Capacitor Filter

A capacitor is connected at rectifier output de voltage is obtained across the capacitor.

ripple voltage

$$V_{rr}(rms) = \frac{I_{dc}}{4\sqrt{3}fc} = \frac{2.4 I_{dc}}{C}$$
$$= \frac{2.4 V_{dc}}{R_{L}C}$$

Idc: milliamp.

C: microfarad

RL: Kilos

T,: diode conducto and charges C to Vm

Tz: Rectifier voltage drops below the peak and Corpacitor discharges through load. Avg et drawn from the supply = ong of the of through the diode dweing charging

Idc. T = Ip. Ti

Joc T or I peak = Ip =

Ti : Diode conduction time

Small c => large conduction time of diode ⇒ þæak ct not very hrigh

Large c >> small conduction time > very high pick ct. (Diode peak ct)

Par Idc. T = Ip T,

IP = Idc. I

 $V_{dc} = V_m - \frac{I_{dc}}{4fc} = V_n - \frac{4 \cdot 17 \, I_{dc}}{7 \, C}$

f = 2x60 = 120 Hz f: ripple frequency for F.W T= 1/f

- · For time T, diode conducts and charges the capacitor to Em
- · After this capacitor discharges for T2 when the voltage across C falls below rectified voltage, say at a point a, the diode rectified voltage, say at a point a, the diode Conduction starts and C is charged to Em.
- . The average et supplied to the capacitor and load must be = aug et drawn from the capacitor dwaing T_2 .
- · Diode conducts for small period of time
- Larger the C → less the voltage decay
 ⇒ Shorter the interval of charging.
 But diode has to supply same any of
 ⇒ þeak of inoreases.

RC Filter

· It is possible to further reduce the armount of ripple across a filler capacitor by using an additional RC filter.

The added RC Section passes most of the d.c. component while attenuating as much as the a.c. component

DC operation of RC Filter Section

D.C. voltage developed across

CI

A.C. ripple voltage developed across C,

Vy (oms)
$$\approx \frac{1}{R} \times c \times (rms)$$

Vp (rms): AC. Component of voltage across load.

$$X_{C} = \frac{1}{2\Pi fC} = \frac{1}{2\Pi X 120 X C} = \frac{1.3}{C}$$

Xc is in K-D, "th C is in MF.