Finetune, Optimize and Search: AutoML for Vision Datasets

Shanmugapriya Kanagasabapathi, Tanya Dora, Aaryan Bhandari automl_24_exam

Modality 2/2

Week 1

Week 2

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Literature

Bonus

Resources Used

For development

- 1 Nvidia GTX

- 4 Intel Core

i5-7300HQ

and AutoML:

1050Ti

Week 3

Goal

Design a generic AutoML pipeline which yields an architecture that performs classification on different image datasets.

Methods Used

- **Bayesian Optimization**
- Hyperparameter Optimization
- Differentiable Architecture Search

80% Train* Split

20% Valid Split

- Finetuning of ResNet34
- **Data Augmentation**

Finetuned Model

fc1000

Model Checkpointing

Our Approach

Bayesian Optimization with Gaussian Processes:

Learning Rate: 1e-6 to 1e-1 Momentum: 0.1 to 0.9 Weight Decay: 0 to 1e-2 Optimizer: [adam, sgd, rmsprop] Weights fixed until layer: [2, 3, 4] Number of calls: 30

Each call evaluates model after 1 epoch

Speedup of downstream tasks by building a new dataset based on avg pool output

Feature Dataset

Bayesian Optimization with Gaussian Processes:

Train Split

Test Split

Learning Rate: 1e-6 to 1e-2 Momentum: 0.1 to 0.9 Weight Decay: 1e-6 to 1e-2 Optimizer: [adam, sgd, rmsprop] Number of calls: 30 Each call evaluates model after 8 epochs

Final Model

Finetuned Model Trained DARTS Classifier

fc1000 gets replaced by an MLP found by DARTS where mixed Hidden size: [32, 64, 128, 256]

3x3 conv,256,/2

3x3 conv,512,/2

3x3 conv,512

DARTS Classifier

operation includes blocks with: Activation: [ReLU, Tanh, Sigmoid] Layer number: [2, 3, 4]

CPUs

 Total compute estimate: 180 GPU-h

Workforce:

- 3 full weeks on average (120 hours)

Empirical Results

Dataset	Our Method	Baseline
Emotions	F1-score: 0.63 Precision: 0.64 Accuracy: 0.66	N/A N/A 0.40
Fashion	F1-score: 0.93 Precision: 0.93 Accuracy: 0.93	N/A N/A 0.88
Flowers	F1-score: 0.93 Precision: 0.94 Accuracy: 0.94	N/A N/A 0.55
Skin Cancer	F1-score: 0.77 Precision: 0.79 Accuracy: 0.87	N/A N/A 0.71

Best parameters of Bayesian Optimization for finetuning on skin cancer dataset:

Learning Rate: 1e-4 Momentum: 0.31 Weight Decay: 0 Optimizer: adam Weights fixed until layer: 2

Best parameters of Bayesian Optimization for DARTS on skin cancer dataset:

Learning Rate: 1e-3 Momentum: 0.2 Weight Decay: 1e-3 Optimizer: sgd

Fig. 1: Validation loss vs. training loss in the Bayesian Optimization for finetuning

Best DARTS architecture:

- (0): Linear(in features=512, out features=32, bias=True)
- (1): ReLU()
- (2): Linear(in features=32, out features=7, bias=True)

Fig. 2: Alpha distribution after training DARTS

Fig. 3: Accuracies achieved using each of the DARTS operations

Number of gueries

for test score

generation: 1

Additional References:

[1] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.

[2] Liu, H., Simonyan, K., & Yang, Y. (2018). DARTS: Differentiable Architecture Search. ArXiv, abs/1806.09055.

[3] Brochu, E., Cora, V.M., & Freitas, N.D. (2010). A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. ArXiv, abs/1012.2599. [4] Zhang, H., Mo, J., Jiang, H., Li, Z., Hu, W., Zhang, C., Wang, Y., Wang, X., Liu, C., Zhao, B., Zhang, K. (2020). Deep Learning Model for the Automated Detection and Histopathological Prediction of Meningioma. Neuroinformatics, 19, 393 - 402.