Notes on Lie Groups and Lie Algebras¹

Lecturer: Dr. Alekseev, V.

MTEX: rydval.jakub@gmail.com

July 1, 2017

Technische Universität Dresden

¹Modul Math Ma MMRM: Lie Groups and Lie Algebras

Contents

1	Introduction	1
2	Differential geometry—Basics 2.1 Tangential space, tangential bundle	1
3	Closed vs. non-closed Lie subgroups 3.1 Examples of actions/subgroups	1 1
4	Classical Lie groups 4.1 Exponential map and logarithm	1
5	Exponential map for abstract Lie groups	1
6	The commutator on \mathfrak{g}	1
7	Stabiliser of points	1
8	Fundamental groups, covering theory	1
9	Integral submanifolds of vector field distributions and Frobenius integrability criterion	1
10	Representation theory	1
11	Interwining operators and Schur's lemma	2
12	2 Unitary representations	3
13	3 Characters, orthogonality relations, representations of compact Lie groups	4
14	4 Structure theory 14.1 Solvable and nilpotent Lie algebras	5
15	5 Radical, semisimple and reductive algebras	9
16	6 Invariant bilinear forms	10
17	7 Appendix 17.1 Linear Algebra	14 14 15 15

- 1 Introduction
- 2 Differential geometry—Basics
- 2.1 Tangential space, tangential bundle
- 3 Closed vs. non-closed Lie subgroups
- 3.1 Examples of actions/subgroups
- 4 Classical Lie groups
- 4.1 Exponential map and logarithm
- 5 Exponential map for abstract Lie groups
- 6 The commutator on \mathfrak{g}
- 7 Stabiliser of points
- 8 Fundamental groups, covering theory
- 9 Integral submanifolds of vector field distributions and Frobenius integrability criterion

10 Representation theory

Definition. A representation of a Lie group G on a vector space V is a homomorphism $\rho: G \to GL(V)$. A representation of a Lie algebra \mathfrak{g} on V is a homomorphism $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$.

Definition. Given two representations V, W, the *homomorphism space* between V and W is

$$\operatorname{Hom}_G(V,W) = \{T : V \to W \text{ linear } | \rho_W(g) \circ T = T \circ \rho_V(g) \forall g \in G\}.$$

Similar for g-representations.

Theorem. Let G be a Lie group with Lie algebra \mathfrak{g} .

- 1. Every G-representation ρ defines a \mathfrak{g} -representation ρ_* .
- 2. If G is simply connected, then ρ and ρ_* are in a 1:1 correspondence.

11 Interwining operators and Schur's lemma

Let V, W be two representations of G or \mathfrak{g} . We call $\operatorname{Hom}_{G \text{ or } \mathfrak{g}}(V, W)$ the *space of inter-twining operators*.

Lemma (Schur). Let V be an irreducible (complex) representation of G or \mathfrak{g} . Then:

- 1. Hom $_{G \ or \, \mathfrak{g}}(V, V) = \mathbb{C} \cdot \mathrm{id}_{V}$
- 2. If W is an irreducible representation not isomorphic to V, then $\operatorname{Hom}_{G \text{ or } \mathfrak{q}}(V, W) = \{0\}$.

Proof. Let V, W be irreducible and $\phi \in \operatorname{Hom}_{G \text{ or } \mathfrak{g}}(V, W)$. Then:

- $\ker \phi \subseteq V$ is a subrepresentation since for $v \in \ker \phi$ we have $\phi \circ \rho_V(g)v = \rho_W(g) \circ \phi(v) = 0$. Thus $\rho_V(g)v \in \ker \phi$.
- $\Im \phi \subseteq W$ is a subrepresentation since for $w = \phi(v) \in \Im \phi$ we have $\rho_W(g)w = \phi \circ \rho_W(g)v \in \Im \phi$.

By irreducibility, $\ker \phi = 0$ or V and $\Im \phi = 0$ or W. So either $\phi = 0$ or ϕ is isomorphism. This proves the second part. Now observe that by the argument above, every non-zero $\phi \in \operatorname{Hom}_G(V,V)$ is invertible. Let $\lambda \in \mathbb{C}$ be an Eigenvalue of ϕ . Then $\phi - \lambda \cdot \operatorname{id}_V \in \operatorname{Hom}_G(V,V)$ is not invertible (not injective), therefore zero, i.e. $\phi = \lambda \cdot \operatorname{id}_V$. This proves the first part.

Example. Consider $GL(n,\mathbb{C})$ with its tautological representation. It is irreducible: every $U \subseteq \mathbb{C}^n$ can be mapped to every other $U' \subseteq \mathbb{C}^n$ of the same dimension through a matrix in $GL(n,\mathbb{C})$ (by completing the bases of U,U' to bases of \mathbb{C}^n and using a basis transform matrix). Thus, $Z(GL(n,\mathbb{C})) = \{\lambda \cdot \mathrm{id}_n \mid \lambda \in \mathbb{C}^\times\}$; similarly, $\mathfrak{z}(\mathfrak{gl}(n,\mathbb{C})) = \{\lambda \cdot \mathrm{id} \mid \lambda \in \mathbb{C}\}$.

Since \mathbb{C}^n is also irreducible as a representation of $SL(n,\mathbb{C})$, U(n), SU(n), $SO(n,\mathbb{C})$ (for ex. take orthogonal bases of U,U', then a basis transform matrix A will be orthogonal), similar argument yields:

$Z(SL(n,\mathbb{C})) = \{\lambda \cdot id \mid \lambda^n = 1\}$	$\mathfrak{z}(\mathfrak{sl}(n,\mathbb{C}))=0$
$Z(SU(n,\mathbb{C})) = \{\lambda \cdot id \mid \lambda^n = 1\}$	$\mathfrak{z}(\mathfrak{su}(n,\mathbb{C}))=0$
$Z(U(n,\mathbb{C})) = \{\lambda \cdot \mathrm{id} \mid \lambda = 1\}$	$\mathfrak{z}(\mathfrak{u}(n,\mathbb{C})) = \{\lambda \cdot \mathrm{id} \mid \lambda \in i\mathbb{R}\}$
$Z(SO(n,\mathbb{C})) = \{\pm 1\}, \{1\} \text{ if } n \text{ odd}$	$\mathfrak{z}(\mathfrak{so}(n,\mathbb{C}))=0$
$Z(SO(n,\mathbb{R})) = \{\pm 1\}, \{1\} \text{ if } n \text{ odd}$	$\mathfrak{z}(\mathfrak{so}(n,\mathbb{R}))=0$

Corollary. If V is completely reducible representation, $V = \bigoplus_i n_i V_i$, V_i pairwise non-isomorphic irreducible representations, then

$$\operatorname{Hom}_{G}(V, V) = \left\{ \bigoplus_{i} A_{i} \otimes \operatorname{id}_{V_{i}} \mid A_{i} \in \operatorname{End}(\mathbb{C}^{n_{i}}) \right\}.$$

Corollary. Of G or \mathfrak{g} is abelian, then every non-zero irreducible representation is one-dimensional.

Proof. Wlog G is abelian, then $\rho(G) \subseteq \operatorname{Hom}_G(V, V) = {\lambda \operatorname{id} \mid \lambda \in \mathbb{C}^{\times}}$. Thus every subspace of V is invariant.

12 Unitary representations

Let V be a representation of G. Suppose that we have a scalar product (positive definite Hermitian form) $\langle \cdot, \cdot \rangle$ on V, which is G-invariant: $\langle \rho(g)v, \rho(g)w \rangle = \langle v, w \rangle$ for all $g \in G$. Equivalently: $\rho(g) \in U(V)$ for all $g \in G$, where $U(V) := \{f \in GL(V) \mid f \text{ unitary}\}$. In this case, if $U \subseteq V$ is $\rho(G)$ -invariant, then U^{\perp} is also invariant: $u \in U, v \in U^{\perp}$, then $\langle \rho(g)v, u \rangle = \langle v, \rho(g^{-1})u \rangle = 0$ since $\rho(g^{-1})u \in U$. So, if V is finite dimensional (or V is a Hilbert-space), then $V = U \oplus U^{\perp}$. Hence every subrepresentation has an invariant complement. Thus, if $\rho: G \to U(V, \langle \cdot, \cdot \rangle)$ is a finite-dimensional unitary representation, then ρ is completely reducible.

Question: Given a representation V, can we unitarise it, i.e. find a G-invariant scalar product on V?

Example. Let *G* be a finite group, $\rho : G \to GL(V)$ a representation, then ρ is unitarisable. Pick any scalar product $\langle \cdot, \cdot \rangle$ on *V*, consider the new scalar product

$$\langle v, w \rangle' := \frac{1}{|G|} \sum_{g \in G} \langle \rho(g)v, \rho(g)w \rangle.$$

Then $\langle \rho(h)v, \rho(h)w \rangle' := \frac{1}{|G|} \sum_{g \in G} \langle \rho(gh)v, \rho(gh)w \rangle \forall h \in G.$

Corollary. Finite-dimensional representations of finite groups are completely reducible.

Now a generalisation of this idea: for a finite group G, we had a probability measure #/|G|. If there is a right-invariant probability measure μ on an arbitrary Lie group G, $\rho: G \to GL(V)$ a representation, $\langle \cdot, \cdot \rangle$ a scalar product on V, then

$$\langle v, w \rangle' := \int_G \langle \rho(g)v, \rho(g)w \rangle d\mu(g)$$

is G-invariant.

Definition. Let G be a topological group. A *(right) Haar measure* on G is a Borel measure μ s.t. $(R_h)_*\mu = \mu$ for all $h \in G$, where $R_h : G \to G$, $g \mapsto g h$.

Example. The Lebesgue measure λ is a (right) Haar measure on \mathbb{R} , it induces a Lebesgue measure on \mathbb{R}/\mathbb{Z} , which is a Haar measure on S^1 .

Theorem (Haar). Let G be a locally compact topological group. Then there exists (right) Haar measure on G. Moreover, it is unique up to a positive constant.

Theorem. *Let G be a (real) Lie group. Then:*

- 1. *G* is orientable (in a right invariant way) as a manifold, i.e. there exists a nowhere vanishing top differential form $\omega \in \Omega^n(G)$ ($n = \dim G$).
- 2. If G is compact, then for a fixed choice of a (right-invariant) orientation, there is a unique right-invariant $\omega \in \Omega^n(G)$ s.t. $\int_G \omega = 1$

13 CHARACTERS, ORTHOGONALITY RELATIONS, REPRESENTATIONS OF COMPACT LIE GROUPS

3. For compact G, ω is also left invariant. Moreover, $\omega(g^{-1}) = (-1)^{\dim G} \omega(g)$.

Proof. $\mathfrak{g}=T_1G$, $\Lambda^n\mathfrak{g}^*$ is of dimension one. Take a non-zero element $\widetilde{\omega}\in\Lambda^n\mathfrak{g}^*$. Define $\omega(g):=(R_{g^{-1}})_*\widetilde{\omega}\in\Lambda^n(T_gG)^*$. Using $\Lambda^n(T_gG)^*\cong(\Lambda^nT_gG)^*$ we define $(R_{g^{-1}})^*\widetilde{\omega}(x)=\widetilde{\omega}((R_{g^{-1}})_*x)$. Then ω is non-vanishing, right invariant, which proves the first statement.

Corollary. On every compact Lie group, there exits a unique bi-invariant probability measure.

This also works for general topological groups but needs a lot of functional analysis.

Theorem. Every finite-dimensional representation of a compact Lie group G is completely reducible.

Observation. A concrete example of "Weyl unitary trick": SU(n) is compact, hence every f.d. representation is completely reducible.

Remark: $SL(n,\mathbb{C})$ is a very important Lie group.

Corollary. All finite-dimensional representations of $SL(n,\mathbb{C})$ are completely reducible

13 Characters, orthogonality relations, representations of compact Lie groups

Definition. Let V be a representation: $\rho: G \to GL(V), v \in V, \alpha \in V^*$. The function $\rho^{v,\alpha}: G \to \mathbb{C}, g \mapsto \alpha(\rho(g) \cdot v)$ is called a *matrix coefficient* of ρ .

E.g. $\dim V < \infty$, $v_1,...,v_n$ a basis in V, $v_1^*,...,v_n^*$ dual basis in V^* . Then the matrix coefficient $\rho^{i,j}(g) = v_j^*(\rho(g) \cdot v_i)$ can be written as a matrix $(\rho(g))_{i,j}$. We can identify $GL(V) = GL(n,\mathbb{C})$ using the bases $v_1,...,v_n$ in V, $w_1,...,w_n$ in W. Then the matrix coefficients $\rho_V^{i,j}(\cdot)$, $\rho_W^{\alpha,\beta}(\cdot)$: $G \to \mathbb{C}$ are orthogonal:

Theorem (orthogonality relations). 1. Let G be a compact group, V, W non-isomorphic f.d. irreducible representation of G. Choose bases: $v_1, ..., v_n, w_1, ..., w_n$

14 Structure theory

"Ideal" goal: classify Lie algebras.

Definition. Let g be a Lie algebra. An *Ideal* $\mathfrak{h} \triangleleft \mathfrak{g}$ is a subspace \mathfrak{h} s.t. $[\mathfrak{g},\mathfrak{h}] \subseteq \mathfrak{g}$.

Remark: $\mathfrak{h} \triangleleft \mathfrak{g} \iff \mathfrak{h}$ is a subrepresentation of $ad : \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$. Observation: $\mathfrak{h}_1, \mathfrak{h}_2 \triangleleft$ $\mathfrak{g} \Longrightarrow \mathfrak{h}_1 \cap \mathfrak{h}_2, \mathfrak{h}_1 \oplus \mathfrak{h}_2 \triangleleft \mathfrak{g}.$

Lemma. (1) $f: \mathfrak{g}_1 \to \mathfrak{g}_2$ a homomorphism $\Longrightarrow \ker f \triangleleft g_1$.

(2) If $\mathfrak{h} \triangleleft \mathfrak{g}_1$, then \exists Lie algebra $\mathfrak{g}_2 = \mathfrak{g}_1/\mathfrak{h}$ with a surjective map $q : \mathfrak{g}_1 \rightarrow \mathfrak{g}_2$ s.t. $\ker q = \mathfrak{h}$.

Proof. Exercise. First part: Let $x \in \ker f$, $y \in \mathfrak{g}$. Then f([x, y]) = [f(x), f(y)] = 0. Second part: Let $q(x) := x + \mathfrak{h}$. Then $\ker q = \mathfrak{h}$ and \mathfrak{g}_2 with $[x + \mathfrak{h}, y + \mathfrak{h}] := [x, y] + \mathfrak{h}$ is a Lie algebra.

Some canonical ideals:

- ₃(g) = {x ∈ g | [x, y] = 0 ∀ y ∈ g}.
 g⁽¹⁾ := [g, g] = Span {[x, y] | x, y ∈ g}.

Lemma. The quotient $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ is abelian. Moreover, $[\mathfrak{g},\mathfrak{g}]$ is universal: $\forall f:\mathfrak{g}\to\mathfrak{a}$ hom., \mathfrak{a} an abelian Lie algebra, $[\mathfrak{g},\mathfrak{g}] \subseteq \ker f$.

Proof. In $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$: $[x+[\mathfrak{g},\mathfrak{g}],y+[\mathfrak{g},\mathfrak{g}]]=[\mathfrak{g},\mathfrak{g}]=0$. Let $f:\mathfrak{g}\to\mathfrak{a}$ as above. Then 0= $[f(x), f(y)] = f([x, y]) \Longrightarrow [x, y] \in \ker f \, \forall x, y \in \mathfrak{g} \Longrightarrow [\mathfrak{g}, \mathfrak{g}] \subseteq \ker f.$

Example. Is $[\mathfrak{gl}(n,\mathbb{C}),\mathfrak{gl}(n,\mathbb{C})] = \mathfrak{gl}(n,\mathbb{C})$? Answer is no: $\operatorname{tr}[x,y] = \operatorname{tr}(xy-yx) = \operatorname{tr}(xy)$ $\operatorname{tr}(xy) = 0$. Thus $\mathfrak{gl}(n,\mathbb{C})^{(1)} \subseteq \mathfrak{sl}(n,\mathbb{C})$. Do we get equality? Basis of $\mathfrak{gl}(n,\mathbb{C})$: $\{E_{i,j}\}$, where $E_{i,j} := (\delta_{i,j})_{i,j=1,...,n}$. Basis of $\mathfrak{sl}(n,\mathbb{C})$: $\{E_{i,j} \mid i \neq j\} \cup \{E_{1,1} - E_{2,2},...,E_{n-1,n-1} - E_{n,n}\}$. Multiplication: $E_{i,j}E_{kl} = \delta_{j,k}E_{il}$ since

$$(E_{i,j}E_{k,l})_{m,n} = \sum_{r=1}^{n} (E_{i,j})_{m,r} \cdot (E_{k,l})_{r,n}$$
$$= \sum_{r=1}^{n} \delta_{i,m} \delta_{j,r} \delta_{k,r} \delta_{l,n}$$
$$= \delta_{i,m} \delta_{l,n} \delta_{j,k}$$

So $[E_{i,j}, E_{j,i}] = E_{i,i} - E_{j,j}$ and $[E_{i,i} - E_{j,j}, E_{i,j}] = E_{i,j} \Longrightarrow \mathfrak{sl}(n, \mathbb{C})^{(1)} = \mathfrak{sl}(n, \mathbb{C})$.

Example. Let

$$\mathfrak{n} := \left\{ x \in \mathfrak{gl}(n,\mathbb{C}) \mid x = \begin{pmatrix} 0 & * \\ & \ddots \\ & & 0 \end{pmatrix} \right\}.$$

Then for $x, y \in \mathfrak{n}$:

$$[x,y] = xy - yx = \begin{pmatrix} 0 & 0 & * \\ & \ddots & \ddots \\ 0 & & 0 & 0 \end{pmatrix}.$$

So $[[...[[x_1, x_2], x_3], ...], x_n] = 0.$

14.1 Solvable and nilpotent Lie algebras

Notation: Let \mathfrak{g} be a Lie algebra, $\mathfrak{h} \subseteq \mathfrak{g}$ a Lie subalgebra $\Longrightarrow [\mathfrak{h}, \mathfrak{g}] := \operatorname{Span}\{[y, x] \mid x \in \mathfrak{h}, y \in \mathfrak{g}\}.$

Definition. Let \mathfrak{g} be a Lie algebra, then g' := [g, g] is called the *derived algebra*. Furthermore:

- the *derived series* of g is defined inductively as follows: $g^{(0)} := g$, $g^{(k+1)} := [g^{(k)}, g^{(k)}] = (g^{(k)})'$,
- the *lower central series* of g is also defined inductively as follows: $g_{(0)} := g$, $g_{(k+1)} := [g, g_{(k)}]$,
- g is *solvable* iff $g^{(n)} = 0$ for some n,
- g is *nilpotent* iff $g_{(n)} = 0$ for some n.

Example. \mathfrak{g} abelian $\Longrightarrow \mathfrak{g}$ is solvable and nilpotent.

Proposition. (1) g is solvable

iff
$$\exists n \in \mathbb{N} : [...[[x_1, x_2], [x_3, x_4]]...] = 0$$
, $x_i \in \mathfrak{g}$ (2ⁿ terms, n bracket levels).
iff \exists sequence $\mathfrak{h}^0 = \mathfrak{g} \supset \mathfrak{h}^1 \supset \mathfrak{h}^2 \supset ... \supset \mathfrak{h}^n = \{0\}$ s.t. $\mathfrak{h}^{i+1} \preceq \mathfrak{h}^i$ and $\mathfrak{h}^i/\mathfrak{h}^{i+1}$ is abelian.

(2) g is nilpotent

```
iff \exists n \in \mathbb{N} : [[...[[x_1, x_2], x_3], ...], x_n] = 0, x_i \in \mathfrak{g} (n terms).
iff \exists sequence of ideals \mathfrak{h}^0 = \mathfrak{g} \supset \mathfrak{h}^1 \supset \mathfrak{h}^2 \supset ... \supset \mathfrak{h}^n = \{0\} s.t. \mathfrak{h}^i \preceq \mathfrak{g}, i > 0 and [\mathfrak{g}, \mathfrak{h}^i] \subseteq \mathfrak{h}^{i+1}.
```

Proof. First part:

- $g^{(n+1)} = \text{Span}\{[[...[[x_1, x_2], x_3], ...], x_n]\} \implies \text{first equivalence. Since } \mathfrak{g} \text{ is solvable, } \mathfrak{h}^k := g^{(k)} \subset \mathfrak{g}, \ \mathfrak{g}^{(k+1)} \subset \mathfrak{g}^{(k)}, \ \mathfrak{g}^{(n)} = 0.$ Furthermore $\mathfrak{g}^{(k+1)} = (\mathfrak{g}^{(k)})' \triangleleft \mathfrak{g}^{(k)} \text{ ideal, } \mathfrak{g}^{(k)}/\mathfrak{g}^{(k+1)}$ abelian by the property of derived subalgebras.
- Let $\mathfrak{g} \supset \mathfrak{h}^0 \supset \mathfrak{h}^1 \supset ... \supset \mathfrak{h}^n = 0$. Since $\mathfrak{g}/\mathfrak{h}^1$ abelian, $\mathfrak{h}^1 \supset [\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}'$. Induction: suppose $\mathfrak{h}^k/\mathfrak{h}^{k+1}$ abelian, $\mathfrak{h}^k \supset \mathfrak{g}^{(k)} \Longrightarrow \mathfrak{h}^{k+1} = \ker q \supset [\mathfrak{h}^k, \mathfrak{h}^k] \supset [\mathfrak{g}^{(k)}, \mathfrak{g}^{(k)}] = \mathfrak{g}^{(k+1)}$. So $\mathfrak{h}^k \supset \mathfrak{g}^{(k)} \forall k \Longrightarrow \mathfrak{g}^{(k)} = 0 \Longrightarrow \mathfrak{g}$ solvable.

Second part:

- $\mathfrak{g}_{(k)} = \operatorname{Span} \{ [[...[[x_1, x_2], x_3], ...], x_n] \mid x_i \in \mathfrak{g} \}.$
- \mathfrak{g} nilpotent $\Longrightarrow \mathfrak{h}^k = \mathfrak{g}_{(k)} \triangleleft \mathfrak{g}$ by definition, $[\mathfrak{h}^k, \mathfrak{g}] = \mathfrak{g}_{(k+1)} \subseteq \mathfrak{h}^{k+1}$, $\mathfrak{h}^n = 0$. On the other hand, if $\mathfrak{h}^k = \mathfrak{g} \supset \mathfrak{h}^1 \supset ... \supset \mathfrak{h}^n = \{0\}$ is a sequence of ideals as in the statement, use induction to show $\mathfrak{h}^k \supset \mathfrak{g}_{(k)} \colon \mathfrak{h}^1 \triangleleft \mathfrak{g}, [\mathfrak{h}^0, \mathfrak{g}] = [\mathfrak{g}, \mathfrak{g}] \supset \mathfrak{h}^1$ as above. We have $h^{k+1} \supset [\mathfrak{g}, \mathfrak{h}^k] \supset [\mathfrak{g}, \mathfrak{g}_{(k)}] = \mathfrak{g}_{(k+1)} \Longrightarrow \text{if } \mathfrak{h}^n = 0$, then $\mathfrak{g}_{(n)} = 0 \Longrightarrow \mathfrak{g}$ nilpotent. \square

Example. Let

$$\mathfrak{b} := \left\{ x \in \mathfrak{gl}(n,\mathbb{C}) \mid x = \begin{pmatrix} * & * \\ & \ddots \\ 0 & * \end{pmatrix} \right\}.$$

Then for $x, y \in \mathfrak{b}$:

$$[x,y] = xy - yx = \begin{pmatrix} 0 & * \\ & \ddots \\ 0 & 0 \end{pmatrix}.$$

So $\mathfrak{b}' \subset \mathfrak{n}, \mathfrak{b}^{(k)} \subseteq \mathfrak{n}_{(k-1)} \Longrightarrow \mathfrak{b}$ is solvable.

Definition. Let V be a vector space over \mathbb{K} . A *flag* in V is a chain of subspaces $\mathcal{F} = \{0 = V^0 \subseteq V^1 \subseteq V^2 \subseteq ... \subseteq V^k = V\}$. Denote:

$$\mathfrak{b}(\mathcal{F}) := \{ x \in \operatorname{End}(V) \mid x V^{i} \subseteq V^{i} \forall i \}, \ \mathfrak{n}(\mathcal{F}) := \{ x \in \operatorname{End}(V) \mid x V^{i} \subseteq V^{i-1} \forall i > 0 \}.$$

These are obviously Lie algebras.

Example. Let $V := \mathbb{K}^n$, $V^i := \text{Span}\{e_1, ..., e_i\}$. Then we recover the Lie algebras \mathfrak{b} , \mathfrak{n} from the two previous examples.

Lemma. $\mathfrak{n}(\mathcal{F})$ is nilpotent.

Proof. Let
$$\mathfrak{n}^l(\mathcal{F}) := \{x \in \operatorname{End}(V) \mid x V^i \subseteq V^{i-l} \forall i > 0\}$$
. Then if $x \in \mathfrak{n}^l$, $y \in \mathfrak{n}^{l'} \Longrightarrow x \circ y \in \mathfrak{n}^{l+l'} \Longrightarrow [x,y] \in \mathfrak{n}^{l+l'}$. We have $\mathfrak{n}(\mathcal{F})_{(1)} = \mathfrak{n}(\mathcal{F})' \subseteq \mathfrak{n}^2$. By induction: $\mathfrak{n}(\mathcal{F})_{(l)} \subset \mathfrak{n}^{l+1}$. Since $\mathfrak{n}^n = 0$, $\mathfrak{n}(\mathcal{F})_{(n)} = 0$

Theorem. (1) \mathfrak{g} is solvable resp. nilpotent iff $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ is solvable resp. nilpotent.

- (2) \mathfrak{g} solvable resp. $nilpotent \Longrightarrow any subalgebra/quotient of <math>\mathfrak{g}$ is solvable/nilpotent.
- (3) \mathfrak{g} is nipotent $\Longrightarrow \mathfrak{g}$ is solvable.
- (4) If $\mathfrak{h} \triangleleft \mathfrak{g}$ is an ideal s.t. \mathfrak{h} is solvable and $\mathfrak{g}/\mathfrak{h}$ is solvable, then \mathfrak{g} is solvable.

Proof. (1) The property that iterated commutators vanish does not depend on the field.

- (2) Vanishing properties of iterated commutators are inherited by subalgebras and quotients.
- (3) $\mathfrak{g}^{(k)} \subseteq \mathfrak{g}_{(k)}$. Proof by induction: the statement is true for k = 0. Induction step: $g^{(k+1)} \subseteq [g^{(k)}, g^{(k)}] \subseteq [g_{(k)}, g_{(k)}] \subseteq [g, g_{(k)}] = g_{(k+1)}$.
- (4) Let $q: \mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ be the canonical quotient map. Then $q(\mathfrak{g}^{(k)}) = (\mathfrak{g}/\mathfrak{h})^{(k)} = 0$ for $k > n_1$ as $\mathfrak{g}/\mathfrak{h}$ solvable $\Longrightarrow \mathfrak{g}^{(k)} \subseteq \mathfrak{h}$ for $k > n_1$. Then $g^{(k+l)} \subset \mathfrak{h}^{(l)} = 0$ for $k > n_1$, $l > n_2$, so \mathfrak{g} is solvable.

Theorem (Lie). Let V be a f.d. representation of a solvable Lie algebra \mathfrak{g} (so we have $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$). Then \exists a basis in V s.t.

$$\rho(\mathfrak{g}) \subset \mathfrak{b} = \left\{ x \in \mathfrak{gl}(V) \mid x = \begin{pmatrix} * & * \\ & \ddots \\ 0 & * \end{pmatrix} \right\}$$

wrt. that basis.

Remark: If $\mathfrak{g} = \mathbb{C}$, we know the proof from linear algebra, it goes by finding an eigenvector for $\rho(1)$, factoring it out a doing induction.

Proposition. Let \mathfrak{g} be solvable, $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ a complex representation, then $\exists v \in V$, a common eigenvector for $\rho(x) \forall x \in \mathfrak{g}$.

Proof. Induction on dim \mathfrak{g} . As \mathfrak{g} is solvable, $\mathfrak{g}' = [\mathfrak{g},\mathfrak{g}] \unlhd \mathfrak{g}$. Let $\widetilde{\mathfrak{g}} \subset \mathfrak{g}$ be a subspace of codimension 1 s.t. $\widetilde{\mathfrak{g}} \supset [\mathfrak{g},\mathfrak{g}]$. We have $\widetilde{\mathfrak{g}} \unlhd \mathfrak{g}$, as $[\mathfrak{g},\widetilde{\mathfrak{g}}] \subseteq [\mathfrak{g},\mathfrak{g}] \subseteq \widetilde{\mathfrak{g}}$. By the induction assumption, $\exists v \in V$, a common eigenvector for $\rho(\widetilde{x}) \in \widetilde{\mathfrak{g}}$. Let $\mathfrak{g} = \widetilde{\mathfrak{g}} \oplus \mathbb{C} x$ as a vector space, where x is some missing vector. Let $W := \operatorname{Span} \{\rho(x)^k v \mid k \geq 0\}$ and $v^k := \rho(x)^k v$, $k \geq 0$ ($\rho(x)^0 := \operatorname{id}$). We claim that W is $\rho(\widetilde{\mathfrak{g}})$ -invariant (hence $\rho(\mathfrak{g})$ -invariant). Let $\widetilde{x} \in \widetilde{\mathfrak{g}}$ (so $[\widetilde{x},x] \in \widetilde{\mathfrak{g}}$). Induction on k:

$$\rho(\widetilde{x})v^{1} = \rho(x)\lambda(\widetilde{x})v^{0} + \lambda([\widetilde{x},x])v^{0} = \lambda(\widetilde{x})v^{1} + \text{terms from Span}\{v^{0}\},$$

where $\lambda : \widetilde{\mathfrak{g}} \to \mathbb{C}$ is the eigenvalue at v^0 . Suppose that the statement is true for k and, then

$$\begin{split} \rho(\widetilde{x})v^{k+1} = & \rho(x)\rho(\widetilde{x})v^k + \rho([\widetilde{x},x])v^k \\ = & \rho(x)\lambda(\widetilde{x})v^k + \lambda([\widetilde{x},x])v^k + \text{terms from Span}\{v^0,...,v^k\} \\ = & \lambda(\widetilde{x})v^{k+1} + \text{terms from Span}\{v^0,...,v^k\}. \end{split}$$

Let $n := \min\{k \in \mathbb{N} \mid v^{k+1} \in \operatorname{Span}\{v^0, ..., v^k\}$, exists by finite dimension of V. Then $W = \operatorname{Span}\{v^0, ..., v^n\}$ and $\{v^0, ..., v^n\}$ is a basis in W. In this basis,

$$\rho(\widetilde{x}) = \begin{pmatrix} \lambda(\widetilde{x}) & * \\ & \ddots \\ 0 & \lambda(\widetilde{x}) \end{pmatrix}.$$

Then $\operatorname{tr}|_W \rho(\widetilde{x}) = (n+1)\lambda(\widetilde{x}) \forall \widetilde{x} \in \mathfrak{g}$. This means $\lambda(\widetilde{x}) = 0$ for $\widetilde{x} \in \mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ (as $\operatorname{tr} \rho(\mathfrak{g}') = 0$). Then, by the induction above, $\rho(\widetilde{x})v^k = \lambda(\widetilde{x})v^k \forall \widetilde{x} \in \widetilde{\mathfrak{g}}, k \in \mathbb{N}$. Now, let $w \in W$ be an eigenvector for $\rho(x)$ (exists since ρ is complex). Then w is an common eigenvector for $\rho(\mathfrak{g})$.

Remark: If v is such a common eigenvector, then $\exists \lambda \in \mathfrak{g}^*$ s.t. $\rho(x)v = \lambda(x)v$, $x \in \mathfrak{g}$.

Proof (of the theorem). Let $v \in V$ be a common eigenvector for $\mathfrak{g} \Longrightarrow \mathbb{C} v$ is an invariant subspace $\Longrightarrow \exists \overline{\rho} : \mathfrak{g} \to \mathfrak{gl}(V/\mathbb{C} v)$, the quotient representation. Induction: for dim V=0, there is nothing to prove. Suppose the statement is true for $d-1=(\dim V)-1$. Then by induction hypothesis, $\exists \overline{v}_1,...,\overline{v}_{d-1} \in V/\mathbb{C} v$ s.t. $\overline{\rho}(x)$ is upper triangular wrt. $\overline{v}_1,...,\overline{v}_{d-1}$. Then there exists a basis $v,v_1,...,v_{d-1}$ in V s.t. $v_k+\mathbb{C} v=\overline{v}_k \ \forall \ k=1,...,d-1$ with

$$\rho(x) = \begin{pmatrix} \lambda(x) & * \\ & \ddots \\ 0 & * \end{pmatrix}.$$

Corollary. (1) \mathfrak{g} is solvable \Longrightarrow every irreducible representation is one-dimensional.

- (2) \mathfrak{g} is solvable $\Longrightarrow \exists 0 \subset \mathfrak{h}^1 \subset ... \subset \mathfrak{h}^k = \mathfrak{g}$ s.t. $\mathfrak{h}^i \triangleleft \mathfrak{g}$ and $\mathfrak{h}^i/\mathfrak{h}^{i-1}$ is one-dimensional.
- (3) g is solvable \iff [g,g] = g' is nilpotent.

Proof. (1) Let $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be irreducible, then $\exists v \in V$, a common eigenvector for $\rho(x)$, $x \in \mathfrak{g} \Longrightarrow \mathbb{C}v$ is invariant $\Longrightarrow \mathbb{C}v = V$ by irreducibility.

- (2) Consider the adjoint representation $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$. Find a basis $x_1,...,x_d \in \mathfrak{g}$ s.t. $ad(x), x \in \mathfrak{g}$ are upper triangular wrt. it. Then for $\mathfrak{h}^i = \operatorname{Span}\{x_1,...,x_i\} \subseteq \mathfrak{g}$ we have $\mathfrak{h}^i \supseteq ad(\mathfrak{g})(\mathfrak{h}^i) = [\mathfrak{g},\mathfrak{h}^i]$, i.e. $\mathfrak{h}^i \triangleleft \mathfrak{g}, \mathfrak{h}^{i+1}/\mathfrak{h}^i$ are one-dimensional.
- (3) Let $[\mathfrak{g},\mathfrak{g}]$ be nilpotent, then it is solvable. The quotient $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ is abelian, hence solvable. Then g is also solvable. Let \mathfrak{g} be solvable, then $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ is solvable. We have $\ker ad = \mathfrak{z}(\mathfrak{g})$, so $ad\mathfrak{g} \cong \mathfrak{g}/\mathfrak{z}(\mathfrak{g})$, which is solvable. By Lie's Theorem, $ad\mathfrak{g} \subset \mathfrak{b}$. Then $[ad\mathfrak{g}, ad\mathfrak{g}] \subset [\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{n} \Longrightarrow [ad\mathfrak{g}, ad\mathfrak{g}]$ is nilpotent.

Question: Is there an analogue of this for nilpotent \mathfrak{g} with strictly upper triangular matrices? Answer: No in general. Take $\mathfrak{g} := \mathbb{C}$, $\rho(1) := \mathrm{id}_{\mathbb{C}^2}$.

Definition. An endomorphism $T \in \text{End}(V)$ is called *nilpotent* if $\exists n \in \mathbb{N}$ s.t. $T^n = 0$.

Remark: n is a nilpotent Lie algebra but it also consist of nilpotent operators.

Theorem. Let \mathfrak{g} be nilpotent, $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ s.t. $\{\rho(x) \mid x \in \mathfrak{g}\}$ consists of nilpotent operators. Then \exists basis in V s.t. $\rho(x)$ are strictly upper triangular.

Proof. Exercise. \mathfrak{g} is nilpotent, hence solvable. By Lie's Theorem, there exists a basis s.t. $\rho(x)$ is an upper triangular matrix wrt. it. The entries on the diagonal of $\rho(x)$, its eigenvalues, are zero since $0 = \rho^n(x)v = \lambda^n(x)v$ ($v \neq 0$).

Corollary (Engel's Theorem). A Lie algebra $\mathfrak g$ is nilpotent \iff $ad(\mathfrak g) \subset \operatorname{End}(\mathfrak g)$ consists of nilpotent operators.

Proof. Let \mathfrak{g} be nilpotent, then $\forall x \in \mathfrak{g}, y \in \mathfrak{g} : 0 = [x, [x, [x, ...[x, y]...]]] = ad^n(x)(y) \Longrightarrow ad(x)$ is nilpotent. If $ad(\mathfrak{g})$ consists of nilpotent operators $\Longrightarrow \exists$ basis $x_1, ..., x_n$ in \mathfrak{g} s.t. $ad(x) \in \mathfrak{n} \forall x \in \mathfrak{g}$. Let $\mathfrak{h}^i := \operatorname{Span}\{x_1, ..., x_i\} \lhd \mathfrak{g}$ since $h^i \supset ad(\mathfrak{g})(\mathfrak{h}^i) = [\mathfrak{g}, \mathfrak{h}^i]$. By strict upper triangularity, $[\mathfrak{g}, \mathfrak{h}^i] = ad(\mathfrak{g})(\mathfrak{h}^i) \subset \mathfrak{h}^{i-1} \Longrightarrow \mathfrak{g}$ is nilpotent.

15 Radical, semisimple and reductive algebras

Definition. A Lie algebra is called

- semisimple if it does not contain any nonzero solvable ideal,
- *simple* if it does not contain any non-trivial ideals and is not abelian.

Remark: \mathfrak{g} semisimple $\Longrightarrow \mathfrak{z}(\mathfrak{g}) = 0$.

Lemma. \mathfrak{g} *simple* $\Longrightarrow \mathfrak{g}$ *semisimple*.

Proof. Let $\mathfrak{h} \triangleleft \mathfrak{g}$ be a solvable ideal $\Longrightarrow \mathfrak{h} = \{0\}$ or $\mathfrak{h} = \mathfrak{g}$ by simplicity. If $\mathfrak{h} = 0$, there is nothing to prove. If $\mathfrak{h} = \mathfrak{g}$, then \mathfrak{g} contains a non-trivial ideal or is abelian.

Example. $\mathfrak{sl}(2,\mathbb{C})$ is simple.

Definition. Let \mathfrak{g} be a Lie algebra. The *radical* of \mathfrak{g} , rad(\mathfrak{g}), is a maximal solvable ideal in \mathfrak{g} (i.e. a solvable ideal containing any other solvable ideal).

Proposition. rad(g) *exists and is unique.*

Proof. If $rad(\mathfrak{g})$ exists, it is necessarily unique, $rad_1(\mathfrak{g}) \subseteq rad_2(\mathfrak{g})$. Existence: Let $\mathfrak{h}_1 \triangleleft \mathfrak{g}$, $h_2 \triangleleft \mathfrak{g}$ solvable ideals $\Longrightarrow \mathfrak{h}_1 + \mathfrak{h}_2$ solvable, because $\mathfrak{h}_1 \triangleleft \mathfrak{h}_1 + \mathfrak{h}_2$, $(\mathfrak{h}_1 + \mathfrak{h}_2)/\mathfrak{h}_1 = \mathfrak{h}_2/(\mathfrak{h}_1 \cap \mathfrak{h}_2)$ are solvable. So,

$$rad(\mathfrak{g}) := \sum_{\substack{\mathfrak{h} \triangleleft \mathfrak{g} \\ solvable}} \mathfrak{h}$$

is solvable and maximal.

Theorem. (1) $\mathfrak{g}/\mathrm{rad}(\mathfrak{g})$ is semisimple.

(2) $\mathfrak{h} \triangleleft \mathfrak{g}$ solvable s.t. $\mathfrak{g}/\mathfrak{h}$ semisimple, then $\mathfrak{h} = \operatorname{rad}(\mathfrak{g})$.

Proof. (1) Let $\overline{\mathfrak{h}} \triangleleft \mathfrak{g}/\mathrm{rad}(\mathfrak{g})$ be solvable. If $q : \mathfrak{g} \rightarrow \mathfrak{g}/\mathrm{rad}(\mathfrak{g})$ is the quotient map, then $\mathfrak{h} := q^{-1}(\overline{\mathfrak{h}}) \triangleleft \mathfrak{g}$ (since $q(x) \in \overline{\mathfrak{h}} \triangleleft \mathfrak{g}/\mathrm{rad}(\mathfrak{g})$, $y \in \mathfrak{g} \Longrightarrow q([x,y]) = [q(x),q(y)] \in \overline{\mathfrak{h}}$). For $q|_{\mathfrak{h}} : \mathfrak{h} \rightarrow \overline{\mathfrak{h}}$, we have $\ker q|_{\mathfrak{h}} = \mathfrak{h} \cap \mathrm{rad}(\mathfrak{g})$. So, $\mathfrak{h} \cap \mathrm{rad}(\mathfrak{g})$, $\overline{\mathfrak{h}}$ are solvable. Then \mathfrak{h} is solvable $\Longrightarrow \mathfrak{h} \subset \mathrm{rad}(\mathfrak{g}) \Longrightarrow \overline{\mathfrak{h}} = 0$.

(2) Exercise. Let $\mathfrak{h} \triangleleft \mathfrak{g}$ solvable, $\mathfrak{g}/\mathfrak{h}$ semisimple. Then $\mathfrak{h} \subset \operatorname{rad}(\mathfrak{g})$ and the map $\varphi : \mathfrak{g}/\mathfrak{h} \to \mathfrak{g}/\operatorname{rad}(\mathfrak{g})$ is a well-defined homomorphism. Consequently $\operatorname{rad}(\mathfrak{g}) = \ker \varphi \triangleleft \mathfrak{g}/\mathfrak{h}$. If $\mathfrak{h} \subsetneq \operatorname{rad}(\mathfrak{g})$, then we get a contradiction to $\mathfrak{g}/\mathfrak{h}$ being semisimple ($\operatorname{rad}(\mathfrak{g})$ is a non-zero ideal in $\mathfrak{g}/\mathfrak{h}$).

Observation: $0 \to \mathfrak{h} \cap \operatorname{rad}(\mathfrak{g}) \to \mathfrak{h} \to \overline{\mathfrak{h}} \to 0$ from (1) is exact.

Corollary. For every Lie algebra \mathfrak{g} exists a semisimple \mathfrak{g}_{ss} and a short exact sequence $0 \to \operatorname{rad}(\mathfrak{g}) \to \mathfrak{g}/\operatorname{rad}(\mathfrak{g}) = \mathfrak{g}_{ss} \to 0$.

Example. Let $G := \mathrm{Iso}^+(\mathbb{R}^3) = \mathbb{R}^3 \ltimes SO(3) = \{x \mapsto Ax + b \mid A \in SO(3), b \in \mathbb{R}^3\}$ (the *Poincare Group*). Then $\mathfrak{g} = Lie(G) = \mathbb{R}^3 \oplus \mathfrak{so}(3)$ as a vector space, Lie-bracket is given by $[(b_1, A_1), (b_2, A_2)] := (A_1b_2 - A_2b_1, [A_1, A_2])$. There, $\mathrm{rad}(\mathfrak{g}) = \mathbb{R}^3 = \{(b, 0) \mid b \in \mathbb{R}^3\} \subseteq \mathfrak{g}$, $\mathfrak{g}/\mathrm{rad}(\mathfrak{g}) = \mathfrak{so}(3)$.

Example. $\mathfrak{gl}(n,\mathbb{C}) = \mathfrak{z}(\mathfrak{gl}(n,\mathbb{C})) \oplus \mathfrak{sl}(n,\mathbb{C}) \Longrightarrow \mathfrak{gl}(n,\mathbb{C})$ is not semisimple but it differs from a semisimple algebra just by the centre.

Definition. A Lie algebra is *reductive* if $rad(\mathfrak{g}) = \mathfrak{z}(\mathfrak{g})$ ($\iff \mathfrak{z}(\mathfrak{g}) \oplus \mathfrak{g}_{ss}$).

16 Invariant bilinear forms

Definition. Let \mathfrak{g} be a Lie algebra over \mathbb{K} , $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ be a bilinear form on \mathfrak{g} . Then B is called *invariant*, if $\forall x, y, z \in \mathfrak{g}: B(ad(x)y, z) + B(y, ad(x)z) = 0$ (i.e., ad(x) is skew-adjoint w.r.t B).

Remark: If $\rho: G \to GL(V)$ is a representation, $B: V \times V \to \mathbb{C}$ is invariant if $B(gv, gw) = B(v, w) \forall g \in G, v, w \in V$. If B is invariant, $\rho_*: \mathfrak{g} \to \mathfrak{gl}(V)$ the corresponding Lie algebra representation, then $B(\rho_*(x)v, w) + B(v, \rho_*(x)w) = 0 \forall x \in \mathfrak{g}, v, w \in V$ can be obtained by differentiation.

Lemma. If $\mathfrak{h} \triangleleft \mathfrak{g}$ is an ideal, B an invariant bilinear form, then

$$\mathfrak{h}^{\perp} := \{ x \in \mathfrak{g} \mid B(x, y) = 0 \forall y \in \mathfrak{h} \}$$

is also an ideal.

Proof.
$$\mathfrak{h} \triangleleft \mathfrak{g}, y \in \mathfrak{h}^{\perp} \Longrightarrow \forall z \in \mathfrak{h} \forall x \in \mathfrak{g}, 0 = B(y, ad(x)z) = -B(ad(x)y, z) \Longrightarrow ad(x)y = [x, y] \in \mathfrak{h}^{\perp}.$$

Remark: $\mathfrak{h} \cap \mathfrak{h}^{\perp} \neq 0$ in general.

Example. $g = gl(n, \mathbb{K})$. Let $\rho(x) := tr(xy)$.

- Symmetry: $B(x, y) = \operatorname{tr}(xy) = \operatorname{tr}(yx) = B(y, x)$.
- Invariance: B(ad(x)y, z) = tr([x, y]z) = tr((xy yx)z) = tr(xyz yxz) = tr(yzx yxz) = -tr(y[x, z]) = -B(y, ad(x)z).

Proposition. Let \mathfrak{g} be a Lie algebra over \mathbb{K} , $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$ be a representation over \mathbb{K} . Then the form $B_{\rho}(x,y) := \operatorname{tr}(\rho(x)\rho(y))$ is a symmetric bilinear form which is invariant.

Theorem. Let \mathfrak{g} be a Lie algebra over \mathbb{K} s.t. $\exists \rho : \mathfrak{g} \to \mathfrak{gl}(V)$ with the form B_{ρ} non-degenerate. Then \mathfrak{g} is reductive.

Remark: We will prove this over \mathbb{C} , exercise: reduce \mathbb{R} to \mathbb{C} .

Proposition. Let \mathfrak{g} be a Lie algebra, $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ a complex representation. If ρ is reducible, then all elements $h \in \operatorname{rad}(\mathfrak{g})$ act by scalar operators: $\rho(h) = \lambda(h) \cdot \operatorname{id}_V \forall h \in \operatorname{rad}(\mathfrak{g})$. Moreover, $\lambda(h) = 0 \forall h \in [\mathfrak{g}, \operatorname{rad}(\mathfrak{g})]$.

Remark: This is an extension of Lie's Theorem about representation of solvable Lie algebras.

Proof. By Lie's Theorem, $\exists \lambda \in (\operatorname{rad}(\mathfrak{g}))^*$ and $v \in V$ s.t. $\rho(h)v = \lambda(h)v \, \forall h \in \operatorname{rad}(\mathfrak{g})$. Then $V_{\lambda} := \{w \in V \mid \rho(h)w = \lambda(h)w \, \forall h \in \operatorname{rad}(g)\} \neq 0$ and is invariant under $\rho(\operatorname{rad}(\mathfrak{g}))$. Furthermore, $\operatorname{tr}(\rho(h))|_{V_{\lambda}} = \lambda(h) \cdot \dim V_{\lambda} \implies \lambda([\mathfrak{g},\operatorname{rad}(\mathfrak{g})]) = 0$. Consequently $\forall x \in \mathfrak{g}, v \in V_{\lambda}, h \in \operatorname{rad}(\mathfrak{g})$:

$$\rho(h)\rho(x)\nu = \rho(x)\rho(h)\nu + \rho([h, x])\nu$$
$$= \rho(x)\lambda(h)\nu + \lambda([h, x])\nu$$
$$= \lambda(h)\rho(x)\nu$$

П

$$\implies \rho(g)V_{\lambda} \subseteq V_{\lambda} \implies V_{\lambda} = V$$
 by irreducibility.

Proof (of the theorem). It suffices to prove $[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})] = 0$ (since $\operatorname{rad}(\mathfrak{g}) \supset \mathfrak{z}(\mathfrak{g})$). Let $x \in$ $[\mathfrak{g}, \operatorname{rad}(\mathfrak{g})]$. By previous proposition, $\rho_W(x) = 0$ for every irreducible representation $\rho_W: \mathfrak{g} \to \mathfrak{gl}(W) \Longrightarrow B_{\rho_W}(x, y) = 0 \forall y \in \mathfrak{g}.$

Suppose now, that ρ_{W_1} , ρ_{W_2} are representations s.t. $B_{\rho_{W_1}}(x,y) = B_{\rho_{W_2}}(x,y) = 0 \forall y \in \mathfrak{g}$ and $ho_{\widetilde{W}}:\mathfrak{g}\to\mathfrak{gl}(\widetilde{W})$ is a representation s.t. there is a short exact sequence $0\to W_1\to \widetilde{W}\to W_2\to 0$ of \mathfrak{g} -representations. Claim: $B_{\rho_{\widetilde{W}}}(x,y)=0 \,\forall\, y\in\mathfrak{g}$. Reason: $W_1 \cong V$ subrepresentation of \widetilde{W} and $W_2 \cong \widetilde{W}/V$. Then $\widetilde{W} \cong V \oplus (\widetilde{W}/V)$ and $\rho_{V \oplus (\widetilde{W}/V)} = (\rho_V, \rho_{\widetilde{W}/V})$. So

$$\begin{split} B_{\rho_{\widetilde{W}}}(x,y) &= \operatorname{tr}(\rho_{\widetilde{W}}(x), \rho_{\widetilde{W}}(y) \\ &= \operatorname{tr}\left(\begin{pmatrix} \rho_{W_1}(x) & * \\ 0 & \rho_{W_2}(x) \end{pmatrix} \cdot \begin{pmatrix} \rho_{W_1}(y) & * \\ 0 & \rho_{W_2}(y) \end{pmatrix} \right) \\ &= B_{\rho_{W_1}}(x,y) + B_{\rho_{W_2}}(x,y) \end{split}$$

 $\forall x, y \in \mathfrak{g}$. This implies $B_{\rho_W}(x, y) = 0 \forall y \in \mathfrak{g}, x \in [\mathfrak{g}, \operatorname{rad}\mathfrak{g}]$, since if W irreducible, we are done, otherwise we can do induction on dimension of W, where dim W_1 , dim W_2 < dim W. But B_{ρ_W} is non-degenerate $\Longrightarrow x = 0$.

Corollary. All classical Lie algebras $\mathfrak{gl}(n,\mathbb{K})$, $\mathfrak{sl}(n,\mathbb{K})$, $\mathfrak{so}(n,\mathbb{K})$, $\mathfrak{sp}(2n,\mathbb{K})$, $\mathfrak{u}(n)$, $\mathfrak{su}(n)$ are reductive.

Proof. Reason is common: The invariant bilinear form coming from the standard tautological representation is non-degenerate. Semisimplicity follows by $\mathfrak{z}(\mathfrak{g}) = 0$ for relevant g. The standard bilinear form descends from $\mathfrak{gl}(n,\mathbb{K})$:

$$B(x, y) = \text{tr}(xy) = \sum_{i,j=1}^{n} x_{ij} y_{ji}$$

for $x, y \in \mathfrak{gl}(n, \mathbb{K})$. $\{E_{i,j}\}$ is a basis in $\mathfrak{gl}(n, \mathbb{K}) \Longrightarrow \{E_{j,i}\}$ is a dual basis w.r.t. B. Restriction to classical Lie algebras:

- $\mathfrak{sl}(n,\mathbb{K})$: $\mathfrak{gl}(n,\mathbb{K}) = \mathbb{K} \cdot \mathrm{id} \oplus \mathfrak{sl}(n,\mathbb{K})$, an orthogonal decomposition w.r.t. B, so we only consider B nondegenerate on both separately \implies B nondegenerate on $\mathfrak{sl}(n,\mathbb{K})$.
- $\mathfrak{so}(n,\mathbb{K})$: $y_{ji} = -y_{ij}$. Then $B(x,y) = -2\sum_{i>j} x_{ij} y_{ij}$ (is negative definite on \mathbb{R}). Since $\{E_{i,j} E_{j,i} \mid i>j\}$ is a basis in $\mathfrak{so}(n,\mathbb{K}) \Longrightarrow B$ nondegenerate there. $\mathfrak{u}(n)$: $B(x,y) = \sum_{i,j=1}^n x_{ij} y_{ji} = -\sum_{i,j=1}^n x_{ij} \overline{y_{ij}}$ (is negative definite sesquilinear, even on $\mathfrak{gl}(n,\mathbb{C}) \Longrightarrow$ on all subspaces, $\mathfrak{u}(n)$ too. Hence B(x,x) = 0 only if x = 0.)

Definition. The *Killing-Cartan form* on a Lie algebra g is the symmetric invariant bilinear form coming from the adjoint representation:

$$K^{\mathfrak{g}}(x, y) := \operatorname{tr}_{\mathfrak{g}}(ad(x) \cdot ad(y).$$

Remark: If $\mathfrak{h} \subseteq \mathfrak{g}$ is a subalgebra, $K^{\mathfrak{h}} \neq K^{\mathfrak{g}}|_{\mathfrak{h}}$ in general. It does however if $\mathfrak{h} \triangleleft \mathfrak{g}$, see exercise 5.1.

16 INVARIANT BILINEAR FORMS

Theorem (Cartan's criterion for solvability). A Lie algebra $\mathfrak g$ is solvable iff $K(\mathfrak g,\mathfrak g')=0$.

Theorem (Cartan's criterion for semisimplicity). A Lie algebra $\mathfrak g$ is semisimple iff K is nondegenerate. $K(\mathfrak g,\mathfrak g')=0$.

17 Appendix

17.1 Linear Algebra

Theorem. Let V be a finite-dimensional vector space over \mathbb{K} , $f \in \text{End}(V)$. Then f is trigonalisable if the characteristic polynomial of f factorizes over \mathbb{K} .

Proof. Wlog $V = \mathbb{K}^n$. Induction on n: For n = 1, any $M \in \mathbb{K}^{1 \times 1}$ is already upper triangular. Suppose that every $M \in \mathbb{K}^{(n-1) \times (n-1)}$ is upper triangular if the characteristic polynomial of M factorizes over \mathbb{K} . Let $M \in \mathbb{K}^{n \times n}$. By the assumption, M has at least one eigenvalue λ_1 . Let v_1 be the associated eigenvector. Complete $\{v_1\}$ to a basis $\{v_1, ..., v_n\}$ of \mathbb{K}^n .

Definition/Proposition. Let V be a finite-dimensional vector space over \mathbb{K} , $v_1, ..., v_n$ a basis in V. Then for every $i \in \{1, ..., n\}$, there is exactly one linear map $v_i^* \in V^*$ such that $v_i^*(v_j) = \delta_{ij}$. The set $\{v_1^*, ..., v_n^*\}$ is called the dual basis and constitutes a basis in V^* .

Definition. Let V be a vector space over \mathbb{K} , a *bilinear form* (a bilinear map $B: V \times V \to \mathbb{K}$) is

- nondegenerate if $B(v, w) = 0 \forall w \in V \implies v = 0$
- *skew-symmetric* if $B(v, w) = -B(w, v) \forall v, w \in V$
- *alternating* if $B(v, v) = 0 \forall v \in V$

Let \mathbb{K} be \mathbb{R} or \mathbb{C} . A symmetric bilinearform (hermitian sesquilinearform) B is

- positive definite if $B(v, v) > 0 \forall v \in V$
- positive semidefinite if $B(v, v) \ge 0 \forall v \in V$
- *negative definite* if $B(v, v) < 0 \forall v \in V$
- negative semidefinite if $B(v, v) \le 0 \forall v \in V$

Proposition. An alternating bilinear form $B: V \times V \to \mathbb{K}$ is skew-symmetric. If char $\mathbb{K} \neq 2$, the converse is also true.

Proof. By bilinearity, 0 = B(v + w, v + w) = B(v, v) + B(v, w) + B(w, v) + B(w, w) = B(v, w) + B(w, v). Converse: $B(v, v) = -B(v, v) \Longrightarrow 2B(v, v) = 0 \Longrightarrow B(v, v) = 0 \forall v$ if char $\mathbb{K} \neq 2$.

Proposition. Let $B: V \times V \to \mathbb{R}$ be a nondegenerate bilinear form, then $\alpha(v)(w) := B(v, w)$ gives a isomorphism $V \to V^*$.

Proof. By bilinearity of B, α is a linear map. It is injective: Let $\alpha(v) = 0 \Longrightarrow B(v, w) = 0 \forall w \in V \Longrightarrow v = 0$ since nondegenerate. Surjectivity follows from the Rank theorem: $\dim \operatorname{im}(\alpha) = n = \dim V^*$.

17 APPENDIX

17.2 Differential Forms

17.3 Haar Measure

17.4 Useful Formulas

$$\sum_{k} \delta_{i,k} \delta_{k,j} = \delta_{i,j} \tag{1}$$

17.5 Exercises

Exercise 5.3. Let $\mathfrak{g} \subset \mathfrak{gl}(n,\mathbb{C})$ be the subspace of block triangular matrices:

$$\mathfrak{g} = \left\{ \left(\begin{array}{cc} A & B \\ 0 & D \end{array} \right) \mid A \in \mathbb{C}^{k \times k}, B \in \mathbb{C}^{k \times (n-k)}, D \in \mathbb{C}^{(n-k) \times (n-k)} \right\}.$$

(1) Direct computation:

$$\left(\begin{array}{cc} A_1 & B_1 \\ 0 & D_1 \end{array}\right) \!\! \left(\begin{array}{cc} A_2 & B_2 \\ 0 & D_2 \end{array}\right) \! = \! \left(\begin{array}{cc} A_1 A_2 & A_1 B_2 + B_1 D_2 \\ 0 & D_1 D_2 \end{array}\right) \! .$$

Then

$$\begin{bmatrix} \begin{pmatrix} A_1 & B_1 \\ 0 & D_1 \end{pmatrix}, \begin{pmatrix} A_2 & B_2 \\ 0 & D_2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} [A_1, A_2] & A_1B_2 + B_1D_2 - A_2B_1 - B_2D_1 \\ 0 & [D_1, D_2] \end{pmatrix}$$

(2) The $\mathfrak{h} \triangleleft \mathfrak{g}$ solvable $\iff [\mathfrak{h}, \mathfrak{h}]$ nilpotent. Since $[\mathfrak{h}, \mathfrak{h}]$ has the form above, any A_1, A_2 and D_1, D_2 must commute, thus $A_i = \lambda_i E_k$, $D_i = \mu_i E_{n-k}$. The maximal solvable ideal, rad(\mathfrak{g}) contains all such matrices. Furthermore,

 $\mathfrak{g}/\mathrm{rad}(\mathfrak{g}) \cong \{A \in \mathbb{C}^{k \times k} \mid A \text{ upper triagonal}\} \oplus \{B \in \mathbb{C}^{(n-k) \times (n-k)} \mid B0 \text{ upper triagonal}\}$