Tone Counting vs Baseline

Statistics: p-values adjusted for search volume

set-level	cluster-level	peak-level								
р с	$\rho_{\text{FWE-corr} \text{FDR-corr}} k_{\text{E}}$	p_{uncorr}	p_{FWE-ce}	g orr FDR-co	_		$p_{ m uncorr}$	11111111	nm mm 	
	1.000 0.530 3	0.321		0.704	3.60	3.26	0.001	32		-6
	1.000 0.579 1 1.000 0.428 5	0.579 0.202	1.000	0.713 0.727	3.60 3.59		0.001	52 14		40 62
	1.000 0.428 3	0.579	1.000		3.58		0.001	48		22
	1.000 0.552 2	0.420		0.733		3.25	0.001	44		54
	1.000 0.579 1	0.579	1.000		3.58	3.24	0.001	-52		32
	1.000 0.579 1	0.579	1.000	0.733	3.58	3.24	0.001	-40		10
	1.000 0.579 1	0.579		0.742	3.57		0.001	24		40
	1.000 0.530 3	0.321	1.000	0.742	3.57	3.24	0.001	-56	_8 -	26
	1.000 0.477 4	0.252		0.742		3.24		-46		-8
	1.000 0.579 1	0.579	1.000		3.57	3.24		16		20
	1.000 0.579 1	0.579	1.000		3.56	3.23	0.001	48		22
	1.000 0.552 2 1.000 0.579 1	0.420	1.000 1.000	0.751 0.759		3.23		6 5 4		34 46
	1.000 0.579 1	0.579 0.579	1.000	0.783	3.54	3.22 3.21	0.001	-60		22
	1.000 0.579 1	0.579	1.000	0.783		3.21	0.001	-46		36
	1.000 0.552 2	0.420	1.000		3.53			18		44
	1.000 0.477 4	0.252	1.000	0.794	3.53	3.20	0.001	20		52
	1.000 0.552 2	0.420	1.000	0.796		3.20	0.001	58		24
	1.000 0.579 1	0.579	1.000			3.20	0.001	54		26
	1.000 0.552 2	0.420	1.000	0.812		3.19	0.001	34		30
	1.000 0.579 1	0.579	1.000	0.818	3.51		0.001	62		48
	1.000 0.579 1	0.579	1.000	0.821		3.19	0.001	22		36
	1.000 0.579 1	0.579	1.000				0.001	0	-34	28

table shows 3 local maxima more than 8.0mm apart

Height threshold: F = 3.39, p = 0.001 (1.00 Ω) egrees of freedom = [10.0, 80.0]

Extent threshold: k = 0 voxels

FWHM = 8.0 7.9 7.8 mm mm mm; 4.0 3.9 3.9 {voxels}

Expected voxels per cluster, $\langle k \rangle = 3.286$ Volume: 1784456 = 223057 voxels = 3391.7 resels

Expected number of clusters, $\langle c \rangle = 71.08$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 61.02 voxels)

FWEp: 6.605, FDRp: 5.227, FWEc: 50, FDR Ω