Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016

Série d'exercices 9 : Petite révision et prolongement analytique

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Les exercices en gras comptent pour le bonus et les séries sont à rendre avant le vendredi de chaque semaine dans le casier de votre assistant (à la section de maths).

1. Soit f une fonction entière (*i.e.* holomorphe sur \mathbb{C}). Supposons que sa partie réelle est toujours positive ($\text{Re} f \geq 0$). Montrer qu'elle est constante. En déduire que les seules fonctions harmoniques positives sur \mathbb{R}^2 sont les fonctions constantes.

Indication: Considérer la fonction $g(z) = \exp(-f(z))$.

2. On définit la fonction suivante

$$f(z) = \sum_{k \ge 0} k(k-1)(k-2)z^k$$

sur le disque $B_1(0)$. Déterminer le domaine maximal où f peut être prolongée comme fonction analytique. Par abus de notation, on note ce prolongement f. Calculer f(2).

3. Soit $\Gamma(z)$ la fonction définie par la formule

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt,$$

où $t^{z-1} = e^{(z-1)\log t}$. Cette fonction est appelée fonction gamma.

- (a) Montrer que l'intégrale est bien définie sur $\{z, \text{Re}z > 0\}$.
- (b) Démontrer la relation $\Gamma(z+1)=z\Gamma(z)$. Indication : Utiliser l'intégration par parties.
- (c) Calculer $\Gamma(1)$ et en déduire les valeurs $\Gamma(n)$ pour $n \in \mathbb{N}$.
- (d) Calculer $\Gamma(n+\frac{1}{2})$ pour tout $n \in \mathbb{N}$ en se rappelant que

$$\int_0^\infty e^{-\frac{x^2}{2}} dx = \sqrt{\frac{\pi}{2}}.$$

Indication : Commencer par réécrire l'intégrale ci-dessus en fonction de $\Gamma(\frac{1}{2})$.

- 4. Calculer $[(-1+i)^2]^i$ et $(-1+i)^{2i}$ à l'aide de la branche principale du logarithme. Qu'en tirez-vous comme conclusion?
- 5. Soit f une fonction entière. Montrer que s'il existe k>0 et C>0 tels que

$$|f(z)| \le C|z|^k, \quad \forall z \in \mathbb{C},$$

alors f est polynomiale de degré au plus E(k) où

$$E(k) := \sup\{n \in \mathbb{N}, n \le k\}$$

est la partie entière de k.

6. Théorème des trois cercles d'Hadamard.

Soient r,R deux réels tels que 0 < r < R. On considère la couronne fermée $C := \{z \in \mathbb{C}, r \leq |z| \leq R\}$. On prend f une fonction holomorphe sur U un ouvert contenant C. Pour $\rho \in [r,R]$, on pose

$$M_f(\rho) := \max\{|f(z)|, |z| = \rho\}.$$

(a) Montrer que pour tout $\alpha \in \mathbb{Q}$ puis $\alpha \in \mathbb{R}$ on a

$$\rho^{\alpha} M_f(\rho) \le \max\{r^{\alpha} M_f(r), R^{\alpha} M_f(R)\}.$$

(b) En déduire l'inégalité

$$M_f(\rho) \le M_f(r)^{\frac{\ln R - \ln \rho}{\ln R - \ln r}} M_f(R)^{\frac{\ln \rho - \ln r}{\ln R - \ln r}}.$$

7. Prolongement analytique de la fonction zêta.

On rappelle que la fonction zêta de Riemann a été définie dans l'exercice 3 de la série 6 par

$$\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$$

sur $\{z, \mathrm{Re}z > 1\}.$ Ici, on cherche à la prolonger analytiquement sur un domaine plus grand. Posons

$$\eta(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^z}.$$

- (a) En utilisant le critère des séries alternées, justifier pour quoi η est bien définie pour z>0. La même question pour $z\in\mathbb{C}$ avec $\mathrm{Re}z>0$ en utilisant la sommation d'Abel.
- (b) Démontrer la relation entre ζ et η :

$$\zeta(z) = \frac{\eta(z)}{1 - 2^{1-z}}$$

pour tout $z \in \mathbb{C}$ tel que Rez > 1.

- (c) À l'aide de la relation précédente, sur quel domaine peut-on prolonger ζ ?
- (d) (Pour aller plus loin.) Comment prolonger ζ sur $\{z, \text{Re}z > 0\}$?