Sensitivity of Cloud-resolving RCE Simulations to SST, Horizontal Grid Size, Microphysics, and Turbulence Closure

Steven K. Krueger and Andrew T. Lesage
University of Utah
Marat Khairoutdinov
Stony Brook University

Goals

- Tompkins and Craig (1999) used a domain of 60 km x 60 km with 35 levels and a horizontal grid size of 2 km to study RCE.
- Use a larger domain with higher resolution.
- Test sensitivity to horizontal grid size, microphysics, and turbulence closure.

RCE Simulations

- Fixed SST: 301 K or 305 K
- Interactive radiation and surface fluxes
- No mean wind
- Domain size: 256 km by 256 km
- 50-day simulation; analyze last 25 days

RCE Simulations

- SAM (System for Atmospheric Modeling)
- Microphysics: SAM single-moment or Morrison et al. (2005) double-moment
- Turbulence closure: SAM TKE or SHOC (Simplified Higher Order Closure)
- Horizontal grid size: 0.5, 1, 2, 4, 8, or 16
 km

Two commonly used assumptions for SST-change simulations are that

- the temperature profile shifts uniformly at all heights within the troposphere
- the tropospheric relative humidity profile does not change

How does the RH profile change as the horizontal grid size changes?

1-moment microphysics

2-moment microphysics

Total Cloud Condensate (RCE-GREY)

Cloud Radiative Effects for SST = 301 K and 305 K

Cloud Feedbacks

Cloud Radiative Effects for SST = 301 K and 305 K

Cloud Feedbacks

Tompkins and Craig (1999)

TABLE 3. Cloud feedbacks in the CRM.

Feedback effect	Value (W m ⁻² K ⁻¹)
α_{C} (IR)	-0.56
α_{C} (SW)	+0.49
Total cloudy-sky feedback	
$[\alpha_C (IR) + \alpha_C (SW)]$	-0.07

Cloud Radiative Effects for SST = 301 K and 305 K

Which cloud properties change to produce the cloud feedbacks?

Changes in IWP produce the LW cloud feedback.

Daily values for NOSHOC 1-MOM for all grid sizes

Changes in CWP+IWP produce the SW cloud feedback.

Daily values for NOSHOC 1-MOM for all grid sizes

IWP versus grid size

CWP versus grid size

Summary

High-resolution CRM simulations of RCE with two microphysics schemes produced SW and LW cloud feedbacks of 0.4 and -0.4 W m⁻² K⁻¹, respectively, and a net cloud feedback of 0 W m⁻² K⁻¹.

- The same results were obtained with horizontal grid sizes up to 4 km.
- The net cloud feedback decreased for larger grid sizes.
- Simulations with SHOC differed from those without SHOC due to convection aggregation.