Crunchbase Funding Prediction Model

By Daiki Minaki

Objective

Predict whether or not a company will get funded in the following year based on data at a given time.

Problem

There Are A Lot Of Startups Out There.

Can We Predict The Ones Worth Funding?

About The Data

Following Datasets Provided by Crunchbase (Up to 2015):

	Shape	Numeric Data	Text Data	Datetimes
Company Data	(51146, 14)	2	9	3
Investment Rounds Data	(212810, 18)	1	16	1
Organization Data	(606064, 16)	0	16	0
People Data	(605630, 15)	0	15	0
Acquisition Data	(18968, 18)	1	15	2
IPO Data	(1259, 13)	2	8	3

Approach

- 1. Data Cleaning & Wrangling
- 2. Exploratory Data Analysis
- 3. Random Forest Classifier
- 4. Model Evaluation
- 5. Analyze Results

Data Cleaning & Wrangling

Goal For Final Dataset:

- Features and Target Are All Numeric Values
- Each Row Represents One Fiscal Quarter Of A Company
- Features Summarize All Important Data From Original Datasets
- Target Shows Whether Company Is Funded In Coming Year

Processed Data

Final Dataset

- About 1,600,000 Rows
- 111 Numeric Features
- 2 Text Features (HashingVectorizer)

Features Categories

- Company Features
- Investment Round Features
- Investor Features
- Macro Features

Exploratory Data Analysis (EDA)

1. Investment Analysis

2. Investor Analysis

3. Category Analysis

Analyzing Round Amounts (Other Rounds in Notebook)

Analyzing Round Lengths (Other Rounds In Notebook)

Analyzing Company Tenure At Funding (Other Rounds In Notebook)

Key Observations (Full Analysis In Notebook)

- Funding Amount by Angels Have A Higher Variance Than Seeds.
- Later Rounds Typically Have Higher Variance in Amount & Tenure.
- Round Length For Venture Rounds Tends to be between 10 15
 Quarters.
- Equity Funding is Greater Than Debt Before IPOs but Less After.

Analyzing Globalization of Investing (Full Analysis In Notebook)

Analyzing Differences In Investor Strategy (Full Analysis In Notebook)

Do Investors Focus On Specific Round Types? (Full Analysis in Notebook)

Key Observations

- There Are More Gaps in Data of Global Investors
- Difference in Invested Amount of Global and Local Investors is NOT statistically significant
- Investors Do NOT Focus On Just Many Small or Few Large Investments
 But Have Varying Strategies Overall.
- Most Investors Focus On More than One Round Type.
- Seed Investors Tend to Focus on Seed Funding.

EDA: Category Analysis

Analyzing Funded Categories Over Time

Top Categories in the 1980s

Top Categories in the 2010s

EDA: Category Analysis

Analyzing Funded Categories Over Time (Full Analysis In Notebook)

- 1980s: Manufacturing, Services, Designers, Automotive, Technology
- 1990s: Software, Technology, Curated Web, Service, Internet
- 2000s: Software, BioTech, Enterprise Software, Mobile, Curated Web
- 2010s: Software, Enterprise Software, Mobile, Curated Web, Commerce

Choosing The Model

Why Random Forest Classifier?

- Flexible
- Prevents Overfitting
- High Feature & Sample Count
- No Scaling Required

Training The Model

Input Data After HashingVectorizer

- 111 Numeric Features
- 3000 HashingVectorizer Features

Pipeline

- FeatureUnion
 - Imputer
 - HashingVectorizer
 - SelectKBest
- RandomForestClassifier

Hyperparameter Tuning

Default Parameters Yielded Best Results!

Model Evaluation

Accuracy: 0.94

Avg CV Score: 0.89

Avg Precision: 0.94

Avg Recall: 0.94

ROC Curve: Figure on Left

AUC Score: 0.975

Error by Funding Type

Precision & Recall by Round Type

Analyzing Results

Model Had Some Problems With Recalling Funded Targets.

Precision: 91% of Predicted Funded Were Actually Funded.

Recall: 78% of Actual Funded Rounds Were Identified as Funded.

	precision		recall	f1-score	support
	0.0	0.95 0.91	0.98 0.78	0.96 0.84	380907 93510
micro macro weighted	avg	0.94 0.93 0.94	0.94 0.88 0.94	0.94 0.90 0.94	474417 474417 474417

Precision Or Recall?

In this case, Precision IS more important than Recall.

We would rather fund a company and be correct than fund all the correct companies.

(If not fund then at least find)

Outcome

We Were Able To Build a Random Forest Classifier That Predicts Company Funding At *About 94% Accuracy*.

References and Resources

GitHub Repository

https://github.com/daikiminaki/Springboard/tree/master/Capstone_Project_Crunch base_Funding

Detailed Report

<u>Email</u>

dminaki95@gmail.com/