4.2 Teoría del muestreo aleatorio estratificado.

Sea Ω una población finita de N elementos y $\{\Omega_1, \Omega_2, \ldots, \Omega_m\}$ una partición de Ω . A cada $\Omega_i = \{y_{i1}, y_{i2}, \ldots, y_{iN_i}\}$ de tamaño N_i , con $i = 1, \ldots, m$, se le llama **estrato de la población**.

Luego, para cada i = 1, ..., m, sea S_i una muestra aleatoria obtenida del estrato Ω_i de tamaño n_i . Los estadísticos de la población son los siguientes:

$$t_i = \sum_{j=1}^{N_i} y_{ij}$$
 es el total de la población en el estrato Ω_i para cada $i=1,\ldots,m$

$$t = \sum_{i=1}^{m} t_i$$
 es el total de la población total

$$\overline{y_{Ui}} = \frac{t_i}{N_i} = \frac{1}{N_i} \sum_{i=1}^{N_i} y_{ij}$$
 es la media de la población en el estrato Ω_i para cada $i = 1, \dots, m$

$$\overline{y_U} = \frac{t}{N} = \frac{1}{N} \sum_{i=1}^{m} t_i = \frac{1}{N} \sum_{i=1}^{m} \sum_{j=1}^{N_i} y_{ij}$$
 es la media de la población total

$$S_i^2 = \frac{1}{N_i - 1} \sum_{i=1}^{N_i} (y_{ij} - \overline{y_{Ui}})^2$$
 es la varianza de la población en el estrato Ω_i para cada

$$i = 1, \ldots, m$$

Como en cada estrato se hace un muestreo aleatorio simple, se tiene que

1.
$$\overline{y_i} = \frac{1}{n_i} \sum_{j \in \mathcal{S}_i} y_{ij}$$
 es estimador insesgado de $\overline{y_{Ui}}$ para cada $i = 1, ..., m$.

2.
$$\widehat{t_i} = N_i \overline{y_i} = \frac{N_i}{n_i} \sum_{j \in S_i} y_{ij}$$
 es estimador insesgado de t_i para cada $i = 1, ..., m$.

3.
$$\widehat{S_i^2} = \frac{1}{n_i - 1} \sum_{j \in S_i} (y_{ij} - \overline{y_i})^2$$
 es estimador insesgado de S_i^2 para cada $i = 1, ..., m$.

Proposición.

1.
$$\hat{t} = \sum_{i=1}^{m} \hat{t}_i = \sum_{i=1}^{m} N_i \overline{y}_i$$
 es estimador insesgado de t .

2.
$$\overline{y} = \frac{\widehat{t}}{N} = \frac{1}{N} \sum_{i=1}^{m} t_i$$
 es estimador insesgado de $\overline{y_U}$.

3.
$$V(\overline{y}) = \sum_{i=1}^{m} \left(1 - \frac{n_i}{N_i}\right) \left(\frac{N_i}{N}\right)^2 \frac{\widehat{S_i^2}}{n_i}$$
.

Demostración.

1. Se tiene que

$$E\left[\widehat{t}\right] = E\left[\sum_{i=1}^{m} \widehat{t}_{i}\right] = \sum_{i=1}^{m} E\left[\widehat{t}_{i}\right] = \sum_{i=1}^{m} t_{i} = t$$

Por lo tanto, \hat{t} es un estimador insesgado de t.

2. Por el inciso anterior, se obtiene que

$$\mathrm{E}\left[\overline{y}\right] = \mathrm{E}\left[\frac{\widehat{t}}{N}\right] = \frac{1}{N}\mathrm{E}\left[\widehat{t}\right] = \frac{t}{N} = \overline{y_U}$$

Por lo tanto, \overline{y} es un estimador insesgado de $\overline{y_U}$.

3. Se da que

$$V(\overline{y}) = V\left(\frac{1}{N}\sum_{i=1}^{m} t_i\right)$$

$$= \frac{1}{N^2}\sum_{i=1}^{m} V(t_i)$$

$$= \frac{1}{N^2}\sum_{i=1}^{m} N_i^2 \left(1 - \frac{n_i}{N_i}\right) \frac{\widehat{S}_i^2}{n_i}$$

$$= \sum_{i=1}^{m} \left(1 - \frac{n_i}{N_i}\right) \left(\frac{N_i}{N}\right)^2 \frac{\widehat{S}_i^2}{n_i}$$

Si los tamaños de las muestras dentro de los estratos son grandes o la cantidad de estratos es grande, entonces por el teorema del límite central, se tiene que

$$\frac{\overline{y}-\overline{y_U}}{\sqrt{V\left(\overline{y}\right)}}\sim N(0,1)$$

De esta manera, un intervalo de confianza de $(1-\alpha)100$ % para $\overline{y_U}$ se puede calcular como:

$$\begin{split} -z_{\frac{\alpha}{2}} & \leq \frac{\overline{y} - \overline{y_U}}{\sqrt{V\left(\overline{y}\right)}} \leq z_{\frac{\alpha}{2}} \\ -z_{\frac{\alpha}{2}} \sqrt{V\left(\overline{y}\right)} & \leq \overline{y} - \overline{y_U} \leq z_{\frac{\alpha}{2}} \sqrt{V\left(\overline{y}\right)} \\ \overline{y} - z_{\frac{\alpha}{2}} \sqrt{V\left(\overline{y}\right)} & \leq \overline{y_U} \leq \overline{y} + z_{\frac{\alpha}{2}} \sqrt{V\left(\overline{y}\right)} \end{split}$$

Así, $\left(\overline{y} - z_{\frac{\alpha}{2}}\sqrt{V\left(\overline{y}\right)}, \overline{y} + z_{\frac{\alpha}{2}}\sqrt{V\left(\overline{y}\right)}\right)$ es un intervalo de confianza de $(1 - \alpha)100 \%$ para $\overline{y_U}$.

Ejemplo.

En enero y a principios de febrero de 1962, se realizaron pruebas de campo para estimar el tamaño de la manada Nelchina del caribú de Alaska. Dichas pruebas indicaron a los investigadores que algunas unidades de muestreo propuestas, como "igual tiempo de vuelo", eran difíciles de establecer en la práctica y que una unidad de muestreo conocida como "igual área" de 4 millas cuadradas serviría para este estudio. Los biólogos emplearon las estimaciones preliminares de las densidades del

caribú para dividir el área de interés en 6 estratos; cada estrato se dividía, entonces, en una retícula de unidades de muestreo de 4 millas cuadradas. Se obtuvieron los siguientes datos y estimaciones:

Estrato	N_i	n_i	$\overline{y_i}$	$\widehat{s_i^2}$	$\widehat{t_i} = N_i \overline{y_i}$	$V(t_i) = N_i^2 \left(1 - \frac{n_i}{N_i} \right) \frac{\widehat{S}_i^2}{n_i}$	
A	400	98	24.1	5,575	9,640	6,782,040.82	
В	30	10	25.6	4,064	768	243,840	
С	61	37	267.6	347,556	16,324	13,751,945.51	
D	18	6	179	22,798	3,222	820,728	
Е	70	39	293.7	123,578	20,559	6,876,006.67	
F	120	21	33.2	9,795	3,984	5,541,171.43	
Total	699	211			54,497	34,105,732.43	

Por lo tanto, la población estimada de caribús es de 54,497 con una desviación estándar de $\sqrt{34,105,732.43} = 5840.01$. Además, un intervalo de confianza del 95 % para el número total de caribús es

$$54,497 \pm 1,96(5840.01) = 54,497 \pm 11,446.42$$

es decir, (43050,58, 65943,42).

Muestreo aleatorio estratificado para proporciones.

Si se trabaja con una proporción, entonces $\widehat{p_i} = \overline{y_i}$ es un estimador insesgado para $p_i = \overline{y_{Ui}}$, para cada i = 1, ..., m. Además,

$$\begin{split} \widehat{S_i^2} &= \frac{n_i}{n_i - 1} \, \widehat{p_i} \, \left(1 - \widehat{p_i} \right) \quad \text{para cada } i = 1, \dots, m, \\ \widehat{p} &= \overline{y} = \frac{\widehat{t}}{N} = \frac{1}{N} \sum_{i=1}^m \widehat{t_i} = \frac{1}{N} \sum_{i=1}^m N_i \, \widehat{p_i} \quad \text{es estimador insesgado de } p = \overline{y_U}, \\ V\left(\widehat{p}\right) &= \sum_{i=1}^m \left(1 - \frac{n_i}{N_i} \right) \left(\frac{N_i}{N} \right)^2 \frac{n_i}{n_i - 1} \, \widehat{p_i} \, \left(1 - \widehat{p_i} \right)}{n_i} \\ &= \sum_{i=1}^m \left(1 - \frac{n_i}{N_i} \right) \left(\frac{N_i}{N} \right)^2 \frac{\widehat{p_i} \, \left(1 - \widehat{p_i} \right)}{n_i - 1} \\ \widehat{t} &= \sum_{i=1}^m N_i \, \widehat{p_i} = N \, \widehat{p} \quad \text{y} \\ V\left(\widehat{t}\right) &= N^2 V\left(\widehat{p}\right) = N^2 \sum_{i=1}^m \left(1 - \frac{n_i}{N_i} \right) \left(\frac{N_i}{N} \right)^2 \frac{\widehat{p_i} \, \left(1 - \widehat{p_i} \right)}{n_i - 1} = \sum_{i=1}^m N_i^2 \left(1 - \frac{n_i}{N_i} \right) \frac{\widehat{p_i} \, \left(1 - \widehat{p_i} \right)}{n_i - 1} \end{split}$$

Ejemplo.

El American Council of Learned Societies (ACLS) usó una muestra aleatoria estratificada de algunas sociedades ACLS en siete disciplinas, para estudiar los patrones de publicación y el uso de computadoras y bibliotecas entre los estudiosos. Los datos son los siguientes:

Disciplina	Membresía (N_i)	Respuestas válidas (n_i)	Mujeres (%)
Literatura	9100	636	38
Clásicos	1950	451	27
Filosofía	5500	481	18
Historia	10850	611	19
Linguística	2100	493	36
Ciencias políticas	5500	575	13
Sociología	9000	588	26
Totales	44000	5835	

De esta manera,

$$\widehat{p} = \frac{1}{N} \sum_{i=1}^{7} N_i \, \widehat{p_i} = 0,2465 \quad y$$

$$V\left(\widehat{t}\right) = \sum_{i=1}^{m} \left(1 - \frac{n_i}{N_i}\right) \left(\frac{N_i}{44000}\right)^2 \frac{\widehat{p_i} \, \left(1 - \widehat{p_i}\right)}{n_i - 1} = 0,00005041$$

Por lo tanto, el número total estimado de mujeres que pertenecen a las sociedades es $44000 \cdot 0.2465 = 10847$, con una desviación estándar de $44000 \cdot \sqrt{0,00005041} = 312$.