EE2015: Electric Circuits and Networks

Tutorial 5

(September 13, 2024)

1. Let the open circuit impedance matrix of network N be

$$\left[\begin{array}{cc} 0 & -r \\ r & 0 \end{array}\right].$$

Find $Z_{in}(s)$ in terms of r and $Z_L(s)$. If $Z_L(s)$ is 1/sC, show that the network behaves like an inductor at the input terminals.

2. Find the Z parameters for the 2 port network marked with dotted lines and then find the Z_{out} (impedance seen by the $1k\Omega$ resistor) for the terminated two port network.

- 3. The two port network N is an RLC network. If $i_1(t) = \delta(t)$, $v_2(t) = (3e^{-t} + 5e^{-t})u(t)$.
 - a. If $j_2(t) = u(t)$, find $e_1(t)$
 - b. If $j_2(t) = \cos 500tu(t)$, find the response $e_1(t)$.

4. For the circuit given below, use reciprocity and superposition to determine V_{out} in terms of V_k , $k = 1, 2, \ldots, 6$.

- 5. The two-port network shown below can be viewed as a cascaded combination of three two-port networks A, B, and C.
 - (a) Find the transmission parameters of each network.
 - (b) Find the transmission parameters of the overall network.

6. A series-parallel connection of two two-port networks is shown on the right. Terminals 1 and 1' and 2 and 2' are connected. Determine the z-parameters of the overall network.

7. In the circuit below, find the **z** parameters individually for the networks A and B. Now, if a voltage source V_s is connected between terminals a and b and a load resistor $R_L = 10\Omega$ is connected between terminals c and d, find the voltage gain $\frac{V_4}{V_1}$ using the **z** parameters of the networks A and B.

