Examen final

13 janvier 2017

[durée : 3 heures]

⚠ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Géométrie du plan complexe)

On se place dans le plan complexe. Soit l'application $\phi: \mathbb{C} \setminus \{3i\} \to \mathbb{C}$ définie par

$$\phi(z) = \frac{z-2}{iz+3}$$
 pour $z \neq 3i$.

- a) Déterminer et dessiner l'ensemble $\phi^{-1}(\mathbb{R})$.
- b) Déterminer et dessiner l'ensemble $\phi^{-1}(i\mathbb{R})$.

Indication: Dans les deux questions, vous pouvez déterminer les couples de réels (x,y) tels que z = x + iy soit dans l'ensemble recherché.

Exercice 2 (Espaces affines et transformations affines)

Soit \mathcal{E} un espace affine. Pour $\Omega \in \mathcal{E}$ et $\lambda \in \mathbb{R}$, on note $H_{\Omega,\lambda}$ l'homothétie de centre Ω et de rapport $\lambda \neq 1$. Et pour $\vec{v} \in \vec{E}$, on désigne par $T_{\vec{v}}$ la translation du vecteur \vec{v} .

- a) Déterminer la nature et les paramètres de $H_{\Omega,\lambda} \circ T_{\vec{v}}$.
- b) Déterminer la nature et les paramètres de $T_{\vec{v}} \circ H_{\Omega,\lambda}$.
- c) Soit $\mathcal E$ l'espace affine des polynômes de degré 2. Déterminer l'image de $P(X)=X^2+2X$ par l'homothétie de centre $\Omega(X) = (X-1)(X+1)$ et de rapport -2.

Exercice 3 (Espaces euclidiens et isométries)

On considère l'espace affine \mathbb{R}^3 muni de sa structure euclidienne standard. Soit l'application $\phi: \mathbb{R}^3 \to \mathbb{R}^3$, dont l'expression dans la base canonique est

$$\phi(x,y,z) = \frac{1}{3}(-x+2y+2z+3,2x-y+2z,2x+2y-z).$$

- a) Montrer que ϕ est une application affine.
- **b)** Donner la matrice $M_{\vec{\phi}}$ de la partie linéaire de ϕ .
- c) Montrer que ϕ est une isométrie.
- d) Déterminer la nature et les paramètres de la partie linéaire $\overrightarrow{\phi}$.
- e) Déterminer la nature et les paramètres de ϕ .

Exercice 4 (Coniques)

a) Soient deux cercles C_1 et C_2 de centres respectifs O_1 et O_2 et de rayons respectifs R_1 et R_2 avec $R_1 > R_2$. Donner et justifier la condition nécessaire et suffisante pour que C_2 soit tangent intérieurement à C_1 .

Soient F et G deux points du plan euclidien, et C un cercle de centre G et de rayon R > d(F, G).

- b) On considère l'ensemble \mathcal{S} des centres Ω des cercles tangents intérieurement à \mathcal{C} et passant par G. Déterminer et dessiner l'ensemble \mathcal{S} .
- c) On considère l'ensemble \mathcal{E} des centres M des cercles tangents intérieurement à \mathcal{C} et passant par F. Montrer que cet ensemble est une ellipse, appelée ellipse de cercle directeur \mathcal{C} et de foyer F, dont on précisera les paramètres.
- d) Décrire et indiquer sur une figure les points de l'intersection $\mathcal{S} \cap \mathcal{E}$.
- e) Est-ce que toute ellipse est l'ellipse d'un certain cercle directeur $\mathcal C$ et d'un certain foyer F?

