Paper Title*

1st Given Name Surname

dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address

2nd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract— Index Terms—

I. Introduction

II. SYSTEM MODEL

A. Graph Model

C is set of cloud nodes. F is set of fog nodes. E is set of edge nodes. S is set of sensor nodes. R is set of resources in each computational node(cloud, fog or edge node).

$$C = \{v_1^c, v_2^c, ..., v_{|C|}^c\}, c \in C$$
 (1a)

$$F = \{v_1^f, v_2^f, ..., v_{|F|}^f\}, f \in F$$
 (1b)

$$E = \{v_1^e, v_2^e, ..., v_{|E|}^e\}, e \in E$$
 (1c)

$$S = \{v_1^s, v_2^s, ..., v_{|S|}^s\}, s \in S$$
 (1d)

$$R = \{CPU, RAM, Storage\}, r \in R \tag{1e}$$

 σ^r_c is total capacity of resource $r \in R$ on node $c \in C$. and also σ^r_f and σ^r_e are total capacity of resource $r \in R$ on nodes $f \in F$ and $e \in E$ respectively.

T is set of tasks.

$$T = \{t_1, t_2, ..., t_{|T|}\}$$
 (2a)

Each task expresses as follows:

$$t \in T \Longrightarrow t = (w_t, \delta_t, N_t, f_t^r(\lambda_t)) \tag{3}$$

 w_t shows computation workload of the task. δ_t is completion deadline of the task and N_t determines the maximum number of instances of task $t \in T$.

 π_c is unit price of processing in node $c \in C$ and also π_f and π_e are the related prices in nodes $f \in F$ and $e \in E$ respectively.

Transmission delays that show required time for transmitting packets from sensors to each computational node are defined as follows:

 $\tau^{tr}_{s,c}$ = transmission delay between node $s \in S$ and $c \in C$ $\tau^{tr}_{s,f}$ = transmission delay between node $s \in S$ and $f \in F$ $\tau^{tr}_{s,e}$ = transmission delay between node $s \in S$ and $e \in E$

B. Variables

We define three integer variables for allocating tasks between nodes.

$$x_{t,c} = \begin{cases} 1 & \text{task } t \in T \text{ is allocated to node } c \in C \\ 0 & \text{o.w.} \end{cases} \tag{4a}$$

$$x_{t,f} = \begin{cases} 1 & \text{task } t \in T \text{ is allocated to node } f \in F \\ 0 & \text{o.w.} \end{cases} \tag{4b}$$

$$x_{t,e} = \begin{cases} 1 & \text{task } t \in T \text{ is allocated to node } e \in E \\ 0 & \text{o.w.} \end{cases}$$
 (4c)

there are two continuous variables:

$$\lambda_{t,s}$$
 = poisson rate of task $t \in T$ generated by node $s \in S$ (5a)

$$0 \le \beta_{t,s,c} \le \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall c \in C$$
 (5b)

$$0 \le \beta_{t,s,f} \le \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall f \in F$$
 (5c)

$$0 \le \beta_{t,s,e} \le \lambda_{t,s} \quad \forall t \in T, \forall s \in S, \forall e \in E$$
 (5d)

 $\beta_{t,s,c} = \text{size of flow of task } t \in T \text{ from node } s \in S \text{ to node } c \in C$ (5e)

C. Constraints

$$\lambda_{t,c} = \sum_{s \in S} \beta_{t,s,c} \quad \forall t \in T, \forall c \in C$$
 (6a)

$$\lambda_{t,f} = \sum_{s \in S} \beta_{t,s,f} \quad \forall t \in T, \forall f \in F$$
 (6b)

$$\lambda_{t,e} = \sum_{s \in S} \beta_{t,s,e} \quad \forall t \in T, \forall e \in E$$
 (6c)

$$\frac{\lambda_{t,c}}{\sum_{s \in S} \lambda_{t,s}} \le x_{t,c} \quad \forall t \in T, \forall c \in C$$
 (7a)

$$\frac{\lambda_{t,f}}{\sum_{s \in S} \lambda_{t,s}} \le x_{t,f} \quad \forall t \in T, \forall f \in F$$
 (7b)

$$\frac{\lambda_{t,e}}{\sum_{s \in S} \lambda_{t,s}} \le x_{t,e} \quad \forall t \in T, \forall e \in E$$
 (7c)

$$\lambda_{t,s} = \sum_{e \in E} \beta_{t,s,e} + \sum_{f \in F} \beta_{t,s,f} + \sum_{c \in C} \beta_{t,s,c} \quad \forall t \in T, \forall s \in S$$
(8a)

$$\lambda_{t,s} \leq \sum_{e \in E} \beta_{t,s,e} + \sum_{f \in F} \beta_{t,s,f} + \sum_{c \in C} \beta_{t,s,c} \leq \lambda_{t,s} + \epsilon \quad \forall t \in T, \forall s \in S$$

(8b)

(9a)

$$x_{t,f}k_{2}^{cpu}\tau_{t,s,f}^{tr} + w_{t}x_{t,f} - k_{2}^{cpu}\delta_{t} - (k_{1}^{cpu} - w_{t})\delta_{t}\lambda_{t,f} \leq 0$$
(13b)

$$x_{t,c}f_t^r(\lambda_{t,c}) = k_1^r x_{t,c} \lambda_{t,c} + k_2^r x_{t,c}$$
(9b)

 $\sum_{t} x_{t,c} f_t^r(\lambda_{t,c}) \le \sigma_c^r \quad \forall r \in R, \forall c \in C$

 $\psi_{t,c} \triangleq x_{t,c} \lambda_{t,c} \Rightarrow 0 < \psi_{t,c} < \lambda_{t,c}$ (9c)

$$Q(x_{t,c} - 1) + \lambda_{t,c} \le \psi_{t,c} \le x_{t,c}Q$$

$$(9d) \qquad \qquad -(k_1^{cpu} - w_t)\delta_t \lambda_{t,e} \le 0$$

 $Q = \max_{t \in T, c \in C} \lambda_{t,c}$

$$= \max_{t \in T, c \in C} \sum_{s \in S} \beta_{t,s,c}$$

 $= \sum_{c} \max_{t \in T, c \in C} \beta_{t,s,c}$

$$= \sum_{s \in S} \lambda_{t,s} \tag{9e}$$

$$0 \le \psi_{t,c} \le \lambda_{t,c} \tag{10a}$$

$$Q(x_{t,c}-1) + \lambda_{t,c} \le \psi_{t,c} \le x_{t,c}Q \quad \forall t \in T, \forall c \in C \quad (10b)$$

$$0 \le \psi_{t,f} \le \lambda_{t,f} \tag{10c}$$

$$Q(x_{t,f} - 1) + \lambda_{t,f} \le \psi_{t,f} \le x_{t,f}Q \quad \forall t \in T, \forall f \in F$$
(10d)

$$0 \le \psi_{t,e} \le \lambda_{t,e} \tag{10e}$$

$$Q(x_{t,e}-1) + \lambda_{t,e} \le \psi_{t,e} \le x_{t,e}Q \quad \forall t \in T, \forall e \in E \quad (10f)$$

$$\sum_{c} k_1^r \psi_{t,c} + k_2^r x_{t,c} \le \sigma_c^r \quad \forall r \in R, \forall c \in C$$
 (11a)

$$\sum_{t \in T} k_1^r \psi_{t,f} + k_2^r x_{t,f} \le \sigma_f^r \quad \forall r \in R, \forall f \in F$$
 (11b)

$$\sum_{t \in T} k_1^r \psi_{t,e} + k_2^r x_{t,e} \le \sigma_e^r \quad \forall r \in R, \forall e \in E \tag{11c}$$

$$\tau_{t,c} = \tau_{t,s,c}^{tr} + \frac{1}{\mu_{t,c} - \lambda_{t,c}}$$
 (12a)

We have:

$$\frac{1}{\mu_{t,c}} = \frac{w_t}{f_t^{cpu}(\lambda_{t,c})} \tag{12b}$$

$$f_t^{cpu}(\lambda_{t,c}) = k_1^{cpu} \lambda_{t,c} + k_2^{cpu}$$
(12c)

$$\Rightarrow x_{t,c}\tau_{t,c} = x_{t,c}(\tau_{t,s,c}^{tr} + \frac{w_t}{(k_1^{cpu} - w_t)\lambda_{t,c} + k_2^{cpu}})$$

$$<\delta_t \quad \forall t \in T, \forall s \in S, \forall c \in C$$
 (12d)

$$x_{t,c}\lambda_{t,c}(k_1^{cpu} - w_t)\tau_{t,s,c}^{tr} + x_{t,c}k_2^{cpu}\tau_{t,s,c}^{tr} + w_tx_{t,c} - k_2^{cpu}\delta_t - (k_1^{cpu} - w_t)\delta_t\lambda_{t,c} \le 0 \quad \forall t \in T, \forall s \in S, \forall c \in C \quad (12e)$$

$$\psi_{t,s,f}(k_1^{cpu} - w_t)\tau_{t,s,f}^{tr} + x_{t,f}k_2^{cpu}\tau_{t,s,f}^{tr} + w_tx_{t,f} - k_2^{cpu}\delta_t$$

(13a)

$$\psi_{t,s,e}(k_1^{cpu} - w_t)\tau_{t,s,e}^{tr} +$$

 $\psi_{t,s,c}(k_1^{cpu}-w_t)\tau_{t,s,c}^{tr}+$

 $x_{t,c}k_2^{cpu}\tau_{t,s,c}^{tr} + w_t x_{t,c} - k_2^{cpu}\delta_t$ $-(k_1^{cpu}-w_t)\delta_t\lambda_{t,c} < 0$

$$x_{t,e}k_2^{cpu}\tau_{t,s,e}^{tr} + w_t x_{t,e} - k_2^{cpu}\delta_t$$

$$-\left(k_1^{cpu} - w_t\right)\delta_t \lambda_{t,e} \le 0 \tag{13c}$$

$$1 \le \sum_{e \in E} x_{t,e} + \sum_{f \in F} x_{t,f} + \sum_{c \in C} x_{t,c} \le N_t \quad \forall t \in T \quad (14a)$$

$$x_{t,c}(\lambda_{t,c} < \mu_{t,c}) = > x_{t,c}(\lambda_{t,c} + \epsilon \le \mu_{t,c})$$
(15a)

$$x_{t,c}\lambda_{t,c} = \lambda_{t,c} \tag{15b}$$

$$=> \epsilon x_{t,c} - k_1^{cpu} \lambda_{t,c} - k_2^{cpu} + w_t \lambda_{t,c} \le 0 \quad \forall t \in T, \forall c \in C$$
(15c)

$$\epsilon x_{t,f} - k_1^{cpu} \lambda_{t,f} - k_2^{cpu} + w_t \lambda_{t,f} \le 0 \quad \forall t \in T, \forall f \in F$$
(15d)

$$\epsilon x_{t,e} - k_1^{cpu} \lambda_{t,e} - k_2^{cpu} + w_t \lambda_{t,e} \le 0 \quad \forall t \in T, \forall e \in E$$
(15e)

$$\min \sum_{t \in T} \sum_{e \in E} (x_{t,e} \pi_e \sum_{r \in R} f_t^r(\lambda_{t,e}))$$

$$+ \sum_{t \in T} \sum_{f \in F} (x_{t,f} \pi_f \sum_{r \in R} f_t^r(\lambda_{t,f}))$$

$$+ \sum_{t \in T} \sum_{c \in C} (x_{t,c} \pi_c \sum_{r \in R} f_t^r(\lambda_{t,c}))$$
(16a)

$$\min \sum_{t \in T} \sum_{e \in E} x_{t,e} \Gamma_{t,e}$$

$$+ \sum_{t \in T} \sum_{f \in F} x_{t,f} \Gamma_{t,f}$$

$$+ \sum_{t \in T} \sum_{c \in C} x_{t,c} \Gamma_{t,c}$$
(16b)

$$\Gamma_{t,e} = \pi_e ((k_1^{cpu} + k_1^{ram} + k_1^{storage}) \lambda_{t,e} + k_2^{cpu} + k_2^{ram} + k_2^{storage})$$

$$= \pi_e (K_1 \lambda_{t,e} + K_2)$$
(16c)

$$x_{t,e}\Gamma_{t,e} = K_1\pi_e x_{t,e} \lambda_{t,e} + K_2\pi_e x_{t,e}$$

= $K_1\pi_e \psi_{t,e} + K_2\pi_e x_{t,e}$ (16d)

$$\min \sum_{t \in T} \sum_{e \in E} K_1 \pi_e \psi_{t,e} + K_2 \pi_e x_{t,e}$$

$$\sum_{t \in T} \sum_{f \in F} K_1 \pi_f \psi_{t,f} + K_2 \pi_f x_{t,f}$$

$$\sum_{t \in T} \sum_{c \in C} K_1 \pi_c \psi_{t,c} + K_2 \pi_c x_{t,c}$$

$$L(\underline{x}, \underline{\beta}, \underline{\eta}_1, \underline{\eta}_2, \underline{\psi}) = \sum_{t \in T} \sum_{e \in E} x_{t,e} \Gamma_{t,e}$$

$$+ \sum_{t \in T} \sum_{f \in F} x_{t,f} \Gamma_{t,f} + \sum_{t \in T} \sum_{c \in C} x_{t,c} \Gamma_{t,c}$$

$$+ \sum_{t \in T} \eta_{1,t} (1 - \sum_{e \in E} x_{t,e} + \sum_{f \in F} x_{t,f} + \sum_{c \in C} x_{t,c})$$

$$+ \sum_{t \in T} \sum_{q_{2,t}} \sum_{x_{t,e}} \sum_{f \in F} x_{t,f} + \sum_{c \in C} x_{t,c} - N_t)$$

$$+ \sum_{t \in T} \sum_{s \in S} v_{t,s} (\lambda_{t,s} - \sum_{e \in E} \beta_{t,s,e} + \sum_{f \in F} \beta_{t,s,f} + \sum_{c \in C} \beta_{t,s,c})$$

$$+ \sum_{t \in T} \sum_{s \in S} (\sum_{t \in T} \sum_{s \in E} (\nu_{t,s} \beta_{t,s,e} + \frac{\nu_{t,s} \lambda_{t,s}}{3|E|})$$

$$+ x_{t,e} (\Gamma_{t,e} - \eta_{1,t} + \eta_{2,t}) + \frac{\eta_{1,t} - N_t \eta_{2,t}}{3|F|}$$

$$+ \sum_{f \in F} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,f} + \frac{\nu_{t,s} \lambda_{t,s}}{3|F|})$$

$$+ x_{t,f} (\Gamma_{t,f} - \eta_{1,t} + \eta_{2,t}) + \frac{\eta_{1,t} - N_t \eta_{2,t}}{3|F|}$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{s \in S} (\nu_{t,s} \beta_{t,s,c} + \frac{\nu_{t,s} \lambda_{t,s}}{3|C|})$$

$$+ \sum_{c \in C} \sum_{t \in T} \sum_{t$$

$$\min \sum_{i \in T} \sum_{e \in E} K_{1} \pi_{e} \psi_{t,e} + K_{2} \pi_{e} x_{t,e}$$

$$\sum_{i \in T} \sum_{f \in F} K_{1} \pi_{f} \psi_{t,f} + K_{2} \pi_{f} x_{t,f}$$

$$\sum_{i \in T} \sum_{f \in F} K_{1} \pi_{e} \psi_{t,e} + K_{2} \pi_{e} x_{t,e}$$

$$(17a)$$

$$\sum_{i \in T} \sum_{f \in F} K_{1} \pi_{e} \psi_{t,e} + K_{2} \pi_{e} x_{t,e}$$

$$(21a)$$

$$x_{f}^{(k+1)}, \underline{\beta_{f}}^{(k+1)} = \arg \min_{\underline{x_{f}, \underline{\beta_{f}}}} L_{e}(\underline{x_{e}}, \underline{\beta_{e}}, \underline{\eta_{f}}^{(k)}, \underline{\eta_{2}}^{(k)}, \underline{\psi}^{(k)})$$

$$(21a)$$

$$x_{f}^{(k+1)}, \underline{\beta_{f}}^{(k+1)} = \arg \min_{\underline{x_{f}, \underline{\beta_{f}}}} L_{f}(\underline{x_{f}}, \underline{\beta_{f}}, \underline{\eta_{f}}^{(k)}, \underline{\eta_{2}}^{(k)}, \underline{\psi}^{(k)})$$

$$(21b)$$

$$x_{f}^{(k+1)}, \underline{\beta_{f}}^{(k+1)} = \arg \min_{\underline{x_{f}, \underline{\beta_{f}}}} L_{e}(\underline{x_{e}}, \underline{\beta_{e}}, \underline{\eta_{f}}^{(k)}, \underline{\eta_{2}}^{(k)}, \underline{\psi}^{(k)})$$

$$(21c)$$

$$+ \sum_{i \in T} \sum_{f \in F} K_{i,f} + \sum_{i \in T} \sum_{e \in E} x_{t,e} + \sum_{f \in F} x_{t,e} + \sum_{e \in C} x_{t,e}$$

$$+ \sum_{i \in T} \sum_{g \in F} x_{t,e} + \sum_{f \in F} \sum_{f \in F} x_{t,f} + \sum_{e \in C} \beta_{t,s,e}$$

$$+ \sum_{i \in T} \sum_{g \in F} \sum_{f \in F} x_{t,e} + \sum_{f \in F} \sum_{f \in F} \beta_{t,s,f} + \sum_{e \in C} \beta_{t,s,e}$$

$$+ \sum_{i \in T} \sum_{g \in F} \sum_{f \in F} \sum_{g \in F} \sum_{f \in F} \sum_{f \in F} \sum_{f \in F} \beta_{f,s,f} + \sum_{e \in C} \beta_{f,s,e}$$

$$+ \sum_{i \in T} \sum_{g \in F} \sum_{f \in F} \sum_{g \in F} \sum_{f \in F} \sum_{f \in F} \sum_{f \in F} \beta_{f,s,f} + \sum_{e \in C} \beta_{f,s,e}$$

$$+ \sum_{f \in F} \sum_{f \in F} \sum_{g \in F} \sum_{f \in F} \sum_{f \in F} \sum_{f \in F} \sum_{f \in F} \beta_{f,s,f} + \sum_{g \in F} \beta_{f,s,e}$$

$$+ \sum_{f \in F} \sum_{g \in F} \sum_{g \in F} \sum_{g \in F} \sum_{f \in F} \sum_{g \in F} \sum_{g \in F} \beta_{f,g,e}$$

$$+ \sum_{f \in F} \sum_{f \in F} \sum_{f \in F} \sum_{g \in F$$

$$p_{k} = \sum_{i=1}^{l_{e}} x_{k,i}^{e} C(v_{i}^{e}, t_{k})$$

$$+ \sum_{j=1}^{l_{f}} x_{k,j}^{f} C(v_{j}^{f}, t_{k})$$

$$+ \sum_{h=1}^{l_{c}} x_{k,h}^{c} C(v_{h}^{c}, t_{k})$$

$$(23a)$$

$$\min \sum_{k=1}^{l_t} p_k$$
 (24a) subject to: 9

So we can write the algorithm as following:

We can reshape main problem as following:

$$\min(\sum_{i=1}^{l_e} \sum_{k=1}^{l_t} x_{k,i}^e C_{k,i}^e)$$
 (25a)
$$\sum_{k=1}^{l_t} u_{k,m}^m C_{k,m} + \nu^{m,(k)} * (u^m - z^{(k)}) + \frac{\rho}{2} \|u^m - z^{(k)}\|^2$$
 subject to:
$$\sum_{k=1}^{l_t} u_{k,m}^e V_{k,i} + \sum_{j=1}^{l_t} x_{k,j}^f C_{k,j}^f + \sum_{h=1}^{l_t} \sum_{k=1}^{l_t} x_{k,h}^c C_{k,h}^c)$$
 subject to:
$$\sum_{k=1}^{l_t} u_{k,m}^m w_k \le c^m$$

$$\sum_{i=1}^{l_t} x_{k,i}^e \tau_{k,i}^e + \sum_{j=1}^{l_t} x_{k,j}^f \tau_{k,j}^f + \sum_{h=1}^{l_t} x_{k,h}^c \tau_{k,h}^c \le \delta_k \quad \forall k \in \{1,...,l_t\}$$

$$\sum_{i=1}^{l_t} x_{k,i}^e w_k \le c_h^c \quad \forall h \in \{1,2,...,l_t\}$$

$$\sum_{k=1}^{l_t} x_{k,i}^f w_k \le c_j^f \quad \forall j \in \{1,2,...,l_t\}$$

$$\sum_{k=1}^{l_t} x_{k,i}^e w_k \le c_i^e \quad \forall i \in \{1,2,...,l_t\}$$
 2.
$$z^{(k+1)} = \bar{u}^{(k+1)} + \frac{1}{\rho} \bar{\nu}^{(k)}$$
 3.
$$\nu^{m,(k+1)} = \nu^{m,(k)} + \rho(u^{m,(k+1)} - z^{(k+1)})$$
 F. Solution 2

We define u^m for each computational agent m, that is a matrix with size $l_t * (l_e + l_f + l_c)$. It is the local copy of all variables in agent m, i.e. $u_{k,i}^{e,m}$ is the copy of variable $x_{k,i}^{e}$ in agent m for $m = 1, ..., (l_m = l_e + l_f + l_c)$. So we should add new constraint $u^m = z \quad \forall m$ to main problem. We will use admm on this new constraint so:

$$L_p = \sum_{i=1}^{l_e} \sum_{k=1}^{l_t} x_{k,i}^e C_{k,i}^e + \sum_{j=1}^{l_f} \sum_{k=1}^{l_t} x_{k,j}^f C_{k,j}^f + \sum_{h=1}^{l_c} \sum_{k=1}^{l_t} x_{k,h}^c C_{k,h}^c$$
 (26a)

$$+ \sum_{m=1}^{l_m} \nu^m * (u^m - z) + \sum_{m=1}^{l_m} \frac{\rho}{2} ||u^m - z||^2$$

We can seperate augmented lagrangian for each computational agent m then:

$$L_p^m = \sum_{k=1}^{l_t} u_{k,m}^m C_{k,m} + \nu^m * (u^m - z) + \frac{\rho}{2} ||u^m - z||^2$$

$$\forall m \in \{1, 2, ..., l_m\}$$
(27a)

1.
$$u^{m,(k+1)} = arg \min_{k=1}^{m} L_p^m(u^m, z^{(k)}, \nu^{m,(k)}) =$$

$$\sum_{k=1}^{l_t} u_{k,m}^m C_{k,m} + \nu^{m,(k)} * (u^m - z^{(k)}) + \frac{\rho}{2} \|u^m - z^{(k)}\|^2$$

$$\sum_{k=1}^{l_t} u_{k,m}^m w_k \le c^m$$

$$\sum_{k=1}^{l_c} u_{k,i}^{e,m} + \sum_{j=1}^{l_f} u_{k,j}^{f,m} + \sum_{k=1}^{l_c} u_{k,h}^{c,m} = 1 \qquad \forall k \in \{1, 2, ..., l_t\}$$

$$\sum_{i=1}^{l_e} u_{k,i}^{e,m} \tau_{k,i}^e + \sum_{j=1}^{l_f} u_{k,j}^{f,m} \tau_{k,j}^f + \sum_{h=1}^{l_c} u_{k,h}^{c,m} \tau_{k,h}^c \leq \delta_k \qquad \forall k \in \{1,2,...,l_t\}$$

2.
$$z^{(k+1)} = \bar{u}^{(k+1)} + \frac{1}{\rho}\bar{\nu}^{(k)}$$

3.
$$\nu^{m,(k+1)} = \nu^{m,(k)} + \rho(u^{m,(k+1)} - z^{(k+1)})$$

F. Solution 2

lagrangian of main problem is as following

$$L(x^{e}, x^{f}, x^{c}, \lambda, \nu) = \sum_{i=1}^{l_{e}} \sum_{k=1}^{l_{t}} x_{k,i}^{e} C_{k,i}^{e} + \sum_{j=1}^{l_{f}} \sum_{k=1}^{l_{t}} x_{k,j}^{f} C_{k,j}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,j}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,j}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,h}^{f} C_{k,j}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,h}^{f} - \delta_{k} C_{k,h}^{f} C_{k,h}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,h}^{f} - \delta_{k} C_{k,h}^{f} C_{k,h}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{c} C_{k,h}^{f} - \delta_{k} C_{k,h}^{f} + \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} x_{k,h}^{f} C_{k,h}^{f} - \delta_{k} C_{k,h}^{f} - \delta_{k} C_{k,h}^{f} + \sum_{h=1}^{l_{t}} \sum_{k=1}^{l_{t}} x_{k,h}^{f} C_{k,h}^{f} - \delta_{k} C_{k,h}^{f} - \delta_{$$

So we can decompose the lagrangian as follows

$$L(x^{e}, x^{f}, x^{c}, \lambda, \nu) =$$

$$\sum_{l_{e}}^{l_{e}} \sum_{k=1}^{l_{t}} (x_{k,i}^{e} C_{k,i}^{e} + \lambda_{k} x_{k,i}^{e} \tau_{k,i}^{e} + \nu_{k} x_{k,i}^{e} - \frac{\lambda_{k} \delta_{k} + \nu_{k}}{3l_{e}})$$

$$+ \sum_{j=1}^{l_{f}} \sum_{k=1}^{l_{t}} (x_{k,j}^{f} C_{k,j}^{f} + \lambda_{k} x_{k,j}^{f} \tau_{k,j}^{f} + \nu_{k} x_{k,j}^{f} - \frac{\lambda_{k} \delta_{k} + \nu_{k}}{3l_{f}})$$

$$+ \sum_{h=1}^{l_{c}} \sum_{k=1}^{l_{t}} (x_{k,h}^{c} C_{k,h}^{c} + \lambda_{k} x_{k,h}^{c} \tau_{k,h}^{c} + \nu_{k} x_{k,h}^{c} - \frac{\lambda_{k} \delta_{k} + \nu_{k}}{3l_{c}})$$

$$L(x^{e}, x^{f}, x^{c}, \lambda, \nu) = \sum_{i=1}^{l_{e}} L_{i}^{e}(x_{i}^{e}, \lambda, \nu)$$

$$+ \sum_{j=1}^{l_{f}} L_{j}^{f}(x_{j}^{f}, \lambda, \nu)$$

$$+ \sum_{h=1}^{l_{c}} L_{h}^{c}(x_{h}^{c}, \lambda, \nu)$$
(31a)

$$\begin{split} g(\lambda, \nu) &= \inf_{x^e, x^f, x^c} L(x^e, x^f, x^c, \lambda, \nu) \\ &= \sum_{i=1}^{l_e} \inf_{x_i^e} L_i^e(x_i^e, \lambda, \nu) \\ &+ \sum_{j=1}^{l_f} \inf_{x_j^f} L_j^f(x_j^f, \lambda, \nu) \\ &+ \sum_{h=1}^{l_c} \inf_{x_h^c} L_h^c(x_h^c, \lambda, \nu) \\ &= \sum_{i=1}^{l_e} g_i^e(\lambda, \nu) \\ &+ \sum_{h=1}^{l_f} g_j^f(\lambda, \nu) \\ &+ \sum_{h=1}^{l_c} g_h^c(\lambda, \nu) \end{split}$$

$$\lambda_{k}^{+} = \lambda_{k}^{-} + \alpha \left(\sum_{i=1}^{l_{e}} x_{k,i}^{e} \tau_{k,i}^{e} + \sum_{j=1}^{l_{f}} x_{k,j}^{f} \tau_{k,j}^{f} + \sum_{h=1}^{l_{c}} x_{k,h}^{c} \tau_{k,h}^{c} - \delta_{k}\right)$$
(33a)

$$\nu_k^+ = \nu_k^- + \alpha \left(\sum_{i=1}^{l_e} x_{k,i}^e + \sum_{j=1}^{l_f} x_{k,j}^f + \sum_{h=1}^{l_c} x_{k,h}^c - 1\right) \quad (33b)$$

REFERENCES

```
Algorithm Test Algorithm
```

```
1: for n = 1 : L_v do
       Determine the set of states Z_n
        RemovedStates =
3:
       for j \in Z_n do
 4:
            Determine the index of computational node l and
    the index of task t and the index of part u
            XP_n^j = Z_{n-1}
 6:
            if j \neq 0 then
 7:
                for i \in XP_n^j do
 8:
9:
                   if ServerResource < 0 then
                       XP_n^j = XP_n^j - \{i\}
10:
11:
                end for
12:
            end if
13:
           if XP_n^j \neq \emptyset then
14:
15:
                for i \in XP_n^j do
                   Calculate T_{n-1,n}^{i,j}
16:
                end for
17:
                Calculate I_n^j and \Lambda_n^j
18:
                Calculate \phi_n^j
19:
20:
                if j \neq 0 then
                   ServerResource < 0
21:
22:
                end if
            else
23:
                RemovedStates = RemovedStates + \{j\}
25:
            end if
26:
       end for
27:
       if RemovedStates = Z_n then
            Set H = \sum_{m=1}^{t} N_m and ResourceIndicator = 0
28:
            Determine the Viterbi path P with H
29:
            break
       else
31:
32:
            Remove all states in the RemovedStates from the
    Z_n
       end if
33:
34: end for
35: if ResourceIndicator = 1 then
        Determine the Viterbi path P with H
37: end if
38: Determine the task scheduling using Viterbi path P
```