1 Theory of Linear Response in a Nutshell

Clasically Consider an electron system subject to small external perturbation $V_{\text{ext}}(\mathbf{r}, t)$. By definition of the *inverse dielectric function* the total potential $V(\mathbf{r}, t)$ is given by

$$V(\mathbf{r},t) = \int d^3r' \int_{-\infty}^t dt' \, \varepsilon^{-1}(\mathbf{r}, \mathbf{r}', t - t') V_{\text{ext}}(\mathbf{r}', t') \,. \tag{1}$$

The upper bound of the integral over t' is t in place of ∞ due to causality: the "effect" cannot precede the "cause". This is equivalent to saying that $\varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \tau) = 0$ whenever $\tau < 0$. The Fourier transform of $\varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \tau)$ is

$$\varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \omega) = \int_{0}^{\infty} d\tau \ e^{i\omega\tau} \, \varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \tau) \ . \tag{2}$$

Applying Titchmarsh's theorem to ε^{-1} , we get that $\varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \omega)$ is the limit $\eta \to 0+$ of $\varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \omega + i\eta)$ which is holomorphic in the upper complex plane. Taking Fourier transform of eq. (1), we obtain¹

$$V(\mathbf{r},\omega) = \int d^3 r' \, \varepsilon^{-1}(\mathbf{r}, \mathbf{r}', \omega) V_{\text{ext}}(\mathbf{r}', \omega) . \tag{3}$$

Eqs. (2) and (3) may equivalently be formulated as

$$V_{\text{ext}}(\mathbf{r}, \omega) = \int d^3 r' \varepsilon(\mathbf{r}, \mathbf{r}', \omega) V(\mathbf{r}') , \text{ where}$$

$$\varepsilon(\mathbf{r}, \mathbf{r}', \omega) = \lim_{\eta \to 0+} \varepsilon(\mathbf{r}, \mathbf{r}', \omega + i\eta) = \lim_{\eta \to 0+} \int_0^\infty d\tau \ e^{i(\omega + i\eta)\tau} \varepsilon(\mathbf{r}, \mathbf{r}', \tau) .$$
(4)

Quantum Mechanically Now consider a system of non-interacting electrons described in a single-particle approximation by a Hamiltonian \hat{H}_0 . Let E_i denote single-particle energy levels with corresponding eigenstates $|i\rangle$. One-particle density matrix is then

$$\hat{\rho}_0 = \sum_i n_i |i\rangle\langle i| , \qquad (5)$$

1

$$\begin{split} V(\mathbf{r},\omega) &= \int_{-\infty}^{\infty} \!\! \mathrm{d}t \; e^{i\omega t} \, V(\mathbf{r},t) \\ &= \int \!\! \mathrm{d}^3 r' \! \int_{-\infty}^{\infty} \!\! \mathrm{d}t \int_{-\infty}^t \!\! \mathrm{d}t' \; e^{i\omega t} \, \varepsilon^{-1}(\mathbf{r},\mathbf{r}',t-t') V_{\mathrm{ext}}(\mathbf{r}',t') \\ &= \int \!\! \mathrm{d}^3 r' \! \int_{-\infty}^{\infty} \!\! \frac{\mathrm{d}\omega'}{2\pi} \int_{-\infty}^{\infty} \!\! \mathrm{d}t \int_{-\infty}^t \!\! \mathrm{d}t' \; e^{i\omega t} e^{-i\omega' t'} \varepsilon^{-1}(\mathbf{r},\mathbf{r}',t-t') V_{\mathrm{ext}}(\mathbf{r}',\omega') \\ &= \int \!\! \mathrm{d}^3 r' \! \int_{-\infty}^{\infty} \!\! \frac{\mathrm{d}\omega'}{2\pi} V_{\mathrm{ext}}(\mathbf{r}',\omega') \int_{-\infty}^{\infty} \!\! \mathrm{d}t \int_{-\infty}^t \!\! \mathrm{d}t' \; e^{i(\omega-\omega')t} e^{i\omega'(t-t')} \, \varepsilon^{-1}(\mathbf{r},\mathbf{r}',t-t') \\ &= \int \!\! \mathrm{d}^3 r' \! \int_{-\infty}^{\infty} \!\! \frac{\mathrm{d}\omega'}{2\pi} \; V_{\mathrm{ext}}(\mathbf{r}',\omega') \int_{-\infty}^{\infty} \!\! \mathrm{d}t \, e^{i(\omega-\omega')t} \int_{\infty}^{0} \!\! (-\mathrm{d}\tau) \; e^{i\omega'\tau} \, \varepsilon^{-1}(\mathbf{r},\mathbf{r}',\tau) \\ &= \int \!\! \mathrm{d}^3 r' \int_{-\infty}^{\infty} \!\! \mathrm{d}\omega' \, \varepsilon^{-1}(\mathbf{r},\mathbf{r}',\omega') V_{\mathrm{ext}}(\mathbf{r}',\omega') \cdot \frac{1}{2\pi} \int_{-\infty}^{\infty} \!\! \mathrm{d}t \; e^{i(\omega-\omega')t} \\ &= \int \!\! \mathrm{d}^3 r' \, \varepsilon^{-1}(\mathbf{r},\mathbf{r}',\omega) V_{\mathrm{ext}}(\mathbf{r}',\omega) \; . \end{split}$$

where n_i denotes the occupational number at energy E_i which, in equilibrium, is given by the Fermi-Dirac distribution. Electron density operator is $\hat{N}(\mathbf{r}) = |\mathbf{r}\rangle\langle\mathbf{r}|$. Equation of motion reads

$$i\hbar \frac{\mathrm{d}\hat{\rho}_0}{\mathrm{d}t} = [\hat{H}_0, \hat{\rho}_0] = 0$$
.

Within RPA (Random Phase Approximation) we are interested in the reponse of the system to the perturbation of the form $\hat{V}e^{-i(\omega+i\eta)t}$ (**TODO:** explain η). In the first order approximation, $\hat{\rho} = \hat{\rho}_0 + \hat{\rho}' + \mathcal{O}(\hat{V}^2)$, where $\hat{\rho}_0$ is defined by eq. (5) and $\hat{\rho}' \propto \hat{V}$. We thus have

$$i\hbar \frac{\mathrm{d}\hat{\rho}}{\mathrm{d}t} = i\hbar \frac{\mathrm{d}\hat{\rho}_{0}}{\mathrm{d}t} + i\hbar \frac{\mathrm{d}\hat{\rho}'}{\mathrm{d}t} [\hat{H}, \hat{\rho}] = [\hat{H}_{0}, \hat{\rho}_{0}] + [\hat{H}_{0}, \hat{\rho}'] + [\hat{V}, \hat{\rho}_{0}]e^{-i(\omega + i\eta)t} + \mathcal{O}(\hat{V}^{2})$$
 $\Longrightarrow i\hbar \frac{\mathrm{d}\hat{\rho}'}{\mathrm{d}t} = [\hat{H}_{0}, \hat{\rho}'] + [\hat{V}, \hat{\rho}_{0}]e^{-i(\omega + i\eta)t} .$
(6)

Using an ansatz $\hat{\rho}' = \hat{G}\hat{V}e^{-i(\omega+i\eta)t}$, where \hat{G} is some time-independent operator, we obtain²

$$\langle i|\hat{G}\hat{V}|j\rangle = \frac{n_i - n_j}{E_i - E_j - \hbar(\omega + i\eta)} \langle i|\hat{V}|j\rangle$$

$$\equiv G_{i,j} \langle i|\hat{V}|j\rangle . \tag{7}$$

It is important not to confuse $G_{i,j}$ with matrix element $\langle i|\hat{G}|j\rangle$! We can now calculate the induced electron density $\delta \hat{N}(t)$:

$$\langle \mathbf{r} | \delta \hat{N}(t) | \mathbf{r} \rangle = \operatorname{Tr}(\hat{N}(\mathbf{r})\hat{\rho}) - \operatorname{Tr}(\hat{N}(\mathbf{r})\hat{\rho}_{0}) = \operatorname{Tr}(\hat{N}(\mathbf{r})\hat{\rho}')$$

$$= \sum_{i,j} \langle j | \mathbf{r} \rangle \langle \mathbf{r} | i \rangle \langle i | \hat{G} \hat{V} | j \rangle e^{-i(\omega + i\eta)t}$$

$$= \sum_{i,j} G_{i,j} \langle j | \mathbf{r} \rangle \langle \mathbf{r} | i \rangle \langle i | \hat{V} | j \rangle e^{-i(\omega + i\eta)t} .$$
(8)

The total potential \hat{V} is the sum of external potential \hat{V}_{ext} and the potential induced by the variation of the charge density, i.e.

$$\langle \mathbf{r} | \hat{V}_{\text{tot}}(t) | \mathbf{r} \rangle = \langle \mathbf{r} | \hat{V}_{\text{ext}}(t) | \mathbf{r} \rangle + \int d^3 r' \langle \mathbf{r} | \hat{V}_{\text{Coulomb}} | \mathbf{r}' \rangle \langle \mathbf{r}' | \delta \hat{N}(t) | \mathbf{r}' \rangle , \qquad (9)$$

where \hat{V}_{Coulomb} is the Coulomb interaction potential. We have also used the fact that \hat{V} is

$$\langle i|i\hbar \frac{\mathrm{d}\hat{\rho}'}{\mathrm{d}t}|j\rangle = \hbar(\omega + i\eta)\langle i|\hat{\rho}'|j\rangle ,$$

$$\langle i|[\hat{H}_0, \hat{\rho}']|j\rangle = (E_i - E_j)\langle i|\hat{\rho}'|j\rangle ,$$

$$\langle i|[\hat{V}, \hat{\rho}_0]|j\rangle = (n_j - n_i)\langle i|\hat{V}|j\rangle .$$

Eq. (6) now reads

$$\langle i|\hat{\rho}'|j\rangle = \frac{(n_i - n_j) e^{-i\omega t + \eta t}}{E_i - E_j - \hbar(\omega + i\eta)} \langle i|\hat{V}|j\rangle.$$

²Calculating matrix elements:

diagonal in position representation. Using eq. (8) we get³

$$\langle \mathbf{r} | \hat{V}_{\text{ext}}(t) | \mathbf{r} \rangle = \int d^3 r' \, \langle \mathbf{r} | \hat{\varepsilon}(t) | \mathbf{r}' \rangle \langle \mathbf{r}' | \hat{V} | \mathbf{r}' \rangle , \text{ where}$$

$$\langle \mathbf{r} | \hat{\varepsilon}(\tau) | \mathbf{r}' \rangle = \left(\langle \mathbf{r} | \mathbf{r}' \rangle - \sum_{i,j} G_{i,j} \int d^3 r'' \, \frac{e^2}{\|\mathbf{r} - \mathbf{r}''\|} \, \langle j | \mathbf{r}'' \rangle \langle \mathbf{r}'' | i \rangle \langle i | \mathbf{r}' \rangle \langle \mathbf{r}' | j \rangle \right) \, e^{-i(\omega + i\eta)\tau} .$$

Using Titchmarsh's theorem once again, we obtain

$$\langle \mathbf{r} | \hat{V}_{\text{ext}}(\omega) | \mathbf{r} \rangle = \int d^{3}r' \, \langle \mathbf{r} | \hat{\varepsilon}(\omega) | \mathbf{r}' \rangle \langle \mathbf{r}' | \hat{V} | \mathbf{r}' \rangle , \text{ where}$$

$$\langle \mathbf{r} | \hat{\varepsilon}(\omega) | \mathbf{r}' \rangle = \lim_{\eta \to 0+} \langle \mathbf{r} | \hat{\varepsilon}(\omega + i\eta) | \mathbf{r}' \rangle = \lim_{\eta \to 0+} \int_{0}^{\infty} d\tau \, e^{i(\omega + i\eta)\tau} \, \langle \mathbf{r} | \varepsilon(\tau) | \mathbf{r}' \rangle$$

$$= \langle \mathbf{r} | \mathbf{r}' \rangle - \lim_{\eta \to 0+} \sum_{i,j} G_{i,j} \int d^{3}r'' \, \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}''\|} \, \langle j | \mathbf{r}'' \rangle \langle \mathbf{r}'' | i \rangle \langle i | \mathbf{r}' \rangle \langle \mathbf{r}' | j \rangle$$

$$= \langle \mathbf{r} | \mathbf{r}' \rangle - \int d^{3}r'' \, \langle \mathbf{r} | \hat{V}_{\text{Coulomb}} | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \hat{\chi}(\omega) | \mathbf{r}' \rangle ,$$

$$\langle \mathbf{r}'' | \hat{\chi}(\omega) | \mathbf{r}' \rangle = \lim_{\eta \to 0+} \sum_{i,j} G_{i,j} \, \langle j | \mathbf{r}'' \rangle \langle \mathbf{r}'' | i \rangle \langle i | \mathbf{r}' \rangle \langle \mathbf{r}' | j \rangle ,$$

$$\langle \mathbf{r} | \hat{V}_{\text{Coulomb}} | \mathbf{r}'' \rangle = \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}'' \|} ,$$

$$\langle \mathbf{r} | \hat{V}_{\text{Coulomb}} | \mathbf{r}'' \rangle = \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}'' \|} ,$$

which is the exact equivalent of eq. (4) in the classical description. $\hat{\chi}$ is called the *polarizability* matrix.

2 Application

We now apply the results of sec. 1 to a finite 2D lattice described in the tight binding approximation. We do the calculation in *atomic basis*, i.e. the basis of local site wave functions $|a\rangle$ $(a \in \{0, N-1\}$, where N is the number of sites). The following assumptions are made:

- $\langle a|b\rangle = \delta_{a,b}$,
- atomic basis is complete, i.e. $\sum_{a} |a\rangle\langle a| = \hat{1}$,
- $|a\rangle$'s are localized around the corresponding sites, i.e. $\langle \mathbf{r}|a\rangle \approx \delta(\mathbf{r} \mathbf{r_a})$, where $\mathbf{r_a}$ is the position of a'th site. This is the key to making a step from analytical formula's to numerical calculations.

$$\langle \mathbf{r} | \hat{V}_{\text{ext}}(t) | \mathbf{r} \rangle = \langle \mathbf{r} | \hat{V}_{\text{tot}}(t) | \mathbf{r} \rangle - \int d^{3}r' \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}'\|} \langle \mathbf{r}' | \delta \hat{N}(t) | \mathbf{r}' \rangle$$

$$\stackrel{(8)}{=} \langle \mathbf{r} | \hat{V} | \mathbf{r} \rangle e^{-i(\omega + i\eta)t} - \int d^{3}r' \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}'\|} \sum_{i,j} G_{i,j} e^{-i(\omega + i\eta)t} \langle j | \mathbf{r}' \rangle \langle \mathbf{r}' | i \rangle \langle i | \hat{V} | j \rangle$$

$$= \left(\langle \mathbf{r} | \hat{V} | \mathbf{r} \rangle - \sum_{i,j} G_{i,j} \int d^{3}r' \int d^{3}r'' \int d^{3}r'' \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}'\|} \langle j | \mathbf{r}' \rangle \langle \mathbf{r}' | i \rangle \langle i | \mathbf{r}'' \rangle \langle \mathbf{r}'' | j \rangle \langle \mathbf{r}'' | \hat{V} | \mathbf{r}''' \rangle \right) e^{-i(\omega + i\eta)t}$$

$$= \left(\langle \mathbf{r} | \hat{V} | \mathbf{r} \rangle - \sum_{i,j} G_{i,j} \int d^{3}r' \int d^{3}r'' \frac{e^{2}}{\|\mathbf{r} - \mathbf{r}' \|} \langle j | \mathbf{r}' \rangle \langle \mathbf{r}' | i \rangle \langle i | \mathbf{r}'' \rangle \langle \mathbf{r}'' | \hat{V} | \mathbf{r}'' \rangle \right) e^{-i(\omega + i\eta)t} .$$

 $^{^3}$ At point **r** we have

These assumptions essentially means that the step from position representation to atomic basis is performed by $|\mathbf{r}\rangle \to |a\rangle$, $\mathbf{r} \to \mathbf{r_a}$ and $\int d^3r \to \sum_a$. Eq. (10) now reads⁴

$$\langle a|\hat{V}_{\text{ext}}(\omega)|a\rangle = \sum_{b} \langle a|\hat{\varepsilon}(\omega)|b\rangle \langle b|\hat{V}|b\rangle , \text{ where}$$

$$\langle a|\hat{\varepsilon}(\omega)|b\rangle = \langle a|b\rangle - \sum_{c} \langle a|\hat{V}_{\text{Coulomb}}|c\rangle \langle c|\hat{\chi}(\omega)|b\rangle ,$$

$$\langle a|\hat{\chi}(\omega)|b\rangle = \lim_{\eta \to 0+} \sum_{i,j} G_{i,j} \langle j|c\rangle \langle c|i\rangle \langle i|b\rangle \langle b|j\rangle ,$$

$$\langle a|\hat{V}_{\text{Coulomb}}|b\rangle = \begin{cases} \frac{1}{4\pi\epsilon_{0}} \frac{e}{\|\mathbf{r_{a}} - \mathbf{r_{b}}\|} & \text{, if } a \neq b, \\ V_{0} & \text{, if } a = b, \end{cases}$$

$$(11)$$

The trick that allows the calculations of $\hat{\chi}(\omega)$ in a reasonable time is to rewrite it as a matrix product

$$\langle a|\hat{\chi}(\omega)|b\rangle = A(a,b)^{\dagger} \underbrace{G}_{\text{square matrix}}^{\text{column vector}}, \text{ where}$$

$$G_{i,j} = \frac{n_i - n_j}{E_i - E_j - \hbar(\omega + i\eta)},$$

$$A(a,b)_i = \langle a|i\rangle\langle i|b\rangle = \langle i|b\rangle\langle i|a\rangle^*.$$
(12)

⁴Eq. (10) was written in Gauss system. For the calculations it is, however, easier to use electron-volts. We thus replace e^2 by $\frac{e}{4\pi\epsilon_0}$. We also introduce the *self-interaction potential* V_0 to prevent degeneracies in $\langle a|\hat{V}_{\text{Coulomb}}|a\rangle$.