Loops and Iteration

Computers are often used to perform repetitive tasks. Running the same statements over and over again, without making any mistakes, is something that computers do very well.

Manager:	Recorder:
Presenter:	Reflector:

Content Learning Objectives

After completing this activity, students should be able to:

- Explain what happens when re-assigning a variable.
- Identify the three main components of a while loop.
- Rewrite a while loop as a for loop (and vice versa).

Process Skill Goals

During the activity, students should make progress toward:

Tracing the execution of while/for loops and predict their final output. (Critical Thinking)

Facilitation Notes

Model 1 addresses two misconceptions about assignment: what happens when you reassign a variable, and how to swap two variables. This understanding is essential for loop updates.

Optional warm-up activity: Bring a pair of note cards labeled with a large "1" on the first card and a large "2" on the second card. Have all team members put one hand behind their back, and then hand the cards to two students (student X gets the "1", and student Y gets the "2"). Ask them to exchange cards, and when they struggle, ask them "What if you had a student Z who could help?" (Credit: Debra Duke)

When reporting out Model 2, have teams predict the answers to #11, #12, and #16. Then execute the code and have them discuss their results, if incorrect. Consider stepping through the code with a debugger (on the projector) during report-out.

Model 3 is a quick introduction to for loops. Be sure to point out that the update step happens after the loop body. If time permits, have students run their code on a computer to check their work. You could also ask teams to discuss which loop syntax they like better, and why.

Key questions: #7, #16, #21

Source files: Assignment.java, WhileLoops.java, ForLoops.java

© Oopyright © 2021 Chris Mayfield and Helen Hu. This work is licensed under a Creative No SA Commons Attribution-NonCommercial-Share Alike 4.0 International License.

Model 1 Assignment

Consider the following Java statements. What is the resulting value of each variable?

A: int x, y; x = 1; y = 2; y = x; x = y;

B: int x, y, z; x = 1; y = 2; z = y; y = x; x = z; C: int z, y;
 z = 2;
 z = z + 1;
 z = z + 1;
 y = y + 1;

Value of x: 1

Value of x: 2

Value of z: 4

Value of y: 1

Value of y: 1

Value of y: ?

Value of z: 2

Questions (15 min)

Start time:

1. In program A, why is the value of x not 2?

Each statement is executed one after the other, so the third assignment changes the value of y to 1. The last assignment then assigns 1 to the value x.

2. In program B, what happens to the values of x and y?

They get swapped; x was 1 and y was 2, but in the end x was 2 and y was 1.

3. In program B, what is the purpose of the variable z?

It is a temporary variable that makes it possible to swap the values of x and y.

4. If program C runs, what happens to the value of z?

It gets incremented twice; the value starts at 2, then it becomes 3, and then it becomes 4.

5. In program C, why is it possible to increment z but not y?

The variable z was initialized, but y was not. Java doesn't know what value to increment.

6. Because *increment* and *decrement* are so common in algorithms, Java provides the operators ++ and --. For example, x++ is the same as x = x + 1, and y-- is the same as y = y - 1. Write the value of x and y next to each statement below.

7. Like the assignment operator, the ++ and -- operators replace the value of a variable. Java also has *compound assignment* operators for convenience. For example, the statement x = x + 2 can be rewritten as x += 2. Simplify the following assignment statements.

```
step = step + 5;
size = size - 3;
total = total * 2;
change = change / 10;
hours = hours % 24;
step += 5;
size -= 3;
total *= 2;
change /= 10;
hours %= 24;
```

8. Which of the following assignment statements can also be rewritten like the ones in #7?

```
step = 5 + step;
size = 3 - size;
total = 2 * total;
change = 10 / change;
hours = 24 % hours;
step += 5;
NO
total *= 2;
NO
NO
```

Model 2 While Loops

A loop is a set of instructions that are to be repeated. All loops have three main components: *initialize, test,* and *update*. Identify these components in each of the examples below.

```
// pre-test loop
number = 1;
while (number <= 10) {
    System.out.println(number);
    number++;
}</pre>
```



```
// post-test loop
number = 1;
do {
    System.out.println(number);
    number++;
} while (number <= 10);</pre>
```


Questions (20 min)	Start time:
9. Which loop component always happens first? Wh	y?
The initialize step; you need to tell the loop where to until they have an initial value.	begin. And variables cannot be updated
10. Explain why the while loop is called a <i>pre-test</i> ar	nd the do while loop is called a <i>post-test</i> .
The while tests its condition before the loop body, after the loop body.	whereas the do while tests its condition
11 . What is output to the screen by each loop? Predito check your answer.	ict the output first, and then run the code
They both print the numbers 1 through 10, with each	n number on its own line.
12. What is the final value of number at the end of each add print statements to the code to check your answer.	1
At the end of each loop, the value of number is 11.	
13. How does the output change if you swap the pri	ntln and number++ statements?
Both loops print the values 2 through 11 instead.	

14. What is the output to the screen if you remove the number++ statement?

Both loops will print the value 1 forever, since number never reaches the stopping condition.

15. What is the difference between a while statement and an if statement?

They identical syntax and a similar meaning; the only difference is a while statement repeats the code between its braces as long as the condition is true.

16. What is output by the following loop? Explain how the code works.

```
number = 99;
do {
    System.out.println(number);
    number++;
} while (number <= 10);
System.out.println(number);</pre>
```

It will print the numbers 99 and 100; the do while loop does not repeat since 99 is greather than 10.

17. What is output by the following loop? And what mistake was made?

```
int i = 0;
while (i < 3)
    System.out.println("i = " + i);
    i = i + 1;</pre>
```

It will print "i = 0" forever. Without braces, the loop only executes the first statement, and i = i + 1; is never reached.

Model 3 For Loops

The for loop combines *initialize*, *test*, and *update* into one line of code.

```
// Loop A: count forwards
for (i = 1; i <= 10; i++) {
    System.out.println(i);
}

// Loop B: count backwards
for (i = 10; i >= 1; i--) {
    System.out.println(i);
}
```


Questions (10 min)

Start time:

18. Identify the components of each for loop.

Loop A:

- a) initialize i = 1
- b) test i <= 10
- c) update i++

Loop B:

- a) initialize i = 10
- b) test i >= 1
- c) update i--

19. Rewrite each for loop as a while loop.

Loop A:

Loop B:

```
i = 1;
while (i <= 10) {
    System.out.println(i);
    i++;
}

i = 10;
while (i >= 1) {
    System.out.println(i);
    i--;
}
```

20. What do each of the for loops output to the screen? Be specific.

The first loop prints the numbers 1 to 10, and the second loop prints the numbers 10 to 1. Each number is on its own line.

21. Describe how to change the for loops to print even numbers only (i.e., the output should be 2 4 6 8 10 and 10 8 6 4 2).

```
Change loop A to: for (i = 2; i <= 10; i += 2)

Change loop B to: for (i = 10; i >= 2; i -= 2)
```

22. In mathematics, the factorial of an integer n (denoted by n!) is the product of all positive integers less than or equal to n. For example, the factorial of 5 is:

```
5! = 5 * 4 * 3 * 2 * 1 = 120
```

The following code computes the factorial of 5:

```
fact = 1;
i = 5;
while (i > 1) {
    fact *= i;
    i--
}
```

a) Rewrite the code above using a for loop instead of a while loop.

```
fact = 1;
for (i = 5; i > 1; i--) {
   fact *= i;
}
```

b) How would you change the code to compute the factorial of 12?

```
Simply change i = 5 to i = 12.
```