21. HALF ADDER

EXP.NO: 21

AIM: To design and implement the two bit half adder using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 2 inputs into the canvas.
- 3) Connect the inputs to the XOR gate and AND gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

	Truth Table				
Inp	Input		Output		
A	В	Sum	Carry		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	0	1		

S = A XOR B C = A AND B

Logical Diagram:

Half Adder using NAND Gates:

Half Adder using NOR Gates:

OUTPUT

RESULT: Thus 2-bit half adder has been designed and implemented successfully using logisim simulator.

22. TWO BIT HALF SUBTRACTOR

EXP.NO: 22

AIM: To design and implement the two bit half subtractor using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 2 inputs into the canvas.
- 3) Connect the inputs to the OR gate, AND gate and NOT gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Α	В	Diff	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Diff=A'B+AB'

Borrow = A'B

Logical Diagram:

Half Subtractor using NAND Gates:

Half Subtractor using NOR Gates:

OUTPUT

RESULT: Thus 2-bit half subtractor has been designed and implemented successfully using logisim simulator.

23. FULL ADDER

EXP.NO: 23

AIM: To design and implement the full adder using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs		Outputs		
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $Sum=(A \oplus B) \oplus Cin$

Carry=A.B+ (A ⊕B)

Logical Diagram:

Full adder using NAND Gates:

Full adder using NOR Gates:

OUTPUT

RESULT: Thus full adder has been designed and implemented successfully using logisim simulator.

24. FULL SUBTRACTOR

EXP.NO: 24

AIM: To design and implement the full subtractor using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

INPUT		OUTPUT		
A	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

 $Diff=(A \oplus B) \oplus 'Borrowin'$

Borrow=A'.B + $(A \oplus B)'$

Logic Diagram:

Full Subtractor using NAND Gates:

Full Subtractor using NOR Gates:

OUTPUT

RESULT: Thus full subtractor has been designed and implemented successfully using logisim simulator.