AUG 1 7 2006 New Sheet. σ S S Sheet 1 of Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al. Application No: 10/754,800. N ဇ 0 ပ္မွ S FIG. 1 M N S ಜ 9

et al. Application No: 10/754,800. Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al. Application No: 10/754,

Replacement Sheet.



of Long -Range Echelon Transmitters/Receivers

Transnitters of Central and Short-Range Echelons

ı

○ - Receivers of Central and Short-Range Echelons

sheet 2 of 9

Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al. Application No: 10/754,800. Replacement Sheet.

| detected sign    |                              | Alternative sequences of |             | i iiiti doloiti i | n eshelons   | Versions of              |               |
|------------------|------------------------------|--------------------------|-------------|-------------------|--------------|--------------------------|---------------|
| <u> </u>         | detected signals in echelons |                          |             | Egress            | Presence     | self-checking results    | Notes         |
| •                | S                            |                          | Ingress     | Lgress            | inside       |                          |               |
| C —>C            |                              |                          |             |                   | +            | May also mean an         | Emitted       |
|                  |                              |                          |             |                   |              | unauthorized discloser   | ultrasound    |
|                  |                              |                          |             |                   | J            | of protected housing.    | goes outside. |
| c —⊳s            |                              |                          |             | +                 |              | Target moves to          |               |
|                  |                              |                          |             |                   |              | echelon L ? Check it.    |               |
| 5 — DC           |                              |                          | +           |                   |              | Target moves from        |               |
|                  |                              |                          |             |                   |              | echelon L ? Check it.    |               |
| 1                | 4                            |                          |             |                   |              | Echelon L may be in      | V   1         |
|                  |                              |                          |             |                   |              | the failed state.        |               |
| C —⊳L            |                              |                          |             | +                 |              | Target moves inside      |               |
|                  |                              |                          |             |                   |              | echelon L ? Check it.    |               |
|                  |                              |                          |             |                   |              | Echelon S may be in      |               |
|                  |                              |                          |             |                   |              | the failed state.        |               |
| _ <del></del> >C |                              |                          | +           |                   |              | Target moves inside      |               |
|                  |                              |                          |             |                   |              | echelon C ? Check it.    |               |
|                  |                              |                          |             |                   |              | Echelon S may be in      |               |
|                  |                              |                          |             |                   |              | the failed state.        |               |
| :                | S—⊳S                         |                          |             |                   | +            | Target moves in echelon  |               |
|                  |                              |                          | i           |                   |              | S? Check it. Other       |               |
|                  |                              |                          | 1           |                   |              | echelons C and L may     |               |
|                  |                              |                          | <u> </u>    |                   |              | be in the failed state.  |               |
| ;                | S—⊳L                         |                          |             | +                 |              | Target moves from        |               |
|                  |                              |                          | 11          |                   |              | echelon C ? Check it.    |               |
|                  |                              |                          | - 2         |                   |              | Echelon C may be in      |               |
|                  |                              |                          |             | L P . O           |              | the failed state.        |               |
|                  | L⊸⊳s                         |                          | +           |                   |              | Target moves to          |               |
|                  |                              |                          |             |                   |              | echelon C? Check it.     |               |
|                  |                              |                          |             |                   |              | Echelon C may be in      |               |
|                  |                              |                          |             |                   |              | the failed state.        |               |
|                  |                              | L-DL                     |             |                   | +            | Target moves inside      |               |
|                  |                              |                          |             |                   |              | echelon L ? Check it.    |               |
| ı                |                              |                          |             |                   |              | An intruder may not      | 11            |
|                  |                              |                          |             |                   |              | be threat if it passes   |               |
|                  |                              |                          |             |                   |              | by the echelon S.        |               |
| Note: Arrow      | s show the                   | e direction:             | al sequence | of caution        | signals from | intrusion-suspected eche | lons.         |

Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al. Application No: 10/754,800.

New Sheet.

| Sublevels<br>of echelons<br>(in indices of<br>FIG.3)           | $\mathbf{L}_1$ | $\mathbb{L}_2$ | $\mathbf{L}_3$ | $\mathbf{L}_4$ | $S_1$     | $S_2$ | $S_3$      | S <sub>4</sub> | S <sub>5</sub> | $\mathbf{C_1}$ | C <sub>2</sub> | C <sub>3</sub> | Expected sequent events and real menaces at single intrusion                                    |
|----------------------------------------------------------------|----------------|----------------|----------------|----------------|-----------|-------|------------|----------------|----------------|----------------|----------------|----------------|-------------------------------------------------------------------------------------------------|
| $L_1$                                                          | X              |                | -)(-           |                |           |       |            |                |                |                |                |                | VAM, PO,<br>OCF, CCF.                                                                           |
| $L_2$                                                          |                | X              |                |                |           |       |            | ;              |                |                |                |                | VAM, PO,<br>OCF, CCF.                                                                           |
| $L_3$                                                          |                |                | X              |                |           |       |            |                |                |                |                |                | VAM, PO,<br>OCF, CCF.                                                                           |
| $L_4$                                                          |                |                |                | X              |           |       |            |                | X              |                |                |                | VAM, PO,<br>OCF, CCF.                                                                           |
| S <sub>1</sub>                                                 |                |                |                |                | X         |       |            |                |                | X              |                |                | VAM, OCF.                                                                                       |
| S <sub>2</sub>                                                 | X              |                |                |                |           | X     |            |                |                |                |                |                | VAM, IF.                                                                                        |
| S <sub>3</sub>                                                 |                |                |                |                | X         |       | X          |                |                |                |                | X              | VAM, LF.                                                                                        |
| S <sub>4</sub>                                                 |                |                |                | X              |           |       |            | X              |                |                |                |                | VAM, CCF.                                                                                       |
| S <sub>5</sub>                                                 |                | X              |                |                |           | X     |            |                | X              |                |                |                | VAM, CCF.                                                                                       |
| $C_1$                                                          | X              | _              | X              |                | X         |       | X          | X              |                | X              | X              |                | VAM, SSF.                                                                                       |
| C <sub>2</sub>                                                 |                |                |                |                |           |       |            |                |                |                | X              |                | VAM, CCF.                                                                                       |
| <b>C</b> <sub>3</sub>                                          |                |                |                |                | ·         |       | X          |                |                |                |                | X              | VAM, SSF,<br>CCF.                                                                               |
| Expected sequent events and real menaces at multiple intrusion | CCF            | CCF            | PO,<br>DF      | PO,<br>DF      | IF,<br>DF | DF    | DF,<br>SSF | SSF            | LF,<br>SCF     | LF,<br>DF      | CCF            | DF,<br>PO      | The predesigned samples of vulnerability of surveyed areas are being kept in archive data file. |

Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al. Application No: 10/754,800.

New Sheet.



| Data Files of           | Stages of System's Design    | Data Record and Input        | Data Processing Formats     | Note                          |
|-------------------------|------------------------------|------------------------------|-----------------------------|-------------------------------|
| Operative Algorithm     | and Operation                | Format                       | and Modes                   |                               |
| Predetermined Design    | Design of multi-echelon      | Models of echelons' and      | Optional spatio-temporal    | The size of each echelon is   |
| Data                    | arrangement of ultrasound    | entire protected area's      | routings of intruders with  | being rated in accordance     |
|                         | detection system.            | intrusion vulnerability      | cause-effect evaluation of  | with airborne ultrasound      |
|                         | Definition of its adjustment | based on the presumptive     | vulnerability of facilities | wave attenuation along its    |
|                         | and starting-up basics.      | models of intruders' run.    | and the whole of object.    | incidence-reflection trip.    |
| Data batch entry under  | Evaluation of cause-effect   | Intrusion event tree that    | The event tree in tabular   | The properly selected         |
| commissioning:          | intrusion menaces and        | represents cause-effect      | or flow-chart format based  | modes of response of          |
|                         | potential vulnerabilities.   | interdependent menaces       | on the "if-then" operation. | emitted ultrasound signals    |
|                         |                              | among echelons.              | Look-up table of modeled    | predict the sequent correct   |
| Data batch entry during | Plotting spatio-temporal     | Analysis of modeled and      | previously and current      | determination of cause-       |
| operation:              | data of intrusion routings.  | running intrusion data.      | data of intrusion menaces.  | effect intrusion events.      |
| Informational and       | Vindication of single or     | Entry of caution and self-   | Entry of resulted data of   | The current operation of      |
| Processing Inter-       | group intrusion detection    | checking signals into        | treatment of caution and    | system's data control         |
| echelon Interrelation   | signals.                     | verifying logical matrix.    | self-checking signals into: | block provides for data       |
|                         | Accomplishment of final,     | Iterative resolution of the  | local logical equations of  | acquisition (in particular:   |
|                         | logically true decision of   | goal function during         | echelons, logical decision  | caution and self-checking     |
|                         | goal function of intrusion   | continuous status scan       | matrix and generalized      | signals) due to continuous    |
|                         | detection and protection.    | and data acquisition.        | resolving logical equation. | status scan of all detectors. |
| Intermediate derived    | The decisions of: logical    | The menaces of echelons      | Data of continuous status   | The verifying logical         |
| data:                   | equation of each echelon;    | and their sublevels, and     | scan input into any logical | matrix analyses all caution   |
|                         | logical decision matrix.     | entire threat to the object. | equation and into logical   | and self-checking signals     |
|                         | The decision of generalized  | The resolution of goal       | decision matrix only thru   | to avoid fault resolutions    |
| Finalized derived data: | resolving logical equation.  | function of protection.      | verifying logical matrix.   | of the goal function.         |
| Executive and Actual    | Generation and entry of      | Entry of instructions for:   | Preferably the preventive   | Alarm signals are being       |
| Instructions            | alarm signals and signals    | Start of local preventive    | local measures include      | represented in the result of  |
|                         | for actuation measures of    | measures; and                | entry of warning signals,   | justification of caution      |
|                         | prevention, protection and   | Carrying out passive and     | actuation of barriers and   | signals for really effected   |
|                         | defense.                     | active measures of final     | entrapments against an      | echelon by the verifying      |
|                         |                              | protection and defense.      | intruding subject.          | logical matrix.               |
| Trip and Results Log    | Sampling and archiving the   | Continuous archiving all     | Informational archive data  | Use from archive data file    |
|                         | historical files of safety   | the samples of operating     | transferring goes in the    | the antecedent resolutions    |
|                         | and security maintenance.    | status of the system.        | two-way exchange mode.      | of the goal function.         |
|                         |                              | FIG. 6                       |                             | Sheet 6 of 9                  |

Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al.; Application No: 10/754,800. New Sheet.



| Indices of echelons and sublevels therein | Event occurrence logical equation                                                                            | Factors of menaces in the order of diminishing rate                                  | Pre-designed selective security measures                                                                               |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{L_{1}}$                          | $L_1 + (L_1 \cdot S_2) + (L_1 \cdot C_1) = $ High level threat (HT)                                          | (PO+OCF+CCF) • VAM                                                                   | VAM + PO, →Intrusion prevention and start backup power. Other menaces, → Measures of intrusion protection and defense. |
| $L_2$                                     | $L_2 + (L_2 \cdot S_5) = \text{High level threat (HT)}$                                                      | (CCF + OCF + PO) • VAM                                                               | The same as for $L_1$ .                                                                                                |
| L <sub>3</sub>                            | $L_3 + (L_3 \cdot C_1) = \text{Low level threat (LT)}$                                                       | (PO + DP) • VAM                                                                      | Intrusion prevention:<br>activate backup power,<br>warnings, barriers, etc.                                            |
| $L_4$                                     | $L_4 + (L_4 \cdot S_4) = LT$                                                                                 | (PO + DP) • VAM                                                                      | Intrusion prevention:<br>activate backup power,<br>warnings, barriers, etc.                                            |
| L                                         | $(L_1+L_2+L_3+L_4)+(L_1 \cdot L_2 \cdot L_3 \cdot L_4)=\mathbf{HT}$                                          | (CCF+PO+OCF) • VAM                                                                   | Selective activation of intrusion prevention, protection and defense.                                                  |
| Si                                        | $S_1 + (S_1 \cdot S_3) + (S_1 \cdot C_1) = LT$                                                               | (DF + IF) • VAM                                                                      | Intrusion prevention:<br>activate barriers, traps,<br>redundant blocks, etc.                                           |
| S <sub>2</sub>                            | $S_2 + (S_2 \cdot S_5) = \mathbf{LT}$                                                                        | DF • VAM                                                                             | Intrusion prevention:<br>activate barriers, traps,<br>redundant blocks, etc.                                           |
| $S_3$                                     | $S_3 + (S_3 \cdot C_1) + (S_3 \cdot C_3) = Moderate level threat (MT)$                                       | (SSF + DF) • VAM                                                                     | Selective activation of intrusion prevention, protection and defense.                                                  |
| S <sub>4</sub>                            | $S_4 + (S_4 \cdot C_1) = \mathbf{HT}$                                                                        | (CCF + SSF) • VAM                                                                    | Passive and active measures of intrusion protection and defense.                                                       |
| S <sub>5</sub>                            | $S_5 + (S_5 \bullet L_4) = \mathbf{MT}$                                                                      | [(LF + SCF) • VAM] + [(LF • SCF) • VAM]                                              | Selective activation of intrusion prevention, protection and defense.                                                  |
| S                                         | $(S_1+S_2+S_3+S_4+S_5) + (S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot S_5) =$ HT                                 | {[CCF + (SSF + DF + LF + SCF + IF)] + [(SCF • LF) + (SSF • DF) + SCF]} •VAM          | Selective activation of intrusion prevention, protection and defense.                                                  |
| C <sub>1</sub>                            | $C_1 + (C_1 \cdot S_1) = \mathbf{MT}$                                                                        | {[SSF • (LF + DF)] +[(SSF • LF • DF)]} • VAM                                         | Selective activation of intrusion prevention, protection and defense.                                                  |
| C <sub>2</sub>                            | $C_2 + (C_2 \cdot C_1) = \mathbf{HT}$                                                                        | CCF • VAM                                                                            | Passive and active measures of intrusion protection and defense.                                                       |
| C <sub>3</sub>                            | $C_3 + (C_3 \cdot S_3) = \mathbf{HT}$                                                                        | [CCF + (CCF • SSF) + (CCF<br>• DF) + (CCF • PO) + (SSF •<br>DF) + (SSF • PO)] • VAM  | Passive and active measures of intrusion protection and defense.                                                       |
| C                                         | $(C_1+C_2+C_3) + (C_1 \cdot C_2 \cdot C_3) = \mathbf{HT}$                                                    | {CCF +[(CCF • SSF) + (SSF<br>• DF) + (LF • DF)] • PO} •<br>VAM                       | Selective activation of intrusion prevention, protection and defense.                                                  |
| GRLE                                      | $[(L \cdot S) + (S \cdot C) + (L \cdot S \cdot C)] + [(L \cdot C) + (C \cdot S) + (C \cdot S \cdot L)] = HT$ | {[(CCF + (CCF • SSF) + (LF<br>• OCF) + (SSF • SCF) + (SSF<br>• DF • IF)] • PO} • VAM | Passive and active measures of intrusion protection and defense.                                                       |

Method of defense-in-depth ultrasound intrusion detection. Inventors: Robert H. Roche, et al. Application No: 10/754,800.

New Sheet.



Creation and entry at least the following signals:

- 1. The caution signals as the primary signs of intrusion detection.
- 2. The self-checking signals as the direct evidence of sense wires' integrity, and as the indirect justification of intrusion detection.
- 3. The alarm signal as the evidence of intrusion vindication for the really effected echelon, where the entry of that signal is the result of analysis of caution and self-checking signals done by verifying logical matrix (VLM).
- 4. The signal for activation the intrusion preventive measures, i.e. closing physical barriers (gates, doors, hatches, etc.) for isolation of an intruding subject (unmanned ground vehicle, mini-robot, etc.), or a trespasser.
- 5. The signal for activation passive and active measures of protection and defense, which signals are being created in the result of the logically correct decision of the goal function of this intrusion detection and protection method.

**System Control Block**