

DES (Data Encryption Standard)

Parveen 2021079 Shubham Sharma 2021099

Description

This Assignment Explores the Implementation of DES (*Data Encryption Standard*) and the Verification of Implementation by matching the Deciphered text with the Original Plain text.

- I. It is a symmetric key algorithm used for Encryption and Decryption.
- II. It uses multiple sub-key generation rounds & a Feistel cipher structure.
- III. For decryption, the process is essentially the reverse of encryption, using the subkeys in the **reverse** order.
- IV. Also, DES produces a strong Avalanche effect; that is, a change in one bit of input produces a change in many bits of output.
- V. Later on, it was considered insecure due to its small key size (56 bits).

Constraints & Details

Input block size: 64-bit blocks

Initial key length: 64-bit

Key length after parity drop: 56-bit

Sub key length: 48-bit

No. of rounds: 16

Output block size: 64 bit

Uses **FEISTEL** cipher like structure

Key Components

- I. Initial permutation
 - A. Rearranges the bits of the input plaintext.
 - B. Provides diffusion in the Encryption process.
- II. Expansion Permutation Box
 - A. Increases the amount of data to be processed by each S-box.
 - B. Provides more diffusion in the encryption process.

III. S-boxes (Substitution Boxes)

- A. Non-linear components that substitute groups of bits from the input.
- B. Introduce non-linearity and confusion into the algorithm.

IV. P-box (Permutation Box)

- A. Rearranges the bits after the S-box substitution.
- B. Further enhances the diffusion of the algorithm.

V. Parity Drop Box

- A. Drops parity bits from the key.
- B. Reduces the key size from 64 to 56 bits.

VI. Final Permutation Box:

- A. Reorders the bits in the final output ciphertext.
- B. Provides a reversible transformation for decryption.

Encryption & Decryption

Encryption

- I. STEP 1: Key Generation
 - A. Generate round keys by shifting halves of the key.

II. STEP 2: Encryption Rounds

- A. Apply initial permutation on plain text.
- B. Perform expansion permutation and XOR with the key.
- C. Substitute using S-boxes.
- D. Apply the permutation box and XOR with the left half.
- E. Repeat for 16 rounds.

III. STEP 3: Final Permutation

A. Apply the final permutation to obtain the Cipher text.

Decryption

I. STEP 1: Key Generation

A. Generate round keys by shifting halves of the key.

II. STEP 2: Decryption Rounds

- A. Apply initial permutation to Cipher Text.
- B. Perform expansion permutation and XOR with the keys in reverse order.
- C. Substitute using S-boxes.
- D. Apply the permutation box and XOR with the left half.
- E. Repeat for 16 rounds.

III. STEP 3: Final Permutation

A. Apply the final permutation to obtain the Plain Text.

The function used for Encryption & Decryption is the same.

Results

- I. Comparing the final decipher text with the original plain text verified that the code works as per the DES algorithm.
- II. Verifies the Output of Encryption Round 1 is SAME as the Output of Decryption

Round 15.

III. Verifies the Output of Encryption Round 14 is SAME as the Output of Decryption Round 2.

Key and Sample Input Output

Key: \$hk5w^N+

I. Input (Plain Text)

 $+C\$\#W^f5j?v3EQVHA\{qA\%WS(w.\&\&?4aUUrK.r3Yc*6vmmx,taU6wzRaFf[rFLfK5Q1Qe\$g_=?@dH1PPv$

Cipher Text

II. Input (Plain Text)

ReBtyD,!]PaHcn6Gy0_{./YA,6kLRCy?(&/*WrbdGUf,]SfVR&tjhTpap6N]HkrWgXU@?Y{2f? {0fqGQ

Cipher Text

III. Input (Plain Text)

 $64XvR]L.Q+yck:05N]8MH]XAtbEXvFJ+T2\&@N$kRJ0wCZBC?B{d+;Tnu,.+(uM6rY*)tuFnezQyRdD-G$

Cipher Text

IV. Input (Plain Text)

 $z=gV?[(wtX[SNjhB=(J{ZKYBg,!1}]dz@c2{qNvb1:V0]T87ZSpySa&.d/%6_nGxMPgaf;{_+(-C)b@i}$

Cipher Text

V. Input (Plain Text)

 $eqw+Cu=QBkA_+Eb4[T$iR9WM$cd2vzEB_mC8-*S+cn((KwkWLu]2v:GY03iUUFru]jp_9 :;y0{xFi}!$

Cipher Text