OPTIMAL EXPERIMENTAL DESIGN

Logan Ward Asst. Computational Scientist Argonne National Laboratory

9 February 2022

"Static" Experimental Design

Design of Experiments: How to choose experiments under a finite budget

Treatment combinations for a 2 ^{5 - 2} design							
Treatment combination	1	Α	В	С	D = AB	E = AC	
de	+	-	-	-	+	+	
a	+	+	-	-	-	-	
be	+	-	+	-	-	+	
abd	+	+	+	-	+	-	
cd	+	-	-	+	+	-	
ace	+	+	-	+	-	+	
bc	+	-	+	+	-	-	
abcde	+	+	+	+	+	+	

Source: Wikipedia

Source: ICME@MSE

Source: Pew Research

What if you can learn between experiments?

Key concept: "Active Learning"

Optimal Design: Select new experiments as you learn more

An idea that takes many forms and names...

- Active learning
- Bayesian optimization
- Optimal experimental design
- Sequential learning
- Surrogate-based Optimization

Components of "optimal design":

- Machine learning model with uncertainty
- Space of possible experiments
- Policy for sampling

Figure: Lookman et al. npj Comp. Mat. (2019)

BUILDING MODELS WITH UNCERTAINTY ESTIMATES

Not as hard as you might think

Two Key Ways for "ML with Uncertainty"

Bayesian Machine Learning

Concept: Estimate distribution of *parameters*

Advantage: Robust statistical basis

Disadvantage: Restricted model forms

Key Method: Gaussian Process Regression

Bootstrapped Ensembles

Concept: Create distribution of models

Advantage: Can use any model form

Disadvantage: High computational cost

Key Method: Random forest

Understanding Gaussian Process Regression

Bayesian Learning with a "kernel trick"

(Simplified) Model Form:
$$f(x^*) = \sum_i \alpha_i \mathbf{k}(x^*, x_i)$$

Some complex math gives an expression for $\sigma(x^*)$

Kernels (k) express the shape of your model, for example a "radial basis function"

A quick note: Uncertainty Intervals Are Not Perfect

Key points:

- Your uncertainties are still estimates
- They do not work "out of distribution"
- Not every "uncertainty" can be interpreted the same

... but they can be good enough to guide experiments

SELECTING A SAMPLING POLICY

Sampling Policies: Exploration vs Exploitation

Bayesian Optimization: Quantifying value judgements

Source: Towards Data Science

Simple Acquisition Functions

Further variety in ways to "explore" or "exploit"

Nice reference: Roman Garnett's Course Materials

It can get very complicated...

Many different complicating factors (or opportunities to be clever!):

- Performing experiments in parallel vs sequential?
- Different properties of learning algorithms?
- More than one objective?
- Different ways to access your experiments?
- Experiments are different costs?
- Do experiments take the same amount of time?
- Is retraining your model expensive?
-!

My view: Make a friend in applied mathematics!

EXAMPLES FROM MATERIALS SCIENCE

A relatively new idea, but catching on quickly

Example: Shape memory alloys with small ΔT

Feedback from experiments: augmented data set with four new alloys

Faster optimization of industrial processes

flame spray pyrolysis processing space

	lower	upper
TEOS concentration (wt%)	0.05	5
liquid flow rate (mL/min)	4	10
atomization O ₂ flow rate (L/min)	6	12
pilot CH ₄ flow rate (L/min)	2	4
pilot O ₂ flow rate (L/min)	3	6
sheath O ₂ flow rate (L/min)	15	25

design of experiments

- Latin hypercube sampling
- **Bayesian Optimization**

optimized particle morphology

physics understanding

- **Model:** Gaussian Process with RBF Kernel
- **Search Space:** 6-D process parameters
- **Policy:** Expected Improvement

Characterization with Fewer Measurements

Structure Optimization via Bayesian Optimization

Fitting Better Models: Fitting Interatomic Potentials

"Better model with 10% of the data"

- <u>J. Smith et al. JCP (2018)</u>

Cool innovation: Accounting for clustering within data

Figure: Sivaraman et al. npj Comp Mat. (2020)

Curiosity Driven Active Learning

The goal of your experimental design can be "to discover"

It is a matter of defining a "curious algorithm"

Pathway to Fully-Autonomous Laboratories

Figure 1. The Evolution of Materials Discovery Paradigms

Ref: Crabtree. Joule (2020)

Take-Away Points

"Optimal design" = "Learning while doing"

Main challenge is to find a good way to pick the next experiments

Ex: "explore" vs "exploit"

Source: Balachandran et al.. Sci. Rep. (2016)

Many ways to use active learning!

- Material design
- Model fitting
- Guiding characterization
- Solving structures
- Just for curiosity

Next step ->

Source: Curtis Berlinguette (UBC)