IA et science des données

Cours 6 – mardi 22 février 2022 Arbres de décision

> Christophe Marsala Vincent Guigue

Sorbonne Université

LU3IN026 - 2021-2022

Plan du cours

Information et apprentissage

Apprentissage par arbres de décision

1 - Information et apprentissage -

Rappels: notations (1)

- lacktriangle Ensemble de n exemples (ou cas, ou individus) : ${f x}_1,\ldots,{f x}_n$
 - ullet chaque individu $old x_i$ est décrit par d variables.

 $x_{i,j}$ (ou x_{ij}) est la valeur de la variable j pour l'exemple \mathbf{x}_i

- ► Base d'apprentissage
 - ullet ensemble d'exemples $\mathbf{X} \in \mathbb{R}^{n imes d}$

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,d} \\ x_{2,1} & x_{2,2} & \dots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,d} \end{pmatrix}$$

- ullet apprentissage supervisé : chaque \mathbf{x}_i est associé à un label y_i
 - ensemble de labels associés à X

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

• classification binaire : $y_i \in \{-1, +1\}$

Marsala & Guigue – 2022

LU3IN026 - cours 6 - 3

1 – Information et apprentissage –

Base d'apprentissage

Exemple : le problème des iris de Fisher

	Sépale		Pétale		Classe
	longueur	largeur	longueur	largeur	
\mathbf{x}_1	5.1	3.5	1.4	0.2	setosa
\mathbf{x}_2	4.9	3.0	1.4	0.2	setosa
\mathbf{x}_3	5.2	2.7	3.9	1.4	versicolor
\mathbf{x}_4	5.0	2.0	3.5	1.0	versicolor
\mathbf{x}_5	6.0	3.0	4.8	1.8	virginica
\mathbf{x}_6	6.9	3.1	5.4	2.1	virginica

Problème à 3 classes

1 - Information et apprentissage -

Rappels: notations (2)

- $lackbox{
 ho}$ Pour un seul exemple : $\mathbf{x}=(x_1,x_2,\ldots,x_d)$
- ▶ Terminologie : un label y_i = une classe
- ightharpoonup Classifieur $f:f(\mathbf{x})$ est la classe donnée par f à l'exemple \mathbf{x}
 - cas binaire :
 - $\begin{array}{ccc}
 \bullet & f: \mathbb{R}^d \longrightarrow \{-1, +1\} \\
 \mathbf{x} & \longmapsto f(\mathbf{x})
 \end{array}$
 - ullet ou aussi : $f:\mathbb{R}^d\longrightarrow\{l_1,l_2\}$ avec l_1 et l_2 deux labels donnés
 - cas multiclasses :
 - $f: \mathbb{R}^d \longrightarrow \{l_1, l_2, \dots, l_k\}$

Marsala & Guigue – 2022

1 - Information et apprentissage -

LU3IN026 - cours 6 - 4

Données d'apprentissage

	Sépale		Péta	Classe	
	longueur	largeur	longueur	largeur	
x	5.1	3.5	1.4	0.2	setosa

- ► Description d'un exemple
 - valeurs d'attributs observables ou mesurables
 - un attribut peut être
 - catégoriel (ou symbolique) : ses valeurs sont des mots, des étiquettes, des catégories,...
 - numérique : ses valeurs dans R, N, ...
- ► Classe d'un exemple
 - valeur fournie par un expert du domaine
 - la classe est catégorielle
 - problème bi-classes : 2 classes
 - problème multi-classes : plusieurs classes

1 - Information et apprentissage

Types d'attributs : exemples

- Attributs catégoriels (aussi dits symboliques)
 - valeur binaire : {vrai, faux}, {féminin, masculin}, {+1, -1}, {0, 1}
 - nationalité : {français, chinois, marocain, kenyan, brésilien...}
 - tranche d'impôts : {1, 2, 3, 4, 5}
 - •
- Attributs numériques
 - âge (d'une personne) : valeur (an) dans [0,120]
 - longueur d'onde de la lumière visible : valeur (nm) dans $\left[380,780\right]$
 - prix d'achat d'un livre de poche : valeur (euros) dans $\left[1.5,15\right]$
 - ...

Ex.	âge	cheveux		groupe	Classe
		couleur	longueur		
$\overline{\mathbf{x}_1}$	25	noir	18.7	2	+1
\mathbf{x}_2	37	roux	5.42	1	+1
\mathbf{x}_3	29	châtain	32.23	1	-1

Marsala & Guigue - 2022

LU3IN026 - cours 6 - 7

1 - Information et apprentissage -

Du catégoriel au numérique

- Comment utiliser des données catégorielles avec des classifieurs numériques?
 - par exemple : perceptron, knn,...
- ► Transformer le catégoriel en numérique ⇒ encodage one hot
 - chaque attribut catégoriel est transformé
 - ullet on remplace les catégories par autant de variables binaires $\{0,1\}$
- Par exemple :
 - $\bullet \ \, \mathsf{Pays} = \{\mathsf{France},\, \mathsf{Allemagne},\, \mathsf{Maroc},\, \mathsf{Japon}\}$
 - création de 4 variables binaires : une pour France, etc...

Ex.	Pop.(m)	p_France	p_Allemagne	p_Maroc	p_Japon	Classe
\mathbf{x}_1	66.99	1	0	0	0	Europe
\mathbf{x}_2	83.02	0	1	0	0	Europe
\mathbf{x}_3	36.03	0	0	1	0	Afrique
\mathbf{x}_4	126.5	0	0	0	1	Asie

Marsala & Guigue – 2022 LU3IN026 – cours 6 – 9

1 – Information et apprentissage

Application en Python avec Pandas (2)

L= [['Allemagne', 82.2, 2000], ['France', 60.9, 2000], ['Japon', 126.8, 2000], ['Maroc', 28.8, 2000]
['Allemagne', 83.02, 2021], ['France', 67.8, 2021], ['Japon', 125.7, 2021], ['Maroc', 37.1, 2021]

df_pays_categ = pd.DataFrame(L,columns=['Pays', 'Population', 'Année'])

df_pays_categ

	Pays	Population	Année
0	Allemagne	82.20	2000
1	France	60.90	2000
2	Japon	126.80	2000
3	Maroc	28.80	2000
4	Allemagne	83.02	2021
5	France	67.80	2021
6	Japon	125.70	2021
7	Maroc	37.10	2021

Du catégoriel au numérique

- ► Comment utiliser des données catégorielles avec des classifieurs numériques ?
 - par exemple : perceptron, knn,...
- lacktriangle Transformer le catégoriel en numérique \Longrightarrow encodage one hot
 - chaque attribut catégoriel est transformé
 - ullet on remplace les catégories par autant de variables binaires $\{0,1\}$
- ► Par exemple :
 - Pays = {France, Allemagne, Maroc, Japon}

Ex.	Pays	Population (million)	Classe
\mathbf{x}_1	France	66.99	Europe
\mathbf{x}_2	Allemagne	83.02	Europe
\mathbf{x}_3	Maroc	36.03	Afrique
\mathbf{x}_4	Japon	126.5	Asie

Marsala & Guigue - 2022

LU3IN026 - cours 6 - 8

1 - Information et apprentissage -

Application en Python avec Pandas (1)

pandas.get_dummies

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False,
columns=None, sparse=False, drop_first=False, dtype=None)

Convert categorical variable into dummy/indicator variables.

Marsala & Guigue – 2022

LU3IN026 - cours 6 - 10

1 - Information et apprentissage -

Application en Python avec Pandas (3)

df_pays_num = pd.get_dummies(df_pays_categ, columns=['Pays'], prefix=['pays_'])
df_pays_num

	Population	Année	paysAllemagne	paysFrance	paysJapon	paysMaroc
0	82.20	2000	1	0	0	0
1	60.90	2000	0	1	0	0
2	126.80	2000	0	0	1	0
3	28.80	2000	0	0	0	1
4	83.02	2021	1	0	0	0
5	67.80	2021	0	1	0	0
6	125.70	2021	0	0	1	0
7	37.10	2021	0	0	0	1

1 - Information et apprentissage -

Espace des dimensions

► Chaque attribut de la description : dimension de représentation

• la description : espace de représentation

ullet d attributs : espace à d dimensions

Dans :

E	Κ.	âge	cheveux		groupe	Classe
			couleur	longueur		
x	1	2	noir	18.7	2	+1

• chaque exemple est un point dans un espace à 4 dimensions

Exemple d'espace à 2 dimensions :

Ex.	prix	durée	Classe
\mathbf{x}_1	42.0	18.7	+1
\mathbf{x}_2	11.38	5.42	-1

Marsala & Guigue - 2022 LU3IN026 - cours 6 - 13

1 - Information et apprentissage -

Étude sur un exemple

- ► Qui vote aux élections européennes?
- ► Hiérarchie de questions
- ► Mesure de désordre et qualité d'un test
- ► Arbre et règles de décision

Apprentissage de classifieurs

- On a vu:
 - algorithmes numériques et classes binaires
 - perceptron, k-ppv,...
 - adapter un problème multi-classes en classes binaires
 - méthode "1 versus rest"
 - transformer des variables catégorielles en variables numériques
 - encodage one-hot
- Existe-t-il un algorithme pour données catégorielles et multi-classes?
 - sans avoir à adapter les données...
- ► → apprentissage d'arbres de décision

Marsala & Guigue – 2022 LU3IN026 – cours 6 – 14

1 - Information et apprentissage

Qui vote aux élections européennes?

► On considère le dataset suivant :

	Adresse	Majeur?	Nationalité	Décision
\mathbf{x}_1	Paris	oui	Français	peut voter
\mathbf{x}_2	Paris	non	Français	ne peut pas voter
\mathbf{x}_3	Montpellier	oui	Italien	peut voter
\mathbf{x}_4	Paris	oui	Suisse	ne peut pas voter
\mathbf{x}_5	Strasbourg	non	Italien	ne peut pas voter
\mathbf{x}_6	Strasbourg	non	Français	ne peut pas voter
\mathbf{x}_7	Strasbourg	oui	Français	peut voter
\mathbf{x}_8	Montpellier	oui	Suisse	ne peut pas voter

Marsala & Guigue – 2022 LU3IN026 – cours 6 – 15

1 – Information et apprentissage –

cours 6 – 15 Marsala & Guigue – 2022

LU3IN026 - cours 6 - 16

Qui vote aux élections européennes?

► Si on ne regarde que les personnes majeures :

	Adresse	Majeur?	Nationalité	Décision
\mathbf{x}_1	Paris	oui	Français	peut voter
x_2	Paris	non	Français	ne peut pas voter
\mathbf{x}_3	Montpellier	oui	Italien	peut voter
\mathbf{x}_4	Paris	oui	Suisse	ne peut pas voter
\mathbf{x}_5	Strasbourg	non	Italien	ne peut pas voter
x_6	Strasbourg	non	Français	ne peut pas voter
\mathbf{x}_7	Strasbourg	oui	Français	peut voter
\mathbf{x}_8	Montpellier	oui	Suisse	ne peut pas voter

1 – Information et apprentissage –

Qui vote aux élections européennes?

▶ Si on ne regarde que les personnes majeures et leurs nationalités :

	Adresse	Majeur?	Nationalité	Décision
\mathbf{x}_1	Paris	oui	Français	peut voter
\mathbf{x}_2	Paris	non	Français	ne peut pas voter
\mathbf{x}_3	Montpellier	oui	Italien	peut voter
x_4	Paris	oui	Suisse	ne peut pas voter
x_5	Strasbourg	non	Italien	ne peut pas voter
x_6	Strasbourg	non	Français	ne peut pas voter
\mathbf{x}_7	Strasbourg	oui	Français	peut voter
x_8	Montpellier	oui	Suisse	ne peut pas voter

Marsala & Guigue - 2022 LU3IN026 - cours 6 - 17 Marsala & Guigue - 2022 LU3IN026 - cours 6 - 18

Qui vote aux élections européennes?

- ► Si la personne n'est pas majeure
 - alors elle ne peut pas voter
- sinon
 - si la personne est suisse
 - alors elle ne peut pas voter
 - sinon
 - elle peut voter
- → On a une hiérarchie de questions

Plan du cours

Information et apprentissage

Apprentissage par arbres de décision modèle

Marsala & Guigue - 2022

LU3IN026 - cours 6 - 19

2 – Apprentissage par arbres de décision – modèle

Arbres de décision

- ▶ Une forme de représentation des connaissances
- ► Représentation graphique et hiérarchique d'une base de règles
 - prémisses : nœuds internes d'une branche
 - conclusion : feuilles de l'arbre (décision/classe)

2 – Apprentissage par arbres de décision – modèle

Exemple d'arbre de décision

Marsala & Guigue – 2022 LU3IN026 – cours 6 – 21

2 – Apprentissage par arbres de décision – modèle

Apprentissage par armes de décision modele

- ► Machine learning : méthodes inductives de construction d'arbres de décision - approches top down induction
 - algorithme CART de Breiman's, Friedman's et al.'s

• algorithme ID3 (puis C4.5) de Quinlan

Caractéristiques de ces algorithmes

Apprentissage d'un arbre de décision

- simplicité, rapidité
- algorithme basé sur la théorie de l'information
 - → choix de la meilleure question à poser

Marsala & Guigue – 2022 LU3IN026 – cours 6 – 22

2 – Apprentissage par arbres de décision – modèle

Mesure du désordre dans un ensemble (1)

► Exemple : soit une urne contenant 2 types de boules

- Est-il facile de prédire quelle couleur de boule sera tirée ?
 - cela dépend du taux de désordre dans cette urne
 - désordre : répartition des couleurs de boules

Mesure du désordre dans un ensemble (2)

► Aucun désordre :

- Les boules ont toutes la même couleur
 - prédiction facile!
 - on sait précisément la couleur qui sera tirée (ici : blanc)
 - $p(\mathsf{blanc}) = 1$ et $p(\mathsf{noir}) = 0$
- On en déduit ici :
 - désordre = 0 (minimum)
 - information maximale

Marsala & Guigue - 2022

LU3IN026 - cours 6 - 25

2 – Apprentissage par arbres de décision – modèle

Relation entre probabilité et désordre

► Cas binaire : 2 classes (blanc ou noir)

• $p(\mathsf{noir}) = 1 - p(\mathsf{blanc})$

▶ Entropie de Shannon : $H_S(X) = -\sum_{x \in X} p(x) \log(p(x))$

 $H_S(\mathsf{urne}) = -p(\mathsf{blanc})\log(p(\mathsf{blanc})) - p(\mathsf{noir})\log(p(\mathsf{noir}))$

- $H_S(\text{urne}) = 0$ quand p(blanc) = 1 ou quand p(blanc) = 0
- $H_S(\text{urne}) = 1 \text{ quand } p(\text{blanc}) = p(\text{noir}) = 0.5$

Marsala & Guigue – 2022

LU3IN026 - cours 6 - 27

2 – Apprentissage par arbres de décision – modèle

Désordre moyen et choix d'un attribut

Mesure du désordre dans un ensemble (3)

Désordre maximal :

- ▶ Il y a autant de boules blanches que de boules noires
 - une chance sur deux de se tromper...
 - $p(\mathsf{blanc}) = 0.5 \; \mathsf{et} \; p(\mathsf{noir}) = 0.5$
- On en déduit ici :
 - désordre = 1 (maximum)
 - information minimale

Marsala & Guigue - 2022

LU3IN026 - cours 6 - 26

2 – Apprentissage par arbres de décision – modèle

Désordre moyen et choix d'un attribut

- ▶ Objectif : prédire la couleur de l'objet retiré de l'urne
- ► Quelle stratégie pour mieux prédire?
 - tirer "quelque chose" est prédire sa couleur
 - tirer une boule est prédire sa couleur
 - tirer un cube est prédire sa couleur
- Entropie de l'urne : difficulté de prédiction

$$\begin{array}{l} H(\mathsf{urne}) = -p(\mathsf{blanc}) \log(p(\mathsf{blanc})) - p(\mathsf{noir}) \log(p(\mathsf{noir})) \\ \mathsf{soit} \ H(\mathsf{urne}) = -\frac{22}{34} \log \frac{22}{34} - \frac{12}{34} \log \frac{12}{34} = 0.649 \end{array}$$

Marsala & Guigue – 2022

LU3IN026 - cours 6 - 28

2 – Apprentissage par arbres de décision – modèle

Désordre moyen et choix d'un attribut : bilan

- ► Entropie de l'urne : 0.649
- ► Entropie de l'urne connaissant la forme : 0.555
- \blacktriangleright Gain d'information apporté par la connaissance de la forme 0.649-0.555=0.094
- ▶ Il est intéressant d'utiliser la forme pour prédire!

2 – Apprentissage par arbres de décision – modèle

base?

Construction d'un arbre de décision

► Étant donné une base d'apprentissage (dataset (X, Y))

La construction se fait de la racine vers les feuilles

Comment construire un arbre de décision caractérisant cette

cf. exemple pour le droit de vote aux élections européennes

choisir un attribut qui permette d'améliorer la prédictibilité

ullet \Longrightarrow mesurer le gain d'information apporté par (les valeurs d')un

• est-ce que tous les exemples de X sont prédictibles?

Avec ses valeurs, un attribut détermine un nœud de l'arbre

Mesure de désordre moyen

- ▶ Utilisation de la forme conditionnelle de l'entropie de Shannon :
 - soit \mathbf{X}_i un attribut ayant pour valeurs v_{i1}, \dots, v_{ir}
 - ullet et soit f Y la classe ayant pour valeurs y_1,\ldots,y_q

$$H_S(\mathbf{Y}|\mathbf{X}_j) = -\sum_{l=1}^r p(v_{jl}) \sum_{k=1}^q p(y_k|v_{jl}) \log(p(y_k|v_{jl}))$$

- $H_S(\mathbf{Y}|\mathbf{X}_j)$: pouvoir de discrimination de l'attribut \mathbf{X}_j envers la classe \mathbf{Y}
 - ullet \mathbf{X}_j est discriminant pour \mathbf{Y} si pour toute valeur v de \mathbf{X}_j , la connaissance de la valeur v permet d'en déduire une valeur unique y de \mathbf{Y}

Marsala & Guigue - 2022

2 – Apprentissage par arbres de décision – modèle

LU3IN026 - cours 6 - 32

2 – Apprentissage par arbres de décision – modèle

Gain d'information

- ► Choix du meilleur attribut pour partitionner la base
 - la partition se fait sur ses valeurs
 - chaque valeur de l'attribut définit un sous-ensemble des exemples
- À l'aide d'une mesure de discrimination
 - choisir l'attribut X_i qui apporte le plus d'information pour améliorer la connaissance de la classe $\mathbf Y$
 - c'est-à-dire celui qui maximise le gain d'information $I_S(\mathbf{X}_i, \mathbf{Y})$

$$I_S(\mathbf{X}_i, \mathbf{Y}) = H_S(\mathbf{Y}) - H_S(\mathbf{Y}|\mathbf{X}_i)$$

- $H_S(\mathbf{Y})$: entropie de la base selon les valeurs de la classe
 - vaut 0 si tous les exemples de la base ont la même classe
 - vaut 1 si équi-répartition des différentes valeurs de la classe
- $H_S(\mathbf{Y}|\mathbf{X}_j)$: pouvoir de discrimination de \mathbf{X}_j relativement à \mathbf{Y}
- $I_S(\mathbf{X}_j,\mathbf{Y})$: gain d'information apporté par un découpage de la base selon les valeurs de \mathbf{X}_i

Marsala & Guigue - 2022

Construction de l'arbre : algorithme classique (catégoriel)

- ightharpoonup Créer une pile $\mathcal P$ et y stocker la base d'apprentissage
- lacktriangle Tant que ${\mathcal P}$ n'est pas vide : prendre l'ensemble ${\mathcal E}$ en haut de ${\mathcal P}$
 - calculer $H(\mathbf{Y})$ pour \mathcal{E}
 - si le critère d'arrêt est atteint alors créer une feuille
 - ullet sinon, pour les exemples de ${\mathcal E}$
 - 1. calculer $H(\mathbf{Y}|\mathbf{X}_i)$ pour tous les attributs \mathbf{X}_i
 - 2. choisir l'attribut \mathbf{X}_j qui maximise $I_S(\mathbf{X}_j, \mathbf{Y})$
 - 3. créer un nœud dans l'arbre de décision avec X_i
 - 4. partitionner \mathcal{E} en sous-ensembles avec les valeurs de \mathbf{X}_i
 - 5. mettre les sous-ensembles obtenus dans ${\cal P}$