Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
Ве	eschleunigung –	Kraft		Beschleunigung –	Weg		Haftreibung			Gleitreibung	;
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
	reibung – Schief			Leistung			Wirkungsgrad			Radialbeschleuni	
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	${ m Arbeit}$			potentielle Ener	rgie		kinteische Energi	ie		Kreisfrequen	Z
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreist	requenz Hook'so	che Feder		harmonische Schwi Beschleunigun			harmonische Schwing Geschwindigkeit			harmonische Schwi Auslenkung	

F _{Gl} µ _{Gl} F _N :	: Gleitreibungskonstante	F _H µ _H F _N			$x = \frac{1}{2} \cdot a \cdot t^2$ $[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8	$Antwort$ $a = \frac{v^2}{r}$ $\left[\begin{array}{cc} m & \frac{m^2}{s^2} \end{array}\right]$	<u># 7</u>	$\eta = rac{P_{ m out}}{P_{ m in}}$	<u># 6</u>	$Antwort$ $P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$		$\mu_{ m H}= anlpha$ gegebenes $\mu_{ m H},$ ab dem die Haftrei-
# 12	$\left[\frac{\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}}{m}\right]$ $Antwort$ $\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{rad}{s}\right]$	<u>#</u> 11	$Antwort$ $E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = \text{kg} \cdot \frac{\text{m}^2}{\text{s}^2} \right]$	<u>#</u> 10	$= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3} $ $= kg \frac{m^2}{s^3} $ $Antwort$ $E_{pot} = m \cdot g \cdot h$ $\int J = kg \cdot \frac{m}{s^2} \cdot m$		nehr zum Halten ausreicht, also das ngt zu "rutschen" $\frac{Antwort}{W = F \cdot s}$ $\begin{bmatrix} \mathtt{J} = \mathtt{N} \cdot \mathtt{m} \\ \end{bmatrix}$
T: Kreisf	requenz (Umlaufzeit) Antwort	<u># 15</u>	Antwort	<u># 14</u>	$= \log \frac{m^2}{s^2}$	<u># 13</u>	$= kg \frac{m}{s^2} \cdot m$ $= kg \frac{m^2}{s^2} $ Antwort
	$y(t) = y_0 \cdot \sin \omega t$		$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$	` '	$= -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $= s^{-2} \cdot m$	D: Federl	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}} \right]$ konstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
	potentielle Energ Hook'sche Fede	gie r	Kraft Hook'sche Feder Physik # 22 Mechanik				Inelastischer Sto	ов	Elastischer Stoß Physik # 24 Mechanik		
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls			che Energie Dre			Impuls			reisfrequenz Fade	
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
	Trägheitsmoment Sta Stabende	ab um	Trä	gheitsmoment S Schwerpunk		Träg	heitsmoment Voll	lzylinder	Träg	gheitsmoment Ho	hlzylinder
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
	Transformation Geschwindigkeit Winkelgeschwindig	_	Tr	ägheitsmoment	Kugel		leeres Duplikat	t		Leistung Transl	ation

# 20	Antwort	<u># 19</u>	Antwort	# 18	Antwort	# 17	Antwort
	$a_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $a_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{\text{pot}}$ $\left[J = \frac{N}{m} m^2 \right.$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$
# 24	Antwort	<u># 23</u>	Antwort	<u># 22</u>	Antwort	<u># 21</u>	Antwort
Nur bei α	$\omega = \sqrt{\frac{g}{l}}$ $\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$ $= \sqrt{s^{-2}} = s^{-1}$ $< 5^{\circ}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}}\right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^{2}$ $\left[J = kg \text{ m}^{2} \cdot s^{-2} \right]$ $= kg \frac{m^{2}}{s^{2}}$		$L = \vartheta \cdot \omega$ $\left[N \text{ m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}} \right]$
# 28	Antwort	<u># 27</u>	Antwort	<u># 26</u>	Antwort	<u># 25</u>	Antwort
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durchm	$\vartheta = \frac{1}{2} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ nesser des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge	$\vartheta = \frac{1}{3} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes
# 32	Antwort	<u># 31</u>	Antwort	<u># 30</u>	Antwort	<u># 29</u>	Antwort
1	$P = F \cdot v = M \cdot \omega$ $\left[W = N \cdot \frac{m}{s} = Nm \cdot s^{-1} \right]$ $sg\frac{m^2}{s^3} = kg\frac{m}{s^2} \cdot \frac{m}{s}$				$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1}\right]$

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik
	Drehmoment		Krei	sfrequenz Drehsc	hwingung	Rückste	llmoment Drehs	schwingung		Präzessionsfred	uenz
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik
	Satz von Steine			Gravitationkonst			ravitationspote			pot. Energie Gra	
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik
	Gravitationfeldstä	irke		Gravitationskr	aft	Erhalt	ungssätze der k Physik	lassischen		Corioliskra	ft
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Physik	# 48	Deformation
	Keplersche Geset	zze		Planet auf Kreis	bahn	Gebun	dener und unge Zustand	bundener		Elastizitätsmo	odul

$\omega_{p} = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_{r}}$ $\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\text{kg m}^{2} \cdot s^{-1}}\right]$	$M = -D_{\varphi} \cdot \varphi$ $[\mathrm{Nm} = \mathrm{Nm?}]$ $D_{\varphi}: \text{Torsionsfederkonstante}$ $\varphi: \text{Verdrillungswinkel}$	$\omega = \sqrt{\frac{D}{\vartheta}}$ $\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$	$M = F \cdot r$ $\left[\text{Nm} = \text{N} \cdot \text{m} \right]$
# 40	# 39	# 38 Antwort $\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$	# 37 $ \theta = m \cdot a^2 + \vartheta_{\mathrm{SP}} $ $ \left[\ker \mathbf{w}^2 = \mathbf{m}^2 \cdot \ker \mathbf{w} + \ker \mathbf{w}^2 \right] $ $ \theta_{\mathrm{SP}} \text{Trägheitsmoment durch Schwerpunkt} $ $ \theta \text{Trägheitsmoment durch neue Achse,} $ $ \ \text{ zur Achse von } \vartheta_{\mathrm{SP}} $ $ \text{a Abstand der beiden Achsen} $
# 44	# 43 Antwort • Energien • Impulse • Drehimpulse • elektrische Ladungen	# 42	# 41
# 48	# 47	$\frac{r_{\rm p}^3}{T_{\rm p}^2} = \gamma \frac{m_{\rm s}}{4\pi^2} = const.$ $r_{\rm p} \colon \text{Radius Planetenbahn}$ $T_{\rm p} \colon \text{Umlaufzeit Planet}$ $m_{\rm s} \colon \text{Masse der Sonne}$	 # 45 Antwort Planeten auf Ellipsen mit Sonne im gemeinsamen Brennpunkt Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: ΔA/Δt = const Umlaufzeit T_{1,2}, große Halbachse a_{1,2} zweier Planeten: T²/T²/2 = a³/a³/2

34

Antwort

33

Antwort

36

Antwort

35

Antwort

Physik	# 49	Deformation	Physik	# 50	Deformation	Physik	# 51	Deformation	Physik	# 52	Deformation
	Zugfestigke	it		Hooksches G	Iooksches Gesetz relative Längenänderung				Poisson-Za	Jhl	
Physik	# 53	Deformation	Physik	# 54	Deformation	Physik	# 55	Deformation	Physik	# 56	Deformation
	Druck			Kompressibi			Kompressions			Scherspann	
Physik	# 57	Deformation	Physik	# 58	Deformation	Physik	# 59	Deformation	Physik	# 60	Deformation
	Torsionskonsta dünnwandiges			Torsionskons Vollstab			Drehmoment T	Γ orsion		Dehnung eines Federkonsta	
Physik	# 61	Deformation	Physik	# 62	Deformation	Physik	# 63	Deformation	Physik	# 64	Fluide
	potentielle End Dehnarbeit			Energiedichte D	Dehnung		Energiedichte T	Torsion (Viskositä "Zähigkeit	

# 52	Allewore	# 91	Allewore	# 50	Allewore	# 43	Allewore
Querko ab.	$\mu = \left \frac{\frac{\Delta d}{d}}{\frac{\Delta l}{l}}\right $ ontraktion, Dicke nimm t \perp zur Dehnung		$arepsilon = rac{\Delta l}{l_0}$ $\left[1 = rac{\mathrm{m}}{\mathrm{m}}\right]$		$\sigma = E \cdot \varepsilon$ $\left[\frac{N}{m^2} = \frac{N}{m^2} \cdot 1\right]$		$\sigma = \frac{F}{A}$ $\left[\frac{N}{m^2} = \frac{N}{m^2}\right]$
<u># 56</u>	Antwort	<u># 55</u>	Antwort	<u># 54</u>	Antwort	<u># 53</u>	Antwort
G:	$\tau = \frac{F_{\rm s}}{A} = G\alpha$ Scherkraft, tangential zu A Torsions- oder Schubmodul [Pa] Scherwinkel		$K = \frac{1}{\kappa}$ $\left[Pa = \frac{1}{\frac{1}{Pa}} \right]$		$\frac{\Delta V}{V} = -\kappa p$ $\Rightarrow \kappa = \frac{3}{E}(1 - 2\mu)$ $\left[\frac{1}{\text{Pa}} = \frac{1}{\frac{\text{N}}{\text{m}^2}}\right]$		$p = \frac{F}{A}$ $\left[Pa = \frac{N}{m^2}\right]$
# 60	Antwort	<u># 59</u>	Antwort	# 58	Antwort	<u>#</u> 57	Antwort
	$D = \frac{E \cdot A}{l}$ $\left[\frac{N}{m} = \frac{\frac{N}{m^2} \cdot m^2}{m}\right]$		$M = D_{\varphi} \cdot \varphi$ $\left[\text{N m} = \text{N m} \right]$	R: Rohri l: Rohrl		r: Rohrrad	ndstärke, $d \ll r$
# 64	Antwort	# 63	Antwort	# 62	Antwort	# 61	Antwort
	$\eta\left[rac{ ext{N s}}{ ext{m}^2} ight]$		$w = \frac{G}{2}\alpha^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$		$w = \frac{W}{V} = \frac{E}{2}\varepsilon^{2}$ $\left[\frac{J}{m^{3}} = \frac{N}{m^{2}}\right]$ $= \frac{N m}{m^{3}}$	_	$E \cdot A \cdot l \cdot \varepsilon^{2} = \frac{1}{2} \cdot E \cdot V \cdot \varepsilon^{2}$ $\cdot m^{2} \cdot m = N m$

50

Antwort

49

Antwort

52

Antwort

51

Antwort

Physik	# 65	Fluide	Physik	# 66	Fluide	Physik	# 67	Fluide	Physik	# 68	Fluide
	Dichte			Oberflächenspannu	ing		hydrostatischer Druc Schweredruck	:k		${ m Auftrieb}$	
Physik	# 69	Fluide	Physik	# 70	Fluide	Physik	# 71	Fluide	Physik	# 72	Fluide
Baro	metrische Höher	nformel		Rückstellkraft Oberflächenspannu	ıng		Oberflächenenergie		Dru	ck in Flüssigkeit	skugel
Physik	# 73	Geometrie	Physik	# 74	Fluide	Physik	# 75	Fluide	Physik	# 76	Fluide
Kugelo	berfläche- und '	Volumen		Kontinuitätsgleichu r inkompressible M			Bernoulli-Gleichung	5		onsches Reibung osität zwischen l	
Physik	# 77	Fluide	Physik	# 78	Fluide	Physik	# 79	Fluide	Physik	# 80	Fluide
Geschwir	ndigkeit im Stro	mröhrchen	Ant	riebskraft Rohrstr	ömung	G	esetz von Hagen-Poise	euille	Stock	æsches Gesetz fü	ır Kugel

# 68 Antwort	# 67	Antwort	# 66	Antwort	# 65	Antwort
$F = (\varrho_{\rm Fl} - \varrho_{\rm K}) \cdot V$ $\left[N = \frac{\text{kg}}{\text{m}^3} \cdot \text{m}^3 \cdot \frac{\text{m}}{\text{s}^2} \right]$ $\varrho_{\rm Fl} < \varrho_{\rm K} \Leftrightarrow F_{\rm A} < F_{\rm G} \Longrightarrow$ $\varrho_{\rm Fl} = \varrho_{\rm K} \Leftrightarrow F_{\rm A} = F_{\rm G} \Longrightarrow$ $\varrho_{\rm Fl} > \varrho_{\rm K} \Leftrightarrow F_{\rm A} > F_{\rm G} \Longrightarrow$	$= kg \frac{m}{s^2}$ Körper sinkt Körper schwebt Körper steigt p_0 : (I	$p(h) = p_0 + \varrho \cdot h \cdot g$ $\left[\text{Pa} = \text{Pa} + \underbrace{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}^2}}_{\frac{\text{kg}}{\text{m} \cdot \text{s}^2} \cdot \frac{\text{m}}{\text{m}} = \frac{\text{N}}{\text{m}^2} = \text{Pa}} \right]$ puft-)Druck an der Oberfläche iefe		$\sigma\left[rac{ m J}{ m m^2} ight]$		$arrho\left[rac{\mathrm{kg}}{\mathrm{m}^3} ight]$
# 72 Antwort	# 71	Antwort	# 70	Antwort	# 69	Antwort
$p=2rac{\sigma}{r}$ Vollkugel (W $p=3rac{\sigma}{r}$ Hohlkugel (S $\left[\mathrm{Pa}=rac{\mathrm{J}}{\mathrm{m}}^{2}=rac{\mathrm{N}\mathrm{m}}{\mathrm{m}}^{2} ight]$	Vassertropfen) Jeifenblase)	$W = A \cdot \sigma$ $\left[J = m^2 \cdot \frac{J}{m^2} \right]$	F [N σ: Oberfläc	$F=2\cdot\sigma\cdot l$ $I=\frac{J}{m^2}\cdot m=\frac{N}{m}\cdot m$ chenspannung er Randlinie des Bügels		$\exp\left(-\frac{\varrho_0}{p_0}\cdot g\cdot h\right)$
# 76 Antwort	<u># 75</u>	Antwort	<u># 74</u>	Antwort	# 73	Antwort
$F = \eta \cdot A \cdot \frac{\mathrm{d}v}{\mathrm{d}x}$ $\left[N = \frac{N s}{m^2} \cdot m^2 \cdot \right]$		$\frac{\underline{\varrho}}{2}v_1^2 + \underbrace{p_1}_{\text{stat. Druck}} = \underbrace{p_0}_{\text{Gesamtdruck}}$		$A_1v_1 = A_2v_2$ für $\varrho = \mathrm{const}$	$A = 4\pi r^2$ $A = \frac{4}{3}\pi r^3$	Kugeloberfläche Kugelvolumen
# 80 Antwort	<u># 79</u>	Antwort	<u># 78</u>	Antwort	<u># 77</u>	Antwort
$F_{\mathrm{R}} = 6 \cdot \pi \cdot \eta \cdot \left[\mathrm{N} = \frac{\mathrm{N} \mathrm{s}}{\mathrm{m}^2} \cdot \mathrm{m} \cdot \right]$	$\frac{\mathbf{m}}{\mathbf{s}}$	$\dot{M} = \frac{\varrho \cdot \pi}{8 \cdot \eta} \cdot \frac{\Delta p}{l} \cdot R^4 \sim R^4$ $\frac{\kappa g}{s} = \frac{\frac{kg}{m^3}}{\frac{Ns}{m^2}} \cdot \frac{\frac{N}{m^2}}{m} \cdot m^4 = \frac{N \log m^6}{N s m^6}$		$= \pi \cdot r^2 \cdot \Delta p$ $= m^2 \cdot Pa = m^2 \cdot \frac{N}{m^2}$		$\frac{p_2}{m}(R^2 - r^2)$ $m^2 = \frac{\frac{N}{m^2}}{\frac{N}{m^2}m}m^2 = \frac{m^2}{m s}$ The und hinter dem Röhrchen
$v={ m const}$ für: $mg- F_{ m A} =6\cdot\pi\cdot r$	Δp : I	Massenstromstärke Druckdifferenz vor und hinter dem Rohr Radius des Rohres			R: Radius de	es umschließenden Rohres es Röhrchens

Physik	# 81	Fluide	Physik	# 82	Fluide	Nutzungshinweis # 83 Lizenz
	Reynolds-Zahl			Luftwiderstand		Hinweise zur Nutzung dieser Karteilernkarten: Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden.

"THE BEER-WARE LICENSE":
Moritz Augsburger (and others, see
https://github.com/maugsburger/exph) wrote
this file. As long as you retain this notice
you can do whatever you want with this stuff.

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.

82 Antwort

$$F = c_{\mathbf{w}} \cdot \frac{\varrho}{2} \cdot v^2 \cdot A$$
$$\left[\mathbf{N} = 1 \cdot \frac{\mathbf{kg}}{\mathbf{m}^3} \cdot \frac{\mathbf{m}^2}{\mathbf{s}^2} \cdot \mathbf{m}^2 \right]$$

w: Strömungswiderstandskoeffizient

A: Stirnfläche

$$\begin{split} Re &= \frac{\varrho \cdot L \cdot v}{\eta} \\ \left[1 = \frac{\frac{\text{kg}}{\text{m}^3} \cdot \text{m} \cdot \frac{\text{m}}{\text{s}}}{\frac{\text{N} \, \text{s}}{\text{m}^2}} = \frac{\frac{\text{kg}}{\text{s} \, \text{m}}}{\frac{\text{kg}}{\text{s} \, \text{m}}} \right] \end{split}$$

Antwort

81

Sobald Re einen bestimmten Grenzwert überschreitet (z.B. 2300 bei Rohrströmung), schlägt die Strömung von laminar in turbulent um.