Algebraic Geometry

Lectured by Prof Mark Gross Typed by David Kurniadi Angdinata

Michaelmas 2020

Syllabus

Algebraic Geometry Contents

Contents

0	Brief review of classical algebraic geometry and motivation for scheme theory	
	.1 Classical algebraic geometry	
	.2 Why schemes?	
	3 Categorical philosophy	
	4 Spectrum of a ring	
1	heaves	
	.1 Sheaves	
	.2 Stalks	
	3 Kernels, cokernels, and images	
	4 Passing between spaces	
	4 Tassing between spaces	1
2	chemes	1
	.1 Localisation of a ring	1
	.2 Construction of the structure sheaf	
	3 Affine schemes	
	4 Schemes	
	5 Projective schemes	
	.6 Open and closed subschemes	
	Open and closed subschemes	1
3	Properties of schemes and morphisms of schemes	1
	.1 Fibre products	1
	.2 Fibres of morphisms	
	.3 Brief discussion of other properties	
	4 Separated and proper morphisms	
4	heaves of \mathcal{O}_X -modules	2
	.1 Sheaves of modules	
	.2 Locally free and coherent sheaves	
	.3 Line bundles and the Picard group	
	.4 Morphisms to projective space	2
_		0
5	Divisors	3
	1 Dimension	
	.2 Class group of Weil divisors	
	3 Cartier divisors and relation with Weil divisors	
	.4 Correspondence between Cartier divisors and line bundles	
	.5 Effective divisors	
	.6 Dictionary between line bundles and linear systems	3
6	Cohomology of sheaves	3
J	.1 Injective resolutions	
	2 Sheaf cohomology	
	3 Čech cohomology	
	4 Calculation of cohomology of projective space	4
7	Differentials and Riemann-Roch	4
•	.1 Normal and conormal bundles	
	.2 Serre duality and Riemann-Roch	
	.2 Gerre duanty and Riemann-Roch	
	4 Surfaces*	4

0 Brief review of classical algebraic geometry and motivation for scheme theory

The following are the main references for the course.

Lecture 1 Friday 09/10/20

- R Hartshorne, Algebraic geometry, 1977
- U Goertz and T Wedhorn, Algebraic geometry I, 2010
- R Vakil, The rising sea: foundations of algebraic geometry, 2017

0.1 Classical algebraic geometry

Throughout this discussion, we take the base field k to be algebraically closed. An **affine variety** $V \subseteq \mathbb{A}^n(k)$, where, once one has chosen coordinates, $\mathbb{A}^n(k) = k^n$, is given by the vanishing of polynomials $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$. If $I = \langle f_1, \ldots, f_r \rangle \subseteq k[x_1, \ldots, x_n]$ is any ideal, we set

$$\mathbb{V}(I) = \{ z \in \mathbb{A}^n \mid \forall f \in I, \ f(z) = 0 \}.$$

First set $\mathbb{P}^n(k) = (k^{n+1} \setminus \{0\})/k^*$ with **homogeneous coordinates** $(x_0 : \cdots : x_n)$. A **projective variety** $V \subseteq \mathbb{P}^n$ is given by the vanishing of homogeneous polynomials $F_1, \ldots, F_r \in k[x_0, \ldots, x_n]$. If I is the ideal generated by the homogeneous ideals F_i , that is if $F \in I$ then so are all its homogeneous parts, we set

$$\mathbb{V}(I) = \{z \in \mathbb{P}^n \mid \forall F \in I \text{ homogeneous, } F(z) = 0\}.$$

If $V = \mathbb{V}(I) \subseteq \mathbb{A}^n$, set

$$\mathbb{I}(V) = \{ f \in k [x_1, \dots, x_n] \mid \forall x \in V, \ f(x) = 0 \}.$$

Observe that $\mathbb{V}(\mathbb{I}(V)) = V$, by tautology, and $\mathbb{I}(\mathbb{V}(I)) \supseteq \sqrt{I}$, which is obvious. Recall that the **radical** \sqrt{I} of the ideal I is defined by $f \in \sqrt{I}$ if and only if there exists m > 0 such that $f^m \in I$. **Hilbert's** Nullstellensatz states that, noting $k = \overline{k}$,

$$\mathbb{I}\left(\mathbb{V}\left(I\right)\right) = \sqrt{I}.$$

The **coordinate ring** is

$$k[V] = k[x_1, \ldots, x_n] / \mathbb{I}(V)$$
.

This may be regarded as the ring of polynomial functions on V, and it is a finitely generated reduced k-algebra. Recall that a k-algebra is a commutative ring containing k as a subring. It is **finitely generated** if it is the quotient of a polynomial ring over k, and **reduced** if $a^m = 0$ implies that a = 0.

0.2 Why schemes?

A better question is what is wrong with varieties?

- With varieties, always work over algebraically closed fields. For example, let $I = \langle x^2 + y^2 + 1 \rangle \subseteq \mathbb{R}[x,y]$. Then $\mathbb{V}(I) = \emptyset$, but I is a prime ideal, hence radical, so $\mathbb{I}(\mathbb{V}(I)) = \mathbb{R}[x,y] \neq I$.
- Number theory? Diophantine equations. If $I \subseteq \mathbb{Z}[x_1, \ldots, x_n]$ is an ideal, have $\mathbb{V}(I) \subseteq \mathbb{Z}^n$. For example, $x^n + y^n = z^n$.
- Why should we only consider radical, or prime, ideals? For example, a natural situation is

$$X_1 = \mathbb{V}(x - y^2) \subseteq \mathbb{A}^2, \qquad X_2 = \mathbb{V}(x) \subseteq \mathbb{A}^2.$$

Then $X_1 \cap X_2 = \mathbb{V}\left(x-y^2,x\right)$. Note $I = \langle x-y^2,x \rangle = \langle x,y^2 \rangle$ is not a radical ideal, because $y \notin I$ and $y^2 \in I$ so $y \in \sqrt{I}$. Recall the coordinate ring of X_i is $k\left[X_i\right] = k\left[x,y\right]/I_i$ and $k\left[X_1 \cap X_2\right] = k\left[x,y\right]/\langle x,y^2\rangle \cong k\left[y\right]/\langle y^2\rangle$. So thinking of the coordinate ring of $X_1 \cap X_2$ as functions on $X_1 \cap X_2$, we have a function y whose square is zero, but is not itself zero.

0.3 Categorical philosophy

What is a point? In the category of sets, objects are sets, and if A and B are sets, then morphisms are $\operatorname{Hom}(A,B)$, the set of maps $f:A\to B$. Let * be a one-element set. Then the elements of any set X are in one-to-one correspondence with $\operatorname{Hom}(*,X)$. In the category of affine varieties, objects are affine varieties and morphisms are $\operatorname{Hom}(X,Y)=\operatorname{Hom}_{k\text{-alg}}(k[Y],k[X])$. In this category, a point is a single point with coordinate ring k. Giving a morphism

$$\{\text{point}\} \to X = \mathbb{V}(I) \subseteq \mathbb{A}^n, \qquad I \subseteq k[x_1, \dots, x_n],$$

for I a radical ideal, is the same as giving a homomorphism

$$\phi$$
 : $k[X] = k[x_1, \dots, x_n]/I \longrightarrow k$
 $x_i \longmapsto a_i$.

Note that ϕ vanishes in I if and only if $f(a_1,\ldots,a_n)=0$ for all $f\in I$, which is if and only if $(a_1,\ldots,a_n)\in \mathbb{V}(I)=X$. Note ϕ is surjective, and hence $\ker\phi$ is a maximal ideal. With k algebraically closed, the maximal ideals at k[X] are all of the form $\langle x_1-a_1,\ldots,x_n-a_n\rangle$ for $(a_1,\ldots,a_n)\in X$, a consequence of Hilbert's Nullstellensatz. That is, there exist one-to-one correspondences

$$\{\text{points of }X\} \iff \{k\text{-algebra homomorphisms }\phi:k[X]\to k\} \iff \{\text{maximal ideals of }k[X]\}.$$

What if k is not algebraically closed? We may want to consider solutions not just in $k^n = \mathbb{A}^n$ but $(k')^n$ for k' any field extension of k. That is, we may consider k-algebra homomorphisms

$$\phi$$
: $k[X] = k[x_1, \dots, x_r]/I \longrightarrow k'$
 $x_i \longmapsto a_i$.

This gives a tuple $(a_1, \ldots, a_n) \in (k')^n$ with $f(a_1, \ldots, a_n) = 0$ for all $f \in I$. Then ϕ need not be surjective, so can only say the image of ϕ is a subring of a field, hence an integral domain. Thus ker ϕ is a prime ideal, and maximal if and only if im ϕ is a field.

Example. The \mathbb{R} -algebra homomorphism

$$\phi : \mathbb{R}[x,y] / \langle x^2 + y^2 + 1 \rangle \longrightarrow \mathbb{C}$$

$$\begin{array}{ccc} x & \longmapsto & 0 \\ y & \longmapsto & i \end{array}$$

is surjective with kernel $\langle x, y^2 + 1 \rangle$, so $\mathbb{R}[y] / \langle y^2 + 1 \rangle \cong \mathbb{C}$. This is a maximal ideal but is not of the form $\langle x - a, y - b \rangle$ for $(a, b) \in \mathbb{R}^2$. If instead we considered the map

$$\mathbb{R}\left[x,y\right]/\left\langle x^2+y^2+1\right\rangle \quad \longrightarrow \quad \mathbb{C}$$

$$\begin{array}{ccc} x & \longmapsto & 0 \\ y & \longmapsto & -i \end{array},$$

we get the same kernel. That is, (0,i) and (0,-i) are solutions to $x^2 + y^2 + 1 = 0$, but they correspond to the same maximal ideal. In fact, this maximal ideal corresponds to a Galois orbit of $\operatorname{Gal}(\mathbb{C}/\mathbb{R})$ of solutions.

There are more exotic points by taking even bigger fields.

Example. Let k(X) be the field of fractions of $k[X] = \mathbb{R}[x,y]/\langle x^2 + y^2 + 1 \rangle$. There is an inclusion

Lecture 2 Monday 12/10/20

$$\begin{array}{ccc} k\left[X\right] & \longrightarrow & k\left(X\right) \\ x & \longmapsto & \frac{x}{1} \\ y & \longmapsto & \frac{y}{1} \end{array}.$$

This gives a solution to the equation $x^2 + y^2 + 1 = 0$ with coordinates in the field k(X). This solution is $(x/1, y/1) \in \mathbb{A}^2(k(X))$. The kernel of this map is zero. The moral is that once we start looking at solutions to equations over any field, then we get maps $k[X] \to k'$ with kernel not necessarily maximal.

What about solutions over rings?

Example. Let $A = \mathbb{Z}[x_1, \dots, x_n]/I$, and let R be any commutative ring. We define an R-valued point of Spec A to be a ring homomorphism

$$\begin{array}{ccc} A & \longrightarrow & R \\ x_i & \longmapsto & r_i \end{array}.$$

Then $f(r_1,\ldots,r_n)=0$ for all $f\in I$. This gives a lot of flexibility. For example,

- $R = \mathbb{Z}$ gives diophantine equations,
- $R = \mathbb{F}_p$ gives solutions modulo p, and
- $R = \mathbb{Q}$ gives rational solutions.

Take this to its logical conclusion. Let A be a ring, where all rings are commutative in this course. Given A, we hope for some geometric object Spec A, the **spectrum** of A. For a ring R, the set of R-valued points of X is

$$X(R) = \operatorname{Hom}_{\operatorname{ring}}(A, R)$$
.

A morphism $X = \operatorname{Spec} A \to Y = \operatorname{Spec} B$ should be the same thing as giving a morphism $\phi : B \to A$. Define the category of **affine schemes** to be the opposite category to the category of rings. Define a **scheme** to be something which is locally isomorphic to an affine scheme. By analogy, a **manifold** is a topological space with an open cover $\{U_i\}$ with each U_i homeomorphic to an open subset of \mathbb{R}^n .

0.4 Spectrum of a ring

To make sense of the definition of schemes, we need a lot of language.

Definition. Let A be a ring. Then

$$\operatorname{Spec} A = \{ \mathfrak{p} \subseteq A \mid \mathfrak{p} \text{ a prime ideal} \}.$$

For $I \subseteq A$ an ideal, define

$$\mathbb{V}(I) = \{ \mathfrak{p} \subseteq A \mid \mathfrak{p} \text{ prime}, \ \mathfrak{p} \supseteq I \}.$$

Proposition 0.1. The sets $\mathbb{V}(I)$ form the closed sets of a topology on Spec A, called the **Zariski topology**. Proof.

- $\mathbb{V}(A) = \emptyset$.
- $\mathbb{V}(0) = \operatorname{Spec} A$.
- If $\{I_i\}_{i\in I}$ is a collection of ideals, then

$$\mathbb{V}\left(\sum_{i\in I} I_i\right) = \bigcap_{i\in I} \mathbb{V}\left(I_i\right).$$

• Claim that

$$\mathbb{V}\left(I_{1}\cap I_{2}\right)=\mathbb{V}\left(I_{1}\right)\cup\mathbb{V}\left(I_{2}\right).$$

 \supseteq Obvious.

 \subseteq If $\mathfrak{p} \supseteq I_1 \cap I_2$ is prime, then $\mathfrak{p} \supseteq I_1$ or $\mathfrak{p} \supseteq I_2$. See Atiyah-Macdonald, Proposition 1.11.ii. ¹

Example. Let $A = k[x_1, ..., x_n]$ with k algebraically closed and $I \subseteq A$ an ideal. Then the maximal ideals \mathfrak{m} of A containing I are in one-to-one correspondence with the zero set of I in $\mathbb{A}^n(k)$, so

$$\left\{ \left\langle x_{1}-a_{1},\ldots,x_{n}-a_{n}\right\rangle \supseteq I,\ a_{i}\in k\ \right\} \qquad \Longleftrightarrow \qquad \left\{ \left(a_{1},\ldots,a_{n}\right)\in\mathbb{V}\left(I\right)\subseteq\mathbb{A}^{n}\left(k\right)\ \right\}.$$

The new $\mathbb{V}(I)$ now extends this notion of zero set by including possible other prime ideals.

Example. If k is a field, Spec $k = \{0\}$, so the topological space cannot see the field.

We fix this by also thinking about what functions are on these spaces.

¹Exercise: try to prove without looking up

1 Sheaves

Fix a topological space X.

1.1 Sheaves

Definition. A **presheaf** \mathcal{F} on X consists of the following data.

- For every open set $U \subseteq X$ an abelian group $\mathcal{F}(U)$.
- Whenever given an inclusion $V \subseteq U \subseteq X$, a **restriction map** $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$, a homomorphism, such that
 - $-\rho_{UU}=\mathrm{id}_{\mathcal{F}(U)}$, and
 - if $W \subseteq V \subseteq U$, then $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

Remark. Can think of a presheaf as a contravariant functor from the category of open sets of X, the category whose objects are open subsets of X and whose morphisms are inclusions of open sets, to the category of abelian groups. Can replace the category of abelian groups with any desired category, such as commutative rings.

Definition. A morphism of presheaves $f: \mathcal{F} \to \mathcal{G}$ is a collection of homomorphisms $f_U: \mathcal{F}(U) \to \mathcal{G}(U)$ such that for all $V \subseteq U$ the diagram

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{f_{U}} & \mathcal{G}(U) \\
\rho_{UV} \downarrow & & \downarrow \rho_{UV} \\
\mathcal{F}(V) & \xrightarrow{f_{V}} & \mathcal{G}(V)
\end{array}$$

is commutative.

Definition. A presheaf \mathcal{F} is a **sheaf** if it satisfies two additional axioms.

- S1. If $U \subseteq X$ is covered by an open cover $\{U_i\}$ and $s \in \mathcal{F}(U)$ satisfies $s|_{U_i} = \rho_{UU_i}(s) = 0$ for all i, then s = 0.
- S2. If U and $\{U_i\}$ are as in S1 and $s_i \in \mathcal{F}(U_i)$ such that $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i and j, then there exists $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$ for all i.

Remark.

- If \mathcal{F} is a sheaf, then $\emptyset \subseteq X$ is covered by the empty covering, and hence $\mathcal{F}(\emptyset) = 0$.
- S1 and S2 together can be described as saying, given U and $\{U_i\}_{i\in I}$,

$$0 \to \mathcal{F}(U) \xrightarrow{\alpha} \prod_{i \in I} \mathcal{F}(U_i) \xrightarrow{\beta_1} \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

is exact, where

$$\alpha\left(s\right) = \left(s|_{U_{i}}\right)_{i \in I}, \qquad \beta_{1}\left(\left(s_{i}\right)_{i \in I}\right) = \left(s_{i}|_{U_{i} \cap U_{j}}\right)_{i, j}, \qquad \beta_{2}\left(\left(s_{i}\right)_{i \in I}\right) = \left(s_{j}|_{U_{i} \cap U_{j}}\right)_{i, j}.$$

Exactness means

- $-\alpha$ is injective, which is S1,
- $-\beta_1 \circ \alpha = \beta_2 \circ \alpha$, and
- for any $(s_i) \in \prod_{i \in I} \mathcal{F}(U_i)$, with $\beta_1((s_i)) = \beta_2((s_i))$, there exists $s \in \mathcal{F}(U)$ with $\alpha(s) = (s_i)$, which is S2.

Example.

• Let X be any topological space, and let

Lecture 3 Wednesday 14/10/20

$$\mathcal{F}(U) = \{\text{continuous functions } U \to \mathbb{R}\}.$$

This is a sheaf, by

$$\begin{array}{ccc} \rho_{UV} & : & \mathcal{F}(U) & \longrightarrow & \mathcal{F}(V) \\ & f & \longmapsto & f|_{V} \end{array}.$$

- S1. A continuous function is zero if it is zero on every open set of a cover.
- S2. Continuous functions can be glued.
- Let $X = \mathbb{C}$ with the Euclidean topology, and let

$$\mathcal{F}(U) = \{ f : U \to \mathbb{C} \mid f \text{ is a bounded analytic function} \}.$$

This is a presheaf. It satisfies S1, and does not satisfy S2. For example, consider the cover $\{U_i\}_{i\in\{1,2,\dots\}}$ of \mathbb{C} given by $U_i = \{z \in \mathbb{C} \mid |z| < i\}$ and

$$\begin{array}{cccc} s_i & : & U_i & \longrightarrow & \mathbb{C} \\ & z & \longmapsto & z \end{array}.$$

Note if i < j, then $U_i \cap U_j = U_i$ and $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$. But if we glue we get the function $z : \mathbb{C} \to \mathbb{C}$, which is not bounded. Note $\mathcal{F}(\mathbb{C}) = \mathbb{C}$.

• Take any group G and set $\mathcal{F}(U) = G$ for any open set U. This is called the **constant presheaf**. This is not a sheaf. Let $U = U_1 \sqcup U_2$. If we wanted a sheaf,

$$\mathcal{F}\left(U_{1}\right)=G$$

$$\mathcal{F}\left(U_{1}\cap U_{2}\right)=\mathcal{F}\left(\emptyset\right)=0$$

so if S2 is satisfied, would want $s_1 \in \mathcal{F}(U_1)$ and $s_2 \in \mathcal{F}(U_2)$ to glue. We would then want to have $\mathcal{F}(U) = G \times G$. Now give G the discrete topology, and define instead

$$\mathcal{F}(U) = \{ f : U \to G \text{ continuous} \},$$

that is f is locally constant. That is, if $x \in U$, there exists a neighbourhood $x \in V \subseteq U$ with $f|_V$ constant. This is called the **constant sheaf** and if U is non-empty and connected, then $\mathcal{F}(U) = G$.

• If X is an algebraic variety, and $U \subseteq X$ is a Zariski open subset, define

$$\mathcal{O}_X(U) = \{ f : U \to k \mid f \text{ regular function} \}.$$

Roughly f is **regular** means that every point of U has an open neighbourhood on which f is expressed as a ratio of polynomials g/h with h non-vanishing on the neighbourhood. Then \mathcal{O}_X is a sheaf, called the **structure sheaf** of X.

1.2 Stalks

Definition. Let \mathcal{F} be a presheaf on X. Let $p \in X$. Then the **stalk** of \mathcal{F} at p is

$$\mathcal{F}_{p} = \{(U, s) \mid U \subseteq X \text{ is an open neighbourhood of } p, s \in \mathcal{F}(U)\} / \equiv$$

where $(U, s) \equiv (V, s')$ if there exists $W \subseteq U \cap V$ also a neighbourhood of p such that $s|_W = s'|_W$. An equivalence class of a pair (U, s) is called a **germ**.

Remark.
$$\mathcal{F}_{p} = \varinjlim_{p \in U} \mathcal{F}(U)$$
.

Note that a morphism $f: \mathcal{F} \to \mathcal{G}$ of presheaves induces a morphism

$$f_p: \mathcal{F}_p \longrightarrow \mathcal{G}_p \ (U,s) \longmapsto (U,f_U(s))$$
.

Proposition 1.1. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then f is an isomorphism if and only if f_p is an isomorphism for all $p \in X$.

Proof.

 \implies Obvious.

 \Leftarrow Assume f_p is an isomorphism for all $p \in X$. Need to show that $f_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is an isomorphism for all $U \subseteq X$, as then we can define $(f^{-1})_U = (f_U)^{-1}$.

- f_U is injective. Suppose $s \in \mathcal{F}(U)$, and $f_U(s) = 0$. Then for all $p \in U$, $f_p(U, s) = (U, f_U(s)) = (U, 0) = 0 \in \mathcal{G}_p$. Since f_p is injective, (U, s) = 0 in \mathcal{F}_p . That is, there exists a open neighbourhood V_p of p in U such that $s|_{V_p} = 0$. Since $\{V_p\}_{p \in U}$ cover U, we see by S1 that s = 0.
- f_U is surjective. Let $t \in \mathcal{G}(U)$ and write $t_p = (U, t) \in \mathcal{G}_p$. Since f_p is surjective, there exists $s_p \in \mathcal{F}_p$ with $f_p(s_p) = t_p$. That is, there exists $V_p \subseteq U$ an open neighbourhood of p, and a germ (V_p, s_p) such that $(V_p, f_{V_p}(s_p)) \equiv (U, t)$. By shrinking V_p if necessary, we can assume that $t|_{V_p} = f_{V_p}(s_p)$. Now on $V_p \cap V_q$,

$$f_{V_p \cap V_q} \left(s_p |_{V_p \cap V_q} - s_q |_{V_p \cap V_q} \right) = t |_{V_p \cap V_q} - t |_{V_p \cap V_q} = 0,$$

and hence by injectivity of $f_{V_p \cap V_q}$ already proved, we have $s_p|_{V_p \cap V_q} = s_q|_{V_p \cap V_q}$. By S2 the s_p 's glue to give an element $s \in \mathcal{F}(U)$ with $s|_{V_p} = s_p$, for all $p \in U$. Now

$$f_U(s)|_{V_p} = f_{V_p}(s|_{V_p}) = f_{V_p}(s_p) = t|_{V_p}.$$

By S1, applied to $f_U(s) - t$, we get $f_U(s) = t$. Thus f_U is surjective.

Theorem 1.2 (Sheafification). Given a presheaf \mathcal{F} , there exists a sheaf \mathcal{F}^+ and a morphism $\theta: \mathcal{F} \to \mathcal{F}^+$ satisfying the following universal property. For any sheaf \mathcal{G} and morphism $\phi: \mathcal{F} \to \mathcal{G}$, there exists a unique morphism $\phi^+: \mathcal{F}^+ \to \mathcal{G}$ such that $\phi^+ \circ \theta = \phi$, so

The pair (\mathcal{F}^+, θ) is unique up to unique isomorphism, and is called the **sheafification** of \mathcal{F} .

Proof. See example sheet 1. The idea is to make \mathcal{F}^+ look like functions. Define

$$\mathcal{F}^{+}\left(U\right) = \left\{s: U \to \bigsqcup_{p \in U} \mathcal{F}_{p} \middle| \begin{array}{c} \forall p \in U, \ s\left(p\right) \in \mathcal{F}_{p}, \\ \forall p \in U, \ \exists p \in V \subseteq U, \ \exists t \in \mathcal{F}\left(V\right), \ \forall q \in V, \ s\left(q\right) = \left(V, t\right) \in \mathcal{F}_{q} \end{array} \right\}.$$

Then

$$\theta_{U}: \mathcal{F}(U) \longrightarrow \mathcal{F}^{+}(U)$$
 $s \longmapsto (p \mapsto (U, s) \in \mathcal{F}_{p})$

Exercise. A recommendation is to do all exercises in Section II.1 of Hartshorne.

²Exercise: check that with this definition, $(f^{-1})_{II}$ is compatible with restriction maps, hence f^{-1} is a morphism of sheaves

1.3 Kernels, cokernels, and images

Definition. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of presheaves on a space X. We define the following. ³

- Lecture 4 Friday 16/10/20
- The **presheaf kernel** of f, ker f, is the presheaf given by $(\ker f)(U) = \ker (f_U : \mathcal{F}(U) \to \mathcal{G}(U))$.
- The **presheaf cokernel** coker f is the presheaf given by $(\operatorname{coker} f)(U) = \operatorname{coker} f_U = \mathcal{G}(U) / \operatorname{im} f_U$.
- The **presheaf image** im f is the presheaf given by $(\operatorname{im} f)(U) = \operatorname{im} f_U$.

Remark 1.3. If $f: \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves, then ker f is also a sheaf.

Proof. S1 is certainly satisfied, since if $s \in (\ker f)(U) \subseteq \mathcal{F}(U)$ satisfies $s|_{U_i} = 0$ for all U_i in a cover of U then s = 0 by S1 for \mathcal{F} . Given $s_i \in (\ker f)(U_i)$ with $\{U_i\}$ an open cover of U, and with $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, then there exists $s \in \mathcal{F}(U)$ with $s|_{U_i} = s_i$ by S2 for \mathcal{F} . But $f_U(s) = 0$ since $f_U(s)|_{U_i} = f_{U_i}(s|_{U_i}) = f_{U_i}(s_i) = 0$ so by S1, $f_U(s) = 0$.

Example. Let $X = \mathbb{P}^1$, or think of the Riemann sphere. Let $P, Q \in X$ be distinct points. Let \mathcal{G} be the sheaf of regular functions on X, or think of the sheaf of holomorphic functions. Let \mathcal{F} be the sheaf of regular functions on X which vanish at P and Q. Note $\mathcal{F}(U) = \mathcal{G}(U)$ if $U \cap \{P,Q\} = \emptyset$. Let $U = \mathbb{P}^1 \setminus \{P\}$ and $V = \mathbb{P}^1 \setminus \{Q\}$. Note $\mathcal{F}(\mathbb{P}^1) = 0$ and $\mathcal{G}(\mathbb{P}^1) = k$, because regular functions on \mathbb{P}^1 are constants. Let $f : \mathcal{F} \to \mathcal{G}$ be the obvious inclusion. Then

$$(\operatorname{coker} f)(\mathbb{P}^{1}) = k, \qquad (\operatorname{coker} f)(U) = \mathcal{G}(U) / \mathcal{F}(U) = k [x] / \langle x \rangle = k,$$
$$(\operatorname{coker} f)(V) = k, \qquad (\operatorname{coker} f)(U \cap V) = \mathcal{G}(U \cap V) / \mathcal{F}(U \cap V) = 0.$$

If S2 holds, then we would need to have (coker f) (\mathbb{P}^1) = $k \oplus k$. This is not a bug, but a feature.

Definition. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves.

- The **sheaf kernel** $\ker f$ of f is just the presheaf kernel.
- The **sheaf cokernel** is the sheaf associated to the presheaf cokernel of f.
- The **sheaf image** is the sheaf associated to the presheaf image of f.

 \mathcal{F} is a subsheaf of \mathcal{G} if we have inclusions $\mathcal{F}(U) \subseteq \mathcal{G}(U)$ for all U compatible with restrictions.

Exercise. The sheaf image im f is a subsheaf of \mathcal{G} .

Definition. We say f is **injective** if ker f = 0. We say f is **surjective** if im $f = \mathcal{G}$. We say a sequence of morphisms of sheaves

$$\cdots \to \mathcal{F}^{i-1} \xrightarrow{f^i} \mathcal{F}^i \xrightarrow{f^{i+1}} \mathcal{F}^{i+1} \to \ldots$$

is **exact** if ker $f^{i+1} = \text{im } f^i$ for all i. If $\mathcal{F}' \subseteq \mathcal{F}$ is a subsheaf, we write \mathcal{F}/\mathcal{F}' for the sheaf associated to the presheaf $U \mapsto \mathcal{F}(U)/\mathcal{F}'(U)$. That is, this is the cokernel of the inclusion $\mathcal{F}' \hookrightarrow \mathcal{F}$.

A warning is if $f: \mathcal{F} \to \mathcal{G}$ is surjective, we do not necessarily have $\mathcal{F}(U) \to \mathcal{G}(U)$ surjective for all U.

Lemma 1.4. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then for all $p \in X$,

$$(\ker f)_p = \ker (f_p : \mathcal{F}_p \to \mathcal{G}_p), \qquad (\operatorname{im} f)_p = \operatorname{im} f_p.$$

Proof. Have a map

$$\begin{array}{ccc} (\ker f)_p & \longrightarrow & \ker f_p \subseteq \mathcal{F}_p \\ (U,s) & \longmapsto & (U,s) \end{array} .$$

If $s \in (\ker f)(U) = \ker f_U$ represents a germ $(U, s) \in (\ker f)_p$, then $(U, s) \in \mathcal{F}_p$, and $f_p(U, s) = (U, f_U(s)) = (U, 0) = 0 \in \mathcal{G}_p$. So $(U, s) \in \ker f_p$.

- Injective. If (U, s) = 0 in \mathcal{F}_p , there exists a neighbourhood $V \subseteq U$ of p such that $s|_V = 0$. Then $(U, s) \sim (V, s|_V) = (V, 0) = 0$ in $(\ker f)_p$.
- Surjective. If $(U, s) \in \ker f_p$, then $(U, f_U(s)) = 0$ in \mathcal{G}_p . That is, there exists a neighbourhood $V \subseteq U$ of p such that $0 = f_U(s)|_V = f_V(s|_V)$. Thus $s|_V \in (\ker f)(V)$, and $(V, s|_V) \in (\ker f)_p$, and $(V, s|_V)$ maps to the same element in $\ker f_p$ represented by (U, s).

³Exercise: check that these are presheaves, that is restrictions work

Let im' f be the presheaf image. An easy fact is if \mathcal{F} is a presheaf with associated sheaf \mathcal{F}^+ , then $\mathcal{F}_p \cong \mathcal{F}_p^+$ for all $p \in X$. ⁴ Thus $(\operatorname{im} f)_p = (\operatorname{im'} f)_p$, so need to show $(\operatorname{im'} f)_p \cong \operatorname{im} f_p$. Define a map by

$$\begin{array}{ccc} \left(\operatorname{im}' f\right)_p & \longrightarrow & \operatorname{im} f_p \\ (U,s) & \longmapsto & (U,s) \end{array} .$$

- Injective. If (U, s) = 0 in \mathcal{G}_p then there exists a neighbourhood $V \subseteq U$ of p such that $s|_V = 0$. Then $(U, s) \sim (V, 0)$ in $(\operatorname{im}' f)_p$.
- Surjective. If $(U, s) \in \operatorname{im} f_p$, then there exists $(V, t) \in \mathcal{F}_p$ with $(U, s) = f_p(V, t) = (V, f_V(t))$, so after shrinking U and V if necessary, then we can take U = V and $f_U(t) = s$. Then $(U, s) \in (\operatorname{im}' f)_p$.

Proposition 1.5. Let $f: \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then

- 1. f is injective if and only if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is injective for all p, and
- 2. f is surjective if and only if $f_p: \mathcal{F}_p \to \mathcal{G}_p$ is surjective for all p.

Proof.

- 1. f_p is injective for all p if and only if $\ker f_p = 0$ for all p, if and only if $(\ker f)_p = 0$ for all p, if and only if $\ker f = 0$, which is if and only if f is injective.
- 2. f_p is surjective for all p if and only if $\operatorname{im} f_p = \mathcal{G}_p$ for all p, if and only if $(\operatorname{im} f)_p = \mathcal{G}_p$ for all p, if and only if $\operatorname{im} f = \mathcal{G}$, ⁶ which is if and only if f is surjective.

Remark. Given $f: \mathcal{F} \to \mathcal{G}$, in fact $\mathcal{G}/\operatorname{im} f \cong \operatorname{coker} f$.

1.4 Passing between spaces

Let $f: X \to Y$ be a continuous map between topological spaces, \mathcal{F} a sheaf on X, and \mathcal{G} a sheaf on Y. Define $f_*\mathcal{F}$ by ⁸

$$(f_*\mathcal{F})(U) = \mathcal{F}(f^{-1}(U)), \qquad U \subseteq Y.$$

Define $f^{-1}\mathcal{G}$ to be the sheaf associated to the presheaf

$$U \subseteq X \mapsto \{(V, s) \mid V \supseteq f(U), V \text{ open, } s \in \mathcal{G}(V)\} / \sim$$

where $(V,s) \sim (V',s')$ if there exists $W \subseteq V \cap V'$ such that $f(U) \subseteq W$, and $s|_{W} = s'|_{W}$.

Example. If $f: \{p\} \to X$ is an inclusion of a point, then $f^{-1}\mathcal{G} = \mathcal{G}_p$. This is a group but defines a sheaf on a one-point space.

More generally, if $\iota: Z \hookrightarrow X$ is an inclusion of a subset with induced topology, we often write

$$\mathcal{F}|_Z = \iota^{-1}\mathcal{F}.$$

If Z is open in X, then this is easy, since if $U \subseteq Z$ then $\mathcal{F}|_{Z}(U) = \mathcal{F}(U)$.

Remark. If $s \in \mathcal{F}(U)$ we say s is a **section** of \mathcal{F} over U. We often write

$$\mathcal{F}\left(U\right) = \Gamma\left(U, \mathcal{F}\right),\,$$

thinking of $\Gamma(U,\cdot)$ as a functor from the category of sheaves on a space X to the category of abelian groups.

Lecture 5 Monday 19/10/20

⁴Exercise: check

 $^{^5}$ Exercise: check by S1

⁶Exercise: check using im $f \subseteq \mathcal{G}$

⁷Exercise

⁸Exercise: check $f_*\mathcal{F}$ is a sheaf on Y

2 Schemes

Want to construct a sheaf \mathcal{O} on Spec A, analogous to the sheaf of regular functions on a variety, and \mathcal{O} will be a sheaf of rings. That is, $\mathcal{O}(U)$ will be a ring for each open set U and restriction maps will be ring homomorphisms.

2.1 Localisation of a ring

Importantly recall the following. Let A be a ring, where all rings are commutative with unity, and $S \subseteq A$ be a multiplicatively closed subset. That is, $1 \in S$, and if $s_1, s_2 \in S$ then $s_1s_2 \in S$. We define a ring

$$S^{-1}A = \{(a, s) \mid a \in A, s \in S\} / \sim,$$

where $(a, s) \sim (a', s')$ if there exists $s'' \in S$ such that s''(as' - a's) = 0. Then $S^{-1}A$ is called the **localisation** of A at S. Note that we write a/s for the equivalence class of (a, s). The usual equivalence relation on fractions is a/s = a'/s' if and only if as' = a's. We need the extra possibility of killing as' - a's with s'' if A is not an integral domain.

Example.

- Take $f \in A$ and $S = \{1, f, ...\} \subseteq A$. Then we write $A_f = S^{-1}A$. These will correspond to open subsets.
- If $\mathfrak{p} \subseteq A$ is a prime ideal and $S = A \setminus \mathfrak{p}$, then
 - $-1 \in S$, and
 - if $a, b \in S$, then $ab \in \mathfrak{p}$ is a contradiction by definition of prime ideals, so $ab \in S$.

Then $A_{\mathfrak{p}} = S^{-1}A$ is the **localisation of** A at \mathfrak{p} . These will correspond to stalks.

2.2 Construction of the structure sheaf

Let

$$\mathcal{O}\left(U\right) = \left\{ s: U \to \bigsqcup_{\mathfrak{p} \in U} A_{\mathfrak{p}} \, \middle| \, \begin{array}{l} \forall \mathfrak{p} \in U, \ s\left(\mathfrak{p}\right) \in A_{\mathfrak{p}}, \\ \forall \mathfrak{p} \in U, \ \exists \mathfrak{p} \in V \subseteq U \ \text{open}, \ \exists a, f \in A, \ \forall \mathfrak{q} \in V, \ f \notin \mathfrak{q}, \ s\left(\mathfrak{q}\right) = \frac{a}{f} \in A_{\mathfrak{q}} \end{array} \right\}.$$

Proposition 2.1. For any $\mathfrak{p} \in \operatorname{Spec} A$,

$$\mathcal{O}_{\mathfrak{p}}=A_{\mathfrak{p}}.$$

Proof. Have a map

$$\begin{array}{ccc} \mathcal{O}_{\mathfrak{p}} & \longrightarrow & A_{\mathfrak{p}} \\ (U,s) & \longmapsto & s\left(\mathfrak{p}\right) \end{array}.$$

• Surjective. Any element of $A_{\mathfrak{p}}$ can be written as a/f for some $a \in A$ and $f \notin \mathfrak{p}$. Then

$$\mathbb{D}(f) = \operatorname{Spec} A \setminus \mathbb{V}(f) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p} \},\$$

since $\mathbb{V}(f) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid f \in \mathfrak{p} \}$. Now a/f defines an element of $\mathcal{O}(\mathbb{D}(f))$ given by

and in particular, $s(\mathfrak{p}) = a/f \in A_{\mathfrak{p}}$.

• Injective. Let $\mathfrak{p} \in U \subseteq \operatorname{Spec} A$ and $s \in \mathcal{O}(U)$ with $s(\mathfrak{p}) = 0$ in $A_{\mathfrak{p}}$. Want to show (U,s) = 0 in $\mathcal{O}_{\mathfrak{p}}$. By shrinking U if necessary, we can assume that s is given by $a, f \in A$ with $s(\mathfrak{q}) = a/f$ for all $\mathfrak{q} \in U$. In particular $f \notin \mathfrak{q}$ for all $\mathfrak{q} \in U$. Thus a/f = 0/1 in $A_{\mathfrak{p}}$ so there exists $h \in A \setminus \mathfrak{p}$ such that $0 = h \cdot (a \cdot 1 - f \cdot 0) = h \cdot a$ in A. Now let $V = U \cap \mathbb{D}(h)$. Then $(V, s|_{V}) = 0$, since for $\mathfrak{q} \in V$, $s|_{V}(\mathfrak{q}) = s(\mathfrak{q}) = a/f \in A_{\mathfrak{q}}$ and $h \cdot a = 0$, and $h \in A \setminus \mathfrak{q}$ so $h \cdot a = 0$ implies a/f = 0/1 in $A_{\mathfrak{q}}$. Thus (U, s) = 0 in $\mathcal{O}_{\mathfrak{p}}$.

Proposition 2.2. For any $f \in A$,

$$\mathcal{O}\left(\mathbb{D}\left(f\right)\right) = A_f.$$

In particular, as Spec $A = \mathbb{D}(1)$, the **global sections** of \mathcal{O} is $\mathcal{O}(\operatorname{Spec} A) = A_1 = A$.

Proof. Since $f \notin \mathfrak{p}$ implies that $f^n \notin \mathfrak{p}$ for all $n \geq 0$, let

$$\psi : A_f \longrightarrow \mathcal{O}(\mathbb{D}(f))$$

$$\frac{a}{f^n} \longmapsto \left(\mathfrak{p} \in \mathbb{D}(f) \mapsto \frac{a}{f^n} \in A_{\mathfrak{p}}\right).$$

• Injective. If $\psi(a/f^n) = 0$, then for all $\mathfrak{p} \in \mathbb{D}(f)$, $a/f^n = 0$ in $A_{\mathfrak{p}}$. That is, there exists $h \in A \setminus \mathfrak{p}$ such that $h \cdot a = 0$ in A. Let

$$I = \{ g \in A \mid g \cdot a = 0 \},\,$$

the **annihilator** of a. So $h \in I$ and $h \notin \mathfrak{p}$, so $I \not\subseteq \mathfrak{p}$. This is true for all $\mathfrak{p} \in \mathbb{D}(f)$, so $\mathbb{V}(I) \cap \mathbb{D}(f) = \emptyset$. Thus $f \in \bigcap_{\mathfrak{p} \in \mathbb{V}(I)} \mathfrak{p} = \sqrt{I}$, the radical, so $f^m \in I$ for some m > 0. Thus $f^m \cdot a = 0$, so $a/f^n = 0$ in A_f . Thus ψ is injective.

Lecture 6 Wednesday 21/10/20

• Surjective. Let $s \in \mathcal{O}(\mathbb{D}(f))$. Cover $\mathbb{D}(f)$ with open sets V_i on which s is represented as a_i/g_i with $a_i, g_i \in A$ such that $g_i \notin \mathfrak{p}$ whenever $\mathfrak{p} \in V_i$. Thus $V_i \subseteq \mathbb{D}(g_i)$. By question 1 on example sheet 1, the sets of the form $\mathbb{D}(h)$ form a base for the Zariski topology on Spec A. Thus we can assume $V_i = \mathbb{D}(h_i)$ for some $h_i \in A$. Since $\mathbb{D}(h_i) \subseteq \mathbb{D}(g_i)$, we have $\mathbb{V}(h_i) \supseteq \mathbb{V}(g_i)$, so $\sqrt{\langle h_i \rangle} \subseteq \sqrt{\langle g_i \rangle}$, so $h_i^n \in \langle g_i \rangle$ for some n, say $h_i^n = c_i g_i$, so $a_i/g_i = c_i a_i/h_i^n$. Now replace h_i by h_i^n , since this does not change open sets because in general $\mathbb{D}(h_i) = \mathbb{D}(h_i^n)$, and replace a_i by $c_i a_i$. The situation so far is that we can assume $\mathbb{D}(f)$ is covered by sets $\mathbb{D}(h_i)$ such that s is represented by a_i/h_i on $\mathbb{D}(h_i)$. Claim that $\mathbb{D}(f)$ can be covered by a finite number of the $\mathbb{D}(h_i)$. That is, $\mathbb{D}(f)$ is quasi-compact. Since

$$\mathbb{D}(f) \subseteq \bigcup_{i} \mathbb{D}(h_{i}) \qquad \Longleftrightarrow \qquad \mathbb{V}(f) \supseteq \bigcap_{i} \mathbb{V}(h_{i}) = \mathbb{V}\left(\sum_{i} \langle h_{i} \rangle\right) \qquad \Longleftrightarrow \qquad f \in \bigcap_{\mathfrak{p} \in \mathbb{V}\left(\sum_{i} \langle h_{i} \rangle\right)} \mathfrak{p}$$

$$\iff \qquad f \in \sqrt{\sum_{i} \langle h_{i} \rangle} \qquad \Longleftrightarrow \qquad \exists n, \ f^{n} \in \sum_{i} \langle h_{i} \rangle,$$

we can write $f^n = \sum_{i \in I} b_i h_i$ for some finite index set I. Thus reversing this argument, $\mathbb{D}(f) \subseteq \bigcup_{i \in I} \mathbb{D}(h_i)$. We now pass to this finite subcover $\{\mathbb{D}(h_i)\}$. On $\mathbb{D}(h_i) \cap \mathbb{D}(h_j) = \mathbb{D}(h_i h_j)$, note a_i/h_i and a_j/h_j both represent s, so by injectivity shown in the last lecture, $a_i h_j/h_i h_j = a_i/h_i = a_j/h_j = a_j h_i/h_i h_j$ in $A_{h_i h_j}$. Thus for some n, $(h_i h_j)^n (h_j a_i - h_i a_j) = 0$ in A. We can pick an n sufficiently large to work for all pairs i and j. Rewriting, $h_j^{n+1} (h_i^n a_i) - h_i^{n+1} (h_j^n a_j) = 0$. Replace each h_i by h_i^{n+1} and a_i by $h_i^n a_i$, since $a_i/h_i = a_i h_i^n/h_i^{n+1}$. Thus we can assume that s is still represented on $\mathbb{D}(h_i)$ by a_i/h_i but also for each i and j have $h_i a_j = h_j a_i$. Note $f^n = \sum_i b_i h_i$ for $b_i \in A$, since $\{\mathbb{D}(h_i)\}$ cover $\mathbb{D}(f)$. Let $a = \sum_i b_i a_i$. Then for any j, $h_j a = \sum_i b_i a_i h_j = \sum_i b_i a_j h_i = f^n a_j$. Thus $a/f^n = a_j/h_j$ on $\mathbb{D}(h_j)$. Thus $\psi(a/f^n) = s$, so ψ is surjective.

We now have a topological space Spec A equipped with a sheaf of rings \mathcal{O} .

2.3 Affine schemes

Definition. A ringed space is a pair (X, \mathcal{O}_X) where

- \bullet X is a topological space, and
- \mathcal{O}_X is a sheaf of rings on X.

A morphism of ringed spaces $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ is the following data.

- A continuous map $f: X \to Y$.
- A morphism of sheaves of rings $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$. That is, for each $U \subseteq Y$ open, we have a ring homomorphism $f_{U}^{\#}: \mathcal{O}_{Y}(U) \to (f_{*}\mathcal{O}_{X})(U) = \mathcal{O}_{X}(f^{-1}(U))$.

Example.

• Let X be a topological space, and let \mathcal{O}_X be the sheaf of continuous \mathbb{R} -valued functions. Then if (Y, \mathcal{O}_Y) is similarly defined, given $f: X \to Y$, we get $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ defined by

$$f_U^{\#}: \mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(f^{-1}(U))$$

 $\phi \longmapsto \phi \circ f$.

• Let X be a variety, and let \mathcal{O}_X be the sheaf of regular functions on X. A morphism of varieties $f: X \to Y$ is a continuous map inducing

$$f_U^{\#}: \mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(f^{-1}(U))$$

 $\phi \longmapsto \phi \circ f$.

A ring is **local** if it has a unique maximal ideal. A ring homomorphism $\phi: (A, \mathfrak{m}_A) \to (B, \mathfrak{m}_B)$ is **local** if $\phi^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$, where \mathfrak{m}_A is the maximal ideal of A. Note that $\phi(A \setminus \mathfrak{m}_A) = \phi(A^*) \subseteq B^* = B \setminus \mathfrak{m}_B$, where A^* is the set of invertible elements of A. Thus $\phi^{-1}(\mathfrak{m}_B) \subseteq \mathfrak{m}_A$ always.

Definition. A locally ringed space (X, \mathcal{O}_X) is a ringed space such that $\mathcal{O}_{X,p}$ is a local ring for all $p \in X$. A morphism $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ of locally ringed spaces is a morphism of ringed spaces such that the induced homomorphism g

$$f_p^{\#}: \mathcal{O}_{Y,f(p)} \longrightarrow \mathcal{O}_{X,p}$$

$$(U,s) \longmapsto \left(f^{-1}(U), f_U^{\#}(s)\right)$$

is a local homomorphism for all $p \in X$.

Example. In the case of varieties, $\mathcal{O}_{X,p}$ has a unique maximal ideal

$$\{(U, f) \in \mathcal{O}_{X,p} \mid f(p) = 0\} / \sim.$$

If $f(p) \neq 0$, then f is nowhere vanishing on some neighbourhood of p, so after shrinking U, we can invert f. The local homomorphism condition just follows from the pull-back $\phi \circ f$ of a function ϕ vanishing at f(p) vanishes at p.

The key example (Spec A, $\mathcal{O}_{\text{Spec }A}$) is a locally ringed space, which we call an affine scheme.

Lecture 7 Friday 23/10/20

Theorem 2.3. The category of affine schemes with locally ringed morphisms is equivalent to the opposite category of rings.

Need to show that

- 1. if $\phi: A \to B$ is a ring homomorphism, we obtain an induced morphism $(f, f^{\#}): (\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$, and
- 2. any morphism of affine schemes as locally ringed spaces arises in this way.

⁹Exercise: check well-defined

Proof.

1. Given a ring homomorphism $\phi: A \to B$, define

$$\begin{array}{cccc} f & : & \operatorname{Spec} B & \longrightarrow & \operatorname{Spec} A \\ & \mathfrak{p} & \longmapsto & \phi^{-1} \left(\mathfrak{p} \right) \end{array}.$$

Note $\phi^{-1}(\mathfrak{p})$ is prime, since if $ab \in \phi^{-1}(\mathfrak{p})$, then $\phi(ab) = \phi(a)\phi(b) \in \mathfrak{p}$, thus either $\phi(a) \in \mathfrak{p}$ or $\phi(b) \in \mathfrak{p}$, and hence either $a \in \phi^{-1}(\mathfrak{p})$ or $b \in \phi^{-1}(\mathfrak{p})$. Then f is continuous, since

$$\begin{split} f^{-1}\left(\mathbb{V}\left(I\right)\right) &= f^{-1}\left(\left\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \supseteq I\right\}\right) = \left\{\mathfrak{q} \in \operatorname{Spec} B \mid f\left(\mathfrak{q}\right) \supseteq I\right\} \\ &= \left\{\mathfrak{q} \in \operatorname{Spec} B \mid \phi^{-1}\left(\mathfrak{q}\right) \supseteq I\right\} = \left\{\mathfrak{q} \in \operatorname{Spec} B \mid \mathfrak{q} \supseteq \phi\left(I\right)\right\} = \mathbb{V}\left(\phi\left(I\right)\right). \end{split}$$

We need to construct $f^{\#}: \mathcal{O}_{\operatorname{Spec} A} \to f_* \mathcal{O}_{\operatorname{Spec} B}$. For $\mathfrak{p} \in \operatorname{Spec} B$, we obtain a natural homomorphism

$$\begin{array}{cccc} \phi_{\mathfrak{p}} & : & A_{\phi^{-1}(\mathfrak{p})} & \longrightarrow & B_{\mathfrak{p}} \\ & & \frac{a}{s} & \longmapsto & \frac{\phi\left(a\right)}{\phi\left(s\right)} \end{array}.$$

Note $\phi_{\mathfrak{p}}$ is a local homomorphism, since the maximal ideal $\mathfrak{p}B_{\mathfrak{p}}$ of $B_{\mathfrak{p}}$ is generated by the image of \mathfrak{p} under the map $B \to B_{\mathfrak{p}}$, and the maximal ideal $\phi^{-1}(\mathfrak{p}) A_{\phi^{-1}(\mathfrak{p})}$ of $A_{\phi^{-1}(\mathfrak{p})}$ is generated by the image of $\phi^{-1}(\mathfrak{p})$ under the map $A \to A_{\phi^{-1}(\mathfrak{p})}$, so have a commutative diagram

thus $\phi_{\mathfrak{p}}^{-1}(\mathfrak{p}B_{\mathfrak{p}}) = \phi^{-1}(\mathfrak{p}) A_{\phi^{-1}(\mathfrak{p})}$. Given $V \subseteq \operatorname{Spec} A$ open, we may define

$$f_{V}^{\#} : \mathcal{O}_{\operatorname{Spec} A}(V) \longrightarrow \mathcal{O}_{\operatorname{Spec} B}(f^{-1}(V)) (\mathfrak{p} \in V \mapsto s(\mathfrak{p}) \in A_{\mathfrak{p}}) \longmapsto (\mathfrak{q} \in f^{-1}(V) \mapsto \phi_{\mathfrak{q}}(s(f(\mathfrak{q}))) \in B_{\mathfrak{q}}).$$

Note that we need to check the local coherence part of the definition of \mathcal{O} . That is, if s is locally given by a/h, then $f_V^\#(s)$ is locally given by $\phi\left(a\right)/\phi\left(h\right)$. This gives the desired map $f^\#:\mathcal{O}_{\operatorname{Spec} A}\to f_*\mathcal{O}_{\operatorname{Spec} B}$, and the induced map on stalks $f_{\mathfrak{p}}^\#:\mathcal{O}_{\operatorname{Spec} A,f(\mathfrak{p})}\to\mathcal{O}_{\operatorname{Spec} B,\mathfrak{p}}$ agrees with $\phi_{\mathfrak{p}}:A_{\phi^{-1}(\mathfrak{p})}\to B_{\mathfrak{p}}$, by construction. Hence $\left(f,f^\#\right)$ is a morphism of locally ringed spaces.

2. Now suppose given a morphism $(f, f^{\#})$: Spec $B \to \operatorname{Spec} A$ of locally ringed spaces. Take

$$\phi = f_{\operatorname{Spec} A}^{\#} : \Gamma\left(\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}\right) = A \to \Gamma\left(\operatorname{Spec} B, \mathcal{O}_{\operatorname{Spec} B}\right) = B.$$

We need to show ϕ gives rise to $(f, f^{\#})$. We have $f_{\mathfrak{p}}^{\#} : \mathcal{O}_{\operatorname{Spec} A, f(\mathfrak{p})} = A_{f(\mathfrak{p})} \to \mathcal{O}_{\operatorname{Spec} B, \mathfrak{p}} = B_{\mathfrak{p}}$ a local homomorphism. This is compatible with the corresponding map on global sections. That is, we have a commutative diagram

Then $\left(f_{\mathfrak{p}}^{\#}\right)^{-1}(\mathfrak{p}B_{\mathfrak{p}})=f(\mathfrak{p})\,A_{f(\mathfrak{p})}$ since $f_{\mathfrak{p}}^{\#}$ is a local homomorphism, and by commutativity of the diagram, $f(\mathfrak{p})=\phi^{-1}(\mathfrak{p})$. Thus f is induced by ϕ , and $f_{\mathfrak{p}}^{\#}=\phi_{\mathfrak{p}}$. So $f^{\#}$ is as constructed previously.

Remark. Demanding $(f, f^{\#})$ was a morphism of locally ringed spaces was crucial to make the proof work.

2.4 Schemes

Definition. An **affine scheme** is a locally ringed space isomorphic, in the category of locally ringed spaces, to (Spec A, $\mathcal{O}_{Spec A}$) for some ring A. A **scheme** is a locally ringed space (X, \mathcal{O}_X) with an open cover $\{(U_i, \mathcal{O}_X|_{U_i})\}$ with each $(U_i, \mathcal{O}_X|_{U_i})$ an affine scheme, where $\mathcal{O}_X|_{U_i}(V) = \mathcal{O}_X(V)$ for $V \subseteq U_i$ open. A **morphism of schemes** is a morphism of locally ringed spaces.

Let k be a field. Then Spec $k = (\{0\}, k)$. What does giving a morphism $f : \operatorname{Spec} k \to X$ to a scheme mean? First, this selects a point $x \in X$, the image of f. Second, we get a local ring homomorphism $f_x^\# : \mathcal{O}_{X,x} \to k_0 = k$. That is, $(f_x^\#)^{-1}(0) = \mathfrak{m}_x \subseteq \mathcal{O}_{X,x}$, the maximal ideal of $\mathcal{O}_{X,x}$. Thus we get a factorisation

$$f_x^\#: \mathcal{O}_{X,x} \to \mathcal{O}_{X,x}/\mathfrak{m}_x \to k,$$

where $\mathcal{O}_{X,x}/\mathfrak{m}_x$ is a field, written as $\kappa(x)$, called the **residue field** of X at x. Thus f induces an inclusion $\kappa(x) \hookrightarrow k$. Conversely, given such an inclusion $\iota : \kappa(x) \hookrightarrow k$ of fields, we get a scheme morphism by defining f(0) = x, and

$$f^{\#}: \mathcal{O}_{X} \longrightarrow f_{*}k$$
 $s \longmapsto \iota(s(x) + \mathfrak{m}_{x})$.

The moral is that giving a morphism $f: \operatorname{Spec} k \to X$ is equivalent to giving a point $x \in X$ and an inclusion $\iota: \kappa(x) \to k$.

Example. Note that if $X = \operatorname{Spec} A$, giving $\operatorname{Spec} k \to \operatorname{Spec} A$ is equivalent to giving a homomorphism $A \to k$, which we viewed at the beginning of the course as a k-valued point on $\operatorname{Spec} A$.

Lecture 8

Monday

26/10/20

What does giving $f: X \to \operatorname{Spec} k$ mean? No information in the continuous map, but need also a map $f^{\#}: k \to f_*\mathcal{O}_X$, that is a map

$$k \to \Gamma \left(\operatorname{Spec} k, f_* \mathcal{O}_X \right) = \Gamma \left(X, \mathcal{O}_X \right).$$

That is, $\Gamma(X, \mathcal{O}_X)$ carries a k-algebra structure. Note this induces k-algebra structures on $\mathcal{O}_X(U)$ for all U via the composition with restriction $k \to \mathcal{O}_X(X) \to \mathcal{O}_X(U)$ and similarly all stalks $\mathcal{O}_{X,p}$ are also k-algebras. We say X is a **scheme defined over** k.

Example. In affine varieties, consider $A = k[x_1, ..., x_n]/I$ with $I = \sqrt{I}$. Then Spec A is our replacement for $\mathbb{V}(I) \subseteq \mathbb{A}^n_k$, viewing Spec A as a scheme over k.

If $k \subseteq k'$ is a field extension, a k'-valued point of X/k is a commutative diagram

We write X(k') for the set of such morphisms.

Remark. It is rare in algebraic geometry to work with schemes alone, but rather always working over a base scheme. Fix a base scheme S. Define \mathbf{Sch}/S to be the category whose objects are morphisms $T \to S$ and morphisms are commutative diagrams

We will frequently work with $\operatorname{\mathbf{Sch}}/k = \operatorname{\mathbf{Sch}}/\operatorname{Spec} k$. Given $T \to S$ and $X \to S$ objects in $\operatorname{\mathbf{Sch}}/S$, a T-valued point of $X \to S$ is a morphism $T \to X$ over S, so

and we write X(T) for the set of T-valued points. The **Yoneda philosophy** is that X(T) for all T determines X.

Example. Fix a field k, and let $D = \operatorname{Spec} k[t] / \langle t^2 \rangle = (\{\langle t \rangle\}, k[t] / \langle t^2 \rangle)$. Then t does not make sense as a k-valued function anymore, as $t^2 = 0$. Let X be any scheme over k. What is X(D)? Given $f: D \to X$ a morphism of schemes over k, we get a point $x \in X$ as the image of f and a local homomorphism $f_x^\# : \mathcal{O}_{X,x} \to k[t] / \langle t^2 \rangle$ such that $\mathfrak{m}_x \to \langle t \rangle$. Note that \mathfrak{m}_x^2 maps to zero, hence we get a k-linear map of k-vector spaces

$$\mathfrak{m}_x/\mathfrak{m}_x^2 \to \langle t \rangle \cong k,$$

We also have a composed surjective k-algebra homomorphism $\mathcal{O}_{X,x} \to k[t]/\langle t \rangle \cong k$ with kernel \mathfrak{m}_x , and hence we have

$$\kappa(x) = \mathcal{O}_{X,x}/\mathfrak{m}_x \cong k.$$

So we get

- a k-valued point x with residue field k, and
- a k-vector space map $\mathfrak{m}_x/\mathfrak{m}_x^2 \to k$, that is an element of $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$, the dual vector space.

Then $(\mathfrak{m}_x/\mathfrak{m}_x^2)^*$ is called the **Zariski tangent space** to X at x. Think of D as a point plus an arrow.

Glued schemes are a special case of a question on example sheet 1. Suppose given two schemes X_1 and X_2 and open subsets $U_i \subseteq X_i$. Recall U_i is also a locally ringed space $(U_i, \mathcal{O}_{X_i}|_{U_i})$, and in fact U_i is then a scheme. Given an isomorphism $f: U_1 \xrightarrow{\sim} U_2$, can glue X_1 and X_2 along U_1 and U_2 to get a scheme X with an open cover $\{X_1, X_2\}$, so $X = X_1 \sqcup X_2 / \sim$ such that $x_1 \in U_1 \sim x_2 \in U_2$ if $f(x_1) = x_2$, and need to define \mathcal{O}_X .

Example. Now take $\mathbb{A}_k^n = \operatorname{Spec} k[x_1, \dots, x_n]$, so $\mathbb{A}_k^1 = \operatorname{Spec} k[x]$. Take $X_1 = X_2 = \mathbb{A}_k^1$.

- Glue $U_1 = \mathbb{A}^1 \setminus \{0\} = \mathbb{D}(x) \subseteq X_1$ and $U_2 = \mathbb{A}^1 \setminus \{0\} = \mathbb{D}(x) \subseteq X_2$ via the identity map. This is the affine line with doubled origin.
- Could instead glue U_1 and U_2 via the map given by $x \mapsto x^{-1}$, so $U_1 = \operatorname{Spec} k[x]_x = U_2$ and

$$\begin{array}{ccc} k \left[x \right]_x & \longrightarrow & k \left[x \right]_x \\ x & \longmapsto & x^{-1} \end{array}$$

induces an isomorphism $U_1 \to U_2$. When we glue, we get the projective line over k, \mathbb{P}^1_k .

2.5 Projective schemes

Let S be a graded ring. That is,

$$S = \bigoplus_{d>0} S_d,$$

with S_d an abelian group, and the product law satisfies $S_d \cdot S_{d'} \subseteq S_{d+d'}$.

Example. $S = k[x_0, ..., x_n]$, and S_d is the space of polynomials which are **homogeneous** of degree d. That is, spanned by monomials of degree d.

We write

$$S_+ = \bigoplus_{d \ge 1} S_d,$$

which we call the **irrelevant ideal**.

Definition. $I \subseteq S$ is a **homogeneous ideal** if I is generated by its homogeneous elements. That is, elements in S_d for various d.

Definition. Let

$$\operatorname{Proj} S = \{ \mathfrak{p} \in \operatorname{Spec} S \mid \mathfrak{p} \text{ is homogeneous, } \mathfrak{p} \not\supseteq S_+ \}.$$

For $I \subseteq S$ a homogeneous ideal, set ¹⁰

$$\mathbb{V}(I) = \{ \mathfrak{p} \in \operatorname{Proj} S \mid \mathfrak{p} \supseteq I \}.$$

 $^{^{10}\}textsc{Exercise}$ check the $\mathbb{V}\left(I\right)$ form the closed sets of a topology on Proj S

Notation. For $\mathfrak{p} \in \operatorname{Proj} S$, let $T = \{ f \in S \setminus \mathfrak{p} \mid f \text{ is homogeneous} \}$. Then T is a multiplicatively closed subset of S, and let $S_{(\mathfrak{p})} \subseteq T^{-1}S$ be the subring of elements of degree zero. That is, written in the form s/s' with $s \in S$ homogeneous and $s' \in T$ with deg $s = \deg s'$. For $f \in S$ homogeneous, we write $S_{(f)} \subseteq S_f$ for the subset of elements of degree zero.

 $\begin{array}{c} \text{Lecture 9} \\ \text{Wednesday} \\ 28/10/20 \end{array}$

Can now define a sheaf \mathcal{O} on Proj S. For $U \subseteq \operatorname{Proj} S$ open, set

$$\mathcal{O}\left(U\right) = \left\{s: U \to \bigsqcup_{\mathfrak{p} \in U} S_{\left(\mathfrak{p}\right)} \middle| \begin{array}{c} \forall \mathfrak{p} \in U, \ s\left(\mathfrak{p}\right) \in S_{\left(\mathfrak{p}\right)}, \\ \forall \mathfrak{p} \in U, \ \exists \mathfrak{p} \in V \subseteq U \ \text{open}, \ \exists a, f \in S, \ \forall \mathfrak{q} \in V, \ f \notin \mathfrak{q}, \ s\left(\mathfrak{q}\right) = \frac{a}{f} \in S_{\left(\mathfrak{q}\right)} \end{array} \right\},$$

where a and f are homogeneous of the same degree. As before, ¹¹

$$\mathcal{O}_{\mathfrak{p}} = S_{(\mathfrak{p})}.$$

Is the locally ringed space (Proj S, \mathcal{O}) a scheme?

Notation. If $f \in S$ is homogeneous, then we write

$$\mathbb{D}_{+}\left(f\right) = \left\{\mathfrak{p} \in \operatorname{Proj} S \mid f \notin \mathfrak{p}\right\},\,$$

which is an open set and $\mathbb{D}_{+}(f) = \operatorname{Proj} S \setminus \mathbb{V}(f)$.

Proposition 2.4. As locally ringed spaces,

$$\left(\mathbb{D}_{+}\left(f\right),\,\mathcal{O}|_{\mathbb{D}_{+}\left(f\right)}\right)\cong\operatorname{Spec}S_{\left(f\right)}.$$

Further, the open sets $\mathbb{D}_+(f)$ for $f \in S_+$ cover $\operatorname{Proj} S$. Hence $(\operatorname{Proj} S, \mathcal{O})$ is a scheme.

Proof. Will be on example sheet 2.

Definition. If A is a ring, define

$$\mathbb{P}_A^n = \operatorname{Proj} A [x_0, \dots, x_n].$$

Example. If k is an algebraically closed field, consider $\mathbb{P}^1_k = \operatorname{Proj} k [x_0, x_1]$. The **closed points**, that is points \mathfrak{p} such that $\{\mathfrak{p}\}$ is closed, correspond to maximal elements of $\operatorname{Proj} S$. ¹² These maximal elements are ideals of the form $\langle ax_0 - bx_1 \rangle$. The only maximal homogeneous ideal of $k [x_0, x_1]$ is $\langle x_0, x_1 \rangle = S_+$, since any maximal ideal is of the form $\langle x_0 - a_0, x_1 - a_1 \rangle$. The other prime ideals of $k [x_0, x_1]$ are principal. That is, of the form $\langle f \rangle$ with f irreducible or f = 0. For $\langle f \rangle$ to be homogeneous, f must be homogeneous. Any such polynomial splits into linear factors, all homogeneous, so in order for f to be irreducible it must be linear. Note we have a one-to-one correspondence between

$$\left\{ \left\langle ax_0 - bx_1 \right\rangle \mid a, b \in k \text{ not both zero} \right\} \quad \underset{}{\longleftarrow} \quad \left(k^2 \setminus \left\{ (0, 0) \right\} \right) / k^* \\ \left\langle ax_0 - bx_1 \right\rangle \quad \longmapsto \quad (b:a)$$

where k^* acts by $(a,b) \mapsto (\lambda a, \lambda b)$ for $\lambda \in k^*$. The conclusion is that the closed points of \mathbb{P}^1_k are in one-to-one correspondence with points of $\left(k^2 \setminus \{(0,0)\}\right)/k^*$. More generally, the closed points of \mathbb{P}^n_k are in one-to-one correspondence with points of $\left(k^{n+1} \setminus \{0\}\right)/k^*$. Can see this by making use of the open cover $\{\mathbb{D}_+(x_i) \mid 0 \le i \le n\}$, $i \le n$ since $\mathfrak{p} \notin \mathbb{D}_+(x_i)$ for any i implies that $x_i \in \mathfrak{p}$ for all i, so $S_+ \subseteq \mathfrak{p}$, thus $\mathfrak{p} \notin \operatorname{Proj} S$.

Example. Let $S = k[x_0, ..., x_n]$, but grade by $\deg x_i = w_i$, where $w_0, ..., w_n$ are positive integers. Define $W\mathbb{P}^n(w_0, ..., w_n) = \operatorname{Proj} S$, the **weighted projective space**. For example, $W\mathbb{P}^2(1, 1, 2)$ has an open cover $\{\mathbb{D}_+(x_i) \mid 0 \leq i \leq 2\}$. Consider $\mathbb{D}_+(x_2) = \operatorname{Spec} S_{(x_2)}$. Note

$$S_{(x_2)} = k \left[\frac{x_0^2}{x_2}, \frac{x_0 x_1}{x_2}, \frac{x_1^2}{x_2} \right] \cong k \left[u, v, w \right] / \left\langle uw - v^2 \right\rangle \subseteq S_{x_2},$$

so Spec $S_{(x_2)}$ is a quadric cone with a singular point. Similarly, $\mathbb{D}_+(x_0)$ and $\mathbb{D}_+(x_1)$ are both isomorphic to \mathbb{A}^2_k .

¹¹Exercise: check

¹²Exercise: check

¹³Exercise: good exercise

Example. Let $M = \mathbb{Z}^n$ and $M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R} = \mathbb{R}^n$. Let $\Delta \subseteq M_{\mathbb{R}}$ be a compact convex lattice polytope. That is, there exists a finite set $V \subseteq M$ such that Δ is the convex hull of V, that is the smallest convex set containing V. Let

$$C(\Delta) = \{(m,r) \in M_{\mathbb{R}} \oplus \mathbb{R} \mid m \in r\Delta, r \geq 0\} \subseteq M_{\mathbb{R}} \oplus \mathbb{R}$$

Here $r\Delta = \{rm \mid m \in \Delta\}$. This is the **cone over** Δ . Let

$$S = k \left[\mathbf{C} \left(\Delta \right) \cap \left(M \oplus \mathbb{Z} \right) \right] = \bigoplus_{P \in \mathbf{C}(\Delta) \cap \left(M \oplus \mathbb{Z} \right)} kz^P.$$

Then $C(\Delta) \cap (M \oplus \mathbb{Z})$ is a monoid, that is it is closed under addition and contains zero, and S has multiplication given by $z^P z^{P'} = z^{P+P'}$. This makes S into a ring, and it is graded by $\deg Z^{(m,r)} = r$. Define $\mathbb{P}_{\Delta} = \operatorname{Proj} S$. This is called a **projective toric variety**.

- Let Δ be the convex hull of $\{0, e_1, \dots, e_n\}$ with e_1, \dots, e_n the standard basis of $M = \mathbb{Z}^n$. Check that $S = k[x_0, \dots, x_n]$ with standard grading $x_0 = z^{(0,1)}$ and $x_i = z^{(e_i,1)}$. ¹⁴ So $\mathbb{P}_{\Delta} = \mathbb{P}_k^n$.
- Let n=2, and let Δ be the convex hull of $\{(0,0),(1,0),(0,1),(1,1)\}$. In S, the degree d monomials are $\{z^{(a,b,d)} \mid 0 \le a \le d, \ 0 \le b \le d\}$. Any of these can be written as a product of monomials of degree one. That is, the monomials $x=z^{(0,0,1)}, \ y=z^{(1,0,1)}, \ w=z^{(0,1,1)}, \ \text{and} \ t=z^{(1,1,1)}$. Thus $S=k[x,y,w,t]/\langle xt-yw\rangle$. So Proj S can be thought of as a quadric surface in \mathbb{P}^3_k .

2.6 Open and closed subschemes

Definition. An **open subscheme** of a scheme X is a scheme $(U, \mathcal{O}_X|_U)$ for $U \subseteq X$ an open subset. Note that this is a scheme because from question 1 and question 11 on the first example sheet, open affine subsets of X form a basis for the topology on X. An **open immersion** is a morphism $f: X \to Y$ which induces a isomorphism of X with an open subscheme of Y. A **closed immersion** $f: X \to Y$ is a morphism which is a homeomorphism onto a closed subset of Y, and the induced morphism $f^\#: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective. A **closed subscheme** of Y is an equivalence class of closed immersions, where

are equivalent if there exists an isomorphism i making the diagram commute.

Example.

- Let $Y = \operatorname{Spec} A$, let $I \subseteq A$ be an ideal, and let $X = \operatorname{Spec} A/I$. Note the map of schemes induced by the quotient map $A \to A/I$ identifies $\operatorname{Spec} A/I$ with $\mathbb{V}(I) \subseteq \operatorname{Spec} A$. Thus $f: X \to Y$, induced by $A \to A/I$, satisfies the first condition of being a closed immersion. Note that $\mathcal{O}_Y \to f_*\mathcal{O}_X$ is surjective on stalks. For $\mathfrak{p} \in \mathbb{V}(I)$, $\mathcal{O}_{Y,\mathfrak{p}} = A_{\mathfrak{p}}$ and $(f_*\mathcal{O}_X)_{\mathfrak{p}} = \mathcal{O}_{X,\mathfrak{p}}$ since all open sets in X are of the form $U \cap X$ for U an open set of Y and $\mathcal{O}_{X,\mathfrak{p}} = (A/I)_{\mathfrak{p}/I}$. Certainly $A_{\mathfrak{p}} \to (A/I)_{\mathfrak{p}/I}$ is surjective.
- Let Spec $k[x,y]/\langle x\rangle \to \operatorname{Spec} k[x,y] = \mathbb{A}^2$. This gives a closed subscheme structure to the set $\mathbb{V}(x)$. Note $\mathbb{V}(x^2,xy) = \mathbb{V}(x)$. This gives a closed immersion $\operatorname{Spec} k[x,y]/\langle x^2,xy\rangle \to \mathbb{A}^2$. This gives a different closed subscheme structure on $\mathbb{V}(x)$. Note these two subschemes are isomorphic away from the origin, which we can see by looking at $\mathbb{D}(y) \subseteq \operatorname{Spec} k[x,y]/\langle x\rangle$, where

$$\mathbb{D}\left(y\right)\cong\operatorname{Spec}\left(k\left[x,y\right]/\left\langle x\right\rangle\right)_{y}=\operatorname{Spec}k\left[y\right]_{y}.$$

Looking at $\mathbb{D}(y) \subseteq \operatorname{Spec} k[x,y] / \langle x^2, xy \rangle$,

$$\mathbb{D}\left(y\right)\cong\operatorname{Spec}\left(k\left[x,y\right]/\left\langle x^{2},xy\right\rangle\right)_{y}\cong\operatorname{Spec}k\left[x,y\right]_{y}/\left\langle x\right\rangle\cong\operatorname{Spec}k\left[y\right]_{y}.$$

 $^{^{14}}$ Exercise

3 Properties of schemes and morphisms of schemes

3.1 Fibre products

Let C be a category and

$$X \xrightarrow{f} Z$$

be a diagram in \mathcal{C} . Then the **fibre product**, if it exists, is an object W equipped with morphisms $p:W\to X$ and $q:W\to Y$ such that $f\circ p=g\circ q$ satisfying the following universal property. For any W' equipped with maps $p':W'\to X$ and $q':W'\to Y$ such that $f\circ p'=g\circ q'$, there exists a unique morphism $h:W'\to W$ making the diagram

commute. That is, $p \circ h = p'$ and $q \circ h = q'$. Note that if the fibre product exists, it is unique up to unique isomorphism.

Example. Let \mathcal{C} be the category of sets. Then

$$X \times_Z Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\}.$$

It will be helpful to think about the fibre product, and more generally other universal properties, via the Yoneda lemma.

Definition. Let \mathcal{C} be a category. Write h_X for the contravariant functor

$$\begin{array}{cccc} \mathbf{h}_{X} & : & \mathcal{C} & \longrightarrow & \mathbf{Set} \\ & Y & \longmapsto & \mathrm{Hom}\,(Y,X) \\ & f:Y\to Z & \longmapsto & (\phi\in\mathrm{Hom}\,(Z,X)\mapsto\phi\circ f\in\mathrm{Hom}\,(Y,X)) \end{array}.$$

Recall that a **natural transformation** between contravariant functors $F, G : \mathcal{C} \to \mathcal{D}$, written as $\mathcal{T} : \mathcal{C} \to \mathcal{D}$, consists of the data $\mathcal{T}(X) : F(X) \to G(X)$ for all $X \in \text{Obj } \mathcal{C}$ such that for all $f : X \to Y$ in \mathcal{C}

$$F\left(X\right) \xleftarrow{F\left(f\right)} F\left(Y\right)$$

$$\tau(X) \downarrow \qquad \qquad \downarrow \tau(Y)$$

$$G\left(X\right) \xleftarrow{G\left(f\right)} G\left(Y\right)$$

is commutative.

Lemma 3.1 (Yoneda's lemma). The set of natural transformations between $h_X : \mathcal{C} \to \mathbf{Set}$ and $G : \mathcal{C} \to \mathbf{Set}$ is G(X).

Proof. Given $\eta \in G(X)$, we need to define a map ¹⁵

$$\begin{array}{ccc} \mathbf{h}_{X}\left(Y\right) = \mathrm{Hom}\left(Y,X\right) & \longrightarrow & G\left(Y\right) \\ f & \longmapsto & G\left(f\right)\left(\eta\right) \end{array}, \qquad Y \in \mathrm{Obj}\,\mathcal{C}.$$

Conversely, given $\mathcal{T}: \mathbf{h}_X \to G$ a natural transformation, take 16

$$\eta = \mathcal{T}(X) (\mathrm{id}_X)$$
.

¹⁵Exercise: check that this defines a natural transformation $h_X \to G$

 $^{^{16}\}mathrm{Exercise}\colon$ check that these two maps are inverse to each other

Corollary 3.2. The set of natural transformations $h_X \to h_Y$ is $h_Y(X) = \text{Hom}(X,Y)$.

Definition. A contravariant functor $F: \mathcal{C} \to \mathbf{Set}$ is said to be **representable** if $F \cong h_X$ for some $X \in \mathrm{Obj} \mathcal{C}$.

Lots of questions in algebraic geometry are about representability of functors. Redefining, the fibre product in a category \mathcal{C} is an object which represents the functor

$$T \mapsto \operatorname{Hom}(T, X) \times_{\operatorname{Hom}(T, Z)} \operatorname{Hom}(T, Y)$$
,

since an element of the set $\operatorname{Hom}(T,X) \times_{\operatorname{Hom}(T,Z)} \operatorname{Hom}(T,Y)$ is a commutative diagram

The advantage of using Yoneda is that we can check identities using fibre products using identities of fibre products of sets.

Example. In Set,

$$\begin{array}{ccccc} (A \times_B C) \times_C D & \longleftrightarrow & A \times_B D \\ & ((a,c)\,,d) & \longmapsto & (a,d) & , & f:D \to C. \\ & ((a,f\,(d))\,,d) & \longleftrightarrow & (a,d) & \end{array}$$

Then we have two functors

and natural transformations showing those functors are isomorphic, and hence represent isomorphic objects.

Lecture 11 Monday 02/11/20

Theorem 3.3. Fibre products exist in the category of schemes.

Proof. Will construct $X \times_S Y$ for various cases, bootstrapping up to the general case.

Step 1. Let $X = \operatorname{Spec} A$, let $Y = \operatorname{Spec} B$, and let $S = \operatorname{Spec} R$, so

$$\begin{array}{cccc} & Y & & & B \\ \downarrow & & \Longleftrightarrow & & \uparrow \\ X & \longrightarrow S & & A & \longleftarrow R \end{array}$$

Push-outs exist in the category of rings, so

where $p_1(a) = a \otimes 1$ and $p_2(b) = 1 \otimes b$. Here h is defined by $h(a \otimes b) = p'_1(a) p'_2(b)$. Thus Spec $A \otimes_R B$ is Spec $A \times_{\operatorname{Spec} R} \operatorname{Spec} B$ in the category of affine schemes.

¹⁷Exercise: check well-defined

If T is an arbitrary scheme, then giving a morphism $T \to \operatorname{Spec} A$ is the same as giving a morphism $A \to \Gamma(T, \mathcal{O}_T)$, by question 12, example sheet 1. Thus giving a commutative diagram

is equivalent to

and $h: A \otimes_R B \to \Gamma(T, \mathcal{O}_T)$ induces a map $T \to \operatorname{Spec} A \otimes_R B$. Thus $\operatorname{Spec} A \otimes_R B$ is the fibre product $\operatorname{Spec} A \times_{\operatorname{Spec} R} \operatorname{Spec} B$ in the category of schemes.

- Step 2. Will construct more general fibre products by gluing of schemes using question 14 on example sheet 1. We also glue morphisms, so if X and Y are schemes, $\{U_i\}$ an open cover of X, and we are given morphisms $f_i:U_i\to Y$ such that $f_i|_{U_i\cap U_j}=f_j|_{U_i\cap U_j}$, then we obtain $f:X\to Y$ such that $f|_{U_i}=f_i$. The argument is given in the examples class.
- Step 3. If $X,Y \to S$ are given and $U \subseteq X$ is open, suppose that $X \times_S Y$ exists, with projections $p_1: X \times_S Y \to X$ and $p_2: X \times_S Y \to Y$. Then $p_1^{-1}(U)$ is $U \times_S Y$. By commutativity of the diagram

the image of h' must be contained in $p_1^{-1}(U)$. Thus h' factors through $p_1^{-1}(U) \hookrightarrow X \times_S Y$ giving the unique map h, so the universal property holds for $p_1^{-1}(U)$.

Step 4. Suppose $\{X_i\}$ is an open cover of X and $X_i \times_S Y$ exists for each i. Then $X \times_S Y$ exists. Let $X_{ij} = X_i \cap X_j$, and let $U_{ij} = p_1^{-1}(X_{ij}) \subseteq X_i \times_S Y$. By step 3, $U_{ij} = X_{ij} \times_S Y$. By the universal property of fibre products there exists a unique isomorphism $\phi_{ij}: U_{ij} \to U_{ji}$. ¹⁸ Thus we can glue the $X_i \times_S Y$ via ϕ_{ij} 's to get a scheme $X \times_S Y$, but need to check it satisfies the fibre product axioms. So suppose given

 $^{^{18}}$ Exercise: check these gluing maps ϕ_{ij} satisfy the requirements of question 14 on example sheet 1

Let $T_i = (p_1')^{-1}(X_i)$, so get a morphism $\theta_i : T_i \to X_i \times_S Y \hookrightarrow X \times_S Y$, where $X_i \times_S Y \hookrightarrow X \times_S Y$ is an open immersion by construction. On $T_i \cap T_j$ these maps agree since they factor through $X_{ij} \times_S Y \subseteq X_i \times_S Y$ and $X_{ji} \times_S Y \subseteq X_j \times_S Y$ and by the universal property they agree. Thus using step 2, we can glue the θ_i 's to get $\theta : T \to X \times_S Y$.

- Step 5. Using step 4 and 1 we may construct $X \times_S Y$ when S and Y are affine. Repeating for Y, we obtain $X \times_S Y$ when S is affine, and X and Y are arbitrary.
- Step 6. Let X, Y, S be arbitrary, take an open affine cover $\{S_i\}$ of S, let $f: X \to S$ and $g: Y \to S$, and let $X_i = f^{-1}(S_i)$ and $Y_i = g^{-1}(S_i)$. Then $X_i \times_{S_i} Y_i$ exists and $X_i \times_{S_i} Y_i = X_i \times_{S_i} Y_i$. Use the same gluing argument as before, to get $X \times_{S_i} Y$.

3.2 Fibres of morphisms

The philosophy in \mathbf{Set} is

$$f^{-1}(y) = \{y\} \times_Y X \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow_f.$$

$$\{y\} \longrightarrow Y$$

Given $f: X \to Y$ a morphism and $y \in Y$, let $\kappa(y) = \mathcal{O}_{Y,y}/\mathfrak{m}_y$ be the residue field of y, so we get a morphism $\operatorname{Spec} \kappa(y) \to Y$ with image y. Then we define

$$X_y = \operatorname{Spec} \kappa(y) \times_Y X$$

to be the **scheme-theoretic fibre** of f at y.

Example. Let $f: X = \operatorname{Spec} k[x] \to Y = \operatorname{Spec} k[t]$ be induced by

$$\begin{array}{ccc} k \begin{bmatrix} t \end{bmatrix} & \longrightarrow & k \begin{bmatrix} x \end{bmatrix} \\ t & \longmapsto & x^2 \end{array}.$$

For $y = \langle t - a \rangle \subseteq k[t]$ and $a \in k$, $\kappa(y) = k[t]/\langle t - a \rangle \cong k$. If B is an A-algebra then $A/I \otimes_A B = B/IB$, so

$$X_y = \operatorname{Spec} \kappa(y) \otimes_{k[t]} k[x] = \operatorname{Spec} k[x] / \langle x^2 - a \rangle$$
.

If $a \neq 0$ and $\operatorname{ch} k \neq 2$, we obtain either X_y consists of two distinct points, if $\sqrt{a} \in k$, or a single point if $\sqrt{a} \notin k$. If a = 0, we get $\operatorname{Spec} k[x]/\langle x^2 \rangle$.

Remark.

• In general, it is hard to calculate fibre products, since $X \times_S Y$ is not the set-theoretic fibre product in general. For example,

$$\mathbb{A}_{k}^{1} \times_{\operatorname{Spec} k} \mathbb{A}_{k}^{1} = \operatorname{Spec} k [x] \otimes_{k} k [y] = \operatorname{Spec} k [x, y] = \mathbb{A}_{k}^{2}.$$

- If we are interested only in varieties, such as schemes over a field k, the usual product of varieties $X \times Y$ corresponds to $X \times_{\operatorname{Spec} k} Y$. More generally, if we are working in the category $\operatorname{\mathbf{Sch}}/S$, the natural product is $X \times_S Y$.
- Given schemes S and T with a morphism $T \to S$, we get a functor

$$\begin{array}{ccc} \mathbf{Sch}/S & \longrightarrow & \mathbf{Sch}/T \\ (X \to S) & \longmapsto & (X \times_S T \to T) \end{array}.$$

This functor is called **base-change**.

¹⁹Exercise: check, immediate from universal property

Example. Consider a scheme X over Spec \mathbb{Z} , such as $X = \operatorname{Proj} \mathbb{Z}[x, y, z] / \langle x^n + y^n - z^n \rangle \to \operatorname{Spec} \mathbb{Z}$. May consider base-changes

Lecture 12 Wednesday 04/11/20

- Spec $\mathbb{F}_p \to \operatorname{Spec} \mathbb{Z}$, induced by $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$, which gives $X \times_{\operatorname{Spec} \mathbb{Z}} \operatorname{Spec} \mathbb{F}_p = \operatorname{Proj} \mathbb{F}_p [x, y, z]/I$,
- Spec $\mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$, induced by $\mathbb{Z} \to \mathbb{Q}$, which gives $X \times_{\operatorname{Spec} \mathbb{Z}} \operatorname{Spec} \mathbb{Q} = \operatorname{Proj} \mathbb{Q}[x, y, z]/I$, or
- Spec $\mathbb{C} \to \operatorname{Spec} \mathbb{Z}$, induced by $\mathbb{Z} \to \mathbb{C}$, which gives $X \times_{\operatorname{Spec} \mathbb{Z}} \operatorname{Spec} \mathbb{C} = \operatorname{Proj} \mathbb{C}[x, y, z] / I \subseteq \mathbb{P}^2_{\mathbb{C}}$,

where $I = \langle x^n - y^n - z^n \rangle$.

3.3 Brief discussion of other properties

See example sheet 2 for more details or your favourite algebraic geometry text, such as Hartshorne Section II.3 and Section II.4.

Definition. A scheme X is **integral** if for every $U \subseteq X$ open, $\mathcal{O}_X(U)$ is an integral domain.

Definition. A scheme X is **reduced** if for every $U \subseteq X$ open, $\mathcal{O}_X(U)$ has no nilpotents.

Definition. A scheme X is **irreducible** if the underlying topological space X is irreducible. That is, if $X = X_1 \cup X_2$ with $X_1, X_2 \subseteq X$ closed, then either $X_1 = X$ or $X_2 = X$.

Example. Let $X = \operatorname{Spec} k[x, y] / \langle xy \rangle$.

- X is not integral because $\Gamma(X, \mathcal{O}_X) = k [x, y] / \langle xy \rangle$ is not an integral domain, since xy = 0.
- X is reduced.
- X is not irreducible, since $X = \mathbb{V}(x) \cup \mathbb{V}(y)$.

Theorem 3.4. X is integral if and only if X is reduced and irreducible.

Definition. Let X be a scheme. It is **locally Noetherian** if there exists a cover $\{U_i\}$ of X with $U_i = \operatorname{Spec} A_i$ affine and A_i Noetherian. It is **Noetherian** if the cover may be taken to be finite.

Example. Spec $k[x_1, x_2, \dots]$ with a countable number of variables is not locally Noetherian.

Not obvious, but can show that X is locally Noetherian if and only if, if $U \subseteq X$ is affine and $U = \operatorname{Spec} A$, then A is Noetherian.

Definition. A morphism $f: X \to Y$ of schemes is **locally of finite type** if there is a covering of Y by affine open sets $\{V_i = \operatorname{Spec} B_i\}$ such that for each i, $f^{-1}(V_i)$ can be covered by affine open sets $\{U_{ij} = \operatorname{Spec} A_{ij}\}$, where each A_{ij} is a finitely generated B_i -algebra. We say f is of **finite type** if for each i, the cover $\{U_{ij}\}$ may be taken to be finite.

Definition. Let k be an algebraically closed field. A variety over k is a scheme X over Spec k which is integral and $X \to \operatorname{Spec} k$ is of finite type. That is, X can be covered by a finite number of open affines $U_i = \operatorname{Spec} A_i$ with A_i a finitely generated k-algebra. The A_i must be integral domains, so $A_i = k[x_1, \ldots, x_n]/I$ where I is a prime ideal.

Note that this still allows a non-Hausdorff scheme $\mathbb{A}^1 \cup \mathbb{A}^1$ obtained by gluing $\mathbb{D}(x) \subseteq \mathbb{A}^1$ to $\mathbb{D}(x) \subseteq \mathbb{A}^1$.

Example. Let $X_i = \operatorname{Spec} k\left[x_i, y_i\right] / \langle x_i y_i \rangle$ for $i \in \mathbb{Z}$. Glue X_i to X_{i+1} along open subsets $U_{i,i+1} \subseteq X_i$ given by $\mathbb{D}\left(x_i\right)$ and $U_{i+1,i} \subseteq X_{i+1}$ given by $\mathbb{D}\left(y_{i+1}\right)$ via the map

$$\begin{array}{ccc} k \left[y_{i+1} \right]_{y_{i+1}} & \longrightarrow & k \left[x_i \right]_{x_i} \\ y_{i+1} & \longmapsto & x_i^{-1} \end{array}.$$

Doing this for all i, we get an infinite chain of \mathbb{P}^1 's. Note $\{X_i\}$ forms an open cover of X but has no finite subcover. Not quasi-compact, only locally of finite type over Spec k.

3.4 Separated and proper morphisms

Remark. A topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\} \subseteq X \times X$ is closed.

Example. Let X be \mathbb{R} with doubled origin in the usual Euclidean topology. Then $X \times X$ is \mathbb{R}^2 with doubled axes and four origins. Then Δ only contains two origins but other origins are in the closure of Δ .

Definition. Let $f: X \to Y$ be a morphism of schemes, and $\Delta: X \to X \times_Y X$ be the morphism induced by the diagram

We say f is **separated** if Δ is a closed immersion.

Theorem 3.5 (Valuative criterion for separatedness). Let $f: X \to Y$ be a morphism and X Noetherian. Then f is separated if and only if the following condition holds. For any field k and any valuation ring $R \subseteq k$, that is for any $x \in k$ such that $x \neq 0$ either $x \in R$ or $x^{-1} \in R$, let $T = \operatorname{Spec} R$ and $U = \operatorname{Spec} k$, and $\iota: U \to T$ be the morphism induced by the inclusion $R \hookrightarrow k$. Given a commutative diagram

$$U \longrightarrow X$$

$$\downarrow \downarrow \qquad \downarrow f,$$

$$T \longrightarrow Y$$

then there exists at most one morphism $\iota': T \to X$ making the diagram commute.

The intuition is if R is a valuation ring, it has a zero prime ideal and a unique maximal ideal, such that $\overline{\{0\}} = \mathbb{V}(0) = \operatorname{Spec} R = T$ and the maximal ideal is a closed point.

Lecture 13 Friday 06/11/20

Remark. We may now define a variety over a field k as a scheme X which is integral, and finite type and separated over Spec k.

Definition. A morphism $f: X \to Y$ is **proper** if it is separated, of finite type, and **universally closed**. That is, for any morphism $Y' \to Y$ the induced projection $X \times_Y Y' \to Y'$ is a closed map, that is the image of a closed set is closed.

Example.

- $\mathbb{P}_k^n = \operatorname{Proj} k[x_0, \dots, x_n] \to \operatorname{Spec} k$ is proper.
- $\mathbb{A}^1_k \to \operatorname{Spec} k$ is not proper. Consider the base-change by $\mathbb{A}^1_k \to \operatorname{Spec} k$. Let

$$p_2 : \mathbb{A}^1_k \times_{\operatorname{Spec} k} \mathbb{A}^1_k = \mathbb{A}^2_k = \operatorname{Spec} k\left[x\right] \otimes_k k\left[y\right] = \operatorname{Spec} k\left[x,y\right] \longrightarrow \mathbb{A}^1_k = \operatorname{Spec} k\left[t\right] \\ y \longmapsto t$$

This is not a closed map. For example, $p_2(\mathbb{V}(xy-1)) = \mathbb{D}(t)$, which is open and not closed.

Theorem 3.6 (Valuative criterion for properness). Let $f: X \to Y$ be a finite type morphism with X Noetherian. Then f is proper if as in the criterion for separatedness, whenever given a diagram

$$\begin{split} \operatorname{Spec} k &= U \longrightarrow X \\ \downarrow & & \downarrow^{f}, \\ \operatorname{Spec} R &= T \longrightarrow Y \end{split}$$

there exists a unique morphism $g: T \to X$ making the diagram commute.

Example. Projective varieties, that is closed subvarieties in \mathbb{P}^n_k , are proper over Spec k.

4 Sheaves of \mathcal{O}_X -modules

The idea is to go from the notion of an A-module M to the notion of an \mathcal{O}_X -module \mathcal{F} .

4.1 Sheaves of modules

Definition. Let (X, \mathcal{O}_X) be a ringed space. A **sheaf of** \mathcal{O}_X -**modules** is a sheaf of abelian groups \mathcal{F} on X such that for each $U \subseteq X$, $\mathcal{F}(U)$ has the structure of an $\mathcal{O}_X(U)$ -module, compatible with restriction. That is, if $s \in \mathcal{O}_X(U)$ and $m \in \mathcal{F}(U)$, then $s|_V \cdot m|_V = (s \cdot m)|_V$ for $V \subseteq U$. A **morphism of sheaves of** \mathcal{O}_X -**modules** $\phi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves of abelian groups such that for all $U \subseteq X$, $\phi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is a homomorphism of $\mathcal{O}_X(U)$ -modules.

- Kernels, cokernels, and images of morphisms of sheaves of \mathcal{O}_X -modules are sheaves of \mathcal{O}_X -modules.
- $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ denotes the group of \mathcal{O}_X -module homomorphisms $\{\phi:\mathcal{F}\to\mathcal{G}\}$. This is an $\mathcal{O}_X(X)$ -module. Then the **sheaf hom**

$$U \mapsto \operatorname{Hom}_{\mathcal{O}_U} \left(\mathcal{F}|_U, \mathcal{G}|_U \right),$$

where $\operatorname{Hom}_{\mathcal{O}_U}(\mathcal{F}|_U, \mathcal{G}|_U)$ is an $\mathcal{O}_X(U)$ -module, is a sheaf of \mathcal{O}_X -modules, written $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$.

• If \mathcal{F} and \mathcal{G} are \mathcal{O}_X -modules, we denote by $F \otimes_{\mathcal{O}_X} \mathcal{G}$ the sheaf associated to the presheaf

$$U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$$
.

• Push-forwards and pull-backs. Let $\phi: A \to B$ be a homomorphism of rings, let M be a B-module, and let N be an A-module. Then M is also an A-module such that

$$a \cdot m = \phi(a) \cdot m, \qquad a \in A, \qquad m \in M$$

and $B \otimes_A N$ is a B-module via

$$b \cdot (b' \otimes n) = bb' \otimes n, \qquad b \in B, \qquad b' \otimes n \in B \otimes_A N.$$

Given $f: X \to Y$ a morphism of ringed spaces, so $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$, if \mathcal{F} is a sheaf of \mathcal{O}_{X} -modules and \mathcal{G} is a sheaf of \mathcal{O}_{Y} -modules, then the following holds.

- $-f_*\mathcal{F}$ is naturally a sheaf of $f_*\mathcal{O}_X$ -modules, since $(f_*\mathcal{F})(U) = \mathcal{F}(f^{-1}(U))$ is an $(f_*\mathcal{O}_X)(U) = \mathcal{O}_X(f^{-1}(U))$ -module, and hence $f_*\mathcal{F}$ is an \mathcal{O}_Y -module via $f^\#$.
- $-f^{-1}\mathcal{G}$ is naturally a sheaf of $f^{-1}\mathcal{O}_Y$ -modules. But $f^{\#}$ induces the adjoint map $f^{\#}: f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$, by question 10 on example sheet 1. Define

$$f^*\mathcal{G} = f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_X} \mathcal{O}_X.$$

This is a sheaf of \mathcal{O}_X -modules.

4.2 Locally free and coherent sheaves

Definition. A sheaf of \mathcal{O}_X -modules \mathcal{F} is **free** if it is isomorphic to $\bigoplus_{i\in I} \mathcal{O}_X$ for some index set I. If $\#I = r < \infty$, then we say \mathcal{F} has **rank** r. A sheaf \mathcal{F} is **locally free** of rank r if there exists an open cover $\{U_i\}$ on X such that $\mathcal{F}|_{U_i}$ is free of rank r for each i. Then \mathcal{F} is a **line bundle** if it is rank one. Often more generally, one might refer to a rank r locally free sheaf as a rank r **vector bundle**.

Remark. One way to define the notion of a vector bundle over a k-scheme X as another scheme E with a morphism $\pi: E \to X$ whose fibres are \mathbb{A}^r , and there exists an open cover $\{U_i\}$ such that $\pi^{-1}(U_i) \cong U_i \times \mathbb{A}^r$, and other conditions. We get a sheaf

$$\mathcal{E}\left(U\right) = \left\{s: U \to \pi^{-1}\left(U\right) \mid \pi \circ s = \mathrm{id}_{U}\right\}.$$

This gives a locally free sheaf on X. See somewhere in Hartshorne Section II.5 exercises.

Example. Let $E = X \times \mathbb{A}^1$. Then

$$\mathcal{E}\left(U\right) = \mathcal{O}_X\left(U\right).$$

Giving a morphism $s: U \to U \times_{\operatorname{Spec} k} \mathbb{A}^1_k$ whose composition with $\pi_1: U \times_{\operatorname{Spec} k} \mathbb{A}^1_k \to U$ is the identity is the same as giving a morphism $f: U \to \mathbb{A}^1_k$, since

Giving $U \to \mathbb{A}^1_k$ is the same thing as giving a k-algebra homomorphism

$$\begin{array}{ccc} k\left[x\right] & \longrightarrow & \mathcal{O}_X\left(U\right) \\ x & \longmapsto & \phi \end{array}.$$

The set of such homomorphisms is $\mathcal{O}_X(U)$.

If $S \subseteq A$ is a multiplicatively closed subset, then

Lecture 14 Monday 09/11/20

$$S^{-1}M = \left\{ \frac{m}{a} \mid a \in S, \ m \in M \right\} / \sim,$$

where $m/a \sim m/a'$ if and only if there exists $b \in S$ such that b (ma' - m'a) = 0. Also, $S^{-1}M = M \otimes_A S^{-1}A$. Let $X = \operatorname{Spec} A$ be an affine scheme, and let M be an A-module. For $\mathfrak{p} \in \operatorname{Spec} A$, we have the localisation $M_{\mathfrak{p}} = M \otimes_A A_{\mathfrak{p}}$. Define a sheaf \widetilde{M} on $\operatorname{Spec} A$ by

$$\widetilde{M}\left(U\right) = \left\{s: U \to \bigsqcup_{\mathfrak{p} \in U} M_{\mathfrak{p}} \,\middle|\, \begin{array}{l} \forall \mathfrak{p} \in U, \ s\left(\mathfrak{p}\right) \in M_{\mathfrak{p}}, \\ \forall \mathfrak{p} \in U, \ \exists \mathfrak{p} \in V \subseteq U \ \text{open}, \ \exists m \in M, \ \exists s \in A, \ \forall \mathfrak{q} \in V, \ s \notin \mathfrak{q}, \ s\left(\mathfrak{q}\right) = \frac{m}{s} \end{array}\right\}.$$

Example. $\widetilde{A} = \mathcal{O}_{\operatorname{Spec} A}$.

Proposition 4.1.

- $\bullet \ \widetilde{M}_{\mathfrak{p}}=M_{\mathfrak{p}}.$
- $\widetilde{M}\left(\mathbb{D}\left(f\right)\right)=M_{f}.$
- $\Gamma\left(\operatorname{Spec} A, \widetilde{M}\right) = M$.

Proof. Exactly as the corresponding statements for $\mathcal{O}_{\text{Spec }A}$.

Definition. Let X be a scheme and \mathcal{F} a sheaf of \mathcal{O}_X -modules on X. We say \mathcal{F} is **quasi-coherent** if X can be covered with affines $U_i = \operatorname{Spec} A_i$ such that $\mathcal{F}|_{U_i} \cong \widetilde{M}_i$ for some A_i -module M_i . We say \mathcal{F} is **coherent** if each M_i can be taken to be finitely generated.

Example. A locally free sheaf is always quasi-coherent and coherent if of finite rank. If $U \subseteq X$ satisfies $\mathcal{F}|_U = \bigoplus_{i \in I} \mathcal{O}_U$, then $\mathcal{F}|_U = \bigoplus_{i \in I} A$ for $U = \operatorname{Spec} A$.

Kernels, cokernels, images, tensor products, and hom sheaves of quasi-coherent sheaves of \mathcal{O}_X -modules are quasi-coherent. This follows since these operations commute with $\widetilde{\cdot}$, such as

$$\ker\left(\widetilde{M_1}\to\widetilde{M_2}\right)=\ker\left(\widetilde{M_1}\to M_2\right),\quad \widetilde{M_1}\otimes_{\mathcal{O}_X}\widetilde{M_2}=\widetilde{M_1\otimes_A}M_2,\quad \mathcal{H}om_{\mathcal{O}_X}\left(\widetilde{M_1},\widetilde{M_2}\right)=\widetilde{\operatorname{Hom}_A\left(M_1,M_2\right)}.$$

4.3 Line bundles and the Picard group

Remark. Note that if \mathcal{L} is a line bundle, say with trivialising cover $\{U_i\}$, then we have on $U_i \cap U_j$

$$\phi_{ij}: \mathcal{O}_{U_i}|_{U_i \cap U_j} \xrightarrow{\sim} \mathcal{L}|_{U_i \cap U_j} \xrightarrow{\sim} \mathcal{O}_{U_j}|_{U_i \cap U_j},$$

using trivialisations on U_i and U_j . Then ϕ_{ij} is an automorphism of $\mathcal{O}_{U_i \cap U_j}$ as an $\mathcal{O}_{U_i \cap U_j}$ -module, and as such is given by multiplication by $g_{ij} \in \mathcal{O}_X^*$ ($U_i \cap U_j$), where \mathcal{O}_X^* is the subsheaf of \mathcal{O}_X consisting of invertible sections of \mathcal{O}_X . Note on $U_i \cap U_j \cap U_k$, we have $g_{ij}g_{jk} = g_{ik}$.

Now suppose given $f: Y \to X$ a morphism. How do we think about $f^*\mathcal{L}$? Let $Y_i = f^{-1}(U_i)$ and $f_i: Y_i \to U_i$. Then

$$f_i^*\left(\left.\mathcal{L}\right|_{U_i}\right)\cong f_i^*\mathcal{O}_{U_i}\cong f_i^{-1}\mathcal{O}_{U_i}\otimes_{f_i^{-1}\mathcal{O}_{U_i}}\mathcal{O}_{Y_i}\cong \mathcal{O}_{Y_i},$$

since $A \otimes_A M \cong M$. Now $(f^*\mathcal{L})|_{Y_i} \cong \mathcal{O}_{Y_i}$. So $\{U_i\}$ pulls back to a trivialising cover for $f^*\mathcal{L}$, so pull-back of a line bundle is a line bundle. Further the transition maps are given by $f^{\#}(g_{ij})$.

Remark. Push-forward is not as well-behaved. For example, $f_*\mathcal{L}'$ for \mathcal{L}' a line bundle on Y need not be a line bundle. In fact, it will always be quasi-coherent but not necessarily coherent.

If \mathcal{L}_1 and \mathcal{L}_2 are line bundles on X, with a common trivialising cover $\{U_i\}$ and with transition functions g_{ij} and h_{ij} respectively, then the following holds.

- The transition functions of $\mathcal{L}_1 \otimes_{\mathcal{O}_X} \mathcal{L}_2$ are $g_{ij}h_{ij}$. Note if $g: A \to A$ and $h: A \to A$ are given, then these two homomorphisms induce the homomorphism $g \otimes h: A \otimes_A A \to A \otimes_A A$, which is $gh: A \to A$.
- Set $\mathcal{L}_1^{\vee} \cong \mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}_1, \mathcal{O}_X)$. This is also a line bundle because on U_i , $\mathcal{L}_1|_{U_i} \cong \mathcal{O}_{U_i}$, and since $\operatorname{Hom}_A(A, A) = A$, $\mathcal{H}om_{\mathcal{O}_{U_i}}(\mathcal{O}_{U_i}, \mathcal{O}_{U_i}) = \mathcal{O}_{U_i}$. The transition maps are given by g_{ij}^{-1} , since $g_{ij}: \mathcal{O}_{U_i}|_{U_i \cap U_j} \to \mathcal{O}_{U_j}|_{U_i \cap U_j}$ has dual $g_{ij}^{\mathsf{T}} = g_{ij}^{\mathsf{T}} : \mathcal{O}_{U_i}|_{U_i \cap U_j} \to \mathcal{O}_{U_j}|_{U_i \cap U_j}$.

Note that $\mathcal{L}_1^{\vee} \otimes_{\mathcal{O}_X} \mathcal{L}_1$ has transition maps $g_{ij}^{-1} g_{ij} = 1$. Thus $\mathcal{L}_1^{\vee} \otimes_{\mathcal{O}_X} \mathcal{L}_1 \cong \mathcal{O}_X$.

Definition. Let X be a scheme. Define Pic X, the **Picard group** of X, to be the set of isomorphism classes of line bundles on X. This is a group with product law and inverse

$$\mathcal{L}_1 \cdot \mathcal{L}_2 = \mathcal{L}_1 \otimes_{\mathcal{O}_X} \mathcal{L}_2, \qquad \mathcal{L}^{-1} = \mathcal{L}^{\vee} = \mathcal{H}om\left(\mathcal{L}, \mathcal{O}_X\right).$$

Why are line bundles important?

4.4 Morphisms to projective space

Fix a base scheme Spec k. Then $\mathbb{P}_k^n = \operatorname{Proj} k[x_1, \dots, x_n]$. Denote by $\operatorname{\mathbf{Sch}}/k$ the category of schemes over k. Let F be the functor

$$\begin{array}{ccc} \mathbf{Sch}/k & \longrightarrow & \mathbf{Set} \\ X & \longmapsto & \left\{ \text{surjections } \mathcal{O}_X^{\oplus (n+1)} \twoheadrightarrow \mathcal{L} \text{ for } \mathcal{L} \text{ a line bundle on } X \right\} / \cong \end{array},$$

where $\phi_1: \mathcal{O}_X^{\oplus (n+1)} \to \mathcal{L}_1$ and $\phi_2: \mathcal{O}_X^{\oplus (n+1)} \to \mathcal{L}_2$ are isomorphic if there exists an isomorphism $f: \mathcal{L}_1 \to \mathcal{L}_2$ of \mathcal{O}_X -modules making

$$\mathcal{L}_1 \xrightarrow{f} \mathcal{L}_2$$

$$\mathcal{O}_X^{\oplus (n+1)}$$

commute. Given $f: X_1 \to X_2$ a morphism in \mathbf{Sch}/k , we get a map in \mathbf{Set}

$$\begin{pmatrix}
F(X_2) & \longrightarrow & F(X_1) \\
\phi : \mathcal{O}_{X_2}^{\oplus (n+1)} \twoheadrightarrow \mathcal{L}
\end{pmatrix} & \longmapsto & \left(f^*\phi : f^*\mathcal{O}_{X_2}^{\oplus (n+1)} = \mathcal{O}_{X_1}^{\oplus (n+1)} \twoheadrightarrow f^*\mathcal{L}\right)$$

This is a surjection by right exactness of tensor products.

Theorem 4.2. F is represented by \mathbb{P}_k^n . That is, $F \cong h_{\mathbb{P}_k^n}$.

Remark. This is an example of a **Quot scheme**, which is a scheme which represents a functor of the form $X \mapsto \{\mathcal{O}_X^{\oplus k} \twoheadrightarrow \mathcal{E}\}$, where \mathcal{E} is a coherent sheaf satisfying some properties.

If the statement holds, then there is a **universal object**. That is, an element of $F(\mathbb{P}^n)$ corresponding to the identity $\mathrm{id}_{\mathbb{P}^n} \in \mathrm{h}_{\mathbb{P}^n}$ (\mathbb{P}^n), that is a surjective map $\mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)} \twoheadrightarrow \mathcal{L}$. Further, following the proof of Yoneda's lemma, given $f: X \to \mathbb{P}^n$ and $\mathcal{T}: \mathrm{h}_{\mathbb{P}^n} \to F$ the natural transformation giving the natural isomorphism of functors, we get a commutative diagram

Lecture 15 Wednesday 11/11/20

$$\begin{split} \operatorname{id}_{\mathbb{P}^{n}} &\in \operatorname{h}_{\mathbb{P}^{n}}\left(\mathbb{P}^{n}\right) \xrightarrow{\mathcal{T}(\mathbb{P}^{n})} F\left(\mathbb{P}^{n}\right) \ni \left(\mathcal{O}_{\mathbb{P}^{n}}^{\oplus (n+1)} \xrightarrow{\phi} \mathcal{L}\right) \\ \operatorname{h}_{\mathbb{P}^{n}}(f) \downarrow & \downarrow F(f) \\ f &\in \operatorname{h}_{\mathbb{P}^{n}}\left(X\right) \xrightarrow{\mathcal{T}(X)} F\left(X\right) \ni \left(\mathcal{O}_{X}^{\oplus (n+1)} \xrightarrow{f^{*}\phi} f^{*}\mathcal{L}\right) \end{split}$$

That is, the element $\mathcal{T}(X)(f)$ is precisely $f^*\phi: \mathcal{O}_X^{\oplus (n+1)} \to f^*\mathcal{L}$. So the representing scheme \mathbb{P}^n comes with the universal object $\mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)} \twoheadrightarrow \mathcal{L}$. So we will construct the universal object. The line bundle we construct has a name, $\mathcal{O}_{\mathbb{P}^n}(1)$.

• Let $S = k [x_0, \dots, x_n]$. Then $\mathbb{P}^n = \operatorname{Proj} S$ has an open cover

$$\mathcal{U} = \{ \mathbb{D}_+ (x_i) \mid 0 \le i \le n \}, \qquad \mathbb{D}_+ (x_i) = \{ \mathfrak{p} \in \operatorname{Proj} S \mid x_i \notin \mathfrak{p} \}.$$

We will take \mathcal{U} to be a trivialising cover for $\mathcal{O}_{\mathbb{P}^n}$ (1), with the transition map given by

$$g_{ij} = \frac{x_i}{x_j} = \frac{x_i^2}{x_i x_j} \in \mathcal{O}_{\mathbb{P}^n}^* \left(\mathbb{D}_+ \left(x_i \right) \cap \mathbb{D}_+ \left(x_j \right) \right) = \mathcal{O}_{\mathbb{P}^n}^* \left(\mathbb{D}_+ \left(x_i x_j \right) \right) = S_{(x_i x_j)}^*,$$

so $g_{ji} = x_j/x_i = x_j^2/x_i x_j$ and $g_{ij}g_{jk} = (x_i/x_j)(x_j/x_k) = x_i/x_k = g_{ik}$.

• Have a morphism defined by

$$\Gamma\left(\mathbb{D}_{+}\left(x_{i}\right), \mathcal{O}_{\mathbb{P}^{n}}^{\oplus\left(n+1\right)}\right) \longrightarrow \Gamma\left(\mathbb{D}_{+}\left(x_{i}\right), \mathcal{O}_{\mathbb{P}^{n}}\left(1\right)\right) \\
e_{j} \longmapsto \frac{x_{j}}{x_{i}} , \qquad e_{j} = \left(0, \dots, 0, 1, 0, \dots, 0\right),$$

using the trivialisation of $\mathcal{O}_{\mathbb{P}^n}(1)$ on $\mathbb{D}_+(x_i)$. That is, we have an isomorphism $\mathcal{O}_{\mathbb{P}^n}(1)|_{\mathbb{D}_+(x_i)} \cong \mathcal{O}_{\mathbb{D}_+(x_i)}$. Well-defined globally, since

$$\mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)}\Big|_{\mathbb{D}_+(x_ix_k)} \xrightarrow{e_j \mapsto \frac{x_j}{x_k}},$$

$$\mathcal{O}_{\mathbb{D}_+(x_i)}\Big|_{\mathbb{D}_+(x_ix_k)} \xrightarrow{\cdot g_{ik}} \mathcal{O}_{\mathbb{D}_+(x_k)}\Big|_{\mathbb{D}_+(x_ix_k)}$$

but $g_{ik}(x_j/x_i) = (x_i/x_k)(x_j/x_i) = x_j/x_k$. Note in particular each e_j maps to a global section of $\mathcal{O}_{\mathbb{P}^n}(1)$. We now have a morphism $\mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)} \to \mathcal{O}_{\mathbb{P}^n}(1)$, and need to check surjective. On $\mathbb{D}_+(x_i)$,

$$\Gamma\left(\mathbb{D}_{+}\left(x_{i}\right),\mathcal{O}_{\mathbb{P}^{n}}^{\oplus\left(n+1\right)}\right) \longrightarrow \Gamma\left(\mathbb{D}_{+}\left(x_{i}\right),\mathcal{O}_{\mathbb{P}^{n}}\right) = S_{\left(x_{i}\right)}$$

$$e_{i} \longmapsto \frac{x_{i}}{x_{i}} = 1$$

so in particular, looking at sections over $\mathbb{D}_+(x_i)$, we get a homomorphism of $S_{(x_i)}$ -modules

$$S_{(x_i)}^{\oplus (n+1)} \longrightarrow S_{(x_i)} ,$$

$$e_i \longmapsto 1 ,$$

so clearly a surjective map of modules.

Thus
$$\left(\psi: \mathcal{O}_{\mathbb{P}^n}^{\oplus (n+1)} \twoheadrightarrow \mathcal{O}_{\mathbb{P}^n} (1)\right) \in F(\mathbb{P}^n).$$

Proof. Given X and $\left(\phi: \mathcal{O}_X^{\oplus (n+1)} \twoheadrightarrow \mathcal{L}\right) \in F(X)$, we need that there exists a unique morphism $f: X \to \mathbb{P}^n$ such that

$$\left(\phi:\mathcal{O}_X^{\oplus (n+1)} \twoheadrightarrow \mathcal{L}\right) \cong \left(f^*\psi:\mathcal{O}_X^{\oplus (n+1)} \rightarrow f^*\mathcal{O}_{\mathbb{P}^n}\left(1\right)\right).$$

Indeed, this will give the natural transformation $F \to h_{\mathbb{P}^n}$, and the inverse natural transformation $h_{\mathbb{P}^n} \to F$ is given by pull-back. That is, $f: X \to \mathbb{P}^n$ gives $f^*\psi: \mathcal{O}_X^{\oplus (n+1)} \to f^*\mathcal{O}_{\mathbb{P}^n}$ (1).

• Let $\phi(e_i) = s_i \in \Gamma(X, \mathcal{L})$. Define

$$Z_i = \{x \in X \mid (s_i)_x \in \mathfrak{m}_x \mathcal{L}_x\}, \qquad \mathfrak{m}_x \subseteq \mathcal{O}_{X,x},$$

where $(s_i)_x$ is the germ of s_i at x. Claim that this is a closed set. This can be checked on an open cover $\{U_i\}$, since $Z\subseteq X$ is closed if and only if $Z\cap U_i$ is closed in U_i for all i. Thus we may use a trivialising affine cover $\{U_i\}$ of X. So we reduce to the case that $X=\operatorname{Spec} A$ and $\mathcal{L}\cong\mathcal{O}_{\operatorname{Spec} A}$, so $\Gamma(X,\mathcal{L})\cong A$ so $s_i\in A$ induces $(s_i)_{\mathfrak{p}}=s_i/1\in A_{\mathfrak{p}}$. Now $s_i/1\in \mathfrak{m}_{\mathfrak{p}}A_{\mathfrak{p}}$ if and only if s_i lies in the inverse image \mathfrak{p} of $\mathfrak{m}_{\mathfrak{p}}A_{\mathfrak{p}}$ under the localisation map $A\to A_{\mathfrak{p}}$. Thus $Z_i=\mathbb{V}(s_i)$, a closed set. Let

$$U_i = X \setminus Z_i$$
.

Then there is an isomorphism 20

$$\begin{array}{cccc} \mathcal{O}_{U_i} & \longleftrightarrow & \mathcal{L}|_{U_i} \\ 1 & \longmapsto & s_i \\ \frac{s}{s_i} & \longleftrightarrow & s \end{array}.$$

Interpret s/s_i as the element of \mathcal{O}_{U_i} such that $(s/s_i) s_i = s$. We may now define a morphism

Lecture 16 Friday 13/11/20

$$f_i: U_i = X \setminus Z_i \to \mathbb{D}_+(x_i) = \operatorname{Spec} S_{(x_i)},$$

by giving a homomorphism

$$f_i^{\#}: S_{(x_i)} = k \begin{bmatrix} \frac{x_0}{x_i}, \dots, \frac{x_n}{x_i} \end{bmatrix} \longrightarrow \Gamma(U_i, \mathcal{O}_X)$$

$$\frac{x_j}{x_i} \longmapsto \frac{s_j}{s_i}$$

defining $f_i^{\#}$ as a k-algebra homomorphism. To get a morphism $f: X \to \mathbb{P}^n$ such that $f|_{U_i} = f_i$, we need to check $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$. Check that

$$\begin{pmatrix} f_i^\# \end{pmatrix}_{U_i \cap U_j} \ : \ \Gamma \left(\mathbb{D}_+ \left(x_i \right) \cap \mathbb{D}_+ \left(x_j \right), \mathcal{O}_{\mathbb{P}^n} \right) = S_{(x_i x_j)} \ \longrightarrow \ \Gamma \left(U_i \cap U_j, \mathcal{O}_X \right)$$

$$\frac{x_k}{x_i} \ \underset{\frac{x_k}{x_i}}{\longmapsto} \ \frac{x_k}{x_i} \ \longmapsto \ \frac{s_k}{s_i} \\ \frac{x_k}{x_j} = \frac{x_k}{x_i} \ \longmapsto \ \frac{s_k}{s_j} = \frac{s_k}{s_j}$$

$$\begin{pmatrix} f_j^\# \end{pmatrix}_{U_i \cap U_j} \ : \ \Gamma \left(\mathbb{D}_+ \left(x_i \right) \cap \mathbb{D}_+ \left(x_j \right), \mathcal{O}_{\mathbb{P}^n} \right) = S_{(x_i x_j)} \ \longrightarrow \ \Gamma \left(U_i \cap U_j, \mathcal{O}_X \right)$$

$$\frac{x_k}{x_j} \ \underset{\frac{x_k}{x_j}}{\longmapsto} \ \frac{s_k}{s_j} \\ \frac{x_k}{x_j} \ \longmapsto \ \frac{s_k}{s_j} = \frac{s_k}{s_i}$$

$$\frac{x_k}{s_j} \ \mapsto \ \frac{s_k}{s_j} = \frac{s_k}{s_j}$$

So $\left(f_i^{\#}\right)_{U_i\cap U_j} = \left(f_j^{\#}\right)_{U_i\cap U_j}$, so $f_i|_{U_i\cap U_j} = f_j|_{U_i\cap U_j}$, so the morphisms glue to give $f: X \to \mathbb{P}^n$. Further, $f^*\mathcal{O}_{\mathbb{P}^n}(1) \cong \mathcal{L}$, because the transition maps $g_{ij} = x_i/x_j$ of $\mathcal{O}_{\mathbb{P}^n}(1)$ pull back under $f^{\#}$ to s_i/s_j , which are the transition maps for \mathcal{L} using trivialisations for $\mathcal{L}|_{U_i}$ which we used above.

²⁰Exercise: check on stalks

• For uniqueness, suppose given a surjection $\phi: \mathcal{O}_X^{\oplus (n+1)} \twoheadrightarrow \mathcal{L}$ and a morphism $g: X \to \mathbb{P}^n$ such that

$$\left(g^*\phi:\mathcal{O}_X^{\oplus(n+1)}\to g^*\mathcal{O}_{\mathbb{P}^n}\left(1\right)\right)\cong \left(\phi:\mathcal{O}_X^{\oplus(n+1)}\twoheadrightarrow\mathcal{L}\right).$$

We may think of ϕ as given by n+1 sections $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$ with $s_i = \phi(e_i)$. Similarly the universal object on \mathbb{P}^n is given by sections $x_i \in \Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$. Note by the construction of the universal object, the section x_j is given on $\mathbb{D}_+(x_i)$ by $x_j/x_i \in S_{(x_i)}$. If $f: X \to Y$ and \mathcal{F} is a sheaf of \mathcal{O}_Y -modules, then $s \in \Gamma(Y, \mathcal{F})$ induces a section (Y, s) in $\Gamma(X, f^{-1}\mathcal{F})$, and hence a section

$$f^*s = (Y, s) \otimes 1 \in \Gamma(X, f^{-1}\mathcal{F} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X) = \Gamma(X, f^*\mathcal{F}).$$

In particular, pull-back of the section $x_i \in \Gamma\left(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}\left(1\right)\right)$ is s_i . That is, $g^*x_i = s_i$. In particular, $\left(s_i\right)_x \in \mathfrak{m}_x \mathcal{L}_x$ for some $x \in X$ if and only if $\left(x_i\right)_{g(x)} \in \mathfrak{m}_{g(x)} \mathcal{O}_{\mathbb{P}^n}\left(1\right)_{g(x)}$. Thus $U_i = \left\{x \in X \mid \left(s_i\right)_x \notin \mathfrak{m}_x \mathcal{L}_x\right\}$ satisfies $U_i = g^{-1}\left(\mathbb{D}_+\left(x_i\right)\right)$. So we have $g_i = g|_{U_i}: U_i \to \mathbb{D}_+\left(x_i\right)$ and it is enough to show $g_i = f_i$, where f_i was constructed previously from $\mathcal{O}_X^{\oplus (n+1)} \to \mathcal{L}$. So it is enough to check $g_i^\# = f_i^\#$, and

$$g_i^{\#}\left(\frac{x_j}{x_i}\right) = \frac{g^*x_j}{g^*x_i} = \frac{s_j}{s_i} = f_i^{\#}\left(\frac{x_j}{x_i}\right).$$

Hence uniqueness.

Remark.

• If instead I had chosen $g_{ij} = x_j/x_i$, we would have obtained the line bundle

$$\mathcal{O}_{\mathbb{P}^n}\left(-1\right) = \mathcal{O}_{\mathbb{P}^n}\left(1\right)^{\vee},$$

and $\Gamma(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(-1)) = 0$.

• If we were working in the world of varieties, locally the section s_i is viewed as a function and Z_i is the locus where s_i vanishes. On U_i , we define a morphism to projective space

$$U_{i} \longrightarrow \mathbb{D}_{+}(x_{i}) \subseteq \mathbb{P}^{n}$$

$$p \longmapsto \left(\frac{s_{0}(p)}{s_{i}(p)}, \dots, \frac{s_{n}(p)}{s_{i}(p)}\right).$$

Equivalently, on X, we can view this function as

$$\begin{array}{ccc} X & \longrightarrow & \mathbb{P}^n \\ p & \longmapsto & \left(s_0\left(p\right), \dots, s_n\left(p\right)\right) \end{array}.$$

5 Divisors

Weil divisors are codimension one subvarieties and Cartier divisors are subschemes defined by a single equation.

5.1 Dimension

Recall the following.

Definition. The **dimension** of a topological space X is the length n of the longest chain $Z_0 \subsetneq \cdots \subsetneq Z_n$ of irreducible closed subsets of X.

Example. dim $\mathbb{A}^1_k = 1$, since $\{\text{point}\} \subseteq \mathbb{A}^1_k$.

Definition. The **Krull dimension** of a ring A is $\dim A = \dim \operatorname{Spec} A$, which is the length of the longest chain $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ of prime ideals of A.

Definition. If $Z \subseteq X$ is an irreducible closed subset, then the **codimension** codim (Z, X) is the length n of the longest chain $Z = Z_0 \subsetneq \cdots \subsetneq Z_n$ of irreducible closed subsets.

Remark. Intuition on dimension may be faulty, even for Noetherian affine schemes. However, if B is a domain and a finitely generated k-algebra for k a field, then for any $\mathfrak{p} \subseteq B$,

$$\operatorname{Ht}\mathfrak{p} + \dim B/\mathfrak{p} = \dim B. \tag{1}$$

Here the **height** Ht \mathfrak{p} is the length n of the longest chain of primes $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}$. Note dim $B/\mathfrak{p} = \dim \mathbb{V}(\mathfrak{p})$ and Ht $\mathfrak{p} = \operatorname{codim}(\mathbb{V}(\mathfrak{p}), \operatorname{Spec} B)$, so we have from (1) that

$$\operatorname{codim}\left(\mathbb{V}\left(\mathfrak{p}\right),\operatorname{Spec}B\right)+\dim\mathbb{V}\left(\mathfrak{p}\right)=\dim\operatorname{Spec}B.$$

This implies that if X is a variety over k, so integral and finite type over k, and $Z \subseteq X$ an irreducible closed subset, that

$$\dim Z + \operatorname{codim}(Z, X) = \dim X.$$

Also if $\eta \in Z \subseteq X$ is the generic point of Z, then

$$\dim \mathcal{O}_{X,\eta} = \operatorname{codim}(Z,X),$$

by example sheet 3.

Proposition 5.1. If X is a Noetherian scheme, then X is a Noetherian topological space, that is every decreasing sequence of closed sets is stationary, and every closed subset of X has a decomposition into a finite number of irreducible closed subsets.

Proof. Exercise.
21

5.2 Class group of Weil divisors

Assumption 5.2. X is a Noetherian integral scheme over Spec k which is **regular in codimension one**. That is, whenever a local ring $\mathcal{O}_{X,x}$ is of dimension one, it is **regular**, that is

$$\dim_{\mathcal{O}_{X,x}/\mathfrak{m}_x} \mathfrak{m}_x/\mathfrak{m}_x^2 = \dim \mathcal{O}_{X,x}.$$

That is, the dimension of the Zariski tangent space to X at x coincides with dim $\mathcal{O}_{X,x}$.

Remark. Regularity measures non-singularity, so we tend to say a scheme X all of whose local rings are regular is **regular** or **non-singular**.

Example. If X is a non-singular curve then X is regular in codimension one, but $y^2 = x^2(x-1)$ is not regular at the origin since the Zariski tangent space at the origin is two-dimensional.

 $\begin{array}{c} Monday \\ 16/11/20 \end{array}$

Lecture 17

²¹Exercise

Remark. Standard commutative algebra fact in Atiyah-Macdonald. A regular Noetherian local domain A of dimension one is a **discrete valuation ring**. That is, if K is the field of fractions of A, then there is a group homomorphism $\nu: K^* \to \mathbb{Z}$, where K^* is the multiplicative group of K, such that

$$A = \{x \in K^* \mid \nu(x) \ge 0\} \cup \{0\},\$$

and the maximal ideal of A is

$$\mathfrak{m} = \{ x \in K^* \mid \nu(x) > 0 \} \cup \{ 0 \}.$$

Note that after rescaling ν so that $\nu(\mathfrak{m}\setminus\mathfrak{m}^2)=1$, then $\nu(x)=k$ if $x\in\mathfrak{m}^k\setminus\mathfrak{m}^{k+1}$.

Definition. Assume Assumption 5.2 holds. Then a **prime divisor** on X is a closed subvariety, that is an irreducible and reduced, equivalently integral, closed subscheme of X, of codimension one. Let Div X be the free abelian group generated by prime divisors. Let K(X) be the function field of X. See example sheet 2, question 7. Note K(X) is the field of fractions of A whenever Spec $A \subseteq X$ is an open affine subset. For $Y \subseteq X$ a prime divisor, let $\eta \in Y$ be its generic point. Then dim $\mathcal{O}_{X,\eta} = 1$, as follows from codim (Y,X) = 1, and hence have valuation $\nu_Y : K(X)^* \to \mathbb{Z}$, where K(X) is the field of fractions of $\mathcal{O}_{X,\eta}$, such that

$$\mathcal{O}_{X,\eta} = \left\{ f \in \mathrm{K}(X)^* \mid \nu_Y(f) \ge 0 \right\} \cup \{0\}.$$

May assume $\nu_Y \left(\mathfrak{m}_{\eta} \setminus \mathfrak{m}_{\eta}^2 \right) = 1$.

Example. Let $X = \mathbb{A}^1_k = \operatorname{Spec} k[x]$, and let $\mathfrak{p} = \langle x - a \rangle \subseteq k[x]$. Then $\mathcal{O}_{X,\mathfrak{p}} = k[x]_{\langle x - a \rangle}$ and K(X) = k(x). Given $f/g \in K(X)$ non-zero, we may write $f/g = (p/q)(x-a)^k$ such that $\gcd(p,x-a) = \gcd(q,x-a) = 1$. Then the valuation $\nu_{\mathfrak{p}}(f/g) = k$ is the order of the zero or pole of f/g at zero, and

$$\mathcal{O}_{X,\mathfrak{p}} = \left\{ \frac{f}{g} \in \mathrm{K}\left(X\right)^* \mid \nu_{\mathfrak{p}}\left(\frac{f}{g}\right) \geq 0 \right\} \cup \left\{0\right\}.$$

Lemma 5.3. With X satisfying Assumption 5.2, if $f \in K(X)^*$, then $\nu_Y(f) = 0$ for all but a finite number of prime divisors Y.

Proof. We can find an open affine subset $U = \operatorname{Spec} A$ of X such that $f \in \Gamma(U, \mathcal{O}_X)$. For example, first pass to an open affine $\operatorname{Spec} B$ on which we can write f = a/s for $a \in B$ and $s \neq 0$, and then $f \in B_s$, so we may take $U = \mathbb{D}(s) \subseteq \operatorname{Spec} B$. Then $Z = X \setminus U$ is a proper closed subset of X. Since X is Noetherian, so is Z as a topological space and hence decomposes into a finite union of irreducible closed subsets. Thus Z contains only a finite number of prime divisors. So enough to check the statement on \underline{U} , since any other prime divisor intersects U, and its generic point η is contained in U, since if $\eta \notin U$ then $\overline{\{\eta\}} \cap U = \emptyset$ as U is open. Thus we may assume $X = \operatorname{Spec} A$ is affine and $f \in A$. Thus $\nu_Y(f) \geq 0$ for all Y prime divisors in X and

$$\nu_{Y}\left(f\right)>0\quad\iff\quad\frac{f}{1}\in\mathfrak{m}_{\eta'}\subseteq\mathcal{O}_{X,\eta'}\quad\iff\quad f\in\mathfrak{p}\quad\iff\quad\mathfrak{p}\in\mathbb{V}\left(f\right)\quad\iff\quad Y\subseteq\mathbb{V}\left(f\right),$$

where η' is the generic point of Y and $\mathfrak{p} \subseteq A$ is the prime ideal corresponding to η' . Note $\mathbb{V}(f)$ is a proper closed subset of X since $f \neq 0$. Thus $\mathbb{V}(f)$ decomposes into a finite number of irreducible components, none of which are X, and hence at most a finite number of prime divisors contained in $\mathbb{V}(f)$.

Definition. Let X satisfy Assumption 5.2, and $f \in K(X)^*$. Then a divisor of zeros and poles of f, denoted as (f), is

$$(f) = \sum_{Y \subseteq X \text{ prime divisor}} \nu_Y(f) Y \in \text{Div } X.$$

By Lemma 5.3, this makes sense. Note

$$\begin{array}{ccc} \mathrm{K}\left(X\right)^{*} & \longrightarrow & \mathrm{Div}\,X \\ f & \longmapsto & (f) \end{array}$$

is a group homomorphism as ν_Y is.

Definition. The class group of X, written as $\operatorname{Cl} X$, is the cokernel of the homomorphism

$$\begin{array}{ccc} \mathrm{K}\left(X\right)^{*} & \longrightarrow & \mathrm{Div}\,X \\ f & \longmapsto & (f) \end{array}.$$

Two divisors $D, D' \in \text{Div } X$ are **linearly equivalent** if there exists $f \in K(X)^*$ such that (f) = D - D'. We write $D \sim D'$. If $D \sim 0$, that is D = (f) for some f, we say D is a **principal divisor**. So Cl X is the group of divisors modulo linear equivalence.

Remark. If $X = \operatorname{Spec} \mathcal{O}_K$, where \mathcal{O}_K is the ring of algebraic integers in a finite field extension K/\mathbb{Q} , then $\operatorname{Cl} \operatorname{Spec} \mathcal{O}_K = \operatorname{Cl} \mathcal{O}_K$ as defined in any algebraic number theory course.

Proposition 5.4. If A is an integrally closed Noetherian domain, then

$$A = \bigcap_{\text{Ht } \mathfrak{p}=1, \ \mathfrak{p} \subseteq A \ prime} A_{\mathfrak{p}} \subseteq A_{\langle 0 \rangle}.$$

Proof. Matsumura, Commutative algebra, Theorem 38, Page 124.

Theorem 5.5. Let A be a Noetherian integral domain. Then A is a UFD if and only if $X = \operatorname{Spec} A$ is normal, that is A is integrally closed in its field of fractions, and $\operatorname{Cl} X = 0$.

Proof. A UFD is integrally closed in its field of fractions. Also, A is a UFD if and only if every prime ideal of height one of A is principal. Thus we need to show that if A is an integrally closed domain, we have the equivalence that every height one prime of A is principal if and only if $\operatorname{Cl}\operatorname{Spec} A = 0$.

- \implies Given a prime divisor $Y \subseteq X$, Y corresponds to a height one prime $\mathfrak{p} \subseteq A$ and $\mathfrak{p} = \langle f \rangle$ for some $f \in A \setminus \{0\}$. Then (f) = Y, so every divisor is principal.
- Suppose Cl X=0, $\mathfrak{p}\subseteq A$ is a prime of height one, and $Y=\mathbb{V}(\mathfrak{p})$. Then there exists $f\in K(X)^*=A^*_{\langle 0\rangle}$ such that (f)=Y. Since $\nu_Y(f)=1$, $f\in A_{\mathfrak{p}}=\mathcal{O}_{X,\eta}$ and f generates the maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$, since in a discrete valuation ring every element of $\mathfrak{m}\setminus\mathfrak{m}^2$ generates \mathfrak{m} . If $\mathfrak{p}'\subseteq A$ is any other height one prime, and $Y'=\mathbb{V}(\mathfrak{p}')$, then $\nu_{Y'}(f)=0$, so $f\in A_{\mathfrak{p}'}$ is a unit. Now apply Proposition 5.4. Thus $f\in A$ and $f\in A\cap\mathfrak{p}A_{\mathfrak{p}}=\mathfrak{p}$. If we show f generates \mathfrak{p} , we will be done. Let g be any other element of \mathfrak{p} . Then $\nu_Y(g)\geq 1$ and $\nu_{Y'}(g)\geq 0$ for all $Y'\neq Y$ so $\nu_{Y'}(g/f)=\nu_{Y'}(g)-\nu_{Y'}(f)\geq 0$ for all Y'. Thus $g/f\in A$. Thus g=(g/f) $f\in \langle f\rangle$ so $\mathfrak{p}=\langle f\rangle$.

Lecture 18 Wednesday 18/11/20

Proposition 5.6. Let X satisfy Assumption 5.2, $Z \subseteq X$ a proper closed subset, and $U = X \setminus Z$ an open subscheme of X. Then

1. there exists a surjective homomorphism

$$\sum_{i}^{\operatorname{Cl} X} \xrightarrow{\longrightarrow} \operatorname{Cl} U \\ \sum_{i}^{\operatorname{n}_{i} Y_{i}} \xrightarrow{\longmapsto} \sum_{i}^{\operatorname{n}_{i}} (Y_{i} \cap U) ,$$

interpreting as zero if $Y_i \cap U = \emptyset$,

- 2. if codim $(Z, X) \ge 2$, then this homomorphism is an isomorphism, and
- 3. if Z is irreducible of codimension one, then we have an exact sequence

$$\mathbb{Z} \xrightarrow{1 \mapsto [Z]} \operatorname{Cl} X \to \operatorname{Cl} U \to 0.$$

Proof.

1. Y being a prime divisor of X implies $Y \cap U$ is either a prime divisor of U or is empty. If $f \in K(X)^*$, and $(f) = \sum_i n_i Y_i$, then the image of (f) is $\sum_i n_i (Y_i \cap U)$, and this coincides with $(f|_U)$. The main point is that K(X) = K(U). Thus $Cl X \to Cl U$ is well-defined. Surjective since if $Y \subseteq U$ is a prime divisor, then $\overline{Y} \subseteq X$ is a prime divisor of X with $Y = \overline{Y} \cap U$.

- 2. Div X and Cl X only depend on codimension one subvarieties, so obvious.
- 3. $\ker(\operatorname{Cl} X \to \operatorname{Cl} U)$ consists only of divisors supported on Z. If Z is irreducible of codimension one, there is precisely one such prime divisor, so $\ker(\operatorname{Cl} X \to \operatorname{Cl} U)$ is generated by [Z].

Proposition 5.7.

$$\operatorname{Cl} \mathbb{P}^n_k \cong \mathbb{Z},$$

generated by the class of a hyperplane $H = \mathbb{V}(x_i)$.

Proof. As $\mathbb{P}^n \setminus H = \mathbb{D}_+(x_i) \cong \mathbb{A}^n_k = \operatorname{Spec} k[x_1, \dots, x_n]$ and $k[x_1, \dots, x_n]$ is a UFD, hence $\operatorname{Cl} \mathbb{A}^n = 0$. So we have an exact sequence

$$\mathbb{Z} \xrightarrow{1 \mapsto [H]} \operatorname{Cl} \mathbb{P}^n \to \operatorname{Cl} \mathbb{A}^n = 0.$$

Thus $Cl \mathbb{P}^n$ is generated by [H]. Now

$$\mathrm{K}\left(\mathbb{P}^{n}\right)=k\left[x_{0},\ldots,x_{n}\right]_{\left\langle 0\right\rangle }=\left\{ \frac{f}{g}\;\middle|\;f,g\in k\left[x_{0},\ldots,x_{n}\right]\text{ are homogeneous of the same degree, }g\neq0\right\} /\sim.$$

Thus if $dH \sim 0$, we would need a rational function f/g such that (f/g) = dH, and this is only possible if d = 0. More precisely, $(f/g) = Y_1 - Y_2$ where Y_1 and Y_2 are sums of hypersurfaces with the same total degree.

Remark. If X is a projective non-singular curve, then Cl X was defined in Part II.

5.3 Cartier divisors and relation with Weil divisors

Definition. Let X be a scheme. We define the **sheaf of rational functions** on X, \mathcal{K}_X , to be the sheaf associated with the presheaf

$$U \mapsto \mathrm{S}(U)^{-1} \Gamma(U, \mathcal{O}_X)$$
,

where $S(U) \subseteq \Gamma(U, \mathcal{O}_X)$ is the subset of elements whose stalks in $\mathcal{O}_{X,x}$ for each $x \in U$ are non-zero divisors.

Example. If X is integral, then $S(U) \subseteq \Gamma(U, \mathcal{O}_X)$ consists of non-zero elements of $\Gamma(U, \mathcal{O}_X)$. Then \mathcal{K}_X is the constant sheaf $U \mapsto K(X)$.

Definition. Let $\mathcal{K}_X^* \subseteq \mathcal{K}_X$ be the sheaf of invertible elements of \mathcal{K}_X . Then there is an inclusion $\mathcal{O}_X^* \hookrightarrow \mathcal{K}_X^*$. A Cartier divisor is **principal** if it is in the image of the natural map $\Gamma(X, \mathcal{K}_X^*) \to \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$. Two divisors are **linearly equivalent** if their difference is principal. Note additive language for divisors. We write $\operatorname{Ca}\operatorname{Cl} X$, the **Cartier class group** of X, to be the Cartier divisors modulo principal divisors. That is,

$$\operatorname{Ca} \operatorname{Cl} X = \operatorname{coker} \left(\Gamma \left(X, \mathcal{K}_X^* \right) \to \Gamma \left(X, \mathcal{K}_X^* / \mathcal{O}_X^* \right) \right).$$

Remark. Note that an element of $\Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$ can be represented by $\{(U_i, f_i)\}$ where $\{U_i\}$ is some open cover of X and $f_i \in \Gamma(U_i, \mathcal{K}_X^*)$ and on $U_i \cap U_j$, we have $f_i|_{U_i \cap U_j} / f_j|_{U_i \cap U_j} \in \Gamma(U_i \cap U_j, \mathcal{O}_X^*)$.

Let X satisfy Assumption 5.2. Then there exists a homomorphism

$$\Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*) \to \text{Div } X,$$

descending to

$$\operatorname{Ca}\operatorname{Cl} X \to \operatorname{Cl} X$$
.

²²Exercise: check at presheaf level, that is check $\Gamma\left(U,\mathcal{O}_{X}^{*}\right)\to\mathrm{S}\left(U\right)^{-1}\Gamma\left(U,\mathcal{O}_{X}\right)$ is injective

Indeed, given $\{(U_i, f_i)\}$ as in the remark, and Y a prime divisor on X, associate a coefficient n_Y to Y by choosing some U_i such that $Y \cap U_i \neq \emptyset$, and setting $n_Y = \nu_Y(f_i)$. This is well-defined. If $Y \cap U_j \neq \emptyset$, then $Y \cap U_i \cap U_j \neq \emptyset$, as $U_i \cap Y$ is dense in Y, being irreducible. Then

$$\nu_Y(f_j) = \nu_Y\left(f_i\left(\frac{f_j}{f_i}\right)\right) = \nu_Y(f_i) + \nu_Y\left(\frac{f_j}{f_i}\right) = \nu_Y(f_i),$$

since f_j/f_i is invertible on $U_i \cap U_j$, hence has no zeros or poles. Now take the Cartier divisor $\{(U_i, f_i)\}$ to $\sum_Y n_Y Y$. You should check this is independent of the choice of representative $\{(U_i, f_i)\}$. Note also we can always assume the cover $\{U_i\}$ is finite since X is Noetherian by Assumption 5.2 and hence is quasi-compact. Note also a principal divisor coming from $f \in \Gamma(X, \mathcal{K}_X^*)$ is represented by (X, f). Then this is mapped to (f) by construction.

Proposition 5.8. If X satisfies Assumption 5.2, and all local rings of X are UFD's, then the above map $\Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*) \to \text{Div } X$ is an isomorphism.

Remark. If X is a **non-singular variety**, that is all local rings of X are regular, then the hypotheses are satisfied as all regular local rings are UFD's, a non-trivial theorem in commutative algebra.

Definition. If all local rings of X are UFD's, we say X is locally factorial.

Lecture 19 Friday 20/11/20

Proof. Need to define the inverse map Div $X \to \Gamma(X, \mathcal{K}_X^*/\mathcal{O}_X^*)$. Let $x \in X$ be any point. Then we get a morphism Spec $\mathcal{O}_{X,x} \to X$. For example, if $x \in \operatorname{Spec} A \subseteq X$ is open affine, $\mathcal{O}_{X,x} = A_{\mathfrak{p}}$ where \mathfrak{p} corresponds to x and then $A \to A_{\mathfrak{p}}$ induces the morphism $\operatorname{Spec} \mathcal{O}_{X,x} \to \operatorname{Spec} A \hookrightarrow X$. A prime divisor on X pulls back to a prime divisor on $\operatorname{Spec} \mathcal{O}_{X,x}$ by taking inverse images. More precisely, given $Y \subseteq X$ a prime divisor, if $x \notin Y$ then pull-back is empty, otherwise $\operatorname{Spec} A \cap Y$ is non-empty and is of the form $V(\mathfrak{q})$ for $\mathfrak{q} \subseteq A$ a prime ideal with $\mathfrak{q} \subseteq \mathfrak{p}$. Then \mathfrak{q} corresponds to a prime ideal $\mathfrak{q}A_{\mathfrak{p}}$ of $A_{\mathfrak{p}}$, hence a prime divisor $V(\mathfrak{q}A_{\mathfrak{p}})$ of $\operatorname{Spec} A_{\mathfrak{p}}$. This gives a map

$$\begin{array}{ccc} \operatorname{Div} X & \longrightarrow & \operatorname{Div} \operatorname{Spec} \mathcal{O}_{X,x} \\ D & \longmapsto & D_x \end{array}.$$

Since $\mathcal{O}_{X,x}$ is a UFD, D_x is a principal divisor on Spec $\mathcal{O}_{X,x}$. That is, $D_x = (f_x)$ for $f_x \in \mathrm{K}(X)^*$, on Spec $\mathcal{O}_{X,x}$. Thus D and (f_x) on X differ only in prime divisors which do not contain x. Thus if U_x is the complement of the union of prime divisors of X at which D and (f_x) have different coefficients, then $D|_{U_x} = (f_x)|_{U_x}$. Do this for every point x, and then represent a Cartier divisor by $\{(U_x, f_x)\}$. On $U_x \cap U_y$, (f_x) and (f_y) agree, as both agree with $D|_{U_x \cap U_y}$, so $(f_x/f_y) = 0$ on $U_x \cap U_y$, so f_x/f_y is invertible in $\mathcal{O}_{X,\mathfrak{p}}$ for all $\mathfrak{p} \in U_x \cap U_y$ points of height one. That is, generic points of prime divisors. If we cover $U_x \cap U_y$ with open affines Spec A, this says that $f_x/f_y \in A_\mathfrak{p}^*$ for all $\mathfrak{p} \subseteq A$ primes of height one. Now since all $A_\mathfrak{q}$'s are UFD's, for all $\mathfrak{q} \subseteq A$ prime, $A_\mathfrak{q}$ is integrally closed. Thus A is integrally closed, see for example Atiyah-Macdonald, Proposition 5.13. Thus $A = \bigcap_{\mathfrak{p} \subseteq A, \ Ht \, \mathfrak{p} = 1} A_\mathfrak{p}$, so $f_x/f_y \in A^*$, so $f_x/f_y \in \Gamma(U_x \cap U_y, \mathcal{O}_X^*)$. Thus $\{(U_x, f_x)\}$ represents a section of $\mathcal{K}_X^*/\mathcal{O}_X^*$. That is, a Cartier divisor. This gives the inverse map.

5.4 Correspondence between Cartier divisors and line bundles

Definition. Let D be a Cartier divisor on X represented by $\{(U_i, f_i)\}$. Define $\mathcal{O}_X(D)$ to be the subsheaf of \mathcal{O}_X -modules of \mathcal{K}_X generated by f_i^{-1} on U_i .

Note that as f_i/f_j is invertible on $U_i \cap U_j$, f_i^{-1} and f_j^{-1} generate the same $\mathcal{O}_{U_i \cap U_j}$ -module. This is a line bundle.

Remark. The transition maps are $g_{ij} = f_j/f_i$, since

Consequently, if D_1 and D_2 are Cartier divisors, represented by $\{(U_i, f_i)\}$ and $\{(U_i, g_i)\}$, then $D_1 - D_2$ is represented by $\{(U_i, f_i/g_i)\}$ and the transition maps for $\mathcal{O}_X(D_1 - D_2)$ are $(f_j/g_j)/(f_i/g_i) = (f_j/f_i)/(g_j/g_i)$, which are also the transition maps for $\mathcal{O}_X(D_1) \otimes \mathcal{O}_X(D_2)^{\vee}$. Thus

$$\mathcal{O}_X\left(D_1-D_2\right)\cong\mathcal{O}_X\left(D_1\right)\otimes\mathcal{O}_X\left(D_2\right)^\vee$$
,

so we obtain a group homomorphism

$$\begin{array}{ccc} \Gamma\left(X,\mathcal{K}_X^*/\mathcal{O}_X^*\right) & \longrightarrow & \operatorname{Pic} X \\ D & \longmapsto & \mathcal{O}_X\left(D\right) \end{array}.$$

Lemma 5.9. $D_1 \sim D_2$ if and only if $\mathcal{O}_X(D_1) \cong \mathcal{O}_X(D_2)$.

Proof. It is enough to show D is principal if and only if $\mathcal{O}_X(D) \cong \mathcal{O}_X$. If D is principal, then D is represented by (X, f) for $f \in \Gamma(X, \mathcal{K}_X^*)$. So $\mathcal{O}_X(D) = \mathcal{O}_X \cdot f^{-1} \cong \mathcal{O}_X$. Conversely, if $\mathcal{O}_X(D) \cong \mathcal{O}_X$, let

$$\begin{array}{ccc} \Gamma\left(X,\mathcal{O}_{X}\right) & \longrightarrow & \Gamma\left(X,\mathcal{O}_{X}\left(D\right)\right) \subseteq \Gamma\left(X,\mathcal{K}_{X}\right) \\ 1 & \longmapsto & f \end{array}.$$

In fact $f \in \Gamma(X, \mathcal{K}_X^*)$. Then (X, f^{-1}) represents $D = \{(U_i, g_i)\}$ as f^{-1} and g_i only differ by a factor of an invertible function on U_i . Thus D is principal.

Corollary 5.10. On any scheme X, there is an injective homomorphism

$$\begin{array}{ccc} \operatorname{Ca} \operatorname{Cl} X & \longrightarrow & \operatorname{Pic} X \\ D & \longmapsto & \mathcal{O}_X \left(D \right) \end{array}.$$

Proposition 5.11. If X is integral, then this homomorphism is an isomorphism.

Proof. Need to show every line bundle on X is isomorphic to a subsheaf of \mathcal{K}_X , which is in this case the constant sheaf $U \mapsto \mathrm{K}(X)$. Once this is shown, a trivialisation on a cover U_i leads to rational functions given by the isomorphism

$$\begin{array}{ccc}
\mathcal{O}_{U_i} & \longrightarrow & \mathcal{L}|_{U_i} \subseteq \mathcal{K}_X|_{U_i} \\
1 & \longmapsto & f_i
\end{array},$$

and then $D = \{(U_i, f_i^{-1})\}$ satisfies $\mathcal{L} \cong \mathcal{O}_X(D)$. So let \mathcal{L} be a line bundle on X, and consider $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K}_X$. On any open U with $\mathcal{L}|_U \cong \mathcal{O}_U$, we have

$$(\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K}_X)|_U \cong \mathcal{O}_U \otimes_{\mathcal{O}_U} \mathcal{K}_X|_U \cong \mathcal{K}_X|_U.$$

This is the constant sheaf $V \subseteq U \mapsto \mathrm{K}(X)$. Then $\mathcal{F} = \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K}_X$ is also the constant sheaf $V \mapsto \mathrm{K}(X)$. Indeed if V is any non-empty open subset and $\{U_i\}$ is a trivialising cover of \mathcal{L} , then $\mathcal{F}(V \cap U_i)$ can be identified with $\mathrm{K}(X)$ canonically, as we can identify \mathcal{F}_{η} with $\mathrm{K}(X)$ where η is the generic point of X. Then the sheaf gluing axioms tell us that $\mathcal{F}(V) \cong \mathrm{K}(X)$. Thus $\mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K}_X \cong \mathcal{K}_X$ and we have a natural map

$$\begin{array}{ccc} \mathcal{L} & \longrightarrow & \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{K}_X \\ s & \longmapsto & s \otimes 1 \end{array},$$

thus exhibiting \mathcal{L} as a subsheaf of \mathcal{K}_X .

5.5 Effective divisors

Definition. A Weil divisor $\sum_i a_i Y_i$ is **effective** if $a_i \geq 0$ for all i. A Cartier divisor $\{(U_i, f_i)\}$ is **effective** if $f_i \in \mathcal{O}_X(U_i)$ for all i.

If \mathcal{L} is a line bundle, $s \in \Gamma(X, \mathcal{L})$, and $\{U_i\}$ is a trivialising cover for \mathcal{L} , with trivialisations $\phi_i : \mathcal{L}|_{U_i} \to \mathcal{O}_{U_i}$, we obtain a Cartier divisor

$$(s)_0 = \{(U_i, \phi_i(s))\}, \qquad \phi_i(s) \in \mathcal{O}_X(U_i),$$

the **divisor of zeros** of s, necessarily effective.

Theorem 5.12. Let $X \subseteq \mathbb{P}^n_k$ be a closed subscheme and \mathcal{F} a coherent sheaf of \mathcal{O}_X -modules. Then $\Gamma(X,\mathcal{F})$ is a finite-dimensional k-vector space.

Lecture 20 Monday 23/11/20

Note that if $X = \mathbb{A}^1$ and $\mathcal{F} = \mathcal{O}_X$, then $\Gamma(X, \mathcal{F}) = k[x]$ is not a finite-dimensional k-vector space.

Proof. Hartshorne, Chapter II, Theorem 5.19.

Theorem 5.13. If $X \subseteq \mathbb{P}^n_k$ is an integral closed subscheme with k algebraically closed, then $\Gamma(X, \mathcal{O}_X) = k$.

Proof. Hartshorne, Chapter I, Theorem 3.4.

We need $k = \overline{k}$. ²³

Theorem 5.14. Let X be an integral closed subscheme of \mathbb{P}^n_k with k algebraically closed. Let D_0 be a Cartier divisor on X and $\mathcal{L} = \mathcal{O}_X(D_0)$. Then

- 1. for every $s \in \Gamma(X, \mathcal{L})$ such that $s \neq 0$, $(s)_0$ is an effective divisor linearly equivalent to D_0 ,
- 2. every effective divisor linearly equivalent to D_0 is $(s)_0$ for some section $s \in \Gamma(X, \mathcal{L})$, and
- 3. two sections $s, s' \in \Gamma(X, \mathcal{L})$ have the same divisor of zeros if and only if there exists $\lambda \in k^*$ such that $s = \lambda s'$.

Proof.

1. $\mathcal{O}_X(D_0) \subseteq \mathcal{K}_X$ so $s \in \Gamma(X, \mathcal{L})$ corresponds to a rational function $f \in \Gamma(X, \mathcal{K}_X) = K(X)$. If D_0 is represented by $\{(U_i, f_i)\}$ then $\mathcal{O}_X(D_0)$ is locally generated as an \mathcal{O}_{U_i} -module by f_i^{-1} , giving trivialisations

$$\begin{array}{cccc} \phi_i & : & \mathcal{O}_X \left(D_0 \right) |_{U_i} & \longrightarrow & \mathcal{O}_{U_i} \\ t & \longmapsto & t f_i \end{array},$$

so $D = (s)_0 = \{(U_i, ff_i)\} = D_0 + (f)$, since $(f) = \{(X, f)\}$. Thus $D \sim D_0$.

- 2. If D is effective and $D = D_0 + (f)$, then if we write $D = \{(U_i, g_i)\}$ and $D_0 = \{(U_i, f_i)\}$, then $g_i = f_i f$ and $g_i \in \mathcal{O}_X(U_i)$. Then $\phi_i^{-1}(g_i) = g_i f_i^{-1} = f_i f f_i^{-1} = f$. So f in fact is a section s of $\mathcal{O}_X(D_0) \cong \mathcal{L}$, and then $(s)_0 = D$.
- 3. If $(s)_0 = (s')_0$ then $(s)_0 = D_0 + (f)$ and $(s')_0 = D_0 + (f')$, and (f/f') = 0. That is, $f/f' \in \Gamma(X, \mathcal{O}_X^*)$. Now we use the fact that $\Gamma(X, \mathcal{O}_X) = k$, so $f/f' \in k^*$.

Example. \mathbb{P}_k^n satisfies all the hypotheses of Theorem 5.14. We have isomorphisms

$$\mathbb{Z} \cong \operatorname{Cl} \mathbb{P}^n \cong \operatorname{Ca} \operatorname{Cl} \mathbb{P}^n \cong \operatorname{Pic} \mathbb{P}^n$$
,

since \mathbb{P}^n_k is non-singular, that is all local rings are regular. The generator of $\mathrm{Cl}\,\mathbb{P}^n$ is H, a hyperplane, and not so hard to see that $\mathcal{O}_{\mathbb{P}^n}(H) = \mathcal{O}_{\mathbb{P}^n}(1)$ constructed previously. ²⁴ So Pic \mathbb{P}^n is generated by $\mathcal{O}_{\mathbb{P}^n}(1)$. Define

$$\mathcal{O}_{\mathbb{P}^n}\left(d\right) = \begin{cases} \mathcal{O}_{\mathbb{P}^n}\left(1\right)^{\otimes d} & d > 0\\ \mathcal{O}_{\mathbb{P}^n}\left(-d\right)^{\vee} & d < 0\\ \mathcal{O}_{\mathbb{P}^n} & d = 0 \end{cases}$$

which is isomorphic to $\mathcal{O}_{\mathbb{P}^n}(dH)$. We will see that $\Gamma(\mathbb{P}^n,\mathcal{O}_{\mathbb{P}^n}(d))\cong S_d$ where $S=k[x_0,\ldots,x_n]=\bigoplus_d S_d$ and S_d is the degree d piece. Check that if $f\in S_d$ is a homogeneous polynomial of degree d and $f=\prod_{i=1}^n f_i^{d_i}$ its prime factorisation, then $(f)_0=\sum_i d_i \mathbb{V}(f_i)$.

37

²³Exercise: check

 $^{^{24}}$ Exercise: check

 $^{^{25}\}rm{Exercise}$

Algebraic Geometry 5 Divisors

5.6 Dictionary between line bundles and linear systems

Let X be an integral subscheme of \mathbb{P}_k^n such that $k = \overline{k}$.

Line bundles

Linear systems

A line bundle $\mathcal{L} \in \operatorname{Pic} X$.

A Cartier divisor $D \in \operatorname{Ca} \operatorname{Cl} X$ such that $\mathcal{L} \cong \mathcal{O}_X(D)$.

A section $s \in \Gamma(X, \mathcal{L})$ such that $s \neq 0$.

An effective divisor $(s)_0 \sim D$.

A projectivisation

 $\mathbb{P}\left(\Gamma\left(X,\mathcal{L}\right)\right) = \left(\Gamma\left(X,\mathcal{L}\right) \setminus \{0\}\right)/k^*.$

A complete linear system

 $|D| = \{D' \text{ effective}, \ D' \sim D\}.$

Sections $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$ define a morphism

$$\begin{array}{ccc} \mathcal{O}_X^{\oplus (n+1)} & \longrightarrow & \mathcal{L} \\ e_i & \longmapsto & s_i \end{array}.$$

A linear subspace $\mathcal{D} \subseteq |D|$ is called a **linear** system. Think of this as the linear subspace of |D| spanned by $(s_0)_0, \ldots, (s_n)_0$.

If this map is surjective, we say \mathcal{L} is **generated** by global sections and we obtain a morphism $X \to \mathbb{P}^n_k$.

We say \mathcal{D} is **base-point-free** if for all $x \in X$, there exists $D' \in \mathcal{D}$ such that $x \notin \text{supp } D'$, where if $D' = \sum_i a_i Y_i$ with $a_i > 0$ then supp $D' = \bigcup_i Y_i$.

In this case \mathcal{D} gives a morphism $\phi: X \to \mathbb{P}_k^n$. Note that if \mathcal{D} is determined by s_0, \ldots, s_n then \mathcal{D} is base-point-free if and only if s_0, \ldots, s_n generate $\mathcal{L} = \mathcal{O}_X(D)$. Also pull-backs of hyperplanes in \mathbb{P}_k^n give elements of \mathcal{D} .

If sections of \mathcal{L} induce a closed immersion in some \mathbb{P}^n_k , we say \mathcal{L} is **very ample**.

If |D| induces a closed immersion, we say D is **very ample**.

 \mathcal{L} is **ample** if $\mathcal{L}^{\otimes n}$ is very ample for some n > 0.

D is **ample** if nD is very ample for some n > 0.

Remark. There exists a good geometric criterion for very ampleness. See example sheets. There exist numerical criteria for ampleness.

It is useful to control the size of $\Gamma(X, \mathcal{L})$.

6 Cohomology of sheaves

The problem is that given

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

a short exact sequence, we know

$$0 \to \Gamma(X, \mathcal{F}') \to \Gamma(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}'')$$

is exact. Can we extend this to a long exact sequence? The answer is the **right derived functors** of $\Gamma(X, -)$, which are written as $H^i(X, -)$.

6.1 Injective resolutions

An abelian group I is **injective** if given any diagram of abelian groups

Lecture 21 Wednesday 25/11/20

there exists a lifting making the diagram commutative.

Example. \mathbb{Q} is injective.

Fact. Every abelian group A has an injection into an injective group.

This gives abelian groups

giving a long exact sequence

$$0 \to A \to I^{\bullet}$$
,

an **injective resolution** of A.

6.2 Sheaf cohomology

We then get injective resolutions in the category of sheaves of abelian groups. If \mathcal{F} is a sheaf on X, then have an inclusion

$$0 \to \mathcal{F}_x \xrightarrow{f_x} I_x, \qquad x \in X,$$

with I_x injective. Then define

$$\mathcal{I} = \prod_{x \in X} \left(\iota_x\right)_* I_x,$$

where $\iota_x : \{x\} \hookrightarrow X$. That is,

$$\mathcal{I}\left(U\right) =\prod_{x\in U}I_{x}.$$

Then we have an inclusion

$$\begin{array}{ccc} \mathcal{F}\left(U\right) & \longrightarrow & \mathcal{I}\left(U\right) \\ s & \longmapsto & \left(f_{x}\left(U,s\right)\right)_{x \in U} \end{array},$$

and \mathcal{I} is an injective object in the category of sheaves of abelian groups. This allows the construction of injective resolutions

$$0 \to \mathcal{F} \to \mathcal{I}^0 \xrightarrow{d^0} \mathcal{I}^1 \xrightarrow{d^1} \dots$$

Then define

$$H^{i}\left(X,\mathcal{F}\right) = \ker\left(d^{i}:\Gamma\left(X,\mathcal{I}^{i}\right) \to \Gamma\left(X,\mathcal{I}^{i+1}\right)\right) / \operatorname{im}\left(d^{i-1}:\Gamma\left(X,\mathcal{I}^{i-1}\right) \to \Gamma\left(X,\mathcal{I}^{i}\right)\right).$$

That is, this is the cohomology of the chain complex

$$\Gamma\left(X,\mathcal{I}^{0}\right) \to \Gamma\left(X,\mathcal{I}^{1}\right) \to \dots$$

Proposition 6.1.

- $H^{i}(X, -)$ is a well-defined covariant functor. That is, independent of the choice of resolution and $f: \mathcal{F} \to \mathcal{G}$ induces a map $H^{i}(X, \mathcal{F}) \to H^{i}(X, \mathcal{G})$.
- Whenever

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

is exact, we obtain connecting homomorphisms $\delta: H^i(X, \mathcal{F}'') \to H^{i+1}(X, \mathcal{F}')$ and a long exact sequence

$$0 \to \mathrm{H}^{0}\left(X, \mathcal{F}'\right) \to \mathrm{H}^{0}\left(X, \mathcal{F}\right) \to \mathrm{H}^{0}\left(X, \mathcal{F}''\right) \xrightarrow{\delta} \mathrm{H}^{1}\left(X, \mathcal{F}'\right) \to \mathrm{H}^{1}\left(X, \mathcal{F}\right) \to \mathrm{H}^{1}\left(X, \mathcal{F}''\right) \xrightarrow{\delta} \ldots.$$

• Given a commutative diagram

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{G}' \longrightarrow \mathcal{G} \longrightarrow \mathcal{G}'' \longrightarrow 0$$

with rows exact, we get a commutative square

$$\begin{array}{ccc} \mathrm{H}^{i}\left(X,\mathcal{F}^{\prime\prime}\right) & \stackrel{\delta}{\longrightarrow} \mathrm{H}^{i+1}\left(X,\mathcal{F}^{\prime}\right) \\ \downarrow & & \downarrow \\ \mathrm{H}^{i}\left(X,\mathcal{G}^{\prime\prime}\right) & \stackrel{\delta}{\longrightarrow} \mathrm{H}^{i+1}\left(X,\mathcal{G}^{\prime}\right). \end{array}$$

- Whenever \mathcal{F} is **flasque**, or **flabby**, that is all restriction maps are surjective, then $H^{i}(X,\mathcal{F}) = 0$ for all i > 0.
- $H^0(X, \mathcal{F}) = \Gamma(X, \mathcal{F}).$

Remark. May also work on a ringed space (X, \mathcal{O}_X) and consider only sheaves of \mathcal{O}_X -modules. Injective resolutions of \mathcal{O}_X -modules by injective \mathcal{O}_X -modules exist, so could define cohomology using such resolutions, but in fact get the same answer as before.

Theorem 6.2 (Grothendieck). Let X be a Noetherian topological space of dimension n and \mathcal{F} a sheaf of abelian groups on X. Then $H^i(X,\mathcal{F})=0$ for all i>n.

Proof. Hartshorne, Chapter III, Theorem 2.7.

6.3 Čech cohomology

How do we calculate cohomology in practice? Let X be a topological space, \mathcal{F} a sheaf of abelian groups on X, and $\mathcal{U} = \{U_i\}_{i \in I}$ an open cover of X. Choose a well-ordering on I, and write $U_{i_0...i_p} = U_{i_0} \cap \cdots \cap U_{i_p}$. Define the group of $\check{\mathbf{Cech}}$ p-cochains to be

$$\check{\mathbf{C}}^{p}\left(\mathcal{U},\mathcal{F}\right) = \prod_{i_{0} < \dots < i_{p}} \mathcal{F}\left(U_{i_{0} \dots i_{p}}\right).$$

Write $\alpha \in \check{\mathbf{C}}^p(\mathcal{U}, \mathcal{F})$ as $\alpha = (\alpha_{i_0...i_p})_{i_0 < \cdots < i_n}$. Define the $\check{\mathbf{C}}$ ech coboundary by

$$\mathbf{d} : \check{\mathbf{C}}^{p} (\mathcal{U}, \mathcal{F}) \longrightarrow \check{\mathbf{C}}^{p+1} (\mathcal{U}, \mathcal{F})$$

$$\alpha \longmapsto \left(\sum_{k=0}^{p+1} \left(-1 \right)^{k} \alpha_{i_{0} \dots \widehat{i_{k}} \dots i_{p+1}} \Big|_{U_{i_{0} \dots i_{p+1}}} \right)_{i_{0} < \dots < i_{p+1}} \cdot$$

Exercise. $d^2 = 0$.

Define

$$\check{\mathrm{H}}^{p}\left(\mathcal{U},\mathcal{F}\right)=\mathrm{H}^{p}\left(\check{\mathrm{C}}^{\bullet}\left(\mathcal{U},\mathcal{F}\right)\right)=\ker\left(\mathrm{d}:\check{\mathrm{C}}^{p}\left(\mathcal{U},\mathcal{F}\right)\to\check{\mathrm{C}}^{p+1}\left(\mathcal{U},\mathcal{F}\right)\right)/\inf\left(\mathrm{d}:\check{\mathrm{C}}^{p-1}\left(\mathcal{U},\mathcal{F}\right)\to\check{\mathrm{C}}^{p}\left(\mathcal{U},\mathcal{F}\right)\right).$$

Example.

• Let $X = S^1$ with the usual topology, and let $\mathcal{F} = \underline{\mathbb{Z}}$ be the constant sheaf. That is, the sheaf associated to the presheaf $U \mapsto \mathbb{Z}$, so

$$\mathcal{F}(U) = \{ \phi : U \to \mathbb{Z} \mid \phi \text{ locally constant} \}.$$

Take as an open cover U and V connected with $U \cap V$ disconnected. Then

$$\check{\mathbf{C}}^{0}\left(\mathcal{U},\mathcal{F}\right)=\Gamma\left(\mathcal{U},\mathcal{F}\right)\times\Gamma\left(\mathcal{V},\mathcal{F}\right)=\mathbb{Z}\times\mathbb{Z},\qquad \check{\mathbf{C}}^{1}\left(\mathcal{U},\mathcal{F}\right)=\Gamma\left(\mathcal{U}\cap\mathcal{V},\mathcal{F}\right)=\mathbb{Z}^{2},$$

and

$$\begin{array}{cccc} \mathbf{d} & : & \check{\mathbf{C}}^0 \left(\mathcal{U}, \mathcal{F} \right) & \longrightarrow & \check{\mathbf{C}}^1 \left(\mathcal{U}, \mathcal{F} \right) \\ & & (a,b) & \longmapsto & (b-a,b-a) \end{array},$$

so $\check{\mathrm{H}}^{0}\left(\mathcal{U},\mathcal{F}\right)=\ker\mathrm{d}\cong\mathbb{Z}$ and $\check{\mathrm{H}}^{1}\left(\mathcal{U},\mathcal{F}\right)=\mathrm{coker}\,\mathrm{d}\cong\mathbb{Z}.$ Note that this agrees with the singular cohomology of S^{1} . In this case, this also agrees with $\mathrm{H}^{i}\left(\mathrm{S}^{1},\mathcal{F}\right)$.

• Let $\mathcal{F} = \mathcal{O}_{\mathbb{P}^1}(-2)$ and $\mathbb{P}^1 = \operatorname{Proj} k[x_0, x_1]$. Then $\mathcal{O}_{\mathbb{P}^1}(1)$ had transition map from $U_0 = \mathbb{D}_+(x_0)$ to $U_1 = \mathbb{D}_+(x_1)$ given by x_0/x_1 . Thus $\mathcal{O}_{\mathbb{P}^1}(-2)$ has transition map x_1^2/x_0^2 . Taking $\mathcal{U} = \{U_0, U_1\}$, we get

$$\check{\mathbf{C}}^{0}\left(\mathcal{U},\mathcal{F}\right) = \Gamma\left(U_{0},\mathcal{O}_{\mathbb{P}^{1}}\left(-2\right)\right) \times \Gamma\left(U_{1},\mathcal{O}_{\mathbb{P}^{1}}\left(-2\right)\right) = k \left[\frac{x_{1}}{x_{0}}\right] \times k \left[\frac{x_{0}}{x_{1}}\right],$$

and

$$\check{\mathbf{C}}^{1}\left(\mathcal{U},\mathcal{F}\right)=\Gamma\left(U_{0}\cap U_{1},\mathcal{O}_{\mathbb{P}^{1}}\left(-2\right)\right)=k\left[\frac{x_{0}}{x_{1}}\right]_{\frac{x_{0}}{x_{1}}}=k\left[\frac{x_{1}}{x_{0}},\frac{x_{0}}{x_{1}}\right],$$

using the same trivialisation on $U_0 \cap U_1$ which we used on U_1 . Then

$$d(f,g) = g - f\frac{x_1^2}{x_0^2}.$$

Then $\ker d = 0$ and coker d is one-dimensional, generated by x_1/x_0 . So $\check{\mathrm{H}}^0\left(\mathcal{U},\mathcal{O}_{\mathbb{P}^1}\left(-2\right)\right) = 0$ and $\check{\mathrm{H}}^1\left(\mathcal{U},\mathcal{O}_{\mathbb{P}^1}\left(-2\right)\right) = k$.

Theorem 6.3. Let X be a Noetherian scheme with an open affine cover $\mathcal{U} = \{U_i\}_{i \in I}$ with the property that $U_{i_0...i_n}$ are affine for all $i_0 < \cdots < i_n$. Then if \mathcal{F} is a quasi-coherent sheaf of \mathcal{O}_X -modules, $\check{\mathrm{H}}^i(\mathcal{U},\mathcal{F}) \cong \check{\mathrm{H}}^i(X,\mathcal{F})$.

Remark. If $X \to S$ is a separated morphism with S affine, then any open affine cover of X has the desired property.

Lecture 22 Friday 27/11/20

6.4 Calculation of cohomology of projective space

Fix a field k and $X = \mathbb{P}_k^r$. We saw every line bundle on \mathbb{P}_k^r is of the form $\mathcal{O}_{\mathbb{P}_k^r}(m) = \mathcal{O}_{\mathbb{P}_k^r}(mH)$ for some $m \in \mathbb{Z}$.

Definition. A **perfect pairing** is a bilinear map $\langle , \rangle : V \times W \to k$ with k-vector spaces V and W such that the map

$$\begin{array}{ccc} V & \longrightarrow & W^* \\ v & \longmapsto & \langle v, \cdot \rangle \end{array}$$

is an isomorphism.

Theorem 6.4. Let $S = k[x_0, ..., x_r]$. Then

1. there is an isomorphism of graded S-modules

$$S \cong \bigoplus_{n \in \mathbb{Z}} \mathrm{H}^0 \left(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r} \left(n \right) \right),$$

- 2. $H^{i}(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(n)) = 0 \text{ for } 0 < i < r,$
- 3. $H^r(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(-r-1)) \cong k$, and
- 4. there is a perfect pairing

$$H^{0}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(n\right)\right) \times H^{r}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(-n-r-1\right)\right) \to H^{r}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(-r-1\right)\right) = k,$$

of finite-dimensional k-vector spaces for all $n \in \mathbb{Z}$.

Proof. Will calculate using Čech cohomology using the standard affine cover

$$\mathcal{U} = \{U_i = \mathbb{D}_+ (x_i) \mid 0 \le i \le r\},\,$$

by calculating cohomology of $\mathcal{F}=\bigoplus_{n\in\mathbb{Z}}\mathcal{O}_{\mathbb{P}^r}(n)$ as Čech cohomology respects direct sums. The key point is to recall the transition map for $\mathcal{O}_{\mathbb{P}^r}(1)$ from U_i to U_j is x_i/x_j , and so the transition maps for $\mathcal{O}_{\mathbb{P}^r}(m)$ are x_i^m/x_j^m . For $I\subseteq\{0,\ldots,r\}$, we have $U_I=\bigcap_{i\in I}\mathbb{D}_+(x_i)=\mathbb{D}_+(x_I)$ where $x_I=\prod_{i\in I}x_i$. Thus $\Gamma(U_I,\mathcal{O}_{\mathbb{P}^r})\cong S_{(x_I)}$. We will identify $\Gamma(U_I,\mathcal{O}_{\mathbb{P}^r}(m))$ with the k-vector subspace of S_{x_I} spanned by Laurent monomials of degree m. That is, monomials of the form $x_0^{a_0}\ldots x_r^{a_r}$ with $\sum_i a_i=m$ and if $a_i<0$ then $i\in I$. Given such a monomial M, then using the trivialisation on U_i , we will identify the section of $\mathcal{O}_{\mathbb{P}^r}(m)$ defined by M with $M/x_i^m\in\Gamma(U_I,\mathcal{O}_{\mathbb{P}^r})$, with $i\in I$. If $i,j\in I$, then note $(M/x_i^m)\left(x_i^m/x_j^m\right)=M/x_j^m$. Thus we have a canonical identification of $\Gamma(U_I,\mathcal{O}_{\mathbb{P}^r}(m))$ with the space spanned by Laurent monomials of degree m. Thus $\Gamma(U_I,\mathcal{F})$ can be identified with S_{x_I} . So now have a Čech complex $\check{C}^{\bullet}(\mathcal{U},\mathcal{F})$

$$\prod_{0 < i_0 < r} S_{x_{i_0}} \xrightarrow{\mathrm{d}^0} \dots \xrightarrow{\mathrm{d}^{r-1}} S_{x_0 \dots x_r}.$$

1. Note $H^0(\mathbb{P}^r, \mathcal{F}) = \ker d^0$. Note also all modules in the Čech complex are S-submodules of $S_{x_0...x_r}$, and

$$d^{0}((f_{i})_{0 \leq i \leq r}) = (f_{j} - f_{i})_{0 \leq i < j \leq r}.$$

Thus if $(f_i)_{0 \le i \le r} \in \ker d^0$, we actually have $f_i = f_j$ for all i and j. Thus $f_i, f_j \in S$ since otherwise f_i involves a negative power of x_i , which cannot occur in f_j , or vice versa. Thus $f_i = f$ for all i with $f \in S$, so $\ker d^0 \cong S$. Thus $H^0(\mathbb{P}^r, \mathcal{F}) \cong S$, preserving degrees. That is, $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(m)) = S_m$.

3. Now consider

$$d^{r-1}: \prod_{0 \le k \le r} S_{x_0 \dots \widehat{x_k} \dots x_r} \to S_{x_0 \dots x_r}.$$

Note $S_{x_0...x_r}$ is the k-vector space with basis $\prod_{i=0}^r x_i^{a_i}$ for $a_i \in \mathbb{Z}$ and $\operatorname{im} d^{r-1}$ is spanned by monomials of the form $\prod_{i=0}^r x_i^{a_i}$ with at least one $a_i \geq 0$. Thus the basis for coker d^{r-1} is

$$\left\{ \prod_{i=0}^{r} x_i^{a_i} \mid \forall i, \ a_i \le -1 \right\}.$$

In particular, $H^r(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(-r-1))$ is generated by $x_0^{-1} \dots x_r^{-1}$. Thus $H^r(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(-r-1)) \cong k$.

4. Note $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(n)) = 0$ for n < 0 as $S_n = 0$ for n < 0, and $H^r(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(-n-r-1)) = 0$ for n < 0 as there are no monomials with only negative exponents of degree more than -r-1. Thus nothing to check in this case. If $n \ge 0$, we have a basis

$$\left\{ \prod_{i} x_i^{m_i} \mid \sum_{i} m_i = n, \ m_i \ge 0 \right\}$$

for $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(n))$ and a basis

$$\left\{ \prod_{i} x_i^{l_i} \mid \sum_{i} l_i = -n - r - 1, \ l_i \le -1 \right\}$$

for $H^r(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(-n-r-1))$. The perfect pairing is given by

$$(x_0^{m_0} \cdot \dots \cdot x_r^{m_r}) \cdot (x_0^{l_0} \cdot \dots \cdot x_r^{l_r}) = x_0^{m_0 + l_0} \cdot \dots \cdot x_r^{m_r + l_r},$$

interpreting as zero if any $m_i + l_i \ge 0$. This gives a pairing ²⁶

$$\mathrm{H}^{0}\left(\mathbb{P}^{r},\mathcal{O}_{\mathbb{P}^{r}}\left(n\right)\right)\times\mathrm{H}^{r}\left(\mathbb{P}^{r},\mathcal{O}_{\mathbb{P}^{r}}\left(-n-r-1\right)\right)\to\mathrm{H}^{r}\left(\mathbb{P}^{r},\mathcal{O}_{\mathbb{P}^{r}}\left(-r-1\right)\right)=k\cdot\left(x_{0}\ldots x_{r}\right)^{-1}.$$

Lecture 23 Monday 30/11/20

2. It remains to show $\mathrm{H}^i\left(\mathbb{P}^r,\mathcal{O}_{\mathbb{P}^r}\left(n\right)\right)=0$ for 0< i< r, by induction on r. For the base case r=1, nothing to show. For the induction step, if we localise $\check{\mathrm{C}}^\bullet\left(\mathcal{U},\mathcal{F}\right)$ at x_r as graded S-modules, we get a Čech complex which calculates the cohomology groups $\mathrm{H}^i\left(U_r,\mathcal{F}|_{U_r}\right)$, by calculating using the Čech cover $\mathcal{U}'=\{U_i\cap U_r\mid 0\le i\le r\}$. But $U_r\cong \mathbb{A}^r_k$, and Čech cohomology can also be calculated via the cover $\{U_r\}$, so $\mathrm{H}^i\left(U_r,\mathcal{F}|_{U_r}\right)=0$ for all i>0. Note that this implies that if \mathcal{F} is in general a quasi-coherent sheaf on an affine scheme X, then $\mathrm{H}^i\left(X,\mathcal{F}\right)=0$ for all i>0. Now localising at x_r is an exact functor, so $\mathrm{H}^i\left(\check{\mathrm{C}}^\bullet\left(\mathcal{U},\mathcal{F}\right)_{x_r}\right)=\mathrm{H}^i\left(\check{\mathrm{C}}^\bullet\left(\mathcal{U},\mathcal{F}\right)\right)_{x_r}$, so thus $\mathrm{H}^i\left(\mathbb{P}^r,\mathcal{F}\right)_{x_r}=\mathrm{H}^i\left(U_r,\mathcal{F}|_{U_r}\right)=0$ for all i>0. For this to be the case, every element of $\mathrm{H}^i\left(\mathbb{P}^r,\mathcal{F}\right)$ must be annihilated by some power of x_r . Now let $H=\mathbb{V}\left(x_r\right)\subseteq\mathbb{P}^r$. Thinking of this as a closed subscheme, $H=\mathrm{Proj}\,S/\langle x_r\rangle=\mathrm{Proj}\,k\left[x_0,\ldots,x_{r-1}\right]=\mathbb{P}^{r-1}$. Have a surjective map $\mathcal{O}_{\mathbb{P}^r}\to\iota_*\mathcal{O}_H$ where $\iota:H\to\mathbb{P}^r$ is the inclusion. Because H is defined locally by a single equation, the kernel of $\mathcal{O}_{\mathbb{P}^r}\to\iota_*\mathcal{O}_H$ is a line bundle. Note this kernel is the ideal sheaf corresponding to H. On $U_i=\mathrm{Spec}\,S_{(x_i)}$, this kernel is generated by x_r/x_i and hence the transition maps for the ideal sheaf $\mathcal{I}_{H/\mathbb{P}^r}$ are

$$\mathcal{O}_{U_i}|_{U_i \cap U_j} \xrightarrow{\frac{x_r}{x_i}} \mathcal{I}_{H/\mathbb{P}^r}|_{U_i \cap U_j} \xleftarrow{\frac{x_r}{x_j}} \mathcal{O}_{U_j}|_{U_i \cap U_j} .$$

Thus $\mathcal{I}_{H/\mathbb{P}^r} \cong \mathcal{O}_{\mathbb{P}^r}(-1) \cong \mathcal{O}_{\mathbb{P}^r}(-H)$. The upshot is that we have an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^r} \left(-1 \right) \xrightarrow{\cdot x_r} \mathcal{O}_{\mathbb{P}^r} \to \iota_* \mathcal{O}_H \to 0.$$

Multiplication by x_r makes sense, since on U_i , it means multiplying by x_r/x_i , recalling that x_r corresponds to the section x_r/x_i of $\mathcal{O}_{\mathbb{P}^r}(1)$ on U_i . We can tensor the exact sequence with $\mathcal{O}_{\mathbb{P}^r}(n)$. Still exact, so

$$0 \to \mathcal{O}_{\mathbb{P}^r}\left(n-1\right) \xrightarrow{\cdot x_r} \mathcal{O}_{\mathbb{P}^r}\left(n\right) \to \iota_*\left(\mathcal{O}_H\left(n\right)\right) \to 0.$$

Exactness on the left follows since $\mathcal{O}_{\mathbb{P}^r}(n)$ is locally free, hence flat, or more simply, on U_i , $\mathcal{O}_{\mathbb{P}^r}(n) \cong \mathcal{O}_{U_i}$, so tensoring with \mathcal{O}_{U_i} does not do anything. Note also $\iota_*\mathcal{O}_H \otimes_{\mathcal{O}_{\mathbb{P}^r}} \mathcal{O}_{\mathbb{P}^r}(n) \cong \iota_*(\mathcal{O}_H(n))$. Frequently, we will drop the ι_* when dealing with sheaves on a closed subscheme. That is, if \mathcal{F} is a sheaf on H, we often write \mathcal{F} for $\iota_*\mathcal{F}$, where $(\iota_*\mathcal{F})(U) = \mathcal{F}(U \cap H)$. Thus we have an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^r}\left(n-1\right) \xrightarrow{\cdot x_r} \mathcal{O}_{\mathbb{P}^r}\left(n\right) \to \mathcal{O}_H\left(n\right) \to 0.$$

 $^{^{26}}$ Exercise: easy to check perfect pairing

Summing over all n,

$$0 \to \mathcal{F}\left(-1\right) \to \mathcal{F} \to \mathcal{F}_{H} \to 0, \qquad \mathcal{F}\left(-1\right) = \mathcal{F} \otimes_{\mathcal{O}_{\mathbb{P}^{r}}} \mathcal{O}_{\mathbb{P}^{r}}\left(-1\right), \qquad \mathcal{F}_{H} = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}_{H}\left(n\right).$$

Induction hypothesis implies that $H^i(\mathbb{P}^r, \mathcal{F}_H) = 0$ for 0 < i < r - 1. Note $H^i(\mathbb{P}^r, \mathcal{F}_H) = H^i(H, \mathcal{F}_H)$, as the Čech complexes calculating them are the same, that is using $\mathcal{U} = \{U_i\}$ or $\mathcal{U}_H = \{U_i \cap H\}$. This is a general fact, where if $\iota: Y \to X$ is a closed immersion and \mathcal{F} is a sheaf on Y, then $H^p(X, \iota_* \mathcal{F}) = H^p(Y, \mathcal{F})$.

- So if 1 < i < r - 1, get a piece of the long exact cohomology sequence

$$0 = \mathrm{H}^{i-1}\left(\mathbb{P}^r, \mathcal{F}_H\right) \to \mathrm{H}^i\left(\mathbb{P}^r, \mathcal{F}\left(-1\right)\right) \xrightarrow{\cdot x_r} \mathrm{H}^i\left(\mathbb{P}^r, \mathcal{F}\right) \to \mathrm{H}^i\left(\mathbb{P}^r, \mathcal{F}_H\right) = 0.$$

So $\cdot x_r : H^i(\mathbb{P}^r, \mathcal{F}(-1)) \to H^i(\mathbb{P}^r, \mathcal{F})$ is an isomorphism. But note $H^i(\mathbb{P}^r, \mathcal{F}(-1)) = H^i(\mathbb{P}^r, \mathcal{F})$ as non-graded S-modules. But we know every element of $H^i(\mathbb{P}^r, \mathcal{F})$ is annihilated by some power of x_r . Thus $H^i(\mathbb{P}^r, \mathcal{F}) = 0$ for 1 < i < r - 1.

- For i = 1, have

$$0 \longrightarrow \mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{F}\left(-1\right)\right) \longrightarrow \mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{F}\right) \longrightarrow \mathrm{H}^{0}\left(\mathbb{P}^{r}, \mathcal{F}_{H}\right) \longrightarrow \mathrm{H}^{1}\left(\mathbb{P}^{r}, \mathcal{F}\left(-1\right)\right) \stackrel{\cdot x_{r}}{\longrightarrow} \mathrm{H}^{1}\left(\mathbb{P}^{r}, \mathcal{F}\right) \longrightarrow 0$$

$$S\left(-1\right) \xrightarrow{\cdot x_{r}} S \xrightarrow{\mid \mathbb{R} \mid \mathbb{R}} S / \langle x_{r} \rangle$$

where S(-1) is the S-module with $S(-1)_d = S_{d-1}$. Thus $x_r : H^1(\mathbb{P}^r, \mathcal{F}(-1)) \to H^1(\mathbb{P}^r, \mathcal{F})$ is injective, and hence as before, $H^1(\mathbb{P}^r, \mathcal{F}) = 0$.

– For i = r - 1, get

$$0 \longrightarrow \mathrm{H}^{r-1}\left(\mathbb{P}^{r},\mathcal{F}\left(-1\right)\right) \xrightarrow{\cdot x_{r}} \mathrm{H}^{r-1}\left(\mathbb{P}^{r},\mathcal{F}\right) \longrightarrow \mathrm{H}^{r-1}\left(\mathbb{P}^{r},\mathcal{F}_{H}\right) \longrightarrow \cdots \longrightarrow \mathrm{H}^{r}\left(\mathbb{P}^{r},\mathcal{F}_{H}\right) \longrightarrow \cdots \longrightarrow \mathrm{H}^{r}\left(\mathbb{P}^{r},\mathcal{F}_{H}\right) = 0$$

By our calculation, the kernel of $x_r : H^r(\mathbb{P}^r, \mathcal{F}(-1)) \to H^r(\mathbb{P}^r, \mathcal{F})$ is generated by

$$\left\{ x_0^{l_0} \dots x_r^{l_r} \mid \forall i, \ l_i \le -1, \ l_r = -1 \right\}.$$

This is identified with $H^{r-1}(\mathbb{P}^r, \mathcal{F}_H)$, so the connecting map is injective ²⁷ and we conclude $x_r: H^{r-1}(\mathbb{P}^r, \mathcal{F}(-1)) \to H^{r-1}(\mathbb{P}^r, \mathcal{F})$ is surjective. Thus x_r is an isomorphism and we conclude as before that $H^{r-1}(\mathbb{P}^r, \mathcal{F}) = 0$.

Remark. In general, given an effective Cartier divisor $D = \{(U_i, f_i)\}$ for $f_i \in \mathcal{O}_X(U_i)$, D defines a closed subscheme of X whose ideal on U_i is generated by f_i . This coincides with the line bundle $\mathcal{O}_X(-D)$.

 $^{^{27}\}mathrm{Exercise}\colon$ check this by understanding of the Čech cohomology connecting maps

7 Differentials and Riemann-Roch

7.1 Normal and conormal bundles

Let X be a scheme and $\iota: Z \hookrightarrow X$ a closed immersion. Then have

$$\mathcal{I}_{Z/X} = \ker \left(\iota^{\#} : \mathcal{O}_{X} \to \iota_{*} \mathcal{O}_{Z} \right).$$

We saw on the example sheet that \mathcal{I}_Z is a coherent sheaf of \mathcal{O}_X -modules if X is Noetherian. We define the **conormal bundle** of Z in X to be

$$N_{Z/X}^{\vee} = \mathcal{I}_Z/\mathcal{I}_Z^2 \subseteq \mathcal{O}_X/\mathcal{I}_Z^2.$$

Here \mathcal{I}_Z^2 is the sheaf associated to the presheaf

$$U \mapsto \mathcal{I}_Z(U)^2 \subseteq \mathcal{O}_X(U)$$
.

Fact. Suppose X and Z are non-singular. That is, all local rings of X and Z are regular. Then $N_{Z/X}^{\vee}$ is a locally free sheaf of rank codim (Z, X).

In this case we define the **normal bundle** of Z in X to be

$$N_{Z/X} = \mathcal{H}om_{\mathcal{O}_Z} \left(N_{Z/X}^{\vee}, \mathcal{O}_Z \right).$$

Here we are using that $N_{Z/X}^{\vee}$ is a sheaf of $\mathcal{O}_Z = \mathcal{O}_X/\mathcal{I}_Z$ -modules.

Definition. Suppose $f: X \to Y$ is a separated morphism, so that $\Delta: X \to X \times_Y X$ is a closed immersion. Then the **sheaf of differentials** is the sheaf

$$\Omega_{X/Y} = \Delta^* \mathcal{N}_{X/X \times_Y X}^{\vee}.$$

Let B be an A-algebra, so $X = \operatorname{Spec} B$ and $Y = \operatorname{Spec} A$, and M a B-module. An A-derivation $d : B \to M$ is a map such that

Lecture 24 Wednesday 02/12/20

- d(b+b') = d(b) + d(b') for all $b, b' \in B$,
- d(bb') = bd(b') + b'd(b) for all $b, b' \in B$, and
- d(a) = 0 for all $a \in A$.

The **module of relative differentials** $\Omega_{B/A}$ is a B-module satisfying the following universal property. There exists an A-derivation $d: B \to \Omega_{B/A}$ such that for any A-derivation $d': B \to M$, there exists a unique B-module homomorphism $g: \Omega_{B/A} \to M$ making the diagram

$$B \xrightarrow{d} \Omega_{B/A}$$

$$\downarrow^g$$

$$M$$

commute.

Example. Take $B = k[x_1, ..., x_n]$ and A = k. Then

$$\Omega_{B/A} = \bigoplus_{i=1}^{n} B dx_i, \qquad d(x_i) = dx_i, \qquad d(f) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

Given $d': B \to M$, define

$$g : \Omega_{B/A} \longrightarrow M \\ \mathrm{d}x_i \longmapsto d'(x_i) .$$

Remark. In general, $\Omega_{B/A}$ can be constructed as follows. We have a homomorphism

$$\phi : B \otimes_A B \longrightarrow B \\ b \otimes b' \longmapsto bb'.$$

Take $I = \ker \phi$. Then I/I^2 is a B-module, and we may then define

$$\begin{array}{cccc} d & : & B & \longrightarrow & I/I^2 \\ & b & \longmapsto & 1 \otimes b - b \otimes 1 \end{array}.$$

With this d, $I/I^2 = \Omega_{B/A}$ satisfies the universal property.

Note if $X = \operatorname{Spec} B$ and $Y = \operatorname{Spec} A$, then Y induces the diagonal morphism $\Delta : X \to X \times_Y X$ and $\widetilde{I} = \mathcal{I}_{X/X \times_Y X}$. Then $\Delta^* N_{X/X \times_Y X}^{\vee}$ coincides with $\widetilde{I/I^2}$, viewing I/I^2 as a B-module. If $Y = \operatorname{Spec} k$ and X is a non-singular connected variety, then so is $X \times_k X$ and $\operatorname{codim}(\Delta(X), X \times_k X) = \dim X$. So $\Omega_{X/\operatorname{Spec} k} = \Omega_X$ is a locally free sheaf of rank dim X.

Example. If $X = \mathbb{A}^n_k$, then

$$\Omega_X = \bigoplus_{i=1}^n \mathcal{O}_X \mathrm{d} x_i.$$

Think that Ω_X is the cotangent bundle and $\mathcal{T}_X = \mathcal{H}om_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X)$ is the tangent bundle.

Definition. If X is as above, we define the **canonical bundle** of X to be

$$\omega_X = \bigwedge^{\dim X} \Omega_X.$$

This is the sheaf associated to the presheaf $U \mapsto \bigwedge^{\dim X} \Omega_X(U)$ as an $\mathcal{O}_X(U)$ -module. Alternatively if one takes a trivialising cover $\{U_i\}$ for Ω_X , with transition matrices $g_{ij} \in \operatorname{GL}_n \Gamma(U_i \cap U_j, \mathcal{O}_X)$, then the transition functions for ω_X are det g_{ij} . Then ω_X is a line bundle, and we call its corresponding Cartier divisor class as \mathcal{K}_X , the **canonical divisor** of X.

7.2 Serre duality and Riemann-Roch

Theorem 7.1 (Serre duality). Let X be a non-singular projective variety over Spec k of dimension n. Then for any locally free sheaf \mathcal{F} on X of finite rank, there is a natural isomorphism

$$\mathrm{H}^{i}\left(X,\mathcal{F}^{\vee}\otimes\omega_{X}\right)\to\mathrm{H}^{n-i}\left(X,\mathcal{F}\right)^{\vee},$$

where \mathcal{F}^{\vee} is the dual sheaf $\mathcal{H}om_{\mathcal{O}_X}\left(\mathcal{F},\mathcal{O}_X\right)$ and $H^{n-i}\left(X,\mathcal{F}\right)^{\vee}$ is the dual vector space.

The proof is mostly homological algebra, but ultimately reduces to the calculation of $H^{i}(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}(n))$. In fact, for \mathbb{P}^{r} ,

$$\omega_{\mathbb{P}^r} \cong \mathcal{O}_{\mathbb{P}^r} \left(-r - 1 \right),$$

so the perfect pairing we constructed is $H^r(X, \mathcal{F}) \times H^0(X, \mathcal{F}^{\vee} \otimes \omega_X) \to k$.

Definition. In general, if X is a projective scheme over k, then $H^i(X, \mathcal{F})$ is a finite-dimensional k-vector space, for \mathcal{F} a coherent sheaf on X. Then we may define the **Euler characteristic** of \mathcal{F} to be

$$\chi(F) = \sum_{i=0}^{\dim X} (-1)^{i} \dim \mathbf{H}^{i}(X, \mathcal{F}).$$

This is additive on exact sequences. That is, if

$$\cdots \to \mathcal{F}_{i-1} \to \mathcal{F}_i \to \mathcal{F}_{i+1} \to \ldots$$

is exact, then $\sum_{i=0}^{\dim X} \chi\left(\mathcal{F}_i\right) = 0$. In particular, for

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$

exact, $\chi(\mathcal{F}) = \chi(\mathcal{F}') + \chi(\mathcal{F}'')$. These statements follow from the fact that if

$$\cdots \rightarrow V_{i-1} \rightarrow V_i \rightarrow V_{i+1} \rightarrow \cdots$$

is exact, then $\sum_{i} (-1)^{i} \dim V_{i} = 0$. Riemann-Roch states that $\chi(F)$ is a topological invariant.

7.3 Curves

First discuss for curves. For now, let X be a projective non-singular curve over a field k for k algebraically closed. If $P \in X$ is a closed point, we may think of it as a prime divisor defining a closed subscheme, and we have an exact sequence

$$0 \to \mathcal{I}_P \cong \mathcal{O}_X (-P) \to \mathcal{O}_X \to \mathcal{O}_P \to 0$$
,

where \mathcal{O}_P is the structure sheaf of the point P. Now tensoring with a line bundle \mathcal{L} ,

$$0 \to \mathcal{L}(-P) = \mathcal{L} \otimes \mathcal{O}_X(-P) \to \mathcal{L} \to \mathcal{L} \otimes \mathcal{O}_P \cong \mathcal{O}_P \to 0.$$

Exactness on the left also holds since \mathcal{L} is locally free. So $\chi(\mathcal{L}) = \chi(\mathcal{L}(-P)) + \chi(\mathcal{O}_P) = \chi(\mathcal{L}(-P)) + 1$. Here we are using $k = \overline{k}$. So if $D \in \text{Div } X$, then

$$\chi\left(\mathcal{O}_X\left(D\right)\right) = \chi\left(\mathcal{O}_X\right) + \deg D,$$

where if $D = \sum_{i} a_i P_i$ then deg $D = \sum_{i} a_i$.

Definition. The **genus** of X is

$$g = \dim_k H^1(X, \mathcal{O}_X)$$
.

Theorem 7.2 (Riemann-Roch for curves). For $D \in \text{Div } X$,

$$\dim H^{0}(X, \mathcal{O}_{X}(D)) - \dim H^{0}(X, \omega_{X} \otimes \mathcal{O}_{X}(-D)) = \deg D + 1 - g.$$
(2)

Proof. By Serre duality.

$$\chi(\mathcal{O}_X(D)) = \dim H^0(X, \mathcal{O}_X(D)) - \dim H^0(X, \omega_X \otimes \mathcal{O}_X(-D)).$$

This is the left hand side of (2). But

$$\chi\left(\mathcal{O}_{X}\left(D\right)\right) = \chi\left(\mathcal{O}_{X}\right) + \deg D = \dim \mathrm{H}^{0}\left(X, \mathcal{O}_{X}\right) - \dim \mathrm{H}^{1}\left(X, \mathcal{O}_{X}\right) + \deg D = 1 - \mathrm{g} + \deg D,$$

giving the right hand side of (2).

Lecture 25 Friday 04/12/20

Remark.

• By Serre duality, $\chi(\omega_X) = \dim H^0(X, \omega_X) - \dim H^1(X, \omega_X) = \dim H^1(X, \mathcal{O}_X) - \dim H^0(X, \mathcal{O}_X) = g - 1$. Riemann-Roch tells us that $\chi(\omega_X) = \deg \mathcal{K}_X + 1 - g$. Thus

$$\deg \mathcal{K}_X = 2g - 2.$$

• If $\deg D < 0$, then

$$H^{0}(X, \mathcal{O}_{Y}(D)) = 0.$$

Indeed linear equivalence must preserve degree. A silly way of seeing this is that the left hand side of Riemann-Roch is independent of the representative for D. Thus |D| is empty, thus $H^0(X, \mathcal{O}_X(D)) = 0$. Now if deg D > 2g - 2, then $H^0(X, \mathcal{O}_X(-D) \otimes \omega_X) = 0$ since deg $(\mathcal{K}_X - D) = 2g - 2 - \deg D < 0$. Thus Riemann-Roch says

$$\dim H^{0}(X, \mathcal{O}_{X}(D)) = \deg D + 1 - g.$$

 $\bullet\,$ A linear system |D| on a curve is base-point-free if

$$\dim H^{0}(X, \mathcal{O}_{X}(D-P)) = \dim H^{0}(X, \mathcal{O}_{X}(D)) - 1,$$

as follows from the short exact sequence

$$0 \to \mathcal{O}_X (D - P) \to \mathcal{O}_X (D) \to \mathcal{O}_P = \mathcal{O}_X (D)_P / \mathfrak{m}_P \mathcal{O}_X (D)_P \to 0,$$

SO

$$0 \to \mathrm{H}^0(X, \mathcal{O}_X(D-P)) \to \mathrm{H}^0(X, \mathcal{O}_X(D)) \to k.$$

There exists a section of $\mathcal{O}_X(D)$ not vanishing at P if and only if $H^0(X, \mathcal{O}_X(D)) \to k$ is surjective, if and only if $\dim H^0(X, \mathcal{O}_X(D-P)) = \dim H^0(X, \mathcal{O}_X(D)) - 1$. In particular, if $\deg D > 2g - 1$, then |D| is base-point-free.

• It is easy to show from the very ampleness criterion on example sheet that D is very ample if and only if for all $P \in X$,

$$\dim H^{0}(X, \mathcal{O}_{X}(D-P)) - 1 = \dim |D-P| = \dim |D| - 1 = \dim H^{0}(X, \mathcal{O}_{X}(D)) - 2,$$

the base-point-free condition, and for all $P, Q \in X$, not necessarily distinct,

$$\dim|D - P - Q| = \dim|D| - 2.$$

Thus if $\deg D > 2g$, then |D| is very ample.

The most interesting range of divisors is $0 \le \deg D \le 2g - 2$.

Example.

- Let g = 0. Then if $\deg D = 1$, then D is very ample. For example, the linear system |P| for $P \in X$ induces an embedding $f: X \to \mathbb{P}^1$, hence $X \cong \mathbb{P}^1$.
- Let g = 1. Fix $P_0 \in X$. Then $|3P_0|$ is very ample and of dimension two, so we get an embedding $f: X \hookrightarrow \mathbb{P}^2$. This embeds X as a degree three plane curve. This comes from the fact that $f^*\mathcal{O}_{\mathbb{P}^2}(1) = \mathcal{O}_X(3P_0)$, which is of degree three. Think about divisors of degree zero on X. Claim that if $D \in \text{Div } X$ with deg D = 0, then $D \sim P P_0$ for some $P \in X$, which is unique. Consider $D + P_0$. We then have by Riemann-Roch dim $H^0(X, \mathcal{O}_X(D + P_0)) = \deg(D + P_0) + 1 g = 1 + 1 1 = 1$, so there exists a unique effective divisor P such that $D + P_0 \sim P$. Note $\deg P = 1$, so P is just a point. Thus $D \sim P P_0$, which also shows P is unique. Hence we have an exact sequence

$$0 \to \operatorname{Cl}^0 X \to \operatorname{Cl} X \xrightarrow{\operatorname{deg}} \mathbb{Z} \to 0,$$

where $\operatorname{Cl}^0 X$ is the linear equivalence classes of degree zero divisors. So there is a bijection between $\operatorname{Cl}^0 X$ and the closed points of X, since $k=\overline{k}$. So $\operatorname{Cl}^0 X$ acquires the structure of a variety. That is, it is the set of closed points of the scheme X. More generally, for X a curve of genus g, the group $\operatorname{Cl}^0 X$ forms the closed points of a g-dimensional variety called an **abelian variety** A. That is, it has a group structure compatible with the variety structure. That is, morphisms $m:A\times A\to A$ for multiplication and $i:A\to A$ for inversion.

7.4 Surfaces*

Let X be a projective non-singular surface. Want to be able to count the number of intersection points of two curves $C, D \subseteq X$.

Theorem 7.3. There exists a unique intersection pairing written as

$$\begin{array}{cccc} \operatorname{Div} X \times \operatorname{Div} X & \longrightarrow & \mathbb{Z} \\ (C, D) & \longmapsto & C \cdot D \end{array},$$

satisfying

- if C and D are non-singular curves meeting **transversally**, that is not tangent at any intersection point, then $C \cdot D = \# (C \cap D)$,
- $C \cdot D = D \cdot C$,
- $(C_1 + C_2) \cdot D = C_1 \cdot D + C_2 \cdot D$, and
- if $C_1 \sim C_2$, then $C_1 \cdot D = C_2 \cdot D$.

Theorem 7.4 (Riemann-Roch for surfaces).

$$\dim H^{0}\left(X,\mathcal{O}_{X}\left(D\right)\right)-\dim H^{1}\left(X,\mathcal{O}_{X}\left(D\right)\right)+\dim H^{0}\left(X,\mathcal{O}_{X}\left(-D\right)\otimes\omega_{X}\right)=\frac{1}{2}D\cdot\left(D-\mathcal{K}_{X}\right)+1+P_{a},$$

where $P_a(X) = \chi(\mathcal{O}_X) - 1$ is the arithmetic genus of X.

The **blowup** of \mathbb{A}^n at the origin is the variety X for $X \subseteq \mathbb{A}^n \times \mathbb{P}^{n-1}$ with X defined by the equations $y_i x_j - x_i y_j = 0$ for all $1 \le i < j \le n$. If

$$\phi : X \longrightarrow \mathbb{A}^n \\ ((x_1, \dots, x_n), (y_1 : \dots : y_n)) \longmapsto (x_1, \dots, x_n),$$

then $\phi^{-1}(\mathbb{A}^n \setminus \{0\}) \to \mathbb{A}^n \setminus \{0\}$ is an isomorphism with $x_j/x_i = y_j/y_i$, and $\phi^{-1}(0) = \mathbb{P}^{n-1}$, so X is integral. Can globalise this operation. That is, if Y is a projective variety and $y \in Y$ is a non-singular point, we can blow up $y \in Y$ to get

$$\begin{array}{cccc} \phi & : & \widetilde{Y} & \longrightarrow & Y \\ & E & \longmapsto & y \end{array},$$

where $\phi^{-1}(Y \setminus \{y\}) \cong Y \setminus \{y\}$ and $\phi^{-1}(\{y\}) = E \cong \mathbb{P}^{n-1}$ if dim Y = n.

Remark. There exists a more general notion of blowing up a sheaf of ideals. In this case we take the ideal sheaf of $y \in Y$.

Let X be a non-singular projective surface and $\pi: \widetilde{X} \to X$ the blowup of a point $p \in X$. Then

$$\operatorname{Cl} \widetilde{X} = \operatorname{Cl} X \oplus \mathbb{Z} [E], \qquad E = \pi^{-1} (\{p\}),$$

since

$$0 \to \mathbb{Z}\left[E\right] \to \operatorname{Cl} \widetilde{X} \to \operatorname{Cl} \left(\widetilde{X} \setminus E\right) = \operatorname{Cl} \left(X \setminus \{p\}\right) = \operatorname{Cl} X \to 0.$$

Example. Let $p_1, \ldots, p_6 \in \mathbb{P}^2$ be general points. That is, no three points contained in a line and not all six contained in a conic. Let $\pi: X \to \mathbb{P}^2$ be the blowup at p_1, \ldots, p_6 , so

$$\operatorname{Cl} X = \mathbb{Z}[H] \oplus \mathbb{Z}[E_1] \oplus \cdots \oplus \mathbb{Z}[E_6] = \mathbb{Z}^7.$$

Then $H^2 = H \cdot H = 1$, $H \cdot E_i = E_i \cdot E_j = 0$ for $i \neq j$, and $E_i^2 = E_i \cdot E_i = -1$. If $D = 3H - E_1 - \dots - E_6$, then $D \cdot D = 9 - 6 = 3$ and one can show that |D| embeds X as a cubic surface in \mathbb{P}^3 . Also, if C is any curve on X, then the degree of its image is $D \cdot C$. For example, there are six curves with $D \cdot E_i = 1$, there are fifteen curves with $(H - E_i - E_j) \cdot D = 1$ for $1 \leq i < j \leq 6$, and six curves with $(2H - E_1 - \dots - \widehat{E_i} - \dots - E_6) \cdot D = 1$. These are the twenty-seven straight lines on a cubic surface.