Graphs of Linear Inequalities

ESSENTIALS

To graph a linear inequality:

- 1. Graph the boundary line using a dashed line for \leq or \geq or a solid line for \leq or \geq .
- 2. Shade the appropriate half-plane. Use a test point to determine the appropriate half-plane or isolate y and shade below the boundary line for y < mx + b or $y \le mx + b$ or above it for y > mx + b or $y \ge mx + b$.

Example

• Graph: y > 2x + 1. We graph y = 2x + 1 using a dashed line Then we shade above the line.

In
$$y > 2x + 19$$
 Pat $x = 09$ $y = 5$
 $5 > 2(0) + 1 \Rightarrow 5 > 1 \Rightarrow True$

Example: Determine whether (0,-4) is a solution of 2x - 3y > 6

$$2(0)-3(-4)>6 \Rightarrow 0+12>6 \Rightarrow 12>6 \Rightarrow 17400$$

 $\rightarrow Yes_9 (0_9-4) 1S a solution of $2x-3y>6$.$

Example: Graph
$$y < -3x + 1$$
 $2 < -3 \times 2 + 1 \Rightarrow 2 < -5 \Rightarrow \text{False}$

$$\chi = 0 \Rightarrow y = 1 \quad (0, 1)$$

 $\chi = 2 \Rightarrow y = -3x^2 + 1 = -5$
 $(2, 9, -5)$

Example: Graph
$$2x + 3y \ge 6$$

$$2x+3y=6$$

 $2=0 \Rightarrow 3y=6 \Rightarrow y=2 \Rightarrow (0,2)$
 $y=0 \Rightarrow 2x=6 \Rightarrow x=3 \Rightarrow (3,0)$

Example: Graph $x \ge 2$

2=2

Example: Graph y < -2

4=-2

Systems of Linear Inequalities

ESSENTIALS

To graph a **system of linear inequalities**, graph the individual inequalities and then find the intersection of the graphs.

Example

• Graph the system: 2x - y < 4,

$$y > -2$$
.

We graph the individual inequalities, indicating which half-planes contain solutions by arrows near the ends of the boundary lines.

We shade the region of intersection of the half-planes that are solutions of the individual inequalities. This is the solution set of the system.

Example: Graph the system. Find the coordinates of any vertices formed

D>6 => False

Practice Exercises

Readiness Check

Complete the following sentences.

- 1. When graphing the boundary line for the graph of a linear inequality, if the symbol is \geq or \leq we draw the line $\frac{}{\text{dashed / solid}}$.
- 2. When graphing an inequality in the form of y < mx + b, we shade above / below boundary line.
- 3. A linear inequality in two variables is graphed on a plane / the number line.
- 4. The solution set of a system of inequalities is the ______ of the solution sets of the individual inequalities.

Graphs of Linear Inequalities

Determine whether each ordered pair is a solution of the given inequality.

5.
$$(1,-2)$$
; $-4x+y<-5$

6.
$$(-5,0)$$
; $3y-4x \le 0$

Graph.

7.
$$y \le \frac{3}{2}x$$

8.
$$2x - 5y > 10$$

Systems of Linear Inequalities

Graph.

9.
$$-2 \le y < 4$$

10.
$$y < x + 3$$
, $x - 2y \le 4$

11. Graph the system of linear inequalities. Find the coordinates of any vertices formed.

$$y \ge -2x + 1,$$

$$y - x \le -3,$$

$$x \le 3$$

