Crypto Lab 12월 21일 세미나 발표 최승주

목차

• 연구 주제 선정

• 정보 보호 학회 논문

Cain & Abel

연구 주제 선정

주제 선정

석사 과정 구체적 연구 주제의 방향을 잡기 위함

- 교수님과 상담
- 정보 보호 학회 논문 Dbpia
- 간단한 해킹 맛보기 Cain & Abel

정보 보호 학회 논문

정보 보호 학회 DBpia

정보 보호 학회 논문

- 블록체인 기반 IoT 디바이스 인증 스킴
- 공공기관 프린터 관리 시스템의 취약점 분석

• 개인정보 노출에 대한 인터넷 사용자의 태도에 관한 연구

• 블록체인 기반 IoT 디바이스 인증 스킴 제안

• IoT 디바이스에 단순 해시 연산만을 요구 저성능인 IoT 디바이스에서도 동작 가능

- 고성능 OS 칩셋을 장착한 경우 암호 프로토콜 지원
- 단순 기능만 존재하는 저성능 디바이스 암호화 프로토콜 지원 X
 인증서 지원 X

- 램포트 서명 방식
- 블록체인 방식

• 기존 IoT 인증 프로토콜

• 램포트 키 생성

난수 256개

256	256	256	•••	•••	•••	256	256	256	256
256	256	256	256	•••	•••	•••	256	256	256

단위: bit

256 * 256 * 2 = 16kb

• 램포트 공개 키 생성

Private Key

256	256	256	•••	•••	•••	256	256	256	256
256	256	256	256	•••	•••	•••	256	256	256

Public Key

256	256	256	•••	•••	•••	256	256	256	256
256	256	256	256	•••	•••	•••	256	256	256

단위: bit

• 램포트 메시지 서명

Private Key Index

0	1	2	3	•••	•••	•••			256
256	256	256	•••	•••	•••	256	256	256	256
256	256	256	256	•••	•••	•••	256	256	256
256	256	256	•••	•••	•••	•••	•••	•••	256

• 램포트 메시지 전송

• 램포트 메시지 확인

선택된 값과 해시값 비교 ==

== Alice 확인

Pι	riv	ate	Key
			,

256 256 256				•••	256
--------------------	--	--	--	-----	-----

• 램포트 방식

개인키의 절반이 공개됨

한번 사용하면 안전을 위해 삭제 후 새로 생성

• 블록체인 방식

• 블록체인 방식

<Signature> <PublicKey>

OP_DUP OP_HASH160 < PublicKey160 > OP_EQUALVERIFY OP_CHECKSIG

- 기존 IoT 프로토콜
- 1. ID/Password 기반 인증
- 2. MAC 주소 기반 인증
- 3. 암호 프로토콜 기반 인증
- 4. 인증서 기반 인증
- 5. IBE를 이용한 인증

- 기존 IoT 프로토콜
- 1. ID/Password 기반 인증
- 2. MAC 주소 기반 인증
- 3. 암호 프로토콜 기반 인증
- 4. 인증서 기반 인증
- 5. IBE를 이용한 인증

- 서버 부하, 기기 추가시 사람 개입
- 새로운 MAC Address 양식 규정 필요, 위장 가능
- 암호 기술에 의존: 취약점 발견시 문제
- 기기 인증 알고리즘: 높은 처리량 필요
- ID 위장 공격에 취약

• 제안 스킴 활용 기술

램포트 해시 체인 및 블록 체인 기술 활용

• 제안 스킴

• 제안 스킴

- Aggregator 그룹키 분배
- 램포트 해시 체인 사용 그룹키 생성
- 새 디바이스 그룹키 할당
- 몇 번째 디바이스의 키인지 검증
- 해시 체인 다음 키 예측하기 힘듬

• 제안 스킴

- 제안 스킴
- 최상위 Aggregator가 공개키 검증, 해시체인 생성 등 연산 처리 디바이스들 연산 부담 감소

- 논문 후기
- 램포트 알고리즘 및 블록 체인 기술 활용
- 저성능인 IoT를 위한 인증 방법
- 생각
- Aggregator가 취약점이 될 수는 있는지

- 학교 도서관 등 공공 기관의 프린트 관리 서비스
- 프린트 관리 서비스의 취약성 분석

- 보안 통신을 사용하지 않아 도청에 취약
- 정보 인증 제공되지 않아 데이터를 쉽게 변조 가능
- 프린터의 스풀링 파일 정보 쉽게 획득 가능

- 공격 시나리오
- 1. 네트워크에 대한 공격
- 2. 메타 데이터에 대한 공격 시나리오

1. 네트워크에 대한 공격

2. 메타 데이터에 대한 공격 시나리오네트워크 접근이 불가능 - PC에 물리적인 접근스풀 데이터에 직접 접근 – 대부분 기본값이 정해져 있음

The spool file stored in the spool path C:\Windows\System32\spool\PRINTERS

• 공격 결과

```
POST
                                 HTTP/1.1
Host:
Connection: keep-alive
Content-Length: 51
Cache-Control: max-age-0
Origin:
Upgrade-Insecure-Requests: 1
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/61.0.3163.100 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp, image/apng, */*; q=0.8
Referer:
Accept-Encoding: gzip, detlate
Accept-Language: ko-KR,ko;q=0.8,en-US;q=0.6,en;q=0.4
Cookie: JSESSIONID=B5A3BCD69A129712C0FA7FDFBA8946BC
svc=LOGIN&loginId=fafa9121&passwd=
                                          3x=4&y=12HTTP/1.1 200 OK
```


- 개선 방안
 - HTTPS을 통한 보안 통신
 - 인증서 설치
 - 인증서 관리는 하드웨어 보안 모듈 이용

- 신고 결과
 - 개선 되지 않음
 - 개선을 해야 할시 비용 발생
 - KISA(한국 인터넷 진흥원)에 신고 하였으나

"실제 서비스 중인 웹사이트나 시스템에 특정 데이터를 전송하여 영향을 줄 우려가 있는 서비스의 취약점은 평가 및 포상 대상에서 제외된다."

공공기관 프린터 관리 시스템의 취약점 분석

- 논문 후기
- 네트워크 스니핑 구조
- 공공 프린터 관리 서비스의 취약점
- 취약점을 밝히는 것을 꺼려하는 기업 문화
- 보안 불감증

• 기업들이 소비자의 개인정보를 수집하는데 많은 노력

• 불법으로 소비자 개인정보를 거래하는 사건도 발생

• 정보 수집을 위한 인센티브를 제공하고 있으나 효과 미비

CFIP – Concern for Information Privacy
 개인정보 노출에 대한 염려 측정 모델

결론

- 개인정보가 다른 용도로 기업에서 이용되는 것에 제일 민감
 정보 수집 시에 목적 및 이용 범위에 대한 구체적 설명 필요
- 정보 제공에 대한 경제적 보상
 경제적 보상만으로는 정보제공 의도를 높이는 데는 한계가 있음

결론

• CFIP 모델을 제외한 다른 요인들 고려해야 함 정보를 제공하는 기업에 대한 신뢰도 등

- 논문 후기
- 보안은 단순 기술만의 문제가 아니다
- 법, 규제 등과 밀접한 분야
- 사람이라는 변수

- ARP 스푸핑
- DNS 스푸핑

ARP 스푸핑

• 근거리 통신망에서 주소 결정 프로토콜(ARP) 메시지 이용 상대방의 데이터 패킷을 중간에서 가로채는 중간자 공격 기법

실험 환경

연결

• 실험 결과

DNS 스푸핑

• 도메인 네임 시스템에서 전달되는 IP 주소 변조 사용자가 의도하지 않은 주소로 유도

DNS 스푸핑

DNS 스푸핑

계획

- 정보 보호 학회 논문
- WireShark
- 네트워크
- 암호학

감사합니다