

<u>Aszinkron sorrendi hálózatok tervezése</u> <u>mintapéldákon keresztül</u>

<u>aszinkron szekvenciális hálózat:</u> aszinkron sorrendi hálózatokban nincs szinkronizáló jel (órajel), azaz a következő állapot (*n*+1) értelmezését nem egy órajel ciklus lezajlása után determináljuk. Ezekben a hálózatokban általánosságban azt feltételezhetjük, hogy a bemenet minden egyes változása egy új állapotot generál.

(megjegyzés: az új állapot (n+1) nem feltétlenül különbözik (a szekunder változók és a kimenetek tekintetében) az előzőtől (n), ezt mindig a specifikáció szerinti - adott időpontbeli - működési feltételek határozzák meg.)

<u>Aszinkron sorrendi hálózatok tervezése mintapéldákon</u> <u>keresztül</u>

- 1. mintafeladat -

Közvetlenül visszacsatolt kombinációs hálózattal tervezzünk olyan egybemenetű (**X**) és egykimenetű (**Z**) aszinkron sorrendi hálózatot, amelynek kimenetén a szint mindannyiszor ellenkezőjére vált, ahányszor a bemenet magas szintről alacsony szintre vált.

Bekapcsolás után a hálózat az **X**=0 bemenetnél **Z** = 0 kimenetet szolgáltasson!

- 1. mintafeladat -

A feladat megoldásához a következő, általános szisztematikus lépéssort alkalmazzuk:

- 1. Idődiagram (vagy állapotgráf) felrajzolása.
- 2. Előzetes szimbolikus állapottábla felvétele.
- 3. Összevont szimbolikus állapottábla megszerkesztése.
- 4. Kódolt állapottábla elkészítése a kritikus versenyhelyzet elemzésével.
- 5. közvetlen visszacsatolt kombinációs hálózat esetében a szekunder változó(k) és a kimenet(ek) függvényeinek Karnaugh tábla segítségével történő statikus hazárdmentesített megadása algebrai alakban;
 - SR tárolók alkalmazása esetén a vezérlési tábla, valamint a szükséges Karnaugh táblák alapján az SR tároló(k) és a kimenet(ek) statikusan hazárdmentesített algebrai függvényalakjainak megadása.
- 6. Kezdeti állapotról történő gondoskodás.
- 7. Lényeges hazárdok vizsgálata (szükség esetén késleltetések beiktatása).
- 8. Realizáció logikai kapukkal (és tárolókkal).

- 1. mintafeladat -

Megoldás (Mealy-modell):

1. lépés: idődiagram(ütemdiagram) felrajzolása

- 1. mintafeladat -

2. lépés: A feladat absztrakt szimbolikus állapottáblájának megszerkesztése

előzetes szimbolikus állapottábla

bem.	X=0	X=1
akt.áll.		
a	<u>a</u> /0	b /0
b	c /1	(b) /0
c	<u>c</u>)/1	d /1
d	a /0	<u>d</u> /1

Egy stabil-stabil átmenet $(a \rightarrow b)$ az állapottáblán:

bem.	X=0 —	\rightarrow X=1
akt.áll.		
a	<u>a</u> /0	b /0
b <	c /1	<u></u>)
c	c /1	d /1
d	a /0	<u>d</u> /1

- 1. mintafeladat -

3. lépés: összevont szimbolikus állapottábla megszerkesztése

előzetes szimbolikus állapottábla

bem.	X=0	X=1
akt.áll.		
a	<u>a</u> /0	b /0
b	c /1	(b) /0
c	(c) /1	d /1
d	a /0	<u>d</u> /1

Az előzetes szimbolikus állapottáblán – az összevonás feltételeit figyelembe véve- nem tudunk állapot összevonást végezni. A kódolt állapottáblát így e táblázat alapján kell elkészíteni.

⁻ Digitális hálózatok: 8.előadás -

- 1. mintafeladat -

4. lépés: kódolt állapottábla elkészítése, kritikus versenyhelyzet elemzés

egy lehetséges kódkiosztás:

kódolt állapottábla

kódolt aktuális állapot	kódolt következő	ő állapot/kimenet
	<i>X</i> =0	<i>X</i> =1
$Y_1^{v}Y_2^{v}$	$Y_1^{\nu}Y_2^{\nu}/Z$	$Y_1^v Y_2^v / \mathbf{Z}$
00	00/0	0 1/0
01	1 0/1	<u>0</u> 1)/0
10	10/1	1 1/1
11	0 0/0	11/1

⁻ Digitális hálózatok: 8.előadás -

- 1. mintafeladat -

kritikus versenyhelyzet elemzése a kódolt állapottáblán

kódolt aktuális állapot	kódolt következő állapot/kimei			
широг	X=0	<i>X</i> =1		
$Y_1^{v}Y_2^{v}$	$Y_1^{\nu}Y_2^{\nu}/Z$	$Y_1^{v}Y_2^{v}/Z$		
00	000	0 1/0		
01		01/0		
10	→ <u>10</u> /1	1 1/1		
11	0 0/0	11/1		

Egy ideális, '01'→'10' stabil-stabil állapot átmenetet

- 1. mintafeladat -

Valóságos állapot-átmenet: kritikus versenyhelyzet az $Y_1^v Y_2^v = 0.01 \rightarrow 1.00$ állapot átmenet esetében!

kódolt aktuális állapot	kódolt következő állapot/kimenet			
широг	X=0	<i>X</i> =1		
$Y_1^{\nu}Y_2^{\nu}$	$Y_1^{\nu}Y_2^{\nu}/Z$	$Y_1^{v}Y_2^{v}/Z$		
00	00 00 0	0 1/0		
01	1 0/1	1. 01/0		
10	10/1	2. 11/1		
11	0 0/0	11/1		

1.eset:
$$Y_1^{\nu}Y_2^{\nu} = '01' \rightarrow '00' \rightarrow '10'$$

• az $X=1\rightarrow 0$ hatására az $Y_1^v Y_2^v = 00$ sorba ugorva a '00' kódú állapotban stabilizálódik a hálózatunk:

⇒ HIBÁS működés‼

2.eset:
$$Y_1^{\nu}Y_2^{\nu} = '01' \rightarrow '11' \rightarrow '10'$$

• az $X=1\rightarrow 0$ hatására először az $Y_1^{\nu}Y_2^{\nu}=11$ sorba ugorva a '00' tranziens kód jelenik meg. Innen továbblépve az $Y_1^{\nu}Y_2^{\nu}=00$ sorba ismét a '00' kódú állapotban stabilizálódik a hálózatunk:

⇒ HIBÁS működés!!

⁻ Digitális hálózatok: 8.előadás -

- 1. mintafeladat -

Kritikus versenyhelyzet:

amennyiben egy tranziens állapot kódja egynél több szekunder változó értékében különbözik a kiinduló stabil állapot kódjától, a reális hálózaton - az eltérő jelkésleltetési utak miatt - átmenetileg olyan más tranziens állapotok is jelentkezhetnek az f_y hálózat kimenetén, amelyek stabilizálódhatnak. Ezzel más, a specifikációnak ellentmondó pályára áll az aszinkron hálózat.

Az ilyen hibalehetőségeket **kritikus versenyhelyzet**eknek nevezzük.

- 1. mintafeladat -

A kritikus versenyhelyzet kiküszöbölése: az állapotkódolás megváltoztatása

egy másik lehetséges kódkiosztás:

kódolt állapottábla

kódolt aktuális állapot	kódolt következő állapot/kimene			
$Y_1^{v}Y_2^{v}$	X=0 $Y_1^{\nu}Y_2^{\nu}/Z$	$X=1$ $Y_1^{\nu}Y_2^{\nu}/Z$		
00	00/0	0 1/0		
01	1 1/1	@1/0		
11	11/1	1 0/1		
10	0 0/0	10/1		

Nincs kritikus versenyhelyzet!

⁻ Digitális hálózatok: 8.előadás -

- 1. mintafeladat -

5. lépés: a szekunder változók és a kimenet függvényeinek Karnaugh tábla segítségével történő megadása (hazárdmentesített függvényalak!!)

⁻ Digitális hálózatok: 8.előadás -

- 1. mintafeladat -

6. lépés: a kezdeti állapot beállásának ellenőrzése

Az ellenőrzés menete:

a megoldásként kapott függvényekbe, mint egyenletekbe be kell helyettesíteni a kezdeti állapothoz tartozó ismert és előírt bemeneti értéke(ke)t : ha egyértelműek az eredmények, és teljesül az egyenlőség, akkor nem kell külön kezdő állapot beállító jelről (,RESET') gondoskodni.

Amennyiben azonban a behelyettesítéssel kapott eredmény nem az előírás szerinti kezdő értékeket biztosítja a kimenet(ek) és a szekunder változó(k) tekintetében, illetve nem egyértelmű az eredmény, akkor a következő szabály alapján kell eljárni:

- 1. mintafeladat -

A kezdeti állapot beállításának általános feltételei(sorrendje):

- 1. a kezdeti állapot kódját rá kell kényszeríteni az f_y hálózatra, a visszacsatolástól függetlenítve ezeket a bemeneteket. Ezt a helyzetet legalább addig kell fenntartani, amíg az f_y kimenetein kialakul a kezdeti állapot kódja (illetve, ha **SR** tárolókkal történik a visszacsatolás, akkor azok kimenetén alakul ki ez a kód),
- rá kell kapcsolni a hálózatra azt a bemeneti értéket (kombinációt), amely a kezdeti állapothoz tartozik,
- 3. végül meg kell szüntetni a kényszerített visszacsatoló ágat (állapotot), és helyre kell állítani az eredeti visszacsatolást, ezzel a hálózat a kezdeti állapotban stabilizálódik.

- 1. mintafeladat -

A kezdeti állapot beállásának ellenőrzése az 1. mintafeladatban:

$$Y_{1} = Y_{2}^{\nu} \overline{X} + Y_{1}^{\nu} X + Y_{1}^{\nu} Y_{2}^{\nu} \qquad \text{kezdőállapotban:} \qquad 0 = Y_{2}^{\nu} \cdot I + Y_{1}^{\nu} \cdot O + Y_{1}^{\nu} Y_{2}^{\nu}$$

$$Y_{2} = \overline{Y_{1}^{\nu}} X + \overline{Y_{1}^{\nu}} Y_{2}^{\nu} + Y_{2}^{\nu} \overline{X} \qquad \Longrightarrow \qquad 0 = \overline{Y_{1}^{\nu}} \cdot O + \overline{Y_{1}^{\nu}} Y_{2}^{\nu} + \overline{Y_{2}^{\nu}} \cdot I$$

$$Z = Y_{1} \qquad \qquad \text{bizonytalan!}$$

Konklúzió:

gondoskodni kell a kezdeti állapot beállításáról! → ,RESET' (R) jel beiktatása

- 1. mintafeladat -

A ,RESET' (,R') jel beiktatásának elve (a feladat specifikációja alapján):

hasítsuk fel a visszacsatolásokat $(Y_1^v; Y_2^v)$, és illesszünk be a visszacsatoló körbe 2 darab kétbemenetű logikát. Az egyik bemenetük közös, a kezdeti állapotba kényszerítő 'R' (reset) jel, a másik bemenetük a visszacsatolandó szekunder változókra $(Y_1^v; Y_2^v)$ kapcsolandó. A kimeneteket kapcsoljuk az f_y hálózat bemeneteire. Mindkét R-logika az R = '1' esetben '0'-át ad tovább, ez pedig a kezdeti állapot kódja. Ha R=0, a logikák kimenetére a megfelelő szekunder változó kerül, tehát él a visszacsatolás.

- 1. mintafeladat -

(7. lépés: lényeges hazárdok vizsgálata)

8. lépés: realizáció

NAND realizáció 'RESET' logika nélkül:

$$Y_1 = Y_2^{\nu} \overline{X} + Y_1^{\nu} X + Y_1^{\nu} Y_2^{\nu}$$

$$Y_2 = \overline{Y_1^{\nu}} X + \overline{Y_1^{\nu}} Y_2^{\nu} + Y_2^{\nu} \overline{X}$$

$$Z = Y_1$$

⁻ Digitális hálózatok: 8.előadás -

- 1. mintafeladat -

NAND realizáció 'RESET' logika beiktatásával:

$$\begin{split} Y_1 &= Y_2^{\nu} \overline{X} + Y_1^{\nu} X + Y_1^{\nu} Y_2^{\nu} \\ Y_2 &= \overline{Y_1^{\nu}} X + \overline{Y_1^{\nu}} Y_2^{\nu} + Y_2^{\nu} \overline{X} \\ Z &= Y_1 \end{split}$$

<u>Aszinkron sorrendi hálózatok tervezése mintapéldákon</u> <u>keresztül</u>

- 2. mintafeladat -

Tervezzünk kétbemenetű (X_1, X_2) ún. "sorrendi ÉS" áramkört, amelynek **Z** kimenete akkor és csakis akkor ad magas szintet, ha az X_1 bemenet előbb áll '1'-re, mint az X_2 . Kezdeti állapotban az X_1X_2 =00 bemeneti bitkombináció esetén **Z**=0.

A tervezést végezzük el a következő állapotot előállító hálózat közvetlen visszacsatolásával, és **SR** tárolókkal történő visszacsatolással is!

- 2. mintafeladat -

Megoldás 1.: közvetlen visszacsatolás alkalmazása (Mealy-modell szerint)

(1. lépés: idődiagram vagy állapotgráf felrajzolása – elhagyható)

1. lépés: előzetes szimbolikus állapottábla felvétele a specifikáció alapján

aktuális	követ	tkező áll	apot/ki	menet
állapot	X_1X_2			
	00	01	10	11
а	<u>a</u> /0	<i>b/0</i>	c/0	-/-
b	a/0	b /0	-/-	d/0
С	a/0	-/-	<u>c</u> /0	e/1
d	-/-	b/0	c/0	<u>d</u> /0
e	-/-	<i>b/0</i>	c/0	e /1

⁻ Digitális hálózatok: 8.előadás -

- 2. mintafeladat -

2. lépés: összevont szimbolikus állapottábla megszerkesztése

előzetes szimbolikus állapottábla

aktuális	követ	tkező áll	apot/ki	menet
állapot		X_1	X_2	
	00	01	10	11
а	<u>a</u> /0	<i>b/0</i>	c/0	-/-
b	a/0	b /0	-/-	d/0
С	a/0	-/-	<u>c</u> /0	e/1
d	-/-	<i>b/0</i>	c/0	<u>d</u> /0
e	-/-	b/0	c/0	@/1

összevonható állapotpárok: *ab, ad, bd, ce*

összevont állapotok osztályai: abd, ce

$$abd \rightarrow \mathbf{s_1}$$
$$ce \rightarrow \mathbf{s_2}$$

- 2. mintafeladat -

előzetes szimbolikus állapottábla

aktuális	követ	tkező áll	apot/ki	menet
állapot		X_1	X_2	
	00	01	10	11
a	<u>a</u> /0	<i>b/0</i>	c/0	-/-
b	a/0	<u>b</u> /0	-/-	d/0
С	a/0	-/-	<u>c</u> /0	e/1
d	-/-	<i>b/0</i>	c/0	<u>d</u> /0
е	-/-	<i>b/0</i>	c/0	@/1

$$abd \rightarrow s_1$$

$$ce \rightarrow s_2$$

összevont szimbolikus állapottábla

aktuális	következő állapot/kimenet X_1X_2			
állapot,				
	00	01	10	11
s_1	<u>s</u> 1/0	<u>s</u> 1/0	s ₂ /0	<u>s</u> 1/0
s_2	s ₁ /0	s ₁ /0	<u>s₂/0</u>	<u>s</u> 2/1

⁻ Digitális hálózatok: 8.előadás -

- 2. mintafeladat -

3. lépés: kódolt állapottábla elkészítése (kritikus versenyhelyzet elemzés: nem szükséges)

egy lehetséges kódkiosztás:

Y

 $s_1: \quad 0$

 $s_2:$ 1

kódolt állapottábla

aktuális	következő állapot/kimenet			
állapot,	X_1X_2			
Y	00	01	10	11
0	<i>@</i> /0	@ /0	1/0	@ /0
1	0/0	0/0	1)/0	1)/1

⁻ Digitális hálózatok: 8.előadás -

- 2. mintafeladat -

4. lépés: a szekunder változó és a kimenet függvényeinek Karnaugh tábla segítségével történő megadása

⁻ Digitális hálózatok: 8.előadás -

- 2. mintafeladat -

5.lépés: a kezdeti állapot beállásának ellenőrzése

$$Y = X_1 \overline{X_2} + X_1 Y^{\nu} \qquad \text{kezdőállapotban:} \qquad O(Y) = 0 \cdot 1 + 0 \cdot Y^{\nu} \qquad \sqrt{\odot}$$

$$Z = X_1 X_2 Y^{\nu} \qquad \Longrightarrow \qquad O(Z) = 0 \cdot 0 \cdot Y^{\nu} \qquad \sqrt{\odot}$$

Konklúzió:

nem kell gondoskodni a kezdeti állapot 'RESET' jellel történő beállításáról

- 2. mintafeladat -

(6. lépés: lényeges hazárdok vizsgálata)

7. lépés: realizáció

NAND realizáció ('RESET' logika nélkül):

$$Y = X_1 \overline{X_2} + X_1 Y^{\nu}$$
$$Z = X_1 X_2 Y^{\nu}$$

- 2. mintafeladat -

<u>Megoldás 2.: SR tárolóval történő visszacsatolás alkalmazása (Mealy-modell szerint)</u>

- 1.-3. lépés: megegyezik az előző feladatmegoldás lépéseivel
- 4. lépés: az alkalmazott SR tároló vezérlésének felírása a kódolt állapottábla alapján

Q: az aktuális állapotot reprezentáló szekunder változó

aktuális	következő állapot/kimenet				
állapot,	X_1X_2				
\mathcal{L}	00	01	10	11	
0	<u>@</u> /0	@ /0	1/0	@ /0	
1	0/0	0/0	1)/0	1)/1	

- 2. mintafeladat -

Az SR tároló saját vezérlési táblája

YV -	→ Y	s	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	_	0

kódolt állapottábla

aktuális	következő állapot/kimenet				
állapot, $oldsymbol{\mathcal{Q}}$	X_1X_2				
~	00	01	10	11	
0	<i>@</i> /0	<i>@</i> /0	1/0	<i>@</i> /0	
1	0/0	0/0	1)/0	1/1	

vezérlési tábla

kódolt	kódolt következő állapot			
aktuális állapot	X_1X_2			
	00	01	10	11
Q	S R	S R	S R	S R
0	0 -	0 -	10	0 -
1	0 1	0 1	- 0	- 0

⁻ Digitális hálózatok: 8.előadás -

- 2. mintafeladat -

5. lépés: az SR tároló és a kimenet függvényeinek Karnaugh tábla segítségével történő megadása

$$S = X_1 \overline{X_2}$$

$$R = \overline{X_1}$$

$$Z = X_1 X_2 Y^{\nu}$$

⁻ Digitális hálózatok: 8.előadás -

- 2. mintafeladat -

6.lépés: a kezdeti állapot beállásának ellenőrzése

kezdeti állapot: Q=0!
$$\rightarrow$$
 szükséges SR vezérlés: $\left\{ egin{array}{l} S=0 \\ R=1 \end{array} \right\}$

 \downarrow

$$S = X_1 X_2$$

$$R = \overline{X_1}$$

$$Z = X_1 X_2 Y^{\nu}$$

kezdőállapotban:
$$O(S) = 0 \cdot 1$$
 $\sqrt{\odot}$ $X_1 X_2 = 00$ $I(R) = 1$ $\sqrt{\odot}$ $O(Z) = 0 \cdot 0 \cdot Y^{v}$ $\sqrt{\odot}$

Konklúzió:

nem kell gondoskodni a kezdeti állapot 'RESET' jellel történő beállításáról

- 2. mintafeladat -

(7. lépés: lényeges hazárdok vizsgálata)

8. lépés: realizáció

NAND realizáció ('RESET' logika nélkül):

Lényeges hazárdok aszinkron hálózatokban

Az eddigi aszinkron hálózat tervezési példáink megoldása során csak a szekunder változók versengése miatt kialakuló hibákkal, és azok kiküszöbölésével foglalkoztunk. Ez csak akkor tekinthető korrekt eljárásnak, ha garantálni tudjuk azt, hogy a bemeneti jelek változása okozta események a szekunder változók értékeinek megváltozása kezdete előtt már lezajlanak. Ez a feltételezésünk abban is megnyilvánul, hogy amikor az állapottáblán követjük az aszinkron hálózat működését, egyik oszlopról a másikra térünk át, és csak ezután vizsgáljuk a tranzienseket. A valóságban ez a feltételezés nem mindig jogos. A szekunder változók és egyik bemeneti változó kritikus versenyhelyzete úgynevezett lényeges hazárd veszélyével jár. Ennek kiküszöbölése időkésleltetési manipulációkat igényel.

Lényeges hazárdok aszinkron hálózatokban

Példa:

aszinkron szekvenciális hálózat (1.mintapélda) működésének analizálása az állapottáblán:

kódolt aktuális állapot	kódolt következő állapot/kimenet		
	X=0	<i>X</i> =1	
$Y_1^v Y_2^v$	$Y_1^{\nu}Y_2^{\nu}/Z$	$Y_1^{v}Y_2^{v}/Z$	
00	00/0	0 1/0	
01		01/0	
10	→ <u>10</u> /1	1 1/1	
11	0 0/0	11/1	

⁻ Digitális hálózatok: 8.előadás -