Principes de fonctionnement des machines binaires

2020-2021

Matthieu Picantin

- numération et arithmétique
- numération et arithmétique en machine
- numérisation et codage (texte, images)
- compression, cryptographie, contrôle derreur
- logique et calcul propositionnel
- circuits numériques

- exactement 2n + 1 chiffres $\overline{n}, \dots, 0, \dots, n$ avec $\frac{b}{2} < n < b$
- système complet : tout entier est représentable
- système redondant : certains entiers ont plusieurs représentations
- ♦ nouvelle méthode d'addition de $(a_{p-1} \cdots a_0)_b$ et $(c_{p-1} \cdots c_0)_b$
 - on calcule la retenue

$$r_{i+1} = \begin{cases} \overline{1} & \text{pour} & a_i + c_i \le -n \\ 0 & \text{pour} - n < a_i + c_i < n \\ 1 & \text{pour} & n \le a_i + c_i \end{cases}$$

- ightharpoonup on pose $t_i = a_i + c_i br_{i+1}$ avec $t_0 = r_0 = 0$
- ightharpoonup on obtient la somme $(s_p \cdots s_0)_b$ avec $s_i = t_i + r_i$

- exactement 2n + 1 chiffres $\overline{n}, \dots, 0, \dots, n$ avec $\frac{b}{2} < n < b$
- système complet : tout entier est représentable
- système redondant : certains entiers ont plusieurs représentations
- ♦ nouvelle méthode d'addition de $(a_{p-1} \cdots a_0)_b$ et $(c_{p-1} \cdots c_0)_b$
 - on calcule la retenue

$$r_{i+1} = \begin{cases} \overline{1} & \text{pour} \qquad a_i + c_i \le -n \\ 0 & \text{pour} - n < a_i + c_i < n \\ 1 & \text{pour} \quad n \le a_i + c_i \end{cases}$$

- ightharpoonup on pose $t_i = a_i + c_i br_{i+1}$ avec $t_0 = r_0 = 0$
- ightharpoonup on obtient la somme $(s_0 \cdots s_0)_b$ avec $s_i = t_i + r_i$

- exactement 2n + 1 chiffres $\overline{n}, \dots, 0, \dots, n$ avec $\frac{b}{2} < n < b$
- système complet : tout entier est représentable
- système redondant : certains entiers ont plusieurs représentations
- nouvelle méthode d'addition de $(a_{p-1} \cdots a_0)_b$ et $(c_{p-1} \cdots c_0)_b$
 - on calcule la retenue

$$r_{i+1} = \begin{cases} \overline{1} & \text{pour} \qquad a_i + c_i \le -n \\ 0 & \text{pour} - n < a_i + c_i < n \\ 1 & \text{pour} \quad n \le a_i + c_i \end{cases}$$

- ightharpoonup on pose $t_i = a_i + c_i br_{i+1}$ avec $t_0 = r_0 = 0$
- ightharpoonup on obtient la somme $(s_0 \cdots s_0)_b$ avec $s_i = t_i + r_i$

- exactement 2n + 1 chiffres $\overline{n}, \dots, 0, \dots, n$ avec $\frac{b}{2} < n < b$
- système complet : tout entier est représentable
- système redondant : certains entiers ont plusieurs représentations
- nouvelle méthode d'addition de $(a_{p-1} \cdots a_0)_b$ et $(c_{p-1} \cdots c_0)_b$
 - on calcule la retenue

$$r_{i+1} = \begin{cases} \overline{1} & \text{pour} & a_i + c_i \le -n \\ 0 & \text{pour} - n < a_i + c_i < n \\ 1 & \text{pour} & n \le a_i + c_i \end{cases}$$

- ightharpoonup on pose $t_i = a_i + c_i br_{i+1}$ avec $t_p = r_0 = 0$
- on obtient la somme $(s_p \cdots s_0)_b$ avec $s_i = t_i + r_i$

- exactement 2n + 1 chiffres $\overline{n}, \dots, 0, \dots, n$ avec $\frac{b}{2} < n < b$
- système complet : tout entier est représentable
- système redondant : certains entiers ont plusieurs représentations
- nouvelle méthode d'addition de $(a_{p-1} \cdots a_0)_b$ et $(c_{p-1} \cdots c_0)_b$
 - on calcule la retenue

e la retenue
$$r_{i+1} = \begin{cases} \overline{1} & \text{pour} & a_i + c_i \leq -n \\ 0 & \text{pour} - n < a_i + c_i < n \\ 1 & \text{pour} & n \leq a_i + c_i \end{cases}$$

- on pose $t_i = a_i + c_i br_{i+1}$ avec $t_D = r_0 = 0$
- on obtient la somme $(s_p \cdots s_0)_b$ avec $s_i = t_i + r_i$

- exactement *b* chiffres, disons $\{0, 1, \dots, b-1\}$
- $(a_p \cdots a_0, a_{-1} \cdots a_{-q})_b$ représente le nombre réel $\sum_{k=-q}^p a_k b^k$
- $(a_p \cdots a_0, a_{-1} a_{-2} \cdots)_b$ représente le nombre réel $\sum_{k=-\infty}^p a_k b^k$

Non-unicité des représentations des réels

 certains nombres réels admettent plusieurs représentations dans une même base

$$(1)_{10} = (0,9999\cdots)_{10}$$

- exactement *b* chiffres, disons $\{0, 1, \dots, b-1\}$
- $(a_p \cdots a_0, a_{-1} \cdots a_{-q})_b$ représente le nombre réel $\sum_{k=-q}^p a_k b^k$
- $(a_p \cdots a_0, a_{-1} a_{-2} \cdots)_b$ représente le nombre réel $\sum_{k=-\infty}^r a_k b^k$

Non-unicité des représentations des réels

 certains nombres réels admettent plusieurs représentations dans une même base

$$(1)_{10} = (0,9999 \cdots)_{10}$$

 $(1)_{d+1} = (0, aaaa \cdots)_{d+1}$

- ◆ exactement b chiffres, disons {0, 1, · · · , b − 1}
- $(a_p \cdots a_0, a_{-1} \cdots a_{-q})_b$ représente le nombre réel $\sum_{k=-q}^p a_k b^k$
- $(a_p \cdots a_0, a_{-1}a_{-2}\cdots)_b$ représente le nombre réel $\sum_{k=-\infty}^p a_k b^k$

Non-unicité des représentations des réels

 certains nombres réels admettent plusieurs représentations dans une même base

$$(1)_{10} = (0,9999 \cdots)_{10}$$

 $(1)_{d+1} = (0, dddd \cdots)_{d+1}$

- ◆ exactement b chiffres, disons {0, 1, · · · , b − 1}
- $(a_p \cdots a_0, a_{-1} \cdots a_{-q})_b$ représente le nombre réel $\sum_{k=-q}^p a_k b^k$
- $(a_p \cdots a_0, a_{-1} a_{-2} \cdots)_b$ représente le nombre réel $\sum_{k=-\infty}^p a_k b^k$

Non-unicité des représentations des réels

 certains nombres réels admettent plusieurs représentations dans une même base

$$(1)_{10} = (0,9999 \cdots)_{10}$$

$$(1)_{d+1} = (0, dddd \cdots)_{d+1}$$

- exactement b chiffres, disons {0, 1, · · · , b − 1}
- $(\cdots a_2 a_1 a_0, a_{-1} a_{-2} \cdots a_{-q})_b$ représente le nombre b-adique $\sum_{k=-q}^{+\infty} a_k b^k$
- tout nombre b-adique admet un opposé b-adique (ou complément)

$$(\cdots 001)_{10} + (\cdots 999)_{10} = 0$$
$$(\cdots 001)_2 + (\cdots 111)_2 = 0$$

$$(\cdots 001)_{d+1} + (\cdots dddd)_{d+1} = 0$$

- exactement b chiffres, disons {0, 1, · · · , b − 1}
- $(\cdots a_2 a_1 a_0, a_{-1} a_{-2} \cdots a_{-q})_b$ représente le nombre b-adique $\sum_{k=-q}^{+\infty} a_k b^k$
- tout nombre b-adique admet un opposé b-adique (ou complément)

$$\begin{split} &(\cdots 001)_{10} + (\cdots 999)_{10} = 0 \\ &(\cdots 001)_2 + (\cdots 111)_2 = 0 \\ &(\cdots 001)_{d+1} + (\cdots dddd)_{d+1} = 0 \end{split}$$

- exactement b chiffres, disons {0, 1, · · · , b − 1}
- $(\cdots a_2 a_1 a_0, a_{-1} a_{-2} \cdots a_{-q})_b$ représente le nombre b-adique $\sum_{k=-q}^{+\infty} a_k b^k$
- tout nombre b-adique admet un opposé b-adique (ou complément)

$$\begin{split} &(\cdots 001)_{10} + (\cdots 999)_{10} = 0 \\ &(\cdots 001)_2 + (\cdots 111)_2 = 0 \\ &(\cdots 001)_{d+1} + (\cdots dddd)_{d+1} = 0 \end{split}$$

- exactement b chiffres, disons {0, 1, · · · , b − 1}
- $(\cdots a_2 a_1 a_0, a_{-1} a_{-2} \cdots a_{-q})_b$ représente le nombre b-adique $\sum_{k=-q}^{+\infty} a_k b^k$
- tout nombre b-adique admet un opposé b-adique (ou complément)

$$\begin{split} &(\cdots 001)_{10} + (\cdots 999)_{10} = 0 \\ &(\cdots 001)_2 + (\cdots 111)_2 = 0 \\ &(\cdots 001)_{d+1} + (\cdots dddd)_{d+1} = 0 \end{split}$$

- (si) on manipule rarement les très très très graaaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

picantin@irif.fr Amphi#03 14 16/09/2020 7/11

- Numératio
- (si) on manipule rarement les très très très graaaaaaaaaands nombres(si) on manipule rarement les nombres avec une graaaaande précision

- architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits binary digit
 - $2^{32} \sim 4.3 \times 10^9$ $2^{64} \sim 18.4 \times 10^9$
- une infinité de choix pour représenter des entiers!

- (si) on manipule rarement les très très très graaaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

- (si) on manipule rarement les très très très graaaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

une infinité de choix pour représenter des entiers!

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

11111111 111111111 11111111 1111111

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des entiers!

Un choix parmi les 2^{32} ! choix pour représenter les entiers de 0 à $2^{32} - 1$

mots sur {0, 1} dans l'ordre lexicographique	base 2	base 10	
00000000 00000000 00000000 00000000	0	0	
00000000 00000000 00000000 00000001			
00000000 00000000 00000000 00000010			
00000000 00000000 00000000 00000011			
•••			
1111111111111111111111111111111111111			

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des entiers!

Un choix parmi les 2³²! choix pour représenter les entiers de 0 à 2³² – 1

mots sur {0, 1} dans l'ordre lexicographique	base 2	base 10
00000000 00000000 00000000 00000000	0	0
00000000 00000000 00000000 00000001	1	1
00000000 00000000 00000000 00000010		
00000000 00000000 00000000 00000011		
11111111 11111111 11111111 11111110		
1111111111111111111111111111111111111		

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des entiers!

Un choix parmi les 2^{32} ! choix pour représenter les entiers de 0 à $2^{32} - 1$

mots sur {0, 1} dans l'ordre lexicographiq	ue base 2	base 10
0000000 00000000 0000000 0000000	0 0	0
00000000 00000000 00000000 0000000)1 1	1
00000000 00000000 00000000 0000001	0 10	2
00000000 00000000 00000000 0000001	1 11	
•••		
111111111111111111111111111111111111	0	
	4	

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

11111111 11111111 11111111 1111111

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des entiers!

Un choix parmi les 2^{32} ! choix pour représenter les entiers de 0 à $2^{32} - 1$

mots sur {0,1} dans l'ordre lexicographique	base 2	base 10
00000000 00000000 00000000 00000000	0	0
00000000 00000000 00000000 00000001	1	1
00000000 00000000 00000000 00000010	10	2
00000000 00000000 00000000 00000011	11	3
•••		
11111111 11111111 11111111 11111110		

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des entiers!

Un choix parmi les 2^{32} ! choix pour représenter les entiers de 0 à $2^{32} - 1$

· · · · · · · · · · · · · · · · · · ·			
mots sur {0, 1} dans l'ordre lexicographique	base 2	base 10	
00000000 00000000 00000000 00000000	0	0	
00000000 00000000 00000000 00000001	1	1	
00000000 00000000 00000000 00000010	10	2	
00000000 00000000 00000000 00000011	11	3	
•••			
11111111 11111111 11111111 11111110		4 294 967 294	
111111111111111111111111111111111111111		4 294 967 295	

- (si) on manipule rarement les très très très graaaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

une infinité de choix pour représenter des entiers!

Un choix parmi les 2^{32} ! choix pour représenter les entiers de 0 à $2^{32} - 1$ mots sur {0, 1} dans l'ordre lexicographique base 2 base 10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000001 00000000 00000000 00000000 00000010 00000000 00000000 00000000 00000011 représentation non-signée 4 294 967 294 11111111 111111111 11111111 1111111 4 294 967 295

Un parmi les 2^{32} ! choix pour représenter les entiers de $-2^{31} + 1$ à $2^{31} - 1$

mots sur {0, 1}	base 10
- 11111111 111111111 1111111111111111	-2 147 483 647
111111111111111111111111111111111111111	-2147483646
10000000 00000000 00000000 00000010	-2
10000000 00000000 00000000 00000001	-1
10000000 00000000 00000000 00000000	-0
00000000 00000000 00000000 00000000	0
00000000 00000000 00000000 00000001	1
00000000 00000000 00000000 00000010	2
•••	• • •
011111111111111111111111111111111	2 147 483 646
01111111111111111111111111111111111	2 147 483 647

Un parmi les 2^{32} ! choix pour représenter les entiers de $-2^{31} + 1$ à $2^{31} - 1$

```
mots sur {0, 1} base 10
1111111111111111111111111 -2147 483 647
         mots sur \{0, 1\}
                                base 10
                             -2147483646
  10000000 00000000 00000000 00000010
  10000000 000000000 00000000 00000001
  1000000 00000000 0000000 00000000
  00000000 000000000 00000000 00000000
  oboooooo oooooooo ooooooo ooooooo 1
  2 147 483 647
bit de signe
```


Un parmi les 2 ³²	! choix pour	représenter le	es entiers de	$= -2^{31}$	à $2^{31} - 1$
------------------------------	--------------	----------------	---------------	-------------	----------------

mots sur {0,1}	base 10 - 2147483648 - 2147483647
	 - 3
	– 2 – 1
0000000 0000000 0000000 0000000	0
	2
01111111 11111111 11111111 11111110	2 147 483 646
	2 147 483 647

Un parmi les 2^{32} ! choix pour représenter les entiers de -2^{31} à $2^{31} - 1$

mots sur {0, 1}	base 10 - 2 147 483 648 - 2 147 483 647
	-3
	-2
	– 1
00000000 00000000 00000000 00000000	0
00000000 00000000 00000000 00000001	1
00000000 00000000 00000000 00000010	2
01111111 11111111 11111111 11111110	2 147 483 646
011111111111111111111111111111111111	2 147 483 647

Un parmi les 2^{32} ! choix pour représenter les entiers de -2^{31} à $2^{31} - 1$

mots sur {0, 1}	base 10
	-2147483648
	-2147483647
	-3
	-2
11111111111111111111111111111111111	– 1
00000000 00000000 00000000 00000000	0
00000000 00000000 00000000 00000001	1
00000000 00000000 00000000 00000010	2
• • •	• • •
0111111111111111111111111111111111	2 147 483 646
011111111111111111111111111111111111	2 147 483 647

Amphi#03 14 16/09/2020 9/11 picantin@irif.fr

mots sur $\{0,1\}$	base 10
	- 2 147 483 648
	<i>-</i> 2 147 483 647
	• • •
	-3
11111111 11111111 11111111 11111110	-2
11111111111111111111111111111111111	-1
00000000 00000000 00000000 00000000	0
00000000 00000000 00000000 00000001	1
00000000 00000000 00000000 00000010	2
•••	
01111111 11111111 11111111 1111110	2 147 483 646
01111111 11111111 11111111 11111111	2 147 483 647

mots sur {0, 1}	base 10
	-2147483648
	-2147483647
111111111111111111111111111111111111111	-3
111111111111111111111111111111111111111	-2
11111111111111111111111111111111111	– 1
00000000 00000000 00000000 00000000	0
00000000 00000000 00000000 00000001	1
00000000 00000000 00000000 00000010	2
•••	
0111111111111111111111111111111111	2 147 483 646
01111111111111111111111111111111111	2 147 483 647

mots sur $\{0,1\}$	base 10
10000000 00000000 00000000 00000000	-2147483648
10000000 00000000 00000000 00000001	-2147483647
111111111111111111111111111111111111111	-3
111111111111111111111111111111111111111	-2
111111111111111111111111111111111111	– 1
00000000 00000000 00000000 00000000	0
00000000 00000000 00000000 00000001	1
00000000 00000000 00000000 00000010	2
01111111 11111111 11111111 11111110	2 147 483 646
011111111111111111111111111111111111	2 147 483 647

mots sur {0, 1}	base 10
10000000 00000000 00000000 00000000	- 2 147 483 648
10000000 00000000 00000000 00000001	-2147483647
•••	• • •
1 <mark>111111111111111111111111111111111111</mark>	-3
1 <mark>111111111111111111111111111111111111</mark>	-2
1 <mark>11111111111111111111111111111111111</mark>	– 1
0000000 00000000 00000000 00000000	0
0000000 00000000 00000000 00000001	1
0000000 00000000 00000000 00000010	2
011111111111111111111111111111111111111	2 147 483 646
0 1111111 11111111 11111111 11111111	2 147 483 647
bit de signe	

```
Un parmi les 2^{32}! choix pour représenter les entiers de -2^{31} à 2^{31} - 1
              mots sur \{0, 1\}
                                            base 10
    1000000 00000000 0000000 00000000
                                         -2147483648
    10000000 000000000 00000000 00000001
                                          — 2 147 483 647
                                        complément à 2
    00000000 00000000 00000000 00000000
    00000000 00000000 00000000 00000001
    00000000 00000000 00000000 00000010
           1 11111111 11111111 11111110
                                          2 147 483 646
    0|1111111 11111111 11111111 1111111
                                           2 147 483 647
  bit de signe
```


midi moins vingt

bit de signe

0|111111 11111111 1111111 1111110 0|1111111 11111111 11111111 1111111

bit de signe

midi moins vingt

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des réels!

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des réels!

- (si) on manipule rarement les très très graaaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des réels!

picantin@irif.fr PF1 Amphi#03 14⊔16/09/2020 10 / 11

- (si) on manipule rarement les très très très graaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des réels!

Normes IFFF 754

binary32

picantin@irif.fr PF1 Amphi#03 14⊔16/09/2020 10 / 11

- (si) on manipule rarement les très très graaaaaaaaaaands nombres
- (si) on manipule rarement les nombres avec une graaaaande précision

 architectures communes 32 ou 64 bits: arithmétique sur des nombres représentés sur 32 ou 64 bits

$$2^{32} \sim 4.3 \times 10^9$$
 $2^{64} \sim 18.4 \times 10^{18}$

• une infinité de choix pour représenter des réels!

Normes IFFF 754

binary32

picantin@irif.fr PF1 Amphi#03 14 ⊔ 16/09/2020 10 / 11

binary32

Amphi#03 picantin@irif.fr 14 16/09/2020 11 / 11

1	11000110			10010011110000111000000		
S		e		m		
\downarrow		\downarrow		↓		
$(-1)^{s}$	×	2^{e-B}	X	1 • <i>m</i>		
$(-1)^1$	×	2 ¹⁹⁸⁻¹²⁷	×	1.10010011110000111000000		
environ -3.7240626.10 ²¹						

- pour $0 < e < e_{max}$, nombre normal de valeur $(-1)^s \times 1.m \times 2^{e-B}$
- pour e = 0, nombre dénormalisé de valeur $(-1)^s \times 0.m \times 2^{1-B}$
- pour $e = e_{max}$ et m = 0, deux valeurs $-\infty$ et $+\infty$
- pour $e = e_{max}$ et $m \neq 0$, valeur indéterminée NaN (Not-a-Number)
 - mode arrondi au plus près (mode par défaut)
 - mode arrondi vers zéro
 - mode arrondi vers plus l'infini
 - mode arrondi vers moins l'infir

1	11000110			10010011110000111000000		
S		e		m		
\downarrow		\downarrow		↓		
$(-1)^{s}$	×	2^{e-B}	X	1 • m		
$(-1)^{1}$	×	2 ¹⁹⁸⁻¹²⁷	×	1.100100111100001110000002		
environ -3.7240626.10 ²¹						

- pour $0 < e < e_{max}$, nombre normal de valeur $(-1)^s \times 1.m \times 2^{e-B}$
- pour e = 0, nombre dénormalisé de valeur $(-1)^s \times 0.m \times 2^{1-B}$
- pour $e = e_{max}$ et m = 0, deux valeurs $-\infty$ et $+\infty$
- pour $e = e_{max}$ et $m \neq 0$, valeur indéterminée NaN (Not-a-Number)
 - mode arrondi au plus près (mode par défaut)
 - mode arrondi vers zéro
 - mode arrondi vers plus l'infini
 - mode arrondi vers moins l'infin

1	11000110			10010011110000111000000		
S		e		m		
\downarrow		\downarrow		\downarrow		
$(-1)^{s}$	×	2^{e-B}	×	1 • <i>m</i>		
$(-1)^1$	×	2 ¹⁹⁸⁻¹²⁷	×	1.100100111100001110000002		
environ $-3.7240626.10^{21}$						

- pour $0 < e < e_{max}$, nombre normal de valeur $(-1)^s \times 1.m \times 2^{e-B}$
- pour e = 0, nombre dénormalisé de valeur $(-1)^s \times 0.m \times 2^{1-B}$
- pour $e = e_{max}$ et m = 0, deux valeurs $-\infty$ et $+\infty$
- pour $e = e_{max}$ et $m \neq 0$, valeur indéterminée NaN (Not-a-Number)
 - mode arrondi au plus près (mode par défaut)
 - mode arrondi vers zéro
 - mode arrondi vers plus l'infin
 - mode arrondi vers moins l'infir

1	11000110			10010011110000111000000	
S		e		m	
\downarrow		\downarrow		\downarrow	
$(-1)^{s}$	×	2^{e-B}	×	1 • <i>m</i>	
$(-1)^1$	×	2 ¹⁹⁸⁻¹²⁷	×	1.100100111100001110000002	
environ $-3.7240626.10^{21}$					

- pour $0 < e < e_{max}$, nombre normal de valeur $(-1)^s \times 1.m \times 2^{e-B}$
- pour e = 0, nombre dénormalisé de valeur $(-1)^s \times 0.m \times 2^{1-B}$
- pour $e = e_{max}$ et m = 0, deux valeurs $-\infty$ et $+\infty$
- pour $e = e_{max}$ et $m \neq 0$, valeur indéterminée NaN (Not-a-Number)
 - mode arrondi au plus près (mode par défaut)
 - mode arrondi vers zéro
 - mode arrondi vers plus l'infin
 - mode arrondi vers moins l'infir

1	11000110			10010011110000111000000		
S		e		т		
\downarrow		\downarrow		↓		
$(-1)^{s}$	×	2^{e-B}	×	1 • m		
$(-1)^1$	×	2 ¹⁹⁸⁻¹²⁷	×	1.100100111100001110000002		
environ -3.7240626.10 ²¹						

- pour $0 < e < e_{max}$, nombre normal de valeur $(-1)^s \times 1.m \times 2^{e-B}$
- pour e = 0, nombre dénormalisé de valeur $(-1)^s \times 0.m \times 2^{1-B}$
- pour $e = e_{max}$ et m = 0, deux valeurs $-\infty$ et $+\infty$
- pour $e = e_{max}$ et $m \neq 0$, valeur indéterminée NaN (Not-a-Number)
 - mode arrondi au plus près (mode par défaut)
 - mode arrondi vers zéro
 - mode arrondi vers plus l'infini
 - mode arrondi vers moins l'infini