18, Locust Ave, Stonybrook New York

Shrinath Deshpande

http://github.io.deshpandeshrinath/

Education

Stony Brook University

Stony Brook, NY

Mobile: +1-631-633-1851

Email: deshpandeshrinath@gmail.com

Aug. 2015 - Present

- Ph.D. (Major: Mechanical, Minor: Computer Science) • Relevent Coursework: Computer Vision, Machine Learning, Analysis of Algorithms, Computational Geometry, Advanced
- Control Systems, Robotics, Geometric Modelling for CAD, Product Design Optimization
- Developing a framework for data-driven mechanism design, under guidance of Dr. Purwar; funded by \$450K NSF grant.

Experience

Stony Brook University

Stony Brook, NY

Research Assistant, Teaching Assistant

May 2016 - Present, Aug 2015 - May 2016

Machine Learning

- Achieved 45:1 loss-less data compression for mechanism trajectory database; used autoencoder nets for dimensionality reduction.
- Resulted in quick and efficient motion queries for nearest neighbor in compact feature space.
- Autoencoders trained in greedy layer-wise fashion; Tensorflow, GCP based implementation; Publication in progress.

Optimization

- Developed an Lagrange Optimization routine for four-bar linkage synthesis; Reduces constrained optimization into polynomial system. Solved the system by gröebner basis method; implemented using GIAC npm package on node.js server.
- Led to award winning publication for solving practical synthesis problems (doi: 10.1115/1.4037801)

MotionGen: Web, iOs and Android App for Linkage Synthesis

- Developed smart-synthesis, motion interpolation functions for the cross platform app based on MVC architecture; url: http://cadcam.eng.sunysb.edu/. Used Apache Cordova framework for iOs and Android implementations.
- Implemented multi-core computations for synthesis using node package cluster.

Teaching Assistant - MEC101 (Mechanical Design Innovation), MEC 262 Engineering Dynamics

- Involved in creating assignment, exams and conducting recitation sessions for 200+ students in each course.
- Developed modular robotic kits for MEC101 students; Conducted Hands-On tutorials on Arduino programming.

Skills

- Languages: Proficient in Python, Javascript, MATLAB. Familiar with C++, HTML, CSS
- Tools & Technologies: Tensorflow, OpenCV, Git, Numpy, Scikit-learn, Unix/Linux, Boost, STL, Apache Cordova

Relevant Projects

Visual Odometry with Deep Learning

CSE527 Computer Vision, Prof. Roy Shilkrot Oct 2017 - Dec 2017

Python, Tensorflow, OpenCV

- Built deep Recurrent Convolutional Neural Network for pose estimation of a car; CNN was derived from pretrained FlowNet2.0
- Trained and tested on KITTI visual odometry dataset (grayscale); Supported by Human Interaction Lab, Stony Brook.

Central Trajectory Problem

CSE555 Computational Geometry, Prof. Joseph Mitchell

March 2017 - May 2017

CGAL, OpenGL, Boost, C++

- Developed an algorithm to find valid representative trajectory among n time stamped trajectories; works in d dimensional space.
- Algorithm builds a weighted DAG on input; designed heuristics for assigning weights. Output is dijkstra's shortest path on DAG.

Optimal Control of a Drifting Car

MEC560 Advanced Control Systems, Prof. Vivek Yadav

MATLAB, GPOPS-IIOct 2016 - Dec 2016 • Designed Ext. Kalman Filter for observer; Modeled governing dynamics; Used empirical tire friction model for drift simulations.

- Computed shortest path using Dynamic Programming. Obtained Optimal Control via Direct Collocation; Implemented in MATLAB using optimal control solver GPOPS II.
- Used high gain PID controller to follow optimal control. Results match with empirical drifting techiques used by race drivers.

Motion Planning of Baxter Arm MATLAB

MEC529 Robotics, Prof. N. Chakraborty March 2016 - May 2016

• Computed smooth B-Spline motion for pushing. Computed Jacobian matrix; Applied approximate Inverse Position Kinematics

Obtained joint angles and rates for the task. Performed simulations to validate the results.

Selected Publications

- Deshpande S, Purwar A. A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem. ASME. J. Mechanisms Robotics. 2017;9(6):061005-061005-9. doi:10.1115/1.4037801
- Purwar, A., Deshpande, S., Ge, Q. J. (2016, August). MotionGen: An iOS and Android App for Planar Four-Bar Motion Generation, ASME 2016 IDETC.
- Deshpande, Shrinath, et al. "Wall-climbing robot with mechanically synchronized gait." Industrial Instrumentation and Control (ICIC), 2015 International Conference on, IEEE, 2015.

Awards

A.T. Yang Award in Theoretical Kinematics

Aug 2017

• Awarded \$1000 for the Best Paper at ASME Mechanisms and Robotics Conference, Cleveland, OH, August, 2017