Ахо-Корасик. Хотим решать следующую задачу: Дан набор из n строк s_i суммарного размера L на алфавите σ . Кроме этого, дан текст t, и задается вопрос насчет вхождений: сколько строк из набора входят в t как подстроки?

Первый шаг: построить бор на наборе строк. Теперь мы хотим сделать на этом боре детерменированный автомат. Автомат при чтении $t_0 \dots t_i$ должен переводить нас в вершину, которой соответствует самый длинный суффикс строки $t_0 \dots t_i$ из присутствующих в боре.

Для каждой вершины v создадим суффиксную ссылку link, которая будет вести в вершину, соответствующую самому длинному суффиксу str(v), не совпадающему с str(v), но присутствующему в боре. Кроме этого, обозначим переходы автомата за go_c . Тогда понятно, что $link_v$ можно найти, если посмотреть на суффиксную ссылку предка. А именно, если из суффиксной ссылки предка есть переход по символу, который написан на ребре (p_v, v) , то $link_v$ ведет именно туда. Если там перехода не было, то надо посмотреть на следующего предка в дереве суфссылок, и сделать аналогичную операцию. Но, если считать, что для предков посчитано go_c , то это то же самое, что взять $go_{c(p_v,v)}$ для $link_{p_v}$.

Для того, чтобы считать переходы в автомате, тоже можно воспользоваться предыдущими значениями. А именно, если из v есть ребро с символом c, то тогда go_c будет указывать в конец ребра. Иначе следует посмотреть на go_c для нашей суффиксной ссылки.

Обе динамики можно посчитать либо лениво, либо с помощью обхода в порядке возрастания глубин.

Оценка времени работы Можно оценить как $O(m|\sigma|)$, где m — число вершин в дереве, потому что динамика занимает ровно столько памяти (тривиально), и для нее верно time = memory. Также есть оценка O(L), которую можно получить, если показать, что у нас всего спусков бывает не более чем O(L), а подъемов суммарно не больше, чем спусков.