

Net-Zero America - wyoming state report

2021-03-05

These data underlie graphs and tables presented in the Princeton Net-Zero America study:

E. Larson, C. Greig, J. Jenkins, E. Mayfield, A. Pascale, C. Zhang, J. Drossman, R. Williams, S. Pacala, R. Socolow, EJ Baik, R. Birdsey, R. Duke, R. Jones, B. Haley, E. Leslie, K. Paustian, and A. Swan, Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim report, Princeton University, Princeton, NJ, December 15, 2020. Report available at https://netzeroamerica.princeton.edu.

Notes

- These data are all data from the study available at https://netzeroamerica.prince-ton.edu.
- The Net-Zero America study describes five pathways to reach net-zero emissions and one "no new policies" reference scenario. In this document, state-level results are grouped by scenario. For some scenarios, the study generated national, but not statelevel results.
- Within results for a given scenario, data tables are organized into corresponding sections of the full net-zero study (e.g., Pillar 1, Pillar 2, etc.)
- For Pillar 6 (Land sinks), values shown are maximum carbon storage potentials.

Data by category and subcategory

1	E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	1
2	E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	1
3	E+ scenario - PILLAR 1: Efficiency/Electrification - Overview	1
4	E+ scenario - PILLAR 1: Efficiency/Electrification - Residential	1
5	E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	2
6	E+ scenario - PILLAR 2: Clean Electricity - Generating capacity	2
7	E+ scenario - PILLAR 2: Clean Electricity - Generation	2
8	E+ scenario - PILLAR 3: Clean fuels - Bioenergy	3
9	E+ scenario - PILLAR 4: CCUS - CO2 capture	3
10	E+ scenario - PILLAR 4: CCUS - CO2 pipelines	3
11	E+ scenario - PILLAR 4: CCUS - CO2 storage	3
12	E+ scenario - PILLAR 6: Land sinks - Agriculture	3
13	E+ scenario - PILLAR 6: Land sinks - Forests	4
14	E+ scenario - IMPACTS - Fossil fuel industries	7
15	E+ scenario - IMPACTS - Health	7
16	E+ scenario - IMPACTS - Jobs	7
17	E- scenario - PILLAR 1: Efficiency/Electrification - Commercial	8
18	E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	9
19	E- scenario - PILLAR 1: Efficiency/Electrification - Overview	9
20	E- scenario - PILLAR 1: Efficiency/Electrification - Residential	9
21	E- scenario - PILLAR 1: Efficiency/Electrification - Transportation	9
22	E- scenario - PILLAR 6: Land sinks - Agriculture	10
23	E- scenario - PILLAR 6: Land sinks - Forests	11
24	E- scenario - IMPACTS - Health	13
25	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	13
26	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand .	14
27	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview	14
28	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential	14
29	E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	14
30	E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity	15
31	E+RE+ scenario - PILLAR 2: Clean Electricity - Generation	15
32	E+RE+ scenario - PILLAR 6: Land sinks - Agriculture	15
33	E+RE+ scenario - PILLAR 6: Land sinks - Forests	16
34	E+RE+ scenario - IMPACTS - Health	18
35	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial	19
36	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	19
37	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview	19
38	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential	19
39	E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation	20
40	E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity	20
41	E+RE- scenario - PILLAR 2: Clean Electricity - Generation	20
42	E+RE- scenario - PILLAR 6: Land sinks - Agriculture	21
43	E+RE- scenario - PILLAR 6: Land sinks - Forests	21

44	E+RE- scenario - IMPACTS - Health	24
45	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial	24
46	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	24
47	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview	24
48	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential	25
49	E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation	25
50	E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity	26
51	E-B+ scenario - PILLAR 2: Clean Electricity - Generation	26
52	E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy	26
53	E-B+ scenario - PILLAR 4: CCUS - CO2 capture	26
54	E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines	26
55	E-B+ scenario - PILLAR 4: CCUS - CO2 storage	27
56	E-B+ scenario - PILLAR 6: Land sinks - Agriculture	27
57	E-B+ scenario - PILLAR 6: Land sinks - Forests	28
58	E-B+ scenario - IMPACTS - Health	30
59	REF scenario - PILLAR 1: Efficiency/Electrification - Commercial	31
60	REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand	31
61	REF scenario - PILLAR 1: Efficiency/Electrification - Overview	31
62	REF scenario - PILLAR 1: Efficiency/Electrification - Residential	31
63	REF scenario - PILLAR 1: Efficiency/Electrification - Transportation	32
64	REF scenario - PILLAR 6: Land sinks - Forests	32
65	REF scenario - PILLAR 6: Land sinks - Forests - REF only	34
66	REF scenario - IMPACTS - Health	35

Table 1: E+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	1,754	1,951	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	54.6	83	88.6	88.9	88.9	88.9
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric Heat Pump (%)	1.45	7.71	29.2	77.9	89.7	90.8	90.8
Sales of space heating units - Electric Resistance (%)	1.46	3.43	4.85	8.06	8.66	8.7	8.7
Sales of space heating units - Fossil (%)	0	0.209	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace (%)	97.1	88.6	66	14	1.67	0.543	0.493
Sales of water heating units - Electric Heat Pump (%)	0.014	0.99	13.4	41.7	48.6	49.2	49.2
Sales of water heating units - Electric Resistance (%)	0.674	2.42	14.8	42.9	49.7	50.4	50.4
Sales of water heating units - Gas Furnace (%)	99.2	96.2	71.5	15	1.33	0.057	0
Sales of water heating units - Other (%)	0.16	0.382	0.381	0.382	0.381	0.382	0.382

Table 2: E+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		0.475	0.492	0.982	1.06	0.888	0.932
Cumulative 5-yr (billion \$2018)							

Table 3: E+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	23.9	23.9	23.4	22.2	20.6	19.5	18.9
Final energy use - Industry (PJ)	91.2	95.3	94.6	94.5	96.9	97.8	98.7
Final energy use - Residential (PJ)	12.4	11.7	11.2	10	8.47	7.35	6.61
Final energy use - Transportation (PJ)	100	93.7	82.5	69.4	57.8	50.9	48.2

Table 4: E+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	0.195	0.209	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	38	51.2	91.7	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	62	48.8	8.35	0.42	0	0	0
Sales of space heating units - Electric	5.11	12.5	35.2	82	92.9	94	93.9
Heat Pump (%)							
Sales of space heating units - Electric	9.04	15.7	12.6	5.87	4.27	4.11	4.16
Resistance (%)							
Sales of space heating units - Fossil (%)	15.2	17.3	12.6	2.36	0.19	0.008	0
Sales of space heating units - Gas (%)	70.6	54.6	39.6	9.78	2.61	1.91	1.89
Sales of water heating units - Electric	0	0.824	11.4	35.5	41	41.4	41.4
Heat Pump (%)							
Sales of water heating units - Electric	12.2	25.1	33.5	52.4	57.1	57.6	57.7
Resistance (%)							
Sales of water heating units - Gas Furnace	87.1	73.3	54.2	11.3	0.997	0.043	0
(%)							
Sales of water heating units - Other (%)	0.718	0.834	0.853	0.869	0.883	0.888	0.894

Table 5: E+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	161	411	669	1,013	1,103	1,051
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.067	0	0.335	0	1.49	0	2.42
units)							
Public EV charging plugs - L2 (1000 units)	0.087	0	8.09	0	36.1	0	58.5
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	2.1	2.29	1.49	0.482	0.084	0.013	0
Vehicle sales - Light-duty - EV (%)	2.08	9.65	37.5	78.2	95.9	99.3	100
Vehicle sales - Light-duty - gasoline (%)	92.9	84.3	58.1	20.2	3.78	0.605	0
Vehicle sales - Light-duty - hybrid (%)	2.64	3.27	2.57	1.02	0.236	0.048	0
Vehicle sales - Light-duty - hydrogen FC	0.113	0.371	0.249	0.08	0.015	0.003	0
(%)							
Vehicle sales - Light-duty - other (%)	0.126	0.123	0.087	0.031	0.006	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 6: E+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant	0	0	0	0	0	0	0
(billion \$2018)							
Capital invested - Biomass w/ccu allam	0	0	0	0	0	0	0
power plant (billion \$2018)							
Capital invested - Biomass w/ccu power	0	0	0	0	0	0	0.302
plant (billion \$2018)							
Capital invested - Wind - Base (billion	0	1.38	9.97	7.61	10.7	7.23	3.44
\$2018)							
Capital invested - Wind - Constrained	0	6.49	5.04	2.64	3.93	3.26	2.02
(billion \$2018)							
Installed (cumulative) - OffshoreWind -	0	0	0	0	0	0	0
Base land use assumptions (MW)							
Installed (cumulative) - Rooftop PV (MW)	9.15	13.9	18.7	24.6	32	41.1	52.3
Installed (cumulative) - Solar - Base land	0	0	0	0	0	0	0
use assumptions (MW)							
Installed (cumulative) - Wind - Base land	5,890	6,828	14,320	20,451	29,540	35,993	39,239
use assumptions (MW)							

Table 7: E+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	339
Wind - Base land use assumptions (GWh)	24,571	3,643	25,630	20,713	29,772	21,263	11,172
Wind - Constrained land use assumptions (GWh)	24,034	3,352	14,690	10,169	10,431	10,255	4,402

Table 8: E+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	0	0	0	0	16.5
Conversion capital investment -	0	0	0	0	0	0	277
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	1
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 9: E+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	0	0	0	0.32
Annual - BECCS (MMT)		0	0	0	0	0	0.32
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	0	0	0	0.32
Cumulative - BECCS (MMT)		0	0	0	0	0	0.32
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0	0	0	0

Table 10: E+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	25.7	25.7	95.7	25.7	192
Cumulative investment - All (million \$2018)		0	13.7	14.8	52.6	14.8	117
Cumulative investment - Spur (million \$2018)		0	13.7	14.8	52.6	14.8	117
Cumulative investment - Trunk (million \$2018)		0	0	0	0	0	0
Spur (km)		0	25.7	25.7	95.7	25.7	192
Trunk (km)		0	0	0	0	0	0

Table 11: E+ scenario - PILLAR 4: CCUS - CO2 storage

Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							

Table 12: E+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							-742
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-771
deployment - Total (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-378
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-14.5
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-393
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,003
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							44.6
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,048
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							513
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							22.3
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							535
deployment - Total (1000 hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,948
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-13,225
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-2,406
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-28.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-240
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-385
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-2,376
cropland (1000 tCO2e/y)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	ks - Forests (2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Reforest							-1,909
pasture (1000 tC02e/y)							
Carbon sink potential - High - Restore							-3,241
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-976
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-4,670
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-924
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-14.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-80
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-135
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest							-1,188
cropland (1000 tCO2e/y)							•
Carbon sink potential - Low - Reforest							-145
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,092
productivity (1000 tCO2e/y)							1,072
Carbon sink potential - Mid - Accelerate							-1,462
regeneration (1000 tC02e/y)							-1,402
Carbon sink potential - Mid - All (not							-8,947
counting overlap) (1000 tCO2e/y)							-0,941
							-403
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tC02e/y)							1 / / 5
Carbon sink potential - Mid - Extend							-1,665
rotation length (1000 tC02e/y)							04.5
Carbon sink potential - Mid - Improve							-21.5
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-160
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-260
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,782
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,027
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,167
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							319
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							70.0
(1000 hectares)							
Land impacted for carbon sink potential -							1,227
High - Extend rotation length (1000							1,221
= ,							
hectares)							10 /
Land impacted for carbon sink potential -							10.6
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							

Table 13: E+ scenario - PILLAR 6: Land sinks - Forests (continued)

Table 13: E+ Scenario - PILLAR 6: Lunu Sir				0005	00/0	00/5	0050
Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							36.5
High - Increase trees outside forests							
(1000 hectares)							455
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							54.2
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,074
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,972
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							159
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							470
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							5.31
Low - Improve plantations (1000							0.0.
hectares)							
Land impacted for carbon sink potential -		-					0
Low - Increase retention of HWP (1000							·
hectares)							
Land impacted for carbon sink potential -			+				19.2
Low - Increase trees outside forests							17.2
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							10.0
Land impacted for carbon sink potential -							9.4
Low - Reforest pasture (1000 hectares)							9.4
Land impacted for carbon sink potential -							(50
·							650
Low - Restore productivity (1000							
hectares)							1 / 00
Land impacted for carbon sink potential -							1,480
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							239
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							90.8
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							848
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.99
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							27.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							118
	i l		 				-

Tahla 12. Fx	econario -	DTII AD 6.	Land sinks -	Enrecte	(continued)
Table 15. Et	SCEIIUI 10 -	PILLAK O.	LUIIU SIIIKS -	. คบา ยอเอา	COHUHUEUT

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - Mid - Reforest pasture (1000 hectares)							68
Land impacted for carbon sink potential - Mid - Restore productivity (1000 hectares)							1,309
Land impacted for carbon sink potential - Mid - Total impacted (over 30 years) (1000 hectares)							2,709

Table 14: E+ scenario - IMPACTS - Fossil fuel industries

Item	2020	2025	2030	2035	2040	2045	2050
Natural gas consumption - Annual (tcf)		127	107	86	64.7	40.7	28.3
Natural gas consumption - Cumulative (tcf)		0	0	0	0	0	2,590
Natural gas production - Annual (tcf)		1,923	1,818	1,583	1,339	1,062	825
Oil consumption - Annual (million bbls)		28.7	25.8	21.1	16.3	12.6	8.98
Oil consumption - Cumulative (million bbls)		0	0	0	0	0	638
Oil production - Annual (million bbls)		114	114	114	90.5	73.5	48.9

Table 15: E+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		28.4	0.02	0.02	0.015	0.009	0
Coal (million 2019\$)							
Monetary damages from air pollution -		6.16	3.96	2.86	2.71	1.79	0.854
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		23.8	21.5	15.8	8.75	3.79	1.38
Transportation (million 2019\$)							
Premature deaths from air pollution -		3.21	0.002	0.002	0.002	0.001	0
Coal (deaths)							
Premature deaths from air pollution -		0.695	0.447	0.323	0.305	0.202	0.096
Natural Gas (deaths)							
Premature deaths from air pollution -		2.67	2.42	1.78	0.984	0.427	0.156
Transportation (deaths)							

Table 16: E+ scenario - IMPACTS - Jobs

14516 161 21 666114116 11 11 11 1616 6666							
Item	2020	2025	2030	2035	2040	2045	2050
By economic sector - Agriculture (jobs)		0	0	0	0	0	15.2
By economic sector - Construction (jobs)		6,007	8,230	9,850	11,769	12,143	11,338
By economic sector - Manufacturing		6,304	7,764	8,870	8,022	6,909	6,810
(jobs)							
By economic sector - Mining (jobs)		9,381	6,651	5,046	3,291	2,068	1,102
By economic sector - Other (jobs)		301	533	739	1,018	1,171	1,210
By economic sector - Pipeline (jobs)		730	663	582	452	328	218
By economic sector - Professional (jobs)		4,587	5,950	7,183	8,786	9,437	9,204
By economic sector - Trade (jobs)		5,530	4,608	5,011	5,494	5,659	5,396
By economic sector - Utilities (jobs)		4,537	5,685	7,196	9,489	10,097	9,660
By education level - All sectors -		10,995	12,151	13,693	15,164	15,141	14,338
Associates degree or some college (jobs)							
By education level - All sectors -		8,829	9,225	9,985	10,614	10,428	9,743
Bachelors degree (jobs)							
By education level - All sectors - Doctoral		303	340	375	418	426	402
degree (jobs)							
By education level - All sectors - High		15,167	16,128	17,979	19,456	19,147	17,959
school diploma or less (jobs)							
By education level - All sectors - Masters		2,082	2,242	2,447	2,668	2,669	2,510
or professional degree (jobs)							

Table 16: E+ scenario - IMPACTS - Jobs (continued)

145.5 15. = 1 555.14.15 = 1.11.15.5 5555 (55.							
Item	2020	2025	2030	2035	2040	2045	2050
By resource sector - Biomass (jobs)		0	0	0	0	0	65
By resource sector - CO2 (jobs)		0	0	14.6	17.8	18.1	99.9
By resource sector - Coal (jobs)		3,817	364	193	142	110	92.3
By resource sector - Grid (jobs)		4,061	7,284	10,871	15,254	16,972	16,762
By resource sector - Natural Gas (jobs)		10,721	8,701	6,672	5,462	3,800	2,339
By resource sector - Nuclear (jobs)		0	0	0	0	0	0
By resource sector - Oil (jobs)		11,814	10,701	9,641	7,043	5,296	3,313
By resource sector - Solar (jobs)		1,038	1,396	2,498	2,528	2,589	3,245
By resource sector - Wind (jobs)		5,926	11,639	14,590	17,873	19,026	19,036
Median wages - Annual - All (\$2019 per		63,266	63,772	64,191	64,926	65,780	66,476
job)							
On-Site or In-Plant Training - Total jobs - 1		5,836	6,397	7,147	7,851	7,799	7,334
to 4 years (jobs)							
On-Site or In-Plant Training - Total jobs - 4		2,288	2,580	2,904	3,292	3,324	3,113
to 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		6,003	6,532	7,253	7,886	7,818	7,382
None (jobs)							
On-Site or In-Plant Training - Total jobs -		273	318	366	416	420	398
Over 10 years (jobs)							
On-Site or In-Plant Training - Total jobs -		22,976	24,258	26,809	28,876	28,450	26,725
Up to 1 year (jobs)							
On-the-Job Training - All sectors - 1 to 4		7,427	8,216	9,195	10,152	10,113	9,519
years (jobs)							
On-the-Job Training - All sectors - 4 to 10		2,103	2,423	2,764	3,187	3,245	3,055
years (jobs)							
On-the-Job Training - All sectors - None		2,105	2,212	2,423	2,606	2,572	2,414
(jobs)							
On-the-Job Training - All sectors - Over 10		353	396	438	464	450	423
years (jobs)							
On-the-Job Training - All sectors - Up to 1		25,389	26,837	29,660	31,912	31,431	29,542
year (jobs)							
Related work experience - All sectors - 1		13,915	14,737	16,269	17,609	17,400	16,315
to 4 years (jobs)							
Related work experience - All sectors - 4		8,770	9,502	10,538	11,499	11,408	10,721
to 10 years (jobs)							
Related work experience - All sectors -		5,155	5,582	6,223	6,809	6,756	6,357
None (jobs)							
Related work experience - All sectors -		2,421	2,618	2,878	3,077	3,016	2,831
Over 10 years (jobs)							
Related work experience - All sectors - Up		7,116	7,645	8,571	9,325	9,231	8,729
to 1 year (jobs)							
Wage income - All (million \$2019)		2,365	2,556	2,855	3,137	3,145	2,989

Table 17: E- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	1,753	1,948	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Sales of space heating units - Electric	1.45	6.48	7.77	12	22.4	35.8	44.2
Heat Pump (%)							
Sales of space heating units - Electric	1.46	3.35	3.43	3.71	4.42	5.32	5.86
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.246	0.238	0.208	0.166	0.139	0.129
Sales of space heating units - Gas Furnace	97.1	89.9	88.6	84.1	73	58.7	49.8
(%)							
Sales of water heating units - Electric	0.014	0.298	1.07	3.62	9.83	17.9	23
Heat Pump (%)							

Table 17: E- scenario -	DILLAR 1. Efficience	//Electrification -	Commercial	continued
Table II. E- Scellul IO -	PILLAK I. EIIILIEIIL	// EIECH 111CUHUH -	CUITITIETCIULT	Continueur

Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Electric	0.674	1.73	2.5	5.04	11.2	19.3	24.3
Resistance (%)							
Sales of water heating units - Gas Furnace	99.2	97.6	96	91	78.6	62.4	52.4
(%)							
Sales of water heating units - Other (%)	0.16	0.382	0.381	0.382	0.381	0.382	0.382

Table 18: E- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		0.375	0.38	0.515	0.536	0.847	0.903
Cumulative 5-yr (billion \$2018)							

Table 19: E- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	23.9	23.9	23.7	23.6	23.4	23.1	22.9
Final energy use - Industry (PJ)	91.2	95.4	95	95.9	99	99.6	100
Final energy use - Residential (PJ)	12.4	11.7	11.3	11.1	10.7	10.3	9.8
Final energy use - Transportation (PJ)	100	94.2	85.5	79.2	74.7	69.4	62.9

Table 20: E- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	0.194	0.206	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	37.8	39.4	45.1	60.1	81	93.9	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	62.2	60.6	54.9	39.9	19	6.14	1.65
Sales of space heating units - Electric	5.11	10.8	12.2	17	27.9	41.4	49.7
Heat Pump (%)							
Sales of space heating units - Electric	9.04	15.9	15.6	15.1	13.8	11.8	10.6
Resistance (%)							
Sales of space heating units - Fossil (%)	15.2	17.6	17.7	15.3	12	9.78	8.25
Sales of space heating units - Gas (%)	70.6	55.7	54.6	52.6	46.3	37	31.4
Sales of water heating units - Electric	0	0.23	0.889	3.05	8.31	15.1	19.3
Heat Pump (%)							
Sales of water heating units - Electric	12.2	24.6	25.4	27.4	31.8	37.2	40.6
Resistance (%)							
Sales of water heating units - Gas Furnace	87.1	74.3	72.8	68.7	59	46.8	39.1
(%)							
Sales of water heating units - Other (%)	0.718	0.834	0.853	0.868	0.881	0.89	0.897

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	25.8	54.8	184	582	848
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.067	0	0.1	0	0.552	0	1.55
units)							
Public EV charging plugs - L2 (1000 units)	0.087	0	2.42	0	13.3	0	37.5
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	2.11	2.42	2.16	1.75	1.17	0.614	0.26
Vehicle sales - Light-duty - EV (%)	1.25	3.29	8.83	21	42.9	68.3	86.1
Vehicle sales - Light-duty - gasoline (%)	93.7	90.1	84.4	72.9	52.4	28.8	12.5

Table 21: E- scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Light-duty - hybrid (%)	2.7	3.64	4.15	4.05	3.3	2.1	1.08
Vehicle sales - Light-duty - hydrogen FC	0.114	0.396	0.359	0.287	0.213	0.122	0.056
(%)							
Vehicle sales - Light-duty - other (%)	0.127	0.13	0.123	0.109	0.081	0.046	0.021
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102

Table 22: E- scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-742
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Aggressive							-771
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-378
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-14.5
deployment - Permanent conservation							
cover (1000 tC02e/y)							
Carbon sink potential - Moderate							-393
deployment - Total (1000 tC02e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,003
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							44.6
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,048
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							F40
Land impacted for carbon sink - Moderate							513
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							22.3
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							535
deployment - Total (1000 hectares)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,948
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-13,225
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-2,406
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-28.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-240
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-385
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-2,376
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-1,909
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,241
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-976
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-4,670
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-924
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-14.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-80
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-135
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-1,188
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-145
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,092
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,462
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-8,947
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-1,665
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-21.5
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-160
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-260
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,782
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,027
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,167
productivity (1000 tCO2e/y)							

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -	2020	2023	2000	2000	2040	2040	319
High - Accelerate regeneration (1000							017
hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							70.0
(1000 hectares)							
Land impacted for carbon sink potential -							1,227
High - Extend rotation length (1000							1,221
hectares)							
Land impacted for carbon sink potential -							10.6
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							36.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							54.2
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,074
High - Restore productivity (1000							, -
hectares)							
Land impacted for carbon sink potential -							2,972
High - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							159
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							470
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							5.31
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							19.2
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							9.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							650
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,480
Low - Total impacted (over 30 years)		[
(1000 hectares)							
Land impacted for carbon sink potential -							239
Mid - Accelerate regeneration (1000							
hectares)		1	1			1	

Table 23: E- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							90.8
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							848
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.99
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							27.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							68
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,309
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,709
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 24: E- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		28.4	0.02	0.02	0.015	0.009	0
Coal (million 2019\$)							
Monetary damages from air pollution -		6.25	3.48	2.29	1.39	0.762	0.566
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		24.1	23.5	22.2	19.3	14.8	9.75
Transportation (million 2019\$)							
Premature deaths from air pollution -		3.21	0.002	0.002	0.002	0.001	0
Coal (deaths)							
Premature deaths from air pollution -		0.706	0.393	0.258	0.157	0.086	0.064
Natural Gas (deaths)							
Premature deaths from air pollution -		2.71	2.64	2.49	2.17	1.67	1.1
Transportation (deaths)							

${\it Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial}$

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	1,754	1,951	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric	1.45	7.71	29.2	77.9	89.7	90.8	90.8
Heat Pump (%)							
Sales of space heating units - Electric	1.46	3.43	4.85	8.06	8.66	8.7	8.7
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.209	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace	97.1	88.6	66	14	1.67	0.543	0.493
(%)							
Sales of water heating units - Electric	0.014	0.99	13.4	41.7	48.6	49.2	49.2
Heat Pump (%)							
Sales of water heating units - Electric	0.674	2.42	14.8	42.9	49.7	50.4	50.4
Resistance (%)							

Table 25: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Commercial (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Gas Furnace (%)	99.2	96.2	71.5	15	1.33	0.057	0
Sales of water heating units - Other (%)	0.16	0.382	0.381	0.382	0.381	0.382	0.382

Table 26: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		0.475	0.492	0.982	1.06	0.888	0.932
Cumulative 5-yr (billion \$2018)							

Table 27: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	23.9	23.9	23.4	22.2	20.6	19.5	18.9
Final energy use - Industry (PJ)	91.2	95.3	94.6	94.5	96.9	97.8	98.7
Final energy use - Residential (PJ)	12.4	11.7	11.2	10	8.47	7.35	6.61
Final energy use - Transportation (PJ)	100	93.7	82.5	69.4	57.8	50.9	48.2

Table 28: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	0.195	0.209	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	38	51.2	91.7	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	62	48.8	8.35	0.42	0	0	0
Sales of space heating units - Electric	5.11	12.5	35.2	82	92.9	94	93.9
Heat Pump (%)							
Sales of space heating units - Electric	9.04	15.7	12.6	5.87	4.27	4.11	4.16
Resistance (%)							
Sales of space heating units - Fossil (%)	15.2	17.3	12.6	2.36	0.19	0.008	0
Sales of space heating units - Gas (%)	70.6	54.6	39.6	9.78	2.61	1.91	1.89
Sales of water heating units - Electric	0	0.824	11.4	35.5	41	41.4	41.4
Heat Pump (%)							
Sales of water heating units - Electric	12.2	25.1	33.5	52.4	57.1	57.6	57.7
Resistance (%)							
Sales of water heating units - Gas Furnace	87.1	73.3	54.2	11.3	0.997	0.043	0
(%)							
Sales of water heating units - Other (%)	0.718	0.834	0.853	0.869	0.883	0.888	0.894

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	161	411	669	1,013	1,103	1,051
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.067	0	0.335	0	1.49	0	2.42
units)							
Public EV charging plugs - L2 (1000 units)	0.087	0	8.09	0	36.1	0	58.5
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	2.1	2.29	1.49	0.482	0.084	0.013	0
Vehicle sales - Light-duty - EV (%)	2.08	9.65	37.5	78.2	95.9	99.3	100
Vehicle sales - Light-duty - gasoline (%)	92.9	84.3	58.1	20.2	3.78	0.605	0
Vehicle sales - Light-duty - hybrid (%)	2.64	3.27	2.57	1.02	0.236	0.048	0

Table 29: E+RE+ scenario - PILLAR 1: Efficiency/Electrification - Transportation (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Light-duty - hydrogen FC	0.113	0.371	0.249	0.08	0.015	0.003	0
(%)							
Vehicle sales - Light-duty - other (%)	0.126	0.123	0.087	0.031	0.006	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 30: E+RE+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion \$2018)	0	0	0	0	0	0	10.5
Capital invested - Wind - Base (billion \$2018)	0	2.04	10.9	14.4	17.3	14	33.4
Installed (cumulative) - OffshoreWind - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed (cumulative) - Solar - Base land use assumptions (MW)	0	0	0	0	0	0	0
Installed (cumulative) - Wind - Base land use assumptions (MW)	0	0	0	0	0	0	0

Table 31: E+RE+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	0	0	0	0	0	0	24,112
Solar - Constrained land use assumptions (GWh)	0	0	0	0	0	0	11,411
Wind - Base land use assumptions (GWh)	25,403	5,366	27,960	38,298	48,229	40,243	102,271
Wind - Constrained land use assumptions (GWh)	24,034	5,835	15,079	14,847	20,420	15,349	96,133

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-742
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-771
deployment - Total (1000 tC02e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Moderate							-378
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							-14.5
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-393
deployment - Total (1000 tCO2e/y)							

Table 32: E+RE+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,003
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							44.6
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,048
Aggressive deployment - Total (1000							
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							513
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							22.3
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							535
deployment - Total (1000 hectares)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate			T				-1,948
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-13,225
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-2,406
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-28.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-240
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-385
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-2,376
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-1,909
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,241
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-976
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-4,670
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-924
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-14.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-80
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-135
trees outside forests (1000 tC02e/y)							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Low - Reforest							-1,188
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-145
pasture (1000 tCO2e/y)							
Carbon sink potential - Low - Restore							-1,092
productivity (1000 tCO2e/y)							
Carbon sink potential - Mid - Accelerate							-1,462
regeneration (1000 tCO2e/y)							
Carbon sink potential - Mid - All (not							-8,947
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-1,665
rotation length (1000 tCO2e/y)							,
Carbon sink potential - Mid - Improve							-21.5
plantations (1000 tCO2e/y)							21.0
Carbon sink potential - Mid - Increase							-160
retention of HWP (1000 tCO2e/y)							-100
Carbon sink potential - Mid - Increase							-260
							-260
trees outside forests (1000 tC02e/y)							1700
Carbon sink potential - Mid - Reforest							-1,782
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,027
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,167
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							319
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,227
High - Extend rotation length (1000							.,
hectares)							
Land impacted for carbon sink potential -		+					10.6
High - Improve plantations (1000							10.0
hectares)							
Land impacted for carbon sink potential -							0
							U
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							36.5
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							54.2
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,074
High - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,972
High - Total impacted (over 30 years)							•
(1000 hectares)							
Land impacted for carbon sink potential -		+					159
Low - Accelerate regeneration (1000							137
hectares)							
							070
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years) (1000 hectares)							
I II II II DOCTOROSI							

Table 33: E+RE+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							470
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							5.31
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							19.2
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							9.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							650
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,480
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							239
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							90.8
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							848
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.99
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							27.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							68
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,309
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,709
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 34: E+RE+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		28.4	0.02	0.02	0.015	0.009	0
Coal (million 2019\$)							
Monetary damages from air pollution -		5.58	3.29	1.66	1.36	0.746	0.458
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		23.8	21.5	15.8	8.75	3.79	1.38
Transportation (million 2019\$)							
Premature deaths from air pollution -		3.21	0.002	0.002	0.002	0.001	0
Coal (deaths)							

Table 34: E+RE+ scenario - IMPACTS - Health (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Premature deaths from air pollution -		0.63	0.371	0.187	0.153	0.084	0.052
Natural Gas (deaths)							
Premature deaths from air pollution -		2.67	2.42	1.78	0.984	0.427	0.156
Transportation (deaths)							

Table 35: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	1,754	1,951	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	54.6	83	88.6	88.9	88.9	88.9
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	45.4	17	11.4	11.1	11.1	11.1
Sales of space heating units - Electric	1.45	7.71	29.2	77.9	89.7	90.8	90.8
Heat Pump (%)							
Sales of space heating units - Electric	1.46	3.43	4.85	8.06	8.66	8.7	8.7
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.209	0.04	0.002	0	0	0
Sales of space heating units - Gas Furnace	97.1	88.6	66	14	1.67	0.543	0.493
(%)							
Sales of water heating units - Electric	0.014	0.99	13.4	41.7	48.6	49.2	49.2
Heat Pump (%)							
Sales of water heating units - Electric	0.674	2.42	14.8	42.9	49.7	50.4	50.4
Resistance (%)							
Sales of water heating units - Gas Furnace	99.2	96.2	71.5	15	1.33	0.057	0
(%)							
Sales of water heating units - Other (%)	0.16	0.382	0.381	0.382	0.381	0.382	0.382

Table 36: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		0.475	0.492	0.982	1.06	0.888	0.932
Cumulative 5-yr (billion \$2018)							

Table 37: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	23.9	23.9	23.4	22.2	20.6	19.5	18.9
Final energy use - Industry (PJ)	91.2	95.3	94.6	94.5	96.9	97.8	98.7
Final energy use - Residential (PJ)	12.4	11.7	11.2	10	8.47	7.35	6.61
Final energy use - Transportation (PJ)	100	93.7	82.5	69.4	57.8	50.9	48.2

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	0.195	0.209	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	38	51.2	91.7	99.6	100	100	100
Resistance (%)							
Sales of cooking units - Gas (%)	62	48.8	8.35	0.42	0	0	0
Sales of space heating units - Electric	5.11	12.5	35.2	82	92.9	94	93.9
Heat Pump (%)							
Sales of space heating units - Electric	9.04	15.7	12.6	5.87	4.27	4.11	4.16
Resistance (%)							
Sales of space heating units - Fossil (%)	15.2	17.3	12.6	2.36	0.19	0.008	0
Sales of space heating units - Gas (%)	70.6	54.6	39.6	9.78	2.61	1.91	1.89
Sales of water heating units - Electric	0	0.824	11.4	35.5	41	41.4	41.4
Heat Pump (%)							
Sales of water heating units - Electric	12.2	25.1	33.5	52.4	57.1	57.6	57.7
Resistance (%)							

Table 38: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Residential (continued)

• •	-	-		•			
Item	2020	2025	2030	2035	2040	2045	2050
Sales of water heating units - Gas Furnace	87.1	73.3	54.2	11.3	0.997	0.043	0
(%)							
Sales of water heating units - Other (%)	0.718	0.834	0.853	0.869	0.883	0.888	0.894

Table 39: E+RE- scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	161	411	669	1,013	1,103	1,051
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.067	0	0.335	0	1.49	0	2.42
units)							
Public EV charging plugs - L2 (1000 units)	0.087	0	8.09	0	36.1	0	58.5
Vehicle sales - Heavy-duty - diesel (%)	97.2	92.1	67	23.3	4.22	0.628	0
Vehicle sales - Heavy-duty - EV (%)	0.588	3.81	19	45.6	57.4	59.6	60
Vehicle sales - Heavy-duty - gasoline (%)	0.227	0.227	0.176	0.066	0.013	0.002	0
Vehicle sales - Heavy-duty - hybrid (%)	0.082	0.09	0.077	0.031	0.007	0.001	0
Vehicle sales - Heavy-duty - hydrogen FC	0.392	2.54	12.7	30.4	38.2	39.7	40
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.23	1.07	0.568	0.163	0.038	0
Vehicle sales - Light-duty - diesel (%)	2.1	2.29	1.49	0.482	0.084	0.013	0
Vehicle sales - Light-duty - EV (%)	2.08	9.65	37.5	78.2	95.9	99.3	100
Vehicle sales - Light-duty - gasoline (%)	92.9	84.3	58.1	20.2	3.78	0.605	0
Vehicle sales - Light-duty - hybrid (%)	2.64	3.27	2.57	1.02	0.236	0.048	0
Vehicle sales - Light-duty - hydrogen FC	0.113	0.371	0.249	0.08	0.015	0.003	0
(%)							
Vehicle sales - Light-duty - other (%)	0.126	0.123	0.087	0.031	0.006	0.001	0
Vehicle sales - Medium-duty - diesel (%)	64.7	59.7	42.3	14.4	2.59	0.384	0
Vehicle sales - Medium-duty - EV (%)	0.784	5.07	25.3	60.8	76.5	79.5	80
Vehicle sales - Medium-duty - gasoline (%)	33.7	33.3	25.5	9.32	1.77	0.277	0
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.402	0.341	0.14	0.03	0.005	0
Vehicle sales - Medium-duty - hydrogen	0.196	1.27	6.33	15.2	19.1	19.9	20
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.255	0.205	0.083	0.019	0.004	0

Table 40: E+RE- scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Solar PV - Base (billion \$2018)		0.836	0	0	0	0.603	0.481
Capital invested - Solar PV - Constrained (billion \$2018)		0	0	0	0.499	0	0.303
Capital invested - Wind - Base (billion \$2018)		1.53	4.64	5.2	8.26	6	0.933
Capital invested - Wind - Constrained (billion \$2018)		1.25	3.92	2.37	4.03	2.15	0.51

Table 41: E+RE- scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Solar - Base land use assumptions (GWh)	0	1,350	0	0	0	1,327	1,122
Solar - Constrained land use assumptions (GWh)	0	0	0	0	1,031	0	701
Wind - Base land use assumptions (GWh)	25,403	3,930	12,358	13,954	23,713	17,697	3,084
Wind - Constrained land use assumptions (GWh)	24,034	2,958	9,894	6,324	11,109	6,130	1,536

Table 42: E+RE- scenario - PILLAR 6: Land sinks - Agriculture

Table 42: E+RE- scenario - PILLAR 6: Land							
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive							0
deployment - Corn-ethanol to energy							
grasses (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-742
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Aggressive							-29
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-771
deployment - Total (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Corn-ethanol to energy							U
grasses (1000 tCO2e/y)							
							070
Carbon sink potential - Moderate							-378
deployment - Cropland measures (1000							
tCO2e/y)							4/ -
Carbon sink potential - Moderate							-14.5
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-393
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							0
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							1,003
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							44.6
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							1,048
Aggressive deployment - Total (1000							.,0 .0
hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Corn-ethanol to energy							J
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							513
							313
deployment - Cropland measures (1000							
hectares)							00.0
Land impacted for carbon sink - Moderate							22.3
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							535
deployment - Total (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,948
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-13,225
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-691
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-2,406
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-28.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-240
retention of HWP (1000 tCO2e/y)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Increase							-385
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							-2,376
Carbon sink potential - High - Reforest pasture (1000 tC02e/y)							-1,909
Carbon sink potential - High - Restore							-3,241
productivity (1000 tCO2e/y) Carbon sink potential - Low - Accelerate							-976
regeneration (1000 tCO2e/y) Carbon sink potential - Low - All (not							-4,670
counting overlap) (1000 tCO2e/y) Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-924
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-14.7
Carbon sink potential - Low - Increase							-80
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-135
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-1,188
Carbon sink potential - Low - Reforest							-145
pasture (1000 tC02e/y) Carbon sink potential - Low - Restore							-1,092
productivity (1000 tCO2e/y)							-1,092
Carbon sink potential - Mid - Accelerate regeneration (1000 tCO2e/y)							-1,462
Carbon sink potential - Mid - All (not							-8,947
counting overlap) (1000 tCO2e/y) Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tCO2e/y) Carbon sink potential - Mid - Extend							-1,665
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve plantations (1000 tCO2e/y)							-21.5
Carbon sink potential - Mid - Increase retention of HWP (1000 tCO2e/y)							-160
Carbon sink potential - Mid - Increase							-260
trees outside forests (1000 tCO2e/y) Carbon sink potential - Mid - Reforest							-1,782
cropland (1000 tCO2e/y) Carbon sink potential - Mid - Reforest							-1,027
pasture (1000 tCO2e/y)							·
Carbon sink potential - Mid - Restore productivity (1000 tCO2e/y)							-2,167
Land impacted for carbon sink potential -							319
High - Accelerate regeneration (1000 hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years) (1000 hectares)							
Land impacted for carbon sink potential -							1,227
High - Extend rotation length (1000 hectares)							• .
Land impacted for carbon sink potential -							10.6
High - Improve plantations (1000 hectares)							

Table 43: E+RE- scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential - High - Increase retention of HWP (1000							0
hectares)							
Land impacted for carbon sink potential -							36.5
High - Increase trees outside forests							
(1000 hectares)							157
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							54.2
Land impacted for carbon sink potential - High - Reforest pasture (1000 hectares)							54.2
Land impacted for carbon sink potential -							1,074
High - Restore productivity (1000							1,074
hectares)							
Land impacted for carbon sink potential -							2,972
High - Total impacted (over 30 years)							2,712
(1000 hectares)							
Land impacted for carbon sink potential -							159
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							470
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							5.31
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							10.0
Land impacted for carbon sink potential -							19.2
Low - Increase trees outside forests (1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							10.0
Land impacted for carbon sink potential -							9.4
Low - Reforest pasture (1000 hectares)							7
Land impacted for carbon sink potential -							650
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,480
Low - Total impacted (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							239
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							90.8
Mid - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							848
Mid - Extend rotation length (1000							
hectares)							7.99
Land impacted for carbon sink potential -							1.99
Mid - Improve plantations (1000 hectares) Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							27.9
Mid - Increase trees outside forests (1000							41.7
11.5. 5455 1. 555 5415146 101 6515 (1000	1					1	

Table 43: F+RF- scenario - PILLAR 6: Land sinks - Forests (continued)			
	T-61- / O. C. DC:	- DIIIAD / . I a	
	Table 7:3. F+RF- Scouncil	1 - PII I AR 6. I NNN SINKS	:

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							68
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,309
Mid - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							2,709
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 44: E+RE- scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		28.4	0.02	0.02	0.015	0.009	0
Coal (million 2019\$)							
Monetary damages from air pollution -		6.12	3.87	3.62	4.6	2.16	0.626
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		23.8	21.5	15.8	8.75	3.79	1.38
Transportation (million 2019\$)							
Premature deaths from air pollution -		3.21	0.002	0.002	0.002	0.001	0
Coal (deaths)							
Premature deaths from air pollution -		0.691	0.437	0.408	0.519	0.244	0.071
Natural Gas (deaths)							
Premature deaths from air pollution -		2.67	2.42	1.78	0.984	0.427	0.156
Transportation (deaths)							

Table 45: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s - Cumulative 5-yr (million \$2018)	0	1,753	1,948	0	0	0	0
Sales of cooking units - Electric Resistance (%)	41.9	46.2	50.2	60.8	75.4	84.6	87.8
Sales of cooking units - Gas (%)	58.1	53.8	49.8	39.2	24.6	15.4	12.2
Sales of space heating units - Electric Heat Pump (%)	1.45	6.48	7.77	12	22.4	35.8	44.2
Sales of space heating units - Electric Resistance (%)	1.46	3.35	3.43	3.71	4.42	5.32	5.86
Sales of space heating units - Fossil (%)	0	0.246	0.238	0.208	0.166	0.139	0.129
Sales of space heating units - Gas Furnace (%)	97.1	89.9	88.6	84.1	73	58.7	49.8
Sales of water heating units - Electric Heat Pump (%)	0.014	0.298	1.07	3.62	9.83	17.9	23
Sales of water heating units - Electric Resistance (%)	0.674	1.73	2.5	5.04	11.2	19.3	24.3
Sales of water heating units - Gas Furnace (%)	99.2	97.6	96	91	78.6	62.4	52.4
Sales of water heating units - Other (%)	0.16	0.382	0.381	0.382	0.381	0.382	0.382

Table 46: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		0.375	0.38	0.515	0.536	0.847	0.903
Cumulative 5-yr (billion \$2018)							

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Commercial (PJ)	23.9	23.9	23.7	23.6	23.4	23.1	22.9

Table 47: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Overview (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Final energy use - Industry (PJ)	91.2	95.4	95	95.9	99	99.6	100
Final energy use - Residential (PJ)	12.4	11.7	11.3	11.1	10.7	10.3	9.8
Final energy use - Transportation (PJ)	100	94.2	85.5	79.2	74.7	69.4	62.9

Table 48: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	0.194	0.206	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	37.8	39.4	45.1	60.1	81	93.9	98.3
Resistance (%)							
Sales of cooking units - Gas (%)	62.2	60.6	54.9	39.9	19	6.14	1.65
Sales of space heating units - Electric	5.11	10.8	12.2	17	27.9	41.4	49.7
Heat Pump (%)							
Sales of space heating units - Electric	9.04	15.9	15.6	15.1	13.8	11.8	10.6
Resistance (%)							
Sales of space heating units - Fossil (%)	15.2	17.6	17.7	15.3	12	9.78	8.25
Sales of space heating units - Gas (%)	70.6	55.7	54.6	52.6	46.3	37	31.4
Sales of water heating units - Electric	0	0.23	0.889	3.05	8.31	15.1	19.3
Heat Pump (%)							
Sales of water heating units - Electric	12.2	24.6	25.4	27.4	31.8	37.2	40.6
Resistance (%)							
Sales of water heating units - Gas Furnace	87.1	74.3	72.8	68.7	59	46.8	39.1
(%)							
Sales of water heating units - Other (%)	0.718	0.834	0.853	0.868	0.881	0.89	0.897

Table 49: E-B+ scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Light-duty vehicle capital costs -	0	0	25.8	54.8	184	582	848
Cumulative 5-yr (million \$2018)							
Public EV charging plugs - DC Fast (1000	0.067	0	0.1	0	0.552	0	1.55
units)							
Public EV charging plugs - L2 (1000 units)	0.087	0	2.42	0	13.3	0	37.5
Vehicle sales - Heavy-duty - diesel (%)	97.4	96	91.3	79.8	58.2	32.1	13.7
Vehicle sales - Heavy-duty - EV (%)	0.498	1.45	4.11	10.8	23.6	39.5	51
Vehicle sales - Heavy-duty - gasoline (%)	0.228	0.236	0.239	0.225	0.179	0.109	0.051
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.094	0.104	0.107	0.092	0.06	0.03
Vehicle sales - Heavy-duty - hydrogen FC	0.332	0.969	2.74	7.17	15.7	26.3	34
(%)							
Vehicle sales - Heavy-duty - other (%)	1.5	1.28	1.46	1.95	2.25	1.96	1.14
Vehicle sales - Light-duty - diesel (%)	2.11	2.42	2.16	1.75	1.17	0.614	0.26
Vehicle sales - Light-duty - EV (%)	1.25	3.29	8.83	21	42.9	68.3	86.1
Vehicle sales - Light-duty - gasoline (%)	93.7	90.1	84.4	72.9	52.4	28.8	12.5
Vehicle sales - Light-duty - hybrid (%)	2.7	3.64	4.15	4.05	3.3	2.1	1.08
Vehicle sales - Light-duty - hydrogen FC	0.114	0.396	0.359	0.287	0.213	0.122	0.056
(%)							
Vehicle sales - Light-duty - other (%)	0.127	0.13	0.123	0.109	0.081	0.046	0.021
Vehicle sales - Medium-duty - diesel (%)	64.8	62.2	57.7	49.4	35.6	19.6	8.37
Vehicle sales - Medium-duty - EV (%)	0.664	1.94	5.49	14.3	31.4	52.6	68
Vehicle sales - Medium-duty - gasoline (%)	33.8	34.7	34.7	31.9	24.4	14.2	6.33
Vehicle sales - Medium-duty - hybrid (%)	0.363	0.418	0.464	0.478	0.414	0.275	0.141
Vehicle sales - Medium-duty - hydrogen	0.166	0.485	1.37	3.58	7.86	13.2	17
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.253	0.266	0.279	0.286	0.258	0.184	0.102
		1					

Table 50: E-B+ scenario - PILLAR 2: Clean Electricity - Generating capacity

Item	2020	2025	2030	2035	2040	2045	2050
Capital invested - Biomass power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu allam power plant (billion \$2018)	0	0	0	0	0	0	0
Capital invested - Biomass w/ccu power plant (billion \$2018)	0	0	0	0	0	0	0.68

Table 51: E-B+ scenario - PILLAR 2: Clean Electricity - Generation

Item	2020	2025	2030	2035	2040	2045	2050
Biomass power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu allam power plant (GWh)	0	0	0	0	0	0	0
Biomass w/ccu power plant (GWh)	0	0	0	0	0	0	763

Table 52: E-B+ scenario - PILLAR 3: Clean fuels - Bioenergy

Item	2020	2025	2030	2035	2040	2045	2050
Biomass purchases (million \$2018/year)	0	0	0	0	0	0	47
Conversion capital investment -	0	0	0	0	0	0	624
Cumulative 5-yr (million \$2018)							
Number of facilities - Allam power w ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Beccs hydrogen	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Diesel (quantity)	0	0	0	0	0	0	0
Number of facilities - Diesel ccu (quantity)	0	0	0	0	0	0	0
Number of facilities - Power (quantity)	0	0	0	0	0	0	0
Number of facilities - Power ccu	0	0	0	0	0	0	1
(quantity)							
Number of facilities - Pyrolysis (quantity)	0	0	0	0	0	0	0
Number of facilities - Pyrolysis ccu	0	0	0	0	0	0	0
(quantity)							
Number of facilities - Sng (quantity)	0	0	0	0	0	0	0
Number of facilities - Sng ccu (quantity)	0	0	0	0	0	0	0

Table 53: E-B+ scenario - PILLAR 4: CCUS - CO2 capture

Item	2020	2025	2030	2035	2040	2045	2050
Annual - All (MMT)		0	0	0	0	0	0.75
Annual - BECCS (MMT)		0	0	0	0	0	0.75
Annual - Cement and lime (MMT)		0	0	0	0	0	0
Annual - NGCC (MMT)		0	0	0	0	0	0
Cumulative - All (MMT)		0	0	0	0	0	0.75
Cumulative - BECCS (MMT)		0	0	0	0	0	0.75
Cumulative - Cement and lime (MMT)		0	0	0	0	0	0
Cumulative - NGCC (MMT)		0	0	0	0	0	0

Table 54: E-B+ scenario - PILLAR 4: CCUS - CO2 pipelines

Item	2020	2025	2030	2035	2040	2045	2050
All (km)		0	60.7	25.7	25.7	311	279
Cumulative investment - All (million \$2018)		0	32.2	16.6	16.6	179	179
Cumulative investment - Spur (million \$2018)		0	32.2	16.6	16.6	179	179
Cumulative investment - Trunk (million \$2018)		0	0	0	0	0	0
Spur (km)		0	60.7	25.7	25.7	311	279
Trunk (km)		0	0	0	0	0	0

Table 55: E-B+ scenario - PILLAR 4: CCUS - CO2 storage

		•					
Item	2020	2025	2030	2035	2040	2045	2050
CO2 storage (MMT)		0	0	0	0	0	0
Injection wells (wells)		0	0	0	0	0	0
Resource characterization, appraisal, permitting costs (million \$2020)		0	0	0	0	0	0
Wells and facilities construction costs (million \$2020)		0	0	0	0	0	0

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture

Table 56: E-B+ scenario - PILLAR 6: Land 3 Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Aggressive	2020	2023	2030	2033	2040	2045	-5.6
deployment - Corn-ethanol to energy							-5.0
grasses (1000 tC02e/y)							
Carbon sink potential - Aggressive							-735
deployment - Cropland measures (1000							-133
tCO2e/y)							
Carbon sink potential - Aggressive							0
deployment - Cropland to woody energy							U
crops (1000 tC02e/y)							
Carbon sink potential - Aggressive							0
deployment - Pasture to energy crops							U
(1000 tC02e/y)							
Carbon sink potential - Aggressive							-28.3
deployment - Permanent conservation							20.0
cover (1000 tCO2e/y)							
Carbon sink potential - Aggressive							-769
deployment - Total (1000 tCO2e/y)							107
Carbon sink potential - Moderate							-5.6
deployment - Corn-ethanol to energy							0.0
grasses (1000 tC02e/y)							
Carbon sink potential - Moderate							-375
deployment - Cropland measures (1000							
tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Cropland to woody energy							
crops (1000 tCO2e/y)							
Carbon sink potential - Moderate							0
deployment - Pasture to energy crops							
(1000 tCO2e/y)							
Carbon sink potential - Moderate							-14.1
deployment - Permanent conservation							
cover (1000 tCO2e/y)							
Carbon sink potential - Moderate							-394
deployment - Total (1000 tCO2e/y)							
Land impacted for carbon sink -							8.46
Aggressive deployment - Corn-ethanol to							
energy grasses (1000 hectares)							
Land impacted for carbon sink -							2,452
Aggressive deployment - Cropland							
measures (1000 hectares)							
Land impacted for carbon sink -							2.77
Aggressive deployment - Cropland to							
woody energy crops (1000 hectares)							
Land impacted for carbon sink -							0
Aggressive deployment - Pasture to							
energy crops (1000 hectares)							
Land impacted for carbon sink -							43.5
Aggressive deployment - Permanent							
conservation cover (1000 hectares)							
Land impacted for carbon sink -							2,507
Aggressive deployment - Total (1000							
hectares)							

Table 56: E-B+ scenario - PILLAR 6: Land sinks - Agriculture (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink - Moderate							8.46
deployment - Corn-ethanol to energy							
grasses (1000 hectares)							
Land impacted for carbon sink - Moderate							507
deployment - Cropland measures (1000							
hectares)							
Land impacted for carbon sink - Moderate							2.77
deployment - Cropland to woody energy							
crops (1000 hectares)							
Land impacted for carbon sink - Moderate							0
deployment - Pasture to energy crops							
(1000 hectares)							
Land impacted for carbon sink - Moderate							21.7
deployment - Permanent conservation							
cover (1000 hectares)							
Land impacted for carbon sink - Moderate							540
deployment - Total (1000 hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate							-1,948
regeneration (1000 tCO2e/y)							
Carbon sink potential - High - All (not							-13,225
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - High - Avoid							-69
deforestation (1000 tCO2e/y)							
Carbon sink potential - High - Extend							-2,406
rotation length (1000 tCO2e/y)							
Carbon sink potential - High - Improve							-28.8
plantations (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-240
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - High - Increase							-385
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-2,376
cropland (1000 tCO2e/y)							
Carbon sink potential - High - Reforest							-1,909
pasture (1000 tCO2e/y)							
Carbon sink potential - High - Restore							-3,24
productivity (1000 tCO2e/y)							
Carbon sink potential - Low - Accelerate							-976
regeneration (1000 tCO2e/y)							
Carbon sink potential - Low - All (not							-4,670
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Low - Avoid							-115
deforestation (1000 tCO2e/y)							
Carbon sink potential - Low - Extend							-924
rotation length (1000 tCO2e/y)							
Carbon sink potential - Low - Improve							-14.7
plantations (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-80
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Low - Increase							-135
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-1,188
cropland (1000 tCO2e/y)							
Carbon sink potential - Low - Reforest							-145
pasture (1000 tC02e/y)							
Carbon sink potential - Low - Restore							-1,092
productivity (1000 tCO2e/y)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

lable 57: E-B+ scenario - PILLAR 6: Land si				0005	0010	0015	2050
Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - Mid - Accelerate							-1,462
regeneration (1000 tC02e/y)							0.047
Carbon sink potential - Mid - All (not							-8,947
counting overlap) (1000 tC02e/y)							/ 0.0
Carbon sink potential - Mid - Avoid							-403
deforestation (1000 tC02e/y)							4 / / =
Carbon sink potential - Mid - Extend							-1,665
rotation length (1000 tC02e/y)							04.5
Carbon sink potential - Mid - Improve							-21.5
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-160
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-260
trees outside forests (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,782
cropland (1000 tCO2e/y)							
Carbon sink potential - Mid - Reforest							-1,027
pasture (1000 tCO2e/y)							
Carbon sink potential - Mid - Restore							-2,167
productivity (1000 tCO2e/y)							
Land impacted for carbon sink potential -							319
High - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							93.6
High - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							1,227
High - Extend rotation length (1000							•
hectares)							
Land impacted for carbon sink potential -							10.6
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
High - Increase retention of HWP (1000							•
hectares)							
Land impacted for carbon sink potential -							36.5
High - Increase trees outside forests							00.0
(1000 hectares)							
Land impacted for carbon sink potential -							157
High - Reforest cropland (1000 hectares)							101
Land impacted for carbon sink potential -							54.2
High - Reforest pasture (1000 hectares)							34.2
Land impacted for carbon sink potential -							1,074
High - Restore productivity (1000							1,014
hectares)							
							2,972
Land impacted for carbon sink potential -							2,912
High - Total impacted (over 30 years)							
(1000 hectares)							150
Land impacted for carbon sink potential -							159
Low - Accelerate regeneration (1000							
hectares)							070
Land impacted for carbon sink potential -							87.9
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							470
Low - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							5.31
Low - Improve plantations (1000							
hectares)							

Table 57: E-B+ scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							19.2
Low - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							9.4
Low - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							650
Low - Restore productivity (1000							
hectares)							
Land impacted for carbon sink potential -							1,480
Low - Total impacted (over 30 years)							.,
(1000 hectares)							
Land impacted for carbon sink potential -							239
Mid - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							90.8
Mid - Avoid deforestation (over 30 years)							70.0
(1000 hectares)							
Land impacted for carbon sink potential -							848
Mid - Extend rotation length (1000							040
hectares)							
Land impacted for carbon sink potential -							7.99
Mid - Improve plantations (1000 hectares)							1.77
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							U
hectares)							
Land impacted for carbon sink potential -							27.9
Mid - Increase trees outside forests (1000							21.7
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							110
Land impacted for carbon sink potential -							68
Mid - Reforest pasture (1000 hectares)							00
Land impacted for carbon sink potential -							1,309
							1,309
Mid - Restore productivity (1000							
hectares)							0.700
Land impacted for carbon sink potential -							2,709
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 58: E-B+ scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution -		28.4	0.02	0.02	0.015	0.009	0
Coal (million 2019\$)							
Monetary damages from air pollution -		5.93	3.34	2.42	1.82	1.17	0.533
Natural Gas (million 2019\$)							
Monetary damages from air pollution -		24.1	23.5	22.2	19.3	14.8	9.75
Transportation (million 2019\$)							
Premature deaths from air pollution -		3.21	0.002	0.002	0.002	0.001	0
Coal (deaths)							
Premature deaths from air pollution -		0.669	0.377	0.273	0.206	0.132	0.06
Natural Gas (deaths)							
Premature deaths from air pollution -		2.71	2.64	2.49	2.17	1.67	1.1
Transportation (deaths)							

Table 59: REF scenario - PILLAR 1: Efficiency/Electrification - Commercial

Item	2020	2025	2030	2035	2040	2045	2050
Commercial HVAC investment in 2020s -	0	1,732	1,819	0	0	0	0
Cumulative 5-yr (million \$2018)							
Sales of cooking units - Electric	41.9	44.7	44.7	44.6	44.4	44.5	44.6
Resistance (%)							
Sales of cooking units - Gas (%)	58.1	55.3	55.3	55.4	55.6	55.5	55.4
Sales of space heating units - Electric	1.45	13.4	45.3	72.5	77.4	78.1	78.1
Heat Pump (%)							
Sales of space heating units - Electric	1.46	4.34	9.12	16.3	20.7	21.4	21.4
Resistance (%)							
Sales of space heating units - Fossil (%)	0	0.228	0.136	0.039	0.005	0	0
Sales of space heating units - Gas Furnace	97.1	82	45.5	11.2	1.88	0.584	0.494
(%)							
Sales of water heating units - Electric	0.014	0.03	0.03	0.03	0.03	0.03	0.03
Heat Pump (%)							
Sales of water heating units - Electric	0.674	1.46	1.46	1.47	1.46	1.47	1.46
Resistance (%)							
Sales of water heating units - Gas Furnace	99.2	98.1	98.1	98.1	98.1	98.1	98.1
(%)							
Sales of water heating units - Other (%)	0.16	0.382	0.381	0.382	0.381	0.382	0.382

Table 60: REF scenario - PILLAR 1: Efficiency/Electrification - Electricity demand

Item	2020	2025	2030	2035	2040	2045	2050
Electricity distribution capital invested -		0.451	0.465	0.504	0.521	0.589	0.612
Cumulative 5-yr (billion \$2018)							

Table 61: REF scenario - PILLAR 1: Efficiency/Electrification - Overview

Item	2020	2025	2030	2035	2040	2045	2050			
Final energy use - Commercial (PJ)	23.8	24.3	24.8	24.8	24.8	25.4	26.5			
Final energy use - Industry (PJ)	91.2	98	100	103	106	111	116			
Final energy use - Residential (PJ)	12.4	11.8	11.6	11.6	11.6	11.8	12			
Final energy use - Transportation (PJ)	100	94.3	86.2	81.7	81.7	84.2	87.4			

Table 62: REF scenario - PILLAR 1: Efficiency/Electrification - Residential

Item	2020	2025	2030	2035	2040	2045	2050
Residential HVAC investment in 2020s vs.	0	0.191	0.192	0	0	0	0
REF - Cumulative 5-yr (billion \$2018)							
Sales of cooking units - Electric	37.2	37.2	37.2	37.2	37.2	37.2	37.2
Resistance (%)							
Sales of cooking units - Gas (%)	62.8	62.8	62.8	62.8	62.8	62.8	62.8
Sales of space heating units - Electric	4.61	14.6	14.9	15.5	16.1	16.6	17.2
Heat Pump (%)							
Sales of space heating units - Electric	9.12	15.3	15.1	15.1	15.1	14.6	14
Resistance (%)							
Sales of space heating units - Fossil (%)	15.3	16.2	16.5	15.3	14	14.2	14.2
Sales of space heating units - Gas (%)	70.9	53.8	53.4	54	54.8	54.6	54.5
Sales of water heating units - Electric	0	0	0	0	0	0	0
Heat Pump (%)							
Sales of water heating units - Electric	12.2	24.4	24.7	25	25.4	25.6	25.8
Resistance (%)							
Sales of water heating units - Gas Furnace	87.1	74.7	74.4	74.1	73.7	73.6	73.3
(%)							
Sales of water heating units - Other (%)	0.718	0.834	0.853	0.868	0.881	0.89	0.897

Table 63: REF scenario - PILLAR 1: Efficiency/Electrification - Transportation

Item	2020	2025	2030	2035	2040	2045	2050
Vehicle sales - Heavy-duty - diesel (%)	98.1	98.2	97.9	97	95.6	93.5	91.6
Vehicle sales - Heavy-duty - EV (%)	0	0	0	0	0	0	0
Vehicle sales - Heavy-duty - gasoline (%)	0.229	0.242	0.257	0.274	0.294	0.317	0.343
Vehicle sales - Heavy-duty - hybrid (%)	0.083	0.096	0.112	0.13	0.15	0.174	0.202
Vehicle sales - Heavy-duty - hydrogen FC	0.119	0.138	0.16	0.186	0.216	0.25	0.29
(%)							
Vehicle sales - Heavy-duty - other (%)	1.51	1.31	1.57	2.37	3.69	5.71	7.57
Vehicle sales - Light-duty - diesel (%)	2.11	2.42	2.28	2.12	1.93	1.81	1.72
Vehicle sales - Light-duty - EV (%)	1.75	3.29	3.74	4.44	5.48	6.62	7.7
Vehicle sales - Light-duty - gasoline (%)	93.3	90.1	89.1	88	86.4	84.6	82.8
Vehicle sales - Light-duty - hybrid (%)	2.65	3.61	4.4	5	5.66	6.46	7.32
Vehicle sales - Light-duty - hydrogen FC	0.114	0.396	0.379	0.345	0.349	0.355	0.367
(%)							
Vehicle sales - Light-duty - other (%)	0.127	0.13	0.129	0.131	0.132	0.132	0.136
Vehicle sales - Medium-duty - diesel (%)	65.2	63.5	61.6	59.6	58	56.5	55.2
Vehicle sales - Medium-duty - EV (%)	0.027	0.105	0.329	0.671	0.895	0.973	0.993
Vehicle sales - Medium-duty - gasoline (%)	34	35.5	37	38.5	39.7	40.8	41.7
Vehicle sales - Medium-duty - hybrid (%)	0.365	0.427	0.496	0.577	0.674	0.793	0.929
Vehicle sales - Medium-duty - hydrogen	0.175	0.208	0.242	0.285	0.339	0.409	0.487
FC (%)							
Vehicle sales - Medium-duty - other (%)	0.255	0.271	0.298	0.345	0.42	0.528	0.671

Table 64: REF scenario - PILLAR 6: Land sinks - Forests

Item	2020	2025	2030	2035	2040	2045	2050
Carbon sink potential - High - Accelerate regeneration (1000 tCO2e/y)							-1,948
Carbon sink potential - High - All (not counting overlap) (1000 tC02e/y)							-13,225
Carbon sink potential - High - Avoid deforestation (1000 tCO2e/y)							-691
Carbon sink potential - High - Extend rotation length (1000 tC02e/y)							-2,406
Carbon sink potential - High - Improve plantations (1000 tC02e/y)							-28.8
Carbon sink potential - High - Increase retention of HWP (1000 tCO2e/y)							-240
Carbon sink potential - High - Increase trees outside forests (1000 tC02e/y)							-385
Carbon sink potential - High - Reforest cropland (1000 tCO2e/y)							-2,376
Carbon sink potential - High - Reforest pasture (1000 tCO2e/y)							-1,909
Carbon sink potential - High - Restore productivity (1000 tCO2e/y)							-3,241
Carbon sink potential - Low - Accelerate regeneration (1000 tCO2e/y)							-976
Carbon sink potential - Low - All (not counting overlap) (1000 tC02e/y)							-4,670
Carbon sink potential - Low - Avoid deforestation (1000 tCO2e/y)							-115
Carbon sink potential - Low - Extend rotation length (1000 tCO2e/y)							-924
Carbon sink potential - Low - Improve plantations (1000 tCO2e/y)							-14.7
Carbon sink potential - Low - Increase retention of HWP (1000 tC02e/y)							-80
Carbon sink potential - Low - Increase trees outside forests (1000 tC02e/y)							-135
Carbon sink potential - Low - Reforest cropland (1000 tCO2e/y)							-1,188

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item Control ink notantial Law Referent	2020	2025	2030	2035	2040	2045	205
Carbon sink potential - Low - Reforest							-14
pasture (1000 tCO2e/y)							1.00
Carbon sink potential - Low - Restore							-1,09
productivity (1000 tC02e/y)							
Carbon sink potential - Mid - Accelerate							-1,46
regeneration (1000 tC02e/y)							
Carbon sink potential - Mid - All (not							-8,94
counting overlap) (1000 tCO2e/y)							
Carbon sink potential - Mid - Avoid							-40
deforestation (1000 tCO2e/y)							
Carbon sink potential - Mid - Extend							-1,66
rotation length (1000 tCO2e/y)							
Carbon sink potential - Mid - Improve							-21
plantations (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-16
retention of HWP (1000 tCO2e/y)							
Carbon sink potential - Mid - Increase							-26
trees outside forests (1000 tC02e/y)							
Carbon sink potential - Mid - Reforest							-1,78
cropland (1000 tC02e/y)							.,. 0
Carbon sink potential - Mid - Reforest							-1,02
pasture (1000 tC02e/y)							1,01
Carbon sink potential - Mid - Restore							-2,16
productivity (1000 tC02e/y)							-2,10
Land impacted for carbon sink potential -							3
							3
High - Accelerate regeneration (1000							
hectares)							00
Land impacted for carbon sink potential -							93
High - Avoid deforestation (over 30 years)							
(1000 hectares)							1.00
Land impacted for carbon sink potential -							1,22
High - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							10
High - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							
High - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							36
High - Increase trees outside forests							
(1000 hectares)							
Land impacted for carbon sink potential -							15
High - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							54
High - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,07
High - Restore productivity (1000							1,01
hectares)							
Land impacted for carbon sink potential -	+	-					2,97
High - Total impacted (over 30 years)							۷,۶۱
(1000 hectares)							
Land impacted for carbon sink potential -	-						15
							15
Low - Accelerate regeneration (1000							
hectares)							
Land impacted for carbon sink potential -							87
Low - Avoid deforestation (over 30 years)							
(1000 hectares)							
Land impacted for carbon sink potential -							47
Low - Extend rotation length (1000							
hectares)							

Table 64: REF scenario - PILLAR 6: Land sinks - Forests (continued)

Item	2020	2025	2030	2035	2040	2045	2050
Land impacted for carbon sink potential -							5.31
Low - Improve plantations (1000							
hectares)							
Land impacted for carbon sink potential -							0
Low - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							19.2
Low - Increase trees outside forests							
(1000 hectares)							70 /
Land impacted for carbon sink potential -							78.6
Low - Reforest cropland (1000 hectares)							0.7
Land impacted for carbon sink potential -							9.4
Low - Reforest pasture (1000 hectares) Land impacted for carbon sink potential -							650
Low - Restore productivity (1000							630
hectares)							
Land impacted for carbon sink potential -							1,480
Low - Total impacted (over 30 years)							1,400
(1000 hectares)							
Land impacted for carbon sink potential -							239
Mid - Accelerate regeneration (1000							207
hectares)							
Land impacted for carbon sink potential -							90.8
Mid - Avoid deforestation (over 30 years)							, 0.0
(1000 hectares)							
Land impacted for carbon sink potential -							848
Mid - Extend rotation length (1000							
hectares)							
Land impacted for carbon sink potential -							7.99
Mid - Improve plantations (1000 hectares)							
Land impacted for carbon sink potential -							0
Mid - Increase retention of HWP (1000							
hectares)							
Land impacted for carbon sink potential -							27.9
Mid - Increase trees outside forests (1000							
hectares)							
Land impacted for carbon sink potential -							118
Mid - Reforest cropland (1000 hectares)							
Land impacted for carbon sink potential -							68
Mid - Reforest pasture (1000 hectares)							
Land impacted for carbon sink potential -							1,309
Mid - Restore productivity (1000							
hectares)							0.700
Land impacted for carbon sink potential -							2,709
Mid - Total impacted (over 30 years) (1000							
hectares)							

Table 65: REF scenario - PILLAR 6: Land sinks - Forests - REF only

Item	2020	2025	2030	2035	2040	2045	2050
Business-as-usual carbon sink - Natural uptake (Mt CO2e/y)	29		1.96				0.561
Business-as-usual carbon sink - Retained in Hardwood Products (Mt CO2e/y)	-0.065		-0.136				-0.143
Business-as-usual carbon sink - Total (Mt CO2e/y)	28.9		1.82				0.418

Table 66: REF scenario - IMPACTS - Health

Item	2020	2025	2030	2035	2040	2045	2050
Monetary damages from air pollution - Coal (million 2019\$)		56.8	32.8	17.8	14	12	11.5
Monetary damages from air pollution - Natural Gas (million 2019\$)		6.77	6.48	6.36	4.47	4.22	3.11
Monetary damages from air pollution - Transportation (million 2019\$)		24.1	23.9	23.6	23.5	23.2	23
Premature deaths from air pollution - Coal (deaths)		6.41	3.7	2.01	1.58	1.35	1.3
Premature deaths from air pollution - Natural Gas (deaths)		0.764	0.731	0.718	0.504	0.476	0.351
Premature deaths from air pollution - Transportation (deaths)		2.71	2.68	2.66	2.64	2.61	2.59