HOW TO COMPETE IN KAGGLE

A COMPLETE GUIDE TO KAGGLE COMPETITIONS

- MINCHANG (CARSON) ZHANG

TABLE OF CONTENT

- INTRODUCTION TO KAGGLE COMPETITION
- MACHINE LEARNING APPROACH
- WHAT TO DO NEXT
- SUMMARY

- Kaggle is world's largest data scientist website
- Many companies launch competitions with a prize
- Kaggle competition provides "cleaned" and already split data
- Kaggle 2019 career con is coming, with a competition

Help Navigate Robots
Predict what surface the robot is on

Data Sources

- sample_submission.csv 3816 x 2
- X train.csv 488k x 13
- y train.csv 3810 x 3

Columns

- series_id
- group_id
- A surface

Columns

- A row_id
- series_id
- # measurement_number
- # orientation X
- # orientation Y
- # orientation_Z
- # orientation_W
- # angular_velocity_X
- # angular_velocity_Y
- # angular_velocity_Z
- # linear_acceleration_X
- # linear_acceleration_Y
- # linear acceleration Z

A GENERIC MACHINE LEARNING APPROACH

- Get the data
- Define problem
- Prepare data (data cleaning)
- Exploratory Data Analysis (EDA)
- Feature Engineering
- Modelling
- Evaluate Model Performance
- Hyperparameter Tuning
- Advanced Modelling and Optimization
- Repeat from feature selection
- Implementation and Periodically Model Training

KAGGLE COMPETITION APPROACH

- Get the data
- Define problem
- Prepare data (data cleaning)
- Exploratory Data Analysis (EDA)
- Feature Engineering
- Modelling
- Evaluate Model Performance
- Hyperparameter Tuning
- Advanced Modelling and Optimization
- Repeat from feature selection
- Discussion
- Implementation and Periodically Model Training

EDA - DF OPTIMIZATION

Dataframe optimization:

- > Less ram used
- > Faster in calculations

Memory usage of dataframe is 48.3692 MB
Memory usage after optimization is: 14.88 MB
Decreased by 69.2%
Memory usage of dataframe is 48.4454 MB
Memory usage after optimization is: 14.91 MB
Decreased by 69.2%

Ref: https://towardsdatascience.com/make-working-with-large-dataframes-easier-at-least-for-your-memory-6f52b5f4b5c4

EDA - TRAIN & TEST

This data has 487680 rows and 13 columns.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 487680 entries, 0 to 487679

Data columns (total 13 columns):

row_id 487680 non-null object

series_id 487680 non-null int16

measurement_number 487680 non-null int16

orientation_X 487680 non-null float16

orientation_Y 487680 non-null float16

orientation_Z 487680 non-null float16

orientation_W 487680 non-null float16

angular_velocity_X 487680 non-null float16

angular_velocity_Y 487680 non-null float16

angular_velocity_Z 487680 non-null float16

linear_acceleration_X 487680 non-null float16

linear_acceleration_Y 487680 non-null float16

linear_acceleration_Z 487680 non-null float16

dtypes: float16(10), int16(2), object(1)

memory usage: 14.9+ MB

	row_id	series_id	measurement_number	orientation_X	orientation_Y	orientation_Z	orientation_W	angular_velocity_X	angular_velo
0	0_0	0	0	-0.758301	-0.634277	-0.104858	-0.105957	0.107666	0.017563
1	0_1	0	1	-0.758301	-0.634277	-0.104919	-0.106018	0.067871	0.029938
2	0_2	0	2	-0.758301	-0.634277	-0.104919	-0.105957	0.007275	0.028931
3	0_3	0	3	-0.758301	-0.634277	-0.104980	-0.105957	-0.013054	0.019455
4	0_4	0	4	-0.758301	-0.634277	-0.104980	-0.105957	0.005135	0.007652
4.1									

This data has 3810 rows and 3 columns.

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 3810 entries, 0 to 3809

Data columns (total 3 columns):

series_id 3810 non-null int64

group_id 3810 non-null int64

surface 3810 non-null object

dtypes: int64(2), object(1)

memory usage: 89.4+ KB

	series_id	group_id	surface
0	0	13	fine_concrete
1	1	31	concrete
2	2	20	concrete
3	3	31	concrete
4	4	22	soft_tiles

EDA - TARGET

```
grouped = target.groupby('surface')
grouped.groups
{'carpet': Int64Index([ 12, 13, 15, 16, 37, 54, 58, 118, 128, 149,
           3597, 3623, 3631, 3638, 3690, 3698, 3714, 3732, 3768, 3774],
          dtype='int64', length=189),
 'concrete': Int64Index([ 1, 2, 3, 7, 14, 33, 34, 35, 48, 50,
           3765, 3767, 3769, 3770, 3778, 3780, 3787, 3791, 3795, 3798],
          dtype='int64', length=779),
 'fine_concrete': Int64Index([ 0, 26, 32, 40, 42, 47, 56, 57, 75, 77,
           3760, 3763, 3766, 3772, 3782, 3783, 3786, 3797, 3800, 3807],
           dtype='int64', length=363),
 'hard_tiles': Int64Index([ 27, 45, 148, 189, 257, 459, 527, 566, 587, 745, 798,
             804, 826, 1125, 1193, 1277, 1399, 1454, 1455, 1610, 1671],
           dtype='int64'),
 'hard_tiles_large_space': Int64Index([ 8, 21, 29, 63, 98, 119, 124, 142, 153, 1
65,
```

grouped.get_group('hard_tiles')

	series_id	group_id	surface
27	27	27	hard_tiles
45	45	27	hard_tiles
148	148	27	hard_tiles
189	189	27	hard_tiles
257	257	27	hard_tiles
459	459	27	hard_tiles
527	527	27	hard_tiles
566	566	27	hard_tiles
587	587	27	hard_tiles
745	745	27	hard_tiles
798	798	27	hard_tiles
804	804	27	hard_tiles
826	826	27	hard_tiles
1125	1125	27	hard_tiles
1193	1193	27	hard_tiles
1277	1277	27	hard_tiles
1399	1399	27	hard_tiles
1454	1454	27	hard_tiles
1455	1455	27	hard_tiles
1610	1610	27	hard_tiles
1671	1671	27	hard_tiles

grouped.get_group('concrete')['group_id'].unique()

array([31, 20, 12, 32, 0, 5, 62, 41, 42, 61, 57, 47, 39, 50, 63])

EDA - TARGET GROUPID

plot_count(target['group_id'], annotation=False)

OTHER VISUALIZATION PACKAGES

- Other than matplotlib and seaborn, there are a couple other packages
- Plotly is really nice, but it COST
- Altair is really cool, allows custom html render

Ref: https://www.kaggle.com/notslush/altair-visualization-2018-stackoverflow-survey
https://altair-viz.github.io/

FEATURE ENGINEERING

- Statistical data: mean, max, min, std, variance
- Physics data: total, acceleration, range, absolute, change rate
- Signal processing: Fourier transform, frequency domain analysis

MODELLING

- First approach: merge train and target data, predict directly, choose the max number of predicted surface for each series as result
 - CV: 0.6, LB: 0.34
- Second approach: group data based on series id
 - CV: 0.82, LB: 0.4
- Third approach: grouped data with cross validation
 - CV: 0.88, LB: 0.62
- Fourth approach: grouped data with cross validation and Beysian optimization
 - CV: 0.92, LB: 0.62
- Fifth approach: grouped data with cross validation (StratifiedKFold) and Beysian optimization
 - CV: 0.91, LB: 0.64
- Sixth approach: ensemble with max voting with cross validation (StratifiedKFold)
 - CV: 0.88, LB: 0.66
- Seventh approach: ensemble with stacking with cross validation (StratifiedKFold)
 - CV: 0.86, LB: 0.63

REVISIT OPTIMIZATION STRATEGY

Ref: https://www.kaggle.com/trohwer64/simple-fourier-analysis

- Try again with custom train test split function
- Make sure not to share a group between training and validation
- No cross validation due to time constraint
- CV: 0.56, LB: 0.54
- Unrealistic CV score was brought down!
- I'm on the right track!

WHAT TO DO NEXT

- Better data split and cross validation strategy
- Try Neural Network
- Improve ensemble
- Participate in discussion

SUMMARY

- Machine learning approach
- Discussion can be super useful in Kaggle competitions
- Should you trust CV score or LB score?
- Cross validation is key