INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPTT./CENTRE:	DEPARTMENT	OF	PHYSICS

1. Subject Code: **PH 624** Course Title: **Computational Nuclear Structure Physics**

2. Contact Hours: L: 3 T: 1 P: 0

3. Examination Duration (Hrs.): Theory 0 3 Practical 0 0

4. Relative Weightage: CWS PRS MTE PRE 0 0

5. Credits: 0 3 6. Semester: Spring 7. Subject Area: DEC

7. Pre-requisite: Introductory course in nuclear physics and in computer programming

9. **Objective of Course:** To understand the concepts of nuclear physics through numerical solutions obtained by writing computer programs

10. Details of the Course:

S. No.	Particulars	Contact Hours
1.	Harmonic oscillator, wave functions, evaluation of special functions using recurrence	5
	relations and optimization, spherical harmonics, shapes of atomic orbitals, Coupling of angular momenta.	
2.	Simulation of Rutherford scattering, Semi empirical mass formula, estimation of the constants in mass formulae using atomic mass evaluations, mapping of drip lines. Quantum tunneling: application of WKB approach to alpha and proton decays.	5
3.	Numerical evaluation of Eigen states for different potentials by solving coupled differential equations with boundary conditions, harmonic oscillator, square-well and Woods-Saxon potentials. Complex Eigen values and resonances	5
4.	Independent particle models, Eigen states, Solutions for Nilsson model. Single- j shell approximation and Cranking model. Effective interaction: Simple estimates, Evaluation of matrix elements in sd shell. Superconductivity: Solution for BCS equations at $T = 0$. Hot nuclei: Application of Fermi-Dirac distribution. Quantum Hadrodynamics: Walecka model, Equation of State for symmetric, asymmetric and neutron star matter	10
5.	Setting up large codes, parallel and distributed computing, open access codes, libraries	3
	Total	28

11. Suggested Books:

S. No.	Name of Books/Authors	Year of Publication
1.	Greiner W and Maruhn J A, "Nuclear models", Springer-Verlag	1997
2.	Arfken G B, Weber H J and Harris F E, "Mathematical Methods for Physicists 7ed", Academic Press	2013
3.	Abramowitz M and Stegun I A, "Handbook of mathematical functions with formulas, graphs and mathematical tables", Dover Publications	1972
4.	Giordano N and Nakanishi H "Computational Physics, 2ed", Pearson/Prentice Hall	2006
5.	Pang T, "An Introduction to Computational Physics", Cambridge Univ. Press	2006