Programming language

C11 (編譯器: gcc 10.1.0)

Implementation

依據原文書第 289 頁所題供的虛擬碼來撰寫此程式

Algorithm 5.6.1 Modified Gram-Schmidt Process

For
$$k = 1, 2, ..., n$$
 set
$$r_{kk} = \|\mathbf{a}_k\|$$

$$\mathbf{q}_k = \frac{1}{r_{kk}} \mathbf{a}_k$$
For $j = k + 1, k + 2, ..., n$, set
$$r_{kj} = \mathbf{q}_k^T \mathbf{a}_j$$

$$\mathbf{a}_j = \mathbf{a}_j - r_{kj} \mathbf{q}_k$$
Find for loop
$$End for loop$$

符號、函式說明:

 a_k : 以矩陣 A 的第 k 行做為一行向量 q_k : 以矩陣 Q 的第 k 行做為一行向量 r_{ki} : 矩陣 R 的第 k 行第 j 列上的元素

ld inner(int k, int j):用於運算 $q_k^T a_j$

ld L(int N): 用於求出 ||a_k|| void F(): 執行 OR 分解的主要函式

最後輸出Q和R時檢查每個元素之絕對值是否小於DBL_EPSILON,即一double變數所能表示的最小精度,若是則輸出字串"0.00",以修正程式可能將部份的0.00輸出為-0.00的問題

How to execute

編譯:

\$ gcc gr-decomposition.c -lm -std=c11

執行:

\$./a.out

Reference

Steven J. Leon - Linear Algebra with Applications-Pearson (2015)