Лекция 2. Сбор и подготовка данных

Стремительное проникновение информационных технологий различные сферы жизнедеятельности человека определило актуальность и тенденцию развития методов искусственного интеллекта для анализа данных и принятия решений. Особую актуальность для решения профессиональных приобретают методы машинного обучения, задач позволяющие имеющимся данным, отражающим характеристики объектов исследования, обобщать, прогнозировать развитие ситуаций и принимать решения на основе обработки статистических данных. Математические методы и их реализация в виде алгоритмов машинного обучения позволяет лицу, принимающему решения для определения оптимальной стратегии управления, опираться на решения задач с использованием различных результаты алгоритмов машинного обучения, сравнения посредством ИХ оценки точности. Использование математических методов и базирующихся на них алгоритмах машинного обучения для решения прикладных задач принятия решений является актуальным развитием информационных технологий.

Цель машинного обучения – анализ данных.

Данные — зарегистрированная информация; представление фактов, понятий или инструкций в форме, приемлемой для общения, интерпретации, или обработки человеком или с помощью автоматических средств (ISO/IEC/IEEE 24765-2010).

В информатике и информационных технологиях:

Данные — формы представления информации, с которыми имеют дело информационные системы и их пользователи (ISO/IEC 10746-2:1996).

Данные — поддающееся многократной интерпретации представление информации в формализованном виде, пригодном для передачи, связи или обработки (ISO/IEC 2382:2015).

Данные в машинном обучении — это представление информации об исследуемой задаче в виде множеств исследуемых объектов и множеств их

характеристик, на основе которых строятся модели, разрабатываются подходы, методы и алгоритмы анализа для принятия решений.

Для Аналитика (Data Scientist, Data Analyst, Data Mining Engineer) очень важно обладать правильными данными, что гарантирует эффективность обработки и построении прогнозов.

Качество данных — важный аспект машинного обучения. На рисунке 1 представлены основные требования к данным.

Рисунок 1 – Требования к данным

Доступность

У аналитика должен быть доступ к данным. Это предполагает не только разрешение на их получение, но также наличие соответствующих инструментов, обеспечивающих возможность их использовать, обрабатывать и анализировать.

Точность

Данные должны отражать истинные значения или положение дел. Например, показания неправильно настроенного датчика, ошибка в дате рождения или устаревший адрес — это все примеры неточных данных.

Полнота

Под неполными данными может подразумеваться как отсутствие части информации (например, в сведениях о клиенте не указано его имя), так и полное отсутствие единицы информации (например, в результате ошибки при сохранении в базу данных потерялась вся информация о клиенте).

Непротиворечивость

Данные должны быть согласованными. Например, адрес конкретного клиента в одной базе данных должен совпадать с адресом этого же клиента в другой базе. При наличии разногласий один из источников следует считать основным или вообще не использовать сомнительные данные до устранения причины разногласий.

*Однозначност*ь

Каждое поле, содержащее индивидуальные данные, имеет определенное, недвусмысленное значение. Четко названные поля в совокупности со словарем базы данных помогают обеспечить качество данных.

Релевантность

Данные зависят от характера анализа. Релевантность — степень соответствия результатов поиска результатам запроса.

Надежность

Данные должны быть одновременно полными (то есть содержать все сведения, которые вы ожидали получить) и точными (то есть отражать достоверную информацию).

Своевременность

Между сбором данных и их доступностью для использования в аналитической работе всегда проходит время. На практике это означает, что аналитики получают данные как раз вовремя, чтобы завершить анализ к необходимому сроку.

Взаимосвязанность

Должна быть возможность точно связать одни данные с другими. Например, заказ клиента должен быть связан с информацией о нем самом, с товаром или товарами из заказа, с платежной информацией и информацией об адресе доставки. Этот набор данных обеспечивает полную картину заказа клиента. Взаимосвязь обеспечивается набором идентификационных кодов или ключей, связывающих воедино информацию из разных частей базы данных. Ошибка всего в одном из этих аспектов может привести к тому, что данные окажутся частично или полностью непригодными к использованию или, хуже того, будут казаться достоверными, но приведут к неправильным выводам.

Данные содержат ошибки и пропуски. Ошибки могут появиться в данных по многим причинам и на любом этапе сбора информации.

Во многих случаях аналитики лишены возможности контролировать сбор и первичную обработку данных. Обычно они бывают одним из последних звеньев в длинной цепочке по генерации данных, их фиксированию, передаче, обработке и объединению. Тем не менее важно понимать, какие проблемы с качеством данных могут возникнуть и как их потенциально можно разрешить.

Как оценить качество данных и подготовить данные в цифровом виде для применения алгоритмов искуственного интеллекта для их обработки один из важных вопросов машинного обучения. Не только интуитивно формальные требования рассмотренные выше предьявляются к данным, но и требования которые накладывают особенности алгоритмов обработки данных. Аналитик сталкивается с вопросом качества данных, способами их оценки и подготовки для применения технологий искуственного интеллекта при решении любой прикладной задачи.

Рассмотрим постановку задач машинного обучения и определим требования к представлению данных. Пусть задано множество объектов X, множество допустимых ответов Y, и существует целевая функция (target function) $y^*: X \to Y$, значения которой $y_i = y^*(x_i)$ известны только на конечном подмножестве объектов $\{x_1, \ldots, x_l\} \subset X$. Пары «объект-ответ» (x_i, y_i) называются прецедентами. Совокупность пар $X^l = (x_i, y_i)_{i=1}^l$ называется обучающей выборкой (training sample).

Задача обучения по прецедентам заключается в том, чтобы по выборке X^l восстановить зависимость y^* , то есть построить решающую функцию (decision function) $f: X \to Y$, которая приближала бы целевую функцию $y^*(x)$, причем не только на объектах обучающей выборки, но и на всем множестве X.

Решающая функция f должна допускать эффективную компьютерную реализацию, следовательно, ее также можно назвать алгоритмом.

Рассмотрим некоторые важные вопросы, возникающие при работе с данными и подготовки данных для применения алгоритмов машинного обучения. Остановимся на основных этапах задач машинного обучения.

Этапы решения задач машинного обучения:

- 1. Постановка задачи.
- 2. Сбор и подготовка данных.
- 3. Предобработка данных и выделение ключевых признаков.
- 4. Выбор алгоритмов машинного обучения.
- 5. Обучение модели (моделей).
- 6. Оценка качества.
- 7. Эксплуатация модели при достижении требуемого качества, либо возврат к одному из предыдущих шагов (перенастройка модели, добыча новых данных и т. п.).

Сбор данных является одним из начальных и значимых этапов. При сборе данных возможны пропуски значений, выбросы данных за допустимые интервалы. Некоторые алгоритмы машинного обучения не могут обрабатывать пропуски и будет выдаваться ошибка в данных. Алгоритмы чувствительны к выбросам, которые сильно влияют на результат обучения. Наличие в данных категориальных признаков, также, ставит вопрос о выборе алгоритмов или переводе данных в числовые значения.

При подготовке данных можно применять следующие операции:

- структурирование приведение данных к табличному
 (матричному) виду;
 - заполнение пропусков;

- отбор исключение записей с отсутствующими или некорректными значениями, если нет возможности заполнения и устранения противоречивости;
- нормализация приведение числовых значений к определенному диапазону, например к диапазону 0...1;
- кодирование это представление категориальных данных в числовой форме. Например, при бинарной классификации один из классов можно представить числом «0», а другой класс числом «1». При множественной классификации система кодирования несколько усложняется: создается несколько числовых полей по количеству классов в выборке данных, каждый класс кодируется проставлением числа «1» в соответствующем поле.

Многие алгоритмы машинного обучения работают только с численными данными — целыми и вещественными числами. Рассмотрим таблицу 1 с данными.

Таблица 1 – Начальные данные

Nº	ФИО	Возраст	Пол	Семейное положение	Стаж работы	Доход
1	Антонова Антонина	34	Ж	замужем	13	55000
2	Борисов Борис	26	M	не женат	3	45000
3	Владимиров Владимир	45	M	женат	28	150000
4	Григорьев Григорий	22	M	не женат	0	15000
5	Дмитриев Дмитрий	34	M	женат	12	40000
6	Ильин Илья	32	M	не женат	10	50000
7	Косанов Константин	54	M	женат	35	60000
8	Маринина Марина	29	Ж	не замужем	5	30000
9	Миронов Мирон	20	M	не женат	0	20000
10	Янова Яна	40	Ж	замужем	21	100000

Многие алгоритмы машинного обучения работают только с численными данными – целыми и вещественными числами.

Категориальные признаки.

В представленной таблице 1 присутствую категориальные признаки. Как перевести категориальные признаки в числовые? В нашем случае категориальный признак «пол» можно перевести к значениям «ж» - 0, «м» - 1. Такую замену можно применить и к семейному положению «в браке» - 1, «нет» - 0. В таблице 2 представлен результат.

Таблица 2 – Категориальные признаки представлены числовыми значениями

№	ФИО	Возраст	Пол, Ж-0 М-1	Семейное положение, в браке -1, нет -0	Стаж работы	Доход
1	Антонова Антонина	34	0	1	13	55000
2	Борисов Борис	26	1	0	3	45000
3	Владимиров Владимир	45	1	1	28	150000
4	Григорьев Григорий	22	1	0	0	15000
5	Дмитриев Дмитрий	34	1	1	12	40000
6	Ильин Илья	32	1	0	10	50000
7	Косанов Константин	54	1	1	35	60000
8	Маринина Марина	29	0	0	5	30000
9	Миронов Мирон	20	1	0	0	20000
10	Янова Яна	40	0	1	21	100000

Рассмотрим подходы к заполнению пропусков в данных. Например, в таблице 3 представлен пропуск значения возраст. Пропуски в данных могут встречаться при ошибках заполнения, например, пропустили дату, так и при переводе данных в цифровой формат (распознование рукописных анкет).

Таблица 3 – Пропуск значения

Nº	ФИО	Возраст
1	Антонова Антонина	34
2	Борисов Борис	26
3	Владимиров Владимир	45
4	Григорьев Григорий	22
5	Дмитриев Дмитрий	34
6	Ильин Илья	32
7	Косанов Константин	54
8	Маринина Марина	
9	Миронов Мирон	20
10	Янова Яна	40

Для заполнения пропуска можно использовать среднее значение признака или медиану. Медиа́на набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше. Использование медианы позволяет понизить влияние выброса в данных. Способ расчета медианы сравнительно прост: необходимо упорядочить выборку статистических данных по возрастанию и заполнить пропуск медианным значением, т.е. таким, которое либо находится ровно посередине выборки, либо между ближайшими к этой середине объектами выборки. В примере из таблицы 3, медианное значение составит 34.

При решении задач и построении модели необходимо понимать, что некоторые признаки могут снизить точность оценки из различии в диапазоне изменения, например, возраст макс =100, доход макс=500000. Для повышения точности модели рекомендуется переводить значения в заданный диапазон, например, от [0, 1]. Для нормировки данных воспользуемся формулой:

$$x_i' = \frac{x_i - \min(x_i)}{\max(x_i) - \min(x_i)},$$

где x_i — значение признака исследуемого объекта;

 $\min(x_i)$ – минимальное значение признака в массиве;

 $\max(x_i)$ – максимальное значение признака в массиве.

В таблице 4 приведен пример пересчета данных.

Таблица 4 – Перевод значений в диапазон [0, 1].

No	ФИО	Возраст	
1	Антонова Антонина	34	(34-20)/(54-20)=0,41
2	Борисов Борис	26	(26-20)/(54-20)=0,18
3	Владимиров Владимир	45	0,74
4	Григорьев Григорий	22	0,06
5	Дмитриев Дмитрий	34	0,41
6	Ильин Илья	32	0,35
7	Косанов Константин	54	1,00
8	Маринина Марина	29	0,26
9	Миронов Мирон	20	0,00
10	Янова Яна	40	0,59

Аналогичные действия выполним со столбцами «Стаж работы», «Доход». В таблице 5 представлен результат обработки данных и подготовки к применению алгоритмов машинного обучения. Категориальные признаки переведены в числовые и произведена нормировка данных.

Таблица 5 – Данные после обработки

№	ФИО	Возраст	Пол	Семейное положение, в браке -1, нет -0		Доход
1	Антонова Антонина	0,41	0	1	0,37	0,30
2	Борисов Борис	0,18	1	0	0,09	0,22
3	Владимиров Владимир	0,74	1	1	0,80	1,00
4	Григорьев Григорий	0,06	1	0	0,00	0,00
5	Дмитриев Дмитрий	0,41	1	1	0,34	0,19
6	Ильин Илья	0,35	1	0	0,29	0,26
7	Косанов Константин	1,00	1	1	1,00	0,33
8	Маринина Марина	0,26	0	0	0,14	0,11
9	Миронов Мирон	0,00	1	0	0,00	0,04

10 Янова Яна 0,59 0 1 0,60 0,63

Этап подготовки данных является важным для последующего применения алгоритмов машинного обучения, позволяет увеличить точность обработки данных.

Контрольные вопросы по теме:

- 1. Из каких этапов состоит процесс подготовки данных к анализу?
- 2. Сформулируйте определение понятия данных в машинном обучении?
- 3. Назовите ключевые требования к данным.
- 4. Приведите основные этапы решения задачи машинного обучения.
- 5. Почему необходимо производить обработку данных?
- 6. Какие операции можно применять при подготовке данных?
- 7. Охаректеризуйте ключевые операции, которые применяют при подготовке данных.
- 8. Что показывают категориальные признаки?
- 9. Можно ли перевести категориальные признаки к числовым значениям?
- 10. Приведите известные Вам методы нормировки данных. Для чего они нужны?