрешностями этих значений пренебрежём).

Таблица 2 – Диаметр d образцов, используемых в эксперименте

	Cu	Al	С
d, cm	1,00	1,00	0,67

Приступим теперь к измерению сил, действующих на образцы в магнитном поле. Не включая электромагнит, подвесим к весам один из образцов и обнулим показания весов, нажав на кнопку "TARE". Установим минимальное значение тока через электромагнит и проведём измерение

равновесного значения массы Δm . Повторим эти измерения для ещё 7 значений тока, совпадающих с использованными при калибровке электромагнита, сначала увеличивая значение тока, а затем уменьшая его. Найдём среднее двух измерений и пересчитаем его значения в модуль перегрузки $|\Delta P|$. То же проделаем с двумя другими образцами. Занесём результаты в таблицу 3, также занесём в таблицу квадраты соответствующих величин магнитного поля B и средние значения перезрузок при измерениях на увеличение и уменьшение тока. Используемое при пересчёте перегрузок значение ускорения свободного падения $g=9,81\,\frac{\rm M}{c^2}$. Погрешность определения перегрузки получается непосредственно из погрешности весов с учётом умножения на $g-\sigma_{\Delta P}=0,005\,|\Delta P|+2\cdot 9,81\,$ мкН $\approx 0,005\,|\Delta P|+20\,$ мкН (здесь погрешностью, вызванной усреднением значений, полученных при снятии зависимости на увеличение и уменьшение тока, пренебрежём, считая её малой). Погрешность индукции магнитного поля определяется как $\sigma_{B^2}=2B\sigma_B$. Внесём эти погрешности в таблицу.

Таблица 3 — Зависимость перегрузки ΔP от тока I через обмотки для образцов из меди, алюминия и графита соответственно

I, A	0,30	0,70	1,10	1,50	1,90	2,30	2,70	3,08
B^2 , $T\pi^2$	0,01	0,06	0,14	0,25	0,39	0,56	0,72	0,87
$\sigma_{B^2}, \operatorname{Tл}^2$	0,01	0,01	0,01	0,01	0,01	0,01	0,02	0,02
$\Delta m_{Cu}^{ earrow}$, мг	0	-1	-3	-6	-10	-14	-19	-23
Δm_{Cu}^{\searrow} , M Γ	0	-1	-3	-5	-9	-14	-20	-23
$\Delta \bar{m}_{Cu}$, MG	0	-1	-3	-5	-9	-14	-19	-23
$ \Delta P_{Cu} $, MKH	0	-10	-29	-54	-93	-137	-191	-225
$\sigma_{\Delta P_{Cu}}$, мкН	20	20	20	20	20	20	21	21
Δm_{Al}^{γ} , мг	2	4	10	15	25	34	43	51
Δm_{Al}^{\prime} , MF Δm_{Al}^{\prime} , MF	1	4	10	17	26	35	45	51
$\Delta \bar{m}_{Al}$, мг	2	4	10	16	26	35	44	51
$ \Delta P_{Al} $, мкН	15	39	98	157	250	338	431	500
$\sigma_{\Delta P_{Al}}$, мкН	20	20	20	20	21	21	22	22
Δm_C^{\nearrow} , MG	-8	-27	-47	-85	-128	-187	-239	-285
Δm_C^{\searrow} , M Γ	-12	-28	-53	-89	-133	-185	-231	-285
$\Delta \bar{m}_C$, M Γ	-10	-27	-50	-85	-131	-186	-235	-285
$ \Delta P_C $, мкН	98	270	490	853	1279	1823	2303	2793
$\sigma_{\Delta P_C}$, мк ${ m H}$	20	21	22	24	26	29	31	34

Пользуясь значениями из таблицы 1, построим теперь градуировочную кривую для электромагнита B(I). Результат приведён ниже на гра-

Рис. 2 — Градуировочная кривая B(I) для электромагнита

Построим на одном графике зависимости $|\Delta P|$ (B^2) для меди и алюминия, и на отдельном графике – такую же зависимость для графита (делаем так из соображений удобства, потому что в случае графита характерные величины перегрузок оказываются на порядок больше). Построенные графики 3 и 4 приведены ниже.

Найдём наклон прямых $|\Delta P|$ (B^2) и рассчитаем магнитную восприимчивость соответствующих материалов. Погрешности определения этих величин будем находить как $\sigma_k = k\sqrt{\left(\frac{\sigma_{B^2}}{\Delta B^2}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta(\Delta P)}\right)^2}$, где ΔB^2 и Δ (ΔP) – изменения соответствующих величин в процессе измерений (от минимального до максимального). Так можно сделать, потому что характерные погрешности индукции магнитного поля и перегрузок остаются постоянными. Для меди наклон графика равен $k_{Cu} = (2, 67 \pm 0, 24) \cdot 10^{-4} \frac{1}{\mathrm{T}\pi^2}$, отсюда магнитную восприимчивость найдём как $\chi_{Cu} = -\frac{8\mu_0 k_{Cu}}{\pi D_{Cu}^2} = -(6, 5 \pm 0, 8) \cdot 10^{-6}$ (знак минус совпадает с изначальным знаком перегрузки и соответствует выталкиванию образца из зазора электромагнита). Для алюминия наклон графика равен $k_{Al} = (5, 73 \pm 0, 26) \cdot 10^{-4} \frac{1}{\mathrm{T}\pi^2}$, а магнитная восприимчивость – $\chi_{Al} = (2, 14 \pm 0, 08) \cdot 10^{-5}$. Для графита

Рис. 3 — График зависимости $|\Delta P|(B^2)$ для образцов из меди и алюминия (верхняя и нижняя прямые соответственно)

эти же величины равны соответственно $k_C=(3,12\pm0,05)\cdot10^{-3}\,\frac{1}{{\rm Tr}^2}$ и $\chi_C=-(2,62\pm0,04)\cdot10^{-4}.$

Табличные значения магнитной восприимчивости: для меди $\chi_{Cu0} = -6, 4 \cdot 10^{-6}$, для алюминия $\chi_{Al0} = 2, 2 \cdot 10^{-5}$, для графита $\chi_{C0} = -2, 6 \cdot 10^{-4}$. Заметим, что все три полученные в эксперименте значения лежат в пределах $1 \cdot \sigma$ от табличных, что говорит о корректности и точности измерений.

Вывод

В работе были проведены измерения магнитной восприимчивости материалов трёх образцов, сделанных из меди, алюминия и графита. Измерения были проведены по методу Гюи, также была проведена калибровка электромагнита при помощи милливеберметра (получена линейная зависимость в широких пределах). Для магнитной восприимчивости получены значения $\chi_{Cu} = -(6,5\pm0,8)\cdot 10^{-6},~\chi_{Al} = (2,14\pm0,08)\cdot 10^{-5}$ и $\chi_{C} = -(2,62\pm0,04)\cdot 10^{-4},$ из чего можно сделать вывод, что медь и гра-

Рис. 4 — График зависимости $|\Delta P|(B^2)$ для образца из графита

фит являются диа-, а медь – парамагнетиками. Полученные значения лежат в пределах одного стандартного отклонения от табличных, что говорит о хорошем качестве используемых приборов и проведённых измерений. Стоит отметить, что основным источником погрешности являются инструментальная погрешность электронных весов, однако уменьшить её вряд ли получится, потому что измеряемые величины чрезвычайно малы (порядка $\sim 10^{(-5)}$ кг), к тому же, имеющейся точности вполне достаточно для получения достоверных данных.