João Miguel Louro Neto - 64787 Instituto Superior Técnico - Análise e Síntese de Algoritmos - Projecto 2 10 de Maio de 2013

EMPREGOS

Descrição do Problema

Dado um conjunto de estudantes, um conjunto de empregos, e um conjunto de candidaturas de estudantes a empregos (cada estudante pode candidatar-se a mais do que um emprego, e cada emprego pode ter mais do que um estudante a candidatar-se), indicar qual o número máximo de estudantes com emprego atribuído, considerando que qualquer estudante não fica com mais de um emprego atribuído, e qualquer emprego não poderá ser atribuído a mais de um estudante.

Abordagem ao Problema

Comecei por tentar uma abordagem **Greedy** ao problema - a qual falhou por completo. Em seguida, tentei formular uma solução para o problema através de **programação dinâmica**, também sem sucesso. Não fiquei convencido de inexistência de solução para o problema através de uma formulação de tal tipo, mas não consegui encontrá-la. Formular o problema através de um **problema de satisfação de restrições** [4] também era trivial, mas a procura apenas era relativamente eficiente para atribuições completas. A resolução do problema através de **programação linear** parecia trivial - o cálculo eficiente da solução nem tanto.

Foi então que me apercebi que este problema poderia ser resolvido como um problema de **fluxos**, sendo estudantes e empregos vértices, estando os estudantes ligados aos empregos aos quais se candidataram por um arco, criando ainda dois vértices adicionais - um vértice fonte S, com um arco para todos os estudantes, e um vértice destino T, para o qual todos os empregos têm um arco. Todos os arcos com custo unitário. A solução passaria então por achar o fluxo máximo (em que fluxos são inteiros) entre S e T. O valor do fluxo corresponderia ao número máximo de estudantes com emprego atribuído. A correcção desta formulação deve-se ao facto de cada estudante apenas poder enviar fluxo para um único trabalho, e cada trabalho apenas poder receber fluxo de um estudante, respeitando assim as restrições impostas na descrição do problema.

Com isto, implementei o algoritmo de **Relabel-to-Front** (em C++). Esta provou-se ineficiente - para grafos esparsos demorava demasiado tempo a completar. Pensei em implementar o algoritmo de **Edmonds-Karp**, mas não o fiz.

Entretanto ocorreu-me que este grafo era **bipartido** - existem métodos mais eficientes para calcular o **emparelhamento máximo[3]** em grafos deste tipo, nomeadamente o **algoritmo de Hopcroft-Karp[1]**, que tem a melhor complexidade no pior-caso para **grafos densos**. A implementação em C é bastante simples, dado que apenas necessitei de um **FIFO**, e provou estar bastante optimizada, pelo que não teve qualquer dificuldade em passar aos testes.

Solução

A solução final passou pela construção de um grafo não dirigido, bipartido através do input recebido. Após obter o número de estudantes (S) e o número de empregos (J), criavam-se S+J+I vértices (sendo este último o vértice auxiliar NIL para o algoritmo de Hopcroft-Karp). Para cada candidatura A[i,j] de cada estudante S[i], criava-se um arco não dirigido de S[i] para J[A[i,ji]] - arco de S[i] para J[A[i,ji]], e arco de J[A[i,ji]] para S[i].

Após construção do grafo, este era passado directamente ao **algoritmo de Hopcroft-Karp**. Deste, o output que nos interessava era apenas o **número de emparelhamentos** após execução do algoritmo.

Apesar de experimentalmente estar provado que o algoritmo não é tão rápido na prática como é em teoria[2], este continua a ter o melhor desempenho conhecido para o pior caso (grafo denso). Para grafos esparsos, este corre em tempo quase linear[2]. Também se prova experimentalmente que na prática é mais lento que técnicas push-relabel, e técnicas simples largura-primeiro e profundidade-primeiro[2].

Este algoritmo tem uma vantagem - a facilidade de implementação. Apenas necessita de um tipo abstracto de dados FIFO, e o resto do algoritmo pode ser implementado em 70 linhas de código ou menos, traduzindo directamente do pseudocódigo.

Implementação

A solução foi implementada em ANSI C com relativa facilidade (excepto problemas na depuração de problemas associados ao algoritmo de Hopcroft-Karp).

O tipo básico de dados utilizado 'uint' foi definido como sendo 'long unsigned int'. Segue-se uma breve listagem das estruturas de dados relevantes utilizadas - o que representam e que operações são possíveis sobre as mesmas.

Para efeitos de cálculo da complexidade computacional, assume-se que **operações** de **reserva e libertação de memória** decorrem em **tempo constante**.

- Fila (FIFO) - A utilização de uma fila serve para suportar todas as operações relacionadas em manter uma fila durante a execução do algoritmo de Hopcroft-Karp em tempo constante.

Estrutura fifo_item_t(int value, fifo_item next) - representa um ítem na fila. O tipo "fifo_item" é um ponteiro para uma estrutura do tipo "fifo_item_t".

- Função fifo_item_create(uint value): fifo_item aloca memória e inicializa uma estrutura do tipo fifo_item com o valor fornecido O(I)
- Função fifo_item_destroy(fifo_item item): uint destrói e liberta a memória utilizada pelo item, e devolve o valor do ítem destruído O(1)

Estrutura fifo_t(uint size, fifo_item first, fifo_item last) - representa uma estrutura do tipo fila. 'first' é um ponteiro para o ítem à frente da pilha, 'last' é um ponteiro para o

ítem no fim da fila, e 'size' indica a quantidade de elementos presentes na fila. O tipo "fifo" é um ponteiro para uma estrutura do tipo "fifo_t".

- Função fifo_create(): stack Aloca espaço e inicializa uma pilha sem ítens O(I)
- Função fifo_destroy(fifo f): void Destrói a pilha e todos os seus N elementos, libertando a memória utilizada por estes O(N)
- Função fifo_queue(fifo f, uint valor): void Insere 'valor' no fim da fila. Utiliza a função fifo_item_create(uint value) de forma a alocar espaço e inicializar uma nova estrutura fifo_item O(I)
- Função fifo_dequeue(): uint Elimina o ítem à frente da fila e devolve o seu valor. Utiliza a função fifo_item_destroy(fifo_item item) para libertar o espaço utilizado pelo fifo_item e devolver o seu valor. O(1)

- Caso de Teste (Testcase)

Estrutura testcase_t(uint num_students, uint num_jobs, uint num_vertices, fifo[] adjacencies, uint[] pair_gl, uint[] pair_g2, uint[] dist, uint matching) - representa um caso de teste, a ser alimentado ao algoritmo de Hopcroft-Karp. 'num_students' representa o número de estudantes, 'num_jobs' representa o número de empregos e 'num_vertices' representa o número de vértices no grafo (num_students + num_jobs + vértice NIL). 'adjacencies' é um vector de filas - a fila no índice i é uma lista dos vértices adjacentes ao vértice de índice i. pair_gl, pair_g2 e dist são vectores. as posições i em pair_gl e pair_g2 representam os vértices emparelhados com o vértice i (no caso do valor ser NIL, indica que não está emparelhado). 'matching' indica o número de emparelhamentos. O tipo 'testcase' é um ponteiro para uma estrutura do tipo 'testcase_t'.

- Função testcase_create(uint num_students, uint num_jobs): testcase Aloca espaço e inicializa uma estrutura testcase capaz de armazenar informação de todos os S estudantes e J empregos isto inclui o espaço necessário para os vectores adjacencies (mais inicialização de todas as filas), pair_g1, pair_g2 e dist. As listas de adjacências são inicializadas estando vazias. O(S+I)
- Função testcase_destroy(testcase t): void Destrói a estrutura testcase, libertando o espaço ocupado por esta e todas as filas em 'adjacencies' O(S*I)
- Função testcase_add_application(fifo f, uint student, uint job): void Insere um arco não dirigido ao caso de teste um arco de student até job, e outro arco de job até student. Os arcos são inseridos no fim de cada uma das filas de adjacências de cada um dos vértices. O(I)

Análise da Complexidade da Solução Implementada

Seja S o número de estudantes, J o número de empregos, e A o número de candidaturas (representadas como arcos entre vértices S e J). A é O(S*J) para grafos densos. Em termos de representação em grafo, seja V o número de vértices O(S+J) e E o número de arcos O(A).

A leitura e inicialização de um caso de teste tem complexidade O(S+E). Depois da inicialização do caso de teste, este é fornecido directamente ao algoritmo de Hopcroft-

Karp. Este corre em $O(E\sqrt{(V)})$. Após cálculo do resultado, liberta-se toda a memória utilizada pelo caso de teste em O(A).

Como tal, pode concluir-se que o programa corre em $O(S+E\sqrt(V))$. No caso de um grafo denso tem-se $E=V^2$, pelo que no pior caso o programa apresenta uma complexidade de $O(V^{2.5})$.

Avaliação experimental

Para confirmar a complexidade da solução, indicada na secção anterior, foram criados três tipos de testes, aos quais se irá variar o tamanho do input. N representa o número de estudantes, e também o número de empregos. O eixo vertical representa o tempo em segundos, o eixo horizontal representa o valor de N (em milhares).

Teste I	Teste 2	Teste 3
Estudante i candidata-se ao emprego i	Todos os estudantes se candidatam a todos os empregos (pior caso)	Cada estudante tem um número aleatório de candidaturas, todas elas a empregos aleatórios.
0,050 0,040 0,030 0,020 0,010 0 200 400 600 800 1000	10,000 8,000 6,000 4,000 2,000 0 100 200 300 400 500	8,000 y = 2,061E-6x ^{2,4039} 6,000 4,000 2,000 0 100 200 300 400 500

Os resultados apresentados são a média de correr o programa 3 vezes para cada um dos ficheiros de teste. O tempo apresentado é o tempo real. Os testes foram feitos numa máquina virtual com 8GB DDR3 e 2 virtual cores de um CPU i7-3770T a 2.40GHz a correr Debian Squeeze 6.0.7.

Dado que o coeficiente de correlação foi superior a 99% em todos os casos, tendo sido utilizada uma recta de regressão linear, pode-se concluir que o algoritmo implementado cresce, de facto, como esperado (excepto no teste 1, no qual o algoritmo parece crescer linearmente por ser um grafo esparso - regressão em potência $y=3,179E-5x^{1,0469}$, com $R^2=0,9953$).

Referências Bibliográficas

- [1] J. Hopcroft and R. Karp. An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. SIAM Journal of Computing, 2:225-231, 1973
- [2] http://en.wikipedia.org/wiki/Hopcroft-Karp_algorithm
- [3] http://en.wikipedia.org/wiki/Matching_(graph_theory)
- [4] http://en.wikipedia.org/wiki/Constraint_satisfaction_problem