Gaussian

Parametrisation

The Gaussian distribution is

$$f(y) = \frac{\sqrt{w\tau}}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}w\tau (y - \mu)^2\right)$$

for continuously responses y where

 μ : is the mean

 τ : is the precision

w: is a fixed weight, w > 0.

Link-function

The mean and variance of y are given as

$$\mu$$
 and $\sigma^2 = \frac{1}{w\tau}$

and the mean is linked to the linear predictor by

$$\mu = \eta$$

Hyperparameters

The precision is represented as

$$\theta = \log \tau$$

and the prior is defined on θ .

Specification

- family = gaussian
- Required arguments: y and w (keyword weights)

The weights has default value 1.

Hyperparameter spesification and default values

hyper

theta

name precision short.name prec initial 4 fixed FALSE prior loggamma param c(1, 1e-04)

survival FALSE

discrete FALSE

Example

In the following example we estimate the parameters in a simulated example with Gaussian responses, giving τ a Gamma-prior with parameters (1, 0.01) and initial value (for the optimisations) of $\exp(2.0)$.

```
n=100
a = 1
b = 1
z = rnorm(n)
eta = a + b*z
tau = 100
scale = exp(rnorm(n))
prec = scale*tau
y = rnorm(n, mean = eta, sd = 1/sqrt(prec))
data = list(y=y, z=z)
formula = y ~ 1+z
result = inla(formula, family = "gaussian", data = data,
              control.data = list(prior = "loggamma",
                                   param = c(1.0, 0.01),
                                   initial = 2),
              scale=scale, keep=TRUE)
summary(result)
```

Notes

None.