Análisis de Sistemas Estructurado Introducción

Sistemas de Información II Juan Carlos Ramos @2016

Análisis Estructurado

- Actividad de Construcción de Modelos
- Reflejan el 'Flujo y Contenido de la Información'
- Se parte el sistema 'funcionalmente'
- Se establece la ESENCIA del problema

Análisis Estructurado

Modelo de Flujo de Información

Análisis Estructurado

- Dbjetivo: visión funcional/de proceso del sistema.
- ▶ El sistema visto como *proceso*.
- Podemos crear un modelo de flujo para cualquier sistema de computadora, independientemente del tamaño y de la complejidad.
- El análisis estructurado es una técnica de modelización del flujo y del contenido de la información.
- Los principales modelos que se generan en el Análisis Estructurado son los DFD y DER.

Diagramas de Flujo de Datos

Proceso de Análisis

Proceso de Análisis

- La labor más difícil es determinar <u>qué es</u> parte del sistema y <u>qué no</u>.
- Primer modelo: definir las interfaces entre el sistema y el resto del ambiente.

- Elementos para definir el ambiente
 - Declaración de propósitos
 - Diagrama de Contexto
 - Lista de Acontecimientos

Declaración de propósitos

Declaración textual breve y concisa del propósito del sistema.

Ejemplo:

El objetivo del sistema es gestionar de una manera eficiente la información de libros, de datos personales de socios, las respectivas cuotas que deben abonar, gestionar las transacciones de alquileres y reservas de libros, y el apoyo a la toma de decisiones de la dirección de la biblioteca en lo relativo a la compra de libros y evolución societaria.

- Explicitando lo que NO se va a hacer
 - "Pero no gestiona el proceso de compra ni relaciones con los proveedores de libros."
- Este es un aspecto importante desde el punto de vista 'contractual' y de definición de 'alcances'.

Diagrama de Contexto

- Caso especial del diagrama de flujo de datos, en donde una sola burbuja representa todo el sistema.
- Enfatiza varias características importantes del sistema:
 - Las personas, organizaciones y sistemas con los que se comunica el sistema. (Entidades Externas)
 - Los datos que el sistema recibe del mundo exterior y que deben procesarse de alguna forma. (Flujos de Entrada)
 - Los datos que el sistema produce y que se envían al mundo exterior. (Flujos de Salida)
 - La frontera entre el sistema y el resto del mundo.

▶ El Diagrama de Contexto

Diagrama de Contexto

Lista de Acontecimientos

Lista narrativa de los "estímulos" que ocurren en el mundo exterior a los cuales el sistema debe responder.

Ejemplos:

- ▶ El bibliotecario ingresa un libro.
- ▶ El bibliotecario modifica los datos de un libro.
- Un socio presenta su solicitud de adhesión.
- ▶ Un socio paga una cuota.
- Un socio alquila un libro
- Un socio devuelve un libro

- El modelo del comportamiento final que el sistema debe tener para manejar con éxito el ambiente.
- Dibujar un DFD con un proceso para la respuesta del sistema ante cada evento de 'estímulo'
- ldentificación de respuestas a acontecimientos
 - Se dibuja una burbuja, o proceso, para cada acontecimiento de la lista.
 - La burbuja se nombra describiendo la respuesta que el sistema debe dar al acontecimiento asociado.

- Identificación de respuestas a acontecimientos (y 2)
 - Se dibujan las entradas y salidas apropiadas de tal forma que la burbuja pueda dar la respuesta requerida, y se dibujan los almacenes, como sea apropiado, para la comunicación entre burbujas.
 - El borrador de DFD que resulta se compara con el diagrama de contexto y la lista de acontecimientos para asegurar que esté completo y sea consistente

▶ I. El bibliotecario ingresa un libro.

2. El bibliotecario modifica los datos de un libro.

> 3 - Enviar reporte de alquileres a la Dirección.

- Complementos
 - Especificación de Procesos
 - Diccionario de Datos

Modelo Esencial

- ¿Qué tipo de modelo debemos construir?
- ¿Debemos modelar completamente el sistema actual?
- Debemos modelar una propuesta para el sistema?

Premisa:

"Si estamos estudiando/analizando un sistema es por que el mismo presenta problemas, y en consecuencia debe ser modificado".

Recomendación:

- El analista evite modelar el sistema actual de ser posible.
- Se debe comenzar tan pronto como sea posible, a desarrollar un modelo del nuevo sistema que el usuario desea.

Modelo Esencial

¿Qué es el Modelo Esencial?

Es un modelo de lo que el sistema debe hacer para satisfacer los requerimientos del usuario, diciendo lo mínimo posible (de preferencia <u>nada</u>) acerca de **cómo** se implantará.

Diagrama de Flujos de Datos

- Herramienta de modelado de procesos.
- Permite visualizar un sistema como:
 - red de procesos funcionales,
 - conectados entre sí por "conductos" y "tanques de almacenamientos" de datos.
- A medida que la información se mueve a través del software, es modificada por una serie de transformaciones.
- DFD es una técnica gráfica que representa el flujo de la información y las transformaciones que se aplican a los datos al moverse desde la entrada hasta la salida.

Entidad Externa Un productor o consumidor de información. Reside <u>fuera</u> de los límites del sistema.

Un transformador de información. Reside dentro de los límites del sistema a ser modelado.

Un elemento de datos o una colección de elementos de datos en movimiento (Flujo).

Almacén de datos

Un depósito de datos que se guardan para ser usados por uno o más procesos.

- ¿Cómo combinar estos elementos?
 - I. Describir el problema
 - 2. Detectar el proceso en sí, las entidades externas, los almacenes y los flujos.
 - 3. Representar el DFD

Pensar el problema como un 'proceso'

 Un proveedor presenta una factura para su cobro.

- Información complementaria:
 - 'Proveedor' es una empresa registrada como tal.
 - Cada factura debe estar asociado a una "Cuenta de Gastos".

- Reglas de Construcción
 - Escoger nombres con significado para los procesos, flujos, almacenes y terminadores.
 - Numerar los procesos.
 - Redibujar el DFD tantas veces como sea necesario estéticamente.

 Producir
 - Evitar los DFD excesivamente complejos.
 - Asegurarse de que el DFD sea internamente consistente y que también lo sea con cualesquiera DFD relacionados con él.

Informe

de

- Nombres de procesos
 - Usar un verbo activo y un objeto
 - Calcular trayectoria del proyectil
 - Producir informe de inventario
 - Validar número telefónico
 - Asignar estudiantes a la clase
 - No válidos
 - Hacer Algo
 - Funciones Misceláneas
 - Manejar Entradas
 - **Encargarse** de Clientes

Sincronismo

- Los procesos en los DFDs NO deberían relacionarse directamente, para respetar el 'asincronismo' requerido.
- Se comunican a través de los almacenes: Un proceso escribe, otro lee.
- De ser necesario, se indica el sincronismo (Normalmente en los niveles detallados de DFD)

Sincrónico

- Sobre los Terminadores/Entidades
 Externas
 - Son externos al sistema; los flujos que los conectan representa la interfaz.
 - No se puede cambiar los contenidos de un terminador o la manera en la que trabaja.
 - Las relaciones que existan entre los terminadores
 no se muestran en el modelo de DFD.

Proveedor

- El sistema se concibe como un 'transformador de flujos de entradas en salidas'
- En consecuencia, cada DFD es una transformación de entradas en salidas (internas o externas)

Todo DFD :

- Comienza con la llegada de un 'evento/flujo', anunciado por una 'entidad externa' (generalmente).
- Termina con un 'flujo de datos' hacia una 'entidad externa' o almacén de datos.

- Ejemplo: Eventos Temporales
 - "Todos los días a las 9 hs se generan las boletas de depósitos con los cheques existentes en cartera que puden ser depositados en la fecha. Las boletas de depósitos se envían al Banco.".

Referencias

- "Análisis Estructurado Moderno", Edward Yourdon, Prentice Hall, 1989
- "Análisis y Diseño de sistemas", 9na Ed, K. Kendall y J. Kendall, Pearson, 2011