Álgebra Universal e Categorias

Exercícios - Folha 6 -

36. Sejam $\mathcal{A}=(\{1,2,3,4,5\};*^{\mathcal{A}},c^{\mathcal{A}})$ e $\mathcal{B}=(\{1,2\};*^{\mathcal{B}},c^{\mathcal{B}})$ as álgebras de tipo (2,0) cujas operações nulárias são dadas por $c^{\mathcal{A}}=2$, $c^{\mathcal{B}}=1$ e cujas operações binárias são definidas por

$*^{\mathcal{A}}$	1	2	3	4	5
1	2	2	2	5	2
2	2	3	3	2	2
3	2	3	2	2	2
1 2 3 4 5	5	2	2	4	2
5	2	2	2	2	2

Seja $\alpha:\{1,2\}\to\{1,2,3,4,5\}$ a aplicação definida por $\alpha(1)=2$ e $\alpha(2)=3$. Mostre que a aplicação α é um monomorfismo de \mathcal{B} em \mathcal{A} . Justifique que \mathcal{B} é isomorfa a uma subálgebra de \mathcal{A} .

A aplicação α é um monomorfismo de \mathcal{B} em \mathcal{A} se α é um homomorfismo e se é injetiva.

Tem-se:

```
-\alpha(c^{\mathcal{B}}) = \alpha(1) = 2 = c^{\mathcal{A}};
-\alpha(1 *^{\mathcal{B}} 1) = \alpha(2) = 3 = 2 *^{\mathcal{A}} 2 = \alpha(1) *^{\mathcal{A}} \alpha(1);
-\alpha(1 *^{\mathcal{B}} 2) = \alpha(2) = 3 = 2 *^{\mathcal{A}} 3 = \alpha(1) *^{\mathcal{A}} \alpha(2);
-\alpha(2 *^{\mathcal{B}} 2) = \alpha(1) = 2 = 3 *^{\mathcal{A}} 3 = \alpha(2) *^{\mathcal{A}} \alpha(2);
-\alpha(2 *^{\mathcal{B}} 1) = \alpha(2) = 3 = 3 *^{\mathcal{A}} 2 = \alpha(2) *^{\mathcal{A}} \alpha(1);
```

Logo α é compatível com as operações e, portanto, é um homomorfismo de \mathcal{A} em \mathcal{B} .

A aplicação é claramente injetiva, pois, para quaisquer $x,y\in B$, sempre que $x\neq y$ também se tem $\alpha(x)\neq\alpha(y)$ $(1\neq 2$ e $\alpha(1)\neq\alpha(2))$.

Uma vez que α é um monomorfismo de $\mathcal B$ em $\mathcal A$, tem-se $\mathcal B\cong\alpha(\mathcal B)$ (a aplicação $\beta:B\to\alpha(B)$ definida por $\beta(x)=\alpha(x)$, para todo $x\in B$, é um isomorfismo de $\mathcal B$ em $\alpha(\mathcal B)$). A álgebra $\mathcal B$ é subálgebra de si mesma, logo, como α é um homomorfismo de $\mathcal B$ em $\mathcal A$, $\alpha(\mathcal B)$ é uma subálgebra de $\mathcal A$.

37. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo. Mostre que se $\alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{B})$ e $\beta \in \operatorname{Hom}(\mathcal{B},\mathcal{C})$, então $\beta \circ \alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{C})$.

Sejam $\alpha \in \text{Hom}(\mathcal{A}, \mathcal{B})$ e $\beta \in \text{Hom}(\mathcal{B}, \mathcal{C})$. Pretende-se provar que $\beta \circ \alpha \in \text{Hom}(\mathcal{A}, \mathcal{C})$.

Atendendo a que α é uma aplicação de A em B e β é uma aplicação de B em C, então, por definição de composicção de funções, $\beta \circ \alpha$ é uma aplicação de A em C.

A aplicação $\beta \circ \alpha$ é compatível com as operações, pois, para qualquer símbolo de operação de aridade n, $n \in \mathbb{N}_0$, e para quaisquer $a_1 \dots, a_n \in A$,

$$(\beta \circ \alpha)(f^{\mathcal{A}}(a_{1}, \dots, a_{n})) \Rightarrow \beta(\alpha(f^{\mathcal{A}}(a_{1}, \dots, a_{n})))$$

$$\Rightarrow \beta(f^{\mathcal{B}}(\alpha(a_{1}, \dots, \alpha(a_{n}))) \ (\alpha \in \operatorname{Hom}(\mathcal{A}, \mathcal{B}))$$

$$\Rightarrow f^{\mathcal{C}}(\beta(\alpha(a_{1})), \dots, \beta(\alpha(a_{n}))) \ (\beta \in \operatorname{Hom}(\mathcal{B}, \mathcal{C}))$$

$$\Rightarrow f^{\mathcal{C}}((\beta \circ \alpha)(a_{1}), \dots, (\beta \circ \alpha)(a_{n}))$$

Do que foi provado anteriormente conclui-se que $\beta \circ \alpha$ é um homomorfismo de \mathcal{A} em \mathcal{C} .

38. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo. Mostre que se $\alpha: \mathcal{A} \to \mathcal{B}$ é um isomorfismo, então α^{-1} é um isomorfismo de \mathcal{B} em \mathcal{A} .

- 39. Sejam $\mathcal{A} = (A; F), \mathcal{B} = (B; G)$ álgebras do mesmo tipo e $\alpha \in \text{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que:
 - (a) Se A_1 é um subuniverso de \mathcal{A} , então $\alpha(A_1)$ é um subuniverso de \mathcal{B} .

Seja A_1 um subuniverso de \mathcal{A} . Então

- (i) $A_1 \subseteq A$;
- (ii) para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para quaisquer $a_1, \ldots, a_n \in A_1$,

$$f^{\mathcal{A}}(a_1,\ldots,a_n)\in A_1.$$

Pretende-se provar que $\alpha(A_1)$ é um subuniverso de \mathcal{B} , ou seja, pretende-se mostrar que as seguintes condições são satisfeitas:

- (i) $\alpha(A_1) \subseteq B$;
- (ii) para qualquer símbolo de operação f de aridade $n, n \in \mathbb{N}_0$, e para quaisquer $b_1, \ldots, b_n \in \alpha(A_1)$,

$$f^{\mathcal{B}}(b_1,\ldots,b_n)\in\alpha(A_1).$$

Prova de (i): uma vez que $A_1 \subseteq A$ e α é uma função de A em B, é imediato que $\alpha(A_1) \subseteq B$.

Prova de (ii): Sejam f um símbolo de operação de aridade n e $b_1, \ldots, b_n \in \alpha(A_1)$.

Como $b_1, \ldots, b_n \in \alpha(A_1)$, tem-se

$$b_1 = \alpha(a_1), \ldots, b_n = \alpha(a_n), \text{ para alguns } a_1, \ldots, a_n \in A_1.$$

Então

$$f^{\mathcal{B}}(b_1,\ldots,b_n) = f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n))$$

= $\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)). (\alpha \in Hom(\mathcal{A},\mathcal{B}))$

Atendendo a que $a_1, \ldots, a_n \in A_1$, $f^{\mathcal{A}}$ é uma operação n-ária em A e A_1 é um subuniverso de \mathcal{A} , tem-se $f^{\mathcal{A}}(a_1, \ldots, a_n) \in A_1$; logo $\alpha(f^{\mathcal{A}}(a_1, \ldots, a_n)) \in \alpha(A_1)$; portanto, $f^{\mathcal{B}}(b_1, \ldots, b_n) \in \alpha(A_1)$.

Da prova de (i) e de (ii), conclui-se que $\alpha(A_1)$ é um subuniverso de \mathcal{B} .

- (b) Se B_1 é um subuniverso de \mathcal{B} , então $\alpha^{\leftarrow}(B_1)$ é um subuniverso de \mathcal{A} .
- 40. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo e $\alpha, \beta \in \text{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que

$$Eq(\alpha, \beta) = \{ a \in A \mid \alpha(a) = \beta(a) \}$$

é um subuniverso de A. A este subuniverso chama-se equalizador de α e β .

O conjunto $\text{Eq}(\alpha, \beta) = \{a \in A \mid \alpha(a) = \beta(a)\}\ \text{\'e}\ \text{um}\ \text{subuniverso}\ \text{de}\ \mathcal{A}\ \text{se}$:

- (i) Eq $(\alpha, \beta) \subseteq A$;
- (ii) para qualquer símbolo de operação de aridade $n, n \in \mathbb{N}_0$, e para quaisquer $a_1, \ldots, a_n \in \mathrm{Eq}(\alpha, \beta)$, $f^{\mathcal{A}}(a_1, \ldots, a_n) \in \mathrm{Eq}(\alpha, \beta)$.

Prova de (i): Imediato, pela definição de $Eq(\alpha, \beta)$.

Prova de (ii): para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para quaisquer $a_1, \ldots, a_n \in A$, tem-se $f^{\mathcal{A}}(a_1, \ldots, a_n) \in A$. Além disso,

$$\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n)) \ (\alpha \in Hom(\mathcal{A},\mathcal{B}))$$

= $f^{\mathcal{B}}(\beta(a_1),\ldots,\beta(a_n)) \ (a_1,\ldots,a_n \in Eq(\alpha,\beta))$
= $\beta(f^{\mathcal{A}}(a_1,\ldots,a_n)) \ (\beta \in Hom(\mathcal{A},\mathcal{B}))$

Logo, $f^{\mathcal{A}}(a_1,\ldots,a_n) \in \text{Eq}(\alpha,\beta)$.

- 41. Sejam $\mathcal{A}=(A;F)$ uma álgebra e θ , ψ relações binárias em A.
 - (a) Mostre que θ satisfaz a propriedade de substituição em $\mathcal A$ se e só se θ é um subuniverso de $\mathcal A \times \mathcal A$.
 - (b) Mostre que se θ e ψ são subuniversos de $\mathcal{A} \times \mathcal{A}$, então $\theta \circ \psi$ é um subuniverso de $\mathcal{A} \times \mathcal{A}$.

- 42. Sejam \mathcal{A} , \mathcal{B} álgebras do mesmo tipo e $\alpha \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que α é injetiva se e só se $\ker \alpha = \triangle_A$.
 - \Rightarrow) Admitamos que α é injetiva.

A relação $\ker \alpha$ é uma relação de equivalência em A, logo $\triangle_A \subseteq \ker \alpha$. Por outro lado, para quaisquer $x,y \in A$,

$$(x,y) \in \ker \alpha \implies \alpha(x) = \alpha(y)$$

 $\Rightarrow x = y \ (\alpha \text{ \'e injetiva})$
 $\Rightarrow (x,y) \in \triangle_A.$

Assim, $\ker \alpha \subseteq \triangle_A$. Logo, $\ker \alpha = \triangle_A$.

 \Leftarrow) Consideremos, por hipótese, que $\ker \alpha = \triangle_A$. Então, para quaisquer $x, y \in A$,

$$\alpha(x) = \alpha(y) \Rightarrow (x, y) \in \ker \alpha \Rightarrow (x, y) \in \triangle_A \Rightarrow x = y.$$

Logo, α é injetiva.

- 43. Sejam \mathcal{A} uma álgebra e $\theta, \rho \in \text{Con}\mathcal{A}$.
 - (a) Mostre que a aplicação $\alpha: \mathcal{A} \to \mathcal{A}/\theta \times \mathcal{A}/\rho$ definida por $\alpha(a) = ([a]_{\theta}, [a]_{\rho})$ é um homomorfismo.

Para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para quaisquer $a_1, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) = ([f^{\mathcal{A}}(a_1,\ldots,a_n)]_{\theta}, [f^{\mathcal{A}}(a_1,\ldots,a_n)]_{\rho})$$

$$= (f^{\mathcal{A}/\theta}([a_1]_{\theta},\ldots,[a_n]_{\theta}), f^{\mathcal{A}/\rho}([a_1]_{\rho},\ldots,[a_n]_{\rho}))$$

$$= f^{\mathcal{A}/\theta \times \mathcal{A}/\rho}(([a_1]_{\theta},[a_1]_{\rho}),\ldots,([a_n]_{\theta},[a_n]_{\rho}))$$

$$= f^{\mathcal{A}/\theta \times \mathcal{A}/\rho}(\alpha(a_1),\ldots,\alpha(a_n)).$$

Logo α é compatível com qualquer operação e, portanto, α é um homomorfismo de \mathcal{A} em $\mathcal{A}/\theta \times \mathcal{A}/\rho$.

(b) Mostre que $\ker \alpha = \theta \cap \rho$. Conclua que α é injetiva se e só se $\theta \cap \rho = \triangle_A$.

Para quaisquer $a, b \in A$,

$$\begin{array}{lll} (a,b) \in \ker \alpha & \Leftrightarrow & \alpha(a) = \alpha(b) \\ & \Leftrightarrow & ([a]_{\theta}, [a]_{\rho}) = ([b]_{\theta}, [b]_{\rho}) \\ & \Leftrightarrow & [a]_{\theta} = [b]_{\rho} \ \mathrm{e} \ [a]_{\theta} = [b]_{\rho} \\ & \Leftrightarrow & (a,b) \in \theta \ \mathrm{e} \ (a,b) \in \rho \\ & \Leftrightarrow & (a,b) \in \theta \cap \rho. \end{array}$$

 $\mathsf{Logo}\,\ker\alpha=\theta\cap\rho.$

A função α é injetiva se e só se $\ker \alpha = \triangle_A$. Considerando o provado anteriormente segue que α é injetiva se e só se $\theta \cap \rho = \triangle_A$.

- (c) Mostre que α é sobrejetiva se e só se $\theta \circ \rho = \nabla_A$.
 - \Rightarrow) Admitamos que α é sobrejetiva. Pretendemos provar que $\theta \circ \rho = \nabla_A$.

Uma vez que que θ e ρ são relações binárias em A, $\theta \circ \rho$ é uma relação binária em A e, portanto, $\theta \circ \rho \subseteq \nabla_A$.

Sejam $a,b\in A$. Então $([a]_{\theta},[b]_{\rho})\in A/\theta\times A/\rho$. Considerando que α é sobrejetiva, existe $c\in A$ tal que $\alpha(c)=([a]_{\theta},[b]_{\rho})$, donde segue que $([c]_{\theta},[c]_{\rho})=([a]_{\theta},[b]_{\rho})$ e, por conseguinte, $[c]_{\theta}=[a]_{\theta}$ e $[c]_{\rho}=[b]_{\rho}$. Assim, $(c,a)\in \theta$ e $(b,c)\in \rho$, pelo que $(b,a)\in \theta\circ \rho$. Assim, para quaisquer $a,b\in A$, $(b,a)\in \theta\circ \rho$, ou seja, $\nabla_A\subseteq \theta\circ \rho$.

Considerando que $\theta \circ \rho \subseteq \nabla_A$ e $\nabla_A \subseteq \theta \circ \rho$, tem-se $\nabla_A = \theta \circ \rho$.

 \Leftarrow) Admitamos que $\nabla_A = \theta \circ \rho$.

Pretende-se provar que α é sobrejetiva.

Seja $([a]_{\theta},[b]_{\rho})\in A/\theta\times A/\rho$. Para quaisquer $a,b\in A$, tem-se $(b,a)\in \nabla_A$ e, uma vez que $\nabla_A=\theta\circ\rho$, $(b,a)\in\theta\circ\rho$. Então existe $c\in A$ tal que $(b,c)\in\rho$ e $(c,a)\in\theta$. Assim, $[a]_{\theta}=[c]_{\theta}$ e $[b]_{\rho}=[c]_{\rho}$. Logo, $([a]_{\theta},[b]_{\rho})=([c]_{\theta},[c]_{\rho})$. Portanto, para qualquer $([a]_{\theta},[b]_{\rho})\in A/\theta\times A/\rho$, existe $c\in A$ tal que $([a]_{\theta},[b]_{\rho})=\alpha(c)$, i.e., α é sobrejetiva.

- 44. Sejam $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in O})$, $\mathcal{B}=(B;(f^{\mathcal{B}})_{f\in O})$ e $\mathcal{C}=(C;(f^{\mathcal{C}})_{f\in O})$ álgebras de tipo (O,τ) , $\alpha_1\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$ e $\alpha_2\in \mathrm{Hom}(\mathcal{A},\mathcal{C})$. Seja $\alpha:A\to B\times C$ a aplicação definida por $\alpha(a)=(\alpha_1(a),\alpha_2(a))$, para todo $a\in A$.
 - (a) Mostre que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.

Para qualquer símbolo de operação f de aridade n e para quaisquer $a_1, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_{1},...,a_{n})) = (\alpha_{1}(f^{\mathcal{A}}(a_{1},...,a_{n})), \alpha_{2}(f^{\mathcal{A}}(a_{1},...,a_{n})))
\stackrel{*}{=} (f^{\mathcal{B}}(\alpha_{1}(a_{1}),...,\alpha_{1}(a_{n})), f^{\mathcal{C}}(\alpha_{2}(a_{1}),...,\alpha_{2}(a_{n})))
= f^{\mathcal{B}\times\mathcal{C}}((\alpha_{1}(a_{1}),\alpha_{2}(a_{1})),...,(\alpha_{1}(a_{n}),\alpha_{2}(a_{n})))
= f^{\mathcal{B}\times\mathcal{C}}(\alpha(a_{1}),...,\alpha(a_{n})).$$

A aplicação α é compatível com todas as operações, logo α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.

- (*) $\alpha_1 \in \text{Hom}(\mathcal{A}, \mathcal{B}) \in \alpha_2 \in \text{Hom}(\mathcal{A}, \mathcal{C}).$
- (b) Mostre que $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.

Para quaisquer x, y,

$$\begin{array}{lll} (x,y) \in \ker \alpha & \Leftrightarrow & x,y \in A \ \mathrm{e} \ \alpha(x) = \alpha(y) \\ & \Leftrightarrow & x,y \in A \ \mathrm{e} \ (\alpha_1(x),\alpha_2(x)) = (\alpha_1(y),\alpha_2(y)) \\ & \Leftrightarrow & x,y \in A \ \mathrm{e} \ \alpha_1(x) = \alpha_1(y) \ \mathrm{e} \ \alpha_2(x) = \alpha_2(y) \\ & \Leftrightarrow & (x,y) \in \ker \alpha_1 \ \mathrm{e} \ (x,y) \in \ker \alpha_2 \\ & \Leftrightarrow & (x,y) \in \ker \alpha_1 \cap \ker \alpha_2. \end{array}$$

Logo $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.

(c) Mostre que se α é um epimorfismo, então α_1 e α_2 são epimorfismos e

$$\mathcal{A}/(\ker \alpha_1 \cap \ker \alpha_2) \cong \mathcal{A}/\ker \alpha_1 \times \mathcal{A}/\ker \alpha_2.$$

Comecemos por mostrar que se α é um epimorfismo, então α_1 e α_2 são epimorfismos. Uma vez que α_1 e α_2 são homomorfismos, resta provar que α_1 e α_2 são funções sobrejetivas.

Seja $b \in B$. Como $C \neq \emptyset$, existe $c \in C$. Logo $(b,c) \in B \times C$. Considerando que α é um epimorfismo, existe $a \in A$ tal que $\alpha(a) = (b,c)$, i.e., existe $a \in A$ tal que $(\alpha_1(a), \alpha_2(a)) = (b,c)$. Logo, para todo $b \in B$, existe $a \in A$ tal que $\alpha_1(a) = b$. Assim α_1 é sobrejetiva.

De modo análogo, prova-se que α_2 é sobrejetiva.

Pelo Teorema do Homomorfismo, tem-se

$$\mathcal{A}/\ker\alpha\cong\alpha(\mathcal{A}),\ \mathcal{A}/\ker\alpha_1\cong\alpha_1(\mathcal{A})\ e\ \mathcal{A}/\ker\alpha_2\cong\alpha_2(\mathcal{A}).$$

Uma vez que α , α_1 e α_2 são sobrejetivas, vem que

$$\mathcal{A}/(\ker \alpha) \cong \mathcal{B} \times \mathcal{C}, \ \mathcal{A}/(\ker \alpha_1) \cong \mathcal{B} \in \mathcal{A}/(\ker \alpha_2) \cong \mathcal{C}.$$

Assim,

$$\mathcal{A}/(\ker \alpha) \cong \mathcal{A}/(\ker \alpha_1) \times \mathcal{A}/(\ker \alpha_2),$$

pelo que, considerando a alínea anterior, tem-se

$$\mathcal{A}/(\ker \alpha_1 \cap \ker \alpha_2) \cong \mathcal{A}/(\ker \alpha_1) \times \mathcal{A}/(\ker \alpha_2).$$

45. Sejam \mathcal{A} uma álgebra, $\theta \in \operatorname{Con}(\mathcal{A})$ e $[\theta, \nabla_A] = \{\rho \in \operatorname{Con}(\mathcal{A}) \mid \theta \subseteq \rho\}$. Para $\phi \in \operatorname{Con}(\mathcal{A})$ tal que $\theta \subseteq \phi$, define-se a congruência ϕ/θ em \mathcal{A}/θ por

$$\phi/\theta = \{([a]_{\theta}, [b]_{\theta}) \in (A/\theta)^2 \mid (a, b) \in \phi\}.$$

(a) Determine a congruência ϕ/θ quando:

i.
$$\phi = \nabla_A$$
; ii. $\phi = \theta$.

(b) Mostre que os reticulados $([\theta, \nabla_A], \subseteq)$ e $(\operatorname{Con}(\mathcal{A}/\theta), \subseteq)$ são isomorfos. (Sugestão: prove que a aplicação $\alpha: [\theta, \nabla_A] \to \operatorname{Con}(\mathcal{A}/\theta)$ definida por $\alpha(\phi) = \phi/\theta$ é um isomorfismo de reticulados.)