考研高数习题集

枫聆

2021年9月17日

目录

	行列式	1
	1.1 定义	
	1.2 化行阶梯形	
	1.3 按一行展开	
	1.4 按多行展开	
	1.5 特殊矩阵	
	1.6 数学归纳法	3
2	矩阵相似	4
	2.1 相似判定	
	2.2 对角化判定	4
3	二次型	5
	3.1 正定性的判定	5

行列式

定义

Annotation 1.1. 这类题特征

- 1. 按照行列式的完全展开式来计算某种特殊的矩阵
- 2. 给定某个具体的行列式值的基础上,通过行列式的性质来计算行列式.

Example 1.2. 证明: 如果在 n 阶行列式中,第 i_1, i_2, \dots, i_k 行分别与第 j_1, j_2, \dots, j_l 列交叉位置的元素都是 0,并且 k+l>n,那么这个行列式的值等于 0.

证明. 按照行列式的完全展开式,每一项都必须要包含第 i_1, i_2, \cdots, i_k 行中位于不用列的元素,则有 k 个元素. 由已知的条件,第 i_1, i_2, \cdots, i_k 行只与 j_1, j_2, \cdots, j_l 之外的 n-l 元素可能不为零,但是 k > n-l,说明每一项 必取到 0,因此行列式为 0.

Example 1.3. 证明

$$\begin{vmatrix} a_1 + c_1 & b_1 + a_1 & c_1 + b_1 \\ a_2 + c_2 & b_2 + a_2 & c_2 + b_2 \\ a_3 + c_3 & b_3 + a_3 & c_3 + b_3 \end{vmatrix} = 2 \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

化行阶梯形

Annotation 1.4. 不是特殊矩阵的第一选择.

按一行展开

Annotation 1.5. 若是可以将某一行或者某一列消去,只留下一个非零元素,按行和按列展开是不错的选择.

Example 1.6. 计算

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 & 1-n \end{vmatrix}$$

hints可以考虑把所有列都加到第一列,再按第一列展开

$$|\mathbf{A}| = \begin{vmatrix} \frac{(1+n)n}{2} & 2 & 3 & \cdots & n-1 & n \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & n-1 & n-1 \end{vmatrix} = \frac{(1+n)n}{2} \begin{vmatrix} -1 & 0 & \cdots & 0 & 0 \\ 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & n-1 & n-1 \end{vmatrix}$$

同样上述矩阵也是所有列加到第一列,最终有 $|\mathbf{A}| = (-1)^{n-1} \frac{(n+1)!}{2}$.

按多行展开

Annotation 1.7. 好像没有直接使用拉普拉斯定理的习惯,比较特殊的分块矩阵可以考虑.

特殊矩阵

Annotation 1.8. 常见的特殊矩阵https://www.bilibili.com/read/cv266516

- 1. 范德蒙德行列式
- 2. 爪型行列式

数学归纳法

Annotation 1.9. 通常证明手法也是按行或者列展开.

Example 1.10. 计算 n 阶行列式

$$\boldsymbol{D}_n = \begin{vmatrix} x & 0 & 0 & \cdots & 0 & 0 & a_0 \\ -1 & x & 0 & \cdots & 0 & 0 & a_1 \\ 0 & -1 & x & \cdots & 0 & 0 & a_2 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & x & a_{n-2} \\ 0 & 0 & 0 & \cdots & 0 & -1 & x + a_{n-1} \end{vmatrix}$$

证明. 当 n=2 时,有

$$D_2 = \begin{vmatrix} x & a_0 \\ -1 & x + a_1 \end{vmatrix} = x^2 + a_1 x + a_0$$

假设对于上述形式的 n-1 阶行列式,有

$$\begin{vmatrix} x & 0 & 0 & \cdots & 0 & 0 & a_0 \\ -1 & x & 0 & \cdots & 0 & 0 & a_1 \\ 0 & -1 & x & \cdots & 0 & 0 & a_2 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -1 & x + a_{n-2} \end{vmatrix} = x^{n-1} + a_{n-2}x^{n-2} + \dots + a_1x + a_0$$

那么 n 阶行列式,把它按第一行展开,有

$$D_{n} = x \begin{vmatrix} x & 0 & \cdots & 0 & 0 & a_{1} \\ -1 & x & \cdots & 0 & 0 & a_{2} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & x & a_{n-2} \\ 0 & 0 & \cdots & 0 & -1 & x + a_{n-1} \end{vmatrix} + (-1)^{1+n} a_{0} \begin{vmatrix} -1 & x & 0 & \cdots & 0 & 0 \\ 0 & -1 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & x \\ 0 & 0 & 0 & \cdots & -1 & x \\ 0 & 0 & 0 & \cdots & 0 & -1 \end{vmatrix}$$

$$= x(x^{n-1} + a_{n-1}x^{n-2} + \cdots + a_{2}x + a_{1}) + (-1)^{1+n}a_{0}(-1)^{n-1}$$

$$= x^{n} + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_{1}x + a_{0}$$

矩阵相似

相似判定

Proposition 2.1. 常用判定矩阵相似的方法,遇题依次向下使用下述方法.

- 1. 必要条件: 相似必行列值相等;
- 2. 必要条件: 特征值相等;
- 3. 充分条件: 对于都可对角化的矩阵, 判定其特征值是否相同;
- 4. 否命题的充分条件: 一个可对角化, 一个不可对角化, 则它们不相似;
- 5. 对于都不可对角的矩阵,同一个特征值的特征子空间的维数相同;
- 6. 对于都不可对角的矩阵,则对应的特征向量满足: 若 B 对应 λ 的特征向量 λ ,则 A 对应 λ 的特征向量为 $P\alpha$. 这里需要求出可逆矩阵 P

对角化判定

Proposition 2.2. 常用判定对角化的方法,遇题依次向下使用下述方法

- 1. 实对称矩阵一定相似于对角矩阵;
- 3. n 重特征值对应特征子空间是否为 n 维;

二次型

正定性的判定