(4)

Total 5 marks

	andary 2000 Gore Matrier		latics of Mark Scheme	
Question number	Scheme		Scheme Marks	
1.	$x(x^{2} - 4x + 3)$ $= x(x - 3)(x - 1)$	Factor of x . (Allow $(x-0)$) Factorise 3 term quadratic	M1 M1 A1	
			Total 3 marks	
2.	(a) $u_2 = (-2)^2 = 4$		B1	
	(a) $u_2 = (-2)^2 = 4$ $u_3 = 1, u_4 = 4$	For u_3 , ft $(u_2 - 3)^2$	B1ft, B1	
	(b) $u_{20} = 4$		B1ft (1)	
			Total 4 marks	
3.	(a) $y = 5 - (2 \times 3) = -1$	(or equivalent verification) (*)	B1 (1)	
	(b) Gradient of L is $\frac{1}{2}$		B1	
	$y - (-1) = \frac{1}{2}(x - 3)$	(ft from a <u>changed</u> gradient)	M1 A1ft	
	x - 2y - 5 = 0	(or equiv. with integer coefficients)	A1	

Question number	Scheme	Marks
4.	(a) $\frac{dy}{dx} = 4x + 18x^{-4}$ M1: $x^2 \to x \text{ or } x^{-3} \to x^{-4}$	M1 A1
		(2)
	(b) $\frac{2x^3}{3} - \frac{6x^{-2}}{-2} + C$ M1: $x^2 \to x^3 \text{ or } x^{-3} \to x^{-2} \text{ or } + C$	M1 A1 A1
		(3)
	$\left(= \frac{2x^3}{3} + 3x^{-2} + C \right)$ First A1: $\frac{2x^3}{3} + C$	
	Second A1: $-\frac{6x^{-2}}{-2}$	
		Total 5 marks

		r
5.	(a) $3\sqrt{5}$ (or $a = 3$)	B1 (1)
	(b) $\frac{2(3+\sqrt{5})}{(3-\sqrt{5})} \times \frac{(3+\sqrt{5})}{(3+\sqrt{5})}$	M1
	$(3-\sqrt{5})(3+\sqrt{5}) = 9-5$ (= 4) (Used as or intended as denominator)	B1
	$(3+\sqrt{5})(p\pm q\sqrt{5}) = \dots 4 \text{ terms } (p \neq 0, q \neq 0)$ (Independent)	M1
	or $(6+2\sqrt{5})(p \pm q\sqrt{5}) = \dots 4 \text{ terms } (p \neq 0, q \neq 0)$	
	[Correct version: $(3+\sqrt{5})(3+\sqrt{5}) = 9+3\sqrt{5}+3\sqrt{5}+5$, or double this.]	
	$\frac{2(14+6\sqrt{5})}{4} = 7+3\sqrt{5}$ 1 st A1: b = 7, 2 nd A1: c = 3	A1 A1
		(5)
		Total 6 marks

Question number	Scheme	Marks
6.	(a) (See below)	M1
	\setminus Clearly through origin (or $(0, 0)$ seen)	A1
	3 labelled (or (3, 0) seen)	A1 (3)
	(b) Stretch parallel to y-axis 1 and 4 labelled (or $(1, 0)$ and $(4, 0)$ seen)	M1 A1
	6 labelled (or (0, 6) seen)	A1 (3)
	Stretch parallel to x -axis 2 and 8 labelled (or $(2, 0)$ and $(8, 0)$ seen)	M1 A1
	3 labelled (or (0, 3) seen)	A1 (3)
		Total 9 marks

7. (a)
$$500 + (500 + 200) = 1200$$
 or $S_2 = \frac{1}{2}2\{1000 + 200\} = 1200$ (*)

(b) Using $a = 500$, $d = 200$ with $n = 7$, 8 or 9 $a + (n - 1)d$ or "listing"

 $500 + (7 \times 200) = (\pounds)1900$ M1

A1 (2)

(c) Using $\frac{1}{2}n\{2a + (n - 1)d\}$ or $\frac{1}{2}n\{a + l\}$, or listing and "summing" terms M1

$$S_8 = \frac{1}{2}8\{2 \times 500 + 7 \times 200\} \text{ or } S_8 = \frac{1}{2}8\{500 + 1900\}, \text{ or all terms in list correct}$$

$$= (\pounds)9600$$
 A1 (3)

(d) $\frac{1}{2}n\{2 \times 500 + (n - 1) \times 200\} = 32000$ M1: General S_n , equated to 32000 M1 A1

$$n^2 + 4n - 320 = 0 \text{ (or equiv.)}$$
 M1: Simplify to 3 term quadratic M1 A1

$$(n + 20)(n - 16) = 0 \quad n = \dots$$
 M1: Attempt to solve 3 t.q. M1

$$n = 16,$$
 Age is 26 (7)

Total 13 marks

Question number	Scheme	Marks
8.	$\frac{5x^2 + 2}{x^{\frac{1}{2}}} = 5x^{\frac{3}{2}} + 2x^{-\frac{1}{2}}$ M1: One term correct.	M1 A1
	A1: Both terms correct, and no extra terms.	
	$f(x) = 3x + \frac{5x^{\frac{5}{2}}}{\left(\frac{5}{2}\right)} + \frac{2x^{\frac{1}{2}}}{\left(\frac{1}{2}\right)}$ (+ C not required here)	M1 A1ft
	6 = 3 + 2 + 4 + C Use of $x = 1$ and $y = 6$ to form eqn. in C	M1
	6 = 3 + 2 + 4 + C Use of $x = 1$ and $y = 6$ to form eqn. in C $C = -3$	Alcso
	$C = -3$ $3x + 2x^{\frac{5}{2}} + 4x^{\frac{1}{2}} - 3$ (simplified version required)	A1 (ft <i>C</i>) (7)
	[or: $3x + 2\sqrt{x^5} + 4\sqrt{x} - 3$ or equiv.]	
	-	Total 7 marks

9.	(a) $-2(P)$, $2(Q)$	(± 2 scores B1 B1)	B1, B1 (2)
	(b) $y = x^3 - x^2 - 4x + 4$ (May be seen earlier)	Multiply out, giving 4 terms	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2x - 4$	(*)	M1 A1cso
			(3)
	(c) At $x = -1$: $\frac{dy}{dx} = 3(-1)^2 - 2(-1) - 4 = 1$		
	Eqn. of tangent: $y - 6 = 1(x - (-1))$,	$y = x + 7 \tag{*}$	M1 A1cso
			(2)
	(d) $3x^2 - 2x - 4 = 1$ (Equating to "gradient of ta	angent")	M1
	$3x^2 - 2x - 5 = 0 (3x - 5)(x + 1) = 0$	<i>x</i> =	M1
	$x = \frac{5}{3}$ or equiv.		A1
	$y = \left(\frac{5}{3} - 1\right)\left(\frac{25}{9} - 4\right), = \frac{2}{3} \times \left(-\frac{11}{9}\right) = -\frac{22}{27}$	or equiv.	M1, A1
			(5)
			Total 12 marks

Question number	Scheme		Marks	
10.	(b) "U" Vert	1, $b = 2$) -shaped parabola ex in correct quadrant (ft from $(-a, b)$) 3) (or 3 on y-axis)	B1, B1 M1 A1ft B1 B1	(2)
	` '	y be within the quadratic formula) equality expression in any form) $(k < 2\sqrt{3})$	M1 A1 M1 A1 Total 11 m	(4)