Név: Neptun kód:

Algoritmusok tervezése és elemzése 1. zh.

- 1. Legyen X tetszőleges nem üres halmaz, és legyen d egy távolságfüggvény X-en. Az X egy $\mathcal C$ klaszterezését jól szeparáltnak nevezzük, ha d(x,y) < d(w,z) tetszőleges olyan $x,y,w,z\in X$ elemekre, amelyekre $x\sim_{\mathcal C} y$ és $w\not\sim_{\mathcal C} z$. Mutassuk meg, hogy tetszőleges $1\leqslant k\leqslant |X|$ esetén legfeljebb egy jól szeparált k-klaszterezése létezik X-nek.
- 2. A mester módszerrel adjunk éles aszimptotikus korlátot az alábbi rekurziókkal megadott függvényekre. Feltehetjük, hogy kellően kicsi n értékekre T(n) állandó.
 - (a) T(n) = 4T(n/2) + n.
 - (b) $T(n) = 4T(n/2) + n^2$.
 - (c) $T(n) = 4T(n/2) + n^3$.
- **3.** Adott pozitív valós számoknak egy A[1:n] tömbje. Adjunk $O(n \log n)$ költségű oszd meg és uralkodj algoritmust, amely meghatároz két olyan $1 \leq i \leq j \leq n$ indexet, amelyekre az $A[i]A[i+1]\cdots A[j]$ szorzat maximális!
- 4. Adottak az A_1, A_2, A_3, A_4, A_5 mátrixok, ahol az A_1 mátrix 10×5 dimenziós, az A_2 mátrix 5×15 dimenziós, az A_3 mátrix 15×5 dimenziós, az A_4 mátrix 5×20 dimenziós, az A_5 mátrix 20×10 dimenziós. Határozzuk meg a tanult dinamikus programozás algoritmus alkalmazásával az $A_1A_2A_3A_4A_5$ szorzat azon zárójelezését, amely minimalizálja a szorzat kiszámításához szükséges elemi szorzások számát. Minden számolást mellékelni kell!
- 5. Adott egy $l = l_1 + l_2 + \cdots + l_{n+1}$ hosszú fémrúd, amelyet $l_1, l_2, \ldots, l_{n+1}$ hosszú darabokra kell felvágni úgy, hogy a vágások pontos helyét is ismerjük. Olyan vágógéppel kell a feladatot megoldani, amely egyszerre csak egy vágást tud végezni. A vágások tetszőleges sorrendben végezhetők. Egy vágás költsége megegyezik annak a darabnak a hosszával, amit éppen (két darabra) vágunk. Tervezzünk $O(n^3)$ költségű dinamikus programozás algoritmust, amely megad egy minimális összköltségű vágási sorrendet!